Математические задачи мобильной робототехники: навигация, автономность и управление движением при коммуникационных ограничениях

A. Matveev

Saint Petersburg state University, Scientific and Technological University "Sirius" almat1712@vahoo.com

Методы автономной навигации, опирающиеся на дискретизацию сцены

Sample-based representation of the scene

- The continuum of points in the free space is represented by finitely many "delegates" (samples)
- Edges signal that there is a known way to transfer the robot from the "tail" sample to the "head" one

A graph (either directed or undirected)

Sample-based representation of the scene

- The continuum of points in the free space is represented by finitely many "delegates" (samples)
- Edges signal that there is a known way to transfer the robot from the "tail" sample to the "head" one

A graph (either directed or undirected)

Two phases

- Building the graph (sample-based representation)
- ② Using the graph (based on graph search)

Sample-based representation of the scene

- The continuum of points in the free space is represented by finitely many "delegates" (samples)
- Edges signal that there is a known way to transfer the robot from the "tail" sample to the "head" one

A graph (either directed or undirected)

Two phases

- Building the graph (sample-based representation)
- Using the graph (based on graph search)

Single- and multi-query usage

- Single query: a single and a priori known pair "(start sample)-(destination sample)" should be served. These samples are among the nodes of the graph. The overall search process is terminated as soon as the way between these samples is found
- Multi-query: many and a priori unknown pairs should be served. 1 is run until the scene is comprehensively described. Search of the way to the graph (roadmap) and from it is needed.

Sample-based representation of the scene

- The continuum of points in the free space is represented by finitely many "delegates" (samples)
- Edges signal that there is a known way to transfer the robot from the "tail" sample to the "head" one

A graph (either directed or undirected)

Two phases

- Building the graph (sample-based representation)
- ② Using the graph (based on graph search)

Single- and multi-query usage

- Single query: a single and a priori known pair "(start sample)-(destination sample)" should be served. These samples are among the nodes of the graph. The overall search process is terminated as soon as the way between these samples is found
- Multi-query: many and a priori unknown pairs should be served. 1 is run until the scene is comprehensively described. Search of the way to the graph (roadmap) and from it is needed.

Sample-based representation of the scene

- The continuum of points in the free space is represented by finitely many "delegates" (samples)
- Edges signal that there is a known way to transfer the robot from the "tail" sample to the "head" one

A graph (either directed or undirected)

Two phases

- Building the graph (sample-based representation)
- ② Using the graph (based on graph search)

Single- and multi-query usage

- Single query: a single and a priori known pair "(start sample)-(destination sample)" should be served. These samples are among the nodes of the graph. The overall search process is terminated as soon as the way between these samples is found
- Multi-query: many and a priori unknown pairs should be served. 1 is run until the scene is comprehensively described. Search of the way to the graph (roadmap) and from it is needed.

Sample-based representation of the scene

- The continuum of points in the free space is represented by finitely many "delegates" (samples)
- Edges signal that there is a known way to transfer the robot from the "tail" sample to the "head" one

A graph (either directed or undirected)

Two phases

- Building the graph (sample-based representation)
- Using the graph (based on graph search)

Single- and multi-query usage

- Single query: a single and a priori known pair "(start sample)-(destination sample)" should be served. These samples are among the nodes of the graph. The overall search process is terminated as soon as the way between these samples is found
- Multi-query: many and a priori unknown pairs should be served. 1 is run until the scene is comprehensively described. Search of the way to the graph (roadman) and from it is needed.

Completeness and succession of the phases

- ullet 1 and 2 are run in parallel or 1 is periodically paused to run 2
- 1 is run until the scene is comprehensively described

Sample-based representation of the scene

- The continuum of points in the free space is represented by finitely many "delegates" (samples)
- Edges signal that there is a known way to transfer the robot from the "tail" sample to the "head" one

A graph (either directed or undirected)

Two phases

- Building the graph (sample-based representation)
- Using the graph (based on graph search)

Single- and multi-query usage

- Single query: a single and a priori known pair "(start sample)-(destination sample)" should be served. These samples are among the nodes of the graph. The overall search process is terminated as soon as the way between these samples is found
- Multi-query: many and a priori unknown pairs should be served. 1 is run until the scene is comprehensively described. Search of the way to the graph (roadmap) and from it is needed.

Completeness and succession of the phases

- ullet 1 and 2 are run in parallel or 1 is periodically paused to run 2
- 1 is run until the scene is comprehensively described

Criteria of completeness

- Deterministic connectivity of the result
- With probability 1, eventually finds a way
- Finds a way provided that the resolution of some basic underlying sampling structures is high enough

"First cover and then select" approach

"First cover and then select" approach

 Build sampling of a large and simple domain that covers both workspace and the obstacles

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles
- Link connectable samples with edges

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles
- Link connectable samples with edges

Constituent

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles
- Link connectable samples with edges

Constituent

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles
- Link connectable samples with edges

Constituents

Generator of samples

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles
- Link connectable samples with edges

Constituents

- Generator of samples
- ② Detector of obstacles

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles
- Link connectable samples with edges

Constituents

- Generator of samples
- ② Detector of obstacles
- Local planner

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles
- Link connectable samples with edges

Constituents

- Generator of samples
- ② Detector of obstacles
- Local planner
- ① Pseudo-metric $d(s_1, s_2) \in [0, \infty]$

$$\mathrm{samples}\ s_1, s_2 \xrightarrow[]{\mathrm{local\ planner}} \begin{cases} \mathrm{either\ a\ way\ to\ move}\ s_1 \to s_2 \\ \mathrm{or:\ failure} \end{cases}$$

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles
- Link connectable samples with edges

Constituent:

- Generator of samples
- ② Detector of obstacles
- Local planner
- ① Pseudo-metric $d(s_1, s_2) \in [0, \infty]$

$$\mathrm{samples}\ s_1, s_2 \xrightarrow[]{\mathrm{local\ planner}} \begin{cases} \mathrm{either\ a\ way\ to\ move}\ s_1 \to s_2 \\ \mathrm{or:\ failure} \end{cases}$$

For a given sample s, invoke the local planner $LP(s, s_+)$ only for close enough destination samples s_+ , i.e., such that $d(s, s_+) < \varepsilon$, where $\varepsilon > 0$ is a pre-specified constant

"First cover and then select" approach

- Build sampling of a large and simple domain that covers both workspace and the obstacles
- Discard samples that lie in obstacles
- Link connectable samples with edges

Constituents

- Generator of samples
- ② Detector of obstacles
- Local planner
- 1 Pseudo-metric $d(s_1, s_2) \in [0, \infty]$

$$\mathrm{samples}\ s_1, s_2 \xrightarrow[]{\mathrm{local\ planner}} \begin{cases} \mathrm{either\ a\ way\ to\ move}\ s_1 \to s_2 \\ \mathrm{or:\ failure} \end{cases}$$

For a given sample s, invoke the local planner $LP(s, s_+)$ only for close enough destination samples s_+ , i.e., such that $d(s, s_+) < \varepsilon$, where $\varepsilon > 0$ is a pre-specified constant

Sampling set and sampling sequence

Sampling sequence ⇒ sampling set Algorithm of building a sampling sequence assumes an

endless process

Dense sequence (in fact algorithm) ⇔ this sequence is everywhere dense in the sampled set

Definition

A Borel probability measure P(dx) on a metric space X is said to be complete if P(U) > 0 for any non-empty open subset $U \subset X$.

Definition

A Borel probability measure P(dx) on a metric space X is said to be complete if P(U) > 0 for any non-empty open subset $U \subset X$.

Lemma

Suppose that a sequence $x_1, x_2, \ldots \in X$ is generated so that x_k is drawn independently of the previous samples x_1, \ldots, x_{k-1} and in accordance with a complete probability distribution P(dx). Then this sequence is dense with probability 1.

Definition

A Borel probability measure P(dx) on a metric space X is said to be complete if P(U)>0 for any non-empty open subset $U\subset X$.

Lemma

Suppose that a sequence $x_1, x_2, \ldots \in X$ is generated so that x_k is drawn independently of the previous samples x_1, \ldots, x_{k-1} and in accordance with a complete probability distribution P(dx). Then this sequence is dense with probability 1.

Proof: Let $x_* \in X$ and let U be an open vicinity of x_* . Then

$$P(U)>0 \Rightarrow p:=P(X\setminus U)=1-P(U)<1$$

Definition

A Borel probability measure P(dx) on a metric space X is said to be complete if P(U) > 0 for any non-empty open subset $U \subset X$.

Lemma

Suppose that a sequence $x_1, x_2, \ldots \in X$ is generated so that x_k is drawn independently of the previous samples x_1, \ldots, x_{k-1} and in accordance with a complete probability distribution P(dx). Then this sequence is dense with probability 1.

Proof: Let $x_* \in X$ and let U be an open vicinity of x_* . Then

$$P(U) > 0 \Rightarrow p := P(X \setminus U) = 1 - P(U) < 1$$

$$P[x_1 \not\in U, \dots, x_k \not\in U] = \prod_{i=1}^k P[x_i \not\in U] = p^k$$

Definition

A Borel probability measure P(dx) on a metric space X is said to be complete if P(U) > 0 for any non-empty open subset $U \subset X$.

Lemma

Suppose that a sequence $x_1, x_2, \ldots \in X$ is generated so that x_k is drawn independently of the previous samples x_1, \ldots, x_{k-1} and in accordance with a complete probability distribution P(dx). Then this sequence is dense with probability 1.

Proof: Let $x_* \in X$ and let U be an open vicinity of x_* . Then

$$P(U) > 0 \Rightarrow p := P(X \setminus U) = 1 - P(U) < 1$$

$$P[x_1 \not\in U, \ldots, x_k \not\in U] = \prod_{i=1}^k P[x_i \not\in U] = p^k$$

$$P[x_i \not\in U \forall i \geq 1] \stackrel{\forall k}{\leq} P[x_1 \not\in U, \dots, x_k \not\in U] = p^k \xrightarrow{k \to \infty} 0$$

Definition

A Borel probability measure P(dx) on a metric space X is said to be complete if P(U)>0 for any non-empty open subset $U\subset X$.

Lemma

Suppose that a sequence $x_1, x_2, \ldots \in X$ is generated so that x_k is drawn independently of the previous samples x_1, \ldots, x_{k-1} and in accordance with a complete probability distribution P(dx). Then this sequence is dense with probability 1.

Proof: Let $x_* \in X$ and let U be an open vicinity of x_* . Then

$$P(U) > 0 \Rightarrow p := P(X \setminus U) = 1 - P(U) < 1$$

$$P[x_1 \not\in U, \ldots, x_k \not\in U] = \prod_{i=1}^k P[x_i \not\in U] = p^k$$

$$P\big[x_i \not\in U \forall i \geq 1\big] \stackrel{\forall k}{\leq} P\big[x_1 \not\in U, \dots, x_k \not\in U\big] = p^k \xrightarrow{k \to \infty} 0$$

Useful facts

- The Lebesgue measure is complete
- The Riemannian measure on a Riemannian manifold is complete
- Suppose that the probability measure $\mathcal{P}(dx)$ has a density $\rho(\cdot)$ with respect to a complete probability measure P(dx) and $\rho(x) > 0$ for P-almost all $x \in X$. Then the measure $\mathcal{P}(dx)$ is complete.
- Suppose that for i=1,2, the probability measure $P_i(dx_i)$ is defined on the Borel σ -algebra of X_i and is complete. Then $P(dx_1) \otimes P_2(dx_2)$ is complete on the direct product $X_1 \times X_2$.

Definition

A Borel probability measure P(dx) on a metric space X is said to be complete if P(U) > 0 for any non-empty open subset $U \subset X$.

Lemma

Suppose that a sequence $x_1, x_2, \ldots \in X$ is generated so that x_k is drawn independently of the previous samples x_1, \ldots, x_{k-1} and in accordance with a complete probability distribution P(dx). Then this sequence is dense with probability 1.

Proof: Let $x_* \in X$ and let U be an open vicinity of x_* . Then

$$P(U) > 0 \Rightarrow p := P(X \setminus U) = 1 - P(U) < 1$$

$$P[x_1 \not\in U, \ldots, x_k \not\in U] = \prod_{i=1}^k P[x_i \not\in U] = p^k$$

$$P[x_i \not\in U \forall i \geq 1] \stackrel{\forall k}{\leq} P[x_1 \not\in U, \dots, x_k \not\in U] = p^k \xrightarrow{k \to \infty} 0$$

Useful facts

- The Lebesgue measure is complete
- The Riemannian measure on a Riemannian manifold is complete
- Suppose that the probability measure $\mathcal{P}(dx)$ has a density $\rho(\cdot)$ with respect to a complete probability measure P(dx) and $\rho(x) > 0$ for P-almost all $x \in X$. Then the measure $\mathcal{P}(dx)$ is complete.
- Suppose that for i=1,2, the probability measure $P_i(dx_i)$ is defined on the Borel σ -algebra of X_i and is complete. Then $P(dx_1) \otimes P_2(dx_2)$ is complete on the direct product $X_1 \times X_2$.

Definition

A Borel probability measure P(dx) on a metric space X is said to be complete if P(U) > 0 for any non-empty open subset $U \subset X$.

Lemma

Suppose that a sequence $x_1, x_2, \ldots \in X$ is generated so that x_k is drawn independently of the previous samples x_1, \ldots, x_{k-1} and in accordance with a complete probability distribution P(dx). Then this sequence is dense with probability 1.

Proof: Let $x_* \in X$ and let U be an open vicinity of x_* . Then

$$P(U)>0 \Rightarrow p:=P(X\setminus U)=1-P(U)<1$$

$$P[x_1 \not\in U, \ldots, x_k \not\in U] = \prod_{i=1}^k P[x_i \not\in U] = p^k$$

$$P[x_i \not\in U \forall i \geq 1] \stackrel{\forall k}{\leq} P[x_1 \not\in U, \dots, x_k \not\in U] = p^k \xrightarrow{k \to \infty} 0$$

Useful facts

- The Lebesgue measure is complete
- The Riemannian measure on a Riemannian manifold is complete
- Suppose that the probability measure $\mathcal{P}(dx)$ has a density $\rho(\cdot)$ with respect to a complete probability measure P(dx) and $\rho(x) > 0$ for P-almost all $x \in X$. Then the measure $\mathcal{P}(dx)$ is complete.
- Suppose that for i=1,2, the probability measure $P_i(dx_i)$ is defined on the Borel σ -algebra of X_i and is complete. Then $P(dx_1) \otimes P_2(dx_2)$ is complete on the direct product $X_1 \times X_2$.

Pseudorandom number generators

- Linear congruential generator
- $X_k := m^{-1}X_k, X_{k+1} = (aX_k + c) \mod m$
- Lagged Fibonacci generator

$$X_k := \begin{cases} X_{k-a} - X_{k-b} & \text{if } X_{k-a} \ge X_{k-b} \\ X_{k-a} - X_{k-b} + 1 & \text{otherwise} \end{cases}$$

s – the number of the samples

s – the number of the samples feasible failure of even sampling $\frac{L}{s}>|E|$ x_1,\ldots,x_s random sampling of the interval of length L according to the uniform distribution

s – the number of the samples feasible failure of even sampling $\frac{L}{s} > |E|$ x_1, \ldots, x_s random sampling of the interval of length L according to the uniform distribution

$$P[x_1 \not\in E, \dots, x_s \not\in E] = \prod_{i=1}^s P[x_i \not\in E] = (1 - P(E))^s$$
$$= \left(1 - \frac{|E|}{L}\right)^s \approx 1 - s\frac{|E|}{L}$$

s – the number of the samples feasible failure of even sampling $\frac{L}{s}>|E|$ x_1,\ldots,x_s random sampling of the interval of length L according to the uniform distribution

$$P[x_1 \notin E, \dots, x_s \notin E] = \prod_{i=1}^{s} P[x_i \notin E] = (1 - P(E))^s$$

$$= \left(1 - \frac{|E|}{L}\right)^s \approx 1 - s\frac{|E|}{L}$$

$$P[\exists i = 1, \dots, s : x_i \in E] = 1 - P[x_1 \notin E, \dots, x_s \notin E]$$

$$= 1 - (1 - P(E))^s \approx \frac{|E|}{L/s}$$

s – the number of the samples feasible failure of even sampling $\frac{L}{s} > |E|$ x_1, \ldots, x_s random sampling of the interval of length L according to the uniform distribution

$$P[x_1 \notin E, \dots, x_s \notin E] = \prod_{i=1}^{s} P[x_i \notin E] = (1 - P(E))^s$$

$$= \left(1 - \frac{|E|}{L}\right)^s \approx 1 - s\frac{|E|}{L}$$

$$P[\exists i = 1, \dots, s : x_i \in E] = 1 - P[x_1 \notin E, \dots, x_s \notin E]$$

$$= 1 - (1 - P(E))^s \approx \frac{|E|}{L/s}$$

s – the number of the samples feasible failure of even sampling $\frac{L}{s} > |E|$ x_1, \ldots, x_s random sampling of the interval of length L according to the P(dx)

$$P[x_1 \notin E, \dots, x_s \notin E] = \prod_{i=1}^{s} P[x_i \notin E] = (1 - P(E))^s$$

$$= \left(1 - \frac{|E|}{L}\right)^s \approx 1 - s \frac{|E|}{L}$$

$$P[\exists i = 1, \dots, s : x_i \in E] = 1 - P[x_1 \notin E, \dots, x_s \notin E]$$

$$= 1 - (1 - P(E))^s \approx \frac{|E|}{L/s}$$

s – the number of the samples feasible failure of even sampling $\frac{L}{s} > |E|$ x_1, \ldots, x_s random sampling of the interval of length L according to the P(dx)

$$P[x_1 \notin E, \dots, x_s \notin E] = \prod_{i=1}^{s} P[x_i \notin E] = (1 - P(E))^s$$

$$P[\exists i = 1, \dots, s : x_i \in E] = 1 - P[x_1 \notin E, \dots, x_s \notin E]$$

$$= 1 - (1 - P(E))^s \to 1 \quad \text{as} \quad P(E) \to 1$$

s - the number of the samples feasible failure of even sampling $\frac{L}{s} > |E|$ x_1, \ldots, x_s random sampling of the interval of length L according to the P(dx)

$$P[x_1 \notin E, \dots, x_s \notin E] = \prod_{i=1}^{s} P[x_i \notin E] = (1 - P(E))^s$$

$$P[\exists i = 1, \dots, s : x_i \in E] = 1 - P[x_1 \notin E, \dots, x_s \notin E]$$

$$= 1 - (1 - P(E))^s \to 1 \quad \text{as} \quad P(E) \to 1$$

chi-squared test
$$(\chi^2)$$
: $X = (x_1, \ldots, x_s) \sim P(dx)$

•
$$X = A_1 \cup A_2 \cup \ldots \cup A_k$$
 - partition of the sampled space

s – the number of the samples feasible failure of even sampling $\frac{L}{s} > |E|$ X_1, \ldots, X_s random sampling of the interval of length L according to the P(dx)

$$\begin{aligned} & \boldsymbol{P}\left[x_{1} \not\in E, \dots, x_{s} \not\in E\right] = \prod_{i=1}^{s} \boldsymbol{P}\left[x_{i} \not\in E\right] = (1 - \boldsymbol{P}(E))^{s} \\ & \boldsymbol{P}\left[\exists i = 1, \dots, s : x_{i} \in E\right] = 1 - \boldsymbol{P}\left[x_{1} \not\in E, \dots, x_{s} \not\in E\right] \\ & = 1 - (1 - \boldsymbol{P}(E))^{s} \to 1 \quad \text{as} \quad \boldsymbol{P}(E) \to 1 \end{aligned}$$

chi-squared test
$$(\chi^2)$$
: $X = (x_1, \dots, x_s) \sim P(dx)$

- $X = A_1 \cup A_2 \cup \ldots \cup A_k$ partition of the sampled space $E_i := sP(A_i)$ theoretically expected number of samples in the set A_i

s – the number of the samples feasible failure of even sampling $\frac{L}{s} > |E|$ x_1, \ldots, x_s random sampling of the interval of length L according to the P(dx)

$$\begin{aligned} & \boldsymbol{P}\left[x_1 \not\in E, \dots, x_s \not\in E\right] = \prod_{i=1}^{s} \boldsymbol{P}\left[x_i \not\in E\right] = (1 - \boldsymbol{P}(E))^s \\ & \boldsymbol{P}\left[\exists i = 1, \dots, s : x_i \in E\right] = 1 - \boldsymbol{P}\left[x_1 \not\in E, \dots, x_s \not\in E\right] \\ & = 1 - (1 - \boldsymbol{P}(E))^s \to 1 \quad \text{as} \quad \boldsymbol{P}(E) \to 1 \end{aligned}$$

chi-squared test
$$(\chi^2)$$
: $X = (x_1, \dots, x_s) \sim P(dx)$

- \bigcirc $X = A_1 \cup A_2 \cup \ldots \cup A_k$ partition of the sampled space
- \bullet $E_i := sP(A_i)$ theoretically expected number of samples in the set A_i

s - the number of the samples feasible failure of even sampling $\frac{L}{s} > |E|$ X_1, \ldots, X_s random sampling of the interval of length L according to the P(dx)

$$P[x_1 \notin E, \dots, x_s \notin E] = \prod_{i=1}^{s} P[x_i \notin E] = (1 - P(E))^s$$

$$P[\exists i = 1, \dots, s : x_i \in E] = 1 - P[x_1 \notin E, \dots, x_s \notin E]$$

$$= 1 - (1 - P(E))^s \to 1 \quad \text{as} \quad P(E) \to 1$$

chi-squared test
$$(\chi^2)$$
: $X = (x_1, \ldots, x_s) \sim P(dx)$

- $X = A_1 \cup A_2 \cup \ldots \cup A_k$ partition of the sampled space $E_i := sP(A_i)$ theoretically expected number of samples in the set A_i
- $N_i := |\{i : x_i \in A_i\}|$ actually observed number of samples

s – the number of the samples feasible failure of even sampling $\frac{L}{s} > |E|$ x_1, \ldots, x_s random sampling of the interval of length L according to the P(dx)

$$\begin{aligned} & \boldsymbol{P}[x_1 \not\in E, \dots, x_s \not\in E] = \prod_{i=1}^s \boldsymbol{P}[x_i \not\in E] = (1 - \boldsymbol{P}(E))^s \\ & \boldsymbol{P}[\exists i = 1, \dots, s : x_i \in E] = 1 - \boldsymbol{P}[x_1 \not\in E, \dots, x_s \not\in E] \\ & = 1 - (1 - \boldsymbol{P}(E))^s \to 1 \quad \text{as} \quad \boldsymbol{P}(E) \to 1 \end{aligned}$$

chi-squared test
$$(\chi^2)$$
: $X = (x_1, \ldots, x_s) \sim P(dx)$

- \bigcirc $X = A_1 \cup A_2 \cup \ldots \cup A_k$ partition of the sampled space
- \bullet $E_i := sP(A_i)$ theoretically expected number of samples in the set A_i
- \bullet $N_j := |\{i : x_i \in A_j\}|$ actually observed number of samples

Test

$$\chi_1^2 \le \chi^2(X) \le \chi_2^2$$

000000000000000000000000000000000000000	•
000000000000000000000000000000000000000	0 0
000000000000000000000000000000000000000	0 0 0
000000000000000000000000000000000000000	0-0-0
000000000000000000000000000000000000000	0-0-0-0
000000000000000000000000000000000000000	0-0-0-0-0
000000000000000000000000000000000000000	0-0-0-0-0
000000000000000000000000000000000000000	0-0-0-0-0-0
000000000000000000000000000000000000000	00000000000
000000000000000000000000000000000000000	000-0-0-0-0-0-0
000000000000000000000000000000000000000	000-000-000-0-0
000000000000000000000000000000000000000	000-000-000-0
000000000000000000000000000000000000000	0000000-000-000-0
000000000000000000000000000000000000000	0000000-0000000-0
000000000000000000000000000000000000000	00000000000000000
000000000000000000000000000000000000000	00000000000000000

•0000000000000000	•
00 0000000000000000000000000000000000	0 0
000 000000000000000000000000000000000	0 0 0
000000000000000000000000000000000000000	0-0-0
00000 0000000000000000000000000000000	0-0-0-0
000000000000000000000000000000000000000	0-0-0-0-0
000000000000000000000000000000000000000	0-0-0-0-0
000000000000000000000000000000000000000	0-0-0-0-0-0
000000000000000000000000000000000000000	000-0-0-0-0-0
000000000000000000000000000000000000000	000-0-0-0-0-0-0
000000000000000000000000000000000000000	000-000-000-0-0
000000000000000000000000000000000000000	000-000-000-0
000000000000000000000000000000000000000	0000000-000-000-0
000000000000000000000000000000000000000	0000000-0000000-0
0000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	00000000000000000

Van der Corput sequence

② b - integer, the base of a numeral system **③** index $k = \sum_{i=0}^{f-1} \varsigma_i(k)b^i$, where $\varsigma_i(k) \in [0:b-1]$

Van der Corput sequence

- b integer, the base of a numeral system
- \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

Van der Corput sequence

- b integer, the base of a numeral system
 - lacklose index $k = \sum_{i=0}^{f-1} \varsigma_i(k) b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

Van der Corput sequence

- b integer, the base of a numeral system
 - \bullet index $k = \sum_{i=0}^{f-1} \varsigma_i(k)b^i$, where $\varsigma_i(k) \in [0:b-1]$
- \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

Discrepancy with the probability distribution with respect to a class of sets

P(dx) – Borel probability distribution on a metric space

Van der Corput sequence

- b integer, the base of a numeral system
 - \bullet index $k = \sum_{i=0}^{f-1} \varsigma_i(k)b^i$, where $\varsigma_i(k) \in [0:b-1]$
- \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

- \bigcirc P(dx) Borel probability distribution on a metric space
 - R a collection of sets, each being Borel

Van der Corput sequence

- b integer, the base of a numeral system
 - lacklose index $k = \sum_{i=0}^{f-1} \varsigma_i(k) b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

- P(dx) Borel probability distribution on a metric space
- \[
 \mathcal{R} a collection of sets, each being Borel
 \]
- $lack X = (x_1, \dots, x_s)$ a sequence of space points

Van der Corput sequence

- b integer, the base of a numeral system
 - lacklosep index $k = \sum_{i=0}^{f-1} \varsigma_i(k) b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

- P(dx) Borel probability distribution on a metric space
- R a collection of sets, each being Borel
- $\bigvee X = (x_1, \ldots, x_s)$ a sequence of space points
- lacksquare $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A

Van der Corput sequence

- b integer, the base of a numeral system
 - \bullet index $k = \sum_{i=0}^{f-1} \varsigma_i(k) b^i$, where $\varsigma_i(k) \in [0:b-1]$
- \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k)b^{-i-1} \in [0,1]$ van der Corput sequence

- P(dx) Borel probability distribution on a metric space
- R a collection of sets, each being Borel
 - $\bigvee X = (x_1, \ldots, x_s)$ a sequence of space points
 - $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A

$$D_{\mathcal{R}}\left[X \sim \boldsymbol{P}(dx)\right] := \sup_{A \in \mathcal{R}} \left| \frac{N_X(A)}{s} - \boldsymbol{P}(A) \right|$$

Van der Corput sequence

- b integer, the base of a numeral system
 - lacklosep index $k = \sum_{i=0}^{f-1} \varsigma_i(k) b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

Discrepancy with the probability distribution with respect to a class of sets

- \bigcirc P(dx) Borel probability distribution on a metric space
- R a collection of sets, each being Borel
- \bullet $X = (x_1, \ldots, x_s)$ a sequence of space points
- $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A
 - $D_{\mathcal{R}}\left[X \sim \mathbf{P}(dx)\right] := \sup_{A \in \mathcal{R}} \left| \frac{N_X(A)}{s} \mathbf{P}(A) \right|$

Van der Corput sequence

- b integer, the base of a numeral system
 - index $k = \sum_{i=0}^{f-1} \varsigma_i(k)b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

Discrepancy with the probability distribution with respect to a class of sets

- \bigcirc P(dx) Borel probability distribution on a metric space
- R a collection of sets, each being Borel
 - \bullet $X = (x_1, \ldots, x_s)$ a sequence of space points
 - $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A
 - $D_{\mathcal{R}}[X \sim \mathbf{P}(dx)] := \sup_{A \in \mathcal{R}} \left| \frac{N_X(A)}{s} \mathbf{P}(A) \right|$

Popular choices of the class of sets

on the real line: R consists of all intervals

Van der Corput sequence

- b integer, the base of a numeral system
 - index $k = \sum_{i=0}^{f-1} \varsigma_i(k)b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

Discrepancy with the probability distribution with respect to a class of sets

- \bigcirc P(dx) Borel probability distribution on a metric space
- \[
 \mathbb{R} a collection of sets, each being Borel
 \]
 - \bullet $X = (x_1, \ldots, x_s)$ a sequence of space points
 - \bigcirc $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A

$$D_{\mathcal{R}}[X \sim \mathbf{P}(dx)] := \sup_{A \in \mathcal{R}} \left| \frac{N_X(A)}{s} - \mathbf{P}(A) \right|$$

- lacktriangle on the real line: \mathcal{R} consists of all intervals
- on $[a,b] \subset \mathbb{R}$: the set $\mathcal{R} = \{[a,x] : x \in [a,b]\} \sim D^*$

Van der Corput sequence

- b integer, the base of a numeral system
 - lacklosep index $k = \sum_{i=0}^{f-1} \varsigma_i(k) b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

Discrepancy with the probability distribution with respect to a class of sets

- P(dx) Borel probability distribution on a metric space
- R a collection of sets, each being Borel
 - \bullet $X = (x_1, \ldots, x_s)$ a sequence of space points
 - $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A

$$D_{\mathcal{R}}\left[X \sim \mathbf{P}(dx)\right] := \sup_{A \in \mathcal{R}} \left| \frac{N_X(A)}{s} - \mathbf{P}(A) \right|$$

- on the real line: \mathcal{R} consists of all intervals
- lacksquare on $[a,b]\subset\mathbb{R}$: the set $\mathcal{R}=\{[a,x]:x\in[a,b]\}\sim D^*$
- in \mathbb{R}^n : $\mathcal{R} \leftrightarrow$ all hyper-parallelepipeds $\prod_{i=1}^n [a_i, b_i]$

Van der Corput sequence

- b integer, the base of a numeral system
 - lacklosep index $k = \sum_{i=0}^{f-1} \varsigma_i(k) b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

Discrepancy with the probability distribution with respect to a class of sets

- P(dx) Borel probability distribution on a metric space
- R a collection of sets, each being Borel
- \bullet $X = (x_1, \ldots, x_s)$ a sequence of space points
- $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A
 - $D_{\mathcal{R}}[X \sim \mathbf{P}(dx)] := \sup_{A \in \mathcal{R}} \left| \frac{N_X(A)}{s} \mathbf{P}(A) \right|$

- on the real line: \mathcal{R} consists of all intervals
- lacksquare on $[a,b]\subset\mathbb{R}$: the set $\mathcal{R}=\{[a,x]:x\in[a,b]\}\sim D^*$
- in \mathbb{R}^n : $\mathcal{R} \leftrightarrow$ all hyper-parallelepipeds $\prod_{i=1}^n [a_i, b_i]$
- in a hyper-parallelepiped $\prod_{i=1}^n [a_i, b_i]$: the set $\mathcal{R} = \{\prod_{i=1}^n [a_i, x_i] : x_i \in [a_i, b_i]\} \sim D^*$

Van der Corput sequence

- b integer, the base of a numeral system
 - lacklosep index $k = \sum_{i=0}^{f-1} \varsigma_i(k) b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - \bullet $x_k = \sum_{i=0}^{f-1} \varsigma_i(k) b^{-i-1} \in [0,1]$ van der Corput sequence

Discrepancy with the probability distribution with respect to a class of sets

- P(dx) Borel probability distribution on a metric space
- R a collection of sets, each being Borel
- $\bigvee X = (x_1, \ldots, x_s)$ a sequence of space points
- $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A

$$D_{\mathcal{R}}\left[X \sim \mathbf{P}(dx)\right] := \sup_{A \in \mathcal{R}} \left| \frac{N_X(A)}{s} - \mathbf{P}(A) \right|$$

Popular choices of the class of sets

- on the real line: R consists of all intervals
- on $[a,b] \subset \mathbb{R}$: the set $\mathcal{R} = \{[a,x] : x \in [a,b]\} \sim D^*$
- in \mathbb{R}^n : $\mathcal{R} \leftrightarrow$ all hyper-parallelepipeds $\prod_{i=1}^n [a_i, b_i]$
- on in a hyper-parallelepiped $\prod_{i=1}^n [a_i, b_i]$: the set $\mathcal{R} = \{\prod_{i=1}^n [a_i, x_i] : x_i \in [a_i, b_i]\} \sim D^*$

Useful facts

lacktriangle in \mathbb{R}^d : we have $D^*_{\mathfrak{R}} \leq D_{\mathfrak{R}} \leq 2^d D^*_{\mathfrak{R}}$

Van der Corput sequence

- b integer, the base of a numeral system
 - \bullet index $k = \sum_{i=0}^{f-1} \varsigma_i(k)b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - $\bigvee x_k = \sum_{i=0}^{f-1} \varsigma_i(k)b^{-i-1} \in [0,1]$ van der Corput sequence

Discrepancy with the probability distribution with respect to a class of sets

- P(dx) Borel probability distribution on a metric space
- R a collection of sets, each being Borel
- \bullet $X = (x_1, \dots, x_s)$ a sequence of space points
- $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A

$$D_{\mathcal{R}}[X \sim \mathbf{P}(dx)] := \sup_{A \in \mathcal{R}} \left| \frac{N_X(A)}{s} - \mathbf{P}(A) \right|$$

Popular choices of the class of sets

- on the real line: R consists of all intervals
- lacktriangledown on $[a,b]\subset\mathbb{R}$: the set $\mathcal{R}=\{[a,x]:x\in[a,b]\}\sim D^*$
- in \mathbb{R}^n : $\mathcal{R} \leftrightarrow$ all hyper-parallelepipeds $\prod_{i=1}^n [a_i, b_i]$
- in a hyper-parallelepiped $\prod_{i=1}^{n} [a_i, b_i]$: the set \Re $\{\prod_{i=1}^{n} [a_i, x_i] : x_i \in [a_i, b_i]\} \sim D^*$

- \bullet in \mathbb{R}^d : we have $D_{\mathcal{D}}^* \leq D_{\mathcal{R}} \leq 2^d D_{\mathcal{R}}^*$
- the uniform distribution: $D_{\mathcal{P}}^* \geq \frac{1}{2}$ for d=1 and $D_{\mathcal{P}}^* \geq \frac{1}{2}$

 $C^{\frac{\log n}{2}}$ for d=2

Van der Corput sequence

- b integer, the base of a numeral system
 - \bullet index $k = \sum_{i=0}^{f-1} \varsigma_i(k)b^i$, where $\varsigma_i(k) \in [0:b-1]$
 - $\bigvee x_k = \sum_{i=0}^{f-1} \varsigma_i(k)b^{-i-1} \in [0,1]$ van der Corput sequence

Discrepancy with the probability distribution with respect to a class of sets

- P(dx) Borel probability distribution on a metric space
- R a collection of sets, each being Borel
- \bullet $X = (x_1, \dots, x_s)$ a sequence of space points
- $N_X(A) := |\{i : x_i \in A\}|$ the number of samples in A

$$D_{\mathcal{R}}[X \sim \mathbf{P}(dx)] := \sup_{A \in \mathcal{R}} \left| \frac{\mathbf{N}_X(A)}{s} - \mathbf{P}(A) \right|$$

- on the real line: R consists of all intervals
- \bullet on $[a, b] \subset \mathbb{R}$: the set $\mathcal{R} = \{[a, x] : x \in [a, b]\} \sim D^*$
- in \mathbb{R}^n : $\mathcal{R} \leftrightarrow$ all hyper-parallelepipeds $\prod_{i=1}^n [a_i, b_i]$
- in a hyper-parallelepiped $\prod_{i=1}^{n} [a_i, b_i]$: the set \mathcal{R} $\{\prod_{i=1}^{n} [a_i, x_i] : x_i \in [a_i, b_i]\} \sim D^*$

- \bullet in \mathbb{R}^d : we have $D_{\mathcal{D}}^* \leq D_{\mathcal{R}} \leq 2^d D_{\mathcal{R}}^*$
- the uniform distribution: $D_{\mathcal{P}}^* \geq \frac{1}{2}$ for d=1 and $D_{\mathcal{P}}^* \geq \frac{1}{2}$ $C^{\frac{\log n}{2}}$ for d=2
- van der Corput: $D_{\infty}^* < K^{\frac{\log n}{2}}$

Многомерный случай: последовательность Холтона и множество Хаммерсли

Многомерный случай: последовательность Холтона и множество Хаммерсли

Halton sequence in \mathbb{R}^n

 $\ensuremath{\bullet}$ b_1,\ldots,b_n – relatively prime integers (usually the first n primes)

Многомерный случай: последовательность Холтона и множество Хаммерсли

Halton sequence in \mathbb{R}^n

- b_1, \ldots, b_n relatively prime integers (usually the first *n* primes)
- index $k = \varsigma_0(k|i)b_i^0 + \varsigma_1(k|i)b_i^1 + \varsigma_2(k|i)b_i^2 + \cdots$ representation of k in the b_i -based numeral system

Многомерный случай: последовательность Холтона и множество Хаммерсли

Halton sequence in \mathbb{R}^n

- $lackbox{0}$ b_1, \ldots, b_n relatively prime integers (usually the first n primes)
- index $k = \varsigma_0(k|i)b_0^0 + \varsigma_1(k|i)b_1^1 + \varsigma_2(k|i)b_i^2 + \cdots$ representation of k in the b_i -based numeral system

Многомерный случай: последовательность Холтона и множество Хаммерсли

Halton sequence in \mathbb{R}^n

- $lackbox{0}$ b_1, \ldots, b_n relatively prime integers (usually the first n primes)
- index $k = \varsigma_0(k|i)b_i^0 + \varsigma_1(k|i)b_i^1 + \varsigma_2(k|i)b_i^2 + \cdots$ representation of k in the b_i -based numeral system
- $x(k) = [x(k|1), x(k|2), \dots, x(k|n)] \in [0, 1]^n, k = 1, 2, \dots$ Halton sequence

Многомерный случай: последовательность Холтона и множество Хаммерсли

Halton sequence in \mathbb{R}^n

- b_1, \ldots, b_n relatively prime integers (usually the first n primes)
- index $k = \varsigma_0(k|i)b_i^0 + \varsigma_1(k|i)b_i^1 + \varsigma_2(k|i)b_i^2 + \cdots$ representation of k in the b_i -based numeral system
- $x(k) = [x(k|1), x(k|2), \dots, x(k|n)] \in [0, 1]^n, k = 1, 2, \dots$ Halton sequence

Hammersley point set (the number k of samples is given)

$$x(j) = \left[\frac{j}{k}, x(k|1), x(k|2), \dots, x(k|n-1)\right] \in [0, 1]^n, j = 1, 2, \dots, k$$

Многомерный случай: последовательность Холтона и множество Хаммерсли

Halton sequence in \mathbb{R}^n

- b_1, \ldots, b_n relatively prime integers (usually the first *n* primes)
- index $k = \varsigma_0(k|i)b_i^0 + \varsigma_1(k|i)b_i^1 + \varsigma_2(k|i)b_i^2 + \cdots$ representation of k in the b_i -based numeral system
- $x(k) = [x(k|1), x(k|2), ..., x(k|n)] \in [0, 1]^n, k = 1, 2, ...$ Halton sequence

Hammersley point set (the number k of samples is given)

$$x(j) = \left[\frac{j}{k}, x(k|1), x(k|2), \dots, x(k|n-1)\right] \in [0, 1]^n, j = 1, 2, \dots, k$$

Dispersion

lacktriangledown X is a metric space with the distance function $d(\cdot,\cdot)$

- X is a metric space with the distance function $d(\cdot, \cdot)$
- $S \subset X$ is a subset (typically finite)

- X is a metric space with the distance function $d(\cdot, \cdot)$
- \bullet $S \subset X$ is a subset (typically finite)
- Dispersion of the set S is defined to be $\delta(S) := \sup_{x \in X} \inf_{s \in S} d(x, s)$

- X is a metric space with the distance function $d(\cdot, \cdot)$
- lacktriangledown $S \subset X$ is a subset (typically finite)
- Dispersion of the set S is defined to be $\delta(S) := \sup_{x \in X} \inf_{s \in S} d(x, s)$
- lacktriangledown This is the maximal radius of an open ball that has no points in common with S

- X is a metric space with the distance function $d(\cdot, \cdot)$
- \bullet $S \subset X$ is a subset (typically finite)
- lacktriangledown Dispersion of the set S is defined to be $\delta(S) := \sup_{x \in X} \inf_{s \in S} d(x,s)$
- lacktriangledown This is the maximal radius of an open ball that has no points in common with S

Dispersion

- \bigcirc X is a metric space with the distance function $d(\cdot, \cdot)$
- lacktriangledown $S \subset X$ is a subset (typically finite)
 - Dispersion of the set S is defined to be $\delta(S) := \sup_{x \in X} \inf_{s \in S} d(x, s)$
- lacktriangledown This is the maximal radius of an open ball that has no points in common with S

Dispersion

- igodeta X is a metric space with the distance function $d(\cdot, \cdot)$
- \circ $S \subset X$ is a subset (typically finite)
 - Dispersion of the set S is defined to be $\delta(S) := \sup_{x \in X} \inf_{s \in S} d(x, s)$
- lacktriangle This is the maximal radius of an open ball that has no points in common with S

$X = [0, 1]^n, L_{\infty}$ -metric

igoplus The number k of samples is given

Dispersio

- lacktriangledown X is a metric space with the distance function $d(\cdot,\cdot)$
- \bigcirc $S \subset X$ is a subset (typically finite)
- Dispersion of the set S is defined to be $\delta(S) := \sup_{x \in X} \inf_{s \in S} d(x,s)$
- lacktriangledown This is the maximal radius of an open ball that has no points in common with S

- \bigcirc The number k of samples is given
- The best solution (Sukharev's grid) partition of the sampled cube $[0,1]^n$ into smaller cubes with a common side-length I, whose centers are samples

Dispersion

- lacktriangledown X is a metric space with the distance function $d(\cdot,\cdot)$
- \circ $S \subset X$ is a subset (typically finite)
- lacktriangle This is the maximal radius of an open ball that has no points in common with S

- \bigcirc The number k of samples is given
- The best solution (Sukharev's grid) partition of the sampled cube $[0,1]^n$ into smaller cubes with a common side-length I, whose centers are samples
- Specifically, $I = \left\lfloor k^{\frac{1}{n}} \right\rfloor^{-1}$

Dispersion

- lacktriangledown X is a metric space with the distance function $d(\cdot,\cdot)$
- \circ $S \subset X$ is a subset (typically finite)
- Dispersion of the set S is defined to be $\delta(S) := \sup_{x \in X} \inf_{s \in S} d(x,s)$
- lacktriangle This is the maximal radius of an open ball that has no points in common with S

- \bigcirc The number k of samples is given
- The best solution (Sukharev's grid) partition of the sampled cube $[0,1]^n$ into smaller cubes with a common side-length I, whose centers are samples
- Specifically, $I = \left\lfloor k^{\frac{1}{n}} \right\rfloor^{-1}$

$$X = [0, 1]^2, L_2$$
-metric

Dispersion

- lacktriangledown X is a metric space with the distance function $d(\cdot,\cdot)$
- \circ $S \subset X$ is a subset (typically finite)
- Dispersion of the set S is defined to be $\delta(S) := \sup_{x \in X} \inf_{s \in S} d(x,s)$
- lacktriangledown This is the maximal radius of an open ball that has no points in common with $\mathcal S$

$X = [0, 1]^n, L_{\infty}$ -metric

- \bigcirc The number k of samples is given
- The best solution (Sukharev's grid) partition of the sampled cube $[0,1]^n$ into smaller cubes with a common side-length I, whose centers are samples
- Specifically, $I = \left\lfloor k^{\frac{1}{n}} \right\rfloor^{-1}$

$$X=[0,1]^2, L_2\text{-metric}$$

igoplus The number k of samples is given

Dispersion

- lacktriangledown X is a metric space with the distance function $d(\cdot,\cdot)$
- \circ $S \subset X$ is a subset (typically finite)
- lacktriangle This is the maximal radius of an open ball that has no points in common with S

- \bigcirc The number k of samples is given
- The best solution (Sukharev's grid) partition of the sampled cube $[0,1]^n$ into smaller cubes with a common side-length I, whose centers are samples
- Specifically, $I = \left\lfloor k^{\frac{1}{n}} \right\rfloor^{-1}$

$$X=[0,1]^2, L_2\text{-metric}$$

- \bigcirc The number k of samples is given
- The best solution is tiling with equilateral triangles

Dispersion

- \bullet X is a metric space with the distance function $d(\cdot,\cdot)$
- $S \subset X$ is a subset (typically finite)
- Dispersion of the set S is defined to be $\delta(S) := \sup_{x \in X} \inf_{s \in S} d(x, s)$
- This is the maximal radius of an open ball that has no points in common with S

(b) L_{∞} dispersion

- The number k of samples is given
- The best solution (Sukharev's grid) partition of the sampled cube $[0,1]^n$ into smaller cubes with a common side-length I, whose centers are samples
- Specifically, $I = k \frac{1}{n}$

$$X=[0,1]^2, L_2\text{-metric}$$

- \bullet The number k of samples is given
- The best solution is tiling with equilateral triangles

Uniform triangular lattice

- Ignoring (neglecting, skipping, missing)
- Using to build a sample in the free space

- Ignoring (neglecting, skipping, missing)
- Using to build a sample in the free space

Local planner for a given free space

A device (algorithm) that is fed by a pair of samples (s_0, s_+) and outputs the following:

- Ignoring (neglecting, skipping, missing)
- Using to build a sample in the free space

Local planner for a given free space

A device (algorithm) that is fed by a pair of samples (s_0, s_+) and outputs the following:

 \bullet Either a path ${\mathfrak P}$ from s_0 to s_+ that goes through the given free space and can be traced by the robot (robots)

- Ignoring (neglecting, skipping, missing)
- Using to build a sample in the free space

Local planner for a given free space

A device (algorithm) that is fed by a pair of samples (s_0, s_+) and outputs the following:

- \bullet Either a path ${\mathfrak P}$ from s_0 to s_+ that goes through the given free space and can be traced by the robot (robots)
- Or a special symbol

 ★ that signal about a failure to build

 \$\psi\$

- Ignoring (neglecting, skipping, missing)
- Using to build a sample in the free space

Local planner for a given free space

A device (algorithm) that is fed by a pair of samples (s_0, s_+) and outputs the following:

- \bullet Either a path ${\mathfrak P}$ from s_0 to s_+ that goes through the given free space and can be traced by the robot (robots)
- Or a special symbol

 ★ that signal about a failure to build

 \$\psi\$

The local planner is said to be locally complete if there exists $\varepsilon>0$ such that the output $\neq \maltese$ whenever the ball with a radius of ε centered at s_0 fully lies in the free space and contains s_+ .

- Ignoring (neglecting, skipping, missing)
- Using to build a sample in the free space

Local planner for a given free space

A device (algorithm) that is fed by a pair of samples (s_0, s_+) and outputs the following:

- \bullet Either a path ${\mathfrak P}$ from s_0 to s_+ that goes through the given free space and can be traced by the robot (robots)

The local planner is said to be locally complete if there exists $\varepsilon>0$ such that the output $\neq \maltese$ whenever the ball with a radius of ε centered at s_0 fully lies in the free space and contains s_+ .

- Ignoring (neglecting, skipping, missing)
- Using to build a sample in the free space

Local planner for a given free space

A device (algorithm) that is fed by a pair of samples (s_0, s_+) and outputs the following:

- \bullet Either a path ${\mathfrak P}$ from s_0 to s_+ that goes through the given free space and can be traced by the robot (robots)

The local planner is said to be locally complete if there exists $\varepsilon > 0$ such that the output $\neq \mathcal{F}$ whenever the ball with a radius of ε centered at s_0 fully lies in the free space and contains s_+ .

- Ignoring (neglecting, skipping, missing)
- Using to build a sample in the free space

Using local planner £\$\mathcal{P}\$ for the ideal obstacle-free space

- Form the set S_{true} of "true" samples step-by-step
- If a new sample s_+ lies in the free space, add this sample to S_{true}
- Otherwise
 - Find a sample s₀ ∈ S_{true} most beneficial for LH to build a path P from s₀ to s₊ in the ideal, obstacle-free space (e.g., the point s₀ nearest to s₊)
 - Run LP to build P
 - Truncate \mathcal{P} by leaving some its initial portion \mathcal{P}_{in} that does not collide with the obstacles
 - Enrich S_{true} with the end of \mathcal{P}_{in} different from s_0

Local planner for a given free space

A device (algorithm) that is fed by a pair of samples (s_0, s_+) and outputs the following:

- Either a path $\mathfrak P$ from s_0 to s_+ that goes through the given free space and can be traced by the robot (robots)
- Or a special symbol

 ♣ that signal about a failure to build

 p

The local planner is said to be locally complete if there exists $\varepsilon > 0$ such that the output $\neq \mathcal{F}$ whenever the ball with a radius of ε centered at s_0 fully lies in the free space and contains s_+ .

The basic algorithm 1 Start with the empty graph

- Start with the empty graph
- Pick a probability distribution over the ambient space (simple set covering the free zone)

- Start with the empty graph
- Pick a probability distribution over the ambient space (simple set covering the free zone)
- Repeatedly sample the ambient space according to this distribution; perform a pre-specified number of steps

- Start with the empty graph
- Pick a probability distribution over the ambient space (simple set covering the free zone)
- Repeatedly sample the ambient space according to this distribution; perform a pre-specified number of steps
- Ignore the samples that lie either in an obstacle or outside the working zone. Other samples are is added to the graph

- Start with the empty graph
- Pick a probability distribution over the ambient space (simple set covering the free zone)
- Repeatedly sample the ambient space according to this distribution; perform a pre-specified number of steps
- Ignore the samples that lie either in an obstacle or outside the working zone. Other samples are is added to the graph
- When all nodes are build, run over them

- Start with the empty graph
- Pick a probability distribution over the ambient space (simple set covering the free zone)
- Repeatedly sample the ambient space according to this distribution; perform a pre-specified number of steps
- Ignore the samples that lie either in an obstacle or outside the working zone. Other samples are is added to the graph
- When all nodes are build, run over them
- \odot For any node s,

- Start with the empty graph
- Pick a probability distribution over the ambient space (simple set covering the free zone)
- Repeatedly sample the ambient space according to this distribution; perform a pre-specified number of steps
- Ignore the samples that lie either in an obstacle or outside the working zone. Other samples are is added to the graph
- When all nodes are build, run over them
- For any node s,
 - find all its neighbors, i.e., the nodes s_+ with $d(s, s_+) < \varepsilon$, where $\varepsilon > 0$ is a parameter of the algorithm

Метод случайной дорожной карты

The basic algorithm

- Start with the empty graph
- Pick a probability distribution over the ambient space (simple set covering the free zone)
- Repeatedly sample the ambient space according to this distribution; perform a pre-specified number of steps
- Ignore the samples that lie either in an obstacle or outside the working zone. Other samples are is added to the graph
- When all nodes are build, run over them
- \odot For any node s,
 - find all its neighbors, i.e., the nodes s_+ with $d(s, s_+) < \varepsilon$, where $\varepsilon > 0$ is a parameter of the algorithm
 - run over all these neighbors

Метод случайной дорожной карты

The basic algorithm

- Start with the empty graph
- Pick a probability distribution over the ambient space (simple set covering the free zone)
- Repeatedly sample the ambient space according to this distribution; perform a pre-specified number of steps
- Ignore the samples that lie either in an obstacle or outside the working zone. Other samples are is added to the graph
- When all nodes are build, run over them
- o For any node s,
 - find all its neighbors, i.e., the nodes s_+ with $d(s, s_+) < \varepsilon$, where $\varepsilon > 0$ is a parameter of the algorithm
 - run over all these neighbors
 - ullet for any of them s_+ , apply the local planner to (s,s_+)

Метод случайной дорожной карты

The basic algorithm

- Start with the empty graph
- Pick a probability distribution over the ambient space (simple set covering the free zone)
- Repeatedly sample the ambient space according to this distribution; perform a pre-specified number of steps
- Ignore the samples that lie either in an obstacle or outside the working zone. Other samples are is added to the graph
- When all nodes are build, run over them
- For any node s,
 - find all its neighbors, i.e., the nodes s_+ with $d(s, s_+) < \varepsilon$, where $\varepsilon > 0$ is a parameter of the algorithm
 - run over all these neighbors
 - ullet for any of them s_+ , apply the local planner to (s,s_+)
 - draw an edge from s to s_+ , if the local planner is able to construct a path

Some ideas of finer sampling near obstacles

- If a sample is within an obstacle, draw a random direction from the uniform distribution, find a free sample in this direction, a finally find the closest free sample in this direction (via e.g., a dichotomy)
- Step aside any new sample according to a Gaussian distribution, only if one of these samples is free and the other is within an obstacle, the free sample from this pair is recorded

Find a path between two particular locations \Rightarrow END

• Not the entire graph is utilized and needed

Find a path between two particular locations ⇒ END

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step

Find a path between two particular locations ⇒ END

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step
- These methods can be run in a situation where the graph is not given prior to the search process, and the graph-theoretic neighborhood of the current node is constructed on-the-fly at every step of the search process as its preliminary stage

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step
- These methods can be run in a situation where the graph is not given prior to the search process, and the graph-theoretic neighborhood of the current node is constructed on-the-fly at every step of the search process as its preliminary stage
- Then the processes of graph searching and graph building go in parallel

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step
- These methods can be run in a situation where the graph is not given prior to the search process, and the graph-theoretic neighborhood of the current node is constructed on-the-fly at every step of the search process as its preliminary stage
- Then the processes of graph searching and graph building go in parallel
- Building the graph-theoretic neighborhood may be based on data of different kind, e.g., abstract maps, sensory data, data acquired from other centers via communication, etc.

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step
- These methods can be run in a situation where the graph is not given prior to the search process, and the graph-theoretic neighborhood of the current node is constructed on-the-fly at every step of the search process as its preliminary stage
- Then the processes of graph searching and graph building go in parallel
- Building the graph-theoretic neighborhood may be based on data of different kind, e.g., abstract maps, sensory data, data acquired from other centers via communication, etc.
- Using local planner to build neighboring nodes and associated edges

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step
- These methods can be run in a situation where the graph is not given prior to the search process, and the graph-theoretic neighborhood of the current node is constructed on-the-fly at every step of the search process as its preliminary stage
- Then the processes of graph searching and graph building go in parallel
- Building the graph-theoretic neighborhood may be based on data of different kind, e.g., abstract maps, sensory data, data acquired from other centers via communication, etc.
- Using local planner to build neighboring nodes and associated edges
- The "obstacle-free" path is truncated if it intersects obstacles

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step
- These methods can be run in a situation where the graph is not given prior to the search process, and the graph-theoretic neighborhood of the current node is constructed on-the-fly at every step of the search process as its preliminary stage
- Then the processes of graph searching and graph building go in parallel
- Building the graph-theoretic neighborhood may be based on data of different kind, e.g., abstract maps, sensory data, data acquired from other centers via communication, etc.
- Using local planner to build neighboring nodes and associated edges
- The "obstacle-free" path is truncated if it intersects obstacles

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step
- These methods can be run in a situation where the graph is not given prior to the search process, and the graph-theoretic neighborhood of the current node is constructed on-the-fly at every step of the search process as its preliminary stage
- Then the processes of graph searching and graph building go in parallel
- Building the graph-theoretic neighborhood may be based on data of different kind, e.g., abstract maps, sensory data, data acquired from other centers via communication, etc.
- Using local planner to build neighboring nodes and associated edges
- The "obstacle-free" path is truncated if it intersects obstacles

Find a path between two particular locations \Rightarrow END

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step
- These methods can be run in a situation where the graph is not given prior to the search process, and the graph-theoretic neighborhood of the current node is constructed on-the-fly at every step of the search process as its preliminary stage
- Then the processes of graph searching and graph building go in parallel
- Building the graph-theoretic neighborhood may be based on data of different kind, e.g., abstract maps, sensory data, data acquired from other centers via communication, etc.
- Using local planner to build neighboring nodes and associated edges
- The "obstacle-free" path is truncated if it intersects obstacles

 Multi-step sessions of graph building interspersed with multi-step sessions of graph searching

- Not the entire graph is utilized and needed
- Many graph-search methods are incremental, stepby-step; and only a graph-theoretic neighborhood of the current node is processed at every step
- These methods can be run in a situation where the graph is not given prior to the search process, and the graph-theoretic neighborhood of the current node is constructed on-the-fly at every step of the search process as its preliminary stage
- Then the processes of graph searching and graph building go in parallel
- Building the graph-theoretic neighborhood may be based on data of different kind, e.g., abstract maps, sensory data, data acquired from other centers via communication, etc.
- Using local planner to build neighboring nodes and associated edges
- The "obstacle-free" path is truncated if it intersects obstacles

- Multi-step sessions of graph building interspersed with multi-step sessions of graph searching
- Random walks with creating nodes and edges

Typical algorithm

ullet Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively

- lacktriangledown Two trees $T_{
 m from}$ and $T_{
 m to}$ are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.

- lacktriangledown Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangle A probational node $m{
 ho}_{
 m prob}$ is drawn in a neighborhood of $m{
 ho}$ according to an uniform distribution

- lacktriangledown Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- ullet A probational node p_{prob} is drawn in a neighborhood of p according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from ρ to ρ_{prob} . If the test result is positive, ρ_{prob} and the respective edge are added to the respective graph. Otherwise, ρ_{prob} is neglected.

- lacktriangledown Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangled A probational node $oldsymbol{
 ho}_{
 m prob}$ is drawn in a neighborhood of $oldsymbol{
 ho}$ according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from ρ to ρ_{prob} . If the test result is positive, ρ_{prob} and the respective edge are added to the respective graph. Otherwise, ρ_{prob} is neglected.
- lacktriangle Periodically, merging of the trees T_{from} and T_{to} is attempted:

- ullet Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangle A probational node p_{prob} is drawn in a neighborhood of p according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from p to p_{prob} . If the test result is positive, p_{prob} and the respective edge are added to the respective graph. Otherwise, p_{prob} is neglected.
- lacktriangle Periodically, merging of the trees T_{from} and T_{to} is attempted:
 - ullet A node p in one of them is randomly drawn

- lacktriangled Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangle A probational node p_{prob} is drawn in a neighborhood of p according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from p to p_{prob} . If the test result is positive, p_{prob} and the respective edge are added to the respective graph. Otherwise, p_{prob} is neglected.
- ullet Periodically, merging of the trees $\mathcal{T}_{\mathrm{from}}$ and $\mathcal{T}_{\mathrm{to}}$ is attempted:
 - A node p in one of them is randomly drawn
 - Several close nodes of the companion tree are determined

- lacktriangled Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangle A probational node p_{prob} is drawn in a neighborhood of p according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from ρ to ρ_{prob} . If the test result is positive, ρ_{prob} and the respective edge are added to the respective graph. Otherwise, ρ_{prob} is neglected.
- lacktriangle Periodically, merging of the trees T_{from} and T_{to} is attempted:
 - A node p in one of them is randomly drawn
 - Several close nodes of the companion tree are determined
 - These nodes are consecutively selected and the possibility to arrive at them from p is examined by using the local planner

- lacktriangled Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangle A probational node p_{prob} is drawn in a neighborhood of p according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from p to p_{prob} . If the test result is positive, p_{prob} and the respective edge are added to the respective graph. Otherwise, p_{prob} is neglected.
- lacktriangle Periodically, merging of the trees T_{from} and T_{to} is attempted:
 - A node p in one of them is randomly drawn
 - Several close nodes of the companion tree are determined
 - These nodes are consecutively selected and the possibility to arrive at them from p is examined by using the local planner
 - If the positive result of this test is encountered, the nodes are linked with an edge, the graphs $T_{\rm from}$ and $T_{\rm to}$ are viewed as a single whole, and the overall process is terminated

- lacktriangled Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangled A probational node p_{prob} is drawn in a neighborhood of p according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from p to p_{prob} . If the test result is positive, p_{prob} and the respective edge are added to the respective graph. Otherwise, p_{prob} is neglected.
- ullet Periodically, merging of the trees T_{from} and T_{to} is attempted:
 - A node p in one of them is randomly drawn
 - Several close nodes of the companion tree are determined
 - These nodes are consecutively selected and the possibility to arrive at them from p is examined by using the local planner
 - If the positive result of this test is encountered, the nodes are linked with an edge, the graphs T_{from} and T_{to} are viewed as a single whole, and the overall process is terminated
 - If the search for the positive result fails, the "merging" step is terminated and the stage of expanding T_{from} and T_{to} is resumed

Typical algorithm

- Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangle A probational node $oldsymbol{
 ho}_{\mathrm{prob}}$ is drawn in a neighborhood of $oldsymbol{
 ho}$ according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from ρ to ρ_{prob} . If the test result is positive, ρ_{prob} and the respective edge are added to the respective graph. Otherwise, ρ_{prob} is neglected.
- lacktriangle Periodically, merging of the trees T_{from} and T_{to} is attempted:
 - A node p in one of them is randomly drawn
 - Several close nodes of the companion tree are determined
 - These nodes are consecutively selected and the possibility to arrive at them from p is examined by using the local planner
 - If the positive result of this test is encountered, the nodes are linked with an edge, the graphs T_{from} and T_{to} are viewed as a single whole, and the overall process is terminated
 - If the search for the positive result fails, the "merging" step is terminated and the stage of expanding $T_{\rm from}$ and $T_{\rm to}$ is resumed

Remark on $P_T(dx)$

looplus This distribution typically depends on T and varies from step to step.

Typical algorithm

- lacktriangledown Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangle A probational node p_{prob} is drawn in a neighborhood of p according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from ρ to ρ_{prob} . If the test result is positive, ρ_{prob} and the respective edge are added to the respective graph. Otherwise, ρ_{prob} is neglected.
- lacktriangle Periodically, merging of the trees T_{from} and T_{to} is attempted:
 - A node p in one of them is randomly drawn
 - Several close nodes of the companion tree are determined
 - These nodes are consecutively selected and the possibility to arrive at them from p is examined by using the local planner
 - If the positive result of this test is encountered, the nodes are linked with an edge, the graphs $\mathcal{T}_{\text{from}}$ and \mathcal{T}_{to} are viewed as a single whole, and the overall process is terminated
 - If the search for the positive result fails, the "merging" step is terminated and the stage of expanding T_{from} and T_{to} is resumed

Remark on $P_T(dx)$

- lacktright This distribution typically depends on T and varies from step to step.
- It is designed so that the nodes with lesser number of neighbors be drawn with a higher probability

Typical algorithm

- lacktriangledown Two trees T_{from} and T_{to} are built, starting from the initial and destination location, respectively
- At each step, a node p is drawn from their union $T := T_{\text{from}} \cup T_{\text{to}}$ according to a probability distribution $P_T(dx)$.
- lacktriangle A probational node p_{prob} is drawn in a neighborhood of p according to an uniform distribution
- This node is tested to ascertain that it is in the free zone and the local planner can drive the robot from p to p_{prob} . If the test result is positive, p_{prob} and the respective edge are added to the respective graph. Otherwise, p_{prob} is neglected.
- lacktriangleq Periodically, merging of the trees T_{from} and T_{to} is attempted:
 - A node p in one of them is randomly drawn
 - Several close nodes of the companion tree are determined
 - These nodes are consecutively selected and the possibility to arrive at them from p is examined by using the local planner
 - If the positive result of this test is encountered, the nodes are linked with an edge, the graphs T_{from} and T_{to} are viewed as a single whole, and the overall process is terminated
 - If the search for the positive result fails, the "merging" step is terminated and the stage of expanding T_{from} and T_{to} is resumed

Remark on $P_T(dx)$

- \odot This distribution typically depends on T and varies from step to step.
- It is designed so that the nodes with lesser number of neighbors be drawn with a higher probability

N(p) — the number of nodes in the vicinity of p, including itself

Probability to pick
$$p := \frac{N(p)^{-1}}{\sum_{\text{all nodes } p'} N(p')^{-1}}$$

"Rapidly expanding tree" algorithm

• Is based on a machinery to progressively built a random (dense) sequence of samples s_1, s_2, \ldots

- Is based on a machinery to progressively built a random (dense) sequence of samples S_1, S_2, \ldots
- lacktriangled At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges

- Is based on a machinery to progressively built a random (dense) sequence of samples s_1, s_2, \ldots
- lacktriangled At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed

- Is based on a machinery to progressively built a random (dense) sequence of samples S_1, S_2, \ldots
- lacktriangled At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths

"Rapidly expanding tree" algorithm

- Is based on a machinery to progressively built a random (dense) sequence of samples S_1, S_2, \ldots
- lacktriangled At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- At the next step k+1, the following is carried out

イロト・日・・モ・・モ・ モ りへで

- Is based on a machinery to progressively built a random (dense) sequence of samples S_1, S_2, \ldots
- lacktriangled At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- At the next step k+1, the following is carried out
 - ① The next sample s_{k+1} is drawn from the sequence

- Is based on a machinery to progressively built a random (dense) sequence of samples s_1, s_2, \ldots
- At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples: to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- At the next step k+1, the following is carried out
 - 1 The next sample s_{k+1} is drawn from the sequence

 - 2 The "nearest" point $s'_{k+1} \in C_k$ is found

- Is based on a machinery to progressively built a random (dense) sequence of samples s_1, s_2, \ldots
- lacktriangle At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- At the next step k+1, the following is carried out
- The section of the se
 - ① The next sample s_{k+1} is drawn from the sequence
 - ② The "nearest" point $s'_{k+1} \in C_k$ is found
 - **3** Local planner is used to connect s_{k+1} and s'_{k+1}

- Is based on a machinery to progressively built a random (dense) sequence of samples s_1, s_2, \ldots
- At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- At the next step k+1, the following is carried out
 - 1 The next sample s_{k+1} is drawn from the sequence

 - 2 The "nearest" point $s'_{k+1} \in C_k$ is found
 - **3** Local planner is used to connect s_{k+1} and s'_{k+1}
 - 1 If necessary, s_{k+1} is moved along this path towards s'_{k+1} so that the portion between s_{k+1} and s'_{k+1} becomes obstacle-free

- Is based on a machinery to progressively built a random (dense) sequence of samples s_1, s_2, \ldots
- ullet At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- At the next step k + 1, the following is carried out
 - **1** The next sample s_{k+1} is drawn from the sequence
 - ② The "nearest" point $s'_{k+1} \in C_k$ is found
 - **3** Local planner is used to connect s_{k+1} and s'_{k+1}
 - ① If necessary, s_{k+1} is moved along this path towards s'_{k+1} so that the portion between s_{k+1} and s'_{k+1} becomes obstacle-free
 - $oldsymbol{\delta}$ Both s_{k+1} and s_{k+1}' are added to the set of nodes of the graph

- Is based on a machinery to progressively built a random (dense) sequence of samples s_1, s_2, \ldots
- lacktriangled At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- At the next step k + 1, the following is carried out
 - **1** The next sample s_{k+1} is drawn from the sequence
 - ② The "nearest" point $s'_{k+1} \in C_k$ is found
 - **3** Local planner is used to connect s_{k+1} and s'_{k+1}
 - ① If necessary, s_{k+1} is moved along this path towards s'_{k+1} so that the portion between s_{k+1} and s'_{k+1} becomes obstacle-free
 - **3** Both s_{k+1} and s'_{k+1} are added to the set of nodes of the graph
 - \odot If s'_{k+1} is not a node of Γ_k , every edge of Γ_k that contains s'_{k+1} is divided into two edges

- Is based on a machinery to progressively built a random (dense) sequence of samples s_1, s_2, \ldots
- lacktriangled At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- The coverage C_k of the graph Γ_k is the union of these path At the next step k+1, the following is carried out
 - The part sample s. . is drawn from the sequence
 - ① The next sample s_{k+1} is drawn from the sequence
 - ② The "nearest" point $s'_{k+1} \in C_k$ is found
 - **3** Local planner is used to connect s_{k+1} and s'_{k+1}
 - ① If necessary, s_{k+1} is moved along this path towards s'_{k+1} so that the portion between s_{k+1} and s'_{k+1} becomes obstacle-free
 - \bullet Both s_{k+1} and s'_{k+1} are added to the set of nodes of the graph
 - ① If s'_{k+1} is not a node of Γ_k , every edge of Γ_k that contains s'_{k+1} is divided into two edges
 - The path obtained at step 4 is added to the set of the edges

- Is based on a machinery to progressively built a random (dense) sequence of samples s_1, s_2, \ldots
- \bullet At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- The coverage C_k of the graph Γ_k is the union of these paths

 At the next step k+1, the following is carried out
- The next seemed a second from the second of
 - ① The next sample s_{k+1} is drawn from the sequence
 - ② The "nearest" point $s'_{k+1} \in C_k$ is found
 - **3** Local planner is used to connect s_{k+1} and s'_{k+1}
 - ① If necessary, s_{k+1} is moved along this path towards s'_{k+1} so that the portion between s_{k+1} and s'_{k+1} becomes obstacle-free
 - ${\color{blue} \bullet}$ Both s_{k+1} and s_{k+1}' are added to the set of nodes of the graph
 - ① If s'_{k+1} is not a node of Γ_k , every edge of Γ_k that contains s'_{k+1} is divided into two edges
 - The path obtained at step 4 is added to the set of the edges

- Is based on a machinery to progressively built a random (dense) sequence of samples S_1, S_2, \dots
- At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- At the next step k+1, the following is carried out
- 1 The next sample s_{k+1} is drawn from the sequence
- 2 The "nearest" point $s'_{k+1} \in C_k$ is found
- **3** Local planner is used to connect s_{k+1} and s'_{k+1}
- 1 If necessary, s_{k+1} is moved along this path towards s'_{k+1} so that the portion between s_{k+1} and s'_{k+1} becomes obstacle-free
- **6** Both s_{k+1} and s'_{k+1} are added to the set of nodes of the graph
- **6** If s'_{k+1} is not a node of Γ_k , every edge of Γ_k that contains s'_{k+1} is divided into two edges
- The path obtained at step 4 is added to the set of the edges

- Is based on a machinery to progressively built a random (dense) sequence of samples S_1, S_2, \dots
- At each step k, builds a graph Γ_k with no less than k nodes, starting with the graph with only one node "source" and no edges
- The edges of Γ_k are associated with obstacle-free paths between the samples; to build the paths, a local planner is employed
- The coverage C_k of the graph Γ_k is the union of these paths
- At the next step k+1, the following is carried out
 - 1 The next sample s_{k+1} is drawn from the sequence
 - 2 The "nearest" point $s'_{k+1} \in C_k$ is found
 - **3** Local planner is used to connect s_{k+1} and s'_{k+1}
 - 1 If necessary, s_{k+1} is moved along this path towards s'_{k+1} so that the portion between s_{k+1} and s'_{k+1} becomes obstacle-free
 - **6** Both s_{k+1} and s'_{k+1} are added to the set of nodes of the graph
 - **6** If s'_{k+1} is not a node of Γ_k , every edge of Γ_k that contains s'_{k+1} is divided into two edges
 - The path obtained at step 4 is added to the set of the edges

Некоторые вопросы практической реализации

Некоторые вопросы практической реализации

Некоторые вопросы практической реализации

Kd-tree algorithm

The point of S nearest to s_+

- Find the median X_* of the projection $Pr_x(S)$
- 2 Divide S into two parts: $x \le x_*$ and $x > x_*$
- ② Redefine S as the part with the same position w.r.t x_* as s_+
- If ind the median y_* of the projection $Pr_y(S)$
- o Divide S into two parts: $y \leq y_*$ and $y > y_*$
- **3** Redefine S as the part with the same position w.r.t y_* as s_+
- 🚺 go to 1