PALM Intrane						
Application Number		SEARCH				
IDS Flag Cle IDS Information	earance for App		7			
	Content	Mailroom Date	Entry Number	IDS Review	Reviewer	
	M844	07-19-2005	11	V	08-26-2005 09:14:57	dmartin
			UPD	ATE		

Refine Search

Search Results -

Term	Documents
ANTENNA	363890
ANTENNAS	85613
(22 AND ANTENNA).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	30
(L22 AND ANTENNA).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	30

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database

Database:

US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

L23

	00003
	22223
	999999 8
	2000
	· · · · · · · · · · · · · · · · · · ·

Refine Search

Interrupt

Search History

DATE: Saturday, May 20, 2006 Printable Copy Create Case

Set Name side by side	Query	<u>Hit</u> Count	Set Name result set
DB=	PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR=YES; OP=ADJ		
<u>L23</u>	L22 and antenna	30	<u>L23</u>
<u>L22</u>	L19 and (rf adj coil)	75	<u>L22</u>
<u>L21</u>	L18 and (balun or half near wavelength) and (transmit\$4 or receive\$4) near (split\$4 or combin\$4) and (coaxial near delay)	0	<u>L21</u>
<u>L20</u>	L18 and (balun or half near wavelength) and (transmit\$4 or receive\$4) and (split\$4 or combin\$4) and (coaxial near delay)	0	<u>L20</u>
<u>L19</u>	L18 and (balun or half near wavelength) and (transmit\$4 or receive\$4) or (split\$4 or combin\$4) and (coaxial near delay)	288	<u>L19</u>

<u>L18</u>	L17 and L14	1342	<u>L18</u>
<u>L17</u>	L16 and L15 and L14 and L13	1342	<u>L17</u>
<u>L16</u>	(324/300-324 or 600/117,407,410,411,422, 423,424 or 330/210,295).ccls.	14358	<u>L16</u>
<u>L15</u>	(balun or half near wavelength) and (transmit\$4 or receive\$4) or split\$4 or combin\$4 or (coaxial near delay)	3051923	<u>L15</u>
<u>L14</u>	(decoupl\$4 or demodulat\$4) and (anrenna or coil)	36221	<u>L14</u>
<u>L13</u>	(magnetic adj resonance) or MRI or nmr	226587	<u>L13</u>
<u>L12</u>	5144244	14	<u>L12</u>
<u>L11</u>	4801885	14	<u>L11</u>
DB=	USPT; PLUR=YES; OP=ADJ		
<u>L10</u>	'4920318'.pn.	1	<u>L10</u>
<u>L9</u>	'4920318'.pn.	1	<u>L9</u>
DB=	PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR=YES; OP=ADJ		
<u>L8</u>	4920318	58	<u>L8</u>
DB=	USPT; PLUR=YES; OP=ADJ		
<u>L7</u>	'5964705'.pn.	1	<u>L7</u>
<u>L6</u>	'5964705'.pn.	1	<u>L6</u>
<u>L5</u>	'6263229'.pn.	1	<u>L5</u>
<u>L4</u>	'6263229'.pn.	1	<u>L4</u>
\overline{DB} =	PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR=YES; OP=ADJ		
<u>L3</u>	6263229	54	<u>L3</u>
<u>L2</u>	wo000025673.pn.	0	<u>L2</u>
<u>L1</u>	wo000025673	0	<u>L1</u>

END OF SEARCH HISTORY

Hit List

First Hit Clear Generate Collection Print Fwd Refs Bkwd Refs

Generate OACS

Search Results - Record(s) 1 through 30 of 30 returned.

☐ 1. Document ID: US 6898454 B2 Relevance Rank: 56

Using default format because multiple data bases are involved.

L23: Entry 12 of 30

File: USPT May 24, 2005

US-PAT-NO: 6898454

DOCUMENT-IDENTIFIER: US 6898454 B2

TITLE: Systems and methods for evaluating the urethra and the periurethral tissues

DATE-ISSUED: May 24, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Atalar; Ergin Columbia MD

Quick; Harald Hartmann Essen-Werden DE

Karmarkar; Parag Elliot City MD

US-CL-CURRENT: 600/410

Full: Title: Citation Front Review Classification Cate Reference Citation Claims NAC Draw D

☐ 2. Document ID: US 6608480 B1 Relevance Rank: 50

L23: Entry 17 of 30 File: USPT Aug 19, 2003

US-PAT-NO: 6608480

DOCUMENT-IDENTIFIER: US 6608480 B1

TITLE: RF coil for homogeneous quadrature transmit and multiple channel receive

DATE-ISSUED: August 19, 2003

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Weyers; Daniel J. Wauwatosa WI

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

GE Medical Systems Global Technology

Hit List

First Hit Clear Generate Collection Print Fwd Refs Bkwd Refs

Generate OACS

Search Results - Record(s) 1 through 14 of 14 returned.

☐ 1. Document ID: US 5144244 A Relevance Rank: 99

Using default format because multiple data bases are involved.

L11: Entry 10 of 14

File: USPT

Sep 1, 1992

US-PAT-NO: 5144244

DOCUMENT-IDENTIFIER: US 5144244 A

TITLE: Error-proof decoupling of transmission and reception antennas in a nuclear

magnetic resonance apparatus

DATE-ISSUED: September 1, 1992

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Kess; Helmut Erlangen DE

US-CL-CURRENT: 324/322; 324/318

☐ 2. Document ID: US 5260658 A Relevance Rank: 96

L11: Entry 7 of 14 File: USPT Nov 9, 1993

US-PAT-NO: 5260658

DOCUMENT-IDENTIFIER: US 5260658 A

TITLE: Detuning circuit for resonators in a nuclear magnetic resonance imaging

apparatus

DATE-ISSUED: November 9, 1993

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Greim; Helmut Adelsdorf DE
Ruhl; Juergen Erlangen DE
Oppelt; Ralph Weiher DE

ASSIGNEE-INFORMATION:

Record List Display Page 2 of 24

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Siemens Aktiengesellschaft Munich DE 03

APPL-NO: 0.7/802542 [PALM]
DATE FILED: December 5, 1991

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE

DE 4039409 December 10, 1990

INT-CL-ISSUED: [05] G01B 33/20

US-CL-ISSUED: 324/322 US-CL-CURRENT: 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/300, 324/307, 324/309, 324/318, 324/322,

128/653.5

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL 4801885 January 1989 Meissner et al. 324/318

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO PUBN-DATE COUNTRY CLASS 0317090 May 1989 EP

0317090 May 1989 EP 0389868 March 1990 EP 3133432 March 1983 DE

OTHER PUBLICATIONS

"Human in Vivo Phosphate Metabolite Imaging with .sup.31 P NMR" Bottomley et al., Magnetic Resonance in Medicine 7 (1988) pp. 319-336.
"Taschenbuch der Hochfrequenztechnik," Meinke et al. (1956) pp. 185-187.
Patent Abstracts of Japan, P-453 vol. 10, No. 119, May 6, 1986, Application No. 59-

ART-UNIT: 267

103380.

PRIMARY-EXAMINER: Tokar; Michael J.

ATTY-AGENT-FIRM: Hill, Steadman & Simpson

ABSTRACT:

A circuit for detuning a resonator in a nuclear magnetic resonance imaging apparatus has an output connected to a terminal of the resonator via a high-

Record List Display Page 3 of 24

frequency line composed of two conductors. The resonator is shortened at this terminal with a shorting capacitor that can be short-circuited for detuning the resonator. The length of the high-frequency line is shorter than one-fourth of the wavelength of a high-frequency signal having the operating frequency of the nuclear magnetic resonance imaging apparatus on the high-frequency line. For detuning the resonator the high-frequency line can be terminated at the output with a further capacitor, so that the high-frequency line acts as a short-circuit at the terminal.

8 Claims, 2 Drawing figures

Full Title Citation Front Review Classification Date Reference

☐ 3. Document ID: US 5294886 A Relevance Rank: 96

L11: Entry 6 of 14 File: USPT Mar 15, 1994

US-PAT-NO: 5294886

DOCUMENT-IDENTIFIER: US 5294886 A

TITLE: Antenna system for a magnetic resonance imaging tomography apparatus

DATE-ISSUED: March 15, 1994

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Duerr; Wilhelm Erlangen DE

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Siemens Aktiengesellschaft Munich DE 03

APPL-NO: 07/872100 [PALM]
DATE FILED: April 22, 1992

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE

DE 4113120 April 22, 1991

INT-CL-ISSUED: [05] G01R 33/00

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 333/24R, 333/181, 343/743, 324/300, 324/307,

324/309, 324/310, 324/311, 324/312, 324/313, 324/314, 324/318, 324/322

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Record List Display Page 4 of 24

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4680550	July 1987	Krause	324/318
4801885	January 1989	Meissner et al.	324/318
4922204	May 1990	Duerr et al.	324/322
4945321	July 1990	Oppelt et al.	333/119
5200703	April 1993	Popp et al.	324/322

ART-UNIT: 267

PRIMARY-EXAMINER: Tokar; Michael J.

ATTY-AGENT-FIRM: Hill, Steadman & Simpson

ABSTRACT:

In a magnetic resonance imaging tomography apparatus having a transmission antenna for exciting nuclear spins in an examination subject, and a reception antenna in the form of a local coil, the feeder for the local coil is provided with decoupling elements. The decoupling elements prevent a coupling of the electrical field of the transmission antenna with the feeder for the local coil.

9 Claims, 5 Drawing figures

	Full Title Citation Frant Review Classification	Claims Notice Urseuu.
*****	☐ 4. Document ID: US 6084410 A	Relevance Rank: 96

Ll1: Entry 3 of 14

File: USPT

. Jul 4, 2000

US-PAT-NO: 6084410

DOCUMENT-IDENTIFIER: US 6084410 A

TITLE: Tunable radio-frequency unit for a magnetic resonance device

DATE-ISSUED: July 4, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Nistler; Juergen Erlangen DE

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Siemens Aktiengesellschaft Munich DE 03

APPL-NO: 09/098425 [PALM] DATE FILED: June 17, 1998

Record List Display Page 5 of 24

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE

DE 298 04 339 U March 11, 1998

INT-CL-ISSUED: [07] G01V 3/00

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/322, 324/311, 324/307, 324/316

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

	•		
PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4739271	April 1988	Haase	324/322
4801885	January 1989	Meissner et al.	324/318
4901022	February 1990	Keren et al.	324/322
4910461	March 1990	Van Vaals	324/318

ART-UNIT: 282

PRIMARY-EXAMINER: Oda; Christine

ASSISTANT-EXAMINER: Shrivastav; Brij B.

ATTY-AGENT-FIRM: Hill & Simpson

ABSTRACT:

A tunable radio-frequency unit for a magnetic resonance device has a radio-frequency antenna and a radio-frequency signal line connected to a signal terminal of the radio-frequency antenna. The length of the radio-frequency signal line corresponds to a whole-number multiple of a half-wavelength of a radio-frequency signal on the radio-frequency signal line, for a given operating frequency of the radio-frequency antenna. For switching a short circuit on and off, a switching arrangement is connected at an end of the signal line lying opposite the signal terminal.

7 Claims, 2 Drawing figures

L11: Entry 14 of 14

—Full ⊞Titt≋	Elaims Review Classification Date: Reference Claims Claims Reference Claims C	
	Document ID: EP 262495 A, US <u>4801885</u> A, EP 262495 B, DE 3771630 G ace Rank: 93	

File: DWPI

Apr 6, 1988

Tolovanos Tank. 75

Record List Display Page 6 of 24

DERWENT-ACC-NO: 1988-093041

DERWENT-WEEK: 199618

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Nuclear spin resonance device for measuring spectra or images - examines objects using quarter wavelength and coaxial lines for decoupling antenna and coil,

and causes antenna to emit HF pulses

INVENTOR: KESS, H; MEISSNER, R

PATENT-ASSIGNEE: SIEMENS AG (SIEI)

PRIORITY-DATA: 1986DE-3632137 (September 22, 1986)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
EP 262495 A	April 6, 1988	G	009	
US 4801885 A	January 31, 1989		007	
EP 262495 B	July 24, 1991		000	
DE 3771630 G	August 29, 1991		000	

DESIGNATED-STATES: DE GB NL DE GB NL

CITED-DOCUMENTS:2.Jnl.Ref; DE 3427666 ; EP 164164 ; EP 170514 ; GB 2153086 ; GB

2161940 ; 1.Jnl.Ref ; JP 59070950

APPLICATION-DATA:

PUB-NO APPL-DATE APPL-NO DESCRIPTOR

EP 262495A September 11, 1987 1987EP-0113338 US 4801885A September 16, 1987 1987US-0097738

INT-CL (IPC): G01N 24/04; G01R 33/20

ABSTRACTED-PUB-NO: EP 262495A

BASIC-ABSTRACT:

Coils apply base and gradient fields to the object under investigation. A whole body antenna (9) irradiates the object with a sequence of high frequency pulses. The nuclear resonance signals emitted by the body are detected by a surface coil. The antenna and surface coil are mutually decoupled. A quarter-wavelength line (20) is connected to the antenna (9) via a coaxial cable (22,23).

The end of the line is short-circuited when HF pulses are emitted by the antenna and is open when nuclear resonance signals are received by the surface coil. The coaxial line transforms the high impedance of the whole body antenna to a low level.

USE/ADVANTAGE - For investigating individual regions of body. Influence of resonant circuit on decoupling arrangement remains low esp. outside detuning phase, and no current flows in surface coil at this time.

ABSTRACTED-PUB-NO: EP 262495B

EQUIVALENT-ABSTRACTS:

Record List Display Page 7 of 24

A nuclear spin resonance apparatus for detecting spectra or images of an object under examination by means of nuclear magnetic resonance with coils (1,2,3,4,7,8) for applying magnetic base and gradient fields to the object under examination (5), with a whole-body antenna (9), with which the object under examination (5) is irradiated with a series of high frequency pulses with the wave length lambda and with a surface coil (19), which detects nuclear resonance signals emitted by the object under examination (5), wherein the whole-body antenna (9) and the surface coil (19) are decoupled from each other, characterised in that connected to the whole body antenna (9) by way of a coaxial line (22, 23) there is A/4 line (20), the end of which is short-circuited, when emitting HF pulses, with the whole-body antenna (9), and when receiving the nuclear resonance signals, is opened with the surface coil (19), wherein the coaxial line (22, 23) transforms the high impedance of the whole-body antenna (9) to a low level.

(7pp)

US 4801885A

The nuclear magnetic resonance apparatus includes a whole-body antenna, for transmitting radio frequency signals at a wavelength to induce nuclear magnetic resonance phenomena in the examination subject and a surface coil for receiving the resulting nuclear magnetic resonance signals. For decoupling the body resonator from the surface coil, a quarter wavelength line is connected to the surface coil. A terminating end of the line is short-circuited during emission of radio frequency pulses by the body resonator and is opened during reception of nuclear magnetic resonance signals using the surface coil. ADVANTAGE - Gives complete decoupling.

(7pp)

CHOSEN-DRAWING: Dwg.2/5

DERWENT-CLASS: S03 S05

EPI-CODES: S03-E07; S05-D02X;

Full: Title: Citation Fronts Review Classification Cate Reference Claims RNIC Risks Proceedings of the Communication of the Communicati

File: USPT

Jan 31, 1989

US-PAT-NO: 4801885

L11: Entry 13 of 14

DOCUMENT-IDENTIFIER: US 4801885 A

TITLE: Nuclear magnetic resonance apparatus for the identification of spectra or

images of an examination subject

DATE-ISSUED: January 31, 1989

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Meissner; Ralph Erlangen DE Kess; Helmut Deggendorf DE Record List Display Page 8 of 24

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Siemens Aktiengesellshaft Berlin and Munich DE 03

APPL-NO: 07/097138 [PALM]
DATE FILED: September 16, 1987

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE

DE 3632137 September 22, 1986

INT-CL-ISSUED: [04] G01R 33/20

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/322, 324/311, 324/313, 324/314

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL 4728896 March 1988 Bendall et al. 324/318

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO PUBN-DATE COUNTRY CLASS December 1985 0164164 EΡ 0170514 February 1986 EΡ February 1986 3427666 DE April 1984 59-70950 JΡ August 1985 2153086 GB January 1986 GB 2161940

OTHER PUBLICATIONS

"Improved Surface Coil Imaging in MR: Decoupling of the Excitation and Receiver Coils.sup.1, "Boskamp, Radiology, Nov. 1985, pp. 449-452.

ART-UNIT: 265

PRIMARY-EXAMINER: Levy; Stewart J.

ASSISTANT-EXAMINER: Arana; Louis M.

ABSTRACT:

A nuclear magnetic resonance apparatus which is capable of identifying either

Record List Display Page 9 of 24

spectra or images of an examination subject uses a body resonator, such as a whole-body antenna, for transmitting radio frequency signals at a wave length .lambda. to induce nuclear magnetic resonance phenomena in the examination subject, and a surface coil for receiving the resulting nuclear magnetic resonance signals. For decoupling the body resonator from the surface coil, a .lambda./4 line is connected to the surface coil. A terminating end of the .lambda./4 line is short-circuited during emission of radio frequency pulses by the body resonator, and is opened during reception of nuclear magnetic resonance signals using the surface coil. An effective detuning of the body resonator is thus achieved during the reception event, and at the same time the transmission event is minimally influenced.

12 Claims, 5 Drawing figures

Full Title Citation Front Review Classification Cate Reference Citation Callins 1980 Uraw U

☐ 7. Document ID: US 5038105 A Relevance Rank: 93

......

L11: Entry 12 of 14 File: USPT Aug 6, 1991

US-PAT-NO: 5038105

DOCUMENT-IDENTIFIER: US 5038105 A

TITLE: Series/parallel double-tuned NMR coils

DATE-ISSUED: August 6, 1991

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Codrington; Robert S. Los Altos Hills CA

Rath; Alan R. Fremont CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Spectroscopy Imaging Systems Corporation Fremont CA 02

APPL-NO: 07/477687 [PALM]
DATE FILED: February 9, 1990

INT-CL-ISSUED: [05] G01R 33/20

US-CL-ISSUED: 324/318 US-CL-CURRENT: 324/318

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/322, 307/520, 307/522, 328/137,

328/138, 455/325, 455/327, 333/126, 333/129, 333/132, 333/134

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Record List Display Page 10 of 24

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4792759	December 1988	Keren et al.	324/322
4801885	January 1989	Meissner et al.	324/322
4812764	March 1989	Bendall	324/322
4885541	December 1989	Hayes	324/322
4916418	April 1990	Rath	324/318
4928064	May 1990	Keren	324/322

ART-UNIT: 265

PRIMARY-EXAMINER: Tokar; Michael J.

ATTY-AGENT-FIRM: Cole; Stanley Z. Fisher; Gerald M. Berkowitz; Edward H.

ABSTRACT:

A double-tuned circuit is realized from 1/2.lambda..sub.1 transmission lines for connecting a pair of inductors in series at a first frequency and in parallel for a second frequency where said first and second frequencies are in the ratio of a power of two.

6 Claims, 6 Drawing figures

Full Title Citation Front Review Classification Data Seterance	Claims K00C Drawe De

□ 8. Document ID: US 5107217 A Relevance Rank: 93

L11: Entry 11 of 14

File: USPT

Apr 21, 1992

US-PAT-NO: 5107217

DOCUMENT-IDENTIFIER: US 5107217 A

TITLE: Radio frequency antenna for a nuclear magnetic resonance tomography

apparatus

DATE-ISSUED: April 21, 1992

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Duerr; Wilhelm Erlangen DE

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Siemens Aktiengesellschaft Munich DE 03

APPL-NO: 07/499771 [PALM]
DATE FILED: March 27, 1990

Record List Display Page 11 of 24

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE

DE 3910187 March 29, 1989

INT-CL-ISSUED: [05] G01R 33/20

US-CL-ISSUED: 324/322; 333/219 US-CL-CURRENT: 324/322; 333/219

FIELD-OF-CLASSIFICATION-SEARCH: 324/300, 324/307, 324/309, 324/314, 324/318,

324/322, 333/219

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4435680	March 1984	Froncisz et al.	
4446429	May 1984	Froncisz et al.	
4506224	March 1985	Krause	
4620155	October 1986	Edelstein	324/318
4742304	May 1988	Schnall et al.	
4755756	July 1988	Nishihara et al.	324/322
4792759	December 1988	Keren et al	324/322
4801885	January 1989	Meissner et al.	
4881034	November 1989	Kaufman et al.	324/318

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
0094734	November 1983	EP	
0257782	March 1988	EP	
0301232	February 1989	EP	

OTHER PUBLICATIONS

"The Design and Use of Dual-Frequency Surface Coil Providing Proton Images for Improved Localization in 31P Spectroscopy of Small Leisons", Leach et al., Medical Physics, vol. 13, No. 4, Jul./Aug. 1986, pp. 510-513.

ART-UNIT: 265

PRIMARY-EXAMINER: Tokar; Michael J.

ATTY-AGENT-FIRM: Hill, Van Santen, Steadman & Simpson

ABSTRACT:

A radio frequency antenna for a nuclear magnetic resonance tomography apparatus has

Record List Display Page 12 of 24

interior conductors which form a transmission line resonator with at least one shortening capacitor. The transmission line resonator can resonate at a plurality of resonator frequencies, and a trap circuit is provided for decoupling the interior conductors from the other conductors. The antenna can be operated at a number of different resonate frequencies, for example, at frequency f.sub.1 =170 MHz for protons (hydrogen) and F.sub.2 =69 MHz for phosphorous.

13 Claims, 10 Drawing figures

Full Title Citation Front Review Classification Date Reference

☐ 9. Document ID: US 5229724 A Relevance Rank: 93

L11: Entry 9 of 14 File: USPT Jul 20, 1993

US-PAT-NO: 5229724

DOCUMENT-IDENTIFIER: US 5229724 A

TITLE: Sample head for nuclear resonance measurements

DATE-ISSUED: July 20, 1993

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Zeiger; Heinz Waldbronn DE

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Bruker Analytische Messtechnik GmbH DE 03

APPL-NO: 07/642626 [PALM]
DATE FILED: January 17, 1991

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE

DE 4002160 January 25, 1990

INT-CL-ISSUED: [05] G01V 3/00

US-CL-ISSUED: 324/322; 324/318 US-CL-CURRENT: 324/322; 324/318

FIELD-OF-CLASSIFICATION-SEARCH: 324/300, 324/307, 324/309, 324/314, 324/318,

324/322, 128/653.5

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Record List Display Page 13 of 24

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4446431	May 1984	McKay	324/318
4728896	March 1988	Bendall et al.	324/318
4801885	January 1989	Meissner et al.	324/318
4952879	August 1990	Van Vaals et al.	324/322
4996482	February 1991	Fujito	324/318
5038105	August 1991	Codrington et al.	324/318

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO PUBN-DATE COUNTRY CLASS 3634030 October 1986 DE

OTHER PUBLICATIONS

Review of Scientific Instruments, vol. 47, No. 12, Dec. 1976, pp. 1486 to 1488, "Single coil probe with transmission-line tuning for nuclear magnetic double resonance"-Author V. R. Cross, R. K. Hester, and J. S. Waugh.

Journal of Magnetic Resonance 43 (1981), pp. 339 to 416 "A Multinuclear Double-Tuned Probe for Applications with Solids or Liquids Utilizing Lumped Tuning Elements" Authors: F. David Doty, Ruth R. Inners, and Paul D. Ellis.

Review of Scientific Instruments, vol. 51 (7), Jul. 1980, pp. 887 to 890 "A single-coil triple resonance probe for NMR experiments" Authors: S. Kan, M. Fan, and J. Courtieu.

ART-UNIT: 263

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Rosenblum, Parish & Isaacs

ABSTRACT:

A sample head for performing nuclear magnetic resonance measurements on a first kind of nuclei (.sup.1 H) and, further, on a second (.sup.15 N) or a third (.sup.31 P) kind of nuclei within a magnetic field (B) is disclosed. A measuring coil coacts with a sample under analysis and generates a nuclear magnetic resonance within the sample or receives a nuclear magnetic resonance signal from the sample. Terminals are provided for transmitting to or receiving from the measuring coil highfrequency signals having frequencies corresponding to the particular nuclear magnetic resonance frequency of the specific kinds of nuclei (.sup.1 H, .sup.15 N, .sup.31 P), respectively. A high-frequency line is connected to the measuring coil at one end thereof. The line has an electric length which is an integer multiple of a quarter wavelength corresponding to the first, higher frequency. Switching means are associated to the line for switching its electrical length according to two distinct modes of operations where the second and the third, lower frequencies have different values below the first, higher frequency. By actuating the switching means, the line acts as an inductance or as a capacitance, respectively, connected in series with the measuring coil.

18 Claims, 10 Drawing figures

Record List Display Page 14 of 24

Full Title Citation Front Review Classification Cate Reference

Claims (2000) Uraw U

□ 10. Document ID: US 5258718 A Relevance Rank: 93

L11: Entry 8 of 14 File: USPT Nov 2, 1993

US-PAT-NO: 5258718

DOCUMENT-IDENTIFIER: US 5258718 A

TITLE: Nuclear magnetic resonance tomography apparatus

DATE-ISSUED: November 2, 1993

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Duerr; Wilhelm Erlangen DE

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Siemens Aktiengesellschaft Munich DE 03

APPL-NO: 07/790506 [PALM]
DATE FILED: November 12, 1991

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE

DE 4038648 December 4, 1990

INT-CL-ISSUED: [05] G01R 33/20

US-CL-ISSUED: 324/322 US-CL-CURRENT: 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/300, 324/307, 324/309, 324/318, 324/319,

324/322, 128/653.5

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4620155	October 1986	Edelstein	324/322
4763076	August 1988	Arakawa et al.	324/322
4764726	August 1988	Misic et al.	324/322
4801885	January 1989	Meissner et al.	324/318
4890602	December 1989	Haragashira	324/318

FOREIGN PATENT DOCUMENTS

Record List Display Page 15 of 24

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
0276508	August 1988	EP	
0315382	May 1989	EP	
0317090	May 1989	EP	
3003302	December 1982	DE	
3728863	March 1989	DE	
4003138	August 1990	DE	
9012639	December 1990	DE	

OTHER PUBLICATIONS

Patents Abstract of Japan, P-314, Nov. 17, 1984, vol. 8/No. 252, Japanese Application No. 57-233506.

Siemens Brochure "Surge Arresters" 1985/1986.

"A Versatile Secondary Transmitter Unit for Nuclear Magnetic Resonance Spectroscopy." Retournard et al. Rev. Sci. Instrum., 6(1), Jan., 1990, pp. 69-76.

ART-UNIT: 267

PRIMARY-EXAMINER: Tokar; Michael J.

ATTY-AGENT-FIRM: Hill, Steadman & Simpson

ABSTRACT:

In a nuclear magnetic resonance tomography apparatus, having a high-frequency excitation and measuring coil connected with a capacitor to form a resonant circuit, the capacitor being tuned to a desired operating frequency, a circuit is provided for limiting the voltage of the resonant capacitor in a transmission mode. Avoidance of impermissible peak amplitudes is thereby achieved without the necessity of over-dimensioning the components of the resonant circuit.

15 Claims, 7 Drawing figures

Full Title Citation Front Review Classification	Date Reference	Clainis KWC Orani D
☐ 11. Document ID: US 5621323 A	Relevance Rank: 93	
L11: Entry 5 of 14	File: USPT	Apr 15, 1997

US-PAT-NO: 5621323

DOCUMENT-IDENTIFIER: US 5621323 A

TITLE: Surface coil elements

DATE-ISSUED: April 15, 1997

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Record List Display Page 16 of 24

Larsen; Sanford Provo UT

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Magnetic Research, Inc. Mapleton UT 02

APPL-NO: 08/489792 [PALM] DATE FILED: June 13, 1995

PARENT-CASE:

This application is a continuation of application Ser. No. 07/800,496, filed Nov.

29, 1991, now abandoned.

INT-CL-ISSUED: [06] G01R 33/20

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/322, 324/300, 128/653.2, 128/653.5

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4126823	November 1978	Dalton, Jr.	324/301
4408162	October 1983	Egger	324/318
4564812	January 1986	Van Dijk	324/318
4620155	October 1986	Edelstein	324/318
4684895	August 1987	Misic	324/322
<u>4717881</u>	January 1988	Flugan	324/318
4728896	March 1988	Bendall et al.	324/318
<u>4739271</u>	April 1988	Haase	324/322
4782298	November 1988	Arakawa et al.	324/318
4788503	November 1988	Va Heelsbergen	324/322
4801885	January 1989	Meissner	324/318
4839594	June 1989	Misic et al.	324/318
4855680	August 1989	Arakawa et al.	324/322
<u>4866387</u>	September 1989	Hyde	324/318
4974113	November 1990	Gabrielge et al.	324/320
5136244	August 1992	Jones et al.	324/318
5144240	September 1992	Mehdizadeh et al.	324/322
5166618	November 1992	Jones et al.	324/318
5256971	October 1993	Boskamp	324/318
5256972	October 1993	Keren et al.	324/318
<u>5278505</u>	January 1994	Arakawa	324/322

ART-UNIT: 225

Record List Display Page 17 of 24

PRIMARY-EXAMINER: Snow; Walter E.

ASSISTANT-EXAMINER: Mah; Raymond Y.

ATTY-AGENT-FIRM: Drucker; I. Morley Sommers; Howard N. Kimbell; Daniel R.

ABSTRACT:

A coil element, comprising a quadrature surface coil, includes side by side loops, slightly overlapped to the degree necessary to cancel mutual inductance. A coil includes a split-capacitor configuration for balanced-to-unbalanced conversion between the coil and a coaxial cable, without interfering with the highly magnetic environment of a magnetic resonance imaging system. A coil includes multiple diodes and current stabilizing impedances in parallel, or alternatively a combination of a fast low-power PIN diode and a slow high-power diode to effectively multiply the power handling capability of fast diodes for passive decoupling in a decoupling circuit for reducing the risk to the patient over active decoupling. A coil includes a counter-rotating decoupling circuit to cancel the effects of decoupler radiation, and to prevent lowering of the quality factor of the decoupling circuit and the detection of undesirable image artifacts. A coil includes a capacitor and decoupling circuit opposite that of the primary tuning and decoupling circuit for increased symmetry during the imaging cycle receive and transmit phases.

19 Claims, 6 Drawing figures

Euli Title Citation Front Review Classification Date Reference Citation Claims Reference

☐ 12. Document ID: US 5675254 A Relevance Rank: 93

L11: Entry 4 of 14 File: USPT Oct 7, 1997

US-PAT-NO: 5675254

DOCUMENT-IDENTIFIER: US 5675254 A

TITLE: Double-resonance MRI coil

DATE-ISSUED: October 7, 1997

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Fiat; Daniel Oak Park IL

Dolinsek; Janez Ljubljana SI

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

The Board of Trustees of the University
of Illinois

Urbana IL
02

APPL-NO: 08/623667 [PALM]
DATE FILED: March 28, 1996

Record List Display Page 18 of 24

PARENT-CASE:

This is a Continuation of U.S. application Ser. No. 08/501,888, filed Jul. 13, 1995, now abandoned which is a Continuation of U.S. application Ser. No. 08/105,419, filed Aug. 12, 1993, now abandoned and which is a continuation-in-part of U.S. Ser. No. 08/071,582, entitled "Oxygen-17 NMR Spectroscopy and Imaging in the Human," filed Jun. 2, 1993, now U.S. Pat. No. 5,433,196.

INT-CL-ISSUED: [06] G01R 33/34

US-CL-ISSUED: 324/318 US-CL-CURRENT: 324/318

FIELD-OF-CLASSIFICATION-SEARCH: 324/300, 324/318, 324/322, 335/279

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4446431	May 1984	McKay	324/318
4677382	June 1987	Vatis	324/307
4689563	August 1987	Bottomley et al.	324/309
4691163	September 1987	Blass et al.	324/318
4742304	May 1988	Schnall et al.	324/318
4792759	December 1988	Keren et al.	324/318
4801885	January 1989	Meissner et al.	324/318
4890063	December 1989	Haragashira	324/322
4916418	April 1990	Rath	324/318
4928064	May 1990	Keren	324/318
4952879	August 1990	Van Vaals et al.	324/318
5038105	August 1991	Codrington	324/318
5057778	October 1991	Rath	324/318
5162739	November 1992	Doty	324/322
5210494	May 1993	Brunner et al.	324/318
5229724	July 1993	Zeiger	324/318
5245285	September 1993	Ishizuka et al.	324/318

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
3634030	April 1988	DE	

OTHER PUBLICATIONS

Cross et al., Single coil probe with transmission-line tuning for nuclear double resonance, 47(12) 1486 (Dec., 1976).

Doty et al., A Multinuclear Double Tuned Probe for Applications with Solids or Liquids Utilizing Lumped Tuning Elements, 43 Journal of Magnetic Resonance 399 (1988).

Fiat et al., Determination of the Rate of Cerebral Oxygen Consumption and regional Blood Flow by .sup.17 O In Vivo NMR Spectroscopy and Magnetic Resonance Imaging, 14 Neurological Research 303 (Sep., 1992).

Fiat et al., Determination of the Rate of Cerebral Oxygen Consumption and Regional Cerebral Blood Flow by Non-Invasive .sup.17 O In Vivo NMR Spectroscopy and Magnetic Resonance Imaging, 15 Neurological Research 7 (Feb. 1993).

Fiat et al., Monitoring Cerebral Oxygen Consumption with In Vivo Imaging .sup.17 O NMR, Presented at the XVth International Symposium on Cerebral Flow and Metabolism, Jun. 1-6, 1996, Miami, Florida.

Fiat et al., In Vivo .sup.17 O NMR Study of Rat Brain during O.sub.2 Inhalation, 24 Magnetic Resonance in Medicine 370 (Apr., 1992).

Fiat et al., .sup.17 O NMR and MRI Determination of Cerebral Metabolism of Oxygen (rCMRO.sub.2) and Cerebral Blood Flow (rCBF).sup.1 in the Man, (1993).

Kan et al., A single coil triple resonance probe for NMR experiments, 51(7) Rev. Sci. Instr. 887 (Jul., 1980).

McFarland et al., Chemical Exchange Magnetic Resonance Imaging (Chemi), 6 Magnetic Resonance Imaging 507 (1988).

Mateescu et al., Water, Ions and 0-17 Magnetic Resonance Imaging, Water and Ions in Biological Systems 239 (1988).

Mateescu et al., Oxygen-17 FIRS: In Vivo Evaluation of Water Uptake and Residence Time in the Mouse Brain after Injection of 0-17 Labelled Water, p. 1236 (1990). Mateescu et al., Oxygen-17 MRI and MRS of the Brain, the Heart and Coronary Arteries, (1989).

Mateescu et al., Oxygen-17: A physiological, biochemical, and Anatomical Mri Contrast Agent, Society of Magnetic Resonance in Medicine 600 (1988).

Mateescu et al., Oxygen-17 Magnetic Resonance: In Vivo Detection of Nascent Mitochondrial Water in Animals Breathing .sup.17 O.sub.2 Enriched Air, Society of Magnetic Resonance in Medicine (1991).

Mateescu et al., Combined .sup.17 O/.sup.1 H Magnetic Resonance Microscopy in Plants, Animals and Materials: Present Status and Potential, Synthesis and Applications of Isotopically Labelled Compounds 499 (1988).

Pekar et al., In Vivo Measurement of Cerebral Oxygen Consumption and Blood Flow Using .sup.17 O Magnetic Resonance Imaging, 21 Magnetic Resonance in Medicine 313 (1991).

Schnall et al., A New Double-Tuned Probe for Concurrent .sup.1 H and .sup.P NMR, 65 Journal of Magnetic Resonance 122 (1985).

Doty et al, "A Multinuclear Double Tuned Probe for Applications with Solids of Liquids Utilizing Lump Tuning Elements," J. of Mag. Res 43,399-416 (1981). Kan et al, "A Single Coil Triple Resonance Probe for NMR Experiments" Rev Sci Instrm. 51(7) pp. 887-890 (Jul. 1980).

Cross et al, "Single Coil Probe with Transmission-line Tuning for Nuclear Double Resonance." vol. 47 No. 12 pp. 1486-1488 (Dec. 1976).

Fiat, et al., "Determination of the Rate of Cerebral Oxygen Consumption and Regional Cerebral Blood Flow by Non-Invasive .sup.17 O In Vivo NMR Spectroscopy and Magnetic Resonance Imaging," Neurological Research, vol. 14, pp 303-311 (Sep. 1992).

Fiat, et al., "Determination of the Rate of Cerebral Oxygen Consumption and Regional Cerebral Blood Flow by Non-Invasive .sup.17 O In Vivo NMR Spectroscopy and Magnetic Resonance Imaging," Neurological Research, vol. 15, pp. 7-22 (Feb. 1993). Fiat, et al., "Monitoring Cerebral Oxygen Consumption with In Vivo Imaging .sup.17 O NMR," Presented at the XVth International Symposium on Cerebral Flow and Metabolism, Jun. 1-6, 1991, Miami, Florida.

Fiat, et al. "In Vivo .sup.17 O NMR Study of Rat Brain during .sup.17 O.sub.2 Inhalation," Magnetic Resonance in Medicine 24, pp 370-374, (Apr. 1992).

Fiat, et al., ".sup.17 O NMR and MRI Determination of Cerebral Metabolism of Oxygen (rCMRO.sub.2) and Cerebral Blood Flow (rCBF).sup.1 in the Man" (1993).

McFarland, et al., "Chemical Exchange Magnetic Resonance Imaging (Chemi)," Magnetic Resonance Imaging, vol. 6, pp 507-515 (1988).

Mateescu, et al., "Water, Ions and O-17 Magnetic Resonance Imaging," Water and Ions in Biological Systems, pp 239-250 (1988).

Record List Display Page 20 of 24

Mateescu, et al., "Oxygen-17 MRS: In Vivo Evaluation of Water Uptake and Residence Time in the Mouse Brain after Injection of O-17 Labelled Water," p. 1236 (1990). Mateescu, et al., "Oxygen-17 MRI and MRS of the Brain, the Heart and Coronary Arteries," (1989).

Mateescu, et al., "Oxygen-17: A Physiological, Biochemical and Anatomical MRI Contrast Agent," Society of Magnetic Resonance in Medicine, p. 600 (1988).

Mateescu, et al., "Oxygen-17 Magnetic Resonance: In Vivo Detection of Nascent Mitochondrial Water in Animals Breathing .sup.17 O.sub.2 Enriched Air," Society of Magnetic Resonance in Medicine (1991).

Mateescu, et al., "Combined .sup.17 O/.sup.1 H Magnetic Resonance Microscopy in Plants, Animals and Materials: Present Status and Potential," Synthesis and Applications of Isotopically Labelled Compounds, pp 499-508 (1988).

Pekar, et al., "In Vivo Measurement of Cerebral Oxygen Consumption and Blood Flow Using .sup.17 O Magnetic Resonance Imaging," Magnetic Resonance in Medicine 21, pp. 313-319 (1991).

Schnall, et al., "A New Double-Tuned Probe for Concurrent .sup.1 H and .sup.31 P NMR," Journal of Magnetic Resonance 65, pp 122-129 (1985).

ART-UNIT: 225

PRIMARY-EXAMINER: O'Shea; Sandra L.

ASSISTANT-EXAMINER: Phillips; Roger

ATTY-AGENT-FIRM: Welsh & Katz, Ltd.

ABSTRACT:

A double-resonance coil for use in MRI having a coil element, a first input/output terminal coupled to the coil element, and a second input/output terminal coupled to the coil element. A first resonance means is coupled between the coil element and the first input/output terminal to cause the MRI coil to resonate at a first MRI frequency, and a second resonance means is coupled between the coil element and the second input/output terminal to cause the MRI coil to resonate at a second MRI frequency substantially different than the first MRI frequency. The double resonance coil includes a first frequency-blocking means coupled to the coil element for substantially preventing the second MRI frequency from being detected at the first input/output terminal and a second frequency-blocking means coupled to the coil element for substantially preventing the first MRI frequency from being detected at the second input/output terminal.

20 Claims, 2 Drawing figures

Full: Title: Cration Front: Review Classification Cate Reference Communication Claims Claims Claims Claims

☐ 13. Document ID: US 6483244 B1 Relevance Rank: 93

......

L11: Entry 2 of 14 File: USPT Nov 19, 2002

US-PAT-NO: 6483244

DOCUMENT-IDENTIFIER: US 6483244 B1

TITLE: Method of fast start and/or fast termination of a radio frequency resonator

Record List Display Page 21 of 24

DATE-ISSUED: November 19, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Kawato; Eizo Kizucho JP
Ding; Li Manchester GB

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Shimadzu Research Laboratory (Europe)
Manchester GB 03

Ltd.

APPL-NO: 09/868751 [PALM]
DATE FILED: July 31, 2001

PCT-DATA:

APPL-NO DATE-FILED PUB-NO PUB-DATE 371-DATE

PCT/GB98/03856 December 21, 1998 W000/38312 Jun 29, 2000

INT-CL-ISSUED: [07] H03B 5/12

US-CL-ISSUED: 315/39.51; 331/167 US-CL-CURRENT: 315/39.51; 331/167

FIELD-OF-CLASSIFICATION-SEARCH: 315/39.51, 324/318, 324/322, 331/165, 331/166,

331/167, 331/117FE, 331/173

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL

<u>2939952</u> June 1960 Paul et al.

3866145 February 1975 Hess, Jr. et al.

4801885 January 1989 Meissner et al. 324/318

<u>4833427</u> May 1989 Leuthold et al. <u>5399857</u> March 1995 Doroshenko et al.

5517158 May 1996 Gabara

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO PUBN-DATE COUNTRY CLASS

WO 99/39368 August 1999 WO WO 99/39370 August 1999 WO

ART-UNIT: 2821

PRIMARY-EXAMINER: Wong; Don

Record List Display Page 22 of 24

ASSISTANT-EXAMINER: Clinger; James

ATTY-AGENT-FIRM: Leydig, Voit & Mayer, Ltd.

ABSTRACT:

A method of fast start and/or fast termination of a radio frequency resonator, which has a coil, a capacitor and two switches with internal resistance wherein one end of the switches is connected to a junction of the coil and the capacitor where a RF voltage is provided, and another end of each switch is connected to high voltage power supplies with opposite polarities, a fast start being achieved by closing one of the switches for a short period of time for fast start, and a fast termination being obtained by closing both switches for a while.

19 Claims, 2 Drawing figures

FUII	Title	Citation Front Review Classification C	Pater References Claims RMS: Draw De

	14.	Document ID: US 6762561 B1	Relevance Rank: 93

L11: Entry 1 of 14

File: USPT

Jul 13, 2004

US-PAT-NO: 6762561

DOCUMENT-IDENTIFIER: US 6762561 B1

TITLE: Radio frequency resonator

DATE-ISSUED: July 13, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Kawato; Eizo Kizucho JP

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Shimadzu Research Laboratory (Europe) Manchester GB 03

APPL-NO: 10/221893 [PALM]
DATE FILED: September 17, 2002

PCT-DATA:

APPL-NO DATE-FILED PUB-NO PUB-DATE 371-DATE

PCT/GB00/01239 March 31, 2000 W001/75935 Oct 11, 2001

INT-CL-ISSUED: [07] H03B 11/00, H03B 11/08, H03B 11/10

US-CL-ISSUED: 315/39.51; 331/167, 331/165, 331/166, 331/173, 331/128, 315/226,

315/276, 250/292

Record List Display Page 23 of 24

US-CL-CURRENT: 315/39.51; 250/292, 315/226, 315/276, 331/128, 331/165, 331/166, 331/167, 331/173

FIELD-OF-CLASSIFICATION-SEARCH: 331/165, 331/166, 331/167, 331/173, 331/128, 250/281, 250/282, 250/287, 250/288, 250/292, 315/39.51, 315/209PZ, 315/226, 315/276, 324/318, 324/322, 333/99MP, 363/87, 388/819

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
2939952	June 1960	Paul et al.	250/292
3866145	February 1975	Hess et al.	331/128
4547706	October 1985	Krummel	315/226
4550297	October 1985	Harrison	333/99MP
4767999	August 1988	VerPlanck	331/166
<u>4801855</u>	January 1989	Nohmi et al.	388/819
4801885	January 1989	Meissner et al.	324/318
4815052	March 1989	Walker	363/87
5243289	September 1993	Blum et al.	324/322
5466992	November 1995	Nemirow et al.	315/276
5663648	September 1997	Chapman et al.	324/322
6124678	September 2000	Bishop et al.	315/209PZ
6483244	November 2002	Kawato et al.	315/39.51

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
0 926 926	June 1999	EP	
2 326 804	April 1977	FR	
2326804	June 1977	FR	
WO 99/39370	August 1999	WO	
WO 00/38312	June 2000	WO	

OTHER PUBLICATIONS

Blauth, "Dynamic mass spectometers," XP-00215375, p. 110-155 (1966). Walcher, XP002153716, p. 304-309 (1989).

ART-UNIT: 2881

PRIMARY-EXAMINER: Lee; John R.

ASSISTANT-EXAMINER: El-Shammaa; Mary

ATTY-AGENT-FIRM: Leydig, Voit & Mayer, Ltd.

Record List Display Page 24 of 24

ABSTRACT:

An apparatus having a radio frequency resonator, which has a coil, a capacitor means and at least one switch means being associated with another capacitor means, a resistor means and a high voltage supply means, one end of the switch means being connected to a junction of the coil and the capacitor means where a radio frequency voltage is provided, another end of the switch means being connected to ground with said another capacitor means and to the high voltage power supply means with the resistor means.

17 Claims, 4 Drawing figures

Title: Citation Front: Review: Classification Date: Reference	Clains KWC
Generate Collection Print Fwd Refs Bk	wd Refs Generate 0
Term	Documents
"4801885"	14
4801885S	0
"4801885".PGPB, USPT, USOC, EPAB, JPAB, DWPI,	TDBD. 14
(4801885).PGPB, USPT, USOC, EPAB, JPAB, DWPI	TDBD. 14

Display Format: -	Change Format
-------------------	---------------

Previous Page Next Page Go to Doc#

Company, LLC

Waukesha WI

02

APPL-NO: 10/260603 [PALM]
DATE FILED: September 30, 2002

INT-CL-ISSUED: [07] G01 V 3/00

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/320, 324/322, 324/300, 324/306,

324/307, 324/309, 324/314, 600/421, 600/422

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5143688	September 1992	Mansfield	324/318
6223065	April 2001	Misic et al.	600/410
6411090	June 2002	Boskamp	324/318

OTHER PUBLICATIONS

Hayes, Edelestein, Schenck, Mueller, & Eash, "An Efficient, Highly Homogeneous RF Coil for Whole Body MRI at 1.5T," Journal of Magnetic Resonance 63, 1985, p 622. Roemer, Edelstein, Hayes, Souza & Mueller, "The NMR Phased Array," Magnetic Resonance in Medicine 16, 1990, p 192.

ART-UNIT: 2862

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Heino; Joseph S. Horton; Carl B.

ABSTRACT:

The present invention provides for a body <u>coil</u> modeled after a birdcage <u>coil</u> and based on a ladder network design. A fixed number of single loop <u>coils</u> (N) are equally spaced around a cylinder. These <u>coils</u> must be driven 360.degree./N out of phase with respect to each other azimuthally. Each phase must increase 360.degree./N as azimuthally in order for single loop <u>coil</u> currents to mimic currents commonly seen in the quadrature birdcage <u>coil</u>. A switching circuit is necessary to change the <u>transmit coil</u> configuration and the N channel for phased array reception. This type of <u>coil</u> eliminates the otherwise necessary need to decouple the transmit coil from the receiver coils, but preserves the SNR benefit of having multiple <u>receiver coils</u>. This type of <u>coil</u> will improve SNR over ordinary volume <u>coils</u> and may be necessary imaging large patients where space around the patient is at a minimum.

26 Claims, 6 Drawing figures

Record List Display Page 3 of 58

Full Title Citation Front Review Classification Cate Reference

Claims kVAC Draw D.

☐ 3. Document ID: US 6408202 B1 Relevance Rank: 48

L23: Entry 21 of 30

File: USPT

Jun 18, 2002

US-PAT-NO: 6408202

DOCUMENT-IDENTIFIER: US 6408202 B1

** See image for <u>Certificate of Correction</u> **

TITLE: Transesophageal magnetic resonance analysis method and apparatus

DATE-ISSUED: June 18, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Lima; Joao A. C. Timonium MD Shunk; Kendrick A. Baltimore MD Atalar; Ergin Columbia MD

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

The Johns Hopkins University Baltimore MD 02

APPL-NO: 09/432960 [PALM]
DATE FILED: November 3, 1999

PARENT-CASE:

CROSS REFERENCE TO RELATED APPLICATION This application claims the benefit of U.S. Provisional Application Serial No. 60/106,772, filed Nov. 3, 1998.

INT-CL-ISSUED: [07] A61 B 5/05

US-CL-ISSUED: 600/423; 600/410, 600/421, 600/380, 324/307, 324/322 US-CL-CURRENT: 600/423; 324/307, 324/322, 600/380, 600/410, 600/421

FIELD-OF-CLASSIFICATION-SEARCH: 600/373, 600/380, 600/160, 600/417, 600/421, 600/422, 600/423, 600/424, 324/307, 324/318, 324/322, 607/154, 607/156 See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL 4572198 February 1986 Codrington <u>5050607</u> September 1991 Bradley et al. 5154179 October 1992 Ratner 5170789 December 1992 Narayan et al.

Record List Display Page 4 of 58

5211166	May 1993	Sepponen
5348010	September 1994	Schnall et al.
5355087	October 1994	Claiborne et al.
5417713	May 1995	Cohen
5419325	May 1995	Dumoulin et al.
5432450	July 1995 .	Rubinson
<u>5546951</u>	August 1996	Ben-Haim
5699801	December 1997	Atalar et al.
5792055	August 1998	McKinnon
<u>5928145</u>	July 1999	Ocali et al.
6120442	September 2000	Hickey

OTHER PUBLICATIONS

Thomas, A.C., et al., "Potential errors in the estimation of coronary arterial stenosis from clinical arteriography with reference to the shape of the coronary arterial lumen," British Heart Journal, 1986, pp. 129-139, vol. 55.

Zerhouni, E.A., et al., "Human heart: tagging with MR imaging—a method for noninvasive assessment of myocardial motion," Radiology, 1988, pp. 59-63, vol. 169.

Narayan, P., et al., "Transrectal probe for .sup.1 H and .sup.31 P MR spectroscopy of the prostate gland," Magnetic Resonance in Medicine, 1989, pp. 209-220, vol. 11.

Schnall, M.D., et al., "Prostate: MR imaging with an endorectal with an endorectal surface coil," Radiology, 1989, pp. 570-574, vol. 172.

Witteman, J.C., et al., "Aortic calcified plaques and cardiovascular disease (the Framingham Study)," American Journal of Cardiology, 1990, pp. 1060-1064, vol. 66. McVeigh, E.R., et al., "Cardiac tagging with breath-hold cine MRI," Magnetic Resonance in Medicine, 1992, pp. 318-327, vol. 28.

Fazio, G.P., et al., "Transesophageal echocardiographically detected atherosclerotic aortic plaque is a marker for coronary artery disease," Journal of the American College of Cardiology, 1993, pp. 144-150, vol. 21.

Amarenco, P., et al., "Atherosclerotic disease of the aortic arch and the risk of ischemic stroke," New England Journal of Medicine, 1994, pp. 1474-1479, vol. 331. Atalar, E., et al., "Minimization of dead-periods in MRI pulse sequences for imaging oblique planes," Magnetic Resonance in Medicine, 1994, pp. 773-777, vol. 32.

Libby, P., "Lesion versus lumen," Nature Medicine, 1995, pp. 17-18, vol. 1. Martin, A.J., et al., "High-resolution MR imging of human arteries," Journal of Magnetic Resonance Imaging, 1995, pp. 93-100, vol. 5.

Toussaint, J.F., et al., "T.sub.2 -weighted contrast for NMR characterization of human atherosclerosis," Arteriosclerosis, Thrombosis and Vascular Biology, 1995, pp. 1533-1542, vol. 15.

Kasprzak, J.D., et al., "Three-dimensional echocardiography of the thoracis aorta," European Heart Journal, 1996, pp. 1584-1592, vol. 17.

Montgomery, D.H., et al., "Natural history of severe atheromatous disease of the thoracic aorta: a transesophageal echocardiographic study," Journal of the American College of Cardiology, 1996, pp. 95-101, vol. 27.

Toussaint, J.F., "Magnetic resonance images lipid, fibrous, calcified, hemmorrhagic, and thrombotic components of human atherosclerosis in vivo," Circulation, 1996, pp. 932-938, vol. 94.

Atalar, E., et al., "High resolution intravascular MRI and MRS using a catheter receiver coil," Magnetic Resonance in Medicine, 1996, pp. 596-605, vol. 36.

Tomochika, Y., et al., "Improvement of atherosclerosis and stiffness of the thoracic descending aorta with cholesterol-lowering therapies in familial hypercholesterolemia," Arteriosclerosis, Thrombosis and Vascular Biology, 1996, pp.

955-962, vol. 16.

1997, pp. 1183-1203, vol. 17.

Martin, A.J., et al., "Arterial imaging: comparison of high-resolution US and MR imaging with histologic correlation," Radiographics, 1997, pp. 189-202, vol. 17. Cohen, A., et al., "Aortic plaque morphology and vascular events: a follow-up study in patients with ischemic stroke. FAPS Investigators. French Study of Aortic Plaques in Stroke," Circulation, 1997, pp. 3838-3841, vol. 96. Siegelman, E.S., et al., "High-resolution MR imaging of the vagina," Radiographics,

Ocali, O., et al., "Intravascular <u>magnetic resonance</u> imaging using a loopless catheter <u>antenna," Magnetic Resonance</u> in Medicine, 1997, pp. 112-118, vol. 37. Toussaint, J.F., "Water diffusion properties of human atherosclerosis and thrombosis measured by pulse field gradient nuclear <u>magnetic resonance</u>," Arteriosclerosis, Thrombosis and Vascular Biology, 1997, pp. 542-546, vol. 17. Correia, L.C.L., et al., "Intravascular <u>magnetic resonance</u> imaging of aortic atherosclerotic plaque composition," Arteriosclerosis, Thrombosis and Vascular Biology, 1997, pp. 3626-3632, vol. 17.

Matsumura, Y., et al., "Atherosclerotic aortic plaque detected by transesophageal echocardiography: its significance and limitation as a marker for coronary artery disease in the elderly," Chest, 1997, pp. 81-86, vol. 112.

Khoury, Z., t al., "Frequency and distribution of atherosclerotic plaques in the thoracic aorta as determined by transesophageal echocardiography in patients with coronary artery disease," American Journal of Cardiology, 1997, pp. 23-27, vol. 79.

Yuan, C., et al. "In vitro and in situ <u>magnetic resonance</u> imaging signal features of atherosclerotic plaque-associated lipids," Arteriosclerosis, Thrombosis and Vascular Biology, 1997, pp. 1496-503, vol. 17.

Constantinides, C.D., et al., Signal-to-noise measurement in magnitude imaging from NMR phased arrays, Magnetic Resonance in Medicine, 1997, pp. 852-857, vol. 38. Martin, A.J., et al., "An expandable intravenous RF coil for arterial wall imaging," Journal of Magnetic Resonance Imaging, 1998, pp. 226-234, vol. 8. Atalar, E., et al., "Catheter-tracking FOV MR fluoroscopy," Magnetic Resonance in Medicine, Dec. 198, pp. 865-872, vol. 40(6).

Ferrari, E., et al., Atherosclerosis of the thoracic aorta and aortic debris in a marker of poor prognosis: benefit of oral anticoagulants, Journal of the American College of Cardiology, Apr. 1999, pp. 1317-1322, vol. 33.

ART-UNIT: 3737

PRIMARY-EXAMINER: Lateef; Marvin M.

ASSISTANT-EXAMINER: Qaderi; Runa Shah

ATTY-AGENT-FIRM: Houser; Kirk D. Eckert Seamans Cherin & Mellott, LLC

ABSTRACT:

A method of transesophageal <u>magnetic resonance</u> analysis of a patient, such as an animal or human, includes providing a loopless <u>antenna</u> formed from a flexible coaxial cable having an extended center conductor at the distal end thereof. A distal portion of the loopless <u>antenna</u> is secured within a Levin-type gastric tube. The gastric tube which <u>receives</u> the loopless <u>antenna</u> is inserted in the esophagus of the patient. A tuning, matching and <u>decoupling</u> circuit for the loopless <u>antenna</u> is employed external to the patient. The tuning, matching and <u>decoupling</u> circuit is electrically connected to a <u>magnetic resonance</u> imaging scanner. The <u>magnetic resonance</u> imaging scanner is employed to display an image of the aorta of the patient.

51 Claims, 20 Drawing figures

Record List Display Page 6 of 58

Full Title Citation Front Review Classification Date Reference Claims FUNC Types Co

☐ 4. Document ID: US 6549800 B1 Relevance Rank: 45

L23: Entry 19 of 30

File: USPT

Apr 15, 2003

US-PAT-NO: 6549800

DOCUMENT-IDENTIFIER: US 6549800 B1

TITLE: Methods for in vivo magnetic resonance imaging

DATE-ISSUED: April 15, 2003

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Atalar; Ergin Columbia MD Bottomley; Paul A. Columbia MD Zerhouin; Elias Pasadena MD Halperin; Henry Baltimore MD McVeigh; Elliot Potomac MD Lardo; Albert C. Lutherville MD

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Johns Hopkins Unversity School of

Medicine

Baltimore MD

02

APPL-NO: 09/549921 [PALM] DATE FILED: April 14, 2000

PARENT-CASE:

REFERENCE TO PRIOR APPLICATIONS This application claims the benefit of U.S. Provisional Patent Application No. 60/129,368 filed Apr. 15, 1999, U.S. Provisional Patent Application No. 60/129,364, filed Apr. 15, 1999, U.S. Provisional Patent Application No. 60/192,133 filed Mar. 24, 2000, and is a continuation-in-part of U.S. patent application Ser. No. 09/536,090 to Albert C. Lardo et al., filed Mar. 24, 2000, and is also a continuation-in-part of U.S. patent application Ser. No. 09/360,144 to Ocali et al., filed Jul. 26, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 08/638,934 to Ocali et al., filed Apr. 25, 1996, now U.S. Pat. No. 5,928,145, issued Jul. 27, 1999. The disclosures of these applications are incorporated herein by reference.

INT-CL-ISSUED: [07] A61 B 5/05

US-CL-ISSUED: 600/423; 600/407, 600/410, 600/415, 600/417, 600/424, 606/130, 324/301, 324/244, 324/256, 324/257, 324/260

US-CL-CURRENT: 600/423; 324/244, 324/256, 324/257, 324/260, 324/301, 600/407,

600/410, 600/415, 600/417, 600/424, 606/130

FIELD-OF-CLASSIFICATION-SEARCH: 600/423, 600/407, 600/409, 600/410, 600/415,

Record List Display Page 7 of 58

600/417, 600/424, 324/300, 324/301, 324/302, 324/244, 324/256, 324/257, 324/260, 324/200, 606/130See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3342175	September 1967	Bulloch	128/2
4431005	February 1984	McCormick	128/656
4445501	May 1984	Bresler	128/1.5
4572198	February 1986	Codrinton	128/653
4643186	February 1987	Rosen et al.	128/303.1
4672972	June 1987	Berke	128/653
<u>4766381</u>	August 1988	Conturo et al.	324/309
<u>4776341</u>	October 1988	Bachus et al.	128/653
4791372	December 1988	Kirk et al.	324/318
4793356	December 1988 .	Misic et al.	128/653
4813429	March 1989	Eshel et al.	128/736
4823812	April 1989	Eshel et al.	128/804
4858613	August 1989	Fry et al.	128/660.03
4897604	January 1990	Carlson et al.	324/318
4922204	May 1990	Duerr et al.	324/322
4932411	June 1990	Fritschy et al.	128/653
4960106	October 1990	Kubokawa	128/6
5019075	May 1991	Spears et al.	606/7
5035231	July 1991	Kubokawa et al.	128/6
5050607	September 1991	Bradley et al.	128/653A
5090959	February 1992	Samson et al.	604/96
5095911	March 1992	Pomeranz	128/662.06
5099208	March 1992	Fitzpatrick et al.	324/312
5167233	December 1992	Eberle et al.	128/662.06
5170789	December 1992	Narayan et al.	128/653.5
5190046	March 1993	Shturman	128/662.06
5211165	May 1993	Dumoulin et al.	128/653.1
5211166	May 1993	Sepponen	128/653.5
5217010	June 1993	Tsitlik et al.	128/419PG
5260658	November 1993	Greim et al.	324/322
5270485	December 1993	Jacobsen	174/15.1
5271400	December 1993	Dumoulin et al.	128/653.2
5293872	March 1994	Alfano et al.	128/664
5294886	March 1994	Duerr	324/318
5307808	May 1994	Dumoulin et al.	128/653.2
5307814	May 1994	Kressel et al.	128/653.5
5318025	June 1994	Dumoulin et al.	128/653.2
5347221	September 1994	Rubinson	324/318

Record List Display Page 8 of 58

5348010	September 1994	Schnall et al.	128/653.2
5352979	October 1994	Conturo	324/307
5355087	October 1994	Claiborne et al.	324/322
5358515	October 1994	Huter et al.	607/101
5365928	November 1994	Rhinehart et al.	128/653.5
5370644	December 1994	Langberg	606/33
5372138	December 1994	Crowley et al.	128/662.06
5375596	December 1994	Twiss et al.	128/653.1
5400787	March 1995	Marandos	128/653.5
5411476	May 1995	Abrams et al.	604/95
5413104	May 1995	Buijs et al.	128/653.5
5419325	May 1995	Dumoulin et al.	128/653.2
5421338	June 1995	Crowley et al.	128/662.06
5429132	July 1995	Guy et al.	128/653.1
5435302	July 1995	Lenkinski et al.	600/422
5437277	August 1995	Dumoulin et al.	128/653.1
5439000	August 1995	Gunderson et al.	128/664
5443066	August 1995	Dumoulin et al.	128/653.1
5443489	August 1995	Ben-Haim	607/115
<u>5447156</u>	September 1995	Dumoulin et al.	128/653.2
5451232	September 1995	Rhinehart et al.	606/192
5451774	September 1995	Jacobsen	250/227.24
5462055	October 1995	Casey et al.	128/653.5
5476095	December 1995	Schnall et al.	128/653.2
5498261	March 1996	Strul	606/29
5507743	April 1996	Edwards et al.	606/41
5512825	April 1996	Atalar et al.	324/309
5520644	May 1996	Imran	604/95
5524630	June 1996	Crowley et al.	128/662.06
5540679	July 1996	Fram et al.	60 <i>6</i> /27
5558093	September 1996	Pomeranz	128/660.03
5578008	November 1996	Hara .	604/96
5588432	December 1996	Crowley	128/660.03
5598097	January 1997	Scholes et al.	324/316
5609606	March 1997	O'Boyle	606/194
5611807	March 1997	O'Boyle	606/169
5623241	April 1997	Minkoff	335/296
5647361	July 1997	Damadian	128/683.2
5660180	August 1997	Malinowski et al.	128/660.03
5682897	November 1997	Pomeranz	128/662.06
5699801	December 1997	Atalar et al.	128/653.2
5715825	February 1998	Crowley	128/602.06
5728079	March 1998	Weber et al.	604/280
<u>5738632</u>	April 1998	Karasawa	600/410
5775338	July 1998	Hastings	128/898
5792055	August 1998	McKinnon	600/410
5833608	November 1998	Acker	600/409
			•

Record List Display Page 9 of 58

5833632	November 1998	Jacobsen et al.	600/585
5840031	November 1998	Crowley	600/440
5868674	February 1999	Glowinski et al.	600/410
5916162	June 1999	Snelten et al.	600/411
5928145	July 1999	Ocali et al.	600/410
5938609	August 1999	Pomeranz	600/439
5938692	August 1999	Rudie	607/101
5964705	October 1999	Truwit et al.	600/423
5968052	October 1999	Sullivan, III et al.	606/108
6004269	December 1999	Crowley et al.	600/439
6011995	January 2000	Guglielmi et al.	607/99
6171240	January 2000	Young et al.	600/410
6019737	February 2000	Murata	600/585
6026316	February 2000	Kucharczyk et al.	600/420
6031375	February 2000	Atalar et al.	324/307
6032078	February 2000	Rudie	607/101
6051974	April 2000	Reisker et al.	324/318
6058323	May 2000	Lemelson	600/408
6061587	May 2000	Kurcharczyk et al.	600/411
6078831	June 2000	Belef et al.	600/424
6104943	August 2000	Frederick et al.	600/410
6263229	July 2001	Atalar et al.	600/423
6332089	December 2001	Acker et al.	600/424

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
0 659 385	June 1995	EP	
0 673 621	September 1995	EP	
0 768 539	April 1997	EP	
0 850 595	July 1998	EP	
0 908 739	April 1999	EP	
6-70902	March 1994	JP	
WO 98/52064	November 1998	WO	
WO 98/52461	November 1998	WO	
WO 99/18852	April 1999	WO	
WO 99/59479	November 1999	WO	

OTHER PUBLICATIONS

Edelman et al., "Magnetic Resonance Imaging" NEJM. 328: 708-716 (1993). Ladd et al.; "Guidewire Antennas for MR Fluoroscopy", Magnetic Resonance in Medicine, Academic Press, Duluth, MN, US., vol. 37(6): 891-897, (Jun. 1, 1997). Martin et al.; "An Expandable Intravenous RF Coil For Imaging the Artery Wall", Proceeding of the International Society For Magnetic Resonance In Medicine, Fourth Scientific Meeting and Exhibition, New York, USA Apr. 27-May 3, 1996, vol. 1, page 402.

Quick et al; "Vascular Stents as RF-Antennas for Intravascular MR-Guidance and-Imaging", Proceedings of the International Society for Magnetic Resonance in

Medicine, Seventh Scientific Meeting and Exhibition, Philadelphia, Pennsylvania, USA May 22-28, 1999, vol. 1, page 577.

Atalar et al.,; "High Resolution Intravascular MRI and MRS using A Catheter Receiver Coil,", Magnetic Resonance in Medicine, 36:596-605 (1996).

Farmer et al.; "Implanted <u>Coil</u> MR Microscopy of RenalPathology", Magn. Reson. Med., 10: 310-323 (1989).

Hoult et al,; "The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment" J. Magn. Reson., 24:71-85 (1976).

Hoult; "Rotating Frame Zeugmatography", Phil. Trans. R. Soc. Lond. B. 289:543-547 (1980).

Jolesz et al.; "Interventional <u>Magnetic Resonance</u> Therapy", Seminars in Interventional Radiology, 12: 20-27 (1995).

Ocali et al.; "Intravascular <u>Magnetic Resonance</u> Imaging Using a Loopless Catheter <u>Antenna</u>", MRM, 37:112-118 (1997).

Silverman et al.; "Interactive MR-guided Biopsy in an Open configuration MR Imaging System", Radiology, 197: 175-181 (1995).

ART-UNIT: 3737

PRIMARY-EXAMINER: Lateef; Marvin M.

ASSISTANT-EXAMINER: Lin; Jeoyuh

ATTY-AGENT-FIRM: Foley Hoag LLP

ABSTRACT:

The systems and methods of the present invention provide for \underline{MRI} probes adapted for insertion into a plurality of body orifices, in order to evaluate the anatomy of proximate anatomic structures, to diagnose abnormalities thereof and to treat the diagnosed abnormalities. \underline{MRI} probes are described that are suitable for use in the mediastinum, in the pancreaticohepaticobiliary system, in the tracheobronchopulmonary system, in the head and neck, in the genitourinary system, the gastrointestinal system, the vascular system, and in the evaluation, diagnosis and treatment of internal fluid collections.

148 Claims, 11 Drawing figures

| Follow | Titles | Chailbin | Front | Frence | Chairs |

PGPUB-DOCUMENT-NUMBER: 20030028094

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030028094 A1

TITLE: Biopsy and sampling needle $\underline{\text{antennas for magnetic resonance}}$ imaging-guided biopsies

PUBLICATION-DATE: February 6, 2003

Record List Display Page 11 of 58

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY Kumar, Ananda Baltimore MD US Columbia Atalar, Ergin MD US Ocali, Ogan Sunnyvale CA US

APPL-NO: 10/131601 [PALM]
DATE FILED: April 24, 2002

RELATED-US-APPL-DATA:

Application 10/131601 is a continuation-in-part-of US application 09/360144, filed July 26, 1999, PENDING

Application 09/360144 is a continuation-in-part-of US application 08/638934, filed April 25, 1996, US Patent No. 5928145

Application is a non-provisional-of-provisional application 60/286271, filed April 25, 2001,

INT-CL-PUBLISHED: [07] A61 B 5/05

US-CL-PUBLISHED: 600/410; 600/411, 600/423 US-CL-CURRENT: 600/410; 600/411, 600/423

REPRESENTATIVE-FIGURES: 18 19

ABSTRACT:

Herein is disclosed a <u>magnetic resonance</u> imaging <u>antenna</u>, including an inner conductor, an outer shield slideably displaceable with respect to the inner conductor, and an insulator electrically insulating the inner conductor from the outer shield. Herein is disclosed a biopsy needle <u>antenna</u>, including a <u>magnetic resonance</u> imaging <u>antenna</u>, having an outer shield, and an inner conductor electrically insulated from the outer shield by a dielectric; and a biopsy needle electrically connected to the inner conductor and electrically insulated from the outer shield by the dielectric. Herein is disclosed a method of obtaining a sample with <u>magnetic resonance</u> imaging guidance, including providing a sampling needle <u>magnetic resonance</u> imaging <u>antenna</u>, advancing the <u>antenna</u> to a structure from which the sample is to be taken, detecting <u>magnetic resonance</u> data by the <u>antenna</u>, and coupling the sample to the <u>antenna</u>.

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of U.S. patent application Ser. No. 09/360,144, filed Jul. 26, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 08/638,934, filed Apr. 25, 1996, now U.S. Pat. No. 5,928,145. This application also claims benefit of priority to U.S. Provisional patent application Serial No. 60/286,271, filed Apr. 24, 2001, entitled "Biopsy Needle Antenna for MR Guided Biopsies." The aforementioned applications are incorporated herein in their entireties by this reference.

FOU	Title	Citation Front Review Classification	Date Reference Sequences Attachments Claims KMC Draw De
*********	*****	······································	······································
	6.	Document ID: US 6177797 B1	Relevance Rank: 42

Record List Display Page 12 of 58

L23: Entry 22 of 30 File: USPT Jan 23, 2001

US-PAT-NO: 6177797

DOCUMENT-IDENTIFIER: US 6177797 B1

TITLE: Radio-frequency coil and method for resonance/imaging analysis

DATE-ISSUED: January 23, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Srinivasan; Ravi Richmond Heights OH

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Advanced Imaging Research, Inc. Cleveland OH 02

APPL-NO: 08/993932 [PALM]
DATE FILED: December 18, 1997

PARENT-CASE:

CROSS-REFERENCE TO RELATED APPLICATION This application claims the benefit of U.S.

Provisional Patent Application No. 60/033,611, filed Dec. 19, 1996.

INT-CL-ISSUED: [07] $\underline{G01}$ \underline{V} $\underline{3}/\underline{00}$

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/322, 324/312, 324/314, 324/307,

324/309, 324/300

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4411270	October 1983	Damadian	
4793356	December 1988	Misic et al.	
4799016	January 1989	Rezvani	
4820985	April 1989	Eash	
4825162	April 1989	Roemer et al.	
4833409	May 1989	Eash	
4943775	July 1990	Boskamp et al.	
5057778	October 1991	Rath	
5144240	September 1992	Mehdizadeh et al.	
5208534	May 1993	Okamoto et al.	
5258717	November 1993	Misic et al.	
5270656	December 1993	Roberts et al.	

Record List Display Page 13 of 58

5382903	January 1995	Young	
5521506	May 1996	Misic et al.	
5543711	August 1996	Srinivasan et al.	324/318
5548218	August 1996	Lu	
5592088	January 1997	Matsunaga et al.	
5602479	February 1997	Srinivasan et al.	324/318
<u>5646531</u>	July 1997	Renz	324/318
5680047	October 1997	Srinivasan et al.	

OTHER PUBLICATIONS

International Search Report related to PCT Patent Application No. PCT/US98/03529 dated Jul. 16, 1998.

"A Comprehensive Analysis for Estimating Modes in Coupled Resonators" by Ravi Srinivasan and Haiying Liu, pp 1425.

"Examples of the Design of Screened and Shielded RF Receiver Coils", by Michael Burl and Ian R. Young, pp 326-330.

ART-UNIT: 282

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Renner, Otto, Boisselle & Sklar

ABSTRACT:

An <u>RF coil</u> with high signal-to-noise (S/N) and B.sub.1 homogeneity over the volume originating from the arctic arch and extending to the top of the head, which is highly desirable for quantitative (anatomical, vascular and functional) studies invivo. The <u>coil</u> is suitable for use in performing multiple studies and reducing scan time without patient repositioning. Moreover, the <u>coil</u> is capable of imaging in different operating modes. A <u>split-top</u> design is used to ease patient access.

34 Claims, 16 Drawing figures

E FWI		Title	Cration Front Review Classification Date	Clains koos Draw D	
]	7.	Document ID: US 20050275403 A1	Relevance Rank: 42	•

File: PGPB

Dec 15, 2005

PGPUB-DOCUMENT-NUMBER: 20050275403

PGPUB-FILING-TYPE: new

L23: Entry 3 of 30

DOCUMENT-IDENTIFIER: US 20050275403 A1

TITLE: Transceive surface coil array for magnetic resonance imaging and

spectroscopy

PUBLICATION-DATE: December 15, 2005

Record List Display Page 14 of 58

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Pinkerton, Robert G. Harrowsmith CA
Menon, Ravi S. London CA

APPL-NO: 11/085800 [PALM]
DATE FILED: March 21, 2005

RELATED-US-APPL-DATA:

Application is a non-provisional-of-provisional application 60/554350, filed March 19, 2004,

INT-CL-PUBLISHED: [07] G01 V 3/00

US-CL-PUBLISHED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

REPRESENTATIVE-FIGURES: 1

ABSTRACT:

A surface <u>coil</u> array comprises a surface <u>coil</u> support and an arrangement of non-overlapping magnetically <u>decoupled</u> surface <u>coils</u> mounted on the support. The surface <u>coils</u> encompass a volume into which a target to be imaged is placed. Magnetic <u>decoupling</u> circuits act between adjacent surface <u>coils</u>. Impedance matching circuitry couples the surface <u>coils</u> to conventional <u>transmit and receive</u> components.

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 60/554,350 filed on Mar. 19, 2004 for an invention entitled "Transceive Surface Coil Array For Magnetic Resonance Imaging and Spectroscopy".

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims (Mic. Diam D.

□ 8. Document ID: US 5450011 A Relevance Rank: 41

L23: Entry 25 of 30 File: USPT Sep 12, 1995

US-PAT-NO: 5450011

DOCUMENT-IDENTIFIER: US 5450011 A

TITLE: Magnetic resonance apparatus having a wideband matching network

DATE-ISSUED: September 12, 1995

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Boeijen; Gerardus W. Eindhoven NL Wardenier; Peter H. Eindhoven NL

Record List Display Page 15 of 58

APPL-DATE

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

U.S. Philips Corporation New York NY 02

APPL-NO: 08/041803 [PALM]
DATE FILED: April 1, 1993

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO

EP 92201295 May 7, 1992

INT-CL-ISSUED: [06] $\underline{G01}$ \underline{R} $\underline{33/36}$

US-CL-ISSUED: 324/322; 324/318 US-CL-CURRENT: 324/322; 324/318

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/322, 324/300, 324/307, 324/309,

128/653.5

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4095168	June 1978	Hlavka	324/310
4691164	September 1987	Haragashira	324/322
4694255	September 1987	Hayes	324/318
4700137	October 1987	Yoda	324/322
4739271	April 1988	Haase	324/322
4755756	July 1988	Nishihara et al.	324/300
4827219	May 1989	Harrison	324/322
4882541	November 1989	Haragashira	324/322
4885541	December 1989	Hayes	324/322
4920315	April 1990	Hokbrook et al.	324/313
5055792	October 1991	Keren	324/318
5172061	December 1992	Crooks et al.	324/318

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO PUBN-DATE COUNTRY CLASS

0083728 July 1983 EP

OTHER PUBLICATIONS

Journal of Physics E. Scientific Instruments, vol. 14, No. 6, 1 Jun. 1981, Bristol GB pp. 700-701.

Magnetic Resonance in Medicine, vol. 3, No. 2, 1 Apr. 1986, Duluth, Minn., pp. 346-351.

"Electronics", Jan. 1944, pp. 130-133 and 318-325.

Record List Display Page 16 of 58

ART-UNIT: 268

PRIMARY-EXAMINER: O'Shea; Sandra L.

ASSISTANT-EXAMINER: Mah; Raymond Y.

ATTY-AGENT-FIRM: Franzblau; Bernard

ABSTRACT:

A <u>magnetic resonance</u> apparatus includes an <u>RF coil</u> tuned to a predetermined frequency and which is connected, via a connection circuit, to a transmission and/or receiving device for RF signals. A connection circuit is provided in order to increase the bandwidth of the <u>RF coil</u> without imposing restrictions on the design and the construction of the <u>coil</u>. Therefore, viewed from the RF, the connection circuit successively includes the following elements:

a first matching network which is operative to transform an impedance connected to its output to a substantially lower value;

a second matching network which is operative to transform an impedance connected to its output to a substantially higher value.

18 Claims, 9 Drawing figures

FUIL	Title	Citation Front	Review Classification Date	Reference	GIZINS	KiMC	Draw Ds
_			US 20060033501 A1	Relevance Rank:		***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
L23:	Ent	ry 1 of 30		File: PGPB	Feb	16,	2006

PGPUB-DOCUMENT-NUMBER: 20060033501

PGPUB-FILING-TYPE:

DOCUMENT-IDENTIFIER: US 20060033501 A1

TITLE: RF coil for imaging system

PUBLICATION-DATE: February 16, 2006

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Vaughan; J. Thomas JR. Stillwater MN US

ASSIGNEE-INFORMATION:

NAME CITY STATE COUNTRY TYPE CODE

Record List Display Page 17 of 58

The General Hospital Corporation d/b/a Massachusetts General Hospital

02

APPL-NO: 11/196131 [PALM]
DATE FILED: August 3, 2005

RELATED-US-APPL-DATA:

parent US continuation 10750031 20031229 ABANDONED child US 11196131 A1 20050803 parent US continuation 10367489 20030214 PENDING child US 10750031 20031229 parent US division 09575384 20000522 GRANTED parent-grant-document US 6633161 child US 10367489 20030214 us-provisional-application US 60135269 19990521

INT-CL-PUBLISHED:

TYPE IPC DATE IPC-OLD IPCP G01V3/00 20060101 G01V003/00

INT-CL-CURRENT:

TYPE IPC DATE
CIPP <u>G01</u> <u>V</u> <u>3</u>/<u>00</u> 20060101

US-CL-PUBLISHED: 324/322; 324/318 US-CL-CURRENT: 324/322; 324/318

ABSTRACT:

An <u>RF coil</u> suitable for use in imaging systems is provided which <u>coil</u> has a dielectric filled cavity formed by a surrounding conducting enclosure, the conducting enclosure preferably being patterned to form continuous electrical paths around the cavity, each of which paths may be tuned to a selected resonant frequency. The patterning breaks up any currents inducted in the <u>coil</u> and shortens path lengths to permit higher frequency, and thus higher field strength operation. The invention also includes improved mechanisms for tuning the resonant frequency of the paths, for selectively detuning the paths, for applying signal to the <u>coil</u>, for shortening the length of the <u>coil</u> and for controlling the field profile of the coil and the delivery of field to the object to the image.

RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 10/750,031, filed Dec. 29, 2003, entitled "RF Coil for Imaging System," by J. T. Vaughan, which is a continuation of U.S. patent application Ser. No. 10/367,489, filed Feb. 14, 2003, entitled "RF Coil for Imaging System," by J. T. Vaughan, which application is a divisional of U.S. patent application Ser. No. 09/575,384, filed May 22, 2000, now issued U.S. Pat. No. 6,633,161, (Oct. 14, 2003), entitled "RF Coil for Imaging System," by J. T. Vaughan, which application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/135,269, filed May 21, 1999, entitled "RF Coil for Imaging System," by J. T. Vaughan, each of which is incorporated herein by reference.

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims Kinc Draw De

☐ 10. Document ID: US 20040140808 A1 Relevance Rank: 40

L23: Entry 7 of 30 File: PGPB Jul 22, 2004

PGPUB-DOCUMENT-NUMBER: 20040140808

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040140808 A1

TITLE: RF coil for imaging system

PUBLICATION-DATE: July 22, 2004

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Vaughan, J. Thomas JR. Stillwater MN US

ASSIGNEE-INFORMATION:

NAME CITY STATE COUNTRY TYPE CODE

The General Hospital Corporation d/b/a Massachusetts

General Hospital

APPL-NO: 10/750031 [PALM]
DATE FILED: December 29, 2003

RELATED-US-APPL-DATA:

child 10750031 A1 20031229
parent continuation-of 10367489 20030214 US PENDING
child 10367489 20030214 US
parent division-of 09575384 20000522 US GRANTED
parent-patent 6633161 US
non-provisional-of-provisional 60135269 19990521 US

INT-CL-PUBLISHED: [07] $\underline{G01}$ \underline{V} $\underline{3}/\underline{00}$

US-CL-PUBLISHED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

REPRESENTATIVE-FIGURES: 1B 5A

ABSTRACT:

An <u>RF coil</u> suitable for use in imaging systems is provided which <u>coil</u> has a dielectric filled cavity formed by a surrounding conducting enclosure, the conducting enclosure preferably being patterned to form continuous electrical paths around the cavity, each of which paths may be tuned to a selected resonant frequency. The patterning breaks up any currents inducted in the <u>coil</u> and shortens path lengths to permit higher frequency, and thus higher field strength operation. The invention also includes improved mechanisms for tuning the resonant frequency of the paths, for selectively detuning the paths, for applying signal to the <u>coil</u>, for shortening the length of the <u>coil</u> and for controlling the field profile of the <u>coil</u> and the delivery of field to the object to the image.

Record List Display Page 19 of 58

RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 10/367,489, filed Feb. 14, 2003, entitled "RF Coil for Imaging System," by J. T. Vaughan, which application is a divisional of U.S. patent application Ser. No. 09/575,384, filed May 22, 2000, now issued Patent No. 6,633,161, (Oct. 14, 2003), entitled "RF Coil for Imaging System," by J. T. Vaughan, which application claims the benefit of U.S. Provisional Patent Application Serial No. 60/135,269, filed May 21, 1999, entitled "RF Coil for Imaging System," by J. T. Vaughan, each of which is incorporated herein by reference.

Full Title Citation Front Review Classification Data Reference Sequences Attachments Claims KMC Draw Da

☐ 11. Document ID: US 6633161 B1 Relevance Rank: 40

L23: Entry 15 of 30

File: USPT

Oct 14, 2003

US-PAT-NO: 6633161

DOCUMENT-IDENTIFIER: US 6633161 B1

TITLE: RF coil for imaging system

DATE-ISSUED: October 14, 2003

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Vaughan, Jr.; J. Thomas Stillwater MN

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

The General Hospital Corporation Boston MA 02

APPL-NO: 09/575384 [PALM]
DATE FILED: May 22, 2000

PARENT-CASE:

RELATED APPLICATIONS This application claims the benefit of U.S. patent application Ser. No. 09/575,384, filed May 22, 2000, entitled "RF Coil for Imaging System," by J. T. Vaughan, which application claims the benefit of U.S. Provisional Patent Application Serial No. 60/135,269, filed May 21, 1999, entitled "RF Coil for Imaging System and Use Therein," by J. T. Vaughan, each of which is incorporated herein by reference.

INT-CL-ISSUED: [07] G01 V 3/00

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/322, 324/312, 324/316, 324/300,

324/306, 324/307, 324/309

See application file for complete search history.

PRIOR-ART-DISCLOSED:

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

☐ Generate Collection Print

L23: Entry 12 of 30

File: USPT

May 24, 2005

DOCUMENT-IDENTIFIER: US 6898454 B2

TITLE: Systems and methods for evaluating the urethra and the periurethral tissues

Abstract Text (1):

The present invention provides systems and methods for the evaluation of the urethra and periurethral tissues using an MRI coil adapted for insertion into the male, female or pediatric urethra. The MRI coil may be in electrical communication with an interface circuit made up of a tuning-matching circuit, a decoupling circuit and a balun circuit. The interface circuit may also be in electrical communication with a MRI machine. In certain practices, the present invention provides methods for the diagnosis and treatment of conditions involving the urethra and periurethral tissues, including disorders of the female pelvic floor, conditions of the prostate and anomalies of the pediatric pelvis.

Brief Summary Text (3):

The invention relates in general to $\underline{\text{magnetic resonance}}$ imaging $(\underline{\text{MRI}})$, and in particular to devices for in vivo MRI.

Brief Summary Text (12):

Evaluation of incontinence presently relies upon routine diagnostic tools such as history and physical examination, <u>combined</u> with specialized studies such as cystometrogram, electrophysiologic sphincter testing, bladder and renal ultrasound, cystourethroscopy, uroflowmetry, and videourodynamic evaluation. Ultrasound has been used transurethrally to evaluate the anatomy and function of the rhabdosphincter in the male urethra. Transvaginal ultrasound and intraurethral ultrasound have been employed in female patients also, to evaluate urinary incontinence.

Brief Summary Text (13):

The advent of intracavity magnetic resonance imaging (MRI) receiver coils for highresolution clinical imaging of the prostate and of the uterine cervix has shown some promise as a technique for imaging the pelvic floor with increased spatial resolution compared to images acquired with the MRI body coil alone. Driven by a motivation to further increase the signal-to-noise (SNR) ratio at the region of interest, authors have reported the value of these intracavitary coils in the detailed demonstration of the female pelvic anatomy and abnormalities using a transrectal imaging approach as well as transvaginal approach for imaging. External \underline{MRI} of the urethra and pelvic floor has been carried out in female volunteers and patients to elucidate the relevant regional anatomy. Endorectal and external MRI investigation has also been carried out to evaluate abnormalities of the urethral and periurethral tissues. Despite these efforts, clinical and radiological evaluation of these areas remains difficult and not completely satisfying. Although high-resolution magnetic resonance imaging with phased array pelvic, endorectal and endovaginal coils has dramatically enhanced the ability to visualize abnormalities of the female urethral and periurethral tissues, discussion and controversy still continues about the anatomy of this region.

Brief Summary Text (16):

It is understood that diagnostic techniques may be $\underline{\text{combined}}$ with therapeutic techniques for pelvic conditions. A better understanding of regional and local

anatomy and an appreciation of the relevant pathology may facilitate accurate and effective treatment. There remains a need in the art for diagnostic techniques that are <u>combinable</u> with therapeutic modalities useful for malignant and nonmalignant conditions in the pelvic region.

Brief Summary Text (17):

Techniques of magnetic resonance imaging (MRI) or magnetic resonance spectroscopy (MRS), specialized radiofrequency (RF) may be applicable to these diagnostic and therapeutic problems. RF receiver coils may be placed at the region of interest to increase the signal-to-noise ratio (SNR) for better image (spectrum) quality in MRI or MRS. RF Receiver coils can broadly be separated into categories of volume coils, surface coils and endoluminal coils. Volume coils contain the region of interest within their volume and the imaging region is directed toward the inside of the coil. Surface coils are placed on top of the region of interest and their imaging region is directed to either side of the coil. Endoluminal coils are inserted into natural (urethra, prostate, vagina, rectum, oesophagus, pancreas, etc.) or artificial (endovascular, etc.) orifices of the human or animal body. Their imaging region is directed towards the outside of the coil to provide high-resolution imaging (spectra) of the region surrounding the coil. Different coil designs for a potential endoluminal application are available in the art. The endoluminal RF coils designs exist in multiple forms, including: rigid (GE prostate biopsy guidance coil, (R. D. Watkins, K. W. Rohling, E. E. Uzgiris, C. L. Dumoulin, R. D. Darrow and R. O. Giaquinto, "Magnetic Resonance Image Guided Biopsy in Prostate", page 412, Book of Abstracts, ISMRM 2000), flexible (Atalar, E., P. A. Bottomley, and E. A. Zerhouni, Method of Internal Magnetic Resonance Imaging and Spectroscopic Analysis and Associated Apparatus, Assignee: Johns Hopkins University: U.S. Pat. No. 5,699,801, Dec. 23, 1997), and others. A quadrature/phased array endo-luminal design was also disclosed earlier (Atalar, U.S. Pat. No. 5,699,801).

Brief Summary Text (18):

However, there remains a need for providing high SNR and increased signal homogeneity in endocavitary designs. Mutual inductance between two or more independent but geometrically adjacent_coils, tuned to the same resonance frequency may under certain circumstances improve the SNR and signal homogeneity, but such designs can also result in coupling between the coils that might result in poor signal performance and decreased signal penetration depth into the tissue. Usually, this mutual inductance is compensated for by adding combinations of capacitors, inductors, and/or other electronic elements to the resonant circuit of the coils. Another means of compensation is, to mechanically align the two or more coils in a way to each other, so that the coils are geometrically isolated from another.

Brief Summary Text (19):

Geometric decoupling, however, does not always result in sufficient isolation. The overall coil performance might be still degraded due to residual coupling between the coils. However, there has been no simple method of eliminating coupling between elements of these types of designs taught, thereby impeding the clinical uses of such devices. The use of a metallic paddle to steer the magnetic flux of a coil as a means to insulate two or more adjacent coils from each other was published in the literature in 1946 by Bloch, Hansen and Packard (F. Bloch, W. W. Hansen, M. E. Packard, Phys. Rev. 70:474 (1946)) and was then reconsidered by Andrew (E. R. Andrew, Nuclear Magnetic Resonance. Pp.56-63, Cambridge Univ. Press, London, (1955)) and then by Hoult et al. (D. I. Hoult, C. N. Chen, V. J. Sank, Quadrature detection in the laboratory frame. Magn. Reson. Med. 1, 339-353 (1984)). In these publications, however, a rather small paddle was used to decouple large volume coils from one another, to minimize distortions of the B.sub.1 field homogeneity to the inside of the coil. The application of such a paddle to an `inside out` design of endoluminal coils, as first described in this report, enabled the paddle to be inserted into the most sensitive region between the coils. Furthermore, the paddle could be designed larger relative to the size of the coils, providing a very effective means of coil insulation, virtually without affecting the B.sub.1 field

Record Display Form Page 3 of 26

toward the outside of the <u>coil</u>. No additional electronics were required to achieve an isolation of about 50 dB. Signal homogeneity as well as signal penetration depth and therefore image quality was markedly improved by minimizing the mutual inductance between the <u>coils</u>. There remains a need in the art, therefore for a means to minimize the mutual indictance between two or more independent RF <u>transmit or receive coils in MRI</u> or MRS that is simple to implement and effective. There is a further need to device a <u>RF coil</u> for endoluminal applications that can improve signal homogeneity and signal penetration depth.

Brief Summary Text (21):

In one aspect, the present invention provides an apparatus for magnetic resonance imaging of an anatomic region of a human pelvis. In one embodiment, and apparatus according to the present invention may provide an endourethral magnetic resonance imaging coil comprising an antenna, and interface circuit interposed between the antenna and a MRI machine, said interface circuit being in electrical communication with the antenna and being in electrical communication to the MRI machine and comprising a tuning-matching circuit, a decoupling circuit and a balun circuit, and a housing enveloping the antenna. The antenna may be formed on a flexible circuit. The interface circuit may be enclosed within an interface box connected to the antenna by a connector. The antenna may be a receive-only coil. The tuning-matching circuit may comprise at least two sets of capacitors, a first set in series and a second set in parallel. The decoupling circuit may comprise a PIN diode. The interface circuit may further comprise a DC regulating circuit. The housing may be sealed at a distal end. In this embodiment and in all embodiments of the present invention, the electrical communication between the interface circuit and the MRI machine may be made using a wireless connection, and in certain other embodiments of the present invention, the electrical communication between the interface circuit and the antenna may be made using a wireless connection.

Brief Summary Text (22):

In another aspect, the invention provides an apparatus for <u>magnetic resonance</u> imaging (<u>MRI</u>) of an anatomic region of a human pelvis, comprising an endourethral <u>magnetic resonance</u> imaging <u>coil</u> system, comprising a first <u>antenna</u> and a second <u>antenna</u>, wherein said second <u>antenna</u> is oriented at a preselected position with respect to said first <u>antenna</u>; and further comprising an interface system interposed between a <u>MRI</u> machine and said first and second <u>antennas</u>, said interface system being in electrical communication with said <u>MRI</u> machine and with each of said first <u>antenna</u> and said second <u>antenna</u>, said interface system comprising a tuning-matching system, a <u>decoupling</u> system and a <u>balun</u> system; and further comprising a housing enveloping at least one of said first <u>antenna</u> and said second <u>antenna</u>.

Brief Summary Text (23):

In yet another aspect, the present invention provides a system for treating an anatomic region within a pelvis of a patient, comprising an elongate member insertable into a urethra of the patient and temporarily retainable in said urethra, said elongate member housing an endourethral imaging system and an endourethral therapeutic system, wherein said endourethral imaging system comprises an endourethral MRI coil comprising an antenna, and said endourethral therapeutic system comprises an endourethral delivery device to deliver a mode of therapy transurethrally to an area of the anatomic region imaged by the endourethral imaging system; and further comprising an interface circuit interposed between said antenna and a MRI machine, said interface circuit being electrical communication with said antenna and being in electrical communication with the MRI machine, said interface circuit comprising a tuning-matching circuit, a decoupling circuit and a balun circuit.

Brief Summary Text (24):

In one aspect, the present invention may provide methods for treating an anatomic region within a pelvis of a patient. In one practice of the method, steps include

providing a medical device comprising an elongate member insertable into and temporarily retainable within a urethra of the patient, said elongate member housing an endourethral imaging system and an endourethral therapeutic system, wherein said endourethral imaging system comprises an endourethral MRI coil comprising an antenna, and said endourethral therapeutic system comprises an endourethral delivery device to deliver a mode of therapy transurethrally to an area of the anatomic region imaged by the endourethral imaging system; providing an interface circuit interposed between said antenna and a MRI machine, said interface circuit being in electrical communication with said antenna and being in electrical communication with the MRI machine, said interface circuit comprising a tuningmatching circuit, a decoupling circuit and a balun circuit; providing the MRI machine; inserting said elongate member into the urethra of said patient; temporarily retaining said elongate member in said urethra; positioning the pelvis of the patient in a diagnostically effective position relative to the MRI machine; using the MRI machine to excite magnetic resonance signals within tissues surrounding the anatomic region; applying gradient magnetic pulses to said human pelvis to spatially encode the <u>magnetic resonance</u> signals; receiving said <u>magnetic</u> resonance signals in said endourethral MRI coil and producing responsive output signals therefrom; processing said output signals to obtain an image of the anatomic region; identifying an area of the anatomic region to be treated; positioning the endourethral therapeutic system in therapeutic proximity to the area; and delivering transurethrally the mode of therapy to said area using said transurethral delivery device. As used herein, temporarily retaining the elongate member in the urethra refers to any temporary retention, no matter how long or short in duration, which is adequate to accomplish some aspect of the diagnostic or therapeutic procedures of the method. Temporary retention permits the elongate member to be repositioned in a different position during the course of diagnosis or treatment. Positioning the pelvis of the patient in a diagnostically effective position will be understood to practitioners of the $\underline{\mathtt{MRI}}$ art to relate to the proper positioning of the body part to be imaged with respect to the main MRI machine. Positioning the endourethral therapeutic system in therapeutic proximity to the area will be understood by practitioners in the art to refer to any positioning from whence the endourethral therapeutic system may deliver a therapeutically effective amount of the mode of therapy to the area of the anatomic region to be treated.

Brief Summary Text (25):

In another aspect, the present invention may provide methods of evaluating an anatomic region of the human pelvis. In one practice, the method may comprise providing an endourethral MR receiver coil having an antenna disposed upon a flexible circuit, providing an interface circuit in electrical communication with said antenna, said interface circuit comprising a tuning-matching circuit, a decoupling circuit, and a balun circuit, providing a housing enveloping the antenna, providing an MRI machine in electrical communication with the interface circuit, inserting the endourethral MR receiver coil into a human urethra within the human pelvis, situating the human pelvis within a main magnetic field of the MRI machine, imposing the main magnetic field on the human pelvis, applying RF pulses to the human pelvis to excite <u>magnetic resonance</u> signals within the human pelvis, applying gradient magnetic pulses to the human pelvis to spatially encode the magnetic resonance signals received resonance signals in the endo urethral MR receiver coil, emitting responsive output signals from the endourethral MRI receiver coil, processing the output signals and converting them to information about the anatomic region of the human pelvis, thereby to evaluate the anatomic region.

Brief Summary Text (26):

The systems and methods of the present invention may be directed to a male or to a female subject. In one aspect, these systems and methods may be directed towards the diagnosis of an abnormality of the prostate. In another aspect, these systems and methods may be directed towards the diagnosis of an abnormality of the female

pelvic floor. <u>Coils</u> designed for the male or the female urethra may include specific features adaptable to male or female regional anatomy. Two different <u>coil</u> designs for intraurethral positioning may be included as embodiments of the present invention: a) single-loop <u>coil</u>, and b) quadrature <u>coil</u>. A <u>balun</u> circuit may be implemented into the design of both <u>coils</u> to reduce potential RF heating effects and to improve <u>coil</u> performance. An image intensity correction (IIC) algorithm may be used to compensate for the B.sub.1 signal variation of the endoluminal <u>coils</u> across the small field of views (FOV's) being used.

Drawing Description Text (6):

FIG. 4 provides a schematic diagram of a balun assembly.

Drawing Description Text (8):

FIG. 6 provides an electrical schematic of an embodiment of an imaging <u>coil</u> and interface circuit.

Drawing Description Text (9):

FIG. 7 provides a schematic view of an imaging coil embodiment.

Drawing Description Text (10):

FIG. 8 provides a cross-sectional view of the lumen with an imaging coil therein.

Drawing Description Text (11):

FIGS. 9A and B provide longitudinal and transverse cross-sections of an embodiment of an imaging coil system.

Drawing Description Text (12):

FIGS. 10A and B provide schematic electrical diagrams of a single imaging <u>coil</u> and interface circuit and a double imaging coil and interface circuit.

Drawing Description Text (13):

FIGS. 11A and B provide a schematic longitudinal and cross-sectional view of two imaging coils combined with a decoupling paddle.

Drawing Description Text (14):

FIG. 12 provides a schematic electrical diagram of two imaging $\underline{\text{coils}}$ and interface circuits $\underline{\text{combined with a decoupling paddle}}$.

Drawing Description Text (15):

FIG. 13A-D provide longitudinal and cross-sectional views of folded and expanded decoupling paddles.

Drawing Description Text (16):

FIG. 14 provides a schematic diagram of a remotely manipulable decoupling paddle.

Drawing Description Text (17):

FIGS. 15A and B provide a schematic diagram of an embodiment of an imaging coil adapted for use in a male urethra.

Drawing Description Text (20):

FIG. 18 depicts an endourethral imaging system combined with RF ablation.

Drawing Description Text (21):

FIG. 19 depicts an endourethral imaging system combined with laser ablation.

Detailed Description Text (9):

Evaluation of the urethra in female and male patients presents challenging clinical and radiological problems. The ability to image the urethra in higher resolution than currently clinically available may permit more satisfactory investigation of incontinence and other urethral abnormalities. Contributing to the investigation of

```
? ds
Set Items Description
      4521 S AU=(GROSS P? OR GROSS, P?)
S1
S2 2011429 S MRI OR MAGNETIC(1W)(IMAG? OR IMAGING) OR MAGNETIC(W)RESONAN? OR NMR OR
NUCLEAR()MAGNETIC()RESONANCE OR FTNMR OR FTMRI
     185712 S MAGNETORESONANCE OR PMR OR PROTON(W)MAGNETIC(W)RESONAN? OR MR()(IMAGE? OR
IMAGING)
S4
     8264 S MC=(S01-E02A2 OR S03-E07A OR S01-E02A8A OR S01-E02A1 OR S03-E07C OR S05-D02B1 OR
S03-C02F1)
     50970 S IC=(G01N-024/08 OR G01V-003/A75 OR G01R-033/56F OR G01V-003/00)
S6
     24414 S CC=(A0758 OR A8760I OR B7510N)
S7
    2085973 S S2:S5
    561415 S RADIO()FREQUENC? OR RF??
S8
S9
    642497 S ANTENNA??
S10
     5989 S DECOUPL?(2N)(CIRCUIT? OR MODE??)
S11
     44298 S END(2N)TERMINAL?
     12130 S BIAS(2N)POTENTIAL?
S12
S13 5006136 S SWITCH? OR ALTERNAT? OR TOGGLE?
     37091 S S8 AND S9
S14
S15
       15 S S14 AND S10
S16
       4 S S15 AND (S6 OR S7)
S17
       4 RD (unique items)
S18
       1 S S17 AND S1
S19
       3 S S17 NOT S18
S20
      140 S S8 AND S10
S21
       0 S S20 AND S9 AND S12
S22
       15 S S20 AND (S9 OR S12)
S23
       14 RD (unique items)
S24
       10 S S23 NOT S17
S25
       1 S S10 AND S1
S26 2087727 S S6 OR S7
      154 S S26 AND S10
S27
S28
       51 S S27 AND (S8 OR S9 OR S11 OR S12)
S29
       45 RD (unique items)
S30
       41 S S29 NOT (S25 OR S24 OR S17)
S31
      173 S S10(6N)S13
S32
       2 S S8 AND S31
S33
       2 RD (unique items)
? show files
(c) format only 2006 Dialog. All rights reserved.
```

[File 155] MEDLINE(R) 1951-2006/May 23

[File 2] INSPEC 1898-2006/May W1

(c) 2006 Institution of Electrical Engineers. All rights reserved.

[File 5] Biosis Previews(R) 1969-2006/May W2

(c) 2006 BIOSIS. All rights reserved.

[File 6] NTIS 1964-2006/May W1

(c) 2006 NTIS, Intl Cpyrght All Rights Res. All rights reserved.

[File 8] Ei Compendex(R) 1970-2006/May W1

(c) 2006 Elsevier Eng. Info. Inc. All rights reserved.

[File 73] EMBASE 1974-2006/May 19

(c) 2006 Elsevier Science B.V. All rights reserved.

[File 94] JICST-EPlus 1985-2006/Feb W2

(c)2006 Japan Science and Tech Corp(JST). All rights reserved.

[File 35] Dissertation Abs Online 1861-2006/Apr

(c) 2006 ProQuest Info&Learning. All rights reserved.

[File 144] Pascal 1973-2006/Apr W4

(c) 2006 INIST/CNRS. All rights reserved.

[File 105] **AESIS** 1851-2001/Jul

(c) 2001 Australian Mineral Foundation Inc. All rights reserved.

*File 105: This file is closed (no updates)

[File 99] Wilson Appl. Sci & Tech Abs 1983-2006/Apr

(c) 2006 The HW Wilson Co. All rights reserved.

[File 58] GeoArchive 1974-2006/Apr

(c) 2006 Geosystems. All rights reserved.

[File 34] SciSearch(R) Cited Ref Sci 1990-2006/May W2

(c) 2006 Inst for Sci Info. All rights reserved.

[File 434] SciSearch(R) Cited Ref Sci 1974-1989/Dec

(c) 1998 Inst for Sci Info. All rights reserved.

[File 292] **GEOBASE(TM)** 1980-2006/May W1

(c) 2006 Elsevier Science Ltd. All rights reserved.

[File 89] GeoRef 1785-2006/Apr B1

(c) 2006 American Geological Institute. All rights reserved.

[File 65] Inside Conferences 1993-2006/May 19

(c) 2006 BLDSC all rts. reserv. All rights reserved.

[File 360] Specialty Chemicals Update Program 2000/Q2

(c) 2000 SRI International. All rights reserved.

*File 360: Full fmts cost \$85.00 each for TYPEs, DISPLAYs, & PRINTs. Fmt 7 costs \$50.00. SCUP subscribers - use F960. Updating suspended.

[File 239] Mathsci 1940-2006/Jun

(c) 2006 American Mathematical Society. All rights reserved.

[File 347] **JAPIO** Dec 1976-2005/Dec(Updated 060404)

(c) 2006 JPO & JAPIO. All rights reserved.

[File 305] Analytical Abstracts 1980-2006/May W1

(c) 2006 Royal Soc Chemistry. All rights reserved.

*File 305: Alert feature enhanced for multiple files, duplicate removal, customized scheduling. See HELP ALERT.

[File 350] Derwent WPIX 1963-2006/UD,UM &UP=200632

(c) 2006 Thomson Derwent. All rights reserved.

*File 350: Preview the enhanced DWPI through ONTAP DWPI (File 280). For more information, visit http://www.dialog.com/dwpi/.

[File 162] Global Health 1983-2006/Apr

(c) 2006 CAB International. All rights reserved.

[File 164] Allied & Complementary Medicine 1984-2006/May

(c) 2006 BLHCIS. All rights reserved.

[File 357] Derwent Biotech Res. _1982-2006/May W2

(c) 2006 Thomson Derwent & ISI. All rights reserved.

[File 315] ChemEng & Biotec Abs 1970-2006/Apr

(c) 2006 DECHEMA. All rights reserved.

[File 23] CSA Technology Research Database 1963-2006/May

(c) 2006 CSA. All rights reserved.

[File 46] Corrosion Abstracts 1966-2006/May

(c) 2006 CSA. All rights reserved.

[File 68] Solid State & Superconductivity Abstracts 1966-2006/May

(c) 2006 CSA. All rights reserved.

[File 60] ANTE: Abstracts in New Tech & Engineer 1966-2006/May

(c) 2006 CSA. All rights reserved.

[File 33] Aluminium Industry Abstracts 1966-2006/May

(c) 2006 CSA. All rights reserved.

[File 335] Ceramic Abstracts/World Ceramics Abstracts 1966-2006/May

(c) 2006 CSA. All rights reserved.

[File 294] ONTAP(R) SciSearch(R) Cited Ref Science

(c) 1991 Inst for Sci Info. All rights reserved.