Lab 2B: RACECAR Intro

Team 6: Big Hero 6

"On a scale of 1 to 10, how would you rate your pain?"

Evie Kyritsis

Juan Huertas

Brian Plancher

Alan Tham

Mario Pardo

Liang Zhou

Project Statement

• Problem(s) to Solve

- Lack of familiarity with ROS & RACECAR software architecture
- Nonexistence of team workspace for future work

Achievements

- As a Team
 - The ability to debug system
 - Remaining coordinated while some completed tasks faster than others
 - Providing assistance when something went wrong

Individually

- Personal software environments setup and configuration
- Completing specific tasks of the lab, and then sharing progress with the team

Lab Goals

- Set up Git environment on VM
- RACECAR control and simulation
 - Gazebo intro, open-loop control with joystick
- RACECAR data collection
 - Update software
 - Stream sensor data
 - Visualize laser scan data (rviz)

END GOAL: general familiarity with RACECAR system

Technical Approach

- Follow the instructions to gain basic familiarity
- Work together to help each other gain a basic understanding of ROS
 - Dive deep into the codebase and leverage all of the example code already in place
- Leverage the expertise of TAs when stuck

Note: For later labs we will need to develop a better system of information sharing to ensure efficient collaboration when we work on different tasks

Results

- Module 1: successfully set up Git environment
- Module 2: able to simulate robot and laser scanner to detect virtual walls, drive simulated car with commands
 - Roadblocks: could not get joypad to work with simulation for open loop control
- Module 3: stream camera data to robot, update software, Mount SSD

Open Loop Control

Visualize laser scan data

Stream Sensor Data

Lessons Learned

1. Read through lab notes before execution

- a. Gain better understanding of the problem and approach
- b. Better learning through such reflective approach

2. Apply scientific method to Debugging

- a. Create hypotheses, experiment, test, validate
- b. Stepping through process systematically reduces solution space

3. Better defined team roles and responsibilities

- Balance between skills and learning objectives
- All members have different skillsets ask and learn what you don't know
- The team that works together, travels far together

Technical Self Assessment

Questions?

Comments?

