

玉 OFFICE JAPAN PATENT

31.08.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年10月29日

REC'D 15 OCT 2004

WIPO

PCT

号 出 願 Application Number:

特願2003-368952

[ST. 10/C]:

[] P 2 0 0 3 - 3 6 8 9 5 2]

出 人 Applicant(s):

ファシリティーズ 株式会社エヌ・ティ・ティ

オリジン電気株式会社

2004年10月 1日

特許庁長官 Commissioner, Japan Patent Office

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許願 【書類名】 GFA00173 【整理番号】

平成15年10月29日 【提出日】 特許庁長官 殿 【あて先】 H01M 10/44

【国際特許分類】

【発明者】

東京都港区芝浦三丁目4番1号 株式会社エヌ・ティ・ティ 【住所又は居所】

ァシリティーズ内

高木 晋也 【氏名】

【発明者】

東京都港区芝浦三丁目4番1号 株式会社エヌ・ティ・ティ フ 【住所又は居所】

ァシリティーズ内

松島 敏雄 【氏名】

【発明者】

東京都豊島区高田1丁目18番1号 オリジン電気株式会社内 【住所又は居所】

塚本 一男 【氏名】

【特許出願人】

593063161 【識別番号】

株式会社エヌ・ティ・ティ ファシリティーズ 【氏名又は名称】

【特許出願人】

000103976 【識別番号】

オリジン電気株式会社 【氏名又は名称】

【代理人】

100064908 【識別番号】

【弁理士】

志賀 正武 【氏名又は名称】

【選任した代理人】

100108578 【識別番号】

【弁理士】

高橋 詔男 【氏名又は名称】

【選任した代理人】

【識別番号】 100089037

【弁理士】

渡邊 隆 【氏名又は名称】

【選任した代理人】

【識別番号】 100101465

【弁理士】

青山 正和 【氏名又は名称】

【選任した代理人】

【識別番号】 100094400

【弁理士】

【氏名又は名称】 鈴木 三義

【選任した代理人】

100107836 【識別番号】

【弁理士】

【氏名又は名称】 西 和哉

【選任した代理人】

100108453 【識別番号】

【弁理士】

村山 靖彦 【氏名又は名称】

【手数料の表示】

【予納台帳番号】 008707 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9722680

【書類名】特許請求の範囲

【請求項1】

複数の二次電池を直列接続した組電池の両端へ充電電流を供給する充電電源部と、前記 各二次電池の両端に接続された複数の充電制御部とからなる充電装置であって、

前記充電電源部は、

前記組電池へ充電電流を出力する充電電流出力部と、

前記充電電流出力部の電流を前記充電制御部からのバイパス電流の通知に基づいて制御する制御手段とを具備し、

前記充電制御部は、

前記二次電池の端子電圧が予め設定された電圧値に達した際、該二次電池に流れていた電流をバイパスさせる電流制御手段と、

前記バイパス電流を前記充電電源部の制御手段へ通知する通知手段とを具備することを特徴とする充電装置。

【請求項2】

前記充電電流出力部は、定電流充電方式による電源であることを特徴とする請求項1 に記載の充電装置。

【請求項3】

前記制御手段は、前記複数の充電制御部から通知されたバイパス電流の内の最小の電流がほぼ「0」になるように前記充電電流出力部の出力電流を制御することを特徴とする請求項1または請求項2に記載の充電装置。

【請求項4】

前記制御手段は、前記複数の充電制御部から通知されたバイパス電流が予め設定された許容バイパス電流値以上であった場合に、該バイパス電流が該許容バイパス電流値以下となるように前記充電電流出力部の出力電流を制御することを特徴とする請求項1~請求項3のいずれかの項に記載の充電装置。

【請求項5】

前記通知手段は、前記バイパス電流と共に前記二次電池の両端電圧を前記充電電源部の制御手段へ通知し、前記制御手段は、前記二次電池の両端電圧が設定値より減少した場合、前記充電電流出力部の出力電流を増加させることを特徴とする請求項1~請求項4のいずれかの項に記載の充電装置。

【請求項6】

前記電流制御手段は、充電開始時点において前記二次電池の両端電圧が所定電圧以上 であった場合に、該所定電圧まで低下するように前記二次電池を放電させることを特徴と する請求項1~請求項5のいずれかの項に記載の充電装置。

【曹類名】明細書

【発明の名称】充電装置

【技術分野】

[0001]

本発明は、複数の二次電池が直列接続された組電池において、各二次電池の充電をバラ ンス良く実行させる二次電池の充電装置に関する。

【背景技術】

[0002]

通信装置のバックアップ用電源等をはじめとする種々の用途で、複数個の二次電池が直 列接続した組電池として使用されている。しかし、二次電池は製造直後でも個々の電池の 特性にバラツキが有り、また、使用期間が長くなり電池の劣化が進行すると、この様なバ ラツキが拡大され電圧差等となって現れてくる状況にある。

[0003]

ところで、近年、電源システムにおける蓄電池部の小型化・軽量化の要求が高まりつつ あり、エネルギー密度の高いリチウムイオン電池の適用の動きがある。このリチウムイオ ン二次電池では、充電電圧が単セル当たり4.1 V~4.2 V、放電終止電圧が2.9 V ~3.0 Vという値に設定して使用される。これは、高い電圧で充電したり、低い電圧で 放電すると、二次電池を形成する電極材や電解質が化学変化を起こし、二次電池としての 性能が低下するためである。したがって、リチウムイオン二次電池は、放電終止電圧およ び充電完了電圧を厳密に設定する必要がある。しかし、リチウムイオン二次電池では、直 列接続された組電池を構成すると各電池の端子電圧にバラツキが発生しやすく、一旦、バ ラツキが生じるとそれらの電圧バラツキが次第に大きくなっていく現象があり、このよう な事象が進行すると各電池の寿命や組電池の放電性能に大きく影響することになる。

[0004]

一方、電源システムに組電池を組み込んで使用する場合、組電池容量の維持が必要であ り、二次電池の特性や電源システムの構成を考慮して種々の充電方式が採用される。通信 用の直流供給電源では鉛蓄電池が主流であり、維持充電は定電流定電圧充電法が採用され ている。この方式では、整流器出力に負荷と蓄電池が並列に接続されているため、整流器 の故障や商用電源の停電の際には瞬時に蓄電池放電に切り替える事ができるうえ、停電が 回復した際には負荷への電力供給と蓄電池充電が並行して実施可能であり、基本的に、蓄 電池の容量維持は整流器の出力電圧の監理によって実行できるという利点がある。

リチウムイオン二次電池の充電にも、この定電流定電圧充電法が適しており、充電方式 の点で通信用にも適した電池といえる。しかし、リチウムイオン二次電池を直列接続して 使用する場合、全ての電池の容量あるいは内部抵抗が常に同じであればバランス良く充電 できる。しかしながら、実際には、電池の容量あるいは内部抵抗には若干のばらつきが存 在する。更に、初期において同じ内部特性であったとしてもトリクル充電またはフロート 充電により、時間が経過していくと電池の内部特性が変化し、電池の容量および内部抵抗 も変化する。そのため、従来の二次電池の充電には個々の電池電圧の計測手段を設け、電 池電圧が所定の値を越えると警報信号を発生したり、充放電を禁止するなどの方法をとっ てきた。しかしながら、この方法では、充電の進行が阻害され、電池の性能を十分に発揮 できないという大きな問題があった。

[0006]

また、定電流定電圧充電法で維持される組電池において、各電池のセル電圧を抑制する ための部品を取り付ける事も考えられる。しかし、単に、セル電圧抑制部品を装着しただ けでは各電池の内部状態が異なると、放電後の回復充電時に各電池の充電状態に差が生じ る。この結果、一定の充電電流が流れている状況下で、ある電池の充電が完了してもまだ 充電中の電池が混在し、電圧抑制のためのバイパス電流が大きな値となり、部品が大きく なったり価格が高くなる、等の問題があり実用になっていなかった。

なお、組電池を充電する充電装置として、本出願人は先に特許文献 1 に記載される発明

を出願している。

【特許文献1】特開2003-157908号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明は上記事情を考慮してなされたもので、その目的は、複数個の二次電池が直列接 続された組電池において、各二次電池間の電圧バラツキを抑制してバランスをとりつつ充 電することができる二次電池の充電装置を提供することにある。

【課題を解決するための手段】

[0008]

この発明は上記の課題を解決するためになされたもので、請求項1に記載の発明は、複 数の二次電池を直列接続した組電池の両端へ充電電流を供給する充電電源部と、前記各二 次電池の両端に接続された複数の充電制御部とからなる充電装置であって、前記充電電源 部は、前記組電池へ充電電流を出力する充電電流出力部と、前記充電電流出力部の電流を 前記充電制御部からのバイパス電流の通知に基づいて制御する制御手段とを具備し、前記 充電制御部は、前記二次電池の端子電圧が予め設定された電圧値に達した際、該二次電池 に流れていた電流をバイパスさせる電流制御手段と、前記バイパス電流を前記充電電源部 の制御手段へ通知する通知手段とを具備することを特徴とする充電装置である。

[0009]

請求項2に記載の発明は、請求項1に記載の充電装置において、前記充電電流出力部 は、定電流充電方式による電源であることを特徴とする。

請求項3に記載の発明は、請求項1または請求項2に記載の充電装置において、前記 制御手段は、前記複数の充電制御部から通知されたバイパス電流の内の最小の電流がほぼ 「0」になるように前記充電電流出力部の出力電流を制御することを特徴とする。

[0010]

請求項4に記載の発明は、請求項1~請求項3のいずれかの項に記載の充電装置にお いて、前記制御手段は、前記複数の充電制御部から通知されたバイパス電流が予め設定さ れた許容バイパス電流値以上であった場合に、該バイパス電流が該許容バイパス電流値以 下となるように前記充電電流出力部の出力電流を制御することを特徴とする。

[0011]

請求項5に記載の発明は、請求項1~請求項4のいずれかの項に記載の充電装置にお いて、前記通知手段は、前記バイパス電流と共に前記二次電池の両端電圧を前記充電電源 部の制御手段へ通知し、前記制御手段は、前記二次電池の両端電圧が設定値より減少した 場合、前記充電電流出力部の出力電流を増加させることを特徴とする。

[0012]

請求項6に記載の発明は、請求項1~請求項5のいずれかの項に記載の充電装置にお いて、前記電流制御手段は、充電開始時点において前記二次電池の両端電圧が所定電圧以 上であった場合に、該所定電圧まで低下するように前記二次電池を放電させることを特徴 とする。

【発明の効果】

[0013]

本発明によれば、二次電池の組電池の両端に接続して使用される充電電源部と組電池を 構成する各二次電池毎に接続される充電制御部によって構成され、充電制御部は、二次電 池の端子電圧が予め設定された電圧値に達した際、該二次電池に流れていた電流をバイパ スさせ、充電電源部は、複数の充電制御部に流れるバイパス電流を検知し検知された電流 に基づいて充電電流をコントロールするので、二次電池間のアンバランスを容易に解消す ることができる。また、この発明によれば、バイパス電流の内の最小の電流がほぼ「0」 になるように前記充電電流出力部の出力電流を制御するので、充電制御部の小型化を実現 することができ、各種電源の小型化に大きく貢献することが可能となる。

【発明を実施するための最良の形態】

[0014]

以下、図面を参照し、この発明の実施の形態について説明する。図1はこの発明の一実 施の形態による充電装置の構成を示すプロック図である。図2は図1に記載された充電電 源部100の構成を示すプロック図、図3は図1に記載された充電制御部200-1、2 0 0-2・・・2 0 0-Nの構成を示すプロック図である。また、図 4 、図 5 は各々本実 施形態の充電装置を適用した電源システムの構成例を示すブロック図であり、図4は負荷 に直流電源を供給する一般の通信用電源システムを示す図、また、図5は交流入力によっ て動作する機器に交流電力を無瞬断で供給する電源システムを示す図である。図5の電源 システムとして、具体的にはUPSがある。

[0015]

図4において、直流電源装置70の出力側に、複数個の二次電池50一1,50一2、 ・・・50─Nが直列接続された組電池500が負荷60と並列に接続されており、これ によって停電が発生しても無瞬断で負荷60に電力を供給できるようになっている。そし て、組電池500には、二次電池50—1,50—2・・・50—Nを充電するための充 電手段である充電電源部100が接続されている。この場合、正極側充電線105が組電 池500の正極端子10に、また、負極側充電線106が組電池500の負極端子11に 接続されている。また、個々の二次電池50には各々、充電制御部200-1、200-2、・・・200-Nが接続され、各充電制御部200の出力が共に通信線110によっ て充電電源部100に接続されている。

また、図5は交流供給電源システムであり、本実施形態による充電装置を備えた組電池 500が直流スイッチ91を介して電力供給系統に接続されており、商用電源の停電等の 際には蓄電池放電が行われ、インバータ92で交流に変換された後、無瞬断で負荷60に 供給される。

[0016]

以下、図2~図4を用いてこの実施形態による充電装置の動作を説明する。

<充電動作の起動手順> 充電動作を開始するには、全ての二次電池50-1、50-2・・・50-Nの電池電 圧が充電完了電圧より低い電圧値であることが必要である。これらの状態把握は、充電電 源部100のマイクロコントローラ101から初期化信号を各充電制御部200の各マイ クロコントローラ201に送信することで行われる。信号を受信した各マイクロコントロ ーラ201は、まず、制御停止信号214を停止状態に設定し、制御スイッチ204を開 放状態とする。これにより、トランジスタ205が開状態となる。この状態において、マ イクロコントローラ201は、正極入力端子208と負極入力端子209間の差電圧を電 池電圧検出増幅器202を介してマイクロコントローラ201に内蔵されているAD変換 器でデジタル情報に変換し、マイクロコントローラ101へ送信する。電圧情報を受信し たマイクロコントローラ101は、該複数の電圧情報から最大電圧と最小電圧を抽出し、 最大電圧と最小電圧の差を演算し、所定の電圧差許容量(例えば10mV)以下であれば、 次に説明する電池電圧均一過程をスキップして充電動作第2段階を開始する。

[0017]

<電池電圧均一過程>

上述した最大電圧と最小電圧との差電圧が前記電圧差許容値以上である場合には、マイ クロコントローラ101は、最小電圧値VS1と均一化信号を全ての充電制御部200ー 1、200-2、・・・200-Nへ送信する。均一化信号を受信した各充電制御部20 0-1、200-2、・・・200-Nは、正極入力端子208と負極入力端子209間 の電圧を計測し、該計測電圧値 V M 1 をマイクロコントローラ 2 0 1 内のレジスタ V C 1 に置数し、このレジスタVC1の値をDAコンバータによってアナログ電圧に変換し、端 子211から誤差増幅器203の負極入力端子へ出力する。このとき、誤差増幅器203 の正極入力端子には計測されたと同等の電圧が印加されているから誤差増幅器203の出 力電圧は概ね0である。ここで、制御停止信号214を動作状態に変更して、制御スイッ チ204を閉鎖状態にする。この状態では、誤差増幅器203の出力はほぼ0であり、電 流バイパス用トランジスタ205に電流はほとんど流れない。

次に、マイクロコントローラ201はレジスタVC1の値を微小に減少させるとともに 、分流抵抗器207に生じる電圧を電流増幅器206で増幅し、マイクロコントローラ2 01に内蔵されたADコンバータでデジタル情報に変換することで分流抵抗器207に流 れる電流を継続的に計測する。そして、該電流値が所定の最大バイパス電流を超えないよ うにレジスタVC1を制御する。この動作状況では、該充電制御部200が接続されてい る二次電池50は放電状態であり、電池電圧は低下してくる。レジスタVC1の示す電圧 値がマイクロコントローラ101から送られてきた設定値VS1に達したらレジスタVC 1の値の減少を中止し、分流抵抗器207を流れる電流が所定値以下になったら、均一化 終了信号をマイクロコントローラ101に送信する。

[0019]

<充電動作第2段階>

全ての充電制御部200から均一化終了信号がマイクロコントローラ101に送られて きた後、マイクロコントローラ101は充電完了電圧および充電開始信号を各充電制御部 200-1、200-2、・・・200-Nへ送信する。次に、所定の電流値を定電流電 源102に設定する。充電完了電圧および充電開始信号を受けた各充電制御部200の各 マイクロコントローラ201は、充電完了電圧をバイパス開始電圧としてマイクロコント ローラ201に内蔵されたDAコンバータに設定する。DAコンバータは充電完了電圧を アナログ電圧に変換し、誤差増幅器203へ出力する。次に、マイクロコントローラ20 1は、制御停止信号214を動作状態に設定し、制御スイッチ204を閉鎖状態にする。 これによって、充電制御動作が開始される。

すなわち、二次電池50の電池電圧が充電完了電圧に達すると、電池電圧をさらに増加 [0020] させようとする余分な電流をトランジスタ205および抵抗207のルートでバイパスさ せることで、電池電圧の過昇を防止する。また、全ての二次電池50に接続された充電制 御部200にバイパス電流が流れ始めると、これらバイパス電流の最小値分だけ、充電電 源部100からの充電電流を減少させる。さらに、二次電池50の充電が満充電に近づく と、二次電池50に流れる電流、充電制御部200でのバイパス電流とも0に近づくが、 自己放電などにより、電池電圧が減少した場合、再度、充電電流を供給する定電流電源1 02の設定値を増加させ、再度、上記のバイパス動作を行う。これにより、常に、各二次 電池50を満充電状態に保つことができる。

この充電制御動作を図6を参照して説明する。組電池500の充電を充電制御部200 を使用しないで行うと、図5 (a) に示すようにセル電圧にバラツキが生じる。一方、充 電制御部200を使用することにより、二次電池50の電圧は、充電完了電圧に近づくと 、二次電池50に流れている電流の一部を充電制御部200の正極入力端子208から負 極入力端子209に流すように動作し(二次電池50に流れる電流を減少させるように作 用)、図6(b)に示すように二次電池の電池電圧は概ね一定になる。ここでは、単電池 容量1000mAhのリチウムイオン二次電池の組電池500を使用し、充電電源部10 0 からの定電流値を1A、充電完了電圧4. 1 V、バイパス電流Max0. 5 Aの条件で 動作させている。

このように、それまで定電流で充電されていた二次電池50が、充電完了電圧に近づく と二次電池50に流れ込む電流が減衰するため、定電圧で充電されるようなモードになる 。そして、このままの状態で充電を継続すると、充電制御部200に流れるバイパス電流 が増加していき、定電流電源102が出力する電流の大半がバイパス電流として流れるよ うになる。そこで、このような状態になった場合、充電制御部200に流れるバイパス電 流を減少させる。この状況を図7を参照して説明する。

[0023]

図6(a)に示すような端子電圧を有する二次電池50が直列接続されている場合、各 二次電池50に接続された各充電制御部200にバイパスする電流値は、図7(a)のよ うになる。すなわち、各セルのバイパス電流値は、二次電池50-1がI、50-2がA +I、・・・50-NがG+Iの値であり、端子電圧が高いほどバイパス電流が大きくな っている。この様な各二次電池50に接続された複数の充電制御部200におけるバイパ ス電流値は、通信線110を経由してマイクロコントローラ101に集められる。マイク ロコントローラ101は、複数の充電制御部200に流れるバイパス電流の最小電流値Ⅰ を検知し、定電流電源102の出力電流設定値を最小電流分1だけ減算し設定する。

これによって、定電流電源102の出力電流が前記最小電流値分Ⅰだけ削減され、各セ ルに流れるバイパス電流は図7(b)に示すように二次電池50-1が0、50-2がA 、・・・50-NがGの値に低減する。この時、バイパス電流が最小であった充電制御部 200に接続された二次電池50に流れる充電電流が全セル中で最大値であり、この電流 が組電池500の充電に真に必要とされる電流であったので、本実施形態による充電装置 では、自動的に充電に必要な電流に設定されることになる。このように、本充電装置では 、充電電流の低減を自動的に行いつつ充電に必要とされる充電電流を確保することができ る。

組電池500を形成する各二次電池50の電池容量が概ね等しい場合には、概ね同時に 定電流充電が終了し、定電圧充電動作時にも全ての充電制御部200に流れるバイパス電 流は同等となり、最小電流分を定電流電源102の出力電流から減ずることで、充電制御 部200に流れるバイパス電流は概ね0に近い値となる。一方、電池容量が少ない二次電 池50が組電池500に混入すると、当該二次電池50は定電流充電が早めに終了し、他 の二次電池50が定電流充電が終了するまでの間、当該二次電池に接続されている充電制 御部200には徐々に増加するバイパス電流が流れるようになる。このような場合、本充 電装置が保有する、許容バイパス電流値を超えた際の充電制御部200の保護機能によっ て安全に充電を進行させることができる。すなわち、本装置では、上記のような場合、任 意の充電制御部200において予め設定された許容バイパス電流値を超える電流分が検出 されると、先のバイパス電流の最小値にかかわりなく、許容値を越えた電流を充電電源部 100の出力電流から減じることができる。これによって、充電制御部200を保護し、 本実施形態を適用した蓄電池システムの安全性を確保することができる。この場合、充電 電流の低減によって充電時間は長くなる方向に変わるが、組電池500を形成する各二次 電池50の電池電圧を所定の充電完了電圧に抑制した上で組電池500全体の充電を進め る事ができる。

ところで、フロート充電方式やトリクル充電方式で維持される二次電池では、それらの 電池の維持に適した充電電圧が電池の正負極間に与えられ、電池の容量の維持に必要なフ ロート(トリクル)充電電流が流れる。このフロート(トリクル)充電電流は、電池の温 度や使用年数に応じて次第に変わってくるが、上記の様な所定の電圧で維持することで、 必要な充電電流を常に安定して流すことができる。

本充電装置の場合、電池の正負極間に所定の電圧を与えるものと異なる。しかし、各二 次電池50に接続した、充電制御部200の機能によって上記と同様の効果を得ることが できる。これは、本充電装置が、充電電源部100の出力電流の最低値を、フロート充電 方式においてあらゆる条件で想定される電流値よりも大きく設定しておき各電池50の状 態に対応して必要となる充電電流を電池本体に供給しつつ過剰の電流をバイパス回路に流 すことによるものである。このように、本充電装置でも、従来のフロート(トリクル)充 電装置で維持した際に組電池内の各二次電池に供給される充電電流を、各二次電池50に 供給することができる。

上記の実施形態は、リチウムイオン二次電池に付いて示したが、この発明はシール鉛蓄電池等、組電池の状態で使用される他の種類の二次電池についても適用可能である。充電完了電圧値の設定を、適用する蓄電池の特性に合わせて調整すればよい。また、バイパス電流についても二次電池容量と充電制御部の容量を加味して設定すればよい。

【図面の簡単な説明】

[0029]

- 【図1】この発明の一実施形態による充電装置の構成を示すブロック図である。
- 【図2】図1における充電電源部100の構成を示すブロック図である。
- 【図3】図1における充電制御部200-1、200-2・・・200-Nの構成を示すブロック図である。
- 【図4】図1に示す充電装置を用いた直流電源供給回路の構成例を示すプロック図で ある。
- 【図5】図1に示す充電装置を用いた交流電源供給回路の構成例を示すブロック図である。
- 【図 6 】図 1 における二次電池 5 0 1、5 0 2 · · · 5 0 N の端子電圧を示す図である。
- 【図7】図1における二次電池50-1、50-2・・・50-Nのバイパス電流を示す図である。

【符号の説明】

[0030]

- 10:組電池システムの正極出力端子
- 11:組電池システムの負極出力端子
- 50-1~50-N:二次電池
- 100: 充電電源部
- 200-1~200-N: 充電制御部
- 500:組電池
- 101:マイクロコントローラ
- 102:定電流電源
- 103:電流増幅器
- 201:マイクロコントローラ
- 202:電池電圧の検出増幅器
- 203:電池電圧の誤差増幅器
- 204:スイッチ
- 205:電流バイパス用トランジスタ
- 206:電流増幅器
- 207:分流抵抗器

【図2】

【図3】

【図6】

(a)

(b)

【図7】

(a)

【書類名】要約書

【要約】

【課題】 複数個の二次電池が直列接続された組電池において、各二次電池間の電圧バラ ツキを抑制してバランスをとりつつ充電することができる二次電池の充電装置を提供する

【解決手段】 充電電源部100は、複数の二次電池50-1~50-Nを直列接続した組電池500の両端へ充電電流を供給する。充電制御部200-1~200-Nはそれぞれ、二次電池50-1~50-Nの端子電圧が予め設定された電圧値に達した際、該二次電池50-1~50-Nに流れていた電流をバイパスさせると共に、バイパス電流を充電電源部100へ通知する。充電制御部100は、充電電流を充電制御部200-1~200-Nからのバイパス電流の通知に基づいて制御する。

【選択図】 図1

認定・付加情報

特許出願の番号 特願2003-368952

受付番号 50301793901

書類名 特許願

担当官 第五担当上席 0094

作成日 平成15年10月30日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000103976

【住所又は居所】 東京都豊島区高田1丁目18番1号

【氏名又は名称】 オリジン電気株式会社

【特許出願人】

【識別番号】 593063161

【住所又は居所】 東京都港区芝浦三丁目4番1号

【氏名又は名称】 株式会社エヌ・ティ・ティ ファシリティーズ

【代理人】 申請人

【識別番号】 100064908

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 志賀 正武

【選任した代理人】

【識別番号】 100108578

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 高橋 韶男

【選任した代理人】

【識別番号】 100089037

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 渡邊 隆

【選任した代理人】

【識別番号】 100101465

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 青山 正和

【選任した代理人】

ページ: 2/E

【識別番号】 100094400

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 鈴木 三義

【選任した代理人】

【識別番号】 100107836

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 西 和哉

【選任した代理人】

【識別番号】 100108453

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 村山 靖彦

特願2003-368952

出願人履歴情報

識別番号

[593063161]

1. 変更年月日 [変更理由]

1996年11月15日

[変更理田]

住所変更

住 所 名

東京都港区芝浦三丁目4番1号

株式会社エヌ・ティ・ティ ファシリティーズ

特願2003-368952

出願人履歴情報

識別番号

[000103976]

1. 変更年月日 [変更理由] 1990年 8月 8日

新規登録

住 所 氏 名 東京都豊島区高田1丁目18番1号

オリジン電気株式会社