Applied Machine Learning

Hyperparameter Tuning Problem & Methods

Learning goals

- The Hyperparameter Optimization Problem
- Grid Search, Random Search and Bayesian optimization

Hyperparameter Tuning

MOTIVATING EXAMPLE

- Given a data set, we want to train a classification tree.
- We feel that a maximum tree depth of 4 has worked out well for us previously, so we decide to set this hyperparameter to 4.
- The learner ("inducer") $\mathcal I$ takes the input data, internally performs **empirical risk minimization**, and returns a fitted tree model $\hat f(\mathbf x) = f(\mathbf x, \hat \theta)$ of at most depth $\lambda = 4$ that minimizes empirical risk.

MOTIVATING EXAMPLE / 2

- We are **actually** interested in the **generalization performance** $GE\left(\hat{f}\right)$ of the estimated model on new, previously unseen data.
- We estimate the generalization performance by evaluating the model $\hat{f} = \mathcal{I}(\mathcal{D}_{\text{train}}, \lambda)$ on a test set $\mathcal{D}_{\text{test}}$:

MOTIVATING EXAMPLE / 3

- But many ML algorithms are sensitive w.r.t. a good setting of their hyperparameters, and generalization performance might be bad if we have chosen a suboptimal configuration.
- Consider a simulation example of 3 ML algorithms below, where
 we use the dataset *mlbench.spiral* and 10,000 testing points. As
 can be seen, variating hyperparameters can lead to big difference
 in model's generalization performance.

MOTIVATING EXAMPLE / 4

For our example this could mean:

- Data too complex to be modeled by a tree of depth 4
- Data much simpler than we thought, a tree of depth 4 overfits
- \implies Algorithmically try out different values for the tree depth. For each maximum depth λ , we have to train the model **to completion** and evaluate its performance on the test set.
 - We choose the tree depth λ that is **optimal** w.r.t. the generalization error of the model.

MODEL PARAMETERS VS. HYPERPARAMETERS

It is critical to understand the difference between model parameters and hyperparameters.

Model parameters θ are optimized during training. They are an **output** of the training.

Examples:

- The splits and terminal node constants of a tree learner
- Coefficients θ of a linear model $f(\mathbf{x}) = \theta^{\top} \mathbf{x}$

MODEL PARAMETERS VS. HYPERPARAMETERS

In contrast, **hyperparameters** (HPs) λ are not optimized during training. They must be specified in advance, are an **input** of the training. Hyperparameters often control the complexity of a model, i.e., how flexible the model is. They can in principle influence any structural property of a model or computational part of the training process.

The process of finding the best hyperparameters is called **tuning**.

Examples:

- Maximum depth of a tree
- k and which distance measure to use for k-NN
- Number and maximal order of interactions to be included in a linear regression model

MODEL PARAMETERS VS. HYPERPARAMETERS

/ 3

 Number of optimization steps if the empirical risk minimization is done via gradient descent

TYPES OF HYPERPARAMETERS

We summarize all hyperparameters we want to tune in a vector $\lambda \in \Lambda$ of (possibly) mixed type. HPs can have different types:

- Real-valued parameters, e.g.:
 - Minimal error improvement in a tree to accept a split
 - Bandwidths of the kernel density estimates for Naive Bayes
- Integer parameters, e.g.:
 - Neighborhood size *k* for *k*-NN
 - mtry in a random forest
- Categorical parameters, e.g.:
 - Which split criterion for classification trees?
 - Which distance measure for k-NN?

Hyperparameters are often **hierarchically dependent** on each other, e.g., *if* we use a kernel-density estimate for Naive Bayes, what is its width?

Hyperparameter Tuning Algorithms

GRID SEARCH

- Simple technique which is still quite popular, tries all HP combinations on a multi-dimensional discretized grid
- For each hyperparameter a finite set of candidates is predefined
- Then, we simply search all possible combinations in arbitrary order

RANDOM SEARCH

- Small variation of grid search
- Uniformly sample from the region-of-interest

Random search over 100 points

RANDOM SEARCH VS. GRID SEARCH

We consider a maximization problem on the function $f(x_1,x_2)=g(x_1)+h(x_2)\approx g(x_1)$, i.e. in order to maximize the target, x_1 should be the parameter to focus on.

 \Rightarrow In this setting, random search is more superior as we get a better coverage for the parameter x_1 in comparison with grid search, where we only discover 5 distinct values for x_1 .

TUNING EXAMPLE

Tuning random forest with grid search/random search and 5CV on the sonar data set for AUC:

	Hyperparameter	Туре	Min	Max
	num.trees	integer	3	500
	mtry	integer	5	50
İ	min.node.size	integer	10	100

SUMMARY

Property	Grid Search	Random Search
Easy to implement	 	\checkmark
All parameter types possible	√	\checkmark
Parallelization is trivial		\checkmark
Does not suffer from the curse of dimensionality		\checkmark
Does not require discretization of hyperparameters		\checkmark
Anytime algorithm		\checkmark

HPO - MANY APPROACHES

- Evolutionary algorithms
- Bayesian / model-based optimization
- Multi-fidelity optimization, e.g. Hyperband

- how the exploration vs. exploitation trade-off is handled
- how the inference vs. search trade-off is handled

Further aspects: Parallelizability, local vs. global behavior, handling of noisy observations, multifidelity and search space complexity.

BAYESIAN OPTIMIZATION

BO sequentially iterates:

- Approximate $\lambda \mapsto c(\lambda)$ by (nonlin) regression model $\hat{c}(\lambda)$, from evaluated configurations (archive)
- **Propose candidates** via optimizing an acquisition function that is based on the surrogate $\hat{c}(\lambda)$
- Evaluate candidate(s) proposed in 2, then go to 1 Important trade-off: Exploration (evaluate candidates in

under-explored areas) vs. **exploitation** (search near promising areas)

BAYESIAN OPTIMIZATION

Surrogate Model:

- Probabilistic modeling of $C(\lambda) \sim (\hat{c}(\lambda), \hat{\sigma}(\lambda))$ with posterior mean $\hat{c}(\lambda)$ and uncertainty $\hat{\sigma}(\lambda)$.
- Typical choices for numeric spaces are Gaussian Processes: random forests for mixed spaces

Acquisition Function:

- Balance exploration (high $\hat{\sigma}$) vs. exploitation (low \hat{c}).
- Lower confidence bound (LCB): $a(\lambda) = \hat{c}(\lambda) \kappa \cdot \hat{\sigma}(\lambda)$
- Expected improvement (EI): $a(\lambda) = \mathbb{E}\left[\max\left\{c_{\min} C(\lambda), 0\right\}\right]$ where (c_{min} is best cost value from archive)
- Optimizing $a(\lambda)$ is still difficult, but cheap(er)

BAYESIAN OPTIMIZATION / 2

Since we use the sequentially updated surrogate model predictions of performance to propose new configurations, we are guided to "interesting" regions of Λ and avoid irrelevant evaluations:

Figure: Tuning complexity and minimal node size for splits for CART on the titanic data (10-fold CV maximizing accuracy).

Left panel: BO, 50 configurations; right panel: random search, 50 iterations.

Top panel: one run (initial design of BO is white); bottom panel: mean \pm std of 10 runs.

PRACTICAL ASPECTS OF HPO

- Choosing HPO algorithm
 - For few HPS (1-3), grid search can be used
 - BO with GPs for upto 10 numeric HPs
 - BO with RFs handle mixed HP spaces
 - Random search and Hyperband work well as long as the "effective" dimension is low
 - EAs are somewhat in-between BO and RS, can handle very complex spaces, but less sample efficient than BO
 - Also: use something that's stable and robust! More an aspect of the implementation than the algo!

