Lagrangian density

$$-\frac{1}{2} r_3 \partial_i \omega^{\kappa \lambda}_{\kappa} \partial^i \omega_{\lambda \alpha}^{\alpha} - r_5 \partial_i \omega^{\kappa \lambda}_{\kappa} \partial^i \omega_{\lambda \alpha}^{\alpha} + \frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} -$$

$$r_5 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} + r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} -$$

$$\frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - r_5 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + r_3 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$$

$$2r_5\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 4r_3\partial^\beta\omega_\lambda^{\ \lambda\alpha}\partial_\lambda\omega_{\alpha\beta}^{\ \ \prime} - \frac{1}{2}r_3\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \theta}\partial^\lambda\omega^{\theta\kappa}_{\ \kappa} +$$

$$r_5 \,\partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} + \frac{1}{2} \, r_3 \,\partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} - r_5 \,\partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa}$$

Added source term: $\omega^{\alpha\beta\chi}$ $\sigma_{\alpha\beta\chi}$

Total #:	$\sigma_2^{\#1}{}^{\alpha\beta\chi} == 0$	$\sigma_{1+}^{\#2\alpha\beta} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$\sigma_{0+}^{*1} == 0$	$\sigma_{0^{-}}^{*1} == 0$	SO(3) irreps	Source constraints
13	5	3	3	1	1	#	traints

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	

$\sigma_{0^{ ext{-}}}^{\#1}$	$\sigma_{0^+}^{\#1}$	
<u> </u>	+	
0	0	$\sigma_0^{\#1}$

$\omega_{1^{+}\alpha\beta}^{\sharp1}$		$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\omega_{1^{-}\alpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$
$\omega_{1}^{\sharp 1} \dagger^{\alpha \beta}$	$k^2 (2 r_3 + r_5)$	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	$\frac{1}{2} k^2 (r_3 + 2 r_5)$	0
$\omega_1^{#2}$ † $^{\alpha}$	0	0	0	0

	$\sigma_{1^{+}lphaeta}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{k^2(2r_3+r_5)}$	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\sigma_{1}^{\sharp 1}$ † lpha	0	0	$\frac{2}{k^2(r_3+2r_5)}$	0
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	0

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$

(No massive particles)