HEF4894B-Q100

12-stage shift-and-store register LED driver

Rev. 1 — 12 July 2012

Product data sheet

1. General description

The HEF4894B-Q100 is a 12-stage serial shift register. It has a storage latch associated with each stage for strobing data from the serial input (D) to the parallel LED driver outputs (QP0 to QP11). Data is shifted on positive-going clock (CP) transitions. The data in each shift register stage is transferred to the storage register when the strobe (STR) input is HIGH. Data in the storage register appears at the output whenever the output enable (OE) input signal is HIGH.

Two serial outputs (QS1 and QS2) are available for cascading a number of HEF4894B-Q100 devices. Serial data is available at QS1 on positive-going clock edges to allow high-speed operation in cascaded systems with a fast clock rise time. The same serial data is available at QS2 on the next negative going clock edge. This is used for cascading HEF4894B-Q100 devices when the clock has a slow rise time.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to V_{DD} , V_{SS} , or another input.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- ESD protection:
 - MIL-STD-833, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pf, R = 0 Ω)
- Complies with JEDEC standard JESD 13-B

3. Ordering information

Table 1. Ordering information

All types operate from -40 °C to +125 °C.

Type number	Package	ackage								
	Name	Description	Version							
HEF4894BT-Q100	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1							
HEF4894BTT-Q100	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1							

4. Functional diagram

Fig 2. Functional diagram

HEF4894B_Q100

All information provided in this document is subject to legal disclaimers.

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
D	2	serial input
QP0 to QP11	4, 5, 6, 7, 8, 9, 18, 17, 16, 15, 14, 13	parallel output
QS1	11	serial output
QS2	12	serial output
СР	3	clock input
STR	1	strobe input
OE	19	output enable input
V_{DD}	20	supply voltage
V _{SS}	10	ground (0 V)

6. Functional description

Table 3. Function table [1]

At the positive clock edge the information in the 10th register stage is transferred to the 11th register stage and the QS output

Control			Input	Parallel outpu	t	Serial output		
СР	OE	STR	D	QP0	QPn	QS1[2]	QS2[3]	
\uparrow	L	X	X	Z	Z	Q10S	no change	
\downarrow	L	X	Χ	Z	Z	no change	Q11S	
\uparrow	Н	L	X	no change	no change	Q10S	no change	
\uparrow	Н	Н	L	Z	QPn – 1	Q10S	no change	
\uparrow	Н	Н	Н	L	QPn – 1	Q10S	no change	
\	Н	Н	Н	no change	no change	no change	Q11S	

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; ↑ = LOW-to-HIGH clock transition; ↓ = HIGH-to-LOW clock transition; Z = high-impedance OFF-state.

^[2] Q10S = the data in register stage 10 before the LOW to HIGH clock transition.

^[3] Q11S = the data in register stage 11 before the HIGH to LOW clock transition.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Conditions	Min	Max	Unit
supply voltage		-0.5	+18	V
input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{DD} + 0.5 \text{ V}$	-	±10	mA
input voltage		-0.5	$V_{DD} + 0.5$	V
output clamping current	QSn outputs; $V_O < -0.5 \text{ V or } V_O > V_{DD} + 0.5 \text{ V}$	-	±10	mA
	QPn outputs; V _O < 0.5 V	-	40	mA
input leakage current		-	±10	mA
output current	QSn outputs	-	±10	mA
	QPn outputs	-	40	mA
storage temperature		-65	+150	°C
ambient temperature		-40	+125	°C
total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$			
	SO20 and TSSOP20 package	<u>[1]</u> _	500	mW
power dissipation	per output	-	100	mW
	supply voltage input clamping current input voltage output clamping current input leakage current output current storage temperature ambient temperature total power dissipation	$\begin{tabular}{lll} supply voltage \\ input clamping current \\ input voltage \\ output clamping current \\ output clamping current \\ \hline QSn outputs; $V_O < -0.5$ V or $V_O > V_{DD} + 0.5$ V \\ \hline QPn outputs; $V_O < 0.5$ V \\ \hline input leakage current \\ output current \\ \hline QSn outputs \\ \hline QPn outputs \\ \hline QPn outputs \\ \hline Storage temperature \\ \hline ambient temperature \\ \hline total power dissipation \\ \hline T_{amb} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C \\ \hline SO20 \ and \ TSSOP20 \ package \\ \hline \end{tabular}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^[1] For SO20 package: P_{tot} derates linearly with 8 mW/K above 70 °C. For TSSOP20 package: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		3	-	15	V
VI	input voltage		0	-	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{DD} = 5 V$	-	-	3.75	μs/V
		$V_{DD} = 10 \text{ V}$	-	-	0.5	μs/V
		V _{DD} = 15 V	-	-	0.08	μs/V

9. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0 \ V$; $V_{I} = V_{SS} \ or \ V_{DD}$; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	T _{amb} =	–40 °C	T _{amb} =	+25 °C	T _{amb} =	+85 °C	T _{amb} = -	⊦125 °C	Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level	$ I_{O} < 1 \mu A$	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
V_{IL}	LOW-level	$ I_O < 1 \mu A$	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V_{OH}	HIGH-level	QSn outputs;	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
	output voltage	$ I_{O} < 1 \mu A$	10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
~-	LOW-level	QSn outputs;	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
	output voltage	$ I_{O} < 1 \mu A$	10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
		QPn outputs; $ I_O < 20 \text{ mA}$	5 V	-	0.75	-	0.75	-	1.5	-	1.5	V
			10 V	-	0.75	-	0.75	-	1.5	-	1.5	V
			15 V	-	0.75	-	0.75	-	1.5	-	1.5	V
I_{OH}	HIGH-level	QSn outputs										
	output current	$V_0 = 2.5 \text{ V}$	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mΑ
		$V_0 = 4.6 \text{ V}$	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mΑ
		$V_0 = 9.5 \text{ V}$	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mΑ
		$V_0 = 13.5 \text{ V}$	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mΑ
I_{OL}	LOW-level	QSn outputs										
	output current	$V_0 = 0.4 \text{ V}$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mΑ
		$V_0 = 0.5 \ V$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		$V_0 = 1.5 \text{ V}$	15 V	4.2	-	3.2	-	2.4	-	2.4	-	mΑ
I _I	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μΑ

Table 6. Static characteristics ...continued

 $V_{SS} = 0 \ V$; $V_{I} = V_{SS} \ or \ V_{DD}$; unless otherwise specified.

Symbol	Parameter	Conditions	Conditions V _{DD}		$T_{amb} = -40 \text{ °C}$ $T_{amb} = +25 \text{ °C}$ 1		T _{amb} =	+85 °C	T _{amb} = +125 °C		Unit	
				Min	Max	Min	Max	Min	Max	Min	Max	
I _{OZ} OFF-state output current		QPn output	5 V	-	2	-	2	-	15	-	15	μΑ
	is HIGH; V _O = 15 V	10 V	-	2	-	2	-	15	-	15	μΑ	
		15 V	-	2	-	2	-	15	-	15	μΑ	
I _{DD}	supply current	I _O = 0 A	5 V	-	5	-	5	-	150	-	150	μА
			10 V	-	10	-	10	-	300	-	300	μА
			15 V	-	20	-	20	-	600	-	600	μА
C _I	input capacitance		-	-	-	-	7.5	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$ unless otherwise specified. For test circuit see Figure 10.

Symbol	Parameter	Conditions	V_{DD}		Extrapolation formula	Min	Тур	Max	Unit
t_{PHL}	HIGH to LOW	CP to QS1;	5 V	[1]	132 ns + (0.55 ns/pF)C _L	-	160	320	ns
	propagation delay	see Figure 6	10 V		53 ns + (0.23 ns/pF)C _L	-	65	130	ns
			15 V		37 ns + (0.16 ns/pF)C _L	-	45	90	ns
	CP to QS2;	5 V		92 ns + (0.55 ns/pF)C _L	-	120	240	ns	
	see Figure 6	10 V		39 ns + (0.23 ns/pF)C _L	-	50	100	ns	
		15 V		32 ns + (0.16 ns/pF)C _L	-	40	80	ns	
t _{PLH} LOW to HIGH	CP to QS1;	5 V	[1]	102 ns + (0.55 ns/pF)C _L	-	130	260	ns	
	propagation delay	see Figure 6	10 V		44 ns + (0.23 ns/pF)C _L	-	55	110	ns
			15 V		32 ns + $(0.16 \text{ ns/pF})C_L$	-	40	80	ns
		CP to QS2; see <u>Figure 6</u>	5 V		102 ns + (0.55 ns/pF)C _L	-	130	260	ns
			10 V		49 ns + (0.23 ns/pF)C _L	-	60	120	ns
			15 V		37 ns + (0.16 ns/pF)C _L	-	45	90	ns
t_{PZL}	OFF-state to LOW	CP to QPn; see <u>Figure 6</u>	5 V			-	240	480	ns
	propagation delay		10 V			-	80	160	ns
			15 V			-	55	110	ns
		STR to QPn;	5 V			-	140	280	ns
		see <u>Figure 7</u>	10 V			-	70	140	ns
			15 V			-	55	110	ns
t _{PLZ}	LOW to OFF-state	CP to QPn;	5 V			-	170	340	ns
	propagation delay	see Figure 6 and 7	10 V			-	75	150	ns
			15 V			-	60	120	ns
		STR to QPn; see Figure 7	5 V			-	100	200	ns
			10 V			-	40	100	ns
			15 V			-	35	70	ns

 Table 7.
 Dynamic characteristics ...continued

 V_{SS} = 0 V; T_{amb} = 25 °C unless otherwise specified. For test circuit see <u>Figure 10</u>.

Parameter	Conditions	V_{DD}		Extrapolation formula	Min	Тур	Max	Unit
	OE to QPn;	5 V	[2]		-	100	200	ns
	see <u>Figure 8</u>	10 V			-	55	110	ns
		15 V			-	50	100	ns
	OE to QPn;	5 V	[2]		-	80	160	ns
	see Figure 8	10 V			-	40	80	ns
		15 V			-	30	60	ns
transition time	QS1, QS2;	5 V	[1][3]	$35 \text{ ns} + (1.00 \text{ ns/pF})C_{L}$	-	85	170	ns
	see <u>Figure 6</u>	10 V		19 ns + (0.42 ns/pF)C _L	-	40	80	ns
		15 V		16 ns + (0.28 ns/pF)C _L	-	30	60	ns
pulse width	CP; LOW and HIGH; see Figure 6	5 V			60	30	-	ns
		10 V			30	15	-	ns
		15 V			24	12	-	ns
	STR; HIGH; see <u>Figure 7</u>	5 V			80	40	-	ns
		10 V			60	30	-	ns
		15 V			24	12	-	ns
set-up time	D to CP;	5 V			60	30	-	ns
	see <u>Figure 9</u>	10 V			20	10	-	ns
		15 V			15	5	-	ns
hold time	D to CP;	5 V			+5	-15	-	ns
	see <u>Figure 9</u>	10 V			20	5	-	ns
		15 V			20	5	-	ns
maximum clock	CP; see Figure 6	5 V			5	10	-	MHz
frequency		10 V			11	22	-	MHz
		15 V			14	28	-	MHz
	transition time pulse width set-up time hold time maximum clock	OE to QPn; see Figure 8 OE to QPn; see Figure 8 transition time QS1, QS2; see Figure 6 pulse width CP; LOW and HIGH; see Figure 6 STR; HIGH; see Figure 7 set-up time D to CP; see Figure 9 hold time D to CP; see Figure 9	OE to QPn; see Figure 8 5 V OE to QPn; see Figure 8 5 V OE to QPn; see Figure 8 5 V Itransition time QS1, QS2; see Figure 6 5 V Itransition time CP; LOW and HIGH; see Figure 6 5 V Itransition time CP; LOW and HIGH; see Figure 6 5 V Itransition time STR; HIGH; see Figure 6 5 V Itransition time D to CP; see Figure 9 10 V Itransition time D to CP; see Figure 9 5 V Itransition time D to CP; see Figure 6 5 V Itransition time D to CP; see Figure 6 5 V Itransition time D to CP; see Figure 6 5 V Itransition time D to CP; see Figure 6 5 V Itransition time D to CP; see Figure 6 5 V Itransition time D to CP; see Figure 6 5 V Itransition time D to CP; see Figure 6 5 V Itransition time D to CP; see Figure 6 5 V Itransition time D to CP; see Figure 6 5 V Itransition time D to CP; see Figure 6	OE to QPn; see Figure 8 5 V [2] OE to QPn; see Figure 8 5 V [2] In V 15 V In V 15 V	OE to QPn; see Figure 8 5 V 21 10 V 15 V DE to QPn; see Figure 8 5 V 21 10 V 15 V transition time QS1, QS2; see Figure 6 5 V 1113 35 ns + (1.00 ns/pF)CL 10 V 19 ns + (0.42 ns/pF)CL 15 V 16 ns + (0.28 ns/pF)CL pulse width CP; LOW and HIGH; see Figure 6 5 V 10 V STR; HIGH; see Figure 7 5 V 10 V 15 V 15 V 15 V set-up time D to CP; see Figure 9 5 V hold time D to CP; see Figure 9 5 V now to the content of the co	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OE to QPn; see Figure 8 5 ∨ 2	OE to QPn; see Figure 8 10 ∨

^[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_L in pF).

Table 8. Dynamic power dissipation

 P_D can be calculated from the formulas shown. $V_{SS} = 0 \text{ V}$; $t_r = t_f \le 20 \text{ ns}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$.

Symbol	Parameter	V_{DD}	Typical formula	Where			
	dynamic power	5 V	$P_D = 1200 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2 \mu W$	f_i = input frequency in MHz;			
	dissipation	10 V	$P_D = 5550 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2 \mu W$	f _o = output frequency in MHz; C _L = output load capacitance in pF;			
		15 V	$P_D = 15000 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2 \mu W$	$\Sigma(f_o \times C_L)$ = sum of the outputs; V_{DD} = supply voltage in V.			

^[2] t_{en} is the same as t_{PZL} and t_{dis} is the same as t_{PLZ} .

^[3] t_t is the same as t_{TLH} and t_{THL} .

11. Waveforms

Table 9. **Measurement points**

Supply	Input	Output		
V_{DD}	V _M	V _M	V _X	V _Y
5 V to 15 V	0.5Vpp	0.5Vpp	0.1Vo	0.9V _O

HEF4894B_Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

Test data is given in Table 10.

Definitions for test circuit:

DUT - Device Under Test;

R_L = Load resistance;

C_L = load capacitance;

 R_T = Termination resistance should be equal to output impedance of Z_0 of the pulse generator;

 V_{EXT} = External voltage for measuring switching times.

Fig 10. Test circuit for measuring switching times

Table 10. Test data

Supply	pply Input		V _{EXT}		Load		
V_{DD}	V _I	t _r , t _f	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}	C _L	R _L	
5 V to 15 V	V_{DD}	≤ 20 ns	V_{DD}	open	50 pF	1 kΩ	

12. Application information

Application example: serial-to-parallel data converting LED driver.

13. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.014

0.009

OUTLINE		REFER	EUROPEAN	ICCUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013				99-12-27 03-02-19	

0.394

0.016

Fig 12. Package outline SOT163-1 (SO20)

0.004

0.089

HEF4894B_Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserve

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

Ξ							-,												
	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT360-1		MO-153				99-12-27 03-02-19

Fig 13. Package outline SOT360-1 (TSSOP20)

HEF4894B_Q100

All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 11. Abbreviations

Acronym	Description
НВМ	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
MIL	Military

15. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4894B_Q100 v.1	20120712	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

HEF4894B_Q100

All information provided in this document is subject to legal disclaimers.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

18. Contents

1	General description
2	Features and benefits
3	Ordering information
4	Functional diagram
5	Pinning information
5.1	Pinning
5.2	Pin description
6	Functional description
7	Limiting values
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics
11	Waveforms 9
12	Application information
13	Package outline 13
14	Abbreviations15
15	Revision history
16	Legal information
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks17
17	Contact information
18	Contents 18