

CS 4391 Introduction Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Some slides of this lecture are courtesy Robert Collins (PSU)

Image Data

height

width

 $H \times W \times 3$

RGB color space [0, 255]

 $H \times W$

Grayscale [0, 255]

0.2989 * R + 0.5870 * G + 0.1140 * B

Images as Surfaces

Mean = 164 Std = 1.8

Mean = 111 Std = 15.4

Images as Functions

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

Function
$$I(\mathbf{x})\,f(\mathbf{x})$$

Derivative

Derivative of a 1D function

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The <u>slope</u> of the tangent line is equal to the derivative of the function at the marked point.

Derivative

$$f(x) = 100 - 0.5 * x^2 df(x)/dx = - x$$

Partial Derivative

Multivariable function

$$egin{aligned} rac{\partial}{\partial x_i}f(\mathbf{a}) &= \lim_{h o 0}rac{f(a_1,\dots,a_{i-1},a_i+h,a_{i+1},\dots,a_n)-f(a_1,\dots,a_i,\dots,a_n)}{h} \ &= \lim_{h o 0}rac{f(\mathbf{a}+h\mathbf{e_i})-f(\mathbf{a})}{h}\,. \end{aligned}$$

- Example $f(x,y) = x^2 + xy + y^2$
- ullet Total differential $dy=rac{\partial y}{\partial x_1}dx_1+\cdots+rac{\partial y}{\partial x_n}dx_n$

Gradient

ullet For a function $f:\mathbb{R}^n o\mathbb{R}$, gradient at a point $p=(x_1,\ldots,x_n)$

$$abla f(p) = \left[egin{array}{c} rac{\partial f}{\partial x_1}(p) \ dots \ rac{\partial f}{\partial x_n}(p) \end{array}
ight]$$

Gradient vs. total differential

$$df_p = \left[egin{array}{ccc} rac{\partial f}{\partial x_1}(p) & \cdots & rac{\partial f}{\partial x_n}(p) \end{array}
ight]$$

$$f(x) = 100 - 0.5 * x^2 df(x)/dx = - x$$

$$f(x,y) = 100 - 0.5 * x^2 - 0.5 * y^2$$

 $df(x,y)/dx = -x$ $df(x,y)/dy = -y$

The gradient indicates the direction of steepest ascent.

Gradient = [df(x,y)/dx, df(x,y)/dy] = [-x, -y]

Let $g=[g_x,g_y]$ be the gradient vector at point/pixel (x_0,y_0)

Vector g points uphill (direction of steepest ascent)

Vector - g points downhill (direction of steepest descent)

Vector $[g_y, -g_x]$ is perpendicular, and denotes direction of constant elevation. i.e. normal to contour line passing through point (x_0,y_0)

The same is true of 2D image gradients.

The underlying function is numerical (tabulated) rather than algebraic. So need numerical derivatives.

• Derivative of a function $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Central difference is more accurate

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

Gradient Vector:
$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]^{\mathbf{I}}$$

$$|\nabla I| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$
Magnitude:

$$\theta = atan2(\frac{\partial I}{\partial y}, \frac{\partial I}{\partial x})$$
Orientation

Further Reading

Chapter 3.1, Richard Szeliski

Slope https://en.wikipedia.org/wiki/Slope

• Gradient https://en.wikipedia.org/wiki/Gradient

 Matplotlib 3D surface: https://matplotlib.org/stable/gallery/mplot3d/surface3d.html