Working with Complex Meshes: The Mesh Processing Pipeline

FEniCS-2021

U. Meenu Krishnan umeenukrishnan@ce.iitr.ac.in Indian Institute of Technology, Roorkee

Abhinav Gupta, Indian Institute of Technology, Roorkee Dr. Rajib Chowdhury, Indian Institute of Technology, Roorkee

Motivation

We wish to use FEniCS with complex geometries

In practice, a real world engineering structure could have :

- 1. Multiple loading areas
- 2. Multiple boundary conditions
- 3. Multiple materials

Thus can have 10 – 100's of marked regions in the mesh

Problem: This could result in human error in the process of modelling

"Output of a simulation is as good as the accuracy in the mathematical modelling"

Preferred mesh processing pipeline


```
$PhysicalNames
6
1 3 "Top"
1 4 "Right"
1 5 "Left"
1 6 "Bottom"
2 1 "Domain"
2 2 "Obstacle"
$EndPhysicalNames
```

Basic design approach

Engineering structures are accompanied with schematic drawings

- 1. Layout of the structure
- 2. Details of boundary conditions
- 3. Details of loading condition
- 4. Details about material properties

Aim: To use the same tag names which is in the schematic drawing in the FEniCS implementation

Desired mesh processing pipeline


```
# Define Dirichlet boundary conditions at top and bottom boundaries
bcs = [DirichletBC(V, 5.0, boundaries, tags['Top']),
      DirichletBC(V, 0.0, boundaries, tags[ Bottom ])]
# Define new measures associated with the interior domains and
# exterior boundaries
dx = Measure("dx")[domains]
ds = Measure("ds")[boundaries]
# Define variational form
F = (inner(a0*grad(u), grad(v))*dx(tags['Domain'])
    + inner(a1*grad(u), grad(v))*dx(tags['Obstacle'])
    - g_L*v*ds(tags['Left']) - g_R*v*ds(tags['Right'])
    - f*v*dx(tags['Domain']) - f*v*dx(tags['Obstacle']))
```


Basis for Meshx


```
{
    "Top": 3,
    "Right": 4,
    "Left": 5,
    "Bottom": 6,
    "Domain": 1,
    "Obstacle": 2
}

tags.json
```

```
domain_mvc = MeshValueCollection("size_t", mesh, dim)
with XDMFFile("mesh/triangle.xdmf") as infile:
    infile.read(domain_mvc, "tag")
domain = cpp.mesh.MeshFunctionSizet(mesh, domain_mvc)

f = open('mesh/tags.json')
tags = json.load(f)
```

Example:

```
root cd Codes/
   Codes cd poisson/
  poisson ls
main.py plate.geo plate.msh
  poisson meshx plate.msh
String tag Num Tag
Top
Right
Left
Bottom
Domain
Obstacle
Creating line mesh
Creating triangle mesh
XDMF created! 🥦 🚱
poisson ls
main.py mesh plate.geo plate.msh sub_domains
  poisson python3 main.py
```


GitHub repository for meshx:

https://github.com/iitrabhi/meshx

You can use this Docker image:

https://github.com/iitrabhi/fenics-docker

Thank You...

(computationalmechanics.in)