Sujet 1:

Question de cours :

- 1. Ecrire un exemple de sommation télescopique
- 2. Soient (u_n) et (v_n) deux suites. Ecrire la définition de $u_n \sim v_n$
- **3.** Soient (u_n) et (v_n) deux suites. Ecrire la définition de $u_n = o(v_n)$

Exercice 1:

- **1.** Soit $k \in \mathbb{N}^*$. Donner un encadrement de $\frac{1}{t}$ sur [k ; k+1]. En déduire un encadrement de $\int_k^{k+1} \frac{1}{t} dt$.
- 2. En déduire que $\frac{1}{k+1} \le \ln(k+1) \ln(k) \le \frac{1}{k}$.
- **3.** Soit $n \in \mathbb{N}^*$. Minorer $S_n = \sum_{k=1}^n \frac{1}{k}$. Retrouver alors la divergence de la série associée.

Exercice 2:

- **1.** Déterminer la nature de la série : $\sum_{n>0} e^{-n^2}$.
- **2.** Calculer la somme après avoir justifié la convergence : $\sum_{n=0}^{+\infty} \frac{n^2 + 2^n}{2^{2n}}$

Sujet 2:

Question de cours :

- **1.** Soient (u_n) et (v_n) deux suites. Ecrire la définition de $u_n \sim v_n$
- 2. Soient (u_n) et (v_n) deux suites. Ecrire la définition de $u_n = o(v_n)$
- **3.** Définir la série de Riemann. Ecrire la condition nécessaire et suffisante pour qu'elle converge.

Exercice 1:

1. Déterminer la nature des séries :
$$\sum_{n\geq 1} \frac{n}{\sqrt{n+n^3}}$$
 et $\sum_{n\geq 0} e^{-n^2}$.

2. Calculer la somme après avoir justifié la convergence :
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3^{n+1}}$$

Exercice 2:

1. Soit
$$k \in \mathbb{N}^*$$
. Donner un encadrement de $\frac{1}{t}$ sur $[k ; k+1]$. En déduire un encadrement de $\int_k^{k+1} \frac{1}{t} dt$.

2. En déduire que
$$\frac{1}{k+1} \le \ln(k+1) - \ln(k) \le \frac{1}{k}$$
.

3. Soit
$$n \in \mathbb{N}^*$$
. Minorer $S_n = \sum_{k=1}^n \frac{1}{k}$. Retrouver alors la divergence de la série associée.

Sujet 3:

Question de cours :

- 1. Définir la série géométrique et les séries géométriques dérivées premières et secondes. Quels sont les critères de convergence ?
- 2. Ecrire les convergences de séries par comparaison.

Exercice 1:

- **1.** Déterminer la nature des séries : $\sum_{n\geq 0} \frac{n^2}{1+n^2}$ et $\sum_{n\geq 1} \frac{1}{n\sqrt{n}}$.
- **2.** Calculer la somme après avoir justifié la convergence : $\sum_{n=0}^{+\infty} n \left(\frac{1}{4}\right)^{n-2}$

Exercice 2:

Soit (u_n) la suite définie par u₀ \in]0 ; + ∞ [et \forall n \in N, $u_{n+1} = u_n e^{-u_n}$

- **1.** On pose pour tout entier n, $v_n = In(u_n)$. Montrer que $\forall k \in \mathbb{N}$, $v_k v_{k+1} = u_k$.
- **2.** En déduire que $\sum_{k=0}^{n} u_k = v_0 v_{n+1}$
- **3.** Montrer que \forall n \in N, $u_n > 0$.
- **4.** Etudier le sens de variation et la convergence de la suite (u_n).
- 5. Déduire des questions précédentes que la série $\sum_{n\geq 0} u_n$ diverge.