Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

Tristan Delcourt, Louise Nguyen

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible quadratique
Approximation logarithmique

Résultats

Les nombres RSA

- ▶ Factoriser N = pq où p et q sont premiers et très grands.
- Dernier nombre non factorisé: RSA-260 (260 chiffres)

$$\begin{split} N &= 221128255295296664352810852550262309276120895\\ 0247001539441374831912882294140200198651272972656\\ 9746599085900330031400051170742204560859276357953\\ 7571859542988389587092292384910067030341246205457\\ 8456641366454068421436129301769402084639106587591\\ 4794251435144458199 \end{split}$$

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible quadratique
Approximation logarithmique

Résultats

Congruences de carrés

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés

Etapes de la méthode L'algorithme final

Optimisations

Crible quadratique

Approximation logarithmique

Résultats

La méthode de Dixon

Congruences de carrés

Congruence de carrés

N = pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

Congruences de carrés

Congruence de carrés

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ► On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

Congruences de carrés

Congruence de carrés

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

Congruence de carrés

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- ▶ Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

Congruence de carrés

N = pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x y: $p \mid N \land (x y)$, ce qui donne $\mathbf{N} \land (\mathbf{x} \mathbf{y}) \neq \mathbf{1}$

Conclusion

- La méthode de Dixon
 - Congruences de carrés

Congruence de carrés

N = pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x y: $p \mid N \land (x y)$, ce qui donne $\mathbf{N} \land (\mathbf{x} \mathbf{y}) \neq \mathbf{1}$

Conclusion

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

Etapes de la méthode

Plan

Introduction et enjeux

La méthode de Dixon

Congruences de carrés

Etapes de la méthode

L'algorithme final

Optimisations

Crible quadratique

Approximation logarithmique

Résultats

 $b\in\mathbb{N}$

2

3

5

.

•

•

 p_b

 $b\in\mathbb{N}$

 $oxed{\left(x_1,\quad x_2,\quad x_3,\quad \ldots,\quad x_{b+1}
ight)}$

2

3

5

•

•

.

 p_b

2

3

5

•

•

•

 p_b

Etapes de la méthode

Construction de y - Pivot de Gauss

▶ b+1 vecteurs de \mathbb{F}_2^b , système lié:

$$\exists (\lambda_i)_{i \in [\![1,b+1]\!]} \in \{0,1\}^{b+1} \mid \sum_{i=1}^{b+1} \lambda_i v_i = 0_{\mathbb{F}_2^b} = (2\alpha_1,\ldots,2\alpha_b)$$

$$lackbox{ On pose } y = \prod_{j=1}^b p_j^{\alpha_j} \ {\rm et} \ x = \prod_{j=1}^{b+1} x_j^{\lambda_j}$$

Résultat admis (calcul en Annexe)

$$x^2 \equiv y^2 \pmod{N}$$

Etapes de la méthode

Construction de y - Pivot de Gauss

▶ b+1 vecteurs de \mathbb{F}_2^b , système lié:

$$\exists (\lambda_i)_{i \in [\![1,b+1]\!]} \in \{0,1\}^{b+1} \mid \sum_{i=1}^{b+1} \lambda_i v_i = 0_{\mathbb{F}_2^b} = (2\alpha_1,\ldots,2\alpha_b)$$

lacksquare On pose $y=\prod_{j=1}^b p_j^{lpha_j}$ et $x=\prod_{j=1}^{b+1} x_j^{\lambda_j}$

Résultat admis (calcul en Annexe)

$$x^2 \equiv y^2 \pmod{N}$$

Construction de y - Pivot de Gauss

▶ b+1 vecteurs de \mathbb{F}_2^b , système lié:

$$\exists (\lambda_i)_{i \in [\![1,b+1]\!]} \in \{0,1\}^{b+1} \mid \sum_{i=1}^{b+1} \lambda_i v_i = 0_{\mathbb{F}_2^b} = (2\alpha_1,\ldots,2\alpha_b)$$

▶ On pose $y = \prod_{j=1}^b p_j^{\alpha_j}$ et $x = \prod_{j=1}^{b+1} x_j^{\lambda_j}$

Résultat admis (calcul en Annexe)

$$x^2 \equiv y^2 \pmod{N}$$

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers? \cL La méthode de Dixon

Etapes de la méthode

On peut trouver les λ_i avec un système que l'on résout avec un **pivot de Gauss**

► $N = 20382493 = 3467 \times 5879$ et $b = 4$. ► $x_j^2 \mod N = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}}$ pour $j \in [1, 5]$	32877 35261 56569	v_j $(6,5,2,2)$ $(3,0,7,0)$ $(5,3,0,1)$ $(3,2,1,0)$ $(0,2,3,1)$
	48834	(0, 2, 3, 1)

ightharpoonup On résout dans \mathbb{F}_2^5

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 3\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 1\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 0\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

	<i>x_j</i> 16853	v_j (6, 5, 2, 2)
► $N = 20382493 = 3467 \times 5879$ et $b = 4$. ► $x_i^2 \mod N = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}}$ pour $j \in [1, 5]$	32877	(3,0,7,0) (5,3,0,1)
$ x_j^* \mod N = 2^{r_j} \cdots r_j^{r_j} \text{pour } j \in [1, 5] $		(3, 2, 1, 0) (0, 2, 3, 1)

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 3\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 1\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 0\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

•	N = 20382493 =	3467 ×	5879	b + b = 4
	N = 20302+33 =	J+01 /	3013	JL D — T.

$$ightharpoonup x_j^2 \mod N = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}} \text{ pour } j \in [1, 5]$$

$$\begin{array}{ccc} x_j & v_j \\ 16853 & (6,5,2,2) \\ 32877 & (3,0,7,0) \\ 35261 & (5,3,0,1) \\ 56569 & (3,2,1,0) \\ 48834 & (0,2,3,1) \end{array}$$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 3\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 1\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 0\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

$$x_j$$

16853
N = 20382493 = 3467 × 5879 et $b = 4$. 32877
 $x_j^2 \mod N = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}} \text{ pour } j \in [1, 5]$ 56569

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 3\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 1\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 0\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

48834

(6, 5, 2, 2)

(3,0,7,0)(5,3,0,1)

(3, 2, 1, 0)

(0, 2, 3, 1)

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

$$N = 20382493 = 3467 \times 5879 \text{ et } b = 4.$$

$$ightharpoonup x_j^2 \mod N = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}} \text{ pour } j \in [1, 5]$$

$$\begin{array}{ccc} x_j & v_j \\ 16853 & (6,5,2,2) \\ 32877 & (3,0,7,0) \\ 35261 & (5,3,0,1) \\ 56569 & (3,2,1,0) \\ 48834 & (0,2,3,1) \end{array}$$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 3\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 1\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 0\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

►
$$N \wedge (x - y) = 5879$$
 et $N \wedge (x + y) = 3467$.

$$N = 20382493 = 3467 \times 5879$$
 et $b = 4$.

$$ightharpoonup x_j^2 \mod N = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}} \text{ pour } j \in [1, 5]$$

$$\begin{array}{ccc} x_j & v_j \\ 16853 & (6,5,2,2) \\ 32877 & (3,0,7,0) \\ 35261 & (5,3,0,1) \\ 56569 & (3,2,1,0) \\ 48834 & (0,2,3,1) \end{array}$$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 3\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 1\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 0\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

►
$$N \wedge (x - y) = 5879$$
 et $N \wedge (x + y) = 3467$.

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

Etapes de la méthode

Ce qu'il faut retenir

L'enjeu principal

Étant donné $b\in\mathbb{N}$, trouver b+1 nombres tels que $\forall j\in [\![1,b+1]\!], x_j^2 \mod N$ a ses facteurs premiers inférieurs à p_b

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

L'algorithme final

Plan

Introduction et enjeux

La méthode de Dixon

Congruences de carrés Etapes de la méthode

L'algorithme final

Optimisations

Crible quadratique

Approximation logarithmique

Résultats

L'algorithme final

L'algorithme final

Algorithme 1 Recherche de nombres

```
Entrée: N \in \mathbb{N} composé, b \in \mathbb{N}
Sortie: (v_i)_{i \in [1,b+1]}, (x_i)_{i \in [1,b+1]}
     pour i \leftarrow 1 \dots b + 1 faire
          en cours \leftarrow V
  2:
  3:
          tant que en_cours faire
 4:
               x_i \leftarrow \mathbb{U}(1, N-1)
               si x_i^2 \mod N est factorisable alors
  5:
                                                                         ▷ par algorithme naïf
                 en\_cours \leftarrow F
 6:
              v_i \leftarrow (v_i^{(1)}, \dots, v_i^{(b)})
  7:
     renvoyer (v_i)_{i \in [1,b+1]}, (x_i)_{i \in [1,b+1]}
```

L'algorithme final

Algorithme 2 Factorisation par la méthode de Dixon

Entrée: $N \in \mathbb{N}$ composé, $b \in \mathbb{N}$

Sortie: p et q, tels que $p \mid N$ et $q \mid N$

1:
$$(v_i)_{i \in \llbracket 1,b+1 \rrbracket}, (x_i)_{i \in \llbracket 1,b+1 \rrbracket} \leftarrow RechercheNombres(N,b)$$

2:
$$(\lambda_i)_{i \in \llbracket 1,b+1 \rrbracket} \leftarrow PivotdeGauss((v_i)_{i \in \llbracket 1,b+1 \rrbracket})$$

3:
$$x \leftarrow \prod_{j=1}^{b+1} x_j^{\lambda_j}$$

4:
$$y \leftarrow \prod_{j=1}^b p_j^{\alpha_j}$$

renvoyer
$$N \wedge (x - y), N \wedge (x + y)$$

Etude théorique (Louise Nguyen)

Une minoration de la densité des B-friables

Soit $B: \mathbb{N}^* \to \mathbb{N}^*$ une fonction telle que $\ln n = o(B(n))$ et $\ln B(n) = o(\ln n)$. Alors on a, pour $n \to +\infty$,

$$\Psi(B(n), n) \ge n \exp\left(\left(\frac{\ln n}{\ln B(n)} \ln \ln n\right) (-1 + o(1))\right)$$

Une complexité sous-exponentielle

$$\exp\left((1+o(1))2\sqrt{2}(\ln n \ln \ln n)^{1/2}\right)$$

lorsque
$$B = \exp\left(\frac{1}{\sqrt{2}}(\ln n \ln \ln n)^{1/2}\right)$$

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible quadratique
Approximation logarithmique

Résultats

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

└ Optimisations

Crible quadratique

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations

Crible quadratique

Approximation logarithmique

Résultats

- Optimisations
 - Crible quadratique

- ▶ Utilisation d'un polynôme $Q = (\lfloor \sqrt{N} \rfloor + X)^2 N$ pour générer les x_i
- ▶ Résolution de $Q(x) \equiv 0 \pmod{p}$ grâce à Tonelli-Shanks, 2 solutions x_1 et x_2 dans [1, p].
- $p|Q(x) \Longrightarrow \forall k \in \mathbb{N}, p|Q(x+kp)$ (Démonstration en Annexe)
- ightharpoonup Cribler sur un intervalle [1, S], puis sur [S+1, 2S] etc...

- └ Optimisations
 - Crible quadratique

- ▶ Utilisation d'un polynôme $Q = (\lfloor \sqrt{N} \rfloor + X)^2 N$ pour générer les x_i
- ▶ Résolution de $Q(x) \equiv 0 \pmod{p}$ grâce à Tonelli-Shanks, 2 solutions x_1 et x_2 dans [1, p].
- ▶ $p|Q(x) \implies \forall k \in \mathbb{N}, p|Q(x+kp)$ (Démonstration en Annexe)
- ightharpoonup Cribler sur un intervalle [1, S], puis sur [S+1, 2S] etc...

- └ Optimisations
 - Crible quadratique

- ▶ Utilisation d'un polynôme $Q = (\lfloor \sqrt{N} \rfloor + X)^2 N$ pour générer les x_i
- ▶ Résolution de $Q(x) \equiv 0 \pmod{p}$ grâce à Tonelli-Shanks, 2 solutions x_1 et x_2 dans [1, p].
- $ightharpoonup p|Q(x) \Longrightarrow orall k \in \mathbb{N}, p|Q(x+kp)$ (Démonstration en Annexe)
- ightharpoonup Cribler sur un intervalle [1, S], puis sur [S+1, 2S] etc...

- └ Optimisations
 - Crible quadratique

- ▶ Utilisation d'un polynôme $Q = (\lfloor \sqrt{N} \rfloor + X)^2 N$ pour générer les x_i
- ▶ Résolution de $Q(x) \equiv 0 \pmod{p}$ grâce à Tonelli-Shanks, 2 solutions x_1 et x_2 dans [1, p].
- $ightharpoonup p|Q(x) \Longrightarrow orall k \in \mathbb{N}, p|Q(x+kp)$ (Démonstration en Annexe)
- ightharpoonup Cribler sur un intervalle [1, S], puis sur [S+1, 2S] etc...

S = 10 N = 20382493

 $T = \left[Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)\right]$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$p=2 \mid \mid Q(1) \equiv 0 \pmod{2} \mid$$

$$S=10 \ | \ N=20382493$$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$p=2 \mid \mid Q(1) \equiv 0 \pmod{2}$$

 $[2732, 11736, 20796, 29831, 38868, \ldots, Q(10)]$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S=10$$
 $N=20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S=10$$
 $N=20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

Optimisations

Crible quadratique

Algorithme 3 Algorithme du crible quadratique

```
Entrée: N \in \mathbb{N}^*. b \in \mathbb{N}^*. S > 1
Sortie: (v_i)_{i \in [1,k]}, (x_i)_{i \in [1,k]}, k \in [0,S]
 1: T \leftarrow \text{tableau tel que } T[i] \leftarrow (i + |\sqrt{N}|)^2 - N \text{ pour } i \in [1, S]
 2: V \leftarrow \text{tableau tel que } V[i] \leftarrow (0, \dots, 0) \in \mathbb{N}^b \text{ pour } i \in [1, S]
 3: pour p \in \{p_1, \dots, p_b\} tel que N est un carré modulo p faire
         x_1, x_2 \leftarrow \text{les racines de } (X + |\sqrt{N}|)^2 - N \text{ modulo } p
 4:
         pour i \in \{1, 2\} faire
 5:
 6:
               q \leftarrow x_i
 7:
               tant que a < S faire
 8.
                    tant que T[q] \mod p = 0 faire
                    T[q] \leftarrow T[q]/p
 9.
                    V[q] \leftarrow V[q] + (0, \dots, 1, \dots, 0) (en position p)
10:
11:
                    q \leftarrow q + p
     renvoyer L'ensemble des (i + |\sqrt{N}|, V[i]) tels que T[i] = 1 pour
     i \in [1, S]
```

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

Optimisations

Approximation logarithmique

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations

Crible quadratique

Approximation logarithmique

Résultats

Annexe

└ Optimisations

Approximation logarithmique

- ▶ O(n) au lieu de $O(n^2)$, voire $O(n \log n)$
- ▶ $Q(x) = \prod_{i=1}^k p_i^{\alpha_i}$, soit $\ln(Q(x)) = \sum_{i=1}^k \alpha_i \ln(p_i)$. <u>Idée</u>: soustraire par $\alpha_i \ln(p_i)$ au lieu de diviser par $p_i^{\alpha_i}$
- $ightharpoonup \log_2(Q(x)) \approx \text{nb_bits}(Q(x))$
- Problème: on ne connaît pas α_i . Solution: on soustrait par $\log_2(p_i)$ seulement. Des approximations nécessitent déjà un seuil

- └ Optimisations
 - Approximation logarithmique

- ▶ O(n) au lieu de $O(n^2)$, voire $O(n \log n)$
- ▶ $Q(x) = \prod_{i=1}^k p_i^{\alpha_i}$, soit $\ln(Q(x)) = \sum_{i=1}^k \alpha_i \ln(p_i)$. <u>Idée</u>: soustraire par $\alpha_i \ln(p_i)$ au lieu de diviser par $p_i^{\alpha_i}$
- ▶ $log_2(Q(x)) \approx nb_bits(Q(x))$
- Problème: on ne connaît pas α_i.
 Solution: on soustrait par log₂(p_i) seulement. De approximations nécessitent déjà un seuil

- Optimisations
 - Approximation logarithmique

- ▶ O(n) au lieu de $O(n^2)$, voire $O(n \log n)$
- ▶ $Q(x) = \prod_{i=1}^k p_i^{\alpha_i}$, soit $\ln(Q(x)) = \sum_{i=1}^k \alpha_i \ln(p_i)$. <u>Idée</u>: soustraire par $\alpha_i \ln(p_i)$ au lieu de diviser par $p_i^{\alpha_i}$
- ▶ $log_2(Q(x)) \approx nb_bits(Q(x))$
- Problème: on ne connaît pas α_i . Solution: on soustrait par $\log_2(p_i)$ seulement. Desapproximations nécessitent déjà un **seuil**

- Optimisations
 - Approximation logarithmique

- ▶ O(n) au lieu de $O(n^2)$, voire $O(n \log n)$
- ▶ $Q(x) = \prod_{i=1}^k p_i^{\alpha_i}$, soit $\ln(Q(x)) = \sum_{i=1}^k \alpha_i \ln(p_i)$. <u>Idée</u>: soustraire par $\alpha_i \ln(p_i)$ au lieu de diviser par $p_i^{\alpha_i}$
- ▶ $log_2(Q(x)) \approx nb_bits(Q(x))$
- Problème: on ne connaît pas α_i . Solution: on soustrait par $\log_2(p_i)$ seulement. Des approximations nécessitent déjà un **seuil**

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible quadratique
Approximation logarithmique

Résultats

Annexe

Résultats

Après plusieurs centaines de tests, on a les résultats suivants:

Bits	Dixon	QSIEVE	MPQS
60	0.5s	0.05s	-
80	5s	0.1s	-
100	100s	0.1s	0.1s
120	-	2s	0.6s
140	-	5s	5s
160	-	-	80s

Graphique final

Annexe

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible quadratique
Approximation logarithmique

Résultats

Annexe

└─Annexe └─Démonstrations

Proposition

Soient $b \in \mathbb{N}$, $(x_i)_{i \in \llbracket 1, b+1 \rrbracket} \in \mathbb{N}^{b+1}$ et $(v_i)_{i \in \llbracket 1, b+1 \rrbracket} \in \mathbb{F}_2^b$ les vecteurs valuations de $x_i^2 \pmod{N}$ pour $i \in \llbracket 1, b+1 \rrbracket$ et finalement $(\lambda_i)_{i \in \llbracket 1, b+1 \rrbracket} \in \{0, 1\}^{b+1}$ tels que,

$$\sum_{i=1}^{b+1} \lambda_i v_i = 0_{\mathbb{F}_2^b} = (2\alpha_1, \dots, 2\alpha_b)$$

On pose $y = \prod_{j=1}^b p_j^{\alpha_j}$ et $x = \prod_{j=1}^{b+1} x_j^{\lambda_j}$, alors $x^2 \equiv y^2 \pmod{N}$

└─Annexe └─Démonstrations

Démonstration

$$x^{2} = (\prod_{i=1}^{b+1} x_{i}^{2})^{\lambda_{i}} \equiv \prod_{i=1}^{b+1} \prod_{j=1}^{b} p_{j}^{\lambda_{i} v_{i}^{(j)}} \pmod{N}$$

$$\equiv \prod_{j=1}^{b} \prod_{i=1}^{b+1} p_{j}^{\lambda_{i} v_{i}^{(j)}} \pmod{N}$$

$$\equiv \prod_{j=1}^{b} p_{j}^{\sum_{i=1}^{b+1} \lambda_{i} v_{i}^{(j)}} \pmod{N}$$

$$\equiv (\prod_{j=1}^{b} p_{j}^{\alpha_{j}})^{2} \pmod{N}$$

$$\equiv y^{2} \pmod{N}$$

$$(\text{déf de } \alpha_{j})$$

$$\equiv y^{2} \pmod{N}$$

└─Annexe └─Démonstrations

Proposition

Si
$$Q = (\lfloor \sqrt{N} \rfloor + X)^2 - N$$
, alors $p \mid Q(x) \implies \forall k \in \mathbb{N}, p \mid Q(x + kp)$

Démonstration

En effet, supposons $p \mid Q(x)$, on a:

$$Q(x + kp) = (\lfloor \sqrt{N} \rfloor + x + kp)^{2} - N$$

$$= Q(x) + 2kp(\lfloor \sqrt{N} \rfloor + x) + k^{2}p^{2}$$

$$= Q(x) + p \times (2k(\lfloor \sqrt{N} \rfloor + x) + k^{2}p)$$

d'où $p \mid Q(x + kp)$

../c/vector.h

```
#pragma once
#include <gmp.h>
void mod_vect(int* v, int mod, int n1);
void add_vect(int* sum, int* op, int n1);
```

../c/vector.c

```
#include <gmp.h>
#include <assert.h>
#include <stdlib.h>
#include "system.h"
void mod_vect(int* v, int mod, int n1){
    for(int i = 0; i < n1; i++){
        v[i] = abs(v[i]) \% mod;
void add_vect(int* sum, int* op, int n1){
    for(int i = 0; i < n1; i++){
        sum[i] += op[i];
void div_vect(int* v, int d, int n1){
    for(int i = 0; i < n1; i++){
        assert(v[i]\%d == 0);
```

../c/tonellishanks.h

```
#pragma once
```

#include <gmp.h>

void tonelli_shanks_ui(mpz_t n, int p, int* x1, int* x2

../c/tonellishanks.c

```
#include <stdint.h>
#include <gmp.h>
#include <stdio.h>
                                                            mpz_t temp, pj;
#include <assert.h>
                                                            mpz_init(temp);
#include <stdlib.h>
                                                            mpz init set ui(pj, p);
uint64 t modpow(uint64_t a, uint64_t b, uint64_t n)
                                                            if (ss == 1) {
                                                                //uint64 t r1 = modpow(n, (p + 1) / 4, p);
    uint64 t x = 1, y = a;
                                                                mpz powm ui(temp, n, (p+1)/4, pj);
    while (b > 0) {
                                                                uint64 t r1 = mpz_get_ui(temp);
        if (b % 2 = 1) {
            x = (x * y) \% n; // multiplying with base
                                                                *x1 = r1:
                                                                *x2 = p - r1:
        v = (v * v) \% n: // squaring the base
                                                                mpz_clears(temp, pj, NULL);
       b /= 2:
                                                                return;
    return x % n:
                                                            while (modpow(z, (p-1) / 2, p) != (unsigned)
                                                                   long int) p-1) { // uint 64 only there
void tonelli shanks ui(mpz t n. unsigned long int p.
                                                                   for the compiler to stop complaining
      int* x1. int* x2) {
                                                                z++:
    uint64 t q = p - 1;
    uint64 tss = 0:
    uint64 t z = 2:
                                                            c = modpow(z, q, p):
    uint64 t c, r, t, m;
                                                            //r = modpow(n, (q + 1) / 2, p);
                                                            mpz_powm_ui(temp, n, (q+1)/2, pj);
    while ((q \& 1) == 0) {
                                                            r = mpz get ui(temp);
        ss \pm = 1:
        a >>= 1:
                                                            //t = modpow(n, a, p):
```

```
mpz_powm_ui(temp, n, q, pj);
    t = mpz get ui(temp);
    m = ss:
    while(1){
        uint64 t i = 0, zz = t:
        uint64 t b = c, e;
        if (t == 1) {
            *x1 = r:
            *x2 = p - r:
            mpz clears(temp, pj, NULL);
            return:
        while (zz != 1 \&\& i < (m-1)) {
            zz = zz * zz \% p;
            i++:
        e = m - i - 1:
        while (e > 0) {
            b = b * b \% p:
            e--:
        r = r * b \% p:
        c = b * b \% p;
        t = t * c % p;
        m = i
void tonelli_shanks_mpz(mpz_t n, mpz_t p, mpz_t
      x1, mpz t x2){
    assert(mpz\_legendre(n, p) == 1);
```

```
mpz t q, z;
mpz init set(a, p):
mpz_sub_ui(q, q, 1);
int ss = 0;
mpz_init_set_ui(z, 2);
while(mpz divisible ui p(q, 2) != 0){
    ss += 1;
    mpz divexact ui(a, a, 2):
mpz_t op1;
mpz init(op1):
if (ss == 1) {
    //uint64 t r1 = modpow(n, (p + 1) / 4, p):
    mpz add ui(op1, p, 1);
    mpz divexact ui(op1, op1, 4);
    mpz powm(op1, n, op1, p):
    mpz set(x1, op1);
    mpz\_sub(x2, p, x1):
    mpz clears(q, z, op1, NULL);
    return;
```

mpz_t op2, op3; mpz_inits(op2, op3, NULL);

mpz sub ui(op1, p, 1);

mpz divexact ui(op1, op1, 2):

```
mpz powm(op2, z, op1, p):
mpz_sub_ui(op3, p. 1);
                                                             mpz sub ui(op1, m, 1):
while(mpz_cmp(op2, op3) != 0){
                                                             while(mpz_cmp_ui(zz, 1) != 0 \&\& mpz_cmp
    mpz add ui(z, z, 1);
                                                                    (i, op1)<0){
    mpz powm(op2, z, op1, p);
                                                                 mpz mul(zz, zz, zz);
                                                                 mpz_mod(zz, zz, p);
                                                                 mpz add ui(i, i, 1);
mpz t c, r, t, m, i, zz, b, e;
mpz inits(c, r, t, m, i, zz, b, e, NULL):
mpz_powm(c, z, q, p);
                                                             mpz_sub(e, m, i);
                                                             mpz sub ui(e, e, 1);
mpz_add_ui(op1, q, 1);
                                                             while(mpz_sgn(e)>0){
mpz divexact ui(op1, op1, 2):
                                                                 mpz_mul(b, b, b);
mpz powm(r, n, op1, p);
                                                                 mpz mod(b, b, p);
                                                                 mpz sub ui(e, e, 1);
mpz powm(t, n, q, p):
mpz set ui(m, ss);
                                                             mpz mul(r, r, b);
                                                             mpz mod(r, r, p):
while(1){
    mpz set ui(i, 0);
                                                             mpz mul(c, b, b);
    mpz set(zz, t):
                                                             mpz mod(c, c, p):
    mpz_set(b, c);
                                                             mpz mul(t, t, c);
    if(mpz\_cmp\_ui(t, 1) == 0){
                                                             mpz mod(t, t, p);
        mpz set(x1, r):
        mpz sub(\times 2, p, \times 1);
                                                             mpz set(m, i);
        mpz_clears(c, r, t, m, i, zz, b, e, op1, op2
               . op3. g. z. NULL):
        return:
```

../c/system.h

```
#pragma once
#include <stdbool.h>

typedef system_s;

typedef struct system {
    int** m;
    int* perm;
    int* sol;
    bool done;
    int 1, n2, arb;
} system_t init_gauss(int** v, int n1, int n2);
void gaussian_step(system_t s);
void free_system(system_t s);
```

../c/system.c

```
#include "system.h"
#include "vector.h"
                                                              return -1;
#include "list matrix utils.h"
#include <stdlib.h>
#include <stdio.h>
                                                          system_t transpose(int** v, int n1, int n2){
#include <stdbool.h>
                                                              system t s = malloc(sizeof(system s));
void swap lines horz(system t s, int i, int j){
                                                              s->m = malloc(n2*sizeof(int*));
    int* temp = s->m[i];
                                                              for(int i = 0; i < n2; i++){
    s->m[i] = s->m[j];
                                                                  s->m[i] = malloc(n1*sizeof(int));
    s->m[i] = temp:
                                                                  for(int j = 0; j < n1; j++){
                                                                      s->m[i][i] = v[i][i];
void swap_lines_vert(system_t s, int i, int j){
    int temp = s->perm[i];
    s->perm[i] = s->perm[i];
                                                              s->n1 = n2
                                                              s->n2 = n1:
    s->perm[i] = temp:
                                                              return s;
    for(int k = 0; k < s -> n1; k++){
        int temp = s->m[k][i]:
        s->m[k][i] = s->m[k][i]:
                                                          void triangulate(system_t s){
        s->m[k][i] = temp;
                                                              s->perm = malloc(s->n2*sizeof(int));
                                                              for(int i = 0: i < s -> n2: i++){
                                                                  s->perm[i] = i:
int find index(system t s, int from, int look){
    for(int i = from; i < s -> n1; i++){
                                                              int i = 0:
        if(s->m[i][look]){
                                                              int i = 0:
                                                              while(i < s -> n1 \&\& i < s -> n2){
            return i;
                                                                  int k = find index(s, i, i):
```

```
if(k! = -1)
            if(i!=i){
                 swap lines vert(s, i, i):
                                                               fprintf(stderr, "ERROR: All vectors are zero in
                                                                      system\n"):
                                                               exit(1);
            swap lines horz(s, i, k);
            for(int l = i + 1; l < s -> n1; l++){
                                                           void init sol(system ts){
                 if(s->m[l][i] == 1){
                                                               s->sol = malloc(s->n2*sizeof(int));
                     sub vect(s->m, I, i, s->n2);
                                                               for(int i = s - > arb; i < s - > n2; i + + ){
                     mod_vect(s->m[l], 2, s->n2);
                                                                   s->sol[i] = 0:
            i++:
                                                           void iter sol(system ts){
            i = i;
                                                               int i = s - > arb:
        else{
                                                               while(i < s -> n2 \&\& (s -> sol[i] == 1)){
                                                                   s->sol[i]=0;
                                                                   i++:
                                                               if(i >= s->n2){
                                                                   s->done = true;
void get_arbitary(system_t triangulated){
                                                                    return:
    for(int i = triangulated \rightarrow n1-1; i >= 0; i--)
                                                               s->sol[i]=1;
        int i = 0;
        while(j < triangulated->n2 && !triangulated
                ->m[i][j]){
            i++:
                                                           system t init gauss(int** v, int n1, int n2){
                                                               //printf("Initial vectors\n");
        if(i<triangulated->n2){
                                                               //print II(v. n1, n2):
            triangulated->arb = j+1;
            return;
                                                               system t s = transpose(v, n1, n2);
                                                               s->done = false:
```

```
//printf("Transposed\n");
    //print | ||(s->m, s->n1, s->n2)|
    for(int i = 0; i < s - > n1; i + + ){
        mod vect(s\rightarrowm[i], 2, s\rightarrown2);
    //printf("Modded\n");
    //print | ||(s->m, s->n1, s->n2)|
    triangulate(s);
    //printf("Triangulated\n");
    //print \ II(s->m, s->n1, s->n2);
    get_arbitary(s):
    init sol(s);
    return s:
void gaussian_step(system_t s){
```

for(int i = s -> n1 - 1; i >= 0; $i --){$

iter_sol(s);

int i = 0:

```
 \begin{aligned} & \text{while}(j < s -> n2 \&\& !s -> m[i][j]) \{ \\ & j ++ ; \\ \} \\ & \text{if}(j < s -> n2) \{ \\ & s -> sol[j] = 0; \\ & \text{for}(\text{int } k = s -> n2 - 1; \ k > j; \ k --) \{ \\ & s -> sol[j] -= s -> m[i][k] * s -> sol[k \\ & j; \\ & s -> sol[j] = abs(s -> sol[j]) \% \ 2; \\ \} \\ & s -> sol[j] = abs(s -> sol[j]) \% \ 2; \\ \end{aligned}
```

void free_system(system_t s){
for(int i = 0; i < s - > n1; i + +){

free(s->m[i]);

free(s->m); free(s->sol);

free(s);

free(s->perm);

../c/parse_input.h

```
#pragma once
                                                           mpz t N;
#include <gmp.h>
                                                           bool quiet;
#include <stdbool.h>
                                                           TYPE algorithm;
                                                           int extra:
typedef enum {DIXON, QSIEVE, MPQS, PMPQS}
                                                           int delta;
       TYPE:
                                                       } input_t;
typedef struct input_s {
                                                       input_t* parse_input(int argc, char** argv);
    char* output file;
                                                       void free_input(input_t* input);
    int bound, sieving_interval;
```

../c/parse_input.c

```
#include "parse input.h"
                                                           void free_input(input_t* input){
                                                               if(input->output file) free(input->output file);
#include <stdlib.h>
#include <string.h>
                                                               mpz_clear(input->N):
#include <gmp.h>
                                                               free(input):
#include <stdbool.h>
input t* init input(void){
                                                           input t* parse input(int argc, char** argv){
    input t* input = malloc(sizeof(input t));
                                                               input t* input = init input();
    input—>bound = -1;
    input->output file = NULL:
                                                               int i = 1
    input—>sieving interval = -1:
                                                               while(i<argc){
    input->extra = -1:
                                                                   if(strcmp(argv[i], "-b") == 0 || strcmp(argv[i
                                                                          1. "--bound") == 0){
    input->quiet = false:
    input->algorithm = QSIEVE:
                                                                       i++\cdot
    input->delta = 0:
                                                                       if(i<argc){</pre>
    mpz init set ui(input->N, 0);
                                                                            if(valid int(argv[i])) input->bound
                                                                                   = atoi(argv[i]):
    return input:
                                                                            else return NULL;}
                                                                       else return NULL;
bool valid_int(char* str){
    int i = 0:
    char c = str[i];
                                                                   else if(strcmp(argv[i], "-s") == 0 || strcmp(
                                                                           argv[i], "--sieving interval") == 0){
    while(c != '\setminus 0'){
        if(c<48 || c>57) return false;
                                                                       i++:
        c = str[++i];
                                                                       if(i<argc){</pre>
                                                                            if(valid int(argv[i])) input->
                                                                                   sieving interval = atoi(argv[i])
    return true;
                                                                            else return NULL;}
                                                                       else return NULL:
```

```
}
                                                               i++:
                                                               if(i<argc) input->output file = argv[i];
else if(strcmp(argv[i], "-e") == 0 || strcmp(
                                                               else return NULL:
       argv[i]. "--extra") == 0){
    i++:
    if(i<argc){</pre>
                                                           else if(strcmp(argv[i], "-t") == 0 || strcmp(
                                                                  argv[i], "--type") == 0){
        if(valid_int(argv[i])) input->extra =
                                                               i++:
                atoi(argv[i]);
        else return NULL;}
                                                               if(i<argc) {
                                                                   if(strcmp(argv[i], "dixon") == 0)
    else return NULL:
}
                                                                          input->algorithm = DIXON:
                                                                   else if(strcmp(argv[i], "qsieve") ==
else if(strcmp(argv[i], "-n") == 0 || strcmp(
                                                                          0) input->algorithm =
       argv[i]. "--number") == 0){
                                                                          QSIEVE:
    i++:
                                                                   else if(strcmp(argv[i], "mpqs") == 0)
                                                                           input->algorithm = MPQS;
    if(i<argc){</pre>
        if(valid_int(argv[i])) mpz_set_str(
                                                                   else if(strcmp(argv[i], "pmpgs") ==
                input->N, argv[i], 10):
                                                                          0) input->algorithm =
        else return NULL;}
                                                                          PMPQS:
    else return NULL:
                                                                   else return NULL:
                                                               else return NULL:
else if(strcmp(argv[i], "-d") == 0 || strcmp(
       argv[i]. "--delta") == 0){
                                                           else if(strcmp(argy[i], "-q") == 0 ||
                                                                   strcmp(argv[i], "-stfu") == 0 /*
    i++:
                                                                          easter egg*/ ||
    if(i<argc){</pre>
        if(valid_int(argv[i])) input->delta =
                                                                   strcmp(argv[i], "--quiet") == 0){
                atoi(argv[i]);
                                                               input->quiet = true;
        else return NULL;}
    else return NULL:
}
                                                           else return NULL:
else if(strcmp(argv[i], "-0") == 0){
                                                           i++:
```

```
}
return input;
```

../c/list_matrix_utils.h

```
#pragma once
```

void print_list(int* l, int n);

void print_II(int** II, int n1, int n2);
void free_II(int** m, int n1);

../c/list_matrix_utils.c

../c/factorbase.h

```
#pragma once
#include <gmp.h>

// bruh
bool is_prime(int n);

// calculates pi(n), the number of prime numbers <=
int pi(int n);

// returns a list of piB first primes</pre>
```

../c/factorbase.c

```
#include <stdbool.h>
#include <gmp.h>
                                                           int* primes(int piB, int B){
#include <stdlib.h>
                                                               int* p = malloc(piB*sizeof(int));
                                                               int k = 0:
bool is prime(int n) {
                                                               for (int i = 2; i <= B; i++) {
    // Corner cases
                                                                   if (is prime(i)){
    if (n <= 1)
                                                                       p[k] = i:
        return false;
                                                                        k++:
    if (n <= 3)
        return true:
                                                               return p;
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n \% 2 == 0 || n \% 3 == 0)
        return false:
                                                           /* Used for legendre symbol, exists in gmp already
                                                           bool euler criterion(mpz t n, int p){
    for (int i = 5: i * i <= n: i = i + 6)
                                                               int e = (p-1)/2:
        if (n \% i == 0 || n \% (i + 2) == 0)
                                                               mpz tr, p1;
            return false:
                                                               mpz init(r);
                                                               mpz init set ui(p1, p):
                                                               mpz powm ui(r. n. e. p1):
    return true:
                                                               return(mpz \ cmp \ ui(r, 1) == 0);
int pi(int n) {
    int k = 0:
    for (int i = 2; i <= n; i++) {
                                                           int* prime base(mpz t n, int* pb len, int* primes,
        if (is prime(i)) k++:
                                                                  int piB){
                                                               int* pb = malloc(piB*sizeof(int));
    return k;
                                                               pb[0] = 2;
```

```
 \begin{array}{lll} & \text{int } j = 1; & & & \\ & \text{mpz\_t p1;} & & & \\ & \text{mpz\_init(p1);} & & & \\ & \text{pp} = \text{cuil(p1, primes[i]);} & & & \\ & \text{for } mpas & & \\ & \text{for } mpas & & \\ & \text{for } mpas & & \\ & \text{mpz\_legendre(n, p1)} = 1) \{ & & & \\ & \text{mpz\_clear(p1);} & & \\ & \text{pb[j]} = \text{primes[i];} & & \\ & & \text{j++:} & & \\ \end{array} \right)
```

../c/main.c

```
#include <stdbool.h>
                                                          */
#include <gmp.h>
#include <svs/time.h>
#include <stdio.h>
                                                        void rebuild_mpqs(mpz_t prod, mpz_t* d, int* v, int*
#include <stdlib.h>
                                                                primes, int n1, system ts){
#include <assert.h>
                                                            mpz set ui(prod, 1);
#include "system.h"
                                                            mpz t temp:
#include "vector.h"
                                                            mpz init(temp);
#include "parse input.h"
                                                            for(int i = 0; i < n1; i++){
#include "factorbase.h"
                                                                 if(s->sol[i]){
#include "list_matrix_utils.h"
                                                                     mpz_mul(prod, prod, d[s->perm[i]]);
// Include algorithms
                                                                 mpz_ui_pow_ui(temp, primes[i], v[i]);
// Dixon's method
                                                                 mpz mul(prod, prod, temp):
#include "./dixon/dixon.h"
                                                            mpz clear(temp);
// The Quadratic Sieve
#include "./qsieve/qsieve.h"
                                                        void rebuild(mpz t prod, int* v, int* primes, int n1){
                                                             /** Rebuilds the product of primes to the power of
// Multipolynomial Quadratic Sieve
#include "./mpqs/polynomial.h"
                                                                     half
#include "./mpgs/mpgs.h"
                                                              * the solution found by the gaussian solve
#include "./mpgs/parallel mpgs.h"
                                                              * FX-
                                                              *v = (1, 2, 3, 1)
/**
                                                              * primes = [2, 3, 5, 7]
                                                              * prod = 2**1 * 3** 2 * 5**3 * 7**1
                                                              * returns prod
 * START OF ALGORITHM
```

```
mpz set ui(prod, 1);
                                                              int* pb;
    mpz t temp:
                                                              switch(input->algorithm){
    mpz init(temp):
                                                                  case DIXON:
    for(int i = 0; i < n1; i++){
                                                                      pb = p;
        mpz ui pow ui(temp, primes[i], v[i]);
                                                                      pb len = piB;
        mpz mul(prod, prod, temp):
                                                                      break:
                                                                  case QSIEVE:
    mpz clear(temp);
                                                                      pb = prime base(input->N, &pb len, p,
                                                                              piB):
                                                                      if(!input—>quiet) printf("base_reduction_
void sum_lignes(int* sum, int** v, system_t s){
                                                                             %f%%\n", (float)pb len/piB
    /** Sums the lines of vectors into 'sum' according
                                                                             *100):
           the solution of the
                                                                      free(p):
     * output of the system 's', such that each power
                                                                      break:
                                                                  case MPQS:
            is even
                                                                      pb = prime base(input->N, &pb len, p.
    for(int i = 0; i < s -> n1; i++){
                                                                              piB);
        sum[i] = 0;
                                                                      pb[pb | len] = -1;
                                                                      if(!input->quiet) printf("base reduction
                                                                              %f%%\n", (float)pb_len/piB
    for(int i = 0; i < s -> n2; i++){
                                                                             *100):
        if(s->sol[i]){
                                                                      free(p):
            add_vect(sum, v[s->perm[i]], s->n1);
                                                                      break:
                                                                  case PMPQS:
                                                                      pb = prime base(input->N, &pb len, p,
                                                                              piB):
                                                                      pb[pb | len] = -1;
void factor(input t* input){
                                                                      if(!input->quiet) printf("base_reduction_
    int piB = pi(input->bound);
                                                                             %f%%\n". (float)pb len/piB
    if(!input->quiet) printf("pi(B)_{\sqcup}=_{\sqcup}%d\n", piB);
                                                                             *100):
    int* p = primes(piB, input->bound);
                                                                      free(p);
                                                                      break:
```

int pb len:

```
case PMPQS:
int target nb = pb len + input->extra;
                                                                 d = malloc(target nb*sizeof(mpz t));
                                                                 for(int i = 0: i < target nb: i++){
mpz_t*z = malloc((target_nb)*sizeof(mpz_t));
                                                                     mpz init(d[i]):
for(int i = 0; i < target nb; i++){
   mpz init(z[i]);
                                                                 v = parallel mpgs(z, d, input->N,
                                                                        pb len. pb. input->extra. input
                                                                        ->sieving interval, input->delta,
//Getting zis
                                                                         input->quiet);
int** v:
                                                                 break:
mpz t* d:
struct timeval t1, t2;
gettimeofday(&t1. 0):
                                                         gettimeofdav(&t2. 0):
switch(input->algorithm){
                                                         long seconds = t2.tv sec - t1.tv sec:
   case DIXON:
                                                         long microseconds = t2.tv usec - t1.tv usec;
                                                         double time spent = seconds + microseconds*1e
        v = dixon(z, input -> N, pb len, pb, input
               ->extra. input->quiet):
                                                                -6.
                                                         if(!input->quiet) printf("Time_ito, iget, izi:, i%fs\n".
        break:
   case QSIEVE:
                                                                 time spent);
        v = asieve(z, input -> N, pb len, pb.
               input->extra. input->
                                                         mpz t f. Z1. Z2. test1. test2:
                                                         mpz inits(f, Z1, Z2, test1, test2, NULL);
               sieving interval, input->quiet);
        break:
   case MPQS:
                                                         //gaussian init
        d = malloc(target nb*sizeof(mpz t));
                                                         system t s;
        for(int i = 0; i < target nb; i++){
                                                         int* sum:
            mpz_init(d[i]);
                                                         switch(input->algorithm){
                                                             case DIXON:
        v = mpgs(z, d, input -> N, pb len, pb,
                                                                 s = init gauss(v, target nb, pb len);
               input->extra. input->
                                                                 sum = malloc(pb len*sizeof(int)):
               sieving_interval, input->delta.
                                                                 break:
                                                             case QSIEVE:
               input->quiet);
                                                                 s = init gauss(v. target nb. pb len):
        break:
```

```
sum = malloc(pb len*sizeof(int)):
                                                                            s):
        break:
                                                                    break:
   case MPQS:
                                                                case PMPQS:
       // for -1
                                                                    rebuild mpgs(Z2, d, sum, pb, pb len,
        s = init gauss(v, target nb, pb len+1);
                                                                            s);
        sum = malloc((pb len+1)*sizeof(int));
                                                                    break:
        break:
   case PMPQS:
       // for -1
                                                            // TEST
                                                            mpz_set(test1, Z1);
        s = init gauss(v, target nb, pb len+1):
       sum = malloc((pb\_len+1)*sizeof(int));
                                                            mpz_mul(test1, test1, test1);
       break;
                                                            mpz set(test2, Z2);
                                                            mpz mul(test2, test2, test2):
if(!input->quiet) printf("2^%d_solutions_to_
                                                            assert(mpz_congruent_p(test1, test2, input
      iterate\n", s->n2-s->arb);
                                                                   ->N) != 0);
                                                            // END TEST
bool done = false:
while(!done){
                                                            mpz sub(f, Z1, Z2);
                                                            mpz gcd(f, f, input->N);
   gaussian step(s);
   prod vect(Z1, z, target nb, s):
                                                            if(mpz cmp ui(f, 1) != 0 \&\& mpz cmp(f, f)
   sum lignes(sum, v, s);
                                                                   input->N) != 0){
   div vect(sum, 2, pb len):
                                                                assert(mpz_divisible_p(input->N, f));
                                                                if(!input->quiet) gmp_printf("%Zd_=_0
                                                                       [\%Zd]\n", input->N, f);
   switch(input—>algorithm){
        case DIXON:
                                                                done = true:
            rebuild(Z2, sum. pb. pb len):
            break:
        case QSIEVE:
                                                            mpz add(f, Z1, Z2);
            rebuild(Z2, sum. pb. pb len):
                                                            mpz gcd(f, f, input->N):
            break:
        case MPQS:
                                                            if(mpz cmp ui(f, 1) != 0 \&\& mpz cmp(f, f)
```

 $input -> N) != 0){$

rebuild mpgs(Z2, d, sum, pb, pb len,

```
assert(mpz divisible p(input->N, f)):
                                                                    for(int i = 0; i < target_nb; i++)
        if(!input->quiet) gmp printf("%Zd<sub>1</sub>=10
                                                                           mpz clear(d[i]);
               \lfloor \lfloor NZd \rfloor n'', input—>N. f):
                                                                   free(d):
        done = true:
                                                                   break:
   if(s->done){
        if(!input->quiet) fprintf(stderr, "ERROR:
                                                           mpz_clears(f, Z1, Z2, test1, test2, NULL);
               ino solution for this set of zi\n"
        exit(1);
                                                       int main(int argc, char** argv){
                                                           input t* input = parse input(argc, argv);
                                                           if(input==NULL){
                                                               fprintf(stderr, "ERROR: Invalid input\n"):
free(sum);
                                                               return 1:
free(pb);
free system(s):
                                                           if(mpz cmp ui(input->N, 0) == 0){
free II(v, target nb);
for(int i = 0; i < target nb; i++){
                                                               fprintf(stderr, "ERROR: No input number, I
   mpz_clear(z[i]);
                                                                       use_-n_{\parallel}%number%%\n"):
                                                               return 1:
free(z);
switch(input->algorithm){
   case DIXON:
                                                           if(input->bound == -1) input->bound =
                                                                  10000:
        break:
                                                           if(input->sieving\_interval == -1) input->
   case QSIEVE:
        break:
                                                                  sieving interval = 100000:
   case MPQS:
                                                           if(input->extra == -1) input->extra = 1;
        for(int i = 0; i < target nb; i++)
               mpz_clear(d[i]);
                                                           struct timeval t1. t2:
                                                           gettimeofday(&t1, 0);
        free(d);
        break;
                                                           factor(input);
```

gettimeofdav(&t2. 0):

case PMPQS:

../c/dixon/dixon.h

#pragma once

int** dixon(mpz_t* z, mpz_t N, int pb_len, int* pb,

int extra, bool tests);

../c/dixon/dixon.c

```
#include <gmp.h>
#include <stdbool.h>
#include <stdio.h>
                                                          int ** dixon(mpz_t* z, mpz_t N, int pb_len, int * pb,
#include <stdlib.h>
                                                                  int extra. bool tests){
                                                               /** Gets pb len+extra b-smooth realtions
bool vectorize dixon(mpz t n, int* v, int pb len, int*
                                                                      definied at:
        }(da
                                                                * Quadratic sieve factorisation algorithm
    /** Attemps naive factorisation to 'n' with the
                                                                * Bc. OndËĞrej Vladyka
           primes in
                                                                * Definition 1.11 (p.5)
     * the prime base 'pb' and putting the result into '
            v'. vector of powers of
     * the primes in the prime base
                                                               //ceil(sqrt(n))
     * If it succeeds, returns true, otherwise, returns
                                                               mpz t sart N:
            false
                                                               mpz_init(sqrt_N);
    */
                                                               mpz_sqrt(sqrt_N, N);
    for(int i = 0; i < pb len; i++){
                                                               mpz add_ui(sqrt_N, sqrt_N, 1);
        v[i] = 0:
                                                               mpz tzi;
                                                               mpz_t zi_cpy;
    for(int i = 0; i < pb_len && (mpz_cmp_ui(n, 1))
                                                               mpz_init_set(zi, sqrt_N);
           != 0): i++){}
                                                               mpz init(zi cpy);
        while (mpz divisible ui p(n, pb[i])){
            v[i]++:
                                                               int** v = malloc((pb_len+extra)*sizeof(int*));
            mpz divexact ui(n, n, pb[i]):
                                                               for(int i = 0; i < pb len+extra; i++){
                                                                   bool found = false:
                                                                   int* vi = malloc(pb_len*sizeof(int));
    if(mpz cmp ui(n, 1) == 0)
        return true:
                                                                   while(!found){
    return false:
```

fflush(stdout);

../c/qsieve/qsieve.h

```
#pragma once
#include <gmp.h>
#include <stdbool.h>
```

bool vectorize_qsieve(mpz_t n, int* v, int pb_len, int*

```
pb);
int** qsieve(mpz_t* z, mpz_t N, int pb_len, int* pb,
    int extra, int s, bool tests);
```

../c/qsieve/qsieve.c

```
#include <gmp.h>
#include <stdbool.h>
#include <stdio.h>
                                                               if(mpz\_cmp\_ui(n, 1) == 0)
#include <stdlib.h>
                                                                   return true:
#include <assert.h>
                                                               return false:
#include <math.h>
#include "../system.h"
                                                           float* prime logs(int* pb, int pb len){
#include "../tonellishanks.h"
                                                               float* plogs = malloc(pb len*sizeof(float));
bool vectorize_qsieve(mpz_t n, int* v, int pb len, int*
                                                               for(int i = 0; i < pb len; i++){
        }(dq
                                                                   plogs[i] = log2(pb[i]);
    /** Attemps naive factorisation to 'n' with the
           primes in
     * the prime base 'pb' and putting the result into '
                                                               return plogs;
            v', vector of powers of
     * the primes in the prime base
     * If it succeeds, returns true, otherwise, returns
                                                           int calculate threshhold(mpz t N, mpz t sqrt N, int
            false
                                                                  s, int loop number, int* pb, int pb len){
    for(int i = 0; i < pb_len; i++){
                                                               mpz_t qstart;
        v[i] = 0;
                                                               mpz init set ui(qstart, s);
                                                               mpz_mul_ui(qstart, qstart, loop_number);
                                                               mpz_add(qstart, qstart, sqrt_N);
    for(int i = 0; i < pb len && (mpz cmp ui(n, 1)
                                                               mpz mul(qstart, qstart, qstart);
           != 0); i++){}
                                                               mpz sub(gstart, gstart, N);
        while (mpz_divisible_ui_p(n, pb[i])){
            v[i]++
                                                               int t = mpz\_sizeinbase(qstart, 2) - (int) log2(pb[
            mpz divexact ui(n, n, pb[i]);
                                                                      pb len-1]);
                                                               mpz_clear(qstart);
```

```
mpz init(temp):
    return t:
                                                               // END TESTS
int ** qsieve(mpz_t* z, mpz_t N, int pb_len, int * pb,
       int extra, int s, bool quiet){
                                                               int* x1 = malloc(pb len*sizeof(int));
    /** Gets pb len+extra zis that are b-smooth,
                                                               int* x2 = malloc(pb len*sizeof(int));
           definied at:
     * Quadratic sieve factorisation algorithm
                                                               // find solution for 2
                                                               mpz set(temp, sqrt N);
     * Bc. OndËĞrej Vladyka
                                                               mpz mul(temp, temp, temp):
     * Definition 1.11 (p.5)
                                                               mpz_sub(temp, temp, N);
     */
                                                               \times 1[0] = 0;
                                                               if(mpz divisible ui p(temp. 2) == 0) \times 1[0] = 1:
    //ceil(sart(n))
    mpz t sart N:
    mpz init(sqrt N);
                                                               int sol1, sol2:
                                                               for(int i = 1; i < pb len; i++){
    mpz_sqrt(sqrt_N, N);
    mpz add ui(sgrt N. sgrt N. 1):
                                                                        tonelli shanks ui(N, pb[i], &sol1, &sol2);
                                                                        x1[i] = sol1;
    mpz t zi:
                                                                        x2[i] = sol2:
    mpz_init_set(zi, sqrt N);
    mpz t qx;
                                                                        // change solution from x\hat{A}\tilde{s} = n [p] to (
    mpz init(qx);
                                                                                sqrt(N) + x)\hat{A}\check{s} = n [p]
    int** v = malloc((pb len+extra)*sizeof(int*));
                                                                        mpz set ui(temp, x1[i]);
    for(int i = 0; i < pb len+extra; i++){
                                                                        mpz_sub(temp, temp, sart_N):
        v[i] = malloc(pb len*sizeof(int*));
                                                                        mpz_mod_ui(temp, temp, pb[i]);
    float* sinterval = malloc(s*sizeof(float));
                                                                        \times 1[i] = mpz\_get\_ui(temp);
    float* plogs = prime_logs(pb, pb_len);
                                                                        mpz set ui(temp, x2[i]);
                                                                        mpz sub(temp, temp, sqrt N);
    // TESTS
                                                                        mpz mod ui(temp, temp, pb[i]):
    mpz t temp:
```

```
\times 2[i] = mpz get ui(temp):
                                                                       //next interval
mpz clear(temp):
                                                                       x1[i] = x1[i] - s
                                                                       \times 2[i] = \times 2[i] - s:
int loop number = 0;
int relations found = 0;
int tries = 0:
                                                                   int t = calculate_threshhold(N, sqrt_N, s,
while(relations found < pb len + extra){
                                                                           loop number, pb, pb len);
                                                                   //printf("t = %d n", t);
    for(int i = 0: i < s: i++){
        sinterval[i] = 0:
                                                                   bool found:
    }
                                                                   for(int i = 0; i < s && relations found <
                                                                           pb len + extra: i++){
    // sieve for 2
                                                                       if(sinterval[i] > t){
    while (\times 1[0] < s)
                                                                           tries++:
        sinterval[x1[0]] += plogs[0];
        \times 1[0] += pb[0]:
                                                                           //zi = sart(n) + x where x = s*
                                                                                   loopnumber + i
    \times 1[0] = \times 1[0] - s;
                                                                            mpz set ui(zi, s);
                                                                            mpz_mul_ui(zi, zi, loop_number);
    // sieve other primes
                                                                            mpz_add_ui(zi, zi, i);
    for(int i = 1; i < pb len; i++){
                                                                            mpz add(zi, zi, sqrt N);
                                                                           // ax = zi**2 - N
        while(x1[i]<s){
             sinterval[x1[i]] += plogs[i];
                                                                            mpz mul(qx, zi, zi);
             \times 1[i] += pb[i]:
                                                                            mpz sub(qx, qx, N);
                                                                            found = vectorize qsieve(qx, v[
         while(x2[i] < s){
                                                                                   relations found], pb len, pb);
             sinterval[x2[i]] += plogs[i]:
                                                                            if(found){
             \times 2[i] += pb[i]:
                                                                                mpz set(z[relations found], zi);
                                                                                relations found++:
```

```
found = false:
                                                  loop_number++;
     if(!quiet){
         printf("\r");
         printf("%.1f%%", 1f%%",
                                              if(!quiet) printf("\n");
                 (float)
                 relations_found/(
                                              mpz_clears(sqrt_N, zi, qx, NULL);
                 pb_len+extra)*100, (
                                              free(x1);
                 float)relations_found/
                                              free(x2);
                tries*100);
                                              free(sinterval);
         fflush(stdout);
                                              free(plogs);
}
                                              return v;
```

$../c/mpqs/common_mpqs.h$

```
#pragma once
#include <gmp.h>
#include <stdbool.h>
```

int calculate_threshhold_mpqs(mpz_t sqrt_N, int s,
 int* pb, int pb_len, int delta);

../c/mpqs/common_mpqs.c

```
#include <gmp.h>
#include <stdbool.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
int calculate threshold mpgs(mpz t sgrt N, int s.
       int* pb, int pb len, int delta){
    mpz t astart:
    mpz_init_set_ui(qstart, s);
    mpz mul(gstart, gstart, sgrt N);
    int t = mpz_sizeinbase(qstart, 2) - (int) log2(pb[
           pb len-1]) — delta;
    mpz clear(qstart);
    return t:
float* prime logs mpgs(int* pb, int pb len){
    float* plogs = malloc(pb_len*sizeof(float));
    for(int i = 0; i < pb_len; i++){
        plogs[i] = log2(pb[i]):
    return plogs;
bool vectorize_mpqs(mpz_t n, int* v, int pb_len, int*
```

```
}(da
/** Attemps naive factorisation to 'n' with the
       primes in
 * the prime base 'pb' and putting the result into '
        v', vector of powers of
 * the primes in the prime base
 * If it succeeds, returns true, otherwise, returns
        false
*/
for(int i = 0; i < pb_len; i++){
    v[i] = 0:
if(mpz sgn(n) < 0){
    v[pb | len] = 1:
    mpz neg(n, n):
else{
    v[pb | len] = 0;
for(int i = 0; i < pb_len && (mpz_cmp_ui(n, 1))
       != 0); i++){}
    while (mpz_divisible_ui_p(n, pb[i])){
        v[i]++;
        mpz divexact ui(n, n, pb[i]);
if(mpz cmp ui(n, 1) == 0)
    return true:
```

```
\begin{tabular}{lll} \textbf{return false}; & \textbf{return true}; \\ & & & & & \\ \\ bool already\_added(mpz\_t zi, mpz\_t* z, int & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

../c/mpqs/polynomial.h

```
#pragma once
#include <gmp.h>
#include <stdbool.h>

struct poly_s {
    mpz_t d;
    mpz_t N;

    mpz_t a;
    mpz_t b;
    mpz_t c;

    mpz_t zi;
    mpz_t z;;
    mpz_t a;;
```

```
// used to make operations without declaring and freeing everytime
mpz_t op1, op2, op3;
};

typedef struct poly_s* poly_t;

void get_next_poly(poly_t p);
poly_t init_poly(mpz_t N, int M);
void calc_poly(poly_t p, mpz_t x);
poly_t copy_poly(poly_t p);
void free poly(poly t p);
```

../c/mpqs/polynomial.c

```
#include "polynomial.h"
                                                                mpz_clears(g, n, m, NULL);
#include <gmp.h>
#include <stdlib.h>
                                                                mpz set(p->b, p->d):
#include <assert.h>
                                                                mpz mul(p\rightarrowb, p\rightarrowb, p\rightarrowop1):
#include <stdio.h>
                                                                mpz add(p->b, p->b, x1):
#include "../tonellishanks.h"
                                                                mpz mul(p\rightarrow01, p\rightarrowb, p\rightarrowb):
                                                                assert(mpz congruent p(p->op1, p->N, p->a)
void calc coefficients(poly t p){
                                                                        != 0);
    mpz mul(p->a, p->d, p->d):
                                                                mpz sub(p->c, p->op1, p->N):
    mpz t \times 1, \times 2;
                                                                mpz divexact(p->c, p->c, p->a):
    mpz_inits(x1, x2, NULL);
    tonelli_shanks_mpz(p->N, p->d, \times 1, \times 2);
                                                                mpz_clears(x1, x2, NULL);
    // getting ready for congruence solve for raising
           solution
                                                            void get_next_poly(poly_t p){
    mpz mul ui(p->op1, x1, 2);
                                                                mpz nextprime(p->d, p->d);
                                                                while(mpz legendre(p->N, p->d) != 1){
    mpz mul(p->op2, x1, x1):
                                                                    mpz nextprime(p->d, p->d):
    mpz sub(p\rightarrowop2, p\rightarrowop2, p\rightarrowN):
    mpz divexact(p\rightarrowop2, p\rightarrowop2, p\rightarrowd);
                                                                calc coefficients(p);
    mpz_neg(p->op2, p->op2);
    mpz mod(p\rightarrowop2, p\rightarrowop2, p\rightarrowd):
                                                            poly tinit poly(mpz t N, int M){
    mpz tg, n, m;
                                                                poly t p = malloc(sizeof(struct poly s));
    mpz_inits(g, n, m, NULL);
                                                                mpz inits(p->d, p->N, p->a, p->b, p->c, p
    mpz gcdext(g, n, m, p->d, p->op1);
    assert(mpz cmp ui(g, 1) == 0);
                                                                        ->on1. n->on2. n->on3. n->zi. n->
    mpz mul(p\rightarrowop1, p\rightarrowop2, m); // t
                                                                        ax. NULL):
```

```
mpz _set(p->N, N);
                                                           mpz add(p->qx, p->qx, p->c);
   // choose value of d according to 2.4.2
   // sart( (sart(2N))/M )
    mpz mul ui(p->op1, N, 2);
    mpz sqrt(p->op1, p->op1);
                                                       void free poly(poly t p){
                                                           mpz_clears(p\rightarrowd, p\rightarrowN, p\rightarrowa, p\rightarrowb, p\rightarrowc.
    mpz_div_ui(p->op1, p->op1, M);
   mpz sqrt(p->op1, p->op1);
                                                                  p->op1, p->op2, p->op3, p->zi, p->
   mpz prevprime(p->d, p->op1);
                                                                  qx, NULL);
                                                           free(p):
   // get next prime such that (n/p) = 1
    while(mpz legendre(N, p->d) != 1){
       mpz nextprime(p->d, p->d):
                                                       poly_t copy_poly(poly_t p){
                                                           poly t cpy = malloc(sizeof(struct poly s)):
   calc coefficients(p);
                                                           mpz inits(cpy->d, cpy->N, cpy->a, cpy->b,
   return p:
                                                                  cpv->c, cpv->op1, cpv->op2, cpv->
                                                                  op3, cpy->zi, cpy->qx, NULL);
void calc poly(poly t p, mpz t x){
                                                           mpz set(cpv->d, p->d):
    mpz mul(p->zi, p->a, x):
                                                           mpz set(cpv->N, p->N):
```

mpz_set(cpy->a, p->a); mpz_set(cpy->b, p->b);

mpz set(cpy->c, p->c):

return cpv:

mpz add(p->zi, p->zi, p->b):

mpz mul(p->op1, p->b, x):

mpz_mul_ui(p \rightarrow op1, p \rightarrow op1, 2); mpz_add(p \rightarrow qx, p \rightarrow qx, p \rightarrow op1);

 $mpz_mul(p->qx, x, x);$ $mpz_mul(p->qx, p->qx, p->a);$

../c/mpqs/mpqs.h

#pragma once

#include <gmp.h> #include <stdbool.h> int** mpqs(mpz_t* z, mpz_t* d, mpz_t N, int pb_len
 , int* pb, int extra, int s, int delta, bool quiet);

../c/mpqs/mpqs.c

```
#include <gmp.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <time.h>
#include "polynomial.h"
#include "common_mpqs.h"
#include "../system.h"
#include "../tonellishanks.h"
int ** mpgs(mpz t* z, mpz t* d, mpz t N, int pb len
       , int* pb, int extra, int s, int delta, bool quiet){
    /** Gets pb len+extra zis that are b-smooth,
           definied at:
     * Quadratic sieve factorisation algorithm
     * Bc. OndËĞrei Vladvka
     * Definition 1.11 (p.5)
    //ceil(sart(n))
    mpz t sqrt N;
    mpz init(sqrt N);
    mpz_sqrt(sqrt_N, N);
    mpz add ui(sgrt N. sgrt N. 1):
    mpz_t x;
```

```
mpz init(x):
poly t Q = init poly(N, s);
int** v = malloc((pb_len+extra)*sizeof(int*));
for(int i = 0; i < pb len+extra; i++){
    v[i] = malloc((pb_len+1)*sizeof(int*)); //
           +1 for -1
float* sinterval = malloc(2*s*sizeof(float));
float* plogs = prime logs mpgs(pb, pb len):
int t = calculate threshold mpgs(sgrt N. s. pb.
       pb len, delta);
// TESTS
mpz t temp;
mpz init(temp):
// END TESTS
int* r = malloc(pb len*sizeof(int));
int* x1 = malloc(pb len*sizeof(int));
int* x2 = malloc(pb len*sizeof(int));
int sol1, sol2:
for(int i = 1; i < pb len; i++){
    tonelli shanks ui(N. pb[i], &sol1, &sol2);
    r[i] = sol1;
```

```
\times 1[i] = mpz get ui(temp):
mpz_t g, m, n, pi;
mpz inits(g, m, n, pi, NULL);
                                                                   //calc_polv(Q, temp):
int relations\_found = 0;
                                                                   //assert(mpz_divisible_ui_p(Q->qx, pb[i
                                                                          1) != 0):
clock t start;
start = clock();
int tries = 0:
                                                                   mpz_set_ui(temp, pb[i]);
while(relations found < pb len + extra){
                                                                   mpz sub ui(temp, temp, r[i]);
                                                                   mpz sub(temp, temp, Q->b);
                                                                   mpz_mul(temp, temp, m);
    // for 2
    mpz_set_ui(temp, 0);
                                                                   mpz_mod(temp, temp, pi);
    calc poly(Q, temp);
    \times 1[0] = 0:
                                                                   x2[i] = mpz\_get\_ui(temp);
    if(mpz divisible ui p(Q->ax, 2) == 0) \times 1
           [0] = 1:
                                                                   //calc poly(Q, temp);
                                                                   //assert(mpz divisible ui p(Q->qx, pb[i
    //others
                                                                          1) != 0:
    for(int i = 1; i < pb len; i++){
        mpz set ui(pi, pb[i]);
        mpz gcdext(g, m, n, Q->a, pi):
                                                                   //realign sieving interval to [-s. s]
        if(mpz\_cmp\_ui(g, 1) != 0){
                                                                   int k = (x1[i] + s)/pb[i]:
            fprintf(stderr, "ERROR: Number is is
                                                                   \times 1[i] -= k * pb[i];
                    too small for the current
                                                                   \times 1[i] += s:
                    implementation_of_MPQS\n")
                                                                   k = (x2[i] + s)/pb[i];
            exit(1);
                                                                   \times 2[i] -= k * pb[i];
                                                                   x2[i] += s:
        mpz set ui(temp, r[i]);
                                                                   //mpz set si(temp, -s);
        mpz sub(temp, temp, Q \rightarrow b):
                                                                   //mpz add ui(temp, temp, x1[i]):
        mpz_mul(temp, temp, m);
                                                                   //calc_poly(Q, temp);
                                                                   //assert(mpz_divisible_ui_p(Q->qx, pb[i
        mpz mod(temp, temp, pi);
                                                                          1) != 0:
```

```
if(sinterval[i] > t){
                                                                       tries++:
for(int i = 0; i < 2*s; i++){
                                                                       mpz_set_si(x, -s);
    sinterval[i] = 0:
                                                                       mpz_add_ui(x, x, i);
                                                                       calc poly(Q, x);
                                                                       if(!already_added(Q->zi, z,
// sieve for 2
                                                                               relations found)){
while(\times 1[0] < 2*s){
                                                                           found = vectorize mpqs(Q->qx)
    sinterval[x1[0]] += plogs[0]:
                                                                                    v[relations_found],
    \times 1/01 += pb/01:
                                                                                   pb_len, pb);
                                                                           if(found){
*/
                                                                                mpz_set(z[relations_found],
                                                                                        Q->zi):
// sieve other primes
                                                                                mpz_set(d[relations_found],
for(int i = 30; i < pb_len; i++){
                                                                                        Q->d):
                                                                                relations_found++;
    while(\times1[i]<2*s){
                                                                                update time = true;
         sinterval[x1[i]] += plogs[i];
                                                                                found = false;
         \times 1[i] += pb[i]:
                                                                                if(!auiet){
                                                                                     printf("\r");
                                                                                     printf("%.1f%%"| 1%.1f
                                                                                            %%", (float)
    while(\times 2[i] < 2*s){
         sinterval[x2[i]] += plogs[i];
                                                                                            relations_found/(
         \times 2[i] += pb[i]:
                                                                                            pb len+extra)
                                                                                             *100, (float)
                                                                                            relations_found/
                                                                                            tries*100);
                                                                                     fflush(stdout);
bool found:
bool update_time = false;
for(int i = 0; i < 2*s \&\& relations found <
```

pb len + extra: i++){

```
}
                                                           mpz_clears(sqrt_N, temp, g, m, n, pi, x, NULL);
                                                           free(\times 1);
    if(update_time && !quiet) printf("_\(\pi\)(~\%.0fs_\(\pi\)
                                                           free(x2);
           left) , (double)(clock() -
                                                           free(r);
           start)/CLOCKS PER SEC/
                                                           free(sinterval);
           relations_found*((pb_len+extra -
                                                           free(plogs);
           relations_found)));
                                                           free_poly(Q);
    get_next_poly(Q);
                                                           return v;
if(!quiet) printf("\n");
```

../c/mpqs/parallel_mpqs.h

```
#pragma once
#include <gmp.h>
#include "polynomial.h"
#include <sys/time.h>
#include <stdint.h>
struct sieve_arg_s {
    // used for sieveing
    int* pb:
    int pb len;
    int extra:
    int* r:
    float* plogs;
    int s:
    int t:
    int* relations found;
    int** v;
    bool auiet:
    mpz_t* z;
    mpz t* d;
```

```
poly_t Qinit;
    // used to print progress and predicted time left
    struct timeval begin;
    uint fast64 t* tries:
    // used to constantly have a certain number of
           threads running
    int thread id:
    bool* threads running;
};
typedef struct sieve_arg_s sieve_arg_t;
bool already added(mpz t zi, mpz t* z, int
       relations found):
void* sieve 100 polys (void* args);
int ** parallel mpgs(mpz t* z, mpz t* d, mpz t N,
       int pb len, int * pb, int extra, int s, int delta.
       bool quiet):
```

../c/mpqs/parallel_mpqs.c

```
#include <gmp.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <time.h>
#include <pthread.h>
#include <sys/time.h>
#include "polynomial.h"
#include "common mpgs.h"
#include "parallel_mpqs.h"
#include "../system.h"
#include "../tonellishanks.h"
pthread mutex t mutex:
void* sieve 100 polys (void* args){
   sieve arg_t* arg = (sieve_arg_t*) args;
    poly t Q = copy poly(arg->Qinit):
    mpz t temp, g, m, n, pi, x;
   mpz_inits(temp, g, m, n, pi, x, NULL);
    float* sinterval = malloc(2*arg->s*sizeof(float));
    int* x1 = malloc(arg->pb len*sizeof(int));
    int* x2 = malloc(arg->pb len*sizeof(int));
```

```
for(int i = 0: i < 100 \&\& *(arg -> relations found)
       < arg -> pb len + arg -> extra; i++){
    get next poly(Q):
    //get sol for 2
    mpz set ui(temp, 0);
    calc poly(Q, temp):
    \times 1[0] = 0;
    if(mpz divisible ui p(Q->qx, 2) == 0) \times 1
           [0] = 1:
    //get sol for others
    for(int i = 1: i < arg - > pb len: i++){
        mpz set ui(pi, arg->pb[i]):
        mpz gcdext(g, m, n, Q->a, pi);
        if(mpz cmp ui(g, 1) != 0){
            fprintf(stderr, "ERROR: Number is a
                    too small for the current
                   implementation_of_MPQS\n")
            exit(1):
        mpz_set_ui(temp, arg->r[i]):
        mpz sub(temp, temp, Q->b);
        mpz mul(temp, temp, m);
        mpz mod(temp, temp, pi):
        \times 1[i] = mpz get ui(temp);
```

```
//calc_polv(Q, temp):
                                                            for(int i = 0: i < 2*arg -> s: i++){
    //assert(mpz divisible ui p(Q->qx, arg
                                                                sinterval[i] = 0;
            ->pb[i]) != 0):
    mpz set ui(temp, arg->pb[i]);
    mpz_sub_ui(temp, temp, arg->r[i]);
                                                            // sieve for 2
    mpz_sub(temp, temp, Q->b);
                                                            while(\times 1/0) < 2*arg -> s){
                                                                sinterval[x1[0]] += arg->plogs[0];
    mpz mul(temp, temp, m);
                                                                \times 1/0/ += arg -> pb/0/2
    mpz mod(temp, temp, pi);
    \times 2[i] = mpz\_get\_ui(temp);
    //calc_polv(Q, temp):
                                                            // sieve other primes
    //assert(mpz divisible ui p(Q->ax. arg
                                                            for(int i = 30: i < arg -> pb len: i++){
           ->pb[i]) != 0):
                                                                while(\times1[i]<2*arg->s){
                                                                     sinterval[x1[i]] += arg->plogs[i];
    //realign sieving interval to [-s, s]
                                                                    \times 1[i] += arg -> pb[i]:
    int k = (x1[i] + arg -> s)/arg -> pb[i];
    x1[i] -= k * arg -> pb[i];
                                                                while(\times2[i]<2*arg->s){
    \times 1[i] += arg -> s:
                                                                     sinterval[x2[i]] += arg -> plogs[i]:
                                                                    \times 2[i] += arg -> pb[i]:
    k = (x2[i] + arg -> s)/arg -> pb[i];
    \times 2[i] -= k * arg -> pb[i]:
    \times 2[i] += arg -> s:
                                                            bool found:
    //mpz set si(temp, -arg->s);
                                                            bool update time = false;
    //mpz add ui(temp, temp, x1[i]):
                                                            pthread mutex lock(&mutex):
    //calc poly(Q, temp);
                                                            for(int i = 0; i < 2*arg -> s && *(arg ->
    //assert(mpz divisible ui p(Q->qx, arg
                                                                   relations found) < arg->pb len +
           ->pb[i]) != 0:
                                                                   arg -> extra: i++){
                                                                if(sinterval[i] > arg->t){}
                                                                     *(arg->tries) += 1;
//reset sieveing interval
                                                                     mpz set si(x, -arg->s):
```

```
mpz add ui(x, x, i):
                                                                    fflush(stdout):
calc poly(Q, x);
if(!already_added(Q->zi, arg->z,
       *(arg->relations found))){
    found = vectorize_mpqs(Q->qx,
            arg->v[*(arg->
           relations found)], arg->
                                                struct timeval current:
           pb len, arg->pb);
                                                gettimeofday(&current, 0);
    if(found){
                                                long seconds = current.tv\_sec - arg->begin.
        mpz_set(arg->z[*(arg->
                                                       tv_sec;
               relations found)], Q
                                                long microseconds = current.tv usec - arg
               ->zi):
                                                       ->begin.tv_usec;
        mpz_set(arg->d[*(arg->
                                                double elapsed = seconds + microseconds*1e
               relations found)], Q
                                                if(update time && !arg->quiet) printf("___
               ->d);
                                                       (~%.0fs_left)______", elapsed/(*arg
        *(arg->relations found)
                                                       ->relations_found)*(arg->pb len+
               += 1:
        found = false:
                                                       arg->extra - (*arg->
        update time = true:
                                                       relations found))):
                                                pthread _mutex_unlock(&mutex);
        if(!arg->quiet){
            printf("\r");
            printf("%.1f%%...|.%.1f
                   %%", (float)(*(
                                            mpz_clears(temp, g, m, n, pi, x, NULL);
                   arg->
                                            free(\times 1);
                   relations found))
                                            free(x2);
                   /(arg->pb_len+
                                            free(sinterval):
                   arg->extra)
                                            free poly(Q);
                   *100, (float)(*(
                   arg->
                                            arg->threads running[arg->thread id] = false:
                   relations_found))
                                            return NULL:
                   /(*(arg—>tries))
                   *100):
```

```
int** parallel mpgs(mpz t* z. mpz t* d. mpz t N.
                                                                      pb len. delta):
       int pb len, int* pb, int extra, int s, int delta,
       bool quiet){
                                                               sieve_arg_t* args = malloc(8*sizeof(sieve arg t)
    /** Gets pb len+extra zis that are b-smooth.
           definied at:
                                                               pthread t* threads = malloc(8*sizeof(pthread t))
     * Quadratic sieve factorisation algorithm
     * Bc. OndËĞrei Vladvka
                                                               bool* threads_running = malloc(8*sizeof(bool));
                                                               for(int i = 0; i < 8; i++){
     * Definition 1.11 (p.5)
                                                                   threads running[i] = false;
    //ceil(sqrt(n))
                                                               int relations found = 0;
    mpz t sqrt N;
                                                               uint fast64 t tries = 0:
    mpz init(sart N):
                                                               struct timeval begin:
    mpz sart(sart N. N):
    mpz_add_ui(sqrt_N, sqrt_N, 1);
                                                               gettimeofday(&begin, 0);
                                                               while(relations found < pb len + extra){
                                                                   for(int i = 0: i < 8: i++){
    poly t Q = init poly(N, s):
                                                                       if(!threads running[i]){
                                                                            args[i] = (sieve arg t) {
    int** v = malloc((pb len+extra)*sizeof(int*));
                                                                                pb.
    for(int i = 0: i < pb len + extra: i++){
                                                                                pb_len,
        v[i] = malloc((pb len+1)*sizeof(int*)); //
               +1 for -1
                                                                                extra,
                                                                                r.
                                                                                plogs,
    float* plogs = prime logs mpqs(pb, pb len);
                                                                                s,
                                                                                &relations found.
    int* r = malloc(pb_len*sizeof(int));
    int sol1, sol2;
                                                                                ٧.
                                                                                quiet,
    for(int i = 1: i < pb len: i++){
        tonelli_shanks_ui(N, pb[i], &sol1, &sol2);
                                                                                z.
                                                                                d.
        r[i] = sol1;
                                                                                Q.
                                                                                begin.
    int t = calculate threshhold mpgs(sgrt N. s. pb.
```

```
&tries.
                                                           for(int i = 0; i < 8; i++){
                                                               pthread join(threads[i], NULL);
                threads_running
            threads_running[i] = true;
                                                           free(threads);
            pthread_create(threads+i, NULL,
                                                           free(args);
                   sieve_100_polys, args+i);
                                                           free(r);
                                                           free(plogs);
        for(int i = 0; i < 100; i++){
                                                           free(threads_running);
            get_next_poly(Q);
                                                           free_poly(Q);
                                                           mpz_clear(sqrt_N);
                                                          return v;
if(!quiet) printf("\n");
```