Licenciatura em Engenharia Informática

Sistemas Multimédia

Amostragem de Sinais

Telmo Reis Cunha

Departamento de Eletrónica, Telecomunicações e Informática Universidade de Aveiro – 2020/2021

1. Fundamentos da Amostragem de Sinais

- O tratamento e análise de sinais com recurso a processadores digitais é efetuado no domínio de tempo discreto.
- Tal requer, naturalmente, que os sinais que evoluem continuamente ao longo do tempo sejam amostrados.
- O processo de amostragem consiste em adquirir amostras do sinal (tipicamente a um ritmo periódico).

.

1. Fundamentos da Amostragem de Sinais

 Muitas amostras requerem muita memória (e há pouca "novidade" de amostra para amostra).

Poucas amostras podem não ser suficientemente representativas.

1. Fundamentos da Amostragem de Sinais

 A teoria da amostragem refere que para que um sinal seja amostrado sem perda de informação (i.e., podendo ser integralmente reconstruído a partir das suas amostras), terá que considerar uma frequência de amostragem superior ao dobro da frequência mais elevada do sinal – Critério de Nyquist.

 $f_a = 2f_{max}$ - As amostras não distinguem as duas sinusoides (nem outra da mesma frequência; nem o sinal constante igual a 0).

f_a ligeiramente superior a $2f_{max}$ - Ao fim de algum tempo (algumas

- Ao fim de algum tempo (algumas amostras), a informação do sinal representado está completamente identificada.

2. Reconstrução de Sinais Amostrados

- Seja x(n), n = 1, ..., N, a sequência de amostras de um sinal, com período de amostragem T_a . Como se pode reconstruir de novo o sinal de tempo contínuo, que fora alvo da amostragem?
- É fácil verificar que tal não pode ser feito usando um pulso (pedestal) para cada amostra:

 O sinal resultante tem claramente uma frequência máxima superior a metade da frequência de amostragem.

2. Reconstrução de Sinais Amostrados

 A reconstrução ideal deve considerar a função seno cardinal como função de base, em vez de pulsos retangulares.

$$h(t) = \frac{\sin\left(2\pi\left(\frac{f_a}{2}\right)t\right)}{2\pi\left(\frac{f_a}{2}\right)t} = \frac{\sin(\pi f_a t)}{\pi f_a t}$$

2. Reconstrução de Sinais Amostrados

 A reconstrução ideal deve considerar a função seno cardinal como função de base, em vez de pulsos retangulares.

• O sinal original considerado neste teste foi: $x(t) = \sin(2\pi t)$.

- O que sucede, então, quanto a amostragem não obedece ao Critério de Nyquist? Qual o resultado da reconstrução do sinal neste caso?
- Exemplo de uma imagem submetida a sub-amostragem:

Imagem original

Imagem sub-amostrada (8x8 vezes)

- Como exemplo, considere-se o caso de um sinal composto por dois tons, um correspondente a um som audível ($f_1 = 2kHz$) e outro a um som inaudível ($f_2 = 19kHz$), tendo ambos a mesma potência.
- A frequência de amostragem foi considerada para o sinal audível, tendo sido escolhida $f_a=8kHz$.

 Neste exemplo, o sinal amostrado e reconstruído tem dois tons audíveis:

• Para se evitar este fenómeno, o processo de amostragem deve ser precedido de um **filtro anti-aliasing** (elimina as componentes de frequência superiores a $f_a/2$).

- O aliasing deve-se ao facto de o espetro do sinal se repetir em cada intervalo de largura f_a .
- No exemplo anterior do sinal de dois tons:

Sistemas Multimédia - 2020/2021 - Telmo Cunha

- Exemplos de *aliasing* associados a vídeo:
- https://www.youtube.com/watch?v=ByTsISFXUoY
- https://youtu.be/Ce_jRfM9b4k

- Nos sistemas de aquisição de sinais, não é só o tempo que é discretizado – também a amplitude dos sinais é discreta.
- Cada amostra do sinal é adquirida, e armazenada, numa palavra digital que apresenta um limite de número de bits.
- Logo, cada amostra adquire um valor de um conjunto (finito) de códigos possíveis.

Número de Bits	Número de Códigos
3	8
4	16
5	32
	•••
N	2^N

 Para ilustrar o efeito da quantização da amplitude dos sinais, considere-se o caso do armazenamento em código de 3 bits:

 Para ilustrar o efeito da quantização da amplitude dos sinais, considere-se o caso do armazenamento em código de 3 bits:

Cada código corresponde a um intervalo da amplitude igual a:

$$\Delta = \frac{V_{FS}}{2^N}$$

Admitindo que o valor do erro de quantização pode adquirir, com igual probabilidade, qualquer valor nesse intervalo:

Então, a potência (normalizada) do erro de quantização é:
$$P(\varepsilon) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \varepsilon^2(\tau) d\tau = \int_{-\infty}^{+\infty} \varepsilon^2 p df(\varepsilon) d\varepsilon = \frac{1}{\Delta} \int_{-\Delta/2}^{+\Delta/2} \varepsilon^2 d\varepsilon \rightarrow P(\varepsilon) = \frac{\Delta^2}{12}$$

 Considerando um sinal sinusoidal que percorre toda a escala de amplitude:

$$x(t) = \frac{V_{FS}}{2}\sin(\omega t)$$

A potência associada a essa onda sinusoidal é, então:

$$P_{x} = \frac{1}{T} \int_{0}^{T} x(t)^{2} dt = \frac{1}{2} \cdot \left(\frac{V_{FS}}{2}\right)^{2} = \frac{V_{FS}^{2}}{8}$$

E a relação sinal-ruído (SNR – Signal to Noise Ratio) é:

SNR =
$$\frac{P_x}{P_\epsilon} = \frac{\frac{V_{FS}^2}{8}}{\frac{\Delta^2}{12}} = \frac{3}{2} \cdot \frac{V_{FS}^2}{\Delta^2}$$

 A relação sinal-ruído é uma métrica muito importante, pois indica o esforço necessário para se distinguir a informação útil contida num sinal, quando na presença de ruído.

- A relação sinal-ruído é usualmente apresentada em decibéis (dB): $SNR_{dB} = 10 \log_{10}(SNR)$
- Notando que $\Delta = V_{FS}/2^N$, verifica-se que a SNR entre a sinusoide de referência e o ruído de quantização é:

$$SNR_{dB} = 10 \log_{10} \left(\frac{3}{2} \cdot 2^{2N}\right) = N \cdot 20 \log_{10}(2) + 10 \log_{10} \left(\frac{3}{2}\right) \rightarrow SNR_{dB} \approx 6.02N + 1.76$$

• Exemplo: Quantização de um seno com resolução de N=3 bits:

Exemplo: Quantização de uma imagem:

Imagem original

RGB codificados com 8 bits

256³=16.8 milhões de cores

RGB codificados com 2 bits

 4^3 =64 cores

RGB codificados com 1 bit

 2^3 =8 cores

• Exemplo: Quantização de uma imagem (maior diversidade de cores):

Imagem original

RGB codificados com 8 bits

RGB codificados com 2 bits

RGB codificados com 1 bit

256³=16.8 milhões de cores

 4^3 =64 cores

 2^3 =8 cores

Tons de cinza (8 bits)

Tons de cinza (2 bits)

Tons de cinza (1 bit)

256 tons

5. Número de Bits Efetivos (ENOB)

- A análise apresentada anteriormente pode ser colocada de forma inversa:
- Sendo verificada uma determinada relação sinal-ruído, qual é o número de bits que se obtém na representação da informação útil?
- Este é o conceito de Número de Bits Efetivos (ENOB Effective Number of Bits):

$$ENOB \approx \frac{SNR_{dB} - 1.76}{6.02}$$

• Neste conceito, o ruído pode incluir diferentes componentes (quantização, ruído térmico, ruído de medida, de processo, ...).

5. Número de Bits Efetivos (ENOB)

Exemplo da quantização (N=4 bits) de um sinal com ruído:

