Methods Common to All Objects

ALTHOUGH Object is a concrete class, it is designed primarily for extension. All of its nonfinal methods (equals, hashCode, toString, clone, and finalize) have explicit *general contracts* because they are designed to be overridden. It is the responsibility of any class overriding these methods to obey their general contracts; failure to do so will prevent other classes that depend on the contracts (such as HashMap and HashSet) from functioning properly in conjunction with the class.

This chapter tells you when and how to override the nonfinal Object methods. The finalize method is omitted from this chapter because it was discussed in Item 8. While not an Object method, Comparable.compareTo is discussed in this chapter because it has a similar character.

Item 10: Obey the general contract when overriding equals

Overriding the equals method seems simple, but there are many ways to get it wrong, and consequences can be dire. The easiest way to avoid problems is not to override the equals method, in which case each instance of the class is equal only to itself. This is the right thing to do if any of the following conditions apply:

- Each instance of the class is inherently unique. This is true for classes such as Thread that represent active entities rather than values. The equals implementation provided by Object has exactly the right behavior for these classes.
- There is no need for the class to provide a "logical equality" test. For example, java.util.regex.Pattern could have overridden equals to check whether two Pattern instances represented exactly the same regular expression, but the designers didn't think that clients would need or want this functionality. Under these circumstances, the equals implementation inherited from Object is ideal.

- A superclass has already overridden equals, and the superclass behavior is appropriate for this class. For example, most Set implementations inherit their equals implementation from AbstractSet, List implementations from AbstractList, and Map implementations from AbstractMap.
- The class is private or package-private, and you are certain that its equals method will never be invoked. If you are extremely risk-averse, you can override the equals method to ensure that it isn't invoked accidentally:

```
@Override public boolean equals(Object o) {
   throw new AssertionError(); // Method is never called
}
```

So when is it appropriate to override equals? It is when a class has a notion of logical equality that differs from mere object identity and a superclass has not already overridden equals. This is generally the case for value classes. A value class is simply a class that represents a value, such as Integer or String. A programmer who compares references to value objects using the equals method expects to find out whether they are logically equivalent, not whether they refer to the same object. Not only is overriding the equals method necessary to satisfy programmer expectations, it enables instances to serve as map keys or set elements with predictable, desirable behavior.

One kind of value class that does *not* require the equals method to be overridden is a class that uses instance control (Item 1) to ensure that at most one object exists with each value. Enum types (Item 34) fall into this category. For these classes, logical equality is the same as object identity, so Object's equals method functions as a logical equals method.

When you override the equals method, you must adhere to its general contract. Here is the contract, from the specification for Object:

The equals method implements an *equivalence relation*. It has these properties:

- Reflexive: For any non-null reference value x, x. equals (x) must return true.
- *Symmetric*: For any non-null reference values x and y, x.equals(y) must return true if and only if y.equals(x) returns true.
- *Transitive*: For any non-null reference values x, y, z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) must return true.
- *Consistent*: For any non-null reference values x and y, multiple invocations of x.equals(y) must consistently return true or consistently return false, provided no information used in equals comparisons is modified.
- For any non-null reference value x, x.equals(null) must return false.

Unless you are mathematically inclined, this might look a bit scary, but do not ignore it! If you violate it, you may well find that your program behaves erratically or crashes, and it can be very difficult to pin down the source of the failure. To paraphrase John Donne, no class is an island. Instances of one class are frequently passed to another. Many classes, including all collections classes, depend on the objects passed to them obeying the equals contract.

Now that you are aware of the dangers of violating the equals contract, let's go over the contract in detail. The good news is that, appearances notwithstanding, it really isn't very complicated. Once you understand it, it's not hard to adhere to it.

So what is an equivalence relation? Loosely speaking, it's an operator that partitions a set of elements into subsets whose elements are deemed equal to one another. These subsets are known as *equivalence classes*. For an equals method to be useful, all of the elements in each equivalence class must be interchangeable from the perspective of the user. Now let's examine the five requirements in turn:

Reflexivity—The first requirement says merely that an object must be equal to itself. It's hard to imagine violating this one unintentionally. If you were to violate it and then add an instance of your class to a collection, the contains method might well say that the collection didn't contain the instance that you just added.

Symmetry—The second requirement says that any two objects must agree on whether they are equal. Unlike the first requirement, it's not hard to imagine violating this one unintentionally. For example, consider the following class, which implements a case-insensitive string. The case of the string is preserved by toString but ignored in equals comparisons:

```
// Broken - violates symmetry!
public final class CaseInsensitiveString {
    private final String s;
    public CaseInsensitiveString(String s) {
        this.s = Objects.requireNonNull(s);
    // Broken - violates symmetry!
    @Override public boolean equals(Object o) {
        if (o instanceof CaseInsensitiveString)
            return s.equalsIgnoreCase(
                ((CaseInsensitiveString) o).s);
        if (o instanceof String) // One-way interoperability!
            return s.equalsIgnoreCase((String) o);
        return false:
    }
        // Remainder omitted
}
```

The well-intentioned equals method in this class naively attempts to interoperate with ordinary strings. Let's suppose that we have one case-insensitive string and one ordinary one:

```
CaseInsensitiveString cis = new CaseInsensitiveString("Polish");
String s = "polish";
```

As expected, cis.equals(s) returns true. The problem is that while the equals method in CaseInsensitiveString knows about ordinary strings, the equals method in String is oblivious to case-insensitive strings. Therefore, s.equals(cis) returns false, a clear violation of symmetry. Suppose you put a case-insensitive string into a collection:

```
List<CaseInsensitiveString> list = new ArrayList<>();
list.add(cis);
```

What does list.contains(s) return at this point? Who knows? In the current OpenJDK implementation, it happens to return false, but that's just an implementation artifact. In another implementation, it could just as easily return true or throw a runtime exception. Once you've violated the equals contract, you simply don't know how other objects will behave when confronted with your object.

To eliminate the problem, merely remove the ill-conceived attempt to interoperate with String from the equals method. Once you do this, you can refactor the method into a single return statement:

Transitivity—The third requirement of the equals contract says that if one object is equal to a second and the second object is equal to a third, then the first object must be equal to the third. Again, it's not hard to imagine violating this requirement unintentionally. Consider the case of a subclass that adds a new *value component* to its superclass. In other words, the subclass adds a piece of

information that affects equals comparisons. Let's start with a simple immutable two-dimensional integer point class:

```
public class Point {
    private final int x;
    private final int y;

public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }

@Override public boolean equals(Object o) {
        if (!(o instanceof Point))
            return false;
        Point p = (Point)o;
        return p.x == x && p.y == y;
    }

... // Remainder omitted
}
```

Suppose you want to extend this class, adding the notion of color to a point:

```
public class ColorPoint extends Point {
    private final Color color;

public ColorPoint(int x, int y, Color color) {
        super(x, y);
        this.color = color;
    }

... // Remainder omitted
}
```

How should the equals method look? If you leave it out entirely, the implementation is inherited from Point and color information is ignored in equals comparisons. While this does not violate the equals contract, it is clearly unacceptable. Suppose you write an equals method that returns true only if its argument is another color point with the same position and color:

```
// Broken - violates symmetry!
@Override public boolean equals(Object o) {
   if (!(o instanceof ColorPoint))
      return false;
   return super.equals(o) && ((ColorPoint) o).color == color;
}
```

The problem with this method is that you might get different results when comparing a point to a color point and vice versa. The former comparison ignores color, while the latter comparison always returns false because the type of the argument is incorrect. To make this concrete, let's create one point and one color point:

```
Point p = new Point(1, 2);
ColorPoint cp = new ColorPoint(1, 2, Color.RED);
```

Then p.equals(cp) returns true, while cp.equals(p) returns false. You might try to fix the problem by having ColorPoint.equals ignore color when doing "mixed comparisons":

```
// Broken - violates transitivity!
@Override public boolean equals(Object o) {
   if (!(o instanceof Point))
      return false;

// If o is a normal Point, do a color-blind comparison
   if (!(o instanceof ColorPoint))
      return o.equals(this);

// o is a ColorPoint; do a full comparison
   return super.equals(o) && ((ColorPoint) o).color == color;
}
```

This approach does provide symmetry, but at the expense of transitivity:

```
ColorPoint p1 = new ColorPoint(1, 2, Color.RED);
Point p2 = new Point(1, 2);
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);
```

Now p1.equals(p2) and p2.equals(p3) return true, while p1.equals(p3) returns false, a clear violation of transitivity. The first two comparisons are "color-blind," while the third takes color into account.

Also, this approach can cause infinite recursion: Suppose there are two subclasses of Point, say ColorPoint and SmellPoint, each with this sort of equals method. Then a call to myColorPoint.equals(mySmellPoint) will throw a StackOverflowError.

So what's the solution? It turns out that this is a fundamental problem of equivalence relations in object-oriented languages. There is no way to extend an instantiable class and add a value component while preserving the equals contract, unless you're willing to forgo the benefits of object-oriented abstraction.

You may hear it said that you can extend an instantiable class and add a value component while preserving the equals contract by using a getClass test in place of the instanceof test in the equals method:

```
// Broken - violates Liskov substitution principle (page 43)
@Override public boolean equals(Object o) {
   if (o == null || o.getClass() != getClass())
      return false;
   Point p = (Point) o;
   return p.x == x && p.y == y;
}
```

This has the effect of equating objects only if they have the same implementation class. This may not seem so bad, but the consequences are unacceptable: An instance of a subclass of Point is still a Point, and it still needs to function as one, but it fails to do so if you take this approach! Let's suppose we want to write a method to tell whether a point is on the unit circle. Here is one way we could do it:

```
// Initialize unitCircle to contain all Points on the unit circle
private static final Set<Point> unitCircle = Set.of(
    new Point( 1,  0), new Point( 0,  1),
    new Point(-1,  0), new Point( 0, -1));

public static boolean onUnitCircle(Point p) {
    return unitCircle.contains(p);
}
```

While this may not be the fastest way to implement the functionality, it works fine. Suppose you extend Point in some trivial way that doesn't add a value component, say, by having its constructor keep track of how many instances have been created:

The *Liskov substitution principle* says that any important property of a type should also hold for all its subtypes so that any method written for the type should work equally well on its subtypes [Liskov87]. This is the formal statement of our

earlier claim that a subclass of Point (such as CounterPoint) is still a Point and must act as one. But suppose we pass a CounterPoint to the onUnitCircle method. If the Point class uses a getClass-based equals method, the onUnitCircle method will return false regardless of the CounterPoint instance's x and y coordinates. This is so because most collections, including the HashSet used by the onUnitCircle method, use the equals method to test for containment, and no CounterPoint instance is equal to any Point. If, however, you use a proper instanceof-based equals method on Point, the same onUnitCircle method works fine when presented with a CounterPoint instance.

While there is no satisfactory way to extend an instantiable class and add a value component, there is a fine workaround: Follow the advice of Item 18, "Favor composition over inheritance." Instead of having ColorPoint extend Point, give ColorPoint a private Point field and a public *view* method (Item 6) that returns the point at the same position as this color point:

```
// Adds a value component without violating the equals contract
public class ColorPoint {
   private final Point point;
   private final Color color;
   public ColorPoint(int x, int y, Color color) {
      point = new Point(x, y);
      this.color = Objects.requireNonNull(color);
   }
   /**
    * Returns the point-view of this color point.
   public Point asPoint() {
      return point;
   @Override public boolean equals(Object o) {
      if (!(o instanceof ColorPoint))
         return false;
      ColorPoint cp = (ColorPoint) o;
      return cp.point.equals(point) && cp.color.equals(color);
   }
   ... // Remainder omitted
}
```

There are some classes in the Java platform libraries that do extend an instantiable class and add a value component. For example, java.sql.Timestamp

extends java.util.Date and adds a nanoseconds field. The equals implementation for Timestamp does violate symmetry and can cause erratic behavior if Timestamp and Date objects are used in the same collection or are otherwise intermixed. The Timestamp class has a disclaimer cautioning programmers against mixing dates and timestamps. While you won't get into trouble as long as you keep them separate, there's nothing to prevent you from mixing them, and the resulting errors can be hard to debug. This behavior of the Timestamp class was a mistake and should not be emulated.

Note that you *can* add a value component to a subclass of an *abstract* class without violating the equals contract. This is important for the sort of class hierarchies that you get by following the advice in Item 23, "Prefer class hierarchies to tagged classes." For example, you could have an abstract class Shape with no value components, a subclass Circle that adds a radius field, and a subclass Rectangle that adds length and width fields. Problems of the sort shown earlier won't occur so long as it is impossible to create a superclass instance directly.

Consistency—The fourth requirement of the equals contract says that if two objects are equal, they must remain equal for all time unless one (or both) of them is modified. In other words, mutable objects can be equal to different objects at different times while immutable objects can't. When you write a class, think hard about whether it should be immutable (Item 17). If you conclude that it should, make sure that your equals method enforces the restriction that equal objects remain equal and unequal objects remain unequal for all time.

Whether or not a class is immutable, **do not write an equals method that depends on unreliable resources.** It's extremely difficult to satisfy the consistency requirement if you violate this prohibition. For example, <code>java.net.URL</code>'s equals method relies on comparison of the IP addresses of the hosts associated with the URLs. Translating a host name to an IP address can require network access, and it isn't guaranteed to yield the same results over time. This can cause the URL equals method to violate the equals contract and has caused problems in practice. The behavior of URL's equals method was a big mistake and should not be emulated. Unfortunately, it cannot be changed due to compatibility requirements. To avoid this sort of problem, equals methods should perform only deterministic computations on memory-resident objects.

Non-nullity—The final requirement lacks an official name, so I have taken the liberty of calling it "non-nullity." It says that all objects must be unequal to null. While it is hard to imagine accidentally returning true in response to the invocation o.equals(null), it isn't hard to imagine accidentally throwing a

NullPointerException. The general contract prohibits this. Many classes have equals methods that guard against it with an explicit test for null:

```
@Override public boolean equals(Object o) {
   if (o == null)
      return false;
   ...
}
```

This test is unnecessary. To test its argument for equality, the equals method must first cast its argument to an appropriate type so its accessors can be invoked or its fields accessed. Before doing the cast, the method must use the instanceof operator to check that its argument is of the correct type:

```
@Override public boolean equals(Object o) {
   if (!(o instanceof MyType))
      return false;
   MyType mt = (MyType) o;
   ...
}
```

If this type check were missing and the equals method were passed an argument of the wrong type, the equals method would throw a ClassCastException, which violates the equals contract. But the instanceof operator is specified to return false if its first operand is null, regardless of what type appears in the second operand [JLS, 15.20.2]. Therefore, the type check will return false if null is passed in, so you don't need an explicit null check.

Putting it all together, here's a recipe for a high-quality equals method:

- 1. Use the == operator to check if the argument is a reference to this object. If so, return true. This is just a performance optimization but one that is worth doing if the comparison is potentially expensive.
- 2. Use the instanceof operator to check if the argument has the correct type. If not, return false. Typically, the correct type is the class in which the method occurs. Occasionally, it is some interface implemented by this class. Use an interface if the class implements an interface that refines the equals contract to permit comparisons across classes that implement the interface. Collection interfaces such as Set, List, Map, and Map. Entry have this property.
- 3. **Cast the argument to the correct type.** Because this cast was preceded by an instanceof test, it is guaranteed to succeed.

4. For each "significant" field in the class, check if that field of the argument matches the corresponding field of this object. If all these tests succeed, return true; otherwise, return false. If the type in Step 2 is an interface, you must access the argument's fields via interface methods; if the type is a class, you may be able to access the fields directly, depending on their accessibility.

For primitive fields whose type is not float or double, use the == operator for comparisons; for object reference fields, call the equals method recursively; for float fields, use the static Float.compare(float, float) method; and for double fields, use Double.compare(double, double). The special treatment of float and double fields is made necessary by the existence of Float.NaN, -0.0f and the analogous double values; see JLS 15.21.1 or the documentation of Float.equals for details. While you could compare float and double fields with the static methods Float.equals and Double.equals, this would entail autoboxing on every comparison, which would have poor performance. For array fields, apply these guidelines to each element. If every element in an array field is significant, use one of the Arrays.equals methods.

Some object reference fields may legitimately contain null. To avoid the possibility of a NullPointerException, check such fields for equality using the static method Objects.equals(Object, Object).

For some classes, such as CaseInsensitiveString above, field comparisons are more complex than simple equality tests. If this is the case, you may want to store a *canonical form* of the field so the equals method can do a cheap exact comparison on canonical forms rather than a more costly nonstandard comparison. This technique is most appropriate for immutable classes (Item 17); if the object can change, you must keep the canonical form up to date.

The performance of the equals method may be affected by the order in which fields are compared. For best performance, you should first compare fields that are more likely to differ, less expensive to compare, or, ideally, both. You must not compare fields that are not part of an object's logical state, such as lock fields used to synchronize operations. You need not compare *derived fields*, which can be calculated from "significant fields," but doing so may improve the performance of the equals method. If a derived field amounts to a summary description of the entire object, comparing this field will save you the expense of comparing the actual data if the comparison fails. For example, suppose you have a Polygon class, and you cache the area. If two polygons have unequal areas, you needn't bother comparing their edges and vertices.

When you are finished writing your equals method, ask yourself three questions: Is it symmetric? Is it transitive? Is it consistent? And don't just ask yourself; write unit tests to check, unless you used AutoValue (page 49) to generate your equals method, in which case you can safely omit the tests. If the properties fail to hold, figure out why, and modify the equals method accordingly. Of course your equals method must also satisfy the other two properties (reflexivity and non-nullity), but these two usually take care of themselves.

An equals method constructed according to the previous recipe is shown in this simplistic PhoneNumber class:

```
// Class with a typical equals method
public final class PhoneNumber {
    private final short areaCode, prefix, lineNum;
    public PhoneNumber(int areaCode, int prefix, int lineNum) {
        this.areaCode = rangeCheck(areaCode, 999, "area code");
        this.prefix = rangeCheck(prefix, 999, "prefix");
        this.lineNum = rangeCheck(lineNum, 9999, "line num");
    }
    private static short rangeCheck(int val, int max, String arg) {
        if (val < 0 \mid \mid val > max)
           throw new IllegalArgumentException(arg + ": " + val);
        return (short) val;
    }
    @Override public boolean equals(Object o) {
        if (o == this)
            return true:
        if (!(o instanceof PhoneNumber))
            return false;
        PhoneNumber pn = (PhoneNumber)o;
        return pn.lineNum == lineNum && pn.prefix == prefix
                && pn.areaCode == areaCode;
    }
    ... // Remainder omitted
}
```

Here are a few final caveats:

- Always override hashCode when you override equals (Item 11).
- Don't try to be too clever. If you simply test fields for equality, it's not hard to adhere to the equals contract. If you are overly aggressive in searching for equivalence, it's easy to get into trouble. It is generally a bad idea to take any form of aliasing into account. For example, the File class shouldn't attempt to equate symbolic links referring to the same file. Thankfully, it doesn't.

• Don't substitute another type for Object in the equals declaration. It is not uncommon for a programmer to write an equals method that looks like this and then spend hours puzzling over why it doesn't work properly:

```
// Broken - parameter type must be Object!
public boolean equals(MyClass o) {
    ...
}
```

The problem is that this method does not *override* Object.equals, whose argument is of type Object, but *overloads* it instead (Item 52). It is unacceptable to provide such a "strongly typed" equals method even in addition to the normal one, because it can cause Override annotations in subclasses to generate false positives and provide a false sense of security.

Consistent use of the Override annotation, as illustrated throughout this item, will prevent you from making this mistake (Item 40). This equals method won't compile, and the error message will tell you exactly what is wrong:

```
// Still broken, but won't compile
@Override public boolean equals(MyClass o) {
    ...
}
```

Writing and testing equals (and hashCode) methods is tedious, and the resulting code is mundane. An excellent alternative to writing and testing these methods manually is to use Google's open source AutoValue framework, which automatically generates these methods for you, triggered by a single annotation on the class . In most cases, the methods generated by AutoValue are essentially identical to those you'd write yourself.

IDEs, too, have facilities to generate equals and hashCode methods, but the resulting source code is more verbose and less readable than code that uses AutoValue, does not track changes in the class automatically, and therefore requires testing. That said, having IDEs generate equals (and hashCode) methods is generally preferable to implementing them manually because IDEs do not make careless mistakes, and humans do.

In summary, don't override the equals method unless you have to: in many cases, the implementation inherited from Object does exactly what you want. If you do override equals, make sure to compare all of the class's significant fields and to compare them in a manner that preserves all five provisions of the equals contract.

Item 11: Always override hashCode when you override equals

You must override hashCode in every class that overrides equals. If you fail to do so, your class will violate the general contract for hashCode, which will prevent it from functioning properly in collections such as HashMap and HashSet. Here is the contract, adapted from the Object specification:

- When the hashCode method is invoked on an object repeatedly during an
 execution of an application, it must consistently return the same value,
 provided no information used in equals comparisons is modified. This value
 need not remain consistent from one execution of an application to another.
- If two objects are equal according to the equals (Object) method, then calling hashCode on the two objects must produce the same integer result.
- If two objects are unequal according to the equals (Object) method, it is *not* required that calling hashCode on each of the objects must produce distinct results. However, the programmer should be aware that producing distinct results for unequal objects may improve the performance of hash tables.

The key provision that is violated when you fail to override hashCode is the second one: equal objects must have equal hash codes. Two distinct instances may be logically equal according to a class's equals method, but to Object's hashCode method, they're just two objects with nothing much in common. Therefore, Object's hashCode method returns two seemingly random numbers instead of two equal numbers as required by the contract.

For example, suppose you attempt to use instances of the PhoneNumber class from Item 10 as keys in a HashMap:

```
Map<PhoneNumber, String> m = new HashMap<>();
m.put(new PhoneNumber(707, 867, 5309), "Jenny");
```

At this point, you might expect m.get(new PhoneNumber (707, 867, 5309)) to return "Jenny", but instead, it returns null. Notice that two PhoneNumber instances are involved: one is used for insertion into the HashMap, and a second, equal instance is used for (attempted) retrieval. The PhoneNumber class's failure to override hashCode causes the two equal instances to have unequal hash codes, in violation of the hashCode contract. Therefore, the get method is likely to look for the phone number in a different hash bucket from the one in which it was stored by the put method. Even if the two instances happen to hash to the same bucket, the get method will almost certainly return null, because HashMap has an optimization that caches the hash code associated with each entry and doesn't bother checking for object equality if the hash codes don't match.

Fixing this problem is as simple as writing a proper hashCode method for PhoneNumber. So what should a hashCode method look like? It's trivial to write a bad one. This one, for example, is always legal but should never be used:

```
// The worst possible legal hashCode implementation - never use!
@Override public int hashCode() { return 42; }
```

It's legal because it ensures that equal objects have the same hash code. It's atrocious because it ensures that *every* object has the same hash code. Therefore, every object hashes to the same bucket, and hash tables degenerate to linked lists. Programs that should run in linear time instead run in quadratic time. For large hash tables, this is the difference between working and not working.

A good hash function tends to produce unequal hash codes for unequal instances. This is exactly what is meant by the third part of the hashCode contract. Ideally, a hash function should distribute any reasonable collection of unequal instances uniformly across all int values. Achieving this ideal can be difficult. Luckily it's not too hard to achieve a fair approximation. Here is a simple recipe:

- 1. Declare an int variable named result, and initialize it to the hash code c for the first significant field in your object, as computed in step 2.a. (Recall from Item 10 that a significant field is a field that affects equals comparisons.)
- 2. For every remaining significant field f in your object, do the following:
 - a. Compute an int hash code c for the field:
 - i. If the field is of a primitive type, compute *Type*.hashCode(f), where *Type* is the boxed primitive class corresponding to f's type.
 - ii. If the field is an object reference and this class's equals method compares the field by recursively invoking equals, recursively invoke hashCode on the field. If a more complex comparison is required, compute a "canonical representation" for this field and invoke hashCode on the canonical representation. If the value of the field is null, use 0 (or some other constant, but 0 is traditional).
 - iii. If the field is an array, treat it as if each significant element were a separate field. That is, compute a hash code for each significant element by applying these rules recursively, and combine the values per step 2.b. If the array has no significant elements, use a constant, preferably not 0. If all elements are significant, use Arrays.hashCode.
 - b. Combine the hash code c computed in step 2.a into result as follows:

```
result = 31 * result + c;
```

3. Return result.

When you are finished writing the hashCode method, ask yourself whether equal instances have equal hash codes. Write unit tests to verify your intuition (unless you used AutoValue to generate your equals and hashCode methods, in which case you can safely omit these tests). If equal instances have unequal hash codes, figure out why and fix the problem.

You may exclude *derived fields* from the hash code computation. In other words, you may ignore any field whose value can be computed from fields included in the computation. You *must* exclude any fields that are not used in equals comparisons, or you risk violating the second provision of the hashCode contract.

The multiplication in step 2.b makes the result depend on the order of the fields, yielding a much better hash function if the class has multiple similar fields. For example, if the multiplication were omitted from a String hash function, all anagrams would have identical hash codes. The value 31 was chosen because it is an odd prime. If it were even and the multiplication overflowed, information would be lost, because multiplication by 2 is equivalent to shifting. The advantage of using a prime is less clear, but it is traditional. A nice property of 31 is that the multiplication can be replaced by a shift and a subtraction for better performance on some architectures: 31 * i = (i << 5) - i. Modern VMs do this sort of optimization automatically.

Let's apply the previous recipe to the PhoneNumber class:

```
// Typical hashCode method
@Override public int hashCode() {
   int result = Short.hashCode(areaCode);
   result = 31 * result + Short.hashCode(prefix);
   result = 31 * result + Short.hashCode(lineNum);
   return result;
}
```

Because this method returns the result of a simple deterministic computation whose only inputs are the three significant fields in a PhoneNumber instance, it is clear that equal PhoneNumber instances have equal hash codes. This method is, in fact, a perfectly good hashCode implementation for PhoneNumber, on par with those in the Java platform libraries. It is simple, is reasonably fast, and does a reasonable job of dispersing unequal phone numbers into different hash buckets.

While the recipe in this item yields reasonably good hash functions, they are not state-of-the-art. They are comparable in quality to the hash functions found in the Java platform libraries' value types and are adequate for most uses. If you have a bona fide need for hash functions less likely to produce collisions, see Guava's com.google.common.hash.Hashing [Guava].

The Objects class has a static method that takes an arbitrary number of objects and returns a hash code for them. This method, named hash, lets you write one-line hashCode methods whose quality is comparable to those written according to the recipe in this item. Unfortunately, they run more slowly because they entail array creation to pass a variable number of arguments, as well as boxing and unboxing if any of the arguments are of primitive type. This style of hash function is recommended for use only in situations where performance is not critical. Here is a hash function for PhoneNumber written using this technique:

```
// One-line hashCode method - mediocre performance
@Override public int hashCode() {
   return Objects.hash(lineNum, prefix, areaCode);
}
```

If a class is immutable and the cost of computing the hash code is significant, you might consider caching the hash code in the object rather than recalculating it each time it is requested. If you believe that most objects of this type will be used as hash keys, then you should calculate the hash code when the instance is created. Otherwise, you might choose to *lazily initialize* the hash code the first time hash-Code is invoked. Some care is required to ensure that the class remains thread-safe in the presence of a lazily initialized field (Item 83). Our PhoneNumber class does not merit this treatment, but just to show you how it's done, here it is. Note that the initial value for the hashCode field (in this case, 0) should not be the hash code of a commonly created instance:

```
// hashCode method with lazily initialized cached hash code
private int hashCode; // Automatically initialized to 0

@Override public int hashCode() {
   int result = hashCode;
   if (result == 0) {
      result = Short.hashCode(areaCode);
      result = 31 * result + Short.hashCode(prefix);
      result = 31 * result + Short.hashCode(lineNum);
      hashCode = result;
   }
   return result;
}
```

Do not be tempted to exclude significant fields from the hash code computation to improve performance. While the resulting hash function may run faster, its poor quality may degrade hash tables' performance to the point where they become unusable. In particular, the hash function may be confronted with a

large collection of instances that differ mainly in regions you've chosen to ignore. If this happens, the hash function will map all these instances to a few hash codes, and programs that should run in linear time will instead run in quadratic time.

This is not just a theoretical problem. Prior to Java 2, the String hash function used at most sixteen characters evenly spaced throughout the string, starting with the first character. For large collections of hierarchical names, such as URLs, this function displayed exactly the pathological behavior described earlier.

Don't provide a detailed specification for the value returned by hashCode, so clients can't reasonably depend on it; this gives you the flexibility to change it. Many classes in the Java libraries, such as String and Integer, specify the exact value returned by their hashCode method as a function of the instance value. This is *not* a good idea but a mistake that we're forced to live with: It impedes the ability to improve the hash function in future releases. If you leave the details unspecified and a flaw is found in the hash function or a better hash function is discovered, you can change it in a subsequent release.

In summary, you *must* override hashCode every time you override equals, or your program will not run correctly. Your hashCode method must obey the general contract specified in Object and must do a reasonable job assigning unequal hash codes to unequal instances. This is easy to achieve, if slightly tedious, using the recipe on page 51. As mentioned in Item 10, the AutoValue framework provides a fine alternative to writing equals and hashCode methods manually, and IDEs also provide some of this functionality.

Item 12: Always override toString

While Object provides an implementation of the toString method, the string that it returns is generally not what the user of your class wants to see. It consists of the class name followed by an "at" sign (@) and the unsigned hexadecimal representation of the hash code, for example, PhoneNumber@163b91. The general contract for toString says that the returned string should be "a concise but informative representation that is easy for a person to read." While it could be argued that PhoneNumber@163b91 is concise and easy to read, it isn't very informative when compared to 707-867-5309. The toString contract goes on to say, "It is recommended that all subclasses override this method." Good advice, indeed!

While it isn't as critical as obeying the equals and hashCode contracts (Items 10 and 11), providing a good toString implementation makes your class much more pleasant to use and makes systems using the class easier to debug. The toString method is automatically invoked when an object is passed to println, printf, the string concatenation operator, or assert, or is printed by a debugger. Even if you never call toString on an object, others may. For example, a component that has a reference to your object may include the string representation of the object in a logged error message. If you fail to override toString, the message may be all but useless.

If you've provided a good toString method for PhoneNumber, generating a useful diagnostic message is as easy as this:

```
System.out.println("Failed to connect to " + phoneNumber);
```

Programmers will generate diagnostic messages in this fashion whether or not you override toString, but the messages won't be useful unless you do. The benefits of providing a good toString method extend beyond instances of the class to objects containing references to these instances, especially collections. Which would you rather see when printing a map, {Jenny=PhoneNumber@163b91} or {Jenny=707-867-5309}?

When practical, the toString method should return all of the interesting information contained in the object, as shown in the phone number example. It is impractical if the object is large or if it contains state that is not conducive to string representation. Under these circumstances, toString should return a summary such as Manhattan residential phone directory (1487536 listings) or Thread[main,5,main]. Ideally, the string should be self-explanatory. (The Thread example flunks this test.) A particularly annoying penalty for failing to

include all of an object's interesting information in its string representation is test failure reports that look like this:

```
Assertion failure: expected {abc, 123}, but was {abc, 123}.
```

One important decision you'll have to make when implementing a toString method is whether to specify the format of the return value in the documentation. It is recommended that you do this for *value classes*, such as phone number or matrix. The advantage of specifying the format is that it serves as a standard, unambiguous, human-readable representation of the object. This representation can be used for input and output and in persistent human-readable data objects, such as CSV files. If you specify the format, it's usually a good idea to provide a matching static factory or constructor so programmers can easily translate back and forth between the object and its string representation. This approach is taken by many value classes in the Java platform libraries, including BigInteger, BigDecimal, and most of the boxed primitive classes.

The disadvantage of specifying the format of the toString return value is that once you've specified it, you're stuck with it for life, assuming your class is widely used. Programmers will write code to parse the representation, to generate it, and to embed it into persistent data. If you change the representation in a future release, you'll break their code and data, and they will yowl. By choosing not to specify a format, you preserve the flexibility to add information or improve the format in a subsequent release.

Whether or not you decide to specify the format, you should clearly document your intentions. If you specify the format, you should do so precisely. For example, here's a toString method to go with the PhoneNumber class in Item 11:

If you decide not to specify a format, the documentation comment should read something like this:

```
/**
  * Returns a brief description of this potion. The exact details
  * of the representation are unspecified and subject to change,
  * but the following may be regarded as typical:
  *
  * "[Potion #9: type=love, smell=turpentine, look=india ink]"
  */
@Override public String toString() { ... }
```

After reading this comment, programmers who produce code or persistent data that depends on the details of the format will have no one but themselves to blame when the format is changed.

Whether or not you specify the format, **provide programmatic access to the information contained in the value returned by toString.** For example, the PhoneNumber class should contain accessors for the area code, prefix, and line number. If you fail to do this, you *force* programmers who need this information to parse the string. Besides reducing performance and making unnecessary work for programmers, this process is error-prone and results in fragile systems that break if you change the format. By failing to provide accessors, you turn the string format into a de facto API, even if you've specified that it's subject to change.

It makes no sense to write a toString method in a static utility class (Item 4). Nor should you write a toString method in most enum types (Item 34) because Java provides a perfectly good one for you. You should, however, write a toString method in any abstract class whose subclasses share a common string representation. For example, the toString methods on most collection implementations are inherited from the abstract collection classes.

Google's open source AutoValue facility, discussed in Item 10, will generate a toString method for you, as will most IDEs. These methods are great for telling you the contents of each field but aren't specialized to the *meaning* of the class. So, for example, it would be inappropriate to use an automatically generated toString method for our PhoneNumber class (as phone numbers have a standard string representation), but it would be perfectly acceptable for our Potion class. That said, an automatically generated toString method is far preferable to the one inherited from Object, which tells you *nothing* about an object's value.

To recap, override Object's toString implementation in every instantiable class you write, unless a superclass has already done so. It makes classes much more pleasant to use and aids in debugging. The toString method should return a concise, useful description of the object, in an aesthetically pleasing format.

Item 13: Override clone judiciously

The Cloneable interface was intended as a *mixin interface* (Item 20) for classes to advertise that they permit cloning. Unfortunately, it fails to serve this purpose. Its primary flaw is that it lacks a clone method, and Object's clone method is protected. You cannot, without resorting to *reflection* (Item 65), invoke clone on an object merely because it implements Cloneable. Even a reflective invocation may fail, because there is no guarantee that the object has an accessible clone method. Despite this flaw and many others, the facility is in reasonably wide use, so it pays to understand it. This item tells you how to implement a well-behaved clone method, discusses when it is appropriate to do so, and presents alternatives.

So what *does* Cloneable do, given that it contains no methods? It determines the behavior of Object's protected clone implementation: if a class implements Cloneable, Object's clone method returns a field-by-field copy of the object; otherwise it throws CloneNotSupportedException. This is a highly atypical use of interfaces and not one to be emulated. Normally, implementing an interface says something about what a class can do for its clients. In this case, it modifies the behavior of a protected method on a superclass.

Though the specification doesn't say it, in practice, a class implementing Cloneable is expected to provide a properly functioning public clone method. In order to achieve this, the class and all of its superclasses must obey a complex, unenforceable, thinly documented protocol. The resulting mechanism is fragile, dangerous, and *extralinguistic*: it creates objects without calling a constructor.

The general contract for the clone method is weak. Here it is, copied from the Object specification:

Creates and returns a copy of this object. The precise meaning of "copy" may depend on the class of the object. The general intent is that, for any object x, the expression

```
x.clone() != x
will be true, and the expression
x.clone().getClass() == x.getClass()
will be true, but these are not absolute requirements. While it is typically the case that
```

will be true, this is not an absolute requirement.

x.clone().equals(x)

By convention, the object returned by this method should be obtained by calling super.clone. If a class and all of its superclasses (except Object) obey this convention, it will be the case that

```
x.clone().getClass() == x.getClass().
```

By convention, the returned object should be independent of the object being cloned. To achieve this independence, it may be necessary to modify one or more fields of the object returned by super.clone before returning it.

This mechanism is vaguely similar to constructor chaining, except that it isn't enforced: if a class's clone method returns an instance that is *not* obtained by calling super.clone but by calling a constructor, the compiler won't complain, but if a subclass of that class calls super.clone, the resulting object will have the wrong class, preventing the subclass from clone method from working properly. If a class that overrides clone is final, this convention may be safely ignored, as there are no subclasses to worry about. But if a final class has a clone method that does not invoke super.clone, there is no reason for the class to implement Cloneable, as it doesn't rely on the behavior of Object's clone implementation.

Suppose you want to implement Cloneable in a class whose superclass provides a well-behaved clone method. First call super.clone. The object you get back will be a fully functional replica of the original. Any fields declared in your class will have values identical to those of the original. If every field contains a primitive value or a reference to an immutable object, the returned object may be exactly what you need, in which case no further processing is necessary. This is the case, for example, for the PhoneNumber class in Item 11, but note that immutable classes should never provide a clone method because it would merely encourage wasteful copying. With that caveat, here's how a clone method for PhoneNumber would look:

```
// Clone method for class with no references to mutable state
@Override public PhoneNumber clone() {
    try {
        return (PhoneNumber) super.clone();
    } catch (CloneNotSupportedException e) {
        throw new AssertionError(); // Can't happen
    }
}
```

In order for this method to work, the class declaration for PhoneNumber would have to be modified to indicate that it implements Cloneable. Though Object's clone method returns Object, this clone method returns PhoneNumber. It is legal

and desirable to do this because Java supports *covariant return types*. In other words, an overriding method's return type can be a subclass of the overridden method's return type. This eliminates the need for casting in the client. We must cast the result of super.clone from Object to PhoneNumber before returning it, but the cast is guaranteed to succeed.

The call to super.clone is contained in a try-catch block. This is because Object declares its clone method to throw CloneNotSupportedException, which is a *checked exception*. Because PhoneNumber implements Cloneable, we know the call to super.clone will succeed. The need for this boilerplate indicates that CloneNotSupportedException should have been unchecked (Item 71).

If an object contains fields that refer to mutable objects, the simple clone implementation shown earlier can be disastrous. For example, consider the Stack class in Item 7:

```
public class Stack {
    private Object[] elements;
    private int size = 0;
    private static final int DEFAULT_INITIAL_CAPACITY = 16;
    public Stack() {
        this.elements = new Object[DEFAULT_INITIAL_CAPACITY];
    public void push(Object e) {
        ensureCapacity();
        elements[size++] = e;
    }
    public Object pop() {
        if (size == 0)
            throw new EmptyStackException();
        Object result = elements[--size];
        elements[size] = null; // Eliminate obsolete reference
        return result:
    }
    // Ensure space for at least one more element.
    private void ensureCapacity() {
        if (elements.length == size)
            elements = Arrays.copyOf(elements, 2 * size + 1);
    }
}
```

Suppose you want to make this class cloneable. If the clone method merely returns super.clone(), the resulting Stack instance will have the correct value in

its size field, but its elements field will refer to the same array as the original Stack instance. Modifying the original will destroy the invariants in the clone and vice versa. You will quickly find that your program produces nonsensical results or throws a NullPointerException.

This situation could never occur as a result of calling the sole constructor in the Stack class. In effect, the clone method functions as a constructor; you must ensure that it does no harm to the original object and that it properly establishes invariants on the clone. In order for the clone method on Stack to work properly, it must copy the internals of the stack. The easiest way to do this is to call clone recursively on the elements array:

```
// Clone method for class with references to mutable state
@Override public Stack clone() {
    try {
        Stack result = (Stack) super.clone();
        result.elements = elements.clone();
        return result;
    } catch (CloneNotSupportedException e) {
        throw new AssertionError();
    }
}
```

Note that we do not have to cast the result of elements.clone to Object[]. Calling clone on an array returns an array whose runtime and compile-time types are identical to those of the array being cloned. This is the preferred idiom to duplicate an array. In fact, arrays are the sole compelling use of the clone facility.

Note also that the earlier solution would not work if the elements field were final because clone would be prohibited from assigning a new value to the field. This is a fundamental problem: like serialization, the Cloneable architecture is incompatible with normal use of final fields referring to mutable objects, except in cases where the mutable objects may be safely shared between an object and its clone. In order to make a class cloneable, it may be necessary to remove final modifiers from some fields.

It is not always sufficient merely to call clone recursively. For example, suppose you are writing a clone method for a hash table whose internals consist of an array of buckets, each of which references the first entry in a linked list of key-value pairs. For performance, the class implements its own lightweight singly linked list instead of using java.util.LinkedList internally:

```
public class HashTable implements Cloneable {
   private Entry[] buckets = ...;
```

```
private static class Entry {
        final Object key;
        Object value;
        Entry next;
        Entry(Object key, Object value, Entry next) {
            this.key = key;
            this.value = value;
            this.next = next;
        }
    }
    ... // Remainder omitted
}
Suppose you merely clone the bucket array recursively, as we did for Stack:
// Broken clone method - results in shared mutable state!
@Override public HashTable clone() {
    try {
        HashTable result = (HashTable) super.clone();
```

result.buckets = buckets.clone();

} catch (CloneNotSupportedException e) {
 throw new AssertionError();

return result;

}

}

Though the clone has its own bucket array, this array references the same linked lists as the original, which can easily cause nondeterministic behavior in both the clone and the original. To fix this problem, you'll have to copy the linked list that comprises each bucket. Here is one common approach:

```
// Recursive clone method for class with complex mutable state
public class HashTable implements Cloneable {
   private Entry[] buckets = ...;

   private static class Entry {
      final Object key;
      Object value;
      Entry next;

      Entry(Object key, Object value, Entry next) {
          this.key = key;
          this.value = value;
          this.next = next;
      }
}
```

```
// Recursively copy the linked list headed by this Entry
        Entry deepCopy() {
            return new Entry(key, value,
                next == null ? null : next.deepCopy());
        }
    }
    @Override public HashTable clone() {
        try {
            HashTable result = (HashTable) super.clone();
            result.buckets = new Entry[buckets.length];
            for (int i = 0; i < buckets.length; <math>i++)
                if (buckets[i] != null)
                    result.buckets[i] = buckets[i].deepCopy();
            return result:
        } catch (CloneNotSupportedException e) {
            throw new AssertionError();
        }
    ... // Remainder omitted
}
```

The private class HashTable.Entry has been augmented to support a "deep copy" method. The clone method on HashTable allocates a new buckets array of the proper size and iterates over the original buckets array, deep-copying each nonempty bucket. The deepCopy method on Entry invokes itself recursively to copy the entire linked list headed by the entry. While this technique is cute and works fine if the buckets aren't too long, it is not a good way to clone a linked list because it consumes one stack frame for each element in the list. If the list is long, this could easily cause a stack overflow. To prevent this from happening, you can replace the recursion in deepCopy with iteration:

```
// Iteratively copy the linked list headed by this Entry
Entry deepCopy() {
   Entry result = new Entry(key, value, next);
   for (Entry p = result; p.next != null; p = p.next)
        p.next = new Entry(p.next.key, p.next.value, p.next.next);
   return result;
}
```

A final approach to cloning complex mutable objects is to call super.clone, set all of the fields in the resulting object to their initial state, and then call higher-level methods to regenerate the state of the original object. In the case of our HashTable example, the buckets field would be initialized to a new bucket array, and the put(key, value) method (not shown) would be invoked for each key-

value mapping in the hash table being cloned. This approach typically yields a simple, reasonably elegant clone method that does not run as quickly as one that directly manipulates the innards of the clone. While this approach is clean, it is antithetical to the whole Cloneable architecture because it blindly overwrites the field-by-field object copy that forms the basis of the architecture.

Like a constructor, a clone method must never invoke an overridable method on the clone under construction (Item 19). If clone invokes a method that is overridden in a subclass, this method will execute before the subclass has had a chance to fix its state in the clone, quite possibly leading to corruption in the clone and the original. Therefore, the put(key, value) method discussed in the previous paragraph should be either final or private. (If it is private, it is presumably the "helper method" for a nonfinal public method.)

Object's clone method is declared to throw CloneNotSupportedException, but overriding methods need not. **Public clone methods should omit the throws clause**, as methods that don't throw checked exceptions are easier to use (Item 71).

You have two choices when designing a class for inheritance (Item 19), but whichever one you choose, the class should *not* implement Cloneable. You may choose to mimic the behavior of Object by implementing a properly functioning protected clone method that is declared to throw CloneNotSupportedException. This gives subclasses the freedom to implement Cloneable or not, just as if they extended Object directly. Alternatively, you may choose *not* to implement a working clone method, and to prevent subclasses from implementing one, by providing the following degenerate clone implementation:

```
// clone method for extendable class not supporting Cloneable
@Override
protected final Object clone() throws CloneNotSupportedException {
    throw new CloneNotSupportedException();
}
```

There is one more detail that bears noting. If you write a thread-safe class that implements Cloneable, remember that its clone method must be properly synchronized, just like any other method (Item 78). Object's clone method is not synchronized, so even if its implementation is otherwise satisfactory, you may have to write a synchronized clone method that returns super.clone().

To recap, all classes that implement Cloneable should override clone with a public method whose return type is the class itself. This method should first call super.clone, then fix any fields that need fixing. Typically, this means copying any mutable objects that comprise the internal "deep structure" of the object and replacing the clone's references to these objects with references to their copies.

While these internal copies can usually be made by calling clone recursively, this is not always the best approach. If the class contains only primitive fields or references to immutable objects, then it is likely the case that no fields need to be fixed. There are exceptions to this rule. For example, a field representing a serial number or other unique ID will need to be fixed even if it is primitive or immutable.

Is all this complexity really necessary? Rarely. If you extend a class that already implements Cloneable, you have little choice but to implement a well-behaved clone method. Otherwise, you are usually better off providing an alternative means of object copying. A better approach to object copying is to provide a copy constructor or copy factory. A copy constructor is simply a constructor that takes a single argument whose type is the class containing the constructor, for example,

```
// Copy constructor
public Yum(Yum yum) { ... };
```

A copy factory is the static factory (Item 1) analogue of a copy constructor:

```
// Copy factory
public static Yum newInstance(Yum yum) { ... };
```

The copy constructor approach and its static factory variant have many advantages over Cloneable/clone: they don't rely on a risk-prone extralinguistic object creation mechanism; they don't demand unenforceable adherence to thinly documented conventions; they don't conflict with the proper use of final fields; they don't throw unnecessary checked exceptions; and they don't require casts.

Furthermore, a copy constructor or factory can take an argument whose type is an interface implemented by the class. For example, by convention all general-purpose collection implementations provide a constructor whose argument is of type Collection or Map. Interface-based copy constructors and factories, more properly known as *conversion constructors* and *conversion factories*, allow the client to choose the implementation type of the copy rather than forcing the client to accept the implementation type of the original. For example, suppose you have a HashSet, s, and you want to copy it as a TreeSet. The clone method can't offer this functionality, but it's easy with a conversion constructor: new TreeSet<>(s).

Given all the problems associated with Cloneable, new interfaces should not extend it, and new extendable classes should not implement it. While it's less harmful for final classes to implement Cloneable, this should be viewed as a performance optimization, reserved for the rare cases where it is justified (Item 67). As a rule, copy functionality is best provided by constructors or factories. A notable exception to this rule is arrays, which are best copied with the clone method.

Item 14: Consider implementing Comparable

Unlike the other methods discussed in this chapter, the compareTo method is not declared in Object. Rather, it is the sole method in the Comparable interface. It is similar in character to Object's equals method, except that it permits order comparisons in addition to simple equality comparisons, and it is generic. By implementing Comparable, a class indicates that its instances have a *natural ordering*. Sorting an array of objects that implement Comparable is as simple as this:

```
Arrays.sort(a);
```

It is similarly easy to search, compute extreme values, and maintain automatically sorted collections of Comparable objects. For example, the following program, which relies on the fact that String implements Comparable, prints an alphabetized list of its command-line arguments with duplicates eliminated:

```
public class WordList {
    public static void main(String[] args) {
        Set<String> s = new TreeSet<>();
        Collections.addAll(s, args);
        System.out.println(s);
    }
}
```

By implementing Comparable, you allow your class to interoperate with all of the many generic algorithms and collection implementations that depend on this interface. You gain a tremendous amount of power for a small amount of effort. Virtually all of the value classes in the Java platform libraries, as well as all enum types (Item 34), implement Comparable. If you are writing a value class with an obvious natural ordering, such as alphabetical order, numerical order, or chronological order, you should implement the Comparable interface:

```
public interface Comparable<T> {
    int compareTo(T t);
}
```

The general contract of the compareTo method is similar to that of equals:

Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object. Throws ClassCastException if the specified object's type prevents it from being compared to this object.

In the following description, the notation sgn(*expression*) designates the mathematical *signum* function, which is defined to return -1, 0, or 1, according to whether the value of *expression* is negative, zero, or positive.

- The implementor must ensure that sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and y. (This implies that x.compareTo(y) must throw an exception if and only if y.compareTo(x) throws an exception.)
- The implementor must also ensure that the relation is transitive: (x. compareTo(y) > 0 && y.compareTo(z) > 0) implies x.compareTo(z) > 0.
- Finally, the implementor must ensure that x.compareTo(y) == 0 implies that sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.
- It is strongly recommended, but not required, that (x.compareTo(y) == 0) == (x.equals(y)). Generally speaking, any class that implements the Comparable interface and violates this condition should clearly indicate this fact. The recommended language is "Note: This class has a natural ordering that is inconsistent with equals."

Don't be put off by the mathematical nature of this contract. Like the equals contract (Item 10), this contract isn't as complicated as it looks. Unlike the equals method, which imposes a global equivalence relation on all objects, compareTo doesn't have to work across objects of different types: when confronted with objects of different types, compareTo is permitted to throw ClassCastException. Usually, that is exactly what it does. The contract does *permit* intertype comparisons, which are typically defined in an interface implemented by the objects being compared.

Just as a class that violates the hashCode contract can break other classes that depend on hashing, a class that violates the compareTo contract can break other classes that depend on comparison. Classes that depend on comparison include the sorted collections TreeSet and TreeMap and the utility classes Collections and Arrays, which contain searching and sorting algorithms.

Let's go over the provisions of the compareTo contract. The first provision says that if you reverse the direction of a comparison between two object references, the expected thing happens: if the first object is less than the second, then the second must be greater than the first; if the first object is equal to the second, then the second must be equal to the first; and if the first object is greater than the second, then the second must be less than the first. The second provision says that if one object is greater than a second and the second is greater than a third, then the first must be greater than the third. The final provision says that all objects that compare as equal must yield the same results when compared to any other object.

One consequence of these three provisions is that the equality test imposed by a compareTo method must obey the same restrictions imposed by the equals contract: reflexivity, symmetry, and transitivity. Therefore, the same caveat applies: there is no way to extend an instantiable class with a new value component while preserving the compareTo contract, unless you are willing to forgo the benefits of object-oriented abstraction (Item 10). The same workaround applies, too. If you want to add a value component to a class that implements Comparable, don't extend it; write an unrelated class containing an instance of the first class. Then provide a "view" method that returns the contained instance. This frees you to implement whatever compareTo method you like on the containing class, while allowing its client to view an instance of the containing class as an instance of the contained class when needed.

The final paragraph of the compareTo contract, which is a strong suggestion rather than a true requirement, simply states that the equality test imposed by the compareTo method should generally return the same results as the equals method. If this provision is obeyed, the ordering imposed by the compareTo method is said to be *consistent with equals*. If it's violated, the ordering is said to be *inconsistent with equals*. A class whose compareTo method imposes an order that is inconsistent with equals will still work, but sorted collections containing elements of the class may not obey the general contract of the appropriate collection interfaces (Collection, Set, or Map). This is because the general contracts for these interfaces are defined in terms of the equals method, but sorted collections use the equality test imposed by compareTo in place of equals. It is not a catastrophe if this happens, but it's something to be aware of.

For example, consider the BigDecimal class, whose compareTo method is inconsistent with equals. If you create an empty HashSet instance and then add new BigDecimal("1.0") and new BigDecimal("1.00"), the set will contain two elements because the two BigDecimal instances added to the set are unequal when compared using the equals method. If, however, you perform the same procedure using a TreeSet instead of a HashSet, the set will contain only one element because the two BigDecimal instances are equal when compared using the compareTo method. (See the BigDecimal documentation for details.)

Writing a compareTo method is similar to writing an equals method, but there are a few key differences. Because the Comparable interface is parameterized, the compareTo method is statically typed, so you don't need to type check or cast its argument. If the argument is of the wrong type, the invocation won't even compile. If the argument is null, the invocation should throw a NullPointer-Exception, and it will, as soon as the method attempts to access its members.

In a compareTo method, fields are compared for order rather than equality. To compare object reference fields, invoke the compareTo method recursively. If a field does not implement Comparable or you need a nonstandard ordering, use a Comparator instead. You can write your own comparator or use an existing one, as in this compareTo method for CaseInsensitiveString in Item 10:

```
// Single-field Comparable with object reference field
public final class CaseInsensitiveString
    implements Comparable<CaseInsensitiveString> {
    public int compareTo(CaseInsensitiveString cis) {
        return String.CASE_INSENSITIVE_ORDER.compare(s, cis.s);
    }
    ... // Remainder omitted
}
```

Note that CaseInsensitiveString implements Comparable<CaseInsensitiveString>. This means that a CaseInsensitiveString reference can be compared only to another CaseInsensitiveString reference. This is the normal pattern to follow when declaring a class to implement Comparable.

Prior editions of this book recommended that compareTo methods compare integral primitive fields using the relational operators < and >, and floating point primitive fields using the static methods Double.compare and Float.compare. In Java 7, static compare methods were added to all of Java's boxed primitive classes. Use of the relational operators < and > in compareTo methods is verbose and error-prone and no longer recommended.

If a class has multiple significant fields, the order in which you compare them is critical. Start with the most significant field and work your way down. If a comparison results in anything other than zero (which represents equality), you're done; just return the result. If the most significant field is equal, compare the next-most-significant field, and so on, until you find an unequal field or compare the least significant field. Here is a compareTo method for the PhoneNumber class in Item 11 demonstrating this technique:

```
// Multiple-field Comparable with primitive fields
public int compareTo(PhoneNumber pn) {
   int result = Short.compare(areaCode, pn.areaCode);
   if (result == 0) {
      result = Short.compare(prefix, pn.prefix);
      if (result == 0)
            result = Short.compare(lineNum, pn.lineNum);
   }
   return result;
}
```

In Java 8, the Comparator interface was outfitted with a set of *comparator construction methods*, which enable fluent construction of comparators. These comparators can then be used to implement a compareTo method, as required by the Comparable interface. Many programmers prefer the conciseness of this approach, though it does come at a modest performance cost: sorting arrays of PhoneNumber instances is about 10% slower on my machine. When using this approach, consider using Java's *static import* facility so you can refer to static comparator construction methods by their simple names for clarity and brevity. Here's how the compareTo method for PhoneNumber looks using this approach:

This implementation builds a comparator at class initialization time, using two comparator construction methods. The first is comparingInt. It is a static method that takes a *key extractor function* that maps an object reference to a key of type int and returns a comparator that orders instances according to that key. In the previous example, comparingInt takes a *lambda* () that extracts the area code from a PhoneNumber and returns a Comparator<PhoneNumber> that orders phone numbers according to their area codes. Note that the lambda explicitly specifies the type of its input parameter (PhoneNumber pn). It turns out that in this situation, Java's type inference isn't powerful enough to figure the type out for itself, so we're forced to help it in order to make the program compile.

If two phone numbers have the same area code, we need to further refine the comparison, and that's exactly what the second comparator construction method, thenComparingInt, does. It is an instance method on Comparator that takes an int key extractor function, and returns a comparator that first applies the original comparator and then uses the extracted key to break ties. You can stack up as many calls to thenComparingInt as you like, resulting in a *lexicographic ordering*. In the example above, we stack up two calls to thenComparingInt, resulting in an ordering whose secondary key is the prefix and whose tertiary key is the line number. Note that we did *not* have to specify the parameter type of the key extractor function passed to either of the calls to thenComparingInt: Java's type inference was smart enough to figure this one out for itself.

The Comparator class has a full complement of construction methods. There are analogues to comparingInt and thenComparingInt for the primitive types long and double. The int versions can also be used for narrower integral types, such as short, as in our PhoneNumber example. The double versions can also be used for float. This provides coverage of all of Java's numerical primitive types.

There are also comparator construction methods for object reference types. The static method, named comparing, has two overloadings. One takes a key extractor and uses the keys' natural order. The second takes both a key extractor and a comparator to be used on the extracted keys. There are three overloadings of the instance method, which is named thenComparing. One overloading takes only a comparator and uses it to provide a secondary order. A second overloading takes only a key extractor and uses the key's natural order as a secondary order. The final overloading takes both a key extractor and a comparator to be used on the extracted keys.

Occasionally you may see compareTo or compare methods that rely on the fact that the difference between two values is negative if the first value is less than the second, zero if the two values are equal, and positive if the first value is greater. Here is an example:

```
// BROKEN difference-based comparator - violates transitivity!
static Comparator<Object> hashCodeOrder = new Comparator<>() {
    public int compare(Object o1, Object o2) {
        return o1.hashCode() - o2.hashCode();
    }
};
```

Do not use this technique. It is fraught with danger from integer overflow and IEEE 754 floating point arithmetic artifacts [JLS 15.20.1, 15.21.1]. Furthermore, the resulting methods are unlikely to be significantly faster than those written using the techniques described in this item. Use either a static compare method:

```
// Comparator based on static compare method
static Comparator<Object> hashCodeOrder = new Comparator<>() {
    public int compare(Object o1, Object o2) {
        return Integer.compare(o1.hashCode(), o2.hashCode());
    }
};
```

or a comparator construction method:

In summary, whenever you implement a value class that has a sensible ordering, you should have the class implement the Comparable interface so that its instances can be easily sorted, searched, and used in comparison-based collections. When comparing field values in the implementations of the compareTo methods, avoid the use of the < and > operators. Instead, use the static compare methods in the boxed primitive classes or the comparator construction methods in the Comparator interface.