fn make_canonical_noise

Aishwarya Ramasethu, Yu-Ju Ku, Jordan Awan, Michael Shoemate August 19, 2025

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of make_canonical_noise.

The constructor privatizes a float scalar with noise calibrated to satisfy a fixed privacy guarantee d_out at a fixed sensitivity d_in.

1 Hoare Triple

Preconditions

Compiler-verified

- Argument input_domain of type AtomDomain<f64>.
- Argument input_metric of type AbsoluteDistance<f64>.
- Argument d_in of type f64
- Argument d_out of type (f64, f64) corresponding to epsilon and delta.

Human-verified

None

Pseudocode

```
def make_canonical_noise(
      input_domain: AtomDomain[f64],
      input_metric: AbsoluteDistance[f64],
      d_in: f64,
      d_out: tuple[f64, f64],
5
6):
      assert not input_domain.nan(), "input data must be non-nan" #
      assert not d_in.is_sign_negative() and d_in.is_finite() #
      tradeoff, fixed_point = approximate_to_tradeoff(d_out)
10
      r_d_in = RBig.try_from(d_in)
11
12
      def function(arg: f64) -> f64: #
13
14
              arg = RBig.try_from(arg)
1.5
          except Exception:
16
              arg = RBig(0)
17
18
```

```
canonical_rv = CanonicalRV( #
19
               shift=arg, scale=r_d_in, tradeoff=tradeoff, fixed_point=fixed_point
20
21
           return PartialSample.new(canonical_rv).value() #
23
       def privacy_map(d_in_p: f64) -> f64: #
24
           assert 0 <= d_in_p <= d_in</pre>
25
           if d_in == 0:
26
               return (0.0, 0.0)
27
           return d_out
28
29
      return Measurement.new(
30
           input_domain,
31
           function,
32
33
           input metric.
           output_measure=approximate(max_divergence()),
34
35
           privacy_map=privacy_map,
36
```

Postcondition

Theorem 1.1. For every setting of the input parameters (input_domain, input_metric, d_in, d_out) to make_canonical_noise such that the given preconditions hold, make_canonical_noise raises an error (at compile time or run time) or returns a valid measurement. A valid measurement has the following properties:

- 1. (Data-independent runtime errors). For every pair of members x and x' in input_domain, invoke(x) and invoke(x') either both return the same error or neither return an error.
- 2. (Privacy guarantee). For every pair of members x and x' in input_domain and for every pair (d_in,d_out), where d_in has the associated type for input_metric and d_out has the associated type for

output_measure, if x, x' are d_in-close under input_metric, privacy_map(d_in) does not raise an error, and privacy_map(d_in) = d_out, then function(x), function(x') are d_out-close under output_measure.

We now prove each part in the postcondition.

Data-independent runtime errors

Proof of Theorem 1.1, Part 1. PartialSample.value, hereafter referred to as just value (a function) can only fail when the pseudorandom byte generator used in its implementation fails due to lack of system entropy. This is usually related to the computer's physical environment and not the dataset. This is the only source of errors in the function.

Privacy guarantee

Proving the privacy guarantee of Theorem 1.1 is more involved, and we need to establish several definitions and lemmas first.

In the pseudocode, d_in and d_out are used to create a tradeoff function. The following defines the corresponding noise distribution.

Definition 1.2 (Awan and Vadhan 2023, Definition 3.7). Let f be a symmetric nontrivial tradeoff function, and let $c \in [0, 1/2)$ be the unique fixed point of f: f(c) = c. We define $F_f : \mathbb{R} \to \mathbb{R}$ as

$$F_f(x) = \begin{cases} f(1 - F_f(x+1)) & x < -1/2 \\ c \cdot (1/2 - x) + (1 - c)(x+1/2) & -1/2 \le x \le 1/2 \\ 1 - f(F_f(x-1)) & x > 1/2. \end{cases}$$

For more context on the definition of a tradeoff function, refer to Awan and Vadhan 2023. We will first prove that the mechanism function adds noise from this distribution.

Lemma 1.3. Condition on the assumption that value does not raise an exception. Should value raise an exception, the function will return an error, as discussed in Proof Part 1.

function on Line 13 returns $\arg + d_{in} \cdot N$ rounded to the nearest f64 in postprocessing, where N is a sample from some random variable $F_f(\cdot)$, as defined in Definition 1.2, and f is the tradeoff function tradeoff.

Proof. The code block on Line 14 converts float arg to a rational bignum. Due to line 7, the input domain excludes nan values, so if the input is a member of the input domain, then the cast will never fail.

Line 8 ensures that d_in is well-formed (distances cannot be negative).

approximate_to_tradeoff has no user preconditions, so by its postcondition, tradeoff is a symmetric nontrivial tradeoff function and fixed_point is the fixed-point of tradeoff.

On Line 19, by the definition of CanonicalRV, canonical_rv is a random variable representing $F_f(\cdot)$ (as is defined in Definition 1.2) scaled by d_in and shifted by arg. That is, canonical_rv represents the distribution of $arg + d_in \cdot N$.

Line 22 then constructs a sampler for the random variable (PartialSample) and .value draws a sample, rounded to the nearest floating point number. By the postcondition of PartialSample.value, the returned value is a post-processing rounding to the nearest float of an infinite-precision sample from the canonical_rv random variable.

Now that we have shown that function adds noise from the distribution $F_f(\cdot)$, we can prove that the privacy guarantee is satisfied when noise from $F_f(\cdot)$ is added.

Recall several definitions from Awan and Vadhan 2023. First, we need to define a canonical noise distribution.

Definition 1.4 (Awan and Vadhan 2023, Definition 3.1). Let f be a symmetric nontrivial tradeoff function. A continuous distribution function F is a canonical noise distribution (CND) for f if

- (1) for every statistic $S: X^n \to \mathbb{R}$ with sensitivity $\Delta > 0$, and $N \sim F(\cdot)$, the mechanism $S(X) + \Delta N$ satisfies f-DP. Equivalently, for every $m \in [0,1]$, $T(F(\cdot), F(\cdot m)) \geq f$,
- (2) $f(\alpha) = T(F(\cdot), F(\cdot 1))(\alpha)$ for all $\alpha \in (0, 1)$,
- (3) $T(F(\cdot), F(\cdot 1))(\alpha) = F(F^{-1}(1 \alpha) 1)$ for all $\alpha \in (0, 1)$,
- (4) F(x) = 1 F(-x) for all $x \in \mathbb{R}$; that is, F is the cdf of a random variable which is symmetric about zero.

Then, F_f , the noise added in function, is a canonical noise distribution:

Theorem 1.5 (Awan and Vadhan 2023, Theorem 3.9). Let f be a symmetric nontrivial tradeoff function and let F_f be as in 1.2. Then F_f is a canonical noise distribution for f.

Using these definitions, and Lemma 1.3, we can prove the privacy guarantee in Theorem 1.1.

Proof of Theorem 1.1 Part 2. Since tradeoff is a symmetric nontrivial tradeoff function, and by the definition of CanonicalRV that F_f is as in Definition 1.2, then by Theorem 1.5, F_f is a canonical noise distribution for f.

Therefore by Definition 1.4, for every statistic $S: X^n \to \mathbb{R}$ with sensitivity $\Delta > 0$, and $N \sim F(\cdot)$, the mechanism $S(X) + \Delta N$ satisfies f-DP. By Lemma 1.3, function returns $S(X) + \Delta N$, where S(X) is $\operatorname{\mathtt{arg}}$, Δ is $\operatorname{\mathtt{d_in}}$. Since tradeoff is an equivalent but conservative representation of the privacy parameters $\operatorname{\mathtt{d_out}}$, the mechanism satisfies $\operatorname{\mathtt{d_out}}$ -DP when input datasets may differ by at most $\operatorname{\mathtt{d_in}}$.

This guarantee is then reflected in the privacy map on line 24. If d_in_p is no greater than d_in, then the privacy loss is d_out.

Therefore, for every pair of elements x, x' in input_domain and for every pair (d_in,d_out), where d_in has the associated type for input_metric and d_out has the associated type for output_measure, if x, x' are d_in-close under the absolute distance input_metric, privacy_map(d_in) does not raise an exception, and privacy_map(d_in) \leq d_out, then function(x), function(x') are d_out-close under output_measure.

References

Awan, Jordan and Salil Vadhan (2023). "Canonical Noise Distributions and Private Hypothesis Tests". In: *The Annals of Statistics* 51.2, pp. 547–572.