COMP3821 Assignment 2

1.1

Define the subproblem P(i), where $i \in \{1, 2, ..., n\}$ represents the number of slices of pizza remaining. The subproblem is now to minimise the amount of topping lost, L(i), after having taken n-i pieces of pizza, so we arrive at i slices remaining. The rules for topping loss and slice choosing remain the same as in task T.

1.2

For the recurrence relation, we have the optimal solution to P(i), let it be S(i), which is the minimum amount of topping lost to arrive at i pieces remaining. Then the minimum amount of topping lost in choosing piece i, denoted by S(i-1), to arrive at i-1 pieces left is constructed by choosing the piece with minimum topping loss that is adjacent to the empty space. This is expressed in the relationship below, where subscripts l and r represent the index of the slices on the left and right ends of the empty space.

$$S(i-1) = \min\{S(i) + a_l + b_l \times i, S(i) + a_r + b_r \times i\}$$

The base case is when n slices remain, which is given by

$$S(n) = a_i + b_i \times n$$

where i is the index of the slice we are considering starting from.

1.3

In the pseudocode below, n is a global variable for the size of the pizza, a, and b are global arrays containing all a_i and b_i respectively. l and r are the index of the slices on the left and right of the empty space.

```
procedure Lost(k, s, l, r, lost)

if k = n then

return a_s + b_s \times n

end if

if b_l < b_r then

add \leftarrow a_l + b_l \times k

l \leftarrow l - 1 \mod n

else

add \leftarrow a_r + b_r \times k

r \leftarrow r + 1 \mod n

end if

return lost + add + Lost(k + 1, s, l, r, lost)
end procedure
```

```
procedure MinimumLost
       \min \leftarrow \infty
       for all i in 1 \dots n do
           l \leftarrow l - 1 \mod n
           r \leftarrow r + 1 \mod n
           check \leftarrow Lost(0, i, l, r, 0)
           if check < min then
                \min \leftarrow \operatorname{check}
           end if
       end for
       return min
   end procedure
1.4
```

The worst case complexity is $O(n^2)$.

2.1

The cost of the configuration outlined is 5 + 2 + 4 + 2 + 5 + 1 = 19.

2.2

The set of legal swaps, $\{(1,4),(7,8)\}$, gives the configuration with the smallest cost.

2.3

Define the subproblem $P(i)_i$, where n is the size of the configuration, and $i \in \{0, 1, ..., n\}$ represents the i-th black marble in the configuration. Let j be the number of swaps performed with the i black marbles. Thus, $j \in \{0, 1, \dots, i\}$, The subproblem is now to minimise the distance of the sub-configuration, given by the first i black marbles of the overall configuration, by using only j swaps. When constructing the sub-configuration, only remove the black marbles that are not in the first i black marbles when counting from the left. The same rules apply as defined in the overall problem. Let the optimal solution $S(i)_j$ to $P(i)_j$ have the minimum distance $D(i)_i$.

2.4

Let m_k be the index of the k-th marble, h_k be the index of the matching box for the marble at m_k , and b_i be the index of the i-th black marble. The recurrence relation is given by the following formula.

$$D(i+1)_j = \{\min\{D(i)_j - \left[|m_k - h_k| - |h_k - b_{i+1}|\right], D(i)_j\} : \forall k \in \{1, \dots, i+1\}, \forall j\}$$

The formula is essentially computing the change obtained by swapping a marble and the (i + 1)th black marble, and determining if extending a previous solution is best (as long as the swap is legal), or keeping the previous solution is best.

The base case is given when i = 0, that is the subproblem has no black marbles in the subconfiguration. This also forces j=0. Thus $D(0)_0$ is simply the cost of the configuration as it stands, as no swaps are able to be performed.

2.5

The algorithm solves each subroblem and stores in a 2-D array for each solution $D(i)_j$, indexed by (i,j). Thus computing the solution to $P(i)_j$ is performed in at most $O(n^2)$ time, as we must loop through all previous solutions. Overall the algorithm runs in $O(n^3)$ time as there are at most n black marbles. Obviously this is not the $O(n^2)$ time asked for, however I could not think how to reduce this solution down to $O(n^2)$ time.

3.1

Let each vertex $v \in V$ represent a single polygon in the plane. Let an edge $e \in E$ be the unordered pair (v_1, v_2) for $v_1, v_2 \in V$. Each edge connects the vertices whose polygons share an edge in the plane.

3.2

Each vertex $v \in V$ contains the variables b_v and r_v . Each of these variables are binary variables, meaning they can hold the value of either 0 or 1. If v is coloured blue, $b_v = 1$, if v is coloured red, $r_v = 1$, and if v is uncoloured, $b_v = 0$ and $r_v = 0$. Clearly, b_v and r_v both cannot be 1.

3.3

For each edge $(u, v) \in E$, we have the constraints

$$b_u + b_v \le 1$$

$$r_u + r_v \le 1$$

For each vertex $v \in V$, we have the constraint

$$b_v + r_v \le 1$$

3.4

The objective function we wish to maximise is

$$\sum_{v \in V} (b_v + r_v)$$

4.1

It is better to model the problem with Integer Linear Programming, as we wish to determine the number of bags in each of the p stacks, and we cannot have part of a bag in one stack, and another part in another stack.

4.2

Let b_{iq} be a binary variable that takes the values of either 0 or 1. If $b_{iq} = 1$, this indicates that the *i*-th bag is in the *q*-th stack. Let h(q) be the height of the *q*-th stack. It is given that there are n bags, p stacks, and each stack may have a height of h bags. The final variable is the force given by the *i*-th bag, in the *q*-th stack, denoted by f_{iq} .

4.3

For each stack of bags, we have the constraint

$$\sum_{i=1}^{n} b_{iq} \le h$$

For each bag, we have the constraint

$$\sum_{q=1}^{p} b_{iq} = 1$$

4.4

The objective function that we wish to minimise is

$$\sum_{i=1}^{n} \sum_{q=1}^{p} b_{iq} f_{iq}$$