

How many parity check bits are required for 16-bit data word to detect 2-bit errors and single bit correction using hamming code?

[MCQ]

5

6

Ans: A

A set of four binary code words are as follows:

000000, 000111, 111000, 111111

Let p be the minimum Hamming distance of the code, and q be the maximum number of bit errors that can be corrected.

Find p and q.

$$p = 3$$
 and $q = 1$

$$p = 4$$
 and $q = 2$

$$p = 6$$
 and $q = 3$

$$p = 2$$
 and $q = 1$

Ans: A

[MCQ]

Given the following code words of a binary code:

1100, 1001, 0110, 0011

Let the minimum Hamming distance of the code be p and let q be the number of errors that can be corrected using this code.

Which of the following is correct?

[MCQ]

- p = 1 and q = 0
- (c) p = 3 and q = 1
- p = 2 and q = 1

Ans: B

Assume that a 12-bit Hamming codeword consisting of 8-bit data and 4 check bits is $d_8d_7d_6d_5c_8d_4d_3d_2c_4d_1c_2c_1$, where the data bits and the check bits are given in the following tables:

Data Bits							
D8	D7	D6	D5	D4	D3	D2	D1
1	1	1	X	0	0	1	1

Check bits						
C8	C4	C2	C1			
Y	0	1	0			

$$X = 0, Y = 1$$

$$\mathbf{B} \quad \mathbf{X} = \mathbf{1} \ , \mathbf{Y} = \mathbf{0}$$

Ans: B

Assume that a 12-bit Hamming codeword consisting of 8-bit data and 4 check bits is $d_8d_7d_6d_5c_8d_4d_3d_2c_4d_1c_2c_1$, where the data bits and the check bits are given in the following tables:

Data Bits							
D8	D7	D6	D5	D4	D3	D2	D1
0	1	0	X	1	1	0	1

Check bits						
C8	C4	C2	C1			
Y	0	0	1			

$$(C) X = 0, Y = 1$$

Assume that a 12-bit Hamming codeword consisting of 8-bit data and 4 check bits is $d_8d_7d_6d_5c_8d_4d_3d_2c_4d_1c_2c_1$, where the data bits and the check bits are given in the following tables:

Data Bits							
D8	D7	D6	D5	D4	D3	D2	D1
1	0	1	1	X	0	0	1

Check bits						
C8	C4	C2	C1			
Y	0	1	1			

$$X = 0, Y = 1$$

Ans: D

Given the following code words of a binary code: **11000, 00111, 10101, 01010**

the number of errors that can be detected using hamming code.

B 1

[MCQ]

Ans: B