



# SATELLITE DATA IN AGRICULTURAL AND ENVIRONMENTAL ECONOMICS

DAVID WUEPPER, LISA BIBER-FREUDENBERGER, HADI, WYCLIFE AGUMBA OLUOCH



# SESSION STRUCTURE









# DEEP LEARNING IN AGRICULTURE









# CROPLAND MAPPING – DIVERSITY



Kenya



Rwanda



ILR
Institute for
Food and
Resource Economics





Japan



Kenya (cut-across prunning)



India



Kenya (lung-prunning)

#### DEEP LEARNING IN AGRICULTURE - GEE

- Select the most relevant sensor for the DL task at hand and extract the data
- Can save to disk or mount drive directly to colab and run from there







```
▶ var s2: ImageCollection "Sentinel-2 MSI: MultiSpectral Instrument, Level-2A"
    🕨 var geometry: Polygon, 4 vertices 🜣 💿
 1 // Obtaining Satellite data for deep learning tutorial
    s2 = s2.select("B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12") // Selecting the bands to use
      .filterDate("2024-01-01", "2024-11-25") // Selecting the dates
      .filterBounds(geometry) // Filtering for the study area extent
      .filterMetadata("CLOUDY_PIXEL_PERCENTAGE", "less_than", 10) // Leaving out very cloudy images
      .median() // Picking the median pixels values to avoid extremes
      .multiply(0.0001) // Scaling factor for the bands
      .clip(geometry); // Clipping for the boundary of the study area
10
   // Visualizing the image
    Map.centerObject(geometry);
13
   // Create a dictionary for the visualizing
15 * var vis = {
      bands: ['B4', 'B3', 'B2'],
      min: 0.0062203901174822315,
      max: 0.0694065392749644,
      gamma: 0.5
    Map.addLayer(s2, vis, "s2_rgb");
   // Export to google drive
25 * Export.image.toDrive({
        image: s2,
        description: 'image',
        folder: 'sat_course_dl',
        fileNamePrefix: 'sentinel',
        scale: 10, // Ensuring that the image is exported in the right scale
        region: geometry, // Region is the polygon itself
        maxPixels: 1e13, // Max pixels allowed in the export
        crs: "EPSG:3857" // This is the crs of out gpkg
      });
```

#### DEEP LEARNING IN AGRICULTURE - IMAGE SEGMENTATION

**Image segmentation** is the process of partitioning satellite imagery into specific classes/region based on pixel characteristics. This is the process normally used to:

- Classify land cover classes.
- Classify crop types
- Delineate of urban areas
- Extract water bodies from images
- Detect crop disease or stress, among others







# DEEP LEARNING IN AGRICULTURE - LABEL

Getting a well labeled data is arguably the most challenging part of the whole deep learning process









# **CROPLAND MAPPING**



Sampling area















#### CROPLAND MAPPING - CREATING PATCHES

- Determine the patch size –
   Normally 2<sup>x</sup>
- Consider the dimension of the image and its divisibility by your patch size
- Pad the image if necessary, or crop it









# CROPLAND MAPPING - CREATING PATCHES











# CROPLAND MAPPING – IMAGE & LABELS



#### The matrix and labels

| B2       | B3       | B4       | B5       | B6       | B7       | B8       | B8A      | B11      | B12      | Mask |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------|
| 0.050503 | 0.055595 | 0.0661   | 0.070009 | 0.074429 | 0.077546 | 0.089708 | 0.085558 | 0.161825 | 0.219849 | 0    |
| 0.047247 | 0.056389 | 0.066608 | 0.070088 | 0.073963 | 0.078977 | 0.084274 | 0.086059 | 0.161069 | 0.226217 | 0    |
| 0.047515 | 0.057162 | 0.065378 | 0.070666 | 0.074371 | 0.079291 | 0.086929 | 0.087294 | 0.160616 | 0.217802 | 1    |
| 0.051134 | 0.055476 | 0.067922 | 0.070737 | 0.074288 | 0.078877 | 0.080241 | 0.086171 | 0.157074 | 0.219841 | 0    |
| 0.046165 | 0.05529  | 0.067675 | 0.070001 | 0.073689 | 0.078164 | 0.080921 | 0.08618  | 0.161556 | 0.214059 | 1    |
| 0.046502 | 0.055556 | 0.065229 | 0.070134 | 0.073474 | 0.078107 | 0.078883 | 0.086654 | 0.160116 | 0.211296 | 1    |
| 0.049212 | 0.055296 | 0.067052 | 0.069823 | 0.073832 | 0.07771  | 0.082601 | 0.085742 | 0.162982 | 0.227283 | 1    |
| 0.047988 | 0.057581 | 0.067353 | 0.070999 | 0.073906 | 0.078857 | 0.078786 | 0.087444 | 0.157796 | 0.211337 | 1    |
| 0.049595 | 0.056136 | 0.065684 | 0.070346 | 0.073367 | 0.078104 | 0.085845 | 0.085742 | 0.164296 | 0.217406 | 0    |

label/mask







(128, 128)

#### CROPLAND MAPPING - BATCHSIZE

After creating patches, consisting of both images and labels/masks, the next step is to decide on **batch-size** 

This is the **number of images** that are used for training **per single run** (both forward and backward passes)

Should normally be a **power of 2** (just like shape of image) for computational efficiency in modern hardware









#### **CROPLAND MAPPING - EPOCH**

Epoch is a complete pass through the entire training dataset during the training process

Should always be set to more than 1

After each epoch, the model updates it's weights for better learning

One can save best model at best epoch based on evaluation metrics



https://shorturl.at/AMpVp







#### **CROPLAND MAPPING - AUGMENTATION**

- This involves artificial increase in diversity of training dataset by applying transformations to the data while preserving its labels.
- It is helpful to improve better performance and generalization especially when data is limited.











# CROPLAND MAPPING - AUGMENTATION



Original



VerticalFlip



RandomRain



ColorJitter



Random Sized Crop



Several combined







#### **MODEL EVALUATION - IOU**

# Intersection over Union – IoU (Area of overlap over area of union)



Ground truth / Mask / Label













 $=\frac{34}{36}=0.944$ 

#### HANDLING INPUT VARIABLES – SIMPLIFIED









#### INPUT VARIABLES – HETEROGENEITY AGNOSTIC

A: Landsat 8 scene at EPSG:32617

B: Cropland Data Layer at EPSG: 5072 C

C: Sampled chip at intersection of landsat and cropland.

D: Corresponding croplands mask

Note: The cropland can be vector









Cronland Data Laver

# INPUT VARIABLES – HETEROGENEITY AGNOSTIC









# CROPLAND MAPPING - SIMPLIFIED















#### CROPLAND MAPPING - SIMPLIFIED

### **Vector**



Column for label creation with values 1 for tea fields and 0 for non tea fields. Can be multiclass







#### CROPLAND MAPPING - SIMPLIFIED









# DEEP LEARNING IN AGRICULTURE

| WHY DEEP LEARNING                                       | WHY NOT DEEP LEARNING                              |  |  |  |
|---------------------------------------------------------|----------------------------------------------------|--|--|--|
| Better accuracy                                         | Computationally expensive                          |  |  |  |
| Automation                                              | A lot of labelled data                             |  |  |  |
| Scalability with large data                             | Black box in interpretation/how decisions are made |  |  |  |
| Unstructured + structured data (image,text,audio,video) | Poor generalization (tea in small vs large scale)  |  |  |  |
| Higher adaptability                                     | Expertise dependency                               |  |  |  |











# TUTORIAL

# https://tinyurl.com/38s2arkc







# **THANK YOU**

Land Economics Group