Computational Statistics II

Ph.D. in Economics and Statistics, University of Milano-Bicocca

Tommaso Rigon

Computational Statistics II is a short course (12h) on **Bayesian Computations**. The course covers both theoretical and programming aspects. The final examinations is based on 3 homeworks, that must be submitted in the form of a Markdown file.

The teaching material will be available at the website: https://tommasorigon.github.io/CompStat/

Syllabus

Topic	Slides	Markdown
	Efficient R programming	
R programming and MCMC	[Unit A.1]	[Markdown A.1]
Rcpp & RcppArmadillo	[Unit A.2]	[Markdown A.2]
	Advanced MCMC algorithms	
Optimal scaling & adaptive Metropolis	[Unit B.1]	
MALA algorithm & Hamiltonian Monte Carlo	[Unit B.2]	
Benchmark: probit and logit models	[Unit B.3]	
Homework		[Homework 1]
	Data augmentation (DA)	
Missing data problems	[Unit C.1]	
Benchmark: DA for the probit model	[Unit C.2]	
Benchmark: DA for the logit model	[Unit C.3]	
Homework		[Homework 2]
	Variational Bayes (VB)	
Variational inference	[Unit D.1]	
Benchmark: VB for the probit model	[Unit D.2]	
Benchmark: VB for the logit model	[Unit D.3]	
Homework		$[{\rm Homework}\ 3]$

Essential references

- 1. Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669–679.
- 2. Blei, D. M., Kucukelbirb A., and McAuliffe, J. D. (2017). Variational inference: a review for statisticians. Journal of the American Statistical Association, 112(518), 859–877.
- 3. Chopin, N. and Ridgway, J. (2017). Leave Pima indians alone: binary regression as a benchmark for Bayesian computation. *Statistical Science*, **32**(1), 64–87.
- 4. Durante, D. and Rigon, T. (2019). Conditionally conjugate mean-field variational Bayes for logistic models. *Statistical Science*, **34**(3), 472–485.
- 5. Dunson, D. B. and Johndrow, J. E. (2020). The Hastings algorithm at fifthy. Biometrika, 107(1), 1–23.

- 6. Eddelbuettel, D. and Balamuta, J. J. (2018). Extending R with C++: a brief introduction to Rcpp. *The American Statistician*, **72**(1), 28–36.
- 7. Neal, R. M. (2011). MCMC using Hamiltonian dynamics. CRC press.
- 8. Polson, N. G., Scott, J. G. and Windle J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables. *Journal of the American Statistical Association*, **108**(504), 1339–1349.
- 9. Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings algorithms. *Statistical Science*, **16**(4), 351–367.
- 10. Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. *Journal of Computational and Graphical Statistics*, **18**(2), 349–367.