ror (x, c, 1) in zip(feature_pyramid, military) Class_preds.append(c(x).permute(8, 1, 1, 1, 1) loc_preds.append(1(x).permute(*, 1, 1, 1)

ASYMPTOTIC BOUNDS

CCDSALG T2 AY 2020-2021

$$T(n) = 60n^2 + 5n + 1$$

\boldsymbol{n}	T(n)	$60n^2$
10	6,051	6,000
100	60,501	60,000
1,000	60,005,001	60,000,000
10,000	6,000,050,001	6,000,000,000

- T(n) grows like $60n^2$
- If T(n) is measured in seconds, then in minutes: $n^2 + \frac{5n}{60} + \frac{1}{60}$

Observations:

- The **dominant term** (term with the fastest growth rate) in the function determines the behavior of the algorithm.
 - $3n^3 + 2n^2 + 1$

 $3n^3 > 2n^2 > 1$

• $2^n + 3n^3 + 5$

 $2^n > 3n^3 > 5$

- Any **exponential function** of n dominates any polynomial function of n
 - $2^n + 2n^2 + 1$

 $2^n > n^2$

Observations:

• A **polynomial degree** k dominates a polynomial of degree m iff k>m

•
$$n^{k>7} > \dots > n^7 > n^6 > \dots > n^3 > n^2$$

- ullet Any **polynomial function** of n dominates any logarithmic function of n
 - $n^{k>3} > n^3 > n \log_2 n > \log_2 n$

Observations:

- Any logarithmic function of n dominates a constant term.
 - $\log_2 n > c$

Observations:

- The order of growth is a function of the dominant term of the running time.
- The **dominant term** contributes the most significant increase in g(n) as n increases.
- The coefficient of the dominant term is ignored.
 - $3n^3 + 2n^2 + 1$ n^3

What is the growth rate corresponding to the following running time?

1.
$$3n + 5n - 2$$

2.
$$6n^2 + 7n + 3$$

3.
$$9n^3 + 6n^2 + n + 2$$

- It is hard to get the exact running-time of an algorithm. Why?
- Asymptotic bounds are then used instead to describe the complexity of the algorithms
- **Asymptotic bounds** describes only the growth rates of the algorithm as the input size approaches infinity and ignoring most of the small inputs and constant factors.
- Among these bounds are: Big-Oh, Big-Omega, and Big-Theta

- The worst-case complexity of the algorithm is the function defined by the **maximum** number of steps taken in any instance of size n.
- The **best-case complexity** of the algorithm is the function defined by the **minimum** number of steps taken in any instance of size n.
- The **average-case complexity** of the algorithm is the function defined by the **average** number of steps over all instances of size n.

BIG-OH

• The **Big-Oh** of a function f(n) is O(g(n)), iff there exist positive numbers c and n_0 such that:

$$0 \le f(n) \le c g(n)$$
 where $n \ge n_0$

- Describes an **asymptotically loose upper-bound** of the algorithm
- Represents the **worst-case running time** of the algorithm

BIG-OH EXAMPLE

- $\bullet f(n) = 2n^2 + 3$
- The Big-Oh of a function f(n) is O(g(n)), iff there exist positive numbers c and n_0 such that:

$$0 \le f(n) \le c g(n)$$
 where $n \ge n_0$

• Suppose $g(n) = n^2$, then

$$0 \le 2n^2 + 3 \le c n^2$$
 where $n \ge n_0$

BIG-OH EXAMPLE

$$0 \le 2n^2 + 3 \le c n^2$$
 where $n \ge n_0$

- Suppose $n_0 = 1$ and $n \ge n_0$ then:
 - 1. $n \ge 1$
 - 2. $n^2 \geq n$
 - 3. $n^2 \ge n \ge 1$
 - 4. $2n^2 \ge 2n \ge 2$
 - 5. $3n^2 \ge 3n \ge 3$

Multiply Eq. 1 by n

Combine Eq. 1 and Eq. 2

Multiply Eq. 3 by 2

Multiply Eq. 3 by 3

BIG-OH EXAMPLE

$$0 \le 2n^2 + 3 \le c n^2$$
 where $n \ge n_0$

• Since $2n^2 \ge 2n^2$ and $3n^2 \ge 3n \ge 3$ (Eq. 5), then we can form the inequality:

$$0 \le 2n^2 + 3 \le 2n^2 + 3n^2$$
$$0 \le 2n^2 + 3 \le 5n^2$$

• The condition is satisfied for $c=5, n_0=1, n\geq n_0$

BIG-OH EXAMPLE

- $f(n) = 5n^3 + 3n^2 + 4$
- The Big-Oh of a function f(n) is O(g(n)), iff there exist positive numbers c and n_0 such that:

$$0 \le f(n) \le c g(n)$$
 where $n \ge n_0$

• Suppose $g(n) = n^3$, then

$$0 \le 5n^3 + 3n^2 + 4 \le c n^3$$
 where $n \ge n_0$

BIG-OH EXAMPLE

$$0 \le 5n^3 + 3n^2 + 4 \le c n^3$$
 where $n \ge n_0$

- Suppose $n_0 = 1$ and $n \ge n_0$ then:
 - 1. $n \ge 1$

2.
$$n^2 \geq n$$

3.
$$n^3 \ge n^2$$

4.
$$n^3 \ge n^2 \ge n \ge 1$$

5.
$$5n^3 \ge 5n^2 \ge 5n \ge 5$$

6.
$$3n^3 \ge 3n^2 \ge 3n \ge 3$$

7.
$$4n^3 \ge 4n^2 \ge 4n \ge 4$$

Multiply Eq. 1 by
$$n$$

Multiply Eq. 2 by
$$n$$

BIG-OH EXAMPLE

$$0 \le 5n^3 + 3n^2 + 4 \le c \, n^3$$
 where $n \ge n_0$

• Since $5n^3 \ge 5n^3$ (Eq. 5), $3n^3 \ge 3n^2$ (Eq. 6), $4n^3 \ge 4n^2 \ge 4n \ge 4$ (Eq. 7), then we can form the inequality:

$$0 \le 5n^3 + 3n^2 + 4 \le 5n^3 + 3n^3 + 4n^3$$
$$0 \le 5n^3 + 3n^2 + 4 \le 12n^3$$

• The condition is satisfied for $c=12, n_0=1, n\geq n_0$

Asymptotic Bounds: Guidelines

- 1) Assume that $n_0 = 1$ and $n \ge n_0$
- 2) Multiply both sides of equation by some power of n until you get the dominant term
- 3) Combine all previous equations into one
- 4) Multiply the equation to the coefficients needed. Separate the equations per coefficient.
- 5) Combine the equations to form f(n) and g(n)

Properties of Growth-Rate Functions:

- We can ignore low-order terms in an algorithm's growthrate function
- If an algorithm is $O(n^3 + 4n^2 + 3n)$, it is also $O(n^3)$.

Properties of Growth-Rate Functions:

- We can ignore a multiplicative constant in the higherorder term of an algorithm's growth rate function.
- If an algorithm is $O(5n^3)$, it is also $O(n^3)$.

Properties of Growth-Rate Functions:

• We can combine growth-rate functions:

$$O(f(n)) + O(g(n)) = O(f(n) + g(n))$$

- If an algorithm is $O(n^3) + O(4n^2)$, it is also $O(n^3 + 4n^2)$, thus, $O(n^3)$.
- Similar rules hold for multiplication.

BIG-OMEGA

• The **Big-Omega** of a function f(n) is $\Omega(g(n))$, iff there exists a positive number c and n_0 such that:

$$0 \le c g(n) \le f(n)$$
 where $n \ge n_0$

- Describes an **asymptotically loose lower-bound** of the algorithm
- Represents the best-case running time of the algorithm

BIG-THETA

• The **Big-Theta** of a function f(n) is $\theta(g(n))$, iff there exists a positive number c_1 , c_2 and n_0 such that:

$$c_1 g(n) \le f(n) \le c_2 g(n)$$
 where $n > n_0$

- Describes an **asymptotically tight bound** of the algorithm
- Represents the average-case running time of the algorithm

GROWTH-RATE FUNCTIONS

O(1)Constant – time requirement is independent of the problem's size.

 $O(\log_2 n)$ Logarithmic – time requirement increases slowly as the problem increases.

O(n) Linear – time requirement increases directly with the size of the problem.

 $O(n \log_2 n)$ Linear-logarithmic – time requirement increases more rapidly than linear.

GROWTH-RATE FUNCTIONS

 $O(n^2)$

Quadratic – time requirement increases rapidly with the size of the problem.

 $O(n^3)$

Cubic – time requirement increases more rapidly with the size of the problem than the time requirement for quadratic.

 $O(2^n)$

Exponential – time requirement increases too rapidly to be practical.

Extras

Asymptotic Bounds

Rough Guide

class	in English	meaning	key phrases
f(n) = O(g(n))	big-oh	$f(n) \le g(n)$	f(n) is asymptotically no worse than $g(n)$
			f(n) grows no faster than $g(n)$
$f(n) = \Theta(g(n))$	big-theta	$f(n) \approx g(n)$	f(n) is asymptotically equivalent to $g(n)$
			f(n) grows the same as $g(n)$
$f(n) = \Omega(g(n))$	big-omega	$f(n) \ge g(n)$	f(n) is asymptotically no better than $g(n)$
			f(n) grows at least as fast as $g(n)$

Formal Definitions

class	formally	working
f(n) = O(g(n))	$\exists c > 0, \ \exists n_0, \ \forall n > n_0, f(n) \le c \cdot g(n)$	
$f(n) = \Theta(g(n))$	$\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n > n_0, c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$	f(n) = O(g(n)) and $g(n) = O(f(n))$
$f(n) = \Omega(g(n))$	$\exists c > 0, \ \exists n_0, \ \forall n > n_0, c \cdot g(n) \le f(n)$	g(n) = O(f(n))

Using Limits

$$\text{If } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \left\{ \begin{array}{ll} 0 & \text{then } f(n) = O(g(n)) \\ \text{some finite, non-zero, positive constant} & \text{then } f(n) = \Theta(g(n)) \\ \infty & \text{then } f(n) = \Omega(g(n)) \end{array} \right.$$

Principle of Mathematical Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement $P(k) \rightarrow P(k + 1)$ is true for all positive integers k.

Example: Prove that $k < 2^k$ for all positive integers k

```
BASIS STEP: Show P(1)
      1 < 2 \
INDUCTIVE STEP:
     Assume P(k): k < 2^k
      Show P(k+1): k + 1 < 2^{k+1}
      k < 2^k
     k + 1 < 2^k + 1
              2^k + 1 < 2^k + 2^k, true because 1 < 2^k
     k+1 < 2^k + 2^k
     k+1 < 2^{k+1} \checkmark
```

Example: Prove that $2^k < k!$ for every integer k with $k \ge 4$

```
BASIS STEP: Show P(4)
      16 < 24
INDUCTIVE STEP:
      Assume P(k): 2^k < k!
      Show P(k+1): 2^{k+1} < (k+1)!
      2(2^k) < 2(k!)
      2^{k+1} < 2(k!)
             2(k!) < (k+1)(k!), true because 2 < k+1
      2^{k+1} < (k+1)(k!)
      2^{k+1} < (k+1)! \checkmark
```


Asymptotic Bounds

- Any exponential function of n dominates any polynomial function of n
- A polynomial degree k dominates a polynomial of degree m iff k > m
- Any polynomial function of n dominates any logarithmic function of n
- Any logarithmic function of n dominates a constant term

ror (x, c, 1) in zip(feature_pyramid, military) Class_preds.append(c(x).permute(8, 1, 1, 1, 1) loc_preds.append(1(x).permute(*, 1, 1, 1)

ASYMPTOTIC BOUNDS

CCDSALG T2 AY 2020-2021