Compute Unified Device Architecture

- Hybrid CPU/GPU Code
- Low latency code is run on CPU
 - Result immediately available
- High latency, high throughput code is run on GPU
 - Result on bus
 - GPU has many more cores than CPU

Types of Parallelism

- Different Types of Parallelism
 - Task parallelism
 - Problem is divided to tasks, which are processed independently
 - Data parallelism
 - Same operation is performed over many data items
 - Pipeline parallelism
 - Data are flowing though a sequence (or oriented graph) of stages, which operate concurrently
 - Other types of parallelism
 - Event driven, ...

GPU Execution Model

- Parallelism in GPU
 - Data parallelism
 - The same kernel is executed by many threads
 - Thread process one data item
 - Limited task parallelism
 - Multiple kernels executed simultaneously (since Fermi)
 - At most as many kernels as SMPs
 - But we do not have
 - Any means of kernel-wide synchronization (barrier)
 - Any guarantees that two blocks/kernels will actually run concurrently

What is Dynamic Parallelism

- The ability to launch new kernels from the GPU
- Dynamically -based on run-time data
- Simultaneously -from multiple threads at once
- Independently -each thread can launch a different grid
- Introduced with CUDA 5.0 and compute capability 3.5 and up

Execution Model (Overview)

Fermi: Only CPU can generate GPU work

Kepler: GPU can generate work for itself

- Allows program flow to be controlled by GPU
- Allows recursion and subdivision of problems
- Interesting data is not uniformly distributed
- Dynamic parallelism can launch additional threads in interesting areas
- Allows higher resolution in critical areas without slowing down others

Problematic Cases

- Unsuitable Problems for GPUs
 - Processing irregular data structures
 - Trees, graphs, ...
 - Regular structures with irregular processing workload
 - Difficult simulations, iterative approximations
 - Iterative tasks with explicit synchronization
 - Pipeline-oriented tasks with many simple stages

Problematic Cases

Solutions

- Iterative kernel execution
 - Usually applicable only for cases when there are none or few dependencies between the subsequent kernels
 - The state (or most of it) is kept on the GPU
- Mapping irregular structures to regular grids
 - May be too fine/coarse grained
 - Not always possible
- 2-phase Algorithms
 - First phase determines the amount of work (items, ...)
 - Second phase process tasks mapped by first phase

- Dynamic Parallelism Purpose
 - The device does not need to synchronize with host to issue new work to the device
 - Irregular parallelism may be expressed more easily

- Without Dynamic Parallelism
 - Data travels back and forth between the CPU and GPU many times.
 - This is because of the inability of the GPU to create more work on itself depending on the data.

With Dynamic Parallelism:

- GPU can generate
 work on itself based
 intermediate results,
 without involvement
 of CPU.
- Permits Dynamic Run
 Time decisions.
- Leaves the CPU free to do other work, conserves power.

- How It Works
 - Portions of CUDA runtime are ported to device side
 - Kernel execution
 - Device synchronization
 - Streams, events, and async memory operations
 - Kernel launches are asynchronous
 - No guarantee the child kernel starts immediately
 - Synchronization points may cause context switch
 - Entire blocks are switched on a SMP
 - Block-wise locality of resources
 - Streams and events are shared in thread block

- CUDA Dynamic Parallelism
 - New feature presented in CC 3.5 (Kepler)

Source: NVIDIA

Example

```
global void child launch(int *data) {
    data[threadIdx.x] = data[threadIdx.x]+1;
}
  global void parent launch(int *data) {
                                                Thread 0 invokes a grid of
    data[threadIdx.x] = threadIdx.x;
                                                      child threads
      syncthreads();
    if (threadIdx.x == 0) {
         child launch <<< 1, 256 >>> (d=
                                                 Synchronization does not have to be
        cudaDeviceSynchronize();
                                                       invoked by all threads
      syncthreads();
                                              Device synchronization does not
}
                                              synchronize threads in the block
void host launch(int *data) {
    parent launch<<< 1, 256 >>>(data);
}
```

Nested Dependencies

Source: NVIDIA

Scheduling can be controlled by streams

No new concurrency guarantees

Launched kernels may execute out-of-order within a stream

Named streams can guarantee concurrency

 Nested Dependencies cudaDeviceSynchronize ()

Can be used inside a kernel

Synchronizes all launches by any kernel in block

Does NOT imply __syncthreads()!

Kernel launch implies memory sync operation

Child sees state at time of launch

Parent sees child writes after sync

 Local and shared memory are private, cannot be shared with children