Scatter Plot

- What it does: Shows the relationship between two continuous variables.
- When to use: When you wanna check if two variables are correlated.
- **Components**: Points (each one is an (x, y) pair), optional trend lines.
- Data Type: Continuous

Example:

- Analyzing student study hours vs exam scores Spotting trends and correlations.
- A Height vs weight comparison in medical research.
- Ad spend vs app downloads in marketing analytics.

Code: sns.scatterplot(x='age', y='salary', data=df)

Box Plot

- What it does: Summarizes a distribution using quartiles; highlights median, spread, and outliers.
- When to use: When you want to compare distributions across groups.
- **Components**: Box (IQR), whiskers, median line, outlier dots.
- Data Type: Continuous (on y-axis), Categorical (on x-axis)

Example:

- comparing test scores across different schools See variation and outliers.
- Patient recovery times across treatment types.
- Salaries across different job roles.

Code: sns.boxplot(x='department', y='salary', data=df)

Violin Plot

- What it does: Like a box plot but with a KDE (smoothed distribution) on both sides.
- When to use: When you want to see both distribution and summary stats.
- Components: Violin shape (density), median line, sometimes IQR.
- Data Type: Continuous + Categorical

Example:

- ♪ Distribution of streaming times on Spotify by genre.
- 🧕 Analyzing test scores across genders with visible density.
- Reaction times for different age groups in psychology studies.

Code: sns.violinplot(x='gender', y='test_score', data=df)

Swarm Plot

- What it does: Like a scatter plot but for categorical data—it avoids overlapping points.
- When to use: To see individual data points while also comparing groups.
- **Components**: Dots (each dot = one data point)
- Data Type: Categorical + Continuous

Example:

- @ Each student's individual grade by class section.
- Customer ratings by product to see every review point.
- Sprint times by athlete group—keeping the individuality intact.

Code: sns.swarmplot(x='team', y='performance', data=df)

Heatmap

- What it does: Color-coded matrix used to show values, usually correlations or counts.
- When to use: When you want to show magnitude in a matrix form.
- Components: Grid, color intensity, optional annotations.
- Data Type: Continuous or Categorical (converted to matrix)

Example:

- Gene expression levels across conditions (bioinformatics).
- 77 Attendance over days and hours in a school.
- Correlation between mental health variables.

Code: sns.heatmap(df.corr(), annot=True)

Histogram

- What it does: Shows distribution of a single continuous variable by binning values.
- When to use: When you want to understand frequency and distribution.
- Components: Bars, bins.
- Data Type: Continuous

Example:

- Age distribution of employees in a company.
- Distribution of daily expenses from a budget tracker app.
- image-processing task.

Code: sns.histplot(df['height'], bins=10)

Bar Plot

- What it does: Displays the mean or total of a variable for different categories.
- When to use: Comparing groups.
- Components: Bars, error bars (optional), x and y axis.
- Data Type: Categorical (x) + Aggregated Continuous (y)

Example:

- Sales by pizza topping Classic categorical count.
- Revenue by quarter in a company report.
- Number of users per platform (iOS, Android, Web).

Code: sns.barplot(x='city', y='income', data=df)

Factor Plot (Now deprecated; use catplot)

- What it does: High-level plot for drawing categorical plots.
- When to use: Multi-faceted plots by category.
- **Components**: Varies depending on plot type (bar, box, etc.)
- Data Type: Categorical + Continuous

Example:

- Average walking speed by age and gender with subplots.
- Fruit consumption by country, split by year.
- Job satisfaction scores across departments with gender split.

Code: sns.catplot(x='day', y='total_bill', hue='sex', kind='box', data=tips)

Density Plot (KDE Plot)

- What it does: Smooths out a histogram using a kernel density estimation.
- When to use: To estimate the probability density function of a variable.
- Components: Smooth curve.
- Data Type: Continuous

Example:

- Temperature patterns over time smooth look.
- Cholesterol level distribution for a health survey.
- * GPA density curves to show academic performance.

Code: sns.kdeplot(df['age'])

Joint Distribution Plot

- What it does: Combines scatter/histogram/KDE in one view to show joint and marginal distributions.
- When to use: Analyzing relationship + distribution at once.
- **Components**: Central scatter plot + histograms/KDEs on top and right.
- Data Type: Continuous

Example:

- Electricity usage vs outside temperature with marginal distributions.
- Speed vs fuel efficiency in vehicle performance.
- Income vs expenditure to assess financial behavior.

Code: sns.jointplot(x='height', y='weight', data=df, kind='kde')

TL;DR: Which to use when?

Plot	Use Case	Data Type
Scatter	Correlation check	Continuous × Continuous
Box	Compare distributions	Continuous × Categorical
Violin	Distribution + density	Continuous × Categorical
Swarm	Show all points	Continuous × Categorical
Bar	Compare group stats	Aggregated Continuous × Categorical
Histogram	Frequency dist.	Continuous
KDE / Density	Smoothed dist.	Continuous
Heatmap	Matrix viz (e.g. correlation)	Continuous/Categorical
Jointplot	Relationship + distribution	Continuous × Continuous
Catplot / Factor Plot	Multi-category plot	Mixed
Overlay	Combine plots	Varies