Counters

Modules of a counter is defined as the number of clock pulses required to obtain initial states of the counter.

Mod-8 Counter

Q_2	Q_1	Q_0	clock
0	0	0	Initial state
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7
0	0	0	8

From above table it can be observed that

- Q_0 changes at every clock cycle
- Q_1 changes when and only when Q_o changes from 1 to 0
- Q_2 changes when and only when Q_1 changes from 1 to 0

Mod-8 UP counter circuit diagram

As the clock is different from different FF, it is called as asynchronous or ripple Counter Mod-8 DOWN Counter

Mod-5 ripple Counter

Timing diagram for Mod-8 UP Counter

If clock frequency is 'f' the frequency of Q_0 is f/2, Q_1 f/4 and Q_2 is f\8

Excitation table

• If specifics the inputs required for a given change of state

Excitation table of JK flip flop

Qn	Q _{n+1}	J	K
0	0	0	X
0	1	1	X
1	0	Х	1
1	1	Х	0

<u>Design of Mod-8 synchronous Counter</u>

Present State	Next State	J_2K_2	J_1K_1	J ₀ K ₀ 1 d	
000	111	1 d	1 d		
001	000	0 d	0 d	d 1	
010	001	0 d	d 1	1 d	
011	010	0 d	d 0	d 1	
100	011	d 1	1 d	1 d	
101	100	d 0	0 d	d 1	
110	101	d 0	d 1	1 d	
111	110	d 0	d 0	d1	

Where 'd' represents don't care.

In synchronous Counters clock is common to all the flip-flop

clock

Analysis of synchronous Counter

$$J_2 = K_2 = Q_1 Q_0$$
 ; $J_1 = K_1 = Q_0$; $J_0 = K_0 = 1$

Present state			FF Input function					Ne	Next state		
Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0	Q_2	Q_1	Q_0
0	0	0	0	0	0	0	1	1	0	0	1
0	0	1	0	0	1	1	1	1	0	1	0
0	1	0	0	0	0	0	1	1	0	1	1
0	1	1	1	1	1	1	1	1	1	0	0
1	0	0	0	0	0	0	1	1	1	0	1
1	0	1	0	0	1	1	1	1	1	1	0
1	1	0	0	0	0	0	1	1	1	1	1
1	1	1	1	1	1	1	1	1	0	0	0

Hence, this a Mod-8 Counter