Lista 2 Zadanie 6

Krystyna Korzonek 6 kwietnia 2020

1 Lemat

W grafie w ktorym wszystkie wagi krawędzi są różne:

krawęd
żenależy do jakiegoś minimalnego drzewa spinającego
 \updownarrow enie jest maksymalna na żadnym cyklu

Dowód:

1.1 ↑

Załóżmy nie wprost, że e nie jest maksymalna na żadnym cyklu, ale nie należy do żadnego minimalnego drzewa spinającego. Niech T będzie dowolnym takim drzewem. Po dołożeniu krawędzi e w T $\cup e$ powstaje cykl. e nie jest największą krawędzią na tym cyklu, wagi krawędzi są różne, istnieje krawędź o większej wadze. Można usunąć tą krawędź z drzewa, w zamian dokładając e - powstaje drzewo spinające o mniejszej sumie wag, sprzeczność.

1.2 \Downarrow

Załóżmy nie wprost, że krawędź e=(u,v) należąca do minimalnego drzewa spinającego T jest maksymalna na cyklu C. Graf T\e ma dwie spójne składowe: V_1 i V_2 . Jeden koniec krawędzi e należy do V_1 , a drugi do V_2 . Na C występuje inna krawędź, której jeden koniec należy do V_1 , a drugi do V_2 - m. (Cykl to $(uc_1c_2...c_lv)$, $u \in V_1$, $v \in V_2$, gdyby każda krawędż poza e miała

wierzchołki w jednej spójnej składowej byłoby: $c_1 \in V_1, c_2 \in V_1, ..., c_l \in V_1, v \in V_1$, sprzeczność)

Graf T $\setminus e \cup m$ jest drzewem spinającym - ma n-1 krawędzi i jest spójny. Waga krawędzi e jest większa od wagi krawędzi m, T $\setminus e \cup m$ ma więc mniejszą sumę wag niż T. Sprzeczność.

2 Algorytm

Dzięki lematowi wystarczy sprawdzić, czy istnieje taki cykl, na którym krawędź e=(u,v) jest największa. Wystarczy puścić DFS-a z u po samych krawędziach o wadze mniejszej od wagi e. DFS odwiedzi v dokładnie wtedy, gdy istnieje cykl, na którym e jest maksymalne $\Leftrightarrow e$ nie należy do żadnego MST.

3 Złożoność

Złożoność DFS-a to O(n+m).