Резервное копирование

Зачем копировать данные?

- Сколько данных Вы можете позволить себе потерять?
- Иногда данные могут быть потеряны в результате:
 - Повреждения файловой системы
 - Случайного удаления файлов
 - Отказа оборудования
 - Аварийного отказа системы
- Регулярное резервное копирование:
 - Минимизирует потери данных
 - Делает пользователей счастливыми
 - Обеспечивает стабильность и порядок

Что копировать?

- Копирование файловой системы целиком (полное копирование)
- Копирование части файловой системы
 - Файлы, которые изменились с последнего копирования (инкрементальное или дельта копирование)
 - Поддерево файловой системы
 - Данные приложений
 - Пользовательские файлы
- Копирование конфигурации базы данных
- Копирование LVM конфигурации

подходы к резервному

- Разные данные разные подходы к резервному копированию
- Некоторые данные не меняются практически никогда, а другие постоянно изменяются.
- Частота изменения данных очень важна для разработки процедуры резервного копирования.
- Резервная копия это не больше чем снимок копируемых данных. Это отражение данных в определённый момент времени.
- И чем чаще меняются данные, тем чаще следует выполнять их резервное копирование.

Пример данных по категориям

Операционная система

 Эти данные обычно меняются только во время обновлений, установки исправлений ошибок и каких-либо изменений в соответствии с вашими задачами.

Прикладное программное обеспечение

• Эти данные меняются при установке, обновлении или удалении программ.

Данные приложений

• Эти данные меняются так же часто, как запускаются связанные с ними приложения. В зависимости от определённого приложения и вашей организации, это может значить, что изменения происходят ежесекундно или один раз в конце налогового года

Данные пользователей

 Эти данные меняются в соответствии с характером работы ваших пользователей. В большинстве организаций это происходит постоянно.

Scalability and availability

Performance

and

cost

Типы резервного копирования

Полные копии Добавочные (инкрементальные) копии Разностные (дифференциальные) копии

Полные копии

- Полная копия это копия, при которой на резервный носитель сохраняется каждый файл.
- Если копируемые данные никогда не меняются, все создаваемые полные копии будут одинаковыми.
 - Создается долго
 - Занимает много места

Добавочные копии

- При создании добавочных копий, в отличие от полных, сначала проверяется время изменения файла и сравнивается со временем последнего копирования.
- Если время изменения более раннее, значит, файл не был изменён после последнего копирования и в этот раз его можно пропустить.
- Если дата изменения файла более поздняя, чем дата последнего копирования, значит, файл был изменён и его следует включить в резервную копию.
- Добавочные копии используются в сочетании с регулярными полными копиями (например, полные копии делаются еженедельно, а добавочные ежедневно).

Разностные копии

- Разностные копии похожи на добавочные тем, что они включают только изменённые файлы.
- разностные копии являются накопительными
- при разностном копировании файл, изменённый однажды, будет включаться во все последующие разностные копии (имеется в виду до следующей, полной копии).
- Нужно восстановив только последнюю полную и последнюю разностную копию.

Дедупликация

Резервный носитель

- Лента
 - Достаточно дешевый и объемный носитель
- Диск (Виртуальная лента или NAS)
 - обычно не являются съёмными
 - стоят относительно дорого
 - очень уязвимы к внешним воздействиям
 - Диски это <u>не архивный носитель</u>
- Сеть

Методы дедупликации

- File-level deduplication (дедупликация на уровне файлов)
 - единицей дедупликации в данном методе является отдельный файл. Дублирующие файлы исключаются из системы хранения данных.
- Block-level deduplication (блочная дедупликация)
 - единицей дедупликации является блок данных произвольной длины, который часто повторяется в различных логических объектах системы хранения данных.

Типы дедупликации

- Дедупликация на стороне источника данных (source)
- Пост-процессная дедупликация «пост-обработка » (target)
- Транзитная (непрерывная) дедупликация

LTO (Linear Tape-Open)

- Стандарт записи на магнитную ленту
- Поколения
 - LTO-1 2000г. 100 GB 15 Мбайт/с
 - LTO-2 2003г. 200 GB 40 Мбайт/с
 - LTO-3 2005г. 400 GB 80 Мбайт/с
 - LTO-4 2007г. 800 GB 120 Мбайт/с
 - LTO-5 2010г. 1.5 TB 180 Мбайт/с
 - LTO-6 2012г. 2.5 ТВ 400 Мбайт/с
- Начиная с LTO-4 поддержка шифрования
- Пример параметров ленточных библиотек :
 - HP StorageWorks ESL E-Series :
 - Емкость хранения до 44,4 ПБ со сжатием 2:1
 - Скорость передачи данных максимум 138 ТБ/ч

Хранение резервных копий

- Выбор места хранения зависит от обстоятельства, при которых будут использоваться резервные копии:
 - 1.Восстановление отдельных файлов по запросу пользователей
 - 2.Глобальное восстановление при чрезвычайной ситуации
 - 3. Архивное хранилище скорее всего никогда не потребуется
- между первой и второй ситуацией существуют несовместимые противоречия.

Восстановление в случае повреждения загрузочного диска

- Переустановка, за которой следует восстановление
 - Здесь базовая операционная система устанавливается таким же образом, как и на совершенно новый компьютер.
- Диски для восстановления системы
 - Диск для восстановления системы это загрузочный носитель некоторого рода (обычно CD-ROM), который содержит минимальное системное окружение и позволяет выполнять самые основные административные задачи.

Снятие копий online

Создание полного бэкапа большого набора файлов может занимать большое количество времени.

В многозадачных или многопользовательских системах, во время создания бэкапа может происходить запись или изменение файлов и папок, что может повлечь повреждение данных или перекосить версии файлов.

Методы борьбы:

- временное запрещение записи в данные
- остановка всех приложений которые модифицируют данные

Для избежания не доступности (downtime), вместо создания обычного бэкапа

- создать мгновенный снимок (snapshot)
- «разбить» зеркало :) (split mirror)

Recovery operations

Целевая точка восстановления (Recovery-point objective RPO)

степень актуальности резервных данных, насколько далеко назад может быть отброшена восстановленная система

Целевое время восстановление (Recovery-time objective - RTO) - это время, необходимое на возобновление функционирования основных процессов.

Recovery Point

Recovery Time

Years Days Hours Mins Secs

Secs Mins Hours Days

Tim

Методы защиты и востановления

Методы защиты

Методы восстановления

Tape Disk backups
backups Snapshots Real time
replication

Recovery Point

Instant Roll back Tape recovery restores

Recovery Time

Years Days Hours Mins Secs

Secs Mins Hours Days

Time

Реализация снимков

- Управление томами (LVM VxVM и т.п.)
- Файловые системы
 - Некоторые файловые системы
- В базах данных
 - уровни изоляции транзакций
- В виртуализации
 - В некоторых виртуальных машинах

Как работает shapshot

Пример создания снимка средствами LVM

```
# lvcreate -L592M -s -n dbbackup /dev/vg01/databases
lvcreate -- WARNING: the snapshot must be disabled if
  it gets full
lvcreate -- INFO: using default snapshot chunk size
  of 64 KB for "/dev/vg01/dbbackup"
lvcreate -- doing automatic backup of "vg01"
lvcreate -- logical volume "/dev/vg01/dbbackup"
  successfully create
# mkdir /mnt/dbbackup
# mount /dev/vg01/dbbackup /mnt/dbbackup
Удаление
```

umount /mnt/dbbackup

lvremove /dev/vg01/dbbackup

Разбиение Зеркала

Процесс создания реплики

- 1. Сбросить кеши приложения (Приостановить приложение)
- 2. Создать реплику
- 3. Продолжить приложение
- 4. Подключить реплику к серверу бекапов
- 5. Запустить создание бекапа на ленту

Удаленная репликация

Синхронная репликация

Асинхронная репликация

Утилиты для резервного копирования

Стандартные средства UNIX систем: tar, cpio, pax, star, rsync dd

dump и restore

Специализированное открытое ПО:

Bacula, AMANDA, BackupPC, Mondo Rescue

Проприетарное ПО:

HP OpenView Storage Data Protector

IBM Tivoli Storage Manager (TSM)

Symantec (Veritas) Backup Exec

Возможности ПО

- Многоплатформенность, может использоваться для копирования Windows Server, Solaris, HP-UX, Linux и многих других систем.
- Сетевой подход, может копировать множество сетевых клиентов параллельно.
- GUI (графический) интерфейс, предоставляет простой, интуитивный графический интерфейс для конфигурирования и планирования резервного копирования.
- Расширенная поддержка устройств, поддерживает многие популярные ленточные библиотеки и роботизированные механизмы.
- Интеграция с приложениями, включает интеграционные пакеты для облегчения копирования данных Oracle, Sybase, Informix и других популярных приложений.