Computer Networks - Comprehensive Exam Notes

Table of Contents

- 1. Network Topologies & Transmission
- 2. Switching & Network Devices
- 3. Protocols & Security
- 4. Broadcast Domains & Scalability
- 5. OSI Model Deep Dive
- 6. TCP/IP Protocol Suite
- 7. Network Performance & Optimization
- 8. Security & Attack Vectors
- 9. Exam Quick Reference

Network Topologies & Transmission

MAC Broadcast Address

- Standard: FF:FF:FF:FF:FF (48-bit address, all 1s)
- Purpose: Forces all devices on a LAN to process the frame
- Layer: Data Link Layer (Layer 2)
- Frame Processing: All NICs must examine the frame content

Network Topologies

Bus Topology

- **Physical Structure:** Single coaxial cable with BNC terminators (50Ω)
- Collision Domain: One shared collision domain for entire network
- Access Control: CSMA/CD (Carrier Sense Multiple Access/Collision Detection)
- Advantages:
 - Simple to implement
 - Cost-effective for small networks
 - No central point of failure
- Disadvantages:
 - Security: All nodes see all traffic (promiscuous mode)

- Scalability: Performance degrades with more devices
- Reliability: Cable break affects entire network
- Collision Rate: Increases exponentially with network size

Star Topology

- Central Device Options:
 - Hub: Repeater at Physical Layer (L1) extends collision domain
 - Switch: Operates at Data Link Layer (L2) creates separate collision domains
- Switch Advantages:
 - Microsegmentation: Each port = separate collision domain
 - Full-duplex: Simultaneous send/receive capability
 - Buffering: Store-and-forward eliminates collisions
- Variations:
 - Extended Star: Multiple switches connected hierarchically
 - o **Distributed Star:** Switches connected in mesh pattern

Mesh Topology

- Full Mesh: Every node connects to all others
 - Connections: n(n-1)/2 links required
 - o Redundancy: Multiple paths between any two nodes
 - Cost: Expensive due to cabling requirements
- Partial Mesh: Strategic connections based on traffic patterns
- Applications: Internet backbone, WAN connections, data centers

Hybrid Topologies

- Star-Bus: Ethernet switches connected via backbone bus
- Star-Ring: Token Ring MAUs connected in star configuration
- **Hierarchical**: Three-tier architecture (Core-Distribution-Access)

Transmission Modes

Unicast (1:1)

- Examples: HTTP, HTTPS, SSH, Telnet
- Addressing: Specific MAC/IP address
- Bandwidth: Dedicated per session

Multicast (1:Many)

- **IP Range:** 224.0.0.0 to 239.255.255.255 (Class D)
- **Examples:** Video streaming, software updates, routing protocols
- **Protocols:** IGMP (Internet Group Management Protocol)
- Efficiency: Single stream serves multiple recipients

Broadcast (1:All)

- Layer 2: MAC broadcast (FF:FF:FF:FF:FF)
- Layer 3: IP directed broadcast (subnet broadcast address)
- **Examples:** ARP requests, DHCP discovery, NetBIOS name resolution
- Limitation: Causes network congestion in large networks

Collision Domains

- **Hub:** All ports share one collision domain
- **Switch:** Each port creates separate collision domain
- **Bridge:** Separates collision domains (legacy)
- Router: Separates both collision and broadcast domains

Switching & Network Devices

Switch Types & Capabilities

Unmanaged Switches (Layer 2)

- Function: Basic MAC address learning and forwarding
- MAC Address Table:
 - Learning: Associates MAC addresses with ports
 - Aging: Removes old entries (default 300 seconds)
 - Flooding: Broadcasts unknown unicast frames
- Forwarding Methods:
 - Store-and-Forward: Receives entire frame, checks for errors
 - Cut-Through: Forwards after reading destination MAC
 - Fragment-Free: Forwards after reading first 64 bytes

Managed Switches (Layer 3+)

Layer 3 Switches

- Routing: IP-based forwarding decisions
- Features:
 - Inter-VLAN routing
 - Static and dynamic routing protocols
 - Access Control Lists (ACLs)
 - Quality of Service (QoS)

Layer 4 Switches

- Port-Based Decisions: TCP/UDP port analysis
- Applications:
 - Load balancing
 - Traffic prioritization
 - Application-specific routing

Layer 5+ Switches

- Application Awareness: Deep packet inspection
- Features:
 - Session persistence
 - SSL termination
 - Content-based routing
 - Application firewalling

VLANs (Virtual Local Area Networks)

- Purpose: Logical segmentation of physical networks
- Benefits:
 - Broadcast domain separation
 - Security isolation
 - Traffic management
 - o Simplified administration
- VLAN Tagging: IEEE 802.1Q standard
- Trunk Ports: Carry multiple VLANs between switches
- Access Ports: Belong to single VLAN

Spanning Tree Protocol (STP)

- Purpose: Prevents switching loops in redundant topologies
- Algorithm: Selects root bridge, blocks redundant paths
- Variants:
 - **STP:** Original IEEE 802.1D (slow convergence)
 - o **RSTP:** Rapid STP (IEEE 802.1w)
 - MSTP: Multiple STP (IEEE 802.1s)
- Port States: Blocking, Listening, Learning, Forwarding, Disabled

Distributed Processing

Fault Tolerance

- **Redundancy:** Multiple paths, devices, or services
- Failover: Automatic switching to backup systems
- Load Balancing: Distribution of traffic across multiple paths

Distributed Databases

- Replication: Data copied across multiple nodes
- Sharding: Data partitioned across nodes
- Consistency Models: Strong, eventual, weak consistency

Protocols & Security

Transport Layer Protocols

TCP (Transmission Control Protocol)

- Characteristics:
 - Connection-oriented
 - o Reliable delivery
 - Flow control
 - Congestion control
- Header Fields:
 - Source/Destination ports (16 bits each)
 - Sequence number (32 bits)
 - Acknowledgment number (32 bits)
 - Window size (16 bits)
 - Checksum (16 bits)
- Three-Way Handshake: $SYN \rightarrow SYN-ACK \rightarrow ACK$
- Connection Termination: $FIN \rightarrow ACK \rightarrow FIN \rightarrow ACK$

UDP (User Datagram Protocol)

- Characteristics:
 - Connectionless
 - Unreliable delivery
 - Low overhead
 - No flow control
- Header Fields:
 - Source/Destination ports (16 bits each)
 - Length (16 bits)
 - Checksum (16 bits)
- Applications: DNS, DHCP, streaming media, gaming

Network Layer Protocols

IP (Internet Protocol)

IPv4:

- o 32-bit addresses
- Address classes (A, B, C, D, E)
- Subnet masking
- NAT/PAT for address conservation

IPv6:

- o 128-bit addresses
- Simplified header
- Built-in security (IPSec)
- Auto-configuration

ICMP (Internet Control Message Protocol)

- Purpose: Error reporting and network diagnostics
- Message Types:
 - Echo Request/Reply (ping)
 - Destination Unreachable
 - o Time Exceeded
 - Redirect

Data Link Layer Protocols

Ethernet (IEEE 802.3)

- Frame Format:
 - Preamble (7 bytes)
 - Start of Frame Delimiter (1 byte)
 - Destination MAC (6 bytes)
 - Source MAC (6 bytes)
 - EtherType/Length (2 bytes)
 - Data (46-1500 bytes)
 - Frame Check Sequence (4 bytes)

Standards:

- 10BASE-T (10 Mbps)
- 100BASE-TX (100 Mbps)
- 1000BASE-T (1 Gbps)
- 10GBASE-T (10 Gbps)

Wi-Fi (IEEE 802.11)

- Access Method: CSMA/CA (Collision Avoidance)
- Standards:
 - o 802.11a (54 Mbps, 5 GHz)
 - o 802.11b (11 Mbps, 2.4 GHz)
 - o 802.11g (54 Mbps, 2.4 GHz)

- o 802.11n (600 Mbps, MIMO)
- 802.11ac (6.93 Gbps, MU-MIMO)
- 802.11ax (9.6 Gbps, OFDMA)

Broadcast Domains & Scalability

Broadcast Domain Boundaries

- Layer 2 Devices: Extend broadcast domains
 - o Hubs, bridges, switches
- Layer 3 Devices: Separate broadcast domains
 - o Routers, layer 3 switches
- VLANs: Logical broadcast domain separation

Broadcast Storm Prevention

- Causes:
 - Switching loops
 - Excessive broadcasts
 - Faulty network cards
- Solutions:
 - Spanning Tree Protocol
 - Broadcast storm control
 - o Rate limiting
 - VLAN segmentation

Subnetting

- Purpose: Divide large networks into smaller segments
- Benefits:
 - Reduced broadcast traffic
 - Improved security
 - Better performance
 - Simplified management
- CIDR Notation: /24, /25, /26, etc.
- Subnet Mask: Determines network and host portions

Scalability Solutions

- Hierarchical Design: Core-Distribution-Access layers
- Load Balancing: Distribute traffic across multiple paths
- Caching: Reduce bandwidth usage

• Content Delivery Networks (CDN): Geographically distributed content

OSI Model Deep Dive

Layer 1 - Physical

- Function: Transmission of raw bits
- Devices: Hubs, repeaters, cables, connectors
- Specifications:
 - Electrical signals
 - Mechanical connectors
 - Timing synchronization
- Media Types:
 - Copper (twisted pair, coaxial)
 - Fiber optic (single-mode, multi-mode)
 - Wireless (radio, microwave, infrared)

Layer 2 - Data Link

- Sublayers:
 - LLC: Logical Link Control (error detection, flow control)
 - MAC: Media Access Control (addressing, channel access)
- Functions:
 - Frame synchronization
 - Error detection/correction
 - Flow control
 - Access control
- **Protocols:** Ethernet, Wi-Fi, PPP, Frame Relay

Layer 3 - Network

- Functions:
 - Logical addressing (IP addresses)
 - Routing
 - o Path determination
 - Packet forwarding
- Protocols: IP, ICMP, ARP, OSPF, BGP
- **Devices:** Routers, layer 3 switches

Layer 4 - Transport

• Functions:

- End-to-end communication
- o Segmentation/reassembly
- Flow control
- Error recovery
- Protocols: TCP, UDP, SCTP
- **Port Numbers:** 0-65535 (well-known: 0-1023)

Layer 5 - Session

- Functions:
 - Session establishment/termination
 - Session management
 - o Synchronization
- Protocols: NetBIOS, RPC, SQL sessions

Layer 6 - Presentation

- Functions:
 - Data encryption/decryption
 - o Compression/decompression
 - Data format conversion
- Standards: SSL/TLS, JPEG, MPEG, ASCII

Layer 7 - Application

- Functions:
 - Network services to applications
 - User interface
 - File transfer
- Protocols: HTTP, FTP, SMTP, DNS, DHCP

TCP/IP Protocol Suite

Application Layer Protocols

HTTP/HTTPS

- **Port**: 80 (HTTP), 443 (HTTPS)
- Methods: GET, POST, PUT, DELETE, HEAD, OPTIONS
- Status Codes: 200 (OK), 404 (Not Found), 500 (Server Error)
- Headers: Content-Type, Content-Length, User-Agent

DNS (Domain Name System)

- **Port**: 53 (UDP/TCP)
- Record Types:
 - o A: IPv4 address
 - AAAA: IPv6 address
 - CNAME: Canonical name
 - o MX: Mail exchange
 - NS: Name server
- Resolution Process: Recursive and iterative queries

DHCP (Dynamic Host Configuration Protocol)

- **Ports:** 67 (server), 68 (client)
- Process: DISCOVER → OFFER → REQUEST → ACK
- Options: IP address, subnet mask, gateway, DNS servers

FTP (File Transfer Protocol)

- **Ports:** 21 (control), 20 (data)
- Modes: Active, Passive
- Commands: USER, PASS, LIST, RETR, STOR

Network Layer Protocols

ARP (Address Resolution Protocol)

- Purpose: Resolve IP addresses to MAC addresses
- Types: ARP Request (broadcast), ARP Reply (unicast)
- ARP Table: Cache of IP-to-MAC mappings
- Variants: RARP, Gratuitous ARP

Routing Protocols

- Distance Vector: RIP, EIGRP
- Link State: OSPF, IS-IS
- Path Vector: BGP
- Metrics: Hop count, bandwidth, delay, reliability

Network Performance & Optimization

Performance Metrics

Latency

- **Definition:** Time for data to travel from source to destination
- Components:
 - Propagation delay
 - Transmission delay
 - Processing delay
 - Queuing delay
- Measurement: Round-Trip Time (RTT)

Bandwidth

- Definition: Maximum data transfer rate
- Units: bps, Kbps, Mbps, Gbps
- Factors: Physical medium, protocol overhead, congestion

Throughput

- **Definition:** Actual data transfer rate achieved
- **Relationship:** Throughput ≤ Bandwidth
- Factors: Network congestion, protocol efficiency, errors

Jitter

- **Definition:** Variation in packet arrival times
- **Impact**: Critical for real-time applications (VoIP, video)
- **Measurement:** Standard deviation of latency
- Mitigation: QoS, traffic shaping, buffering

Quality of Service (QoS)

Traffic Classification

- Layer 3: DSCP markings in IP header
- Layer 2: 802.1p priority bits in VLAN tags
- Application-based: Deep packet inspection

QoS Mechanisms

- Traffic Shaping: Rate limiting, burst control
- Traffic Policing: Discard excess traffic
- Priority Queuing: Multiple queues with different priorities
- Weighted Fair Queuing: Bandwidth allocation based on weights

Network Optimization Techniques

Caching

- Web Caching: Proxy servers, CDN
- DNS Caching: Recursive resolver caches
- ARP Caching: MAC address tables

Load Balancing

- Algorithms: Round-robin, least connections, weighted
- **Types:** Layer 4 (transport), Layer 7 (application)
- Health Checks: Monitor server availability

Compression

- Header Compression: Reduce protocol overhead
- Data Compression: Reduce payload size
- Link Compression: Compress entire frames

Security & Attack Vectors

Network Attacks

Denial of Service (DoS)

- Types:
 - Volumetric: Overwhelm bandwidth
 - Protocol: Exploit protocol weaknesses
 - Application: Target application resources
- Distributed DoS (DDoS): Multiple attack sources
- Amplification: DNS, NTP, memcached amplification

Man-in-the-Middle (MITM)

- Techniques:
 - ARP spoofing
 - o DNS spoofing
 - SSL stripping
 - Rogue access points
- **Prevention:** Encryption, certificate validation, network monitoring

Network Scanning

Port Scanning: Identify open services

- Network Mapping: Discover network topology
- Vulnerability Scanning: Identify security weaknesses
- Tools: Nmap, Nessus, OpenVAS

Packet Sniffing

- Purpose: Capture and analyze network traffic
- **Techniques:** Promiscuous mode, switch port mirroring
- Tools: Wireshark, tcpdump, Ettercap
- Prevention: Encryption, switched networks, physical security

Security Protocols

IPSec

- Components: AH (Authentication Header), ESP (Encapsulating Security Payload)
- Modes: Transport, Tunnel
- **Key Management:** IKE (Internet Key Exchange)

SSL/TLS

- Purpose: Secure communication over TCP
- Handshake: Certificate exchange, key negotiation
- Encryption: Symmetric encryption for data, asymmetric for keys

VPN (Virtual Private Network)

- Types: Site-to-site, remote access
- Protocols: PPTP, L2TP, OpenVPN, IPSec
- Benefits: Secure remote access, encrypted tunnels

Network Security Best Practices

Access Control

- Authentication: Username/password, certificates, biometrics
- Authorization: Role-based access control (RBAC)
- Accounting: Log and audit access attempts

Firewall Configuration

- Types: Packet filtering, stateful inspection, application proxy
- Rules: Default deny, least privilege principle
- Placement: Network perimeter, host-based, DMZ

Intrusion Detection/Prevention

- IDS: Monitor and alert on suspicious activity
- IPS: Actively block malicious traffic
- Signatures: Known attack patterns
- Anomaly Detection: Behavioral analysis

Exam Quick Reference

Key Formulas

- Full Mesh Connections: n(n-1)/2
- RTT: Transit Time + Processing Time
- Bandwidth-Delay Product: Bandwidth × RTT
- Ethernet Efficiency: (Data Size) / (Frame Size + IFG)

Important Port Numbers

- **HTTP**: 80
- **HTTPS**: 443
- **FTP:** 21 (control), 20 (data)
- SSH: 22
- Telnet: 23
- **SMTP**: 25
- **DNS**: 53
- **DHCP**: 67/68
- **POP3**: 110
- **IMAP:** 143
- **SNMP**: 161

Common Subnet Masks

- /24: 255.255.255.0 (256 addresses)
- /25: 255.255.255.128 (128 addresses)
- /26: 255.255.255.192 (64 addresses)
- /27: 255.255.255.224 (32 addresses)
- /28: 255.255.255.240 (16 addresses)
- /30: 255.255.255.252 (4 addresses)

MAC Address Formats

- Broadcast: FF:FF:FF:FF:FF
- Multicast: 01:00:5E:xx:xx:xx (IPv4 multicast)
- Unicast: First bit of first octet = 0

• Local: Second bit of first octet = 1

Troubleshooting Commands

• ping: Test connectivity

• traceroute/tracert: Trace packet path

nslookup/dig: DNS resolutionnetstat: Network connections

• arp: ARP table

• **ipconfig/ifconfig:** IP configuration

Protocol Stack Summary

Application | HTTP, FTP, SMTP, DNS

Transport | TCP, UDP
Network | IP, ICMP, ARP
Data Link | Ethernet, Wi-Fi
Physical | Cables, Signals

Remember for Exams

• Collision domains: Separated by switches

Broadcast domains: Separated by routers

• **VLANs:** Logical broadcast domain separation

• STP: Prevents switching loops

• CSMA/CD: Ethernet collision detection

• CSMA/CA: Wi-Fi collision avoidance

• TCP: Reliable, connection-oriented

• UDP: Unreliable, connectionless

• Subnetting: Reduces broadcast traffic

• QoS: Prioritizes critical traffic

Good luck on your mid-semester exam! Review these concepts thoroughly and practice with network diagrams and protocol analysis.