d. Linear mappings.

Let V and W be vector spaces over the same field F. A mapping W is said to be a linear mapping (or a linear transformation) if satisfies the following conditions —

1.
$$T(\alpha+\beta)=T(\alpha)+T(\beta)$$
 for all α,β in V

 $2.T(c\alpha) = cT(\alpha)$ for all c in F and all α in V.

These two conditions can be replaced by the single condition— $T(a\alpha + b\beta) = aT(\alpha) + bT(\beta)$ for all a, b in F and all α, β in V.

Note 1. A linear mapping $T:V \to W$ is also a homomorphism of V to W.

The side to be districted and the second sec ! Generally, a linear mapping T is a transformation from one vector Pace V to another vector space W, both over the same field of scalars. but the co-domain space W may be the space V itself. In this case T is aid to be a linear mapping on V.

There is another important case when the co-domain space is F, resaided as a vector space over itself. In this case $T:V \to F$ is said to be inear functional.

THE CONTRACTOR OF THE CONTRACTOR SHIP

Examples.

The identity mapping. The mapping $T: V \to V$ defined by $\Gamma(\alpha) = \alpha$ for all α in V, is a linear mapping. This is called the *identity* mapping on V and is denoted by I_V .

This shows that T is not a linear mapping.

Theorem 4.21.1. Let V and W be vector spaces over a field F

- (i) $T(\theta) = \theta'$, where θ, θ' are null elements in V and W respectively
- (ii) $T(-\alpha) = -T(\alpha)$ for all $\alpha \in V$.

Proof. (i) In $V, \theta + \theta = \theta$.

Since T is linear, $T(\theta) + T(\theta) = T(\theta)$ in W.

This implies $-T(\theta) + [T(\theta) + T(\theta)] = -T(\theta) + T(\theta)$ $\Rightarrow [-T(\theta) + T(\theta)] + T(\theta) = \theta', \text{ since } \theta' \text{ is the null vector in } W$ $\Rightarrow \theta' + T(\theta) = \theta'$ $\Rightarrow T(\theta) = \theta'$.

(ii) Proof left as an exercise.

Kernel of a linear mapping.

Let V and W be vector spaces over a field F. Let $T: V \to W$ a linear mapping. The set of all vectors $\alpha \in V$ such that $T(\alpha) = \emptyset$ being the null vector in W, is said to be the kernel of T and is deno by Ker T.

$$Ker T = \{\alpha \in V : T(\alpha) = \theta'\}.$$

Theorem 4.21.2. Let V and W be vector spaces over a field f. $T: V \to W$ be a linear mapping. Then $Ker\ T$ is a subspace of V.

Proof. Ker $T = \{ \alpha \in V : T(\alpha) = \theta' \}.$ Since $T(\theta) = \theta', \theta \in Ker\ T$. Therefore $Ker\ T$ is non-empty.

Case 1. $Ker T = \{\theta\}$. Then Ker T is a subspace of V.

Case 2. Ker $T \neq \{\theta\}$. Let $\alpha \in Ker T$. Then $T(\alpha) = \theta'$.

Let
$$c \in F$$
. Then $T(c\alpha) = cT(\alpha)$, since T is linear $= c\theta' = \theta'$.

This implies $c\alpha \in Ker\ T$.

Let
$$\alpha, \beta \in Ker T$$
. Then $T(\alpha) = \theta'$, $T(\eta) = \theta'$.

$$\begin{aligned} & [\ell t \ \alpha, \beta \in Ker \ T. \ Then \ T(\alpha) = \theta', \ T(\eta) = \theta'. \\ & [\ell t \ \alpha, \beta \in Ker \ T. \ Then \ T(\alpha) + T(\beta), \ since \ T \ is linear \\ & = \theta' + \theta' = \theta'. \end{aligned}$$
 This implies $\alpha + \beta \in Ker \ T.$

This implies $\alpha + \beta \in Ker T$.

Thus $\alpha, \beta \in Ker \ T \Rightarrow \alpha + \beta \in Ker \ T \ \text{and} \ \alpha \in Ker \ T \Rightarrow c\alpha \in Ker \ T$ Tall $c \in F$. This proves that Ker T is a subspace of V. his completes the proof.

Note. Ker T is also called the null space of T and is denoted by N(T).

Theorem 4.21.3. Let V and W be vector spaces over a field F. Let $V \to W$ be a linear mapping. Then T is injective if and only if $\ker T = \{\theta\}.$

Proof. Let T be injective. Since $T(\theta) = \theta'$ in W, θ is a pre-image of θ' since T is injective, θ is the only pre-image of θ' . So $Ker\ T = \{\theta\}$.

Conversely, let $Ker\ T=\{\theta\}$ and α,β be two elements of V such that $T(\alpha) = T(\beta)$ in W.

$$\theta' = T(\alpha) - T(\beta)$$

= $T(\alpha - \beta)$, since T is linear.

This implies $\alpha - \beta \in Ker T$ and since $Ker T = \{\theta\}, \alpha = \beta$.

Thus $T(\alpha) = T(\beta) \Rightarrow \alpha = \beta$ and therefore T is injective.

his completes the proof.

image of a linear mapping.

Let V and W be vector spaces over a field F. Let $T: V \to W$ be linear mapping. The images of the elements of V under the mapping I form a subset of W. This subset is said to be the image of T and is denoted by Im T. $(1 \le 1) = (2)$

 $Im T = \{T(\alpha) : \alpha \in V\}.$