Sequential Importance Resampling (SIR)

Sensor fusion & nonlinear filtering

Lars Hammarstrand

- One can show that all SIS filters suffer from degeneracy:
 after a few time steps all but one particle will have negligible weight.
- · Consequences of degeneracy:
 - the filter believes that it knows \mathbf{x}_k exactly,
 - we obtain very poor state estimates,
 - most of our calculations are wasted on insignificant particles.

These are very serious drawbacks!

A key technique to improve performance is resampling.

• Challenge: we have $p(\mathbf{x}_k|\mathbf{y}_{1:k}) \approx \sum_{i=1}^N w_k^{(i)} \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)})$ where most weights $w_k^{(i)}$ are very small.

Idea: use Monte Carlo sampling

• Generate independent samples $\tilde{\mathbf{x}}_{k}^{(1)}, \dots, \tilde{\mathbf{x}}_{k}^{(N)}$ from $\underline{p}(\mathbf{x}_{k}|\mathbf{y}_{1:k})$ and set

$$p(\mathbf{x}_k|\mathbf{y}_{1:k}) \approx \sum_{i=1}^N \frac{1}{N} \delta(\mathbf{x}_k - \tilde{\mathbf{x}}_k^{(i)}).$$

- · After resampling we get
 - equal weights (they are all 1/N),
 - multiple copies of high probability particles.

Resampling algorithm

1) Draw N samples with replacement from $\mathbf{x}_k^{(1)}, \mathbf{x}_k^{(2)}, \dots, \mathbf{x}_k^{(N)}$, where the probability of selecting $\mathbf{x}_k^{(i)}$ is $\underline{w}_k^{(i)}$.

2) Replace the old sample set with the new one and set all weights to 1/N.

- · A few remarks:
 - We use $\mathbf{x}_k^{(i)}$ and $w_k^{(i)}$ to denote the particles and their weights also after resampling.
 - We can use samples from the uniform distribution, unif[0, 1], to draw samples from the discrete distribution $p(\mathbf{x}_k|\mathbf{y}_{1:k})$.

Self-assessment – Resampling

- Perform resampling on the density to the right and illustrate the result.
- Assume that the numbers
 0.65, 0.03, 0.84 and 0.93 are
 drawn from unif[0,1].

- Perform resampling on the density to the right and illustrate the result.
- Assume that the numbers 0.65, 0.03, 0.84 and 0.93 are drawn from unif[0, 1].

• Choose the figure below that illustrates the resampled particles:

Self-assessment – Solution

If particles where ordered in ascending order,

$$x^{(1)} < \cdots < x^{(4)}$$
, resampling gives $x^{(1)} = 3.8$ and $x^{(2)} = x^{(3)} = x^{(4)} = 5.7$

- Resampling costs some calculations and introduces some errors, but improves performance immensely over time.
- · An estimate for the effective number of particles is

$$N_{eff} = \frac{1}{\sum_{i=1}^{N} \left(w_k^{(i)}\right)^2}.$$

• Many algorithms only resample when N_{eff} is below some threshold, e.g., N/4.