

به نام خدا

کارگاه علم داده با پایتون پیشرفته

<u>جلسه پنجم: رگرسیون لجستیک</u>

: مدرس

مهرناز جليلى

دانشُمِو کارشناسی ارشد علم داده ها

دانشگاه شهید بهشتی

Logistic Regression/ Intro

- who is leaving and why
- Close to Regression but here, Y is a categorical (here binary) value
- All Xs should be continues, or converted to "continues"

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0

Logistic Regression/Intro

- Predicting a disease
- chance of mortality based on a situation
- halting a subscription
- purchase
- failure of a product

• ...

Logistic Regression/Intro

- Target should be category (or better, binary)
- We need the probability of prediction
- we need a linear decision boundary (line or even polynomial)
- We need to understand the impact of features (Theta is closer to 0 or is high)

Logistic Regression vs Linear Regression

	_				آل					1
	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1.0
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1.0
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0.0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0.0

$$X \in \mathbb{R}^{m \times n}$$
$$y \in \{0,1\}$$

$$\widehat{y} = P(y=1|x)$$

$$P(y=0|x) = 1 - P(y=1|x)$$

Logistic Regression vs Linear Regression

On Previous data, try linear with age vs income

 now repeat, trying with age vs churn: funny and we should have a step function as threshold

Logistic Regression vs Linear Regression / Sigmoid

$$\theta^T X = \theta_0 + \theta_1 x_1 + \cdots$$

$$\hat{y} = \begin{cases} 0 & \text{if } \theta^T X < 0.5 \\ \\ 1 & \text{if } \theta^T X \ge 0.5 \end{cases}$$

$$\sigma(\theta^T X) = \sigma(\theta_0 + \theta_1 x_1 + \cdots)$$

$$\hat{y} = \sigma(\theta^T X)$$

P(y=1|x)

Logistic Regression Training

- 1. Initialize θ .
- 2. Calculate $\hat{y} = \sigma(\theta^T X)$ for a customer.
- 3. Compare the output of \hat{y} with actual output of customer, y, and record it as error.
- 4. Calculate the error for all customers.
- 5. Change the θ to reduce the cost.
- 6. Go back to step 2.

$$\sigma(\theta^T X) \longrightarrow P(y=1|x)$$

$$\theta = [-1,2]$$

$$\hat{y} = \sigma([-1, 2] \times [2, 5]) = 0.7$$

$$Error = 1-0.7 = 0.3$$

$$Cost = J(\theta)$$

$$\theta_{new}$$

Classification Logistic Regression Training

- Cost Function
- we have to minimize the Cost
- Can be done via derivative but its difficult

$$Cost(\hat{y},y) = \frac{1}{2}(\sigma(\theta^TX) - y)^2$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(\hat{y}, y)$$

Classification Logistic Regression Training

- We can define a new Cost function!
- here there are more approaches to minimize the function; say Gradient Descent (iterative technique)

Classification Logistic Regression Training

 Gradient descent is an iterative approach to finding the minimum of a function. It uses the derivative of a cost function to change the parameter values to minimize the cost or error.

$$\hat{y} = \sigma(\theta_1 x_1 + \theta_2 x_2)$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^m y^i \log(\hat{y}^i) + (1 - y^i) \log(1 - \hat{y}^i)$$

Logistic Regression Training

- 1. initialize the parameters randomly.
- 2. Feed the cost function with training set, and calculate the error.
- 3. Calculate the gradient of cost function.
- 4. Update weights with new values.
- 5. Go to step 2 until cost is small enough.
- 6. Predict the new customer X.

$$\theta^T = [\theta_0, \theta_1, \theta_2,]$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{i} \log(\hat{y}^{i}) + (1 - y^{i}) \log(1 - \hat{y}^{i})$$

$$\nabla J = \left[\frac{\partial J}{\partial \theta_1}, \frac{\partial J}{\partial \theta_2}, \frac{\partial J}{\partial \theta_3}, \dots, \frac{\partial J}{\partial \theta_k} \right]$$

$$\theta_{new} = \theta_{prv} - \eta \nabla J$$

$$P(y=1|x) = \sigma(\theta^T X)$$

Lab: Logistic Regression

L05-MehrnazJalili