# Bayesian Nonparametrics

Christof Seiler

Stanford University, Spring 2016, STATS 205

#### Overview

#### Last week:

Estimating functions frequentist style

#### Today:

▶ The Bayesian approach

#### Introduction

- ▶ In the Bayesian approach,
  - ightharpoonup the true parameter  $\theta$  is believed to be random variable
- In the Frequentist approach,
  - the true parameter  $\theta$  is believed to be one value,
  - the randomness comes from sampling error

#### Parametric Bayesian

▶ In parametric Bayesian inference we have a model

$$M = \{ f(y|\theta) : \theta \in \Theta \}$$

and data

$$Y_1, \ldots, Y_n \sim f(y|\theta)$$

• We put a **prior** distribution  $\pi(\theta)$  on the parameter  $\theta$  and compute the **posterior** distribution using Bayes' rule

$$\pi(\theta|y) = \frac{\prod_{i=1}^{n} f(y_i|\theta)\pi(\theta)}{m(y)}$$

with marginal distribution

$$m(y) = m(y_1, ..., y_n) = \int f(y_1, ..., y_n | \theta) \pi(\theta) d\theta$$
$$= \int \prod_{i=1}^n f(y_i | \theta) \pi(\theta) d\theta$$



#### Parametric Bayesian

We can write a generative model as sampling parameters from the prior

$$\theta \sim \pi$$

And then sampling data from the likelihood function

$$Y_1, \ldots, Y_n | \theta \sim f(y | \theta)$$

 $\blacktriangleright$  We can use the posterior distribution to compute the posterior mean of  $\theta$ 

$$ar{ heta} = \mathsf{E}( heta|y) = \int heta \pi( heta|y) d heta$$

Also we can summarize the posterior by drawing a large sample

$$\theta_1, \ldots, \theta_N \sim \pi(\theta|y)$$

and plotting the samples

## Parametric Bayesian

Posterior distribution

$$\pi(\theta|y) = \frac{\prod_{i=1}^{n} f(y_i|\theta)\pi(\theta)}{m(y)}$$

- Even if we don't know m(y), we can use tools like Markov chain Monte Carlo (MCMC) to draw samples from the posterior and plot them
- So even without being able to evaluate the posterior distribution, through sampling we know the posterior if we sample infinitly many times
- And approximately if we get a finite amount of samples

# Nonparametric Bayesian

We replace the finite dimensional model

$$\{f(y|\theta):\theta\in\Theta\}$$

with an infinite dimensional model such as

$$\mathcal{F} = \left\{ f : \int (f''(y))^2 dy < \infty \right\}$$

- Surprisingly, sometimes neither the prior nor the posterior have a density function
- But the posterior is still defined

## Nonparametric Bayesian

#### Some questions:

- 1. How do we construct a prior  $\pi$  on an infinite dimensional set  $\mathcal{F}$ ?
- 2. How do we compute the posterior?
- 3. How do we draw random samples from the posterior?

## Distributions on Infinite Dimensional Spaces

- lacktriangle We will need to put a prior  $\pi$  on an infinite dimensional space
- ▶ For example, suppose we observe

$$X_1,\ldots,X_n\sim F$$

with unkown distribution F

- We put prior  $\pi$  on set of all distributions  $\mathcal{F}$
- ightharpoonup In many cases, we cannot explicitly write down a formula for  $\pi$
- ▶ How can we describe a distribution  $\pi$  in another way than writing it down?
- If we know how to draw from  $\pi$  we can get many samples and then even without knowing the formula for  $\pi$  we can plot it

# Distributions on Infinite Dimensional Spaces

The idea: find an algorithm to sample from this model

$$F \sim \pi$$
 $X_1, \ldots, X_n | F \sim F$ 

- ▶ If we have such an algorithms then it is like being able to actually write down an explicit formula
- After we observe the data  $X = (X_1, \dots, X_n)$ , we are interested in the posterior distribution
- ► The same idea here, instead of writing down a forumla we describe an algorithm to sample for the posterior distribution

- Suppose we observe  $X_1, \ldots, X_n$  from an unkown distribution F  $(X_i \in \mathbb{R})$
- ► The usual frequentist estimate of *F* is the empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$$

- ▶ To estimate F from a Bayesian perspective we put a prior on  $\pi$  on the set of all  $\mathcal F$
- ▶ Compute the posterior on  $\mathcal{F}$  given  $X = \{X_1, \dots, X_n\}$
- Such a prior was invented by Thomas Ferguson in 1973

- ▶ The prior has two parameter:  $F_0$  and  $\alpha$  denoted by  $DP(\alpha, F_0)$
- ▶ F<sub>0</sub> is a distribution function and should be thought of as a prior guess of F
- ▶ The number  $\alpha$  controls how tightly concentrated the prior is around  $F_0$
- ► The model is

$$F \sim \mathsf{DP}(lpha, F_0)$$
  $X_1, \dots, X_n | F \sim F$ 

But how to draw samples from this model?

- ▶ First to draw samples from the prior  $DP(\alpha, F_0)$ , we follow four steps
- 1. Draw  $s_1, s_2, \ldots$  independently from  $F_0$
- 2. Draw  $V_1, V_2, \cdots \sim \text{Beta}(1, \alpha)$
- 3. Stick breaking process: Let  $w_1 = V_1$  and  $w_j = V_j \prod_{i=1}^{j-1} (1 V_i)$  for j = 2, 3, ...

- Stick breaking process:
- Imagine a stick of unit length
- ▶ Then  $w_1$  is obtained by breaking the stick at the random point  $V_1$
- ▶ The stick has now length  $1 V_1$
- ▶ The second weight  $w_2$  is obtained by breaking a proportion  $V_2$  from the remaining stick
- ▶ The process continues and generates the whole sequence of weights  $w_1, w_2, ...$

4. Let F be the discrete distribution that puts mass  $w_j$  at  $s_j$ , that is,  $F = \sum_{j=1}^{\infty} w_j \delta_{s_j}$  where  $\delta_{s_j}$  is a point mass at  $s_j$ 





Source: Wasserman (left: weights; right:  $F_0$  and random draw)

- F is a discrete distribution
- ► The Dirichlet process is a generalization of the Dirichlet distribution



- ▶ To sample from the posterior, we need the following theorem
- Let  $F_n$  be the empirical distribution
- ▶ **Theorem:** Let  $X_1, ..., X_n \sim F$ . Let F have prior  $\pi = \mathsf{DP}(\alpha, F_0)$ . Then the posterior  $\pi$  for F given  $X_1, ..., X_n$  is  $\mathsf{DP}(\alpha + n, \bar{F}_n)$  where

$$\bar{F}_n = \frac{n}{n+\alpha} F_n + \frac{\alpha}{n+\alpha} F_0.$$

- ► Since the posterior is again a Dirichlet process, we can sample from it as we did the prior
- We only replace  $\alpha$  with  $\alpha + n$  and we replace  $F_0$  with  $\bar{F}_n$
- ▶ Thus the posterior mean is  $\bar{F}_n$  is a convex combination of the empirical distribution and the prior guess  $F_0$
- ➤ To explore the posterior distribution, we could draw many random distribution functions form the posterior
- $\blacktriangleright$  We could then numerically construct two functions  $L_n$  and  $U_n$  such that

$$\pi(L_n(x) \le F(x) \le U_n(x)$$
 for all  $x|X_1,\ldots,X_n) = 1-\alpha$ 

- ▶ This is a Bayesian credible interval for F
- ▶ When *n* is large then  $\bar{F}_n \approx F_n$

#### **Density Estimation**

- ▶ Let  $X_1, ..., X_n \sim F$  where F has density f and  $X_i \in \mathbb{R}$
- Our goal is to estimate f
- ► The Dirichlet process is not useful prior for this because it produces discrete distributions
- But we can make a modification
- The most popular frequentist estimator is the kernel estimator

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

with kernel K and bandwith h

▶ A related method is the mixture model

$$f(x) = \sum_{j=1}^{k} w_j f(x; \theta_j)$$

#### **Density Estimation**

- ▶ For example, if  $f(x;\theta)$  is normal then  $\theta = (\mu, \sigma^2)$
- ► The kernel estimator can be thought of as a mixture with *k* components
- ▶ In the Bayesian approach we would put a prior on  $\theta_1, \ldots, \theta_k$ , on  $w_1, \ldots, w_k$ , and on k
- Recently, it became more popular to use an infinite mixture model

$$f(x) = \sum_{j=1}^{\infty} w_j f(x; \theta)$$

- As prior for the paramters we could take  $\theta_1, \theta_2, ...$  to be drawn from some  $F_0$  and
- ▶ We could take  $w_1, w_2, ...$  to be drawn from the stick breaking prior
- ► This is known as the **Dirichlet process mixture model**

#### **Density Estimation**

- ▶ This is the same as the random distribution  $F \sim \mathsf{DP}(\alpha, F_0)$  which had the form  $F = \sum_{j=1}^{\infty} w_j \delta_{\theta_j}$
- ▶ Except that the point mass distribution  $\delta_{\theta_j}$  are replaced by smooth densities  $f(x|\theta_j)$
- ▶ The model is

$$F \sim \mathsf{DP}(lpha, F_0)$$
  $heta_1, \dots, heta_n | F \sim F$   $X_j | heta_j \sim f(x | heta_j), \quad j = 1, \dots, n$ 

- The beauty of this model is that the discreteness of F automatically creates a clustering of the θ<sub>i</sub>'s
- In other words, we have implicitly created a prior on k, the number of distinct θ<sub>j</sub>'s

#### References

- Wasserman Lecture Notes
- van der Vaart Lecture Notes
- Müller, Quintana, Jara, and Hanson (2015). Bayesian Nonparametric Data Analysis