Prof. Ricardo Destro 1º Semestre de 2015

Modelagem de Sistemas Diagramas de Seqüência

Interações

- Comportamento que
 - Envolve conjunto de mensagens trocadas entre objetos dentro de um determinado contexto
 - Objetiva atingir resultado específico
- Acontecem em função da troca de mensagens entre objetos
- Usadas para a modelagem dos aspectos dinâmicos de um sistema

Diagramas de Interação

- Deseja-se representar o comportamento de vários objetos
 - Dentro de um único caso de uso
 - A partir das mensagens que são passadas entre eles
- Objetivo
 - Definir um **contexto** de caso de uso
 - Estabelecer os **objetos** que interagem e seus relacionamentos
- Termo genérico que se aplica a dois tipos de diagramas que enfatizam interações entre objetos
 - Diagrama de Seqüência
 - Diagrama de Colaboração

Duas formas de representação

- Informações bastante similares mas de maneira diferente
 - Diagrama de Seqüência
 - · Interação enfatizando o tempo de seqüência
 - Mostra objetos participando em interações de acordo com suas linhas de vida e as mensagens que trocam
 - Diagrama de Colaboração
 - Interação enfatizando o relacionamento entre os objetos

Diagrama de Seqüência de Sistema

- Serve para sistematizar os fluxos dos casos de uso expandidos.
- Deve-se construir um para o fluxo principal de cada caso de uso.
- Os fluxos alternativos podem ter um diagrama de seqüência próprio ou serem embutidos no diagrama do fluxo principal, se não forem complexos.

Objetivo

- Identificar operações e consultas que o sistema implementará para realizar as transações previstas nos casos de uso.
- Um diagrama de sequência mostra uma interação, isto é, uma sequência de mensagens trocadas entre vários objetos num determinado contexto (caso de uso, operação, etc.)
- Enfatiza a comunicação e passagem de controle entre objetos ao longo do tempo
- Útil para descrever uma sequência particular de funcionamento, mas não muitas sequências alternativas e ciclos nem ações realizadas por um objeto que não envolvem comunicação com outros objetos

Tipos de transação

- Identificadas no caso de uso e transportadas para o primeiro nível do diagrama de seqüência (dos atores para a aplicação/interface):
 - Evento e Resposta de sistema
- Colocadas no segundo nível (da aplicação interface para o controle/domínio), são métodos que efetivamente realizam a funcionalidade do sistema:
 - Operação e Consulta de sistema

Evento de Sistema

• Informação flui de um dos atores para a aplicação

Resposta de Sistema

• Informação flui da aplicação para os atores

Conseqüências

- Eventos e respostas do sistema têm conseqüências na camada de aplicação de um sistema.
- Essas conseqüências são procedimentos (métodos) de entrada e saída que terão que ser analisadas, projetadas e implementadas para realizar os casos de uso.

Conseqüências de um evento de sistema • Operação de Sistema, quando se tratar de entrada de dados ou controle: Cliente Aplicação Controladora Evento de sistema Operação de sistema

Combinações

 Tanto o evento quanto a resposta de sistema podem ter uma sequência de operações e consultas de sistema associadas, não necessariamente uma só.

Componentes - Objetos

- Apresentados na dimensão horizontal do diagrama
- Ordem dos objetos não é considerada
 - Dispô-los de forma a tornar o diagrama "mais legível"
- Objetos tem nomes
 - obj:Classe

Ex.: joão:Dentista

:Floricultor (um objeto floricultor não identificado)

obj1: (um objeto obj1 sem classe definida)

Componentes - Objetos

- Representam as instâncias das classes
- Retângulos contendo um texto
 - Primeira parte, em minúsculo, o nome do objeto
 - Segunda parte, em letras iniciais maiúsculas, o nome da classe
 - Informações separadas por dois pontos (:)
- Linha de vida
 - Linha vertical tracejada

Componentes - Objetos • Exemplo

Componentes - Linhas de Vida

- Dimensão vertical do diagrama
- Apresentam o tempo de vida dos objetos
- Pode apresentar a ativação ou a desativação dos objetos
 - Indicam que os objetos estão executando algo
 - · Foco de controle
 - Caixas de ativação podem ser empilhadas
 - · Indica chamada de método do próprio objeto
 - · Objeto jose no slide anterior
- Podem representar a criação e a destruição de objetos

Componentes - Linhas de Vida • Representa o tempo que um objeto existiu durante um processo • Linhas finas verticais tracejadas • Iniciam no retângulo que represen objeto • Interrompida por um "X" quando o objeto é destruído

Mensagens

- Objetos interagem através da troca de mensagens
 - Setas sólidas que vão do objeto solicitante para o solicitado
 - · Para o próprio objeto: auto-delegação
 - Rotulados com os nomes dos estímulos mais os argumentos (ou valores dos argumentos) do estímulo

Mensagens

Sintaxe

return := message(parameter:parameterType):returnType

- onde
 - · return é o nome do valor de retorno
 - message é o nome da mensagem
 - **parameter** é o nome de um parâmetro da mensagem
 - **parameterType** é o nome do tipo desse parâmetro
 - returnType é o tipo do valor de retorno

Mensagens - Tipos

- Tipos de ação que uma mensagem pode representar
 - call
 - · Invoca uma operação sobre um objeto
 - · Objeto pode mandar uma chamada para si próprio
 - Resultando na execução local de uma operação
 - return
 - Representa o retorno de um valor para o objeto que chamou a operação
 - Opcional
 - create
 - · Criação de um objeto
 - destroy
 - · Eliminação de um objeto

new()

<<destroy>>

Mensagens - Representações

Símbolo	Significado
→	Mensagem síncrona
\rightarrow	Mensagem assíncrona
4	Mensagem de retorno (opcional)

Componentes - FOCO DE CONTROLE/ ATIVAÇÃO

- Indica os períodos em que um determinado objeto está participando ativamente do processo
 - Executando um ou mais métodos do processo
- Representados por extensões mais grossas/largas da Linha de Vida

Componentes - FOCO DE CONTROLE/ATIVAÇÃO • Exemplo | Isica1: | Fisica2: | Fi

Componentes - MENSAGENS/ ESTÍMULOS

- Demonstram a ocorrência de eventos que normalmente forçam a chamada de um método em algum dos objetos envolvidos no processo
- Mensagens entre:
 - Ator e Ator
 - Ator e Objeto
 - Objeto e Objeto
 - Objeto e Ator

Foco de Controle

- Período de tempo que o objeto executa uma ação
- Relação de controle entre ativação e o responsável pela sua invocação

Diagrama de Seqüência - Construção

- Escolher um caso de uso
- Identificar os **objetos** que fazem parte da **interação**
- Identificar o objeto que começa a interação
- Identificar as **mensagens** trocadas entre os objetos
- Identificar a **sequência** destas mensagens

Dicas finais

- Preocupa-se com a ordem temporal em que as mensagens são trocadas entre os objetos de determinado processo;
- Baseado em um caso de uso definido;
- Apóia-se no diagrama de classes;

