CS 241, Lecture 8 - Non-Deterministic Finite Automata

1 Non-Deterministic Finite Automata

- An **NFA** is a 5-tuple: $(\sigma, Q, q_0, A, \delta)$:
 - Σ is a finite non-empty set (alphabet)
 - Q is a finite non-empty set of states
 - $q_0 \in Q$ is a start state
 - $A \subseteq Q$ is a set of accepting states
 - $\delta:(Q\times\Sigma)\to 2^Q$ is our total transition function, denoting ther *power set* of Q
- We can extend δ to $\delta^*:(2^Q\times \Sigma^*)\to 2^Q$:

$$\delta^* : (2^Q \times \Sigma^*) \to 2^Q$$
$$(S, \epsilon) \to S$$
$$(S, a) \to \delta^*(\cup_{a \in S} \delta(q, a), w)$$

where $a \in \Sigma$.

- In other words, an NFA given by $M=(\Sigma,Q,q_0,A,\delta)$ accepts a string w iff $\delta^*(\{q_0\},w)\cup A\neq\varnothing$.
- This can be simulated like so with code:

Algorithm 1 Algorithm to Simulate an NFA

- 1: $S = \{q_0\}$
- 2: while not EOF do
- 3: c = read_char()
- 4: $S = \bigcup_{q \in S} \delta(q, c)$
- 5: end while
- 6: if $S \cap A \neq \emptyset$ then
- 7: Accept
- 8: else
- 9: Reject
- 10: end if

• For example, if $\Sigma = \{a, b\}$, $L = \{w : w \text{ ends with } bba\}$: Example: $\Sigma = \{a, b\}$, $L = \{w : w \text{ ends with } bba\}$

Processed	Remaining	S
ϵ	abbba	$\{q_0\}$
a	bbba	{ <i>q</i> ₀ }
ab	bba	$\{q_0, q_1\}$
abb	ba	$\{q_0, q_1, q_2\}$
abbb	a	$\{q_0, q_1, q_2\}$
abbba	ϵ	$\{q_0, q_3\}$

Since $\{q_0, q_3\} \cap \{q_3\} \neq \emptyset$, accept.

- To convert an NFA to a DFA, we start with state $S=\{q_0\}$. We then go to the NFA and determine what happens on each $a\in\Sigma$ for each $q\in S$. We repeat the previous step until we have every possibility. Accepting states are any states that included an accepting state in the NFA.
- For example, the previous NFA as a DFA:

- Let us try another example. Let $\Sigma = \{a,b,c\}$. Write an NFA and DFA for the following examples:
 - $L = \{abc\} \cup \{w: w \text{ ends with } cc\}$
 - $L = \{abc\} \cup \{w: w \text{ contains } cc\}$

• First example NFA:

 $\textit{L} = \{\textit{abc}\} \cup \{\textit{w}: \textit{w} \text{ ends with } \textit{cc}\}$

• First example DFA:

Second example NFA:
L = {abc} ∪ {w : w contains a copy of cc}

• Second example DFA:

2 ϵ -NFA

- ϵ transitions are state changes without reading a character.
- We define a $\epsilon\text{-NFA}$ is a 5-tuple (Σ,Q,q_0,A,δ) :
 - Σ is a finite non-empty set (alphabet) that does **not** contain the symbol ϵ
 - -Q is a finite non-empty set of states
 - $q_0 \in Q$ is a start state
 - $A \subseteq Q$ is a set of accepting states
 - $\delta:(Q\times\Sigma\cup\{\epsilon\})\to 2^Q$ is our total transition function, where 2^Q denotes the power set of Q, the set of all subsets of Q
- ϵ -transitions make it trivial to take the union of two NFAs. For example, for $L=\{abc\}\cup\{w: w \text{ ends with } cc\}$:

Processed	Remaining	S
ϵ	abcaccc	$\{q_0, q_1, q_5\}$
a	bcaccc	$\{q_2,q_5\}$
ab	caccc	$\{q_3, q_5\}$
abc	accc	$\{q_4, q_5, q_6\}$
abca	ссс	$\{q_5\}$
abcac	сс	$\{q_5, q_6\}$
abcacc	С	$\{q_5, q_6, q_7\}$
abcaccc	ϵ	$\{q_5, q_6, q_7\}$

Since $\{q_5, q_6, q_7\} \cap \{q_4, q_7\} \neq \emptyset$, accept.

- If we were to let E(S) to be the epsilon closure of a set of states S (set of all states reachable from S in 0 or more ϵ -transitions. This implies $S \subset E(S)$.
- We can simulate this like so:

Algorithm 2 Algorithm to Simulate an ϵ -NFA

- 1: $S = E(\{q_0\})$
- 2: while not EOF do
- 3: $c = read_char()$
- 4: $S = E(\cup_{q \in S} \delta(q, c))$
- 5: end while
- 6: if $S \cap A \neq \emptyset$ then
- 7: Accept
- 8: **else**
- 9: Reject
- 10: **end if**
- epsilon-NFAs that recognize regular languages:
 - **-** Ø
 - $-\{\epsilon\}$
 - **-** {*a*}
 - $L_1 \cup L_2$ (that is, given ϵ -NFAs that recognize L_1 and L_2 already, you can point q_0 to the two L_1 and L_2 machines)
 - L_1L_2 (that is, given ϵ -NFAs that recognize L_1 and L_2 , you can point an accepting state in the ϵNFA of L_1 to the start state of L_2)
 - L^* (assume we have a ϵ -NFA for L already, then from each accepting state, add an ϵ transition back to the newly created start state
- We can convert every ϵ -NFA to a DFA, following the above technique for normal NFAs.
- By Kleene's Theorem, this implies every language recognized by an ϵ -NFA is regular.
- We can do an example for the language L of ID tokens in C:

• But if we have the input of *abcde*, we could get from 1 to 5 different tokens - what can we do? We introduce maximal and simplified maximal munch

3 Maximal Munch and Simplified Maximal Munch

- Maximal munch consumes characters until we no longer have a valid transition. If we have characters left to consume, backtrack to the *last* valid accepting state, and resume
- Simplified maximal munch consumes characters until we no longer have a valid transition. If we are in an accepting state, produce the token and proceed. Otherwise, go to an error state.