2.a)	(i) A:	="S	piel	er w	rürfe	elt e	ine	gera	ade	Zah	ıl"	Pr[A] = (3/6 :	= 1/	2
- 1	B:	="S	pele	r w	ürfe	lt 1	2 00	der :	3"			Pr[B	1 = :	3/6	= 1/	2
	Pr	ΔIR	h — ·	1/3	-> F	⊃rΓΔ	1 > 1	PrΓΔ	IR1			_	ſ			

(ii) Es existiert kein Wahrscheinlichkeitsraum welcher die Eigenschaften erfüllt.

Def. of $Pr[A|B]:= Pr[A \cap B]/Pr[B] => 1/4 = Pr[A \cap B] / (3/4) => Pr[A \cap B] = 3/16$

If two events happen 3 out of 4 times their intersection has to be at least 1/2. 1/2 > 3/16 therefore there exists no $Pr[A \cap B]$ that fulfills the requirements.

b) Pr[A] = 1/5 + (2/5 * 1/4) + (2/5 * 1/4 * 1/3) = 0.333.. = 1/3

Da der Startknoten des Algorithmus egal ist betrachten wir hier nur A als Startknoten. Es können nur 3 Farben entstehen wenn D vor E oder C gewählt wird. Dies kann zu 1/5 direkt passieren oder zu 2/5 * 1/4 nachdem B oder F gewählt wurden oder zu 2/5 * 1/4 * 1/3 nachdem B oder F und danach der noch verbleibende und am ende D gewählt wid. In allen anderen Fällen wird C oder E vor D gewählt.

Somit hat der Algorithmus eine 0.33333... Chance 3 Farben zu wählen

c) Pr[A]:="Die Schwester gewinnt" => "beide Würfel sind ungerade" = 3/6 * 3/6 => 1/4 Pr[B]:="Ich gewinne" => {(4,6), (5,5), (5,6), (6,4), (6,5), (6,6)} / 6*6 Möglichkeiten = 6/36 =1/6

 $Pr[B\A] = \{(4,6), (5,6), (6,4), (6,5), (6,6)\} / 6*6 = 5/36$