

AMOS Advantages

- Easy to use for visual SEM (Structural Equation Modeling).
- Easy to modify, view the model
- Publication –quality graphics

Model Fit

Goodness of Fit test Badness of fit index

Mixed opinions on its value in reporting.

Null hp:

The hypothesised model fits the data

Or

The hypothesised model is valid for the population of the study

Goodness of Fit test

 $\star \chi^2$

p > .05 (fail to reject the null Hp)

Model Fit

- χ² Goodness of Fit test
- Historically used
- Desire a non-significant p-value, i.e.,
- *p* ≥.05
- Adversely affected by sample size
- Sample size is bigger, p will be smaller (implied model not fit the data), so χ^2 Goodness of Fit test is not reliable at big sample size (>200). We need to look at other fit indexes.

Model Fit

CFI

- Goodness of Fit test
- CFI ≥ .90

Model Fit

RMSEA

Badness of fit index

- Root Mean Squared Error of Approximation Adjusts
 Badness of fit index:
- 0 best & higher values worse.
- Amount of error of approximation per model.
 - RMSEA ≤ .05 close fit
- .05-.08 good
- ≤ .10 acceptable
- .10 and + poor fit

Model Fit

- Many other fit indexes
- Ideally
 - Nonsignificant χ² Goodness of Fit test,
 P ≥ .05 (n < 200)
 - CFI ≥ .95
 - RMSEA ≤ .08
- IF the model fits the data, then look at paths

Analysis for testing data-model fit

Null hp:

The hypothesised model fits the data

If $p \ge .05$, or RMSEA ≤ 0.10 , or CFI $\ge .90$

Fail to reject the null hypothesis.

Report: The model fits the data; the model can be applied to the population

