Sampling Based Inference

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn basic sampling methods
 - Understand the concept of Markov chain Monte Carlo
 - Able to apply MCMC to the parameter inference of Bayesian networks
 - Know the mechanism of rejection sampling
 - Know the mechanism of importance sampling
- Learn sampling based inference
 - Understand the concept of Metropolis-Hastings Algorithm
 - Know the mechanism of Gibbs sampling
- Know a case study of sampling based inference
 - Understand the latent Dirichlet allocation model
 - Know the collapsed Gibbs sampling
 - Know how to derive Gibbs sampling formula for LDA

SAMPLING BASED INFERENCE

Detour:

$$\begin{split} l(\theta) &= \ln P(X|\theta) = \ln \left\{ \sum_{Z} q(Z) \frac{P(X,Z|\theta)}{q(Z)} \right\} \geq \sum_{Z} q(Z) \ln \frac{P(X,Z|\theta)}{q(Z)} = Q(\theta,q) \\ Q(\theta,q) &= E_{q(Z)} \ln P(X,Z|\theta) + H(q) \\ L(\theta,q) &= \ln P(X|\theta) - \sum_{Z} \{q(Z) \ln \frac{q(Z)}{P(Z|X,\theta)} \} \end{split}$$

EM Algorithm

- EM algorithm
 - Finds the maximum likelihood solutions for models with latent variables
 - $P(X|\theta) = \sum_{Z} P(X, Z|\theta) \rightarrow \ln P(X|\theta) = \ln \{\sum_{Z} P(X, Z|\theta)\}$
- EM algorithm
 - Initialize θ^0 to an arbitrary point
 - Loop until the likelihood converges
 - Expectation step
 - $q^{t+1}(z) = argmax_q Q(\theta^t, q) = argmax_q L(\theta^t, q) = argmin_q KL(q||P(Z|X, \theta^t))$
 - $\rightarrow q^t(z) = P(Z|X,\theta) \rightarrow Assign Z by P(Z|X,\theta)$
 - Maximization step
 - $\theta^{t+1} = argmax_{\theta}Q(\theta, q^{t+1}) = argmax_{\theta}L(\theta, q^{t+1})$
 - \rightarrow fixed Z means that there is no unobserved variables
 - → Same optimization of ordinary MLE

Computing
Expectation....
Sometimes, it can
be hard

Markov Chain

- Markov chain
 - Each node has a probability distribution of states
 - i.e.) The probability that a state is the current state of a system
 - Concrete observation of a system: $[1\ 0\ 0] \rightarrow$ the system is at the first state
 - Stochastic observation of a system: $[0.7 \ 0.2 \ 0.1] \rightarrow$ the system is likely at the first state
 - The node has a vector of state probability distribution
 - Each link suggests a probabilistic state transition
 - If a system is at the first state, the probability distribution of the next state is [0.3 0.4 0.3]
 - The link has a matrix of state transition probability distribution.

$$z_{t} = \begin{bmatrix} 0.5 & 0.2 & 0.3 \end{bmatrix}$$

$$P(z_{t+1}) = P(z_{t})P(z_{t+1}|z_{t}) = z_{t}T_{i,j}$$

$$= \begin{bmatrix} 0.5 & 0.2 & 0.3 \end{bmatrix} \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.2 & 0.3 & 0.5 \\ 0.4 & 0.2 & 0.4 \end{bmatrix}$$

$$= \begin{bmatrix} 0.51 & 0.22 & 0.27 \end{bmatrix}$$

- The system has three states, a, b, and c.
- Transition matrix is

$$P(z_j|z_i) = T_{i,j} = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.2 & 0.3 & 0.5 \\ 0.4 & 0.2 & 0.4 \end{bmatrix}$$

Properties of Markov Chain

- Accessible
 - $i \rightarrow j$: State j is *accessible* from i if $T_{i,j}^k > 0$ and $k \ge 0$
 - $i \leftrightarrow j$: State *i* and *j* communicate if $i \rightarrow j$ and $j \rightarrow i$
- Reducibility
 - A Markov chain is *irreducible* if $i \leftrightarrow j$, $\forall i \in S$, $\forall j \in S$
- Periodicity
 - State *i* has *period d* if $d = \gcd\{n: T_{i,j}^n > 0\}$
 - If **d**=1, State **i** is **aperiodic**.
- Transience
 - State **j** is **recurrent** if $P(\inf(t \ge 1: X_t = j) < \infty | X_0 = j) = 1$
 - States which are not recurrent are transient.
- Ergodicity
 - A state is *ergodic* if the state is (positive) *recurrent* and *aperiodic*.
 - Markov chain is ergodic if all states are ergodic.

Stationary Distribution

- $RT_i = \min\{n > 0: X_n = i | X_0 = i\}$
 - Return time to state *i* after the departure from state i
- Limit theorem of Markov chain
 - A friend in ISE dept. told me.....
 - If a Markov chain is irreducible and ergodic
 - $\pi_i = \lim_{n \to \infty} T_{i,j}^{(n)} = \frac{1}{E[RT_i]}$
 - π_i is uniquely determined by the set of equations
 - $\pi_i \geq 0, \sum_{i \in S} \pi_i = 1, \pi_i = \sum_{i \in S} \pi_i T_{i,i}$
 - How to compute π given T

•
$$\pi(I_{|S|,|S|} - T + 1_{|S|,|S|}) = 1_{1,|S|}$$

•
$$\pi_j = \sum_{i \in S} \pi_i T_{i,j} \to \pi_j - \sum_{i \in S} \pi_i T_{i,j} = 0 \to \pi (I_{|S|,|S|} - T) = 0$$

- To the above formula, apply $\sum_{i \in S} \pi_i = 1 \to \pi 1_{|S|,|S|} = 1_{1,|S|}$ to both sides
- $\pi(I_{|S|,|S|} T + 1_{|S|,|S|}) = 1_{1,|S|}$
- Here, π is the stationary distribution!

```
>> T
                                              >> 12 = [0 0.5 0.5 ; 0.25 0.5 0.25; 0.25 0.
T =
                                              T2 =
              0.2000
                        0.1000
                                                            0.5000
                                                                      0.5000
                        0.5000
                                                                      0.2500
                        0.4000
              0.2000
                                                  0.2500
                                                            0.2500
                                                                      0.5000
>> pi = ones(1,3) / (eye(3,3)-T+ones(3,3)) >> pi2 = ones(1,3)/(eye(3,3)-T2+ones(3,3))
рi =
                                              pi2 =
   0.5079
              0.2222
                        0.2698
                                                  0.2000
                                                            0.4000
                                                                      0.4000
>> pi + T
                                              >> pi2*T2
             D. 2222
                        0.2698
                                                  0.2000
                                                            0.4000
                                                                      0.4000
>> pi(1)*T(1,2)
                                              >> pi2(1)*T2(1,2)
ans =
                                              ans =
                                                  0.1000
   0.1016
                                              >> pi2(2)*T2(2,1)
>> pi(2)*T(2.1)
                                              ans =
ans =
                                                  0.1000
   0.0444
```

Irreversible MC

Reversible MC

 π is the stationary distribution

Reversible Markov chain

$$\pi_i T_{i,j} = \pi_j T_{j,i}$$