Question 9.1.1:

Given the sequence <3, 10, 2, 47, use double history
Soludian
Hash,(3) = 3 mod 5 = 3
thish, (10) = 10 mod 5=0 Hash, (2) = 2 mod 5=2
Hosh (4) = 4 mod 5 = 4
considering that the first hash has
the more priority that the second Hash
7 7
44
another solution: considering the two Hoshes have the
Hall (i) = (11 mod 5) + (3i mod 8) \ - d 5
Hish(3) = ((3mod 5) + ((7*3) mod 8)) mod 5 2 2 = (3+5) mod 5 = 3
Hash (10) = ((10 mod 5) + ((10 *3) mod 8)) mod 5
= (0+6) mod 5=1 1+0sh(2) = ((2 mod 5)+(12 x 3) mod 8)) mod 5
(2+6) mod 5 = 3 (Collision ! ??)
Hash (4) = 2 mod 5 = 2 Hash (4) = ((4 mod 5) + (3+4) mod 8) mod 5 = 3 (collision)
Hash (4) = 4 mod 5 = 4

Question 9.1.2: reference: the slides

The reason why I chose my hash function to be (hash = key mod maxSize)is that

For each key, there will always exist a unique index less than the maximum size of the array indicating the index of the inserted value.

Question 9.2.1

99
- Ituarla
let's proper it by contradiction
proce it his a
Contradiction
let's proce it by contradiction Suppose we are all all
The are Selecting the stall is
points amond 7 points 1 was tost distance between
distance from the origin by compained the colohing
and the second
Suppose we are selecting the shortest distance between distance amond 7 points from the origin by comparing the relative by comparing the relative by the great path choice
21(50)
e in
V(0,0)
the great path choice
The the antique of the
121 the optimal Solution
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
the distance (a,b,c)>(e,d,f)
but according to the greedy choice algorithm. The relative
but recording to the greedy choice algorithm. The relative
posts distances comparisons les 10 parts different trom the
global Optimum One.
the greedy choice (a, b, c) white the global optimum is (c, d, f)
the year on the fact of white the
alah A andimum is (C) d, f)
Jours of

For the entered unsorted set, the algorithm will copy the elements to another set first; and after that, the algorithm will remove the elements with the earlier time one by one till the set B has only one element. And the