310

For v=-u, we have $\tau_{\varphi,u+v}=\varphi_{\varphi,0}=\mathrm{id}$, so $\tau_{\varphi,u}^{-1}=\tau_{\varphi,-u}$, as claimed.

Therefore, we proved that every linear isomorphism of E that leaves every vector in some hyperplane H fixed and has the property that $f(x) - x \in H$ for all $x \in E$ is given by a map $\tau_{\varphi,u}$ as defined by Equation (*), where φ is some nonzero linear form defining H and u is some vector in H. We have $\tau_{\varphi,u} = \operatorname{id} \operatorname{iff} u = 0$.

Definition 8.9. Given any hyperplane H in E, for any nonzero nonlinear form $\varphi \in E^*$ defining H (which means that $H = \text{Ker}(\varphi)$) and any nonzero vector $u \in H$, the linear map $f = \tau_{\varphi,u}$ given by

$$\tau_{\varphi,u}(x) = x + \varphi(x)u, \quad \varphi(u) = 0,$$

for all $x \in E$ is called a transvection of hyperplane H and direction u. The map $f = \tau_{\varphi,u}$ leaves every vector in H fixed, and $f(x) - x \in Ku$ for all $x \in E$.

The above arguments show the following result.

Proposition 8.22. Let $f: E \to E$ be a bijective linear map and assume that $f \neq id$ and that f(x) = x for all $x \in H$, where H is some hyperplane in E. If there is some nonzero vector $u \in E$ such that $u \notin H$ and $f(u) - u \in H$, then f is a transvection of hyperplane H; otherwise, f is a dilatation of hyperplane H.

Proof. Using the notation as above, for some $v \notin H$, we have $f(v) = h + \alpha v$ with $\alpha \neq 0$, and write u = y + tv with $y \in H$ and $t \neq 0$ since $u \notin H$. If $f(u) - u \in H$, from

$$f(u) - u = t(h + (\alpha - 1)v),$$

we get $(\alpha - 1)v \in H$, and since $v \notin H$, we must have $\alpha = 1$, and we proved that f is a transvection. Otherwise, $\alpha \neq 0, 1$, and we proved that f is a dilatation.

If E is finite-dimensional, then $\alpha = \det(f)$, so we also have the following result.

Proposition 8.23. Let $f: E \to E$ be a bijective linear map of a finite-dimensional vector space E and assume that $f \neq \operatorname{id}$ and that f(x) = x for all $x \in H$, where H is some hyperplane in E. If $\det(f) = 1$, then f is a transvection of hyperplane H; otherwise, f is a dilatation of hyperplane H.

Suppose that f is a dilatation of hyperplane H and direction u, and say $\det(f) = \alpha \neq 0, 1$. Pick a basis (u, e_2, \ldots, e_n) of E where (e_2, \ldots, e_n) is a basis of H. Then the matrix of f is of the form

$$\begin{pmatrix} \alpha & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix},$$