CET 323 LAB Name Van Nguyen

Dr. Park Date September 25, 2020.

Class CET 323_01

FET Amplifiers And Switching Circuits

Reading

Floyd, Electronic Devices, Ninth Edition, Chapter 9.

Key Objectives

Part 1: Calculate and measure dc and ac parameters for a common-Source amplifier.

Part 2: Calculate and measure dc and ac parameters for two common-drain amplifiers.

Components need

Part 1: The common-Source JFET amplifier.

Resistor (one of each) : $620~\Omega$, $1.0~k\Omega$, $3.3~k\Omega$, $10~k\Omega$, $100~k\Omega$, $1.0~M\Omega$

One 2N5484 n-channel JFET.

Capacitors (one if each): $0.1~\mu F$, $1.0~\mu F$, $10~\mu F$

Part 2: The common-Drain JFET amplifier.

Resistor (one of each) : 470Ω , $1.0 k\Omega$, $10 k\Omega$, $100 k\Omega$, $1.0 M\Omega$

One 2N5484 n-channel JFET.

Capacitors (one if each): $0.1~\mu F$, $1.0~\mu F$, $10~\mu F$

Part 1 : The common-Source JFET amplifier

- 1. Measure and record the values of the resistor listed in the Table 9_1
- 2. Construct the common-source (CS) amplifier shown in Figure 9_1. Set the signal generator for a 500 mVpp sine wave at 1.0 kHz. Check the amplitude and frequency with your oscilloscope.

Table 9_1

Resistor	Listed	Measured
	Value	Value
$\mathbf{R}_{\mathbf{S}}$	$1.0~\mathrm{k}\Omega$	
$\mathbf{R}_{\mathbf{D}}$	3.3 kΩ	
$\mathbf{R}_{\mathbf{G}}$	$1.0~\mathrm{M}\Omega$	
\mathbf{R}_{L}	10 kΩ	

CET 323	Van Nguyen	LAB_02

3. Measure the dc voltages listed in Table 9_2 and compute I_D . Set the function generator for a 500 mVpp sine wave and measure the ac quantities listed. Compare the input and output ac voltage by viewing V_{in} and V_{out} simultaneously. Measure the voltage gain and note the phase different (0° or 180°) between the input and output signal. Enter all from this step in Table 9_2 .

Table 9_2 Parameters for CS Amplifier

Quantity	DC value	AC value
Gate Voltage, V _G		
Source Voltage, Vs		
Drain Voltage, V _D		
Drain Current , I _D		
Input Voltage, Vin		
Output Voltage, Vout		
Voltage gain, A _v		
Phase difference		

CET 323 Van Nguyen LAB_02 LTspice XVII - FET_2N5484_Characterictic_Curve_AMP04 <u>F</u>ile <u>E</u>dit H<u>i</u>erarchy <u>V</u>iew <u>S</u>imulate <u>T</u>ools <u>W</u>indow <u>H</u>elp [▶ 26] [37] [37] [38 💃 FET_2NS484_Charactericitic Curve_AMP02 😿 FET_2NS484_Charactericitic Curve_AMP02 🔀 FET_2NS484_Charactericitic Curve_AMP02 🔀 FET_2NS484_Charactericitic Curve_AMP04 🔯 FET_2NS484_Charactericitic Curve_AMP04 - - X FET_2N5484_Characterictic_Curve_AMP04 FET_2N5484_Characterictic_Curve_AMP02 **≥**RL 0.1μF SRS 1k SINE(0 1V 1kHz) SINE(0 250mV 1kHz) .tran 0 0.01 0 100 .tran 0 0.01 0 100 x = 4.942ms y = 1.229V &<u></u> ₩

CET 323	Van Nguyen	LAB_02

Table 9_2 Parameters for CS Amplifier

Quantity	DC value	AC value
Gate Voltage, V _G (n005)	0.44 μV	
Source Voltage, Vs (n006)	0.955 V	
Drain Voltage, V _D (n001)	15V	
Drain Current , I_D (V_{dd})	-0.96 kA	
Input Voltage, V _{in} (n004)		0
Output Voltage, V _{out} (n003)		1.1483e V
Voltage gain, A _v		
Phase difference		

Table 9_2 Parameters for CS Amplifier

Quantity	DC value	AC value
Gate Voltage, V _G (n002)	3.46 kV	
Source Voltage, Vs (n004)	0.963 V	
Drain Voltage, V _D (n001)	15 V	
Drain Current , I _D (Vdd)	- 0.963 μA	
Input Voltage, V _{in} (n003)		0
Output Voltage, V _{out} (n005)		9.63183e
Voltage gain, A _v		
Phase difference		

Table 9_2 Parameters for CS Amplifier

Quantity	DC value	AC value
Gate Voltage, V _G (n002)	1.06 kV	
Source Voltage, Vs (n004)	1.20578 V	
Drain Voltage, V _D (n001)	15 V	
Source Voltage, Vs ₁ (n005)	0.913984 V	
Source Voltage, Vs ₂ (n008)	-14.7 V	
Gate Voltage, V _{G2} (n007)	- 15 V	
Drain Current , I _D (Vdd)	-0.291797 μΑ	
Input Voltage, V _{in} (n003)		0 V
Output Voltage, Vout (n006)		0.768086 V
Voltage gain, A _v		
Phase difference		

