(e) As shown in the prediction, answer (a), the theoretical yield of
$$C_2H_2=0.106$$
 mol percentage yield = $\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$ = $\frac{1.30 \text{ g}}{2.76 \text{ g}} \times 100\%$ percentage yield = 47.2%

Therefore, the CaC₂ is 47.2% pure.

Evaluation

(f) We assume that the reactants are pure, that $H_2O_{(1)}$ is in excess, and that we obtained a 100% yield.

INVESTIGATION 1.5.1 COMPARISON OF THREE ISOMERS OF BUTANOL

(Page 84)

Prediction

(a) All three alcohols will produce alkyl halides, because they can all undergo substitution reactions where the OH group is substituted by a halogen atom.

The primary alcohol will oxidize to an aldehyde; the secondary alcohol will oxidize to a ketone; and the tertiary alcohol will not readily undergo oxidization.

Evidence

(b)	Alcohol	Reaction with HCI _(aq)	Reaction with KMnO _{4(aq)}
	1-butanol	cloudy layer formed after more than 1 min	colour change
	2-butanol	cloudy layer formed in about a minute	colour change
	2-methyl-2-propanol	cloudy layer formed immediately	no reaction

Analysis

(c) Each alcohol undergoes halogenation. Only the primary and secondary alcohols undergo controlled oxidation.

(d) The theory is correct (although the cloudy layer may be difficult to see in the primary alcohol).

Synthesis

- (e) All three alcohols form chlorides. The primary and secondary alcohols undergo controlled oxidation; the tertiary alcohol does not. The chlorides do not contain groups capable of hydrogen bonding and thus are not as soluble as the alcohols in water.
- (f) $CH_3CH_2CH_2CH_2OH + HCl \rightarrow CH_3CH_2CH_2CH_2Cl + H_2O$

$$\begin{array}{c} CH_3CH_2CHCH_3 + HCl \rightarrow CH_3CH_2CHCH_3 + H_2O \\ | & | \\ OH & Cl \end{array}$$

$$\begin{array}{ccc} CH_3 & CH_3 \\ \mid & \mid \\ CH_3CCH_3 + HCl \rightarrow CH_3CCH_3 + H_2O \\ \mid & \mid \\ OH & Cl \end{array}$$

(g) $CH_3CH_2CH_2CH_2OH + (O) \rightarrow CH_3CH_2CH_2CHO + H_2O$

$$\begin{array}{c} CH_3CH_2CHCH_3 + (O) \rightarrow CH_3CH_2CCH_3 + H_2O \\ | & | \\ OH & O \end{array}$$

$$CH_3$$

$$CH_3CCH_3 + (O) \rightarrow \text{ no reaction}$$

$$OH$$

(h) 1° , 2° , and 3° alcohols all undergo halogenation reactions, the OH group being substituted with the halogen atom. 1° and 2° alcohols undergo controlled oxidation to aldehydes and ketones respectively, but 3° alcohols do not.

INVESTIGATION 1.5.2 TRENDS IN PROPERTIES OF ALCOHOLS

(Page 86)

Question

(a)–(c)

Name	Structural Formula	b.p. (°C)	m.p. (°C)	Solubility	Diagram
methanol	CH₃OH	65	-94	w, al, eth, ace, bz, chl	H H—C—H OH
ethanol	C₂H₅OH	78	-117	w, al, eth, ace, bz	H H H—C—C—H OH H
1-propanol	C₃H ₇ OH	97	-126	w, al, eth, ace, bz	H H H H—C—C—C—H OH H H
1-butanol	C₄H ₉ OH	117	-89	w, al, eth, ace, bz	H H H H

KEY:

w: soluble in water; ace: soluble in acetone; al: soluble in ethanol; bz: soluble in benzene; eth: soluble in diethyl ether; chl: soluble in chloroform

Copyright © 2003 Nelson Organic Compounds 37