NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Bootcamp 2 (papers implementation)

Reporter: Maram A. Mohamed

Background NEURAL MACHINE TRANSLATION

 traditional phrase-based translation system consists of many small sub-components that are tuned separately.

 neural machine translation attempts to build and train a single, large neural network that reads a sentence and outputs a correct translation.

Background NEURAL MACHINE TRANSLATION

 From a probabilistic perspective, translation is equivalent to finding a target sentence y that maximizes the conditional probability of y given a source sentence x.

$$\operatorname{arg\,max}_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x})$$

- In NMT, we fit a parameterized model to maximize the conditional probability of sentence pairs using a parallel training corpus.
- Consists of two components, the first of which encodes a source sentence x and the second decodes to a target sentence y.

[Encoder - Decoder Architecture]

Basic Encoder-Decoder Using RNN / The main problem

- have done **pretty well** on this task.
- but are limited in their ability to track *long-term dependencies* .
- lose their ability to translate the end of long sentences correctly.

WHY?

 this "basic encoder-decoder" architecture encodes everything about the input sentence in a single fixed-length vector.

The proposed Model

- by using a bidirectional LSTM for input.
- second by introducing an alignment model, a matrix of weights
 connecting each input location to each output location. This can be
 thought of as an attention mechanism that allows the decoder to pull
 information from useful parts of the input rather than having to decode a
 single hidden state.

The full pipeline

• Word Embedding:

0.901	-0.651	-0.194	-0.822
-0.351	0.123	0.435	-0.200
0.081	0.458	-0.400	0.480

The Full Pipeline

 y_{t-1} y_t Output

Annotations: each word only summarizes the information of its preceding words

The Full Pipeline

Output y_{t-1} S_t Hidden states $a_{t,1}$ Alignment $a_{t,3}$ Forward Backward

Input

Bidirectional RNNs for the annotation hidden states

True annotations can be obtained by concatenating the forward and backward annotations

Alignment Model

In a new model architecture, we define each conditional probability in Eq. (2) as:

$$p(y_i|y_1,\ldots,y_{i-1},\mathbf{x}) = g(y_{i-1},s_i,c_i),$$
 (4)

where s_i is an RNN hidden state for time i, computed by

$$s_i = f(s_{i-1}, y_{i-1}, c_i).$$

It should be noted that unlike the existing encoder—decoder approach (see Eq. (2)), here the probability is conditioned on a distinct context vector c_i for each target word y_i .

The context vector c_i depends on a sequence of annotations (h_1, \cdots, h_{T_x}) to which an encoder maps the input sentence. Each annotation h_i contains information about the whole input sequence with a strong focus on the parts surrounding the i-th word of the input sequence. We explain in detail how the annotations are computed in the next section.

The context vector c_i is, then, computed as a weighted sum of these annotations h_i :

$$c_i = \sum_{i=1}^{T_x} \alpha_{ij} h_j. \tag{5}$$

The weight α_{ij} of each annotation h_i is computed by

$$\alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{k=1}^{T_x} \exp\left(e_{ik}\right)},\tag{6}$$

where

$$e_{ij} = a(s_{i-1}, h_j)$$

is an *alignment model* which scores how well the inputs around position j and the output at position i match. The score is based on the RNN hidden state s_{i-1} (just before emitting y_i , Eq. (4)) and the j-th annotation h_j of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with all the other components of the proposed system. Note that unlike in traditional machine translation,

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Experiments

Quantative Results

- WMT'14 (English → French)
- No UNK: Sentences without any unknown word

RNNsearch-50*: Trained much longer until the performance on the dev set stopped improving

Moses: Conventional phrase-based translation system (using separate monolingual corpus)

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

Qualitative Analysis (RNNsearch-50)

Conclusion

 Attention mechanism allows the network to refer back to the input sequence, instead of forcing it to encode all information into one fixed-length vector.

- Pros: Soft access to memory, Model interpretation
- Cons: Computational expensive

