Defu: Sed

A set is a collection of objects.

$$E_{X}$$
, $S = \{1,2,3\}$
 $N = \{1,2,3,4,...\}$ "natural numbers"
 $Q = \{m/n : m,n \in \mathbb{Z}, n \neq 0\}$
 $Z = \{0,\pm 1,\pm 2,...\}$

Defn: Set Membership

We say "x is in S" denoted

if S contains x an element.

$$\frac{2}{3} \in Q$$

- read! Not in

	Defa: Set antainment
	We say "A is a subset of B"
	denoted ACB
<	if xeA implies x & B
	8x,2,33 CN
	QCR Vialmber ACB
	M & {1,2,3} L not a subset
	Defu; Set Equality
	We say A and B are equal
	denoted A = B
	if ACB and BCA.
	Set Operations
_	Defn: Union
	The union of A and B denoted AUB

is defined as

AUB = {X | XEA or XEB}

 $M = A \cdot x^3$

 $B = \{\pm 1, \pm 2, \pm 3, \dots \}$

Hen

Ex. OCR so OUR=R

Fact: AVA = A (Idem potency)

Defui Intersection

We define the intersection of A and B denoted A MB (or AB)

 $AB = \{x \mid x \in A \text{ and } B\}$

 $\frac{E_{X}}{B} = 51,7,33$

Ex. NB= puhere B= 5-1, -2, -3, ... } C empty set

Fact: A < B then AB = A

Ex. QR = Q

Fact: AA = A

Defn: Set Difference

We say the difference between A and B

denoted A B

is defined as

$$E_{X}$$
. $A = \{1,7,3\}$
 $B = \{3,4,5\}$

Defu: Set Complements

Want: A = \(\text{X} \rightarrow A \)

Need: Universe of Sett S

The complement of A (against S) is

A = { X & S | X & A } = C \ A

$$2x$$
, $A = 55,63$, $S = 1N$
then $A^{c} = \{1,2,3,4,7,8,...\}$

Basic Theorems

- 1) Commutivity: AUB = BUA AB = BA
- 2) Associativity: Au(Buc) = (AuB)uC A(Bc) = (AB)C

$$(2) (AB)^{c} = A^{c} \cup B^{c}$$

Countably Infinite Set Operations

Defui Cantable Union:

$$\bigcup_{i=1}^{\infty} A_i = \left\{ x \in S \mid x \in A_i \text{ for some } i \right\}$$

ad
$$A := \left[\frac{1}{i}, 1\right]$$

$$A_1 = \{1\}, A_2 = [1/2, 1], A_3 = [1/3, 1], \dots$$

$$A_{1} = \{1\}, A_{2} = [1/2, 1], A_{3} = [1/3, 1], \dots$$

$$A_{3} \qquad A_{2} \qquad A_{1}$$

$$A_{1} = [1/2, 1], A_{3} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/2, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

$$A_{n} = [1/3, 1], A_{n} = [1/3, 1], \dots$$

Defu: Cantable Intersection

$$\bigcap_{i=1}^{\infty} A_i = \{ x \in S \mid x \in A_i \forall i \}$$

Ex. continue prev.

$$\bigwedge_{i=1}^{\infty} A_i = \{1\}$$

Defn! Disjoint.

We say A and B are disjoint if $AB = \emptyset$.

Ex. $A = \S1, 7, 3$

B=54,563

$$AB = \emptyset$$

Defu: Pairwise Disjoint

we say this seg is pairwise disjoint if

$$AiAj = \emptyset \quad \forall i \neq j.$$

$$\frac{\xi_{X}}{A} = [i, iti)$$

Defu! Partition

We say a seg (Ai) where Ai CB are a partition of Bif

1) the (Ai) are pairwise disjoint

Defu: Power Set

The power set of a set A

denoted

P(A) 0 2 A

is defined as the set of all subsets of A

2A = {B|BCA}

Ex. A = \$1,23

 $2^{A} = \{ \{13, \{23, \{1, 23, \emptyset\} \} \}$

Fact: (2A) = 2 |A|