Projets de Bioinformatique Structurale

L'objectif de ces projets est de vous familiariser avec les différentes méthodes et outils de Bioinformatique et de Modélisation Moléculaire.

Pour cela, nous vous proposons d'examiner une famille de protéines appartenant à la Major Facilitator Superfamily (MFS). Il s'agit de la plus grande famille de transporteurs secondaires.

Vous choisirez chacun une séquence parmi la liste fournie.

Pour chacune de ces séguences, vous devrez :

• Partie Génération Modèles

- 1- Construire un modèle 3D, en utilisant différents outils dont vous pourrez comparer les résultats (Modeller, RaptorX,SwissModel,I-Tasser,Rosetta etc...)
 - Attention, il s'agit d'une protéine membranaire, vous devrez donc au préalable vous aider d'outils dédiés.
- 2- Affiner les régions de boucles (SuperLooper,FALC-Loop,GalaxyRefine ou GalaxyRefine Web etc..) et chaînes latérales (Scwrl4,SidePro,Rasp) avec des outils dédiés de votre choix.
- 3- Comparer les résultats et discuter
- 4- Evaluer votre modèle.
- 5- Générer différents états conformationnels sur la base des différentes structures connues.

• Partie Etude de la conformation

Pour chacun des modèles construits.

- 1. Etudiez les modes normaux sur la base d'un réseau élastique et déduire ceux susceptibles de participer aux changements conformationnels.
- 2. Réaliser une simulation gros-grain en milieu membranaire en utilisant le champ de force Martini.
- 3. Analyser les différents mouvements avec des mesures et outils adaptés.

Partie Ligand

- 1. Tester les sites de fixation du ligand pour les différentes conformations en utilisant des outils de docking.
- 2. Comparer et discuter les poses pertinentes en fonction des états conformationnels.

L'ensemble des résultats devra faire l'objet d'un rapport d'environ 20 pages dans lequel vous présenterez les propriétés biologiques, la question traitée, les outils et méthodes utilisées et bien sur les résultats obtenus en faisant preuve d'esprit critique. Le rapport pourra être en anglais (recommandé).

Nous serons très sensibles à la pertinence de la démarche et à son argumentation.

Prenez soin de bien lire la bibliographie et de la fournir.

N'hésitez à passer une journée sur cet aspect qui pourra vous aider grandement par la suite.

Liste des protéines. Ne pas prendre les séquences pour lesquelles la structure 3D a été résolue bien sur.

resorue	Dien sur	•					
A1A5C	A6NFX	A6NIM	A6NK9	A6NKX	G3V0H	O0040	O0047
7	1	6	7	4	7	0	6
00062	O1524	O1524	01537	O1537	O1540	O1542	O4382
4	4	5	4	5	3	7	6
04393	06066	O6077	07538	O7575	O7608	09495	O9552
4	9	9	7	1	2	6	8
O9590	P11166	P11168	P11169	P14672	P22732	P36021	P41440
7	111100	111100	111103	1140/2	122/32	1 30021	141440
P46059	P46721	P53985	P54219	P57057	Q0594	Q1328	Q1454
F40039	F40/21	F33963	F34219	F3/03/	_`	6	"
01470	01401	01407	01624	01657	01662		2
Q1472	Q1491	Q14CX	Q1634	Q1657	Q1662	Q496J9	Q4U2R
8	6	5	8	2	5	O CNITTI	8
Q5BKX	Q5SR5	Q5TF3	Q5VZR	Q63ZE	Q6N07	Q6NT1	Q6NUT
6	6	9	4	4	5	6	3
Q6PXP	Q6T42	Q6UXD	Q6ZM	Q6ZQN	Q6ZSM	Q6ZSS	Q7L0J3
3	3	7	D2	7	3	7	
Q7L1I2	Q7RTT	Q7RTX	Q7RTY	Q7RTY	Q7Z3Q	Q86UG	Q86VW
	9	9	0	1	1	4	1
Q86WB	Q8IVM	Q8IVW	Q8IWD	Q8IY34	Q8IZD	Q8N37	Q8N43
7	8	8	5		6	0	4
Q8N46	Q8N4F	Q8N4V	Q8N69	Q8NA2	Q8NBI	Q8NBP	Q8NCC
8	4	2	7	9	5	5	5
Q8NCK	Q8NDX	Q8NH	Q8TCC	Q8TD2	Q8TDB	Q8TED	Q8TF7
7	2	S3	7	0	8	4	1
Q8WU	Q9295	Q96BD	Q96BI1	Q96ES	Q96JT2	Q96M	Q96NT
G5	9	0	Q00211	6	Q 0 0J 1 =	C6	5
Q96QE	Q96S3	Q96SL	Q9980	Q9BY1	Q9BYT	Q9BY	Q9BZV
2	7	1	8	0	1	W1	2
Q9H01	Q9H2V	Q9H2Y	Q9H3U	Q9NP5	Q9NPD	Q9NRA	Q9NR
5	7	9	5	9	5	2	M0
Q9NSA	Q9NY6	Q9NYB	Q9P2U	Q9P2U	Q9UG	Q9UIG	Q9UM
0	4	5	7	8	Q300 Q3	8	X9
Q9UPI	Q9Y22	Q9Y26	Q9Y2C	Q9Y2W	Q9Y5Y	Q9Y69	Q9Y6L
3	6	Q9120	0912C	3	0	4	0910L
J	U	/	J	J	U	4	U