Western Region Trial Higher School Certificate Examination 1996

MATHEMATICS 3/4 UNIT COMMON

Solutions and Marking Scheme

Please Note:

* These are suggested solutions. They are not intended to specify the amount of working required or the method to be applied.

Teachers should accept any valid method of solution providing adequate working is shown

SOLUTIONS	COMMENTS
QUESTION 1 (12 marks)	
a.) $\int_{0}^{4} \frac{dx}{x^{2} + 16} = \int_{0}^{4} \frac{dx}{x^{2} + 4^{2}}$	
$= \left[\frac{1}{4} + \tan^{-1} \frac{x}{4}\right]_0^4$	I for integral
$= (\frac{1}{4} + an^{-1}) - (\frac{1}{4} + an^{-1}0)$	I for substitution
$= \frac{1}{4} \times \frac{\pi}{4} - 0$ $= \frac{\pi}{16}$	1 answer
b.) $\int (1 - \cos x)^{2} dx = \int (1 - 2\cos x + \cos^{2}x) dx$ $= \int 1 - 2\cos x + \frac{1}{2} (1 + \cos^{2}x) dx$ $= x - 2\sin x + \frac{1}{2}x + \frac{1}{4}\sin 2x$	I for expansion I for integral ACCEPT
$= \frac{3 \times - 2 \sin \times + \frac{1}{4} \sin 2 \times + C}{2}$	
$\frac{c.)}{x-2} \geqslant 1$	
$\frac{(x-2)^{2}}{x/2}$ >, 1. $(x-2)^{2}$	1 for method
3x-6 > x2-4x+4	
$x^{2}-7x+10 \le 0$ $(x-5)(x-2) \le 0$	1 for quadratic
$2 \leqslant x \leqslant 5$ but since $x \neq 2$.	
∴ 2 < × ≤ 5	1 answer
ľ	

SOLUTIONS	COMMENTS
d.) $y = \log_e \left(\frac{1}{\sqrt{\omega_1 x}} \right)$ $= \log_e 1 - \log_e \omega_s x^{\frac{1}{2}}$ $= \log_e 1 - \frac{1}{2} \log_e \omega_s x$	l for splitting. log(音)
$\frac{dy}{dx} = 0 - \frac{1}{2} \cdot \frac{-\sin x}{\cos x}$ $= \frac{1}{2} + \sin x$	1 for dy dx

Ξ

SOLUTIONS	COMMENTS
QUESTION 2 - (12 marks)	
g.) C	
E B A	
<pre>< DBA = < BCD (angle between tangent</pre>	1 (reason 1)
< CBD = < BDA (alternate <'s in 11/ BC/(AD)	1 (reason 2)
< CDE = < DAB (third < in \(D \) 180°)	(reason 3)
Δ BCD III Δ DBA (equiangular triangles)	l answer
b.) $\int \frac{2x}{(x-1)^2} dx \qquad \qquad u = x-1$ $du = dx$	I for sub and x=u+1
$\int \frac{2u+2}{u^2} du \qquad \qquad x = u+1$	1 for $\int \frac{2u+1}{u^2} du$
$\int \frac{2}{u} + 2u^{-2} du$	
$= 2 \ln u - 2u^{-1} + c$ $= 2 \ln u - \frac{2}{3} + c$	1 for integration
$= 2 \ln (x-1) - \frac{2}{x-1} + C$	1 for answer
C.) STEP1: Prove for $n=1$ LHS = 5^{n-1} RHS = $\frac{5^{n-1}}{4}$ = $\frac{4}{4}$ = 1	
: LHS = RHS : True for n=1	1 for step1

SOLUTIONS	COMMENTS
Step 2: Assume true for $n=k$ ie. $1+5+5^2++5^{k-1}=\frac{5^k-1}{4}$ and prove true for $n=k+1$ ie. $1+5+5^2++5^{k-1}+5^k=\frac{5^{k+1}-1}{4}$	I statements
$\frac{no\omega}{1+5+5^{2}+\ldots+5^{k-1}+5^{k}}$ =\frac{5^{k}-1}{4}+5^{k}	t for working
$= \frac{5^{k}-1}{4} + \frac{4.5^{k}}{4}$ $= \frac{5.5^{k}-1}{4}$ $= \frac{5^{k+1}-1}{4}$ STEP 3: If true for $n=k$ then true for $n=k+1$, but it is true for $n=1$ true for $n=1+1=2$ $n=2+1=3$ etc.	; 50, step 3
By Induction 1+5+5 ⁿ⁻¹ = 5 ⁿ -1	

COLUMNOMO	
SOLUTIONS	COMMENTS
$\frac{\text{Question 3}}{\text{a.)}} = (12 \text{ marks})$	
12 Pr = 120. 12 Pr	1 = 12 C = 12 P C
r! = 120. 12 pr	1 salving.
r! = 120 r = 5	answer
b.) i.) $V^2 = 8x - 2x^2$ $\frac{1}{2}V^2 = 4x - x^2$ $a = \frac{d}{dx}(\frac{1}{2}v^2) = 4 - 2x$	1 for method
= -2 (26) the particle is in S.H.M. as the acceleration is proportional to the distance from the centre of motion.	I for statement of six Mi
b.) ii.) When $a = 0$ $\therefore 0 = 2(2-x)$ $\boxed{x = 2}$ $\therefore \text{ the centre of motion is } 2m$ to the right of the origin.	I for centre.
b.) iii.) when $V = 0$ $0 = 8x - 2x^{2}$ $0 = 2x(4-x)$ $x = 0, 4$ $\therefore \text{ the two endpoints are the origin and } 4m \text{ to the right of the origin.}$	1 for endpoints

SOLUTIONS	COMMENTS
b.) iv.) max speed at centre of motion x = 2	
V ² = 8x - 1x ²	I for velocity.
= 16 - 8	1 131 13113
$= 8$ $V = \pm \sqrt{8} = \pm \sqrt{2}$	
: the maximum velocity is 2/2 m/s	
c.) P = 3200 + 400 ekt	
when t=0 P= 3200 + 400 e° = 3600	
: initial population is 3600.	I to mitial pap.
when t= 20 P= 7200	
∴ 7200 = 3200 + 400 e 20k	
4000 = 400 e 20k 10 = e 20k	1 for k.
In 10 = 20 K	
$k = \frac{\ln 10}{20} \stackrel{?}{=} 0.115$	
P = 3200 + 400 est	
when $P = 10800$ $10800 = 3200 + 400 e^{0.05t}$ $7600 = 400 e^{0.05t}$ $19 = e^{0.05t}$ $\ln 19 = 0.05t$	1 for setting up equation
$t = \frac{\ln 19}{0.115} = 25.575$	1 for answer.
: to triple t = 25hr 35mins	

SOLUTIONS	COMMENTS
QUESTION 4 - (12 marks) Q.) $y = cos^{-1}x$ $\frac{dy}{dx} = \frac{-1}{\sqrt{1-x^2}}$	1 for dermative
$\frac{-2}{\sqrt{3}} = \frac{-1}{\sqrt{1-x^2}}$ $-2\sqrt{1-x^2} = -\sqrt{3}$	
$4(1-x^{2}) = 3$ $4-4x^{2} = 3$ $4x^{1} = 1$ $x^{2} = \frac{1}{4}$ $x = \pm \frac{1}{3}$	t for solving.
when $x = -\frac{1}{2}$ $y = \cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3}$ when $x = \frac{1}{2}$ $y = \cos^{-1}(\frac{1}{2}) = \frac{\pi}{3}$ $\therefore \text{ points are } \left(\frac{1}{2}, \frac{\pi}{3}\right) \text{ and } \left(-\frac{1}{2}, \frac{2\pi}{3}\right)$) for points
b.) $\left(x^{3} - \frac{1}{3x}\right)^{8}$ Note:- middle term is the fifth term. $T_{K+1} = {}^{n}C_{K}(a)^{n-K}.b^{K}$ $T_{4+1} = {}^{8}C_{4}(x^{3})^{4}.\left(\frac{-1}{3x}\right)^{4}$	1 for 5th term 1 for Theorem
$Ts = 70 \times \frac{12}{81 \times 4}$ $= \frac{70 \times 8}{81}$	1 for substitution
:. the middle term is 70 x 81	1 for answer

SOLUTIONS	COMMENTS
c.) i.) V = 16	
$\frac{4}{3} \pi r^3 + 4\pi r^2 = 16$	
$\frac{1}{2} \pi r^3 + \pi r^2 = \frac{4}{3}$	
$\pi r^3 + 3\pi r^2 = 12$	
r ³ + 3r ² = 12	
$\therefore \qquad r^3 + 3r^2 = \frac{r^2}{\pi}$	I for showing.
(c.) ii.) $r^3 + 3r^2 = \frac{12}{17}$	
$f(r) = r^3 + 3r^2 - \frac{12}{17}$	1 for sub o and 1
$f(0) = -\frac{12}{\pi}$ Change in f(1) = 0.18028 Sign.	I for change of sign
one root lies between 0 and 1.	and reason
C.) iii.) $f(r) = r^3 + 3r^2 - 12/\pi r$	
$f'(r) = 3r^2 + 6r$	
if a = 0.9 then a closer approx of a	
as given by $a_1 = a - \frac{f(a)}{f'(a)}$	
$a_1 = 0.9 - \frac{f(0.9)}{f'(0.9)}$	I for formula and substitution
a. = $0.9 - \left(\frac{-0.6607186}{7.83}\right)$	į
Q = 0.9 + 0.0843	
a, = 0.9843	1 for colculation
0.9843 is a better approx	
	1

SOLUTIONS	COMMENTS
QUESTION 5 - (12 marks)	
 a.) Let the roots be α, β and δ ∴ κβδ = -12/3 = -4 	1 for product
but αβ = 4 or β = 4/d ∴ 48 = -4	
8 = -1	
Sum of roots	
x + p + x = 17 3	l for sum
$\alpha + \beta - 1 = \frac{17}{3}$	
$\alpha + \frac{4}{\alpha} = \frac{20}{3}$	
$3\alpha^{2} - 20\alpha + 12 = 0$ $(3\alpha - 2)(\alpha - 6) = 0$	
$\alpha = 6$ or $\frac{2}{3}$	2 nor 3 solutions
is the roots are $6, \frac{2}{3}$ or -1	
ie. $x = 6, \frac{2}{3}, -1$	
b.)i.) P(fail at least once)	
= - P(doesn't fail)	1 for P(E) = 1 - P(E)
$= 1 - \left(\frac{29}{30}\right)^m$	1 for expression
b.) ii.) $P(fail at least once) > \frac{9}{10}$	
$\therefore 1 - \left(\frac{29}{30}\right)^{m} 7 \frac{9}{10}$	I for setting up equation
$\left(\frac{29}{30}\right)^{m} < \frac{1}{10}$	
$\left(\frac{30}{29}\right)^{n} > 10$	
log (30) > log 10	1 for working
$m (log_30 - log_30) > 1$: m > $\frac{1}{log_30 - log_329}$	·

SOLUTIONS	COMMENTE
SOLUTIONS	COMMENTS
(c.) i.) $\frac{dV}{dh} = \frac{\pi}{12} (h^2 + 12h + 36)$	
V = = 12 \ h2 + 12h + 36 dh	
$= \frac{\pi}{12} \left(\frac{h^3}{3} + 6h^2 + 36h \right) + c$	
$= \frac{\pi}{36} \left(h^3 + 18h^2 + 108h \right) + C$	
$= \frac{\pi h}{36} \left(h^2 + 18h + 108 \right) + c$	For correct form
when $h=0$, $V=0$ and $C=0$	
$\therefore V = \frac{\pi h}{36} (h^2 + 18h + 108)$	
c.) ii.) when h = 6	
$V = \frac{6\pi}{36} (252) = 42\pi \text{ cm}^3$ 131.9 cm^3	I for V when h=b
c.) iii.)	
$\frac{dh}{dt} = \frac{dv}{dt} \times \frac{dh}{dv}$	
$= 8 \times \frac{12}{\pi \left(h+6\right)^2}$	
$\frac{dh}{dt} = \frac{96}{\pi (h+b)^2}$	for chainrule and dh dt
C.) iv.) when h= 6	
$\frac{dh}{dt} = \frac{96}{144\pi} = \frac{2}{31}$	l for rate
: the depth is increasing at a rate of 2T cm sec.	
(see over page)	, , ,

	SOLUTIONS	COMMENTS
	C.) IV.) con't.	
	$\frac{dh}{dt} = \frac{96}{T(h+6)^2}$	
	$\frac{dt}{dn} = \frac{\pi}{96} \left(h^2 + 12h + 36 \right)$	
	$t = \frac{\pi}{96} \int h^2 + 12h + 36 dh$	
	$t = \frac{\pi}{96} \left(\frac{h^3}{3} + 6h^2 + 3bh \right) + c$	
	when h=0, t=0 and C=0	
	$\therefore t = \frac{\pi}{288} \left(h^3 + 18h^2 + 108h \right)$	
	when h=6	
	$t = \frac{\pi}{288} \left((b)^3 + 18(b)^2 + 108(b) \right)$	
	= 16·49 seconds	I for working to 16.49 Se
	or $dV = 8$ $V = 8t + C$ $V = 8t + C$ $V = 8t + C$ $V = 8t$	
	t=0, V=0	
	42T=8t t=16.49s.	
	İ	

SOLUTIONS	COMMENTS
QUESTION 6 - (12 marks) a.) i.) number of arrangements n = 10! 2! 2! 2! = 453600	1 for arrangements
a) ii.) P (vowels and consonants alt) $= \frac{2 \times \frac{5!}{2!2!} \times \frac{5!}{2!}}{453600}$	1 for accounting for 2 combinations
= $\frac{3600}{453600}$ cvcvcvcvc or $\frac{1}{453600}$ cvcvcvcvc $\frac{1}{126}$:. $P(V \text{ and } C \text{ alternate}) = \frac{1}{126}$ Note:- $\frac{5!}{2!2!}$ Arrange 5 vowels with $\frac{5!}{2!2!}$ 2 vowels repeated. $\frac{5!}{2!}$ Arrange 5 consonants with 1 repeated.	1 for correct prob.
b.) i.) $(1+x)^n = {^nC_0} + {^nC_1}x + {^nC_2}x^2 + \dots + {^nC_n}x^n$	1 for expression
b.) ii.) $(1+x)^{n} = {\binom{n}{1}} + {\binom{n}{$	l for integration

SOLUTIONS	COMMENTS
b.) ii.) (on't	
Let x = 1	
$\frac{2^{n+1}}{n+1} = \frac{n}{n} + \frac{1}{2} \frac{n}{n} + \frac{1}{3} \frac{n}{n} + \dots + \frac{1}{n+1} \frac{n}{n} + \frac{1}{n+1}$	
$\frac{2^{n+1}-1}{n+1} = \binom{n+\frac{1}{2}}{n+\frac{1}{2}} \binom{n}{n+\frac{1}{2}} \binom{n}{n+\frac{1}{2}} \binom{n}{n+\frac{1}{2}} \binom{n}{n}.$	1 for working.
$\frac{2^{n+1}-1}{n+1} = {\binom{n}{2}} + \frac{1}{2} {\binom{n}{2}} + \frac{1}{2} {\binom{n}{2}} + \cdots + \frac{1}{n+1} {\binom{n}{n}}$	
$y = \omega_1^{-1} \times \pi$	I for correct graphs
c.) ii.) when $x = \frac{1}{\sqrt{2}}$ $y = \cos^{-1}x = \cos^{-1}\frac{1}{\sqrt{2}} = \frac{\pi}{4}$ $y = \sin^{-1}x = \sin^{-1}\frac{1}{\sqrt{2}} = \frac{\pi}{4}$ $\therefore P(\frac{1}{\sqrt{2}}, \frac{\pi}{4})$ Thus $y = \cos^{-1}x$ and $y = \sin^{-1}x$ intersect at $(\frac{1}{\sqrt{2}}, \frac{\pi}{4})$	for substitution

SOLUTIONS	COMMENTS
c.) iii)	
$\frac{d}{dx}\left(x\sin^{-1}x+\sqrt{1-x^2}\right)=\sin^{-1}x$.,
LHS = $\sin^{-1} x \cdot (1) + \frac{x \cdot 1}{\sqrt{1-x^2}} + \frac{1}{x} (1-x^2)^{-\frac{1}{x}} - \lambda x$	1 for dermotre
$= \sin^{-1} x + \frac{x}{\sqrt{1-x^2}} - \frac{x}{\sqrt{1-x^2}}$	1 for Proof
= Sm ⁻¹ x	LHS = RHS.
= RHS.	
(c.) iv.) y= cos ⁻¹ x T	
y= sin x - = = = = = = = = = = = = = = = = = =	
Area = $\int_{0}^{\sqrt{2}} \sin^{-1}x dx + \int_{0}^{1} \cos^{-1}x dx$ $= \left[x \sin^{-1}x + \sqrt{1-x^{2}} \right]_{0}^{\sqrt{2}} + \left[x \cos^{-1}x - \sqrt{1-x^{2}} \right]_{\sqrt{2}}^{1}$	1 for integral
= [(辛· ボ + 卆) - (1)] + [(の) -(辛· 走 - 卆]	
$= \frac{\pi}{4J_2} + \frac{1}{J_2} - 1 - \frac{\pi}{4J_2} + \frac{1}{J_2}$	1 for sub and
$= \frac{2}{\sqrt{2}} - 1 = \frac{2 - \sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2} - 2}{2}$ $= \sqrt{2} - 1 \text{units}^2 \text{is area.}$	a/ea

SOLUTIONS	COMMENTS
QUESTION 7 (12 marks)	
a.) Vertical Motion	
$\frac{d^3y}{dt^3} = -9$	
: dy = - gt + C	
when t=0 V = V sin O	I for integrals
= V sin 45 = V 1 V 1	
$\therefore C = \frac{\vee}{\sqrt{2}}$	
$\frac{1}{100} \frac{dy}{dt} = -gt + \frac{1}{100}$	
$y = -\frac{9t^2}{2} + \frac{vt}{\sqrt{2}} + c$	1 for $y = -\frac{3t^2}{2} + \frac{yt}{\sqrt{5}}$
but $t=0$ $y=0$ $c=0$ $y=-\frac{gt^2}{2}+\frac{vt}{\sqrt{2}}$	
Horizontal Motion	
$\frac{dx}{dt} = V \cos 45^{\circ}$ $= \frac{V}{V_2}$	
$\therefore x = \frac{vt}{\sqrt{2}} + c \text{when } t = 0, x = 0$ $\therefore c = 0$	1 fg/ x = vt
$\therefore x = \frac{Vt}{\sqrt{2}}$	

15

SOLUTIONS	COMMENTS
p.) f = <u>^</u>	
$y = -gt^2 + \sqrt{z}$	
$y = -9\left(\frac{\sqrt{x} \times x}{x}\right)^2 + \sqrt{\frac{\sqrt{x} \times x}{x}}$	1 for substitution
$y = x - \frac{9x^2}{V^2}$	1 for equation
c.) when y=0	
$0 = x - \frac{9x^2}{V^2}$	1 for solving
$o = xv^1 - gx^1$	Equation
0 = x (v2-gx)	
$x=0$ or $V^1=9^x$	
x = \frac{\sqrt{2}}{9}	I for correct range
: range of projectile $\frac{v^2}{9}$	
$\frac{(b, 8a^{2})}{45^{3}} \frac{8a^{2}}{8a^{2}} \frac{(b+i2a^{2}, 8a^{2})}{b \frac{12a^{2}}{a^{2}}}$	
$b + 12a^2 + b = \frac{V^2}{9}$	(via diagram) T I for showing
$\frac{V^2}{9} = 2b + 12a^2$	$\frac{g}{g} = 2b + 12a^2$

SOLUTIONS	COMMENTS
d.) ii.) the first post has co-ordinates (b, 8a²)	
$\therefore y = x - \frac{gx^2}{v^2} \text{sub} x = b y = 8a^2$	I for sub of (x,y)
$8a^2 = b - gb^2$	and getting equation
$\therefore g_{\alpha^2} = b - \frac{gb^2}{V^2}$	
(i) $\frac{V^2}{g} = 2b + 12a^2$	
$8a^2 = b - \frac{9b^2}{V^2}$ (ii)	
sub (1) into (2) $8a^{2} = b - gb^{2}$ $g(2b + 12a^{2})$	1 for substitution
$8a^{2} = b - \frac{b^{2}}{2b + 12a^{2}}$	
$b - 8a^{2} = \frac{b^{2}}{2b + i2a^{2}}$ $(b - 8a^{2})(2b + i2a^{2}) = b^{2}$	I for solving equation
$2b^{2} - 4a^{2}b - 96a^{4} = b^{2}$ $b^{2} - 4a^{2}b - 96a^{4} = 0$ $(b - 12a^{2})(b + 8a^{2}) = 0$	J
$b = 12a^2$, $b = -8a^2$ (only positive for length).	
sub into (i) $\frac{V^2}{9} = 24a^2 + 12a^2 = 36a^3$	I for substitution and oursner.
$V^2 = 36a^2g$: $V = 6a\sqrt{9}$	