TEMA: OPERAÇÕES COM POLINÓMIOS

TIPO: FICHA DE TRABALHO N.º I

LR MAT EXPLICAÇÕES

1. Das expressões seguintes indica se são ou não polinómios.

$$1.1)\sqrt{2}x^2 + x + 1$$

1.3)
$$4x^2 + 2x + \sqrt{x}$$

1.5)
$$2x^4 + 2x^{\frac{1}{2}} + 2$$

1.2)
$$x^2 + \frac{1}{x} + 2$$

1.4)
$$-\sqrt{3} + \sqrt[3]{5}x + \frac{x}{3}$$

$$1.6) x^{-4} - 3x - 2$$

2. Para cada um dos polinómios seguintes indica o grau e os seus termos.

$$2.1)A(x) = 8x + \sqrt{2}$$

2.3)
$$C(x) = \frac{x^5}{6} - \sqrt[7]{3}x^2 + 1$$

$$2.5)E(x) = -2x^2 + 4x + 2(x+1)^2$$

$$2.2)B(x) = -x^5 - \sqrt{3}x^2 + \sqrt[6]{2^4}$$

$$2.4) D(x) = 10 + \sqrt{2}$$

$$3.1)(x-1)^2 + 2x(x+1)$$

$$3.3(x+3)(x^2+x+1)-(x-1)(x+1)$$

$$3.5)\left(\frac{x}{3}+1\right)(x^2+2x+4)-(x+1)^2$$

3.2)
$$(x + \sqrt{2})^2 + (x + \sqrt{2})(x - \sqrt{2})$$

$$3.4) 2(x + 2\sqrt{3})^2 - 2(x + 1)^2$$

Relativamente à figura, sabe-se que: [ABCD] e [FBGH] são retângulos.

- $\overline{AB} = 4x + 1$
- $\overline{AE} = \overline{BG} = 2x$
- $\overline{EF} = 1$
- $\overline{BC} = 4x 3$

Determina uma expressão simplificada para a área da região colorida.

5. Considera o polinómio: $A(x) = -2x^4 + 4x^3 - ax^2 + b$.

Determina a e b, reais, de modo que:

$$5.1)A(x) = -2x^4 + 4x^3 + 10$$

$$5.2$$
) $A(x) = ax^4 + 4x^3 + bx^2 + 2$

6. Completa a tabela seguinte:

Monómios	Coeficiente	Parte Literal	Grau do monómio
5 <i>y</i>			
$-x^3$			
$\frac{x^2}{3}$			
-15			
17 <i>xy</i> ⁵			
$7x^2y$			
$5y^2z^3$			
y^3			
$-z^2$			
$\frac{2}{3}x$			
$-11y^{4}$			
$0,8x^2$			
0			
12			
$-\frac{2}{3}$			
5π			

7. Considera os polinómios:

$$A(x) = 4x^2 - \frac{3}{4}x + 5$$
; $B(x) = x^2 - 3$; $C(x) = \frac{1}{2}x^3 - x^2 + 1$; $D(x) = x^5 - x^2 - \frac{3}{4}$

7.1) Efetua as operações e apresenta o resultado na forma de polinómio reduzido e ordenado:

(a)
$$B(x) - A(x) - C(x) + D(x)$$

(b)
$$D(x) + B(x) \times C(x)$$

(c)
$$[B(x)]^2 + 4D(x)$$

(d)
$$A(x) \times D(x) - C(x)$$

(e)
$$[B(x)]^3$$

(f)
$$A(x) \times C(x) - B(x) \times C(x)$$

7.2) Sem efetuar as operações, indica o grau de cada um dos polinómios.

(a)
$$A(x) + B(x)$$

(b)
$$A(x) - C(x)$$

(c)
$$B(x) \times C(x)$$

(d)
$$D(x) - A(x) \times C(x)$$

(e)
$$[B(x)]^2 + D(x)$$

(f)
$$A(x) \times B(x) \times C(x)$$

8. Determina o polinómio A(x), tal que: $x^4 - 2x + 3 + A(x) = 3x^2(x^2 - 4)$.

9. Num recipiente com a forma de um prisma retangular regular introduziu-se uma pirâmide, tal como é sugerido na figura. Sabendo que a altura da pirâmide é de 3 cm, determina o polinómio que dá, em cm^3 , o volume livre no recipiente, em função de x.

10. Considera as proposições seguintes:

p: Se A(x) e B(x) são polinómios de grau 3, o polinómio A(x) + B(x) tem grau 3.

q: Se A(x) e B(x) são polinómios de grau 3, o polinómio $A(x) \times B(x)$ tem grau 6.

Indica o valor lógico de $\sim p \land q$.

11. Determina o número natural, n, tal que $(x-4)^n \times (-x^3+2)$ tenha grau 13.

12. Considera as seguintes proposições:

- (I) Se o grau de um polinómio P(x) é 3, então, o grau do polinómio 2P(x) é 3.
- (II) Se o grau de um polinómio P(x) é 4 e de um polinómio Q(x) é 8, então o grau do polinómio P(x) + Q(x) é 12.
- (III) Se o grau de um polinómio P(x) é 3 e de um polinómio Q(x) é 4, então, o grau do polinómio $P(x) \times Q(x)$ é 7.

Das afirmações anteriores, pode dizer-se que:

- (A) Apenas a afirmação III é verdadeira.
- (B) A afirmação I é falsa.
- (C) As três afirmações são verdadeiras.
- (D) Apenas a afirmação II é falsa.