

Pracovný list k pokusu: Medený chameleón (redoxné reakcie)

Meno a priezvisko:

Trieda:

Princíp: Redoxné (oxidačno-redukčné) reakcie sú reakcie, pri ktorých dochádza k zmene oxidačného čísla. Pri redoxných reakciách prebieha oxidácia a redukcia navzájom. Princíp pokusu spočíva v opakovaných farebných zmien. Tie pripomínajú živočícha chameleóna, ktorý má schopnosť meniť svoju farbu tela podľa prostredia okolo seba.

<u>Pomôcky</u>: veľká varná banka, váhy, odmerné valce, kahan, trojnožka, azbestova sieťka, teplomer, laboratórna lyžička, hodinové sklíčko, pipeta, stojan, držiaky, kruh, kadičky

Chemikálie: vínan sodno-draselný, pentahydrát síranu meďnatého, roztok peroxid vodíka

Pracovný postup:

- 1. Podľa obr. č. 1 si zostavíme aparatúru pre ohrev reakčnej zmesi nad kahanom.
- 2. Do varnej banky odpipetujeme 75 cm³ pripraveného roztoku vínanu draselno-sodného, 25 cm³ zriedeného peroxidu vodíka a 0,8 cm³ roztoku modrej skalice.
- 3. Do varnej banky vložíme teplomer tak, aby bol ponorený v reakčnej zmesi, ale aby sa zároveň nedotýkal dna a stien varnej banky.
- 4. Zapálime kahan a reakčnú zmes zahrejeme na 60 70 °C.
- 5. Po ohriatí reakčnej zmesi na požadovanú teplotu pridáme 2,5 cm³ nezriedeného peroxidu vodíka. Peroxid vodíka prikvapkáme opatrne, aby nedošlo ku vykypeniu reakčnej zmesi.
- 6. Pozorujeme farebné zmeny v reakčnej zmesi.

Schéma aparatúry:

<u>Pozorovanie</u> :
<u>Záver</u> :
1. Čo sme pokusom dokázali?
2. Vysvetlite na akom princípe mení medený chameleón svoju farbu. (Prečo pri pokuse dochádza k farebným zmenám.)
3. Prečo začala reakčná zmes prudko kypieť?
<u>Otázky:</u> 1. Napíšte vzorce použitých a vznikajúcich látok:
pentahydrátu síranu meďnatého –
 peroxidu vodíka – oxidu meďného –
2. Čo je oxidácia a redukcia?
2. Čo je oxidácia a redukcia? • oxidácia –

3. Doplňte chýbajúce údaje v rovnici tak, aby odpovedali zmenám oxidačného čísla
v medi. K daným rovniciam doplňte správny názov reakcie (oxidácia/redukcia):

- 4. Ktorá látka pôsobí v pokuse ako redukovadlo a ktorá ako oxidovadlo?
 - oxidovadlo
 - redukovadlo
- 5. V ktorej z uvedených reakcií má peroxid vodíka vlastnosti oxidovadla a v ktorej vlastnosti redukovadla?
 - a) $2 \text{ KI} + \text{H}_2\text{O}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{I}_2 + \text{K}_2\text{SO}_4 + 2\text{H}_2\text{O}$ b) $2 \text{ KMnO}_4 + 5 \text{ H}_2\text{O}_2 + 3 \text{ H}_2\text{SO}_4 \rightarrow 5 \text{ O}_2 + \text{K}_2\text{SO}_4 + 2 \text{ MnSO}_4 + 8 \text{ H}_2\text{O}_4$
- 6. Kde v bežnom živote prebiehajú redoxné reakcie?

••••••	 	

Kľúč správnych odpovedí: Pracovný list k pokusu: Medený chameleón (redoxné reakcie)

Meno a priezvisko:

Trieda:

Princíp: Redoxné (oxidačno-redukčné) reakcie sú reakcie, pri ktorých dochádza k zmene oxidačného čísla. Pri redoxných reakciách prebieha oxidácia a redukcia navzájom. Princíp pokusu spočíva v opakovaných farebných zmien. Tie pripomínajú živočícha chameleóna, ktorý má schopnosť meniť svoju farbu tela podľa prostredia okolo seba.

<u>Pomôcky</u>: veľká varná banka, váhy, odmerné valce, kahan, trojnožka, azbestova sieťka, teplomer, laboratórna lyžička, hodinové sklíčko, pipeta, stojan, držiaky, kruh, kadičky

Chemikálie: vínan sodno-draselný, pentahydrát síranu meďnatého, roztok peroxid vodíka

Pracovný postup:

- 7. Podľa obr. č. 1 si zostavíme aparatúru pre ohrev reakčnej zmesi nad kahanom.
- 8. Do varnej banky odpipetujeme 75 cm³ pripraveného roztoku vínanu draselno-sodného, 25 cm³ zriedeného peroxidu vodíka a 0,8 cm³ roztoku modrej skalice.
- 9. Do varnej banky vložíme teplomer tak, aby bol ponorený v reakčnej zmesi, ale aby sa zároveň nedotýkal dna a stien varnej banky.
- 10. Zapálime kahan a reakčnú zmes zahrejeme na 60 70 °C.
- 11. Po ohriatí reakčnej zmesi na požadovanú teplotu pridáme 2,5 cm³ nezriedeného peroxidu vodíka. Peroxid vodíka prikvapkáme opatrne, aby nedošlo ku vykypeniu reakčnej zmesi.
- 12. Pozorujeme farebné zmeny v reakčnej zmesi.

Schéma aparatúry:

Pozorovanie:

Pozorovali sme zmenu sfarbenia roztoku. Videli sme prechod farieb z modrej na oranžovožltú, potom na zelenú až na modrú.

Záver:

1. Čo sme pokusom dokázali?

V dôsledku oxidačno-redukčných reakcií sa farba opakovane mení z oranžovožltej cez zelenú až na modrú a späť.

2. Vysvetlite na akom princípe mení medený chameleón svoju farbu. (Prečo pri pokuse dochádza k farebným zmenám.)

V roztoku sú katióny Cu²⁺ redukované na oxid meďný (oranžovožltý), potom zasa späť oxidované peroxidom vodíka na katióny Cu²⁺, ktoré sú modré. (Redukcia a následná oxidácia katiónov medi spôsobila farebnú zmenu v roztoku – z tyrkysovo-modrej na oranžovožltú a potom opačne.)

3. Prečo začala reakčná zmes prudko kypieť?

Pretože pridaním peroxidu sa teplota reakčnej zmesi zvyšuje až na 90°C (exotermická reakcia).

Otázky:

1. Napíšte vzorce použitých a vznikajúcich látok:

- pentahydrátu síranu meďnatého CuSO₄.5H₂O
- peroxidu vodíka H₂O₂
- oxidu meďného Cu₂O

2. Čo je oxidácia a redukcia?

- oxidácia dej, pri ktorom atóm alebo ión odovzdáva elektróny, zvyšuje svoje oxidačné číslo a atóm, kt. sa oxiduje je redukovadlom
- redukcia dej, pri ktorom atóm alebo ión prijíma elektróny, pričom znižuje svoje oxidačné číslo a atóm, ktorý sa redukuje je oxidovadlom

3. Doplňte chýbajúce údaje v rovnici tak, aby odpovedali zmenám oxidačného čísla v medi. K daným rovniciam doplňte správny názov reakcie (oxidácia/redukcia):

$$Cu^{+II} + 1e^{-} \rightarrow Cu^{+I}$$
 redukcia

$$Cu^{+I} - 1e^{-} \rightarrow Cu^{+II}$$
 oxidácia

- 4. Ktorá látka pôsobí v pokuse ako redukovadlo a ktorá ako oxidovadlo?
 - oxidovadlo pentahydrát síranu meďnatého
 - redukovadlo oxid meďný
- 5. V ktorej z uvedených reakcií má peroxid vodíka vlastnosti oxidovadla a v ktorej vlastnosti redukovadla?

a) 2 KI +
$$H_2O_2$$
 + $H_2SO_4 \rightarrow I_2$ + K_2SO_4 + $2H_2O$ – oxidovadlo

b) 2 KMnO₄ + 5 H₂O₂ + 3 H₂SO₄
$$\rightarrow$$
 5 O₂ + K₂SO₄ + 2 MnSO₄ + 8 H₂O – redukovadlo

- 6. Kde v bežnom živote prebiehajú redoxné reakcie?
 - horenie, korózia, dýchanie, fotosyntéza