Fakultät für Physik der Ludwig-Maximilians-Universität München

Fortgeschrittenenpraktikum I in Experimentalphysik - Kurs FP-I-O

Blockpraktikum vom 24. Februar bis 26. März 2025

Name:	Z	hinuan I-lan	Gruppe:	A4
Datum		Versuch	Punkte	Testat
	E	Mikroskopie@Home		
		Mikroskopie mit dem Foldscope		
28.02.	1	LIN – Abbildung durch Linsen		
	2	BEU - Beugung		
	3	LAS - Lasersicherheit		
	4A	INP - Interferenzphänomene		
	4B	MIN - Michelson-Interferometer		
	4D	FPI - Fabry-Pérot-Interferometer		
	4E	MZI - Mach-Zehnder-Interferometer		
	5B	LLA - c-Messung/Lambertscher Strahler		
	5C	POL - Polarisation		
	5F/5G	QCRY – Quantenkryptographie – Analogieexp.		
Unterschrift Studierender		193232		

Bitte bewahren Sie Ihre Hefte nach dem Praktikum auf.

Fakultät für Physik der Ludwig-Maximilians-Universität München

Fortgeschrittenenpraktikum I in Experimentalphysik - Kurs FP-I-O Blockpraktikum vom 24. Februar bis 26. März 2025

Name:	Jozef Jurcik	Gruppe:	A4
-------	--------------	---------	----

Datum		Versuch	Punkte	Testat
28.02.	E Mikroskopie@Home			
2025		Mikroskopie mit dem Foldscope		
	1	LIN – Abbildung durch Linsen		
	2	BEU - Beugung		
	3	LAS - Lasersicherheit		
	4A	INP - Interferenzphänomene		
	4B	MIN - Michelson-Interferometer		
	4D	FPI - Fabry-Pérot-Interferometer		
	4E	MZI - Mach-Zehnder-Interferometer		
	5B	LLA - c-Messung/Lambertscher Strahler		
	5C	POL - Polarisation		
	5F/5G	QCRY – Quantenkryptographie – Analogieexp.		

nterschrift der/des tudierenden:

Bitte bewahren Sie Ihre Hefte nach dem Praktikum auf.

Auswertung der LIN —Abbildung durch Linsen Fortgeschrittenenpraktikum I- Kurs FP-I-O

Zhiyuan Han und Jozef Jurcik

28.02.2025

Ziele der Versuche:

Die Abbildungseigenschaften von Linsen und Linsensystemen und Methoden zur Bestimmung von Brennweiten sollen studiert werden.

3 Teilversuche:

1. Bestätigung der Abbildungsgleichung einer Linse

Die Bestimmung der Brennweite einer dünnen Sammellinse erfolgt einmal direkt nach der Abbildungsgleichung, unter Verwendung der Matrizenoptik und einmal nach dem Bessel-Verfahren. Außerdem kann die Abbildungsgleichung mit einem grafischen Verfahren bestätigt werden.

2. Abbildung durch ein System von Linsen

An einem System aus Sammel- und Zerstreuungslinse werden Positionsmessungen für das Objekt, das Bild und die Linsen vorgenommen, außerdem werden Abbildungsmaßstäbe bestimmt. Daraus ergeben sich die Positionen der Haupt- und rennebenen des Systems.

3. Brennweitenbestimmung mit dem Fernrohr

Die Brennweiten einer Sammel- und einer Zerstreuungslinse ergeben sich auf elementare Weise mit Hilfe eines auf unendlich eingestellten Fernrohrs.

1 Teilversuch 1: Bestätigung der Abbildungsgleichung einer Linse

1.1 Auswertung (zu Hause)

• Graphische Bestätigung der Abbildungsgleichung

Abbildung 1: TV1 Grafische Bestätigung der Abbildungsgleichung

Abbildung 2: TV1 Schnittpunktbereichs in vergrößerter Darstellung (1)

Die Analyse der Schnittpunkte der Geraden zeigt, dass sie sich in makroskopisch schneiden. Und in mikroskopisch schneidet sich nicht. Die Gründen dafür ist:

- 1. Experimentelle Ungenauigkeiten: In einem realen Experiment gibt es immer Messfehler, Z.B.: durch ungenaue Ablesung oder Parallaxenfehler oder Instrumententoleranzen.
- 2. Theoretische Vereinfachungen: Linse ist nicht ideal. In der Theorie nimmt man an, dass die Linse ideal ist, aber in reale die Linsen haben Aberrationen die Bildgebung beeinflussen (z. B. sphärische Aberration oder chromatische Aberration).

Abbildung 3: TV1 Schnittpunktbereichs in vergrößerter Darstellung (2)

```
import matplotlib.pyplot as plt
import numpy as np

# Definiere die gegebenen Daten für g und b
# g_g und b_g beziehen sich auf die jeweiligen Werte für die eine Seite
# g_g und b_g beziehen sich auf die jeweiligen Werte für die eine Seite

# g_g und b_g beziehen sich auf die jeweiligen Werte für die eine Seite

# g_g und b_g beziehen sich auf die jeweiligen Werte für die eine Seite

# g_g und b_g beziehen sich auf die jeweiligen Werte für die Darstellung

# g_g und b_g beziehen sich auf die jeweiligen Werte für die Darstellung

# g_g und b_g beziehen sich auf die Januarie Jan
```

Abbildung 4: TV1 Python code

Die Geraden schneiden sich zwar nicht exakt in einem Punkt, aber die Abweichungen sind erwartbar. Innerhalb eines gewissen Toleranzbereichs bestätigt die grafische Auswertung trotzdem die Abbildungsgleichung.

• Bessel-Verfahren

A	В	C	D E	F	G	Н	1	J	K	L	M	N	0
Linsenposition x:													
2		Unsicherheit:			Unsicherheit:				Unsicherheit:			L	Unsicherheit:
1. Messen	in cm	0.1	2. Messen	in cm	0.1		3. Messen	in cm	0.1		4. Messen	in cm	0.1
Diapositiv	135.4		Diapositiv	135.4			Diapositiv	135.4			Diapositiv	135.4	
Schrim	12		Schrim	22			Schrim	32			Schrim	42	
L_s(klein Kaiser)	37.3		L_s(klein Kaiser)	48.1			L_s(klein Kaiser)	59.4			L_s(klein Kaiser)	71.1	
L_s(groß Kaiser)	110		L_s(groß Kaiser)	109.2			L_s(groß Kaiser)	107.9			L_s(groß Kaiser)	106.1	
3													
Für Abbildung "klein Kaiser"		0.2	Für Abbildung "klein Kaiser		0.2		Für Abbildung "klein Kaiser"		0.2		Für Abbildung "klein Kaiser"		0.2
0 Gegenstandsweite g_k	98.1		Gegenstandsweite g_k	87.3			Gegenstandsweite g_k	76			Gegenstandsweite g_k	64.3	
1 Bildweite b_k	25.3		Bildweite b_k	26.1			Bildweite b_k	27.4			Bildweite b_k	29.1	
2 Brennweite f_min	19.9779675		Brennweite f_min	19.96363			Brennweite f_min	20.017087			Brennweite f_min	19.91925	
3 Brennweite f_max	20.2475767		Brennweite f_max	20.22188			Brennweite f_max	20.261272			Brennweite f_max	20.14765	
4 Brennweite f	20.1127721		Brennweite f	20.09275			Brennweite f	20.13918			Brennweite f	20.03345	
5													
6													
7 Für Abbildung "groß Kaiser"		0.2	Für Abbildung "groß Kaiser"		0.2		Für Abbildung "groß Kaiser"		0.2		Für Abbildung "groß Kaiser"		0.2
8 Gegenstandsweite g_g	25.4		Gegenstandsweite g_g	26.2			Gegenstandsweite g_g	27.5			Gegenstandsweite g_g	29.3	
9 Bildweite b_g	98		Bildweite b_g	87.2			Bildweite b_g	75.9			Bildweite b_g	64.1	
0 Brennweite f_min	20.0370732		Brennweite f_min	20.0177			Brennweite f_min	20.064175			Brennweite f_min	19.99452	
1 Brennweite f_max	20.3063005		Brennweite f_max	20.27557			Brennweite f_max	20.307996			Brennweite f_max	20.22228	
2 Brennweite f	20.1716868		Brennweite f	20.14664			Brennweite f	20.186085			Brennweite f	20.1084	

Abbildung 5: Excel Tabelle für Bessel-Verfahren (1)

Was oben in Tabelle gezeigt und berechnet ist die Gegenstandsweiten g_k , g_g und Bildweiten b_k , b_g aus den gemessenen Positionen.

Mit Hilfe der Abbildungsgleichung

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b} \Leftrightarrow f = \frac{gb}{g+b}$$

lässt sich die Brennweite f zu den Gegenstandsweite-Bildweite-Paaren ausrechnen. mit eine obere und eine untere Grenze für f an. die obere und untere Grenze für f mit Gleichung:

$$f_{min} = \frac{(g - \Delta g)(b - \Delta b)}{(g - \Delta g) + (b - \Delta b)}, f_{max} = \frac{(g + \Delta g)(b + \Delta b)}{(g + \Delta g) + (b + \Delta b)}$$

Wertepaare für a und e			Wertepaare für a und e			Wertepaare für a und e			Wertepaare für a und e		
Diapositiv-Schrim= a	123.4	0.2	Diapositiv-Schrim= a	113.4	0.2	Diapositiv-Schrim= a	103.4	0.2	Diapositiv-Schrim= a	93.4	0.2
g_k - g_g = e	72.7	0.4	g_k - g_g = e	61.1	0.4	g_k - g_g = e	48.5	0.4	g_k - g_g = e	35	0.4
f=((a^2)-(e^2))/(4*a)	20.1423622		f=((a^2)-(e^2))/(4*a)	20.11982		f=((a^2)-(e^2))/(4*a)	20.162742		f=((a^2)-(e^2))/(4*a)	20.07109	
*Gauß'schen Fehlerfortpfl	anzung Delta f	0.13572065	*Gauß'schen Fehlerfortofla	nzung Delta f	0.12559647	*Gauß'schen Fehlerfortpfla	nzung Delta f	0.111899332	*Gauß'schen Fehlerfortofla	nzung Delta f	0.09417214

Abbildung 6: Excel Tabelle für Bessel-Verfahren (2)

die Bessel-Verfahren werden wir mit unseren Daten und die Gleichung (6) aus LIN Skript berechnen.

$$f = \frac{a^2 - e^2}{4a}$$

- a ist die Differenz der Position den Diapositiv und Schirm.
- e ist die Differenz den g_k und g_g .
- Überprüfen Sie nun die Abbildungsgleichung mit dem Matrizenverfahren.

(*Sehr geehrte Frau Huber, in diesem Auswertung Wir haben die Messedaten von B und G nicht gemessen. wir wissen das nicht und sie haben auch nicht Bescheid gesagt. Trotzdem, wir haben G und B aus TV 2 genommen Und b habe ich für in TV1, wo der große Kaiser Maximilian rauskam war.)

Aus die Vorbereitung wissen wir,dass die Matrizenverfahren durch die folgenden Gleichung berechnen wird.

2											
4 Matrizenverfahren			Matrizenverfahren			Matrizenverfahren			Matrizenverfahren		
5 Gegenstandshöhe G	3.1	0.1	Gegenstandshöhe G	3.1	0.1	Gegenstandshöhe G	3.1	0.1	Gegenstandshöhe G	3.1	0.1
5 Abbildungshöhe B	-7.1	0.1	Abbildungshöhe B	-7.1	0.1	Abbildungshöhe B	-7.1	0.1	Abbildungshöhe B	-7.1	0.1
7 Brennweite f	29.7843137		Brennweite f	26.50196		Brennweite f	23.067647		Brennweite f	19.48137	
3 *Gauß'schen Fehlerfortpfla	nzung Delta f	0.7322765	*Gauß'schen Fehlerfortpflan	zung Delta f	0.65216685	*Gauß'schen Fehlerfortpfla	anzung Delta f	0.568442656	*Gauß'schen Fehlerfortpfla	nzung Delta f	0.48117042
9											
) Abbildungsgleichung			Abbildungsgleichung			Abbildungsgleichung			Abbildungsgleichung		
1 f = (g_g*b_g)/(g_g+b_g)	20.171799		$f = (g_g*b_g)/(g_g+b_g)$	20.14674		$f = (g_g*b_g)/(g_g+b_g)$	20.18617		$f = (g_g*b_g)/(g_g+b_g)$	20.10846	
2 *Gauß'schen Fehlerfortpfla	nzung Delta f	0.126424	*Gauß'schen Fehlerfortpflan	zung Delta f	0.11874063	*Gauß'schen Fehlerfortpfla	anzung Delta f	0.108688279	*Gauß'schen Fehlerfortpflan	nzung Delta f	0.09623452

Abbildung 7: Excel Tabelle für Matrizenverfahren

$$M = \begin{pmatrix} 1 & 0 \\ \frac{b}{n} & 1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{f} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{g}{n} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{f} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ g & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 - \frac{g}{f} & -\frac{1}{f} \\ b + g - \frac{bg}{f} & 1 - \frac{b}{f} \end{pmatrix} \text{ mit } b + g - \frac{bg}{f} = 0$$

Betrachten wir nun die Strahlen.

$$\binom{n\beta}{B} = M \binom{n\alpha}{G}$$

dann folgte
$$B = G \cdot (1 - \frac{b}{f})$$
 und $f = \frac{bG}{G - B}$

Jetzt mit Gleichung:

$$f = \frac{bG}{G - B}$$

Die gemessenen Werte von 1. Messenpaar sind:

$$b_a = 98 \pm 0.2cm$$

$$G = 3.1 \pm 0.1 cm$$

$$B = -7.1 \pm 0.1cm$$

Die Brennweite f:

$$f = \frac{b_g G}{G - B} = \frac{98 \cdot 3.1}{3.1 - (-7.1)} = 29.78431373 \text{ cm}$$

die Fehler Δf nach dem Gauß'schen Fehlerfortpflanzungsgesetz:

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial b_g} \cdot \Delta b_g\right)^2 + \left(\frac{\partial f}{\partial G} \cdot \Delta G\right)^2 + \left(\frac{\partial f}{\partial B} \cdot \partial B\right)^2} = 0.732276501 \text{ cm}$$

Das 1. Endergebnis ist dann: $f_{\text{Matrizen}} = 29.8 \pm 0.8 cm$

Wir haben insgesamt 4 Messepaar und die sind alle in oben Tabelle der Abbildung 7. Es wird alle analoge wie 1. Messenpaar ausgerechnet.

Das 2. Endergebnis ist dann: $f_{\text{Matrizen}} = 26.5 \pm 0.7 cm$

Das 3. Endergebnis ist dann: $f_{\text{Matrizen}} = 23.1 \pm 0.6 cm$

Das 4. Endergebnis ist dann: $f_{\text{Matrizen}} = 19.5 \pm 0.5 cm$

Nach der Abbildungsgleichung gilt die 1. Messenpaar:

$$\frac{1}{f} = \frac{1}{g_g} + \frac{1}{b_g} \Leftrightarrow f = \frac{g_g b_g}{g_g + b_g}$$

Die Werte aus Abbildung 7 ablesen

$$b_q = 98 \pm 0.2cm, \quad g_q = 25.4 \pm 0.2cm$$

$$f = \frac{25.4 \cdot 98}{25.4 + 98} = 20.17179903cm$$

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial g_q} \cdot \Delta g_g\right)^2 + \left(\frac{\partial f}{\partial b_q} \cdot \Delta b_g\right)^2} = 0.126424001cm$$

Das 1. Endergebnis ist dann: $f_{\text{Abbildung}} = 20.17 \pm 0.13 cm$

Wir haben insgesamt 4 Messepaar und die sind alle in oben Tabelle der Abbildung 7. Es wird alle analoge wie 1. Messenpaar ausgerechnet.

Das 2. Endergebnis ist dann: $f_{\text{Abbildung}} = 20.15 \pm 0.12 cm$

Das 3. Endergebnis ist dann: $f_{\rm Abbildung} = 20.19 \pm 0.11 cm$

Das 4. Endergebnis ist dann: $f_{\text{Abbildung}} = 20.11 \pm 0.10 cm$

- Vergleichen Sie die verschiedenen Verfahren und Ihre Ergebnisse.
- 1. Messepaar: $f_{\text{Matrizen}} = 29.8 \pm 0.8 cm$, $f_{\text{Abbildung}} = 20.17 \pm 0.13 cm$
- 2. Messepaar: $f_{\text{Matrizen}} = 26.5 \pm 0.7 cm$, $f_{\text{Abbildung}} = 20.15 \pm 0.12 cm$
- 3. Messepaar: $f_{\text{Matrizen}} = 23.1 \pm 0.6 cm$, $f_{\text{Abbildung}} = 20.19 \pm 0.11 cm$
- 4. Messepaar: $f_{\text{Matrizen}} = 19.5 \pm 0.5 cm$, $f_{\text{Abbildung}} = 20.11 \pm 0.10 cm$

Im Praktikum wurden drei verschiedene Verfahren verwendet, um die Brennweite f der Linse zu bestimmen:

- 1. Graphisches Verfahren: Bestimmung der Brennweite durch den Schnittpunkt der Geraden in der grafischen Darstellung.
- 2. Bessel-Verfahren: Berechnung der Brennweite anhand der Messungen mit zwei verschiedenen Linsenpositionen.
- 3. Matrizenverfahren: Verwendung der Matrizenmethode zur theoretischen Berechnung der Brennweite.

Die Werte für f, die mit dem Matrizenverfahren bestimmt wurden, zeigen eine hohe Variabilität (zwischen 19.5 cm und 29.8 cm) mit großen Unsicherheiten (bis ± 0.8 cm). Das Bessel-Verfahren liefert stabilere Werte für die Brennweite, die zwischen 20.1 cm und 20.2 cm liegen, mit einer Unsicherheit

von maximal ± 0.2 cm. Die Methode mit der Abbildungsgleichung ergibt ebenfalls Werte zwischen 20.1 cm und 20.2 cm, mit Unsicherheiten von ± 0.1 cm bis ± 0.2 cm.

Vor- und Nachteile der Verfahren:

1. Graphisches Verfahren Vor: Intuitive Visualisierung der Abbildungsgleichung. Direkte Bestimmung von f aus dem Schnittpunkt.

Nach: Abhängig von der Genauigkeit der grafischen Darstellung. Erhöhte Unsicherheit durch visuelle Ablesefehler.

2. Bessel-Verfahren Vor: Sehr präzise Methode, Weil systematische Fehler minimiert werden. Unabhängig von der Dicke der Linse. Liefert konsistente Werte für f.

Nach: Erfordert zwei verschiedene Linsenpositionen. Genaue Messung der Verschiebung notwendig.

3. Matrizenverfahren Vor: Mathematisch präzise Methode zur theoretischen Berechnung. Berücksichtigt optische Prinzipien und erlaubt Verallgemeinerungen.

Nach: Hohe Unsicherheit in der Praxis. Sensitiv gegenüber Messfehlern in G und B, da kleine Änderungen große Schwankungen in f verursachen.

2 Teilversuch 2: Abbildung durch ein System von Linsen

2.1 Auswertung (zu Hause)

				Horizontalen Ri	chtung			
	Ermitteln Wert	aus der Konstruktion in cm	Unsicherheit	in real 1:4	Unsicherheit in real 1:4			
	Links f_s	5	0.1					
	Rechts f_s	5.1	0.1					
	f_s	5.05	0.1	20.2	0.4			
	Links f_z	12.3	0.1					
	Rechts f_z	12.5	0.1					
	f_z	12.4	0.1	49.6	0.4			
	Links f	6.1	0.1					
	Rechts f	6.9	0.1					
	f	6.5	0.1	26	0.4			
	h	1	0.1	4	0.4			
	g	8.7	0.1	34.8	0.4			
	b	19.2	0.1	76.8	0.4			
	d	3	0.1	12	0.4			
ertikalen	G	3.1	0.1					
	В	7.1	0.1					
	al . l . (4)	5 / 1 * \ / 1 . \		1 0				
	Gleichung(1)	f = (b*g)/(b+g)	23.9483871	obere Grenze	-	0.22812536		
				untere Grenze	t - t_min	0.2285315		
	Gleichung(2)	B/G = b/g	2.290322581	obere Grenze	-0.040322581	2.20689655	obere Grenze	-0.013714
				untere Grenze	-0.043010753		untere Grenze	-0.014033
	Gleichung(9)	h = (-d^2)/(f_1 + f_2 - d)	2 491349481	obere Grenze	h max - h	0.15057492		
	S.Sicilaria(3)	(= 2//(1_1 · 1_2 · 0/	2.131343401	untere Grenze	_	0.14709861		
				differe dienze	n n_nm	0.14703001		
	Gleichung(10)	f = (f_1*f_2)/(f_2 + f_1 - d)	17.33425606	obere Grenze	f_max - f	0.36333845		
		,		untere Grenze		0.36282748		

Abbildung 8: Tabelle für Werte ermittel
n f_s,f_z,f,h,g,b und gleichung (1), (2), (9), (10)

Es wurde mit Maßstab 1:4 auf der Horizontalen und 1:1 auf der Vertikalen gearbeitet.

Aus der Konstruktion abgelesen:

$$f_s = \frac{f_{s, \text{rechts}} + f_{s, \text{links}}}{2} \cdot 4 = 20.2 \text{ cm}$$

$$f_z = \frac{f_{z, \text{rechts}} + f_{z, \text{links}}}{2} \cdot 4 = 49.6 \text{ cm}$$

$$f = \frac{f_{\rm rechts} + f_{\rm links}}{2} \cdot 4 = 26 \text{ cm}$$

$$h = 1 \text{ cm} \cdot 4 = 4 \text{ cm}$$

$$g=8.7~\mathrm{cm}\cdot 4=34.8~\mathrm{cm}$$

$$b=19.2~\mathrm{cm}\cdot 4=76.8~\mathrm{cm}$$

$$d=3~\mathrm{cm}\cdot 4=12~\mathrm{cm}$$

Die Fehler beim Ablesen wurden auf 0,1 cm geschätzt, demnach ergibt sich für die tatsächlichen Größen ein Fehler von 0,1 cm \cdot 4 = 0.4 cm.

Nun wollen wir die Gleichungen (1), (2), (9), (10) bestätigen:

Gleichungen (1):
$$f = \left(\frac{1}{g} + \frac{1}{b}\right)^{-1} = 23.9483871 \text{ cm}$$

Obere Grenze:

$$f_{\text{max}} - f = 0.228125359 \text{ cm}$$

Untere Grenze:

$$f - f_{\min} = 0.228531501 \text{ cm}$$

Runde nach DIN 1333 auf:

$$f_1 = \left(23.95 \pm {0.23 \atop 0.23}\right) \text{ cm}$$

Gleichungen (2):
$$\frac{B}{G} = \frac{b}{g}$$

$$\frac{B}{G} = 2.290322581cm$$

Obere Grenze:

$$(\frac{B}{G})_{\text{max}} - \frac{B}{G} = 0.040322581 \text{ cm}$$

Untere Grenze:

$$\frac{B}{G} - (\frac{B}{G})_{\min} = 0.043010753 \text{ cm}$$

Runde nach DIN 1333 auf:

$$\frac{B}{G} = \left(2.29 \pm {0.04 \atop 0.05}\right) \text{ cm}$$

$$\frac{b}{q} = 2.206896552cm$$

Obere Grenze:

$$\frac{b}{g_{\text{max}}} - \frac{b}{g} = 0.013714734 \text{ cm}$$

Untere Grenze:

$$\frac{b}{g} - \frac{b}{g}_{\min} = 0.014033681 \text{ cm}$$

Runde nach DIN 1333 auf:

$$\frac{b}{g} = \left(2.21 \pm {0,02 \atop 0,02}\right) \text{ cm}$$

Gleichungen (9):
$$h = \frac{-d^2}{f_s + f_z - d} = 2.491349481cm$$

Obere Grenze:

$$h_{\rm max} - h = 0.150574918~{\rm cm}$$

Untere Grenze:

$$h - h_{\min} = 0.14709861 \text{ cm}$$

Runde nach DIN 1333 auf:

$$h = \left(2.49 \pm {0.15 \atop 0.15}\right) \text{ cm}$$

Gleichungen (10):
$$f = \frac{f_s f_z}{f_s + f_z - d} = 17.33425606cm$$

Obere Grenze:

$$f_{\text{max}} - f = 0.363338446 \text{ cm}$$

Untere Grenze:

$$f - f_{\min} = 0.362827484 \text{ cm}$$

Runde nach DIN 1333 auf:

$$f = \left(17.34 \pm {0.37 \atop 0.36}\right) \text{ cm}$$

Einige Werte stimmen gut überein, insbesondere die Verhältniswerte ($\frac{G}{B}$ und $\frac{g}{b}$). Andere Werte zeigen signifikante Unterschiede, insbesondere die Brennweiten f und die Hilfsgröße h, was auf systematische Fehler hindeutet. Potenzielle Ursachen für die Abweichungen: 1. Ablesefehler durch den Maßstab. 2. Systematische Fehler durch ungenaue Positionierung der Messpunkte. 3. Berechnungsfehler oder vernachlässigte Korrekturfaktoren.

3 Teilversuch 3: Brennweitenbestimmung mit dem Fernrohr

3.1

Wir haben die Brennweite der Sammellinse mit der Fernrohrmethode direkt gemessen, wie in Abbildung 9 dargestellt. Die Position der Linse wurde an der Position $y_s = (115.1 \pm 0.1)$ cm und das Objekt an der Position $y_g = (135.4 \pm 0.1)$ cm gemessen.

Abbildung 9: Bestimmung der Brennweite einer Sammellinse nach der Fernrohrmethode

Die Unsicherheit ist:

$$\Delta f_s = \sqrt{(\Delta y_g)^2 + (\Delta y_s)^2} = \sqrt{(1mm)^2 + (1mm)^2} = 1.414mm$$

Also:

$$f_s = y_{g_0} - y_{s_0} \pm \Delta f_s = (20.30 \pm 0.15)cm$$

3.2

Als Nächstes haben wir den Versuchsaufbau wie in Abbildung 10 gezeigt aufgebaut und diese (Tabelle 1) Werte gemessen:

	vor Schärfentiefeminimierung	nach Schärfentiefeminimierung
y_s - Position der Sammellinse	107,5	103,8
y_z - Position der Zerstreulinse	84,6	87,8
y_g - Position des Objekts	135,4	135,4
y_b - Position des virtuellen Objekts	-	48,6

Tabelle 1: Position der Linsen, wenn das Gitter scharf gesehen wurde, gemessen in c
m mit einer Unsicherheit von $\pm~0.1$ cm

3.3 vor Schärfentiefeminimierung

Die Position des virtuellen Objekts kann mit der Abbildungsgleichung berechnet werden:

$$\frac{1}{f_s} = \frac{1}{g_1} + \frac{1}{b_1} \rightarrow b_1 = (f_s^{-1} - g_1^{-1})^{-1}$$

Wo

$$f_s = (20.30 \pm 0.15)cm$$

Abbildung 10: Bestimmung der Brennweite einer Zerstreulinse nach der Fernrohrmethode

und

$$g_1 = y_g - y_{s_1} \pm \Delta g_1$$

$$\Delta g_1 = \sqrt{(\Delta y_g)^2 + (\Delta s_1)^2} = \sqrt{(1mm)^2 + (1mm)^2} = 1.414mm$$

$$g_1 = (27.90 \pm 0.15)cm$$

Also:

$$\Delta b_1 = \sqrt{\left(\frac{\partial b_1}{\partial f_s} \Delta f_s\right)^2 + \left(\frac{\partial b_1}{\partial g_1} \Delta g_1\right)^2}$$

$$\frac{\partial b_1}{\partial f_s} = \frac{\partial}{\partial f_s} (f_s^{-1} - g_1^{-1})^{-1} = \frac{1}{(f_s^{-1} - g_1^{-1})^2} \frac{\partial}{\partial f_s} (f_s^{-1} - g_1^{-1}) = \frac{1}{(f_s^{-1} - g_1^{-1})^2} (-\frac{1}{f_s^2}) = \frac{g_1^2}{(g_1 - f_s)^2}$$

$$\frac{\partial b_1}{\partial g_1} = \frac{\partial}{\partial g_1} (f_s^{-1} - g_1^{-1})^{-1} = \frac{1}{(f_s^{-1} - g_1^{-1})^2} \frac{\partial}{\partial g_1} (f_s^{-1} - g_1^{-1}) = \frac{1}{(f_s^{-1} - g_1^{-1})^2} \frac{1}{g_1^2} = \frac{f_s^2}{(g_1 - f_s)^2}$$

$$\Delta b_1 = \sqrt{(\frac{g_1^2}{(g_1 - f_s)^2} \Delta f_s)^2 + (\frac{f_s^2}{(g_1 - f_s)^2} \Delta g_1)^2} =$$

$$= \sqrt{(\frac{279^2 mm^2}{(279mm - 203mm)^2} 1.5mm)^2 + (\frac{203^2 mm^2}{(279mm - 203mm)^2} 1.5mm)^2} = 22.87mm$$

$$b_1 = (f_{s_0}^{-1} - g_{1_0}^{-1})^{-1} \pm \Delta b_1 = (203^{-1}mm^{-1} - 279^{-1}mm^{-1})^{-1} \pm \Delta b_1 = (745 \pm 23)mm$$

Schließlich:

$$f_z = b_1 - (y_{s_1} - y_{z_1})$$

$$\Delta f_z = \sqrt{(\Delta b_1)^2 + (\Delta y_{s_1})^2 + (\Delta y_{z_1})^2}$$

$$\Delta f_z = \sqrt{(23mm)^2 + (1mm)^2 + (1mm)^2} = 23.04mm$$

$$f_z = 74.5cm - 107.5cm + 84.6cm \pm 2.4cm = (51.6 \pm 2.4)cm$$

3.4 nach Schärfentiefeminimierung

Hier kann die Brennweite der Zerstreulinse wie folgt berechnet werden:

$$f_z = y_{z_2} - y_b$$

Die Unsicherheit ist:

$$\Delta f_z = \sqrt{(\Delta y_{z_2})^2 + (\Delta y_b)^2} = \sqrt{(1mm)^2 + (1mm)^2} = 1.5mm$$

Schließlich:

$$f_z = 87.8cm - 48.6cm \pm \Delta f_z = (39, 2 \pm 0.15)cm$$

Unser experimenteller Wert von $f_z=(51.6\pm2.4)cm$ vor der Minimierung der Schärfentiefe unterscheidet sich signifikant von unserem Wert von $f_z=(39,2\pm0.15)cm$ nach der Minimierung der Schärfentiefe. Die Ursache für die Ungenauigkeit könnte eine ungenaue Ablesung der Position oder eine unzureichende Scharfeinstellung des Bildes gewesen sein.