

Surface Integrals

$$\iint_S f(x,y,z) dS = \iint_D f(x(u,v), y(u,v), z(u,v)) |\vec{s}_u \times \vec{s}_v| dA$$

where $\vec{s}(u,v)$ parameterizes S on D

Ex: Compute $\iint_S x^2$ for the unit sphere centered at the origin.

Sol: First we parameterize the surface:

$$S(\theta, \varphi) = (\sin(\varphi)\cos(\theta), \sin(\varphi)\sin(\theta), \cos\varphi)$$

where $(\theta, \varphi) \in [0, 2\pi] \times [0, \pi]$

Sphere where $\rho=1$, nicely parameterizes surface.

$$\begin{aligned} \vec{s}_\theta &= (-\sin(\varphi)\sin(\theta), \sin(\varphi)\cos(\theta), 0) \\ &= \sin(\varphi) \left(-\sin\theta, \cos\theta, 0 \right) \end{aligned}$$

$$\vec{s}_\varphi = (\cos(\varphi)\cos(\theta), \cos(\varphi)\sin(\theta), -\sin(\varphi))$$

$$\vec{s}_\theta \times \vec{s}_\varphi = \sin(\varphi) \cdot \begin{vmatrix} 1 & \vec{s}_\theta \\ \sin\theta & \cos\theta \\ \cos\varphi \cos\theta & \cos\varphi \sin\theta \end{vmatrix}$$

↓
VECTOR LAYERED
out HORIZONTALLY

$$\begin{aligned} \sin\theta &\left(\begin{array}{c} -\sin\varphi \cos\theta \\ -(\sin\varphi) \sin(\theta) \\ -\cos(\varphi) \sin\theta^2 - \cos\varphi \cos\theta \sin\theta \end{array} \right) \end{aligned}$$

$$= \sin\theta \left(-\sin\varphi \cos\theta, -\sin\varphi \sin\theta, -\cos\varphi \right)$$

We dropped $\sin(\varphi)$ out of
 ↓ magnitude as $|\sin \varphi|$ is
 positive on our domain

$$\therefore \iint_S x^2 ds = \iint_D \sin^3(\varphi) \cos^2(\alpha) |(\sin(\varphi) \cos \alpha, -\sin(\varphi) \sin \alpha, -\cos \varphi)| dA$$

$$= \iint_S x^2 ds = \iint_D \sin^3(\varphi) \cos^2(\alpha) \sqrt{\sin^2 \cos^2 + \sin^2 \sin^2 + \cos^2} dA$$

$$= \iint_D \sin^3(\varphi) \cos^2(\alpha) dA$$

$$\int_0^{2\pi} \int_0^{\pi} \sin^3(\varphi) d\varphi d\alpha$$

Evaluating inner integral

$$\int_0^{\pi} \sin(\varphi) (1 - \cos^2(\varphi)) d\varphi$$

$$u = \cos \varphi \\ du = -\sin(\varphi) d\varphi$$

$$\int_{-1}^1 -(1-u^2) du$$

$$u(-1) = 1 \\ u(1) = 1$$

$$- \left(u - \frac{1}{3} u^3 \right) \Big|_1^{-1}$$

$$-1 + \frac{1}{3} - 1 + \frac{1}{3}$$

$$\frac{1}{2} \left(-\frac{4}{3} \right) = \frac{-1}{3}$$

$$\frac{1}{3} \int_0^{2\pi} \cos^2(\alpha) d\alpha$$

$$\left(-\frac{4}{3} \right) \frac{1}{2} \int_0^{2\pi} (1 + \cos(2\alpha)) d\alpha$$

$$\sqrt{2\alpha} \quad V(0) = 0$$

$$dV = 2d\alpha$$

$$= -\frac{2}{3} \int_0^{\pi} 1 + \cos(2v) dv = -\frac{2}{3} \left[v + \frac{1}{2} \sin(2v) \right]_0^{\pi}$$

$$= -\frac{2}{3} (2\pi + 0) = -\frac{4\pi}{3}$$

Goal : Build a theory of surface integrals
for vector fields (Analogous to
line integrals)

But: We need to think of "orientation"
for surfaces first

For line integrals :

→ ←
Same LEFT vs RIGHT ↗ ↘

Instead of thinking about orientation, left/right,
think about which way the tangent line
points.

Orientation for surfaces means a consistent
choice of normal to the tangent

Ex: For A Sphere

OUTWARD MODEL
OUTWARD ORIENTATION

INWARD ORIENTATION

Alternatively for surfaces that are not closed think "Counter clockwise orientation frame above for the tangent plane"

Positive outward chirality

Can we choose a consistent orientation for every surface?

NO

Möbius Strip \rightarrow has one side, non-orientable

Because of such surfaces our theory doesn't work for non-orientable surfaces. From here on out we will work with orientable surfaces.

Note that if/when we choose a parameterization of a surface we automatically choose an orientation. By choosing $\vec{s}(u, v)$ we get a normal:

$$\vec{n}(u, v) = \frac{\vec{s}_u \times \vec{s}_v}{|\vec{s}_u \times \vec{s}_v|}$$

By swapping parameters we swap orientation.

Defn: The Flux of v.f. \vec{V} across surface S is $\iint_S \vec{V} \cdot d\vec{S} = \iint_S \vec{V} \cdot \vec{n} dS$

$$\text{PARAMETERIZE } \rightarrow = \iint_D \vec{V}(u, v) \cdot \frac{\vec{s}_u \times \vec{s}_v}{|\vec{s}_u \times \vec{s}_v|} | \vec{s}_u \times \vec{s}_v | dA$$

SCALAR SCALAR

$$= \iint_D \vec{V}(u, v) \cdot (\vec{s}_u \times \vec{s}_v) dA$$

whose $\vec{s}(u, v)$ is the parameterization of S on domain D

Ex: Compute the flux of $\vec{v}(z, y, x)$ across sphere of radius 1 centered at origin

Convention: If orientation is not given, use outward / positive orientation

Sol: As before $\vec{s}(\theta, \varphi) = \begin{pmatrix} \sin \varphi \cos \theta \\ \sin \varphi \sin \theta \\ \cos \varphi \end{pmatrix}$

$$\vec{s}_\theta \times \vec{s}_\varphi = -\sin(\varphi) \begin{pmatrix} \sin \varphi \cos \theta \\ \sin \varphi \sin \theta \\ \cos \varphi \end{pmatrix} \star$$

(CALCULATED BEFORE)

Is this positive orientation?

if $P = (1, 0, 0)$ is \vec{n} going out or in,
 or $S = \{(\rho, \theta, \varphi) \mid \rho = 1\}$
 $\vec{n} = -\sin(\varphi) \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rightarrow$ pointing in.

Because we found our parameterization
to have negative orientation we
need to negate our final result

$$\vec{v}(\alpha, \varphi) (\vec{s}_\alpha \times \vec{s}_\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \sin \alpha \\ \sin \varphi \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \sin \varphi \cos \alpha \\ \sin \varphi \sin \alpha \\ \cos \varphi \end{pmatrix} (-\sin \varphi)$$

$$= \left(\begin{pmatrix} \sin \varphi \cos \varphi \cos \alpha \\ \sin^2 \varphi \sin \alpha^2 \\ \sin \varphi \cos \varphi \cos \alpha \end{pmatrix} + \right) -\sin \varphi$$

$$= -\sin \varphi (2 \cos(\varphi) \sin(\varphi) \cos \alpha + \sin^2 \varphi \sin^2 \alpha)$$

Negate this because of orientation

$$= \iint_D \sin \varphi (2 \cos(\varphi) \sin(\varphi) \cos \alpha + \sin^2 \varphi \sin^2 \alpha)$$

$$= 2 \iint_D \sin^2 \varphi \cos \varphi \cos \alpha d\varphi + \iint_D \sin^3 \varphi \sin^2 \alpha d\varphi$$

$$\int_{\varphi=0}^{\pi} \cos(\varphi) \sin^2(\varphi) \int_0^{2\pi} \cos \alpha d\alpha d\varphi$$

cancel out

$$0 + \iint_D \sin^3 \varphi \sin^2 \alpha d\varphi$$