

CH 107 Quiz

Time: 80 Minutes

Full Marks: 18

	Question 1	
(a)	What is a node?	[1]
(p)	Find an eigen-function and the corresponding eigen-value of the operator $i \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2}$	[2]
(c)	The Schrodinger equation for a particle of mass m is given by $-\frac{\hbar^2}{2I}\frac{d^2}{d\theta^2}\Psi_n(\theta)=E_n\Psi_n(\theta)$, where l is a constant and θ (with range $0-2\pi$) is the angle that describes the position of the particle. Assuming the general solution is of the form $\Psi_n(\theta)=Ae^{in\theta}$, obtain the expression for the eigenvalues E_n . Using proper boundary conditions, find out the permissible values of n , and assuming $\Psi_n(\theta)$ is well-behaved evaluate the normalization constant A .	[3]
	Question 2	
(a)	Among the two dyes (A and B) given below, identify which of them will absorb at shorter and longer wavelengths. CH,CH, CH,CH, Dye A Dye B	[1]
(b)	If repeated measurements of energy on an atom give the values -2.0, -5.3, and -9.7 eV with probabilities 0.3, 0.5 and 0.2, respectively, find the average and the most probable energy.	[1]
(c)	For a 2D box with lengths $L_x = L$, and $L_y = 2L$, find all the doubly degenerate states for $n_x \le 4$ and $n_y \le 4$.	[2]
(d)	A normalized wavefunction is given by $\Psi = \frac{1}{\sqrt{\pi}} \left(\frac{z}{a_0}\right)^{3/2} e^{-(Zr/a_0)}$, where Z and a_0 correspond to nuclear charge and Bohr radius, respectively. Consider a hypothetical hydrogen like atom with nuclear charge of 2. In such a scenario plot Ψ as a function of r on the same graph for the hydrogen atom and the hydrogen like atom with enhanced nuclear charge. Bring out the differences between the two functions clearly.	[2]
	Question 3	
(a)	The wavefunctions for a particle in a 1D box of length 'L'are orthonormal to each other, i.e. $\int_{-\infty}^{\infty} dx \psi_i^*(x) \psi_j(x) = 0$ for $i \neq j$, and $\int_{-\infty}^{\infty} dx \psi_i^*(x) \psi_i(x) = 1$ for $i = j$. Verify this for $i = 2$, $j = 1$, 2. Given $\sin \theta \cos \phi = 0.5(\cos(\theta - \phi) - \cos(\theta + \phi))$.	[2]
(b)	The magnitude of the force acting between two charges is given by $ \vec{F} = \frac{1}{4\pi\epsilon_0} \frac{ze^2}{r^2}$. Evaluate the average (expectation) value of the magnitude of force (in terms of ϵ_0 , a_0 , Z and e) when the normalized wavefunction for this system is given by $\Psi = \frac{1}{\sqrt{\pi}} \left(\frac{z}{a_0}\right)^{3/2} e^{-(Zr/a_0)}$.	[2]
9	In addition to Columbic potential between electron and nucleus, let us consider gravitation potential within the hydrogen atom given by $V = -\frac{Gm_am_b}{r_{ab}}$ and the gravitational potential of the earth is given by $V = mgh$, where h is measured along the z-direction. (i) Write the new complete Hamiltonian in the Cartesian coordinates, (ii) separate the Hamiltonian in center of mass \vec{R} and relative framer assuming that the kinetic energy separates out (iii) comment on how electronic energy changes.	[2

Turn over for equation sheet