Computer Project 4: Hypothesis Testing

Your Name 2020-06-30

z-Test Examples

We think the average of the contents of a box is 50. Let's take some samples then test the hypothesis.

Sample Size = 10

Here are the results of a sample of size 10.

```
n = 10
x = rnorm(n, mean=secret.mean, sd=secret.sd)
x

## [1] 58.03581 54.22438 44.67735 41.21284 43.03266 49.97621 48.53443
## [8] 54.28705 59.17319 49.68922

Compute the mean of our sample:
m = mean(x)
m

## [1] 50.28431
and the SD of the sample:
s = sd(x) * sqrt((length(x)-1)/length(x))
s
```

[1] 5.834993

Let's run a z-test to see if 50.2843139 is close enough to 50. First we need the SE for the average:

```
se = s / sqrt(n)
se
```

[1] 1.845187

Now compute the z-score:

```
z = (m - 50)/se
z
```

[1] 0.1540841

The p-value is the chance of getting a z-score that is as extreme or more extreme than the observed value. Use $either\ pnorm(z)\ or\ 1$ - $pnorm(z)\ below\ to\ compute\ the\ p-value$:

```
# Use pnorm(z) or 1 - pnorm(z) here
```

The null hypothesis is that the difference between 50.2843139 and 50 is due to chance. What is the alternative hypothesis? Do the data support the null hypothesis or the alternative?

Sample Size = 100

Here are the results of a sample of size 100

```
n = 100
x = rnorm(n, mean=secret.mean, sd=secret.sd)
##
     [1] 42.07436 48.67414 56.35148 49.29005 44.77100 43.15599 40.36281
##
     [8] 43.15709 48.37080 50.09788 45.62559 42.74050 48.93534 48.14910
##
    [15] 33.50848 42.38003 43.51463 50.17857 54.97672 50.13880 47.73977
    [22] 43.70527 57.79110 40.62618 46.50926 53.34343 51.85595 51.89446
##
##
    [29] 47.63019 52.44515 38.43207 47.15525 55.60813 59.96824 41.01267
   [36] 43.09975 39.68737 50.68895 50.22176 46.47982 46.11044 49.37807
##
##
   [43] 52.45944 42.20659 56.96548 52.80743 50.17537 54.01557 50.59173
##
   [50] 53.61426 42.85504 50.76119 47.20148 61.82925 44.97424 41.06085
    [57] 50.27884 47.81138 45.15449 51.30295 46.68604 52.17305 43.83999
##
   [64] 52.44442 51.51922 47.24622 45.80142 46.44106 51.70981 57.95443
##
   [71] 59.99385 51.65491 46.62763 50.50940 45.50532 52.75492 48.24551
##
   [78] 53.61093 39.70719 40.41735 46.18796 45.65025 55.55246 48.49341
    [85] 45.26322 51.35335 47.06690 54.60386 52.50411 46.00547 50.70987
##
   [92] 56.66938 47.84312 49.34030 53.58468 49.06553 48.82679 49.80746
   [99] 51.06480 47.09299
```

Compute the mean of our sample:

```
m = mean(x)
```

[1] 48.65431

and the SD of the sample:

```
s = sd(x) * sqrt((length(x)-1)/length(x))
```

[1] 5.11107

Let's run a z-test to see if 48.6543079 is close enough to 50. First we need the SE for the average:

```
se = s / sqrt(n)
se
```

[1] 0.511107

Now compute the z-score:

```
z = (m - 50)/se
```

```
## [1] -2.632897
```

The p-value is the chance of getting a z-score that is as extreme or more extreme than the observed value. Use either pnorm(z) or 1 - pnorm(z) below to compute the p-value:

```
# Use pnorm(z) or 1 - pnorm(z) here
```

The null hypothesis is that the difference between 48.6543079 and 50 is due to chance. What is the alternative hypothesis? Do the data support the null hypothesis or the alternative?

t-Test Example

R has a built-in t-test command. Let's use it to run the n = 100 hypothesis test that we did above.

```
t.test(x, mu=50)
```

```
##
## One Sample t-test
##
## data: x
## t = -2.6197, df = 99, p-value = 0.01019
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 47.63505 49.67356
## sample estimates:
## mean of x
## 48.65431
```

The output gives us the t-score, the degrees of freedom, the p-value and a 95% confidence interval.

Use the p-value to explain if the data supports the null or alternative hypothesis. Is 50 included in the confidence interval?