МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕЛРА ПРИКЛАЛНОЙ МАТЕМАТИКИ

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ	
отчет эхщищен с оценкои	
ПРЕПОДАВАТЕЛЬ	
старший преподаватель	О. М. Косогоров
должность, уч. степень, звание подпис	
ОТЧЕТ О ЛАБОРАТ	ОРНОЙ РАБОТЕ №1
АНАЛИТИЧЕСКОЕ М	ЮДЕЛИРОВАНИЕ.
ПОСТРОЕНИЕ АНАЛИТИЧЕСКОЙ	
ОПИСА	НИЮ
по курсу: МОДЕ.	ЛИРОВАНИЕ
СТУДЕНТ ГР. №	Е. Е. Ридель
номер группы под	дпись, дата инициалы, фамилия

Цель работы: Решение задачи по построению аналитической модели с реализацией в MS Excel.

Номер в списке группы – 2. Вариант задания - №2

<u>Задание №2</u>. Обработка деталей A, B, C может производиться на трèх станках (I, III). В следующей таблице указаны нормы затрат времени на обработку станком соответствующей детали, продажная цена единицы детали (в рублях) и предельное время работы станка:

Детали		Время ра-		
		боты станка		
	A	В	С	
Станки				
I	0.2	0,1	0,05	40
II	0,6	0,3	0,2	60
III	0,2	0,1	0,4	30
Цена	10	16	12	-

Задача: Найти такую производственную программу, которая обеспечивает максимальную суммарную прибыль, при условии, что каждая деталь может изготавливаться на любом из станков, а станок II должен быть задействован не менее чем на 20 часов.

Ход работы

Определяем целевую функцию - $f(X) = 10X_1 + 16X_2 + 12X_3$ (Где $X_1, X_2, X_3 - A, B, C$ соответственно)

Ограничения:

$$0.2X_1 + 0.1X_2 + 0.05X_3 \le 40$$
 (Для станка I)

$$0.6 + 0.3X_2 + 0.2X_3 \le 60$$
 (Для станка II)

$$0.2X_1 + 0.1X_2 + 0.4X_3 \le 30$$
 (Для станка III)

$$0.6 + 0.3X_2 + 0.2X_3 \ge 20$$
 (Общее время для работы станка II)

$$X_1, X_2, X_3 \ge 0$$

Далее заполняем всеми необходимыми данными таблицу в Excel и вводим целевую функцию

1 J -								
	А	В	С	D	Е	F	G	
1		Переменные						
2		X1	X2	Х3				
3	ЗНАЧЕНИЕ				цф			
4	коэф в ЦФ	10	16	12	0			
5		Ограничения						
6	станки				левая часть	знак	правая часть	
7		0,2	0,1	0,05		<=	40	
8		0,6	0,3	0,2		<=	60	
9		0,2	0,3	0,4		<=	30	
10		0,6	0,3	0,3		>=	20	
	Рис. 1 Ввод ЦФ							

Задаём параметры поиска решения в специальном окне

Рис. 2 Окно параметров поиска решения

В результате получим следующее решение – максимальный доход будет

возможно получить при производстве 180 деталей В и 30 деталей С.

	А	В	С	D	Е	F	G
1		Переменные					
2		X1	X2	Х3			
3	ЗНАЧЕНИЕ	0	180	30	цф		
4	коэф в ЦФ	10	16	12	0		
5		Ограничения					
6	станки				левая часть	знак	правая часть
7		0,2	0,1	0,05	19,5	<=	40
8		0,6	0,3	0,2	60	<=	60
9		0,2	0,3	0,4	30	<=	30
10		0,6	0,3	0,3	60	>=	20

Рис. 3 Результат

Отчет по результатам решения

Отчет создан: 25.03.2025 03:20:16

Результат: Решение найдено. Все ограничения и условия оптимальности выполнены.

Модуль поиска решения

Модуль: Поиск решения лин. задач симплекс-методом

Время решения: 0,015 секунд.

Число итераций: 4 Число подзадач: 0

Параметры поиска решения

Максимальное время Без пределов, Число итераций Без пределов, Precision 0,000001, Использовать автоматическое масштабирование

Максимальное число подзадач Без пределов, Максимальное число целочисленных решений Без пределов, Целочисленное отклонение 1%, Считать неотрицательными

 Ячейка целевой функции (Максимум)

 Ячейка
 Имя
 Исходное значение
 Окончательное значение

 \$E\$4
 коэф. В ЦФ ЦФ
 3240
 3240

 Ячейки переменных

 Ячейка
 Имя
 Исходное значение
 Окончательное значение
 Целочисленное

 \$B\$3
 значение X1
 0
 0
 Продолжить

 \$C\$3
 значение X2
 180
 180
 Продолжить

 \$D\$3
 значение X3
 30
 Продолжить

Ограничения Имя Ячейка Значение ячейки Состояние Формула 60 \$E\$10>=\$G\$10 \$E\$10 левая часть Без привязки \$E\$7 левая часть \$E\$8 левая часть 19,5 \$E\$7<=\$G\$7 Без привязки Привязка левая часть 30 \$E\$9<=\$G\$9 Привязка

Рис. 4 Отчет по результатам

Вывод

В ходе выполнения лабораторной работы была решена задача оптимального распределения ресурсов с использованием инструментов MS Excel для поиска решений. Для этого применялся симплекс-метод, предназначенный для решения линейных задач, а по завершении расчётов был сформирован отчёт с подробным описанием процесса и результатов.