Equivalencia y consecuencia lógica para lógica de predicados

Clase 05

IIC 1253

Prof. Cristian Riveros

Outline

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Outline

Interpretaciones

Equivalencia lógica

Consecuencia lógica

¿de qué depende si una formula sea verdadera o falsa?

¿es la formula verdadera o falsa?

$$\alpha = \exists x. \ \forall y. \ x \leq y$$

- lacksquare si el "dominio" donde se evalúa lpha son los naturales.
- si el "dominio" donde se evalúa α son los enteros.
- si el "dominio" donde se evalúa α son nombres de personas. (?)

Depende de la **interpretación** (significado) del dominio y el símbolo ≤.

Notación

Desde ahora, diremos que $P(x_1,...,x_n)$ es un símbolo de predicado.

Definición

Una interpretación \mathcal{I} para sím. de predicado P_1, \ldots, P_m se compone por:

- 1. un dominio $\mathcal{I}(dom)$ y
- 2. para cada símbolo P_i un **predicado** $\mathcal{I}(P_i)$.

Definición

Una interpretación \mathcal{I} para sím. de predicado P_1, \ldots, P_m se compone por:

- 1. un dominio $\mathcal{I}(dom)$ y
- 2. para cada símbolo P_i un **predicado** $\mathcal{I}(P_i)$.

Ejemplos

Considere los símbolos P(x) y O(x,y).

- $\mathcal{I}_1(dom) := \mathbb{N}$ $\mathcal{I}_1(P) := x \text{ es par}$ $\mathcal{I}_1(O) := x < y$
- $\mathcal{I}_2(dom) := \mathbb{Z}$ $\mathcal{I}_2(P) := x > 0$ $\mathcal{I}_2(O) := x + y = 0$

Definición

Sea $\alpha(x_1,\ldots,x_n)$ una formula y \mathcal{I} una interpretación de los símbolos en α .

Diremos que la interpretación \mathcal{I} satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \models \alpha(a_1,\ldots,a_n)$$

si $\alpha(a_1,\ldots,a_n)$ es **verdadero** al evaluar cada símbolo en α según \mathcal{I} .

Ejemplos

Para los símbolos P(x) y O(x, y):

$$\blacksquare \mathcal{I}_1 \models \forall x. \exists y. P(y) \land O(x,y)$$

$$\blacksquare \mathcal{I}_2 \models \forall x. \exists y. P(y) \land O(x,y)$$

Definición

Sea $\alpha(x_1,\ldots,x_n)$ una formula y \mathcal{I} una interpretación de los símbolos en α .

Diremos que la interpretación \mathcal{I} satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \models \alpha(a_1,\ldots,a_n)$$

si $\alpha(a_1,\ldots,a_n)$ es **verdadero** al evaluar cada símbolo en α según \mathcal{I} .

Si \mathcal{I} **NO** satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$ lo anotaremos como:

$$\mathcal{I} \not\models \alpha(a_1,\ldots,a_n)$$

Notar que: $\mathcal{I} \not\models \alpha$ si, y solo si, $\mathcal{I} \models \neg \alpha$

Outline

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Equivalencia lógica en Lógica de Predicados

Definición

Sean $\alpha(x_1,...,x_n)$ y $\beta(x_1,...,x_n)$ dos formulas en lógica de predicados. Decimos que α y β son lógicamente equivalentes:

$$\alpha \equiv \beta$$

si para toda interpretación \mathcal{I} y para todo a_1, \ldots, a_n en $\mathcal{I}(dom)$ se cumple:

$$\mathcal{I} \vDash \alpha(a_1, \ldots, a_n)$$
 si, y solo si, $\mathcal{I} \vDash \beta(a_1, \ldots, a_n)$

Caso especial

Si α y β son oraciones (no tienen variables libres), entonces:

para toda interpretación \mathcal{I} : $\mathcal{I} \models \alpha$ si, y solo si, $\mathcal{I} \models \beta$

Algunas equivalencias lógicas

Todas las equivalencias de lógica proposicional son equivalencias en lógica de predicados.

Ejemplos

Para fórmulas α , β y γ en lógica de predicados:

- 1. Conmutatividad: $\alpha \land \beta \equiv \beta \land \alpha$
- 2. Asociatividad: $\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$
- 3. **Idempotente**: $\alpha \land \alpha \equiv \alpha$
- 4. Doble negación: $\neg \neg \alpha \equiv \alpha$
- 5. Distributividad: $\alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma)$
- **6. De Morgan**: $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
- 7. ..

Algunas equivalencias lógicas

Ejemplos

Las siguientes formulas son lógicamente equivalente:

- $\forall x. P(x) \rightarrow R(x) \equiv \forall x. \neg P(x) \lor R(x)$
- $(\forall x. P(x)) \rightarrow (\exists y. R(y)) \equiv (\neg \exists y. R(y)) \rightarrow (\neg \forall x. P(x))$

Para formulas α y β en lógica de predicados:

- 1. $\neg \forall x. \alpha \equiv \exists x. \neg \alpha$.
- 2. $\neg \exists x. \alpha \equiv \forall x. \neg \alpha$.

Demostración $(\neg \forall x. \alpha \equiv \exists x. \neg \alpha)$

Sea \mathcal{I} una interpretación cualquiera, y suponga que:

$$\mathcal{I} \models \neg \forall x. \ \alpha(x) \quad \Rightarrow \quad \mathcal{I} \not\models \forall x. \ \alpha(x)$$
$$\Rightarrow \quad \text{existe } a \text{ en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \not\models \alpha(a)$$

$$\Rightarrow$$
 existe a en $\mathcal{L}(dom)$ tal que $\mathcal{L} \not\models \alpha(a)$

$$\Rightarrow$$
 existe a en $\mathcal{I}(dom)$ tal que $\mathcal{I} \vDash \neg \alpha(a)$

$$\Rightarrow \mathcal{I} \vDash \exists x. \neg \alpha(x)$$

Para formulas α y β en lógica de predicados:

- 1. $\neg \forall x. \alpha \equiv \exists x. \neg \alpha$.
- 2. $\neg \exists x. \alpha \equiv \forall x. \neg \alpha$.

Demostración $(\neg \forall x. \alpha \equiv \exists x. \neg \alpha)$

Sea \mathcal{I} una interpretación cualquiera, y suponga que (la otra dirección):

$$\mathcal{I} \vDash \exists x. \neg \alpha(x) \quad \Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \vDash \neg \alpha(\textit{a}) \\ \Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \not \vDash \alpha(\textit{a}) \\ \Rightarrow \quad \mathcal{I} \not \vDash \forall x. \alpha(x) \\ \Rightarrow \quad \mathcal{I} \vDash \neg \forall x. \alpha(x)$$

Demuestre la otra equivalencia!

Para formulas α y β en lógica de predicados:

- 3. $\forall x. (\alpha \land \beta) \equiv (\forall x. \alpha) \land (\forall x. \beta).$
- 4. $\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta)$.

Demostración
$$(\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta))$$

Sea ${\mathcal I}$ una interpretación cualquiera, y suponga que:

$$\mathcal{I} \vDash \exists x. \ (\alpha(x) \lor \beta(x)) \quad \Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \ \text{tal que } \mathcal{I} \vDash \alpha(\textit{a}) \lor \beta(\textit{a})$$

$$\Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \ \text{tal que } \mathcal{I} \vDash \alpha(\textit{a}) \ (\mathsf{SPDG})$$

$$\Rightarrow \quad \mathcal{I} \vDash \exists x. \ \alpha(x)$$

$$\Rightarrow \quad \mathcal{I} \vDash \exists x. \ \alpha(x) \lor \exists x. \ \beta(x)$$

SPDG := Hay dos (o más casos) y "Sin Perdida De Generalidad" demostramos un caso (el otro es análogo).

Para formulas α y β en lógica de predicados:

- 3. $\forall x. (\alpha \land \beta) \equiv (\forall x. \alpha) \land (\forall x. \beta).$
- 4. $\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta).$

Demostración $(\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta))$

Sea ${\mathcal I}$ una interpretación cualquiera, y suponga que (la otra dirección):

$$\begin{split} \mathcal{I} &\vDash \exists x. \, \alpha(x) \vee \exists x. \, \beta(x) \quad \Rightarrow \quad \mathcal{I} \vDash \exists x. \, \alpha(x) \quad \text{(SPDG)} \\ &\Rightarrow \quad \text{existe } a \text{ en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \vDash \alpha(a) \\ &\Rightarrow \quad \text{existe } a \text{ en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \vDash \alpha(a) \vee \beta(a) \\ &\Rightarrow \quad \mathcal{I} \vDash \exists x. \, (\alpha(x) \vee \beta(x)) \quad \quad \Box \end{split}$$

Demuestre la otra equivalencia!

; es verdad que ...?

$$\exists x. (\alpha \wedge \beta) \stackrel{?}{\equiv} (\exists x. \alpha) \wedge (\exists x. \beta)$$

Outline

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Tautologías en lógica de predicados

Definición

Una fórmula α es una **tautología** si para toda interpretación \mathcal{I} y para todo a_1, \ldots, a_n en $\mathcal{I}(dom)$ se cumple que:

$$\mathcal{I} \vDash \alpha(a_1,\ldots,a_n)$$

¿cuáles fórmulas son tautologías? • $\forall x. P(x) \lor \neg P(x)$ • $\forall x. \exists y. x \le y$

$$(\forall x. P(x)) \rightarrow P(y)$$

$$\forall x. (P(x) \to P(y))$$

Consecuencia lógica en lógica de predicados

Para un conjunto Σ de formulas, decimos que \mathcal{I} satisface Σ con a_1, \ldots, a_n en $\mathcal{I}(dom)$ si:

$$\mathcal{I} \vDash \alpha(a_1, \ldots, a_n)$$
 para toda $\alpha \in \Sigma$

Si \mathcal{I} satisface Σ con a_1, \ldots, a_n escribiremos $\mathcal{I} \models \Sigma(a_1, \ldots, a_n)$.

Definición

Una oración α es consecuencia lógica de un conjunto de oraciones Σ :

$$\Sigma \models \alpha$$

si para toda interpretación \mathcal{I} y a_1, \ldots, a_n en $\mathcal{I}(dom)$ se cumple que:

si
$$\mathcal{I} \models \Sigma(a_1, \ldots, a_n)$$
 entonces $\mathcal{I} \models \alpha(a_1, \ldots, a_n)$

Consecuencia lógica en lógica de predicados

Ejemplo

Todos los hombres son mortales.

Sócrates es hombre.

Por lo tanto, Sócrates es mortal.

Esto lo podemos modelar con el vocabulario $H(\cdot)$, $M(\cdot)$:

$$\forall x. \ \mathsf{H}(x) \to \mathsf{M}(x)$$

 $\mathsf{H}(y)$

M(y)

¿se cumple la consecuencia lógica?

¿cuáles son consecuencias lógicas válidas?

1.
$$\{\exists x. (\alpha \land \beta)\} \models (\exists x. \alpha) \land (\exists x. \beta)$$

2. $\{(\exists x. \alpha) \land (\exists x. \beta)\} \models \exists x. (\alpha \land \beta)$

3. $\{(\forall x. \alpha) \lor (\forall x. \beta)\} \models \forall x. (\alpha \lor \beta)$

4. $\{\forall x. \exists y. R(x, y)\} \models \exists y. \forall x. R(x, y)$

Demuestre estas consecuencias lógicas

Para hacer inferencia lógica es muy útil usar nombres de variables!

1. Instanciación universal:

$$\forall x. \, \alpha(x)$$
 $\alpha(a)$ para cualquier a

2. Generalización universal:

$\alpha(a)$	para cualquier <i>a</i>
$\forall x. \alpha(x)$	

Para hacer inferencia lógica es muy útil usar nombres de variables!

3. Instanciación existencial:

$$\exists x. \, \alpha(x)$$
 $\alpha(a)$ para algún a (nuevo)

4. Generalización existencial:

$$\frac{\alpha(a) \qquad \text{para algún } a}{\exists x. \, \alpha(x)}$$

Ejemplo

Algún estudiante en la sala no estudio para el examen

Todos los estudiantes en la sala pasaron el examen

Algún estudiante pasó el examen y no estudio

¿cómo modelamos este problema?

$$S(x) := x \text{ está en la sala.}$$

$$E(x) := x$$
 estudio para el examen.

$$X(x) := x$$
 pasó el examen.

¿cómo queda la consecuencia lógica?

$$\exists x. \, S(x) \land \neg E(x)$$
$$\forall x. \, S(x) \to X(x)$$

$$\frac{\forall x. \, S(x) \to X(x)}{\exists x. \, X(x) \land \neg E(x)}$$

Ejemplo $\exists x. S(x) \land \neg E(x)$ $\forall x. S(x) \rightarrow X(x)$ $\exists x. X(x) \land \neg E(x)$ ¿cómo inferimos esta consecuencia lógica? 1. $\exists x. S(x) \land \neg E(x)$ (Premisa) 2. $S(a) \land \neg E(a)$ (Inst. existencial 1.) (Simpl. conjuntiva 2.) 3. S(a)4. $\forall x. S(x) \rightarrow X(x)$ (Premisa) 5. $S(a) \rightarrow X(a)$ (Inst. universal 4.) 6. X(a)(Modus ponens 3. y 5.) 7. $\neg E(a)$ (Simpl. conjuntiva 2.) 8. $X(a) \land \neg E(a)$ (Conjunción 6. y 7.) 9. $\exists x. X(x) \land \neg E(x)$ (Gen. existencial 8.)