

PCT/US2004/010582

REC'D 22 JUN 2005

WIPO

POT

P2 1320744

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

June 17, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY OF THE BELOW IDENTIFIED INTERNATIONAL APPLICATION AS ORIGINALLY FILED AND ANY CORRECTIONS THERETO FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE ACTING AS A RECEIVING OFFICE UNDER THE PATENT COOPERATION TREATY.

APPLICATION NUMBER: PCT/US04/06308
FILING DATE: March 02, 2004

By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

H. L. JACKSON
Certifying Officer

PCT/US04/06308

TRANSMITTAL LETTER TO THE
UNITED STATES RECEIVING OFFICE

Date	2 March 2004
International Application No.	PCT/US04/06308
Attorney Docket No.	PROL-PWO-024

I. Certificate under 37 CFR 1.10 (if applicable)

EV323 524 199US
Express Mail mailing number

2 March 2004
Date of Deposit

I hereby certify that the application/correspondence attached hereto is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to MS PCT, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Maura A. Gallagher

Signature of person mailing correspondence

Maura A. Gallagher

Typed or printed name of person mailing correspondence

II. New International Application

TITLE	POSH INTERACTING PROTEINS AND RELATED METHODS	Earliest priority date (Day/Month/Year)
		03/03/03

SCREENING DISCLOSURE INFORMATION: In order to assist in screening the accompanying international application for purposes of determining whether a license for foreign transmittal should and could be granted and for other purposes, the following information is supplied. (Note: check as many boxes as apply):

- A. The invention disclosed was not made in the United States.
- B. There is no prior U.S. application relating to this invention.
- C. The following prior U.S. application(s) contain subject matter which is related to the invention disclosed in the attached international application. (NOTE: priority to these applications may or may not be claimed on form PCT/RO/101 (Request) and this listing does not constitute a claim for priority.)

App No	App No
App No 60/451,437 filed 3 March 2003	App No 60/479,317 filed 17 June 2003
App No 60/452,284 filed 5 March 2003	App No 60/480,376 filed 19 June 2003
App No 60/456,640 filed 20 March 2003	App No 60/480,215 filed 19 June 2003
App No 60/460,526 filed 3 April 2003	App No 60/493,860 filed 8 August 2003
App No 60/464,285 filed 21 April 2003	App No 60/503,931 filed 16 September 2003
App No 60/469,462 filed 9 May 2003	App No 60/455,760 filed 19 March 2003
App No 60/471,378 filed 15 May 2003	App No 60/460,792 filed 4 April 2003
App No 60/472,327 filed 20 May 2003	App No 60/498,634 filed 28 August 2003
App No 60/474,706 filed 30 May 2003	App No US03/35712 filed 10 November 2003
App No A PCT application filed on February 5, 2004 (Attorney Docket No. PROL-PWO-039), in the name of Iris Alroy, Daniel Taglicht, Yuval Reiss, Liora Yaar, and Shmuel Tuvia entitled "Posh Associated Kinases and Related Methods."	App No A provisional application filed on March 2, 2004, (Attorney Docket No. PROL-P79-024), in the name of Daniel N. Taglicht, Iris Alroy, Yuval Reiss, Liora Yaar, Danny Ben-Avraham, Shmuel Tuvia and Tsvika Greener entitled "Posh Interacting Proteins and Related Methods."

- D. The present international application contains additional subject matter not found in the prior U.S. application(s) identified in paragraph C. above. The additional subject matter is found on pages **THROUGHOUT** and **DOES NOT ALTER** **MIGHT BE CONSIDERED TO ALTER** the general nature of the invention in a manner which would require the U.S. application to have been made available for inspection by the appropriate defense agencies under 35 U.S.C. 181 and 37 CFR 5.1. See 37 CFR 5.15.

IV. A Request for Rectification under PCT Rule 91 A Petition A Sequence Listing Diskette

V. Other (please specify): Request & Fee Calculation Sheet (7 pp); Description (155 pp); Claims (16 pp); Abstract (1 p); Drawings (202 pp); Return postcard from RO/US confirming receipt of PCT application

The person signing this form is the:	<input type="checkbox"/> Applicant	Kathleen Ehrhard
	<input checked="" type="checkbox"/> Attorney/Agent Reg. No. P-55,144	Typed name of signer
	<input type="checkbox"/> Common Representative	<i>Kathleen Ehrhard</i> Signature

HOME COPY

PCT**REQUEST**

The undersigned requests that the present international application be processed according to the Patent Cooperation Treaty.

For receiving Office use only	
PCT/US 04/06308	
International Application No.	
International Filing Date 02 MAR 2004 (02.03.04)	
PCT INTERNATIONAL Name of receiving Office and "PCT International Application"	
Applicant's file reference PROL-PWO-024 (if desired) (12 characters maximum)	

Box No. I TITLE OF INVENTION

POSH INTERACTING PROTEINS AND RELATED METHODS

Box No. II APPLICANT This person is also inventor

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

PROTEOLOGICS, INC.
40 Ramland Road South
Suite 10
Orangeburg, New York 10962
United States of America

Telephone No.

Facsimile No.

Teleprinter No.

Applicant's registration No. with the Office

State (that is, country) of nationality:
USState (that is, country) of residence:
US

This person is applicant all designated all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box
for the purposes of: States

Box No. III FURTHER APPLICANT(S) AND/OR (FURTHER) INVENTOR(S)

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

TAGLICHT, Daniel N.
Lapid
Israel

This person is:

- applicant only
- applicant and inventor
- inventor only (If this check-box is marked, do not fill in below.)

Applicant's registration No. with the Office

State (that is, country) of nationality:
ILState (that is, country) of residence:
IL

This person is applicant all designated all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box
for the purposes of: States

 Further applicants and/or (further) inventors are indicated on a continuation sheet.**Box No. IV AGENT OR COMMON REPRESENTATIVE; OR ADDRESS FOR CORRESPONDENCE**

The person identified below is hereby/has been appointed to act on behalf of the applicant(s) before the competent International Authorities as:

agent common representative

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country.)

EHRHARD, Kathleen
Ropes & Gray LLP
One International Place
Boston, Massachusetts 02110-2624
United States of America

Telephone No.
(617) 951-7037Facsimile No.
(617) 951-7050

Teleprinter No.

Agent's registration No. with the Office
P-55, 144

Address for correspondence: Mark this check-box where no agent or common representative is/has been appointed and the space above is used instead to indicate a special address to which correspondence should be sent.

Continuation of Box No. III

FURTHER APPLICANT(S) AND/OR (FURTHER) INVENTOR(S)

If none of the following sub-boxes is used, this sheet should not be included in the request.

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

ALROY, Iris
Hashirion Street 10/17
74065 Nes Ziona
Israel

This person is:

 applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)

Applicant's registration No. with the Office

State (that is, country) of nationality:
ILState (that is, country) of residence:
IL

This person is applicant all designated all designated States except the United States of America of America only the States indicated in the Supplemental Box for the purposes of: States the United States of America

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

REISS, Yuval
Hahavazelet 11/6
Kiriat-ono
Israel

This person is:

 applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)

Applicant's registration No. with the Office

State (that is, country) of nationality:
ILState (that is, country) of residence:
IL

This person is applicant all designated all designated States except the United States of America of America only the States indicated in the Supplemental Box for the purposes of: States the United States of America

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

YAAR, Liora
8 Kalisher Street
43354 Raanana
Israel

This person is:

 applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)

Applicant's registration No. with the Office

State (that is, country) of nationality:
ILState (that is, country) of residence:
IL

This person is applicant all designated all designated States except the United States of America of America only the States indicated in the Supplemental Box for the purposes of: States the United States of America

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

BEN-AVRAHAM, Danny
Igal Alon 20
Zichron Jackov
Israel

This person is:

 applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)

Applicant's registration No. with the Office

State (that is, country) of nationality:
ILState (that is, country) of residence:
IL

This person is applicant all designated all designated States except the United States of America of America only the States indicated in the Supplemental Box for the purposes of: States the United States of America

Further applicants and/or (further) inventors are indicated on another continuation sheet.

Continuation of Box No. III

FURTHER APPLICANT(S) AND/OR (FURTHER) INVENTOR(S)

If none of the following sub-boxes is used, this sheet should not be included in the request.

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (i.e. country) of residence if no State of residence is indicated below.)

TUVIA, Shmuel
Hartzit 1
42490 Netanya
Israel

This person is:

 applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)

Applicant's registration No. with the Office

State (that is, country) of nationality:
ILState (that is, country) of residence:
IL

This person is applicant all designated all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box for the purposes of: States

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

GREENER, Tsvika
Hahavazelet 9a
Ness Ziona
Israel

This person is:

 applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)

Applicant's registration No. with the Office

State (that is, country) of nationality:
ILState (that is, country) of residence:
IL

This person is applicant all designated all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box for the purposes of: States

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

This person is:

 applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)

Applicant's registration No. with the Office

State (that is, country) of nationality:

State (that is, country) of residence:

This person is applicant all designated all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box for the purposes of: States

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

This person is:

 applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)

Applicant's registration No. with the Office

State (that is, country) of nationality:

State (that is, country) of residence:

This person is applicant all designated all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box for the purposes of: States

Further applicants and/or (further) inventors are indicated on another continuation sheet.

Supplemental Box If the Supplemental Box is not used, this sheet should not be included in the request.

- Appl
cat
ion
No.**
1. If, in any of the Boxes except Boxes Nos. VIII(i) to (v) for which a special continuation box is provided, the space is insufficient to furnish all the information: in such case, write "Continuation of box No." (indicate the number of the Box) and furnish the information in the same manner as required according to the captions of the Box in which the space was insufficient, in particular:
 - (i) if more than two persons are to be indicated as applicants and/or inventors and no "continuation sheet" is available: in such case, write "Continuation of Box No. III" and indicate for each additional person the same type of information as required in Box No. III. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below;
 - (ii) if, in Box No. II or in any of the sub-boxes of Box No. III, the indication "the States indicated in the Supplemental Box" is checked: in such case, write "Continuation of Box No. II" or "Continuation of Box No. III" or "Continuation of Boxes No. II and No. III" (as the case may be), indicate the name of the applicant(s) involved and, next to (each) such name, the State(s) (and/or, where applicable, ARIPO, Eurasian, European or OAPI patent) for the purposes of which the named person is applicant;
 - (iii) if, in Box No. II or in any of the sub-boxes of Box No. III, the inventor or the Inventor/applicant is not inventor for the purposes of all designated States or for the purposes of the United States of America: in such case, write "Continuation of Box No. II" or "Continuation of Box No. III" or "Continuation of Boxes No. II and No. III" (as the case may be), indicate the name of the inventor(s) and, next to (each) such name, the State(s) (and/or, where applicable, ARIPO, Eurasian, European or OAPI patent) for the purposes of which the named person is inventor;
 - (iv) if, in addition to the agent(s) indicated in Box No. IV, there are further agents: in such case, write "Continuation of Box No. IV" and indicate for each further agent the same type of information as required in Box IV;
 - (v) if, in Box No. VI, there are more than three earlier applications whose priority is claimed: in such case, write "Continuation of Box No. VI" and indicate for each additional earlier application the same type of information as required in Box No. VI.
2. If, the applicant intends to make an indication of the wish that the international application be treated, in certain designated States, as an application for a patent of addition, certificate of addition, inventor's certificate of addition or utility certificate of addition: in such a case, write the name or two-letter code of each designated States concerned and the indication "patent of addition," "certificate of addition," "Inventor's certificate of addition" or "utility certificate of addition," the number of the parent application or parent patent or other parent grant and the date of grant of the parent patent or other patent grant or the date of filing of the parent application (Rules 4.11(a)(ii) and 49bis.1(a) or (b)).
3. If the applicant intends to make an indication of the wish that the international application be treated, in the United States of America, as a continuation or continuation-in-part of an earlier application: in such a case, write "United States of America" or "US" and the indication "continuation" or "continuation-in-part" and the number and the filing date of the parent application (Rules 4.11(a)(iv) and 49bis.1(d)).

Continuation of Box No. VI

- (4) Date: 05 March 2003 (05/03/03) Application: 60/452284
 National Application Country: US
- (5) Date: 20 March 2003 (20/03/03) Application: 60/456640
 National Application Country: US
- (6) Date: 03 April 2003 (03/04/03) Application: 60/460526
 National Application Country: US
- (7) Date: 21 April 2003 (21/04/03) Application: 60/464285
 National Application Country: US
- (8) Date: 15 May 2003 (15/05/03) Application: 60/471378
 National Application Country: US
- (9) Date: 20 May 2003 (20/05/03) Application: 60/472327
 National Application Country: US
- (10) Date: 30 May 2003 (30/05/03) Application: 60/474706
 National Application Country: US
- (11) Date: 03 June 2003 (03/06/03) Application: 60/475825
 National Application Country: US
- (12) Date: 17 June 2003 (17/06/03) Application: 60/479317
 National Application Country: US
- (13) Date: 19 June 2003 (19/06/03) Application: 60/480215
 National Application Country: US
- (14) Date: 08 August 2003 (08/08/03) Application: 60/493860
 National Application Country: US
- (15) Date: 16 September 2003 (16/09/03) Application: 60/503931
 National Application Country: US
- (16) Date: 07 March 2004 (02/03/04) Application: A provisional application filed on March 2, 2004, (Attorney Docket No. PROL-P79-024), in the name of Daniel N. Taglicht, Iris Alroy, Yuval Reiss, Liora Yaar, Danny Ben-Avraham, Shmuel Tuvia and Tsiska Greener entitled "Posh Interacting Proteins and Related Methods."
- National Application Country: US
- (17) Date: 03 March 2003 (03/03/03) Application: 60/451,437
 National Application Country: US
- (18) Date: 09 May 2003 (09/05/03) Application: 60/469,462
 National Application Country: US
- (19) Date: 19 June 2003 (19/06/03) Application: 60/480,376
 National Application Country: US
- (20) Date: 10 November 2003 (10/11/03) Application: US03135712
 National Application Country: US
- (21) Date: PCT filed 05 February 2004 (Attorney Docket No. PROL-P79-039) in the name of Iris Alroy, Daniel Taglicht, Yuval Reiss, Liora Yaar, and Shmuel Tuvia entitled "Posh Associated Kinases and Related Methods"

Continuation of Box No. IV:

Steven Baglio, 51,426; J. Steven Baughman, 47,414; Mark W. Bellomy, 51,452; John V. Bianco, 36,748; Johnny Y. Chen, 46,614; James P. Demers, 34,320; Gojeb L. Frehywot, 52,916; Gloria Fuentes, 47,580; Gregory Glover, 34,173; William G. Gosz, 27,787; Patricia Granahan, 32,227; Z. Angela Guo, 54,144; David P. Halstead, 44,735; Margaret E. Jamroz, 54,196; Edward J. Kelly, 38,936; Charles Larsen, 48,533; Agnes S. Lee, 46,862; Paul E. Lewkowicz, 44,870; Weishi Li, 53,217; Yu Lu, 50,306; Alexander Manganiello, 53,264; Robert A. Mazzarese, 42,852; Christopher Natkanski, 50,365; R. Daniel O'Connor, P54,343; Ignacio Perez de la Cruz, 55,535; Melissa S. Rones, Ph.D., 54,408; Spencer H. Schneider, 45,923; Sanjay Sitlani, 48,489; Wolfgang E. Stutius, 40,256; Erika Takeuchi, 55,661; Lisa Treannie, 41,368; Anita Varma, 43,221; Matthew P. Vincent, 36,709; Dalila Argaez Wendlandt, 52,351; and Levina Wong, P54,551

And all other agents of:

ROPS & GRAY LLP, Patent Group
 One International Place
 Boston, Massachusetts 02110-2624
 United States of America
 Customer ID No: 28,120

Box No. V DESIGNATIONS

The filing of this request constitutes under Rule 4.9(a), the designation of all Contracting States bound by the PCT on the international filing date, for the grant of every kind of protection available and, where applicable, for the grant of both regional and national patents.

However,

- DE Germany is not designated for any kind of national protection.

KR Republic of Korea is not designated for any kind of national protection.

RU Russian Federation is not designated for any kind of national protection.

(The check-boxes above may be used to exclude (irrevocably) the designations concerned in order to avoid the ceasing of the effect, under the national law, of an earlier national application from which priority is claimed. See the Notes to Box No. V as to the consequences of such national law provisions in these and certain other States.)

Box No. VI PRIORITY CLAIM

The priority of the following earlier application(s) is hereby claimed:

Filing date of earlier application (day/month/year)	Number of earlier application	Where earlier application is:		
		national application: country or Member of WTO	regional application:*	international application receiving Office
item (1)	19 March 2003 (19.03.2003)	60/455760	US	
item (2)	28 August 2003 (28.08.2003)	60/498634	US	
item (3)	04 April 2003 (04.04.2003)	60/460792	US	

Further priority claims are indicated in the Supplemental Box.

The receiving Office is requested to prepare and transmit to the International Bureau a certified copy of the earlier application(s) (*only if the earlier application was filed with the Office which for the purposes of this international application is the receiving Office*) identified above as:

- all items item (1) item (2) item (3) other, see Supplemental Box

* Where the earlier application is an ARIPO application, indicate at least one country party to the Paris Convention for the Protection of Industrial Property or one Member of the World Trade Organization for which that earlier application was filed (Rule 4.10(b)(ii)): _____

Box No. VII INTERNATIONAL SEARCHING AUTHORITY

Choice of International Searching Authority (ISA) (if two or more International Searching Authorities are competent to carry out the international search, indicate the Authority chosen; the two-letter code maybe used):

ISA/US

Request to use results of earlier search; reference to that search (if an earlier search has been carried out by or requested from the International Searching Authority):

Date (day/month/year) Number

Country (or regional Office)

Box No. VIII DECLARATIONS

The following declarations are contained in Boxes Nos. VIII (i) to (v) (mark the applicable check-boxes below and indicate in the right column the number of each type of declaration):

Number of declarations

- | | | |
|--------------------------|--------------------|--|
| <input type="checkbox"/> | Box No. VIII (i) | Declaration as to the identity of the inventor |
| <input type="checkbox"/> | Box No. VIII (ii) | Declaration as to the applicant's entitlement, as at the international filing date, to apply for and be granted a patent |
| <input type="checkbox"/> | Box No. VIII (iii) | Declaration as to the applicant's entitlement, as at the international filing date, to claim the priority of the earlier application |
| <input type="checkbox"/> | Box No. VIII (iv) | Declaration of inventorship (only for the purposes of the designation of the United States of America) |
| <input type="checkbox"/> | Box No. VIII (v) | Declaration as to non-prejudicial disclosures or exceptions to lack of novelty |

Box No. IX CHECK LIST; LANGUAGE OF FILING																																																																																			
<p>This international application contains:</p> <p>(a) in paper form, the following number of sheets: ..</p> <table> <tr><td>request (including declaration sheets)</td><td>:</td><td>6</td></tr> <tr><td>description (excluding sequence listings and/or tables related thereto)</td><td>:</td><td>155</td></tr> <tr><td>claims</td><td>:</td><td>16</td></tr> <tr><td>abstract</td><td>:</td><td>1</td></tr> <tr><td>drawings</td><td>:</td><td>202</td></tr> <tr><td>Sub-total number of sheets</td><td>:</td><td></td></tr> <tr><td>sequence listings</td><td>:</td><td></td></tr> <tr><td>tables related thereto</td><td>:</td><td></td></tr> <tr><td colspan="2"><i>(for both, actual number of sheets if filed in paper form, whether or not also filed in computer readable form; see (c) below)</i></td><td></td></tr> <tr><td>Total number of sheets</td><td>:</td><td>380</td></tr> </table> <p>(b) <input type="checkbox"/> only in computer readable form (Section 801(a)(i))</p> <ul style="list-style-type: none"> (i) <input type="checkbox"/> sequence listings (ii) <input type="checkbox"/> tables related thereto <p>(c) <input type="checkbox"/> also in computer readable form (Section 801(a)(ii))</p> <ul style="list-style-type: none"> (i) <input type="checkbox"/> sequence listings (ii) <input type="checkbox"/> tables related thereto <p>Type and number of carriers (diskette, CD-ROM, CD-R or other) on which are contained the</p> <ul style="list-style-type: none"> <input type="checkbox"/> sequence listing: <input type="checkbox"/> tables related thereto: <p><i>(additional copies to be indicated under items 9(ii) and/or 10(ii), in right column)</i></p>		request (including declaration sheets)	:	6	description (excluding sequence listings and/or tables related thereto)	:	155	claims	:	16	abstract	:	1	drawings	:	202	Sub-total number of sheets	:		sequence listings	:		tables related thereto	:		<i>(for both, actual number of sheets if filed in paper form, whether or not also filed in computer readable form; see (c) below)</i>			Total number of sheets	:	380	<p>This international application is accompanied by the following item(s) (mark the applicable check-boxes below and indicate in right column the number of each item):</p> <table> <tr><td>1. <input checked="" type="checkbox"/> fee calculation sheet</td><td>:</td><td>1</td></tr> <tr><td>2. <input type="checkbox"/> original separate power of attorney</td><td>:</td><td></td></tr> <tr><td>3. <input type="checkbox"/> original general power of attorney</td><td>:</td><td></td></tr> <tr><td>4. <input type="checkbox"/> copy of general power of attorney; reference number, if any:</td><td>:</td><td></td></tr> <tr><td>5. <input type="checkbox"/> statement explaining lack of signature</td><td>:</td><td></td></tr> <tr><td>6. <input type="checkbox"/> priority document(s) identified in Box No. VI as item(s):</td><td>:</td><td></td></tr> <tr><td>7. <input type="checkbox"/> translation of international application into (language):</td><td>:</td><td></td></tr> <tr><td>8. <input type="checkbox"/> separate indications concerning deposited microorganisms or other biological material</td><td>:</td><td></td></tr> <tr><td>9. <input type="checkbox"/> sequence listing in computer readable form (indicate type and number of carriers)</td><td>:</td><td></td></tr> <tr><td>(i) <input type="checkbox"/> copy submitted for the purposes of international search under Rule 13ter only (and not as part of the international application)</td><td>:</td><td></td></tr> <tr><td>(ii) <input type="checkbox"/> (only where check-box (b)(i) or (c)(i) is marked in left column) additional copies including, where applicable, the copy for the purposes of international search under Rule 13ter</td><td>:</td><td></td></tr> <tr><td>(iii) <input type="checkbox"/> together with relevant statement as to the identity of the copy or copies with the sequence listings part mentioned in left column</td><td>:</td><td></td></tr> <tr><td>10. tables in computer readable form related to sequence listing (indicate type and number of carriers)</td><td>:</td><td></td></tr> <tr><td>(i) <input type="checkbox"/> copy submitted for the purposes of international search under Section 802 (b-quater) only (and not as part of the international application)</td><td>:</td><td></td></tr> <tr><td>(ii) <input type="checkbox"/> (only where check-box (b)(ii) or (c)(ii) is marked in left column) additional copies including, where applicable, the copy for the purposes of international search under Section 802 (b-quater)</td><td>:</td><td></td></tr> <tr><td>(iii) <input type="checkbox"/> together with relevant statement as to the identity of the copy or copies with the tables mentioned in left column</td><td>:</td><td></td></tr> <tr><td>11. X other (specify): Return postcard from RO/US confirming receipt of PCT & encls.</td><td>:</td><td></td></tr> </table>	1. <input checked="" type="checkbox"/> fee calculation sheet	:	1	2. <input type="checkbox"/> original separate power of attorney	:		3. <input type="checkbox"/> original general power of attorney	:		4. <input type="checkbox"/> copy of general power of attorney; reference number, if any:	:		5. <input type="checkbox"/> statement explaining lack of signature	:		6. <input type="checkbox"/> priority document(s) identified in Box No. VI as item(s):	:		7. <input type="checkbox"/> translation of international application into (language):	:		8. <input type="checkbox"/> separate indications concerning deposited microorganisms or other biological material	:		9. <input type="checkbox"/> sequence listing in computer readable form (indicate type and number of carriers)	:		(i) <input type="checkbox"/> copy submitted for the purposes of international search under Rule 13ter only (and not as part of the international application)	:		(ii) <input type="checkbox"/> (only where check-box (b)(i) or (c)(i) is marked in left column) additional copies including, where applicable, the copy for the purposes of international search under Rule 13ter	:		(iii) <input type="checkbox"/> together with relevant statement as to the identity of the copy or copies with the sequence listings part mentioned in left column	:		10. tables in computer readable form related to sequence listing (indicate type and number of carriers)	:		(i) <input type="checkbox"/> copy submitted for the purposes of international search under Section 802 (b-quater) only (and not as part of the international application)	:		(ii) <input type="checkbox"/> (only where check-box (b)(ii) or (c)(ii) is marked in left column) additional copies including, where applicable, the copy for the purposes of international search under Section 802 (b-quater)	:		(iii) <input type="checkbox"/> together with relevant statement as to the identity of the copy or copies with the tables mentioned in left column	:		11. X other (specify): Return postcard from RO/US confirming receipt of PCT & encls.	:	
request (including declaration sheets)	:	6																																																																																	
description (excluding sequence listings and/or tables related thereto)	:	155																																																																																	
claims	:	16																																																																																	
abstract	:	1																																																																																	
drawings	:	202																																																																																	
Sub-total number of sheets	:																																																																																		
sequence listings	:																																																																																		
tables related thereto	:																																																																																		
<i>(for both, actual number of sheets if filed in paper form, whether or not also filed in computer readable form; see (c) below)</i>																																																																																			
Total number of sheets	:	380																																																																																	
1. <input checked="" type="checkbox"/> fee calculation sheet	:	1																																																																																	
2. <input type="checkbox"/> original separate power of attorney	:																																																																																		
3. <input type="checkbox"/> original general power of attorney	:																																																																																		
4. <input type="checkbox"/> copy of general power of attorney; reference number, if any:	:																																																																																		
5. <input type="checkbox"/> statement explaining lack of signature	:																																																																																		
6. <input type="checkbox"/> priority document(s) identified in Box No. VI as item(s):	:																																																																																		
7. <input type="checkbox"/> translation of international application into (language):	:																																																																																		
8. <input type="checkbox"/> separate indications concerning deposited microorganisms or other biological material	:																																																																																		
9. <input type="checkbox"/> sequence listing in computer readable form (indicate type and number of carriers)	:																																																																																		
(i) <input type="checkbox"/> copy submitted for the purposes of international search under Rule 13ter only (and not as part of the international application)	:																																																																																		
(ii) <input type="checkbox"/> (only where check-box (b)(i) or (c)(i) is marked in left column) additional copies including, where applicable, the copy for the purposes of international search under Rule 13ter	:																																																																																		
(iii) <input type="checkbox"/> together with relevant statement as to the identity of the copy or copies with the sequence listings part mentioned in left column	:																																																																																		
10. tables in computer readable form related to sequence listing (indicate type and number of carriers)	:																																																																																		
(i) <input type="checkbox"/> copy submitted for the purposes of international search under Section 802 (b-quater) only (and not as part of the international application)	:																																																																																		
(ii) <input type="checkbox"/> (only where check-box (b)(ii) or (c)(ii) is marked in left column) additional copies including, where applicable, the copy for the purposes of international search under Section 802 (b-quater)	:																																																																																		
(iii) <input type="checkbox"/> together with relevant statement as to the identity of the copy or copies with the tables mentioned in left column	:																																																																																		
11. X other (specify): Return postcard from RO/US confirming receipt of PCT & encls.	:																																																																																		
Figure of the drawings which should accompany the abstract:	Language of filing of the international application: English																																																																																		
Box No. X SIGNATURE OF APPLICANT, AGENT OR COMMON REPRESENTATIVE																																																																																			
<p><i>Next to each signature, indicate the name of the person signing and the capacity in which the person signs (if such capacity is not obvious from reading the request).</i></p> <p>Kathleen Ehrhard, Agent for Applicant(s) ROPS & GRAY LLP</p> <p>(02.03.04)</p>																																																																																			
<p>For receiving Office use only</p> <table> <tr> <td>1. Date of actual receipt of the purported international application:</td> <td>DT02 Rec'd PCT/PTO 02 MAR 2004</td> <td>2. Drawings:</td> </tr> <tr> <td>3. Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application:</td> <td></td> <td><input checked="" type="checkbox"/> received: <input type="checkbox"/> not received:</td> </tr> <tr> <td>4. Date of timely receipt of the required corrections under PCT Article 11(2):</td> <td></td> <td></td> </tr> <tr> <td>5. International Searching Authority (if two or more are competent): ISA / US</td> <td>6. <input type="checkbox"/> Transmittal of search copy delayed until search fee is paid.</td> <td></td> </tr> </table>			1. Date of actual receipt of the purported international application:	DT02 Rec'd PCT/PTO 02 MAR 2004	2. Drawings:	3. Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application:		<input checked="" type="checkbox"/> received: <input type="checkbox"/> not received:	4. Date of timely receipt of the required corrections under PCT Article 11(2):			5. International Searching Authority (if two or more are competent): ISA / US	6. <input type="checkbox"/> Transmittal of search copy delayed until search fee is paid.																																																																						
1. Date of actual receipt of the purported international application:	DT02 Rec'd PCT/PTO 02 MAR 2004	2. Drawings:																																																																																	
3. Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application:		<input checked="" type="checkbox"/> received: <input type="checkbox"/> not received:																																																																																	
4. Date of timely receipt of the required corrections under PCT Article 11(2):																																																																																			
5. International Searching Authority (if two or more are competent): ISA / US	6. <input type="checkbox"/> Transmittal of search copy delayed until search fee is paid.																																																																																		
<p>For International Bureau use only</p> <p>Date of receipt of the record copy by the International Bureau:</p>																																																																																			

This sheet is not part of and does not count as a sheet of the international application.

For receiving Office use only

PCT
FEES CALCULATION SHEET
Annex to the Request

Applicant's or agent's file reference PROL-PWO-024

Applicant Proteologics, Inc., et al.

PCT/US 04/06308

International Application No.

Date stamp of the receiving Office

02 MAR 2004

CALCULATION OF PRESCRIBED FEES1. TRANSMITTAL FEE 300.00 T 300-2. SEARCH FEE 1,000.00 S 1000-International search to be carried out by US*(If two or more International Searching Authorities are competent to carry out the international search, indicate the name of the Authority which is chosen to carry out the international search.)*

3. INTERNATIONAL FILING FEE

Where item (b) and/or (c) of Box No. IX apply, enter Sub-total number of sheets
Where item (b) and (c) of Box No. IX do not apply, enter Total number of sheets380 i1 first 30 sheets 1,035.00 i1 i2 350 \times 11.00 = 3,850.00 i2
number of sheets in excess of 30 i3 additional component (only if sequence listing and /or tables related thereto are filed in computer readable form under Section 801(a)(i), or both in that form and on paper, under Section 801(a)(ii)):400 \times _____ = i3
fee per sheet

Add amounts entered at i1, i2 and i3 and enter total at I

4,885.00 I*(Applicants from certain States are entitled to a reduction of 75% of the international fee. Where the applicant is (or all applicants are) so entitled, the total to be entered at I is 25% of the international filing fee.)*4. FEE FOR PRIORITY DOCUMENT (if applicable) 320.00 P 420-5. TOTAL FEES PAYABLE \$ 6,505.00

Add amounts entered at T, S, I and P, and enter total in the TOTAL box

TOTAL4885420-6605-**MODE OF PAYMENT** authorization to charge deposit account (see below) postal money order cash coupons cheque bank draft revenue stamps other (specify): _____**AUTHORIZATION TO CHARGE (OR CREDIT) DEPOSIT ACCOUNT***(This mode of payment may not be available at all receiving Offices)* Authorization to charge the total fees indicated above.

Receiving Office: RO/

US

 This check-box may be marked only if the conditions for deposit accounts of the receiving office so permit) Authorization to charge any deficiency or credit any overpayment in the total fees indicated above.Deposit Account No.: 18-1945 Authorization to charge the fee for priority document.Date: 02 March 2004Name: Kathleen EhrhardSignature:

POSH INTERACTING PROTEINS AND RELATED METHODS

RELATED APPLICATIONS

This application claims the benefit of priority of U.S. Provisional Application number 60/451,437 filed 3 March 2003; 60/452,284 filed 5 March 5 2003; 60/456,640 filed 20 March 2003; 60/460,526 filed 3 April 2003; 60/464,285 filed 21 April 2003; 60/469,462 filed 9 May 2003; 60/471,378 filed 15 May 2003; 60/472,327 filed 20 May 2003; 60/474,706 filed 30 May 2003; 60/475,825 filed 3 June 2003; 60/479,317 filed 17 June 2003; 60/480,376 filed 19 June 2003; 10 60/480,215 filed 19 June 2003; 60/493,860 filed 8 August 2003; 60/503,931 filed 16 September 2003; 60/455,760 filed 19 March 2003; 60/460,792 filed 4 April 2003; 60/498,634 filed 28 August 2003; and a provisional application filed on March 2, 2004, (Attorney Docket No. PROL-P79-024), in the name of Daniel N. Taglicht, Iris Alroy, Yuval Reiss, Liora Yaar, Danny Ben-Avraham, Shmuel Tuvia, and Tsvika Greener entitled "Posh Interacting Proteins and Related Methods"; a PCT 15 application US03/35712 filed 10 November 2003; and a PCT application filed on February 5, 2004, (Attorney Docket No. PROL-PWO-039), in the name of Iris Alroy, Daniel Taglicht, Yuval Reiss, Liora Yaar, and Shmuel Tuvia entitled "Posh Associated Kinases and Related Methods". The teachings of the referenced Applications are incorporated herein by reference in their entirety.

20

BACKGROUND

Potential drug target validation involves determining whether a DNA, RNA or protein molecule is implicated in a disease process and is therefore a suitable target for development of new therapeutic drugs. Drug discovery, the process by 25 which bioactive compounds are identified and characterized, is a critical step in the development of new treatments for human diseases. The landscape of drug discovery has changed dramatically due to the genomics revolution. DNA and protein sequences are yielding a host of new drug targets and an enormous amount of associated information.

30 The identification of genes and proteins involved in various disease states or key biological processes, such as inflammation and immune response, is a vital part

of the drug design process. Many diseases and disorders could be treated or prevented by decreasing the expression of one or more genes involved in the molecular etiology of the condition if the appropriate molecular target could be identified and appropriate antagonists developed. For example, cancer, in which one or more cellular oncogenes become activated and result in the unchecked progression of cell cycle processes, could be treated by antagonizing appropriate cell cycle control genes. Furthermore many human genetic diseases, such as Huntington's disease, and certain prion conditions, which are influenced by both genetic and epigenetic factors, result from the inappropriate activity of a polypeptide as opposed to the complete loss of its function. Accordingly, antagonizing the aberrant function of such mutant genes would provide a means of treatment. Additionally, infectious diseases such as HIV have been successfully treated with molecular antagonists targeted to specific essential retroviral proteins such as HIV protease or reverse transcriptase. Drug therapy strategies for treating such diseases and disorders have frequently employed molecular antagonists which target the polypeptide product of the disease gene(s). However, the discovery of relevant gene or protein targets is often difficult and time consuming.

One area of particular interest is the identification of host genes and proteins that are co-opted by viruses during the viral life cycle. The serious and incurable nature of many viral diseases, coupled with the high rate of mutations found in many viruses, makes the identification of antiviral agents a high priority for the improvement of world health. Genes and proteins involved in a viral life cycle are also appealing as a subject for investigation because such genes and proteins will typically have additional activities in the host cell and may play a role in other non-viral disease states.

Other areas of interest include the identification of genes and proteins involved in cancer, apoptosis and neural disorders (particularly those associated with apoptotic neurons, such as Alzheimer's disease).

It would be beneficial to identify proteins involved in one or more of these processes for use in, among other things, drug screening methods. Additionally, once a protein involved in one or more processes of interest has been identified, it is possible to identify proteins that associate, directly or indirectly, with the initially

identified protein. Knowledge of interactors will provide insight into protein assemblages and pathways that participate in disease processes, and in many cases an interacting protein will have desirable properties for the targeting of therapeutics. In some cases, an interacting protein will already be known as a drug target, but in a different biological context. Thus, by identifying a suite of proteins that interact with an initially identified protein, it is possible to identify novel drug targets and new uses for previously known therapeutics.

SUMMARY

This application provides isolated, purified or recombinant complexes comprising a POSH polypeptide and one or more POSH-associated protein (POSH-AP). In certain aspects, the POSH-AP comprises a polypeptide selected from the group consisting of: PKA, SNX1, SNX3, ATP6V0C, PTPN12, PPP1CA, GOSR2, CENTB1, DDEF1, ARF1, ARF5, PACS-1, EPS8L2, HERPUD1, UNC84B, MSTP028, GOCAP, EIF3S3, SRA1, CBL-B, RALA, SIAH1, SMN1, SMN2, SYNE1, TTC3, VCY2IP1 and UBE2N (UBC13). In other aspects, the POSH-AP comprises a polypeptide selected from the group consisting of: ARHV (Chp), WASF1, HIP55, SPG20, HLA-A, and HLA-B. In further aspects, the POSH-AP comprises one or more polypeptides set forth in Table 8. In certain embodiments the POSH polypeptide is a human POSH polypeptide.

In certain embodiments, this application provides isolated, purified or recombinant complexes comprising a HERPUD1 polypeptides and a ubiquitin ligase, examples of the ubiquitin ligase include CBL-B, TTC3, and SIAH1.

In certain embodiments, the application provides methods for identifying agents that modulates an activity of a POSH polypeptide or POSH-AP, comprising identifying an agent that disrupts a complex of a POSH polypeptide and a POSH-AP, wherein an agent that disrupts such a complex is an agent that modulates an activity of the POSH polypeptide or the POSH-AP.

In yet other embodiments, the application provides methods of identifying an antiviral agent, comprising identifying a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP and evaluating the effect of the test agent on either a pro-infective or pro-replicative function of a virus is an

antiviral agent, wherein an agent inhibits such a function of a virus is an antiviral agent. In certain embodiments the POSH-AP is selected from the group consisting of: PKA, SNX1, SNX3, PTPN12, GOSR2, CENTB1, ARF1, ARF5, PACS-1, EPS8L2, HERPUD1, SMN1, SMN2, UNC84B, MSTP028, GOCAP, CBL-B, SYNE1, UBE2N (UBC13), SIAH1, TTC3, WASF1, HIP55, RALA, and SPG20.

5 Examples of such viruses include for example, envelope viruses such as the Human Immunodeficiency Virus, the West Nile Virus, and the Moloney Murine Leukemia Virus (MMuLV).

In other embodiments, the application provides methods of identifying an anti-apoptotic agent, comprising identifying a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP and evaluating the effect of the test agent on apoptosis of a cell wherein an agent that decreases apoptosis of the cell is an anti-apoptotic agent. In yet other embodiments, the application provides methods of identifying an anti-cancer agent, comprising identifying a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP and evaluating the effect of the test agent on proliferation or survival of a cancer cell, wherein an agent that decreases proliferation or survival of a cancer cell is an anti-cancer agent. Examples of the POSH-AP include PKA, SNX1, PTPN12, PPP1CA, ARF1, ARF5, CENTB1, EPS8L2, EIF3S3, CBL-B, RALA, SIAH1, TTC3, ATP6V0C, and VCY2IP1. In certain embodiments, the cancer is a POSH-associated cancer.

20 In certain aspects, the application provides methods of identifying an agent that inhibits trafficking of a protein through the secretory pathway, comprising identifying a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP and evaluating the effect of the test agent on the trafficking of a protein through the secretory pathway wherein an agent that disrupts localization of said POSH-AP is an agent that inhibits trafficking of a protein through the secretory pathway. In certain embodiments, the protein is a myristoylated protein. In yet other embodiments, the protein is a viral protein. In alternative embodiments, the protein is associated with a neurological disorder such as for example the amyloid beta precursor protein.

25 In yet other embodiments, the application provides methods of identifying an agent that inhibits the progression of a neurological disorder, comprising identifying

a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP evaluating the effect of the test agent on the trafficking of a protein through the secretory pathway wherein an agent that disrupts localization of a POSH-AP is an agent that inhibits progression of a neurological disorder. In certain aspects the
5 POSH-AP is HERPUD1.

In yet other embodiments, this application provides methods of treating a viral infection in a subject in need thereof, comprising administering an agent that inhibits a POSH-AP in an amount sufficient to inhibit the viral infection. The agent is one that: inhibits a kinase activity of the POSH-AP; inhibits expression of the
10 POSH-AP; inhibits the ubiquitin ligase activity of the POSH-AP; inhibits the phosphatase activity of the POSH-AP; inhibits the GTPase activity of the POSH-AP; and inhibits the ubiquitination of the POSH-AP. In certain embodiments, the POSH-AP comprises a polypeptide selected from the group consisting of: PKA,
SNX1, SNX3, SMN1, SMN2, PTPN12, GOSR2, CENTB1, ARF1, ARF5, PACS-1,
15 EPS8L2, HERPUD1, UNC84B, MSTP028, GOCAP, CBL-B, SYNE1, UBE2N (UBC13), SIAH1, TTC3, WASF1, HIP55, RALA, and SPG20. In certain aspects, the agent may be an siRNA construct, a small molecule, an antibody, or an antisense construct.

In certain embodiments, the agent is an siRNA construct comprising a nucleic acid sequence that hybridizes to an mRNA encoding the POSH-AP.
20 Examples include siRNA constructs that inhibit the expression of HERPUD1 or MSTP028. Examples of siRNA constructs that inhibit the expression of HERPUD1 include: 5'GGAAGUUCUUCGGAACCUdTdT-3' and 5'- dTdTCCCUUCAAGAACGUUGGA-5'. Examples of siRNA constructs that inhibit the expression of MSTP028 include: 5'-AAGTGCTCACCGACAGTGAAG-
25 3' and 5'-AAGATACTTATGAGCCTTCT-3'.

In other aspects, the agents may be a small molecule inhibitor is selected from among the following categories: adenosine cyclic monophosphorothioate, isoquinolinesulfonamide, piperazine, piceatannol, and ellagic acid. In alternative
30 embodiments, the agents may be a small molecule inhibitor that inhibits the ligase activity of a POSH polypeptide or inhibits the ubiquitination of a POSH-AP. Examples of such small molecules include, for example:

5

and

10

In certain embodiments, the application provides packaged pharmaceuticals for treating viral infections, comprising: a pharmaceutical composition comprising an inhibitor of a POSH-AP and a pharmaceutically acceptable carrier and instructions for use.

15 In certain embodiments, the application provides methods of treating or preventing a POSH associated cancer in a subject comprising administering an agent that inhibits a POSH-AP to a subject in need thereof, wherein said agent treats or

prevents cancer. The POSH-AP comprises a polypeptide selected from the group consisting of: PKA, SNX1, PTPN12, PPP1CA, CENTB1, ARF1, ARF5, EPS8L2, EIF3S3, CBL-B, RALA, SIAH1, TTC3, ATP6V0C, and VCY2IP1.

In yet other aspects, the application provides methods of treating a neurological disorder comprising administering an agent to a subject in need thereof, wherein said agent either inhibits the Ubiquitin ligase activity of POSH or inhibits the ubiquitination of a POSH-AP. Examples of the POSH-AP include: PTPN12, DDEF1, EPS8L2, HERPUD1, GOCAP, CBL-B, SIAH1, SMN1, SMN2, TTC3, SPG20, SNX1, and ARF1.

Examples of the neurological disorders include Alzheimer's disease, Parkinson's disease, Huntington's disease, schizophrenia, Niemann-Pick's disease, and prion-associated diseases. In certain aspects, the agent is selected from the group consisting of: an siRNA construct, a small molecule, an antibody, and an antisense construct. Examples of the small molecules include:

15

and

5

In certain aspects, the disclosure provides methods of treating viral hepatitis in a subject in need thereof. Such a method may comprise administering an effective amount of an agent that inhibits POSH or disrupts an interaction between POSH and a dynamin, preferably dynamin II. In certain embodiments, the subject 10 has a viral hepatitis caused by HBV or HCV.

In certain aspects, the disclosure provides methods of inhibiting a hepatotropic virus or a method for treating a disease associated with a hepatotropic virus, comprising administering an effective amount of an agent, wherein said agent inhibits POSH or an interaction between POSH and dynamin. In certain 15 embodiments, the hepatotropic virus is selected from the group consisting of HAV, HBV, HCV, HDV, and HEV. The hepatotropic virus associated disease may be, for example, viral hepatitis or hepatocellular carcinoma. An agent for any of the above methods may include, for example, a nucleic acid agent that decreases the level of POSH in cells of the subject (e.g., an antisense oligonucleotide, an RNAi 20 construct, a DNA enzyme, a ribozyme) or small molecule inhibitors of POSH, as well as antibodies or other binding agents that bind to a surface of POSH or dynamin that participates in a POSH-dynamin interaction. An agent may be any of the following: a small molecule, an antibody, a fragment of an antibody, a peptidomimetic, and a polypeptide. Examples of small molecules include:

STRUCTURE	MW	CAS number
	384.2	14567-55-4
	389.5	414908-38-0

In certain embodiments, the application provides methods for inhibiting an
HBV infection in a subject in need thereof, comprising administering an effective
amount of a POSH inhibitor, wherein the HBV infection is inhibited in the subject.
In additional embodiments, the disclosure provides methods for treating an HBV
infection in a patient, comprising administering an effective amount of an agent that
inhibits POSH or decreases the level of POSH protein or nucleic acid in an infected
cell. An agent may be, for example, an RNAi construct that inhibits the expression
of POSH. Optionally the RNAi construct is 20-25 nucleotides in length and
optionally it is selected from any one of SEQ ID NOS: 15, 16, 18, 19, 21, 22, 24,
and 25. The RNAi may be formulated as a liposome. An agent may be a small
molecule inhibitor of POSH ubiquitin ligase activity, as disclosed herein. Examples
of small molecule inhibitors of POSH include:

STRUCTURE	MW	CAS number
	384.2	14567-55-4
	389.5	414908-38-0

In certain aspects, the disclosure provides a method for treating an HBV infection in a patient, comprising administering an effective amount of an antisense oligonucleotide sufficient to bind a nucleic acid molecule, which nucleic acid molecule encodes a POSH polypeptide.

In certain embodiments, the application provides methods for inhibiting an HBV infection by administering an effective amount of a compound of the formula:

In additional embodiments, the application provides methods for treating an HBV infection by administering an effective amount of a compound of the formula:

In certain aspects, the disclosure provides methods for inhibiting the maturation of a lentivirus by modulating the activity of a Vpu polypeptide. In preferred embodiments, maturation of the lentivirus is inhibited by inhibiting the transport and/or assembly of viral particles in the TGN and from the TGN to the plasma membrane. A preferred lentivirus for application of such a method is the human immunodeficiency virus.

5 In certain aspects, the disclosure provides methods of inhibiting viral infection comprising administering an agent to a subject in need thereof, wherein 10 said agent inhibits the interaction between a POSH polypeptide and Vpu.

In certain aspects, the disclosure provides methods for identifying a target 15 polypeptide for antiviral therapy, the method comprising: a) selecting a test polypeptide known to localize or predicted to localize to the trans Golgi network; b) inhibiting an activity of the test polypeptide in a cell infected with a viral construct under conditions where, but for the inhibition of the activity of the test polypeptide, 20 viral particles are released from the cell; and c) determining whether viral particles are released from the cell, wherein, if inhibiting the activity of the test polypeptide in the cell inhibits the release of viral particles from the cell, the test polypeptide is a target polypeptide for antiviral therapy. In a preferred embodiment, the test polypeptide is Vpu. Vpu activity may be inhibited, for example, by siRNA, antisense or other nucleic acid based method.

In certain aspects, the disclosure provides isolated, purified or recombinant complexes comprising a POSH polypeptide and a Vpu polypeptide. The POSH polypeptide may comprise, for example, a POSH SH3 domain, or a polypeptide at least 80% identical to such an SH3 domain. An antiviral agent may be selected 25 based on its ability to disrupt a POSH-Vpu complex.

The practice of the present application will employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology,

transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, *Molecular Cloning A Laboratory Manual*, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); *DNA Cloning*, 5 Volumes I and II (D. N. Glover ed., 1985); *Oligonucleotide Synthesis* (M. J. Gait ed., 1984); Mullis et al. U.S. Patent No: 4,683,195; *Nucleic Acid Hybridization* (B. D. Hames & S. J. Higgins eds. 1984); *Transcription And Translation* (B. D. Hames & S. J. Higgins eds. 1984); *Culture Of Animal Cells* (R. I. Freshney, Alan R. Liss, Inc., 1987); *Immobilized Cells And Enzymes* (IRL Press, 1986); B. Perbal, *A 10 Practical Guide To Molecular Cloning* (1984); the treatise, *Methods In Enzymology* (Academic Press, Inc., N.Y.); *Gene Transfer Vectors For Mammalian Cells* (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); *Methods In Enzymology*, Vols. 154 and 155 (Wu et al. eds.), *Immunochemical Methods In Cell 15 And Molecular Biology* (Mayer and Walker, eds., Academic Press, London, 1987); *Handbook Of Experimental Immunology*, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

Other features and advantages of the application will be apparent from the following detailed description, and from the claims.

20

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows human POSH coding sequence (SEQ ID NO:1).

Figure 2 shows human POSH amino acid sequence (SEQ ID NO:2).

Figure 3 shows human POSH cDNA sequence (SEQ ID NO:3).

25

Figure 4 shows 5' cDNA fragment of human POSH (public gi:10432611; SEQ ID NO:4).

Figure 5 shows N terminus protein fragment of hPOSH (public gi:10432612; SEQ ID NO:5).

30

Figure 6 shows 3' mRNA fragment of hPOSH (public gi:7959248; SEQ ID NO:6).

Figure 7 shows C terminus protein fragment of hPOSH (public gi:7959249; SEQ ID NO:7).

Figure 8 shows human POSH full mRNA, annotated sequence.

Figure 9 shows domain analysis of human POSH.

Figure 10 is a diagram of human POSH nucleic acids. The diagram shows the full-length POSH gene and the position of regions amplified by RT-PCR or targeted by siRNA used in figure 11.

Figure 11 shows effect of knockdown of POSH mRNA by siRNA duplexes. HeLa S S-6 cells were transfected with siRNA against Lamin A/C (lanes 1, 2) or POSH (lanes 3-10). POSH siRNA was directed against the coding region (153 - lanes 3, 4; 155 - lanes 5, 6) or the 3'UTR (157 - lanes 7, 8; 159 - lanes 9, 10). Cells were harvested 24 hours post-transfection, RNA extracted, and POSH mRNA levels compared by RT-PCR of a discrete sequence in the coding region of the POSH gene (see figure 10). GAPDH is used an RT-PCR control in each reaction.

Figure 12 shows that POSH affects the release of VLP from cells. A) Phosphohimages of SDS-PAGE gels of immunoprecipitations of ³⁵S pulse-chase labeled Gag proteins are presented for cell and viral lysates from transfected HeLa cells that were either untreated or treated with POSH RNAi (50 nM for 48 hours). The time during the chase period (1, 2, 3, 4, and 5 hours after the pulse) are presented from left to right for each image.

Figure 13 shows release of VLP from cells at steady state. Hela cells were transfected with an HIV-encoding plasmid and siRNA. Lanes 1, 3 and 4 were transfected with wild-type HIV-encoding plasmid. Lane 2 was transfected with an HIV-encoding plasmid which contains a point mutation in p6 (PTAP to ATAP). Control siRNA (lamin A/C) was transfected to cells in lanes 1 and 2. siRNA to Tsg101 was transfected in lane 4 and siRNA to POSH in lane 3.

Figure 14 shows mouse POSH mRNA sequence (public gi:10946921; SEQ ID NO: 8).

Figure 15 shows mouse POSH Protein sequence (Public gi:10946922; SEQ ID NO: 9).

Figure 16 shows Drosophila melanogaster POSH mRNA sequence (public gi:17737480; SEQ ID NO:10).

Figure 17 shows Drosophila melanogaster POSH protein sequence (public gi:17737481; SEQ ID NO:11).

Figure 18 shows POSH domain analysis.

Figure 19 shows that human POSH has ubiquitin ligase activity.

—Figure 20 shows that human POSH co-immunoprecipitates with RAC1.

Figure 21 shows that POSH knockdown results in decreased secretion of
5 phospholipase D (“PLD”).

Figure 22 shows effect of hPOSH on Gag-EGFP intracellular distribution.

Figure 23 shows intracellular distribution of HIV-1 Nef in hPOSH-depleted
cells.

Figure 24 shows intracellular distribution of Src in hPOSH-depleted cells.

10 Figure 25 shows intracellular distribution of Rapsyn in hPOSH-depleted
cells.

Figure 26 shows that POSH reduction by siRNA abrogates West Nile virus
infectivity.

15 Figure 27 shows that POSH knockdown decreases the release of extracellular
MMuLV particles.

Figure 28 shows that knock-down of human POSH entraps HIV virus
particles in intracellular vesicles. HIV virus release was analyzed by electron
microscopy following siRNA and full-length HIV plasmid transfection. Mature
viruses were secreted by cells transfected with HIV plasmid and non-relevant siRNA
20 (control, bottom panel). Knockdown of Tsg101 protein resulted in a budding defect,
the viruses that were released had an immature phenotype (top panel). Knockdown
of hPOSH levels resulted in accumulation of viruses inside the cell in intracellular
vesicles (middle panel).

25 Figure 29A shows siRNA-mediated reduction of MSTP028 expression
inhibits HIV virus-like particle production (Experiment 1).

Figure 29B shows siRNA-mediated reduction of MSTP028 expression
inhibits HIV virus-like particle production (Experiment 2).

30 Figure 30 shows putative PKA phosphorylation sites in hPOSH. Amino acid
sequence of hPOSH (70 residues per line): Motifs of the low stringency RxxS/T
type are underlined. The high stringency motif R/KR/KxS/T is bordered. Putative
S/T phosphorylation sites are highlighted in green. Color-coding of domains: Red –
RING, Blue – SH3, Green – putative Rac-1 Binding Domain.

Figure 31 shows that phosphorylation of hPOSH regulates binding of GTP-loaded Rac-1. Bacterially expressed hPOSH (1 µg) (POSH) or GST (1 µg) (NS) were phosphorylated. Subsequently, GTP γ S loaded or unloaded recombinant Rac-1 (0.2 µg) was added to hPOSH or GST. Bound rac1 was isolated as described in materials and methods and samples separated by SDS-PAGE on a 12% gel and immunoblotted with anti-Rac-1. Input is 0.25 µg of Rac-1.

5 Figure 32 shows domain analysis of various POSH-APs.
Figure 33 shows siRNA-mediated reduction in HERPUD1 expression reduces HIV maturation.

10 Figure 34A shows that endogenous Herp levels are reduced in H153 cells. H153 (POSH-RNAi) and H187 (control RNAi) cells were transfected with a plasmid encoding Flag-ubiquitin. Total cell lysates (A) or Flag-immunoprecipitated material (B) were separated on 10% SDS-PAGE and immunoblotted with anti-Herp antibodies.

15 Figure 34B shows that exogenous Herp levels and its ubiquitination are reduced in POSH-depleted cells. H153 and H187 cells were co-transfected with Herp or control plasmids and a plasmid encoding Flag-ubiquitin (indicated above the figure). Total (A) and flag-immunoprecipitated material (B) were separated on 10% SDS-PAGE and immunoblotted with anti-Herp antibodies.

20 Figure 35 shows that the compounds CAS number 14567-55-4 and CAS number 414908-38-0 (lanes 7 and 8) inhibit HBV production.

Figure 36 provides the nucleic acid and amino acid sequences of POSH-APs.

DETAILED DESCRIPTION OF THE APPLICATION

25 1. Definitions

The term "binding" refers to a direct association between two molecules, due to, for example, covalent, electrostatic, hydrophobic, ionic and/or hydrogen-bond interactions under physiological conditions.

30 A "chimeric protein" or "fusion protein" is a fusion of a first amino acid sequence encoding a polypeptide with a second amino acid sequence defining a domain foreign to and not substantially homologous with any domain of the first amino acid sequence. A chimeric protein may present a foreign domain which is

found (albeit in a different protein) in an organism which also expresses the first protein, or it may be an "interspecies", "intergenic", etc. fusion of protein structures expressed by different kinds of organisms.

The terms "compound", "test compound" and "molecule" are used herein interchangeably and are meant to include, but are not limited to, peptides, nucleic acids, carbohydrates, small organic molecules, natural product extract libraries, and any other molecules (including, but not limited to, chemicals, metals and organometallic compounds).

The phrase "conservative amino acid substitution" refers to grouping of amino acids on the basis of certain common properties. A functional way to define common properties between individual amino acids is to analyze the normalized frequencies of amino acid changes between corresponding proteins of homologous organisms (Schulz, G. E. and R. H. Schirmer, Principles of Protein Structure, Springer-Verlag). According to such analyses, groups of amino acids may be defined where amino acids within a group exchange preferentially with each other, and therefore resemble each other most in their impact on the overall protein structure (Schulz, G. E. and R. H. Schirmer, Principles of Protein Structure, Springer-Verlag). Examples of amino acid groups defined in this manner include:

- (i) a charged group, consisting of Glu and Asp, Lys, Arg and His,
- 20 (ii) a positively-charged group, consisting of Lys, Arg and His,
- (iii) a negatively-charged group, consisting of Glu and Asp,
- (iv) an aromatic group, consisting of Phe, Tyr and Trp,
- (v) a nitrogen ring group, consisting of His and Trp,
- (vi) a large aliphatic nonpolar group, consisting of Val, Leu and Ile,
- 25 (vii) a slightly-polar group, consisting of Met and Cys,
- (viii) a small-residue group, consisting of Ser, Thr, Asp, Asn, Gly, Ala, Glu, Gln and Pro,
- (ix) an aliphatic group consisting of Val, Leu, Ile, Met and Cys, and
- (x) a small hydroxyl group consisting of Ser and Thr.

30 In addition to the groups presented above, each amino acid residue may form its own group, and the group formed by an individual amino acid may be referred to

simply by the one and/or three letter abbreviation for that amino acid commonly used in the art.

5 A "conserved residue" is an amino acid that is relatively invariant across a range of similar proteins. Often conserved residues will vary only by being replaced with a similar amino acid, as described above for "conservative amino acid substitution".

The term "domain" as used herein refers to a region of a protein that comprises a particular structure and/or performs a particular function.

10 The term "envelope virus" as used herein refers to any virus that uses cellular membrane and/or any organelle membrane in the viral release process.

"Homology" or "identity" or "similarity" refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology and identity can each be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When an equivalent position in the compared sequences is occupied by the same base or amino acid, then the molecules are identical at that position; when the equivalent site occupied by the same or a similar amino acid residue (e.g., similar in steric and/or electronic nature), then the molecules can be referred to as homologous (similar) at that position. Expression as a percentage of homology/similarity or identity refers to a function of the number of 15 identical or similar amino acids at positions shared by the compared sequences. A sequence which is "unrelated" or "non-homologous" shares less than 40% identity, though preferably less than 25% identity with a sequence of the present application. In comparing two sequences, the absence of residues (amino acids or nucleic acids) 20 or presence of extra residues also decreases the identity and homology/similarity.

25 The term "homology" describes a mathematically based comparison of sequence similarities which is used to identify genes or proteins with similar functions or motifs. The nucleic acid and protein sequences of the present application may be used as a "query sequence" to perform a search against public databases to, for example, identify other family members, related sequences or 30 homologs. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score=100,

wordlength=12 to obtain nucleotide sequences homologous to nucleic acid molecules of the application. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to protein molecules of the application. To obtain gapped alignments 5 for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and BLAST) can be used. See <http://www.ncbi.nlm.nih.gov>.

As used herein, "identity" means the percentage of identical nucleotide or 10 amino acid residues at corresponding positions in two or more sequences when the sequences are aligned to maximize sequence matching, i.e., taking into account gaps and insertions. Identity can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and 15 Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM 20 J. Applied Math., 48: 1073 (1988). Methods to determine identity are designed to give the largest match between the sequences tested. Moreover, methods to determine identity are codified in publicly available computer programs. Computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 25 25 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Altschul, S. F. et al., J. Molec. Biol. 215: 403-410 (1990) and Altschul et al. Nuc. Acids Res. 25: 3389-3402 (1997)). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894; Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990). The well known Smith 30 Waterman algorithm may also be used to determine identity.

The term "isolated", as used herein with reference to the subject proteins and protein complexes, refers to a preparation of protein or protein complex that is

essentially free from contaminating proteins that normally would be present with the protein or complex, e.g., in the cellular milieu in which the protein or complex is found endogenously. Thus, an isolated protein complex is isolated from cellular components that normally would "contaminate" or interfere with the study of the complex in isolation, for instance while screening for modulators thereof. It is to be understood, however, that such an "isolated" complex may incorporate other proteins the modulation of which, by the subject protein or protein complex, is being investigated.

The term "isolated" as also used herein with respect to nucleic acids, such as DNA or RNA, refers to molecules in a form which does not occur in nature. Moreover, an "isolated nucleic acid" is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state.

Lentiviruses include primate lentiviruses, e.g., human immunodeficiency virus types 1 and 2 (HIV-1/HIV-2); simian immunodeficiency virus (SIV) from Chimpanzee (SIVcpz), Sooty mangabey (SIVsmm), African Green Monkey (SIVagm), Syke's monkey (SIVsyk), Mandrill (SIVmnd) and Macaque (SIVmac). Lentiviruses also include feline lentiviruses, e.g., Feline immunodeficiency virus (FIV); Bovine lentiviruses, e.g., Bovine immunodeficiency virus (BIV); Ovine lentiviruses, e.g., Maedi/Visna virus (MVV) and Caprine arthritis encephalitis virus (CAEV); and Equine lentiviruses, e.g., Equine infectious anemia virus (EIAV). All lentiviruses express at least two additional regulatory proteins (Tat, Rev) in addition to Gag, Pol, and Env proteins. Primate lentiviruses produce other accessory proteins including Nef, Vpr, Vpu, Vpx, and Vif. Generally, lentiviruses are the causative agents of a variety of disease, including, in addition to immunodeficiency, neurological degeneration, and arthritis. Nucleotide sequences of the various lentiviruses can be found in Genbank under the following Accession Nos. (from J. M. Coffin, S. H. Hughes, and H. E. Varmus, "Retroviruses" Cold Spring Harbor Laboratory Press, 1997 p 804): 1) HIV-1: K03455, M19921, K02013, M38431, M38429, K02007 and M17449; 2) HIV-2: M30502, J04542, M30895, J04498, M15390, M31113 and L07625; 3) SIV: M29975, M30931, M58410, M66437, L06042, M33262, M19499, M32741, M31345 and L03295; 4) FIV: M25381,

M36968 and U1 1820; 5) BIV: M32690; 6) E1AV: M16575, M87581 and U01866; 6) Visna: M10608, M51543, L06906, M60609 and M60610; 7) CAEV: M33677; and 8) Ovine lentivirus M31646 and M34193. Lentiviral DNA can also be obtained from the American Type Culture Collection (ATCC). For example, feline immunodeficiency virus is available under ATCC Designation No. VR-2333 and VR-3112. Equine infectious anemia virus A is available under ATCC Designation No. VR-778. Caprine arthritis-encephalitis virus is available under ATCC Designation No. VR-905. Visna virus is available under ATCC Designation No. VR-779.

10 As used herein, the term "nucleic acid" refers to polynucleotides such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA). The term should also be understood to include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs, and, as applicable to the embodiment being described, single-stranded (such as sense or antisense) and double-stranded 15 polynucleotides.

The term "maturation" as used herein refers to the production, post-translational processing, assembly and/or release of proteins that form a viral particle. Accordingly, this includes the processing of viral proteins leading to the pinching off of nascent virion from the cell membrane.

20 A "POSH nucleic acid" is a nucleic acid comprising a sequence as represented in any of SEQ ID Nos: 1, 3, 4, 6, 8, and 10 as well as any of the variants described herein.

A "POSH polypeptide" or "POSH protein" is a polypeptide comprising a sequence as represented in any of SEQ ID Nos: 2, 5, 7, 9 and 11 as well as any of the 25 variations described herein.

A "POSH-associated protein" or "POSH-AP" refers to a protein capable of interacting with and/or binding to a POSH polypeptide. Generally, the POSH-AP may interact directly or indirectly with the POSH polypeptide. Preferred POSH-APs include those provided in Table 7. Other preferred POSH-APs include those listed 30 in Table 8. Examples of these and other POSH-APs are provided throughout.

The terms peptides, proteins and polypeptides are used interchangeably herein.

The term "purified protein" refers to a preparation of a protein or proteins which are preferably isolated from, or otherwise substantially free of, other proteins normally associated with the protein(s) in a cell or cell lysate. The term "substantially free of other cellular proteins" (also referred to herein as "substantially free of other contaminating proteins") is defined as encompassing individual preparations of each of the component proteins comprising less than 20% (by dry weight) contaminating protein, and preferably comprises less than 5% contaminating protein. Functional forms of each of the component proteins can be prepared as purified preparations by using a cloned gene as described in the attached examples. By "purified", it is meant, when referring to component protein preparations used to generate a reconstituted protein mixture, that the indicated molecule is present in the substantial absence of other biological macromolecules, such as other proteins (particularly other proteins which may substantially mask, diminish, confuse or alter the characteristics of the component proteins either as purified preparations or in their function in the subject reconstituted mixture). The term "purified" as used herein preferably means at least 80% by dry weight, more preferably in the range of 85% by weight, more preferably 95-99% by weight, and most preferably at least 99.8% by weight, of biological macromolecules of the same type present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 5000, can be present). The term "pure" as used herein preferably has the same numerical limits as "purified" immediately above.

A "recombinant nucleic acid" is any nucleic acid that has been placed adjacent to another nucleic acid by recombinant DNA techniques. A "recombined nucleic acid" also includes any nucleic acid that has been placed next to a second nucleic acid by a laboratory genetic technique such as, for example, transformation, and integration, transposon hopping or viral insertion. In general, a recombinant nucleic acid is not naturally located adjacent to the second nucleic acid.

The term "recombinant protein" refers to a protein of the present application which is produced by recombinant DNA techniques, wherein generally DNA encoding the expressed protein is inserted into a suitable expression vector which is

in turn used to transform a host cell to produce the heterologous protein. Moreover, the phrase "derived from", with respect to a recombinant gene encoding the recombinant protein is meant to include within the meaning of "recombinant protein" those proteins having an amino acid sequence of a native protein, or an amino acid sequence similar thereto which is generated by mutations including substitutions and deletions of a naturally occurring protein.

A "RING domain" or "Ring Finger" is a zinc-binding domain with a defined octet of cysteine and histidine residues. Certain RING domains comprise the consensus sequences as set forth below (amino acid nomenclature is as set forth in Table 1): Cys Xaa Xaa Cys Xaa_{10 - 20} Cys Xaa His Xaa₂₋₅ Cys Xaa Xaa Cys Xaa₁₃₋₅₀ Cys Xaa Xaa Cys or Cys Xaa Xaa Cys Xaa_{10 - 20} Cys Xaa His Xaa₂₋₅ His Xaa Xaa Cys Xaa₁₃₋₅₀ Cys Xaa Xaa Cys. Certain RING domains are represented as amino acid sequences that are at least 80% identical to amino acids 12-52 of SEQ ID NO: 2 and is set forth in SEQ ID No: 26. Preferred RING domains are 85%, 90%, 95%, 98% and, most preferably, 100% identical to the amino acid sequence of SEQ ID NO: 26. Preferred RING domains of the application bind to various protein partners to form a complex that has ubiquitin ligase activity. RING domains preferably interact with at least one of the following protein types: F box proteins, E2 ubiquitin conjugating enzymes and cullins.

The term "RNA interference" or "RNAi" refers to any method by which expression of a gene or gene product is decreased by introducing into a target cell one or more double-stranded RNAs which are homologous to the gene of interest (particularly to the messenger RNA of the gene of interest). RNAi may also be achieved by introduction of a DNA:RNA hybrid wherein the antisense strand (relative to the target) is RNA. Either strand may include one or more modifications to the base or sugar-phosphate backbone. Any nucleic acid preparation designed to achieve an RNA interference effect is referred to herein as an siRNA construct. Phosphorothioate is a particularly common modification to the backbone of an siRNA construct.

"Small molecule" as used herein, is meant to refer to a composition, which has a molecular weight of less than about 5 kD and most preferably less than about 2.5 kD. Small molecules can be nucleic acids, peptides, polypeptides,

peptidomimetics, carbohydrates, lipids or other organic (carbon containing) or inorganic molecules. Many pharmaceutical companies have extensive libraries of chemical and/or biological mixtures comprising arrays of small molecules, often fungal, bacterial, or algal extracts, which can be screened with any of the assays of 5 the application.

An "SH3" or "Src Homology 3" domain is a protein domain of generally about 60 amino acid residues first identified as a conserved sequence in the non-catalytic part of several cytoplasmic protein tyrosine kinases (e.g., Src, Abl, Lck). SH3 domains mediate assembly of specific protein complexes via binding to 10 proline-rich peptides. Exemplary SH3 domains are represented by amino acids 137-192, 199-258, 448-505 and 832-888 of SEQ ID NO:2 and are set forth in SEQ ID Nos: 27-30. In certain embodiments, an SH3 domain interacts with a consensus sequence of RXaaXaaPXaaX₆P (where X₆, as defined in table 1 below, is a hydrophobic amino acid). In certain embodiments, an SH3 domain interacts with 15 one or more of the following sequences: P(T/S)AP, PFRDY, RPEPTAP, RQGPKEP, RQGPKEPFR, RPEPTAPEE and RPLPVAP.

As used herein, the term "specifically hybridizes" refers to the ability of a nucleic acid probe/primer of the application to hybridize to at least 12, 15, 20, 25, 20 30, 35, 40, 45, 50 or 100 consecutive nucleotides of a POSH sequence, or a sequence complementary thereto, or naturally occurring mutants thereof, such that it has less than 15%, preferably less than 10%, and more preferably less than 5% background hybridization to a cellular nucleic acid (e.g., mRNA or genomic DNA) other than the POSH gene. A variety of hybridization conditions may be used to detect specific hybridization, and the stringency is determined primarily by the wash 25 stage of the hybridization assay. Generally high temperatures and low salt concentrations give high stringency, while low temperatures and high salt concentrations give low stringency. Low stringency hybridization is achieved by washing in, for example, about 2.0 x SSC at 50 °C, and high stringency is achieved with about 0.2 x SSC at 50 °C. Further descriptions of stringency are provided 30 below.

As applied to polypeptides, "substantial sequence identity" means that two peptide sequences, when optimally aligned, such as by the programs GAP or

BESTFIT using default gap which share at least 90 percent sequence identity, preferably at least 95 percent sequence identity, more preferably at least 99 percent sequence identity or more. Preferably, residue positions which are not identical differ by conservative amino acid substitutions. For example, the substitution of 5 amino acids having similar chemical properties such as charge or polarity are not likely to effect the properties of a protein. Examples include glutamine for asparagine or glutamic acid for aspartic acid.

As is well known, genes for a particular polypeptide may exist in single or multiple copies within the genome of an individual. Such duplicate genes may be 10 identical or may have certain modifications, including nucleotide substitutions, additions or deletions, which all still code for polypeptides having substantially the same activity.

A "virion" is a complete viral particle; nucleic acid and capsid (and a lipid envelope in some viruses. A "viral particle" may be incomplete, as when produced 15 by a cell transfected with a defective virus (e.g., an HIV virus-like particle system).

Table 1: Abbreviations for classes of amino acids*

Symbol	Category	Amino Acids Represented
X1	Alcohol	Ser, Thr
X2	Aliphatic	Ile, Leu, Val
Xaa	Any	Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr
X4	Aromatic	Phe, His, Trp, Tyr
X5	Charged	Asp, Glu, His, Lys, Arg

X6	Hydrophobic	Ala, Cys, Phe, Gly, His, Ile, Lys, Leu, Met, Thr, Val, Trp, Tyr
X7	Negative	Asp, Glu
X8	Polar	Cys, Asp, Glu, His, Lys, Asn, Gln, Arg, Ser, Thr
X9	Positive	His, Lys, Arg
X10	Small	Ala, Cys, Asp, Gly, Asn, Pro, Ser, Thr, Val
X11	Tiny	Ala, Gly, Ser
X12	Turnlike	Ala, Cys, Asp, Glu, Gly, His, Lys, Asn, Gln, Arg, Ser, Thr
X13	Asparagine-Aspartate	Asn, Asp

* Abbreviations as adopted from http://smart.embl-heidelberg.de/SMART_DATA/alignments/consensus/grouping.html.

2. Overview

In certain aspects, the application relates to the discovery of novel associations between POSH proteins and other proteins (termed POSH-APs), and related methods and compositions. In certain aspects, the application relates to novel associations among certain disease states, POSH nucleic acids and proteins, and POSH-AP nucleic acids and proteins.

In certain aspects, by identifying proteins associated with POSH, and particularly human POSH, the present application provides a conceptual link between the POSH-APs and cellular processes and disorders associated with POSH-APs, and POSH itself. Accordingly, in certain embodiments of the disclosure, agents that modulate a POSH-AP may now be used to modulate POSH functions

and disorders associated with POSH function, such as viral disorders, POSH-associated cancers, and POSH-associated neural disorders. Additionally, test agents may be screened for an effect on a POSH-AP and then further tested for an effect on a POSH function or a disorder associated with POSH function. Likewise, in certain 5 embodiments of the disclosure, agents that modulate POSH may now be used to modulate POSH-AP functions and disorders associated with POSH-AP function, including a variety of cancers. Additionally, test agents may be screened for an effect on POSH and then further tested for effect on a POSH-AP function or a disorder associated with POSH-AP function. In further aspects, the application 10 provides nucleic acid agents (e.g., RNAi probes, antisense nucleic acids), antibody-related agents, small molecules and other agents that affect POSH function, and the use of same in modulating POSH and/or POSH-AP activity.

POSH intersects with and regulates a wide range of key cellular functions that may be manipulated by affecting the level of and/or activity of POSH 15 polypeptides or POSH-AP polypeptides. Many features of POSH, and particularly human POSH, are described in PCT patent publications WO03/095971A2 (application no. WO2002US0036366) and WO03/078601A2 (application no. WO2003US0008194) the teachings of which are incorporated by reference herein.

As described in the above-referenced publications, native human POSH is a 20 large polypeptide containing a RING domain and four SH3 domains. POSH is a ubiquitin ligase (also termed an "E3" enzyme); the RING domain mediates ubiquitination of, for example, the POSH polypeptide itself. POSH interacts with a large number of proteins and participates in a host of different biological processes. As demonstrated in this disclosure, POSH associates with a number of different 25 proteins in the cell. POSH co-localizes with proteins that are known to be located in the trans-Golgi network, implying that POSH participates in the trafficking of proteins in the secretory system. The term "secretory system" should be understood as referring to the membrane compartments and associated proteins and other molecules that are involved in the movement of proteins from the site of translation 30 to a location within a vacuole, a compartment in the secretory pathway itself, a lysosome or endosome or to a location at the plasma membrane or outside the cell. Commonly cited examples of compartments in the secretory system include the

endoplasmic reticulum, the Golgi apparatus and the cis and trans Golgi networks. In addition, Applicants have demonstrated that POSH is necessary for proper secretion, localization or processing of a variety of proteins, including phospholipase D, HIV Gag, HIV Nef, Rapsyn and Src. Many of these proteins are myristoylated, 5 indicating that POSH plays a general role in the processing and proper localization of myristoylated proteins. N-myristylation is an acylation process, which results in covalent attachment of myristate, a 14-carbon saturated fatty acid to the N-terminal glycine of proteins (Farazi et al., J. Biol. Chem. 276: 39501-04 (2001)). N-myristylation occurs co-translationaly and promotes weak and reversible protein- 10 membrane interaction. Myristoylated proteins are found both in the cytoplasm and associated with membrane. Membrane association is dependent on protein configuration, i.e., surface accessibility of the myristoyl group may be regulated by protein modifications, such as phosphorylation, ubiquitination etc. Modulation of intracellular transport of myristoylated proteins in the application includes effects on 15 transport and localization of these modified proteins.

As described herein, POSH and POSH-APs are involved in viral maturation, including the production, post-translational processing, assembly and/or release of proteins in a viral particle. Accordingly, viral infections may be ameliorated by inhibiting an activity (e.g., ubiquitin ligase activity or target protein interaction) of 20 POSH or a POSH-AP (e.g., inhibition of kinase activity or ubiquitin ligase activity), and in preferred embodiments, the virus is a retroid virus, an RNA virus or an envelope virus, including HIV, Ebola, HBV, HCV, HTLV, West Nile Virus (WNV) or Moloney Murine Leukemia Virus (MMuLV). Additional viral species are described in greater detail below. In certain instances, a decrease of a POSH 25 function is lethal to cells infected with a virus that employs POSH in release of viral particles.

In certain aspects, the application describes an hPOSH interaction with Rac, a small GTPase and the POSH associated kinases MLK, MKK and JNK. Rho, Rac and Cdc42 operate together to regulate organization of the actin cytoskeleton and the 30 MLK-MKK-JNK MAP kinase pathway (referred to herein as the “JNK pathway” or “Rac-JNK pathway” (Xu et al., 2003, EMBO J. 2: 252-61). Ectopic expression of mouse POSH (“mPOSH”) activates the JNK pathway and causes nuclear

localization of NF- κ B. Overexpression of mPOSH in fibroblasts stimulates apoptosis. (Tapon et al. (1998) EMBO J. 17:1395-404). In *Drosophila*, POSH may interact with, or otherwise influence the signaling of, another GTPase, Ras. (Schnorr et al. (2001) Genetics 159: 609-22). The JNK pathway and NF- κ B regulate a variety of key genes involved in, for example, immune responses, inflammation, cell proliferation and apoptosis. For example, NF- κ B regulates the production of interleukin 1, interleukin 8, tumor necrosis factor and many cell adhesion molecules. NF- κ B has both pro-apoptotic and anti-apoptotic roles in the cell (e.g., in FAS-induced cell death and TNF-alpha signaling, respectively). NF- κ B is negatively regulated, in part, by the inhibitor proteins I κ B α and I κ B β (collectively termed "I κ B"). Phosphorylation of I κ B permits activation and nuclear localization of NF- κ B. Phosphorylation of I κ B triggers its degradation by the ubiquitin system. In an additional embodiment, a POSH polypeptide promotes nuclear localization of NF- κ B. In further embodiments, manipulation of POSH levels and/or activities may be used to manipulate apoptosis. By upregulating POSH or a POSH-AP, apoptosis may be stimulated in certain cells, and this will generally be desirable in conditions characterized by excessive cell proliferation (e.g., in certain cancers). By downregulating POSH or a POSH-AP, apoptosis may be diminished in certain cells, and this will generally be desirable in conditions characterized by excessive cell death, such as myocardial infarction, stroke, degenerative diseases of muscle and nerve (particularly Alzheimer's disease), and for organ preservation prior to transplant. In a further embodiment, a POSH polypeptide associates with a vesicular trafficking complex, such as a clathrin- or coatomer- containing complex, and particularly a trafficking complex that localizes to the nucleus and/or Golgi apparatus.

As described in WO03/078601A2 (application no. WO2003US0008194), POSH is overexpressed in a variety of cancers, and downregulation of POSH is associated with a decrease in proliferation in at least one cancer cell line. Accordingly, agents that modulate POSH itself or a POSH-AP may be used to treat POSH associated cancers. POSH associated cancers include those cancers in which POSH is overexpressed and/or in which downregulation of POSH leads to a

decrease in the proliferation or survival of cancer cells. POSH-associated cancers are described in more detail below. In addition, it is notable that many proteins shown herein to be affected by POSH downregulation are themselves involved in cancers. Phospholipase D and SRC are both aberrantly processed in a POSH-impaired cell, and therefore modulation of POSH and/or a POSH-AP may affect the wide range of cancers in which PLD and SRC play a significant role.

As described in WO03/095971A2 (application no. WO2002US0036366) and WO03/078601A2 (application no. WO2003US0008194), POSH polypeptides function as E3 enzymes in the ubiquitination system. Accordingly, downregulation or upregulation of POSH ubiquitin ligase activity can be used to manipulate biological processes that are affected by protein ubiquitination. Modulation of POSH ubiquitin ligase activity may be used to affect POSH-APs and related biological processes, and likewise, modulation of POSH-APs may be used to affect POSH ubiquitin ligase activity and related processes. Downregulation or upregulation may be achieved at any stage of POSH formation and regulation, including transcriptional, translational or post-translational regulation. For example, POSH transcript levels may be decreased by RNAi targeted at a POSH gene sequence. As another example, POSH ubiquitin ligase activity may be inhibited by contacting POSH with an antibody that binds to and interferes with a POSH RING domain or a domain of POSH that mediates interaction with a target protein (a protein that is ubiquitinated at least in part because of POSH activity). As a further example, small molecule inhibitors of POSH ubiquitin ligase activity are provided herein. As another example, POSH activity may be increased by causing increased expression of POSH or an active portion thereof. POSH, and POSH-APs that modulate POSH ubiquitin ligase activity may participate in biological processes including, for example, one or more of the various stages of a viral lifecycle, such as viral entry into a cell, production of viral proteins, assembly of viral proteins and release of viral particles from the cell. POSH may participate in diseases characterized by the accumulation of ubiquitinated proteins, such as dementias (e.g., Alzheimer's and Pick's), inclusion body myositis and myopathies, polyglucosan body myopathy, and certain forms of amyotrophic lateral sclerosis. POSH may

participate in diseases characterized by excessive or inappropriate ubiquitination and/or protein degradation.

3. POSH Associated Proteins

In certain aspects, the application relates to the discovery of novel associations between POSH proteins and other proteins (termed POSH-APs), and related methods and compositions. In certain aspects, the application relates to novel associations among certain disease states, POSH nucleic acids and proteins, and POSH-AP nucleic acids and proteins. POSH-APs may interact either directly or indirectly with POSH. In certain embodiments, a POSH-AP binds directly to a POSH polypeptide.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with one subunit of Protein Kinase A (PKA; cAMP-dependent protein kinase). In one aspect, the application relates to the discovery that POSH binds directly with PRKAR1A. This interaction was identified by Applicants in a yeast 2-hybrid assay. Exemplary PKA subunits may include, but are not limited to, a regulatory subunit (e.g., PRKAR1A) and a catalytic subunit (e.g., PRKACA or PRKACB). PKA is an essential enzyme in the signaling pathway of the second messenger cyclic AMP (cAMP). Through phosphorylation of target proteins, PKA controls many biochemical events in the cell including regulation of metabolism, ion transport, and gene transcription. The PKA holoenzyme is composed of two regulatory and two catalytic subunits and dissociates from the regulatory subunits upon binding of cAMP. The PKA enzyme is inactive in the absence of cAMP. Activation of PKA occurs when two cAMP molecules bind to each regulatory subunit, eliciting a reversible conformational change that releases active catalytic subunits.

A number of human PKA subunits have been characterized, including a regulatory subunit (type I alpha: PRKAR1) and two catalytic subunits (C-alpha: PRKACA; and C-beta: PRKACB). Boshart et al. identified the regulatory subunit PRKAR1 of PKA as the product of the TSE1 locus (Boshart, M et al. (1991) Cell 30: 66: 849-859). The evidence consisted of concordant expression of PRKAR1 mRNA and TSE1 genetic activity, high resolution physical mapping of the two genes on human chromosome 17, and the ability of transfected PRKAR1 cDNA to generate a

phenocopy of TSE1-mediated extinction. Jones et al. independently established identity of TSE1 and the RI-alpha subunit (Jones, KW et al. (1991) Cell 66: 861-872).

Other than a role of PKA in metabolism, PKA subunits have recently been implicated in multiple diseases. For example, a specific role for localized PRKAR1 has been demonstrated in human T lymphocytes, where type I PKA localizes to the activated TCR complex and is required for attenuation of signals propagated through this complex (Skalhegg, BS et al. (1992) J Biol Chem 267:15707-15714; Skalhegg, BS et al. (1994) Science 263: 84-87). The importance of type I PKA-mediated effects in attenuation of T cell replication has led to its consideration as a therapeutic target in combined variable immunodeficiency (CVI) and acquired immune deficiency syndrome (AIDS). Furthermore, type I PKA in T cells may also serve as a potential therapeutic target in systemic lupus erythematosis (SLE). For example, a series of recently published articles has uncovered the first human disease mapping to a PKA subunit-Carney complex (Casey, M et al. (2000) J Clin Invest 106: R31-38; Kirschner, LS et al. (2000) Nat Genet 26: 89-92). Carney complex (CNC) is a multiple neoplasia syndrome characterized by spotty skin pigmentation, cardiac and skin myxomas, endocrine tumors, and psammomatous melanotic schwannomas. CNC maps to two genomic loci, 17q24 and 2p16. Familial cases mapping to the 17q24 locus reveal deletions/mutations in the PRKAR1 coding exons leading to frameshifts and premature stop codons—no mRNA and protein from the mutant alleles has been observed.

Accordingly, in certain aspects of the present disclosure, POSH participates in the formation of PKA complexes, including human PKA-containing complexes. Certain POSH polypeptides may be involved in disorders of the immune system, e.g., autoimmune disorders. Certain POSH polypeptides may be involved in the regulation of T-cell activation. In certain aspects, POSH participates in the ubiquitination of PI3K. In certain aspects, PKA subunit polypeptides participate in POSH-mediated processes.

Additionally, the disclosure relates in part to the discovery that PKA phosphorylates POSH, and further, that this phosphorylation inhibits the interaction of POSH with small GTPases, such as Rac. Small GTPases are important in

vesicular trafficking, and therefore the findings disclosed herein demonstrate that POSH phosphorylation regulates the formation of complexes between POSH and proteins involved in the secretory system, such as Rac, TCL, TC10, Cdc42, Wrch-1, Rac2, Rac3 or RhoG. Applicants have shown that inhibition of PKA and POSH has similar effects, indicating that inhibition of PKA will achieve an effect similar to that of inhibition of POSH. However, given the effect of PKA on POSH interaction with proteins in the secretory pathway, it is expected that PKA regulates the timing of cyclical interactions that are needed to effect vesicular trafficking. Accordingly, it is expected that significant inhibition or activation of PKA will cause a disruption 10 in POSH function.

The term "PKA subunit" is used herein to refer to a full-length human PKA subunit which includes a regulatory subunit (e.g., PRKAR1A) and a catalytic subunit (e.g., PRKACB or PRKACA), as well as an alternative PKA subunit composed of separate PKA subunit sequences (e.g., nucleic acid sequences) that 15 may be a splice variant. The term "PKA subunit" is used herein to refer as well to various naturally occurring PKA subunit homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring PKA subunit (e.g., SEQ ID NOS: 264-265, 111-122, 395-396). The term specifically includes human PKA subunit nucleic acid and amino 20 acid sequences and the sequences presented in Figure 36.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with human UNC84B, a human homolog of *C. elegans* Unc-84. Accordingly, the application provides complexes comprising POSH and UNC84B. In one aspect, the application relates to the discovery that POSH binds 25 directly with UNC84B. This interaction was identified by Applicants in a yeast 2-hybrid assay. In *C. elegans*, Unc-84 is involved in the cellular positioning of the nucleus. UNC84/SUN is positioned at the nuclear membrane and recruits Syne/ANC-1, which directly tethers the nuclear envelope to the actin cytoskeleton. Accordingly, in certain aspects, POSH participates in formation of a UNC84 30 complexes, including human UNC84B-containing complexes, and in the connections between the nucleus and the cytoskeleton. In certain aspects, UNC84

polypeptides participate in POSH-mediated processes. See, for example, Starr and Han, 2003, J Cell Sci 116(Pt 2):211-6.

The term UNC84 is used herein to refer to various naturally occurring UNC84 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring UNC84 (e.g., SEQ ID NOs: 314, 211-213). The term specifically includes human UNC84B nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with human GOCAP1. Certain GOCAP1 polypeptides are cytoplasmic proteins associated with the Golgi complex. Accordingly, the application provides complexes comprising POSH and GOCAP1. In one aspect, the application relates to the discovery that POSH binds directly with GOCAP1. This interaction was identified by Applicants in a yeast 2-hybrid assay. In certain aspects, these complexes associate with the Golgi complex. GOCAP1 is synonymous with GCP60. Certain GCP60 polypeptides interact with the Golgi complex integral membrane protein, giantin. Certain GCP60 polypeptides are involved in the maintenance of the Golgi structure through interaction with giantin and affect protein transport between the endoplasmic reticulum and the Golgi complex (Sohda, M, et al. (2001) J Biol Chem 276:45298-306). In certain aspects, GOCAP1 polypeptides participate in POSH-mediated processes.

The term GOCAP1 is used herein to refer to various naturally occurring GOCAP1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring GOCAP1 (e.g., SEQ ID NOs: 240-243, 61-68). The term specifically includes human GOCAP1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with human PTPN12, a protein tyrosine phosphatase. Accordingly, the application provides complexes comprising POSH and PTPN12. In one aspect, the application relates to the discovery that POSH binds directly with PTPN12. This interaction was identified by Applicants in a yeast 2-hybrid assay.

PTPN12 polypeptides are synonymous with the protein tyrosine phosphatase, PTP-PEST. PTP-PEST polypeptides contain proline-rich sequences and are rich in proline, glutamate, serine, and threonine residues at their carboxyl terminus, features characteristic of PEST motifs. Certain PTP-PEST polypeptides interact with 5 paxillin, a scaffolding protein to which focal adhesion proteins bind, leading to the formation of the focal adhesion contact (Shen, Y et al. (1998) J Biol Chem 273:6474-81). Certain PTP-PEST polypeptides associate with the focal adhesion protein, p130cas (Garton, AJ et al. (1997) Oncogene 15:877-85). Certain PTP-PEST polypeptides have also been shown to associate with JAK2, PSTPIP and 10 WASP, gelsolin, cell adhesion kinase beta, Csk, Hef 1 or Sin , Hic-5, or Shc (See, for example, Horsch, et al (2001) Mol Endocrinol 15:2182-96; Cote, et al (2002) J Biol Chem 277:2973-86; Chellaiah, et al (2001) J Biol Chem 276:47434-44; Lyons, et al (2001) J Biol Chem 276:24422-31; Davidson, et al (1997) J Biol Chem 21:1077-88; Cote, JF et al (1998) Biochemistry 37:13128-37; Nishiya, N (1999) J 15 Biol Chem 274:9847-53; Habib, T et al (1994) J Biol Chem 269:25243-6). Certain PTP-PEST polypeptides are involved in inactivation of the Ras pathway (Davidson, D and Veillette, A (2001) EMBO J 20:3414-26). The expression level of certain PTP-PEST polypeptides can modulate the activity of the GTPase, Rac1 (Sastry, et al (2002) J Cell Sci 115(Pt 22): 4305-16). Certain PTP-PEST polypeptides are 20 involved in the regulation of cell motility (Garton, AJ and Tonks, NK (1999) J Biol Chem 274:3811-8; Angers-Loustau, et al (1999) J Cell Biol 144:1019-31; and Sastry, et al. (2002) J Cell Sci 155(Pt 22): 4305-16). Accordingly, certain POSH polypeptides are involved in inactivation of the Ras pathway. Certain POSH polypeptides are involved in the regulation of cell motility.

25 Certain PTP-PEST polypeptides are involved in amyloid β -induced neuronal dystrophy, a pathological hallmark of Alzheimer's disease (Grace, EA and Busciglio, J (2003) J Neurosci. 23:493-502). Accordingly, certain POSH polypeptides may be involved in Alzheimer's disease. Certain PTP-PEST polypeptides function as negative regulators of lymphocyte activation (Davidson, D 30 and Veillette, A (2001) EMBO J 20:3414-26). Accordingly, certain POSH polypeptides may be involved in the regulation of lymphocyte activation. In certain aspects, PTPN12 polypeptides participate in POSH-mediated processes.

The term PTPN12 is used herein to refer to various naturally occurring PTPN12 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring PTPN12 (e.g., SEQ ID NOs: 266-268, 123-129). The term specifically includes human 5 PTPN12 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with HERPUD1, a “homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1” protein. Accordingly, 10 the application provides complexes comprising POSH and HERPUD1. In one aspect, the application relates to the discovery that POSH binds directly with HERPUD1. This interaction was identified by Applicants in a yeast 2-hybrid assay. HERPUD1 is synonymous with Herp. In part, the present application relates to the discovery that a POSH-AP, HERPUD1, is involved in the maturation of an envelope 15 virus, such as HIV.

Certain HERPUD1 polypeptides are involved in JNK-mediated apoptosis, particularly in vascular endothelial cells, including cells that are exposed to high levels of homocysteine. Certain HERPUD1 polypeptides are involved in the Unfolded Protein Response, a cellular response to the presence of unfolded proteins 20 in the endoplasmic reticulum. Certain HERPUD1 polypeptides are involved in the regulation of sterol biosynthesis. Accordingly, certain POSH polypeptides are involved in the Unfolded Protein Response and sterol biosynthesis.

In other aspects, certain HERPUD1 polypeptides enhance presenilin-mediated amyloid β -protein generation. For example, HERPUD1 polypeptides, 25 when overexpressed in cells, increase the level of amyloid β generation, and it is observed that HERPUD1 polypeptides interact with the presenilin proteins, presenilin-1 and presenilin-2. (See Sai, X. et al (2002) J. Biol. Chem. 277:12915-12920). Accordingly, in certain aspects, POSH polypeptides may modulate the level 30 of amyloid β generation. Additionally, POSH polypeptides may interact with presenilin 1 and presenilin 2. Therefore, it is believed certain POSH polypeptides modulate presenilin-mediated amyloid β generation. The accumulation of amyloid 9372369_1

β is one hallmark of Alzheimer's disease. Accordingly, these POSH polypeptides may be involved in the pathogenesis of Alzheimer's disease. At sites such as late intracellular compartment sites including the trans-Golgi network, certain mutant presenilin-2 polypeptides up-regulate production of amyloid β peptides ending at 5 position 42 (A β 42). (See Iwata, H. et al (2001) J. Biol. Chem. 276: 21678-21685). Accordingly, POSH polypeptides regulate production of A β 42 through mutant presenilin-2 at late intracellular compartment sites including the trans-Golgi network. Furthermore, elevated homocysteine levels have been found to be a risk factor associated with Alzheimer's disease and cerebral vascular disease. Some risk 10 factors, such as elevated plasma homocysteine levels, may accelerate or increase the severity of several central nervous system (CNS) disorders. Elevated levels of plasma homocysteine were found in young male patients with schizophrenia suggesting that elevated homocysteine levels could be related to the pathophysiology of aspects of schizophrenia (Levine, J. et al (2002) Am. J. Psychiatry 159:1790-2). Accordingly, certain POSH polypeptides may be involved 15 in neurological disorders. Neurological disorders include disorders associated with increased levels of plasma homocysteine, increased levels of amyloid β production, or aberrant presenilin acitivity. Neurological disorders include CNS disorders, such as Alzheimer's disease, cerebral vascular disease and schizophrenia. Certain POSH 20 polypeptides may be involved in cardiovascular diseases, such as thromboembolic vascular disease, and particularly the disease characteristics associated with hyperhomocysteinemia. See, for example, Kokame et al. 2000 J. Biol. Chem. 275:32846-53; Zhang et al. 2001 Biochem Biophys Res Commun 289:718-24.

The term HERPUD1 is used herein to refer to various naturally occurring 25 HERPUD1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring HERPUD1 (e.g., SEQ ID NOs: 249-252, 77-86). The term specifically includes human HERPUD1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

30 In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with one or more Cbl-b polypeptides. Accordingly, the 9372369_1

application provides complexes comprising POSH and Cbl-b. In one aspect, the application relates to the discovery that POSH binds directly with Cbl-b. This interaction was identified by Applicants in a yeast 2-hybrid assay. Cbl-b polypeptides contain an amino-terminal variant SH2 domain, a RING finger, and a carboxyl-terminal proline-rich domain with potential tyrosine phosphorylation sites.

5 Cbl-b is highly homologous to the mammalian Cbl and the nematode Sli-1 proteins. This application provides four Cbl-b variants and shows that the POSH polypeptide interacts with one or more of these variants. In one aspect, the POSH polypeptide interacts with a human Cbl-b (UniGene No.: Hs.3144). In another aspect, the POSH

10 polypeptide interacts with an alternative human Cbl-b (UniGene No.: Hs.381921) that may be a splice variant of Cbl-b. In yet another aspect, the POSH polypeptide interacts with a human Cbl-b polypeptide that is a splice variant represented by the amino acid sequence depicted in SEQ ID NO: 361, which is encoded by the nucleic acid sequence depicted in SEQ ID NO: 359. In yet another aspect, the POSH

15 polypeptide interacts with a human Cbl-b polypeptide that is a splice variant represented by the amino acid sequence depicted in SEQ ID NO: 398, which is encoded by the nucleic acid sequence depicted in SEQ ID NO: 360.

Certain Cbl-b polypeptides have been shown to function as adaptor proteins by interacting with other signaling molecules, e.g., interaction with cell surface receptor tyrosine kinases, e.g., EGFR (Ettenberg, SA et al (2001) J Biol Chem 276:77-84) or with proteins such as Syk (Elly, C et al (1999) Oncogene 18:1147-56), Crk-L (Elly, C et al (1999) Oncogene 18:1147-56), PI3K (Fang, D et al. (2001) J Biol Chem 16:4872-8), Grb2 (Ettenberg, SA et al (1999) Oncogene 18:1855-66), or Vav (Bustelo, XR et al. (1997) Oncogene 15:2511-20). Certain Cbl-b polypeptides have been demonstrated to interact directly with the nucleotide exchange factor, Vav (Bustelo, XR et al. (1997) Oncogene 15:2511-20). Certain Cbl-b polypeptides have been shown to function as an E3 ubiquitin ligase that recognizes tyrosine phosphorylated substrates through its SH2 domain and through its RING domain, recruits a ubiquitin-conjugating enzyme, E2 (Joazeiro, C et al. (1999) Science 286:309-312) Additionally, certain Cbl-b polypeptides have been shown to associate directly with the p85 subunit of PI3K and to function as an E3 ligase in the ubiquitination of PI3K (Fang, D et al. (2001) J Biol Chem 16:4872-8).

Certain Cbl-b polypeptides are negative regulators of T-cell activation. Cbl-b-deficient mice become very susceptible to experimental autoimmune encephalomyelitis (Chiang, YJ et al. (2000) Nature 403:216-220). Also, Cbl-b-deficient mice develop spontaneous autoimmunity (Bachmaier, K, et al (2000) Nature 403:211-216). Furthermore, Cbl-b is a major susceptibility gene for rat type 5 diabetes mellitus (Yokoi, N et al (2002) Nature Genet. 31:391-394).

Accordingly, in certain aspects, POSH participates in the formation of Cbl-b complexes, including human Cbl-b-containing complexes. Certain POSH polypeptides may be involved in disorders of the immune system, e.g., autoimmune 10 disorders. Certain POSH polypeptides may be involved in the regulation of T-cell activation. In certain aspects, POSH participates in the ubiquitination of PI3K. In certain aspects, Cbl-b polypeptides participate in POSH-mediated processes.

The term Cbl-b is used herein to refer to full-length, human Cbl-b (UniGene No.: Hs.3144) as well as an alternative Cbl-b (UniGene No.: Hs.381921) composed of two separate Cbl-b sequences (e.g., nucleic acid sequences) that may be a splice variant. The term Cbl-b is used herein to refer as well to the human Cbl-b splice variant represented by the amino acid sequence of SEQ ID NO: 361, which is encoded by the nucleic acid sequence of SEQ ID NO: 359 and to the human Cbl-b splice variant represented by the amino acid sequence of SEQ ID NO: 398, which is 15 encoded by the nucleic acid sequence of SEQ ID NO: 360. The term Cbl-b is used herein to refer as well to various naturally occurring Cbl-b homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring Cbl-b (e.g., SEQ ID NOs: 361, 398, 227-230, 353-360). The term specifically includes human Cbl-b nucleic acid and 20 amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with GOSR2. Accordingly, the application provides complexes comprising POSH and GOSR2. In one aspect, the application relates to the discovery that POSH binds directly with GOSR2. This interaction was 25 identified by Applicants in a yeast 2-hybrid assay. Certain GOSR2 polypeptides are synonymous with GS27 (for Golgi SNARE of 27K) and are involved in trafficking membrane proteins between the endoplasmic reticulum and the Golgi and between

Golgi subcompartments such as between the cis-, medial- and trans-Golgi network. (See, for example, Lowe, SL et al (1997) Nature 389:881-4 and Bui, TD et al (1999) 57:285-8). Accordingly, certain POSH polypeptides are involved in the trafficking of membrane proteins between the endoplasmic reticulum and the Golgi and 5 between Golgi subcompartments.

The term GOSR2 is used herein to refer to various naturally occurring GOSR2 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring GOSR2 (e.g., SEQ ID NOS: 244-248, 69-76). The term specifically includes human GOSR2 10 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with RALA. Accordingly, the application provides complexes comprising POSH and RALA. In one aspect, the application relates to the discovery that POSH binds directly with RALA. This interaction was identified by Applicants 15 in a yeast 2-hybrid assay. RALA polypeptides are GTP-binding polypeptides. RALA polypeptides are members of the Ras family of proteins and are GTPases. Certain RALA polypeptides may be synonymous with RalA polypeptides. RalA polypeptides are small GTPases. RalA polypeptides have been shown to interact with phospholipase D and to effect phospholipase D activity. Additionally, RalA 20 polypeptides may be involved in tumor formation and cell transformation. (See, for example, Kim, JH et al (1998) FEBS Lett 430:231-5; Aguirre-Ghiso, JA et al (1999) Oncogene 18:4718-25; Lu, Z et al (2000) Mol Cell Biol 20:462-7; Gildea, JJ et al (2002) Cancer Res 62:982-5; Lucas, L et al (2002) Int J Oncol 21:477-85; and Xu, L 25 et al (2003) Mol Cell Biol 23:645-54). Accordingly, certain POSH polypeptides may interact with PLD and modulate its activity, and certain POSH polypeptides may be involved in tumor formation and cell transformation. In other aspects, certain RalA polypeptides interact with calmodulin and may be involved in calcium/calmodulin-mediated intracellular signaling pathways (Clough, RR et al (2002) J Biol Chem 277:28972-80). Certain RalA polypeptides are involved in 30 controlling actin cytoskeletal remodeling and vesicle transport in mammalian cells. Certain RalA polypeptides interact with the exocyst complex, which is involved in exocytosis. (See, for example, Sugihara, K et al (2002) Nat Cell Biol 4:73-8; Polzin,

A et al (2002) Mol Cell Biol 22:1714-22; and Lipschutz, JH and Mostov, KE (2002) Curr Biol 12(6):R212-4). Accordingly, certain POSH polypeptides are involved in vesicle transport.

The term RALA is used herein to refer to various naturally occurring RALA homologs, as well as functionally similar variants and fragments that retain at least 5 80%, 90%, 95%, or 99% sequence identity to a naturally occurring RALA (e.g., SEQ ID NOS: 269-270, 130-134). The term specifically includes human RALA nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH 10 polypeptide interacts with SMN1. Accordingly, the application provides complexes comprising POSH and SMN1. In one aspect, the application relates to the discovery that POSH binds directly with SMN1. This interaction was identified by Applicants in a yeast 2-hybrid assay. SMN1 polypeptides are encoded by the nucleic acid of the survival motor neuron gene 1 (SMN1). Mutations in this gene (such as its 15 homozygous absence) cause spinal muscular atrophy (SMA), a common autosomal recessive disorder characterized by degeneration of motor neurons in the spinal cord, leading to progressive paralysis with muscular atrophy. Accordingly, POSH may be involved in the pathogenesis of SMA. SMN1 is part of a multiprotein complex that is required for biogenesis of the Sm class of small nuclear ribonucleoproteins (Sm 20 snRNPs). SMN1 associates with a number of proteins, such as Gemin2 to Gemin6, to form a large complex found in both the cytoplasm and in the nucleus. SMN1 also associates with Snurportin 1, an adaptor protein that recognizes the nuclear localization signal of Sm snRNPs. (See, for example, Lefebvre, S et al (1995) Cell 80:155-65; Narayanan, U et al (2002) Hum Mol Genet 11:1785-95; Massenet, S et al 25 (2002) 22:6533-41; and Monani, UR et al (1999) Hum Mol Genet 8:1177-83). Accordingly, certain POSH polypeptides may be involved in the biogenesis of snRNPs. Certain SMN1 polypeptides interact with the large nonstructural protein NS1 of the autonomous parvovirus minute virus of mice (MVM). NS1 is essential 30 for viral replication, and it is a potent transcriptional activator (Young, PJ et al (2002) J Virol 76:3892-904). Certain SMN1 polypeptides interact with the protein NS2 of MVM. NS2 is also required for efficient viral replication. Certain SMN1 polypeptides colocalize with NS2 in infected nuclei and at late times following

MVM infection. (See Young, PJ et al (2002) J Virol 76:6364-9). Accordingly, POSH polypeptides are involved in viral replication.

The term SMN1 is used herein to refer to various naturally occurring SMN1 homologs, as well as functionally similar variants and fragments that retain at least 5 80%, 90%, 95%, or 99% sequence identity to a naturally occurring SMN1 (e.g., SEQ ID NOS: 273-275, 142-146). The term specifically includes human SMN1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with SMN2. Accordingly, the application provides complexes 10 comprising POSH and SMN2. In one aspect, the application relates to the discovery that POSH binds directly with SMN2. This interaction was identified by Applicants in a yeast 2-hybrid assay. The SMN2 gene is an almost identical copy of the SMN1 gene that causes SMA. A critical difference between the two genes is a 1 nucleotide base change inside exon 7 that affects the splicing pattern of the genes. The 15 majority of the SMN2 transcript lacks exon 7. Certain SMN2 polypeptides influence the severity of SMA. (See, for example, Monani, UR et al (1999) Hum Mol Genet 8: 1177-83; Cartegni, L and Krainer, AR (2002) Nat Genet 30:377-84; and Feldkotter, M et al (2002) Am J Hum Genet 70: 358-68). Accordingly, certain POSH polypeptides may influence the severity of SMA.

The term SMN2 is used herein to refer to various naturally occurring SMN2 homologs, as well as functionally similar variants and fragments that retain at least 20 80%, 90%, 95%, or 99% sequence identity to a naturally occurring SMN2 (e.g., SEQ ID NOS: 276-280, 147-151). The term specifically includes human SMN2 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with SIAH1. Accordingly, the application provides complexes 25 comprising POSH and SIAH1. In one aspect, the application relates to the discovery that POSH binds directly with SIAH1. This interaction was identified by Applicants in a yeast 2-hybrid assay. Certain SIAH1 polypeptides bind ubiquitin-conjugating enzymes and target proteins for proteasome-mediated degradation. Certain SIAH1 30 polypeptides are involved in targeting beta-catenin for degradation (Matsuzawa, S and Reed, JC (2001) Molec Cell 7: 915-926 and Liu, J et al (2001) Molec Cell 7: 9372369_1

927-936). Accordingly, certain POSH polypeptides are involved in the targeting of beta-catenin for degradation. Certain SIAH1 polypeptides are E3 ubiquitin ligases and regulate the ubiquitination and degradation of synaptophysin (Wheeler, TC et al. (2002) J Biol Chem 277: 10273-92). Accordingly, certain POSH polypeptides are involved in the ubiquitination and degradation of synaptophysin. Certain SIAH1 polypeptides regulate the protein, DCC (deleted in colorectal cancer), via the ubiquitin-proteosome pathway (Hu, G et al. (1997) Genes Dev 11: 2701-14). Accordingly, certain POSH polypeptides are involved in the ubiquitination and degradation of DCC. Certain SIAH1 polypeptides are a target of activation of p53 and are upregulated by p53, and certain SIAH1 polypeptides are involved in apoptosis, tumor suppression, as well as vertebrate development (Maeda, A et al (2002) FEBS Lett 512: 223-226; Hu, G et al (1997) Genomics 46:103-111; and Nemani, M et al (1996) Proc Natl Acad Sci USA 93: 9039-9042). Accordingly, certain POSH polypeptides may be a target of p53 activation, and certain POSH polypeptides may be involved in apoptosis and tumor suppression.

The term SIAH1 is used herein to refer to various naturally occurring SIAH1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring SIAH1 (e.g., SEQ ID NOs: 271-272, 135-141). The term specifically includes human SIAH1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with SYNE1. Accordingly, the application provides complexes comprising POSH and SYNE1. In one aspect, the application relates to the discovery that POSH binds directly with SYNE1. This interaction was identified by Applicants in a yeast 2-hybrid assay. SYNE1 polypeptides are synonymous with Syne-1, myne-1, and nesprin-1 polypeptides. Syne-1 polypeptides are associated with nuclear envelopes in skeletal, cardiac, and smooth muscle cells. Syne-1 polypeptides contain multiple spectrin repeats. In muscle, myne-1 expression is observed in the inner nuclear envelope, and myne-1 has been shown to interact with the inner nuclear membrane protein lamin A/C. Syne-1 also associates with the nuclear envelope protein, emerin. Syne-1 polypeptides may be involved in maintaining nuclear organization and structural integrity, and certain Syne-1

polypeptides may be involved in the migration of myonuclei in myotubes and/or their anchoring at the postsynaptic apparatus. (See, for example, Apel et al (2000) J Biol Chem 275:31986-95; Zhang, Q et al (2001) J Cell Sci 114:4485-98; Zhang, Q et al (2002) Genomics 80:473-81; and Mislow, JM et al (2002) J Cell Sci 115 (Pt 1):61-70). Accordingly, certain POSH polypeptides may interact with the lamin A/C polypeptides and/or emerin polypeptides. Also, certain POSH polypeptides may be involved in maintaining nuclear organization and structural integrity, and certain POSH polypeptides may be involved in the migration of myonuclei in myotubes and/or their anchoring at the postsynaptic apparatus.

The term SYNE1 is used herein to refer to various naturally occurring SYNE1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring SYNE1 (e.g., SEQ ID NOS: 295-307, 183-201). The term specifically includes human SYNE1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with TTC3. Accordingly, the application provides complexes comprising POSH and TTC3. In one aspect, the application relates to the discovery that POSH binds directly with TTC3. This interaction was identified by Applicants in a yeast 2-hybrid assay. Certain TTC3 polypeptides are synonymous with the proteins, TPRDI, TPRDII, TRPDIII, TPRD and DCRR1 and may be involved in the pathogenesis of certain characteristics of Down syndrome, such as morphological features, hypotonia, and mental retardation (Tsukahara, F et al (1996) J Biochem (Tokyo) 120: 820-827; Ohira, M et al (1996) DNA Res 3: 9-16; Dahmane, N et al (1998) Genomics 48: 12-23; and Eki, T et al (1997) DNA Seq 7:153-164).

The term TTC3 is used herein to refer to various naturally occurring TTC3 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring TTC3 (e.g., SEQ ID NOS: 308-312, 202-207). The term specifically includes human TTC3 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with VCY2IP1. Accordingly, the application provides

complexes comprising POSH and VCY2IP1. In one aspect, the application relates to the discovery that POSH binds directly with VCY2IP1. This interaction was identified by Applicants in a yeast 2-hybrid assay. VCY2IP1 is synonymous with VCY2IP-1, which has been shown to interact with the testis-specific protein, VCY2.

5 VCY2IP1 is also synonymous with C19orf5, which has been shown to interact with the tumor suppressor, RASSF1, suggesting a role for C19orf5 in apoptosis and tumor suppression (In Vitro Cell Dev Biol Anim (2002) 38:582-94). C19orf5 also demonstrates a strong homology to microtubule-associated proteins (Genomics (2002) 79:124-6). Accordingly, POSH may play a role in apoptosis and tumor suppression.

10 The term VCY2IP1 is used herein to refer to various naturally occurring VCY2IP1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring VCY2IP1 (e.g., SEQ ID NOS: 315-323, 214-222). The term specifically includes 15 human VCY2IP1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with MSTP028. In one aspect, the application relates to the discovery that POSH binds directly with MSTP028. This interaction was identified 20 by Applicants in a yeast 2-hybrid assay. In part, the present application relates to the discovery that a POSH-AP, MSTP028, is involved in the maturation of an envelope virus, such as HIV. Certain MSTP028 polypeptides contain one or more BTB/POZ domains that are generally involved in dimerization. Accordingly the application provides complexes comprising POSH and MSTP028, optionally in a dimeric form. 25 The term MSTP028 is used herein to refer to various naturally occurring MSTP028 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring MSTP028 (e.g., SEQ ID NOS: 255-256, 90-94). The term specifically includes human MSTP028 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

30 In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with SNX1. Accordingly, the application provides complexes comprising POSH and SNX1. In one aspect, the application relates to the discovery

that POSH binds directly with SNX1. This interaction was identified by Applicants in a yeast 2-hybrid assay. SNX1 is a member of the sorting nexin (SNX) protein family, which is implicated in regulating membrane traffic. SNX1 is a membrane associated protein that has been shown to be involved with targeting receptors to lysosomal degradation. SNX1 has been shown to bind to the C-terminal tail of the D5 dopamine receptor (*Mol Cell Biol* (1998) 18: 7278-87). Accordingly, in certain aspects POSH may associate with the D5 dopamine receptor. SNX1 is involved in regulating the targeting of internalized epidermal growth factor receptors for lysosomal degradation (*Science* (1996) 272:1008-1010). In certain aspects, POSH may be involved in targeting proteins for degradation to the lysosome. SNX1 has also been found to be involved in sorting PAR1, a G-protein coupled receptor for thrombin (*Mol Cell Biol* (2002) 13:1965-76). It has further been demonstrated that SNX1 functions in regulating trafficking in the endosome compartment via recognition of phosphorylated phosphatidylinositol through the phox homology domain (PX domain) of SNX1 (*Proc Natl Acad Sci* (2002) 99:6767-72).

The term SNX1 is used herein to refer to various naturally occurring SNX1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring SNX1 (e.g., SEQ ID NOs: 281-286, 152-161). The term specifically includes human SNX1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In additional embodiments, the application relates to the discovery that a POSH polypeptide interacts with SNX3. Accordingly, the application provides complexes comprising POSH and SNX3. In one aspect, the application relates to the discovery that POSH binds directly with SNX3. This interaction was identified by Applicants in a yeast 2-hybrid assay. SNX3 is also a member of the SNX protein family. SNX3 has been shown to associate with the early endosome through its PX domain, a domain capable of interaction with phosphatidylinositol-3-phosphate (*Nat Cell Biol* (2002) 3:658-66). Accordingly, POSH may be involved in membrane traffic at the early endosome.

The term SNX3 is used herein to refer to various naturally occurring SNX3 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring SNX3 (e.g., SEQ

ID NOS: 287-290, 162-174). The term specifically includes human SNX3 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In further embodiments, the application relates to the discovery that a POSH polypeptide interacts with ATP6V0C. Accordingly, the application provides complexes comprising POSH and ASTP6V0C. In one aspect, the application relates to the discovery that POSH binds directly with ATP6V0C. This interaction was identified by Applicants in a yeast 2-hybrid assay. ATP6V0C, vacuolar-H(+)ATPase, is a large multimeric protein composed of at least twelve distinct subunits and it is involved in the H(+) transport across cellular membranes. ATP6V0C is synonymous with ATP6L. Treatment with anticancer agents has been shown to enhance ATP6L expression (Cytogenet Genome Res (2002) 97:111-5; J Biol Chem (2002) 277:36534-43).

The term ATP6V0C is used herein to refer to various naturally occurring ATP6V0C homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring ATP6V0C (e.g., SEQ ID NOs: 225-226, 345-351). The term specifically includes human ATP6V0C nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with PPP1CA. Accordingly, the application provides complexes comprising POSH and PPP1CA. In one aspect, the application relates to the discovery that POSH binds directly with PPP1CA. This interaction was identified by Applicants in a yeast 2-hybrid assay. PPP1CA is the protein phosphatase type 1 alpha catalytic subunit. The genetic and expression status of the PPP1CA gene was examined in 55 human cancer cell lines and found to be ubiquitously expressed and lacking in genetic variation, suggesting an essential role for PPP1CA in the growth of cancer cells (Int J Oncol (2001) 18:817-24).

The term PPP1CA is used herein to refer to various naturally occurring PPP1CA homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring PPP1CA (e.g., SEQ ID NOs: 261-263, 101-110). The term specifically includes human

PPP1CA nucleic acid and amino acid sequences and the sequences presented in Figure 36.

The application further relates to the discovery that a POSH polypeptide interacts with DDEF1. Accordingly, the application provides complexes comprising 5 POSH and DDEF1. In one aspect, the application relates to the discovery that POSH binds directly with DDEF1. This interaction was identified by Applicants in a yeast 2-hybrid assay. DDEF1 is a putative candidate gene associated with Meckel-Gruber syndrome (MKS), the most common monogenic cause of neural tube defects (Hum Genet (2002) 111:654-61).

10 The term DDEF1 is used herein to refer to various naturally occurring DDEF1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring DDEF1 (e.g., SEQ ID NOs: 233-237, 48-54). The term specifically includes human DDEF1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

15 In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with PACS-1. Accordingly, the application provides complexes comprising POSH and PACS-1. In one aspect, the application relates to the discovery that POSH binds directly with PACS-1. This interaction was identified by Applicants in a yeast 2-hybrid assay. PACS-1 is a cytosolic sorting 20 protein that directs localization of membrane proteins in the TGN/endosomal system. PACS-1 is a cytosolic protein involved in controlling the correct subcellular localization of integral membrane proteins that contain acidic cluster sorting motifs, such as furin and HIV-1 Nef, and PACS-1 has been shown to interact with the adaptor complexes AP-1 and AP-3 (EMBO J (2003) 22:6234-44; EMBO J (2001) 25 20:2191-201). Furthermore, PACS-1 polypeptides have been shown to interact with Nef and through this interaction, by a PI3K-dependent process, MHC class I molecules are downregulated by Nef (Cell (2002) 11:853-66). Accordingly, POSH may be involved in Nef-mediated downregulation of MHC class I molecules in a cell infected with HIV-1. Additionally, PACS-1 interacts with the HIV-1 protein, 30 Vpu. Vpu expresses an acidic amino acid sorting motif that is required for TGN localization through a retroviral process mediated by PACS-1 (Wan, L et al (1998)

Cell 94:205-216). Accordingly, in certain aspects, POSH may associate with Vpu through its interaction with PACS-1.

The term PACS-1 is used herein to refer to various naturally occurring PACS-1 homologs, as well as functionally similar variants and fragments that retain 5 at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring PACS-1 (e.g., SEQ ID NOS: 362-366, 95-100). The term specifically includes human PACS-1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with EPS8L2. Accordingly, the application provides 10 complexes comprising POSH and EPS8L2. In one aspect, the application relates to the discovery that POSH binds directly with EPS8L2. This interaction was identified by Applicants in a yeast 2-hybrid assay. EPS8L2 is an eps8-related protein. Eps8 forms a multimeric complex with Sos-1, Abi1 and PI3K that is required for Rac activation leading to actin remodelling. EPS8L2 has been shown to 15 interact with Abi1 and Sos-1. EPS8L2 also has been shown to localize to PDGF-induced F-actin-rich ruffles and to restore receptor tyrosine kinase mediated actin remodeling when expressed in eps8-/- fibroblasts (Mol Biol Cell (2004) 15:91-8).

The term EPS8L2 is used herein to refer to various naturally occurring EPS8L2 homologs, as well as functionally similar variants and fragments that retain 20 at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring EPS8L2 (e.g., SEQ ID NOS: 239, 58-60). The term specifically includes human EPS8L2 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

The application additionally relates to the discovery that a POSH polypeptide interacts with HIP55. Accordingly, the application provides complexes comprising 25 POSH and HIP55. In one aspect, the application relates to the discovery that POSH binds directly with HIP55. This interaction was identified by Applicants in a yeast 2-hybrid assay. HIP55 is a cytoplasmic adaptor protein that has been shown to bind to the cytoplasmic tail of the CD2v protein of African swine fever virus (J Gen Virol (2004) 85:119-30). HIP55 (synonymous with mAbp1 and SH3P7) comprises 30 an SH3 domain and through its SH3 domain, associates with dynamin (J Cell Biol (2001) 153:351-66; Biochem Biophys Res Commun (2003) 301:704-10). Accordingly, in certain aspects, POSH may associate with dynamin through its

interaction with HIP55. HIP55 has also been shown to be important for receptor mediated endocytosis of the transferrin receptor (Biochem Biophys Res Commun (2003) 301:704-10).

The term HIP55 is used herein to refer to various naturally occurring HIP55 homologs, as well as functionally similar variants and fragments that retain at least 5 80%, 90%, 95%, or 99% sequence identity to a naturally occurring HIP55 (e.g., SEQ ID NOs: 390-394, 377-385). The term specifically includes human HIP55 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with CENTB1. Accordingly, the application provides 10 complexes comprising POSH and CENTB1. In one aspect, the application relates to the discovery that POSH binds directly with CENTB1. This interaction was identified by Applicants in a yeast 2-hybrid assay. CENTB1 is synonymous with ACAP1. ACAP1 is an ARF GTPase activating protein (ARF GAP). ACAP1 can 15 function as a GAP for ARF1 and ARF6 (J Biol Chem (2002) 277:7962-9).

The term CENTB1 is used herein to refer to various naturally occurring CENTB1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring CENTB1 (e.g., SEQ ID NOs: 231-232, 37-47). The term specifically includes 20 human CENTB1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with EIF3S3. Accordingly, the application provides complexes comprising POSH and EIF3S3. In one aspect, the application relates to 25 the discovery that POSH binds directly with EIF3S3. This interaction was identified by Applicants in a yeast 2-hybrid assay. EIF3S3 is elevated in certain hepatocellular carcinomas and in prostate cancer (Hepatology (2003) 38:1242-9; Am J Pathol (2001) 159:2081-84). It has also been demonstrated that EIF3S3 is often amplified and overexpressed in breast cancer (Genes Chromosomes Cancer. (2000) 28:203-30 210).

The term EIF3S3 is used herein to refer to various naturally occurring EIF3S3 homologs, as well as functionally similar variants and fragments that retain

at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring EIF3S3 (e.g., SEQ ID NOs: 238, 55-57). The term specifically includes human EIF3S3 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the discovery that a POSH polypeptide interacts with SRA1. Accordingly, the application provides complexes comprising POSH and SRA1. In one aspect, the application relates to the discovery that POSH binds directly with SRA1. This interaction was identified by Applicants in a yeast 2-hybrid assay. SRA1 is a transcriptional coactivator, steroid receptor RNA activator 1. SRA is selective for steroid hormone receptors and mediates transactivation via their amino-terminal activation function (Cell (1999) 97:17-27). The term SRA1 is used herein to refer to various naturally occurring SRA1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring SRA1 (e.g., SEQ ID NOs: 291-294, 175-182). The term specifically includes human SRA1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

The application additionally relates to the discovery that a POSH polypeptide interacts with WASF1. Accordingly, the application provides complexes comprising POSH and WASF1. In one aspect, the application relates to the discovery that POSH binds directly with WASF1. This interaction was identified by Applicants in a yeast 2-hybrid assay. WASF1 is a member of the Wiskott-Aldrich syndrome protein (WASP) family of proteins. WASF-1 has been shown to regulate cortical actin filament reorganization in response to extracellular stimuli. WASF1 is synonymous with WAVE1 and is an actin regulatory protein. It has been shown that Ras and the adaptor protein Nck activate actin nucleation through WAVE1 (Nature (2002) 418:790-3).

The term WASF1 is used herein to refer to various naturally occurring WASF1 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring WASF1 (e.g., SEQ ID NOs: 389, 375-376). The term specifically includes human WASF1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

The application additionally relates to the discovery that a POSH polypeptide interacts with SPG20. Accordingly, the application provides complexes comprising

POSH and SPG20. In one aspect, the application relates to the discovery that POSH binds directly with SPG20. This interaction was identified by Applicants in a yeast 2-hybrid assay. SPG20 is synonymous with spartin, and mutation in the gene has been implicated in Troyer syndrome, an autosomal recessive complicated hereditary 5 spastic paraplegia. Comparative sequence analysis has shown that spartin shares similarity with molecules involved in endosomal trafficking (Nat Genet (2002) 31:347-8).

The term SPG20 is used herein to refer to various naturally occurring SPG20 homologs, as well as functionally similar variants and fragments that retain at least 10 80%, 90%, 95%, or 99% sequence identity to a naturally occurring SPG20 (e.g., SEQ ID NOS: 386-388, 367-374). The term specifically includes human SPG20 nucleic acid and amino acid sequences and the sequences presented in the Figure 36.

In further embodiments, the application relates to the discovery that a POSH polypeptide interacts with HLA-A. Accordingly, the application provides complexes comprising POSH and HLA-A. In one aspect, the application relates to the discovery that POSH binds directly with HLA-A. This interaction was identified by Applicants in a yeast 2-hybrid assay. In additional aspects, the application relates to the discovery that a POSH polypeptide interacts with HLA-B. Accordingly, the application provides complexes comprising POSH and HLA-B. In one aspect, the 15 application relates to the discovery that POSH binds directly with HLA-B. This interaction was identified by Applicants in a yeast 2-hybrid assay. HLA-A and HLA-B are MHC class I molecules. HLA-A and HLA-B molecules are downregulated in the progression of AIDS, and this downregulation is associated with the activity of HIV-1 Nef.

20 The term HLA-A is used herein to refer to various naturally occurring HLA-A homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring HLA-A (e.g., SEQ ID NOS: 253, 87-88). The term specifically includes human HLA-A nucleic acid and amino acid sequences and the sequences presented in Figure 36.

25 The term HLA-B is used herein to refer to various naturally occurring HLA-B homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring HLA-B

(e.g., SEQ ID NOs: 254, 89). The term specifically includes human HLA-B nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain aspects, the application relates to the discovery that a POSH polypeptide interacts with a ubiquitin-conjugating enzyme (E2). An exemplary E2 5 may include, but are not limited to, UBC5a, UBC5c, UBC6, and UBC13. UBC13 is often found in a heterodimer complex with a Ub conjugating enymer variant (UEV) protein, such as, for example, UEV1a. (See Hofmann and Pickart, *Noncanonical MMS2-Encoded Ubiquitin-Conjugating Enzyme Functions in Assembly of Novel Ubiquitin Chains for DNA Repair*, *Cell* 96: 645-653 (1999), McKenna et al., 2002, 10 *Energetics and Specificity of Interactions within Ub-Uev-Ubc13 Human Ubiquitin Conjugating Complexs*, *Biochemistry*. Vol. 42. pp.7922-7930, and Ulrich, 2003, *Protein-Protein Interactions within an E2-RING Finger Complex*, *The Jurnal of Biological Chemistry*, Vol. 278. No 9. pp. 7051-7058). UVE proteins share significant sequence and structural similarities with E2s, yet lack the requisite active 15 site cystine of the classical E2 protein family.

Generally, UBC5 conjugates ubiquitin to Lysine 48 in a target protein, a signal that marks the protein for degradation by the 26 S proteosome. In contrast, UBC13/UEV1a conjugates ubiquitin to Lysine 63 residue in a target protein, which is not a degradation signal. Instead, ubiquitin conjugated at Lysine 63 has been 20 implicated in diverse biological processes, including, for example, DNA damage repair, endocytosis, ribosome biogenesis, mitochondrial inheritance, and NF κ B signaling (See Ulrich, 2003). The UBC13/UEV1a has been shown to work with two other RING-ubiquitin ligases, TRAF6 and RAD5. (See Ulrich, 2003). TRAF6-UBC13-UEV1a complex ubiquitinates TRAF6 (self-ubiquitination), thus enabling it 25 to activate a kinase cascade.

Without being bound to theory, it appears that UBC5a, UBC5c and UBC6 may work with POSH in one pathway, while UBC13/UEV1a work with POSH in another distinct pathway. This is supported by the fact that UBC5/6 marks POSH for degradation by conjugating ubiquitin at Lysine 48, whereas UBC13/UEV1a 30 marks POSH for purposes other than degradation by conjugating ubiquitin at Lysine 63. This theory is further supported by the fact that UBC5a, UBC5c and UBC6 share high sequence similarities.

Accordingly, in certain aspects, the present application relates to an isolated, purified or recombinant complex comprising a POSH polypeptide and a UBC13. In certain aspects, the present application relates to an isolated, purified or recombinant complex comprising: a polypeptide comprising a domain that is at least 90% identical to a POSH RING domain, and a POSH-AP comprising an E2. An exemplary POSH associated protein E2 include, for example, is UBC13. UBC13 may be in a heterodimer complex with a Ub conjugating enzyme variant (UEV) protein, such as, for example, UEV1a.

The term "UBC13" and is used herein to refer to full-length UBC13, any splice variants thereof, various naturally occurring UBC13 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring UBC13 (e.g., SEQ ID NOs: 313, 208-210). The term specifically includes UBC13 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the interaction between an ARF5 polypeptide and a POSH polypeptide. ARF5 is a member of the ARF gene family. The ARF proteins stimulate the in vitro ADP-ribosyltransferase activity of cholera toxin. ARF proteins play a role in vesicular trafficking in vivo. ARFs are members of the Ras GTPase superfamily. ARFs activate specific PLDs. Mammalian ARFs are divided into three classes based on size, amino acid sequence, gene structure, and phylogenetic analysis. ARF1 is in class I, and ARF5 is in class II.

In certain embodiments, the application relates to the interaction between an ARF1 polypeptide and a POSH polypeptide. ARF1 is a small G protein involved in vesicular trafficking. The assembly/disassembly cycle of the coat protein I (COPI) on Golgi membranes is coupled to the GTP/GDP cycle of ARF1 (Nature (2003) 426:563-6). ARF1 has been implicated in mitotic Golgi disassembly, chromosome segregation, and cytokinesis (Proc Natl Acad Sci (2003) 100:13314-9). ARF1 has been shown to bind to the 5-HT2A receptor, a G protein coupled receptor (GPCR) (Mol Pharmacol (2003) 64:1239-50).

The term ARF-1 is used herein to refer to various naturally occurring ARF-1 homologs, as well as functionally similar variants and fragments that retain at least

80%, 90%, 95%, or 99% sequence identity to a naturally occurring ARF-1 (e.g. SEQ ID NOS: 223, 325-339). The term specifically includes human ARF-1 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

The term ARF-5 is used herein to refer to various naturally occurring ARF-5 homologs, as well as functionally similar variants and fragments that retain at least 5 80%, 90%, 95%, or 99% sequence identity to a naturally occurring ARF-5 (e.g., SEQ ID NOS: 224, 340-344). The term specifically includes human ARF-5 nucleic acid and amino acid sequences and the sequences presented in Figure 36.

In certain embodiments, the application relates to the inhibition of viral maturation by modulation of an activity associated with a dynamin II polypeptide. 10 Dynamin II is a large GTP-binding protein that is involved in endocytosis and in vesicle formation at the trans-Golgi network. Dynamin II contains a pleckstrin homology domain (PHD) and a proline-rich domain (PRD). Dynamin II plays an important role in vesicle formation at the plasma membrane, trans-Golgi network, 15 and various other intracellular organelles. Accordingly, disrupting the activity of a dynamin II polypeptide or the interaction between a POSH polypeptide and a dynamin II polypeptide (e.g., by reducing POSH protein levels or alternatively, reducing dynamin II protein levels, through RNAi) may disrupt the activity of dynamin II in the secretory pathway and prevent the secretion of viral proteins, such 20 as, for example, HBV proteins. Dynamin II participates in the transport and secretion of HBV proteins (Abdulkarim, AS et al (2003) J. Hepat. 38:76-83). Accordingly, in certain embodiments, inhibition of POSH adversely effects the 25 transport and release of HBV proteins.

In certain embodiments, the application relates to the inhibition of dynamin activity, in particular the inhibition of the activity of dynamin II, a member of the 25 dynamin family of proteins. In certain embodiments, the application relates to inhibition of dynamin II activity, which inhibition disrupts the transport and secretion of HBV proteins. The term dynamin II is used herein to refer to full-length, human dynamin II as well as various naturally occurring dynamin II 30 homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring dynamin II (e.g.,

public gi number: 1196422, public gi number: 1706539, public gi number: 1196423, and public gi number: 1363934).

In certain embodiments, the application relates to the inhibition of viral maturation by modulation of an activity associated with a Vpu polypeptide. Vpu is an HIV-1 encoded ion channel, which, among other tasks in the HIV-1 life cycle, is necessary for efficient virus budding (Schubert, U et al (1995) J. Virol. 69:7699-7711). Vpu may function at the trans Golgi network (TGN). Vpu expresses an acidic amino acid sorting motif that is required for TGN localization through a retroviral process mediated by the POSH-AP, PACS-1 (Wan, L et al (1998) Cell 94:205-216). Moreover, the phenotype conferred by human POSH knockdown is similar to that observed in cells expressing HIV-1 lacking Vpu where viruses also accumulate in intracellular membranes (Klimkait, T et al (1990) J. Virol. 64:621-629).

Vpu regulates virus release from a post-endoplasmic reticulum compartment, such as possibly the TGN, by an ion channel activity mediated by its transmembrane anchor. Vpu also induces the selective down regulation of host cell receptor proteins such as CD4 and major histocompatibility complex class I molecules, in a process involving its cytoplasmic tail. Furthermore, Vpu-mediated degradation of CD4 is dependent on an intact ubiquitin-conjugating system. (See Schubert, U et al (1998) J. Virol. 72:2280-8). In certain embodiments of the present invention, Vpu-mediated degradation of a protein such as CD4 may involve a ubiquitin-conjugating system that includes a POSH polypeptide or a POSH-AP, such as, for example, Cbl-b.

Vpu nucleic acid and the corresponding amino acid sequence encoded thereby are exemplified by the Vpu discussed in Strelbel, K et al (1988) 241:1221-1223. The term Vpu is used herein to refer as well to Vpu of other HIV-1 isolates, such as the Vpu disclosed in GenBank, accession number U51190, and the Vpu disclosed in GenBank, accession number U52953. The term Vpu is used herein to refer as well to various naturally occurring Vpu homologs, as well as functionally similar variants and fragments that retain at least 80%, 90%, 95%, or 99% sequence identity to a naturally occurring Vpu.

4. Methods and Compositions for Treating POSH-associated Diseases
9372369_1

In certain aspects, the application provides methods and compositions for treatment of POSH-associated diseases (disorders), including cancer and viral disorders, as well as disorders associated with unwanted apoptosis, including, for example a variety of neurodegenerative disorders, such as Alzheimer's disease.

5 In certain embodiments, the application relates to viral disorders (e.g., viral infections), and particularly disorders caused by retroviruses, RNA viruses and/or envelope viruses. In view of the teachings herein, one of skill in the art will understand that the methods and compositions of the application are applicable to a wide range of viruses such as, for example, retrovirus, RNA viruses, and
10 envelope viruses. In a preferred embodiment, the present application is applicable to retrovirus. In a more preferred embodiment, the present application is further applicable to retroviruses (retroviridae). In another more preferred embodiment, the present application is applicable to lentivirus, including primate lentivirus group. In a most preferred embodiment, the present application is applicable to Human
15 Immunodeficiency virus (HIV), Human Immunodeficiency virus type-1 (HIV-1), Hepatitis B Virus (HBV) and Human T-cell Leukemia Virus (HTLV).

While not intended to be limiting, relevant retroviruses include: C-type retrovirus which causes lymphosarcoma in Northern Pike, the C-type retrovirus which infects mink, the caprine lentivirus which infects sheep, the Equine Infectious
20 Anemia Virus (EIAV), the C-type retrovirus which infects pigs, the Avian Leukosis Sarcoma Virus (ALSV), the Feline Leukemia Virus (FeLV), the Feline Aids Virus, the Bovine Leukemia Virus (BLV), Moloney Murine Leukemia Virus (MMuLV), the Simian Leukemia Virus (SLV), the Simian Immuno-deficiency Virus (SIV), the Human T-cell Leukemia Virus type-I (HTLV-I), the Human T-cell Leukemia Virus
25 type-II (HTLV-II), Human Immunodeficiency virus type-2 (HIV-2) and Human Immunodeficiency virus type-1 (HIV-1).

The method and compositions of the present application are further applicable to RNA viruses, including ssRNA negative-strand viruses and ssRNA positive-strand viruses. The ssRNA positive-strand viruses include Hepatitis C
30 Virus (HCV). In a preferred embodiment, the present application is applicable to mononegavirales, including filoviruses. Filoviruses further include Ebola viruses

and Marburg viruses. In another preferred embodiment, the present invention is applicable to flaviviruses, including West Nile Virus (WNV).

Other RNA viruses include picornaviruses such as enterovirus, poliovirus, coxsackievirus and hepatitis A virus, the caliciviruses, including Norwalk-like 5 viruses, the rhabdoviruses, including rabies virus, the togaviruses including alphaviruses, Semliki Forest virus, denguevirus, yellow fever virus and rubella virus, the orthomyxoviruses, including Type A, B, and C influenza viruses, the bunyaviruses, including the Rift Valley fever virus and the hantavirus, the filoviruses such as Ebola virus and Marburg virus, and the paramyxoviruses, 10 including mumps virus and measles virus. Additional viruses that may be treated include herpes viruses.

The methods and compositions of the present application are further applicable to hepatotrophic viruses, including HAV, HBV, HCV, HDV, and HEV. In certain aspects, the application relates to a method of inhibiting a hepatotrophic 15 virus, comprising administering a POSH inhibitor to a subject in need thereof. In further aspects, the application relates to a method of treating a viral hepatitis infection, comprising administering a POSH inhibitor to a subject in need thereof. A viral hepatitis infection may be caused by a hepatotrophic virus, such as HAV, HBV, HCV, HDV, or HEV. In certain embodiments, the application relates to a 20 method of treating an HBV infection by administering a POSH inhibitor to a subject in need thereof.

In other embodiments, the application relates to methods of treating or preventing cancer diseases. The terms "cancer," "tumor," and "neoplasia" are used interchangeably herein. As used herein, a cancer (tumor or neoplasia) is 25 characterized by one or more of the following properties: cell growth is not regulated by the normal biochemical and physical influences in the environment; anaplasia (e.g., lack of normal coordinated cell differentiation); and in some instances, metastasis. Cancer diseases include, for example, anal carcinoma, bladder carcinoma, breast carcinoma, cervix carcinoma, chronic lymphocytic leukemia, 30 chronic myelogenous leukemia, endometrial carcinoma, hairy cell leukemia, head and neck carcinoma, lung (small cell) carcinoma, multiple myeloma, non-Hodgkin's lymphoma, follicular lymphoma, ovarian carcinoma, brain tumors, colorectal

carcinoma, hepatocellular carcinoma, Kaposi's sarcoma, lung (non-small cell carcinoma), melanoma, pancreatic carcinoma, prostate carcinoma, renal cell carcinoma, and soft tissue sarcoma. Additional cancer disorders can be found in, for example, Isselbacher et al. (1994) Harrison's Principles of Internal Medicine 1814-

5 1877, herein incorporated by reference.

In a specific embodiment, anticancer therapeutics of the application are used in treating a POSH-associated cancer. As described herein, POSH-associated cancers include, but are not limited to, the thyroid carcinoma, liver cancer (hepatocellular cancer), lung cancer, cervical cancer, ovarian cancer, renal cell carcinoma, lymphoma, osteosacoma, liposarcoma, leukemia, breast carcinoma, and breast adeno-carcinoma.

10 Preferred antiviral and anticancer therapeutics of the application can function by disrupting the biological activity of a POSH polypeptide or POSH complex in viral maturation. Certain therapeutics of the application function by disrupting the 15 activity of a POSH-AP (e.g., HERPUD1) in viral maturation. Certain therapeutics of the application function by disrupting the activity of POSH by inhibiting the ubiquitin ligase activity of a POSH polypeptide. In certain embodiments of the application, a therapeutic of the application inhibits the ubiquitination of a POSH-AP, such as for example the ubiquitination of HERPUD1.

20 In other embodiments, the application relates to methods of treating or preventing neurological disorders. In one aspect, the invention provides methods and compositions for the identification of compositions that interfere with the function of a POSH or a POSH-AP, which function may relate to aberrant protein processing associated with a neurodegenerative disorder, such as for example, the 25 processing of amyloid beta precursor protein associated with Alzheimer's disease. Neurological disorders include disorders associated with increased levels of amyloid β production, such as for example, Alzheimer's disease. Neurological disorders also include Parkinson's disease, Huntington's disease, schizophrenia, Niemann-Pick's disease, and prion-associated diseases

30 Exemplary therapeutics of the application include nucleic acid therapies such as, for example, RNAi constructs (small inhibitory RNAs), antisense

oligonucleotides, ribozyme, and DNA enzymes. Other therapeutics include polypeptides, peptidomimetics, antibodies and small molecules.

Antisense therapies of the application include methods of introducing antisense nucleic acids to disrupt the expression of POSH polypeptides or proteins
5 that are necessary for POSH function.

RNAi therapies include methods of introducing RNAi constructs to downregulate the expression of POSH polypeptides or POSH-APs (e.g., HERPUD1). In certain embodiments, RNAi therapeutics are delivered to the liver
10 (e.g., to hepatocytes). Exemplary RNAi therapeutics include any one of SEQ ID NOs: 15, 16, 18, 19, 21, 22, 24 and 25.

Therapeutic polypeptides may be generated by designing polypeptides to mimic certain protein domains important in the formation of POSH: POSH-AP complexes, such as, for example, SH3 or RING domains. For example, a polypeptide comprising a POSH SH3 domain such as, for example, the SH3 domain
15 as set forth in SEQ ID NO: 30 will compete for binding to a POSH SH3 domain and will therefore act to disrupt binding of a partner protein. In one embodiment, a binding partner may be a Gag polypeptide. In another embodiment, a binding partner may be Rac. In a further embodiment, a polypeptide that resembles an L domain may disrupt recruitment of Gag to the POSH complex.

In view of the specification, methods for generating antibodies directed to epitopes of POSH and POSH-APs are known in the art. Antibodies may be introduced into cells by a variety of methods. One exemplary method comprises generating a nucleic acid encoding a single chain antibody that is capable of disrupting a POSH:POSH-AP complex. Such a nucleic acid may be conjugated to
20 antibody that binds to receptors on the surface of target cells. It is contemplated that in certain embodiments, the antibody may target viral proteins that are present on the surface of infected cells, and in this way deliver the nucleic acid only to infected cells. Once bound to the target cell surface, the antibody is taken up by endocytosis, and the conjugated nucleic acid is transcribed and translated to produce a single
25 chain antibody that interacts with and disrupts the targeted POSH:POSH-AP complex. Nucleic acids expressing the desired single chain antibody may also be
30

introduced into cells using a variety of more conventional techniques, such as viral transfection (e.g., using an adenoviral system) or liposome-mediated transfection.

Small molecules of the application may be identified for their ability to modulate the formation of POSH:POSH-AP complexes.

5 Certain embodiments of the disclosure relate to use of a small molecule as an inhibitor of POSH. Examples of such small molecules include the following compounds:

Compound CAS 27430-18-8:

10

Compound CAS 1631-29-4:

15

Compound CAS 503065-65-4:

Compound CAS 414908-08:

Compound CAS 415703-60-5:

5

Compound CAS 77367-94-3:

10

In certain embodiments, compounds useful in the instant compositions and methods include heteroarylmethylene-dihydro-2,4,6-pyrimidinetrones and their thione analogs. Preferred heteroaryl moieties include 5-membered rings such as thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, and imidazolyl moieties.

15

In certain embodiments, compounds useful in the instant compositions and methods include N-arylmaleimides, especially N-phenylmaleimides, in which the phenyl group may be substituted or unsubstituted.

In certain embodiments, compounds useful in the instant compositions and methods include arylallylidene-2,4-imidazolidinediones and their thione analogs.

Preferred aryl groups are phenyl groups, and both the aryl and allylidene portions of the molecule may be substituted or unsubstituted.

In certain embodiments, compounds useful in the instant compositions and methods include substituted distyryl compounds and aza analogs thereof such as 5 substituted 1,4-diphenylazabutadiene compounds.

In certain other embodiments, compounds useful in the instant compositions and methods include substituted styrenes and aza analogs thereof, such as 1,2-diphenylazaethylenes and 1-phenyl-2-pyridyl-azaethylenes.

10 In yet other embodiments, compounds useful in the instant compositions and methods include N-aryl-N'-acylpiperazines. In such compounds, the aryl ring, the acyl substituent, and/or the piperazine ring may be substituted or unsubstituted.

In additional embodiments, compounds useful in the instant compositions and methods include aryl esters of (2-oxo-benzoxazol-3-yl)-acetic acid, and analogs thereof in which one or more oxygen atoms are replaced by sulfur atoms.

15 In certain embodiments, the present application contemplates use of known PKA modulators (e.g., inhibitors or activators) in the methods of inhibiting viral infection and in the methods of treating or preventing cancer. Such PKA modulators include any compound, peptide, nucleotide derivative, nucleoside derivative, polysaccharide, sugar or other substance that can inhibit the activity of protein 20 kinase A. Many PKA inhibitors are available and may be used. For example, many examples of PKA inhibitors including chemical structures, methods for administration and pharmacological effects are listed at the Calbiochem website at calbiochem.com. In general, inhibitors that also significantly inhibit protein kinase C activity are avoided.

25 In some embodiments, the PKA inhibitor is a nucleotide or nucleoside derivative. Specific examples of nucleoside or nucleotide derivatives that act as PKA inhibitors and that can be utilized in the disclosure include adenosine 3',5' cyclic monophosphorothioate. The H-89 inhibitor is a potent PKA inhibitor that can be used in the disclosure. The chemical name for the H-89 inhibitor is N-[2- 30 ((Pbromocinnamyl) amino)ethyl] isoquinolinesulfonamide. The KT5720 inhibitor from Calbiochem can also be used in the disclosure. Other PKA inhibitors which are available at from Calbiochem and can be used in the disclosure include ellagic acid

(also named 4,4',5,5',6,6'-hexahydroxydiphenic acid 2,6,2',6'-ditactone), piceatannol, 1-(5-Isoquinolinesulfonyl) methylpiperazine (H-7), N-[2-(methylamino)ethyl] isoquinolinesulfonamide (H-8), N-(2-aminoethyl) isoquinolinesulfonamide (H-9), and (5-isooquinolinesulfonyl)piperazine, 2HCl (H-100).

5 The PKA inhibitor can also be a peptide inhibitor (PKI). Such a peptide inhibitor can be any peptide that is recognized and bound by PKA but that PKA cannot phosphorylate. An example of a peptide inhibitor is a peptide with a "consensus sequence" for PKA recognition but with alanine in place of serine, for example, a peptide with the following sequence: Xaa-Arg-Arg-Xaa-Ala-Xaa,
10 wherein Xaa is any amino acid, which specifically binds to the pseudoregion of the regulatory domain of PKA. Myristoylated PKA inhibitor amide (14-22, Cell-Permeable) having the sequence Myr-N-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile-NH₂ is another example of a peptide inhibitor that can be utilized in the disclosure. A variety of other PKI peptides can be used as an inhibitor of protein kinase A in the practice of the disclosure. For example, several PKI peptides can be found in the
15 NCBI protein database. See website at ncbi.nlm.nih.gov/Genbank/GenbankOverview. One example of a human PKI peptide can be found at Genbank Accession No. P04541 (gi: 417194). Another example of a human PKI peptide is at Genbank Accession No. NP 008997 (gi: 5902020). Another PKI that
20 can be used as an inhibitor has the following sequence: Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile-His-Asp-11e-Leu-Val-SerSer-Ala. See published PCT application WO 03/080649.

Further examples of protein kinase A inhibitors are provided in the following references: Muniz et al., Proceedings of the National Academy of Sciences USA
25 1997 Dec 23; 94(26) 14461-66; Baude et al., Journal of Biological Chemistry Vol.
269 issue 27 18128-18133 (Jul. 1994); Scott et al.

Applicants found that POSH is phosphorylated by PKA and phosphorylation of POSH by PKA can inhibit POSH function, for example dissociating POSH from POSH interacting proteins (e.g., Rac). Therefore, in certain embodiments, the present
30 disclosure also contemplates use of PKA activators in treating or preventing a POSH-associated disease (e.g., viral infection or cancer). Exemplary PKA activators include, but are not limited to, forskolin, 8-Br-cAMP, and rolipram.

In additional embodiments of the application, compounds useful in the present application include phosphatase inhibitors. Phosphatase inhibitors useful in the subject application include sodium phosphate, sodium vanadate, and okadaic acid. In certain embodiments, the present application contemplates use of known 5 phosphatase inhibitors in the methods of inhibiting viral infection, in the methods of treating or preventing cancer, and in the methods of inhibiting the progression of a neurodegenerative disorder. Phosphatase inhibitors may be useful in inhibiting the activity of a POSH-AP, such as for example, PTPN12.

For POSH-APs that are GTPases, inhibitors such as GTPgamma35S would 10 be effective at inhibiting the GTPase activity of the POSH-AP. For example, inhibition of ARF1 or ARF5 could be accomplished with the use of a GTPase inhibitor such as GTPgamma35S, a non-hydrolyzable form of GTP.

The generation of nucleic acid based therapeutic agents directed to POSH and POSH-APs is described below.

15 Methods for identifying and evaluating further modulators of POSH and POSH-APs are also provided below.

5. RNA Interference, Ribozymes, Antisense and Related Constructs

In certain aspects, the application relates to RNAi, ribozyme, antisense and 20 other nucleic acid-related methods and compositions for manipulating (typically decreasing) a POSH activity. Exemplary RNAi and ribozyme molecules may comprise a sequence as shown in any of SEQ ID Nos: 15, 16, 18, 19, 21, 22, 24 and 25.

25 In certain aspects, the application relates to RNAi, ribozyme, antisense and other nucleic acid-related methods and compositions for manipulating (typically decreasing) a POSH-AP activity. Specific instances of nucleic acids that may be used to design nucleic acids for RNAi, ribozyme, antisense are provided in Figure 36. Additionally, nucleic acids of POSH-APs listed in Table 8 may be used to design nucleic acids for RNAi, ribozyme, antisense.

30 Certain embodiments of the application make use of materials and methods for effecting knockdown of one or more POSH or POSH-AP genes by means of RNA interference (RNAi). RNAi is a process of sequence-specific post-

transcriptional gene repression which can occur in eukaryotic cells. In general, this process involves degradation of an mRNA of a particular sequence induced by double-stranded RNA (dsRNA) that is homologous to that sequence. For example, the expression of a long dsRNA corresponding to the sequence of a particular single-stranded mRNA (ss mRNA) will inhibit that message, thereby "interfering" with expression of the corresponding gene. Accordingly, any selected gene may be repressed by introducing a dsRNA which corresponds to all or a substantial part of the mRNA for that gene. It appears that when a long dsRNA is expressed, it is initially processed by a ribonuclease III into shorter dsRNA oligonucleotides of as few as 21 to 22 base pairs in length. Furthermore, Accordingly, RNAi may be effected by introduction or expression of relatively short homologous dsRNAs. Indeed the use of relatively short homologous dsRNAs may have certain advantages as discussed below.

Mammalian cells have at least two pathways that are affected by double-stranded RNA (dsRNA). In the RNAi (sequence-specific) pathway, the initiating dsRNA is first broken into short interfering (si) RNAs, as described above. The siRNAs have sense and antisense strands of about 21 nucleotides that form approximately 19 nucleotide si RNAs with overhangs of two nucleotides at each 3' end. Short interfering RNAs are thought to provide the sequence information that allows a specific messenger RNA to be targeted for degradation. In contrast, the nonspecific pathway is triggered by dsRNA of any sequence, as long as it is at least about 30 base pairs in length. The nonspecific effects occur because dsRNA activates two enzymes: PKR, which in its active form phosphorylates the translation initiation factor eIF2 to shut down all protein synthesis, and 2', 5' oligoadenylate synthetase (2', 5'-AS), which synthesizes a molecule that activates RNase L, a nonspecific enzyme that targets all mRNAs. The nonspecific pathway may represent a host response to stress or viral infection, and, in general, the effects of the nonspecific pathway are preferably minimized under preferred methods of the present application. Significantly, longer dsRNAs appear to be required to induce the nonspecific pathway and, accordingly, dsRNAs shorter than about 30 bases pairs are preferred to effect gene repression by RNAi (see Hunter et al. (1975) J Biol

Chem 250: 409-17; Manche et al. (1992) Mol Cell Biol 12: 5239-48; Minks et al. (1979) J Biol Chem 254: 10180-3; and Elbashir et al. (2001) Nature 411: 494-8).

RNAi has been shown to be effective in reducing or eliminating the expression of genes in a number of different organisms including *Caenorhabditis elegans* (see e.g., Fire et al. (1998) Nature 391: 806-11), mouse eggs and embryos (Wianny et al. (2000) Nature Cell Biol 2: 70-5; Svoboda et al. (2000) Development 127: 4147-56), and cultured RAT-1 fibroblasts (Bahramina et al. (1999) Mol Cell Biol 19: 274-83), and appears to be an anciently evolved pathway available in eukaryotic plants and animals (Sharp (2001) Genes Dev. 15: 485-90). RNAi has proven to be an effective means of decreasing gene expression in a variety of cell types including HeLa cells, NIH/3T3 cells, COS cells, 293 cells and BHK-21 cells, and typically decreases expression of a gene to lower levels than that achieved using antisense techniques and, indeed, frequently eliminates expression entirely (see Bass (2001) Nature 411: 428-9). In mammalian cells, siRNAs are effective at concentrations that are several orders of magnitude below the concentrations typically used in antisense experiments (Elbashir et al. (2001) Nature 411: 494-8).

The double stranded oligonucleotides used to effect RNAi are preferably less than 30 base pairs in length and, more preferably, comprise about 25, 24, 23, 22, 21, 20, 19, 18 or 17 base pairs of ribonucleic acid. Optionally the dsRNA oligonucleotides of the application may include 3' overhang ends. Exemplary 2-nucleotide 3' overhangs may be composed of ribonucleotide residues of any type and may even be composed of 2'-deoxythymidine residues, which lowers the cost of RNA synthesis and may enhance nuclease resistance of siRNAs in the cell culture medium and within transfected cells (see Elbashir et al. (2001) Nature 411: 494-8). Longer dsRNAs of 50, 75, 100 or even 500 base pairs or more may also be utilized in certain embodiments of the application. Exemplary concentrations of dsRNAs for effecting RNAi are about 0.05 nM, 0.1 nM, 0.5 nM, 1.0 nM, 1.5 nM, 25 nM or 100 nM, although other concentrations may be utilized depending upon the nature of the cells treated, the gene target and other factors readily discernable the skilled artisan. Exemplary dsRNAs may be synthesized chemically or produced in vitro or in vivo using appropriate expression vectors. Exemplary synthetic RNAs include 21 nucleotide RNAs chemically synthesized using methods known in the art (e.g.,

Expedite RNA phosphoramidites and thymidine phosphoramidite (Proligo, Germany). Synthetic oligonucleotides are preferably deprotected and gel-purified using methods known in the art (see e.g., Elbashir et al. (2001) Genes Dev. 15: 188-200). Longer RNAs may be transcribed from promoters, such as T7 RNA polymerase promoters, known in the art. A single RNA target, placed in both possible orientations downstream of an in vitro promoter, will transcribe both strands of the target to create a dsRNA oligonucleotide of the desired target sequence. Any of the above RNA species will be designed to include a portion of nucleic acid sequence represented in a POSH or POSH-AP nucleic acid, such as, for example, a nucleic acid that hybridizes, under stringent and/or physiological conditions, to any of SEQ ID Nos: 1, 3, 4, 6, 8 and 10 and complements thereof or any of the POSH-AP sequences presented in Figure 36.

The specific sequence utilized in design of the oligonucleotides may be any contiguous sequence of nucleotides contained within the expressed gene message of the target. Programs and algorithms, known in the art, may be used to select appropriate target sequences. In addition, optimal sequences may be selected utilizing programs designed to predict the secondary structure of a specified single stranded nucleic acid sequence and allowing selection of those sequences likely to occur in exposed single stranded regions of a folded mRNA. Methods and compositions for designing appropriate oligonucleotides may be found, for example, in U.S. Patent Nos. 6,251,588, the contents of which are incorporated herein by reference. Messenger RNA (mRNA) is generally thought of as a linear molecule which contains the information for directing protein synthesis within the sequence of ribonucleotides, however studies have revealed a number of secondary and tertiary structures that exist in most mRNAs. Secondary structure elements in RNA are formed largely by Watson-Crick type interactions between different regions of the same RNA molecule. Important secondary structural elements include intramolecular double stranded regions, hairpin loops, bulges in duplex RNA and internal loops. Tertiary structural elements are formed when secondary structural elements come in contact with each other or with single stranded regions to produce a more complex three dimensional structure. A number of researchers have measured the binding energies of a large number of RNA duplex structures and have

derived a set of rules which can be used to predict the secondary structure of RNA (see e.g., Jaeger et al. (1989) Proc. Natl. Acad. Sci. USA 86:7706 (1989); and Turner et al. (1988) Annu. Rev. Biophys. Biophys. Chem. 17:167). The rules are useful in identification of RNA structural elements and, in particular, for identifying 5 single stranded RNA regions which may represent preferred segments of the mRNA to target for silencing RNAi, ribozyme or antisense technologies. Accordingly, preferred segments of the mRNA target can be identified for design of the RNAi mediating dsRNA oligonucleotides as well as for design of appropriate ribozyme and hammerheadribozyme compositions of the application.

10 The dsRNA oligonucleotides may be introduced into the cell by transfection with an heterologous target gene using carrier compositions such as liposomes, which are known in the art- e.g., Lipofectamine 2000 (Life Technologies) as described by the manufacturer for adherent cell lines. Transfection of dsRNA oligonucleotides for targeting endogenous genes may be carried out using 15 Oligofectamine (Life Technologies). Transfection efficiency may be checked using fluorescence microscopy for mammalian cell lines after co-transfection of hGFP-encoding pAD3 (Kehlenback et al. (1998) J Cell Biol 141: 863-74). The effectiveness of the RNAi may be assessed by any of a number of assays following introduction of the dsRNAs. These include Western blot analysis using antibodies 20 which recognize the POSH or POSH-AP gene product following sufficient time for turnover of the endogenous pool after new protein synthesis is repressed, reverse transcriptase polymerase chain reaction and Northern blot analysis to determine the level of existing POSH or POSH-AP target mRNA.

Further compositions, methods and applications of RNAi technology are 25 provided in U.S. Patent Application Nos. 6,278,039, 5,723,750 and 5,244,805, which are incorporated herein by reference.

Ribozyme molecules designed to catalytically cleave POSH or POSH-AP mRNA transcripts can also be used to prevent translation of suject POSH or POSH-AP mRNAs and/or expression of POSH or POSH-APs (see, e.g., PCT International 30 Publication WO90/11364, published October 4, 1990; Sarver et al. (1990) Science 247:1222-1225 and U.S. Patent No. 5,093,246). Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. (For a review, see

Rossi (1994) Current Biology 4: 469-471). The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage event. The composition of ribozyme molecules preferably includes one or more sequences 5 complementary to a POSH or POSH-AP mRNA, and the well known catalytic sequence responsible for mRNA cleavage or a functionally equivalent sequence (see, e.g., U.S. Pat. No. 5,093,246, which is incorporated herein by reference in its entirety).

While ribozymes that cleave mRNA at site specific recognition sequences 10 can be used to destroy target mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. Preferably, the target mRNA has the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described 15 more fully in Haseloff and Gerlach ((1988) Nature 334:585-591; and see PCT Appln. No. WO89/05852, the contents of which are incorporated herein by reference). Hammerhead ribozyme sequences can be embedded in a stable RNA such as a transfer RNA (tRNA) to increase cleavage efficiency in vivo (Perriman et al. (1995) Proc. Natl. Acad. Sci. USA, 92: 6175-79; de Feyter, and Gaudron, 20 Methods in Molecular Biology, Vol. 74, Chapter 43, "Expressing Ribozymes in Plants", Edited by Turner, P. C., Humana Press Inc., Totowa, N.J.). In particular, RNA polymerase III-mediated expression of tRNA fusion ribozymes are well known in the art (see Kawasaki et al. (1998) Nature 393: 284-9; Kuwabara et al. 25 (1998) Nature Biotechnol. 16: 961-5; and Kuwabara et al. (1998) Mol. Cell 2: 617-27; Koseki et al. (1999) J Virol 73: 1868-77; Kuwabara et al. (1999) Proc Natl Acad Sci USA 96: 1886-91; Tanabe et al. (2000) Nature 406: 473-4). There are typically 30 a number of potential hammerhead ribozyme cleavage sites within a given target cDNA sequence. Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the target mRNA- to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts. Furthermore, the use of any cleavage recognition site located in the target sequence encoding different portions of the C-terminal amino acid domains of, for example,

long and short forms of target would allow the selective targeting of one or the other form of the target, and thus, have a selective effect on one form of the target gene product.

Gene targeting ribozymes necessarily contain a hybridizing region 5 complementary to two regions, each of at least 5 and preferably each 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 contiguous nucleotides in length of a POSH or POSH-AP mRNA, such as an mRNA of a sequence represented in any of SEQ ID Nos: 1, 3, 4, 6, 8 or 10 or a POSH-AP presented in Figure 36. In addition, 10 ribozymes possess highly specific endoribonuclease activity, which autocatalytically cleaves the target sense mRNA. The present application extends to ribozymes which hybridize to a sense mRNA encoding a POSH gene such as a therapeutic drug target candidate gene, thereby hybridising to the sense mRNA and cleaving it, such that it is no longer capable of being translated to synthesize a functional polypeptide product.

15 The ribozymes of the present application also include RNA endoribonucleases (hereinafter "Cech-type ribozymes") such as the one which occurs naturally in *Tetrahymena thermophila* (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug, et al. (1984) *Science* 224:574-578; Zaug, et al. (1986) *Science* 231:470-475; Zaug, 20 et al. (1986) *Nature* 324:429-433; published International patent application No. WO88/04300 by University Patents Inc.; Been, et al. (1986) *Cell* 47:207-216). The Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The application encompasses those Cech-type ribozymes which target eight base-pair active site 25 sequences that are present in a target gene or nucleic acid sequence.

Ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells which express the target gene *in vivo*. A preferred method of delivery involves using a DNA construct 30 "encoding" the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous target messages and inhibit translation. Because ribozymes,

unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

In certain embodiments, a ribozyme may be designed by first identifying a sequence portion sufficient to cause effective knockdown by RNAi. The same sequence portion may then be incorporated into a ribozyme. In this aspect of the application, the gene-targeting portions of the ribozyme or RNAi are substantially the same sequence of at least 5 and preferably 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 or more contiguous nucleotides of a POSH nucleic acid, such as a nucleic acid of any of SEQ ID Nos: 1, 3, 4, 6, 8, or 10 or POSH-AP nucleic acid, as presented in Figure 36. In a long target RNA chain, significant numbers of target sites are not accessible to the ribozyme because they are hidden within secondary or tertiary structures (Birikh et al. (1997) Eur J Biochem 245: 1-16). To overcome the problem of target RNA accessibility, computer generated predictions of secondary structure are typically used to identify targets that are most likely to be single-stranded or have an "open" configuration (see Jaeger et al. (1989) Methods Enzymol 183: 281-306). Other approaches utilize a systematic approach to predicting secondary structure which involves assessing a huge number of candidate hybridizing oligonucleotides molecules (see Milner et al. (1997) Nat Biotechnol 15: 537-41; and Patzel and Sczakiel (1998) Nat Biotechnol 16: 64-8). Additionally, U.S. Patent No. 6,251,588, the contents of which are hereby incorporated herein, describes methods for evaluating oligonucleotide probe sequences so as to predict the potential for hybridization to a target nucleic acid sequence. The method of the application provides for the use of such methods to select preferred segments of a target mRNA sequence that are predicted to be single-stranded and, further, for the opportunistic utilization of the same or substantially identical target mRNA sequence, preferably comprising about 10-20 consecutive nucleotides of the target mRNA, in the design of both the RNAi oligonucleotides and ribozymes of the application.

A further aspect of the application relates to the use of the isolated "antisense" nucleic acids to inhibit expression, e.g., by inhibiting transcription and/or translation of a POSH or POSH-AP nucleic acid. The antisense nucleic acids may bind to the potential drug target by conventional base pair complementarity, or,

for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix. In general, these methods refer to the range of techniques generally employed in the art, and include any methods that rely on specific binding to oligonucleotide sequences.

5 An antisense construct of the present application can be delivered, for example, as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of the cellular mRNA which encodes a POSH or POSH-AP polypeptide. Alternatively, the antisense construct is an oligonucleotide probe, which is generated ex vivo and which, when 10 introduced into the cell causes inhibition of expression by hybridizing with the mRNA and/or genomic sequences of a POSH or POSH-AP nucleic acid. Such oligonucleotide probes are preferably modified oligonucleotides, which are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, and are therefore stable in vivo. Exemplary nucleic acid molecules for use as antisense 15 oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Patents 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy have been reviewed, for example, by Van der Krol et al. (1988) BioTechniques 6:958-976; and Stein et al. (1988) Cancer Res 48:2659- 2668.

20 With respect to antisense DNA, oligodeoxyribonucleotides derived from the translation initiation site, e.g., between the -10 and +10 regions of the target gene, are preferred. Antisense approaches involve the design of oligonucleotides (either DNA or RNA) that are complementary to mRNA encoding a POSH or POSH-AP polypeptide. The antisense oligonucleotides will bind to the mRNA transcripts and 25 prevent translation. Absolute complementarity, although preferred, is not required. In the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more 30 base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of

mismatch by use of standard procedures to determine the melting point of the hybridized complex.

Oligonucleotides that are complementary to the 5' end of the mRNA, e.g., the 5' untranslated sequence up to and including the AUG initiation codon, should work 5 most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have recently been shown to be effective at inhibiting translation of mRNAs as well. (Wagner, R. 1994. Nature 372:333). Therefore, oligonucleotides complementary to either the 5' or 3' untranslated, non-coding regions of a gene could be used in an antisense approach to inhibit translation 10 of that mRNA. Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could also be used in accordance with the application. Whether designed to hybridize to the 5', 3' or coding region of mRNA, antisense 15 nucleic acids should be at least six nucleotides in length, and are preferably less than about 100 and more preferably less than about 50, 25, 17 or 10 nucleotides in length.

It is preferred that in vitro studies are first performed to quantitate the ability 20 of the antisense oligonucleotide to inhibit gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein. Results obtained using the antisense oligonucleotide may be compared with those obtained using a control oligonucleotide. It is preferred that the control oligonucleotide is of approximately the same length as the test 25 oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.

The antisense oligonucleotides can be DNA or RNA or chimeric mixtures or 30 derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for

targeting host cell receptors), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810, published December 15, 1988) or the blood- brain barrier (see, e.g.,
5 PCT Publication No. W089/10134, published April 25, 1988), hybridization-triggered cleavage agents. (See, e.g., Krol et al., 1988, BioTechniques 6:958- 976)
or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end,
the oligonucleotide may be conjugated to another molecule, e.g., a peptide,
hybridization triggered cross-linking agent, transport agent, hybridization-triggered
10 cleavage agent, etc.

The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5- bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5- (carboxyhydroxyethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5- carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6- isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6- isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5- oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3- N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.
20
25

The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

The antisense oligonucleotide can also contain a neutral peptide-like backbone. Such molecules are termed peptide nucleic acid (PNA)-oligomers and are described, e.g., in Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93:14670 and in Eglom et al. (1993) Nature 365:566. One advantage of PNA
30

oligomers is their capability to bind to complementary DNA essentially independently from the ionic strength of the medium due to the neutral backbone of the DNA. In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet a further embodiment, the antisense oligonucleotide is an alpha-anomeric oligonucleotide. An alpha-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual antiparallel orientation, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).

While antisense nucleotides complementary to the coding region of a POSH or POSH-AP mRNA sequence can be used, those complementary to the transcribed untranslated region may also be used.

In certain instances, it may be difficult to achieve intracellular concentrations of the antisense sufficient to suppress translation on endogenous mRNAs. Therefore a preferred approach utilizes a recombinant DNA construct in which the antisense oligonucleotide is placed under the control of a strong pol III or pol II promoter. The use of such a construct to transfet target cells will result in the transcription of sufficient amounts of single stranded RNAs that will form complementary base pairs with the endogenous potential drug target transcripts and thereby prevent translation. For example, a vector can be introduced such that it is taken up by a cell and directs the transcription of an antisense RNA. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in mammalian cells. Expression of the sequence encoding the antisense RNA can be by any promoter known in the art to act in mammalian, preferably human cells. Such promoters can

be inducible or constitutive. Such promoters include but are not limited to: the SV40 early promoter region (Benoist and Chambon, 1981, Nature 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., 1980, Cell 22:787-797), the herpes thymidine kinase promoter 5 (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster et al, 1982, Nature 296:39-42), etc. Any type of plasmid, cosmid, YAC or viral vector can be used to prepare the recombinant DNA construct, which can be introduced directly into the tissue site.

Alternatively, POSH or POSH-AP gene expression can be reduced by 10 targeting deoxyribonucleotide sequences complementary to the regulatory region of the gene (i.e., the promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells in the body. (See generally, Helene, C. 1991, Anticancer Drug Des., 6(6):569-84; Helene, C., et al., 1992, Ann. N.Y. Acad. Sci., 660:27-36; and Maher, L.J., 1992, Bioassays 14(12):807-15).

15 Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription are preferably single stranded and composed of deoxyribonucleotides. The base composition of these oligonucleotides should promote triple helix formation via Hoogsteen base pairing rules, which generally require sizable stretches of either purines or pyrimidines to be present on one strand 20 of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine- rich, for example, 25 containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in CGC triplets across the three strands in the triplex.

30 Alternatively, POSH or POSH-AP sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other,

eliminating the necessity for a sizable stretch of either purines or pyrimidines to be present on one strand of a duplex.

A further aspect of the application relates to the use of DNA enzymes to inhibit expression of a POSH or POSH-AP gene. DNA enzymes incorporate some 5 of the mechanistic features of both antisense and ribozyme technologies. DNA enzymes are designed so that they recognize a particular target nucleic acid sequence, much like an antisense oligonucleotide, however much like a ribozyme they are catalytic and specifically cleave the target nucleic acid.

There are currently two basic types of DNA enzymes, and both of these were 10 identified by Santoro and Joyce (see, for example, US Patent No. 6110462). The 10-23 DNA enzyme comprises a loop structure which connect two arms. The two arms provide specificity by recognizing the particular target nucleic acid sequence while the loop structure provides catalytic function under physiological conditions.

Briefly, to design an ideal DNA enzyme that specifically recognizes and 15 cleaves a target nucleic acid, one of skill in the art must first identify the unique target sequence. This can be done using the same approach as outlined for antisense oligonucleotides. Preferably, the unique or substantially sequence is a G/C rich of approximately 18 to 22 nucleotides. High G/C content helps insure a stronger interaction between the DNA enzyme and the target sequence.

When synthesizing the DNA enzyme, the specific antisense recognition 20 sequence that will target the enzyme to the message is divided so that it comprises the two arms of the DNA enzyme, and the DNA enzyme loop is placed between the two specific arms.

Methods of making and administering DNA enzymes can be found, for 25 example, in US 6110462. Similarly, methods of delivery DNA ribozymes in vitro or in vivo include methods of delivery RNA ribozyme, as outlined in detail above. Additionally, one of skill in the art will recognize that, like antisense oligonucleotide, DNA enzymes can be optionally modified to improve stability and improve resistance to degradation.

Antisense RNA and DNA, ribozyme, RNAi and triple helix molecules of the 30 application may be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing

oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated 5 into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines. Moreover, various well-known modifications to nucleic acid molecules may be introduced as a 10 means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiester linkages within the oligodeoxyribonucleotide backbone.

15

6. Drug Screening Assays

In certain aspects, the present application provides assays for identifying therapeutic agents which either interfere with or promote POSH or POSH-AP function. In certain aspects, the present application also provides assays for 20 identifying therapeutic agents which either interfere with or promote the complex formation between a POSH polypeptide and a POSH-AP polypeptide.

In certain embodiments, agents of the application are antiviral agents, optionally interfering with viral maturation, and preferably where the virus is an envelope virus, and optionally a retrovirus or an RNA virus. In other 25 embodiments, agents of the application are anticancer agents. In further embodiments, agents of the application inhibit the progression of a neurodegenerative disorder. In certain embodiments, an antiviral or anticancer agent or an agent that inhibits the progression of a neurodegenerative disorder interferes with the ubiquitin ligase catalytic activity of POSH (e.g., POSH auto-ubiquitination 30 or transfer to a target protein). In other embodiments, agents disclosed herein inhibit or promote POSH and POSH-AP mediated cellular processes such as apoptosis and protein processing in the secretory pathway.

In certain preferred embodiments, an antiviral agent interferes with the interaction between POSH and a POSH-AP polypeptide, for example an antiviral agent may disrupt or render irreversible interaction between a POSH polypeptide and POSH-AP polypeptide (as in the case of a POSH dimer, a heterodimer of two different POSH polypeptides, homomultimers and heteromultimers). In further embodiments, agents of the application are anti-apoptotic agents, optionally interfering with JNK and/or NF- κ B signaling. In yet additional embodiments, agents of the application interfere with the signaling of a GTPase, such as Rac or Ras, optionally disrupting the interaction between a POSH polypeptide and a Rac protein. In certain embodiments, agents of the application modulate the ubiquitin ligase activity of POSH and may be used to treat certain diseases related to ubiquitin ligase activity. In certain embodiments, agents of the application interfere with the trafficking of a protein through the secretory pathway.

In certain embodiments, the application provides assays to identify, optimize or otherwise assess agents that increase or decrease a ubiquitin-related activity of a POSH polypeptide. Ubiquitin-related activities of POSH polypeptides may include the self-ubiquitination activity of a POSH polypeptide, generally involving the transfer of ubiquitin from an E2 enzyme to the POSH polypeptide, and the ubiquitination of a target protein, generally involving the transfer of a ubiquitin from a POSH polypeptide to the target protein. In certain embodiments, a POSH activity is mediated, at least in part, by a POSH RING domain.

In certain embodiments, an assay comprises forming a mixture comprising a POSH polypeptide, an E2 polypeptide and a source of ubiquitin (which may be the E2 polypeptide pre-complexed with ubiquitin). Optionally the mixture comprises an E1 polypeptide and optionally the mixture comprises a target polypeptide. Additional components of the mixture may be selected to provide conditions consistent with the ubiquitination of the POSH polypeptide. One or more of a variety of parameters may be detected, such as POSH-ubiquitin conjugates, E2-ubiquitin thioesters, free ubiquitin and target polypeptide-ubiquitin complexes. The term "detect" is used herein to include a determination of the presence or absence of the subject of detection (e.g., POSH-ubiquitin, E2-ubiquitin, etc.), a quantitative measure of the amount of the subject of detection, or a mathematical calculation of

the presence, absence or amount of the subject of detection, based on the detection of other parameters. The term "detect" includes the situation wherein the subject of detection is determined to be absent or below the level of sensitivity. Detection may comprise detection of a label (e.g., fluorescent label, radioisotope label, and other described below), resolution and identification by size (e.g., SDS-PAGE, mass spectroscopy), purification and detection, and other methods that, in view of this specification, will be available to one of skill in the art. For instance, radioisotope labeling may be measured by scintillation counting, or by densitometry after exposure to a photographic emulsion, or by using a device such as a Phosphorimager. Likewise, densitometry may be used to measure bound ubiquitin following a reaction with an enzyme label substrate that produces an opaque product when an enzyme label is used. In a preferred embodiment, an assay comprises detecting the POSH-ubiquitin conjugate.

In certain embodiments, an assay comprises forming a mixture comprising a POSH polypeptide, a target polypeptide and a source of ubiquitin (which may be the POSH polypeptide pre-complexed with ubiquitin). Optionally the mixture comprises an E1 and/or E2 polypeptide and optionally the mixture comprises an E2-ubiquitin thioester. Additional components of the mixture may be selected to provide conditions consistent with the ubiquitination of the target polypeptide. One or more of a variety of parameters may be detected, such as POSH-ubiquitin conjugates and target polypeptide-ubiquitin conjugates. In a preferred embodiment, an assay comprises detecting the target polypeptide-ubiquitin conjugate. In another preferred embodiment, an assay comprises detecting the POSH-ubiquitin conjugate.

An assay described above may be used in a screening assay to identify agents that modulate a ubiquitin-related activity of a POSH polypeptide. A screening assay will generally involve adding a test agent to one of the above assays, or any other assay designed to assess a ubiquitin-related activity of a POSH polypeptide. The parameter(s) detected in a screening assay may be compared to a suitable reference. A suitable reference may be an assay run previously, in parallel or later that omits the test agent. A suitable reference may also be an average of previous measurements in the absence of the test agent. In general the components of a screening assay mixture may be added in any order consistent with the overall

activity to be assessed, but certain variations may be preferred. For example, in certain embodiments, it may be desirable to pre-incubate the test agent and the E3 (e.g., the POSH polypeptide), followed by removing the test agent and addition of other components to complete the assay. In this manner, the effects of the agent solely on the POSH polypeptide may be assessed. In certain preferred embodiments, a screening assay for an antiviral agent employs a target polypeptide comprising an L domain, and preferably an HIV L domain.

In certain embodiments, an assay is performed in a high-throughput format. For example, one of the components of a mixture may be affixed to a solid substrate and one or more of the other components is labeled. For example, the POSH polypeptide may be affixed to a surface, such as a 96-well plate, and the ubiquitin is in solution and labeled. An E2 and E1 are also in solution, and the POSH-ubiquitin conjugate formation may be measured by washing the solid surface to remove uncomplexed labeled ubiquitin and detecting the ubiquitin that remains bound. Other variations may be used. For example, the amount of ubiquitin in solution may be detected. In certain embodiments, the formation of ubiquitin complexes may be measured by an interactive technique, such as FRET, wherein a ubiquitin is labeled with a first label and the desired complex partner (e.g., POSH polypeptide or target polypeptide) is labeled with a second label, wherein the first and second label interact when they come into close proximity to produce an altered signal. In FRET, the first and second labels are fluorophores. FRET is described in greater detail below. The formation of polyubiquitin complexes may be performed by mixing two or more pools of differentially labeled ubiquitin that interact upon formation of a polyubiquitin (see, e.g., US Patent Publication 20020042083). High-throughput may be achieved by performing an interactive assay, such as FRET, in solution as well. In addition, if a polypeptide in the mixture, such as the POSH polypeptide or target polypeptide, is readily purifiable (e.g., with a specific antibody or via a tag such as biotin, FLAG, polyhistidine, etc.), the reaction may be performed in solution and the tagged polypeptide rapidly isolated, along with any polypeptides, such as ubiquitin, that are associated with the tagged polypeptide. Proteins may also be resolved by SDS-PAGE for detection.

In certain embodiments, the ubiquitin is labeled, either directly or indirectly. This typically allows for easy and rapid detection and measurement of ligated ubiquitin, making the assay useful for high-throughput screening applications. As described above, certain embodiments may employ one or more tagged or labeled proteins. A "tag" is meant to include moieties that facilitate rapid isolation of the tagged polypeptide. A tag may be used to facilitate attachment of a polypeptide to a surface. A "label" is meant to include moieties that facilitate rapid detection of the labeled polypeptide. Certain moieties may be used both as a label and a tag (e.g., epitope tags that are readily purified and detected with a well-characterized antibody). Biotinylation of polypeptides is well known, for example, a large number of biotinylation agents are known, including amine-reactive and thiol-reactive agents, for the biotinylation of proteins, nucleic acids, carbohydrates, carboxylic acids; see chapter 4, Molecular Probes Catalog, Haugland, 6th Ed. 1996, hereby incorporated by reference. A biotinylated substrate can be attached to a biotinylated component via avidin or streptavidin. Similarly, a large number of haptenylation reagents are also known.

An "E1" is a ubiquitin activating enzyme. In a preferred embodiment, E1 is capable of transferring ubiquitin to an E2. In a preferred embodiment, E1 forms a high energy thiolester bond with ubiquitin, thereby "activating" the ubiquitin. An "E2" is a ubiquitin carrier enzyme (also known as a ubiquitin conjugating enzyme). In a preferred embodiment, ubiquitin is transferred from E1 to E2. In a preferred embodiment, the transfer results in a thiolester bond formed between E2 and ubiquitin. In a preferred embodiment, E2 is capable of transferring ubiquitin to a POSH polypeptide.

In an alternative embodiment, a POSH polypeptide, E2 or target polypeptide is bound to a bead, optionally with the assistance of a tag. Following ligation, the beads may be separated from the unbound ubiquitin and the bound ubiquitin measured. In a preferred embodiment, POSH polypeptide is bound to beads and the composition used includes labeled ubiquitin. In this embodiment, the beads with bound ubiquitin may be separated using a fluorescence-activated cell sorting (FACS) machine. Methods for such use are described in U.S. patent application Ser.

No. 09/047,119, which is hereby incorporated in its entirety. The amount of bound ubiquitin can then be measured.

In a screening assay, the effect of a test agent may be assessed by, for example, assessing the effect of the test agent on kinetics, steady-state and/or endpoint of the reaction.

The components of the various assay mixtures provided herein may be combined in varying amounts. In a preferred embodiment, ubiquitin (or E2 complexed ubiquitin) is combined at a final concentration of from 5 to 200 ng per 100 microliter reaction solution. Optionally E1 is used at a final concentration of 10 from 1 to 50 ng per 100 microliter reaction solution. Optionally E2 is combined at a final concentration of 10 to 100 ng per 100 microliter reaction solution, more preferably 10-50 ng per 100 microliter reaction solution. In a preferred embodiment, POSH polypeptide is combined at a final concentration of from 1 to 500 ng per 100 microliter reaction solution.

Generally, an assay mixture is prepared so as to favor ubiquitin ligase activity and/or ubiquitination activity. Generally, this will be physiological conditions, such as 50 – 200 mM salt (e.g., NaCl, KCl), pH of between 5 and 9, and preferably between 6 and 8. Such conditions may be optimized through trial and error. Incubations may be performed at any temperature which facilitates optimal activity, typically between 4 and 40 °C. Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high throughput screening. Typically between 0.5 and 1.5 hours will be sufficient. A variety of other reagents may be included in the compositions. These include reagents like salts, solvents, buffers, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal ubiquitination enzyme activity and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The compositions will also preferably include adenosine tri-phosphate (ATP). The mixture of components may be added in any order that promotes ubiquitin ligase activity or optimizes identification of candidate modulator effects. In a preferred embodiment, ubiquitin is provided in a reaction buffer solution, followed by addition of the ubiquitination enzymes. In an alternate preferred embodiment,

ubiquitin is provided in a reaction buffer solution, a candidate modulator is then added, followed by addition of the ubiquitination enzymes.

In general, a test agent that decreases a POSH ubiquitin-related activity may be used to inhibit POSH function in vivo, while a test agent that increases a POSH ubiquitin-related activity may be used to stimulate POSH function in vivo. Test agent may be modified for use in vivo, e.g., by addition of a hydrophobic moiety, such as an ester.

In certain embodiments, a ubiquitination assay as described above for POSH can similarly be conducted for a Cbl-b, a SIAH1, or a TTC3 polypeptide. In certain 10 embodiments, the application provides assays to identify, optimize or otherwise assess agents that increase or decrease a ubiquitin-related activity of a Cbl-b, a SIAH1, or a TTC3 polypeptide. Ubiquitin-related activities of Cbl-b, SIAH1, or TTC3 polypeptides may include the self-ubiquitination activity of a Cbl-b, SIAH1, or 15 TTC3 polypeptide, generally involving the transfer of ubiquitin from an E2 enzyme to the respective Cbl-b, SIAH1, or TTC3 polypeptide, and the ubiquitination of a target protein, e.g., the p85 subunit of PI3K, e.g., synaptophysin, generally involving the transfer of a ubiquitin from a Cbl-b, SIAH1, or TTC3 polypeptide to the target protein, e.g., the p85 subunit of PI3K, e.g., synaptophysin, e.g., HERPUD1. In certain embodiments, a Cbl-b, a SIAH1, or a TTC3 activity is 20 mediated, at least in part, by a RING domain of a Cbl-b, a SIAH1, or a TTC3, respectively.

An additional POSH-AP may be added to a POSH ubiquitination assay to 25 assess the effect of the POSH-AP (e.g., PRKAR1A, PRKACA, or PRKACB) on POSH-mediated ubiquitination and/or to assess whether the POSH-AP is a target for POSH-mediated ubiquitination (e.g., HERPUD1, e.g., PKA).

Certain embodiments of the application relate to assays for identifying agents that bind to a POSH or POSH-AP polypeptide, optionally a particular domain of POSH such as an SH3 or RING domain or a particular domain of a POSH-AP, particularly a kinase catalytic domain or ATP binding domain. In preferred 30 embodiments, a POSH polypeptide is a polypeptide comprising the fourth SH3 domain of hPOSH (SEQ ID NO: 30). A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic
9372369_1

mobility shift assays, immunoassays for protein binding, and the like. The purified protein may also be used for determination of three-dimensional crystal structure, which can be used for modeling intermolecular interactions and design of test agents. In one embodiment, an assay detects agents which inhibit interaction of one or more subject POSH polypeptides with a POSH-AP. In another embodiment, the assay detects agents which modulate the intrinsic biological activity of a POSH polypeptide or POSH complex, such as an enzymatic activity, binding to other cellular components, cellular compartmentalization, and the like.

Certain embodiments of the application relate to assays for identifying agents that modulate a POSH-AP polypeptide such as a PKA subunit polypeptide. Preferred PKA subunit polypeptides include PRKAR1A, PRKACA, and PRKACB. Exemplary assays used for this purpose may include detecting phosphorylation of PKA subunit, kinase activity of the PKA subunit, ability of the PKA subunit to elicit downstream signaling of the PKA pathway, and the like. For example, activity of protein kinase A can be assayed either in vitro or in vivo. PKA activity can be determined by detecting phosphorylation of a PKA specific substrate. The specific PKA substrate can be any convenient peptide with a serine that is recognized as a phosphorylation site by PKA. For example, the peptide substrate can have the sequence: Leu-Arg-Arg-Ala-Ser-Leu-Gly.

In one aspect, the application provides methods and compositions for the identification of compositions that interfere with the function of POSH or POSH-AP polypeptides. Given the role of POSH polypeptides in viral production, compositions that perturb the formation or stability of the protein-protein interactions between POSH polypeptides and the proteins that they interact with, such as POSH-APs, and particularly POSH complexes comprising a viral protein, are candidate pharmaceuticals for the treatment of viral infections.

While not wishing to be bound to mechanism, it is postulated that POSH polypeptides promote the assembly of protein complexes that are important in release of virions and other biological processes. Complexes of the application may include a combination of a POSH polypeptide and a POSH-AP. Exemplary complexes may comprise one or more of the following: a POSH polypeptide (as in

the case of a POSH dimer, a heterodimer of two different POSH, homomultimers and heteromultimers); a HERPUD1 polypeptide; or an MSTP028 polypeptide.

In an assay for an antiviral or antiapoptotic agent, the test agent is assessed for its ability to disrupt or inhibit the formation of a complex of a POSH polypeptide and a small GTPase, such as a Rac polypeptide, particularly a human Rac polypeptide, such as Rac1.

A variety of assay formats will suffice and, in light of the present disclosure, those not expressly described herein will nevertheless be comprehended by one of ordinary skill in the art. Assay formats which approximate such conditions as formation of protein complexes, enzymatic activity, and even a POSH polypeptide-mediated membrane reorganization or vesicle formation activity, may be generated in many different forms, and include assays based on cell-free systems, e.g., purified proteins or cell lysates, as well as cell-based assays which utilize intact cells. Simple binding assays can also be used to detect agents which bind to POSH. Such binding assays may also identify agents that act by disrupting the interaction between a POSH polypeptide and a POSH interacting protein, or the binding of a POSH polypeptide or complex to a substrate. Agents to be tested can be produced, for example, by bacteria, yeast or other organisms (e.g., natural products), produced chemically (e.g., small molecules, including peptidomimetics), or produced recombinantly. In a preferred embodiment, the test agent is a small organic molecule, e.g., other than a peptide or oligonucleotide, having a molecular weight of less than about 2,000 daltons.

In many drug screening programs which test libraries of compounds and natural extracts, high throughput assays are desirable in order to maximize the number of compounds surveyed in a given period of time. Assays of the present application which are performed in cell-free systems, such as may be developed with purified or semi-purified proteins or with lysates, are often preferred as "primary" screens in that they can be generated to permit rapid development and relatively easy detection of an alteration in a molecular target which is mediated by a test compound. Moreover, the effects of cellular toxicity and/or bioavailability of the test compound can be generally ignored in the in vitro system, the assay instead being focused primarily on the effect of the drug on the molecular target as may be

manifest in an alteration of binding affinity with other proteins or changes in enzymatic properties of the molecular target.

In preferred in vitro embodiments of the present assay, a reconstituted POSH complex comprises a reconstituted mixture of at least semi-purified proteins. By semi-purified, it is meant that the proteins utilized in the reconstituted mixture have been previously separated from other cellular or viral proteins. For instance, in contrast to cell lysates, the proteins involved in POSH complex formation are present in the mixture to at least 50% purity relative to all other proteins in the mixture, and more preferably are present at 90-95% purity. In certain embodiments of the subject method, the reconstituted protein mixture is derived by mixing highly purified proteins such that the reconstituted mixture substantially lacks other proteins (such as of cellular or viral origin) which might interfere with or otherwise alter the ability to measure POSH complex assembly and/or disassembly.

Assaying POSH complexes, in the presence and absence of a candidate inhibitor, can be accomplished in any vessel suitable for containing the reactants. Examples include microtitre plates, test tubes, and micro-centrifuge tubes.

In one embodiment of the present application, drug screening assays can be generated which detect inhibitory agents on the basis of their ability to interfere with assembly or stability of the POSH complex. In an exemplary binding assay, the compound of interest is contacted with a mixture comprising a POSH polypeptide and at least one interacting polypeptide. Detection and quantification of POSH complexes provides a means for determining the compound's efficacy at inhibiting (or potentiating) interaction between the two polypeptides. The efficacy of the compound can be assessed by generating dose response curves from data obtained using various concentrations of the test compound. Moreover, a control assay can also be performed to provide a baseline for comparison. In the control assay, the formation of complexes is quantitated in the absence of the test compound.

Complex formation between the POSH polypeptides and a substrate polypeptide may be detected by a variety of techniques, many of which are effectively described above. For instance, modulation in the formation of complexes can be quantitated using, for example, detectably labeled proteins (e.g., radiolabeled, fluorescently labeled, or enzymatically labeled), by immunoassay, or by

chromatographic detection. Surface plasmon resonance systems, such as those available from Biacore International AB (Uppsala, Sweden), may also be used to detect protein-protein interaction.

Often, it will be desirable to immobilize one of the polypeptides to facilitate separation of complexes from uncomplexed forms of one of the proteins, as well as to accommodate automation of the assay. In an illustrative embodiment, a fusion protein can be provided which adds a domain that permits the protein to be bound to an insoluble matrix. For example, GST-POSH fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with a potential interacting protein, e.g., an ³⁵S-labeled polypeptide, and the test compound and incubated under conditions conducive to complex formation. Following incubation, the beads are washed to remove any unbound interacting protein, and the matrix bead-bound radiolabel determined directly (e.g., beads placed in scintillant), or in the supernatant after the complexes are dissociated, e.g., when microtitre plate is used. Alternatively, after washing away unbound protein, the complexes can be dissociated from the matrix, separated by SDS-PAGE gel, and the level of interacting polypeptide found in the matrix-bound fraction quantitated from the gel using standard electrophoretic techniques.

In a further embodiment, agents that bind to a POSH or POSH-AP may be identified by using an immobilized POSH or POSH-AP. In an illustrative embodiment, a fusion protein can be provided which adds a domain that permits the protein to be bound to an insoluble matrix. For example, GST-POSH fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with a potential labeled binding agent and incubated under conditions conducive to binding. Following incubation, the beads are washed to remove any unbound agent, and the matrix bead-bound label determined directly, or in the supernatant after the bound agent is dissociated.

In yet another embodiment, the POSH polypeptide and potential interacting polypeptide can be used to generate an interaction trap assay (see also, U.S. Patent NO: 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J Biol

Chem 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; and Iwabuchi et al. (1993) Oncogene 8:1693-1696), for subsequently detecting agents which disrupt binding of the proteins to one and other.

In particular, the method makes use of chimeric genes which express hybrid proteins. To illustrate, a first hybrid gene comprises the coding sequence for a DNA-binding domain of a transcriptional activator can be fused in frame to the coding sequence for a "bait" protein, e.g., a POSH polypeptide of sufficient length to bind to a potential interacting protein. The second hybrid protein encodes a transcriptional activation domain fused in frame to a gene encoding a "fish" protein, e.g., a potential interacting protein of sufficient length to interact with the POSH polypeptide portion of the bait fusion protein. If the bait and fish proteins are able to interact, e.g., form a POSH complex, they bring into close proximity the two domains of the transcriptional activator. This proximity causes transcription of a reporter gene which is operably linked to a transcriptional regulatory site responsive to the transcriptional activator, and expression of the reporter gene can be detected and used to score for the interaction of the bait and fish proteins.

One aspect of the present application provides reconstituted protein preparations including a POSH polypeptide and one or more interacting polypeptides.

In still further embodiments of the present assay, the POSH complex is generated in whole cells, taking advantage of cell culture techniques to support the subject assay. For example, as described below, the POSH complex can be constituted in a eukaryotic cell culture system, including mammalian and yeast cells. Often it will be desirable to express one or more viral proteins (e.g., Gag or Env) in such a cell along with a subject POSH polypeptide. It may also be desirable to infect the cell with a virus of interest. Advantages to generating the subject assay in an intact cell include the ability to detect inhibitors which are functional in an environment more closely approximating that which therapeutic use of the inhibitor would require, including the ability of the agent to gain entry into the cell. Furthermore, certain of the in vivo embodiments of the assay, such as examples given below, are amenable to high through-put analysis of candidate agents.

The components of the POSH complex can be endogenous to the cell selected to support the assay. Alternatively, some or all of the components can be derived from exogenous sources. For instance, fusion proteins can be introduced into the cell by recombinant techniques (such as through the use of an expression vector), as well as by microinjecting the fusion protein itself or mRNA encoding the fusion protein.

In many embodiments, a cell is manipulated after incubation with a candidate agent and assayed for a POSH or POSH-AP activity. In certain embodiments, a POSH-AP, such as PTPN12, is a tyrosine phosphatase. Tyrosine phosphatase activity may be assessed by incubating a cell lysate, which has optionally been treated with perva-nadate to stimulate tyrosine phosphorylation, with a POSH-AP that has tyrosine phosphatase activity, immunoprecipitating the substrate protein and immunoblotting for the presence of phosphorylated tyrosine. Alternatively, tyrosine phosphatase activity may be assessed by the substrate trapping method. The substrate trapping method employs catalytically inactive mutants of a tyrosine phosphatase (e.g., a POSH-AP such as PTPN12). The catalytically inactive phosphatase mutant is immobilized on a solid matrix (e.g., AG25-protein A-Sepharose beads) and incubated with a substrate protein. The solid matrix to which the catalytically inactive phosphatase is bound is isolated and subjected to SDS-PAGE and immunoblotting for the presence of the substrate protein. The proteins employed in a phosphatase assay may optionally be purified proteins. (Lyons, PD et al (2001) J Biol Chem 246:24422-31; Garton, AJ et al (1996) Mol Cell Biol 16:6408-18).

In many embodiments, a cell is manipulated after incubation with a candidate agent and assayed for a POSH or POSH-AP activity. In certain embodiments a POSH or POSH-AP activity is represented by production of virus like particles. As demonstrated herein, an agent that disrupts POSH or POSH-AP activity can cause a decrease in the production of virus like particles. Other bioassays for POSH or POSH-AP activities may include apoptosis assays (e.g., cell survival assays, apoptosis reporter gene assays, etc.) and NF- κ B nuclear localization assays (see e.g., Tapon et al. (1998) EMBO J. 17: 1395-1404). One apoptosis assay that may be used to assess TGN-associated protein activity is the TUNEL assay, which is used to

detect the presence of apoptotic cell death. In the TUNEL assay, the enzyme terminal deoxynucleotidyl transferase labels 3'-OH DNA ends (which are generated during apoptosis) with biotinylated nucleotides. The biotinylated nucleotides are then detected by immunoperoxidase staining. Another apoptosis assay that may be 5 used to assess TGN-associated protein activity is the caspase assay, in which caspase activity is measured using a blue fluorescent substrate. Cleavage of the substrate by caspase 3 releases the fluorochrome, which then fluoresces green. An assay that may be employed to monitor cell proliferation associated with a TGN-associated protein is the MTT cell proliferation assay. The MTT cell proliferation assay is a 10 colorimetric assay which measures the reduction of a tetrazolium component (MTT) into an insoluble formazan product by the mitochondria of viable cells. After incubation of the cells with the MTT reagent, a detergent solution is added to lyse the cells and solubilize the colored crystals. The samples may be read using an ELISA plate reader. The amount of color produced is directly proportional to the 15 number of viable cells.

In certain embodiments, POSH or POSH-AP activities may include, without limitation, complex formation, ubiquitination and membrane fusion events (e.g. release of viral buds or fusion of vesicles). POSH-AP activity may be assessed by the presence of phosphorylated substrate, such as, in the case of PKA, phosphorylated POSH. The interaction of POSH with a small GTPase such as Rac 20 may also be indicative of the absence of phosphorylation of POSH by PKA. POSH complex formation may be assessed by immunoprecipitation and analysis of co-immunoprecipitated proteins or affinity purification and analysis of co-purified proteins. Fluorescence Resonance Energy Transfer (FRET)-based assays or other 25 energy transfer assays may also be used to determine complex formation.

The effect of an agent that modulates the activity of POSH or a POSH-AP may be evaluated for effects on the trafficking of a protein through the secretory system. For example, the effects of the agent on the trafficking of the protein may be assessed by detecting the glycosylation of the protein in the presence and absence 30 of the agent, for instance, through the use of antibodies specific for sugar moieties. For example, cell lysates from cells treated in the absence and presence of an agent that modulates the activity of POSH or a POSH-AP may be subjected to

immunoprecipitation and immunoblotting with antibodies directed to the glycoprotein of interest and the glycosylation state of the protein then compared.

Additional bioassays for assessing POSH and POSH-AP activities may include assays to detect the improper processing of a protein that is associated with a neurological disorder. One assay that may be used is an assay to detect the presence, including an increase or a decrease in the amount, of a protein associated with a neurological disorder. For example, the use of RNAi may be employed to knockdown the expression of a POSH or POSH-AP in cells (e.g., CHO cells or COS cells). The production of a secreted protein such as for example, amyloid beta, in the cell culture media, can then be assessed and compared to production of the secreted protein from control cells, which may be cells in which the POSH or POSH-AP activity has not been inhibited. The production of secreted proteins may be assessed, such as amyloid beta protein, which is associated with Alzheimer's disease. In some instances, a label may be incorporated into a secreted protein and the presence of the labeled secreted protein detected in the cell culture media. Proteins secreted from any cell type may be assessed, including for example, neural cells.

The effect of an agent that modulates the activity of POSH or a POSH-AP may be evaluated for effects on mouse models of various neurological disorders. For example, mouse models of Alzheimer's disease have been described. See, for example, United States Patent No. 5,612,486 for "Transgenic Animals Harboring APP Allele Having Swedish Mutation," Patent No. 5,850,003 (the '003 patent) for "Transgenic Rodents Harboring APP Allele Having Swedish Mutation," and United States Patent No. 5,455,169 entitled "Nucleic Acids for Diagnosing and Modeling Alzheimer's Disease". Mouse models of Alzheimer's disease tend to produce elevated levels of beta-amyloid protein in the brain, and the increase or decrease of such protein in response to treatment with a test agent may be detected. In some instances, it may also be desirable to assess the effects of a test agent on cognitive or behavioral characteristics of a mouse model for Alzheimer's disease, as well as mouse models for other neurological disorders.

In a further embodiment, transcript levels may be measured in cells having higher or lower levels of POSH or POSH-AP activity in order to identify genes that

are regulated by POSH or POSH-APs. Promoter regions for such genes (or larger portions of such genes) may be operatively linked to a reporter gene and used in a reporter gene-based assay to detect agents that enhance or diminish POSH- or POSH-AP-regulated gene expression. Transcript levels may be determined in any way known in the art, such as, for example, Northern blotting, RT-PCR, microarray, etc. Increased POSH activity may be achieved, for example, by introducing a strong POSH expression vector. Decreased POSH activity may be achieved, for example, by RNAi, antisense, ribozyme, gene knockout, etc.

In general, where the screening assay is a binding assay (whether protein-protein binding, agent-protein binding, etc.), one or more of the molecules may be joined to a label, where the label can directly or indirectly provide a detectable signal. Various labels include radioisotopes, fluorescers, chemiluminescers, enzymes, specific binding molecules, particles, e.g., magnetic particles, and the like. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin etc. For the specific binding members, the complementary member would normally be labeled with a molecule that provides for detection, in accordance with known procedures.

In further embodiments, the application provides methods for identifying targets for therapeutic intervention. A polypeptide that interacts with POSH or participates in a POSH-mediated process (such as viral maturation) may be used to identify candidate therapeutics. Such targets may be identified by identifying proteins that associated with POSH (POSH-APs) by, for example, immunoprecipitation with an anti-POSH antibody, in silico analysis of high-throughput binding data, two-hybrid screens, and other protein-protein interaction assays described herein or otherwise known in the art in view of this disclosure. Agents that bind to such targets or disrupt protein-protein interactions thereof, or inhibit a biochemical activity thereof may be used in such an assay. Targets that have been identified by such approaches include POSH-APs provided in Tables 7 and 8 and in Figure 36.

A variety of other reagents may be included in the screening assay. These include reagents like salts, neutral proteins, e.g., albumin, detergents, etc that are used to facilitate optimal protein-protein binding and/or reduce nonspecific or

background interactions. Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti- microbial agents, etc. may be used. The mixture of components are added in any order that provides for the requisite binding. Incubations are performed at any suitable temperature, typically between 4 °C and 40 °C. Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high-throughput screening.

In certain embodiments, a test agent may be assessed for antiviral or anticancer activity by assessing effects on an activity (function) of a POSH-AP. Activity (function) may be affected by an agent that acts at one or more of the transcriptional, translational or post-translational stages. For example, an siRNA directed to a POSH-AP encoding gene will decrease activity, as will a small molecule that interferes with a catalytic activity of a POSH-AP. In certain embodiments, the agent inhibits the activity of one or more polypeptides selected from among HERPUD1 and MSTP028.

15

7. Exemplary Nucleic Acids and Expression Vectors

In certain aspects, the application relates to nucleic acids encoding POSH polypeptides, such as, for example, SEQ ID Nos: 2, 5, 7, 9, 11, 26, 27, 28, 29 and 30. Nucleic acids of the application are further understood to include nucleic acids that comprise variants of SEQ ID Nos:1, 3, 4, 6, 8, 10, 31, 32, 33, 34, and 35. Variant nucleotide sequences include sequences that differ by one or more nucleotide substitutions, additions or deletions, such as allelic variants; and will, therefore, include coding sequences that differ from the nucleotide sequence of the coding sequence designated in SEQ ID Nos:1, 3, 4, 6, 8 10, 31, 32, 33, 34, and 35, e.g., due to the degeneracy of the genetic code. In other embodiments, variants will also include sequences that will hybridize under highly stringent conditions to a nucleotide sequence of a coding sequence designated in any of SEQ ID Nos:1, 3, 4, 6, 8 10, 31, 32, 33, 34, and 35. Preferred nucleic acids of the application are human POSH sequences, including, for example, any of SEQ ID Nos: 1, 3, 4, 6, 31, 32, 33, 34, 35 and variants thereof and nucleic acids encoding an amino acid sequence selected from among SEQ ID Nos: 2, 5, 7, 26, 27, 28, 29 and 30.

In certain aspects, the application relates to nucleic acids encoding POSH-AP polypeptides. For example, POSH-APs of the disclosure are listed in Table 7. Nucleic acid sequences encoding these POSH-APs are provided in Figure 36. Additional examples of POSH-APs of the disclosure are provided in Table 8. In 5 certain embodiments, variants will also include nucleic acid sequences that will hybridize under highly stringent conditions to a nucleotide sequence of a coding sequence of a POSH-AP. Preferred nucleic acids of the application are human POSH-AP sequences and variants thereof.

One of ordinary skill in the art will understand readily that appropriate 10 stringency conditions which promote DNA hybridization can be varied. For example, one could perform the hybridization at 6.0 x sodium chloride/sodium citrate (SSC) at about 45 °C, followed by a wash of 2.0 x SSC at 50 °C. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50 °C to a high stringency of about 0.2 x SSC at 50 15 °C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22 °C, to high stringency conditions at about 65 °C. Both temperature and salt may be varied, or temperature or salt concentration may be held constant while the other variable is changed. In one embodiment, the application provides nucleic acids which hybridize under low 20 stringency conditions of 6 x SSC at room temperature followed by a wash at 2 x SSC at room temperature.

Isolated nucleic acids which differ from the POSH nucleic acid sequences or from the POSH-AP nucleic acid sequences due to degeneracy in the genetic code are also within the scope of the application. For example, a number of amino acids are 25 designated by more than one triplet. Codons that specify the same amino acid, or synonyms (for example, CAU and CAC are synonyms for histidine) may result in "silent" mutations which do not affect the amino acid sequence of the protein. However, it is expected that DNA sequence polymorphisms that do lead to changes in the amino acid sequences of the subject proteins will exist among mammalian 30 cells. One skilled in the art will appreciate that these variations in one or more nucleotides (up to about 3-5% of the nucleotides) of the nucleic acids encoding a particular protein may exist among individuals of a given species due to natural

allelic variation. Any and all such nucleotide variations and resulting amino acid polymorphisms are within the scope of this application.

Optionally, a POSH or a POSH-AP nucleic acid of the application will genetically complement a partial or complete loss of function phenotype in a cell.

5 For example, a POSH nucleic acid of the application may be expressed in a cell in which endogenous POSH has been reduced by RNAi, and the introduced POSH nucleic acid will mitigate a phenotype resulting from the RNAi. An exemplary POSH loss of function phenotype is a decrease in virus-like particle production in a cell transfected with a viral vector, optionally an HIV vector.

10 Another aspect of the application relates to POSH and POSH-AP nucleic acids that are used for antisense, RNAi or ribozymes. As used herein, nucleic acid therapy refers to administration or *in situ* generation of a nucleic acid or a derivative thereof which specifically hybridizes (e.g., binds) under cellular conditions with the cellular mRNA and/or genomic DNA encoding one of the POSH or POSH-AP polypeptides so as to inhibit production of that protein, e.g., by inhibiting transcription and/or translation. The binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix.

15 A nucleic acid therapy construct of the present application can be delivered, for example, as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of the cellular mRNA which encodes a POSH or POSH-AP polypeptide. Alternatively, the construct is an oligonucleotide which is generated *ex vivo* and which, when introduced into the cell causes inhibition of expression by hybridizing with the mRNA and/or genomic sequences encoding a POSH or POSH-AP polypeptide. Such oligonucleotide probes are optionally modified oligonucleotide which are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, and is therefore stable *in vivo*. Exemplary nucleic acid molecules for use as antisense oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also 20 U.S. Patents 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in nucleic acid therapy have been 25 30

reviewed, for example, by van der Krol et al., (1988) *Biotechniques* 6:958-976; and Stein et al., (1988) *Cancer Res* 48:2659-2668.

Accordingly, the modified oligomers of the application are useful in therapeutic, diagnostic, and research contexts. In therapeutic applications, the 5 oligomers are utilized in a manner appropriate for nucleic acid therapy in general.

In another aspect of the application, the subject nucleic acid is provided in an expression vector comprising a nucleotide sequence encoding a POSH or POSH-AP polypeptide and operably linked to at least one regulatory sequence. Regulatory sequences are art-recognized and are selected to direct expression of the POSH or 10 POSH-AP polypeptide. Accordingly, the term regulatory sequence includes promoters, enhancers and other expression control elements. Exemplary regulatory sequences are described in Goeddel; *Gene Expression Technology: Methods in Enzymology*, Academic Press, San Diego, CA (1990). For instance, any of a wide variety of expression control sequences that control the expression of a DNA 15 sequence when operatively linked to it may be used in these vectors to express DNA sequences encoding a POSH or POSH-AP polypeptide. Such useful expression control sequences, include, for example, the early and late promoters of SV40, tet promoter, adenovirus or cytomegalovirus immediate early promoter, the lac system, the trp system, the TAC or TRC system, T7 promoter whose expression is directed 20 by T7 RNA polymerase, the major operator and promoter regions of phage lambda, the control regions for fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast α -mating factors, the polyhedron promoter of the baculovirus system and other sequences known to control the expression of genes of prokaryotic 25 or eukaryotic cells or their viruses, and various combinations thereof. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other protein encoded by the vector, such as 30 antibiotic markers, should also be considered.

As will be apparent, the subject gene constructs can be used to cause expression of the POSH or POSH-AP polypeptides in cells propagated in culture,

e.g., to produce proteins or polypeptides, including fusion proteins or polypeptides, for purification.

This application also pertains to a host cell transfected with a recombinant gene including a coding sequence for one or more of the POSH or POSH-AP polypeptides. The host cell may be any prokaryotic or eukaryotic cell. For example, a polypeptide of the present application may be expressed in bacterial cells such as *E. coli*, insect cells (e.g., using a baculovirus expression system), yeast, or mammalian cells. Other suitable host cells are known to those skilled in the art. Accordingly, the present application further pertains to methods of producing the POSH or POSH-AP polypeptides. For example, a host cell transfected with an expression vector encoding a POSH polypeptide can be cultured under appropriate conditions to allow expression of the polypeptide to occur. The polypeptide may be secreted and isolated from a mixture of cells and medium containing the polypeptide. Alternatively, the polypeptide may be retained cytoplasmically and the cells harvested, lysed and the protein isolated. A cell culture includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art. The polypeptide can be isolated from cell culture medium, host cells, or both using techniques known in the art for purifying proteins, including ion-exchange chromatography, gel filtration chromatography, ultrafiltration, electrophoresis, and immunoaffinity purification with antibodies specific for particular epitopes of the polypeptide. In a preferred embodiment, the POSH or POSH-AP polypeptide is a fusion protein containing a domain which facilitates its purification, such as a POSH-GST fusion protein, POSH-intein fusion protein, POSH-cellulose binding domain fusion protein, POSH-polyhistidine fusion protein etc.

A recombinant POSH or POSH-AP nucleic acid can be produced by ligating the cloned gene, or a portion thereof, into a vector suitable for expression in either prokaryotic cells, eukaryotic cells, or both. Expression vehicles for production of a recombinant POSH or POSH-AP polypeptides include plasmids and other vectors. For instance, suitable vectors for the expression of a POSH polypeptide include plasmids of the types: pBR322-derived plasmids, pEMBL-derived plasmids, pEX-derived plasmids, pBTac-derived plasmids and pUC-derived plasmids for expression in prokaryotic cells, such as *E. coli*.

The preferred mammalian expression vectors contain both prokaryotic sequences to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells. The pcDNAI/amp, pcDNAI/neo, pRc/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, 5 pRSVneo, pMSG, pSVT7, pko-neo and pHg derived vectors are examples of mammalian expression vectors suitable for transfection of eukaryotic cells. Some of these vectors are modified with sequences from bacterial plasmids, such as pBR322, to facilitate replication and drug resistance selection in both prokaryotic and eukaryotic cells. Alternatively, derivatives of viruses such as the bovine papilloma 10 virus (BPV-1), or Epstein-Barr virus (pHEBo, pREP-derived and p205) can be used for transient expression of proteins in eukaryotic cells. Examples of other viral (including retroviral) expression systems can be found below in the description of gene therapy delivery systems. The various methods employed in the preparation of the plasmids and transformation of host organisms are well known in the art. For 15 other suitable expression systems for both prokaryotic and eukaryotic cells, as well as general recombinant procedures, see *Molecular Cloning A Laboratory Manual*, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 1989) Chapters 16 and 17. In some instances, it may be desirable to express the recombinant POSH or POSH-AP polypeptide by the use of a baculovirus 20 expression system. Examples of such baculovirus expression systems include pVL-derived vectors (such as pVL1392, pVL1393 and pVL941), pAcUW-derived vectors (such as pAcUW1), and pBlueBac-derived vectors (such as the β-gal containing pBlueBac III).

Alternatively, the coding sequences for the polypeptide can be incorporated 25 as a part of a fusion gene including a nucleotide sequence encoding a different polypeptide. This type of expression system can be useful under conditions where it is desirable, e.g., to produce an immunogenic fragment of a POSH or POSH-AP polypeptide. For example, the VP6 capsid protein of rotavirus can be used as an immunologic carrier protein for portions of polypeptide, either in the monomeric 30 form or in the form of a viral particle. The nucleic acid sequences corresponding to the portion of the POSH or POSH-AP polypeptide to which antibodies are to be raised can be incorporated into a fusion gene construct which includes coding

sequences for a late vaccinia virus structural protein to produce a set of recombinant viruses expressing fusion proteins comprising a portion of the protein as part of the virion. The Hepatitis B surface antigen can also be utilized in this role as well. Similarly, chimeric constructs coding for fusion proteins containing a portion of a 5 POSH polypeptide and the poliovirus capsid protein can be created to enhance immunogenicity (see, for example, EP Publication NO: 0259149; and Evans et al., (1989) *Nature* 339:385; Huang et al., (1988) *J. Virol.* 62:3855; and Schlienger et al., (1992) *J. Virol.* 66:2).

The Multiple Antigen Peptide system for peptide-based immunization can be 10 utilized, wherein a desired portion of a POSH or POSH-AP polypeptide is obtained directly from organo-chemical synthesis of the peptide onto an oligomeric branching lysine core (see, for example, Posnett et al., (1988) *JBC* 263:1719 and Nardelli et al., (1992) *J. Immunol.* 148:914). Antigenic determinants of a POSH or POSH-AP polypeptide can also be expressed and presented by bacterial cells.

In another embodiment, a fusion gene coding for a purification leader sequence, such as a poly-(His)/enterokinase cleavage site sequence at the N-terminus of the desired portion of the recombinant protein, can allow purification of 15 the expressed fusion protein by affinity chromatography using a Ni²⁺ metal resin. The purification leader sequence can then be subsequently removed by treatment 20 with enterokinase to provide the purified POSH or POSH-AP polypeptide (e.g., see Hochuli et al., (1987) *J. Chromatography* 411:177; and Janknecht et al., *PNAS USA* 88:8972).

Techniques for making fusion genes are well known. Essentially, the joining 25 of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated 30 DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed to

generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al., John Wiley & Sons: 1992).

Table 2: Exemplary POSH nucleic acids

<u>Sequence Name</u>	<u>Organism</u>	<u>Accession Number</u>
cDNA FLJ11367 fis, clone HEMBA1000303	Homo sapiens	AK021429
Plenty of SH3 domains (POSH) mRNA	Mus musculus	NM_021506
Plenty of SH3s (POSH) mRNA	Mus musculus	AF030131
Plenty of SH3s (POSH) mRNA	Drosophila melanogaster	NM_079052
Plenty of SH3s (POSH) mRNA	Drosophila melanogaster	AF220364

5

Table 3: Exemplary POSH polypeptides

<u>Sequence Name</u>	<u>Organism</u>	<u>Accession Number</u>
SH3 domains-containing protein POSH	Mus musculus	T09071
plenty of SH3 domains	Mus musculus	NP_067481
Plenty of SH3s; POSH	Mus musculus	AAC40070
Plenty of SH3s	Drosophila melanogaster	AAF37265
LD45365p	Drosophila melanogaster	AAK93408
POSH gene product	Drosophila melanogaster	AAF57833

Plenty of SH3s	Drosophila melanogaster	NP_523776
----------------	-------------------------	-----------

In addition the following Tables provide the nucleic acid sequence and related SEQ ID NOs for domains of human POSH protein and a summary of POSH sequence identification numbers used in this application.

5

Table 4. Nucleic Acid Sequences and related SEQ ID NOs for domains in human POSH

Name of the sequence	Sequence	SEQ ID NO.
RING domain	TGTCCGGTGTCTAGAGCGCTTGATGCTTCTGCGAAGGTCT TGCCTTGCCAGCATACTGTTTGCAAGCGATGTTGCT GGGGATCGTAGGTTCTCGAAATGAACCTCAGATGTCCCGAGT	31
1 st SH ₃ domain	CCATGTGCCAAGCGTTATACAACATGAAGGAAAAGAGCCTG GAGACCTTAATTTCAGCAAAGGCGACATCATCATTT GCGAAGACAAGTGGATGAAAATTGGTACCATGGGAAGTCAAT GGAATCCATGGCTTTCCCCACCAACTTGTGCAGA TTATT	32
2 nd SH ₃ domain	CCTCAGTGCCTAAAGCACTTTATGACTTGAAGTGAAGACAAGG AAGCAGACAAAGATTGCCTTCCATTGCAAAGGATGA TGTTCTGACTGTGATCCGAAGAGTGGATGAAAATGGCTGAA GGAATGCTGGCAGACAAAATAGGAATATTCACATT CATATGTTGAGTTAAC	33
3 rd SH ₃ domain	AGTGTGTATGTTGCTATATATCCATACACTCCTCGAAAGAGG ATGAACCTAGAGCTGAGAAAAGGGGAGATGTTTAGT GTTTGAGCGCTGCCAGGATGGCTGGTTCAAAGGGACATCCATG CATACCAGCAAGATAGGGTTTCCCTGGCAATTATG TGGCACCCAGTC	34

4 th SH ₃ domain	GAAAGGCACAGGGTGGTGGTTCCCTATCCTCCTCAGAGTGAGG CAGAACTTGAACCTAAAGAAGGAGATATTGTGTTGT TCATAAAAAACGAGAGGATGGCTGGTTCAAAGGCACATTACAA CGTAATGGGAAAATGGCCTTTCCCAGGAAGCTTG TGGAAAACA	35
---	---	----

Table 5. Summary of POSH sequence Identification Numbers

Sequence Information	Sequence Identification Number (SEQ ID NO)
Human POSH Coding Sequence	SEQ ID No: 1
Human POSH Amino Acid Sequence	SEQ ID No: 2
Human POSH cDNA Sequence	SEQ ID No: 3
5' cDNA Fragment of Human POSH	SEQ ID No: 4
N-terminus Protein Fragment of Human POSH	SEQ ID No: 5
3' mRNA Fragment of Human POSH	SEQ ID No: 6
C-terminus Protein Fragment of Human POSH	SEQ ID No: 7
Mouse POSH mRNA Sequence	SEQ ID No: 8
Mouse POSH Protein Sequence	SEQ ID No: 9
Drosophila melanogaster POSH mRNA Sequence	SEQ ID No: 10
Drosophila melanogaster POSH Protein Sequence	SEQ ID No: 11
Human POSH RING Domain Amino Acid Sequence	SEQ ID No: 26
Human POSH 1 st SH ₃ Domain Amino Acid Sequence	SEQ ID No: 27
Human POSH 2 nd SH ₃ Domain Amino Acid Sequence	SEQ ID No: 28
Human POSH 3 rd SH ₃ Domain Amino Acid Sequence	SEQ ID No: 29
Human POSH 4 th SH ₃ Domain Amino Acid Sequence	SEQ ID No: 30
Human POSH RING Domain Nucleic Acid Sequence	SEQ ID No: 31

Human POSH 1 st SH ₃ Domain Nucleic Acid Sequence	SEQ ID No: 32
Human POSH 2 nd SH ₃ Domain Nucleic Acid Sequence	SEQ ID No: 33
Human POSH 3 rd SH ₃ Domain Nucleic Acid Sequence	SEQ ID No: 34
Human POSH 4 th SH ₃ Domain Nucleic Acid Sequence	SEQ ID No: 35

8. Exemplary Polypeptides

In certain aspects, the present application relates to POSH polypeptides, which are isolated from, or otherwise substantially free of, other intracellular proteins which might normally be associated with the protein or a particular complex including the protein. In certain embodiments, POSH polypeptides have an amino acid sequence that is at least 60% identical to an amino acid sequence as set forth in any of SEQ ID Nos: 2, 5, 7, 9, 11, 26, 27, 28, 29 and 30. In other embodiments, the polypeptide has an amino acid sequence at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% identical to an amino acid sequence as set forth in any of SEQ ID Nos: 2, 5, 7, 9, 11, 26, 27, 28, 29 and 30.

In certain aspects, the application also relates to POSH-AP polypeptides (e.g., a POSH-AP provided in Table 7). Amino acid sequences of the POSH-APs listed in Table 7 are provided in Figure 36. Additional POSH-AP polypeptides are provided in Table 8. In certain embodiments, POSH-AP polypeptides have an amino acid sequence that is at least 60% identical to an amino acid sequence as set forth in Figure 36. In other embodiments, the POSH-AP polypeptide has an amino acid sequence at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% identical to an amino acid sequence as set forth in Figure 36.

Optionally, a POSH or POSH-AP polypeptide of the application will function in place of an endogenous POSH or POSH-AP polypeptide, for example by mitigating a partial or complete loss of function phenotype in a cell. For example, a POSH polypeptide of the application may be produced in a cell in which endogenous POSH has been reduced by RNAi, and the introduced POSH polypeptide will mitigate a phenotype resulting from the RNAi. An exemplary

POSH loss of function phenotype is a decrease in virus-like particle production in a cell transfected with a viral vector, optionally an HIV vector. In certain embodiments, a POSH polypeptide, when produced at an effective level in a cell, induces apoptosis.

- 5 In another aspect, the application provides polypeptides that are agonists or antagonists of a POSH or POSH-AP polypeptide. Variants and fragments of a POSH or POSH-AP polypeptide may have a hyperactive or constitutive activity, or, alternatively, act to prevent POSH or POSH-AP polypeptides from performing one or more functions. For example, a truncated form lacking one or more domain may
- 10 have a dominant negative effect.

- Another aspect of the application relates to polypeptides derived from a full-length POSH or POSH-AP polypeptide. Isolated peptidyl portions of the subject proteins can be obtained by screening polypeptides recombinantly produced from the corresponding fragment of the nucleic acid encoding such polypeptides. In addition, fragments can be chemically synthesized using techniques known in the art such as conventional Merrifield solid phase f-Moc or t-Boc chemistry. For example, any one of the subject proteins can be arbitrarily divided into fragments of desired length with no overlap of the fragments, or preferably divided into overlapping fragments of a desired length. The fragments can be produced (recombinantly or by chemical synthesis) and tested to identify those peptidyl fragments which can function as either agonists or antagonists of the formation of a specific protein complex, or more generally of a POSH:POSH-AP complex, such as by microinjection assays.

- It is also possible to modify the structure of the POSH or POSH-AP polypeptides for such purposes as enhancing therapeutic or prophylactic efficacy, or stability (e.g., ex vivo shelf life and resistance to proteolytic degradation in vivo). Such modified polypeptides, when designed to retain at least one activity of the naturally-occurring form of the protein, are considered functional equivalents of the POSH or POSH-AP polypeptides described in more detail herein. Such modified polypeptides can be produced, for instance, by amino acid substitution, deletion, or addition.

For instance, it is reasonable to expect, for example, that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid (i.e., conservative mutations) will not have a major effect on the biological activity of the resulting molecule. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids can be divided into four families (see, for example, Biochemistry, 2nd ed., Ed. by L. Stryer, W.H. Freeman and Co., 1981). Whether a change in the amino acid sequence of a polypeptide results in a functional homolog can be readily determined by assessing the ability of the variant polypeptide to produce a response in cells in a fashion similar to the wild-type protein. For instance, such variant forms of a POSH polypeptide can be assessed, e.g., for their ability to bind to another polypeptide, e.g., another POSH polypeptide or another protein involved in viral maturation. Polypeptides in which more than one replacement has taken place can readily be tested in the same manner.

This application further contemplates a method of generating sets of combinatorial mutants of the POSH or POSH-AP polypeptides, as well as truncation mutants, and is especially useful for identifying potential variant sequences (e.g., homologs) that are functional in binding to a POSH or POSH-AP polypeptide. The purpose of screening such combinatorial libraries is to generate, for example, POSH homologs which can act as either agonists or antagonist, or alternatively, which possess novel activities all together. Combinatorially-derived homologs can be generated which have a selective potency relative to a naturally occurring POSH or POSH-AP polypeptide. Such proteins, when expressed from recombinant DNA constructs, can be used in gene therapy protocols.

Likewise, mutagenesis can give rise to homologs which have intracellular half-lives dramatically different than the corresponding wild-type protein. For example, the altered protein can be rendered either more stable or less stable to proteolytic degradation or other cellular process which result in destruction of, or otherwise inactivation of the POSH or POSH-AP polypeptide of interest. Such homologs, and the genes which encode them, can be utilized to alter POSH or POSH-AP levels by modulating the half-life of the protein. For instance, a short

half-life can give rise to more transient biological effects and, when part of an inducible expression system, can allow tighter control of recombinant POSH or POSH-AP levels within the cell. As above, such proteins, and particularly their recombinant nucleic acid constructs, can be used in gene therapy protocols.

5 In similar fashion, POSH or POSH-AP homologs can be generated by the present combinatorial approach to act as antagonists, in that they are able to interfere with the ability of the corresponding wild-type protein to function.

In a representative embodiment of this method, the amino acid sequences for a population of POSH or POSH-AP homologs are aligned, preferably to promote the 10 highest homology possible. Such a population of variants can include, for example, homologs from one or more species, or homologs from the same species but which differ due to mutation. Amino acids which appear at each position of the aligned sequences are selected to create a degenerate set of combinatorial sequences. In a preferred embodiment, the combinatorial library is produced by way of a degenerate 15 library of genes encoding a library of polypeptides which each include at least a portion of potential POSH or POSH-AP sequences. For instance, a mixture of synthetic oligonucleotides can be enzymatically ligated into gene sequences such that the degenerate set of potential POSH or POSH-AP nucleotide sequences are expressible as individual polypeptides, or alternatively, as a set of larger fusion 20 proteins (e.g., for phage display).

There are many ways by which the library of potential homologs can be generated from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be carried out in an automatic DNA synthesizer, and the synthetic genes then be ligated into an appropriate gene for expression. The 25 purpose of a degenerate set of genes is to provide, in one mixture, all of the sequences encoding the desired set of potential POSH or POSH-AP sequences. The synthesis of degenerate oligonucleotides is well known in the art (see for example, Narang, SA (1983) Tetrahedron 39:3; Itakura et al., (1981) Recombinant DNA, Proc. 3rd Cleveland Sympos. Macromolecules, ed. AG Walton, Amsterdam: Elsevier pp273-289; Itakura et al., (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al., (1983) Nucleic Acid Res. 11:477). Such 30 techniques have been employed in the directed evolution of other proteins (see, for

example, Scott et al., (1990) Science 249:386-390; Roberts et al., (1992) PNAS USA 89:2429-2433; Devlin et al., (1990) Science 249: 404-406; Cwirla et al., (1990) PNAS USA 87: 6378-6382; as well as U.S. Patent Nos: 5,223,409, 5,198,346, and 5,096,815).

5 Alternatively, other forms of mutagenesis can be utilized to generate a combinatorial library. For example, POSH or POSH-AP homologs (both agonist and antagonist forms) can be generated and isolated from a library by screening using, for example, alanine scanning mutagenesis and the like (Ruf et al., (1994) Biochemistry 33:1565-1572; Wang et al., (1994) J. Biol. Chem. 269:3095-3099; 10 Balint et al., (1993) Gene 137:109-118; Grodberg et al., (1993) Eur. J. Biochem. 218:597-601; Nagashima et al., (1993) J. Biol. Chem. 268:2888-2892; Lowman et al., (1991) Biochemistry 30:10832-10838; and Cunningham et al., (1989) Science 244:1081-1085), by linker scanning mutagenesis (Gustin et al., (1993) Virology 193:653-660; Brown et al., (1992) Mol. Cell Biol. 12:2644-2652; McKnight et al., 15 (1982) Science 232:316); by saturation mutagenesis (Meyers et al., (1986) Science 232:613); by PCR mutagenesis (Leung et al., (1989) Method Cell Mol Biol 1:11-19); or by random mutagenesis, including chemical mutagenesis, etc. (Miller et al., (1992) A Short Course in Bacterial Genetics, CSHL Press, Cold Spring Harbor, NY; and Greener et al., (1994) Strategies in Mol Biol 7:32-34). Linker scanning 20 mutagenesis, particularly in a combinatorial setting, is an attractive method for identifying truncated (bioactive) forms of POSH or POSH-AP polypeptides.

A wide range of techniques are known in the art for screening gene products of combinatorial libraries made by point mutations and truncations, and, for that matter, for screening cDNA libraries for gene products having a certain property. 25 Such techniques will be generally adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of POSH or POSH-AP homologs. The most widely used techniques for screening large gene libraries typically comprises cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes 30 under conditions in which detection of a desired activity facilitates relatively easy isolation of the vector encoding the gene whose product was detected. Each of the illustrative assays described below are amenable to high through-put analysis as

necessary to screen large numbers of degenerate sequences created by combinatorial mutagenesis techniques.

In an illustrative embodiment of a screening assay, candidate combinatorial gene products of one of the subject proteins are displayed on the surface of a cell or virus, and the ability of particular cells or viral particles to bind a POSH or POSH-AP polypeptide is detected in a "panning assay". For instance, a library of POSH variants can be cloned into the gene for a surface membrane protein of a bacterial cell (Ladner et al., WO 88/06630; Fuchs et al., (1991) Bio/Technology 9:1370-1371; and Goward et al., (1992) TIBS 18:136-140), and the resulting fusion protein detected by panning, e.g., using a fluorescently labeled molecule which binds the POSH polypeptide, to score for potentially functional homologs. Cells can be visually inspected and separated under a fluorescence microscope, or, where the morphology of the cell permits, separated by a fluorescence-activated cell sorter.

In similar fashion, the gene library can be expressed as a fusion protein on the surface of a viral particle. For instance, in the filamentous phage system, foreign peptide sequences can be expressed on the surface of infectious phage, thereby conferring two significant benefits. First, since these phage can be applied to affinity matrices at very high concentrations, a large number of phage can be screened at one time. Second, since each infectious phage displays the combinatorial gene product on its surface, if a particular phage is recovered from an affinity matrix in low yield, the phage can be amplified by another round of infection. The group of almost identical *E. coli* filamentous phages M13, fd, and f1 are most often used in phage display libraries, as either of the phage gIII or gVIII coat proteins can be used to generate fusion proteins without disrupting the ultimate packaging of the viral particle (Ladner et al., PCT publication WO 90/02909; Garrard et al., PCT publication WO 92/09690; Marks et al., (1992) J. Biol. Chem. 267:16007-16010; Griffiths et al., (1993) EMBO J. 12:725-734; Clackson et al., (1991) Nature 352:624-628; and Barbas et al., (1992) PNAS USA 89:4457-4461).

The application also provides for reduction of the POSH or POSH-AP polypeptides to generate mimetics, e.g., peptide or non-peptide agents, which are able to mimic binding of the authentic protein to another cellular partner. Such mutagenic techniques as described above, as well as the thioredoxin system, are also

particularly useful for mapping the determinants of a POSH or POSH-AP polypeptide which participate in protein-protein interactions involved in, for example, binding of proteins involved in viral maturation to each other. To illustrate, the critical residues of a POSH or POSH-AP polypeptide which are involved in molecular recognition of a substrate protein can be determined and used to generate its derivative peptidomimetics which bind to the substrate protein, and by inhibiting POSH or POSH-AP binding, act to inhibit its biological activity. By employing, for example, scanning mutagenesis to map the amino acid residues of a POSH polypeptide which are involved in binding to another polypeptide, peptidomimetic compounds can be generated which mimic those residues involved in binding. For instance, non-hydrolyzable peptide analogs of such residues can be generated using benzodiazepine (e.g., see Freidinger et al., in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands, 1988), azepine (e.g., see Huffman et al., in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands, 1988), substituted gamma lactam rings (Garvey et al., in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands, 1988), keto-methylene pseudopeptides (Ewenson et al., (1986) J. Med. Chem. 29:295; and Ewenson et al., in Peptides: Structure and Function (Proceedings of the 9th American Peptide Symposium) Pierce Chemical Co. Rockland, IL, 1985), b-turn dipeptide cores (Nagai et al., (1985) Tetrahedron Lett 26:647; and Sato et al., (1986) J Chem Soc Perkin Trans 1:1231), and b-aminoalcohols (Gordon et al., (1985) Biochem Biophys Res Commun 126:419; and Dann et al., (1986) Biochem Biophys Res Commun 134:71).

The following table provides the sequences of the RING domain and the various SH3 domains of POSH.

Table 6. Amino Acid Sequences and related SEQ ID NOS for domains in human POSH

Name of the sequence	Sequence	SEQ ID NO.
RING	CPVCLERLDASAKVLPQCQHTFCKRCLLGIVGSRNELRCPEC	26

9372369_1

domain		
1 st SH ₃ domain	PCA KAL YN YEG KEP GDL KFS KG DII IL RRQ VD EN WY HGE VNG I HGF FPT NFV QII K	27
2 nd SH ₃ domain	PQ CKAL YD FEVK DKE ADK DCL PFA KDD VLTV IR RV D EN WA EGMLAD KIG IFPI SYVE FNS	28
3 rd SH ₃ domain	SV YVAI YPY TPR KEDE LE LRKG EMFL VFER CQDG WF KG TS MHT SKI GV FP GNY VAP VT	29
4 th SH ₃ domain	ER HRV VV SYP P QSE AE EL KEG DIV FV KKRE DG WF KG TL QR NGKT GL FP GS FVEN I	30

The following table provides a list of selected POSH-APs and their related SEQ ID NOs.

5 Table 7 – Selected POSH APs

Protein	Protein Sequence (SEQ ID NO:)	mRNA Sequence (SEQ ID NO:)
ARF1	223	325-339
ARF5	224	340-344
ATP6V0C	225-226	345-351
CBL-B	361; 398; 227-230	353-360
CENTB1	231-232	37-47
DDEF1	233-237	48-54
EIF3S3	238	55-57
EPS8L2	239	58-60
GOCAP1	240-243	61-68
GOSR2	244-248	69-76
HERPUD1	249-252	77-86
HLA-A	253	87-88
HLA-B	254	89
MSTP028	255-256	90-94
PACS-1	362-366	95-100
PPP1CA	261-263; 395	101-110
PRKAR1A	264-265	111-122; 396-397
PTPN12	266-268	123-129
RALA	269-270	130-134
SIAH1	271-272	135-141
SMN1	273-275	142-146
SMN2	276-280	147-151
SNX1	281-286	152-161
SNX3	287-290	162-174

Protein	Protein Sequence (SEQ ID NO:)	mRNA Sequence (SEQ ID NO:)
SRA1	291-294	175-182
SYNE1	295-307	183-201
TTC3	308-312	202-207
UBE2N	313	208-210
UNC84B	314	211-213
VCY2IP1	315-323	214-222
SPG20	386-388	367-374
WASF1	389	375-376
HIP55	390-394	377-385

Table 8 below provides a list of POSH-APs that bound POSH in a 2-hybrid assay. Nucleic acid and amino acid sequences of the POSH-APs listed in Table 8 were filed in a U.S. provisional application filed in the name of Daniel N. Taglicht, Iris Alroy, Yuval Reiss, Liora Yaar, Danny Ben-Avraham, Shmuel Tuvia, and Tsvika Greener entitled "Posh Interacting Proteins and Related Methods", filed on March 2, 2004 (Attorney Docket No. PROL-P79-024), which Provisional Application is incorporated herein by reference in its entirety.

Table 8 – POSH-APs

Protein and Variant	Protein Sequence (public gi No.)	mRNA Sequence (public gi No.)
BCL9 – var 1	4757846	4757845
BRD4 – var 1	19718731	19718730
BRD4 – var 2	7657218	7657217
DRP2 – var 1	4503393	4503392
MAP1A – var 1	21536458	21536457
SH2D2A – var 1	4503633	31543620
BAT3 – var 1	18375630	18375633
BAT3 – var 2	18375634	18375631
BAT3 – var 3	*	18375629
BCAR1 – var 1	7656924	7656923
DAP – var 1	4758120	4758119
EVPL – var 1	4503613	4503612
FLJ13231 – var 1	38604073	38604072
FL53657 – var 1	13376230	13376229
HSPC142 – var 1	7661802	7661801
LOC118987 – var 1	29789403	31341089
NAP4 – var 1	2443367	2443366

Protein and Variant	Protein Sequence (public gi No.)	mRNA Sequence (public gi No.)
RBAF600 - var 1	24416002	24416001
XTP3TPB - var 1	20070264	20070263
Hs.31535 - var 1	37546355	37546354
ASF1B - var 1	8922549	8922548
ATP5A1 - var 1	4757810	23346425
C6 or f1 - var 1	9954875	39725662
C6 or f60 - var 1	24431997	24431996
CDT1 - var 1	16418337	19923847
CIC - var 1	16507208	16507207
CLK2 - var 1	4557477	4557476
CLK2 - var 2	4502883	4502882
DNM2 - var 1	4826700	4826699
EEF1A1 - var 1	4503471	25453469
EIF4EBP1 - var 1	4758258	20070179
FLJ13479 - var 1	24432013	39725704
GC20 - var 1	5031711	5031710
GLUL - var 1	19923206	21361767
HEBP2 - var 1	7657603	7657602
ITGB- var 1	4504779	4504778
LAMA5 - var 1	21264602	21264601
LOC90987 - var 1	29734345	29734344
MRPL36 - var 1	23111040	20806105
Hs.380933 - var 1	30149441	37550602
NQO2 - var 1	4505417	4505416
PCBP1 - var 1	5453854	14141164
PCNT2 - var 1	22035674	35493922
PGD - var 1	984325	984324
RAP80 - var 1	21361593	21361592
RNH - var 1	21361547	21361546
RPL - var 1	4506597	15431291
RPS20 - var 1	4506697	14591915
RPS27A - var 1	4506713	27436941
SETDB1 - var 1	6912652	6912651
SF3A2 - var 1	21361376	32189413
UBB - var 1	11024714	22538474
ARHV - var 1	20070360	20070359
KIAA1111 - var 1	32698700	32698699
ZNF147 - var 1	4827065	15208652
PAWR - var 1	4505613	4505612
TPX2 - var 1	20127519	31542258
HSPA1B - var 1	4885431	26787974
DLG5 - var 1	3043690	3650451
DLG5 - var 2	28466997	28466996
DLG5 - var 3	3650452	16549841

Protein and Variant	Protein Sequence (public gi No.)	mRNA Sequence (public gi No.)
DLG5 - var 4	*	16807129
DLG5 - var 5	*	22539637
DLG5 - var 6	*	15929207
DLG5 - var 7	*	3043689
KIAA1598 - var 1	7023592	7023591
KIAA1598 - var 2	10047271	7018519
KIAA1598 - var 3	*	21314680
KIAA1598 - var 4	*	10047270
KIAA1598 - var 5	*	21755030
KIAA1598 - var 6	*	21755023
KIAA1598 - var 7	*	21754670
KIAA1598 - var 8	*	21750902
KIAA1598 - var 9	*	21749984
KIAA1598 - var 10	*	21749775
KIAA1598 - var 11	*	21749737
CGI-27 - var 1	7705720	23270696
CGI-27 - var 2	*	22902234
CGI-27 - var 3	*	17046302
CGI-27 - var 4	*	16553689
CGI-27 - var 5	*	10433504
CGI-27 - var 6	*	4680692
CGI-27 - var 7	*	20127543
BIA2 - var 1	5262640	5262639
BIA2 - var 2	21591225	21591224
BIA2 - var 3	*	21755615
COLIA1 - var 1	180392	407589
COLIA1 - var 2	180857	30015
COLIA1 - var 3	1418928	30092
COLIA1 - var 4	22328092	7209641
COLIA1 - var 5	762938	22328091
COLIA1 - var 6	30016	1418927
COLIA1 - var 7	407590	180856
COLIA1 - var 8	*	180391
COLIA1 - var 9	*	14719826
DKFZp761A052 - var 1	10434104	10434103
DKFZp761A052 - var 2	10439058	10439057
DKFZp761A052 - var 3	14602829	14602828
DKFZp761A052 - var 4	20380411	15079884
DKFZp761A052 - var 5	6808165	20380410
DKFZp761A052 - var 6	*	6808164
TLE1 - var 1	14603281	16041735
TLE1 - var 2	307510	14603280
TLE1 - var 3	*	307509
EGLN2 - var 1	8922130	23273571

9372369_1

Protein and Variant	Protein Sequence (public gi No.)	mRNA Sequence (public gi No.)
EGLN2 – var 2	12804603	10437903
EGLN2 – var 3	14547148	21733075
EGLN2 – var 4	18031805	21758140
EGLN2 – var 5	*	18677002
EGLN2 – var 6	*	18031804
EGLN2 – var 7	*	18141576
EGLN2 – var 8	*	14547147
EGLN2 – var 9	*	12804602
EGLN2 – var 10	*	10439822
EGLN2 – var 11	*	8922129
STC2 – var 1	3335144	3335143
STC2 – var 2	*	3702223
STC2 – var 3	*	4050037
STC2 – var 4	*	4104014
STC2 – var 5	*	13623494
STC2 – var 6	*	14042507
STC2 – var 7	*	14042032
STC2 – var 8	*	21755241
STC2 – var 9	*	21755207
STC2 – var 10	*	22761473
STC2 – var 11	*	12653744
OPTN – var 1	20149572	16550123
OPTN – var 2	21619683	3387890
OPTN – var 3	3329431	3127082
OPTN – var 4	3127083	3329430
OPTN – var 5	*	21619682
OPTN – var 6	*	18644681
OPTN – var 7	*	18644683
OPTN – var 8	*	18644685
OPTN – var 9	*	20149571
FLJ37147 – var 1	21753535	21753534
FLJ37147 – var 2	30153743	30153742
KHDRBS1 – var 1	21749696	189499
KHDRBS1 – var 2	1841747	12653852
KHDRBS1 – var 3	189500	17512262
KHDRBS1 – var 4	*	14714433
KHDRBS1 – var 5	*	1841746
KHDRBS1 – var 6	*	21749695
SLC2A1 – var 1	3387905	3387904
SLC2A1 – var 2	5730051	5730050
SLC2A1 – var 3	14268550	14268549
DKFZp434B1231 – var 1	6808117	6808116
NUMA1 – var 1	27694103	5453819
NUMA1 – var 2	35119	13278785

Protein and Variant	Protein Sequence (public gi No.)	mRNA Sequence (public gi No.)
NUMA1 - var 3	14249928	14249927
NUMA1 - var 4	13278786	15991876
NUMA1 - var 5	5453820	296118
NUMA1 - var 6	*	296119
NUMA1 - var 7	*	296120
NUMA1 - var 8	*	35118
NUMA1 - var 9	*	20073234
NUMA1 - var 10	*	22477305
NUMA1 - var 11	*	22749583
NUMA1 - var 12	*	27694102
HSPC016 - var 1	6841310	12654536
HSPC016 - var 2	12654537	6841309
HSPC016 - var 3	*	4679017
HSPC016 - var 4	*	10834763
UBC - var 1	5912028	3360475
UBC - var 2	340058	2647407
UBC - var 3	340068	24657521
UBC - var 4	14286308	21751700
UBC - var 5	15928840	21757163
UBC - var 6	16552475	21758959
UBC - var 7	*	16552474
UBC - var 8	*	15928839
UBC - var 9	*	14286307
UBC - var 10	*	12653358
UBC - var 11	*	10439801
UBC - var 12	*	340067
UBC - var 13	*	340057
UBC - var 14	*	5912027
ZFM1 - var 1	785999	785998
PIASY - var 1	14603164	3643110
PIASY - var 2	5533373	5533372
PIASY - var 3	24850133	10433892
PIASY - var 4	3643111	14603163
PIASY - var 5	*	20987516
PIASY - var 6	*	14709019
XM_208944 - var 1	30153743	30153742
J03930 - var 1	178442	178441
MT2A - var 1	187528	37120
MT2A - var 2	37121	263506
MT2A - var 3	*	13937856
MT2A - var 4	*	1495465
MT2A - var 5	*	187527
EWSR1 - var 1	7669490	21734132
EWSR1 - var 2	12653511	547565

Protein and Variant	Protein Sequence (public gi No.)	mRNA Sequence (public gi No.)
EWSR1 – var 3	15029675	21756356
EWSR1 – var 4	16552153	16551673
EWSR1 – var 5	16551674	16552152
EWSR1 – var 6	31280	15029674
EWSR1 – var 7	*	13435962
EWSR1 – var 8	*	12653510
EWSR1 – var 9	*	10439073
EWSR1 – var 10	*	7669489
MADH6 – var 1	2828712	1654326
MADH6 – var 2	2736316	20379504
MADH6 – var 3	1654327	2736315
MADH6 – var 4	*	2828711
MADH6 – var 5	*	15278059
THOC2 – var 1	20799318	10435649
THOC2 – var 2	10435650	20799317
THOC2 – var 3	*	7023224
ZNF151 – var 1	676873	2230870
ZNF151 – var 2	2230871	676872
DDX31 – var 1	10435700	14042193
DDX31 – var 2	10440004	15215272
DDX31 – var 3	20336298	16566549
DDX31 – var 4	16566550	20336297
DDX31 – var 5	15215273	20336296
DDX31 – var 6	14042194	10440003
DDX31 – var 7	*	10435699
POLR2J2 – var 1	11595478	21704271
POLR2J2 – var 2	21704274	21704270
POLR2J2 – var 3	19401711	19401710
POLR2J2 – var 4	14702175	21704273
POLR2J2 – var 5	21704272	16878085
POLR2J2 – var 6	*	11595475
POLR2J2 – var 7	*	11595477
POLR2J2 – var 8	*	11595473
BANF1 – var 1	3002951	11038645
BANF1 – var 2	4502389	13543576
BANF1 – var 3	*	14713907
BANF1 – var 4	*	3002950
BANF1 – var 5	*	4321975
BANF1 – var 6	*	3220254
CBX4 – var 1	1945453	1945452
CBX4 – var 2	15929016	2317722
CBX4 – var 3	2317723	15929015
ARIH2 – var 1	3925604	3925603
ARIH2 – var 2	9963793	3930777

Protein and Variant	Protein Sequence (public gi No.)	mRNA Sequence (public gi No.)
ARIH2 - var 3	12653307	3986675
ARIH2 - var 4	*	3986676
ARIH2 - var 5	*	3986677
ARIH2 - var 6	*	7328049
ARIH2 - var 7	*	6855602
ARIH2 - var 8	*	21749565
ARIH2 - var 9	*	33875424
ARIH2 - var 10	*	9963792
ARIH2 - var 11	*	5453556
ARIH2 - var 12	*	5817100
ARIH2 - var 13	*	3930775
SRPK2 - var 1	1857944	21752284
SRPK2 - var 2	23270876	21749007
SRPK2 - var 3	*	23270875
SRPK2 - var 4	*	1857943
SIAH2 - var 1	2673968	16549991
SIAH2 - var 2	2664283	34189635
SIAH2 - var 3	*	2664282
SIAH2 - var 4	*	2673967
KIAA0191 - var 1	27480017	29387261
KIAA0191 - var 2	1228035	10438300
KIAA0191 - var 3	29387262	1228034
KIAA0191 - var 4	*	21755057
KIAA0191 - var 5	*	27480016
KIAA0191 - var 6	*	19387907
KIAA0191 - var 7	*	15636651
KIAA0191 - var 8	*	23273514
PA1-RBP1 - var 1	5262551	22760761
PA1-RBP1 - var 2	4929579	20072477
PA1-RBP1 - var 3	12804377	17939456
PA1-RBP1 - var 4	12803339	18088243
PA1-RBP1 - var 5	14029171	16924316
PA1-RBP1 - var 6	18088244	33872286
PA1-RBP1 - var 7	22760762	14029170
PA1-RBP1 - var 8	*	33876749
PA1-RBP1 - var 9	*	12804376
PA1-RBP1 - var 10	*	4929578
PA1-RBP1 - var 11	*	4406639
PA1-RBP1 - var 12	*	5262550
FAT - var 1	2281025	1107686
FAT - var 2	1107687	15214611
FAT - var 3	*	2281024
FAT - var 4	*	598748
VCL - var 1	24657579	7669551

Protein and Variant	Protein Sequence (public gi No.)	mRNA Sequence (public gi No.)
VCL - var 2	340237	7669549
VCL - var 3	7669550	340236
VCL - var 4	*	21732673
VCL - var 5	*	15426616
VCL - var 6	*	246657578
SSR4 - var 1	15929882	30583222
SSR4 - var 2	13097213	1071680
SSR4 - var 3	*	22749791
SSR4 - var 4	*	21753447
SSR4 - var 5	*	16552704
SSR4 - var 6	*	15929881
SSR4 - var 7	*	13097212
SSR4 - var 8	*	2398656
PRDX5 - var 1	6166493	27484966
PRDX5 - var 2	6746355	9802047
PRDX5 - var 3	9802048	8745393
PRDX5 - var 4	27484967	6746354
PRDX5 - var 5	*	6563211
PRDX5 - var 6	*	6103723
PRDX5 - var 7	*	6166492
PRDX5 - var 8	*	6523288
PRDX5 - var 9	*	32455258
FLJ10120 - var 1	8922239	27469671
FLJ10120 - var 2	*	8922238
PROL4 - var 1	22208536	22208535
PROL4 - var 2	6005802	1050982
CL25084 - var 1	15341891	4406555
CL25084 - var 2	7023472	4406692
CL25084 - var 3	4406693	7023471
CL25084 - var 4	4406556	15341890
C11orf17 - var 1	22761313	21361869
C11orf17 - var 2	21105773	20149226
C11orf17 - var 3	20149225	20149224
C11orf17 - var 4	20149227	21105772
C11orf17 - var 5	21361870	21410957
C11orf17 - var 6	*	22761312
POLQ - var 1	3510695	13892060
POLQ - var 2	4163931	13892060
POLQ - var 3	13892061	4163930
POLQ - var 4	*	3510694
MBD2 - var 1	3170202	3800812
MBD2 - var 2	3800801	5817231
MBD2 - var 3	7710145	21595775
MBD2 - var 4	21595776	21464120

Protein and Variant	Protein Sequence (public gi No.)	mRNA Sequence (public gi No.)
MBD2 - var 5	*	21464121
MBD2 - var 6	*	3800800
MBD2 - var 7	*	3800792
MBD2 - var 8	*	3170201
FSTL1 - var 1	12658309	536897
FSTL1 - var 2	12652619	16924272
FSTL1 - var 3	*	33990756
FSTL1 - var 4	*	12658308
FSTL1 - var 5	*	10438502
FSTL1 - var 6	*	4884472

* denotes a polypeptide sequence that can be deduced from the corresponding mRNA sequence.

5

9. Effective Dose

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining The LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the application, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal

inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

5 10. Formulation and Use

Pharmaceutical compositions for use in accordance with the present application may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. Thus, the compounds and their physiologically acceptable salts and solvates may be formulated for administration 10 by, for example, injection, inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.

An exemplary composition of the application comprises an RNAi mixed with a delivery system, such as a liposome system, and optionally including an acceptable excipient. In a preferred embodiment, the composition is formulated for 15 topical administration for, e.g., herpes virus infections.

For such therapy, the compounds of the application can be formulated for a variety of loads of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, Meade Publishing Co., Easton, PA. For 20 systemic administration, injection is preferred, including intramuscular, intravenous, intraperitoneal, and subcutaneous. For injection, the compounds of the application can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the compounds may be formulated in solid form and redissolved or suspended immediately prior to 25 use. Lyophilized forms are also included.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be

coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., ationd oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound. For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner. For administration by inhalation, the compounds for use according to the present application are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the compounds may 5 also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for 10 example, as a sparingly soluble salt.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. 15 Transmucosal administration may be through nasal sprays or using suppositories. For topical administration, the oligomers of the application are formulated into ointments, salves, gels, or creams as generally known in the art. A wash solution can be used locally to treat an injury or inflammation to accelerate healing.

20 The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

For therapies involving the administration of nucleic acids, the oligomers of 25 the application can be formulated for a variety of modes of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, Meade Publishing Co., Easton, PA. For systemic administration, injection is preferred, including intramuscular, intravenous, intraperitoneal, intranodal, and subcutaneous 30 for injection, the oligomers of the application can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the oligomers may be formulated in solid form and

redissolved or suspended immediately prior to use. Lyophilized forms are also included.

Systemic administration can also be by transmucosal or transdermal means, or the compounds can be administered orally. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration may be through nasal sprays or using suppositories. For oral administration, the oligomers are formulated into conventional oral administration forms such as capsules, tablets, and tonics. For topical administration, the oligomers of the application are formulated into ointments, salves, gels, or creams as generally known in the art.

The application now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present application, and are not intended to limit the application.

EXAMPLES

Example 1. Role of POSH in virus-like particle (VLP) budding

1. Objective:

Use RNAi to inhibit POSH gene expression and compare the efficiency of viral budding and GAG expression and processing in treated and untreated cells.

2. Study Plan:

HeLa SS-6 cells are transfected with mRNA-specific RNAi in order to knockdown the target proteins. Since maximal reduction of target protein by RNAi is achieved after 48 hours, cells are transfected twice – first to reduce target mRNAs, and subsequently to express the viral Gag protein. The second transfection is performed with pNLenv (plasmid that encodes HIV) and with low amounts of RNAi to maintain the knockdown of target protein during the time of gag expression and

budding of VLPs. Reduction in mRNA levels due to RNAi effect is verified by RT-PCR amplification of target mRNA.

3. Methods, Materials, Solutions

a. Methods

5 i. Transfections according to manufacturer's protocol and as described in procedure.

ii. Protein determined by Bradford assay.

iii. SDS-PAGE in Hoeffer miniVE electrophoresis system. Transfer in Bio-Rad mini-protean II wet transfer system. Blots visualized using Typhoon system, and ImageQuant software (ABbiotech)

10 b. Materials

Material	Manufacturer	Catalog #	Batch #
Lipofectamine 2000 (LF2000)	Life Technologies	11668-019	1112496
OptiMEM	Life Technologies	31985-047	3063119
RNAi Lamin A/C	Self	13	
RNAi TSG101 688	Self	65	
RNAi Posh 524	Self	81	
plenvl1 PTAP	Self	148	
plenvl1 ATAP	Self	149	
Anti-p24 polyclonal antibody	Seramun		A-0236/5-10-01
Anti-Rabbit Cy5 conjugated antibody	Jackson	144-175-115	48715
10% acrylamide Tris-Glycine SDS-PAGE gel	Life Technologies	NP0321	1081371
Nitrocellulose membrane	Schleicher & Schuell	401353	BA-83
NuPAGE 20X transfer buffer	Life Technologies	NP0006-1	224365
0.45µm filter	Schleicher &	10462100	CS1018-1

	Schuell		
--	---------	--	--

c. Solutions

Lysis Buffer	Compound	Concentration
	Tris-HCl pH 7.6	50mM
	MgCl ₂	15mM
	NaCl	150mM
	Glycerol	10%
	EDTA	1mM
	EGTA	1mM
	ASB-14 (add immediately before use)	1%
6X Sample Buffer	Tris-HCl, pH=6.8	1M
	Glycerol	30%
	SDS	10%
	DTT	9.3%
	Bromophenol Blue	0.012%
TBS-T	Tris pH=7.6	20mM
	NaCl	137mM
	Tween-20	0.1%

4. Procedure

5 a. Schedule

Day				
1	2	3	4	5
Plate cells	Transfection I (RNAi only)	Passage cells (1:3)	Transfection II (RNAi and pNlenv) (12:00, PM)	Extract RNA for RT-PCR (post transfection)

			Extract RNA for RT-PCR (pre-transfection)	Harvest VLPs and cells
--	--	--	---	------------------------

b. Day 1

Plate HeLa SS-6 cells in 6-well plates (35mm wells) at concentration of 5×10^5 cells/well.

5 c. Day 2

2 hours before transfection replace growth medium with 2 ml growth medium without antibiotics.

Transfection I:

Reaction	RNAi name	TAGDA#	Reactions	RNAi [nM]	RNAi	A	B
					[20μM]	OPTiMEM	LF2000 mix
1	Lamin A/C	13	2	50	12.5	500	500
2	Lamin A/C	13	1	50	6.25	250	250
3	TSG101 688	65	2	20	5	500	500
5	Posh 524	81	2	50	12.5	500	500

10 Transfections:

Prepare LF2000 mix: 250 μl OptiMEM + 5 μl LF2000 for each reaction. Mix by inversion, 5 times. Incubate 5 minutes at room temperature.

15 Prepare RNA dilution in OptiMEM (Table 1, column A). Add LF2000 mix dropwise to diluted RNA (Table 1, column B). Mix by gentle vortex. Incubate at room temperature 25 minutes, covered with aluminum foil.

Add 500 μl transfection mixture to cells dropwise and mix by rocking side to side.

Incubate overnight.

d. Day 3

20 Split 1:3 after 24 hours. (Plate 4 wells for each reaction, except reaction 2 which is plated into 3 wells.)

e. Day 4

9372369_1

2 hours pre-transfection replace medium with DMEM growth medium without antibiotics.

Transfection II

RNAi name	TAG DA#	Plasmid	Reaction for 2.4 µg #	RNAi			
				Plasmid	[20µM] for 10nM	C	D
				(µl)	(µl)	OptiMEM (µl)	LF2000 mix (µl)
Lamin				3.4			
A/C	13	PTAP	3		3.75	750	750
Lamin				2.5			
A/C	13	ATAP	3		3.75	750	750
TSG101				3.4			
688	65	PTAP	3		3.75	750	750
Posh 524	81	PTAP	3	3.4	3.75	750	750

- 5 Prepare LF2000 mix: 250 µl OptiMEM + 5 µl LF2000 for each reaction. Mix by inversion, 5 times. Incubate 5 minutes at room temperature.
 Prepare RNA+DNA diluted in OptiMEM (Transfection II, A+B+C)
 Add LF2000 mix (Transfection II, D) to diluted RNA+DNA dropwise, mix by gentle vortex, and incubate 1h while protected from light with aluminum foil.
- 10 Add LF2000 and DNA+RNA to cells, 500µl/well, mix by gentle rocking and incubate overnight.
- f. Day 5
- 15 Collect samples for VLP assay (approximately 24 hours post-transfection) by the following procedure (cells from one well from each sample is taken for RNA assay, by RT-PCR).
- g. Cell Extracts
- i. Pellet floating cells by centrifugation (5min, 3000 rpm at 4 °C), save supernatant (continue with supernatant immediately to step h), scrape remaining cells in the medium which remains in the well, add to the corresponding floating cell pellet and centrifuge for 5 minutes, 1800rpm at 4°C.
- 20

- ii. Wash cell pellet twice with ice-cold PBS.
 - iii. Resuspend cell pellet in 100 µl lysis buffer and incubate 20 minutes on ice.
 - iv. Centrifuge at 14,000 rpm for 15 min. Transfer supernatant to a clean tube. This is the cell extract.
- 5
- v. Prepare 10 µl of cell extract samples for SDS-PAGE by adding SDS-PAGE sample buffer to 1X, and boiling for 10 minutes. Remove an aliquot of the remaining sample for protein determination to verify total initial starting material. Save remaining cell extract at -80 °C.
- 10 h. Purification of VLPs from cell media
 - i. Filter the supernatant from step g through a 0.45m filter.
 - ii. Centrifuge supernatant at 14,000 rpm at 4 °C for at least 2 h.
 - iii. Aspirate supernatant carefully.
 - iv. Re-suspend VLP pellet in hot (100 °C warmed for 10 min at least) 1X sample buffer.
 - v. Boil samples for 10 minutes, 100 °C.

15 i. Western Blot analysis
 - i. Run all samples from stages A and B on Tris-Glycine SDS-PAGE 10% (120V for 1.5 h).
 - ii. Transfer samples to nitrocellulose membrane (65V for 1.5 h).
 - iii. Stain membrane with ponceau S solution.
 - iv. Block with 10% low fat milk in TBS-T for 1 h.
 - v. Incubate with anti p24 rabbit 1:500 in TBS-T o/n.
 - vi. Wash 3 times with TBS-T for 7 min each wash.

20 vii. Incubate with secondary antibody anti rabbit cy5 1:500 for 30 min.

25 viii. Wash five times for 10 min in TBS-T.

ix. View in Typhoon gel imaging system (Molecular Dynamics/APBiotech) for fluorescence signal.

Results are shown in Figures 11-13.

30

Example 2. Exemplary POSH RT-PCR primers and siRNA duplexes

RT-PCR primers

9372369_1

	Name	Position	Sequence
Sense primer	POSH=271	271	5' CTTGCCTGCCAGCATA 3' (SEQ ID NO:12)
Anti-sense primer	POSH=926c	926C	5' CTGCCAGCATTCCCTCAG 3' (SEQ ID NO:13)

siRNA duplexes:

siRNA No:	153	
siRNA Name:	POSH-230	
5 Position in mRNA	426-446	
Target sequence:	5' AACAGAGGCCTTGGAAACCTG 3'	SEQ ID NO: 14
siRNA sense strand:	5' dTdTCAGAGGCCUUGGAAACCUG 3'	SEQ ID NO: 15
siRNA anti-sense strand:	5'dTdTCAGGUUUCCAAGGCCUCUG 3'	SEQ ID NO: 16
10 siRNA No:	155	
siRNA Name:	POSH-442	
Position in mRNA	638-658	
Target sequence:	5' AAAGAGCCTGGAGACCTTAAA 3'	SEQ ID NO: 17
siRNA sense strand:	5' ddTdTAGAGCCUGGAGACCUUAAA 3'	SEQ ID NO: 18
15 siRNA anti-sense strand:	5' ddTdTUUAAGGUCUCCAGGCUCU 3'	SEQ ID NO: 19
siRNA No:	157	
siRNA Name:	POSH-U111	
Position in mRNA	2973-2993	
20 Target sequence:	5' AAGGATTGGTATGTGACTCTG 3'	SEQ ID NO: 20
siRNA sense strand:	5' dTdTGGAUUGGU AUGUGACUCUG 3'	SEQ ID NO: 21
siRNA anti-sense strand:	5' dTdTCAGAGUCACAUACCAAUCC 3'	SEQ ID NO: 22
siRNA No:	159	
25 siRNA Name:	POSH-U410	
Position in mRNA	3272-3292	
Target sequence:	5' AAGCTGGATTATCTCCTGTTG 3'	SEQ ID NO: 23
siRNA sense strand:	5' ddTdTGCUGGAUUA UCUCCUGUUG 3'	SEQ ID NO: 24

siRNA anti-sense strand: 5' ddTdTCAACAGGAG AUAAUCCAGC 3' SEQ ID NO: 25

siRNA-No.: 187
siRNA Name: POSH-control
5 Position in mRNA: None. Reverse to #153
Target sequence: 5' AAGTCCAAAGGTTCCGGAGAC 3' SEQ ID
NO: 36

3. Knock-down of hPOSH entraps HIV virus particles in intracellular vesicles.

10 HIV virus release was analyzed by electron microscopy following siRNA and full-length HIV plasmid (missing the envelope coding region) transfection. Mature viruses were secreted by cells transfected with HIV plasmid and non-relevant siRNA (control, lower panel). Knockdown of Tsg101 protein resulted in a budding defect, the viruses that were released had an immature phenotype (upper panel). Knockdown of hPOSH levels resulted in accumulation of viruses inside the cell in intracellular vesicles (middle panel). Results, shown in Figure 28, indicate that inhibiting hPOSH entraps HIV virus particles in intracellular vesicles. As accumulation of HIV virus particles in the cells accelerate cell death, inhibition of hPOSH therefore destroys HIV reservoir by killing cells infected with HIV.

20

Example 4. In-vitro assay of Human POSH self-ubiquitination

Recombinant hPOSH was incubated with ATP in the presence of E1, E2 and ubiquitin as indicated in each lane. Following incubation at 37 °C for 30 minutes, reactions were terminated by addition of SDS-PAGE sample buffer. The samples were subsequently resolved on a 10% polyacrylamide gel. The separated samples were then transferred to nitrocellulose and subjected to immunoblot analysis with an anti ubiquitin polyclonal antibody. The position of migration of molecular weight markers is indicated on the right.

30 Poly-Ub: Ub-hPOSHconjugates, detected as high molecular weight adducts only in reactions containing E1, E2 and ubiquitin. hPOSH-176 and hPOSH-178 are a short

and a longer derivatives (respectively) of bacterially expressed hPOSH; C, control E3.

Preliminary steps in a high-throughput screen

Materials

- 5 1. E1 recombinant from baculovirus
 2. E2 Ubch5c from bacteria
 3. Ubiquitin
 4. POSH #178 (1-361) GST fusion-purified but degraded
 5. POSH # 176 (1-269) GST fusion-purified but degraded
 - 10 6. hsHRD1 soluble ring containing region
 5. Bufferx12 (Tris 7.6 40 mM, DTT 1mM, MgCl₂ 5mM, ATP 2uM)
 6. Dilution buffer (Tris 7.6 40mM, DTT 1mM, ovalbumin 1ug/ul)
- protocol

	0.1ug/ul	0.5ug/ul	5ug/ul	0.4ug/ul	2.5ug/u/	0.8ug/ul	
	E1	E2	Ub	176	178	Hrd1	Bx12
-E1 (E2+176)	-----	0.5	0.5	1	-----	-----	10
-E2 (E1+176)	1	-----	0.5	1	-----	-----	9.5
-ub (E1+E2+176)	1	0.5	-----	1	-----	-----	9.5
E1+E2+176+Ub	1	0.5	0.5	1	-----	-----	9
-E1 (E2+178)	-----	0.5	0.5	-----	1	-----	10
-E2 (E1+178)	1	-----	0.5	-----	1	-----	9.5
-ub (E1+E2+178)	1	0.5	-----	-----	1	-----	9.5
E1+E2+178+Ub	1	0.5	0.5	-----	1	-----	9
Hrd1, E1+E2+Ub	1	0.5	0.5	-----	-----	1	8.5

*

- 15 1. Incubate for 30 minutes at 37 °C.
2. Run 12% SDS PAGE gel and transfer to nitrocellulose membrane
3. Incubate with anti-Ubiquitin antibody.

Results, shown in Figure 19, demonstrate that human POSH has ubiquitin ligase activity.

Example 5. Co-immunoprecipitation of hPOSH with myc-tagged activated (V12) and dominant-negative (N17) Rac1

HeLa cells were transfected with combinations of myc-Rac1 V12 or N17 and hPOSHdelRING-V5. 24 hours after transfection (efficiency 80% as measured by GFP) cells were collected, washed with PBS, and swollen in hypotonic lysis buffer (10 mM HEPES pH=7.9, 15 mM KCl, 0.1 mM EDTA, 2 mM MgCl₂, 1 mM DTT, and protease inhibitors). Cells were lysed by 10 strokes with dounce homogenizer and centrifuged 3000xg for 10 minutes to give supernatant (Fraction 1) and nuclei. Nuclei were washed with Fraction 2 buffer (0.2% NP-40, 10 mM HEPES pH=7.9, 10 mM KCl, 5% glycerol) to remove peripheral proteins. Nuclei were spun-down and supernatant collected (Fraction 2). Nuclear proteins were eluted in Fraction 3 buffer (20 mM HEPES pH=7.9, 0.42 M KCl, 25% glycerol, 0.1 mM EDTA, 2 mM MgCl₂, 1 mM DTT) by rotating 30 minutes in cold. Insoluble proteins were spun-down 14000xg and solubilized in Fraction 4 buffer (1% Fos-Choline 14, 50 mM HEPES pH=7.9; 150 mM NaCl, 10% glycerol, 1mM EDTA, 1.5 mM MgCl₂, 2 mM DTT). Half of the total extract was pre-cleared against Protein A sepharose for 1.5 hours and used for IP with 1 µg anti-myc (9E10, Roche 1-667-149) and Protein A sepharose for 2 hours. Immune complexes were washed extensively, and eluted in SDS-PAGE sample buffer. Gels were run, and proteins electro-transferred to nitrocellulose for immunoblot as in Figure 20. Endogenous POSH and transfected hPOSHdelRING-V5 are precipitated as a complex with Myc-Rac1 V12/N17. Results, shown in Figure 20, demonstrate that POSH co-immunoprecipitates with Rac1.

25 Example 6. POSH reduction results in decreased secretion of phospholipase D (PLD)

HeLa SS6 cells (two wells of 6-well plate) were transfected with POSH siRNA or control siRNA (100 nM). 24 hours later each well was split into 5 wells of a 24-well plate. The next day cells were transfected again with 100 nM of either POSH siRNA or control siRNA. The next day cells were washed three times with 1xPBS and than 0.5 ml of PLD incubation buffer (118 mM NaCl, 6 mM KCl, 1 mM

CaCl₂, 1.2 mM MgSO₄, 12.4 mM HEPES, pH7.5 and 1% fatty acid free bovine serum albumin) were added.

48 hours later medium was collected and centrifuged at 800xg for 15 minutes. The medium was diluted with 5xPLD reaction buffer (Amplex red PLD kit) and assayed for PLD by using the Amplex Red PLD kit (Molecular probes, A-12219). The assay results were quantified and presented below in as a bar graph. The cells were collected and lysed in 1% Triton X-100 lysis buffer (20 mM HEPES-NaOH, pH 7.4, 150 mM NaCl, 1.5 mM MgCl₂, 1 mM EDTA, 1% Triton X-100 and 1x protease inhibitors) for 15 minutes on ice. Lysates were cleared by centrifugation and protein concentration was determined. There were equal protein concentrations between the two transfectants. Equal amount of extracts were immunoprecipitated with anti-POSH antibodies, separated by SDS-PAGE and immunoblotted with anti-POSH antibodies to assess the reduction of POSH levels. There was approximately 40% reduction in POSH levels (Figure 21).

15

Example 7. Effect of hPOSH on Gag-EGFP intracellular distribution

HeLa SS6 were transfected with Gag-EGFP, 24 hours after an initial transfection with either hPOSH-specific or scrambled siRNA (control) (100nM) or with plasmids encoding either wild type hPOSH or hPOSH C(12,55)A. Fixation and staining was performed 5 hours after Gag-EGFP transfection. Cells were fixed, stained with Alexa fluor 647-conjugated Concanavalin A (ConA) (Molecular Probes), permeabilized and then stained with sheep anti-human TGN46. After the primary antibody incubation cells were incubated with Rhodamin-conjugated goat anti-sheep. Laser scanning confocal microscopy was performed on LSM510 confocal microscope (Zeiss) equipped with Axiovert 100M inverted microscope using x40 magnification and 1.3-numerical-aperture oil-immersion lens for imaging. For co-localization experiments, 10 optical horizontal sections with intervals of 1 μ m were taken through each preparation (Z-stack). A single median section of each preparation is shown. See Figure 22.

30

Example 8. POSH-Regulated Intracellular Transport of Myristoylated Proteins

The localization of myristoylated proteins, Gag (see Figure 22), HIV-1 Nef, Src and Rapsyn, in cells depleted of hPOSH were analyzed by immunofluorescence. In control cells, HIV-1 Nef was found in a perinuclear region co-localized with hPOSH, indicative of a TGN localization (Figure 23). When hPOSH expression was 5 reduced by siRNA treatment, Nef expression was weaker relative to control and nef lost its TGN, perinuclear localization. Instead it accumulated in punctated intracellular loci segregated from the TGN.

Src is expressed at the plasma membrane and in intracellular vesicles, which are found close to the plasma membrane (Figure 24, H187 cells). However, when 10 hPOSH levels were reduced, Src was dispersed in the cytoplasm and loses its plasma membrane proximal localization detected in control (H187) cells (Figure 24, compare H153-1 and H187-2 panels).

Rapsyn, a peripheral membrane protein expressed in skeletal muscle, plays a critical role in organizing the structure of the nicotinic postsynaptic membrane 15 (Sanes and Lichtman, Annu. Rev. Neurosci. 22: 389-442 (1999)). Newly synthesized Rapsyn associates with the TGN and then transported to the plasma membrane (Marchand et al., J. Neurosci. 22: 8891-01 (2002)). In hPOSH-depleted cells (H153-1) Rapsyn was dispersed in the cytoplasm, while in control cells it had a punctuated pattern and plasma membrane localization, indicating that hPOSH 20 influences its intracellular transport (Figure 25).

Materials and Methods Used:

- Antibodies:

Src antibody was purchased from Oncogene research products(Darmstadt, 25 Germany). Nef antibodies were purchased from ABI (Columbia, MA) and Fitzgerald Industries International (Concord, MA). Alexa Fluor conjugated antibodies were purchased from Molecular Probes Inc. (Eugene, OR).

hPOSH antibody: Glutathione S-transferase (GST) fusion plasmids were constructed by PCR amplification of hPOSH codons 285-430. The amplified PCR 30 products was cloned into pGEX-6P-2 (Amersham Pharmacia Biotech, Buckinghamshire, UK). The truncated hPOSH protein was generated in *E. coli*

BL21. Bacterial cultures were grown in LB media with carbenicillin (100 µg/ml) and recombinant protein production was induced with 1 mM IPTG for 4 hours at 30 °C. Cells were lysed by sonication and the recombinant protein was then isolated from the cleared bacterial lysate by affinity chromatography on a glutathione-sepharose resin (Amersham Pharmacia Biotech, Buckinghamshire, UK). The hPOSH portion of the fusion protein was then released by incubation with PreScission protease (Amersham Pharmacia Biotech, Buckinghamshire, UK) according to the manufacturer's instructions and the GST portion was then removed by a second glutathione-sepharose affinity chromatography. The purified partial hPOSH polypeptide was used to immunize New Zealand white rabbits to generate antibody 15B (Washington Biotechnology, Baltimore, Maryland).

• Construction of siRNA retroviral vectors:

hPOSH scrambled oligonucleotide (5'- CACACACTGCCG TCAACT GTTCAAGAGAC AGTTGACGGCAGTGTGTGTTTTT -3'; and 5'- AATTAAAAAACACA CACTGCCGTCAACTGTC TCTTGAACAGTTGA CGGCAGTGTGTGGGCC -3') were annealed and cloned into the ApaI-EcoRI digested pSilencer 1.0-US (Ambion) to generate pSIL-scrambled. Subsequently, the U6-promoter and RNAi sequences were digested with BamHI, the ends filled in and the insert cloned into the Olil site in the retroviral vector, pMSVhyg (Clontech), generating pMSCVhyg-U6-scrambled. hPOSH oligonucleotide encoding RNAi against hPOSH (5'-AACAGAGGCCTGGAAA CCTGGAAGC TTGCAGGTT CCAAGGCCTCTGTT -3'; and 5'- GATCACACAGAG GCCTTGAAACCTGC AAGCTTCCAGGTTCAA GGCCTCTGTT -3') were annealed and cloned into the BamHI-EcoRI site of pLIT-U6, generating pLIT-U6 hPOSH-230. pLIT-U6 is an shRNA vector containing the human U6 promoter (amplified by PCR from human genomic DNA with the primers, 5'-GGCCCCTAGTCA AGGTGCG GGCA GGAAGA- 3' and 5'- GCCGAATT CAAAAAGGATC CGGCGATATCCGG TGTTTCGTCTTCCA -3') cloned into pLITMUS38 (New England Biolabs) digested with SpeI-EcoRI. Subsequently, the U6 promoter-hPOSH shRNA (pLIT-U6 hPOSH-230 digested with SnaBI and PvuI) was cloned into the Olil site of pMSVhyg (Clontech), generating pMSCVhyg U6-hPOSH-230.

- Generation of stable clones:

HEK 293T cells were transfected with retroviral RNAi plasmids (pMSCVhyg-U6-POSH-230 and pMSCVhyg-U6-scrambled and with plasmids encoding VSV-G and moloney gag-pol. Two days post transfection, medium containing retroviruses was collected and filtered and polybrene was added to a final concentration of 8 µg/ml. This was used to infect HeLa SS6 cells grown in 60 mm dishes. Forty-eight hours post-infection cells were selected for RNAi expression by the addition of hygromycin to a final concentration of 300 µg/ml. Clones expressing RNAi against hPOSH were named H153, clones expressing scrambled RNAi were 10 named H187.

- Transfection and immunofluorescent analysis:

Gag-EGFP experiments are described in Figure 22.

H153 or H187 cells were transfected with Src or Rapsyn-GFP (Image clone image: 3530551 or pNLenv-1). Eighteen hours post transfection cells were washed 15 with PBS and incubated on ice with Alexa Fluor 647 conjugated Con A to label plasma membrane glycoproteins. Subsequently cells were fixed in 3% paraformaldehyde, blocked with PBS containing 4% bovine serum albumin and 1% gelatin. Staining with rabbit anti-Src, rabbit anti-hPOSH (15B) or mouse anti-nef was followed with secondary antibodies as indicated.

20 Laser scanning confocal microscopy was performed on LSM510 confocal microscope (Zeiss) equipped with Axiovert 100M inverted microscope using x40 magnification and 1.3-numerical-aperture oil-immersion lens for imaging. For co-localization experiments, 10 optical horizontal sections with intervals of 1 µm were taken through each preparation (Z-stack). A single median section of each 25 preparation is shown.

Example 9. POSH Reduction by siRNA Abrogates West Nile Virus ("WNV")

Infectivity.

HeLa SS6 cells were transfected with either control or POSH-specific 30 siRNA. Cells were subsequently infected with WNV (4×10^4 PFU/well). Viruses

were harvested 24 hours and 48 hours post-infection, serially diluted, and used to infect Vero cells. As a control WNV (4×10^4 PFU/well), that was not passed through HeLa SS6 cells, was used to infect Vero cells. Virus titer was determined by plaque assay in Vero cells.

5 Virus titer was reduced by 2.5-log in cells treated with POSH-specific siRNA relative to cells transfected with control siRNA, thereby indicating that WNV requires POSH for virus secretion. See Figure 26.

Experimental Procedure:

- 10 • Cell culture, transfections and infection:
Hela SS6 cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% heat-inactivated fetal calf serum and 100 units/ml penicillin and 100 µg/ml streptomycin. For transfections, HeLa SS6 cells were grown to 50% confluence in DMEM containing 10% FCS without antibiotics. Cells
15 were then transfected with the relevant double-stranded siRNA (100 nM) using lipofectamin 2000 (Invitrogen, Paisley, UK). On the day following the initial transfection, cells were split 1:3 in complete medium and transfected with a second portion of double-stranded siRNA (50 nM). Six hours post-transfection medium was replaced and cells infected with WNV (4×10^4 PFU/well). Medium was collected
20 from infected HeLa SS6 cells twenty-four and forty-eight post-infection (200 µl), serially diluted, and used to infect Vero cells. Virus titer was determined by plaque assay (Ben-Nathan D, Lachmi B, Lustig S, Feuerstien G (1991) Protection of dehydroepiandrosterone (DHEA) in mice infected with viral encephalitis. Arch Viro; 120, 263-271).

25 Example 10. Analysis of the effects of POSH knockdown on M-MuLV expression and budding

Experimental Protocol:

Transfections:-

30 A day before transfection, Hela SS6 cells were plated in two 6 wells plates at 5×10^5 cells per well. 24 hours later the following transfections were performed: 4 wells were transfected with control siRNA and a plasmid encoding MMuLV.

4 wells were transfected with POSH siRNA and a plasmid encoding MMuLV.

1 well was a control without any siRNA or DNA transfected.

1 well was transfected with a plasmid encoding MMuLV.

For each well to be transfected 100 nM (12.5 µl) POSH siRNA or 100 nM (12.5 µl) control siRNA were diluted in 250 µl Opti-MEM (Invitrogen).

Lipofectamin 2000 (5 µl) (Invitrogen, Cat. 11668-019) was mixed with 250 µl of OptiMEM per transfected well. The diluted siRNA was mixed with the lipofectamin 2000 mix and the solution incubated at room temperature for 30 min. The mixture was added directly to each well containing 2 ml DMEM +10% FBS (w/o

10 antibiotics).

24 hours later, four wells of the same siRNA treatment were split to eight wells, and two wells without siRNA were split to four wells.

24 hours later all wells were transfected with 100 nM control siRNA or 100 nM POSH siRNA with or without a plasmid encoding MMuLV (see table below).

15 48 hours later virions and cells were harvested.

No of wells	RNAi	Amount of RNAi (µl) per well	Amount of DNA (µg) per well	The volume of DNA (µl) per well	Application
5	POSH 100 nM (1 st and 2 nd transfection)	12.5	MMuLV (2 µg)	10	4 wells for VLPs assay and 1 well for RT
5	Control 100 nM (1 st and 2 nd transfection)	12.5	MMuLV (2 µg)	10	4 wells for VLPs assay and 1 well for RT
1	-	-	-	10 µl H ₂ O	VLPs assay
1	-	-	MMuLV (2 µg)	10	VLPs assay

Steady state VLP assay

Cell extracts:-

- 20 1. Pellet floating cells by centrifugation (10 min, 500xg at 4 °C), save supernatant (continued at step 7), wash cells once, scrape cells in ice-cold 1xPBS, add to the corresponding cell pellet and centrifuge for 5 min 1800 rpm at 4 °C.
2. Wash cell pellet once with ice-cold 1xPBS.

3. Resuspend cell pellet in 150 µl 1% Triton X-100 lysis buffer (20 mM HEPES-NaOH, pH 7.4, 150 mM NaCl, 1.5 mM MgCl₂, 1 mM EDTA, 1% Triton X-100 and 1x protease inhibitors) and incubate 20 minutes on ice.
4. Centrifuge at 14,000rpm for 15 min. Transfer supernatant to a clean tube.
5. Determine protein concentration by BCA.
6. Prepare samples for SDS-PAGE by adding 2 µl of 6xSB to 20 µg extract (add lysis buffer to a final volume of 12 µl), heat to 80 °C for 10 min.

Purification of virions from cell media

7. Filtrate the supernatant through a 0.45 µm filter.
8. Transfer 1500 µl of virions fraction to an ultracentrifuge tube (swinging rotor).
9. Add 300 µl of fresh sucrose cushion (20% sucrose in TNE) to the bottom of the tube.
10. Centrifuge supernatant at 35000 rpm at 4 °C for 2 hr.
11. Resuspend virion pellet in 50 µl hot 1x sample buffer each (samples 153-1, 2, 3, 187-1, 2, 3). Resuspend VLPs pellet (153-4, 5 and 187 4, 5) in 25 µl hot 1x sample buffer. Vortex shortly, transfer to an eppendorf tube, unite VLPs from wells 153-4+5 and 187- 4+5. Heat to 80 °C for 10 min.
12. Load equal amounts of VLPs relatively to cells extracts amounts.

Western Blot analysis

1. Separate all samples on 12% SDS-PAGE.
2. Transfer samples to nitrocellulose membrane (100V for 1.15 hr).
3. Dye membrane with ponceau solution.
4. Block with 10% low fat milk in TBS-T for 1 hour.
5. Incubate membranes with Goat anti p30 (81S-263) (1:5000) in 10% low fat milk in TBS-T over night at 4 °C. Incubate with secondary antibody rabbit anti goat-HRP 1:8000 for 60 min at room temperature.
6. Detect signal by ECL reaction.
7. Following the ECL detection incubate membranes with Donkey anti rabbit Cy3 (Jackson Laboratories, Cat 711-165-152) 1:500 and detect signal by Typhoon scanning and quantitate.

Results:

As shown in Figure 27, POSH knockdown decreases the release of extracellular MMuLV particles.

5

Example 11. POSH Protein-protein interactions by yeast two hybrid assay

POSH-associated proteins were identified by using a yeast two-hybrid assay.

Procedure:

Bait plasmid (GAL4-BD) was transformed into yeast strain AH109
10 (Clontech) and transformants were selected on defined media lacking tryptophan. Yeast strain Y187 containing pre-transformed Hela cDNA prey (GAL4-AD) library (Clontech) was mated according to the Clontech protocol with bait containing yeast and plated on defined media lacking tryptophan, leucine, histidine and containing 2 mM 3 amino triazol. Colonies that grew on the selective media were tested for beta-galactosidase activity and positive clones were further characterized. Prey clones
15 were identified by amplifying cDNA insert and sequencing using vector derived primers.

Bait:

Plasmid vector: pGBK-T7 (Clontech)
20 Plasmid name: pPL269- pGBK-T7 GAL4 POSHdR
Protein sequence: Corresponds to aa 53-888 of POSH (RING domain deleted)
RTLVGSGVEELPSNILLVRLLDGIKQRPWPKPGPGGGSGTNCTNALRSQSSTVANCSSKDL
QSSQQQQPRVQSWSPPVVRGIPQLPCAKALYNYEKGEPGDLKFSKGDIILRRQVDENWY
HGEVNGIHINGFFFPTNFVQIKPLPQPPPQCKALYDFEVKDKEADKDCLPFAKDDVLTIVRR
25 VDENWAEGMLADKIGIFPISYVEFNSAAKQLIEWDKPPVPGVDAGECSSAAAQSSTAPKH
SDTKKNTKKRHSFTSLTMANKSSQASQNRHSMEISPPVLISSSNPTAAARISELSGLSCS
APSQVHISTTGLIVTPPPSPVTTGPSFTFPSDVYQAALGTLNPPLPPPPLAATVLAS
TPPGATAAAAAGMGRPMAGSTDQIAHLRPQTRPSVYVAIYPYTPRKEDEELRKGEMF
LVFERCQDGWFKGTSMHTSKIGVFPGNVAVPVTAVTNASQAKVPMSTAGQTSRGVTMVS
30 PSTAGGPAQKLQGNGVAGSPSVVPAAVSAAHIQTSPQAKVLLHMTGQMTVNQARNAVRT
VAAHNQERPTAAVTPIQVQNAAGLSPASVGLSHHSIASPQPAPLMPGSATHAAISISRA
SAPLACAAAAPLTSPSITSASLEAEPGRIVTLPGLPTSPDSASSACGNSSATKPDKDS
KKEKKGLLKLLSGASTKRKPRVSPPASPTLEVELGSAELPLQGAVGPELPPGGGHGRAGS
CPVGDGPVTTAVAGAALAQDAFHRKASSLDSAVPIAPPRQACSSLGPVLNESRPVVCE
35 RHRVVVSYPPQSEAELELKEDIVFVHKKREDGWFKGTLQRNGKTGLFPGSFVENI
9372369_1

Library screened: Hela pretransformed library (Clontech).

POSH-APs identified by yeast two-hybrid assay are provided in Tables 7 and 8. Also, the nucleic acid and amino acid sequences of POSH-APs identified by yeast two-hybrid assay are provided in Figure 36. In addition, the nucleic acid and 5 amino acid sequences of ARF1 and ARF5 are provided in Figure 36.

Example 12. Inhibition of PKA Kinase Activity Attenuates HIV-1 Virus Maturation

HeLa SS6 cells were transfected with pNLenv-1_{PTAP} or pNLenv-1_{ATAA} (L-domain mutant). Eighteen hours post-transfection, cells were transferred to 20 °C for 10 two hours in order to inhibit transport of viral particles from the *trans*-Golgi (TGN) to the plasma membrane (PM). Subsequently, the PKA inhibitor, H89 (50 µM) (Biosource, Cat. No. PHZ1114) or DMSO were added to the cells and dishes were transferred to 37 °C to initiate transport from the TGN to the PM. Reverse transcriptase activity was assayed from virus-like-particles collected from cell 15 supernatant twenty minutes later. H89 treatment resulted in complete inhibition of RT activity. Thus, demonstrating that PKA activity is required for HIV-1 viral maturation.

Materials and methods:

20 Cell culture and transfections

Hela SS6 cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% heat-inactivated fetal calf serum and 100 units/ml penicillin and 100 µg/ml streptomycin. For transfections, HeLa SS6 cells were grown to 100% confluency in DMEM containing 10% FCS without antibiotics. 25 Cells were then transfected with HIV-1_{NLenv1} (2 µg per 6-well) (Schubert et al., 1995).

Assays for virus release by RT activity

Virus and virus-like particle (VLP) release by reverse transcriptase activity was determined one day after transfection with the pro-viral DNA as previously 30 described (Adachi et al., 1986; Fukumori et al., 2000; Lenardo et al., 2002). The culture medium of virus-expressing cells was collected and centrifuged at 500 x g 9372369_1

for 10 minutes. The resulting supernatant was passed through a 0.45 µm-pore filter and the filtrate was centrifuged at 14,000 x g for 2 hours at 4 °C. The resulting supernatant was removed and the viral-pellet was re-suspended in cell solubilization buffer (50 mM Tris-HCl, pH7.8, 80 mM potassium chloride, 0.75 mM EDTA and 5 0.5% Triton X-100, 2.5 mM DTT and protease inhibitors). The corresponding cells were washed three times with phosphate-buffered saline (PBS) and then solubilized by incubation on ice for 15 minutes in cell solubilization buffer. The cell detergent extract was then centrifuged for 15 minutes at 14,000 x g at 4 °C. The sample of the cleared extract (normally 1:10 of the initial sample) were resolved on a 12.5% SDS-
10 polyacrylamide gel, then transferred onto nitrocellulose paper and subjected to immunoblot analysis with rabbit anti-CA antibodies. The CA was detected after incubation with a secondary anti-rabbit antibody conjugated to Cy5 (Jackson Laboratories, West Grove, Pennsylvania) and detected by fluorescence imaging (Typhoon instrument, Molecular Dynamics, Sunnyvale, California). The Pr55 and
15 CA were then quantified by densitometry. A colorimetric reverse transcriptase assay (Roche Diagnostics GmbH, Mannenheim, Germany) was used to measure reverse transcriptase activity in VLP extracts. RT activity was normalized to amount of Pr55 and CA produced in the cells.

20 Example 13. hPOSH is phosphorylated by Protein kinase A (PKA)

PKA is a cAMP-dependent kinase. The holoenzyme is a tetramer of two catalytic subunits (cPKA) bound to two regulatory subunits PRKR1 or PRKR2. Activation proceeds by the cooperative binding of two cAMP molecules to each R subunit, which causes the dissociation of each active C subunit from the R subunit dimer. The consensus sequence for phosphorylation by the C subunit is, stringently, K/R-R-X-S/TY and less stringently, R-X-X-S/TY, where Y tends to be a hydrophobic residue. The intracellular localization of PKA is controlled thorough association with A-kinase-anchoring proteins (AKAPs). The regulatory subunit of protein kinase A (PRKR1A) was identified as a POSH interactor by yeast-two-hybrid screen, thereby implicating POSH as an AKAP.
25
30

Protein kinase A was demonstrated to be required for the budding of transport vesicles from the TGN (Muniz et al., 1997, Proc Natl Acad Sci U S A, 9372369_1

94:14461-6). Furthermore, it was demonstrated that an inhibitor of PKA, H89, is able to block HIV-1 release from cells (Cartier et al., 2003, J Biol Chem., 278:35211-9). Since POSH is localized at the TGN and is implicated as an AKAP, POSH may regulate PKA-mediated budding at the TGN of vesicles and HIV-1.

5 Applicants demonstrated that POSH is phosphorylated by PKA. Several putative PKA phosphorylation sites are found within hPOSH coding sequence (Figure 30). Phosphorylation of gravin, an AKAP, by PKA modulates its binding to the b2-adrenergic receptor. This serves to regulate the mobilization of gravin and PKA to the cell membrane and regulation of b2-AR activity by PKA. Two putative
10 PKA sites are located in the putative-rac-binding region in POSH. Toward this end, POSH was subjected to in-vitro phosphorylation and binding to the small GTPase Rac1 (Figure 31). Indeed, only unphosphorylated POSH was able to bind activated, GTP-loaded, Rac1, demonstrating that phosphorylation regulates the binding of POSH to small GTPases, such as Rac1. GTPases of this sort family include TCL,
15 TC10, Cdc42, Wrch-1, Rac2, Rac3 or RhoG (Aspenstrom et al., 2003, Biochem J., 377(Pt 2):327-37). Small GTPases of this sort are involved in protein trafficking in the secretory system, including the trafficking of viral proteins, such as those of HIV.

Materials and methods

20 PKA-dependent phosphorylation of hPOSH.

Bacterially expressed recombinant maltose-binding-protein (MBP)-hPOSH (3 µg) or GST-c-Cbl were incubated at 30oC for 30 minutes with (*) or without 10 ng PKA catalytic subunit (PKAc) in a buffer containing 40 mM Tris-HCl pH 7.4, 10 mM MgCl₂, 4 mM ATP, 0.1 mg/ml BSA, 1 µM cAMP, 23 mM K₃PO₄, 7 nM DTT, 25 and PKA peptide protection solution (Promega, Cat.No. V5340). The reaction was stopped by the addition of SDS-sample buffer, and boiling for 3 minutes. Samples were separated by SDS-PAGE on a 10% gel, and transferred to nitrocellulose and immunoblotted as detailed in the figure.

Binding of Rac1 to hPOSH

Bacterially expressed hPOSH (1 µg) or GST (1 µg) were phosphorylated as above. The reaction was terminated by the addition 0.5 ml of ice-cold 200 mM Tris-HCl pH 7.4, 5 mM EDTA. hPOSH and GST were then immobilized on NiNTA or reduced glutathione beads, respectively, by gentle mixing for 30 minutes. The 5 immobilized proteins were washed three times with wash buffer (50 mM Tris-HCl pH 7.4, 100 mM NaCl, 5 mM MgCl₂, 0.1 mM DTT). Recombinant Rac-1 (0.2 µg) (Sigma catalog # R3012) was incubated with or without 0.3 mM GTPγS (Sigma Cat. No. G8638) on ice for 15 minutes. The GTP/mock-loaded Rac-1 was then added to wash buffer (25 µl, final) and incubated for 30 minutes at 30 °C. The beads were 10 then washed three times with wash buffer containing 0.1% Tween 20. Sample buffer was added to the bead pellet and boiled for 3 minutes. Immobilized and associating proteins were then separated by SDS-PAGE on a 12% gel and immunoblotted with anti-Rac-1 (Santa Cruz Biotechnology, Cat. No. sc-217). Input is 0.25 µg of Rac-1.

15 Example 14. HERPUD1 Depletion by siRNA Reduces HIV Maturation.

Hela SS6 cells were transfeted with siRNA directed against HERPUD1 and with a plsmid encoding HIV proviral genome (pNLenv-1). Twenty four hours post-HIV transfection, virus-like particles (VLP) secreted into the medium were isolated and reverse transcriptase activity was determined. HIV release of active RT is an 20 indication for a release of processed and mature virus. When the levels of HERPUD1 were reduced RT activity was inhibited by 80%, demonstrating the importance of HERPUD1 in HIV-maturation. See Figure 33.

Experimental Outline

- Cell culture and transfection:

25 HeLa SS6 were kindly provided by Dr. Thomas Tuschl (the laboratory of RNA Molecular Biology, Rockefeller University, New York, New York). Cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% heat-inactivated fetal calf serum and 100 U/ml penicillin and 100 µg/ml streptomycin. For transfections, HeLa SS6 cells were grown to 50% confluence in 30 DMEM containing 10% FCS without antibiotics. Cells were then transfected with the relevant double-stranded siRNA (50-100nM) (HERPUD1: 5'-GGGAAGUUCUUCGGAACCUDdT-3' and 5'-

9372369_1

dTdTCCCCUCAAGAACCUUGGA-5') using lipofectamin 2000 (Invitrogen, Paisley, UK). A day following the initial transfection cells were split 1:3 in complete medium and co-transfected 24 hours later with HIV-1NLenv1 (2 µg per 6-well) (Schubert et al., J. Virol. 72:2280-88 (1998)) and a second portion of double-stranded siRNA.

5 • Assay for virus release

Virus and virus-like particle (VLP) release was determined one day after transfection with the proviral DNA as previously described (Adachi et al., J. Virol. 59: 284-91 (1986); Fukumori et al., Vpr. Microbes Infect. 2: 1011-17 (2000); 10 Lenardo et al., J. Virol. 76: 5082-93 (2002)). The culture medium of virus-expressing cells was collected and centrifuged at 500 x g for 10 minutes. The resulting supernatant was passed through a 0.45µm-pore filter and the filtrate was centrifuged at 14,000 x g for 2 hours at 4°C. The resulting supernatant was removed and the viral-pellet was re-suspended in SDS-PAGE sample buffer. The 15 corresponding cells were washed three times with phosphate-buffered saline (PBS) and then solubilized by incubation on ice for 15 minutes in lysis buffer containing the following components: 50 mM HEPES-NaOH, (pH 7.5), 150 mM NaCl, 1.5 mM MgCl₂, 0.5% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA, 1 mM EGTA and 1:200 dilution of protease inhibitor cocktail (Calbiochem, La Jolla, California). The 20 cell detergent extract was then centrifuged for 15 minutes at 14,000 x g at 4°C. The VLP sample and a sample of the cleared extract (normally 1:10 of the initial sample) were resolved on a 12.5% SDS-polyacrylamide gel, then transferred onto nitrocellulose paper and subjected to immunoblot analysis with rabbit anti-CA antibodies. The CA was detected either after incubation with a secondary anti-rabbit 25 horseradish peroxidase-conjugated antibody and detected by Enhanced Chemi-Luminescence (ECL) (Amersham Pharmacia) or after incubation with a secondary anti-rabbit antibody conjugated to Cy5 (Jackson Laboratories, West Grove, Pennsylvania) and detected by fluorescence imaging (Typhoon instrument, Molecular Dynamics, Sunnyvale, CA). The Pr55 and CA were then quantified by 30 densitometry and the amount of released VLP was then determined by calculating the ratio between VLP-associated CA and intracellular CA and Pr55 as previously described (Schubert et al., J. Virol. 72:2280-88 (1998)).

- Analysis of reverse transcriptase activity in supernatants

RT activity was determined in pelleted VLP (see above) by using an RT assay kit (Roche, Germany; Cat.No. 1468120). Briefly, VLP pellets were resuspended in 40 µl RT assay lysis buffer and incubated at room temperature for 30 minutes. At the end of incubation 20 µl RT assay reaction mix was added to each sample and incubation continued at 37°C overnight. Samples (60 µl) were then transferred to MTP strip wells and incubated at 37°C for 1 hour. Wells were washed five times with wash buffer and DIG-POD added for a one-hour incubation at 37°C. At the end of incubation wells were washed five times with wash buffer and ABST substrate solution was added and incubated until color developed. The absorbance was read in an ELISA reader at 405 nm (reference wavelength 492 nm). The resulting signal intensity is directly proportional to RT activity; RT concentration was determined by plotting against a known amount of RT enzyme included in separate wells of the reaction.

15

Example 15. MSTP028 Reduction by siRNA Decreases HIV VLP Production.

This example demonstrates the effects of an siRNA-mediated decrease in MSTP028 expression on the production of HIV virus-like particles in HeLa cells. The effects were measured at steady state.

20

Experiments were performed according to two different protocols. Experiment 1 proceeded with a second transfection on day 3, while Experiment 2 involved an additional exchange of medium on day 3, and proceeded to the second transfection on day 4. The results from Experiment 1 are shown Figure 29A, and those for Experiment 2 are shown in Figure 29B.

25

Day 1: Preparing Cells

4.5X10⁵ HeLa SS6 cells/well, were seeded in 1 x 6 well plates. Cells were seeded in transfection medium (growing medium free of antibiotics).

30

Materials:

Cat. No.	Manufacture	Reagent Name
----------	-------------	--------------

9372369_1

D5796	Sigma	DMEM
04-121-1A	Beit Haemek	FCS
D8537	Sigma	PBS
P4333	Sigma	Pen/Strep
5 T4049	Sigma	0.25% Trypsin-EDTA

Day 2: Transfection

Materials:

10	Cat. No.	Manufacture	Reagent Name
	11668-027	Invitrogen	LF2000 reagent
	31985-047	GibcoBRL	OptiMEM

MSTP028 RNAi constructs:

		siRNA target sequence	Accession	Pos.
15	MST028	AAGTGCTCACCGACAGTGAAG	NM_031954	197
	MST028	AAGATACTTATGAGCCTTCT	NM_031954	392

Experimental and Control Conditions:

- 20 1- Control siRNA+ pNLenv-1
2- POSH siRNA + pNLenv-1
3- MSTP028 siRNA + pNLenv-1

1. Two hours before transfection, replace cell media to 2ml/well complete
25 DMEM without antibiotics.
2. siRNA dilution: for each transfection dilute 100 nm siRNA in 0.25 ml
OptiMEM per well.
3. LF 2000 dilution: for each well dilute 5µl lipofectamine reagent in 0.25ml
OptiMEM.
30 4. Incubate diluted siRNAs and LF 2000 for 5 minutes at RT.
5. Mix the diluted siRNAs with diluted LF2000 and incubated for 25 minutes at
RT.

6. Add the mixture to the cells, 0.5 ml/well (drop wise) and incubate for 24 hours at 37°C in CO₂ incubator.

Transfections: for each well

- 5 (12.5 µl (siRNA)/ 0.25 ml OptiMEM) x 3
LF 2000 35 µl / 1.75 ml

Day 3:

- 10 Exp. 1: second transfection (as Day 4 below).
Exp. 2: Exchange medium.

Day 4:

- 15 Exp. 1: VLP assay (see below).
Exp. 2: Second transfection

1. Two hours before transfection, replace cell media to 2ml/well complete DMEM without antibiotics.
- 20 2. siRNA and DNA dilution: Prepare dilution of plasmid pNLenv-1 0.75 µg / well in 0.25 ml OptiMEM (total of 3 wells). Divide plasmid dilution to eppendorf tubes (0.25 ml each). To each tube add siRNA 40nM (2.5 µl).
3. LF 2000 dilution: for each well dilute 5µl lipofectamine reagent in 0.25ml OptiMEM.
- 25 4. Incubate diluted siRNAs and LF 2000 for 5 minutes at RT.
5. Mix the diluted siRNAs with diluted LF2000 and incubated for 1 hour at RT.
6. Add the mixture to the cells, 0.5 ml/well (drop wise) and incubate for 24 hours at 37°C in CO₂ incubator.

30 Day 5:

Exp. 2: VLP assay.

9372369_1

Solutions:

Lysis buffer

Tris-HCl pH 7.6 50mM

5 MgCl₂ 1.5mM

NaCl 150mM

Glycerol 10%

NP-40 0.5%

DOC 0.5%

10 EDTA 1mM

EGTA 1mM

Add PI₃C 1:200.

Steady state VLP assay

15 A. Cell extracts

1. Pellet floating cells by centrifugation (1min, 14000rpm at 40C), save supernatant (continue with supernatant immediately to step B), scrape cells in ice-cold PBS, add to the corresponding floated cell pellet and centrifuge for 5min 1800rpm at 40C.

20 2. Wash cell pellet once with ice-cold PBS.

3. Resuspend cell pellet (from 6 well) in 100 µl NP40-DOC lysis buffer and incubate 10 minutes on ice.

4. Centrifuge at 14,000rpm for 15min. Transfer supernatant to a clean eppendorf.

25 5. Prepare samples for SDS-PAGE by adding them sample buffer and boil for 10min - take the same volume for each reaction (15 µl).

B. Purification of VLP from cell media

1. Filtrate the supernatant through a 0.45µm filter.

30 2. Centrifuge supernatant at 14,000rpm at 40C for at least 2h.

3. Resuspend VLP pellet in 50 µl 1X sample buffer and boil for 10 min. Load 25 µl of each sample.

C. Western Blot analysis

1. Run all samples from stages A and B on Tris-Gly SDS-PAGE 12.5%.
2. Transfer samples to nitrocellulose membrane (100V for 1.15h.).
- 5 3. Dye membrane with ponceau solution.
4. Block with 10% low fat milk in TBS-t for 1h.
5. Incubate with anti p24 rabbit 1:500 in TBS-t 2 hour (room temperature) - overnight (40C).
6. Wash 3 times with TBS-t for 7min each wash.
- 10 7. Incubate with secondary antibody anti rabbit cy5 1:500 for 30min.
8. Wash five times for 10min in TBS-t
9. View in Typhoon for fluorescence signal (650).

Example 16. POSH-depleted cells have lower levels of Herp and it is not
15 monoubiquitinated

POSH-depleted cells and their control counterparts were lysed and immunoblotted with anti-herp antibodies. Cells depleted of POSH (H153 RNAi stables cell lines) cells have lower levels of Herp compared with control cells (H187 RNAi) (Figure 34A panel A). When cells were transnected with a plasmid encoding 20 flagged-tagged ubiquitin, and immunoprecipitated with anti-flag antibodies to immunoprecipitate ubiquitinated proteins, Herp was ubiquitinated only in H187 cells and not in H153 cells (Figure 34A panel B). When the aforementioned cells were transfected with Herp-encoding plasmid, exogenous herp levels were also reduced in H153 cells compared to H187 cells (Figure 34B panel A) and the ubiquitination of 25 exogenous herp was reduced in the former cells, similar to endogenous Herp. The molecular weight of ubiquitinated Herp is as predicated to full-length Herp and does not seem as a high molecular weight smear, a characteristic of polyubiquitinated proteins. Thus POSH is responsible for the mono-ubiquitination of Herp, and in the absence of this modification herp is subjected to degradation, which may be 30 mediated by the proteosome.

Materials and methods

9372369_1

Plasmid generation

Full-length Herp was cloned from image clone MGC:45131 IMAGE:5575914 (GeneBank Accesion BC032673) into pCMV-SPORT6.

5

Antibody production

Herp1 (amino acids 1 to 251) was amplified from a plasmid (3Gd4) obtained by yeast two hybrid screen for interactors of POSH. The amplified open reading frame was cloned into pGEX-6P, expressed in E. coli BL21 by induction with 1 mM IPTG 10 and purified on glutathione-agarose. The purified protein was cleaved with Precision™ protease (Amersham Biosciences) and the GST moiety removed by glutathione chromatography. The protein was injected into rabbits (Washington Biotechnology) to produce anti-Herp1 sera.

15 **Transfections and antibody detection**

Twenty-four hours prior to transfection POSH-RNAi clones (H153) or control-RNAi clones (H187) cells were plated in 10 cm dishes in growth medium (DMEM containing 10% fetal calf serum without antibiotics). Cells were transfected with 20 lipofectamin 2000 (Invitrogen Corporation) and either Herp-expression plasmid (2.5 µg) or empty vector (2.5 µg) and a vector encoding Flag-tagged ubiquitin (1 µg). Twenty-four hours post-trasnfection cells were lysed in lysis buffer (50 mM Tris-HCl, pH7.6, 1.5 mM MgCl₂, 150 mM NaCL, 10% glycerol, 1 mM EDTA, 1 mM EGTA, 0.5% NP-40 and 0.5% sodium deoxycholate, containing protease inhibitors) and subjected to immunoprecipitation with anti-Flag antibodies (Sigma, F7425) to 25 precipitate ubiquitinated proteins. Immunoprecipitated material and total cell lysates were separated on 10% SDS-PAGE and transferred to nitrocellulose membranes which were immunoblotted with anti-Herp antibodies.

Generation of H187 and H153 cell lines

To relieve the necessity for multiple transfections and to improve the reproducibility of hPOSH reduction, we have generated two cell lines, H187 and H153 constitutively expressing an integrated control and hPOSH siRNA (respectively).

Construction of shRNA retroviral vectors- hPOSH scrambled oligonucleotide (5'-

5 CACACACTGCCGTCAACTGTTCAAGAGACAGTTGACGGCAGTGTGTGTTT TTT-3'; and 5'-AATTAAAAAACACACACTGCCGTCAACTGTCTCTGAACA

10 and blunted by end filling. The insert was cloned into the OliI site in the retroviral vector, pMSCVhyg (BD Biosciences Clontech), generating pMSCVhyg-U6-

Recombinant retrovirus production- HEK 293T cells were transfected with retroviral RNAi plasmids (pMSCVhyg-U6-POSH-230 and pMSCVhyg-U6-scrambled and with plasmids encoding VSV-G and Moloney Gag-pol. Two days post-transfection, the retrovirus-containing medium was collected and filtered.

5 **Infection and selection-** Polybrene (Hexadimethrine bromide) (Sigma) (8 μ g/ml) was added to the filtered and the treated medium was subsequently used to infect HeLa SS6 cells. Forty-eight hours post-infection clones were selected for RNAi expression by the addition of hygromycin (300 μ g/ml). Clones expressing the scrambled and the hPOSH RNAi were termed H187 and H153 (respectively).

10 **Example 17. Inhibition of HBV production**

HepG2.2.15 cells were plated on 9cm dishes and allowed to grow in 8% FCS for 5 days up to 70% confluence. After 5 days, cells were washed twice with PBS and re-supplied with fresh DMEM without FCS. In this medium, cells were treated every 24 hours with the depicted solutions (3 μ l solution/1ml medium) for another 4 15 days (4 treatments total). After 4 days, medium was collected from each plate, viruses were sedimented and analyzed.

As shown in Figure 35, lanes 7 and 8, compounds CAS number 14567-55-4 and CAS number 414908-38-0 inhibit HBV production at a concentration of 3 μ M. Detection of HBV proteins was performed essentially as described in Paran, N et al 20 (2001) EMBO J 20(16):4443-4453.

INCORPORATION BY REFERENCE

All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.

EQUIVALENTS

While specific embodiments of the subject applications have been discussed, the above specification is illustrative and not restrictive. Many variations of the 5 applications will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the applications should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.

10

PCT/US04/06308

UNITED STATES PATENT AND TRADEMARK OFFICE
DOCUMENT CLASSIFICATION BARCODE SHEET

New International
Application

Claim(s)

7

A large, stylized number '7' is centered on the page, with a small rectangular box positioned above its top horizontal stroke.

Index 1.1.5.2
Version 1.0
Rev 12/06/01

Section

What Is Claimed:

1. An isolated, purified or recombinant complex comprising a POSH polypeptide and a POSH-associated protein (POSH-AP).
2. The complex of claim 1, wherein the POSH-AP comprises a polypeptide selected from the group consisting of: PKA, SNX1, SNX3, ATP6V0C, PTPN12, PPP1CA, GOSR2, CENTB1, DDEF1, ARF1, ARF5, PACS-1, EPS8L2, HERPUD1, UNC84B, MSTP028, GOCAP, EIF3S3, SRA1, CBL-B, RALA, SIAH1, SMN1, SMN2, SYNE1, TTC3, VCY2IP1 and UBE2N (UBC13).
3. The complex of claim 1, wherein the POSH-AP comprises a polypeptide selected from the group consisting of: ARHV (Chp), WASF1, HIP55, SPG20, HLA-A, and HLA-B.
4. The complex of any one of claims 1-3, wherein the POSH polypeptide is a human POSH polypeptide.
5. An isolated, purified or recombinant complex comprising HERPUD1 and a Ubiquitin ligase.
6. The complex of claim 5, wherein the Ubiquitin ligase is selected from the group consisting of: POSH, CBL-B, TTC3, and SIAH1.
7. A method for identifying an agent that modulates an activity of a POSH polypeptide or POSH-AP, the method comprising identifying an agent that disrupts a complex of any one of claims 1-3, wherein an agent that disrupts a complex of any of claims 1-3 is an agent that modulates an activity of the POSH polypeptide or the POSH-AP.
8. A method of identifying an antiviral agent, comprising:
 - (a) identifying a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP; and

- (b) evaluating the effect of the test agent on a function of a virus,
wherein an agent that inhibits a pro-infective or pro-replicative function of a
virus is an antiviral agent.
9. The method of claim 8, wherein the POSH-AP is selected from the group
5 consisting of: PKA, SNX1, SNX3, PTPN12, GOSR2, CENTB1, ARF1,
ARF5, PACS-1, EPS8L2, HERPUD1, SMN1, SMN2, UNC84B, MSTP028,
GOCAP, CBL-B, SYNE1, UBE2N (UBC13), SIAH1, TTC3, WASF1,
HIP55, RALA, and SPG20.
10. The method of claim 8, wherein the virus is an envelope virus.
- 10 11. The method of claim 8, wherein the virus is a Human Immunodeficiency
Virus.
12. The method of claim 8, wherein the virus is a West Nile Virus.
13. The method of claim 8, wherein the virus is Moloney Murine Leukemia
Virus (MMuLV).
- 15 14. The method of claim 8, wherein evaluating the effect of the test agent on a
function of the virus comprises evaluating the effect of the test agent on the
budding or release of the virus or a virus-like particle.
15. A method of identifying an anti-apoptotic agent, comprising:
20 (a) identifying a test agent that disrupts a complex comprising a POSH
polypeptide and a POSH-AP; and
(b) evaluating the effect of the test agent on apoptosis of a cell,
wherein an agent that decreases apoptosis of the cell is an anti-apoptotic
agent.
16. A method of identifying an anti-cancer agent, comprising:

- (a) identifying a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP; and
 - (b) evaluating the effect of the test agent on proliferation or survival of a cancer cell,
- 5 wherein an agent that decreases proliferation or survival of a cancer cell is an anti-cancer cell.
17. The method of claim 16, wherein the POSH-AP is selected from the group consisting of: PKA, SNX1, PTPN12, PPP1CA, ARF1, ARF5, CENTB1, EPS8L2, EIF3S3, CBL-B, RALA, SIAH1, TTC3, ATP6V0C, and VCY2IP1.
- 10 18. The method of claim 16, wherein the cancer cell is a cell derived from a POSH-associated cancer.
19. A method of identifying an agent that inhibits trafficking of a protein through the secretory pathway, comprising:
 - (a) identifying a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP; and
 - (b) evaluating the effect of the test agent on the trafficking of a protein through the secretory pathwaywherein an agent that disrupts localization of said POSH-AP is an agent that inhibits trafficking of a protein through the secretory pathway.
- 20 20. The method of claim 19, wherein step (b) comprises evaluating the effect of the test agent on the trafficking of a myristoylated protein through the secretory pathway.
21. The method of claim 19, wherein step (b) comprises evaluating the effect of the test agent on the trafficking of a viral protein through the secretory pathway.
- 25

22. The method of claim 19, wherein (b) comprises evaluating the effect of the test agent on the trafficking of a protein associated with a neurological disorder through the secretory pathway.
23. The method of claim 22, wherein the protein associated with a neurological disorder is amyloid beta precursor protein.
5
24. A method of identifying an agent that inhibits the progression of a neurological disorder, comprising:
 - (a) identifying a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP; and
 - (b) evaluating the effect of the test agent on the trafficking of a protein through the secretory pathway
10
wherein an agent that disrupts localization of a POSH-AP is an agent that inhibits progression of a neurological disorder.
25. The method of claim 24, wherein the POSH-AP is selected from the group consisting of: HERPUD1, CBL-B, SIAH1, and TTC3.
15
26. The method of claim 25, wherein the POSH-AP is HERPUD1.
27. A method of identifying an agent that inhibits the progression of a neurological disorder, comprising:
 - (a) identifying a test agent that disrupts a complex comprising a POSH polypeptide and a POSH-AP; and
20
 - (b) evaluating the effect of the test agent on the ubiquitination of a protein.
28. The method of claim 27, wherein the POSH-AP is HERPUD1.

29. A method of treating a viral infection in a subject in need thereof, comprising administering an agent that inhibits a POSH-AP in an amount sufficient to inhibit the viral infection.
30. The method of claim 29, wherein the agent is selected from the group consisting of:
 - i) an agent that inhibits a kinase activity of the POSH-AP;
 - ii) an agent that inhibits expression of the POSH-AP;
 - iii) an agent that inhibits the ubiquitin ligase activity of the POSH-AP;
 - iv) an agent that inhibits the phosphatase activity of the POSH-AP;
 - v) an agent that inhibits the GTPase activity of the POSH-AP; and
 - vi) an agent that inhibits the ubiquitination of the POSH-AP.
31. The method of claim 29, wherein the POSH-AP comprises a polypeptide selected from the group consisting of: PKA, SNX1, SNX3, SMN1, SMN2, PTPN12, GOSR2, CENTB1, ARF1, ARF5, PACS-1, EPS8L2, HERPUD1, UNC84B, MSTP028, GOCAP, CBL-B, SYNE1, UBE2N (UBC13), SIAH1, TTC3, WASF1, HIP55, RALA, and SPG20.
32. The method of claim 31, wherein the POSH-AP comprises a polypeptide selected from the group consisting of: PKA, HERPUD1, MSTP028, CBL-B, and UBE2N (UBC13).
33. The method of claim 32, wherein said agent is selected from the group consisting of: an siRNA construct, a small molecule, an antibody, and an antisense construct.
34. The method of claim 33, wherein the agent is an siRNA construct comprising a nucleic acid sequence that hybridizes to an mRNA encoding the POSH-AP.

35. The method of claim 34, wherein the agent is an siRNA construct or an antisense construct that inhibits the expression of a polypeptide selected from the group consisting of PKA, HERPUD1, MSTP028, CBL-B, and UBE2N (UBC13).
- 5 36. The method of claim 35, wherein the agent is an siRNA construct or an antisense construct that inhibits the expression of HERPUD1 or MSTP028.
37. The method of claim 36, wherein the siRNA construct inhibits the expression of MSTP028.
- 10 38. The method of claim 36, wherein the siRNA construct inhibits the expression of HERPUD1 and is selected from the group consisting of: 5'-GGGAAGUUCUUCGGAACCUdTdT-3' and 5'-dTdTCCCCUUCAAGAACCCUUGGA-5'.
- 15 39. The method of claim 33, wherein the small molecule inhibitor is selected from among the following categories: adenosine cyclic monophosphorothioate, isoquinolinesulfonamide, piperazine, piceatannol, and ellagic acid.
40. The method of claim 33, wherein the small molecule is selected from among:

5 and

41. The method of claim 23, wherein the small molecule inhibits the ubiquitination of a POSH-AP.
- 10 42. The method of claim 29, wherein the subject is infected with an envelope virus.
43. The method of claim 42, wherein the envelope virus is an HIV.
44. The method of claim 42, wherein the envelope virus is a WNV.
45. The method of claim 29, wherein the virus is a MMuLV.

46. Use of a protein kinase A inhibitor for the manufacture of a medicament for treatment of a viral infection.
47. Use of an inhibitor of HERPUD1 for the manufacture of a medicament for treatment of a viral infection.
- 5 48. Use of an inhibitor of MSTP028 for the manufacture of a medicament for treatment of a viral infection.
49. A packaged pharmaceutical for use in treating a viral infection, comprising:
 - (a) a pharmaceutical composition comprising an inhibitor of a POSH-AP and a pharmaceutically acceptable carrier; and
 - 10 (b) instructions for use.
50. The packaged pharmaceutical of claim 49, wherein the viral infection is caused by an envelope virus.
51. A method for identifying an antiviral agent comprising:
 - (a) identifying a test agent that inhibits an activity of or expression of a POSH-AP; and
 - 15 (b) evaluating an effect of the test agent on a function of a virus.
52. A method of evaluating an antiviral agent comprising:
 - (a) providing a test agent that inhibits an activity of or expression of a POSH-AP; and
 - 20 (b) evaluating an effect of the test agent on a function of a virus.
53. The method of claim 51 or 52, wherein the virus is an envelope virus.
54. The method of claim 51 or 52, wherein the virus is a Human Immunodeficiency Virus.

55. The method of claim 51 or 52, wherein the virus is a West Nile Virus.
56. The method of claim 51 or 52, wherein the virus is a MMuLV.
57. The method of claim 51 or 52, wherein evaluating the effect of the test agent on a function of the virus comprises evaluating the effect of the test agent on the budding or release of the virus or a virus-like particle.
58. The method of claim 51 or 52, wherein the POSH-AP is selected from the group consisting of: PKA, SNX1, SNX3, PTPN12, GOSR2, SMN1, SMN2, CENTB1, ARF1, ARF5, PACS-1, EPS8L2, HERPUD1, UNC84B, MSTP028, GOCAP, CBL-B, SYNE1, UBE2N (UBC13), SIAH1, TTC3, WASF1, HIP55, RALA, and SPG20.
- 10 59. The method of claim 58, wherein the POSH-AP is HERPUD1.
60. The method of claim 58, wherein the POSH-AP is MSTP028.
61. The method of claim 51 or 52, wherein the test agent is selected from among: an antisense nucleic acid, an siRNA construct, a small molecule, an antibody and a polypeptide.
- 15 62. The method of claim 61, wherein the siRNA construct inhibits the expression of HERPUD1 and is selected from the group consisting of: 5'-GGGAAGUUCUUCGGAACCUdTdT-3' and 5'-dTdTCCCUUCAAGAACGCCUUGGA-5'.
- 20 63. A method of identifying an agent that modulates a POSH function, comprising:
 - a) identifying an agent that modulates a POSH-AP; and
 - b) testing the effect of the agent on a POSH function.
64. A method of evaluating an agent that modulates a POSH function, comprising:

- a) providing an agent that modulates a POSH-AP; and
 - b) testing the effect of the agent on a POSH function.
65. The method of claim 64 or 65, wherein the POSH-AP comprises a polypeptide selected from the group consisting of: PKA, SNX1, SNX3, ATP6V0C, PTPN12, PPP1CA, GOSR2, CENTB1, DDEF1, ARF1, ARF5, PACS-1, EPS8L2, HERPUD1, UNC84B, MSTP028, GOCAP, EIF3S3, SRA1, CBL-B, RALA, SIAH1, SMN1, SMN2, SYNE1, TTC3, VCY2IP1 and UBE2N (UBC13).
66. The method of claim 64 or 65, wherein the POSH-AP comprises a polypeptide selected from the group consisting of: ARHV (Chp), WASF1, HIP55, SPG20, HLA-A, and HLA-B.
67. The method of claim 64 or 65, wherein testing the effect of the agent on a POSH function comprises testing the effect of the agent on the production of viral particles or virus like particles in a cell infected with an envelope virus.
68. The method of claim 64 or 65, wherein testing the effect of the agent on a POSH function comprises testing the effect of the agent on a POSH enzymatic activity.
69. The method of claim 68, wherein the POSH enzymatic activity is ubiquitin ligase activity.
70. The method of claim 64 or 65, wherein testing the effect of the agent on a POSH function comprises testing the effect of the agent on POSH-mediated localization or secretion of a protein.
71. The method of claim 64 or 65, wherein testing the effect of the agent on a POSH function comprises testing the effect of the agent on the interaction of POSH with a POSH-AP.
72. The method of claim 71, wherein the POSH-AP is a small GTPase.

73. The method of claim 72, wherein the small GTPase is selected from the group consisting of: ARF1, ARF5, and RALA.
74. The method of claim 64 or 65, wherein the test agent is selected from among: an antisense nucleic acid, an siRNA construct, a small molecule, an antibody and a polypeptide.
5
75. A method of identifying an agent that modulates a HERPUD1 function, comprising:
 - a) identifying an agent that modulates POSH; and
 - b) testing the effect of the agent on a HERPUD1 function.
- 10 76. A method of evaluating an agent that modulates an HERPUD1 function; comprising:
 - a) providing an agent that modulates POSH; and
 - b) testing the effect of the agent on a HERPUD1 function.
77. The method of claim 75 or 76, wherein testing the effect of the agent on a
15 HERPUD1 function comprises contacting a cell with the agent and measuring the effect of the agent on ubiquitination of HERPUD1 in the cell.
- 20 78. A method of treating a viral infection in a subject in need thereof, comprising administering an agent that inhibits MSTP028 in an amount sufficient to inhibit viral infection.
79. The method of claim 78, wherein said agent is selected from the group consisting of: an siRNA construct, a small molecule, an antibody, and an antisense construct.
- 25 80. The method of claim 79, wherein the agent is an siRNA construct comprising a nucleic acid sequence that hybridizes to an mRNA encoding the MSTP028.

81. A method of inhibiting an activity of a POSH-AP in a cell, comprising contacting the cell with an inhibitor of POSH.
82. The method of claim 81, wherein the POSH-AP comprises a polypeptide selected from the group consisting of: PKA, SNX1, SNX3, ATP6V0C, PTPN12, PPP1CA, GOSR2, CENTB1, DDEF1, ARF1, ARF5, PACS-1, EPS8L2, HERPUD1, UNC84B, MSTP028, GOCAP, EIF3S3, SRA1, CBL-B, RALA, SIAH1, SMN1, SMN2, SYNE1, TTC3, VCY2IP1 and UBE2N (UBC13).
5
83. The method of claim 81, wherein the inhibitor of POSH is selected from among the following:
10
 - i) an agent that inhibits a POSH activity; and
 - ii) an agent that inhibits expression of a POSH.
84. The method of claim 83, wherein the POSH activity is ubiquitin ligase activity.
15
85. A method of treating a POSH-associated disease in a subject, comprising administering a POSH-AP inhibitor to a subject in need thereof.
86. The method of claim 85, wherein said POSH-AP inhibitor is an agent selected from the group consisting of:
20
 - i) an agent that inhibits a kinase activity of the POSH-AP;
 - ii) an agent that inhibits expression of the POSH-AP;
 - iii) an agent that inhibits the ubiquitin ligase activity of the POSH-AP;
 - iv) an agent that inhibits the phosphatase activity of the POSH-AP;
 - v) an agent that inhibits the GTPase activity of the POSH-AP; and
 - vi) an agent that inhibits the ubiquitination of the POSH-AP.

87. The method of claim 85, wherein the POSH-associated disease is a viral infection.
88. The method of claim 85, wherein the POSH-associated disease is a POSH-associated cancer.
- 5 89. The method of claim 85, wherein the POSH-associated disease is a POSH-associated neurological disorder.
90. A method of identifying an anti-viral agent, comprising:
 - a) forming a mixture comprising a POSH polypeptide, a POSH-AP and a test agent; and
 - 10 b) detecting phosphorylation of the POSH polypeptide, wherein an agent that inhibits phosphorylation of POSH is an anti-viral agent.
91. A method of identifying an anti-viral agent, comprising:
 - a) forming a mixture comprising a POSH polypeptide, a POSH-AP, ubiquitin and a test agent; and
 - 15 b) detecting ubiquitination of the POSH-AP, wherein an agent that inhibits ubiquitination of the POSH-AP is an anti-viral agent.
92. The method of claim 91, wherein the POSH-AP is HERPUD1.
- 20 93. A method of identifying a modulator of POSH, comprising:
 - a) forming a mixture comprising a POSH polypeptide, a POSH-AP and a test agent; and
 - b) detecting phosphorylation of the POSH polypeptide,

wherein an agent that alters phosphorylation of POSH is an agent that modulates POSH.

94. A method of identifying a modulator of POSH, comprising:
- a) forming a mixture comprising a POSH polypeptide, a POSH-AP, ubiquitin and a test agent; and
 - b) detecting ubiquitination of the POSH-AP,
- wherein an agent that inhibits ubiquitination of the POSH-AP is an agent that modulates POSH.
95. The method of claim 91, wherein the POSH-AP is HERPUD1.
- 10 96. A method of treating or preventing a POSH associated cancer in a subject comprising administering an agent that inhibits a POSH-AP to a subject in need thereof, wherein said agent treats or prevents cancer.
97. The method of claim 96, wherein the POSH-AP comprises a polypeptide selected from the group consisting of: PKA, SNX1, PTPN12, PPP1CA, CENTB1, ARF1, ARF5, EPS8L2, EIF3S3, CBL-B, RALA, SIAH1, TTC3, ATPV0C, and VCY2IP1.
- 15 98. The method of claim 96, wherein the cancer is associated with increased POSH expression.
99. A method of treating or preventing a POSH-associated neurological disorder in a subject comprising administering an agent that inhibits a POSH-AP to a subject in need thereof, wherein said agent treats or prevents the neurological disorder.
- 20 100. The method of claim 99, wherein the POSH-AP comprises a polypeptide selected from the group consisting of: PTPN12, DDEF1, EPS8L2, HERPUD1, GOCAP, CBL-B, SIAH1, SMN1, SMN2, TTC3, SPG20, SNX1, and ARF1.

101. A method of treating a neurological disorder comprising administering an agent to a subject in need thereof, wherein said agent, inhibits the ubiquitin ligase activity of POSH.
102. A method of treating a neurological disorder comprising administering an agent to a subject in need thereof, wherein said agent inhibits the ubiquitination of a POSH-AP.
5
103. The method of claim 101 or claim 102, wherein the neurological disorder is selected from among: Alzheimer's disease, Parkinson's disease, Huntington's disease, schizophrenia, Niemann-Pick's disease, and prion-associated diseases.
10
104. The use of an agent of claim 103, wherein the neurological disorder is Alzheimer's disease.
105. The method of claim 101 or claim 102, wherein said agent is selected from the group consisting of: an siRNA construct, a small molecule, an antibody, and an antisense construct.
15
106. The method of claim 105, wherein the small molecule is selected from

5 and

107. The method of claim 102, wherein the POSH-AP is HERPUD1.
108. The method of claim 61, wherein the siRNA construct inhibits the expression of MSTP028 and is selected from the group consisting of: 5'-AAGTGCTCACCGACAGTGAAG-3' and 5'-AAGATACTTATGAGCCTTCT-3'.

15

POSH INTERACTING PROTEINS AND RELATED METHODS

ABSTRACT

5 The application provides novel complexes of POSH polypeptides and POSH-associated proteins. The application also provides methods and compositions for treating POSH-associated diseases such as viral disorders, cancer, and neurological disorders.

Figure 1: Human POSH Coding Sequence (SEQ ID NO:1) (part 1)

Figure 2: Human POSH Amino Acid Sequence (SEQ ID NO:2) (part 2)

MDESALLDLECPVCLERLDASAKVLPQHTFCKRCLLGIVGSRNELRCPECRTLGVSGVEELPSNILLVRLLDGIKQRPWKPGPGGGSGTNCTNALRSQSSTVANCSSKDLQSSQGGQQPRVQSWSPPVRGIPOLPCAKALYNFGKEPGDLKFSKGDIIILRRQVDENWYHGEVNGIHGFFPTNFVQITKPLPQPPPQCKALYDFEVKDKEADKDCLPFAKKDVLTVIRRVDENWAEGMLADKIGIFPISYVEFNSAAKQLIEWDKPPVPGVDAGECSAAAQSSTAPKHSDTKKNTKKRHSFTSLTMANKSSQASQNRHSMEISPPVLISSSNPTAAARISELSGLSCSAPSQVHISTTGLIVTPPPSPVTTGPSFTFPSDVPYQAALGTLNPPLPPPLLAATVLASTPPGATAA AAAAGMGPMPMAGSTDQIAHLRPQTRPSVYVAIYPYTPRKEDELELRKGEMFLVFERCQDGWFKGTSMHTSKIGVFPGNYVAPVTRAVTNASQAKVPMSTAGQTSRGVTMVSPTAGGPAQKLQGNGVAGSPSVVPAAVV SAAHIQTSPQAKVLLHMTGQMTVNQARNAVRTVAAHNQERPTAAVTPIQVQNAAGLSPASVGLSHHSLASPQAPALMPGSATHAAISIRASAPLACAAAAPLTSPSITSASLEAEPSGRIVTVLPGLPTSPDSASSACGNSSATKPDKDSKKEKKGLLKLLSGASTKRKPRVSPPASPTLEVELGSAELPLQGAVGPELPPGGGHGRA GSCPVVDGDPVTTAVAGAALAQDAFHRKASSLDSAVPIAPPQRQACSSLGPVLNESRPVVCERHRVVSY PPQSEAELELKEDIVFVHKKREDGWFKGTLQRNGKTGLFFGSFVENI

Figure 3: Human POSH cDNA Sequence (SEQ ID NO:3)

CTGAGAGACACTGGAGCGGGCAGCGGGTGGGCCATCTGCATCAGCCGCCAGCCCTGGGGGC
CGCGAACAAAGAGGAGGAGCCAGGCCAGAGCAAAGTCTGAAGATTTCTCAGTAAGTAGATAAAGATGGATGAATCAGC
GGATGCACACAACATGAACATTCTGAAGATTTCTCAGTAAGTAGATAAAGATGGATGAATCAGC
CTTGTGGATCTTCTGGAGTGTCCGGTGTCTAGAGCGCCTTGATGCTCTGCCAAGGTCTGCCCTGC
CAGCACTACGTTTCCAAGCGATGTTCTGGGGATCGTAGGTTCTCGAAATGAACCTCAGATGTCGGTCAAGACTTCTGGATGG
GCAGGACTCTTGTGGCTCGGGTGTGAGGAGCTCCAGTAACATCTGCTGGTCAAGACTTCTGGATGG
CATCAAACAGAGGCTTGGAAACCTGGCTCTGGTGGGGAGTGGGAAACTGCACAAATGCAATTAGG
TCTCAGAGCAGCACTGTCGCTAATGTAAGCTCAGGAAATCTGAGGCTCCAGGAGCAGCAGCC
GGGTGAATCTGGAGCCCCCAGTGGGGTATACTCAGTTACCATGTGCCAAGCGTTATAACAAC
TGAAGAAAAGAGCCTGGAGACCTTAAATCAGAAAGGCGACATCATCATCACTTGTGAGAAGACAAGTGGAT
GAAAATTGGTACCATGGGAAGTCATGGAACTTGTGAGGTTTACCATGGCTTTTCCCCACCAACTTGTGAGGTTT
AACCGTTACCTCAGCCCCCACCTCAGTCAAAGCACTTATGACTTTGAGTGAAGAACAAAGGAAGCAGA
CAAAGATTGCCCTCCATTGCAAAGGATGATGTTCTGACTGTCAGTGGATCCAGGAGTGGATGAAAATGGGCT
GAAGGAATGCTGGAGACAAAATAGGAATTTCCAATTTCATATGAGTTAAGTGGCTGCTGAGAATCTGGCTGCTAAGC
AGCTGATAGAATGGATAAGCCTCTGGCCAGGAGTGTGAGGAGCTGGTCAAGGAGCAGCC
GAGCAGCACTGCCAACAGCACTCCAGGATCCAGAAGCCACTCCATGGAGATCAGCCCCCTGCTCTCA
ACTATGCCAACAGCTCCAGGATCCAGAAGCCACTCCATGGAGATCAGCCCCCTGCTCTCA
TCAGCTCCAGAACCCACTGTCGCTGCAAGGATCAGCGAGCTGCTGGGCTCTCTGCACTGCCCCTTC
TCAGGGTCAATAAGTACCAACGGGTTAATTGTGACCCCGCCCCAAGCAGCCAGTGACAACTGGGCCC
TCGTTACTTCCATCAGATGTTCCCTACCAAGCTGCCCTGGAACTTGAATCTCCCTGGCACCAC
CCCCCTCCTGGCTGCCACTGTCCTGCCACACCAACAGGCCACGGGCCACGGCCCTGCTGCTG
AATGGGACCGAGGGCCATGGCAGGATCCACTGGCAGGAGTTCAGGAGATTGCAATTACGGCCAGACTCGCCCAAGT
GTGTATGTTGCTATATCCATACACTCTCGGAAAGGGATGAACTAGAGCTGAGAAAAGGGAGATGT
TTTCTAGTGGTGGCTGGAGTGGCTGGTCAAAGGGACATCCATGCAACAGCAAGATAGGGGT
TTTCTCTGGCAATTATGTGGCACCAAGTCAAGGGCGGTGACAAATGCTCCCAAGCTAAAGTCCCTATG
TCTACAGCTGGCAGACAAGTCGGGAGTGGCATGGTCACTCCACGGCAGGAGGGCTGCCCCAGA
AGCTCCAGGGAAATGGCGTGGCTGGAGTCCAGTGTGTCCTCCCGAGCTGTGTTACAGCAGCTCACAT
CCAGACAAGTCTCAGGTAAGGTCTTGTGACATGACGGGGCAATGACAGTCAGCAACCCATCCAGGTACAGA
GCTGTGAGGACAGTTCAGCGCACACCAAGGAAACGCCAGGAGCAGTGCACACCCATCCAGGTACAGA
ATGCCGCCGCTCAGCCCTGCATCTGGGGCTGTCATCTGCTGCCCCCTGCTGCTG
TCTGATGCCAGGCTCAGGCCACACTGTCGCCATCAGTATCAGTCAGGAGCTGCCCCCTGCTG
GCAGCAGCTGCTCCTACTGACTCTCCCAAGCATCACCAGTGTCTCTGGAGGCTGAGGCCAGTGGCCGG
TAGTGCACGGTTCTCTGGACTCTCCACATCTCTGACAGTGTCTCATCAGCTGTGGGAAAGTTCAGC
AACCAACAGACAAGGATAGCAAAAAAGAAAAAGGGTTGTGAGTTGCTTCTGGGCCCTCCACT
AAACCGAAGCCCCCGTGTCTCTCCAGCATGCCACCTAGAAGTGGAGTGGCAGTGCAGAGCTTC
CTCTCCAGGGAGCGTGGGCCAGACTGCCACCCAGGAGTGGCATGGCAGGGCAGGCTCTG
GGACGGGACGGACCCGTACCGACTGCGAGCTGGCAGGCCCTGGGAGGCTGCTTCTCCCTGGGCTCTG
GCAACTTCCCTGGACTCTCGCAGTCTGCTCAGCTCTGGCTGTTCTGAGTGGGAAAGTTCAGC
TCTGGAACTTCCAGATGGTCAGGAGATGAGCAAGGATTGGTATCTGACTCTGATGCCAGCAGTTA
CCCCAGCGAGCAGAGTGGAGAAGATGTTGTTGTTAGTCTGGATTGGATGTTAGTGAAGTGTG
GGCAGAACTTGAACCTTAAAGAAGGAGATATTGTTGTTCTAAAGGAGAGGATGGCTGGTTCAA
GGCACATTACAACGTAATGGGAAACTGCGCTTCTCCAGGAAGCTTGTGAAACATATGAGGAGACT
GACACTGAAGAAGCTTAAATCATTACACAAACAAAGTAGCACAAAGCAGTTAACAGAAAGGACACAT
TTGTGGACTTCCAGATGGTCAGGAGATGAGCAAGGATTGGTATCTGACTCTGATGCCAGCAGTTA
CCCCAGCGAGCAGAGTGGAGAAGATGTTGTTGTTAGTCTGGATTGGATGTTAGTGAAGTGTG
CTCTGGTACTGTCGTTACTACACAGAGAAACTTCTGCTCTTAAACTTGAACCTTCTGTTAAAGTACGTTCT
ATTGTTACAAGGCTTAACTAATTCTGCTTAAACTTGAACCTTCTGTTAAAGTATATGACTAAAGTGGACA
TTGGATTATGATTTTAAAGAATTTATGAAATGAGTGGTAAGGAGAAGCTGGATTATCTCTG
TGAGAGCAAGAGATTGTTGACATAGAGTGAATGCATTCTCCCTCTCTCTCTGCTACCATTT
ATTGGGGTTATGTTGCTCTTAAAGATAGAAATCCAGTTCTCTAAATTGTTCTTCTTCTGG
AACCAAACATACAAATGAATCAGTATCAATTAGGGCTGGGTAGAGAGACAGAAACTTGAGAGAAGAGA
AGTTAGTGAATTCCCTCTCTCTAGTTGGTAGGAATCACCTGAAGACACTAGTCTCTCAATTAAATTGTG
GGGGTTTTAAATTCTCTAGAATGAAGTGAAGTGAACAAATGAGAAAGAATAACAGCACACCCCTGAACAA
AATGATTAGAAATATAATTAGTTTATAGCAGAACAGCTCAATTGTTGGTTGGAAAGTGGGAA
TTGAAGTGTAGTCAGTGTGAGAATGGCTATGAGCGTCAATTCAATTCTACCCAACTGACCTGCA
TGCCAGGACACAAGTAAACATTGAGAGATAGTGGTGGTAAGTGTGACTCTGTTAGTCAAAGGC
TATAAGAAAACACTGTGAAAAGTTCAATTCTACCCATTGAGTCTTCCCCACGTCTGCAATGTTAAGTGG
GGATCCCACAGTAATATAGACTGTGCATGGTGTGATATTCAATTGCGATTCTGTTAAGTGG
GTACTCAGAATTGACCAATTCAAGGAGGTGAAAATAACAGTGTCTTCTACCCAAAGCCACTA

-to be continued

Figure 3: Human POSH cDNA Sequence (SEQ ID NO:3)

CTGACCAAGGTCTTCAGTGCACTCGCTCCCTCTGGCTAAGGCATGCATTAGCCACTACACAAGTCA
TTAGTGAAAGTGGCTTTATGTCCTCCAGCAGACAGACATCAAGGATGAGTTAACCGAGGAGACTACTC
CTGTGACTGTGGAGCTGGAAAGGCTTGGTGGGAGTGAATTGCCCACACCTTACAATTGTGGCAGGATC
CAGAAGAGCCTGCTTTATATCCATTCTTGATGTCAATTGGCCTCTCCCACCGATTTCATTACGGTGC
CACGCAGTCATGGATCTGGGTAGTCCGGAAAACAAAAGGAGGGAAAGACAGCCTGGTAATGAATAAGATCC
TTACACAGTTTCTCATGGAAAATACATAATAAACCCCTTTCATCTTTTTTTCTTAAAGAATTAA
AACTGGGAAATAGAAAATGAACGTAAAAGTCTTGCATGACAAGAGGTTTCACTGGCTTAAAGATAAC
TTTATATGGTTGAAGATGAAATCATTCTAAATTAAACCTTTTTAAAAAAAACAATGTATATTATGT
TCCTGTGTGTTGAATTAAAAAAATCTTACTTGGATATTCACTGTAATATATAAAGGTTTGGTGA
AAATGAACCTTAGTTAGGAAAAGCTGCATCAGCTTCATCTGTGAAGTTGACACCAATGTGTCAATAA
TATTCTTTATTTGGGAAATTAGTGTATTTTATAAAAATTTAAAAGAAAAAGACTACTAACAGGTTAA
GATAATTCTTAACTGTCTTTCTCCATTTAAAGCTATGTGATTGAAGTACCTCTGTTCATAGTTTC
CTGGTATAAAAGTTGTTAAAATTTCATCTGTTAATAGATCATTAGGTAAATATATGTATGGGTTTCTAT
TGGTTTTTGCAAGACAGTAGAGGGAGATTGTAAACAAGGGCTTGTACACAGTGAATATGGTAATGATAA
AATTGCAATTATCACTCTTTCATGTTAATAATTGAGGACTGGATAAAAGGTTCAAGATTAAATT
TGATGTTCAAACCTTGT

Figure 4: 5' cDNA fragment of human POSH (public gi:10432611; SEQ ID NO:4)

ctgagagacactgcgagcggcgagcgcggtggggccgcatctgcacatcagccgcgcagccgcgtgcggggc
cgcgaacaagaggaggagccgaggcgcgagagaaagtctgaaatggatgttacatgagtcattttaag
gatgcacacaactatgaacatttcgtcaagaaaatggatgttctcgatgtttctcgatgtttctcgatgttgc
ttgttgatcttggatgttctcgatgttctcgatgtttctcgatgtttctcgatgtttctcgatgttgc
agatacgtttgcagcgatgttgcgtggatctcgatgttctcgatgtttctcgatgtttctcgatgttgc
caggactcttgcgtggatctcgatgttgcgtggatctcgatgttctcgatgtttctcgatgtttctcgatgttgc
atcaaacagaggccttggaaacctggcttgcgtggggaaatggatctcgatgttctcgatgtttctcgatgttgc
ctcagagcagcactgtggctaatgttagctcaaaatggatctcgatgttctcgatgtttctcgatgtttctcg
ggtcaatcctggagccccccactgaggggtatacctcgttaccatgttgcacaaagcggttatacaactat
gaaggaaaagagcctggagacctaattcagcaaaaggcagatcatatgttgcgaagacaagtggatg
aaaatggatcatggggaaatggatcaatggatccatggcttttcccaaccaacttgtgcagattattaa
accgttacctcagcccccaacctcgtcaaaagcacttttgcatttttttttttttttttttttttttttttttt
aaagattgccttccatttgcatt
aaggaatgtggcagacaaaataggatatttcaatttcatatgttgcatttttttttttttttttttttttt
gctgatagaatgggataagcctcgttgcaggatgttgcatttttttttttttttttttttttttttttt
agcagcactgccccaaagcactccgcacccaagaagaacacccaaaagcggcactccttcaacttccctca
ctatggccaacaagtcccccaggcatcccgaaaccggccactccatggatgttgccttgcatttttttttt
cagctccagcaaaaaactgtgtgcacggatcagcggatgttgccttgcatttttttttttttttttt
cagttcatataatgttgcaccacccggtaatttgcacccggccaaacggcagcccaactgttgcacactggcc
cgtttactttccatcagatgttgcaccacccggtaatttgcacccggccaaacggcagcccaactgttgcac
ccctctctggctgccactgtccttgcctccacaccaccaggcgcaccggccgtgtgtgtgt
atgggaccggggccatggcaggatccactgttgcacccatggccggccactccggccactccggccact
tgtatgttgcataatccatcacactcctcgaaaggaggatgttgcacccatggccggccactccggccact
tttagtgttgcgtccggaggatggctgttgcacccatggccggccactccggccactccggccact
ttccctggcaattatgttgcaccaggatcacaaggcggtgacaaatgttgcacccatggccggccact
ctacagctggccagacaagtccggggaggatgttgcacccatggccggccactccggccactccggccact
gctccaggaaatggcgtggctggaggatggctgttgcacccatggccggccactccggccactccggccact
cagacaagtccctcaggctaaaggatgttgcacccatggccggccactccggccactccggccact
ctgtgaggacaggatgttgcacccatggccggccactccggccactccggccactccggccact
tgccgcggccctcagccctgcacactgtggccctgtcccatcactcgctggccctcccaacactgt
ctgatgcggccactgttgcacccatggccggccactccggccactccggccactccggccact
cagcagctgtccactgactcccaacccatcaccaggatgttgcacccatggccggccact
agtgaccgttctccctggactcccaacatctcctgcacagtgttgcacccatggccggccact
accaaaccagacaaggatgc

Figure 5: N terminus protein fragment of hPOSH (public gi:10432612; SEQ ID NO:5)

MDESALLDLLECPVCLERLDASAKVLPQCQHTFCRKCLLGIVGSRNELRCPECRTLVSGSVEELPSNILLVRLLDGIKQRPWKPQPGGGSGTNCTNALRSQSSTVANCSSKDLQSSQGGQQPRVQSWSPPVRGI PQLPCAKALYNYEGKEPGDLKFKSKGDITILRRQVDENWYHGEVNGIHRGFPTNFPVQIIKEPLPQPPPQCKALYDFEVKDKEADKDCLPFAKDDVLTIRRVDENWAEGMLADKIGIFPPISYVEFNSAAKQLIEWDKPPVPGVDAGECSAAAQSQSTAPKHSIDTKKNTKKRHSFTSLTMANKSSQASQNHRHSMIESPPVLISSSNPTAAARISELSCLSCSAPSQVHISTTGLIVTPPPSSPVITGPSFTFPSDVBYQALGTINPPPLPPPPLLAATVLASTPPGATAAAAAAAGMGPMPMAGSTDQIAHLRPQTRPSVYVAIYPYTPRKEDELELRKGEMFLVFERCQDGWPKGTSMHTSKIGVFPGNVYAPVTRAVTNASQAKVPMSTAGQTSGVTMVPSTAGGPAQKLQGNGVAGSPSVVPAAVVSAAHIQTSPQAKVLLHMTGQMTVNQARNAVRTVAAHNQERPTAAVTFILOVONAAGLSPASVGLSHHSLASPQPAPLMPGSATHAAISISRASAPLACAAAAPLTSPTSITSASLEAEPSGRIVTVLPGLPTSPDSASSACGNSSATKPKDKS

Figure 6: 3' mRNA fragment of hPOSH (public gi:7959248; SEQ ID NO:6)

Figure 7: C terminus protein fragment of hPOSH (public gi:7959249; SEQ ID NO:7)

ISYVEFNSAAKQLIEWDKPPVPGVDAGECSSAAAQSSTAPKHSDTKKNTKKRHSFTSLTMANKSSQASQN
RHSMEISPPVLISSNPTAAARISELGLSCAPSQVHISTTGLIVTPPPSPVTTGPSFTFPSDVYQA
ALGTLNPLPLPPPPLLAATVLASTPPGATAAAAAGMGRPMAGSTDQIAHLRPQTTRPSVYVAIYPYTPRK
EDEELRKGEMFLVFERCQDGWFKGTSMHTSKIGVFPGNVAPVTRAVTNASQAKVPMSTAGQTSRGVTM
VSPSTAGGPAQKLQGNGVAGSPSVVPAAVSAAHIQTSPQAKVLLHMTGQMTVNZQARNAVRTVAHNQER
PTAAVTPIQVQNAAGLSPASVGLSHHSLASPQAPLMPGSATHAAISISRAASPLACAAAAPLTSPSIT
SASLEAEPSGRIVTVLPGLPTSPDSASSACGNSSATKPKDKDSKIEKKGLLKLISGASTKRKPRVSPPASP
TLEVELGSAELPLQGAVGPELPPGGGHGRAGSCPVDGDGPVTTAVAGAALAQDAPHRKASSLDSAVPIAP
PPRQACSSLGPVLNESRPVVCEHRVVVSYPPQSEAELELKEGDIVFVHKKREDGWFKGTLQRNGKTGLP
PGSFVENI

PET/US04/06308

Figure 8: Human POSH full mRNA, Annotated Sequence (part 1)

---- - gi|10432611|dbj|AK021429.1|AK021429 Homo sapiens cDNA,
FLJ11367 fis, clone HEMBA1000303, highly similar to Mus musculus
Plenty of SH3s (POSH) mRNA

---- - gi|7959248|dbj|AB040927.1|AB040927 Homo sapiens mRNA for KIAA1494 protein, partial cds

 - Both hPOSH and KIAA1495

- Ring Domain

- SH3 Domian

- start codon and stop codon of predicted ORF

-to be continued

Figure 8: Human POSH full mRNA, Annotated Sequence (part 2)

TTGTGGACTTCCAGATGGTCAGGAGATGAGCAAAGGATTGGTATGTGACTCTGATGCCCGACAGTTA
CCCCAGCGAGCAGGTGAGAAAGATGTTGTGTTGGTTAGTCTGGATTGGATGTATAAGGTGTG
CCTTGTAAGTGTGATTTACTACACAGAGAAACTTTTTTTTTAAAGATATGACTAAAATGGACA
ATTGTTACAAGGCTTAACTAATTATTTGCTTTAAACTTGAACCTTCCTATAATAGATACTTCT
TTGGATTATGATTAAAGAAATTATTAATTTATGAATGATAGCTAAGGAGAAAGCTGGATTATCTCCTGT
TGAGAGCAAGGAGTCGTTTGACATAGTGAATGCATTTCCTCCCTCTCCCTGTACCATTAT
ATTGGGGTTATGTTTGCTTTAAAGATGAAATCCCAGTTCTCTAAATTGGTTCTTCTTGGGA
AACCAAACATACAAATGAATCAGTCAATTAGGCTGGGCTAGAGAGACAGAAACTTGAGAGAAAGAGA
AGTTAGTGAATTCCCTCTCTTAGTTGGTAGGAATCACCTGAAGACCTAGTCCTCAATTAAATTGTG
TGGGTTTAATTTCCTAGAATGAAGTGAAGTGAACAAATGAGAAAGAAATACAGCACAAACCCCTGAACCAA
AATGTTAGAAATATATTAGTTTATAGCAGAACAGCTCAATTGGTTGGAAAGCTAGGGAAA
TTGAAGTTGAGTCAGTGTGAGAAATGGCTATGAAGCGTCATTTCACATTACCCCCAACTGACCTGCA
TGCCAGGACAAAGTAAAATTTGAGATAGTGGTAGTGAAGTGTGTTAGTGGACTCGTGTAAAGTC
TATAAGAACACTGTGAAAGTTCATATTCAATTGATGTTCTTCCCTCGTGTAAAGTGA
GGATCCCACAGTAATAGATAGTGTGATGGTAGTGTATATTCAATTGCGATTCCCTGTAAAGTGA
GTACTCAGAATTGACCAATTCAAGGAGGTGAAAAATAAAACAGTGTCTCTCTACCCCAAGCCACTA
CTGACCAAGGTCTTCAGTCAGTCCTCGCTCCCTCTCGCTAAGGCATGCATTAGCCACTACACAAGTC
TTAGTGAAGTGGCTTTATGTCCCTCCAGCAGACAGACATCAAGGATGAGTTAACCAAGGAGACTACTC
CTGTGACTGTGGAGCTCTGGAAAGGCTTGGTAGTGAATTGCCCACACCTTACAATTGTGGAGGATC
CAGAAGAGCCTGTCTTTTATATCCATTCTGTGATGTCATTGGCTCTCCACCGATTCACTGGTGC
CACCGAGTCATGGATCTGGTAGTCCGGAAAACAAAGGAGGGAGACAGCCTGGTAATGAATAAGATCC
TTACACAGTTCTCATGGAAAATAATAAAACCTTTCAATTCTTTTCTTAAAGAATTAA
AACTGGGAAATAGAAACATGAACTGAAAAGTCTTGCATGACAAGGGTTCATGGCTTAAAGAATAC
TTTATATGGTTGAAGATGAAATCAATTCTAAATTAAACCTTTTAAAGAATGTATATTATGT
TCCTGTGTTGAATTAAAAAAATTTACTTGTGATATTGTAATATATAAAGGTTGGTG
AAATGAACCTTAGGAAAAGCTGCATCAGCTTCACTGTGTAAGTGCACACCAATGTGTATA
TATTCTTATTGGGAAATTAGTGTATTATAAAAATTTAAAAGAAAAAGACTACTACAGGTTAA
GATAATTCTTACCTGCTTTCTCCATATTAAAGCTATGTGATGAACTCTGTGTTCAAGTTC
CTGGTATAAAAGTGGTTAAATTCTGTGTTAAAGATCATTGGTAATATAATGTATGGTTCTAT
TGGTTTTGCAAGACAGTAGAGGGAGATTGTGTAACAAGGGCTTGTACACAGTGTATGGTAATGATAA
AATTGCAATTTCACCTTCTCATGTTAATAATTGAGGACTGGATAAAAGGTTCAAGATTAAATT
TGATGTTCAAACCTTGT

Figure 9: Domain Analysis of Human POSH

Domain Name	begin	end	E-value
<u>RING</u>	12	52	1.06e-08
<u>SH3</u>	137	192	2.76e-19
<u>SH3</u>	199	258	4.84e-15
<u>low complexity</u>	366	384	-
<u>low complexity</u>	390	434	-
<u>SH3</u>	448	505	2.40e-19
<u>low complexity</u>	547	563	-
<u>low complexity</u>	652	668	-
<u>low complexity</u>	705	729	-
<u>SH3</u>	832	888	1.47e-14

PCT/US04/06308

Figure 10: Diagram of Human POSH Nucleic Acids

PCT/US04/06308

Figure 11: Reduction in Full Length POSH mRNA by siRNA Duplexes

PCT/US04/06308

Figure 12: POSH Affects Release of VLP from Cells

PCT/US04/06308

Figure 13: Release of VLP from Cells at Steady State

Figure 14: Mouse POSH mRNA sequence (public gi:10946921; SEQ ID NO: 8)

GGGCAGCGGGCTGGGGGGCTGCATCTACAGCGCTGGGGGGCGGAACAAAGGCAGCGGGAGGC
GGCAGAGCAAAGTCTGAAATGGATGTTACATGAACTCACTTTAACGGCTGCGCAACTATGACGTTCTG
AAGCCGTTTCTCACTAAAGTCACTCAAGATGGATGAGTCGCTTGTGGACCTCTGGAGTGCCCTGT
GTGTCAGAACGCGTGGATGCTCCGAAAGGTCTAACCTGCGCAGCATACCTTGCAACGCTGTTG
CTGGGATTGTGGGTCGGGAATGAACTCAGATGTCGGAAATGCCGGACTCTGTTGGCTGGGCTG
ACGAGCTCCCCAGTAACATCCTACTGGTCAGACTTCTGGATGGCATCAAGCAGAGGCCCTGGAAACCGG
CCCTGGTGGGGCGGGACCACCTGCACAAAACACATTAAGGGCCAGGGCAGCACTGTGTTAATTGT
GGCTGAAAGATCTGCAAGAGCTCCAGTGTGGACAGCAGCCTGGGTGCAAGCCTGGAGCCCCCAGTGA
GGGGAAATACCTCAGTTACCGCTGCGCAAAGTATTATAACTCAAGGAAAAAGAGCCCCGGAGACCTTAA
GTTCAAGAACAGGGCACCCATCATTCTGCGCGAACAGGTGGATGAGAATTGGTACCCACGGGAAGTCAGC
GGGGTCCAGGCTTTTCCCCACTAACCTCGTCAAGATCATCAAACCTTACCTCAGCCCCCGCTCAGT
GCAAGCACTTACGACTTGAAGTGAAGAACAGCAAGCAGTGCACAAAGATTGCTTCCCTCGCAAAGGA
CGACGACTGACCGTGATCCCGAGAGTGGATGAAAAGTGGCTGAAGGAATGCTGGCAGATAAAATAGGA
ATATTTCAATTTCATACGTGGAGTTAACTCAGCTGCCAACGCTGATAGAGTGGATAAGCCTCCCG
TGCCAGGAGTGGACCGGAGATGCCCTCAGGACGGCGCAGAGCACCTCTGCCCTCAAAGCACCCGA
CACCAAGAAGAACCCAGGAAGCGAACACTCCCTCACCTCCCTCACCATGGCCAACAAGTCTTCCCAGGGG
TCCCAGAACGCCACTCCATGGAGATCAGCCCTCTGTGCTCATCAGTCCAGAACCCACAGCCGAG
CCCGCATCAGCGAACGTGCTGGGCTCTCTCGCAGCGCCCGTCTCGGTCCATATAAGCACCACTGGGTT
AATTGTGACCCCCCCCCTAGCAGCCGGTGAACACTGGCCCTGCGTTCACGTTCCCTCAGATGTCCCC
TACCAAGCTGCCCTGGAGTATGAATCTTCACTTCCCCACCCCTCTCTGGGGCCACCGTACTCG
CCTCCACCCCGTCAGGCCACTGTGCTGCTGCTGCTGCCGCCGCCGCTGCTGGAAATGGG
ACCCAGGCCGTGATGGGTCTCTGAAACAGATTGCACTTACGGCTCAGACTCGTCCCAGTGTATAT
GTTGCTATATATCCGTACACTCCCCGGAAAGGAAGACGAACGGAGCTGAGGAAGGGGAGATGTTTTGG
TGTTGAGCGTGTCCAGGACGGCTGGTACAAAGGGACATCGATGACAGGAAAGAGTGGCTTCC
TGGCAACTATGTGCCCTGGTACAGGCTGCACTGGGCTGCAAGTCCCTCAAGCTAAAGTCTATGTCTACT
GCGGGTCAGGCAAGTCGGGGGTGACCATGGTCAGCCCTTCACTGCAGGAGGACCTACACAGAACCC
AAGGAACGGCGTGGCCGAAATCCAGCGTCCGCCCCACGGCTGTGGTGTAGCAGCTCATATCCAGAC
AACTCTCAGGCTAAGGTCTGCTGCACATGTCTGGGAGATGACAGTCAATCAGGCCGCAATGCTGTG
AGGACAGTGTGAGCACATAGCCAGGAACGCCAACAGCAGCAGTGAECTCCATCCAGGTCCAGAATGCC
CCTGCCCTGGTCTGCATCCGGGGCTGCCCATCTCTGGCTCCCAACCTCTGCCCTCCAATGGC
GGGCTCTGCTGCCCTCCAGGTGCTGCCGTAGCATCAGTCGAACCAATGCCCTGGCTGCCCTGAGGG
GCTTCTCTGGCTCTCCCAAATATGACCGAGTGGCATGTCGACATCGTGGTGGGAAACAGTTCAGCTGG
TCCCTCCCTGGACTCCCCAATCTGGAGAGTGTGCTGCATCGTGGTGGGAAACAGTTCAGCTGGAAAC
AGACAAGGACAGTAAGAAAGAAAAAGGGCTACTGAAGCTGCTTCTGGTGCCTCCACCAAACGCAAG
CCCCAGTCTCCCTCCAGCATCACCTACCCGGATGTGGAGCTGGGTGCTGGGAGGCTCCCTGCAGG
GAGCAGTAGGTCTGAGCTGCCCTAGGGGGAGCCACGGCAGAGTGGGTCTGCCCCACAGATGGTGA
TGGTCAGTGGCCGCTGGAACAGCAGGCCCTAGGCCAGGATGCCCTCCACCGCAAGACAAGCTCCCTGGAC
TCCGAGTGCCCTGGCTCCACCCACCTGCCAGGCCAGTGCCTCCCTGGGCCAGTCATGAATGAGGCC
GGCTGTTGTGAAAGGACAGGGTGGTTCTACACCTCAGACTGAGCTGGCCGAACTTGAAC
CAAGGAAGGAGATATTGTGTTGTCATAAGAAACAGAGAGGAGACGGCTGGTTCAAGGCACGTTACAGAG
AATGGGAAGACTGGCTTTCCAGGAGCTTGTGAAAACATCTGAGAAGACGGGACACGGAGAAAGC
TTATCATCACACCACTGTGACTAAAGAGCACAAAGCAGTTCTAGAAAAGAGCACATCTGTGGACTTC
AGATCTCAAGAACCGAGCAGAACAGATGGGCACCTGACTCCAGAGCCCCGGCTGGTACCCAGGGCAG
AGGGAAGGAGGACACACCTGTGTTGGGCTCTCTGGGTTCTGATGTGTAAGTGTGCCTTGTAAATG
TCTAATGGACTTACAGATAATGTCTTTTTTTAAGATGTATAACTAAAATGGACAATTGTTACA
AGGCTTAACCTAATTATTGCTTTAAACTGAACTTCTTGTAAATGCAAAT

PCT/US04/06308

Figure 15: Mouse POSH Protein sequence (Public gi: 10946922; SEQ ID NO: 9)

MDESALLDLLECPVCLERLDASAKVLPQCQHTFCRKCLLGIVGSRNELRCPECRTLGVSGVDELPSNILLVRLLDGIKQRPWKPGGGGGTCTNTLRAQGSTVVNCGSKDLQSSQCGQQPRVQAWSPPVRGIPQLPCAKALNYEGKEPGLKFKSKGDTIILRQRVDENWYHGEVSGVHGFFPTNFVQIIKPLPQPPPQCKALYDFEVKDKEADKDCLPFAKDDVLTVIERRVDENWAEGLADKIGIFPISYVEFNSAAKQLIEWDKPPVPGVDTAECPSATAQSTSASKHPDTKKNTRKRHSPTSLTMANKSSQGSQNRSMEISPPVLISSSNPTAAARISELSGLSCSAPSQVHISTTGLIVTPPPSSPVTTGPAPTFPSDVFYQAALGSMNPPLPPPPLLAATVLAATPSGATAAAVAAAAAAAAGMCPRVMGSEQIAHLRQPTRPSVVAIYPYTPRKEDELELRKGEMFLVFERCQDGWYKGTSMHTSKIGVFPGNVAVPVTAVTNASQAKVSMSTAGQASRGVTMVPSTAGGPTQKPQGNGVAGNPSVVPTAVVSAAHIQTSPQAKVLLHMSGQMTVNQARNAVRTVAAHQSQERPTAAVTPIQVQNAACLGPAVGVLPHHSILASQPLPPMAGPAHGAAVSI SRTNAPMACAAGASLASPNMTSAMLETEPSGRTVTILPGLPTSPE SAASACGNSSAGKPDKDSKKEKKGLLKLLSGASTKRKPRVSPPASPTLDVELGAGEAPLOGAVGPTELPLG GSHGRVGSCPTDGDGPVAAGTAALAQDAFHRKTSSLDAVPIAPP PROACSSLGPVMNEARPVVCERHRVVVSYPPQSEAELELKEGDIVFVHKKREDGWFKGTLQRNGKTGLFPGSFVENI

Figure 16: Drosophila melanogaster POSH mRNA sequence (public gi:17737480; SEQ ID NO:10)

CATTTGTATCCGCTTGGCCACGAGCTTGCTGCACTGGCAAACCTAATAAAATTAAACATTGAATCCTG
CCTATTGCAACGATAATATAATCTGATTTAGTCATTAAGAACGACAAGTAGCGATTATAATAGTAGATT
TTAGCATTGAGCTAAATTATTCACCCGCTTGGGATTGCGTATGCGTGAGCCAGTACCTGCAT
GTGTGTGTGTTTGGATGCCCCCTGCACGAAATTCAAAATAGTGCACCATCTTGAGATTTCGATACACTG
GCAAGATGGACAGCACACGCTAAACGACCTGTTGGAGTGTCCGGTGTGAGCTGGACAGCACACCAC
ATCGAAGGTGCTGCCATGCCAGCACACCTCTGCCAAATGCTTGCAGGACATTGTGGCCAGTCAGCAC
AAGTTGCATGCCGGAGTCCCCATCTGGCTCTTGCAAATTGATGAGCTGCCCTCAAACGTCTTG
TGATGCAATCTAGAAGGCATGAAACAAATGCAGCAGCTGGCAAAGGAGAAGAAAAGGGAGAGGAGAC
TGAAAACAGCCGAAAGGGCAAACCTCAGCCGAGCGGAATCAGTGGCCCCGCTGACAACCAACTA
CTCCAGCTGCAGTCACATCAGCAATCTCATCAGCCGCTCGTACAAGCAACGTCGATTTCTACTCCCC
ACGCCATGCCCCTTTGACTTCGCCCTGGTGAAGGCACCGATCTAAAGTCAAGGAAAGGGGATCTGAT
ACTGATCAAGCATCGATCGAACAAACTGGTTGTGGTCAAGGCAATGGTCAAGGAGGGCACATTCCC
ATCAACTAGTCAGGTATGGTCTCCCTGCCAGTCAGGAGCTGGTATGACTTAAAGATGG
GGCCCAACGACGAGGAGGGATGCCCTGAAATTAAAGAAAAGCACTGTAATAACAGTAATGCCAGTGG
TCATAATTGGGAGAAGGAGCAATTGGCCAGACCATCGGAATCTTCCAATAGCATTGTTGAGCTGAAT
GCAGCGGCCAAAAGCTGTTGGACAGCGGGTACACACCCATCCATTGCCATCCACCGAACAGG
GGCAGCGGGCCCTTCCCTGGTCCAGTTATTGATCCACGGTGGTCAAGGAATCCAGTTCGGGATCTC
CAATTCCACGCCGGGAGCAGCAATTCAAGCTCCACATCCAGCTCGAATAACTGCACTGCCAATC
ATCTCACTGCCGAATACCCCCAACATGTTAGTAGCTTCCGGATCGCGCTGTTCGTTCGGGATCGACAAGG
GAGCAAAGGAGAAACGCCACTCAATAATGCTGGGGAGGAGCTCCATTAAAGTCTGCTGCAGAC
CAACGCCATTGGCTGAAATTCTTAGCTGCCCATGAACTAACGGCTTGGAAAGTTCCAGCTCAACA
GCTCTAAACCCACGTCAGCCCCACAGACATCGCGTGTACTTAAGACCAACTGTTCAAGCAGATGCAAC
CGAATTTACCCCTGGGGATACTTAGCCCTGTTCCCATACAAACACGCCAACGGATGAGCTGGAAATTAA
AAAGGGTTGTGTTAACATTGTGACCGAACGATGTTGAGCGGTTGTTCAAGGAAAAACTGGTTGGAC
ATCACTGGAGTGTCCCGGGCAACTACCTGACGCCCTGCGCGCCCGAGCAGCAGCTTAATGCATC
AATGGAAATATGTTCCCAAATGAGACGCCAGATGGCACAAAGTACAGCAGCATCCAGTTCGACCCAGA
TGTGGACTCAACACATGCTGCTCCATGCCAACCCCTGATTGCCACCTCGTCAAGCAGGCTACCGC
ACGACCAACAGTGTCTGTTGAGCGAACCCAGTGGAGGCGCTGTCAGCAGAAAATCGGAGGCCAAC
CTGAAACTGCCACAGCTCGACTACGAGCAGCTCTGGAGCAGTGGGACTTATGAGGAGATTAA
TCACATGAAAACACGCTCAAATCTCGGGAGCGTCTTGAGCAAGTTCGAAAGAAGCTATTAGCACA
AATGGAATTTACAACAAACCATCAGCTAAATTGCAATCCAGTACATGTAAGATCCGGCTCGTCCCCA
GTCAGCTCAGCACAGTCACCGCTCAATGAAACTCCAGCAGCCAAGACAGGGCACAAACACAGCAGTT
CCTACCAAGCAGCTGCCCTCGCTTCTACGAACAGCGTTCTGTAAGGATCGAACAGCGTGAAGGGAGC
AAGGAACGCTCTCACTGATTGCGAGACAATCATTAGATGAGCTACATTGCACTGTTGAGCTATG
ATGCCGCTGCCGCCAACCTACTCTCCGTGGCCCGAGCTGTACAGCGGGCGGTCAAGAACAGGT
GATTCTGGAGGTGGAGCGCAATCCAGTGTGATGCCAATATGATTATTGCAACCCAGCCATCGGAAGTC
CACAGCCTAGATGGAGTCATGCTGAGTCCCAGCAGCAATATGATCACGGAGGGGGCATTAGGCCA
GCGCCACCAACTAAGTCTCTTACTGCACGAGGGAAAGTCGATTCCGCTGATTGCGCTATCCACCAA
CACTGACATTGAACCTAGAGCTACATTGGCGACATTATCTACGTTCCAGCGGAAGCAGAACGGCTGG
TATAAGGGCACCCATGCCGTACCCACAAAACCGGGCTGTTCCCGCTTGTGAAACCGGATTGTT
AGGAAAGTTATGGTCAAACAGAATTAAAGCGAAATTCCAAATTACTGCTAAAAGGATTCAATC
GTCGGTCTATTGGGCTTCCAAATACGCAATCTCATATTCTCTTTTCAAAAAGAACCGTTTGTACT
CTTCAATCGAATGGCAGTCGCCGTTGACTTTTATACAATGCTTGTACAAATAGGCTAGCCATG
TAAGACTTAGGGAACAGTTACTTAAGCCTAGCGATTAGTTAGCTAGAGAAATAATCTAACCGATCTG
TGCCCTCTACAAAGTTATTGTAATATACGATACTCAGTAATooooooooooooo

Figure 17: Drosophila melanogaster POSH protein sequence (public gi:17737481; SEQ ID NO:11)

MDEHTLNDLLECVCLERLDTTSKVLPCQHTFCRKCLQDIVASQHKLRCPECRILVSCKIDELPPNVLLM
RILEGMKQNAAGKGEEKGEETETQPERAKPQPPAESVAPPDNQLLQLQSHQQSHQPARHKQRRFLLPHAYALFDASGEATDLFKKKGDLILLIKHRIDNNWFVGQANGQEGTFPINYVKVSVPLPMPQCIAAMYDFKMGPNDEEGCLEFKKSTVIQVMRRVDHNWAEGRIGQTIGIFPIAFVELNAAAKLLDSGLHHTHPFCCHPPKQQGQRALPPVPVIDPTVVTESSSGSSNSTPGSSNSSTSSNNCSPNHQISLPNTPQHVVASGSASVRFRDKGAKEKRHSLNALLGGGAPLSLLQTNRHSAEILSLPHELSRLEVSSSTALKPTSAPQTSRVLKTTVQQQMQPMLPWGYLALFPYKPRQTDELELKKGCYIVTERCVDGFKGKNWLDITGVFPGNYLTPLRARDQQQLMHOWKYVPQNADAQMAQVQQHPVAPDVRLLNMLSQPPDLPPrQQQATATTSCSVWSKPVEALFSRKSEPKPETATASITSSSSGAVGLMRRLTHMKTRSKSPGASLQQVPKEAISTNVEFTTNPSAKLHPVHVRSGSCPSQLQHSQPLNETPAAKTAAQQQFLPKQLPSASTNSVSYGSQRVKGSKERPHLICARQSLDAATFRSMYNNAASPPPPTSVAPAVYAGGQQQVIPGGGAQSQLHANMIAPSHRKSHSLDASHVLSPSSNMITEAAIKASA
TTKSPYCTRESRFRCIVPYPPNSDIELELHLDIIVYQRKQKNGWYKGTHARTHKTGLFPASFEPDC

Figure 18: POSH Domain Analysis

hPOSH protein sequence :

N terminus protein fragment of hPOSH (public gi:10432612):

C terminus protein fragment of hPOSH (public gi:7959249):

Mouse POSH Protein sequence (Public gi: 10946922):

Drosophila melanogaster POSH protein sequence (public gi:17737481)

Figure 19: Human POSH has ubiquitin ligase activity

Figure 20

PCT/US04/06306

Figure 21. PLD activity in medium of transfected cells

Figure 22.

Figure 23.

PCT/US04/06308

Figure 24.

PCT/U504/06308

Figure 25.

PCT/US04/06308

FIGURE 26

PCT/US04/06308

Figure 27.

Figure 28.

PCT/US04/06308

Figure 29A.

PCT/US204/06308

Figure 29B.

PCT/US04/06308

Figure 30. Putative PKA phosphorylation sites in hPOSH.

MDESALLLLECPVCLERLDASAKVLP[CQHTFCKRCLLGIVGSRNELRCPECRTLVGSGVEELPSNILLVRLLDGIKQRPWKEPGPGGGSGTNCTNALRSQ[STVANCSSKDLQSSQGGQQPRVQ[SWSPPVRGI[POLPCAKALYNYEKEPGDLKFSKGDIIILRRQVDENWYHGEVNGI[HGFFPTNFVQI[KLPLQPPPQCKALYDFEVKDKEADKDCLPFAKDDVLTIVIRRVDENWAEGMLADKIGIFPISYVEFNSAAKQLIEWDKPPVPGDAGECSAAAQSSTAPKHSDT[KKN[KKRHSFTSLTMANKSSQASQNRHSMEISPPVLISSSNPTAAARISELSGLS
CSAPSQVHISTTGLIVTPPPSSPVTTGPSFTFPSDVYQAALGTLNPPLPPPLLAATVLASTPPGATAAAAGMGRPMAGSTDQIAHLRPQTRPSVYVAIYPYTPRKED[ELELRKGEMFLVFERCQDGWFKGTSMHTSKIGVFPGNVAVPVT[RATVNASQAKVPMSTAGQT[RGVTMVSPTAGGPAQKLQGNGVAGSPSVPAAVVSAAHIQTSPQAKVLLHMTGQMTVNQARNAVRTVAAHNOERPTAAVTP[QVQNAAGLSPASVGLSHSLASPQPA[MPGSATHAAISISRASAPLACAAAAPLTSITSASLEAEPSGRIVTVLPGLPTSPDSASSACGNSSATKPKDKDSKKEKKGLLKLLSGASTKRKPRVSP[PSPTLÉVELGSAELPLQGAVGP[ELPPGGGHGRA[GCPVDGDGPVTTAVAGAALAQDAFH[RKA[SLDSAVPIAPP[QACSSLGPVLNESRPVVCERHRVVVSYPPQSEAELELKEGDIVFVHKKREDGWFKGTLQRNGKTGLFPGSFVENI

PCT/US04/06308

Figure 31. Phosphorylation of hPOSH regulates binding of GTP-loaded Rac-1.

PCT/US04/06308

Figure 32.

BLAST hit	UniGene	Name	Longest Protein	Domain Analysis
AK092170	Hs.302 746	MSTP028		
AB011155. 1	Hs.170 290	DLG5 discs, large (Drosophila) homolog 5	NP_0047 38 aa887	
XM_20894 4.1	None		XP_2089 44.1	
AB046818	Hs.237 40	KIAA1598 KIAA1598 protein	1004727 1 aa146	
BC018733. 1	Hs.208 14	CGI-27 C21orf19-like protein	4680693	
AL080170. 1	Hs.516 92	BIA2 BIA2	5262640	
BC036531 .1	Hs.17 2928	COL1A1 collagen, type I, alpha 1		
J03930.1		Human intestinal alkaline phosphat		

BLAST hit	UniGene	Name	Longest Protein	Domain Analysis
AP535142	Hs.416 719	SYNE1 spectrin repeat containing, nuclear envelope 1	AAN6044; <u>2.1</u> 8797 aa	
M93425	Hs.62	PTPN12 protein tyrosine phosphatase, non-receptor type 12	<u>292409</u> aa504>	
BC009710	Hs.100 651	GOSR2 golgi SNAP receptor complex member 2	<u>1690552</u> <u>2</u> <u>1690552</u> <u>0</u>	
M18468 M18468 BC036285 M18468	Hs.183 037	PRKAR1A protein kinase, cAMP-dependent, regulatory, type I, alpha (tissue specific extinguisher 1)		
AL137509 in 3'UTR?	Hs.184 029	DKFZp761A 052 hypothetical protein	<u>AAH099</u> <u>17</u>	
BC013082 U76247	Hs.295 923	SIAH1 seven in absentia homolog 1 (Drosophila)	AAC5190 7	
BC032851	Hs.314 4	CBLB Cas-Br-M (murine) ecotropic		

PCT/US04/06308

BLAST hit	UniGene	Name	Longest Protein	Domain Analysis	
		retroviral transforming sequence b			
BC006358 -bp 2026 bp 1561 bp1564 bp1562 bp1561 bp1564	Hs.660 48	VCY2IP1 VCY2 interacting protein 1	21739763		
BC039858	Hs.690 6	RALA v-ral simian leukemia viral oncogene homolog A (ras related)	24980847 aa1>		
D83077	Hs.118 174	TTC3 tetratricopeptide repeat domain 3	1304132 aa1027 aa1040		
M99435	Hs.289 35	TLE1 transducin-like enhancer of split 1 (E(sp1) homolog, Drosophila)	307510		
U18423	Hs.288 986	SMN1 survival of motor neuron 1, telomeric	624186		
BC00172 3, AJ31054 4	Hs.324 277	EGLN2 egl nine homolog 2 (C. elegans)	14547148		
BC000386	Hs.581 89	EIF3S3 eukaryotic translation			

BLAST hit	UniGene	Name	Longest Protein	Domain Analysis	
AL1374 93	Hs.359 45	DKFZp434B 1231 hypothetical protein DKFZp434B1 231	6808117	<p>Detailed description: This diagram shows a protein sequence from position 0 to 358. It features two Ig domains (IG) at positions 159-175 and 265-281. A Sieclease domain is located between positions 64 and 122. The sequence is flanked by SH2 and SH3 domains.</p>	
L06425	Hs.181 244	HLA-A	575249	<p>Detailed description: This diagram shows a protein sequence from position 0 to 365. It includes an Ig domain (IG) at 245-261, another Ig domain (IG) at 281-297, a Transmembrane domain (TM) at 341-357, and an HNC_I domain at 199-215.</p>	
BC008345	Hs.301 512	NUMA1 nuclear mitotic apparatus protein 1	14249928 963aa 35119 2115aa	<p>Detailed description: This diagram shows a protein sequence from position 0 to 2115. It contains four Mucoin_tail domains (Mucoin_tail) at 252-278, 321-347, 481-507, and 631-657. A Cellulose binding domain (Cellulose_b) is located at 1762-1885.</p>	
AF077202 AF077202	Hs.397 853	HSPC016 hypothetical protein HSPC016	1265453 7 64aa	<p>Detailed description: This diagram shows a protein sequence from position 0 to 64. It features a single MLS domain (MLS) at 10-21.</p>	
BC000449	Hs.183 704	UBC			
D26121	Hs.169 303	ZFM1 protein alternatively spliced product domain A, B and G		<p>Detailed description: This diagram shows a protein sequence from position 0 to 66. It contains three MLS domains (MLS) at 14-25, 26-37, and 48-59.</p>	
AF077952	Hs.105 779	PIASy protein inhibitor of activated STAT protein PIASy	3643111	<p>Detailed description: This diagram shows a protein sequence from position 0 to 51. It includes a SAP domain (SAP) at 63-70, a zfp-IIIz domain (zfp-IIIz) at 235-246, and a Daxx domain (Daxx) at 425-451.</p>	

PCT/US04/06308

BLAST hit	UniGene	Name	Longest Protein	Domain Analysis	
BC007034	Hs.118 786	MT2A metallothionein 2A	1393785 7		
AF293026	Hs.325 87	SRA1 steroid receptor RNA activator 1	9930614		
X66899	Hs.129 953	EWSR1 Ewing sarcoma breakpoint region 1			Synaptophysin x4; Transcription factor IIA; zinc finger x4; NLSx3,
AF035528	Hs.153 863	MADH6 MAD, mothers against decapentaplegic homolog 6 (Drosophila)	2736316		
AF441770	Hs.164 11	THOC2 THO complex 2	AAM2843 6		
Y09723	Hs.335 32	ZNF151 zinc finger protein 151 (pHZ-67)	2230871		

BLAST hit	UniGe ne.	Name	Longest Protein	Domain Analysis
BC0127 26	Hs.693 31	DDX31 DEAD/H (Asp-Glu-Ala- Asp/His) box polypeptide 31	<u>7505907</u>	<p>Diagram illustrating domain organization for DDX31. The protein length is 7505907. Domains include:</p> <ul style="list-style-type: none"> SH3_Rings3: Positions 1-114 Ocludin: Positions 115-125 DEAD: Positions 126-145 DEAD: Positions 146-155 Tsp_Significance_C: Positions 156-167 SH2_SSP: Positions 168-175 SH2_SSP: Positions 176-183 NLS: Positions 184-191 NLS: Positions 192-199 NLS: Positions 200-207 NLS: Positions 208-215 NLS: Positions 216-223 NLS: Positions 224-231 NLS: Positions 232-239 NLS: Positions 240-247 NLS: Positions 248-255 NLS: Positions 256-263 NLS: Positions 264-271 NLS: Positions 272-279 NLS: Positions 280-287 NLS: Positions 288-295 NLS: Positions 296-303 NLS: Positions 304-311 NLS: Positions 312-319 NLS: Positions 320-327 NLS: Positions 328-335 NLS: Positions 336-343 NLS: Positions 344-351 NLS: Positions 352-359 NLS: Positions 360-367 NLS: Positions 368-375 NLS: Positions 376-383 NLS: Positions 384-391 NLS: Positions 392-399 NLS: Positions 400-407 NLS: Positions 408-415 NLS: Positions 416-423 NLS: Positions 424-431 NLS: Positions 432-439 NLS: Positions 440-447 NLS: Positions 448-455 NLS: Positions 456-463 NLS: Positions 464-471 NLS: Positions 472-479 NLS: Positions 480-487 NLS: Positions 488-495 NLS: Positions 496-503 NLS: Positions 504-511 NLS: Positions 512-519 NLS: Positions 520-527 NLS: Positions 528-535 NLS: Positions 536-543 NLS: Positions 544-551 NLS: Positions 552-559 NLS: Positions 560-567 NLS: Positions 568-575 NLS: Positions 576-583 NLS: Positions 584-591 NLS: Positions 592-599 NLS: Positions 600-607 NLS: Positions 608-615 NLS: Positions 616-623 NLS: Positions 624-631 NLS: Positions 632-639 NLS: Positions 640-647 NLS: Positions 648-655 NLS: Positions 656-663 NLS: Positions 664-671 NLS: Positions 672-679 NLS: Positions 680-687 NLS: Positions 688-695 NLS: Positions 696-703 NLS: Positions 704-711 NLS: Positions 712-719 NLS: Positions 720-727 NLS: Positions 728-735 NLS: Positions 736-743 NLS: Positions 744-751 NLS: Positions 752-759 NLS: Positions 760-767 NLS: Positions 768-775 NLS: Positions 776-783 NLS: Positions 784-791 NLS: Positions 792-799 NLS: Positions 800-807 NLS: Positions 808-815 NLS: Positions 816-823 NLS: Positions 824-831 NLS: Positions 832-839 NLS: Positions 840-847 NLS: Positions 848-855 NLS: Positions 856-863 NLS: Positions 864-871 NLS: Positions 872-879 NLS: Positions 880-887 NLS: Positions 888-895 NLS: Positions 896-903 NLS: Positions 904-911 NLS: Positions 912-919 NLS: Positions 920-927 NLS: Positions 928-935 NLS: Positions 936-943 NLS: Positions 944-951 NLS: Positions 952-959 NLS: Positions 960-967 NLS: Positions 968-975 NLS: Positions 976-983 NLS: Positions 984-991 NLS: Positions 992-999 NLS: Positions 1000-1007
NM_032958	Hs.375 562	POL R2J2 DNA directed RNA polymerase II polypeptide J- related gene		
AF068235. 1	Hs.433 759	BANF1 barrier to autointegration factor 1	<u>3002951</u>	<p>Diagram illustrating domain organization for BANF1. The protein length is 3002951. Domains include:</p> <ul style="list-style-type: none"> BRF: Positions 1-23 BRF: Positions 24-46 BRF: Positions 47-69 BRF: Positions 70-92 BRF: Positions 93-115 BRF: Positions 116-138
BC014967. 1	Hs.563 7	CBX4 chromobox homolog 4	<u>4502603</u> aa319	<p>Diagram illustrating domain organization for CBX4. The protein length is 4502603. Domains include:</p> <ul style="list-style-type: none"> CHROMO: Positions 1-35 CHROMO: Positions 36-58 CHROMO: Positions 59-81 CHROMO: Positions 82-104 CHROMO: Positions 105-127 CHROMO: Positions 128-150 CHROMO: Positions 151-173 CHROMO: Positions 174-196 CHROMO: Positions 197-219 CHROMO: Positions 220-242 CHROMO: Positions 243-265 CHROMO: Positions 266-288 CHROMO: Positions 289-311 CHROMO: Positions 312-334 CHROMO: Positions 335-357 CHROMO: Positions 358-380 CHROMO: Positions 381-403 CHROMO: Positions 404-426 CHROMO: Positions 427-449 CHROMO: Positions 450-472 CHROMO: Positions 473-495 CHROMO: Positions 496-518 CHROMO: Positions 519-541 CHROMO: Positions 542-564 CHROMO: Positions 565-587 CHROMO: Positions 588-610 CHROMO: Positions 611-633 CHROMO: Positions 634-656 CHROMO: Positions 657-679 CHROMO: Positions 680-697 CHROMO: Positions 698-715 CHROMO: Positions 716-733 CHROMO: Positions 734-751 CHROMO: Positions 752-769 CHROMO: Positions 770-787 CHROMO: Positions 788-805 CHROMO: Positions 806-823 CHROMO: Positions 824-841 CHROMO: Positions 842-859 CHROMO: Positions 860-877 CHROMO: Positions 878-895 CHROMO: Positions 896-913 CHROMO: Positions 914-931 CHROMO: Positions 932-949 CHROMO: Positions 950-967 CHROMO: Positions 968-985 CHROMO: Positions 986-993 CHROMO: Positions 994-999 60s_rRNA_methylase: Positions 1000-1007

PCT/US04/06308

Figure 33.

PCT/US04/06308

Figure 34A.

A

IB: anti-Herp

B

IP: anti-Flag (Ubi)

IB: anti-Herp

PCT/US04/06308

Figure 34B.

PCT/US04/06308

Figure 35.

FIGURE 36

Unigene Name: Arf1 Unigene ID: Hs.286221

Human Arf1 mRNA sequence - var1 (public gi: 3360490) (SEQ ID NO: 325)
GCAAAACCAACGCCCTGGCTGGAGCAGCAGCCCTTGAGGTGCTCCCTGCCAGTGTCTTCACCTGTCCA
CAAGCATGGGAACATCTCGCAACCTCTTCAAGGGCTTTTGCAAAAAAGAAATGCGCATCCTCAT
GGTGGGCTGGATGCTGCAGGGAGACCACGATCCTCTACAAGCTTAAGCTGGTGGAGATCGTGGACCACC
ATTCCCACCATAGGCTTCAACGTGGAAACCGTGGAGTACAAGAACATCAGCTTCACTGTGTGGAGCTGG
GTGGCCAGGACAAGATCAGGCCACTACTTCCAGAACACACAAGGCCATGATCTTCGTGG
GGACAGCAATGAGAGAGCGTGTGAAACGAGGCCGTGAGGAGCTCATGAGGATGCTGGCCGAGGACGAG
CTCCGGGATGCTCTCTGGTGTGCCAACAGCAGGACCTCCAAACGCCATGAAATGCCGCCAGA
TCACAGAACAGCTGGGCTCACTACTACGCCAACAGGAACCTGGTACATTCAAGGCCACCTGCCACCAG
CGGCGACGGCTCTATGAAGGACTGGACTGGCTGTCCAATCAGCTGGAAACAGAACGTGAAACCGCACCC
CCCTCCCTCTCACTCCTTGTGCCCTGTGTTACTCTCATGTGGCAAACGTGGCTGTGGTGTGAGTG
CCAGAAGCTGCCCTCGTGGTTGGTCAACCGTGTGCATCGCACCGTGTGAAATGTGGCAGACGCCAGCCT
GGGCCAGGTTTTATTTAATGAAATAGTTTGTGTTCCAATGAGGAGTTCTGGTACTCCTATGCA
ATATTACTCAGTTTTTATTGAAAAAGAAAATCAACTCACTGTTCAGTGTGAGAGGGATGTAGG
CCCATGGGACCTGGCTCCAGGAGTCGCTGTGGAGAGGCCACGCCCTGGCTTAGAGCTGT
GTGAAATCCATTGGTGGTTGGTTTAACCAAACCTCAGTGCATTTTAAATAGTAAAGAATCCA
AGTCGAGAACACTTGAAACACAGAACAGAGGAGACCCGCCACTAGCATAGATTGCAAGTTACGCCCTGGATGC
CAGTCGCCAGGCCAGTGTCCCCCTGGGAACATGAGGTGGTGGCGCAGCAGACTGCCATCAATTCT
GCATGGTCACAGTAGAGATCCCCGCAACTCGCTGTGGTCACTGGCATGTCATGGT
TGTCCCTGTGCTCCCAGGCTGGGCCAGGCTGGAGGCCACAGGCCACCCACTATGCCGCCAGGCC
GCCCTACCCACCTTCAGGAGCAGCTATGGGACGAGGCCACATCTGCCCCCTGGTGTGGCAGA
GTGGGCTCGTCCCACACTCGTGTGCTCAGACACTTGGCAGGATGCTGGGCTCACCAGCA
GGAGCGCTGCAAGCGGGCAGGGCGTCCACCTAGACCCACAGGCCCTGGGAGCACCCACCTCTGTG
GTGATGTAGCTTCTCCCTCGCCTGCAAGGGTCCGATTGCCATGAAAAGACAACCTCTACTTT
TTCTTTGTATTTGATAAAACACTGAAGCTGGAGCTGTTAAATTATCTTGGGAAACCTCAGAAGTGGT
CTATTGGTGTGCTGGAACCTCTTACTGTTCAATACAGATTAGTAATCAAAAAAAAAAAAA
AAAAAAA

Human Arf1 mRNA sequence - var2 (public gi: 30583624) (SEQ ID NO: 326)
ATGGGGAAACATCTCGCAACCTCTCAAGGGCTTTGGCAAAAAGAAATGCGCATCCTCATGGTGG
GCCGGATGCTGCAGGGAAAGACCACGATCCTCTACAAGCTTAAGCTGGTGGAGATCGTGGACCACCATTC
CACCATAGGCTTCAACGTGGAAACCGTGGAGTACAAGAACATCAGCTTCACTGTGTGGAGCTGGTGG
CAGGACAAGATCAGGCCCTGTGGCGCCACTACTTCCAGAACACACAAGGCCCTGATCTTCGTGGTGGACA
GCAATGACAGAGAGCGTGTGAACGAGGCCGTGAGGAGCTCATGAGGATGCTGGCGAGGAGCTCCG
GGATGCTGCTCTCTGGTGTGCCAACAGCAGGACCTCCCAACGCCATGAATGCCGCCAGATCACA
GACAAGCTGGGCTGCACTCACTACGCCAACAGGAACCTGGTACATTCAAGGCCACCTGCCACCAGCG
ACGGGCTCATGAAGGACTGGACTGGCTGTCCAATCAGCTGGAGCTAG

Human Arf1 mRNA sequence - var3 (public gi: 34527605) (SEQ ID NO: 327)
AAAACCAACGCCCTGGCTGGAGCAGCAGCCCTTGAGGTGCTCCCTGCCAGTGTCTTCACCTGTCCACA
AGCATGGGAACATCTCGCAACCTCTCAAGGGCTTTGGCAAAAAGAAATGCGCATCCTCATGG
TGGCCTGGATGCTGCAGGGAAAGACCACGATCCTCTACAAGCTTAAGCTGGTGGAGATCGTGGACCACCAT
TCCCACCATAGGCTTCAACGTGGAAACCGTGGAGTACAAGAACATCAGCTTCACTGTGTGGAGCTGG
GCCAGGACAAGATCCGCCCTGTGGCGCCACTACTTCCAGAACACACAAGGCCCTGATCTCGTGGTGG
ACAGCAATGACAGAGAGCGTGTGAACGAGGCCGTGAGGAGCTCATGAGGATGCTGGCGAGGAGCAGCT
CCGGATGCTGCTCTCTGGTGTGCCAACAGCAGGACCTCCCAACGCCATGAATGCCGCCAGATC
ACAGACAAGCTGGGCTGCACTCACTACGCCAACAGGAACCTGGTACATTCAAGGCCACCTGTGCCACCAGCG
GCGACGGCTCATGAAGGACTGGACTGGCTGTCCAATCAGCTGCCAACAGAACGTGAACGCCAG
CTCCCTCTCACTCCTCTGGCCCTGCTTTACTCTCATGTGGCAAACGTGGCTGTGGTGTGAGTGC
AGAAGCTGCCCTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGT
GCCAGGCTTTATTTAATGAAATAGTTTGTGTTCCAATGAGGAGTTCTGGTACTCCTATGCAAT
ATTACTCAGCTTTTATGAAAAAGAAAATCAACTCACTGTGAGGAGCTGGTGTGGTGTGGTGTGGTGT
ATGGGCACCTGGCTCCAGGAGTCGCTGTGGTGTGGAGAGGCCGCCACGCCCTGGCTTAGAGCTGTGTT
GAAATCCATTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGT
CGAGAACACTTGAAACACAGAACAGAGGCCGCCACTAGCATAGATTGCAAGTTACGCCCTGGATGCCAG
TCGCCAGGCCAGCTGGTGTGCCAACATGAGGTGGTGGCGCAGCAGACTGCCATGCAATTCTGCA
TGGTCACTGAGAGATCCCCGCACTCGCTGTGCTTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGT

PCT/US04/06308

CCCTGTGCTCCACGGTTCCAGGGGCCAGGCTGGGAGGCCACAGCCACCCACTATGCCGCAGGCCGCC
CTACCCACCTTCAGGCAGCCTATGGGACGCAGGGCCCCTCTGTCCCTCGTCTGCCGTGGCCAGAGTG
GGTCCGTCGTCACCACTCGTCTCGCTCAGACACTTCGGCAGGATGTCGGGCTCACCAAGCAGGA
GCCGCTGCAAGCCGGCAGGGCGTCCACCTAGACCCACAGCCCCCTGGGAGCACCCACCTCTGTGTG
ATGTAGCTTCTCCCTCAGCTGCAAGGGTCCGATTGCCCCATCGAAAAAGACAACCTCTACTTTTTC
TTTGTATTTGATAAAACACTGAAGCTGGAGCTGTTAAATTATCTGGGAAACCTCAGAACTGGCTA
TTGGTGTGCTGGAACCTCTTACTGCTTCAATACAGGATTAGTAATCAACTGTTGTATACTTGT
CAGTTTCATTCGACAACAAAGCACTGTAATTAGCTATTAGAATAAAACTCTTTAACTATT

Human Arf1 mRNA sequence - var4 (public gi: 6995997) (SEQ ID NO: 328)
GCAAAACCAACGCCCTGGCTCGGAGCAGCAGCCTCTGGGTGCCCCGGCAGTGTCCCTCCACCTGTCCA
CAAGCATGGGAACATCTCGCCAACCTCTCAAGGGCTTTTGGCAAAAAGAAATGCCATCCTCAT
GGTGGGCCCTGGATGTCAGGGAGACCACGATCCTACAAGCTTAAGCTGGGTGAGATCGTGACCACC
ATTCCCACCATAGGCTCAACGTGGAAACCGTGGAGTACAAGAACATCAGCTCACTGTGTTGGGACGTGG
GTGGCCAGGACAAGATCGGCCCCCTGTGGCGCAACTACTTCCAGAACACACAAGGCTGATCTCGTGGT
GGACAGCAATGACAGAGAGCGTGTGAACGAGGCCCCGTGAGGAGCTCATGAGGATGCTGGGCCAGGACGAG
CTCCGGGATGTCCTCCTGGTGTGCAACAAGCAGGACCTCCCAACGCCATGAATGCCGCCAGA
TCACAGACAAGCTGGGCTGCACTCACTACGCCACAGGAACGGTACATTCAAGGCCACCTGCCACACAG
CGGCGACGGGCTATGAAGGACTGGACTGGCTGTCCAATCAGCTCCGGAAACAGAAGTGAACGCCAGCC
CCCTCCCTCTCACTCCTCTGGCCCTCTGCTTACTCTCATGTGGAAACAGTGGGCTGTGGTGTGAGTG
CCAGAACGCTGCCCTCGTGGTTGGTACCGGTGTGCATGCCACCGTGTGTAAATGTGGCAGACGCCAGCCT
GGGGCCAGGCTTTTATTTAATCTAAATAGTTTTGTTCAATGAGGCACTGGTACTCTGTACTCCTATGCA
ATATTACTCAGCTTTTTTATTGTAAGGAAACATCAACTCACTGTTAGTGTGAGAGGGGATGTAGG
CCCCATGGGACCTGCCCTCAGGAGTCGCTGTGTTGGGAGAGGCCACGCCCTGGCTAGAGCTGTG
TTGAAATCCATTTGGTGGTTGGTTAACCCAAACTCAGTGCATTAAAATAGTTAAGAATCCAAG
TCGAGAACACTGACACACAGAACGGAGACCCGCCAGCATAGATTGCACTGGTACGCCCTGGATGCCA
GTCGCCAGGCCAGCTGTTCCCTCGGGAAACATGAGGTGGTGGCGCAGCACAGTGCATCAATTCTGC
ATGGTCACAGTAGAGATCCCCGCAACTCGCTTGTCTTGGTCACTGCATCCATGCCATGTGCTTG
TCCCTGTGCTCCACGGTTCCAGGGGCCAGGCTGGGAGGCCACGCCACCCACTATGCCGAGGCC
CCTACCCACCTTCAGGCAGCCTATGGGACGCCAGGCCATCTGCCCCCTGGTCCGCGTGTGGGAGAGTG
GTCCGTGTCCTCCCAACACTCGTGTCTCGCTAGACACTTTGGCAGGATGTCGGGGCTCAACAGCAGGAG
CGCGTGCAGGCCAGGGCAGGCGGCCACCTAGACCCACAGGCCCTGGGAGCACCCACCTCTGTGTGA
TGTAGCTTCTCCTCCCTGAGCTGCAAGGGTCCAGGGTCCATGCCATGAAAAGAACACCTCTACTTTTCT
TTTGTATTTGTATAAACACTGAAGCTGGAGCTGTAAATTATCTGGGGAAACCTCAGAACACTGGTCTAT
TTGGTGTGCTAGGAACCTCTACTGCTTCAATACACGATTAGTAATCAACTGTTGTATACTGTTT
CAGTTTCACTTCGACAAACAAGCACTGTAATTATAGCTATTAGAATAAAATCTCTTAACATT

Human Arf1 mRNA sequence - var5 (public gi: 7020834) (SEQ ID NO: 329)
CCTTACCCGGCGTCCCCGCGCCGGAGGCCTGACGTGGCCCGTCAGAGCCGCCATTGTGGGAGC
AAAACCAACGCTGGCTCGGAGCAGCAGCCTCTGAGGTGTCCTGGCCAGTGTCCCTCACCTGTCCACA
AGCATGGGAACATCTCGCCAACCTCTCAAGGGCTTTGGAAAAAAGAAATGCGCATCCATGG
TGGGCCTGGATGTCAGGGAAAGACCAAGGATCCTCTACAAGCTTAAGCTGGGTGAGATCGTGACCACCAT
TCCCACCATAGGCTAACGTGAAACCGTGGAGTACAAGAACATCAGCTTACTGTGTGGGACGTGGG
GGCCAGGACAAGATCGGCCCCGTGGCCCAACTACTTCCAGAACACACAAGGCTGATTCGTGGTGG
ACAGCAATGACAGAGAGCGTGTGAAACGAGGCCGTGAGGAGCTCATGAGGATGCTGGCCAGGACGAGCT
CCGGGATGCTGTCCTCTGGTGTGCAACAAAGCAGGACCTCCCCAACGCCATGAATGCGGCCAGATC
ACAGACAAGCTGGGCTGCACTCACTACGCCACAGGAACCTGGTACATTCAAGGCCACCTGCGCCACCAGCG
GCGACGGGCTATGAAGGACTGGACTGGCTGTCAAATCAGCTCCGGAACAGAACGTAACGCGACCCCC
CTCCCTCTCACTCTCTGGCCCTGTCTTACTCTCATGTGGAAACGTGCGGCTCGTGTGAGTGC
AGAAGCTGCCCTCGGGTTGGTACCGTGTGCATGCCACCGTGTGTAATGTGGCAGACGCCAGCTGC
GGCCAGGCTTTTATTAAATGTAATAGTTTTGTTTCCAAATGAGGCAGTTCTGGTACTCTATGCAAT
ATTACTCAGCTTTTTATTGTAAAAAGAAAAATCAACTCACTGTTCTAGTGTGAGGGGATGTAGGCC
CATGGGCACCTGGCTCCAGGAGTCGGTGTGGGAGAGCCGGCACGCCCTGGCTTAGAGCTGTG
TGAAATCCATTGTTGGTTTTAAACCCAAACTCAGTCATTTAAATGTTAAAGATCCTAGG
TCGAGAACACTGAAACACACAGAACAGGGAGACCCCGCTAGCATAGATTGTCAGTTACGCCCTGGATGCCA
GTCGCCAGCCAGCTTCCCCCTCGGGAAACATGAGGTGGTGGCGCAGCAGACTGCGATCAATTCTGC
ATGGTCACAGTAGAGATCCCCGCAACTCGCTTGTCTGGTCACTGCATTCATAGCCATGTGCTTG
TCCCTGTGCTCCACGGTTCCAGGGCCAGGCTGGGAGCCACAGCCACCCCACTATGCCGCAAGGCCG
CCTACCCACCTTCAGGCAGCCTATGGGACCGCAGGGCCCCATCTGTCCTCGGTCGGCGTGTGGCCAGAGT
GGTCCCGTGTCCCAACACTCGTGTGCTCGTCAGACACTTGGCAGGATGTCGGGGCTCACCAAGCAGG
AGCGCGTGCAGGCCGGCAGGGTCCACCTAGACCCACAGCCCTGGGAGCACCCACCTCTGTGTTG
GATGTAGCTTCTCTCCCTCAGCCTGCAAGGGTCCGATTGCCATCGAAAAAGACAACCTCTACTTTTT

Figure 36 part - 2

PCT/US04/06308

CTTTGTATTTGATAAACACTGAAGCTGGAGCTTAAATTATCTGGGAAACCTCAGAACTGGTCT
ATTTGGTGTGGAACCTCTACTGTTCAATACACGATTAGTAATCAAATGTTGTATACTTGT
TCAGTTTCATTCGACAAACAAGCACTGAATTATAGCTATTAGAATAAAATCTCTTAACATTAAAAA
AAAAA

Human Arf1 mRNA sequence - var6 (public gi: 10435849) (SEQ ID NO: 330)
AGCTCAGTGCCACAGCATGTCTGTGGTAGTGTCTAGTCAGGAAGTGAACCTGGCAAAACTGAGTATCACC
CTCTCTTCCGGTTCTGCCACTCCCTGAAAACCAGGGTAGCATGTACATCAGATAGCTCCGCTAC
GTGTGCGCTGACCATGCTGAGATGGGACTGTGGACTCAGCTCTGGTCAATTGCTGGAACCAGCGGCC
CATGTGAGGTACAGGGAAACGCAGTCTAGCAGATGGTTGGATGTGGACACTCGTCTGCCCTCTGGC
TTGGTGTGTGCCATCGCACAGTCATTGCTGTTAGCATGCATGGGAGAGACTGAAGCACAAGGGCCA
GGCCCTGGGAGTGCCTGCCCTCAATTGGAAGAGCCCTGGGACAGCATAGGCCCTGGCAGAATTGG
ACTGGGCCATGATCCAGGGCATTGGGACCTCACCTAGGAGTTGGGTTCTGGTCAAGAGCCCTGTGGAGA
CAGGGTCTCCCTGTGGGACCAAAACTGACCTCAACTGCTGGTTCTTGGCCCTGGGACAGGGCTGGT
TGAAGTACTCTCCGGCAGTGTAAATCCCTGCAGGTTCTTATTCTCAGTTGTGTGAGTTCACTGTTGGG
TCCTCGTGCAGTGTAAATCCCTGCAGGTTCTTCCAGTGGCCAGTCCATCAGCCACTGCACTGGGG
GCTAATGTGGGTTTGCCTTTGGTCTTGGTTTCCAGTGGCCAGTCCATCAGCCACTGCACTGGGG
CAGTAGAGGCCAACTGCACCCCTGCCAGAGTAGAAATACTGGTAGGCCAGGCTCTGCTGCCCT
TCCATGTCTTGTGAAGCATCCATGGACAAAGCTGACTCACGGGGTGTGCACAGCTGCAGGGAGGCCAG
GAAACAGGGTTTATTCTAGAGGGCCTGTGCTCAGTGACAGACCAGAGTCCCACACTGAGAGAGCAG
GGCTGGGGCAGCACAAAGACTGGATAGCATTTGCATGATGCCATGTGCACAGCCAGTGCAGTCCTTC
ATTGTAGCTGTGGTCAGAGGTCACTGAGACACTGCCTCAGCAGCCCTGGGAGTCCACCTGGTGTGCTT
AGAGCTGTGCATCTGCAAGATTCAGAAGGACTACGTTGGTAGGTGCTTGAAGTAACACTTCACAAA
TACCAAGAAGCAAGAAATACACAAATAAGCAGGAATAGGTTCTTGGTCTTACATTAGCTAGTGGCAA
CGGGTCTTGGTCTCACATTAGCTATAGCTCCAGAACACTCAGTCCATGAGGTGGAATCACAATAATGGAA
TTCATTCTGGCTGTCACTACAAACTGATTTAAGATATCACCTGAATTAAAGCTGACAAACAGTGA
TCTAAACTGAATTCACTGATTGGCCACCTGAAAGTCAGACCTGATAGATAATGCCCTCCCTTAAC
AGGGCAGCAGCAGATGTTAGAGGGCACCCTGTGCTCGCAGCCCTCATCTCTAATGGCTGTGGGT
CACTGTGTGAGTTGAATGCCATAGCTGACCTCTAAACATCCTGAACACTGTTGTAACAGCA
GACTCCCAGTGGAACTCGCCTCAGATGCAGCCAGAATAAGAGTTCTAGAATGTGTGTGCCATCCTT
GTCTCAATCTGCATGATGCAAGTCTTCAACATGATTGGTGTGGAGTGTCTCGGTATGTCTT
CCCCCTGAGCATGCCCTTGTGATCGCACCTGTGTCACAATTGCCCAGCCTGTGAGATGTGTGCTGCTG
TCACCAGTATCGGCACATTAGTTTCCCTTACGTGAGTTGGTAAATAGTGAACAAATGTAATGCA
GTGCTCACTGAGAAAATGTCAGGCTCACAGAAATGGAGCATTTGGCTGGTAGCGTGTGACCA
TAGGCTTATTGGCTGGTGGTAAACAAGCAGCAGCTGTGAGGTGAGAATAATGGCATATTGCA
TTTCAATTAAAGACTCCCTAAATGAAAATCTCGTGTGGACATGAAACACAGGCTTACGAAATTG
ATCATCTACACTATATGATGACTGTGAAAGGCTGTTGCTTCTCAGAAATTCTTAAATGTTATGTAAT
GTACATGAGTCTCTCAGGAAGTATCAGCTTGTGAGTTCTCTCAGAATTAGATAGTAAACTGAGATT
ATGAACATAAAAGATGTGTAAATTATCTGCACTGAACTTAAATAAAAGCTTTGAAAAAGA
ACTCTGGGTGGGGTGCATTGGCTCACACACATAGTCCAACTACTGTGGAGGTCAAGGCAGGAGGATCAC
TGGAGCCCAGACTCAAGATCAGCTGGCAGGAGTAGCGAGACCTGCTATAGAAAATATTAAAATC
AGCTAGGCATGGTGGCTGCCCTTGCAATTCCCTGCCACTTGGGAGGCTGAGGTGGGAGGTTCGCTTGC
CCAGGAGCTCAAGGCTGCAATGGCTGTGATGAAACCACACTGAATTCAACCTGGTGCAGAGTGA
CTGCTCAAAAGAGAACTCTGATGCACTGGCTTCCATGTAAGCAGAGCACATCATGTGAGGCC
TCGTTGAGTCACTGAGCAGAACAGAATCTGGACCTGGAGCTGTTGCTCTGTGCTAGAGGTTGGAGG
TGTCTCTGTTCTGTGGTCTGTCAGTCAGGTCACCTAGAGATTCTGTTACATACACCAAGCTCTG
ACAGGTTGGGGAGATGATCAACCTTCCGCCCTGCCCTGTTCCCTCAGACTGCAAAAGTATCCC
TGAGATCTGCAAGGGACGGAGGACAGACTGCTGGCTGGTGTGGTACAGGCCACAGAGGATCTGGACC
CCATGTGCATCTGGCACCTGGTGGATCATTGAGGATGAGGTTGCTGGGAGGTTCTGAGGTT
CATTTCTCCCTGCCCTGTTCAAGGACACGTCAGGAGGTTGCTGGGAGGTTCTGAGGTT
GTTCTTGGTGAATGCCATGAGGCAACCTTACCAATTGGTCTGTGGTCTCTCACTGAAGAAAGAACATT
CTTCCCTAAAGACTTTTCTCAGAGTTGGAGCCCACAGCGTGGTCAAGGAAAGAGAAGTAGCC
TGGCTCTGGCATCTCTGCTGGCAGGCCCTCTCAAAAGTGTGAGGGTCTCCCTGTGTAAGAAC
AAGGCTCTGAGAAAGTCAGGTTGCTCTACACAGGATAATTGGATGAAACCTGAAAAGCGGGTTTGG
CTTGTGTGAGGGACTCTGGTGGAGAAAGGGTACAGCACCTGGCTGGGATGACACAAGTTAGGACC
CGTACCAAGAGGCCCTGAAATTGAGGGTGGGGGTTGCTGTGACTCTTCTCCCTCTTAGGAAACTCTAT
TGGTCTCATCTGTCACAGAACAGTAAATGATGTAGGGCTGCCAGGTATAGGGCTCTGTGGGATGC
TGGAAACATGCCAGGGCAGGACGTGCCAGCCACCCCTGCCCATATGTGAGCAGGCCACAGATGTGCTT
GTCGGTAGGAGAGACCAAGCTGTCTGTGAGGATGTCATGACACCTGAGACTTCAGGTTACCC
GGTCTGCCATTCCATTGCAAGGGTGGCTTCCCTCCCTGGGACTCTTAACGCTTTGGTCTGTT
AAAAA
CTGATCATCTGAGGTCAAGGGTTGCAAGGGCAGGCCAGCCCTGACCAACATGGTGAACCCCC
CTCTACT

Figure 36 part - 3

PCT/US04/06308

Human Arf1 mRNA sequence - var7 (public gi: 14714585) (SEQ ID NO: 331)
CAACGCCCTGGCTGGAGCAGCAGCCTCTGAGGTGCCCCGGCCAGTGTCTTCACCTGTCCACAAGCAT
GGGGAAACATCTTCGCCAACCTCTCAAGGGCTTTGGCAAAAAGAAATGCGCATTCTCATGGTGGGC
CTGGATGCTGAGGGAAAGACCACGATCTCTACAAGCTTAAGCTGGGTGAGATCGTGAACCACTTCCA
CCATAGGCTTCACAGTGAAACCGTGGAGTACAAGAACATCAGCTTCACTGTGTGGGACGTGGTGGCCA
GGACAAGATCGGCCCCCTGTGGGCCACTACTTCAGAACACACAAGGCTGATCTTCGTGGTGGACAGC
AATGACAGAGAGCGTGTGAACGAGGCCGTGAGGAGCTCATGAGGATGCTGGCCGAGGACGAGCTCCGGG
ATGCTGTCTCTGGTGTTCGCCAACAGCAGGCCCTCCCCAACGCCATGAATGCCGAGATCACAGA
CAAGCTGGGCTGCACTCACTACGCCACAGGAACGGTACATTCAAGGCCACCTGCGCACCAGGGCGAC
GGGCTCTATGAAGGACTGGACTGGCTGCAATCAGCTCCGGAACAGAACGAGTGAACGCCACCCCCCTCCC
TCTCACTCCTCTTGCCTCTGCTTACTCTCATGTTGCAAACGCTGCGGCTCGTGGTGTGAGTGCAGAAG
CTGCTCCGTGGTTGGTCAACCGTGTGCATCGCACCGTGTGCTGAAATGTCAGGACGCCAGCCTGCGGCCA
GGCTTTTATTAAATGTAATAGTTTGTGGTCAATGAGGCACTTCTGACTCTATGCAATTATTAC
TCAGCTTTTATTGTAAGGAAACAACTCACTGTTCACTGCTGAGAGGGGATGTAAGGCCATGG
GCACCTGGCCTCAGGAGTCGCTGTGGAGAGGCCACGCCCTGGCTTAGAGCTGTGGTAAA
TCCATTTGGTGGTTGGTTAAACCAAACCTCAGTCATTTAAATAGTTAAGAATCCAAGTCGAG
AACACTTGAACACACAGAAGGGAGACCCGCCACTAGCATAGATTGCACTACGGCCTGGATGCCAGTCGC
CAGGCCAGCTGTCCTCCCTCGGAACATGAGGTGGTGGCCAGCAGACTGCGATCAATTCTGCATGGT
CACAGTAGAGATCCCCGCACTCGCTGTCTGGTCACTCGTCAAGGCCATAGCCATGTGCTTGTCCCT
GTGCTCCACGGTCTCCAGGGGCCAGGCTGGGAGGCCACAGCCACCCACTATGCCAGGCCGCTAC
CCACCTTCAGGCAGCCTATGGGACGCAGGCCCATCTGCTCCCTCGGTGCCGTGAGTGGTC
CGTCGTCCCCAACACTCGTGTGCTCAGACACTTGGCAGGATGTCGGGCCCTACCAGCAGGAGCGC
GTGCAAGCCGGCAGGGCCACCTAGACCCACAGCCCTGGGAGCACCCACCTCTGTTGATGT
AGCTTCTCTCCCTCAGCTGCAAGGGTCCATTGCACTGGAAACACTCTACTTTTCTTT
GTATTTTGATAAACACTGAAGCTGGAGCTGTTAAATTATCTGGGAAACCTCAGAAACTGGTCTATTG
GTGCGTGGAACCTCTTACTGCTTCAATACACGATTAGTAACTGTTGTATACTTGTGTTCACT
TTCAATTGACAAACAAAGCACTGTAATTATAGCTATTAGAATAAAACTCTTAACATTAAAAAAA
AAAAAAAAAAAAAAAAAAAA

Human Arf1 mRNA sequence - var8 (public gi: 33872952) (SEQ ID NO: 332)
GTCCAATCAGCTGGAAACAGAACGAGTGAACGCCACCCCCCTCCCTCACTCTCTGCCCTGCTTTA
CTCTCATGTGGAAACAGTCGGCTGTGGTGTGAGTGCAGAACGCTGCCCTGGTGTGGTACCGTGT
GCATCGCACCGTGTGTAATGTGGCAGACGAGCCTGGGCCAGGCTTTTATTAAATGTAATAGTT
TTGGTCAATGAGGCACTTCTGGTACTCCTATGCAATTACTCAGCTTTTATTGTAAGGAAA
AATCAACTCACTGTTCACTGCTGAGAGGGGATGTAAGGCCATGGGCACCTGGCCTCAGGAGTCGCTGT
TTGGGAGAGCCGGCACGCCCTGGCTTAGAGCTGTGTTGAAATCCATTGGTGGTTGGTTAAACC
CAAACTCAGTCATTTTAAATAGTTAAGAATCCAAGTCGAGAACACTGAACACAGAAGGGAGAC
CCGCCTAGCATAGATTGCACTTACGGCCTGGATGCCAGTCGCCAGCCAGCTGTCCTCGGGAAACA
TGAGGTGGTGGTGGCGCAGCAGACTGCGATCAATTCTGCATGGTCACAGTAGAGATCCCCGCAACTCGCT
TGTCCTGGGTACCCCTGCAATTCCATAGCCATGTGCTTGTGCTCCACGGTCCAGGGCCAG
GCTGGGAGGCCACAGCCACCCACTATGCCGAGGCCCTACCCACCTTCAGGCAGCCTATGGGACGC
AGGCCACCTCTGCTCCCTGGTCCGGTGTGGGAGACTGGTCCGTCAGGCCAACACTCGTGTGCT
CAGACACTTGGCAGGATGTCGGGCCCTCACCGCAGGAGCGCGTGCAGCCGGCAGGCCGTTACCT
AGACCCACAGCCCTGGGAGCACCCACCTCTGTTGATGTAGCTTCTCTCCCTAGCCTGCAAGG
GTCCGATTGCCATGAAAAAGACAACCTCTACTTTTCTTTGATAAACACTGAAGCTGGA
GCTGTTAAATTATCTGGGAAACCTCAGAACTGGTCTATTGGTGTGCAACCTTACTGCTTTC
AATACACGATTAGTAATCAACTGTTGTATACTGTTTCAGTTTCAATTGACAAACAAGCACTGTA
ATTATAGCTATTAGAATAAAACTCTTAACATTAAAAAAA

Human Arf1 mRNA sequence - var9 (public gi: 15030200) (SEQ ID NO: 333)
GAGCCGCCATCTGTGGGAGCAAAACCAACGCCCTGGCTGGAGCAGCAGCCTCTGAGGTGCCCCGGCA
GTGCTCTCCACCTGTCCAACAGCATGGGAACATCTCGCCAACCTCTCAAGGGCTTTTGGCAAAA
AAGAAATGCGCATCTCATGGTGGGCTGGATGCTGAGGGAAAGACCACGATCTTACAAGCTTAAGCT
GGGTGAGATCGTACCGACCACTTCCACCATAGGCTTCAACGTTGAAACCGTGGAGTACAAGAACATCAGC
TTCACTGTGTGGGACGTGGTGGCCAGGACAAGATCGGCCCTGTGGCCGCAACTTCCAGAACACAC
AAGGCCGATCTCGTGGTGGACAGCAATGACAGAGAGCGTGTGAACGAGGCCGTGAGGAGCTCATGAG
GATGCTGGCCAGGAGCAGCTCCGGGATGCTGCTCTGGTGTGCTGCCAACAGAACGGACCTCCCAAC
GCCATGAATGCCGAGATCACAGAACAGCTGGGCTGCACACTACGCCACAGAACGGTACATT
AGGCCACCTGCGCCACCGCGGCCAGGGCTCATGAAAGGACTGGACTGGCTGCAATCAGCTCCGGAA
CCAGAAAGTGAACGCGACCCCCCTCCCTCACTCTCTTGTGCTTACTCTCATGTCGCAACAGT
GCGCTCGTGGTGTGAGTGCAGAAGCTGCCCTCGTGGTGGTCACTGTCATGCCACCGTGTGTA
AATGTGGCAGACGAGCAGCTGCCAGGCTTTATTAAATGTAAGTTTGTGTTCAATGAGGAG

Figure 36 part - 4

PCT/US04/06308

TTTCTGGTACTCCTATGCAATATTACTCAGCTTTTATTGTAAAAAGAAAATCAACTCACTGTTAG
TGCTGAGAGGGGATGTAGGCCCATGGCACCTGGCTCCAGGAGTCGCTGTTGGAGAGCCGGCACG
CCCTGGCTTAGAGCTGTGTTAAATCCTTTGGTGGTTTTAACCCAAACTCAGTGCATT
TAAAATAGTTAAGAATCCAAGTCGAGAACACTTGAACACAGAAGGGAGACCCCCCTAGCATAGATT
GCAGTTACGGCCTGGATGCCAGTCGCCAGCCCAGCTGTTCCCTCGGAAACATGAGGTGGTGGCGCA
GCAGACTGCGATCAATTCTGCATGGTCACAGTAGAGATCCCCGCAACTCGTGTCTGGTACCCCTG
CATTCATAGCCATGTGCTTGCTCCCTGTCCTCCACGGTTCGACGGGCGAGCTGGAGCCCACAGCCA
CCCCACTATGCCGCAAGGCCCTACCCACCTTCAAGGCAGGGCAGGGCCATCTGTTCT
CGGTCGCGCTGTGGCCAGACTGGTCCGTCGCCCCAACACTCGTGTCTCGCTCAGACACTTGGCAGGAT
GTCTGGGCCCTACCCAGCAGGAGCGCGTCAAGCGGGGAGCGCTCCACCTAGACCCACAGCCCCCTCGG
GAGCACCCACCTCTGTGTGATGTAGCTTCTCTCCCTCAGCTCGCAAGGGTCCGATTGCCATCGAA
AAAGACACCTCTACTTTTCTTGTATTTGATAAACACTGAAGCTGGAGCTGTTAAATTATCTTG
GGGAAACTCAGAACCTGGTCTATTGGTGTGCGTGGAACCTCTACTGCTTCAATACAGGATTAGTAATC
AACTGTTTGTATACTTGTGTTCACTGGTCTATTGGTGTGCGTGGAACCTCTACTGCTTCAATACAGGATTAGTAATC
AAATCTCTTAACTATTAaaaaaaaaaaaaaaa

Human Arf1 mRNA sequence - var10 (public gi: 16553846) (SEQ ID NO: 334)
GTGGGAGCAAAACCAACGCCCTGGCTCGAGCAGCAGCCTCTGAGGTGCCCCAGTGCCTTCCACC
TGTCCACAAGCATGGGAACATCTTCGCAACCTCTTAAGGGCCTTTGGCAAAAAGAAATGCGCAT
CCTCATGGTGGCCTGGATGCTGCAGGGAGACCCAGATCCTCTACAAGCTTAAGCTGGTGAGATCGTG
ACCACCATCCCACCATAGGCTCAAGTGGAAACCGTGGAGTACAAGAACATCAGCTTACTGTGTGGG
ACGTGGGGGCCAGGACAAGATCCGGCCCCCTGTGGGCCACTACTTCCAGAACACACAAGGCCATGATCTT
CGTGGTGGACAGCAATGACAGAGAGCGTGTGAACGAGGCCGTGAGGAGCTCATGAGGATGCTGGCCAG
GACGAGCTCCGGGATGCTGCTCCTGGTTGCGCAACAAGCAGGACCTCCCAACGCCATGAATCCGG
CCGAGATCACAGACAAGCTGGGCTGCACTCACTACGCCACAGGAACCTGGTACATTCAAGGCCACCTGCC
CACCAAGGGCGACGGCTATAAGGACTGGACTGGCTGTCCAATCAGCTCCGGAACCCAGAACG
.CGACCCCCCTCCCTCACTCCCTCTGCTTTACTCTCATGGCACCGTGTGCAACCTGGCTGTGGT
TGAGTGCAGAAGCTGCCCTCCGGTTGTCACCGTGTGCACTGGCACCGTGTGTAATGTGGCAGAC
CAGGCTGGGGCAGGGTTTATTAATGAAATAGTTTTGTTCCAATGAGGAGCTTCTGGTACTCC
TATGCAATATTACTCAGCTTTTATTGAAAAAGAAAATCAACTCACTGTTCACTGGTGTGAGAGGGGA
TGTAGGCCATGGGACCTGGCTCAGGAGTCGCTGTGGAGAGGCCACGCCCTGGCTTAG
AGCTGTGTGAAATCCATTGGTGGTTGGTTAACCCAAACTCAGTGCATTAAAATAGTAAAG
AATCCAAGTCGAGAACACTTGAACACACAGAAGGGAGACCCGCCCTAGCATAGATTGCA
GGATGCCAGTCGCCAGCCCAGCTGTTCCCTCGGAACATGAGGTGGTGGCGCAGCAGACTGCGATC
AATTCTGCATGGTCACAGTAGAGATCCCCCAACTCGCTGTGCTTGGTCACCCCTGCATTCCATAGCCA
TGTGCTTGTCCCTGTGCTCCACGGTTCCAGGGGCCAGGCTGGAGGCCACAGCCACCCACTATGCCG
CAGGCCGCTTACCCACCTTCAGGAGCAGCAGGCCCTAGTGGACGAGGCCATCTGCCCCCTGGCGTGTG
GCCAGAGTGGTCCGTCGTCCCCAACACTCGTGCCTCAGACACTTGGCAGGATGTCGGGCC
CCAGCAGGAGGCCGTGCAAGCCGGCAGGGCTCCACCTAGACCCACAGGCCCTGGAGCACCCACCT
CTGTGTGTGATGCTGCTTCTCCCTCAGCTGCAAGGGTCCGATTGCCATCGAAAAGACAAACCTCT
ACTTTTCTTGTGATTTGTGATAAACACTGAAAGCTGGAGCTGTAAATTATCTGGGAAACCTCTAGA
ACTGGTCTATTGGTGTGCGGAAACCTTACTGCTTCAATACAGCATTAGTAATCAACTGTTTGAT
ACTGGTCTTCACTGGGAAACCTCTAGTAAATTAGCTATTAGAATAAAATCTCTTA
ATT

Human Arf1 mRNA sequence - var11 (public gi: 16553799) (SEQ ID NO: 335)
 AACCAACGCCCTGGCTCGGAGCAGCAGCCTGTAGGTGTCCTGCCAGTGTCCATTGTCCACAAG
 CATGGGGACATCTGCCAACCTCTCAAGGGCTTTGGAAAAAGAAATGCGCATCCTCATGGTG
 GGCCTGGATGCTGCAGGAAGACCACGATCCTCTACAAGCTTAAGCTGGGTGAGATCGTACCCATT
 CCACCATAGGCTTCAACGTGAAACCGTGAGTACAAGAACATCAGCTTCACTGTGTCGGACGTGGGCG
 CCAGGACAAGATCCCCCCCCCTGTGGCGCAACTACTTCCAGAACACACAAGGCTGATCTCGTGGGAC
 AGCAATGACAGAGAGCGTGTGAAACGAGGCCGTGAGGAGCTCATGAGGATGCTGGCGAGGACGAGCTCC
 GGGATGCTGCTCTCTGGTGTTCGCCAACAGCAGGACCTCCCCAACGCCATGAATGCGGCCAGATCAC
 AGACAAGCTGGGCTGCACTCACTACGCCACAGGAACCTGGTACATTCAAGGCCACCTGCGCCACCAGCGC
 GACGGGCTCTATGAAGGACTGGACTGGCTGTCCAATCAGCTCCGAACAGAAGTGAACCGGACCCCCCT
 CCCCCTCACTCCCTTGCCCTGTCTTACTCTCATGTGGCAAACGTCGGCTCGTGGTGTGAGTGCAG
 AAGCTGCCCTCGTGGTTGGTACCCGTGTGCACTCGCACCGTGTGAAATGTGGCAGACGCCAGCTGCC
 CCAGGCTTTTATTAATGTAATAGTTTGTGTTCCAAATGAGGGCAGTTCTGGTACTCTATGCCAATAT
 TACTCAGTTTTTATTGTAAAAAGAAAATCAACTCACTACTGTTCACTGTGTCAGGAGGGGTAGTAGGCCA
 TGGGCACCTGGCCTCCAGGAGTCGCTGTGGAGAGGCCAGCAGGGCTTGTGAGGCTGGTGTGAGCTGGT
 AAATCCATTGGTGGTTGGTTAAACCCAAACTCAGTCATTTTAAATAGTTAAGAATCCAAGTC
 GAGAACACTGAAACACACAGAAGGGAGACCCGCCAGTGCATAGATTGAGTACGGCCTGGATGCCAGT

Figure 36 part - 5

PCT/US04/06308

CGCAGCCCCAGCTGTCCTCCCTGGGAACATGAGGTGGTGGCGCAGCAGACTGCATCAATTCTGCAT
GGTCACAGTAGAGATCCCCGCAACTCGCTTGTCTGGTCAACCTGCATTCCATGCCATGTGCTTGTC
CCTGTGCTCCCACGGTCTCCAGGGCAGGCTGGAGCCCACAGCCACCCACTATGCCGAGGCC
TACCCACCTCAGGCAGCTATGGGACGCAGGGCCCATCTGTCCTCGGTCGCGTGTGGCCAGAGTGG
GTCGTCGTCCTCCAAACACTCGTGTGCTCAGACACTTTGCAGGATGTCGTTGGGCTCACAGCAGGAG
CGCGTCAAGCCGGCAGCGGTCCACCTAGACCCACGCCCTCGGGAGCACCCACCTCTGTCGTTGA
TGTAGCTTCTCTCCCTCAGCCTGCAAGGTCCGATTTGCCATCGAAAAGACAACCTACTTTTCT
TTGTATTTGATAAACACTGAAGCTGGAGCTGTTAATTTATCTGGGAAACCTCAGAACTGGTCTAT
TTGGTGTGTCGTTCAATACACGATTAGTAATC

Human Arf1 mRNA sequence - var12 (public gi: 20147654) (SEQ ID NO: 336)
ATGGGGAACATCTCGCCAACCTCTCAAGGGCTTTGGCAAAAAGAAATGCCATCCTCATGGTGG
GCCTGGATGCTGCAGGGAAAGACCACGATCCTACAAGCTTAAGCTGGTGGAGATCGTGCACCACTTCC
CACCATAGGCTCAACGTGGAAACCGTGGAGTACAAGAACATCAGCTTCACTGTGTGGAGCTGGTGG
CAGGACAAGATCCGGCCCTGTGGGCCACTACTTCCAGAACACACAAGGCTGATCTGTCGTTGACA
GCAATGACAGAGAGCGTGTGAACCGAGGGCTGAGGAGCTCATGAGGATGTCGAGGACGAGCTCG
GGATGCTGTCTCTGGTGTGCAACAGCAGGACCTCCCAACGCCATGAATGCCGAGATCACA
GACAAGCTGGGCTGCACTCACTACGCCACAGGAACCTGGTACATTCAAGGCCACCTGCGCACCGCG
ACGGGCTATGAAGGACTGGACTGGTCAATCAGCTGGGAGCTGGTGTGAGTGAAGGAGCTGGGAG
GCCAGGACAAGATCCGGCCCTGTGGGCCACTACTTCCAGAACACACAAGGCTGATCTGTCGTTG
CAGCAATGACAGAGAGCGTGTGAACGGAGGCCGTGAGGAGCTCATGAGGATGTCGAGGACGAGCTC
CGGGATGCTGCTCTCTGGTGTGTCGCAACAGCAGGACCTCCCAACGCCATGAATGCCGAGGAG
CAGACAAGCTGGGCTGCACTCACTACGCCACAGGAACCTGGTACATTCAAGGCCACCTGCGCACCG
CGACGGGCTATGAAGGACTGGACTGGCTGCAATCAGCTGGGAACAGCAGGAGCTGGTGTGAGTGC
TCCCTCTCACTCTCTGGCCCTGTGCTTACTCTCATGTCGCAACAGCTGGGCTCTGGTGTGAGTGC
GAAGCTGCTCCGTGGTTGGTACCGTGTGTCATCGCACCGTGTGTAATGTCGAGACGCAAGCTGCG
GCCAGGCTTTTATTAATGTAATGTTGGTCAATGAGGAGCTGGTACTCTCATGCAATA
TTACTCAGCTTTTATGTAAAAGAAAAATCAACTCATGTCAGTGTGAGAGGGGATGAGG
ATGGGCACCTGGCCTCCAGGAGTCGTGTGTTGGAGAGCCGGCACGCCCTGGCTTAGAGCTGTGTT
GAAATCCATTGGTGGTTGGTTTAACCAAACCTAGTCGATTTAAAGTAAGAACATCCAAGT
CGAGAACACTGAACACACAGAAGGGAGACCCCGCTAGCATAGATTGCACTGGCCTGGATGCCAG
TCGCCAGCCAGCTGTTCCCTCGGAACATGAGGTGGTGGCGAGCAGACTCGCATCAATTCTGCA
TGGTCACAGTAGAGATCCCCGCACTCGCTTGTCTGGTCAACCTGCATTCCATGCCATGTGCTGT
CCCTGTGCTCCACGGTCTCCAGGGCCAGGCTGGAGGCCACGCCACCCACTATGCCGAGGCC
CTACCCACCTCAGGAGCCTATGGACGCAGGGCCCATCTGTCCTCGGTGGCAGAGTG
GGTCCGTGCTCCCAACACTCGTGTGCTCAGACACTTGGCAGGATGTCGTTGGCCTCACAGCAGGA
GCGCGTCAAGCCGGCAGGGCTCACCTAGACCCACAGGCCCTGGGAGCACCCACCTGTGTTG
ATGTAGCTTCTCTCCCTCAGCTGCAAGGGCTCGATTGGCATCGAAAAGACAACCTACTTTT
TTTGTATTTGATAAACACTGAAGCTGGAGCTGTTAATTTATCTGGGAAACCTCAGAACTGGTCTA
TTGGTGTGTCGTTCAATACACGATTAGTAATCAACTGTTGTATCTGTT
CAGTTTCATTCGACAAACAGACTGTAATTAGCTATTAGAATAAAATCTCTTAACATATT

Human Arf1 mRNA sequence - var14 (public gi: 178982) (SEQ ID NO: 338)
GGGGAAACCAACGCCCTGGCTGGAGCAGCAGCCTCTGAGGTGTCCTGGCCAGTGTCTCCACCTGTC
CACAAAGCATGGGAACATCTCGCCAACCTCTCAAGGGCTTTGGCAAAAAGAAATGCCATCCTC
ATGGTGGCCCTGGATGCTGCAGGGAAAGACCACGATCCTACAAGCTTAAGCTGGTGGAGATCGTGC
CCATTCCCACCATAGGCTCAACGTGGAAACCGTGGAGTACAAGAACATCAGCTTCACTGTGTGGAGCT
GGGTGGCCAGGACAAGATCCGGCCCTGTGGGCCACTACTTCCAGAACACACAAGGCTGATCTCGTG
GTGGACAGCAATGACAGAGAGCGTGTGAAACGAGGCCGTGAGGAGCTCATGAGGATGTCGAGGAG
AGCTCCGGGATGCTGTCTCTGGTGTGCAACAGCAGGACCTCCCAACGCCATGAATGCCGAG
GATCACAGACAAGCTGGGCTGCACTCACTACGCCACAGGAACCTGGTACATTCAAGGCCACCTGCGGCC
AGCGGGGACGGCTCATGAAAGGACTGGACTGGCTGTCAATCAGCTGGGAACAGAAGTGAACCGC
CCCCCTCCCTCTCACTCTTGTGCTTACTCTCATGTCGCAACAGCTGGCTCGTGTGAG
TGCCAGAAGCTGCCCTGGTGTGCAACCGTGTGCACTGCCACCGTGTGTAATGTCGAGACG
CTGGGCCAGGGCTTTTATTAATGTAATGTTGGTTCAGGCTGAGGAGCTGGTACTCTGTT
CAATATTACTCAGCTTTTATTGTAAGGAAAATCAACTCACTGTTGAGAGGGAGTGA

Figure 36 part - 6

PCT/US04/06308

GGCCCATGGCACCTGCCCTCCAGGAGTCGCTGTGGAGAGCCGCCACGCCCTGGCTTAGAGCTG
TGTGAAATCATTGGGGTTGGTTAACCAAACACTAGTCATTTAAATAGITAAGAATCCA
AGTCGAGAACACTGAACACACAGAAGGGAGACCCCGCCTAGCATAGATTGCAGTTACGCCCTGGATGC
CAGTCGCCAGCCAGCTGCCCCCTCGGAACATGAGGTGGTGGCGCAGCAGACTGCGATCAATTCT
GCATGGTCACAGTAGAGATCCCCGCACTCGCTTGCTTGGGTCACCCGATTCATAGCCATGTGCT
TGTCCCCTGTGCTCCCACGGTCCAGGGCCAGGTGGAGGCCACAGCACCACACTATGCCGCAGGCC
GCCCTACCCACCTCAGGCAGCCTATGGGACGCAAGGCCCATCTGCCCCCTGGCGTGTGGCCAGAG
TGGTCCGTCGCCCCAACACTCGTCGCTCAGACACTTTGGCAGGATGTCTGGGCTCACCAGCAGG
AGCGCGTCAAGCCGGGCAAGGGTCCACCTAGAACCCACAGGCCCTCGGGAGCACCCACCTGTGCT
GATGTAGCTTCTCCTCCCTAGGCTCGATTGCCATCGAAAAAGACAACCTACTTTTT
CTTTGTATTTGATAAACACTGAAGCTGGAGCTTAAATTATCTGGGAAACCTCAGAACTGGTCT
ATTTGGTGTCTAGGAACCTCTTAAGCTGCTTCAATACACGATTAGTAATCAACTGTTTGATACTGTT
TTCAGTTTCATTCGACAAACAAGCACTGTAATTAGCTATTAGAATAAAATCTCTTAACCTATT

Human Arf1 mRNA sequence - var15 (public gi: 3005720) (SEQ ID NO: 339)
AAACCAACGCCCTGGCTCGAGCAGCAGCCTCTGAGGTGTCCTGGCCAGTGTCTCCACCTGCCACAA
GCATGGGAACATCTCGCAACCTCTCAAGGCCCTTTGGCAAAAAGAAATGCCATCCATGGT
GGCCTGGATGCTGAGGAAGACCAAGCAGATCCTACAAGCTTAAGCTGGGTGAGATCGTACCCATT
CCCACCATAGGCTCAACGGTGGAAACCGTGGAGTACAAGAACATCAGCTTCACTGTGTCGGACGTGGTG
GCCAGGACAAGATCCGGCCCTGTGGGCCACTACTTCCAGAACACACAAGGCTGATCTCGTGGTGG
CAGCAATGACAGAGAGCGTGTGAACGAGGCCGTGAGGAGCTATGAGGATGCTGGCGAGGACGAGCTC
CGGGATGCTGCTCCTGGTGTGCAACAGCAGGACCTCCCAACGCCATGAATGCCGGAGATCA
CAGACAAGCTGGGGCTGCACTACGCCACAGGAACCTGGTACATTCAAGGCCACCTGGCCACCCAGGG
CGACGGGCTCTATGAAGGACTGGACTGGCTGCAACTCAGCTCCGGAAACAGAAGTGAACCGGACCCCC
TCCCTCTCACTCCTCTGGCTCTGCTTTACTCTCATGTCAGGCAAACGTCGGCTCGTGGTGTGAGTGCA
GAAGCTGCCCTCGTGGTGTGCAACCGTGTGCATGCCACCGTGTCAAATGTCAGGACGCACTGCGG
CCAGGCTTTATTAATGTAATGTTTGTCTCAATGAGGCACTTCTGGTACTCTATGCAATAT
TACTCAGCTTTTATTGTAAGGAAACACTCACTCACTGTTCACTGCTGAGAGGGATGTAGGCCA
TGGCACCTGGCTCCAGGAGTCGCTGTTGGAGAGGCCACGCCCTGGCTTAGAGCTGTGTT
AAATCCATTGGTGGTTGGTTAACCCAAACACTGTCATTTAAATAGTTAAGAACATCCAAGTC
GAGAACACTGACACACAGAAGGGAGACCCGCCAGCATAGATTGCACTACGCCCTGGATGCCAGT
CGCAGCCCAGCTGCTCCCTCGGGAAACATGAGGTGGTGGCGCAGCAGACTGCGATCAATTCTGCAT
GGTCACAGTAGAGATCCCCGCAACTCGCTGCTTGGTCACTGCATTCATGCCATGTCCTGTC
CTGTCCTCCACGGTCCAGGGGCCAGGCTGGAGGCCACGCCACCCACTATGCCGCAGGCC
ACCCACCTTCAGGCAGCCTATGGGACGCAGGGCCCATCTGTCCTCGTGGCCAGGTGGG
TCCGTCGCCCCAACACTCGTCGCTCAGACACTTGGCAGGATGTCGGGCTCACCAGCAGGAGC
GCGTCAAGCCGGCAGGGCGTCCACCTAGACCCACGCCCTGGGAGCAGGCCACCCACTCTGTGAT
GTAGCTTCTCTCCCTAGCCTGCAAGGGTCCGATTGCAAGGAAACCTCTACTTTTCTT
TTGTATTTGATAAACACTGAAGCTGGAGCTTAAATTATCTGGGAAACCTCAGAACTGGTCTATT
TGGTGTCTGGAAACCTCTTAAGCTGCTTCAATACACGATTAGTAATCAAAAAAAAAAAAAAAA
AAA

Human Arf1 protein sequence - var1 (public gi: 3360491) (SEQ ID NO: 223)
MGNIFANLFKGLFGKEMRILMVGLDAAGKTTIYLKLKLGEIVTTIPTIGFNVETVEYKNISFTVWDVGG
QDKIRPLWRHYFQNTQGLIFVVDSNDRERVNEAREELMRMLAEDELRAVLLVFANKQDLPNAMNAAEIT
DKLGLHSLRHRNWYIQATCATSGDGLYEGLDWLSNQLRNQK

Figure 36 part - 7

Unigene Name: ARF5 Unigene ID: Hs.430657

Human ARF5 mRNA sequence - var1 (public gi: 178986) (SEQ ID NO: 340)
CCAGTTCCAGCCGCACCCCGCTGGTCCCCGCCATGGGCTCACCGTGT
CCCGCTCTTTCGCGGATCTCGGAAGAACAGCATGGGATTCTCATGGTGGCTGGATGGCGTGG
CAAGACCAACAATCTGTACAAACTGAAGTTGGGGAGATTGTACCAACATCCCACCCATAGGCTTCAT
GTAGAAACAGTGGAAATAAGAACATCTGTTCACAGTCTGGGACGTGGGAGGCCAGGACAAGATTGGC
CTCTGGCGGCACTACTTCCAGAACACTCAGGGCTCATCTTGTTGGACAGTAATGACCAGGAGCG
GGTCCAAGAACATCTGTGATGAACTCCAGAACAGATGCTGCAGGAGGACGAGCTGCGGGATGCA
GTGACTGGCTGCCCACGGCTGTCAAAGCGCTAACCGCCAGGGCAGGCCCTGATGCCCGAAGC
TCTGGACTGGCTGCCCACGAGCTGTCAAAGCGCTAACCGCCAGGGCAGGCCCTGATGCCCGAAGC
TCCTGCGTGCATCCCCGGGATGACCAGACTCCGGACTCTCAGGCACTGCCCTTCCACTTTCC
TCCCCCATAGCCACAGGCCCTGCTCTGCTGCCATGTTCTCTGTTGAGGCCCTGGAGGCC
TTGCTCTCTGGCACAGAGGGTCCACTCTCTGCCGTGGGACCTATGAAAGGGGCTTCC
GCCCTCTTCAGAGGAGGAGCAGGGATCTGGGTTCTTTCTGTTGGGTGACTCTAGG
GGCCAGGTTGGAGGGGGAGGTGAGGGCTTCGGTGGCTATAATGTCAGTGGACTGGATCTGAGTAATA
AATTTGCTGTGGTTTG

Human ARF5 mRNA sequence - var2 (public gi: 21620017) (SEQ ID NO: 341)
CTCTCTGTGCTGCTGCGCCCATCCCCCGGCCAGTCCAGGCCACCCCGCTCGGTGC
CCCGCCCCCTCCCCGGGCTCCGCCATGGGCTCACCGTGTCCGGCTCTTTCGCGATCTCGGAAGA
AGCAGATGCGGATTCTCATGGTGGCTGGATGCGGCTGGCAAGACCACATCCTGTACAAACTGAAGTT
GGGGGAGATTGTCAACCACATCCCAACCATAGGCTTCATGTAGAAACAGTGGAAATAAGAACATCTGT
TTCACAGTCTGGGAGCTGGGAGGCCAGGACAAGAGATTGGCCTCTGTGGCCGCACTACTCCAGAACACTC
AGGGCCTCATCTTGTTGGGACAGTAATGACGGGAGCGGGTCCAAGAACATCTGCTGATGAACTCCAGAA
GATGCTGCAGGAGGAGGACTGCGGGATGCACTGCTGGTATTTGCCAACAGCAGGACATGCCAAC
GCCATGCCGTGACGAGCTGACTGACAAGCTGGGCTACAGCACTTACGCA
AGGCCACCTGTGCCACCCAAAGGACAGGTCTGTACGATGGCTGGACTGGCTGCCACGAGCTGTCAAA
GCGCTAACCAAGCCAGGGCAGGCCCTGATGCCCGAAGCTCTGCGTCA
CCCCGACTCCTCAGGCAGTGCCTTCTCCCACCTTCTCCCCATAGCCACAGGCCCTGCTCCTGC
TCCTGCTGCTGATGTTCTCTGTTGAGGCTGGCTGCTCTGCGCACAGAGGGTCCACTCT
CCTGCTGCTGGGACCTATGAAAGGGGCTTCTGGCAAGGCCCTCTCC
TGGGTTCTTTCTGTTGGGTGACTCTAGGGCCAGGTTGGAGGGGAAGGTGAGGGCT
TCGGGTGGTGTATAATGTCAGTGGACTGGATCTTGAGTAATAAAATTGCTGTGGTTGAAAAAAA
AAAAAAAAAAAAAAA

Human ARF5 mRNA sequence - var3 (public gi: 12804364) (SEQ ID NO: 342)
CCCGCGTGGTCCCCGCCCTCCCCGGGCCCCCATGGGCTCACCGTGTCCCGCCTTTCGCG
ATCTTCGGAAGAACGAGATGCGGATTCTCATGGTGGCTGGATGCGGCTGGCAAGACCACATCCTGT
ACAAACTGAAGTTGGGGAGATTGTACCAACATCCCAACCATAGGCTTCATGTAGAAACAGTGGAAATA
TAAGAACATCTGTTCACAGTCTGGGAGCTGGGAGGCCAGGACAAGAGATTGGCCTCTGTGGCCGCA
TTCCAGAACACTCAGGGCTCATCTTGTTGGGACAGTAATGACGGGAGCGGGTCCAAGAACATCTGCT
ATGAACTCCAGAACAGATGTCAGGAGGAGCAGCTGGGATGCACTGCTGGTATTTGCCAACAGCA
GGACATGCCAACGCCATGCCGTGAGCGAGCTGACTGACAAGCTGGGCTACAGCACTACGCA
ACGTGGTATGTCAGGCCACCTGTGCCACCCAAAGGACAGGTCTGTACGATGGCTGGACTGGCTG
ACGAGCTGTCAAAGCGCTAACCAAGCCAGGGCAGGCCCTGATGCCCGAAGCTCTGCGTCA
GATGACCATACTCCGGACTCTCAGGCAGTGCCTTCTCCCACCTTCTCCCCATAGCCACAGGC
CTCTGCTCTGCTCTGCTGCATGTTCTCTGTTGAGGCTGGCTGCTCTGGCACAGA
GGGGTCAACTCTCTGCCGTGGGACCTATGAAAGGGGCTTCTGGCAAGGCCCTCTCCAGAGGA
GGAGCAGGGATCTGGGTTCTCTTCTGTTGGGTGACTCTAGGGCCAGGTTGGAGGGGG
AAGGTGAGGGCTTCGGTGGCTATAATGTCAGTGGACTGGATCTTGAGTAATAAAATTGCTGTGGTTGAA
AAAAAAAAAAAAAAA

Human ARF5 mRNA sequence - var4 (public gi: 30583012) (SEQ ID NO: 343)
ATGGGCTCACCGTGTCCGGCTCTTTCGCGGATCTCGGAAGAACAGCATGGGATTCTCATGGT
GCTTGGATGCGGCTGGCAAGACCACATCCCTGTACAAACTGAAGTTGGGGAGATTGTCA
ACCCATAGGCTTCATGTAGAAACAGTGGAAATAAGAACATCTGTTCACAGTCTGGGAGCTGGGAGGC
CAGGACAAGATTGGCCTCTGTGGGGCACTACTTCCAGAACACTCAGGGCTCATCTTGTTGG
GTAATGACGGGAGCGGGTCCAAGAACATCTGTGATGAACTCCAGAACAGATGCTGCAGGAGGAC
GGATGCAGTGCCTGGTATTTGCCAACAGCAGGACATGCCAACGCCATGCCGTGAGCGAGCTGACT

PCT/US04/06308

GACAAGCTGGGCTACAGCACTAACCGCAGCCGACGTGGTATGTCAGGCCACCTGTGCCACCCAAGGCA
CAGGTCTGTACGATGGTCTGGACTGGCTGTCCCACGAGCTGTCAAAGCGCTAG

Human ARF5 mRNA sequence - var5 (public gi: 6995999) (SEQ ID NO: 344)
-CCGCGTCGGTCCCCGCCCTCCCCGGGCCCCGCATGGGCCTCACCGTGTCCGCGCTCTTCGCGGA
TCTTCGGAAGAAGCAGATGCGGATTCTCATGGTTGGATGCGGCTGGCAAGACCAATCTGTGA
CAAACGTAAAGTGGGGAGATTGTACACCCATCCCACCATAGCTTAATGTAGAACAGTGGAAATAT
AAGAACATCTGTTACAGTCTGGGACGTGGGAGGCCAGGACAAGATTGGCCTCTGTGGCGGCACTACT
TCCAGAACACTCAGGGCTCATTTGTGGACAGATAATGACGGGAGCGGGTCCAAGAACATCTGTGA
TGAACCTCCAGAACAGATGCTGGAGGAGACGAGCTGGGATGCACTGCTGTGGTATTGCAACAAAGCAG
GACATGCCAACGCCATGGGGTGGAGCAGCTGACTGACAAGCTGGGCTACAGCACTTACGCAAGCCGA
CGTGGTATGTCAGGCCACCTGTGCCACCAAGGCACAGGTCTGTACGATGGCTGGACTGGCTGTCCCA
CGAGCTGCTAACAGCTAACAGCCAGGGCAGGGCCCTGATGCCGGAAAGCTCTGCTGCATCCCCGG
GATGACCAGACTCCGGACTCTCAGGCACTGGCTGGAGCTGGAGCTGGAGCTGGCTCTGGGACAGA
CTCTGCTCTGCTCTGCCATGTTCTCTGTTGGAGCTGGAGCTGGCTCTGGGACAGA
GGGGTCCACTCTCTGCCCTGGGACCTATGGAAGGGCTTCTGGCCAAGGCCCTCTCCAGAGGA
GGAGCAGGGATCTGGGTTCTCTGTTGGGTGACTCTAGGGGCCAGGGTGGGAGGGGG
AAGGTGAGGGCTCGGGTGGTCTATAATGTGGCACTGGATCTTGAGTAATAATTGCTGTGGTTG

Human ARF5 protein sequence - var1 (public gi: 30583013) (SEQ ID NO: 224)
MGLTVSALFSRIFGKKQMRILMVGLDAAGTTILYKLKLGEIVTTIPTIGFNVETVEYKNICFTVWDVGG
QDKIRPLWRHYFQNTQGLIFVVDNSDRERVQESADELQKMLQEDELRAVLLVFANKQDMPNAMPVSELT
DKLGLOHLRSRTWVYQATCATQGTGLYDGLDWLSHLSKR

Unigene Name: ATP6V0C Unigene ID: Hs.389107

Human ATP6V0C mRNA sequence - var1 (public gi: 33874373) (SEQ ID NO: 345)
GGTATTAGAGCGCAGGGCTGACGGGCCGGATCGCCCTCGCCGCCGCCCCGCAACCTTCGTGCC
GGCCCGTCTCGCCCCCGCTCCGCCAACCGCTCGGCCCAGAGCTTGCCCCCTCCCCACCCGAGACA
TGTCCGAGTCCAAGAGGGCCCCGAGATATGCTTCGTTTCGCGCTATGGCGCCTCGCCGCCATGGT
CTTCAGCGCCCTGGCGCTGCCTATGGCACAGCCAAGAGCGGTACCGGCATTGCGGCCATGCTGTCATG
CGGCCGGAGCAGATCATGAAGTCATCATCCCAGTGGTCATGGCTGGCATCATGCCATCTACGGCTGG
TGGTGGCAGTCTCATGCCAACTCCCTGAATGACGACATCAGCCTCTACAAGAGCTTCCAGCTGGG
CGCCGGCCCTGAGCGTGGGCCCTGAGCGGCCCTGGCAGCCGGCTTGGCATCGTGGGGAGCGCTGGC
GTGCGGGGACCGCCCAGCAGCCCCGACTATTCTGTGGCATGATCTGATTCTCATCTTCGCGGAGGTGCG
TCGGCCTCTACGGTCTCATCTGTGCCCTCATCTCTCCACAAAGTAGACCCCTCCGAGGCCACAGCCA
CAGAATATTATGTAAGACCACCCCTCCCTATTCCAGAACGAAACAGCCTGACACATACGGCACGGGCCGC
CGCCCCCAGTAGTTGGCTTGTACATGCGCAGTGTCTAGTGGCCATCGTCTGTTTCCCGGCCCTGGCC
CCGCCGCCCTGGCGCTGGACATCTGGGCCCTACATCGCCCTCCAGGCCGGCCGGCCCCACCCCT
AGAGTGTCTCTGTGTATGCGGATGATTAGAATTGTCAATTCTCTTACTGGATGTTATTATAAGATC
TGGCCTGTTCTCGCTGCGAGCGGCCCTTGCTCTCCAGCTATCTATAACCTTAGCTAGAGTGTGCC
TTGTGGGTTCTGTGTGAGACTTCCTGGATGGAGCCGCCCTCACCGCCGGCCGTGGCCCTGCCGG
AGCTGTGTCCAATAAAAGTTCTGGATGTGAAAAAAAAAAAAAAAAAAAAAAA

Human ATP6V0C mRNA sequence - var2 (public gi: 33872390) (SEQ ID NO: 346)
ggctgacggccggatcgcttcgcggccggccggcggcaaccttgcgtccccggccgtcctcgcccccc
gcctccggccacggcctcgccccggcagagcttgcggccaccgcagacatgtccgagtccaaagagc
ggccccggagtagttcggttttcggccgtatggccctcgccgcattgtcttcagcgccctggcg
ctggctatggcacagccaaagagccgtacccgcattgcggccatgtctgtcatgcggccggagcagatcat
gaagtccatcatcccagtggctatggctggcatcatcgccatctacggctcggtggcagtcctcatc
gccaactccctgaatgacgacatcagccttacaagagcttcccgagctggcgccggctgagcgtgg
gcctgaggccgtggcagccgtttgcctatggcatcggtggggacgctggctgccccgaccggcca
gcagcccgactatcggtggatgatctgattctcatcttcggccagggtgcgtcgccctacggctc
atcgctggccctcatctccacaaggtagaccctctccgagccaccagccacagaattatgtaaag
accacccctccatccagaacgaaacagccgtacacatacgcacggggccgccccagtagtgtgg
cttgtacatgcgcagtgtcttagtgccatcgctgtttccccggccttgcccccgccggccctgcccc
tggacatctggcccaactcatcgccctccaggccccggccacccttagagtgcctgtgtatg
cggatgattagaattgtcatttctttactggatgttattataaagatctggccctgtccctgcgtc

Figure 36 part - 9

PCT/US04/06308

TGCGGAGCGGCCCTGTCTCCAGCTATCTATAACCTAGCTAGAGTGTGCCCTGGGGTCCTGTTGC
TGAGACTTCCTGGATGGAGCCGCCCTACCGCCGGGGCGTGGCCCTGCCGGAGCTGTCCAATAAG
TTCTGGATGTGAAAAAAAAAAAAAAATAAAAAAAAAAAAAAAATAAAAAAAAAAAAAAA
AAAAAAAAAAAAA

Human ATP6V0C mRNA sequence - var3 (public gi: 33873673) (SEQ ID NO: 347)
CGCCTTCGCCGCCGCCGCCGCCCAAACCTTCGTGCCCGGCCGTCCCGCCCCGCCCTCGGCCACCGCCT
CGGGCCGCCAGAGCTTGGCCCATCCCCACCGCAGACATGTCCGAGTCCAAGAGCGGGCCCGAGTATGCTT
CGTTTTTCGCCGTATGGCGCCATGCCCGCCATGGCTTCAGCGCCCTGGCGCTGCCATGGCACAGC
CAAGAGCGGTACCGGCATTGCCATGTCTGTATGCCCATACGCCATCTACGCCCTGGTGGCAGTCCTCATGCCA
GTGGTATGGCTGGCATGCCATCGCCATCTACGCCATCTACGCCCTGGTGGCAGTCCTCATGCCA
ACGACATCAGCCTCTACAAGAGCTTCAGCTGGCGCCGCCGTAGCGTGGGCCGAGCAGCCCCGACTATT
AGCCGGCTTGGCATCGGATCGTGGGGACGCTGGCGTGGGGCACCGCCAGCAGCCCCGACTATT
GTGGCATGATCTGATTCTCATCTTCGCCAGGGTGTGCCCTACGGCTCATCGTCGCCATCC
TCTCCACAAAGTAGACCCCTCCGAGGCCACCAGCCACAGAAATTATGTAAGACCAACCCCTCC
CCAGAACGAACAGCCTGACACATACGCACGGGGGCCGCCAGTAGTGTGGCTTGTACATGCCAGT
GTCTAGTGGCCATCGTCTGTTCCCCGCCATGCCGCCAGCGTGGCGTGGACATCTGGGCCA
CTCATGCCCTCCAGGCCCGGCCGCCAGCCCTAGAGTGTCTGTATGCGATGATTAGAATT
GTCATTCTCTTACTGGATGTTATTATAAGATCTGGCTTCTCGCTCTGGAGGCGGCCCTTG
TCTCCAGCTATCTATAACCTTAGCTAGAGTGTGCCCTGGGGTCTGTGAGACTTCTGGATG
GAGCGCCCTACCGCCGGGGCGTGGCCATGCCA
AAAAAAAAAAAAAA

Human ATP6V0C mRNA sequence - var4 (public gi: 33990932) (SEQ ID NO: 348)
GACGGGCCGGATGCCCTTCGCCGCCGCCGCCCAAACCTTCGTGCCGCCGTCCCGCCCCGCC
CCGCCACGCCCTGGCCCGCAGAGCTTGGCCATCCCCACCGCAGACATGTCCGAGTCCAAGAGCGGCC
CCGAGTATGCTTCGTTTCGCCATGGCCGATGGCCCATGGCCATGGCTTCAGGCCCTGGCGCTGC
CTATGGCACAGCCAAGAGCGGTACGGGATGGCCATGGCCATCGCCATCTACGCCCTGGTGGCAGTCCTCATGCCA
TCCATCATCCCAGTGGTCACTGGCTGGCAGACATGCCATCTACGCCCTGGTGGCAGTCCTCATGCCA
ACTCCCTGAATGACGACATCAGCCTCTACAAGAGCTTCCAGCTGGGCCGGCCTGAGCGTGGGC
GAGCGGCTGGCAGCCGTTGCCATGGCAGCTGGGGACGCTGGCTGCGGGCACCGCCAGCAG
CCCCGACTATTGGGATGATCTCATCTGCCAGGGCCCTGGCCCTACGGCTCTACGGCTCATCG
TCGCCCTCATCTCCACAAGTAGACCCCTCCGAGGCCACAGAACATATTGTAAGACCA
CCCCCTCCATCCAGAACGAACAGCCTGACACATACGCACGGGGGCCGCCAGTAGTGTGGCTTG
TACATGCGCAGTGTCTAGTGGCCATCGTCTGTTCCCCGCCCTGCCCGGCCGGCGTGG
CATCTGGGCCACTCATGCCCTCAGGCCGGGCCACCCCTAGAGTGTCTGTATGCGGA
TGATTTAGAATTGTCACTCTTACTGGATGTTATTATAAGATCTGGCTTCTGTGCTGCG
GAGCGGCCCTGTCTCCAGCTATCTATAACCTTAGCTAGAGTGTGCCCTGTGGGGTCTGTGAG
ACTTCTGGATGGAGGCCCTACCGCCGGGGCGTGGCCATGCCA
TGGATGTGAAAAAAAAAAAAAA

Human ATP6V0C mRNA sequence - var5 (public gi: 19913436) (SEQ ID NO: 349)
GTTCTGCGGTGCTGGTATTTAGAGCCAGCGGCTGACGGGGCGGATGCCCTCGCCGCCGCCGCC
AACCTTCGTGCCGCCGCCGTCTGCCCTGCCGCCAGGCCCTGCCAGAGCTTGGCCCTCC
CCACCGCAGACATGTCCGAGTCCAAGAGCGGGCCGAGTATGCTTCGTTTCCGCTCATGGCGCT
CGGCCGCCATGGCTTCACTGGCCATGCCCTGGCGTGCCTATGCCACAGCCAAGAGCGGTACCGGCATTGCC
CATGTCTGTATGCCGCCGGAGCAGATCATGAAGTCCATCATCCCAGTGGTCACTGGCTGGCAGATCGCC
ATCTACGCCCTGGTGGTGGCAGTCTCATGCCAACCTCTGAATGACGACATCAGCCTCTAACAGAGCT
TCCCTCAGCTGGCGCCGGCCTGAGCGTGGGCCATGCCAGCGGGCTTGCCATGGCATTGCG
GGGGGACGCTGGCGTGGGGCACGCCAGCAGCCCGACTATTGCGGGCATGATCTGATCTCATC
TTCGCCGAGGTGCTGCCCTCTACGGTCTCATCGTGCCTCATCTCTCCACAAGTAGACCCCTCTCG
AGCCCACCGCCACAGAAATTATGTAAGACCAACCCCTCTCATCTCCAGAACGAACAGCCTGACACATA
CGCACGGGGCCGCCGCCAGTAGTTGGTCTCATGCCAGTGTCTAGTGGCCATGCTGTGTT
CCCGGCCCTGCCGCCGCCGTGCCGTGGACATCTGGGGCCACTCATGCCCTCCAGGGGGGG
CGCCCCACCCCTAGAGTGTCTGTGATGAGATTAGAATTGTCACTTCTTACTGGATGTT
ATTATATAAGATCTGCCCTGTGCCCTGCGTCTGCCAGGGGGCTTGCTCCAGCTATCTATAACCTTAG
CTAGAGTGTGCCCTGTGGGGTCTGTGCTGAGACTTCTGGATGGAGGCCCTCACGCCGGGG
TGGCCCTGCCGGAGCTGTGCTCAATAAGTTCTGGATGTGAAAAAAAAAAAAAA
AAAAAA

Human ATP6V0C mRNA sequence - var6 (public gi: 34534447) (SEQ ID NO: 350)

Figure 36 part - 10

TTTATGCTTGTTCTGCAACTGTTCTGGCCCCACTCTTCTGGCTGAGCCTAGGCCGC
TCACAGGTCTGCCCTCTGCACTGGCAGGCTGGCCCTGGACTGGAGTCCAGGGTGCATGGTATT
CCGCTCTGGGGCCATCCCTTCTCCCTGTGCCTCTGGCTCACTTCTGCCTCTGGGGACTACTGCCACATGA
TTCTCCTGCTGCCCTGTAGAAAAGGGCCTGGCTCACTTCTGCCTCTGGGGACTACTGCCACATGA
GGGTCACACTTGGTTGCTGAGITCCCTGTATTCACTGCCTGCCAACGTGCTGCCATGCTGGTC
TCTTGCAATGATGCACTGGATGTGGCTCTGGGCTGCACTGGAGCTGGACAGGCCAGGG
ATTGCTCTATATGCTGCCAGGAAAAAAATGCACTGTAACCAGAGTCAAGACAGGCCAGGG
CCTGGGCCAGTCTGCAGGTGCACTGGGTGTCAGGATGCTGGCACCTCCAGGGTGGCTGGA
GGAGGCCAGTCTGCCAGGCTCAAGCTCCCTCCAGGCTATAGTCACTCCCTGGATAACCC
AGCAGCGTCTGGGTGCTGCACTGGGCTGCAAGGTGCTATCCAGAGCCCTGTCTTATTGCCCTGTTCTGTG
ACTCCTCTCCGCCAACCTGGGACTTGTCTGTGAAGGCCCTCCCAGCACCCCTCTCCGCTCTC
CTGGAGCATGTCCTGTGCCTGGAGGTCAACGCCCTGTGCTCTCACCCCTGCTGAGTGCCTGGGACACAG
GGTAGGCAAGTTTGTGGCCAAATATATCAATAAAATATGAAGAGGAATGGTAGGGTAGTCCCTGGTCC
CTTCCACCTGACATATGAGTCTTGCAAGGTGCTGGTGTGTGTGTGTGTGT
GTGTGTGTGTCTGTCAAGAGATTCACTCTGTTGTTGAGACGGAGTCTCTGTGTGCCAGG
CTGGAGTGCAGTGGCGTGAATCTGACTCACTGCAACCTCAACTCTGGGTCAGGCCATTCTCCGCTC
AGCCTCCCTAGTAACGGGATGACAGGCATGCCAACACTCTGGCTAATTGGTATTAGAG
ACGAGGTTTCAACATGTTACCCAGGCTAACATCTGCAACTCGGATCACCTGAGGTCAAGGAGTGGAGACCA
GCCAGGCAACATGGGAAACCCATCTACTAAACAAAGGATTAGCCAGGTCTGGTGGCG
TGCTGTAACTCCACCTACTGGGAGGCTGAGGAGGAAACTTGAGACCCAGGAGGAGGTTACA
GTGAGCCGAGATCGGCCACTGCACTCCACCTGGGAAACAGAGCGAAAAGTCTCAAAAAAAAAA
AAAAAATTTTCAATTGAGGTATTCTTCACTGAGGTTAGTAAGTTTAATGAAACCAATTAAATT
ACACTTCCAGAAAATAGATGACATCAGTGCCTTGCTACTTCTCAGTCCTCACTATTGCTTGAGGG
CCCAGGTACTGAAACTGGTGTCTGAGTTTGTCAGCTTTCTCCAGTCCATTATCCCCCTCCCT
GCTCTGAAGCAGTCTAGGTTAAACTAGCCAGGGAGGTAGTTGGAAGTGGATTCAAAGGCCAC
TTTAGAGATCAGGCCACAGCTTTTATATCGCACAGGACACATCAGCTGAGCTGCTCATGCTGT
TTCCCCAGGAACCTCACTCTTGGTAGAACCTGGGATTAGAAATTGGCTTCCATAACTCATT
TACTCCAACAGTTGAAGTTACACACATTGCTCCAAATTGAAATAGACACAGTACCTTACCTTCA
TCCCCATCTGGCTTTACTTCTTGTCTCAGTGGTGGAAACAGTGGCCATTCAAAGTATAGTAGAT
TTCACACTCACAAATGACAAGTCCATTAACTAGGAAGGCCACAAATTCACTGAGTCTGACTGCTG
CAGGGCGGCTGCACTGGAGGCCAGGGCAGCCCTGCTCACTGAATGAGTCTGAGTGTGACTGCTG
CCCGCAGTGTGAACATGCCCAACGCCAGGCCAGCACTGCTTGGGTCA

Human ATP6V0C mRNA sequence - var7 (public gi: 30583148) (SEQ ID NO: 351)

ATGTCGGAGTCCAAGAGCGGCCCGAGTATGCTCGTTTCGCCATGGGCCCTCGGCCATGG
TCTTCAGGCCCTGGCGCTGCCATGGCACAGCAAGGCCAGGGTACCGCATTGCCATGCTGT
GCCCGGGAGAGCATGAAAGTCCATTCACTCCAGTGGCATGGCTGCCATCGCCATCAGGCC
GTGGTGGCAGTCTCATGCCAACCTCTGAATGACGACATCAGCTCTACAAGAGCTTCCAGCTGG
GCCCGGCCCTGAGCGTGGCTGAGGCCCTGGCAGCCGGTTGCCATGGCATCGTGGGGACGCTGG
CGTGGGGCACGCCAGCAGCCCCACTATTGTTGGCATGATCCTGATTCTCATCTGCCAGGTG
CTCGCCTCTACGGTCTACGTCGCCCTCATCTCTCCACAAAGTAG

Human ATP6V0C protein sequence - var1 (public gi: 30583149) (SEQ ID NO: 225)

MSESKSGPEYASFFAVMGASAAMVFSALGAAYGTAKGSGTGIAMMSVMRPEQIMKSII
PVVMAGIIAIYGLVVAVLIAINSLNDISLYKSFQLQGAGLSVGLSLAAGFAIGIVGDAGVR
GTAAQQPRLFVGMLILIFAEVLGLYGLIVALILSTK

Human ATP6V0C protein sequence - var2 (public gi: 34534448) (SEQ ID NO: 226)

MILPAALCRKGPGSLPASGGLLASQGPLLGLLSSLYSVSCQRVCHALVSCAYMMQLDV
VLGLQWEPPKMH CNCSCILPGKKTCTVTRSSGQALQALGPSLQVHWVLA
WHVWAPPGRGGRVAPWPRSQPPSSLYSHSLDTQHRLGCLRCY
PEPLSYCLVFL

Human ATP6V0C pray sequence - var1 (SEQ ID NO: 352)

CCGCCATGGAGTACCCATACGACGTACCAAGATTACGCTCATGGCCATGGAGGCCAGTGAATT
CCACCAAGCAGTGGTATCAACGCCAGAGTGGCATTGGGGGCTGCGGTGCTGGTATT
TAGAGCGCAGCGGCTGACGGCCGATGCCCTGCCTGCCGCCGCAACCT
TCGCCCCGCCCTGGCCCTGCGCTCTGCCCTCGCCCCGCC
CGCCACGCCCTGGCCCGCAGAGCTTGGCCCTCCCCCATGTC
GGCCGCTCGGCTCTAGAGGGTGGCAGATGAACTGAGATA
CTCAACTGTGCATTGCA

Unigene Name: CBLB Unigene ID: Hs.3144 Clone ID: 3GD_114

Human CBL-B mRNA sequence - var1 (public gi: 4757919) (SEQ ID NO: 353)

CTGGGTCCCTGTTGCCCCACAGGGGGGGTGTCCAGCGAGCGGTCTCCCTCTGCTAGTGCTGCTGC
GGCGTCCC CGCCTCCCGAGTCGGCGGGAGGGGAGAGCGGGTGTGGATTGCTTGA CGTAATTGT
TGGCTTCCACGTCTGGAGGCCCTGCGCTGGGTGCTCTTCTCGGGAGCGAGCTGTTCTCAGCGAT
CCCAC TCCCAGCGGGCTCCCCACACACTGGGCTGCGTGTGGAGTGGGACCCGCGCACACGCG
TGTCTCTGGA EAGCTACGGCGCCGAAAGA ACTAAAATTCCAGATGGCAA ACTCAATGAATGGCAGAAACC
CTGGTGGTGCAGGGAGGAATCCCCGAAAAGGTGCAATTGGGTATTATGATGCTATTCAAGGATGCAGT
TGGACCCCTAAGCAAGCTGCCGAGATCGCAGGACCGTGGAGAAGACTTGGAGCTCATGGACAAAGTG
GTAAGACTGTGCCAAAATCCAAACTTCAGTTGAAAAAATAGCCCACCATATAACTTGATAATTGCTG
ATACATATCAGCATTACGACTTATATTGAGTAATATGATGACAACCAGAAAACTTGCCCAACTCAGTGA
GAATGAGTACTTAAATCTACATTGATAGCCTTATGAAAAGTCAAAACGGGCAATAAGACTCTTAAA
GAAGGCAAGGAGAGAATGTATGAAGAACAGTCACAGGACAGCAGAAGCAGAAAATCTCACAAAATCT
TCAGTCACATGCTGCCAGGAATCAAAGCAATCTTCCAATGGTCAATTCCAGGGAGATAACTTCGTAT
CACAAAAGCAGATGCTGTAATTCTGGAGAAAAGTTCAGGAGACAAAATCTGTAACATGGAAAGTA
TTCAAGACAGTGGCTTATGAGGTCCACAGATTAGCTCTAGGCTGGAAAGCAATGGCTCTAAAATCAACAA
TTGATTAACTGCAATGATTACATTCAAGTTGAAATTGATATTTCACCAAGGTGTTTCAAGCCTG
GGGCTCTATTTCGGGAATTGGAATTCTTAGCTGTGACACATCCAGGTACATGGCATTCTCACATAT
GATGAAGTAAAGCAGCACTACAGAAATATAGCACCAAACCCGGAGCTATATTTCGGTTAAGTGCA
CTCGATTGGGACAGTGGGCATTGGCTATGTGACTGGGATGGGAATATCTACAGACCACCTCATAA
CAAGCCCTTATTCAAGCCCTGATTGATGGCAGCAGGGAGGATTATCTTATCCTGATGGGAGGAGT
TATAATCCTGATTTAACTGGATTATGTGAACCTACACCTCATGACCATAAAAAGTACACAGGAACAAT
ATGAATTATATTGTGAAATGGGCTCCACTTTCACTGCTGTAAAGATTGTCAGAGAATGACAAGATGT
CAAGATTGAGCCTTGTGGCATTGATGATGTCACCTCTTGCCTTACGGCATGGCAGGGTGGGATGGTCAG
GGCTGCCCTTCTGCTGTTGTGAAATAAAAGGAACTGAGCCCATATACTGTTGAGACCCCTTGTCAAGAG
ATGAAGGCTCCAGGTGTTGCACTATTGACCCCTTGGCATGGCGATGCTAGACTTGGACGACGATGA
TGATCGTGGAGGAGTCCTTGTGATGATGAACTGGTTGGCAAAAGCTGGCAACTGACAGGCAAGACTCA
CCAGTCACATCACCAGGATCCTCTCCCTTGGCATGGCGATGCTAGACTTGGACGACCCACTCCAGATCC
CACATCTAACGCTGCCACCCGTGCCTCTCGCTGGATCTAATTCAAGAACGGCATAGTTAGATCTCCCTG
TGGCAGCCCAACAGGTTCAACAAAGTCTCTTGCATGGTGGAGAAAACAAGATAAACCAACTCCAGCA
CCACCTCTCCCTTAAGAGATCCTCTCCACCGGCCACCTGAAAGACCTCCACCAATCCCACCAAGACAATA
GACTGAGTAGACACATCCATCTGAAAGCGTGCCTTCCAGAGACCCGCAATGCCCTTGAAGCATG
GTGCCCTGGGATGTGTTGGACTAATCAGCTTGTGGATGTCACTCTAGGGGAGGGCTCTCCAAAA
CTTGAATCACAGCGAGTTCAATGTCATGGAGGCAACAGTAGAGTGGCTCTGACCCAGTGTCTATGC
GGAAACACAGACGCCATGATTGCTTGAAGGAGCTAAGGTCTTCCAATGGTACCTTGGAAAGTGA
AGAATATGATGTTCTCCCCGGTTTCTCTCCCTCCAGTTACCACTCCCTAGCATAAAAGTGT
ACTGGTCCGTTAGCAAATTCTCTTCAAGAGAAAACAAGAGACCCAGTAGAGGAAGATGATGATGAATACA
AGATTCCTTCATCCCACCCCTGTTCCCTGAAATTCAACCCATCTCATTGTCATAATGTAACCTCTGT
TCGGCTCTGTGATAATGGTCACTGTATGTAATGGAAACACATGGTCCATCTCAGAGAAGAAATCAAAC
ATCCCTGACTTAAGCATATAATTAAAGGGTACGTATAGAATATAATTCTCTTGTGATGATGATCTTAAT
GGTCAGAATTAAAGGCAAATTCTAGCCATTGACTGAAATACATTAGGTTTGTGTTATCCTCTA
GGAGATGTTTGTGATTCAGCCTCTGATCCCCTGCCATTACCACTGCCAGGGCTCCAACCGGGACAATC
CAAAGCATGGTCTTCACTCAACAGGACGCCCTGATTATGATCTCTCATCCCTCATTAGGTTGAAA
CCTTAAAAAAAGTTTGAACAACCCACCCCTCTTAAATTCAAGAATTTCAGAATTCAAGAGTTCA
GTATAACACAGACTCACTGGTTGTGAATTGCTGAAATTGAATGGGCTCCAGGTGCCGGTGA
CCAAGTTCACGAGACCAATTACTCCATGAGATGATGATGAGTGTAGTAGTGTAGTTGGCATTAGTCAGG
TTTAAGCAAGTTGTTGTCCATAACTAAATGTAGTCTAAAACACATGAGAGCTTGTGCTTAGTGT
TTGAAGTGTGACTTGAAGTGTGAGATTCTTAAAGTATAATAATTCTTAATAATGAACTTGCT
TTCTTGACGATGAGCACCAAGTCCACTTACGCTAATTAAATTATGCAAATTAATAGTGTAG
AGAACTGATAATAAAATTCTGTTTATTCTAATCATTACAACACTGTAACACATTCAAAAAAAAAA

Human CBL-B mRNA sequence - var2 (public gi: 23273908) (SEQ ID NO: 354)

AGCGGAGTGTGCTGCCGCGTCCCGCGGCCCTCCCCGAGTCGGCGGGAGGGAGAGCGGGTGTGGATTG
TCTTGACGGTAATTGTTGCCATTCCACGCTCTCGAGGCCCTGCCGCTGGGTTGCTCTTCTCGGGAGCG
AGCTGTTCTCGCGATCCACCTCCAGGCCGGCTCCCCACACACTCGGCTGCCGTGCTGGAGTGG
GACCCGCCACACCGCTGTCTCGACAGCTACGGCGCCGAAAGAACTAAATTCCAGATGGCAAACCTCA
ATGAATGGCAGAAACCCCTGGTGGTCAAGGAGGAAATCCCCGAAAAGGTGCAATTGGGTATTATGATG
CTATTCAAGGATGCACTGGGACCCCTAAGCAAGCTGCCAGATCGCAGGACCGTGGAGAAGACTTGGAA
GCTCATGGACAAAGTGGTAAGACTGTGCAAATCCCAAACCTTCAGTTGAAAGGATAGCCCACCATATA
CTTGATATTTCGCTGATAACATATCAGCATTACGACTTATATTGAGTAAATATGATGACAACCAAGAAAC
TTGCCCAACTCACTGAGAATGAGTACTTAAATCTACATTGATAGCCTTATGAAAAGTCAAACCGGGC
AATAAGACTCTTAAAGAAGGCAAGGAGAGAATGTATGAAAGAACAGTCACAGGACAGACGAAACTCACA

AAACTGTCCCTTATCTTCAGTCACATGCTGGCAGAAATCAAAGCAATCTTCCAATGGTCATTCAGG
GAGATAACTTCTGATCACAAAGCAGATGCTGCTGAATTCTGGAGAAAGTTTTGGAGACAAAACAT
CGTACCATGGAAAGTATTCAAGACAGTGCCTTCATGAGGTCCACCAGATTAGCTCTGGCTGGAAAGCAATG
GCTCTAAATCAACAATTGATTTAACITGCAATGATTACATTTCAGTTTGATATTGATATT
GGCTGTTTCAGGCTGGGCTTATTTGCGAATTGGAAATTCTTAGCTGTGACACATCCAGGTACAT
GGCATTTCTCACATATGTAAGTAAAGCACGACTACAGAAATATAGCACCAACCCGGAAAGCTATATT
TTCCGGTTAACGACTCGATTGGGAGCTGGGCTATGGCTATGTGACTGGGATGGAAATATCTTAC
AGACCATACCTCATAAAGCCATTTCAGGCTGATTGATGGCAGGGAAAGGATTTTATCTTAA
TCCTGATGGGAGGAGTTATAATCCTGATTAACTGGATTATGTGAACCTACACCTCATGACCATAAAA
GTTACACAGGAACAATATGAATTATTTGTAATGGGCTCCACTTTCAAGCTCTGTAAGATTTGTGCAG
AGAATGACAAAGATGTCAGAATTGACCCCTGTGGCATTGATGTGCACCTCTGCCAACGGCATGGCA
GGAGTCGGATGGTCAGGGCTGCCCTTCTGTGTTGAAATAAAAGGAACGTGAGCCATAATCGTGGAT
CCCTTGATCCAAGAGATGAAGGCTCAGGTGTTGACGATCATTGACCCCTTGGCATGCCGATGCTCG
ACTTGGACGACGATGATGTCAGGAGTCCTGATGATGAACTGGTTGCAAACGTCGAAAGTGCAC
TGACAGGCAACTCACCAGTCACATACCAGGATCCTCTCCCCITGCCAGAGAAAGGCCACAGCCT
GACCCACTCCAGATCCCACATCTAACGGCTGCCACCGGTGCCCTCGCTGGATCTAATTGAGAAAGGCA
TAGTTAGATCTCCCTGTGGCAGGGTACCCAAAGGATCTCCCTGGATCTAATTGAGAAAGGCA
TAAACCACTCCCAGCACCCATCTCCCTTAAGAGATCTCCCTCCACCGGACACTGAAAGACCTCCACCA
ATACCCAGAGAAATAGACTGAGTAGACACATCCATCTGAAAGGAGCTTACCGCCAA
TGCCCTTGTGAAGCATGGTCCCTCGGATGTTGGACTAATCAGCTGTGGATGTCACCTCTAGG
GGAGGGCTCTCCTGGAAATCACAGCAGTCAATGGAAGGACAGTAGAGTGGCTCT
GACCCAGTGCTATGCGGAAACACAGACGCCATGATTGCTTCTAGAAGGGAGCTAAGGTCTTCCAATG
GTCACCTTGGAAAGTGAAGAATATGATGTTCTCCCGGCTTCTCCTCCAGTTACCAACCCCTCCT
CCCTAGCATAAAAGTGTACTGGTCCGTAGCAAATTCTCTTCAAGAGAAAACAAGAGACCCAGTAGAGGAA
GATGATGATGAATACAAGATTCTCATCCACCCCTGTTCCCTGAATTCAACACATCTCATTGTCATA
ATGAAAACCTCTGTGTTGGCTTGTGATAATGGTCACTGATGTCATGGAACACATGGTCCATCTC
AGAGAAGAAATCAAACATCCCTGACTTAAGCATATATTAAAGGGAGATGTTTTGATTGAGCTTAC
CCCCGTGCCATTACACCTGCCAGGCCCTCAAACGGGACAATCCAAGGATGGTCTTCACTCAACAGGA
CGCCCTCTGATTATGATCTCTCATCCCTCCTGGATAGGTGAAGATGTTGATGCCCTCCATCT
CCACCTCCCCACCTCTGCAAGGCTAGTCTATTGACACATTCAAAACCTCTGGCTCCAGTAGCCGG
CCATCCTCAGGAGCAGGATCTTTCTCTCTGGATCCCTGAGATCCCTGGTGTAGCAAGTGGCCAGTTC
CTTGCCCTCCCTAGAAGGTTACCGGTAAAATGTCAAAACACTAACAGAACATCACAGGACTATGATCA
GCTTCCTCATGTTAGATGGTCAACAGGCACAGCCAGACCCCTAAACCAACGCCGCGCAGGACTGCA
CCAGAAATTCAACCACAGAAAACCCATGGGCTGAGGGGGCATTGGAAAATGTCATGAAAAATTGCAA
AACTCATGGGAGAGGGTTATGCTTGAAGAGGTGAAGAGAGCCTTAGAGATAGCCAGAATAATGTCGA
AGTGCCCGGAGCATCTCCGAGAATTGCTTCCCTCCAGTATCCCCACGTCAAATCTATAGCAG
CCAGAACTGTAGACACAAAAATGGAAGCAATGATGATTCAAGAGTGTGGAAATAAGAGAAACTGAG
ATGGAATTCAAGAGAGAAGTGTCTCTCTGTCAGCTTGAGAAGAGGCTGGGAGTGCAGCTTCT
CAAAGGAGACCGATGCTGCTCAGGATGTCAGCAGCTGTGGCTCCCTGTTTGCTAGCCATATT
AATCAGGGTTGAACTGACAAAAATAATTAAAGACGTTTACTTCCCTGAACTTGAACCTGTGAAATG
TTTACCTTGTITACAATTGGCAAAGTGCAGTTGTTCTTCAAGGTTTACTTCAAGGTTTGTGTT
TGATACCTGTACTGTGTTCTTCAGACAGGCCCTTGTAGCGTGGCTCAGGTCTGCTGTAACATT
CTCTTGTGTCACATCACACAGCTTCAAGGTTCTGATGTTCAACTGATCAAAC
CAGGTCCAGTTCTCATTCAACAGATGCTTGAAGGTTCTGATTTCAACTGATCAAAC
GCAAAAAAAAAAGTATGATTCTTCACTACTGAGTTCTTGGAAACCATCACTATTGAGAGATGG
AAAAACCTGAATGTATAAAGCATTGTCATAAAACTGCCCTTGTAAAGGGTTTCACAAAAAAA
AAAAAAA

Human CBL-B mRNA sequence - var3 (public gi: 862406) (SEQ ID NO: 355)
CTGGGTCCCTGTGTGCCACAGGGGGGGGTGTCAGCGAGCGGTCTCCCTCCCTGCTAGTGCTGCTGC
GGCGTCCCGGGCCTCCCCGAGTCGGGGGGAGAGGGAGAGCGGGGTGTGGATTGCTTGACGGTAATTGT
TGGCTTCCACGTCTCGGAGGCCCTGGCGCTGGGTTGCTCTTCTCGGGAGCGAGCTGTTCTAGCGAT
CCCACCTCCCAGCCGGGGCTCCCCACACACACTGGCTCGTGTGGAGTGGGACCCGCGCACACGCG
TGTCTCTGGACAGCTACGGCGCGAAAGAACCTAAATCCAGATGCCAAACTCAATGAAATGGCAGAAACC
CTGGTGGTCAGGGAGGAATCCCCGAAAAGGTCGAAATTGTTGGTATTATGATGCTATTCAAGGATGCA
TGGACCCCTAAGCAAGCTGCCAGATCGCAGGACCGTGGAGAAGACTGGAGCTATGGACAAAGTG
GTAAGACTGTGCCAAATCCCAAACCTCAGTTGAAAAAATAGCCACCATATATACTGATATTGCTG
ATACATATCAGGATTTACGACTTATGAGTAATGATGACAACCAAGAAAATGGCCAACTCAGTGA
GAATGAGTACTTTAAAATCACATTGATGACGCTTATGAAAAGTCAAAACGGCAATAAGACTCTTAAA
GAAGGGCAAGGAGAGAATGTATGAGAAGAACAGTCACAGGACAGCAGAAATCTCACAAA
ACTGTCCCTTATCT
TCAGTCACATGCTGGCAGAAATCAAAGCAATCTTCCAATGGTCATTCCAGGGAGATAACTT
CACAAAAGCAGATGCTGTAATTCTGGAGAAAGTTTTGAGACAAAACATCGTACCATGGAAAGTA
TTCAGACAGTGCCTCATGAGGTCCACCAAGATTAGCTCTAGCCTGGAAAGCAATGGCTCTAAACAA

Figure 36 part - 13

PCT/US04/06308

Human CBL-B mRNA sequence - var4 (public gi: 862408) (SEQ ID NO: 356)
CTGGGTCTGTGTCGCCACAGGGTGGGGTGTCCAGCGAGCGGTCTCCTCCCTGCTAGTGCTGCTGC
GGCGTCCC CGGGCTCCCCGAGTCGGGGGGAGGGAGAGCGGGTGTGGATTTCGCTTGA CGGTAAATG
TGCCTTCCACGTCCTGGAGGCTCGCGCTGGGTTGCTCCCTCTCGGGAGCGAGCTGTTCTCAGCG
CCCACCTCCAGCGGGCTCCCCACACACACTGGGCTCGCTGCGTGGAGTGGGACCCGCACACCG
TGTCTCTGGACAGCTACGGCGCCGAAAGAACTAAAATCCAGATGGCAAACCTCAATGAATGGCAGAAC
CTGGTGGTCGAGGAGGAAATCCCCGAAAGGTCGAATTGGGTATTATTGATGCTATTAGGATGAGT
TGGACCCCTAACGCAAGCTGCCAGATGCCAGGACCGTGGAGAAGACTTGAAGCTCATGGACAAAGTG
GTAAGACTGTGCCAAATCCAAACTTCAGTTGAAAAATAGGCCACCATATACTTGATATTGCTG
ATACATATCAGCAATTAGCACTTATATTGAGTAAATATGATGACAACCAGAAACTTGCCAACCTCAGTG
GAATGAGTACTTAAATCTACATTGATAGCCTTATGAAAAGTCAAAAGGGCAATAAGACTCTTAA
GAAGGCAAGGAGAGAATGTATGAAGAACAGTCACAGGACAGACGAAATCTCACAAAAGTCCTTATCT
TCAGTCACATGCTGCCAGAAATCAAAGCACTTTCCCAATGGTCAATTCCAGGGAGATAACTTCG
CACAAAAGCAGATGCTGCTGAATTCTGGAGAAAGTTTTGGAGACAAAATATCGTACCATGGAAAGTA
TTCAGACAGTGCCTTCACTGAGGTCCACCAAGTAGCTCTAGCCTGGAAAGCAATGGCTTAAATCAACAA
TTGAGTTAACCTGCAATGATTACATTTCAGTTGATATTGATATTTCACCGGCTGTTCA
GGGCTTAACTTGCAGATTGGAAATTCTAGCTGTGACACATCCAGGTTACATGGCATTCTC
GATGAAGTTAAAGCAGCACTACAGAAATATAGCACCACCCGGAAAGCTATATTTC
CTCGATTGGGACAGTGGGCCATTGGCTATGTGACTGGGGATGGGAATATCTACAGACC
ACACCTCATAA

Figure 36 part - 14

CAAGCCCTTATTCAAGCCCTGATTGATGGCAGCAGGGAAAGGATTTATCTTATCCTGATGGGAGGAGT
 TATAATCCTGATTAACCGATTATGTGAACCTACACCTCATGACCATAAAAGTTACACAGGAACAAT
 ATGAATTATATTGTGAAATGGGCTCCACTTTCAGCTCTGTAAGATTGTCAGAGAATGACAAAAGATGT
 CAAGATGAGCCTTGCGGATTTGATGTCACCTCTGCCTACGGCATGGCAGGAGTCGGATGGTCAG
 GGCTGCCCTTCTGCGTTGAAATAAAGGAACGTAGGCCATAATCGTGGACCCCTTGATCCAAGAG
 ATGAAGGCTCCAGGTGTTGAGCATTCGACCCCTTGGCATGCCATGCTAGACTGGACGACATGA
 TGATCGTAGGGAGTCCTTGATGATGAATCGGTTGGCAAACGTCGGAAAGTGCACGTGACAGGCAGACTCA
 CCAGTCACATCACCAGGATCCTCTCCCCTGGCCAGAGAAAGGCCACAGCCTGACCCACTCCAGATCC
 CACATCTAACGGCTGCCACCCGTGCCCTCGCGATCTAATTGAGAAAGGCATAGTTAGATCTCCCTG
 TGGCAGCCCAACAGGTTACAAAAGTCTCTCTGATGGTGGAGAAAACAAGATAAACCACTCCAGCA
 CCACCTCCCTCTTAAAGAGATCCTCCACCGCACCTGAAAGACCTCCACCAATCCCACCAAGACAATA
 GACTGAGTAGACACATCCATGTTGAAAGCAGAGAAAGGCCATGCTAGACAGGGAGGGCTCTCCAAA
 GTGCCCTCGGGATGTGTTGGACTAATCAGCTTGCGGATGTCACCTAGGGAGGGCTCTCCAAA
 CCTGGAATCACAGCAGTTAACATGTCATGGAAAGGCACAGTAGAGTGGGCTCTGACCCAGTGCTTATGC
 GGAACACAGACGCCATGATTGCTTAAAGAGCTAAGGTCTTTCAATGGTCACTTGGAGTGA
 AGAATATGATGTTCTCCCCGGCTTCTCCTCTCCAGTACCTACCCCTCCCTAGCATAAAAGTGT
 ACTGGTCCGTTAGCAAATTCTCTTCAAGAGAAAACAAGAGACCCAGTAGAGGAAGATGATGAATA
 AGATTCTTCATCCCACCCCTGTTCCCTGAATTCAACACATCTATTGTCATAATGTA
 AACACAGGCCATGATAATGGTCACTGATGTTGAAAGCACATGGTCACTTGGAGTGA
 ATCCCTGACTTAAGCATATAAAAGGGAGATGTTTGATGAGCTCTGCTGATTATGA
 CTGCCAGGCCCTCAACTCGGGACAATCAGGCTGGTTCTCACTCAACAGGACGCCCTGATTATGA
 TCTCTCATCCCTCATTAGGTTGAAAACCTTAAAAAAAGTTTGAACAACCCACCCCTCTTAA
 TTCAGAATTTCAGAATTCAAGAGTTCAGTATAACACAGACTCACTGGGTTGTGAATTGCTGAAATTG
 AATGGGTTCTCAGGTGCCGTACTCCAAAGTTCACGAGACCAATTACTCCATGAGATGATTAAGGTAG
 TAGTGTAGTAGTTGGCATCAGTCAGGTTTAAGCAAGTTGTTGCTACTAAATGTA
 CACATGAGAGCTTGTGCTCTAGTAGTTGAAGTGATGACTGAAGTGTGAGATTTCCTTAAGTATA
 ATAATTCTTAATAAAATGAACTGCTTTCTGAGCATGAGCACCACTTACGCTAATTAA
 TATGCAAAATTAAATAGTGTATGTAGAGAACTGATAATAATTCTATTCTAATCATTACA
 TAACACATTCAAAAAAAAAA

Human CBL-B mRNA sequence - var5 (public gi: 862410) (SEQ ID NO: 357)
 CTGGGTCTGTGTGCCACAGGGGGGGGGGTGTCAGCGAGGGTCTCTCTCTGCTAGTGTGCTGC
 GCGCTCCCGCGCCCTCCCCGAGTCGGGGGGAGGGGAGAGCGGGGTGGATTGTCTTGACGGTAATTGT
 TCGCTTCCACGTCTCGGAGGCCTCGCGCTGGGTGCTCCTCTCGGGAGGAGCTGTTCTAGCGAT
 CCCACTCCCAGCGGGGCTCCACACACTGGGCTGCCGTGCTGTGGAGTGGACCCCGCGCACACCGCG
 TGCTCTGGACAGCTACGGCGGGAAAGAACATTCCAGATGGCAAACACTCAATGAAATGGCAGAAACC
 CTGGGGTCAGGGAGGAATCCCCGAAAGGTCGAATTGGTATTATGATGCTATTGAGATGCACT
 TGGACCCCTAAGCAAGCTGCCGAGATCGCAGGACCGTGGAGAAGACTTGGAGCTCATGGACAAAGTG
 GTAAGACTGTGCCAAATCCAAACTCAGTTGAAAATAGCCACCATATAACTTGATATTGCTG
 ATACATATCAGCATTACGACTTATATTGAGTAAATATGATGACAACCAAGAAACTTGGCCAACCTCAGTGA
 GAATGAGTACTTAAATCTACATTGATAGCCTTATGAAAAGTCAAAACGGCAATAAGACTCTTAA
 GAAGGCAAGGAGAGAATGTATGAAAGAACAGTCACAGGACAGCAGAAATCTACAAAACCTGCTCTTATCT
 TCAGTCACATGCTGGCAGAAATCAAAGCAATTCTCCCAATGGTCAATTCCAGGGAGATAACTTCCTG
 CACAAAAGCAGATGCTGCTGAATTCTGGAGAAAAGTTTGGAGACAAAACATCGTACCATGGAAAGTA
 TTCAGACAGTGCCTCATGAGGTCCACCAAGATTAGCTCTAGGCTGGAGCAATGGCTCTAAATCAACAA
 TTGATTTAACCTGCAATGATTACATTTCAGTTTGATATTGATATTTCAGGCTGTTGAGCTTACATGG
 GGGCTCTATTGGGAATTGGAATTCTTAGCTGTGACACATCCAGGTTACATGGCATTCTCACATAT
 GATGAAGTTAAAGCACGACTACAGAAAATAGCAGCAACCCGGAGCTATATTCCGGTTAGTTGCA
 CTCGATTGGGACAGTGGGCTATTGGTATGTGACTGGGATGGGATATCTACAGACCCATACCTCATAA
 CAAGCCCTTATTCAAGCCCTGATTGATGGCAGGGAGGATTTATCTTATCCTGATGGGAGGAGT
 TATAATCCTGATTAACTGGATTATGTGAAACCTACACCTCATGACCATAAAAGTTACACAGGAACAAT
 ATGAATTATATTGTGAAATGGGCTCCACTTTCAGCTCTGTAAGATTGTCAGAGAAATGACAAAGATGT
 CAAGATTGAGCCTTGCGGATTTGATGTCACCTCTGCCCTACGGCATGGCAGGAGTCGGATGGTCAG
 GGCTGCCCTTCTGCGTTGAAATAAAGGAACGTAGGCCATAATCGTGGACCCCTTGATCCAAGAG
 ATGAAGGCTCCAGGTGTTGAGCATATTGACCCCTTGGCATGCCATGCTAGACTTGGACGACGATGA
 TGATCGTAGGGAGTCCTGATGATGAATCGGTTGGCAAACGTCGGAAAGTGCACGTGACAGGCAGA
 CCAGTCACATCACCAGGATCCTCTCCCTGGCCAGAGAAAGGCCACAGCCTGACCCACTCCAGATCC
 CACATCTAACGGCTGCCACCCGTGCCCTCGCGCTGGATCTAATTGAGAAAGGCATAGTTAGATCTCC
 TGGCAGCCCAACAGGTTACCAAAGTCTCTCCCTGAGGGAGAAAACAAGATAAAACCACTCCAGCA
 CCACCTCTCCCTTAAGAGATCCTCCACCGCCACCTGAAAGACCTCCACCAATCCACCAAGACAATA
 GACTGAGTAGACACATCCATGTTGGAAAGCAGTCGCTCTCCAGAGACCCGCCATGCTCTGAA
 GTGCCCTCGGGATGTGTTGGACTAATCAGCTGTGGGATGTCACCTCTAGGGAGGGCTCTCCAAA
 CCTGGAATCACAGCAGTTCAATGAAAGGCACAGTAGAGTGGGCTCTGACCCAGTGCTTATGC

Figure 36 part - 15

GGAAACACAGACGCCATGTTGCCCTTAGAAGGAGCTAAGGTCTTCCAATGGTCACCTGGAAAGTGA
AGAATATGATGTTCCCTCCCCGGCTTCTCCTCCCTCCAGTACCAACCCCTCCCTCCAGTACATAAAGTGT
ACTGGTCCGTTAGCAAATTCTCTTCAAGAGAAAACAAGAGACCCAGTAGAGGAAGATGATGAATACA
AGATCCCTCATCCCACCCCTGTTCCCTGAATTACAACCATCTCATTGTCATAATGTAACACCTCCCTGT
TCGGCCTGTGATAATGGTCACTGTATGCTGAATGGAACACATGGTCCATCTTCAGAGAAGAAATCAAAC
ATCCCTGACTTAAGCATATAATTAAAGGGTAGTATAGAATATAATTTCCTTGTGATGTACATCTTAAAT
GGTACAATTAAAGGCAAATTTCATGCCATTGACTGAAAATACATTAAGGTTTGTTATCCTCTA
GGAGATGTTTTGATTGAGTCAGCGCTCTGATCCCGTGCATTACACCTGCCAGGCTCCAACCGGACAATC
CAAAGCATGGTCTTCACTCAACAGGACGCCCTGTGATTATGATCTTCACTCCCTCATTAGGGTAAA
CCTTAAAAAGTTGAAACAACCCACCCCTCTTAAATTTCAGAATTTCAGAATTTCAGAATTTCAGAGTTCA
GTATAACACAGACTCACTGGGTTGTGAATTGCTGAAATTGAAATGGGTCTCCAGGTGCCGGTGACTC
CCAAGTTACCGAGACCATTACTCCATGTAGATGATGTTAGGTAGTAGTGAGTTGGGCATCAGTCAGG
TTTAAAGCAAGTGTGTTGTCATACTAAATGTTAGTCTAAACATGAGAGCTTGTGCTCTAGTAGT
TTTGAAGTGTGACTTGAAGTGTGAGATTCTTAAGTATAAAATTCTTAAATAATGAACTTGCT
TTCTTGAGCATGAGCACAGTCCACTACGCTAATTAAATTATGAAATTAAATAGTTGTATGTAG
AGAACTGATAATAATTCTGTTTATTCTAATCATTACAACATTGTAACACATTCAAAAAAAAAAA

Human CBL-B mRNA sequence - var6 (public gi: 21753192) (SEQ ID NO: 358)
AGTGCCTGCTGGCGTCCCGCGGCTCCCGAGTCGGGCGGGAGGGAGAGCGGGGTGTTGATTTGCTTG
ACGGTAATTGTTGCGTTCCACGTCTCGGAGGCGTGGCGCTGGGTTGCTCCTCTCGGGAGCGAGCTG
TTCTCAGCGATCCCACCTCCAGGCCGGGCTCCACACACTGGGCTGCGTGTGGAGTGGGACCC
GCCACACCGCGTCTCTGGACAGCTACGGCGCCAAAGAAGTAAATTCCAGATGCCAAACTCAATGAA
TGGCAGAAACCCCTGGTGTGAGGGAGGAAATTCCCGAAAGGTCGAATTGGGTTATTGATGCTATT
CAGGATGAGCTGGGCCCCCTAAGCAAGCTGCCGAGATCGAAACCTGGAATCACAGCAGTCAAAT
GTCAATGGAAGGCACAGTAGAGTGGGCTGACCCAGTGTATGCGGAAACACAGACGCCATGATTG
CTTAAAGGAGCTAAGGTCTTCCAATGGTACCTTGGAGTGAAGAATATGATGTTCTCCCGGCT
TTCCTCTCTCCAGTTACCAACCCCTCCCTAGCATAAAGTGTACTGGTCCGTTAGCAAATTCTCTT
TCAGAGAAAACAAGAGACCCAGTAGAGGAAGATGATGATGAAATACAAGATTCTCATCCACCCCTGTT
CCCTGAATTCAACCATCTCATTGTCATAATGTAACACCTCCCTGTTGTGATAATGGTCACTG
TATGCTGAATGGAACACATGGTCCATCTCAGAGAAGAAATCAAACATCCCTGACTTAAGCATAATTAA
AAGGGAGATGTTTGATTGAGCTGGCTCTGATCCCGTGCCTTACCCACTGCCAGGCCCTCAACTCGGGACA
ATCCAAGCATGGTCTTCACTCAACAGGACGCCCTGTGATTAGTCTCATCCCTCCATTAGGTGA
AGATGTTTGATGCCCTCCCATCTCCCACCTCCCTGCGTCCAGGATCTTCTTCCCTCAGATC
CATTCAAAACCTCTGGCTCCAGTAGCCGGCATCTCAGGACAGGATCTTCTTCCCTCAGATC
CCTTGTGATCTAGCAAGTGGCAAGTTCTTGCCTCTGCTAGAAGGTTACCAAGGTGAAATGTCAA
AACTAACAGAACATCACAGGACTATGATCAGCTTCTTCTGATGTTCAAGATGGTTCACAGGCATGCCAGA
CCCCCTAAACCAACGACCGCGCAGGACTGCACCAGAAATTCAACCACAGAAAACCCATGGGCTGAGGCGG
CATGGAAAATGTCGATGCAAAATTGCAAAACTCATGGGAGAGGGTTATGCCCTTGAAGAGGTGAAGAG
AGCCTTAGAGATAGCCCAGAAATAATGCGAAGTTGCCGGAGCATCCTCCGAGAATTGCCCTCCCT
CCAGTATCCCCACGTCTAAATCTATAGCAGCCAGAACTGTAGACACCAAATGGAAAGCAATGATGTAT
TCCAAGAGTGTGAAATAAGAGAACTGAGATGGAATTCAAGAGAGAAGTGTCTCCCTCGTGTAGCAG
CTTGAGAAGAGGCTTGGGAGTGCAGCTCTCAAGGAGACCGATGCTGCTCAGGATGTCGACAGCTGTG
GCTTCTTGTGTTTGCTAGCCATATTAAATCAGGGTTGAACTGTGACAAAAATAATTAAAGACGTTA
CTTCCCTGAACTTGAACCTGTGAAATGCTTACCTTGTGTTACAGTTGGCAAGGTTGAGTTGTTCT
TGTTTTAGTTAGTTGGTTGGTGTGACTGTGACTGTTCTCACAGACCCCTTGTAGCGTG
GTCAGGTCTGCTGTAACATTCCACCAACTCTTGTGTCACATCAACAGCTAAATCATTATTCT
ATGGATCTTACCATCCCCATGCCCTGCCAGGTTCAATTCTCATTCAAGATGCTTGAA
GGTCTGATTCAACTGATCAAACATGCAAAAAAAAAAAAAAAAG

Human Cbl-b mRNA sequence - var 7 (SEQ ID NO: 359)
CGTTTGGNANNCACTACAGGGATGTTAATACACACTCACATGCGCATGATGNTATAACTATCTATTNATGAT
G
TAAGATACCCACTCAAACCCATAAAAAGAGCATCTTAAATACGACTCACTATANGCGAGCGACGCCATGGCAGGT
A
CCCATAACGACGTACCAAGATTACGCTCATGGCATGGAGGCCAGNGAATTCCACCAAGCNGTGGTATCAACGCAAG
T
GGACTCTGACCCANTGCTTATGCGGAAACACAGACGCCATGATTGCTTACAAGGAGCTAAGGTCTCTTCAATGGT
C
ACCTTGGAAAGTGAAGAATATGATGTTCTCCCCGGTTCTCCTCCCTCCAGTTACCAACCCNTCTCCAGTAA
G
TGTACTGGTCCGTTAGCAAATTCTCTTCAAGAGAAAACAAGAGACCCAGTAGAGGAAGATGATGAATACAAGATT
C

PCT/US04/06308

TTCATCCCACCCCTGTTCCCTGAATTACAACCATCTCATTGTCTATAATGTAACCTCCTGTTGGTCTTGATAAT
G
GTCACTGTATGCTGAATGGAACACATGGTCCATCTCAGAGAAGAAATCAAACATCCCTGACTTAAGCATATATTTAAA
G
GGTGAAGATGCTTTGATGCCCTCCCTCCATCTCTCCCACCTCCCCACCTCCTGCAAGGCATAGTCTCATTGAACATT
C
AAAACCTCCTGGCTCCAGTAGCCGGCATCCTCAGGACAGGATCTTCTTCTCAGATCCCTTGTGATCTA
G
CAAGTGGCCAAGTCCTTGCTCCAGTAGAAGGTTACCAAGGTGAAACTAACAGGACATCACAGGACTA
T
GATCAGCTTCCTCATGTTAGATGGTCACAGGCACCAGCAGACCCCTAAACCACGACCGCAGGACTGCACCAG
A
AATTCAACCACAGAAAACCCATGGGCTGAGGCGCATTGGAAAATGTCATGCAAAACTCATGGGAGAG
G
GTTATGCCTTGAGAGGTGAAGAGAGCCTTAGAGATAGCCCAGAATAATGTCAGTIGCCGGAGCATCCTCCGAGA
A
TTTGCCTCCCTCCAGTATCCCCACGTCTAAATCTATAGCAGCCAGAACTGTAGACACCAAAATGGAAAGCAATCG
A
TGTATTCCAAGAGTGTGAAATAAGAGAACTGAGATGGAATTCAAGAGAGAAAGTGTCTCCTCTCGTAGCAGCTTG
A
GAAGAGGCTTGGAGTGCAGCTCTCAAAGAAAACCGATGCTGCTCAGGATGTCNACAGCTGGNCTNCCTGTTT
T
GCTAGCCATTTTAAATNAGGGTGAACNTNGANAAAANTTTAAAAACGTTACCTCCCTGAACCTTGAACCTGG
G
AAAGNC

Human Cbl-b Protein sequence - var 7 (SEQ ID NO: 361)
MRKRRHDLPLEGAKVSSNGHLGSEEVDPVPRLSPPPVTLLPSIKCTGPLANSLSKTRDPVEEDDDEYKIPSSH
S
LNSQPSHCHNVKPPVRSCDNHGMLNGTHGPSSEKKSNIPLDSIYLKGEDAFLPDSLPPPPPARHSLIEHSKPPGS
S
SRPSSGQDLFLLPSPDFVDLASGQVPLPPARRLPGENVKTNRTSQDYDQLPSCSDGSQAPARPKPRRRTAPEIHHRK
P
HGPEAALENVDAKIAKLMGEYAFEEVKRALEIAQNNVEVARSLREFAFPPPVSPRLNL

Human cbl-B clone3Gd114 (partial sequence) (SEQ ID NO: 360)
ACTCTGACCCAGTCTTATGCGGAAACACAGACGCCATGATTTGCCCTTA
GAAGGAGCTAAGGTCTCTCCAATGGTCACCTTGGAAAGTGAAGAATATGA
TGTCCCTCCCCGGCTTCTCCTCCTCCAGTTACCAACCTCCCTCTA
GCATAAAAGTGTACTGGTCCGTTAGCAAATTCTCTTCAGAGAAAACAAGA
GACCCAGTAGAGGAAGATGATGATGAATACAAGATTCTCATCCCACCC
TGTTCCTGAAATTACAACCATCTCATTGTCTATAATGTAACACTCCCTG
TTCGGTCTTGATAATGGTCACTGTATGTAATGGAAACACATGGTCCA
TCTCAGAGAGAAAATCAAACATCCCTGACTTAAGCATATATTTAAAGGG
TGAAGATGCTTTGATGCCCTCCCTCATCTCTCCACCTCCCCACCTC
CTGCAAGGCATAGTCTCATGAAACATTCAAACCTCTGGCTCCAGTAGC
CGGCCATCCTCAGGACAGGATCTTCTTCTCCTCAGATCCCTTGT
TGATCTAGCAAGTGGCCAAGTCTTGCCTCCGCTAGAAGGTACCA
GTGAAAATGTCAAAACACAGGACATCACAGGACTATGATCAGCTTCCT
TCATGTTAGATGGTTACAGGCACCAGCAGACCCCTAAACCCACGACC
GCGCAGGACTGCACCAGAAATTCAACCACAGAGAAAACCCATGGGCTGAGG
CGGCATTGGAAAATGTCAGTGCAAAATGCAAAACTCATGGGAGAGGGT
TATGCCTTGAGAGGGTGAAGAGAGCCTTAGAGATAGCCAGAATAATGT
CGAAGTTGCCGGAGCATCCTCCGAGAATTGCTTCCCTCCTCAGTAT
CCCCACGTCTAAATCTATAGCAGCCAGAACTGTAGACACCAAAATGGAAA
GCAATCGATGTATTCCAAGAGGTGAGAATAAGAGAACTGAGATGGAAT
TCAAGAGAGAAGTGTCTCCTCCCTGAGCTGAGCAGCTGAGAAGAGGCTTGG
GAGTCAGCTCTCAAAGAAAACCGATGCTGCTCAGGATGTCAGCAGCT
GTGGCTTCCCTGTTGCTAGCATTAAATCAGGGTTGAACCTGGAAA
AAAAAAATTATTTAAAACGTTACCTCCCTGAACCTTGAACCTGGAAA

Figure 36 part - 17

GGC

Human CblB protein in 3Gd114 Translation of cbl-B clone 3Gd114 starting at base pair 3 (SEQ ID NO: 398)

SDPVLMRKHRRHDLPLEGAKVSSNGHLGSEEEYDVPPLSPPPPVTLLPS
TKCTGPLANSI~~SEKTRDPVEEDDDEYKIPSSH~~VSLNSQPSHCHNVKPPV
RSCDNGHCMILINGTHGPSSSEKKSNIPDLSIYLKGEDAFDALPPSLPPPPP
ARHSLIEHSKPPGSSSRPSSGQDLFLLPSDFVDSLASGQVPLPPARRLP
ENVKTNRTSQDYDQLPSCSDGSQAPARPKPRRTAPEIHHRKPHGPEA

Human CBL-B Protein sequence - var1 (public gi: 4757920) (SEQ ID NO: 227)

MANSMNGRNPGGRGGNPRKGRILGIIDAIQDAVGPPKQAAADRRTVEKTWKLMDKVVRCLCQNPKLQLKNS
PPYILDILPDTYQHLRLILSKYDDNQKLAQLSENEYFKIYIDSLMKKSRAIRLFKEGKERMYEEQSQDR
RNLTCLSIFSHMLAEIKAI~~F~~PNGQFQGDNFRTKADAAE~~FW~~RKFFGDKTIVPWKFVFRQCLHEVHQISSS
LEAMALKSTIDLTCDYISVFEDIFTRLFQPWGSI~~LR~~NWNFLAVTHPGYMAFLTYDEVKARLQKYSTKP
GSYI~~F~~R~~L~~SCTRLGQWAIGYVTGDN~~G~~NI~~L~~Q~~T~~I~~H~~NKPLFQALIDGSREGFYL~~Y~~PDGRSYNPDLTGLCEPTPH
DH~~I~~KV~~T~~QE~~Q~~E~~Y~~LYCEMG~~S~~TFQ~~L~~C~~K~~ICAENDKDVKIEPCGHLMCTS~~L~~TAWQESDGQGCPFCRCEIKGTEP
IIVDPFDPRDEGS~~RCCS~~I~~D~~PFGMPM~~L~~D~~L~~DDDDREESLMMNRLANVRKCTDRQNSPVTSPGSSPLAQRR
K~~P~~Q~~P~~D~~L~~Q~~I~~PH~~L~~SLPPV~~P~~RL~~D~~LIQ~~K~~GIV~~R~~SPCGS~~T~~GSPK~~S~~PCMVRKQDK~~K~~PLPAPPPLRD~~PP~~PPPE
R~~P~~P~~I~~PPDNRLSRHHV~~E~~VPSRDPMPLEAWC~~P~~RDVFTNQLVGCR~~L~~GE~~G~~SP~~K~~PGITASSNVNGRHS
RVGSDPVLMRKHRRHDLPLEGAKVFSNGHLGSEEEYDVPPLSPPPPVTLLPSI~~K~~CTGPLANSI~~SE~~KTRD
PVEEDDDEYKIPSSH~~V~~SLNSQPSHCHNVKPPVRSCDNGHCMILINGTHGPSSSEKKSNIPDLSIYLKGDVFD
SASDPVPLPPARPPTRDNPKHGSSLNRTPSDYD~~L~~LI~~P~~LGEDAFDALPPSL~~PP~~PPPARHSLIEHSKPPG
SSSRPSSGQDLFLLPSDFVDSLASGQVPLPPARRLPGENVKTNRTSQDYDQLPSCSDGSQAPARPKPRP
RRTAPEIHHRKPHGPEAALENVD~~A~~KIAKLMGE~~Y~~AFEEVKRALEIAQNNVE~~V~~ARSILREFAFPPPVSPRL
NL

Human CBL-B Protein sequence - var2 (public gi: 23273909) (SEQ ID NO: 228)

MANSMNGRNPGGRGGNPRKGRILGIIDAIQDAVGPPKQAAADRRTVEKTWKLMDKVVRCLCQNPKLQLKNS
PPYILDILPDTYQHLRLILSKYDDNQKLAQLSENEYFKIYIDSLMKKSRAIRLFKEGKERMYEEQSQDR
RNLTCLSIFSHMLAEIKAI~~F~~PNGQFQGDNFRTKADAAE~~FW~~RKFFGDKTIVPWKFVFRQCLHEVHQISSG
LEAMALKSTIDLTCDYISVFEDIFTRLFQPWGSI~~LR~~NWNFLAVTHPGYMAFLTYDEVKARLQKYSTKP
GSYI~~F~~R~~L~~SCTRLGQWAIGYVTGDN~~G~~NI~~L~~Q~~T~~I~~H~~NKPLFQALIDGSREGFYL~~Y~~PDGRSYNPDLTGLCEPTPH
DH~~I~~KV~~T~~QE~~Q~~E~~Y~~LYCEMG~~S~~TFQ~~L~~C~~K~~ICAENDKDVKIEPCGHLMCTS~~L~~TAWQESDGQGCPFCRCEIKGTEP
IIVDPFDPRDEGS~~RCCS~~I~~D~~PFGMPM~~L~~D~~L~~DDDDREESLMMNRLANVRKCTDRQNSPVTSPGSSPLAQRR
K~~P~~Q~~P~~D~~L~~Q~~I~~PH~~L~~SLPPV~~P~~RL~~D~~LIQ~~K~~GIV~~R~~SPCGS~~T~~GSPK~~S~~PCMVRKQDK~~K~~PLPAPPPLRD~~PP~~PPPE
R~~P~~P~~I~~PPDNRLSRHHV~~E~~VPSRDPMPLEAWC~~P~~RDVFTNQLVGCR~~L~~GE~~G~~SP~~K~~PGITASSNVNGRHS
RVGSDPVLMRKHRRHDLPLEGAKVFSNGHLGSEEEYDVPPLSPPPPVTLLPSI~~K~~CTGPLANSI~~SE~~KTRD
PVEEDDDEYKIPSSH~~V~~SLNSQPSHCHNVKPPVRSCDNGHCMILINGTHGPSSSEKKSNIPDLSIYLKGDVFD
SASDPVPLPPARPPTRDNPKHGSSLNRTPSDYD~~L~~LI~~P~~LGEDAFDALPPSL~~PP~~PPPARHSLIEHSKPPG
SSSRPSSGQDLFLLPSDFVDSLASGQVPLPPARRLPGENVKTNRTSQDYDQLPSCSDGSQAPARPKPRP
RRTAPEIHHRKPHGPEAALENVD~~A~~KIAKLMGE~~Y~~AFEEVKRALEIAQNNVE~~V~~ARSILREFAFPPPVSPRL
NL

Human CBL-B Protein sequence - var3 (public gi: 862407) (SEQ ID NO: 229)

MANSMNGRNPGGRGGNPRKGRILGIIDAIQDAVGPPKQAAADRRTVEKTWKLMDKVVRCLCQNPKLQLKNS
PPYILDILPDTYQHLRLILSKYDDNQKLAQLSENEYFKIYIDSLMKKSRAIRLFKEGKERMYEEQSQDR
RNLTCLSIFSHMLAEIKAI~~F~~PNGQFQGDNFRTKADAAE~~FW~~RKFFGDKTIVPWKFVFRQCLHEVHQISSS
LEAMALKSTIDLTCDYISVFEDIFTRLFQPWGSI~~LR~~NWNFLAVTHPGYMAFLTYDEVKARLQKYSTKP
GSYI~~F~~R~~L~~SCTRLGQWAIGYVTGDN~~G~~NI~~L~~Q~~T~~I~~H~~NKPLFQALIDGSREGFYL~~Y~~PDGRSYNPDLTGLCEPTPH
DH~~I~~KV~~T~~QE~~Q~~E~~Y~~LYCEMG~~S~~TFQ~~L~~C~~K~~ICAENDKDVKIEPCGHLMCTS~~L~~TAWQESDGQGCPFCRCEIKGTEP
IIVDPFDPRDEGS~~RCCS~~I~~D~~PFGMPM~~L~~D~~L~~DDDDREESLMMNRLANVRKCTDRQNSPVTSPGSSPLAQRR
K~~P~~Q~~P~~D~~L~~Q~~I~~PH~~L~~SLPPV~~P~~RL~~D~~LIQ~~K~~GIV~~R~~SPCGS~~T~~GSPK~~S~~PCMVRKQDK~~K~~PLPAPPPLRD~~PP~~PPPE
R~~P~~P~~I~~PPDNRLSRHHV~~E~~VPSRDPMPLEAWC~~P~~RDVFTNQLVGCR~~L~~GE~~G~~SP~~K~~PGITASSNVNGRHS
RVGSDPVLMRKHRRHDLPLEGAKVFSNGHLGSEEEYDVPPLSPPPPVTLLPSI~~K~~CTGPLANSI~~SE~~KTRD
PVEEDDDEYKIPSSH~~V~~SLNSQPSHCHNVKPPVRSCDNGHCMILINGTHGPSSSEKKSNIPDLSIYLKGDVFD
SASDPVPLPPARPPTRDNPKHGSSLNRTPSDYD~~L~~LI~~P~~LGEDAFDALPPSL~~PP~~PPPARHSLIEHSKPPG
SSSRPSSGQDLFLLPSDFVDSLASGQVPLPPARRLPGENVKTNRTSQDYDQLPSCSDGSQAPARPKPRP
RRTAPEIHHRKPHGPEAALENVD~~A~~KIAKLMGE~~Y~~AFEEVKRALEIAQNNVE~~V~~ARSILREFAFPPPVSPRL
NL

Human CBL-B Protein sequence - var4 (public gi: 862409) (SEQ ID NO: 230)

MANSMNGRNPGGRGGNPRKGRILGIIDAIQDAVGPPKQAAADRRTVEKTWKLMDKVVRCLCQNPKLQLKNS
PPYILDILPDTYQHLRLILSKYDDNQKLAQLSENEYFKIYIDSLMKKSRAIRLFKEGKERMYEEQSQDR

PCT/US04/06308

RNLTKLSLIFSHMLAEIKAFPNGQFQGDNFRITKADAAEFWRKFFGDKTIVPKVFRQCLHEVHQISSS
LEAMALKSTIDILTCNDYISVFEFDIFTRLFPWGSILRNWNFLAVTHPGYMAFLTYDEVKARLQKYSTKP
GSYIFRLSCTRLGQWAIGVTGDGNILQTIPHNKPLFQALIDGSREGFYLYPDGRSYNPDLTGLCEPTPH
DHIKVTQEYELYCEMGSTFQLCKICAENDKDVKIEPCGHLMCTSCLTAQESDGQGCPFCRCEIKGTEP
IIVDPFDPRDEGSRCCSIIDPFGMPMLDDDDREESLMMNRLANVRKCTDRQNSPVTPGSSPLAQRR
KQPQDPLQIPHLSLPPVPRLDLIQKGIVRSPCGSPTPKSSPCMRKQDKPLPAPPPLRDPPPPPPE
RPPPPIPDPNRSLRHIIHVESVPSRDPMPLAECPRDVFGTNQLVGCRLLGEGSPKPGITASSNVNGRHS
RVGSDPVLMRKRRHDLPLEGAKVFSNMGHLSSEYDVPVPLSPPPVTLLPSIKCTGPLANSLEKTRD
PVEEDDDEYKIPSSHVPVSLSNQPSHCHNVKPPVRSCDNGHCMLNTHGPSSSEKKSNIPLSILYLGVD
SASDPVPLPPARPPTRDNPKHGSSLNRTPSDYDLIPLPLG

Unigene Name: CENTB1 Unigene ID: Hs.337242

Human CENTB1 mRNA sequence - var1 (public gi: 495679) (SEQ ID NO: 37)
GGGGTGAGAGCTCCTCTAGGACACCCCTTTCCCCCTGGGAAAGAATTGTGCCCTCAGGCCCTCCCCG
CGGAGGTCCCTCCTCCCTCCCCCATCTCCCTGGGACAGAAAGTGCCTCACCTGCATCCCC
AGGGGCCGGCTCCAGGGCCCTGGCCCCACAGCAGGCAAGCTGAGATGACGGTCAAGCTGGATTTCG
AGGAGTGTCTCAAGGACTCACCCCGTTCCAGGCTCTATTCGAGCTGGATGGCTGGGAAGGCGAAGTGTCAAATT
GGAGACCCGCTGGAAAAGCTCTGAAACTGGGCACTGGTCTCTGGAAAGTGGCGCCATTACCTTGCT
GCCAGCCGCGCTTCGTTCTGGCATTGTGAGCTGGAAAGTGGCGCCATTACCTTGCT
AGTGTCTGGAAAATTACCGTGAACCACAAGCTGGACAGCCATGGAGCTCTAGATGCCAC
CCAACACACACTGCAGCAGACCCCTGGTCAAGGAAGGTCTGGGGGTTCCGAGAGGCTCG
CGGGATTCTGGGGGGCTGAGGGCTGGAGGCTGCCCTGACCCACAACGAGAGGTTCCCAGGC
GGGGCCAGGAGGCAGAAGAGGCAGGAGCTGTTGAGGACGGCTCGAGCTGGGTACCGGGGACGGGACT
GGATTATGCCCTGAGATCAACGTATTGAGGACAAGAGGAAGTTGACATCATGGAGTTGTGCTGCGT
TTGGTGGAGGCCAGGCTACCCATTCCAGCAGGCCATGAGGAGCTGAGCCGGCTGCCCAGTATGAA
AGGAGCTGGGCCAGTTGACCGAGCTGGTCTGAATTACGACAGGAGAACATGGAGCAGAG
ACACGTGCTGCTGAAACAGAAGGAGCTGGTGGGGAGGAGCCAGAACCAAGCTTAAGAGAGGGGCTGGT
GGCTCTGGTGTGGAGGACATCTCTCAAACGGGGCAGCAACGCATTAAAGACCTGGACTGTTGGATGA
TCACCATTCAAGAGCAACCAACTGGTTTACCAAGAAGAAGTACAAGGACCTGTGACTCTGGTGGATGA
CCITCGTCTCTGCAAGTGAACACTCTGGCTGACTCAGAAAGGGCTTCTGCTTGGAGGTGGTGTCCACC
AGCAAGTCTGGCTCTCCTCAGGCTGACTCAGAGCCCTCTGACAGCTGGGTCAAGTGTGTGAGAGCA
GCATTGCTTCTGCTTCAAGTCAACAGATCTATGAGGCCGCTGGAGGACAGGCTCAGGACA
CCTGGCCATAGGCTCTGCTGCCACCCGGCTGGTGGAAATGCCAGGGGAAGGGAGCCTGGGGAGTC
GGCACGTTGGGCCAGGCTCAGAGTGTGGATGCCATGCCAGTGCTGCACTGCCGGAGCCAGCCC
CGGAGTGGGCCAGCATCAACCTGGTGCACCCCTGCATTAGTGTCCGGCATCCACAGGAGCCTGG
TGTTCACTTCTCAAAGTCCGGTCTCTGACCCCTGACTCATGGAGGCCAGAAACTAGTGAAGCTCATGTG
GAGCTGGAAATGTCACTCAACCAGATCTATGAGGCCGCTGGAGTCAAGCTAAATACGTGGAGAAGAAGTCCCTGAC
GGCCCAGCTCTCCGGCAGGAGAAGGAGGCTGGATTCAAGCTAAATACGTGGAGAAGAAGTCCCTGAC
CAAGCTGCTGAGATTGAGGGGAAGAGGTGGCCGGGGGCCAAGGGGGCAGGCCCTGTGCCCCCA
AAGCTTCCATCAGGCCCGGCCAGGGAGCTTGAGATCCAAGCCAGGCCCTCTGAGGACCTGGAA
GCCCTGCACCCCTGGGGCCCTACTTTGAGCTGGCATCCTCCATCTCTCCACCATGGCTGATGC
CCTTGCCCATGGAGCTGATGTCATACTGGTCAATGGGCAAGATAATGCCACCCGCTGATCCAGGCC
ACAGCTGCTAAATTCTCTGGCTGTGAGTTCTCTCCAGAACGGGGCAACGTGAACCAAGGGGACA
GTGCGGGCCGGGGCCCTGCAACCGAACCATCTGGCACACGGGGCTGCCCTGTTCTGAA
ACGGGGAGCTGATCTGGGGCTGAGACTCTGAAGGGCAGGGACCTCTGACCATGCCATGGAAACAGCC
AACGCTGACATCGTACCCGCTACGACTGGCAAAGATGAGGGAGGCTGAAGCGGCCAGGGCAGGCC
GAGATGAGACGTATCTTGACATCTCCCGCACTTCTCCCTCATGGCTCAGACGACCCGGAGAAGCTGAG
CCGTCGAGTCATGACCTCCACACGCTGTGACCCGAGGCCACGGGCCCTGCCCTCCCTCCCCG
CCACCGGGCCCTCTGCCATTAAAGCTCCGTCTCGCTTCC

Human CENTB1 mRNA sequence - var2 (public gi: 17391288) (SEQ ID NO: 38)
GAGCTCCTCTAGGACACCCCTTCCCCCTGGGAAAGGATTGTGCCCTCAGGCCCTCCCCGGAGGT
CCCTCTCCTCTCCCCCTCATCTCCCTCTGGGACAGAAAGTGCCTCACCTGCATCCCCAGGGGCC
CGGCCTCCAGGGCCGCTGGCCCCACAGCAGGCAAGCTGAGATGACGGTCAAGCTGGATTTCGAGGAGTG
TCTCAAGGACTCACCCCGTTCCGAGGCTCTATTGAGCTGGTGGAAAGCCGAAGTGTCAAGAATTGGAGACC
CGCTCTGGAAAAGCTCTGAAACTGGGACTGGTCTCTGGAAAGTGGGCCCATACCTTGCTGCCAGCC
GCCCTCTGGTGTGGCATTGTGACCTGGGCCCTGGGCCACAGAGGCCATGATGGGGAGGTCT
GGAAAAATTACCGTGAGGCTGAACCAAGCTGGACAGCCATGCCAGGGCTTAGATGCCACCCACAC
ACACTGCAGCAGCAGATCCAGACCCCTGGTCAAGGAAGGTCTGGGGGTTCCGAGAGGCTGCCGGGATT
TCTGGGGGGCTGAGAGCCTGGAGGCTGCCCTGACCCACAACGCCAGAGGTTCCAGGCCGGGCACTGGATTAT
GGAGGAGAAGAGGCCAGGAGCTGCTTGTGAGGACGGCTGAGCTGGGTACGGGGACTGGATTAT

Figure 36 part - 19

GCCCCCTGCAGATCACGTATTGAGGAACAAGAGGAAGTTGACATCATGGAGTTGTGCTGCCGTTGGTGG
 AGGGCCAGGTACCCATTTCCAGCAGGGCATGAGGAGCTGAGCCGCTGCCAGTATCGAAAGGAGCT
 GGGCCGCCAGTGTGACCAGCTGGTCTTGAATTCAAGCAGAGAGAAGAGGGACATGGAGCAGAGAACACGTG
 CTGCTGAAACAGAAGGAGCTGGTGGGGAGGAGCCAGAACCAAGCTTAAGAGAGGGGCTGGTGGCCTGG
 TGATGGAAGGACATCTCTTAAACGGCCAGCAACGCATTTAACGACTGGAGCAGACGCTGGTTCACCAT
 TCAGAGCAACCAACTGGTTACCAAGAAGTACAAGGACCCGTGACTGTGGTGGTGGATGACCTTCGT
 CTCTGCACAGTGAAACTCTGCCCTGACTCAGAAAGGCGGTTCTGCTTGTGGAGGTGGTGTCCACAGCAAGT
 CCTGCCTCCTCCAGGCTGACTCAGAGCGCCTCCTGCAGCTGTGGGTCACTGTGAGCAGCAGCATTGC
 TTCTGCCTTCAGTCAGGCTCGCCTTGATGACAGCCCCGGGGTCCAGGCCAGGGCTCAGGACACTGGCC
 ATAGGCTCTGCCACCCCTGGGCTCTGGGAATGGCCAGGGAGGGAGGAGCCCTGGGGAGTCGGGCACG
 TGGTGGCCAGGTCAGAGTGTGATGGCAATGCCAGTGTGACTGCCAGTGGTGTGGTGTTCAC
 GCCAGCATCAACCTGGTGTCAACCTCTGCATTCACTGTGGGAGCAGAAACTAGTGAAGCTCATGTGTGAGCTGG
 TTCTCCAAAGTCCGGTCTGTGACCCCTGACTCATGGGAGCAGAAACTAGTGAAGCTCATGTGTGAGCTGG
 GAAATGTATCATCAACCAAGATCATGAGGCCCGCTGGAGGCCATGGCAGTGAAGAAACCAGGGCCAG
 CTGCTCCCGCAGGAGAACGGAGGCCATTACGCTAAATACGTGGAGAAGAAGTTCCTGACCAAGCTG
 CCTGAGATTGAGGGCGAACAGGGTGGCGGGGGCGCCAAGGGGAGCCTCTGTGCCCCCAAAGCCTT
 CCATCAGGCCCCGGCCAGGGAGCTTGAGATCCAAGCCAGAGCCCCCTCTGAGGACCTGGGAGCCTGCA
 CCCTGGGGCCCTACTGTTCAGCGCTGGCATCTCCATCTTCCCACCATGGCTGATGCCCTTGCC
 CATGGAGCTGATGTCAACTGGGCAATGGGGCAAGATAATGCCACACCGCTGATCCAGGCCACAGCTG
 CTAATTCTCTCTGGCTGTGAGTTCTCTCCAGAACGGGCGAACGTGAACCAAGCGGACAGTGCAGGG
 CCGGGGCCCCGCTGCACCGCAACCTCTGGGACACGGGCTCGCTGAGCATGCCATGGAAACAGCCAACGCTG
 GCTGATCTGGGGCTCGAGACTCTGAAGGCAGGGACCCCTCTGACCATGCCATGGAAACAGCCAACGCTG
 ACATCGTACCCCTGCTACAGACTGGCAAGATGAGGGAGGCTGAAGCGGCCAGGGCAGGCAGGAGATGA
 GACGTATCTGACATCTCCGCACTCTCCATGGCGTACAGCAGCCAGGGCCACGGGGCCGCGCTGCCCTCCCG
 AGTCAATGACCTCCACACGCTGTGACCCGAGGGCCACGGGGCCGCGCTGCCCTCCCG
 GCCCTCTGCCATTAAAGCCTCCGTCTCGCTCAAAAAAAAAAAAAA

Human CENTB1 mRNA sequence - var3 (public gi: 34533014) (SEQ ID NO: 39)

ATGTCAGCGTGGCTGTTCCATGGGATGGTCAGAGGGTCCCTGCCCTCAGAGTCTCGAGCCCCCAGAT
 CAGCTCCCGTTCAAGAACAGGCAGGCAGCCCTGGAGAGAACAGGCCAGGGTCAAGCCGGCCGCCAACTT
 CTOCCAGCCTTCCCTCCCATGCCATCATCCCTACCCCGTGTGGCAAGAATGGTTGCGTGGTGCAGCGGG
 CCCGGCCCCGACTGTCCGCTTGGTCACGTTGCCCGTCTGGAGGAGAAACTCACAGGCCAGAACAG
 AATTCTGCATGGAGAACGTCAGAGAACGGGGGGTTGAGGGTGGCATCCCTAGTGGTGGATTCAAGATGTCTT
 AGGGTGGCGCAGTTCAAGAACGGGGTGGAGTGTGGTAATCAGGAGTGTGGAGGGGTTACAGCTA
 ACTGTAACCAAGCTAGGCTTGGCTCAAGCTTGCATGTATTCAATATAAAATCCATAGTACAAGCTTT
 TGAGGTATGTACTATTTACAGATGAGGCTGAGAGGTTAAATACCTGTTAAAAGTCTCTGTAGGCCGG
 GCACAGTGGCTCACGCCAGTAATCCCAAGCACTTGGGAGGGCGAGGGGGTGGATCACAGGTCAGGAGA
 TCCAGACCATCTGGTAGCACGGTGGAGGCCCTATCTCTACTAACAAATACAAGAAATTAGCCGGCATGC
 TGGCTGGCCTGTGGTCCCAGACTCGGGCAGCTGAGGAGAACATGGTGTGAACCCGGAGGCGGA
 GCTGCACTGAGCCAGATCGCACCACTGCACTCCGGCTGGGGACGGAGCAGACTGTCTCAAAAAAA
 AAAAAAAAGTCTCTGTAAGAGGTGAGGCCCTGGGTCAAACTCAGGTTCTGCCCTCAAATCACACAC
 TCTTAGCAACCAGTCTTATGTTGATCTCTCCCTATGGGTGGAAGCCCTAGGGAACAGGTGGGGAA
 AGGAGGTAAAGGGCAGGGCCAGAGTCAGGAGTAGGTGTCAAGAGCCCTAGGGTGGGGTGGAGAGGTCA
 GGGCTCTACAGCAGCTGTGGCTGGATCAGGGTGTGGCATTATCTGGCCCCCATTGACCCAGTTGAC
 ATCAGCTCCATGGGCAAGGGCATCAGCCATGGTGGGAAGAGATGGAGGATGCCAGCCTCGAAACAGT
 AGGGCCCCAGGGTGCAGGCTTCCAGGTCTCAGAGGGGGGCTCTGTCGGGGGATTGGTTCTGTTAGG
 GGGAGCAGCTCCAGTCTGGGAAGAAAACCCCTCAGCAGTGTGCACTAATGGTGTGAAGTGTGGGTTATGT
 CTAATGATGGGAGCTGGGACTGTGGAGGGAAATAGTGTGATGCAAGTGTGGGTTATGT
 TATGCACTGTCAGGACTCTCTAGGGTGTGGGGAGAGACGGCATCATCACCTCATCTGTCAACCACAC
 TTGGCCTCAGCTCTAACCCCTGACGCCAGCCACCCCCACATTCTCTCATCTTAAATGTCACACTCCAC
 TTGGCACCCCTTACCCCTGCCAGCCCACCCCCACATTCTCTCATCTTAAATGTCACACTCTGT
 CGTAACCCCTGAAACGGCAGTCGGCTCCGACATTGTCAGGGAGGCCCTGGCTCACACTCTGT
 GCTCCGGCGCTACCTGGCACGATGCCAGCACACAGCAGATGCTCAATGAATGCCGACCAACCCAT
 ACCTGGCTGGATCTCAAGCTCCCTGGCGGGGCTGATGAGAAGGCTTGGGGCACAGGAGGCTGCC
 CTTGGCGCCCCCGGCCACCTCTGCCCTCGAACATCTCAGGAGCTGGTCAAGAACCTCTCCACGT
 ATTTCAGCTGAATCCAGGCCCTCTCTGCCCTGTGGAGGGAGAGACAGCAGTCAGGAGCTTCCCTCTG
 CTCCAGGGTCCCCCATCTGGAGGCTAAACCCCAAGCTCACCGGGAGCAGCTGGGCCCCGG
 TTCACGCCATGGCTCCACGCCGGGCTCATAGATCTGGTGTGATGACATTCCAGCTCACACATGA
 GCTTCAGGAGGCCAGGCAGAGAACAGGAAGGTGGGGTGAGTGACTCCTCAGGGATCACGCC
 CTGCACCGCCATGTCCTTGGCCACCCCAAGTTCTGCCCTCAATCTCACAATACGCTAAGTTACCTTC
 ACTAGTTCTGGCTCCCATGAGTCAGGGTCAAGGGAGAGAACCCGACTTGGAGAAGGTGAACACCAAGG
 AGGCCAGAGGGGGAGGGTCAAGGCCCTGTGCAAGGGGGAGCTGGCTGGGGAGCTGCTGCTGCTGAA
 GACACTGGGAGGCAAGGCTGGCATGGGGCCCGTGCAGAGGTGCTGGCCAGGGCAGCTGCC

Figure 36 part - 20

CCATGTAACGCCATGAGCCTGGCCCTGGCAGGACTCTGCCTCGTCACCATTCCCTTCCCTT
AGTTTCATTCAGGCCCTCATCACCCAGCCACCTCCCTCTCTAGTGACACTTGTGACACTTGGCC
TGGACAACCTCTCCATGTCACCTCCCTCCACCAACTGAGGTGGGGGCGAGGGCCCTAGATACTTGC
TAAGGCCTCATGACCGTTCTCTGCCTAGTCTACTGGCTCCCCACCCCTAGCAGCCTTGACCCCACA
CTTCTCCAACCAAGCCAACAAATTCTGGGTATCCCCAATTCTGGCCAGACTAGGACACAGAGGGCTA
GGCCGCCCTGGTCCAAGTGGCACCAGGGCAGAGGCTGGGCCAGGCCCTGGTACCCAGTGACAAAGCCAGAA
GCTAAGAGAGGAAGGCCAGGACAGGGAGGAAGAGGGGGCCGGTGTGATGCCCTGTGATTGGAGCCGCACT
GTGGCCGAAGGAGTGGGCTCCCGCATGGCCTGTGGAGTAACCTGTGGATGCCGAACACTGAATGC
AGAGGTGACACCAAGGTGATGCTGGCCACTCCGGGCTGGCTCCGGCAGTCGAGCACTGGGCATT
GCCATCCACACTCTGGACCTGGGCCAACAGTGGCCACTCCCCCAGGCCCTTCCCTGGCATTCCA
CCAGAGGCCAGGGTGGCAGCAGGCCATGGCAGGTGCTTGAGGCCCTGGGGAGAGAGGGGAAGAAAAG
GGTGGCCAAGGGCCTAGGGTAAAGGGTCCCCATCTCACAGGCAGGCCCTGGCTCCGACCCCCCAGGTTA
AGGTACCTGGCCTGGACCCGGGGGTGTCATCAAGGCAGGCTGACTGAAGGAGGAATGCTGTC
TGACAGCACTGACCCACAGCTGAGGAGGCCCTGAGTCAGCCTGGGAGGAGGAGGACCTAGTAGGA
GGGTGAGGGAGATGGCAGAGGGCTGAGGCCCTGGAGCAAAGTGGCAGCATGGCAGACTGACATTCA
GCCAGTATTCAACCAGTTCAGTTGCAATTGAAAGACTTCTGTACCTGGTAATATTCTCTAAATATC
CCCCATCACCTGTACCCCTTCCACATGGCCCCCAGTCAGGCCCAAAGAATTAAAGTCTG
GAGCTGATGGGGGCTTCCATTGTGGTGGGCCCTGCCTTCAGATTGCACTGGTAGATATTAGA
GTATCACCCCTGGGATTGCACTCACTTGCTGGGACACCCACTCAAAGCAGAACGCCCTTCTGAGTC
AGGGCAGAGTTCACTGTCAGAGAGCAAGGTGATCCACCCACAGTCACAGGGCCTGGCAGGATAAG
GTGATAAGGGGCCAGATGTCAGCTGCCAGGCAAGAGCTGAGTCCTCTGGGCCAGGATCCAGGACCC
AGGTCACACTCCTGTACTCTCTGGTAAACAGCTGGTAGCTCTGAATGGTGAACAGCAGCTGTAA
GAGAAGGAAATCATTACAGACATAGGCACTTAAAGGATGAGGGACGGAAAGAGAGGCTGTGCTTTGCC
ATGAGGATCTACTGAGAGGACAGACACCTGGGCTGACTGTTCCACGAGACATTCCAGAGAAGGGTGAC
AATTGTGCAAGATTGGAACATCTAAAGGATGCTATTCTATCTTGACAAACCCAGATTCTATAGTTATG
AAGACAACCTTCAGCAGATGGCAGTAAATTCTTTCTAATAAAATGTCTATTGCTACAATTAAAAA
ATACTATTAGGCTGGGTCACACCTGTAATCCGACTTGGGAGGCTGATGGGGTGATGCC
.CGAGGTAGGAGTTGAGACCACTGACCAATATGGTAAACTCCGCTCTACTAAAAATACAAAAAATT
AGCCAGGCGTGGTGGCAGGGGCTATAATCCACCTACTTGGGAGGCTGAGGGGGAGAATCGCTTGAAAC
CCAGGAAGCTGAGGTGCACTGAGCTGGGATCGCACCCTGTGCTGCCGCAACATAGCGAGGCT
CCATCAAAAAGAAAAAAAAGAAAAAGAAAAAGAAAAGAATCTTGGGGCCAGGTACAGTGG
CTCACGCCCTGAGTCCCAGCAAGTGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
CAGCCTGGGCAACATGGTGAACACCTGTTCTACAAAAAATTAGCCGAGCGTGATGGCACGC
GCTGTGGTCCAGCTGTTAGGATGCTGAGGAGGGAGGACTCTGAACCTAGGGGATAGAGGTTGCAG
TGAGCCGAGACTGCGCCACTGCACTGAGGCTGGCAACAGAGTGACACCCATCTCAAAAAAAACAG

Human CNTB1 mRNA sequence - var4 (public gi: 32879918) (SEQ ID NO: 40)
ATGACGGTCAAGCTGGATTCAGGAGTGTCTCAAGGACTCACCCGTTCCGAGCCTCTATTGAGCTGG
TGAAGCCGAAGTGTCAAGAATTGGAGACCCGTCGGAAAAGCTCTGAAACTGGGACTGGCTCCCTGGA
AAGTGGCGCATTACCTTGCTGCCAGCCGCGCTTCGTTGCGCATTTGTGACCTGGCCGCTGGGT
CCACCAAGGCCATGATGGCGAGTGTCTGGAAAAAATTCAACCGTGAGCCTGAACCAAGCTGACAGCC
ATGCGGAGCTCTAGATGCCACCCACACACACTGCAAGCAGATCCAGACCCCTGGTCAAGGAAGGTCT
GGGGGTTCCGAGAGGCTGCCGGGATTCTGGGGGGCTGAGGCGCTGGAGGCTGCCCTGACCCAC
AACGCAAGGGTCCCAGGCGCCGGGGCCAGGAGGCAAGAGGCAGGAGCTGCTTGAGGACGGCTCGAG
CTGGGTACGGGACGGCACTGGATTATGCCCTGCAAGTCAACGTGATTGAGGACAAGAGGAAGTTGA
CATCATGGAGTTGTGCTGCGTTGGTGGAGGCCAGGCTACCCATTCTCAGCAGGCCATGAGGAGCTG
AGCCGCTGCTCCAGATCGAAAGGAGCTGGGCCAGTGCACAGCTGGTCTTGAATTCAAGCACGAG
AGAAGAGGGACATGGAGAGACACCTGCTGCAAGAACAGAGCTGGTGGAGGAGGCCAGAACC
AAGCTTAAGAGGGGCCCTGGTGGCTGGTCACTTCAACGGCCAGCAACGCTTACCTGAGAAGTACAAGGACC
AAGACCTGGAGCAGACGCTGGTCACTTCAACGGCCAGCAACGCTGGTGGAGGAGCTGGTGGAGGAGGCC
CTGTGACTGTGGTGGATGACCTCGTCTGCACTGAAACTCTGCCCTGACTCAGAGGCCCTCTGAGCTG
CTGCTTGAGGTGGTGTCCACCAGCAAGTCTGCCCTCCAGGCTGACTCAGAGGCCCTCTGAGCTG
TGGGTAGTGTGTGAGGAGCATTGCTGCTGCCCTAGTCAACGGCTGGTGTGACAGCCCCCGGG
GTCCAGGCCAGGGCTCAGGACACCTGGCATAGGCTCTGCTGCCACCCCTGGCTCTGGGAATGGCCAG
GGGAAGGGAGGCCCTGGGGAGTCGGGACGGTGGCCAGGCTCAGAGTGTGGATGGCAATGCCAGTGC
TGCAGCTGCCGGAGCCAGCCCCGGAGTGGGCCAGCATCAACCTGGTGTGACCCCTCTGACTCATGGGAGCC
CCGGCATCCACAGGAGCCTGGTGTCACTTCTCAAAGTCCGGTCTCTGACCCCTGACTCATGGGAGCC
AGAACTAGTGAAGGCTCATGTGTGAGCTGGGAAATGTCACTCAACCAGATCATGAGGCCCCGGTGGAG
GCCATGGCAGTGAAGAAACCAGGGCCAGCTGCCAGGAGAAGGGAGGCTGGGATTCAAGCTAAAT
ACGTGGAGAAGAAGTCTGACCAAGACTGCTGAGGAGCTGGGCCAGCATCAACCTGGTGTGACCCCTCTGACTCATGGGAGCC
GGGGCAGGCCCTCTGAGGCCCCAAAGCCTTCCATCAGGCCCCGGCCAGGGAGCTTGTGAGATCCAAGGCCAGAG
CCCCCTCTGAGGACCTGGGAAGGCTGCACTGGGGCCCTACTGTTTGAGCTGCTGGGATCCTCCAT
CTCTCCCCACCATGGCTGATGCCCTGGCCATGGAGCTGATGTCAACTGGTCAATGGGGCAAGATAA

Figure 36 part - 21

PCT/US04/06308

TGCCACACCGCTGATCCAGGCCACAGCTGTAATTCTCTGGCCTGTGAGTTCTCCTCCAGAACGGG
GCGAACGTGAACCAAGCGGACAGTGCAGGGCGGGGGCGCTGCACCAACGCAACCATTCTGGCACACGG
GGCTCGCTGCTGTTCTGAAACGGGGAGCTGATCTGGGGCTCGAGACTCTGAAGGCAGGGACCCCTCT
GACCATCGCCATGAAACAGCCAACGCTGACATCGCACCCCTGCTACGACTGGCAAAGATGAGGGAGGCT
GAAGCGGCCAGGGCAGGAGATGAGACGTATCTGACATCTCCCGCAGCTCTCCCATGGCGT
CAGACGACCCGAGAAGCTGAGCGTGCAGTCACCTCCACACGCTGTAG

Human CENTB1 protein sequence - var1 (public gi: 32879919) (SEQ ID NO: 231)
MTVKILDFFECLKDSPRFRASIELVEAEVSELETRLEKLLKLGLTGLLESGRHYLAASRAFVVGICDLARLG
PPEPMMAECLEKFTVSLNHKLDSHAELLDATQHTLQQQIOTLVKEGLRGFREARRDFWRGAESLEAALTH
NAEVPRRRAQEAAEAGAALRTARAGYRGRALDYALQINVIEDKRKFDMFVFVRLVEAQATHFQQGHEEL
SRLSQYRKELGAQLHQLVLNSAREKRDMEQRHVLLQKELGGEPEPSLREGPGGLVMEGHLFKRASNAF
KTWSRRWFTIQSNQLVYQKKYKDPTVVDLRLCTVKLCPDERRFCFEVVSTS KSCLLQADSERLLQL
WVSAVQSSIASAQSARLDDSPRGPGQSGHILAIGSAATLGSMMARGREPGGVGHVVAQVQSVDGNQAC
CDCREPAWEASINLGVTLCIQCQSGIHRSLGVHFSKVRSLTLDSSWEPELVKLMCELGNVIINQIYEARVE
AMAVKKPGPSCSRQEKAEAWKFKLPEIRGRGGGRPRGQPVPKPSSRPRPGSLRSKPE
PPSEDLGSLHPGALLFRASGHPPSLPTMADALAHGADVNWNNGQDNATPLIQATAANSLLACEFLQNG
ANVNQADSAGRGPLHATILGHTGLACFLKRGADLGARDSEGRDPLTIAMETANADIVTLLRLAKMREA
EAAQQAGDETYLDIFRDFSLMASDDPEKLSRRSHDLHTL

Human CENTB1 protein sequence - var2 (public gi: 34533015) (SEQ ID NO: 232)
MSALAVSMAMVRGSLPSESRAPRSPRNRQASLERRARVSRRPNFSQPSSPCHHPPVWPRMVAWCSG
PRPALS AWTFAFPFWRRNSQARREFCMKSRGVEGGIPSGGFQDV LGWRQFREWE GGVV

Human CENTB1 pray sequence - var1 (SEQ ID NO: 41)
GCCTGGAGTACCCATACGACGTACCAAGATTACGCTCATATGGCATGGAGGCCAGTGAATTCCACCCAAG
CAGTGGTATCAACGCAGAGTGGCATTATGGCCGGGAAGGAGGCCAGTGAATTCCACGCCAG
AAGAAGTCTGACCAAGCTGCTGAGATTGAGGGCGAAGAGGTGGCCGGGGCGCCAAGGGGGCAGC
CTCCTGTGCCCCAAAGCCTTCCATCAGGCCCGGCCAGGGAGCTTGAGATCCAAGCCAGAGCCCCCTC
TGAGGACCTGGGAAGCCTGACCCCTGGGCCCTACTGTTTCGAGCGTCTGGCATCCTCCATCTTCCC
ACCATGTCGGCCGCTCGGCCCTAGACGGTGGGCATCGATA CGGATC ATCGAGCTCGAGCTGCAGAT
GAATCGTAGATACTGAAAACCCCGCAAGTCACTTCAACTGTGCATTGTC

Human CENTB1 pray sequence - var2 (SEQ ID NO: 42)
CCGGCATGAGTACCATACGACGTACAGATTACAGCTNCAATTAGTGCACATGGAGGCCAGTGAATTCCA
CCGAAGCAGTGGTATCAACGTCATGAGATGGCATTATGAGCCGGGGGGCAGCCTCTGAGCTTCCATCA
CCGAAAGGCCCTCCATCAGGCNCGGCAGAGGCGAGCTTGAGATCCAAGCCAGAGCCCCCTCTGAGGA
CCTGGGTAAGACCTGCTACCAACTAGTGCAGGCCCTACTGTTNCGAGCGTCTGGGCATACTCCATCTTCC
CAACCGATGGNCTGATGCCCTTGGGCCATGGTAGTTGATGTCAACCTAGGTGTACAANTGTGAGTGG
CCTNAAGGATAAAATTGCTCGTGCACAGACGGCTATCCAAGGCACAATAATCTAGCTAATTGTTACG
TTCTTGG

Human CENTB1 pray sequence - var3 (SEQ ID NO: 43)
CTGGAGTACCCATACGACGTACCAAGATTACGCTCATATGGCATGGAGGCCAGTGAATTCCACCCAAGC
AGTGGTATCAACGCAGAGTGGCATTATGGCCGGGGGGCAGCCTCTGAGCTTCCATCA
GGCCCGGCCAGGGAGCTTGAGATCCAAGCCAGAGCCCCCTCTGAGGACCTGGGAAGCCTGCACCCCTGG
GGCCCTACTGTTCGAGCGTCTGGCATCCTCCATCTCTTCCACATGGCTGATGCCCTTGCCCATGG
GCTGATGTCAACTGGGCAATGGGGCCAAGATAATGCCACACCGCCATCCAGGCCACAGCTGCTAATT
CTCTTCTGGCCTGTGAGTTNNGCTCCAGAACGGGGCAGCTGAAACCAAGCGGACAGTGCAGGGGGGG
CCCGCTGCACCAACGCAACCAATTCTGGCCACACGGGGCTGCCCTGCTGAGCTCTGAGAACGGGGAGCGGAT
CTGGGGCTCGAGACTCTGAAGGCAGGGACCCCTGACCATGCCATGGAAACAGCCACGCTGACATCG
TCACCCCTGCTACGACTGGCAAAGATGAGGGAGGGCTGAAGCGGCCAGGGCAGGCAGGAGATGAGACGTA
TCTGACATCTCCCGCAGTCTCCCTCATGGCTCAGACNACCCNGAGAAGCTGANCCGTCGAGTCAT
GACCTCCACACGCTGTGACCCGAGGGCCACGGGGCCGCGCTGCCCTCCTTCCGNCACCGGGCCCTT
TGNCATNAAGGCTNCNGCTTCNAAAAAAAAAAAAAAA

Human CENTB1 pray sequence - var4 (SEQ ID NO: 44)
CCGGCATGGAGTACCATACGACGTACAGATTACAGCTACATATGGCATGGAGGCCAGTGAATTCCAC
CGCAATGCACTGGTATCAACGCACTGCAGATGGACCAATTATGGCCGGGGCAGTCCGTCATGATGT
CCCCAAAGGCCCTCCATCAGGCCCGTGGCAGAGGAGGCTGAGATCCAAGCCAGAGCCCCACCCCTCTGA
GGACCTGGGAAGCCTGCACCCNGGGCCCTACTGTTCGAGCGTCTGGACATACTCCATCTTCCC

Figure 36 part - 22

PCT/US04/06308

ACCGCATGGACTGATGCCCTGGCCAATGGACGCTGATGTCAACTGGTGTACAGAGTGTGAGTGGCAA
GATTAACGTCTCATACCCGATGATCCATGCCACTAGTCTGTAATATCTCTCTGGCTGTGAGTT
CTCCTCACAGAAACGGTGCCTGCAATCGAACNCAGCGATCGAGTTGCAGGGCTGGGCCCCNG
TTGCACCGATCGAAGCAATTCTGGCANCTATCTGGGCTCGCCTGTCCTGANACGAGGGA
GCTGATCTGGGCGCTGACGACTCTGAAG

Human CENTB1 pray sequence - var5 (SEQ ID NO: 45)

GCCATGGATACCATAACGACGTTACAGATTACGCTCATATGCCATGGGAGGCAGTGAATTCCACCCAAAGCAG
TGGTATCAACGATGAGATGGTCAATTATGCCGGGGCAGGAGAAGGGCTGGATTACGCTAAATACG
TGGAGAAGAAGTCCCTGACCAAGCTGCGTGAGAATTGAGGGGAAGAGGCTGGCCNGGGGCCAAGG
GGCAGCCTCCCTGCCCCCTAAAGGCTTCCATGCCGGGGCAGTGAAGGAGCTTGTGAGATCAATG
CCGAGTAGGCCCCCTCTGACGGACCTAGGGAAAGGCTGCTACCTTGAGGTGCCCTACGTGTTGAGCGTC
TGGGATCCCATCTTTCCCACATGCCACACCGCTGATGCCCTGCCATGGAGCTGATGTCAACTGGGCAA
TGGGGCCAAGATATGCCACACCGCTGATGCCACAGCTGCTACTTCTCTCTGGCCTGTTGA
NTNTCTCCAGAACGGTGGGACACGTGAACCCAAGCGGNCACTGCCCGC

Human CENTB1 pray sequence - var6 (SEQ ID NO: 46)

GGCCATGGAGTACCATACGACGTACAGATTACGCTCATATGCCATGGGAGGCAGTGAATTCCACCGCAA
GCAGTGGTATCAACGATGAGATGGACCATATTGGGGGAGTGCCTGGCATGGCAGCTGAAGAAATCCANGC
CCAGCTGCTCCCGCAGGAGAAGGAGGCTGGATTACGGCATATAAGTAGCAGCTGGAGTAAGAAGTTC
CTGTATCCAAGTCTGCCCTGACGAATTGAGGTGGCGAAGTATGGTGGCCGGGGCAGTCTCGAAGGAG
GGTCAGCCACTCCCTGGTGCCGCCACGAACATGCCGTTCCATACCGCTCCCGGGCCACGGGATGGC
ATTGAGATCCACATGCACAGAGCCCCGCCCTGAGGACCTGTGAGCAAGCTCATGGCAACCCCTGGGACC
CTAGCGTAGTATTCTGAGCAGTCTGGCAATCGCTCACACTCTCTCCACGCTGAGCATGATGCGC
GCTTGACCCATGGAGCTAGATGTCAACTGGGCAATGGGTGCAAGATAATGCCACACCGCTGATGATC
CAAGCCCTACAGCTGCTAACGTTCTCTGGCTGTGAGTTCTCTCTCAGAACGGGGCAACTGTG
AAGCCCAAGCGTGACAGTGCAGGGGGGGGGGGACTGCCACGCCAACCCACTTCTGGCNCAACNT
GGGCTCGNCTTGCCTGTTCTGATCAC

Human CENTB1 pray sequence - var7 (SEQ ID NO: 47)

CNCGGCATGGAGTACCATACGACGTACAGATTACGCTCATATGCCATGGGAGGCAGTGAATTCCACCGCAA
GCAGTGGTATCAACGATGAGTGGACCATTTGGGGAGCTCATGTGAGCATGGAAATAGTCATCA
TCAACAAAGATCTATGAGGCCCCGGTGGAGGCCATGGCAGTGAAGAAACCCAGGGCCAGTCTGCTCCGG
CAGGAGAAGGAGGCTGGATTACGCTAAATACGTTGAAGAAGAAGTCTCTGACCAAGCTGCCCTGAGATT
CGATGGCAGAGGTGGCCGGGGCGCCCAANGGGCAGNCTCTGTGCCCTAAAGCCTTCCATCAGGC
CCCAGCGCAGGGAGCTTGAGATCCAATGCCAGAGCCCCCGCTGAGGACCTGGGAAGCCTGCAACCTG
GGGCCCTACTGTTCTGAGCGTCTGGGATCCTCCATCTTCCCACCATGGCTGATGCCCTGCCATGG
AGCTGATGTCAACTGGGCAATGGCCAGAAGATAATGCCATCACCAGTGTACCCAGGCCACAGCCTG
CTAANTCTACTTCTGGCGTGTGAGTTCTCTCCAGGAACGGGGCAACCGTGGACCAAGGGGACNN
GTGGGGCCGGGGCCGCTGCCACACGCCAACCTCTGGCATACGGGCTGCC

Unigene Name: DDEF1 Unigene ID: Hs.386779

Human DDEF1 mRNA sequence - var1 (public gi: 31873727) (SEQ ID NO: 48)
GAGACAAAGTTACAAAATTGAGAAAGAGAAAAGAGACGCAAAACAACATGGGATGATCCGCACAG
AGATAACAGGAGCTGAGATTGCGGAAGAAATGGAGAAGGAAGGGCGCTTTCTGCTCCAAATGTGTGA
ATATCTCATTAAAGTTAATGAAATCAAGACAAAAAGGGTGTGGATCTGCTGAGAATCTTATAAAGTAT
TACCATGCACAGTGAATTCTTCAAGATGGCTGAAAACAGCTGATAAGTGTGAAACAGTACATTGAAA
AACTGGCTGCTGATTTATATAATATAAAACAGACCCAGGATGAAGAAAAGAAACAGCTAACTGCACTCCG
AGACTTAATAAAATCCTCTTCAACTGGATCAGAAAGAAGATTCTCAGAGGCCAGGGAGGGATACAGC
ATGCATCAGCTCAGGGCAATAAGGAATATGGCAGTGAAGAAGGGTACCTGCTAAAGAAAAGTGACG
GGATCCGGAAAGTATGGCAGAGGGAGTGTCTAGTCAGAAAGATGGGATCTGACCATCTCACATGCCAC
ATCTAACAGGAACCCAGCAAGTGAACCTCTCACCTGCCAAGTAAAACCTAATGCCAAGACAAAAAA
TCTTGTGACCTGATATCACAATAATAGAACATATCCTTCAAGGAGGAGGATTATGTAGCAT
GGATATCAGTATTGACAAATAGCAAGAAGAGGGCTAACCATGGCTTCCGGAGAGCAGAGTGCAGGG
AGAGAACAGCCCTGGAAGACCTGACAAAAGCCATTATTGAGGATGTCCAGGGCTCCAGGGATGACATT
TGCTGCATTGGCTCATCAGAACCCACCTGGCTTCAACCAACTTGGTATTTGACCTGTATAGAAT
GTTCTGGCATCCTAGGAAATGGGGTTCATATCTCTCGCATTCACTTGTGAAACTAGACAAATTAGG
AACTTCTGAACCTCTGCTGGCCAAGAATGTAGGAAACAAATAGTTTAATGATATTATGGAAGCAAATT
CCCAGCCCTCACCAAAACCCACCCCTCAAGTGTATGACTGTACGAAAAGAATAATCACTGCAAAGT
ATGTAGATCATAGGTTCAAGGAAGACCTGTTCAACTTCATCAGCTAAACTAAATGAATTGCTTGAGGC

CATCAAATCCAGGGATTACTGCACTAATTCAAGTCTATGCAGAAGGGGTAGAGCTAATGGAGCCACTG
 CTGGAACCTGGGAGCTGGGAGACAGCCCTCACCTGCCGACTGCCAGATCAGACATCTC
 TCCATTGGTTGACTTCCTTGACAAAAGCTGTGGAACTGGATAAGCAGACGGCCCTGGAAACACAGT
 TCTACACTACTGTAGTATGTACAGTAAACCTGAGTGTGGAGCTTGTGCTCAGGAGAAGCCCCTGTG
 GATATAGTTAACCGGCTGGAGAAACTGCCCCTAGACATAGCAAGAGACTAAAAGCTACCCAGTGTGAAG
 ATCTGCTTCCOAGGCTAAATCTGAAAGTCAATCCACAGTCCACCGTAAATATGAGTGGAACTTCG
 ACAGGAGGAGATAGATGAGAGCAGTGTGATCTGGATGACAAACCAAGCCCTATCAAGAAAGAGCGCTCA
 CCCAGACCTCAGAGCTCTGCCACTCCAGCATCTCCCCCAGGACAAGCTGGACTGCCAGGATTCA
 GCACTCCAAGGGACAAACAGCGGCTCTCTATGGAGCTTCCAACCAGATCTCGTGTCCACAAGCAC
 AGACTCGCCCATCACCAACCACGGAGGCTCCCCCTGCTCCTAGGAACGCCGGAAAGGTCCAAGT
 GGCCACCTTCAACACTCCCTAAGCACCCAGACCTCTAGTGGAGCTCCACCCATCCAAGAAGAGGC
 CTCTCCCCCACCACCGGACACAAGAGAACCTATCCGACCCCTCCAGGCCACTACTCATGGGCC
 AAACAAAGCGCAGTCTTGTGGGTAACGATGGGGTCCATCTCTTAAGTAAGACTACAAACAAAGTT
 GAGGAGCTATCCCAGCAGTCAGGACCCAGTCTGCAAAGACTGCCCTGGCCAAGAGTTCTCTAAAC
 TACCTCAGAAAGTGGACTAAGGAAAACAGATCATCTCCCTAGACAAGGCCACCATCCGGCC
 CTTTCAGAAATCATCACAGTGGCAGAGTTGCCACAAAAGCCACCCACTGGAGACCTGCCCC
 ACAGAACTGGCCCCAAGCCCCAAATTGGAGATTGCCGCTAAGCAGGAGAACCTGCCCC
 AGCTGGGGGACTGCCACCCAAACCCCCACTCTCAGACTTGCTCCAAACACAGATGAAGGACCTGCC
 CCCAAACACAGCTGGAGACCTGCTAGCAAAATCCCAGACTGGAGATGTCACCCAGGCTCAGCAA
 CCCCTGAGGTACACTGAGTCACCCATTGGATCTATCCCCAATGTGCTAGTCCAGAGACGCCATCC
 AAAAGCAAGCATCTGAAAGACTCCAAGCACCTCAGCCTACTCTGCCAGAGACGCCGTA
 AGCTGGGGAAAATAAAAGTGAGGCGAGTGAAGACCAATTATGACTGCCAGGAGACAACGAT
 GAGGAGCTCACATTCACTGGAGGAAGTGATTATCGTCACAGGGAGAGGAGCAGGAGTGGTGGATTG
 GCCACATCGAAGGACAGCCTAAAGATTGTCCACATCCTCATGCAAGACTGCTGCCCTCATGTA
 GCAAAACGCAGAACCTAAAGATTGTCCACATCCTCATGCAAGACTGCTGCCCTCATGTA
 CAGTGTGTATATAGCTGCTGTTACAGAGTAAGAAACTCATGAAAGGCCACCTCAGGAGGG
 GTGTGTAAATATCTGTTCTGCCTCACAGTATGAGGTAAGCCTGGAGCCGGCGGCC
 ACTGGTTGCCAAAGCCATCTGGCATCTAGCACTTACATCTATGCTGTTCATCTGTCTGACTA
 CAAAAATAGGAGTATAGGAACCTGCTGGCTTGCAAAATAGAAGTGGCTCAGCAACCGTTGA
 GAATTGACTCTGTTCTAACATGCACTATTCTCAATTGTGTTACTGAAACATTAGCAAAGAGG
 TGGTTCTGTTCCAGGTGAAACTTTAGCTCCATGACAGACAGCAGCTGAGTTATCTGT
 TTACAGCTACAAAACCTACTTGGTATTATTACAGAAAAGTCTGCTAGTTAAATGTA
 ACTGGTTGCCAAAGCCATCTGGCATCTAGCACTTATGGCATTTCACAGCCTCATGCA
 GACAAGTGGATTATACTGCTTATGAGTGCCTCCCTGATATATTACCTCATTATG
 CAACAAACATGCAACTGCAATTAGTCAAAACTTACCTGAAATCTGCTTTATAAGGAA
 TAGTATGGATAAGTGGAAATTGACATTTTAAACTTGATTGCCATTAAAGCAGAA
 ATTATAAGTGGCTTAATCACTGGCTTCTCAAGAGTATGGATTGACATTGTTG
 TCTCAGATGTGTTGAAGCATCCATTGCACTTATTATTCTAGTTTCTAG
 TAAACTTTAAAGATTATTCAAGATGAAATTAAAAGTCACACCTTCA
 TAACTGGTCTTCCAGTGGCTCATGTGCTTCTGGCACTACATTGCT
 TAAGTGGGAACTTACAGTGTGTTATTGGAAAGTGATTAAAGCA
 ATTGCTTCTGCTTCTAGTGTGCTTCTGGCAATGAGTGAGAGATG
 TAATTTCACAGAAGCAGCACAGGAAACCTTACGGGAAAGCCT
 CACAACCTCCAAACCCAAACCTTACGGGAAAGCCTTCTCC
 GTTCTGTTAAGTGGTTGCTATACAAACTTTGAATAGCCAC
 TAATAAAACCTTGTGCTTCTGGCAATGAGTGAGAGATG
 TAATTTCACAGAAGCAGCACAGGAAACCTTACGGGAAAGCCT
 TGAATTTCACACCAAAACAGAGCATGAGGAACCAGTGT
 GAGATGCTGGGATGGAAGTCTGCACTGAGGTTGCT
 CCTCGGTACTGAAGCCACACCGATGTCCGGATGGAAGT
 CTGCACTGAGGTTGCTCAGTGTCCGGTCA
 TCATTACACATTAAAGAGCTGTTCTTCTGTGG
 CCTAGACTCTTCACTGATCTC
 AAAATAAAACTGGTTTTTCAAAAAAAAAAAAAAA

Human DDEF1 mRNA sequence - var2 (public gi: 6330853) (SEQ ID NO: 49)
 GAAAAGAGAGCACGAAAACACATGGGATGATCCGCACAGAGATAACAGGAGCTGAGATTGGAAAGAA
 ATGGAGAAGGAAAGGCGCTCTTCAGCTCAAATGTGTGAATATCTCATTAAAGTTAATGAAATCAAGA
 CCAAAAGGGTGTGGATCTGCTGCAAGTCTTAAAGTCAATTACCATGCAAGTGTCAATTCTTCAAGA
 TGCTGAAACAGCTGATAAGTTGAAACAGTCAATTGAAAAACTGGCTGCTGATTATATAATAAAAA
 CAGACCCAGGATGAAGGAAAGAAACAGCTAATGCACTCCGAGACTTAATAAAACCTCTCTCAACTGG
 ATCAGAAAGAATCTAGGAGAGATTCTCAGAGCCGGCAAGGGAGGATACAGCATGCA
 TAAGGAATATGGCAGTGTGAAAGAGGGTACCTGCTAAAGAAAAGTGA
 CGGGATCCGGAAAGTATGGCAGTCAGCAAGAATGGGATTCTA
 ACCATCTCACATGCCACATCTAACAGGCAACCAGCCA

PCT/US04/06308

AGTTGAACTTCTCACCTGCCAAGTAAAACCTAATGCCGAAGACAAAAAAATCTTGACTGTATCATCACA
TAATAGAACATATCACTTTCAGGCAGAAGATGAGCAGGATTATGTAGCATGGATATCAGTATTGACAAAT
AGCAAAGAAGAGGCCCTAACCATGGCCTTCCGTGGAGACAGACTGCCGGAGAGAACAGCCTGGAAGACC
TGACAAAAGCCATTATTGAGGATGTCAGCGCTCCAGGGATGACATTGCTGCGATGTTGCTCATC
AGAACCCACCTGGCTTCAACCAACTTGGTATTGACCTGTATAGAATGTTCTGCATCCATAGGGAA
ATGGGGGTTCATATTCTGCATTCACTGTTGGAACTAGACAAATTAGGAACCTCTGAACTCTTGTGG
CCAAGAAATGTAGGAAACAATAGTTTAATGATATTATGGAAGCATAACCCAGCCCCCATACCAAAACC
CACCCCTCAAGTGATATGACTGTACGAAAAGAATATCACTGCAAAGTGTAGATCTAGGTTTCA
AGGAAGACCTGTTCAACTCATCAGCTAAACTAAATGAAITGCTGAGGCCATCAAAATCAGGGATTAC
TTGCACTAATTCAAGTCTATGAGCAGAAGGGTAGAGCTAATGGAACACTGCTGGAACCTGGCAGGAGCT
TGGGGAGACAGCCCTCACCTTGCCTCCGAACTGCAGATCAGACATCTCTCCATTGGTGTGACTTCTT
GTACAAAACGTGGGAACCTGGATAAGCAGACGCCCTGGGAAACACAGTCTACACTACTGTAGTATGT
ACAGTAAACCTGAGTGTGAGCTTGTAGCAGGCCACTGTGGATATAGTTAACCAAGGGCTGG
AGGAAACTGCCCCTAGACATAGCAAAGAGACTAAAGCTACCCAGTGTGAAGATCTGCTTCCAGGCTAAA
TCTGGAAAGTTCAATCCACAGTCCACGTAGAAATATGAGTGGAACTTCGACAGGAGGAGATAGTGAGA
GGCATGATGATCTGGATGACAAACCAAGCCCTATCAAGAAAGAGCGCTCACCCAGACCTCAGAGCTCTG
CCACTCCTCCAGCATCTCCCCCAGGACAAGCTGGCACTGCCAGGATTCAAGCTCCAGGACAAACAG
CGGCTCTCTATGGAGCCTTACCAACCAGATCTCGTTCCACAAGCACAGACTGCCACATACCAA
CCACGGAGGCTCCCCCTCTGCTCTCTAGGAACGCCGGAAAGGTCAACTGCCACCTTCACACTCCC
TCTAAGCAACCAGACCTCTAGTGGCAGCTCCACCTATCCAAGAAGAGGCCCTCCCTCCCCAACACCCGG
CACAAGAGAACCTATCCGACCTCCAGGCCACTACCTCATGGGCCCCAACAAAGGCGCAGTCTT
GGGGTAACGATGGGGTCCATCTCTCAAGTAAGACTAAACAAAGTTGAGGAGACTATCCAGCAGTC
GAGCACCAGTCTGCAAAGACTGCCCTGGCCCAAGAGTCTCTCTAAACTACCTCAGAAAGTGGCACTA
AGGAAACAGATCATCTCCCTAGACAAAGCCACCATCCGCCAGGACCTGCCCTAACACCACAGCTGGGAG
TGGCAGAGTGGCCACAAAGGCCACCCAGGAGACCTGCCCTAACAGCAGACTGCCCTAACAGCC
CCAAATGGAGATTGCGCTTAAGCCAGGAGAACTGCCCTGGGGCAAGGCCACAGACTGCCCTGG
AAACCCAACTCTAGACTTACCTCCAAACACAGATGAAGGACCTGCCCTAACACCACAGCTGGGAG
ACCTGCTAGCAAATCCAGACTGGAGATGTCTCACCAAGGCTCAGCACCCCTCTGAGGTACACTGAA
GTCACACCCATTGGATCTATCCCAAATGTGCACTGCCAGAGACGCCATCCAAAAGCAAGCATCTGAAGAC
TCCAAGCACCTCACGCCACTCTGCCAGAGACGCCCTACCACTGCCAGAAAATCAATCGGGAAA
ATAAAGTGAGGCGAGTGAAGACCAATTATGACTGCCAGGCAGACAACGATGACGAGCTCACATTCA
GGGAGAAGTGATTATGTCACAGGGAAAGAGGACCAAGGAGTGGGATGGCCACATCGAAGGACGCC
GAAAGGAAGGGGGCTTTCCAGTGTCTTGTATCATCTCTGTGACTAGCAAACCGAGAACCTTAAG
ATTGTCCACATCTCATGCAAGACTGTCGCCCTCATGTAACCTGGGCAAGTGTGTTATAGTGT
TTACAGAGTAAGAAACTCATGGAAGGCCACCTCAGGAGGGGATATAATGTGTTGAAATATCCTGT
GGTTTCTGCCCTCACAGTATGGGAGTGGCTGCCCTGGGCCCTACTGGTTGCCAAAGCCATC
CTTGGCATCTAGCACTTACATCTCTATGCTGTTCTACAAGAAACAAACAAAATAGGAGTATAGGAA
CTGTCGGCTTGTCAAATAGAAGTGGCTCCAGCAACCGTTGAAAGGCATAGAATTGACTCTGTTCTAAC
AATGCACTATTCTCAATTGTTACTGAAAATGCAACATTAGCAAAGAGTGGGTTCTGTTCTCAGGTG
AAACTTTAGCTCCATGACAGACCAAGCCTGTAGTTATCTGTGACACAGTTACAGCTACAAAACCTAC
TTGGTATTTATTACAGAAAAGTGTCACTTAAATGTAAGTGTATTCTCTCAGAAAATATTCACTGAC
CCAAAACCTTTATGGCATTTACAATGCAACACAGCCTCATGCAAGTTAGACAAGTGTGATTATACTGT
CTTATGAGTGCCCCCCCCTGATATATTACCTCATTATGCAAAATAACATATCTCTGACTATTGAA
CAAAGTTAAAACACATATGAGGTTCAAATTTCAGGAACCAAGGACTGCCCAAGGAAATTAGGCT
ATTACGCAATTAGGCTTACCTGGAATCTGCTTTATAAAAGGAATTATAAGGTTGCAACAATATTGTTCTA
GTACATTTTAAACTTGATTGCCATTAAAGCAGAAAATTATAAGGTTGCAACAATATTGTTCTAATCA
CTGGCTTCTCAAGAGTATGGATTGACATATTGTTGTTATGAAATGCACTGTTGAAAGCAT
CCATTGCACTCCATTTTATTATTCTTAGTTGTTCTGACAAAGGACTGCCCAAGGAAATTAGGCT
CAAGATGAATTAAAGTCACCCCTCACACAGTTCCCTACTGTATGAGAATCCAGGTGCTGAAACCA
AGTGTGTTCTTCCATGCTTTGTTAAACCCCAATTATAGATAATTTCAGTCTTAAGCTCTG
ACCTTCAAGTCATTGATACCAAGTTTGAAACGCTGCTATGAAATTGCACTGTTGAAAGCACTCT
TCTCAGTTTCTTCTCCATCCCAGCCATGTTATCAGATCCTTAAGAACATTGTATTCTAGTCTT
CAGTCTGAATTGGAAAAGAATGCAATAGTGTACTCCACAGTCAGTGGAACTGTTCCCTGAGTCCGAG
GCTCATGTGTCATTCTGCCACTACATTGCTTAAATTGCTATTGTTGCAACAGCACAGAAAAC
TTAAGCAGAGAACTTGGCAATGAGTGGAGAGTGTAAATTTCACAGAACAGCACA
TTAGGAAAAGGCCCTCTTCCATGCTTACAGTGTCACTGAGAATATTGTTGCTTAAGTGGT
ATACAAACTTGAAATGCCACCTAATAAAATAAAACCTGCTGAGAACCTGAAAC
TTATTGGAAAAGTGTATTAAAGCAATTGCTTCTCAGTGTGAGGGTGTGACTGGCAG
AGCATGAGGAACCAAGTGTGACATGCTGGGGTGTGACTGGCAGCTTAGCAGCTCGGT
CAGTGTGGGATGAGTGTGCACTGAGGTTGCTAGTGTCCGGTCAATTCA
GCTTAAAGAGCTGTTCTTCTGTTGCTAGACTCTTCACTGATCTCAA
AAAAAAAAAAAAACAAAAACACAAAGCTGCACTGCTAAAATTACATGGAGTTAGT
GTCTATTCTTCTCCCTTGTGAGCAACTACAGCATTAAACACCTTTTTCTAGTTT
AAAAAAAAAAAAACAAAAACACAAAGCTGCACTGCTAAAATTACATGGAGTTAGT

Figure 36 part - 25

PCT/US04/06303

TTGGGTTTCCATCAGGAATTGAGTTCTCTAACCCAGCTTACTGTGGGACATAGGAAAACTC
AGTAGAAATACCTTGGTGAATTGAGTTAAGTCTGATCTTAACTCACTAAGCCACTAT
CTGCAATTGTAATTATAGTATTGAGATATGGAACCTTATGAAAAAAATACCAAATTAGTT
CTTTTCCCCAGAGGGAAAGTTATGTTCTGAAATAGTGTGTCTTATTTACTGTTGAACAGCAAT
TGCTATTATTATTATTGCTAGAACATGTTAGAATCTGCTAGTGTAACTGTTAATGTGA
TGCGAATTCTCATCTGGATGTTACCATCAAACATCACTACACTTGTCAATTGACATTT
CAGTTTCAGTACTGTATGTTAATTCTACTTTTAAATTAAATTGCTTTAAATAAACATA
TTCTCAGTTGATCCC

Human DDEF1 mRNA sequence - var3 (public gi: 7689053) (SEQ ID NO: 50)
GATTGCCATTAAGCAGAAATTATAAGGTTGCAACAATATTGTTCTAATCACTGGCTTCATCAAGAGT
ATGGATTGACATATTGTTATGCAATGCACATCTCTCAGATGTTGAAGCATCCATTGCAATT
TATTATTCTTAGTTGTTCTGGACAAATTAAACANNTTAAAGATTATTCAAGATGAATTAAAA
GTCAACCCCTCACACAGTTCCACTGTATGAGAATCCAGGTGCTGAAACCAAGTGTCTTCCCA
TGCTTTGTTAAACTCCAATTATAGATAATTCCAGTCTAACGCTGTGACAGTCAATT
ATAACCAAGTTTGAACGCTGCTATGAAATTGCACTGTGAAAGCACTCTCCCTCTCAGTTGTTCA
TCCTGAGCCAGAATCAAAAAAAAAAA

Human DDEF1 mRNA sequence - var4 (public gi: 16552319) (SEQ ID NO: 51)
CAGAACCTTAAGATTGTCACATCCTCATGCAAGACTGCTGCCCTCATGTAACCCGGCACAGTGTGT
ATATAGCTGCTGTTACAGAGTAAGAAACTCATGGAAGGCCACCTCAGGAGGGGATATAATGTTGTTG
TAAATATCCTGTTCTGCCTTACCAAGTATGAGGTAGCCTCGGACCCGGCGCCTTACTGGTT
GCCAAAGCCATCCTGGCATCTAGCACTACATCTCTATGCTGTTACAAGCAAACAAACAAAAATA
GGAGTATAGGAACGTGCTGGTTGCAAATAGAAGTGGTCTCAGCAACCGTTGAAAGGCATAGAATTGAC
TCTGTTCTAACATGCACTATTCTCAATTGTTACTGAAATGCAACATTAGCAAAGAGGTGGTTCT
GTTTCCAGGTGAAACCTTGTAGCTCATGACAGACCAGCCTGAGTTATCTGTTACACAGTTACAGCT
ACAACAAACCTACTTGGTATTACAGAAAAGTGTCAAGTTAAATGTAAGTGTATTCTTCAGCAA
ATATTCACTGACCCAAAACCTTTATGGCATTTACAATGCAACACAGCCTCATGCAAGTTAGACAAGTG
GATTATACTGCTTATGGTGGCCCGCCCTGATATACTCATTATGCAAAATAACATATCTTCA
TGACTATTGACAAAAGTTAAACACATATGAGTTCAAAATTCTAGGAACCAAGGACTGCCAGAAAAT
ATTAGCCTCATACATGCAATTGAGCTTACCTGAAATCTGCTTTATAAAGGAATAGTATGG
ATAAGTGAATTGACATTTTAAACTGATTGCAAGGATGGACATATTGTTATGAAATGCACTCTCAGAT
GTGGTGAAGCATCCATTGCAATTGTTATTCTAGTTGTTCTGGACAAATTAAACTT
TAAAGATTATTCAAGATGAATTAAAAGTCAACCCCTCACACAGTTCCACTGTATGTTAGAATCCAG
GTGCTGAAACCAAGTGTCTTCCATGCTCTTGTAAACCCCAATTATAGATAATTCCAGTCT
TAAGCTCTGTCACCTTCAGTCAATTCTAACCAAGTTGAAACGCTGCTATGAAATTGCACTGTGAA
AGCACTCTCCCTCTCAGTTCTTCACTCCAGCCATGTTATCAGATCTTAAAGAACATTGTT
AGTCTTACATCAGTGTGAAATTGAAATGCAATTAGTGTACTCCACAGTCAGTGGAACTGTT
CCTGAGTCGGAGGCTCATGTCATTGCACTACATTGCTTAAATTGCTATTGCAACAGCACAG
AAAACAAATTTAAAGCAGAGAATCTGGCAATTGAGAGATGTTAATTTCAGAAGCACAAC
CCAACCCAACCCCTGGAAAAGCCCTTCCCATGTTACAGTGTCAAGTAAATTAGTCTGCT
TAAGTGGTTGCTATAACAAACTTGAATAGCCACCTAATAAAACCTGCAAGACAAACCTGCAA
TTTATCAGCTGTTATTGAAAGTGAATTGCAATTGCTTCTCAGTGTCAAGGGCACATGTA
CACACCAAACAGAGCATGAGGAACCAAGTGTGACATGCTGGTTGTGACTGGCAGCTTAGCAG
CTGAAGGCCACACAGTGTCCGGATGGAAGTCTGCATCTGAGGGTGTCACTGTCCC
ACATTTAACTGCAATTAAAGAGCTGTTCTTCTGTTCACTGATCTCAA
CTGGTTTTTC

Human DDEF1 mRNA sequence - var5 (public gi: 18088817) (SEQ ID NO: 52)
CAGCTACAAAACCTACTTGGTATTACAGAAAAGTGTCAAGTTAAATGTAAGTGTATTCTTCA
GCAAAATATTCACTGACCCAAAACCTTTATGGCAATTACAATGCAACACAGCCTCATGCAAGTTAGAC
AAGTGGATTATACTGTTATGAGTGGCCGCCCTGATATACTCATTATGCAAAATAACATATC
TTTCATGACTATTGACAAAAGTTAAACACATATGAGTTCAAAATTCTAGGAACCAAGGACTGCCAG
AAAATATTAGCCTCTACATTACGCATGCAATTGAGCTTACCTGAAATCTGCC
TATGAGTGTGAAAGCATCATTGCAATTGTTATTATTTCTTGTGTTATGAAATGCA
ATATTGTTCTAAATCAGTGTGAAAGTGTGATTGACATATTGTTATGAAATGCA
CAGATGTGTTGAAGCATCATTGCAATTGTTATTATTTCTTGTGTTATGAA
ACTTTAAAGATTATTCAAGATGAATTAAAAGTCAACCCCTCACACAGTTCC
TCCAGGTGCTGAAACCAAGTGTGTTCTTCCATGCTTGTAAACCCCAATT
AGTCTTAAAGCTGTCCACCTCAAGTCATTACAACCAAGTTTGAACGCTG
TGAAAGCACTCTCCCTCATCCCAGCCATGTTATCAGATCCTTAAGAACATTG
TGAAAGCACTCTCCCTCATCCCAGCCATGTTATCAGATCCTTAAGAACATTG

Figure 36 part - 26

ATTCAGTCTTTACATCAGTCTGAATTGGAAAAGAATGCAATAGTTGACTCCACAGTCAGTGGAAC
TGTCCCTGAGTCCGAGGCATGTGCAATTGGCACTACATTGCTAAATTGCTATTGGCAACAG
CACAGAAAACATAATATTGAAAGCAGAGAATCTTGGCAATGAGTGAGAGATGTTAAATTGCAACAGCAC
AACTCCAACCCAACCCTAGGAAAAGCCCTTCCATCGTACAGTGCAGTGAATATTAAATTAGTT
CTGCTTAAGTGGGTCTATACAAACTTGAATAGCCACCTAATAAATAAAACCTGCA
AAATATTGATAGCTGTTATTGGAAAGTGATTAAAGCAATTGCTTCCTCAGTGTCAAGGGCACATGTGA
ATTCCACACCAAACAGAGCATGAGGAACCAAGTGCAGATGCTGGGGTTGTACTGGCAGCTTAGCAGCCT
CGGACTGAAGGCCACACCAAGTGTCCGGATGGAAGTCTGCATCTGGAGGTGCTCAGTGTCCCAGTCATTCA
TTTACACATTAACTTGCAATTAAAGAGCTGTTCTTCTGGCCTAGACTCTTCACTGATCTCAAA
ATAAAGTGGTTTACAAAAAAAAAAAAAA

Human DDEF1 mRNA sequence - var6 (Predicted by Proteologics) (SEQ ID NO: 53)
TTTCGACCGCTGGGTTTATTCCCTTGAAGACTTGGAAAGATTGTCATTCACTGCAATGATGGTCA
GCCCTAAGAAGCATGCAGGAGCCATATAAGAGTCACAAGGCTCTAGACCAAGATAGAACAGCCCTCAG
AAAGTGAAGAAGTCTGTAAGGAAATATAATTCTGGTCAAGATCATGTCACAAAATGAAGAAAACATAG
CACAAGTTCTGATAAGTTGGAGTAATTGTTAAGTGCAGACAACCCGACCTGGCACCGCGTTGT
CAAGTTCTACTCTTACAAAGGAACTGTCACACTGCTGAAAATCTGCTCCAGGGTTGAGCCACAAT
GTGATCTCACCTGGATCTTGTAAAGGAGACCTAAAGGGAGTCAAAGGAGATCTCAAGAACGCAT
TTGACAAAGCCTGGAAAGATTGAGACAAAGTTACAAAATTGAGAAAGAGAAAAGAGACGCA
ACAACATGGGATGATCCGCACAGAGATAACAGGAGCTGAGATTGCGGAAGAAATGGAGAAAGGA
CTCTTTCAGCTCCAAATGTGTGAATATCTCATTAAAGTTAATGAAATCAAGACCAAAAAGGGTGTGGATC
TGCTGCAGAATCTTATAAAAGTATTACCATGCACAGTGCACATTCAAGATGGCTGAAAACAGCTGA
TAAGTTGAAACAGTACATTGAAAACGGCTGCTGATTATAATAAAAACAGACCCAGGATGAAGAA
AAGAAACAGCTAAGTGCACCTGGAGACTTAATAAAATCCTCTTCACTGGATCAGAAAGAAATCTAGGA
GAGATTCTCAGAGCCGGCAAGGAGGATACAGCATGCTCAGGCGAATAAGGAATATGGCAGTGA
AAAGAAGGGGTACCTGCTAAAGGAAAGTGCAGGGGATCAGGAAAGTATGGCAGAGGAGAAGTGTTCAGTC
AAGATGGGATTCTAACCATCTCACATGCCACATCTAACAGGCAACCAGCCAAGTGTGACCTTCTCACCT
GCCAAGTAAACCTAACATGCCAAGACAAAAATCTTGCACCTGATATCACATAATAGAACATATCACTT
TCAGGCAGAAGATGAGCAGGATTATGAGCATGGATATCAGTATTGACAATAGCAAAGAAGAGGCCCTA
ACCATGGCTTCCGTGGAGAGCAGAGTGGGGAGAGAACAGCCTGGAAGACCTGACAAGGCAATTATTG
AGGATGTCCAGCGGCTCCAGGAAATGACATTGCTGCGATTGTTGCTCATCAGAACCCACCTGGCTTC
AACCAACTGGGTATTTGACCTGTATAGAATGTTCTGGCATCCATAGGAAATGGGGTTCATATTCT
CCGATTTCAGTCTTGGAACTAGACAAATTAGGAACTTCTGAACTCTTGTGGCAAGAATGTAGGAAACA
ATAGTTTAATGATATTATGAAAGCAAATTACCCAGCCCTCACCAAAACCCACCCCTCAAGTGTAT
GACTGTACGAAAAGAATATACTGCAAAAGTATGTAGATCATAGGTTCAAGGAAGACCTGTTCAACT
TCATCAGCTAAACTAAATGAATTGCTGAGGCCATCAAATCCAGGGATTACTTGCACAACTCAAGTCT
ATGCAGAAGGGGTAGAGCTAATGGAAACACTGCTGGAACCTGGGAGAGTGGGAGACAGCCCTCA
CCTTGGCTCGAACACTGCAGATCAGACATCTCTCATTGTTGACTTCTTGTACAAAATGTGGGAAAC
CTGGATAAGCAGACGGCCCTGGGAAACACAGTTCTACACTACTGTAGTATGTACAGTAAACCTGAGTGT
TGAAGCTTGTCTCAGGAGCAAGCCACTGTGGATATAGTTAACAGGCTGGAGAAACTGCCCTAGACAT
AGCAAAGAGACTAAAGCTACCCAGTGTGAAGATCTGCTTCCAGGCTAAATCTGAAAGTCAATCCA
CACGTCCACGTAGAATATGAGTGGATCTCGACAGGAGGAGATAGATGAGAGCGATGATGTGGATG
ACAAACCAAGCCCTATCAAGAAAGAGCGCTACCCAGACCTCAGAGCTCTGCCACTCCTCCAGCATCTC
CCCCAGGACAAGCTGCCACTGCCAGGATTCAAGCACTCCAAGGGACAACAGCGGTCTCCATGGAGCC
TTACCAACCAAGATCTCGTTCCACAAGCACAGACTGCCACATCCAACCCAGCGAGGCTCCCCCTC
TGCCTCCTAGGAACGCCGGAAAGGCTCAACTGCCACCTTCAACACTCCCTCTAAGCACCCAGACCTC
TAGTGGCAGCTCCACCCATCCAAGAAGAGGCCCTCCTCCCCCACCACCGGAGACAAAGAGAACCCCTATCC
GACCCCTCCAGCCACTACCTCATGGGCCCCAAACAAAGGCGCAGTTCTGGGTAACGATGGGGTC
CATCCTCTCAAGTAAGACTAAACAAGTTGGGGACTATCCCAAGCAGTGTGAGCAGCAGTGTCAA
GACTGCCCTTGGCCCAAGAGTTCTTCTTAAACTACCTCAGGAAAGTGGACTAAGGAAACAGATCATCTC
TCCCTAGACAAAGCCACCATCCGCCGGAAATCTTCAGAAATCATCACAGTGTGGAGGTTGCCACAAA
AGCCACCACTGGAGACTGCCCAAGAGACCTGCCAGGAAAGGCCAAATTGGAGATTGCC
GCTAACGCCAGGAGAACTGCCCAAGACAGCTGGGGACCTGCCACCCAAACCCAACTCTCAGAC
TTACCTCCAAACACAGATGAAGGACCTGCCCAACCCACAGCTGGAGACCTGCTAGCAAATCCC
AGACTGGAGATGTCTACCCAGGCTCAGCAACCCCTGTAGGGTACACTGAAGTCAACCCATTGGATCT
ATCCCCAAATGTGCAGTCCAGAGACGCCATCCAAAGCAAGCATCTGAAGACTCCAACGACCTCACGCC
ACTCTGCCAGAGACGCCGTACCAACTGCCAGAAAATCAATACGGGAAAATAAGTGAGGCGAGTGA
AGACCAATTATGACTGCCAGGAGACAACGATGACGAGCTCACATTCTACAGGGAGAAGTGATTATCGT
CACAGGGGAAGAGGACAGGAGTGGATTGCCACATCGAAGGACAGCCTGAAAGGAAGGGGTCTTT
CCAGTGTCTTGTTCATATCCTGTCTGACTAGCAAACGCCAGAACCTTAAGATTGTCACATCCTTCAT
GCAAGACTGCTGCCCTCATGTAACCCCTGGCAGTGTGTTATAGCTGCTGTTACAGAGTAAGAAACTC
ATGGAAGGGCCACCTCAGGAGGGGATATAATGTTGTTGAAATATCCTGTGGTTTCTGCCCTCACCA
GTATGAGGGTAGGCCCTGGACCCGGCGCCTACTGGTTGCCAAAGCCATCCTGGCATCTAGCACTTA

CATCTCTATGCTGTTACAAGCAAACAAACAAAATAGGAGTATAGGAAGTGGCTTGCAAATA
 GAAGTGGCTCCAGCAACCGTTGAAAGGCATAGAATTGACTCTGTCCTAACAAATGCACTATTCTCAATT
 GTGTTACTGAAAATGCAACATTAGCAAAGAGGTGGTTCTGTTCCAGGTGAAACTTTAGCTCCATGA
 CAGACCAGCCTGTAGTTATCTGTACACAGTTACAGCTACAAAAACCTACTTGGTATTATACAGA
 AAAGTGCTCAGTTAAATGTAAGTGTATTCTTCAGCAAAATATTCACTGACCCAAACTCTTATGGCA
 TTTTACAATGCACACAGCCATGCAAGTTAGACAAGTGGATTATACTGCTTATGAGTGCCCCGCC
 TGATATATTACCTCATTATGCAAAATACATATCTTCATGACTATTGACAAAAGTTAAACAT
 ATGAAAGTCAAATTTCAGGAACCAAGGACTGCCAGAAAATATTAGCCTCTACATTACGCATGCTTAGA
 AGCTTACCTGAAATCTGCCATTAAAGGAATAGTATGGATAAGTGGATTGTACATTAAACTTG
 ATTGCCATTAAAGCAGAAATTATAAGGTTGCAACAAATTGTTCTAATCACTGGCTTCTCAAGAGTA
 TGGATTGACATATTGTTATGAATGCACATCTCAGATGTGTTGAAGCATCCATTGCATCCATT
 ATTATTTCTTAGTTGTTCTGGACAAATTAAACTTTAAAAGATTATTCAAGATGAATTAAAGT
 CAACCCCTCACACAGTTCCCTACTGTATGTAGAATCCAGGTGCTGAAACCAAGTGTCTTCCCATG
 CTCTTGTAAACCCCAATTATAAGATAATTTCAGTCTAAGCTCTGTCCACCTCAAGTCATT
 AACCAAGTTTGAAACGCTGCTATGAATTGCACTGTGAAAGCACTCTCCCTCTCAGTTTCTT
 CCCAGCCATGTTTATCAGATCCTAAAGAACATTGTATTTCAGCTTTCAGTCAGTCTGAATT
 AGAATGCAATAGTTGACTCCACAGTCAGTGGAACTGTTCCCTGAGTCCGAGGCTATGTGTCATT
 CACTACATTGCTAAATTGCTATTGGCAACAGCACAGAAAACATAATTGAAAGCAGAGAATT
 GCAATGAGTGAGAGATGTTAATTTCAGAAGAACACTCCAAACCCAAACCTTAGGAAAGCCCT
 CATCGTTACAGTGCCTAGTGAATTAAATTAGTTCTGCTTAAGTGGTGTCTACAAACTTG
 CACCTAATAAAACACCTGCTCATGACAAACCTGCAAAATTTCAGTGTATTGAAAGTGT
 AAGCAATTGCTCCTCAGTGTCAAGGACATGTGAATTTCACACCAACAGAGCATGAGGAACCAG
 ATGACTGGGTTGTGACTGGCAGCTTAGCAGCCTCGGTACTGAAGGCCACACCAGTGT
 CGTCTGAGGTTGCTCAGTGTCCCCGTCAATTACACATTAAAGAGCTGCT
 'TTCTGTGGCTAGACTCTTTCACTGATCTAAACTGGTTTTTCAAAAAAAAAAAAA
 AAAACAAAAAAACACAAAAGCTGATGTCTAAATTACATGGAGTTAGTGTCT
 TTTGCGCAACTTACACAGCATTTAACACCTTTCTAGTTTGTGGTTTGT
 'CAGGAATTGAGTTCTCTAAACCCAGCTACTGTGGGACATAGGAAACTCAGT
 GATCTTGTGGTTAAGTGTGATCTGATCTAAACTCAGTGAAGGCACTATCT
 TATAGTATTGAAAGATATGGAACCTTATGAAAAAAATAGC
 AAATTAGTGTCTGCAAATAGTGTGTTCTATTTCAGTGTGAACAGCAATT
 TGCTAGACTTCAACATGTTGATAGGAATCTGTAGTGC
 ACTAGTAAATGCCAATTCTCATCTGG
 ATGTTACCATCAAACATCAGTACACTGTCAATTCA
 ATGTTAATTCTACTTTTAATTTAAACATATTCTCAGTTGATCCC

Human DDEF1 protein sequence - var1 (public gi: 31873728) (SEQ ID NO: 233)
 ETKFTKIEKEKREHAKQHGMIRTEITGAEIAEEMEKERRLFQLQMCEYLIVNEIKTKGV
 DLLQNLKY
 YHAQCNCFFQDGKLTADKLKQYIEKLAADLYNIKQTQDEEKKQLTALRDLIKSSLQLDQ
 KEDSQSRQGGYS
 MHQLQGNKEYGSEKKGYLLKKSDGIRKVWQRRKCSVKNGILTISHATS
 SNRQPAKLNLLTCQVKPNAEDKK
 SFDLISHNRTYHFQAEDEQDYVAWISVLTNSKEEALTMAFRGEQSAG
 ENSLEDLT
 KAIIEDVQRLPGNDI
 CCDCGSSEPTWLSTNLGILTCIECSGIHREM
 GVHSRIQSLELDKLG
 TSELLLAKNVGNNSFNDIMEANL
 PSPSPKPTPSSDMTVRKEYITAKYVDHRFSRK
 CTS
 TSSAKLNEL
 LEAIKS
 RDL
 LALIQVYAE
 GVELMEPL
 LEPGQELGETALHLAVRTAD
 QTSLH
 LVD
 FLV
 QNC
 GNLD
 KQ
 TAL
 GNT
 V
 LHY
 CSM
 YSK
 PECL
 K
 L
 LRS
 K
 P
 TV
 DIV
 NQAG
 ETALDI
 AKRL
 KAT
 QC
 ED
 LLS
 SQ
 AK
 SG
 K
 FN
 PH
 VH
 VE
 EW
 NL
 RQ
 EEE
 IDE
 SDD
 LDD
 K
 PS
 PI
 KK
 RS
 PR
 QS
 FC
 H
 SSS
 I
 SP
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F
 C
 H
 S
 S
 S
 I
 S
 P
 Q
 D
 K
 L
 A
 P
 G
 F
 S
 T
 PR
 DK
 K
 Q
 R
 L
 S
 K
 R
 P
 P
 P
 G
 H
 K
 R
 T
 L
 S
 D
 P
 P
 S
 L
 P
 H
 G
 P
 P
 N
 K
 G
 A
 V
 P
 W
 G
 N
 D
 G
 G
 P
 S
 S
 S
 K
 T
 TN
 K
 F
 P
 R
 Q
 S
 F<br

PCT/US04/06308

LSTQTSSGSSTLSKKRPPPPPGHKRTLSDPPSPLPHGPPNKGAVPWGNDDGPSSSKTTNKFEGLSQQS
STSSAKTALGPRVLPKLQPQVALRKTDHLSLDKATIPPEIFQKSSQLAELPQKPPPGDLPPKPTELAPKP
QIGDLPPKPGELPPKPQLGDLPPKPQLSDLPPKPQMCKDLPPKQLGDLLAKSQTGDSVSPKAQQPSEVTLK
SHPLDLSPNVQSRDAIQKQASEDSNDLPTLPETPVPLPRKINTGKNKVRVKTIYDCQADNDELTIE
GEVIIVTGEEDQEWIGHIEGQPERKGVPVSVFHILSD

Human DDEF1 protein sequence - var3 (public gi: 7689054) (SEQ ID NO: 235)
MNAHLSVLKHPLHPFFIIFLVLFLDKFICXXKRLFKMNLKVNPShSFPTVCRIQVLKPSVFPMIFVKLQ
L

Human DDEF1 protein sequence - var4 (public gi: 18088818) (SEQ ID NO: 236)
MNAHLSVLKHPLHPFFIIFLVLFLDKFICXXKRLKDYSR

Human DDEF1 protein sequence - var5 (Predicted by Proteologics) (SEQ ID NO: 237)
MIGQPQEACRSHHKSHKALDQDRTALQVKKSVAIYNSGQDHVQNEENYAQVLDKFGSNFLSRDNPDLG
TAFVFKFSTLTKELSTLLKNLQLSHNVIFTLDSSLKGDLKGVKGDLKKPFDKAWKDYETKFTKIEKEKR
EHAKQHGMIRTEITGAEIAEEMEKERRLFQLOMCEYLIKVNEIKTKKGVDLLQNLIKYYHAQCNFFQDGL
KTADKLKQYIEKLAADLYNIKQTQDEEKQLTALRDLIKSSLQLDQKESRRDSQRGGYSMHQLQGNKE
YGSEKKGYLLKKSDGIRKVWQRRKCSVNGILTISHATSNRQPAKLNLLCQVKPNAEDKKSFDLISHNR
TYHFQAEDEQDYVAWISVLTNSKEEALTAFRGEQSAGENSLEDLTKAIEEDVORLPGNDICCDCGSSEP
TWLSTNLGILTCTIECSGIHREMGVHISRIQSLDCLKGTSELLAKNVGNNSFNDIMEANLPSPSPKPTP
SSDMTVRKEYITAKYVDHRSRKTCSAKLNELLEATKSRDLLALIQVYAEVGVELMEPLLEPGQELGE
TALHLAVRTADQTSLHLVDFLVQNCGNLDKQTAALGNTVLHYCSMYSKPECLKPLRSKPTVDIVNQAGET
ALDIAKRLKATQCEDLLSQAKSGKFNPVHVEYEWLRQEEIDESDDDDLKKSPPIKKERSPRPQSFCHS
SSISPQDKLALPGFSTPRDKQRLSYGAFTNQIFVSTSTDSPSPTTEAPPPLPPRNAGKGPTGPPSTLPLS
JTQSSGSSTLSKKRPPPPPGHKRTLSDPPSPLPHGPPNKGAVPWGNDDGPSSSKTTNKFEGLSQQSST
SSAKTALGPRVLPKLQPQVALRKTDHLSLDKATIPPEIFQKSSQLAELPQKPPPGDLPPKPTELAPKPQI
GDLPKPGELPPKPQLGDLPPKPQLSDLPPKPQMCKDLPPKQLGDLLAKSQTGDSVSPKAQQPSEVTLKSH
PLDLSPNVQSRDAIQKQASEDSNDLPTLPETPVPLPRKINTGKNKVRVKTIYDCQADNDELTIEGE
VIIIVTGEEDQEWIGHIEGQPERKGVPVSVFHILSD

Human DDEF1 pray sequence - var1 (SEQ ID NO: 54)
GCGCCGCCATGGTAGTACCCATACGACGTACCACTATTACGCTCATATGGCCATGGCAGGCCAGTGAATT
CCACACCAAGCAGTGGTATCAACGCAGAGTGGCACAAAAGCCACGCACGCTGGANGACCTGCCCAAC
AGCCCACAGAAACTGGCCCCAAGCCCCAATTGGAGATTGCGCCTAACGCCAGGAGAACTGCC
AACACAGCTGGGGACCTGCCACCCAAACCCAAACTCAGACTTACCTCCCAAACACAGATGAAGGA
CCTGCCCCCACCACAGCTGGAGACCTGCTAGAAAATCCCAGACTGGAGATGTCTCACCCAAAGGCT
CAGCAACCCCTGAGGTACACTGAAGTCACACCCATTGGATCTATCCCAAATGTGCAGTCCAGAGACG
CCATCCAAAAGCAAGCATNTGAAGACTCCAACGACCTCACGCCCTACTCTGCCAGAGACGCC
GCCCANAAAAATCANTACGGGAAAANTAAANNTGAGGCAGTGAAAACCTTAATGACTGCCAGGC
ANNATGACAAGCTCNATTCTNCAGGGAAAAGTGTATCGTNCAGGGAAAAGNNCNGGATTGTTGGTCC
NNCAATTTCNTCCNNTNCNACTATTANAATNGCNNGCAGGNNCAATNGAACNCNAANNNGNN
GAAAANAGGNNTTNNCAAGGANCTNNNTNGTTTNTCCNAAANNTNNNTNGNNNTTTTTNC
NCNCNTTTNTNNAAAACNCNGNANNNNNNCAAGGNNCCNTNTNNCNTNGGGGGGGNNNG
NNTNNNGGGNNNANACCCCCC

Unigene Name: EIF3S3 Unigene ID: Hs.58189 Clone ID: 3GD_18

Human EIF3S3 mRNA sequence - var1 (public gi: 2351379) (SEQ ID NO: 55)
GAAAGATGGCGTCCCGAAGGAAGGTACCGGCTACTGCCACCTCTCCAGCTCCACCGCCGGCGCAGC
AGGGAAAGGCAAAGGCAAAGGCGCTCGGGAGATTCAAGAAGAAGGACAAGGAACCTGAAGTTGTTCAAGGAGTGCTTTGG
GTATTAAGATAATCAAACATTATCAAGAAGAAGGACAAGGAACCTGAAGTTGTTCAAGGAGTGCTTTGG
GTCTGGTTGAGAAGATCGGCTTGAATTACCAACTGCTTCTCCCTCAGCACACAGAGGATGATGC
TGACTTTGATGAAGTCCAATATCAGATGGAAATGATGCCAGCTTCCAGTAAACATTGATCATCT
CACGTGGGCTGGTATCAGTCACATACTATGGCTATTGTTACCCGGGACTCCTGACTCTCAGTTA
GTTACCAAGCAGTGCATTGAAGAACTGTCGTTCTCATTATGATCCCATAAAACTGCCAAGGATCTCT
CTCACTAAAGGCATACAGACTGACTCCTAAACTGATGGAAGTTGTAAGAAAAGGATTTCCCTGAA
GCATTGAAAAAGCAAATATCACCTTGAGTACATGTTGAAGAAGTGCCATTGTAATTAAAATTAC
ATCTGATCAATGTCCTAATGTGGGAACTTGAAGAAGTCAGCTGTCAGATAAACATGAATTGCTCAG

CCTGCCAGCAGCAATCTGGGAAAGAACATCTACAGTTGCTGATGGACAGAGTGGATGAAATGAGCAA
GATATAGTTAAATACAACACATACTGAGGAATACTAGTAAACAAACAGCAGCAGAAACATCAGTATCAGC
AGCGTCGCCAGCAGGAGAATATGCAGCGCCAGAGCCGAGGAGAACCCCCGCTCCCTGAGGAGGACCTGTC
CAAACCTCTCAAACCACACAGCCGCTGCCAGGATGACTCGCTGCTCATTCAGGCCAGATAAACACT
- TACTGCCAGAACATCAAGGAGTTCACTGCCAAAACCTAGGCAAGCTCTCATGCCAGGCTCTCAAG
AATACAAACAACAAAGAAAAGGAAGTTCCAGAAAAGAAGTAACTGAACCTTGAAAGTCACACCAGGGC
AACTCTGGAAAGAAAATATATTGCATATTGAAAAGCACAGGAGTTCTTAGTGTATTGCCGATTG
GCTATAACAGTGTCTTCTAGCCATAATAAATAAAAAATAAAAAATAAAAAATAAAAAATAAAAAATAAAAA
AAAAAATAAAAAATAAAAAAT

Human EIF3S3 mRNA sequence - var2 (public gi: 21751901) (SEQ ID NO: 56)
AGCGCGTAGCAAGAGACTGGCAGTATAGTAGTCAGTGATAATATTGAGCCTTAA
TATGTTCCAGACACTGCTCTAAGTGATTACCTTACATTATTCCCTGAATGTTATAATTCCAAGTGA
AAGAAGGAAATGATATATTGGATAGCTATGAGTGGGGAGGTTGTACTGGCTGCTTCCATAAAGAAAT
TAAGCACGTTACGAAGGGCACGTAGTTGTTAGTGTCTGGAAACCAGTTCTGTCCTGAAGTCAAAT
GTTCTTGCTACACCACCATAGAAACTAACGTCACTCAGGAACCATTGTCAGGGCAAAGGGTGCACCAT
TTTGCATTTCCTCCTGCTTAGGACCATCTAAATCACTCGCATGGAGTGTGTTGAAAGAAACTCTCAAGA
GCTTCGTTGCCTAGAGTCAGAATTCTAACCTTGAGTCCTGGTTTGCCACAAACCAAGCCGTTGAT
CTGGGCAACTCCCAGAGAAAGCTGGGTTCAACTTCCACTGTCAAACACTGGTTGAGGTCTAGATAAGT
TTCAAGTACTCTTTATGTGCATGGTCTCTGACATAGGAAGACTACATACTGGGCCAGTAACAGGAAGG
CACAAAGCTGACTGGAGGTTAAAAATTACTGGTCAATTGATAATGAGGAGAATGAATCAGAAAATT
TCAAGTTCTCCCGTGGCTAACGTGAGTATCCACTTCAAGATCATTCCATCGGAAAGAGGTGAAAATG
TACAGTAGGCATGCACAAAGGATACGCCCTGGAAAGAAGATGGCGTCCCGCAAGGAAGGTACCGCTCTA
CTGCCACCTCTCCAGCTCCACGCCGGCGCAGCAGGGAAAGGCAAAGGCCAGGGCTCGGGAGATT
AGCCGTGAAGCAAGTGCAGATAGATGGCCTGGTATTAAAGATAATCAAACATTATCAAGAAGAAGGA
CAAGGAACCTGAAGTTCAAGGAGTGCTTGGGTCTGGTGTAGAAGATCGGCTGAAATTACCAACT
GCTTCCTTCCCTCAGCACACAGAGGATGATGCTGACTTTGATGAAGTCCAATATCAGATGGAAATGAT
GCCGAGCCTCGCCATGTAACATTGATCATCTCACGTGGCTGGTATCAGTCCACATACTATGGCTCA
TTCGTTACCGGGCACTCTGGACTCTCAGTTAGTACAGCATGCCATTGAAAGATCTGCTGTTCTCA
TTTATGATCCCATAAAACTGCCAAGGATCTCTCACTAAAGGCATACAGACTGACTCCTAAACTGAT
GGAAGTTGTAAGAAAAGGATTTCCTGAGCAGTGAAGTCAAATATCACCTTGAGTACATG
TTGAGAAGTGGCATTGTAATTAAACATCTGATCAATGTCCTAATGTTGGAAACTTGAAAAGA
AGTCAGCTGTCAGATAAACATGAATTGTCAGCCTGCCAGCAGCAATTGAGGAAATCTACA
GTTGCTGATGGACAGAGTGGATGAAATGAGCCAAGATATAGTTAAATACAACACATACTGAGGAATACT
AGTAAACAAACAGCAGCAGAAACATCAGTATCAGCAGCGTCGCCAGCAGGAGAATATGCAGCGCCAGAGCC
GAGGAGAACCCCCGCTCCCTGAGGAGGACCTGTCAAACCTTCAAACACCACAGCCGCTGCCAGGAT
GGACTCGCTGTCATTGCAAGGCCAGATAAACACTTACTGCCAGAACATCAAGGAGTTCACTGCCAAAAC
TTAGGCAAGCTTCACTGGCCAGGCTTCAAGAATACAACACTAAGAAAAGGAAGTTCCAGAAAAG
AAGTTAACATGAACTCTGAAAGTCACACCAGGGCAACTCTGGAAGAAATATATTGCATATTGAAAAGC
ACAGAGGATTCTTAGTGTATTGCCGATTTGGCTATAACAGTGTCTTCTAGCCATAATAAATAAA
ACAAAATCTTG

Human EIF3S3 mRNA sequence - var3 (public gi: 12653234) (SEQ ID NO: 57)
GGCACGAGGATGGCGCCCGCAAGGAAGGTACCGGCTCTACTGCCACCTCTCCAGCTCCACCGCCGGCG
CAGCAGGGAAAGGCAAAGGCAAAGGCGCTCGGGAGATTAGCCGTGAAGCAAGTGCAGATAGATGGCCT
TGTGGTATTAAAGATAATCAAACATTATCAAGAAGAAGGACAAGGAACGTGAAGTGTCAAGGAGTGCTT
TTGGGTCTGGTTGAGAAGATGGCTTGAAATTACCAACTGCTTCTTCCCTCAGCACACAGAGGATG
ATGCTGACTTTGATGAAGTCAAATATCAGATGGAATGATGCCAGGCTTCTGCCATGTAACATTGATCA
TCTTCACGTGGCTGGTATCAGTCCACATACTATGGCTCATTGCTTACCCGGCAGCTCTGGACTCTCAG
TTTAGTTACCACTGCACATTGAAAGAATCTGCTGTTCTCATTATGATCCCATAAAACTGCCAAGGAT
CTCTCTCACTAAAGGCATACAGACTGACTCCTAAACTGATGGAAGTTGTAAGAAAAGGATTTCCTCCC
TGAAGCATTGAAAAAGCAAATATCACCTTGGAGTACATGTTGAAAGAAGTGGCAGATAAACATGAATTG
TCACATCTGATCAATGCTTAATGTTGGAAACTTGAAAAGAAGTCAGCTGTTGCAAGATAAACATGAATTG
TCAGCCTGCCAGCAGCAATCTGGGAAAGAATCTACAGTTGCTGATGGACAGAGTGGATGAAATGAG
CCAAGATATAGTTAAATACAACACATACTGAGGAATACTAGTAAACAAACAGCAGCAGAAACATCAGTAT
CAGCAGCGTCGCCAGCAGGAGAATGCAAGCGCCAGAGCCAGAACCCCCGCTCCCTGAGGAGGACC

TGTCCAAACTTCAAACCACAGCCGCTGCCAGGATGGACTCGCTCATTGCAGGCCAGATAAA
CACTTACTGCAGAACATCAAGGAGTTCACTGCCAAAACCTAGGCAAGCTCTCATGCCAGGCTCTT
CAAGAATACAACAACTAAGAAAAGGAAGTTCCAGAAAAGAAGTTAACATGAACCTCTGAAGTCACACCA
GGGCAACTCTTGAAGAAATATATTGCATATTGAAAAGCACAGAGGATTTCTTAGTGTATTGCCGAT
TTGGCTATAACAGTCTTCTAGCCATAATAAAAACAAAATCTTGAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Human EIF3S3 protein sequence - var1 (public gi: 12653235) (SEQ ID NO: 238)
MASRKEGTGSTATSSSTAGAAGKGKGKGGSGDSAVKQVQIDGLVVLKIIKHYQEEQGTEVVQGVLLGL
VVEDRLEITNCFPFPQHEDDADFDEVQYQMEMMRSLRHVNIHDHLHVGWYQSTYYGSFVTRALLDSQFSY
QHAIEESVVLIIYDPPIKTAQGSLSLKAYRLTPKLMEVCKEKFDSPEALKKANITFEYMFEEVPIVKNSHL
INVLWELLEKKSADVADKHLLSLASSNHLGKNLQLLMDRVDEMSQDIVKYNTYMRNTSKQQQQKHQYQQR
RQQENMQRSRGEPLPPEEDLSKLFKPQPARMDSLIAGQINTYCQNIKEFTAQNIGKLFMQALQEY
NN

Unigene Name: EPS8L2 Unigene ID: Hs.55016

Human EPS8L2 mRNA sequence - var1 (public gi: 21264615) (SEQ ID NO: 58)
GTGACGGCCATTACCAATCGCAACCTGTCGCTCAGGTTCTCTCTCCCGGCCGCC
CGGCCCGGCCGCCGAGCGTCCCACCCGCCGGAGACCTGGCGCCCCGGCCGAGCGCAACAGAC
GGACGCACCGCGAGCGCGAGGGAGACGGCGAGCGCGGGCGAGGCAGGTGTGGGACAGGCACT
GGCTCTAGACCGGGGCCACACTGAGGTCTGCCCTCTCCGCTGGCCGCCACCAAGACACCATGAGCCA
GTCGGGGCCGTGAGCTGCTGCCGGTGCCACCAATGGCAGCCTGGGGCCGACGGTGTGGCCAAG
ATGAGCCCCAAGGACCTGTTGAGCAGAGGAAGATTTCAACTCCAACTCAGTCATGCACGGAGACCT
CGCAGTACACAGTCCAGCACCTGCCATCATGGACAAGGGCAAGCCATACGTCAGGAGACGA
CGCCATCCGAAGCTGGTGCAGCTGAGCTCAAGGAGAAGATCTGGACCCAGGAGATGCTGTCAGGTG
AACGACAGTCGTTGCGCTGCTGGACATCGAGTCACAGGGAGGAGCTGGAAGACTTCCGCTGCCACGG
TGCAGCGCAGGCCAGACGGCTCTCAACAGCTGCGCTACCCGCTGTGCTGCTGTCAGGACTC
GGAGCAGAGCAAGCCGAGTGTGACTTCCACTCTTCACTGCGATGAGGTGGAGGAGCTGGTGACGAGGAC
ATCGAGGCGCTTGGCCACTGCCGCTGGCAAGAAGATGCGCCAGACCCCTGAAGGGACACCAGG
AGAAGATTGGCAGCGCAGTCATCCTGCCCTCTCCCAGGGCCGGCCCATCCCTTCCAGCACCG
CGGGGGATTCCCCGGAGGCCAAGAATCGCTGGCCGAGGTGCCACTCAGCAGGCCAGGTTTCCGC
CGTGGGAGTCGCAAGGAGGAGCCGGGGCGTGTGGCTCAGAAGATAGAGAAGGAGACGCAAATCCTCA
ACTGCCCCCTGGACATCGAGTGGTTGTGGCCGGCTGAGAAGGAGCCAGGGCTTCAAGCAGCT
GAACCAAGCGAAAAAGGGGAAGAAGAAGGGCAAGAAGGCGCCAGCAGAGGGCTCTCACACTGCGGCA
CGGCCCCCTCTGAGGGCGAGTTCATCGACTGCTTCCAGAAAATCAAGCTGGCGATTAACCTGCTGGCAA
AGTCGAGAACATCCAGAACCCAGCGCCGGAGCTGCGACTTCTCTGGGCTCTGGACCT
GATCGTCAACACCTGCAAGTGGCCAGACATCGCACGCTCCCTCTCCGGACTCTGAGATGCC
GTGGACTTCCCTGCCGCCACCTGGTCCCTAAGGAGATGTCGCTGTGGAGTCAGTGGAGAGAGCTGGA
TCCGGCCCCCTTCCAGTGGCCGGAGGCCACAGGTGCCCCCTACGTGCCAAGTTCACAGCGGCTG
GGAGCCTCTGTGGATGTGCTGAGGAGGCCAGTGGAGGGCTGGCGCTGCCCATCGAG
GAGGTGAGTCAGTGAAGGCCAGTCCATAAGAAACTCCAGAACGACAGCCCCACTCAGAGGCCACCC
CCCCGGGGATGCCCTACCACAGTCAGCTCCCCACATACTCACAGGGCTACCAGCCAACACAGCCAT
GGCCAAGTACGTCAAGATCCTGTATGACTTCACAGCCCAGTGGCAAGCTGCGCAGCCGAGCGGCGAGGAT
GAGGTGCTCTAGAGGTGCTGGAGGACGCCGGCAGTGGAGCTGCGCAGCCGAGCGGCGAGGGGT
ACGTGCCCTGCAACATCTAGGCAGGGCGCAGCGAGGAGCAGCCGGCCGGCTCGAGCAGGCCGCTCA
GAAGTACTGGGGCCCCGCCAGCCGACCCACAAGCTACCCCAAGCTCCGGGGAAACAAAGACGAGCTC
ATGCAGCACATGGACGAGGTCAACGACGAGCTCATCCGGAAAATCAGAACATCAGGGCGCAGGCCACAGA
GGCAGCTCCCGCTGGAGGCCAGCCAGGCCAGCCGCTCACCTACGAGTCGGTCCGGACGAGGT
CCGGCCCTGGCTGGAGCCAAGGCCCTTCAGCCCGGATCTGGAGAACCTGGCATCTGACCGGGCCG
CAGCTCTCTCCCTCAACAAGGAGGAGCTGAAGAAAGTGTGGCGAGGAGGGCTCCGGCTACAGCC
AGCTCACCATGCAGAAGGCCCTTCTGGAGAAGCAGCAAAGTGGTCAGGCTGGAGAGAACACTCATGAACAA
GTTTCATTCCATGAATCAGAGGAGGGGGAGGACAGCTAGGCCAGCTGCCCTGGCTGGGGCTGGGCG
GGGGAGCCACCCACAATGCATGGAGTATTATTTATATGTGTATGTATTGTATCAAGGACACGGA
GGGGGTGTGGTGTGGCTAGAGGTCCCTGCCCTGTCTGGAGGACAAACGCCATCCTTAGGCCAAACAG
TACCCAAGGCCCTCAGCCACACCAAGACTAATCTAGCCAAACCTGCTGCTGGTGGTGCCAGGCCCTTG
TCCACCTCTCTTGAGGCCACAGAACACTCCCTGGGCTGGGCCCTTCTCTGGCCCTCCCTGTGCACCT
GGGGGGCTCTGGCCCTGTGATGCTCCCCCCTACCCACTTCTACATCCACACCCAGGGTGA
GCTGGAGCTCCAGGCTGGCCAGGCTGAACCTCGCACACAGCAGAGTCTGCTCCCTGAGGGGGCCGG
GAGGGGCTCCAGCAGGAGGCCGTGGTGCCATTGGGGAAAGCAGACACACACTTCACCTG

PCT/US04/06308

AAGGGCCGACAACGCAGGGACACCGTGCCTGCTTCAGACACTCCCAGGCCCACTCTTACAGGCCAGG
ACTGGAGCTTCTCTGGCCAAGTTTCAGGCCAATGATCCCCCATGGTGTGGGGTGTGGTGTGCTT
GGTGCCTGGACTTGAGTCTACCCCTACAGATGAGAGGTGGCTGAGGCACCAGGGCTAACAAACCA
GTTAAGTCTCCAGGAAAAAAAAAAAAAA

Human EPS8L2 protein sequence - var1 (public gi: 21264616) (SEQ ID NO: 239)
MSQGAVSCPGATNGSLGRSDGVAKMSPKDLFEQRKKYSNSNVIMHETSQYHVQHLATFIMDKSEAITS
VDDAIRKLVLQSSKEIWTQEMLLQVNDQSLRLLDIESQEEILEDFPLPTVQRSQTVLNQLRYPVSLVLLVC
QDSEQSKPDVHFVFFHCDEVEAELVHEDIESALADCRILGKMRPQTLKGHQEKIRQRQSILPPPQGPAPIPF
QHRCGDSPEAKNRVGPQVPLSEPGFRRRESQEEPRAVLAQKIEKETQILNCAALDDIEWFVARLQKAAEAF
KQLNQRKKKGKKKAPAEVGVLTLRARPPSEGEFIDCFQKIKLAINLLAKLQKHIONPSAAELVHFLFGP
LDLIVNTCSGPDIARSVSCPLLSRDAVDFLRGHLPVKEMSLWESLGESWMRPRSEWPREPVQVPLVPKFH
SGWEPPVDVLQEAPWEVEGLASAPIEVSPVSROSIRNSQKHSPTSEPTPPGDALPPVSSPHTHRQYQPT
PAMAKYVKILYDFTARNANELSVLKDEVLEVLEDGRQWWKLRSRSGQAGYVPCNILGEARPEDAGAPFEQ
ACQKYWPASPHTKLPSPFGNKDELMQHMDEVNDELIRKISNIRAQPQRHFRVERSQPVSQPLTYESGP
DEVRAWLEAKAFSPRIVENLGILTGPQLFLSNEELKKVCGEEGVRVSQLTMOKAFLEKQQSGSELEEL
MNKFHSMNQRRGEDS

Human EPS8L2 pray sequence - var1 (SEQ ID NO: 59)
TCNTNCGCCCATGGNAGTACCCATACGACGTACAGNATTACGCTCATATGGCCATGGNAGGCCAGTG
AATTCCACCCAAAGCAGTGGTATCAACGCAGAGTGGCATTATGGCGGGGGAAACAAAGACGAGCTCATGC
AGCACATGGACGAGGTCAACGACGAGCTCATCCGAAAATCAGCAACATCAGGGCGCAGCCACAGAGGCA
CTTCCCGTGGAGCGCAGGCCAGCCAGCCGTGAGCCAGCGCTCACCTACGAGTCGGTCCGGACGAGGTCCGC
GCCTGGCTGGAGCCAAGGCCCTCAGCCCGGGATCGTGGAGAACCTGGCATCCTGACCGGGCCGCAGC
TCTTCTCCCTCAACAAGGAGGAGCTGAAGAAAGTGTGCGGCCAGGAGGGCGTCCGCTGTACAGCCAGCT
CACCAGCAGAAGGCCCTCCTGGAGAACAGCAAAGTGGTCCGAGCTGGAAGAACTCATGAACAAGTT
-CATTCATGAATCAGAGGGGGGGAGGACAGCTAGGCCAGCTGCCCTGGCTGGGCTGCCAGGGGG
AAGCCCACCCACAATGCATGGAGTATTATTTTATATGTGTATGTATCAAGGACACGGAGGGGG
GGTGTGGTGTGGCTANAGGTCCCTGCCCTGTTGGNAGGCACAAACNCCCATNCCTTAGNCCAAANAG
TNACCCAANGGCCNAACCCAANCAAGNTTATTTNANNCAAACNNNGNTGNTTGGTGGTNCCAACC
CCNTTGTGGTGCNNNNCCNTGTNCANCNTNNNTTNGNCNCNANAANTNCCTNGGGTNGGGGN
CNTTTTTNTNN

Human EPS8L2 pray sequence - var2 (SEQ ID NO: 60)
CGAGCGCCGCCGGNATAACCCATACGACGTACAGNATTACGCTCATATGGCCATGGNAGGCCAGTGAAT
TCCACCCAAAGCAGTGGTATCAACGCAGAGTGGCATTATGGCGGGGGAAACAAAGACGAGCTCATGCAGC
ACATGGACGAGGTCAACGACGAGCTCATCCGAAAATCAGCAACATCAGGGCGCAGCCACAGAGGCACTT
CCGGCGTGGAGCGCAGGCCAGCCGTGAGCCAGCGCTCACCTACGAGTCGGTCCGGACGAGGTCCGC
TGGCTGGAGCCAAGGCCCTCAGCCCGGGATCGTGGAGAACCTGGCATCCTGACCGGGCCGCAGCTCT
TCTCCCTCAACAAGGAGGAGCTGAAGAAAGTGTGCGGCCAGGAGGGCGTCCGCTGTACAGCCAGCTCAC
CATGCAGAAGGCCCTCCTGGAGAACAGCAAAGTGGTCCGAGCTGGAAGAACTCATGAACAAGTTCAT
TCCATGAATCAGAGGAGGGGGAGGACAGCTAGGCCAGCTGCCCTGGCTGGGCTGCCAGGGGGAG
CCCACCCACAATGCATGGAGTATTATTTTATATGTGTATGTATCAAGGACACGGAGGGGTG
TGGTGTGGCTANAGGTCCCTGCCCTGNTGGAGGCACACNCCCATCCTAGGCCAAACANTACCNAGG
NCTNANCCACACCAANACTATTTAACCNAACTNGNTGNTGGTGGTGCNNCCNTGGTGTNCCNC
CCNTTNTCCNTTTTGNGNCCNAAAATTCTNTGGGCTGGGCTTNTTTGGCNCCCTNNNNCN
TNGGGGTCTGGNCCNTNNNNNTNTNCCCTNCCCCCTNTNNNTNT

Human GOCAP1 mRNA sequence - var1 (public gi: 10438060) (SEQ ID NO: 61)
GATACGTGGCTGCCGTCTGCCCCGTGAGGAGGTGCAGCAGCCGGAGATGGCGCGGTGCTGAACGCAG
AGCAGACTCGAGGTGTCCGTGACGGCCTCACGCTCAGCCCCGACCGGAGGAGCGGCCCTGGGGCGGAGGG
CGCCCCGCTGCTGCCGCCACCGCTGCCACCGCCCTGCCACCTGGATCGGTCGCGGCCGGCGCCTCA
GGGGAGCAGCCCAGGCCGGAGGGGGAGGGGGCTGGGGCGGGAGGGAGGGCGCCGGCTGGAGCAGC
GCTGGGGTTTCGGCTGGAGGAGTTGTACGCCACTCGCCTCTCAAAGAAAAAGATGGCAAAGC
ATTTCATCCAACCTATGAAGAAAAATGAAGCTGTGGCATAAGCAAGTCTTATGGGCCATAT
AATCCAGACACTGTCTGAGGTTGGATTCTTGATGTGTTGGGAAATGACAGGAGGAGAGAATGGCAG
CCCTGGGAAACATGTCTAAAGAGGATGCCATGGTGGAGTTGTCAAGCTTAAATAGGTGTTGCCATCT
CTTTCAACATATGTTGCGTCCCACAAATAGAGAAGGAAGAGCAAGAACAAAAAGGAAGGAGGAAGAG
GAGCGAAGGCCGTGAAGAGGAAGAAAGAGAACGCTGCAAAAGGAGGAAGAGAACGTTAGGAGAGAAG
AAGAGGAAAGGCTCGACGGAGGAAGAGGAGACGGATAGAAGAAAGGCTCGGTTGGAGCA

Figure 36 part - 32

PCT/US04/06308

GCAAAAGCAGCAGATAATGGCAGCTTAAACTCCAGACTGCCGTGCAGTCAGTATGCAGCCAA
CGATCCAGGGAACTACGAACAGCAGCAAATTCTCATCCGCGAGTGCAGGAGCAACACTATCAGCAGT
ACATGCAGCAGTTGATCAAGTCCAGCTTGACAGCAACAGGAGCATTACAGAAACACAGGAAGTAGT
AGTGGCTGGGCTTCCCTGCCATCATCAAAAGTGAATGCAACTGTAACAGTAATATGATGTCAGTT
AATGGACAGGCCAAAACACACACTGACAGCTCCGAAAAGAACCTGAGAAGCTGAGAAGAAGCCC
TGGAGAATGGACCAAAAGAATCTCTCCAGTAATAGCAGCTCCATCCATGTGGACACAGACCTCAGATCAA
AGACTTCAAAGAGAAGATTGAGCAGGATGCAAGTCCGTGATTACAGTGGGCCGAGGAGAAGTGGTCACT
GTTGGAGTACCCACCCATGAAGAAGGATCATATCTTTGGGAAATTGCCACAGACAATTATGACATTG
GGTTGGGCTGATTTGAATGGACAGACTCTCCAAACACTGCTGTCAGCGTGCATGTCAGTGA
CGATGACGACGAGGAGGAGAAGAACATCGGTTGTGAAGAGAAGACCAAAAGAACATGCCAACAGCCT
TTGCTGGATGAGATTGCTGCTGTGACCGACTGTCAGGAGGTGATGCTGGCAGCCATCAAT
ATCCAGGGAGAGGAGTCTATCTCTCAAGTTGACAACCTACTCTTGCTGGCGGCTCAAATCAGTCTA
CTACAGAGTCTATTATACTAGATAAAATGTTGATCAAAGTCTGGAGTCTAGGGTTGGCAGAACAGATGA
CATTAATTGAAATTCTTTACTTTGTGGAGCATTAGAGTCACAGTTACCTTATTGATATTGGT
CTGATGGTTGTGAACTCTGCTGGGAACTCAAAATTCTTGAGACTCTTAGCATTACACTTTGGG
TAAAGGAGATTCTCAGACTCATCCAGCCCTGGGTGCTGACCAGCAGAGTCACTAGTGGATGCTGAAGT
TACATGAGCTACATGTTAAATATTAAAGTCTCCAAACACCCCCAACGTTGACCTTACCCGGCTG
ATGGTTAGCCCCCTGCTGCCCTGCTCATGTCATGAGACGCCGTAGTTACAGTGTCTTAATTG
AATCCATAAGTTAACAGTCTATATCAGGTGCAGCTGGCTTGATTAAAGGCCATTTTAAACTAAAA
ACTCACACCTCACAGATTATAAAAAAAAAAAAAAA

Human GOCAP1 mRNA sequence - var2 (public gi: 15826851) (SEQ ID NO: 62)
GGAAGTCGATACTGCTGGCTGCCCTCTGTCGGCGCTGAGGAGGTGCGAGCAGCCGGAGATGGCGCGGTGCTG
AAGCGAGCGACTCGAGGTGTCGGCTGACGGCCTCAGCCTCAGCCCCGGACCCGGAGGAGCGGCTGGGG
CGGAGGGCGCCCGCTGCTGCCGCCCGCTGCCACCGCTGCCACCTGGATCCGGTGCAGGGCCCGGG
CGCCTCAGGGGAGCAGCCCCGGAGGCGGGCTGGGGCGCGGGAGGAGGCGCGGGCGCTG
GAGCAGGGCTGGGGTTCCGGCTGGAGGAGTTGTCAGGCCCTGGCACTGCCTTCTCAAAGAAAAAGATG
GCAAGCATTTCATCCAACCTATGAAAGAAAATTGAAAGCTTGCACTGCATAAGCAAGTTCTATGGG
CCCATATAATCCAGACACTTGTCTGAGGTTGGATTCTTGATGTTGGGGAAATGACAGGAGGAGAGAA
TGGCAGCCCTGGAAACATGCTAAAGAGGATGCCATGGTGGAGTTGTCAGCTTAAATAGGTGTT
GCCATCTTTCAACATATGTCGCTCCACAAAATAGAGAACAGAACAGAAAAAGAACAGGA
GGAAGAGGAGCGAAGCGCGTGAAGAGGAAGAACAGTCTGCAAAAGGAGGAAGAACGTTAGG
AGAGAAGAAGAGGAAAGGCTTCGACGGAGGAAGAGGAAGGAGACGGATAGAACAGAACAGGCTTCG
TGGAGCAGCAAAGCAGCAGATAATGCCAGCTTAAACTCCAGACTGCCGTGAGTTCCAGCAGTATGC
AGCCAAACAGTATCCAGGAACATGAAACAGCAGCAAATTCTCATGCCAGTTGCAAGAACACTAT
CAGCAGTACATGCCAGCTGATCAAGTCCAGCTGCCACAGCAACAGGAGCATTACAGAACACAGG
AAAGTAGTAGTGGCTGGGCTTCCCTGCCATCATCAAAAGTGAATGCAACTGTAACAGTAATATGAT
GTCACTTAATGGACAGGCCAAACACACTGACGCTCCGAAAAGAACATGGAAACAGCTGCA
GAAGCCCTGGGAATGGACAGGAAAGAACATCTTCCAGTAATGCACTGCCATCCATGTCAGGG
AGATCAAAGACTCAAAGAGAACATTGACGAGGATCATATCTCTTGGGAATTGCCACAGAACATTAT
GACATTGGTTGGGTGATTTGAATGGACAGACTCTCAAACACTGCTGTCAGCGTGCATGTCAGTG
AGTCCAGCGATGACGACGAGGAGGAAGAACATCGGTTGTGAAGAGAACAGCAAAGAACATGCCAA
CAAGCCTTGGATGAGATTGCTGCTGTGACGGACTGTCAGGAGGTGATGCTGGCAG
CATCAATATCCAGGGAGAGGAGTCTATCTCTCAAGTTGACAACCTCTACTCTTGCTGGCGGTCAA
CAGTCTACTACAGAGTCTATTATACTAGATAAAATGTTGTTACAAAGTCTGGAGTCTAGGGTTGGCAG
AAGATGACATTAAATTGAAATTCTTTACTTTGTGGAGCATTAGAGTCACAGTCTTACCTTATTGA
TATTGGCTGATGGTTGTGAACTCTGCTGGGAATCAAATTTCTTGTGAGACTCTGCTGTCAG
TTGGGGTTAAAGGAGATTCTCAGACTCATCCAGCCCTGGGTGCTGACAGGAGTCACTAGTGGATG
CTGAAGTACATGAGCTACATGTTAAATATTAAAGTCTCCAAAATAAAACACCCCCAACGTTGACCTTAC
CCGGCTGATGGTTAGGCCCTGCTGCCCTGCTCATGTCATGAGACGCCGTAGTTACAGTGTCT
AATTGAAATTCCATAAGTAAACAGTCTATATCAGGTGCATCTGGCTTGTGATTAAAGGCCATT
CTTAAACACTAACACCTCACAGATTATAATAGAAAAGAACATGGCCTCAGTTGATCTCGTTCAGAATG
ACCCAGATTGTTCTGCTTGGGTGCACTGTTAGTTGAGACTTACAGAGAACATTATTCTGAG
ATAATCTTAAACTAGAATGTCAAAACAACTAATTGATAATTGAAAGTATCAAGATAACGTTAGAACAC
ATTTTCTCAGGAACCTCCACAAACATTGAACTCTGTTGATCTTATTGGTATTCTACTACTAGTGC
AAAATACAGGTTTTGTTGTTGGCTCATAGAGTATCTCAAATTGAAACTTTCTGCACA
AAGAATAAAATTAAAGGATTATAACTCAAATTGGCACCTACTGAAATTAAACACATAAAATCATTAA
ATATAATTGAGCATAATGGGAAGTAAACATTGCACTAATATGAAATCACTGCCAGAGAACAGTCT
TTTAATTGTTACTACTAGTCACAAACCCACATTATTCCAGTTGGAAATTACTTATTAAAGGAGAATTG
GAAATACATATGCCCATGCTTAAATTGTTAGCTTAAATTGTTGTTATTCTTATTGACGGGAAGAGGT
ACATCTTTCTCCTACTGAAAACCAAATATGAGTTATTGCTCAAATTGTTGATAAAGTGA
GTGATTCTGTTGAGGAGAGTGGTATAGATAGAAATGACAAAGATGGCAATACACTTAAT

Figure 36 part - 33

GTGTTATTGTATGTTACTGAAGTACTTAGATTTAAAATTCAAACTCAAATCAGTCTTGAG
GAGGGTTTCATTAACTCAGTATATACTACAGTTCACTACATATGGTTGTTGAGTTTTGTGTGCTGTA
TTCTTCTGTTTTAATACCTGGTTTGTACATATCTAACACTCTGTTCTCTTGTGTTGTTGAGAAAC
TGGATTTTTCTTAAGCAGTGTTAATTGTGTTTTAATTTGATTGAGAAGTAGTCCCAGC
TCATAGGTGTCATAACTGTTACATCCAGAACATTGTCAGGCTCTGTCAGCTTTCATGTACATATG
GTATAGAAACCAGGGAGTTAGGCACCTCCCTGGAATTTTTATGAGAAAAAAATACTGTATTAAAAA
TGTAATTAACCTTTAAAAGCAGGCACTAATATATTTCTTCCAGCCTTGAGTACAAATTGTCCT
TGCACATGTTAAGATGAATTATCTCTAAAATATCATTGTTCTGGGAGCAGTGTATGTTACTTACAT
AGCAGCGGTTCTGTCATGTGTTACAGGAGAAATTGGTTTAAACTTCTATTGCTTGGC
TGTTGATTAGTACAGTACAAGTGGCATTCAGGAGATCTGAAAGTAATATATTAACTTAA
GTTTATCTGAAAAAAAAAAAAAA

Human GOCAP1 mRNA sequence - var3 (public gi: 15799258) (SEQ ID NO: 63)
GGAAGTCGATACGTGGCTGCCCTCTGCCCCGCTGAGGAGGTGAGCAGCCGGAGATGGCGCGGTGCTG
AACCGAGAGCGACTCGAGGTGTCGCGTCAGGCCCTACGCTCAGCCGGACCCGGAGGAGCGGCCCTGGG
CGGAGGGCGCCCGCTGCTGCCGCCACCGCTGCCACCGCCCTCGCCACCTGGATCCGGTCGCGGCCCGGG
CGCCTCAGGGGAGCAGCCCGAGCCCGGGAGGCGGGCTGGGGCGCGCGGAGGAGGCGCGGCCGCTG
GAGCAGCGCTGGGTTTCGCGCTGGAGGAGTTGTAACGGCTCGCACTGCCTTCTCAAAGAAAAGATG
GCAAAGCATTTACATCCAACCTATGAAGAAAATTGAAGCTTGTGCACTGCATAAGCAAGTCTTATGGG
CCCATATAATCCAGACACTGTCTGAGGTTGGATTCTTGATGTGTTGGGAATGACAGGAGGAGAGAA
TGGGCAGCCCTGGAAACATGTCTAAAGAGGATGCCATGGTGGAGTTGTCAAGCTCTTAAATAGGTGTT
GCCATCTCTTCAACATATGTTGCGTCCCACAAATAGAGAAGGAAGAGCAAGAAAAAAAGGAAGGA
GGAAGAGGAGCGAAGGCGCGTGAAGAGGAAGAAGAGAACGCTCTGCAAAAGGAGGAAGAGAACGCTAGG
AGAGAAGAAGAGGAAAGGCTTCGACGGGAGGAAGAGGAAAGAGGAAAGGAGACGGATAGAAGAAGAAGGCTCGGT
TGGAGCAGCAAAGCAGCAGATAATGGCAGCTTAAACTCCAGACTGCCGTGCAAGTCCAGCAGTATGC
AGCCCAACAGTATCCAGGAAACTACGAACAGCAGCAAATTCTCATCCGCAGTGTGCAAGGAGCAACACTAT
CAGCAGTACATGGCAGTGTATCAAGTCCAGCTGCAAGCACAGGAGCATTACAGAAACACAGG
AAGTAGTAGTGGCTGGGTCTCTTGCCTACATCATCAAAGTGAATGCAACTGTACCAAGTAATATGAT
GTCAGTTAATGGACAGGCCAAACACACACTGACAGCTCCGAAAAGAACACTGGAACCCAGAAGCTGCA
GAAGCCCTGGAGAATGGACCAAAAGAATCTCTTCAGTAATAGCAGCTCCATGGACACGACCTC
AGATCAAAGACTCAAAGAGAAGATTAGCAGGATGCAAGTCCGTGATTACAGTGGCGAGGAGAAGT
GGTCACTGTTGAGTACCCACCCATGAAGAAGGATCATATCTCTTGGAAATTGCCACAGACAATTAT
GACATTGGGTTGGGTGATTGGATGGACAGACTCTCAAACACTGCTGTCAGCGTGCATGTCAGTG
AGTCCAGCGATGACGACGAGGAGGAAGAGAAACATCGGTTGTGAAGAGAAGGCAAAAGGCAA
CAAGCCTTGTGGATGAGATTGTGCTGTGACCGACGGGACTGTGATAGGAGGAGGTGATGCTGGCAGC
CATCAAATATCCAGGGAGAGGAGTCTATCTCTCAAAGTTGACAACCTCTACTCTTGTCAGGTTGGCAG
CAGTCTACTACAGACTCTATTAACTAGATAAAATGTTCTTACTGAGGAAAGAACACTCTACTCTTG
AAGATGACATTAAATTGGAAATTCTCTTACTGAGGAAAGAACACTCTGAGGAGGAGGAGGAGGAGT
TATTGGTCTGATGGTTGTGAACTCTGCTGGGAACTCAAATTCTCTGAGACTCTTAGCATTCAACT
TTGGGTTAAAGGAGATTCTCAGACTCATCCAGCCCTGGGTGCTGACCAGCAGAGTCACTAGTGGATG
CTGAAGTTACATGAGCTACATGTTAAATATTTAAAGTCTCAAATAAAACACCCAAACGTTGACCTTAC
CCGGCTGATGGTTAGCCCTTGCTGCTGCCATGTGCTTATGAGAGGCCGTAGTTACAGTGTCCCTCT
AATTGAAATCCATAAGTTAACAGTCTATATCAGGTGCACTGGCTTGTAAAGGCAATTTTAA
CTTAAAAACTCAAACACCTCACAGATTATAATAGAAAAGAAATGCCCTAGTTGATCTGTTCAAGATG
ACCCAGATTGTTCTGTTGGTGCACTGTTAGTTCAAGGTTATTTACAGAGAATTATTTCTGAG
ATAATCTTAAACTAGAATGTTCAAACACTATTGATAATTGAAGTATCAAGATACTGAGAACACCTCAGAG
ATTTTCTTCAGGAACCTCCACAAACTTTGAATCTCTGTTATCTTATTGTTGATCTACTACTAGTAGC
AAAATACAGGTTTTGTTGTTGGCTCATAGAGTATCTCAAATTGAAACTTTCTGACA
AAGAATAAAATTAAAGGATTATAAAACTCAAATGGCACCTACTGAGATTAAAGGAGAATTATTTCTGAG
ATATAATTCAACATGGGAGTAACATTGCACTAATATGGAAATCACTGCCAGAGACAGTCTATTCT
TTAATTGTTACTCTGAGTCAACACCCACATTATTCACTGTTGAAATTACTTATTAAAGGAGAATTG
GAAATACATATGCCATGTTAAATTGTTAGCTTAAATTGTGTTATTCTTATTGACGGGAAGAGGT
ACATCTTTCTGTTTTTAATACCTGGTTTGTACATATCTAAGTCTCTCTTGGTCTCAGAAC
GTGATTCTGTTTCAGGAAGGGAGAGTGGTATAGATAGAAAATGACAAAGATGGCAATATACACTTAAT
GTTGTTATTGTTACTGAGACTCTAGATTGTTAAATTCAATCTAAATCAGTCTTGTGCTG
GAGGGTTTCTTAAGTCAACTGAGTATACAGTTCACTACATATGGTTGTTGAGTTTTGTGCTG
TTCTTCTGTTTTTAATACCTGGTTTGTACATATCTAAGTCTCTCTTGGTCTCAGAAC
TGGATTTTTCTTAAGTCAACTGCTTAATTGTGTTTTTAATTGTTGATTGAGCTTCTGAG
TCATAGGTGTCATAACTGTTACATCCAGAACATTGTCAGGCTCTGTCAGCTTTCATGTACATATG
GTATAGAAACCATGGAGTTAGGCACTCCCTGGAATTTTTTTATGAGAAAAAAATACTGTATTAAAAA
TGTAATTAACCTTTAAAAGCAGGCACTAATATATTTCTTCCAGCCTTGAGTACAAATTGTCCT
TGCACATGTTAAGATGAATTCTCTAAATATCATTGTTCTGGGAGCAGTGTATGTTACTTACAT
AGCAGCGGTTCTGTCATGTGTTCAAGAAATTGGTTAAACTTCTTATTGCTTGGC

Figure 36 part - 34

TGTTGATTAGTACAGTACAAGTGGCATTCAAAAAGATCTTGAAGTAATATATTAATCAATTAAAAT
GTTTATCTGTAAAAAAAAAAAAAA

Human GOCAP1 mRNA sequence - var4 (public gi: 21961496) (SEQ ID NO: 64)
CGGACCGCGGGTGCATCTCTTTCAACATATGTTGCGTCCACAAAATAGAGAAGGAAGAGCAAGAAA
AAAAAAGGAAGGAGGAAGAGGAGCGAAGGCGCGTGAAGAGGAAGAAAAGAGAACGCTGCAAAGGAGGA
AGAGAAACAGTAGGAGAGAAGAGGAAAGGCTCGACGGGAGGAAGAGGAAGGGAGACGGATAGAAGAA
GAAAGGCTTCGGTTGGAGCAGCAAACAGCAGATAATGGCAGCTTTAACTCCCAGACTGCCGTGCAGT
TCCAGCAGTATGCAGCCAACAGTATCCAGGGAACTACGAACAGCAGCAAATTCTCATCCGCCAGTGCA
GGAGCAACACTATCAGCAGTACATGCAGCAGTTGATCAAGTCCAGCTTGACAGCACAGGAGCAITA
CAGAAACAACAGGAAGTAGTAGTGGCTGGGTCTCCCTGCCTACATCATCAAAGTGAATGCAACTGTAC
CAAGTAATATGATGTCAGTTAATGGACAGGCCAAACACACACTGAGCAGCTCCGAAAGAAACTGGAACC
AGAAGCTGAGAAGAAGCCCTGGAGAATGGACCAAAGAATCTCTCCAGTAATAGCAGCTCCATCCATG
TGGACAGCACCTCAGATCAAAGACTCTAAAGAGAAGATTCAAGGAGATTCAGCAGGATGAGATTCCGTGATTACAGTGG
GCCAGGGAGAAGTGGTCACTGTTGAGTACCCACCCATGAAGAAGGATCATATCTCTTGGGAATTTC
CACAGACAATTATGACATTGGGTTGGGTGTATTGATGGACAGACTCTCCAAACACTGCTGTCAGC
GTGCATGTCAGTGAGTCCAGCGATGACGACGAGGGAGAAGAGAAAACATCGGTTGTGAAGAGAAGCCA
AAAAGAATGCCAACAGCCTTGTGATGAGATTGCGCTGTGACCGACGGACTGTATGAGGAGGT
GTATGCTGGCAGCCATCAATATCAGGGAGAGGAGTCTATCTCTCAAGTTGACAACCTCTACTCTTG
TGGCGTCAAATCAGTCTACTACAGAGTCTATTATACTAGATAAAATGTTGTTACAAAGTCTGGAGTC
TAGGGTTGGCAGAAGATGACATTTAATTGAAATTCTTACTTTGTGGAGCATTAGAGTCACAG
TTTACCTTATTGATATTGGTCTGATGTTGTGAACTCTTGCTGGGAATCAAATTCTTGAGACTCTT
TAGCATTCAACTTGGGTTAAAGGAGATTCCCTCAGACTCATCCAGCCCTGGGTGACCCAGCAGAG
TCACTAGTGGATGCTGAAGTACATGAGCTACATGTTAAATTTAAAGTCTCCAAAATAAACACCCCA
ACGTTGACCTTACCGGCTGATGGTAGCCCTGCTGCTGCTGCTCATGTTGCTTATGAGAGCCGTAGT
TACAGTGTCTCTAATTGAAATCCATAAGTTAAACAGTCTATCAGGTGAGCTGGCTTGTAAAG
GCCATTAAACTAAACACTAACACCTCAGATTATAATAGAAAAGAAATGGCCTCAGTTGAT
CTCGTTCAGAATGACCCAGATTGTTCTGCTTGGGTGAGCTGTTAGTTCAAGGTTATATTACAGAGA
ATTATTTCTGAGATAATCTTAAACTAGAATGTCAAAACTAATTGATAATTGAAGTATCAAGATACTGTA
GAACACCTCAGAGATTCTTCAGGAACCTTCCACAAACTTGAATCCTGTATCTTATTGGTATTCA
TACTACTAGCAGAAATACAGGTTTTGTTGTTGTTGTTGCTTGTAGAGTATCTCAA
TTGAAACTTTCTGCACAAAGAATAAAATTAGGATTTATAAACTCAAATTGGCACCTACTGAAATTAA
ATACATAAAATCATTAAATATAATTCAGCATATGGGAAGTAACATTGCACTAATATGAAATCACTGCC
AGAGACAGTCTATTCTTCTTAAATTGTTACTACTTAGTCACAAACCCACATTATCCAGTTGGAATT
ACTTATTAAGGAGAATTGAAATACATATGCCATGCTTAAATTGTTAGCTTAAATTGTTGTTATTCT
TTATTGACGGGAAGAGGTACATCTTTCTACTGAAAACAATATGGATAATTGCTCAAATTG
TATAAGTGTGGCTAGTGTATTCTGTTTCAAGAAGGGAGAGTGGTATAGATAAAATGACAAGAGATGG
CAATATACACTTAATGTTGTTATTGTTACTGAGACTTGTAGACTTGTAGTTAAATTCAATCCTA
AATCACTCTTGTAGGAGGGTTCTTAACACTGAGTATATACAGTCTACTACATATGGTTGTTGAGT
TTTTGTTGCTGTATTCTTCTGTTTAATACCTGTTGTTGACATATCTAATCTGTTCTCTTT
GGTGTGCTGAGAAACTGGATTTTTTCTTAAGCAGTGTAAATTGTTGTTTAATTGATTCA
AAGTAGTCCAGCTCATAGGTGTTCAACTGTTACATCCAGAACATTGTCAGGCTCTGTGAGCTTC
ATGTCACATATGGTATAGAAACCATGGAGTTAGGCACCTCCCTGGATTTTTTATGAGAAAAACTGT
ATTAAAATGAAATAAAACTTTAAAGCAGGCACTAATATATATTCTTCCAGCCTTGATTACAAA
TTTGTCTTGACATGTTAAGATGAATTCTCTAAATATCAATTGTTCTGGGAGCAGTGTATGTTA
CTTACATAGCAGCGGTTCTGTCATGTGTTCAAGTATTGTTAAACTTCTTATTGCC
TTGGCTGTTGATTAGTACAGTACAAGTGCAGTTCAAAAGATCTTGAAGTAATATTTAAATCAATT
AAAATGTTATCTGTAAAAAAAAAAAAAA

Human GOCAP1 mRNA sequence - var5 (public gi: 24496472) (SEQ ID NO: 65)
CCGCTGAGGAGGTGAGCAGCCGGAGATGGCGGGGTGCTGAACGAGAGCGACTCGAGGTGTCGTCGA
CGGCCTACGCTCAGCCCCGACCCGGAGGAGCGGCCCTGGGGCGAGGGCGCCCGCTGCTGCCACCG
CTGCCACGCCCTGCCACCTGGATCCGGTGCAGGGCCGGGGCGCTCAGGGAGGAGCAGCCCGAGCCCGGGG
AGGCGGGGGCTGGGGCGGGGGAGGAGGCGGGGGCTGGAGCAGCGCTGGGGTTTCGGCTGGAGGA
GTGTCAGGCTGTGCACTGCGCTCTCAAAAGAAAAAGATGGCAAGCATTTCATCCAACCTTATGAAAGAA
AAATTGAAGCTTGTCAGTCAAGCAAGTTCTTATGGCCCATATAATCCAGACACTTGTCTGAGG
TTGGATTCTTGTGTTGGGAATGACAGGAGAGAATGGCAGCCCTGGGAAACATGTCTAAAGA
GGATGCCATGGTAGTTGTCAGGTCTTAAATAGGTGTTGCCATCTTTCAACATATGTTGCGTCC
CACAAAATAGAGAAGGAAGAGCAAGACAAAAAGAAGGAGGAAGAGGAGGAGCAGCGAAGGCGGTGAAGAGG
AAGAAAGAGAGCGTCTGCAAAAGGAGGAAGAGAAACGTTAGGAGAGAAGAGGAAAGGCTCGACGGGA
GGAAGAGGAAGGAGACGGATAGAAGAAGAAAGGCTTGGAGCAGCAAAGCAGCAGATAATGGCA
GCTTAAACTCCAGACTGCCGTGCAAGTCCAGCAGTATGCAGCCAAACGGTATCCAGGGAACTACGAAC

Figure 36 part - 35

AGCAGCAAATTCTCATCCGCCAGTGCAGGAGCAACACTATCAGCAGTACATGCAGCAGTTGTATCAAGT
CCAGCTTGACAGCAACAGCAGCATACAGAAACAACAGGAAGTAGTAGTGGCTGGCTTCCTGCCT
ACATCATCAAAAGTGAATGCACTGTACCAAGTAATATGATGCCAGTTAATGGACAGGCCAAACACACA
CTGACAGCTCGAAAAAGAAGTGGAACCCAGAAGCTGCAGAAGAAGGCCCTGGAGAATGGACCAAAAGAATC
TCTTCCAGTAATAGCAGCTCATCCATGTGGACACGACCTCAGATCAAAGACTTCAAAGAGAACATTCA
GCAGGATGCAGATTCCGTGATTACAGTGGCCGAGGAGAAGTGGTCACTGGTCAGTACCCCACCCATGAAG
AAGGATCATATCTTTTGGAAATTGCCACAGACAATTGTGACATTGGGTTGGGGTGTATTTGAATG
GACAGACTCTCAAACACTGCTGTCACTGCATGTCACTGAGTCCAGCGATGACGACAGGAGGAGAAGAA
GAAAACATCGGTGTGAAGAGAAGCAGAAAGAATGCCAACAAGCCCTTGTGGATGAGATTGTGCGCTG
TGTACCGACGGGACTGTCACTGAGGAGGTGTATGTCGGCAGCCATCAAATATCCAGGGAGAGGAGTCTATCT
CCTCAAGTTGACAACCTCTACTCTTGTGGCGTCAGGTTGGGAGAAGATGACATTTAATTGAAATTCTT
TAAAATGTTGTTCAAAGACTGAGTCACTACAGTTTACCTTATTGATATTGGTCTGATGGTTGTGAACCTCTGC
TTACTTTGTGGAGCATTAGAGTCACAGTTTACCTTATTGATATTGGTCTGATGGTTGTGAACCTCTGC
TGGGAAATCAAATTCTTGTGAGACTCTTACGATTCATACTTTGGGTTAAAGGAGATTCTCAGACTCA
TCCAGCCCTGGGTGCTGACAGCAGAGTCACTAGGGGATGCTGAAGTTACATGAGCTACATGTTAAATA
TTAAAGTCTCAAACACCCCCAACGTTGACCTTACCCGGCTGATGGTTAGGCCCTTGTGCGCTG
CTCCATGTGTCTTATGAGAGCCGTAGTTACAGTGTCTCTAATTGAAATCCATAAGTTAACAGTCTA
TATCAGGTGCAGCTGGCTTGTGATTAAGGCCATTAAAGGCAATTAAAGCTCAACACCTCACAGATTATA
ATAGAAAAAGAAATGGCCTCAGCTTGATCTCGTCAGAATGACCCAGATTGTTCTGCCCTGGGTCAGC
TGTGTTAGTTGAGGTTATATTACAGAGAATTATTCTGAGATAATCTAAACTAGAATGTTCAAACACTA
ATTGATAATTGAAAGTATCAAGATACGTTAGAACACCTCAGAGATTGTTCTCAGGAACCTTCCACAAACTT
GAATCTTGTATCTTATTGGTATTCTACTACTAGTAGAGGTTTACAGGTTTTGTTGTTGTTGTT
TTGTTTGGCTCATAGAGTATCTCAAATTGAAACTTTCTGACAAAGGAAATTAAAGGATTTTATA
AACTCGAATTGGCACCTACTGAAATTAAACATATAATTCTGACAAAGGAAATTAAAGGATTTTATA
ACATTGCACTAATATGAAATCACTGCCAGAGACAGTCATTCTTAAATTGTTACTACTAGTCAC
AACCCCCACATTATTCCAGTTGAAATTACTTAAAGGAGAATTGAAATACATGTGCCATGCTTAAAT
TTTATAGCTTAAATTGTTATTCTTATTGACGGGAAGAGGTACATTTTTCTCTTACTGAAAAC
AAATATGGATTAAATTGCTCAAATTGTTATAAAAGTGAATTGGTAGTGATCTTGTGTTCTGAGGGGAGAG
TGGTATAGATAGAAAATGACGAAGATGGCAATATACTTAATGTTGTTATTGTTAGTGTGTTACTGAAGA
CTTAGATTTTAAATTCCTAAATCCTAAATCCTTGTAGGGGGGTTTCAATTAACTGCACTATATAC
AGTTCACTACATATGGGTTGTTGAGTTTTGTGTGTTGTTCTGTTCTGTTCTGTTCTGTTCTGTT
TGTACATATCTAACTCTGTTCTTTGGTTGTTAGAGAACTGGATTTTCTCTCTTAAAGCAGTGCTTA
ATTGTTGTTTTAAATTGTTGATTCAGAAGTACTCCCAGCTCATAGGCGTTCATACTGTTACATCCAGAAC
ATTGTCAGGCTCTCTGTCAGCTTCTGTCATGTCATGTTAGGAAACCATGGAGTTAGGCACCTCCTGG
TTTTTTTATGAGAAAATNCTGTTAAATTGAAATGAAACATGTTAAACTTAAAGGAGAATTGAAATACATG
TTCTCTCAGCTTGTGATTACAAATTGTTGCTGACATGTTAAGATGAAATTATCTCTTAAATATCAT
TGTCTTGGGAGCAGTGTATGTTACTTACATAGCAGGGTCTCTGTCATGTTGTCATGTCACGAATATT
TTGGTTTAAACTTCTTATTGCTTGGCTGTTGATTAGTACAGTACAAGTGCATTCACAAAGATC
TTGAAAGTAATATTTAATCAATTAAATGTTATCTGGAAAAAAAAAAAAAA
AA

Human GOCAP1 mRNA sequence - var6 (public gi: 28374435) (SEQ ID NO: 66)
TCCGTCCCCGCTGAGGAGGTGCAGCAGCGGGAGATGGCGGCGGTGCTGAACGCAGAGCAGCTCGAGGTGT
CCGTCGACGGCCTCACGCTCAGCCCGAACCGGGAGGCCCTGGGGCGAGGGCGCCCGCTGCTGCC
GCCACCGCTGCCACCCTCGCACCTGGATCCGGTCGCGCCCGGGCGCTCAGGGAGCAGCCCGAG
CCCCGGGAGGCCGGCTGGGGCGCGCGGGAGGAGGCGCGGGCTGAGCAGCGCTGGGGTTTCTGGCC
TGGAGGAGTTGACGCCCTGGCACTGCGCTTCTCAAAGAAAAGATGCAAAGCATTCTACATCCAACTTA
TGAAGAAAATTGAAAGCTGTGGCACTGCAAAAGCAAGTTCTATGGCCCATATAATCCAGACACTTGT
CCTGAGGTGGATTCTTGATGTTGGGAGTACAGGAGGAGAGAAATGGGAGCCCTGGGAAACATG
CTAAAGAGGATGCCATGGGAGTTGTCAGCTTAAATAGGTTGCTCATCTTCAACATATGT
TGGCTCCCACAAAAATTGAGAAGGAAGAGCAAGGAAAAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
GAAGAG
GACGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
AATGGCAGCTTAAACTCCCAGACTGCGTGCAGTTCCAGCAGTATGCAAGCCAAACAGTATCCAGGGAA
TACGAACAGCAGCAAATTCTCATCCGCCAGTTGCACTGAGGAGCAACACTATCAGCAGTACATGCA
GAGTTGTCAGTACAGAAACACAGGAAGTGTAGTGGCTGGGTCTTC
CTTGCCATACATCATCAAAGTGAATGCAACTGTACCAAGTAATATGATGTCAGTTAATGGACAGGCCAA
ACACACACTGACAGCTCGAAAAAGAAGTGGAAACCGGAAGCTGCAGAAGAAGGCCCTGGAGAATGGACCA
AAGAATCTCTCCAGTAATAGCAGCTCCATGTCAGCAGACGACCTCAGATCAAAGACTTCAAAGAGAA
GATTCACTGAGGATGCAAGATTCCGTGATTACAGTGGGCCAGGAGAAGTGGTCACTGTTGAGTACCCACC
CATGAAGAAGGATCATATCTCTTGGGAAATTGCCACAGACAATTATGACATTGGGTTGGGTGATT
TTGAATGGACAGACTCTCCAAACACTGCTGTCAGCGTGCATGTCAGTGGAGTCCAGGAGCAGACGAG
GGAAGAAGAAACATCGGTGTGAAGAGAAGCAGAAAGAATGCCAACAAGCCTTGTGCTGGATGAGATT

Figure 36 part - 36

GTGCCCTGTCACCGACGGACTGTCATGAGGAGGTATGCTGGCAGCCATCAATATCCAGGGAGAGGAG
TCTATCTCCTCAAGTTGACAACCTCTACTCTTGCGGGTCAAATCAGTCTACTACAGACTCTATT
TACTAGATAAAAATGTTGACAAAGTCTGGAGTCAGGGTTGGGCAGAAGATGACATTAAATTGGAAA
TTTCTTTTACTTTGAGGACATTAGAGTCACAGTTACCTTATTGATATTGGCTGATGGTTGTGAA
CTCTGCTGGGAATCAAATTCCTTGAGACTCTTAGCATTCACTTTGGGTTAAAGGAGATTCTC
AGACTCATCCAGCCCTGGGTGCTGACCAGCAGAGTCACTAGTGGATGCTGAAGTTACATGAGCTACATG
TTAAATATTAAAGTCTCCAAAATAAAACACCCCACGTTGACCTTACCCGCTGATGGTTAGCCCTTG
CTGCCTGCTCCATGTGCTTATGAGAGGCCGAGTTACAGTGTGCTTAATTGAAATCCATAAGTTAAC
AAGTCTATATCAGGTGCACTGGTTGATTAAAGGCCATTTTAAAACCTAAACACCTCAC
GATTATAATAGAAAAAGAAATGGCTCAGTTGATCTGTCAGAATGACCCAGATTGTTCTGCTTGG
GTGCAGCTGTTAGTCAGGTTACAGAATTATTTCAGATAATCTTAAACTAGAATGTT
AAAACATAATTGATAATTGAGTATCAAGATACGTTAGAACACCTCAGAGATTTCAGGAACCTCCAC
AAACTTGAATCTTGATCTTATTGGTATTCACTACTAGTAGCAGAAATACAGGTTTTGTTTG
TTTGTGCTTGGCTTCAAGAGTATCTCAAATTGAAACTTTCTGCACAAAAGAATAAAATTAGGATT
TAAACTCAAATTGCCACCTACTGAATTAAACATCAAATTATAATTCAAGCATATGGGAAG
TAACATTGCACTAATATGAAATCACTGCCAGAGACAGTCATTTCATTGTTACTACTAGTC
ACAAACCCCACATTATTCAGTTGAAATTACTTATTAGGAGAATTGAAATACATATGCCATGCTTA
AATTATAGCTTAATTGTTATTCTTATTGACGGGAAGAGGTACATCTTTTCTTACTGAA
AACAAATATGGATAATTGCTCAAATTGTTAGTGTAGTGTAGTGTATTGTTACTGAA
AGTGGTATAGATAGAAAATGACAAGATGCCAATATAACACTTAATGTTATTGTTATTGTTACTGAA
GTACTTAGATTTTAAATTCAAATCCTAAATCCTGTTGAGTTTGTGCTGTTATTCTTCTGTTTTAATACCTGG
TACAGTCACTACATATGGTTGTTAGTTTGTGCTGTTATTCTTCTGTTTTAATACCTGG
TTTGTACATATCTAATTGTTCTTCTGTTGTTAGTGTAGTGTAGTGTACTGAA
TAATTGTTGTTTTAATTGTTAGTCAAGTAGTGTAGTGTAGTGTAGTGTAGTGTACTGAA
ACATTGTCAGGCTCTGTCAGCTTCTGTCAGTACATATGGTATAGAACCCATGGAGTTAGGCACCTCCTG
GATTTTTTTTTATGAGAAAATACTGTATTAAATGAAATAAACTTTAAAAGCAGGCACTAAT
ATATTTCTTCCAGCCTTGATTACAAATTGCTCTGCACATGTTAGATGAAATTATCTCTAAAT
ATCATTGTTCTGGAGCAGTGTATGTTACTTACATAGCAGCGGTTCTGTCATGTTCAAGTCA
TATTGTTTAAACTTCTTATTGCTCTGGCTGTTAGTACAGTACAAGTGCATTTC
GATCTGAAAGTAATATTTAATTGTTAGTCAAGCTTAAATTAGGTGTTGCACTCTTTCAACATATGTTGCGTCCC
GATGCCATGGTGGAGTTGTCAGCTTAAATTAGGTGTTGCACTCTTTCAACATATGTTGCGTCCC
ACAAAATAGAGAAGGAAGAGCAAGAAAAAAAGAAGGAGGAAGAGGAGGAAGAGGAGCGAAGGCGGCGTGAAGAGG
AAGAAAGAGAAAGTCTGCAAAAGGAGGAAGAGAAACGTTAGGAGAGAAGAGGAAAGGCTCGACGGGA
GGAAGAGGAAGGAGACGGATAGAAGAAAGGCTTCGGTTGGAGCAGCAAAGCAGCAGATAATGGCA
GCTTTAAACTCCAGACTGCCGTGCAAGTCCAGCAGTATGCCAACAGTATCCAGGGAAACTACGAAC
AGCAGCAAATTCTCATCCGCAAGTGCAGGAGCAACACTATCAGCAGTACATGCCAGCTGATCAAGT
CCAGCTTGCACAGCAACAGGCAAGCATTACAGAAACACAGGAAGTAGTGTGCTGGTCTTCCCTGCT
ACATCATCAAAGTGAATGCAACTGTACCAAGTAATATGATGTCAGTTAATGGACAGGCCAAACACACA
CTGACAGCTCGAAAAGAACCTGAAACCGAAGCTGCAAGAAGGCCCTGGAGAATGGACCAAAAGAAC
TCTTCCAGTAATGCACTCCATCCATGTCAGGACACGACCTCAGATCAAAGACTTCAAACAGAGAAGATTCAAG
CAGGATGCAAGTCCGTGATTACAGTGGCGAGGAGAAGTGGTCACTGTTGAGTACCCACCCATGAAG
AAGGATCATATCTTTGGAAATTGCCACAGACAATTATGACATTGGTTGGGTGATTGTAATG
GACAGACTCTCAAACACTGCTGTCAGCGTGCAGTCAGTGTGAGTCCAGCGATGACGAGGAGGAAGAA
GAAAACATCGTTGTAAGAGAAGCCAAGAATGCCAACAGCCTTGTGGATGAGATTGTC
TGTCAGGACGGACTGTCATGAGGAGGTGATGCTGGCAGCCATCAATATCCAGGGAGAGGAGTCTATCT
CCTCAAGTTGACAACCTCTACTCTTGCGGGTCAAATCAGTCTACTACAGACTTATTATACTAGA
TAAAATGTTGTTACAAAGTCTGGAGTCAGGGTTGGGCAGAAGATGACATTAAATTGAAATTCTT
TTACTTTGTTGAGCATTAGAGTCACAGTTACCTTATTGATATTGGCTGATGGTTGTGAACTCTTGC
TGGGAATCAAATTCCCTGAGACTCTTAGCATTCACTTTGGGTTAAAGGAGATTCCCTCAGACTCA
TCCAGCCCTGGGTGCTGACCAGCAGAGTCACTAGTGGATGCTGAAAGTTACATGAGCTACATGTTAAATA
TTAAAGTCTCAAATAAAACACCCCAACGTTGACCTTAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Figure 36 part - 37

Human GOCAP1 mRNA sequence - var8 (public gi: 2738926) (SEQ ID NO: 68)
GAATTCCGGTGTGCGAGCCGTAGTTACAGTGTCTAATTGAAATCCATAAGTTACCAAGTCTA
TATCAGGTACAGCTGGCTTCATAAAGGCCATTAAACTCAAAAACCTCACAGATTAT
AATGAAAAAGAAATGGCCTCAGTTGATCTGTTCAAGATGACCCAGATTGTTCTGCTTGGGTGCA
GCTGTTAGTTCAAGAGTTACAGAGAATTCTGAGAACTCTAAACTAGAATGTTCAAAC
TAATTGATAATTGAGTACAGATACTGAGAACACCTCAGAGATTCTCAGGAACCTCCACAAAC
TTTACAATCTGTATCTTATTGGTATTCTACTACTAGTCGAAAATACAGGTTTTGTT
TGTTTGTGTTGGCTCATAGAGTATCTCAAATTGAAACTTCTGCCAAAGAATAAAATTAGGATT
TATAAAACTCAAATTGGCACCTACTGAATTAAACATAAAAATGCAATTAAATTCAAGCATATGGC
AGTAACATTGCACTAATGGAAATCACTGCCAGAGACAGTCTATTCTTAAATTGTTACTACTTAG
TCACAACCCCACATTATTCCAGTTGAATTACTTATTAGGAGAATTGAAATACATATGCCATGCTT
AAATTATAGCTTAATTGTGTTATTCTTATTGACGGGAAGAGGTACATCTTTCTTACTCA
AAACAAATATGGATTAATTGCCTCAAATTGTATAAGTATTGGTAGTGATTCTGTTTCAAGAGGAG
AGTGGTATAGATAGAAATGACAAAGATGGCAATATACACTTAATGTTGTTATTGTATGTTACTGAA
GTACTTAGATTAAATTCAAATCCTAAATCATTCTGTAGGAGGGTTTCTTAACGTGAGATAT
ACAGTTCACTACATATGGTTGTTGAGTTTGTGCTGTTCTTCTGTTTTAATACCTGGT
TTGTCATATCTAATCTGTTCTTGTGTTGAGAAACTGGATTTTTTCTTAAGCAGTGCT
TAATTGTGTTTAAATTGTTGAGTCAAGTAGTCCCAGCTCATAGGTGTTCACTGTTACATCCAGA
ACATTGTCAGGCTCTGTCAAGCTTCACTGAGTATAGAAACCATGGAGTTAGGCACTCCCTG
GATTTTTTTTATGAGAAAATACTGTATTAAATGAAACTTTAAAGC

Human GOCAP1 Protein sequence - var1 (public gi: 24496473) (SEQ ID NO: 240)
MAAVLNAERLEVSVDGLTLSPDPEERPGAEGAPLLPPPLPPSPPGSGRGPGASGEQPEPGEAAAGGAAE
EARRLEQRWGFGLGLEELYGLALRLFKEKDGFKAHPTYEEKLKLVALHKVQLMGPYNPDTCPEVGFFDVGN
DRRREWAALGNMSKEDAMVEFVKLLNRCCHLFSTYVASHKIEKEEQDKKRKEEEERRRREEERERLQKE
EEKRRREEEERLRREEERIRIEEERLRLQQKQIMAALNSQTAQFQOYAAQYPGNYEQQQILIRQL
QEQQYQYMQQLYQVQLAQQAALQKQQEVVVAGSSLPTSSKVNVATVPSNMMSPNGQAKTHDSSEKELE
PEAAEEALENGPKESLPVIAAPSMWTRPQIKDFQREDASGRFRDYSRGGEVVTVRVPTHEEGSYLFWEF
ATDNCDIGFGVYFEWTDSPNTAVSVHVSSESSDDDEEEENIGCEEKAKKNANKPLLDEIVPVYRRDCHEE
VYAGSHQYPGRGVYLLKFDNSYSLWRSKSVYYRVYYTR

Human GOCAP1 Protein sequence - var2 (public gi: 21961497) (SEQ ID NO: 241)
RTRGCHLFSTYVASHKIEKEEQEKKRKEEEERRRREEERERLQKEEKKRKEEEERRRREEERERLQKE
ERLRLEQQKQIMAALNSQTAQFQOYAAQYPGNYEQQQILIRQLQEQQYQYMQQLYQVQLAQQAAL
QKQQEVVVAGSSLPTSSKVNVATVPSNMMSPNGQAKTHDSSEKELEPEAAEEALENGPKESLPVIAAPSM
WTRPQIKDFKEKIQQDADSVITVGRGEVVTVRVPTHEEGSYLFWEFATDNYDIGFGVYFEWTDSPNTAVS
VHVSESSDDDEEEENIGCEEKAKKNANKPLLDEIVPVYRRDCHEEVYAGSHQYPGRGVYLLKFDNSYSL
WRSKSVYYRVYYTR

Human GOCAP1 Protein sequence - var3 (public gi: 15799259) (SEQ ID NO: 242)
MAAVLNAERLEVSVDGLTLSPDPEERPGAEGAPLLPPPLPPSPPGSGRGPGASGEQPEPGEAAAGGAAE
EARRLEQRWGFGLGLEELYGLALRLFKEKDGFKAHPTYEEKLKLVALHKVQLMGPYNPDTCPEVGFFDVGN
DRRREWAALGNMSKEDAMVEFVKLLNRCCHLFSTYVASHKIEKEEQEKKRKEEEERRRREEERERLQKE
EEKRRREEEERLRREEERIRIEEERLRLQQKQIMAALNSQTAQFQOYAAQYPGNYEQQQILIRQL
QEQQYQYMQQLYQVQLAQQAALQKQQEVVVAGSSLPTSSKVNVATVPSNMMSPNGQAKTHDSSEKELE
PEAAEEALENGPKESLPVIAAPSMWTRPQIKDFKKEKIQQDADSVITVGRGEVVTVRVPTHEEGSYLFWEF
ATDNYDIGFGVYFEWTDSPNTAVSVHVSSESSDDDEEEENIGCEEKAKKNANKPLLDEIVPVYRRDCHEE
VYAGSHQYPGRGVYLLKFDNSYSLWRSKSVYYRVYYTR

Human GOCAP1 Protein sequence - var4 (public gi: 10438061) (SEQ ID NO: 243)
MAAVLNAERLEVSVDGLTLSPDPEERPGAEGAPLLPPPLPPSPPGSGRGPGASGEQPEPGEAAAGGAAE
EARRLEQRWGFGLGLEELYGLALRLFKEKDGFKAHPTYEEKLKLVALHKVQLMGPYNPDTCPEVGFFDVGN
DRRREWAALGNMSKEDAMVEFVKLLNRCCHLFSTYVASHKIEKEEQDKKRKEEEERRRREEERERLQKE
EEKRRREEEERLRREEERIRIEEERLRLQQKQIMAALNSQTAQFQOYAAQYPGNYEQQQILIRQL
QEQQYQYMQQLYQVQLAQQAALQKQQEVVVAGSSLPTSSKVNVATVPSNMMSPNGQAKTHDSSEKELE
PEAAEEALENGPKESLPVIAAPSMWTRPQIKDFKKEKIQQDADSVITVGRGEVVTVRVPTHEEGSYLFWEF
ATDNYDIGFGVYFEWTDSPNTAVSVHVSSESSDDDEEEENIGCEEKAKKNANKPLLDEIVPVYRRDCHEE
VYAGSHQYPGRGVYLLKFDNSYSLWRSKSVYYRVYYTR

Unigene Name: GOSR2 Unigene ID: Hs.432552

Human GOSR2 mRNA sequence - var1 (public gi: 2316087) (SEQ ID NO: 69)
ATGGATCCCCTGTCAGCAAACGACAAGCAGGTCCACGAGATCCAGTCAGTCATGGACGCCCTGGAGA
CGGCAGACAAGCAGTCAGCACATAGTAGAAAACGAAATCCAAGCAAGCATAGACCAGATACTCAGCCG
TCTAGAACGTCAGGAGATTTCAGCAAGGAGCCCCCTAACAAAAGGAAAATGCCAGACTTCGGGTT
GACCAGTTAAAGTATGATGTCAGCACCTGCAGACTCGCAGTCAGAAACTCCAGCATCGGCCATGCAA
GGGAGCAGCAGGAGAGACAGCGAGAAGAGCTCTGTGTCAGTCAGTTCAACAGGCTCTGACACCAC
CATACCAATGGACGAATCAGTCAGTTAACCTCCCTCCAGAAAAGTTCAACAGGCAATGGATGACCTC
ATTAGATGGCACAATATTTAGTGGACTGAGGAGCCAGAGACTGACCTTGAAGGGACTCAGAAGA
AGATCCCTGACATTGCCAACATGCTGGCTTGCAACACAGTGTGCGCTCATGGAGAAGCAGGGCTT
CCAGGACAAGTACTTATGATAGGTGGATGCTGACCTGTGTTGATGTTCTCGTGGTCAAGTGTGAGTAC

Human GOSR2 mRNA sequence - var2 (public gi: 3483524) (SEQ ID NO: 70)
TTTTTTTTTCAAGGACAGATTGGCCTTATACTAAATCCACAATATACTGGTATTAGTACAGCCTGAA
TCCGGGGCTGGTCACAGAAGGAAAAGGTTGAGTCCCTGAAAACAGAGTGTACAAGGACATACACACT
ACAGATGTCACGGTGGATCTGCCACACTGGCTGGCAAAATGAGGGCCTGGCTGGCAGGTGCTAA
TATATTCAGGAAGAGAAGGAAACAAAGAATTAGAGATACTAAACTAGAGCTGAGACTGTAAATTGGA
AAATCACAAATCTTGCTACAGCTACTTCTAAGGGCAAGGCCACAAAGCCTGGCGCAGGTGCCA
AGCCACAGTCTCTGAACCTTAAAGCCAACCACTCTATTAAACAACAGGAAACTAGGACTAGGGCTCA
AGACTGAACACTCCGGGAATAACACTGGCTCACTTTAGAAAAGAGAAACACCCAGCTGAGTGTGGA
AAATCTTACTTGTATCGCAATAGCACTACATCTGTTCCCTAGGTAGCTGCTTCCAGGGATGGT
ACAAGTATTGGCAGTCAGTCATCTACATGTCAGTGAGGACAGGGAGGGTGGCCAGGACACGAGGATG
TGAATCGACCTACTATTAATATAATGGCTGTGAGAAAAGGCTCTTCCCTTCACTTTGCTC
CACCCCTATCAGGAG

Human GOSR2 mRNA sequence - var3 (public gi: 21961348) (SEQ ID NO: 71)
GGCCTGCCGGCGCGACATGGATCCCCTGTCAGCAAACGACAAGCAGGTCCACGAGATCCAGTC
TGCATGGGACGCCCTGGAGACGGCAGACAAGCAGTCAGTCACATAGTAGAAAACGAAATCCAAGCA
TAGACCAAGATACTCAGGGCTCTAGAACGTCAGGAGATTTCAGCAAGGAGCCCTAACAAAAGGCA
AAATGCCAGACTCAGGGCTCTAGAACGTCAGGAGATTTCAGCAAGGAGCCCTAACAAAAGGCA
CAGCATCGGCCATGCAAGGGAGCAGCAGGAGAGACAGCGAGAAGAGCTCTGTCGAACCTTCACCA
CTAACGACTCTGACACCACCATACCAATGGACGAATCACTGCAGTTAACCTCCCTCCAGAAAGTCA
CAACGGCATGGATGACCTCATTTAGATGGCACAATATTTAGTGGACTGAGGACCCAGAGACTGACC
TTGAAGGTGGGTCCCTGCTGGGGACAGAGAGAAGGCTCTGTTAGCCTCATCCACAGTTAGTA
ACTGTGTTATATTTGATTACGTGTCCTCAAATTGTGATATTTGATGACAAGACAGGCCCTTGAGTT
TGGGATCCTTCTGTTGGAGTTGAGTTATTGTGAGCCTGAAAGTACCCAGTTGCCAGTGCTTGAA
ACAAACCATGAAGTGGCCTCTTCTAGGATCCAGGTCTTCCATTACTGAACATGAAAGTGAG
TGCTACTACGAGGGTCAATCACAGGTGAGAAATTGTGTTACAGAAACTCTACTCTGGAGAATGAAGA
CGTGGCTGCTTTGGTACCTCGCTTAAGGTGGCTTCCCTAGGACCCCTACTGTGGACTGCCCTATA
ACTAAAACCTTTGTTAGTAACGACTGTAACATCCCCTACTGTGAGCTGTTAGGGCTGCCAGGGTT
TAGATTAGAGCTTCTAGAACGACTCTAGAGCTTCTAAAGGCGGTGTTGATCCCAGCGACTCTTCACTCC
CTAGCCTTCTAGGATTCTCTAGAACGCCCTGACCAGTTGGCAGTGTGAGACTCCAGGCCCTGGAGGGTT
ACAGAAACATTACACAGACTCTGATGTCAGTCAGTGTTCAGCCTCTGCCCTTCTGTATCAACCC
TGATGGATAATAGGGCGTGGGTTCTGCTGTTATCAGGGCTGGTCCCCTGTGAATGAAGCACTCCCAGC
CACTGAGCTGTGAGAAACAGTCACTCGGAAGTGTGAGCTTATCTTAGGTTGATGTTGAGT
CTGTCAGCTCACAGGACTTCAGTACGTTCTGAACAGTCAGGCCATCTACGGGGAGGGTCAGG
CAAGCTGCAAGTGCACACTCACCTCTGCTGACAGTTGAGCTCAGATGCCCTGGAAGGGGGTCTCC
AGCAGCCTGCTGGCGCTCCCTTCTAGAGAGCCACCTGAGCTGACCTGAACCTGATACATGTTGATTAG
TCTGCCCTTCTTAGAAAAGTGTACTCTCTTCTAGAACGAGGCTCTGTTAAGGCAATGCTAGCTT
CCAAACTCCATGTCACACTGATGAAGAGCCAGTGGGGTTAGAGCTGCTGTTAAGGCAATGCTAGCTT
CCCACTCAAGTCTGGCAGCGCTGGGCATCAGCACACCTCTGCCACCCACTGATACCAAGAGGGGAAG
GCTGTGAGGTGGCTGGGGTTGAGAGACTTGAGGTTCTAACTTCTCTGCAACACCTGTTGCTACCTGGT
TTTGTCTCTGATTCCCTCCACCTGCTCACACCCCTGCCCTGGGATTTCACCTACACCAATTCAA
AAGGAACATAGGAGAGGGCATGAAGGGCTAGGGCTGAAGCAGTCTGATGACTGGGCAATTGTGGCTG
AAAATGAATACATTGAAATTATGGTCAAGTGTGATTAGAAGGGTGTGATCCTAGGCTATA
CAGTGTGAAATAATCTGTTGAGGCCAGCAGGACTTAGCAAGAGTCTGATTGTATTGTCATA
TCTCGGGAAAAAAACAAATACATTTCTGATCTGATGGCAATGAAGTTGACTTGTAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

PCT/US04/06308

Human GOSR2 mRNA sequence - var4 (public gi: 16905519) (SEQ ID NO: 72)
GTTCCGAGGAAGCCAGAGCCGGAGCCGTGGCCTGCCGGCGACATGGATCCCTGTTCCAGCAAAC
GCACAAGCAGGTCCACGAGATCCAGTCATGGCATGGACGCCCTGGAGACGGCAGACAAGCAGTCTGTGCAC
ATAGTAGAAAACGAAATCCAAGCAACCAGATATTCAAGCCGCTAGAACGCTCTGGAGATTTGT
CCAGCAAGGAGCCCCCTAACAAAAGGAAAATGCCAGACTTCGGGTTGACCAGTTAAAGTATGATGTCCA
GCACCTGCAGACTCGCCTCAGAAACTTCCAGCATCGGCCTGGAGACGGCAGCAGGAGAGACAGCGA
GAAGAGCTCTGCTCGAACCTTCACCAACTACGACTCTGACACCACATACCAATGGACGAATCACTGC
AGTTAACCTCCCTCCAGAAAGTTCACAACGGCATGGATGACCTCATTTAGATGGGACAATATT
AGATGGACTGAGGACCCAGAGACTGACCTTGAGGGGACTCAGAAGAAGATCCTGACATTGCAACATG
CTGGGTTGTCACACAGTGATGCGGCTCATCGAGAACACTTGGAGGAAGGCTGAGGAGCAGCTGAGCCATTGTT
GCACCCAAGGATCCTGCCAGACAGCACACTTGGAGGAAGGCTGAGGAGCAGCTGAGCCATTGTT
TTGAACCTGAGGAGGAGAACAGTCCCACCATCATGCGTGGACTGATAGGACATCTTCTGGGTGTG
CACCAGTGTCTCCACACTGACAGTGGTTGTTGATGAACCCATGCTGCACCTCAGAGCCAGTC
CTCTAGTTGGAATAAAGGAGGTGGAAAAAAAAAAAAAA

Human GOSR2 mRNA sequence - var5 (public gi: 12711466) (SEQ ID NO: 73)
AGCCGGAGCCGTGGCCTGCCGGCGACATGGATCCCTGTTCCAGCAAACGCACAAGCAGGTCCAC
GAGATCCAGTCATGGCATGGACGCCCTGGAGACGGCAGACAAGCAGTCTGTGCACATAGTAGAAAACGAAA
TCCAAGCAAGCATAGACCAAGATATTCAAGCCGCTAGAACGCTGGAGATTTGTCCAGCAAGGAGCCCC
TAACAAAAGGCAAATGCAAGACTTCGGGTTGACCAAGTTAAAGTATGATGTCCAGCACCTGCAGACTGCG
CTCAGAAACTTCCAGCATCGGCCTGGAGACGGAGCAGCAGGAGAGACAGCGAGAAAGAGCTTCTGTCTC
GAACCTTCACCAACTACGACTCTGACACCACATACCAATGGACGAATCACTGCAAGTTAACTCTCCCT
CCAGAAAGTTCAACACGGCATGGATGACCTCATTTAGATGGGACAATATTAGATGGACTGAGGACC
CAGAGACTGACCTTGAGGGACTCAGAAGAAGATCCTTGACATTGCCAACATGCTGGGCTGTCCAACA
CAGTGATGCGGCTCATCGAGAACGGCTTCCAGGACAAGTACTTTATGATAGGCAACCAAGGATCCTG
CCAGACAGCACACTTGGAGGAAGGCTGAGGAGCAGCTGAGCCATTGTTCTGAACCTCTGGAGGC
AGAAGTCCCCGCACCCATCATGCGTGGACTGATAGGACATCTTCTGGGTGTGCACCAAGTGCCTTCCAC
ACTTGACAGTGGTTGTTGATGAACCCATGCTGCACCTCAGAGCCAGTCCTAGTTGGAATAA
AAATTGCAAGAGGTGGAAAAAAAAAAAAAA

Human GOSR2 mRNA sequence - var6 (public gi: 37805253) (SEQ ID NO: 74)
CAATAGAGACAAGGTCTTGCTCTGTCACCCAGGGTGGAGTACAGTGGCATGATCTGATTCACTACAACC
TCTACCTCTGGITCAAGCGATCCTCCCACCTCGGTCTTGAGTAGCTGGAAATACAGTTATAATTAT
TCAATATGTTCCCACTGACTGAGGAAAACAAGCATGTTGGCCAGTTGCTCAATACTGGTACTTGTCC
AAGATGTATCTCAGATTCTGTTGTTGATTTTCATGCACCTTACAAACTTCCATACAAGATGAAGAAA
CTGAGATACAGAGAGGTTAAGCAACCTCCAAAGTTCTAGGGTTACAGGTGTTAGCCACTGTACCTGGCC
TCTAAGGTGATTCTGATGTGTATTTGGAACCACTGTCTCTAGACAGAAAGCTCTGTCTCAAAGAT
GATCACATTGGTGTAAAGAGCAAAACTGTTAAAGTCCAAAATAATTCTTACTGTTATATCCTAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Human GOSR2 mRNA sequence - var7 (public gi: 16905521) (SEQ ID NO: 75)
GTTCCGAGGAAGCCAGAGCCGGAGCCGTGGCCTGCCGGCGACATGGATCCCTGTTCCAGCAAAC
GCACAAGCAGGTCCACGAGATCCAGTCATGGACGCCCTGGAGACGGCAGACAAGCAGTCTGTGCAC
ATAGTAGAAAACGAAATCCAAGCAAGCAGATATTCAAGCCGCTAGAACGCTGGAGATTTGT
CCAGCAAGGAGCCCCCTAACAAAAGGAAAATGCCAGACTTCGGGTTGACCAAGTTAAAGTATGATGTCCA
GCACCTGCAGACTGCGCTCAGAAACTTCCAGCATCGGCCTGGAGACGGCAGCAGGAGAGACAGCGA
GAAGAGCTCTGCTCGAACCTTACCAACTACGACTCTGACACCACATACCAATGGACGAATCACTGC
AGTTAACCTCCCTCCAGAAAGTCAACACGGCATGGATGACCTCATTTAGATGGGACAATATT
AGATGGACTGAGGAGCCAGAGACTGACCTTGAGGGACTCAGAAGAAGATCCTGACATTGCCAACATG
CTGGGCTTGTCACACAGTGATGCGGCTCATCGAGAACGGCTTCCAGGACAAGTACTTTATGATAG
GTGGGATGCTGTCACCTGTGTTGTCATGTTCTGTTGTCAGTACCTGACATGAGCCAGCCACGCTCA
GTGGCTGAACAGCATTCCCACAGCTGCAAGTGTGTTGTTGAAAGAGAGAGGGGGCCAGAGGCC
GCCCTTGTAAATGTTGCTGTCATGAACTGTGAGACACTTGGGAGTGTGTTGTCATTTCCAAAAAA
AAAAAAAAAAAAAA

Human GOSR2 protein sequence - var1 (public gi: 16307241) (SEQ ID NO: 244)
MDPLFQQTHKQVHEIQSCMGRLETADKQSVMHVNEMIQASIDQIFSRLERLEILSSKEPPNKRQNARLRV
DQLKYDVQHLQTALRNQFHRRHAREQQERQREELLSRTFTNDSDTTIPMDESLQFNSSLQKVHNGMDL
ILDGHNILDGLRTQRLLTKGTQKKILDIANMLGLSNTVMRLIEKRAFQDKYFMIGGMLLCVVMFLVVQY
LT

Human GOSR2 protein sequence - var2 (public gi: 16905522) (SEQ ID NO: 245)
MDPLFQQTHKQVHEIQSCMGRLETADKQSVHIVENEIQASIDQIFSRLERLEILSSKEPPNKRNQARLRV
DQLKYDVQHLQTALRNFQHRRHAREQQERQREELLSRTFTNDSDTTIPMDESLQFNSSLQKVHNGMDDL
ILDGHNILDGLRTQRLTLKGTOKKILDIANMLGLSNTVMRLIEKRAFQDKYFMIGGMLLTCVVMFVVQY
LT

Human GOSR2 protein sequence - var3 (public gi: 12711467) (SEQ ID NO: 246)
MDPLFQQTHKQVHEIQSCMGRLETADKQSVHIVENEIQASIDQIFSRLERLEILSSKEPPNKRNQARLRV
DQLKYDVQHLQTALRNFQHRRHAREQQERQREELLSRTFTNDSDTTIPMDESLQFNSSLQKVHNGMDDL
ILDGHNILDGLRTQRLTLKGTOKKILDIANMLGLSNTVMRLIEKRAFQDKYFMIGTQGSCQTAHFGGRSA
GSS

Human GOSR2 protein sequence - var4 (public gi: 21961349) (SEQ ID NO: 247)
MDPLFQQTHKQVHEIQSCMGRLETADKQSVHIVENEIQASIDQIFSRLERLEILSSKEPPNKRNQARLRV
DQLKYDVQHLQTALRNFQHRRHAREQQERQREELLSRTFTNDSDTTIPMDESLQFNSSLQKVHNGMDDL
ILDGHNILDGLRTQRLTLKGTOKKILDIANMLGLSNTVMRLIEKRAFQDKYFMIGGMLLTCVVMFVVQY

Human GOSR2 protein sequence - var5 (public gi: 2316088) (SEQ ID NO: 248)
MDPLFQQTHKQVHEIQSCMGRLETADKQSVHIVENEIQASIDQIFSRLERLEILSSKEPPNKRNQARLRV
DQLKYDVQHLQTALRNFQHRRHAREQQERQREELLSRTFTNDSDTTIPMDESLQFNSSLQKVHNGMDDL
ILDGHNILDGLRTQRLTLKGTOKKILDIANMLGLSNTVMRLIEKRAFQDKYFMIGGMLLTCVVMFVVQY
LT

Human GOSR2 pray sequence - var1 (SEQ ID NO: 76)
AGCGCCGCCATGGNAGTACCCATNCAGTACAGATTACGCTCATATGGCCATGGAGGCCAGTGAATTCA
CACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGAAACCGGAAGGGGGCTGTGAGGACGT
GTTCCGAGGAAGCCAGACCCGGAGCCGGCTGGCTGCCGGGCGACATGGATCCCTGTTCCAGCAAAC
GCACAAGCAGGTCCACGAGATCCAGTCTTGATGGACGCCCTGGAGACGGCAGACAAGCAGTCTGTGCAC
ATAGTAGAAAAGAAATCCAAGCAAGCATAGACCAAGATATTCAAGCCGCTTAGGACGCTGGAGATTTGT
CCAGCAAGGAGCCCCCTAACAAAAGGCAAATGCCAAACTTCGGGTTGACCAGTTAAAGTATGATGTCCA
GCACCTGCAAGACTGCGCTAGAAACTCCAGCATCGGCGCNATGCAAGGGAGCAGGGAGAGACAGCGA
GAAGANCTNTGTCCTNAACCTAACCNNTACCAANTTGACNCCCCCTNCCATTGACCAAATANTNGN
NGTTAACNTNCCTCCCNAAAAGTTACAAACGGCTTGNNNAACNTANTTTAAAGGGNCCNATTTTT
TNAATNGCCTGGGNCCAAAACCTCCTTNGNGGGGGNCCNTTGGGGGAAAAAAANGCCC
TTTTTTTANCCCNNNCAANNTNAANACNGNNNNTTTTNAANCNGNNCCCAAAGAGGGGAN
TTTNNNAAANAAAACNCCCCCTNTGGGGGCCTNTTGGGGNGGANNTTTGNNCCNNAAAA
ACCCNTTTNTNNGGNGAAAAAAAGNNNNNTNTNTA

Human HERPUD1 mRNA sequence - var1 (public gi: 16507801) (SEQ ID NO: 77)
AGAGACGTGAACGGTCGTGAGAGATTGCGGGCGGCTGAGACGCCGCTGCCACCTAGGAGCGCA
GCGGAGCCCGACACCGCCGCCGCCATGGAGTCCGAGACCGAACCCGAGCCCGTCACGCTCTGGTG
AAGAGCCCCAACCGCGCACCGCGACTTGGAGCTGAGTGGCGACCGCGCTGGAGTGTGGCCACCTCA
AGGCCAACCTGAGCCCGCTCACCCCGAGCGTCGCCGTCCAGAGGACAGAGTTAATTCTGGAA
GCTGTTGTTGATACCAATGTCTCAGGGACTTGCTTCAAAGGAAAACGGCATGTTTGATCTGGTG
TCAATGTGAAGAGTCTTCAAAATGCCAGAAATCAACGCCAAGGTGGCTGAATCCACAGAGGAGCCTG
CTGGTTCTAATCGGGGACAGTATCTGAGGATTCTCAAGTGTGATGGTTAAGGAAAGGGAAAGTTCTCG
GAACCTTCTCCCTGGATGGAAAACATCTCAAGGCACTACGTTGGTGGTTCCATTAGACCGAGG
CCGGTTCAGAACTTCCCAAATGATGGCTCTCCCTGACGGTGTAAATCAGGACCCAAACAATAACTTAC
AGGAAGGCAGTGTCTGAAACTGAAGACCCAAACCACCTCCAGACAGGGATGTACTAGATGGCGA
GCAGACCGCCCTCTTTATGAGCACAGCATGGCTTGTCTCAAGACTTCTTGCCTCTCTTCCA
GAAGGCCCCCAGCCATCGCAAACGTGATGGTGTGAGCTGTGGAGGCTTGACAGGAATGG
CTGGATCACCTGACTCCAGCTAGATTGCTCTGGACATGGCAATGATGAGTTTAAAGGAAACAGTGT
GGATGATGATGATGTTGTGAGCAAGAAAAGCAGAAACGTGAAGCCGTGATACAAATTGGTGAACAAA
AAATGCCAAGGCTCTAGGTGTTGATGTCTATGCTTGTGAGGAAACTTCTTCAAATGTGTGTCTGCAT
CTGTACGTAGAAGGCTTAGGTGTTGATGTCTATGCTTGTGAGGAAACTTCTTCAAATGTGTGTCTGCAT
GTGTGTTGTACATAGAAGTCACTAGATGCGAGAAGTGGTTCTGCTGGTACGATTTGATTCTGTGGAAATG
TTAATTACACTAAGTGTACTACTTTATATAATCAATGAAATTGCTAGACATGTTTAGCAGGACTTT
CTAGGAAAGACTATGTATAATTGCTTTAAATGCACTGCTTTACTTTAAACTAAGGGAAACTTGCG
GAGGTGAAAACCTTGTGGTTCTGTTCAATAAAAGTTTACTATGAATGACCTGAAAAAA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Human HERPUD1 mRNA sequence - var2 (public gi: 10441910) (SEQ ID NO: 78)
GCTGTGTGGCCAGGTTCTCAAACCTCTGAGGGCAAGCGATCCTCCACCTCAGCCCTGAGTAGC
TGGGACTAACAGGCATGTGCCACTAGACCTGGCTAAAGACATATATGACACACGAAACCATTATTTT
CATTCAACAATGTTATTACATATATGGTATTAGTATTCTAATGTAGTGACTCTAAATTGCAATT
ATATTCTAGAACATCTGAACAGAGCATAGGAATTCCCTATTTCGCAATTATCAGITCTAACAAAAAAT
CTTAAAAGCACTTATCATTCTATTCCCTGCACTGTAATTTTAAATGATCAAAACAGTATCATACT
CAAGGCTTACTTATATTGAATACTATTAGAAAGTTGTGGCTGGGTGTATTATAAATCTGTTGG
TCAGATGTCTGCAATGAGTAATTAGCACCATTATCAGGAAGCTTCTACCAATGACAACCTTCAATTGG
AAGATTAAATGAAAGTGTAGCATACTCTAGGGAAAAAATATGAATATTAGCATCTATGTATTGAAAAA
TTATGTTGAATAATGTCAGACTATTTCATACATACGTTCTGTTAATTGTCACGTTAGG
TGGGGGTAGGAGATGTAAGCCCCTGACAGCAAAATTCTTGTGATTCAGACAGTTGCA
GCTCTTGTCTGTGTTACACTTATTAGTGGCTGAATCCACAGAGGAGCCTGCTGTTCTA
ATCGGGGAGCAGTACCTGAGGATTCTCAAGTGATGGTTAAGGCAAAGGGAGTTCTCGGAACCTTTC
TTCCCTGGATGGAAAACATCTCAAGGCTGAACTGCCCAGCAGGCAATTCCAAGGCCTGGTCTGGT
TTCTCGGTTACACACCCATTGGGTGGCTCAGCTTCTGGTCCAGCAGAATATGCA
ACATGCAATATTAGCAGCCACTGCTGCATCAGGGCTTTGTTCCACCAAGTGCACAAGAGATA
TGTGGTCTCTGCACCTGCTCCAGCCCCATTACACAACCAGTTCCAGTGA
AATGCTGCTCTCAAGTGGTTAACCTGGAGCCAATCAAATTGGGAGTGAATGCCACAAGGTGGCC
CTATTGGAAGAAGATGATGAAATAATCGAGATTGGTTGGATTGGACCTATTCA
TGTTTTCTCAGTATCCTCTACTTCACTCCTCCCTGAGCAGATTCTCATGGTCA
GTTATGTACCTGCATCACGTTGGGTGTTCCATTAGCAGGGAGGCGGTT
CAGAACACTCCCAATGATGAGTTTAAACAGTGTGGATGATGATGTTTGAGCA
GTCCTCTCCCTGACAGTGAAGGCAACCTCCAGACAGGGATGTA
AGACCCCCAACACCCCTCCAGACAGGGATGTA
CTAGATGGCAGCAGACAGCCCTCCAGCCATCGCAAAACT
ACAGCATGGCTGTCTCAAGACTTTCTTGCCTCTCTTCTCCAGA
AGGGTGTGTTGCTGTAGCTGTTAGGCTTGA
TGCAGGAACTGGACTGGATCACCTGACTCCAGCTAG
AGACAGGAACTGGGTTCTGCTGGTACGTTGATTCTGTTGA
TGCAGGAACTGGGTTCTGCTGGTACGTTGAGGACTTTCTAGGAAAGAC
TTATGTTGAGGAACTTTGCTGGGAGGTGAAACCTTGTGCTGGTT
CTGTTCAATAAGTTTACTATGAATGACAAAAAAAAAAAAAA

Human HERPUD1 mRNA sequence - var3 (public gi: 3005722) (SEQ ID NO: 79)
GGCCACCTCAAGGCCACCTGAGCCGCTCACCCGAGCGTCCGCTCAGAGGACAGAGGTTAATT
ATTCTGGGAAGCTGTTGATCACCAATGTCAGGGACTTGTCTTCAAAAGGAAAACGGCATGTTT
GCATCTGGTGTCAATGTAAGAGTCTTCAAAAGGCAAAATCAACGCCAACGGCTGAATCCACA
GAGGAGCCTGCTGGTCTAATCGGGACAGTACCTGAGGATTCTCAAGTGATGGTTAAGGCAAAGGG
AAGTTCTCGAACCTTCTCCCTGGATGGAAAACATCTCAAGGCTGAAAGCTGCCAGCAGGCATT
CCAAGGCTGGCTCTGGTTACACACCCCTATGGGGCTCAGCTTCTGGTTCCAGCAG
ATATATGCAAGACAGTACTACATGCAATATTAGCAGCCACTGCTGCATCAGGGCTTTGTTCCAC
CAAGTGCACAAGAGATAACCTGCTGGTCTCTGCACCTGCTCCAGCCCCATTACACA
AAACAGCCTGCAATCAGAATGCTGCTCTCAAGTGGTTAACCTGGAGCCAATCAAATTGGGG
ATGAATGCACAAGGTGGCTTATTGTTGAGAAGAGATGATGAAATAATCGAGATTGGTTGGATTGGACCT
ATTCACTGAGCTACATTCTGTTCTCACTGATCTCTACTTCACTCCTCCCTGAGCAGATTCTCAT
GGTCATGGGGCCACCGTTGTTATGACCTGCATCACGTTGGGGCTTCCATTAGACCGAGGCCGGTT
CAGAACTTCCAAATGATGGCTCTCTGAGCTGTTGTAATCAGGACCCCAACATAACTACAGGAAG
GCACTGATCTGAAACTGAGACGCCAACACCCCTCCAGACAGGGATGTA
CTAGATGGCAGCAGAC
CCCCCAGCCCTTATGAGCACAGCATGGCTTGTCTCAAGACTTTCTTGCCTCTTCTCCAGAAGGG
CACCTGACTCCAGCTAGATTGCTCTCTGGACATGGCAATGATGAGTTTAAACAGTGTGGATGA
TGATATGTTTGTGAGCAAGCAAAGCAGAAACGTGAAGCCGTGATACAAATTGGTAACAAAAAATGC
CCAAGGCTCTCATGTTATTCTGAAGAGCTTAAATATATACTCTATGTTAATAAGCACTGTAC
GTAGAAGGCCCTAGGTGTTGCACTGCTATGCTTGTGAGGAACTTTCAAATGTTGCTGCTGCA
TTGTACATAGAAGTCATAGATGCAAGAGTGGTCTGCTGGTACGATTGATTCTGTTGGAAATGTTAAA
TTACACTAAGTGTACTACTTATATAATCAATGAAATTGCTAGACATGTTAGCAGGACTTTCTAGGA
AAGACTTATGTTAATTGCTTTAAACATGCAAGTGTCTTACTTAAACTAAGGGAACTTTGCGGAGGTG
AAAACCTTGCTGGTTCTGTTCAATAAGTTTACTATGAATGACCCCTGAAAAAA
AAAA

PCT/US04/06308

Human HERPUD1 mRNA sequence - var4 (public gi: 21619176) (SEQ ID NO: 80)
CCACCGTCCGGTCGTTGAGAGATTGCGGGCGGTGAGACGCCGCTGCCCTGGCACCTAGGAGCGCAG
CGGAGCCCCGACACCGCCGCCGCATGGAGTCCGAGACCGAACCCGAGGCCGTCACGCCCTGGTGA
AGAGCCCAACCAGGCCACCGCAGTGGAGCTGAGTGGCGACCGCGGTGGAGTGTGGGCACCTCAA
GGCCACCTGAGCCGCTCACCCAGCGTCCAGAGGACCAAGGGTAAATTATTCTGGGAAG
CTGTTGTTGGATACCAATGTCAGGGACTTGCTTCCAAAGCAGGAAAACCGCATGTTTGCACTGG
TGTGCAATGTGAAGAGTCCTTCAAAATGCCAGAAATCAACGCCAAGGGTGGCTGAATCCACAGAGGCC
TGCTGGTCTAATCGGGGACAGTATCCCTGAGGATTCTCAAGTGTGATGGTTAAGGAAAGGGAAAGTCTT
CGGAACCTTCTCCCTGGATGGGAAACATCTCAAGGCCCTGAAGCTGCCACGCCAGGCACTTCAAAGGCC
TGGGTCTGGTTCTCCGGTACACACCTATGGGGCTTCAGCTTCTGGTCCAGCAGATAATGC
ACGCACTACTACATGCCAATATTAGCAGCCACTGCTGCATCAGGGCTTGTCCACCACCAAGTGC
CAAGAGATACCTGTGGTCTGCACCTGCTCCAGCCCTATTACAACCAAGTCCAGCTGAAACCCAGC
CTGCCAATCAGAAATGTCCTCAAGTGGTTGTTAATCCTGGAGCCAATCAAATTGCGGATGAATGC
ACAAGGTGGCCATTGTGAGAAGATGATGAAATAATCAGAGATTGGGGATTGGACCTATTAGCA
GCTACATTTCTGTTTCTCAGTATCCTACTTCTACTCCTCCCTGAGCAGATTCTCATGGTCATGG
GGGCACCGGTTTATGTACCTGCATCACGGTGGGTTCCATTAGACCGAGGGCGGTTCAGAACTT
CCCAATGATGGCCTCCTCTGACGTGTAATCAGGACCCAAACAATAACTACAGGAAGGCAGTGT
CCTGAAACTGAAGACCCAAACACCTCCCTCCAGACAGGGATGACTAGATGGCGAGCAGACCC
CCTTATGAGCACAGCATGGCTCTCAAGACATTCTTCTCTCTTCAAGGCTTCTCTTCCAGAAGGCC
CATCGCAAATGATGGTGGTGTGCTGAGCTGTTGGGCTTGTGACAGGAATGGACTGGATCACCTGAC
TCCAGCTAGATTGCCCTCTCTGGACATGGCAATGATGGATGAGTTTAAACAGTGTGGATGATGATATGC
TTTGTGAGCAAGCAAAGCAGAACAGCTGAGCCGTGATACAATAATTGGTAACAAAAATGCCAAGGCTT
CTCATGTCATTCTGAAGAGCTTAATATATACTCTATGTTAAGACTGTACGTAGAAAGGC
CTTAGGTGTTGTCATGCTATGGTGGAACTTTCCAATGTTGCTGTCATGTTGACATA
GAAGTCATAGATGCAAGGGTCTGCTGGTACATTGATTCTGTTGAATGTTAAATTACACTAA
GTGACTACTTATATAATCAATGAAATTGCTAGACATGTTAGCAGGACTTTCTAGGAAAGACTTAT
GTATAATTGCTTTAAATGCACTGTTACTTAAACTAAGGGAACTTGGGAGGTGAAACCTT
GCTGGGTTCTGTTCAATAAGTTTACTATGAATGCCCTGAAAAAAAAAAAAAA

Human HERPUD1 mRNA sequence - var5 (public gi: 14249882) (SEQ ID NO: 81)
AACGGTCGGTGCAGAGATTGCGGGCGCTGAGACGCCGCTGCCCTGGCACCTAGGAGCGCAGCGGAGCCC
CGACACCGCCGCCGCCATGGAGTCCGAGACCGAACCCGAGGCCGTCACGCCCTGGTGAAGAGGCC
AACCAGGCCACCGCAGTTGGAGCTGAGTGGCGACCGCGGTGGAGTGTGGGCCACCTCAAGGCC
TGAGCCGCGTCAACCCGAGCGTCCCGTCCAGAGGACCAAGGGTAATTATTATTCTGGGAAGCTGTT
GGATCACCAATGTCAGGGACTTGCTTCCAAGCAGGAAAACCGCATGTTGCAATCTGGTGTGCAAT
GTGAAGAGTCCTCAAAATGCCAGAAATCACGCCAAGGGCTGAATTCACAGAGGAGCCTGGT
CTAATGGGACAGTATCTGAGGATCCTCAAGTGTGTTAAGGCAAGGGAGTTCTCGGAACCT
TTCTTCCCTGGATGGGAAACATCTCAAGGCTGAGCTGCCAGCAGGATTCCAAGGCC
GGTTTCTCCGGTTACACACCTATGGGTGGCTCAGCTTCTGGTCCAGCAGATAATGCACGACAGT
ACTACATGCCAATATTAGCAGCCACTGCTGCATGGGCTTGTGTTCCACCACCAAGTGCACAAGAGAT
ACCTGTTGCTCTGCACCTGCTCCAGCCCTATTCAACAACAGTTCCAGCTGAAACCAAGCCTGCC
CAGAATGCTGCTCTCAAGTGGTGTAAATCTGGAGCCAATCAAATTGCGGATGAATGCACAAGGTG
GCCCTATTGTTGAGAAGATGATGAAATAATCGAGATTGGTGGATGGACCTATTCAAGCAGCTACATT
TTCTGTTTCTCAGTATCTCTACTCTACTCTCCCTGAGCAGATTCTCATGGTCATGGGGGCC
GTTGTTATGACCTGCATCAGTGGGTTCCATTAGACCGAGGGCGGTCAAGAACCTTCC
ATGGTCCTCTCTGACGTTGTAATCAGGACCCAAACAATAACTACAGGAGGGACTGATCTGAAAC
TGAAGACCCCAACCACCTCCCTGAGACAGGGATGACTAGATGGCGAGCAGACGCC
AGCACAGCATGGTTGCTCTCAAGACTTCTTGTCTCTCTTCCAGAAGGCC
ACTGATGGTGGTTGTGCTGAGCTGTTGGGGCTTGTGACAGGAATGGACTGGATCACCTGACTCC
GATTGCCCTCTCTGGACATGGCAATGAGTTTAAACAGTGTGGATGATGATATGTTGTGA
GCAAGCAGGAAACAGTGAAGGCCGTCACAAATTGGTGAACAAAAATGCCCAAGGCC
CTTATTCTGAAAGAGCTTAATATATACTCTATGTTAAGACTGTACGTAGAAGGCC
GTGCTGATGTCATGCTGAGGAACCTTCCAATGTTGCTGTCATGTTGACATAGAAGTCA
TAGATGCAAGAGTGGTCTGCTGGTACATTGATTCTGTTGAATGTTAAATTACACTAAGTGTACT
ACTTTATATAATCAATGAAATTGCTAGACATGTTAGCAGGACTTTCTAGGAAAGACTTATGTATAAT
TGCTTTTAAATGCACTGTTACTTAAACTAAGGGAACTTGGGAGGTGAAACCTTGGT
TTCTGTTCAATAAGTTTACTATGAAAAAA

Human HERPUD1 mRNA sequence - var6 (public gi: 12652674) (SEQ ID NO: 82)
GAACGTGTCGGTGCAGAGATTGCGGGCGCTGAGACGCCGCTGCCCTGGCACCTAGGAGCGCAGCGGAGCC
CCGACACCGCCGCCGCCATGGAGTCCGAGACCGAACCCGAGGCCGTCACGCCCTGGTGAAGAGGCC
CAACCGGCCACCGCAGCTGGAGCTGAGTGGCGACCGCGGTGGAGTGTGGGCCACCTCAAGGCC

CTGAGCCCGTCTACCCGAGCGTCCGGTCCAGAGGACCAGAGGTTAATTATCTGGGAAGCTGTTGT
TGGATCACCAATGTCTCAGGGACTTGCTTCAAAGCAGGAAAACGGCATGTTTGCATCTGGTGTGCAA
TGTGAAGAGTCCTCAAAATGCCAGAACATCAACGCCAAGGTTGGCTGAATCCACAGAGGAGCCTGCTGGT
TCTAATCGGGACAGTATCTGAGGATTCCTCAAGTGTGTTAAGGCAAAGGGAAAGTCTTCGGAACC
TTTCTTCCCCTGGATGGAAAACATCTCAAGGCTGAAAGCTGGCCAGCAGGATTCCAAGGCCTGGTCC
TGGTTTCTCCGGTACACACCCATGGGTGGCTTCAGCTTCTGGTTCAGCAGATAATGCACGACAG
TACTACATGCAATTAGCAGGCACTGCTGCATCAGGGCTTGTGTTCCACCACCAAGTGCACAAGAGA
TACCTGTGGTCTCTGCACCTGCTCAGGCCCCTATTCAACACAGTTCCAGCTGAAAACAGCCTGCCAA
TCAGAATGCTGCTCCTCAAGTGGTTGTAATCTGGAGCCAATCAAATTGCGGATGAATGCACAAGGT
GGCCCTATTGGAAGAAGATGATGAAATAATCAGAGATTGGTGGATTGGACCTATTCAAGCAGCTACAT
TTCTGTTTCTCAGTATCCTCTACTCTACTCCTCCCTGAGCAGATTCTCATGGTATGGGCCAC
CGTTGTTATGTAACCTGCATCACGTTGGGTGTTCCATTAGACCGAGGGCGGTTGAGAACTTCCCAAAT
GATGGTCCCTCCCTGACGTTGTAATCAGGACCCAAACAATACTTACAGGAAGGCACTGATCTGAAA
CTGAAGACCCCAACCACCTCCCTCAGACAGGGATGTAAGATGGCGAGCAGACCAGCCCCCTCTTAT
GAGCACAGCATGGCTTGTCAAGACTTTCTTGCCTCTTCCAGAAGGCCCCCAGCCATCGCA
AACTGATGGTGTGTTGCTGAGCTGTTGGAGGCTTGACAGGAATGGACTGGATCACCTGACTCCAGCT
AGATTGCCTCTCTGGACATGGCAATTGATGAGTTTTAAAAACAGTGTGGATGATGATATGCTTTGTG
AGCAAGCAAAAGCAGAACAGTGTGAAAGCAGGATGACATAAAATTGGTAACAAAAAATGCCAAGGCTTCTCATG
TCTTAACTGAAAGAGCTTAAATATACTCTATGTTAATAAGCACTGTACGTAGAAGGCCCTAGG
TGTGCAATGTAAGAGCTCTTAAATATACTCTATGTTAATAAGCACTGTACGTAGAAGGCCCTAGG
ATAGATGCAGAAGTGGTTCTGCTGGTACATTGATTCTGTTGAATGTTAAATTACACTAAGTGTAC
TACTTTATATAATCAATGAAATTGCTAGACATGTTTAGCAGGACTTTCTAGGAAAGACTTATGTATAA
TTGCTTTTAAATGCACTGCTTACTTTAAACTAAGGGAACTTGCAGGTTGAAAACCTTGTGCTGGG
TTTCTGTTCAATAAGTTTACTATGAATGAAAAAAAAAAAAAA

Human HERPUD1 mRNA sequence - var7 (public gi: 9711684) (SEQ ID NO: 83)
AGAGACGTGAACCTGCGTGCAGAGATTGCGGGCGCTGAGACGCCGCTGGCACCTAGGAGCGA
GCGGAGCCCCGACACCGCCGCCGCGCATGGAGTCCGAGACCGAACCGAGCCCGTCACGCTCTGGTG
AAGAGCCCCAACCGCGCCACCGCGACTTGGAGCTGAGTGGCGACCGCGCTGGAGTGTGGGCCACCTCA
AGGCCCACCTGAGCCGCGTCTACCCCGAGCGTCCGCGTCCAGAGGACCAGAGGTTAATTATCTGGGAA
GCTGTTGTTGGATCACCAATGTCTCAGGGACTTGTCTTCAAAGCAGGAAAACGGCATGTTTGCATCTG
GTGTGCAATGTAAGAGCTCTTAAATGCAACCGCAAGGCGGCTGAATCCACAGAGGAGC
CTGCTGGTCTAATCGGGACAGTATCCTGAGGATTCCTCAAGTGTGTTAAGGAAAGGGAAAGTCT
TCGGAACCTTCTTCCCTGGATGGAAAACATCTCAAGGCTGAAAGCTGCCAGCAGGATTCCAAGGC
CTGGTCTGGTTCTCCGGTACACACCCCTATGGTGGCTTCAGCTTCTGGTCCAGCAGATAATG
CACAGACAGTACTACATGCAATTAGCAGGCCACTGCTGCATCAGGGCTTTGTTCCACCAAGTGC
ACAAGAGATACTGTGGTCTGCACTGCTCCAGCCCTATTACAACCAAGTTCCAGCTGAAAACCAG
CTGCAATCAGAATGCTGCTCTCAAGTGGTTTAATCTGGAGCCAATCAAATTGCGGATGAATG
CACAGGCGCCATTGTTGAGAAGATGATGAAATAAAATCGAGATTGGTGGATTGGACCTATTGAG
AGCTACATTTCTGTTTCTCAGTATCCTCTACTCTACTCCCTGAGCAGATCCTCATGGTATG
GGGCCACCGTTTATGACCTGCATCACGTTGGTGGTTCCATTAGACCGAGGCCGTTGAGAAGT
TCCCAATGATGGTCTCTCTGACGTTGTAATCAGGACCCAAACAATAACTTACAGGAAGGCAGTGA
TCCAGAAACTGAGACCCCAACCACCTCCCTCAGACAGGGATGTAAGATGGCGAGCAGACAGCCCC
TCTTATGAGCAGCATGGCTTGTCTCAAGACTTTCTTGCCTCTTCTCCAGAAGGCCCCCAG
CCATCGCAAAGTGTGGTTGTGAGCTGGAGGCTTGTAGCTTGGAGGCTTGTAGCTGAGGATGGATCACCTGA
CTCCAGTAGATTGCTCTCTGGACATGGCAATTGAGTTTTAAAAACAGTGTGGATGATGATATG
CTTGTGAGCAAAGCAGAACAGTGAAGCCGTGATAACAATTGGTAACAAAAATGCCAAGGC
TTCTCATGTCCTTATTCTGAAGAGCTTAATATATACTCTATGTTAATAAGCACTGTACGTAGAAG
GCCCTAGGTGTTGCATGCTATGCTGAGGAACCTTCCAAATGTGTGCTGCATGTGTTGTACA
TAGAAGTCATAGATGCAGAAGTGGTCTGCTGGTACGATTGATTCTGTTGAAATGTTAAATTACACT
AAGTGTACTACTTATATAATCAATGAAATTGCTAGACATGTTTAGCAGGACTTTCTAGGAAAGACTT
ATGTATAATTGCTTTTAAATGCACTGCTTACTTTAAACTAAGGGAACTTGCAGGTTGAAAACCT
TTGCTGGTTCTGTTCAATAAGTTTACTATGAATGACCCCTG

Human HERPUD1 mRNA sequence - var8 (public gi: 3005718) (SEQ ID NO: 84)
GACGTGAACGGTGTGAGAGATTGCGGGCGCTGAGACGCCGCTGGCACCTAGGAGCGCAGCG
GAGCCCCGACACCGCCGCCGCGCATGGAGTCCGAGACCGAACCGAGCCCGTCACGCTCTGGTGAAG
AGCCCCAACAGCGCCACCGCGACTTGGAGCTGAGTGGCGACCGCGGGCTGGAGTGTGGGCCACCTCAAGG
CCCACCTGAGCCGCGTCTACCCCGAGCGTCCGCGTCCAGAGGACCAGAGGTTAATTATCTGGGAAGCT
GTTGTTGGATCACCAATGTCTCAGGGACTTGTCTTCAAAGCAGGAAAACGGCATGTTTGCATCTGGTG
TGCAATGTAAGAGACTCCTCAAAATGCCAGAACATCAACGCCAAGGTGGCTGAATCCACAGAGGAGCCTG
CTGGTTCTAATCGGGGACAGTATCCTGAGGATTCCCTCAAGTGTGTTAAGGAAAGGGAAAGTCTTCG

GAACCTTCTCCCTGGATGGAAAACATCTCAAGGCCTGAAGCTGCCAGCAGGATTCCAAGGCCTG
 GGTCTGGTTCTCGGTTACACACCCATGGGTGGCTCAGCTTCCTGGTCCAGCAGATATATGCAC
 GACAGTACTACATGCAATATTTAGCAGCCACTGCTGCATCAGGGGTTTGTTCACCCAGAAGTCACA
 AGAGATAACCTGTGGTCTGACCTGCTCCAGCCCTATTACAACCAAGCTTGAAACCCAGCCT
 GCCAATCAGAATGCTGCTCTCAAGTGGTTAATCTGGAGCCAATCAAATTTGGGGATGAATGCAC
 AAGGTGGCCCTATTGTGGAAGAAGATGATGAAATAATCGAGATTGGTTGATGGACCTATTCAAGCAGC
 TACATTTCTGTTTCTCACTATCCTACTCTACTCCTCTGGTGGATTGGACCTATTCAAGCAGC
 GCCACCGGTTGTATGTACCTGACCTGCTGGGGTTTCCATTAGACCGAGGGCTTCAAGCAGC
 CAAATGATGGTCTCTCGTACGTTGAAATCAGGACCCAAACAATAACTACAGGAAGGCAGTCC
 TGAAACTGAAGACCCAAACCCCTCCAGACAGGGATGACTAGATGGCGAGCAGACCAGCCCCTCC
 TTATGAGCACAGCATGGCTGTCTCAAGACTTTGCTCTCTTCCAGAAGGGCCCCAGCCA
 TCGCAAACACTGATGGTGTGTCTGAGCTGGAGGCTTGACAGGAATGGACTGGATCACCTGACTC
 CAGCTAGATTGCCCTCTGGACATGCAATGATGAGTTTAAAAAACAGTGTGGATGATGATGCTT
 TTGTGAGCAAGAAAAGCAGAAACGTGAAGCGTGATAAAATTGGTGAACAAAAATGCCAAGGCTTC
 TCATGTCTTATTCTGAAGAGCTTAATATATACTCTATGAGTTAATAAGCACTGTAGAAGGCC
 TTAGGTGTTGATGTCTATGCTGAGGAACCTTCCAAATGTGTGTCTGCATGTGTGTTGACATAG
 AAGTCATAGATGCAAGATGGTCTGCTGGTACGATTGATCTGTTGGAATGTTAAATTACACTAAG
 TGTACTACTTATATAATCAATGAAATTGCTAGACATGTTTAGCAGGACTTTCTAGGAAAGACTTATG
 TATAATTGCTTTAAAATGCACTGCTTACTTTAAACTAAGGGAACTTGCAGGAGGTGAAAACCTTG
 CTGGTTTCTGTTCAATAAAAGTTTACTATGAATGACCTGAAAAAAAAAAAAAA

Human HERPUD1 mRNA sequence - var9 (public gi: 285960) (SEQ ID NO: 85)

CGTGAACGGTCGTTGAGAGATTGCGGGCGGCTGAGACGCCCTGCTGGCACCTAGGAGCGCAGCGA
 GCCCCGACACCGCCGCCGCGCATGGAGTCCGAGACCGAACCCGAGCCGACGGCTGGAGTGTGGCCACCTCAAGGCC
 CCCAACAGCGCACCCGCGACTTGGAGCTGAGTGGCGACCCGAGCCGCTGGAGTGTGGCCACCTCAAGGCC
 CACCTGAGCCCGCTCACCCCGAGCGTCCCGCTCAGAGGACCAAGAGGTTAATTATTCTGGGAAAGCTGT
 TGTGGATCAAAATGTCAGGACTTCTCAAGCAGAAAACGGCATGTTTGCACTGGTGTG
 CAATGTGAAGAGTCCTCAAAATGCAAGAAATCAACGCCAGGTGGCTGAATCCACAGAGGAGCCTGCT
 GGTTCTAATCGGGACAGTATCCTGAGGATTCTCAAGTGTGTTAAGGCAAAGGGAAAGTTCTCGGA
 ACCTTCTCCCTGGATGGAAAACATCTCAAGGCTGAAGCTGCCAGGGCATTCAGGCCCTGG
 TCCTGGTTCTCCGGTTACACACCCATGGGTGGCTCAGCTTCTGGTCCAGCAGATATGACGA
 CAGTACTACATGCAATATTAGCAGCCACTGCTGCATCAGGGCTTTGTTCCACCAAGTGCACAAG
 AGATACCTGTTGCTCTGCACCTGCTCCAGCCCTATTCAACACCAGTTCCAGCTGAAACCCAGCCTGC
 CAATCAGAATGCTGCTCTCAAGTGGTGTAAATCCTGGAGCCAATCAAATTTGGGGATGAATGACAA
 GGTGGCCCTATTGTGGAAGAAGATGATGAAATAATCGAGATTGGTGGATGGACCTATTCAAGCAGCTA
 CATTTCGTTTCTCACTGATCTCTACTCTACTCCCTGAGCAGATTCTCATGGTCACTGGGG
 CACCGTTGTTATGTACCTGCATCACGTTGGGTGTTCCATTAGACCGAGGCCGTTCAGAACCTCCA
 AATGATGGCTCTCCCTGACGTTGAAATCAGGACCCAAACAATAACTACAGGAAGGCACTGATCC
 AAACGAGACCCAAACCCCTCCAGACAGGGATGACTAGATGGCAGCAGACAGGCCCTC
 TATGAGCACAGCATGGCTGTCTCAAGACTTTCTGCTCTCTTCCAGAAGGCCAGGCCATC
 GCAAACGTGATGGTTGCTGTAGCTGGAGGCTTGACAGGAATGGACTGGATCACCTGACTCCA
 GCTAGATTGCTCTCTGGACATGCCAATGATGAGTTTAAAAACAGTGTGGATGATGATGCTTT
 GTGAGCAAGCAAAGCAGAAACGTGAAGCCGTGATAAAATTGGTGAACAAAAATGCCAAGGCTTCTC
 ATGTGTTATTCTGAAGAGCTTAAATATATACTCTATGAGTTAATAAGCACTGTACGTAGAAGGCC
 AGGTGTTGATGTCTATGCTGAGGAACCTTCCAATGTTGCTGTCTGCAATGTGTGTTGACATAGAA
 GTCATAGATGCAAGTGGTCTGCTGGTAAGATTGATCTGTTGGAATGTTAAATTACACTAAGTG
 TACTACTTTATATAATCAATGAAATTGCTAGACATGTTTAGCAGGACTTTCTAGGAAAGACTTATGTA
 TAATTGCTTTAAAATGCACTGCTTACTTTAAACTAAGGGAACTTGCAGGAGGTGAAAACCTTGCT
 CTGGTTTCTGTTCAATAAAAGTTTACTATGAATGACCTG

Human HERPUD1 mRNA sequence - var10 (public gi: 7661869) (SEQ ID NO: 86)

GACGTGAACGGTCGTTGAGAGATTGCGGGCGGCTGAGACGCCCTGCTGGCACCTAGGAGCGCAGCG
 GAGCCCCGACACCGCCGCCGCCATGGAGTCCGAGACCGAACCCGAGCCGCTGGAGTGTGGCCACCTCAAGG
 AGCCCCAACAGCGCACCGCGACTTGGAGCTGAGTGGCGACCGCGCTGGAGTGTGGCCACCTCAAGG
 CCCACCTGAGCCCGCTCACCCCGAGCGTCCCGCTCAGAGGACCAAGAGGTTAATTATTCTGGGAAAGCT
 GTGTTGGATCAAAATGTCAGGACTTCTCAAGGAAACGGCATGTTGCACTGGTGTG
 TCAATGTGAAGAGTCCTCAAAATGCCAGAAATCAACGCCAAGGTGGCTGAATCCACAGAGGAGCCTG
 CTGGTTCTAATGGGGACAGTATCTGAGGATTCTCAAGTGTGTTAAGGCAAAGGGAAAGTTCTCG
 GAAACCTTCTCCCTGGATGGAAAACATCTCAAGGCTGAAGCTGCCAGCAGCATTCCAAGGCC
 GGTCTGGTTCTCCGGTACACACCCATGGGTGGCTCAGCTTCTGGTCCAGCAGATATATGCAC
 GACAGTACTACATGCAATATTAGCAGCCACTGCTGCATCAGGGCTTTGTTCCACCAAGTGCACA
 AGAGATAACCTGTGGTCTGACCTGCTCCAGCCCTATTACAACCAAGTTCCAGCTGAAAACCAGCCT

PCT/US04/06308

GCCAATCAGAATGCTGCTCAAGTGGTTAACTCTGGAGCCAATCAAATTGCGGATGAATGCAC
AAGGTGGCCCTATTGTGGAAGAAGATGATGAAATAATCGAGATTGGGATTGGACCTATTCA
GAGCAGCTACATTTCTGTTTCTCAGTATCCTACTTCTACTCCTCCCTGAGCAGATTCC
CATGGTCATGGGGGCCACAGGGATGTAACAGGAAAGGCACTGATCC
CAAATGATGGTCCCTCCCTGACGTTGAAATCAGGACCCCCAACAAATAACTTAC
AGGAAGGCACTGATCC
TGAAACTGAAGACCCCCAACACCTCCAGACAGGGATGTAAGATGGCAGCAGACCAG
CCCCCTCC
TTTATGAGCACAGCATGGCTTGTCTCAAGACTTCTTGCCTCTCTTCCAGAAG
GGCCCCCAGCCA
TCGCAAACACTGATGGTGTGCTGAGCTGGAGGCTTGACAGGAATGGACTGGAT
CACCTGACTC
CAGCTAGATTGCTCTCTGGACATGGCAATGATGAGTTTAAAAAACAGTGTGGAT
GATGATGCTT
TTGAGCAAGCAGAAAAGCAGAAAGTGAAGCGTGATACAAATTGGTGAAC
AAAAATGCCAAGGCTTC
TCATGTCATTCTGAAGAGCTTAATATATACCTATGAGTTAATAAGCACTG
TAGTGAAGGCC
TTAGGTGTTGATGCTATGCTGAGGAACCTTCAAATGTTGCTGCTGCATG
TGTGTTGACATAG
AAGTCATAGATGAGCAGAAGTGGTCTGCTGGTACGATTGATTCTGTTGA
ATGTTAAATTACACTAAG
TGTACTACTTATATAATCAATGAAATTGCTAGACATGTTAGCAGGACTTCT
AGGAAGACTTATG
TATAATTGCTTTAAAATGAGTGTACTTAAACTAAGGGGAACTTGC
GGAGGTGAAAACCTTG
CTGGGTTCTGTTCAATAAAGTTTACTATGAATGACCTGAAAAA
AAAAAAAAAAAAA

Human HERPUD1 Protein sequence - var1 (public gi: 16507802) (SEQ ID NO: 249)
MESETEPEPVTLVKS PNRQHDL ELSGDRGVSHLKAHSRVYPERPRPEDQRLIYSGKLLDHQCLR
DLLPKERHVHLVCNVKSPSKMPEINAKVAESTEEPAGSNRGQYPEDSSDGLRQREVLRNLSSPGWEN
ISRHVGVWFPFRPRPVQNFNDGPPPDVVNQDPNNNLQEGTDPETEDPNHLPPDRDVLDGEQTSPSF
MST
AWLVFKTFFASLLPEGPPAIAN

Human HERPUD1 Protein sequence - var2 (public gi: 10441911) (SEQ ID NO: 250)
MQYLAATAASGAFVPPPSAQEI PVVSAPAPAPIHNOFPQAENQ PANQNAAPQVVVNPG
ANQNL RLMNAQGGP
IVEEDDEINRDWLDWTYSAATFSVFLSILYFYSSLRFLVMVGATVVMYLHHVGWFPFRPRPVQNFNDG
PPP
DVNVQDPNNNLQEGTDPETEDPNHLPPDRDVLDGEQTSPSF
MSTAWLVFKTFFASLLPEGPPAIAN

Human HERPUD1 Protein sequence - var3 (public gi: 3005723) (SEQ ID NO: 251)
GHKAHL SRVYPERPRPEDQRLIYSGKLLDHQCLR DLPKEKRHVHLVCNVKSPSKMPEINAKVAEST
EEPAGSNRGQYPEDSSDGLRQREVLRNLSSPGWEN ISRPEAAQQAFQGLGPFGSYTPY
GWQLQLSWFOO
IYARQYYMQYLAATAASGAFVPPPSAQEI PVVSAPAPAPIHNOFPQAENQ PANQNAAPQVVVNPG
ANQNL RLMNAQGGP
IVEEDDEINRDWLDWTYSAATFSVFLSILYFYSSLRFLVMVGATVVMYLHHVGWFPFRPRPV
QNFNDGPPPDVVNQDPNNNLQEGTDPETEDPNHL
PPDRDVLDGEQTSPSF
MSTAWLVFKTFFASLLPEG
PPAIAN

Human HERPUD1 Protein sequence - var4 (public gi: 7661870) (SEQ ID NO: 252)
MESETEPEPVTLVKS PNRQHDL ELSGDRGVSHLKAHSRVYPERPRPEDQRLIYSGKLLDHQCLR
DLLPKERHVHLVCNVKSPSKMPEINAKVAESTEEPAGSNRGQYPEDSSDGLRQREVLRNLSSPGWE
NISRPEAAQQAFQGLGPFGSYTPY
GWQLQLSWFOO IYARQYYMQYLAATAASGAFVPPPSAQEI PVVSAP
APAPIHNOFPQAENQ PANQNAAPQVVVNPG
ANQNL RLMNAQGGP
IVEEDDEINRDWLDWTYSAATFSVFLSILYFYSSLRFLVMVGATVVMYLHHVGWFPFRPRPV
LYFYSSLRFLVMVGATVVMYLHHVGWFPFRPRPVQNFNDGPPPDVVNQDPNNNLQEGTD
PETEDPNHL
PPDRDVLDGEQTSPSF
MSTAWLVFKTFFASLLPEGPPAIAN

Unigene Name: HLA-A Unigene ID: Hs.181244 Clone ID: GD_159

Human HLA-A mRNA sequence - var1 (public gi: 575248) (SEQ ID NO: 87)
ATGGCCGTCATGGCGCCCCGAACCCCTCGTCTGCTACTCTCGGGGGCTCTGGCCCTGACCCAGACCTGG
CGGGCTCTCACTCCATGAGGTATTCTTACATCCGTGTCGGCCCGCCGCGGGAGCCCCGCTTC
CGCAGTGGCTACGTGGACGACACCGCAGTCTGTCGCGGTTCGACAGCGACGCCGCGAGCCAGAGGATGGAG
CCGGGGCGCCGTGGATAGAGCAGGAGGGTCCGGAGTATTGGGACGGGGAGACACGGAAAGTGAAGGCC
ACTCACAGACTCACCGAGTGGACCTGGGGACCCCTGCGCGGCTACTACAAC
CAGAGCGAGGCCGGTTCTCA
CACC GTCCAGAGGATGTATGGCTCGACGTGGGGTCCGACTGGCGCTTCC
CTCGGGGTACCA
CAGCAGCTACGAGGATTACATGCCCTGAAAGAGGACCTGCGCTCTTG
GACCGCGGGACATGGCAG
CTCAGACCAAGCACAAGTGGAGGCGCCCATGTGGCGGAGCAGTTGAGAG
CCTACCTGGAGGGCGA
GTGCAGTGGAGTGGCTCCGAGATACTGGAGAACGGGAAGGAGC
GCTGCAGCGACGGACGCC
ACCGATATGACTCACCA
CGCTCTGACCATGAAGCCACCC
CTGAGGTGCTGGCCCTGAGCTTCTACC

Figure 36 part - 46

PCT/US04/06308

CTGGGAGATCACACTGACCTGGCAGCGGGATGGGGAGGACCAGACCCAGGACACGGAGCTCGTGGAGAC
CAGGCCTGCAGGGATGGAACCTTCAGAAGTGGCGGTGTTGCTCTGGACAGGAGCAGAGA
TACACCTGCCATGTGAGGGTTGCCAAGCCCCCTACCCCTGAGATGGAGCCGCTTCCCAGC
CCACCATCCCCATCGTGGCATATTGCTGGCTGGTTCTTTGAGCTGTGATCACTGGAGCTGTGGT
CGCTGCTGTGATGTGGAGGAGAAGAGCTCAGATAGAAAAGGAGGGAGCTACTCTCAGGCTGCAAGCAGT
GACAGTGCCCAGGGCTCTGATGTCTCACAGCTTGAAAGTGTGA

Human HLA-A mRNA sequence - var2 (public gi: 187857) (SEQ ID NO: 88)
ATGGCCGTATGGCGCCCCGAACCTCGTCTGCTACTCTGGGGGCCCTGGCCCTGACCCAGACCTGGG
CGGGCTCCCACCTCCATGAGGTATTCTACACTTCCGTGTCGGCCGGCCGGAGCCCCGCTTCAT
CGCGTGGCTACGTGGACGACACCCAGTTCGTGGCTCGACAGCGACGCCGAGCCAGAGGATGGAG
CCGGGGCGCCGTGGATAGAGCAGGGAGGGCCGGAGTATTGGGACCGAACACACGGAATGTGAAGGCC
AGTCACAGACTGACCGAGTGGACCTGGGACCCCTGGCGGGCTACTACAACCAAGAGCGAGGCCGGTCTCA
CACCATCCAGATGATGTATGGCTGGCGACGTGGGCGCTTCCTCCGCGGGTACCGGCAGGAC
GCCTACGACGGCAAGGATTACATGCCCTGAAAGAGGACCTGCGCTCTGGGACCGCGGGAGCATGGCAG
CTCAGACCACCAAGCACAAGTGGGAGGCCCATGTGGCGGAGCAGTGGAGAGCCTACCTGGAGGGCAC
GTGGTGGAGTGGCTCCGAGATACTGGAGAACGGGAAGGAGACGCTGCAGCGCACGGACGCCAAAA
ACGCATATGACTCACCACGCTGCTCTGACCATGAAGCCACCCCTGAGGTGCTGGGCCCTGAGCTCTACC
CTGCGGAGATCACACTGACCTGGCAGCGGGATGGGGAGGACCGACACCCAGGACACGGAGCTGTGGAGAC
CAGGCCTGCAGGGATGGAACCTCCAGAAGTGGGTGGCTGGTGCCTCTGGACAGGAGCAGAGA
TACACCTGCCATGTGAGCATGAGGGTTGCCAAGCCCCCTACCCCTGAGATGGGAGCCGTCTCCAGC
CCACCATCCCCATCGTGGCATATTGCTGGCTGGTTCTCTGGAGCTGTGATCACTGGAGCTGTGGT
CGCTGCTGTGATGTGGAGGAGAAGAGCTCAGATAGAAAAGGAGGGAGCTACTCTCAGGCTGCAAGCAGT
GACAGTGCCCAGGGCTCTGATGTCTCACAGCTTGAAAGTGTGA

Human HLA-A protein sequence - var1 (public gi: 575249) (SEQ ID NO: 253)
MAVMAPRTLVLSSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRME
PRAPWIEQEGPEYWDGETRKVKWAHSQTHRVDLGLRLRGYYNQSEAGSHTVQRMYGCDVGSWRFLRGYHQY
AYDGKDYIALKEDLRSWTAADMAAQTTHKWEAHVAEQLRAYLEGECEVWLRRYLENGKETLQRTDAPK
THMTHAVSDHEATLRCWALSFYPABEITLTWQRDGEDQTQDTELVETRPAGDGTFQKWAADVPSGQEQR
YTCHVQHEGLPKPLTLRWEPSOPTIPIVGIAGLVLFGAVITGAVVAAMWRRKSSDRKGGSYSQAASS
DSAQGSDVSLTACKV

PCT/US04/06308

Unigene Name: HLA-B Unigene ID: Hs.77961 Clone ID: 3GD_1122

Human HLA-B mRNA sequence - var1 (public gi: 32188) (SEQ ID NO: 89)
ATGGGGTCACGGCCCCGAACCGTCTCTGCTCTCGGGAGCCCTGGCCCTGACCGAGACCTGGG
CCGGCTCCCACCTCATGAGGTATTCTACACCGCCATGTCCCGGCCGGCCGGGGAGCCCCGCTTCAT
CTCAGTGGGCTACGTGGACAGCACGCAGTTCGTGAGGTTGACAGCAGCAGCGAGTCAGAGAGAGAG
CCGGGGCGCCGTGGATAGAGCAGGGGCCGGAGTATTGGGACCGGGAGACACAGATCTCCAAGACCA
ACACACAGACTTACCGAGAGAGCCTGCGAACCTGCGGGCTACTACAACCAGAGCGAGGCCGGTCTCA
CACCTCCAGAGGATGTACGGCTGCGACGTGGGGCCGGACGGGGCCCTCTCCGCGGGCATGACCGAGTCC
GCCTACGACGGCAAGGATTACATGCCCTGAAACGAGGACCTGAGCTCTGGACCGCGGGACACGGCGG
CTCAGATCACCCAGCGCAAGTGGGAGGCCGGCTGAGGCGGAGCAGCTGAGAGCCTACCTGGAGGGCCT
GTGCGTGGAGTGGCTCCGAGATACTGGAGAACGGGAAGGGAGACGCTGAGCGCGGACCCCCCAAAG
ACACATGTGACCCACCAACCCATCTGACCATGAGGCCACCCCTGAGGTGCTGGGCCCTGGCTTCTACC
CTGCGGAGATCACACTGACCTGGCAGCGGGATGGCGAGGACCAAACACTCAGGACACCGAGCTTGTGGAGAC
CAGACCAGCAGGAGATAAACCTTCCAGAAGTGGGAGCTGTGGTGGCTTCTGGAGAACAGCAGAGA
TACACATGCCATGTACAGCATGAGGGCTGCCGAAGCCCTCACCTGAGATGGGAGGCATCTCCAGT
CCACCATCCCCATCGTGGCATTGTTGCTGGCTGGCTTAGCAGTTGTGGTCACTGGAGCTGTGGT
CGCTACTGTGATGTGAGGAGGAAGAGCTCAGGTGGAAAAGGAGGGAGCTACTCTCAGGCTGCGTCCAGC
GACAGTGCCAGGGCTCTGATGTCTCACAGCTGA

Human HLA-B protein sequence - var1 (public gi: 32189) (SEQ ID NO: 254)
MRVTAPRTVLLLSGALALTETWAGSHSMRYFYTAMSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREE
PRAPWIEQEPEYDRETOISKNTQTYRESLRNLRGYYNQSEAGSHTLQRMYGCDVGPDRLLRQHDQS
AYDGKDYLALNEDLSSWTAADTAQITORKWEAAREAEQLRAYLEGLCVEWLRRYLENGKETLQRADPPK
'THVTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVE TRPAGDRTFQKWAAVVPSGEEQR
YTCHVQHEGLPKPLTLRWEPSQSTIPIVGIAGLAVLVIGAVVATVMRRKSSGGKGGSYSQAASS
DSAQGSDVSLTA

Unigene Name: MSTP028 Unigene ID: Hs.302746 Clone ID: GD_1119

Human MSTP028 mRNA sequence - var1 (public gi: 14042294) (SEQ ID NO: 90)
CCCCGCCTCCGCCCCCGCTGGCGTAGCTGGGTGTTCTGCCTCTCTCAGTCCGGTTGGAGACTCC
TGGCTCTCCGACTTTCTGGAAAGAGATGTAGCTGGAGAAAGTGTGGTGGAGCTCAGCGGTGCCAGCGGCTG
CTACCCGCACCACTTCTCTCAAGGGCACGAGCCCAGCTCAAATACGTAAAGCTGAATGTGGTGGAGC
CCTACTATACCAACATGAGACGCTGACCAAGCAGGACACCATGCTGAAGGCCATGTTAGCGGGCG
ATGGAAGTGTGACCGACAGTGAAGGCTGGATCCTCATTGACCGCTGTGGAGACACTTGGTACGATA
TCAACTACCTCGAGACGGGGCGGTGCTTTACCGAGAGCCGGGGAGATCGAGGAGCTGCTAGCAGA
AGCCAAGTACTACCTAGTCAAGGCTGGTGGAGAGTGCCAGGGGGCTACAAACAAAGATACTTAT
GAGCCTTCTGCAAGGTCCCTGTGATCACCTCATCCAAGGAAGAACAAAAACTTATAGCGACTTCAAATA
AGCCAGCCGTGAAGTTGCTCTACAACAGAAGTAACAACAAATACTCATATACCAAGCAATTCTGACGACAA
TATGTTAAAAACATTGAACGTGTTGATAAGCTGTCTCTGCGCTTTAACCGAAGGGTCTGTTCTATAAAG
GATGTTATTGGGATGAAATCTGCTGCTGGTCTTTATGGTCAGGGCCGGAGATGCTGAAGTCTGTT
GTACCTCCATCGTCTATGCCACTGAGAAGAAACAGACCAAGGTGGAGTTTCCGAAGCCGGGATTTATGA
GGAGACCTGAACATTGCTGTATGAGGGCCAGGTGGCCGGGGGACCTGACAATGCGCTCTGGAGGCC
ACAGGGGGGGGGGGGGGGGGCTCCACACCTGGAGGAGGAGCAGGGAGCGGAGCGGATCGAGCGCGTGC
GGAGGATCCACATCAAGCGCCCTGATGACCGGGCCACCTCCACAGTGAGCAGGCAAGAGACCGAGCG
CCCTCCTCTCACCGCCCCCACTCCCTGCCGTGCTACACCCAGATCCTGTGCAAGGCTGCCGGGCCCCCT
GCTTCCCTTGAGGCTGGAGATACTTTGTAACAAGCCAGATGATTATTTGGTATTGCTTGACAAGGCA
AATTGATTGTTGACCCAGGCTATGACCCCTGCGTTGAACAAGCTGTGCTAAAGATCTACTTTTC
ATGAGAATCTGAGACTCTTGGAGGCCAGGCTTCTCGGGTCTCAGAGGAAAGTATGAATGAGTGTGAAG
TGTATGTGAGAACTTTGTTGCAATATTATTGTTGTTGCTGGCTTCTATGTGGCTTTGGGT
GACACTCCCTTAAGGGTTCAGTTGACAATTCTGAGAGTTGCTCTGCAAGTGGAGGCCACAGAGGTATC
TGAGCTCCCTGCTTCTATTCTATACTCCTCCAGCCCCAGGCTTCACTCTGGTTCTGTGTTGG
CCCGGGCACATCCCCACTGCTTGTAGACGTCTTGTGCCATGTGGCTTGGGCCAGAGCTTGTG
ATAATTGCAAGGCTTGTGGCAGGGAAATATGGCTGAATGAGCGTCAAATCTGTTGAGACCCAGTGC
GGGTGCAAGGCTTGTGGTCAAGGCTTGTGGCCACCTGGCTGGTCTTGGCTGGTGTCACTG
GGACCCCCATATGTCTGCCAGGAGCAGAACCTTCCATGGCAAGTGTCCAGCTCTGTTCTGGTCT
TCCCCAACTCCAGCCCCGTCCAGTTGTTCTCTGATTGACCCGACTCCACTCCAGGAAGGCCATCTGACC

Figure 36 part - 48

PCT/US04/06306

CTGTGACAGGCATAGCTATAAACTACCCCTCCCTGGATCCCGCTCCTTCAGCCTCCTTCCCCATGA
AGCTGGGCTAACCTTCTAAGTCATTGCTTAGAAATTCAAGTGTGGCCCATACCCCTTGCTATAAACACAGACCCCC
TGGCATCCAGGCAGGGACACCCCTCACACCACAGCCCCAGGGAGCTCCCTGCTATAAACACAGACCCCC
TTGCTTTGCCCTCTGATTTTACACAGTGTAGAGTGGCCAGCAGTGAACAGGTTGAGGATGTGGGGTAG
ATAGATAACTTGGGCTGGTTGTCTGTTCATGTTGTTAAGGGATATGTGTGACTGTGGGTGG
GGACGTGTGCTTGTGGGGCACAGGTGGCGGCCCTGCTGGAGCCCGCTGGCGCAGCCCTATGTAGGA
CGGGTCTCAGTGCACCTCCCAGGCTCTGCACCTGCAAAGGAACAGGAGTGAGTCGTGACTG
ACAGGGGTGGTAGACTAGACTAGGTAGTAGTACCCAGGAGATGTGAATGTGCGTCAGGTGATGGAT
GGGTTGTCAGGAAATCGTTACCGTTATACCAAAGGTATTAACATGGCAGCCTTGACACATGTAT
TCCAAAACGAGTTATTTCAACGGTTTACAGCTAGACTTGTACTTACTGCCCTGCCGTG
CAGTTGTATGCCCTCATTTGTATCCAACAGCAAAGTCTACAATAAAACTTTAAACATCATG
CAGTTGTATGCCCTCATTTGTATCCAACAGCAAAGTCTACAATAAAACTTTAAACATCATG

Human MSTP028 mRNA sequence - var2 (public gi: 13994352) (SEQ ID NO: 91)
GGAGACTCCTGCGTCTCCGACTTTCATGGAAGAGATGTCAAGGAGAAAGTGTGGTGGCTCAGGGTGC
CAGCGCTGCTACCGCACCACTCCTCAAGGGCACGAGCCCCAGCTCAAATACGTGAAGCTGAATGT
GGGGAGGCCCTCTACTATACCAACCATGCAGACGCTGACCAAGCAGGACACCAGTGAAGGCCATGTT
AGCGGCGCATGGAAAGTGTCAACCGACAGTGAAGGCTGGATCCTCATTGACCGCTGTGGAAAGCACTTT
GTACGATACTCAACTACCTCGAGACGGGGCGGTGCTTACCCGAGAGCCGCCGGAGATCGAGGAGCT
GCTAGCAGAAGCCAAGTACTACCTAGTCCAAGGCTGGTGAAGAGTGCAGGCGGCCCTACAAAACAAA
GATACTTATGAGCCTTCTGCAAGGCTCCCTGTGATCACCTCATCCAAGGAAACAACAAACTTATAGCGA
CTTCAAATAAGCAGCGTGAAGTGTCTACAAACAGAAGTAACAACAAACTCATATACCAGCAATT
TGACGACAATATGTGAAAAAACATTGAACTGTTGATAAGCTGTCTGCGCTTAAACGGAAGGGTCTG
TTCATAAAGGATGTTATGGGGATGAAATCTGCTGCTGGCTTTTATGGTCAGGGCCGGAAAGATTGCTG
AAGTCTGTTGACCTCCATCGTCTATGCCACTGAGAAGAACAGACCAAGGTGGAGTTCCCGAAGCCCG
GATTATGAGGAGACCCCTGAAACATTGCTGATGAGGCCAGGATGGCCGGGGACCTGACAATGCGCTC
CTGAGGCCACAGGGGGGGCGCTCCCACCACTGGACGAGGACGAGGAGCGGGAGCGGATCG
AGCGCGTGCAGGAGATCCACATCAAGGCCCTGATGACCGGCCACCTCACAGTGAAGCAGGAAAGAG
ACCGAGCCGGCTCCTCTACCGCCCCACTCCCTGCCGTGCTACACCCAGATCTGTGAGGCTGCCGG
GCCCTCTGCTTCCCTGGAGCCTGAGATACTTTGTAACAAGCCAGATGATTATTTGGTATTGCTT
GACAAGGCAAATTGATTGCTTGAACCAAGGCGTATGACCCCTGTCGTTGAAACAAGCTGTGCTAAGATCT
CTACTTTCATGAGAATCTGAGACTTTGGAGCCAGGCTTCTCGGTTCTCAGAGGAAAAGTATGAATG
AGTGTGAAGTGTATGTGAGAACTTTGTTGCAATATTATTGTTGTTGTCGACTTCTATGTGGG
TTTTGGGTGACACTCCCTTAAGGGTCAGTTGACAATTCTGAGAGTTGCTCTGCACTTGGAGGCCACC
AGAGGTATCTGAGCTCCCTGCTTCTATTCTATAATCTCCAGGCCAGCTCCACTCTGGTCT
TGTGTTGGCCGGGACAACATCCCTGCTGAGACGCTTCTGCAATGTCGTTGGCTTGGCCTAG
AGCTTGTGATAATTGAGCTTGTGGCAGTGGAAATATGGCTGAATGAGCTCTAAATGTTGAGACCAG
TGCAACATTGGGTGCAAGGCTTTGTTAGGGATCAAGCCTTTGCCACCTTGGCTGGCTTGGCCTGG
TGCTCACTGGGACCCCATATGCTCGCTAGGAGCAGAACCTCCATGGCAGTAAGTGTCCAGCTGTT
CTGTTCTTCCCAACTCCAGCCCCGTCAGTTGTTCTCTGATTGACCCGACTCCACTCAGGAAGGC
CATCTGACCCCTGTGACAGGCATAGCTATAAAACTACCCCTCCCTGGGATCCCGCTCTCAGCCTCCT
TCCCCATGAAGCTGGCTAACCTTCTAAGTCATTGCTTAGAAATTCACTGTGGCCATACCCCTTG
CTCCCAAGCCTGGCATCCAGGCAGGGACACCCCTCACACCACAGCCCCAGGGAGCTCCCTGCTATAAAC
CAGACCCCCCTGTCCTTGGCTCTGATTTTACACAGTGTAGAGTGGCCAGCAGTGAACAGGTTGAGGATG
TGGGGTAGATAGATAACTTGGGCTGGTTCTGTTCTGTCGTTCATGTTGTTAAGGGATATGTGTGAC
TATGTTAGGACGGGTGTTCTCAGTGCACCTACCTCCAGGCTCTGTCACCTGCAAAGGAACAGGAGTGAG
TCGTGACTGACAGGGGTGTTGAGACTAGACTAGGTAGAGTGTACCCAGGAGATGTGAATGTGCGTCAG
GTGAGATGGGTTTGTCAAGGGAAATGTTACCGTTTATACCAAAGGTATTAACATGGCAGCCTTGA
CACATGTTTCCAAAAACGAGTTATTTCAACGGTTTACAGCTAGACTTGTACTTACTGCC
TGCTGTGACAGTTGATGCCCTCATTTGTATCCAACAGCAAAGTCTACAATAAAACTTTAAACATC
ATGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Human MSTP028 mRNA sequence - var3 (public gi: 25303941) (SEQ ID NO: 92)
CCGGGTTGGAGACTCCTGCGTCTCCGACTTTCATGGAAGAGATGTCAAGGAGAAAGTGTGGTGGCTC
AGCGGTGCCAGCGCTGCTACCCGACCACTTCCCTCAAGGGCACGAGCCCCAGCTCAAATACGTGAAG
CTGAATGTGGGTGGAGCCCTACTATACCAACCATGCAGACGCTGACCAAGCAGGACACCAGTGAAG
CCATGTTCAGGGGGCGCATGGAAAGTGTCTACCGACAGTGAAGGCTGGATCCTCATGACCGCTGTGGAA
GCACCTTGGTACGATACTCAACTACCTCGAGACGGGGCGGTGCCCTTACCGAGAGCCGCCGGAGATC
GAGGAGCTGCTAGCAGAAGCCAAGTACTACCTAGTCCAAGGCCCTGGGAAGAGTGCAGGCCAGGCC
AAAACAAAGATACTTATGAGCCTTCTGCAAGGTCCCTGTGATCACCTCATCCAAGGAAGAACAA
TATAGCGACTTCAAAATAAGCCAGCCGTGAAGTTGCTCTACAACAGAAGTAACAACAAACTCATATACC
AGCAATTCTGACGACAATATGTTGAAAAACATTGAACAGCTGATAAGCTGTCTGCGCTTTAACGGAA

Figure 36 part - 49

PCT/US04/06308

GGGCTCTGTTCATAAAGGATGTCATTGGGGATGAAATCGCTGCTGGTCTTTATGGTCAGGGCCGGA
GATTGCTGAAGTCTGTTGACCTCCATCGCTATGCCACTGAGAACAAACAGACCAAGGTGGAGTTTCCC
GAAGCCCCGATTATGAGGAGACCCCTGAACATTGCTATGAGGCCAGGATGGCCGGGACCTGACA
ATGCGCTCTGGAGGCCACAGGGGGCGGGGGCCTCCACCTGGACGAGGACGGAGCAGGG
GCGGATCGAGCGCTGCGGAGGATCCACATCAAGGCCCTGATGACGGGCCACCTCCACAGTGAGCA
GGCAAGAGACCAGGCCCTCCTCACGCCACTCCCTGCCGCTACACCCAGATCTGTGCA
GCTGCCGGCCCTCTGCTTCCCTGGAGGCTGGAGATACTTTGTAACAGGAGATGATTATTTGG
TATTGCTGACAAGGCAAATTGATTGCTTGACCCAGGCTATGACCCCTGCTGTTGAACAAGCTGTGTC
TAAGATCTACTTTCATGAGAACATGAGACTTTGGAGGCCAGGCTTCTCGGTTCTCAGAGGAAAAG
TATGAATGAGTGTGAAGTGTAGAGACTTTGGTCAATATTATTTGTTGGGTGTCAGTCT
ATGTTGGCTTTGGGTGACACTCCCTAAAGGTTCAAGGTTCAAGGTTGACAATTCTGAGAGTTGTCAGTGG
AGGCCAACAGAGTATCTGAGCTCCCTGCTCCATTTCATAATCCTCAGGCCAGCAGGTCCACTCCT
GGTTCTGTGTTGGCCGGCACAATCCCCACTGCTTGCTAGACGTGTTCTGCCATGTGGCTT
GGGCTAGAGCTTGTGATAATTGAGCTTGTGGCAGTGGAAATATGGCTGAATGAGTGTCAAATCGTT
GAGACAGTCAACTTGGGTGCAAGGCTTGTGTTAGGGATCAAGGCTTTGCCACCTGGCTGGTCTT
TGGCCTGGTCTCACTGGGACCCATATGTCGCTAGGAGCAGAACTTCCATGCCAGTAAGTGTCCAG
CTCTGTTCTGGTTCTTCCCAACTCAGCCCCGTCAGTTGTTCTCTGATTGACCCGACTCCACTCC
AGGAAGGCCATCTGACCCCTGTGACAGGCATAGCTCAAACACTACCCCTCCCTGGGATCCCCTCCTC
AGCCTCTTCCCCATGAAGGCTGGCTAACTTCTAAGTCATTGCTTAGAAATTCACTGTTGGCCCATAC
CTTGTCTCTCCAGCCTGGCATCCAGGCAGGCCACCCCTCACACCCAGGCCAGGGAGCTTCCCTG
TATAAACACAGACCCCTGTCTTGGCTGCTGTTACACAGTGTAGGGATGACCTGGCAGCAGTGAACAGGT
TGAGGATGTGGGGTAGATAGATAACTTGGGTCTGGTTGTCTGTGTTCACTGTTAAAGGGATG
TGTGACTGTGGGGTAGGGGAGCTGTGCTTGGGGCACAGGTGGCCCTGCTGGAGGCCGGCTGGCGCAGC
GCCTATGTTAGGACGGGTGTTCTAGTGCACCTACCTCCAGGCTCTGCACTGCAAAGAACAGGAGT
GAGCTGACTGACAGGGGTGGTTGAGACTAGACTAGGGTAGTTACAGGAGATGTGAATGTGCGT
CAGGTGATGGATGGTTGTCAAGGAACTGTTACCGTTTATACCAAAGGTATTAAACATGGCAGCCTT
TGACACATGATTCAAAACAGGTTTATTTCAAAACGGTTTACAGCTTAGACTTTGTACTTACTG
CCCTGCTGTGACAGTGTATGCTTCAAGGTTGCTATCCAAACAGCAAGCTCAAACAAACTTAAACA
ATCATGACTGAATGTCAAATCGTGTATTGGCAGATGCTTTAAACTGTCGTGAGAAACTTTTATA
TTAGGCATTGGATTTTATAAGGCTAAAGGAGGGCTTACAAATGTTCTGCTAAATTTTATA
TGTTTAAGTGTAAACACCAACCCCTGCTTCTTGGGTTGAGCTTTTAAAGGTTGCTCTATTGGCCAGGC
TGGCCAGGAAATGGAAAAGCATTGCTATAAATTGTTTGGAGGCTGGAGTCTTGTCTATTGGCCAGGC
TGGAGTTGAGTGGCACCCTCCACTTACCAACTTGTGCTCTGGGTTCAAGGCAATTCTGCTGCTC
AGCCTCCGAGTAGCTGGGATTGCAAGGTACCCATGCCAGCTAAATTGTTACAGGAGATGAG
GATGGGGTTTACCATGTTGGCAGGCTGGTCTGAACTCTGACCCCTGTGATCCGACCACTTGGCTC
CCAAAGTGTGGGATTACAGGTGTGAGTCACCAACCTGGCTCATGTTAAATGTTGTGTGAAG
AATGAGTTGTGGAACAATTGATTTGCTGTTGGCCTCTATGCCAAATGAGCTAGTGTGTTCTGGCAGCT
CTCTACCCAACCTTGCACTTGTAGTTTGAGTCTTGTCTCTGGAATATGAAACAGGTTATAAAACAT
TCCATGGTGAACAATTCTGTCGGCTGCATTAGCCATGAGTGAATAGACGATTGGCTGGCCAAGCT
CTGTTATTGAGTATACAAGGAACAGTGTGTTCTGTTAGCACTAAGGGCAAAACAAATTATATA
GTAAGCACTATCCAGGTAACACTGGCCAAGGTTGGTAAAGGAGATTCTGCAATGTAATAACTAC
AGTTTTTACAATTGGAACAGCTTGGGAGCTGGTCTGTAATGCCAAAGGTTTGTGTTGTTGTTCAAA
AAGCCATCTGATTGGTGTGACTGGGGCCATGCTGAGCAACATTCTGGCATATTCTGTCACCCCTCCG
GGGGCGACTCTGTTGGGAGCCCCATTCCCAAGTTAAAGTGTGCTCTGTAACCTTACAACAGCGATTCA
GGACCCAAGTGTGAACACACTCAGGCCCTCTGAGCGTGTGCTTTAGGGCTACCCAAAGT
CACTGTAACAGTTAAGTGTGTCATTAACTTCTGTCATTGCGCCATAAAAAAAAGTCTCAAAGTTA
GATGTAGCCACTGTATGTTGACAAACGTTGGCAGTGTAAATAAAAGTCTAAAATGCAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Human MSTP028 mRNA sequence - var4 (public gi: 16552440) (SEQ ID NO: 93)
AGTCCGGGTTGGAGACTCCTCGCTCTCCGACTTTCATGGGCCCTGACATGGCAGGTGATATCCAGGA
CACTGTTGGTGCATGGAGTTGGGAGAGTTGGCCAGAAGAGTTGGATAACCTGAAATTGAATATTGTC
CATGACTGTCGGCTGCTCTGCTGCAAGCTGCCCTTAACCTCCAGTCCCATTACAAAAATAA
CGCTTGTTTACAGTTAGTTGAGTACCCATTCAATTAGAAAATCTGAAAACCTAGACAATT
TTTTCAAGTTCAAGGAATAGTTCAAACAAGTTATGTGCTGTCAGTGCCCTGAGCCAAAAGCACGAGG
AGCATAACCTGAGTCAAGCAAAGTTGGGTTATTCCCTGTCAGTGGGTTGGGAAGAACGTGAGGAC
ATCTCAGAGAAGGGCTGGGCTTGTGTTGGTATTGAGAGACAGTTCAAGAGAAGTGGGCTTGTCT
TGTGTTGGATGCTGCTGGGAAGCAGGGCTAATTCTGATTGGGCTCAGTGATTCCCTGACTTGAAAGCA
GGAAGAAATGGAAGGAGGCTAAACTCTCATGGTAAAGCAGCAGCTGAACCTCTATTAGCCAGGATAGG
GGATCTTGGTCATTTGTATTTGGATAATGTTATGTTTGTCTGTCAGGACATGATGACTGAA
TGGTCCTGTTTGTCTTGTGCAAGGGCACAGAGTGGCCTGTCAGGGTATGTCAGGAAACT
GTTGATGTTCAATGGAATGGTAGGGCCAGCCGTGGGGCTACCCAGATTCAAGAAAGATTCTGCCAAC
CTTGCACATTCCACCTACAGTTACCTGTCATTCAAGACATGTTGCTGAGTACACATGTGC

Figure 36 part - 50

CGGATACCAATCTCACTTCCAGGCCCTGCGTAATCAGCCACTGTATCCATTCTTGAGATGTACAGAG
 AGTCAGCCATGCTATCAGGGAGATGGTAGTGGGATCTGCTTTGGGAGCACTAGTCTAGGAGGTCT
 AATTGCAATAACTTGGTCCAAAAGTTCCATGTCTGTTAGTCCTCAGAAACACCTTCTCCCTA
 CAGGAAGTGATAGGAGTGCAGCTGGATCCCATTCAACTTCATAAAGCTTATTCATCTGTGATGCAGC
 TGAAAAATGACACTTAGCTAGCTATTGAGTGGTACATGGCAATAAGGAATGAAAGAGACCTGGGAGT
 GCTTCTAGGCTGTTAGGGTCAGCCAGGGTGTCTAGTATACAGGTGCTAGGCAGAAAGGAAGTGCTTA
 TAACACAAGAGTTAGGGCACCCCTGTGCTGAGGGTCAGGCAGGGTCACTGTTAGGGCTATCCAAACCCCAGCTTGACC
 GGTGGGTCTTGGGACAAACTAGGGGATGCATGGGCCCTCTCTAGGGGTCATCCAAACCCCAGCTTGACC
 AGTGTCTCCCTGCTAGGCCAGTTAGGGCTCTGATTTAGGAGAACAGCAGTCCAGATTTCTGTGAG
 CTCTCCCTAGTGTGACCAATTGGAACAAACTTTAAATGCTGTATGCTGGCCAAAGCAAACACAT
 CTGGAGGCCAGATTGAATCCACAGGCTGAAAGCAGTCACCCAGGCTGATGTCATGACCTGTATCCCT
 CCACGGCAGGAAGAGATGTCAGGAGAACAGTGTGGTGAGCTCAGCGGTGCCAGCGGTGCTACCCGCACC
 ACTTCCTCAAGGGCACGAGCCCAGTCACAGTGAAGCTGAATGTGGTGAGGCCCTACTATA
 CCACCATGCAGACGCTGACCAAGCAGGACACCATGCTGAAGGCATGTTGACGGGCGATGGAAGTGCT
 CACCGACAGTGAAGGCTGGATCCTCATTGACCGCTGTTGGGAAGCAGCTTGGTACGATACTCAACTACCTT
 CGAGACGGGGCGGTGCTTACCCAGGAGCCGGAGATCGAGGAGCTGCTAGCAGAAGCCAAGTACT
 ACCTAGTCAAGGCCTGGTGGAAAGAGTGCAGGCGGCCCTACAACAGAACAAAGATACTTATGAGCCTT
 CTGCAAGGTCCTGTGATCACCTCATCAAGGAAGAACAAACTTATAGCGACTTCAAATAAGCCAGCC
 GTGAAGTTGCTTACAACAGAACAGTAACAACAAACTCATATAACCAGCAATTCTGACGACAATAATGTTGA
 AAAACATTGAACAGTGTGATAAGCTGCTCTGCGCTTTAACCGAAGGGCTCTGTTCAAAGGATGTCAT
 TGGGGATGAAATCTGCTGCTGTTCTTATGGTCAAGGGCGGAAGATTGCTGAAGTCTGTTGACCTCC
 ATCGTCTATGCCACTGAGAACAGAACAGCCAAGGTGGAGTTCCAGGCGGATTATGAGGAGACCC
 TGAACATTTGCTGTATGAGGCCAGGATGGCGGGGACCTGACAATGCGCTCTGGAGGCCACAGGCG
 GGGGGGGGGCGCTCCACCTGGACGAGGACGAGGAGCGGGAGCGGATCGAGCGCGTGGAGGATC
 CACATCAAGCGCCCTGATGACCGGGCCACCTCACCAGTGAAGCAGGCAAGAGACCGAGCCGCCCTC
 TCACCGCCCCCACTCCCTGCGTGCTACACCCAGATCTGTGCAAGGCTGCCGGGCCCTCTGCTTCC
 TGGAGCCTGGAGATACTTTGTAACAAGCCAGATGATTATTTGGTATTGCTTGAACAGGAAATTGATT
 GTCTTGACCCAGCGTATGACCCCTGCGTTGACAAGCTGTGCTAAGATCTACTTTCATGAGAAT
 CTGAGACTCTTGGAGCCAGGCTTCTCGGTTCTAGAGGAAAGTATGAATGAGTGTGAAGTGTATGTG

Human MSTP028 mRNA sequence - var5 (public gi: 21750697) (SEQ ID NO: 94)
 GCTGGCGTGAGCTGGGTGTTCTGCTCTCTCAGTCGGGTTGGAGACTCTCGCTCTCCGACTTTT
 CATGGAAGAGATGTCAGGAGAAAGTGTGGTGAGCTCAGCGGTGCCAGCGGTGCTACCCGCACCACTTCC
 TTCAAGGGCACGAGCCCAGTCACAAATACGTGAAGCTGAATGTGGGTGGAGGCCCTACTATACCA
 TGGAGACGCTGACCAAGCAGGACACCATGCTGAAGGCCATGTCACGGGCCATGGAAGTGCTCACC
 CAGTGAAGAACAAAGATACTTATGAGCCCTTCTGCAAGGCTCTGTGATCACCTCATCAAGGAAGAAC
 AAAACTTATAGCGACTTCACAAATAGGACCGCGTGAAGTTGCTCTACAACAGAAGTACAACAAACTCA
 TATACCAGCGATTCTGACGACAATATGTTATTGGGATGAAATCTGCTGCTGGTCTTTATGGTCAGGG
 ACGGAAGGGTCTGTTCATAAAGGATGTTATTGGGATGAAATCTGCTGCTGGTCTTTATGGTCAGGG
 CCGGAAGATTGCTGAAGTCTGTTGACCTCCATCGTCTATGCCACTGAGAAGAACAGACCAAGGTGGAG
 TTTCCCGAAGCCGGATTATGAGGAGACCCCTGAAACATTGCTGTATGAGGCCAGGGTGGCCGGGGAC
 CTGACAATGCGCTCTGGAGGCCACAGCGGGGGCGCTCCACACCTGGACGAGGAGCAGGAG
 GCGGGAGCGGATCGAGCGCGTGGGGAGATCCACATCAAGCGCCCTGATGACCGGGCCACCTCCACC
 TGACGAGGCAAGAGACCGAGCCGCCCTCTCACCGCCCCACTCCCTGCGTGCTACACCCAGATC
 GTGCAGGCTGCCGGCCCTCTGCTTCCCTGGAGATACTTTGTAACAAGGCCAGATGATTA
 TTTGGTATTGCTTGACAAGGCAAATTGATTGCTTGTGACCCAGGCCATGACCCCTGCTGTTGAACAAGC
 TGCTGCTAAGATCTACTTTCATGAGAATCTGAGACTCTTGAGGCCAGGCTTCTGGTTCTCAGAG
 GAAAATGATGAATGAGTGTGAAGTGTATGTGAGAACACTTTGTTGCAATATTATTTGGTGGTGT
 CTTCTGTGGCTTGGCTTGGGCAACTCTGCTTGGGCTTAAGGGTCTAGTTGACAATTCTGAGAGTTGCT
 AGTGGAGGCCACAGAGGATCTGAGCTCCCTGCTTGGGCAACTCTGAGGCTTGTGAGACGTC
 ACTCCTGGTCTGTGTTGGGCCACATCAGCTCCCTGACAGGGCATAGCTATAAAGTACCCCTCC
 GGATGGGCTAGAGCTGTTGATAATTGAGCTTGTGAGGCTTGTGAGGAAATATGGCTGAATGAGCGT
 ATCGTTGAGACCACTGCAACTTGGGTGCAAGGCTTGTGAGGATCAAGCCTTGGCACCTGGGCT
 GGTCTTGGCTGGTCACTGGGACCCATATGTCGCGTAGGAGCAGAACCTTCCATGGCAGTAAGT
 GTCCAGCTGTTCTGGTCTTCCCTGCTGCTGATTTTACACAGTGTAGAGTGGCCAGCAGTGA
 CACTCCAGGAAGGCCATCTGACCCCTGACAGGGCATAGCTATAAAGTACCCCTCC
 CTCTGAGGCTTGGGCTAGAGCTGTTGATAATTGAGCTTGTGAGGCTTGTGAGGAAATATGGCTGA
 ATCGTTGAGACCACTGCAACTTGGGTGCAAGGCTTGTGAGGATCAAGCCTTGGCACCTGGGCT
 CCATACCCCTTGTCCCTCCAGGCCATCCAGGACACCCCTCACACCACAGCCCCAGGGAGCTT
 CCCGCTATAAACACAGACCCCTTGTCTTGCCTCTGATTTTACACAGTGTAGAGTGGCCAGCAGTGA
 ACAGGTTGAGGATGTGCGGGTAGATAAGATAACTTGGGTCTGGTTGTGCTGTTGATGTTGTTAA
 GGGATATGTTGACTGTGGGTGGGGACGTGTGCTTGTGGGGCACAGGTGGGGCCCTGCTGGAGCCTGG
 CTGGGGCGAGCGCCTATGAGGACGGGTGTTCTGACCTACCTCCAGGCTCCCTGACCTGCAA
 GGAACAGGAGTGTGACTGACAGGGGTGGGAGACTAGACTAGGTAGAGTAGTTACCAGGAGATG

PCT/US04/06308

TGAATGTGCGTCAGGTGATGGATGGTTGTCAAGGAAATCGTACCGTTTATACCAAAGGTATTAACA
TGGCAGCCTTGACACATGTATTCCAAAAACGAGTTATTTCAAACGGTTTACAGCTTAGACTT
TGTACTTACTGCCCTGCCTGTGACAGTTGATGCCCTCATTTGTATCCAACAGCAAAGTCTACAATAAA
ACTTAAAACAATCATG

Human MSTP028 Protein sequence - var1 (public gi: 13994353) (SEQ ID NO: 255)
MEEMSGESVVSSAVPAAATRTTSFKGTPSSKYVKNVGGALYTTMQTLTKQDTMLKAMPSGRMEVLTD
SEGWLIDRCGKHFGTILNYLRDGAAPLPESRREIEELAEAKYLVQGLVEECQAALQNKTYPFCKV
PVITSSKEEQKLIATSNKPAVKLLYNRSNNKSYTSNSDDNMLKNIELFDKLSLRFNGRVLFIKDVGDE
ICCWFSFYQQRKIAEVCCSIVYATEKKQTKVEFPEARIYEETLNILLYEAQDGRGPDNALLEATGGAAG
RSHHLDEDEERERIERVRIHIKRPPDDRAHLHQ

Human MSTP028 Protein sequence - var2 (public gi: 14042295) (SEQ ID NO: 256)
MSGESVVSSAVPAAATRTTSFKGTPSSKYVKNVGGALYTTMQTLTKQDTMLKAMPSGRMEVLTDSEG
WILIDRCGKHFGTILNYLRDGAAPLPESRREIEELAEAKYLVQGLVEECQAALQNKTYPFCKVPVI
TSSKEEQKLIATSNKPAVKLLYNRSNNKSYTSNSDDNMLKNIELFDKLSLRFNGRVLFIKDVGDEICC
WSFYQQRKIAEVCCSIVYATEKKQTKVEFPEARIYEETLNILLYEAQDGRGPDNALLEATGGAAGRSH
HLDEDEERERIERVRIHIKRPPDDRAHLHQ

Unigene Name: PACS-1 Unigene ID: Hs.58589

Human PACS-1 mRNA sequence - var1 (public gi: 27781345) (SEQ ID NO: 95)
AGCACGAGTCTGGTTGTGCCGGAGAAAGTCAAAACTCCCAGTAAAGTCCAGTAAACGGATCTCAGGGCT
CTGCTCCCCCAGCAAAGTGGAGGGGGTGACACACCCGGAGAAGAGGAGCAGCCCTGAAGGAGCG
GCAGCTCTCAAGCCCCCTAACAGTGGAGGACCAACAGTCCAGCGAGCGCTCCCCAGATCTGGCCAC
AGCACCGAGATCTCAAGAAAGGTGGTGTATGACCAGCTCAATCAGATCTGGTGTAGATGCAGCCCTCC
CAGAAAATGTCATTCTGGTGAACACCAACTGACTGGCAGGGCAGTATGGCTGAGCTGCTCCAGGACCA
GCGGAAGGCTGTGGTGTGACCTGCTCCACCGTGGAGGTCCAGGCCGTGCTGCTCCGCCGTGCTCACCGG
ATCCAGCGCTACTGCAACTCTTCCATGCCAGGCCAGTGAAGGTGGCTGCTGTGGAGGCCAGA
GCTACCTGAGCTCCATCCTCAGGTTCTTGTCAAGTCCCTGCCAACAGACCTCCGACTGGCTGGCTA
CATGCGCTTCCATCATCCCCCTCGTTCTCACCCCTGTGGCAAATACTGGGTCAAGTCAGACTAAA
TACAGTAGTTCTTCTGGATTCTGGTGGAGGAATCTGTTCACTGCGTCCAGGCCACAGCTCCGAG
AACTGGACGTGGCAGGGGGGTGATGCACTACGTCAGTCAACGGGGCAGGCCACACACCAGCTCCGTGG
CGAAGCCATGCTGACTTGGCCGATAAGTCCCTGATGAAGACTCCTATCAGAAGTTATTCCCTCATT
GGCGTGGTGAAGGTGGGTCTGGTGAAGACTCTCCCTCCACAGCAGGCCATGGGACGATTCTCTGTGG
TCAGCCTTACTGTGCCCTCACATCACCAACCCCTCAGCTGGCCTGAGGCCAGGCCACGGCCACCCC
TCCCTCCCTCCATCTATGAGCAGGCCCTGGCAGTGGGAGCCCTAATAGCCATATGGGACGTG
ATTGGCCTCAGGTGGACTACTGGCTGGGCCACCCGGGGAGCGGGAGGGAGGGCACAAGAGGGAGC
CCAGCTCGAAGAACACCCCTCAAGAGTGTCTCCGCTCAGTGCAGGTGTCCGCCATAGGGGA
GGCCCAGCTTCTGGCACCAGGCCATGACTGTGGTACCAAGAAAAGAACAGAAAGTTCCACCATC
TTCTGAGCAAGAACCCCGAGAAAAGGAGGTGGATTCTAAGAGCCAGGTCAATTGAAGGCATCAGGCC
TCATCTGCTCAGCCAAGCAGCAGCAGACTATGCTGAGGTGTCCATCGATGGGTGAGTGGAGTGCAT
CAAGTTCTCCAGCTGGCAGGCCAGTGGCCACCCATGTCAGCAGCACTTCCAGTGGACTCTTCAGTGG
AGCAAGGCCACCTGAGGCCCTGTCTCCAGGCCACTTCCCTGGCAGTGGCAGGCCACGGCCACAGC
CGGGCAGGGGAGGCCAGCAGGCCACGGCCAGGCCACTTCCCTGGCAGGCCACGGGTCTGCCCTCACTCG
CCCAGGTCCCCAGGACACTGCCACAGGGACGCCCTCCCTCCCTGGCAGGCCACGGCCACAGC
CCCTCCCTCCCTGGCTTCTCCCTCTGGCTCCAGGCCAAGGCGTGTGGTTTGCCCTCTG
GTGCCCATAGTCCCCTGGAGTCCCCAGGCCCTCTCACCCAGTCCAAACTCTCCTGTGGT
ATCAGTTCTCTCGGAAATGAGAAAGCTGGATCTGGTCCCCAGCAGGAGAGCCTAGTCCTCCCCA
GCCCTCCAGGCCACCAGGGTGTCTAGGATGCACTGCCAGATCCACTCTGCTGCCCTCAGCAG
GACCCAAGGCCACTTCAACTCTTATGGGTTCTCCACCTGCCAGAGCTCTCAAGGGAGGGTAAGGG
GGCACCCCTGAGGCCACAGGCCACTTCAAGCTCACAGGGCAGGAGGCAGTCCCTGCCAG
ACCCCTGTTGCTATGGTACACAGCGTTCTAGGACAGAGGGCTCCAGTCTCCCCCACCACCCGTGC
ACGACTTCCCTACCACCCAGGGTCCCTGCAAGATGTCGTGTGCTCTGAGTTCTTGGTTCTTG
CACGCCAGTCTCTGGTTGTACCATGTGACACACCCCTGCACTGGTGTGCTCTCGTGGCTCCACC
CTTGTAAATGATGCTCTGCCCTCTGCCCTCCAGGCCACTTCAAGCTCACAGGGCAGGAGGCAGTCC
ATGGGAGGCAGACCCCCACCAACATGCTGTCAGGCCCTCAGACATTCTGTTTCACTCCCATT
CATCTCCCTCTCCACCGCTGTCAGTTCTGCTCTGCCCTCTGCTGTTCTTGGCTTCTTG
ACCCCTGGGCCAGACCCATCTCCAGGCCAGGGTCTCCAGGCCACTTCCCTGCCAGTGCACCTCC
CTCTCACCAACCCGGGGTCTGAGGCCCTCATTCTGACCGTCCGTGTTCTCAGGAGTGGTTGAGGACACA
GGGCCAGGCCAGCCCTCTGCAACCCAGGCCACTTCAAGCTCACAGGGCAGGAGGCAGTCCCTGCCAG
TCTTGCTCTCACTCTCCAGAAGTTTGACAGAACATTCTGTTCTCATTCTC

Figure 36 part - 52

PC T/U504/06308

CATAACCTCCCCAAGCTCTCCAGCCCTTCCCAGGGCTCAGCCCTGCTGTCTGAGCGTCTCCGGC
CAGAGAGAGGAGATGGGGTGGGAGGACTGAGTTGATGTTGGGTTTTCAATTAAATTGGTGATT
CTTAAAAAAAAAAAAAAA

Human PACS-1 mRNA sequence - var2 (public gi: 30962845) (SEQ ID NO: 96)
CCTCGGCCCTCGTAACCCCCGCTAGCGGGCATGGCGAACGCGGAGGGCGGGTGGTCCGGAG
GCAGCGGGGGCGGCAGCGGCCAGCGGGATCCGGGTCGCCAGTCCCGTCAGCAGCGCCGCCAGCA
GCAGCAGCAGCAGCCGCCAGCGACGCCAACCTCGTCGTCCTCCACCTCCAGGCGTGGCGGTGGCCTCGG
ACCTCGGCCGGCTGCCCTCCCTCGTCGTCCTCCACCTCCAGGCGTGGCGGTGGCCTCGG
GCTCCGCGCTCCCGTGGCCGGCCAGGCCAGGCCACCCCGCCGGTCAAGATGAACCTGTACGCCAC
CTGGGAGGTGGACCGGAGCTCGTCCAGCTGCGTGCCTAGGCATTTCAGCTGACCTGAAGAAACTCGTC
ATGCTAAAGAAATGGACAAAGATCTAACTCACTAGTGGTCACTCGCTGTGAAGCTGAGGGTTCAAAAGAA
TTCTCGCTCCAACAGAGATCGTCCTCCAGCTAGTGGACTGGAAACAGAGCTCAATTAAACCTCTC
CCTCAGTACCCCTATTCTTAAGCGAGATGCCAACAGCTGCAGATCATGTCGAAAGGAGAAAACGT
TACAAGAATCGGACATCTGGGCTATAAGACCTTGGCGTGGGACTCATCAACATGGCAGAGGTGATGC
AGCATCTAATGAAGCGCACTGGTGTGGCCTACACAGCAACGTGAAGGATGTCCTGTGCCTGTGGC
AGAAATAAAAGATCTACTCCCTGTCCAGCCAACCCATTGACCATGAAGGAATCAAATCAAGCTTCTGAT
CGTCTCCGTATATTGACAATTATTCTGAGGAAGAGGAAGAGAGTTCTCATCAGAACAGGAAGGCAGTG
ATGATCCATTGCACTGGCAGGACTTGTCTACGAAGACGAAGATCTCCGAAAGTGAGAAGAACCCGGAG
GAAACTAACCTAACCTCTGCCATACAAGGAACTAACATCAAACAGAAAGTGTGGCCCTCCTGAAG
CGGTTAAAGTTTCAGATGAGGTGGGTTGGCTGGAGCATGTGTCCCGCAGCAGATCCGGGAAGTGG
AAGAGGACTTGGATGAATTGTATGACAGCTGGAGATGTAACCCAGCGACAGTGGCCCTGAGATGGA
GGAGACAGAAAGCATCTCAGCACGCCAACAGCTCAAGCTAACCTTCTTGGGGATGTCAGTCC
AGTCCCAGGAGATTGGCAGGAGATTGGCAGCCTAACAGCAAAGGAGCCTGGAAAAGACACCACAGCCCTATGG
AATTGGCTGCTCTAGAAAAAAATTAAATCTACTTGGATTAAAACCAAGATGACAGCTGACTGAAACAGA
CACTCTGGAAATCACTGACCAGGACATGTTGGAGATGCCAGCAGGACTCTGGTTGTGCCGGAGAAAGTC
AAAACCTCCATGAAGTCCAGTAAACGGATCTCAGGGCTCTGCCCTCCCCAGCAAAGTGGAGGGGTGC
ACACACCCCGCAGAACAGGAGCACGCCCTGAAGGAGCGCAGCTCTCAAGCCCTAACGTGAGAGGAC
CAACAGTTCCGACAGCGAGCGCTCCCGAGATCTGGGCCACAGCACGAGATTCCAAGAAAGGTGGTGTAT
GACCAGCTCAATCAGATCTGGTGTAGATGCAAGCCCTCCAGAAAATGTCATTCTGGTGAACACCAC
ACTGGCAGGGCAGTATGTGGCTGAGCTGCTCAGGACCAGCGGAAGCTGTTGTGCACCTGCTCCAC
CGTGGAGGTCCAGGCCGTGCTGCCGCTGCTACCCGGATCCAGCCTACTGCAACTCTTCC
ATGCCGAGGCCAGTGAAGGTGGCTGCTGGGAGGCCAGAGCTACCTGAGCTCCATCCTCAGGTTCTTG
TCAAGTCCCTGGCCAACAGACCTCCGACTGGCTGGCTACATGCGCTCCTCATCCTGGTTTC
TCACCCCTGTGCCAAATACTGGGCTAGTCAGAATACAGTAGTTCTCTGGATTCTGGTTGG
AGAGATCTGTCAGTCGCTCGGAGCACCAGTGTCAAGAGCAACTGGACGTGGCAGGGCGGGTGTGCAGT
ACGTCAACGGGAGGCCACGACACACCAGCTCCGTGGCGAAGCCATGCTGACTTGGCGGATAAGTT
CCCTGATGAAGACTCTATCAGAAGTTTATTCCCTCATGGCGTGGTAAGGTGGGTCTGGTTGAAGAC
TCTCCCTCCACAGCAGGCCAGGAGGAGCTGGGACATTCTCTGTGGCAGCCTACTGTGCCCTCCACATCACCAC
CCTCCAGCTCGGGCTGAGCCAGACGCCACGCCACCCCTCCCTCCCATCTATGAGCAGGCCCT
GGCATCGTGGGAGGCCATAAGCCATATGGGACGTGATTGGCCTCAGCTGGACTACTGCTGG
CACCCCGGGAGCGGAGGGAGGAAGGCGACAAGAGGGAGCCAGCTGAAGAACCCCTCAAGAGTGTCT
TCCGCTAGTCAGGTGTCAGGAGCTCCGCTGCCAGGAGCTGGGAGGCCAGCTTCTGGCACCAGGCCATGAC
TGTGGTCACCAAAGAAAACAAGAAAGTCCCACCATCTCCAGAAGCAAGAAACCCCGAGAAAAGGAG
GTGGATTCTAAGAGCCAGGTATTGAAAGGCATCGGCCCTCATCTGTCAGCCAGCAGCAGCAGACTA
TGCTGAGAGTGTCCATGGTGTGGAGTGACATCAAGTTCTCCAGCTGGCAGGCCAGTGGCC
CACCCATGTCAAGCAGCTTCCAGTGGAGCTTCACTGAGCTGGCAGCAAGGCCACCTGAGGCCCTGCTCCAG
CCACTTTCCCTCTGGCAGGCCACAGGCTGCTCTCACTGCCAGGCCAGGGGGAGGCCAGGCCAGGCC
CAGCACCCCTCCCTGGCAGGCCACAGGCTGCTCTCACTGCCAGGCCAGGGGGAGGCCAGGCCAGGCC
CGCCCTCCCTCCCTGCCAGGCCACCCCTGCAAGGCCCTCCCTCCAGGCCAGGGGGAGGCCAGGCC
CTCCCTGCTCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
AGGCCCTCCCTCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
AGGCCCTCCCTCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
ATGCAGCTGCCAGATCCACTCACTCTGCTGCCCTCAGCAGGCCAGGCCACTTCAACTCTTATGGGG
TTCTCCACCTGCCCTCAGGAGCTTCTCAAGGGAGGGTAAGGGGCCACCCCTGAGGCCACAGGCCCTACTTC
ACAGCTCACAGGGGAGGAGGAGCTCCCTGCCAGGCCAGGCCACTGTTGCTATGGTGAACAGCGTTCT
AGGACAGAGGGGCCCTCCAGTCTCCCCCAGGCCACCCCTGCAAGCAGCTTCTCAGGCCACCC
CAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
CAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
CACACCCCTGTCAGCTGGCGCTGCTGGCTCCACCCCTGTTAATGATGCTCTGCCCTGCC
CAGGCCCTCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
CTGTCTGTGGCCCTCAGACATTCTGTTCATCTCCCATCTCCCTCTCCACCGTGTAGTTT
CTGCCCTTCCCTGCTGTTCTTCCCTCTAGGCCAGGCCAGGCCAGGCC
GGTTCCCTCCAGCAGGCCCTCCCTGCCCTGTCACCTCCCTCTGCC
GGTTCCCTCCAGCAGGCCCTCCCTGCCCTGTCACCTCCCTCTGCC

Figure 36 part - 53

PCT/US04/06308

TTCTGACCGTCGTTCAGGAGTGGTGAGGACACAGGGCCCCAGCCCAGCCCTCTGCACCCCCCA
GCCGGCCATCTGCAGCCCCACAGCCCCCTGGAGCTTCTCTGCTCTCACTCCTCCAGAAGTTT
TTGACAGAACCTCATTTGAAAGTGTCTCATTCTCACCTCCCCAAGCTCCTCCAGCCCT
TCCCAGGGCTCAGCCCTGCTGCTGAGCGTCTCCTGGGCCAGAGAGAGGAGATGGGGTGGGAGGGACT
GAGTTGATGTTGGGTTTTCAATAAAATTGGTGATTCTACCGACAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

Human PACS-1 mRNA sequence - var3 (public gi: 33243994) (SEQ ID NO: 97)
CAGAAAGCATCTCAGCAGCCAAAGCCAAGCTCAAGCCTTCTTGAGGGATGTCGAGTCCAGCTC
CCAGACGGAGATTGGCAGCTCAACAGCAAAGGCAGCTCGGAAAAGACACCAGCCCTATGGAATTG
GCTGCTCTAGAAAAAATTAAATCTACTTGGATTAAAACCAAGATGACAGCTTGACTGAAACAGACACTC
TGGAAATCACTGACCAGGACATGTTGGAGATGCCAGCACGAGTCTGGTGTGCCGGAGAAAGTCAAAAC
TCCCAGTGAAGTCCAGTAAAACGGATCTCAGGGCTCTGCCCTCCCCAGCAAAGTGGAGGGTGCACACA
CCCCGGCAGAAAGGAGGACAGCCCCCTGAAGGAGGGCAGCTCTCAAGCCTAAAGGAAAGGTGGTGTATGACCA
GTTCCGACAGCAGCGCTCCCAGATCTGGCCAAGCAGCAGATTCAAGAAAGGTGGTGTATGACCA
GCTCAATCAGATCCTGGTGTAGATGCAAGCCTCCAGAAAATGTCATTCTGGTAACACCAACTGACTGG
CAGGGCCAGTATGTGGCTGAGCTGCTCAGGACAGCGGAAGCCTGTGGTGTGCCACTGCTCCACCGTGG
AGTCCAGGCGTGTGTCGCCCCGTCACTGCACTGCAACTGCAACTCTTCATGCC
GAGGCCAGTGAAGGTGGCTGCTGAGGAGGAGCTACCTGAGCTCCATCCTCAGGGTTCTGTCAAG
TCCCAGGCAACAAGACCTCGACTGGCTTGCTACATGCGCTTCCCTCATCATCCCCCTGGTTCTCACC
CTGTGGCAAATACTTGGGTCAGTCAGTAATACAGTAGTTCTTCTGGATTCTGGTTGAGAGA
TCTGTTCACTGCTCGGAGCCACCAGTGTCAAGAGCAACTGGCAGTGGCAGGGGGGATGCACTGTC
AACGGGGCAGCACGACACACCAGTCCCGTGGCGAAGCCATGCTGACTTGGCCGATAAGTCCCTG
ATGAAGACTCTATCAGAAGTTTATCCCTCATGGCGTGTGAAGGTGGTCTGGTTGAAGACTCTCC
CTCACAGCAGCGATGGGACGATTCTCGTGTGCTAGCCTACTTCCCTCCATCTGAGCAGCGCCCTGGCCA
AGCTGGGCTTGAGCCGAGACGCCAACGGCCACCCCTCCCTCCATCTGAGCAGCGCCCTGGCCA
TCGTGGGAGCCCTAATAGCCATATGGGACGTGATTGGCTCAGGTTGGACTACTGGCTGGGCCACCC
CGGGGAGCGAGGGAGGGAGGCGACAAGAGGGACGCCAGCTGAAGAACACCCCTCAAGAGTGTCTCCGC
TCAGTGCAGGGTGTCCCGCTGCCCATAGTGGGAGGCCAGCTTCTGGCACCATGGCAGTGTGG
TCACCAAAGAAAAGAACAGAAAGTCCCACCATCTCCTGAGCAAGAAACCCCGAGAAAAGGAGGTGGA
TTCTAAGAGCCAGGTCACTGAAGGCATCAGCCGCTCATCTGCTCAGCCAAGCAGCAGACTATGCTG
AGAGTGTCCATCGATGGGTCGAGTGGAGTGCATCAAGTTCTCCAGCTGGCAGCCAGTGGCCACCC
ATGTCAAGCACTTCCAGTGGACTCTCAGTGCAGCAAGGCCACCTGAGGCCCTGTCTCCAGCCACT
TCCCTCCTGGCACTGCCACAGCCTCACGCCCTGCGGAGGGGAGGCCAGCAGGCCGGGCCAGCA
CCCCCTCCCTGGCACCCAGGGTCTGCCCTCTCACGCCCTCCAGGCCAGGGTCCCAAGGACACTGCCACAGGCC
TCCCTCCCTCCCTCCAGGCCACCCCTGCCACAGGCCCTCCCTCCAGGCCAGGGTCCCTCCAGGCC
GCTCCAGGCCAACAGCGTGTGGTTCTGGCTTCTGGCCCATAGTCCCTGGACTGAGTCCCCCAGGCC
TTCCTCACCCGACTTCCAAACTCTTCCCTGTGGTATCAGTTCTTGGAAATGAGAAAGCTGGAAAT
CCTGGTCCCCAGCAGGAGAGCCTAGTCTCTCCCCAGGCCCTCCAGGCCACCCAGGGTGTCCCTAGGATGCA
GCTGCCAGATCCACTCTGCTGCCCTCAGCAGGCCAGGCCACTTCAACTCTATGGGTTCT
CACCTGCCCAAGAGCTCCAAGGGAGGGTAAGGGGACCCCTGAGCCACAGGCCCTACTTACAGC
TCACAGGGGCAAGGAGGAGCTCCCTGCCCTCAGGCCCTGTTGCTATGGTACACAGCGTTCTAGGAC
AGAGGGGCCCTCCAGTCTCCCCCACCACCCGTGCAGACTCCTCACCCAGGGTCCCTGAGAT
GTCGTGTGTCTGAGTGTGTTCTTGGTCTTGCACGCCAGTCTCTGGTTGACATGTGACACAC
CTGTGCACTGGCGCTGCTCTCGTGTGCTTCCACCCCTGTTAATGATGCTCTGCCCTGCGCTCCAGGCC
CCTCACCCAGCACAGCTCGCTGGACTTGGAGAGATGGGAGGCCAGACCCCCCAGGCCACCCATATGCTGTC
TGTGGCCCTCAGACATTCTGTTCTCCCATCTCCCTCCAGGCCCTGCCAGGCCAGGGTT
TTCCTCTGCTCTGTTCTCCCCCTCTCTAGGCCCTGCTGCTCTCCAGGCCCTGCCAGGCCAGGGTT
CCCTCCAGCAGGCCCTCTCTCTCTGTCACCTCCCTCTCACCAACCCGGGTCTGAGCCCCCTCATCTC
GACCGTCCGTGTTCTCAGGAGTGGTTGAGGACACAGGGCCAGGCCAGGCCCTCTGCCACCCCCCAGGCC
GCCATCTGCGCCCCACAGCCCCCTGGAGCTTCTCTGCTCTCACCTCTCCAGAAGTTTTGCA
CAGAACTTCATTTGAAAGTGTGTTCTCATTCTCTATACCTCCCCAAGCTCTCCAGGCCCTCC
GGGCTCAGCCCTGCTGCTGAGCGTCTGCCAGAGAGAGGAGATGGGGTGGGAGGGACTGAGTT
GATGTTGGGTTTTCAATAAAATTGGTGATTCTTACCGACAAAAAAAAAAAAAAA

Human PACS-1 mRNA sequence - var4 (public gi: 34420884) (SEQ ID NO: 98)
CGCGCCGCCGCCGCCGGGGAGGCTGGGAGGCCAGATCGCGTCGCCCTGGCTTAACCCCGCTA
GCCGGGCCATGGCGAACCGGGAGGG
GGGATCCGGGGTGCCTCAGTCCCTCAGCAGCCAGTGGCGAACGCCGGAGGGGGGGGGGGGGGGGG
GGCGCCGG
AGCAGCAGCAGGCCCGCAGGCCAGGCCAGGCCACGCCCTCTGCCACCTCTGCTCTCGTC
CACCTCGGCCGGCTGCCCTCTCTGCTACCTCCACCTCCATGGCGTGGCGGTGGCGCTCG

Figure 36 part - 54

GGCTCCGCCCTCCGGTGGCCGGGGCAGGCCGCACCCCCCGGGTGCAGATGAACCTGTACGCCA
 CCTGGGAGGTGGACCGGAGCTCGTCAGCTGCGCTAGGCTATTCACTCAGGGTACCGCTGAAAGAAACTCGT
 CATGCTAAAGAAATGGACAAAGATCTTAACCTAAGCTGCTCTCCAGCTAGTGGACTGGTGGAAACAGAGCTCCAATTAAACCTCT
 ATTCTCGCTCCAACGAGATCGTCTTCCAGCTAGTGGACTGGTGGAAACAGAGCTCCAATTAAACCTCT
 CCCTCAGTACCTCATTTCTTAAGCGAGATGCCAACAGCTGCGATCATGCTGCAAAGGAGAAAACG
 TTACAAGAATCGACCATCTGGCTATAAGACCTTGGCGTGGGACTCATCAACATGGCAGAGGTGATG
 CAGCATCTAATGAGGCGCACTGGTGGCTACAGCAACAGTGAAAGGATGTCCTGTGCGCTGTGG
 CAGAAATAAAGATCTACTCCCTGTCAGGCCAACCCATTGACCATGAAGGAATCAAATCCAAGCTTCTGA
 TCGTCTCTGATATTCTGAGGAAGAGGAAGAGAGTTCTCATCAGAACAGGAAGGCAGT
 GATGATCCATTGATGGCAGGACTTGTCTACGAGACGAAGATCTCCGGAAAGTGAAGAAGACCCGG
 GGAAACTAACCTCAACCTCTGCCATACAAGGCAACCTAACATCAAACAGAAAGTGTGGCCCTCTGAA
 GCGGTTAAAGTTTCAAGATGAGGTGGGTTGGGCTGGAGCATGTCAGGAGATGTCAGGAGATCCGGGAAGTG
 GAAGAGGACTTGGATGAATTGTATGACAGTCTGGAGATGTCACACCCAGCGACAGTGGCCCTGAGATGG
 AGGAGACAGAAAGCATCCTCAGCACGCCAACGCCAACGCTCAAGCCTTCTTGAGGGATGTCGAGTC
 CAGCTCCCAGACGGAGATTGGCAGCCTAACAGCAAAGCAGCTCGGAAAGACACCACGCCCTATG
 GAATTGGCTGCTTAGAAAAAATTAAATCTACTTGGATTAAAACCAAGATGACAGCTTGTACTGAAACAG
 ACACCTGGAAATCACTGACCGAGACATGTTGGAGATGCCAGCACGAGCTGGTTGTGCGGGAGAAAGT
 CAAAACCTCCATGAAGTCCAGTAAAACGGATCTCAGGGCTCTGCCAGGCTCCAGAACAGCTTCAAGTGGAGAGGA
 CACACACCCCGCAGAAGAGGAGCACGCCCTGAAGGAGGGCAGCTCTCAAGGCCCTAAGTGGAGAGGA
 CCAACAGTTCCCAGCGAGCGCTCCCGAGATCTGGGCCACAGCACGAGATTCCAAGAAAGGTGGTGT
 TGACAGCTCAATCAGATCTGGTGTAGATGTCAGGCCCTCCAGAAAATGTCATTCTGGTGAACACCACT
 GACTGGCAGGGCCAGTATGTTGGCTGAGCTGCTCCAGGACCAGCGGAAGCCTGTGGTGTGACCTGCTCCA
 CGTGGAGGTCCAGGCCGTGCTGTCGCCCTGCTCACCCGGATCCAGCGTACTGCAACTGCAACTCTTC
 CATGCCAGGCCAGTGAAGTGGCTGCTGGGAGGCCAGAGCTACCTGAGCTCATCTCAGGTTCTT
 GTCAAGTCCCAGGCCAACAGACCTCCAGTGGCTTGGCTACATGCGCTCCTCATCATCCCCCTCGGTT
 CTCACCCCTGTGCCAAATATTGGGGTCAGTCAGTAAATACAGTAGTTCTTCTGGATTCTGGTTG
 GAGAGATCTGTCAGTCAGCTCGGAGCCACCAGTGTCAAGAGCAACTGGACGGCAGGGGGTGTGAG
 TACGTCAACGGGCAGCCACGACACACCAGCTCCGTGGCCAGGCCATGCTGACTTGGCCGATAAGT
 TCCCTGATGAAGACTCCTATCAGAAGTTTATTCCCTCATGGCGTGGTGAAGGTTGGCTGGTTGAAGA
 CTCTCCCTCCACAGCAGGCGATGGGGACGAGTCTCTGTGGTCAAGCCTTACTGTGCCCTCCACATCACC
 CCCCTCAGCTGGGCCAGGCCAGACGCCACGGGCCACGGCCATCTCCCTCCCTCATCTGAACAGGCC
 TGGCCATCTGGGGAGGCCATAGCCCCATATGGGACGTATTGGCTCCAGGTGGACTACTGCTGG
 CCACCCGGGGAGGCCAGGGAGGGAGGCCAGGCCACGGGACAGCTGAAGAACACCCCTCAAGAGTGT
 TTCCGCTAGTCAGGTGTCAGGCTCCGCCAGCCATAGTGGGGAGGCCAGCTTCTGGCACCATGGCATGA
 CTGTGGTCACCAAAGAAACTGAACAAGAAAGTCCACCATCTCCTGAGCAAGAACACCCGGAGAAAAGGA
 GGTGGATTCTAAGAGCCAGGTCAATTGAGGCATAGCCGCTCATCTGTCAGCCAAGCAGCAGCAGACT
 ATGCTGAGAGTGTCCATCGATGGGTCGAGTGGAGTGCACATCAAGTCTCCAGCTGGCAGGCCAGTGGC
 CCACCCATGTCAAGCACTTCCAGTGGACTCTTCAGTGGCAGCAAGGCCACCTAG

Human PACS-1 mRNA sequence - var5 (public gi: 6330230) (SEQ ID NO: 99)
 CTGCCATCAAAGCAACCTAACATCAAACAGAAAGTTGTGGCCCTCTGAAGCGTTAAAGTTCA
 TGAGGTGGGTTGGCTGGAGCATGTCAGTGGCCGAGCAGATCCGGGAAGTGGAGAGGACTTGGATGAA
 TTGTATGACAGTCTGGAGATGTCACACCCAGCGACAGTGGCCCTGAGATGGAGGAGACAGAAAGCATCC
 TCAGCACGCCAACGCCAACGCTCAAGCCTTCTTGTAGGGGATGTCGAGTCAGCTCCAGCAGGCC
 TGGCAGGCCCTAACAGCAAAGCAGCTCGGAAAGACACCCAGGCCATGGAAATTGGCTGCTCTAGAA
 AAAATTAAATCTACTTGGATTAAAACCAAGATGACAGCTTGTACTGAAACAGACACTCTGGAAATCACTG
 ACCAGGACATGTTGGAGATGCCAGCAGAGCTGGTGTGCCGGAGAAAGTCAAAACCTCCATGAAGTC
 CAGTAAAACGGATCTCCAGGGCTCTGCCCTCCAGCAAGTGGAGGGGGTGCACACACCCGGCAGAAG
 AGGAGCACGCCCTGAAGGAGCGGAGCTCTCAAGCCCTAAGTGGAGGAGCAACAGTCCGACAGCG
 AGCGCTCCCCAGATCTGGCCACAGCACGAGATTCAAGAAAGGTGGTGTATGACAGCTCAATCAGAT
 CCTGGTGTCAAGATGCAAGCCCTCCAGAAAATGTCATTCTGGTGAACACCACTGACTGGCAGGGCCAGTAT
 GTGGCTGAGCTGCTCCAGGACCAGCGGAAGCCTGTGGTGTGACCTGCTCCACGGTGGAGGTCCAGGCC
 TGCTGTCCGCCCTGCTCACCCGGATCCAGCGTACTGCAACTGCAACTCTCCATGCCAGGCCAGTGA
 GGTGGCTGCTGGGAGGCCAGAGCTACCTGAGCTCATCTCAGGTTCTTGTCAAGTCCCTGCCAAC
 AAGACCTCGACTGGCTGGCTACATGCGCTTCTCATCATCCCCCTCGTTCTACCCCTGTGGCCAAAT
 ACTTGGGGTCAGTCGACAGTAAATACAGTAGTGTCTCTGGATTCTGGTTGGAGAGATCTGTTAGTC
 CTCGGAGCCACCGAGTCAGAGCAACTGGACGCTGGCAGGGGGTGTGCACTGCAACCGGGCAGCC
 ACGACACACCCAGCTTCCCGTGGCCAGGCCATGTCAGTGGCCGATTAAGTCCCTGATGAAGACTCCT
 ATCAGAAGTTATTCCCTCATGGCTGGTCAAGCTGCTGACTTGGCCGATTAAGTCCCTGATGAAGACTCCT
 CGATGGGGACGATTCTCTGTGGTCAAGCTTACTGTGCCCTCCACATCACCCACCTCCAGCTGGGCC
 AGCCGAGACGCCACGCCACGGCCACCCCTCCCTCCCTCATCTAGAGCAGGCCCTGGCAGTGGGGAGCC
 CTAATAGCCCATAATGGGACGTATTGGCTCCAGGTGGACTACTGGCTGGCCACCCGGGGAGCGGAG
 GAGGAGAGGCCAGAAGAGGGACGCCAGCTGAAGAACACCCCTCAAGAGTGTCTCCGCTAGTGCAGGTG

Figure 36 part - 55

PCT/US04/06308

TCCCGCCTGCCCATAGGGGAGGCCAGCTTCTGGCACCATGGCATGACTGGTCACCAAGAAA
AGAACAAAGAAAGTCCCACCATCTCTGAGCAAGAAACCCGAGAAAGGAGGTGGATTCTAAGAGCCA
GGTCATTGAAGGCATCAGCGCCTCATCTGCTCAGCCAAGCAGCAGCAGACTATGCTGAGAGTGTCATC
GATGGGGTGCAGTGGAGTGCACATCAAGTTCTTCAGCTGGCAGGCCACTGAGGCCAGTGGCCACCCATGTCAAGCACT
TTCCAGTGGGACTCTCAGTGGCAGCAAGGCCACCTGAGGCCAGCAGGCCAGGCCAGCAGGCCACTTCCCTCTGGC
ACTGCCACCCTCACCGGCTGGGGCAGGGCAGGCCAGCAGGCCAGGCCAGGCCAGGCCACTTCCCTCTGGC
CACCAGGGCTGCCTCTCACTCGCCAGGTGGCAAGGACACTGCCACAGGGACGCCCTCCCTCCCTCC
CCTCCAGGCCCCACCCCTGCACAGGCCCTCCCTGGCAAGGAGGTGGACTGAGTCCCCAGGCCCTCCCTCAGGCC
AGGCGTGTGGTTTGCCTCTGGTGCCTAGTCCCCCTGGACTGAGTCCCCAGGCCCTCCCTCAGGCC
ACTCCAAACTCTCCTTGTGGTATCAGTTCTCTCGGAAATGAGAAAGCTGGAATCTGGTCCCCAG
CAGGAGAGCCTAGTCCTCCCCAGCCCTCCAGGCCACCAGGGTGTCTAGGATGCAAGCTGCCAGATCC
ACTCACTCTGCTGCCTCAGCAGGACCAAGGCCACTTCAACTCTTATGGGTTCTCCACCTGCCAG
AGCTTCCAAGGGAGGGTAAGGGGGCACCTGAGGCCACAGGCCACTTACAGCTCACAGCTCACAGGGCAG
GAGGCAGCTCCCCTGCCTCCAGGACCCCTGGTGTATGGTACACAGCAGGTTCTAGGACAGAGGGGCC
CAGTCTCCCCCACCACCGTGCACCACTCTCACCAACCCAGGTTCTGGCAGATGCTGTGT
CTGAGTGTCTTGTGGTCTTGACCGCAAGTCTTGGTGTACCATGACACACCCCTGTGACTGG
TCGCTGTCTCGTGGCTTCCACCCCTGTAAATGATGCTCTGCCTCTGCCCTCAGGCCCTCACCCAGCA
CAGCTCTGCCGGACTGGAGATGGAGGAGATGGGAGGCCAGGCCACCCATACATGCTGTGTGGCC
GACATTCTGTTCTCCATTCTCCTCCACCCCTCTGGCAGGCCAGGCCACCCATCTCCAGGTTCTCCCTCAGCAGG
GTTCTCCCCCTCTTAGGGCCAGGCCAGGCCACCCATCTCCAGGTTCTCCCTCAGCAGG
CTCCCTCCCTCCCTGTACCTCCCTCTACCAACCCGGGGTCTGAGGCCCTCATTCTGACCGTCC
TCTCAGGAGTGGTGTAGGACACAGGCCAGGCCAGGCCACCCAGGCCATCTGCC
CCACAGCCCCTTGGAGCTTCTCTGCTCTCACTCCTCCAGAAGTTTGACAGAACTTCATT
TTGAAAGTGTCTTCTCATTCTCCATACCTCCCCAAGCTCCTCCAGGCCCTCCAGGGCTCAGCC
GCTGCTGTGGAGCTCTGGCAGAGAGAGGAGATGGGGTGGAGGGACTGAGTTGATGTTGGTT
TTCATTCAATAATTGGTGATTCTACCG

Human PACS-1 mRNA sequence - var6 (public gi: 7022110) (SEQ ID NO: 100)
CCCTAAGTGGAGGACCAACAGTTCGACAGCGAGCGCTCCCCAGATCTGGGCCACAGCACGAGATTCC
AAGAAAGGTGGTGTATGACCAGCTCAATCAGATCTGGTGTCAAGATGCAAGCCCTCCAGAAAATGTCATT
CTGGTGAACACCAACTGACTGGCAGGGCCAGTATGTGGCTGAGCTGCTCAGGCCAGCGGAAGCC
TGTGCACCTGCTCCACCGTGGAGGTTCCAGGCCAGTGTCCGGCTGCTGCTCAGGCCAGCGCTACTG
CAACTGCAACTCTTCCATGCCAGGCCAGTGAAGGTGGCTGAGGCCAGAGCTACCTGAGCTCC
ATCCCTCAGGTCTTGTCAAGTCCCTGGCCAATGACCTCCGACTGGCTGGTACATGCGCTTCTCA
TCATCCCCCTCGGTTCTCACCCCTGGCCAATACTGGGGTCACTGACAGTAATAACAGTAGTTCT
CTCTGGATTCTGGTGGAGAGATCTGTTCACTGCTCGGAGGCCAGTGTGAGAGCAACTGGACGTGGCA
GGCGGGGTGATGCACTGCAACAGGCCAGGCCAGCACACCCAGCTTCCCGTGGCGAAGCCATGCTGA
CTTGCCGGATAAGTCCCTGATGAAGACTCCTATCAGAAAGTTATTCCCTCATGGCGTGGTGAAGGT
GGGTCTGGTGAAGACTCTCCCTCACAGCAGGCCAGGGACGATTCTCTGTGGTCACTGCTTACTGTG
CCCTCCACATCACCACCCCTCAGCTGGGCTGAGGCCAGGCCACCCCTCCCTCCCCAT
CTATGAGCAGGCCCTGCCATCGTGGGAGCCATAATGCCCATATGGGACGTGATTGGCTCCAGGT
GGACTACTGGCTGGGCCACCCGGGGAGCGAGGGAGGGAGGCCAGCAAGAGGCCAGCTCGAAGAAC
ACCCCTCAAGAGGTGTCTCCGCTCAGTGCAGGTGCTCCGCCGCTGCCCCATAGTGGGGAGGCCAGCTTCTG
GCACCATGGCCATGACTGTGGTCACTAAAGGCCAGGTCAAGAGGCCAGGTCACTGAGGCCACGGCC
ACCCCGAGAAAAGGAGGTGGATTCTAAGAGGCCAGGTCACTGAGGCCAGGTCACTGAGGCCACGGCC
CCCTCCCTAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
CTCCCTGTCACTCCCTCTACCAACCCGGGGTCTGAGGCCCTCATTCTGACCGTCCGTGTTCTCAGGA
GTGGTTGAGGACACAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
CCTTGGAGCTTCTCTGCTCTCACTCCTCCAGAAGTTTGACAGAACTCATTGAAAGT
GTTTTCTCATTCTCCATACCTCCCCAAGCTCCTCCAGGCCCTCCAGGGCTCAGCCCTGCTGT
GAGCGTCTCTGGCAGAGAGAGGAGATGGGGTGGAGGGACTGAGTTGATGTTGGTTTCAATTCA
ATAAAATTGGTGATTCTACCGAC

Human PACS-1 protein sequence - var1 (public gi: 7022111) (SEQ ID NO: 362)
MPRPVKVAAVGGQSYLSSILRFFFVKSLANMTSDWLGYMRFLIPLGSHPVAKYLGSVDSKYSSFLDSGW
RDLFSRSEPPVSEQLDVAGRVMQYVNGAATHQLPVAEAMLTCRHKFPPDEDSYQKFIPFIGVVKVGLVED
SPSTAGDGDDSPVVSLSVPSTSPPSSGSLSRDATAATPPSSPMSSALAIVGSPNSPYGDVIGLQVDYWL
HPGERRREGDKRDASSKNTLKSFRSVQVSRLPHSGEAQLSLGTMAVTKEKNKVKPTIFLSKKPREKE
VDSKSQVIEGISRLICSSPSLGPSPDPSSQPGFPAGSFPPCHLPLTNPGSEPLIPDRPCSQEWLRTQ
GPSPALCTPQPGHLRPTAPLEFSCPLTPSQFKLHRTSF

Human PACS-1 protein sequence - var2 (public gi: 6330231) (SEQ ID NO: 363)

Figure 36 part - 56

AITRQPNIKQKFVALLKRPKVSDEVGFGLEHVSREQIREVEEDLDELYDSLEMYNPSDGPMEETESIL
STPKPKLKPFEGMSQSSQTEIGSLNSKGSLGKDTSPLMELAALEKIKSTWIKNQDDSLTETDTLEITD
QDMFGDASTSLVVPEVKTPMKSSKTDLQGSASPSKVEGVHTPRQRSTPLKERQLSKPLSERTNSSDSE
RSPDLGHSTQIPRKVVDQNLQILVSDAALPENVILVNNTDWQGQYVAELLQDQRKPVVCSTVEQAV
LSALLTRIQRYCNCNSSMPPRVKVAAVGGQSYLSSFLDGSWRDLFSRSEPPVSEQLDVAGRVMQYVNGAATTHQLPVAEAMLT
CRHKFPDEDSYLGVDVIGLQVDYWLGHPGERRREGDKRDASSKNTLKVSRVQSVRLPHSGEAQLSGTMAMTVVTKEK
NKKVPTIFLSKKPREKEVDSKSQVIEGISRLICSAKQQQTMLRVSIDGVEWSDIKFFQLAAQWPTHVKHF
PVGLFSGSKAT

Human PACS-1 protein sequence - var3 (public gi: 34420885) (SEQ ID NO: 364)
MAERGGAGGGPGGAGGGSGQRGSGVAQSPQQPPPQQQQQQPQQPTPPKLAQATSSSSSTSAAAASSSSS
STSTSMAVAVASGSAPPGGPGPGRTPAPVQMNLVYATWEVDRSSSCVPRLFSLTLKLVMLKEMDKDLNS
VVIASKLQGSKRILRSNEIVLPASGLVETEQLTFSLQYPHFLKRDANKLQIMLQRKRYKNRTILGYKT
LAVGLINMAEVMQHPNEGALVGLHSNVKDVSVPAVEIKIYLSQQPIDHEGIKSLSDRSPDIDNYSEE
EEESFSSEQEGSDDPLHGQDLYEDEDLRKVKKTRRKLTSATRQPNIKQKFVALLKRFKVSDEVGF
LEHVSREQIREVEEDLDELYDSLEMYNPSDGPMEETESILSTPKPKLKPFEGMSQSSQTEIGSLNS
KGSLGKDTSPLMELAALEKIKSTWIKNQDDSLTETDTLEITDQDMFGDASTSLVVPKEVKTPMKSSKTDL
QGSASPSKVEGVHTPRQRSTPLKERQLSKPLSERTNSSDSERSPDLGHSTQIPRKVVDQNLQILVSDA
ALPENVILVNNTDWQGQYVAELLQDQRKPVVCSTVEQAVLSALLTRIQRYCNCNSSMPPRVKVAAVG
GQSYLSSILRFFVKSLANKTSDWLGYMRFLIIPLGSHPVAKYLGSDSKYSSSFLDGSWRDLFSRSEPPV
SEQLDVAGRVMQYVNGAATTHQLPVAEAMLT
CRHKFPDEDSYQKFIPIFIGVVKVGLVEDSPSTAGDDDS
PVVSLTVPSPPSSGLSRDATA
TPSSPSMNSALAIVGSPNSPYGDVIGLQVDYWLGHPGERRREGDK
RDASSKNTLKVSRVQSVRLPHSGEAQLSGTMAMTVVTKEK
NKKVPTIFLSKKPREKEVDSKSQVIEGI
SRLICSAKQQQTMLRVSIDGVEWSDIKFFQLAAQWPTHVKHF
PVGLFSGSKAT

Human PACS-1 protein sequence - var4 (public gi: 33243995) (SEQ ID NO: 365)
ESILSTPKPKLKPFEGMSQSSQTEIGSLNSKGSLGKDTSPLMELAALEKIKSTWIKNQDDSLTETDTL
EITDQDMFGDASTSLVVPKEVKTPMKSSKTDLQGSASPSKVEGVHTPRQRSTPLKERQLSKPLSERTNS
SDSERSPDLGHSTQIPRKVVDQNLQILVSDAALPENVILVNNTDWQGQYVAELLQDQRKPVVCSTVE
VQAVLSALLTRIQRYCNCNSSMPPRVKVAAVGGQSYLSSILRFFVKSLANKTSDWLGYMRFLIIPLGSH
PVAKYLGSDSKYSSSFLDGSWRDLFSRSEPPVSEQLDVAGRVMQYVNGAATTHQLPVAEAMLT
CRHKFPD
EDSYQKFIPIFIGVVKVGLVEDSPSTAGDDDS
PVVSLTVPSPPSSGLSRDATA
TPSSPSMNSALAIVGSPNSPYGDVIGLQVDYWLGHPGERRREGDK
RDASSKNTLKVSRVQSVRLPHSGEAQLSGTMAMTVVTKEK
NKKVPTIFLSKKPREKEVDSKSQVIEGI
SRLICSAKQQQTMLRVSIDGVEWSDIKFFQLAAQWPTHVKHF
PVGLFSGSKAT

Human PACS-1 protein sequence - var5 (public gi: 30962846) (SEQ ID NO: 366)
MAERGGAGGGPGGAGGGSGQRGSGVAQSPQQPPPQQQQQQPQQPTPPKLAQATSSSSSTSAAAASSSSS
STSTSMAVAVASGSAPPGGPGPGRTPAPVQMNLVYATWEVDRSSSCVPRLFSLTLKLVMLKEMDKDLNS
VVIASKLQGSKRILRSNEIVLPASGLVETEQLTFSLQYPHFLKRDANKLQIMLQRKRYKNRTILGYKT
LAVGLINMAEVMQHPNEGALVGLHSNVKDVSVPAVEIKIYLSQQPIDHEGIKSLSDRSPDIDNYSEE
EEESFSSEQEGSDDPLHGQDLYEDEDLRKVKKTRRKLTSATRQPNIKQKFVALLKRFKVSDEVGF
LEHVSREQIREVEEDLDELYDSLEMYNPSDGPMEETESILSTPKPKLKPFEGMSQSSQTEIGSLNS
KGSLGKDTSPLMELAALEKIKSTWIKNQDDSLTETDTLEITDQDMFGDASTSLVVPKEVKTPMKSSKTDL
QGSASPSKVEGVHTPRQRSTPLKERQLSKPLSERTNSSDSERSPDLGHSTQIPRKVVDQNLQILVSDA
ALPENVILVNNTDWQGQYVAELLQDQRKPVVCSTVEQAVLSALLTRIQRYCNCNSSMPPRVKVAAVG
GQSYLSSILRFFVKSLANKTSDWLGYMRFLIIPLGSHPVAKYLGSDSKYSSSFLDGSWRDLFSRSEPPV
SEQLDVAGRVMQYVNGAATTHQLPVAEAMLT
CRHKFPDEDSYQKFIPIFIGVVKVGLVEDSPSTAGDDDS
PVVSLTVPSPPSSGLSRDATA
TPSSPSMNSALAIVGSPNSPYGDVIGLQVDYWLGHPGERRREGDK
RDASSKNTLKVSRVQSVRLPHSGEAQLSGTMAMTVVTKEK
NKKVPTIFLSKKPREKEVDSKSQVIEGI
SRLICSAKQQQTMLRVSIDGVEWSDIKFFQLAAQWPTHVKHF
PVGLFSGSKAT

Unigene Name: PPP1CA Unigene ID: Hs.183994

Human PPP1CA mRNA sequence - var1 (public gi: 287796) (SEQ ID NO: 101)
GCAAGGAGCTGCTGGCTGGACGGCGGCATGTCCGACAGCGAGAACGCTAACCTGGACTCGATCATCGGGC
GCCCTGCTGGAGTGCAAGGGCTCGCGGCCATGGCAAGAACATGTACAGCTGACAGAGAACGAGATCCCGGGTCT
GTGCGCTGAAATCCCGGGAGATTTCCTGAGCCAGCCCATTCTCTGGAGCTGGAGGGCACCCCTCAAGATC
TGCAGGTGACATAACACGGCCAGTACTACGACCTCTCGCAGTATTGAGTATGGCGGTTCCCTCCCGAGA

PCT/US04/06308

GCAACTACCTCTTCTGGGGACTATGTGGACAGGGCAAGCAGTCCTGGAGACCATCTGCCTGCTGCT
GGCCTATAAGATCAAGTACCCGAGAACCTCTTCTGCTCCGTTGGAAACACGAGTGTGCCAGCATCAAC
CGCATCTATGGTTCTACGATGAGTGAAGAGACGCTACAACATCAAACACTGTGGAAAACCTTCAGTGACT
GCTTCAACTGCCATGCCATCGCGGCCATAGTGGACGAAAAGATCTTCTGCTGCCACGGAGGCTGTCCCC
GGACCTGCACTGCTATGGAGCAGATTGGCGGATCATGCCGCCCACAGATGTGCTGACCAGGGCTGCTG
TGTGACCTGCTGTGGCTGACCCCTGACAAGGACGCTGCAGGGCTGGGGAGAACGACCGTGGCGTCTCTT
TTACCTTGAGGGCCAGGGTGGCCAAGTCTCCACAAGCACGACTTGGACCTCATCTGCCAGACACA
CCAGGTGGTAGAAGAGACGGCTACGAGTTCTTGCCTGCAAGCGGAGCTGGTACACTTTCTCAGCTCCAAAC
TACTGTGGCGAGTTGACAATGCTGGCGCATGATGAGTGTGACGAGACCTCATGTGCTTTCCAGA
TCCTCAAGCCCCCGACAAGAACAGGGAGTACGGGAGTTCAGTGGCCTGAAACCTGGAGGGCGACC
CATCACCCCCACCCGCAATCGCAAAGCCAAGAAATAGCCCCCGCACACCCACCTGTGCCCAAGATGA
TGGATTGATTGACAGAAATCATGCTGCCATGCTGGGGGGGTCAACCCGACCCCTAACGGCCACCTGT
CACGGGGAACATGGAGCCTGGTGTATTTCTTTTAAATGAATCAATAGCAGCGTCCAGTCC
CCCAGGGCTGCTCCTGCCATGCGGTACTGTGAGCAGGATCTGGGCCAGGGCTGCAGCTCAGG
GCAACGGCAGGCCAGGTGCTGGGTCTCAGCCGTCTGGCCTCAGGCTGGCAGCCGGATCTGGGCA
ACCCATCTGGTCTTGAATAAAGTCAAAGCTGGATCGGAATC

Human PPP1CA mRNA sequence - var2 (public gi: 21758300) (SEQ ID NO: 102)
AAAAAAAAAAAAAGTTTCCCTCCATGAGGCAGCGCGCCGACCGCCGAAGCATGGTCTCCACCGGGCG
CCGCCACCTCCAGCGTCCTGGCAGGGAGTTGTGTCGGTAGAGGGCGTCCCCGGGGCCACGCCGA
CACACACCTGGCAGGGGGAGACTCAGGGGAGGCCACACACTCCCTGCCACGCCACACCCCTACCG
CCTTGTGCCAAATTCAAGACGACGCCACTGGACATTCAAGAACGCCCCGTCTCCACAGTGTCTTAA
ATTGCAACAGAGCTCTCCCTGCCACTCCCCATCTGGTCCCCACAGCTCTCCAGGGATTCTACCTACCCAG
GCTTCCAGGCCAGCTGGGTCCTCCAGGATGGCTCTGCAGCCCTGGGGCTGGCCACCCCTGGT
GTGCCCCACCCCTAGCATCTCCCTGGGCGCACCTTCCCTACCCACTGGAGCTCCCTGAGGGCAGGGTC
GAATCTCTCCCTCTCAGTGTAGCCTAGAGCGGGTACTCAGGAGGGTCCGTAAGCCTCCTGACTCTCCA
GCTTAGAGGCCCTCTGAAGGCGTCAGGCACTAGAGGTTATCAGGAGGCCCTGGGTGAGCTCTACG
TGGCAAGAGCTCTGGGAAGACGGGAGGTCAAGGCCAGCACAGAGTGGCCAGAGGGCCACACCAA
CTCCCATCCCTGGTCAGCCCAGGTGGCTCTCACCTGAGCAGGGCAGCTGGCAGGTGGTACACGCTC
CACCAAGACACTCTCCTCCCTCCAGCTTCTCCAGCAGGCCAGACTGTGTCACCACTGCACCCAGC
TCTGCCCGGGGTGAGACGCCATGCCCTGCCGCCCCCGCCAGGCCAGCACTGAGCTTACAGCTACCT
GCAGCAAGGAGGGAAAGGGCCTCTGGACACCACCCAGGTACTGCAGGGTGGGCACCTCCGCCACA
GGAGCCGTGAGGGCTCGGGCTGGCAAGAATGTACAGCTGACAGAGAACGAGATCCGGCTCTG
TGAAATCCCAGGAGATTTCTGAGCCAGCCCCTCTGGACTATTGAGTATGGGGTTTCCCTCCGAGAGAAC
TGACATACACGCCAGTACTAGACCTCTGGCAACTGGAGCTGAGTGTGGACGAGACCTCATGTGCTTCC
TACCTCTTCTGGGGACTATGTGGACAGGGCAAGCAGTGGGACTCTGGGACCATCTGGCTGCTGG
ATAAGATCAAGTACCCCGAGAACACTTCTCTGCTCCGTTGGAAACACGAGTGTGCCAGCATCAACCGCAT
CTATGGTTCTACGATGAGTGAAGAGACGCTACAACATCAAACACTGTGGAAAACCTTCAGTGACTGCTTC
AACTGCCCTCCATCGGCCATAGTGGACGAAAAGATCTCTGCTGCCACGGAGGCCGTCCCCGGACC
TGCAGTCTATGGAGCAGATTGGCGGATCATGCCGCCACAGATGTGCCGTGACCAGGGCTGCTGTGA
CCTGCTGTGGCTCTGACCCCTGACAAGGACGTGAGGGCTGGGGCAGAACGACCGTGGCTCTT
TTGGAGGCCAGGTGGTGGCCAAGTCTCCACAAGCACGACTTGGACCTCATCTGCCAGCACCAGG
TGGTAGAAGACGGCTACGAGTTCTTGCCTGGAGGCCAGCTGGTACACTTTCTCAGCTCCAACTACTG
TGGCAGTTGACAATGCTGGGCCATGATGAGTGTGGACGAGACCTCATGTGCTTCCAGATCCTC
AAGCCCGCCACAAGAACAAAGGGAAAGTACGGGAGTTCACTGGCTGAACCCCTGGGAGGCCATCA
CCCCACCCCGCAATTCCGCCAAAGCCAAGAAATAGCCCCCGCACACCCACCTGTGCCCCAGATGATGGAT
TGATTGTACAGAAATCATGCTGCCATGCTGGGGGGGGTCAACCCGACCCCTCAGGGCCACCTGT
GGAACATGGAGCCTGGTGTATTTCTTTTAAATGAATCAATAGCAGCGTCCAGTCCAGGGCAA
GGCTGCTCTGGCTGCCACCTGGGCTGACTGTGAGCAGGATCTGGGGCCAGGTGCTGAGCTCAGGGCAA
CGGCAGGCCAGGTGCTGGGTCTCAGCCGTCTGGCCTCAGGGCTGGCAGCCGGATCTGGGCAACCC
ATCTGGTCTTGAATAAAGTCAAAGCTGGATCTCGC

Human PPP1CA mRNA sequence - var3 (public gi: 14124967) (SEQ ID NO: 103)
GGCTGCCGGAGGGCGGGAGGGCAGGAGCGGGCAGGAGCTGCTGGCTGGAGCGGGCGGCCATGTCC
GACAGCGAGAACGCTCAACCTGGACTCGATCATCGGGCGCTGCTGGAAAGTGCAGGGCTCGGGCTGGCA
AGAATGTACAGCTGACAGAGAACGAGATCCGCGTCTGTGCTGAAATCCGGGAGATTTCTGAGCCA
GCCCATTCCTGGAGCTGGAGGCCACCCCTCAAGATCTGCCGTGACATACACGCCAGTACTACGACCTT
CTGCCACTATTGAGTATGGGGTTTCCCTCCAGAGAGCAACTACCTCTTCTGGGGACTATGTGGACA
GGGGCAAGCAGTCTGGAGACCATCTGCCCTGCTGGCCTATAAGATCAAGTACCCGAGAACCTT
CTGCTCCGTGGAAACACGAGTGTGCCAGCATCAACCGCATCTATGGTTCTACGATGAGTGAAGAGA
CGCTACAACATCAAACCTGTGGAAAACCTTCACTGACTGCTCAACTGCCATGCCGACCTGG
ACGAAAAGATCTCTGCTGCCACGGAGGCCCTGCCAGCTGAGGAGATTCCGGGAGATCTGGGCGGAT

Figure 36 part - 58

CATGCGGCCACAGATGTGCCTGACCAGGGCCTGCTGTGACCTGCTGTGGTCTGACCCGTACAAGGAC
GTGCAAGGCTGGGCGAGAACGACCGTGGCGTCCTTTACCTTGGAGCCAGGTGGTAGAACGCGCTACGAGTTCTTG
TCCACAAGCACGACTTGGACCTCATCTGCCAGCACACCAGGTGGTAGAACGCGCTACGAGTTCTTG
CAAGGGCAGCTGGTACACTTTCTCAGCTCCAACTACTGTGGCAGTTGACAATGCTGGGCCATG
ATGAGTGTGGACGAGACCCATGTGCTCTTCCAGATCCTCAAGGCCCGACAAGAACAGGGAAAGT
ACGGCAGTTCACTGGCTGAACCCATGCCAGGGCAGGCCACCCATCCCCCGAACAGGGCAAAAGCCAA
GAAATAGCCCCCGCACACCAACCTGTGCCCCAGATGATGGATTGATGACAGAAATCATGCTGCCATGC
TGGGGGGGGTCAACCCGACCCCTCAGGCCACCTGTCACTGGGAAACATGGAGCTGGTGTATTTC
TTTCTTTTAATGAATCAATAGCAGCGTCCAGTCCCCCAGGGCTGCTTCTGCCACCTGCCAG
CTGTGAGCAGGATCCTGGGGCGAGGCTGCAGCTCAGGGCAACGGCAGGCCAGGTGTGGGTCTCCAGGC
GTGCTTGGCTCAGGGCTGGCAGCCGATCTGGGCAACCCATCTGGTCTCTGAATAAGGTCAAAGC
TGGATTCTCAAAAAAAAAAAAAAAA

Human PPP1CA mRNA sequence - var4 (public gi: 33872852) (SEQ ID NO: 104)
CCTCGTCCGAATTGGCACGAGGAGGGCAGGAGCTGCTGGCTGGAGCGGGCGGCCATGTCC
GACAGCGAGAACGCTCAACCTGGACTCGATCATGGCGCTGCTGGAAAGTGCAGGGCTCGCGGCCATGGCA
AGAATGTACAGCTGACAGAGAACGAGATCCCGGGTCTGTGCTGAAATCCGGGAGATTTCTGAGCCA
GCCCATCTCTGGAGCTGGAGGCACCCCTCAAGATCTGGGTGACATACACGCCAGTACTACGACCTT
CTGCGACTATTCAGTATGGGTTCCCTCCAGAGAGCAACTACCTCTTCTGGGACTATGTGGACA
GGGCAAGCAGTCCTGGAGACCATCTGCTGCTGCTGGCCTATAAGATCAAGTACCCCGAGAACCTCTT
CCTGCTCCGTGGGAAACCACCGAGTGTGCCAGCATCAACCGCATTATGGTTCTACGATGAGTGCAAGAGA
CGCTACAAACATCAAACGTGGAAACCCCTACTGACTGCTCAACTGCCATGCCATAGTGG
ACGAAAAGATCTCTGCTGCCACGGAGGCCCTGCTCCCGAACCTGCACTGCTATGGAGCAGATTGGCGGAT
CATCGGGCCCACAGATGTGCTGACCAGGGCCTGCTGTGACCTGCTGTGGTCTGACCCCTGACAAGGAC
GTGAGGGCTGGCGAGAACGACCGTGGCGTCTTTACCTTGGAGGGCAGGTGGTGGCAAGTTC
TCCACAAGCAGACTTGGACCTCATCTGCCAGCACACCAGGTGGTAGAACAGGGCTACGAGTTCTTGC
CAAGGGCAGCTGGTACACTTCTCAGCTCCAACTACTGTGGCAGTTGACAATGCTGGGCCATG
ATGAGTGTGGACGAGACCCATGTGCTCTTCAAGATCCTCAAGGCCGACAAGAACAGGGAAAGT
ACGGCAGTTCACTGGCTGAACCCCTGGAGGCCACCCATACCCCAACCCCGAACAGGGCAAAAGCCAA
GAAATGCCCGCACACCAACCCCTGTGCCCCAGATGATGGATTGATGACAGAAATCATGCTGCCATGC
TGGGGGGGGTCAACCCGACCCCTCAGGCCACCTGTACGGGAAACATGGAGCCTGGTGTATTTC
TTTCTTTTAATGAATCAATAGCAGCGTCCAGTCCCCCAGGGCTGCTTCTGCCACCTGCCAG
ACTGTGAGCAGGATCCTGGGGCGAGGCTGCAGCTCAGGGCAACGGCAGGCCAGGTGTGGGTCTCCAGC
CGTCTTGGCTCAGGGCTGGCAGCCGATCTGGGCAACCCATCTGGTCTCTGAATAAGGTCAAAG
CTGGATTCTCGAAAAAAAAAAAAAAA

Human PPP1CA mRNA sequence - var5 (public gi: 12804878) (SEQ ID NO: 105)
CAGGAGCGGGCAGGAGCTGGCTGGAGCGGGCGCCATGTCCGACAGCGAGAACGCTAACCT
GGACTCGATCATGGCGCTGCTGGAAAGTGCAGGGCTGGCGCTGGCAAGAACGCTGACAGAG
AACGAGATCCGGCTGTGCTGAAATCCGGGAGATTTCTGAGCCAGCCCATTCTGGAGCTGG
AGGACCCCTCAAGATCTGGGTGACATACACGCCAGTACTACGACCTCTGCACTATTGAGTATGG
CGGTTCCCTCCGGAGAGAACACTACCTCTTCTGGGGAGACTATGTGGACAGGGCAAGCAGTCTTGGAG
ACCATCTGCTGCTGCTGGCTATAAGATCAAGTACCCCGAGAACCTCTGCTGCCGGGAACACG
AGTGTGCCAGCATCAACCGCATCTATGGTTCTACGATGAGTGCAAGAGACGCTACAAACATCAAACGTG
GAAAACCTTCACTGACTGCTCAACTGCCATCGGCCATAGTGGACGAAAAGATCTCTGCTGC
CACGGAGGCCCTGCTCCCGGACCTGCACTGCTATGGAGCAGATTGGCGGATCATGCCACAGATGTG
CTGACCGGGCTGCTGTGACCTGCTGTGGCTGACCCCTGACAAGGACGTGCAAGGGCTGGCGAGAA
CGACCGTGGCTCTTTACCTTGGAGCCAGGTGGTGGCCAAGTCTCCACAAGCACGACTTGGAC
CTCATCTGCCAGCACACCAAGGTGAGAACAGGCCAGTGGCTACGAGTTCTTCCAAGCGGAGCTGGACAC
TTTCTCAGCTCCAACTACTGTGGCAGTTGACAATGCTGGCGCATGATGAGTGTGGACGAGACCC
CATGTGCTCTTCCAGATCCTCAAGCCGCCGACAAGAACAGGGAAAGTACGGGAGTTCACTGGCTG
AACCCCTGGAGGGCAGCCATCACCCCAACCCCGAACAGGGCAAGAACATGCCACACCA
CCCTGTGCCCCAGATGATGGATTGATGACAGAAATCATGCTGCCATGCTGGGGGGGTCAACCCGAC
CCCTCAGGCCACCTGTCAAGGGGAAACATGGAGCTTGGTGTATTTCCTTTTAATGAATCA
ATAGCAGCGTCCAGTCCCCCAGGGCTGCTTCTGCCACCTGCCAGTGTGAGCAGGATCTGGGG
CCGAGGCTGCAGCTCAGGGCAACGGCAGGCCAGGTGTGGCTCCAGCCGTGCTGGCCTCAGGGCTGG
CAGCCGATCTGGGCAACCCATCTGGTCTCTGAATAAGGTCAAAGCTGGATTCTCAAAAAAAA
AAAAAAAAAAAAAAA

Human PPP1CA mRNA sequence - var6 (public gi: 34534606) (SEQ ID NO: 106)
CTTCTTGCTGACGCCAGCGCCACCACCGAGCTGTTTCCCTCATGAGGCAGCGCGGCCACCGC
CGAAGCATGGTCTCCACCGCGCGCCACCGCCCTCGTGGCGCCGGCCCCAGCCGCGCGGCC

ACAGCCCCCTCCAGCGGCCACGCCCTCCAGACACAGGCCGCGTCAGCTCCAGGGCACTGGCTTCT
CCAGCAGCGCCAGCACTGTGTCACCACGTGACCCAGCTCTGCCGCCGGTGAGACGCCATGCCCTGCC
CCCCCGCCAGGCCAGCCACTGAGCTTCACAGCTACCTGCAGCAAGGAGGGAAAGGGGCCCTCTGGACA
CCACCCCAGGTACTGCAGGGTGGGGACTTCGCCACAGGAGCGTGCAGGGCTGCCCTGGCAAGAA
TGTACAGCTGACAGAGAACGAGATCCGCCGCTGTGCCTGAAATCCGGAGATTTCTGAGGCCAGCCC
ATTCTTCTGGAGCTGGAGGCCACCCCTOAAGATCTGCCGTGACATAACGCCAGTACTACGACCTCTGC
GACTATTGAGATGGGGTTTCCCCTCCGAGAGACAATACCTCTTCTGGGGACTATGTGGACAGGG
CAAGCAGTCCITGGAGACCATCTGCCCTGCTGCTGCTATAAGATCAAGTACCCCGAGAACTTCTCCTG
CTCCGTGGGAACCGAGTGTGCCAGCATCAACCCGATCATGGTTCTACGATGAGTGCAAGAGACGCT
ACAACATCAAATGTGGAAAACCTTCACTGACTGCTCAACTGCCATGCCATGCCGAGATGGCAAG
AAAGATCTTCTGCTGCCACGGAGGCTGTCCCCGACCTGCAGCTATGGAGCAGATTGGGGATCATG
CGGGCCACAGATGTGCCCTGACCAGGGCTGTGTGACCTGCTGTGGCTGACCCCTGACAAGGAGCTG
AGGGCTGGGGAGAACGACCGTGGCTCTTACCTTGGAGCCAGGTGGTAGAAGACGGCTACGAGTTCTG
CAAGCAGACTGGACCTCATCTGCCAGCACACCAGGTGGTAGAAGACGGCTACGAGTTCTG
CGGAGCTGGTGGACTTCTCAGCTCCAACTACTGTGGAGGTTGACAATGCTGGCCATGATGA
GTGTGGACGAGACCCCTCATGTGCTCTTCCAGATCTCAAGGCCGCGACAAGAACAGGGAACTACGG
GCAGTTCACTGCCCTGAAACCTGGAGGCTGACCCATACCCCAACCCGCAATTGGCCAAGGCAAGAAA
TAGCCCCCGCACACCACCCGTGCCAGATGATGGATTGATGACAGAAATCATGCTGCCATGCTGG
GGGGGTCACCCGACCCCTCAGGCCACCTGTACGGGGAAACATGGAGGCTTGGTAGATTTCTT
TTTTTTAATGAATCAATAGCAGCGTCCAGTCCCCCAGGGCTGCTCTGCCACCTGCCGACTGT
GAGCAGGATCTGGGGCCAGGCTGAGCTCAGGGCAACGGCAGGGCTGTGGGCTCCAGCGTG
TTGCCCTCAGGGCTGGCAGCCGATCTGGGCAACCCATCTGGCTCTTGAATAAGGTCAAAGCTGGA
TTCTC

Human PPP1CA mRNA sequence - var7 (public gi: 30582096) (SEQ ID NO: 107)
ATGCCGACAGCGAGAACGCTCAACCTGGACTCGATCATCGGCCCTGGAAGTGCAAGGGCTCGCGC
CTGGCAAGAACATGTACAGCTGACAGAGAACGAGATCCGCCGCTGTGCCTGAAATCCGGAGATTTCT
GAGCCAGCCATTCTCTGGAGCTGGAGGACCCCTCAAGATCTGCCGTGACATACAGGCCAGTACTAC
GACCTCTCGCACTATTTGAGATGGGGTTTCCCTCCGAGAGCAACTACCTCTTCTGGGGACTATG
TGGACAGGGCAAGCAGTCTTGGAGACCATCTGCCCTGCTGCTGGCTATAAGATCAAGTACCCGAGAA
CTTCTCTGCTCCGTGGAAACCACGAGTGTGCCAGCATCAACGCATCTATGGTTCTACGATGAGTGC
AAGAGACGCTACAACATCAAACCTGTGAAAAACCTTCACTGACTGCTCAACTGCCATGCC
TAGTGGACGAAAAGATCTCTGCTGCCACGGAGGCTGTCCCGGACCTGCAGCTATGGAGCAGATTG
GCGGATCATGCCCTCACAGATGTGCTGACCAGGGCTGTGTGACCTGCTGTGGCTGACCCCTGAC
AAGGACGTGCAGGGCTGGGGAGAACGACCGTGGCTCTTTACCTTGGAGGCTTGGAGGCTGTTGG
AGTTCCTCCACAAGCACGACTGGACCTCATCTGCCGAGCACACCGAGTGGAGAACAGGCTACGAGTT
CTTGCCAAGCGGAGCTGGACACTTTCTGCACTCCAACTACTGTGGAGTTGACAATGCTGGC
GCCATGATGAGTGTGGAGGACCCCTATGTGCTCTTCAAGCCGCGACAAGAACAGG
GGAAGTACGGGAGTTCACTGCCCTGAGGGCAACCCATCCCCACCCGCAATTCCGCAA
AGCCAAGAAATAG

Human PPP1CA mRNA sequence - var8 (public gi: 190515) (SEQ ID NO: 108)
GGGCAAGGAGCTGCTGGCTGGACGGGGCATGTCGACAGCGAGAACGCTCAACCTGGACTCGATCATCG
GCCCTGCTGAAAGTGCAGGGCTGCCCTGGCAAGAACATGACAGCTGACAGAGAACGAGATCCGCC
CTGTGCCCTGAAATCCGGAGATTTCTGAGGCCAGCCATTCTCTGGAGCTGGAGGACCCCTCAAGA
TCTGCCGTGACATACACGCCAGTACTACGACCTCTGCAGTATTTGAGATGGGGTTTCCCTCCG
GAGCAACTACCTCTTCTGGGGACTATGTGGACAGGGCAAGCAGTCTTGGAGACCATCTGCCCTG
CTGGCCTATAAGATCAAGTACCCGAGAACCTCTCTGCCGTGGAAACCACGAGTGTGCCAGCATCA
ACCGCATCTATGGTTCTACGATGAGTGCAGAGAACGCTACAACATCAAACCTTCACTG
CTGCTTCAACTGCCATCGCGGCCATAGTGGAGGAAAAGATCTCTGCTGCCACGGAGGCTGTCC
CGGGACCTGCACTGAGTGGAGGAGATCGGGGATCATGCCCTCACAGATGTGCTGACCAGGGCTG
TGTGTGACCTGCTGTGGCTGACAGGAGCTGGAGGCTGGGGAGAACGACCGTGGCTCT
TTTACCTTGGAGGGAGGGAGGGTGGCTGCAAGTCTCTCCACACGAGCAGACTGGACCTCATCTGCCGAGCA
CACCAGGTGGAGAACGAGCTATGAGTTCTGCCAAGCGGAGCTGGTGCACACTTTCTCAGCTCCCA
ACTACTGTGGCGAGTTGACAATGCTGGGCCATGATGAGTGTGGAGGACCCCTCATGTGCTCTTCCA
GATCCCTCAAGCCGCGACAAGAACAAAGGGAGTACGGGAGTTCACTGCTGAGGCTGAAACCTGGAGGCC
CCCACCAACCCACCCGCAATTCCGCAAAGCAAGAAATAGCCCCGACACCACCCGTGCCCCAGAT
GATGGATTGATGTACAGAAATCATGCTGCCATGCTGGGGGGGTGACCCCTAAGGGCCACCT
GTCACGGGGAGACATGGAGGCCCTGGTGTATTTCTTTCTTTAATGAATCAATAGCAGCGTCCAGT
CCCCCAGGGCTGCTCTGCCCTGACCTGCCGTACTGTGAGCAGGATCTGGGGCGAGGCTGAGCTCA
GGGCAACGGCAGGCCAGGTGCTGGTCTCCAGCCGTGCTGGCCTCAGGCTGGCAGCCGGATCTGGGG
CAACCCATCTGGTCTCTTGAATAAGGTCAAAGCTGG

Human PPP1CA mRNA sequence - var9 (public gi: 190280) (SEQ ID NO: 109)
CGGCCTGGCAAGAACATGTACAGCTGACAGAGAACGAGATCCGGCTCTGCGCTGAAATCCGGAGATT
TTCTGAGCCAGCCCATTCTCTGGAGCTGGAGGCCACCCCTCAAGATCTGCGGTGACATACACGGCCAGTA
CTAGGACCTTCTGCGACTATTTGAGTATGGAGGTTCCCTCCCGAGAGCAACTACCTCTGGGGAC
TATGTGGACAGGGCAAGCAGTCCTGGAGACCATCTGCCCTGCTGGCTGGGCTATAAGATCAAGTACCCCG
AGAACCTCTCTGCTCCGGAAACCAACCGAGTGTGCGAGCATCAACCGATCTATGGTTCTACGATGA
GTGCAAGAGACGCTACAACATCAAACACTGTGAAAACCTCACTGACTGCTCAACTGCCCTGCCATCGCG
GCCATAGTGGACGAAAAGATCTCTGCTGCCACGGAGGCCCTGCACTGAGTGTGGAGCAGA
TTCGGCGGATCATGCCCGGACAGATGTGCTGACCAAGGGCTGCTGTGACCTGCTGTGGCTGACCC
TGACAAGGACGTGCAAGGGCTGGGGAGAACGACCGTGGCTCTCTTACCTTGGAGCCGAGGTGGTG
GCCAAGTTCCTTACAAGCACGACTGGACCTCATCTGCCGAGCACACCAGGGTAGAAGACGGCTACG
AGTTCTTGCCAAGCGGCACTGGTGCACACTTTCTCAGCTCCAACTACTGTGGCAGTTGACAATGC
TGGCCCATGATGAGTGTGGACGAGACCCATGTGCTCTTCAGATCTCAAGCCGCCAACAGAAC
AAGGGGAAGTACGGGCACTTCAGTGGCTGAACCTGGAGGGCACCCATCACCCACCCGCAATTCCG
CCAAAGCCAAGAAATAGCCCCCGCACACCACCTGTGCCCCAGATGATGATTGATTGACAGAAATCAT
GCTGCCATGCTGGGGGGGGTCACCCGACCCCTCAGGCCACCTGTACGGGGAACATGGACCTGGTG
TATTTCTTTCTTTAATGAATCAG

Human PPP1CA protein sequence - var1 (public gi: 298964) (SEQ ID NO: 261)
MSDSEKLNLDSTIIGRLLEGSRVLTPHCAPVQGSRPKGKVQLTENEIRGLCLKSREIFLSQPILLEAPL
KICGDIHGQYYDLLRLFEYGGFPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFLRRGNHECAS
INRIYGFYDECKRRYNIKLWKTFTDCNCLPIAAIVDEKEIFCCHGGLSPDLQSMEQIRRIMRPTDVPDQG
LLCDLLWSDPDKDVQGWGENDRGVSVTFGAEVVAKFLHKHDLDLICRAHQVVEDGYEFFAKRQLVTLFSA
PNYCGEFDNAGAMMSVDETLMCSFQILKPADKNKGKYGQFSGLNPGRPITPPRNSAKAKK

Human PPP1CA protein sequence - var2 (public gi: 190516) (SEQ ID NO: 262)
MSDSEKLNLDSTIIGRLLEVQGSRPKGKVQLTENEIRGLCLKSREIFLSQPILLEAPLKICGDIHGQYY
DLLRLFEYGGFPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFLRRGNHECASINRIYGFYDEC
KRRYNIKLWKTFTDCNCLPIAAIVDEKEIFCCHGGLSPDLQSMEQIRRIMRPTDVPDQGLLC DLLWSDPD
KDVGWGENDRGVSVTFGAEVVAKFLHKHDLDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAG
AMMSVDETLMCSFQILKPADKNKGKYGQFSGLNPGRPITPPRNSAKAKK

Human PPP1CA protein sequence - var3 (public gi: 190281) (SEQ ID NO: 263)
RPGKVNQLTENEIRGLCLKSREIFLSQPILLEAPLKICGDIHGQYYDLLRLFEYGGFPESNYLFLGD
YVDRGKQSLETICLLLAYKIKYPENFFLRRGNHECASINRIYGFYDECKRRYNIKLWKTFTDCNCLPIA
AAIVDEKEIFCCHGGLSPDLQSMEQIRRIMRPTDVPDQGLLC DLLWSDPDKDVQGWGENDRGVSVTFGAEVV
AKFLHKHDLDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMMSVDETLMCSFQILKPADKN
KGKYGQFSGLNPGRPITPPRNSAKAKK

Human PPP1CA protein sequence - (public gi: 35451) (SEQ ID NO: 395)
MSDSEKLNLDSTIIGRLLEVQGSRPKGKVQLTENEIRGLCLKSREIFLSQPILLEAPLKICGDIHGQYY
DLLRLFEYGGFPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFLRRGNHECASINRIYGFYDEC
KRRYNIKLWKTFTDCNCLPIAAIVDEKEIFCCHGGLSPDLQSMEQIRRIMRPTDVPDQGLLC DLLWSDPD
KDVGWGENDRGVSVTFGAEVVAKFLHKHDLDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAG
AMMSVDETLMCSFQILKPADKNKGKYGQFSGLNPGRPITPPRNSAKAKK

Human PPP1CA pray sequence - var1 (SEQ ID NO: 110)
CCGCCTGGTNCTACCCATGACNCACNTACCANTATTACGTCTACATATGGCTCATGGCAGGCCAGTTGAA
ATTCACACACAATACAAGTGCCTCATGCACACGCCAGAAGAAGGNCATTTGNTTGNNAACTTNATTA
TAGGGCNAGNGCCCCNTGGANCCNTAACACNTCCNNTACAGCTCATATGGCCATGGAGGCCAG
TGAATTCACCCAAGCGGGTATCAACGACAGTGGCATTATGGCGGGCAGTGGCCANAACCCCTGGAG
GCCACCCATACCCACCCGCAATCCGCCAAGCAAAGAAATAGNNGGCGCACACCACCTGTGCCT
TNNATGATGGATTGATTGTACAGAAATCATGCTGCCATGCTGGGGGGGG

Unigene Name: PRKAR1A Unigene ID: Hs.280342

Human PRKAR1A mRNA sequence - var1 (public gi: 34530409) (SEQ ID NO: 111)
ATCGCAGAGTGGAGCGGGCTGGAGCAAAGCGCTGAGGGAGCTCGGTACGCCGCCCTCGCACCCGCA

GCCTCGCCCCGCCGCCCAGAGAACCATGGAGTCTGGCAGTACCGCCGCCAGTGAGGAGGC
 ACGCAGCCTTCGAGAATGTGAGCTCTACGTCAGAACAGCATAACATTCAAGCGCTGCTAAAGATTCTATT
 GTGCAGTTGTGCACTGCTCGACCTGAGAGACCCATGGCATTCTCAGGGAATACITTGAGAGGAGGAGGC
 AAAACAGATTCAAATCTGAGAAAGCAGGCAGTCAGACTCAAGGGAGGATGAGATTTCTCCTCCT
 CCACCCAACCCAGTGGTTAAAGGTAGGAGGCGAGGGTGTATCAGCGCTGAGGTCTACACGGAGGAAG
 ATGCGGCATCTATGTTAGAAAGGTTATACAAAAGAATACAAGACAATGGCCCTTAGCCAAAGCCAT
 TGAAAAGAATGTGCTGTTTCACATCTGATGATAATGAGAGAAGTGTATTTTGATGCCATGTTTCG
 GTCTCCTTATCGCAGGAGAGACTGTGATTCAAGGTGATGAAGGGGATAACTCTATGTGATTGATC
 AAGGAGAGACGGATGTCTATGTTAACAACTGAATGGCAACAGTGTGGGAAGGAGGAGCTTGGAGA
 ACTTGCTTGTGTTATGGAAACACCGAGAGCAGCACTGTCAAAGCAAAGACAATGTGAAATTGTGGGC
 ATCGACCGAGACAGCTATAGAAGAACCTCATGGAAAGCACACTGAGAAAGCGGAAGATGTATGAGGAAT
 TCCTTAGTAAAGTCTCTATTTAGAGTCTCTGGACAAGTGGGAAAGCTTACGGTAGCTGATGCCATTGGA
 ACCAGTGCAGTTGAAGATGGGAGAAAGATTGTGGTCAGGGAGAACAGGGGATGAGTTCTTCATTATT
 TTAGAGGGTCAGCTGCTGCTACACGTCGGTCAGAAAATGAAGAGTTGTGAAAGTGGGAAGATTGG
 GGCCTCTGATTATTTGGTGAATTGCACTACTGATGAATCGTCCTCGTGCACAGTTGTGCTCG
 TGGCCCTTGAGTGCCTTAAGCTGGACCTAGATTGAACTGTTCTGGCCATGCTCAGACATC
 CTCAAACGAAACATCCAGCAGTACAACAGTTGTGCACTGCTGTAATCTGCTCCTGTGCTC
 CCTTTCTCCTCCCATGCTTCACTCATGCAAACACTGCTTATTTCTACTTGCAAGGCCAA
 GTGGCCACTGGCATTGCACTGCTGCTGTTATATATTGAAAGTTGCTTTATTGCAACCATTTCAT
 TTGAGGCACTTAACAAATGCTCATACAGTTAAATAAATAGAAAAGAGTTCTATGGAGACTTTGCTGTTA
 CTGCTTCTCTTGAGTGCAGTTAGTATTCCCTGGGAGCTGAGTGCCTGAAAGTGTGAGGGCAGAT
 CCCAGCACCTATTGAATTACATAGAGTAATGATGTTAACAGTGCAGGAAAGTGTGAGGAACTAA
 TTGTCAGCTTAAAGCTATTAGACTGTGGCCATATATGCTGATTCTTGTGAGAATAATGGTTCT
 CATTAACACTCTAAAGGTTAGGAAATGGATATAGAAAATCTTAGTATAGTAGAAAGACATCTGCTGTA
 ATTAACACTTAGTTAAGGGTGGAAATGCCATTGGCTAATTATCAATGGGATATGATTGGTCAGTT
 TTTTTTTTCCAGACTGTGTTGCAAGCTAATCTGCTGGTTTATTATATCTTGTGTTATTAAATG
 TTCTCTCCAATTCTGAAACTTTGAGTATGGCTATCTACCTGCTTTAAGTTGAAACTAACT
 CATAGATTGCAAATATTGGTTAGTATTAACTACATCTGCTCGGCTACAAATTCCGATTAGACCTTTA
 TCCAGCTAGGCCAATAATTGATCAGATGCTGAATTGAGAATAAGAATTGAGGCTACATTCTGGTT
 GTTAATTCTAGAGCGTTGGTTAAAGTATGTCCTCAGCTGACTCCAGTATAATCTCCTCTGCTCATTAAA
 CTGATTCCAGGAGATTGGATTGCTGTGACTAGATACAGATGGAGCAAATGCTTAACAGAGAAATAGAG
 GTGATGCTGCTAAAGGGAGAAATGCCAGGGGACAAAGTCTGAGTGGGAATTTCCTCGTGAATTCA
 CTGGGGCATGAGATTGGAGAAGTTTTACTTGGTTAGTCTTCTTCTCTTCTTCTTCTTCTTCT
 TAGAATTCTGGTGGGTTAGGGTATAATGCTGTGTTGCTCAATTGGCTGAAAGGCTAT
 CCTGCTGAAAGTCTGCTTCTCTATCTAGCATTATTCTCTGGCAAACCTTTCTTCTTCTTCT
 AAGTAAACTTGTGATTGAGTCTTAACTGTATTCCAGCCTTATGTGTTACATTCTGAA
 TGATACCCAAACAGTTTATTATTAAACAAAATTCTACAGTTCTGTAATGTAGGCACCTT
 ATTTCATTGTGATTATATATAAGGTAATGAGGTTATATTGGGAGTGACTGCAAGCATTCTGCA
 CTGTGTGCAACTAACTGACTCTGTTATTGATCCCTCTGCCCCCTCCAGGTAATTAAATGGTCA
 TGGTAGATTCTCATAGATTGAAAACCTTTAGGTTGTTACCAAGTATGAAGTATAATGGGAA
 GAGGTTTATTACATTAGGGTGGTAAGAAAGCCACCTGTTACAAATTCTTAAATTCCAAAATAA
 TCTATATTAAATGAGGTTCTGATCTGACTTTGTTAGCTACCTTTTATATTAAATTAAAAA
 ATGAAAATTATGTTCTACAAGCTTAAAGCTTGATTGATCTTGTGTTAAATGCCAAAATGTACTTAAAT
 GAGTTACTTGAATGCCATAAAATTGCAAGTTCTGATGTATGTTAAATCATGCTCATGTATATTAGTTA
 CGTATAATGCTTCTGAGTGAAGTTACTCTTAACTGTTAAATCATGCTCATGTATATTAGTTA
 CCTCTGTTAGTTTAATTAAAGCTTAAAGATAAGTCTACATTAAACATGATCACATCTAAAGCTT
 ATCTTGTTGTAATCTAAGTATATGTGAGGAAATGAGATTACTGCTCTAGAAAGTATAGATGG
 TTTAAAGTCATTATTCTGGCTTGGTAAGTGAATTGAGATTACTGCTCTAGAAAGTATAGATGG
 CCAAGGACCGTTTGTATTGCTTCTGATTACAGTGTGATTACCATGTTGCTAATATACTTTTT
 TGTATAGATTGTCTTAATGGTAGGTCAAGTAATAAAAGAGATGAAATAATT

Human PRKAR1A mRNA sequence - var2 (public gi: 4884279) (SEQ ID NO: 112)
 TATTTCCAGCCTTATGTGTTACATTATTCAATGATACCCAAACAGTTATTTTATTATTTTAAAC
 AAAATTCTACAGTTCTGTAATGCTAGGCACCTTATTTCATTGTGATTATATATAAGGTAATGTAGGGT
 TATATTGGGAGTGACTGCAAGCATTCTCCATCTGTCAGCAACTAAGTCTGTTATTGATCCCTC
 TCCTGCCCTTCCAGGTAATTAAATTGGTCATGGTAGATTCTTCTAGATTGAAAACCTTTAGG
 TTGTTACCAAGTATGAAGTATAAACTGGGAAGAGGTTTATTACATTAGGGTGGTAAGAAAGCC
 ACCTTGTACAAATTCTTAAATTCCAAAATACTATATTAAATGAGGGTTCTGATCTGACTTTGTC
 TTTAGCTACCTTTTATATTAAATTAAAGTAAATGCAAGCTTACAGCTTAAAGCTTAAAGCTT
 GATCTTGTAAATGCCAAATGTACTTAAATGAGTTACTGAGTAAATGCTTACAAATTGCAAGTT
 ATGTATATAATCATGCTCATGTATATTAGTTACGTATAATGCTTCTGAGTTACTCTTAAATC
 ATTGGTTAAATCATTGGCTTGGCTTACTCCCTCTGAGTTAAATTAAATTAAACTTAAAGATAAG
 TCTACATTAAACATGATCACATCTAAAGCTTATCTTGTGAAATCTAAGTATATGTGAGAAATCAGAA

Figure 36 part - 62

PCT/US04/06308

TTGGCATAATTGTCTTAGTGATATTCAAGGCTTAAAGTCATTATTCTGGCTGGTAAGTGAATT
TATGAGATTACTGCTAGAAAGTATAGATGGCAAAGGACCGTTATGCTTCTGATTACCACT
CTGATTATACCATGTGTGCTAATATACTTTTTGTTAGATTGCTTAATGGTAGGTCAAGTAATAAA
AAGAGATGAAATAATTTAAAAAAAAAAAAAA

Human PRKAR1A mRNA sequence - var3 (public gi: 33636720) (SEQ ID NO: 113)
GGTGGAGCTGTCGCTAGCCGCTATCGCAGAGTGGAGCGGGCTGGGAGCAAAGCGCTGAGGGAGCTCGG
TACGCCGCCCTCGCACCCGAGCCTCGGCCGCCGCCCCGCTCCAGAGAACATGGAGCTCGC
AGTACCGCCGCACTGAGGGAGGCAGCAGCAGCTCGAGAATGTGAGCTACAGTCAG
AAGCGCTGCTAAAGATTCTATTGTGCACTGTCAGCTCGACCTGAGAACAGCCATGGCATTCTCAG
GGAATACTTGAGAGGTTGAGAAGGAGGAGGCAAAACAGATTCAAGATCTGAGAACAGCCATGGCATTCTCAG
ACAGACTCAAGGGAGGATGAGATTCTCCTCCACCCAACCAGTGGTTAAAGGTAGGAGGCGACGAG
GTGCTATCAGCGCTGAGGTACACCGAGGAAGATGCGGCATCCTATGTTAGAAAGGTTATACAAAAGA
TTACAAGACAATGGCCCTTACCCAAGCATTGAAAAGAATGTGCTGTTTACATCTGATGATAAT
GAGAAGTGTATTTGATGCCATGTTTCGGCTCCTTATCGCAGGAGAGACTGTGATTAGCAAG
GTGATGAAGGGGATAACTCTATGTGATTGATCAAGGAGAGACGGATGTCTATGTTAACATGAATGGC
AACCACTGTTGGAAAGGGAGCTTGGAGAACCTGCTTGTGTTATGGAACACCGAGAGCAGCCACT
GTCAAGCAAACACAAATGTGAAATTGCGGACATCGACCGAGACAGCTATAGAAGAACATCTCATGGAA
GCACACTGAGAAAGCGGAAGATGTATGAGGAATTCTTAGTAAGTCTCTATTAGAGTCTCTGGACAA
GTGGGAACGCTTACGGTAGCTGATGCACTGGAAACCAGTCAGCTTGAAGATGGGAGAACAGATTGTGGT
CAGGGAGAACCAAGGGATGAGTTCTCATTAAATTAGAGGGGTCAGCTGCTGCTACAACGTCGGTCAG
AAAATGAAGAGTTGTTGAAGTGGGAAGATTGGGGCCTCTGATTATTTGGTGAATTGCACTACTGAT
GAATCGCTCTCGTGTGCACTGGCACAGTGTGCTCGGCCCCCTTGAAGACATCCAGCAGTACAACAGTTGT
TTTGAACGTTCTGGCCATGCTGAGACATCCTCAAACAGAACATCCAGCAGTACAACAGTTGT
CACTGCTGCTGAAATCTGCCCTGTGCCCCCTTCTCCTCTCCCCTGCTGTTAT
AAACTGCTTATTTCCCTACTTGAGCGCCAAGTGGCCACTGGCATCGCAGCTCTGCTGTTAT
ATTGAAAGTTGCTTTATTGCAACATTTCATTTGAGCATTAACTAAATGCTCATACACAGTTAAATA
AATAGAAAGAGTTCTATGGAGACTTTGCTGTTACTGCTCTTTGCACTGTTAGTATTACCCCTGG
CAGTGAGTGCCATGCTTTTGCTGAGGGCAGATCCCAGCACCTATTGAATTACCATAGAGTAATGATGTA
ACAGTGAAGATTTTTTAACTGACATAATTGTCAGTTAAAGCTGTTAGACTGTGGCCATATA
TGCTGTTATTCTTGAGAATAATGGTTCTCATTAACAGTTAAAGATTAGGGAAATGGATAAGAAA
ATCTTAGTATAGTAGAAAGACATCTGCTGTAATTAAACTAGTTAAGGGTGGAAAATGCCATTITG
CTAATTATCAATGGATATGATTGGTCAGTTTTCTCAGGTTGTTGCTTCCAGAGTTGTTGCTTCCAAAGCTAATCTG
CCTGGTTTATTATATCTGTTATTAACTGTTCTTCTCCAACTCTGAATACACTTTGAGTATGGCTATC
TATACCTGCTTTAAGTTGAAACTAACTCATAGATTGCAATATTGGTTAGTATTAACTACATCTG
CTCGGCTCACAAATTCCGATTAGACCTTATCCAGCTAGTGCCTAAAGTATGCTCTCAGCTG
AATAAGAATTGAGGTCTACATTCTGGTTAAATTAGAGCCTTGGTTAAAGTATGCTCTCAGCTG
ACTCCAGTATAATCTCTCGCTCATTAACAGTGAAGGAGATTGGATTGCTGACTAGATACAGA
TGGAGCAAATGCTAACAGAGAAATAGAGGTGATGCTGCTAAAGGGAGAAATGCCAGGGACAAAGTT
CAGTGCGGGATTTCCTCGTGCACATTCACTGGGCATGAGATTGGAGAAGTTTACTTTGGTT
TAGTCTTTCTCCTTTTATTCACTGCTAGAATTCTGGTGGTTGATGGTAGGGTATAATGTT
GTGGTCTCAATTGGTCTGAAAGGCTATCTGCGGAAAGCTGCTTCTCTATCTAGCATTATTCT
CTGGCAAACCTTTCTTCTTTCTTTAAAGTAAACTTGTTGAGTATTGAGTCTTAACGTATTCACTG
TTTCCAGCTTATGTGTTACATTATCCAATGATAACCAACAGTTATTATTAAACAAA
ATTTCACAGTTCTGTAATGAGGCACCTTATTCTGATTATATAAGGTAATGTAGGGTT
ATTGGGAGTGACTGCAAGCATTTCATCTGCTGCAACTAACTGACTCTGTTACTCTTCC
TGCCCTTCCCAGGTAAATTAAATTGGTCTGTTGAGATTCTTCTGTTGAGTATTGAAACACTTTAGGTTG
TTACCAAGTATGAGTATAAACTGGGAAGAGGTTTATTACATTGGTGTGTTGAGGTT
TTGTTACAAATTAAATTCCAACAAATTAAAGGTTCTGATCTGACTTTGT
AGGTTACCTTATTTAAATTAAAGGTTCTGATCTGTTGAGGTT
CTTGTGTTAAATGCCAAATGACTTTAAATGAGTTACTTAAAGTGAATGCCATAAAATTGCACTT
TATATAATCATGCTCATGTTATTAGTTACGTTACGTTAACTGCTTCTGAGTGAGTTACTCTTAAATCATT
TGGTTAAATCAATTGGCTGCTGTTACTCCCTCTGTTGAGTTTAAATTAAAACCTTAAAGATAAGTCT
ACATTAACAAATGATCACATCTAAAGCTTATCTTGTGTTAATCTAAGTATATGTGAGAAATCAGAATTG
GCATAATTGCTTAGGTTGATATTCAAGGCTTAAAGTCATTATTCTGGGCTTGTGTTGAGTGAATT
GAGATTACTGCTCTAGAAAGTATAGATGGCGAAAGGACCGTTTGTATTGCTTCTGATTACCACTG
ATTATACCATGTGTGCTAATATACTTTTTGTTAGATTGCTTAATGGTAGGTCAAGTAATAAAAG
AGATGAAATAATTAAAAAAAAAAAAAA

Human PRKAR1A mRNA sequence - var4 (public gi: 1526989) (SEQ ID NO: 114)
GCTGGGAGCAAAGCGCTGAGGGAGCTCGGTACGCCGCCCTCGCACCGCAGCCTCGGCCGCCGCC
CCCGTCCCCAGAGAACATGGAGCTGGCAGTACCGCCGCCAGTGGAGGAGGCACGCCCTCGAGAACATG

Figure 36 part - 63

TGAGCTCTACGCCAGAAGCATAACATTCAAGCGCTGCTAAAGATTCTATTGTGCAGTTGTGCACTGCT
CGACCTGAGAGACCCATGGCATTCTCAGGGAATACTTGTAGAGGTTGGAGAAGGAGGAGGAAAACAGA
TTCAGAATCTGAGAAAGCAGGCACTCGTACAGACTCAAGGGAGGATGAGATTCTCCCTCCACCCAA
CCCAGTGGTTAAAGTAGGGCGACGGGTGCTATCAGCGCTGAGGTCTACACGGAGGAAGATGCGGCA
TCCTATGTTAGAAAGGTTATACAAAAGATTACAAGACAATGCCCTTAGCCAAGCCATTGAAAAGA
ATGTGCTGTTACATCTTGATGATAATGAGAGAAGTGTATTTTGATGCCATGTTTCGGTCTCCTT
TATCGCAGGAGAGACTGTGATTCAAGGTGATGAGGGGAAACTTCTATGTGATGCAAGGAGAG
ACGGATGTCTATGTTAACATGAATGGCAACAGTGTGGGAAGGAGGAGCTTGGAGAACTTGCTT
TGATTTATGGAACACCGAGGAGCAGGCACTGTCAAAGCAAAGACAATGTGAAATTGTGGGCATCGACCG
AGACAGCTATAAGAAGAACATCTCATGGAAAGCACACTGAGAAAGCGGAAGATGTATGAGGAATTCTTAGT
AAAGTCTCTATTAGTCTCTGGACAAGTGGAACGCTTACGGTAGCTGATGCAATTGGAAACAGTGC
AGTTGAAGATGGGAGAACAGATTGGTGTGAGGGAGAACAGGGGATGAGTTCTCATTATTTAGAGGG
GTCAGCTGCTGGCTACAACGTGGTCAGAAAATGAAGAGTTGTGAGTGGGAAGAATTGGGCTTCT
GATTATTTGGTGAATTGCAACTACTGATGAATCGCCTCGTGTGCCACAGTTGTGCTCGTGGCCCT
TGAAGTGCCTTAAGCTGGACCGACCTAGATTGAACTGTTCTGGCCCATGCTCAGACATCCTCAAACG
AAACATCCAGCAGTACAACAGTTGTCACTGTCGAAATCTGCCCTCTGTGCCCTCCCTTTCT
CCTCTCCCCAATCCATGCTCACTCATGCAAACGCTTATTTCCCTACTTGCAAGGCCAAGTGGCCAC
TGGCATCGCAGCTTCTGTGTGTTATATATTGAAAGTGTCTTATGACCATAATTCAATTGAGCA
TTAACATAATGCTCATACACAGTTAAATAGAAGAACAGTTATGAGGAGACTTGTGTTACTGCTCT
CTTTGTGAGTGTAGTATTGCTTACCTGGGAGTGTGAGTGCATGCTTTGGTGAAGGAGATCCAGCACC
TATTGAATTACCATAGAGTAAATGATGAAACAGTGTGAAAGATTTTTAACTGACATAATTGTCAGT
TATAAGCGTATTAGTGTGGCCATATGTCGTTTGTGAGAATAATGGTTCTCATTAACACT
CTAAAGATTAGGAAATGGATATAGAAAATCTTAGTATAGAAAAGACATCTGCTGTAAATTAAACTAG
TTAAGGGTGGAAAATGAAAATTGGCTAATTATCAATGGGATATGATTGGTTCAGTTTTTTTCC
AGAGTTGTGTTGCAAGCTAATCTGCCCTGGTTATTATATCTTGTATTAAATGTTCTCTCCAAATT
CTGAAATACTTTGAGTATGGCTATCTACCTGCCCTTAAGTTGAACACTAATGCAAGTGC
TTGGTTAGTATTAACTACATCTGCTCGGCTCACAAATTCCGATTAGACCTTATCAGCTAGTGC
ATAATTGATCAGATGCTGAATTGAGAATAAGAATTGAGGTCTACATTCTGGTGTAAATTAGAGCGT
TTGGTTAAAGTATGTCCTCAGCTGACTCCAGTATAATCTCCCTGCTCATTAAACTGATTCCAGGAGAT
TGGATTGCTGTGACTAGATACAGATGGGAGCAAATGCTAACAGAGAAAATAGGGTGTGCTGCTAAAG
GGAGAAATGCCAGGGGACAAGTTCAGTGTGGGAATTCCCGTGTGACATTCACTGGGCATGAGATT
TTGGAAGAAGTTTTACTTGGTTAGTCTGTTGCTCAAATTGGTGTGAAAGGCTATCTGCTGAAAGTCCTG
TTGATGGTAGGGTATAATGTCGTTGCTCAAATTGGTGTGAAAGGCTATCTGCTGAAAGTCCTG
CTTCTCTATCTAGCTTACAGTCTGTTGCTCAAATTGGTGTGAAAGGCTATCTGCTGAAAGTCCTG
TGAGCTTAACGTATTCTAGTATTCTCAGCTTACAGTCTGTAATGTAGGCACTTTATTTCATTGTGATT
ATTTTATTATTTAAACAAATTTCACAGTCTGTAATGTAGGCACTTTATTTCATTGTGATT
ATATATAAGGAATGTAGGGTTATAATTGGGAGTGTGACTGCAAGCATTTCATCTGCTGCAACTAATC
GACTCTGTTATTGATCCCTCTGCCCTTCCAGGTAAATTAAATTGGTGTGAAAGTATTTCAT
TAGATTGAAAAACTTTAGGTTGTTACCAAGTATGAAGTATAATCTGGGAAGGAGTTTATTACAT
TTAGGGTGGGTAAGAAAGCCACCTGTTACAAATTTCAAAATAATCTATATTAAATGAGG
GTTCTGATCTGACTTTGTGTTAGCTACCTTATATTAAAAATAATGAAAATTATGTTCT
TACAAGCTTAAAGCTGATTGATCT

Human PRKAR1A mRNA sequence - var5 (public gi: 1526988) (SEQ ID NO: 115)
GGCAGAGTGGAGCGGGGCTGGGAGCAAAGCGCTGAGGGAGCTGGTACGCCGCCCTCGCACCCGAGC
CTCGCGCCCGCCGCCGCTCCCAAGAGAACCATGGAGCTGGAGTCTGGCAGTACGCCGCCAGTGAGGAGGCAC
GCAGCCTCTGAGAAATGTGAGCTACTGTCAGGCAAGCATAACATTCAAGCGCTGCTCAAAGATTCTATTGT
GCAGTTGTGCACTGTCGACCTGAGGAGACCATGGCATTCTCAGGGAAACTTTGAGAGGTTGGAGAAG
GAGGAGGCAAACGATTGAGAAATCTGAGGAGGAGACTGTCAGCAAGGTGATGAAGGGATAACTCTATGT
CTCCTCTCCACCCAACCCAGTGGTTAAAGGTAGGAGGCGACGAGGTCTATCAGCGCTGAGGTCTACAC
GGAGGAAGATGCGGATCCTATGTTAGAAAGGTATACCAAAAGATTACAAGACAATGCCGCTTAGCC
AAAGCCATTGAAAAGAATGTGCTGTTACATCTGATGATAATGAGAGAAGTGTATTTTGATGCC
TGTGTTCTGCTCTTATCGCAGGAGAGACTGTGATTCAAGCAAGGTGATGAAGGGATAACTCTATGT
GATTGATCAAGGAGAGACGGATGTCTATGTTAACATGAATGGCAACAGTGTGTTGGGAAGGAGGGAGC
TTGGAGAACTTGCTTGTATTATGGAACACCGAGAGCAGCCACTGTCAAAGACAATGTGAAAT
TGTGGGGCATCGACCGAGACAGCTATAGAAGAATCCTCATGGGAAGCACAATGAGAGAAGCGGAAGATGTA
TGAGGAATTCTTAGTAAAGTCTCTATTAGAGTCTCTGGACAAGTGGGAACGTTACGGTAGCTGAT
GCATTGGAACAGTGCAGTTGAAGATGGCAGAAGATTGTTGGTGCAGGGAGAACCCAGGGATGAGTTCT
TCATTATTTAGGGGCTCTGATTATTGGTGAATTGCACTACTGATGAAATCGTCTCTGCTGCCACAGTT
AAGATTGGGGCTCTGATTATTGGTGAATTGCACTACTGATGAAATCGTCTCTGCTGCCACAGTT
GTTGCTGCTGGCCCTTGTGAGTGTGTTAAGCTGGACCGACCTAGATTGAAACGTGTCTGAAATCTGCTCC
CAGACATCCTCAAACGAAACATCCAGCAGTACAACAGTTGTGTCAGTCTGCTGAAATCTGCTCC
TGTGCTCCCTTCTCTCCATGCCACTCATGCTTACTCATGCAAACGCTTATTCCCTACTTG

Figure 36 part - 64

PCT/US04/06308

AGCGCCAAGTGGCCACTGGCATCGCAGCTCCTGTCGTTATATATTAAAGTTGCTTTATTGCACCAT
TTCAATTGGAGCATTAACTAAATGCTACACAGTTAAATAAGAAAAGAGTTCTATGGAAAAAAA
AAAAAA

Human PRKAR1A mRNA sequence - var6 (public gi: 9956010) (SEQ ID NO: 116)
AACTGACTCTGTTATTGATCCCTCTCTGCCCTTCCCAGGTAAATTAAATTGGTCATGGTAGATTTT
TTCATAGATTTGAAAAACTTTAGGTTGTTACCAAGTATGAAGTATAAAATCTGGGAAGAGGTTTATT
ACATTTAGGGTGGTAAGAAAGCCACCTGTTACAATTTAATTTCAAATAATCTATATTAAAT
GAGGGTTCTGATCTGACTTTGTTAGCTACCTTTATATTAAATAATGAAAATTACG
TTCTTACAAGCTTAAAGCTGATTGATCTTGTAAATGCAAAATGACTTAAATGAGTTACTTACA
ATGCCATAAAATTGCAAGTTCTGATGATGTATAATCATGCTCATGTATAATTAGTACGTATAATGCTT
TCTGAGTGAGTTTACTCTAAATCATTTGTTAAATCATTTGGCTGTTACTCCCTCTGTAGTT
TTAATTAAAATTTAAAGATAAGTCTACATTAACAAATGATCACATCTAACAGCTTATCTTGTGAA
TCTAAGTATATGAGAAAATCAGAATTGATAATTGCTTACTGATATTCAAGGTTAAAGTCAT
TATTCTGGGCTTGGTAAGTGAATTATGAGATTACTGCTCTAGAAAGTATAGATGCCAAAGGACCGT
TTGATTGCTTCTGATTACAGTCTGATTACCATGTGCTGCTAATATACTTTTTGTTAGATTG
TCTTAATGGTAGGTCAAGTAATAAAAGAGATGAAATAATTAAATTCTAAATGAATCAGTTTCTC
CCTTCTCCTTCCGCTTCCCTCTCTGCTCTCCCCGAAAGTCTACTCGGGTGGCAAAATGAAA
GGGGAAAGTGAATTGGGATCGGTGTTTGAAAGAGCAATGTTATTTCAGTGCTTTCAGTTGTC
AAAGAGTGGATCTAAAATCTGCTTAAAGGTAAATTGAGATGTAGCAGATTATTACTTAGTCATGGA
AAGAAAAAAATTCAAGTCAAAAGCTAAAGATTCCCTTTGATTGAGACAGATTGGTCTGTTGG
ACTTCCCAGACTTAATGGGAAACATCATTCTAGATTAGCATACTCTTGGTTAAATTAAATATA
CATTAAATGTTACTTAGGGATACTTTATATTGCTATATAAAGCCTCATATAAAGCCTTATTCT
GATGCTCTTAGTTCTGAGGAGTGAGATGATTAAGTGTATTCTTAAATTGTTAGATTG
CCAGTGAAATTGGAGATATTGTGATGTTAGAAGAGCATTCTTAAATTGTTGCTTGAACATGTGTA
CCTTTCTAGATTCTGAAATCCCTCCCCCGTCTCTGGAGTATGAAACCTTAAAGTCACAATAAAT
GTAACAAAGAAAAAAAAAAAAAA

Human PRKAR1A mRNA sequence - var7 (public gi: 21757396) (SEQ ID NO: 117)
TAATTTCCTGTTTTAAAAAATTGATTATGCTAGTAGTTGGCTAACAGATCCTCACTCCAGTG
GTTTGCTCTGTCAGTTAGGATACTCCCAGGGATAGAAGTACGTATAAGGAATGTCAGATATTCTCA
TTGTGCTGACTGCTTCTGTTACAGTTGACTTTGCTGCTGTAATTCTGATCTGTTACCGTTA
CCTACTTCCCACGTCACTCATGATTCTTTGAGGGAGAACTGAAATCCCTTAAGGGCTGACTTC
AGCACCCGTCTGAGAGGTTAGTGGCTCATACTCCCTCCAGGAGCTGAGGTATCGACTCTCACTGT
TGCCTACAGAGCACAGATCCTGAACTAAATGAAACATTACTTGAATAATGCTAATTCTGTACATATT
TATTCCCTAGTCCCACCTCCCTGTTAAAACAAAATCTACTTAGAAAAAAATCCCTGTAATCAGTTG
TCTAATGAATTAGCAAGTTAAATGCAAGATTGACATTGCTTATAGTTTATACAAGCATGTTG
TTTTTCTCGCAGAGAACCATGGAGCTGAGTACCGCCAGCTGAGGAGGACGCAGCCTTCGAGAA
TGTGAGCTCTACGTCAGAACATCAAGCGCTGCTCAAAGATTCTATTGTGAGTTGCTGACTG
CTCGACCTGAGAGAACCATGGCATTCTCAGGGATACTTGGAGGTTGGAGAACGGAGGAGG
GATTCAAGATCTGCAAGAACAGCAGGCACTCGTACAGACTCAAGGAGGATGAGATTCTCCCT
AACCCAGTGGTTAAAGGTAGGGCGACGAGGTGCTATCAGCGCTGAGGTCTACACGGAGGAAGATGG
CATCCTATGTTAGAAAGTTATACAAAAGATTACAAGAACATGGCGCTTGTAGCCAAAGCCATTGAAA
GAATGTGCTTTTACATCTGATGATAATGAGAGAAGTGATATTGATGCCATGTTTGGTCTCC
TTTATCGCAGGAGAGACTGTGATTGCAAGGTGATGAAGGGATAACTCTATGTGATTGATCAAGGAG
AGACGGATGCTATGTTAACATGAATGGCAACCAGTGTGGGAAGGGAGGCTTGGAGAACTTGC
TTGATTATGGAACACCGAGAGCAGGCCACTGTCAAAGCAAAGACAAATGTGAAATTGTTGGGG
CATGACCGACAGCTATAGAAGAACCTCATGGGAAGCACACTGAGAAAGCGGAAGATGTATGAGGAATT
GTAAGTCTCTATTAGAGTCTCTGACAAGTGGAAAGCTCTACGGTAGCTGATGCAATTGGAAACAGT
GCAGTTGAAGATGGGAGAAAGATTGTTGTCAGGGAGAACCCAGGGGATGAGTTCTCATTATTAGAG
GGGTCACTGCTGCTACAACGTCGGTCAGAAAATGAAGAGTTGAGTGGGAAGGAGATTGGGG
CTGATTATTGGTAAATTGCACTACTGATGAAATCGTCTCGTGTGCTGACAGTGTGCTGG
CTTGAAGTGGCTTAAAGCTGGACCGACTGATTGAACTGTTGCTGCTGCTGCTGCTGCTGG
CGAAACATCCAGTACAACAGTTGCTACTGCAAACATGCTTATTTCCTACTTGTGAGG
ACTGGCATCGCAGCTTCTGTTATATTAAAGTGTGTTTATTGCAACATTTCATGGAG
CATTAACAAATGCTCATACAGTTAAATAATGAAAGAGTTCTATGG

Human PRKAR1A mRNA sequence - var8 (public gi: 1658305) (SEQ ID NO: 118)
AGAGCGTCAAGGGAGGCCGGAGGGAGGTGGGAGACAGAGGAGCGGAGGGACGAGAGGGAAAGCGC
GATAGCTGCGGGAGAGAGAGCGAAGAGCAGGAGGAGGAACAAAGCGACCCAAAGACACCC
CAGAGAACCATGGAGTCTGGCAGTACCGCCGCCAGTGAGGAGGCACGCAGCCTCGAGAATGTGAGCTCT

PCT/US04/06308

ACGTCAGAAGCATAACATTCAAGCGCTGCTAAAGATTCTATTGTGCAGTTGTGCACTGCTCGACCTGA
GAGACCCATGGCATTCCTCAGGAAACTTGTGAGAGGTTGGAGAAGGAGGAGCAAAACAGATTCAA
CTGCAGAAAGCAGGCACTCGTACAGACTCAAGGGAGGATGAGATTCTCCCTCCACCCAA

Human PRKAR1A protein sequence - var1 (public gi: 4506063) (SEQ ID NO: 264)
MESGSTAASEEARSRLRECELYVQKHNIQALLKDSIVQLCTARPERPMAFLREYFERLEKEAKQIQNLQK
AGTRTDSREDEISPPPPNPVKGRRRRAISAEVYTEEDAASYVRKVIPKDYKTMALAKATEKNVLFSH
LDDNERSDIFDAMFSVSFIAGETVIQQGDEGDNFYVIDQGETDVYVNNEWATSVGEFFSFGEALIYGTP
RAATVKAKTNVKLWGIIDRDSYRRILMGSTLRKRKMYEEFLSKVSIRESLDKWERLTVADELEPVQFEDQ
KIVVQGEPEGDEFIILEGSAAVLQRSSNEEFVEVGRGLPSDYFGEIALLMNRPRAATVVARGPLKCVKL
DRPRFERVLGPCSDILKRNIQQYNSFVSLV

Human PRKAR1A protein sequence - var2 (public gi: 1658306) (SEQ ID NO: 265)
MESGSTAASEEARSRLRECELYVQKHNIQALLKDSIVQLCTARPERPMAFLREYFERLEKEAKQIQNLQK
AGTRTDSREDEISPPPP

Human PRKAR1A pray sequence - var1 (SEQ ID NO: 119)
GCCGCTGGNTACCCATAACGACGTACAGTATTACGCTCATATGGCCATGGCAGGCAGTGCAATTCCA
CCCAAGCAGTGGCTATCACGAGAGTGGTAGCGGGGATGGGAGCAAAGCAGCATGAGGAGCTCGGTA
CNCCGCCGCTCNCACCCGAGCCTCGCGCCGCCGCCCCAGNGAACATGGAGCTGGCAG
TACCGTTCCAGTGAGGAGGACNCAGCCTTCAGAAATGTGAGCTCTMNGTCAGAAGCATNACATTCA
TGGCTNCTCAAAGATTCTNTGTGCANTTGCGCTGCTGACCTNAGAGACCGGGTGGCATTCTCAN
GGAATACTGGCGNACGNNGNNTAATGANGAGGCCNTNTNCAAANTCTNCANNTTTNNNTCTT
TNACAAACTTTGGACNATNANNANCCNTNNANANAAAATNNCTCCCGGGGNATTCT
NCCC

Human PRKAR1A pray sequence - var2 (SEQ ID NO: 120)
GAGCCGCCATGGNANTACCCATAACGACGTACCAAGNATTACGCTCATATGGCCATGGAGGCCAGTGAAAT
TCCACCCAAGCAGTGGTATCAACGAGAGTGGTAGCGGGGCTGGGAGCAAAGCAGCTGAGGAGCTCGGTA
CGCCGCCGCTCGCACCCGAGCCTCGCGCCGCCGCCCCAGAGAACATGGAGCTGGCAG
TACCGCCGCAAGTGGAGGAGCAGCAGCAGCTTCAGAAATGTGAGCTCTACGTCAGAAGCATAACATTCAA
GCGCTGCTCAAAGATTCTATTGTGCAGTTGTGCACTGCTCGACCTGAGAGACCCATGGCATTCTCAGGG
AATACTTGAGAGGTTGGAGAAGGAGGAGGCAAACAGATTCAAATCTGAGAAAGCAGGCACTCGTAC
AGACTCAAGGGAGGATGAGATTCTCCTCCACCCAAACCCAGTGGTAAAGGTAGGAGGCCAGGAGT
GCTATCAGCGCTGAGGTCTACCGAGGAAAGATCGGCATCTTATGTTAGAAAGGTATACCAAAGATT
ACAAGACGATGGCGCTTAGCCAAAGCCATTGAAAAGATGTGCTGTTTCACATCTTGATGATAATGA
GAGAAGTGTATTTGATGCCATGTTCTGGCTCCTTATCGCAGGAGAGACTGTGATTCAANCAAGGT
GATGAAGGGATAACTTCTATGTGATTGATCAAGGANAGACNGATGCTATGTTAACATGAATGGCNA
CCANTGTTGGGAAGGAGGAGCTTGAAAAGTGCTTGTATTNANGGAANCCNNNGCNCCNTNGTC
AAACAAAACAAA

Human PRKAR1A pray sequence - var3 (SEQ ID NO: 121)
CGACGCGCTGGTATACCCATAACGACGTACCAAGTATTACGCTCATATGGCCATGGCAGGCCAGTGAAATT
CCACCCAAGCAGGTGCGATATGCATACCGAGNAGTGAGTAACGGCGCTGGTAGCGAAGTCGCTGAGG
GAGCTGGTACNCCGCCAGCGCTCGCACCCGCACCTCGCGCCGCCGCCCCAGAGAACCAT
GGAGTCTGGCAGTACCGCCGCACTGAGGAGGAGCAGCAGCTTCAGAAATGTGAGCTCTACGTCAGAAG
CATAACATTCAACGCTGCTCAAAGATTCTATTGTGCAGTTGTGCACTGCTCGACCTGAGAGACCCATGG
CATTCCTCAGGAATACTTGAGAGGTTGGAGAAGGAGGAGGCAAACAGATTCAAATCTGAGAAAGC
AGGCACTCGTACAGACTCAAGGGAGGATGAGATTCTCCTCCACCCAAACAGCTGGTTAAAGGTAGG
AGGCGACGAGGTGCTATCGCGCTGAGGTCTACACGGAGGAAGATCGGCATCTATGTTAGAAAGGTAG
TTTTGATATTGAAATATCGGGGGGAGCTTGGACCCACTGGTGGTCACTTANTCTCTGGATG
ANTGATTCTTAAATCCAAAACNGGGNGGAACCTTCATCNCNTNTANANTNTGGNNCTGGAAAANNG
TTTTNTAATACCNNTNNCAANGAAANANCNTTNGNGTTTNAANNNNGAAAANTGGCTTNGGG
GTTNNNNNTTCCNTCNCNTNTTTNNNNAAAAGGNGGGCGGTTNG

Human PRKAR1A pray sequence - var4 (SEQ ID NO: 122)
CGTANNNCGCGNGACTCGGTGACTGANGCCATGATCGCACATTACACACTATNTACCGTCTGACATCAT
GGNTCAGTGTGCAAGGGCCATGTTGANNTCTCCNCNCATANATACAAGGNCTCAAGNNNGACANAACAAT
AGAGANATATTCTTANTACTNACTCACTATAGGGCGAGCGCCCATGGAGTACCCATACGACGTNCCAG
ATTACGCTCATATGGCCATGGAGGCCAGTGAAATTCCACCCAAAGCAGTGTTATCAACGAGTGAGCGG
GGCTGGAGCAAAGCGCTGAGGGAGCTGGTACGCCGCCCTCGCACCCGAGCCTCGCGCCGCC

GCCCGTCCCCAGAGAACCATGGAGTCTGGCNGTACGCCNNANTGNGAGGCACGCAGCCTNNAGAAT
GTGAGCTCTACGTCCAGAACATAACATNNNGCGCTGCTAAAGATTCTATTGTGCAGTTGTCACTGC
TCGACCTGAGAGACCCATGGCATTCTCAGGGAATTACTTGTAGAGGTTGGANNAGGAGGAGGCNAACCA
NATTCAAATCTGCNGAAAGCANNANTCNTACAGACTCAGGGNGGNANATTNTTATTCTCCCCCA
NCCNANTGGTTAAGGGTNGGAGGCNACAGGNCTNTNNCCCTGAAGGNNTNCGGNGGAAGATNCGG
ATTCCATGTTAAAANGGTNTTCCNNTANNNATTNCNANNAANANGGCCCTTTNNCCAAANCCT
TCNAAAAAANGNCNNTTCCNANTNTNNNGGAANTNNAAAAGNGNTTTTAAANCCTNTT
TNNGTTNTCTTTCNNGNGAAACNTNATTAAANNCCG

Unigene Name: PRKARIA Unigene ID: Hs.183037 Clone ID: 3GD_188

Human PRKARIA mRNA sequence - var1 (public gi: 23273779) (SEQ ID NO: 396)
GGTGGAGCTGCGCTAGCCGCTATCGCAGAGTGGAGCGGGCTGGGAGCAAGCGCTGAGGGAGCTCGG
TACGCCGCCCTCGCACCCGCAGCCTCGGCCGCCGCCGCCCCAGAGAACCATGGAGTCTGGC
AGTACCGCCGCCAGTGAGGAGGCACGCAGCCTTCAGAATGTGAGCTCTACGTCCAGAACATAACATT
AAGCGCTGCTAAAGATTCTATTGTGAGTTGTGACTGCTGACCTGAGAGAACCATGGCATTCTCAG
GGAATACTTTGAGAGGTTGGAGAAGGAGGAGGCAAAACAGATTCAAATCTGAGAAAGCAGGCACTCGT
ACAGACTCAAGGGAGGATGAGATTCTCCTCTCCACCCAACCCAGTGGTAAGGTAGGAGGCACGAG
GTGCTATCAGCGCTGAGGTCTACACGGAGGAAGATGCGGATCCTATGTTAGAAAGGTTACCAAAAGA
TTACAAGACAATGGCCGTTAGCCAAGCATTGAAAAGAATGTGCTGTTTACATCTGATGATAAT
GAGAGAAGTGTATTTGATGCCATGTTCTGGTCTCCTTATCGCAGGAGAGACTGTGATTCAAG
GTGATGAAGGGATAACTTCTATGTGATTGATCAAGGAGAGACGGATGTCTATGTTAACATGAATGGC
AACAGTGTGGGAAGGAGGGAGCTTGGAGAACCTGCTTGTGATTGAAACACCGAGAGCAGCCACT
GTCAAAGCAAAGACAAATGTGAAATTGTGGGGCATCGACCGAGACAGCTATAGAAGAACCTCATGGAA
GCACACTGAGAAAGCGGAAGATGTATGAGGAATTCTTAGTAAAGTCTCTATTTAGAGTCTCTGGACAA
GTGGGAACGTCTACGGTAGCTGATGCATTGAAACCAGTGCAGTTGAAGATGGCAGAAGATTGTGGT
CAGGGAGAACAGGGGATGAGTTCTCATTATTTAGAGGGTCAGCTGCTGCTACACGTCGGTCAG
AAAATGAAGAGTTGTTGAAGTGGGAAGATTGGGGCCTCTGATTATTTGGTGAATTGCACTACTGAT
GAATCGTCCTCGTGTGCCACAGTTGCTGCTGGCCCTTGAGTGCCTAAGCTGGACCGACCTAGA
TTGAAACGTGTTCTGGCCCATGCTCAGACATCCTCAAACGAAACATCCAGCAGTACAACAGTTGT
CACTGTCGTCGAAATCTGCCTCTGTGCCCTCTTCTCCTCTCCCCAATCCATGCTTCACTCATGC
AAACTGCTTATTTCCCTACTTGCGCGCCAAGTGGCCACTGGCATCGCAGCTTCTGTCTGTTATAT
ATTGAAAGTGTGTTTATTGACCAATTTCATTTGAGCATTAAACTAAATGTCATACACAGTTAAATA
AATAGAAAGAGTTCTATGGAGACTTGCTGTTACTGCTTCTTTGTGAGTTAGTATTCAACCTGGG
CAGTGAGTGCATGCTTTGGTGAAGGGCAGATCCCAGCACCTATTGAAATTACCATAGAGTAATGATGTA
ACAGTGCAAGATTTTTTAAGTGACATAATTGTCAGTTAAGCGTATTTAGACTGTGGCCATATA
TGCTGTATTCTTGTAGAATAAATGGTTCTCATTAACACTCTAAAGATTAGGGAAATGGATATAGAAA
ATCTTAGTATAGAAGAACATCGCCTGTAATTAAACTAGTTAAGGGTGGAAAAATGCCATTGG
CTAATTATCAATGGGATATGATTGGTCAGTTTTTTCCAGAGTTGTGTTGCAAGCTAATCTG
CCTGGTTTATTTATATCTGTTATTAAATGTTCTTCTCCAATTCTGAAATACTTTGAGTATGGCTATC
TATACCTGCCTTTAAGTTGAAACTAACTCATAGATTGCAAATATTGGTTAGTATTAACTACATCTG
CTCGGCTCACAAATTCCGATTAGACCTTATCCAGCTAGTGCCTAAATAATTGATCAGATGCTGAATTGAG
AATAAGAATTGAGGTCTACATTCTGGTTTAATTAGAGCGTTGGTAAAGTATGCTTCTCAGCTG
ACTCCAGTATAATCTCTGCTCATTAACACTGATTCCAGGAGATTGGATTGCTGTGACTAGATACAGA
TGGAGCAAATGCTAACAGAGAAATAGAGGTGATGCTGCTAAAGGGAGAAATGCCAGGCGGACAAAGTT
CAGTGCAGGGAAATTCTCCCGTGCACATTCACTGGGCATGAGATTGGAAGAAGTTTTACTTTGGTT
TAGTCTTTCTCCCTTTTATTGAGCTAGAATTCTGGTGGTTGATGGTAGGGTATAATGTGTCT
GTGTTGCTCAAATTGGTCTGAAGAGCTATCCTGCGGAAAGTCCTGCTTCTATCTGATTATTCT
CTGGCAAACCTTTCTTTCTTTAAAGTAAACTGTTGAGTTTCTGATGTTACTGCTTAACGTATTCA
TTTCCAGCCTATGTGTTACATTATTCCAATGATACCAACAGTTATTGTTATTATTAAACAAA
ATTTCACAGTTCTGTAATGTAGGCACCTTATTGTTATTGATTTATATAAGGTAATGTAGGGTTAT
ATTGGGAGTGACTGCAAGCATTTCATCTGCTGCAACTAACTGACTCTGTTATTGATCCCTCTCC
TGCCCTTCCAGGTAATTAAATTGGTCTGAGATTCTGATGTTACTGAAAGAAACTTTAGGGT
TTACCAAGTATGAAGTATAAAATCTGGGAAGAGGTTTATTACATTAGGGTTCTGATCTGACTTTGTGTT
TTGTTACAAATTAAATTCCAAAATAATCTATATAATGAGGGTTCTGATCTGACTTTGTGATTGAT
AGCTACCTTTATATTAAAAAATTAAATGAAAATTACGTTCTACAGCTTAAAGCTTAAAGCTGATTGAT
CTTGTGTTAAATGCCAAATGTACTTAAATGAGTTACTTGAATGCCATAAAATTGCAAGTTCTGATGTATG

PCT/US04/06308

TATATAATCATGCTCATGTATTTAGTTACGTATAATGCTTCTGAGTGAGTTTACTCTTAAATCATT
TGGTTAACATCTTGGCTGCTGTTACTCCCTCTGTAGTTAATTAAAAACTTAAAGATAAGTCT
ACATTAACAAATGATCACATCTAAAGCTTATCTTGTATCTAAGTATATGTGAGAAATCAGAATTG
GCATAATTGTCTTAGTTGATATTCAAGGCTTAAAGTCATTATCCTGGCTTGGTAAGTGAATTAT
GAGATTACTGCTCTAGAAAGTATAGATGGCAAAGGACCGTTGTATTGCTTCTGATTACCAGTCTG
ATTATACCATGTGTCTAATATACTTTTTGTTAGATTGTCTTAATGGTAGGTCAAGTAATAAAAAG
AGATGAAATAATTAAAAAAAAAAAAAA

Human PRKARIA mRNA sequence - (public gi: 4506062) (SEQ ID NO: 397)
GCTGGGAGCAAAGCGCTGAGGGAGCTCGGTACGCCGCCCTCGCACCCGAGCCTCGGCCGCCCG
CCCCTCCCAGAGAACCATGGAGCTGGCAGTACCGCCAGTGAGGAGGCACGCAGCCTCGAGAATG
TGAGCTCTACGTCAGAACATAACATTCAAGCGCTCAAAGATTCTATTGTGAGTTGTGACTGCT
CGACCTGAGAGACCCATGGCATTCTCAGGGAAACTTGTAGAGGTTGGAGAAGGAGGAGGCAAACAGA
TTCAGAATCTGAGAAAGCAGGCACTGTACAGACTCAAGGGAGGATGAGATTCTCCTCCACCCAA
CCCAGTGGTTAAAGGTAGGAGGCGACGGTGTATCAGCCTGAGGTCTACACGGAGGAAGATGCGGCA
TCCTATGTTAGAAAGGTATACAAAAGATTACAAGACAATGGCCGTTAGCAAAGCCATTGAAAAGA
ATGTGCTGTTTACATCTGTGATAATGAGAGAAGTGTATTTTGATGCCATGTTTCGGTCCTT
TATCGCAGGAGAGACTGTGATTCAAGGTGATGAAGGGATAACTTCTATGTGATTGATCAAGGAGAG
ACGGATGTCTATGTTAACATGAATGGCAACCAGTGTGGGAAGGGAGCTTGAGAAGTGTGCTT
TGATTATGGAACACCGAGAGCAGCCACTGTCAAAGCAAAGACAATGTGAAATTGTGGGCATCGACCG
AGACAGCTATAGAAGAACATCTCATGGAAAGCAGCAGTGAAGAACAGGAGAAGATGTGAGGAAATTCTTAGT
AAAGTCTCTATTTAGAGTCTCTGACAAGTGGGAACCTTACGGTAGCTGATGCATTGAAACCAGTGC
AGTTGAAGATGGCAGAAGATTGTGGTGAGGGAGAACAGGGATGAGTTCTCATTATTTAGAGGG
GTCAGCTGCTGTGCTAACACGTGTCAGAAAATGAAGAGTTGTGAAGTGGGAAGATTGGGCCTTCT
GATTATTTGGTGAATTGCACTACTGATGAATGTCCTCGTGTGCCACAGTTGTTGCTCGTGGCCCT
TGAAGTGCCTAAGCTGGACCGACCTAGATTGAAACGTGTGGGCCATGCTCAGACATCCTCAAACG
AAACATCCAGCAGTACAACAGTTGTGACTGTCTGTGAAATCTGCCCTGTGCTCCCTTTCT
CCTCTCCCCATCCATGCTTCACTCATGCAAACGTGTTATTTCCCTACTGCAAGGCCAAGTGGCAC
TGGCATGCGAGCTCTGCTGTTATATATTGAAAGTTGCTTTATTGCAACATTTCATTGGAGCA
TTAACTAAATGCTCATACACAGTTAAATAAGAAAGAGTTCTATGGAGACTTGCTGTTACTGCTTCT
CTTGTGCTAGTGTAGTATTCCACCTGGCAGTGAGTGCCTGCTTGTGAGGGCAGATCCAGCACC
TATTGAATTACCATAGAGTAATGTAAACAGTGCAGAATTTTTTAAGTGACATAATTGTCCAGT
TATAAGCGATTTAGACTGTGCCATATATGCTGTATTCTTGTAGAATAATGGTTCTCATTAACACT
CTAAAGATTAGGAAATGGATATAGAAAATCTTAGTATAGTAGAAAGACATCTGCCCTGTAATTAAACTAG
TTAAGGGTGGAAAATGAAAATTGGTCAATTATCAATGGGATATGATTGGTTCAAGTGTGACATAATTGTCCAGT
AGAGTTGTTGCTTGCAGCTAATCTGCCCTGTTATTATATCTTGTATTAAATGTTCTTCTCCAATT
CTGAAATACTTTGAGTATGGCTATCTACCTGCCCTTTAAGTTGAAACTAACTCATAGATGCAAATA
TTGGTTAGTATTAACTACATCTGCCCTGGCTCACAAATTCCGATTAGACCTTATCCAGCTAGTGC
ATAATTGATCAGATGCTGAATTGAGAATAAGAATTGAGGTCTACATTCTGGTTGTTAATTAGAGCGT
TTGGTTAAAGTATGTCTTCAGCTGACTCCAGTATAATCTCCTCTGCTCATTAACACTGATTCAGGAGAT
TGGATTGCTGTGACTAGATACAGATGGAGCAAATGCTTACAGAGAAATAGAGGTGATGCTGCTAAAG
GGAGAAATGCCAGGGACAAAGTCAGTGTGGGAATTTCCTCGTGCACATTCACTGGGCATGAGATT
TTGGAAGAAGTTTTACTTTGGTTAGTCCTTTCTCTCTTTTATTCAAGCTAGAATTCTGGTGGG
TTGATGGTAGGGTATAATGTGTCTGTGCTTCAAAATTGGCTGAAAGCTATCTGCTGAAAGTCCTG
CTTCCCTATCTAGCATTTATTCTCTGCCAACTTTCTTTCTTTAAAGTAAACTTGTGTAT
TGAGTCTTAACTGTATTTCAGTATTCTCAGCCTTATGTGTTACATTATCCAATGATACCCAAACAGTT
ATTTTTATTATTTAAACAAAATTTCACAGTTCTGTAATGTAGGCACCTTATTTCATTGTGATT
ATATATAAGGTAAATGTAGGGTATATTGGGAGTGACTGCAAGCATTCTCATCTGTC
GACTCTGTTATTGATCCCTCTGCCCTTCCAGGTAAATTAAAGTGTGATGGTAGATTTTCTCA
TAGATTGAAAACCTTTAGGTTGTTACCAAGTATGAAGTATAAATCTGGGAAGAGGTTTATTACAT
TTAGGGTGGTAAAGAAAGCCACCTGTTACAATTTTAAATTCCAAAATAATCTATATTAAATGAGG
GTTCTGATCTGACTTTGTGTTAGCTACCTTTATATTAAAAATTAAAGAAAATTATGTTCT
TACAAGCTTAAAGCTGATTGATCT

Unigene Name: PTPN12 Unigene ID: Hs.62

Human PTPN12 mRNA sequence - var1 (public gi: 292408) (SEQ ID NO: 123)
AGCAGCCGAGCGGGGGACGGGGAGGATGGAGCACTGGAGATCTGAGGAAATTCTCCAGAGGGT
CCAGGCCATGAAGACTCCTGACCACAATGGGGAGGACAACCTCGCCCGGACTTCATGCAGTTAAGAAGA
TTGTCTACCAAAATATAGAACAGAAAAGATATATCCCACAGCCACTGGAGAAAAGAAGAAAATGTTAAAA
AGAACAGATAACAGGACATACTGCCATTGATCACAGCCAGTTAAATTGACATTAAAGACTCCCTCACAA
AGATTCAAGACTATATCAATGCAAATTATAAAGGGCGTCTATGGGCCAAAGCATACTGAGCAACTCAAA
GGACCTTAGGAAATACAGTAATAGATTTGGAGGATGATATGGAGTATAATGTTGATCATTTGAA
TGGCCTGCCAGAATTGAGATGGAGAAAATGTGAGCGTATTGGCCTTGATGGAGAAGGACCC
CATAACGTTGCACCAATTAAATTCTGTGAGGATGAAACAAGCAAGAACAGACTACTTCATCAGGACA
CTCTTACTTGAATTCAAATGAATCTCGTAGGCTGATCAGTTCAATTGTAAGCTGGCCAGACCAG
ATGTTCCCTCATCATTGATTCTATTCTGGACATGATAAGCTTAATGAGGAATATTCAAGAACATGAAGA
TGTTCCTATTGATTCTATTGAGCTGCAGGCTGTGGAAGAACAGGTGCCATTGTCAGATTATACG
TGGAAATTACTAAAGCTGGGAAAATACCAAGAGGAATTAAATGTTAAATTAAATACAAGAACATGAGAA
CACAAAGGCATTCTCGAGTACAAACAAAGGAGCAATATGAACTTGTCACTAGAGCTATTGCCAACTGTT
TGAAAAAACAGCTACAACATATGAAATTCTATGGAGCTCAGAAAATTGCTGATGGAGTGAATGAAATTAAAC
ACTGAAAACATGATCAGCTCCATAGCCTGAAAACAGATTCTCCTCCAAAACCACCAAGGACCC
GCAGTTGCCATTGTAAGGGAGTGTAAAGAACAGAAATTACTGCAGCCACCGAACCTCATCCAGTGCCACC
CATCTGACACCTCTCCCCCTCAGCTTTCAACAGTCACTACTGTGTCAGGACAATGATAGATAC
CATCCAAGCCAGTGTGCAATGGTTCATCAGAACACATTCAAGCACACTCAACAGAAACTATAGTA
AAATCAACAGAACCTCCAGGGAAAATGAATCAACAAATTGAAACAGATAGATAAAAATTGAAAGAAAATT
AAGTTTGAGATTAAGAACAGTCCCTCTCAAGAGGGACCAAAAGTTTGATGGGAACACACTTTGAAAT
AGGGGACATGCAATTAAATTAACTGCTTCACCTTGATAGCTGATAAAATCTCTAACGCCACAGGAAT
TAAGTTAGATCTAAATGTCGGTGAATTCTCCAGAATTCTGTGTCAGTGAACACAATCAA
CAAAGTTCTAGTTACTCCACCAAGAAGAACATCCAGAATTCAAGACACCTCCAAAGGCCAGACGCTTGCT
CTTGATGAGAACAGACATGTAACGTGGTCAATTGACCTGAAATGCCATACCTGATTAT
CTGAAGGCAATTCTCAGATATCAACTATCAAACATTAGGAAAATTGAGTTAACACCAAGTCCCTAACAC
ACAAGTTGAAACACTGATCTTGTGGATCATGATAACACTTCAACACTCTTCAAGAACACCCCTCAGTTT
ACTAAATCTCCTACTCTGATGACTCAGACTCAGATGAAAAGAAACTCTGATGTCGCTGTGACCCAGAATA
AAACAAATATTCAACAGCAAGTGCACAGTTCTGCTGCCACTAGTACTGAAAGCATTCTACTAGGAA
AGTATTGCAATGTCATTGCTAGACATAATAGCAGGAAACACACATTCAAGGTGCTGAAAAGATGTT
GATGTTAGTGAAGATTCACTCTCCCCTACCTGAAAGAACCTCTGAAATGTTGTGTTAGCAAGTGAAC
ATAATAACACCTGTAAGATCGGAATGGAGTGAACCTCAAAGTCAGGAACGATCTGAACAAAAAAAGTCTGA
AGGCTTGATAACCTCTGAAAATGAGAAATGTGATCATCCAGCGGGAGGTATTCACTATGAAATGTGATA
GAATGTCACCTACTTCAGTGCACAAGAGAGAACAAATCATGAAAATCCAACAGCACAGATATTG
GTTTGTGAAATCGATGTTGAAAACCCAAAGGACCAAGAGATCCACCTTCAGAATGGACATGATTCAAGGG
GCTAGAACAGACTTAAAGTTACTGGAAAATTCTAGGTGCCACTGAAAGGCCAGATTATAGTTACCTC
TTAATATGTTGAGCTAACAGCAGTGTGAGATTGTTACCTTAATTTTGTGTCGGGACCATCTACCTG
TTACTACACTTAGGAAAAGTATTACATATGGTTATTGAAACTTCAGTATTATGCTTAATGTT
CTCTTAACCTGTTACACGCTGCTGTGAGACATGTTAATATAGTAACTACCTTATGATATATTGAGTTA
AGGACTACTCTTTCTGTTTATCATGTCGATTATTTGTATATGTCAGGGCAAGTAGGTATATAA
TTTGATAAAAGTGTGAAATTGAAATTATTAAACAGAACAGATGTAAGAAAATTCTGTCAGGTTCAAAATCTTG
TGTACTTTATTGTAATTATTGTCGAGTTTGTGAGTTTGTGAGTTTGTGAAATTAAACTTGCTGGAT
TCATGCAGCCAGCTTGCAGGTTATCAGAGATCAAAGATTGTAATAATAATTGTAATTGTAAGCAAA
AAGTTATTGTTATATTATACAGTCAATTGTCATCTTAATTGTCGTTCTGTTGTTCTTAATATTGAAACTCAAG
TCAGTAAGTGCCTTGGAAACAATATTGAAATTCTCTTACGTTGTTGTTCTTAATATTGAAACTCAAG
TGGGATTAGAACAGACTATCAAACATGATGTTCAGATATTGACCTGTCATTAAAAAAACAAACAG
TTTACAGTG

Human PTPN12 mRNA sequence - var2 (public gi: 29476876) (SEQ ID NO: 124)
GGGGAGAGGCCGCTGGCTGGCTCGGCTGCTGGCGGGGGTGGGGGGGAGGAGGAACCGGGAAAGGG
GGGGCAGGGCGAGCGAGAGCTAGCTGTCTCTGAGGCGCACCCGCCCTAGGGCGGTGGGGAGGAGG
AGGGAGCCGCGGGCTTGGCGGGGAGGGAGGGACGTGCTGGGAACGAGCTGGGAAGACGGAG
CGGGCTCTGTGCCGGCGGGCGGGCGGGCGGGGGCCAGCGACCCAGCGGGGGACGGGAGGATGG
AGCAAGTGGAGATCTGAGGAATTCATCCAGAGGTTCCAGGCCATGAAGAGTCCTGACCACAATGGGA
GGACAACCTCGCCCCGGACTTCATGCGGTTAAGAAGATTGTCTACCAAATATAAACAGAAAAGATAT
CCCACAGCCACTGGAGAAAAGAAGAAAATGTTAAAAGAACAGATACTGCCCATTGATC
ACAGCCGAGTTAAAATGACATTAAAGACTCTTCACAGAGATTCAAGACTATATAATGCAATTATAAA
GGGCGTCTATGGGCCAAAAGCATATGTAGCAACTCAAGGCCTTAGCAAAATACAGTAATAGATTG
AGGATGATATGGAGTATAATGTTGATCATTGTAATGGCCCTGGAGAATTGAGATGGGAAGGAAAA
AATGTAAGCGTATTGGCCTTGTATGGAGAAGACCCATAACGTTGCACATTAAATTCTGTGA
GGATGAACAAGCAAGAACAGACTACTTCATCAGGACACTCTTACTTGAATTCAAAATGAATCTCGTAGG
CTGTATCAGTTCAATTATGTGAACTGGCAGACCATGATGTTCTTCATCATTTGATTCATTCTGGAC

TGATAAGCTTAATGAGGAATATCAAGAACATGAAGATGTTCTATTGTATTCAATTGCAGTGAGGCTG
 TGGAAGAACAGGTGCCATTGTGCCATAGATTATACTGGAAATTACTAAAGCTGGAAAATACACAGAG
 GAATTAAATGTATTTAATTAAATACAAGAAATGAGAACACAAGGCATTCTGCAGTACAACAAAGGAGC
 AATATGAACCTGTCAGAGCTATTGCCAAGTGTGAAAAACAGCTACAACATGATCAGCTCCATAGAGCCTGAA
 AGCTCAGAAAATTGCTGATGGAGTGAATGAAATTAAACACTGAAAACATGATCAGCTCCATAGAGCCTGAA
 AAACAAGATTCTCCTCCAAAACCACCAAGGACCCGAGTGCCTTGTGAAGGGAGTCTAAAGAAG
 AAATACTGCAGCACCGAACCTCATCAGTGCACCCATCTGCACACCTCTCCCCCTCAGCTTTCC
 AACAGTCACTACTGTGTGGCAGGACAATGATAGATACCTCAAAGGAGTGTGCATATGGTTCATCA
 AAACAACATTCAAGCAGACCTCAACAGAAACTATAGTAAATCAACAGAACCTCCAGGGAAAATGAATCAA
 CAATTGAACAGATAGATAAAAATTGGAACGAAATTAAAGTTGAGATTAAGAAGGTCCCTCTCCAAGA
 GGGACCAAAAGTTGATGGAACACACTTTGAATAGGGACATGCAATTAAATTAATCTGCTTC
 CCTTGATAGCTGATAAAATCTCAAGGCACAGGAATTAAAGTCAGATCTAAATGTCGGTGATACTTCCC
 AGAATTCTGTGTGGACTGCAGTGTAAACACAATCAAACAAAGTTCAAGTACTCCACAGAAGAACCC
 GAATTCAAGACACACCTCCAAGGCCAGACCGCTTGCCTCTTGATGAGAAAGGACATGTAACGTGGTCATT
 CATGGACCTGAAAATGCCATACCCATACCTGATTATCTGAAGGCATTCTCAGATATCAACTATCAA
 CTAGGAAAATCTGAGTTAACACCAAGTCTACAACACAAGTTGAAACACCTGATCTGTGGATCATGA
 TAACACTTCACCACTCTCAGAACACCCCTCAGTTTACTAATCCACTTCACTCTGATGACTCAGACTCA
 GATGAAAGAAACTCTGATGGTGTGACCCAGAAATAAAACTAATATTCAACAGCAAGTGCACAGTT
 CTGCTGCCACTAGTACTGAAAGCATTCTACTAGGAAAGTATTGCCAATGTCATTGCTAGACATAAT
 AGCAGGAACAAACACATTCAAGGTGCTGAAAAGATGTTGATGTTAGTGAAGGATTACCTCCCTCCCTACCT
 GAAAGAACTCCTGAATCCTGTTGTTAGCAAGTGAACATAATACACCTGTAAGATGGAATGGAGTGAAC
 TTCAAAAGTCAGGAACGATCTGAACAAAAGTCTGAAAGGCTGATAACCTCTGAAAATGAGAAATGTGA
 TCATCCCAGCGGAGGTTACTATGAAATGTGCAAGAATGTCACCTACTTCTGAGCAGAGAGAA
 CAAATATCAGAAAATCCAACAGAACAGATAATTGGTTGGTAATCGATGTGGAAAACCAAAGGAC
 CAAGAGATCCACCTCAGAATGGACATGATTCAAGGAGCTAGAACAGACTTTAAGTTACTGGAAAATT
 CAGGTGCCACTGAAAGCCAGATTATAGTATTCCATCTTAATATGTGGGACTAACAGCAGTGTAGATTG
 TTACCTTAATATTTTGCTGGGACCATCTACCTGCCTTAACTACACTTAGGAAAAGTATTACATATG
 GTTATTTGAAACTTCAGTATTATTGCCCTTAATGTCTCTTAACCTGTTACCGCTGCTTGTAGACAT
 GTTAATATAGTAAACCTTATGATATTGAGTTAAGGACTACTCTTTCTGTTTATCATGTATGC
 ATTATTTGTTGATATGTAACAGGGCAAGTAGGTATATAATTGATAAAAGTTCGAATTGAAATATTAA
 GAAGATGTAAGAAATTCTGCTCAAATCTTGTGTACTTATTGTAAGGTTATTTGCCCCCTGGAGT
 TTGAGAAAATAGTTCTGAATTAACTTGTAAATTGTAAGCAAAAGTTATTGTTATATTACAGTCTAATTG
 TCATCCTAATTGTCCTGTTCTAGTCAAGGACTAACAGTCAAGTGGGATTAGAAGACTATCAAATACATGTATG
 TTAGCTGTGTGTTCTTAATATTGAACTCAAGTGGGATTAGAAGACTATCAAATACATGTATG
 TTCAGGATATTGACCTGTCATTAACAAACAGTTACAGTGCACCAAAAAAAAAAA

Human PTPN12 mRNA sequence - var3 (public gi: 18375651) (SEQ ID NO: 125)
 AGCGACCGCAGCGGGGGACGGGGAGGATGGAGCAAGTGGAGATCCTGAGGAAATCATCCAGAGGGT
 CCAGGCCATGAAGAGTCCTGACCACAATGGGGAGGACAACCTCGCCCGGACTTCATGCGGTTAAGAAGA
 TTGCTACCAATATAGAACAGAAAAGATATATCCCACAGCCACTGGAGAAAAGAACAAAATGTTAAA
 AGAACAGATAACAGGACATACTGCCATTGATCACAGCCGAGTTAAATTGACATTAAGACTCCTTCACA
 AGATTCAAGACTATATCAATGCAAATTATAAAGGGCGTCTATGGCCAAAAGCATATGTAGCAACTCAA
 GGACCTTCTGAAATACAGTAATAGATTGGAGGATGATGGGAGTATAATGTTGATCATGTA
 TGGCCTGCCAGAATTGAGATGGGAGGAAAATGTCAGGCTATTGCCCTTGATGGAGAACAGCC
 CATAACGTTGACCATTTAAATTCTCTGAGGATGAAACAAGCAAGAACAGACTACTTCATCAGGACA
 CTCTTACTCTGAATTCTCAAATGAATCTCGTAGGCTGTATCAGTTCTATTGTAACCTGGCCAGACCATG
 ATGTTCTCATTTGATCTATTGAGCATGATAAGCTTAATGAGGAATATTCAAGAACATGAAGA
 TGTTCTATTGTTGATCTCATGTCAGGCTGAGGCTGAGAACACAGGTGCCATTGTCATAGATTATACG
 TGGAAATTACTAAAGCTGGGAAAATCACAGAGGAATTAAATGTTGATTTAATTAAACAGAACATGAGAA
 CACAAAGCATTCTGCAGTACAACAAAGGAGCAATATGAAACTGTTCATAGAGCTATTGCCCAACTGTT
 TGAAAACAGCTACAACATGAAATTCTGAGGCTCAGAAAATTGCTGATGGAGTGAATGAAATTAAAC
 ACTGAAAACATGATCAGCTCCATAGAGCCTGAAAAACAGATTCTCCTCTCCAAAACCACCAAGGACCC
 GCAGTTGCCCTGTTGAAGGGGATGCTAAAGAACAAACTGCAAGCCACCGGACCTCATCCAGTGCACC
 CATCTTGACACCTCTCCCCCTTCAGCTTCAACAGTCACACTGTGTGGCAGGACAATGATAGATAC
 CATCCAAAGCCAGTGTGCATATGGTTCATCAGAACAAACATTCAAGCAGACCTCAACAGAAACTATAGTA
 AATCAACAGAACATTCCAGGGAAAATGAATCAACAATTGAACAGATAGATAAAAATTGGAACGAAATT
 AAGTTTGAGATTAAGAACAGTCCCTCTCAAGAGGGACCAAAAGTTGATGGGAAACACACTTTGAAT
 AGGGGACATGCAATTAAATTAAATCTGCTTCACCTGTTAGCTGATAAAATCTCTAAGCCACAGGAAT
 TAAGTTCTGAGATCTAAATGTCGGTGATACTTCCCAGAATTCTGTTGAGACTGCAGTGTAAACACAATCAA
 CAAAGTTCTGAGGACTCCACCAAGAACATCCCAGAATTCAAGAACACACCTCCAAGGCCAGACCGCTTGCCT
 CTGATGAGAACAGGACATGTAACGTGGTCATTGATGGACCTGAAAATGCCATACCCATACCTGATTAT
 CTGAAGGCAATTCTCAGATATCAAACTTAGGAAAACGTGTGAGTTAACACCAAGTCCTACAAC

Figure 36 part - 70

ACAAAGTTGAAACACCTGATCTGGATCATGATAACACTTCACCACTCTCAGAACACCCCTCAGTTT
ACTAATCCACTTCACTCTGATGACTCAGACTCAGATGAAAGAAACTCTGATGGGCTGTGACCCAGAATA
AAACTAATATTCAACAGCAAGTGCACAGTTCTGCTGCCACTAGTACTGAAAGCATTCTACTAGGAA
AGTATTGCCAATGTCCATTGCTAGACATAATATAGCAGGAACACACATTCAAGTGCTGAAAAAGATGTT
GATGTTAGTGAAGAGATTCACTCCTCCCCCTACCTGAAAGAAACTCCTGAATCGTTGTAGCAAGTGAAC
ATAATACACCTGTAAGATCGGAATGGAGTGAACITCAAAGTCAGGAACGATCTGAACAAAAAAAGTCTGA
AGGCTTGATAACCTCTGAAAATGAGAAATGAGATCATCCAGGGGGAGGTATTCACTATGAAATGTGCATA
GAATGTCACCTACTTCAGTGACAAGAGAGAACAAATATCAGAAAATCCAACAGAACGCCACAGATAATTG
GTTTGGTAATCGATGTGGAAAACCCAAAGGACCAAGAGATCCACCTTCAGAATGGACATGATTCAAGGGA
GCTAGAAGACACTTAAAGTTAACTGAAAATTCAAGTGCCACTGAAAGGCCAGATTATAGTATTCCATC
TTAATATGTGGACTAACAGCAGTGTAGATTGTACCTTAATATTTTGCTGGGACCATCTACCTGCC
TTATRACTACACTTAGGAAAAGTATTACATATGGTTATTTGAAACTTCAGTATTATGCTTAATGT
CTCTAACCCCTGTTACACGCTGTTAGACATGTTAATATAGTAATACCTTTATGATATATTGAGTTA
AGGACTACTCTTTCTGTTATCATGTATGCATTATTTGATATGTACAGGGCAAGTAGGTATATAA
TTTGATAAAAGTTGCAATTGAAATATTAAACAGAAGATGTAAGAAATTCTGCATGGCTAAATCTTGT
TGTACTTTATTGTAATTATTGCCCCTGGAGTTAGAAAATAGTTCTGAAATTAAAATTGCTGGGAT
TCATGCAGCCAGCTTGCAGGTTATCAGAGATCAAAGATTGTAATAATAATTGTAAGCAAA
AAGTTATTTTATATATACAGTCAATTGTCATCTTAATTGTCCTGTTCTTCACTAGTCAGAGAT
TCAGTAAGTGCCTGGAAACAAATTGAAATTCTCTAGCTGTGTGTTCTTAAATTGAACTCAAG
TGGGATTAGAAGACTATCAAACATGTATGTTCAGGATATTGACCTGTCATTAAAAAAACAAACA
GTTTACAGTG

Human PTPN12 mRNA sequence - var4 (public gi: 545651) (SEQ ID NO: 126)
GTTAAAAGGAACAGATAACAGGACATACTGCCATTGATCACAGCCAGTTAAATTGACATTAAAGACTC
CTTCACAAGATTCAAGACTATATCAATGCAAATTCTAAAGGGCGTCTATGGGCCAAAGCATAATGTAGC
AACTCAAGGACCTTAGCAAAATACAGTAATAGATTGGAGGATGGTATGGAGTATAATGTTGATC
ATTGTAATGGCCTGCCGAGAATTGTA

Human PTPN12 mRNA sequence - var5 (public gi: 19683965) (SEQ ID NO: 127)
GGGACTTCACCCTCTCAGAACACCCCTCAGTTTACTAATCCACTTCACCTCTGATGACTCAGACTCAG
ATGAAAGAAACTCTGATGGGCTGTGACCCAGAATAAAACTAATATTCAACAGCAAGTGCACAGTTTC
TGCTGCCACTAGTACTGAAAGCATTCTACTAGGAAAGTATTGCAATGCTCATTGCTAGACATAATATA
GCAGGAACACACATTCAAGGTGCTGGAAAAGATGTTGATGTTAGTGAAGATTCACTCCCTCCCCACCTG
AAAGAACTCCTGAATGTTGTGTTAGCAAGTGAACATAATACACCTGTAAGATGGAATGGAGTGAAC
TCAAAGTCAGGAACGATCTGAACAAAAAAAGTCTGAAGGCTTGATAACCTCTGAAAATGAGAAATGTGAT
CATCCAGGGAGGTATTCACTATGAAATGTGCATAGAATGTCACCTACTTTCACTGACAAGAGAGAAC
AAATATCAGAAAATCCAACAGAACAGATATTGTTGGTAATGATGTTGAAAACCCAAAGGACC
AAGAGATCCACCTCAGAATGGACATGATTCAAGGAGCTAGAACACTTTAAGTTAACTGGAAAATTC
AGGTGCCACTGAAAGCCAGATTAGTATTGTTATCCATCTTAAATATGTTGAAACTACAGCAGTGTAGATTG
TACCTTAATATTGCTGGGACCATCTACCTGCTTAACTACACTTAGGAAAAGTATTACATATGG
TTTATTGAAACTTCAGTATTATTGCTTAAATGCTCTTAACCTGTTACACGCTGTTGAGACATG
TTAATATGTAATACCTTATGATATATTGAGTTAAGGACTACTTTCTGTTTATCATGTATGCA
TTATTTGTTATATGACAGGGCAAGTAGGTATATAATTGATAAAAGTTGCAATTGAAATATTATAACAG
AAGATGTAAGAAAATTCTGCATGGTCAAATCTTGTACTTTATTGAAATTATTGCCCCTGGAGTT
TTAGAAAATAGTTCTGAAATTGAACTGCTGGATTGATCAGGCCAGCTTGCAGGTTATCAGAGATCA
AAGATTGTAATAATAATTGTAAGCAAAAGTTATTGTTATATTATAACAGTCTAATTGTT
CATCCTAATTGTCCTGTTTCACTAGTCAGAGATTCAAGTAGTGCCTGGAAACAAATTGAAATTCTCT
TAGCTTGTGTGTTCTTAAATTGAAACTCAAGTAGGGATTAGAAGACTATCAAACATGTATGTT
TCAGGATATTGACCTGTCATTAAAAAAACAAACAGTTTACAATAAAAAAAAAAAAAAA
AAAAAA

Human PTPN12 mRNA sequence - var6 (public gi: 220033) (SEQ ID NO: 128)
GCCGGGGGGACGGGGAGGATGGAGCAAGTGGAGATCCTGAGGAATTCACTCCAGAGGGTCCAGGCCATG
AAGAGTCCTGACCAACATGGGAGGACAACCTTCGCCGGGACTTCATGCCGTTAAGAAGATTGCTACCA
AAATATGAAACAGAAAAGATATATCCACAGCCACTGGAGAAAAGAAGAAAATGTTAAAAGAACAGATA
CAAGGACATACTGCCATTGATCACAGCGAGTTAAATTGACATTAAAGACTCCTTCACAAGATTCAAG
TATATCAATGCAATTGTTATAAAGGGCGTCTATGGCCAAAAGCATATGTCAGCAACTCAAGGACCTTGT
CAAATACAGTAATAGATTGAGGATGGTATGGAGTATAATTGTTGATCATTGTAATGGCCTGCC
AGAATTGAGATGGGAAGGAAAAAGTGTGAGCGTATTGGCTTGTATGGAGAAGACCCATAACGTT
GCACCAATTAAAATTCTGTGAGGATGAAACAGCAAGAACAGACTACTTCATCAGGACACTCTTACTG
AATTGAAATCTCGTAGGCTGATCAGTTCAATTGTAATTGACTGGCCAGACCATGATGTTCTTC
ATCATTGATTCTATTGACATGATAAGCTTAATGAGGAAATATCAAGAACATGAAGATGTTCTTATT

TGTATTCAAGTGCAGGCTGTGGAAAGAACAGGTGCCATTGTGCCATAGATTATACGTGGAATTAC
 TAAAAGCTGGAAAATACCAAGAGGAATTAAATGTATTAAATTAACAGAAATGAGAACACAAGGCA
 TTCTGCAGTACAAACAAAGGAGCAATATGAACCTTGTTCATAGAGCTATTGCCAACTGTTGAAAAACAG
 CTACAACTATATGAAATTCACTGGAGCTCAGAAAATTGCTGATGGAGTGAATGAAATTAAACACTGAAAACA
 TGGTCAGCTCCATAGAGCCTGAAAAAAGATTCTCCTCCAAAACCACCAAGGACCCGCAAGTGCCT
 TGTGAAGGGATGCTAAAGAAGAAATACTGCAGGCCACCGGAACTCATCCAGTGCACCCATCTTGACA
 CCTCTCCCCCTCAGCTTTCCAACAGTCACTACTGTGTGCAGGACAATGATAGATAACCATCAAAGC
 CAGTGTGCAATGGTTCATCAGAACACATTCAAGCAGACCTCAACAGAAACTATAGTAAATCAACAGA
 ACTTCCAGGGAAAATGAATCAACAATTGAACAGATAGATAAAAATTGGAACGAAATTAAAGTTGAG
 ATTAAGAAGGTCCTCTCCAAGAGGGACCAAAAGTTGATGGGAACACACTTTGAATAGGGACATG
 CAATTAAAATTAATCTGTTCACCTGTATAGCTGATAAAATCTCTAACGCCACAGGAATTAAAGTTCAGA
 TCTAAATGTCGGTGTAACTTCCCAGAATTCTTGTGTGGACTGCAGTGTAAACACAATCAAACAAAGTTCA
 GTTACTCCACCCAGAAGAACATCCCAGAATTCAAGACACACCTCCAAGGCCAGACCGCTGCCTTGTGAGA
 AAGGACATGTAACGTGGTACCTCATGGACCTGAAAATGCCATACCCATACCTGATTATCTGAAGGCAA
 TTCCTCAGATATCAACTATCAAACACTAGGAAAACGTGAGTTAACACCAACTGCCTAACACAAGTTGAA
 ACACCTGATCTGTGGTACATGATAACACTTCACACTCTCAGAACACCCCTCAGTTTACTAATCCAC
 TTCACTCTGATGACTCAGACTCAGATGAAAGAAACTCTGATGGTGTGACCCAGAATAAAACTAATAT
 TTCAACAGCAAGTGCACAGTTCTGCTGCAACTAGTACTGAAAGCATTCTACTAGGAAAGTATTGCCA
 ATGTCATTGCTAGACATAATATAGCAGGAACACACATTCAAGTGTGAAAGATGTTGATGTTAGTG
 AAGATTCACCTCCCTCCCTACCTGAAAGAACTCCTGAATGTTGTGTTAGCAAGTGAACATAAACACC
 TGTAAGATCGGAATGGAGTGAACCTCAAAGTCAGGAACGATCTGAACAAAAAAAGTCTGAAGGCTTGATA
 ACCTCTGAAAATGAGAAATGTGATCATCCAGCAGGGAGGTATTCACTATGAAATGTGATAGAATGTCCAC
 CTACTTTCAGTGACAAGAGAGAACAAATATCAGAAAATCCAACAGAACAGCAGATATTGGTTTGGTAA
 TCGATGTGGAAAACCAAAGGACCAAGAGATCCACCTCAGAATGGACATGATTCAAGGGAGCTAGAAGAC
 ACTTTAAGTTACTGGAAAATTCAAGGTGCCACTGAAAGCCAGATTATAGTATTCCATCTTAAATATGT
 GGGACTAACAGCAGTGTAGATTGTTACCTTAATTCTGCTGGACCATCTACCTGCCTTAACTACA
 CTTAGGAAAAGTATTACATATGGTTATTGAAACTTCAAGTATTGCTCTTAAATGTCCTAACCC
 TGTACACGCTGTTGTAGACATGTTAATATAGTAAATACCTTATGATATTGAGTTAAAGGACTACCC
 TTTTCTGTTTATCATGATTCTATTGTTATGTACAGGGCAAGTAGGTATATAATTGATAAAG
 TTGCAATTGAAATATTAAACAGAAAGATGTAAGAAATTCTGCATGGCTAAATCTTGTGACTTTAT
 TTGAAATTATTGCTGGAGTTAGAAAATAGTTCTGAAATTAAACTTGCTGGATTCAAGC
 AGCTTGCAGGTTATCAGAGATCAAAGATTGTAATAATAATTGTAAGCAAACATTCTGC
 GPRDPPSEWT

Human PTPN12 protein sequence - var1 (public gi: 220034) (SEQ ID NO: 266)
 MEQVEILRKFIQRVQAMKSPDHNGEDNFMRFLRRLSTKYRTEKLYPTATGEKEENVKKNRVKDILPF
 DHSRVKLTLPKPSQDSDYINANFIKGVYGPKAYVATQGPLANTVIDFWRMVWEYNVVIIVMACREFEMGR
 KKCEWLPYLEDPTIFAPFKISCEDEQARTDYFIRTLLEFQNESRRLYQFHYVNWPDHDPSSFDL
 DMISLMRKYQEHEDVPICHCSAGCRTGAICAIDYTWNLLKAGKIPEEFNVFNLIQEMRTQRHS
 EQYELVHRAIAQLFEKQLQYEIHGAQKIAIDGVNEINTENMVSSIEPEKQDSPPPKP
 PRTRSCLEPGDAK
 EEILQPPEPHPVPPILTPSPPSAFPTVTVWQDNDRYHPKPVLHMVSSEQHSADLN
 RNYSKSTELPGKNE
 STIEQIDKKLERNLSFEIKKVLQEGPKSFDGNTLLNRGHAIKIK
 SASCPIADKISK
 PQEELSSDLNVGDT
 SQNSCVDCSVTQSNKVSVTPEESQNSDTPPRPDRPLP
 LDEKGHTWSFH
 GPN
 E
 AIP
 I
 P
 P
 D
 L
 S
 E
 G
 N
 S
 S
 D
 I
 N
 Y
 QTRKTVSLPSPTTQVETPDLVDHDNTSP
 LFR
 TPLSFTNPL
 HSDDSD
 DERNSD
 GAVTQNKT
 N
 I
 S
 A
 S
 A
 T
 VSAATSTESTISTRKVLPM
 SIA
 RHNIAGTTHSGAEKD
 DV
 S
 E
 D
 S
 P
 P
 L
 P
 E
 R
 T
 P
 E
 S
 F
 V
 L
 A
 S
 E
 H
 N
 T
 P
 V
 R
 S
 E
 W
 S
 E
 Q
 K
 K
 S
 E
 G
 L
 I
 T
 S
 E
 N
 E
 K
 C
 D
 H
 P
 A
 G
 G
 I
 H
 Y
 E
 M
 C
 I
 E
 C
 P
 P
 T
 F
 S
 D
 K
 R
 E
 Q
 I
 S
 E
 N
 P
 T
 E
 A
 T
 D
 I
 G
 F
 G
 N
 R
 C
 G
 K
 P
 K
 G
 P
 R
 D
 P
 P
 S
 E
 W
 T

Human PTPN12 protein sequence - var2 (public gi: 7689910) (SEQ ID NO: 267)
 VKRNRYKDLIPFDHSRVKLTLPKPSQDSDYINANFIKGVYGPKAYVATQGPLANTVIDFWRMVWEYNVVI
 IVMACREF

Human PTPN12 protein sequence - var3 (public gi: 292409) (SEQ ID NO: 268)
 MEQVEILRKFIQRVQAMKSPDHNGEDNFMRFLRRLSTKYRTEKLYPTATGEKEENVKKNRVKDILPF
 DHSRVKLTLPKPSQDSDYINANFIKGVYGPKAYVATQGPLANTVIDFWRMVWEYNVVIIVMACREFEMGR
 KKCEWLPYLEDPTIFAPFKISCEDEQARTDYFIRTLLEFQNESRRLYQFHYVNWPDHDPSSFDL
 DMISLMRKYQEHEDVPICHCSAGCRTGAI
 CAIDYTWNLLKAGKIPEEFNVFNLIQEMRTQRHS
 EQYELVHRAIAQLFEKQLQYEIHGAQKIAIDGVNEINTENMISSIEPEKQDSPPPKP
 PRTRSCLEPGDAK
 EEILQPPEPHPVPPILTPSPPSAFPTVTVWQDNDRYHPKPVLHMVSSEQHSADLN
 RNYSKSTELPGKNE
 STIEQIDKKLERNLSFEIKKVLQEGPKSF
 DGNTLLNRGHAIKIK
 SASCPIADKISK
 PQEELSSDLNVGDT
 SQNSCVDCSVTQSNKVSVTPEESQNSDTPPRPDRPLP
 LDEKGHTWSFH
 GPN
 E
 AIP
 I
 P
 P
 D
 L
 S
 E
 G
 N
 S
 S
 D
 I
 N
 Y
 QTRKTVSLPSPTTQVETPDLVDHDNTSP
 LFR
 TPLSFTNPL
 HSDDSD
 DERNSD
 GAVTQNKT
 N
 I
 S
 A
 S
 A
 T
 VSAATSTESTISTRKVLPM
 SIA
 RHNIAGTTHSGAEKD
 DV
 S
 E
 D
 S
 P
 P
 L
 P
 E
 R
 T
 P
 E
 S
 F
 V
 L
 A
 S
 E
 H
 N
 T
 P
 V
 R
 S
 E
 W
 S
 E
 Q
 K
 K
 S
 E
 G
 L
 I
 T
 S
 E
 N
 E
 K
 C
 D
 H
 P
 A
 G
 G
 I
 H
 Y
 E
 M
 C
 I
 E
 C
 P
 P
 T
 F
 S
 D
 K
 R
 E
 Q
 I
 S
 E
 N
 P
 T
 E
 A
 T
 D
 I
 G
 F
 G
 N
 R
 C
 G
 K
 P
 K
 G
 P
 R
 D
 P
 P
 S
 E
 W
 T

PCT/US04/06308

ELOSQERSEQQKSEGLITSENEKCDHPAGGIHYEMCIECPPTFSDKREQISENPTEATDIGFGNRGKPK
GPRDPPEWT

Human PTPN12 pray sequence - var1 (SEQ ID NO: 129)

GTTCGGNATCTACAGGGNATGTTAATACCACTACAATGGATGATGTATAACTATCTATTGATGAT
GAAGATACCCCACCAAACCCAAAAAGAGATCTTAAATACGACTCACTATAGGGCGAGCGCCGCATGG
AGTACCCATACGAGCTTACAGATTACGCTCATATGCCATGGAGGCCAGTGAAATTCCACCCAAGCAGTGG
TATCAACGAGCTGGAATTATGGCGCGCGCGCTCCGACGGAGGAGGGCGGGGAAGGAG
GATGGAGCAAACAAAGTTTCACTTACCCACCAGAAGAACATCCAGAATTCAAGACACACCTCCAAGGCCAG
ACCGCTTGCTCTTGATGAGAAAGGACATGTAACGTGGTCATTTCATGGACCTGAAAATGCCATACCCAT
ACCTGATTTATCTGAAGGCAATTCCCTCAGATATCAACTATCAAACACTAGGAAAATGTGAGTTAACACCA
AGTCCTACAACACAAGTTGAANGCACCTGATCTGAGTCATGATAACGCTTCACCACTCTCAGAACAA
CCCCTCANTTTACTAATCCACTTCACTCTNATGACTCANACTCANATGAAAGAAAATCTGATGGTGCTG
TGACCCANAATAAAACTAATATTCAACAGCAAGTGCACAGTTCTGCTGCCACTANTACTGAAAGCAT
TTCTACTAGGAAAGTATTGCCNATGTCATTGCTAGACNTTATANCAGGAACANACATTAGGTGCTG
AAAAAAANTTNATGTTNNNTGAANATTNNCTNCTCCNNCCCTNAANAACCTCC

Unigene Name: RALA Unigene ID: Hs.6906 Clone ID: 3GD_1106

Human RALA mRNA sequence - var1 (public gi: 35845) (SEQ ID NO: 130)

ATGGCTGCAAATAAGCCCCAGGGTCAGAAATTCTTGGCTTACACAAAGTCATCATGGTGGGCAGTGGTG
GCGTGGGCAAGTCAGCTCTGACTCTACAGTTCATGTCAGATGAGTTGTGGAGGACTATGAGCCTACCAA
AGCAGACAGCTATCGGAAGAAGGTAGTGCTAGATGGGGAGGAAGTCCAGATCGATATCTTAGATAACAGCT
GGGCAGGAGGACTACGCTGCAATTAGAGACAACACTTCCGAAGTGGGGAGGGGTTCTCTGTGTTTCT
CTATTACAGAAATGGAATCTTGCAGCTACAGTGACTTCAGGGAGCAGATTAAAGAGTAAAAGAAGA
TGAGAATGTTCCATTCTACTGGGTGGTAACAAATCAGATTAGAAGATAAAAGACAGGTTCTGTAGAA
GAGGCAAAAACAGAGCTGACCAGTGGAAACTACGTCGAAACATCTGCTAAAACACGAGCTAATG
TTGACAAGGTATTTTGATTTAATGAGAGAAATTGAGCAGGAAAGATGGAAGACAGCAAAGAAAAGAA
TGGAAAAAGAAGAGGAAAGTTAGCCAAGAGAAATCAGAGAAAGATGCTGCAATTAA

Human RALA mRNA sequence - var2 (public gi: 24980846) (SEQ ID NO: 131)

CCGCTCCCCAGAGCAAAGCGTCGGAGTCCTCCCTCCCTCTCCCTCCCTCCCTCCAGCCG
CCCAGGCTCCCCCGCCACCCGTCAGACTCCCTCCCTCGACCGCTCCCGCGGGGCTTCCAGGCACAA
GGACCGAGTACCCCTCCGGCGGAGCCACGCAGCCGGCTTCCGGAGCCCTGGGGCGGGGACTGGCTC
GCGGTGAGATTCTCTTAAATCCITTGGTAAAACGACAGACAAAATGGCTGCAAATAAGCCCAGGGT
CAGAATTCTTGGCTTTACACAAAGTCATCATGGTGGCAGTGGTGGCGTGGCAAGTCAGCTCTGACTC
TACAGTTCATGTACGATGAGTTGTGGAGGACTATGAGCCTACCAAAGCAGACAGCTATCGGAAGAAGGT
AGTGTAGATGGGGAGGAAGTCCAGATCGATATCTTAGATAACAGCTGGCAGGAGGACTACGCTGCAATT
AGAGACAACACTTCCGAAGTGGGGAGGGTTCCCTCTGTGTTTCTCTATTACAGAAATGGAATCTTIG
CAGCTACAGCTGACTTCAGGGAGCAGATTAAAGAGTAAAAGAGATGAGAAATGTTCCATTCTACTGGT
TGGTAACAAATCAGATTAGAAGATAAAAGACAGGTTCTGTAGAAGAGGCAAAAACAGAGCTGAGCAG
TGGAAATGTTAACTACGTTGAAACATCTGCTAAAACACGAGCTAATGTTGACAAGGTATTTTGATTAA
TGAGAGAAAATTGAGGCGAGAGAAGATGGAAGACAGCAAAGAAAAGAATGAAAAAGAAGAGGAAAAGTT
AGCCAAGAGAAATCAGAGAAAGATGCTGCATTTTATAATCAAAGCCAAAATCCTTCTTATCTGACCAT
ACTAATAAAATATAATTATAAGCATTGCCATTGAAGGCTTAATTGACTGAAATTACTTTAACATTGG
AATTGTTGATATCACTAAAGCATGAATTGAACTGCAATGAAAGTCAAATTACTTTAACATTGGAAATT
AATATGGCTTCACCAAGAAGCAAAGTCAACTTATTCATAATTGCTACATTATCATGGTCTGAAATG
TAGCGTGTAAAGCTTGTGTTCTGGGAGCTTTCTGAAATTGAAAGAGGTGAAATGGGGTGGGGAGTG
GGAGGAAAGGTGACTTCCTCTGGTGTATTATAAAGCTTAAATTATCATTAAATGTCTTGGT
CTTCTACTGCCTGAAAATGACAATTGTAACATGATAGTTAAACTACCACTTTTTAACATTATTA
TGCAAAATTAGAAGAAAAGTTATTGGCATGGTTGTGCATATAGTTAAACTGAGAGTAATTCTGTC
AATCTGCTTAAATTACCTGGTAGTAACCTAGAAAAGTGGTAGAAACTCTGACATGGAATTGTA
TGCCTTAAATTAGAAGAAAATCTGGTTATATCATTCTGGGTGTTCTTACTGACACCAGGGT
CCGCTGCCCATGTGCTCTGGTAGAGAAAATATGCTGCCACAGCTTTCTGTAGAAGAAAATCTGAGAA
GTAACGTCCGCTAGAAGTCTGCTCAAATTAAATGTTGTCATATTCTGGTTCTGAAAATAAGATT
CAGAGCTTTGATCGCTTAAATTAAACTGCAAGGTCAATTGAGGAGGAGGAGGAGGAGGAGGAG
AGATAATTTCAGCTGCAAGGATTCAAGCAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
GGTCCCTGGAAATCCCTTCTGCTAGTGGTAGCATGTAAGTGTAAAGTTTAAATCTGGGAGGAGGAG
TAGGAAGAAAATGTCAGTAGTGTCAATGCAATTGCACTAGAACGCTTCGGGAAAATATTGCTGCT
ATCTGTTCAATTCTAAATTATATTGATACAGTTGATACAGGAATTATTAGGAGTAATTCTT
TCTGTTCTGTTATAATGAAAGAACACTGTAGCTACATTTCAGAAGTTAACATCAAGCCATCAAACCTG
GGTATAGTGCAGAAAAGTGGCACACACTGACCACACATTAGGCTGTCACCATTGTTGTTGACCTG

PCT/US04/06308

CTGGAAAGAATTCTAGCATGCTACTGGGGACATAATTCAGTGGAAATATGCCACTGACCGATTTTTT
TTTTCTCTTTGCAGTGGGCTAGGACAGTGTGATTCAACAAAGTATTTTTCTTCAGTCCTA
ATTTGAACAGGTCAAAGATGTGTTCAAGCATTCCAGGTAAACAGGTGTATGTAAGTTAAAATAGGCT
TTTTAAGAACTCACTCTTAGATAATTACATCCAGCTTCTCATGTTAAATATTGTCCTAAAGGGTTG
AGATGTACATCTTCATTCGTATTCATAGGCTATGCCATGTGCCAATTCAAGTTACCAATGTAAC
ACTGCCAGCGGGCCCAGCAATCTCCATGTGTACTTATTACAGTCTTATTAAACAGGGTCTAACAC
TAACATTGTGACTTTGCTTGAGACCTTCTCTGGTACTGAGGTGTATGAAGCCAATGACAAA
GATGCATCACGTGTCTAGGCTATGCCACTACCCGATTGTTATTGCAATTGACCAATTAAAGAC
CAATAAACCTCCTTTAAAAA

Human RALA mRNA sequence - var3 (public gi: 3483427) (SEQ ID NO: 132)
ATAATCAAAGCCAAACTCCTTCATCTTGACCATAACTAATAAAATATAATTATAAGCATTGCCATTG
AAGGCTTAATTGACTGAAATTACTTTAACATTGGAAATTGTTGTATATCACTAAAGCATGAATTGGA
ACTGCAATGAAAGTCAAATTAACTTTAAAAGAAATTAAATATGGCTTCACCAAGAAGCAAAGTCAACCT
ATTTCATAATTGCCATCAATTATCATGGCTCTGAATGTAGCGTGTAGCTGTGTTCTGGCAGTCTT
TCTTGAAATTGAAGAGGTGAAATGGGGGGGGAGGGAGGAAAGGTGACTTCTCTGGTGTATTAT
AAAGCTTAAATTATATCATTTAAATGTCTGGTCTTACTGCCCTGAAATTGACAATTGACAA
ATGATAGTTAAACTACCACTTTTTAACATTATTATGCAAAAAAA

Human RALA mRNA sequence - var4 (public gi: 20147712) (SEQ ID NO: 133)
ATGGTCGACTACCTAGCAAATAAGGCCAAGGGTCAAATTCTGGCTTACACAAAGTCATCGGGTGG
GCAGTGGTGGCGTGGCAAGTCAGCTGACTCTACAGTTCATGTACGATGAGTTGTGGAGGACTATGA
GCCTACCAAAGCAGACAGCTATCGGAAGAAGGTAGTGTAGATGGGGAGGAAGTCCAGATCGATATCTTA
GATACAGCTGGCAGGAGGACTACGCTGCAATTAGAGACAACACTTCCGAAGTGGGGAGGGGTTCCCTCT
GTGTTTCTCTATTACAGAAATGGAATTCTTACTGGTTGGTAACAAATCAGATTAGAGATAAAAGACAGGTT
AAAAGAAGATGAGAAATGTTCAATTCTACTGGTTGGTAACAAATCAGATTAGAGATAAAAGACAGGTT
TCTGTAGAAGAGGCAAAACAGAGCTGAGCAGTGGAAATGTTAACTACGTGGAAACATCTGCTAAACAC
GAGCTAATGTTGACAAGGTATTTTGATTAAATGAGAGAAATTGAGCGAGAAAGATGGAAGACAGCAA
AGAAAAGAATGGAAGGAAAGAGGAAAGTTAGCCAAGAGAATCAGAGAAAGATGCTGCATTATAA

Human RALA mRNA sequence - var5 (public gi: 10439805) (SEQ ID NO: 134)
AGAATGGAAAAAGAAGAGGAAAGTTAGCCAAGAGAATCAGAGAAAGATGCTGCATTATAATCAA
GCCCAAACCTCTTCTTATCTGACCATAACTAATAAAATATAATTATAAGCATTGCCATTGAAGGCTTAA
TTGACTGAAATTACTTTAACATTGGAAATTGTTGTATATCACTAAAGCATGAATTGAACTGCAATG
AAAGCTAAATTACTTTAAAAGAAATTAAATATGGCTTCACCAAGAAGCAAAGTCAACTTATTCTATAA
TTGCCCTACATTATCATGGCTCTGAATGTAGCGTGTAGCTTGTGTTCTGGCAGTCTTCTGAAAT
TGAAGAGGTGAAATGGGGGGGGAGTGGGAGGAAAGGTGACTTCTCTGGTGTATTATAAGCTTAA
ATTTTATATCATTTAAAATGTCTGGTCTTACTGCCTTGAAATTGACAATTGTAACATGATAGTT
AAACTACCACTTTTTAACCAATTATGCAAATTAGAGAAAAGTATTGGCATGGTGTGCATA
TAGTTAAACTGAGAGTAATTCACTGTGAATTACCTGGTGTAGTAACCTAGAAAAGTGGTG
TAAACTGTACATGGAATTGGTAATGCTGCTTAATTAGAGAAAATATCCGGTTATATCATT
TGGGTGTGTTCTTACTGACACCAGGGGTCGCCATGTGCTGGTGTAGAGTGTGTTGACTGCA
CAGCTTGTGTTAGAAAATCTTGAGAGTAACGTGCTGGTGTAGAGTGTGTTGACTGCA
CATATTCTGGTCTTGAAAATAGATTCCAGAGCTTGTGATCGCTTTAATAAACTGCAAGTCATT
AATTGAAGGGCAGCATATATACTTGCAAGATAATTTCAGCTGCAAGGATTGAGCACCAGTTGTTG
AATGAACCCCTCTTCTCTGAGATTCTGGTCCCTGGAAATCCCTTCTGCTAGTGGTGAGCATGTAAGT
GTTAAGTTTTAATCTGGGAGCAGGGCATAGGAAGAAAATGTCAGTAGTGCTAATGCAATTGCACTAGA
ACGCTCGGGAAAATATTGCTGCTGGCATCTGTTCAATTCTAAATTGCAAGTTACAGTTG
ATACAGGAATTATTAGGAGTAATTCTTCTGTTCTGTTATAATGAAAGAACACTGAGCTACATTTC
AGAAGTTAACATCAAGCCATCAAACCTGGGTATACTGAGAAGACGTGGCACACACTGACCCACATTAG
GCTGTGTCACCATGTTGAGCTGGTGTACCTGCTGGAAAGAATTCTAGCATGCTACTTGGGACATAATT
GGGAAATATGCCACTGACCCATTCTTCTGAGCTGGTGTAGGGCAGTGTGATTCAACA
AAGTATTCTTCTCTGAGCTGGTGTACCTGCTGGAAAGAATTCTAGCATGCTACTTGGGACATAATT
AGGTGTGTATGAAAGTTAAAATAGGCTTTTGTAGGAAACTCACTCTTGTGTTATTACATCCAGCTTCTC
ATGTTAAATATTGCTTAAAGGGTTGAGATGTACATCTTCAATTGTTGTTGTTGTTGACTGCT
ATGTGCGGAATTCAAGTTACCAATGTAACACTGGGAGCAGGGCCAGCAATCTCCATGTGTACTT
AGTCTTATTAAACAGGGTCTAACCAACTAACATTGTGACTTTGCTTGTAGGCTATGCCACTACCCGATTG
ACTGAGGTGCTATGAAGCCAATGACAAAGATGCACTCACGTGTCTTAGGCTATGCCACTACCCGATTG
TTTATTGCAATTGAGCCATTAAAGACCAATAACTCCTTTAAAAA

Human RALA Protein sequence - var1 (public gi: 35846) (SEQ ID NO: 269)

PCT/US04/06308

MAANKPKGQNSLALHKVIMVGSGGVGKSALTQFMYDEFVEDYEPTKADSYRKVVLDGEEVQIDILD
TA
GQEDYAAIRDNYFRSGEGFLCVFSITEMESFAATADFREQILRVKEDENVPFLLVGNKSDLEDKRQVSVE
EAKNRAEQWNVNYVETS A KTRANVDKVF DLMREIRARKMEDSKEKNGKKRKS LAKRIRERCCIL

Human RALA Protein sequence - var2 (public gi: 20147713) (SEQ ID NO: 270)
MVDYLANKPKGQNSLALHKVIMVGSGGVGKSALTQFMYDEFVEDYEPTKADSYRKVVLDGEEVQIDIL
DTAGQEDYAAIRDNYFRSGEGFLCVFSITEMESFAATADFREQILRVKEDENVPFLLVGNKSDLEDKRQV
SVEAKNRAEQWNVNYVETS A KTRANVDKVF DLMREIRARKMEDSKEKNGKKRKS LAKRIRERCCIL

Figure 36 part - 75

PCT/US04/06308

Unigene Name: SIAH1 Unigene ID: Hs.295923 Clone ID: 3GD_150

Human SIAH1 mRNA sequence - var1 (public gi: 27503513) (SEQ ID NO: 135)
CCAGCGCGTCCCCCTGCATCCGTGGCCTCACTGGAGCTGGCAGGACCTACCCAGTGAATCTGGAG
AAAACAAACTTGGGAGACAGACGAAAGCTTAGGCACATTGGAGGACAGCGCAGCTGTGGCTCCATT
TGGAGATGCAGTCGAATTGAGCTCACAGGGAGGTGTGGTGCCTCCTGGGATGGAAAGGCTCCTTT
TCCACCTCTGTAACTGGTGTCTGAGAAGTAAATGGTATTGGATCCTGACCTCAGACGTGAATTGGG
TCTTCTGTGCTAGGAGCAGAAAGAGCCCAGGAGGGCCTGTCCCTTACTCTGGGGAAACGCAATG
CGTGGCCTGACTCTCATGACGGAAAGGCTACTCCACCTCTGTACTCCTGGAGGGAGTCTGTT
ACATGTTTACCAAGCGGCCAGGACAAGGAAGAGAAAAGAAATGAGCCGTAGACTGCTACAGCATTAC
CCGGTACCTCGAAGTGTCCACCATCCCAGAGGGTGCCTGACTGGCACAAGTGCATCCAACATGA
CTTGGCGAGTCTTTGAGTGTCCAGTCTGCTTGACTATGTGTTACCGCCCATCTCAATGTCAGAGT
GGCCATCTGTTGTAGCAACTGTCGCCAAAGCTCACATGTTGCTCAACTTGCCTGGGGCCATTGGGAT
CCATTGCGAACTTGGTATGGAGAAAGTGGTAATTCACTTTCCCCCTGAAATATGCGTCTCTGG
ATGTGAAATACTCTGCCACACACAGAAAAAGCAGACCATGAAGAGCTCTGTGAGTTAGGCCTATT
TGTCCGTGCCCTGGTCTCTGTAAATGGCAAGGCTCTGGATGCTGTAATGCCCATCTGATGCATC
AGCATAAGTCCATTACAACCCATACAGGGAGAGGAATAGTTTCTGCTACAGACATTAATCTCTGG
TGCCTGTTGACTGGGTATGTCAGTCTGTTGGCTTCACTTCATGTTAGTCTTAGAGAAACAGGAA
AAATACGATGGTCAACAGCAGTCTCGCAATGTCAGCTGATAGGAACACGCAAGCAAGCTGAAAATT
TTGCTTACCGACTTGAGCTAAATGGCATAGGCAGCATTGACTTGGGAAGCGACTCCTCGATCTATT
TGAAGGAATTGCAACAGCATTATGAAATAGCAGTCTAGTCTTGACACCAGCATTGACAGCTTT
GCAGAAAATGCAATTAGGCATCAATGTAACATTTCATGTTGAAATGCAATCAAACATTCTG
GCCAGTGTAAAACCTCAGTTCAACAGAAAATAGGCACCCATCTGTCGCCAACCTAAAACCTTCTG
GTAGGTGGAAGCTAGACACATGAAGGTAATAAAAAGAAGGCTGTTAAATACAGGAAACAGTGGCATG
AGTAACACTAATATATTAAAATAAGTCAACAGTAAACCAACTGAAAATATATGTTATACACCCAAAG
ATGGGCATCTTGTATTAAGGAAAGCATTGTAACATAATTCTGAGTTGTGTTGTTGAGATTG
ATTGTATTGTTGAAAAGTTGTTTGTGCTGGGAGTGTGCTGCCCTGGGTGTGCGTGTGTTGGGTT
TTTCTCTTAACTGACAAGCCATCTGAGTGGTCACTGGCCACTGCTTCTTGTGAGTCATACA
TAGTGTGCTGTGTGCTTTTGTGTTATTGCTAATTTTTATTAAATTAGTTGCTTCAATTAAATAAA
TTTGACTTTCTGTAATTCACTGAGTTTCTCTTGTGCTTCAATTAAAGTTAGTATCTTGTATGCA
TATTGTTTATGTTAAAATTTATAACGTTCAATTTCCTTCCCCCTTAATCAGTTCAATTAGA
AATATTAAACAGCTATTGTAAGGCCATGAGTCCAGAAAAGTAAAGGTGACATCGGAAAATAAT
CAAAGCTATTAAAGCATCTATAAGGTGCTCTCTCTGCTTCTACAGATGAGTCACACCTTGAGCT
TAATCTTGAAAGGTTAGAGAATAAAATTGATTTTATAAAACTGCAAATCAGGTTTGTCTTCTTT
CAGATATCTGGACAAATCACATATTAAAATTGTTCTGTATTGTTTGTGAGAAGAAGGCAT
CGTCATGCACAGTATTGTAATTAAAGCAAATCATTGTTAAAAGGCAAGTTGCAAAAAATGTTT
GGTCTTTATAATTCTCATTAAAAGAATATCTGCAAATTAAAAAAAAGAAAAAAAAGAAAAAAA
AAAAAAAAAAAAAAAAGAAAAAAAAGAAAAAAAAGAAAAAAAAGAAAAAAAAGAAAAAAAAGAAAA
AAAA

Human SIAH1 mRNA sequence - var2 (public gi: 4506946) (SEQ ID NO: 136)
GCGGCGGCCAGGGGGAGCCGGGGCGCCGTTGCGGGGCGCCTCTCGAGAGGGCGGGCGGCCAGGGT
TCCCGTCCGTCTCGCGCCGGGAAGAGGGCGGTGCGCTGCCCGGGTGGCGACGGAGCGC
GTGGTGCAGGACGGGGTCCGAGGGCGCTCTCCGCCACAGAAAATGAGCCGTAGACTGCTACAGCA
TTACCTACCGGTACCTCGAAGTGTCCACCATCCAGAGGGTGCCTGCCCTGACTGGCACAAGTGCATCA
ACAATGACTTGGCAGTCTTTGAGTGTCCAGTCTGCTTGACTATGTGTTACCGCCATTCTCAATG
TCAGAGTGGCCTATTGTTGAGCAACTGTCGCCAAAGCTCACATGTTGCTCAACTTGCCTGGGGCCCT
TTGGGATCCATTGCAACTTGGCTATGGAGAAAGTGGTAATTCACTTGTGAGTTAGTCTTGTGAG
CTTCTGGATGTGAAATAACTCTGCCACACAGAAAAGCAGACCATGAAGAGCTCTGTGAGTTAGGCC
TTATTCTGTCCGTGCCCTGGTGTCTCTGTAAATGGCAAGGCTCTGGATGCTGTAATGCCCATCTG
ATGCATCAGCATAAGTCCATTACAACCCATACAGGGAGAGGAATAGTTTCTGCTACAGACATTAATC
TTCTGGTGTGTTGACTGGGTATGTCAGTCTGTTGCTTCACTTCATGTTAGTCTTAGAGAA
ACAGGAAAATACGATGGTCACCGAGCAGTCTCGCAATGTCAGCTGATAGGAACACGCAAGCAAGCT
GAAAATTTGCTTACCGACTTGAGCTAAATGGCATAGGCCACATTGAGACTTGGGAAGCGACTCCTCGAT
CTATTGATGAAGGAATTGCAACAGCATTATGAAATAGCAGTCTAGTCTTGACACCAGCATTGACA
GCTTTTGAGAAAATGCAATTAGGCATCAATGTAACATTTCATGTTGAAATGCAATCAAACA
TTTCTGGCAGTGTAAAACCTCAGTTTACAGAAAATAGGCACCCATCTGTCGCCAACCTAAAAC
TCTTCGGTAGGTGGAAGCTAGACACATGAAGGTAATAAAAAGAAGGCTGTTAAATACAGGAAACAGT
TGCATGTTAGTAAACTAATATATTAAAATAAGTCAACAGTAAACCAACTGAAAATATGTTATAC
ACCCAAAGATGGCATCTTTGTTATTAGAAAGGAAAGCATTGTAACAAATTCTGAGTTTGTGTTG
TAGATTGATTGTTATTGTTGAAAAGTTGTTTGTGCTGCCGTGGAGTGTGCGCTGCGTGGGTGCGTG
TTGGTTTCTTAACTGACAAGCCATCTGAGTGGCATGGCCACTGCTTCCCTTGTGAGTCAT

Figure 36 part - 76

PCT/US04/06308

ACATAGTGTGCTGTTGGCTTGTGTTGCTAATTAACTTAAAGTTAGTTTCACTAAAT
AAATTGACTTTCTGTAATTCAAGGTTTCTTCTTGTACCAATTAAAGTTAGTATCTTGTATAT
GCATATTGTTATGGTAAAAAATTATAACGTGTCATATTCTTCCCATTAATCAGTCATT
AGAAATTAAACTCAGTATTGAGGCTGAGGTCAGAGAAAGTAAAGGTGACATCGGAAAAT
AATCCCAAGCTATTAAAGCATCTATAAGGTGCTCTTCTGCTTCTACAGATGAGTCACACCTTGA
GCTTAACTTGAGGTTAGAGATAATTGATTAAATAGCAAATCAGGCTTGTCTTCTT
CAGATATCTTGACAAATCACATATTAAAATTGTTCTGATTATTGGTTTGAGAAGAACAT
CGTCATGCAAGTATTGTAATTAAAGCAAATCATTGTTAAAAGCAGTTGCAAAAATGTTT
GGTCTTTATAATTCTCA

Human SIAH1 mRNA sequence - var3 (public gi: 16551141) (SEQ ID NO: 137)
TTTATAATAGCCCTCCAAATGGGTGACGTATTGATTCTATGTCCTAATGACTAGTGTGAGC
ATTTCTAGCATTGATTAAAGATGTTACCCAAAGACCCCTGTATCAAATAAGCTGGATTTTAT
TGAAAATTATAACTCTAGAAATTAGTTAAACTAGACTTAGGGATATGTGATTAACTGGTATTCC
ACGTTTATGCACTGGTTTAAACTCTCAAGTATTAAACTAAAGCTTGGTCTTGTCTTATCA
AGAAATCCTACACTGTCCACTGGAGACATCCATGTTTACTGGCTGCCCCCTTAGTGGTCCGTG
AACCTTACCTCAAACCATGCACTGGGGCAGAGATCCTTACTTGCTGGTTACAAATGCAAATACAG
TGAAGAATGTCATTTGTGATTGTTCTGAAATAGTTCAAGGAAATCCATGACCGTAAAGTACTGTGA
TAGTGATGTCACCACTGTGAGCTTCACTAGGTGATTGGTCTGCAATTACAGTGACCAAATCAGC
TATGTTGCCAGTAATTCACTGCTGAGGGCTTTGGATTTCCTTATGAAACTACTGAAATGAGGTCAC
TGACTATTACTAAGGGACATTGCTACAAAGAATGTTAGTTGGTGTTCATGAAGTAACATGTTAA
TTATTTAACCCAGGATTAGATGTAACACATCAAGTAGTTGGTGTTCATGAAGTAACATGTTAA
GCTCACATTGAAAGTACTTCAGTCTTCAATTGCCATGAAATTGATTCAGCAGCTAAAAAAAAAAA
AAAAAAAGACTACAGTTAGTCATTACCAATTGATGATTATGGTCAAACACTAATGCTATT
TGTTTTTACAAACATTGGGATACCACAATGAAACTGACTTAAACAAATGCTGAAAGA
GGAAGGAAATATCAAACAGGCTGAATAGACAAACAGGAAATATGCTCCACCTACCGAAAGAGTTT
GTTGGCAGACAGATGGTGCCTATTCTGTGAAACTGAAGTTAAACACTGGCAGAAAATGTTGA
TTGCCATTCAACACATGAAATAGTTACATTGATGCCATTCTGCAAAAGCTGTGAA
TGCTGGTGTCAAAGACTAGACAGTCGCTATTCTATAATGGCTGCAATTCTCATGAATAGATCGAGG
AGTCGCTTCCAAGTCATCGTCGCTATTGACCTTACTGCTCAAGTCGTAAGCAAAATTTCAGCTTGC
TTGCGTGTCTTATCAGCTGTACGATTGCAAGAATGCTGGTACCATCGTATTCTGTCTCTA
AGACTAACATGAAAGCAAAACAGGACTGCACTCATCACCCAGTCACAGCACCAGGAAGATTAA
GTCTGTAGCAAGAAAATATCCTCTCTGGTGTAGGGTTGTAATGGACTTATGCTGATGCATCAGATGG
GGCATTACAGCATCCAGAGGAGCCTGCCATTACAGGAAGCACCAGGGCACGGACAGGAATAAGGCTAA
ACTCACAGAGCTTCTCATGGTGTCTGGTGTGGAGGTATTTCACATCCAGAAGACGCATA
TTTACAGGGAAAAGACTGAAATTAGCATTCTCCATTCTCCATAGCAAGTGGCAATGGATCCAAAGGGCC
CGGCAAGTGGACAACATGAGCTTGGCGACAGTTGCTACAAACAAAGATGCCACTCTGACATTGAA
GAATGGGCGGTAAACACATAGTCAAAGCAGACTGGACACTCAAAAGACTGCCAAGTCATTGTTGGATGC
AGTTGTGCCAGTCAGGGCAGGCACCCCTGGGATGGTGGACACTTCGAGGTACCGGTAGGTAATGCTGTA
GCAGTCTGACGGCTATTCTGAAATAACATAAGGAGGCAGGAGAAAATAATTAAACCATGACTT
ACTTATAAATAATGTTACATGCCATAAGTCCTTAAAGTTACACAAAATTACTGAGCAAAGAG
GAAGAAAATAGGATTAAAAAGATATT

Human SIAH1 mRNA sequence - var4 (public gi: 21753769) (SEQ ID NO: 138)
TTTCACCCCAAGACAAATAGTGGCTGCCATTCCAGGCCAGGTAGCTCTGGAAAAGTGTGTTGT
TTTATCTTGACTCAGCTGGTAGTTACATTGTCGATTATTCCTCCAGATGATATTACCTGTTAAAT
AATGTTTATTACTCTGCTGATGAATGTTTCAGCAACGCTGGAGAACCTAGGCTGCAAGGGGTTCTCA
CCTGTTGACTCCATCCCCAACCCAGTATGGCATATATCTGCGCTGCTATCATCTTATTCTTCT
TTTCATTGTCCTCCCTTGTCAATTAGTGTGACACATATTGTTGAAAGTAAAGCTGTTAAAGTAG
AACAGAAAGATAACTTTCTTCTACAGACTAAAAGTTTGTGAGATGGCCCTCCATTCTCCATGCC
CTTCACCTTAGTTGTTTATTTCATTTCTGGCCACCTCACTAGCGAGTACATCCCTCAC
TCTTGAGGTGGCACTGATCAGTAGGAAATAAGTTAACACCTGGCTGGTATAATTGGGGGAAGACT
TAATTAGATAGAGATGGATAATGGGATGGCAGACCTTCCCCTTGACCCCTCCCTATTCAA
AATACACCTCTAGAGTAGATAATTGCTTACCATTAAGAAGAGTTAATGGAAGGTGATACTCTGATTCTT
GGCATTGGAACACTACATTCAATCCGGTATCCTCGGATTAGTTCTAGGACCCCTCTCCATACCAAAAC
CTGAGGTGGTCAAGTCGCTGATAGAAAATGGTGTCAATTGTTGATGTCATATTCTCTTGATAATT
AGTGATCTGGATTACTTAATACAATGAAACATATGAAATAGTTGTTATAGACTGTTAAAGTAG
TTTGTTGATTCTTATAAATTCTGAAATATTTCATGCCATTCCATGGCTGGTGAAGTCCTCGGATGAGACCG
TGTGGATACAGAGTGGCAGTTTATCAGGAGGTTACCTGTAACCTCCCTGACCTATCAACAGCTGACTC
CAAATTAGAAGAAATAGAGTAAGGGAGGCCTCAGGGAGAGTCCAGCAAACGGATTGCAATTAAACTTC
GTCCCTTGTATAGTTCTTAGTTGTTATGGTCCATTCTTCTATTAGCATTTGTTATCTATGAGTC
TATCCAAAGACGATTAAGGGAGTTCCACATGTTCCGGAACATTGAAAAGAGCTTATCCAGTGTAA

Figure 36 part - 77

PCT/US04/06308

CAGATCCTAATAAAGTGCACATTCACTGTAATTTATTTTTAATATCTTTTAATCCTATTTCTT
CCTCTTTGCTCAGTAAATTGTATGAAACTTAAAAGGACTTATGGCATGAAACATTATTTATAAG
TAAGTCATGGTTATAATTATTTCTCCGCCTTATGTATTTCAGAAATGAGCGTCAGACTG
CTACAGCATTACCTACCGTACCTCGAAGTGTCCACCATCCCAGAGGGTGCCTGCCCTGACTGGCACAAAC
TGCATCCAACAATGACTTGGCAGTCTTTGAGTGTCCAGTCTGCTTGAATATGTGTTACCGCCATT
CTTCAATGTCAGAGTGGCCATCTTGTGTTGAGCAACTGTCGCCAAAGCTCACATGTTGCTTCAACTTGCC
GGGGCCCTTGGGATCCATTGCAACTTGGCTATGGAGAAAGTGGCTAATTCACTGACTTTCCTGTAA
ATATGCGTCTCTGGATGTGAAATACTCTGCCACACACAGAAAAAGCAGACCATGAAGAGCTGTGAG
TTTAGGCCTTATCTGTGCGCTGGTCTCTGTAATGGCAAGGGCTCTGGATGCTGTAATGC
CCCACGATGTCAGCATAAGTCCATTACACCCCTACAGGGAGAGGATATAGTTTCTTGCTACAGA
CAATTAACTCTCCTGGTCTGTTGACTGGGTGATGTCAGTCTGTTGGCTTCACTCATGTTAGTC
TTAGAGAACAGAAAAATTCGATGGTCACTGAGCTAATGGTCACTGGCAGCATTGACTGGGAAGCGAC
AGCAAGCTGAAAATTGCTTACCGACTTGGAGCTAATGGTCACTGGCAGCATTGACTGGGAAGCGAC
TCCTCGATCTATTCACTGAAAGGAAATTGCAACAGCCATTATGAATAGCAGTCTAGTCTTGGCACCAGC
ATTGACAGCTTTGCAAGAAAATTGGCAATTAGGCATCAAGTAACTATTCCATGTTGAAATGGCA
ATCAAACATTTCCTGGCCAGTGTAAAACCTCAGTTTACAGAAAATAAGGCACCCATCTGCTGCCAA
CCTAAAACCTTCCGGTAGGTGGAAAGCTAGACACATGAAGGTAATAAAAAGAAAGGCTGTTAAATACAG
GAAACAGTTGCACTGAGTAACACTAATATTTAAAATAAGTCAACAGTAAACCACTGAAAAAATATAT
GTATATACACCAAGATGGCATTGTTGTTAAGAAGGAGCATTGTAATAATTCTGAGTTTGT
GTTTGTGAGATTGATTGATTGTTGAAAAGTTGTTGGCTGGAGTGTGCTGCGTGGGTGT
GTGCGTGTGTTGGGTTTTCTCTTAACTGACAAGCCATCTGAGTGTGCTGCGTGGGCACTGCTTCCCT
TTGAGTCAATACATAGTGTGCTGTTGCTGTTGTTGTTGTTGCTAATTTTATTAATTAGT
TTTCATTAAATAATTGACTTTCTG

Human SIAH1 mRNA sequence - var5 (public gi: 3041824) (SEQ ID NO: 139)
ATGAGCCGTCAGACTGCTACAGCATTACCTACCGTACCTCGAAGTGTCCACCATCCCAGAGGGTGCCTG
CCCTGACTGGCACAACTGCACTTCAACAAATGACTTGGCAGTCTTTGAGTGTCCAGTCTGCTTGTACTA
TGTGTTACCGCCATTCTCAATGTCAGAGTGGCATTCTGTTGAGCAACTGTCGCCAAAGCTCAC
TGTTGCTTCAACTTGGGGCCCTTGGGATCCATTGCAACTTGGCTATGGAGAAAGTGGCTAATTCA
TACTTTCCCTGTAATATGCGTCTCTGGATGTGAAATAACTCTGCCACACACAGAAAAAGCAGACCA
TGAAGAGCTGTGAGTTAGGCCTTATTCTGTGCGCTGGTCTCTGTAATGGCAAGGCT
CTGGATGCTGTAATGCCCATCTGATGCACTGCAAGTCAATTACACCCCTACAGGGAGAGGATATAG
TTTTCTTGCTACAGACATTAAATCTCTGGTCTGTTGACTGGGTGATGCACTGCTGTTGGCTT
TCACCTCATGTTAGCTTAGAGAAAACAGGAAAATACGATGGTCACCAGCAGTTCTGCACTGTCAG
CTGATAGGAACACGCAAGCAAGCTGAAAATTGCTTACCGACTTGAGCTAAATGGTCACTGGGACGAT
TGACTTGGGAAGCGACTCTCGATCTTCACTGAGGAAATTGCAACAGCATTATGAAATAGCAGTGTCT
AGCTTTGACACCAGCATTGCAAGCTTTGCAAGAAAATGCAATTAGGCACTGAACTATTCC
ATGTTGAAATGGCAATCAAACATTCTGGCCAGTGTAAAACCTCAGTTCAAGAAAATAAGGCA
CCCATCTGCTGCCAACCTAAAACCTTCTGGTAGAGCTAGACACATGAAGGAAATAAAAAGAA
AGGCTTAAATACAGGAAAAGCTTCACTGAGTAACACTAATATTTAAAATAAGTCAACAGTAAAC
CACTGAAAATATATGTATATACACCAAGATGGCATCTTGATTAAGAAGGAAAGCATTGAAAA
TAATTCTGAGTTTGTGTTGTTGAGATTGATTGATTGTTGAAAAGTTGTTGGCTGGAGTGT
GTGCGTGTGCGTGGGTGTGCGCTGTTGGGTTTTCTCTTAACTGACAAGCCATCTGAGTGTGCTG
GCCACTGCTTCCCTTGTGAGTCAATACATAGTGTGCTGTAAGCCGTTTGTGTTGCTAAT
TTTATTAAATTAGTTCTGTTAAATAATTGACTTTCTGTAATTCACTGTTTCTGTTTGT
CCATTAAAGTTAGTATCTTGTGATATGGCATATTGTTATGGAAAAAAATTATAACGGGTTCAATA
TTTCTTTCCCCATTAAATCAAGTCATTGGAAATATTAAAACCGCCATTGGTGAACCCATGA
GTTCCCAGAAAAGTAAAGGTGACACCCGAAAATAATCCAAAAGCTTAAAGCCACCTATAAGGTGC
CCCCCTTCTGCTTCCCTACAGATGAGTCACACCTTGAGCCTTAACCTTGAAGGTTAGAGAATAAA
TTGATTAAATTAAATCTGCAAATCCAGGCTTTGTTCTTCCAGATATCTGGACAAATCACAT
ATTAAAATTGTTCTGTTTATTGTTGAGAAGGCACTGTCATGCACTGTTGTAATT
AAAAGCAAATTCTGTTAAAAGGCAGTTGCAAAAATGTTGCTTTATAATTCTCA

Human SIAH1 mRNA sequence - var6 (public gi: 17390431) (SEQ ID NO: 140)
CGGCGCCGGGAAGAGGCGGTGGCGTGCCTGGCGGGGTTGGCGACGGAGCGCTGGTGC
ACGGGGTCCGAGGCGCGTCTCCGCCACAGAAATGAGCGTCAGACTGCTACAGCATTACCGGT
ACCTCGAAGTGTCCACCATCCCAGAGGGTGCCTGCCCTGACTGGCACAACCTGCATCCAACAATGACTTGG
CGAGTCTTTGAGTGTCCAGTCTGCTTGAATGTTACCGCCATTCTCAATGTCAGAGTGGCCA
TCTGTTGAGCAACTGTCGCCAACAGCTCACATGTTGCAACTTGGGGCCCTTGGGATCCATT
CGCAACTGGCTATGGAGAAAGTGGCTAATTCACTGACTTTCCCTGTAATATGCGTCTCTGATGTG
AAATAACTCTGCCACACACAGAAAAAGCAGACCATGAAGAGCTGTGAGTTAGGCTTATTCTGTCC
GTGCCCTGGTCTGCTGTAATGGCAAGGCTCTGGATGCTGTAATGCCCATCTGATGCACTGAGC

PCT/US04/06306

AAGTCCATTACAACCCCTACAGGGAGAGGATATAGTTTTCTTGCTACAGACATTAATCTCCTGGTGCTG
TTGACTGGGTGATGATGCAGTCCTGTTGGCTTCACTTCATGTTAGTCCTAGAGAAACAGGAAAATA
CGATGGTCACCAGCAGTTCTCGCAATCGTACAGCTGATAGGAACACGCAAGCAAGCTGAAAATTTGCT
TACCGACTTGAGCTAAATGGTCATAGGCAGCATTGACTGGAGCTGACTTGGACACAGCATTGCACAGCTTTTGAG
GAATGCAACAGCATTATGAATAGCAGCTGCTAGTCTTGACACAGCATTGCACAGCTTTTGAG
AAAATGGCAATTAGGCATCAATGTAATTTCCATGTTGAATGGCAATCAAACATTCTGGCCA
GTGTTAAAATTCAGTTCAAGAAAATAAGGCACCCATCTGCTGCCAACCTAAACTCTTCGGTAG
GTGGAAGCTAGACACATGAAGGTAATAAAGAAGGCTGTTAAATACAGGAAACAGTTGATGAGTA
ACACTAATATTTAAAAATAAGTCACAGTAAACCACTGAAAAATATATGTATACACCCAAAGATGG
GCATTTGTATTAAGAAGGAGCATGTTAAATCTGAGTTGTGTTGTTGAGATTGATTG
TATTGTTGAAAAAGTTGTTTGCCTGGGAGTGTGCTGCGTGGGTGTCGTGCTGTTGGGTTTTT
TCCTTAACGACAAGCCATCTGAGTGGTCATGGCCACTGCTTTCCCTTGAGTCATACATAGT
GCTGCTGTTGCTTGTGTTGAGTCTTGTGTAATTGTAATTGTTAGTTTCAATTAAATAATTG
ACTTTCTGTAATTCAAGGTTTTCCCTTTGTACCATTTAAAGTTAGTATCTTGATATGCATATT
TGTTATGGAAAAATTATAACGTGTTCAATATTCTTCCCCATTAAATCAGTTATTAGAAATA
TTTAAATCAGCTATTGAGGCAAGTCCAGAAAGTAAAGGTGACATCGGAAAATAATCAA
AGCTATTAAAGCATCTAAAGGTGCTCTTCTGCTTACAGATGAGTCACACCTTGAGCTTAAT
CTTGAAGGTTAGAGATAATTGATTTTATAAATACTGCAAAATCAGGTTTGTCTTCCCTTCA
TATCTTGGACAATTCAATTAAATTGTTCTGTATTATTGGTTTGAGAAGAAGGCACTGTC
ATGCACAGTATTGTAATTAAAGCAAATCTTGTAAAAAGGCAAGTTGCAAAATGTTGGTC
TTTATAATTCTCAATTAAAGAAATATCTGCCATTTTAAAAAAAAAAAAAAAAAAAA
AAAA

Human SIAH1 mRNA sequence - var7 (public gi: 23274141) (SEQ ID NO: 141)
GTCCCGTCGGTCTGGCGCGGGAAAGAGGGCGGTGGCGCTGCCCGCGTGGCGGGGGTTGGCGACGGAGCG
CGTGGTGCAGGACGGGGTCCAGGGCGCTCTCCGCCACAGAAATGAGCCGTAGACTGCTACAGC
ATTACCTACCGGTACCTCGAAGTGTCCACCTCCAGAGGGTGCCTGCCTGACTGGCACAACTGCATCC
AAACATGACTTGGCGAGTCCTTGAGTGTCCAGTGTGCTTGACTATGTGTTACGCCATTCTCAAT
GTCAGAGTGGCATCTGTTGTAGCAACTGTGCCAAAGCTCACATGTTGTCACATTGCCGGGCC
TTTGGGATCCATTGCAACTTGGCTATGGAGAAAGTGGCTAATTCAAGTACTTTCCCTGTAATATGCG
TCTCTGGATGTGAAATAACTCTGCCACACAGAAAAGCAGACCATGAAGAGCTGTGAGTTAGGC
CTTATTCTGTCGTGCCCTGGTCTCTGTAATGGCAAGGCTCTGGATGCTGTAATGCCCATCT
GATGCATCAGCATAAAGTCCATTACAACCCCTACAGGGAGAGGATAGTTTCTGCTACAGACATTAAT
CTTCTGGTGTGTTGACTGGGTGATGAGTCAGTCTGCACTGCAAGCTGATAGGAACACGCAAGCAG
AACAGAAAATACGATGGTCACCAGCAGTTCTGCACTGCAAGCTGATAGGAACACGCAAGCAG
TGAAAATTGCTTACCGACTTGAGCTAAATGGTCATAGGCAGATTGACTTGGGAAGCGACTCTCGA
TCTATTCTGAGGAAATTGCAACAGCATTATGAATAGCGACTGTCTAGTCTTGGACACCAGCATTGAC
AGCTTTTGCAAGAAAATGGCAATTAGGCATCAATGAACTATTTCATGTTGAAATGGCAATCAA
ATTTCATGGCCAGTGTAAACTTCAGTTCACAGAAAATAGGCACCCATCTGCTGCCAACCTAAA
CTCTGGTAGGTGGAAGCTAGACACATGAAGGTAATAAAGAAGGCTGTTAAATACAGGAAACAG
TTGCATGTAGTAACACTAATATATTAAAATAAGTCACAGTAAACCACTGAAAAATATATGTATATA
CACCCAAGATGGCATCTTGTATTAAAGAAAGGCACTGTAATAATTCTGAGTTTGTGTTGTT
GTAGATTGATTGATTGTAAGGAAAAAGTTGTTGGCTGGGAGTGTGCTGCGTGGGTGTCGTG
TTGGGTTTTCTTAACTGACAAGGCATCTGAGTGGTCATGGCCACTGCTTTCCCTTGTGAG
TCAATACATAGTGTGCTGTTGCTTGTGTTGTTGTTGCTAATTATTAAATTGTTGTTTCA
TAAATAATTGACTTTCTGAAAAAAAAAAAAAAAAAAAAAAA
AAAA

Human SIAH1 Protein sequence - var1 (public gi: 27503514) (SEQ ID NO: 271)
MTGKATPPSLYSWRGVLFCLPAARTRKRKEMSRQTATALPTGTSKCPPSQRVPALTGTTASNNDSL
ECPVCFDYVLPPILQCQSGHLVCSNCRPKLTCCPTCRGPLGSIRNLAMEKVANSVLFPC
PHTEKADHEELCEFRPYSCPCPGASCKWQGSLEAVMPHLMHQHKSITTLQGEDIVFL
MMQSCFGFHFMLVLEKQEKYDGHQQFFAIVQLIGTRKQAENFAYRLELN
GHRRLTWEATPRSIHEGIATAIMNSDCLVFDTSIAQLFAENGNLGINVTISMC
MC

Human SIAH1 Protein sequence - var2 (public gi: 4506947) (SEQ ID NO: 272)
MSRQTATALPTGTSKCPPSQRVPALTGTTASNNDSL
ECPVCFDYVLPPILQCQSGHLVCSNCRPKLT
CCPTCRGPLGSIRNLAMEKVANSVLFPC
YASSGCEITLPHTEKADHEELCEFRPYSCPC
PGASCKWQGSLEAVMPHLMHQHKSITTLQ
GEDIVFLTDINLPGAVDWMMQSCFGFHFMLV
LEKQEKYDGHQQFFAIVQLIGTRKQAENFAY
RLELN
GHRRLTWEATPRSIHEGIATAIMNSDCLV
FDTSIAQLFAENGNLGINVTISMC
MC

Unigene Name: SMN1 Unigene ID: Hs.288986 Clone ID: GD_1114

Human SMN1 mRNA sequence - var1 (public gi: 624185) (SEQ ID NO: 142)
CGGGCCCCACGCTGCCATCCGGGGTTGCTATGGCATGAGCAGCGGGCAGTGGTGGCGCGTCC
CGGAGCAGGAGGATTCCGTGCTGTCGGCGGGCACAGGCCAGAGCGATGATTCTGACATTGGGATGA
TACAGCACTGATAAAAAGCATATGATAAAGCTGTGGCTCATTAAGCATGCTCTAAAGAATGGTACATT
TGTGAAACTTCGGTAAACAAAAACACACTAAAGAAAACCTGCTAAGAAGAATAAAAGCCAAAAGA
AGAATACTGCAGCTCTTACAACAGTGGAAAGTGGGACAATGTTCTGCCATTGGTCAGAACAGG
TTGCATTACCCAGCTACCATGCTTCAATTGATTAAAGAGAGAAACCTGTTGTTACACTGGA
TATGAAATAGAGAGGAGCAAATCTGTCGATCTACTTTCCCAATCTGTGAAAGTAGCTAATAATATAG
AACAGAATGCTCAAGAGAATGAAAGCCAAGTTCACAGATGAAAGTAGAGAACTCCAGGTCTCC
TGGAAATAATCAGATAACATCAAGCCAAATCTGCTCCATGAACTCTTCTCCACCACCCCC
ATGCCAGGGCCAAGACTGGGACCAGGAAAGCCAGGTCTAAATTCAATGGCCACCAACGGCCACCC
CACCACCCACCTTACTATCATGCTGGCTGCCATTCTCTGGACCACCAATAATTCCCCCACC
ACCTCCCATATGTCAGGATCTCTTGATGATGCTGATGTTGGAAAGTGTAAATTGTCATGGTACATG
AGTGGCTATCATACTGGCTATTATATGGGTTTCAGACAAAATCAAAAGAAGGAAGGTGCTCACATTCT
TAAATTAAAGGAAATGCTGGCATAGAGCAGCTAAATGACACCAATAAGAACGATCAGACAGATCT
GGAATGTAAGCGTTATAGAAGATAACTGGCTCATTTCTCAAATATCAAGTGTGGAAAGAAAAAA
GGAAGTGGATGGTAACTCTTCTGATTTAAAGGAAATGCAATGTGAAATATTTCACATTGTCATGGTACATG
TGGACTCTTTGAAAAACCATCTGTAAGAAGACTGGGTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TTGAGAAAATTGAAATGTGGATTAGATTTGAATGATATTGATAATTATTGTAATTGTCATGGTACAGAAT
AGTGTCTTAAATGTTCAATGGTTAACAAAATGTATGTGAGGCGTATGTGGCAAATGTTACAGAAT
CTAATGGTGGACATGGCTGTTCAATTGACTGTTTTCTATCTTCTATGTTAAAGTATATAATA
AAAATTTAATTTTTTTA

Human SMN1 mRNA sequence - var2 (public gi: 15929773) (SEQ ID NO: 143)
GGCCCCACGCTGCCACCCGGGGTTGCTATGGCATGAGCAGCGGGCAGTGGTGGCGGTCCCGG
AGCAGGAGGATTCCGTGCTGTCGGCGGGCACAGGCCAGAGCGATGATTCTGACATTGGGATGATAC
AGCACTGATAAAAGCATATGATAAAGCTGTGGCTCATTAAGCATGCTCTAAAGAATGGTACATTG
GAAACCTCGGGAAACCAAAACACACTAAAGAAAACCTGCTAAGAAGAATAAAAGCCAAAAGAAGA
ATACTGCAGCTCTTACAACAGTGGAAAGTGGGACAATGTTCTGCAATTGGTCAAGAGACGGTTG
CATTACCCAGCTACATTGCTTCAATTGATTTAAAGAGAGAAACCTGTTGTTGTTACACTGGATAT
GGAATAGAGAGGAGCAAATCTGTCGATCTACTTTCCCAATCTGTGAAAGTAGCTAATAATATAGAAC
AGAATGCTCAAGAGAATGAAAGCCAAGTTCACAGATGAAAGTGAGAACTCCAGGTCTCCCTGG
AAATAATCAGATAACATCAAGCCAAATCTGCTCATGGAACTCTTCTCCACCACCCCCCATG
CCAGGGCCAAGACTGGGACCAAGGAAAGCCAGGTCTAAATTCAATGGCCACCAACGGCCACCGCACCAC
CACCACCCACTTACTATCATGCTGGCTGCCATTCTCTGGACCACCAATAATTCCCCCACC
TCCCATATGTCAGATTCTCTGATGATGCTGATGCTTGGAAAGTATGTAATTGTCATGGTACATGAGT
GGCTATCATACTGGCTATTATATGGGTTTAGACAAAATCAAAAGAAGGAAGGTGCTCACATTCTTAA
ATTAAGGAGAAATGCTGGCATAGAGCAGCACTAAAGAACGATCAGACAGATCTGGA
ATGTGAAGCGTTAGAAGATAACTGGCTCATTTCTCAAAATATCAAGTGTGGAAAGAAAAAGGA
AGTGGAAATGGGTAACTCTCTGATTTAAAGTTATGTAATAACCAATGCAATGTGAAATATTACTGG
ACTCTATTGAAAACCATCTGTAAGAAGACTGGGTTGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGG
TGAGAAAATTGGAATGTGGATTAGATTTGAATGATATTGATAATTGTAATTGAGCTGTGA
GAAGGGTGTGTAGTTAAAGACTGTCTTAAATTGCAACTTAAGCATTTAGGAATGAAGTGTAGA
GTGTCTTAAATGTTCAATTGTTAACAAAATGTATGTGAGGCGTATGTGGCAAATGTTACAGAATC
TAACTGGTGGACATGGCTGTTCAATTGACTGTTTTCTATCTTCTATGTTAAAGTATATAATA
AAAATTTAATTTTTTAAAAAAAAAAAAAAAAAAAAAA

Human SMN1 mRNA sequence - var3 (public gi: 13259511) (SEQ ID NO: 144)
CCACAAATGTGGAGGGCGATAACCACTCGTAGAAAGCGTGAGAAGTACTACAAGCGGTCTCCGGCC
ACCGTACTGTTCCGCTCCAGAACGCCCGGGCGGAAAGTCGTCACTCTTAAGAAGGGACGGGGCCCCA
CGCTGCGACCCCGGGGTTGCTATGGCATGAGCAGCGGGCAGTGGTGGCGGTCCCGGAGCAGGA
GGATTCCGTGCTGTTCCGGCGGGCACAGGCCAGAGCGATGATTCTGACATTGGGATGATACAGCACTG
ATAAAAGCATATGATAAAAGCTGTGGCTCATTTAAGCATGCTCTAAAGAATGGTACATTGTAACCTT
CGGTAACCAAAACACACCTAAAGAAAACCTGCTAAGAAGAATAAAAGCCAAAAGAAGAATAACTG
AGCTTCTTACACAGTGGAAAGTGGGACAATGTTCTGCCATTGGTCAGAAGAGACGGTTGCATTAC
CCAGCTACCATGCTTCAATTGATTTAAGAGAGAAACCTGTTGTTACACTGGATATGAAATA
GAGAGGAGCAAATCTGTCGATCTACTTCCCAATCTGTAAGTAGCTAATAATAGAACAGAACG
GAGAGGAGCAAATCTGTCGATCTACTTCCCAATCTGTAAGTAGCTAATAATAGAACAGAACG

TCAAGAGAATGAAAATGAAAGCCAAGTTCAACAGATGAAAGT GAGA ACTCCAGGTCTCCTGGAAATAAA
TCAGATAACATCAAGCCCCAAATCTGCTCATGGAACTCTTTCTCCCTCCACCACCCCCCATGCCAGGGC
CAAGACTGGGACCAAGGAAAGATAATTCCCCCACCCACCTCCCATATGTCAGATTCTCTGATGATGCTGA
TGCTTGGGAAGTATGTTAATTTCATGTCATGAGTGGCTATCATACTGGCTATTATATGGGTTTCAGA
CAAATCAAAAAGAAGGAAGGTGCTCACATTCTAAATTAAAGGAGAAATGCTGGCATAGAGCAGCACTA
AATGACACCACTAAAGAACGATCAGACAGATCTGGAATGTAAGCGTTATAGAAGATAACTGGCTCAT
TTCTCAAAATATCAAGTGTGGAAAGAAAAAGGAAGTGGAACTCTTCTGATTAAGGAGAAATGCTTCTGAT
ATGTAATAACCAATGCAATGTGAAATTTTACTGGACTCTTGAAACCATCTGTAAGACTGGG
GTGGGGTGGGAGGCCAGCACGGTGGTGGAGGCACTGAGAAAATTGAAATGTTGATTAGTTGAATGA
TATGGATAATTATGGTAATTATGGCTGTGAGAAGGGTGTGAGTTATAAAAGACTGTCTTAAT
TTGCATACTTAAAGCATTAGGAATGAAAGTGTAGAGTGTCTTAAATGTTCAAATGTTAACAAAATG
TATGTGAGGCGTATGTGGCAAAATGTTACAGAATCTAAGTGGGACATGGCTGTCTTAACTGT
TTCTATCTTATATGTTAAAAGTATATAATAAAAATATTAAATTTCATTTTTTA

Human SMN1 mRNA sequence - var4 (public gi: 13111817) (SEQ ID NO: 145)
GGGGCCCACCGCTGCGCACCGCGGGTTGCTATGGCGATGAGCAGCGCCAGTGGTGGCGCGTCCC
GGAGCAGGAGGATTCCGTGCTTCCGGCGCGCACAGGCCAGAGCGATGATTCTGACATTGGGATGAT
ACAGCACTGATAAAAGCATATGATAAAAGCTGTGGCTCATTAAGCATGCTCAAAGAATGGTACATTT
GTGAAACTCGGGTAAACCAAAACACACCTAAAGAAAACCTGCTAACAGAAGATAAAAGCCAAAAGAA
GAATACTGCAGCTCCCTAACACAGTGGAAAGTGGGACAATGTTCTGCCTATTGGTCAGAACAGGT
TGCATTACCCAGCTTACATTGCTCAATTGATTAAAGAGAGAAACCTGTTGTTACACTGGAT
ATGGAATAGAGAGGAGCAAAATCTGTCGATCTACTTCCCCAATCTGTAAGTAGCTAATAATAGA
ACAGAATGCTCAAGAGAATGAAAAGCCAAGTTCAACAGATGAAAAGT GAGA ACTCCAGGTCTCCT
GGAAATAAAATCAGATAACATCAAGCCCCAAATCTGCTCATGGAACTCTTTCTCCCTCCACCACCCCC
TGCCAGGGCCAAGACTGGGACCAAGGCCAGGTCTAAAATCAATGGCCCACCACGCCACGCCACC
ACCACCAACCCACTTACTATCATGCTGGCTGCCATTCTCTGGACCACCAATAATTCCCCC
CCTCCATATGTCAGATTCTTGTGATGCTGATGCTTTGGAAAGTATGTTAATTGATGGTACATGA
GTGGCTATCATGGCTATTATGAAATGCTGGCATAGAGCAGCACTAAATGACACCCTAAAGAAA
CGATCAGACAGATCTGAAAGTGAAGCGTTAGAAGATAACTGGCCTCATTCCTCAAATAATCAAGTG
TTGGGAAAGAAAAAGGAAGTGGAAATGGTAACTCTTCTGATTAAAGGTTATGTAATAACCAAAATGCAA
TGTGAAATATTTACTGGACTCTATTGAAAACCATCTGTAAGAGACTGAGGTGGGGTGGGAGGCCA
GCACGGTGGTGGAGGCAGTTGAGAAAATTGAAATGTTGATTAGATTGAAATGATATTGGATAATTATTGG
TAATTGAGCTGTGAGAAGGGTGTGAGTTATAAAAGACTGTCTTAAATTGCAACTTAAGCATT
TAGGAATGAAAGTGTAGAGTGTCTTAAATGGTTAACAAAATGTTAGTGTGAGGCGTATGTG
GCAAAATGTTACAGAATCTAAGTGGGACATGGCTGTCTTGTACTGTTTTCTATCTTATATG
TTAAAAGTATATAATAAAAATATTAAATTTCATTTTTTAA

Human SMN1 mRNA sequence - var5 (public gi: 13259515) (SEQ ID NO: 146)
CCACAAATGTGGAGGGCGATAACCAACTCGTAGAAAGCGT GAGAAGT TACTACAAGCGGTCTCCCGGCC
ACCGTACTGTTCCGCTCCAGAACGCCGGCGGAGTCGTCACTCTTAAAGAAGGGACGGGGCCCCA
CGCTCGCACCCCGGGTTGCTATGGCGATGAGCAGCGCCAGTGGTGGCGCTCCGGAGCAGGA
GGATCCGTGCTGTTCCGGCGGGCACAGGCCAGAGCGATGATTCTGACATTGGGATGATAACAGCACTG
ATAAAAGCATATGATAAAAGCTGTGGCTTCATTAAAGCATGCTCTAAAGAATGGTACATTGTGAAACTT
CGGGTAAACCAAAACACACCTAAAGAAAACCTGCTAACAGAAGATAAAAGCCAAAAGAAGAAACTGC
AGCTCCTTACACAGTGGAAAGTGGGACAAATGTTCTGCCATTGGTCAGAACAGCGTTGCTATTAC
CCAGCTACCATGCTTCATTGATTAAGAGAGAAACCTGTTGTTGTTACACTGGATATGAAATA
GAGAGGAGCAAATCTGTCGATCTACTTCCCCAATCTGTAAGTAGCTAATAATAGAACAGAATGC
TCAAGAGAATGAAAATGAAAGCCAAGTTCAACAGATGAAAAGT GAGA ACTCCAGGTCTCTGGAAATAAA
TCAGATAACATCAAGCCCCAAATCTGCTCATGGAACTCTTTCTCCCTCACCACCCCCCATGCCAGGGC
CAAGACTGGGACCCAGGAAAGCCAGGTCTAAAATTCAATGGGCCACCACGCCACCCACACCC
CCACTTACTATCATGCTGGCTGCCATTCTCTGGACCACCAATAATTCCCCCACCACCTCCCTA
TGTCAGATTCTCTTGATGATGCTGATGCTTTGGAAAGTATGTTAATTGATGGTACATGAGTGGCTATC
ATACTGGCTATTATATGGTTTCAAGACAAAATCAAAAGAAGGAAGGTGCTCACATTCTTAAATTAAGG
AGAAATGCTGGCATAGAGCAGCACTAAATGACACCCTAAAGAAACGATCAGACAGATCTGGAATGTGAA
GGCTTATAGAAGATAACTGGCCTCATTTCTCAAAATATCAAGTGTGGAAAGAAAAAGGAAGTGGAA
TGGGTAACCTCTCTGATTAAGGTTATGTAATAACCAATGCAATGTGAAATATTACTGGACTCTT
TGAAAACCATCTGTAAGACTGGGGTGGGGTGGGAGGCCAGCACGGTGGTGGAGGCACTGAGAAAAT
TTGAATGTTGAGATTGAAATGATATTGATAATTGTTAATTGTTAATTGCTGAGAGTGTGAGGAG
TGTAGTTATAAAAGACTGTCTTAAATTGCAACTTAAGCATTAGGAATGAAAGTGTAGAGTGTCTTAA
AATGTTCAAAATGGTTAACAAAATGTTAGTGTGAGGCGTATGTGGCAAAATGTTACAGAATCTAAGTGG
GACATGGCTGTCTTGTACTGTTTTCTATCTTATGTTAAAAGTATATAATAAAAATATTAA
ATTTCATTTTTA

PCT/V/US04/06308

Human SMN1 Protein sequence - var1 (public gi: 13259512) (SEQ ID NO: 273)
MAMSSGGGGVPEQEDSVLFRRTGQSDDSDIWDDTALIKAYDKAVASFHKHALKNNDICETSGKPKTTP
KRKPAKKNKSQQKNTAASLQQWKVGDKCSAIWSEDCIYPATIASIDFKRETCVVVTGYGNREEQNLSD
LLSPICEVANNIEQNAQENENESQVSTDESENSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPCKI
IPPPPICPDSDLDDADALGSM LISWYMSGYHTGYMGFRQNKEGRCSHSLN

Human SMN1 Protein sequence - var2 (public gi: 12654181) (SEQ ID NO: 274)
MAMSSGGGGVPEQEDSVLFRRTGQSDDSDIWDDTALIKAYDKAVASFHKHALKNNDICETSGKPKTTP
KRKPAKKNKSQQKNTAASLQQWKVGDKCSAIWSEDCIYPATIASIDFKRETCVVVTGYGNREEQNLSD
LLSPICEVANNIEQNAQENENESQVSTDESENSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPCKP
GLKFNGPPPPPPPPPHLLSCWLPPFSGPPIIPPPPICPDSDLDDADALGSM LISWYMSGYHTGYYMEM
LA

Human SMN1 Protein sequence - var3 (public gi: 4507091) (SEQ ID NO: 275)
MAMSSGGGGVPEQEDSVLFRRTGQSDDSDIWDDTALIKAYDKAVASFHKHALKNNDICETSGKPKTTP
KRKPAKKNKSQQKNTAASLQQWKVGDKCSAIWSEDCIYPATIASIDFKRETCVVVTGYGNREEQNLSD
LLSPICEVANNIEQNAQENENESQVSTDESENSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPCKP
GLKFNGPPPPPPPPPHLLSCWLPPFSGPPIIPPPPICPDSDLDDADALGSM LISWYMSGYHTGYYMGF
RQNKEGRCSHSLN

Human SMN2 mRNA sequence - var1 (public gi: 736410) (SEQ ID NO: 147)
GCGATGAGCAGCGCGGCAGTGGTGGCGTCCCGGAGCAGGAGGATTCCGTCTTCCGGCGCGCA
CAGGCCAGAGCGATGATTCTGACATTGGGATGATAACAGCACTGATAAAAGCATATGATAAAAGCTGTGGC
TTCATTTAACGATGCTCTAAAGAACGTTGACATTGGTAAACTTCGGTAAACCTTCCTTACACAGTGGAAAGTTG
AGAAAACCTGCTAACGAAAGAACGAAAGAACGAAAGAACGAAACTCTGCACTTCCCTTACACAGTGGAAAGTTG
GGGACAATGTTCTGCCATTGGTCAAGAGACGGTTGCATTACCCAGCTACCAATTGCTTCAATTGATTT
TAAGAGAGAACCTGTGTAAGTAGCTAAATAATAGAACAGAACGAGAACGAAATCTGTCGATCTA
CTTCCCCAATCTGTAAGTAGCTAAATAATAGAACAGAACGAGAACGAAATCTGTCGATCTA
TTCAACAGATGAAAGTGAAGACTCCAGGTCTCTGGAAATAATCAGATAACATCAAGCCAAATCTGC
TCCATGGAACCTTTCTCCCTCACCCCCCATGCCAGGGCAAGACTGGGACAGGAAGCCAGGT
CTAAAATTCAATGGCCCACCACGCCACCGCCACCCACCCACTTACTATCATGCTGGCTGCCTC
CATTTCTCTGGACCACCAATAATTCCCCCACCCATATGTCAGATTCTTGATGATGCTGA
TGCTTGGGAAGTATGTTATTCTATGGTACATGAGTGGTATCATACTGGTATTATATGGGTTT
CAAATCAAAAGAAGGAAGGTGCTCACATTCTTAAATTAAAGGAGAAATGCTGGCATAGAGCAGCACTA
AATGACACCCTAAAGAACGATCAGACAGATCTGGAAATGTAAGCGTATAGAACATACTGGCCTCAT
TTCTCAAAATATCAAGTGGGGAAAGAAAAAGGAAGTGGAAATGGTAACTCTTCTGATTAAAAGTT
ATGTAATAAACCAATGCAATGTAAGTGGAAATTTACTGGACTCTATTGAAACCATCTGAAAGACTG
AGGTGGGGTGGGGACCGCCACCGTGTGAGGAGTTGAGAAAGGTGTTGAGTTATAAAAGACTGCTTA
GATATGGATAATTATTGTAATTGAGCTGTGAGAAGGGTGTGAGTTATAAAAGACTGCTTA
ATTGCACTAAAGCATTAGAACGAGTGTAGAGTGTCTTAAATGTTCAATGGTTAACAAA
TGTATGTGAGCGTATGGCAAAATGTTACAGAACATCTAACCTGGTGGACATGGCTGTTATTGACTGTT
TTTTCTATCTCTATATGTTAAAGTATATAATAAAATATTTAATTTTTTTAAACAAAAAA

Human SMN2 mRNA sequence - var2 (public gi: 13259530) (SEQ ID NO: 148)
CCACAAATGGGGAGGGCGATAACCACCTCGTAGAAAGCGTGAGAACGTTACTACAAGCGGTCTCCGGCC
ACCGTACTGTTCCGCTCCAGAACGCCCGGCGCGGAAGTCGTCACTCTTAAGAACGGACGGGGCCCA
CGCTGCGCACCGCGGGTTGCTATGGCGATGAGCAGCGCGCAGTGGTGGCGGTCCGGAGCAGGA
GGATTCCGTGCTTCCGGCGCGCACAGGCCAGAGCGATGATTCTGACATTGGGATGATAACGCACTG
ATAAAAGCATATGATAAAAGCTGTGGCTCATTTAACGATGCTCTAAAGAACGTTGACATTGTAACCTT
CGGGTAAACCAAAACACACCTAAAGAACCTGCTAACGAAAGAACGAAACTCTG
AGCTTCTTACAACAGTGGAAAGTTGGGACAATGTTCTGCCATTGGTCAAGAGACGGTGTGCAATTAC
CCAGCTACCAATTGCTTCAATTGATTAAAGAGAACCTGTGTTGTTTACACTGGATATGGAAATA
GAGAGGAGCAAATCTGTCGATCTACTTCCCAATCTGTAAGTAGCTAAATAATAGAACAGAACATGC
TCAAGAGAACGAAAGCCAAGTTCAACAGATGAAAGTGGAGAACCTCCAGGTCTCTGGAAATAAA
TCAGATAAACATCAAGCCCCAAATCTGCTTACAAGAACGTTGAGAACGTTGAGAACGTTGAGAACG
CAAGACTGGGACCGAGAACGATAATTCCCCCACCCATGTCAGATTCTTGTGATGATGCTGA
TGCTTGGGAAGTATGTTATTGTCATGGTACATGAGTGGTATCTACACTGGCTATTATATGGAAATGCTG
GCATAGAGCAGCACTAAATGACACCAACTAAAGAACGATCAGACAGAACGATCTGGAAATGTAAGC
AGATAACTGGCCTCATTCTTCAAAATATCAAGTGGTGGAAAGAAAAAGGAAGTGGAAATGGTAAC
TTCTGATTAAAAGTTATGTAATAACCAAATGCAATGTGAAATTTACTGGACTCTTTGAAACCA

Figure 36 part - 82

PCT/US04/06308

TCTGTAAAAGACTGAGGTGGGGTGGGAGGCCAGCACGGTGGTAGGCAGTTGAGAAAATTGAATGTGG
ATTAGATTTGAATGATAATTGGATAATTATTGGTAATTATGGCCTGTGAGAAGGGTGTGAGTTAT
AAAAGACTGTCTAATTGCATACTTAAGCATTTAGGAATGAAGTGTAGAGTGTCTAAATGTTCAA
ATGGTTAACAAAATGTATGTAGGGCGTATGTGGCAAAATGTACAGAATCTAAGTGGGACATGGCTG
TTCATTGTACTGTTTTCTATCTTCTATATGTTAACAGTATATAATAAAAATTAAATTAAAAA
AAA

Human SMN2 mRNA sequence - var3 (public gi: 13259528) (SEQ ID NO: 149)
CCACAAATGTGGGAGGGCGATAACCACCTCGTAGAAAGCGTGAGAAGTTACTACAAGCGGTCTCCGGCC
ACCGTACTGTTCCGCTCCCAGAACGCCCCGGCGGAAGTCGTCACTCTTAAGAAGGGACGGGGCC
CGCTGCGACCCCGGGTTGCTATGGCAGTGAGCAGCGGGCAGTGGTGGCGGTCCGGAGCAGGA
GGATTCCTGCTGTTCCGGCGGCACAGGCCAGAGCGATGATTCTGACATTGGATGATACTGGCT
ATAAAAGCATATGATAAAAGCTGTGGCTCATTTAACAGATGCTAAAGAATGGTACATTGTGAAACTT
CGGGTAAACAAAACACACCTAAAGAAAACCTGCTAAAGAAGAATAAAAGCCAAAAGAAGAATACTGC
AGCTTCTTACAACAGTGGAAAGTGGGACAAATGTTCTGCATTGGCTCAGAGCGTTGCAATT
CCAGCTACCATGCTTCATTGATTTAACAGAGAAAACCTGTTGTTGTTACACTGGATATGAAATA
GAGAGGAGCAAATCTGTCGATCTACTTCCCAATCTGTGAAAGTAGCTAATAATAGAACAGAATGC
TCAAGAGAATGAAAGCCAAGTTCAACAGATGAAAGTGAGAACCTCCAGGTCTCTGGAAATAAA
TCAGATAACATCAAGCCAAATCTGCTCCATGGAACCTCTTCTCCCTCACCACCCCCATGCCAGGGC
CAAGACTGGGACCAGGAAAGATAATTCCCCCACCACCTCCATATGTCAGATTCTCTGATGATGCTGA
TGCTTGGGAAAGTATGTTAATTTCATGGTACATGAGTGGCTATCATACTGGCTATTATATGGGTT
GAGAGGAGCAAATCTGTCGATCTACTTCCCAATCTGTGAAAGTAGCTAATAATAGAACAGAATGC
CAAATCAAAAAGAAGGAAGGTGCTCACATTCTTAAATTAAAGGAGAAATGCTGGCATAGAGCAGCA
AATGACACCACTAAAGAACGATCAGACAGATCTGGATGTGAAAGCGTTAGAGAAGATAACTGGC
TTCTTCTTAAATCAAGTGTGGGAAAGGAAAGTGGAAATGGGTAACCTCTTCTGATTAAAAGTT
ATGTAATAACCAAATGCAATGTGAAATATTACTGGACTCTTCTGAAAACCATCTGTAAAAGACTGAG
GTGGGGTGGGAGGCCAGCAGGGTGGAGGAGAAATTGAAATGTGGATTAGATTGAAATG
TATTGGATAATTGGTAAATTGGCTGTGAGAAGGGTGTGAGTTATAAAAGACTGTCTTAAT
TTGCATACTTAAGCATTAGGAATGAAGTGTAGAGTGTCTAAATGTTCAAATGGTTAACAAAATG
TATGTGAGGCAGTGTGGCAAAATGTACAGAATCTAAGTGGGACATGGCTGTTCAATTGACTGTTT
TTCTATCTTCTATATGTTAACAGTATATAATAAAAATTAAATTAAAAAATTAAATTTTTTTAA

Human SMN2 mRNA sequence - var4 (public gi: 13259526) (SEQ ID NO: 150)
CCACAAATGTGGGAGGGCGATAACCACCTCGTAGAAAGCGTGAGAAGTTACTACAAGCGGTCTCCGGCC
ACCGTACTGTTCCGCTCCCAGAACGCCCCGGCGGAAGTCGTCACTCTTAAGAAGGGACGGGGCC
CGCTGCGACCCCGGGTTGCTATGGCAGTGAGCAGCGGGCAGTGGTGGCGGTCCGGAGCAGGA
GGATTCCTGCTGTTCCGGCGGCACAGGCCAGAGCGATGATTCTGACATTGGATGATACTGGCT
ATAAAAGCATATGATAAAAGCTGTGGCTCATTTAACAGATGCTCTAAAGAATGGTACATTGTGAAACTT
CGGGTAAACAAAACACACCTAAAGAAAACCTGCTAAAGAAGAATAAAAGCCAAAAGAAGAATACTGC
AGCTTCTTACAACAGTGGAAAGTGGGACAAATGTTCTGCATTGGCTCAGAGACGGTTGCAATT
CCAGCTACCATGCTTCATTGATTTAACAGAGAAAACCTGTTGTTGTTTACACTGGATATGAAATA
GAGAGGAGCAAATCTGTCGATCTACTTCCCAATCTGTGAAAGTAGCTAATAATAGAACAGAATGC
TCAAGAGAATGAAAAGCCAAGTTCAACAGATGAAAGTAGCTAATAATAGAACAGAATG
TCAGATAACATCAAGCCAAATCTGCTCCATGGAACCTCTTCTCCCTCACCACCCCCATGCCAGGGC
CAAGACTGGGACCAGGAAAGCCAGGTCTAAATTCAATGGCCCAACCACGCCACGCCACCA
CCACTTACTATCATGCTGGCTGCCCTCATTCTCTGGACCACCAATAATTCCCCCACCACCTCCATA
TGTCCAGATTCTCTGATGATGCTGTTGGAGTATGTTAATTTCATGGTACATGAGTGGCTATC
ATACTGGCTATTATATGGAAATGCTGGCATAGAGCAGCACTAAATGACACCCTAAAGAAAAGATCAGAC
AGATCTGGAATGTGAGCGTTAGAGAAGATAACTGGCTCATTTCTTAAATATCAAGTGTGGGAAAG
AAAAAGGAAGTGGAAATGGTAACTCTTCTGATTTAAAGTATGTAATAACCAAATGCAATGTGAAATA
TTTACTGGACTCTTTGAAAACCATCTGTAAAAGACTGAGGTGGGGTGGGAGGCCAGCAGGTGGTG
AGGCAAGTGTGAGAAAATTGAAATGTGGATTAGATTGTTGAAATGATATTGAAATTATGGTAATT
CCTGTGAGAAGGGTGTGAGTTATAAAAGACTGTCTTAAATTGCAACTTAAGCATTAGGAATGAAG
TGTAGAGTGTCTTAAATGTTCAACAAAATGTATGTGAGGGCGTATGTGGCAAAATGTTA
CAGAATCTAAGTGGGACATGGCTGTTCAATTGACTGTTTTCTATCTTCTATATGTTAAAAGTAT
ATAATAAAAATTAAATTAAAAATTAAATTTTTTTAA

Human SMN2 mRNA sequence - var5 (public gi: 13259525) (SEQ ID NO: 151)
CCACAAATGTGGGAGGGCGATAACCACCTCGTAGAAAGCGTGAGAAGTTACTACAAGCGGTCTCCGGCC
ACCGTACTGTTCCGCTCCCAGAACGCCCCGGCGGAAGTCGTCACTCTTAAGAAGGGACGGGGCC
CGCTGCGACCCCGGGTTGCTATGGCAGTGAGCAGCGGGCAGTGGTGGCGGTCCGGAGCAGGA
GGATTCCTGCTGTTCCGGCGGCACAGGCCAGAGCGATGATTCTGACATTGGATGATACTGGCT
ATAAAAGCATATGATAAAAGCTGTGGCTCATTTAACAGATGCTAAAGAATGGTACATTGTGAAACTT

CGGGTAAACCAAAAACCACACTAAAAGAAAACCTGCTAAGAAGAATAAGCCAAAAGAAGAATACTGC
AGCTTCTTACAACAGTGGAAAGTTGGGACAAATGTTCTGCATTGGTCAGAAGACGGTTGCATTAC
CCAGCTACCATGGCTCAATTGATTTAAGAGAGAACCTGTGTTGGTTACACTGGATATGGAAATA
GAGAGGAGCAAATCTGCCATCTACTTTCCCCAATCTGTGAAGTAGCTAATAATAGAACAGAATGC
TCAAGAGAATGAAAATGAAAGCCAAGTTCAACAGATGAAAGTGAGAACTCCAGGTCTCTGGAAATAAA
TCAGATAACATCAAGCCCAAATCTGCCATGGAACTCTTCTCCCTCCACCCCCCATGCCAGGGC
CAAGACTGGGACAGGAAAGCCAGGTCTAAAATTCAATGGCCACCACGCCACGCCACCACCCACC
CCACTTACTATCATGCTGGCTGCCATTCTCTGGACCCAATAATTCCCCCACCACCTCCATA
TGTCAGATTCTTGTGATGCTGATGCTGGAAAGTATGTTAATTCTATGGTACATGAGTGGTATC
ATACTGGCTATTATGGTTTAGACAAAATCAAAAAGAAGGAAGGTGTCACATTCTTAAATTAAAGG
AGAAATGCTGGCATAGAGCAGCACTAAATGACACCACTAAAGAAACGATCAGACAGATCTGGAATGTGAA
CGGTATAGAAGATAACTGGCCTATTCTCAAAATATCAAGTGTGGGAAAGAAAAAGGAAGTGGAA
TGGGTAACTCTCTGATTAAAAGTTATGTAATAACCAATGCAATGTGAAATATTACTGGACTCTT
TGAAAACCATCTGAAAAGACTGAGGTGGGGTGGGAGGCCAGCACGGTGGTGAGGAGAAAAT
TTGAATGTGGATTAGATTTGAATGATATTGGATAATTATTGTAATTATGGCTGTGAGAAGGGTGT
TGTAGTTATAAAAAGACTGCTTAATTGCTACTTAAGCATTAGGAATGAAGTGTAGAGTGTCTAA
AATGTTCAAATGGTTAACAAAATGTATGTGAGGCGTATGTCGAAATGTTACAGAATCTAATGGTG
GACATGGCTGTTATTGACTGTTTCTATGTTAAAAGTATATAATAAAAATATTAA
ATTTTTTTAA

Human SMN2 Protein sequence - var1 (public gi: 736411) (SEQ ID NO: 276)
AMSSGGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFHKHALKNGDICETSGKPKTTPK
RKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIASIDFKRETCAVVYVTGYGNREEQNLSDL
LLSPICEVANNIEQNAQENENESQVSTDESENSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPGKPG
LKFNNGPPPPPPPPPHLLSCWLPPFSGPPIIPPPPICPDSLDDADALGSMLISWYMSGYHTGYYMGR
QNQKEGRCSHSLN

Human SMN2 Protein sequence - var2 (public gi: 13259531) (SEQ ID NO: 277)
MAMSSGGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFHKHALKNGDICETSGKPKTTP
KRPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIASIDFKRETCAVVYVTGYGNREEQNLSD
LLSPICEVANNIEQNAQENENESQVSTDESENSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPGKI
IPPPPPIPDSLDDADALGSMLISWYMSGYHTGYYMEMLA

Human SMN2 Protein sequence - var3 (public gi: 13259529) (SEQ ID NO: 278)
MAMSSGGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFHKHALKNGDICETSGKPKTTP
KRPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIASIDFKRETCAVVYVTGYGNREEQNLSD
LLSPICEVANNIEQNAQENENESQVSTDESENSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPGKI
IPPPPPIPDSLDDADALGSMLISWYMSGYHTGYYMEMLA

Human SMN2 Protein sequence - var4 (public gi: 13259527) (SEQ ID NO: 279)
MAMSSGGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFHKHALKNGDICETSGKPKTTP
KRPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIASIDFKRETCAVVYVTGYGNREEQNLSD
LLSPICEVANNIEQNAQENENESQVSTDESENSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPGKPM
GLKFNGPPPPPPPPPHLLSCWLPPFSGPPIIPPPPIPDSLDDADALGSMLISWYMSGYHTGYYMEM
LA

Human SMN2 Protein sequence - var5 (public gi: 10937869) (SEQ ID NO: 280)
MAMSSGGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFHKHALKNGDICETSGKPKTTP
KRPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIASIDFKRETCAVVYVTGYGNREEQNLSD
LLSPICEVANNIEQNAQENENESQVSTDESENSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPGKPM
GLKFNGPPPPPPPPPHLLSCWLPPFSGPPIIPPPPIPDSLDDADALGSMLISWYMSGYHTGYYMGF
RQNQKEGRCSHSLN

Unigene Name: SNX1 Unigene ID: Hs.498154

Human SNX1 mRNA sequence - var1 (public gi: 3152939) (SEQ ID NO: 152)
ATGGCGTCGGGTGGTGGCTGTAGCGCTCGGAGAGACTGCCTCCGCCCTCCCCGGCTGGAGCCGG
AGTCCGAGGGGGCGGCCGGGGATCAGAACCGAGGGCTGGGACAGCGACACCGAGGGGGAGGACATT
CACCGGCGCCGCGGTGGTCAGTAAACATCAGTCTCCAAAGATAACTACATCCCTCTCCATCAACAAT

GGCTCAAAGAAAATGGGATCCATGAAGAACAGACCAAGAGGCCACAGGATCTTTCAGATGCCACAG
TGGAGCTATCCTGGACAGCACACAAAATAATCAGAAGAAGGTGCTAGCCAAACACTCAATTCTCTTC
TCCTCAGGAAGCCACAAATTCTCGAAGCCCCAGCCAACCTATGAGGAGCTAGAGGAAGAACAGGAG
GATCAATTGATTGACAGTCGGTATAACTGATCCTGAGAAGATAGGGATGGTATGAATGCATATGTAG
CCTACAAAGTTACAACACAGACAAGCTTACCATGTTAGAAGCAAACAGTTGCAGTAAAAGAAGATT
TAGTACTTCTGGTCTTATGAGAAGCTTCCAGAGAAGCACTCTCAGAATGGCTTCAATTGCTCTCCA
TCCCCGGAGAAGAGCCTCATAGGGATGACAAAAGTGAAGTGGGAAGGAAGATTCTTCTGCAGAAT
TTCTGAAAACGGAGGGCCCTTAAAGGTAACCTCAGAGGATTGTAATCATCCTACCATGTTACA
GGACCTGACGTAGAGAGCTTCTGGAAAAAGAAGAGCTGCCACGTGGTACCCAGACATTGAGT
GGTGGTGGTCTCTCAAGATGTTCAACAAAGGCCACAGATGCCAGCAGCAAATGACCATAAGATGAATG
AATCAGACATTGGTTGAGGAGAAGCTCCAGGAGGTAGAGTGTAGGGAGCAGCGCTACGGAAACTGCA
TGCTGTTGAGAAACTCTAGTCACCATAGGAAAGAGCTAGCGCTGAACACAGCCCAGTTGCAAAGAGT
CTAGCCATGCTGGGAGCTGAGGACACACGGCATTGTCAGGGCACTCTCCAGCTGGTGGAGGTGG
AAGAAAAATTGAGCAGCTCCACCAGGAACAGGCCAACAAATGACTTCTCCTCTGAGCTCTGAG
TGACTACATTGCCCTGCCATAGTCAGCGCTGCCCTCGACCAGCGCATGAAGACATGGCAGCGCTGG
CAGGATGCCAACGCCACTGAGAAGAGCGGGAGGCCAGGCTCGCTGTGGCAACAGCCTG
ATAAGCTGCAGCAGGCCAACAGGAGATCCTCGAGTGGAGTCTCGGGTCACTCAATATGAAAGGGACTT
CGAGAGGATTTCACACAGTGGTCCGAAAAGAAGTGAACGGTTGAGAAAGAGAAATCCAAGGACTTCAAG
AACACGTGATCAAGTACCTTGAGACACTCCTTACTCACAGCAGCAGCTGGCAAAGTACTGGGAAGCCT
TCCTCCTGAGGCCAACAGGCCATCTCCTAA

Human SNX1 mRNA sequence - var2 (public gi: 3152941) (SEQ ID NO: 153)
ATGGCGTCGGGTGGTGGCTGTAGCGCTTCCGAGAGACTGCCCTCCGCCCTGGAGCCGG
AGTCGGAGGGGGCGGGGGGATCAGAACCCAGGCTGGGAGCAGCGACACCGAGGGGGAGGACATT
CACCGGCGCCGGTGGTCACTGAAACATCAGTCTCAAAGATAACTACATCCCTCTCCATCAACAAAT
GGCTCAAAGAAAATGGGATCCATGAAGAACAGACCAAGAGGCCACAGGATCTTGCAGGGATGGTA
TGAATGCATATGTTAGCCTACAAGTTACAACACAGACAAGCTTACCATGTTAGAAGCAAACAGTTGC
AGTAAAAAGAAGATTAGTGAATTCTGGGTCTTATGAGAAGCTTCCGAGAAGCACTCTCAGAATGGC
TTCATGTCCTCCATCCCCGGAGAAGAGCCTCATAGGGATGACAAAAGTGAAGTGGGAAGGAAGATT
CTTCTCTGAGAATTCTGAAAAACGGAGGGCCCTTAGAAAGGTAACCTCAGAGGATTGTAATCA
TCCCTACATGTTACAGGACCTGACGTAGAGGTTCTGGAAAAAGAAGAGCTGCCACGTGGCTGGGT
ACCCAGACATTGAGTGGTCTGGTCTCTCAAGATGTTCAACAAAGGCCACAGATGCCAGCAGCAAATGA
CCATCAAGATGAATGAATCAGACATTGGTTGAGGAGAAGCTCCAGGGTAGAGTGTGAGGGAGCAGCG
CTTACGGAAACTGCATGCTGTTGAGAAACTCTAGTCACCATAGGAAAGAGCTAGCGCTGAACACAGCC
CAGTTGCAAAGAGTCTAGCATGCTTGGAGCTGAGGACACACGGCATTGTCAGGGCACTCTCCC
AGCTGGCTGAGGTTGAGAAAATTGAGCAGCTCCACAGGAAACAGGCCAACAAATGACTTCTCCT
TGCTGAGCTCTGAGTGAACATTCGGCTCTGGCCATAGTCAGCGCTGCCCTCGACCAGCGCATGAAG
ACATGGCAGCGCTGGCAGGATGCCAACACTGAGAAGAGCGGGAGGCCAGGCTGGCTGCTGT
GGGCCAACAGGCTGATAAGCTGAGGCAAGGAGATCCTCGAGTGGAGTCTGGGTGACTCA
ATATGAAAGGACTTCGAGAGGATTCAACAGTGGTCCGAAAAGAAGTGAACGGTTGAGAAAGAGAAA
TCCAAGGACTCAAGAACACAGTGAACAGTACCTTGAGACACTCCTTACTCACAGCAGCAGCTGGCAA
AGTACTGGGAAGCCTCCTCTGAGGCCAACAGGCCATCTCCTAA

Human SNX1 mRNA sequence - var3 (public gi: 30582804) (SEQ ID NO: 154)
ATGGCGTCGGGTGGTGGCTGTAGCGCTTCCGAGAGACTGCCCTCCGCCCTGGAGCCGG
AGTCGGAGGGGGCGGGCGGGGGATCAGAACCCAGGCTGGGAGCAGCGACACCGAGGGGGAGGACATT
CACCGGCGCCGGTGGTCACTGAAACATCAGTCTCAAAGATAACTACATCCCTCTCCATCAACAAAT
GGCTCAAAGAAAATGGGATCCATGAAGAACAGACCAAGAGGCCACAGGATCTTGCAGATGCCACAG
TGGAGCTATCCTGGACAGCACACAAAATAATCAGAAGAAGGTGCTAGCAGCAAACACTCAATTCTCTCC
TCCTCAGGAAGCCACAAATTCTCGAAGCCCCAGCCAACCTATGAGGAGCTAGAGGAAGAACAGGAG
GATCAATTGATTGACAGTCGGTAAACTGATCCTGAGAAGATAGGGATGGTATGAATGCATATGTAG
CCTACAAAGTTACAACACAGACAAGCTTACCATGTTAGAAGCAAACAGTTGCAGTAAAAGAAGATT
TAGTGAATTCTGGGTCTTATGAGAAGCTTCCGAGAAGGACTCTCAGAAGATGGCTTCAATTGCTCTCCA
CCCCGGAGAAGAGCCTCATAGGGATGACAAAAGTGAAGTGGGAAGGAAGATTCTTCTGCAGAAT
TTCTTGGAAAACGGAGGGCCCTTAGAAAGGTAACCTCAGAGGATTGTAATCATCCTACCATGTTACA
GGACCTGACGTAGAGAGTTCTGGAAAAAGAAGAGCTGCCACGTGGCTGGTACCCAGACATTGAGT
GGTGGCTGGTCTCTCAAGATGTTCAACAAAGGCCACAGATGCCAGCAGCAAATGACCATCAAGATGAATG
AATCAGACATTGGTTGAGGAGAAGCTCCAGGGAGTAGAGTGTGAGGGAGCAGCGCTACGGAAACTGCA
TGCTGTTGAGAAACTCTAGTCACCATAGGAAAGAGCTAGCGCTGAACACAGCCCAGTTGCAAAGAGT
CTAGCCATGCTGGGAGCTCTGAGGACAACACGGCATTGTCAGGGCACTCTCCAGCTGGCTGAGGTGG
AAGAAAAATTGAGCAGCTCCACCAGGAACAGGCCAACAAATGACTTCTCCTCTGAGCTCTGAG
TGACTACATTGCCCTCCGCCATAGTCAGCGCTGCCCTCGACCAGCGCATGAAGACATGGCAGCGCTGG

CAGGATGCCAAGCCACACTGCAGAAGAAGCGGGAGGCCAGGCCTGGCTGCTGGCCAACAAGCCTG
ATAAGCTGCAGCAGGCCAAGGACGAGATCCTCGAGTGGGAGTCCTGGGTGACTCAATATGAAAGGACTT
CGAGAGGATTCAACAGTGGTCCGAAAAGAAGTGTACGGTTGAGAAAGAGAAATCCAAGGACTCAAG
AACCAAGTGTATCAAGTACCTTGAGACACTCCTTACTCACAGCAGCTGGCAAAGTACTGGGAAGCCT
TCCTCTGAGGCAAAGGCCATCTCTAG

Human SNX1 mRNA sequence - var4 (public gi: 4884359) (SEQ ID NO: 155)
GGTGCTTGTAAAGTCCATCTAATGATCATTCTGACGTAAGTCTGTTTCTTATTTCTTGGAAATGA
TGTCTCCTCTGGTTCAGAACCTCCTCTGCTTCCTGTATCCCTGAGGCTGGGGCCAGTTGTCTTT
AGGGCTTGTGATTTGTAAAGAGCTGACGTCAGTGGAAATCAAGTAGGCCAGTAGTGGTTAGGGTA
CTGAGGCCAGAACGCCCTACAAGGAATAACAGGACACAAAGGAAGAAGGTGGTATTCCAGCTGGGACCC
AGGAGGGAGGACTTGTGGAGAACCTGTGACTGAGTCTAAAGGTGAAAGTGTGCTT
CTGCCCTCCCTGCTGCTGGCAGGGTAGGTAGGCCATCTAGGAAATGTCAGTGGCTGGTAGGG
TAAAGTCAGTGGGCCATGGAGAAAACAGGACAGGAGCCACATCACATGGGTGTCGATAGGACCTGGG
AGGCCTTCCACATTACCATGTCGCTCGTGATCTGGACACACCAGAACGGCTGAGACTGGAGGCAGG
AAGAGCAGCCAGGCTTATCCCTACCCCTAGGAGAGCTGAAAGGGCAGGTATGGTGGGCCAGAGCTCAG
GAGAGTTTCAAACACTGAGATCGGCTCTGATTGATGAGAGGCTTGAGGGAGAGGGAGGTAGCTAG
GATGCCCGCAAGCTTCTGCCAGACACTGGGAGACAATGAAACCTTGTAAACACATGAGGCAATAG
GTTTGGGAGATGGAGGGAAAGCAGTGGTGGGGCAGTAGTGGTGAAGGTGTTTAAGAAGCGGCTC
TGGGCCAGGCACAGTGGCTTATGCCCTGATTCTAGCATTGGGAGGGCCAGGTGGGAGAATCACTTG
GCCCAAGAATTGAGACCAAGCCTGGGAATATAGTGGAGACCCCTGTCCTACAAAAATAAAACACTAGC
TGGGTGTGGTGGTGCATGCCCTGAGGCCCAGCTACGGGGAAACATCACCTGAGGCCAGGAGGTGAGG
TTGAGCTGAGCTACAGTGGCCACTGCACTCCAGGCTAGGTGACAGAGCAAGATCTGTCAAAAAAAA
AAAACAGCTGGATGGAGGGAGGCCAGTTGCTTAAGTAGGGAGATAGAGTTAAAGGAGGCTTGT
TTTATTAAAGGTGGGACAAACTTAAGCATGTTAAGGAAACAGGAGAAAGAGAATGACTATCAG
AGCCATGTTGGAGAAAATGGGTCCAGAGCACAGGAAGGGGACCTGTCAGAGGGTGCTCACTGC
TGAGGCCACAGGAAGAATCTGAGGTGGAGGGAGGCCAGGGAGGTTCTAGCTGATAATTAA
AAATTCTGAGATGAGATGTCATATTACCTATTAGCCAAGTTTTAGATAAAAGGTATGGAACC
TGCTTCCCCCTGGCTAGTCAGCGTTGGCTCCGGAGTGTGAAGATGAGGACTGACTCGAGCTGG
TGTGATCCCAGTATTCACTGTCAGTACTCAGTGACAAAATAATGAGAGAAACGGGAAATAAGAATGTC
CCTACACAAAAATACAGCAACTGTTAACTCTTCCCAGAAGATTTCATTCTGAATGTCCTGAGCTAG
GAACCTAAAAAGCTTGAAGCAACTCAAGTTAAAAAGGGGAGGAACCTCTGGAAATCTCAGGATG
GGGCAAGATGTGGCTGGAGAGTGTGTTGATGAGGGCGTGTCTTCTGGCAGCACACTCAGGGCCCA
CGGGAAAGCCCATAGACTTCAGGACATCAAGCCCCAACGGTGGGGATTTCTGGCTCCAAACATAGGAGGACACATCTG
CCTAGGGGAGGGGAGGGGGGGAGAAGATAATGGGGATCCCTGGCTCCAAACATAGGAGGACACATCTG
TGCTACAGTGGCCACATGCCCTGGATGTAACACTCTGCTTGGAGACACTGGCTAAGATTCTGCTCCAT
GTTGGACAGGGCTGCTGATCTGAGATAATGGACAAGAACAACTGAAGGCTGTTCTGGTGCATG
TGTGACCTGGCATAACTGCATCTGAGATAAGGGTGGTATTACAGTCTCCACCAAATGCTAAACTC
TGGGGTCTTACCCCTTATAACTCCATGGGCCCCAGCAAGGGTCAAGGCTCAAAACAGGTGTCAAATAGA
TAACGTGTAATGATTGTTCCCAGTTGCAAGGCTGCCCACCTGGCCTCATACTGTCGTGAAAGGACC
CAGCTCACCTTCCCTCTTATCTCCAGTCCCTCCAAACAGCGCCGACACCTCATGGAAACTGATTGCA
AATGTGCTACTTCTCACTTCTGTTGGCCGAGGAGCTGGGTAATGCTGGCTTGGTACCTTAAGCAC
CCTTCTCCCTCCCCATCTCATTCTCAGAATTACACCTGTCGAGCAGGCCATTTCACATGCCCTAG
ATGGGAATATAAGTGTAAAGGAGATGTGAAGCATTGCTGTTGTCAGAACACTGAGGATCCTCAT
AGGCACTCTAGAACCAAACTCTGAAGATGACTAACAGGAATGCCCTCATAGGACTGTTAACGTT
GCAAAAGCTGAAGCCAATTGAAATGTCATCAGGAGGGGATAAATGAATTATGGTACAGTTACACCGTT
GAATATTTCACGCCATTGAGATGATATAGCTATATTGACAGGAAACTCATATTTTAGT
GAAAAAAAGCAGGTTATAGAATTGCACTGATATTACATTTATATAAAACTTATATAGGGAGGATGTTG
ATTGAAATTGTTAAACTATGGTCACCTCTAGAGATGAAAGTTGCAATTACCTTAAATTAAATACCAT
TTGTTATTGCTTAAATTGTTATGTATTGTTAAAGAAAATCAAATAAGCTATTTCATTAT
GGGAAAAAAAAAAAAAA

Human SNX1 mRNA sequence - var5 (public gi: 4406620) (SEQ ID NO: 156)
ATAAAAGGTATGGAACCTGCTTCCCCCTGGCTAGTCAGCGTTGGGCTCCGGAGTGCTGAAGATGAGG
ACTGGACTTCGAGCTGGTGTGATCCCAGTATTCACTGTCAGTACTCAGTGACAAAATAATGAGAGAAC
GGGAATAAGAATTGTCGCTACACAAAAATACAGCAACTGTTAACTCTCCAGAAGATTTCTTCTG
AATGCTCTGTAGCTAGGAACCTAAAAAGCTTGAAGCAACTCAAGTTAAAAAGGGGAGGAAC
CTGGAAATCTCAGGATGGGCCAAGATGTGGCTGGAGAGTGTGTTGATGGAGGGCGTGTCTTCTGG
AGCACACTCAGGGCCACGGGAAGGCCATAGACTTCAGGACATCAAGCCCCAACGGTGGTGGGATTTCC
CCACCAAGTACTTGGCAGCTAGGGGGAGGGGGAGAAGATAATGGGGATCCCTGGCTCCAAAC
ATAGGAGGACACATCTGTCAGTGCACATGCCCTGGATGTACACTCTGTCCTGGAGACACTGGCT
AAGATTCTCTGCTCCATGTTGGACAGGGCTGCTGATCTGAGATAATGGACAAGAACAACTGAAGC

PCT/US04/06308

CTGTCTTCTGGTCATGTGTCACCTGCCGATAACTGCATCTGTGATAAAGTTGGGTGATTACAGTCTC
CACCAAATGCTAAACTCTGGGTCTTACGCCCTTATAACTCCATGGGCCAGCAAAGGTTCAAGGCTCAA
AACAGGTGCTAAATAGATAACTGTTGAATGATTGTCAGGCTCTGCCACCTGGCGTTCAT
CTGTCTGTGAAAGGACCCAGCTACCTTCCCTCTTATCTCCAGTCTTCCCACAGCGGACACCT
CATGGAAACTGATGCAAATGTGCTACTCTCACTCTGTGTCAGGCCCCGAGGAGGCTGGTTAATGCTGG
CTTGGTACCTTAAGCACCCCTTCTCCCTCCCCATCTCAGAATTACACCTGTCTGAAGCAGGC
ATTTTCAATGCCCTAGATGGAATATAAGTGTAGGAGATGTGAAGGATTTGCTGTGTCAGAACAT
TCACTGAGGATCCTCATAGGCACTCTAGAAACAAATCTGTGAAAGATGACTAACAGAAATGCCGTCA
TAGCACTGTTACAGTGTGCAAACACTGAAGGCAATTGAAATGTCATCAGGAGGGGATTAATGAATTAT
GGTACAGTTACACCGTTGAATATTACAGCCATTGAAAGATGATATAGCTATATTGACAAGGAA
AACTCATATTTTATGAAAGCAGGTTATAGAATTGCAATGATATTCACTATTATATAAAACTTTAT
ATATGGAAGGATGTTGATTGAAATTGTAATAACTATGGTCACTCTAGAGATGGAAGTTGCATTACCT
TTAATTAAATACCATTGTATTGCTAAAATTGTATGTTATCGTAAATAAGAAAATCAAAT
AAAGCTATTTCAATTGGGAAAAAAAAAAAAAA

Human SNX1 mRNA sequence - var6 (public gi: 34535422) (SEQ ID NO: 157)
TTTCCGCCGCGGGTGGAAAGAAGATGGCTCGGGTGGTGGCTGTAGCGCTTCGGAGAGACTGCCCTCG
CCCTTCCCCGGCCTGGAGCCGGAGTCCGAGGGGGCGCCGGGGATCAGAACCCGAGGCTGGGACAGCG
ACACCGAGGGGAGGACATTTCACCGCGCCGCGTGGTCAGTAAACATCAGTCTCCAAAGATAACTAC
ATCCCTTCTCCCATCAACAATGGCTCAAAGAAAATGGATCCATGAAAGACAAGACCAAGAGCCACAG
GATCTCTTGCAAGATGCCACAGTGGAGCTATCTTGACAGCACACAAAATACTCAGAAGAAGGTGCTAG
CCAAACACTCATTCTCCTCAGGAAGCCACAAATTCTCGAAGGCCCAGCCAACCTATGAGGA
GCTAGAGGAAGAAGAACAGGAGGATCAATTGATTGACAGTCGGTATAACTGATCCTGAGAAGATAGGG
GATGGTATGAATGCAATATGTTAGCTTACAAAGTACACACAGAACAGCTTACATTGTTAGAAGCAAAC
AGTTGCACTAAAAGAAGATTAGTGACTIONTCTGGGTCTTTATGAGAAGGTTCCAGGAGGACTCTCA
GAATGGCTCATTGCTCCACCCCGAGAAGAGCCTCATAGGGATGACAAAAGTGAAGTTGGAAAG
GAAGATTCTCTGCAAGAATTCTGAAAACGGAGGGCCCTTAGAAAGGTACCTTCAGAGGATTG
TAAATCATCCTACCATGTTACAGGACCTGACGTCAAGAGAGTTCTGGAAAAAGAAGAGCTGCCACGTGC
CGTGGTACCCAGACATTGAGTGGTCTGGTCTCTCAAGATGTTCAACAAAGCCACAGATGCCGTAGC
AAAATGACCATCAAGATGAATGAATCAGACATTGTTGAGGAGAAGGCTCAGGAGGTAGAGTGTGAGG
AGCAGCGCTTACGGAAACTGCACTGCTGTTGAGAAACTCTAGTCAACCATAGGAAAGAGCTAGCGCTGAA
CACAGCCCAGTTGCAAAGAGTCTAGCAGTGGAGCTTGAGGACAAACAGGCATTGTCACGGCA
CTCTCCCAGCTGGCTGAGGTGGAAAGAAAAATTGAGCAGCTCACCCAGGAAACAGGCCAACATGACTTCT
TCCTCTTGCTGAGCTCTGAGTACTACATTGCCCTCTGGCCATAGTCCGCGCTGCCCTCGACCAGCG
CATGAAGACATGGCAGCGCTGGCAGGATGCCAACACTGCAAGAAGACGGGAGGCGAGGCTCGG
CTGCTGTGGGCAACAGGCTGATAAGCTGAGCAGGCAAGGAGATCTCGAGTGGAGTCTCGGG
TGACTCAATATGAAAGGGACTTCAGAGGATTCAACAGTGGTCAAAGGACTCCTTGTGAGACACTCCT
AGAGAAATCCAAGGACTTCAGGTCTGAATACTCCTAACCAAGAAGTTGCCAGGTATAGTAAGTTT
TCTCTACCGTTACAAGTTGTGCTGCTGCTTCCCTCTGAAATGGGTTCTTCTCCGCTACCT
CAGCTACCTGTTGAGGGCTCAATCTGTTGATTCCCACCTCTTGTGAAAGGAGTTAAAAACA
TCTCTTAAATAAGAGGAGAAAATCTATTAAACCTATTCTCTGCAAAGGAGGAGAGACTTTCTCTC
TCTCTTTTTTTTTGGTGTCCCTATCATTAAGCAAGAGCCTTCTTGTGAAACCTTCTGCTT
CCCTAAGCTGCTCAGGGCTCTGAGTCTGCCCTCTGATGGAAGTCTTATATATAACTAAACCTATT
TTGTCACCCATCAAACACATCCTCAGTAGACTGTTGAGGTGTGATAATGACTTGTGCT
TTATCTCATAGACATGAAAGCATGCCCTCTGCCCTCTAGATAGGGTGTCCAAGAGGCTCCTGAAACCTTA
GGAGGTTCAAAGAAGCTCTAGTGTGCCCAGGAGGAGCTGCCAGCAAGAGGCCCTCAGGAGTTGCA
CACACAGCCAAAGGGTGTCAACAGATCTGCCCTCTGAGCAGGAGGAGGAGGCTCGTCAAGTCA
AGGATGGGCTTCCCCCTAGCTGTGTCACAGCTGCTCAAGCTATACTGGTCAAGAGTGGCTTGTGAGCT
CCTTGTGAGCTGAGCTGCTGACTGCCACTATGGGAGGCCCTGCCACCTCCAGCCCCCTCCATCCAAAGA
CGCTCTGCCACTGGGCCCCAGGTCTGCTGATCTGTTCTTGTGGGGGGCTAAGGTTGGGCG
AGGCAACCTGAGACAAGAAAACGCAAACTCTGATTCCTGTACACAGATGCAAGCACCAGGGGAAG
GGCAGTGGTCAAGTATTCTTTAACAGGTGAAGTTTGAAAAAGTCACTCTCCCTACCCCTCAG
TATCCTTACCATCAACTTGGTTTATCTCCAGTCTTATATGTTGCTTTACATAGTTGTAAT
AATATACACATAAAAGTATTGTATCTGCTTTATCATTAACATTGTACATGTTATAAGCATTAACT
ATATTGTTATATATCTTCAAAAGTGTATCTGAAAGCTGTGTAATTGAGGATCCATAGGGTACTG
TACCATATAATTGATTGATCCCTGTTGATTCTGGTCAAGGGGTTGTTGTTTGTGTTATGGTA
ACTTAAAATTGAAATACAATTCAAGATTACAGAAAAGTGCAGGAATATCACAAAGAACCTCTATAT
ATCTTTTATCCAGATTACTGAGTGTTCACATTCTCATGCCCTTATCTATATTTCATGTTGCATT
TTCTTAATCATTTGAGAATAATTGCAAGATAACCCATTATGCCAAAACAGTATGCAATTCCCTAAGA
ACAGGACATTCTCTCTAAGAGAAGAGAATTACTTAAAGCTATTGAGTATTGTTAAGTATTAT
TATCAAAATCAGGAAGTTAACAGTGAATTACTGTTATCTAACCATGATTCAATTAAATTGCA
CATTATCCCAATAATGTCCTTGTAGCCATTCTTACCTTGTGCAAGGATCATGTTACATTGTAAC

Figure 36 part - 87

TGTGCTCTCAATACTGCAGATTCTCAACTTCTTTGTCTTCATTACCATGACATTTGAAGAATA
CAGGCTATTTGTCG

Human SNX1 mRNA sequence - var7 (public gi: 38197125) (SEQ ID NO: 158)
GTGGAAAGATGGCGTCGGTGGCTGTAGCGCTCGGAGAGACTGCCCTCCGCCCTCCCCGG
CTGGAGCCGGAGTCGGAGGGGGCGGCCGGGGGATCAGAACCCGAGGCTGGGACAGCGACACCGAGGGGG
AGGACATTTCACCGGCGCCGGTGGTCACTAAACATCAGTCTCAAAGATAACTACATCCCTCTTCC
CATCAACAATGGCTCAAAGAAAATGGATCCATGAAGAACAGACCAAGAGCCACAGGATCTCTTGCA
GATGCCACAGTGGAGCTATCCTGGACAGCACACAAAATACTCAGAAGAAGGTGCTAGCCAAAACACTCA
TTCTCTCCTCCAGGAAGCCACAAATTCTCGAAGCCCCAGCCAACCTATGAGGAGCTAGAGGAAGA
AGAACAGGAGGATCAATTGATTTGACAGTCGGTAACTGTACCTGAGAAGAGATAGGGATGGTATGAAT
GCATATGTAGCCTACAAAGTTACAACACAGAACAGCTTACATTGTCAGAAGAACAGTTGCACTAA
AAAGAAGATTTAGTGAATTCTGGGTCTTATGAGAAGCTTCCAGAAGAGCACTCTCAGAATGGCTCAT
TGTCCCTCACCAGGGAGAAGAGCCTCATAGGGATGACAAAAGTGAAGTTGGGAAGGAAGATTCTTCT
TCTCGAGAATTTCTGAAAAACGGAGGGCGCTTAGAAAGGTACCTTCAGAGGATTGTAATCATCCTA
CCATGTTACAGGACCCCTGACGTCAAGAGACTTCTGGAAAAAGAAGAGCTGCCACGTGCCGTGGTACCCA
GACATTGAGTGGTCTGGTCTCTCAAGATGTTCAACAAAGCCACAGATGCCGTAGCAAAATGACCATC
AAGATGAATGAATCAGACATTGGTTGAGGAGAAGCTCCAGGAGGTAGAGTGTGAGGAGCAGCGTTAC
GGAAACTGCATGCTGTTAGAAACTCTAGTCACCATAGGAAGAGCTAGCGTGAACACAGCCCCAGTT
TGCAAAAGAGTCTAGCCATGCTGGGAGCTCTGAGGACAAACACGGCATTGTCACGGGCACTCTCCAGCTG
GCTGAGGTGGAAGAAAAATTGAGCAGCTCCACAGGAACAGGCCAACATGACTTCTCCCTCTGCTG
AGCTCTGAGTGAACATTCGGCCATAGTCCGCTGCTGCCACGGCAGGGCTGGCTGCTGTGGCC
GCAGCGCTGGCAGGATGCCAACACTGCAAGAAGAGCGGGAGGGCTGGCTGCTGTGGCC
AACAGCTGATAAGCTGCAAGGCGAACAGGACAGATCCTGAGTGGAGCTCAGGGTACTCAATATG
AAAGGGACTTCGAGAGGATTCAACAGTGGTCCGAAAAGAAGTGAACGGTTGAGAAAGAGAAATCAA
GGACTTCAAGAACACAGTGAATCAGTACCTTGAGACACTCCTTACTCACAGCAGCAGCTGGCAAAGTAC
TGGGAGCCTTCTTCTGAGGCAAAGGCCATCTCTAATGGACCAAGGACCCAGAGCCCACCTGTGTG
ACGCTGCTTTTATACACTGCTCTCCACCTGATGGACCCCTAGTGTGATGCATCTGCCCTAGGCTGG
ACTTAACCCCTCCCTCCCTGCCCCACGACCAACTGCTCCAGTTACTCTAACCGTTATTCATTTAGCT
TCCATATATATTTCTTACCTAACAGAAATAGTTCTGCTTAAGCAAAGACCTACAAATAGGTGGTGG
ATTATGGGATGGGTGGAGATTGATATAAATATAAATACAATGTATTTTCAGGATGTGGTTA
GGAACGGAAATAACGTTTCTGTTACTCCTGATGGTGCATGAAAGTTATGTAATAAAATATTTAA
AATCAAAAAAAAAAAAAAA

Human SNX1 mRNA sequence - var8 (public gi: 23111033) (SEQ ID NO: 159)
GGGTGGAAGAAGATGGCGTCGGTGGCTGTAGCGCTCGGAGAGACTGCCCTCCGCCCTCCCCG
GCCCTGGAGCCGGAGTCGGAGGGGGCGGCCGGGGGATCAGAACCCGAGGCTGGGACAGCGACACCGAGGG
GGAGGACATTTCACCGGCGCCGGTGGTCACTAAACATCAGTCTCAAAGATAACTACATCCCTCTT
CCCATCAACAATGGCTCAAAGAAAATGGGATCCATGAAGAACAGACCAAGAGCCACAGGATCTCTTG
CAGATGCCACAGTGGAGCTATCTGGACAGCACACAAAATACTCAGAAGAAGGTGCTAGCAAAACACT
CATTCTCTCTCCTCAGGAAGGCCAAATTCTCGAAGCCCCAGCCAACCTATGAGGAGCTAGAGGAA
GAAGAACAGGAGGATCAATTGATTTGACAGTCGGTATAACTGATCCTGAGAAGATAGGGATGGTATGA
ATGCATATGTAGCCTACAAAGTTACAAACACAGACAAGCTTACCATGTCAGAAGAACAGTTGCACT
AAAAAGAAGATTTAGTGAATTCTGGTCTTATGAGAAGCTTCCAGAAGCAGCTCAGAACATGGCTTC
ATTGCTCCCTCCGCCCCGGAGAAGAGCCTCATAGGGATGACAAAAGTGAAGTTGGGAAGGAAGATTCTT
CTTCTGAGAATTCTGAAAAACGGAGGGCGCTTAGAAAGGTACCTCAGAGGATTGTAATCATCC
TACCATGTTACAGGACCCCTGACGTCAAGAGTTCTGGAAAAGAAGAGCTGCCACGTGCCGTGGTAC
CAGACATTGAGTGGTCTGGTCTCCTCAAGATGTTCAACAAAGCCACAGATGCCGTAGCAAAATGACCA
TCAAGATGAATGAATCAGACATTGGTTGAGGAGAAGCTCAGGAGGTAGAGTGTGAGGAGCAGCGCTT
ACGGAAACTGCATGCTGTTGAGAAACTCTAGTCACCATGAGGAAGAGCTAGCGTGAACACAGCCCCAG
TTTGCAGGAGGCTAGCCATGCTGGAGCTCTGAGGACAAACAGGCCATTGTCACGGGCACTCTCCAGC
TGGCTGGAGTGGAGAAGAAAATTGAGCAGCTCCACAGGAACAGGCCAACATGACTTCTCTCTTGC
TGAGCTCTGAGTGAATCATTGCTCTGGCCATAGTCCGCTGCCCTCGACAGCGCATGAAAGACA
TGGCAGCGCTGGCAGGATGCCAACACTGCAAGAAGAGCGGGAGGGCAGGCTGGCTGCTGTGG
CCAAACAAGCGCTGATAAGCTGCAAGGCCAAGGACAGGAGATCCTCGAGTGGAGCTCGGGTACTCAATA
TGAAAGGGACTTCGAGAGGATTCAACAGTGGTCCGAAAAGAAGTGAACGGTTGAGAAAGAGAAATCC
AAGGACTTCAAGAACACACGTGATCAAGTACCTTGAGACACTCCTTACTCACAGCAGCAGCTGGCAAAGT
ACTGGGAAGCCTTCTTCTGAGGCAAAGGCCATCTCTAATGGACCAAGGACCCAGAGCCCACCTGTG
TGACGCTGCTTTTATACACTGTCCTCCTCCACCTTGTGACGGCTAGTGTGATGCATCCTGCCCTAGGCT
GGACTTAACCCCTCCCTGCCCCACGACCAACTGCTCCAGTTACTCTAACCGTTATTCATTTAG
CTTCCATATATATTTCTTACCTAACAGAAATAGTTCTGCTTAAGCAAAGACCTACAAATAGGTGGTGG
GAATTATGGGATGGGTGGAGTATTGATATAAATATAAATACAATGTATTTTCAGGATGTGGTT

PCT/US04/06308

TAGGAACGGAAATAACGTTTCTGTTACTCCTGATGGTGCCATGAAAAGTTATGTAATAAAATATTT
AAAATCAAAAAAAAAAAAAAAA

Human SNX1 mRNA sequence - var9 (public gi: 23111035) (SEQ ID NO: 160)
GGGTGGAAGAAGATGGCGTCGGGTGGTGGCTGTAGCGCTCGGAGAGACTGCCTCCGCCCTCCCCG
GCCTGGAGCGGAGTCCGAGGGGGCGGGCGGGGATCAGAACCCGAGGCTGGGACAGCGACACCGAGGG
GGAGGACATTTCACCGGCCGCGGGTGGTCAGTAACATCAGTCTCAAAGATAACTACATCCCTCTT
CCCATCAACAATGGCTCCAAAGAAAATGGGATCCATGAAGAACAGAACAGAGGCCACAGGATCTTTG
CAGATGCCACAGTGGAGCTATCCTGGACAGCACACAAAATACTCAGAAGAAGGTGCTAGCCAAAACACT
CATTCTCTCCCTCAGGAAGCCACAAATTCTCGAAGGCCCCAGCCAACCTATGAGGAGCTAGAGGAA
GAAGAACAGGAGGATCAATTGATTTGACAGTCGGTATAACTGATCCTGAGAAGATAGGGATGGTATGA
ATGCATATGAGCTTACAAACAGAACAGCTTACATTGTTCAAGAACAGTTCAGAAGCAAACAGTTGCAGT
AAAAGAAGATTAGTGACTTTCTGGGTCTTTATGAGAAGCTTCCGAGAAGCACTCTCAGAATGGCTTC
ATTGCCCCCGCCCCGGAGAACAGGCTCATAGGGATGACAAAAGTGAAGAGTTGGGAAGGAAGATTCTT
CTTCTGCAGAATTCTGAAAAACGGAGGGCCGCTTAGAAAGGTACCTTCAGAGGATTGTAATCATCC
TACCATGTTACAGGACCCCTGACGTCAAGAGAGTTCTGGAAAAGAAGAGCTGCCACGTGCCGTGGTACC
CAGACATTGAGTGGTGTCTCCTCAAGATGTTCAACAAAGCCACAGATGCCGTAGCAAAATGACCA
TCAAGATGAATGAATCAGACATTGGTTGAGGAGAACAGCTCAGGAGGTAGAGTGTGAGGAGCAGCGTT
ACGGAAACTGCATGCTGTTAGAAACTCTAGTCACCATAGGAAAGAGCTAGCGCTGAACACAGCCAG
TTTGCAGAAGAGTCTAGCCATGCTGGGAGCTCTGAGGACAACACGGCATTGTCACGGCACTCTCCAGC
TGGCTGAGGTGGAGAAGAAAAAAATTGAGCAGCTCCACCCAGGAACAGGCAACAATGACTCTTCCCTCTG
TGAGCTCTGAGTGACTACATTGCCCTCTGGCCATAGTCCGCTGGGAGTCTCGGGTGAUTCAATGAA
AGGGACTTCGAGAGGATTCAACAGTGGTCCGAAAAGAAGTGAACGGTTGAGAAAAGAGAAATCCAAGG
ACTTCAGAACACAGTGTACAGTACCTTGGAGACACTCCTTACTCACAGCAGCTGGCAAAGTACTG
GGAAGCCTCTCTCTGAGGCAAAGGCCATCTCTAACATGGACCAAGGACCCAGAGGCCACCTGTGTGAC
GCTGCCCTTTTATACACTGTCTCTCCACCTTGATGGACCCCTAGTGTATGCATCTGCCCTAGGCTGGAC
TTAACCCCTTCTCCCTGCCCCAGACCAACTGTCCCCAGTTACTCTAACCGTTATTCATTTAGCTTC
CATATATTTCTTACCTAAGAGAATAGTTCTGTTAACGAAAAGACCTACAATAGGTGGTGGAAAT
TATGGGATGGGGTGGAGTATTGATATAAATATAAATACAATGTATATTTTCAGGATGTGGTTAGG
AACTGGGAATAACGTTTCTGTTACTCCTGATGGTGCCATGAAAAGTTATGTAATAAAATATTTAAAA
TCAAAAAAAAAAAAAAA

Human SNX1 mRNA sequence - var10 (public gi: 23111031) (SEQ ID NO: 161)
GGGTGGAAGAAGATGGCGTCGGGTGGTGGCTGTAGCGCTCGGAGAGACTGCCTCCGCCCTCCCCG
GCCTGGAGCGGAGTCCGAGGGGGCGGGCGGGGATCAGAACCCGAGGCTGGGACAGCGACACCGAGGG
GGAGGACATTTCACCGGCCGCGGGTGGTCAGTAACATCAGTCTCAAAGATAACTACATCCCTCTT
CCCATCAACAATGGCTCCAAAGAAAATGGGATCCATGAAGAACAGAACAGAACAGCTTACATTGTTCAAG
CAGGGGATGGTGAATGCAATGAGCTTACAAAGTTACACAGAACAGCTTACATTGTTCAAGAAC
AAACAGTTGAGTAAAAGAAGATTAGTGACTTTCTGGGTCTTTATGAGAAGCTTCCGAGAAGCAC
TCTCAGAATGGCTCATGGCTCCCTCCGGAGAACAGGCTCATAGGGATGACAAAAGTGAAGATTG
GGAAGGAAGATTCTCTCTGAGAATTCTGAAAAACGGAGGGCCGCTTAGAAAGGTACCTTCAGAG
GATTGTAATCATCTTACCATGTTACAGGACCCCTGACGTCAAGAGAGTTCTGGAAAAGAAGAGCTGCCA
CGTGGCGTGGGTACCCAGACATTGAGTGGTGTCTCTCAAGATGTTCAACAAAGCCACAGATGCCG
TCAGCAAAATGACCATCAAGATGAATCAGACATTGGTTGAGGAGAACAGCTCAGGAGGTAGAGTG
TGAGGAGCAGCGCTTACGGAAACTGCATGCTGTTAGAAACTCTAGTCACCATAGGAAAGAGCTAGCG
CTGAACACAGCCAGTTGCAAAGAGTCTAGCCATGCTGGGAGCTCTGAGGACAACACGGCATTGTCAC
GGGCACTCTCCAGCTGGCTGAGGTGGAGAAGAAAAAAATTGAGCAGCTCCACCCAGGAACAGGCCAACATGA
CTTCTCTCTCTGCTGAGCTCTGAGTGACTACATTGCCCTCTGGCCATAGTCCGCGCTGCCCTCGAC
CAGCGCATGAACACATGGCAGCGCTGGCAGGATGCCAACACTGAGAACAGGGAGGGCCGAGG
CTCGGCTGCTGGGGCAACAGCCTGATAAGCTGAGCAGGCCAACAGGAGATCCTCGAGTGGAGTC
TCGGGTGACTCAATATGAAAGGGACTTCGAGAGGATTCAACAGTGGTCCGAAAAGAAGTGAACGGTTT
GAGAAAGAGAAAATCCAAGGACTTCAGAACACCAGTGATCAAGTACCTTGAGAAGACTCTTACTCACAGC
AGCAGCTGGCAAAGTACTGGAAAGCCTCTCTGAGGCAAAGGCCATCTCTAACATGGACCAAGGACCC
CAGAGCCCACCTGTGTGACGCTGCCCTTATAACTGTCCTCTCCACCTTGATGGACCCCTAGTGATG
CATCTGCCCTAGGCTGGACTTAACCCCTTCTCCCTGCCCCAGACCAACTGTCCCCAGTTACTCTAAC
CGTTATTCATTTAGCTTCCATATATATTTCTTACCTAACAGAGAATAGTTCTGTTAACGAAAAGAC
CTACAATAGGTGGTGGAAATTGGGATGGGGTGGAGTATTGATATAAATATAAATACAATGTATATT
TTTCAGGATGTGGTTAGGAACGGAAATAACGTTTCTGTTACTCCTGATGGTGCCATGAAAAGTTAT
GTAATAAAATATTTAAAATCAAAAAAAAAAAAAAAA

Human SNX1 protein sequence - var1 (public gi: 23111032) (SEQ ID NO: 281)

PCT/US04/06308

MASGGGGCSASERLPPPFPGLEPESEGAAGGSEPEAGDSDEGEDIFTGAAVVSKHQSPKITTSLPINN
GSKENGIHEEQDQEPPQDLFAGDMNAYVAYKVTTQTSPLFRSKQFAVKRRFSDFLGLYEKLSKHSQNG
FIVPPPPEKSЛИGМТKVVGKEDSSSAEFLERAAALERYLQRIVNHPTMLQDPDVREFLEKEELPRAVG
TQTLSGAGLLKMFNКАTDAVSKMTIKMNESDIWFEEKLQEVECEEQRLRKLHAVVETLVNHRKELALNTA
QFAKSLAMLGSSEDNTALSRALSQLAEVEEKIEQLHQEQANNDFFLLAELLSDYIRLLAIVRAAFDQRMK
TWQRWQDAQATLQKKREAEARLLWANKPDKLQQAKDEILEWESRVTQYERDFERISTVVRKEVIRFEKEK
SKDFKNHVIKYLETLLYSQQQLAKYWEAFLPEAKAIS

Human SNX1 protein sequence - var2 (public gi: 23111036) (SEQ ID NO: 282)
MASGGGGCSASERLPPPFPGLEPESEGAAGGSEPEAGDSDEGEDIFTGAAVVSKHQSPKITTSLPINN
GSKENGIHEEQDQEPPQDLFADATVELSLDSTQNQKKVLAKTLISLPPQEATNSSKPQPTYEELEEEQE
DQFDLTVGITDPEKIGDGMAVAYKVTTQTSPLFRSKQFAVKRRFSDFLGLYEKLSKHSQNGFIVPP
PPEKSЛИGМТKVVGKEDSSSAEFLERAAALERYLQRIVNHPTMLQDPDVREFLEKEELPRAVGQTLS
GAGLLKMFNКАTDAVSKMTIKMNESDIWFEEKLQEVECEEQRLRKLHAVVETLVNHRKELALNTAOFAKS
LAMLGSSEDNTALSRALSQLAEVEEKIEQLHQEQANNDFFLLAELLSDYIRLLAIVRAAFDQRMKTWQRW
RISTVVRKEVIRFEKEKSDFK
NHVIKYLETLLYSQQQLAKYWEAFLPEAKAIS

Human SNX1 protein sequence - var3 (public gi: 12653179) (SEQ ID NO: 283)
MASGGGGCSASERLPPPFPGLEPESEGAAGGSEPEAGDSDEGEDIFTGAAVVSKHQSPKITTSLPINN
GSKENGIHEEQDQEPPQDLFADATVELSLDSTQNQKKVLAKTLISLPPQEATNSSKPQPTYEELEEEQE
DQFDLTVGITDPEKIGDGMAVAYKVTTQTSPLFRSKQFAVKRRFSDFLGLYEKLSKHSQNGFIVPP
PPEKSЛИGМТKVVGKEDSSSAEFLERAAALERYLQRIVNHPTMLQDPDVREFLEKEELPRAVGQTLS
GAGLLKMFNКАTDAVSKMTIKMNESDIWFEEKLQEVECEEQRLRKLHAVVETLVNHRKELALNTAOFAKS
LAMLGSSEDNTALSRALSQLAEVEEKIEQLHQEQANNDFFLLAELLSDYIRLLAIVRAAFDQRMKTWQRW
QDAQATLQKKREAEARLLWANKPDKLQQAKDEILEWESRVTQYERDFERISTVVRKEVIRFEKEKSDFK
NHVIKYLETLLCSQQQAGEQLGIRSGILLTKLPRYSKFFSTVHKCAAASLWKWGFPLSAYLSYLF

Human SNX1 protein sequence - var4 (public gi: 34535423) (SEQ ID NO: 284)
MASGGGGCSASERLPPPFPGLEPESEGAAGGSEPEAGDSDEGEDIFTGAAVVSKHQSPKITTSLPINN
GSKENGIHEEQDQEPPQDLFADATVELSLDSTQNQKKVLAKTLISLPPQEATNSSKPQPTYEELEEEQE
DQFDLTVGITDPEKIGDGMAVAYKVTTQTSPLFRSKQFAVKRRFSDFLGLYEKLSKHSQNGFIVPP
PPEKSЛИGМТKVVGKEDSSSAEFLERAAALERYLQRIVNHPTMLQDPDVREFLEKEELPRAVGQTLS
GAGLLKMFNКАTDAVSKMTIKMNESDIWFEEKLQEVECEEQRLRKLHAVVETLVNHRKELALNTAOFAKS
LAMLGSSEDNTALSRALSQLAEVEEKIEQLHQEQANNDFFLLAELLSDYIRLLAIVRAAFDQRMKTWQRW
QDAQATLQKKREAEARLLWANKPDKLQQAKDEILEWESRVTQYERDFERISTVVRKEVIRFEKEKSDFK
NHVIKYLETLLCSQQQAGEQLGIRSGILLTKLPRYSKFFSTVHKCAAASLWKWGFPLSAYLSYLF

Human SNX1 protein sequence - var5 (public gi: 3152942) (SEQ ID NO: 285)
MASGGGGCSASERLPPPFPGLEPESEGAAGGSEPEAGDSDEGEDIFTGAAVVSKHQSPKITTSLPINN
GSKENGIHEEQDQEPPQDLFADATVELSLDSTQNQKKVLAKTLISLPPQEATNSSKPQPTYEELEEEQE
DQFDLTVGITDPEKIGDGMAVAYKVTTQTSPLFRSKQFAVKRRFSDFLGLYEKLSKHSQNGFIVPP
PPEKSЛИGМТKVVGKEDSSSAEFLERAAALERYLQRIVNHPTMLQDPDVREFLEKEELPRAVG
TQTLSGAGLLKMFNКАTDAVSKMTIKMNESDIWFEEKLQEVECEEQRLRKLHAVVETLVNHRKELALNTA
QFAKSLAMLGSSEDNTALSRALSQLAEVEEKIEQLHQEQANNDFFLLAELLSDYIRLLAIVRAAFDQRMK
TWQRWQDAQATLQKKREAEARLLWANKPDKLQQAKDEILEWESRVTQYERDFERISTVVRKEVIRFEKEK
SKDFKNHVIKYLETLLYSQQQLAKYWEAFLPEAKAIS

Human SNX1 protein sequence - var6 (public gi: 3152940) (SEQ ID NO: 286)
MASGGGGCSASERLPPPFPGLEPESEGAAGGSEPEAGDSDEGEDIFTGAAVVSKHQSPKITTSLPINN
GSKENGIHEEQDQEPPQDLFADATVELSLDSTQNQKKVLAKTLISLPPQEATNSSKPQPTYEELEEEQE
DQFDLTVGITDPEKIGDGMAVAYKVTTQTSPLFRSKQFAVKRRFSDFLGLYEKLSKHSQNGFIVPP
PPEKSЛИGМТKVVGKEDSSSAEFLERAAALERYLQRIVNHPTMLQDPDVREFLEKEELPRAVGQTLS
GAGLLKMFNКАTDAVSKMTIKMNESDIWFEEKLQEVECEEQRLRKLHAVVETLVNHRKELALNTAOFAKS
LAMLGSSEDNTALSRALSQLAEVEEKIEQLHQEQANNDFFLLAELLSDYIRLLAIVRAAFDQRMKTWQRW
QDAQATLQKKREAEARLLWANKPDKLQQAKDEILEWESRVTQYERDFERISTVVRKEVIRFEKEKSDFK
NHVIKYLETLLYSQQQLAKYWEAFLPEAKAIS

Unigene Name: SNX3 Unigene ID: Hs.12102

Human SNX3 mRNA sequence - var1 (public gi: 23111040) (SEQ ID NO: 162)

CTGTTTGCACCCCGAGTCCCAGCACCGCTTCCTCACACCCAGTCCGAGTCCCCCTCCCCAGCC
TCGGCGGGGCTCCCGGGAGCCGGCGTGGCGTCCAGCTAGTGAGCCGTTCTCCCTGGGCTCGGAGG
CGGAAGCTTGAGGGGCGCGGGAGGAGCTTCGCGTGCAGGGTGAACGCCGCTACGTGCTCGTCT
TCGCGACCGCTGCGCGAGCCCCGTGCCCCACGGCGGGCAGCAGCGGGCGGGCGCTGAACCG
GAGGGGGCGGAGGGAGCCCGCGGGGGCAGCAGCTACAGCGAAATGGCGGAGACCGTGGCTGACACCC
GGCGCTGATCACCAAGCCAGAACCGTGAATGACGCCAACGGGACCCCCCAGCAACTTCCGAGATCGA
TGTGAGCAACCCCAAACGGTGGGGTGGCGCCGGGCTTACCAACTTACGAAATCAGGGTCAAGGTC
GTAGTTCCCCCGCTCCCTGGGAAAGCGTTTGGCGTCAAGCTTACGGAGATTATAAACAGGTGCTGGTCA
ATGACAATTATTGAGGAAAGAAAACAAGGGCTGGAGCAGTTATAAACAGGTGCTGGTCA
GGCACAGAACGAAACGGTCTTCACATGTTTACAAGATGAAATAATAGATAAAAGCTATACTCCATCT
AAAATAAGACATGCCTGAAATTGGCAAGAAGGGCAAAACGTGACTATTAAATGATTGATAAGCACCAG
TGAAGAAGTTCTAACTTTAGCATGCTGACAGAAACTGGTATAACATGCCCTCAGTATAACTAACACTCA
TATGCTCAGTTTGTGTTGGAGCAGTTGACAAGAAGTTAATTGCTTAGTAAAATCCCTCATC
AGCCTTCTATATAAACAGCTTTCTGCTGTTTAATGTGGTGCACACTATAGCCTCACAAACCTGTT
ATTCCAGTGTAACTGCACTGTAACAAAGTTACTGGCTGGCTTATTGACAGTGGCT
TGGTGTGTTCTGATCTGATTAACAGGAAATTTCTCTTCCCTTTAATTGATGTCACCTTGAC
CCCATTATGTGAGGAGCAGTACACCAATTGGTTCCAATCTGCACACATAAGATAACATACTTGTGTGC
AGAAAGTATCTCCAGGCTGTAAATACCCCTCACATGGAAGATTAAATGAGGAAATCTTATATTCT
GTATAAAAACAAAAGCAAATTATATACTAAATCATTGCTAAAAATTAAAGTTGTTTCAAATAAAA
ATTAATGCAATTCTGATATGCAAAAAAAAAAAAAAA

Human SNX3 mRNA sequence - var2 (public gi: 34304375) (SEQ ID NO: 163)
GTCGGCGGAACCTGTTGCGACCCCGAGTCCCAGCACCCGCTCTCCTCACACCCAGTCCGAGTG
CCCCCTCCCGCCTCGGGGGGCTCCCGGGAGCCGGCGTGGCGTCCAGCTAGTGAGCCGTTCTCCC
CTGGCGTGGAGGGCGGAAGCTTGAGGGGGGGAGGAGCTTCGCGTGCAGGGTGAACGCCGCTCTAC
GTGCGTGGCTCTTCGCGACCGCTGCGCGAGCCCCGTGCCCCACGGCGGGCAGCAGCGCGGGCG
GCGCTGAACCGGGAGGGGGCGGAGGGAGCCCGGGCGGGCAGCAGCTACAGCGAAATGGCGAGACC
GTGGCTGACACCCGGCGCTGATCACCAAGCCAGAACCTGAAATGACGCCAACGGGACCCCCAGCAACT
TCCCTGAGATCGATGTGAGCAACCCGAAACGGTGGGGTCCGGCGGGGGCTTCAACACTTACGAAAT
CAGGGTCAAGACAAATCTTCTATTTCAGCTGAAAGAAATCTACTGTTAGAAGAAGATACTGACTTT
GAATGGCTGCAAGTGAATTAGAAAGAGAGCAAGCCCTGCTCAGAATGACATCAGAGGCAAGGAGTC
ATGGAAGGACGTGGTGTGCTCAGAATGATGAAAGTTATTGACTAGAAAGTCTGAGTCCCCCGCT
CCCTGGGAAAGCGTTTGTGCTCAGCTTCTTTAGAGGAGATGGAATATTGATGACAATTATTATT
GAGGAAAGAAAACAAGGGCTGGAGCAGTTATAAACAAAGGTGCTGGTCACTCTGGCACAGAAC
GTTGCTTCTCACATGTTTACAAGATGAAATAATAGATAAAAGCTATACTCCATCTAAATAAGACATGC
CTGAAAATTGGCAAGAAGGGCAAAACGTGACTATTAAATGATTGATAAGCACCAGTGAAGAAGTTCTAA
CTTTAGCATGTCAGACAGAAACTGGTATAACATGCCCTCAGTATAACTACACTCATATGCTCAGTTTG
TTTGTGTTGGCAGTTGACAAGGTTAATTGCTTAGTAAAATCCCTCATCCAGCCTTCTATATA
AATAGCTCTTCTGCTGTTTAATGTGGTGCACACTATAGCCTCACAAACCTGTTATTCCAGTGTAA
TGCAGTGTGTAACAAAGTTACTGGCTGGCTTATTGACAGTTTGCGTCTTGTGTTGCTTCT
ATCTGATTAACTAGAATATTCTCTTCCCCCTTTAATTGATGTCACCTGACCCATTATGTGTA
GGAGCACTACACCATTGGTTCCAATCTGCACACATAAGATAACACTTGTGTGCAGAAAGTATCTCC
TCCAGGCTGTAAATACCCCTCACATGGAAGATTAAATGAGGAAATCTTATATTCTGATAAAAACAAA
GCAAATTATATACTAAATCATTGCTAAAAATTAAAGTTGTTTCAAATAAAATTAAATGCATT
CTGATATGCAAAAAAAAAAAAAAA

Human SNX3 mRNA sequence - var3 (public gi: 34190889) (SEQ ID NO: 164)
TCGACCCACGCGTCCGCCACGCGTCGCTGTTGCGACCCCGAGTCCCAGCACACCGCTCTCCTCAC
CCCCAGTCGCACTGCCCCCTCCCGAGCCTCGGCCGGCTCCGGAGCCGGCGTGGCGTCCAGCTAG
TGAGCCGTTCTCCCTGGCTGGAGGGCGGAAGCTTGAGGGGGCGGGAGGAGCTTCGCGTGCAGGGT
GAACGCCGCTCTACGTGCTCGTCTTCGCGACCGCTGCGCGAGCCCCGTGCCCCACGGCGGGCA
GGAGCGGGCGGGCGGGCGCTGAACCGGGAGGGGGCGGAGGGAGCCCGGGCGGGCAGCAGCTACAGC
GAAATGGCGAGACCGTGGCTGACACCCGGCGCTGATCACCAAGCCGAGAACCTGAAATGACGCC
GACCCCCCAGCAACTTCTCGAGATCGATGTGAGCAACCCGAAACGGTGGGGTGGCCGGGGCGCTT
CACCACTACGAAATCAGGGTCAAGACAAATCTTCTATTTCAGCTGAAAGAAATCTACTGTTAGAAGA
AGATACAGTGAATTGCTGCGAAGTGAATTAGAAAGAGAGAGCAAGCCCTGCTCAGAATGACAT
CAGAGGCAAGGAGTCATGGAAGGACGTTGCTCAGAATGATGAAAGTTATTGACTAGAAAGT
CGTAGTCCCCCGCTCCCTGGGAAAGCGTTTGTGCTCAGCTTCTTTAGAGGAGATGGAATATT
GATGACAATTATTGAGGAAAGAAAACAAGGGCTGGAGCAGTTATAAACAGGTGCTGGTCA
TGGCACAGAACGAGCTGTCTTACATGTTTACAAGATGAAATAATAGATAAAAGCTATACTCC
TAAAATAAGACATGCCCTGAAATTGGCAAGAAGGGCAAAACGTGACTATTAAATGATTGATAAGC
GTGAAGAAGTTCTAACCTTTAGCATGTCGACAGAAACTGGTATAACATGCCCTCAGTATAACTAAC
ACTC

PCTVUS04/06306

ATATGCTCAGTTGTTGGCAGTTGACAAGAAGTTAATTGCTTAGAAAAATCCCTCATTC
CAGCCTTCTATATAAATAGCTCTTCTGCTGTTAATGTGGTGCACACTATAGCTCACAAACCTGT
TATTCCAGTGTAACTGCACTGCGTAACTAAAGTTACTGGCTGGCTTATTGACAGTTTGCGTC
TTGTTTGCTTCTGATCTGATTAACTAGAAATATTCTCTTCCCCCTTTAATTGTGATGTCATTGA
CCCCATTTATGTAGGAGCACTACACCATTGGTTCCAATACTGCACACATAAGATAACATACTTGTGTG
CAGAAAGTATCTCCAGGCTTGTAAATACCCCTCACATGGAAGATTAATGAGGGAAATCTTATATT
TGTATAAAAACAAAAGCAAATTATACATAAAATCATTTGTCTAAAATTAAAGTTGTTCAAAATAA
AATTAATGCAATTCTGATATGCAAAAAAAAAAAAAAA

Human SNX3 mRNA sequence - var4 (public gi: 15779011) (SEQ ID NO: 165)
GGGGCTTCGCGACCGCTCGCGCGAGCCCCGTGCCCCACGGCGGGCAGCAGCGGGCGGGCTG
AACGGGGGGGGGGAGGGAGCCCAGGGCGAGCAGCTACAGCGAAATGGCGAGACCGTGGCTG
ACACCCGGGGCTGATCACCAAGCCGAGAACCTGAATGACGCCAACGGACCCCCAGCAACTTCC
GATCGATGTGAGCAACCGAACGGTGGGGTCCGGCGGGGGCGCTTCAACACTACGAAATCAGGGTC
AAGACAAATCTCTAATTTCAGCTGAAAGAAATCTACTGTTAGAAGAAGATACTGACTTTGAATGGC
TGCAGGTGAAATTAGAAAGAGAGCAAGGTCGAGTCCCTGGGAAAGCGTTTGCGTCA
GCTTCTTTAGAGGAGATGATGGAATATTGATGACAATTATTGAGGAAAGAAAACAAGGGCTGGAG
CAGTTATAAAACAAGGTCGCTGGTCACTCTGGCACAGAACGTTCTCACATGTTTACAAG
ATGAAATAATAGATAAAAGCTATACTCCATCTAAATAAGACATGCCGAAATTGGCAAGAAGGGCAA
AAACGTGACTATTAATGATTGATAAGCACCACTGAAGAAGTCTAACTTTAGCATGTCGACAGAAACT
GGTATAACATGCCCTCAGTATACTAACACTCATATGCTCAGTTGTTGGCAGTTGACAAGAA
GTTAATTGCTTAGATAAAATCCCTATTCCAGGCTTCTATATAAAATAGCTTCTGCTGTTAA
TGTGGTGCACATATGCCCTAACACTGTTATTCCAGTGTAACTCTGCTGAGTGTGTA
GGCTTGGCTTATTGCACTAGTTGCGTCTTGTGCTTGTGATCTGATTAACAGTAAAGTTACT
TTTCCCCCTTTAATTGATGTCACTGACCCATTATGTCAGGAGCACTACACCATTGGTTCCA
ATACTGCACACATAAGATAACATACTGTCAGAAAGTATCTTCCAGGCTGTAATACCCCTCACA
TGGAGAATTAAAGGGAAATCTTATATTCTGATAAAAACAAAAGCAAATTATACATAAAATCATT
TGTCTAAAATTAAAGTTGTTCAAAATAAAATTAAAGTCAAAAAAAAAAAAAAA
AA

Human SNX3 mRNA sequence - var5 (public gi: 15929496) (SEQ ID NO: 166)
CGCGCGAGCCCCGTGCCCCACGGCGGGCAGCAGCGGGCGGGCGGGCTGAACGCGGAGGGGGCGGAG
GGAGCCCCGGGGGGGGAGCAGCTACAGCGAAATGGCGGAGACCGTGGCTGACACCCGGCGCTGATCA
CCAAGCCGAGAACCTGAATGACGCCAACGGACCCCCAGCAACTTCCCGAGATGAGCAACCC
GCAAACGGTGGGGTCCGGCGGGGGCGCTTCAACACTACGAAATCAGGGTCAGAACAAATCTCTATT
TTCAAGCTGAAAGAATCTACTGTTAGAAGAAGATACTGACTTTGAATGGCTGCGAAGTGAATTAGAAA
GAGAGAGCAAGGTCGAGTCCCCCGCTCCCTGGAAAGCGTTTGCCTGAGCTCTTTAGAGGAGA
TGATGGAATATTGATGACAATTATTGAGGAAAGAAAACAAGGGCTGGAGCAGTTATAAAACAAGGTC
GCTGGTCACTCTGGCACAGAACGAGCTTGTCTTACATGTTTACAAGATGAAATAATAGATAAAA
GCTAATCTCATCTGGAAAGACATGCCGAAATTGGCAAGAAGGGCAAACGTGACTATTATGAA
TTGATAAGCACCAGTGAAGAAGTTCTAACTTTAGCATGTCACAGAACACTGGTATAACATGCCCTCAG
TATAACTAACACTCATATGCTCAGTTGTTGTTGGCAGTTGACAAGAAGTTAATTGCTTTAGTAA
AAATCCCTCATCCAGCCTTCTATATAAAATAGCTTTCTGCTTTAATGTTGTCACACTATAGC
CTCACAAACCTGTTATTCCAGTGTAACTGCACTGCTGTAACAAAGTTACTGGCTGGTCTTATTGCA
CAGTTTGGCTCTTGTCTTGTGATCTGATTAACAGAATTTCTCTTCCCCCTTTAATTG
TGATGTCACTTGACCCATTATGTCAGGAGCACTACACCATTGGTTCCAATACTGCACACATAAGAT
ACATACTTGTCAGAAAGTATCTTCCAGGCTGTAATACCCCTCACATGGAAGATTAATGAGGGAA
AATTTTATATTCTGATAAAAACAAAAGCAAATTATACATAAAATCATTTGTCTAAAATTAAAGTT
GTTTCAAAATAAAATTAAAGTCAATTCTGATATGCAAAAAAAAAAAAAAA

Human SNX3 mRNA sequence - var6 (public gi: 14250078) (SEQ ID NO: 167)
AGCCCCGTGCCCCACGGCGGGCAGCAGCGGGCGGGCTGAACGCGGAGGGGGCGGAGGGAGCC
CGCGCGGGCGGGCAGCAGCTACAGCGAAATGGCGGAGACCGTGGCTGACACCCGGGGCTGATC
CGCAGAACCTGAATGACGCCAACGGACCCCCAGCAACTTCCCGAGATGAGCAACCCGAAAC
GGTGGGGTGGCCGGGGGGCGCTTCAACACTACGAAATCAGGGTCAGAACAAATCTCTATTTCAG
CTGAAAGAATCTACTGTTAGAAGAAGATACTGACTTTGAATGGCTGCGAAGTGAATTAGAAAGAGA
GCAAGGTCGAGTCCCCCGCTCCGGAAAGCGTTTGTGCTGAGCTCTTTAGAGGAGATGATGG
AATATTGATGACAATTATTGAGGAAAGAAAACAAGGGCTGGAGCAGTTATAAAACAAGGTGCTGGT
CATCCTCTGGCACAGAACGAGCTGTCCTCACATGTTTTACAAGATGAAATAATAGATAAAAGCTATA
CTCCATCTAAAATAAGACATGCCGAAATTGGCAAGAAGGGCAAACAGTGCACACTATTGATGATA
AGCACCACTGAGAAAGTTCTAACTTTAGCATGCTGCACAGAACACTGGTATAACATGCCCTCAGTAACT
AACACTCATATGCTCAGTTGTTGGCAGTTGACAAGAAGTTAATTGCTTTAGTAA

Figure 36 part - 92

PCT/US04/06308

CTCATTCCAGCCTTCTATATAAATAGCTTTCTTGGCTGTTTAATGTGGTCACACTATAGCCTCACAAACCTGTTATTCCAGTGTAACTGCAGTGTGCGTAACCTAAAGTTACTGGCTGGTCTTATTGCACAGTTTTGCGTCTTGTGTTGCTTCTTGCACTCTGATTAACAGAATATTCTCTTCCCCCTTTAATTGTGATGTCACCTTGACCCCCATTATGTGTAGGAGCACTACACCATTGGTTCAAACTGTCACACATAAGATAACATACTTGTGTGCCAGAAAGTATCTTCCTCCAGGCTGTAATACCCCTTCACATGGAAGATTAAATGAGGGAAATCTTATATTCTGTATAAAAACAAAAGCAAATTATATACTAAATCATTTGTCTAAAAATTAAAGTTGTTTCAAAAA

Human SNX3 mRNA sequence - var7 (public gi: 12957159) (SEQ ID NO: 168)
GGGCGAGGAGGGAGCCCGCGGCCGGCAGCAGCTACAGCAAATGGCGGAGACCGTGGCTGACACCCGG
CGGCTGATACCAAGCCGAGAACCTGAATGACGCCAACGGACCCCCCAGCAACTTCCTGAGATCGATG
TGAGCAAACCGCAAACGGTGGGGTCCGGCCGGGCCCTCACCAACTACGAAATCAGGGTCAAGGTCTG
AGTTCCCCCGCTCCCTGGAAAGCGTTTGCCTCAGCTCCCTTAGAGGGAGATGATGAAATTGAT
GACAATTATTGAGGAAAGAAAACAAGGGCTGGAGCAGTTATAAACAAAGGTGCTGGCATCCTCTGG
CACAGAACGAACGTTGCTTCACATGTTTACAAGATGAAATAAGATAAAAGCTATACTCCATCTAA
AATAAGACATGCCGAAATTGGCAAGAAGGGCAAAACGTGACTATTATGATTGATAAGCACCAGTG
AAGAAGTTCTAACTTTAGCATGCTGACAGAACTGGTATAACATGCCCTCAGTATACTAACACTCTATA
TGCTCAGTTTGTGTTTGTGTTGCAAGTTGACAAGAAGTTAATTGCTTTAGTAAAAACCTCTCATTCCAG
CCTTTCTATATAAAAGCTCTTCTGCTGTTTAATGCTGGTCAACATATAGCCTCACAAACCTGTAT
TCCAGTGTAACTGCACTGTCGTAACCTAAAGTTACTGGCTTGGCTTATTTGACAGTTTGTGCTCTTG
TTGCTTCTGTCATGTTAAGAATTCTCTTCTCCCCCTTTAATTGATGTCACTTGACCC
CATTATGTGTAGGAGCACTACACCATTGTTCCAATACTGCACACATAAGATACTACTGTGTGCA
AAAGTATCTCCTCCAGGCTGTAATACCCCTCACATGGAAGATAATGAGGGAAATCTTATATTCTGT
ATAAAAACAAAAGCAAATTATATACTAAATCATTGCTAAAAATTAAAGTTGTTTCAAATAAAAAT
TAAATGCAATTGATATGCAAAAAAAAAAAAAAAAAAAAAAA

Human SNX3 mRNA sequence - var8 (public gi: 34304374) (SEQ ID NO: 169)
GTCCGGCGGAACCTGTTGCGACCCCGAGTCCCATGACACCGCTTCTCCTCACACCCCACTCCGCAGTG
CCCCCTCCCCAGCCTCGGCCGGCTCCGGAGGCCGGCTGGCGTTCCAGCTAGTGAACCGTTCTCCC
CTGGGCTCGGAGGCCGAAGCTTGAGGGCGGGGGAGGGAGCTTCGCGTGCAGGGTGAACGCCGCTCTAC
GTGCTCGTTCTCTTCGCGACCCGCTGCGCGAGCCCCGTGTCCCCACGGCGGGCAGCAGCGGGCGCG
GCGGCTGAACCGGGAGGGGGGGAGGGAGGCCGCGGCCGGCAGCAGCTACAGCGAAATGGCGGAGACC
GTGGCTGACACCCGGCGCTGATACCCAAGCCGAGAACCTGAATGACGCCATGGACCCCCCAGCAACT
TCCCTGAGATGATGAGAACCCGCAAACGGTGGGGGTGCGCGGGGGCGCTTACCAACTTACGAAAT
CAGGGCTAAGACAATCTTCTTATTTCAAGCTGAAAGAATCTACTGTTAGAGAAAGATACTAGTGA
GAATGGCTGCGAAGTGAATTAGAAAGAGAGAGCAAGGCTGCTAGTCCCCCGCTCCCTGGAAAGCGTTT
TGCCTGAGCTCTCTTTAGAGGAGATGATGGAATTATTGATGACAAATTATTGAGGAAAGAAAACAAGG
GCTGGAGCAGTTATAACAAAGGCTGCTGGTCACTCTCTGGCACAGAACGAACTGTTGCTTACATGTT
TTACAAGATGAAATAATAGATAAAAGCTATACTCCATCTAAAATAAGACATGCCGAAATTGGCAAGAA
GGGGCAAAACGTGACTATTAATGATTGATAAGCACCAGTGAAGAAGTTCTAACTTTAGCATGCTGCAC
AGAAAATGGTATAACATGCCCTCAGTATACTAACACTCATATGCTCAGTTGTTGGCAGTTG
ACAAGAAGTTAATTGCTTAGTAAAATCCCTATTCCAGCTTCTATATAATAGCTCTTCTGCT
GTTTAATGTTGTCACACTATAGCCTCACAAACCTGTTATTCCAGTGTAACTGCACTGTCGTA
AGTTACTGGCTGGTCTTATTGACAGTTTGCCTGCTTCTGCTTCTGCTATCTGTA
ATTTCTCTTCCCCCTTTAATTGATGTCACTTGACCCATTATGTTGAGGAGC
GTTTCAAAACTGACACACAAGATACATACTGTTGTCAGGAGCTACACCCATTG
CTTCACATGGAAGATTAATGAGGGAAATCTTATATTCTGTTA
AAATCATTGCTAAAAATTAAAGTGTGTTCAAAATTTAAATGCA
AAAAAAAAAAAAAAAAAAAAAA

Human SNX3 mRNA sequence - var9 (public gi: 30583066) (SEQ ID NO: 170)
ATGGCGAGACCGTGGCTGACACCCGGCGCTGATCACCAAGCCGAGAACCTGAATGACGCCATCGAC
CCCCCAGCAACTTCCTCGAGATCGATGTGAGCAACCCGAAACGGTGGGGTCGGCCGGGCGCTTCAC
CACTTACGAAATCAGGGTCAAGACAAATCTTCCTATTTCAGCTGAAAGAACTACTGTTAGAAGAAGA
TACAGTGACTTGAATGGCTGCGAAGTGAATTAGAAAAGAGAGAGCAAGGTCGTAGTTCCCCGCTCCCTG
GGAAAGCGTTTTCGGTCAGCTTCCTTTAGAGGAGATGGAAATATTGATGACAATTTATTGAGGAA
AAGAAAACAAGGGCTGGAGCAGTTATAAACAAAGGTCCGCTGGTACATCCTCTGGCACAGAACGAACGTGT
CTTCACATGTTTACAAGATGAAATAATAGATAAAAGCTATACTCCATCTAAAATAAGACATGCCAG

Human SNX3 mRNA sequence - var10 (public gi: 3127052) (SEQ ID NO: 171)
GGGCGAGGAGGGAGCCCGCGGCCGGCAGCAGCTACAGCAGAAATGGCGGAGACCGTGGCTGACACCCGG

PCT/US04/06308

CGGCTGATCACCAAGCCGCAGAACCTGAATGACGCCAACGGACCCCCCAGCAACTCCTCGAGATCGATG
TGAGCAACCCGCAAACGGTGGGGTCGGCCGGGGCGCTTACCAACTACGAAATCAGGTCAAGACAAA
TCTTCCTATTTCAAGCTGAAAGAATCTACTGTTAGAAGAAGATAACAGTGACTTTGAATGGCTGCGAAGT
GAATTAGAAAGAGAGAGCAAGGTGCTAGTCCCCCGCTCCCTGGGAAAGCGTTTTGCGTCAGCTCCTT
TTAGAGGAGATGATGAAATTTGATGACAATTGAGGAAAGAAAACAAGGGCTGGAGCAGTTAT
AAACAAGGTGCGTGGTCATCCTCTGGCACAGAACCGAACGGTCTTCACATGTTTACAAGATGAAATA
ATAGATAAAAGCTATACTCCATCTAAAATAAGACATGCCTGAAATTGCGCAAGAAGGGCAAAACGTGA
CTATTAATGATTGATAAGCACCAGTGAAGAAGTCTAACATTAGCATGCTGACAGAAACTGGTATAAC
ATGCCCTCAGTATACTAACACTCATATGCTCAGTTGTTGGCAGTTGACAAGAAGTAAATT
GCTTAGTAAAAACCTCATTCCAGCCTTCTATATAAAAGCTCTTCTGTGTTAATGTTG
ACACTATGCCACAAACCTGTTATCCAGTGAATCTGCAGTGTGTAACCTAAAGTTACTGGCTTGGT
CTTATTCGACAGTTTGCCTGTTGCTTGCATCTGATTAACAGTAAATTTCTCTTCCCCC
TTTAATTCGATGTCATTGACCCCATTATGTTGAGGAGACTACACCATTGGTTCCAATACTGCA
CACATAAGATAACATACTTGTCAGAAAGTATCTCCTCCAGGTTGTAATACCCTTCACATGGAAGAT
TAATGAGGAAATCTTATATTCTGTATAAAAACAAAGCAATTATATACTAAAATCATTGCTAAA
AATTAAAGTTGTTCAAAATAAAATGCAATTCTGATATGCAAAAAAAAAAAAAAAA
AAAAAAAAAA

Human SNX3 mRNA sequence - var11 (public gi: 3126978) (SEQ ID NO: 172)
GCGGCACAGCTACAGCGAAATGGCGGAGACCGTGCTGACACCCGGCGGTGATCACCAAGCCGCAGAAC
CTGAATGACGCCAACGGACCCCCCAGCAACTTCCCTGAGATCGATGTGAGCAACCCGCAAACGGTGGGG
TCGGCCGGGCGCTTCACCACTTACGAAATCAGGTCAAGGCAAATCTCCTATTTCAGCTGAAAGA
ATCTACTGTTAGAAGAAGATAACAGTGACTTTGAATGGCTGCGAAGCTGAAATTAGAAAGAGAGGCAAGGTC
GTAGTCCCCCGCTCCCTGGAAAGCGTTTGCCTGACTCTCCCTTTAGAGGAGATGATGGAATAATTG
ATGACAATTTCATTGAGGAAAGAAAACAAGGGCTGGAGCAGTTATAAAACAAGGTCGCTGGCATCCTCT
GGCACAGCAACGTTGCTTCACATGTTTACAAGGATAATAAGATAAAAGCTATACTCCATCT
AAAATAAGACATGCCGAAATTGGCAAGAAGGGCAAAACCGTGACTATTATGATTGATAAGCACC
GTGAAGAAGTTCAACTTTAGCATGCTGACAGAAACTGGTATAACATGCCCTCAGTATACTAACACT
CATATGCTCAGTTGTTGTTGCAAGAAGTTAATTGCTTAGTAAAATCCCTCATT
CCAGCCTTCTATATAAAATAGCTCCTCTGCTGTTAATGTTGCGACACTATAGCCTCACAAACCTG
GTTAATCCAGTGAATCTGCAGTGTGCTAACTAAAGTACTGGCTTGGTCTAATTG

Human SNX3 protein sequence - var1 (public gi: 23111041) (SEQ ID NO: 287)
MAETVADTRRLITKPQNLNDAYGPPSNFLEIDVSNPQTGVGRGRFTTYEIRVKVVVPLPGKAFLRQLP
FRGDDGIFDDNFIEERKQGLEQFINKVAGHPLAQNERCLHMFQDIEDKSYTPSKIRHA

Human SNX3 protein sequence - var2 (public gi: 23111043) (SEQ ID NO: 288)
MAETVADTRRLITKPQNLNDAYGPPSNFLEIDVSNPQTGVGRGRFTTYEIRVKTNLPFKLKESTVR
YSDFEWLRSELERESKPCRLMTSEARSHGRTWCAQNDEKLFC

Human SNX3 protein sequence - var3 (public gi: 15779012) (SEQ ID NO: 289)
MAETVADTRRLITKPQNLNDAYGPPSNFLEIDVSNPQTGVGRGRFTTYEIRVKTNLPFKLKESTVR
YSDFEWLRSELERESKVVVPLPGKAFLRQLPFRGDDGIFDDNFIEERKQGLEQFINKVAGHPLAQNERC
LHMFLQDIEDKSYTPSKIRHA

Human SNX3 protein sequence - var4 (public gi: 3126979) (SEQ ID NO: 290)
MAETVADTRRLITKPQNLNDAYGPPSNFLEIDVSNPQTGVGRGRFTTYEIRVKTNLPFKLKESTVR
YSDFEWLRSELERESKVVVPLPGKAFLRHFPPRGDDGIFDDNFIEERKQGLEQFINKVAGHPLAQNERC
LHMFLQDIEDKSYTPSKIRHA

Human SNX3 pray sequence - var1 (SEQ ID NO: 173)
GCCGCATGGNAGTACCCATACGACGTACCAAGATTACGCTCATATGCCATGGAGGCCAGTGAAATTCCAC
CCAAGCAGTGGTATCACCGCAGAGTGCCATTATGGCGGCGCGGGCTGAAACGGGAGGGGGCGG
AGGGAGCCCGGGCGGCAGCAGCTACAGCGAAATGGCGAGACCGTGGCTGACACCCGGCGCTGAT
CACCAAGCCGAGAACCTGAATGACGCCAACGGACCCCCCAGCAACTTCCCTGAGATCGATGTGAGCAAC
CCGAAACGGTGGGGGTGG
TTTCAAGCTGAAAGAATCTACTGTTAGAAGAAGATAACAGTGACTTTGAATGGCTGCGAAGTGAAATCAGA
AAGAGAGAGCAAGGTGCTAGTCCCCNNNGCTCCCTGGGAAAGCGTTTTGCGTCAGCTCCTTTAGAGG
AGATGATGGAATATTGATGACAATTGAGGAAAGAAAACAAGGGCTGGAGCAGTTATAAACAG
GTCGCTGGTCATCCTCTGGCACAAACGAACGGTGTCTTCACATGTTTACANGATGAAATANTNGATA
AAAGCTNTACTCCATCTAAACATGCCGAANTTGGCANAANGGCNAACGTGACTATTATG

PCT/US04/06308

ATTGANAGCCCCNNNAAAANTCTANNTTNNCNTGCTNACAAAAGTGNNTAANTGCCTNANNACTAA
CCTNNNTNCCNANTTNNTTGNNTGGNNNTNAAAAATNAT

Human SNX3 pray sequence - var2 (SEQ ID NO: 174)
CCGCCATGGTAGTACCCATACGACGTACAGTATTACGCTCATATGGCCATGGCAGGCCAGTGAAATTCCA
CCCAAGCAGTGGTATCAACGCAGAGTGGCATTATGGCCGGGGCAGGAGGGAGGCCAGCGCGCGCA
GCAGCTACAGCGAAATGGCGAGACCGTGGTGAACCCGGGGCTGATCACCAAGCGCAGAACCTGAA
TGACGCCCTACGAGCCCCCAGCAACTTCCCTGAGATCGATGTGAGCAACCCGCAAACGGTGGGGTCGGC
CGGGGCCGCTTACCAACTTACGAAATCAGGGTCAAGAACAAATCTTCCCTATTTCAGCTGAAAGAATCTA
CTGTTAGAAGAAGATACTAGTGAATTGGAATGGCTGCGAAGTGAATTAGAAAGAGAGAGCAAGGTCGTAGT
TCCCGCTCCCTGGAAAGCGTTTGCCTCAGCTNCTTATAGGGGATGATGGAATATTGATGAC
AATTATGAGGAAAGAAAACAAGGCTGGANCNTTATNAACAAGTNAAGTGTCTNCTATTCTNAAA
GTGTANGACTNCNTTAAAGTACTACTTTNTTANATGTNAANMNAACTGNACTGTNNCNTTNTTNA
CNTTCCCTANNTTNAATTNTTAA

Unigene Name: SRA1 Unigene ID: Hs.32587 Clone ID: 3GD_19

Human SRA1 mRNA sequence - var1 (public gi: 10436964) (SEQ ID NO: 175)
ACGTGAAGCCGGGTGAGCGCAGCCGGGGCTAGGGCACTAGGTGTCGCCCGGCCAGGCTGGGGCG
GTTGCGGGCTTAGTATGGACCCCTCTGCTCTCCCCAGCCCCAGTATAAGCTAACAGTGGAGTCCGGGCT
CGCTTCACACATCCCTCGCCTCCGAGGCAACAAGGAACGCGCTGGAACGACCCGCCAGTTCTCATA
CGGCGTGCAGACCCAGGCCGGGACCCAGGCGCTCGCTTACCAAGAGGGTAGCCGCACCCAGGAT
GGATCCCCAGAGTCCCCGATCAGAGACTTCTCTGGGCCTCCCCAATGGGGCCTCCACCTCCCTCAA
GTAAGGTTCCCAAGTCCCCACCTGTGGGGAGTGGCTCTGGCTGGAGGCCACAAGTTCCCAGT
CGAGCTGAGGCTGACTGATGGAGGATGTGCTGAGACCTTGGAACAGGCACTGGAAAGACTGCCGTGGC
CACACAAGGAAGCAGGTATGTGATGACATCAGCCGACGCCCTGGCACTGCTGCAGGAACAGTGGGTGGAG
GAAAGTTGTCATAACCTGAAAGAAGAGAATGGCTCTACTGGTCAAGAGCTTCAAGCCACCGGTGGGA
CGCAGCAGATGACATCCACCGCTCCCTCATGGTTGACCATGTGACTGAGGTCAGTCAGTGGATGGTAGGA
GTTAAAAGATTAATTGCAAGAAAAGAGGAGTCTGTTTCAGAGGAGGCCAGGCAATGAAAGAGAAATCTGCAG
CCACAGCTGAGAAGAACCATACCATACCCAGGCTTCCAGGCCAGGCTTCAATACTCCGGTTCCCCAGACTCA
CCGGACCATCCTCATGGGCTGACCCACCATGGGAGACCTTCTGTCATCTGGCTCCCTCTTACCAACCAAAGACTGT
CCCACGGGCTGACCCACCATGGGAGACCTTCTGTCATCTGGCTCCCTCTTACCAACCAAAGACTCA
TAACATGCAATTCAATAAAAACATCTCTGCGGTGGGCTTGGTAGGAGAGATGAACCCCTCCGGTGCCA
AGCTAGTCCCCCTGTGGTGCCTCGACTGCCCTGCTGGTATCTGCAAACCTCTGTTCTCCCTCTC
CATTGATCAGGAAGGGATCTGCTGGTAAAGTCAGACTACTGCCCTACCACCTTTCCAAAGTAGACTGA
AACACACATCCGTGCTGGCGGAGCAGCTGTGTTGGATGGTTCAATTGAGCATGAGAACAGACTCAA
TAGAACGGGGAGACTTICCTCAACAAAAGGAAGACAGTCTATTGACTGTATCACCCCTGAGATA
CTACTGTTACAGAGATTAGAACACCACATTGAGTGGGTTCTGTGAAATCGAAGGAGAAAAAGACCAGA
TTACTGAGATTGGGATTGTAACCTGACTTGCCAAACAAACTGCTGCCCTCAAAAAAAAAAAAAAA

Human SRA1 mRNA sequence - var2 (public gi: 9930611) (SEQ ID NO: 176)
TCCTTTGGTGCCTTGTGACCAGGGCCCTGATGGTCATTAGATGGAGCCTCGAGTCTAGGGAGTTGCC
GCAGGGTCCCCACAGCGGCTCCGACGGTTGTGAACCAAGCAGCATCCATCCTCACGGATCCGGCAACCCGC
CTGGCCCTGGACGTGTCTCAACTGGCCCGGTGAGGGGGCGCCCGGAAATGACGCGCTGCCCGCTGGC
CAAGCGGAAGTGGAGATGGCGAGCTGTGAGCGGGGCAACAAGGAACGCGGGCTGGAACGACCCGC
CGCAGTTCTCATACGGGCTGAGACCCAGGCCGGGGACCCAGGCCAGGCGCTCGCTGCTTATCAAGAGGGTCGC
CGCACCCCGAGGATGGATCCCCAGAGTCCCCGATCAGAGACTTCTCTGGGCCCTCCCCAATGGGGCT
CCACCTCTCAAGTAAGGCTCCAGGTCCCCACCTGTGGGGAGTGGCTCTGGCTCTGGCTGGAGGCCA
CAAGTTTCCAGTCAGTGTGAGGTGTGATGGAGGATGTGATGACATCAGCCGACGCCCTGGCACTGTCAGGAACAG
CTGGCGTGGGCCACACAAGGAAGCAGGTATGTGATGACATCAGCCGACGCCCTGGCACTGTCAGGAACAG
TGGGCTGGAGGAAAGTTGTCATAACCTGTAAGAAGAGAATGGCTACTGGTCAAGAGCTTCAAGCC
ACCGGTGGACCGAGCAGCAGATGACATCCACCGCTCCCTCATGGTTGACCATGTGACTGAGGTCAAGTCAGTG
GATGGTAGGAGTTAAAGATTAATTGAGAAAAGAGGAGTGTGTTTCAGAGGAGGCCAGCAATGAAGAG
AAATCTGAGCCACAGCTGAGAAGAACCATACCATACCAGGCTTCCAGCAGGCCATATACTCCGGTTC
CCGAGACT

Human SRA1 mRNA sequence - var3 (public gi: 9930613) (SEQ ID NO: 177)
TCCTTTGGTGCCTTGTGACCAGGGCCCTGATGGTCATTAGATGGAGCCTCGAGTCTAGGGAGTTGCC
GCAGGGTCCCCACAGCGGCTCCGACGGTTGTGAACCAAGCAGCATCCATCCTCACGGATCCGGCAACCCGC
CTGGCCCTGGACGTGTCTCAACTGGCCCGGTGAGGGGGCGCCCGGAAATGACGCGCTGCCCGCTGGC
CAAGCGGAAGTGGAGATGGCGAGCTGTGAGCCGGCAACAGGAACGCGGGCTGGAACGACCCGC

PCT/US04/06308

CGCAGTTCTCATACGGGCTGCAGACCCAGGCCGGGACCCAGGCCTCGCTGCTTACCAAGAGGGTAGC
CGCACCCCCAGGATGGATCCCCAGAGTCCCCGATCAGAGACTTCTCTGGCCTCCCCAATGGGCCT
CCACCTCTTCAGTAAGGCTCCAGGTCCCACCTGTGGGAGTGGTCTGGCCTCTGGCGTGGAGCCA
CAAGTTCCCAGTCAGCTGAGGCTCGACTGATGGAGGATGTGCTGAGACCTTGGAACAGGCATTGGA
AGACTGCCGTGCCACACAAGGAAGCAGGTATGTGATGACATCAGCCGACGCCACTGCTGCAGGAA
CAGTGGCTGGAGGAAAGTTGTCATAACCTGTAAAGAAGAGAATGGCTACTGGTCAAGAGGCTTCAA
GCCACCGGTGGGAGCAGCAGATGACATCCACCGCTCCCTCATGGTACCATGTGACTGAGGTCA
GTGATGGTAGGAGTTAAAGATTAATTGCAAGAAAAGAGGAGTGTGTTTCAGAGGAGGCAGCCAATGAA
GAGAAATCTGCAGCCACAGTGTGAGAACCATACCATAACCAAGGCTTCAGCAGGCTTCATAATCCTCGG
TTCCCCAGACT

Human SRA1 mRNA sequence - var4 (public gi: 4588026) (SEQ ID NO: 178)
CGCTTGGCGGAGCTGTACGTGAAGCCGGCAACAAGGAACAGCGGCTGGAACGACCCGCCAGTCTCAT
ACGGGCTGCAGACCCAGGCCGGGACCCAGGCCGCTCGCTGCTTACCAAGAGGGTAGCCGACCCAGGA
TGGATCCCCAGAGTCCCCGATCAGAGACTTCTCTGGCCTCCCCAATGGGCCTCCACCTCTTCA
AGTAAGGCTCCAGGTCCCCACCTGTGGGAGTGGTCTGGCCTGGCGTGGAGGCCACAAGTTCCCAG
TCGAGTCTGAGGCTGTGATGGAGGATGTGCTGAGACCTTGGAACAGGCACTGGAAAGACTGCCGTGGCCA
CACAAGGAAGCAGGTATGTGATGACATCAGCCGACGCCCTGGCACTGCTGCAGGAACAGTGGCTGGAGGA
AAGTTGTCATAACCTGTAAAGAAGAGAATGGCTACTGGTCAAGAGGCTTCAAGCCACCGTGGGACG
CAGCAGATGACATCCACCGCTCCCTCATGGTACCATGTGACTGAGGTCACTGGATGGTAGGAGT
TAAAAGATTAATTGCAAGAAAAGAGGAGTGTGTTTCAGAGGAGGCAGCCAATGAAGAGAAATCTGCAGCC
ACAGCTGAGAAGAACCATACCATAACCAAGGCTTCAGCAGGCTTCATAATCCTCGGTCCCCAGACTCACC
GGACACCATCTCTATGCCCTGGAGACCTTCTGTCACTTGGCTCCCTTACCAACCAAGACTGTCC
CACTGGCCTGACCCACCTATGAGGGAAAGAACCTCCACCTGGGCCAGAGGGAGTTCATGTGTTACTCATA
ACATGCATTCAATAAAACATCTGCGGTGGT

Human SRA1 mRNA sequence - var5 (public gi: 25123254) (SEQ ID NO: 179)
GGCGGAGCTGTACGTGAAGCCGGCAACAAGGAACAGCGGCTGGAACCCGCCAGTCTCATACGGGCT
GCAGACCCAGGCCGGGAGCCAGGCCGCTCGCTGCTTACCAAGAGGGTCCGGCACCCAGGATGGATCC
CCCAGACTCCCCGATCAGAGACTTCTCTGGGCTCCCCAATGGGGCTCCACCTCTTCAAGTAAGG
CTCCAGGTCCCCACCTGTGGGAGTGGTCTGGCCTGGCGTGGAGGCCACAAGTTCCCAGTCAGTC
TGAGGCTGTGATGGAGGATGTGCTGAGACCTTGGAACAGGCACTGGAAAGACTGCCGTGGGCCACAAAGG
AAGCAGGTATGTGATGACATCAGCCGACGCCCTGGCACTGCTGCAGGAACAGTGGCTGGAGGAAAGTTGT
CAATACCTGTAAAGAAGAGAATGGCTACTGGTCAAGAGGCTTCAAGCCACCGTGGGACGCAGCAGA
TGACATCCACCGCTCCCTCATGGTACCATGTGACTGAGGTCACTGGGATGGTAGGAGTTAAAAGA
TTAATTGCAAGAAAAGAGGAGTGTGTTTCAGAGGAGGCAGCCAATGAAGAGAAATCTGCAGCCACAGCTG
AGAAGAACCATACCATAACCAAGGCTTCAGCAGGCTTCATAATCCTCGGTCCCCAGACTCACCGGACACC
ATCTCCTATGCCCTGGAGACCTTCTGTCACTTGGCTCCCTTACCAACCAAGACTGTCCCACGTGG
CTGACCCACCTATGAGGGAAAGAACCTGGGCCAGAGGGAGTTCATGTGTTACTCATAACATGCA
TTCAATAAAACATCTGCGGTGAAAAA

Human SRA1 mRNA sequence - var6 (public gi: 18027813) (SEQ ID NO: 180)
GCAGGCACTAACGCTGGGCACTGGGAATGTAATAAAATAGTCAGGTCCCACCTCTAACAGACTGCCGACA
GGGAAACGAACAAGAGTCAAATAAGGAGAAGATGTGATGTAATAACACCTACGAAATCTCAGAGGGTTGT
AGGGCTGCTGGGAGCTCAAGTGGAGACACTTAACCTGGCCTGAGACATTCAGAAGGCTCCTGAAGAACTG
ACATCTGAACTGAGAACTGAAGGAAGATGAGTACTAGTGAGGCTACCGGACGTGAATGTGGAGATTGTG
AGGGCAATGCAAGAGGAGGCTGTAGAAGTCACCTGGCTAGATCACAGCGGGTGTATGTGGGCCAGGAG
CTTCTTGTGAATTGCTCTGAGAGGATGAGGCTCCTAGAGCACTGGCTCTGGACAGCAACCTCC
TTTGGTGCCTTGTGACCAAGGGCCCTGATGGTCATTAGATGGGCTTCAGTCTTAGGGAGTTGCCGCA
GGGTCCCCACAGCGGCTCCCGACGGTTGTGAACCAAGCATCCATTCTCCACGGATTCCGGCAACCCGCC
GCCCTGGACGTCTCAACTGGCCCGCTGAGGGGCCGCCCCGAAATGACCGCTGCCCCGCTGGCCAA
GCAGGAAGTGGAGATGGCGAGCTGTACGTGAAGCCGGCAACAAGGAACGCCAGTGAACGACCCGCC
AGTCTCATACGGCTGCAAGACCCAGGCCGGGACCCAGGCCCTCGCTGCTTACCAAGAGGGTAGCCGC
ACCCAGGATGGATCCCCAGAGTCCCCGATCAGAGACTTCTCTGGCCTCCCCAATGGGCCTCCA
CCTCTTCAAGTAAGGCTCCAGGTCCCCACCTGTGGGAGTGGTCTGGCCTCTGGCGTGGAGGCCACAA
GTTCCCAGTCAGCTGAGGCTCGACTGATGGAGGATGTGCTGAGACCTTGGAACAGGCACTGGAAAGA
CTGGCGTGGCCACACAAGGAGCAGGTATGTGATGACATCAGCCGACGCCCTGGCACTGCTGCAGGAACAG
TGGCGTGGAGGAAAGTTGTCATAACCTGTAAAGAAGAGAATGGCTACTGGTCAAGAGCTTCAAGCC
ACCGGTGGGACCGAGCAGATGACATCCACCGCTCCCTCATGGTACCATGTGACTGAGGTCACTGAGTG
GATGGTAGGAGTTAAAGATTAATTGCAAGAAAAGAGGAGTGTGTTTCAGAGGAGGCCAATGAAGAG
AAATCTGCAGCCACAGCTGAGAACCATACCATAACCAAGGCTTCAGCAGGCTTCATAATCCTCGGT
CCAGACTCACCGACACCCTCTCATGCCCTGGAGACCTTCTGTCACTTGGCTCCCTTACCAACCA

PCT/US04/106308

CCAAGACTGTCCACTGGGCTGACCCACCTATGAGGAAGAAGTCCCACCTGGGCAGAGGGAGTTCAT
GTGTTACTCATAACATGCATTCAATAAAACATCTCTGCGGTGAAAAAAAAAAAAAAA

Human SRA1 mRNA sequence - var7 (public gi: 16549596) (SEQ ID NO: 181)
TTATAGCAAATCAGTGCAATAAAATCCCTCAGTGACCTCACTGGATGTGAGTATATTGGGCTGGGA
CAGGGCTGGGCTAACACCCCTGTGAGATGAGTGTCTTGTGCTGTGCTTGATGTTGGTGGCTCT
GTAGTCACATGACAGCATGGGTGTGATGGAGATCTGACTTCATTCAACAAACATATTCTAAGGAGTT
CCTGTGCCAGGCACTAAAGCTGGGCACTGGGAATGTAATAAAATAGTCAGGTCCACCTCTAAGACTGT
CCGACAGGAAACGAACAAGACTCAAATAAGGAGATGAGTGTGATGTAATAACACCTACGAAATCTCAGAG
GGTGTAGGGCTGTGGGAGCTCAAGTGAGACACTTAAACCTGGCCTGAGACATTCCAGAAGGCTCTGAA
GAACTGACATCTGAACACTGAGAAGATGAGTACTAGTGAGGCTACCGGACGTGAATGTGGAGA
TTGTGCAGGGCAATGCAAGAGGAGCTGTAGAAGTCACCTGGCTAGATCACAGCAGGGTGTATGTGGGG
CAGGAGCTTCTTGTGCTCTGAGAGGATGAGGCTCCTAGAGCACTGGCTCTGGACAGCA
ACCTCTTGTGCTGTGACCAGGGCTCTGATGGTCAATTAGATGGAGCCTCGAGTCTTAGGGAGTT
GCCGAGGGTCCCCACAGCGGCTCCGACGGTTGTGAACCAGCATCCATTCTCACCGATTCCGCAACC
CGCCTGGCCCTGGACGTGTCACACTGGCCCGCGTGAGGGGGCGCCCGAAATGACCGCTGCCCCGCT
GGCCAAGCGGAAGTGGAGATGGCGAGCTGTACGTGAAGCGGGCAACAAAGGAACCGGCTGGAACGACC
CGCCGAGTCTCATACGGCTGCAAGACCCAGGCCGGACCCAGGCGCTCGTGTACCAAGAGGGT
AGCCGACCCAGGATGGATCCCCAGAGTCCCCCATCAGAGACTTCTCTGGGCTCCCCAATGGGG
CCTCCACCTCTTCAAGTAAGGCTCCAGGTCCCCACCTGTGGGGAGTGGTCTGCGCTCTGGCGTGGAGC
CCACAAGTTCCCAGTCAGTGTGAGCTGACTGATGGAGATGTGCTGAGACCTTTGAAACAGGCATT
GGAAGACTGGCTGGCCACACAAGGAAGCAGGTATGTGATGACATCAGCCGACGCTGGACTGCTGAG
GAACAGTGGCTGGAGGAAGTTGTCAATACCTGAAAGAAGAATGGCTCTACTGGTGCAAGAGCTTT
CAAGCCACCGGTGGAGCAGCAGATGACATCCACCGCTCCCTATGGTTGACCATGTGACTGAGGTAG
TCAGTGGATGGTAGGAGTTAAAGATTAATTGCAAGAAAGAGGAGTCTGTTTCAGAGGAGGAGCCAAT
GAAGAGAAATCTGCAGCCACAGCTGAGAAGAACATACCATACCAGGCTCCAGCAGGCTTCATAATCCT
CGGTTCCCCAGACTCACGGACACCATCCCCATGCCTGGAGACCTCTGTCACTGGCTCCCCCTTA
CCACCAAGACTGTCCACTGGGCTGACCCACCTATGAGGAAGAAGTCCCACCTGGCCAGAGGGA
GTTCATGTGTTACTCATAACATGCATTCAATAAAACATCTGCGGTGGGCTTGGTAGGAGAGATG
AACCTTCCGGTGCACAGTGTGCTGGTAAAGTCAGACTACTGCCTACCAACTTT
TCCAAAGTAGACTGAAAGCACATCTGTGCTGGCGGAGCAGCTGTGTTGGATGGTTCAATTGCA
TGAGAACAGACTCAAATAAGAACGGGAGACTTTCCCTCAACAAAAGGAAAGACAGTCCTATTGCA
TATCACCCCTGAGATACTACTGTTACAGAGATTAGAAC

Human SRA1 mRNA sequence - var8 (public gi: 9930609) (SEQ ID NO: 182)
TCCCTTGGTGCCTGTGACCAGGGCCCTGATGGTTCAATTAGATGGAGCCTCGAGCTTAGGGAGTTGCC
GCAGGGTCCCCACAGCGGCTCCGACGGTTGTGAAACAGCATCCATCCTCACGGATTCCGGCAACCCGC
CTGGCCCTGGACGTGTCACACTGGCCCGCGTGAGGGGGCGCCCGAAATGACCGCTGCCCCGCTGGC
CAAGCGGAAGTGGAGATGGCGAGCTGTACGTGAAGCGGGCAACAAAGGAACCGGCTGGAACGACCCGC
CGCAGTTCTCATACGGGCTGCAAGCAGGCCAGGCCGGACCCAGGCGCTCGTGTACCAAGAGGGTAGC
CGCACCCCCAGGATGGATCCCCAGAGTCCCCGCATCAGAGACTTCTCCTGGGCTCCCCAATGGGGCCT
CCACCTCCTCAAGTAAGGCTCCCAGGTCCCCACCTGTGGGGAGTGGTCTGCGCTCGGTGGAGGCCA
CAAGTTCCCAGTCAGTGTGAGGCTGTGATGGAGGATGTGCTGAGACCTTTGAAACAGGCAATTGGA
CTGCCGTGGCCACACAAGGAAGCAGGTATGTGATGACATCAGCCGACGCGTGGACTGCTGAGAACAG
TGGGCTGGAGGAAGTTGTCAATACCTGTAAGAAGAGAATGGCTCTACTGGTGCAAGAGCTTCAAGCC
ACCGGTGGGACCGCAGCAGATGACATCACCAGCTCCCTCATGGTTGACCATGTGACTGAGGTCA
GATGGTAGGAGTTAAAGATTAATTGCAAGAAAGAGGAGTGTGTTTCAGAGGAGGCCAATGAAGAG
AAATCTGCAGCCACAGCTGAGAACATACCATACCAGGCTCCAGCAGGCTTCATAATCCTCGGTT
CCCAGACT

Human SRA1 protein sequence - var1 (public gi: 9930610) (SEQ ID NO: 291)
MTRCPAGQAEVEMAELYVKPGNKERGWNDPPQFSYGLQTQAGGPQRSLLTKRVAAPQDGSPRV
PASETSP
GPPPMGPPPPSSKAPRSPPVGSGPASGVPEVSEAVMEDVLRPLEQALEDCRGHTRKQVCDDISRR
LALLQEWA
QEQWAGGKLSIPVKRMALLVQELSSHWRDAADDIHRSLMVDHVTEVSQWMVGVKRLIAEKRS
LFS
EEANEEKSAATAEKNHTIPGFQQAS

Human SRA1 protein sequence - var2 (public gi: 25123255) (SEQ ID NO: 292)
MGPPPPSSKAPRSPPVGSGPASGVPEVSEAVMEDVLRPLEQALEDCRGHTRKQVCDDISRR
LALLQEWA
QEQWAGGKLSIPVKRMALLVQELSSHWRDAADDIHRSLMVDHVTEVSQWMVGVKRLIAEKRS
LFS
EEANEEKSAATAEKNHTIPGFQQAS

PCT/US04/06308

Human SRA1 protein sequence - var3 (public gi: 9930614) (SEQ ID NO: 293)

MTRCPAGQAEVEMAELYVKPGNKERGWNDPPQFSYGLQTQAGGPRRSLLTKRVAAPQDGSPRVPASETSP
GPPPMGPPPPSSKAPRSPPVGSGPASGVEPTSFVSEARLMEVLRPLEQALEDCRGHTRKQVCDDISR
RLALLQEQQWAGGKLSIPVKKRMALLVQELSSHRWAADDIHRSLMVDHVTEVSQWMVGVKRLIAEKRSLF
SEEAAANEKSAATAEKNHТИPGFQQAS

Human SRA1 protein sequence - var4 (public gi: 9930612) (SEQ ID NO: 294)

MTRCPAGQAEVEMAELYVKPGNKERGWNDPPQFSYGLQTQAGGPRRSLLIKRVAAPQDGSPRVPASETSP
GPPPMGPPPPSSKAPRSPPVGSGPASGVEPTSFVSEAVMEDVLRPLEQALEDCRGHTRKQVCDDISR
LALLQEQQWAGGKLSIPVKKRMALLVQELSSHRWAADDIHRSLMVDHVTEVSQWMVGVKRLIAEKRSLF
EEAANEKSAATAEKNHТИPGFQQAS

Unigene Name: SYNE1 Unigene ID: Hs.416719 Clone ID: 3GD_138aa2938

Human SYNE1 mRNA sequence - var1 (public gi: 21753084) (SEQ ID NO: 183)

GTACAAAAACGAACCTTTACAAAATGGATCAACTCTCATCTGCCAACGCCAAACCTCCAATGGTGGTGG
ACGATCTTTTGAAAGACATGAAAGATGGTAAACTGCTTGCCTTCTGGAGGTCTGTCTGGCAGAA
ACTGCCCTGTGAACAAGGACGCCGATGAAGCGAACCCATGCTGTGGCTAACATTGGCACGGCACTCAAG
TTCCCTGAAGGAAGAAAGATTAAATTAGTCACACATTAACCTCCACCGATATAGCTGATGGCGACCCCTCAA
TAGTTCTGGATTGATGTGACCATTATCTATATTCCAGATTGAAGAGTTGACCCAGCAACCTGCCCA
GCTCAGTCCTTGTCCAGCAGCGCATCCTCGTGGACAGCATAGTTAGCTCTGAGACTCCAGCCCACCA
AGTAAACGGAAGGTGACCCACCAAGATCCAAGGAAATGCTAAGAAGGCTTATTAAAGTGGGTCAGTACA
CAGCTGGCAAGCAGACTGGAATAGAAGTAAAGATTGGAAAGAGTTGGAGAAGCCGGTTGCCCTTCA
TTCAGTTATTGATGCCATTGACCGGAATTGGTGGACTTGGAGACAGTGAAGGCACTTCAACCGAGAA
AATTGGAGGATGCTTCACTATCGTGAACAGAACAGATGGGATCCAAAGAGACTGCTAGATCCTGAAGACG
TTGATGGATAAACAGATGAGAAATCTATTATGACCTATGTAGCCCAGTTCTGAAACATTATCCTGA
CATCACAATGCAAGCACTGATGGCAAGAGGATGATGAAATACTTCCAGGTTCCATCTTGCAAAAT
TCTGTACAAAATTAAAGAGAGAAGACAGAGTAATTAAAGGAAATGAAAGTTGGATAGAACAAATTG
AGAGAGATTGACAAGAGCACAGATGGTGGAAATCAAATTACAGGATAAATATCAGTCATTAAAGCACTT
CAGAGTTCAATATGAAATGAAGAGGAAACAGATTGAAACATTAAACAAACATTACACAGAGACGGTAA
TTGTCACTTGACCAAGCATTGGTAAACAAATCTGGGATAGAGTGAACCTCCAGGCTTTGACTGGCATA
TACAGCTTGATAAACTCTTCCCTGCACCTCTGGCACCATAGTGCCTGGCTGTACAGAGCGGAGGTGGC
CCTGAGAGAGGAATAACCGTTCAACAGGTCCACCGAGGAACAGCAACACCGATACAACGGAAACTTGAG
CAACATAAGGATCTGCTTCAAAACACGGATGCCACAAAAGAGCATTCCATGAAATCTACCGGACAGGT
CTGTTAACGGGATTCCAGTGCACCTGATCAATTAGAGGACATGGCGAGAGGTTCTATTGTTCTC
CACATCAGAGCTACACCTAATGAAATTTAGAATTAAAGTAAAGTACCGCTCTGCTCACTGCTGGTT
CTTGAGAGCTCAAGCTGAAGTCTGGATCATTAAGTACGGGAGGAGAGTCAGTGGAGCAGCTCTAC
AAAATACGTGTTTATAGAAAATAGCAAGTCTTGAACAAATATGAGGTGACATACCAGATCTTGA
ACAGACAGCTGAGATGTATGCTAAAGCAGATGGTCAGTGGAGAAGCTGAGAATGTGATGAAATTGATG
AATGAAACACCAGCTCAGTGGAGGAATCTCTCAGTAGAAGTGAAGGAGTGTGAGGAGCATGCTGGAAAG
TGATCTCTAACTGGGATCGTATGGCAATACAGTGGCTAGTCAGTGCAGCCTGGCTAGAGGATGCTGAAAA
AATGCTCAATCAATCAGAAAATGCCAAAAGGATTTTCTGAAATTACCTCATTGATTAGCAGCAT
ACTGCCATGAACGATGCTGCCATTCTAAATTGAAACCTGTGATGAGATGGTTCCGTGACCTGAAGC
AGCAATTACTGTTCTAAATGGCGGTGGAGGGAGTTGTTATGGAAGTCAGCAAGCAATATGCTCAAGCTGA
TGAGATGGACAGAATGAAGAAGGAATACACAGACTGTGTTTACCTCTGCTGCCTTGCAACGGAAAGCC
CATAGAAAATCTGAACCCCTAGAAGTCTCTTATGAATGTCAAGCTATTAAATCAAGACTTGGAGG
ATATTGAGCAGAGGGTGCCTGTGATGGATGCCAATACAAGATAATTACAAAGACAGCACACCTCATTAC
CAAAGAAAGCCCC

Human SYNE1 mRNA sequence - var2 (public gi: 22382201) (SEQ ID NO: 184)

AGCGGCTGCCCTCTTGTGAGTGTGCAAAGGCCCTGGAAATTCTATTATGACAGAAATAGATCTAGAAAAGT
CCAAGCATGTTTCTAGAGTGGTGTAGCCCTGTGCTGCCCTCCAGTGAAGAGTCTCTGGTGTGGCTTC
TGCTTCCGGAGGGACCATGCCAACCTCCAGAGGGCCTCCCGTGTCTGGATATGCCAATGTGATG
CAGAGGCTGCAAGATGAGCAAGAGATAGTACAAAACGAACCTTCAACAAATGGATCAACTCTCATCTGG
CCAAGCGAAAACCTCCAATGGTGGTGGACGATCTTGAAGACATGAAAGATGGTTAAACTGCTTGC
CCTCTGGAGGTCCGTCTGGCAGAAACTGCCTGTGAACAAGGACGCCGATGAAGCGAATCCATGCT
GTGGCTAACATGGCACGGCACTCAAGTCTCTGAGAAGGAAAGATTAAATTAGTCACACATTAACCTCA
CCGATATAGCTGATGGCCGACCCCTCAATAGTCTGGATTGATGTGGACCATTATTCTATATTCCAGAT

TGAAGAGTTGACCAGCAACCTGCCAGCTCCAGTCTTGTCAGCAGCGCATCCTCCGTGGACAGCATA
GTTAGCTCTGAGACTCCCAGCCAACAAGTAAACCGAAGGTCAGCACAGCTGGCAAGCAGACAGCTGGAAATAGAAGTAAAAGATTTGGGAA
AGGCTTTATTAAGTGGGTTCAAGTACACAGCTGGCAAGCAGACAGCTGGAAATAGAAGTAAAAGATTTGGGAA
GAGTTGGAGAAGCGGGGTTGCCTTCAAGTATTCACTGCACCTCGACCGGAATTGGTGGACTTGGAG
ACAGTGAAGGAGATCCAACCGAGAAAATTGGAGGATGCTTCACTATGCCGAAACAGAACAGACTGGGAA
TCCCAAGACTGCTAGATCCTGAAGACGTTGATGTCAGATAAACAGATGAGAAAATCTATTATGACATATGT
AGCCAGTTCTGAAACATTATCCTGCACATCCACAATGCAAGCAGCTGATGGGCAAGAGGATGATGAAATA
CTTCAGGTTCCCATCTTTGCAAATTCTGTACAAAATTAAAGAGAGAACAGAGCTAATTTAAGG
AAATGAAAGTTGGATAGAACAAATTGAGAGAGATTGACAAGAGCACAGATGGTGAATCAAATTACA
GGATAAAATATCAGTCATTTAACGACTTCAGAGTTCAATATGAAATGAAGAGGAAACAGATTGAACATTAA
ATACAACCATTACACAGAGACGGTAAATTGTCAGTACCAAGCATTGGTAAAACAATCTGGGATAGAG
TGACCTCCAGGCTCTTGACTGGCATATACAGCTTGATAAAATCTTCCCTGCACCTCTGGCACCATTAGG
TGCCGGCTGTACAGAGCGAGGTGGCCTGAGAGAGGAAATAACCGTTCAACAGGTCACGGAGGAAACA
GCAAACACGATAAACGAAACTTGAGCAACATAAGGATCTGTTCAAAACACGGATGCCACAAAAGAG
CATTCCATGAAATCTACCGGACCAGGCTGTTAACGGGATTCCAGTGCCACCTGATCAATTAGAGGACAT
GGCCGAGAGGTTTCATTTGTTCTCACATCAGAGCTACACCTAATGAAAATGGAATTTTAGAATTAA
AAGTACCGCTCTGCTTACAGCTGCTTCTGAGACTCAAAGCTGAAGTCTGGATCATTAAGTACGGGAG
GAGAGACTGAGGAGCAGCTTCAACAAAATACGGTGTCTTATAGAAAATAGCAAGTTCTTGAAACAA
TATGAGGTGACATACCGAGTCTGAAACACAGACTGAGATGTATGTCAAAGCAGATGGTCACTGGAG
AAGCTGAGAATGTGATGAAATTCAATGAAACCCACCGCTCAGTGGAGGAATCTCTCAGTAGAAGTGA
GAGTGTAGGAGCATGCTGAAAGAAGTGTCTAACTGGGATCGCTATGGCAATACAGTGGCTAGTCTG
CAAGCCTGGCTAGAGGATGCTGAAAAAAATGCTCAATCAATGAGAAAATGCCAAAAGGATTTTCGAA
ATTACCTCATTGGATTGAGCAGCATACTGCCATGAACGATGCTGGCAATTCTAATTGAAACCTGTGA
TGAGATGGTTCCCGTGACCTGAAGCAGCAATTACTGTTGCTAAATGGCGGTGGAGGGAGTTGTTATG
GAAGTCAAGCAATATGCTCAAGCTGATGAGATGGACAGAATGAAAGAAGGAATACACAGACTGTTGTTA
CCCTGTCTGCTTGTGCAACGGAAGCCCATAAGAAAATTCTGAAACCTTCTGAGGTCTCTTATGAAATGT
CAAGCTATTAAATTCAAGACTTGGAGGTGAGGGGTTCTGAAATCAAATGAAAAGCCTACTCTGTTGAG
AGGAAAGATCAGCAAGTTTATTGAGATCATTGAAAGCTGTTCTGTCACCTGCAAGAAAAAAATGATTGAC
ATGTCCTGATGTCCTAACATTGACACCTGTCAGAAAAAAATGATTGAACATAAAAAGACATGACTTGATC
ATATAAAAGTAACCTCAAAATTGTTAAAAAAAAAGAAAAAAAAAA

Human SYNE1 mRNA sequence - var3 (public gi: 28192627) (SEQ ID NO: 185)
AGTACCGGGAGCTTAAACGGAAGAAGAAAAAGAAGCAGTCAGTCTTGGAGAGCTGCCCTCTGT
TGACTGCTGCAAAGGCCCTGGAATTCAATTGACAAATAGATCTAGAAAAGTCAAGCAGATTTCTAG
AGTGGTGTAGCCCTGTGCTGCCCTCCAGTGAAGAGTCTCTGGTGTGGCTCTGCTTCCGGAGGGACCA
TGGCACCTCCAGAGGGCCTCCCGGTGCTCTGGGATATGCCAATGTCATGTCAGAGGCTGCAAGATGA
GCAAGAGATAGTACAAAACGAACTTCACAAAATGGATCAACTCTCATCTGCCAAGCGGAAACCTCCA
ATGGTGGTGGACGATCTTTGAAAGACATGAAAGATGGTGTAAACTGCTTGGCCTTCTGGAGGTCTGT
CTGGGAGAAAACGCTTGTGAAACAAGGACGCCGATGAAGCGAATCCATGCTGTGGCTAACATTGGCAC
GGCACTCAAGTCTCGAAGGAAGAAAAGATTAATTAGTCACACATTAACTCCACCGATATAGCTGACGGC
CGACCCCTCAATAGTCTGGATTGATGTCAGGACATTATTCTATATTCCAGATTGAAAGAGTTGACCGACA
ACCTGCCCCAGCTCCAGTCTTGTCCAGCAGCGCATCCTCCGTGGACAGCATAGTTAGCTCTGAGACTCC
CAGCCCACCAAGTAAACGGAAGGTGACCCACCAAGGAAATGCTAAGAAGGCTTATTAAAGTGG
GTTCACTGACAGCTGGCAAGCAGACTGGAAATGAAAGTAAAAGATTTGGGAGAGTTGGAGAAGCGGGG
TTGCTTCAITCAGTTATCATGCCATTGACCGGAATTGGTGGACTTGGAGACAGTGAAGAGGAGATC
CAACCGAGAAAATTGGAGGATGCTTCACTATGCCAAACAGAAACTGGGATCCCAAGACTGCTAGAT
CCTGAAAGACGTTGATGGTGGATAAAACCGAGATGAGAAAATCTATTGACCTATGTCAGCCAGTTCTGAAAC
ATTACCTGACATCCACAAATGACAGCACTGATGGCAAGAGGATGATGAAATACTCCAGGTTCCCATC
TTTGCAAAATTCTGTACAAAATTAAAGAGAGAAGACAGAGTAATTGAAAGGAAATGAAAGTTGGATA
GAACAATTGAGAGAGATTGACAAGAGCACAGATGGGAATCAAATTACAGGATAAAATTCAGTCAT
TTAACGACTTCAGAGTTCAATATGAAAGAGGAAACAGATTGAAACATTAAATACAACCAATTACACAG
AGACGGTAAATTGTCATTGACCAAGCATTGGTAAAACAATTCTGGGATAGAGTGAACCTCCAGGCTTT
GACTGGCATATACAGCTGATAAAATCTCTCCTGCACCTCTGGGACCCATAGGTGCCTGGCTGTACAGAG
CGGAGGTGGCCCTGAGAGAGGAAATAACCGTTAACAGGTCCACGAGGAAACAGCAAACAGATAACACG
GAAACTTGAGCAACATAAG

Human SYNE1 mRNA sequence - var4 (public gi: 21734187) (SEQ ID NO: 186)
GGGACACAGTGAGAAACCACTGATGAAAGTGTGTTGGGCTCAGATGGCAGTGTGGTGGCAGGACACACAA
GCAGGGCAACAAAGCCGGAGTCCTGGGAGAGACTTCGGGAAGGAAAGAAACCATGGAGCAGAGTCCAGAGGGT
GAATCGCAGTTGGTCAGGTGGCTCGGAAGTGTCTAGAGGAAGGAAAGGAGGGAGCCTCCCTGCTTGT
GATTGGCTGGCTTTGATCATGGCAGTTGTCTGGAAATGACAGGATGGAATGGACAAAGTGGAGA
AGAGCCTGGCTGTGAAGCAGCCGTTAACATGGAAAAGAGCTGTTGGCTCTATCCTGAAGGTCGTGGAG

CCACAGCAGGATCTGCCGGAGGGAGGTGCTGGATCCTCCCTCCTCAGGGATGTGCAGATTTCATATTGT
ATCTTCTGGATACCACAGGGAGAAGGGATATTCCGGCGAGAGAGACCAAATGAAACCTTTACAACCT
CAGACAGAAGTAGGGTGGTGGCTAAACTAGGGGAAGCAGAAATTGGGAATGGGAGAATGGGAATGATGT
GAGAAATCACATAGAGAAGACTCCTCCAGAACACTCTCAGTCCATTGAACGGGATGGAGGCGATTTCCTGG
GCTGGGCATCTGGTAAAGATGCAGGTGGCTCAGGCCCTGAGGACCAAGAGGGAAAGGAGCAGTGTG
GGTCAGGTGGCAAGGGAGGTGGGCTGTGAGAGCAGGGAGGGATGAGTTGCTTGTGCATCCTGA
TCTTGAGATACTGCAGAAATATCCAATGCAAAGATCCTCAGTCAGTGTAGATGCACGGTGTGAAGTGCAGAAC
CAGAAATGCGAGATTGGTAGGTATTCAATGTAAATGGCAATGGTCTGGAGTGAACGGAGGAGCTCCCA
CAGGAAGAGTGTGAGAGAAAACAAGAAGGACCAACCAAGCCACATGCAGTGAACGGATGGACA
GAGAAACAGAAACTCTGTAAGGAAGGTGAATAAAATAGAATAAAGAGTTGGAGGCTGATTGTGGCACT
TGGAAATGTATCTCATACATTCTGCAAGGACATCTGGGAATTCTGTTGGTTCTGGTGGTCACAT
CAGATTCCAAGGGATGACACTGTTCTAAAAGAAAATGATTCTCATTTCTATTGTCTTACAGT
AAGGCCTATTAGTCAGGCATATGGCATCTGAAGCAGAGCTGCCAAACAGCCACTGCCAGTTGGAC
TGTGAGCTGAGATGGACTGTGCAAATTGAGATGGGTTGCGTGGAAACATGCTTACATGAATT
CAAAGACTTAGACAAGAAGAAAATAAATATAAATTATATTGATTACATGTTATAATCCCTGTCT
AATGTAGTGTAAATTAAATTTTATAAGTTCTTACATTCTAATGTTGCTACGGAAACCTTTAAGAT
TACATATATAGTTACATAGAAATATGGGACAGCGCTGCTGGAGTCTGGCTGAAATCTCAGTTCT
GCCATGTACTTCTGTTAAACTTAGATAAGGAACCTAATTCTCTGTGCTCAGTTCTCATATAA
AATGGGAATAACATTCCCAGTACCTTATAGGGTTCTATGTTGATAAAATTGTGCTCAGACCAGCCTG
GCTCATAAAAAACACTCTCAGTCAGTCACTGAGTTCTTTTTTTTTTTTTTTGAGACGA
AGTCAGTTCTGTTGCCAGGCTGGAGTGCAGTGGCACAATCTGGCTCACTGCAACCTCCGCCCTCC
GTTCAAGCGATCCTCGCTCAGCTCCCAGTGTAGCTGGGATTACAGGTACCTGTCACCACACTGGCT
AATTGGTATTAGTAGAGATGGGTTCCACCATGTCGCCAGGCTGGCTCGAATTCTGACCTCA
GGTGTACCCCGCTTGGCTCCAAAGTGTGGGATTACAGCGTGGAGCCACACGCCAACCCACTG
TGAATTCTTATGATTCAATTCAAGGAAAGCTTGGTGGAGCCTGACGCTCCTCTGTGCGCTCAGGAGCTAT
GTGCTAGAATAACTGACTTCTTTTCCCTAGGAAAGTTATTCTCGCACAAGGGATTAGGGT
TTCCAGAACTTAGCTGCAACTTAGACTGTGTTTTTGCAAGATGTAATGATCCCCGAGAGCCTGAGG
CCTATGTAACACTCACAGAAAATGCAATCAAATACTCCCGTAGGCACAACAGCCGGAGCCAGCCTC
CCTCCCTCCCCGTAGAGCAATCCTCTCTTAGCAGACATCTGCTGTCTCTCCAGCTTGCTCT
AGCATGTTAAGGCACAGCTCTCTTACTGCTGACTAGAAAACAGCTGGTTAAATCCACACCGA
GAATAAGATTCTACTAATCAGCGAAATAAAATAACTCTCAACTGTTAAATGGTATTGGTCTCATTA
GGTATAGACCTCTCATGTCATTAACTGAGAAAATATGAGAAGGAAACCCAGTCAGGCTCTGCGC
CCTAGTGTCTACGTGGTGTGGTAATTCAAGCTCACTGCACTGAGACACTACCTGGCTGGAGACTCAG
GGTGCAGGCTCTGGTCCAGTCCGCTGAGTGCAGCTTGGCCATCCACACTTATCCTC
CTCATCTCAAGAATCCGTATGAGACAAGGGTGAGATCAGATTCTAGCTCTAAATAATATGTAATT
TAATTAAAGAGCTGTAAGAGATAATTGAAATGAAAAATGTTACCGGTATGCTGAGCCATAGATAA
GAACAGAACTATTCTGAAACAAGAAGAATTAAAGAAGAAAATGAACTAGTTGCTTAGTGTG
TTAGACAAACTGTAGTGCAGGAGTTAGGATCAGTGTGGATGTCGGGGGAATAGAGTTGAACG
CAGTGATATGATATTGAATCACGGAGTTACTAGTTACGCTCAGTTGAAGAAAATCAAAGGACAG
AAAGCAAAGTAACATTACTGAGAGGGTGAATTCCAGGGAGGGACCTCTCCTAGGTGATCTAGAAGGCCT
TTTTTAGAAACAAATAAAACATTAAATAAAGCTTACTAATATTGTTCTGTTTACCCCCATGCTAGC
TTCACTGATGATCAAATGTTCTGTGAGTTCGAAGACTTTGACACACACACACACACACAC
TCAGTAATTTCACAAAGAAATGTTAAACTTGTAGCTTCTCTGGTTTGTGTTCTAGATCTTAGATAAAGC
AACCTGCTTAGATGGAAATGTTAAACTTGTAGCTTCTCTGGTTTGTGTTCTAGATCTTAGATAAAGC
AACTGTTGCTAGTTGTATCTCTGTTATATCTATTCTGAGGCACTTTCTGTTGTTGTTGTTG
TGCCTTCAGTAAATGATGCAAGCAACCTGAGCCTCCGTGACACTATCTCCCTGAGGTGCATGAAGAAA
AAATCAGAGGGAGGATCTCCCTGCTCACTAAGCGATAGCAGAAAAGAACATGAGAAAAGAACAGCTTC
TCCCTACTGAGATGCACTGAGACACCATTGCAAGATTGAGGAAATGAGGCTTCCACACTGACAACATTAGAT
GATCAGGGGTTCACTGCAAGAGGGTCAGGTGACGAAGCTGTCAAAACGGACTGGAGAGCCGTTTGC
GACGTCCGATCTGCTAGGGCTCTCAGTCAGCACCTTCAATTGGTTGGCATTGTTAATGCTTAACCCACC
GGCACGATGGTACTAAATTGTTGTAATTACCCACACCTGCAATTCTATGCTGTCAGTAAAGATTCTTAT
ATTCTGAAACTCTCCCTGTAATATCAAGCTTAAATAAGTCAAATAGTTGTCAGTAAAGATTCTTAT
GGTGTGCAACCGCAGGGACCACAGTGCCTAGAGTCACAGATCCGACAAGTGGCAAAGCCCTGGATGAT
AGCCGCTTCAGTACAGCAAACCGAAAATATCATTGCAAGGAAAACCTCCACGGGGCCGGAGCTAGACA
CCAGCTACAAAGGCTACATGAAACTGCTGGGCAATGCACTGAGTAGCAGTATAGACTCCGTGAAGAGACTGGA
GCACAAACTGAAGGAGGAAGGAGAGCCTCTCTGGTTAACCTGCACTAGTACCGAAACCCAAACG
GCTGGTGTGATTGACCGATGGGAGCTTCTCCAGGCCAGGCAATTGAGCAAGGAGTTGAGGATGAGCAGA
ACCTCCAGAAGTGGCAGCAGTTAACCTCAGACTGAAACAGCATCTGGGCTGGCTGGGGACACGGAGGA
GGAGTTGAAACAGCTCCAGCGTCTGCAACTCAGCACTGACATCCAGACCATCGAGCTCCAGATCAAAG
CTCAAGGAGCTCCAGAAAGCTGTGGACCACCGCAAAGCCATCATCCTCTCCATCAATCTGCAAGCCCTG
AGTTCAAGGGCTGACAGCAAGGAGAGCCGGACCTGCAAGGATGTCAGTGCAGATGAATGGCGCTG
GGACCGAGTGTGCTCTGCTGGAGGAGTGGGGGCTGCTGCAAGGATGCCCTGATGCACTGCCAGGGT
TTCCATGAAATGAGCCATGGTTGCTTCTATGCTGGAGAACATTGACAGAAGAAAATGAAATTGTCC

Figure 36 part - 100

PCT/U504/06308

CTATTGATTCTAACCTGATGCAGAGATACTTCAGGACCATCACAAACAGCTTATGGTAAGATGTGTGAA
CTCTGGCAGCCTCCAGTTATTTTAGCAGGGTGCATTCACTTACAGAAAATGAATAAGTGGTAAGT
GTTGTTCTTTTTAACTTTTGCAATTAGTCTACTTACACTTTTAACTCCCTGTGGTTTC
CAATTTGTAAGCAAACATGTGCATAGAAGATGATATCTGCTAGCTTAGAATCTGATTCTAAAGTTG
TTGCTCAGTTGTAAGCAAACATGTGCATAGAAGATGATATCTGCTAGCTTAGAATCTGATTCTAAAGTTG
TAATTAAACTTCATGTTACATCTATGGCCAAAAGTATATTGGTGGCTGTAGTAAAAGGTCAATTAAA
ATATTAGAATAGAATGAGACAATTAAAGTCTTTGGTGTGTTGCGATCTCGGCTACTGCATCTCCGCTCCGGGATT
TCACTCTGTTGCCAGGGTGGAGTGCAGTGGTGCAGTGGCTACTGCATCTCCGCTCCGGGATT
GAGCAATTCTCGCCAATTCTCGCTCACCCCTCCGAGTAGGTGGACTACAGGTGTAAGCCACCAC
GCCTCGCTAATGTTGATTTTAGTAGAGACAGGGTTCACCATGTTGCCAGGCTGGTCTCGAACTCC
TGGCCGAGGTGATCCACCTGCTCAGCCTCCAAAGTGTGGATTACAGGCATGCCACACCCA
GCCGAGTCTTCAAAGAGGAATTAAATACATCAGATTAAACATGAACACTGAGCATCAAGTTCTGAAAG
CCAAGACAAAATGGGAAACAAGGAGTAAACTTACTTCATTATCTGGAAAAACAAACATACCAACTTCT
CAAGGAAGGGAGAAAATTCTAGCACTAAATTCAAGAGGAATTAACTGGTAGACTCTTACAAAGGAT
CTTGGACAATATAATGTACAGTATTTAGTGAAGATAAGGAAGCATATTGAGTTCCA
TTAGAAGAAAATATTATGCACTTTGTAGCTCTGTATTTTAAATGTTATGCTTAACATTAAACACT
CACCTAAACTACAGAATTGGTACCTTTAATTCACTTACATAATAGTCTTAGAAACCTAGAGGAATAGC
TGTGGAACTGCACTTTTACTTCACTTGACCTCTGGCATCAAGCTGTGAATGAGCAATCACCCCTTTT
TTTICAAATCTGACTAGATATCAGAGGATACTAGACATACTCTGCTCGCTATATTAAATGTTG
TTTCTGTTAAAGGATTATCTTACATCTACTGCTCATACTAATCTATATTAAATTACTGTCATATATA
CATTAACAAATTGAAACCTCCAATAAAACTGTGGACCAAGGCATCAAACACTGAGATCAGAGACGGT
CAGGGTCTTATAGAATATTGGCAGAGGAGTTAGAAGTCACTCAGGCCGTGAGCTGCTGCATCCTTTA
GTGTGAGCTCCACGTTGATGCTCAGGTATAATTCCCACCAAGTTAAGTGTGATTGCTTCTGCACTT
TTGGAGCTTTGCCAATTCAAAATGTTAGAAAAATTAAATTGTTTGTATGCAAGAACATAAG
CATGAGCTGTTGAATCCCAACTCAGAGTAGCCTTTGCAAGACATGCTTGCAACTACTGGTGAATG
CTGAAGGAACAGACTGTTAGAAGCCAAAGAAAAGTCCATGTTATGGAAATCGGCTCAAACCTCT
GAAGGGAGGTCACTCGTCAAGGAACGGAGTTAGACGTGTCAGTAGTCAGCAGGATTG
TCTTCTGGTCTCTGCTGATGAACTGGACACCTCAGGGCTGTGAGTCCCACATCAGGAAGGGCACC
CAAACAGACAGAAAACGCCACGGCAAGTGTAGTCTCTCACAGCCGGACCCCTGTGAGCAGTCCACA
TAGCAGGTCCACAAAAGGGTGGCTCCGATTCCCTCCCTTGAGCTTCTGCTCCCTCATCGGGCTTG
TTCTGTTCTCAGGTCTCCGAGCAGCTTCTCCCTCAGCTGTGCTCCCTCATCGGGCTTG
GCCTGTACGGATGTCAGAGGAAGACTACAGCTGTGCTCCCTCATCGGGCTTGTG
CATGCTCAGATACAGAATGGCCCTCCACTCTGAACTAACAGATGCCATCTGAGAAGTGTGGTA
GCATAAGGGAGTCATAAGCAATCCAAACTACCAACAAGAGGCCATTGATCTGGCAGAACCCC
TCGGTGTGGCAGCTTACGGCTCCAGATCACATGTGTCAGGAAATTATGGCTTCAAGAGGTGGAAAGATAA
ACAGTGACGGGGAAACAAACAGACAACAAGAAGGTTGGAAGAAATCTGTTGAGACTCTGAAACCTTAG
CACTAAGGAGATTGAGTAAGGACCTCAAAGTCTCCCGGACTCATGAATTCTGGGCCCTGGCCATTCT
GTGACAGCCAAGGACTTCAGTAGACCATCTGGCAGCTTCCCATGGTGTGCTCAAACCATCAGATAA
ATGACCCCTCCCAAGCACCAGTGCAGTGTGCTACAATCTACCAACCAACCGAGTGTGAAGAGATTAGAA
CCTTGTAAACATACAATTAAAGGTTATATGGCAGCTTCTTACCTGTGTTTCTGGGCTG
ATGTTTAACTTTGCTTAAAGACACAAGCTGTAATCTAAAAGGCACTTTTTAGAGGTATAAGA
AAAAGTACAGCTAATAAAATAAGATCATGGAAGGCTTATGTGAAAGGTTGAATGTTATAGTAAAAAAA
AAAGATATTATGTTATGTACAGTTGCTAAAGCAAGTTGTTGATTGATTCTTGCATTATT
AGATATTATAAAATAAAAAAAAAAAAAAAAAAAAAAA

Human SYNE1 mRNA sequence - var5 (public gi: 21734305) (SEQ ID NO: 187)
CACTGGCAGGCCGCTCGAGACAGCCTGCTTCTCCACAGCCTCCTCAAATCTCCCTCTCGCTCG
CTCAGCCCCCTCCGGAGCGAGCGGTAGGACGAGACACCCAGCTAGTGTGGACTCCATCCCCCTGGAGTG
GGATCACGACTATGACCTCAGTCGGGACCTGGAGTCTGCAATGTCCAGAGCTCTGCCCTCTGAGGATGAA
GAAGGTCAAGGATGACAAAGATTCTACCTCCGGGAGCTGTGCTTATCAGATGTAATGATCCCCGAGA
GCCCTGAGGCCATGTAAAACCTACAGAAAATGCAATCAAACACCTCCGGGACACAGTCCCTAGA
GTACACAGATCCGACAACGGGCAAAGCCCTGGATGATAGCCGTTTCAGATAACAGCAAACCGAAAATATC
ATTGCGAGCAAACCTCCACGGGCGGAGCTAGACACCAGTACAAAGGCTACATGAAACTGCTGGCG
AATGCACTAGCAGTATAGACTCCGTGAAGAGACTGGAGCACAACACTGAAGGAGGAAGAGGAGGCCCTCC
TGGCTTGTAAACCTGCATAGTACCGAAACCCAAACGGCTGGTGTGATTGACCGATGGGAGCTCTCCAG
GCCCAAGGCTTGTGAGCAAGGAGTTGAGGATGAGCAGAGAACCTCCAGAGTGGCAGCAGTTAACCTCAGACT
TGACACGATCTGGGCTGGCTGGGACACGGAGGAGTTGGAACAGCTCCAGCGTGGAAACTCAG
CACTGACATCCAGACCATCGAGCTCCAGATCAAACAGCTCAAGGAGCTCCAGAAAGCTGTGGACCCACCGC
AAAGCCATCATCTCTCCATCAATCTGCAAGCCCTGAGTTCAACCCAGGCTGACAGCAAGGAGAGCCGG
ACCTGCAGGATCGCTTGTGAGTGAATGGGCGCTGGGACAGGAGTGTGCTCTGCTGGAGGAGTGGCG
GGGCTGCTGAGGATGCCCCGTGAGTGCAGTGCCAGGGTTCCATGAAAGTGGCATGTTGCTTCTTATG
CTGGAGAACATGACAGAAGAAAATGAAATTGTCCTATTGATTCTAACCTTGATGCAAGAGATACTTC
AGGACCATCACAAACAGCTTATGCAAAATAAGCATGAGCTGGAAATCCAACTCAGAGTAGCCTCTT

Figure 36 part - 101

PCT/U504/06308

GCAAGACATGTCCTGCCAACTACTGGTAATGCTGAAGGAACAGACTGTTAGAAGCCAAAGAAAAAGTC
CATGTTATTGAAATCGGCTAAACTTCTCTGAAAGGAGGTAGTCGTCATATCAAGGAACCTGGAGAAGT
TATTAGACGTGTCAGTAGTCAGCAGGATTGTCTCTGGTCTCTGCTGATGAACTGGACACCTCAGG
GTCTGTGAGTCCCACATCAGGAAGGAGCACCCAAACAGACAGAAAAGCAGCAGGAGCAAGTGTAGTC
TCACAGCCTGGACCCTCTGCAGCAGTCCACATAGCAGGTCCACAAAAGGTGGCTCCGATTCCCT
CTGAGGCCAGGGCAGGTGGCTCCGGCGCTCTGTTAGTCAGAGTCCTCGAGCAGCTCTCCCC
GCTTCTCCTGCTCTCCTCATCGGGCTTGCTGCTGCTGACCAATGTCAGAGGAAGACTACAGCTGTGCC
CTCTCCAACAACCTTGCCCCGTCACTCCACCCCATGCTCAGATAACCGAATGGCCCTCTCCACTTGAA
CTAACAGAGATGCCATCTGCAGAAGTGTGGTAGCATAAAGGAGGATCGGGTCTAAGCAATCCAAACTAC
CAACAAAGAGGAGGATCTGGCTGATCTGGCAAAGGCCATCGGTGGCAGCTTAGCCCTCTCCAGATCACATGT
GTGCAAATTATGGCTTCAGAGGTGGAAGATAAACAGTGAGGGGAACAAACAGACAACAAGAAGGTTG
GAAGAAATCTGGTTGAGACTCTGAACCTTAGCAGATAAGGAGATTGAGTAAGGACCTCCAAAGTCC
GACTCATGAATTCTGGGCCCTGGCCATTCTGTGCACAGCCAAGGACTTCAGTAGACCATCTGGCAGC
TTTCCCATGGTGTGCTCCAACCATCAGATAATGACCCCTCCAAGCACCAGTCAGTGTGTCATAATCT
ACCAACCAACCAAGTGTGAAGAGATTAGAACCTGTAACATACAATTAAAGAGCTTATATGCCAGC
TTCCCTTTTACCTTGTTCCTGGGCATGATGTTTAACCTTGCTTAAAGGCAACAGCTGAAAT
CTAAAAGGCACTTTTTAGAGGTATAAAGAAAAGTGTAAATAAGATCATGGAAGGCTTA
TGTGAAAAAGTGTAAATGTTAGTAAAGATATTATGTTAGTACAGTTGCTAAAGCCAAG
TTTGTGTTGATTGATTCTTGCTTATTATAGATATTATAAAAGAAAAAAAAAAAAAA

Human SYNE1 mRNA sequence - var6 (public gi: 21750070) (SEQ ID NO: 188)
TCAGAGGGTGCTCAATGCTTCTGAAAGCTGTGATGAACTCACCGACATCCTCCAGAGCAGGAGCAG
CAGGGGCTGCAGGAAGCTGTCAGAAAGCTCCACAAACAATGAAAGGATCTCAAGGAGAAGGCCCTTATC
ATTTGCTTCATCTGAAGAAATTGATGTTGAGAAGATAAGGTTCTAGCCTCTGAGAAGAATGCAAG
GCTGATGAGAGACCAAGCTGATGCCAGGAAGGAGCTGAAAGGTTACAGCTCATGAGGAACCTGTGAAAC
TTCAGTGCACAAAGGCTCCTCATCTCTGTGAGAAAAGGTTACAGCTCATGAGGAACCTGTGAAAC
TCCCAGTGGGGACCCAGTAAGGGACACCTGAAACCTGTCACTGACTCTCAAAGAGCTCAGAGCTGC
CTTGGACAGCACCTACAGGAAGCTCATGGAAGACCCAGACAAGTGGAGGACTACACTAGCAGATTCT
GAGTCTCATCTGGATATCTACAAATGAGACACAATTAAAGGGATCAAGGGTGAGGCCATCGATACTG
CCAACCACGGAGAGGTTAACGTGCCGTTGAAGAGATCAGAAATGGTGTACCAAAAGGGTGAGACCT
CAGCTGGCTGAAATCCAGGCTGAAAGTTGACAGAAGTTCTCTGAGAATGAAGCCAAAGCAGGGA
GATGAGCTGGAAAATTATCCAGCTTCAAGGCTTGTGACGCTGCTGAGGTTGAAAAGATGC
TAAGCAATTGGGGACTGTGTCAGTACAAAGAAATAGTCAAAATTCTCTGAGAAGATTAAATTCTGG
CTCTAAAGAAGTCCAGGAACAAGCTGAGAAGATCTGGATACTGAAAATTCTGTTGAAGCAGCAGTT
CTTCTCATCACCAGCAAAGACAAAGCGGATCTCAGCAAAGAAGAGAGATGTGAGCAGCAGATCGC
AGGCGCAGGGAGAAGGGGGCTGCGTGCAGGAGGAGCTGCGGAAGCTGGAGGACACT
GGATGGCCTGGAGCGCAGCGGGAGAGGGCAGGAACGCCGATCCAGGTCAATTAAAGAAAATGGGAGCGA
TTGAAACAAACAAAGAACAGTGTAAAGGATCTTCAACAGGTTCCAGTCATGACGCTTCTGAA
GTTTAGCAGTTGAAAGTTATCTCAGAACTGGAACAAACAAAGGAGTTCTAAACGGACAGAAAG
TATTGCACTCAGGCTGAGAACCTTGTAAGGAAGCTTCAGAGATACCGCTGGGCCAAAATAAGCAG
CTGCTCAACAGCAGGCCAGTCATGAAAGACACGCTTGAAGAAGAGT
ATGTGATTGACAAGTCTAAACTTCTCTGAGATAAGTTCTACATCAATTCTCTGTACCTGTAT
TCAAAACACTCTAAATCTCAAAGTGTCTGTATTCAGCATGTTGAGGAAACAACTCACAGTTCA
AAAGAAAGTATCGCTAAACAGAAACCAATATCTATAACAGAGCCAAAATATAAGGATGTGGGTT
TGCATCTTAAACTGATCATGTTCATGAGAAAGCCATATCTATTCTATTCTGTGGCTTGTACATTGAG
AGGAAATCTTGAAAGAACTAATATTAAAATAATTCTTAACTATATTCTGTGTGTCACCTTGT
AGCGAAAAGGAGATATTGTTAGTGTAGATTCCAGGCCAAACATCACATGACCTATATCTCC
AACCTGAAGAAGCTCTGGAGCTTACAGTGCCTGGTATTCAAGTATCTGACTAATATGCTCTT
TCCAGAAATTAACTTTAAACTTTAACTTTAACTTTAACTTTAACTTTAACTTTAACTTTAACTTTAACT

Human SYNE1 mRNA sequence - var7 (public gi: 28192521) (SEQ ID NO: 189)
CATATACAGCTGATAAAATCTCTCTGACCTCTGGGACCCATAGGTGCCTGGCTGACAGAGGGAGG
TGGCCCTGAGAGAGGAAATAACCGTTCAACAGGCTCACGAGGAAACAGCAAACACGATACAACGGAAACT
TGAGCAACATAAGAGAAAATGCCGACATGTTAGTGGATCTGCTTCAAAACACGGATGCCACAAAAGAGCA
TTCCATGAAATCTACCGGACAGGCTGTTAACGGGATTCCAGTGCCACTGATCAATTAGAGGACATGG
CCGAGAGGTTCTATTGTTCTGGGCCACATCAGAGCTACACCTAATGAAATGGAAATTAGAATTAAA
GTACCGTCTGCTCACTGCTGGTTCTGAGAGTCAGAGCTGAAAGTGTCTGGATCATTAAGTACGGGAGG
AGAGAGTCAGTGGAGCAGCTTCAACAAACTACGTTCTTATAGAAAATAGCAAGTTCTTGAAACAAT
ATGAGGTGACATACCAAGATCTGAAACAGACAGCTGAGATGTATGTCAGGAGATGGTCAAGTGGAGA
AGCTGAGAATGTGATGAAATTCTGAGTAAAGGACCCGCTCAGTGGAGGAATCTCTAGAGAAGTGGAGG
AGTGTGAGGAGCATGCTGGAGAAGTGTATCTCAACTGGGATCGCTATGCAATACAGTGGCTAGTCTGC
AAGCCTGGCTAGAGGATGCTGAAAAATGCTCAATCAATCAGAAAATGCCAAAAGGATTTTCGAAA

Figure 36 part - 102

PCT/US04/06308

TTTACCTCATTGGATTCAAGCAGCATACTGCCATGAACGATGCTGGCAATTCTAATTGAAACCTGTGATGAGATGGTTCCCGTGACCTGAAGCAGCAATTACTGTTGCTAAATGGCGTGGAGGGAGTTGTTATGG
AAGTCAGCAATATGCTCAAGCTGATGAGATGGACAGAATGAAGAAGGAATACACAGACTGTGTTGTTAC
CCTGCTGCTTGTCAACGGAAGCCCATAAGAAACTTCTGACCCCTTAGAAGTCTCTTTATGAATGTC
AAGCTATTAAATTCAGACTGGAGGATATTGAGCAGAGGGTGCCTGTGATGGATGCCAATACAAGATAA
TTACAAAGACAGCACACCTCATTACCAAAGAAAGCCCCAAGAAGAAGGAAAAGAAATGTTGCGACCAT
GTCAAAGCTCAAAGAGCAGCTAACCAAGGTCAAAGAATGTTACTCCCCACTCCTTATGAGTCTCAGCAG
CTGTTGATTCCGGTGGAGGAATTAGAAAAGCAGATGACGTCTTATGACTCACITGGAAAATCAATG
AAATTATCACAGTTCTGAGCGTGGAGGAAATTAGAAAAGCAGATGACGTCTTATGACTCACITGGAAAATCAATG
AGCTGTCAAGAAAACGTAAAGAAAACCTGACACTTATTGAGAAGGAGCTCAAAGTGTCAAAGT
GTGACCTTGAGCAACGTGTTAAAGCATTGATCAGCAGGGTACAAAGACAGATTGAGATATTGAG
TTGCTTTCAGAGTATGGTAAAGAAAACGGAGATTGAGAAGCATGTTGAAACCAACAGTCGCTTGT
GAAGAAGTTGAGGAGTCTGAGCAGAGTTGGAGAAGGTAAGCTGCGGATTGCTCAGGAGGGCTGGAGGAA
AAGGGGATCCAGAGGAGCTCTGCGGAGACACACTGAGTTTCAAGTCACTGAGGAGTCTGAGGAG
ATGCTTCTGAAAGCTTGTGATGAACTCACCGACATCCTTCAGAGCAGGAGCAGCAGGGCTGCAGGA
AGCTGTTGAAAGCTCCACAAATGGAAGGATCTTCAAGGAGAAGGCCCTTATCATTGCTTCATCTG
AAGATTGATGTGGAGAAGAATAGGTTCTAGCCTCTGAGAAGGAAATGAGCTGAGGAG
CCAAAGCTGATGCCCTGAGGAGCTGAAAGGAGTCAAAGGAGAAGGCCCTAGCTGGCTGAAAT
TCCTCATCATCTGTGAGAAAAGGTTACAGCTCATGAGGAACCTGAGGAGTCTGAGGAG
CCAGTAAGGGACACACCTGAACTGTACAGTCACTCTCAAAGAGCTCAGAGCTGCCATTGACAGCACCT
ACAGGAAGCTCATGGAAGACCCAGACAAGTGGAAAGGACTACACTAGCAGATTCTCTGAGTTCTCATCTG
GATATCTACAAATGAGACACAATTAAAGGGGATCAAGGGTGGAGGCCATCGATACTGCCAACACGGAGAG
GTTAAACGTGCCGTTGAAGAGATCAGAAATGGTGTACAAAAGGGGTGAGACCCCTAGCTGGCTGAAAT
CCAGGCTGAAAGTTTGACAGAAAGTCTCTGAGAATGAAGCCAAAAGCAGGGAGATGAGCTGGCAA
ATTATCCAGCTTTCAAGGCTCTTGAGCAGCTGAGGTTGAAAGATGCTAAGCAATTITGG
GACTGTGTCAGTACAAAGAAATAGTCAAAATTCTCGAAGAATTAAATTCCTGGCTCTAAAGAAGTCC
AGGAACAAGCTGAGAAGACTTGGATACTGAAATCTGTTGAAGCAGCAGCTGAGCAGCAGGG
GCAAAGACAAAGGGATCTCAGCAAAGAAGAGAGATGTGAGCAGCAGCTGGAGAG
GAAGGGGGCTCTGAGCAGGAGGGCTGCGGAAGCTGGAGAGCAGCAGGG
GCAGGGGGAGAGGAGCAGGAACGCCCATCCAGGTACATTAAAGAAAATGGAGCGATTGAAACAAACAA
AGAACAGTAGATAAGATACTTTCAACAGGTTCCAGTCAGAACGCTTCTGAGTTAGCAGTTG
GAAAGTTTATCTTCAGAACTGGAACAAACAAAGGAGTTCTAAACGGACAGAAAAGTATTGAGCTCCAGG
CTGAGAACCTGTAAGGAAGCTCAGAGATAACCGCTTGGGCCAAAATAAGCAGCTGTTCAACAGCA
GGCCAAGTCATCAAAGAACAGTCAAAAATTAGAACAGCCTGAGAAGATATTAAACCATGGAA
ATGGTAAAACCAAGTGGATCATTTGGCAGTAATTGAGACTCTGTCCTGATAACTGAGAAAG
AAAAAGAACTCAATGCCCTGGAAACTTCGTACATGCCATGGACATGCAAATCAGCCAAATTAAAGTCAC
AATTCAAGGAATAGAAAGTAAAGCTCAGCAGCATTGAGGATTAGAAGAAGAAGCCAGTCTTCTCAG
TTTGTACCACTGGAGAATCTGTCGAAATTAAAGCCAGTTGACACAAAATAAGAAGATACGGGGAAAGGC
TTCGAGAGCATGCCAGTGTCTGGAGGAACAACTCTGGGACATTCTCAGCAGCAGAAAAGTTGAAGA
GAACCTTAGAAAGATCCAGCAATCTGTCGAAATTGAGATAAAACTTGCTGTTCAATTAAATATGT
TCTTCAGCTACAGAAACATCAAAGTCTTCAAGAACATATGGATCTGCCAGGCCCTGGAGTCAGTGA
GCAGCGCAGTCACTGCCCTCAGCCAGTGCAGGAAGGTTGAGAACAGAGATTCTGTTCAAGGAGG
TGCAGCTCACAGCAGCAATACGAGGACATCTAAGGAGGGCGAAGGAGAGACAGACGGCGCTGGAGAAT
CTGCTGGCCACTGGCAGAGGCTAGAGAAAAGAACTATCATCCTTTGACCTGGTTAGCGGGGGTGAAG
CTAAAGCCAGTCCCCAGAAATGGACATTCTGAGACAGAGTCAAAGTGGAAAGGTGAACCTCAGTTAAT
ACAGGCAAGTCAAGGAAGTGTGAGGAAGGAAAAATAAAATGCTTTGTTACAGTTACATTATTTAAA
ATAATAAAATAAAACTTGTAAAAAAAAAAAAAA

Human SYNE1 mRNA sequence - var9 (public gi: 17861377) (SEQ ID NO: 191)
AAGGTAAGCCACTAGAGAGAAACTGAAAGAAAATTCTAAGATAATTGACATTCTCT
AAAAATATGATTATAGACCACAGATAGGAATTAAAGAGTTCTGATAATTGAGCTTCAATTATTTAA
AGGATTATCAAGAGGAATTGCTATTGCTCAAGAGAACAAATACAGCTCAACAAATGGAGAACGACT
TGCTAAAGCCAGCCATGAAAGCAAGCATCTGAGATTGAATACAAGCTGGAAAGGTCAACGACCGGTGG
CAGCATCTCTGGACCTCATTCAGCAGCCAGGGTGAAGAAGCTGAAGGAGACCCCTGGTAGCCGTGCAGCAGC
TTGATAAGAACATGAGCAGCCTGAGGACCTGGCTCGCTCACATCGAGCTGGCCAAGCCAATAGT

Figure 36 part - 103

CTACGATTCTGTAACTCGGAAGAAATACAGAGAAAGCTTAATGAGCAGCAGGAGCTTCAGAGAGACATA
 GAGAAGCACAGTACAGGTGTGCATCTGCTCAACCTGTGTGAAGTCTGCTGCACGACTGTGACGCCT
 GTGCCACTGATGCCGAGGTGACTCTATACAGCAGGCTACGAGAAACCTGGACCGGGCGTGGAGAAACAT
 TTGTGCTATGTCATGGAAAGGAGGCTGAAAATCGAAGAGACGTGGCATTGTGGCAGAAATTCTGGAT
 GACTATTACGTTTGAGATTGGCTGAAGTCTCAGAAAGGACAGCTGCTTTCCAGCTCTCTGGGG
 TGATCTATACAGTTGCCAAGGAAAGAACATTAAGAAAATTGAGGCTTCCAGCGACAGGTCCACGAGTGCCT
 GACCGAGCTGGAAGTCAACAGACTGAGTACCGCCCTGGCAGGGAGAACCGCACTGATTCAAGCATGT
 AGCCTCAAACAGATGGTCAGAAGGCAACCAGAGATGGGACAACCTGCAAAGCGTGTACCTCCATCT
 TCGCAGACTCAAGCATTTATTGGCCAGCGTAGGGAGTTGAGACTGCGGGGACAGCATTCTGTCTG
 GCTCAAGAGATGGATCTGAGCTCACTAATATTGAACATTTCAGTGTGATGTTCAAGCTAAAATA
 AAGCAACTCAAGGCCCTCCAGCAGGAAATTCACTGAACCACAATAAGATTGAGCAGATAATTGCCAAG
 GAGAACAGCTGATAGAAAAGAGTGAGCCCTGGATGCAGCGATCATGAGGAGGAACTAGATGAGCTCCG
 ACGGTACTGCCAGGAGGTCTCGGGCGTGTGGAAAGATAACATAAGAAACTGATCCGCTGCCCTCCCCA
 GACGATGAGCACCGACCTCTCAGACAGGGAGCTGGAGACTCTGAGCTCTGCGACTCGGACACT
 GGCACGACCGCTCTGAGACAGCCTGCTTCTCCACAGCCTTCTCCAATCTCCCTCTCGCTCGCTCA
 GCCCTCCGGAGCGAGCGTCAAGGAGACACCCCAGCTAGTGTGGACTCATCCCCCTGGAGTGGGAT
 CACGACTATGACTCAGTCCGGACCTGGAGCTGCAATGTCCAGAGCTCTGAGCTCTGCGCTCGCTCA
 GTCAGGATGACAAAAGATTCTACCTCCGGGAGCTGCTGCTTATCAGATGTAATGATCCCCGAAAGCCC
 TGAGGCTATGAAAACTCAGAAAATGCAATCAAATACCTCCGGGACACAGTGCCTAGAGTCA
 CAGATCCGACAACAGCCCTGGCTGGAGCTAGACACCGACTACAAAGGCTACATGAAACTGCTGGGGAATG
 GCAGAAAACCTCCCACGGGCGGAGCTAGACACCGACTACAAAGGCTACATGAAACTGCTGGGGAATG
 CAGTAGCAGTATAGACTCCGTGAAGAGACTGGAGCACAAACTGAAGGAGGAAGAGGAGAGCCTCTGGC
 TTTGTTAACCTGCAAGTACCGAAACCCAAACGGCTGGTGTGATTGACCGATGGGAGCTCTCCAGGCC
 AGGCATTGAGCAAGGAGTTGAGGATGAAGCAGAACCTCCAGAAGTGGCAGCTTAACACTGAGACTTGA
 CAGCATCTGGGCTGGCTGGGGACACGGAGGAGTTGGAACAGCTCCAGCGTCTGGAACTCAGCACT
 GACATCCAGACCATCGAGCTCCAGATCAAAGCTCAAGGAGCTCCAGAAAGCTGTGGACCACCGCAAAG
 CCATCATCCTCTCCATCAATCTCTGAGCCCTGAGGTTCACCCAGGCTGACAGCAGAACGGAGCGGGACCT
 GCAGGATCGCTTGTGAGATGAATGGCGCTGGGACCGAGTGTGCTCTGCTGGAGGAGTGGGGGG
 CTGCTGAGGATGCCCTGATGCACTGGCAGGGTTTCCATGAAATGAGCCATGGTTGCTTATGCTGG
 AGAACATTGACAGAAGAAAATGAAATTGTCCTATTGATTCTAACCTGATGAGAGATACTTCAGGA
 CCATCACAAAACAGCTTATGCAAAATGAGCTGAGGTTGGAATCCAACTCAGAGTAGCCTCTTGCAA
 GACATGCTTGGCAACTACTGGTGAATGCTGAAGGAACAGACTGTTAGAAGCCAAAGAAAATGCCATG
 TTATGGAATCGCTCAAACCTCTGAGGAGGTCACTGTCATATCAAGGAACGGAGTTATT
 AGACGTGTCAGTAGTCAGCAGGATTGTCTCTGGCTCTGCTGATGAACTGGACACCTCAGGGTCT
 GTGAGTCCCACATCAGGAAGGAGACCCCAAACAGACAGAAAAGCCACGGAGGCAAGTGTAGTCTCTCAC
 AGCCTGGACCCCTGTGAGCAGTCCACATAGCAGGTCACAAAAGGTGGCTCGATTCCCTCCCTTCTGA
 GCCAGGGCCAGGTGGTCCGCCGCGCTTCTGTCAGAGTCTCCGAGCAGCTCTCCCTCAGCTT
 CTCCGCTCTCCCTCATGGGCTTGCCCTTGACCAATGTCAGAGGAAGACTACAGCTGTGCCCTCT
 CCAACAACCTGGCCGCTTCCACCCATGCTCAGATACAGCAATGGGCTCCACTCTGAACACTAA
 GCAGATGCCATCTGAGGAGCTGGTAGCATAAGGAGGATGGGCTATAAGCAATCCAAACTACCAAC
 AAGAGGACCTTGATCTGGGAAAGGACCTGGTGTGGCAGCTTAGGCTCTCCAGATCACATGTC
 AAATTATGGCTTCAAGGGTGAAGATAAACAGTGAACGGGGAAACAAACAGACAAAGAACAGGTTGGAAG
 AAATCTGGTTGAGACTCTGAACCTTAGCAACTAGGAGATTGAGTAAGGACCTCAAAGTCCCCGGACT
 CATGAATTCTGGCCCTGGCCCATTCTGTCAGCAGCAAGGACTTCAGTAGACCATCTGGCAGCTTCC
 CCAAGGTGCTGCTCCAACCATCAGATAAAATGACCCCTCCAAAGCACCAGTCAGTGTGTCACATCTACCA
 ACCAACCCAGTGTGAAGAGATTAGAACCTTGAAACATACAAATTGAGGCTTATATGGCAGCTTCC
 TTTTACCTTGTGTTCTGGGGCATGTTAACCTTGCTTAAAGGCTTATGCTTAAAGCACAAGCTGTAATCTAA
 AAGGCACCTTTTTAGAGGTATAAAGAAAAACTAGATGTAATAAATAAGATCATGGAAGGCTTATGTG
 AAAAGAGTTGAATGTTAGT

Human SYNE1 mRNA sequence - var10 (public gi: 17861385) (SEQ ID NO: 192)
 CAAAAATCAGTCTGATCTCGGGAAACCTGGAGAAATTATTTCTGTACTCTAAATGTCCTTCATTTGG
 TGACCATCAAGGTGCTGGGAGAGGAATTAGATGGCTGAATTCAAAGTAAATGGAATTAGATGCAAGCAGT
 ACAGAAATTCTGGAACAGAATGGCCAACGGGTAAGGCCACTGGCCAAGAAAGATAGGAAACACTGACTGAA
 CTTCACCGAGACCATAGACAAGCTGAGAATCGGCTCTCCAAGCTCACTCAGGCAACATCACATTAG
 AAGAATAACATGAAATTGTCAGATTAAATTGAGGTTGAGGATGGGAAAGCTAAAGTCTTGGCTCATGGAAC
 TATTGCACTGGAAATTGTCAGCAGCTGGGAGGAAACATATTGTCAGTACCTCACTAGCGTGTACTGTACAG
 AAAGAAATTGACAGTGTGAGGCTGGAGCAATGACTGAGGAAATTACAGTACCTCACTAGCGTGTACTGTACAG
 AAAAGAAATTGTCAGCAAGTGGCAGAACGGGAGACTGAGGAGTTGCGACAGATGATCAAATTG
 TTTGCAAGACCTCCAAGATGCAAGCTGAGGATATGAAAGGAGGAGTTGAGGAGTTGAAAGTACAAGCT
 GCCTGGAGCAAGCCCAGGCAACACTGACTCTCTCAGAAGTGGCAGTCTCAGTCTCAAGGAGCAGCT
 CTCATCGGCAGCATTTGTTGCTGAGATGGAGTCACTGAGGCCAGGAGTGGCAAGCAGTGCAGCTGCCA
 GAGTGCCTCCGGATCCCCGAGGATGTGGITGCCAGCTTACCTCTGTCATGCTGCTCTGCCAG

Figure 36 part - 104

GAAGAGGCCAGCCGGCTGCAGCACACGCCATCCAGCAGTGTAAACATCATGCAGGAAGCTGTGGTACAAT
ATGAACAATATGAGCAAGAAATGAAACATCTCAGCAACTGATAGAAGGGCTCACAGAGAGATTGAGGA
TAAACCTGTTGCCACCAGTAACATACAGGAGCTGAGGCTCAGATTCTCGGCATGAGGAGCTGGCGAG
AAAATTAAAGGGTACCAAGGAGCAGATCGCTTCTTGAAATTCAAGTGCAGATGCTGACGATGAAAGCCA
AGCACGCCACCATGCTGACGGTACGGAGGTGAGGGGCTGGCGGAAGGGACAGAGGACCTGGATGG
GGAGCTCCTCCCCACGCCCTCGGCCACCCCTCTGTGGTCATGACTGCAGGTGCGCTCACACTTIG
CTGTCACCGGTCACTGAGGAGCTGGGAGGAGGAACCAAACAGTGAGATTCTCTCCACCTGCGCTGTC
GCTCCCTTCACCTGTGGCTAACAGATGCTTCTGTTAACCCAGGACATTGCAATTACCAAGCCTGTC
TGCTGAGAGGTTGCAAGACAGATGCTGCAAAAATTCAACCCAGCACATCCGCATCCCAGGAGTTCTATGAA
CCGGATTGGAGGCATCCGCTACTGCCAACACTGGGTGATTGAGCAGGTTCTGGGAAACCTTAAAGAATG
TGATCAGTGGAGAACAGCAGCAGCACACTCTATGAAGCTTGGAGCAGCAGAACAGTACCAAGGACTCCCTCCA
GTCATCTCTACGAAGATGGCCATTGAGCTGAAACACTCAGTGAGAGGCCAGGCTGGCAGGAGTCCA
GAAAGCCAGATGGCTAACATCAGGATTGATGGAGATTCTCATGCTCCAGGATGAAATCAATGAGC
TCCAGTCTCTCGCAGAGGAGCTGGTATCCGAGCTTGTGAGGCCGACCCCTGCGGAGCAGCTGGCCTT
GCAGTCCACGCTCACTGCTTAGCCAGCGAATGTCACCATCAGGATGAAAGCCTGGGGAAACGGCAG
CTTGGAGGAGAAGTTGAATGATCAGCTGGAGGAACAAAGGCAGGAACAGGCCGCTGAGAGGTATCGCT
GTGAAGCCAGTGGAGCTGGACAGCTGGCTCTGAGTACCAAGGCCACTCTGGACACTGCGCTGAGTCCACC
CAAGGAGCCCAGGACATGGAGGCCAGCTTATGGACTGCCAGAATATGCTGGGAAATAGAGCAGAAG
GTGGTGGCTTATCAGAACTGTCAGTCACAATGAGAACCTGCTGCTGGAGGGCAAAGCTCACACCAAGG
ACGAGGCCAGCTGGCTGAAAGCTGAGAACAGCTCAAGGGGAGCCTGCTGGAGCTGCAGAGAGCCCT
GCATGATAAGCAGCTAACATGAGGGAAACAGCACAGGAGAAGGGAGAGCAGTGTGACCTAACAGCC
ACGAGAGCCCCGGCTCAGGAATGGCTGGCCAAAGCTGCAACACATGGACCCAGCAGGGCAGAGCA
GTCTCAGCAAAAGAGATTCTAATTCAACATTGGCGCAGAGACCTCTGGTATGCTGGGAAAAACCTGAT
GTGTATCCAGGAGTTGGGATGAAAGGGAGAAATCATGGCTGAGACAGAGATGAGAATGAAATGGG
AAAGCTACATCAAGAATTAGTACCAAGCAGAAACTACTACAGAATGTTCTGGAACAGGAACAAGAGCA
AGTGTATAGCAGGCCAATCGACTCTGCTGGTGTGCCACTGTACAAAGGGACGTGCCAACCCAA
GATAATCTGCAGTTACATTTGCTGGATGGACTGAAACCAAGCCTCGAGGAGGTTCATCCAGAGTG
GAGGGGAAAGAGGCAGAGTATAACTTGGAGCAGAAGTTGTATGATGGAGCTCAGCCACCTCTACTTG
GTTGGATGACGTTGAAGAACGTTATTGTTGCCACAGCACTTTACCAAGAAGAACAGAGACTTGTCTC
TTCAACCAAGAGATTCTGCCAACAGACATTAAGGAAATGTCAGAAGAAATGGATAAGAACAAAACCTGT
TTTCCAAGCTTCCAGAGAATGGTATAATGAGATGTTATTGAGAATACTTGGGTGCTTTGGG
CAGGTTATCTGCTAGACTCAGTAGTGAATCAAGCTGTCATCAGATGAAAGAACACTTCAGCAAATA
CTAAATTCTCAGAATGATCTGAAAGCTGCTGTTACATCACTGGCTGACAACAAATACATCTGCAA
AACTGGCAAATGTTGAAGACGGCTAGCAGAACAAATAGAGGCAATACAACAGGCTGAAGATGGACT
CAAAGAATTGATGCAGGAATCATTGAAATTAAAGAGGCGTGGTACGAGCTACAGGTCGAGCAGCGTCC
ATGCAAGAACTCTCAAGCTCCAGGACATGTATGATGAGCTGATGATGATCATGGCTCCGGAGGAGTG
GTCTGAATCAGAACCTTACACTCAAGAGTCAGTAGTGAAGAGGCCCTACAAGATCTGGCTGACCTGCTAGA
AACTGGTCAGGAGAAGATGGCAGGAGACCAGAAAATCATGCTGCTTCAAAGAGGAAATCCAGCAACCA
CTTGACAAACATAAGGAATACTTTAGGGCTGGATCTATGATCTTGTACTGTAACACTCTCAGAA
AGATAATCAGCTTGCAGTCCAAAAGGAAACCCAGTCCATACAGAGCTGATGGCTCAGGCTCTGCTGT
ACTGAAACGGCTCACAAGAGGGGTGAGCTGGAGTACATTCTAGAGACGCTGGTCCATCTGGATGAG
GACCAGCAGGAGCTCAGCAGACAGCTGGAGGTGGAAAGCAGCATCCCAAGCTGGGTCTGGTGGAGG
AGAACGAGGACAGGCTTATTGACCCATAACACTCTACCGCATTAAAATCTAGCCTTAATGAAATACCA
GCCCAAATTATCAAGTATTAGTGTGGGAAACGACTTCTGATATCCATCAGCTGCTCAGATCTAGAA
AGCCAACTAAATCAACTTGGAGAGTGTGGCTTAAGTAACACCAAATAAAATGCTAAGGAACCTCACAGAC
TGGAAACAATATTGAAACACTGGAGCAGATATCAAAGTGAATCTGAGATCTAATTCACTGGTTACAATC
TGCAAAAGACGGCTAGAATTGGACTCAGCAATCTGTCAGTCCCACAAGAGCTGGAAATGGCCGT
GATCATCTAAATGCTTCTGGAGTTCTAAAGAAGTGGATGCCAATCTCCCTGAAATCATCTGTT
TGAGTACTGAAATCAGCTCTCGACTAAAAAGGTTGGACACAGCCACGCTGCGCTCTGAGTTGCG
CATTGATAGCCAGTGGACTGACCTGCTAACCATATCCAGCCGCTCAGGAGAACGCTCCACCAGCTCAG
ATGGATAAACTGCTTCCCGCATGCCATTCTGAAAGTCATGAGTTGGACTCTCTAATGAAATGCTA
TTCAGAAGGATGAAGATAATATTAAAAATTCCATAGGTTACAAGGCAATCATGAATACCTTCAGAAATA
TAAGGTTTAAGATAGACATTAACAGTAAACAGTGCAGTGGATTGAGCTGAGGAAACGACTCCGTCTACAA
ATCAGCAGTCAGGATGTGGAAAGTAAGCTGAGTGAATGAGACTGATTGAGCTGAGCAACTTGGAGCAATGA
ATAAAAGTTGGAAATTCTGCAAGGCTAGTAACATGAGAAGATCCAGCTGGAGGCTTATTGAAATC
TTGGTCAGAATATGAAAATAATGTCAGTAACTGCTGAAAACATGGTTGAAACCCAGGAAAGAGACTAAA
CAACAGCAGTCAGGATGTGGAGATCAGGCTCTGTCAGGCTTCTGTCAGGAAACCTGGGAAATTTAGATCAC
TGATTAAGCAGGAAAGATAAGAGTGAAGAAAATTGAGCAGAACATGGACTGCTTGGATTGATCAGACAAGAA
AGAAGACGTCTAGCATTGTCATGAGCACACTGGAGAGCAGCTGGCCAAACCTGGGAAATTTAGATCAC
ATGGTTGGACAAATTAAAGATACTGTCAGTAACTGCTGAGGACATGCTGAGGATCTGGACTGGCTCTT
ACAAGATAAAACAGTTACCTCATGGAGGCCAGATACTCTCTTCCGATCCGCTGACTGGCTCTT
AGAAGCTGTGCAAGTTCAAGGTTGACAACTTCAGAATCTCCAAGATGATCTGGAAAACAGGAAAGGAGC

Figure 36 part - 105

TTACAGAAATTGGCTTATCACCAACCAATTATAAAAGAGTGTACCCACCGTGACAGAAACTCTTA
CCAATACACTGAAAGAAGTCACCATGAGATGGAATAACTTGTGGAAGAGATTGCTGAGCAGCTACAGTC
CAGCAAGGCCCTACTTCAGCTTGGCAAAGATAACAAGGACTACTCCAAACAGTGTGCTTCGACAGTTAG
CAGCAGGAGGATCGAACCAATGAGCTGGTAAGGCAGGCCAAACAAGGACATTGCCATGATGAGGTTG
CCACATGGATTCAAGATTGCAACGACCTCCCTAAAGGACTGGCACAGTTAAAGATTCCCTTGTCT
CCATGAGCTGGGAGAGCAACTGAAAGCAACAAGTGGATGCTCCGAGCATTAGCTTCAATCGGATCAA
CTCTCTTGAGTCACACACTGTGTGCTCTGGAGCAAGCTCTGCAAACAGCAGACTTCATTACAGGCTG
GAGTCTTGATTATGAAACACCTTGCCAAAGAGTTAGAAGCTTGGAGGCTGGATAGTGGAGCTGAAGA
AATACTACAAGGGCAGGACCCTAGCCACTCATCTGACCTCTCACAATCCAGGAAGGATGGAAGAACTT
AAGGACAGATGTTAAATTCAAGCAGCATGGCTCCAGATTAGACCGTCTAAATGAGCTGGATATAGGT
TACCCCTGAATGATAAGGAAATCAAAGAATGCAAGATCTGAAACGCCATTGGTCTCTGATCTCTCTCA
GACTACAGAAAGATTCAAGCAGTTGAGTCATTGGCTACAACATCAGACTTCTGGAAAAATGTGAA
ACATGGATGGAATTCTAGITCAGACAGAACAAAGTTAGCAGTAGAGATTCAAGGAAATTACAGCACC
TTTGGAACAGCAGAGAGCACAGGTTCAAGCCAGATGTTCAAGCTGAGCAGATTGCACTC
AATCATTATTGATGGCAACGCTTCTAGAACAAAGGTCAGTTGATGACAGGGATGAACTCAACCTGAAA
TTGACACTCCTCAGTAATCAATGGCAGGGAGTGATTCGAGGGCCAGCAGAGGCGGGGATCATGACA
GCCAGATTCGCCAGTGGCAGCGCTATAGGGAGATGGCAGAAAAGCTCGTAAATGGTTGGTGAAGTGTG
CTACCTCCCCTAGTGGTCTCGGAAGTGTCTTCTATACCACTGCAACAAAGGACCCCTTGTGATGAA
GTGCAAGTCAAAGAAAAGTGGCTCGGGCAACAAAGGCACTACATCTGACTGTGAGGCTGGCAAGC
AACTCTCTCTCGCGGAGCTGGCCTGAGGCCCTTGCAAGGCCACTCGCTGAAATCCAAGAGAA
ATGAAATCAGCCAGCATGGCAGTGGAGAACAGAAGAAAAGTAGCCTCTGTGAAAGACTGGGAA
AAATGTGAGAAAGGAATAGCAGATTCTGGAGAACACTAGAACATTTCAAAAGAACGTTGCACTC
TCCGGATCACCATGAAGAGCTCCATGCAAGAACAAATGCGTGCAGGAATTAGAAAATGCACTGGAG
CTGGACAGATGACTTGAACCCAGTTGAGGCTGCTGAAGGACACCTCTGCTCTGCTTATATCAGTGTGATGAT
ATCTCCATTCTTAATGAACCGTAGAGCTCTGCAAAGGCACTGGGAGAAACTATGCCACCAGCTCTCT
TAAGCGGCAGCAAATAGGTGAAAGATTGAATGAATGGCAGTCTCAGTGAAGAACAAAGGAACTCTG
TGAGTGGTTGACTCAAATGAAAGCAAAGTTCTAGAACATGGAGACATTCTCATTGAAGAACATGAG
AAGCTCAAGAAGGATTATCAAGAGGAATTGCTTAAAGAGAACAAATACAGCTCCAACAAATGG
GAGAACAGCTTGTCAAAGCAGCCATGAAAGCAGAACAGCTGAGATTGAATACAAGCTGGGAAAGGTCAA
CGACCGGTGGCAGCATCTCTGGACCTCATGAGCCAGGGTGAAGAACAGCTGAAGGAGACCCCTGGTAGCC
GTGCAAGCAGCTGATAAGAACATGAGCAGCCAGGGTCACTGGCTCGTCACATCGAGTCAGAGCTGGCCA
AGCAAATAGTCTACGATTCTGTAACTCGGAAGAACATACAGAGAACAGCTTAAATGAGCAGCAGGAGCTTCA
GAGAGACATAGAGAACAGTACAGGTGTTGACATCTGCTCTAACCTGTGAGTCTGCTGACAGC
TGTGACGCCCTGCAACTGATGCCAGGTGACTCTATAACAGCAGGCTACAGAGAACACTGGACCAGCG
GGAGAAACATTGTGCTATGTCATGGAAAGGAGGCTGAAAATCGAAGAGACGTGGCATTGTCAGGAGAA
ATTCTGGATGACTATTACGTTGAAGATTGGCTGAAGTCTCAGAAAGGACAGCTGCTTTCCAGC
TCTCTGGGTGATCTATACAGTTGCCAACAGAACACTAAAGAAATTGAGGCTTCCAGCAGAGGTCC
ACGAGTGCCTGACGCAGCTGAACTGATCAACAAAGCAGTACCGCCGCTGCCAGGGAGAACGCACTGA
TTCAGCATGTAGCCTAAACAGATGGTCACGAAGGCAACCAGAGATGGGACAACCTGCAAAAGCGTGT
ACCTCCATCTGCCAGACTCAAGCATTATTGCCCCAGCGTGAGGAGTTGAGACTGCGCGGGACAGCA
TCTCTGGCTGGCTCACAGAGATGGATCTGCACTCAAAATTGAAACATTCTGAGTGTGATGTTCA
AGCTAAAATAAGCAACTCAAGGCCCTTCCAGCAGGAAATTCTACTGAAACCCACAATAAGATTGAGCAG
ATTGCCCAAGGAGAACAGCTGATAGAAAAGAGTGAGCCCTTGGATGCGAGCAGTACATCGAGGAGAAC
ATGAGCTCCGACGGTACTGCCAGGGCTTCTGGCGTGTGAAAGAACCTACATAAGAACACTGATCCGCT
GCCCTCTCCCAGACGATGAGCACGACCTCTCAGACAGGGAGCTGGAGCTGAAAGACTCTGAGCTCTG
GACCTGCACTGCCAGGCCCTGCAAGCACAGCCTGCTTCTCCACAGCCTCTCCAATCTCTCCCT
CGCTCGCTCAGGCCCTCCGGAGCGAGCGGTCAAGGAGCACACCCAGCTAGTGTGACTCCATCCCC
GGAGTGGGATCACGACTATGACCTCAGTGGACCTGGAGTCTGCAATGTCCAGAGCTGCTGCCCTGAG
GATGAAGAACAGGTCAGGATGACAAGATTCTACCTCCGGGAGCTGTTGCTTATCAGGGGACCACAGT
CCCTAGAGTCACAGATCCGACAACCTGGCAAGGCCCTGGAGTATAGCGCTTTCAGATAACAGCAAACCGA
AAATATCATTGGCAGAAAACCTCCCACGGGCCGAGCTAGACACCGAGTACAAAGGCTACATGAAACTG
CTGGCGAATGCCAGTAGCAGTAGACTCCGTGAAGAGACTGGAGCACAACACTGAAGGGAGGAAGAGGAGA
GCCCTCTGGCTTGTAAACCTGCACTAGTACCGAAACCCAAACGGCTGGTGTGATTGACCGATGGGAGCT
TCTCCAGGCCCTGGCAGGATGGCAAGGAGTTGAGGATGAAGCAGAACCTCCAGAACAGTGGCAGCAGTTAAC
TCAGAGTGAACAGCATCTGGCCCTGGGGAGCACCGAGGAGGAGTTGAGACAGCTCCAGCGTCTGG
AACTCAGCAGTGCACATCCAGACCATCGAGCTCCAGATCAAAAGCTCAAGGAGCTCCAGAACAGTGTG
CCACCGCAAAGGCCATCATCTCTCCATCAATCTGCAAGGCCCTGAGTTCAACCCAGGCTGACAGCAAGGAG
AGCGGGACCTGCAAGGATCGCTTGTGCAAGATGGCGCTGGGACCGAGTGTGCTCTGCTGGAGG
AGTGGCGGGGCCCTGCTGCAAGGATGCCCTGAGTGCAGTGCAGGGTTCCATGAAATGAGCCATGGTTG
TCTTATGCTGGAGAACATTGAGAGAAAATGAAATTGTCCTTATTGATTCTAACCTTGATGCAAG
ATACTTCAGGACCATCACAAACAGCTTATGCAAATAAAAGCATGAGCTGTTGAAATCCAACCTCAGAGTAG
CCTCTTGCAAGACATGTCCTGCCAACTACTGGTGAATGCTGAAGGAACAGACTGTTAGAAGGCCAAAGA
AAAAGTCCATGTTATTGAAATCGGCTCAAACCTCTTGAAGGAGGTAGTCATATCAAGGAACTG

PCT/US04/06308

GAGAAGTTATTAGACGTGTCAAGTAGTCAGCAGGATTGTCTTCTGGTCTTCTGCTATGAACTGGACA
CCCTCAGGGTCTGTGAGTCCCACATCGGAAGGAGCACCCAAACAGACAGAAACGCCACGAGGCAAGTG
TAGTCTCTCACAGCCTGGACCCCTGTCAAGCAGTCCACATAGCAGGTTCCACAAAAGGTGGCTCCGATTC
TCCCTTCTGAGCCAGGCCAGTCGGTCCGGCCGCGGTTCTGTTAGAGTCCTCCGAGCAGCTCTTC
CCCTTCAGCTTCTCCTGCTCCTCCTCATCGGGCTTGCCTGCTTGTACCAATGTCAGAGGAAGACTACAG
CTGTGCCCTCTCAAACAACCTTGCCCCGGTCAATTCCACCCCATGCTCAGATACACGAATGCCCTCCCTCCA
CTCTGAACTAAGCAGATGCCATCTGCAGAAGTGCTGGTAGCATAGGAGGATCGGGTCAAGAACATCCC
AAACTACCAACAAGAGGACCTTGATCTTGGCAGAAGGCCCTCGGGTGGCAGCTTCTAGGCCCTCCAGAT
CACATGTGCAAAATTATGGCTCAGAGGTGGAAAGATAAACAGTGACGGGGGAAACAAACAGACAACAGA
AGGTTGGAAAGAAATCTGGTTTGGACTCTGAACCTTAGCACTAAGGAGATTGAGTAAGGACCTCCAAAG
TTCCCCGGACTCATGAATTCTGGGCCCTGGCCCATCTGTGTCACGCCAAGGACTTCAGTAGACCATCT
GGCAGCTTCCCATGGTGTGCTGCCAACATCGATAATGACCTCCCAAGCACCAGTGTAGTGTGCT
ACAATCTACCAACCAACCAGTGTGAAAGAGATTTAGAACCTTGTAAACATACAATTAAAGAGCTTATA
TGGCAGCTTCTTTTACCTTGTGTTTCCCTTGGGGCATGATGTTAACCTTGCTTAAAGGCACAAGC
TGTAAATCTAAAAGGCACTTTTTAGAGGTATAAAGAAAAACTAGATGTAATAAAAGATCATGGAA
GGCTTATGTGAAAAAGTGTGAATGTTAGT

Human SYNE1 mRNA sequence - var11 (public gi: 17227153) (SEQ ID NO: 193)
AACTCCTCTCGGGGACAGTGGCCTGAGGCCCTGAGGCCACTCGCTGAAATCCAAGAGAA
ATGGAATCAGCCAGCATGCGGTGGAAGAACAGAAGAAAAACTAGCCTTCTGTTGAAAGACTGGAA
AAATGTGAGAAAGGAAATAGCAGATTCCCTGGAGAAACTACGAACITTCAAAAGAAGCTTCAGTC
TCCCAGATCACCATGAAGAGCTCCATGCAGAACAAATCGCTTGCAAGGAATTAGAAAATGAGCTGGAG
CTGGACAGATGACTTGACCCAGTTGAGCCTGCTGAAGGACACCCTCTGCCTATATCAGTGTGATGAT
ATCTCCATTCTTAATGAACCGTAGAGCTCTGCAAAGGAGTGGAAAGAACTATGCCACCAAGCTCTCCT
TAAGGCAGCAAATAGGTGAAAGATTGAATGGCAGTCITCAGTGAAAGAACAGGAACACTCG
TGAGTGGTGAACCAAATGGAAGCAAAGTTCTCAGAATGGAGACATTCTCATTGAAGAAATGATAGAG
AAGCTCAAGAAGGATTATCAAGAGGAAATTGCTATTGCTCAAGAACAAAATACAGCTCCAACAAATGG
GAGAACGACTTGCTAAAGCCAGGATGAAAGCAAAGCATCTGAGATTGAATAACAGCTGGGAAAGGTCAA
CGACCGGGTGGCAGCATCTCCTGGACCTCATGCGACCCAGGGTGAAGAGCTGAAGGAGACCCCTGGTAGCC
GTGAGCAGCTGATAGAACATGAGCAGCTGAGGACCTGGCTCGCTCACATCGAGTCAGACTGGCCA
AGCCAATAGTCTACGATTCTGTAACTCGGAAGAAAATACAGAGAAAGCTTAATGAGCAGCAGGAGCTTCA
GAGAGACATAGAGAACAGTACAGGTGTTGATCTGCTCAACCTGTGTGAAAGTCTGCTGACGAC
TGTGACGCCGTGCCACTGATGCCAGTGAGTGTGACTCTATACAGCAGGCTACGAGAACCTGGACCGCGGT
GGAGAAACATTGTGCTATGTCCATGGAAAGGAGGCTGAAAATCGAAGAGACGTGGCATTGTGGCAGAA
ATTTCTGGATGACTATTACGTTTGAAGATTGGCTGAAGTCTCAGAACAGGACAGCTGCTTTCCAGC
TCTTCTGGGTGATCTATACAGTTGCCAAGGAAGAACATAAGAAATTGAGGCTTCCAGCGACAGGTCC
ACGAGTGCCTGACGAGCTGAACTGATCAACAAGCAGTACCGCCCTGGCAGGGAGAACCGCACTGA
TTCAGCATGTAGCCTAAACAGATGGTCACGAAGGCAACCAGAGATGGACAACCTGCAAAGCGTGTGTC
ACCTCCATCTGCGCAGACTCAAGCATTATTGGCCAGCGTGAGGAGTTGAGACTGCGCGGGACAGCA
TTCTGGTCTGGCTCACAGAGATGGATCTGAGCTCACTAATATTGAACATTCTGAGTGTGATGTTCA
AGCTAAAATAAAAGCAACTCAAGGCCCTCCAGCAGGAAATTCACTGAGACCACAAATAAGATTGAGCAGATA
ATTGCCAAGGAGAACAGCTGATAGAAAAGAGTGAACGGCTTGGATGCGAGCATCTGAGGAGGAAACTAG
ATGAGCTCCAGGGTACTGCCAGGAGCTGGCTTGGAGGAGCTGGAGCTGGAGACTCTGAGCTCTGCG
GCCTCTCCAGCAGATGAGCACGCCCTCTCAGACAGGGAGCTGGAGCTGGAGACTCTGAGCTCTGCG
GACCTGCACTGGCAGGCCGCTCTGAGACAGGCCCTGCTTCTCCACAGCCCTCTCAATCTCCCTCT
CGCTCGCTCAGCCCCCTGGAGGGAGCGTCAAGGAGAACCCCCAGCTAGTGTGGACTCCATCCCCCT
GGAGTGGATCACGACTATGACCTCAGTGGACCTGGAGTCTGAATGTCCAGAGCTCTGCCCTCTGAG
GATGAAGAAGGTCAAGGATGACAAAGATTCTACCTCCGGGAGCTGGCTTATCAGGGGACCACAGTG
CCCTAGAGTCACAGATCCGACAACGGGAAAGGCCCTGGATGATAGCCGTTTCAGATACAGCAAACCGA
AAATATCATTGCAAGAAAACCTCCACGGGGCCGGAGCTAGACACCAGCTACAAAGGCTACATGAAACTG
CTGGGCGAATGCACTAGCAGTATAGACTCCGTGAAGAGACTGGAGACAAACTGAAGGAGGAAGGAGA
GCCTTCTGGCTTGTAACTGCATAGTACGGAAACCCAAACGGCTGGTGTGATTGACCGATGGAGCT
TCTCCAGGCCAGGATTGAGCAAGGAGTTGAGGATGAAGCAGAACCTCCAGAAGTGGCAGCAGTTAAC
TCAGACTGAAACAGCATCTGGGCTGGCTGGGGACACGGAGGAGCTGGAGACTCTCAGCGTCTGG
AACTCAGCACTGACATCCAGACACCAGCTCCAGATCAAAAGCTCAAGGAGCTCCAGAACAGCTGTGGA
CCACCGCAAAGCCATCATCTCTCCATCAATCTCTGAGGCCCTGAGTTCACCCAGGCTGACAGCAAGGAG
AGCGGGGACCTGCAAGGATCGCTTGTGCGAGATGAATGGCCGCTGGAGCTGGAGTGTGCTCTGCTGGAGG
AGTGGCGGGGCTGTCAGGATGCCCTGAGTGCAGTGGCAGGAGTGGCTTCCATGAAATGAGCCATGGTTGCT
TCTTATGCTGGAGAACATTGACAGAAGGAAAATGAATTGCTTCTGAGTCTAACCCTGATGCAAGAG
ATACTCAGGACCATCACAAACAGTTATGCAAAATAGCATGACCTGTTGGATATCCAACTCAGAGTAG
CCTCTTGCAGACATGCTTGCCTACTAGTGGTAATGCTGAAGAACAGACTGTTAGAAGGCCAAAGA
AAAAGTCATGTTATTGAAATCGGCTCAAACCTCTCTGAGGAGGTCAAGTGTGATGCAAGGAG
GAGAAGTTATTAGACGTGTCAGTAGTCAGCAGGATTGCTTCTGGTCTCTGCTGATGAACTGGACA

Figure 36 part - 107

PCT/US04/06308

CCTCAGGGTCTGTGAGTCCCACATCAGGAAGGAGCACCCAAACAGACAGAAAAACGCCACGGAGCAAGTG
TAGTCTCTCACAGCCTGGACCCTCTGTAGCAGTCCACATACAGAGTCACAAAAGGTGGCTCCGATTCC
TCCCTTCTGAGCCAGGGCAGGTGGCTCGGCTCGGCTTCCCTGTCAGAGTCCTCCGAGCAGCTCTC
CCCTCAGCTTCTCCTGCTCCCTCATGGGCTTGCCCTGTACCAATGTCAGAGGAAGACTACAG
CTGTGCCCTCCAACAACCTTGGCCGTCACTCCACCCATGTCAGATAACAGAATGGCCCTCCAGA
CTCTGAACTAAGCAGATGCCATTCGAGAAGTGTGGTAGCATAGGAGGATCGGGTCATAAGCAATCCC
AAACTACCAAGAGGACCTTGATCTTGGCAAAGGCCCTGGTAGCTTACGGCCCTCCAGAT
CACATGTGTCAAATTATGGCTCAGAGGTGGAAAGATAAACAGTGACGGGGAAACAAACAGACAACAAGA
AGGTTGGAAGAAATCTGGTTGAGACTCTGAACCTTAGCAGATAAGGAGATTGAGTAAGGACCTCCAAAG
TTCGGGACTCATGAATTCTGGGCCATTCTGTCACGCCAGGACTTCAGTAGACCATCT
GGCAGCTTCCCAGGTGCTGCCAACCATCAGATAATGACCCCTCCAAGCACCAGTCAGTGTG
ACAATCTACCAACCAACCAGTGTGAAGAGATTCTGAACCTGTAAACATACAATTAAAGAGCTTATA
TGGCAGCTCCCTTTACCTTGTGTTGCCCCATGATGTTTAACCTTGCTTAAAGCACAAGC
TGTAATCTAAAGGACTTTTTAGAGGTATAAGAAAAGTAGATGTAATAAAAGATCATGGAA
GGCTTATGTGAAAAAGTGTAAAGT

Human SYNE1 mRNA sequence - var12 (public gi: 16550165) (SEQ ID NO: 194)
ACAAAAGAGCATTCCATGAAATCTACCGGACCAGGTCTGTTAACGGGATCCAGTGCCACCTGATCAATT
AGAGGACATGGCGAGAGGTTTCACTGGCTTCTCCACATCAGAGCTACACCTAATGAAAATGAAATT
TTAGAATTAAAGTACCGTCTGCTCTACTGCTGGTCTTGAGAGTCAGCTCAAAGCTGAAGCTTGGATCATTA
AGTACGGGAGGAGAGTCAGTGGAGCAGCTTCTACAAACTACGTTCTTATAGAAAATAGCAAGTT
CTTGAAACAATATGAGGTGACATACCAAGATCTGGAAACAGACAGCTGAGATGTATGCAAAGCAGATGGT
TCAGTGGAAAGAAGCTGAGAATGTTGATGAAATTCTGAATGAAACCCACCGCTCAGTGGAGGAATCTCTAG
TAGAAGTGAGGAGTGTGAGGAGCATGTTGAGAAGTGTCTAATCTGGATCGTATGGCAATACAGT
GGCTAGTCTGCAAGCCTGGCTAGAGGTGCTGAAAATGCTCAATCAATCAGAAAATGCCAAAAGGAT
TTTTTCGAAATTACCTCATTGGATTCAAGCAGCATACTGCCATGAACTGCTGGCAATTTCATAATTG
AAACCTGTGATGAGATGGTTCCCGTGACCTGAAGCAGCAATTACTGTTGCTAAATGGCGGTGGAGGGA
GTTGTTATGAAAGTCAAGCAATATGCTCAAGCTGATGAGATGGACAGAATGAAGAAGGAATACACAGAC
TGTGTTGTTACCCCTGTCGCTTTGCGACGGAAGGCCATAAGAAACTTCTGAAACCTTGTGAGTCTCTT
TTATGAATGTCAAGCTTAAATTCAAGACTGGAGGATATTGAGCAGGGTGCCTGTGATGGATGCCA
ATACAAGATAATTACAAAGACAGCACACCTCATTACCAAGAAAGGCCCAAGAAGAAGGAAAAGAAATG
TTTGCACCATGTCAAAGCTCAAAGAGCAGTAAACCAAGGCTAAAGAATGTTACTCCCCACTCCTTATG
AGTCTCAGCAGCTGTTGATCCGGTGGAGGAAATTAGAAAAGCAGATGACGTCCTTTATGACTCACTGG
GAAAATCAATGAAATTATCACAGTCTGAGCGTGGAGGACACACTGAGTTTCTAGTCAGCTGGATCA
CAGAACTGTTAGCTGCAAGAAAACCTGAAAGAAAACCTTGACACTTATTGAGAAGGCAAGTCAAAGTG
TTCAAAAGTTGTCACCTGAGCAACGTGTTAAAGCATTGATCAGACGAGGCTACAAAGACAGATTG
AGATATTCTGTTGTTCTAGAGTATGGTAAAGAAAAGTGGAGATTGAGAAGCATGTTGAAACCAAC
AGTCGCTTGTGAGAAGAGTTGAGGAGTCTGACAGAGTTGGAGAAGGTACTGCGATTGCTCAGGAG
GCCTGGAGGAAAAGGGGATCCAGAGGAGCTCCTCGGGAGACACACTGAGTTTCTAGTCAGCTGGATCA
GAGGGTGCTCAATGCTTCTGAAAGCTGAGTGAACCTCAGACATCCTCCAGAGCAGGAGCAGCAG
GGCTGCAGGAAGCTGTCGAAAGCTCCACAAACAATGAAAGGTGAGTCAGGACAGGAGGACACCGT
GCATCCTCAATGAAGGGAGAAGCTGAGCTGTTAAGGTCAAATGTAAGAGAAATTAGAAATTCTGG
AAAGTCACTGTAACTATTGCTCATTAAAAACTGGAATTAAACCTGATAATATA
TG

Human SYNE1 mRNA sequence - var13 (public gi: 16553949) (SEQ ID NO: 195)
ATAGTAGAATTATTCTATTATAATTGGCTTGACAAAAATCAGTCTGATCTCGGAAACCTGGAGAAA
TTTATTTCTGTACTCTAATGTTCTTCACTGGGATGACCATCAAGGTGCTGGAGAGGAATTAGATGGC
TGTAATTCAAAGTTAATGAAATTAGATGAGCAGTACAGAAATTCTGAAACAGAAATGGCCAACCTGGGTA
AGCCACTGGCCAAGAAGATAGGAAAACCTGACTGAACTTCACCAAGCAGACCATAGACAAGCTGAGAATCG
GCTCTCCAAGCTCAATCAGGAGCAGTACATTTAGAAGAATACAATGAAATGTTGAAATTATGAAAG
TGGATTGAAAAGCTAAAGCTTGGCTCATGGAACTATTGAGTGGAAATTCTGCAAGCCAGCTTGGGAAAC
AATATATTGTCATCAGACCTGCTAGAAGAATTTGAGCAGCTGAGCTGAGAATGACTGA
GAAATTACAGTACCTCACTAGCGTGTACTGTACAGAAAATGCTCAGCAAGTGGCAGAACTGGGACGG
GAGACTGAGGAGTTGCGACAGATGATCAAATTGCTTGTGAGAACCTCCAAGATGAGCTAAGGATATGA
AAAAATTGAGCAGAGTTGAAAAGTACAAGCTGCTTGGAGCAAGGCCAGGCAACACTGACTTCTCC
AGAAGTTGGACGTCAGTCTCAAGGAGCAGCTCTCATCGGAGCAGATTGTTGCTGAGATGGAGTCA
CTGAAGCCAGGTGCAAGCAGTGCAGCTCTGCCAGAGTGCCTCCGGATCCCGAGGATGTGGTTGCCA
GCTTACCTCTGTCATGCTGCTCGGGCTGCAAGGAAGAGGGCCAGCCGCTGAGCACACCGCCATCCA
GCAGTGTAAACATCATGCAAGGAGCTGAGTACAATGAAACATGAGCAAGAAATGAAACATCTCCAG
CAAATGATAGAAGGAGCTCACAGAGAGATTGAGGATAAACCTGTTGCCACAGTAACATACAGGAGCTGC
AGGCTCAGATAACAGAATGCCCTCCACTCTGAACTAAGCAGATGCCATCTGAGAAGTGGTAG

Figure 36 part - 108

CATAAGGAGGATCGGGTCATAAGCAATCCAAACTACCAACAAGAGGACCTGATCTGGCGAAAGCCCT
CGGTGTCAGCTTACGCCCTCCAGATCACATGTGCAATTATGGCTTCAGAGGTGGAAGATAAAA
CAGTGACGGGGAAACAAACAGACAACAAGAAGGTTGGAAAGAAATCTGGTTGGGACTCTGAACCTTAGC
ACTAAGGAGATTGAGTAAGGACCTCCAAAGTCCCAGACTCATGAATTCTGGGCTCTGGCCATTCTG
TGCACAGCCAAGGACTTCAGTAGACCCTGAGCTTCCATGGTGTCTCAACCATCAGATAAAA
TGACCCCTCCAAGCACCAGTCACTGCTGTAACATCACCAACCAACAGTGTGAAAGAGATTTAGAAC
CTTGTAAACATAACATTAAAGAGCTTATATGGCAGCTTACCTTACCTTCTTGGGCATGA
TGTGTTAACCTTGTCTTAAAGCACAAGCTGTAATCTAAAGGACTTTTAAAGGTTATAAGAA
AAACTAGATGTAATAAAAGATCATGAAAGGTTATGTGAAAAAGTGTGATGTTAGTAAAGGAA
AAGATATTATGTATGTACAGTTGCTAAAGCCAAGTTGTTGTTGATTTCTTGCATTTATTATA
GATATTATAAAAAT

Human SYNE1 mRNA sequence - var14 (public gi: 12698056) (SEQ ID NO: 196)
ACAAACGAAACTTGAGCAACATAAGGATCTGCTTCAAAACACGGATGCCACAAAAGAGCATTCCATGAA
ATCTACCGGACCCAGGTCTGTTAACGGGATTCAGTGCCACCTGATCAATTAGAGGACATGGCCGAGAGGT
TTCATTTGTTCTCCACATCAGAGCTACACCTAATGAAAATGAAATTAGAATTAAAGTACCGTCT
GCTCTCACTGCTGGTTCTTGAGAGTCAAAGCTGAAAGTCTGGATCATTAAGTACGGGAGGAGAGTCA
GTGGAGCAGCTCTACAAAATACGTGCTTTATAGAAAATAGCAAGTCTTGAAACAATATGAGGTGA
CATACAGATCTGAAACAGACAGCTGAGATGTATGTCAAAGCAGATGGTCAGTGGAAAGAAGCTGAGAA
TGTGATGAAATTCTATGAAATGAAACACCAGCCTCAGTGGAGGAATCTCTCAGTAGAAGTGGAGGAGTGTGAGG
AGCATGCTGGAAGAAGTGTCTCTAACCTGGGATCGCTATGCCAAATACAGTGGCTAGTCTGCAAGCCTGGC
TAGAGGATGCTGAAAAAAATGCTCAATCAGAAAATGCCAAAAGGATTTTTCGAAAATTACCTCA
TTGGATTCTCAGCAGCATACTGCCATGAAAGCAGTGGCAATTCTAATTGAAACACTGTGAGATGGTT
TCCCGTGACCTGAAAGCAGCAATTACTGTTGCTAAATGGCGGTGGAGGGAGTTGTTATGGAAGTCAAGC
AATATGCTCAAGCTGATGAGATGGACAGAATGAAAGGAATACACAGACTGTGTTACCTGTCTGC
TTTGCAACGGAAGCCCATAAGAAAATTCTGAAACCTTCTAGAAGTCTTTATGAAATGTCAGCTTAA
ATTCAAGACTGGAGGATATTGAGCAGAGGTGCTGTGATGGATGCCAATACAAGATAATTACAAAGA
CAGCACACCTCATTACCAAAGAAAGCCCCAAGAAGAAGGAAAATGTTGCGACCATGTCAGCTTAAAGCT
CAAAGAGCAGCTAACCAAGGTCAAAGAATGTTACTCCCCACTCTTATGAGTCTCAGCAGCTGTTGATT
CCGGTGGAGGAATTAGAAAAGCAGATGACGTCTTATGACTCACTGGGAAAATCAATGAAATTATCA
CAGTTCTGAGCGTGAGGCACATCGAGTGCCCTTTAAACAAAACATCAGGAACGTGTTAGTGTCA
AGAAAATGTAAGAAAACCTTGACACTTATTGAGAAAGGAGCTCAAAGTGTCAAAACTTGTGACCTTG
AGCAACGTGTTAACGATTGATCAGACGAGGCTACAAAGACAGATTGAGATATTGTCAGATATTCTGTT
AGAGTATGGTAAAGAAAATGGAGATTGGAAGAAGCAGATGTCGAAACCAAGCAGTGTGTT
TGAGGAGTCTGAGAGTGGAGAAGGTACTCGGGATTGCTCAGGAGGGCTGGAGGAAAAGGGGAT
CCAGAGGAGCTCTGGGGAGACACACTGAGTTTCAGTCAGCTGGATCAGAGGGTGTCAATGCTTCC
TGAAAGCTTGTGATGAACTCACCGACATCCTTCAAGCAGCAGGGCTGAGGAAGCTGTTCG
AAAGCTCCACAAACATGAAAGGATCTCAAGGAGAAGCCCTTATCATTGCTTCACTGAAAGATTGAT
GTGAGAAGAATAGGTTCTAGCCTCTGAGAAGAATGCGAGACTGAGCTGGATCGAGAGGACCAAGCTGA
TGCCCCAGGAAGGCAGTGGAAAGATAATTAAAGAGCACAGGTTTCTTCAGTGCACAAAGGTCTCATCA
TCTCTGTGAGAAAAGGTTACAGTCATCGAGGAACCTGTGAAACTCCAGTGGGGACCCAGTAAGG
GACACACCTGGAACCTGTCACGTGACTCTCAAAGAGCTCAGAGCTGCCATTGACAGCACCTACAGGAAGC
TCATGGAAGACCAGACAAGTGGAGGACTACACTAGCAGATTCTGAGTTCTCATCTGGATATCTAC
AAATGAGACACAATTAAAGGGATCAAGGGTGAGGCCATCGATACTGCCAACACCGGAGAGGTTAAACGT
GCCGTTGAAGAGATCAGAAATGGTGTACCAAAAGGGGTGAGACCCCTCAGCTGGCTGAAATCCAGGCTGA
AAGTTTGACAGAAGTTCTCTGAGAATGAAAGCCTAAAGCAGGGAGATGAGCTGGCAAAATTATCCAG
CTCTTCAAGGCTCTGTGACGCTGCTGAGGGTTGAAAAGATGCTAAGCAATTGTTGGGACTGTGTC
CAGTACAAAGAAATAGTCAGGAAACTCTGAGAAGGTTGAGCAGCTTCTCATCACCAGAAAAGAC
CTGAGAAGATCTGGATACTGAAAATCTGAGAAGCAGCTTCTCATCACCAGAAAAGAC
AAAGCGGATCTCAGCAAAGAAGAGATGTCAGCAGCAGATCGCGCAGGGCAGCAGGGAGAAGGGGG
CTGCGCTGACCGAGGCCACGGAGCTGGGAAGCTGGAGAGCACACTGGATGGCTGGAGCGCAGCCGG
AGAGGCAGGAACGCCGATCCAGGTACATTAAGAAAATGGAGCGATTGAAACAAACAAAGAAACAGT
AGTAAGATACCTTTCAAACAGGTTCCAGTCATGAAACGTTCTGAGTTTGTGAGCTTGGAAAGTTA
TCTTCAGAACTGGAAACAAACAAAGGAGTTTCTAAACGGACAGAAAGTATTGAGTCCAGGCTGAGAAC
TTGAAAGGAAGCTTCAGAGATACCGTTGGGCCAAAATAAGCAGCTGCTTCAACAGCAGGCAAGTC
AAATCAAAGAACAGTCAAAAAATTAGAAGACACGCTTGTGAGAAGAGTATGTGATTGACAAGTCTAAACT
TTCTCTGAGATAAAACTTCATACAATTCTCTGTACCTTGTATTCTAAACACTCTTTAAATCTC
AAAGTGTCTGTGTTGAGGAAACAAACTCACAGTCAAAGAAGTATCGCTAATACA
GAAACCAATATCTATAACAGAGCCAAAAAAATAAGGATGTGGGTTTGTGATCTAAACTGATCATGT
TCATGAGAAGGACCATATCTATTCTATTCTGTGGCCTTGTACATTGTAGAGGGAACTTGTAAAAGAACT
AAATTTAAAATAATTCTTACTATATTCTGCTGTACCATTTAGAGCGAAAAGGAGATTTGT
TAGTGTAGATTCAGGCCCTAAATACACATCACATAGACCATATCTCAACCTGAGAAGCTCTGGAG
CTTGTGTTACAGTGCCTCGTATTCAAGTTATGCTCTTCCAGAAATTAACTTTAAAT

Figure 36 part - 109

PCT/US04/06308

ATTTTATTTTAACTTTAATGTTGTTATCTG

Human SYNE1 mRNA sequence - var15 (public gi: 2895592) (SEQ ID NO: 197)

CAACCTGCATAGAACGAAACCAAACGGCTGGTGTATTGACCGATGGGAGCTTCAGGCCAGGCAT
TGAGCAAGGAGTTGAGGATGAAGCAGAACCTCCAGAAGTGGCAGCAGTTAACTCAGACTTGAAACAGCAT
CTGGCCTGGCTGGGGACACGGAGGAGTTGAAACAGCTCCAGCGTCTGGAACTCAGCACTGACATC
CAGACCATCGAGCTCCAGATCAAAAAGCTCAAGGAGCTCCAGAAGCTGTTGACAGCAAGGAGAGCAGGAAAGCCATCA
TCCTCTCATCAATCTCTGAGCCCTGAGTTGACAGCAAGGAGCTGACAGCAAGGAGAGCAGGAGCTGAGGAG
TCGCTTGCGCAGATGAATGGCGCTGGGACCGAGTGTGCTCTGCTGGAGGAGTGGCGGGGCTGCTG
CAGGATGCCCTGATGCAGTGCAGGCCAGGTTCCATGAGCAATGGCTTGTCTTATGCTGGAGAAC
TTGACAGAAGGAAAAATGAAATTGTCCTTATTGATTCTAACCTTGATGCAGAGATACTTCAGGACCATCA
AAACAGCTTATGCAAATAAGCATGAGCTGTTGAACTCCAACAGAGTAGCCTTGTCAAGACATG
TCTTGCACAACTACTGGTGAATGCTGAAGGAACAGACTGTTAGAAGCAGAAAGAAAAAGTCCATGTTATTG
GAAATCGGCTCAAATCTCTTGTCAAGGAGGTAGTCATATCAAGGAACACTGGAGAAGTTATTAGACGT
GTCAAGTAGTCAGCAGGATTGTCCTCTGGTCTCTGCTGATGAACTGGACACCTCAGGGTCTGTGAGT
CCCACATCAGGAAGGAGCACCCAAACAGACAGAAAAGCCACGAGGCAAGTGTAGTCTCTCACAGCCTG
GACCCTCTGTCAAGCAGTCCACATAGCAGGTCCACAAAAGGTGGCTCCGATTCTCCCTTCTGAGCCAGG
GCCAGGTGGTCCGGCCGGCTTCTGTTAGAGTCCTCCGAGCAGCTTCTCCCTCAGCTTCTCCCTG
CTCCCTCATCGGGCTTGCCTGCTTGTACCAATGTCAGAGGAAGACTACAGCTGTGCCCTCTCCAACA
ACTTGGCCCGTCATCCACCCATGCTCAGATACAGAATGGCCCTCTCCACTCTGAAACTAAGCAGATG
CCATCTGCAGAAGTGTGTTAGCATAAGGAGGATCGGTCTGAGCTTGTGCAATTCCAAACTACCAACAAGAGGA
CCTTGATCTTGGCGAAAGCAGTCCGAGGTTAGCCCTCCAGATCACATGTTGCAAAATTAT
GGCTTCAGAGGGTGGAAAGATAAACAGTGAACGGGGAAACAAACAGACAACAAGAAGGTTGGAGAACATTCT
GGTTGAGACTCTGAACCTTAGCAGTAAGGAGATTGAGTAAGGACCTCCAAAGTTCCCGACTCATGAA
TTCTGGGGCTTGGCATTCTGTGTCAGCAGGACTTCAGTAGACCATCTGGCAGCTTCCATGGT
GCTGCTCCACCATCAGATAATGACCTCTCCAAAGCACCAGTCAGTGTGTCAGTACAATCTACCAACCAAC
CAGTGTGAAGAGATTAGAACCTTGTAAACATACAATTGTAAGAGCTTATATGGCAGCTTCTTTTA
CCTTGTCTTCTTGGGCTGATGTTAACCTTTGCTTAAAGCACAAGCTGAAATCTAAAGG
ACTTTTTTTAGAGGTATAAGAAAAACTAGATGTAATAAGATCATGGAAGGCTTATGTGAAAAAAA
GTTGAATGTTAGTAAAGAAAAAAAAAA

Human SYNE1 mRNA sequence - var16 (public gi: 6330956) (SEQ ID NO: 198)

CTCGATTGTGCCGTCAACAAACCTGTGCTTGCAGAGGAAAGAGGATCTCAGAGAACAGAGATT
ACCATGACTGTATGAATGTTGAGTGTCTCTAGAAAAATTACTACAGAACGGATAACTTGGCCAG
ATCTGATGCAGAGAGTACAGCTGTCCACCTGGAAAGCTTGTAAAGTTAGCATTGGCATTGCAGGAGAGA
AAGTATGCTATTGAAGATCTGAAAGATCAAACAGAAAATGATAGAGCATCTGAATTAGATGACAAGG
AGTTAGTCAAAGAACAGCAGGTCATTAGAGCAACGTTGGTTTCAGCTTGAGGACCTCATTAAAAGGAA
AATCCAAGTGTCACTCAGCAACTTGGAGGAGTTAAATGTTGTCAGTCCAGATTTAGGAGCTAATGGAG
TGGGAGAACAGCAACACCAACATCGCCAGGGCTTAAGCAGAGGCCCTCTCCAGATATGGCTCAGA
ACCTCTCATGGATCACCTGGCCATCTGAGTAACGGAGGAAAGCAGATGCTCTGAAATCGCTTAT
AAAGGAGCAGACAGGGTCATGGCAGATCTGGTCTCAATGAGCAGACGGTCACTCCAGAAGGCTCTCT
GATGCACAAAGCCACGTGAATTGTCAGTGAACCTAGTGGCCAGCGAAGAAAGTACTTAAACAAAGCCT
TGTCCGAGAAAACCCAGTTCTCATGGCAGTGTCCAGGCCACCAGCCAAATTAGCAACATGAGCGAAA
GATAATGTTCCGTGAACACATCTGTCGTTACAGATGATGTTGAGCAAACAAGTCAAAATGTAAGAGT
GCACAAGCCAGCCTCAAGACTTACCAAAATGAAGTCAGTGGACTTGGGCCAGGGTCGCAACTATGA
AGGAAGTCACAGAGCAGGAAAGAGTGAAGTGTGGAGCTTCAGGAATTGAGAGTGTCTATGACAG
TGTGTTACAAAAGTGCAGTCACGGTTACAAGAAACTAGAGAAGATTGTTCTAGGAAGCATTAAAG
GAAGATTGTATAAGCTTGGCCACTGGCTAAACAGCAGATATTGTTACATTCTGAAATCAACCTAA
TGAATGAGAGTACTGAGCTCATACACAACTGGCTAAATACCAAAACACTCTGAAACATCTCCAGAATA
TGAAAATCTCTACTTACGCTGAGAGAACCTGGCAGGACCATATTACCATCGCTGAATGAAAGTGGATCAT
TCCCTACCTCAGTGGAAAGCTAAATGTTGCTCGAACATTTAATGTAATTGTTGCTTGGCTAAAGACA
AGTTCTATAAAAGTCCAGGAAGCAATTCTGCTCGAAGGAATATGCTCTGATTGAGTTGACAACCCA
GCTCTCAGTGAACCTGAAAGCCAAATTCTGAGGATGAGCAAAGTCCACCGACCTGGCGTTGAGGAG
GCTCTTCTGCAAGATGTTGAGGCCATTCTGGACGAGGTGGCGGGCTTGGGGAGGGCGTGGATG
AACTGAACCCAGAAAAAGAAGGTTTCTGAGCACAGGTCAGCCTGGCAGGCCAGACAAGATGCTGCACCT
TGTCACTTATATCACAGGCTGAAGCAGAACAGAACAGAGGGTTAGCTTATTAGAAGACACCACAGT
GCTTACCAAGAACAGAGAACATGTCAGTGGAGAGACAACAGTCAGTGTAAAAGAGGAGCAGT
CCAAAGTGAATGAGGAAACGCTGCCCTGAGAGGAGAAGCTAAATGATCATCCCTGGCAGGAAGTCT
CCAGGACTCAGGGATTGTACTGAAACAGAGTAACCATACATCTGAAAGATCTGGCCCCACACCTTGACCC
TTGGCTTATGAGAAAGCCAGGATCAGATCCAGTCTGGCAAGGGGAGTTAAAAGTGTGACTCTGCCA
TTGGTGAAGACGGTGACAGAATGTCAGAGGCCAATGGTGCAGAGTATAGACTTCCAGACTGAGATGAGTCG
CTCCCTGGACTGGCTGAGGAGAGTGAAGGGCAGAGCTCAGTGGCCGGTGTACCTAGACCTCAACCTGCA

Figure 36 part - 110

GACATCCAAGAGGAAATCAGAAAATCAAATTCAAGGAAGAGGTCCAGTCCAGTTGAGAAATCATGA
 ATGCGCTGAGTCACAAGGAAAGGAGAAGTTCACAAAGGCCAAGGGAGCTGATTTCTGGGATTAGAAC
 CAGCCTCGCTGAGCTCTCAGAGCTGGATGGAGACATCCAGGAAGGCCCTACGCACCCAGACAGGCTACCTTG
 ACTGAAATATAAGCCAGTGTCAAAGGTATTATCAGGTATTCAAGCAGCCAATGACTGGCTTGAGGATG
 CCCAAGAAATGTTACAGCTGGCAGGCAATGGCTTAGACGTGGAGAGCGCAGAGGAAATCTCAAAGCCA
 CATGGAATTTCAGTACAGAGGATCAGTTACAGTAAACCTGGAGGAGCTCCACAGCCTGGTAGCCACC
 CTGGACCCCCTCATCAAGGCCAACGGCAAAGAAGACCTAGAACAGAAGTGGCTCTGGAAACTCAGGA
 GCCAGAGGATGAGCCGGACTCTGGTCCCCAAGTGGATCTTGCAGAGATGCACAGCTCAATGGCACGA
 TTACAGAGAAGAGGAAAGAGGTTATTGAATTGATGAATGATAAGAAAAGAAATTGTCAGTTGAGTTTCT
 TTGTTGAAGACTTCGCTAGTCATGAAGCGGAAGAAAATTGTCAGAACACAAAGGCTTAGTGTAGTGG
 TTAACCTTTCCATGAGAAAATTGTCAGGAAAAAGCTTCACAACAGGAGAAAACCGGAAATGA
 TGCCAGCAAAGCCACCCCTGAGCAGGTCATGACCAACCGTCTGGCAGCGCTGGACGCCCTCGAGCTGTG
 GCCCAGGACCAGGAGAAGATCCTGGAAGATGCAGTGGATGAGTGGACGGCTTAAACAACAAGGTTAAAA
 AGGCCACTGAAATGATTGATCAGCTGCAAGATAAGTTACCTGGAAGTTCAGCAGAGAAGCATTGAAAGC
 AGAGCTCTTAACCTTCTGAATACCACGACACCGTCTGGAGCTGGAGCAGCAGTCGGCCTTG
 GGCATGCTGCCAGCAAACCCCTGAGCAGTGCCTCAGGATGGAGCCGCCCCAACCCCTGGGAAGAGCCTC
 CGCTCATGCAGGAAATCACCGCCATGCAAGATCGGTGCTGAACATGCAGGAGAAGTGAAGACTAATGG
 AAAGTTGGTGAAGCAAGAGCTGAAGGACCGAGAAATGGAGACTCAGATCAATTCTGTGAAATGTTGG
 GTTCAGGAAAGGAAAGAAATTAGGAAATCCAAACATAGAAATAGATGCTCAACTTGAAGAACCTCAGA
 TTCTCTTAACAGAAGCCAAATCACCGACAGAACATTGAAAAATGGAGAACAGAACAGAGGAGAAGTA
 CTTAGGTCTTATACCATATTACCTCTGAACCTCTCAGTTGGCTGAAGTGGCTTAGATCTAAAG
 ATCCGAGATCAGATCCAAGACAAAATAAGAAGTTGAGCAGAGCAAGGCCACGAGCCAGGAACCTCAGCC
 GGCAAATTCAAGAGITAGCTAAAGACCTCACAACTATTCTAACTAAGCTGAAAGCGAACAGATAATGT
 AGTCAAGCTAAACTGACCAAAAGGTGCTGGGAGAGGAATTAGATGGCTGAATTCAAAGTTAATGGAA
 TTAGATGCAGCAGTACAGAAATTCTTGAACAGAACATTGCAACTGGGTAAGCCACTGGCAAGAACAGATAG
 GAAAACGACTGAACCTCACCAGCAGACCATTAGACAAGCTGAGAACATGGCTCTCAAGCTCAATCAGGC
 AGCATCACATTAGAAGAATACAATGAAATGCTGAATTAAATTGAAAGTGGATTGAAAAGCTAAAGTC
 TTGCTCATGAACTATTGCTGAAATTCTGCAAGCCAGTCGGGAAACAATATATTGCTCATCAGGTAAC
 CCTTAGGAAAATACTTTAAAGTAACCAAGGGCAATTGATTTACTGGGTAAGACTGACACAACAC
 TTAGAGGGCTGTGATGAAAATTGGAGCTACCAGATAAAAGAACATGCTAAGGTAACCCCTAAGTTGTT
 CAGTAGTTGGACAGAAAGGAGCTCTCATGAAATTGATGAAATTGAAATAAAATATCCTTGATCTTC
 CCTAAACCTCTTAACACCAAGACCCAAACCATCAGGCTCTGAGAACCTCAGGCTCTGAGAACATTGTT
 AATAATTATCTGCAGGGATCTGGTGGGAAATTCTTCTGTGAGAACATGCAATGAAGTGTGGAAAGATT
 CTAGACTCCACACTCAGACTGGGGAAAACCAACCTCCGCATGCAAGGCTGTGTGATTGGAGCAGAA
 TGCTTGGCTCTGTGAAATTCTGTCTCATGTTGATGAAAGACGTAATAATTGCTATTGAGAC
 TTATGAGATCAAGTGGTTAAGGTACACACGTGAAACGTCGCTGGCACATGCAGGTGCTCAGTGGG
 GATCTCCCGCCCTCCCTCAGCCCTCACCCAGGCTGTCACTGGCCTCCACAGGAGGTGGCAGCC
 CAGAGCAAGCCATGAGTCACATCACATGCTGGTATGTTAGTTCACTTCTCTGAAGTTACATGAGAAA
 AATGTTCTTTCTGTGAGTCACGTGTCATCCAGGAAATTATTCATCCTTGTGAACTTAAGCTAAATT
 GACACAGATAGTTAATAGGCTAGTTATCATATAAAAATAGGGTGACTIONTATAGGAGTTACATGGG
 TATCGAGTATTCTAGATTGTCCTTATATTGATGTTCTGCTTAAATGAAATCCCTGT
 TTCCATTCTGTTACAGGGTCTAGATCAAAGCCTCATTGTTCTCTGATCAATTGCTGTTACAGCTTC
 TAATTCTCTCTATATTCAACAGTCTCTCTGATCAATTGCTGTTACAGCTTCCTCCACAAATGCTTTCT
 TAAGCAACTCCAATCTTGTCTTAAGATATGCTTAGATGAAACAGAACAGGACTTAAGTTACCACTGAT
 TTGAAAACATGAAAAAGCCAAACATCCTTAGAAGTCTAGAAATGCAATTTCAGCAAAAAAGAGAGG
 AAGAAAGACAAACTTAACTGTCACATCATACTGTTCTTCAGTTCAAGTTCAATTAAAGGAAGTGAAGAGCTC
 TCAACATTCGCTGGTATCTGGTAAATCTCTTGTAAAAATAATTGCAAAATGTTGCTGTTACAGTCAA
 AATGTTGCTACTCTGGGCACGTGCGGTGGCTCACACCTGAGTCCCAGCACTTGGGAGGGCAGGTGG
 GTGGATCACAGGGTCAGGAGTTGGGACGGCTGGCCGGTATGGTGAAGCCCCATCTACTAGGAGTG
 CAAAAGTCAGCTGGCGTGGTGGGCGCTGAGTCCCAGCTACTGGGAATCTGAGGCGGGAGAATC
 GCTGAACTCGGGAGGTGGAGGTTGAGCAGCAAGATCATGCCACTGCACCTCAGCCTGGGTGACAGT
 GAGACTCCATCTC

Human SYNE1 mRNA sequence - var17 (public gi: 20521661) (SEQ ID NO: 199)
 GTGGATTCTCTAATGGAAATGTTATTCAAGAAGGATGAAGATAATATTAAAATCCATAGGTTACAA
 GGCATTCTGAAATACCTCAGAAATATAAGGGTTAAGATAGACATTAACGCTGACAGTG
 GATTTGTGAACCACTGGAGCAATGAAATAAAAGTTGGCAAATTCTGCAAGGTCTAGTAACAGGAGAT
 CCAGCTGTTGAAAGGCTTATTGGAAATCTGGTCAAGAATATGAAAATAATGTAACATGCTGAAAACATGG
 TTGAAAACCCAGGAAAGAGACTAAAACACAGCATGAAATTGGAGATCAGGCTCTGTTCAAAATGCA
 TGAAAGACTGTCAGGATCTGGAAGATTGATTAAAGCAGAAAGAAAAGAGTGAAGAAAATTGAGCAGAA
 TGGACTTGCTTGTGATTCAAGAACAGAAGAGACGTCAGTCACTGAGCAGCACAGTC
 GGCAACACCTGGCAAATTAGATCACATGGTTGACAATTAAAGATACTGCTGAAATCAGTGTGCTTGACC

Figure 36 part - 111

AATGGAGTAGTCACAAAGTGGCCTTGACAAGATAAACAGTTACCTCATGGAGGCCAGATACTCTTT
CCGATTCCGTCTGACTGGCTCTTAGAAGCTGTGCAAGITCAGGTGACAATCTCAGAATCTCAA
GATGATCTGGAAAACAGGAAGGAGCTTACAGAAATTGGCTTACCAACCAATTATTAAGAGT
GTCACCCACCGTGCAGAAACTCTTACCAATACACTGAAAGAAGTCAACATGAGATGGAATAACTGCT
GGAAGAGATTGCTGAGCAGCTACAGTCAGCAAGGCCACTTCAGCTTGGCAAAGAGATAACAGGACTAC
TCCAACAGTGTGCTCGACAGTTCAGCAGGAGGATCGAACCAATGAGCTGTGAAAGGCAGCACAA
ACAAGGACATTGGATGAGTTGCCACATGGATTCAAGATTGCAACGACCTCTCAAAGGACTGGG
CACAGTTAAAGATTCCCTTGTCTCATGAGCTGGAGAGCAACTGAAGCAACAAGTGGATGCTTCC
GCAGCATCAGCTATTCAATCGGATCAACTCTTGTGAGTCACACTTGTGCCCCGGAGCAAGCTCT
GCAAAACAGCAGACTTCATTACAGGCTGGAGTTCTTGATTATGAAACCTTGGCAAGAGTTAGAAGCTT
GGAGGCCTGGATAGTGGAAAGCTGAAGAAATACTACAAGGGCAGGACCTAGGCCACTCATCTGACCTCTCC
ACAATCCAGGAAAGGATGGAAGAACTTAAGGGACAGATGTTAAATTCAAGCAGCATGGCTCCAGATTAG
ACCGTCTAAATGAGCTGGATATAGGTACCCCTGAATGATAAGGAAATCAAAAGAATGCAAGAATCTGAA
CCGCCATTGGTCTGTGATCTCTCAGACTACAGAAAGATTCAAGCAGTGTGAGTCAGTCAGTCTTGTACAA
CATCAGACTTTCTGGAAAAATGTGAAACATGGATGGAATTCTAGTTCAAGCAGACAAGAACAAAAGTTAGCAG
TAGAGATTCAGGAAATTATCGACCTTTGGAAACAGCAGAGAGCACACAGGAGTTCAAGGCCAGAT
GTTCACTGTCAGCAGATTGCACTCAATCATTATGATGGCAACGTTCTCTAGAACAGGTCAAGT
GATGACAGGGATGAAATTCAACCTGAAATTGACACTCCTCAGTAATCAATGGCAGGGAGTGAATTGCAAGGG
CCCAGCAGAGGGGGGAGTATTGACAGGAGATTGCACTGGCAGTGGCAGCGCTATAGGGAGATGGCAGAAA
GCTTCGAAATGGTTGGAGTGTCTACCTCCCCATGAGTGGCTCCGAAGTGTCTTCTATACCACTG
CAACAAGCAAGGACCCCTTTGATGAAGTGCAGTTCAAGAAAAGTGTCTCTGGCAACAAGGCAGCT
ACATCCTGACTGTGGAGGTGGCAAGCAACTCCTCTCTGGCGGACAGTGGCGCTGAGGCCGCTTGCA
GGCGAACCTCGCTGAAATCAAGAGAAATGAAATCAGCCAGCATGCGCTGGAAGAACAGAACAGAAA
CTAGCCTTCTTGTGAAAGACTGGGAAAAATGTGAGAAAGGAAATAGCAGATTCCCTGGAGAAACTACGAA
CTTCAAAAGAAGCTTTCGAGTCTCTCCCGATCACCAGAACAGAGCTCCATGCAAGAACAAATGCGTTG
CAAGGAATTAGAAAATGCAAGTTGGGAGCTGGACAGATGACTTGACCCAGTTGAGCCTGCTGAAGGACACC
CTCTCTGCTTATATCAGTGTGATGATATCTCCTTAAATGAAACCGTAGAGCTTCTGCAAAAGGCAGT
GGGAAGAACTATGCCACAGCTCTCTTAAGGCGCAGCAAATAGGTGAAAGGATTGAAATGGCAGT
CTTCAGTGAAGGAAACAAGGAACTCTGTGAGTGGTACTCAATGGAAAGGAAAGTCTCAGAATGG
GACATTCTCATGAAAGAAATGATAGAGAAAGCTCAAGAAGGATTATCAAGGAAATGGCTATTGCTCAAG
AGAACAAAATACAGCTTCAACAAATGGAGAACGACTGCTTAAGGCGCAGTAAAGCAAGAACATCTGA
GATTGAATACAAGCTGGGAAAGGTCAACGACGGTGGCAGCATCTCTGACCTCATGGCAGCCAGGTG
AAGAAGCTGAAGGAGACCCCTGGTAGCCGTGAGCAGCTGATAAGAACATGAGCAGCTGAGGCCCTGGC
TCGCTCACATCGAGTCAAGCAGCTGGCCAAGCCAATAGTCTACGATTCTGTAACTCGGAAGAAATACAGAG
AAAGCTTAATGAGCAGCAGGAGCTTCAGAGAGACATAGAGAACAGTACAGGTGTTGACATCTGCTC
AACCTGTGTGAAGTCTGCTGACGACTGTGACGCCCTGCACTGATGCCAGTGTGACTCTACAGC
AGGCTACGAGAACCTGGACCGGGCGTGGAGAAACATTGTGCTATGTCATGGAAAGGAGGCTGAAAAT
CGAAGAGACGTGGCAGTTGGCAGAAATTCTGATGACTATTCACTGTTGAGATTGGCTGAAGTCT
TCAGAAAGGACAGCTGCTTTCCAGCTTCTCTGGGTGATCTATACAGTTGCAAGGAAAGAACAAAGA
AATTGAGGTTCCAGCGACAGGTCAACGAGTGCCTGACGCCAGCTGGAACTGATCAACAAAGCAGTACCG
CCGCTGGCCAGGGAGAACCGCACTGATTCACTGAGCTGCTCAAACAGATGGTCAAGAACCGAAC
AGATGGGACAACCTGCAAAAGCGTGTCACTCTCATCTGGCAGACTCAAGCATTATGGCAGCGTG
AGGAGTTGAGACTGCGGGGACAGCATTCTGGCTGGCTCACAGAGATGGATCTGAGCTCAACTAATAT
TGAACATTCTGAGTGTGATGTTCAAGCTAAATAAGCAACTCAAGGCTTCCAGCAGGAATTCA
CTGAACCACAATAAGATTGAGCAGATAATTGCCAAGGAGAACAGCTGATAGAAAAGAGTGAAGGCCCTGG
ATGCAAGCAGTACATGAGGAGGAACAGATGAGCTCCGACGGTACTGCCAGGGAGTCTCGGGCTGTGGA
AAGATACCATAAGAAACTGATCCGCTGCCCTCCAGACGATGAGCAGCACCTCTCAGACAGGGAGCTG
GAGCTGGAAAGACTCTGCACTGCTGCCAGCTGACTGGCACGCCCTGCAAGACAGCCTGCTTCTC
CACAGCCTTCTCCAATCTCTCCCTCTGCTGCTCAGCCCCCTGGAGCGAGCGTCAAGGACAGAC
CCCAGCTAGTGTGGACTCCATCCCCCTGGAGTGGGATCAGCACTATGACCTCAGTCGGGACCTGGAGTCT
GCAATGTCCAGAGCTGCTGCCCTCTGAGGATGAAAGAGGTCAGGATGACAAAGATTCTACCTCCGGGAG
CTGTTGCTTATCAGGGGACCAAGCTGCCCTAGAGTCACAGATGCCACAAGGGCAAGGCCCTGGATGA
TAGCCGCTTCTGAGATACAGCAACCGAAAATATCATTGCAAGCTTCCAGGGGACAGGGAGCTAGAC
ACCAGCTACAAAGGCTACATGAAACTGCTGGGCAATGCACTGAGCTATAGACTCCGTGAAGGAGCTGG
AGCACAAAATGAGGAGGAAGAGGAGACGGCTTCTGGTTAACCTGCACTAGTACCGAACCCAAAC
GGCTGGTGTGATTGACCGATGGGAGCTTCTCCAGGGCAGGATTGAGCAAGGAGTTGAGGATGAAGCAG
AACCTCCAGAAGTGGCAGCAGTTAACCTGAGACTTGAACAGCATCTGGGCTGGCTGGGGGACACGGAGG
AGGAGTTGGAACAGCTCCAGCGTCTGGAACCTGAGCACTGACATCCAGACCATCGAGCTCCAGATCAAAA
GCTCAAGGAGCTCCAGAAAGCTGTGACGCCACCGCAAAGCCATCATCTCTCCATCAATCTGCAAGCCCT
GAGTTCACTGCCAGGCTGACAGCAAGGAGAGGCCGGACCTGCAAGGATGCTGCAAGATGGCGCT
GGGACCGAGTGTGCTCTGCTGGAGAGTGGGGGGCTGCTGCAAGGATGCCCTGATGCACTGCCAGGG
TTTCCATGAAATGAGCCATGGTTGCTTATGCTGGAGAACATTGACAGAACAGGAAATTGAAATTGTC
CCTATTGATTCTAACCTGATGCAAGAGATACTCAGGACCATCACAAACAGCTTATGCAAAATAAGCAGT

Figure 36 part - 112

PCT/US04/06308

AGCTGTTGGAATCCAACTCAGAGTAGCCTCTTGCAAGACATGTCTTGCACACTACTGGTGAATGCTGA
AGGAACAGACTGTTAGAAGCCAAAGAAAAAGTCCATGTTATTGAAATCGGCTCAAACATTCTCTTGAAAG
GAGGTCACTCGTCATATCAAGGAAGTGGAGAAGTTATTAGACGTGTCAGTAGTCAGCAGGATTGTCTT
CCTGGTCTTCTGCTGATGAACTGGACACCTCAGGGCTGTGAGTCCCACATCAGGAAGGAGCACCCAAA
CAGACAGAAAAGGCCACGAGGCAAGTGTAGTCTCTCACAGGCCGGACCCCTCTGTCAGCAGTCCACATAGC
AGGTTCCACAAAAGGTGGCTCGGATTCCTCCCTTGAGGCCAGGGCAGGTCGGTCCGGCGGGCTTCC
TGTTAGAGTCTCCGAGCAGCTTCTCCCTTGAGCTTCTCTGCTCTCATGGGCTTGCCCT
TGTACCAATGTCAGAGGAAGACTACAGCTGTGCCCTCTCAACAACTTGTGCCGTCAATTCCACCCATG
CTCAGATACACGAATGGCCCTCTCACTCTGAACTAAGCAGATGCCATCTGAGAAGTGTGGTAGCAT
AAGGAGGATCGGGTCAAAAGCAATCCAAACTACCAACAAGAGGACCTGATCTGGCAAAGCCCTCGG
TGTGGCAGCTTAGCCCTCTCAGATCACATGTGTCGAAATTATGGCTTCAGAGGTGGAAAGATAAACAG
TGACGGGGAAACAAACAGACAACAAGAAGGTTGAAAGAAATCTGGTTGAGACTCTGAACCTTAGCACT
AAGGAGATTGAGTAAGGACCTCAAAGTTCCCCGACTCATGAATTCTGGGCCCTGGCCCATCTGTGC
ACAGCCAAGGACTTCAGTAGACCCTGGCAGCTTCCCCTGGTCTGCTCCAACCATCAGATAATGA
CCCTCCAAGCACCAGTCAGTGTGTCATAATCTACCAACCAACAGTGTGTCAGAGGATTTAGAACCTT
GTAACATACAATTTTAAGAGCTTATATGGCAGCTCCCTTACCTTGTGTTCTGGGCATGATGT
TTAACCTTGTGTTAGAAGCACAAGCTGAAATCTAAAGGCACTTTTAGAGGTATAAAGAAAAAA
CTAGATGTAATAAAGATCATGAAAGGCTTATGTGAAAAAAAGTGTGAATGTTAGT

Human SYNE1 mRNA sequence - var18 (public gi: 28195688) (SEQ ID NO: 200)
TGTCTCACGGGGGGCCAGCTGGGCTTGACTGAGCAGGAGCTTCCATGGTCCACACGTAGTATGAC
ATGTGACCTCTGCACATTGTTACAGTCTCAAACGTGATTCTTTCTGTGAAATAGTTATAATAGT
AAGTGGCTACCAAGTAGAAAGTGGTCATGGGGGTGAAGGTTAACACAATAACGGACACACAGAACTTA
CACAGGGCATTATGCCAAGCTATTGAAATATCTATATCCCTCACCTGCCGTCAATGTCAATGAAATA
TTGACAATTCTACTCTAGACCTGCTAGAAGAATCCTAAAGAAATTGACAGTGAGCTGGAAAGCAATGACTGA
GAAATTACAGTACCTCACTAGCGTGTACTGTACAGAAAAAATGTCTCAGCAAGTGGCAGAACTGGACGG
GAGACTGAGGAGTTGCGACAGATGATCAAAATTGTTGAGAACCTCAAGATGCAAGCTAAGGATATGA
AAAAATTGAAAGCAGAGTTACAAGCTGCTGGAGCAAGCCAGGCAACACTGACTTCTCC
AGAAGTTGGACGCTCAGTCTCAAGGAGCAGCTCTCATGGCAGCATTGTTGTCAGATGGAGTC
CTGAAGCCGAAGGTGCAAGCAGTGCAGCTCTGCCAGTGCCTCCGGATCCCCGAGGATGTGGTGC
GCTTACCTCTGTCACTGCTCTGCCAGTGCAGGAAAGGCCAGCCGCTGCAGCACACCCCATCCA
GCAGTGAACATCATGCAAGGAGCTGAGGATATGAAACAATATGAGCAAGAAATGAAACATCTCCAG
CAAATGAGAAGGAGCTCACAGAGAGATTGAGGATAAAACCTGTTGCCACAGTAACATACAGGAGCTGC
AGGCTCAGATTCTCGGCATGAGGAGCTGGCGAGAAAATTAAAGGCTACAGGAGCAGATCGCTTCTT
GAATTCCAAGTGCAGATGTCAGTGAAGCAGAAAGCCACGCCACATGTCGTCAGGGTGCAGGAGGTC
GAGGGGCTGCCGAAGGGACAGAGGACCTGGATGGGAGCTCTCCCCACGCCCTGGCCACCCCTCTG
TGGCATGACTGCAGGCTGTCACACTTGTGTCACCGGTCACTGAGGAGCTGGGGAGGAGGG
AACCAACAGTGAAGATTCTCCACCTGCCTGCTCGTCCCTTCACCTGTGCTAAACAGATGCTTCT
GTTAACCAGGACATTGCAATTACCAAGCCTGTCGTCAGAGGTGCAAGACAGATGTCGAAATTC
ACCCCAGCACATCCGCATCCCAGGAGTTCTATGAAACGGGATTGGAGCATCGCTACTGCCAACTGGG
TGATTGCACTGGCTTGGGAAACCTTAAAGAATGTGATCAGTGAAGCAGCGCACACTCTATGAAGCT
TTGGAGGCCAGCAGAAGTACAGGACTCCCTCAGTCCATCTCACGAAGATGGAGGCCATTGAGCTGA
AACTCAGTGAAGAGCCCAGAGCCTGGCAGGAGTCCAGAAAGCCAGATGGCTGAACATCAGGATTGATGGA
TGAGATTCTCATGCTCCAGGATGAAATCAATGAGCTCCAGTCTCTCGCAGAGGAGCTGGTATCCGAG
TCTTGTGAGGCCAGCTGGGAGCAGCTGGCTTGAGCTCCACGCTCACGTCTTGTGAGGCCAGGAGA
CCACCATCAGGATGAAAGCCTGGGAAACGGCAGCTTTGGAGGAGAAGTGAATGAGCTGGAGCAG
ACAAAGGCAGGAACAGGCCCTGCAGAGGTATGCTGTGAAGCCAGATGGAGCTGGACAGCTGGCTTGGAGT
ACCAAGGCCACTCTGGACACTGCGCTAGTCCACCCAGAGGCCATGGACATGGAGGCCAGCTTATGG
ACTGCCAGAATATGCTGGTGGAAATAGAGCAGAAGGTGGTGTGTTTATCAGAACTGTCAGTCCACATGA
GAACCTGCTGGAGGGCAAAGCTCACACCAAGGAGCAGGGCAGCAGCTGGCTGGAAAGCTGAGAAGG
CTCAAGGGGAGCCTGCTGGAGCTGCAGAGAGCCCTGCATGATAAGCAGCTCAACATGCAAGGAAACAGCAC
AGGAGAAGGAGGAGAGCGATGTTGACCTAACAGCCACGCAGAGGCCGGTCCAGGAATGGCTGGCCA
AGCTGCACCATGGACCCAGCAGGGCAGAGCAGTCTCAGCAACAAAAGAGTTAGAACAGGAATTA
GCCGAGCAGAAGAGTCTCTCGCTCAGTAGCCAGTCGAGGAGGAGATTCTAAATTCAACATTGGCGG
CAGAGACCTGGTGATGCTGGGAAAAACCTGATGTTATCCCAGGAGTTGGGAGTGGAAAGGGAGAA
ATCATCCGCTGAAGACCAGATGAGAATGAAATGGAAAGCCTACATCAAGAATTAGTACCAAGCAGAAA
CTACTACAGAAATGTTCTGAAACAGGAACAAGAGCAAGTGTCTTATAGCAGGCCAAATCGACTCTGTCTG
GTGTGCCACTGTACAAAGGGGACGTGCCACCCAGAGTGGAGGGGAAAGAGGCCAGAGTATAACACTTGGAGCAG
GAACCAAGCCTCGAGGGAGTTCTAGGCCACCTCTACTTGTGTTGAGTGAAGAACGTTATTGTTGCCA
CAGCACTTACAGAAGAAACAGAGACTTGTCTTCAACCAAGAGATTCTGCCAAAGACATTAAGGA
AATGTCTGAAGAAATGGATAAGAACAAAATCTGTTTCCAAGCTTCCAGAGAATGGTGATAATCGA
GATGTTATTGAAGATACTTGGGTTGTCTTGGCAGGTTATCCTGCTAGACTCAGTAGTGAATCAAC

Figure 36 part - 113

GATGTCATCAGATGAAAGAAAGACTTCAGCAAATACTAAATTCCAGAATGATCTGAAAGTGTGTTAC
 ATCACTGGCTGACAACAAATACTCATTCGCAAAAATGGCAAATGTGTTGAACAGCCGTAGCAGAA
 CAAATAGAGGCAATAACAACAGGCTGAAGATGGACTCAAAGAATTGATGCAGGAATCATTGAATTAAAGA
 GGCGTGGTGACGAGCTACAGGTCAGCAGCCGTCCATGCAAGAACTCTCCAAGCTCCAGGACATGTATGA
 TGAGCTGATGATGATCACTGGCTCCCGAGGAGTGGCTGTAATCAGAACCTTACACTCAAGAGTCAGTAT
 GAGAGGGCCCTACAAGATCTGGCTGACTCTGCTAGAAAATGGTCAGGAGAAGATGGCAGGAGACCAGAAAA
 TCATCGTGTCTTCCAAAGAGGAAATCCAGCAACCAACTTGACAAACATAAGGAATACTTCAGGGCCTGGA
 ATCTCATATGATCTTGACTGAAACACTCTTCAGAAAGATAATCAGCTTGACTGAAACAGGGCTCACAGAGGGTGTGGAGCTGG
 TTCCATACAGAGCTGATGGCTCAGGCTCTGCTGACTGAAACAGGGCTCACAGAGGGTGTGGAGCTGG
 AGTACATTCTAGAGACGTGGTCCCCTGAGTGGAGGACAGCAGGAGCTCAGCAGACAGCTGGAGGTGGT
 GGAAAGCAGCATCCAAAGCGTGGGTCTGGGAGGAAACGAGGACAGGCTATTGACCGCATAACACTC
 TACAGCATTTAAATCTAGCCTTAATGAATACCAAGCCAAATTATATCAAGTATTAGATGATGGAAAC
 GACTCTGATATCCATCAGCTGCTCAGATCTAGAAAGCCAACAAATCAACTTGGAGAGTGCTGGCTAAG
 TAACACCAATAAAATGCTAAGGAACCTCACAGACTGAAACAAATTGAAACACTGGACCAAGATATCAA
 AGTGAATCTGCAAGATCTAATTCACTGGTTACAATCTGCAAAAGACCGGCTAGAATTGAGCTCAGCAAT
 CTGTCAGTCCCACAAGAGCTGGAAATGGTCCGTGATCATCTAAATGCTTCTGAGTCTGGAGTTCTAAAGA
 AGTGGATGCCAATCTTCCCTGAAATCATCTGTTCTGAGTACTGAAATCAGCTCCTGACTAAAAAG
 GTGGACACAGCACGCTGCGCTCTGAGTTGCGCATTGATAGCCAGTGGACTGACCTGCTAACCAATA
 TCCCAGCCGTCAGGAGAAGCTCCACAGCTCCAGATGGATAAAACTGCCCCCATGCCATTCTGA
 AGTCATGAGTTGGACTCTCTAAATGGAAAATGCTATTCTGAGGATTCAGAAAGGATGAAAGATAATTTAAATTCATA
 GGTTACAAGGCAATTCTGAAATACCTTCAGAAATTAAGGGTTTAAGATAGACATTAACTGAAACAGC
 TGACAGTGGATTGCTGAGCAACTTGAGCAATGAAATAAGGTTGGCAAAATTCTGCAAGGTCTAGTAAC
 TAAGACTGATTTGCTGAGCAACTTGAGCAATGAAATAAGGTTGGCAAAATTCTGCAAGGTCTAGTAAC
 GAGAAGATCCAGCTGTTGAGGTTATTGGAATCTGGTCAGAAATATGAAAATAATGACAATGCTGA
 AAACATGGTTGAAACCCAGGAAAAGAGACTAAAACAACAGCATCGAATGGAGATCAGGCTCTGTTCA
 AAATGCACTGAAAGACTGTCAGGATCTGGAAGATCTGATTAAGCAAAAGATAAAAGAAGTAGAGAAAATT
 GACAGCAATGGACTTGTGTTGATTCAAGACCAAGAAAGACGTCTCTAGCATTGTCATGAGCACACTGC
 GAGAGCTGGCCAAACCTGGCAAATTAGATCACATGGTGGACAATTAAAGATACTGCTGAAATCAGT
 GCTTGACCAATGGAGTAGTCAGAACTGTCAGGCTTGCAGTAAAGGATAACAGTACCTCATGGAGCCAGATAC
 TCTCTTCCCGATTCCGCTGACTGGCTCCTAGAAGCTGTGCAAGGTTAGGTGGACAATTCTCAGA
 ATCTCCAAGATGATCTGGAAAAACAGGAAAGGAGCTTACAGAAAATTGGCTCTATCACCAACCAATTATT
 AAAAGAGTGTACCCACCCGGTACAGAAAATCTTACCAATCACTGAAAGAAGTCAACATGAGATGGAAT
 AACTTGCTGAGGAGATTGCTGAGCAGCTACAGTCCAGCAAGGCCCTACTTCAGCTTGGCAAAGATA
 AGGACTCTCCAAACAGTGTGCTCGACAGTTCAAGCAGCAGGAGATGAAACCAATGAGCTGTTGAAGGC
 AGCCACAAACAAGGACATTGCCGATGATGAGGTTGCCACATGGATTCAAGATTGCAACGACCTCTCAA
 GGACTGGGACAGTTAAAGATTCCCTTTGTTCTCCATGAGCTGGAGAGCAACTGAGCAACAAGTGG
 ATGCTTCCGACGATCAGCTATTCAATGGATCAACTCTTGTAGTCACACTTGTGTGCCCTGGAGCA
 AGCTCTGCAAACAGCAGACTTCATTACAGGCTGGAGTTGATTATGAAACCTTGGCAAAGAGTTA
 GAAGCTTGGAGGCTGGATAGTGGAGCTGAAGAAATACTACAAGGGCAGGACCCCTAGCCACTCATCTG
 ACCTCTCCACAATCCAGGAAAGGATGGAAGAACTTAAGGGACAGATGTTAAATTCAAGCAGCATGGCTCC
 AGATTAGACCGTCTAAATGAGCTTGATATAGGTTACCTTGAATGATAAGGAAATCAAAGAATGCAAG
 AATCTGAACCGCATTGGTCTCTGATCTCCTCTCAGACTACAGAAAAGATTCAAGCAACTTGTGAGTCATT
 TGCTACACATCAGACTTTCTGGAAAATGTGAAACATGGATGGAATTCTTAGTTGACAGACAGAAACAAAA
 GTTAGCAGTAGAGATTTCAGGAAATTATCAGCACCTTTGGAACAGCAGAGAGCACAGGTTGTTCAA
 GCCGAGATGTTCACTGCTCAGCAGATTGCACTTAATTGATGGCAACGTCAGTCTAGAACAAAG
 GTCAAGTTGATGACAGGGATGAAATTCAACCTGAAATTGACACTCTCAGTAATCAATGGCAGGGAGTGAT
 TCGCAGGGCCCAAGCAGAGGGGGGATCATTGACAGGCCAGATTGCCAGTGGCAGGCCATAGGGAGATG
 GCAGAAAAGCTCGTAAATGGTTGGTGAAGTGTCTACCTCCCATGAGTGGCTCGGAAGTGTCT
 TACCACTGCAACAAGCAAGGACCCCTTTGATGAAGTGCAGTTCAAAGAAAAGTGTCTGCAGCAACA
 AGGCAGCTACATCCTGACTGTGGAGGCTGGCAAGCAACTCCTCTCGCGGAGCTGGCGTGGAGGCC
 GCCTTGCAAGGCCAACTCGCTGAAATCCAAGAGAAAATGGAATCAGCCAGCATGCGCTGGAGAACAGA
 AGAAAAAAACTAGCCTCTGGTGAAGGAACTGGGAAAATGTGAGGAAAGGAAATGAGCAGATTCCCTGGAGAA
 ACTACGAACCTCAAAAAGAAGCTTCAGTCCAGTCTCCGGATCAGCAAGAGCTCCATGAGAACAA
 ATGCGTTGCAAGGAATTAGAAAATGCACTGGAGCTGGAGATGACTCTGACCCAGTTGAGCCCTGCTGA
 AGGACACCCCTCTGCTCTATCAGTGTGATGATATCTCCTTAAATGAAACGCGTAGAGCTCTGCA
 AAGGAGTGGGAGAAACTGCAACGAGGAGCTCTGAGTGGTGAACATGGAAAGGATTGAATGAA
 TGGCAGTCTCAGTGGAAAAGAACAAGGAACAGGAACTCTGAGTGGTGAACATGGAAAGCAGCT
 AGAATGGAGACATTCTCATTGAGAAATGAGAGAGCTCAAGAAGGATTATCAAGAGGAAATTGCTAT
 TGCTCAAGAGAAACAAATACAGCTCCAAACATGGAGAAGCAGACTTGCTAAAGCCAGCCATGAAAGCAA
 GCATCTGAGATGAAATACAAGCTGGGAAAGGTCAACGACCGGTGGCAGCATCTCTGGACCTATTGAG
 CCAGGGTGAAGAAGCTGAAGGAGACCCCTGGTAGCCGTGAGCAGCTTGTATAAGAACATGAGCAGCCTGAG
 GACCTGGCTCGCTCACATCGAGTCAGAGCTGGCCAAGCAATAGTCTACGATTCTGTAACTCAGGAAAGAA
 ATACAGAGAAAGCTTAATGAGCAGCAGGAGCTTCAGAGAGACATAGAGAAGCACAGTACAGGTGTTGCAT

PCT/US04/06308

CTGTCCCTCAACCTGTGTGAAGTCCTGTCACGACTGTGACGCCGTGCCACTGATGCCGAGTGTGACTC
TATACAGCAGGCTACGAGAAACCTGGACCGCGGGAGAAACATTGTGCTATGTCATGGAAAGGAGG
CTGAAAATCGAAGAGAGCAGTGGCGATTGTGGCAGAAATTCTGGATGACTATTCACTGGTGG
TGAAAGTCTTCAGAAAGGACAGCTGCTTTCCCAGCTCTCTGGGGTGAATCTACAGTTGCCAAGGAAGA
ACTAAAGAAATTGTAGGCTTCAGCAGGTCCACGGACTGACGCTGAGCTGACGAGCTGGAACTGATCAACAG
CAGTACCGCCGCTGGCCAGGGAGAACCGCACTGATTCACTGAGCTGACGCTCAAACAGATGGTCAAG
GCAACCAGAGATGGGAAACCTGCAAAAGCGTGTACCTCCATCTGGCAGACTCAAGCATTTATTGG
CCAGCGTGGAGGAGTTGAGACTGCGCAGGGAGACGATTCTGGCTGGCTCACAGAGATGGATCTGAGCTC
ACTAATATTGAACATTCTGTAGTGTATCAAGCTAAAGCAACTCAAGGCCCTCCAGCAGG
AAATTCACTGAACCAACAATAAGATTGAGCAGATAATTGCCAAGGAGAACAGCTGATAGAAAAGAGTGA
GCCCTGGATGCAGCGATCATCGAGGGAGAACTAGATGAGCTCCGACGGTACTGCCAGGAGGTCTCGGG
CGTGTGGAAAGATACCATAAAGAAACTGATCCGCTGCCCTCAGACGATGAGCAGCACCTCTCAGACA
GGGAGCTGGAGCTGGAAAGACTCTGAGCTCTGTGGACCTGCACTGGCACGACCGCTCTGCAGACAGCCT
GCTTCTCCACAGCCTCCCAATCTCTCCCTCGCTCGCTCAGGCCCTCCGGAGCGAGCGGTCAAGGA
CGAGACACCCAGCTAGTGTGGACTCCATCCCCCTGGAGTGGATCACGACTATGACCTCAGTCGGGACC
TGGAGTCTGCAATGTCCAGAGCTCTGCCCTCTGAGGATGAAGAAGGTCAAGGATGACAAAGATTCTACCT
CCGGGGAGCTGTTGCCATTACAGGGGACCAAGTGGCCCTAGAGTCACAGATGCCAACACTGGGCAAAGCC
CTGGATGATAGCCGCTTCAGATACAGCAACCGAAAATATCATTCTGCAGCAAACACTCCACGGGCCGG
AGCTAGACACCCAGCTACAAGGCTACATGAAACTGCTGGGGCAATGCACTGAGTGGAGTATAGACTCCGTGAA
GAGACTGGAGCACAAACTGAAAGGAGAGAGGAGAGGAGCTCTGGCTTTGTTAACCTGCATAGTACCGAA
ACCCAAAGCGTGGTGTGATTGACCGATGGGAGCTCTCCAGGCCCAGGATTGAGCAAGGAGTTGAGGA
TGAAGCAGAACCTCCAGAAGTGGCAGCTTAACTCAGACTTGAACAGCATCTGGGCTGGCTGGGGGA
CACGGAGGAGGAGTTGAAACAGCTCCAGCGTCTGGAACACTGACATCCAGACCATCGAGCTCCAG
ATCAAAAAGCTCAAGGAGCTCCAGAAAGCTGTGGACCACCGCAAAGCCATCATCTCCATCAATCTCT
GCAGCCCTGAGITCACCCAGGCTGACAGCAAGGAGAGCCGGACCTGCAGGATGCTGTGAGATGAA
TGGCGCTGGGACCGAGTGTGCTCTCTGCTGGAGGAGTGGGGGGCTGCTGCAGGATGCCCTGATGCAG
TGCCAGGGTTCCATGAAATGAGCCATGGTTGCTTCTATGCTGGAGAACATTGACAGAAGGAAAATG
AAATTGTCCCTATTGATTCTAACCTGATGCAAGAGATACTCAGGACCATCACAAACAGCTTATGCAAAT
AAAGCATGAGCTGTTGAACTCCAACCTCAGAGTAGCCTCTTGCAAGACATGCTTGGCAACTACTGGTG
AATGCTGAGGAAACAGACTGTTAGAGCAAAGAAAAAGTCATGTTAGACGCTGTCAAGTAGTCAGCAGGA
TCTTGAGGAGGTCAGTCGTCAATATCAAGGAACCTGGAGAGTGGCTCTCTGAGCTCTCTGCTCCTCATCGGGCTT
ACCCCAAACAGACAGAACAGCCACGAGGAAGTGTAGTCTCTCACAGCTGGACCCCTGTCAGCAGTC
CACATAGCAGGTCACAAAGGTGGCTCGATTCTCCCTTCTGAGCCAGGGCCAGGTCGGTCCGGCCG
CGGCTTCTGTTCAAGACTCTCCAGCAGCTCTCCCTCTGAGCTCTCTGCTCCTCATCGGGCTT
GCCCTGCTTGACCAATGTCAGAGGAAGACTACAGCTGTGCCCTCTCCAACAACCTTGGCCGGTATTCC
ACCCCATGCTCAGATAACAGAATGCCCTCCACTCTGAACTAAGCAGATGCCATCTGCAGAAGTGCT
GGTAGCATAGGAGGATGGGTATAAGCAATCCAAACTACCAACAAGAGGACCTTGATCTTGGCGAAA
GCCCTGGTGTGGCAGCTTACGGCCCTCCAGATCACATGTTGCAAAATTATGGCTTCAAGAGGTTGGAAG
ATAAACAGTGAAGGGGAAACAAACAGACAACAAGAAGGTTGGAAGAAATCTGGTTGAGACTCTGAACC
TTAGCACTAAGGAGATTGAGTAAGGACCTCCAAAGTCCCCGACTCATGAAATTCTGGCCCTTGGCCCA
TTCTGTGACAGGCCAAGGACTTCAGTAGACCATCTGGGAGCTTCCCATGGTGTGCTCCAACCATCAG
ATAAAATGACCCCTCCAAAGCACCACATGTCAGTGTGCTACAATCTACCAACAAACAGTGTGAAGAGATT
AGAACCTTGTAAACATCAAAATTGAGCTTATGGCAGCTTCTTACCTTGTGTTCTGGGG
CATGATGTTAACCTTGTGTTAGAAGCACAAGCTGAAATCTAAAAGCAGCTTTTTAGAGGTATA
AAGAAAAACTAGATGTAATAAGATCATGGAGGCTTATGTGAAAAAGTTGAATGTTAGT

Human SYNE1 mRNA sequence - var19 (public gi: 28195676) (SEQ ID NO: 201)
CAAGGGGAAACTTCTACCCCCACGCAAGGTTATAGCTTTGTCTGCAAGAGTCTAACCTTGCAAGTGG
AGCTTCATGGGGTGGCGAGGACCTGAGTGCCTGAGGATGGCAGAGGACGGCTGTGGATGCAAGATC
TCCAGATTGTAACCTGCGATGTCACAAGGGCCAGGGTGAAGAAGACTGAAAGGAGACCTGGTAGCCGTGCA
GCAGCTTGATAAGAACATGAGCAGCCTGAGGACCTGGCTCGTCACATCGAGTCAGAGCTGGCAAGCCA
ATAGTCTACGATTCTGTAACCTGGAAAGAAATACAGAGAAAGCTTAATGAGCAGCAGGAGCTCAGAGAG
ACATAGAGAACAGTACAGGTGTTGCATCTGCTCAACTGTGAGTCTCTGTCAGCAGACTGTGA
CGCCTGTCACACTGATGCCAGTGTGACTCTATACAGCAGGCTACGAGAAACCTGGACGGCGGTGGAGA
AACATTGTGCTATGTCATGGAAAGGAGGCTGAAAATCGAAGAGAGCTGGCGATTGTGGAGAAAATTTC
TGGATGACTATTCACTGGCTTGAAGATGGCTGAAGTCTCAGAAAGGACAGCTGCTTTCCAGCTCTTC
TGGGTGATCTATACAGTGTGCAAGAACACTAAAGAAAATTGAGGCTTCCAGCGACAGGTCCACGAG
TGCCTGACGCACTGGAAACTGATCAACAAAGCAGTACCGCCGCTGGCAGGGAGAACCGCACTGATT
CATGTAGCTCAAAACAGATGGTTCAAGAAGGCAACCGAGATGGGACAAACCTGCAAAAGCGTGTACCTC
CATCTGGCAGACTCAAGCATTATTGGCCAGCGTGAAGGAGTTGAGACTGCGGGACAGCATTCTG
GTCTGGCTCACAGAGATGGATCTGCACTTAATATTGACACATTCTGAGTGTGATGTTCAAGCTA
AAATAAGCAACTCAAGGCCCTCCAGCAGGAAATTCACTGAACCACAATAAGATTGAGCAGATAATTGC

Figure 36 part - 115

PCT/US04/06306

CCAAGGAGAACAGCTGATAGAAAAGAGTGAGCCCTGGATGCAGCGATCATCGAGGAGGAACTAGATGAG
CTCCGACGGTACTGCCAGGAGGTCTCGGGCGTGTGGAAAGATACCATAAGAAACTGATCCGCGCTGCCTC
TCCCAGACGATGAGCACGACCTCTCAGACAGGGAGCTGGAGCTGAAGACTCTGCAGCTCTGTCGGACCT
GCACTGGCACGACCGCTCTGCAGACAGCCCTGCTTCTCCACAGCCTCCCAATCTCTCCCTCTCGCTC
GCTCAGCCCCCTCCGGAGCAGCGGTCAAGGAGACACCCAGCTAGTGTGGACTCCATCCCCCTGGAGT
GGGATCACGACTATGACCTCAGTCGGGACCTGGAGCTGTGCAAGAGCTCTGCCCTCTGAGGATGA
AGAAGGTCAGGATGACAAGAATTCTACCTCCGGGAGCTGTGCTTATCAGATGTAATGATCCCCGAA
AGCCTGAGGCCATGTAACAGAAAATGCAATCAAAATACCTCCGGGACACAGTGCCTAG
AGTCACAGATCCGACAACCTGGCAAGGAGCTGGATGATAGCCGTTACAGATACAGCAAACCGAAAATAT
CATTGCAGCAAACCTCCCACGGGCCGGAGCTAGACACCCAGCTACAAAGGCTACATGAAACACTGCTGGC
GAATGCAGTAGCAGTATAGACTCCGTCAGAGACTGGAGCACAACACTGAAGGAGGAAGAGGAGAGCCTC
CTGGCTTGTAAACCTGCATAGTACCGAAACCCAAACGGCTGGTGTGATTGACCGATGGGAGCTTCTCCA
GGCCCAGGCATTGAGCAAGGAGTTGAGGATGAAGCAGAACCTCCAGAAGTGGCAGCAGTTAACTCAGAC
TTGAACAGCATTGGGCTGGCTGGGAGACCGAGGAGGAGTTGAAACAGCTCCAGCTCTGAACTCA
GCACTGACATCCAGACCATCGAGCTCCAGATCAAAAAGCTCAAGGAGCTCCAGAAAGCTGTGGACCACCG
CAAAGCCATCATCCTCTCCATCAATCTCTGCAGCCCTGAGTTCACCCAGCTGACAGCAAGGAGAGCCGG
GACCTGCAGGATCGCTTGCGAGATGAATGGGCGTGGGACCGAGTGTGCTCTGCTGGAGGAGTGGC
GGGGCCTGCTGCAGGATGCCCTGATGCAGTGCAGGCCAGGGTTCCATGAAATGAGCCATGGTTGCTTCT
GCTGGAGAACATTGAGCAGAAGGAAAATGAAATTGCTCTTATGATTCTAACCTTGATGAGAGATACTT
CAGGACCATCACAAACAGCTTATGCAAAATAAAGCATGAGCTGTGAAAGAACAGACTGTTAGAAGC
CCATGTTATTGAAATCGGCTCAAACCTCTTGAAGGAGGTCAAGTCGTATATCAAGGAACACTGGAGAAG
TTATTAGACGTGTCAGTAGTCAGCAGGATTGCTCTGCTCTGCTGATGAACTGGACACCTCAG
GGCTGTGAGTCCCACATCAGGAAGGAGCACCCAAACAGACAGAAAAGCCACGAGGCAAGTGTAGTCT
CTCACAGCCTGGACCCCTGTCAGCAGTCCACATAGCAGGTCACAAAGGTTGGCTCCGATTCCCT
TCTGAGCCAGGGCCAGGTCCGGTCCGGCTCCGTACAGGTCAGAGTCCTCCAGCAGCTCTCCCT
AGCTTCTCCTGCTCCTCCTCATCGGGTTGCTGCCCTGCTTGTACCAATGTCAAGAGGAAGACTACAGCTGTG
CCTCTCCAACAACCTTGGCCGGTCAITCCACCCCATGTCAGATACACGAATGGCCCTCCACTCTGA
ACTAAGCAGATGCCATCTGCAGAAGTGTGGTAGATAAGGAGGATCGGGTCATAAGCAATCCCAAAC
CCAACAAGAGGACCTTGATCTGGCGAAAGCCCTCGGTGTGGCAGCTTAGCCCTCCAGATCACATG
TGTGCAAATTATGGCTTCAGAGTGGAAAGATAAACAGTGCAGGGGGAAACAAACAGACAACAAGAAG
GGAAGAAATCTGGTTGAGAAGCTCTGAACCTTAGCAAGGAGATTGAGTAAGGACCTCCAAAGTCCCC
GGACTCATGAATTCTGGGCTTGGCCATTCTGTGACAGCCAAGGACTTCAGTAGACCATCTGGCAG
CTTCCCCTGGCTGCTCCAAACATCAGATAATGACCCCTCCAGCACCAGTCAGTGTGTCACAATC
TACCAACCAACAGTGTGAAGAGATTAGAACCTTGTAAACATACAATTAAAGAGCTTATATGGCAG
CTTCCCTTTTACCTTGTGTTCTGGCATGTTAAACCTTGTGTTAGAACAGCACAAGCTGTAAA
TCTAAAAGGCACTTTTTAGAGGTATAAGAAAAACTAGATGTAATAAAAGATCATGGAAGGCTTT
ATGTGAAAAAGTTGAATGTTAGT

Human SYNE1 Protein sequence - var1 (public gi: 21753085) (SEQ ID NO: 295)
M V V D D L F E D M K D G V K L L A L L E V L S G Q K L P C E Q G R R M K R I H A V A N I G T A L K F L E R K I K L V N I N S T D I A D G
R P S I V L G L M W T I I L Y F Q I E E L T S N L P Q L Q S L S S A S S V D S I V S S E T P S P P S K R V T T K I Q G N A K K A L L K W
V Q Y T A G K Q T G I E V K D F G K S W R S G V A F H S V I H A I R P E L V D L E T V K G R S N R E N L E D A F T I A E T E L G I P R L L D
P E D V D V D K P D E K S I M T Y V A Q F L K H Y P D I H N A S T D G Q E D D E I L P G F P S F A N S V Q N F K R E D R V I F K E M K V W I
E Q F E R D L T R A Q M V E S N L Q D K Y Q S F K H F R V Q Y E M K R K Q I E H L I Q P L H R D G K L S L D Q A L V K Q S W D R V T S R L F
D W H I Q L D K S L P A P L G T I G A W L Y R A E V A L R E E I T V Q V Q V H E E T A N T I Q R K L E Q H K D L L Q N T D A H K R A F H E I Y
R T R S V N G I P V P P D Q L E D M A E R F H V S T S E L H L M K M F E L K Y R R L L S L L V L A E S K L K S W I I K Y G R R E S V E
Q L L Q N Y V S F I E N S K F F E Q Y E V T Y Q I L K Q T A E M Y V K A D G S V E E A E N V M K F M N E T T A Q W R N L S V E V R S V R S M
L E E V I S N W D R Y G N T V A S L Q A W L E D A E K M L N Q S E N A K D F P R N L P H W I Q Q H T A M N D A G N F L I E T C D E M V S R
D L K Q Q L L L N G R W R E L F M E V K Q Y A Q A D E M D R M K K E Y T D C V V T L S A F A T E A H K K L S E P L E V S F M N V K L L I Q
D L E D I E Q R V P V M D A Q Y K I I T K T A H L I T K E S P

Human SYNE1 Protein sequence - var2 (public gi: 19584385) (SEQ ID NO: 296)
K L L I Q D L E D I E Q R V P V M D A Q Y K I I T K T A H L I T K E S P Q E E G K E M F A T M S K L K E Q L T K V K E C Y S P L L Y E S Q Q
L L I P L E E L K Q M T S F Y D S I L G K I N E I I T V L E R E A Q S S A L F K Q K H Q E L L A C Q E N C K K T L T L I E K G S Q S V Q K F
V T L S N V L K H F D Q T R L Q R O I A D I H V A F Q S M V K K T G D W K K H V E T N S R L M K K F E E S R A E L E K V L R I A Q E G L E E
K G D P E E L L R R H T E F F S Q L D Q R V L N A F L K A C D E L T D I L P E Q E Q Q G L Q E A V R K L H K Q W K D L Q G E A P Y H L L H L
K I D V E K N R F L A S V E E C R T E L D R E T K L M P Q E G S E K I I K E H R V F F S D K G P H L C E K R L Q L I E E L C V K L P V R D
P V R D P G T C H V T L K E L R A I D S T Y R K L M E D P D K W K D Y T S R F S E F S S W I S T N E T Q L K G I K G E A I D T A N H G E
V K R A V E E I R N G V T K R G E T I S W L K S R L K V L T E V S S E N E A Q K Q G D E L A K L S S F K A L V T L L S E V E K M L S N F G
D C V Q Y K E I V K N S L E E L I S G S K E V Q E Q A E K I L D T E N L F E A Q Q L L H H Q Q K T K R I S A K K R D V Q Q Q I A Q A Q Q G
E G G L P D R G H E E L R K L E S T L D G L E R S R E R Q E R R I Q V T L R K W E R F E T N K E T V V R Y L F Q T G S S H E R F L S F S S L

Figure 36 part - 116

ESLSSELEQTKEFSKRTEIASVQAEVLKEASEIPLGPQNQKQLLQQQAKSIKEQVKKLEDTLEEDIKPME
MVTKWDHFGSNFETLSVWITEKEKEELNALETSSSAMDMQISQIKVTIQEIESKLSSIVGLEEEEQSFAQ
FVTGESARIKAKLTQIRRYGEELREHAQCLEGITLGHLSQQQKFEENLRKIQQSVSFEDKLAVPIKIC
SSATETYKVLQEHMDLCQALESLSSAITAFSASARKVVNRDSCVQEAAALQQYEDILRRAKERQTALEN
LLAHQRLEKELESSLFTWLERGEAKASSPEMDISADRKVVEGELQLIQASSRKCEEGKNKMLFVTVLFK
IIK

Human SYNE1 Protein sequence - var3 (public gi: 17861378) (SEQ ID NO: 297)
MGERLAKASHESKASEIEYKLGKVNDRWQHLLDLIAARVKKLKETLVAVQQLDKNMSSLRTWLAHIESEL
AKPIVYDSCNSEEIQRKLNNEQQELQRDIEKHSTGVASVNLCEVLLHDCDACATDAECDSIQQATRNLD
RWRNICKAMSERRLKIEETWRLWQKFLLDDYSRFEDWLKSSERTAAFPSSSGVIYTVAKEELKKFEAFQRQ
VHECLTOLELINKQYRRLARENRTDSACSLQKMVHEGNQRWDNLQKRVTSILRRLKHFIGQREEFETARD
SILWLTEMQDQLTNIEHQSACDVQAKIKQLKAQQEISLNHINKIEQIIAQGEQLIEKSEPLDAAIIEEE
LDELLRRCQEVFGVRVERYYKKLIRLPPLPDDDEHDLSDRELELEDSAALSDLHWHDRSADSLLSPQPSSNLS
LSLAQPRLRSERSGRDTPASVDSIPLWEWDHDYDLSRDLESAMSRALPSDEEGQDDKDFYLRGAVALSDVM
IPESPEAYVKTENAIKNTGDHSALESQIRQLGKALDDSRFQIQQTENIIRSKTPGPELDTSYKGYM
LLGECSSSIDSVKRLEHKLKEEEESLPGFVNHLSTETQTAGVIDR WELLQAOQALKELRMKQNLQWQF
NSDLNSIWAWLGDTEEELQQLRLELSTDQTIELQIKKLKELQKAVDHRKAIILSINLCSPEFTQADSK
ESRDLQDRLSQMNNGRWDRCVSLLEEWRGQLDAMQCQGFHEMSHGLLLMLENIDRRKNEIVPIDSNLDA
EILQDHHKQLMQIKHELLESQLRVASLQDMSCQLVNAEGTDCLEAKEKVHVIGNRIKLLLKEVSRIKE
LEKLLDVSSSQDLSWSADELDTGSVSPSGRSTPNRQKTPRGKCSLSQPGPSVSSPHSRSTKGSD
SSLSEPGRSGRGFLFRVLAALPLQLLLLLIGLACLVPMSEEDYSCALSNNFARSFHPMLRTNGPP
PL

Human SYNE1 Protein sequence - var4 (public gi: 17861386) (SEQ ID NO: 298)
MELDAAVQKFLEQNGQLGKPLAKKIGLTELHQQTIRQAENRSLKLNQATSHLEEYNEMLELILKWIEKA
KVLAHTIAWSASQLRKQYILHOTLLEESKEIDSELEAMTEKLQYLTSVYCTEKMSQQVAELGRETEEL
RQMICKRLQNLQDAAKDMKKFEAELKKLQAALEQAAQATLTSPEVGRLSLKEQLSHRQHLLSEMESLKP
QAVQLCQSAALRIPEDVVASLPLCHAALRLQEEAASRLQHTAIQCNIMQEAVVQYEQYEQEMKHLQQLIEG
AHREIEDKPVATSNIQLQAIKSHEELAQKIKGYQEIQIASLNSKCKMLTMKAKHATMLLTVEGLAE
GTELDGELLPTPSAHPSPVMMTAGRCTLLSPVTEESGEEGTNTSEISSPPACRSPSPVANTDASVNQDI
AYYQALSAERLQTDAAKIHPSTSASQEFYEPGLEPSATAKLGDLQRSWETLKNVISKEQRTLYEALERQQ
KYQDSLQSISTKMEAIELKLSSESPEPGRSPSPESQMAEHQALMDEILMLQDEINELQSSLAEELVSESC
PAEQLALQSTLTVELAERMSTIRMKASGKROLLEELNDQLEEQRQEALQRYRCEADEELDSWLLSTKATL
DTALSPPKEPMDMAEQLMDCQNMVIEQKVVALESELVHNENLLLEGKAHTKDEAEQLAGKLRKGSL
LELQRALHDKQLNMQGTAQEKEESDVDTATQSPGVQEWAQRTTWQQRQSSLQQQKELEQELAEQKS
LLRSVASRGEEILIQHSAETSGDAGEKPDVLSQELGMGEKEKSSAEDQMRMKWESLHQEFSTKQKLLQNV
LEQEQQVLYSRPNRLLSGVPLYKGDVPTQDKSAVTSLLDGLNQAFEEVSSQSGGAKRQSIHLEQKLYDG
VSATSTWLDDVEERLFVATALLPEETETCLFNQEILAKDIKEMSEEDMKNKNLFSQAFPENGNDRVIED
TLGCLLGRISLLDSVNVNQRCHQMKERLQQILNFQNDLKVLFTSLADNKYIILQKLANVFEQPVAEQJEA
QQAEDGLKEFDAGIIELKRRGDELVEQPSMQELSKLQDMYDELMMIIGSRRSGLNQNLTLKSOYERALO
DLADLLETGQEKMAGDQKIIIVSKEEIQQPLDKHKEYFQGLESHEMILTVTLFRKIIISFAVQKETQFTEL
MAQASAVLKRAHKRGVELEYILETWSHLDDEDQQELSRQLEVVESSIIPSVGVLVEENEDRLIDRITLYQHLK
SSLNEYQPKLYQVLDLGKRLLISISCSDLESQNLQGECWLSNTNMSKELHRLETILKHTRYQSESAD
LIHWLQSAKDRLEFWTQQSVTVPQELMVRDHLNNALEFSKEVDAQSSLKSSVLSTGNQLLRLKKVDTAT
LRSELSRIDSQWTDLNTNIPAVQEKLHQLMQDKLPSRHAISEVMSWTSIMENAIQKDEDNIKNSIGYKAI
HEYLQKYKGFKIDINCKQLTVDFVNQSVLQISSQDVESKRSKDFAEQLGAMNKSQILQGLVTEKIQL
LEGLLLESWEYENNVCQCLKTWFETQEKRLKQQHIGDQASVQNALKDQDLEDLIKAKDKEVEKIEQNL
ALIQTKKEDVSSIVMSTLRELQGTWANLDHMVGQLKILLKSVLDQWSSHKVAFDKINSYLMEARYSLSRF
RLLTGSLEAVQVQVDNLQNLQDDLEKQERSLQKFGSITNQLLKECHPPVTETLNTLKEVNMRWNLL
IAEQLQSSKALLQLWQRYKDYSKCASTVQQQEDRTNELLKAATNKDIADDEVATWIQDCNDLLKGLGTV
KDSLFVLHELGEQLKQODVASAASAIQSDQLSLSQHLCALEQALCKQQTSLQAGVLDYETFAKSLEALEA
WIVEAEELQGQDPHSSDLSTIQERMEELKGQMLKFSSMAPDILDRNLNGYRLPLNDKEIKRMQNLNRH
WSLISSQTTERFSKLQSFLLQHQTGLEKCETWMEFLVQTEQKLAVEISGNYQHLLLEQQRHAEHLFQAEMFS
RQQLHSIIIDGQRLLEQGVQDDRDEFNLKLTLLSNQWQGVIRRAQQRRGIIDSQIRQWQRYREMAEKL
KWLVEVSYLPMSGLGSVPILQQARTLFDEVQFKEKVFLRQQGSYILITVEAGKQLLLSADSGAEEAALQAE
LAEIQEKKWSASMRLEEQQKKLAFLLKDWEKCEKGIAADSLEKLRFTKKLQSLSQSLPDHHEELHAEQMRCKE
LENAVGWSWTDDLTQLSLLKDTLSAYISADDISILNERVELLQRQWEELCHQLSLRRQQIGERLINEAVFS
EKNKELCEWLTOMESKVSQNGDILIEEMIEKLKKDYQEEIAIAQENKIQQLQOMGERLAKASHESKASEIE
YKLGVNDRWQHLLDLIAARVKKLKETLVAVQQLDKNMSSLRTWLAHIESELAKPIVYDSCNSEEIQRK
NEQQELQRDIEKHSTGVASVNLCEVLLHDCDACATDAECDSIQQATRNLDRRWRNICKAMSERRLKIEE
TWRLWQKFLDDYSRFEDWLKSSERTAAFPSSSGVIYTVAKEELKKFEAFQRQVHECLTQLELINKQYRRL

ARENRTDSACSLKQMVHEGNQRWDNLQKRVTSILRRLKHFFIGQREEFETARDSILVWLTEMDSLQLTNIEHFSECDVQAKIKQLKAFFQQEISLNHNKIEQIIAQGEQLIEKSEPLDAAIIEEELDELRYCQEVFGRVERYHKKLIRLPLPDDEHDLSDRELELEDASAALSDLHWDRSADSILSPQPSSNLSLSLAQPLRSERSGRDTPASVDSIPLWDHDYDLSRDLESAMSRAALPSDEEGQDDKDFYLRGAVALSGDHSalesQIRQLGKALDDSRFQIQQTENIIRSCKPTGPPELDTSYKGYMKLGECSSSIDSVKRLEHKLKEEEESLPGFVNLMHSTETQTAGVIDRWELLQAQALSKELRMKQNLQWQFNSDLSIWAFLGDTEEELEQLQRLELSTDIDTIELQIKKLKELQKAVDHRKAIILSINLCSPEFTQADSKESRDLQDRLSQMNGRWDRCVSLLEWRGLLQDALMQCQGFHEMSHGLLMLENIDRRKNEIVPIDSNLDAEILQDHHKQLMQIKHELLESQRLVASLQDMSCQLLVNAEGTDCLEAKEKVHVIGNRLKLLKEVSRRHIKELEKLLDVSSSQDLSWSSADELDTSGSVSPTSGRSTPNRQKTPRGKCSLSQPKTPRGKCSLSQPGPSVSSPSRSTKGGSDSSLSEPGPGRSGRGLFRVLRAALPLQLLLLLIGLACLVPMSEEDYSCALSNNFARSHFPMRLRTNGPPPL

Human SYNE1 Protein sequence - var5 (public gi: 17227154) (SEQ ID NO: 299)
MRLEQKKKLAFLKDWEKEKGIAADSLEKLRTFKKKLQSPLDHHEELHAEQMRCKELENAGSWTDDL
TQLSLLKDTLSAYISADDISILNERVELLQRQWEELCHQSLRRQQIGERLNEWAVFSEKNKELCEWLQ
MESKVSQNGDILIEEMIEKLKKDYQEEIAIAQENKIQLOQOMGERLAKASHESKASEIEYKLGKVNDRWQH
LLDLIAARVKKLKETLVAVQQQLDKNMSSLRTWLAHIESELAKPIVYDSCNSEEIQRKLNNEQQELQRDIEK
HSTGVASVNLCEVLLHDCACATDAECDSIQQATRNLDRRWRNI CAMSMERRLKIEETWRLWQKFLLDDY
SRFEDWLKSERTAAFPSSSGVIYTVAKEELKKFEAFQROVHECLTQLELINKQYRRLARENRTDSACSL
KQMVHEGNQRWDNLQKRVTSILRRLKHFFIGQREEFETARDSILVWLTEMDSLQLTNIEHFSECDVQAKIKQ
LKAFOQQEISLNHNKIEQIIAQGEQLIEKSEPLDAAIIEEELDELRYCQEVFGRVERYHKKLIRLPLPDD
EHDLSDRELELEDASAALSDLHWDRSADSLLSPQPSSNLSLSLAQPLRSERSGRDTPASVDSIPLWDHD
YDLSRDLESAMSRAALPSDEEGQDDKDFYLRGAVALSGDHSalesQIRQLGKALDDSRFQIQQTENIIRS
KTPTPPELDTSYKGYMKLGECSSSIDSVKRLEHKLKEEEESLPGFVNLMHSTETQTAGVIDRWELLQAQAL
LSKELRMKQNLQWQFNSDLSIWAFLGDTEEELEQLQRLELSTDIDTIELQIKKLKELQKAVDHRKAI
LSINLCSPEFTQADSKESRDLQDRLSQMNGRWDRCVSLLEWRGLLQDALMQCQGFHEMSHGLLMLEN
IDRRKNEIVPIDSNLDAEILQDHHKQLMQIKHELLESQRLVASLQDMSCQLLVNAEGTDCLEAKEKVHV
GNRLKLLKEVSRRHIKELEKLLDVSSSQDLSWSSADELDTSGSVSPTSGRSTPNRQKTPRGKCSLSQPK
GPSVSSPSRSTKGGSDSSLSEPGPGRSGRGLFRVLRAALPLQLLLLLIGLACLVPMSEEDYSCALS
NFARSHFPMRLRTNGPPPL

Human SYNE1 Protein sequence - var6 (public gi: 12698057) (SEQ ID NO: 300)
QRKLEQHKDQLQNTDAHKRKFHEIYRTRSVNGIPVPPDQLEDMAERFHVSSTSELHLMKMEFLELKYL
LSLLVLAESKLKSWIICKYGRRESVEQLLQNYVSFIENSKFFEYEVTYQILKQTAEMYVKADGSVEEAEN
VMKFMNETTAQRWNLSVEVRVSRSMLLEEVISNWDRYGNVTASLQAWLEDAEKMLNQSENAKDFFRNLP
WIQQHTAMNDAGNFLIETCDEMVSRLKQQLLLLNGRWRRELPMEVKQYAQADEMDRMKEYTDCVVTLSA
FATEAHKKLSEPLEVSFMNVKLLIQDLEDIEQRVPVMDAQYKIIITKTAHLITKESPOEEGKEMPATMSKL
KEQLTKVKECYSPPLLYESQQLLIPLEELEKQMTSFDQTRLQROIAIDIHFQSMVKKTGDWKH
VETNSRLMKFENCKKTLTLIEKGSQSQVQFKVTLNSVILKHFQDQTRLQROIAIDIHFQSMVKKTGDWKH
VETNSRLMKFEESEAKVLRIAQEGLEKGDPEELRRRIEFSQSDLQRVLNAFLKACDELTIDILPEQQQGLQEAVR
KLHKWQKDLQGEAPYHLLHKIDVEKNRFLASVECRTELDRTKLMPQEGSEKIIKEHRVFFSDKGPHH
LCEKRLQLIEELCVKLPVRDPVDRTPGTCHVTLKELRAIDSTYRKLMEDPDWKD
YTSRFSEFSSWISTNETQLKGIGKGEAIDTANHGEVKRABEIRNGVTKRG
ETLSWLKSRLKVLTEVSSNEAQKOGDELAKLSSSFKALVTL
LSEVEKMLSNGDCVQYKEIVKNSLEELISGSKEVQEQAEKILD
TENLFEAQQQLLHHQOKT KRISAKKRDVQQQIAQAOQGEGLPDRGHEELK
LESTDGLERSRERQERRIQVTLRKWERFETNKETV
VRYLFQTGSSHERFLSFSSLESLSSELEQTKEFSKRTE
SIAVQAENLVKEASEIPLGPQNQKQLLQQQAKS
IKEQVKKLEDTLEEEYVIDKS

Human SYNE1 Protein sequence - var7 (public gi: 2895593) (SEQ ID NO: 301)
MKQNLQKWWQFNSDLSIWAFLGDTEEELEQLQRLELSTDIDTIELQIKKLKELQKAVDHRKAIILSINL
CSPEFTQADSKESRDLQDRLSQMNGRWDRCVSLLEWRGLLQDALMQCQGFHEMSHGLLMLENIDRRKN
EIVPIDSNLDAEILQDHHKQLMQIKHELLESQRLVASLQDMSCQLLVNAEGTDCLEAKEKVHVIGNRLK
LLKEVSRRHIKELEKLLDVSSSQDLSWSSADELDTSGSVSPTSGRSTPNRQKTPRGKCSLSQPGPSVSS
PHSRSTKGGSDSSLSEPGPGRSGRGLFRVLRAALPLQLLLLLIGLACLVPMSEEDYSCALSNNFARSS
TPCSDTRMALLHSELSRCHLQKCW

Human SYNE1 Protein sequence - var8 (public gi: 6330957) (SEQ ID NO: 302)
LDLCRQSNNLCLQREEDLQRTDRYHDCMNVEVFLEKFTTEWDNLARS
DAESTAVHLEALKLALALQERKYAIEDLKDKQKMI
EHLNLDDKELVKEQTS
HLEQRWFQLED
LIK
RKR
KIQVSVTN
LEELNV
VQSRFQELME
WAEEQOPNIAEALKQS
PPPDMAQNLL
MDHLAI
CS
E
LEAKQML
LKS
LI
K
D
A
R
V
M
A
D
L
G
L
N
E
R
Q
V
I
Q
K
A
L
S
D
A
Q
S
H
V
N
C
L
S
D
L
V
G
Q
R
R
K
Y
L
N
K
A
L
S
E
K
T
Q
F
L
M
A
V
F
Q
A
T
S
Q
I
Q
Q
H
E
R
K
I
M
F
R
E
H
I
C
L
L
P
D
D
V
S
K
Q
V
K
T
C
K
S

PGT/USC4/06308

AQASLKTYYQNEVTGLWAQGRELMKEVTEQEKEVLGKLQELQSVDLSVQLKCShRLQELEKNLVSRKHF
EDFDKACHWLQADIVTFPEINLMNESTELHTQLAKYQNILEQSPEYENLLLTQRTGQTILPSLNEVDH
SYLSEKLNALPRQFMNIVALAKDKFYKVQEAILARKEYASLIELTTQSLSELAQFLRMSKVPTDЛАВЕЕ
ALSLQDGCRAILDEVAGLGEAVDELNQKKEGFRSTGQPWQPDKMLHLVTLYHRLKROTEORVSLLEDTS
AYQEHEKMCQQLERQLKSVKEEQSKVNEETLPAEKLKMYHSLAGSLQDSGIVLKRVTHIHLAPLHDP
LAYEKARHQIQSWQGELKLLTSAIGETVTCECSRVMQSIDFQTEMRSLDWLRRVKAELSGPVYLDLNLQ
DIQEERIKIQTHQEEVQSSLRIMNALSHKEKEFKTAKELISADEHSLAELSELGDQIEALRTRQATL
TEIYSOCORYYQVFQAANDWLEDAQEMLQLAGNGLDVESAEEENLKSHMFSTEDQFHNSLEELHSLVAT
LDPLIKPTGKDLEQKVASLELRSQRMSRDSAQVDLLQRCATAQWHDYQKAREEVIELMDTEKKLSEFS
LLKTTSSSHEAEKLSHEKALVSVVNSFHEKIVALEEKASQLEKTNQDASRMTTVWQRWTRLRAV
AQDQEKIILEDADWEWTGFNNKVKKATEMIDQLQDKLPGSSAQEKASKAELLTLSEATLQEQQQSAL
GMLRQQTLSMLQDGAAPTPGEEPPMQEITAMQDRCLNMQEKVKTNQDASRMTTVWQRWTRLRAV
VQETKEYLGNPTEIEDAQLEELQILLTEATNHRQNIKEMAEEQEKEYLGLYTIILPSELSLQLAVALDLK
IRDQIQDKIKEVEQSKATSQELSROIQKLAQDLTTILTQKAKTDNVVQAKTDQKVLGEELDGCNSKLME
LDAAVQKFLEQNGQLGKPLAKKIGKLTELHOQTIRQAENRLSKLNQAAASHLEEYNEMLELILKIEWAKV
LAHTGIAWSASQRLREQYILHQVTLGKIIFFK

Human SYNE1 Protein sequence - var9 (public gi: 20521662) (SEQ ID NO: 303
WISLMENVIQKDEDNIKNSIGYKAIHEYLKQYKGFKIDINCKQLTVDFVNQSVLQISSQDVESKRSDKTD
FAEQLGAMNKSQWLQGLVTEKIQLEGILLESWEYENNVCQCLKTWFETQEKRKLQQHRIGDQASVQNAL
KDCQDLEDLIKAKEKEVEKIEQNGLALIQNKEDVVSSIVMSTLRELQWTANLDHMGQLKILLKSVLDQ
WSSHKVAFDKINSYLMEARYSLSRFRLTGSLLEAVQVQVDNLQNLQDDLEKQERSLQKFGSITNQLLKEC
HPPVTETLNTLKEVNMRWNLLLEEIAEQLQSSKALLQLWQRKYDYSKQCASTVQQQEDRTNELLKAATN
KDIADDEVATWIQDCNDLKLGLGTVKDSLFLVHLGEQLKQQVDASAASAIQSDQLLSQHLCALEQALC
KQQTSLQAGVLDYETFAKSLEALEAWIVEAEEILQGQDPHSSSLSTIQUERMEELKGQMLKFSSMAPDLD
RLNELGYRLPLNDKEIKRMQNLNRHWSLISQQTTERFSKLQSFLLHQHTFLEKCTWMBFLVQTEQKLAV
EISGNYQHILLEQQRRAHELFQAEAFMSRQQILHSIIIDGORLLEQGVQDDRDEFNKLTLLSNQWQGVIRRA
ÓQRRGIIDLQSIROWQRYREMAEKLRKWLVEVSYPMSGLGSVPPIPLQQARTLFDEVQFKEKVFLRQQGSY
ILTVEAGQKLLSADSGEAALQAEALIQEKKWKSASMRLEEQKKLAFLLKDWEKCEKGIAADSLEKLRT
FKKKLSQLSPDHHEELHAEQMRCKELENAVGSWTDDLQLSLLKDTLSAYIASADDISILNERVELLQRQW
EELCHQLSLRRQQIGERLNEAWFSEKNKELCEWLTMQESKVSQNGDILIEEMIEKLKDYQEEIAIAQE
NKIQLQGMERLAKASHESKASEIEYKLGVNDRWQHILLDLIAARVKKLKTIVAVQQLDKNMSSLRTWL
AHIESELAKPIVYDSNCSEEIQRKLNEQQELQRDIEKHSTGVASVNLCEVLLHDACATDAECDSIQQ
ATRNLDRRWRNICAQMSMERRLKIEETWRLWQKFLLDDYSRFEDWLKSSERTAAFPSSSGVITYVAKERLKK
FEAFQRQVHECLTQLELINKQYRRLARENRTDSACSLKQMVHEGNQRWDNLQKRVTSILRRLKHFFIGQRE
EFETARDISLVWLTEMQLQTNIEHFSECDVQAKIKQLKAFQQEISLNHNKTEQIIIAQGEQLIIEKSEPLD
AAIIIEEELDELRRYQCQEVFGRVERYHKKLIRLPLPDDEHLDSDRELEEDSAALSDLHWHDRSADSLLSP
QPSSNLSQLAQPRLRSERSGRDTPASVDSIPLEWDHDYDLSRDLESAMSRALPSEDEEGODDKDFYLRG
VALSGDHSALESQIRQLGKALDDSRFQIQQTENIIIRSKTPTGPEDLTSYKGMKLLGECSSSIDSVKRLE
HKLKEEEESLPGFVNHLHSTETQTAGVILDRWELLQQAQALKELRMQKQNLQKWWQFNSDLNSIWIAWLGDTEE
ELEQLQRLLELTSDIQTIELQIJKLKLQKAVDHRKAIITLSINLCSEFTQADSKESRDLQDRLSQMNGRW
DRVCSLLEWRGLLQDALMQCQGFHEMSHGLLLMLENIDRRKNEIVPIDSNLDAEILQDHHKQLMQIKHE
LLESQRLVAVSLQDMSCQLLVNAEGTDCLEAKEKVHVIGNPLKLLKEVSRHIKELEKLLDVSSSQDLS
WSSADELDTSGSVSPSGRSTPNRQKTPRGKCSLSQPGPSVSSPHSRSTKGGSQSSLSEPGRSGRGFL
FRVLRALPLLOLILLIIGLACLVPMSSEDYSCALSNNPARSFHPLRYTNGPPPL

Human SYNE1 Protein sequence - var10 (public gi: 28195689) (SEQ ID NO: 304
MTEKLQYLTsvyCTEKMSQQVAELGRETEELRQMIKIRLQLNQDAAKDMKKFELKKLQAALEQAQATL
TSP-EVGRSLSLKEQLSHRQHLLSEMEISLKPKVQAVQLCQSALRIPEDVVASLPLCHAALRLQEEASRLQHT
A1QOCNIMQEAVVQYEQYEQEMKHQOLIIEGAHREIEDKPVATSNIQELQAOQISRHEELAQKIKGYQEIQI
ASLNSKCKMLTMKAHKATMLLTVTEVEGLAEGTEDLDGELLPTPSAHPSVVMMTAGRCHTLLSPVTEESG
EEGTNSEISSLPPACRSPSPVANTDASVNQDIAYYQALSAERLQTDAAKIHPSTSASQEFYEPGLEPSATA
KLGDLQRSSWETLKNISEKQRTLYEALERQQKYQDSLSQSISTKMEAIELKLSESPEPGRSPESQMAEHQA
LMDEILMLQDEINELQSSLAEELVSESCADPAEQLALQSTLTVLAERMSTIRMKASGKRQLLEEKLNDQ
LEEQRQEALQRYRCEADELDSWLSTKATLDTALSPKEPMDMEAQLMDQCQNMVLVEIEQKVVALSELSV
HNENLLLEGKAHTKDEAEQLAGKLRRLKGSLLLELORALHDQQLNMQGTAQEKEESDVTLTATQSPGVQEW
LAQARTWTQQRQSSLQQQKELEOEELAEQKSLLRSVASRGEELIQLQHSSAETSGDAGEKPDVLQSQELGME
GEKSSAEDQMWRMKWEWSLHQEFSTKQKLLQNVLEQEQQEVLYSRPNRLSGVPLYKGDVPTQDKSAVTSSL
DGLNQAFEEVSSQSGGAKRQSIHLEQKLYDGVSASTWLLDDVEERLFTVADPEETETCLFNQEIILAKD
IKEMSEEMDKNKNLFSQAFPENGDNRDVIEDTLGCLLGRLLSDSVNQRCHQMKERLQQIILNFQNDLKVK
LFTSLADNKYIILOKLANVFEPQVVAEQIEAIQQAEDGLKEFDAGIELKRRGDELQVEQPSMQLSKLQD
MYDELMMIIGSRRSGLNQNLTLSOYERALQDLLETQOEKMGDOKIIVSSKEEIQQPLDKHKEYFQ

GLESHMILTVLFRKIISFAVQKETQFTELMAQASAVLKRAHKRGVELEYILETWSHLDDEQQEQLSRQL
 EVVESSI P S V G L V E E N E D R L I D R I T L Y Q H L K S S L N E Y Q P K L Y Q V L D D G K R L L I S I S C S D L E S Q L N Q L G E C
 WLSNTNKMKSKEIHLRLETILKHWTTRYQSESADLIHWLQSAKDRLEFWTQQSVTPQELMVRDHLNAFLF
 SKEVDAQSSLKSSVLSTGNQLRLKKVDTATLRSELSRIDSQWTDLTNIPAVQEKLHQLOMDKLPSRHA
 ISEVMWSWTSIMENAIQKDEDNIKNSIGYKAIHEYILQKYKGFKIDINCKQLTVDFVNQSVLQISSQDVSK
 RSDKTDFAEQLGAMNKSWQILQGLVTEKIQIQLLEGILLESWSEYEENNQCLKTWFETQEKRKLQQHRRIGDQA
 SVQNALKCQDLEDLKAKDKEVEKEIEQNGLALIQTKKEDVSIVMSTLRELGQTWANLDHMVGQLKILL
 KSVIDQWSSHKVAFDKINSYLMEARYSLSRFRLTGSLEAVQVQVDNLQNLQDDLEKQERSLQKFGSITNL
 QLLKECHPPVTETLTNTLKEVNMRWNNLLEEIAEQLQSSKALLQLWQRYKDYSKQCASTVQQQEDRTNEL
 LKAATNKKDIADDEVATWIQDCNDLLKGJGTVDLSFLVHLGEQKLQQVDAASAASIQSDFQLSLSOHLCA
 LEQALCKQQTSILQAGVLDYETFAKSLEAVEAEEILQGQDPSSHSDLSTIQRMEELKGQMLKFSS
 MAPDLDRLNELGYRLPLNDEKIKRMQNLNRHWSLISQTTERFSKLQSFLLQHQTFLKCTWMFELVQT
 EOKLAVISGNYQHLLERQRAHELPQAEFMSRQQLHSIIIDGQRLLEQGVQDDRDEFNLKLTLLSNQWQ
 GVIERRAQRRGIIDSQIRQWORYREMAEKLRKWLVESYLPMSGLGSVPILPQQARTLFDEVQFKEKVFL
 RQOGSYIILTVEAGKQLLSSADSGAEALQAEIAEIQEKWKSASMRLEEEQKKKLAFLLKWDWEKCEKGIA
 LEKLRTFKKKLQSQSLPDHHHEELHAEQMRCKELENAVGWTDDLTQLSLLKDTLSAYISADDISILNERVE
 LLQRQWEELCHQQLSRLRQQIGERLNEWAVFSEKNELCEWLTMQESKVSQNGDILIEEMIEKLKDYQEE
 IATAQENKIQQLQQMGERLAKASHESKASEIEYKLGVNDRWQHLLDLIAARVKKLKETLVAVQQLDKNM
 SLRTWLAHIESELAKPIVYDSCNSEEIQRKLNEQQELQRDIEKHSTGVASVNLCEVLLHDACATDAE
 CDSIQQATRNLDERRWRNACAMS MERRLKIEETWRLWQKFLLDDYSRFEDWLKSSERTAAFPSSSGVIYTVA
 KEELKKFEAFQRQVHECLTQLELINKQYRRLARENRTDSACSLKQMVHEGNQRWDNLQKRVTSILRRKH
 FIGQREEFETARDSILVWLTQLELINKQYRRLARENRTDSACSLKQMVHEGNQRWDNLQKRVTSILRRKH
 KSEPLDAIAEEELDELRLRYCQEVFGVERYHKKLIRLPLPDEHDLSRELELESDAALSDDLWHDRSA
 DSLLSPQPSSNLSLSAQPLRSERSGRDTPASVDSIPLWEHDYDLSRDLESAMSRALPSEDEEGQDDKD
 FYLRAVALSGDHSALESQIRQLGKALDDSRFQIQQTENIIRSKTPTGPEDTSYKGYMKLLGECSSSID
 SVKRLHEHKLKEEEEESLPGFVNHLHSTETQTAGVIDRWELLQAAQALSKELRMKQNLQKWWQFNDSL
 LGDTEEELEQLRLELSTDIOTIELQIKLKELQKAVDHRKAIILSINLCSEFTQADSKESDLQDR
 QMNGRWDRVCSSLLEWRGLLQDALMQCQGFHEMHSGLLMLENIDRRKNEIVPIDSNLDAEILQDHHKQ
 MQIKHELLESQLRVASLQDMSCQLLVNAEGTDCLAKEKVHVIGNRLKLLLKEVSRHIKELEKLLDV
 QDLSWWSSADELDTSGSVSPTSGRSTPNRQKTPRGKCSLSQPGPSVSSPHSRSTKGGSDSSLSEPGPGR
 SGRGFLFRVLRALPLQLLLLLLIGLACLVPMSSEEDYSCALSNNFARSFHPMLRTNGPPL

Human SYNE1 Protein sequence - var11 (public gi: 28195677) (SEQ ID NO: 305)
 MVVAEDLSALRMAEDGCVADLPDCNCVDTRARVKKLKETLVAVQQLDKNMSSLRTWLAHIESELAKPIV
 YDSCNSEEIQRKLNEQQELQRDIEKHSTGVASVNLCEVLLHDACATDAECDSIQQATRNLDERRWRN
 CAMSMERRLKIEETWRLWQKFLLDDYSRFEDWLKSSERTAAFPSSSGVIYTVAKEELKKFEAFQRQVHECL
 TQLELINKQYRRLARENRTDSACSLKQMVHEGNQRWDNLQKRVTSILRRKHFIGQREEFETARDSILV
 LTEMQDLQTNIEHFSECDVQAKIKQLQFQOEIISLNHNKIEQIIAQGEQLEIEKSEPLDAIAEEELDEL
 RYCYQEVFGVERYHKKLIRLPLPDEHDLSRELELESDAALSDDLWHDRSADSLLSPQPSSNLSLSAQ
 PLRSERSGRDTPASVDSIPLWEHDYDLSRDLESAMSRALPSEDEEGQDDKDYLRAVALSDVMPESP
 EAYVKLTENAIKNTSGDHSALESQIRQLGKALDDSRFQIQQTENIIRSKTPTGPEDTSYKGYMKLLGEC
 SSSIDSVKRLHEHKLKEEEEESLPGFVNHLHSTETQTAGVIDRWELLQAAQALSKELRMKQNLQKWWQFN
 DSLN SIWA WLGDTEEELQQLRLELSTDIOTIELQIKLKELQKAVDHRKAIILSINLCSEFTQADSKE
 RDL QDRLSQMNGRWRVCSSLLEWRGLLQDALMQCQGFHEMHSGLLMLENIDRRKNEIVPIDSNLDAE
 ILQDHHKQLMQIKHELLESQLRVASLQDMSCQLLVNAEGTDCLAKEKVHVIGNRLKLLLKEVSRHI
 KELEKLL DVSSSQDLSWWSSADELDTSGSVSPTSGRSTPNRQKTPRGKCSLSQPGPSVSSPHSRSTKGG
 SDSSLSEPGPGR EAVPGRSGRGRFLFRVLRALPLQLLLLLLIGLACLVPMSSEEDYSCALSNNFARS
 FHPMLRTNGPPL

Human SYNE1 Protein sequence - var12 (public gi: 28192628) (SEQ ID NO: 306)
 MATSRGASRCPRDIANVMQRLQDEQEIVQKRTFTKWINSHLAKRKPPMVDDLFEDMKDGVKLALLEVL
 SGQKLPCEQGRMRKRIHAVANIGTALKFLEGRIKIKLVLNINSTDIADGRPSIVLGLMWTTIILYFQIEELTS
 NLPOLOSLSSASSVDSIVSSETPSPPSKRKVTTKIQGNACKALLKWWQYTAGKQTGIEVKDFGKSWRSG
 VAFAHSVIAIRPELVLDELTVKGRSNRENLEDAFTIAETELGIPRLLDPEDVDVDPKDEKSIMTYVAQFLK
 HYPDIHNASTDQEDDEILPLGFPFSFANSVQNFKREDRVIKEMKVWIEQFERDLTRAQMVESNLQDKYQS
 FKHFRVQYEMKRKQIEHLIQPLHLDGKLSLDQALVKQSWDRVTSRLFDWHIQLDKSLPAPLGTIGAWLYR
 AEVALREEITVQQVHEETANTIQRKLEQHK

Human SYNE1 Protein sequence - var13 (public gi: 28192522) (SEQ ID NO: 307)
 HIQLDKSLPAPLGLTIGAWLYRAEVALREEITVQQVHEETANTIQRKLEQHKRKCRMM DLLQNTDAHKRA
 FHEIYRTRSVNGIPVPPDQLEDMAERFHFSPTSELHLMKMEFLELKYRLLSLLVLAESKLKSWIICKYGR
 RESVEQLLQNYVSFIENSKFFEQYEVTYQILKQTAEMYVKADGSVEEAENVMKFMNETTAQWRNLS
 SVEVR SVRSMLEEVISNWDRYGNVTASLQAWLEDAEKMLNQSENAKDFFRNLPHWIQQHTAMNDAGN
 FLIEDCD

PCT/US04/06308

EMVSRLKQQLLLNGRWELFMEVKQYAQADEMDRMKKEYTDCVVTLSAFATEAHKKLSEPLEVSFMNV
KLLIQDLEDIEQRVPVMDAQYKIIITKTAHLITKESPQEKGEMFATMSKLKEQLTKVKECYSPLLYESQQ
LLIPLLELEKQMTSFYDSLGKINEIITVLEREAQSSALFKQKHQ

Figure 36 part - 121

Unigene Name: TTC3 Unigene ID: Hs.118174 Clone ID: GD_1105

Human TTC3 mRNA sequence - var1 (public gi: 2687860) (SEQ ID NO: 202)

ATTAaaaATAACATCTTCTGCCACTTCTGTTCAACATCAAACAGTCCGTAATATCACGATTGCATC
CCTGTGTGGACGCCAACAAATTCACTGCTTCTGAGATAAATTGAAGAAACTACAACATCTGAGTTGAT
GGAAGATATTGTGGATTGGCAAAGAAAGTGTGCTATGATTCACTTCCTTATTGGAGGCTTATTGAGAATT
GGTTGAAAATAGAAAATAAAATCTGGCAATGGAAAGAGCTCTGAATTGGATAAAATATGCAGGGCATG
TAACAATTCTAACTAATTAGGATCAATTGACAATTGTTGCCCTATGTTAAGTATTCTTACTGAATA
CAAGTACCCACATAACTAAAATTGTAATGGAAGACTGCAATTGCTGAAGAACTAAAACCAAAGTTGT
ATGGATTGTATAGAGGAAGGAGAACTATAAGAAAATGAAAGAGTTTCCAAGAAAGATTG
ATATAGCTATTATCTATTACACAGAGCCATTGAATATGACACTGAAAACACTACCTTATGGTAACCG
AGCTCTTGTCTTCGTACTGGACAGTTAGAAATGCACTCGGTGATGGAAAGAGAGGCCACTATTCTG
AAGAACACTTGCCAAAGGGTCATTATCGTTATTGTGATGCTCTTCTATGCTGGGGAAATGACTGGG
CCCTGCAAGCAAACATAAAAGCTCAAAAACCTCTGAAAAATGACCCTGAGGGAAATCAAGGATCTAATTCA
GCAGCATGTAAGTTACAAAACAAATAGAAGACCTACAAGGTCGAACAGCAAATAAGGATCCAATTAAA
GCCTTTATGAAAACAGGGCTACACACCTAGGAGTTATCAGCACCTATATTACTACTTCACCTTAAC
TTGTGGAGAAGGAAAGAGATTTCAGAAAAATTAAATCAGAAATGGCAACGGTGTAAATCAGAAATCTAAA
GGTGGGGATGAGGCGTTGAAGGTAGATGATTGACTGTCATCCTGAATTTCACCAACCATCAAGTCAG
CCTCCAAAACATAAAAGGAAAACAAAAACTCTGAAACAATGAATCAGAAAAGTTCAAGTTCTAGGTCACCCAT
TGACTTTACCGCAGATTGAGAACATCTGGAGAAAACAGTTCTAAATCTCAAGAGCTGCACACCA
GGATTTCGCTATAATGAAAATGCTGAGAAAGCTTAATTCCAGATGGCTATATGGCTTATTGGAGCAG
CGTGGCCGAGCGCTGCACAGGCCCTTACAGGTTGCAACGGTTTAGATCCTCAAAAATAAGCAAT
TGAACCTGGCCATGATTAACATGTTTGGCTGTATGGACTTGCCATTCTCCTTGGAAATAGGACA
GCCGTGAGGAATTATCTGAAGCCGAAAACAGTTAAGAGGATTATTGAAACACTACCCCCAGTGAGGGCTT
GATTGCTGGCTACTGTGGAATTGGAAAAGTATATTGAAAAAAACAGATTCTAGAAGCTCTCAATC
ACTTTGAGAAAGCAAGAACCTGATTATCGTCTCTGGACTGTTAACTTGGCCCACGAGTAATGTGAT
TATTGAAGAGTCTCAGCCACAAAAAATAAAAGATGCTGTTAGAGAAATTGTTGAAGAATGCAAGTCCCT
CCAGTGCAGATGCCATTGTTGCTATCAGAAGTGCCTATGGGATATTCTAAGATCCAGATACTAATG
ATCCAGACTTTAAGGGTTTATACGCATCAGCTGTTGCCAGTACTGTAAAATAGAATTTCACATGAATTG
CTGGAAGAAGTAAAAACTACAACCTTTAATGATAAAATTGACAAGGATTCTACAAGGAATATGTCTT
ACCCCTGACTGTGAGGTGTCATTCTAAAGATTATCATCTTCAGCAGTGGTGTAAAGTTAAATGTGAAT
TTGAACACAAGGTCTAAAGAAAAGGTTCCCAAGCCTTCTGAAACAGGATTTCTAGCCTAG
GAAACTAAGACTGAAAGAAGGAAACAAAATTGAAGGAGAAAGATCaaaaAAAAGAAGCaaaaAGTTAGCA
CAAGAAAGAATGGAGGAGGACTTAAGAGAAAGTAATCCACCCAAAATGAAGAGCAGAAAGAAACTGTAG
ACAATGTTCAAGCGTTGTCAGTTCTGATGACAGAATTCTACAGTGTATAAGCAGTATGCTGACAAGAT
TAAATCCGCATACAGAATACAGCCACGCTCTCAAAGAATTGCTTCTGGAAAGTTTGTGAGCACAGAA
GACTATAACCTGTTCTAGCAGAAATTCTAAATGAAGCAGTGGACTATGTTATTGCCACTTGA
TTCAAGAAAATAACAGAGTAAAGACAAGAATTCTGCATGTTTGAGTGAGCTTAAAGAAGTGGAGCC
CAAATTAGCCGCTGGATCCAAAACCTTAATAGCTTGGCTTAGATGCCACAGGAACCTTCTTCCTCGT
TATGGAGCATCTCTTAAACTGCTTGATTTTAGTATCATGACTTCTCTGGAAATGAGAAATATGGTCACA
AACTAGACTCTATAGAAGGAAAGCAACTTGATTATTCCTGAGCCAGCATCTGAAGGAGGCCGTTG
TTAAATATGGCTGCTAGAAGAACACAGAGACAAGTCCCAGCATGCTAGTGTGTTAGATGAATTCTTT
GATAATAGGACAGCCGCTGACTGTGTTAGGAAACAAGGAGTGGGTGAAAGCACCCTTGTGAAACCA
AGGTAAAACAAAAGCAAGAAAAGGAAAGCCAAAGGATTCAAGCCTATGTTAGTTGGGTCTGGAAACCA
TTCAGTAACCTCAAATAATGAGATCATCACTTCAGTGAAGGACCATAGCAATCGAAATTCAAGATTCTGCA
GCCCAATTGCAAGTGCCTGCCATCTGGCAAGATGTAGAAGAATTGCAAGCTCTATGACCAACACA
GTAACGAATATGTTGTCGCCATAAGAAGCTATGGGACATGAACCCAAAACAAAATGTTCAACTCTATA
TGATTACTCTCTCAGTTTGGAGGAACATGGTCCCTGGACATGAGTAACAAGATGTTCTGAGAA
TATGAGTTTCCCAGAAGAAACTCGACAGATACTAGAAAAAGCAGGAGGTTAAAACCTTTCTTGG
GATGCCCTCGTTTGTGATTGACAACGTGATTGCACTGAAGAAGGTTGACATCAGGCTCAAGAAAAA
AAGGAAGAAGAAAACATTAAAACAAAAGTAGAAGAAATTCAAAGCAGGGAGTATGTACGAGTTAAA
CTACAACTGAATCCAGCTGCTAGGGAAATTAAACCAAGATGTAAGTCTAAACCAGTGTCAAGATTCTT
CAGCACCAAGCTTTGAAAATGTGAAACCCAAACCTGTGTCGCAAATTCTCCAAGCCAGCTTGTGAAAGA
TGTGAGGCCAAACCAAGTATCCGACAATTCTCTAGACAAGTTCTGAGGATGGGCAACCCAAAGGGGTC
TCTCTAAATTCTCTAAACCAAGGCTCTGAGGATGCAAATTACAAGCGAGTCTCTGTAATTCCCCAAAC

Figure 36 part - 122

PCT/US04/06308

CGGTTCTGAGGATGTGAAACCAACTTATTGGCTCAATCCCATTGGTCACAGGATACTGTACGTATCT
TCCTTCCAGAGATTGATATCACCCAGACACCGCCAGCATAACATAAACGTGTTACCGAGGTTGCCAG
TACACCAGCATATACACCCCTGGCCAGCCTTCTCTGAATATCAGCTACCAAGATCAGTACCGAGTGG
TGCCGCTTTTAGCCAATGACAGAGCAGATAAAATGCTGCTGCCTATTGAGGGTCATCATTGAA
TGCTGAGAATGTTGCTGGTCACAGATTGCTCTGAACACAGATCCTGAGGGCTTTGGGAATATCT
GTAAAGTCACACTGCAAGCACAGGTGATGCTCATAACAGTCTGAGTCTAACAGAAATGATGAGCACT
GTGGAAATTCTAACACAAATGTGAAAGTAATTCCAGAAAGCACCAGTGCAGTAACAAACATTCCACACGT
GCAGATGGTTGCCATACAGGTATCTTGAACATAATACACCAAGAAGTCATTAACAGGACATATACTCCT
TTTGGAGAACGACAAGGGAAATTCAAGGATTGAAAGAGCACAAGTATTACAAGACCAACTTCAG
AAGTGTATGAAAATTATGAGCAGATAAAACTTAAGGGCTTAGAAGAGACAGGGACCTGGAAAGAGAAGTT
GAAAAGGCACCTTAGAAGAAAACAGATCTAACAGCAGAATTAGATTGGTCTTCAAGATTGGAAAGA
GAAAATAAAAATGGCAACAGGAAAAAAAGAAATCAGAACAGAAAGACTAAATCACTGAAGAAGAAAATTA
AAAAGGTTCAAATGCCAGTGAATGTATAACCCAGAAAATGATGAAAGGAAAGGAACATGAATTACA
TCTGGATCAGTCCTTGAATCAGCAACACACTTACAAATGAGAAAATGAAAATAGAAGAGTATATAAG
AAAGGAAAGAGGATTATGAAGAGAGTCATCAGAGAGCTGGCTGCAGAGGTATCCGTACTTGAAGAA
GGAAGGGAGAGTGAAGTGATAAGCTACAGATCATGGAGTCACAAGCAGAACGCCTTCTGAAGAAGCTGG
GCTGATTAGCCGTGATCCTGCAGCATATCCTGACATGGAGTCATGATACGTACGGAAATTGTTCTT
TCTAATGTTACAAAGTAATTGAGAAAGCAAAGTCTCAGTTGAAGAACAAATTAGGCAATTAAAATG
GTTCTGGCTCAGTGAACCTTCTAAAGTGAGATTCTGAGCTTCTGAGCTTCTGAGCTTCTGCTGTAACACGGTCA
TCCCAGGTTACTCCCTGAGTCCTCAGGCCAGATGGCAAGGGCTTGTGACTCTCTGCAAGCGACGTGACT
GGAAACACGCCAGCAGCACTTACAGGGATCCTAGTGTCTCTGCTGGTATTCCCCAGGGAGGCTCTT
CTGGCGCTGGTCCAGGGCACCCCCCTGGTCAGCTGAAGGCAACTCAGCTGACAGGGCCAAACGGGCTGG
CCAGGCAGCTCTGTCAGAACGAAGGGCTGTGACTGATCGGAAGCAGCCTGTTCTCCAGGACGTGCTGCG
CGTTCAAGCCAGTCTCCAAAAAAAGCGTTCAATGTTATTAGCAGCTGTCAGTGGTATTCCCAGTGT
ACAACAGCACTGAGCTGCTGGTTTATTAAAAAAGTGCAGAACAGAAACTCAGTCTCAGGATT
GAGTATTGATGAAAATTGTCAGAACAGACTTACAGAACACATTCTAGATGAAACAGAAAAGAAAAGCCAAAC
CCAGGAAAGGACAAGAGGACTTATGAGCCAGCTCTGCCACCCCCGTGACCAGGTCTCCAGGGCTCAC
CCCTGGTGGTTGTCACCATCCCCAAACCAAGGGCAGAAAGCAGAACAGATGTCCTGTGAGGATTGC
ACTGGGTGCAAGTTCTGTGAAATATGCCAGGGTGTCAAATAAAAACAGTGCCTGTGCTCAAATGT
GGGCACAAGTATCAAAGGGTGTAAAGCAGTGGCTTAAAGGCAGAGCGCTTGCCCCGCTGCCAGG
GTCGTGATCTCCTGACAGAACAGTCACCTCTGGAGGGCTGGCCAGTCAGAACATCAGGAGCTGCCCTC
CTGCTCTCTAGGTAGTCACACTCAACTAAAGTGTCTGACATCCACCAAGTGTGTTGAATCCGAAGAACATGCAAT
TTTCTACCAACTGGTGTAAAAAAACAAACATTGTAAGTAATTCCCCACTCTGAGTGAATACTTGTGATTGCCAAC
TGGAAATCGTTAATATCGTGATATTAAAGTAATTCCCCACTCTGAGTGAATACTTGTGATTGCCAAC
AGTGGCTAATAAAAATGAGGCTACACACTCATGGTCACTGGGGCTGGCCAGGGCTCTTGTGAGTGGT
GGCTTCTTTGGAAAGACTATGAAGACGCTCGAAGCAGTATTCTAGTGATAAGAAATTCTAACATAGCCA
AGCAGCCCCACGTTGTCCTCCACGTTGTTCCCCTTCTGTTGAAAACCTGTTCTGAGCTCCACA
AGAGAGATGATACTGACTTTAAATTTCAGAACAGTCTGATTCTGATATGCCCTATATTTCTC
AAAGATTCTGCATTAAAGGATGGGCATAAGAACATATTTAATAATTAGTTAATGTTAAAGTAA
TTGGCTGATTTAGACCAAAAGATTCAAATCCTCTTGTGAAATCCCCTCTGATTTGATTTTATT
TTTATGTTCCCCCTGTTAGATTGTTAAGTGTGCTTTCATTTTATAGATGTAATCTGATTTC
AAAATCTAACACTTTAATTAGTATCGACTAACAGACTTTTCCCCCTGGAAATCGAGGCTGTGTC
TCATCCCAGCCCCGGTGGAGCTGCTTTGAACTCCGCTCTCTAGCAGCTCTGCTCTC
TGTGAGTCAGTCAGCGAGTGCTGGATCCGATCCAGCCGTGAGCACACAACAGGCTGTGTTGGA
AATGGCCACCCACCAATTCTCCTCCCCACCCACCAAAAAAGAGAACGCTGTGCTTTAGACAACCTGAG
GTATCTGTTACAATCGTCGTGTTGATATTGTTGTAAGTATGCACTGAGCTCTGACTGTGACCT
AAGAACAAAATGTAACCTGCAATTAGAACCATGAAAATAGATATTGTTGTAAGTCTTGTGACT
GTAATATAGAACCATGAAATTCTGGTCACTTCCATTCTCCTAACATGAGGATCAAAATGTTT
CAATGTTCTTGTGTTCACTGGAAACTTAGTGACTCATGAGTTAGCTGATTTGGTCACCTCTG
CTTGTGTTCACTGTGAGTTGTCATGTCAGTGACTTAGCTAGGCTAACAGCTCACGCCCTAGTTGAAACA
GATTCTCCACGGTGGTCCCCAAACACTGTCTGCAATCCATAGAACATTGAGCGCTATGGGTGTTAACGT
GCATGAGGATCAGTTGCACTGGCAGCAAGTACAAAAGGAGAACATCCGTTGAATGAGTGTGTTTG
TACATAACTTCAGAATCTGTGAACTGCTTATATTGTCACCAACTGTGAGAACATTTCT

Human TTC3 mRNA sequence - var2 (public gi: 1632765) (SEQ ID NO: 203)
TACATTTGAAAGCTTACTGACATGCAGAAATAGTACAGAAAAACATAAAATAGGAATGTTATTGGCT
GGGCATGGTGGCTCACACCTGTAATCCCAGCACTTGGGAGGCCAAGGCGGGTGGATCAAAGGTCAAGGA
GATCGAGACCATCGGCTAACATGGTAAACCCCTGTGCTACTAAAAATTCAAAAATTAGCCAGGTGT
ACTGGCATGTGCTGTAATCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCACTTGAACCCGGGAGCAA
GGTTGCAGTGAGCCAAGATCACGCCACTGCACTCCAGCCTGGCGACAGAGCGAGACTCTGTCTCAAAA
AAACAAAAGAATGCTATGCATAGGTACAATGTCGAAATGTCGAAGAAATACTTCAGAAATATTAAAAGTA
GTTATTCCCTGGGTAGTTGTGATTGTGACTCTGGGTGACTTTTCCCTTGTTTATTTCCTGTATTTC
CAAATTCCTATAATGGACATATAATATGGATTTTTTAATAAAATTATCTTTGACTAGATAATA

Figure 36 part - 123

TACATGGAAAATTCAACAAAGTACACATATGCAAGATATAACTTTACTATAAAAGAGTGAAAATTTT
AAATACTTGTTCCTTTAGAAATGCACTCGGTGATGGAAAGAGGCCACTATTCTGAAGAACACTTG
GCCAAAGGGTCATTATCGTATTGTGATGCTCTTCTATGCTGGGGAAATATGACTGGCCCTGCAAGCA
AACATAAAAGCTAAAAACTCTGTAAAATGACCCGTAGGGAAATCAAGGATCTAATTCAAGCAGCATGTAA
AGTTACAAAACAAATAGAAGACCTACAAGGTGCAACAGCAAATAAGGATCCAATTAAAGCCTTTATGA
AACACGGGCCTACACACCTAGGAGTTATCAGCACCTATAATTACTACTTCACTTAACCTTGTGGAGAAG
GAAAGAGATTTAGAAGAAATTAATCACGAAATGGCCAACGGTGGTAATCAGAATCTAAAGGTGGCGGATG
AGGCGTTGAAGGTAGATGATGTGACTGTCATCCGAAATTTCACCACCATCAAGTCAGCCTCCAAAACA
TAAAGGAAAACAAATCTCGAAACAATGAATCAGAAAAGTTCAGTTCAAGTCTAGTTACCCATTGACTTACCA
GCAGATTGAGAACATCTGGAGAACAGTTCTAAATCTCCAGAGCTGCACACCCAGGATTGCTA
ATATAATGAAAATGCTGAGAAGCTTAATTCAAGATGGCTATATGGCCTTATTGGACCGCGTTGCCAG
CGCTGCACAGGCCCTTACAGAGTGTGCAACGGTTAGATCCTCAAAAATAAGCAATTGAACCTGGCC
ATGATTAACATATGTTGGTCGTATGGACTTGCCTATTCTCTCCTGGAAATAGGACAGCCTGAGGAAT
TATCTGAAGCCGAAAACCAGTTAACAGGATTATTGAACACTACCCAGTGGGGCTTGATTGCTTGGC
CTACTGTGGAATTGAAAAGTGTATTGAAAAAAACAGATTCTAGAAGCTCTCAATCACTTTGAGAAA
GCAAGAACCTGATTTATCGTCTCCTGGAGTGTAACTTGGCCCACGAGTAATGTGATTATTGAAGAGT
CTCAGCCACAAAAATAAAAGATGCTTAGAGAAATTGTTGAAGAATGCAAGTCCCTCCAGTGGCAGA
TGCCATTGTTGCTATCAGAAGTGCCTAGGATAATTCTAAGATCCAGATATACTAACTGATCCAGACTT
AAGGTTTATACGCATCAGCTGTTGCAGTACTGTTAACAGATTTCACATGAATTGCTGAGAACAGT
TAAAACACTACAACCTTTAATGATAAAATTGACAAGGATTCTACAGGAAATATGCTTACCCCTGACTG
TGAAGGTGTCAATTCTAAGATTATCATCTCAGCAGTGGTGGTAAGGTTAAATGTGAATTGAAACACAAG
GTCATAAAAGAAAAGGTTCTCCAAGACCTATTCTGAAACAGAAATGTTCTAGCCTAGAGAAAACTAAGAC
TGAAGAACAGACAAAAATTGAGAGAACAGATCCAAAAAAAGAACGAAAAAGTTAGCACAAGAACAGAAT
GGAGGAGACTTAAGAGAACAGTAATCCACCCAAAAATGAAGAGCAGAAAGAAACTGTAGACAATGTTAG
CGTTGTCAGTTCTTGATGACAGAAATTCTACAGTGTATAAGCAGTATGCTGACAAGATTAAATCCGGCA
TACAGAATACAGCCATGCTCTCAAAGAATTGCTTCTGGAAAGTTTGGACACAGAACACTATACAAC
CTGTTTCTAGCAGAAATTCTAAATGAAGCAGTGGACTATGTTATTGCCACTTGATTCAAGAAAAT
AACAGAGTAAAGACAAGAATATTCTGCATGTTTGAGTGAGCTTAAAGAAGTGGAGCCAAATTAGCCG
CCTGGATCCAAAACCTTAATAGCTTGGCTTAGATGCCACAGAACCTTCTCTGTTATGGAGCATC
TCTTAAACTGCTTGATTTAGTATCATGACTTTCTCTGGAATGAGAAATGGTCACAACAAACTAGACTCT
ATAGAAGGAAAGCAACTTGATTATTCTCTGAGCCAGCATCTGAAAGGAAAGCCGTGTTAAATATGGC
TGCTAGAAGAACAGAGAACAGAACAGAGAACAGATGCTTAGTGGAGCTTAAAGAAGTGGAGCCAAATTAGC
CAGCCGCTGACTGTGTTAAGGAAACAGAGTAGGGTGAAGCAGCTTAAAGAAGTGGAGCCAAATTAGC
AAAAGCAAGAAAAGCAGAACAGGATTCAAAGCCTATGTTAGTTGGGCTGGAACAACCTCAGTAACCT
CAAATAATGAGATCATCACTCAAGTGAAGACCATAGCAATCGAAATTCAAGATTCTGCAGGGCCATTG
AGTGCCTGACCATTCTGGCAAGATGTTAGAAGAACAGCTCTATGACCAACACAGTAACCAATAT
GTTGCTCCCAATAAGAGCTATGGGACATGAACCCAAAACAAAATGTTCAACTCTATATGATTACTTCT
CTCAGTTTGGAGGAACATGGCCCTTGACATGAGTAACAAGATGTTCTCTGCAGAATATGAGTTTT
CCAGAAGAAAACTCGACAGATACTAGAGAAAAGCAGGGAGTTAAAACCTTTCTCTGGGATGCCCTCGT
TTTGTGTTGACAACTGTTAGCAGTGAAGAACGGTTGCATCAGGCTCAAGAAAAAAAGGAAGAAGA
AAAACATTAAAACAAAAGTGAAGAACATTCTAAAGCAGGGAGTATGACGAGTTAAACTACAACAG
TCCAGCTGCTAGGGAAATTAAACAGATGTAACAGCTAAACCCAGTGTGCAATTCTCAGCACCAGCT
TTTCAAAATGTAACCCAAACCTGTGCTGCAAATTCTCCAAAGCCAGTGTGAAAGATGTGAAGGCC
AACCAGTATCCGACAATTCTCTAGACAAGTCTCAGGATGGCAACCCAAAGGGGCTCTCTAATT
TCTTAAACCAAGGCTCTGAGGATGCAAATTACAAGCAGTCTCTGTAAATTCCCCCAAACGGCTTCTGAG
GATGTGAAACCAACTTATTGGCTCAATCCCATTGGTCAGGATACTGTACGTATCTCCTTCCAGA
GATTGATATCACCCAGACACCGCCAGCATAACATAACAGTGTACCGAGGTTGCCAGTACACCAGCAT
ATATACACCTGGCCAGCCTTCTCTGAAATATCAGCTACCAAGATCAGTACAGTGGTGCCGTCTT
GTAGCCAATGACAGAGCAGATAAAATGCTGCTGCCATTGGAGGTGATCTTGAATGCTGAGAATG
TTGCTGGTCACAGATTGCCCTGAAACACAGATCCTTGAGGGCTTTGGAAATATGTAAGTCACA
CTGAGCAGGTGATGCTCATACTGCTGAGTGTAACTGAGAACAGGAAATGAGACTGTGGAAATTCT
AACAAACAAATGTAAGTAATTCCAGAAAGCAGCAGTGCAGTAACAAACATTCCACACGTGCAAGTGGT
CCATACAGGTATCTGGAAACATAATACACCAAGAAGTCATAACTGAGCCATATACTTGGGCTCTT
ACAAGGGAAATTTCACGGATTGAAAAGGAGCAGCAAGTATTACAAGACAACTTCAGAAGTGTATGAA
AATTATGAGCAGATAAAACCTTAAGGGCTTAGAAGAGAACAGGAGCTGGAAGAGAACGTTGAAAAGGCACT
TAGAAGAAAACAAAGATCTCAAAGACGAAATTAGATTGGCTCTCAAGATTGGAAAGAGAACATTAAAAA
ATGGCAACAGGAAAAAAAGAACATCAAGAAAGACTAAATCACTGAAGAACAAAATTAAAGGTTCA
ATTGCCAGTGAATGTTACCCAGAAAATGATGAAAGAACAGTGAATTACATCTGGATCAGT
CCCTTGAATCAGCAACACACTTACAAATGAGAAAATGAAAGAGTATATAAGAACGGAAAGA
GGATTATGAGAGAGTCATCAGAGAGCTGTTGCTGAGGGTATCCGTACTGAAAACCTGGAAGGAGAGT
GAAGTGTATAAGCTACAGATCATGGAGTCACAAGCAGAACGCCCTCTGAAGAACGCTGGGCTGATTAGCC
GTGATCCTGCAGCATCTGACATGGAGTCAGTATGGAAATTGTTCTTCTAATGTTAC
AAAAGAAATTGAGAACAGCAAAGTCTCAGTTGAAGAACAAATTAGGAAATTGGTTCTCGGCTC

Figure 36 part - 124

PCT/US04/06308

AGTGAACCTTCTAAAGTCAGATTCTGAGCTTCATTCCTGCCTGTAAACACGGTTCATCCCGAGTTAC
TCCCTGAGTCTCAGGCCACCGATGGCAAGGGCTTGACTCTGCAAGCGACGTGACTGGAAACCACGC
AGCACTTCACAGGGATCCTAGTGTCTCTGCTGGTGAATTCCCAGGGGAGGCTCCTCTGCGCTGTTG
CCAGGGCCACCCCTGGTCAGCCTGAAGCCACTCAGCTGACAGGGCCAAAACGGGCTGGCCAGGAGCTC
TGTCAAGAAGCCCTGTGGTGAAGCAGCCTGTCAGGACGTGCTGGCGTTCAAGCCA
GTCTCCAAAAAGCCGTTCAATAGTATTATTGAGCACCTGTCAGTGGTATTCCATGTTACAACAGCACT
GAGCTTGCTGGTTTATTAAAAAGTGCAGAAGCAAAACAAGAACACTCTCAGGATTGAGTATTGATG
AAATTGTCCAAGAGTACAGAACACATTCTAGATGAACAGAAAAAGAAAAGCCAAACCCAGGAAAGGA
CAAGAGGACTTATGAGGCCAGCTGCAACCCCCCTGACCAGTCCCTCCCAGGGCTCACCCCTGGTGGTT
GTTGACCCATCACCCAAAAAGGGGAGGGGAGGAGATGCTGGTGAAGGATTGCACTGGGTGCA
GTTCTGTGAAATATGCCACGGGTTCAAATCAAAACAGTGCCTGTGCTCAAATGTGGCACAGTA
TCACAAAGGGTGTAAAGCAGTGGCTAAAGGGCAGAGCCTGCCCCGGCTGCCAGGGTGTGATCTC
CTGACAGAAGAGTACACCTCTGGAAGAGGCTGGCCAGTCAGAATCAGGAGCTGCCCTCTGCTCTCTA
GGTAGTCACACTCACTAAAGTGTCAATCCACCAAGTGTGAATCCGAAGAACATGACAATTCTACCACT
GGTAGTAAAAACAAACATTGAAAGACCTTGTGCAATTGTGTGACAAAGCTAAATACATGGAAATCGTT
AATATCGCTGATATTAAAGTAATTCCCCACTCTGAGTGAATACATTGATGATTGCCAACAGTGGCTAATA
AAATGACGGCTACCACACTCATGGGTCACTGGGGCTGCGCAGGGCTTTGAGGTGGCTTCTTTG
GAAAGTACTATGAACGTCAGCAGTATTCTAGTGAATAAGAATTCTAACATAGCCAAGGCCACG
TTTGTCCCCACGTTGTCCCCCTTTCTGTTGAAAACCTGTTCTGGTAGCTCCACAAGAGAGATGAT
ACTGACTTTTAAATTTCAGAAGAGTCTGATTCCTGATATGCCCTATATTTCCTCAAAGATTCTGC
ATTTTAAGGATGGGCATAAGCAAACATATTTAAATTATAGTTAATGTTAAAATATTGGCTGATTT
AGACCAAAAGATCAAATCTCTCTTGTGAAATCCCCTGCAATTGCAATTGATTTTATTTATGTTCC
CCCCTGAGATTGTTAAGTGTGCTTCTCATCTTTAGATGTAATCTGATTTCCTCAAAGATTCTAA
CACTTTAATTAGTATCGACTAAGACTTTCCCCCTGGAATCGAGGCTGTGTCGTCACTCCAGCC
CCCGTTGGAGGCTGCTTTGAACTCGCTGCCCTCTAGCAGCTTGTCTCTGTGAGTCAGT
CAGCAGTGTGCTGGGATCCGCACTCCAGCCGTGCTGAGCACACAACAGGCTGTGTGAAATGGCACCA
CCATTCTCCTCCCCACCCACCAAAAGAGAACAGCTGTGCTTAGACAACCCCTGAGGTATGTGTT
ACAATCGTTCTGTGTTGATATTGTGAAAGTATGCATGCAGCTTGTACTGTGACCTAACAGAACAAAC
TGTAACTGCATTAGAAACCATGAAAAAATTAGATATTGTTGTGACTTTAGACAGTGGTAAATAGA
ACCATGAATTCTGGTCACATTCCATTCTCTCCAAACATGAAGGATCAAAATGTTCAATGTGTTCT
TTGTCCACTGGAAACTTAGAGTCATGAGTTATGAGCTGATTGGTCACCTCTCTGCTTTGTTCAC
TGTGAGTCTGATGTCTTAGTGAATTAGCTTCTAGAACGCTACGCCCTAGTTGAAACAGATTCTCCACG
GTGGTCCCCAAACACTGTCGATATCCATAAGAATTGAGGCTATGGGTGTTAACGTGCATGAGGATC
AGTTGCAAGCAGCAAGTACAAAAGGAGAACATCGTGAATGAGTGTGTTGTACATAACTTC
AGATACTGTGAACATGCCATTATTGTGCAACACTGTCAAGAACATCTAAATGAG

Human TTC3 mRNA sequence - var3 (public gi: 1632763) (SEQ ID NO: 204)

CTGAACTAGTTGCCAGTGTATCTGAAACGTCAGTAACCAAGAGATAAAAGGGTACAATGACAGGAAA
ATTAGATGTAGTAAAGAGAGTGTGTTGAGAGCAGAAGCTATGCCACTAAAGACTGGATTGAACTCTTC
CTAGCTGGTGCATGAGCAAATTACTTGATTTAAGTGTGAGCATTTCCTCATCTGTCAGTGGAGATAACG
ATAATTGTGCCCTGCTAAGAAGAATTGCTGTGAAGAATTAGTAAATGCACTGAAACATTTGGTACAG
TATGTGACACATAGTACAATAGTTGCTAGGAAGATTGTTATTCTTCACCTGTGATATTGTGAAAGT
TTTCATACAGCAAATTGGACATCATGAGATGGATTGATTAAATAATAGATTGAACTTCAAGGACTGGT
AGTGGTCTGCTTGAAAGAAGAAACTTGGTTATCTTAATAATAGTAGGATAATAATGGTGAAGTGT
AGGTACAAGTAATAGTGTATGATGCGCTGGTGTGATAGGAAAAGAACCTTATATGGCAAGAGC
TAGAAAGTAATAATGGTGCATTTCAGTGTGATTTGGCCTATGTAGCTATTCTCTGATAACTATAAAA
ATCCTTATTATTGAAGATTCTCAGGAAAAAAACCCCTAGTGTGAAACTTTAGCACCACCCCTTG
CCCCCATTGAAGAACATGTATTAAACATGGCTTTGATAATGTGAGGTTTTTCTTGGATT
TAGCAGTGTGATTGCTATTGCACTAGTGTGAGGCACTTAAAGCAGCAGTCGATAGGAGGATGGAAG
GTCTGGATGCCCTGGGGAGTTAGGAGATTGGCAGACTTACCCCTGTACACTCTAGCCCTACTCCTT
GCCCAAGACAGAACACACTGAGATGGGATAGGAGAATATGAGCAGTTGATAGGAAAGTTCTCAGTGGAGT
CAGGATTAGGTTAGGCCAGGAGATTGAGAATATAACAGTTGTGATGTGAAATGGCATATTTCACAG
AATGCAAGTAAAGCAGGTAGGGTACAAGTGCAGCAACAGGAAGATGTCTTTCTCATCAGCAAACACT
TATTGAGAGCTTACCATGTGCTAGGCACATACAAAGATAAAAGATGCCCTGATGATCCTCTATTAA
AAGGAGACATGAAACAGGTTACTTAGAGTAGAGATGGTGAATATGTGAACCTGAGGAAAGGAAGAAAT
AGATTAATTATCTGGAGAGAGAGGAAAGTCAGCAGAACATGGGAGGAAATCTTCCGAGCTCAGTGT
CTGATAGGAGTTATTCCTGGGATAGGTTCAAGTATTCTTAATATACCATAGAACGCCAGGAAAAC
TTTCTCTGTTATCTCAAATGATTAAATTACTGACATTGAGTTGTGTTCTCCCTAGACTTGTGCACCA
TGGACAATTGGTGCAGGGAGATTCACTGTGGCCGATTATGCCCTGTTAGAAGATTGCCCTCACGTGGA
TGATTGTGCTTGTGCTGCAATTATGAGCAATGATTATGTCGTGACTCAGCTTACTGTGATGGG
GTGGGTGTGCAATATAAGATTATCCAAGTGTGAGGAGATTGAAATTGACATCTGCAGTATATGGT
GTAGTAAACCAATTCTGCTGCAAGATTGCGATGCCATTAAATAACATCTCTGCCACTTCT
GTTCAACATCAAACAGTCCGTAATACAGCATTGCACTCCCTGTGGACGCCAACATTACGTGCT

Figure 36 part - 125

TCTGAGATAAATTGAAGAAACTACAACATCTTGAGTTGATGGAAGATATTGGGATTGGCAAGAAAAG
 TTGCTAATGATTCACTTCTTATTGGAGGCTTATTGAGAATTGGTGTAAAATAGAAAATAAAATCTTGGC
 AATGGAAGAAGCTCTGAATTGGATAAAATATGCAGGCGATGTAACAATTCTAACTAAATTAGGATCAATT
 GACAATTGGTGGCTATGTTAAGTATTCTTACTGAATGAGGAGAACATAATGAAAATGAAAGGAAAT
 GAAGAGTTTCCAAGAAGATTTGATATAGCTTATCTTATTACACCAGAGCCATTGAATATAGACCTG
 AAAACTACCTCTTATGGTAACCGAGCTTTCTTCTCGTACTGGACAGTTAGAAATGCACTCG
 TGATGGAAAGAGAGGACACTATTCTGAAGAACACTGGCCAAGGGTCATTATCGTTATTGTGATGCTCTT
 TCTATGCTGGGAAATGATGACTGGGCCCTGAAGCAAACATAAAAGCTCAAAACTCTGAAAAATGACC
 CTGAGGAATCAAGGATCTAATTAGCAGCATGTAAGTTACAAAACAAATAGAAGACCTACAAGGTCG
 AACAGCAAATAAGGATCCAATTAAAGCCTTTATGAAAACAGGGCTCACACCTAGGAGTTATCAGCA
 CCTATATTACTACTCACTTAACCTTGTGGAGAAGGAAAGAGATTTGAGAAAATTAAATCACGAAATGG
 CCAACGGTGGTAATCAGAATCTAAAGGTGGCGGTGAGGCGTGTGAAGGTAGATGATTGTACTGTCATCC
 TGAATTTCACCAACCATCAAGTCAGCCTCAAACATAAAAGGAAACAAAATCTGAAACAATGAATCA
 GAAAAGTTCAAGTCTAGTTACCAATTGACTTACAGCAGATTGAAGAACATCTTGAGAAAACAGTTT
 CTAATCTCCAGAGCTCACACCGAGTTGCTAATATAATGAAAATGCTGAGAAGCTTAATTCAAGA
 TGGCTATATGGCTTATTGGAGCAGCGTGCAGCGTGCACAGGCCCTTACAGAGTTGCTGAAACGGT
 TTAGATCCTCAAAAATAAGCAATTGAACTGGCCATGATTAACCTATGTTTGGTGTCTATGGACTTG
 CCATTTCTCTCTGGAAATAGGACAGCCTGAGGAATTATCTGAAGCGGAAACCCAGTTAACAGGATTAT
 TGAACACTACCCCAGTGAGGGCTTGTGATTGCTTGCCACTTGGAATTGGAAAAGTGTATTGAAAAAA
 AACAGATTCTAGAAGGCTCACTTCAACTTGAGAAAAGCAAGAACCTTGATTTATCGTCTCCTGAGTGT
 TAACCTGGGCCACGAGTAATGTGATTATTGAAGAGTCTCAGGCCACAAAATAAGATGCTGTTAGAGAA
 ATTTGTTGAAGAATGCAAGTCCCTCCAGTGCAGTGCCTATTGTTGCTATCAGAACATGCCCCATGGATAT
 TCTAAGATCCAGATATACTAACATGACTTAAAGGGTTTATACGCATCAGCTGTTGCCAGTACT
 GTAAAATAGAATTTCACATGAATTGCTGGAAGAAGTTAAAACACTACAACCTTAATGATAAAATGACAA
 CGATTTTCTACAAGGAATATGCTTACCCCTGACTGTGAAGGTGTATTCTAAGATTATCATCTTCAGC
 ACTGGTGGTGAAGTTAAATGTGAATTGAAACACAAGGTCAAAAGGTTCCCTCAAGACCTTAC
 TGAAACAGAAATGTTCTAGCCTAGAGAAACTAAGACTGAAAGAACAAAATTGAAGAGAACAGATCCA
 AAAAGAACAGAAAAAGTTAGCACAAGAAAGATGGAGGAGACTTAAGAGAAAGTAATCCACCCAAA
 AATGAAGAGCAGAAAGAAACTGTAGACAAATGTTCAAGCTTAAATCCGGCATACAGAAATACAGCTTCA
 GTATAAGCAGTATGCTGACAAGATTAAATCCGGCATACAGAAATACAGCCATGCTTCTCAAAGAATTGCT
 TTCTGGAAAGTTTGAGGACTATACAAACCTGTTTAGCAGGAAAGTGTGTTAGCAGAAATTCTAAATGAAGCA
 GTGACTATGTTATTGCCACTTGATTCAAGAAAATAACAGAGTAAAGACAAGAAATTCTGATGTT
 TGAGTGAGCTTAAAGAAGTGGAGCCAAATTAGCCGCTGGATCCAAAACCTTAATAGCTTGGCTTAGA
 TGCCACAGGAACCTTCTTCTGTTATGGAGCATCTTAAACTGCTTGTGTTAGTATCATGACTTTC
 CTCTGGAAATGAGAAATATGGTCAACAAACTAGACTCTATAGAAGGAAAGCAACTTGATTATTCTGAGC
 CAGCATCATTGAAGGAAGCCGTTGTTAATATGGCTGCTAGAAGAACACAGAGACAAGTCCAGCATT
 GCATAGTGCTTATGAAATTCTTGATATAATGGACAGCCGCTGTACTGTGTTAAGGAAACAAGATAGT
 GGTGAAGCACCCTTACTGTTCAACCAAGGTGAAAACAAAAGCAAGAAAAGGCAAAAGGATTCAAAGC
 CTATGTTAGTGGCTGAGCAACTTCAGTAACCTCAAAATAATGAGATCATCAGCTCAAGTGAAAGACCA
 TAGAACATGAAATTCAAGATTCTGCAAGGCCATTGCAAGTGCTGACCCTTCCGGCAAGATGTTAGAAC
 TTCGAAGCTCTATGACCAACACAGTAACGAATTGTCGGCAATAAGAACATGGGACATGAACC
 CAAAACAAAATGTTCAACTCTATGATTACTCTCTGCTCAGTTTGGAGGAACATGGTCCCTGGACAT
 GAGTAACAAAGATGTTCTCTGAGAATATGAGTTTCCCAGAAAGAAAACCTGACAGATACTAGAAAAGCA
 GGAGGTTAAAACCTTCTCTGGGATGCCCTGTTGTGATTGACAACCTGATTGCAACTGAGAACAGA
 AGTTGCACTACGGCTCAAGAAAAAGGAAGAACAAAACATTAAAACAAAAGTAGAACAGAAATTCAA
 AGCAGGGAGTATGTACGAGTTAAACTACAACGTAATCCAGCTGCTAGGGAAATTAAACAGATGAAAG
 TCTAAACCTGTCAGATTCTCAGCACCAGCTTGTGAAACCTGAGGCAACCTGCTGAGTGTGCAA
 ATTCTCCAAGCCAGCTTGTAAGATGTGAAGGCCAACCGATATCCGACAATTCTCTAGACAAGTTTC
 TGAGGATGGCAACCCAAAGGGTCTTCTAATTCTCTAAACCAGGCTGAGGATGCAAATTACAAG
 CGAGTCTCTGTAATTCCCCAACCGGTTCTGAGGATGTAACAGCACTTATTGGCTCAATCCCATT
 TGGTCACAGGATACTGTACGTATCTTCTTCCAGAGATTGATATCACCCAGACACCGCCAGCATA
 AACAGTGTACCGAGTTGGCCCTCAGTACACCCAGCATATACACCCCTGGCCAGCCTTCTCTGA
 CAGCTACCAAGATCAGTACCCAGTGGTGCCTCTTGTAGCAATGACAGAGCACAGATAAAAATGCTGCTG
 CCTATTGAGGGCTTCTGGAAATATGTTGAAGTCAACTGTCAGCACAGGTGATGCTCATACAGTCTGAGT
 GAGTCTAACAGAAATGATGAGCACTGTGAAATTCTAACACAAATGTAAGTAACTCCAGAAAGCACCA
 GTGCAAGTACAAACATTCCACACGTGCAAGATGGTGCCTACAGGTATCTGGAAACATAATACACCAAGA
 AGTCATAACTGAGCCATATAATCCTTTGAGGAACGACAAGGGAAATTTCACGGATTGAAAAGGAGCAC
 CAAGTATTACAAGACCAACTCAAGAAGTGTGAAATTATGAGCAGATAAAACTTAAGGGCTTAGAAG
 AGACCAAGGGACCTGGAAGAGAACAGTGTGAAAGAGAACAGACTAGAACAGAACAGATCTAACAG
 TTGGTCTTCAAGATTGGAAAGAGAACATTAAAAATGGCAACAGGAAAAAAAGAAATCCAAGAACAGA
 CTAACACTGAAGAACAAATTAAAAGGTTCAAAATGCCAGTGAACATGATAACCCAGAAAATGATG
 GAAAGGAAAGGAACATGAATTACATCTGGATCAGTCCCTGAAATCAGAACACACTTACAAATGAGAA

Figure 36 part - 126

AATGAAAATAGAAGAGTATATAAGAAAGGGAAAGAGGATTATGAAGAGAGTCATCAGAGAGCTGTGGCT
 GCAGAGGTATCCGACTTGAAAAGTGGAAAGGAGAGTGAAGTGTATAAGCTACAGATCATGGAGTCACAAG
 CAGAACCTTCTGAAGAAGCTGGGCTGATTAGCCGTGATCCTGCAGCATATCCTGACATGGAGTC
 TATACTGTTCATGGAAATTGTTCTTCTAATGTTACAAAAGAAATTGAGAAAGCAAAGTCTCAGTTGAA
 GAACAAATTAAAGCAATTAAAATGGTCTCGGCTAGTGAACCTTCTAAAGTGCAGATTCTGAGCTTT
 CATTCTGCCTGTAACACGGTTCATCCGAGTTACTCCCTGAGCTTCAGGCCACGATGGCCAAGGGCT
 TGTGACTCTGCAAGCGACGTGACTGGAAACACGCCAGCAGCACTTCACAGGGATCTAGTGTCTGCT
 GGTGATTCCCCAGGGCAGGCTCCCTGCGCTGTCAGGCCACCCCTGGTCAGCTGAAGCCACTC
 AGCTGACAGGCCAAAACGGCTGGCCAGGCGACTCTGTCAGAACGAAGCCGTGAGCTGATCGGAAGCA
 GCCTGTTCTCCAGGACGTCGCGCTCAAGCCAGTCTCCAAAAAGCCGTTCAATAGTATTATTGAG
 CACCTGTCAGTGTATTCCCAGTCAACACAGCACTGAGCTGCTGGTTTATTAAAAAGTGCAGAAGCA
 AAAAACAGAAACTCACTCAGGATTGAGTATTGATGAAATTGTCAGGAAAGAGTGCAGAACACATTCTAGA
 TGAACAGAAAAAGCCAACCCAGGAAAGGACAAGAGGACTTATGAGGCCAGCTCTGCCACCC
 GTGACCAGGTCTCCAGGGCTCACCTCGGTGGTTGACCCATACCCAAAACCAAGGGCAGAAAG
 CAGAACATGTCCTGTGAGGATTGCACTGGGTGCAAGTCTGTGAAATATGCCACGAGGTGTTCAAATC
 AAAAACGTCGCTGTGCTCAAATGTCGGCACAAGTATCACAAAGGGTGTAAAGCAGTGGCTTAAAGGG
 CAGAGCGCTTGCCCCGGCTGCCAGGGCTGTGATCTCTGACAGAACAGTCACTTCTGGAAGAGGCTGGC
 CCAGTCAGAATCAGGAGCTGCCCTCTGCTCTTAGTACTCACACTCAAAAGTGTCACTCCACAG
 TGTGTTGAATCGAAGAATGACAATTCTACCACTGGTGTAAAAAACACATTGAAAGACCCCTGTC
 ATTGTTGTCACAAAGCTAAATACATGAAATCGTTAATATCGCTGATATTAAAGTAATTCTCCACTCTG
 AGTGAATACTTTGATGATTGCCAACAGTGGCTAAATAAAATGACGGCTACCAACTCATGGTCACTGGG
 CTGCGCAGGGCTTTGAGGTGGGCTCTTTGGAAAGTACTATGACGTCTGAAAGCAGTATTCTA
 GTGATAAGAATTCTTAACATAGCCAAGGCCAACAGCTTGTGTTCCCACGTTGTTCTCCCTTCTGTTG
 AAAAACCTGTTCTGGTAGCTTCAAGAGAGATGATACTGACTTTTAAATTCTACAAGAGTCTGTAT
 TCCTGATATGCCTATATTCTCTCAAAGATTCTGCACTTTAAGGATGGGCTAAAGCAAACATATTCTA
 ATAATTATAGTTAATGTTAAATATTGGCTGATTAGACCAAAAGATTCAAATCTCTTGTGAAAT
 CCCATCTGCATTGATTCTGTTTATGTTCTGTTAGATTGTTAAAGTGTGTTCTAC
 TTTTATAGATGAACTGATTCTCAAAATCATTAAACACTTTTAAATTAGTATGACTAAGACTTTCC
 CCCTGGAATCGAGGCTGTGTCCTGTCATCCCAGCCCCGGTTGGAGCCTGCTTTGAAACTCCGCTGCC
 TTCCCTAGCAGCTCTGCTCTCTGTGAGTCAGCAGCGAGTGTGCTGGGATCCGACATCCAGCCGTGCT
 GAGCACACAACAGGCTGTGTTGGAAATGCCACCAACCAATTCTCTTCCCACCCACCAAAAGAGA
 AGCTGTTGCTTTAGACAACCCCTGAGGATCTGTTGAACTCCTGTTGTTGATATTGTTGAAAGTA
 TGCACTGAGCTCTGACTGTGACCTAAAGAACAAAACGTTGAACTGCACTTAAAGGATGAACTCCATTCTC
 ATTGTTGACTTTAGACAGTGGTAAATGAAACCATGAAATTCTGGTACATTCCATTCTC
 ACATGAAGGATCAAAATGTTTCAATGTTCTGTTCACTGTGAGTTCTGATGTTGACTGAGTTAT
 GAGCTGATTGGTCACCTCTGCTGCTTGTGACTGTGAGTTCTGATGTTGACTGAGTTCTA
 GAAGCTACGCCCTAGTTGAAACAGATTCTCACCGTGGCTCCAAAACACTGTCTGCATATCCATAAG
 AATTGAGCGCTATGGGTGTTAACGTGCACTGAGGATCAGTTGCAAGCAGCAAGTACAAAAGGAGAAGAGGA
 ACATCCGTTGAATGAGTGTGTTGACATAACTCAGATACTTGTGAACATGCCATTATTGTCAC
 AACTGTCAGAATAAAAGAACACATTCTAAATGAG

Human TTC3 mRNA sequence - var4 (public gi: 1632761) (SEQ ID NO: 205)
 CTGAACTAGTGTGCCAGTGATCTTGAAACGTGACAGTAACCAAGAGATAAATAGGTGACAATGACAGGAAA
 ATTAGATGTTAGTAAAGAGAGTGTGTTGAGAGCAGAACAGCTATGCCAACTAAAGACTGGGATTGAAATCCTTC
 CTAGCTGGTGCACATGAGCAAATTACTTGATTTAAGTGAGCATTTCCCATCTGTCAGTGGAGATAACG
 ATAATTGTCCTGCTAAGAAGAATTGCTGTGAAAGATTAGTGAAGATAATGCTGAAACATTTGGTACAG
 TATGTGACACATAGTACAATAGTTGCTAGGAAGATTGTTATTATTCTCTGTCAGTGGTGTGATATTGTAAGT
 TTTCTACAGCAAATTGGACATCATGAGATGGATTGATTAAATAAATAGATTGAACTTCAAGGACTGGT
 AGTGTCTTGCTTGGAAAAGAGAAAACCTGGTTATCTCTAATTAAGTAGGATAATAATGGTGAAGTGT
 AGGTACAAGTAATAGTGTGTTATGATGCCCTGGTGTGATAGGAAAAGAACGCTTATGTCAGTATTCTG
 TAGAAGTAATAAAATGGTGCTATTCTGCTGTTGGCCTATGTCAGTGTGTTGACTGAAACTTAC
 ATCCTTATTATGAAAGATTCTCAGGAAAAAAACCTTAGTCTGAAACTTAC
 TAGCAGTGTGTTGAGGCTTGTGTTGAGGCTTGTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTT
 TAGCAGTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTT
 GTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTT
 GTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTT
 GCCCAAGACAGAAACACACTGAGATGGATAGGAGAAATGAGCAGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTT
 CAGGATTAGGTAGGCCAGGAGATTGAGAATATAACAGTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTTGAGGCTTGTGTT
 AATGCACTGAAAGCAGGTAGGGTACAAGTGCAGCAACAGGAAGAGTGTCTTCTCATTCTGCAACACACT
 TATTGAGAGCTTACCATGTCAGGACACATACAAAGATAATAAGATGCCCTTGATGATCCTCTATT
 AAGGAGACATGTAACACGGTTAACTTAGAGTAGGAGATGGTGAATATGTAACCTGAGGAAAAGGAAGAAAT
 AGATTAATTATCTGGAGAGAGAGGAAAAGTCAAGCAAGTGGGACGAGAACTTCTGGAGCTCAGTGT
 CTGATAGGAGTTATTCTGGCATAGGTTCAAGTATTCTAATATACCATAGAACGCCAGGAAAC
 TTTCTCTGTTATCTCAAATGATTAACTGACTTGAGTTGTTGTCCTTAGACTTGTGCACCA

Figure 36 part - 127

TGGACAATTGTGCTGAGGGAGTTCACTGTGGCGATTATGCCCTGTTAGAAGATTGCCCTACGTGG
 TGATTGTGCTTGCTGTAATTATGAGCAATGATTATGTCGTGACTCAGCTTACTGTGATGG
 GTGGGTGTGCAATAAAGATTATCCTAAAGTGAAGGAAATTGGAATTGACATCTGCAGTATATGG
 TAGTAAACCAATTCTGCTCTGCAAGATTATTGCGATGCCATTAAAACATCTCTGCCACTTCT
 GTTCAACATCAAACAGTCCGTAATATCACGATGCACTCCCTGTGGACGCCAACATTACGTGCT
 TCTGAGATAAATTGAAGAACTACAAACATCTGAGATTGATGAAAGATATTGGATTGGAAAGAAAG
 TTGCTAATGATTGATCATTCTTATTGGAGGCTTATTGAGAATTGTTGAAATAGAAAATAAATCTTGG
 AATGGAAGAAGCTCTGAAATTGGATAAAATGCAAGGCGATGTAACAATTCTAACTAAATTAGGATCAATT
 GACAATTGTCGCTATGTTAAGTATTCTTACTGAATACAAGTACCCACATAACTAAATTGTAATGG
 AAGACTGCAATTGCTGAGAACTTAAACTCAAAGTGTATGGATTGTAGAGGAAGGAGAACTAAT
 GAAAATGAAAGGAATGAAGAGTTTCCAAGAAAGATTGATATAGCTATTATCTATTACACCAGGCC
 ATTGAATATAGACCTGAAAATACCTCTTATGTAACCGAGCTTTGTTTCTCGTACTGGACAGT
 TAGGAAATGCACTCGGTATGGAAAGAGAGGCCACTATTCTGAAGAACACTTGGCAAAGGGTCAATTATCG
 TTATTGTGATGCTCTTCTATGCTGGGGAAATATGACTGGCCCTGCAAGCAAACATAAAAGCTCAAAA
 CTCTGAAAAATGACCCGTAGGGAAATCAAGGATCTAATTCAAGCAGCATGTAAGTACAAAACAATAG
 AAGACCTACAAGGTCGAACAGCAAATAAGGATCCAATTAAAGCCTTTATGAAACAGGGCTCACACACC
 TAGGAGTTTATCAGCACCTATATTACTACTTCACTTAACCTGTTGAGGAAAGGAGATTTCAGAAAA
 ATTAATCACGAAATGCCAACGGTGGTAATCAGAACTTAAAGGTGGGGATGAGGCGTTGAAGGTAGATG
 ATTGTGACTGTCATCTGAAATTTCACCCACATCAAGTCAGCCTCCAAAACATAAAAGAAAACAATC
 TCGAAACAATGAATCAGAAAAGTTCAGTTCTAGTTCACCATGACTTACCCAGCAGATTGAGAACACATC
 TTGGAGAAACAGTTTCTAAATCTTCCAGAGCTGCACACCAGGATTGCTTAATATAATGAAATGCTGA
 GAAGCTTAATCAAGATGGTATATGCCCTATTGGAGCAGCGTTGCCAGCGCTGCACAGGCCCTTAC
 AGAGTTGCTGAACGGTTAGATCTCCTAAAAATAAAGCAATTGAAACCTGCCATGATTAACATATGTTTG
 GTCGCTATGGACTTGCCTTCTCTGGAAATTGGACAGCCGTAGGAATTATCTGAAGGCCAAAACC
 AGTTAACAGGATTATTGAAACACTACCCCAGTGAAGGCCCTGATTGCTTGGCTACTGTGGAAITGGAAA
 AGTGTATTGAAAAAAACAGATTCTAGAAGCTCTCAATCATTGAGAAAGCAAGAACCTTGATTAT
 CGTCTCTGGAGTGTAACTTGGCCACGAGTAATGTGATTATTGAAAGGTCTCAGCCACAAAAATAA
 AGATGCTTAGAGAAATTGTTGAAGAATGCAAGTCCCTCCAGTGCAGATGCCATTGTTGCTATCA
 GAAGTGCCTGAGTATTCTAAGATCCAGATATACTAACTGATCCAGACTTAAAGGTTTATACGCATC
 AGCTGTTGCCAGTACTGTAATAGAATTTCACATGAAATTGCTGGAGAAGTAAACACTAACCTTTA
 ATGATAAAATTGACAAGGATTCTTCTACAAGGAATATGCTTACCCCTGACTGTGAAGGTGTCAATTCTAA
 GATTATCATCTCAGCAGTGGTGGTAAGTTAAATGTAATTGAAACACAAGGTCAATAAGAAAAGGTT
 CCTCCAAGACCTATTCTGAAACAGAAATTGTTCTAGCCTAGAGAAACTAAGACTGAAAGAACAAAAAT
 TGAAGAGAAAGATCCAAAAAAAGAAGCAAAAGTTAGCACAAGAACATGGAGGAGGACTTAAGAGA
 AAGTAATCCACCAAAATGAAGAGCAGAAAGAACACTGTGAGACAATGTTAGCAGCTGTCAGTTCTGAT
 GACAGAATTCTACAGTGTATAAAGCAGTATGCTGACAAGATTAAATCCGGCATACAGAACCCATGC
 TTCTCAAAGAAATTGCTTCTGGAAAGTTTGAGCACAGAACAGACTATACAACCTGTTTCTAGCAGAAA
 TTTTCTAAATGAAGCAGTGGACTATGTTATTGCCACTTGATTCAAGAAAATAACAGAGTAAAGACAAGA
 ATATTCTGCATGTTTGAGTGAAGCTTAAAGAAGTGGAGGCCAAATTGGCGCTGGATCCAAAAACTTA
 ATAGCTTGGCTTAGATGCCACAGGAACTTCTCTCGTTATGGAGCATCTCTAAACTGCTTGATT
 TAGTATCATGACTTCTGGAATGAGAAATTGGTACAAACTAGACTCTATAGAAGGAAAGCAACCT
 GATTATTCTCTGAGCCAGCATCTGAGGAAAGGCCGTTGTTAATATGGCTGCTAGAAGAACACAGAG
 ACAAGTCCCAGCAGTGCATAGTGCCTAGTGTATTAGATGAAATTCTTCTGATATAATGGACAGCCGCTGACTGTGTT
 AAGGAAACAGATTGGTGAAGCACCCTTAGTTCAACCAAGGTGAAAACAAAAGCAAGAAAAGAAG
 CCAAGGATTCAAAGCTATGTTAGTTGGGTCTGGAACAACTCAGTAACCTCAAATAATGAGATCATCA
 CTCAAGTGAAGACCATAGCAATCGAAATTCAAGATTCTGAGGCCATTGAGTGCCTGACCATCTCG
 GCAAGATGTAAGAATTGCAAGCTCTATGACCAACACAGTAAAGAATTGTTGCTCGCAATAAGAAG
 CTATGGGACATGAACCCAAAACAAAATGTCACACTCTATATGATTACTCTCAGTTTTGGAGGAAC
 ATGGCCCTGGACATGAGTAACAAGATGTTCTGAGAATATGAGTTTCCCAGAAGAACCTCGACA
 GATACTAGAAAAAGCAGGGAGTTAAACCTTTCTCTGGATGCCCTGTTTGTGATTGACAAC
 TGTATTGCACTGAAGAAGGTTGCATCAGGCTCAAGAAAAAAGGAAGAACAAAAACATTAAAACAAAAG
 TAGAAGAAATTCTAAAGCAGGGAGTATGTAAGGACTTAAACTACAACGTAATCCAGCTGCTAGGAAATT
 TAAACCAAGATGTAAGTCTAACCAAGTGTAGATTCTCAGTGTGAGGATGCAAGGCCAAACAGTATCCGACAATT
 AAACCTGTGCTGCAAATTCTGAGGATGGCAACCCAAAGGGCTCTTCTAAATTCTCTAAACCAAGGTCTG
 CTTCTAGACAATTCTGAGGATGGCAACCCAAAGGGCTCTTCTAAATTCTCTAAACCAAGGTCTG
 GGATGCAAATTACAAGCGAGTCTCTGTAATTCTCCCTAAACCGGTTCTGAGGATGTAAGAACCAACTTAT
 TGGGCTCAATCCATTGTCAGGATACTGTAAGTATCTCTTCCAGAGATTGATATCACCCAGA
 CACCGCCAGCATACATAACGTGTTACCAAGGTTGCCAGTACACCAGCATATACACCCCTGGCCAG
 CCTTCTCTGAAATACAGTACCAAGATCAGTACCAAGTGGTGCCTTTGTAGCCAATGACAGAGCA
 GATAAAAATGCTGCTGCCATTGGAGGGCTATGAGGAAATATGTAAGTGTGAGAATGTTGCTGGTCACCAGATTG
 CCTCTGAAACACAGATCCTGAGGGCTTTGGGAAATATGTAAGTCAACTGCAAGCACAGGTGATGC
 TCATACAGTCTGAGTGAAGTCTAACAGAAATGATGAGCACTGTGAGAAATTCTAACACAACAAATGTAAGTA
 ATTCCAGAAAGCACCAGTGCAGTAACAAACATTCCACACGTGCAGATGGTGCCTACAGGTATCTTGG

Figure 36 part - 128

ACATAATACACCAAGAAGTCAATACTGAGCCATATAATCCTTTGAGGAACGACAAGGGAAATTTCACG
 GATTGAAAAGGGACCCAAGTATTACAAGACCAACTCAAGAAGTGTATGAAAATTATGAGCAGATAAAA
 CTTAAGGGCTTAGAAGAGACCAGGGACCTGGAAGAGAAGTGTGAAAGGCACTTGAAGAAAACAAGATCT
 CAAAGACGGAATTAGATTGTTCTCTCAAGATTTGAAAGAGAAATTAAAAAAATGGCAACAGGAAAAAAA
 AGAAATCCAAGAAAGACTAAATCACTGAAGAAGAAAATTAAAAAGGTTCAAATGCAGTGAAATGTAT
 ACCCAGAAAATGATGGAAGGAAAAGCAACATGAATTACATCTGGATCAGTCCTGAAATCAGCAACA
 CACTTACAATGAGAAAATGAAAATAGAAGAGTATATAAGAAAAGGAAAGAGGATTATGAAGAGAGTCA
 TCAGAGAGCTGCGCTGAGGATCTCGTACTTGAAGAAGCTGGGGCTGATTAGCCGTGATCCTGCAGCATATC
 ATCATGGAGTCACAAGCAGAACGGCTTCTGAAGAAGCTGGGGCTGATTAGCCGTGATCCTGCAGCATATC
 CTGACATGGAGCTGTGATATACTGTCATGGAAATTGTTCTTCTAATGTACAAAAGAAATTGAGAAAGC
 AAAGTCTCAGTTGAAGAACAAATTAGCAATTAAAATGGTCTCGGCTCAGTGAACCTTCTAAAGTG
 CAGATTCTGAGCTTCTGACACCGTTCAACACGGTTCATCCGAGTTACTCCCTGAGTCTTCAGGCC
 ACGATGGCCAAGGGCTTGTGACTCTGCAAGCGACGTGACTGGAACACACGCAGCAGTACAGGGATCC
 TAGTGTGTTCTGCTGGTATTCCCCAGGGAGGCTCTGCGCTGTTGCCAGGGCCACCCCTGGT
 CAGCCTGAAGCCACTCAGCTGACAGGGCCAAACGGGCTGGGCCAGGCAGCTGTCAGAACGAAGCCCCTG
 TGGCTGATCGGAAGCAGCCTGTTCTCCAGGACGTGCTGCGCTCAAGCCAGTCTCCTAAAGGCCGTT
 CAATAGTATTATTGAGCACCTGTCAGTGGTATTCCCATGTTACAACAGCAGTGTGAGTCTGCTGGTTTATT
 AAAAAGTGCAGAACAAACAAGAAACTCACTCTCAGGATTGAGTATTGATGAAATTGTCAAAGAGTGA
 CAGAACACATTCTAGATGAACAGAAAAGCCAAACCCAGGAAAGGACAAGAGGACTTATGAGCC
 CAGCTCTGCCACCCCCGTGACCAGGTTCTCCAGGGCTCACCCCTCGGTGTTGCCACCATCACCCAA
 ACCAAGGGGAGAAAGCAGAACAGATGCTCTGTGAGGATTGCACTGGGTGCAAGTCTGTAAGGATTTAA
 ACGAGGTGTTCAAAATAAAAACGTGCGTGTGCTCAATGTGGCACAAGTATCACAAAGGGTGTGTTAA
 GCAGTGGCTTAAGGGCAGAGCCTGCCCCGGCTGCCAGGGTGTGATCTCTGACAGAACAGTCACCT
 TCTGGAAGAGGCTGGCCAGTCAGAATCAGGAGCTGCCCTCTGCTCTTAGGTAGTCACACTCACTA
 AAGTGTCACTCACCAGTGTGTTGAATCCGAAGAATGACAATTCTACACTGGTGTAAAAAACAAACAT
 TTGAAGACCTTGTGCATTGTGTGTCACAAAGCTAAATACATGGAATGTTAATATCGCTGATTTAAAG
 TAATTCCCCACTCTGAGTGAATACTTGTGATTGCCAACAGTGGCTAATAAAATGACGGCTACACAC
 TCATGGGTCACTGGGGCTGCGCAGGGCTTTGAGGTGGCTTCTTGGAAAGTACTATGAACGTC
 TCGAAGCAGTATTCTAGTGTGATAAGAATTCTAACATAGCCAAGCGCCACGTTGTTCCCCACGTTG
 TCCCTTTCTGTTGAAAACCTGTTCTGGTAGCTCCACAAGAGAGATGACTACTGACTTTAAATT
 TTACAAGAGTCGTATTCTGATATGCCATTCTTCTCCTCAAAGATTCTGCAATTAAAGGATGGCATA
 AGCAAACATATAATTAAATTATGTTAATGTTAAAATATTGGCTGATTAGACAAAAGATCAAAT
 CTCCTCTGTAATCCCATCTGCATTGATTTTATAGATGTAATCTGATTCTCAAACACTTTAAATTAGTATC
 GTGTTGCTTTCATCTTTATAGATGTAATCTGATTCTCAAACACTTAAACACTTTAAATTAGTATC
 GACTAAGACTTTCCCCCTGGAATCGAGGCTGTGTCCGTCACTCCAGCCCCGGTTGGAGCCTGCTC
 TTGAACTCCGCTGCCCTCTAGCAGCTCTGCTCTGTGAGTCAGTCAGCGAGTGTGCTGGGATC
 CGCATCCAGCCGTGCTGAGCACACACAGGCTGTGTTGGAAATGCCACCACTCTCTTCCCCACC
 CCACCAAAAGAGAAGAGCTGTTAGACAACCCCTGAGGTATCTGTTACAATCGTTCTGTTG
 ATATTGTAAGAGTATGCATGCAGCTTGACTGTGACCTAAAGAACAAACTGTAACTGCATTAGAAC
 CATGAAAAAAATTAGATATTGTTGTGACTTTAGACAGTGTAAATAGAACCATGAATTCTGGTCAC
 ATTCCATTCTCCAACATGAAGGATCAAAAATGTTCAATGTTCTTCTGTTCACTGGAAACTT
 AGAGTCATGAGTTATGAGCTGATTGGTCACCTCTGCTCTGCTTGTCACTGTGAGTTCTGATGTCTT
 AGTGAATTAGTCTTGAAGAGCTCACGCCCTAGTTGAAACAGATTCTCCACGGTGGCCCCAAACACTG
 TCTGCATATCCATAAGAACATTGAGCGCTATGGGTGTTAACGTGATGAGGATCAGTTGCAAGCAGTA
 CAAAGGAGAAGAGGAACATCCGTTGAATGAGTGTGTTGACATAACTCAGATACTTGTGAAACATGC
 CTTATATTGTCACAACTGTCAGAATAAAAGAACATTCTAAATGAG

Human TTC3 mRNA sequence - var5 (public gi: 2969902) (SEQ ID NO: 206)
 ATATAATGTGAGGGTTTTCTCTTTGCGATTAGCAGTGTGATTGAGCTAGTAGTTGTGAGAG
 CATTAGAACGAGCAGTCGATAGGAGGATGGAAGGTCTGGATGCCCTGGGGAGTTAGGAGATTGGCAG
 ACTTACCTCTGACCACTCTAGCCCTACTCTTGCCTAACAGACAGAAACACACTGAGATGGATAGGAGAAT
 GTGAGCAGTTGATAGGAAAGTTCTCAGTGGAGTCAGGATTAGGTAGGCCAGGAGATTGAGAATATAAC
 AGTTTGTGATGATGAAATGGCATATTCAACAGAACATGCAAGTAAAGCAGTGTAGGGAAACCAAGTGCAG
 TCAACAGCAAGATGTATTCTGATGCCAGTTCAACATAACATCTTATTGTGAGCAGTCCTACCATGTGC
 TAGGCAACTATACAAAACAGATAAGATAAGATGCAAGATTGACGATCTCTATGTAAGGACGACATGTA
 CAATTCACTGCTTAACGAGACTGAGATGAGATTGAGAAACACTACAACATCTGAGTTGATGGAAGATATTG
 TGGATTGGCAAGGAAAGTTGCTAATGATTCTTATTGGAGGCTATTGAGAATTGGTTGTAAGGAA
 AGAAAATAAAATCTGGCAATGGAAGAAGCTGAAATTGAGATAAAATGCAAGGCGATGTAACAAATTCTA
 ACTAAATTAGGATCAATTGACAATTGTTGGCTATGTTAAGTATTCTTACTGAAATAACAGTACCA
 TAACAAATTGTAATGGAAGACTGCAATTGCTTGAAGAACCTTAAAGTTGATGGATTGTAT
 AGAGGAAGGAGGACTAATGAAAGAACAGGAAATTGAAAGAGGTTTCCAAGAACAAAGATTGATATAGCTATT
 ATCTATTACACCAGAGCCATTGAATATAGACCTGAAAACACTACCTTCTTATGGTAACCGAGCTTTGTT
 TTCCTCGTACTGGACAGTTAGAAATGCACTCGGTGATGGAAAGAGGCCACTATTCTGAAGAACACTTG

GCCAAAGGGTCATTATCGTATTGTGATGCTTTCTATGCTGGGGAAATATGACTGGGCCCTGCAAGCA
AACATAAAAGCTCAAAACTCTGTAAAATGACCTGAGGGAAATCAAGGATCTAATTCAAGCAGCATGTAA
AGTTACAAAACAATAGAACCTACAAGGTGCAACAGCAAATAAGGATCCAATTAAAGCCTTTATGA
AAACAGGGCTACACACCTAGGAGTTATCAGCACCTATTACTACTTCACCTTAACTTGTGGAGAAG
GAAAGAGATTCAGAAAAATTAAATCAGAAATGCCAACGGTGGTAATCAGAATCTAAAGGTGGCGATG
AGGCCTGAAAGTAGATGTGACTGTCATCCTGAATTTCACCCACATCAAGTCAGCCTCCAAAACA
TAAAGGAAAACAAAATCTCGAACAAATGAATCAGAAAAGTTCAGTTCTAGTCACCATGACTTTACCA
GCAGATTGAAAGAACATCTGGAGAAAAGCTTCTAAATCTCCAGAGCTGCACACCAGGATTTGCTA
ATATAATGAAAATGCTGAGAGCTTAATCAAGATGGCTATATGCCATTGGAGCAGCGTGGCGAG
CGCTGCACAGGCCCTTACAGAGTTGCTAACGGTTAGATCCTCAAAAATAAGCAATTGAACCTGGCC
ATGATTAACATGTTTGGTGTCTATGGACTTGGCATTCTCTCCCTGGAAATAGGACAGCCTGAGGAAT
TATCTGAAGCCAAAACAGTTAAGAGGATTATTGAACACTACCCAGTGAGGGCCTGATTGCTTGGC
CTACTGTGAAATTGAAAAGTGTATTGAAAAAAACAGATTCTAGAAGCTCTCAATCACTTTGAGAAA
GCAAGAACCTGATTATCGCTTCCCTGGAGTGTAACTTGGCCA

Human TTC3 mRNA sequence - var6 (public gi: 1304131) (SEQ ID NO: 207)
CCTAAAGAAAAGTATTAAAGTAAATAGCAGTACAGATGGCAAATGGATTGCAAAATATCCTCTGGATCC
ATAGTGACCTCTGAGAGATAAAACCTGTGATGGTCAAACAAATGTGAAAATCTGTCAGAGACATGGCAG
GGTGCCTTGTACAGAGAAGAGGTGCAAAATCAACTTGATGGTAGTGGGAAGATCAGGAAATGCTTC
CTGAAATTGAGATTAAAGAACTAATAGACATTAGGTGGTGAGAATAAGTTTGTGTTAGGAAGGACAAG
CAGTTGGTATGACTGGCTCTAGGTTGTGTTAGGAGTGACTGGGATAAAAGCAGGAGCAAGATCA
CAAAAGGTCTCTATGCTTAAATTAGGAAGTTGGACTTTATCTCAAGCTGAAGGGAAAGCTGTGATG
GTTTTAAGCAGTAAAGTGTATGATCAGAGTTTGTGAGGATGCAAGATGAAAGGCAAGTCTGACCAGTT
AGGAGACTGCTGTTAAATTAGTTCAGAGGAGAACAGTGAAGGCAAGTGGCAGTGGCATGAAGAAGTAT
ATGTTGCTAATTTAGTCTTGTAGGAGGAGAACAGTGAAGAGTTAGTGTGTTAGGAGTGGCAGTAAATGACATGAGAAC
TTGAAGGGAGACTGGGAGTCTAGGTTGACTCCCAGGGTTAGGTTGGCAGTAAATGACATGAGAAC
AAATTAACTGATAAACAGCATACAGAAAGAGGAAAGAACITCATTCTATGTTGTTTGAGGAAAAGA
TGTGTTGTTGACTCTGATTCAAGGGCTTGTGGACATCTGGTTAAGATCCTGTTAGTGTAGTTCT
AGTAGGGTCTAGAAGTCAGAGATAACACCCCGCTGGAGGATTGGGAGTCTCAGCATTGGAATT
TGGAGCCATTGTTACTGCAGTGCATATGAGATAATTAACTGGTACATAGATAAACACTTGAAA
TTTAATAGATAGGAATTAAATGTGATGAGAAACATAACTGCACATCTAACCTTGATAATCATGGAC
ATTATCACTTGGCAAGTGTCAATAAAAGGGAAATTAAACTAAATATGATACATGGAAA
TGGCAAAATCACGGTGAAGCTATGCAAACGATGCAAGTTCAAGAAAGTGTGTTAAGTCATGGGTGTG
GTGGATAATTCAACCAAGGAGAGAGTAAGAGTGAAGAGAAAAGAGAGTGTGACATGGGAGCATTGGTGGCGGGAAAT
GGAGAAGAAGAACCCATGAAGGAAACTGAGGAAGGAGCAGCAGGAATAGGAGGAAACAGGAGAAGA
TGGCTTGGAGTCCAAATGAAGAGTCTGAGGGAGGAAGTGTCCACAGCGTAAACTTGTGACCATGG
ACAATTGGCTGAGGGAGATTACTGTGGCGGATTATGCCATTGTTAGAAGATTGCCCTCACGTGGATGA
TTGTGCTTTGCTGCTGAATTATGAGCAATGATTATGTCGTGACTCAGTTACTGTGATGGGTG
GGTGTGCAATAATAAGATTATATCCTAAAGTGAAGAGGAAATTGGAAATTGACATCTGAGTATGGTGA
GTAACCAATTCTGCTGCAAGATTGCGATGCCATTAAATAACATCTCTGGCCACTCTGTT
TCAACATCAAACAGTCCGTAAATATCAGAIGCATTGCACTCCCTGTGAGGCCAACATTACGTGTTCT
GAGATAATTGAGAAACTACAACATCTGAGTTGATGGAAGATATTGAGGATTGGCAAGAAAGTTG
CTAATGATTCACTCCTTATTGGAGGTTATTGAGAATTGGTTGAAATAGAAAATAATCTGGCAAT
GGAAGAAGCTGAATTGGATAAAATATGCAAGGCGATGTAACAATTCTAACTAAATTAGGATCAATTGAC
AATTGTTGGCTATGTTAAGTATTCTTACTGAAATACAAGTACCACTAAACTAAATTGTAATGGAG
ACTGCAATTGCTTGAAGAACCTAAACTCAAAGTTGATGGAAGATATTGAGGATTGGCAAGAAAGTTG
AATGAAAGGAAATGAAGAGTTTCCAAAGGAAAGATTGATATAGCTTATTATCTATTACACCAGGCCATT
GAATATAGACTGAAAACACTACCTCTTATGGTAACCGAGCTCTTGTGTTCTCGTACTGGACAGTTA
GAAATGCACTCGGTGATGGAAGAGGCCACTATTCTGAAAGAACACTTGGCCAAGGGTCAATTATGTT
TTGTGATGCTTTCTATGCTGGGGAAATTGACTGGGCCCTGCAAGCAAACATAAAAGCTAAAAACTC
TGAAAATGACCTGAGGGAAATCAAGGATCTAATTCAAGCAGCATGTAAGTTACAAAACAAATAGAAG
ACCTACAAGGTGCAACAGCAAATAAGGATCCAATTAAAGCTTTATGAAAACAGGGCCTACACACCTAG
GAGTTTATGAGCACCTATATTACTACTTCACCTAACCTTGAGGAGAAGGAAAGAGATTCTGAGAAAATT
AATCACGAAATGGCCAACGGTGGTAATCAGAATCTAAAGGTGGCGGATGAGGCGTTGAAGGTAGATGATT
GTGACTGTCATCCTGAATTTCACCAACATCAAGTCAGCCTCCAAAACATAAAAGGAAACAAAATCTCG
AAACAAATGAATCAGAAAAGTTCAAGTTCTAGTTCACTTACCAATTGAGGAGATTGAGAAGAACATCTTG
GAGAAACAGTTCTAAATCTCCAGAGCTGCACACCAGGATTGCTAATATAATGAAAATGCTGAGAA
GCTTAATTCAAGATGGCTATATGCCATTGGAGCAGCGTTGCCGAGCGCTGCACAGGCCATTACAGA
GTGACTGTCACGGTTAGTCCTCAAAAATAACCAATTGAAACCTGGCAGTGAATTAACTATGTTGGTC
GTCTATGGACTTGCCTATTCTCCTTGGAAATTAGGAGCAGCCTGAGGAATTATCTGAGGCCAAAACAGT
TTAAGAGGATTATTGAAACACTACCCAGTGAGGGCCTGATTGCTGGCTACTGTGAAATTGAAAAGT
GTATTGAAAAAAACAGATTCTAGAAGCTCTCAATTCTGAGAAGAACAGAAGAACCTGATTATCGT
CTTCCCTGGAGTGTAACTGGCCACGAGTAATGTGATTATGAGAGCTCAGGCCACAAAAATAAAGA

Figure 36 part - 130

TGCTGTAGAGAAAATTGTGAAGAATGCAAGTCCCTCAGTGCCAGATGCCATTGTTGCTATCAGAA
TGCCATGGATATTCTAAGATCCAGATATACTAATGATCCAGACTTTAAGGTTTATACGCATCAGC
TGTTGCCAGTACTGTAAGAATTCACTGAATTGCTGGAAGAAGTTAAAACCTACAACCTTTAATG
ATAAAATTGACAAGGATTCTACAAGGAATATGCTTACCCCTGACTGTGAAGGTGTCATTCTAAGAT
TATCATCTCAGCAGTGGTGGTGAAGTAAATGTGAATTGACACAAGGTCAAAGAAAAGGTTCT
CCAAGACCTATTCTGAAACAGAAATGTTAGCCTAGAGAAACTAAGACTGAAAGAACAAAAATTGA
AGAGAAAGATCCAAAAAAAGAAGCAAAAGTAGCACAAGAAAGAACATGGAGGAGACTTAAGAGAAAG
TAATCCACCCAAAAATGAAGAGCAGAAAGAAACTGTAGACAATGTTAGCAGCTTGTCACTTC
AGAATTCTACAGTGATAAAGCAGTGTGACAAGATTAAATCCGGCATACAGAACAGCCATGCTTC
TCAAAGAATTGCTTCTGAAAGTTGAGCACAGAACAGACTAAACAGAGTAAAGAACAGAAATA
TCTAAATGAAGCAGTGGACTATGTTATTGCCACTTGATTCAAGAAAATAACAGAGTAAAGAACAGAA
TTCTGCATGTTGAGTGAAGCTTAAAGAAGTGGAGCCAAATTAGCCGCTGGATCAGTCC
GCTTGGCTTAGATGCCACAGGAACCTTCTCGTTATGGACCATCTTAAACTGCTGATTAG
TATCATGACTTCTCTGGAATGAGAAATATGGTCACAAACTAGACTCTATAGAACAGAAACTTGAT
TATTCTCTGAGCCAGCATATTGAAGGAAGGCCCTGTTAATATGGCTGCTAGAACACAGAGACA
AGTCCCAGCATTGCACTGCTTATGAAATTCTTGATATAATGGACAGCCGCTGACTGTGTTAAG
GAAACAAGATAGTGGTGAAGCACCGTTAGTTCAACCAAGGTGAAAACAAAAGCAAGAAAAAGGCCA
AAGGATTCAAAGCCTATGTTAGTTGGTCTGGAACAACCTCAGTAATTCAAATAATGAGATCATCACT
CAAGTGAAGACCATAGCAATCGAAATTCAAGATTCTGCAGGCCATTGCACTGCTGACCACATCTGGCA
AGATGTAGAAGAATTGCAAGCTCTATGACCAACACAGTAACGAATATGGCTGCTAGGGAACT
TGGACATGAACCCAAAACAAAATGTTCAACTCTATATGATTACTTCTCTAGTTGGAGGAACATG
GTCCCTGGACATGAGTAACAAGATGTTCTGAGAACATGTTAGTTCCAGAAGAAACTCGACAGAT
ACTAGAAAAGCAGGAGGTTAAACCTTCTGGGATGCCCTCGTTGTTGATTGACAACAGT
ATTGCACTGAGAAGGTTGCACTACGGCTCAAGAAAAAGGAAGAACAAAACATTAAAACAAAAGTAG
AAGAATTCTCAAAGCAGGGAGTATGAGTTAAACTACAACGTAATCCAGCTGCTAGGGAAATTAA
ACCAGATGTAAGTCTAACACAGTGTCAATTCTCAGCACCAGCTTGGAAAATGTGAAACCCAAA
CTGTGTCTGCAAATTCTCCAAGCCAGTTGTGAAGATGTGAAGGCCAACAGTATCGACAATTCTT
CTAGACAAGTTCTGAGGATGGCAACCCAAAGGGGCTCTTCTAATTCTCTAACCCAGGCTCTGAGGA
TGCAAATTACAAGCGAGTCTCCTGTAATTCCCCAAACGGGCTTGAGGATGTGAACCAACTTATTGG
GCTCAATCCCATTGGTCACAGGATACTGTACGTATCTCTTCCAGAGATTGATATCAGCAGACAC
CGCCAGCATAACATAACGTGTTACAGGTTGCCAGTACACCAGCATATAACCCCTGGCAGCCT
TTCTCCTGAATATCAGCTACCAAGATCAGTACCGAGTGGCTGCTTTGAGGATGCAATGAGCAG
AAAATGCTGCTGCTTATTGGAGGTCACTTGAATGCTGAGAATGTTGCTGCTGACAGGATTGCTCA
CTGAAACACAGATCCTTGAGGGCTCTGGGAATATCTGTAAGTCAACTGAGCAGTGGTACAGGATGCTCA
TACAGTCTGAGTGAATGAGTACAGAATGAGTGAACATGTGAAATTCTAACAAACAAATGTGAAGTAATT
CCAGAAAGCAGCAGTGAACAAACATTCCACACGTGCAAGATGGTGTGCCATACAGGTATCTGGAA
TAATACACCAAGAAGTCAATACTGAGCCATATAATCTTTGAGGAACGACAAGGGAAATTCA CGGAT
TGAAAAGGAGCAGCAAGTATTACAAGACCAACTTCAAGAAGTGTATGAAAATTATGAGCAGATAAAACTT
AAGGGCTTAGAAGAGACCAAGGGACCTGGAAGAGAAGTTGAAAAGGCACTTAGAAGAAAACAGATCTAA
AGACGGAATTAGATTGGTCTTCAAGATTGGAAAGAGAAATTAAAAATGGCAACAGGAAAAAAAAGA
AATCCAAGAAAAGACTAAACACTGAAGAAGAAAATTAAAAGTTCAATGCCAGTGAATGTATACC
CAGAAAATGATGGAAAGGAAAGAACATGAATTACATCTGGATCAGTCCCTGAAATCAGCAACACAC
TTACAAATGAGAAAATGAAAATAGAAGAGTATATAAGAAAGGGAAAGAGGATTGAGAGAGTCATCA
GAGAGCTGTGGCTGCAGAGGTATCCGTACTTGAAGAAACTGGAGGAGACTGAAGTGTATAAGCTACAGATC
ATGGAGTCACAAGCAGAACGCCCTCTGAGAACAGCTGGGCTGATTAGCCCTGATCTGCAGCATATCCTG
ACATGGAGTCGATATACGTTCTGAGGAAATTGTTCTTCTAATGTTACAAAAGAAATTGAGAACAGCAA
GTCTCAGTCTGAGAACAATTAAAGGCAATTAAAATGGTCTGGCTCAGTGAACCTTCTAAAGTGCAG
ATTCTGAGCTTCAATTCTGCTGTAACACGGTTCATCCGAGTTACTCCCTGAGTCTCAGGCCAG
ATGCCAAGGGCTTGTGACTCTGCAAGCAGTGAETGGAAACCCACGGCAGCACTTCACAGGGATCCTAG
TGTGTTCTGCTGGTATTCCCCAGGGAGGCTCTCTGCGCTGTTGCCAGGGCACCCTGGTCA
CTGAAGCCACTCAGCTGACAGGGCAAAACGGGCTGGCCAGGCAGCTCTGTCAGAACGAAGCCCTGTGG
CTGATCGGAAGCAGCCTGTTCTCCAGGACGTGCTGCGCTTAAGCCAGTCTCCAAAAAGCCGTTCAA
TAGTATTATTGAGCACCTGTCAGTGGTATTCCCATGTTACAACAGCACTGAGCTTGTGGTTTATTAAA
AAAGTGCAGAAGCAAAACAAGAAACTCACTCTCAGGATTGAGTATTGATGAAATTGTCACAGGAGTGA
AACACATTCTAGATGAACAGAAAAGAAAAGCCAACCCAGGAAAGGACAAGAGGACTTATGAGCCAG
CTCTGCCACCCCGTGACCAAGGCTCCAGGCTCACCTCGGTGGTGTGCAACCATCACCCAAAACC
AAGGGGAGAAGCAGAAGATGCCCCGTGAGGATTGCACTGGGTCAGTCCCTGAGAATATGCCAG
AGGTGTTCAAATCAAAAACGTGGCTGCTCAAATGTGGGCAAACTACATCAGGAAATTGGCTTAAAGCA
GTGGCTTAAAGGGCAGAGCGCTTGGCCGGCTGCCAGGGCTGATCTCTGACAGAACAGTCACTTCT
GGAAGAGGCTGGCCAGTCAAGATCAGGAGCTGGCTTCTGCTCTTCTAGGTAGTCACACTTCACTAAAG
TGTCACTCCACCATGTTGAGTCAACAGAACATGAAATTCTACCAACTGGTGTAAAACAAACATTG
AAGACCCATTGTCATTGTTGTCACAAAGCTAAATACATGAAATCGTTAATATCGCTGATATTAGTAA
TTTCCCCACTCTGAGTGAATACATTGATGATTGCCAACAGTGGCTAATAAGAACGGCTACCAACTCA

Figure 36 part - 131

GGGGCACTGGCTGCGCAGGGCTTTGAGGTGGCTTCTTTGAAAGTACTATGAACGTCTCGA
 AGCAGTATTCTAGTGATAAGAATTCTAACATAGCCAAAGCCCCCACGTTGTCACGTTGTTCCC
 CTTTCTGTTGAAAAACCTGTTCTGGTAGCTCCAAGAGAGATGATACTGACTTTAAATTTCAC
 AAGAGTCTGTATTCTCTGATATGCCTATATTTCCTCAAAGAGATTCTGCATTAAAGGATGGCATAAGCA
 AACTATTTAATAATTATAGTTAATGTTAAATATTGGCTGATTAGACCAAAAGATTCAAATCTCC
 TCTTGTGAAATCCCATCTGATTGATTTTATTATTTATGTTCCCCGTTAGATTGTTAAGTGT
 TTGCTTTCATTTATAGATGTAATCTGATTCTACAAACTTTAATTAGTATCGACT
 AAGACTTTTCCCCCTGGAATCGAGGCTGTGTCCTGTCAGCTCTGTCAGTCAGCGAGTGCCTGGGATCCGCA
 AACCTCCGCTGCCCTCCTAGCAGCTCTGTCCTCTGTCAGTCAGCGAGTGCCTGGGATCCGCA
 TCCAGCCGCTGAGCACACAACAGGCTGTGTCAGGAAATGCCACCACATTCTCCCTCCCCACCCAC
 CACAAAAAGAGAAGCTGTGCTTAGACAACCTGAGGTATCTGTTACAATGTTCTGTTGATAT
 TTGTTGAAAGTATGCACTGAGCTGTGACTTTAGACAGTGTAAATAGAACCATGAATTCTGGTCACATTC
 AAAAAATTAGATATTGTTGACTTTAGACAGTGTAAATAGAACCATGAATTCTGGTCACATTC
 CATTCTCTCAACATGAAGGATCAAAAAATGTTCTCAATGTTCTGTCAGTGTGAGTTCTGATGTCC
 GTCATGAGTTATGAGGCTGGATTGCTTCTTCCCTTGGTCACTGTGAGTTCTGATGTCC
 TAGTGAATTAGCTTCTAGAACAGCTACGGCTTAGTTGAAACAGATTCTCACGGTGGTCCCCAAACACT
 GTCTGCATATCCATAAGAATTGAACGCTATGGTGTAACTGCACTGAGGATCAGTTGAGCAGCAAGT
 ACAAAAAGAGAAGAGAACATCCGTTGAATGAGTGTGTTGTACATAACTCAGATACTTGTGAACATG
 CCTTATATTGTCACAACTGTCAGAATAAGAACATTCTAAATGAG

Human TTC3 Protein sequence - var1 (public gi: 2662364) (SEQ ID NO: 308)

IKINIFWPLLQHQNSSVISRLHPDVDANNSRASEINLKKLQHLELMEDIVDLAKKVANDSFLIGGLLRI
 GCKIENKILAMEEALNWIKYAGDVTILTKLSIDNCWPMLSIFFTEYKYHTKIVMEDCNLLEELKTQSC
 MDCIEEGELMKMKGNEEFSKERFDIAIIYYTRAIYEPRPENYLGYNRALCFLRTGQFRNALGDGKRATIL
 KNTWPKGHYRYCDALSMLEGYDWALQANIKAQKLKNDPEGIKDLIQQHVQLQKQIEDLQGRTANKDPIK
 AFYENRAYTPRSLSAPIFTSLNFVEKERDFRKINHEMANGGNQNLKVADEALKVDDCDCHPEFSPPSSQ
 PPKHKGQKSRNNESEKFSSSSPLTPLADLKNIKEQFSKSSRAAHQDFANIMKMLRSLIQDGY
 RCRSAQAFTELLNGLDPKIKQQLNAMINYLVVYGLAISLLGIGQPEELSEAENQFKRIIEHYPSEG
 DCLAYCGIGKVLYKKNRFLEALNHFEKARTLIYRLPGVLTWPTSNVIEESQPQKIKMLLEKFV
 EEECKFPVPAICCYQKCHGYSKIQIYITDPDFKGFI
 RISCCQYCKIEFHMCWKKLTTTFNMDKIDKDFLQGICL
 TPDCEGVISKIIIFSSGGEVKCEFEHKVIKEVPPRPILKQKCSSLEKLRKEDKKLKRKIQKKEAKKLA
 QERMEEDLRESNPPKNEEQKETVDNVQRCQFLDDRLQCIKQYADKIKSGIQNTATL
 LKELLSWKVLSTE
 DYTTCFSSRNFLNEAVDYVIRHLIQENNVRVKTRIFLHV
 LSELKEVEPKLAAWIQKLNSFGLDATGTF
 FSR
 YGASLKLLDFSIMTFLWNEKYGHKLD
 SIEGKQLDYFSE
 PASLKEARCLIWL
 EEHDKFPA
 LHSALDEFF
 DIMDSRCTVLRQDSGEAPFSSTKVNKSKKKPKDSKPM
 LVGS
 GTSVTSNNE
 IITSSEDHSNRNSDSA
 GPFAVPDHLRQDVEEFEALYDQHSNEYVV
 VRNKKLWD
 MNPKQKC
 STLYDYFSQF
 LEEHGPL
 DMSNKMF
 SAE
 YEFP
 PEETRQILEKAGGLKP
 FLLGCP
 RVVIDNCIALKKV
 ASRLKKRKKKN
 IKT
 KVEEISKAGEY
 VRVK
 LQLNPAAREF
 KPDV
 KSKP
 VSD
 SS
 SAP
 A
 F
 EN
 V
 K
 PK
 VS
 AN
 SP
 K
 PAC
 ED
 V
 A
 K
 P
 V
 S
 D
 N
 S
 R
 Q
 V
 S
 E
 D
 G
 Q
 P
 K
 G
 V
 S
 N
 S
 P
 K
 P
 G
 S
 E
 D
 A
 N
 Y
 K
 R
 V
 S
 C
 N
 S
 P
 K
 V
 L
 E
 D
 V
 K
 P
 T
 Y
 W
 A
 Q
 S
 H
 L
 V
 T
 G
 Y
 C
 T
 Y
 L
 P
 F
 Q
 R
 F
 D
 I
 T
 Q
 T
 P
 P
 A
 Y
 I
 N
 V
 L
 P
 G
 L
 P
 Q
 Y
 T
 S
 I
 T
 Y
 T
 P
 L
 A
 S
 L
 S
 P
 E
 Y
 Q
 L
 P
 R
 S
 V
 P
 V
 P
 S
 F
 V
 A
 N
 D
 R
 A
 D
 K
 N
 A
 A
 A
 Y
 F
 E
 G
 H
 H
 L
 N
 A
 E
 N
 V
 A
 G
 H
 Q
 I
 A
 S
 E
 T
 Q
 I
 L
 E
 G
 S
 L
 G
 I
 S
 V
 K
 S
 H
 C
 S
 T
 G
 D
 A
 H
 T
 V
 L
 S
 E
 S
 N
 R
 N
 D
 E
 H
 C
 G
 N
 S
 N
 K
 C
 E
 V
 I
 P
 E
 S
 T
 A
 V
 T
 N
 I
 P
 H
 V
 Q
 M
 V
 A
 I
 Q
 V
 S
 N
 I
 I
 H
 Q
 E
 V
 N
 T
 E
 P
 Y
 N
 P
 F
 E
 R
 Q
 G
 E
 I
 S
 R
 I
 E
 K
 H
 Q
 V
 L
 Q
 D
 Q
 E
 V
 Y
 E
 N
 Y
 E
 Q
 I
 K
 L
 K
 G
 L
 E
 E
 T
 R
 D
 L
 E
 E
 K
 L
 K
 R
 H
 L
 E
 E
 N
 K
 I
 S
 K
 T
 E
 L
 D
 W
 F
 L
 Q
 D
 L
 E
 R
 E
 I
 K
 K
 W
 Q
 Q
 E
 K
 I
 Q
 E
 R
 L
 K
 S
 L
 K
 K
 K
 V
 S
 N
 A
 S
 E
 M
 Y
 T
 Q
 K
 N
 D
 K
 E
 K
 E
 H
 L
 H
 L
 D
 Q
 S
 L
 E
 I
 S
 N
 T
 L
 T
 N
 E
 K
 M
 K
 I
 E
 E
 Y
 I
 K
 G
 K
 D
 Y
 E
 E
 S
 H
 Q
 R
 A
 V
 A
 A
 E
 V
 S
 V
 L
 E
 N
 K
 E
 S
 V
 Y
 V
 K
 L
 Q
 I
 M
 E
 S
 Q
 A
 E
 A
 F
 L
 K
 K
 L
 G
 L
 I
 S
 R
 D
 P
 A
 Y
 P
 D
 M
 E
 S
 D
 I
 R
 S
 W
 E
 L
 F
 L
 S
 N
 V
 T
 K
 V
 I
 E
 K
 A
 K
 S
 R
 L
 S
 E
 L
 S
 K
 V
 Q
 I
 S
 E
 L
 S
 F
 P
 A
 C
 N
 T
 V
 H
 P
 E
 L
 L
 P
 E
 S
 S
 G
 D
 D
 G
 Q
 G
 L
 V
 T
 S
 A
 S
 D
 V
 T
 G
 N
 H
 A
 A
 L
 H
 R
 D
 P
 S
 V
 F
 A
 G
 D
 S
 P
 G
 E
 A
 P
 S
 A
 L
 L
 P
 G
 P
 P
 G
 Q
 P
 E
 A
 T
 Q
 L
 T
 G
 P
 K
 R
 A
 G
 Q
 A
 A
 L
 S
 E
 R
 S
 P
 V
 T
 D
 R
 K
 Q
 P
 V
 P
 P
 G
 R
 A
 A
 R
 S
 S
 Q
 P
 K
 P
 F
 N
 S
 I
 I
 E
 H
 L
 S
 V
 V
 F
 P
 C
 Y
 N
 S
 T
 E
 L
 A
 G
 F
 I
 K
 V
 R
 S
 K
 N
 K
 S
 L
 G
 L
 S
 I
 D
 E
 I
 V
 Q
 R
 V
 T
 E
 H
 I
 L
 D
 E
 Q
 K
 K
 K
 P
 N
 P
 G
 K
 D
 K
 R
 T
 Y
 E
 P
 S
 S
 A
 T
 P
 V
 T
 R
 S
 S
 Q
 G
 P
 S
 V
 V
 A
 P
 S
 P
 K
 T
 K
 G
 Q
 K
 A
 E
 D
 V
 P
 R
 V
 I
 A
 L
 G
 A
 S
 S
 C
 E
 I
 C
 H
 E
 V
 F
 K
 S
 K
 N
 V
 R
 V
 L
 K
 C
 H
 Y
 K
 G
 C
 F
 K
 Q
 W
 L
 K
 G
 Q
 S
 A
 C
 P
 A
 C
 Q
 G
 R
 D
 L
 L
 T
 E
 E
 S
 P
 S
 G
 R
 W
 P
 S
 Q
 N
 Q
 E
 L
 P
 C
 S
 S
 R

Human TTC3 Protein sequence - var2 (public gi: 1632766) (SEQ ID NO: 309)

MLGEYDWALQANIKAQKLCKNDPEGIKDLIQQHVQLQKQIEDLQGRTANKDPIKAFYENRAYTPRSLSAP
 IFTSLNFVEKERDFRKINHEMANGGNQNLKVADEALKVDDCDCHPEFSPPSSQPPKHKKGQKSRNNESE
 KFSSSSPLTPLADLKNIKEQFSKSSRAAHQDFANIMKMLRSLIQDGY
 MALLEQRCSAAQAFTELLNGL
 DPQKIKQQLNAMINYLVVYGLAISLLGIGQPEELSEAENQFKRIIEHYPSEG
 LDCLAYCGIGKVLYKK
 N
 R
 F
 L
 E
 A
 L
 N
 H
 F
 E
 K
 A
 R
 T
 L
 I
 Y
 R
 L
 P
 G
 V
 L
 T
 W
 P
 T
 S
 N
 V
 I
 I
 E
 E
 S
 Q
 P
 Q
 K
 I
 K
 M
 L
 L
 E
 K
 F
 V
 E
 E
 C
 K
 F
 P
 P
 V
 P
 D
 A
 I
 C
 C
 Y
 Q
 K
 C
 H
 G
 Y
 K
 I
 Q
 Y
 I
 T
 D
 P
 D
 F
 K
 G
 F
 I
 R
 I
 S
 C
 C
 Q
 Y
 C
 K
 I
 E
 F
 H
 M
 C
 W
 K
 K
 L
 T
 T
 T
 F
 N
 D
 K
 I
 D
 K
 D
 F
 L
 Q
 G
 I
 C
 L
 T
 P
 D
 C
 E
 G
 V
 I
 S
 K
 I
 I
 I
 F
 S
 S
 G
 G
 V
 C
 E
 F
 E
 H
 K
 V
 I
 K
 E
 K
 V
 P
 P
 R
 P
 I
 L
 K
 Q
 K
 C
 S
 S
 L
 E
 K
 L
 R
 K
 E
 D
 K
 K
 L
 K
 R
 K
 I
 Q
 K
 E
 A
 K
 K
 L
 A
 Q
 E
 R
 M
 E
 E
 D
 L
 R
 E
 S
 N
 P
 K
 N
 E
 Q
 K
 V
 L
 Q
 D
 Y
 F
 S
 E
 P
 A
 S
 L
 K
 E
 A
 R
 C
 L
 I
 W
 L
 E
 E
 H
 R
 D
 K
 F
 P
 A
 L
 H
 S
 A
 L
 D
 F
 F
 D
 I
 M
 D
 S
 R
 C
 T
 V
 L
 R
 Q
 D
 S
 G
 E
 A
 P
 F
 S
 S
 T
 K
 V
 K
 N
 K
 S
 K
 K
 K
 P
 D
 S
 K
 P
 M
 L
 V
 G
 S
 G
 T
 T
 S
 V
 T
 S
 N
 N
 E
 I
 I
 T
 S
 S
 E
 D
 H
 S
 N
 R
 N
 D
 S
 A
 G
 P
 F
 A
 V
 P
 D
 H
 L
 R
 Q
 D
 V
 E
 E
 F

Figure 36 part - 132

PCT/US04/06308

EALYDQHSNEYVRNKKLWDMNPQKCKSTLYDYFSQFLEEHGPLDMSNKMFSAEYEFPPEETRQILEKAG
GLKPFLLGCPRFVVIDNCIALKKVASRLKKRKKNIKTKVEEISKAGEYVRVKLQLNPAAREFKPDVKS
KPVSDSSSAPAFENVPKPKVSANSPKPACEDVKAKPVDNSSRQVSEDGQPKGVSSNSPKPGSEDANYKR
VSCNSPKPVLEDVKPTYWAQSHLVTGYCTYLPQRFDITQTTPAYINVLPGLPQYTSIYTPLASLSPEYQ
LPRSPVVPSPFVANDRADKNAAYFEHHHLNAENVAGHQIASETQILESLGIISVKSHCSTGDAHTVLSE
SNRNDEHCGNSNNKCEVIPESTSAVTNIIPHQMVAIQWSWIIHQEVTNPPEERQGEISRIEKEHQ
VLQDQLQEVYENYEQIKLKGLEETRDLEEKLRHLEENKISKTELDWFLQDLEREIKKWQQEKKEIQLERL
KSLKKKIKKVSNASEMYTQKNDGKEKEHLDQSLEISNTLTNEKMKIEEYIKKGKEDYEESHQRAVAA
EVSVLENWKESEVYKLQIMESQAEFLKLLGLISRDPAAYPDMESDIRSWELFLSVNTKEIEKAQSOFEE
QIKAIKNGSRLSELSKVQISELSPFACNTVHPPELLPESSGHGDQGLVTSASDVTGNHAALHRDPSVFSAG
DSPGEAPSALLPGPPPGQPEATQLTGPKRAGQAALSERSPVADRKOPVPPGRAARSSQSPKKPFNSIIEH
LSVVFPCYNSTELAGFIKKVRSKNKNSLSGLSIDEIVQRVTEHILDEQKKKKPNPGKDRTYPEPSSATPV
TRSSQGSPSVVVAAPSPKTGQKAEDVPVRIALGASSCEICHEVFKSKNVRVLKCGHKYHKGCFKQWLKGQ
SACPACQGRDLTEESPGRGWPSQNQELPSCSSR

Human TTC3 Protein sequence - var3 (public gi: 1632764) (SEQ ID NO: 310)
MKGNEFSKERFDIAIYYTRAIYR PENYLGYNRALCFRLTGQFRNALGDGKRATILKNTWPKGHY
RYCDALSMLEGYDWALQANIKAQKLCNDPEGIKDLIQQHVKLQKIEDLQGRANKDPIKAFYENRAYT
PRSLSAPIFTTSLNFVAKERDFRKINHEMANGGNQNLKVADEALKVDDCCHPEFSPSSQPPKHKGKQK
SRNNESEKFSSSPLTLPADLKNILEKQFSKSSRAAHQDFANIMKMLRSIQLDGYMALEQRCRCAAQAF
TELLNGLDPKIKQLNLAMINYLVVYGLAISLLGIGQPEELSEAENQFKRIIBHYPSEG LDCLAYCGIG
KVYKKNRFLEALNHFEKARTLIYRPGVLTWPTSNVIEESQPKIKMLLEKFVEECKFPPVPAICCY
QKCHGYSKIQIYITDPDFKGFI RISCCQYCKIEFHMCWKKLTTTFNDKIDKDFLQGICLTPDCEGVIS
KIIIFSSGGEVKCEFEHKVIKEVKPVRPILQKCSSLEKLRKEDDKLKRKIQKKEAKKLAQERMEEDLR
ESNPPKNEEQKETVDNVQRCQFLDDRILQCIQYADKIKSGIQNTAMLLKELSWKVLSTEDYTCFSSR
NFLNEAVDYVIRHLIQENNVRKTRIFLHVLSLKEVEPKLAAWIKLNSFGLDATGTFFSRYGASLKL
FSIMTFLWNEKYGHKLDSEIGKQLDYFSEPALKEARCLIWLEEHRDKEFPA LHSALDEF DMDMSRCTV
LRKQDSGEAPFSTKVKNKKKKPKDSKPMVLVSGGTTSVTSNNEITSSEDHSNRNSDSAGPFAVPDHL
RQDVEEFAELYDQHSNEYVRNKKLWDMNPQKCKSTLYDYFSQFLEEHGPLDMSNKMFSAEYEFPPEETR
QILEKAGGLKPFLLGCPRFVVIDNCIALKKVASRLKKRKKNIKTKVEEISKAGEYVRVKLQLNPAARE
FKPDVKS PKVSDSSSAPAFENVPKPKVSANSPKPACEDVKAKPVDNSSRQVSEDGQPKGVSSNSPKPGS
EDANYKRVSCNSPKPVLEDVKPTYWAQSHLVTGYCTYLPQRFDITQTTPAYINVLPGLPQYTSIYTPLA
SLSPEYQLPRSPVVPSPFVANDRADKNAAYFEHHHLNAENVAGHQIASETQILESLGIISVKSHCSTGD
AHTVLSENRNDEHCGNSNNKCEVIPESTSAVTNIIPHQMVAIQWSWIIHQEVTNPPEERQGEIS
RIEKEHQVLQDQLOEVYENYEQIKLKGLEETRDLEEKLRHLEENKISKTELDWFLQDLEREIKKWQQEK
KEIQLERLKSLKKKIKKVSNASEMYTQKNDGKEKEHLDQSLEISNTLTNEKMKIEEYIKKGKEDYEES
HQRAVAAEVSVLENWKESEVYKLQIMESQAEFLKLLGLISRDPAAYPDMESDIRSWELFLSVNTKEIEK
AKSQFEEQIKAIKNGSRLSEL SKVQISELSPFACNTVHPPELLPESSGHGDQGLVTSASDVTGNHAALHRD
PSVFSAGDSPGEAPSALLPGPPPGQPEATQLTGPKRAGQAALSERSPVADRKOPVPPGRAARSSQSPKKP
FNSIIEHLSVVFPCYNSTELAGFIKKVRSKNKNSLGLSIDEIVQRVTEHILDEQKKKKPNPGKDRTYE
PSSATPVTRSSQGSPSVVVAAPSPKTGQKAEDVPVRIALGASSCEICHEVFKSKNVRVLKCGHKYHKGCF
KQWLKGQSACPACQGRDLTEESPGRGWPSQNQELPSCSSR

Human TTC3 Protein sequence - var4 (public gi: 1632762) (SEQ ID NO: 311)
MDNFAEGDFTWADYALLEDCPHVDDCVFAAEFMSNDYVRVTQLYCDGVGVQYKDYIQSERNLEFDICSIW
CSKPISVLDYCDAIKINIWPPLLFOHQNSSVISRLHPCVDANNRASEEINLKKLQHLELMEDIVDLAKK
VANDSFLIGGLLRIGCKIENKILAMEALNWIKYAGDVTILT KLSIDNCWPMLSIFFTEYKYHITKIVM
EDCNLLEELKTQSCMDCIEEGELMKMKGNEFSKERFDIAIYYTRAIYR PENYLGYNRALCFRLTGQ
FRNALGDGKRATILKNTWPKGHRYRCDALSMLEGYDWALQANIKAQKLCNDPEGIKDLIQQHVKLQKQI
EDLQGRANKDPIKAFYENRAYTPRSLSAPIFTTSLNFVAKERDFRKINHEMANGGNQNLKVADEALKV
DCDCHPFSPSSQPPKHKGQKSRNNESEKFSSSPLTLPADLKNILEKQFSKSSRAAHQDFANIMKML
RSLIQDGYMALEQRCRCAAQAFTELNGLDPKIKQLNLAMINYLVVYGLAISLLGIGQPEELSEAEN
QFKRIIEHYPSEG LDCLAYCGIGKVYKLNPKLALNHPEKARCLIYRPGVLTWPTSNVIEESQPKI
KMLLEKFVEECKFPPVPAICCYQKCHGYSKIQIYITDPDFKGFI RISCCQYCKIEFHMCWKKLTTTF
NDKIDKDFLQGICLTPDCEGVISKIIIFSSGGEVKCEFEHKVIKEVKPVRPILKQKCSSLEKLRKEDKK
LKRKIQKKEAKKLAQERMEEDLRESNPPKNEEQKETVDNVQRCQFLDDRILQCIQYADKIKSGIQNTAM
LLKELLSWKVLSTEDYTCFSSRNFLNEAVDYVIRHLIQENNVRKTRIFLHVLSLKEVEPKLAAWIKL
NSFGLDATGTFFSRYGASLKLDFSIMTFLWNEKYGHKLDSEIGKQLDYFSEPALKEARCLIWLEEHRL
DKFPALHSALDEF DMDMSRCTVLRKQDSGEAPFSSKTVKNKKKKPKDSKPMVLVSGGTTSVTSNNEII
TSSEDHSNRNSDSAGPFAVPDHLRQDVEEFAELYDQHSNEYVRNKKLWDMNPQKCKSTLYDYFSQFLEE
HGPLDMSNKMFSAEYEFPPEETRQILEKAGGLKPFLLGCPRFVVIDNCIALKKVASRLKKRKKNIKTK
VEEISKAGEYVRVKLQLNPAAREFKPDVKS PKVSDSSSAPAFENVPKPKVSANS PKPACEDVKAKPVDN

Figure 36 part - 133

PCT/US04/06308

SSRQVSEDGQPKGVSSNSPKPGSEDANYKRVSCNSPKVLEDVKPTYWAQSHLVTGYCTLPFQRFDITQ
TPPAYINVLGPLQYTSIYTPLASLSPEYQLPRSPVVPFSVANDRAKNAAYFEGHHHLNAENVAGHQI
ASETQILEGSLGI SVKSHCSTGDAHTVLSSESNRNDEHCGNSNNKCEVIPESTS AVTNIPH VQMVAIQVSW
NIIHQEVNTEPYNPFEERQGEISRIEKEHQVLQDOLQEVEYENYEQIKLKGLETRDLEEKLKRHLEENKI
SKTELDWFQDLEREIKKWOQEKKIEQERLKS LKKIKKVSNASEMYTQKNDGKEKEHELHLDQSLEISN
TLTN EKMKIEEYIKKGKEDYEESHQRAVAEEVS VLNKESEVYKLQIMESQA EFLKKLGLISRDPAAY
PDMESDIRSWEFLSNTVKTIEKA KSQFEEQIKAIKNGSRLSELSKVQI SELSFPA CNTVHP ELLPESSG
HDGQGLVTSASDVGNHAALHRDP SFSVAGDSPGEAPSALLPGPPPQPEATQLTGPKRAGQA ALSERSP
VADRKQPVPPG RAARSSQSPKKP FNSIEHLSVVFP CYNSTELAGFI KKVRSKNKNLSGLS IDEIVQRV
TEHILDEQKKKKPNPGKDRTYEPSSATPVTRSSQGSPSVVAPSPKTGQKAEDPVRI ALGASSCEIC
HEVF KSKNVRV LKG HKYHK GCF QWL KGQSAC PAC QGR DLLTEESP SGRG WPSQNQEL PSCSSR

Human TTC3 Protein sequence - var5 (public gi: 2969903) (SEQ ID NO: 312)
DLKKLQHLELMEDIVDLARKVANDSFTIGGLRTGCKIENKILAMEEALNWIKYAGDVTILT KLG SIDNC
WPMLSIFFTEKYHITKIVMEDCNLLEELKTQSCMDIEEGGLM KMKGN EFSKERFDIAI IYYTRAIEY
RPENYLLYGNRALCFCPTGQFRNALGDGKRATILKNTWPKGHRYRC DALSMLGEYDWALQANIKAQKLCK
NDPEGIKDLIQQHVKLQKQIEDLQGRTANKDPIKAFYENRAYTPRSLSAPIFTTSLFNEKRDFRKINH
EMANGGNQNLKVADEALKVDDCDCHPEFSPPSSQPPKHKGKQKSRNNESEKFSSSSPLTPADLK NILEK
QFSKSSRAAHQDFANIMKMLRSLIQDG YMALLEQRCRSAAQAFTELLNGLD P QKIKQLNLAMINYLVVY
GLAISLLGIGQPEELSEAENQFKRIIEHYPSEG LDCLAYCGIGK VYLKONRFLEALNHFEKARTL IYRLP
GVL TWP

Unigene Name: UBE2N Unigene ID: Hs.458359

Human UBE2N mRNA sequence - var1 (public gi: 37577134) (SEQ ID NO: 208)
cccc CGCGCAGTCGCGCGGGTCTGCCGTACCAACC CGTCGCGGGCAGG CTGGCCACGAGCGCAGAGC
CCCC CGCCCTCCCTCGCGGGCTGTCCAAGTCCCTGCCGCAACAGAGCGTCACTTCCGCCATCCCCGG
CAGCGGTTGGGGCGGGGCGACGGGGGAGGGGGCAGGT CGGAGGGAGGCCGCGCCGTGCCGAGGCCGC
GCCCGAGCAGGAGACTACATTCCCGAGGGGCTCGCGCGGCTGCCGAGGCCGAGACGAGACAGAGGCCGAA
CGGAAGTGGAGCCCGGGACTTCACTCGTGC GTGAGGGAGAGGCCGAGACGAGACAGAGGCCGAA
CTCGGGTTCTGACAAGATGCCGGCTGCCCGCAGGATCATCAAGGAAACCCAGCGTTGCTGCCAGAAA
CCAGTTCTGGCATCAAAGCGAACAGATGAGAGCAACGCCGTTATTCTCATGTGGT CATTGCTGGCC
CTCAGGATTCCCCCTTGGGGAGGGACTTTAACCTGAACTATTCCCTTCCAGAAGAATACCAATGGC
AGCCCCTAAAGTACGTTCATGACCAAAATTATCATCTTAATGTAGACAAGTTGGGAAGAAATATGTTA
GATATTTGAAAGATAAGTGGTCCCCAGCACTGCAGATCCGACAGTTCTGCTATCGATCCAGGCC TTGT
TAAGTGTCCCAATCCAGATGATCCATTAGCAAATGATGTAGCGGAGCAGTGGAAAGACCAACGAAGCCA
AGCCATAGAAACAGCTAGAGCATGGACTAGGCTATATGCCATGAATAATATTAAATTGATACGATCATC
AA GTGTGCATCACTTCTCTGTTCTGCCAAGACTCCCTCTTGTGATCTTAATGGACACAGTCTT
AGAACATTACAGAATAAAAAGGCCAGACATCTCAGTCTTGGTATTAAATGCACATTAGCAAATC
TATGTCTTGTCTGATTCACTGTCTAAAGCATGAGCAGAGGCCAGAAGTAGATCATCTGATTGTGTGAA
ACGTTAAAGCAGTGGCCCTCCCTGCTTTTATTCAATTCCCTCCATCTGGTTAAGTATAAAGCAGTG
TGAATGAAGGTAGTTGTCA GGTTAGCTGCAGGGGTGTGGGTTTTTATT TATTTTATT TATTTTATT
TTTGAGGGGGAGGTAGTTAAATT TATGGGCTCTTCCCTTTTTGGT GATCTAATTGCTGGTT
AAAAGCAGCTAAC CAGGTCTTGAAGATATGCTCTAGCCAAGCTAAC TTTAGACGGCTGTAGATGGA
CAAGCTTGTGATTTGGAAACCAAAATGGGAA CATTAAACAAACATCACAGGCCCTCACTAATAACATTGCTG
TCAAGTGTAGATTCCCCCTTCAGAAAAGCTTGACCATTTGTATGGCTGTCTGGAAACTCTGTA
AATCTTATGTTTAGTAAAATTTTGTATTCTACTTTGCTTGTACAGTTATT TACTGTGTT
ATTCAATTCTCCAATTGACAATGTATT TAAATTGAAACTGATGGAA CATTCTTCTGGTCTTCA
CCATCTGACAATTGAATGGCAAGAGGTGGATT TGCCAGTTCTTCACTGATGCCAGATT GTGTTAA
GATAGTACTGAAATGGAGT ATT TATAA ACTGGCCCTGAGCATGCATAAAGCATCAGTATCTGACCTTTT
TAACCTCTAGGAATTGAAATAAAATGTGTTGTGCTGATTAGATGATCATTGGTGTCTGCCACA
ATGTTAAAATTACTGTACAGGAAAGTCACAGCAAAGATAGCAGTTGTGACTGACATGTAGGACTTCA
CAGTTGTGCCACATT TGCCTAAATTGGGTTATGACATT TCTGTTCTTATCTGAAAATT CAT
CTGTAACCTTCACTGTGTGTTAAGAAACACTGATCTGATCTTGGGATTGCTGAGGCATT GTGAGTC
TTCCCTTATAAACCTGATGAGCAGATCTCAACTATCTAGCTTGCTGTGTCATCAGAAAGGTTATCCCTT
AGAGTATCAAGTCTCAGTTAATGATCTGCTTCACTCCCTCAGTATTGCTGTGGAGCTCGTTTA
TTCTTTAATTGGAAATTCA GTAAATTCTCTTCTTATTGACGAATT CCTCCCTCAGTATTGCTGT
CCCACCTCTCTCCATATCTAATT CCTGATTCTTATT TAAGTCATAAATGTAGCCAGTCATAAATA
CATAAAATGTTAACCTCGGTTGCAACCTTGCTCTGCACTGTTAAGGTAATGGATAATTGTAGCCATT
GAATT TTCTCACTCTTATTCTCGTAATTCTGGAGTTCTCAGATT GTGGTGTATT TATTGCT
ATGTAAGATGAAGAATTAACTATTAAATTACATTTCACACATAACAAAGCTTTGATGACTGGTAAC TG
GTATCCTTCCAATTGCTGGTAAAAA AAAAAA AAAAAA

Figure 36 part - 134

PCT/LIS04/06308

Human UBE2N protein sequence - var1 (public gi: 4507793) (SEQ ID NO: 313)
MAGLPRRIKETQRLLAEPVPGIKAEPDESNARYFHVIAGPQDSPFEGGTFKLELFPEEYPMAAPKVR
FMTKIYHPNVDKLGRICLDILKDWPALQIRTVLLSIQALLSAPNPDDPLANDVAEQWKTNEAQAIETA
RAWTRLYAMNNI

Human UBE2N pray sequence - var1 (SEQ ID NO: 209)

GCCGCCATGGNGTACCCATACGACGTACCAGATTACGCTCATATGCCATGGAGGCCAGTGAATTCCACC
CAAGCAGTGGTATCAACGCAAGTGGCGAACACTGGGTTCTGACAAGATGGCCGGCTGCCCGCAGGAT
CATCAAGGAAACCCAGCGTTGCTGGCAGAACCGAGTCCTGGCATCAAAGCGAACCGAGATGAGAGCAC
GCCGTTATTTCATGTGGTCAATTGCTGGCCCTCAGGATTCCCCCTTGAGGGAGGGACTTTAAACTTG
AACTATTCCCTCCAGAAGAATACCCAATGGCAGCCCCCTAAATAAGTGGTCCCCAGCACTGCAGATCCGC
ACAGTTCTGCTATCGATCCAGGCTTGTAAAGTGTCTCCAACTCAGATGATCCATTAGCAAATGATGTAG
CGGAGCAGTGGAAAGACCAACGAAGGCCAACGCTAGAAAACAGCTAGAGCATGGACTAGGCTATATGCCAT
GAATAATATTTAAATTGATACGATCATCAAGTGTGCACTACTCTCTGTCCTGCCAGACTTCCCTC
TTTGTGTCATTAAATGGACACAGCTTAGAAACATTACAGAATAAAAANCCCAGACATCTTCAGTCCT
TNGGTGAATTAAATGCACATTAACNTNTGCTGNCTGNCNTAANCNTGANCCNAGGCTN
AAATTINATCTGGATNNNTNGGAAACNTNAAAACNNGGCCCCNCCNGCTTNTTNATTNCCCCANCCGG
NTNAANTTAAACCCNGGAATNANGNNNTTNCNGNNACNNNGGGGT

Human UBE2N pray sequence - var2 (SEQ ID NO: 210)

CGAGCGCCGCCCTGGNNNTACCCATACGACGTACCAGNATTACGCTCATATGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAAGTGGCATTATGCCCGGGGAGAGGAGCCGGAGACGAGACCA
GAGGCCGAACTCGGGTTCTGACAAGATGGCCGGGCTGCCCGCAGGATCATCAAGGAAACCCAGCGTTG
CTGGCAGAACCGATTCTGGCATCAAAGCGAACCGAGATGAGAGAACGCCCCTTATTTCATGTGGTCA
TTGCTGGCCCTCAGGATTCCCCCTTGAGGGAGGGACTTTAAACTTGAACTATTCCCTCAGAAGAATA
CCCAATGGCAGCCCTAAAGTACGTTCATGACAAAATTATCATCTAAATGTAGACAAGTGGAGA
ATATGTTAGATATTTGAAAGATAAGTGGTCCCCAGCACTGCAGATCCACAGTCTGCTATCGATCC
AGGCCTGTTAAGTGTCTCCAAATCCAGATGATCCATTAGCAAATGATGTAGCGGAGCAGTGGAGACCA
CGAACGCCAACGCAAGAACAGCTAGAGCATGGACTAGGCTATATGCCATGAATAATATTTAAATTGAT
ACGATCATCAAGTGTGCACTCTCTCTGTCCTGCCAGACTTCNTCTCTTGCTTGCATTTAATGGA
CACAGTCTTAAAACNTNTGAAATAAAAANCCANACNTTNNTCTGATNAATGCCNTTANCAA
NNNTNTNTGNCGNCTGNNTAAACCTGNCCNAGNCTNAANTNNNNNGTTTNNNAANNTTAAA
ANNNTGNCCCCNNNTTTTTNTNCCCCCNGNNTNAANNAANCNTNNANAANGNTTNTNGTNCCNN
GGNGGGNTTTTTTTTTTTINTN

Unigene Name: UNC84B Unigene ID: Hs.406612

Human UNC84B mRNA sequence - var1 (public gi: 31742497) (SEQ ID NO: 211)
CCGCCCGCCGCCCTTGTCCCGCGTCGCCGCTCTCGCTGCCCGCGCCCCGGGCCGGCGCTGTGTC
GCCCTGAGCGGAGCGCCGCCGGGATCCCCACCGCGAAAGGGGGCGCCCGGGCGGCCCTGGCCT
CGGACGCCCCGGCCGGCTAGAACGCCCGCAGCAGATTCTCTCAGGGGAAGAGTCCACATCCA
CCTCATCATGTCCTCGAAGAAGCCAGCGCTCACCGCTACTCCCAGGGTACGATGACGGCAGCAGC
AGCGGGAGGGAGCTGGTGGCTGGAGCTCAGAGCACCCCTGTTAAAGACAGTCCTCTCAGGACCTTGAAGA
GGAAATCCAGAACATGAAGGCCCTGCCCCAGGCCAACAGCTGGGGCTCTGATGACACACCTC
CTACTACAGTGTGCTGGCTGGTACGGACTCTGGTGGCTGGAGGAGGGACTCTGGGAGGAAACTGCA
GACGCCAACATGGGGTGAGGACCTGCCAGGACTCTGGTGGCTGGAGGAGGGACGGGCTGGCTCAGAGAGCAGCAGGG
CCAGCGGGCTTGTTGGGGCGCAAGGCCACCGAGGACTTCCTGGCTCTCTGGGCTACTCCTCTGAGGA
CGACTACGTGGGCTACTCGGATGTGGACCAGCAGAGTTCCAGCTCGGGCTCGAAGCGCCGCTCAGGG
GGGGGCTCTTACTCTGGATGGTGGCCACTCGCAGGCCGGCTCTCAGACTCTCTACTGGTGGGCTG
GCACCACTGGTACCGCCTGACCAACAGCTGCCCTCCTGACGTCTCGTTAACCAAGGCCCTCTC
GTCCTGAAAGACGTTCTCTGGTCTGCTGCCGCTGCTCTGCTGACGTGGCTGACGTATGGTCTTGG
TATTCTACCCCTATGGGCTGCAAGACATTCCACCTGCTTGGTTCTGGTGGGAGCGAAGGACAGCA
GGAGGCCGGATGGGGCTGGGAAGGCCAGAGACTCATGCCACATTCCAGGCTGAGCAGCGTGTATGTC
CCGGGTACACTCTGGAGCGCGCTGGAGCTTGTGCTGTAATTTCCTCAAATGGCAGAAGGAG
GCCATGCGGCTGGAACGCTGGAGCTGCCAGGGCTCTGGCCAGGGAGGTGGTGGCTGAGCC
ACGAGGACACCCCTGGCGCTGCTGGAGGGCTAGTGTGAGGCCGCCGTGAAGCTGCCCTGAAGGAGGATTCCG
CAGGAAACTGCTGCTCGCATCCAGGAAGAAACTGCTGCCCTGAGAGCAGAGCATCAGCAAGACTCAGAA
GACCTCTCAAGAAGATCGTCCGGGCTCCCAAGGAGTCCGAGGCTCGCATCCAGCAGCTGAAGTCAGAGT

Figure 36 part - 135

PCT/US04/06308

GGCAAAGCATGACCCAGGAGTCCTTCCAGGAGAGCTGTGAAGGAGCTGAGGCCGCTGGAGGACCAGCT
GGCCGGCTGCAGCAGGAGCTGGCGCTTGCACTGAAGCAGAGCTCGGTGGCGGAAGAAGTGGGCCTG
CTGCCCCAGCAGATCCAGGCCGTGCGGGACGACGTGGAATCTCAGTTCCGGCTGGATCAGTCAGTCTC
TTGCCCAGGTGGAGGGGCCGCGTGGGGCTCCTTCAGAGAGAGGAGATGCAAGCTCAGCTGCGAGAGCT
GGAGAGCAAGATCCTCACCCATGTGGCAGAGATGCAAGGGCAAGTCCGGCAGGGAGCCGGCTCCCTG
AGCCTGACGCTGCAGAAAGGTGTGATTGGAGTGACAGAGGAGCAGGTGCAACCACATCGTGAAGCAGG
CCCTGCACTGAGGCCATCGGCTGGCAGACTACGCCCTGGAGTCAGGAGGGCCAGCGT
CATCAGCACCCGATGTTCTGAGACCTACGAGACCAAGACGCCCTCCAGCCTTCCGGCATCCCCCTG
TGGTACCACTCCAGTCACCCCCAGTCATCCTCCAGCAGATGTGCAACCAGGCAACTGCTGGGCTTCC
AGGGGCCACAAGGCTTCGCCGTGGCCCTCTGCCGCATCCGCCACAGCGCTTACCTTAGAGCA
TGTGCCCAAGGCCCTGTCAACCAACAGCACTATCTCAGTGGCCCAAGGACTTCGCCATCTTGGGTT
GACGAAGACCTGCAAGCAGGAGGGGAGCCTCTGGCAAGTTCAGTACGATCAGGACGGCAGGCTATTG
AGACGTTCACTTTCAGGCCCTACGATGCCAGCTAACAGGTGGAGCTGGGAGCTGGGATCTGACTAACTG
GGGCCACCCCGAGTACACCTGCATCTACGGCTTCAGAGTGCATGGGAGCCGCCCAGTACGCCCTGCTTA
CTGGTGCCTGCTGCCAGGACATCTGGAGTGGTGAACAGCACCCGCCGCTTCCCCCACAGCCTGCTCG
GCGCTCTGACTTCTAGAGCACAAGAGAGGAGGCCAGTGGCCCATGAGATGAAAAGGACGGCAGGGC
TCTTGAGCAGCAGGTGGCTGAGGCCAGGCTCCAGCAGCTCCCTTCCCTCTGTGCC
GTGGCGTCTGCTTCCATCTGGAGTGTGTATATATGTAGCATATCATGGGGACTGGGAAGTGGGAG
AGTAGGACCTGACTGGCTGGCTGGGAGGGCTGGGAGCTGGGAGCTGATGAAGCAGGTGCCAGG
GCTGTGGAGGGCAAGCTACGGCTGGGCTAGGTGAGCTGCCTCTGCCCTGGCAAGGAAGCGAGGCC
CTCTGGAGGAGGGTGCTTAGCTCCAGAGCAGGATGGACTTCCCAGGCAGGAAGCACTTGATGGAGAG
CTGCCAGCTCTACAAGGTTAGTGCCTCCACCTAGGAAGCATGAACACAGGGCTCTGAGGGCC
TTCGACAAAGTGTATTTGCTCCGGGAGGGTAGCAGTGGGCATGGGCTTCTGTGCCCCAAAGGG
GACTGGCTGTGATCTCTAAGGGGCCAGGGCCAACCTGTAGGCTTCCCTCTGTGCTGGGAGCGTA
GTTGTTTCTCTCTGATGCTAGGTTGGGCCACCCCTGCTCCCTGTGCTAGGGCTGCCAGT
GCCCTGAGCTGCTTCCACATTCTCCAGGGTATGGAGACCTAGACCTGCTTGGGCCATTAGCAT
CTGGGGTATAGCAAGAAGAGTGGGAGCATGGAACCTCTGGCTCTGGGAGCTTCAGGGTATCGG
-GGTGCAGGTCTGCTGCACCGGCCCCACATCTAACCGGCCCTGATGTAGGGCTGCCGCTCAGGGCT
GCCCTGGCTCTGCAGCTTGTAGGCTGGCAGGACTACGTTCTGCTGGGAGCTTCTGCTGGGAGCT
TGGGGCTGGGGAGAGGCTGGCAGAAGTACCTGGGATAGGAAGGGGGAGGAGGGGACTTTAGAGC
CAGCAGGCCACTGTATTATGTATTTCAAGGTCTGTTTCTAAGCTGCTTCTGCTGGGAGCT
ATTCCCTAGCCCCGTTCTGTGGGCACTGGGTGATACTCAGTTCTGCTCTGGCCGTTCTGCTGGGGAGCT
GGGGCACTGGTCCGGCTGTGTGGTGGCTGGCTGGGGAGGGCAAGAAGGCCAGGCTTCA
CTGCAGCACTGAGCCTCAAATCCGCTCTGGAGCATGAGGCTGGATGAGTGGTGGTGA
CCATCCGAGGCAGGCCAGGGTTTGTGCTCTGCTGTCACAAATGCTGCACTATTGTTCTTAAGIT
TTTATCTCCAGATCTAATTATGCTATGCAAAAAAATGACGCCAAGAGCTG

Human UNC84B protein sequence - var1 (public gi: 31742498) (SEQ ID NO: 314)
MSRRSQRLLTRYSQGDDDGSSSSGGSSVAGSQSTLFKDSLRLTKRKSSNMKRLSPAPQLGPSSDAHTSY
SESLVHESWFPYPRSSLEELHGDAWGDELVRVRRRGTTGGSESSRASGLVGRKATEDFLGSSSGYSSEDDY
VGYSVDQQSSSSRLRSAVSRAGSLLWMVATSPGRLFRLLYWAGTTWYRLTTAASLLDVFLTRRFSSL
KTFLWFLPLLLLTCLYGAWFYFYGLQTFPALVSWAAKDSRSPDEGWEARDSSPHQAEQRVMSRV
HSLERRLLEALAAEFSSNWQKEAMRLERLELROQAGPQGGGGGLSHEDTLALLEGLVSRRREALKEDFRR
TAARIQEELSALRAEHQQDSEDLFKKIVRASQESEARIQQLKSEWQSMTQESFQESSVKELRRLEDQILAG
LQQELAALALKQSSVAEEVGLLPQQIQAVERDDVESQFPWISQFLARGGGGRVGLLQREEMQAQLREILES
KILTHVAEMQGKSAREAAASLSTLTQKEGVIGVTEEQVHHIVKQALQRYSEDREDIGLADYALESGGASVIS
TRCSETYETKTALLSLFGIPLWYHSQSPRVIQPDVHPGNCWAQGPQGFAVVRLSARIRPTAVTLEHVP
KALSPNSTISSAPKDFAIFGFDEDLQQEGTLLGKFTYDQDGEPIQTFHFQAPTMATYQVVELRILTNWGH
PEYTCIYRFRVHGEPAH

Human UNC84B pray sequence - var1 (SEQ ID NO: 212)
GATTTGGNAATNCTACAGGGNATGTTAACCACTACAATGGATGATGTATATAACTATCTATTGATG
ATGAAGATACCCCCACCAAACCCAAAAAAAGAGATCTTAAATACGACTCGACTATAGGGCAGGCCGCCA
TGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAATTCCACCCAAGCAG
TGGTATCACGCATAGTGGAAAAGCATGACCCAGGAGTCCTTCCAGGAGAGCTCTGTGAAGGAGCTGAGG
CGGCTGGAGGACCACTGGCCGGCTGCAGCAGGAGCTGGCGGCTCTGGCACTGAAGCAGAGCTCGGTGG
CGGAAGAAGTGGGCTGTGCCCCAGCAGATCCAGGGCTGCGGGACGACGTGGAATCTAGTTCCCGGC
CTGGATCAGTCAGTCCCTGCCCCAGGTGGAGGGGGCCGTGGGCTCTTCAGAGAGGAGATGCAA
GCTCAGCTGCGAGAGCTGGAGAGCAAGATCCTCACCCATGTGGCAGAGATGCAGGGCAAGTCGGCCAGGG
AAGCCGCGGCCCTCCCTGAGCCTGACGCTNCANAAAGAAGGTGTGATTGGAGTGAAGGAGCAGGTGCA
CCACATCGTGAAGCAGGCCCTGCAGCGTACAGTGAGGACCGCATCGGGCTGGCAGACTACGCCCTGGAG
TCAGGAGGGGCCAGCGTACAGCACCCGATGTTCTGAGACCTACNAGACCAAGACGGNNCTNCTCAGCC

Figure 36 part - 136

PCT/US04/06308

TCTTNGGNATCCCCCTGGGTACCACTCCCAGTCACCCNAGTCATNCTCANATGNGCACCCAGGCNAC
TGNTGGCCTNCAGGGCANNGGNTNNCCGGGNCCGNTTTCCNA

Human UNC84B pray sequence - var2 (SEQ ID NO: 213)

CGCCGCCATGGTAGTACCCATACGACGTACCACTGGCTCATGGCAGGCCAGTGAATT
CCACCCAAGCAAGTGGTATCAACGCAAGTGGCATTATGGCTGGGGGACGGCTGAGCCTATTCAAGCT
TCACATTTCAGGCCCTACGATGGCACGTAACAGTGGAGCTGGGAGCTGAGTACTAAGTGGGCCA
CCCCAGTACACCTGCATCTACCGCTTCAGAGTGCATGGGAGCCGAACTAGCCCTGCTTACTGGTG
CCCGCTGCCAGCCATCTGGAGTGGGTAACAGCACCCGCCCTCCCCACAGCTTGCTCGCGCTC
TGACTTCTAGGAGACAAGAGAGGAGCTGTGGCCCCATGCAGATGAAAAGACGGCAGGGTCTCTGA
GCANCAAGTGGCTGAGGCCGTAGCANGCTCCANCAGCTCCCTTCCTCCCTGTGCCCCGTGGCG
TCTGCTTCCATCCTGGAGTGTNTATATNTANCATATCATGGGGACTGG

Unigene Name: VCY2IP1 Unigene ID: Hs.66048 Clone ID: GD_181

Human VCY2IP1 mRNA sequence - var1 (public gi: 22002952) (SEQ ID NO: 214)

AAGATGGCGGGTGGCTGGATCTGGGCTGCCGGCTCCGAGCTCACTGCTCTCGTGGTGGCAGCG
AGTTGGGAGCCGGGGCTCTCACCTACGTCTGGAGGAGCTCGAAAGAGGCATCCGTCTGGGATGT
CGATCCTGGCGTCTGCAACCTGATGAACAGCTCAAGGTCTTGTGTCACACTCTGCCACCTCTCC
AGCATTGTGAAAGGCCAGGGAGCCTGACCACCGTGGAGACAACTGGAGACCCCTGGTCTCTGAACC
CATCAGACAAGTCCCTGTATGATGAGCTCGGAACCTTCTGTGGACCCCTGCCCTACAAGTACTGGT
GTTGGCTGGGCTCTGCCCTGGAGGAGACGGGGAGCTGCTGCTACAGACAGGGGCTCTCGCCTCACCAC
TTCTCCAGGCTCTGAAAGACAGAGAGATCCGGGACATCTGGCCACACGCCACCTGTGAGCCGC
CCATACTCACCACATCACCTGGCCACCTTCGGTACAGGGCTAGCCGGCACCCGCTGTGCTGGCTTCA
GGGGCGCTCCGGCTCCAGCTGCGGCTGAACCCCCCGCGCAGCTGCCAACACTGTGAGGGCTGTGCGAA
TTCTGGAGTACGTGGCTGAGTCTGGAGCCACCGTCCCCCTCGAGCTGCTGGAGCCCCGACCTCCG
GGGGCTTCTCAGGCTGGGCGCCCTGCTGTACATCTTCCCTGGAGGGCTGGGGATGCCCTTCTT
CCCGCTCAATGGCTTCACTGTGCTGGTCAACGGTGGCTCAAACCCCAAGTCCAGTTCTGGAAGCTGGT
CGGACCTGGACCGCGTGGATGCCGTCTGGTGAACCACCCCTGGCGCCAGCAGCTCCCCGGCTCAACA
GCCTGCTGCCGGCAAACCTGGCGAGCGCTCCGAGGTGGTGTGGTGGGGCTCTGGGACGACAGGCT
GCGAGGCTCATCTCCCCAACCTGGGGTCTGCTTCTCAACGCCCTGCCAGGGCCGGCTGGGGCTGGCG
CGGGCGAGGATGAGGCGGAGCTGGCGTGGAGCTCCGGCGAGCTGGGATCACCCCTCTGCCACTCA
GCCGCGGCCCGTGCACGCAAACCCACCGTGTCTTCTGAGAAGATGGCGTGGGGCTGGACATGTA
TGTGCTGACCCCGCCCTCCGCCCGCGAGCGCAGCGTGGCTCTGTGTGCGCCCTGCTGGTGTGGAC
CCCCGGGCCCCCGGAGAAGGTGGTGCCTGGCGTGTGGCTGGGCTGACCCCGCCCTGCCCTGG
ACGGCCTGGTCCGCTCGACACTTGAGTTCTCGAGAGAGCCGTGGTACGCCAGGACCTGGAGGG
GCCGGGGCGAGCCGAGAGCAAAGAGAGCGTGGGCTCCGGGACAGCTCGAAGAGAGAGGGCTCTGGCC
ACCCACCCCTAGACCTGGCCAGGAGCGCCCTGGGTGGCCGCAAGGAGCCAGCAGGGCTGAGGGCCCAC
GCAAGACTGAGAAAGAACCCAAGACCCCCCGGGAGTTGAGGAAAGACCCAAACCGAGTGTCTCCGGAC
CCAGCCGGGGAGGTGCCCGGGCAGCTCTTCTGTGCCAACCTCAAGAACAGCAATGCCAGCGGCA
CCCAAGCCCCGCAAAGCGCCAGCACGTCCACTCTGGCTTCCCGCCGGCAAATGGACCCCGCAGCC
CGCCCAGCCTCGATGTGAGAAGCCAGGCCCGGAGCTGCCAGGCCCTCTCCGCCCTCCAGCTGGT
GGCACGCCAGCCTGGAGCTGGGGCGATCCCAGCGGGGAGGAAGGCAACTGGAGCTGCCCTTGGCC
GCCAGCTCAATCCCAAGGCCACGCCAACCCCTCCCTGAGTCCCACCGGAGGCCAGGAGCAGC
GGCTGCTGCTGAGCCACTGCCGGGGGGAGGGCCGGAGACGCCCTCACCCACAGTGACCAACCCAC
GGTGACCCAGCCCTCAACTCCCGAGAGGTGGCTCCCGCACTCGACCCAGGTGGAGCTGCCCTGTC
GTGCTTGTGAGCAGGTGCTGCCCTCACCGGAGGTGGCTGAGGCTGGCTGAGGCTCCCGCTGCC
GCCCGGGGGCGCTGGCTTCCCAACAGTGTGGACTGTGCCCTGGTGTGACCCCTGTGAATTG
GCATCGCAAGGGCTGCAATGGCACCGCACCTGCTCCCCGGCAGCTGAATGACAGCAGTGGCCGG
TCACAGGAACGGGCGAGGTGGCTGGGGCTGGGGGGCGAGAGACGCCACCCACATCGGTCAAGGAGTCCCTG
CCCTGCTGACTCGGATCCCGTGGCCCTGGCCCCGGTGCAGCACTCAGACGAAGACACAGAGGGCTT
TGGAGTCCCTGCCACGACCCCTTGCTGACCCCTCAAGGTCCCCCACCAGTGCCTGACCCATCCAGC
ATCTGCATGGTGGACCCCGAGATGCTGCCCTTCAAGAACAGCACGGCAACGGAGAACGTCA
GGAAGCCCCCTGGCCCGCCCAACTCACCGCAGGCCAGGCCACTCCAGTGGCTGCTGCC
CAAGGGGCTGCTGGTGGGACCGTGCAGCCAGGCCACTCAGTGGCCAGGAGTGAGCCAGTGAGAAGGG
GCCGGGGCACCCCTGTCCAGAAAGTCTCAACCCCCAAGACTGCCACTCGAGGCCCCGTGGGGTCA
GCAGCCGGCCCCGGGTCTAGCCACCCCAAGTCCCCGGTCTACCTGGGACCTGGGCTACCTGCCAG
CGGGAGCAGGCCCACTGGGATGAGGAGTTCTCCAGCGCTGCCGGCTCTGCTACGTCA
GGCAGGACCCAGCGCAAGGAGGAAGGGCATGCCGGGGCTGGACCGCTACTGGCAGCAAGCAGCATT
GGGACCGTACCTGCAAGGTGACCCCTGATCCCCACTTCGACTCGGTGGGCTATGCA
GACCGACCCCCGGCACAGGGCGTGGCATCACGGTGTGGCAGCAACAGCATGGTCCATGCAGGAG
GACGCCCTCCGGCTGCAAGGTGGAGTTCTAGCCCCATGCCGACACGCCCCACTCAGCCCAGCCG

Figure 36 part - 137

PCT/US04/06308

CCTGTCCTAGATTCCAGCACATCAGAAATAACTGTGACTAC

Human VCY2IP1 mRNA sequence - var2 (public gi: 21739762) (SEQ ID NO: 215)
CCGAAGATGGCGCGGTGGATCTGGGCTGCCCGGCTCGAGCTCACTGCTCTCGTGGTGGCA
GCGAGTTGGGAGCCCGGGCTCCTCACCTACGTCTGGAGGAGCTCGAAAGAGGCATCCGGTCTGGGA
TGTGATCCTGGCTCTGCAACCTTGATGAAACAGCTCAAGGTCTTGCTCCGACACTCGCCACCTTC
TCCAGCATTGTGAAAGGCCAGCGGAGCTGCACCACCGTGGAGACAACCTGGAGACCCCTGGTCTCCTGA
ACCCATCAGACAAGTCCCTGTATGAGCTCCGGAACCTCTGTGGACCCCTGCCTCACAAGCTACT
GGTGGTGGCTGGCCCTGCTGGAGGAGACGGGGAGCTGCTGCTACAGACAGGGGCTTCGCTCAC
CACTCCCTCAGGCTCTGAAGGACAGAGAGATCCGGACATCTGGGACCCACGCCACCTGTGCA
CGCCCATACTCACCACCTGCCCCACCTCTGGTACTGGGCTCAGCTGGCACCCGTGTGCTGGCCT
TCAGGGGGCGCTCCGGCTCAGCTGCGCTGAACCCCCCGGCCAGCTGCCAACTCTGAGGGCTGTG
GAATTCTGGAGTACGTGGTGTAGTCTTGAGGCCACCGTCCCCCTCGAGCTGCTGGAGGCCCCGACCT
CCGGGGCTTCTCAGGCTGGCCGGCCCTGCTGCTACATCTCCCTGGAGGCCTGGGGATGCCGCTT
CTTCGGCGTCAATGGCTCACTGTGCTGGTCAACGGTGGCTCAAACCCAAGTCCAGTTCTGGAAGCTG
GTGCGGACCTGGACCGCGTGGATGCCGTGCTGGTACCCACCCCTGGCGCGACAGCTCCCTGGCCTCA
ACAGCCTGCTGCGCGCAAACCTGGCGAGCGCTCCGAGGTGGCTGCTGGGGGCTCTGGGACACAG
GCTGCGCAGGCTCATCTCCCCAACCTGGGGTCTGTTCTCAAGCCTGCGAGGGCGCTGCCG
GCGCGGGGAGGATGAGGCGGAGCTGGCGTGAACCTGGCGCAGCTGGGATCAGGCTCTGGC
TCAGCCGCGCCCGTGCAGCAAACCCACCGTGTCTTCCGAGAAGATGGCGTGGGCGCTGGACAT
GTATGTGCTGACCCGCCCTCCGGCGCGAGCGCAGCTGGGCTCTGGTGTGGGGCTCTGGGAC
CACCCCGGGGGGGCGAGAAGGTGGTGTGCGTGTGTTCCCGGGTTCGACCCCGCCCTAACCTCC
TGGACGGGCTGGTCCGCTGAGCACTTGAGGTTCTGCGAGAGCCGGTGGTGAACGCCCCAGGAC
GGGGCGGGGGCGAGCCGAGAGCAAAGAGAGCGTGGCTCCCGGACAGCTCGAAGAGAGAGGG
GCCACCCACCTAGACCTGGCCAGGAGCGCCCTGGGGTGGCCCGAAGGAGCCAGCACGGCTGAG
CACCGAAGACTGAGAAAGAAGCCAAGACCCCCCGGAGTTGAAGAAAGACCCAAACCGAGTGT
GACCCAGCCGGGGAGGTGGCCGGGAGCCTCTGTGCCCCAACCTCAAGAAGACGAATGCCAGG
GCACCCAAGCCCCGCAAAGGCCAACGACGTCCCACCTGGCTCCCGCGGTGGCAAATGGACCC
GCCCGCCCAGCTCCGATGTGGAGAAGGCCAGGCCCCCGAGTCAGCCTGGGCTCTCCGGCCTCC
GGTGGCCACGCCAGCCTGGAGCTGGGCGATCCCAGCGGGGGAGGAGAAGGCACTGGAGCT
GCCGCCAGCTCAATCCCAAGGCCACGCCACACCTCCCGTGAACCTGGGACCCCGAGGGCAGCG
AGCGCTGCTGCTGAGGCCACTCGGGGGGGGGAGGGCGGGGGAGGGCGGGGGAGGG
CACCGTGACCAAGCGCCACTAACCGCAGAGGTGGCTCCCGCACTCGACCCAGGCT
TCGGTGTCTTGAGCAGGTGCTGCCCATCCGGGGGACCCAGTGAAGGTGGCTGAGCCTCC
GTGGCCCCCGGGCGCGCGCTCGGCTTCCCCACACGATGTGACCTGTGCTGGTGT
TGAGCATCGCAAGCGGTGCAATGGCACCGGACCTGCGTCCCCCGCAGCTGAATGACAG
CGGTACAGGAACGGGAGGTGGCTGGGGCGAGGAGACGCCACCCACATCGGT
CCACCCCTGCTGACTCGGATCCCGTGCCCTGGGCCCCGGTGGCAGACTCAGAC
CTTGGAGTCCCTGCCACGCCCTTGCCCTGACCCCTCAAGGTCCTGGGACCCATCC
AGCATCTGCATGGTGGACCCGAGATGCTGCCCCAACAGACGACGGCAAAC
CCCCGAAGCCCCCTGGCCCGCCCAACTCAGCGCTGCCGCCCAAAGC
AACCAAGGGGCTTGCTGGGGACCGTGGCAGCCGACCACTCAGT
GGAGGGGGGGGACCCCTGTCCAGAAAGTCTCAACCCCCAAGACT
CCAGCAGCCGCCGGGGGTGTCCAGCCACGCCCTAACGGCT
CAGGGGGAGCAGGCCAACCTGGTGGATGAGGAGTTCT
AGTGGCCAGGACCGAGCGAAGGAGGAAGGAGCAT
ATTGGGACCGTGAACCTGCAAGGTGACCCCTGAT
AGAGACGCACGCCGGCACAGCGCTGGG
GATGACGCCTTCCCCGGCTGCAAGGTTGAGTCTAG
CCCCCATGCCGACACGCC
CCGCTGTCCCTAGATTCCAGCACATCAGAAATAACTGTGACTACACTGGTAAAAAAA
AA

Human VCY2IP1 mRNA sequence - var3 (public gi: 21104445) (SEQ ID NO: 216)
CCGAGGTGGCTGCTGGTGGGGCTCTGGGACGACAGGCTGGCAGGCTCATCTCCCCAAC
CTGGGGT
CGTGTCTTCAACGCCCTGGAGGCCGCTGCCGCTGGCGCGGGAGGATGAGGCGGAGCTGGCG
AGCCTCTGGCGCAGCTGGCATCACGCCCTGCCACTCAGCGCGGCCCGTGC
TGCTCTTGAGAAGATGGCGTGGGCCGGCTGGACATGTATGTGCTGC
GGCAGCGCTGGCTCTGTGTGCGCCCTGCTGGTGTGGCAGCCCGGCC
GGCAGCGCTGGCTCTGTGTGCGCCCTGCTGGACGGCGCT
GTGCTGTTCCCCGGITTGCAACCCCGCCCGCTGCCCTGGACGGCG
CTGGCGCTGGCGCTGCAGCACTTGAGG
TCCCTGCGAGAGGCCCGTGGTGA
GGGCTCCCGGGACAGCTCGAAGAGAGAGGCC
GGGGTGGGGGGCAAGGAGCCAGCACGG
AA

Figure 36 part - 138

GGGAGTTGAAGAAAGACCCAAACCGAGTGTCTCCGGACCCAGCCGGAGGTGGCAGCCCTC
TTCTGTGCCAACCTCAAGAAGACGAATGCCAGCGCACCAAGGCCAGCAGCTCCGAAAGGCCAGCAGTC
CACTCTGGCTTCCGCCGGTGGCAAATGGACCCCGCAGCCAGCAGCTGGTGCCTGGAGCTGGGCGAT
CCCCCAGTGCAGCCTGCGGCTCTCCGCCCTCCAGCTGGTGCCTGGAGCTGGCAGCAGCTGGAGCTGGGCGAT
CCCAGCGGGGAGGAGAAGGCACTGGAGCTGCCATTGGCCAGCTCAATCCAAAGGCCACGACACCC
TCCCTGAGTCCCACCGGAGGCCAGAGGGCAGCGAGGGCAGCTGGCTGAGCCACTGCGGGCGGG
AGGCCGGGCCAGACGCCCTCACCCACAGTGCACACCCACGGTGCACAGCCACTACCCGAGAGGT
GGCTCCCGCACTCGACCAGGGTGGAGCTCCCTGCGGTGCTTGGAGCTGGAGCTGCCATCC
GCCCCCAGTGGAGCTGGCTGAGGCTCCCGCTGCGTGGCCCCGGCGGGCGCTGGCTTCCCAC
ACGATGTGGACTGTGCGCTGGTGTACCCGTGAATTGAGCATCGCAAGGGGGTCCAATGGCACCGGC
ACCTGCGTCCCCGGCAGCTGAATGACAGCAGTGCCTGGTACAGGAACGGGAGGTGGCTGGGCC
GAGGAGACGCCACCCACATCGGTAGCGAGTCCCTGCCACCCCTGCTGACTCGGATCCCCTGCGCC
CCCCCGGTGCGCAGACTCAGACGAAGACACAGAGGGCTTGGAGTCCCTGCCACGCCCTTGCGCTGA
CCCCCTCAAGGTCCCCCACCACGCTGACCCATCCAGCATCTGCATGGTGGACCCGAGATGTC
CCCAAGACAGCACGGAAACGGAGAACGTCAGCCGACCCCGAAGGCCCTGGCCCCGCCAACTCACGCG
CTGCCGCCCCAAAGCCACTCCAGTGGCTGCTGCCAAAACCAAGGGGCTGGCTGGTGGGGACCGTGCCAG
CCGACCACTCAGTGGCCAGTGGAGCCAGTGAGAAGGGAGGCCGGCACCCCTGTCAGAAAGTCC
ACCCCCAAGACTGCCACTCGAGGCCCTGGGGTCAAGCCAGCAGCCGGGGGGGTGTCAGCC
CCAAGTCCCCGGTCACTGGACCTGGCTACCTGGGCTACCTGGGCTGGGGAGCAGCCGGGG
GTTCTCCAGCGTGCAGCGCTCTGCTACGTCACTCAGTGGCAGGACAGCGAAGGAGGAGCATG
CGGCCGCTGGAGCTGGAGCAGTGGCAGGACCTGGGACCTGAGGTGACCTGAGGTGACCC
CCACTTCGACTCGGTGGCATGCATACGTGGTACGGCAGAGACGACGCCGGCACAGGCGTGG
CACGGTGTGGCAGCAACAGCATGGTGTCCATGCAGGATGACGCCCTCCGGCTGCAAGGTGGAGTTC
TAGCCCCATGCCGACACGCCCTCACTCAGCCCAGCCGCTGCTCCCTAGATTGCCACATCAGAAAT
AAACTGTGACTTCCAAAAAA

Human VCY2IP1 mRNA sequence - var4 (public gi: 14250679) (SEQ ID NO: 217)
GGCACGAGGCCCTCTCGCCGTCATGGCTTCACTGTGCTGGTCAACGGTGGCTCAAACCCAAAGTC
CAGTTCTGGAAGCTGGTGCAGGCCCTGGACCGCGTGGATGCCGTGCTGGTGAACCCACCCCTGGGCC
AGCCTCCCGGCCCTCAACAGCCTGCTGCCGCCAAACTGGGGAGCGCTCCGAGGTGGCTGCTGGGG
GCTCCTGGGACGACAGGCTGCGCAGGCTCATCTCCCCAACCTGGGGTCTGTGTTCTCAACGCTGCGA
GGCCGCGTGCAGGCCCTGGCGCGAGGATGAGGCGGAGCTGGCGCTGAGCCTCCGGCAGCTGGG
ATCACGCCCTGCCACTCAGCGGCCGGGGCTGCCAGCCAACCCACCGCTGCTTGGAGAAGATGGGG
TGGGCCGGCTGGACATGTATGTGCTGACCCGCCCTGCCGGCGAGAAGGTGGTGGCGCGTGT
CGCCCTGCTGGTGTGGCACCGCAAGACTGAGAAAGCAAGGCCAGACCCCCGGAGTTGAAGAAAGACCC
CCGGCCGGCTGGGCTCTGGCAGGCCCTAGACCTGGCCAGGAGCGCCCTGGGGTGGCCGAAGGAGCA
GACGGGCTGGGCCCCACGCAAGACTGAGAAAGCAAGGCCAGACCCCCGGAGTTGAAGAAAGACCC
AACCGAGTGTCTCCGGACCCAGCCGGAGGTGCGCCGGCAGCCTTGTGCCAACCTCAAGAA
GACAATGCCAGGCCACCAAGGCCAGCAGCTCCGATGTGGAGAAGCCAGCCCCCAGTGCAGCCTGCC
GAAATGGACCCCGCAGCCGCCAGCCTCCGATGTGGAGAAGCCAGCCCCCAGTGCAGCCTGCC
CTCCGGCCTCCAGCTGGGCCACGCCAGCCCTGGAGCTGGGGCGATCCCAGCCGGGGAGGAGAAGGC
ACTGGAGCTGCCCTGGCGCCAGCTCAATCCAAAGGCCAGCAGCAGCCCTGGAGTCCCACCGGAGC
CCCGCAGAGGGCAGCGAGCGGCTGCGCTGAGGCCACTGCCGGGGGGAGGCCAGACGCCCTCAC
CCACAGTGCACACCCACCGCTGAGGCCACTGCCGGGGGGAGGCCAGACGCCCTGAGTGGACCTG
GGTGGAGCTGGCTGCGTGGCCCCGGCGCCGGCTGGCTTCCCAACCGATGTGGACCTGCGCTGG
CTGAGCTCCCGCTGCGTGGCCCCGGCGCCGGCTGGCTTCCCAACCGATGTGGACCTGCGCTGG
TGTCAACCTGTGAATTGAGCATCGCAAGGCGGTGCAATGGCACCGGACCTGCGTCCCCGGCAGCTC
GAATGACAGCAGTGGCCGGTACAGGAACGGGAGGTGGCTGGGGCCAGGAGACGCCACCCACATCG
GTCAAGCGAGTCCCTGCCAACCTGTGACTCGGATCCCGTGCCTGGGGCGTGGCAGACTCAG
ACGAAGACACAGAGGGCTTGGAGTCCCTGCCACGCCCTTGCCCTGACCCCTCAAGGTCCCCCACC
ACTGCGTGCACCCATCCAGCATCTGCATGGTGGACCCGAGATGCTGCCCTCAAGACAGCACGCC
GAGAACGTCAGCCGACCCGGAAAGCCCCGGCCAACTCACGCCCTGCCGCCAAAGGCCACTC
CAGTGGCTGCTGCCAAAAACCAAGGGGCTTGGTGGGGACCGTGCCAGCCGACCAACTCAGTGGGG
TGAGCCCAGTGAAGAAGGGAGGCCGGCACCCCTGCTGCCAGAAAGTCCCTCAACCCCAAGACTGCC
GGCCCGTGGGGTCAGCCAGCAGGCCGGGGGGTGTAGGCCACCCCAAGTCCCAGGGCTACCTGG
ACCTGGCCCTACCTGCGTACGGGAGCAGGCCACCTGGTGGATGAGGAGTTCTCCAGCGTGC
GCTCTGCTACCGTCACTGAGGCCAGGAGCAGCGCAAGGAGGAAGGCACTGCCGCTGGACCG
CTGGCCAGCAAGCAGCATGGGACGGTGCACCTGAGGTGACCCCTGATCCCCACTTCGACTCG
TGCATACGTGGTACGCAGAGACGACGCCGGCACAGGCCGTGGCATCACGGTGTGGGAGCA
CATGGTGTCCATGCAGGATGACGCCCTCCGGCTTGCAGGTGGAGTTCTAGCCCCATGCC
CCCCACTCAGCCCAGCCGCTGCTCCCTAGATTGCCACATCAGAAATAACTGTGACTACACTGAAA

Figure 36 part - 139

PCT/US04/06308

AAAAAAAAAAAAA

Human VCY2IP1 mRNA sequence - var5 (public gi: 13938254) (SEQ ID NO: 218)
GACACCGACAGGGACTCGTCCACCTCGTGTCTTGAGCAGGTGCTGCCGCATCCGCCCAACCAAGTG
AGGCTGGCTGAGCCTCCGCTGCGTGGCCCCGGCGCGCCTCGGCTTCCCACAGATGTGGACCT
GTGCTGGTGTACCCCTGTAATTGAGCATCGCAAGGCGGTGCCAATGCCACGGCACCTGCGTCCCC
GGCAGCTCGAATGACAGCAGTGCCTGGTCACAGGAACGGGCAGGTGGGCTGGGGCCAGGAGACGCCAC
CCACATCGTCAGCGACTCTGGCCACCCCTGTGACTCGGATCCCCTGCGCAGGCCCTTGCGTACCCCTGCG
AGACTCAGACGAAGACACAGAGGGCTTGGAGTCCTCGCCACGACCCTTGCGTACCCCTGCG
CCCCCAGGACTGAGGGCTTGGAGTCCTCGCCACGACCCTTGCGTACCCCTGCG
GGAAACAGGAGAACGTCAAGCGCACCCGAAGGCCCTGGCCGGCAACTCACGCGTGC
AGCCACTCCAGTGGCTGCTGCCAAAACAAGGGGTTGCTGGGGACCGTGCCAGCGACCACTCAGT
GCCCGAGGTGAGGCCAGTGAGAAGGGAGGCCGGCACCCCTGTCCAGAAAGTCC
CCACTCGAGGCCGCTGGGGTCAAGCAGCAGCGGCCGGGGGTGTCAGCCACCC
CTAACCTGGACCTGGCCTACCTGGCAGCGGGAGCAGCGCCACCTGGTGGATGAGGAGTTCTCAGCG
GTGCGCGCGCTGCTACGTCACTGGCAGGACAGCGCAAGGAGGAAGGCATGCCGGCGTCTGG
ACCGCCTACTGCCAGCAAGCAGCATTGGACCGTGACCTGCAAGGTGACCTGATCCC
GGTGGCCATGCACTGTGGTACGCAAGGAGACGCAAGCGCACCGCGCTGGCAT
AGCAACAGCAGGGTCCATGCAAGGATGACGCCCTCCGGCTGCAAGGTGGAGTTCTAG
GACACGCCCAACTCAGCCCAGCCGCTGTCCCTAGATTCA
ACTTAAAAAAAAAAAAA

Human VCY2IP1 mRNA sequence - var6 (public gi: 14042428) (SEQ ID NO: 219)
AAGATGGCGGGCTGGATCTGGGCTGCCCGGGCTCCGAGCTACTGCTCTCGTGGTGGGCAGCG
AGTTCGGGAGCCGGGGCTCTCACCTACGTCTGGAGGAGCTCGAAAGAGGCATCCGGTCTGGGATGT
CGATCTGGCGTCTGCAACCTGTGATGAAAGCTCAAGGTCTTGTGTCCTGACACTCTGCCACCTCTCC
AGCATTGTGAAAGGCCAGGGAGCCTGCAACCAACGGTGGAGACACCTGGAGACCC
CATCAGACAAGTCCCTGTATGATGAGCTCCGGAACCTTCTGTGGACCC
CTGCTCTCACAGCTACAGACAGGGGGCTTCTGCCCTACACGGTGTGG
GTTGGCTGGGCTCTGCCCTGGAGGAGACGGGGGAGCTGCTGCTACAGACAGGGGG
TTCCCTCCAGGTCTGAAAGGACAGAGAGATCCGGGACATCTGCC
CCATACTCACCATCACCTGCCACCTCGGTACTGGCTCAGCGG
GGGGCGCTCCGGCTCAGCTGGCTGAACCCCCCGCGCAGCTGCC
TTCCCTGGAGTACGTGGCTGAGTCTCTGGAGCCACCGTCCCC
GGGGCTTCCCTCAGGCTGGGGCGCCCTGCTGCTACATCT
CGCGCTCAATGGCTTCACTGTGCTGGTCAACCGTGGCTCAA
GGCGACCTGGACCCGGCTGGATGCCCTGGCTGGTGA
GCCCTGCTGCCGGCGCAAACCTGGCGAGCGCCTGGAGGTGGCT
GGCGAGGCTCATCTCCCCAACCTGGGGTCTGTTCTCAACGCC
CGCGCGAGGATGAGGCGAGCTGGCGTGA
GCCCGGGCCCCGGTGCAGCAAACCCACCGTGC
TGTGCTGCACCCGCCCTCCGCCCGCAGGCCACGCTGG
CCCCCGGGCCCCGGCGAGAAGGTGGTGC
ACGGCTGGTCCGCTGCAGCACTTGAGGTTCT
GCCGGGGGAGAGCAAAGAGAGCGTGG
ACCCACCCCTAGACCTGGCAGAGCGCCTGGGG
GCAAGACTGAGAAAAGCCAAGACCCCCGGAG
CCAGCGCGGGAGGTGCGCGGGCAGCG
CCCAAGGCGCAGCAGCACG
CGCCAGCCTCGATGTGGAGAAGCG
GGCCACGCCAGCCTGGAGCTGGGGCG
GCCAGCTCAATCCCAAGGCCACGCC
GGCTGCGCTGAGCCACTGCG
GGTGACCACGCCCTCACTACCC
GTGCTCTTGAGCAGGTGCTGCC
GCCCGGGCGCGCGCTCG
GCATCGCAAGGCGGTG
TCACAGGAACGGCAGGTGG
CCCTGCTGACTCGG
TGGAGTCCCT
ATCTGC
CGGAAG
CCAAGGG
Figure 36 part - 140

PCT/US04/06308

AGGCCGGGCACCCCTGTCCAGAAAGTCTCAACCCCCAAGACTGCCACTCGAGGCCCCGTGGGGTCAGCC
AGCAGCCGGCCCGGGGTGTCAAGCCACCCACCCAAGTCCCCGGTCTACCTGGACCTGGCTACCTGCCCA
GCGGGAGCAGCGCCCACCTGGGGATGAGGAGTTCTTCAGCGCGTGCAGCGCTGTACGTACAG
TGGCCAGGACCAGCGCAAGGAGGAAGGCATGCGGGCCGTCTGGACGCGCTACTGGCCAGCAAGCAGCAT
TGGGACCGTGACCTGCAGGTGACCTGTACCCCCACTTTGACTCGGTGGCCATGCATACTGGTACCGAG
AGACGCACGCCGGCACCGGGCTGGCATCACGGTGTGGCAGCAACAGCATGGTGTCCATGCAGGA
TGACGCCCTCCGGGCTGCAAGGTGGAGTTCTAGCCCCATGCCGACACGCCCAACTCAGCCCAGCCC
GCCTGTCCCTAGATTCAAGCCACATCAGAAATAACTGTGACTACACTTG

Human VCY2IP1 mRNA sequence - var7 (public gi: 13623504) (SEQ ID NO: 220)
GGCACGAGGCCCTGTATGATGAGCTCCGGAACCTTCTGGACCCCTGCCTCTCACAGCTACTGGTGT
GGCTGGGCCCTGCTGGAGGAGACGGGGAGCTGCTGCTACAGACAGGGGCTTCGCTCACCACCTC
CTCCAGGTCCCTGAAGGACAGAGAGATCCGGACATCTGGCCACCGCCCCACCTGTGAGCCGCCA
TACTCACCACCTGCCAACCTCGGTACTGGCTCAGCTGGCACCCGCTGTGCCCTGGCTTCAGGG
GGCGCTCCGGCTCAGCTGGCTGAACCCCCCGGCGAGCTGCCAACTCTGAGGGCTGTGCGAAATT
CTGGAGTACGTGGCTGAGTCTCTGGAGCCACCGTCCCCCTCGAGCTGCTGGAGCCCCCACCCTCCGGG
GCTTCCTCAGGCTGGCCGGCCCTGCTGCTACATCTTCCTGGAGGCTCGGGGATGCCCTTCTTCG
CGTCAATGGCTTACTGTGCTGTCACGGTGGCTAAACCCCAAGTCTCTGGAGGCTGTGCG
CACCTGGACCGCGTGGATGCCGTGCTGTGACCCACCTGGCGCGACGCCCTCCCCGGCTCAACAGCC
TGCTGCGCCGCAAACCTGGCGAGCGCTCCGAGGTTGGCTGCTGCTGGGGGCTCTGGGAGCACAGGCTGCG
CAGGCTCATCTCCCCAACCTGGGGTCTGTTCTCAACGCCCTGCGAGGCGCGTGCAGGCTGGCGCG
GGCGAGGATGAGGGAGCTGGCGTGCAGGCTCTGGCGAGCTGGCAGCTGGCATCACGCCCTGCACTCAGCC
GGGGCCCCGTGCCAGCAAACCCACCGTGTCTTCAGAAGATGGCGTGGGCCGGCTGACATGTATGT
GCTGCACCCGCCCTCCGCCGGCGCGAGCGCACGCTGCCCTGTGTGCGCCCTGCTGGTGTGGCACCCC
GCCGGCCCCGGCGAGAAGGTGGCGCGTGTGTTCCCGGTTGACCCCGCCGCTGCCCTGGAGC
GCCCTGGTCCGCTGCAAGCACTTGAGGTTCTGCGAGAGGCCGTGGTACGCCAGGACCTGGAGGGCC
GGGGCGAGCGAGAGCAAAGAGAGCGTGGCTCCCGGGACAGCTGAAGAGAGGGCTCCGGCACCC
CACCCCTAGACCTGGCCAGGAGGCCCTGGGTGGCCCGCAAGGAGCCAGCACGGCTGAGGCCCCAACCGA
AGACTGAGAAAGAACCAAGACCCCCCGGAGTTGAAGAAAAGACCCAAACCGAGTGTCTCCGGACCC
GCCGGGGAGGTGGCCGGCGAGCTTCTGTGCCAACCTCAAGAACGCAATGCCAGGCGGACCC
AAGCCCCGAAAGGCCAGCACGCTCCACTCTGGCTCCCGGGTGGCAATGGACCCCGCACCCCG
CCAGCCCTCGATGGAGAACCGAGCCCCCGGAGCTGCCCTGCGGCTCTCCGGCTCCAGCTGGTGG
CACGCCAGCTGGAGCTGGGCCATCCCCAGCGGGGGAGGAGAACGGACTGGAGCTGCCCTTGGCC
AGCTCAATCCCCAAGGCCAGCACACCCCTCCCTGAGTCCCACGGAGGCCCGAGAGGGAGCGAGCGG
TGTGCTGAGGCCCACGGGGGGGGGGAGGGGGGCCAGACGCCCTACCCACAGTGACCAACACCCACGGT
GACCACGGCCACTACCGGAGGGAGCTGGCTCCCGCACTCGACCGAGGTGGAGCTCCCTGTCGGT
TCTTTGAGCAGGTGCTGCCGCATCGCCCCCACCAGTGAGGCTGGCTGAGCCTCCCGTGCCTGGCC
CCCCGGCGGGCGCTGGCTTCCCCACAGATGTGGACCTGTGCTGGTGTCAACCTGTGAATTGAGCA
TCGCAAGGGGGTGCACATGGCACCGCACCTGCGTCCCCCGGAGCTCGAATGACAGCAGTGCCTGG
CAGGAACGGGAGGTGGCTGGGGCCAGGAGACGCCACCCACATGGTCAGCGAGTCCTGCCACCC
TGTCTGACTCGGATCCCGTGCCTGGCCCTGGCCCCGGTGCAGACTCAGACGAAGACACAGAGGGCTTGG
AGTCCCTGCCACGACCCCTTGCTGACCCCTCAAGGTCCCCCACCAGCTGCTGACCCATCCAGCATC
TGCATGGTGGACCCAGATGCTGCCCTCAAGACAGCACGGAAACGTCAGCGCACCCGG
AGCCCCCTGGCCCGCCCAACTCACGCGTGCCTGGCCCCAAAGCCTCCAGTGCTGCTGCCAAACCA
GGGGCTTGCTGGTGGGAGCCGTGCCAGCCACCTCAGTGCCCCGGAGTGAGCCCAAGTGAGAAGGGAGC
CGGGCACCCCTGTCAGAAAGTCTCAACCCCCAAGACTGCCACTCGAGGGCCCTGGGGTCACTGCCAGCG
GCCGGCCGGGGTGTGACGCCACCCACCGAGTCCCCTGACTCTGGACCTGGCTACTGCCAGCG
GAGCAGGGGGACCTGGGTGAGGAGTCTTCCAGGGCTGGCGCTGTGCTACGTACAGTCAGTGG
CAGGACAGCGCAAGGAGGAAGGGCATGCCGGCTCTGGACCGCTACTGCCAGCAAGCAGCATGG
ACCGTGAACCTGCAAGGTGACCCGATCCCCACTTGACTCGGTGCCATGCAACAGCAGTGGTACCGAGAGAC
GCACGCCGGCACCGCGTGGCATCACGGTGTGGCAGCAACAGCATGGTGTCCATGCAAGGATGAC
GCCCTCCGGCTGCAAGGTGGAGTTCTAGCCCCCATGCCAGCACGCCACCCACTCAGGCCAGCCCC
GTCCCCTAGATTCAAGGCCACATCAGAAAATAAAACTGTGACTACACTTGAAAAAAAGAAAAAA

Human VCY2IP1 mRNA sequence - var8 (public gi: 10434893) (SEQ ID NO: 221)
GAACCCCCAAGTCCAGTTCTGGAAAGCTGGCGGCACCTGGACCGCGTGGATGCCGTGCTGGTGACCCAC
CCTGGCGCCGACAGCTCCCCGGCTCAACAGCCTGCTGCCGCAAACCTGGCGGAGCGCTCCGAGGTGG
CTGCTGGTGGGGGCTCCTGGGACGACAGGCTGCCAGGGCTCATCTCCCCAACCTGGGGTGTGTTCTT
CAACGCCCTGCCAGGCCGCGTCCGGCTGGCGCGGGAGGATGAGGCCGAGCTGGCGCTGAGCCCTCTG
GCCGAGCTGGGCATCACGCCCTGCCACTCAGCCGCCGGCCCGTGCACGCCAACCCACCGTGTCTTCG
AGAAGATGGCGTGGCCGGCTGGACATGTATGTGCTGCACCCGCCCTGCCGGCGCCGAGCGCACGCT
GGCCTCTGTGTGCCCTGCTGGCGACCCGCCGGCCGGAGAAGGTGGTGCCTGCTGTGTT

Figure 36 part - 141

PCT/US04/06308

CCCGTTGCACCCGCCGCTGCCCTGGACGCCCTGGTCGCCCTGCAGCACTTGAGGTTCCGTGAG
AGCCCGTGGTGAACGCCAGGACCTGGAGGGCCGGCGAGCGAGAGCAAAGAGAGGGTGGGCTCCCC
GGACAGCTGAAGAGAGAGGGCCTCCCTGGCCACCCACCTAGACCTGGCCAGGAGGCCCTGGGCTGGC
CGCAAGGAGCCAGCACGGCTGAGGCCAACGCAAGACTGAGAAAGAAGGCCAGACCCCCGGAGTTGA
AGAAAGACCCAAACCGAGTGTCTCCGGACCCAGCCGCGGGAGGTGCGCCGGCAGCCTCTGTGCC
CAACCTCAAGAAAGCAATGCCAGGCCACCAAGCCCCGAAAGCCCCAGCACGTCCCACCTGTGCC
TTCCCGCCGGTGGCAAATGACCCCGCAGCCCGCCAGCTCGATGTGGAGAAGCCAGCCCCCAGTG
CAGCCTGGGCTCTCGGCTCCAGCTGGTGGCCACGCCAGCTGGAGCTGGGCGATCCAGCCGG
GGAGGAGAAGGCACTGGAGCTGCCCTTGCGCCAGCTCAATCCAAGGCCAGCACACCCCTCCCTGAG
TCCCACCGGAGCCCCGAGGCCAGGAGCGAGCGCTGTGCTGAGCCACTGCCGGGGGGAGGGCGGGC
CAGACGCCACTAACAGTGGACCAACCCACGGTACCGACGCCCTCACTACCCGAGAGGTGGGCTCCCC
GCACCTGACCGAGGGTGGAGCTCCCTGTGCGTGTGAGCAGGTGCTGCCGCATCCGCCACC
AGTGGAGGCTGGCTGAGCTCCCGCTGCGTGGCCCCGGCGCGCTGGCTTCCCACACGATGTGG
ACCTGTGCTGGTGTACCCCTGTGAATTGAGCATCGCAAGGGTGCCTAGGCACCCGACCTGCGTC
CCCCGGCAGCTGAATGACAGCAGTGCCGGTACAGGAACGGCAGGTGGCTGGGGGGAGGAGACG
CCACCCACATCGGTACGGAGTCCCTGTGCGTGTGAGCAGGTGCTGCCGCATCCGCCACC
CGGAGACTCAGACGAAGACACAGAGGGCTTGAGTCCCTGCCACGCCCTTGCTGACCCCTCAA
GGTCCCCCACCACCTGCCGTGACCCATCCAGCAGTGTGAGGAGATGTGCTGCCGCCTTCCCAGACA
GCACGGCAAACGGAGAACGTCAGCCGACCCGGAAAGCCCCCTGGGGGCCACCCACTCACGCGCTGCCGCC
CCAAAGCCACTCCAGTGGCTGCTGCCAAAACCAAGGGCTTGCTGGTGGGACCGTGCAGCCGACCACT
CAGTGGCCGGAGTGGAGGCCAGTGAGAAGGGAGGGCCGGCACCCCTGTGAGCCACCCACCAAG
ACTGCCACTCAGGCCGGCTGGGGTCAAGCCAGCAGCCGGCCGGGGTGTGAGCCACCCACCAAGTCCC
CGGTACTCTGGACCTGGCTACCTGCCAGCAGGGAGCAGGCCACCTGGTGGATGAGGAGCTTTCA
GCCGCTGGCGCCTGTACGTACAGTGGCAGGACCGCAGCGAAGGAGGAAGGCATGCCGCCGTC
CTGGACCGCCTACTGGCAGCAAGCAGCATTGGACCGTGCAGGTGACCTGATCCCCACTTCG
ACTCGGTGGCATGACAGTGGTACGAGACGACGCCGGCACCGCGCTGGCATCACGGTGT
GGCAGCAACACCATGGTGTCCATGCAGGATGACGCCCTCCGGCTTGCAAGGTGGAGTTAGCCCCAT
CGCCGACACGCCCTACTGCCAGCCAGCCGCTGTCCCTAGATTGCCACATCAGAAATAACTGTGA
CTAC

Human VCY2IP1 mRNA sequence - var9 (public gi: 7022843) (SEQ ID NO: 222)
CATCTCCCCAACCTGGGGTCGTGTTCTCAACGCCCTGCAGGCCGCTGGCGCTGGCCGGCTGGGCCGGAG
GATGAGGCCAGCTGGCGTGGAGCTGGCTCTGGCGAGCTGGCATACGCCCTGCCACTCAGCCGCGGCC
CCGTGCCAGCAAACCCACCGTCTTCGAGAAAGATGGCGTGGGACATGTATGTGCTGCA
CCCGCCCTCCGCCGGCGCGAGCCAGCTGGCTCTGTGTGCGCCCTGCTGGTGTGGCACCCGCCGGC
CCCGCGAGAGGGTGGCTGCGCTGCTGTTCCCCGGTTGACGCCAGGACCTGGAGGGCCGGGGCG
TCGGCTGAGCACTTGAGGTTCTCTGAGAGGCCAGCTGGGACAGCTGAAGAGAGAGGGCTCTGGCCACCCACCT
AGCCGAGAGCAAAGAGAGCGTGGGCTCCCGGGCAAGGAGGCCAGCAGGGCTGAGGGCCACGCAAGACTG
AGACCTGGCAGGAGGCCCTGGGGTGGCCGCAAGGAGGCCAGCAGGGCTGAGGGCCACGCAAGACTG
AGAAAGAAGCAAGACCCCGGGAGTTGAAGAAAAGACCCAAACCGAGTGTCTCCGGACCCAGCCGCC
GGAGGTGCGCCGGGAGCCCTCTGTGCCAACCTCAAGAAGACGAATGCCAGGCCACCAAGGCC
CGAAAGGCCAGCACCTCCACTCTGGCTCCGCCGGTGGCAAATGGACCCCGCAGCCGCCAGCC
TCGGATGTGGAGAACCCAGGCCCTGGGGTGGCCGCAAGGAGGCCAGCAGGGCTGAGGGCCACGCTCA
CAGCCTGGAGCTGGGCCGATCCAGCCGGGAGGAAGGCAGTGGAGCTGCCCTGGCCAGCT
ATCCCAGGCCACGCACCCCTCCCTGAGTCCACGGGAGCCCCGAGAGGGCAGCGAGCGCTGTGACCAC
TGAGCCCAGTGGGGGGGGAGGCCGGGGAGGCCAGCAGGCCACCCACAGTGACCAACCCACGGTGACCAC
GCCCTCACTACCCCGAGGGTGGCTCCCCCGCAAGTGTGAGGCTGGCTGAGCCCTCCCGTGGCTGGCCAGCT
GAGCAGGTGCTGCCCATCCGCCCCACAGTGTGAGGCTGGCTGAGCCCTCCCGTGGCTGGCCAGCT
CGCGGGCTGCCATGGCACGGCACCTGCCAGCTGGGAGGAGACGCCACCCACATGGTCAAGCAGGAGTCCCT
ACTCGGATCCCGTGCCCTGGCCCCGGTGCAGCAACTCAGACGAAGACACAGAGGGCTTGGAGTCCC
TGGCCACGACCTTGTGCTGACCCCTCAAGGTCCCCCACCAGTGCCTGACCCATCCAGCATCTGCATG
GTGGACCCCGAGATGCTGCCCCCAAGACAGCACGGAAACGTCAGGCCACCCGGAGCCCC
TGGCCCGCCCAACTCACGCCAGCCGCCCCAAAGCCACTCCAGTGGCTGCTGCCAAAACCAAGGGCT
TGCTGGTGGGACCGTGCCAGGCCAGCCACTCAGTGGCCAGGAGCTGAGGCCAGCTGAGAAGGGAGGCCAG
CCCGCTGCCAGAAAGTCTCAACCCCAAGACTGCCACTCAGGCCAGGCCCCGGTGGGCTAGCCAGGCCAG
CCGGGGTGTAGCCACCCACCAAGTCCCCGGTCTACCTGGACCTGGCTACGTGCTACAGTGGCCAGGAC
CGCCCACTGGTGGATGAGGAGTTCTCCAGGCCAGCCGCTCTGGACCTGGCTACGTGCTACAGTGGCCAG
CAGCGCAAGGAGGAAGGCATGCCGGCTCTGGACCGCTACTGGCAGCAAGCAGCATGGTACCGAGAGACGCC
ACCTGCAGGTGACCCCTGATCCCCACTTCGACTCGGTGGCATGACAGTGGTACCGAGAGACGCC
CCGGCACCGGCCCTGGGATCACGGTGTGGCATGACAGGATGACGCCCT
CGGGCTGCCAGGGTGGAGTTCTAGCCCCATGCCACGCCAGCCCTGTCCCT

Figure 36 part - 142

PCT/US04/06308

AGATTCAAGCCACATCAGAAATAAAGTGTGACTACACTTG

Human VCY2IP1 Protein sequence - var1 (public gi: 22002953) (SEQ ID NO: 315)
MAAVAGSGAAAAPSSLVVGSEFGSPGLLTYVLEELERGIRSWDVPGVNLDEQLKVFVSRSATFSS
IVKGQSLHHRGDNLETLVLLNPSDKSLYDELRLNLLDPASHKLLVLAGLCLEETGELLQTGGFSPHHF
LQLVKDRREIRDILATTTPPVOPPILTITCPFGDWQAQPAPAVPGLQGALRQLQLRNPPAQLPNSEGCLCE
LEYVAESLEPPSPFELLEPPTSGGFLRLGRPCCYIFPGGLGDAAFFAVNGFTVLVNGGSNPKSSFWKLVR
HLDRLDAVLVTHPGADSLPGLNSLLRRKLAERSEVAAGGGSWDDRLRRLISPNLGVVFVNACEAASRLAR
GEDEAELALSLLAQLGITPLPLSRGPVPAKPTVLFKEKMVGVRIDMYVLHPPSAGAERTLASVCALLVWHP
AGPGEKVVRLFPGCTPPACLLDGLVRLQHRLFLREPVTQPDLEGPGRAESKEVGSRDSSKREGLLAT
HPRPGQERPGVARKEPARAEAPRKTEKEAKTPRELKKDPKPSVSRTQPREVRAASSVPNLKKTNAQAAP
KPRKAPSTSHSGFPPVANGPRSPPSLRCGEASPPSAACGSPASQVLVATPSLELGPIPAGEEKALELPLAA
SSIIPRRTPSPESHRSPAEGSERLSSLSPRGGEAGPDASPTVTTPTSLPAEVGSPHSTEVDESLSV
SFEQVLPPSAPTSEAGLSSLPLRGPRARRSASPHVDLCLVSPCEFEHRKAVPMAAPAPASPGSSNDSSA
QERAGGLGAEETPPTSVSESLPTSDSDPVPLAPGAADSDEDTEGFGVPRHDPLPDPLKVPPPLPDPSI
CMVDPEMPLPKTARQTENVSRTKPLARPNSRAAAPKATPVAAAKTKGLAGGDRASRPLSARSEPSEKGG
RAPLSRKSTSPTKATRGPSGSASSRPGVSATPPKSPVYLDLAYLPGSSAHLVDEEFFQRVRALCYVISG
QDQRKEEGMRAVLDALLASKQHWDRDLQVTЛИPTFDSVAMHTWYAETHARHQALGITVLGNSNMVSMQDD
AFPACKVEF

Human VCY2IP1 Protein sequence - var2 (public gi: 21739763) (SEQ ID NO: 316)
PKMAAVAGSGAAAAPSSLVVGSEFGSPGLLTYVLEELERGIRSWDVPGVNLDEQLKVFVSRSATF
SSIVKGQSLHHRGDNLETLVLLNPSDKSLYDELRLNLLDPASHKLLVLAGPCLEETGELLQTGGFSPH
HFLQLVKDRREIRDILATTTPPVQOPPILTITCPFGDWQAQPAPAVPGLQGALRQLQLRNPPAQLPNSEGCLC
EFLEYVAESLEPPSPFELLEPPTSGGFLRLGRPCCYIFPGGLGDAAFFAVNGFTVLVNGGSNPKSSFWKL
VRHLDRLDAVLVTHPGADSLPGLNSLLRRKLAERSEVAAGGGSWDDRLRRLISPNLGVVFVNACEAASRL
ARGEDEAELALSLLAQLGITPLPLSRGPVPAKPTVLFKEKMVGVRIDMYVLHPPSAGAERTLASVCALLVW
HPAGPGEKVVRLFPGCTPPAYLLDGLVRLQHRLFLREPVTQPDLEGPGRAESKEVGSRDSSKREGLL
ATHPRPGQERPGVARKEPARAEAPRKTEKEAKTPRELKKDPKPSVSRTQPREVRAASSVPNLKKTNAQA
APKPRKAPSTSHSGFPPVANGPRSPPSLRCGEASPPSAACGSPASQVLVATPSLELGPIPAGEEKALELPL
AASSIPRRTPSPESHRSPAEGSERLSSLSPRGGEAGPDASPTVTTPTSLPAEVGSPHSTEVDESL
SFSFEQVLPPSAPTSEAGLSSLPLRGPRARRSASPHVDLCLVSPCEFEHRKAVPMAAPAPASPGSSNDSSA
RSQERAGGLGAEETPPTSVSESLPTSDSDPVPLAPGAADSDEDTEGFGVPRHDPLPDPLKVPPPLPDPS
SICMVDPEMPLPKTARQTENVSRTKPLARPNSRAAAPKATPVAAAKTKGLAGGDRASRPLSARSEPSEK
GGRAPLSRKSTSPTKATRGPSGSASSRPGVSATPPKSPVYLDLAYLPGSSAHLVDEEFFQRVRALCYVI
SGQDQRKEEGMRAVLDALLASKQHWDRDLQVTЛИPTFDSVAMHTWYAETHARHQALGITVLGNSNMVSMQ
DDAFPACKVEF

Human VCY2IP1 Protein sequence - var3 (public gi: 21104446) (SEQ ID NO: 317)
MGVGRLDMYVLHPPSAGAERTLASVCALLVWHPAGPGEKVVRLFPGCTPPACLLDGLVRLQHRLFLREP
VVTQPDLEGPGRAESKEVGSRDSSKREGLLATHPRPGQERPGVARKEPARAEAPRKTEKEAKAPRELKK
DPKPSVSRQPREVRAASSVPNLKKTNAQAAPKPRKAPSTSHSGFPPVANGPRSPPSLRCGEASPPSAA
CGSPASQVLVATPSLELGPIPAGEEKALELPLAASSIPRRTPSPESHRSPAEGSERLSSLSPRGGEAGPD
ASPTVTTPTVTTPSLPAEVGSPHSTEVDESLSVSEQVLPPSAPTSEAGLSSLPLRGPRARRSASPHVDL
CLVSPCEFEHRKAVPMAAPAPASPGSSNDSSARSQERAGGLGAEETPPTSVSESLPTLSDSDPVPLAPGAA
DSDEDTEGFGVPRHDPLPDPLKVPPPLPDPSI CMVDPEMPLPKTARQTENVSRTKPLARPNSRAAAPK
ATPVAAAKTKGLAGGDRASRPLSARSEPSEKGGRAPLSRKSTSPTKATRGPSGSASSRPGVSATPPKSPV
YLDLAYLPGSSAHLVDEEFFQRVRALCYVISGQDQRKEEGMRAVLDALLASKQHWDRDLQVTЛИPTFDS
VAMHTWYAETHARHQALGITVLGNSNMVSMQDDAFPACKVEF

Human VCY2IP1 Protein sequence - var4 (public gi: 14250680) (SEQ ID NO: 318)
MGVGRLDMYVLHPPSAGAERTLASVCALLVWHPAGPGEKVVRLFPGCTPPACLLDGLVRLQHRLFLREP
VVTQPDLEGPGRAESKEVGSRDSSKREGLLATHPRPGQERPGVARKEPARAEAPRKTEKEAKTPRELKK
DPKPSVSRQPREVRAASSVPNLKKTNAQAAPKPRKAPSTSHSGFPPVANGPRSPPSLRCGEASPPSAA
CGSPASQVLVATPSLELGPIPAGEEKALELPLAASSIPRRTPSPESHRSPAEGSERLSSLSPRGGEAGPD
ASPTVTTPTVTTPSLPAEVGSPHSTEVDESLSVSEQVLPPSAPTSEAGLSSLPLRGPRARRSASPHVDL
CLVSPCEFEHRKAVPMAAPAPASPGSSNDSSARSQERAGGLGAEETPPTSVSESLPTLSDSDPVPLAPGAA
DSDEDTEGFGVPRHDPLPDPLKVPPPLPDPSI CMVDPEMPLPKTARQTENVSRTKPLARPNSRAAAPK
ATPVAAAKTKGLAGGDRASRPLSARSEPSEKGGRAPLSRKSTSPTKATRGPSGSASSRPGVSATPPKSPV
YLDLAYLPGSSAHLVDEEFFQRVRALCYVISGQDQRKEEGMRAVLDALLASKQHWDRDLQVTЛИPTFDS
VAMHTWYAETHARHQALGITVLGNSNMVSMQDDAFPACKVEF

Figure 36 part - 143

Human VCY2IP1 Protein sequence - var5 (public gi: 13938255) (SEQ ID NO: 319)
DTDRSSTSVPSEQVLPSSAPTSEAGLSLPLRGPRARRSASPHVDVLCLVSPCEFEHRKAVPMAAPAPASP
GSSNDSSARSQERAGGLGAEETPPPTSVESLPTLSDSDPVPLAPGAADSDDEDTEGFVPRHDPLPDPLKV
PPPLPDPSSI CMVDPEMPLPKTARQTENVSRTKPLARPNSRAAAPPATPVAAKTKLAGGDRASRPLS
ARSEPSEKGGRAPLSRKSTS PKTATRGPSGSASSRPGVSATPPKSPVYLLAYLPSGSSAHLVDEEFFOR
VRALCYVISGQDQRKEEGMRAVLDALLASKQHWRDLQVTЛИPTFDSVAMHTWYAETHARHQALGITVLG
SNSMVSMDQDAFPACKVEF

Human VCY2IP1 Protein sequence - var6 (public gi: 14042429) (SEQ ID NO: 320)
MAAVAGSGAAAAPSSLLL VVGSEFGSPGLLTIVLEELERGIRSWDVGVCNLDEQLKVFSRHSATFSS
IVKGQRLSHHRCDNLETLVLLNPSDKSLYDELRNLLDPASHKLLVLAGLCLEETGELLQQTGGFSPHHF
LQLKDREIRDILATT PPPVQPPILTT CPTFGDWQAQPAPAVPGLQGALRLQLRNPPAQLPNSEGELCEF
LEYVAESLEPPSPFELLEPTSGGFLRLGRPCCYI FPGGLGDAAFFAVNGFTVLVNGGSNPSSFWKLVR
HLD RVD A L V T H P G A D S L P G L N S L L R R K L A E R S E V A A G G G S W D D R L R R L I P S N L G V V F F N A C E A A S R L A R
GEDEAELALSLLAQLGITPLPLSRGPVPAKPTVLFEMGVGRLLDMYVLHPPSAGAERTLASVCALLVWHP
AGPGEKVVVRVLFPGCTPPACLLDGLVRLQHLRFREP VVTPQDLEGPGRAESKESVGSRDSSKREGLLAT
HPRPGQERPGVARKEPARAEAPRKTEKEAKTPRELKDPKPSVSRTPREVRAASSVPNLKKTNAQAAP
KPRKAPSTSHSGFPVANGPRSPPSLRCGEASPPSAACGSPASQLVATPSLELGPIPAGEEKALEPLAA
SSI PRPRTPSPE SHRSPAEGSERLSSLPLRGGEA PGDASPTVTTPTVTPSLPAEVGS PHSTEVD ELSV
SFEQVLPSSAPTSEAGLSLPLRGPRARRSASPHVDVLCLVSPCEFEHRKAVPMAAPAPASPGSSNDSSARS
QERAGGLGAEETPPPTSVESLPTLSDSDPVPLAPGAADSDDEDTEGFVPRHDPLPDPLKVPPPLPDPSI
CMVDPEMPLPPQDSTANGERQPHPEAPGPPQLTRCRPQSHSSGCCQNQGACWWGPCQPTTQCPE

Human VCY2IP1 Protein sequence - var7 (public gi: 13623505) (SEQ ID NO: 321)
MGVGRLD MYV LHPPSAGAERTLACV CALLVWHPAGPGEK VVRVLFPGCTPPACLLDGLVRLQHLRFREP
VVT P QDLEGPGRAESKESVGSRDSSKREGLLATHPRPGQERPGVARKEPARAEAPRKTEKEAKTPRELKK
DPKPSVSR T QPREVRAASSVPNLKKTNAQAAPKPRKAPSTSHSGFPVANGPRSPPSLRCGEASPPSAA
CGSPASQLVATPSLELGPIPAGEEKALELPLAASSI PRPRTPSPE SHRSPAEGSERLSSLPLRGGEAGPD
ASPTVTTPTVTPSLPAEVGS PHSTEVD ELSV SF EQVLPSSAPTSEAGLSLPLRGPRARRSASPHVDVL
CLVSPCEFEHRKAVPMAAPAPASPGSSNDSSARSQERAGGLGAEETPPTSVSESLPTLSDSDPVPLAPGAA
DSDEDTEGFVPRHDPLPDPLKVPPPLPDPSI CMVDPEMPLPKTARQTENVSRTKPLARPNSRAAAPP
ATPVAAAKTKLAGGDRASRPLSARSEPSEKGGRAPLSRKSTS PKTATRGPSGSASSRPGVSATPPKSPV
YLDLAYLPSGSSAHLVDEEFFQRVRALCYVISGQDQRKEEGMRAVLDALLASKQHWRDLQVTЛИPTFDS
VAMHTWYAETHARHQALGITVLGSNSMVSMDQDAFPACKVEF

Human VCY2IP1 Protein sequence - var8 (public gi: 10434894) (SEQ ID NO: 322)
MGVGRLD MYV LHPPSAGAERTLACV CALLVWHPAGPGEK VVRVLFPGCTPPACLLDGLVRLQHLRFREP
VVT P QDLEGPGRAESKESVGSRDSSKREGLLATHPRPGQERPGVARKEPARAEAPRKTEKEAKTPRELKK
DPKPSVSR T QPREVRAASSVPNLKKTNAQAAPKPRKAPSTSHSGFPVANGPRSPPSLRCGEASPPSAA
CGSPASQLVATPSLELGPIPAGEEKALELPLAASSI PRPRTPSPE SHRSPAEGSERLSSLPLRGGEAGPD
ASPTVTTPTVTPSLPAEVGS PHSTEVD ELSV SF EQVLPSSAPTSEAGLSLPLRGPRARRSASPHVDVL
CLVSPCEFEHRKAVPMAAPAPASPGSSNDSSARSQERAGGLGAEETPPTSVSESLPTLSDSDPVPLAPGAA
DSDEDTEGFVPRHDPLPDPLKVPPPLPDPSI CMVDPEMPLPKTARQTENVSRTKPLARPNSRAAAPP
ATPVAAAKTKLAGGDRASRPLSARSEPSEKGGRAPLSRKSTS PKTATRGPSGSASSRPGVSATPPKSPV
YLDLAYLPSGSSAHLVDEEFFQRVRALCYVISGQDQRKEEGMRAVLDALLASKQHWRDLQVTЛИPTFDS
VAMHTWYAETHARHQALGITVLGSNSMVSMDQDAFPACKVEF

Human VCY2IP1 Protein sequence - var9 (public gi: 7022844) (SEQ ID NO: 323)
MGVGRLD MYV LHPPSAGAERTLACV CALLVWHPAGPGEK VVRVLFPGCTPPACLLDGLVRLQHLRFREP
VVT P QDLEGPGRAESKESVGSRDSSKREGLLATHPRPGQERPGVARKEPARAEAPRKTEKEAKTPRELKK
DPKPSVSR T QPREVRAASSVPNLKKTNAQAAPKPRKAPSTSHSGFPVANGPRSPPSLRCGEASPPSAA
CGSPASQLVATPSLELGPIPAGEEKALELPLAASSI PRPRTPSPE SHRSPAEGSERLSSLPLRGGEAGPD
ASPTVTTPTVTPSLPAEVGS PHSTEVD ELSV SF EQVLPSSAPTSEAGLSLPLRGPRARRSASPHVDVL
CLVSPCEFEHRKAVPMAAPAPASPGSSNDSSARSQERAGGLGAEETPPTSVSESLPTLSDSDPVPLAPGAA
DSDEDTEGFVPRHDPLPDPLKVPPPLPDPSI CMVDPEMPLPKTARQTENVSRTKPLARPNSRAAAPP
ATPVAAAKTKLAGGDRASRPLSARSEPSEKGGRAPLSRKSTS PKTATRGPSGSASSRPGVSATPPKSPV
YLDLAYLPSGSSAHLVDEEFFQRVRALCYVISGQDQRKEEGMRAVLDALLASKQHWRDLQVTЛИPTFDS
VAMHTWYAETHARHQALGITVLGSNGMVSMQDDAFPACKVEF

PCT/US04/06308

Unigene Name: SPG20 Unigene ID: Hs.118087

Human SPG20 mRNA sequence - var1 (public gi: 28436884) (SEQ ID NO: 367)
AGTGTAAAGGAGTGGAGCTGGTCGCGCGCGCGCAGGGAGCTCGAGGAACGCCGGGC
GCCCGAGGTCTGAAGGCGCAGAAATGGAGCAAGAGCCACAAAATGGAGAACCTGCTGAAATTAAAGATCA
TCAGAGAAGCATATAAGAAGGCCCTTTTATTTGTTAACAAAGGTCTGAATACAGATGAATTAGGTCTGAGAA
GGAAGAAGCAAAGAACTACTATAAGCAGGAAGAACCTGCTCAGAGGGATCAGCATTCTACAAAA
GAGTCTGAACACACAGGTACTGGGTGGAAATCTGCTAGACAGATGCAACAGAAAATGAAAGAAACTCTAC
AGAATGTACGCCACAGGTGGAAATTCTAGAGAAGGGCTTGGCACTTCTGAGAATGATCTTCAGGA
GGTGCCTCAAGTTATTCAGAATTTCACCTAAAGACATGTGAAAAATTACAGAGCCTCAGTCTTT
AGTCAGCTCTCAGCATGCTGAAGTAATGGAAACACCTCAACTCCAAGTGCAAGGGCAGTTGCTGCAC
CTGCTCTCTGTCTTACCATCACAAAGTGTCCAGCAGAAGCTCTCTGTTACTCCTCAAGCTGC
TGAAGGTCACTACACTGTATCCTATGAAACAGATTCTGGGGAGTTTCATCAGTTGGAGAGGAGTTTAT
AGGAATCATTCTCAGCCACCGCTCTTGGACACCTTAGGGCTGGATGAGATGAATTGATTGATACCAA
ATGGAGTACAGATTTTTGTTGAAATCTGCAAGGGAGGTTAGTGCACCTTGTATCTGGGTACCTTCG
AATTGAGGTTTTGGATAATTCTCTGATACGGTTCTAAACCGTCTCCGGGTTCTCAGGTTGTT
GACTGGTTATATCCTCTAGTCCCTGATAGATCTCGGTTCTGAAATGTAAGTGCAGGAGCCTACATGTT
CTGATACAATGCTACAAGCAGCAGGATGCTTGTGGGGTCTGCTCTGAGTACAGAGGATGA
TAGAGAGCTTTGAGGATCTGTTAAGGCAAATGCTGACCTTCTGGCTCAGGCAACTGGAAACAGAGCA
GAAGAAGAAAATGAATTCCAAATCCCTGAAAGCAATAAGGATGTAAGTACAGTACATAAAGGAAAAGTGGAAAAGGGC
GCACTGATGTGAAACAGTGGAGCAACAGGAAATAAGGATGTAAGTACAGTACATAAAGGAAAAGTGGAAAAGGGC
TAAAGATACTTCAAGTGAAGAGTTAACCTGAGTACAGTACATTGTAACCATGTAAGGCCAGTCCAGAAGAAAAG
CCAAAAGAATTACATGAATGGAGTAAAAAGTGGCTCACACATTGTCAGGTGCTTGGTGGAGTT
GGGGTTAGTCAAAGGTGTGAGATTACTGGTAAGGCAATCCAGAAAGGTGCTTCTAAACTCCGAGAGCG
GATTCAACCAGAAGAAAACCCGTGGAAGTTAGTCCAGCTGTACCAAGGGACTTTATAGCGAAGCAA
GCTACAGGAGGAGCAGCAGGAGCTCAGTCCCTGGTTGATGGAGTTGACTGTACCAATTGCGTTG
GAAAAGAACTAGCTCCACATGTCAGAAGCATGAAAGCAAATTGTTCCAGAATCTCTTAAAAGACAA
AGATGGGAAATCCTCTGGATGGTGTATGGTTGAGCAGGAGTAGTGTCAAGGATTTCACGTCA
TGGCAAGGATTGGAAATGTGCACTAAATGCATGTTAACATGTTTCAAGGAAACTGTACAAACTGTCA
GATAACAATACGGATATAATGCAAGGAGCTACCCACCATCGGGTGGATTCTGGGTCAATGTTGGCGT
AACTGCCTACAATATTAACACATTGGTATCAAAGCAATGGTAAAGGAAACTTCACAGGACAC
ACTCTCTGAGGACTATCAGATAGTGTATAATTCTCAGAGGGAAAATCAAGAAGGAGCAGCAAATGTCA
ACGTGAGAGGGAGAAGGTGAGCAGCAAGGAAGTAAAGGAGGAAAGAAGAAAGATAATGATGAAG
TGCTGGGAATCACTTACCAAAGCTTATGAAATGGATGAAATTGTTGAAATAGGCAAATGTGGAAATT
CCTCACAGATTAAACAGTATTGTTAAATGTTACATTCTACAAATTAAACTTTCTACAAATTGCA
TGTCTCTATTAAAAGGAAATAAGTATTCTGCATCTGGCTTAGAAATGTAAGTTATTC
AAGTTTATTGTTCCAAAGTGTAGCTAAATATTGTCAGGTTAAAGCTGATAGTACATGTTG
TTCAAACCTGTTAACCTAATATTGAACTATTGTTATATCTGCTGTCTTCAGAAGGCAAATAGGAAAC
TATATATTGCTTAAAATTGGCATTAGTAACCTTAATTCTTTTATAGAAGGAATGACTTAAAGTATT
GTCCCCCTTTGCACTAATTGGATTAGATGCTCTCAGGTTCTCAGGTTCTCAGGTTCTCAGGTTCTCAGGTTCTC
AAAAACTAAAGACTAAAGACTTGTCAAAACAGGGAAAGACTGATGAAAAGTAAAATGG
ACTACTTTGTAACCTTACCTGTTGTTAGGAAATGGAATGTTCTTGTGATTAAATGAATAAAAATAG
ATTATTACGTCTTTGTTGAGACTGTTGAGACTGTTGAGCTTAGGAAATTGGGACATGATTGATTGT
ATTAAAATTGCAAGGTGATTATTACGTTAATTGGATTAAAAGTACTTCAAGAAATTAAAAAAA
AAAAAAAAAATAAAAAATAAAAAAA

Human SPG20 mRNA sequence - var2 (public gi: 7023530) (SEQ ID NO: 368)
AGGGAGCTCGAGGCAACGCCGGGGCGGGAGGTCTGGAGGGCGCAGAAATGGAGCAAGAGGCCACAAA
ATGGAGAACCTGCTGAAATTAAAGATCATCAGAGAACATATAAGAAGGCCCTTTTATTTGTTAACAAAGG
TCTGAATACAGATGAATTAGGTCAAGAGGAAGAACACTACTATAAGCAAGGAATAGGACACCTG
CTCAGAGGGATCAGCATTCTACAAAGAGTCTGAACACACAGGTCTGGGGAAATCTGCTAGACAGA
TGCAACAGAAAATGAAAGAAAATCTACAGAACATGTACGCAACAGGCTGGAAATTCTAGAGAAGGGCTTG
CACTTCTCTGAGAACATGATCTCAGGAGGTGCCAAGTTATCTCAGAACCTTAAAGACATGTGT
GAAAATTACAGAGGCCCTAGTCTTTAGTTCAGCTCTCAGCATGCTGAAGTAAATGAAACACCTCAA
CTCCAAGTGCAAGGGCAGTTGCTGCACCTGCTCTGCTTACATCACAAAGTGTCCAGCAGAAC
TCCTCCTGCTTATACCTCAAGCTGCTGAAGGTCACTACACTGTATCTATGAAACAGAATTCTGGGGAG
TTTCATCAGTTGGAGAGGAGTTTATAGGAATCATTCTCAGGCCACCGCTCTGAGAACCTTGGGGCTGG
ATGCAGATGAATTGATTGATACCAAATGGAGTACAGATTGTTTGTAAATCTCTGAGGGAGGTTAG
TGCACCTTCGTATCTGGTACCTTCGAATTGAGGTTGGATAATTCTCTGATACGGTTCTAAAC
CGTCCCTCCGGGTTCTTCAAGGTTGACTGGTTATATCCTCTAGTTCTGATAGATCTCCGGTTCTGA
AATGTAACGCCCCAGCCTACATGTTCTGATACAAATGCTACAAGCAGCAGGATGCTTGTGGGGTCGT
CCTGCTCTGAGTTACCAAGAGGATGAGAGAGCTCTTGAGGATCTGTTAAGGCAAATGTCTGACCTT

CGGCTCCAGGCCAACTGGAACAGAGCAGAAGAAGAAAATGAATTCAAATCCCTGGAAGAACTAGACCT
CCTCTGACCAACTAAAGAACGCTCTGGCACTGATGTGAAACAGTTGGACCAAGGCATAAGGATGTACG
TCATAAAGGAAAACGTGGAAAAGGGCTAAAGATACTTCAGTGAAGAAGTTAACCTGAGTCACATTGTA
CCATGTGAGCCAGTCTCCAGAAGAAAAGCCAAAAGAATTACCTGAATGGAGTGAAAAGTGGCTCACAA
TTTGTCAAGGTATTACAGTAACTGTTAATTTTCCCTGTATGACATTAAGCCTTGAACCAAATAAG
ATATTGTTATTAGGAATACTGAGAAGATAATATTGTATTTGGTTAAATGATCAATTAGAAA
TAAATGAGAAGGAACACTGTTGAAACATCAGATAATGTCAATAAGTATAAGTCAATTCTCCTGGCCTA
TTATCTGTTTACTATTGGGAAAATGGATAGTGAAGGCTTCAGGAATCTCAAATTCTTAATAGTCT
GAATCTAAAATTAGTTATGTTGTTCCCTTGAAGGCTTCAGGCTTAAACCTCCCCCTACCCCTGCCCC
AGCTGTGGTCTGAATGTGCCCCCTCAAATTCTATAATTGAAATCTAACCCCTGAGGTGATGGTTTAG
GAGGGGGGCTTGGAGGTGATTAGGTGATGAGGGAGGAGCCCTCATCAATGGATTAGTCCCCTTATA
AAAGAGATCCCAGAGCTGCTTGTCTTCACTATGTGAGGAAGCAGTAAGAAGGTGTCATTCTATG
AACCAAGGAAGTGGGCCCTCACAGAGCCAATGTACAGCACCTTAGTCTGTACTTCCAGCCTCTA
GAATTGTGAGAATAATTGTGTTAAT

Human SPG20 mRNA sequence - var3 (public gi: 7023938) (SEQ ID NO: 369)
GATAATTCTCTCGATACGGTTCTAACCGTCCTCCGGGTTCTTCAGGTTGTGACTGGTTATATCCTC
TAGTTCTGATAGATCTCCGGTTCTGAAATGACTGCGGGAGCCTACATGTTCTGATACAATGCTACA
AGCAGCAGGATGCTTGTGGGGTCGCTGTCTGAGTTACAGAGGATGATAGAGAGCTCTTGAG
GATCTGTTAAGGCAAATGTCGACCTTCGGCTCAGGCCAACTGGAACAGAGCAGAAGAAGAAAATGAAT
TCCAAATCCCTGGAAGAAGTACAGCCCTCTGACCAACTAAAGAAGCCTCTGGCACTGATGTGAAACA
GTTGGACCAAGGCAAATAAGGATGTACGTCAAAGGAAAAGGCTAAAGATACTTCAAGT
GAAGAAGTTAACCTGAGTCACATTGACCATGTGAGCCAGTCCAGAAGGAAAAGCCAAAAGAATTACCTG
AACGGAGTAAAAAGTGGCTCACACATTGTGAGGTCTCTGGGAGTTGGTTAGTCAGGAA
TGCTGAGATTACTGGTAAGGCAATCCAGAAAGGTGCTTCTAAACTCCGAGAGCGGATTCAACCAGAAGAA
AAACCGTGGAGTTAGTCCAGTGTGACCAAGGGACTTTATATAGCGAAGCAAGCTACAGGAGGAGCAG
CAAAGTCAGTCAGTCTCTGGITGATGGAGTTGACTGTGACCAAATTGCGTGGAAAAGAAACTAGCTCC
ACATGTCAGAAGCATGGAAGCAAACATTGTTGAGGAACTCTTCAAGGATTTCAACTGCTGCAAGGATGGAAT
CTGATGGTGTATGGTTGAGCAGCAAGTAGTGTCAAGGATTTCAACTGCTGCAAGGATGGAAT
GTGAGCTAAATGCACTGTTAACATGTTCAAGGAAACTGTACAAACTGTCAAGGATACAAATACGGATA
TAATGCGAGGAGAGCTACCCACCATGCGGTGGATTCTGCGGTCAATGTTGGCGTAACGCTCACAATT
AACACATTGGTATCAAAGCAATGGTGAAGAAAAGTCAACACAAACAGGACACACTCTCCTGAGGACT
ATCAGATAGTGTATAATTCTCAGAGGGAAAATCAAGAAGGAGCAGCAAATGTCAGTGAAGTGTGGGAATCACTTA
GGGTGAGCAGACGAAGGAAGTAAAGGAGGCAAAGAAGAAGATAATGATGAAGTGTGGGAATCACTTA
TACCAAGCCTTATGAAATGGATGAAATTGTTAATAGGAAATGTTGCAATTCCCTCACAGATAACCA
GTATTTTAAATGTTATTCATCCTACAAATTAACTTCAATAATTGTCATGTTCTATTTAA
GGAAAAGAATAAGTATTCTGCACTGGCTTAGAAATGTGAAGTTATATTCTCAAGTTATTGTTCC
AAGTGTAGCTAAATATTGCAAGGTTAAATAGGCAAAAGAAGAAGATAATGATGAAGTGTGGGAATCACTTA
CCTAATATTGAACTATTGTTATCTGCTGTCTTCAAGGCAAATAGGAAACTATATATTGCTTAA
AATGGCATTAGTAACTTAAATTCTCAGAGGAATGCTTCAAAATTGTTAGTGTAACTAAACAAAACACTAAAG
CTAATTGTGGATTGTTAGTGTCTTCAAAACAGGGAAAGACTGATGAAAGTAAAGGACTACTTTGTAACCT
AATTCTCAAAAACCTGTTCAAAACAGGGAAAGACTGATGAAAGTAAAGGACTACTTTGTAACCT
ACCTGTTGTAGGAATGGTCTTGTGATTAAATGAATAAGGAAACT

Human SPG20 mRNA sequence - var4 (public gi: 16553694) (SEQ ID NO: 370)
GTGCATTTCTTCAGTCCTGGAAAGGAAATCATAGTATTGCCCCAAAGGATTGCTGTTGAAAATG
GAGCAAGAGCACAATGGAGAACCTGCTGAAATTAAGATCATCAGAGAACATATAAGAAGGCCTTT
TATTGTTAACAAAGGTCTGAATACAGATGAATTAGGTCAAGAAGGAAGCAAGAACACTATAAGCA
AGGAATAGGACACCTGCTCAGAGGGATCAGCATTCTCATCAAAGAGTCGAAACACACAGGCTCTGGG
GAATCTGCTAGACAGATGCAACAGAAAATGAAAGAAAACCTACAGAATGATCTCGTATCCTGGTACCT
TCGAATTGTGAGGTTTGGATAATTCTCTGATACGGTTCTAAACCGTCTCCGGGTTCTCAGGTT
TGTGACTGGTTATATCCTCTAGTGTGATAGATCTCCGGTTCTGAAATGACTGCGGGAGCCTACATGT
TTCTGATACATGCTACAGCAGCAGGATGCTTGTGGGGTCTGCTCTGAGTTACAGAGGA
TGATAGAGAGCTTTGAGGGATCTGTTAGGCAAATGTCGACCTTCGGCTCCAGGCCACTGAAACAGA
GCAGAAGAAGAAAATGAATTCCAATCCCTGGAGAACACTGACCCCTCTGACCAACTAAAGAAGCCT
CTGGCACTGATGTGAAACAGTGGACCAAGGGCAATAGGATGTACGTCAATAAGGAAACGTGAAAAAG
GGCTAAAGGATACCTCAAGTGAAGAAGTTAACCTGAGTCACATTGACCATGTGAGGCCAGTCCAGAAGAA
AAGCCAAAAGAATTACCTGAAATGGAGTAAAAAGTGGCTACAAACATTGTCAGGTGCTTCTGGGTGA
GTGGGGTTAGTCAGGAGTGTGAGATTACTGGTAAGGCAATCCAGAAAAGGTGCTTCTAAACTCCGAGA
GGGGATTCAACCAGAAGAAAACCCGTGGAAGTTAGTCCAGTGTCAACCAAGGGACTTATATAGCGAAG
CAAGCTACAGGAGGAGCAGCAAAGTCAGTCAGTCTCTGGTGTGAGGGTTGACTGTAGCAAATTGCC
TTGGAAAAGAACTAGCTCCACATGTCAAGAAGCATGGAAGCAAACCTGTTCCAGAATCTCTTAAAGA

Figure 36 part - 146

РСТ/У504/06308

CAAAGATGGAAATCCTCTGGATGGTGTATGGTAGCAGCAAGTAGTGTCAAGGATTTCACACT
GTCTGGCAAGGATTGGAATGTGCAGCTAAATGCATCGTAACAATGTTCAGCAGAAACTGTACAAACTG
TCAGATACAATACCGATAATGCAGGAGAACGCTACCCACCATGCCGTGGATTCTGCCGTCAATGTTGGCG
TAACTGCTACAAATATTGACAACTGGTATCAAAGCAATGGTGAAGAAAATGCAACACAAACAGGACA
CACTCTCCTGAGGACTATCAGATAGTGTATAATTCTCAGAGGGAAAATCAAGAAGGAGCAGCAAATGTC
AACGTGAGAGGGGAGAAGGATGAGCAGACGAAGGAAGTAAAGGAGGCAAAGAAGAAAGATAATGATGAA
GTGCTGGAAATCACTTACCAAGCCTATGAAATGATGAAATTGTTAAATAGGCAAATGTGAAAT
TCCTCACAGATTAACAGTATTTTAAATGATTCTCCTACAAATTAACTTCATAAATTTATGGC
ATGTCTCTATTTAAAGGAAAAGAATAAGTATTCTGCATCTGCCCTAGAAATGTGAAGTTATATCT
CAAGTTATTTTCTCAAGTGTAGCTAAATATTTCAGGTTAAATAGCTGATAGTACATGTGTT
GTTCAAACTTGTAAACCTAAATATTGGAACATTCTTATATCTGCTGTCTTCAGAAGGCAAATAGGAAA
CTATATATTGCTTAAACATTGGCATTTAGTAACCTTAAATTCTTTATAGAAGGAATGACTTAAAGTAT
TGTCCCCCTCTTTTGCACTAAATTGTTGATTAGATGCTCTCAAAATTTCAGTGTGAAGCTAAA
CAAAAACAAAATCTAAGAATTCTCAAAAAAACTTGTCTCAAAACAGGGAAAGACTGATGAAAAGTAAATG
GACTACTTTGTAACCTACCTGTTGTTAGGAAATGGAATGGTCTCTTGATTAAATGAATAAAAATA
GATTATTACGTC

Human SPG20 mRNA sequence - var5 (public gi: 21654722) (SEQ ID NO: 371)
ATGGAGCAAGAGCCACAAAATGGAGAACCTGCTGAAATTAAAGATCATCAGAGAAGCATATAAGAAGGCC
TTTATTGTAAACAAAGGTCTGAATACAGATGAATTAGGTAGAAGGAAGAAGCAAAGAACTACTATAA
GCAAGGAATAGGACACCTGCTCAGAGGGATCAGCATTCTACAAAAGAGTCAGAACACACAGGTCCTGG
TGGGAATCTGCTAGACAGATCAACAGAAAATGAAAGAACTCTACAGAATGTACGCACCAGGCTGGAAA
TTCTAGAGAAGGGCTTGCCACTCTCTGAGAATGATCTTCAGGAGGTGCCAAGTTATATCCAGAATT
TCCACCTAAAGACATGTGTGAAAAATTACCAAGAGCCTCAGTCTTGTAGTCAGCTCTCAGCAGTCAG
GTAAATGAAACACCTCAACTCCAAGTGCAGGGCAGTGTGACCTGCTCTCTGCTTACCATCAC
AAAGTTGCCCCAGCAGAAGCTCCCTGCTTATACTCCCAAGCTGAGGTCACTACACTGTATCCTA
TGGAAACAGATTCTGGGGAGTTTCATCAGTGGAGGAGTTTATAGGAATCTCTCAGCCACCGCCT
CTTGAGACCTTAGGGCTGGATGCAGATGAATTGATTTGATACCAAATGGAGTACAGATTTTTGAA
ATCCTGCAGGGGAGGTTAGTGCACCTTCGTATCCTGGGTACCTTCGAATGTGAGGTTTGGATAATT
TCTCGATACTGGTCTAAACGTTCTCCCGGGTTCTTCAGGTTGTACTGGTTATATCCTCTAGTTCT
GATAGATCTCCGGTTCTGAAATGTACTGGGGAGCCTACATGTTCTGATAACAATGCTACAAGCAG
GATGCTTGTGGGGTCTGCTCTGAGTTACAGAGGATGATAGAGAGCTTTGAGGATCTGTT
AAGGCAAATGTCGACCTCGGTCCAGGCCAACTGGAACAGAGCAGAAGAAGAAAATGAACTTCAAATC
CCTGGAAAGAACTAGACCCCTCTGACCAACTAAAAGAAGCCTCTGGCACTGATGTGAAACAGTTGGACC
AAGGCAATAAGGATGTACGTATAAGGAAAAGTGGAAAAAGGCTAAAGATACTTCAGTGAAGAAGT
TAACCTGAGTCACATTGTAACATGTGAGCCAGTCCAGAAGAAAAGCAGGAAATTACCTGAATGGAGT
GAAAAGTGGCTCAACATTGTCAGGTGCTCTGGGTGAGTTGGGTTAGTCAAAGGTGCTGAGA
TTACTGGTAAGGCAATCCAGAAAGGTGTTCTAAACTCCGAGAGCGGATTCAACCAGAAGAAAACCGT
GGAAGTTAGTCCAGTGTCAACAGGGACTTTATAGCGAAGCAAGCTACAGGAGGAGCAGCAAAGTC
AGTCAGTTCTGGTTGATGGAGTTGCACTGTGAGCAAATTGCGTTGGAAAAGAACTAGCTCCACATGTCA
AGAACGATGGAAGCAAACCTTGTCTCAGAATCTCTTTAAAGACAAAGATGGGAAATCTCTCTGGATGG
TGCTATGGTTGTAGCAGCAAGTAGTGTCAAGGATTTCACAGTGTGAGGATTGGAAATGTGCA
AAATGCACTGTTAACATGTTCTAGCAGCAAACAGTGTACAAACTGTGAGATAACAAATACGGATATAATGCA
GAGAACGATCCCACCATGCGGTGATTGCGGTCAAGTGTGGGTAAGTGCCTACAAATTAAACACAT
TGGTATCAAAGCAATGGTGAAGAAAATGCAACACAAACAGGACACACTCTCCTGAGGACTATCAGATA
GTTGATAATTCTCAGAGGGAAAATCAAGAAGGAGCAGCAAATGTCACGTGAGAGGGGAGAAGGATGAGC
AGACGAAGGAAGTAAAGGAGCCAAAGAAGAAGAAGATAAATGA

Human SPG20 mRNA sequence - var6 (public gi: 22074831) (SEQ ID NO: 372)
 GCGGCCGCGCAGGGAGCTCTGAGGCAACGCCGGGGCGCCCGAGGTCTGGAAGGCGCAGAAATGGAGCAA
 GAGCCACAAAATGGAGAACCTGCTGAAATTAAAGATCATCAGAGAACATATAAGAAGGCCTTTATTTG
 TTAACAAAGGCTGAATACAGATGAATTAGGTAGAGAAGAACAAAGAACACTATAAGCAAGGAAT
 AGGACACCTGCTCAGAGGGATCAGCATTTCATCAAAAGAGTCTGAACACACAGGTCTGGTGGAATCT
 GCTAGACAGATGCAACAGAAAATGAAAGAAACTCTACAGAAATGTACGCACCAGGCTGAAATTCTAGAGA
 AGGGTCTGCCACTTCTCTGCAAGATGATTCAGGAGGTGCCAAGTTATATCCAGAAATTCCACCTAA
 AGACATGTGTAAAAATTACCAAGAGCCTCAGTTAGTTAGTTCAGGCTCTCAGCATGCTGAAGTAAATGGA
 AACACCTCAACTCCAAGTGCAGGGGCAGTTGCTCACCTGCTCTCTGTCTTACCATCACAAAGTTGTC
 CAGCAGAAGCTCTCTGCTTAACTCTCAAGCTGTAAGGTCAACTACACTGTATCCTATGGAACAGA
 TTCTGGGAGGTTTACTAGTTGGAGAGGGTTTATAGGAATCTCAGCCACCGCCTTGTAGGACC
 TTAGGGCTGGATGCAAGATGAATTGATTTGATACCAAATGGAGTACAGATTGTTGTAAATCTGCGAG
 GGGAGGTAGTGCACCTTCGATCCTGGTACCTTCGAATTGTGAGGTTTGGATAATTCTCTCGATAC
 GGTTCTAAACCGTCTCCGGGTTCTCAGGTTGTGACTGGTTATATCCTCTAGTTCTGATAGATCT

CCGGTTCTGAAATGTACTGCGGGAGCCTACATGTTCTGATAACATGCTACAAGCAGCAGGATGCTTG
TGGGGTCGCTCTGCTCTGAGTTACAGAGGATGATAGAGAGCTTGGAGGATCTGTTAAGGCAAAT
GTCTGACCTTCGCTCCAGGCCACTGGAACAGAGCAGAAGAAGAAAATGAATTCCAATCCCTGGAAGA
ACTAGACCCTCTGACCAACTAAAAGAAGCCTCTGGCACTGATGTGAAACAGTTGGACCAAGGCAAATA
AGGATGTACGTACATAAGGAAACAGTGGAAAAAGGGCTAAAGATACTTCAGTGAAGAAGTTAACGTGAG
TCACATTGTACCATGTGAGGCCAGITCCAGAAGAAAAGCCAAAAGAATTACCTGAATGGAGTGAAGAAAGTG
GCTCACAAACATTGTGAGGTCTCTGGTACTGGGGTTAGTCAAAGGTGCTGAGATTACTGGTA
AGGCAATCCAGAAAAGGTGCTCTAAACTCCGAGAGCGGATTCAACCAGAAGAAAAACCGTGGAAAGTTAG
TCCAGCTGTACCAAGGGACTTATAGCGAAGCAAGCTACAGGAGGAGCAGCAAAGTCAGTCAGTCT
CTGGTGTGGAGTTGACTGTAGCAAATTGCGTTGAAAAGAACTAGCTCCACATGTCAAGAACATG
GAAGCAAACTTGTTCCAGAATCTCTAAAAAGACAAAGATGGAAATCTCTCTGGATGGTGCTATGGT
TGTAGCAGCAAGTAGTGTCAAGGATTTCACACTGTCTGGCAAGGATTGGATGTGAGCTAAATGCATC
GTTAACATGTTCAAGCAGAAACTGTACAAACTGTCAAGATAAAACGGATATAATGCAAGGAGAAGCTA
CCCACCATGCGGGATTCTGCGGTCAATGTTGGCTACTGCCTACAATATAACAAACATTGGTATCAA
AGCAATGGTGAAGAAAATGCAACACAAACAGGACACACTCTCTTGAGGACTATCAGATAGTTGATAAT
TCTCAGAGGAAAATCAAGAAGGAGCAGCAAATGTCAACGTGAGGGAGAAGGGATGAGCAGACGAAGG
AAGTAAAGGAGCAGAAAAGAAGATAATGTGAAGTGTGGATTCTCTCACAGATAACCAAGCCTATGAA
ATGGATGAAATTGGTAAATAGGCAATGTGGATTCTCTCACAGATAACCAAGCCTATGAA
TCATCTCACAATTAACTCTAACTTATGGCATGTCTCTATTAAAAGGAAAAGAATAAGTATT
CTTGCATCTGGCTTAGAATGTGAAGTTATTCACAGTTGTTCAACCTGTTAAACCTAATATTGAACATT
TTTATATCTGCTGTCTTCAGAAGGCAAATAGGAAACTATATATTGCTAAAAATTGGCATTAGTAAC
CTTAATTCTTTATAGAAGGAATGACTTAAAGTATTGTCCTCTTTGCACTAATTGGAATTCTT
TAGATGCTCTCAAATTTCAGTGTAAAGCTAAACAAAACCTAAAGAATTCTCAAAAAACTT
GTTAAAACAGGGAAAGACTGATGAAAAGTAAATGGACTACTTTGTAACTTACCTGTTGGTAGGAAA
TGGAAATGGTCTTTGATTAAATAAAATAAAATAGATTATTACGTCTTGATTGAGACTGTATTGT
TATGAGCCTAGGAAATTGGGAACATGATTGATTGATTAACTTCAAGTGAATTATCAGCTTAAT
TGGATTAAAAGTACTTCAGAAGAAATTAACTTATCATATCTGCTCTGTTTCAAAAGGTTAAAACCTT
GTAAAAAAATATATATAAAACATTGAGTTACTAATGGTAAACATTTTTATTCTGGATTGGTCATTG
GAATTTATTTAAAGACAAGTTAAAGGAAAGGTTCTATTCAATACTAGGGTAAAGAATATGAAA
ACCTTAGCGTAATCCATGGGATAGGCATTATGGTTCCACTTGGCAGAAGGCAGACTATTACAGC
CCTATTACTTACATAGGCTAAAACATGTAACTAAACCTAATGGTATTAAATTGTTATTGA
ATTAAAGAGATTGGTATTAGTTCATAGCTGTAGTCCATTCTAATAATTCTGATCTCTAGGGCTAC
TTAATTAGACATTATTGAGCTGTCTGAAGAATGCACTTTATGAATTAAAAGTGAATTGCTGACCT
CGTATCACATGAGCTTATATTGGGAACACATAGAACATGATGGAGGCTTCTAAGGCCAAGGATAA
TGTACTAGTTGTTAAATGGAATAAAAGTGAAGTGGTAAAT

Human SPG20 mRNA sequence - var7 (public gi: 20070809) (SEQ ID NO: 373)
GGCGCGCGTGTGCGGGCTCTGTGGCGGGAGCGAGGCCAGGGCGGGCCGTGCGGCCGCGTGCACGC
GAAGCGTTCGAGAGCGCGCGTGGAAACGTCTTGGTGTGCCACGGCAAGCGCGCGCGAGGCCCTGGGA
ACCTCGGGACGGCCCCCGCGAGCGCAGCGGCCAGTAGTCATCTTACTGGGATTGGGAAGCAAC
AGGGCTGTGTGGGTAACCTGCCACCTTAAAGTGGAAATCAGAAATGGAGCAAGAGGCCACAAAATGGAGA
ACCTGCTGAAATTAAAGATCATCAGAGAACATATAAGAAGGCCCTTTATTGTTAAACAAAGGTTCTGAAT
ACAGATGAATTAGGTCTAGAGGAAAGAACACTAACTATAAGCAAGGAATAGGACACCTGCTCAGAG
GGATCAGCATTTCATCAAAGAGCTGTAAGCACACAGGTCTGGGAAATCTGCTAGACAGATGCAACA
GAAATGAAAGAAAATCTACAGAAATGTCAGCACCAGGCTGGAAATTCTAGAGAAGGGTCTGCACTTCT
CTGCGAAATGATCTCAGAGGTGCCAACAGTTATATCCAGAATTCCACCTAAAGACATGTTGAAAAAT
TACCAAGGCTCAGTCTTTAGTCAGCTCTCAGCATGCTGAAGTAAATGGAAACACCTCAACTCCAAG
TGCAGGGCAGTTGCTGACCTGCTCTGCTTACCATCACAAAGTGTCCAGCAGAAGCTCTCCT
GCTATACTCTCAAGTGTGAAGGTCACTACACTGTATCTATGGAAACAGATTCTGGGAGTTTCT
CAGTTGGAGAGGGAGTTTATAGGAATCATTCTCAGCCACCGCTCTTGAGACCTTAGGGCTGGATGCA
TGAATTGATTGATACCAAATGGAGTACAGATTGTTGAAATCTGCAAGGGGAGGTTAGTGCACCT
TCGTATCTGGTACCTTCAATTGTGAGGTTTGGATAATTCTCTCGATACGGTTCTAAACCGTCTC
CCGGTTTCTCAGGTTGTGACTGGTATATCTCTAGTCTCTGATAGATCTCGGTTCTGAAATGTAC
TGGGGAGCCTACATGTTCTGTACAAATGCTACAAGCAGCAGGATGCTTGTGGGGGCTGTCCTGTC
TCTGAGTTACAGAGGATGATAGAGAGCTTGGAGGATCTGTTAAGGCAAATGTCAGCCTTCGGCTC
AGGCCAACTGGAACAGAGCAGAAGAAGAAAATGAATTCCAATCCCTGGAAGAACTAGACCCCTCT
CCAACATAAAAGAAGCCTCTGGCACTGATGTGAACAGTTGGACCAAGGCCAATAAGGATGTACGT
GGAAAACGTGAAAAAGGCTAAAGATACTTCAGTGAAGAAGTTAACCTGAGTCACATTGTACCATGT
AGCAGTTCCAGAAGAAAAGCCAAAAGAATTACCTGAATGGAGTGAAGAAAGTGGCTACAACATTGTC
AGGTGCTTCTGGGTGAGTTGGGTTAGTCAGGTGCTGAGATTACTGGTAAGGCAATCCAGAAAGGT
GCTTCTAACTCCAGAGGCGGATTCAACCAGAAGAAAAACCGTGGAAAGTTAGTCCAGCTGT
GACTTTATAGCGAAGCAAGCTACAGGAGGAGCAGCAAAGTCAGTCAGTCTGTTGATGGAGTTG

Figure 36 part - 148

CACTGTAGCAAATGCGTTGGAAAAGAACTAGCTCACATGTCAAGAAGCATGGAAGTCAAACTTGTCC
AGAATCTAAAAAGACAAAGATGGAAATCTCCCTGGATGGTGTATGGTTGTAGCAGCAAGTAGT
GTTCAAGGATTTCAACTGTCTGGCAAGGATTGGAATGTGCAGCTAAATGCATCGTTAACATGTTCA
CAGAAACTGTACAAACTGTCAGATAACAAATACGGATAATGCAGGAGAAGCTACCCACCATGCGGTGGA
TTCTGCGGTCAATGTTGGCTAACGCTACAATATTAAACAACATTGGTACAAAGCAATGGTGAAGAAA
ACTGCAACACAAACAGGACACACTCTCCGTGAGGACTATCAGATAGTGTATAATTCTCAGAGGGAAAATC
AAGAAGGAGCAGCAAATGTCAACCGTGAGAGGGAGAGGATGAGCAGACGAAGGAAGTAAAGGAGGCAA
AAGAAGATAAATGATGAAGTGTCTGGAAATCACTTATACAAAGCCTATGAAATGGATGAAATTGGT
TAATAGGCAAATGTGGAAATCCTCACAGATAACCGTATTGTTAAATGTTATGATTCACTCCTACAAATTA
ACTTICATATAATTGCACTCTCTATTAAAGGAAAAGAATAAGTATTCTGCATCTGGCTTA
GAAATGTGAAGTTATATTCTCAAGTTATTGTTCAAGTGTAGCTAAATATTGTCAGGTAAGGAAATA
AAGCTGATAGTACATGTGTTCAACCTGTTAAACCTAATATTGAACTATTGTTATATCTGCTGTCT
TTCAGAAGGCAAATAGGAAACTATATATTGCTAAAATTGGCATTAGTAACCTTAACTCTTTTATA
GAAGGAATGACTAAAGTATTGCCCCCTTTTGCACTATTGGAATTGTTAGATGCTTCTCAAAA
TTTTCACTGTGTAAGCTAAACAAAACAAACTAAAGAATTCTCAAAACACTGTTCAAAACAGGGAAA
GACTGATGAAAAGTAAAATGGACTACTTTGTAACCTACCTGTTGAGGAAATGGAATGGTCTCTTG
ATTAAAATGAATAAAAATAGATTATTACGTCTTGATTGAGACTGTATTGTTATGAGCCTAGGAAAT
TTGGAACATGATTGATTGATTAAATTCGAAGTGATTATTACAGCTTAATTGGATTAAAAGTAC
TTCAAGAAAAAAAAAAAAAA

Human SPG20 mRNA sequence - var8 (public gi: 3043743) (SEQ ID NO: 374)

GCAGGCCGCGCAGGGAGCTCTGAGGCAACGCCGGGCGCCGAGGTCTGGAGGCGCAGAAATGGAGCAA
GAGCCACAAAATGGAGAACCTGCTGAATTAAGATCATCAGAGAACATATAAGAAGGCCTTTTATTG
TTAACAAAGGTCTGAATACAGATGAATTAGGTCAAGAGAACAGAAACTACTATAAGCAAGGAAT
AGGACACCTGCTCAGAGGGATCAGCATTCATCAAAGAGTCTGAACACACAGGTCTGGGTGGGAATCT
GCTAGACAGATGCAACAGAAAATGAAAGAACACTACAGAATGTACGCACCAGGCTGAAATTCTAGAGA
AGGTCTTGCACATTCTCTGAGAATGATCTCAGGAGGTGCCAAGTTATATCCAGAAATTCCACCTAA
AGACATGTGAAAAATTACAGAGCCTCAGCTTTAGTTCACTCAGCAGCATGCTGAAGTAATGGA
AACACCTCAACTCCAAGTGCAAGGGGAGTGTGCTGCACCTGCTCTGTCTTACCATCACAAAGTTGTC
CAGCAGAAGCTCCTCTGCTTAACTCCTCAAGCTGCTGAAGTCACTACACTGTATCCTATGGAACAGA
TTCTGGGAGTTTCATCAGTTGGAGAGGAGTTTATAGGAATCATTCTCAGGCCACCGCCTTGTGAGACC
TTAGGGCTGGATGCAAGATGAAATTGATACCAATGGAGTACAGATTTTTGTAATTCCTGAG
GGGAGGTTAGTCACCTCTGTTCTGGTACCTTCAGGTTGTGACTGGTTATATCCTCTAGTTCTGATAGATCT
GGTTCTAAACCGTCTCCGGGTTCTCAGGTTGTGACTGGTTATATCCTCTAGTTCTGATAGATCT
CCGGTTCTGAAATGACTGCGGGAGCCTACATGTTCTGATAGAGAGACTCTTGAGGATCTGTTAGGCAAAT
TGGGGCTGTCCTGCTCTGAGTTACAGAGGATGATAGAGAGACTCTTGAGGATCTGTTAGGCAAAT
GTCTGACCTTCGGCTCAGGCCAACTGGAAACAGAGCAGAAAGAGAAAATGAAATTCCAAATCCCTGGAAGA
ACTAGACCCCTCTGACCAACTAAAAGAAGCCTGCACTGAAACAGTGGCAGGAGCAGAAAAGCTCAGTCAGTT
AGGATGTAACGTCAAAAGGAAACGTTGAAAAGGGCTAAAGATACTTCAAGTGAAGAAGTTAACCTGAG
TCACATTGACCATGTGAGCCAGTTCCAGAAGAAAAGCCAAAAGAATTACCTGAATGGAGTGAAGGAA
GCTCACAAACATTGTCAGGTGTTCTGGGTGAGTTGGGGTTAGTCAGGAGTGTGAGATTACTGGTA
AGGAATCCAGAAAGGTGCTTCTAAACTCCGAGAGCGGATTCAACCAGAAGAAAACCCGTGGAAGTTAG
TCCAGCTGTCACCAAGGGACTTTATATAGCGAAGCAAGCTACAGGAGGAGCAGAAAAGCTCAGTCAGTT
CTGGTTGATGGAGTTGCACTGTAGCAAATTGCGTTGAAAAGAAACTAGCTCCACATGTCAAGAACAG
GAAGCAAATTGTTCCAGAATCTCTTAAAGACAAGATGGAAATCTCTGAGGATGGTGTATGGT
TGTAGCAGCAAGTAGTGTCAAGGATTTCACACTGTCTGGCAAGGATTGGAATGTGCAGCTAAATGCATC
GTTAACAAATGTTCAAGCAGAAACTGTACAAACTGTGAGATAACAAATACGGATAATATGAGGAGAAGCTA
CCCACCATGCGGTGGATTCTGCGGTCAATGTTGGCTAACGCTACATTAACAAACATTGGTATCAA
AGCAATGGTGAAGAAAAGTCAAGAAGGAGCAGCAAATGTCACAGTGAGAGGGAGAAGGATGAGCAGACGAAG
TCTCAGGGAAAATCAAGAAGGAGCAGCAAATGTCACAGTGAGAGGGAGAAGGATGAGCAGACGAAG
AAGTAAAGGAGGAGCAAAGAAGATAATGATGAAGTGTGAGGAAATCACTTACCAAAAGCCTATGAA
ATGGATGAAATTGTTAAATAGGAAATGTGGAATTCTCAGATAACAGATAACCGTATTGTTAAATGTT
TCATTCTACAAATTACATTTCATAAATTGTCAGTGTCTTCTATTAAAAGGAAAAGAATAAGTATT
CTTGCACTCTGGCTTAAAGGTTCAAGTGTGAGTTATTCTCAAGTTATTGTTCTGTTAAACCTAATATTGAA
ACTATTGTTGAGGTTAAAGGTTCAAGCTGATAGTACATGTGTTGTTCAACCTGTTAAACCTAATATTGAA
ACTATTGTTGAGGTTAAAGGTTCAAGCTGATAGTACATGTGTTGTTCAACCTGTTAAACCTGTTAGGAA
CTTAATTCTTTATAGAAGGAATGACTAAAGTATTGTCCTCTTTTGTGACTAAATTGTTGAGGTTTTT
TAGATGCTTCTCAAAATTTCAGTGTGAGCTAACAAAACAAACTAAAGAATCTCAAAACTTCTGTTAGGAAA
GTTCAAAACAGGGAAAGACTGATGAAAGTAAAGTAAAGGACTACTTTGTAACCTACCTGTTGTTAGGAAA
TGGAAATGGTCTCTTGTTGATTAAAATGAAATAAAAATGATTATTACGTCTTGTATTGAGACTGTATTGT
TATGAGCCTAGGAAAATTGGGAACATGATTGATTGTTATTGAGACTGTATTATCAGCTTAAAT
TGGATTAAAAGTACTTCAGGAAATTATTATCATATCTGCTCTGTTCTGTTCTGTTCAAAAGGTTAAA
GTAAAAAAATATATAACAAATTGAGTTACTAATGGTAAACATTCTGGGATTGGTCAATTG

Figure 36 part - 149

PCT/U504/06308

GAATTATATAAGACAAGTTATTAAGGAAAGGTTCTATTCTAAATCAGGGTAAAGAATATGAAA
ACCTAGACGTAATCCATGGGATAGGCATTATGGTTCCACTTGGCAGAAGGCAGACTATTCAACAGC
CCTATTTACTTACATAGGCTAAAAACTATGTAACAAACTAATGGTATTTAATTGGTTATTGA
ATTAAAGAGATTGGTATTAGTTTCATAGCTGAGTCCATTCTAATAATTCTGATCTTAGTGGCTAC
TTAATTAGACATTGGAGCTGCTGAAGAACATGCACTTATGAATTAAAAACTGAATTGCCTGACCT
CGTTATCACATGAGCTTATTTGGGAAACACATAGAACACTGATGGAGGCTTCTAAGGCCAAGGATAA
TGTACTAGTGTAAAATGAAATAAAAGTGAAGTGGTAAAT

Human SPG20 protein sequence - var1 (public gi: 28436885) (SEQ ID NO: 386)
MEQEPQNGEPAEIKIIREAYKKAFLFVNKGNTDELQKKEAKNYYKQGIGHLLRGISISSKESHTGTG
WESARQMQQKMKTQLQNVTRLEILEKGLATSLQNDLQEVPKLYPEFPDKMCEKLPEPQSAPQHAE
VNGNTSTPSAGAVAAPASLSPSQCSCAPEAPPAYTPQAAEGHYTVSYGTDSEFSSVGEEFYRNHSQPPP
LETLGDADELILIPNGVQIFFVNPAGEVSAPSYPGYLIRIVRFLDNLSDTTLNRRPGFLQVCDWLPLVP
DRSPVLKCTAGAYMFPTDMLQAAGCFVGVLSSLEPEDDRELFPEDLLRQMSDLRLQANWNRAEEENEFOI
PGRTRPSSDQLKEASGTDVKQLDQGNKDVHKGRKGRAKDTSEEVNLSHIVPCPVEEKPKELHEWS
EKVAHNILSGASWVSWGLVKGAEITGKAIQKGASKLKERIQPEEKPVESPATKGLYIAKQATGGAAKV
SQFLVDGVCTVANCVGKELAPHVKKHGSKLVPESLKKDKDGKSPLDGAMVVAASSVQGFSTVWQGLECAA
KCIVNNVSAETVQTVRKYGYNAGEATHHAVDSAVNVGVTAYNINNIGIKAMVKTATQTGHTLLEDYQI
VDNSQRENQEGAANVNRGEKDEQTKEVKEAKKKDK

Human SPG20 protein sequence - var2 (public gi: 22074832) (SEQ ID NO: 387)
MEQEPQNGEPAEIKIIREAYKKAFLFVNKGNTDELQKKEAKNYYKQGIGHLLRGISISSKESHTGPG
WESARQMQQKMKTQLQNVTRLEILEKGLATSLQNDLQEVPKLYPEFPDKMCEKLPEPQSAPQHAE
VNGNTSTPSAGAVAAPASLSPSQCSCAPEAPPAYTPQAAEGHYTVSYGTDSEFSSVGEEFYRNHSQPPP
LETLGDADELILIPNGVQIFFVNPAGEVSAPSYPGYLIRIVRFLDNLSDTTLNRRPGFLQVCDWLPLVP
DRSPVLKCTAGAYMFPTDMLQAAGCFVGVLSSLEPEDDRELFPEDLLRQMSDLRLQANWNRAEEENEFOI
PGRTRPSSDQLKEASGTDVKQLDQGNKDVHKGRKGRAKDTSEEVNLSHIVPCPVEEKPKELPEWS
EKVAHNILSGASWVSWGLVKGAEITGKAIQKGASKLKERIQPEEKPVESPATKGLYIAKQATGGAAKV
SQFLVDGVCTVANCVGKELAPHVKKHGSKLVPESLKKDKDGKSPLDGAMVVAASSVQGFSTVWQGLECAA
KCIVNNVSAETVQTVRKYGYNAGEATHHAVDSAVNVGVTAYNINNIGIKAMVKTATQTGHTLLEDYQI
VDNSQRENQEGAANVNRGEKDEQTKEVKEAKKKDK

Human SPG20 protein sequence - var3 (public gi: 3043744) (SEQ ID NO: 388)
RPRRELSQRRGARGLEGAEIMEQEPQNGEPAEIKIIREAYKKAFLFVNKGNTDELQKKEAKNYYKQGI
GHLLRGISISSKESHTGPGWESARQMQQKMKTQLQNVTRLEILEKGLATSLQNDLQEVPKLYPEFPDK
DMCEKLPEPQSAPQHAEVNGNTSTPSAGAVAAPASLSPSQCSCAPEAPPAYTPQAAEGHYTVSYGTD
SEFSSVGEEFYRNHSQPPPLETELGDADELILIPNGVQIFFVNPAGEVSAPSYPGYLIRIVRFLDNLSDT
VLRPPGFLQVCDWLPLVDRSPVLKCTAGAYMFPTDMLQAAGCFVGVLSSLEPEDDRELFPEDLLRQ
MSDLRLQANWNRAEEENEFOIPIGRTRPSSDQLKEASGTDVKQLDQGNKDVHKGRKGRAKDTSEEVNLS
HIVPCPVEEKPKELPEWESEKVAHNILSGASWVSWGLVKGAEITGKAIQKGASKLKERIQPEEKPV
ESPATKGLYIAKQATGGAAKVSQFLVDGVCTVANCVGKELAPHVKKHGSKLVPESLKKDKDGKSPLDGAMV
VAASSVQGFSTVWQGLECAAKCIVNNVSAETVQTVRKYGYNAGEATHHAVDSAVNVGVTAYNINNIGIK
AMVKTATQTGHTLLEDYQIVDNSQRENQEGAANVNRGEKDEQTKEVKEAKKKDK

Unigene Name: WASF1 Unigene ID: Hs.75850

Human WASF1 mRNA sequence - var1 (public gi: 4507912) (SEQ ID NO: 375)
CTCTCTTGCACTTGCGGATGATGAACTGGAATAACGATGAAAGAAAGCACATCCGATCTAACATTAC
GTCTCTGCCCTATAACGATTAATTAAATTGATCCCCAGCTAGACTAGTGTGAGAAATCAGCATGTTAAA
ACAACGTGTGATGATAGCTGGAGAAAAGTTCAGTGGAGCTATGGCTGAAAATCGTAAATCTT
CAAGGTGAACCTGGCACAAAGGTTAACATCTAACGATGCCCTAGTGAACACTGGATGTGTAACCAATT
GTGCCACACAGCACTGCCCTAGAGGCTTAAGAATGAACTGGAATGTGTAACCAATTTCCTGGCAAAT
ATAATTAGACAACAAAGTGTGCTAACCTGCAAGAACGATGTTGAGCTTATCTGTTAGTGTACACAGCT
ATAGTTTCTTCAGAGCTAACCTGCAAGAACGATGTTGAGCTTATCTGTTAGTGTACACAGCT
TGATCCAAGGAAGAAGAATTGTCTTGCAAGATATAACAATGAGGAAGCTTCCGAAGTTCTACAATT
CAAGACCAGCAGCTTCGATCGAACAGCTTGCCTATTCCATTACAGGAGACGTACGATGTTGTGAAAC
AGCCTCCACCTCTCAATATACTCACTCCTTATAGAGATGATGGTAAAGAAGGTCTGAAGTTTATACCAA
TCCCTCGTATTCTTGATCTATGGAAAGAAAAATGTTGCAAGATACAGAGGATAAGAGGAAGGAAAAG
AGGAAGCAGAAGCAGAAAAATCTAGATCGTCCTCATGAACCCAGAAAAAGTGCACCTCATGACA
GGCGGCGAGAATGGCAGAAGCTGGCCCAAGGTCAAGAGCTGGCTGAAGATGATGCTAATCTTACATAA
GCATATTGAAGTGTCAATGGCCCAGCCTCTCATTTGAAACAAGACCTCAGACATACGTGGATCATATG

GATGGATCTTACTCACTTTCTGCCCTGCCATTAGTCAGATGAGTGAGCTCTGACTAGAGCTGAGGAAA
GGGTATTAGTCAGACCATGAAACCACCTCCACCTCCACCAATGCATGGAGCAGGAGATGCAAAACCGAT
ACCCACCTGTATCAGTTCTGCTACAGGTTGATAGAAAATGCCCTCAGTCACCAGCTACAGGAGAACAA
CCTGTGTTGTGAGCCCCACTCCCCACCTCCACCCACCTCTCCATCTGCCCTGTCAACTTCCAT
TAAGAGCTTCATGACTCAACTCCCTCCCCCTCCAGTACCTCCCCCACCTCCACCTCCAGGCCACTGCTT
GCAAGCTCCAGCAGTACCAACCCACCTCCAGCTCTCTTAGATTGCCCTGGAGTTCTCACCCAGCTCC
CCTCCAATTGCACCTCCCTAGTACAGCCCTCTCCACCAAGTAGCTAGAGCTGCCAGTATGTGAGACTG
TACCAAGTTCATCCACTCCCACAAGGTGAAGTTCAGGGCTGCCCTCACCCACCCACCGCCTCTGCC
TCCACCTGGCATTGCCACCATCATCACCTGTACAGTTACAGCTCTGCTCATCTCCCTCTGGCTACAT
CCAACCTCCATCTACTGCCAGGCTCCCATGTTCCATAATGCCCTCATCTCTCCATCACAAAGTTATAC
CTGCTCTGAGCCAAAGGCCATCCCATCACCCCTACCTGTAATCAGTGTGAGCTGCCAGGAGTGTGACTGGA
AGCAATAAGAAAAGTATTCACTACGCAAAAGTAGAAGAGCAGCGTGAACAGGAAGCTAAGCATGAAAGC
ATTGAAAACGATGTTGCCACCATCCTGCTCGCCGTATTGCTGTAATATAGTATTGGAAAGATGATT
CAGAAATTGATGAAAGTAGATTGGTTGGAGTAAGAAAATGCTGATTGATTAATGCTTCCAT
ATGTCCTTGTGGTGTGTTCTTGAAATCTGATTGCTTGTGATTCTAGTGTGTTGCTTCTTCCATTAA
TAAATGACCCCTTCTCTCCATAAACTTTTGATTCTAAGAAAATATTAGCATACATTCAAACAAATGTT
TTTACAGTGGCTTATCTTTTCTCCCCCTGAAAAGACTAATTGGTCAAATAAAACCAACTAAGTATTAG
CATGGACAGCTGTTGTTAGAGTAGCAGATTCACTGGTATATCTTAAATTGTGTAATTGTGAAATT
TAATTTAAAGAAAGCAACTGAAATTGAAATCTTGAGGGCAGCTGTATCTACTAATGAGCCTTATTCCATT
TCCTGATGTTTAAAGAAGAAACACTGCCTGATTATAGAATACACTCAGAAAGTACATTAGCTGT
AGTGTGAATTCTTAAAGGAATGCTGAAATTTCATTATTGTTTATTGTTTATATACTTGCCT
TATTGAAATGTTAGCAGTATCCCTCCCACTTATATATTGTGTAATTGTTGCTGCCATAGGA
GTTAAAAAACTTTCCATGTGAAATACTCTGACTTAAACATACATGTAACCTACATAACTGTTAAGAATAA
CAGTCTGATTAAATAATGGTCATTAAAAGTT

Human WASF1 mRNA sequence - var2 (public gi: 4927209) (SEQ ID NO: 376)
ATGCCGCTAGTGAAGAACATCGATCCTAGGCACCTGTGCCACACAGCACTGCCTAGAGGCATTAAGA
ATGAACTGGAATGTGTAACCAATTTCCTGGCAAATAATTAGACAACACTAAGTAGCCCTAAGTAAATA
TGCTGAAGATATAATTGGAGAAATTCTAACATGAAGCACATAGTTTCTCTAGAGTCACACTCATGCAA
GAACGTGGAACCGTTATCTGTTAGTGTACACAGCTTGATCCAAGGAAGAAGAATTGCTTTGCAAG
ATAAACAAATGAGGAAAGCTTCCGAAGTCTACAATTCAAGACAGCAGCAGCTTCGATCGCAAGACTTT
GCCTATTCCATTACAGGAGACGTACGATGTTGTGAAACAGCCTCACCTCTCAATATAACTCACTCCTTAT
AGAGATGATGGTAAAGAAGGTCTGAAGTTTATACCAATCCTCGTATTCTTGTATGATCATGGAAAGAAA
AAATGTTGAAAGATAACAGAGGATAAGAGGAAGGAAAAGAGGAAGCAGAAGCAGAAAAATCTAGATCGCC
TCATGAACCAGAAAAAGTCCAAGAGCACCTCATGACAGGGGGAGAATGCCAGAAGCTGCCAAGGT
CCAGAGCTGGCTGAAGATGATGCTAACTCTTACATAAGCATATTGAGTTGTAATGGCCCAGCCTCTC
ATTTGAAACAAGACCTCAGACATACTGGATGATGGATCTTACTCACTTTCTGCCCTGCCATT
TAGTCAGATGAGTGAACGTTCTGACTAGAGCTGAGGAAGGGTATTAGTCAGACCATGAAACCCACTCCA
CCTCCACCAATGCATGGAGCAGGAGATGCAAACCGATAACCCACCTGTATCAGTTCTGCTACAGGTTG
TAGAAAATGCCCTCAGTCACCCAGCTACAGGAGAACACCTGTGTTGTGAGCCCCACTCCCCCACCTCC
TCCACCACTCTTCCATCTGCCCTGTCAACTCCCTCATTAAGAGCTTCAATGACTTCAACTCCTCCCCCT
CCAGTACCTCCCCCACCTCCACCTCAGGCACTGCTTGCAGGCTTCAAGCTCCAGCAGTACCCACCTCCAGCTC
CTCTTCAGATGCCCTGGAGTTCTTCAACCGAGCTCCCTCTCCATTGACCTCTAGTACAGCCCTC
TCCACCACTAGCTAGAGCTGCCAGTATGAGACTGTCAGGCTCATCCACTCCACAAAGGTGAAGTT
CAGGGGGTGCCTCCACCCCCACCGCTCCATGCCCTCCACCTGGCATTGACCCATCATCACCTGTCA
CAGTTACAGCTCTGGCTCATCCCTCTGGGCTACATCCAACCTCATCTACTGCCCAAGGTCCCCATGT
TCCATTAAATGCCCTCATCTCCATCACAAGTTACCTGCTTCTGAGCCAAAGGCCATCCATCAACC
CTACCTGTAATCAGTGATGCCAGGAGTGTGCTACTGGAGCAATACGAAAAGGTATTAGCTACGCAAAG
TAGAAGAGCAGCTGAACAGGAAGCTAACGATGAAACCCATTGAAAACGATGTTGCCACCATCCTGTCTCG
CCGTATTGCTGTTGAATATAGTGATTGGAAAGATGATTGAGAATTGATGAAAGTAGATTGGTTGGAGTAA
AAAAATGCAATTGATAAAATATTACAAAACGAAATGCAAATGCTCTTGTGGTCTTGTGAAAGATG
TTGGTCA

Human WASF1 protein sequence - var1 (public gi: 4507913) (SEQ ID NO: 389)
MPLVKRNIDPRHLCTHALPRGIKNELECVTNISLANIIRQLSSLSKYAEDIFGELFNEAHFSFRVNSLQ
ERVDRLSLSVTQLDPKEEELSLODITMRKAFRSSTIQQQLFDRTKLPIPLQETYDVCEQPPLNLTPY
RDDGKEGLKFYTNPSYFFDLWKEKMLQDTEDKRKEKRQKQKNLDRPHEPEKVPRAPHDRREWQKLAQG
PELAEDDANLLHKHIEVANGPASHFETRPQTVDHMDGSYSLSALPFSQMSELLTRAEEFVLVRPHEPPP
PPPMHGAGDAKPPIPTCISSATGLIENRQSPATGRTPVFVSPTPPPPPPLPSALSTSSLRASMTSTPPP
PVPPPPPPPPATALQAPAVPPPPAPLQIAPGVLKHPAPPPIAPPLVQSPSPVVARAAPVCETVPVHPLPQGEV
QGLPPPPPPPPPLPPPGIRSPSVTALAHPPSGLHPPTSTAPGPHVPLMPPSPSQVIPASEPKRHPSLT
LPVISDARSVILLEAKGIGLRKVEEQREAKEHRIENDVATILSRRIAVEYSDSEDDSFDEVDWLE

Unigene Name: HIP-55 Unigene ID: Hs.183373

Human HIP-55 mRNA sequence - var1 (public gi: 6470260) (SEQ ID NO: 377)

ATGGCGCGAACCTGAGCCGAACGGGCCAGCGTCAAGAGGCCTACGTGCGGGTGGTCACCGAGAAGT
CCCGAACGACTGGGCTCTCTTACCTATGAAGGCAACAGCAATGACATCCCGTGGCTGGCACAGGGGA
GGGTGGCCTGGAGGAGATGGTGAGGAGCTAACAGCGGGAAAGGTGATGTACGCCTCTGCAGAGTGAAG
GACCCAACACTGGACTGCCAAATTGTCCTCATCAACTGGACAGGCCAGGGCGTGAACGATGTGCGGA
AGGGAGCCTGTGCCAGCACGTCAAGCACCAGGCCAGCTTCTGAAGGGGGCCCATGTGACCATCAACGC
ACGGGCCGAGGAGGATGTGGAGGCTGAGTGCATGGAGAAGGTGGCCAAGGCTTCAGGTGCGCAACTAC
AGCTTTACAAGGAGAGTGGCGCTTCCAGGACGTGGGACCCCAGGCCCCAGTGGCTCTGTGACCCAGA
AGACCAATGCGTGTCTGAGATAAAGGGTTGGTAAAGACAGCTCTGGGCAAAGCAGAGAAGGGAGGA
GGAGAACCGTGGCGAGGAGGAAAGGGGGGGCGAGGCCAGGCCAGTGGAGCAGGCCAGGGCG
GAGCGTGGCTGGCGAGGAGCAGCAAGAAGTGGTTCAAGGAACCGAAATGAGCAGGAGTCTGCCGTGCA
AGAGGACGTGGAGCAGCAAGAAGTGGCTTCAAGGAACCGAAATGAGCAGGAGTCTGCCGTGCA
GAGGGAGATTTCAAGCAGAAGGAGGGCCATGTCCACCAACCTCCATCTCCAGTCCAGGCCAGGG
CTGAGGAGCCCTTCTGAGAGCAGCTACCCAAACAGAGACCCACTTGGCAGAGAGGCCAGCTGCTG
CCATCTCAAGGCCAGGGCAGATCTCCCTGCTGAGGAGCCGCCAGCACTCCCATGTCGGTGC
GGCAGAAGAGGAGGCTGTGTATGAGGAACCTCCAGAGCAGGAGACCTTACGAGCAGGCCACTGGT
CAGCAGCAAGGTGCCGGCTGTAGCACATTGACCACACATTAGGGCCAGGGGCTCAGTGGGCAAGGG
TCTGTGCCGTGCCCTGTACGACTACCAGGAGCCAGCACAGAGATCTCCATTGACCCGAGAACCT
CATCACGGCATGAGGTGATGACCAAGGCTGGCTGGCTATGGCCGGATGGCATTITGGCATG
TTCCTGCCACTACGTGGAGCTATTGAGTGGCTGAGGCCAGGGCTAGACTAGTCTAGAGAAAAAA
C

Human HIP-55 mRNA sequence - var2 (public gi: 8885629) (SEQ ID NO: 378)

GAAGCTACAGCAGCGCGGGAGACTGGGGGGGCCATGGCGCGAACCTGAGCCGAACGGGCCAGC
GCTGCAAGAGGCCAACCTACGTGGGGTGGTACCGAGAAGTCCCCGACCGACTGGGCTCTCTTACCTATGAA
GGCAACAGCAATGACATCCCGTGGCTGGCACAGGGGAGGGTGGCTGGAGGAGATGGTGGAGGAGCTCA
ACAGCGGGAAAGGTGATGTACGCCTCTGCAAGAGTAAGGACCCCAACTCTGACTGCCAAATTGCT
CATCAACTGGACAGCGAGGGCTGAACGATGTGGAGAAGGGAGGCTGTGCCAGCCACGTCA
GCCAGCTTCTGAAGGGGCCATGTGACCATCAAGCAGCGGGCCAGAGGAGGATGTGGAGGCTGAGTGC
TCATGGAGAAGGTGGCAAGGCTTCAGGTGCCAACTACAGCTTACAAGGAGAGTGGCCGCTTCCAGGA
CGTGGGACCCAGGCCAGTGGCTCTGTGTACAGAACGACATGCCGTGTCAGATTAAAAGGGTT
GGTAAAGACAGCTTCTGGCCAAGCAGAGAAGGAGGAGGAGAACCGTGGCTGGAGGAAAGCGCGGG
CCGAGGAGGCACAGCGGAGCTGGAGCAGGAGCGCCGGAGCGTGGAGGCTGAGGCTGACGCCGG
GCAGCGTATCAGGAGCAGGGTGGCGAGGCCAGCCCCAGAGGAGCTGGAGCAGCAAGAAGTGGTT
TCAAGGAACCGAAATGAGCAGGAGTCTGCCGTGCAACCGAGGGAGATTTCAGCAGAAGGAGGGCCA
TGTCCACCACCTCCATCTCCAGCTGCCAGCTGGCAAGCTGAGGAGGCCCTTCTGAGAACGCTCAC
CCAACCAGAGACCCACTTGGCAGAGGAGCCAGCTGCTGCCATCTCAAGGCCAGGAGATCTCCCTGCT
GAGGAGCGGGCCAGACTCTCCATGTCGGTGCAGGAGAAGGAGGAGCTGTGTATGAGGAACCTC
CAGAGCAGGAGACCTTCTACGAGCAGCCCCACTGGTGCAGCAGCAAGGTGCTGGCTTGAGCACATTGA
CCACACATTAGGGCAAGGGCTCAGTGGCAAGGGCTCTGTGCCCTGTACGACTACCAGGA
GCCGACGACACAGAGATCTCTTGACCCGAGAACCTCATCACGGCATCGAGGTGATGACGAAGGCT
GGTGGCTGGCTATGGCCGATGGCATTGGCATGTTCCCTGCCAACTACGTTGAGGCTCATTGAGTG
AGGCTGAGGGCACATCTGCCCTCCCTCTAGACATGGCTTCTATTGCTGAAAGAGGAGGCCCTGG
AGTTGACATTAGCAGCACTCTCCAGGAATAGGACCCCACTGAGGATGGGCTCAGGGCTCCCTCCGGCT
TGGCAGACTCAGCCTGTACCCCAATGCAAGCAATGGCCTGGTATTCCCACACATCCCTGCA
CCGACCCCTCCAGACAGCTGGCTCTGGCCCTGACAGGAACTGAGCCAAGGCCCTGCTGGCCAAGC
CCTGAGTGGCAACTGCCAAGCTGCGGGAGGGCTGTGAGCAGGGGATCTGGGAGGCTCTGGCTGCC
CTGCAATTATTGCTCTTTCTCTTCTGCTTCTAAGGGGTTGGCCACCAACTGTTAGAC
CCTGGGAACAGTGAACCTAGAGAAATTGTTAGCAGAGTTGTGACCAAAGTCAGAGTGGATCATGG
GGTTGGCAGGGAAATTGCTTGTGAGGAGCTGTGCTCTGCTGCCACCTCCATTCTGTCCCT
GCCCTGGCTATGGGAAGTGGGAGTGCAGATGCCAGCTCCACCCCTGGTATTCAAAACGGCAGACAC
AACATGTTCTCCACGCCGCTAAAAAAAAAAAAAA

Human HIP-55 mRNA sequence - var3 (public gi: 8917572) (SEQ ID NO: 379)

ATGGCGCGAACCTGAGCCGAACGGGCCAGCGTCAAGAGGCCTACGTGCGGGTGGTCACCGAGAAGT
CCCGAACGACTGGGCTCTCTTACCTATGAAGGCAACAGCAATGACATCCCGTGGCTGGCACAGGGGA
GGGTGGCCTGGAGGAGATGGTGAGGAGCTAACAGCGGGAAAGGTGATGTACGCCTCTGCAGAGTGAAG
GACCCAACACTGGACTGCCAAATTGTTCTCATCAACTGGACAGGCCAGGGCTGAACGATGTGCGGA

AGGGAGCCTGTTCCAGCCACGTCAAGCACCATGGCCAGCTTCTGAAGGGGCCATGTGACCATAACGC
ACGGCGGAGGAGGATGTGGAGCCTGAGTCATCATGGAGAAGGTGGCAAGGCTTCAGGTGCCAACTAC
AGCTTCACAAGGAGAGTGGCGCTTCAGGACGTGGGACCCAGGCCAGTGGCTCTGTGTACCGA
AGACAAATGCCGTGTCAGATTAAAGGGTTGGAAAGACAGCTTCTGGCCAAGCAGAGAACGGAGGA
GGAGAACCGTCCCCTGGAGAAAAGCGCGGGCCAGGAGGACAGCGCAGCTGGAGCAGGAGCGCCGG
GAGCGTGAAGCTCGTGAGGCTGACGCCGGAGCAGCGTACAGGAGCAGGGTGGCGAGGCCAGCCCC
AGAGTACGTGGGAGCAGCAAGAAGTGGTTCAAGGAACCGAAATGAGCAGGAGTCTGCCGTGACCC
GAGGGAGATTTCAAGCAGAAGGAGAGGGCATGTCACCCACTCTCCAGTCAGCTCAGCTGGCAAG
CTGAGGAGCCCCCTCTGAGAAGCAGCTCAGGAAACCCAGAGAACCCACTTGGCAGAGAGGCCAGCTG
CCATCTCAAGGCCAGGGAGATCTCCCTGCTGAGGAGCAGCTCAGGAGCAGGCCAGTGGCT
GGCAGAAGAGGAGGCTGTGATGAGGAACCTCCAGCAGGAGCAGCCAGTGGCAGAGGCCAGTGGT
CAGCAGAAGGTGCTGGCTGAGCACATTGACCAACATTCAAGGCCAGGGCTAGTGGCAAGGGC
CTGTGCCCCGTGCCCCGTACGACTACCAGGCAGCGACAGAGATCTCTTGACCCGAGAACCT
CATCACGGGATCGAGGTGATCGACGAAGGCTGGCGTGGCTATGGGCCGATGGCATTGGCATG
TTCCCTGCCAACTACGTGGAGCTATTGAGTGA

Human HIP-55 mRNA sequence - var4 (public gi: 10121214) (SEQ ID NO: 380)
GGGGGGCCATGGCGCGAACCTGAGCCGGAACGGGCCAGCGCTGCAAGAGGCCACGTGCGGGTGGTC
ACCGAGAAGTCCCCGACCGACTGGGCTCTTACCTATGAAGGCAACAGCAATGACATCCGCGTGGCTG
GCACAGGGGAGGGTGGCTGGAGGAGATGGTGGAGGAGCTAACAGCGGGAGGTGATGTACGCCCTCTG
CAGAGTGAAGGACCCAACTCTGACTGCCAAATTGTTCTCATCAACTGGACAGGCCAGGGCGTGAAC
GATGTGCGGAAGGGAGGCTGTTCCAGGCACGTCAACGACCATGGCAGCTCCATGTGAAGGGGCCATGTGA
CCATCAACGCACGGGCCAGGGAGGATGTGGAGCCTGAGTGCATCATGGAGAAGGTGGCCAAGGCTTCAGG
TGCCAACCTACAGCTTCAACAGAGGAGTGGCCGCTTCCAGGAGCTGGGACCCAGGGCCAGTGGCT
GTGTACCAAGAACCAATGCCGTGTCAGATTAAAGGGTTGGTAAGAGACAGCTTCTGGCCAAGGAG
AGAAGGAGGAGGAGAACCGCTGGTGAGGAAAAAGCGCGGGCCAGGAGGCCAGCGCAGCTGGAGCA
GGAGCGGGGGAGCGTGAAGCTGGCTGAGGCTGCAAGCGGGAGCAGCGCTATCAGGAGCAGGGTGGCGAG
GCCAGCCCCAGAGTACGTGGAGCAGCAAGGAACTTCAAGGAGGAGTGGCCACATTGACCCACATTCA
CCGTGACCCCGAGGGAGATTTCAGCAGAGGAGGGCCATGTCACCCACTCTCCAGTCCTCA
GCCTGGCAAGCTGAGGAGGCCCTTCTGCAAGCAGCTACCCAAACAGAGAACCCACTTGGCAGAG
CCAGCTGCTGCCATCTCAAGGCCAGGGAGATCTCCCTGCTGAGGAGGCCGCCAGCACTCCCAT
GTCTGGTGCAGGAGAAGAGGAGGCTGTGATGAGGAACCTCCAGAGCAGGAGACCTTCAAGGAGCAGCC
CCCAGTGGTGCAGCAGCAAGGTGCTGGCTCTGAGCACATTGACCCACATTCAAGGGCCAGTGGCT
GGGCAAGGGCTCTGTGCCGTGCCCTGACCACTTACAGGAGCAGGCCACAGAGATCTCTTGACC
CCGAGAACCTCATCACGGCATCGAGGTGATCGACGAAGGCTGGCTGGCTATGGGCCGATGGCA
TTTGGCATTTCTGCCAACTACGTGGAGCTATTGAGTGAAGGAGGCCAGGGCTGGAGTTGACATT
TCTCAGACATGGCTCTTATTGCTGGAAGAGGAGGCCAGGGCTGGAGTTGACATTCAAGCACTCTCAGGAAT
AGGACCCCCAGTGGAGGATCTGGCTCAGGGCTCCCTCCGGCTTGGCAGACTCAGCTGTCA
CAGCAATGGCTGGTATCCCACACATCCCTCTGCACTCCCCGACCCCTCCAGACAGCTTGCTCTG
CCCCCTGAGAGATACTGAGCCAAGCCCTGCCGTGGCCAAGCCCTGAGTGGCCACTGCCAAGCTGCC
AAGGGTCTGAGCAGGGGCATCTGGGAGGCTGGCTGCCATTCTGCATTATTGCTTTCTTT
TCTGCTCTAAGGGGTGGTGGCCACCACTGTTAGAATGACCCCTGGAAACAGTGAACGTTAGAGAATTG
TTTTAGCAGAGTTGTGACCAAAGTCAGAGTGGATCATGGTGGTTGGCAGCAGGAATTGCTTGT
GGAGCCTGCTCTGTGCTCCCCACTCCATTCTCTGCTGCCCTGGCTATGGGAAGTGGGGATGCAG
ATGGCCAAGCTCCCACCTGGTATTCAAAAACGGCAGACACAACATGTTCTCCACGCCGCTCGCTGA
TGCCCTGCCAGGGCCAGTGTGCTCAACTGATCTGACTTCAGGAAAAGTAACACAGAGTGGCTTGG
CTGTTGTCTTCCCTATTCTGCTGCCAGTCATCCGTGTCAGAAGAATAATGCTTTGGAAAAA
AAAAAAAAAA

Human HIP-55 mRNA sequence - var5 (public gi: 10441969) (SEQ ID NO: 381)
GACCACATCAACGCACGGGCCAGGGAGGAGATGTGGAGCCTGAGTCATGGAGAAGGTGGCAAGGCTTC
GGTGCCTACACTACAGCTTCAAAAGGAGAGTGGCCCTCCAGGACGTGGGACCCAGGCCAGTGGCT
CTGTGACCGAGAACCAATGCCGTGTCAGATTAAAGGGTTGGTAAGACAGCTTCTGGGCCAAAGC
AGAGAAGGAGGAGGAGAACCGCTGGCTGGAGGAAAAGCGGGCCGGAGGAGGACAGCGCAGCTGGAG
CAGGAGCGCCGGAGCGTGAAGCTGGCTGAGGCTGACGCCGGAGCAGCGCTATCAGGAGCAGGGTGGCG
AGGCCAGCCCCAAAGGAGCTGGGAGCAGCAAGAAGTGGTTCAAGGAACCGAAATGAGCAGGAGTC
TGCCGTGACCCAGGGAGATTTCAGCAGAAGGAGAGGCCATGTCACCCACCTCCATCTCCAGTCCT
CAGCCTGGCAAGCTGAGGCCCTTCCCTGCAAGCAGCTACCCAAACAGAGACCCACTTGGCAGAG
AGCCAGCTGCTGCCATCTCAAGGCCAGGGCAGATCTCCCTGCTGAGGAGGCCAGCAGCTCC
ATGTCTGGTGCAGGAGAACAGAGGAGGCTGTGATGAGGAACCTCCAGAGCAGGAGACCTTCTACGAGCAG
CCCCCACTGGTGCAGCAGCAAGGTGCTGGCTCTGAGCACATTGACCCACATTCAAGGCCAGGGCTCA
GTGGGCAAGGGCTCTGTGCCGTGCCCTGTACGACTACCAGGCAGCCAGCAACAGAGATCTCCTTGA

CCCCGAGAACCTCATCACGGGCATCGAGGTGATCGACGAAGGCTGGTGGCGTGGCTATGGGCCGATGGC
 CATTGGCATTTCCCTGCCAACTACGTGGAGCTCATTGAGTGAGGCTGAGGGCACATCTGCCCTTC
 CCTCAGACATGGCTTCCCTATTGCTGGAAGAGGAGGGCTGGGAGTTGACATTGACACTCTCCAGGA
 ATAGGACCCCACTGGAGGATGAGGCCTCAGGGCTCCCTCGGCTGGCAGACTCAGCCGTGACCCAAA
 TGCAGCAATGGCCTGGTATTCCCACACATCTTCCCTGCATCCCCGACCCCTCCCAGACAGCTGGCTCT
 TGCCCTGACAGGATACTGAGCCAGGGCTGAGGCTCTGCTGCTTCTGCTTATTGCTTTTCTTT
 GGAAGGGCTCTGAGCAGGGCATCTGGGAGGCTGGCTGCCCTTGAGGAACTGAGCTGAACTGAGAAT
 TCTTGTCTTAAGGGTGGCACCCTGTTAGAATGACCCCTGGGAAACAGTGAACGTAGAGAAT
 TGTGAGGTTAGCAGAGTTGTGACCAAAGTCAGAGTGGATCATGGTGGTTGGCAGCAGGGAAATTGTCTT
 TTGAGGCTGCTGTGCTCCCCACTCCATTCTGTCCCTGCCTGGCTATGGGAAAGTGGGATGC
 AGATGGCCAAGCTCCCACCCCTGGTATTCAAAAACGGCAGACACAACATGTCCTCACGCCGCTCACTC
 GATGCCCTGCAGCCCCAGTGTGCTCAACTGATTCTGACTCAGGAAAAGTAACACAGAGTGGCCTT
 GCCTGTTGTCTCCCCATTCTGTCCAGCTATCCGTGCTCTGAGAACAAATATGCTTTGGACC
 ACGAAAAAAAAAAAAAA

Human HIP-55 mRNA sequence - var6 (public gi: 14041995) (SEQ ID NO: 382)
 AGCGGCGGGAGACTCGGGGGCGGCGATGGCGGCGAACCTGAGCCGGAACGGGCCAGCGCTGCAAGAGG
 CCTACGTGCGGGTGGTACCGAGAAGTCCCCGACCGACTGGCTCTTACCTATGAAGGCAACAGCAA
 TGACATCCCGTGGCTGGCACAGGGGAGGGTGGGCTGGAGAGATGGTGGAGGAGCTAACAGGGGAAG
 GTGATGTACGCTTCTGCAAGGTGAGAGTGAAGGACCCAACTCTGGACTGCCAACATGGCTCATCAACTGGA
 CAGGCGAGGGCGTGAACGATGTGCGGAAGGGAGGGAGCTGTGCCAGCACGTGACCATGGCAGCTTCT
 GAAGGGGGCCATGTGACCAACTACAGCTTCAACAAGGAGAGTGGCCGTTCCAGGACGTGGGACCC
 GTGGCCAAGGGCTTCAAGGTGCAACTACAGCTTCAACAAGGAGAGTGGCCGTTCCAGGACGTGGGACCC
 AGGGCCCAGTGGCTCTGTGTACCAAGAGACCAATGCCGTGCTGAGATTTAAAGGGTGGTAAAGACAG
 CTCTGGGCAAGCAGAGAAGGAGGGAGAACCGTGGCTGGAGGAAAAGCGGGGGCGAGGAGGCA
 CAGGGCAGCTGGAGCAGGAGCGCCGGGAGCGTGGAGCTGCGTGGAGGCTGCAAGCCGGAGCAGCGTATC
 AGAGCAGGGTGGCAGGGCAGCCCCAGAGCAGGACGTGGAGCAGCAGCAAGAAGTGGTTCAAGGAA
 CCGAAATGACCAAGGGTCAACATGTGCTTCCCTCAGGAGTCTGCCGTGCAACCGAGGGAGATTTCAG
 CAGAAGGAGAGGGCATGTGCCACCACCTCCATCTCAGGCTGGCAAGGCTGAGGAGGCCCTTCC
 TGCAGAAGCAGCTCACCAACCAGAGACCCACTTGGCAGAGAGGCCAGCTGCTGCCATCTCAAGGCCCAG
 GGCAGATCTCTGTGAGGAGCGGGCGCCAGCACTCTCATGTCTGGTGCAGGCAGAAGAGGAGGCT
 GTGATGAGGAACCTTCAAGGAGGGAGACCTTCAAGGAGCAGGAGACCTTCAAGGAGCAGGAGCTG
 GCTCTGAGCACATTGACCAACATCCAGGGCAGGGCTCAGTGGCAAGGGCTCTGTGCCCCGTGCCCT
 GTGACTACAGGCGACGACACAGAGATCTCTTCAACCCGAGAACCTCATCACGGCATCGAG
 GTGATCGACGAAGGCTGGTGGCTGCTATGGGGCGATGCCATTGGCATGTCCTGCCAACTACG
 TGGAGCTCATGTGAGTGGCTGAGGCACATCTGCCCTTCCCTCTCAGACATGGCTTCTTATTGCTG
 GAAGAGGAGGGCTGGAGGTTGACATTGACACTCTCCAGGAATAGGACCCCCAGTGGAGGATGAGGCTC
 AGGGCTCCCTGGCTGGCAGACTCAGCCTGTACCCCCAATGCAAGCAATGCCCTGGTGAATTCCCACAC
 ATCCTTCTGCACTCCCCGACCCCTCCCAGACAGCTGGCTTGTGCCCTGACAGGAACTGAGCCAAGCC
 CTGCCGTGGCAAGCCCTGACTGCCAGTGCCAGCTGCCAGGGGAAGGGCTCTGAGCAGGGCATCTGGG
 AGGCTCTGGCTGCCCTGTGATTTCCTTCTCTGCTTCTAAGGGTGGTGGCCAC
 CACTGTTAGAATGACCCCTGGGAACAGTGAACGTAGAGAATTGTTTAGCAGAGTTGTGACCAAAGT
 CAGAGTGGATCATGGTGGTTGGCAGAGGAATTGTCTTGTGGAGGCTGTGCTCCCCACTCC
 ATTCTCTGTCTTCTGCTGGCTATGGGAAGGGATGCAAGATGCCAAGCTCCCACCTGGTATT
 CAAAACGGCAGACACAAATGTTCTCCACGCCGCTACTCGATGCCGTGAGGCCAGTGTGCTGCTC
 AACCGATTCTGACTTCAGGAAAAGTAACACAGAGTGGC

Human HIP-55 mRNA sequence - var7 (public gi: 15079722) (SEQ ID NO: 383)
 GGCAAGGGGGGGAGACTCGGGGGGGCATGGCGGGAACCTGAGCCGGAACGGGCCAGCGCTGCAAG
 AGGCCTACGTGCGGGTGGTACCGAGAAGTCCCCGACCGACTGGCTCTTACCTATGAAGGCAACAG
 CAATGACATCCCGTGGTGGCACAGGGGAGGGTGGCTGGAGGAGATGGTGGAGGAGCTAACAGCGGG
 AAGGTGATGTACGCTTCTGCAAGGTGAGAGTGAAGGACCCAACTCTGGACTGCCAACATTGTCTCATCAACT
 GGACAGGCGAGGGCGTGAACGATGTGCGGAAGGGAGGCTGTGCCAGCACGTGACCATGGCAGCTT
 CCTGAAGGGGGCCATGTGACCATCAACGCAAGGGCGAGGAGGATGTGGAGGCTGAGTCATCATGGAG
 AAGGTGGCCAAGGGCTCAGGTGCAACTACAGCTTCAAGGAGAGTGGCCGCTTCCAGGACGTGGGAC
 CCCAGGGCCAGTGGCTCTGTGTACCAAGAGACCAATGCCGTGCTGAGATTAAAGGGTGGTAAAGA
 CAGCTTCTGGCCAAGAGCAGAGAAGGGAGGGAGAACGTCGGCTGGAGGAAAAGCGGGGGGGAGCAGCGCT
 GCACAGCGGAGCTGGAGCAGGAGGCCGGAGCGTGAGCTGCCGTGAGGCTGCCAGCAGCAAGTGGTTCAAG
 ATCAGGAGCAGGGTGGCAGGGCCAGCCCCCAGAGCAGGAGCTGGGGAGATTTCAGCAGAGAGGGCCATGTCC
 GAACCGAAATGAGCAGGGAGTGTGCTGCCACCCGAGGGAGATTTCAGCAGAGAGAGGGCCATGTCC
 ACCACCTCCATCTCCAGTCTGCCAGGCTGGCAAGCTGAGGAGCCCCCTTCTGCAAGAAGCAGCTACCCAC
 CAGAGACCCACTTGGCAGAGGCCAGTGTGCCATCTCAAGGCCAGGGCAGATCTCCCTGCTGAGGA

GGCGGCGCCAGCACTCCTCATGTCGGTGCAGGCAGAAGAGGAGGCTGTATGAGGAACCTCCAGAG
CAGGAGACCTCTACGAGCAGCCCCACTGGTGCAGCAGCAAGGTCTGCTCTGAGCACATTGACCACC
ACATTCAGGGCCAGGGCTCAGTGGCAAGGGCTCTGTGCCCTGCCCTGTACGACTACCCAGGCAGCCGA
CGACACAGAGATCTCTTGCACCCCGAGAACCTCATCAGGGCATCGAGGTATCGACGAAGGCTGGTGG
CGTGGCTATGGCCGGATGCCATTGGCATGTCCTGCCAACTACGTGGAGCTCATTGAGTGAGGCT
GAGGCCACATCTGCCCTTCCCCTCATGACATGGCTTCTTATTGCTGGAAGAGGAGGCCCTGGAGTTG
ACATTCAGCACTTCCAGGAATAGGACCCCCAGTGAGGATGAGGCCTCAGGGCTCCCTCCGGCTTGGCA
GACTCAGCCTGTCAACCCAAATGCAGCAATGGCTGGTATTCCCACACATCCTCCGTATCCCCGAC
CCTCCAGACAGCTGGCTCTGCCCTGACAGGATACTGAGCCAAGGCCCTGCCGTGGCCAAGCCCTGA
GTGCCACTGCCAAGCTGGGGAGGGCTGAGCAGGGCATCTGGAGGCTCTGGCTGCCCTTGCA
TTTATTGCTTTCTTCTGCTTAAGGGTGGTGGCCACACTGTTAGAAATGACCCCTG
GGAACAGTGAACGTAGAGAATTGTTTTAGCAGAGTTGTGACCAAAGTCAGAGTGGATCATGGGGTT
GGCAGCAGGGAAATTGTCTGTTGGAGCCTGCTGTGCTCCCCACTCCATTCTGTCCCTCTGCCCTG
GGCTATGGGAAGTGGGATGCAGATGCCAAGCTCCACCCCTGGTATTACCAACGGCAGACACAACAT
GTTCTCCACGCGGCTCACTCGATGCCCTGCAGGGCCCTGAGTGTGCCCTCAACTGATTCTGACTTCAGGAA
AAGTAACACAGAGTGGCCTGGCCTGTTGCTTCCCCTATTCTGTCCAGCTCATCGTGTCTGAA
GAACAAATATGTTGGACACGAAAAAAAAAAAAAAA

Human HIP-55 mRNA sequence - var8 (public gi: 21619482) (SEQ ID NO: 384)

CGGGCCATGGCGGCGAACCTGAGCGGAAACGGGCAGCGCTGCAAGAGGCCACGTGCGGGTGGTCACCG
AGAAGTCCCCGACCGACTGGCTCTCTTACCTATGAAGGAAACAGCAATGACATCCGCGTGGCTGGCAC
AGGGGAGGGTGGCTGGAGGAGATGGTGGAGGAGCTAACAGCGGGAAAGGTATGTACGCCCTTGCA
GTGAGGAGACCCAACTCTGACTGCCAAATTGTCTCATCAACTGGACAGGCAGGGCGTGAACGATG
TGCGGAAGGGAGCCGTGAGCAGCAGCCATGGCAGCTTCTGAAGGGGCCATGTGACCAT
CAACGCACGGGCCAGGGAGATGTGGAGCCTGAGTGCATCATGGAGAAGGTGGCCAAGGCTTCAGGTGCC
AACTACAGCTTCAAGGAGAGTGGCGCTTCAGGACGTGGGACCCCAGGCCCCAGTGGCTCTGT
ACCAAGAGACCAATGCCGTGCTGAGATTAAAGGGTTGGTAAAGACAGCTCTGGCAAAGCAGAGAA
GGAGGAGGAGAACCGTCGCTGGAGGAAAAGCGCGGGCCGAGGAGGACAGCGGAGCTGGAGCAGGAG
CGCCGGAGCGTGAAGCTGCGTGAGGCTGCAAGCCGGAGCAGCGCTATCAGGAGCAGGGTGGCGAGGCCA
GCCCGCAGAGGACGTGGGAGCAGCAGCAAGAAGTGGTCAAGGAACGGAAATGAGCAGGAGTCTGCC
GCACCCGAGGGAGATTTCAGAGCAGAAGGAGAGGCCCCATGTCACCCACTCCAGTCCAGCCT
GGCAAGCTGAGGAGCCCCCTCTGCAAGAACGACTCACCAACAGAGACCCACTTGGCAGAGGCCAG
CTGCTGCCATCTCAAGGCCAGGGCAGATCTCCCTGCTGAGGAGCAGCTCACCTCCATGTCT
GGTCAGGAGAACAGAGGAGGCTGTGATGAGGAACCTCCAGAGCAGGAGACCTCTACGAGCAGCCCCA
CTGGTGCAGCAAGGTGCTGGCTGAGCACATTGACCAACACATTAGGGCCAGGGCTCAGTGGG
AAGGCTCTGCCCCGTGCTGTACGACTACCAAGGAGCCAGACACAGAGATCTCTTGACCCGA
GAACCTCATCGGGCATCGAGGTGATCGACGAAGGCTGGCTGGCTATGGCCGATGGCATT
GGCATGTTCCCTGCAACTACGTGGAGCTATTGAGTGGCTGAGGACATCTGCCCTCCCTCTC
AGACATGGCTTCTTATTGCTGGAAGAGGAGGCTGGAGTTGACATTCACTCAGCTCTTCCAGGAATAGGA
CCCCCAGTGAAGGATGAGGCCCTAGGGCTCCCTCGGCTTGCAGACTCAGCTGTCAACCCAAATGAGC
AATGGCTGGTGAACACATCTCTGCACTCCCCGACCCCTCCAGACAGCTTGGCTCTGCC
TGACAGGATACTGAGCCAAGCCCCCTGGCTGGCCAAGCCCTGAGTGGCACTGCCAAGCTGCGGGAAAG
GTCCCTGAGCAGGGGATTGGGAGGCCACTGTGTTAGAATGACCCCTGGGAGCTGAACGTTAGAGAATTGTT
GCTCTAAGGGTGGTGGCACCCTGTTAGAATGACCCCTGGGAGCTGAACGTTAGAGAATTGTT
TAGCAGAGTTGTGACCAAGTCAGAGTGGATCATGGTGGTTGGCAGCAGGGAAATTGCTTGTGGAG
CCTGCTCTGCTCCCCACTCCATTCTGTCCCTGCTGGCTGGGAGTGGGATGCAGATGG
CCAAGCTCCCCCTGGTATTCAAAACGGCAGACACACATGTTCTCCACGCCACTCGATGCC
TGCAGGCCAGTGTGCTCAACTGATTCTGACTTCAGAAAAGTAACACAGAGTGGCCTGGCCTGT
TGTCTTCCCCTAAAAAAA

Human HIP-55 mRNA sequence - var9 (public gi: 23959038) (SEQ ID NO: 385)

GGCACGAGGATTGACACATGAATGTATAGCAGTCATTGGAAACTCCACAGCTCATGTTTCTCATAG
TAGATGTGTGCTCCCATCTCATGGCTTGTCCCTCACACCCCCACCCCATGGTAAGTCAGGCCAGTGT
CCTCCCAGCTGAGAGCTGAGAAGGCTGCACAGTTGCCACTGAGAACCTGCCAGTGGTCAGAGCAA
GTGAGAACGGCCTGTGCCACCCACAGTGTACTGTCAAGGCCAGCTTGGGATGTAGTGGAAAGTC
ATGGTGGATAAGGTGAGGAGAGATGGAACCCAAGGTGCTGGCTACAGAGCTACTTGTGTTCTTGT
GGCTCTCTTACCTATGAAGGCAACAGCAATGACATCCGCGTGGCTGGCACAGGGGGTGA
AAATGGACTCAGGGACACCCAGGGAGGTAGGAGGGTGAACGACAGGGGTCA
CACTGAGGCCACATGGGGCTTCCAGTGTCACTGCCACTCTGGCAGGCCCTAGGTTCA
AGTGAACACATCTCTTGGTCTCTTCTGGGTGCAAGGGAGTGTCTTCTCTTGTCTACTTGG
GGAGAGCTGAGAGGGAAACAGGCCCTCCAGCTGTGGCAGCCTGCCAGGGAGCTGCC
CACCAGTCCAGAACTGGTGTGGAAAGAAAGTCCACAGACATATCTCTTCTCCCTTGTCTGCC

PCT/US04/06306

CTGGTCTGTGCCGAGTCTGCAGGGGCCCATCCTCACTGGAGAGGCAGTATCACTGCAGATAGTCACGGGGAGGCTCTGGAGGTCTCACAGGAAGGACAGGCCTTGGCCAGCACAGAGCAGAGGTTGTCAGGGTAGGCTCGCAGAGTGTGACCTGTGGGCCCTCAGCTGACACCGTGACTGCTCCTCCAGAACAGTTGCTGACCCCTCCCTGTCCGTGAGCTGGACATGGCTTCATTGTTCAATGAACACTCGGAGTGGTTCTCCA CGGTTGATGTCGTGTTGGTAGAAAGCCCCCTTCCTTACAATCTTCTGGAGGTGCTCCCCTTCTA GAAGGATTGCCATTGAACAGTAGACATGTGGTGTGGCAGGTGACTGGAGTTGAGAGATCAACACTTG AGAGTTTCTGTCATCCCCAGTGGCACAGGACAGGGCTGTGCCACAAATGCAACAAATTGCTGTCCCCAG AGTGGGCTCATGACTGCCCACTCATACGGAGCCCTGTAGATGAAATACCTGATCAGCTTCCCTCTATAACCTGGAAAAGTTGTGAGGGCTAAGGCTCAGTGTAGGGAAATTGTTAGAGCTGCCACTCCT GTGCTCCCCCTGTCCCCATCACCTCTTCTGGAGTCTGAGGACTGAGCCAGTTACGCCACTGCAGGAT GTTCAATCTGGTCTGGCCGTCTGGTGGCCCTGGAACTTGAGCAGACACAGGTGCAAGGAGTGGTGAECTAC TACAGGCCCTGTCAATTCCGGCCCTTTGCAACGTTGTGGCAACAAATAAATTGACGTAGCCATCCTC CATTGGAACTGTGGTGGCTGGTTGCCGTGAAATGACCCGTGTTTATTCAGAAATTACCTCTGGTT TAGAGAAAGTGGTTTAAACGAGTGTGGTAAAAAAATTACCTGAGGTACTGTCAAGATCGCAGACTT CTAGGTCCCACCCAGCTCTCATCAATCAGTTAGTGGAGGTGGTCCCAGGACTCTGATTAAACATAC CCCTAGAAAAGATTCTGATACAGTAGAGGTGAGAACGCCCTGGTTAGAAGCAGCTCGGCCCTCCCTCATG GTGGGACCAGGGCCAGAGGAATGTCAGGGCCACCCCTGACCTTCACTGTGACTCTGTCAGAGGGTG GCCTGGAGGAGATGGTGGAGGAGCTCAACAGCGGGAAAGGTGATGTACGCCCTCTGCAAGAGTAAGGACCC CAAACTTGGACTGCCAAATTGTCCTCATCAACTGGACAGCGAGGGCGTGAACGATGTGGCAAGGGGA GCTGTGCCAGCCACGTCAAGCACCATTGCCAGCTTCTGAAAGGGGCCATGTGACCATCAACGACGGG CCGAGGAGGATGTGGAGGCTGATGTGACATGGAGAAGGTGGCCAAGGCTTCAAGGTGCAACTACAGCTT TCACAAGGAGAGATGGCCCTTCAGGACGTGGAGCCCCCAGGCCAGTGGCTCTGTGACCGAGAACG ACCATGGCTGTGAGATTAAAGGGTTGGTAAAGACAGCTCTGGCAAAGCAGAGGTGAGTGTGCC CCGGGCATGCTGGCACGTGGAGTGTCTGTTGCTCATCTTCCACAAAGTGAGCTCATGC AGCATCAACTCTCTTGGTGCCTTACAGATGGTCACACTGAGGCTGGGTAAGTTAACGCCACAAGGCT AATGATCGACTGGCTCTGGTGCCTTGGCCATGTGCCCTAAACTCAGTCTGGCAGGGATTAGG CTGAAGTGGCAGCATAGGGCTGAGCGGGCAGTGGCTCTCCCTGCAAGAGGAGGAGAACCGTCGGTG GAGGAAAAGCGCGGGCCGAGGAGGACAGCGGCAGCTGGAGCAGGAGCGCCGGAGCGTGTGAGCTCGTG AGGCTGACGCCGGAGCAGCGCTATCAGGAGCAGGGTGGCAGGCCAGCCCCCAGAGGACGTGGGAGCA GCAGCAAGAAGTGGTTCAAGGAACCGAAATGAGCAGGAGCTGCCGTGCACCCAGGGAGATTTCAGA CAGAAGGAGAGGGCATGTCCACCCACCTCCATCTCCAGTCTCAGCTGGCAAGCTGAGGAGCCCCCTCC TGCAGAACAGCTACCCAAACAGAGACCCACTTGGCAGAGGAGCAGCTGCCATCTGAGGAGGCCAG GGCAGATCTCTCTGTGAGGAGGCCGGCCAGCAGCTCTCCATGTCTGGCAGGCCAGAGGAGCT GTGTATGAGGAACCTCCAGAGCAGGAGACCTCTACAGGAGCTGCCAGTGGCAGCACAGGTGCTG GCTCTGAGCACATTGACCACATTCAAGGGCCAGGGCTCAGTGGCAAGGGCTCTGCCCCGTGCCCT GTACGACTACCAGGCAGCCGACGACAGAGATCTCTTGGCCAGAACCTCATCACGGGCATCGAG GTGATCGACGAAGGCTGGTGGCGTGGCTATGGGCCGATGGCATTGGCATGTTCCCTGCCACTACG TGGAGCTCATTGAGTGAGGCTGAGGGCACATCTGCCCTTCCCTCTCAGACATGGCTTCTTATTGCTG GAAGAGGAGGCTGGAGGTTGACATTCACTCTCCAGGAATAGGACCCCCAGTGAGGATGAGGCCCTC AGGGCTCCCTCCGGCTGGCAGACTCAGCTGTACCCCAAATGCAGCAATGGCTGGTATTCCACAC ATCCTTCTGACCCCCGACCCCTCCAGACAGCTGGCTTGGCCATGGCCACAGGACTATGGCAACGCC CTGCTGTGGCAAGCCCTGAGTGGCACTGCCAACGCTGCCAGGGAGGGTCTGAGCAGGGCATCTGGG AGGCTCTGGTGTGCCCTCTGCAATTATTGCTTTTCTCTCTGCTTCAAGGGTGGTGGCCAC CACTGTTAGAATGACCCCTGGAAACAGTGAACCTGAGAATTTGTTAGAGCTTGTGAGGTTGACCAAAGT CAGAGTGGATCATGGTGGTTGGCAGCAGGGAAATTGCTTGTGGAGGCCCTGCTGTGCTCCCCACTCC ATTCTCTGTCCTCTGCCCTGGCTATGGGAAGTGGGATGCAAGATGCCAACGCTCCACCCCTGGTATT CAAAAACGGCAGACAAACATGTTCCCTCACGCCGCTCACTCGATGCCGTGAGGCCAGTGTCAGCTC AACTGATTCTGACTCAGGAAAAGTAACACAGAGTGGCAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAA

Human HIP-55 protein sequence - var1 (public gi: 21619483) (SEQ ID NO: 390)
MAANLSRNGPALQEAYVRVVTEKSPTDWALFTYEGNSNDIRVAGTGEGGLEEMVEELNSGVYAFCRVK
DPNSGLPKFVLINWTGEGVNVDVRKGACASHVSTMASFLKGAHVTINARAEEDVEPECIMEKVAKASGANY
SPHKESGRFQDVGPQAPVGSVYQKTNAVSEIKRGKDSFWAKAEKEEENRRLEEKRRAEAQRQLEQERR
EREELREAAARRQRYQEQQGEASPORTWEQQEVVSNRNEQESAVHPREIFKQKERAMSTTSISSLPGPK
LRSPPFLQQLTQPETHGREPAAAISRPRADLPAAEPAPSTPPCLVQAEEEAVIDEYEPPEQETFYEQPPLV
QQQGAGSEHIDHHIQQGLSGQGLCARALYDYQAADDTEISFDPENLITGIEVIDEGWWRGYGPDGHFGM
EPANYVELIE

Human HIP-55 protein sequence - var2 (public gi: 15079723) (SEQ ID NO: 391)
MAANL5RNGPALQEAYVRVVTESPTDWAFLTYEGNSNDIRVAGTGEGGLEEMVEELNSGKVMYAFCRVK
DPNSGLPKEVLINWTGEGVNDRKGACASHVSTMASEFLKGAHVTINARAEEEDVEPECIMEKVAKASGANY

Figure 36 part - 156

PCT/US04/06308

SFHKESGRFQDVGQPQAPVGSVYQKTNAVSEIKRKGDSFWAKAEKEEENRRLEEKRRRAEEAQRQLEQERR
ERELREAARREQRYQEQQGEASPQSRWEQQEVNSRNRNEQESAVHPREIFKQKERAMSTTSISSPQPG
KLRSPLQKQLTQPETHFGREPAAAISRPRADLPAAEPAPSTPPCLVQAEEEAVYEEPPEQETFYEQPPL
VQQQGAGSEHIDHHIQQQGLSGQGLCARALYDYQAADDTEISFDOPENLITGIEVIDEGWWRGYGPDMHFG
MFPMFVVELIE

Human HIP-55 protein sequence - var3 (public gi: 14041996) (SEQ ID NO: 392)
MAANLSRNGPALQEAYVRVVTTEKSPTDWALFTYEGNSNDIRVAGTGEGGLEEMVEELNSGKVMYAFCRVK
DPNSGLPKFVLINWTGEGVNDVRKGACASHVSTMASFLKGAGHTINARAEEEDVEPECIMEKVAKASGANY
SFHKESGRFQDVGQPQAPVGSVYQKTNAVSEIKRKGDSFWAKAEKEEENRRLEEKRRRAEEAQRQLEQERR
ERELREAARREQRYQEQQGEASPQSRWEQQEVNSRNRNEQGSTCASLQESAVHPREIFKQKERAMSTT
SISSPQPGKLRSPLQKQLTQPETHFGREPAAAISRPRADLPAAEPAPSTPPCLVQAEEEAVYEEPPEQE
TFYEQPPLVQQQGAGSEHIDHHIQQQGLSGQGLCARALYDYQAADDTEISFDOPENLITGIEVIDEGWWRG
YGPDMHFGMFPANYVELIE

Human HIP-55 protein sequence - var4 (public gi: 10441970) (SEQ ID NO: 393)
MEKVAKASGANYSFHKESGRFQDVGQPQAPVGSVYQKTNAVSEIKRKGDSFWAKAEKEEENRRLEEKRR
EEAQRQLEQERREREELREAARRREQRYQEQQGEASPQRTWEQQEVNSRNRNEQESAVHPREIFKQKERAM
STTSISSPQPGKLRSPLQKQLTQPETHFGREPAAAISRPRADLPAAEPAPSTPPCLVQAEEEAVYEEPP
EQETFYEQPPLVQQQGAGSEHIDHHIQQQGLSGQGLCARALYDYQAADDTEISFDOPENLITGIEVIDEGW
WRGYGPDMHFGMFPANYVELIE

Human HIP-55 protein sequence - var5 (public gi: 10121215) (SEQ ID NO: 394)
MAANLSRNGPALQEAYVRVVTTEKSPTDWALFTYEGNSNDIRVAGTGEGGLEEMVEELNSGKVMYAFCRVK
DPNSGLPKFVLINWTGEGVNDVRKGACSSHVSTMASFLKGAGHTINARAEEEDVEPECIMEKVAKASGANY
.SFHKESGRFQDVGQPQAPVGSVYQKTNAVSEIKRKGDSFWAKAEKEEENRRLEEKRRRAEEAQRQLEQERR
ERELREAARREQRYQEQQGEASPQSTWEQQEVNSRNRNEQESAVHPREIFKQKERAMSTTSISSPQPGK
LRSPFLQKQLTQPETHFGREPAAAISRPRADLPAAEPAPSTPPCLVQAEEEAVYEEPPEQETFYEQPPLV
QQQGAGSEHIDHHIQQQGLSGQGLCARALYDYQAADDTEISFDOPENLITGIEVIDEGWWRGYGPDMHFGM
FPANYVELIE