Boletín 1.- Introducción a la Mecánica de Robots

Definiciones, clasificaciones, grados de libertad y espacio de configuraciones

Los siguientes ejercicios fueron tomados del libro *Modern Robotics*, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

Ejercicio 1

En la figura se muestra un disco sujeto por 3 brazos robóticos con articulaciones SRS. ¿ Cuántos grados de libertad tiene el sistema? ¿ y si en lugar de 3 brazos tubiese n brazos? ¿ y si reemplazamos las articulaciones esféricas por articulaciones universales?

Resultado: (a) N=8; J=9; $\sum (f_i) = 21$; dof=9. (b) N=2; J=n; $\sum (f_i) = 7n$; dof=n+6. (c) (brazos SRU) N=2n+2; J=3n; $\sum (f_i) = 6n$; dof=6 (independiente de n) (brazos URU) N=2n+2; J=3n; $\sum (f_i) = 5n$; dof=6-n

Ejercicio 2

Calcula el número de grados de libertad de tu brazo, desde el torso hasta la palma, sin tener en cuenta los dedos y considerando que le hombro está fijo. ¿ Cuántos grados de libertad quedan si pones la mano sobre la mesa y no permites que se mueva?

Resultado: (a) Hombro (S) + codo (R) + muñeca (S); dof=7. (b) 6 restricciones \Rightarrow 1 dof

Ejercicio 3

Al conducir un coche, idealmente el torso está fijo pegado al respaldo del asiento y sujeto con el cinturón de seguridad. Si suponemos que cada brazo tiene n grados de libertad y tienes las dos manos sujetando el volante, ¿ cuántos grados de libertad tiene el sistema formado por tus brazos y el volante?

Resultado: dof = 2n - 11

Ejercicio 4

La figura representa un manipulador móvil formado por un brazo 6R sobre una base móvil de una sola rueda. La rueda y la base pueden girar sobre un eje perpendicular al suelo y la rueda no se puede deslizar sobre el suelo mientras gira entorno a su eje de rotación (no derrapa). Además, la base tiene un mecanismo que hace que siempre permanezca horizontal. (a) Describe el espacio de configuraciones del manipulador móvil; (b) si el robot sujeta el asa de la puerta con su mano y tanto la rueda como la base permanecen en una posición fija, ¿ cuántos grados de libertad tiene el mecanismo formado por el brazo y la puerta?; (c) si

consideramos otro robot idéntico en la misma situación (base y rueda en una posición fija y la mano sujetando la puerta), ¿ cuántos grados de libertad tiene el sistema resultante formado por los dos robots y la puerta?

Resultado: (a) $\mathbb{R}^2 \times T^8$. (b) N=7; J=7; $\sum (f_i) = 7$; dof=1. (c) N=12; J=13; $\sum (f_i) = 13$; dof=1

Ejercicio 5

Utiliza la fórmula de Grübler para determinar el número de grados de libertad de los siguientes mecanismos planos.

Resultado: (a) N=8; J=10; $\sum(f_i)$ = 12; dof=3. (b) N=14; J=18; $\sum(f_i)$ = 18; dof=3. (c) N=8; J=9; $\sum(f_i)$ = 10; dof=4. (d) N=6; J=7; $\sum(f_i)$ = 7; dof=1. (e) N=14; J=18; $\sum(f_i)$ = 18; dof=3. (f) N=7; J=9; $\sum(f_i)$ = 9; dof=0. (g) N=6; J=7; $\sum(f_i)$ = 7; dof=1. (h) N=6; J=6; $\sum(f_i)$ = 6; dof=3. (i) N=14; J=18; $\sum(f_i)$ = 18; dof=3. (j) N=21; J=27; $\sum(f_i)$ = 27; dof=6 (ojo con las articulaciones compartidas entre 4 eslabones, cuentan como 3)

Ejercicio 6

Considera un mecanismo de 2 discos paralelos conectados por n patas idénticas. Si uno de los discos está fijo, ξ cuántos grados de libertad debe tener cada pata para que el disco móvil tenga exactamente 6 grados de libertad? (da el resultado en función de n).

Resultado: dof de cada pata=p; N=2; J=n; suma(fi)=pn; dof=6=6(p-6)n=>p=6 (independiente de n)

Ejercicio 7

Utiliza la fórmula de Grübler para determinar el número de grados de libertad de los siguientes mecanismos en el espacio 3D.

Resultado: (a) N=6; J=6; $\sum(f_i) = 12$; dof=6. (b) N=11; J=12; $\sum(f_i) = 18$; dof=6. (c) N=7; J=8; $\sum(f_i) = 17$; dof=5. (d) N=8; J=9; $\sum(f_i) = 15$; dof=3. (e) N=8; J=8; $\sum(f_i) = 12$; dof=6. (f) N=5; J=6; $\sum(f_i) = 18$; dof=6. (g) N=8; J=9; $\sum(f_i) = 15$; dof=3. (h) N=9; J=9; $\sum(f_i) = 9$; dof=3. (i) N=14; J=18; $\sum(f_i) = 36$; dof=6. (j) N=2; J=4; $\sum(f_i) = 24$; dof=6

Ejercicio 8

El robot de 2 brazos de la figura está sujetando la caja que está sobre la mesa. Si la superficie inferior de la caja no se puede despegar de la mesa, \natural cuántos grados de libertad tiene el sistema?

Resultado: N=7; J=8 (3R+4S+1 entre caja y tabla con 2 dof de traslación y 1 dof de rotación); dof=6

