Machine Learning 1 - Notes

Selene Baez Santamaria September 28, 2016

THINGS WE NEED TO KNOW

- 1. Probability:
 - Variable representation
 - Conditional probability (Bayes Theorem)
 - Likelihood
 - Prior
 - Normalization constant
 - Marginalization
- 2. Conditional models
 - Objective function
 - Maximum log-likelihood (MLE)
 - Maximum posterior (MAP)
 - \bullet Training ans test errors as a function of M
 - Overfitting
 - Underfitting
- 3. Classification
 - Optimal Bayesian decision rule
 - Loss function
- 4. Regularization (Theory)
 - Bias

- Variance
- Approximation of bias and variance
- 5. Conditional classification
 - General expression for $p(C_2|x)$
 - Conditions for classifying x as C_1 (inequality)
 - Decision boundary
- 6. Regression
 - Linear vs logistic functions
 - Stochastic gradient descent algorithm
- 7. Bayesian linear regression
 - Posterior distributions
 - Likelihood
 - Posterior predictive distribution
- 8. General
 - Gaussian distribution and its parameters
 - Conversion from matrix to scalars

1 Intro

1.1 Notation

- 1. N: number of data samples
- 2. D: dimensionality of input data
- 3. K: number of output predictions (labels or tags)
- 4. x_n : row vector for n^{th} sample

1.2 Models, Algorithms, etc

A model:

- Belongs to a model class, with corresponding complexity
- Depends on parameters θ
- is optimized by minimizing/maximizing an objective function