- 1. This statement is true. If the cost of education were the same for evenyone, the payoff for agents (w-e/a) would not differ by ability, and the payoff would be w-ce, where c is the universal cost of education. All agents would maximize their payoff w.r.t education, where w=w(e). All workers would choose the same education level, so firms would not be able to differentiate high and low ability workers.
- 2. a. A buyer's highest willingness to pay is the expected value of all cars (assuming all sellers are willing to sell).

 E[V] = 50.10,000 + 50.2,000 = \$6,000.
 - b. If sellers valued nigh-quality cars at \$8,000, sellers with high-quality cars would not sell (\$8,000 \(\frac{5}{6},000 \). So buyers would buy so low-quality cars and would lose so. (\$6,000 + \$2,000) = \$200,000 in surplus. Sellers would gain this \$200,000 surplus.
 - \$6,000, all of the cars would sell and markets would crear. On aggregate, buyers and sellers would not gain or lose any surplus.

Ph-Ch-qnch > PL-Ch 3.0. IC for high quality PL-CL 2 pn-Ce-quel 10 for low quality b. We want the consumer to be willing to buy both types: (1-9h) S + 9h S-ph 20 - SZ pn (1-qe) - PL ZO → 2 3 Pr $\rightarrow S = \max \left\{ p_{h_1} \frac{p_l}{1-a_1} \right\}$ From the incentive constraints in 3a, we have: pn-cn-qncn = PL-cn - pn-qncn=Pl PL-CL 2 pn-Cl-91Cl -> PLZ Pn- 98 CL Combining these: pn-qncn > pn-qece - gh Ch = gl Cl Any equilibrium that satisfies the highlighted equations is a pooling equilibrium.

4.a. If the seller can observe θ_1 they will set the price $t = \theta_q$.

Let $\theta=1$, the seller maximises: $\max q - q^2$

FOC w.r.t. q:

9=1/2, +=1/2

Let 0=2, the seller maximizes:

max 2q-q2

FOC W.V.+ q;

2 - 29 = 0

92=1, t2=2 Which is 2.9, calculated above.

6. For $\theta=1$, the 10 is $9_1-t_1 \ge 9_2-t_2$

1. (- 2 = -)

02-1, so the 10 holds.

For 0=2, the 10 is 292-tz 2 291-t1

 $2 \cdot 1 - 2 = 0$ $2 \cdot 12 - 12 = 12$

0 \$ 1/2, so the 10 doesn't hald.

First note that $\theta=1$ has no incentive to lie about their type, so $q_1-t_1=0 \rightarrow t_1=\frac{1}{4}$.

Next we will bind the 1C for
$$\theta = 2$$
.
 $2q_2 - t_2 = 2q_1 - t_1$
 $\Rightarrow 2q_2 - t_2 = \frac{1}{4}$
 $\Rightarrow t_3 = 2q_3 - \frac{1}{4}$

So sellers will maximize: max $p(t_1-q_1^2)+(1-p)(t_2-q_2^2)$ \rightarrow max $p(1/4-1/10)+(1-p)(2q_2-1/4-q_2^2)$

where p is the probability 0=1.

FOC w.r.t
$$q_2$$
:
 $2(1-p) - 2(1-p) q_2 = 0$

$$92^{-1}$$

$$\Rightarrow +2^{-2} - \frac{1}{4} = \frac{7}{4}$$