## Relatório do Experimento 3 de OAC

Arthur Bizzi: 13/0102636 Arthur da Silveira Couto: 16/0002575 Caio Albuquerque Brandão: 16/0003636 Cristiano Silva Júnior: 13/0070629 Leonardo Maffei: 16/0033811

7 de Junho de 2017

## 1 Exercício 1

A fim de comparar as simulações do MARS e de forma de onda, compilamos o programa testePIPE.s no MARS por meio da ferramenta MIF Exporter e geramos uma simulação por forma de onda do programa, além de analisar os dados gerados a partir do programa.

No MARS, o programa, ao ser executado, não fez nada. Contudo, ao se comentar as linhas de hazard de controle, o programa é capaz de terminar a sua execução. O resultado final dos registradores pode ser visto na figura 1.

Ao simular em forma de onda, o programa gerou a forma de onda na figura 2. Pode-se notar que eles são equivalentes olhando o resultado final do registrador PC.

## 2 Exercício 2

Compilando o código em *Verilog*, é possível checar o circuito gerado pelo *Quartus*. A partir do circuito gerado, podemos idenfificar algumas estruturas, que estão destacadas na figura 2.

Com base nessas estruturas e das ligações entre elas, podemos inferir uma tabela-verdade para o circuito de controle, como explicadas nas tabelas de 1 a 4.

## 3 Exercício 4

Repetindo o procedimento de compilação do exercício 1, podemos gerar uma simulação de forma de onda da nossa versão do programa *teste.s*, contendo um breve teste de todas as funções implementadas na ISA. O resultado da simulação pode ser visto na figura 3.

| Registers     | Cop | proc 1 | Coproc 0 | )          |  |
|---------------|-----|--------|----------|------------|--|
| Name          |     | Number |          | Value      |  |
| \$zero        |     | 0      |          | 0x00000000 |  |
| \$at          |     |        | 1        | 0x0000000a |  |
| \$v0          |     |        | 2        | 0x00000000 |  |
| \$v1          |     | 3      |          | 0x00000000 |  |
| \$a0          |     |        | 4        | 0x00000000 |  |
| \$a1          |     |        | 5        | 0x00000000 |  |
| \$a2          |     |        | 6        | 0x00000000 |  |
| \$a3          |     |        | 7        | 0x00000000 |  |
| \$t0          |     |        | 8        | 0x00000000 |  |
| \$t1          |     |        | 9        | 0x10010000 |  |
| \$t2          |     |        | 10       | 0x00000000 |  |
| \$t3          |     |        | 11       | 0x00000000 |  |
| \$t4          |     |        | 12       | 0x00000000 |  |
| \$t5          |     |        | 13       | 0x00000000 |  |
| \$t6          |     |        | 14       | 0x00000000 |  |
| \$t7          |     | 15     |          | 0x0000000  |  |
| \$30          |     | 16     |          | 0x0000000  |  |
| \$31          |     |        | 17       | 0x00000000 |  |
| \$82          |     |        | 18       | 0x00000000 |  |
| \$33          |     |        | 19       | 0x00000000 |  |
| \$34          |     |        | 20       | 0x00000000 |  |
| \$ <b>3</b> 5 |     |        | 21       | 0x00000000 |  |
| \$36          |     |        | 22       | 0x00000000 |  |
| \$37          |     |        | 23       | 0x00000000 |  |
| \$t8          |     | 24     |          | 0x00000000 |  |
| \$t9          |     | 25     |          | 0x00000000 |  |
| \$k0          | k0  |        | 26       | 0x00000000 |  |
| \$k1          | L.  |        | 27       | 0x00000000 |  |
| \$gp          | p   |        | 28       | 0x10008000 |  |
| \$sp          | p   |        | 29       | 0x7fffeffc |  |
| \$fp          | p   |        | 30       | 0x00000000 |  |
| \$ra          | 31  |        | 31       | 0x00000000 |  |
| pc            |     |        |          | 0x0040003c |  |
| hi            |     |        |          | 0x00000000 |  |
| 10            |     |        |          | 0x00000000 |  |

Figure 1: Resultado final dos registradores .



Figure 2: Simulação em forma de onda do programa testePIPE.s.



Figure 3: Simulação em forma de onda.



Figure 4: Simulação em forma de onda do programa teste.s.

|        | OrigPC | Jump | nBranch | Jr |
|--------|--------|------|---------|----|
| LW     | 0      | 000  | 0       | 0  |
| SW     | 0      | 000  | 0       | 0  |
| BEQ    | 0      | 001  | 0       | 0  |
| Tipo R | 0      | 000  | 0       | 0  |
| J      | 1      | 010  | 0       | 0  |

Table 1: Tabela de controle para estágio Decodificação da instrução

|        | RegDst | OrigALU | OpALU |
|--------|--------|---------|-------|
| LW     | 00     | 01      | 00    |
| SW     | 00     | 01      | 00    |
| BEQ    | 00     | 00      | 01    |
| TIPO R | 01     | 00      | 10    |
| J      | 00     | 00      | 00    |

Table 2: Tabela de controle para estágio execução/cálculo de endereço

|        | SavePC | LeMem | EscreveMem | Branch | LoadType | WriteType |
|--------|--------|-------|------------|--------|----------|-----------|
| LW     | 0      | 1     | 0          | 0      | LW       | 00        |
| SW     | 0      | 0     | 1          | 0      | 000      | SW        |
| BEQ    | 0      | 0     | 0          | 1      | 000      | 00        |
| Tipo R | 0      | 0     | 0          | 0      | 000      | 00        |
| J      | 0      | 0     | 0          | 0      | 000      | 00        |

Table 3: Tabela de controle para estágio acesso à memória

|        | EscreveReg | MemparaReg |
|--------|------------|------------|
| LW     | 1          |            |
| SW     | 0          |            |
| BEQ    | 0          |            |
| Tipo R | 1          |            |
| J      | 0          |            |

Table 4: Tabela de controle para estágio escrita do resultado