LEVEL

NSWC TR 78-143

20000728020

ESTIMATES FOR THE I'ROBABILITIES OF SURFACE-TO-AIR CLOUD-FREE LINES-OF-SIGHT AND LOW CLOUD STATISTICS FROM SHIP OBSERVATIONS.
PART 1. FIFTEEN MARINE LOCATIONS

BY B. S. KATZ F. C. DeBOLD J. J. PEREZ-ESANDI

RESEARCH AND TECHNOLOGY DEPARTMENT

24 NOVEMBER 1980

SEP 28 1981

E

Approved for public release, distribution unlimited

Reproduced From Best Available Copy

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

81928135

REPORT DOCUMENTATION PAGE	
Suctro To Too	READ INSTRUCTIONS REFORE COMPLETING HORM
SWC/TR-78-143 AD-A10463	33
STIMATES FOR THE PROBABILITIES OF URFACE-TO-AIR CLOUD-FREE LINES-OF-S.GHT AND DW GLOUD STATISTICS FROM SHIP OBSERVATIONS.	1964-71
ART 1, FIFTEEN MARINE LOCATIONS',	B CONTRACT OR GRANT NUMBER 14,
S./Katz, F. C./DeBold, J. J./Perez-Esandi	16 F5 18 21 1
PERFORMING CHOANIZATION NAME AND ADDRESS aval Surface Neapons Center	12 PROGRAM E. EMENT PROJECT TASK
nite Oak ilver Spring, MD 20910	027391 12739 331 70024
CONTROLL NO OFFICE NAME AND ADDRESS	R REPORT DATE
	15 WINDER OF RAGES
MONITORING AGENCY NAME & ADDRESS/IF IIITerent from Controlling,Office)	UNCLASSIFIED
	154 DECLASSIFICATION DOWNGRADING
DISTRIBUTION STATEMENT of this Report;	<u> </u>
pproved for public release; distribution unlimit	ed.
DISTRIBUTION STATEMENT 'of the abstract entered in Block 20, if different fro	om Report)
	•
	,
SUPPLEMENTARY NOTES	

UNCLASSIFIED

411563

ECURITY CLASSIFICATION OF THIS FASE When Date Friend

RITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Both the seasonal weather data (winter, spring, and summer) and the PCFLOS are tabulated for each location for nine different elevation angles from 10 to 90 degrees above the horizontal and for the heights for which lower cloud base data were available.

The main assumption of the unmodified method, which is fully described in the text, is that the universal method can be applied successfully to the statistics for individual low cloud base height recording cells.

Intermediate computational results corresponding to base height cells and the values of PCFLOS through all clouds, calculated by the unmodified method, are also provided.

Data from four selected locations were plotted for illustration and comparison purposes. PCFLOS statistics for various angles and cloud base heights were related to ability to visually detect targets at various ranges, altitudes, and elevation angles, by means of graphs that precalculated the slant range. A summary of the weather statistics and PCFLOS for all stations is also included.

FOREWORD

This work presents cloud statistics derived from individual weather observations collected by meteorologists on board Ocean Station Weather ships from North Atlantic and Pacific locations and from passenger ships at various locations. The data was collected during the time period January 1965 to December 1971 and was broken down into four three-month seasons. The matrix methods developed by Ivar Lund, AFGL, were used to calculate Cloud-Free Line of Sight probabilities up to three kilometer altitudes (lower clouds). Included in this report are statistics on cloud base heights, cloud covers and cloud types. Mr. Tom Fredian of the Naval Oceanographic Commani, NSTL Station, Mississippi supplied photographs of the low cloud types found in this publication.

This study was funded by the U.S. Navy's Electro-optical Meteorology Program at the Naval Ocean Systems Center (Code 532) under program element 62759N. Task Z⁵59-551-002.

H. R. RIEDL By direction

Accessi	on For
NTIS C	RA&I
DIIC TA	
Unannot	inced 🗆
Justif	ication
By	
	bution/
Avail	ability Codes
	Avail and/or
Dist	Special
111	1

CONTENTS

Chapter	Par	,e
1	INTRODUCTION	-1
2	STATISTICS FOR CLOUDS BELOW 2500 METERS	
3	METHOD FOR THE DETERMINATION OF ESTIMATES FOR PCFLOS (A, H,) AND SLANT RANGES	-1
4	PCFLOS (A H) AND SLAWT RANGE RESULTS	
5	SUMMARY AND COMMENTS	
	BIBLIOGRAPHY	-1
	GLOSSARY AND NOTATION	.1
APPEN	DIX A TABLES FOR THE STATISTICS OF CLOUDS BELOW 2500 METERS A-	
APPEN	DIX B TABLES FOR PINT (A;,H;)	1
APPEN	DIX C TABLES FOR PCFLOS (A, H ₃)	1
APPENÉ	DIX D GRAPHS FOR LOCATIONS 1, 9, J, M	1

ILLUSTRATIONS

	•	
Figure		Page
1-1	SURFACE STATIONS	1-3
3-1	SLANT RANGE GEOMETRY	3-5
3-2	SLANT RANGE TO GIVEN HEIGHT	3-6
4-1	CLOUD BASE HEIGHT STATISTICS, LOCATION M	4-3
4-2 to 4-4	PROBABILITY OF A CLOUD-FREE LINE-CF-SIGHT TO VARIOUS ALTITUDES	
	AS A FUNCTION OF ELEVATION ANGLE. LOCATION M. WINTER, SPRING,	
∔- 5	AND SUMMER	4-6
+-5	PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT TO VARIOUS ALTITUDES	
	COMBINED WITH SLANT RANGE CURVED EARTH GEOMETRY. LOCATION M.	
4.6.4.4.0	SPRING . PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT VS. TARGET SLANT RANGE.	4-9
4-6 to 4-8	PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT VS. TARGET SLANT RANGE.	
	LUCATION M. WINTER, SPRING, AND SUMMER	4-10
4-9	LINES OF CONSTANT PCFLUS (A, (SR)) IN POLAR COORDINATES.	
	LOCATION M. WINTER	4-13
D- 1.	LOWER CLOUD BASE HEIGHT STATISTICS. LOCATION 2. WINTER, SPRING,	
	AND SUMMER	D-2
C-2 to D-4	PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT. TO VARIOUS ALTITUDES.	
	AS A FUNCTION OF ELSVATION ANGLE. LOCATION 2. WINTER, SPRING,	
	AND SUMMER	D-3
D-5	PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT TO VARIOUS ALTITUDES.	
	COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY.	
D-6	LOCATION 2. SPRING	Մ-6
0-0	LOWER CLOUD BASE HEIGHT STATISTICS. LOCATION 9. WINTER, SPRING,	
D-7 to D-9	AND SUMMER	D-7
D-7 (0 D-3	AS A FUNCTION OF ELEVATION ANGLE. LOCATION 9. WINTER, SPRING,	
	AND SUMMER	D-8
D-10	PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT TO VARIOUS ALTITUDES	. 0-0
	COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY.	
		D-11
D-11 ·	LOCATION 9. SPRING LOWER CLOUD BASE HEIGHT STATISTICS. LOCATION J. WINTER, SPRING,	0-11
	AND SUMMER	D-12
D-12 to D-14	AND SUMMER PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES,	0 11
	AS A FUNCTION OF ELEVATION ANGLE, LOCATION M. WINTER, SPRING,	
•	AND SUMMER	D-13
D-15	PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT TO VARIOUS ALTITUDES,	
*1	COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY. LOCATION	
	J. SPRING	D-16
D-16	LOWER CLOUD BASE HEIGHT STATISTICS. LOCATION M. WINTER, SPRING,	
	AND SUMMER	D-17
D-1/ to D-19	PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT. TO VARIOUS ALTITUDES,	
	AS A FUNCTION OF ELEVATION ANGLE. LOCATION M. WINTER, SPRING,	
2 00	AND SUMMER	D-18
D- 20	PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT TO VARIOUS ALTITUDES.	.;
	COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY. LOCATION	
	M. SPRING	D-21

TABLES

Table -		•								-	age
1-1	SURFACE	STATIONS .							• •	•	1-4
2-1 2-2	NUMBER O	F OBSERVATI	ONS PER SI	EASON A	ND LOCAT	TION		 F	• •	•	2-3
2-2	IDENTI	FICATION .								•.	2-4
2-3 2-4A-B	CODE FOR	CLOUD COVE	R							•	2-5
	0 2-74 F	DECHENCIES	FOR LOWER	CLOUD	RASE HET	CHTS TE	PANSPOS	FD OF			
2 371 6	THE LO	WER CLOUD (OVER MATE	IX L (C	, H) LOC	CATION M.	. WINT	ER-		•	2-10
2-5B to	o 2-78 L	OW CLOUD TY	PE STATIS	TICS.	LOCATION	M. WI	NTER, S	PRING,		•	2 10
3-1	AND SU	MMER ITIES OF CL	OHD_EDEE I	INES_O	F_SIGHT	AS A FIIN	CTION	DF .	• •	•	2-10
-	ELEVAT	ION ANGLE A	ND. TOTAL S	SKY COV	ER U(A.	C)			• .		3-4
3-2	MATRIX F	ORM OF EXPR	RESSION (3.	-2) FOR	PCFLOS						3-/
1-1 to	4-3 PINT	$(A_i, H_j).$	LOCATION	M. WI	NIER, SE	RING, A	AD 20WW	EK	• •	•	4-4
		os (A, H _j)							• . •	•	4-5
1-7 to 4	4-9 PROB Ne elevat	ABILITY OF ION ANGLES.	CLOUD-FREE	E LINE-(OF-SIGHT	F ''S. SLA RDLING A	ANT RAN AND SHM	GE FOR MFR			4-10
5-1 to	5-3 SUMM	ARY OF STAT	ISTICS FOR	R LOWER	CLOUD E	BASES BEI	_OW 250	O METERS			
- 4 4 - 1	WINTER	, SPRING, A	IND SUMMER	\ CTATI		• • • •				•	5-5 5-8
		ARY OF LOW									
		FOR PCFLOS								•	2-11
ATA to		QUENCIES FO									
	WINTER	. SPRING. A	ND SUMMER								A-2
AlB to	A45B LOW	CLOUD TYPE	STATISTI	CS FOR	FIFTEEN	LOCATION	VS. WIN	TER,			
31 to B	3PKING). AS PINT	, AND SUMME (A.,H.) CON	TRIBUTION	TO PCEL	OS (A)	H.) DUE	TO LOWE	R CLOUDS		•	MC
MI.	TH BASE A	T'H POR FI	FTEEN LOCA	TIONS.	WINTER	.JSPRING	. SUMME	R		•	B-2
	Q IAMES	os (A _i , H _j)									C-2
246	PUFLES	(A,) FOR F	IFTEEN LO	CATIONS	. WINTE	R, SPRI	NG, AND	SUMMER	•. •	•	C-19

CHAPTER 1 INTRODUCTION

The operation of systems based on the propagation of visible and/or infrared electromagnetic signals through the atmosphere can be severely restricted by clouds interposed in the line of sight (LOS). Even for the preliminary designs of atmospheric optical systems it becomes necessary to obtain estimates of the probabilities of cloud-free lines of sight (PCFLOS) at the potential sites of operation in order to take account of the impact of this aspect of atmospheric phenomena in their performance.

It is the main objective of this report to supply such first rough estimates for a discrete set of surface-to-air LOS up to a height of the order of 2500 m at fifteen marine locations.

The identification code for these locations and their coordinates are given in Figure 1-1 and Table 1-1.

We proceed next to highlight the contents of this report.

Weather information on clouds needed for the calculations or relevant to the problem is discussed in Chapter 2 on "Statistics for Clouds Relow 2500 Meters," which includes the data for station M as an example. Our statistical weather data for all locations is reproduced in Appendix A.

Chapter 3 deals with the "Method for the Determination of PCFLOS (A, H,) and Slant Ranges," that is, the probability of cloud-free LOS at an elevation angle A, (A, = 10° , 20° , ... 90°) up to a height H = 25, 75, 150, 250, 450, 800, 1250, 1750, 2250 meters) and the corresponding slant ranges for target sighting. Our procedure, which makes use of the universal method of Lund and Shanklin (see bibliography) is fully discussed in this chapter.

Appendices B and C supply, respectively, an intermediate step and the final results of the calculation of PCFLOS (A, H,) for winter, spring, and fall for each location. They are explained in Chapter 4 where station M has been singled out again as an example by having its data and results listed and plotted in various ways.

In order to provide a quick visual comparison among various locations, we produced also plots for stations 1, 9, and J, although not as many as for M. These plots and a duplication of the corresponding ones of M constitute Appendix D.

Finally, we summarize the results on the statistics of clouds below 2500 meters, PCFLOS (A, $\rm H_{\rm j})$ and slant range and include some relevant comments about them in Chapter 5.

SURFACE STATIONS+ TABLE 1-1

	ALPHA-NUMERIC	LOCATION
IDENTIFICATION	DESIGNATION	LAT. LONG.
1)	. 2	33N 34E
2 }		36N 0E
9-10	9	17N 107E
A	Α*	62N 33W
В	В	56N 51W
C	c	52N 35W
D	D , I	44N 41W
H	н	48N 36W
1	i*	60N 19W
J .	J*	53N 19W
K	K	45N 16W
M	м	66N 2E
N	N ¹	30N 140W
Ρ.,	Р	50N 145W
· T	T	29N 135E
V	l v i	31N 164E

^{*} HOURLY OBSERVATIONS

†(SEE FIGURE 1-1)

CHAPTER 2

STATISTICS FOR CLOUDS BELOW 2500 METERS

Records of weather observations for the marine locations studied in this report were supplied by the National Climatic Center, Asheville, North Carolina. They were performed every three (at some locations six) hours and cover the period from 1965 to 1971 or 1972 for all stations except station H which covers the period from 1970 to 1978.

The observations were separated in four seasons. Spring contains all of March, April, and May; summer--June, July, and August; fall--September, October, and November; winter--December, January, and February. Fall data, which was found to be similar to spring's, was not included in this study. The actual numbers of observations for each location and season appear in Table 2-1.

The data was accumulated at the fifteen northern hemisphere locations shown in Figure 1-1, with alphanumeric designations, latitude and longitude given in Table 1-1. Observations made in some areas were combined and are reported as belonging to single locations. Thus, data from stations 1 and 2, for example, both located in the Mediterranean Sea were combined and are presented here as of location 1. Likewise Southeast Asia data from 9 and 10 are given as of 9.

Specifically, the records supplied by the National Climatic Center include:

- a. lowest cloud base height
- b. low cloud amount
- c. low cloud type, C,
- d. middle cloud type, C_{M}
- e. high cloud type, C_H
- f. total cloud cover

Lower cloud heights are given by indicating in which height cell the clouds were observed. Table 2-2 lists the ten WMO height cells with their code numbers, heights, and midrange points. For the last cell we have chosen 3000 meters as the midrange point for the LOS estimates.

In this report the midrange heights H are used to identify the base height cells.

Tables 2-3, 2-4A, and 2-4B give the WMO code and definitions and photographic illustrations for lower and total cloud cover (amount) and for low cloud types (C_L) . Notice that the lowest cloud base in our observation is not always due to what is defined in Tables 2-4A and 2-4B as a low cloud type: if none of these is present

NSWC 78-142

in a particular instance, the lowest cloud base would be that of a middle or high cloud type.

The coded records of the marine observations supplied by the National Climatic Center have been interpreted according to the 1960 WMO Code 1600 and used to obtain the lower cloud base height and low cloud statistics. Appendix A consists entirely of tables of lower cloud base and low cloud statistics for winter, spring, and summer for all fifteen locations. The top table of each page gives the elements of the transposed of the local lower cloud base matrix L (C_i, H_i) multiplied by 100. The elements of L (C_i, H_i) are the relative frequencies corresponding to the two dimensional cell denoted by (C_i, H_i) where C_i is the lower cloud cover and H_i the midrange height of the i^{th} cell. We take these frequencies as probabilities.

The right hand column of the top tables is the marginal frequency corresponding to base height. It is obtained by adding the elements on the same row and is denoted here by

$$F(H_{j}) = \sum_{i=1}^{9} L(C_{i}, H_{j})$$
 (2-1)

Similarly the marginal frequencies for cloud cover appear on the line labeled "All lower clouds (percent)."

The tables on the lower half of each page deal with the statistics for low cloud type for the same height cells and should be interpreted according to Tables 2-4A and 2-4B. We have made a small modification to the low cloud classification such that all the frequency entries for the 0-50 meter base height have been transferred to a new category labeled "Fog."

The low cloud type tables were not used explicitly in the LOS calculations. For the purpose of illustration, we reproduce in this chapter the cloud tables for station M as Tables 2-5A and B through Tables 2-7A and B.

Four locations. . . 9, J, and M, have their lower cloud base frequencies plotted for three seasons in Figures DI, DG, DII, and DIG of Appendix D.

The reader should recall that the sharp increases in frequency often found for 3000 meters in the lower cloud base statistics includes observations of no clouds and of all clouds above 2500 meters and that, in general, it would not correspond to actual clouds being present at or near that height but to the integrated value over a very extensive cell.

TABLE 2-1

NUMBER OF OBSERVATIONS PER SEASON AND LOCATION

Location	Laritude	Longitude	Winter	Spring	Summer
9/10	17%	107E	4245	4101	3673
· T	29N	135E	1454	20.33	4766
N	30 N	140W	3348	3394	3392
V	31N	164E	2400	2722	2839
1/2	4 33N 36N	34E 0E	618	707	740
מ	44N	41W	2299	2444	2607
K	, 45N	16W	1731	1777	1713
H.	48N -	38W	3521	1931	1979
Р	50N	145W	2496	2163	2514
C	53N	35W	2414	2625	2739
J	50N	19W.	2097	2191	2214
В	56N	51W	2652	2646	2790
I	60 Y	19W	1976	2194	2248
Α	62%	3.3W	2032	2156	2091
M .	66%	2 E	246.3	2495	2562

TABLE 2-2 CELLS FOR RECORDING LOWER CLOUD BASE HEIGHT AND THEIR CODE INDENTIFICATION

WMO CODE 1300 FIG' RE	HEIGHT IN METERS	MID-RANGE HEIGHT H METERS
0	0 - 49	25
1	5G - 99	75
2	100 - 199	150
3	200 - 299	250
4	300 - 599	450
5	60C 999	800
6	1,000 - 1,499	1250
. 7	1,500 - 1,999	1750
8	2,000 - 2,499	2250
9	2,500 or higher	3000
	or no clouds	or higher

FROM SURFACE MARINE OBSERVATIONS, TAPE DECK TDF-11

TABLE 2-3 CODE FOR CLOUD COVER*

TOTAL CLOUD AMOUNT (N)
LOWER CLOUD AMOUNT (Nh)

Fraction of celestial dome covered by all clouds. Fraction of celestial dome covered by all the C_{L} clouds and, if no C_{L} cloud is present, that fraction covered by all the C_{M} clouds present.

0 = Clear

1 = 1 Okta or less, but not zero

2-8 = 2-8 Oktas

9 = Sky obscured or cloud amount cannot be estimated.

^{*}from Surface Marine Observations Tape Deck TDF-11

TABLE 2-4A CODE FOR LOW CLOUD TYPE (C₁)* +

- O = No stratocumulus, stratus, cumulus or cumulonimbus.
- 1 = Camulus with little vertical extent and seemingly flattened, or ragged cumulus other than of bad weather, or both.
- 2 = Cumulus of moderate or strong vertical extent, generally with protuberances in the form of domes or towers, either accompanied or not by other cumulus or by stratocumulus, all having their base at the same level.
- 3 = Cumuionimbus the summits of which, at least partially, lack sharp outlines but are neither clearly fibrous (cirriform) nor in the form of an anvil; cumulus, stratocumulus or stratus may also be present.
- 4 = Stratocumulus formed by the spreading out of cumulus; cumlus may also be present.
- 5 = Stratocumulus not resulting from the spreading out of cumulus.
- 7 = Stratus fractus of bad weather (generally existing during precipitation and a short time before and after) or cumulus fractus of bad weather, or both (pannus), usually below altostratus or nimbostratus.
- 8 = Cumulus and stratocumulus other than that formed from the spreading out of cumulus; the base of the cumulus is at a different level from that of the stratocumulus.
- 9 = Cumulonimbus, the upper part of which is clearly fibrous (cirriform), often in the form of an anvil; either accompanied or not by cumulonimbus without anvil or vibrous upper part by cumulus, stratocumulus, stratus or pannus.
- + from Surface Marine Observations Tape Deck TDF-11 *Fog = All clouds in the 0-50 meter base height cell

C_L 1: Cumulus with little vertical extent and seemingly flattened, or ranged Cumulus Fractus other than of bad weather, or both.

CL 2: Cumulus of moderate or strong vertical extent or Towering Cumulus, generally with protuberances in the form of domes or towers, possibly accompanied by other Cumulus or by Stratocumulus, all having their bases at the same level. Cumulus of great vertical extent sometimes produce virga and showery precipitation.

C_L 3: Cumulonimbus the summits of which, at least partially, lack sharp outlines, but are neither clearly fibrous (cirriform) nor in the form of an anvil; Cumulus, Stratocumulus or Stratus may also be present. These clouds are often accompanied by thunderstorms and showery precipitation.

TABLE 2-4B CODE SPECIFICATIONS FOR CL CLOUDS. (FROM NAVAIR 50-10 (FM H-18))

CL 4: Stratocumulus formed by the spreading out of Cumulus; Cumulus may also be present.

 $C_{\rm L}$ 5: Stratocumulus not resulting from the spreading out of Cumulus. This cloud is sometimes accompanied by precipitation of a light intensity and a continuous or intermittent character.

C_L 6: Stratus in a more or less continuous sheet or layer, or in ragged shreds, or both, but no Stratus Practus of bad weather. Any precipitation from this cloud is in the form of drizzle or snow grains.

TABLE 2-4B (CONTINUED)

C. 7: Stratus Fractus of bad weather or Cumulus Fractus of bad weather, cr both (pannus), usually below Altostratus or Nimbostratus. The term "bad weather" denotes the conditions which generally exist during precipitation and a short time before and after.

CL 8: Cumulus and Stratocumulus other than that formed from the spreading out of Cumulus; the base of the Cumulus is at a different level from that of the Stratocumulus.

C_L 9: Cumulonimbus, the upper part of which is clearly fibrous (cirriform), often in the form of an anvil, or Cumulonimbus Mamma which has base with handing pouches or protuberances; either accompaniel or not by Cumulonimbus without anvil or fibrous upper part, by Cumulus, Stratocumulus, Stratus or pannus. These clouds are often accompanied by thunderstorms and showery precipitation.

TABLE 2-4B (CONTINUED)

COCATION M	
CATION	-
CATIO	Ξ
CATIC	=
Š	_
Š	-
×	Œ
3	×
	3

TABLE 2–5A WINTER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L(C,H)
(CLOUD COVER IN EIGHTS)

			. Manu in	. 10-140		· 	
	► N		1		90 .	m un.	
	ELGH BUTI						·
	BASE HEIGHT Distribution		· ·				49.3
	•		• • •			000 10 M 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.6
	~		27 • • • • • • • • • • • • • • • • • • •	•	•		10.9
	.		\$5.5		٠	00 40 0 70 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0	m s
פאומי	•	\$ C G G G G G G G G G G G G G G G G G G	16 C	TER ISTICS (%) E CODE)	w.		15.7
ICECOUD COVER IN EIGHTS		80000000000000000000000000000000000000	iG • 6	TABLE 2—5B WINTER OW CLOUD TYPE STATISTICS ((SEE LOW CLOUD TYPE CODE)			٠.
וכרממה	199	4007077400 4004078000 111111111111111111111111111111111		TABLE 2—5B WINTER LOW CLOUD TYPE STATISTICS (%) (SEE LOW CLOUD TYPE CODE)	m		1.3
	. N		N 18		~		*.7
•	→		2.		-	70704 NK 170	1 • 1
	•	**************************************	P) 0 ul		•	8666668 4 8666668 4 8666668 4	*
	BASE HEIGHT METERS		ALL LOW CLOUDS (PER CENT)		BASE HEIGHT METERS	1550. 1550. 17550. 17550. 17550.	ALL LOW CLOUDS (PER CENT)
	7				-		

NSWC T	R7	8-1	43
--------	-----------	-----	----

LOCATION M	BASE HEIGHT Distribution												ŧ			•				F06	-											1.6
001	BASE	1.60	•	1.52	3.93	27.37	46.41	13.55	1.8	49.					1					•	6		*	4	74.5	9	•				•	41.1
	•	1.52	*	3.7.	1.68	52.9.	5.81	1.32	•				,	17.0			1	•		•		00.0	0.0	0.0		96.	•	-			1	•
•	~	0.0	:	. 32	1.00	5.69	10.18	2.04	•	-))			19.5	ı					~	80.0		91.	1.16	1.76	21.	•		3 9 •	·	•	9.6
IIGHT RIX L (C, H)	•	00.0	0	•15	*9.	1.29	11.10	2.44	-12	-12	•		•	21.9				•		•	. 00• 0	+0.		2.28	1.28	-	9	9 6		٠		r • 9 • 9 • 9 • 9 • 9 • 9 • 9 • 9 • 9 •
TABLE 2-6A SPRING FREQUENCIES FOR LOWER CLOUD BASE HEIGHT SPOSED OF THE LCWER CLOUD COVER MATRIX L (CLOUD COVER IN EIGHTS)	•	00.0		=	.28	2.97	6.21	3.6	9	# G	•		:	11.1		SPRING	FISTICS (%)	E CODE)		.	0.00	0.0	0.0		9.70	5.93	.12	***	:			9.01
TABLE 2-6A SPRING HES FOR LOWER CLOUD BA THE LCWER CLOUD COVER (CLOUD COVER IN EIGHTS)		90.0	•	•	•20	2.97	10.4	1.68	42.				•	. 2•01	•	TABI E 2-68 SPR		(SEE LOW CLOUD TYPE CODE)		•	0 0	00.0	0	3 G		00.0	0.00				c.	3 5
TABL ENCIES FOR OF THE LCV (CLOUD	•	0.00	0.00	00.0	00.	1.06	8 T . 9	1.24	-12			,		- 9		TARI	LOW CLOUI	(SEE LOW		**	00.0	0.00	00.0	3 · ·	9	•0.	0		}		đ	• •
TABLE 2–6A SPRING FREQUENCIES FOR LOWER CLOUD BASE HEIGHT RANSPOSED OF THE LCWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	~	9.00	0.0) -	***	•	3.17	, o ,		000			u	•						~ .	0.00	0.00	3 · ·	7 4	2.4.	1.48			;		4	•
-	•	0.0	6.0		9	75.	00.1	76.1	·					3.5		1				-4	0.00	70.0	- -	.12		٠.	9.0					C
. 1	. •	93.			3 c) (3.65	,		~	0 0				•		•	90.0	00.0			***	6 0.	92.	7 F G T	} } •		بر د د	•
	BASE HEIGHT METERS	25.	. 63.		• 167			1750	2050	3000		,	ALL	(PFR CENT)					BASE HEIGHT	METERS	25.	75.	126.		.000	1250	1750.	3000			ALL	(PER CENT)

-
_
_
Z
0
Ξ
-
⋖
Ü
δ
_
_

TABLE 2–7A SUMMER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

	•	•	•				,							N	Sy	NC	TF	78	-1	43			,			•														
MEIGHT		•		;				•										•						F06		4.92													6.4	
BASE WEIGHT DISTRIBUTION		4.92	29.	4.45	68.4	4.1.22	30.4.2	5.24	3			70.7					•							•		٠	00.0	.12	7			9	•	,	•			-	27.9	
•	, ;	9.	7			•	- 151		•	•					. !	29.1								•		00.	* 0.	**	. 31	30.4	66.0		9						12.1	
		5 C	2.	7.	1.66	9.69	7.88	9	F.			•	٠.			21.8	Ĩ							~	•		•15	1.21	1.56	3.94		.12	9	2 4 4					7.7	,
•	•		•	ů.	2	٠	60.3	.51	-	•		•			•	17.4								.	•))	*	***	+9.4	96.9	86.	0.50			9				19.0	
•					0	4.33	3.24	.7	10.	78.					•	4.1			;	ER	STICS (%)	. cope,	ı	V O	6	?	•		2	ò.32	5.85	2.65	/4.	80.	0.00) 			19.6	
•	30.0				9.	56.2	3.24	۲.	.12	40	.12				7.5					Z-78 SUMMER	OW CLOUD I YPE STATISTICS (•	00.0			9 6	3 (3 (3 (9	.23	00.0	00.00	00.0	00.0				۳.	
, m	9	0	00.0			71.1	70.0	.51	• 20	90.	213				2.2			•		I ABLE 2-78	(SEE LOW CLOUD TYPE STATISTICS (%)			7	9		•		•	20.	.16	7	•	00.0	•		•		1:1	
~	0.00	0.0	ů, in	4,5			76.1	2	• 16	30.	. 27				1.4	•				,	•		·	•	9	00.0	9 9	1		9 .	7.1	16.	0.0	00.0	00.0				5.9	
4	0.00	00.0	0.03	. 48	12		4 6	70.	71.	**	.23				2.8								,•	•	90.0	0.00	00.0	90.0		9 6	13.	67.	*		.0.0					
•	.23	00.0	00.0	. 90 • 0	. 00 0	C				3	2.58				2.8								ď	•	00.0	00.0	10,	12	4	•			• 35	• 20	3.43				?	
BASE HEIGHT METERS	. 52.	75.	150.	251.	458	A 00	1250	* 750	97.4	• 0622				ALL	TOW CLOUDS	(PER CENT)							BASE HEIGHT	METERS	25.	75.	150.	256.				• • • • • • • • • • • • • • • • • • • •	11.78	- 2622	2000			ALL	(PER CENT)	

CHAPTER 3

METHOD FOR THE DETERMINATION OF ESTIMATES FOR PCFLOS (A $_i$, H $_j$) AND SLANT RANGES

The procedure used for the calculation of estimates of PCFLOS (A, H,) in terms of the elevation angle and target height is based on the work of Lund and Shanklin who proposed a universal method for the determination of cloud-free lines of sight in their 1973 paper.

In brief, Lund and Sharklin established statistically a relation between $P(C_j)$, the probability of a cloud cover C_j , as determined by the usual visual weather observations practice² and $PCFLOS^{'}(A_j)$ found by careful examination of whole-sky photographs taken at weather observation time.

Before proceeding any further we must emphasize again the difference between PCFLO3 (A_i) of Lund and Shanklin and PCFLOS (A_i , H_j) that we wish to evaluate: PCFLOS (A_i) is the probability of a cloud-free line of sight through all clouds present against a deep sky background while PCFLOS (A_i , H_j) is the probability up to a height H_j regardless of the background.

In our notation the Lund and Shanklin relation is expressed by

PCFLOS
$$(A_i) = \sum_{j=1}^{9} U(A_i, C_j) P(C_j)$$
 (3-1)

where A_i and C_j are the values of the elevation angle A and cloud cover C, $P(C_j)$ the probability of C taking the value C_j and the matrix elements $U(A_i, C_j)$ the probability of a CFLOS at A_i and C_j .

Actually Lund and Shanklin determined a general matrix U for all clouds and several others specialized for various sets of cloud types. The general one, which is the one that we apply here, can be seen in Table 3-1 in this chapter. It has nine cloud cover columns (rather than eleven) to match the available marine low cloud data.

Lund, I.A., and Shanklin, M.D., 1973: "Universal Methods for Estimating Probabilities of Cloud-Free Lines-of-Sight through the Atmosphere," J. Appl. Meteor. 12, 1222-1228.

²"Surface Observations," Fed. Meteor. Handbook No. 1, First and Second eds., Dept. cf Commerce
"Surface Observations," NAVAIR 50-1D-1 (FMH-1B) 1 Jan 1980, Dept. of the Navy

We proposed the following expression for the estimation of PCFLOS (A_i, H_i) ,

PCFLOS
$$(A_i, H_j) = 1 - \sum_{k=1}^{j} \left[1 - \sum_{\ell=1}^{9} U(A_i, C_{\ell}) \right] \times$$

$$L(C_{\ell}, H_{k}) / P(H_{k})$$
 $P(H_{k}) : 1 \le i \le 9, 1 \le j \le 10$ (3-2)

where L (C $_{\ell},\ H_{k})$ are the matrix elements of the local lower cloud matrix of Chapter 2.

One can arrive at this expression by arguing that

$$\sum_{k=1}^{9} U(A_{i}, C_{k}) L(C_{k}, H_{k})/P(H_{k})$$

gives, for the base height cell at H_k , the probability of a CFLOS at A_i and H_k where the k^{th} column of L/P is regarded as a distribution for cloud cover. Here we have made the assumption that Lund and Shanklin's use of the universal matrix U is applicable to individual base height cells. The complement to 1 is then the probability for a LOS to be obstructed by clouds due to the structure of the lower clouds present at this height; and the product of this quantity with P(H_k), defined in Chapter 2 as the frequency (probability) for the presence of lower clouds at H_k , gives the probability of sighting a cloud at H_k when the line of sight is clear up to H_k . The sum over all the intervening height cells can now be taken as the probability of having sighted a cloud before or at this height. In turn its complement to 1 is an estimate of the probability for a line of sight to reach H_k .

Equation (3-2) involves matrices but it does not lend itself to be written readily in matrix form. For those who prefer a matric expression, we include it in Table 3-2 at the end of this chapter.

As an alternate expression for PCFLOS (A; , H;) we can write

PCFLOS
$$(A_i, H_j) = 1 - \sum_{k=1}^{j} \left[1 - PINT (A_i, H_k)\right]$$
 (3-3)

wi th

PINT
$$(A_i, H_j) = 1 - \begin{bmatrix} 9 \\ 1 - \sum_{k=1}^{9} U(A_i, C_k) \times \\ (C_k, H_k) / P(H_k) \end{bmatrix} P(H_k)$$
 (3-4)

This form shows explicitly the contribution of each base height cell as if it were isolated.

Inserting the values of the elevation angle A and the cloud base height H, for which we have the values of PCFLOS $(A_i,\,H_j)$ in the following formula, we obtain the corresponding value of the slant range SR,

$$SR = -R \sin A + \sqrt{H_S (2R + H_S)^2 \cos A} + \sqrt{\left[-R \sin A + \sqrt{H_S (2R + H_S)^2 \cos A}\right]^2 + H^2 - H_S^2 + 2R (H - H_S)^2}$$
(3-5)

where

 H_s is the sensor's height and $R = 6.36 \cdot 10^6$ m is the earth's radius.

Figure 3-1 illustrates the geometry involved in the problem and Figure 3-2 provides a monograph for quick determination of slant ranges of less than 20 km neglecting the sensor's height.

NSWC TR 78-143

,	TABLE 3-1		probabilities of Cloud-Free Angle and Total Sky Cöver.	OUD-FREE LI KY CÓVER. U	LINES-OF-SIGH U(A, C)	PROBABILITIES OF CLOUD-FREE LINES-OF-SIGHT AS A FUNCTION OF ELEVATION ANGLE AND TOTAL SKY CÔVER. U(A, C)	TION OF ELEN	ATION	
			.·	,				1	
Allow ANGLE			× 3	SAT COVER (E.GHTPS)					
	0	1			•	ž	٥		٥
0.7	23.	*	>1.	36.	:	36	62.	17	.03
0.7	. 46.	*	. 16		*		.37	*>	• 05
00	46.	. 4.	7.	c)·	000	. 55.		, < 6	• 00•
•	***	٠	0 8	. 7.	7.	9.	D	. 34	.01
20	, ,	*		10.	*	64.	74.	64.	.06
0	7 .	.95	£ .	70.	•15	. 6.	**	**	*0*
3.0	5	•	0 0	70.	.16	• 99•	+6.	. 35.	90.
0	•	. 6	¥0.	. 20.		. 20.	cc ·	çı.	90.
0,7	1.60	9	7	7 10	111	t e	į	Ş	80

FIGURE 3-1 SLANT RANGE GEOMETRY.

FIGURE 3–2 SLANT RANGE TO GIVEN HEIGHT.

TABLE 3-2 MATRIX FORM OF EXPRESSION (3-2) FOR PCFLOS

PCFLOS = $Q - [Q - U L M^{-1}] M T^{U}$ where

U is given in Table 3-1.

the transposed of L b_3 . Table 2-5A for the winter season at station M and the tables A of Appendix A for all locations,

$$Q(i, j) = 1, 1 \le i \le 9, 1 \le j \le 10,$$

$$T^{u}(i, j) = \begin{cases} 1 & i \le j \\ 0 & \text{otherwise} \end{cases} \le i \le 10, 1 \le j \le 10$$

M (i, j) = P (H_i)
$$\delta$$
ij $1 \le i \le 10, 1 \le j \le 10$

Notice that

$$(Q M T^{\mathbf{u}}) (\mathbf{i}, \mathbf{j}) = \sum_{k=1}^{k} P (H_k)$$

and that $Q - QMT^{U}$ in

$$PCFLOS = Q - QMT^{u} + ULT^{u}$$

is independent of the elevation angle A_i . Similarly (3-3) and (3-4) become PCFLOS = Q - [Q - PINT] T^u and PINT = Q - [Q - U L M⁻¹]M respectively.

CHAPTER 4

PCFLOS (A_i , H_j) AND SLANT RANGE RESULTS

The lower cloud base data for the fifteen marine locations of Figure 1-1 (Table 1-1) that was discussed in Chapter 2 has been processed with the computer algorithms of formulae

(3-3) for PINT (A_i, H_i) ,

(3-4) for PCFLOS (A_i, H_i) ,

(3-1) for PCFLOS (A,)

and collected in tables for winter, spring, and summer in Appendix B, PINT (${\bf A_i}$, ${\bf H_j}$),

Appendix C, PCFLOS (A_i, H_i) and PCFLOS (A_i)

These tables are arranged in the order given in Table !-1: the PCLOS (A;) table being the last one in Appendix C.

Four locations, namely, 1, 9, ${f J}$, and ${f M}_i$ have been selected for more detailed consideration, and graphs have been plotted with the values calculated for the lower cloud base statistics, and PCFLOS $(A_i,\,H_i)$. These graphs are found in Appendix D. For each of the selected locations we include in consecutive order:

- Lower cloud base height statistics for winter, spring, and summer
- b. PCFLOS (A, H,) for winter c. PCFLOS (A, H, H) for spring d. PCFLOS (A, H, H) for summer

- e. Combined graphs for PCFLOS (A_i, H_i), lower cloud base heights (target height) and slant range.

With the intention of simplifying the reader's task and of illustrating more intuitively the results of our calculations, we reproduce in this chapter the tables and graphs corresponding to location M; and, in addition, we include, for the same location, tables and graphs for slant range and one graph for lines of constant PCLOS $(A_i, (SR)_i)$ as described below.

In figure 4-1 we have plotted the values of the lower cloud base frequencies listed in Tables 2-5A to 2-7A of Chapter 2.

Tables 4-1 to 4-3 give PINT (A_i, H_i) for winter, spring, and summer respectively; and Tables 4-4 to 4-6 give PCFLOS (A_i, H_i) for the same sequence of seasons.

The latter values are plotted in Figures 4-2 to 4-4. They show clearly the influence of the region of higher cloud base frequencies on the probability of a

cloud-free line of sight. Figure 4-5 for the spring season is a nomogram relating slant range, target height, and PCFLOS $(A_i, H_i).^l$

In Tables 4-7 to 4-9 we list for each season the values of the slant range (SR) (A_i, H_i) for which we have data points (A_i, H_i) and the corresponding probability PCFLOS (A_i, H_i) at the same point. The slant ranges were calculated with expression (3-5) neglecting the sensor's height. We include also three figures, 4-6, 4-7, and 4-8, where we plot the values in these tables for five elevation angles. The numbers in parenthesis are the values of PCFLOS (A_i) calculated with (3-1) and listed in Table C-46.

Finally, we give for the winter season only Figure 4-9 which shows very rough estimates, in polar coordinates, of lines of constant probability PCFLOS (A, , (SR)) for equivalently PCFLOS (A, H,)). This graph was obtained by rounding off subjectively the curves picted for the winter results in Figure 4-7, interpolating and replotting in polar coordinates for slant ranges of less than 18,000 feet.

We wish to remind the reader that the heights listed in the tables constituting Appendices A and B and their reproductions in the text are the midrange values given in Table 2-2: that the low-cloud statistics cover in detail up to 2500 meters and that the entry for 3000 meters is only a representative value for heights over 2500 meters. In appendices C and D we use the values for the top of the height cells up to 2500 meters and 3500 for the top cell.

Suggested by Captain W. L. Boyer, U. S. Navy. Former Deputy Commander, NSWC, presently at ONR.

FIGURE 4-1 CLOUD BASE HEIGHT STATISTICS, LOCATION M. (SEE TABLES 2–5A, 2–6A, AND 2–7A).

PINT (A,H)	N TO PCFLO	S (A, H) DU		BLE 4-1 S S WITH BAS		TH.		LOC	ATION M
HMETERS	10 056	26 DE8	30 DE0	40 DEG	50 DE6 .	60 DE6	70 DE6	80 DE6	99 068
25.0000	.9052	.9855	.9057	.9050	.9860	. 9460	.9660	.9860	.9868
75.0000	.9993	.9993	.9993	.9994	.9994	.9994	.9994	.9954	.9994
150.000	.9463	.9849	.9872	.9876	.9878	.9876	.9879	.9879	.9879
250.000	9676	.9700	.9713	.9725	.9731	. +734	.9736	.9737	.9738
450.000	.7982	-8182	-8309	.0410	.8471	.8498	.8517	.8531	.8535
******	.6874	.7241	-7480	.7660	.7765	.7817	.7854	.7875	.7886
1250.000	.9212	.9316	.+9387	.7435	.9464	.9479	.9489	.9496	.9499
1750.0000	.9949	.995 7 .	.9962	.9965	.9967	.9969	9969	.9978	.9970
2250.000	.9964	,9968	•9972	.9974	.9975	.9976	.9976	.9976	.9976
3000.000	.9976	.9962	.9963	.9967	. 9788	. +764	.9964	. 7700	.9992
•		4.							
CONTRIBUTIO	N TO PCFLO)S (A, H) DU		BLE 4-2 S S WITH BAS		т н.			
HMETERS	10 DEG	20 DE6	30 DE6	40 DE6	50 DE6	60 DEG	70 DE6	88 DEG	90 DE6
25.0000	.9545	.9555	•9559	.9564	.9569	.9569	.9569	.9569	.9569
75.0000	.9944	.9946	.9948	.9949	.9950	.9950	.9950	.9950	.9950
150,000	.9593	.9609	-9618	.9627	.9633	.9634	.9636	.9636	.9636
250,0000	.9292	.9333	•9359	.9361	.9395	.9399	.9403	.9405	.9406
450.000	.6874	.7150	.7325	.7446	.7548	.7505	.7611	. ,7629	.7635
400.000	.7910	.8144	-8295	.3408	.8473	.0505	.6527	-8541	.8547
1250.0000	.9706	.9744	,.9773	.9791	.9001	. 9000	.9011	.9614	.9615
1750.0000	.9952	.9960	.9965	.9960	. 9970	.9971	.9972	.9972	.9972
. 2250,0000	. 7708	.9991	.9992	.9993	.9994	.9994	.9994	.9995	.9995
3000.000	.9961	.9970	•9974	.9979	.9900	.9961	.9962	.9902	.7765
			TA	BLE 4-3 V	VINTER	• •	•, •		*
CONTRIBUTIO	N TO PCFLC	S (A, H) DUI	E TO CLOUD	S WITH BAS	E HEIGHT A	т н.			٠
H MEŢERS	10 DE6	20 DE0	30 060	40 DES	50 DE6	60 DE6	TO DEG	00 DC6	90 DE6
25.000	.9976	.9976	.9977	.9977	.9977	.9977	.9977	.9977	9976
75.0000	. ****7	.9997	•9997	. 9997	.9997	.9997	.9997	.9997	.9997
150.000	.9951	.9953	*9954	. 9955	.9955	. 9955	•1956	.7954	.9954
250.000	.9780	.9795	. 7605	.9013	.9010	.9620	.9822	.9623	.9423
450.0000	6964	.7257	.7444	.7594	.7678	. 1717	.7744	.7763	.7770
807,0000	.6777	.7125	.7351	.7521	.7623	.7070	.7761	.7724	.7733
1254,0000	.9540	.9607	.9647	.9676	.9691	.9700	.9705	.9709	.9711
1750.0000	.9991	.9993	. 9994	. 9994	. 9995	19995	.9795	.9995	.9995
2250.9000	. 9948	.9990	.9991	.9992	.9992	.9493	.9993	.9993	.9993
3000.000	. 9905	.9967	. 7788	.9990	.9990	. 9990	.9991	.9991	.9992

PCFLOS (A,F		-FREE LINE		ABLE 4-4 FROM THE		O GIVEN HE	IGHT, H.	LOCA	ATION M
HEIGHT H (METERS)	10 DEG	SO, DE C	30 DEG	40 DEG	50 DEG	60 DEG	70 DEG	BU DEG	90 UEG
50.0000	.9852	.9855	.9857	.9858	.9860	. 9860	.9860	.9860	.9860
100.0000	.9845	. 7848	. 4850	.9852	.4853	•9853	.9855	.9854	. 4054
200.0000	.9707	.9717	•9722	.9727	.9731	.9732	.9732	.9732	.4/32
300.0000	.9385	.9417	.9435	.9452	-9462	.9466	.9468	.94/0	.9470
600.0000	.7367	.7599	•7745	.7862	.7933	.7463	.7985	. 8001	.8005
1000.0000	.4241	.4839	•5224	•5522	.5648	-5780	.5835	.5876	.5890
1500.0000	.3453	.4156	. ++611	.4957	-5161	.5259	.5324	.5372	.5389
2000.0000	.3402	••112	• • 573	.4923	-5129	.522A	•5243	.5342	.5359
2500.00,00	.3365	.4081	• • 5 • 5	.4897	.5104	.5203	•5269	.5318	.5336
3500.0000	.334E	-4062	•4528	.4884	5092	-5192	•5257	.5306	.5326
PROBABILITY	OF CLOUD	-FREE LINE		ABLE 4-5		O GIVEN HE	EIGHT, H.		
HEIGHT H . (METERS)	10 056	50 DE6	30 NEG	40 DEG	50 DEG	60 DEG	70 UEG	80 DEG	90 UE G
50.0000	. 9545	• 4555	•9559	.9564	.9569	.9569	•9569	.9569	. 4564
100.0000	.9488	. 4501	•9507	.9513	.4518	.4519	.9514	.9519	.4514
200.000	.9001	.9110	•9125	.9140	.9151	.9153	.9155	.9155	.9155
300.0000	.8373	.8443	.8484	.8521	.8546	\$664.	.8558	.8560	.8566
600.0000	.5240	.5593	.5809	.5486	.6094	.6137	.6169	.6169	.6146
1000.0000	-3157	737د.	.4104	. 4 394	.4567	.4643	.4646	.4730	.4/43
1500.0000	.2863	. 3483	.3877	.4180	. 4368	• • • • • 0	.4507		.4550
2000.0000	-2815	. 3443	. 1842	.4154	+338	.4421	.4478	.4516	0164.
2500.0000	.2003	.3433	. 3834	.4147	.4332	.4415	.4473	• 4540	. 4525
3500.0000	.2764	3403	-3806	.+126	.4313	. 4397	• 4455	.4473	.4510
PROBABILITY	OF CLOUD	-FREE LINE		ABLE 4-6		O GIVEN HE	IGHT, H.		
HEIGHT H (METERS)	10 DEG	20 DE6	30 DEG	♦0 UEG	' 50 DEG ,	60 DEG	70 DÉG	80 DEG	40 UEG
50.000	.9976	.9976	.9977	.9977	.9977	19977	.9977	.99/7	.4476
100.000	.9972	.9973	.9974	.9974	.9975	.9975	.9975	. 9975	.9975
200.000	.9923	.9926	.9927	.992	.9930	.9930	.9430	.9910	.9436
360.0000	.9703	.9721	.9732	.9742	.9748	.9750	.9752	.9753	. 4/53
600.U000	.6660	.6978	7176	.7332	.7427	.7467	.7446	.7516	. 7523
1000.000	.3443	.4104	.4526	.4054	.5049	.5137	.5197	.5240	.5251
1500.0050	.2991	.3711	,4174	.4529	.4740	.4837	.4902	.4949	.4467
2000.0000	.2982	.3704	.4167	.4524	.4735	.4832	.4497	. 4444	.4463
2500.0000	.2964	.3693	-4150	.4516	•4727	.4825	.4889	.4937	.4756
3504.0000	.2954	. 3681	-+146	.4505	.4716	.4015		.4928	.4447

FIGURE 4-2 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION M, WINTER. (SEE TABLE 4-4)

FIGURE 4.3 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES AS A FUNCTION OF ELEVATION ANGLE, LOCATION M, SPRING. (SEE TABLE 4-5)

FIGURE 4-4 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION M, SUMMER. (SEE TABLE 4-6)

FIGURE 4-5 PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT TO VARIOUS ALTITUDES, COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY, LOCATION M, SPRING. (SEE TABLE 4-4)

TABLE 4-7 WINTER
PROBABILITY OF CLUUD-FREE LINE-OF-5:GHT (PCFLOS) VERSUS SLANT RANGE (SR) FOR NINE ELEV.ATION ANGLES.

	 ::			.	Ų.	ELEVAT	NA NOI	ELEVATION ANGLE IN DEGREES	DEGREES 50	10	9	^	7.0	, •	. 0	. 6	96
SR	SR PCFLOS		SR PCFLOS	SS.	PCFLOS	SS	SR PCFLC	SR	SR PCFLOS	SR	SR PCFLOS	S	SR PCFLOS	S.	SR PCFLOS	S	SR PCFLOS
. 34.9	166° 646°		396	.326	966.	.255	866. 332.	.21.	•21. •998	.189	.169 .998	.175	.175 .998	.167	.167 .998	.164	.164 .996
1.49	1.492 .037	. c.) 30 ·	. 056	66	.511	166. 115.	20	866. 05**	.379 .998	866.	.349	.349 .994	.333	966•	.328	.328 .998
77.	2F5.	1.019	£18.11 866. 919.1 369. +44.2		£56.	1.321 .993	• 993	230.	266. 230.	.758	.758 .993	669•	166. 669.	.667	.667 .993	.656	.656 .993
5-5-5	16.	2.176	5.565 . 97. 2.r.76 . 372	1.965	. 973	.973 1.532 .974 1.285 .975 1.137 .975	.374	1.285	.976.	1.137	.975	1.046 .975	616.	1.000	.975	.984	.975
11.321	.63	2 - 73	. 60.	3.938	•71è	11.323 .657 2.758 .097 3.938 .718 3.263 .733 2.576 .743 2.274 .747 2.095 .754 1.999 .752	.733	2.570	.7+3	2.274	747.	2.095	.75	1.999	.752	1.969 ,752	.752
5.462	# #?	· *: *:	.1	1.562	10.04	18.852 .3.4 5.13,1. f.562 .453 5.165 .485 4.264 .505 3.789 .514 3.492 .523 3.332 .524	.485	4.264	.505	3.789	.51.	3.492	.523	3,332	• 524	3.282	.526
149.00	÷62.	16.73.	. 372	9.842		23-247 .205 14.13372 . 9.342 .417 7:557 .453	FC + •	6.426	626 .474	5.694	101	5.684 .484 5.239 .493	26+	569. 666.	- 495	4.923 .497	164.
17.51	. Z 3e	£	P.	13.121	17	37.011 .230 19.1hr .372 13.12117 13.209 .452 8.567 .474	.452	8.567	.7.	7.579	. 4.8 G	7.579 .483 6.985 .493	64.	6.665	764.	6.564	964.
f. 15.	1. 63	24.45	594	16. 394	• 16	46.354 .237 27.433 .359 16.394 .416 12.763 .452 10.719 .473 9.473 .483 8.731 .489	••55	15.719	.473	9.473	. 483	8.731	694.	5.331	331 .494	364. 402.9	364.

SR - SLANT RANGE IN KILOFEET

LOCATION M

TABLE 4-8 SPRING
PROBABILITY OF CLOUD—FREE LINE—OF—SIGHT (PCFLOS) VERSUS SLANT RANGE (SR) FOR NINE ELEVATION ANGLES.

	2.4	1.15	,,,,		, J I						
' 26	PCFLOS	1164 .986	.326 .945	. 973	196.		.589	.533	.536	.534	
Gr.	æ	.164	.328	. 656	.984	1.969 .001	3.282 .589	6.923 .533	955. 795.9	0.284 .534	
	PCFLOS	.107 .986	\$86. 888.	.973	196.	a a 9 ·	3.332 .586	.537	0.665 .534	3.331 .532	
•	88	.107	.333	109.	1.000	1.999 . 600	3.332	185. 668.			
7.0	PCFLOS	.175 .986	596.	. 97 3	7.6.	662.	.564	.532	.529	.527	
~	£	.175	.349	669.	1.046	2.095	3.492	5.239	6.985	6.731	
9	PCFL0\$.189 .986	.379 .985	1756 .973	146.	. 196	.573	•526	. 523	.520	
	S	.189	.379	.758	1.137 .947	2.274	3.789 .578	0.425 .516 5.084 .526	1.579	9.473	
SCREES	SR PCFLOS	.21986	\$86. 654.	. 457 . 973	1.285 .946	2.570 .733	264 .570	.516	.513	.510	
1 1 3 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	£	.21.	624.	. 457	1.285	2.578	264	6.456	6.547	12.769	
ELEVATION ANGLE IN DEGREES	SR PCFLOS	906.	.511 .985	.973	.945	.786	.552	7.55796	26.	66 * *	
ELEVAT	œ S	.255	.511	1.324 .973	1.532	3.263	5.165 .552	7.557	57 -11.26992 0.567 .513 7.579 .523	.455 12.7tG .+90 11.7t9 .510 9.473 .520 8.731 .527	
9	PCFLOS	986.	.985	.972	4.6.	.775	.\$22				
••	5	. 32 6	. 65¢	1.313	2.474 .342 1.969	* 66.	2.56.2	3.042	13.121	1c. 399	
ž.	A.FLOS	. 346	39E . 20E .	24. 616.:	. 346.	.765		**		÷	
~	\$	366. 56	. D 0.	636.:		\$2. \$2 . 737 5.755 .760 4.93A	18.452 .42- 7.530 .494	26.243 .345 twitt .418 3.842	37.011 . 34w 19.10P . +11 17.121	#6. 454 - 1387 - 23.953 - 428 - 1c. 399	
	SR PCFLOS	306. 6.6.	1.9.5 .945	3.6. 64. 8	5.065 .934	.737	?	.3.5	•	. 137	
~	K		1.4.1	3 7 5	5.065	12. 32 1	11.452	26.2.3	17.613	*6. 15*	
						,					

MSWC TR 78-143

SR = SLANT RANGE IN KILOFEET

LOCATION M

TABLE 4—9 SUMMER PROBASILITY OF CLOUD—FREE LINE—OF—SIGHT (PCFLOS) VERSUS SLANT RANGE (SR) FOR NINE ELEVATION ANGLES.

		. 43	,,,,	,	U	~				
9	SR PCFLOS	.164 .957	.328 .952	.656 .916	.856	.620	*74.	. 456	.453	.453
	S.	.164	.328	.656	.984 .856	1.969	3,262	4.923	6.564	8.20%
	PCFLOS	.957	.952	. 916	.856	.619	. 473	- 454 -	. 452	.451
•	K	.167 .957	.333 .952	.667 .916	1.000 .856	1.999 .619 1.969 .620	3.332	4.999	6.665	6.331
	SR PCFLOS	166.	. 95 2	916.	• 65 6	. 61.7	.w.10 5.165 .439 w.2f457 3.789 .w64 3.492 .w70 3.332 .w73 3.282 .b74	. 451		.303 12. 'c419 10.709 .431 9.473 .442 8.731 .447 8.331 .451 8.204 .453
X	S. A.	175 .957	.349 .952	16. 669.	1.048	2.573 .689 2.274 .614 2.095 .617	3.492	5.239	6.985	6.731
9	SR PCFLOS	136.	256.	-915	.855	.614	,,,,	. 445	244.	244.
•	3	.189 .957	.379	.758	1.137	2.274	3.749	5.084	1.579	9 - + 7 3
EGREES	PCFLOS	.957	.952	121 .914 .et? .915 .758 .915	.855	609	.457	.437	434	33
ELEVATION ANGLE IN DEGREES	SR PCFLOS SR PCFLOS	.255 .956 .214 .957	924.	A. 12 P	1.285	2.573	***	6.420	1.517	10.769
ION ANG	PCFLOS	.956	196.	.914	.852	665.	39	19	. 15	.415
ELEVAT	æ	.255	.511	121	1.532 .852	3.361. 3.363 .599	5.165	7.057	13.263	12 20
y	PCFL08	.956	196.	.913		1561	.*10	* 4.5		. 363
	5	. 32 8	. 65 t	1. 31 3	1. %9	3.936	6.562	9.062	13.121	:6- 399
25	SH PCFLOS	. 456 . 354 .	.350 .350	116. 419.1	2.978 .4.	968. 657.3	4.830 3.874	÷.	;	. 34.2
~	£	. 43	345	7 1 G • 1	2.974			20.2 " . 246 1 34	37.617 .242 13.134 .34- 13.121	46.45c 23.753 2343 242 26.399
.,	SA PCFLOS	766. 244.	**	*;	5.665 .73	524 FCE+88	16.45. S.B. 01	44.	242.	: 62:
••	53	¥**	1.404-4	4.4.	5.006	11.32	19.642	26.24	37.61.	** *
-										

SR - SLANT RANGE IN KILOFEET

FIGURE 4-6 PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT VS. TARGET SLANT PANGE (TABLE 4-7)
VALUES OF PCFLOS (A) IN PARENTHESIS. (TABLE C-46)

FIGURE 4.7 PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT VS. TARGET SLANT RANGE (TABLE 4-8) VALUES OF PCFLOS (A) IN PARENTHESIS. (TABLE C-46).

FIGURE 4-9 PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT VS. TARGET SLANT RANGE (TABLE 4-9)
VALUES OF PCFLOS (A) IN PARENTHESIS. (TABLE C-46).

FIGURE 4.9 LINES OF CONSTANT PCFLOS (A,(SR)) IN POLAR COORDINATES.

A, ELEVATION ANGLE :N DEGREES.

SR, SLANT RANGE IN KILOFEET.

CHAPTER 5

SUMMARY AND COMMENTS

In order to supply a comprehensive view of the information contained in Appendices A, B, and C, we have produced a new set of seven tables that summarize our results and highlight the more essential points. The description of these tables and the relevant comments are as follows:

All the locations are arranged in order of increasing latitude and listed in each of the tables.

A. CLOUD STATISTICS

(i) Lower cloud base statistics - Tables 5-1, 5-2, and 5-3 give the frequencies (%) for winter, spring, and summer respectively, for lower cloud bases, between:

O and 299m (base height cells 0, 1, 2, and 3) 300 and 999m (base height cells 4 and 5) 1000 and 2500m (base height cells 7, 8, and 9) above 2500m (base height cell 10)

Height cell 10, includes observations of no clouds besides observations of clouds above 2500m. The five columns on the right hand side summarize the results even further by considering only two layers: one below 2500m and one above. The frequency for no clouds, which is listed separately in these tables, was obtained by taking, in obvious notation,

Freq. (no clouds) = Freq. (> 2500m or no clouds; cloud cover C = 0)

where the right hand side is the element (H, , C,), i=10, j=0 of the transposed of the lower base matrix L of Appendix A. (H₁₀ > 2500m).

Since

Freq. (\leq 2500) + Freq. (\geq 2500 or no clouds) = 100%

and

Freq. (>2500 or no clouds) = Freq. (>2500) + Freq. (no clouds) it follows that

Freq. ($\stackrel{>}{\sim}$ 2500) = Freq. (all height) = 100% - Freq. (>2500 or no clouds; C = 0)

The values taken by this quantity can be found in the column headed "All Heights, Freq."

It is clear that most of the cloud bases are found in the 300-999m layer. In fact, if we disregard the small number of cloud observations above 2500m, we see that the frequencies for the three layers (0-299, 300-999 and 1000-1500m) are out of proportion to their thickness. In the example of location M, at

0-299m, which comprises 12% of the 2500m layer, the observed freq. is 3.8% i.e., $1.3~10^{-2}/\text{m}$

300-999m, which comprises 28% of the 2500m layer, the observed freq. is 87.1%,

i.e.,
$$1.3 \cdot 10^{-1}/m$$
,

1000-2500m, which comprises 60% of the 2500m layer, the observed freq. is 7.9%,

i.e.,
$$5.0 \cdot 10^{-3}$$
/m.

Figures D-1, D-6, D-11, and D-16 of Appendix D provide a graphic illustration of the typical distribution of cloud bases. With respect to the peaks at 3000m, the reader is referred to the comment in the last paragraph of Chapter 2.

The fact that most lower cloud bases lie in the 300-999m layer suggests the possibility that air-to-air lines of sight might be adequate for airborne surveillance within this layer.

Values for the lower cloud cover below and above 2500m were calculated from the data in Appendix A as the sum over all cloud covers of the products of the relative frequency for a cloud cover times the decimal expression of the cloud cover. For 2500 meters and less, all the values lie in the ranges (.4 to .8), (.3 to .7), and (.2 to .7) for winter, spring, and summer respectively.

(ii) Low cloud statistics. Tables 5-4, 5-5, and 5-6 summarize the data for low cloud type (C_i) statistics given in Appendix A.

The code for C₁ type clouds is included in Chapter 2.

For each location we assign two lines. The one above gives the frequencies for the 300-999 meter layer (base he ght cells 4 and 5) and the lower one the frequencies for all heights (cells 0-10).

The most frequently reported types for the three seasons studied, for all heights and for the 300-999 meter layer, are 5.8 and 2. They correspond to stratocumulus not resulting from the spread of cumulus, cumulus of moderate or strong vertical extent or towering cumulus and the combination of both.

B. PCFLOS (A1, H1) AND SLANT RANGE (SR)

In Table 5-7 we have arranged systematically the part of the results listed in Appendix C that we consider summarizes more efficiently the main features of our results for the PCFLOS $(A_i,\,H_i)$ and the slant range. For each marine location, in order of increasing latitude, we give PCFLOS $(A_i,\,H_i)$ in winter, spring, and summer for all the combinations of two elevation angles and three heights.

The typical PCFLOS (A_i, H_i) curves illustrated in Figures D-2, D-3, D-4, etc. in Appendix D show that this quantity decreases rather rapidly from its value of unity at very close range to a point where it almost levels off and that, as expected, the curves for 10 and 90 degrees enclosed those calculated for other angles. For this reason we have chosen the points at 10 and 90 degrees for the elevation angle and 25, 450 (rather arbitrarily) and 2250 meters for the height to characterize the set of PCFLOS (A_i, H_i) curves for each location and season.

The values of PCFLOS (A_i) of TAble C-46 are listed also under the heading "All H." As expected, they are smaller than those of PCFLOS (A_i, H_i) . While PCFLOS (A_i) is associated with the probability of detecting a target against a deep sky background, the difference between PCFLOS (A_i, H_i) and PCFLOS (A_i) (determined with lower and total cloud cover respectively) involves a warmer cloud background and consequently a weaker contrast. From the values on Table 5-7 we see that the later circumstance obtains, at low altitudes, a substantial part of the time.

Since the elevation angle A and the height H determine the slant range, the corresponding values of (SR) in kilofeet have been included in the headings of the various columns.

With respect to the accuracy of the results, it must be understood that we offer only rough estimates. The uncertainty in the data due to the measuring procedures used in the estimation of the cloud cover in eights, the size of the cloud base height cells, and our use of the diurmal universal matrix of Lund and Shanklin are among other factors detrimental to the accuracy.

Here we wish to point out that the values of PCFLOS (A, H,) implicitly contain the definition of LOS of Lund and Shanklin and that their definition is dependent on their technique (instrumentation, photographic processing, etc.). In essence, it consists in the examination of high contrast photographs through holes in a template, corresponding to fixed elevation angles, for the presence of clouds. We refer the reader to their 1972 paper for a complete description.

Lund, I.A. and Shanklin, M.D. 1972: Photogrammetically Determined Cloud-Free Lines of Sight Through the Atmosphere. J. Appl. Meteor. 11, 773-782.

Furthermore, while it is very fortunate that the weather data was collected and made available to us, it must be realized that it was not taken with the intended purpose of this study.

Early operational versions of the optical system that this report tends to foster would supply a more accurate method to obtain and accumulate data for the determination of the probability of a cloud-free line of sight.

With due regard for the previous comments we consider that, at this stage, our results provide an adequate CFLOS basis for the preliminary planning of atmospheric optical systems.

TABLE 5-1
SUMMARY OF STATISTICS FOR LOWER CLOUD BASES BELOW 2500 METERS

WINTER

			≼ 2	500 Met	ers			•	!	*	! .
., .	Lower Cloud Base		0-299M 0-1-2-3	300-999М 4-5	1000-2500M 6-7-8	>2500 M or No Clouds	≤25 Met		A11 H	eights	No Clouds
Loc.	Lat.	Long.	Freq.	Freq.	Freq.	Freq.	Freq.	Cover	Freq.	Cover	Freq
9/10	17N	107E	22.6	66.5	4.6	6.4	93.6	0.72	94.4	0.72	5.6
T	29N	135E	0.2	68.2	24.5	7.2	92.8	0.42	92.7	0.42	7.3
N	30N _.	140W	2.5	91.2	3.7	2.7	97.3	0.65	98.1	0.65	1.9
٧	31N	164E	5.3	89.7	2.6	2.3	97.7	0.59	98.8	0.60	1.2
1/2	§ 33N	34E .	15.7	52.4	7.6	24.1	75.8	0.36	79.6	0.38	20.4
) 36N	0E					ı		. •		
D	44N	41W	6.6	88.6	2.2	2.6	97.4	0.67	98.5	0.67	1.5
к	45N	16W	10.6	69.8	14.7	4.9	95.1	0.67	97.1	0.68	2.9
н	48N	36W	4.0	82.7	4.2	9.1	90.0	0.61	92.3	0.62	6.7
Р	50N	145W	23.8	72.3	1.2	2.8	97.3.	0.74	98.6	0.75	1.4
С	52N	35W	15.2	77.7	3.3	3.7	96.2	0.68	98.7	0.70	1.3
J	53N	19W	10.6	75.2	13.1	1.7	98.3	0.68	98.6	0.68	1.4
В	56N	51W	17.3	80.1	1.5	1.2	98.8	0.81	99.2	0.81	0.8
I	60N	19W	16.8	70.8	11.0	1.3	98.6	0.68	99.4	0.68	0.6
A	62N	33W	15.1	72.3	11.0	1.6	98.4	0.73	98.9	0.74	1.1
М	66N	2E -	3.8	87.1	7.9	1.2	98.8	0.72	99.0	0.72	1.0

TABLE 5-2
SUMMARY CF STATISTICS FOR LOWER CLOUD BASES BELOW 2500 METERS
SPRING

			. , : ≰	2500 Me	eters						<u> </u>
1	Lower Cloud Base		0-299M 0-1-2-3	300-999M 4-5	1000-2500M 6-7-8	>2500 M or No Clouds	< 25(Mete		ATT H	eights	No Clouds
Loc.	Lat.	Long.	Freq.	Freq.		Freq.	Freq.	Cover	Freq.	Cover	Freq.
9/10	17N	107E	16.8	51.1	8.1	24.1	75.9	0.46	82.6	0.49	17.4
Т	2911	135E	2.1	70.8	16.8	10.3	89.7	0.36	89.9	0.36	10.1
N	30N	140W	1.3	90.1	5.2	2.9	97.2	0.64	97.9	0.64	. 2.1
٧	31N	164E	11.8	78.1	5.2	5.0	95.0	0.63	97.2	0.65	2.8
1/2	533N	34E	13.7	37.1	8.1	37.6	58.9	0.28	62.4	0.30	37.6
ļ !) 36N	0E			•						
D	44N	41W	8.4	80.0	4.4	7.3	92.7	0.61	96.8	0.64	3.2
K	45N	16W	12.4	72.1	10.4	5.2	94.8	0.62	96.0	0.62	4.0
Н	48N	36W	3.2	79.7	7.0	10.2	89.8	0.57	91.7	0.58	8.3
Р	50N	145W	22.6	70.7	2.3	4.5	95.7	0.72	96.3	0.72	3.7
С	52N	35W	21.2	65.4	5,9	7.5	92.5	0.69	97.0	0.71	3.0
J	53N	19W	14.5	68.8	14.2	2.6	97.4	C.63	98.1	0.63	1.9
В	56N	51W	21.5	72.1	2.4	4.0	96.0	0.78	98.0	0.79	. 2.0
I	60N	19W	12.7	76.2	9.6	1.5	98.5	0.69	99.2	0.69	0.8
A	62N	. 33W	20.8	66.3	8.9	4.0	96.0	0.72	97.5	0.73	2.5
M	66N	2E	7.1	73.8	15.2	3.9	96.1	0.68	96.2	0.68	3.8

TABLE 5-3
SUMMARY OF STATISTICS FOR LOWER CLOUD BASES BELOW 2500 METERS
SUMMER

			+								
i			<u> </u>	2500 Mete				,	i		:
	Lower Cloud Base		0-299M 0-1-2-3	300-999M 4-5	1000-2500M 6-7-8	>2500 M or No Clouds	>25 Met		All He	ights	No Clouds
Loc.	Lat.	Long.	Freq.	Freq.	Freq.	Freq.	Freq.	Cover	Freq.	Cover	Freq.
9/10	17N	107E	3.7	61.5	ျာ	26.7	73.6	0.31	87.3	0.36	12.7
T	29N	135E	13.8	45.8	33	6.8	93.2	0.31	93.3	0.32	6.7
N	30N	140W	0.7	96.3	2.2	0.8	99.2	0.63	99.5	0.63	0.5
, V	31 N	164E	6.4	83.8	3.2	6.5	93.5	0.49	96.0	0.50	4.0
1/2	J33N	34E	11.7	28.2	4.7	55.4	44.6	0.16	47.5	0.19	52.5
,	. }36N	0E	•								
D	44N	41W	15.3	72.3	2.9	9.6	90.4	0.59	95.1	0.62	4.9
K	45N	16W	10.7	73.1	11.7	4.6	95.5	0.63	97.4	0.64	2.6
Н '	48N	36W	1.0	76.3	4.4	18.3	81.7	0.34	85.2	0.35	14.8
P	50N	145W	35.8	60.0	2.6	1.6	98.4	0.84	0.99	0.85	1.0
C	52N	35W	34.0	57.4	2.3	6.4	93.7	0.77	97.8	0.80	2.2
J	53N .	19W	22,1	65.7	10.2	2.1	97.9	0.73	98.2	0.74	1.2
В	56N	51W	33.1	50.2	4.0	12.0	8810	0.71	94.8	0.75	5.2
I	60N	1 9W	22.9	74.0	4.3	0.9	99.2	0.72	99.6	0.72	0.4
Α	62N	33W	23.0	66.2	8.1	2.6	97.4	0.77	93.5	0.77	1.5
М	66N	2E	18.4	71.7	6.4	3.4	96.6	0.74	97.2	0.74	2.8

TABLE 5-4
SUMMARY OF LOW CLOUD (C_L) STATISTICS
WINTER

	1 1011	CLOUD T	VOC /Dar	h a 2 = 1	MININ		E/-11			13.5	
Loc.	LOW	CLOUD I	YPE (Base	neig	nt cells	4 and	5/aii	base ne	ignt ce	115)	
	0	1	2.	3	4	5	6	7	8	9	Fog
9/10	0.2 8.0	12.1 13.2	8.1 10.0	0.9	3.6 4.1	16.6 22.9	5.0 12.1	4.6 8.7	15.3 19.2	0.1	0.6
T	0.2 7.5	20.3 28.5	17.2 18.6	3.1 3.1	7.0 12.2	5.3 13.3	1.1	8.0	4.5 5.9	1.6 1.6	0.0
N	0.4 3.6	7.3 7.4	14.4 16.6	1.0	2.3	22.8 25.5	1.3	3.1 4.1	36 .1 36 .5	0.59 0.6	0.3
٧	0.5 3.4	10.9 11.2	28.0 28.5	5.0 5.0	2.8	9.6	0.7 1.1	8.0 11.6	23.2 23.5	1.0	0.0
1/2	0.8 27.5	9.5 12.5	14.6 21.0	6.0 8.3	4.5 6.6	8.7 11.7	1.3	3.4 4.9	2.4 3.4	1.1	0.2
C	0.3	7.1 7.2	29.4 29.9	4.2 4.7	3.4	18.1 19.7	0.7 0.8	10.7 15.0	13.2 14.9	0.6 0.5	. 0 .4
K	0.0 5.1	1.8 2.0	5.9 6.2	1.6 1.8	0.4	18.8 33.8	2.5 6.4	4.7 8.5	26 .6 27 .4	7.5 7.9	0.3
Н	0.3 10.7	13.4 13.7	13.6 14.3	2.4 2.6	3.9 4.3	22.9 25.0	1.0 1.2	7.6 9.9	16.6 16.9	0.9 0.9	0.5
Ρ.	1.1 4.9	1.6	10.8 11.1	3.7 3.8	11.2	23.5 25.6	4.3 12.8	4.0 11.3	8.5 8.9	3.6 3.6	5.0
С	0.5 4.8	4.4 4.7	23.9 24.1	2.0	1.4 1.7	20.8 23.2	2.0 5.4	9.4 16.0	12.7 12.9	0.6 0.6	4.2
J ,	0.0 1.9	1.1	7.1 7.9	4.4 4.5	0.5 0.6	15.9 28.7	1. <u>5</u> 3.2	4.2 9.1	22 .1 23 .1	18.5 19.3	0.5
В	0.5 2.1	2.9 3.0	27.0 28.2	1.3	1.8	20.1	0.5 1.3	8.3 17.3	16.9 18.0	0.2	4.8
I	0.1	2.2	7.4 7.7	5.0 5.8	0.3 0.4	14.8 29.4	1.0	2.1 8.7	23.5 28.9	10.4 13.3	0.2
A	0.2 2.0	1.4 i.4	4.5 4.8	4.1 4.6	0.6 0.6	16.3 29.1	1.5	5.4 12.6	21 .9 23 .1	16 .4 17 .7	0.3
M	0.0	0.7 1.1	3.7 4.7	1.2	0.2 0.2	12.2 15.7	3.9 5.3	9.8 10.9	8.3 9.5	47.0 49.3	0_5

NSWC TR 78-143

TABLE 5-5

SUMMARY OF LOW CLOUD (C_L) STATISTICS

SPRING

	LOW	CLOUD	TYPE (Bas	se Heigh	t Cell:	4 and	5/all	base he	ight c	e11s)	
	0	1	2	3	4	5	5	7	3	9	Fog
9/10	0.1 26.9	9.7 11.9	8.8 10.3	2.2	3.5 4.3	12.7 19.1	4.5 °.5	1 .6 3 .5	6.2 9.5	1.9	1.1
T	0.1 10.7	23.7 30.1	14.7 15.1	3.7 3.7	1.6	5.5 12.3	2.6 3.6	13.8 14.5	4.4 5.1	0.7	0.9
Ń	0.4	9.0 9.0	13.0 13.0	1.4 1.4	2.3	18.3 24.1	0.2	2.7 3.7	42.2 42.3	C.2 0.2	0.0
٧	0.6 6.1	10.2 10.3	15.8 16.0	0.7	4.2. 4.5	16.1 20.1	2.2 5.8	8.1 13.8	20.1 20.5	0.2 C.2	1.9
1/2	0.9 46.1	7.4 11.2	11.3 13.9	2.4 4.0	2.8	4.4 7.4	2.3 3.8	2.4 5.4	2.0 3.3	0.3	0.1
ם	0.6 9.1	11.6 11.8	16.1 16.2	1.5 1.6	2.6 2.8	18.5 21.3	1.1	11.1 16.2	16.0	0.8	1.2
K	0.2 6.5	4.9 5.0	7.2 7.4	0.9	0.4	17.4 26.8	2.5 7.0	4.8 7.3	25.7 27.0	8.3 8.6	3.2
Н	0.5	10.9 11.9	22.1 23.4	2.9° 3.1	6.1 6.7	19.8 22.0	1.1	4.6 6.5	10.4 11.0	1.3	0.5
P	0.6 6.3	5.0 5.1	8.6 8.6	1.5 1.6	3.6 3.8	28.5	3.5 10.2	3.4 10.9	9.4 9.7	1.8	6.1
C	0.6 10.6	5.8 6.2	12.8 13.0	1.7 1.7	1.1	17.6 20.8	2.3 7.7	9.0 14.7	14.4 14.7	0.2	9.2
J	0.0 2.7	2.3	5.6 7.0	3.1 3.2	0.9 1.2	11.9 25.4	0.9 4.7	3.2 8.7	28.9	11.2 11.9	1.4
В	0.5 5.5	4.6	16.3 17.3	0.2	2.0	26.0 28.3	1.9	7.5 16.5	12.5 13.8	0.1	5.6
I	0.0 1.7	2.6 2.6	5.7 5.9	4.3 4.4	1.i 1.4	14.5 26.4	0.8	4.1	27.9 28.9	14.2 15.7	0.3
A	0.1 5.6	2.2	4.2 4.5	3.2 3.5	0.8	17.6 28.3	1.4	3.4 13.1	24.2	9.2 10.2	1.4
M	0.1 5.3	0.6	3.3 4.6	0.3	0.0		6.5	8.1 9.6	7.5 8.5	36.7 41.1	1.6
	- • •										

NSWC TR 78-143

TABLE 5-6
SUMMARY OF LOW CLOUD (C_L) STATISTICS
SUMMER

Loc.	LOW	CLOUD 1	YPE (B	ase Height	Cells	4 and	5/a11	base hei	ight cel	1s)	
	0	1	2	3	4	5	6	7	8	9	Fog
9/10	0.1 29.õ	12.1 13.0	20.8 22.7	5.6 6.3	2.4 3.2	2.8 4.6	1.9 2.3	1.9 2.6	3.8 5.0	10.2 10.6	0.1
T .	0.0 6.8	12.8	33.5 33.7	12.8 12.9	0.8 1.0	1.1	3.0 3.6	4.5	1.0 1.1	8.7 8.7	- 12.8
N	0.0 0.9	10.8 10.8	17.3 17.9	1.9 1.9	3.2 3.2	12.5 14.5	0.4 0.6	0.7 0.9	48.8 48.9	0.3	0.0
V .	0.4 5.0	14.3 14.3	23.8 24.0	2.5 2.6	1.8	12.4	3.5 6.2	3.9 5.6	20.0 20.2	1.2	1.5
1/2	1.0 57.8	10.3 17.2	6.6 9.7	1.3 1.6	2.1	2.9 4.7	1.8 3.2	0.6 1.1	1.1 1.6	0.5 0.6	0.2
D	0.2 10.9	13.9 14.2	9.2 9.5	1.6 1.7	3.0	24.4 26.6	3.0 7.7	4.8 8.1	11.7 12.3	0.3 0.3	5.3
K	0.1 5.2	4.1 4.3	8.4 9.2	0.4 0.5	0.9	23.2 33.2	2.2 7.5	3.2 6.4	26.7 28.1	3.9 4.0	0.2
Н	J.1 20.2	18.4 18.7	28.6 23.8	7.0	3.1 3.4	8.2 10.2	1.4 1.6	1.8 2.1	4.3 4.4	3.4 3.5	0.2
P	0.5 3.4	2.0 2.0	3.1 3.3	0.2	4.5 4.3	31.1 34.8	3.7 19.1	1.6 9.6	12.9 14.0	0.4 0.4	8.3
С	0.2	2.1 3.4	5.5 5.7	0.6 0.6	0.9	26.1 28.4	3.3 11.2		13.2 13.9	0.0	- 17.4
J	0.0 2.4	2.0	4.3	1.5	0.7 0.9	15.6 27.2	1.4 8.3	2.8 11.1	33.0 34.7	4.3 4.5	2.5
В	0.7 14.3	2.9	2.7 2.7	0.2	0.8 0.8	27.3 31.1	3.9 14.4	5.0 12.5	7.5 8.7	0.0	12.3
1	0.0	3.2 3.3	3.2	1.6 1.9	2.0	15.7 26.2	1.0 4.9		33.4 34.8	8.8 9.0	0.5
A	0.0	1.9	1.8 1.9	0.6 0.6	0.4 0.6	23.6 34.9	2.0 10.1	3.3 12.0	27.0 28.0	5.7 5.8	0.9
M	0.2 4.7	0.4	2.4	1.0	0.3 0.3	15.8 19.6	9.9 18.0		11.1 12.1	26.1 27.9	4.9

NSWC TR 78-143

TABLE 5-7 SUMMARY FOR PCFLOS (A $_{i}$, H $_{j}$). LOCAL SEASONAL VARIATION:

	1	<u>,r </u>		10 [egrees			90 D	egrees	
1	.	,		H (n	neters)			H (m	eters)	
Loc.	Lat Long.	Season	25 Slar 0.9	450 it Range 11.3	2250 (KF) 47.0	All Heights*	25 Slant 0.16	450 Range 2.0	2250 (KF) 8.2	All . Heights
9/10	17N 107E	WI SP SU	0.99 0.99 1.00	0.46 0.67 0.85	0.30 0.54 0.69	0.24 0.36 0.28	0 99 0.99 1.00	0.54 0.74 0.92	0.43 0.66 0.82	0.37 0.52 0.45
	29N 135E	WI SP SU	1.00 0.99 0.96	0.96 0.89 0.81	0.57 0.63 0.67	0.36 0.30 0.37	1.00 0.99 0.38	0.98 0.93 0.89	0.76 0.79 0.83	0.52 0.45 0.54
N	30N 140W	WI SP SU	1.00 1.00 1.00	0.84 0.88 0.91	0.36 0.37 0.37	0.26 0.26 0.33	1.00 1.00 1.00	0.88 0.91 0.93	0.54 0.54 0.55	0.42 0.42 0.51
V .	31 N 164E	WI SP SU	1.00 0.98 0.99	0.73 0.69 0.77	0.41 0.37 0.50	0.28 0.21 0.21	1.00 0.98 0.99	0.81 0.76 0.83	0.60 0.54 0.67	0.44 0.35 0.44
1/2	33N 34F 30N 0E	WI SP SU	1.00 1.00 1.00	0.75 0.80 0.87	0.63 0.72 0.81	0.51 0.60 0.74	1.00 1.00 1.00	0.84 0.87 0.93	0.77 0.83 0.90	0.68 0.74 0.85
D	44N 41W	WI SP SU	1.00 0.99 0.95	0.63 0.66 0.61	0.34 0.39 0.41	0.22 0.21 0.26	1.00 0.99 0.95	0.73 0.75 0.68	0.53 0.56 0.56	0.37 0.35 0.41
K	45N 16W	WI SP SU	1.00 0.98 1.00	0.69 0.67 0.69	0.34 0.39 0.37	0.26 0.29 0.29	1.00 0.98 1.00	0.76 0.74 0.75	0.51 0.55 0.54	0.42 0.46 0.45
Н .	48N 36W	WI SP SU	1.60 1.00 1.00	0.72 0.77 0.85	0.40 0.43 0.65	0.24 0.27 0.40	1.00 1.00 1.00	0.78 0.83 0.91	0.57 0.59 0.30	0.38 0.41 0.58
	50 V 145W	Sr Su	0.95 0.94 0.92	0.39 0.44 0.31	0.28 0.29 0.18	0.21 0.21 9.11	0.95 0.94 0.92	0.51 0.55 0.40	0.43 0.44 0.29	0.35 0.34 0.21
c	52N 35W	WI SP SU	0.96 0.91 0.83	0.55 0.57 0.41	0.33 0.33 0.24	0.21 0.17 0.13	0.96 0.92 0.84	0.65 0.65 0.49	0.49 0.47 0.36	0.35 0.30 0.23

(continued next page)

^{*&}quot;All Heights" relates to calculations done with the total cloud cover (unmodified Lund and Shanklin's method)

NSWC TR 78-143 ${\it TABLE~5-7~(continued)}$ SUMMARY FOR PCFLOS (A $_{i}$, H $_{j}$). LOCAL SEASONAL VARIATION

				10 D	egrees	· · · · · · · · · · · · · · · · · · ·		90 D	egrees	
		,		H (m	eters)			H (m	eters)	
Loc.	Lat Long.	Season	25 Slant 0.9	450 Range 11.3	(KF) 47.0	All Heights*	25 Slan 0.16	450 t Range 2.0	2250 (KF) 8.2	All . Heights
: ນ	53N 19W	WI SP SU	1.00 0.99 0.98	0.64 0.66 0.53	0.33 0.38 0.28	0.25 0.27 0.20	1.00 0.99 0.98	0.73 0.74 0.62	0.51 0.56 0.43	0.42 0.44 0.33
В	56N 51 W	WI SP SU	0.95 0.95 0.88	0.43 0.47 0.43	0.21 0.24 0.30	0.14 0.14 0.16	0.46 0.95 0.39	0.53 0.56 0.51	0.36 0.38 0.41	0.26 0.26 0.27
I	60N 19W	WI SP SU	1.00 1.00 1.00	0.54 0.55 0.47	0.33 0.32 0.29	0.24 0.22 0.19	1.00 1.00 1.00	0.66 0.66 0.59	0.52 0.50 0.46	0.41 0.37 0.33
A	62ii 33W	WI SP SU	1.00 0.99 0.99	0.51 0.47 0.47	0.28 0.25 0.25	0.21 0.19 0.17	1.00 0.99 0.99	0.62 0.59 0.56	0.45 0.45 0.40	0.35 0.33 0.30
M	66N 2E	WI SP SU	1.00 0.99 0.95	0.67 0.74 0.52	0.30 0.34 0.28	0.23 0.24 0.19	1.00 0.99 0.96	0.75 0.80 0.62	0.50 0.53 0.45	0.39 0.40 0.34

^{*&}quot;All Heights" relates to calculations done with the total cloud cover (unmodified Lund and Shanklin's method)

BIBLIOGRAPHY

Katz, B., Hepfer, K., and McMeekin, N.E., "Electro-optical Meteorological Sensitivity Study," NSWC TR 79-67, Apr 1979

Lund, I.A., and Shanklin, M.D., 1972: "Photogrammetrically Determined Cloud-Free Lines of Sight through the Atmosphere." J. Appl. Meteor. 11, 773-782.

Lund, I.A., and Shanklin, M.D., 1973: "Universal Methods for Estimating Probabilities of Claud-free Lines of Sight through the Atmosphere." J. Appl. Meteor. 12, 1222-1228.

"Marine Surface Observations." Tape Deck TDF-11, WMO

Rapp, R.R., and Schutz, C.. "Cloud-free Line of Sight Calculations," Rand Corpo., Sep 1972.

"Surface Observations," Federal Meteorological Handbook No. 1, First and Second Editions, Dept. of Commerce.

"Surface Observations." NAVAIR 50-1D-1 (FMH-IB) 1 Jan 1980, Dept. of the Navy

GLOSSARY AND NOTATION

LOS	Line of sight
PCFLOS	Probability of a cloud-free line of sight
A _i	i th value of the clevation angle A
C _i	i th value of the cloud cover C
Hj	Midrange of the low cloud base-height recording cell
H _e	Sensor height
(SR)	Slant range to midrange of the jth height cell
L(A _i , H _i)	(A _i , H _i) matrix element of the real weather matrix
	(A _i , H _i) matrix element of Lund and Shanklin's universal matrix
P(C _j)	Probability of the cloud cover taking the value C _i
PINT (A _i , H _j)	Contribution to PCFLOS (A _i , H _i) due to the base height cell
	with midrange at H _i
PCFLOS (A _i , H _i)	PCFLOS at angle A _i and height H _i
	PCFLOS at angle A; and slant range to height H;
PCFLOS (A _i)	PCFLOS at angle A; through all clouds

APPENDIX A

STATISTICS OF CLOUDS BELOW 2500 METERS

TABLE A-1A WINTER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

GHT TION														,		f 06	4		,								. 2
BASE WELGHT DISTRIBUTION	91.	3.56	11.49	32.36	23.16	59.4	1.94	1.13	24-11							6	9,0					9 4	9 6				1.2
	9.04	10.	1.46	4.21	1.46	.65	• •	• 16	• 35		9.5				*-	•		00.0		. 65	62.1	21.1		9			3.4
		64.	64.	2.91	1.13	9.0	•35	91.	• 16		7.5					.~		00.0	.32	1.1.	200			0.0	0.0		6.4
•	00.0	7	1.13		1.29	•	00.	•16	•16		7.0			8		•	0.0	00.0	91.	• 65	2 4		00.0	00.0	00.0	ı	K•1
•	0.0	•16	1.29	ů.	1.56	910		0.0	• · · · · · · · · · · · · · · · · · · ·		6.3		89	STICS (%) TABLE 2-A.		.	0.0	0.00	64.	9 0	2.75	3.2	. 32	• 32	0		11.7
•	0 0	64.	2.10	9 t	().)	6	36.	• 32	• 35		18.4		TABLE A-18 WINTER	LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A. B)			0.0	- -	64.		1.62	64.	•16	9.	0	•	6.5
**	•••	64.	7		17.7		2	D .	1.13)) (4.6		TABLE	TOW CLOUD		n		.16	o .	1.13	1.94	64.	0.00	90.0			6.3
~	• o	64		- n		+ d	,	25.	· ·		16.4	•	,	(SEE	•	~	0.0	• 16	1:46	7.61	96.99	. 61	• 32	•			21.0
	.16		***	12.0		63.7			•		17.0			,		**	0.00	.16	91.	9	3.69	10.	- 32	00.	e e	. ,	12.5
•	• • • • • • • • • • • • • • • • • • •								66.93		20.4					•	0.0	0		25.	64.	1.29	. 91	. 32	24.11		27.5
BASE HEIGHT METERS	25.	151.	F. F. F.	7 9 9	1258	1750.	2250	40.00	•		ALL LOW CLOUDS (PER CENT)		.•	•		BASE HEIGHT METERS	52	75.	. 151	. DG .	.000	.1250.	1750.	2250	30.00	ALL	LOW CLOUDS (PER CENT)

•	_
2	۶
C)
	•
۲	-
•	ſ
ζ	
Č	ς
•	٠

TABLE A-2A SPRING FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)

_ \			
BASE HEIGHT Distribution	୬ନାର୍ମ୍ଭ ୬ ୭ ଜଣର		
BASE	00000000000000000000000000000000000000		
•		2 ·	
~		•	
٠	00 00 00 00 00 00 00 00 00 00 00 00 00	£	
w		5.2 VG STICS (%)	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
•		1.6 5.0 TABLE A-2B SPRING LOUD TYPE STATISTI	
m		10.6 5.0 5.2 TABLE A-2B SPRING LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A,	B DOSTRONDS W CONTROL W
. ~	0 1804 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
~4		•	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•	36.000000000000000000000000000000000000	9.	
BASE HEIGHT METERS	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ALL LOW CLOUDS (PER CENT)	8ASE HEIGHT 25. 75. 156. 256. 450. 8250. 1750. 2250. 3800.

TABLE A-3A SUMMEN
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

BASE WEIGHT DISTRIBUTION	9 9	6	~	ï			· ø	•	• 0							F 06		97.	a				_	_		
BASE	1.0	2.0	9.6	17.5	10.6	2.7		•	. 35 . 3								c	•		0.0	7	. 32	•	•		
•	900		16.	16.	•9•	1.	90.0	41	.32			3.2	•			•	0			.32	• 64	64.				
	.32	0.0	*9.	1.29	.32	.32	90.0	9 7	. 16			3.1				•	-	9	7	35	04.	7	0.0	? •	::	
٠	000	00.0	•9•	1.13	.32	00.0	00.0	90.9	•16			2.3		· · · · · · · · · · · · · · · · · · ·		9	00.00	• 16	•16	26.	1.61	•16	9 6		00.0	
w	0.00	0.00	.32	1.13	•9•	•16	•16	•16	.32			T. M.		IER STICS (%) FABLE 2-A,		1	0.00	00.0	00.0	26.	1.61	1.29	•	00.0	0.0	
•	00	•32		10.1	1.77	.16	•16	•16	.16			5.2		TABLE A-3B SUMMER CLOUD TYPE STATISTIC CLOUD TYPE CODE TAB		•	30.	90·7	•16	91.	62.1		9 0	00.0	00.0	
m	80 80 80	3.	7:	10.1	1.61	• 35	***		74.			6.9		TABLE A – 3B SUMMER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2 – A, B)		M	0.0	•	┥.	₩ (,	? ?		•	9	•
~ ∶	• 16 • • 0	***	200	70.6	000	200		00.0	• 32	•	•	12.6		REEL		~	9.00	• 16	30.	1. 35	0	116	0.0	• 16	00.0	•
-		•			7 .		75.	91.	16.		· .			٠.			9	80.0	40.	67.4	9	.6.	•	00.0		
	9 0 0				•			•	16.36	• .	u C	6.36	.*			.	00.0	90.0					. 32	•	55.39	•
METERS	75. 150.	250	4 50.	8.00	1258	1750	2255	• 00 92	•		ALL	(PER CENT)			BASE HEIGHT	METEHS	25.		1700	4 50	800	1250.	1750.	2250	• = = = = = = = = = = = = = = = = = = =	ALL OW C: OHOS

9	- N																	•				£06	19.										•	•
LOCATION 10	BASE HEIGHT Distribution	.61	.31	5.49	16.16	44.12	22.33	2.69	.75	1.15	6.30					,			•			σ	00.0	•	0.0	•	e e			-	7		•	rd •
	. •	•61	.24	4.57	12.02	22.23	5.61	.52	•1•	.21	• 16			17.2	-	*				ı		•	00.0	00.	. 62	2.87	11.52		. 05	00.0	0 · 0			7.61
Î		. 0.0	0.0	.21	.92	3.86	1.84	.35	41.	.12	.07			7.5					·			•	00.0	.12	1.30	2.66	7 . P		0	00.0	0.00		•	•
: HEIGHT MATRIX (C,I	.	•	00.0	.21	• 15	5.16	3.27	04.	60.	33	.12			10.4					3	-A, B)		•	.0	64.	2.15	9	~ •			0	00-8		•	1 57 1
JINTER CLOUD BASE DUD COVER V EIGHTS)	.	00.0	-02	.24	.38	1.98	1.77	•19	- 20.	•19	5			6.4				INTER	LOW CLOUD TYPE STATISTICS (%)	LOW CLOUD TYPE CODE TABLE 2-A, B)		w	0.0	0.0	1.01	3.46	11.24	1.46	9	00.0	00.0			6.22
TABLE A-4A WINTER. IES FOR LOWER CLOUD BA F THE LOWER CLOUD COVE (CLOUD COVER IN EIGHTS)	•	00.0	00.0	20.	.24	16.1	1.39	.24	- 15	70.	.02			3.9			•	TABLE A-4B WINTER	UD TYPE ST	UD TYPE CO		•	00.0	-02	00.0	MK.	94° 7	120	. 0.	.02	00.0	•	. •	: ;
TABLE A-4A WINTER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX (C,H) (CLOUD COVER IN EIGHTS)	m	00.	. 05	.12	. 33	2.47	2.73	• 26	• 15	• 02	10.		,	6.1	•			TAI	TOW CLO	(SEE LOW CLO		m	- 00.0	00.0	• 8 2	6	16.		.02	00.0	•		•	1
FREG	. (pi	00.0	00.0	. 12	64.	4.52	4.38	04.	•19	• 19	*2*	.'		10.5	•		1			<u>s</u>	•	~	00.0	00.0	.21	1.39	4.59		-05	0.08	00.0		•	.
	-	00.0	0	0.00	.14	1.93	1.34	۳.	• 10	-02				3.9									00.0		.07	-45	5.51	C (4)	60	00.0	00.0			13.6
	;	00.0	•	00.0	00.0	00.0	00.0	00.0	. 00	00.0	5.50			9.6								•	90.0	00.0	9.00	• 15	9:		20.	1.11	6.36		• •	.
	BASE HEIGHT METERS	25.	72.	150.	250.	+ 28 ·	.00	1250.	1750.	2250	30.00		ALL	LOW CLOUDS	(ren cen)	,	•					METERS	25.	75.	150.	250.	450		1750	2250	3000	•	ALL	LOW CLOUDS (PER CENT)
						,	:				-			,	. #	\ - -5	,											,				 ,		!

5
S S
A
8
_

TABLE A-5A SPRING
FREQUENCIES FOR LOWFR CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

		NSWC TR 76-143	. 50	1:1
BASE HEIGHT Distribution				~
BASE	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		000 H	2.2
•		* * *		9•6
~		v		9.6
•	4 W G G G G G G G G G G G G G G G G G G	8, 6 5 • 6	0 1881 00 00 00 00 00 00 00 00 00 00 00 00 00	6.5
.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.5 6.4 4.4 6.0 TABLE A-5B SPRING LOW CLOUD TYPE CODE TABLE 2-A,	00 N6444 0000000000000000000000000000000000	19.1
•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TABLE A-5B SPRING LOUD TYPE CODE TAF		M • \$
m	0 0 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d	6.4 4.4 6.0 TABLE A-5B SPRING LOW CLOUD TYPE CODE TABLE 2-	00 11 000 0001810000 0000810000	S • S
~∙	0	17.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.3
-4		6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11.0
		*		56.9
BASE HEIGHT METERS	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	ALL LOW CLOUDS (PER CENT)	25. 150. 150. 150. 150. 150. 150. 150. 15	ALL LOW CLOUDS PER CENT)

ION 10	TEGHT	1															•								•
LOCATION 10	BASE HEIGHT DISTRIBUTION			.52	3.10	33.46	20.02	3.02	2.37	26.71						•	0.0	9.0		6.62	3.62		o •		9
	•	• 85	00.0	.27	86.	2.21	70.5		67.	 		7.1				•	00.0		72.	2.42	-1 - 33	. 11.	3	 	2.5
:	•	•	m •	M .	/2.	F 0	1:1			6.4		3.6			~	,	0.0		.5.	1.28	99.	0.0	? •		9•8
3HT IX L (C, H)	•		30 .		D	10.0	٠ . د د د	2 K	42.	2.07		9.6	·	,	•	•		•	***	-82	MO: 4	- 0	.	0	8.
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT SPOSED OF THE LOWER CLOUD COVER MATRIX I (CLOUD COVER IN EIGHTS)	un	0.00		9 e	90	26.1	25	.16	30	1.77		9.9	R 1CS (%)	BLE 2-A, B	iv.	•		000	.30	96•	1.7	200	90	.03	4.6
FAZLE A-64 SUMMER IES FOR LOWER CLOUD BA THE LOWER CLOUD COVER (CLOUD COVER IN EIGHTS)	•	30.0	3 F	9 69	1.64	1.60		.16	12	•		6 • 4	TABLE A-6B SUMMER	PE CODE TA	•	6	00.0	- 03	90.	.63	100	25	. O.	• 0 2	3.2
ICIES FOR L	m	00.0		25	3.13	2.61	94.	.30		, ,		9•6	TABLE A-6B SUMMER LOW CLOUD TYPE STATISTICS (%)	(SEE LOW CLOUD TYPE CODE TABLE 2-A, B)	, m	00.0	50	00.0	5.5	5.27	4.		80.	. 0 .	17 •
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	N	90.0	. 0.	64	10.40	7.32	• 76	**	• 52	4.14	, a.s.	4.47	01	(SEE LO	, ~	0.00	.03	90.	94.	11.62	17.	93	• 22	• 0 5	22.7
T.	, ч	.0.0	0.03	.11	11.13	64.0	.33	500	•16	. Z.51		7.57			•	00.0	00.0	00.	62.	10.00	3.	. 60.	. 1	9	
	•	000	00.0	90.	. O.	00.0	•	90		17.31					•	00.0	00.0	000			. 36	• 65	6.0	26.55	29.6
	BASE HEIGHT METERS	3.5	150.	250.	*20*		.001	2250	- 20 C 2 Z	•	ALL	(PER CENT)			BASE HEIGHT METERS	25.	75.	150.	100	000	1250.	1750.	2250.		ALL LOW CLOUDS (PER CENT)

TABLE A-7A WINTER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUP COVER IN EIGHTS)

HT TON										i	NSV	VC T	R 7	8-14	43	•		FOG	. 38									,	,	m.
BASE WEIGHT Distribution	000	• •	; ;	•	;	18.14		•	1.62			•					•	o	•	00.0	• 20	F - 1	V 4		00.0	0.0	00.			17.7
•	0 H	2.46	7.28	16.03	5.02	2.12	.28	9.0	• 10			31.6	·					•	9	8 0.0		n 4		S		00.0		•		23.1
	9 6	- 2	1.87	11.22	•	2.76	.20	00.0	5			21.4						~	00.0	.10	2.21	7.7	36.	0	00.0	00.0	. 0			12.6
.	99	9 8	*6.	69.9	3.35	1.18	• 52	00.0	• 15			12.5				3	•	•	00.0	01.	ů	70.4	9		00.0	•	e e		·	3.7
w	0.00	.05	.59	5.31	2.81	1.08	00.0	00.0				9.6			IICS (%)	CODE TABLE 2-A, B)	u	۸	00.0			7.07	7.7	9.10	*0.	00.0	•			29.1
•	00.0	•15	•25	4 · 13	2.12	36.	-05	00.0	90.0			7.2			A-7B WINTER	TYPE CODE T		•	00.0	0.0			25	.10		00.0	•			9
, m		00.	٠,	3.74	2.36	•69	. 65	• • • • • • • • • • • • • • • • • • •	00.0			7.1			TABLE A-7B WINTER LOW CLOUD TYPE STATISTICS (%)	LOW CLOUD T		2	00.0	0	o .	70 9	•		•					9.
∾ ·	C (A)	. 05	.20	2.41	1.73	30.	01.	9	50.		,	9.0				(SEE L(,	J	0.00	٠		2.00		. 25	•	0.0	•	•		•
. 	99	00.0	•02	.59	2.07	*6.	.20	00.	• 30			4.1					-	•	0.00	3 (4	.79	00.0	•	9	30.0	-		1.4
9	900	00.0	00.0	00.0	00.0	0.0	•	9	1.06		•	70		•				• .	00.00	3 · 5	3 Y	15	00.0	00.0		00.0	79.1			2.0
BASE HEIGHT METERS	25.	150.	250.	-20-		• 0621	1750.	5250	38.00		ALL	(PER CENT)				. '	BASE HEIGHT		25.	•	,	+ 50	900	1250.	1756.	2250	• • • • • • • • • • • • • • • • • • • •			ALL LOW CLOUDS (PER CENT)
		-										A	8		•															

. !-

_	•
2	
Č	j
Ę	
2	į
Č	
-	

TABLE A-BA SPRING
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

	·										NS	WC 1	FR 78	-143	, <u>.</u>	3	1.39								4
	BASE HEIGHT DISTRIBUTION	1.39	10.1	0.04	100	22.12	7.62	1.11	.32	3.99		•			; •		30.0	•		4 (1.07	•	•		
	•	1 - 35	1.53	00.7	13.70	3.9	97.1	. 19	60.	.05		33.0			•		00.0	•				٦.	9	30	a
	•	0.00	* C 1	1.16	9.37	95.4	1.66	61.	60.	. 4.2		18.1			~		0.0	 	20.0	30.00	60.	0.00	00.0		10 0 00 10
,	, · •	90	? ?	. ~	7.24	*	. 09.	•	0	•	,	12.6	,	· •	•	•	00.0	•	2.18	~		•	,		9
GHTS)		00.0		62.	5.01	2.83	99.	60.	00.0	60.		10.3		TABLE A-8B SPRING LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A, B)	•	•	3	. 55	٥	Q.	9.72	6.22	•	900	20.3
(CLOUD COVER IN EIGHTS)	•	00.0	.23	9*.		1.95	. 37	50.) ·	• • •		*		TABLE A-8B SPRING LOUD TYPE STATISTI LOUD TYPE CODE TAE	•	•	•	0	•	.32	.51		9	00.	σ,
(כרסחם	.	000	-	~	5.69	~'	•) \ 		4		6.3	•	TABLE A-8B SPRING LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-	**		9		∹	2.78	•		9	•	\$6. F
	~	ာ ဝ	•	•	•	~ °	~ 0		•	•		5.4	•) SEE L) ~	00.00	. 0	•		•	η,	00.8	0	90.0	\$. 5
٠.	-	.0.0	0.00	•	7	•						;				.0.0	•	•	50.	•	0 4	0.0	0	•	**
	.		9.0	9 6	•			9	•	,		\$. \$.		,		0	•	0	•	,		. 23	7.99 1.99	;
		25. 75.	9		9	8	750	•	3960		, <u>1</u>	10% 010003 -	•		6455 46 411 4616 85	25.	75.	\$	•		1256.	759	5550	2	ALL LOW CLOUDS

TABLE A-9A SUMMER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

					•								N	ISW	/C 7	ra	78.	-14	3													,				
1H3	TION					.'						•											9	44.	;			,							•	•
BASE HEIGHT	DISTRIBUTION	98.	1.39	9.66	11.10	. 0.7.04	25.54	7.03	•		•												.		•		7	Ν.	•				,		50 60))
•	•	.61	1.29	7.56	7.22	15.02	12.5	1.54	00.0	50.	• 70	•			20.7			•				•	•	.0.	. 0.	61.	٠,	70.07	• •						20.0	
•	•	::	•1•	.67	•	11.29			• 1.	- 6	• 1.			;	•••	4	,				•	•	•	0.0	- 61.	0n .	1 25			•	0.00	0		-	12.0	
•	9) D • 0	80.	•	•	•	F 6 . 3	•	*2.	87.	*			9	•			٠		8		•	•	9	01.4			 	00.	00.0	•	00.0	٠		10.1	
**	•	0.0	:	7.	***				•			,		6.9	3			MER	ISTICS (%)	ISEE LOW CLOUD TYPE CODE TABLE 2-A, 8)		•	•	G (2.17	12.53	11.05	9.61	75.	00.0	•			34.9	
	• •	3 6			2. 30	2.30							,	5.3	1			TABLE A-98 SL!MMER	LOW CLOUD TYPE STATISTICS (%)	TYPE CODE	•	•	•) () () () () () () () () () (2 (1) 2 (2) 3 (4)	a a	***	• 5 9	***	•	3 c	•			•	
		CD •		91	9	2.44	. •	\$1.	5	\$ 1 ·			,	5.3				TABLE	LOW CLOUD	TOM CLOUD		~	•	9 6		•	. 4.	•	9.0	•		, e			•	
, ~	•		50.	• •	1. 3.	1.53	•:-	0.0	• 0 •	98.				1.5	•	•		•		1366		∾		9	.0.0	28 •	9 · 4		n -) () () ()		•			1.9	
••	£ 8	:	?		16.	2.23	1.23	£2.	•	.57				• • • • • • • • • • • • • • • • • • •					•	, '		.	6.03	.00	.0.	3.0	75.	4 - 5			0	, ,	•		2.0	
•	•		90.	=		9		30.0		1.55				1.5					•			•	00.0	0.00	9.0			57.		74.	2.63				Y . Y	
BASE HEIGHT	. 55	75.	150.		900				.0622				ALL	LOW CLOUDS		ŀ					BASE MEIGHT		25.	~ (150.	• • • • • • • • • • • • • • • • • • • •	6 29	1250.	1750.		1416.			ALL	LOW CLOUDS	
· ·														•	\ <u>-</u> 1	10			'			,							•	:						

TABLE A-10A WINTER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

_ =		NSWC TR 78-143	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	•
BASE MEICHT Distribution	200 - 1		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	₹,
•		•		0.01
•		•	P 0144000010	17.3
•		8)	\$ \$46.40.40.00 \$\$ **\$ ******************************	P)
· •	0016	•.1 ER TICS (%) ABLE 2-A, I		21.6
•	3000906009 00007446666 0000 NH 00	4.6 3.7 TABLE A-10B WINTER CLOUD TYPE STATISTIC	# @#@ # @# ############################	8.8
M)		TABLE A-10B WINTER LOW CLOUD TYPE STATISTICS (%) (SEE LOW CLOUD TYPE CODE TABLE 2-A, B)	M 0811N40000	*:
• ~		3.7 L (SEE L		20.5
~		.		
•		•		2.1
BASE HEIGHT METERS		ALL LOW CLCUDS (PER CENT)	8ASE MEIGHT 25. 25. 75. 150. 259. 600. 1750. 2250. 3000.	LOW CLOUDS (PER CENT)

TABLE A-11A SPRING
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

												N	SW	C 1	rr	78	-14	3				و	~ 5		٠						,				9.6
	ELGHI							,														F 06	5.57	,											•
,	BASE MEIGHT DISTRIBUTION	5.57	•	2.70	44 · 5 ·	45.93	29.20	1.37	48.	.72	3.96					•								9		=	•			9			,		7
	•	5.45	0.0	2.06	50.	10.95	9.69	• 65	.15	.27	• 30			46	•							•	9	00.0	•	7 · 10	29.8		90.0		::				13.6
	~		00.	. 23	9.1	7:1	8.76	• 1.5	=	•19	• • •		1	16.1))			,		٠		•	9.		1.13	7.97	7.28	/2.		9.0	a • • •				16.5
	•		00.	٠,١	56.2	•	-	.23	*	11.	.15			15.6	•							٠	0,0	•	*	2 · 4 4	•			00.0					9.6
	•	0.	0.0	*	5.	76.7	2.21	*	:	*	.15			9.9					50 100 100 100	SEE LOW CLOUD TYPE STATISTICS (%)], •	•	0.0	00.0	.11		42.21	70.4	.27	*					20.3
		80.0		9 .	>	16.1	1.33	90.	00.0	9	.11			9. 9	,				TABLE A-11B SPRING	PE CODE TA		•	00.	00.0	00.0				0	00.0	90.				2.2
	m				77.	67.7	09.1				11.		1	***				1	TABLE A-11B SPRING	W CLOUD TO		-	::	00.0	9.0	•	-			•	0.00				~
	~			•		7:10	17.7		*	<u>.</u>	06.		•		•				,-	OT 33S)	•		00.0	00.0	9.00	9	7.0.	7	00.0	00.0	0				17.3
		0		•	K1.	•	97.1	=		*	**	*		5.6		,			•					00.		•	ŗ	7 . 7		0.00					4.7
	•	.11.	30) ())			16.1			2.0				•				•	9.0	90.	•	61.	•	• 4 • 6		69.	3.96	•			
	BASE HEIGHT METERS	25.		126.				.0621	1, 200	. 8622				SONOTO MOT	(PER CENT)			, -	. '			BASE HEIGHI WETERS	25.	75.	150.	- 22a-	• 20 •	1258	1750.	2250.	3000	•		ALL	LOW CLOUDS (PER CENT)
															A	-1	2	•			,	-													

N	SW	C	TR	78-	-143
---	----	---	----	-----	------

LOCATION B	EIGHT					•																F06	12.11										12.3
LOCA	BASE HEIGHT DISTRIBUTION	12.31	.29	20-9	10.01	16.03	2.01	. 65	1.33	715-16												.			00.0				•		•		•
	•	11.92	• 29	9 F	16.76	5.24	. 32	. 36	62.					n - 94					•			•	900	00.2	00.	1.13			9.0				
	~	:	•		48.5	2.91	•1•	:		•			,	10.5		•	,					~	9.	:	1.79		111	00.0	300				12.5
GHT IIX L (C, H)	•	0.00	0.0	2.23	90.0	7	.11	.07	.07		•			·,					-	≈		٠	0.0	22.	4.16	7 6	9	***	- -	† co			14.4
MER ID BASE HEI(OVER MATR	, IS	0.0		10	2.15	1.29	.11		.	•			•	•	•			ER	TICS (%)	ABLE 2-A, E	,	'n	00.0	0.0	11.	46.64	10.62	1.76		† 0 • 0	. ;	• .	31.1
TABLE A-12A SUMMER IES FOR LOWER CLOUD BA THE LOWER CLOUD COVER (CLOUD COVER IN EIGHTS)	•			53	1.10	• 65	==	• ·	• • • • • • • • • • • • • • • • • • •	•			•	R • • • • • • • • • • • • • • • • • • •				TABLE A-12B SUMMER	YPE STATIS	ווב כסטב ז		•	00.00	00.0		247	74.			•			• '
TABLE A-12A SUMMER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT AANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	m	00.0	> \ \	29	1.33	• 65	• 22	•	57.				4	;				TABLE A	SEE I OW CLOUD I YPE STATISTICS (%)	1 2002		•	00.0	00.0		***	*	00.0		9 9			2.
FREQUE	~		4		2.12	1.54	9.0	* 0	1.47		•		7.4	3					LI (SFF I (•	0.00		9 6	1.67	.72	1		000	•		2.7
.		9 9		.32	1.79	2.30		• •	1.79				7.1	•		,1				1	•	•	00.0			1.62	1.33			. 0		٠	
	•	3.9	9.0	00.	00.0	• ·			. 65				5.2	!				•	.•		•		0.00			91.	. 50	* O M		11.99			16.3
	BASE HEIGHT METERS	25. 75.	156.	250.	450.		.0621	2250			•	•	TOW CLOUDS	(PER CENT)		•	J				BASE HEIGHT		25.	. 67	250	.50	.000	1250.	2250	3000.	•		ALL LOW CLOUDS (PER CENT)

TABLE A-13A WINTER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

		1		NSWC TR 78-	143		2		~
BASE HEIGHT Distribution						, F06	.23		
BASE H	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.06				•			•
	 	19. 4. 18. 7.		• •		•			12.9
		5 9 8 8 6 8 8 8 7 8 8 8 8		7.11		~		N# # # # # # # # # # # # # # # # # # #	16.
,	90.0	0 h h h h	9046	•	8			9 M & O O O O	v.
	000	3.36	****	•	TABLE A-138 WINTER LOW CLOUD TYPE STATISTICS (%) (SEE LOW CLOUD TYPE CODE TABLE 2-A, B)	,	00 Jk.	1	23.2
•		3.2.2		•	TABLE A-138 WINTER CLOUD TYPE STATISTIC CLOUD TYPE CODE TAB	•			2.1
n				:	TABLE A-138 WINTER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-	* *** .			2.2
~		••••••••••••••••••••••••••••••••••••••	- · ·	7.11	(SEE I	~	0001		24.1
· •	00 d	64.1 64.1 84.1	**************************************	?		₩.		##030 ##000	•
•			0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	m •		•		m # 2 k m	•
BASÉ HEIGHT MÉTERS	25. 75. 158.	458. 886. 1258.	2258. 8888.	ALL LOW CLOUDS (PER CENT)		BASE HEIGHT METERS	25. 75. 150. 250.	608. 1750. 2256. 3008.	ALL LOW CLOUDS (PER CENT)
						• •			

TABLE A-14A SPRING
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

GHT TION		NSWC TR 78-143	F 06	. 8
BASE HEIGHT Distribution	0 00 00 00 00 00 00 00 00 00 00 00 00 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~
	0 NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	** ** **		14.7
•		o. •		1.41
.		8 ************************************		7:7
w	0	7.5 T.5 ING ISTICS (%) TABLE 2—A, B)		20 · •
•		6.6 5.6 TABLE A-14B SPRING CLOUD TYPE STATISTIC		 E
m		6.6 5.0 7.5 TABLE A-14B SPRING LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-	M 000000000000000000000000000000000000	
~	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.5 CSEEL	000 48 000 000 48 000	13.0
, -4	606 W W W W W W W W W W W W W W W W W W	?		6.2
•		e m		9.
BASE HEIGHT METERS	00000000000000000000000000000000000000	ALL LOW CLOUDS (PER CENT)	8ASE HEIGHT METERS 25. 75. 150. 250. 650. 800. 1750. 2250. 3800.	ALL LOW CLOUDS (PER CENT)
		A-15		•

TABLE A~15A SUMMER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

GHT			F 06	17.4
BASE HEIGHT Distribution	7 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			•
•	M	16 16	4 000M000000000000000000000000000000000	13.9
		w		11.0
•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.2 (B)	0 0464600000 0004440000 0004440000	11.2
•		*** 2.3 5.3 TABLE A-15B SUMMER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A, B)		28.4
•	0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TABLE A-15B SUMMER LOW CLOUD TYPE STATISTICS (%)	3 0000 PC 000 0000 PC 000 3 0000 PC 000	6
m		TABLE LOW CLOUD	M GGG/44000000000000000000000000000000000	**
~	000071000	6.8 (SEE	N 084NPM8000 878N9 08000 	.
		;		a.e
•		~ 		**
BASE HEIGHT	25 25 25 25 25 25 25 25 25 25 25 25 25 2	ALL LOW CLOUDS (PER CENT)	8ASE HEIGHT NETERS 25. 150. 250. 450. 450. 1750. 2250. 3000.	ALL LOW CLOUDS (PER CENT)

NSWC	TR	78-143
------	----	--------

			TABLE A-16A WINTER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	TABLE	TABLE A-16A WINTER SPOSED OF THE LOWER CLOUD BASE HEIGHT (CLOUD COVER MATRIX L	TER JD BASE HEI SOVER MATE GHTS)	IGHT RIX L (C, H)	:		LOCATION D
BASE HEIGHT METERS 25. 75. 150. 450. 600. 1250. 2250.	6656664 66566664	640 45 46 64 64 64 64 64 64 64 64 64 64 64 64	6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35	000 44 000 000 000 000 000 000 000 000	9 00 00 00 00 00 00 00 00 00 00 00 00 00		6 00 11 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BASE MEIGHT DISTRIBUTION . 046 0.39 5.74 5.67 1.61 1.61 2.22 3.35 2.61
ALL LOW CLOUDS (PER CENT)	· · · · · · · · · · · · · · · · · · ·	in m	10.5	* *		11.5	50.0	14.1	22.4	

	. •			0 0 0 0 0 0 0 0 0 2	90
		969	.61	5.61	
	•	00	3.96 9.97		0 0
â	.	000		# # # # # # # # # # # # # # # # # # #	00.0
TABLE A-16B WINTER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A, B)	_ w	9 0 c	66.	15.52	000
A-168 WINT	•	0000	1.52	7 7 9 6	
TABLE A-16B WINTER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-,	27)	000	2.48	999	
(SEE L	~		13.93 15.49	000	00.0
	→ 6	900	2.92	2000	00.0
	G U	999		60°	2.61
	BASE HEIGHT METERS 25.	150		1250. 1750. 2250.	• • • • •

14.9

16.9

19.7

4.5

ALL LOW CLOUDS (PER CENT)

F06

TABLE A-17A SPRING
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

								•		MSWC IN /	0 - '	43												
GHT TION													F 0.6	1.19										1.2
BASE MEIGHT DISTRIBUTION	1.19	98.	6.22	40.24	39.75	2.91	.57	.90	7.29	·			6	0.0		•	0 K	. 25	0.0	00.0	00.0	•		•
•	1.15	.53	2.01	11.27	7.37	. 19.	.12	.16	1.16	M M N			•	0.0	3 · ·	•	10.23	5.17	* 0.	00.0	90.0	-		16.5
· •	• •	.16	.61	9.9 ¢	5.28	2.53	**	•12	• 52	8 0 9 90 14			~	0.0		75.	10.19		•	•	0.0	•	•	16.2
٠	9 4	00.0	1.80	64.7	5.24	54.	•16	•29	.61	16.1		(8)	٠	00-0		4 P	02.	14.	*	00.0	•	•		5.5
in	900	*0	.57	4.50	4.42	.28	*0.	*0.	.37	10.2		TABLE A-17B SPRING LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A, B)	.	0.0		# J	4	14.12	24.2	• 58	0.0			21.3
	900	00.0	•59	29.2	3.03	90.	ó	00-0	• 16	8		TABLE A-17B SPRING CLOUD TYPE STATISTIC CLOUD TYPE CODE TAB	. .	00.0	9.0	9	3.	1.04	•16	•	0.0	5		2.0
m	99	70.	.33	3.07	66.4	• 45	00.0	*0 ·	.37	*		TABLE A-17B SPRING LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-	m	0.0	•	9 0	1.02	*	•	00.0	ċ	•		1.6
N	999	70.	.37	3.72	5.08	• 45	90.	.12	. 62	10.7	ŀ	(SEE	~ ,	00.00	3 .		9.31	7.78	•0•	00.0	00.0			16.2
	00:0	*0.	•25	1.72	4.42	.12	90.	.12	64.	7.2			-	00.0		9	3.01	7.82	•12	***	ē	9		11.8
•	9000	00.0	00. 00.	00.0	0.00	00.0	00.0	00.0	3.15	3.2	•	•	~	0	•	•	52.	. 33	90.	. 20	9	7.29		9.1
BASE HEIGHT . METERS .	25.	150.	- 550	450	900	1250.	1750.	2250.	3900.	ALL LOW CLOUDS (PER CENT)			BASE HEIGHT METERS	25.	•	150.	* O.O.	800	1250.	1750.	2250.			ALL LOW CLOUDS.

1		١
1	2	2
(C)
i	-	
•	d	ľ
(۷	١
1	C)
		1

TABLE A-18A SUMMER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX:L (C, H)
(CLOUD COVER IN EIGHTS)

		NSWC TR 78-143		9	m
FION			F06	92 - 50	Š
BASE HEIGHT DISTRIBUTION			o		1
•	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	м н о	•		12.3
~		.	•	00 N4 0000	6.1
, •	#	10.4 B.	•	004WN 0000 0044&00000 0044&00000	1.1
w	000 R 000 000 000 000 000 000 000 000 0	7.1 MER STICS (%) TABLE 2-A	.	0 0 0 H 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.6
•		9.2 5.2 TABLE A-18B SUMMER CLOUD TYPE CODE TAB	•		m. M
m	600 54 6000 6000 6000 6000 6000 6000 600	.1 9.2 5.2 7.1 TABLE A-18B SUMMER LOW CLOUD TYPE STATISTICS (%) (SEE LOW CLOUD TYPE CODE TABLE 2-A, B)	· ••	0	1.7
~	64. 8000 1	12•1 L (SEE L	~ ,	00 44 000 000 000 000 000	6
		!	⊶	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.2
9	00000000000000000000000000000000000000	6	•	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6-01
BASE HEIGHT METERS	M 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOW CLOUDS (PER CENT)	BASE HEIGHT METERS	100 100 100 100 100 100 100 100 100 100	ALL LOW CLOUDS (PER CENT)

LOCATION H	BASE HEIGHT DISTRIBUTION	
•	•	10.00

TABLE A-19A WINTER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

BASE HEIGHT METERS	0	#	N	m	•	v.	.	•	•	BASE HEIGHT DISTRIBUTION
25.	00.0	0.0	90.0	00.0	00.0	00.0	0.00	00.0	. 55	.51
75.	00.0	0.00	0.00	00.0	90.0	•03	0.00	00.0	0.03	.03
150	00.0	00.0	90°0	00.0	.03	00.0	90.	60.	69.	.26
250.	00.0	.03	0.00	60.	•00	.31	1.06	.71	1.05	3.24
450.	00.0	1.17	1.62	2.10	2.13	3.16	6.54	5.60	11.12	33.85
.009	00.0	6 . 3 .	5.43	5.06	3.61	5.63	7.20	6.51	8.82	48.81
1250.	00.0	• 26	04.	94.	.37	.23	O. 4.	0.4.	23	2.76
1750.	00.0	•00	• 03	0.00	• 90•	60.	00.0	00.0	*1.	.37
2250.	00.0	90.	.17	.20	.11	.14	90.	.03	. 34	1.11
3000	99	.63	9	*8.	.17	90•	•14	6	.51	4.67
ALL LOW CLOUDS (PER CENT)	9	9 •9	H7 • •0	m •	. 9	9.6	15.4	13.6	52.₽	

			SEE L	LOW CLOUD TYPE STATISTICS (%) (SEE LOW CLOUD TYPE CODE TABLE 2-A, B)	TYPE STATE	STICS (%) FABLE 2-A,	â				
BASE HEIGHT.	9		2	M	•	w			•	· o	F 06
13	90.0	00.0	90.0	0.00	00.0	0.00	0.00	00.0	0.03	00.0	•
75.	00.0	00.0	00.0	00.0	00.0	0.00	. O.	00.0	20.0	0.0	
150.	00.0	0.00	60.	00.0	00.0	0.00	•03	.14	. 00.3	00.0	
250.	00.0	00.0	. 51	.17	00.	90.	•14	2.16	.20	00.0	
+ 50 •	11	1.96	6.63	1.79	• 65	4.92	76.	46.9	3.44	94.	
.009	• 20	11.41	7.00	• 65	3.24	17.97	33	.68	7.23	.43	
1250.	• 06	• 28	90.	6.03	.37	1.93	.03	00.0	.03	00.0	
1750.	.17	00.0	9 0.0	00.0	00.0	•14	00.0	90.0	90.	0.00	
2250.	1.05	00.0	• 10	00.0	00.0	0.00	0.00	00.0	0.00	0.00	
.3000	- 20.6	0.00	00.0	00.0	00.0	00.0	00.0	00.0	00.0	0.0	

1.2

25.0

ALL LOW CLOUDS (PER CENT)

=	

TASLE A-20A SPRING
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

GHT FION																	•		•	F 0 G		, .							٠			ı	ē.
BASE HEIGHT DISTRIBUTION	64.	.00.0	22.	3	σ	50.14	ĸ	. A.7		•										ō.	•	-) () (2	3	00.0	0	00.0	00.0			1.3
•	3	0.00	. 16	•	7	3	1.0		٠,	P #	9 ?		23.4					*		•	6	, ,) () (2.6	.53	50	0.00	6.03	00.0			11.0
~	0	91		. 62	3,33	4.97	.33	116	:	1 0	•		9.6							~				• •	3.60			00.0	•	•			ē.
	00.0	•	? '	ů	4.53	٠,	.82	.11	-	41.	:		14.2					ñ		4	•			•	١ 6	92.	•	0	•		٠		* * *
w	9.0			30.0	3.00	*•26	**.	.11	0,0		•		6.7			NG	TICS (%)	ABLE 2-A, I		w	6	90.0	00.0	6	3.77	16.00	1.75	**	00.0	00.0			22.0
و	0.5	9 6	3 5	3 ·	2007	2.40	.27	00.3		.22	•		. 5.0			A-20B SPRI	CLOUD TYPE STATISTICS (%)	TYPE CODE 1		•	00.0	00.0	00.0	.0	1.69	4.42	•55	0.00	.05	0.00			6.7
13	9	9 6		•	****	5.90	**.	00.0	00.0	. 16	1	-	4.6			TABLE	TOW CLOUD	LOW CLOUD TYPE CODE TABLE 2-A, B)		PD	•	00.0	•	• •	•	1.15	.11	• 0 •	0.00	•	-	•	H · M
8	90.0				1100	47.7	1.37	. 11	50.	• 38		•	12.4		-			OEE L		7		0.00		.27	9,96	13.16	96•	•		•		,	23.4
**	00.0	0.0	80			***		00.0	• 22	64.	,		9.5								00.00	9	00.0	0.00	1.80	40.6	•	0	•	0.03			11.9
			00.0			•			90.0°	8.19			6.3							•	00.0	00.0	00.0	00.0	64.	.05	.27	. 33	٠,	. 04		•	12.2
BASE HEIGHT METERS	25.	150.	250	. 654			1.50	1750.	2250.	3000		• • •	SON CLOUDS	(PER CENT)					BASE HEIGHT	METERS	25.	75.	150.	250.	450.	600	1250.	1750.	2250	.0000			COW CLOUDS (PER CENT)

TABLE A-21A SUMMER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

LOCATION H

METERS	25. 75.	150.	9 6 9		• 004		. 1250.	1.750	.2250.	0000			ALL	(PER CENT)				BASE HEIGHT	Merens	.52					1250	1750.	2253.	3000.		ALL	LOW CLOUDS
•	0.00	00.0				• • • • • • • • • • • • • • • • • • •	00.0	00.0	50.	16.77	,			7 · · ·	٠,	1			•	00.0))			6 4		F1	1.16	10.31	,		20.2
-4	00.0			90	2.97	96.6	.61	50.	0.00			¥		17.6	•		٠.		~	90.0		9) ·	11.6		00.0	9	0.00			1.8.7
α.	0.05				7.08	16.39	.71	5	9		•			25.0			(SEE	,	~	0.00	٠	00.0	٠,	ä.,	FO. 0.			0.00	. •		28.7
м	900			.10	3.54	6.79	77			7	•		1	11.6			TABLE A-21B LOW CLOUD TYPE LOW CLOUD TYPE		m	•	•	•	•	•	•	•		0			
•	00.0		20.0	. 65	40°E	÷ .05	2	•	7	67.	•15			7.9			A-21B SUM TYPE STATI TYPE CODE	-	•	•	•	00.0	•	•	2 - 56		3 S	00.0		•	
w	9.0	? '	•	٠.	۲.	3.59	•			911	٠,5			7.3			SUMMER STATISTICS (%) CODE TABLE 2-A, B)	•	.	0.00	0.00	0.00	•15	1.57	6.63	1.57		00.0) 		•
'	9.0	•	7	.10	9	2.43		•		31.	98.			5.6			8		9	•	00.0	• 0 5	•15	99.	•	9	• c	00.0	,		•
~	9.9	•	•		-	•	•	•	•15	-	•15	,		2.8	ţ.			•	~	•	•	00.0	~	1.72	7	•	•				
	.15	0.00	• 0 5	9	. 6		•	.15	9	.35	. 30			7.3						•		00.0	•	۲.	ċ	. c s	-	30	•		
BASE HEIGHT Distributio		00.0	• 05	7.	20.54	•	٠	•	•	•	16.31		•						6	-	-		7	۳,	•	•	•) c	•		
HEIGHT Ibution																	•		F 06	92	ı				,						

_
7
ᅕ
\underline{v}
=
7
•
Q
0
_

FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

														NS	· W(C T	R 7	8-	143	ł																	
	E II GHT	BUTION													•								1	F 0 G	•	•											~
	BASE +	DISTRIBUTION	.15	.51	~	12.35	•	-	0	• 56		1.27	•										•	3 *	00.0	01.	30	3.48	4.87	• 56	0.0) c				# **	7.7
		• ,	•	•	•		9	•••	۰	~ `					٠.	7.57								•	9	•	•		•	•	٠ . د د					28.9	
	1	~	.05	~ ,		•••	7		74.7	-	3 -	•			4.61	•	•				٠.			•	0	_	_				00.0		_				,
	, •		9 6	•		20.7	•		•		` ~	:			11.9					5	•		٠		•	Ö,			•	9	0	•	•			2.2	
GHTS)	•	•	9 6			7.14	٦.	•	•	0.0	•				12.1				ER	STATISTICS (%) CODE TABLE 2-A B)			w	•	9 6				7.64	∹	.51	90.	9			29.4	
(CLOUD COVER IN EIGHTS)	•		0	.05	.7.	9.56	2.86	.51	.05	00.0	• 10	•			9.6				1-228 WINT	YPE STATIS			•	6		200	00.	.05	•25	. 05	00.0	900	•	•		:	
(כרסחם	m	•	00.0	00.	7		7	90.1	7		=				11.2			1	TABLE A-228 WINTER	SEE LOW CLOUD TYPE	:		7	•		-	•	•	~	D (? •				5.1	•
,	· ~	0.00		00.0	92.		\ :				•		* ,	,	2.9 .				•	(SEE.L(•	~		00.0	.05	• 52	4.61	2.78				•			7.7	
	. ⊶	6.63												•	>•¢	•			•			•	•	0.00	70.0	0.0	-		1.36			•				2.2	•
•	•						9.0		09.0	1	;	,			?					·			•	. 0.	00.			• ·	9 9	6.1	•	1.27		•	•	7	
· .	BASE HEIGHT	25.	150.	250.	458.	.00	1250.	1750.	2250.	2000				רסאי כרסחם	PER CENT)							BASE HEIGHT) ·	. 52	•	156.			1 250.	1750.	2250.	7000			ALL	(PER CENT)	
				•	•		•				٠		•	Ė,		23	· ·	٠		•		so ,							٠.			٠.			ć) <u>ē</u>	

TABLE A – 23A SPRING
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

7	•											140	,,,		,,	- • •	~			F 0 G	.27					•						۳.	
HASE HEIGHT DISTRIBUTION	.27	ن به د ب	200			21.67	2.0			0 * • • • • • • • • • • • • • • • • • •										♣,	00.0	00.0	• 05	•	12.94		•					15.7	
•	.16	.1.	5.4	* ·	•	•	•	٠.	.05	23			6.42	,						•	9		a	99.	or a	- (•	•				6.85	
	.05	9 · OC	•	÷	•	2.68	Š		•	•			26.3	•	•				•		9		•	69.4	4.01	\$0.	9	• • • • • • • • • • • • • • • • • • •) C	•	,	10.5	
•	9	00.0	۲.	1.19	•	ç	٠٧.	.0.	90.0	•		,	12.5	•				ā		٠		7	.27	1.80	•	ċ	•	•))	?		2.2	
un.	9.0	00.0	00.0	•9•	6.61	2.78	74.	• 0 •	00.0	• 0 •			3.01	•			ING	LOW CLOUD TYPE STATISTICS (%)	ו אמרור ליין. מיין	*	•			3.05	~	?	7.43	•	•			26.4	
•	•	- 00.0	•	.10	•	3.46	•	•		.05			6				TABLE A-23B SPRING	LOW CLOUD TYPE STATISTICS (%)	i rre coue			9 6			.36	.17	.23	00.0	•	9.0		. 4.1	
•••			•	60.	۲.	4.42	.59	•		•	,			2.6	;		TABLE	TOW CLOUD	LOW CLOUD	M	•	9 (•	5	•	•	•	•	9.	•		9.4	
~			. 05	60.	2.32	1,01	44	6 0	4	-	, - 		,	••					(SEE			0.0			1.73	3.97	01.	0.00	00.	0.00		8.9	
-	•		9								•			2.4		•				•	•	0.0	ė,			2.65	· • •	0.00		::		5.6	
•	• ;									~				•			í					0.0	-					. 60.	~	1.46		1.1	
BASE HEIGHT	METERS			250					17.54	.1627			ALL	LOW CLOUDS						BASE HEIGHT	METERS	25.	75.	150	. 25.			- 25.	2258	70007		LOW CLOUDS	(PER CENT)
÷							•								A -	-24																	

_
Ž
2
A
8
<u>ت</u>

TABLE A-244 SJMMER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

		٠.								THOTEN BOAR
BASE HEIGHT METERS	. •			~	, •	· v	•	Peo	€*	DISTRIBUTION
36			00.0	00.0	00.0	*0.	~	*0.	;	.53
75.	90		00.0	00.0	JO. 0	*0.	J0.0	00.0	•	-
150.	00.0	0.30	.5.		. 27	22.	6**	?	2.07	•
250.	00.0	.03	. 16	60.	64.	96.	•	•	٠ د	•
. 650	00.0	1.64	2.31	3.91	3.96	4.23	•	16.90	•	•
.09.6	6.00	3.12	2.98	3,30	2.14	2.71	•	`.	ا ب	72.97
1250.	00.0	9	. 53	.31	.27	91.	7	•	•	•
1750.	.00	?	60.	•	60.	→	ပ ု	J 0.	9.0	1).
2258.	90.9	, o.	00.	50.0	0.00	00.0	•	•	•	5) · (
2000	;	.1.		:	,0.	.13	•	00.0	00.0	
				•	•	i				
•										
ALL	, .				•					
SOUCLOUDS	•	, 5.6	6.1		. 5.,	•	16.0	6.07		
(PERCENT)									•	
			•							
		-				(
		1		TABLE	TABLE A-24B SUMMER	MER CTICE (%)	-			
			(SEE		TYPE CODE	TABLE 2-A,	8)			
BASE HEIGHT .	•		~	~	.	v,	•	~	•	9 F0G
		•	•	•	30.0	00.0	30.0	00.00		
		9 6) (i						00.0	00
. 6.5			9		000	-	2.39	~	•	٠.
26.4			.0	~	0.00	*	1.38	5.16	۳.1	٠,
. 20.	0	1.07	~	1.42	69.	9.56	1.32	÷	۲.	•
	00.0	2.03	0	~	1.11	•	0.10	•	9	•
1250.	00.0	7	•	•	å	∹	30.0	•	•	•
1750.	•	•	ີ	•	00.0	.7.	7 · O	•	•	•
2250.	٠.	•	0	00.0	9.0	•		0	ں د	JO. 6
3000	• 65	20.0	•	•	00. 0	00.0		•	•	•
		. •								
-		,		•			•			
SULCIONOS	6.	3.3	3.3	1.9	2.0	26.2	6	13.0	34.6	2.6
(PER CENT)			• •		,					

												NS	SMC.	TR 7	8-1	43														
LOCATION J	MEI GHT	DISTRIBUTION		•	:														•	904	. 52									
007	BASE	OISTR		91	2.62	6.77	24.25 35.55	11.64	1.10	1.72						,			•	•			: :	14.35		9				19.3
		•	24.	. 10	1.62	30.0	6.63	10.2	.24				24.6							•			m	~ ⋅	15.01		0.0			23.1
	,	~	0:0	• • •	62.	F 9 9	6.39	2.01	~				17.6						•	•	:	1 · 6 · 4	N . 10 .		00.0	•				-9.1
EIGHT TRIX'L (C, H)	•	• ,	•15	9 .		6.01		97.	0 u				12.0				8)		•	,	0 0	.24	.		0	9.	; c	٠		3.2
TABLE A-25A WINTER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)		•	•		99	5.34	5.65		? 0		•		12.4		(STICE (K)	(SEE LOW CLOUD TYPE CODE TABLE 2-A, B)		•			* 62	1.19	9.6	8.82	n :				20.7
TABLE A-25A WINTER HES FOR LOWER CLOUD BA THE LOWER CLOUD COVER (CLOUD COVER IN EIGHTS)	•	•	.	5.0	.10	5.39		01.					9.8		A 250 WILL	CLOUD TYPE STATISTIC	TYPE CODE	,	•			•			01.		0			•
TABL JENCIES FOR OF THE LO (CLOUD	m	•			*1.	7	0		110	• 18		٠	•		TARIC	LOW CLOUD TYPE STATISTICS (%)	OW CLOUD		,			•	2.67	1.7.2		•	•			4.5
FREGE FRANSPOSE	N	£		00.0	• 10	7.24		-	• 15	-			:				SEE'L		~	9.0	30.0		2.72	4.39	00.0	2	00.0			6.7
		•••	:	9.0	•	2.77	200	.19	50.	•			•						₩.	9.00	9.0		*	. 9.			0 0 •		,	1.2
·.	•	• 0 •	-	91						•			:	;		1		,	-	9.60		0 . 0	9.00		. 00	•19	7.15		•	6.
	BASE HEIGHT METERS	25.	75.	150.	. 25	:	1254	2250	3000			ALL .	(PER CENT)					BASE HEIGHT	METERS	25.	150.		450	1250	1750.	.0422			ALL 2010	(PER CENT)
	*.					•				• • •		•	A ,	23	•			â							•	-			-	} = .

AR

TABLE A-26A SPRING FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN FIGHTS)

LOCATION J

		•		(CLOUD COVER IN EIGHTS)	I HE LOWER CLOUD COVER (CLOUD COVER IN EIGHTS)	COVER MAT	RIX L (C, H)			
BASE HEIGHT METERS	•	•	~	n		w	٠	•	•	BASE HELGHT DISTRIBUTION
. 52·	• 55	0.03	00.0	00.0	6	•	•		•	
	0	6.03	• 00	00.0		9 6		9.0	.67	1.41
. 100	•	90.	• 15	6	90			-	00.1	1.00
- 143	. 6	•00	• 23	.37	27		*	٠. دو	3.33	99.4
* 90.0	9	1.05	2.42	377.4			0	96.	90.4	7.39
000	90.0	4.70	16.9	4.88	,	7.		5.9	6.30	32.86
1-250.	00.0	1.69	4	•	70.	5.93	3.47	6. 16	3.29	15.97
1750.		4			9 · K	.91	1.14	3.81	1.74	***
2250.	0.00	80.0	•	*	•53	•10	*1 .	66.		16.11
3000	1.37	2			00.0	•05	0.0	0.0		
	•	25.	57.	.23	.05	. 23	00.0	5		• 1 • 2 · 5 · 5
			•						•	2
				•			•			
ALL LOW CLOUDS		•							•	
		>• •	(3 [']	11.5	9.6	10.9	10.6	17.3	9	
·—;		-						•		
					*,					
	· W			TABLE		(
,					COUNTY OF COUNTY	5				
					SIAT	STICS (%)	•			
٠			3361	LOW CLOUD TYPE	CODE	TABLE 2-A, B)	(8)			
BASE HEIGHT	,		,			•				
METERS	•	-	~	m	•	w	•	•	•	
25.	00.0	0.00	6	•	,		,	•	•	90 J
75.		9)))	00.00	00.0	00.0	00.0	9	
150.	00.0	00.0	40	•	30.0	0	9	.32.	00.0	
250.	. 90 •	.03	50	•	9.6	64.	1.51	2.33	6	90.
+ 50 •	00.0	.37	1.78	•	3 .		9	2.88	680	49
.00	93.0	1.92	4.00	1 1 1	3		-82	3.10		6.95
1250.	00.00	.27	. 23	•		7.0	•	. 6.5	17.94	2.24
1750.	00.0	•	0.0			7.43	•	00.0	-	00:0
0622	•	•	00.0	•	00.0		•		•	00.0
	2.56	00.0	0.0.0		9	90) c		0	0.0
-						•	•	•	•	86.0
					-					
SGUOTO MOT	7.7		•		·		•			
(PERCE"T)	•	•	•	3.2	1.2	25.4	4.7	1.1	31.2	0,11
) 	•1

												N	swc) T	R 7	8- 1	143																	
LOCATION J	EI GHT BUTION		,													•					505	3	5.49										1	
LOCA	BASE HEIGHT DISTRIBUTION	2.49	1.98	7.00	10.71	78.45	79°7	•	10	2.86	 										•		90.0		> 4 > •		• 54	•	•		•		. •	*
	. •	2.44	1.01	9.	94.	17:51	04.0			. 65			37.4	•									9 6		•	16.54	16.49	66.			1		•	
	•	• 15	•	•	1.47	6 . H	2.26	•10		68.			10.0))					÷					6.20	0 + · M	2.80	9		3 6				1,1	•
1GHT 81X L (C, H)	٠	00.0	0 0	**	17.4	2,35	96.	91.	6.00	.05			9.1	1					-		•		1.27	2.26	3.34	1.27	***			00.0			***)
MER JD BASE HEI SOVER MATE	ın	0.00	a e	75.	3,21	2.76	.72	0.00	0.0	.36			7.7				ER	TICS (%)	ABLE 2-A, B		•	•		.54	5.89	01.0		6	00.0	0.0			27.2	! !
TABLE A-27A SUMMER IES FOR LOWER CLOUD BA THE LOWER CLOUD COVER (CLOUD COVER IN EIGHTS)	•	90.0	• •	11.	30.00	2.30	.36	• 05	0.0	000			6.2				TABLE A-278 SUMMER	YPE STATIS	YPE CODE TA		•	00.0	30.0	0.00	9	.27	**	000	•	00.0			6.	
TABLE A-27A SUMMER PREQUENCIES FOR LOWER CLOUD BASE HEIGHT POSED OF THE LOWER CLOUD COVER MATRIX L (CLOUD COVER IN EIGHTS)	P3	00.0	? :	.23	5.49	4.34	. 72	# (#4)		•			2.9		•		TABLE A	LOW CLOUD TYPE STATISTICS (%)	(SEE LUW CLOUD TYPE CODE TABLE 2-A, B)		m	0.00	00.6	00.0	50.	1.27	00.0	0.00	00.0	7		,	1.6	
TABLE A-27A SUMMER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C. H) (CLOUD COVER IN EIGHTS)	.∾	0.0	900	• 05	2.30	5.89	96.	•		•		•	•					רנ הנבניוט	ואבני דכ		~	0.00	0.03	00.0	•	77.1		0.00	0. JO	90.0	•		1.1	
	→	6.63	57.	60.	.72	2.60	7.	//		•		:	2.0					•	,		- -	0.00	00.0			19.1	40.	4.64	70.0	00.0			2.2	
	a		00.0	00.0		9 6	7 C		1.17		. :	11-	1.2				•				•	90.0	00.0			9 9	00.0	. 65	.27	2.08			5. *	•
	BASE HEIGHT METERS	75.	150.	. 258.		1250	1750	2250.	3000			ALL	LOW CLOUDS					•		BASE HEIGHT	KETERS	.55.	. 22	250		0.00	1250.	1750.	. 6250		•	ALL	LOW CLOUDS	

¥
Z
Ĕ
ပွဲ
Ч

TABLE A-28A WINTER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWLR CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

BASE HEIGHT BASE HEIGHT S 6 7 & DISTRIBUTION		· 00 · 00 · 17 · 146 · 3	23 .46 .81 1.56 3.72 7	14. 3.06 3.52 4.45 8.05 3.06 3.00 3.00 3.00 3.00 3.00 3.00 3.00	3-12 4-27 4-33 8-55 8-38 72-	27	25 .25 .17 .48 .17 .48 .20		4 58. 71. 0.00 71. 51.		9.5 7.6 10.3 10.5 20.0 26.5		TABLE A-288 WINTER	LOW CLOUD TYPE STATISTICS (%) (SEE LOW CLOUD TYPE CODE TABLE 2-A R)						23 0.00 1.64 2.37 2.45 .35	7 .17 4.97 2.31 4.51 0.32 6.3	13.61 13.61 -17 .23 18.31 1						
~		•	96	~	94 45	~	1				6 6.9		,	LOW CL		~	•	•		•	:		.00	÷	.00	٠		,
e4	000	70.0	90.	1.56	2.95	1.2.1	04.	0.03	25.	•	6.7				•	•			90.	•0•	86.	71.	0.0	0.00	70.0			
•	000	00.0	0.00	00.0	0.00	00.0		90.	5.95		5.9			•.		•		00.	00.0			9 0	90.0	.17	6 • 91		-	
BASE HEIGHT METERS	25.	150.	250.	450.		1250.	1750.	2250.	.000x		ALL LOW CLOUDS (PER CENT)	-29			•	BASE HEIGHT	25.	75.	150.	250.		1258	1750.	2250	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			ALL

TABLE A-29A SPRING
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

											•••	J110	IN 70	~145														
CHT																F 06		•			•						3.2	•
BASE HEIGHT DISTRIBUTION	3.15	.23	2.87	6.13	33.93	38.15	9.9	2 - 76	96.	5.18	,					•	•			.17	5.01	•	•	•	9 0	i	9•	!
	1.29	.11.	2.42	4.4%	9.05	4.73	1.52	*8.	.11	90		54.9				•	00.	•	.17	. 62	:	•	•				27.0	
•	· r	2 T .	.23	•	-	6.42	•		0	7		16.8				~	9			2.13	ŵ	?	•	•			7.3	
•	98.	98.	## T	62.	3.05	3.71	.39	.11	.23	90.		8.2		ā	5 ,	۵	00.0	7	•	2.53	~	? '	3	•	•		7.0	
•	. 28	0.0	9 . 0	.23	3.32	3.30	• 6	.45	00.0	11.		•	v .	ING STICS (%)		•	00.0	90.	.34	99.	•	11.03	16.6	9 9	0.0		26.8	
•	.23	00.0		***	56.2	4.73	• 3¢	• 45	.13	90.		••	• ,	TABLE A-298 SPRING CLOUD TYPE STATISTIC		•	90.	00.0	00.	00.0	.17	52.			00.0		•	
m			•		700	7	•	.51		• 5		10.7	,	TABLE A-298 SPRING LOW CLOUD TYPE STATISTICS (%)		m	•	•	0.00	•	.23	•	•	0.0	•	,	•	
~	90.))	9	•	20.00	9.18	•	. 43	• 23	• 50		10.5	,) (SEE		~	00.0	0.00	- -	***	24.2	2.		0	00.0		7.4	
.	11.	•	? •			2	**	92.	52.	ř.	٠.	9.9		1.7		-4	0.00	0.0	0.0	0.0	5002	10.7		0.0	0.00	,	5.0	
•	4E.	•	•						٠	3.66		•	*			•	00.0	9	00.0	00.	9 .	11.0	46	06.	5.12		6.5	
BASE HEIGHT METERS	25.		250					1,74	• 1627	• 200		ALL LOW CLOUDS (PER CENT)			FASE HEIGHT	METERS	25.	75.	150.	.062	• 20	1250	1750.	2250	3000	· ·	ALL LOW CLOUDS	(PER CENT)

NSWC	TR	78-143	
------	----	--------	--

NO K	IGHT	ULION													٠				ı		90		• 10											7•
LOCATION K	BASE HEIGHT	DISTRIB	9	j.	٠'n	20.00	1 2 2	3 C . W	2.81	.59	4.56				•						œ	•	00.0	. 60	90.		99	00.0	0.00	0				•
	,	•	40 W		F . 4	9.6	44.9	1.46		90.	.23			25.9		,							0.0	9.	9 6	6.77	17.03	•6•		21.	•	,	28.1	1
. · ·.		- ;			1.23	7.02	6.43	1.35	.53	.23	.35			19.5		•		, ,			~	•		0 0	2.11	3.16	90.	90.0	•		•		• •	
IGHT 31X L (C, H)	æ	•	9 9 9	- 12	24.	2.93	3.22	• 35	90.	90.	.12			7.3							.	•	3 4		2.93	1.99	91.	21.0					7.5	
TABLE A-30A SUMMER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT RANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	16	- C	0	90.	.23	2.34	*0.	• 59	74.	99.	•10			7.9			ER	TICS (%)	(SEE LOW CLOUD TYPE CODE TABLE 2-A, B)		'n	00.0	90	.29	1.05	8.72	14.51	59.0	9	0.0			33.2	
TABLE A-30A SUMMER SIES FOR LOWER CLOUD BA THE LOWER CLOUD COVER (CLOUD COVER IN EIGHTS)	•	90-1	0	0.00	00.0	2.11	4.56	. 6 2	57.	3	•	,		7.0			TABLE A-30B SUMMER	LOW CLOUD TYPE STATISTICS (%)	YPE CODE T		*	0.00	00.0	90.0	9.00	.12	-62	90.	00.0	00.0			1.2	
TABLE A-30A NCIES FOR LOWER OF THE LOWER CLC (CLOUD COVER I	m	9	00.0	90.	•	•			7	9 6	}		,	1.6	•		. TABLE A	T GUOLD WC	W CLOUD T		m į	0.00	00.0	.10	00-0		. a	00.0	00.0	0.00	٠		r.	
FREQUE	~	9.00	00.	99.		1.33	20.7) L	ים פים	90.)			9.3				ָרָל עַרָּיִי	(SEE LC	•	V	00.0	. O.	90.	70.00 0.00	1.33 6.44	. 76	00.0	90.	00.0	•	•	9.2	
1	-	0.00	20.0	71.	9 5	6.73		5.	.12	-				10.6					•	•	•	00.0	00.0	90.0	0 1	F 40 - F	.12	•	00.0	9			F * 4	
	, a	0.00				0.00	00.0	•	•	2.63				9.2						. c		00.0	90.			90.	00.0	•23	m u	00.			5.2	
r.	BASE HEIGHT METERS	25.	150	250	450	.000	1250.	1750.	. 2250	30-00.	·.		ALL	LOW CLOUDS (PER CENT)						BASE HEIGHT	ME LENS	25.	. .	250	Š	000	1250.	1750.	• 0622	9 .			LOW CLOUDS (PER CENT)	
	•	•	•											A	-31			•			•		•							٠	,		-	

NSWC TR 78-143

LOCATION M	EIGHT																								9	. 63	•											s.	
LOCA	BASE WEIGHT		.53	* 0.	.53	5.68	41.01	46.12	7.47	.20	.24	1.18													r	0.0	*0.	† 0•	9	22.29	•	* .	Ť.	* (•	-		69.3	
•	•	,	•5•	3.00	.41	1.10	10.67	16.57	.57	J. 00	•	9				2-1-0								•	9	00.0	•	00.0	•		•		•	3 G	• .	٠		9.5	
	•	•	 	*	•	.54	8.93	- 9.62	1.58	*0.	:	÷ ;; •		1		8 • 12									•	0.0	0.00	-24		# C		•	, ,		•			6.01	
IGHT 31X L (C, H)	٠		•))	***	9.	3.5	10.48	1.22	00.0	00.0	9 ° 0 °		,		22.4								9	,	0.00	00.0	*2*	9 .		r .		9		•			5.3	
TABLE A-31A WINTER FREQUENCIES FC LOWER CLOUD BASE HEIGHT SPOSED OF THE LOWER CLOUD COVER MATRIX L (CLOUD COVER IN EIGHTS)	w	•		• • • • • • • • • • • • • • • • • • •		91.	9 · · · ·	5.36	.93	00.0	?	00.0				10.5			£	H H	(%) SI	SEE LOW CLOOD (THE CODE LABLE 2-A, B)		, ,	•	00.0	5 · · ·		34.	10.92	2 2 2	0.0	0 0	•	,			15.7	
TABLE A-31A WINTER HES FC LOWER CLOUD BA THE LOWER CLOUD COVER (CLOUD COVER IN EIGHTS)	•		•	9 6		•	9 -	4.0	76.	*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	80.			•	o • •		ı	TABLE A 948 MINISTER	INITAL DIST	VOL CODALLS	Tre code :		•			3 0		2 4	116	•	30.0	00.0	0.00				•5	
TABLE NCIES FC 1 OF THE LOW (CLOUD C	'n	-			9 6	47.0) i	* * *	2.	* (•	9			,	× •			TABLE	OW CLOUD TYPE STATISTICS (C)		ייי כרססט יי		~		9 6				.28	100	00.0	00.0	00.0				1.3	
TABLE A-31A WINTER FREQUENCIES FC - LOWER CLOUD BASE HEIGHT RANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	~	0.60	a	9	9	1.26	2.6A					3 3			, 4	y•6	•				(655 1.0	ומנו רו		·~				*0	1.30	2.44	. 65	00.0	*0.	00.0				· ·	
#	-	0.03	•	0.0	0.03	32		3			•	•			•	y •	•							-4			0.0	00.0	. 14.	.32	.37	.0.	0.0	0.00			•		
	9	• 26	00.0	0.00	0.00	9.00	9	9	00.0			•			7		•							u			9	•	00.0	0.00	03.0	-12	94.	1.10	,	•	. •	*	
	BASE HEIGHT METERS	25.	. 75.	150.	250.	4 50 •	609.	1250.	1750.	2250.	3000.	•			LOW CLOUDS	(PER CENT)							BASE HEIGHT	METERS	26.	75.	150.	250.	450 .	.000	1250.	1750.	2250.	3000		•	-ALL	(PER CENT)	
													-			A-	-3	2					4	٠.													-	. ·	

	_
4	2
2	2
C	כ
ř	_
•	1
¢	د
Ç)
-	-

TABLE A-32A SPRING

1	HT														F06	1,60									
	BASE HEIGHT DISTRIBUTION	1.60	90.	1.52	3.93	27.37	46.41	13.55		# 00 00 00 00					.		00.0	9		12.99	7 17	**	80.0	9	,
	. •	1.52	10.	1.00	1.68	6.25	5.61	1.32				17.6			•	0.0	9	00.0	7	1.08	. ה		•••		
Ē.	~	0.00	**	۳.	1.00	5.69	10.18	2.04		0 CO		19.5		,	~	0.00	*0.	.16	1.16	20.0	: =			•	•
(CLOUD COVER IN EIGHTS)	.	00.0	0.00	•16	*9•	•	11.10	54.2	77.	00.0	t	21.9		%) 2-A, B)	۵	00.0	9	۳.	2,		: 9		0.0	•	,
IN EIGHTS)	w	0.00	00.0	00.0	• 20	2.97	6.21	7 · P		00.0		1101		TABLE A-32B SPRING LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A,	w	00.0	00.0	0.00	0 · 0	97.6	5.93	.12	* •		
(CLOUD COVER IN EIGHTS)		JO. 0	30.0	•	92*	2.97	10.4	1001		90	•	10.2		TABLE A-32B SPRING CLOUD TYPE STATISTIC CLOUD TYPE CODE TAB	•	0.00	00.0	00.0	36		00.0	00.0	90.0	1	•
(CFC	m	0.00	•	0.0	70°7	7.08	5 T + 5	1.64	1 4			6.7	•	TOM CF	· m	00.0	0.00	00.0	9 7	99	• 0 •	•			
	~	0.00	00.0	9	f '0	20.	3.17	*0		0.00			•		NI.	0.00	00.0	90.0 0	49	5.44	1.48	J. 03			.
		0.03	9			•	7	1.2.		•		3.2			-4	0.00	9	20.0	200	;	.92	00.0	9 G		•
	.	99			3 C) () (90	4	3.65		a. a.	*.			70.0	0.00	00.0	7 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		90.	.76	3 46 2 46 4 M) 1	16
	BASE HEIGHT METERS	25.		150.	•	200		1750.	2250	3000	,	ALL LQW CLOUDS (PER CENT)			BASE HEIGHT METERS	. 52	-5-	150	, 20°	900	1250.	750	3000.) , .	ALL

TABLE A-33A SUMMER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

													N.	ISW(~ 7	re ·	70.															•			
I GHT													•••		- '	n,	., 0.	- 140	•			F 06		1.92											6.4
BASE HEIGHT DISTRIBUTION	4.92	• 62	4.45	6.39	41.22	30.52	5.22	5	•	17.	70.7	i			,							o		3 6	- C	7.		10.66	. 55	00.0		0.00			27.9
•	.68	.39	•	64.4	11.83	•	•		•	3 6	•			29.7					•			•	•))		- M	***	6.25	.51		0	00.		•	1 5 1
~	00.0	•20	~	7	9.68	•		21.	• •	•				21.0								~	6		1,21	1.56	3.94	**	•12	9	•	3		•	
	0.00	7		1.29	٠,	60.9	ċ	•16	9	9 6	:			17.4		٠			ía,	i	•	•	00.0			49.4	٠,	6	•	30	? •	•		•))
w		*0.	00.0	90.	4.33	3.24	. 70	*0.	80.	40.	•			9.1				MER	ISTICS (%) TABLE 2-A. B)			ņ	00.0	9	00.0	•55	6.32	25.5	60.7	•	9 6	?		49.6	
•	30.0		* (77.	2.93	3.24	.78	•12	•0•	•12				7.5				TABLE A-33B SUMMER	TYPE CODE		. 4	•	90.0	00.0	00.0	30. 0	8	52.	•						2
· m	00.0	•	•	•	71.7	•	.51	• 20	90.	.12	ľ			2.5				TABLE	LOW CLOUD I THE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-		P		00.00	70.0	00.0	0.00	29.	0 4	24.	00.00	00.6	•		1.1	
2,	0.00					76.1	1.	• 16	*0.	12.	ļ								(SEE		^			00.0				75.	0.00	,		,		2.9	
	0.00	60.0	60.	7.		4 6 4	70.	71.	*0.	.23				2.8								•	0.00	o'	0.00))			***	0.0	00.0		,,	۲.	
	0.00	0.00	90.0	00.0	00.0			•		2.58				2.8							3	,	00.0	9.0	20.	94.	90.0	39	. 35	• 20	2.43			**	
BASE HEIGHT METERS	25.	150.	250.	+200	.000	1250	1750	0000	30.00				ALL	LOW CLCUDS (PER CENT)							BASE HEIGHT METERS				250		900	1250.	1750.	2250.	3006.			LOW CLOUDS	(PER CENT)

7	Ż	•
=	,	,
7		١
3	•	
١		
4	٩	ļ
9		
(

TABLE A-34A WINTER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

										143	WC III	/O-1·		FJG	30						•			•	
BASE WEIGHT DISTRIBUTION	0 9 9 0	.21	•	6	71.94	•	. 18	.12	2.12			;		6	01	? 9		2	~	•		•	•	9	
•	.27	•		·	15.51	٦.	•	0	•		22	•		•		2 9	•	-	œ.	~ •	3 C	3		36.5	
~.	00.0	2	•	~	m	9	0	0	9	,	14.6			*	0.00	200	96.	2.84	•	0.0		00.0			
٠	ne	,	. ~	M	10.85	~	0	0	•0•		15.1		8	٠	30°0		. ·	.75	•	•	יים פיים פיים			1.7	
w	0 6		12	1.46	0 4 9	•24	00.0	90.	60.		•		TABLE A-34B WINTER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A, B)	ĸ	0.00	900	90.0	1.11	21.70	5.69	700	00.0	•	25.5	•
æ	0.0	9 6	900	1.70	5.11	.03	.03	00.0	60.		7.1		TABLE A-34B WINTER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-	•	0.00	9		.51	1.76	•12	900	00.0		2.b	
, m	9	•	•	• •	7.02	~		9	90.		, ' a	ì		.	0	0.0	9	m	9	•					
. ∾	9		9 6	1.82	10.10	24.	00.0	00.0	• 21		12.6		(SEE	8	•	00.0	•	N. S.	12.91	9.00	000			16.6	
٠ 🕶	9			9	5.56	~					6.7			***	00.0	09.0		1.32	6.01	.09	~ •	9 9	,	7.4	
.	00.0								1.94		1.9			•		00.0	• • •	27	. 15	. 24	90•	27.7		9.8	
BASE HEIGHT METERS	25.	.2.	196	. 50		, ,	1007		3000		ALL LOW CLOUDS (PER CENT)			BASE HEIGHT METERS	\$	75.		£29.	- DOG -	1250.	1750.	. 0622 1606	,	LOW CLOUDS	
	r'										À-	35						•			,				

TABLE A-35A SPRING
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

		NSWC TR 78-143		
H I CN				•
BASE HEIGHT OISTRIBUTION	715 6669 725 725 725 725 725 725 725 725 725 725		6000 C000	> •
10		\$ * * \$		***
~	00 0 m 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• • • • • • • • • • • • • • • • • • •	A 0000140000 4	• •
٥	000 NG 0	12.6	a coce 4	•
	0.00 0.00 0.00 1.13 5.01 5.01 0.00	6.5 1G ABLE 2-A, B	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1
•		5.2 A-35B SPRING TYPE STATISTIC	* 0000 X 0000 X	, F:
· •	000 40 00 000 40 00 000 00 00 000 00 00	#.2 5.2 6.5 TABLE A-35B SPRING LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A, B)	m 00000	r •
N	0.00 0.00 0.00 11.65 11.65 0.01 0.01	14.0 LC (SEE LO	0 00 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	; ;
-	000000000000000000000000000000000000000	ທ ູ	4 5000N00000 0	•
•		2	0 000 0 0 000 0 0 000 0 0 000 0	,
BASE HEIGHT METERS	25. 150. 250. 250. 1250. 1250.	ALL LOW CLOUDS (PER CENT)	845E HEIGHT METERS 75. 75. 250. 250. 450. 450. 1750. 2250. 3000.	(PEP CENT)

NSWC	TR	73-	143
------	----	-----	-----

LOCATION'N

TABLE A-36A SUMMER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

		NSWC 1H 73-143	
GHT	,		30 ·
BASE HEIGHT DISTRIBUTION	12 00 00 00 00 00 00 00 00 00 00 00 00 00		6 0000 000 000 000 000 000 000 000 000
. •	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.1	# # # # # # # # # # # # # # # # # # #
~	000000000000000000000000000000000000000	17.5	
. •	00	13.3 B.	9 000 000 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
.	000 0000000000000000000000000000000000	•9 7.2 SUMMER STATISTICS (%) CODE TABLE 2-A, B)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
*	00707NN00NN	5.9 A-36B SUMMER D TYPE STATISTIC TYPE CODE TAB	* 0000 % 10000
,		9.1 5 TABLE A-368 LOW CLOUD TYPE	
· ~	600011 600011 600001	14.5	
-4	70003 mama6	o o	# 5555 \$ 1000 # 5555 \$ 10000 # 5555 \$ 10000 # 5555 \$ 10000 # 5555 \$ 10000 # 5555 \$ 10000 # 5555 \$ 10000 # 5555 \$ 10000 # 5555 \$ 10000 # 5555 \$ 10000 # 5555
•	00000000000000000000000000000000000000	4	
BASE HEIGHT METERS	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ALL LOW CLOUDS (PER CENT)	25. 25. 150. 250. 450. 450. 450. 800. 1750. 2250. 3000.

۵	
Ž	
으	
₹	
Š	
Ç	

TABLE A-37A WINTER
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

z		11 70-143	9 •	5 . 0
BASE HEIGHT DISTRIBUTION	8		0 000 4 M 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 * 12
•	4400004440	· •		6••
~	0	12.6	0 NJR 0000	11.3
.	00 4F4000 0004000004 0004000000	11.3 11.3		12.8
.	00	7.7 6.6 10.3 TABLE A-37B WINTER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A, B)		25.6
•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.7 6.6 10.3 TABLE A-37B WINTER LOW CLOUD TYPE STATISTICS (%)	* 000 % % 00000	11.3
m		7.7 TABLE LOW CLOUG	m acaemycaca ecae +	u. 6
· N		6.0 SEE		11.1
	m 7 m 2 m 0 m 2 m 0 m 0 m 0 m 0 m 0 m 0 m 0	e n		9•
•	60000000000000000000000000000000000000	:		6
BASE HEIGHT METERS	11 12 12 12 12 12 12 12 12 12 12 12 12 1	ALL LOW CLOUDS (PER CENT)	METERS METERS 1550 1560 1250 1250 1250 3000	ALL LOW CLOUDS (PER CENT)
		A-38		• . •

NSWC T	R 7	8-1	43
--------	-----	-----	----

5.52 6.15 16.88 5.69 41.1 11.8 10.9 2.72 2.72 2.72 0.03 0.03 9.5 .03 .26 3.46 1.06 5.3 .28 4.65 2.24 1.5 7:3 0.00 4.7 3.7

LOCATION P

FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

BASE HEIGHT METERS

25. 150. 250. 450. 1750. 2250.

TABLE A-38A SPRING

BASE HEIGHT DISTRIBUTION

6.78 9.15 9.15 50.29 1.61

	•										
	.0	. 6	00.0	0	0.0	1.64	16	00.0	99.0	0.0	00.0
	•	9.00		00.0	.31	8.98	.42	00.0	0.0	00.0	90.4
	~	0.00	.17	2.66	***	3.25	.17	• • •	0.00	00.0	9
	•	00.0	.24	3.14	3.32	3.45		.03		00.0	00.0
•	w	0.00	0.00	.21	• 50	15.82	12.64	1.47	12.	00.0	00.0
	•	00.0	0.00	20.	20.	6.43	2.17	7 7	50.		9
	m	0.00	9.0	0 '	?	72.1) ·	
	~	0.00	00.0		? •		1.73	•		- C	
,	년. '	0.03				100				3 6	
	•	0.00	3 · 5	2			90.4	10	24		
RASE HEIGHT	METERS	25.	. 62	250			1250	1750	2250	3000	

LOW CLOUD TYPE STATISTICS (%)
(SEE LOW CLOUD TYPE CODE TABLE 2-A, B)

TABLE A-38B SPRING

6.08

F06

1:9

1.8

•	9.00	00.	00. -	70.0	245	00.0	9	00.0	90	9.7	
~	000	.17	2.66	3,25	17		00.0	0.00		10.9	
•	00.0	•24	3	3.42	, o	.03	00.0	00.0	00.0	10.2	
w	0.00	0.0 0.0	120	15.82	12.64	1.47	.21	00.0	0	30.9	
•	00.0			6.43	2 - 17	.03	.03	00.0	.	•	
M	0.00		, m	1.22	.31	00.0	0.00	00.0		1.6	
~	0.00	90	, no.	6.81	1.75		00.0	9.0		9	
. 	0.03		- 20	2.41	2.55	50.0	9 6	3 ·	= =	5.1	
•	00.0	3 J	• 20	. 45	91.	3.5	? .	7	*	m •	
METERS	25.	150	250	450.		1 650	. 17.00		•	ALL LOW CLOUDS	

ALL LOW CLOUDS (PER CENT)

TABLE A-39A SUMMER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT

	IGHT	٠																F 06) · · ·								
	BASE HEIGHT DISTRIBUTION	8.27	1.03	12.61	13.92	44.71	15.27	1.91	.32	.36	1.59		٠					œ	•		.0.0	***	• 32	J (9 0	0.00	e 6	•
;	•	8.27	66.	10.54	18.06	23.07	7.36	. 43	90.0	90.	*0.		51.2	,				•		9 0		•	12.69	•		† 0.	•	,
		90.0	-	04.	1.19	96.9	2.19	.32	90.	0.0	0.0		11.2	,				~		. +4	4.16	3.79	5 · · · · · · · · · · · · · · · · · · ·		0	0.00		•
	٠	•	00.0	•9•	1.47	4.85	1.31	90.	70.	70.	*0.		6.5			. (8		•	00.0		•	7.36	•	•: •	0	٠	•	,
	w	0.00	00.0	•24	.36	2.67	• 95	90.	00.0	•12	*		4.5		MER STICE (81)	2-A,		w	9	-	0.	→ •	10.7		.32	9.00		i
	•	00.0	00.0	• 32		1.95		0.0	30. D	90.0	•		3.3	,	I ABLE A-39B SUMMER	LOW CLOUD TYPE CODE TABLE	٠	*	00.0	0.0	60.	21.	9 4		0.00		3	
-	' m	0.0	†	• 36	• 16	2.19	66.	-12	*	9 .	*		3.9	1	IABLE	OW CLOUD 1	,	m	00.0	•	•	***	9 4	9	0.0	•	•	
	~	0.00	00.0	***	21.	66.1	1.19	71.	•		9		*	,		(SEE L		2	00.0	00.0	3 . 3 .	2, 15	, S	70.	00.0	•	•	بن ب بو
	.	9.6			2.	50-1		7	9 c	2 4	•		2.7		•			-	00.0		3 €	70.1			900			6.5
	•	9	•) ()	•	•		9			•				•				0.00		9 4		•	•		. 5.5		J.
	BASE HEIGHT METERS	25. 75		250	150		1250	750	2250.	3000		ALL	(PER CENT)				BASE HEIGHT	METERS	50		250		.00	1250.	2250	30.00		ALL LOW CLOUDS

TABLE A-40A WINTER	FREQUENCIES FOR LOWER CLOUD BASE HEIGHT	RANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)	(CLOUD COVER IN FIGHTS)
_	FREQUENCIES	RANSPOSED OF TH	3

LOCATION T

P N				F 3.6		•		•
BASE WEIGHT OISTRIBUTION	200 200 200 200 200 200 200 200 200 200			ø	996	00.0		6
•		\$. N	•	•	0 0 v			.
		10 · 3		~		0 M 4	4 8 8 8 7 8 8 8 8 8 8 8	M)'
•		.6 ₩ ₩	â	vo	900		9000	
.		6	TER STICS (%) TABLE 2-A	w	000	20400		13.3
•	7000 M 00	.	TABLE A-40B WINTER CLOUD TYPE STATISTIC CLOUD TYPE CODE TAB	•	000		4 3 9 9	12.2
m	9000 WW 86	10.5	TABLE A-40B WINTER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A, B)	m		9 . 0 .	999	H .
~	30 90 M N M H C G	50.2	(SEE	~	000	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		9
-4		26.7		.	700	00. 50. 61. 61.		28.2
, •	99999 8096 99999 8096	m L		•	000	0 0 0 0	7.15	∞
BASE HEIGHT METERS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ALL LOW CLOUDS (PER CENT)		BASE HEIGHT METERS	25. 75. 150.		1750. 2250. 3000.	ALL LOW CLOUDS (PER CENT)
		· A-41			•			~

LOCATION T

TABLE A-41A SPRING
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT
TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H)
(CLOUD COVER IN EIGHTS)

GHT														F 0.6	7.0	•							
BASE HEIGHT DISTRIBUTION	78.	00.0	4	77.	16.38	24.45	4 4 4	20.		10.31		1		σ	0.0	00.0	0.03	.	62.			9	•
•	€£.	0	.29	62.	1.93	1	4	9 9		3.00	9					00.0	0.00			95.	0 7	9.0	
•	.10	0.00	00.0	•19	2.12	3,56	45	5	61.	0.00	۱ ۵		,		00.0	00.		•		7	•	7	
9	•19	00.0	•10	00.0	2.41	6.26	. 8.7	9	00.0	•	10.3		_	٠	00.0	0 · 0	62.		9	00.0	7	•	•
10	00.0	90.0	.10	•19	2.41	2.70	20.	00.0	00.0	00.0		70 10 10 10	ABLE 2-A, B	M	0.00	90.0	3 0	, <u>, , , , , , , , , , , , , , , , , , </u>	4.82	5.49	1.06	•19	
	0.00	00.0	0.00	70.0	1.16	1.73	.39	.10	0.00	00.0	* M	TABLE A-41B SPRING	YPE CODE T	•	00.0	0.0	9 6	9	1.54	1.64	. 39	6.63	
m	0,00	9	00.0	9 · 0	1.25	5.11	1.64	00.0	0.00	. 10	9•1	TABLE /	(SEE LOW CLOUD TYPE CODE TABLE 2-A, B)	m	0.00	o .	3 C	1.54	2.12	0.00	00.0	00.0	
	90.0	3 3 9		• 10	3.10	14.74	3.56	. 39	70.0	90.0	22.6		(SEE	8	30.0) 	3 C	2.31	12.43	.39	00.	00.0	
-	61.))	•	77.0	1.35	19.85	9.00	• 5 8	20.0	01.	26.3			-			9	. 29	23.03	2.97	•29	70.0	• • •
3	900	-		3 c))	9	•	00.0	•	10.12	1001			•	9			0.00	. 10	.16	0 1 .	£	
METERS	25.			• • • • • • • • • • • • • • • • • • • •	• • • •		1001	1750.			ALL LOW CLOUDS (PER CENT)			BASE HEIGHT ME.ERS.	25.	150	250.	. 254		1250.	1750	.0622	

•	• .		
6		70000 70000	•
			, m
			16.6
٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3.6
S.		 	12.3
•	9000 *	₹ Ø Ø Ø Ø	¥:0
m		3999 3999	h. • • • • • • • • • • • • • • • • • • •
8	6066 N 4 0000 N 4 0000 N 4 0000 N 4 0000 N 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.1
-4	8000 N		30.0
•	8 G C C C	# # # # # # # # # # # # # # # # # # #	1.91
BASE HEIGHT ME.ERS.	25. 25. 250. 250. 450.	1750 • 1750 • 2750 • 3860 • 38	ALL LOW CLCJDS PER CENT)

					•						وِ	28							•
LOCATION T	TEHT				,						F36	12.78							
LOCA'	BASE HEIGHT DISTRIBUTION	12.70		32.41	45.80	1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	90.	•		,	œ	9.0	9 6		5.23	24.5		00	•
	•	.71	90.	16.1	62.	900	9.	•	*		· •	00.0		90.	. 65), ,	.0	0	1 • 1
		. 23	0.00	2.65	79.	9 0	. 0 . 5 85	•	٠. د.		~	0.0		.19	o i	, (()	•	•••	:
IGHT RIX L (C, H)	.	90.0	00.0	4.10	1.67	. n	00°0	2	2.0	â	•	0.0			2.67	0.0	00.0		9.8
MER JD BASE HEI OVER MATE SHTS)	in.	.00.0	0.00	3.10	7 · t	, o	•		φ. φ.	IER (TICS (%) ABLE 2-A, E	un.	00.0	300	00.0	.19				
TABLE A-42A SUMMER SIES FOR LOWER CLOUD BA THE LOWER CLOUD COVER (CLOUD COVER IN EIGHTS)		6.00.0	9 0 • 0 •	5.49		00.0	ດ ວິດ. ວິດ.	•		TABLE A-42B SUMMER CLOUD TYPE STATISTIC CLOUD TYPE CODE TABI	•	900	900	0.0	. 23 F	1.0	6.0	7 M 2 73 • •	•
TABLE A-42A SUMMER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT ANSPOSED OF THE LOWER-CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	m	1.32	 	2.61	3.62	000	9 . 9 . 9		:	TABLE A-42B SUMMER LOW CLOUD TYPE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-A, B)	, M	00.0		011	5.67	90.	00.0	9 9	12.9
FREQUE	~	8 4-8 8 00 0	. 13	7.84	19-41	0.0	. 29 0.29		25° 6	(SEE L(~	000	9	• 10	11.56	90.	9 (0,	33.7
Ħ	-4	3.20		7.66	.52	NO	 		** **		•• • • • • • • • • • • • • • • • • • •	000		ġ,	10.17	• •	30.0		13.0
		2.19	3 C)	99		9.			2.9			000	00.0	00.0	9 . 0	0.00	3	6.79	•
	BASE HEIGHT METERS	25.	256	4 500 e	1250.	1750.	3000		ALL LOW CLOUDS (PER CENT)		BASE HEIGHT METERS	25.	150.	250.		1.250	1756.	3000.	SUP CLOUDS
					_				A-43	٠	6			•			•		3;

> NO!	16HT	NO IL																		F36	9.0								
LOCATION V	BASE HEIGHT	BIXICIO	00.0	9		7. · · · · ·	B	62.66		.25	2.33						•			~	00.0	0.0	- C	, 0		•	9		
		. '		9 0		77.7		2		.13	.38		20,01					,	. •	•	9.00	9 6	21	9.25	14.92				
	~				62	3.86	5,5	. 25	.13	+0.			4.6			-			•	•			N . U	6.75	12.1	3 0		0.0	,
EIGHT RIX L (C, H)	•			9-0	6.	29.9	٠,	•29	00.0	10.	•17	•	16.4				~	5		•	3 6	•	.36	29.			00.0	0	
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT SPOSED OF THE LOWER CLOUD COVER MATRIX L (CLOUD COVER IN EIGHTS)	, re	0.00		***	• 55	3.67	5.63	.13	90.	-	:		10.0			ER	LOW CLOUD TYPE STATISTICS (%) (SEE LOW CLOUD TYPE CODE TABLE 2_A B)			•		0.0		1.29	٠,		0.00	•	
:IES FOR LOWER CLOUD BA THE LOWER CLOUD COVEF (CLOUD COVER IN EIGHTS)	. •	00.0	00.	90.	.50	3.21	4.25	•13		9	•		9.5			TABLE A-438 WINTER	LOW CLOUD I THE STATISTICS (%) LOW CLOUD TYPE CODE TABLE 2-) -	•	60.0	00.0	*	. 25	2.04			6 .		
ENCIES FOR OF THE LOI (CLOUD	m	0.00	. 6	*	*		7.92	N c	3 6		•		13.3	•		TABLE	OW CLOUD 1		M	•	00	***	2.70	2.21	00.0	•		: ,	
FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	~	0.0	9 0			77.0		•		7 17 1	•	•	15.0				(SEE L	1	~	0.00	00.	***	18.79	17.25	M	90.0			2A.5
_	· 🕶	77.0		* 4	1.25	24.4			0.00	*0.		٠.	1.9			;			-		9:0		100 100 100 100 100 100 100 100 100 100	6-23	52.			<u>;</u>	11.2
	' .	000		9	0.00	9.00	00.0	00.	00.	11.17			1.2						-	0.0		f c	• 0 •	24.	2 P P		2.33		*
•	BASE HEIGHT METERS	25. 75.	150	250	.054	. 600	125".	1756.	2250.	3806.		ALL '	LOW CLOUDS (PER CENT)	·,				BASE HEIGHT	METERS	25.	15.	250.	. 58.		1750.	2256	3018.		ALL LOW CLOUDS
													ت A	-44	-		٠.	8		. •									LOW

•	
	7
-	
-	
-	_
-	
c	3
- 3	_
-	•
-	•
٠.	-
•	τ
	7
C	_
- 2	S
	1
•	٠.

				TRAN	FREQUE! SPOSED O	TABLE NCIES FOR 1F THE LOW (CLOUD (TABLE A44A SPRING IES FOR LOWER CLOUD BA THE LOWER CLOUD COVER CLOUD COVER IN EIGHTS)	TABLE A44A SPRING FREQUENCIES FOR LOWER CLOUD BASE HEIGHT SPOSED OF THE LOWER CLOUD COVER MATRIX L (CLOUD COVER IN EIGHTS)	TABLE A-44A SPRING FREQUENCIES FOR LOWER CLOUD BASE HEIGHT RANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	• '		LOCATION V	> NO
BASE HEIGHT METERS	GHT	. •			Ċ	n	•	'		. ~		BASE HEIGHT	EH9
**	•		.0.0		0.00	•	ć		•	• ;	•	1014	201
75	•	00.0	0.03		, ,) (9 6		1.67	1.91	
150	•	F. 0.3	20.		,0.	.07	90.0	20.0		9.		0.00	
52	•	90.	11.		• 26	.51	•26	65				9.7	
954	•	.00	1.03	-	2.76	2.07	1.50	2.46		5	76.4		
9	•	. 00	5.54		8.56	5.29	8,69	4.52				99.97	
1250	•	. 66	.33		.77	•15	37		9			61.64	
1750	•	30.	•15		11.	0.00		0.0	• •			***	
2250	•	00.	00.0	_	00.0	***	20.0	90.0			11.	.	
	~	.72	• 59		.33	62.	•15	•11	.51	.15	:	2.0	٠
		-		<i>:</i>		•							
,													
SONOTOMOTOMOS			7.6	-	12.0	9.2	ď		. 6	•	6	,	
PERCENT)	£,								3 .	•	2.6.2		
-45		•		,									
						TABLE,	TABLE A-448 SPRING	NG					
					07	W CLOUD	LOW CLOUD TYPE STATISTICS (%)	STICS (%)		•	•		
	•				ושבנו רס	ע כבססט א	I YPE CODE	(SEE LOW LLUGU TPE CODE TABLE 2-A, B)	80				,
BASE HEIGHT	140	,											٠
METERS	ý	•	-		~	m		·					90
52			00.0		90	•	•	•	•		1	•	3
75		93.	0	, (3)		9 0) c		90.	00.0	1.91
150	•	. 00	0.0	•	.0.	9		40	•			9 e	
250	•	00.	.67	,	.18	•	0.	.03	`	4.52	-	3 C	•
2 6	•		2.23		. 10	.22	29.	2.02	2.06	7.57	64.		
	• •			.	90	•	3.56	14-11	.11	.51	12.64		
1750		: :	9	a	7 0 0	9 6	97	3.60	•	00.0	• 26	00.0	
2250		. 33	6.0	•	*0		•	7 4	•	•	9	0	
2002	•••	90	70.0	4		-	00.0	00.0			* 0		
· 			•										
ALL				٠						,			
LOW CLOUDS	0S SO (1	. 1.9	16.3		16:0		5.4	1.02	9 • %	13.8	5.85	.	4
								•					

												143	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 /0-	173			t										u
LOCATION V	EIGHT BUTION						٠							٠			9		N									,
LOCA	BASE HEIGHT Distribution	1.55	22	1.16	3.45	29.31	54.53	5.00	.63	. 53	6.52						·.			0.00		* 4		0.00	0 4			•
	•	1.55	. 21		2.04	0 . 14	5.53	*0	.14	17.	•		. 61				•		*	÷0.	1 0.	20.10		0.0	0 0	.		2.00
	•			11.	. 10	1.90	3.30	. 52.	.28	.11	.21		•			•				6 P -	1.27	7	0.0	•) ,•		4
IGHT 31X L (C, H)	. .	0.0	9	11.	24.	3.10	5.53	- 52*	00.0	3 (• 35	•	9.6			· 6		90.0	7	~		٠,	0	•	10			6.2
TABLE A-45A SUMMER FREQUENCIES FOR LOWER CLOUD BASE HEIGHT TRANSPOSED OF THE LOWER CLOUD COVER MATRIX L (C, H) (CLOUD COVER IN EIGHTS)	. w	9	00.0	.11	•25	2.01	3.70	.21		G	=		•••		MER TICE (2)	LOW CLOUD TYPE CODE TABLE 2-A, B)	w	. 000	00.0	e :		10.53	-	12.	 			14.4
TABLE A-45A SUMMER HES FOR LOWER CLOUD BA THE LOWER CLOUD COVER (CLOUD COVER IN EIGHTS)	•	90.0	00.0	*0.	.14	5.29	3.95	.18	70.0	?:-	11.		2.9		TABLE A-45B SUMMER	YPE CODE 1	•	a	0.00	9	3 4 3 4	****	. 10	9	3 G	•		2.0
TABLE ENCIES FOR OF THE LOW (CLOUD C	.	90.0	ě	.11	.11	3.45	5.39	.32	*0.	00.	•		9. 6		TABLE A-45B SUMMER	OW CLOUD 1	~	0.0	0.0	0 . 0	7 1	1.16	0.00	D 5				2.6
FREQUE	~	90.0	90.0	, B.	. 21	5.11	14.12	. 35	3 100	10.	63.		2.12		• ,	(SEE L	~	90.	9.00	30.0	9.36	17.47	00.0	.				24.0
F	••	60.0	.00	•	11.	3.31	12.93	7	*1	11.			17.0				-	0.0	•	* C	71.0	11.10	70.0	2 6	• •			14.3
	•	.00	00.0	9.00	00.0	0 · 0	•	•			;		•	•			•	90.			. 21	.10	94.	7	6.52			J. 6
	BASE HEIGHT METERS	25.	75.	150.	258.	- PG-		1650	2250	3404		≯ FF	LOW CLOUDS (PER CENT)			•	BASE HEIGHT METERS	25.		250	450	. 00 .	1250.	2250	3900		ALL	LOW CLOUDS

APPENDIX B

PINT (A,H) CONTRIBUTIONS TO PCFLOS (A, H,) DUE TO LOWER $\label{eq:clouds} \text{Clouds with base at H.}$

PINT (A,H) CONTRIBUTION	N TO PCFLO	S (A,H) DUE T			SPRING RASE HEIGHT	AT H.		LOC	CATION 2
H(METERS)	10 060	50 DE6	30 DF0	40 UEG	50 DEG	60 UEG	10 UEG	ou UtG	90 UES
25.0000	.9988	.9989	• 44.0	. 9990	.9941	.9991	•4441	.9991	.4441
75.0000	.9974	.9978	• 9956	.9483	. +984	• 4445	•9485	.9986	. 4486
150.0000	.9039	. 4854	• Y865	.9871	.9876	. 9877	.9878	.4876	. 9879
250.0000	.9420	.9491	. 7540	. +570	. • >587	. 4544	. 7504	.4609	.4011
450.0000	.8809	.8979	•9099	.9171	. 1215	.4241	• 4654	•4505	.9271
900°c00C	.9418	.9517	* 7548	. 4628	.9653	. 466H	.96/4	.4679	, 4684
1250,0000	.9813	.9843	• 7865	.9878	.9885	.4040	-4645	. 9894	.4845
1750.0000	.4916	.4931	- 4443	.9949	. 4975	.4456	•9957	• หล่อย	. 4454
2250.0000	.9973	.9978	• 4441	.9984	. 4985	*4484	•4986	.9987	. 448/
3000.0000	.9678	. +735	• 7750	.7/70	.4001	. 5005	• 4800	•9868	. 7045
,	•		-		SUMMER	•			
CONTRIBUTION	N TO PCFLO	S (A,H) DUE T	O LOWER CL	OUDS WITH E	BASE HEIGHT	AT H.	. '		
H(METERS)	10 DEG	40 OF0	30 DEC	40 LES	ששט ספ	60 NEG	10 UEG	80 DEG	40 NFP
25.0000	.9995	.9996	.9447	. 7775	.9998	. 444#	שליני.	*9448	.9776
75.0000	.9963	.4967	• 7470	2166.	. ++12	•4473	.4474	*4414	.9774
150.0000	.9934	* AÖ# A	• 4461	.9967	**470	.4415	.4473	. 4474	. 4475
250.0000	.9584	.4647	* 4985	.9717	. +733	.4142	.9747	*4/20	.4/56
450.0000	•9269	.9387	• 44 76	.9527	• 4555	.4575	*Y564	. 7574	. 4246
500.0000	.9561	. 4634	• 4045	.9/28	. 4746	. +754	.4/03	.4764	.4176
1850.0000	• 4896	.9912	• 7775	•4431	.9935	.4434	.9940	.4441	1+44.
1750.0000	.9949	.4961	• 7959	.4415	.9976	.4477	• +478	. YÝ7H	. 4774
2250.0000	.9963	.4468	+9971	. 4473	. 9974	.9475	. 4475	altr.	.4770
3000.0000	.9713	.4785	• 7744	•9054	. 7804	. 4001	. 4069	98/0	. 4453
CONTRIBUTION	N TO PCFLO	S (A,H) DUE T		FABLE B3 OUDS WITH E	WINTER BASE HEIGHT	AT H.			
H(METERS)	10 DEG	. 20 DEG	30 UEG	40 UEG	50 DEG	60 DEG	70 DEG	80 DEG	40 NFG
25.0000	.9997	. 4998	. 4999	. 5449	. 44.49	. 4444		. 4944	. 9444
75.0000	9972	. 4974	• 4476	.9977	.9978	.9479	. 4474	.9979	.4474
150.0000	.9792	.4816	•4935	. 9042	.9848	. 4051	. 4454	. 7854	. 4855
250.0000	.9412	. 4498		. 4544	.4616	.4629	4636	. 7643	. 4045
+50.0000	ctin.	.8560	.0/14	• Bel/	.4476	.4910	.0727	. 5744	.8751
800.0000	.9116	.9258	9361	.9461	.4456	.4460	.9492	.4502	.4506
1250.0000	.4767	.9819	• 40+5	• 4855	Louv.	. 9868	•4811	.9873	.yo73
1750.0000	.4455	. 9939	. 994H	.9754	. 4926	. 4424	.4460	.9961	* 4401
2250.0000	.9433	. +942	. 4441	-9455	•4454	. 4755	. 4426	• 4436	. • 4456
3000.0000	.47H0	.9827	. 754 /	.9878	. 7884	• 4888 .	*4484	, 4443	* 4415

PINT (A,H)	ION TO PCEL	OS (A H) DI	IE TO I OWE	TABLE				LOC	ATION 9
H(METERS)	10 DEG	20 DEG	30 DEG	40 UEG	50 DEG	60 DEG	70 CEG	94 054	DA DEG
25.0000	.9895	•9898		.9900			-	80 DEG	90 DEG .9902
75.0000	.9942	.4992	. 9849		.9902	.9902	.9902	.9902	
150.000			• 9943	9493	.9993	.9993	.9993	.9993	.9993
	.9756 '	.9771	•97H1	.9789	.9794	.9796		.9798	.9799
250.0000	.9247	.9108	.9148	•9177	.9197	.9204	.9209	.9213	.9214
450.0000	.8035	.6218	•8346	.6428	.8481	.8506	.8518	8531	.8536
800.0000	.9045	.9168	• +257	•4312	9345	.9364	.9373	.9382	.9386
1250.0000	.9840	• 4862	• 4879	• 9889	.9895	•9898	•9900	.9902	.9902
1750.0000	.9871	.9AAH	•'AAU0	•9908	.9913	.9916	.9917	.9918	.9919
2250.0000	.9889	. 9905	•9917	• 4424	.9929	.9931	•9932	.9934	.9934
3000.0000	•9626	.9691	•4756	• 9765	. +779	•9786	.9790	.9794	.9813
CONTRIBUTIO	ON TO PCFLO	DS (A,H) DUI	E TO LOWEI	TABLE R CLOUDS W					•
H(METERS)	10 DFG	50 DEG .	30 DEG	40 UÉG	50 'DEG	60 DEG	70 DEG	80 DEG	90 DEG
25.0000	.9995	. 4945	•4995	9995	•4995	• 4995	.9995	.9995	.9995
75.0000	.9997	.9998	. 7744	. 7994	.9998	. 4998	. 4948	.9998	.9998
150.0000	.9959	.4962	 • 9964	• 9965	. 1466	. 4966	.9967	.9967	.9967
250.0000	.9746	.9817	•9831	-9841	. 4846	.9849	.9851	.9852	.9853
÷50.0000	.8751	.8956	.4118	• 4203	.9254	.9289	•9306	•9322	.9327
800.0000	.8846	.9027	• 2165	.9243	.9290	.9320	.9336	.9350	.9354
1250.0000	.9843	.9865	•98H0	•9890	.9895	.9898	.9900	.9901	.9902
1750.0000	.9888	.9905	•9917	•9424	.9928	.9931	.9932	.9933	.9934
2250.0000	.9845	.9865	•9879	.9889	• 9895	.9898	•9900	.9902	.9902
3000.0000	.9334	. 9449	• 9524	•9582	.9611	.9627	.9634	.9642	.9659
	•					,			•
				TABLE	B6 WINTE	: D			
CONTRIBUTIO	N TO PCFLO	\$ (A,H) DUE	TO LOWER					•	
H(METERS)	In DEG	ea neg	30 DEG	40 UEG	>0 DEG	60 DEG	70 DEG	BO DEG	90 DEG
25.0000	.9941	.4942	. 4942	.9943	. 9944	9944	.9944	.9944	.9944
75.0000	.9974	.9975	•4475	.4476	.9977	.9977	.9977	.9977	.9977
150.0000	.9500	.9517	. 9527	. 4535	.4542	.9543	.9544	.9544	9545
250.0000	. 85,54	.8607	•8638	• 8665	. 8685	.8689	£8691	.8693	.8694
450.0000	.6661	.6481	.7025	.7131	.7201	.7227	.7242	.7255	.7260
600.0000	.8626	.8773	•8874	.8942	.8984	.9004	.9014	.9024	.9029
1250.0000	.9840	. 9858	•9871	.9879	. 9884	. 9887	.9888	.9889	.9890
1750.0000	9954	.9959	•4962	•9465	. 4966	.9967	.9967	.9968	.9968
2250.0000	9924	. 4932	• 4438	. +442	.9945	. 4946	.9947	.9948	.9948
3000.0000	.9938	. 4944	• 9952	• 9460	.4962	.9962	.9963	.9963	.9969

PINT (A,H) CONTRIBUTION	N TO PCFLOS	S (A,H) DUE TO			SPRING BASE HEIGHT	AT H.	•	LOC	ATION A
H(METERS)	10 DEG	20 DEG	שט טני	40 DEG	50 DEG	60 DEG	70 UEG	BU DEG	90 UEG
25.0000	.9869	. 9872	•9673	.9015	.9076	.5876	.9876	•9876	.4670
75.0000	.9333	. 4838	. 9842	. 9844	.9847	.9847	.9847	.4847	. 9848
150.0000	.9423	.9452	.9470	9464	.9495	. 9494	.9500	.9502	. v>03
250.0000	.9042	. 4092	•9123	.9148	.9156	•9171	.9175	.91/7	.9176
450.0000	.6706	.6994	•7178	.7321	.7406	.7444	-7470	.7487	.7495
800.0000	.8569	.8726	•8633	.8908	. 3950	.4972	.8486	.8995	inue.
1250.0000	.9545	• y 594	•4527	. 4650	.9663	.9670	.96/4	.9677	.4679
1750.0000 .	.9943	. 9950	• 4954	.9957	.9959	. 9460	.4961	. 9961	.4461
2250.0000	.9979	• 4981	.9982	.9983	.9983	•9984	. 4464	7484	. 4784
3000.0000	.9919	.9932	VEVV.	.9946	.9949	•9950	.4452	.4952	. 4455
*			-	ABLE B8	SUMMER		•		
CONTRIBUTIO	N TO PCFLO	S (A,H) DUE T				AT H.	•		
H(METERS)	10 DE6	SO DEC	30 DEG	40 UEG	50 DEG	60 DEG	70 UEG	au nFC	40 HER
25.0000	.9919	.4921	.4922	.9923	.4924	.9454	.7724	. 4964	. 4424
75.0000	.9869	. 4873	•9875	.4617	.9678	.4878	• 7070	.4879	. 4674
150.0000	.9121	. ₹154	+9174	.9191	. 7204	.4206	.9208	*4504	.9210
250.0000	.9011	. 9057	9084	.9109	.9165	.4159	.9133	.4145	.4135
450.0000	.6807	.7049	.7200	.7322	.7390	.7421	.7444	.7456	.7461
800.0000	.8282	.8457	•05/1	.8654	.8699	,4/24	.6740	.8748	.8/53
1250.0000	.9562	.9506	• 7636	. 7050	. 7008	. 4075	.4614	.• 9681	.4086
1750.0000	.9970	.9974	. •9978	.9980	.9981	.4485	Lbkt.	.9983	.9983
2250.0000	.9981	.9084	•4786	.9987	. 4988	4866	.9787	• 9989	. 7787
3000.0000	• 9950	. 9957	•9962	• 9466	.9968	.9969	•9464	.9970	.9971
CONTRIBUTIO	N TO PCFLO	S (A.H) DUE T	O LOWER CI	TABLE B9	WINTER BASE HEIGH	ГАТН.	•		•
H(METERS)	,	20 DEG	30 DEG	+0 UEG	50 DEG	60 UEG	70 بيدن	80 DEG.	. 90 UEG
25.0000	-9971	.9972 -	.9972	. 4973	.9973	.4473	.9973	.4473	.9973
75.0000	.9982	.9983	• 9984	.9984	•9985	.4485	• 9485	•9985	.4785
150.0000	.9711	.9723	9730	. +735	.9740	.9741	¥97 41	.9742	.4142
250.0000	.9007	. 4055	•9084	.9109	.9125	.4130	•9133	.4135	.9136
450.0000	.6444	.6767	•6773	.7132	.7222	.1266	.1244	.7312	.7322
900.0000	.8392	. 0561	•8673	.8753	.8799	.AH23	.8839	.8648	.8053
1250.0000	.9316	. 4385	• 9429	.4462	.9480	. 4484	.9490	. 4500	.9501
1750.0000	.9950	. 4955	• 4456	. 7460	.4962	.4467	.9965	. 4463	. 9763
2250.0000.	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3000.0000	.9973	.9977	. 4474	.4481	. 9982	.9982		. 4483	. +484

PINT (A,H) CONTRIBUTION	N TO BCELOS	A HI DISE TO		BLE B10	SPRING	AT H.		LOC	ATION B
H(METERS)	in DEG	20 DE0	30 DEG	40 UES	של היים	60 DEG	7u DEG	80 DEG	40 UEG
		.9482	.9487	.9493	.7478	.9498	. 9498	, 7474	. 7498
25.0000	.9471			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
75.0000	1.0000	1.0000	1.0000				.9781	.9762	.9/62
150.0000	• 3 755	• 4765	• + 171	•9176	• 4780	.9/81			.9062
250.0000	. 9844	• 6465	• 9006	. 7040	. 9064	.9071	• 9 017	.4081	
450.000C	.0547	.0837	•69HB	.7108	./164	./212	.7232	.1245	./250
800.0000	.7855	.0034	•8149	. 3238	*.529 <i>2</i>	.4315	.5331	.8341	.0345
1250.0000	.9845	• 4905	. 9907	. 3310	.4413	4413	.9914	. 7714	.9914
1750.0000	.9973	.9474	•4416	, , , , , , , ,	. 9977	1186.	.99/6	.44/H	.y=76
2250.0000	. 4944	•>948	•9951	tere.	•4654	.4455	•4455	ככלנ.	• 4422
3000.0000	9886	. 7897	•98071	.7715	.4418	•4450	.4451	. 4465	* 7754
				TABLE B11	SUMMER				
CONTRIBUTION	ON TO PCFLO	S (A,H) DUE	TO LOWER CI	LOUDS WITH	BASE HEIGH	T AT H.			
H(METERS)	10 066	20 DEG	טאַט טנ	40 JEG	יש אור ניב	OU NEG	10 DEG	au 01-6	90 066
25.0000	.8843	.8867	•8579	1666.	LUYM.	£ 040 e	.8903	.8763	.0704
75.0000	.9976	.4473	•9973	.4413	.4414	. +474	. 7774	.9314	
150.0000	.9442	.7461	• 4416	.4402	. 447]	****	£444.	. 4443	. 7474
250.0000	.9774	•нв36	•88/4	·0405	4746.	. 4734	¥£¥n•	.5746	. 5743
450.0000	.7257	.7464	•1571	.7664	•7/19	-//41 -	•1155	.7765	.//68
800.0000	.9926	.9016	.9077	.4114	.7144	.7157	*4100	, .9171	.1113
1250.0000	.9402	.9915	•4654	.4724	.4436	. ++34	.4472	.4436	0 £ 74 .
1750.0000	.9951	. 7754	• 7776	. 4454	. 4954	, A45A	* 4424	. 7700	. 7760
2250.0000	.9432	. +941	. 7746	. 4450	. 4452	• 7774	. 7754	• YY25	. 4755
3000.0000	.9639	. •9690	. •9724	9/49	.4767	. 1/64	•9773	. 4775	.7/82
•	,			TABLE B1	WINTER	1	•		•
CONTRIBUTIO	<u>.</u>	S (A,H) DUE 1	O LOWER CL		BASE HEIGH				
H(METERS)	10 DEG	20 DE6	30 DEG	40 UEG	⇒ 0 ∪£⊍	60 UEG	/U DEG	80 DEG	AO NER
2>.0000	.9532	,,9542	• 4547	• 4551	• +>>6	+425h	• 7556	• 7556	. yos6
75.0000	.9993		.4443	Erry.	. 4443	. 3443	. 7773	. 4443	. 4493
150.0000	. 9855	. 4860	•9863	לסטע.	· yns7	.4868	.4668	. 9968	. 700,0
250.0000	. +077	•4154	-4161	.4187	.4207	.4217	.4216	.4514	.4458
450.0000	•5010	.6123	•631•	.6468	.5563	• 6600	• 6626	.0043	.0004
300.000	.7446	.6117	•6221	.8311	• H3nd	.8384	YYE8.	.8404	.8913
1250.0000	.9925	.4932	0. K.	,44.39	. 4441	.4442		. 4443	. 4443
1750.0000	.4440	. +997	.9997	.4447	•4449	. 7778	.4448	.4444	. 4748
2250.0000	.4416	.4474	. 4474	• +400		* 4440,	• 4480	. 7480	,. 4486
3000.0000		.4975	•9977	. 1979	. 9480	.4481	4441	.4401	. 7786
							,		

PINT (A,H) CONTRIBUTION	ON TO PCFLO	\$ (A,H) DUE		ABLE B13	SPRING BASE HEIGH	T AT H.	,	LO	CATION C
H(METERS)	10 DEG	20 DEG	عَانِ اللَّهُ	40 066	50 DEG	60 UE6	/0 DEG	nu DtG	90 UEG
25.0000	.9116	.4135	. 7144	. 7153	*4105	.4162	.7102	.4162	.4105
75.0000	.9990	.4741	1244	1666	. 4942	.4445	\$444°	.4445	.4445
150.0000	.9752	. 4761	•7767	.7/16	. +710	.4116	.77//	.9717	.4/17
220.0000	.9228	.9274	******	• + 1 < 5	. +342	. +341	0000	£c54•	. 7 354
450.0000	.7584	.1802	.7444	• 5050	.9117	-8145	.0103	-0178	.8183
800.0000	.8009	.8517	•MJN4	.5461	•8565	•4252	. 7767	.8503	.8590
1250.0000	.9779	.9799	د ۱ ه ۲ ۰	.4666	. +827	. 7010	.9832	. ¥83.1	FFBK.
1750.0000	.9930	cter.	• 77 17	. 4741	. 4747	. 474 1	.++4	. , . 7744	. 7744
2250.0000	.9882	.9892	' לילמלי	£044.	. *4406	.4907	804F.	. ++05	. 4404
3000.0000	.9721	.7750	• 7767	.9/84	14/4	*41.92	1414.	.7177	. 7002
CONTRIBUTIO	ON TO PCEL O	E /A MI DUE		ABLE 814	SUMMER				
H(METERS)	10 DE6	20 DEG	JJ UEU				••		
25.0000	.#316	10,050	• 0 Jn 4	4J UEG 0864.	30 DEG	60 d£0	/L DEG	80 UE 3	40 DEG
75.0000	.4991	.4492	• 7576		tuen.	• 0403		.4603	EU#H. EUVV.
150.0000	.9608	.4627	• 7t 10	.+037	• 4646	*****	.7544	.7544	. 7045
250.0000	.895#	.4004	• 7040	• 4000	* 400h	.4041	. 4044	.7071	. 7075
450.0000	.7250	. %430	• 7547	eta).	.1574	. 1715	.7167	./73+	.7/+3
900.u000	.6465	.0591	• 3# / 5	• 1/35	.5//3	•9/99	• =====================================	*3544	.ooli
1250.0000	.9927	ctrr.	. ++40	• 7743	. + + + 5		.440/	. 9947	. 7740
1750.0000	. 9983	· • > > > > 5	. 4440	. 4981	. 4444	• 4304	• 470 }	*****	. 7705
2250.0000	.9945	.9950	• 7774	• **50	• 4450	, *****	• 4424	• 4454 •	לכדי.
3000,0000	. 9750	. 4764	• 7019	. 7063	Ut re.	. 7034	• *7357	.7415	.7041
ı	•			TABLE B15	WINTER				
CONTRIBUTIO	N TO PCFLOS	3UD (H, A)	TO LOWER CL			ГАТ Н.		·	
H(METERS)	In DEG	50 DE0	JU DEO	40 UEG	50 066	ou uto	10 NFO	AU UEG	אט הרף ,
∠⊃.UU00	.9597	• 7606	• 7610	.4014	*****	.vole	* 1019	• 961.6	.4018
75.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.00,00
.150.0000	.9771	.9775	• ¥/84	• 7/57	.1148	. +/+,	.+143	.4743	1.9/93
250.0000	.9247	. 7340	7 AEY+	. YJHY	. 7405	. 1404	*4413	• Y416	.4410
450.0000	-6830	./122	•/313	. 1454	.7541	./560	.1503	.1563	.7031
800.0000	.7940	.0203	• 6375	*##24	• 7560	*4452	•476/	•0764	ives.
1250.0000	.9845	*A845	• 9873	• 40.01	0 t 1 t •	* 4884	Yoay,	¥##0,	14041
1750.0000	.9972	. 4975	. 4477	1.44/4	.49/4	* 1280	. + + 80	.7400	. 4760
2520.0000	.994/	.7784	• >>=0	. 1867	MBPE.		.4464	. 7484	4484
3000.0000	7684.	• ナドラロ	• 4424	•,4600	. 36 (1)	. 10/1	.17/6		. 10/5

PINT (A,H) CONTRIBUTION	N TO PCFLOS	S (A,H) DUE T		ABLE B16		AT H.		LO	CATION D
H(METERS)	10 DEG	20 DEG	30 DE0	40 UEG	50 DeG	סט טבה	70 066	BU DEG	AO NEC
25.0000	.9689	.9891	*4645	.9843	•4845	.4845	• 4445	. 7475	. 4045
75.0000	.9993		. 4644	. 4444	. 9994	. 4774	***	.4444	. 9794
150.0000	.9929	.4432	. 44.34	oter.	1240.	. 4437	: 4438	.7738	.4430
250.0000	.9546	. 7586	•¥613	.4033	. 4646	.4652	• 7655	. 765F	. 7057
450.0000	.7218	.7490	.1670	.7802	•788J	.7420	.7443	.7961	. / 767
800.0000	.7619	.7890	•8086	.1612	*45An	.4364	•0356	.83/0	.6379
1250.0000	.9813	. 4833	• 784h	ocnt.	• 7561	. 4664	.4005	• 4806	.ya67
1750.0000	. 9465	. 7768	9971	. 1413	.9974	.4774	.94/5	.44/5	. 7775
2250.0000	.9944	. 7747	• 9453	. 4456	•4450	. 4459	. 7760	.4200	. 4760
3000.0000	.7745	. 7774	. 4742	.9607	.9814	.YHIH	. +n20	. 4455	. 4050
				* A D 4 E D 4 Z	CUMMACD				
CONTRIBUTIO	N TO PCFLOS	(A,H) DUE TO		'ABLE B17 OUDS WITH B	SUMMER ASE HEIGHT	AT H.	•	. •	. ' '
H(METERS)	10 DEG	50 9£6	30 DE0	40 UEG	على ماح	60 DEG	70 DEG	טשע טבע	90 DEG
25.0000	.9498	• 7508	*1ck*		. 4524	. 4565	• 4252	• >5<	. 4265
75.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
150.0000	.9626	.4H32	• 4835	8644,	. 45+0	. 4040	. 7540	• 46 • 0	. 9840
250.0000	.9324	•4354	0466.	7 .9397	.4404	.4413	. 7415	.9417	.4418
450,0000	.7441	.7663	•7811	.7715	.798U	10	,.8027	. #0+1	. 5046
900.000	- •8198	.8435	€00e•	·4/44	.6773	.4804	.8566	.5844	• 8025
1250.0000	.9909	.4451	.4929	. 4735	.,4434	• 4440	. 5441	.4445	
1750,0000	.9942	. 7485	• 7747	. +455	***	. 4464	. 4464	. 7787	.9789
2250.0000	.4433	. 4930	. 444.1	. 4743	. 5445	. 4744	• 4446	***	4740
3000.0000	.9755	.9791	.7614	ttak.	.9841	. 4046	4848	* 7450	.9856
	•		4	TABLE B18	WINTER				F
CONTRIBUTIO	N TO PCFLOS	(A,H) DUE TO	D LOWER CL			AT H.	,		•
H(METERS)	10 DEG	50 DE0	10 060	40 UEG	50 DEG	OU DEG	70 DEG	au DEG	40 UEG
2>.0000	. 4458	. 4454	• 7757	4460	• 4460	. 4460	.4400	• 4460	.4460
75.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
150.0000	.9464	.9971	•9973	.4474	. 4475	.4415	. 4476	.4416	.4476
250.0000	.9559		.46%5	. 4045	+655	.4660	. +004	. 4656	. 4007
450.0000	cf86.	.7154	.7355	•7520	•76cu	.1662	.7000	.7711	.1120
900.0000	.7254	.7560	./740	.7738	-4026	70	.8042	.6117	.5141
1250.0000	.9843	. 4404	•4411	. 1415	. 491n	. 4450	-4450	. 4461	.4461
1750.0000	.9486	. 4488	• 7767		• 3,440	*440	.4440	0666	1, .4441
2250.0000	.9970	.7476	.9973	.44/3	.4414	.4414	.4474	.4975	.9975
3000.0000	.9428	,.993/	.4442	. +++1	. 7747	.4450	. 4450	1545	. 19756

								•	
PINT (A,H) CONTRIBUTIO	N TO PCFLOS	(A.H) DUE T		ABLE B19	SPRING	AT H.	,	LOC	ATION H
H(METERS)	10 DEG	20 DEG	30 066	40 DEG	50 DEG	60 DEG	70 DEG	BU, DEG	40 UEG
25.0000	.9957	.9958	• 4454	.9459	• 4960	. 4960	.9960	. 4960	. 4460
75.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1-0000
150.0000	.9980	.9980	•4981	.9981	. 4981	.4981	.9981	- 4493	.9981
250.0000	.9801	4815	. 4824	.9831	• 9835	.9837	.9838	. 9839	.9839
450.0000	.7985	.0175	• #302	.8392	. 8449	.8474	. 8489	.6502	.8507
800.0000	.7047	.7375	.7605	.7755	• 7852	.7698	.7924	.79+6	.7956
1250.0000	.9704	. 97.38	•976l	.9777	. 4787	.9791	.9794	.4746	. 4197
1750.0000	.9932	. 4936	. 4939	.9942	• 4443	.9944	.9944	. 4944	.4445
2250.0000	.9930	. 4934	.9937	. 44.19	. 9940	.9941	9941	. 4441	. 4441
3000.0000	.9878	. 7897	. 4408	.9921	. 4924	. 4926	.9927	. 9925	. 4436
	• • • • • • • • • • • • • • • • • • • •	1		ABLE B20	SUMMER			, ,	
CONTRIBUTIO	N TO PCFLOS	F(A,H) DUE T				AT H.		***	
H(METERS)	10 NEO	20 DE6	30 DEG	40 DEG	50 DEG	60 DEG	70 UEG	BU DEG	90 DEG
25.0000	.9944	. 4984	. • 9985	. 9485	• 9985	. 4485	.4465	. 4905	. 4485
75.0000	1.0000	1.0000	1-0000	1.0000	1.0000	1.0000	1.0000	1.000	1.0000
150.0000	.9995	. 4995	• >>95	.9995	. 4945	. 4495	.4945	. 1975	.9795
250.0000	.9442	. 4946	. 9949	.9451	.9952	. 4453	.4453	ECHY.	.4453
450.0000	.8626	•8833	•8483	.9072	.4126	.4158	.4174	4140	.4196
800.0000	.8157	. 5454	.8729	. 8000 '	.8944 ·	.4996	.9018	.9044	.9054
1250.0000	• 9919	.4933		.9949	•4425	.4425	. 9456	• 4457	.9758
1750.0000	.9922	. 4928	SEP4.	9935	. 4937	gtěv.	8646.	9664.	* 4474
2250.0000	.9920	.4928	• 4433	.4937	.4939	.4440		. 4941	.4442
3000.0000	.9801	.9840	.9858	.9682	. 9889	•4843	.9645	• 7676	.4915
				TABLE B 2	1 WINTER				
CONTRIBUTIO	ON TO PCFLO	\$ (A,H) DUE 1	TO LOWER C			TATH.			,
H(METERS)	10 DEG	20 DEG	10 PFC	40 UEG	50 DEG	60 DEG	/0 UEG	ou ute	90 UEG
25.0000	.9950	. 4951	• 9952	.4425	. 4953		. terr.	.7453	.4453
75.0000	• 9498	. 4994	. 5599	.9779	. 9999	. 4444		4444	. 7777
150.0000	.9479	.4481	•4485	•4485	. 4963	. 9963	. 4463	. 4903	. eve
250.0000	.9741	.4762	• 4775	. 4786	.9793	.4/95	.9798	. 4749	.9/44
450.0000	.7502	.7717	.7657	.7963	.8029	.8057	.8076	.6070	.8095
800.000	.7069	./407	•7639	.7745	.7891	. 1440	.7470	./972	.8003
1250.0000	.9847	. 4864	. 7584	. 4043	.4849	4405	.9404	. 4905	.4406
1750.0000	.9476	. 9978	• 4960	.9581	.4962	. 4485	.9752	.4445	.4465
2250.0000	.9932	. 4939	.9944	.9447	.9949	.9950	.4421	.4951	.4452
3000.0000	.9863	.4884	• 7895	.9907	• 9911	.4413	. 4414	.4415	.4455

PINT (A,H)	ON TO PCFLO	S (A,H) DUE T	•	ABLE B 22 OUDS WITH E	SPRING BASE HEIGH	ГАТН.		LO	CATION I
H(METERS)	10 DEG	50 NFP	JO DEC	40 DEG	50 DEG	60 DEG	70 DEG	EO DEG	90 086
25.0000	.9977	. 4976	. 9978	. 9979	.9974	.4474	.9979 .	.9979	.9979
75.0000	,9985	.9986	• > > > + 6	.9466	. 4487	.9987	.9967	. 4987	. 4787
150.0000	.9786	.5794	.9799	.9004	.9807	.4808	.9508	.9608	.9505
250.0000	.9142	.9187	.4214	.9237	•9252	.9257	.4660	.4595	.9263
450.0000	.6624	.6965	.7184	.7351	.7447	.7494	.7524	.7546	.7556
800.0000	.8293	. 8509	• 6655	.6752	-6806	. 6834	.8656	. 6668	.8075
1250.0000	.9486	٠٧5٤٧	. 4574	.4594	.4612	.4620	625	~ 7 628	-4054
1750.0000	.9736	39944	. +9948	. 4952	. 4954	•9755	.4755	44706	4456
2250.0000	.9985	7786	.4947	. 9449	. 9946	. 4484	. 7789	.9484	. 4464
3000.0000	.9962	. 4960	. 9968	.9471	.9972	.9472	.9972	. 4412	.9973
				TABLE B23	SUMMER				
CONTRIBUTIO		•		•					
H(METERS)	10 DEG	20 DEG	30 DEG	40 UEG	50 ÚEG	60 UEG	70 UEG	90 OF G	90 DEG
25.0000	.9950	• 4952	• 7953	. 9454	• 4954	• 4955	•4955	• 9955	.9955
75.0000	.9915	.9917	• 4914	.9420	.9921	•4451	1266.	.4461	.4451
150.0000	.9312	.4334	• 4354	BOLF.	.9378	.9560	.4381	• ¥3#3	.4383
250.0000	.8615	. 666.	•8454	.4559	.8981	.8767	.8775	8448.	•8799
.450.0000	.6738	./056	.1261	.7+16	.7505	./548	.7577	. /575	.7603
800.0000	.8427	.4614	.8740	.8826	-8874	. 4901	•9918	*446	.8734
1250.0000	.9766	.9609	• 7824	etov.	elhe.	.4642	. 7644	.4845	.4646
1750.0000	. 9978	•4985	. +986	.9988	. 4984	.4489	.9440	. 4440	.9990
2250.000	.9991	• 499८	• 4495	.9993	.9993	.4443	.4443	.4443	.9493
3000.000	.9983	.4987	• 4468	•4441	.4442	. 4492	.4445	. 4943	.9993
CONTRIBUTIO	N TO PCFLOS	(A,H) DUE T		TABLE B24 OUDS WITH B		AT H.	,	,	
H(METERS)	10 DEG	20 086	JO DEG	40 UEG	50 DEG	. 60 DEG	70 UEG	· du DEG	90 066
2>.0000	.9440	. 7445	. 4443	. 7774	. 7944	. 4494	. 7774	. 4994	. 7794
75.0000	.9454	.4456	• 4457	. 5458	• 7759	.4459	***54	• > > > 9 .	. 4754
150.0000	4640	.9655	+4063	.96/1	.4676	.9675	.46/4	.4614	.4674
250.0000	.8795	. 4064	9107	.9145	.9163	.9172	.9178	.7102	-9184
450.0000	.6745	.7169	./414	.7589	.7691	.7744	.7775	.7799	.7012
*00.0000	,	. 5086	.0411	. 4986	.9058	. 4052	• 7465	-9075	
1250.0000	.9344		• 4452	. 7481	.4448	. 450A	.4513	. 9517	.4514
1/50.0000	. 7465	. 4964	•9971	.4413	.4474	. 447.4	. 4414		.47/5
2250.0000	1.0000	. 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3000.0000	.9954		• 9463	. 4466	. 4468	. 4464	. 4469	. 4464	.9970

PINT (A,H)	N'TO PCFLO	S (A,H) DUE T		ABLE B25	SPRING BASE HEIGHT	rath.		LO	CATION J
H(METERS)	10 DEG	20 DEG	30 DEG	40 UEG	SU DEG	60 DEG	70 UEG	80 DEG.	YO UEG
25.0000	.9914	.9917	• 4917	.4419	.9920	.4420	.9760	. 4920	14450
75.0000	.9403	. 7905	. 4500	. 9907	.9908	80+t.	.9908	. 7908	. 7708
150.0006	-9582	.9600	.7610	.4614	.4626	.4027	.4064	-4629	.4024
250.0000	.9349	.9426	. 7447	. 7468	.4480	. 9484	.9487	.4469	.9490
450.0000	.7815	.8061	.0222	8668.	-5406	• H44]	.8461	.54/6	.8485
800.0000	.5014	.8287	•0473	• 0295	• # # # #	.6/05	-8728	.8745	.6/53
1250.0000	.9272	. 4355	. >+10	. 7445	. 4464	.4481	.4464	•9493	.9495
1750.0000	.9878	.9892	.4902	+0×6.	.9916	.4915	.4416	.4917	.6917
2250.0000	.9948	, 4989	• 7969	.9990	•9990	.5996	. 9990	. 7770	.9990
3000.0000	.9946	. 9955	•4461	.9966	•9968	.4410	.947u'	->9/1	.9973
CONTRIBUTIO	N TO PCFLO	Ş (A,H) DUF T		TABLE B26 OUDS WITH I	SUMMER BASE HEIGHT				
H(METERS)	10 066	20 DEÿ	30 DEG	40 UEG	50 DEG	ou beg	70 DEG	שט טבק	YU UEU
25.0000	. 9760	. 7765	•¥7n7	.47/0	.4772	. 4713	. +7/3	.+773	.4/73
75.4000	.9821	. Ÿ82⊃	• 4054	. 4630	. y832	. 4036	• 4036	.4036	. 7036
150.0000	٥ د د د ٠	.9370	. 7351	. 4341	. 9349	. 4400	. 4400	.9401	. 4401
250.3000	.9048	.4090	•9115	.4136	.9151	.4155	*7156	. 7160	. ¥16U
450.000°O	.7355	.7589	• /738	.7653	.7918	.7949	./464	£041.	.7788
800.0000	.9131	.8336	•6473	•0500	.4614	*#ö*#	. 4004	.0675	.0006
1250.0000	.9377	.¥433	.4464	.4446	. 4511	• 7519	• 4543	. 4526	.4560
1750,0900	.9453	. 4954	• 476	. 3467	.4468	.7764	.4470	. 4970	.9971
2250.0000	.9494	.9996	. 4497	.9497	. 7478	4666	.4446	. 4448	. 4778
3000.0000	.9450	. 9958	•9963	. +760	. 4964	• ++71	.9971	.4412	citt.
CONTRIBUTIO	N TO PCFLOS	S (A,H) DUE T		TABLE 827 OUDS WITH I		rath.	•		
H(METERS)	10 066	50 DEG	30 UEG	O DE U	50 086	60 UEG	70 LED	00 DEG	90 UEG
25.4000	.995*	.9955	• 7456	.4457	. 4958	.4758	*4758	. 4458	.4458
75.6000	.9947	.9987	. 4444	.9988	9988	. 7784	. 4766	.9968	.9788
150.0000	.9773	. 4785	. 4793	.4/44,	.9803	4805	. 7886	. 7807	.9607
250.0000	.4427	.4461	*• 44#Z	. 4500	.9512	.4516	9519	.4561	. 4522
450.0000	.727/	./567	•77-5	.1993	1974	.6015	.6039	.8059	.8067.
800.0000	•7721	.1977	-61+8	.8694	.8338	.6375	1460.	.8413	\$5+8
1250.0000	.9245	.9316	.4367	. 4+01	. ++20	• • • 30	1600	.4440	. 4446
1750.0000	• 9431	.4936	.4942	. 4445	.4947	.4444	d***	nort.	
2250.0000	.99#2	. 7984	. 7440	446 /	. 4467	.4488	. 4708	.776#	. 4480 .
3000.0000	.9476	. 4982	. +443	• 7480	. 7986	. 4487	1844.	. 7487	. 7785

NSWC TR 78-143

					U- 170				
PINT (A,H) CONTRIBUTIO	N TO PCFLO	S (A,H) DUE 1		TABLE B28 LOUDS WITH	SPRING BASE HEIGH	T AT H.		LOC	CATION K
H(METERS)	10 066	20 DEG	שאט עני	40 DEG	שאת טב	. bu utu	70 066	BU DEG	90 DEG
25.0000	.978≥	. 7/98	. 4867	.9815	.4614	.4561	. 1862	£384.	*4959
75.0000	.99#*	.9985	4446	. +>06	.9987	.4487	7866.	.4467	. 7787
150.0000	•9735	. 9743	• 974 H	. 11,52	.7/55	.4/50	. 4/56	. 7756	.4756
250.0000	.9456		. 4444	. 7506	.4514	. v>16	•4514	.7517	. 4519
450.000C	.7703	.1920	•8053	•8162	•n2c4,	. #254	.0271	• 65 63	.8290
500.0000	.7839	.8120	•0311	.0+37	• 5508	•#>50	.6573	. B>¥0	. 8598
1250.0000	.9560	.4604	• 46 73	. 7054	. 4665	.4671	.7675	.46/7	.46/6
1750.0000	. 9855	•9877 ·	• 4842	.4901	. 406	.4910	•4411	-4915	.9713
2250.0000	.9955	. 7961	• 7766	.4767	. 4476	.447]	.yy12	.4413	ذ77 و.
3000.0000	.9920	.4934	. 4442	. 4450	. 2453		dc44•	. 7956	•4460
CONTRIBUTIO	N TO PCFLO	S (A,H) DUE T		TABLE B29 OUDS WITH	SUMMER BASE HEIGHT			•	
H(METERS)	10 066	20 066	JU DEG	40 DEG	50 DÉG	60 016	10 020	BU DEG	90 UEG
25.0000	£899.	. 7983	. 7443	. 9784	. 4484	. +484	. 7754	.7754	****
75.0000	.9951	£664.	• > > > •	. 7755	9664.	. 4456	dcry.	9476	. 4456
150.0000	.9674	. 4684	• 7095	.9701	.+/45	. 4/0h	.4746	.4700	.9/06
250.0000	.9426	.4451	• 7465	.4478	.9467	.4484	.4441	-7472	. 4445
450.0000	.7845	.0029	.0140	.8235	•0<02	40th.	• # 324	.8334	YELB.
800.0000	.7489	.7793	• 0001	.8130	£,15e•	YC3n.	•0<9b	Euto.	.6316
1250.0000	.9543	.4547	• 70 34	ocok.	.9671	.4074	.4664	.7667	.4044
1750.0000	.9850	.9870	• 7864	* 40A3 ·	. 7676	.4401	LUFF.	. 7904	¢046•
2250.0000	.9963	. 9967	• 4444	.4471	.4472	.4415	.4413	.44/3	. 4773
3000.0000	. 4896	.4407	•4710	.4724	. +468	. *****	1546.	lerr.	.434
CONTRIBUTION	N TO PCFLOS	(A,H) DUE T		TABLE B30 GUDS WITH E		AT H.		•	
H(METERS)	10 DEG	20 DE0	30 DFP	40 UEG	. 50 DEG	,60 JEG	70 DEG	BO UEG	AO NEG
25.0000	.9978	.9980	.99#1	.4465	. 4963	EUVP.	9483	. 4484	. 4764
75.0000	.9978	. 4474	. 4440	.4480	. +460	.9480	*4440	. 7780	. 4780
150.0000	. +736	. +147	• 9753	.4754	• 4763	.4764	.4765	. 4765	. 4765
250.0000	. 9398	. 4435	. 7457	.44/5	4407	. 4441	. 4,4 44	. 4445	. 4446
450.0000	.7816	.0037		.8286		.A37h	#397	. 8410	8-17
800.000	.7444	.1727	•1400	****	.4093	.n132	•0155	.0104	.0176
1250.0000	.920/	.4214	• 4327	00€.	. +374	PBEF.	•4745	,4349	. 4+01
1750.0000	.9627	. +640	• 7654	. 4868	. 1013	.vola	.70/0	.46/4	. 4880
2250.0000	. 4949	. 4941	ا عبده.	. 4445	. 4443	.4443		4443	LPPP.
3000.0000	. 4845	.4911	• 4450	.9727	.4431	.4432	ttpr.	4LYY .	.4437

PINT (A,H) CONTRIBUTION	ON TO PCFL	.OS (A,H) DU		ABLE B31 R CLOUDS V		IEIGHT AT I	4.	FOC	ATION M
H(METERS)	10 DEG	20 DE6	30 DE6	40 DE6	50 DEG	60 DEG	70 DEG	80 DE6	90 DEG
25.0006	.9052	.9855	.9857	.9858	.9860	.9860	.9868	.9868	.9860
75.0000	.9993	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9994
150.0000	.9863	.9869	.9872	.9476	.9878	.9878	.9879	.9879	.9479
250.0000	.9678	.9700	.9713	.9725	.9731	.9734	.9736	.9737	.9730
450.0000	.7982	182	309	.0410	-8471	. 4498	.8517	.8531	. 4535
800.000	.6874	.7241	.7480	.7660	-7765	-7817	.7858	.7875	.7886
1250.0000	.9212	.9316	.4387	.9435	.9464	.9479	.9487	.9496	.9499
1750.0000	.9949	. 9957	•9962	.9945	.9967	.9969	.9969	.9976	.9970
2250.000	. 9964	.9968	•9972	.9974	.9975	.9976	.9976	.9976	.9976
3000.000	.9976	.9982	.9983	.9987	.9988	.9980	.9988	.7768	.9992
CONTRIBUTI	ON TO PCFI	LOS (A,H) DU	JE TO LOWE	TABLE R CLOUDS 1		MMER HEIGHT AT I	н.		
H(METERS)	10 066	50 DE 6	30 DE8	40 DEG	50 DE8	60 DEG	70 DE0	00 DE6	90 DEG
25.0000	.9545	.9555	•9559	.9564	.9549	.9549	.9569	.9569	. 9569
75.0000	.9944	.9946	. 4948	.9949	.9950	.9950	.9950	.9950	. 9950
150.000	.9593	.9609	-9618	.9627	.9633	.9634	.9636	.9536	.9034
250.000	.9292	.9333	.9359	.9361	-9395	. +399	.9403	9405	. 9486
450.000	.6874	7150	.7325	.7466	-7548	• 7505	.7611	.7629	, 7635
********	.7910	.0144	•8295	.8408	.8473	.8505	-8527	.8541	.8547
1250.0000	.9706	.9746	.9773	.9791	-9801	.9800	.9011	.9614	.9815
1750.0000	.9952	.9960	•9965	. 9968	•9970	.9971	.9972	.9972	.9972
2250.000	. 9988	.9991	.9992	.9993	.9994	,9994	.9994	.9995	. 9995
3000.000	.9961	.9970	.997)	.9979	.9980	.9981	.9982	.9982	. 9985
CONTRIBUTION	ON TO PCLE	UQ (H,A) 90°	IE TO LOWE		E B33 WIN VITH BASE H		4.		
H(METERS)	10 DEG	. 20 DE6	30 DE6	40 DE6	50 DE6	40 DE4	70 DEG	00 DE6	99 059
25.000	.9976	.9976	.9977	.9977	.9977	.9977	.0977	.9977	.9978
75.000	.9997	.9997	.9997	. 9997	.9997	.9997	.9997	.9997	.9997
150.000	.9951	.9953	• 6954	.9955	, • • • • • • •	.9955	.9956	.9956	. 9956
250,000	.9780	•9795, ,	. 9805	.9013	.9818	.9828	.9822	.9863	.9023
450,000	.6964	.7257	.7444	.7590	.7678	.7717	.7744	.7763	.7770
********	.6777	.7125	.7351	.7521	.7623	.7670	.7701	.7724	.7733
1250.000	.9540	.9607	.9647	.9676	. 9691	.9700	.9705	.9709	.9711
1750.000	.9991	.9993	.9994	.9494	.9995	. • • • • • •	. • • • • • • • • • • • • • • • • • • •	.9995.	
2250.000	. 9986	.9990	•9991	.9992	.9992	.9993	.9993	.9993	. 9993
3000.000	. 9785	.9987	. 1156	. 9990	. 1990	. 9990		. 9991	5000

PINT (A,H) TION TO PCFL	OS (A,H) DUE	TO LOWER C	TABLE 834 LOUDS WITH	SPRING BASE HEIGI	HT AT H.		LO	CATION N
BASE HT	10 050	20 DEG	agu bt	÷v ∪£U	שטו טכ	ou veu	10 UEG	80 DE1	40 NEG
25.0000	.4447	.444?	1446.	.4441	1 + + + .	.4747	. 4447	. 7777	. 4447
75.0000	.9446	.4447	• • • • • • • • • • • • • • • • • • • •	* ****	. 7474	8444.	. 7778	. מעעל	. 4446
150.0000	. 3444	.40+3	• 7104		• +754	. ++54	.7754	.9484	. 7784
250.0000	.9434	. +441	. 7746	. 1747	10+40	*4425		Ectr.	. 7754
450.0000	.4901	.4004	**072	•4151	. 7150	. 1104	.7112	.9178	. 4190
830.0000	.><+3	.7710	•50•0	.0206	4460	.5467	10001	.6531	.0246
1250.0000	. 4650	. ٧٩٨3	•>//-1	.4/15	. +1 ce	.71ch	.1168	4124	.+/30
1750,0000	. 9445	.4400	ז איציני	. 4755	* 444.44		. 4750	, • 7708	. 7780
2250.0000	. 9996	. 4991	22,46	. +++6	. 4446	. 1773	tert.	. >+>3	tere.
3000.0000	4456	. 4654	1-77	. 4765	סחלד.	. 4401	. 470/	. 4464	. 4770
CONTRIBUT	ION TO PCFLO	S (A H) DUE		TABLE B35	SUMME!			•	
HASE MT	10 DE6								
25.0000		20 DE0	JU UEC	4, JEU	20 11EG	סט טביי	10 000	eu 11£1+	90 JEG
75.0000	.9997	.9997	• • • • • •	• 44/	. + + + /	. +947	. 444/	. 9997	1,666
150.0000	1.0000	1.0000	1.0000	1.000	1.000	1.0066	1.0060	1.0000	1.000
250.0000	. 4447	.4943		. 4773		• +44.5			.4443
*50.0000	.4453	. v236	**************************************	• 7758	• 4424		*****	. 7404	לכיני.
800.000	.4105	. > 351	• *< * 1	5664	• • 157	. + 167	•+3/5	69160	
1250.0000	.9843	. 41-74	• 7001	. 1001	•0124	• NEUT	.0230	.0204	. 4043
1750.0000	. 4446	.448/	. 744/	. ++5/		*****	• 7756 • 7758	.7773	. 7750
2250.0000	. 4446		. , , , , ,	. 1777			. 7775	. 7477	
3000.0000	.9986		. 7 7 7 3	• ***	. 1446	•, • • • • •	.9475	. 4445	. 7770
						•	• • • • • • • • • • • • • • • • • • • •	,	
CONTRIBUT	ION TO PCFLO	6 (A,H) DUE 1	TO LOWER C	TABLE B36 LOUD S W ITH I		T AT H.			
PASE HT	10 066	20 DE+	30 066	+0 066	שטו סכ	יסט טבס	/W UEG	ou DEG	40 NFP
~5.V000	.9476	.4973	. 4 - 1 5	.++13	. 4474	.44/4	.47/4	.9974	. 9474
/>.0000	4444	. 4444		. 4744	****			. 7775	. 4445
150.0000	. 2941	. 4445		443	. 4403		. +443	. +483	tørr.
250.0000	. 7005	• 4422	• • • • • • • • • • • • • • • • • • • •	.9666	. 488.4	.77/0	.40/1	1186.	. 7872
450.0000	.4633	. 4757	* dn 13	t 40H.	• 44 30	•1144A	לכנה.	. 5404	.876/
.000.000	. 54 15	•5456		• 6= 40	• • • • • • • • • • • • • • • • • • • •	****	.014-	.6756	.6770
1250.0000	. +110	. +7mm	. + 701.1	. 44111	* ****	· "«нін	*Auch -	. 4461	. 4021
1750.0000	. 99 35	. 7448	• จลน์น	. ++0+	* 44411	* *###	.4440	. 44 /0	. 7770
2254.0000	. 9444	* 4446	• 4976	.447/	. eret		. ****	1444.	. 4 + 4 7
3000.0000	• 4441		.79/3	•411n		. + 10 1		. 4 /61	LBKF.
	-					•			

PINT (A,H) CONTRIBUTIO	N TO PCFLOS	A H) DUE T		ABLE B37 OUDS WITH B	SPRING ASE HEIGHT	ГАТ Н.		LOC	ATION P
H(METERS)	10 DEG	20 086	ع) باد د	40 020	שט טנ	60 DEG	70 UEĢ	BU DEG	40 NEG
25.0000	.4410	.7423	***	· 7455	. +++1	. 444]	.9441	. 7441	.9441
75.0000	• 4465	. 4967	•4460	.4764	• 3463	.9976	.4470	.2910	. 4470
150.0000	.9346	. 7400,	.7421	. ++ 32	.9441	. +442	. 7444	. 7444	.9445
250.0000	.9212	. +250	.9274	.4643	• +306	ulte.	• 4313	.4315	.4316
450.0000	.6447	.0760	•0775	.7124	•1653	.7266	.72+0	.7310	.7320
800.0000	.8667	.8796	.6003	. 5742	. 3780	*444	. +005	.4016	.4050
1250,0000	.9401	. 4912	*****	دېږ.	. 4928	(Etr.	léte.	. 3244.	. >EVE.
1750.4000	.9960	. 4986	وينجده	. 4784	• #424	***	.9784	• 7905	. 7785
2250.0000	.9970	. 4976	. 7774	.47/5	.4416	4144.	و144.	.717	.9977
3000.0000		7064.	***!¢	. 17/7	.4919	.4490	. VOV	.440B	****
CONTRIBUT!O	N TO PCFLOS	S (A,H) DUE T		TABLE B38 OUDS WITH B	SUMMER				
H(METERS)	10 DE0	, 50 OFe	ن إن لاد	40 669	, 50 660	60 JEG	10 086	84 156	. 40 nF0
25.0000	.9197	•451•	. 1000	1654.	PES#.	. 7637	. 1234	.yejq	. 4634
75.0000	\$902	. 7405	• 4400	• 7707	* *****	. +404	* 7767	. +44+	. 7707
150.0000	0.664	.8890	• 0415	-ny32	.4948	• ndpn .	•6776	.6453	*675*
250.0000	.8764	.8817	.01.0	•no/5	• 6645	.6444	£ 1140.	*8402	.0700
450.0000	.6406	•0054	•67/1	• 60002	•6453	•676U	1440.	./006	./uls
800.0000	.6648	.0412	•07F2	• 4000	.4024	.4033	. 767	. 70+3	. 7045
1250.0000	.9071	. 7560	• +0110	0404.	trn.	* 4604 *	* 7075	. 7877	. yoy5
1750.0000	4985	. 4487	• 9999	.4440	.4640	1444	1444	****	
2250.0000	.9479	\$566°	******	, • 77C4	• +455	.4765	.4480	*****	. 4780
3000.6000	.9475	UNFF.	• 7 40.5	• 4467	به مخمه	. 4407	1044.	4866.	. 4764
CONTRIBUTIO	N TO PCFLOS	(A,H) DUE T	O LOWER CL	TABLE B39 OUD\$ WITH B		TATH.		,	
H(METERS)	10 066	20 DEG	JU DEG	40 026	50 DEG	ou nec	70 066	BU DEG	40, nFP
25.0000	.9514	. 4524	. 7524	.4514	*****	. +>34	*45.44	.4544	ytei.
/5.0000	.9953	• 7955	. 4456	.9451	1,000	4456	8544.	*4428	.6456
150.0000	.9246	.7315	• + 173	+347	. +354	101+.		****	. 4365
250.0000	+1116	. 4155	. 7141	. 7646	. +217	. +661	. +664	.7265	.4627
450.0000	.6017	.6382	*001H	.5/44	1049.	•6421	.nyai	7004	./416
800.0000	.4461	.4061	-4105	. 4610	•4644	. 1604	.4610	• 4501	. 7200
1250.0000	ockt.	. 7760	• 4467	. 4764	. 1465	.4467	. 4400	. 7400	. 4466
1750.000	. 1446	. 4443		.4443	terri.	•4441		****	, ****
2250.0000	.4417	. +973	****	.44/4	. 1975	.4415	.44/5	•3475	.4475
3000.0000	. 440h	. 77] 3	4411	. 4451	. 4463	.4464	. 4465	.7462	***50

PINT (A,H)	ON TO PCFLO	, S (A,H) DUE T		ABLE B40 OUDS WITH	SPRING BASE HEIGHT	AT H.		LC	CATION T
H(METERS)	· IC DEO	20 DEG	30 UEG	40 uto	של טבי	ou utg	10 066	BU DEG	90 DEG
25.0000	94.78	.4942	. 7744	. 7740	• 7748	.4948	.4444	v . v . v . v	. 4444
75.0000	1.0000	1.0000	1.0000	1.0000	6000.1	1.0000	1.0000	1.00.00	1.0000
150.0000	• 4954	.4461	•4403	****	.4405	*4464	•4466	• 4466	. 4766
250.0000	.9441	0+tt.	.7747	144.	***>	• 4753	ecrt.	Ectt.	. 4754
450.0000	.9041	.9198	1424	oter.	.v3oa	•438h	artr.	.9405	. 7407
800.0000	.006.	•035¢	•00/4	.8/71	29982	• 3760	.8754	.8950	.8788
1250.0000	.4477	• 4565	• 7631	.4673	.4645	•9/11	-9/19	.4725	. 4726
1750.0000	.9408	.4971	01.77	.4937	.9940	•4742	. 7744	. 7745	. 4445
2520.0000	.9465	.446/	· • 770h	. 4404	, .4459	uler.	.44/0	.44/0	. 4470
3000.0000	4464	.4410	11,66.	1846.	.4467	**************************************	• 4700	. 4968	. 4446
CONTRIBUTIO	ON TO PCFLOS	S'(A,H) DUE T		ABLE B41 OUDS WITH	SUMMER BASE HEIGHT	AT H.			,
H(METERS)	10 060	בי טבֿיט –	, טעט טנ	40 UEG	عن بده	60 UEG	10 066	80 DEG	40 DEG
25.4000	.4592	.4666	• +715	.4/45	+100	.4115	.4114	.7784	.4/80
73.0000	1.0000	1.000	1.0000	1.0000	1.0000	1.0300	1.0006	1.0000	1.0000
150.0000	See .	. 4943	. 4443	. ٤٤٧٤	.4443	. 4774	. 4444	*****	. 7774
250.0000	.9948	. 7474	מכצנ.	. 7701	Enry.	****	. 4464	. 7707	. 7765
450.000	1506.	. 7745	•8710	.+u10	.9966	**10*	.4164	. 7146	. 7148
900.U000	.8649	.4455	**110	. + < 7 +	. +3+3	**24I	.4419	.745"	. 7443
1250.0000	. 446#	. +474	• 77 77	. +461	. 4443	. 4774	. 7704	. 7707	. 4475
1756	. 9446	4943	. 7774	drrt.	• 4445	• * * * 7	.4775	cttt.	באָצצ
2250.0000	.9997	. 7447	1444	. +>>0	*****	*****	. טעעע	. 4444	. 7770
3000.0000	. 1855	. 7874	******	•4646	• 4400	. 440 4	***	.7747	,. 4×10
CONTRIBUTIO	N TO PCFLO	B (A,H) DUE T		TABLE B42		AT H.			
H(METERS)	10,060	20 DEG	י של טור ט	40 LEG	50 GEG	60 016	/U UEG	מט טבה	1 190 DEG
25.0000	1.0000	1.0000	1.0000	1.0000	1.0000.	1.0000	1.0000	1.0000	1.0000
75.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
150.0000	. 4440	1666	. 4441	. ۲۷۷	****	******	9446	HEFF.	שציני.
250.0000	1.0000	1.0000	1.0000	1.0000	1.0000	i.uuun	. 1.0000	1.0000	-1:0000
454.0000	.4614	. 4664	.9769	. +134	.4750	.+/74	.9762	•4706	. 4/68
800.000	.7290	.7724	.0041	. 8234	1451	.4414	• 6456	.6471	. 0000
1250.0000	. 90	. +1 84	.4644	1054.	.4544	.4424	. Y.4 JO	. 7445	.4451
1750.0000	. 7844	. 786/	. 4844	*ANAS	. ynyn	•4401	.4403		.4405
2254.4000	. 446.	. 4463	• ***	1046.	4466	. 1404	.4468	. 440#	. 4760
J000.0000	***/#	• 4440	. 4444	. 4443.		· - • • • • • • • • • • • • • • • • • •	.4443	. 444.1	1.0000

PINT (A,H) CONTRIBUTION	ON TO POFLO	S (A,H) DUE	TO LOWER C	TABLE 843	SPRING BASE HEIGH	TATU		LO	CATION V
H(METERS)	10 066	20 086	30 DE6	40 JEG	שני טבו				
25.0000	•9818	. 4856	• 7874	.9850		bu DEG	וט טבט	80 UE15	40 NEG
75.0000	1.0000	1.0000	1.0000	1.5000	• 445	• 40CH	• 7020	• 9823	• 4059
150.0000	.9822	. 4824	• 7834	•	1.0000	1.0006	1.0000	1.0000	1.0000
250.0000	• 9366	. 4404	74ch	. 1338	• 7540	. +441	• 7046	• 70 4 6	. 7046
450.0000	.7940	.3116	•0636	. 4447	• 9401	* ****	.40/	.74/0	.4471
800.0000	.7122	./454	•/685	*2312	•6370	. Settin	• 6443	-9416	.0421
1250.0000	.9721	. 7749	•>/55	./03/	• / 730	·Istr	• 7004	.0047	.8037
1750.0000	•9982	, 7984		• 7/81	+01r.	+4/44	. •7/73	ny14.	.7/50
2<50.0000	•9965		• 4447	• 7700	inve.	. +76/	1866	• +987	. 448 <i>i</i>
3000,0000		• 446u	• 4410	.44/]	.4416	.4917	. 44/3	.4413	.4413
,5000,0000	.9859	19877	9444 ;	• לפּלַפּל	• 400	****	90+ F.	.4907	.4710
CONTRIBUTIO	N TO PCFLOS	T BUD (H.A)	O LOWER CL	TABLE B44	SUMMER		•		•
H(METERS)	10 066				YOU WEIGH	AIH.		•	
25.0000	10 020	20 086	ያሳ ()ት፡፡	40 069	وعل إناه	חט שבי	' /U 11E6	שר חדוף '	40 UEG
75.0000	.997h	• YM53	*****	•4020	* 444.7	. 1057	.777/	• 7657	. 785/
150.0000	.9905	. 4979	****	• 4760	• +40/1	* * * * * 1	. 7700	. 7406	*****
250.0000	. +120	. 4414	*4411	• 4750	. + + (C	* ***C3	£344.	• ५५८३	. 7724
450.0000	.82.3	• 4738	+7/45	. +150	• + 150	.1103	**/05	• 7706	.7/60
800.0000		.8426	•0004	• 1015	• 1601	•nfil	•8765	.6/30	.8/43
1250.0000	.7518	./877	10100	*4644	• 73 46	* ~ * * *	.04/8	*d206	.8515
	.9495	. 1450	46.66	. 113m	. 440	* 444.3	. 4446	. 4447	. 7740
1750.0000	.9956	• 4962	* 7754	• 1767	. 4460	. 1161	. +407	.4467	.446/
2250.0000	.9466	• 1966 ,	• 997 0 .	144/1	. 17/6	.7115	.4413	.9973	. 4473
3000.0000	.9826	. 9844	. 7853	. 4004	.4468	.7870	.4871	• 7874	,7070
CONTRIBUTION	TO PCFLOS	(A,H) DUE YO	D LOWER CLO	TABLE 845 DUDS WITH B	WINTER ASE HEIGHT	AT H.	•	•	
H(METERS)	10 066	20 0€6	30 DEC	40 050	30 DEG	. 60 086	70 DEG	8L July	YO UEG
25.0000	1.0000	1.0000	1.0000	1.0000	1.3000 '	1.0000	1.0000	1.0000	1.0000
75.0000	.9942	. 7142	*****	. 4445	.4442 (. 4445	. >>>2	.4445	. 7776
150.0000	.9966	.4964	. 77/0	4471	.7776	.4473	.4473	. 74/3	.9973
<>0.0000.	.9630	. 7654	• 7677	14041	. 7700	·*/01	•4/05	. 4707	.9708
*50.0000	.7712	. 1456	-0116	.0232	• 4 506	VEEP+	*****	.83/3	. 77.00
800.000	.6913	./317	./548	.1102	• 7894 °	• / 452	./401	*8011	.8054
<>0.000	- 9444	* 7156	****	64461	1666.	. , 4 3 3	.44.16	.7935	. 44.15
750.0000 .	.9971	• 175	.4411	.4418	.44/4	. 1717	.7760	• 4480	.99.5
250.0000	,94H0	•4 -41	• 4446	. 4463	. 446.5	44493	.7763	, 7403	.7783
000.000	.4453	. 993.	חנענ.	. + 140	• 4446	. 474 5	· •994d,	. 4444	. 4745

APPENDIX C

PCFLOS (A_i, H_j) AND PCFLOS (A_i)

PCFLOS (A,H		FREE LINE S	_	FROM THE		O GIVEN HE	IGHT H.	LOC	ATION 2
HEIGHT H (METERS)	10 1060	२७ मि	J4U UE	40 UEU	つび かとい	60, UEG	/0 UEG	80 UE6	40 NFG
50.0000	.9444	. YHYF	*****	. טעענ	. 4443	*42.21	1666	.4941	. 4441
100.0000	• 341.5	. 7767	.94/1	. 34/4	. 4415	.4476	.44/6	.4416	.4477
200.0000	*4nod '	• 7876	• Ye 10	. 7044	. 7850	. 7053	. +654	• 7425	.9850
300.0000	.4676	. 4316	• 93/6	. 4414	. 4440	.4425	.4458	. 4403	.9467
600.0000	.4011	.0241	+84/5	*8292	40000		.6712	.8729	.6/38
1000.0000	. /447	, .CHUB	.aun 1	.0615	*#3u#	1064.	.8387	.6408	.8422
1500.0000	.1241	¥7650	· (5/h	•พักลก	* 4143	. 0251	.82/9	.8302	*4718
2000.0000	./1/4	ح بدنه ۱۰	./6/1	+8039	.0140	-101	.8670	.8201	.8417
2540.0000	.7151	ווחל/.	. 1857	.0024	.0131	.8173	.8623	. 8458	. 5664
3500.0000	.6824	.1744	+/003	./neu	.7933	./44/	. #027	.6056	
			_						· · · ·
PROBABILITY	OF CLOUD	-FREE LINES		ABLE C2 S , FROM THE		O GIVEN HE	EIGHT H.		
HEIGHT H (METERS)	10 016	20 DFG	שאל על	40 btu	. 50 1)66	ou nfe ,	/0 UEG	BU DEG	YO UEG
50.0000	· .4995	. 4446	. 4441	•4448	. 7778	* 7444	. 7778	. 9498	. 9448
100.0000	. 4954	. 4464	1046.	. 7767	. 77/0	1744.	.44/2		.9472
200.0000	LUNP.	.4413	• 4454	. 4446	. 1940	. 9943	. 4445	.9946	.9947
300.0000	. +477	. 7760	. 4614	. 705 3	.4673	. 4066	. 4041	. 4646	.9644
600.0000	. 5740	.5447	**04!	**140	.4569	4260	.4615	.4540	, 4245
1000.0000	.8307	.8446	.0790	. 5704	.84/5		. 4044	. 7059	. 9067
1500.0000	E058.	.8498	.0/16		.8910	.8457	.87/9	.4000	.9008
2009.0000	.0152	. 8454	+010+	.8012	. 4865	* £4#•	.8457	6978	. 1848.
2500.0000	.8115	. 6426	4655	.8/85	· oHo9	. 6046	SEKR .	. 8454	.8763
3500.0000	.7828+	.0211	• 0454	.0044	.8723	.4/16	. 8840	. 8AC4	. 5550
PROBABILITY	Y OF CLOUD	-free line		TABLE C3		TO GIVEN H	EIGHT H.		
HEIGHT H (METERS)	to OFG	P1) 1F16	10 08.0	40 020	50 066	ou Ptu	10 UEG	en nfe	40 ÚEG
50.0000	, .4447	. YYOH	. 4444			. 4444	*****	. 4444	. 4444
100.0000	· YYMY	19975	د/ ولا.	. 44/6	.9917	.97/H	. 7418	9918	.yyty
200.000	. 47n1	. #/#8	וופצי.	.9018	. 4825	. 4954	.4831	•4843	£284.
300.000	.9173	.4286	***	. 4416	. +441	. ł+5h	* 4444	. 4476	. 9479
600,0000	.7508	./845	• 4000	.0229	.0317	. 9 304	.6347	.8440	. 5-54
1000.0000	.6624	./10+	./444	. 1650	.17/3	. /64n	. 7889	.7922	01KL
1500.0000	•n41¢	.64//	.1240	• /505	./63/	+7/10	.7759	. 1/44	./609
5000.0000	₩ 337	.647)	. / < 10	./454	./573	.1014	.1114	./755	.1110
2500.0000	-6210	* 6HH3	. (18)	./*10	+7740	./6Jn	7615	- +/711	.1426
3500.0000		• 66 fg	+102B	./cam	•/+51	./514	• /504	. Inud	.7034

PCFLOS (A,		-FREE LINE		TABLE C4	SPRING E SURFACE	TO GIVEN H	EIGHT H.	LOC	CATION 9
HEIGHT H (METERS)	10 016	20 016	10 DEC	40 Uto	30 BEG	ov PEG	70 DEG	bu DEG	YO UEG
50.0000	.9845	. 9498	• 7849	.9400	.4902	•4405	+4405	. 4902	.9902
100.0000	.9447	. 7490	**#**	• +0+3	.9895	• 4845	.9875	. 7875	.9895
200.0000	.4643	4661	-70/3	• 4on2	• 4684	.4041	.4045	.4643	. 9694
300.0000	.8640	.a769	• au 50	• 8854	-8486	.4845	.8401	.8906	.8907
600.0000	6725	.0447	/100	./288	./36/	./+01	.7419	.7437	./443
1000.0000	.5770	•0154	.0423	• bhu0	.6712	.6/65	.6791	.6820	.6829
1500.0000	.5610	.0017	•6302	• 6+8,8	• 6607	•6663	.6671	.6761	.6/31
2000.0000	.54Ml ·	.5905	•0202	1966.	•5520	•67/8	.6608	.6640	.6650
2500.4000	.5349	. DH ! 0	. •0114	1560.	• 5448	.5010	.6540	.65/3	.6584
3500.6000	.4446	•5501	•>645	• 00 86	1550.	•6296	0666	.6368	146.
		ts Pr							
PROBABILIT	Y OF CLOUD	-FREE LINE	-	'ABLE C5 F, FROM TH	SUMMER E SURFACE	TO GIVEN H	EIGHT H.		
HEIGHT H (METERS)	.u nru	20 Uru	30 DE0	40 DEG	ちり ひどら	60 DEG	/U UEG '	80 DEG	90 DEG
50.0000	.4445	.4445	. 7445	• 4495	*4445	• 4445	. 4445	. 4945	.9995
100.0000	.9946	5666	. 4493		. 4943	•4443	. 4443	. 7973	.4493
200.6000	.4951	. 4455	. 7451	• 7758	• 4454	,.4454	.9960	. 7960	. 9960
300.0000	.9748	41.4112	•9787	. 9/94	• 4845	•9809	• 4810	.9812	.9813
600.0006	.8499	.8728	•8905	.9002	. +054	•9097	-9117	.9134	.9140
1000.0000	.1344	7/155	•0070	.B244	.8349	-6417	-8452	.8484	. 8444
1500.0000	.7148	.7620	• / 450	•8134	•#245	.8315	.835¢	.8385	evts.
2000.0000	.7076	./525	•/6h/	.8058	•H173	• H246	.8284	.8319	.6330
2200.0000	•6951	1390	•//•6	.1447	. 8008	.8144	.8184	. 4240	.8636
3500.0000	r •6255	.6434	.1211	7529	.7679	+///1	. +7618	./862	.7891
	•	•			****	•	,		•
PROBABILITY	OF CLOUD	-FREE LINE		ABLE C6 , FROM THE	WINTER SURFACE	TO GIVEN H	EIGHT H.	•	
HEIGHT H	10 060	20 066	ששט טביי	40 UEG	50 UEG	60 UEG	70 DEG	An DFC	40 DE6
50.0000	.9941		. 7442		.4444	.4444		. 9944	. 4444
100.0000	.4414	. 7417	*4418	.9919	.9920	.9460	.4420	. 4460	. 4450
200.0000	9414	.9433	. 7445	. 7454	14402	. 4404	. 4464	. 4405	. 7465
100.000	.7966		Leub.	.8119	- +114/	·8152	.8156	.6156	.8159
500.0000	.4629	.4976	+510H	•5650	.5348	.53/4	.5347	.5413	.541.9
1000.0000	.3255	*JA44	.3442	.4141	4442		11	.4438	.4448
1500.0000	.3045	. 3553	.3052	.+4/0	•4216	• • • • • • •	. 4649	.+327	4338
.2000-0000	+3044	.1716	• 1012	.40 15	.+183	.4637	•+<0h	• • < 75	.+105
2500.0000	.2913	.3444	.3152	.34//	•4121	.4165	14613	• • 2 • 2	.4653
3500.0000	.2411	. 3 542	+4165		••089		.41/6	.+205	.4224

	PCFLOS (A,H) TABLE C7 SPRING LOCATION A PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H.										
HEIGHT H (METERS)	10 DER	50 DEG	30 DFC	40 DEG	50 DEG	60 UEG	70 UEG	80 DEG	90 UEG		
50.0000	.9869	.9872	-9873	.9875	.9876	.9876	.4876	.4876	.9876		
100.0000	.9702	.9710	-9715	.9719	.9723	.9723	.9723	.9724	.9724		
200.0000	.9125	.9162	• 4185	.9203	.9218	.9221	-9224	.9265	.9226		
300.0000	.8157	.8255	•8307	.8351	.8383	.8392	-8398	.8403	.8405		
600.000	.4873	.524,9	-5486	.5673	.5789	.5837 .	-5068	-5840	.5400		
1000.0000	.3442	.3977	•+319	.4581	.4739	.4609	•4855	.4886	.4900		
1500.0000	.2987	.3571	• 3946	.4231	-4402	.4479	4529	•+563	.4579		
2000.0000	.2931	.3520	.3900	.4188	•4360	.4439	.4470	.4524	.4540		
2500.0000	.2910	501د.	•3883	+4171	.4344	.4423	.44/3	-4508	.4524		
3500.0000	.2829	.3433	•3822	•4117	.4292	.4373	.4425	. 4460	.4479		
		FREE LINE		ABLE C8		O CIVEN H	SIGUT U				
PROBABILITY				•							
HEIGHT H (METERS)	10 DEG	SO DEG	30 DEG	40 UEG	50 QEG	60 DEG	- 70 DEG	80 DEG	90 DEG		
50.0000	.9919	.9921	•4922	.9923	. 9924	.4924	•9924	-4924	.9924		
100.0000	.9788	. 4794	.9797	.9800	.9802	.4803	£084.	.4803	.9803		
200.0000	.8908	.8948	.8970	.8990	.9006	.9009	-9011	.4015	.9013		
300.0000	.7920	.8005	•8055	.8099	.8131	.4138	-8144	.8147	.8148		
600.0000	.4727	.5054	•5255	•5422	•5521	•>559	•5588	-5603	.5609		
1000.0000	.3009	.3512	. 3826	-4076	.4219	.4283	.4328	•+351	50t#.		
1500,0000	.2571	.3118	-3462	.1/32	8886.	. 3457	• • 0 0 6	\$10+	.4444		
2000.0000	.2541	.J092	0446.	•3/12	. 3869	. 1939	. 1484	•4015	.4021		
2500.0000	.2521	.3076	.3426	. 3644	. 3857	1.392A.	•14/6	. 4004	.4016		
3500.0000	.2471	.3033	8966.	. 3665	.3824	.3896	-3y47	.39/3	.3487		
			••1	ABLE C9	WINTER	.*	•	•			
PROBABILITY	Y OF CLOUD	FREE LINE	S-OF-SIGHT	, FROM THE	SURFACE 1	O'GIVEN H	EIGHT H.				
HEIGHT H (METERS)	10 DEG .	SO DEC	30 UEG	40 UEG	50 0EG	60 UEG	70 UEG	86 DEG	90 DEG		
50.0000	.9971	. 4972	.9972	.9973	•9973	.9973	. •9973	.49/3	.9473		
1,00.000	.9954	• 4955	.9956	•9957	• 4958	.4958	.9958	.9958	.9958		
200.000	. 9665	. 9678	. 9686	.4643	.9697	.9699	• 4649	.9700	.9/00		
300.000	.8672	.8733	.8770	.8601	.8822	.8628	-86.32	.8835	.8836		
600.0000	.5115	.5501	•5743	•5933	.6045	.6094	-6126	.6147	.6157		
1000.0000	.3507	5614.	.4416	.4686	.4844	.4917	.4965	.4956	.5011		
1500.0000	.2825	.3447	.3845	.4148	.4323	.4407	-4461	.4445	. •512		
2000.0000	.2115	.3402	. 3803	.4108	.4285	.4369	.4424	.4458	.4475		
2500.0000	.2775	.3402	-3803	.4108	.4285	.4.169	.4424	.4458	.4475		
3500.0000	.2149	-3379	.1/82	.4089	.4267	551	-4406	.4441	.4459		

PCFLOS (A,	H)			TABLE C10	SPRING	i	•	LO	CATION B
PROBABILIT	Y OF CLOUD	-FREE LINE	S-OF-SIGH	T, FROM TH	E SURFACE	TO GIVEN H	EIGHT H.		
HEIGHT H	10 DEG	50 DE@	30 DE@	40 UE	50 066	60 UEG	70 DEG	.80 DEG	90 DEG
50.0000	.9471	.4482	.4487	.9443	.9498	.4498	.9498	. 9498	.9498
100.0000	.9471	.4482	. 9487	.9443	.9498	.4498	-9448	.4448	. 4498
200.000	.9226	.4247	• 4259	.9264	.9278	.4219	.9280	. 4580	.4480
300.0000	.8125	. 4212	•8265	.8310	.8342	.8350	. 8357	.8361	. 8 4 6 3
500.0000	.4723	.5049	•5253	.5+18	.5526	.5563	•5589	.5606	.5613
1000.000	.2578	.3083	.3402	. 3654	. 3818	.3817	:3919	. 1948	.3958
1500.0000	.2412	.2985	•1309	- 3566	.3730	-3791	. 3833	.386?	.3672
2000.0000	.2445	2960	. 3284	.3543	.3708	.3768	.3811	.3840	.3850
2500.0000	.2389	.2908	.3235	. 3495	. 3662	.3723	.3766	. 37.15	.3805
3500.0000	.2271	.2805	-3142	. 3-10	.3579	.3643	.3687	.3717	.3729
		•							
PROBABILITY	OF CLOUD	-FREE LINE	· -	ABLE C11 , FROM THE	SUMMER SURFACE		EIGHT H.		
HEIGHT H (METERS)	10 DEG	20 056	30 DE@	40 UEG	50 DEG	60 DEG	701066	80 DEG	. 90 DEG
50.0000	.8843	.8867	+6879	•8691	.8903	.8703	.8903	.8903	.8704
100.000	.8815	.8840	•8852	.8865	.8877	.8877	-8677	.8677	.887/
, 500.n000	.8257	.8301	•8325	.8347	.6367	.8364	. 8369	.83/0	.8371
300.0000	.7031	.7137	./148	.7252	.7296	.7303	.7308	./313	./414
600.000	81E+.	. ****	• • 775	.4416	.5015	.5044	.5063	.50/7	.5082
1090.0000	.3444	.3616	.3652	.+036	.4159	.4201	.4224	.+2+#	• 4 < 5 5
1500.0000	.3140	.3531	- 3776	. 3465	.4092	.4135	.4165	.4184	.4191
2000.0000	.3097	.3485	. 1732	.3453	.4051	.4044	.4124	.4144	4151
2500.0000	.3030	05+t.	- 3678	.38/3	. 4003	H+U+.	.4078	•049	.4106
3500.0000	2668	.3116	€'0+€.	.3622	.3764	. 3817	l cut.	.38/5	. 3688
								. •	, ,
PROBABILITY	OF CLOUD	· -FREE LINE		ABLE C12 ⁻ , FROM THE		TO GIVEN H	EIGHT H.	-	
HEIGHT H (METERS)	10 016	50 DE0	30 DEG	40 UEG	30 DEG.	NU DEG	/0 DEG	80 DEG	40 066
50.0600	.9532	. 4542	.454/	•9551	•4756	.4556	• 4556	• 4556	. 4556.
100.0000	.4525	• 4535	4534	. 7544	.9549	.4544	.4544	. 4544	. 4544
500.u000	. 4340	. +395	.4405	. +410	.,417	.9417	4417	.9417	.441/
300.000	.8457	.8523	.6563	. 8547	.8623	. 8629	Lton.	.86.37	.6037
600.0000	. •276	.4646	.4876	.5065	-5186	.5229	• >2>4	•2500	.5488
1000.0000	.2223	.2763	-3104	.33/5	.3548	. 1613	• 3654	Hadl.	.3/01
1500.0000	.2147	.2695	. 3040	.3315	.3489		• 1600	1666.	. 1044
2000.0000	.2145	.2692	. 3037	•1315	. 1487	•3552	. 1544	.1629	. 1642
2500.0000	.2123	.2671	.3016	. 1545	. 1467	. 15.13	.3578	.3604	.3622
3500.0000	2044	.2646	2443	- 3471	.3447	. 151 1	• 1554	. 1540	. 1644

PCFLOS (A,H) TABLE C13 SPRING L PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H.									
HEIGHT H (METERS)	, 10 DEG	20 DEG	30 DEG	40 066	DO DEG	60 DEG	10 ULG	eu DEG	90 DEG
50.0000	.9116	.4135		.9153	.9162	.9162	.9162	.4162	.4152
100.000	.9107	. 4125	.4135	. 7144	. +154	.4154	.9154	.4154	.9154
200.0000	.8859	.8847	• #902	.8916	.8929	.4930	.8930	.8931	.8v3i
300.0000	.8086	.8161	-8204	.8241	.8271	.8277	.6281	.8284	.8285
600.0000	.5670	.5963	-0147	.6<92	.6388	.6422	.6444	.6462	.6468
1000.0000	.3679	.4182	• +511	•4753	. 1910	.4974	.5013	.5045	.5058
1500.0000	.3458	.3981	• + 323	.4575	.4737	-4804	.4844	.48/8	.4891
2000.0000	.3386	.3916	• • 262	.4516 ·	.4680	.4747	.4788	.4822	.4435
2500.0000	.3270	.3808	++161	.4419	.4586	.4654	.4696	.4730	.4744
3500.0000	.2991	.3559	.3930	.+203	.4377	4449	.4493	.4529	.4546
PROBABILITY	OF CLOUD-	FREE LINES		BLE C16 FROM THE	SUMMER SURFACE TO	O GIVEN HE	IGHT H.		
HEIGHT H (METERS)	10 DEG	50 DEG	30 DEG	40 DEG	SO DEG	60 DEG	70 DEG	eu DEG	90 UEG
50.0000	.8316	.8351	•8369	.8386	.8403	.8403	.#403	.8443	.8403
100.000	.8308	.8343	•8361	.8379	.8396	. 0396	.8397	.8397	.8397
200.0000	.7916	.7965	.7991	.8015	.8039	.8040	.6041	.#041	41
300,0000	.6874	-6974	.7031	.7082	.7124	.7130	.7135	.7138	.7139
600.0000	.4123	• • • • • • •	•4577	•4717	.4819	.4845	.4864	.*8/7	.4586
1000.000	.2588	.2995	• 3253	•3453	. 3591	. 3635	. 3064	. 3685	. 3693
1500.0000	.2515	.2930	+3193	.3446	. 3536	.3581	.3611	St 0 E .	.3041
2000.4000	.2494	.2915	-3179	.3383	.3524	• 3569	. 3549	.3620	.3629
2500.0000	.2443	.2865	+3132	.3339	.3482	. 3528	1666.	.3579	.3588
3500.0000	.2203	.2654	-2941	-3162	.3312	.3362	. 3394	.3418	.1424
	1	•	· , •			_		•	
PROBABILIT	Y OF CLOU	D-FREE LINI	ES-OF-SIGH	TABLE C19			EIGHT H.	•	•
HEIGHT H	10 UEG	20 DE6	30 DF@	40 UEG	-50 DEG	60 UEG	10 DEG	84 DFG	48 056
50.0000	.9597	. 4606	. 4610	.9614	. 9618	1 .961A	.9010	.9618	. 4018
100.000	.9547	. 4606	.4610	.9614	.9618	.9618	.9618	.9618	401#
200.000	936H	.Y3A5	. 4394	. 9403	.4410	.9411	.9411	.4412	.9012
300.0000	.8665	.8725	.8761	.8/92	.8815	. 4820	. 6824	.8827	. ##28
600.0000	.5496	.5847	.6074	.6246	.6356		.6427	.6450	.6459
1000.0000	.3475	.+050	.4429	.4105	.4876	. 4951		.5013	.5049
1900-000	.3321	.3912	606	.4586	.4761	.4839		.4464	740
2000.0000	. 3293	. Jan 7	.4280	. +56+	+4741	.4819		444	.**20
2500.0000	.3275	.3072	**266	• 4552	.4729	. 4008	.4852	.4443	
3500.0000	.3112	. 3772	,4175	/	. 4598 .	679		.4766	.+/6+

PCFLOS (A,H) TABLE C16 SPRING LOCATION PROBABI'.ITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H.										
HEIGHT H (METERS)	10 DEG	50 NE 6	30 DE 6	10 DEG	50 DEG	60 UEG	70 DES	80 D£S	90 NE6	
50.0006	.9889	.9891	. 9892	.9893	.9895	. 9895	. 4845	.9895	. 4495	
100.000	.9882	.9885	.9886	.9887	. 4889	. 9889	.9689 .	. 4889	. 4884	
200.0000	.9811	.9817	-9820	.9823	. 4826	. 9826	.9426	.9827	. 9827	
300.0000	.9357	•9403	.9433	.9456	.9472	.9478	.9482	.9485	.9486	
600.000	.6575	.6893	•7102	.7258	.7355	.7398	.7425	.7446	.7455	
1000.0000	.4194	.4789	-5189	.5471	.5645	.5727	.5776	.5816	.5834	
1500.0000	.4307	••622	•5035	.5326	-5506	.5591	.5642	.5682	.5701	
2000.0000	.3972	•4591	-5006	•>299	-5480	.5565	.5616	.5657	,507t	
2500.0000	.3915	.4540	• + 959	•5256	-5438	.5525	.5576	.5617	ەندە5.	
3500.0000	.3660	••31•	• • 751	.5062	•5253	.5342	.5396	.5439	.54621	
,	' .			ABLE C17	SUMMER	•				
PROBABILITY	OF CLOUD	-FHEE LINE	5-0F-5IGH	, FHOM THE	SUNFACE	IU GIVEN HI	EIGHT H.			
HEIGHT H (METERS)	10 DEG	50 DE#	30 DE6	40 UE6	50 DEG	+0 UEG	70 DEG	80 DEG	40 DEP	
50.0000	.,9498	. 4508	• 4514	.9519	.9524	. 4525	.9525	.4525	. 4525	
100.6008	.9498	. 9508	• 4514	. 4519	.9524	.9525	. 4525	.9525	.9525	
200.000	.9324	.4340	• 4349	.9357	.9364	.9365	.9365	. 9365	.9365	
300.0000	.8649	.8699	•4729	.0/54	.8773	.8777	. 6780	.8782	.8783	
699.0000	.6040	.6362	+6540	. 6669	.6754	.6787	.6807	.6823	.6829	
1000.0000	.4288	.4797	.5145	.5378	.5527	•5596	.5635	.5667	.5081	
1500.0000	.4196	.4718	.5074	.5313	5466	.5537	.55//	.5649	.5024	
2000.0000	.4178	.4703	.5061	.5300	.5454	.5525	•5505	.5578	.5613	
2500.0000	.4111	.4040	-5002	.5644	•5399	.54/1	•5511	5544	.5554	
3500.0000	3866	.4431	.48;6	.50/6	.52+0	.5317	.5360	evic.	.5410	
• • •		•								
PROBABILITY	OF CLOUD	-FREE LINE		TABLE C18 , FROM THE	WINTER SURFACE T	TO GIVEN HE	EIGHT H.			
HEIGHT H (METERS)	10 066	20 DE6	30 DE6	40 UŁG	SU UEG	66 NF.G	In nee	. BU DEG	. 40 UEG	
50.0000	. 1958	. 7459	• 4454	• → 960	. 4960	. 4460	.4460	. 4960		
100.0000	. 4458	. 4954	. 4954	. 4460	. 4460	.4460	. 4460	. 4460	. 4460	
. 200.0000	.9926	. 4930	.4932	.9410	.4935	.4435	****	.4470	.4436	
300.000	. 4445	. 4527	•9554	. 45/5	. 4540	. 4545	. 4544	. 4002	Luev.	
600.0000	.6320	.0641	•6910	.7045	.7210	.1671	.1201	./313	.1323	
1000.0000	*• 35H¥	.+261	•47u8 .	.5033	•>236	.5JCA	.5382	.54.40	.>4>1	
1500.0000	. 34#2	.4165			,-5154	+5647	. 4303	1080	.53/2	
2000.0000	. 3449	.4153	. 4607	8144.	.5145	.7634	. 7273	.5342	.5366	
2500.0000	. 34 14	+51+		1 4.4412	vile	.7612	. 700	.5116	.5331	
3500.0000	.336/		• • • • • • •	**#5#	5057	.5102	- •५८१ क =	201	, ,5685	

PCFLOS (A,H)		LOCATION H							
HEIGHT H (METERS)	10 DEG	20 DEG	30 DEG	40 UÉG	50 DEG	60 DEG	10 DEG	80 066	90 DEG
50.0000	.9957	.9958	. 4459	.9959	.9960	. 4460	.9960	. 4460	. 4460
100.0000	.9957	.9958	. 4954	.9959	.9960	.9960	.9960	. 7966	. 4460
200.000	.9937	. 9439	• 4939	.9940	.9941	.9941	.9941	14941	.9941
100.000	.9738	.9754	• 4763	1.9771	. 4776	.4778	.4780	.4786	. 4740
600.0000	.7723	.7929	-#065	.8163	.8225	.8252	.8658	-#2#2	.8458
1000-0000	.4769	.5304	•5670	-5918	.6077	-6150	•6193	.6228	.6244
1500.0000	.4473	.5042	•>432	• 5645	.5864	•5942	.5486	.6024	.6041
2000.0000	.4405	.4978	•>371	.5637	.5807	.5885	-5430	.5909	.5986
2500.000	.4335	.4913	-5308	.55/6	.5747	.5826	.5671	.5910	.5927
3500.0000	.+214	-4811	.5215	.5497	.5671	•5752	.5799	.5838	.5864
•			.	ABLE C20	CUBMAED	•			,
PROBABILITY	OF CLOUD	FREE LINES				O GIVEN HE	IGHT H.		
HEIGHT H (METERS)	10 DEG	20 DEG	30 DEG	40 DE6	50 DEG	60 DEG	70 DEG	80 DEG	40 DE6
50.000	.9984	.9964	.9985	. 9985	.9985	.9985	. 99,85	.9985	9985
100.0000	.9984	.9984	•9985	.9985	9985	. 4985	.9985	.9985	.9985
200.0000	.9979	.9980	-9980	.9980	.9981	.9981	.99#1	.99#1	.9981
300.000	.9921	.7926	.9929	.9931	.9933	.9933	.9934	. 4934	.9934
600.0000	.8547	.8759	-8912	.9003	.9058	.9091	.9107	.9124	.9130
1000.4000	.6706	.7243	-7641	.7869	.8063	.8088	•#125	-6108	
1500.000	.6625	.7176	.7584	.7618	• 7955	.8043	-8001	.8125	5418.
2000.9000	.4547	.7104	.7516	-7753	.7892	.7980	-0019	.6043	- 8081
2500.0000	,6467	.7032	-7450	.7690	.7031	.7921	.7960	.8004	.8022
3500.0000	•6569	.6872	.7307	.7572	.7720	.7813	.7855	.7900	.7434
				A.D.I. E. 0.04	********		,	Y	
PROBABILITY	OF CLOUD	FREE LIME S		ABLE C21 FROM THE		O GIVEN HE	IGHT H.	٠ .	
HEIGHT H (METERS)	10 DE6	50 DE8	30 NE8	40 DE6	50 DE6	60 DEG	70 DEG	ee DEG	90 UEG
50.0000	.9951	.9951	-9952	.9452	. 9953	.9453	.9453	. 4953	.9453
190.000	.9949	. 495)	-9951	.9951	.9952	.9952	.9452	Scey. '	.9952
200.000	.9928	.9931	.4932	.9934	•9905	. 9935	.9435	. 9935	. 4435
300.0000	.9668	.9692	•9707	.9720	.472	.9730	.9733	.9734	.9735
668.000	.7170	.7410	• 7564	.7683	.7757	.7788	.7809	./824	.7830
1000.000	.+239	. ++817	•>203	-5478	.5648	.5728	.5774	.5816	.5832
1500.0000	.+006	.+686	-5087	.5371	.5547	.5630	.5642	.>741	.5/30
2000.0000	:+062	.+66+	.>066	.5352	.5528	.5612	•600.	.5/43	.5/20
2500.0000	. 3994	603	•>011	•5249	.5478	. 5562	5615	.5654	.5672
3500.0000	.3857	.44#7	• 4 4 0 5	•><06	.5388	.5475	.5529	.5509	.5544
• •				-					

PCFLOS (A,H) TABLE C22 SPRING LOCATION I PROGABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H.											
HEIGHT H (METERS)	10 DE6	, S0 DE8	30 DEG	40 UEG	50 DEG	60 DEG	70 DE6	80 DEG	90 UE6		
50.0000	.9977	.9978	.9978	.9979	.9979	.9479	.9979	.9979	.9979		
100.000	.9961	.9963	.9964	. 9965	.9966	.9966	.9966	.9966	.9466		
20,0000	.9747	.9758	.9764	.9769	.9773	9774	.9774	.9774	.9775		
300.000	.8890	.8944	.8977	. 9006	.9025	.9030	.9034	.9017	.9036		
600.0000	.5514	.5910	.0161	. 6356	.0471	.6524	•6559	.0502	.6594		
1000.000	.3806	.4419	.+816	-5108	•>277	.5362	-5414	.5450	.5464		
1500.0000	•3292	.3958	.4340	34707	.4889	.4482	9 606.	.>078	.5097		
2000.0000	. 3228	.3901	• + 339	.4658	.4843	4937	• 4 7 9 5	.5034	.5053		
2500.0000	.3213	.3887	.+326	.4646	.4831	. 4925	.4783	.5022	.5042		
3500.0000	.3175	.3853	•+294	.4617	.4803	.4897	۵ ۲۲۰۰	. 4975	.5015		
			1	ABLE C23	SUMMER						
PROBABILITY	OF CLOUD-	FREE LINES				O GIVEN HE	IGHT H.				
HEIGHT H (METERS)	10 DE6	20 DE6	30 066	49 UEG	50 DE6	60 UE6	70 UE6	ao DFè	40 DEG		
50.0000	.9950	. 4952	• 4953	,.9954	.4954	.9955	.9455	.9455	.9755		
100.0000	.9866	. 7869	.4872	.9873	.9875	.9475	.9875	.9875	.9876		
200.0000	.9178	.9209	.9226	.9241	.9253	.9255	.9257	.9258	.925*		
300.0000	. 1993	.8091	•0150	.8200	.8234	.8244	.8251	.8256	.8257		
. 600.00,00	.4731	.5147	-5410	.5616	.5739	-5792	.5128	.5851	.5861		
1000.000	.3158	.3762	••151	\$444	.4613	.4094	.4746	.47.79	.4795		
1500.0000	.2946	.3571	.,1475	.4476	.4452	. 4536	.4590	.4624	.4041		
2000.0000	.2924	. 3553	- 3961	.4264	.4441	.4525	.4580	.4615	.4631		
2500.0000	.2915	.3545	.3953	• • 256	•4433	.4518	.4573	.4647	.4624		
3500.0000	.2899	.3532	.3942	.4247	.4425	.4510	.4565	. +600	.4017		
,			т.	ABLE C24	WINTER			•	•		
PROBABILITY	OF CLOUD-F	REE LINES-				GIVEN HEI	GHT H. 📩	,	•		
HEIGHT H (METERS)	In OFG	58 050	JU DEG	امعان ده. د	50 DEG	ou veç	TO DEG	89 DEG	40 NFP		
50.0000		.4942	. ***3	. 4444	. 4994	. 1444	.4444	. 4444	. 4444		
100.0000	. 4944		. 4450	.4452	•9952	.4453	. 2453	. 2453	Levy.		
200.0000	.95H4	.4603	• 461 3	.4023	.9629	.4631	\$6.00	.461	LLOV.		
300.0000	.6579	. #667	•#720	.8765	. 6/92	. MBO 3		.8415			
600.000	.5374	.5835	+6114	.6354	.6463	+6547	.0500	.0613	.0048		
1000.0000	. 4010	. 46 37	+5045	0466	. +5512	.5544	1000	*>688:	.5/04		
1200.0000	. 1354	. • 0 • 5	.4447	.4821	.5010	.5107	.5165	+456.	.5668		
2000.0000	. 3319	014		/44	.4444	.5081	. 71.14	.51/4	.5602		
2500.0000	.3314	014	.4468	.4/94	. 4444	. 7081	.51.4	.51/9	.5404		
3500.0000	. 1.3274	.1973	• • • • 31	.4/60	. 6951	.5049	-5108		.5116		

HEIGHT H	PCFLOS (A,F PRODABILITY	i Loc	LOCATION J							
100.0000		10 040	20 1)+6	to Dec	40 ur6	טאַע טכ	60 ULG	70 UEG	BU DEG	90 YEG
288,8888	50.000	.4414	.4411	.4417	9919	.4920	.4920	. 4420	.4928	. 4450
380,0000	100.000	. +61/	1584.	• 7623	• +625	. +821	1584.	.4467	.4867	.4428
100,000	200.000	rpet.	1544.	. 44 13	. > + + >	LC+v.	4455	. 4470	. 7456	-745/
1000.0000	300.000	.4/44	. 8445	• 685 1	. 8 + 1 5	.6433	PLYH.	.8443	. 5046.	. 4747
1-00.0000	600.000	£000.	.6406	./105	٥١. ٥٥	. / 334	.7380	./403	. [42]	./432
2000.0000 .376/ .4642 .6800 .5202 .5380 .5538 .5	1000.0000	.461/	51-5	• >> /6	•>6+5		.6084	.6131	.0106	.6185
### TABLE C28 SUMMER ##################################	1500.0000	. indy	.4550	. 4444	*><+3	.54/2	• >> > > + > + + + + + + + + + + + + + +	.5440	.5654	.5081
TABLE C28 SUMMER PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. HEIGHT M 10 DEG 70 UFG 30 DEG 90 DEG 80 DEG 70 DEG 80 DEG 8	2000.0000	.376/	.4466	.4840	.5202	. 7.385	. 5480	.5536	.55/6	.554#
TABLE C28 SUMMER PROBABILITY OF CLOUD-FREE LINES-OF-BIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. MEIGHT H 10 DED /0 UFG 30 DEG 90 DEG 60 DEG 70 DEG 80 DEG 8	2500.0000	.3756	•••31	• 4850	5+16.	.53/4	. >470	.5526	.>546	.5548
### PROBABILITY OF CLOUD-FREE LINES-OF-BIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. #### In Deb	3500.0000	.3701	' .43m6	041	. •212#	.5343	.5440	.5447	5537	.5>61
### PROBABILITY OF CLOUD-FREE LINES-OF-BIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. #### In Deb				•				•		
METERS	PROBABILITY	OF CLOUD	-FREE LINES				O GIVEN HE	EIGHT H.		
1002-0000		10 060	∕U UFG	JU DEG	43 LEU	>0 UE6	60 DEG	70 UE6	NO DEG	AO NFP
200.0000 .7474 .0000 .0011 .0127 .0001 .0003 .0005 .0005 .0005 .0005 .0005 .0000 .7474 .0000 .0001 .0127 .0120 .01	50.0000	٠٧١٩٠	• */n>	**/6/	.9110	. +772	.4/15	4//3	.97/3	.9/73
### ### #### #### #### ###############	100.0000	*454*	**540	• 45%	• 9000	. 4644	. 7004	. 4005	. 7675	.,7005
\$00.0000 .7336 .7600 .7000 .8000 .8000 .8010 .8132 .8187 .8139 1000.0000 .3607 .3977 .9300 .8087 .6081 .6766 .6496 .8822 .6638 1500.0000 .7000 .7000 .3161 .3161 .8000 .8170 .8000 .8210 .8319 .8339 2000.0000 .7000 .3161 .3161 .3017 .2018 .8060 .8211 .8333 3500.0000 .7000 .3161 .3161 .3017 .2013 .8131 .8213 .8259 .8289 .8310 TABLE C27 WINTER PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. MEIGHT H (METERS) 500.0000 .70000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000	200.0000	.8931	.0400	-37/6	. 5740	000	.4004	.9005	. 4005	. 4465
1000.0000 .3905 .3975 .0302 .5505 .4691 .0750 .6490 .0822 .0830 1500.0000 .2002 .1000 .3771 .0002 .0702 .0275 .6320 .0330 .0330 2000.0000 .2770 .3361 .3772 .0000 .0170 .0200 .0339 .0339 2500.0000 .2740 .3363 .3772 .0000 .0170 .0200 .0339 .0339 3500.0000 .2740 .3371 .3772 .0000 .0180 .0222 .0239 .0339 3500.0000 .2760 .3371 .3772 .2973 .0137 .0213 .0229 .0209 .0400 TABLE C27 WINTER. PROGRABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. MEIGHT H	300.0000	.14/4	. 0070	. 00 4 1	.0121	ecib.	.,159	.8103	.0105	
1500.0000 .cmc .100m .37/1 .6002 .6202 .62/5 .6380 .6300 .6366 2000.0000 .27/5 .3467 .37/2 .0008 .61/0 .6264 .6280 .6317 .6336 2500.0000 .27/6 .3463 .37/4 .0006 .6108 .6262 .6288 .6317 .6333 3500.0000 .27/6 .33/1 .36/7 .27/3 .6137 .6213 .6259 .6289 .6310 TABLE C27 WINTER PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT N. MEIGHT H 10 0/0 20 3/1 40 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	600.000	. 73 14	. > > 0 4 4 4	*>0/¥	, >480	-6072	. D.I.UM	-6112	.6147	
2000,0000 .2700 .3307 .3742 .0000 .0100 .0200 .0200 .0310 .0330 2500,0000 .2700 .3303 .3742 .0000 .0100 .0202 .0209 .0317 .0333 3500,0000 .2700 .3321 .3075 .2473 .0137 .0213 .0259 .0289 .0300 TABLE C27 WINTER PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. MEIGHT H	1000.000	. 1405	.3975 .	\$08	• 4545 ,	.467]	.,/>h	.4/46	.+822	. +436
7500.0000 .2/40 .3453 .3/42 .4000 .4108 .4242 .8288 .4317 .4333 3500.0000 .7460 .3371 .3672 .2773 .4137 .4213 .4259 .4289 .4308 TABLE C27 WINTER PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN MEIGHT N. MEIGHT M	1500.0000	. (046	. 1908	.3//1	. 4042	. 4 6 4 6	.46/5	.4360	. 4.148	+464
TABLE C27 WINTER PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. HEIGHT H	2000.0000	.2/95	1000	•3/15		.41/0			.4319	
TABLE C27 WINTER PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. HEIGHT H (METERS) 50,0000 4979 4970 4970 4971 4971 4971 4971 4971 4975 4975 4975 4975 4975 4975 4975 4975	2500.unno	.2140	. 3.163	.3/12		-+108	.4642	< 50	.4317	.4435
PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. HEIGHT H (METERS) 500,0000 .4700 .	3500.0000	• 27 • 0 .	. 1361	• 36 15	29/3	1.37	.4413 ,	••<>>	289	.4406
PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H. HEIGHT H (METERS) 500,0000 .4700 .			•							
Company Comp	PROBABILITY	OF CLOUD-	FREE LINES				O GIVEN HE	GHT H.		•
100.0000 .and .and .and .and .and .and .and .and	****	Lie Ut o	/U IF 6.	tu ta t	. No like	20 Jet i	'no oto	/4 464	BU UEte	46 060
2010.000 .9119 .9110 .91	50.0000	. 4454	*****	• 44.0		.4424	* +424	*****	. 4458	. 4758
300.0300 .13814017117	100.000	. 44411					. 4740	* 4400		. 4746
Seet Seet upto 1000, 1000 0000 0000 0000 0000 0000 00	200.0000	9/13	.9120		. * / * *	. +/47:	. 1151	.4/26	. 7/51	.7/53
1000.0000	300.0300	.9140	. 71-5			· ·cni	.4661	.4611	.7613	. 4475
1500,0000 to select the term to the color of	, <u>ტით</u> , სიიი	.541/	. u 75h	+047,6		./617	• / Cm)	./110	./112	. (342
There is no an area.	1000.0000	.4115	.4/14	17177	10	.59/3	. 19. 11	.7/4/	.5/45	.5/64
2000,0000, 1117 ,109, ,4000 ,5000 ,5000 ,5000	1500.0000				• • • • •		· what	+5144	.5100	.5246
	2000.0000	• 1 51 %	\$ 3944 .			وا يه دا يه يو - ا	• 14 × 170	.7446	.9126	. *2122
200.0000 .360 .366 .366 .366 .366 .366 .3	2500.0000	. 3/ 11	. 1 . / 4	***, f'	•••			. ~ 464	.714	2445
Acres words towns the times there are there ther	1500.0000	. 17/5	. 346.6							. 21.11

PCFLOS (A,H)	FOC	ATION K							
HEIGHT H (METERS)	10 DEG	20 DFG	30 NE@	40 UEG	50 DEG	60 UE6	70 DEG	60 DE6	90 056
50.0000	.9782	.9798	-9807	.9815	.9819	.4821	.9822	.9823	.9823
100.000	.9766	.9783	• 4743	. 7601	. 9805	.9407	.9809	.4810	.9810
200.000	.9501	. 4525	. 4540	.4553	.9560	.9563	.4565	. 4566	. 4566
300.0000	.8956	. 4005	. 4034	. 4058	.9075	.9074	.90#3	.4084	. 4086
600.000	.6654	.6925	.7097	.7223	.725_	.7333	.7354	.7368	,1376
1000.0000	.4498	.>045	-5409	.5660	-5806	-5883	.5726	.5957	.5474
1500.0000	.4058	.4649	.5042	-5314	•5472	.5554	.5601	.5634	.5052
2200.0000	.3913	.4526	•4933	.5215	.5378	.5464	.5512	.5547	.5566
2500.000	.3867	.4487	• 4899	.5183	.53+8	.5435	.5484	.5519	.5538
3500.0000	.3766,	.4421	• • 8 4 1	.5133	.5301	.5389	•5439	•5475	.5498
			τ	ABLE C29	SUMMER				
PROBABILITY	OF CLOUD	FREE LINES				O GIVEN HE	IGHT H.		
HEIGHT H (METERS)	10. DE 6	50 DEG	30 DEG	40 DEG	50 DEG	60 UEG	70 UE6	#0 DEG	90 UEG
50.0000	.9483	.4983	.9983	.9484	-9984	.9984	.9444	. 4984	. 9984
100.000	.9934	.9937	. 9938	.9939	.9940	.9940	.9940	. 4940	.9440
500.0000	.9613	.9026	.4633	.9640	.9645	.9645	.9646	.9646	.9647
304.0000	.9039	.4077	.9049	.9118	.9131	.9134	.9137	at 14.	.9139
600.000	.6884	.7106	•7245	.7353	.7416	.7443	.7462	.74/2	.7477
1000.000	.4373	.+899	•>245	.5440	.5629	.5702	.5748	.5775	.5/49
1500.0000	.3916	.4495		.5149	.5300	.5382	.5432	.5462	.5478
2000.0000	.3767	••366	.4764	.5042	.5198	.5283	.5334	.5366	.5363
2500.0000	-3724	•4332	•4733	.5013	-5171	•5256	.5308	.5340	.5356
3500.0000	3622	.4240	.4650	.4937	-5098	-5185	.5234	.52/1	.5240
	ı		•	TABLE C3	N WINTER				*
PROBABILITY	OF CLOUD	-FREE LINE				TO GIVEN H	EIGHT H.	•	•
HEIGHT H (METERS)	10 DE0	20 DEG	30 DEG .	40 UEG.	50 DEG	60 DEG	/0 UEG	wu DEG	40 UE6
>0.000	.4478		. 4941	. 9485	.4983	. 4483	ieve.	. 7984	. 4484
100.000	. 9458	. 7779	• 4461	.9462	.9963	.4961	. 4964	.9464	. 4464
200.0000	9692	. ₩706	. 4714	. 4121	.4726	.4/27	.4128	.4724	.9/29
.000.000	.4040	. 7140	.41/1	. 4147	9212	.4414	.4222	.4544	.4625
600.0800	.6904	.7176	•/352	.1982 .	.7560	./546	./619	./634	.1042
1000.000	.4370	.4905		.5506	•5655	.5/28	.5774	.5803	.5814
1,00.0000	.3577		••5/4		٠٠,0 و٠.	.5117	. 7167	.5202	.5220
2000.000	. 3005	. • 0 30	. 44 18	.4/34		.4493	.5447	.5081	.5100
2500.0006	. 3344	071	10	••127	. • \u0	. 4486	-54-0	.50/4	. 2044
3500.0000	. 3244	. 14 17	+4350	**67*	-4430	.4414	.44/4	• SHUA	itue.

PCFLOS (A,F		FREE LINES	G-OF-SIGHT	TABLE C3		O GIVEN HE	IGHT H.	LOCA	TION M
HEIGHT H (METERS)	10 056	56 DEQ	30 DEP	40 UEG	50 DEG	60 DEG	10 DEG	en nce	90 NF6
50.0000	. 4852	. 9855	. 4857	.9858	• 4860	.4860	. 4860	. 4800 -	4860
100.0000	.9845		. 9850	.9852	. 7853	.9853	. 4854	.9854	.4654
200.0000	.970/	.9717	.4722	.9727	.4731	.9/32	.9732	. 47 JZ	.4/32
300.0000	.9345	.4417	• 4435	.9452	.9462	. 4466	. 4468	.94/0	. 9470
600.U000	.7367	./599	./745	.7802	./933	.7463	.7985	1000	.8005
1009.0400	.4241	.4839	•5224	.5522	.5698	.5/80	.5835	.5876	.5890
1500.0000	.3453	.+156	• • • 6 1 1	.4957	-5161	•5659	+546+	53/2	.5389
2000.0000	. 3402	.+112	.4573	.4923	.5129	*2554	*5643	5+60.	.5459
2200.0000	.3365	-+0HI	• • 5 • 5	. 4897	.51'04	.5603	• > 64	, 331e	.5336
3500.0000	.33+1	.4062	••528	. 4884	• 5445	.5142	•5/5/	aute.	42458
PROBABILITY	Y OF CLOUD	-FREE LINE		TABLE C32		TO GIVEN HE	EIGHT H.		,
HEIGHT'H (METERS)	10 066	50 NEC	30 DER	40 DEG	50 UEG	60 UEG	/0 UEG	80 756	40 NFP
50.000	.9545	• 4545	• 4554	. 4564	. 4564	. 4564	. 4564	. 4764	. 4364
100.5500	. 9488	. 4201	.4507	.9513	.9513 .9518 .9519 .951 9		. 4514	.4214	
200.000	.9081	.4110	• 4125	.9140 .9151 .9151		.4153	•4122	•4155	.4155
300.0000	.8373	.8443	.8484	HCC0. SCCH. 60Ch. 15CO.		*655#	.8768	.8566	
600.0000	,5240	.5503	.>604	.546 .604 .613		.0104	.0140		
1000.000	. 3157	.2137	-4104	. + 194	.4394 .456, 7ace. 4948		.4730	.4/43	
1500.000	£885.	EMPL.	- 38/7	. 4166	. + 368	.4450	••50/	**>*+	• • > > 5
2000.0000	• 2หา์ร	, 3443	. 3842	.4154		•••21	****/*	••515	. +5.10
2500.0000	.5007	. 14 73	. 3634	.414/	56600		/5	**210	وعذمة
3500.0000	.2764	. 3403	. 1808	126	••313	. 4347	***>>		•+21u
		ener i ince		TABLE C33		0 0WEN HE	icu t u.		
PROBABILITY		*			•				
HEIGHT H (METERS)	IO DEG	50 DE@	10 DE0	40 014	SO DEG	60 DEG	10,066	BU JEG	40 160
50.0000	.9976	.4476	. +977	.9977	-9977	.9477	.44/7	.44/7	.44/6
100.0000	.9972	.9973	.4974	.9974	.4975	. 4975	.4975	.4975	. 4475
200.000	.992J	.9920	.9427	.4454	.9930	.9430	0t PP.	0164.	.4436
300.000	.9703	.9721	.4732	.9742	.4748	.9750	.4152	.9753	.9/53
b04.4000	. 6660	.6978	.7170	.7332	.7427	•7467	.7940	.7510	./523
1000.000	.3443	.+104	•+>?6	.4854	.5044	.5137	.5147	.>2+0	.525/
1500.0006	.2991	-3711	.4174	.4529	.4740	.4837	\$040.		.446/
2000.0000	.2982	.3704	167	**>2*	.4735	. • • 3?	.4847		
2>04.0400	.2964	. 1692	.415#	.4516	.4121	.4425	.4884	.4437	.4450
3500.0000	.2954	IADL.	146	. +505	.4718	.4015		.4458	.4447

PCFLOS (A,F		FREE LINES	-OF-SIGHT	TABLE C34		O GIVEN HE	IGHT H.	LOC	ATION N
HEIGHT H (METERS)	10 DEG	20 DE6	30 DE6	40 DEG	50 DEG	60 DEG	70 DE6	80 DEG	90 DE6
50,0000	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997
100,0000	.9993	.9994	.9995	•9995	.9995	.9995	.9995	.9995	.9495
200.0000	.9976	.9978	.9978	-9979	.9979	.9980	.9980	.9940	.9980
300,000	.9910	.9919	•9924	.9928	.9931	.9932	.9932	.9933	.9933
600.000	.8811	.8922	.8996	.9049	.9081	.9095	.9104	-9111	.9114
1000.0000	.4054	.4640	•5036	.5315	.5476	.5557	.5605	.5642	.5654
1500.0000	.3710	.4324	•4737	-5029	-5198	.5282	.5333	.5371	.5386
2000.4000	.3695	.4310	• • 724.	.5017	-5186	.5271	.5321	.5359	.5374
2500.0000	.3685	.4301 .	-4716	.5009	-5178	.5263	-5314	.5352	.5367
3500.000	.3638	.4259	-4677	4975	-5145	.5230	.5282	.5320	.5337
			т	ABLE C35	SUMMER				
PROBABILITY	OF CLOUD-	FREE LINES				D GIVEN KEI	GHT H.	•	•
HEIGHT H (METERS)	10 DE6	20 DE6	30 DEe	40 DEG	50 DE6	60 DEG	7u 0E6	80 DE6	90 DEG
50.0000	.9545	.9555	. 4559	.9569 .9569		.9569	.9569	.9569	
100.0000	.9488	.9501	.9507	.9513	.9518	.9519	.9519	.9519	.9519
200.000	.9081	.9116	.9125	.9140	.9151	.9153	• 4155	•2155	.9155
300.0000	.8373	.8443	.8484	.á521	.8546	.8544 .8552		.4560	.8562
40.000	.5246	.5593	.5809	.5466	.6894 .6137		-6169	.6189	.6196
1000.000	.3157	.3737	.4104	.4394	.4567	.4643	.4696	u 4730	.4743
1500.0000	.2863	.3483	.3877	.4184	#436 #	.4450	.4507	.4544	.4558
2000.0000	.2815	.3443	.3842	.4454	.4330	.4421	.4478	.4516	.4530
2500.0000	.2003	.3433	.3834	.4147	. 4332	.4415	.4473	.4510	.4525
3500.0000	. •2764	.3403	.300#	.4126	.4313	.4397	.4455	.4493	.4518
				ADI E 026	WINTER			•	
PROBABILITY	OF CLOUD-	FREE LINES		ABLE C36 FROM THE S		GIVEN HE	GHT H.		
HEIGHT H (METERS)	10 DEG	50 DE8	30, DE6	40 UEG	50 DE6	60 DE6	70 DES	80 DEG	90 UEG
50.0000	.9972	.9973	. 7973	.9973	.9974	.9974	.9974	.9974	.9974
100.000	.9965	. 4967	.4947	. 9948	.9968	.9768	.9966	.9948	.9968
200.000	.9947	.9949	.9949	.9950	9951	.9951	.9951	.9951	.9451
300.0000	.9792	.9603	.9010	.9016	.9820	.9021	. 4622	.9023	.9023
********	.8424	.0556	-8645	.8710	.8751	.9766	.8778	. 8787	.8796
1000.000	.3860	.4480	.4895	.5190	.5367	.5452	•5501	.5543	.5560
1500.0000	.3629	.4269	.4697	.5000	.5183	.5270	.5321	.5364	.5je1
2000.000	.3616	.4254	.4485	.4989	.5172	.5260	.531:	•5353	.5371
2500.0000	.3610	4252	•••e1	.4986	.5169	.5257	.5300	.5351	.5348
3500.000	.3571	.4221	.4654	.4963	.5148	.5237	7056.	.5332	.5,351

PCFLCS (A.H))			TABLE C37	SPRING			LOC	ATION P		
PROBABILITY		FREE LINES	-OF-SIGHT,	FROM THE	SURFACE T	O GIVEN HĖ	IGHT H.				
HEISHT (HETERS)	10 DEG	. 20 DEG	30 DE6	40 DE6	50 DEG	60 DEG	70 DEG	80 DEG	90 DE6		
50.0000	.9410	.9423	.4429	.9435	.9435 .9441		.9441 .	.9441	.9441		
100.0000	.9375	.9389	•9396	.9403	.9410	.9410	.9410	-9411	.9411		
200.0600	.8761	.8797	-8817	. 8836	.8851	.8853	.8454	.8855	.8855		
300.000	.7973	.8047	-8091	-8128	.8157	.8163	.8167	.0170	.8171		
600.000	.4422	.4816	-5069	.5257	.5380	.5429	.5457	.5480	45~21		
1000.000	.3089	.3611	.3952	.4200	.4361	.4+27	-4465	.4496	.4511		
1500.0000	. 2990	.3524	-3872	• • 125	.4289	.4356	.4396	.4427	.4443		
2000.000	.2970	-3505	.3854	.4109	.4273	.4341	.4380	.4412	.4428		
2500.0000	.2940	.3478	.3828	.4084	.4249	.4317	، 4357	.4388	.4404		
3500.0000	.2898	.3445	.3000	s4061 ·	.+228	.4297	.4337	.4369	.4388		
				TAD! E 000	CUMMACC						
TABLE C38 SUMMER PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H.											
****		,	,				70.050	40 DE 0	90 UEG		
HEIGHT (METERS)	10 DES	50 DE6	30 DE6	40 DEG	50 DEG	60 DEG	79 DEG	BO DEĢ	70 050		
50.0000	.9197	.9214	•9222	.9231	.9239	.9239 .9239		.9239	.9239		
100,000	.9100	.9119	.9129	.9138	.9148	.9148 .9148 .91		.9148	.9148		
200,000	.7549	.8009	-8041	.8070	.8095	.8098	-8100	.#101	-8102		
300.000	.6714	.6826	.6889	.6945	.6990 .6998		.7003	.7006	.7008		
400.000	.3:16	.3455	. 3660	.3027	.3944	-3977	.4000	.4015	.4021		
1000.000	.1950	.2366	.5655	.2027	. 2967	.3010	.3039	.3050	.3066		
1500.0000	.1021	.2246	.2508	.2717	.2860	.2904	.2933	.2952	.2461		
2000.0000	.1406	.2234	.2497	.2707	.2850	.2895	.2924	.2944	.2425		
2500.00,00	.1765	.2215	.2480	.2692	.2835	.2880	.2910	.2930	.2938		
3500.000	.1760	.2195	.2463	.2677	.2821	.2867	.2897	.2917	.2926		
				TABLE C39	WINTER-				•		
PROBABILITY	OF CLOUD	-FREE LINE	S-OF-SIGHT	, FROM THE	SURFACE 1	TO GIVEN H	EIGHT H.				
HEIGHT (METERS)	10 066	20 DE6	30 DEG	40 DEG	50 DEG	60 DEG	70 UEG	SO DEG	98 UEG		
50.000	.9514	.9524	. 4529	.9534	.9539	.9539	. 4539	.95.19	.9539		
100.000	.9467	.9479	. 4465	.9491	.9496	.9497	.9447	.9497	.9497		
200.000	.8753	8794		.8838	.8855	.8850	.4859	.8801			
300.000	.7865	.7949	.7998	.8040	.8072	.8079	.8084	. #9#7	.8089		
*******	.3862	.4331	.4616	.4034	.4973	.5030	.5065	.5041	.5104		
1000.000	.2843	.3412	.3776	.4050	.4222	.4295	. 4339	.+373	.4390		
1500.000	.2799	.3371	+3741	.4014	.4187	1054.	.4304	• • 3 40	.4356		
2000.0000	2791	.3364	.3734	.4007	.4180	. 4254	.4298	\$15.	.4350		
2500.0000	.2763	.3337	.3700	.3482	.4155	.4229	.4213	.4307	•4365,		
3500	.2669	. 3250	. 1025	.3903	.4078	.4153		.4212	.4451		

							•	(' .			
PCFLOS (A,I		-FRÉE L'NES	S-OF-SIGHT		O SPRING	TO GIVEN HI	EIGHT H.	LOC	ATION T			
HEIGHT H (METERS)	10 0£6	20 DEG	30 DE6	40 DEG	50 DEG	60 DE6	70 DE6	80 D£6	90 DEG			
50.0000	.9938	.9942	.9944	.9946	.9948	.9948	.9949	.9949	.9949			
160.0000	.9938	.9942	.9944	.9946	.9948	. 9948	.9949	.9949	.9949			
200.0000	.9897	.9903	.9907	.9911	.9913	.9914	.9914	.9915	.9915			
300.0000	.9838	.9849	•9856	.98ò1	.9865	. •9866	.9868	.9858	9868			
600.0000	.8919	.9047	•9137	.9197	.9233	.9253	.9264	.9274	.9277			
1000.0000	.6921	.7399	.7760	.7969	.8095	.8173 °	.8218	.8253	.8265			
1500.0000	.6399	.6965	.7397	.7642	.7791	.7884	.7938	.7979	.7993			
2000.0000	.6307	.6896	.7327	.7578	•7731	.7826	.7881	.7923	.7937			
2500.0000	.6272	.6853	.7295	.7547	.7700	•7795	.7851	.7893	.7907			
3500.0000	.6236	•6829	•7272	.7534	.7687	.7763	.7839	.7881	.7905			
TABLE C41 SUMMER PROBABILITY OF CLOUD-FREE LINES-OF-SIGHT, FROM THE SURFACE TO GIVEN HEIGHT H.												
HEIGHT H (METERS)	10 DEG	20 DEG .	30 DEG	40 DE6	50 DEG	60 DEG	70 DEG	80 DEG	90 DE6			
50.0000	.9592	.9662	.9715	.9745	.9762	•9773	.9779	.9784	.9788			
100.0000	.9592	•9662	.9715	.9745	.9762	.9773	.9779	.9784	.9788			
200.0000	.9584	.9655	.9708	.9738	.9755	.9767	.9772	.9777	.9782			
300.000	.9532	.9609	•9666	.9699	.9718 .9730		.9736	.9742	.9746			
600.0000	.8053	.8354	•8576	.8709	.8786	.8835	.8861	.8884	.8894			
1000.0000	.6742	.7309	•7751	.7988	.8129	.8226	.8280	.8322	.8337			
1500.0000	.6710	.7283	•7730	.7969	•8111 .	.8209	.8264	.8306	.8322			
2000.0000	.6702	.7277	•7724	.796	.8106	.8205 .825		.8302	.8317			
2500.0000	.6699	.7274	•7722	.7961	.8104	. 8202	.8257	.8300	.8315			
3500,0000	-6554	L7148	-7606	.7858	.8004	.8105,	.8161	.8205	.8225			
•			•									
PROBABILITY	Y OF CLOUD	-FREE LINES		TABLE C42 , FROM THE		TO GIVEN HI	EIGHT H.	,				
HEIGHT H	10 DEG	20 DEG	30 DEG	40 DEG	50 DEG	60 DEG	70 DEG	89 DEG	90 UEG			
50.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			
100.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			
200.0000	.9996	.9997	.9997	. 9998	.9998	.9998	.9948	.9998	.9998			
300.0000	.9996	.9997	.9997	. 9998	.9998	.9998	.9948	. 4948	,9998			
600.0000	.9610	. 9666	.9707	.9732	.9748	. 9756	.9760	.9765	. 4766			
1000.0000	.6900	.7390	.7748	.7967	.8098	-8175	.8219	.8255	. #269			
1500.0000	.5933	.6573	7041	.7327	.7498	.7598	. 7655	.7702	.7/21			
2000.0000	.5778	.6440	.6923	.7219	.7396	.7500	.7558	.7607	1.7626			
2500.0000	.5738	6403	.6889	.7186	.7363	. 7468	.7527	.7575	. 7595			
3500.0000	.5717	.6369	-6874	.7179	. 7356	.7461	.7519	.7568	.7595			
	•					•						

PCFLOS (A,F		FREE LINES		TABLE C43		O GIVEN HE	IGHT H.	LOCA	TION V
HEIGHT H	10 DEG	50 DE6	30 DEG	40 DEG	50 DE6	60 DEG	70 DEG	80 DEG .	90 DE6
50.0000	.9818	.9822	•9824	.9826	.9828	.9828	.9828	.9828	. 9828
100.0000	.9818	.9822	.9824	.9826	.9828	.9828	.9828	.9828	.9828
200.0000	.9640	.9651	.9658	•9663	.9668	.9669	.9669	.9669	.9670
300.0000	.9006	.9055	.9086	.9110	.9129	.9134	.9137	.9139	.9140
600.000	.6946	.7171	.7318	.7425	.7499	.7526	.7541	.7555	.7562
1000.0000	.4068	.4625	•5003	.5263	•5429	.5503	•5545	-5582	.5599
1500.0000	.3789	.4374	.4770	.5044	-5218	.5296	.5340	.5380	.5397
2000.0000	.3770	.4358	.4756	.5030	.5204	.5283	.5327	.5367	.5384
2500.4000	.3735	.4326	.4725	.5001	.5176	.5256	.5300	•5340	.5357
3500.0000	.3594	.4203	.4613	.4899	-5079	.5160	.5206	.5247	.5267
				ABLE C44	CLIMMED				,
PROBABILITY	OF CLOUD-	FREE LINES				O GIVEN HE	IGHT H.		
HEIGHT H (METERS)	10 DE6	20 DE6	30 DEG	40 DEG	50 DEG	60 DEG	70 DEG	80 DE6	90 UEG
50.0000	.9850	.9853	.9854	.9856	.9857	.9857	.9#57	.9857	.9857
100.0000	.9828	•9832	.9834	.9835	.9837	•9837 .	. •9837	.9837	. 9837
200.0000	.9735	•9745	•9751	•9755	.9759	.9760	.9760	.9761	.9761
300.0000	.9457	.9083	.9499	.9512	.9521	.7523	•9525	•9526	.9527
600.0000	.7700	.7909	.8053	.8147	.8208	.8236	.8250	.8264	.8270
1000.0000	.5218	•5786	-6195	.6446	-6600	.6685	.6729	.6770	.6785
1500.0000	.5123	.5707	.6127	.6384	.6543	.6630	.6675	.6717	.6732
2000.0000	.5081	.5668	•6091	.6350	.6509	.6596	•6642	.6684	.6700
2500.0000	.5047	.5637	-6061	.6321	-6481	.6569	.6615	.6657	.6673
3500.0000	.4873 .	.5480	-5914,	.6185	.6349	.6439	.6486	.6529	.6549
				TABLE C45	WINTER				,
PROBABILIT	OF CLOUD	-FREE LINE				TO GIVEN HE	EIGHT H.		
HEIGHT H (METERS)	10 DEG	20 DEG	JO DEG	40 DEG	50 DEG	60 DEG	70 DEG	80 DEG	90 DEG
50.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100.0000	.9992	. 9992	•9992	.9992	. 9992	.9992	.9992	.9942	.9992
200.0000	.9958	.9961	•9963	.9964	.9964	.9965	.9965	.9965	.9465
300.0000	.9588	.9620	.9640	.9654	.9664	.9668	.9670	.9672	.4673
600.9000	.7300	.7576	•7758	.7886	.7970	. 8007	.8027	.8045	54
1000.0000	.4213	.4892	•5356	.566#	.5865	.5959	.6007	.6056	.6079
1500.0000	.4111	.4804	•5277	.5596	.5796	.5892	.5941	.5991	.6014
2000.0000	.4083	.4779	.5254	.5574	.5775	.5871	.5921	.5971	.5994
2500.0000	.4063	.4760	•5236	.5557	-5758	.5854	.5984	.5954	.5977
3500.0000	.3986	.4691	.5171	.5497	.5700	.5797	.5847	.5898	.5922

TABLE C46 PCFLOS (A)

TABLE C46 PCFLOS (A) (CONT.)

CLOUDS, ICATION.	LOCATION 3	SUMMER WINTER -1956 -2532 -2477 -3135 -2798 -3518 -3061 -3816 -3209 -3989 -3272 -4067 -3317 -4120 -3337 -4169	SUMMER WINTER 3333 -2563 3976 -3150 4403 -3526 4713 -3818 4991 -3991 4978 -4065 5033 -4114
	LOCA	SPRING SU 2722 3352 3754 4061 4234 4319 4407	LOCATION SPRING SUMME -2613 -3333 -3199 -3976 -3574 -4403 -3867 -4713 -4034 -4891 -4108 -5033 -4160 -5071
PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT THROUGH ALL CLOUDS, FOR NINE ELEVATION ANGLES AND THREF SEASONS, AT EACH LOCATION.	H ,	WINTER -2403 -3020 -3408 -3717 -3967 -4024 -4054	MINTER PESTI 2261 3245 3245 3717 3795 3878
PCFLOS (A) (CONT.) LINE-OF-SIGHT TH ND THREE SEASONS,	LOCATION	PRING SUMMER 2201 .1903 .2437 .2437 .2766 .3415 .3038 .3574 .3188 .3647 .3253 .3724 .3332 .3332	C SUMMER 1939 2467 2788 378 3272 3353
I ABLE CAB PC LOUD-FREE LI N ANGLES AND		SPRING -2201 -2173 -3129 -3415 -3574 -3647 -3698 -3737	SPRING • 3015 • 3015 • 3383 • 3863 • 3976 • 4003 • 4003
TY OF A CLO ELEVATION	ON H	. WINTER .2373 .2887 .3209 .3467 .3623 .3684 .3726 .3726	MINITER. -2578 -3170 -3543 -3543 -3997 -4073 -4155
PROBABIL FOR NINE	LOCATION H	IG. SUMMER 3 -4034 1 -4691 3 -5131 3 -5627 1 -5627 5 -5716 -5811 -5811	LOCATION G SUMMER 9 -2874 5 -3479 4 -4160 4 -4160 5 -4465 1 -4500
	NO	3PRIN -3655 -3181 -3769 -3998 -4031 -4031	SPRIN .291 .353 .392 .422 .439 .4526 .4526 .4556
	ELEVATION ANGI E	DEGREES 10 20 30 40 40 50 50 60 70 80	ELEVATION ANGLE DEGREES 10 20 30 40 40 50 50 60 70 80

TABLE C46 PCFLOS (A) (CONT.)
PROBABILITY OF A CLOUD—FREE LINE—OF—SIGHT THROUGH ALL CLOUDS, FOR NINE ELEVATION ANGLES AND THREE SEASONS, AT EACH LOCATION.

	>	S. C.	.2827	.3420	.3806	0604.	.4265	.4340	.4383	6144.	.4435
	LOCATION V	SUMMER	.2856	.3431	.3806	.4085	.4257	.4329	.4373	.4407	.4421
CATION.	10	SPRING	.2145	.2650	.2969	.3218	.3378	.3436	.3474	.3501	.3513
, AI EACH LO		WINTER	.3580	.4188	.4592	.4891	.5049	.5133	.5194	.5224	.5237
CONTROL TELEVISION STREETS AND THREE SEASONS, AT EACH LOCATION	LOCATION T	SUMMER	.3680	-4316	.4743	.5054	.5212	.5303	.5364	.5399	.5411
	TOC	SPRING	-2992	.3534	.3886	.4158	1624.	•4369	•4454	1444	.4455
	N N	WINTER	.2084	.2601	•262•	•3179	•3334	•3396	.3435	.3461	.3474
	LOCATION P	SUMMER	.1126	.]4Pth	.1695	.1878	.2001	.2032	.2055	5902.	.2070
		SPRING	2602.	.2567	. 2863	• 3098	. 3245	• 3299	• 3334	• 3356	• 3368
	ELEVATION	·	10	20	30	40	20	09	70	80	06

APPENDIX D

GRAPHS FOR LOCATIONS 1, 9, J AND M INCLUDING,

CLOUD BASE HEIGHT STATISTICS, WINTER, SPRING AND SUMMER.

PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE. WINTER, SPRING AND SUMMER.

PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY, SPRING.

FIGURE D-1 LOWER CLOUD BASE HEIGHT STATISTICS, LOCATION 2 (SEE TABLES A-1A, A-2A, AND A-3A).

PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION 2, WINTER. (SEE TABLE C-3). FIGURE D-2

X 10 DEGREES
• 30 DEGREES
Y 50 DEGREES
Z 70 DEGREES

090 DEGREES

PROBABILITY OF A CLOUD-FREE I.INE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION 2, SPRING. (SEE TABLE C-1). FIGURE D-3

FIGURE D-4 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION 2, SUMMER. (SEE TABLE C-2).

FIGURE D-5 PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT TO VARIOUS ALTITUDES, COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY, LOCATION 2, SPRING. (SEE TABLE C-1).

FIGURE D-6 LOWER CLOUD BASE HEIGHT STATISTICS, LOCATION 9. (SEE TABLE A-4A, A-5A, A-6A,

FIGURE D-7. PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION 9, WINTER. (SEE TABLE C-6).

PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION 9, SPRING. (SEE TABLE C-4). FIGURE D-8

FIGURE D-9 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION 9, SUMMER. (SEE TABLE C-5).

FIGURE D-10 PROBABILITY OF CLOUD-FREE LINE-OF-SIGHT TO VARIOUS ALTITUDES, COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY, LOCATION 9, SPRING. (SEE TABLE C-4).

FIGURE D-11 LOWER CLOUD BASE HEIGHT STATISTICS, LOCATION J. (SEE TABLES A-25A, A-26A, A-26A,

FIGURE D-12 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION J, WINTER. (SEE TABLE C-27).

X 10 DEGREES * 30 DEGREES

FIGURE D-13 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION J, SPRING. (SEE TABLE C-25).

x 10 DEGREES
• 30 DEGREES
Y 50 DEGREES
Z 70 DEGREES
D 90 DEGREES

FIGURE D-14 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION J, SUMMER. (SEE TABLE C-26).

FIGURE D-15 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY, LOCATION J SPRING. (SEE TABLE C-25).

FIGURE D-16 LOWER CLOUD BASE HEIGHT STATISTICS, LOCATION M. (SEE TABLES A-31A, A-32A AND A-33A).

FIGURE D-17 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION M, WINTER. (SEE TABLE C-33).

FIGURE D-18 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION M, SUMMER. (SEE TABLE C-31).

FIGURE D-19 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, AS A FUNCTION OF ELEVATION ANGLE, LOCATION M, SUMMER. (SEE TABLE C-32).

FIGURE D-20 PROBABILITY OF A CLOUD-FREE LINE-OF-SIGHT, TO VARIOUS ALTITUDES, COMBINED WITH A SLANT RANGE CURVED EARTH GEOMETRY, LOCATION M, SPRING. (SEE TABLE C-31).

DISTRIBUTION

•	Copies		Copies
Under Secretary of Defense		Commander	
Research & Engineering		Naval Air Development Center	
Attn: COL Paul Try, (E&LS)	1	Attn: Code 3010 (P. Moser)	1
Rm 3D129, Pentagon		Code 3011 (M. Hess)	1
Mr. J. Feinstein,	1	Code 3011 (N. McMeekin)	. 1
(Assistant Director,		Code 3011 (S. Campana)	1
Electronics & Physical Sciences)		Warminster, PA 18974	
Rm 3D1079, Pentagon		Commander	
Dr. J. MacCallum, Jr.	- 1	David W. Taylor Naval Research	
(Electronics & Physics	1	and Development Center	
Sciences)		Attn: Code 2833 (R. Burns)	1
Rm 3D1079, Pentagon		Bethesda, MP 20034	
Mr. Lawrence M. Lumney	1	•	1
(Electronics & Physica	1	Commander	
Sciences)		Naval Ocean Systems Center	
Rm 3D1079, Pentagon		Attn: Code 532 (Dr. J. Richter)	3
COL E. W. Friday	. 1	Code 5322 (H. Hughes)	1
(Dir. R&TI)	•	Code 5325 (H. Hitney)	1
Rm 3D1067, Pentagon		Code 5322 (R. Noonkester)	1
Washington, DC 20301	•	Technical Library	1
		San Diego, CA 92152	.*
Assistant Secretary of the Navy	,		•
Research, Engineering & Systems	,	Commander	
Pentagon, Room 5E787		Naval Air Systems Command	
Washington, DC 20350	I	Headquarters	
		Attn: AIR-370C	1
Chief of Naval Operations		A1R-954	. 1
Attn: NOP-35E (L. E. Triggs)	1	AIR-06	1
Department of the Navy Washington, DC 20350		Washington, DC 20361	
		Commander	
Commander		Naval Materiel Command	
Naval Intelligence Command		Attn: Code 08T245	
Attn: NIC-OOT	1	(G. Spaulding)	.1
2461 Eisenhower Avenue	ı	Washington, DC 20360	•
Alexandria, VA 22331			•
	,	Commander	
		Naval Electronic Systems Command	
		Attn: PME-107-52 (A. Ritter)	1
- ('	Washington, DC 20360	

<u>c</u>	opies		Copies
Commander Naval Sea Systems Cogmand Attn: PMS-40535 (CDR S. Grigsby) SEA Code 03511 (C. Pohler) SEA Code 03B	1 1 1	Commanding Officer Pacific Missile Test Center Attn: Code 1232 (G. Matthews) Code 3253 (J. Rosenthal) Code 1230 (R. Mark)	1 1 1
SEA Code 09G32	2 . ,	Code 32532 (R. de Violini) 1
Washington, DC 20362		Point Mugu, CA 93042	
Commander		Director	
Naval Oceanography Command		Naval Research Laborstory	
Attn: T. Freidian	1	Attn: Code 6509 (R. Steinberg)	1 .
Code N542 (J. Ownby)	1	Code 6500 (P. Ulrich)	1
NSTL Station	_	Code 6550 (R. F. Milton)	1
Bay St. Louis, MS 39529		Code 5750 (J. Friedman)	1
bay Sc. Bours, No 37727		Code 4320 (L. Ruhnke)	i
C		Code 4327 (S. Gathman)	i
Commander			• ,
Mayal Weapons Center	,	Washington, DC 20375	•
Attn: Code 3151 (E. Teppo)	1	D' company	
Code 3918 (Dr. A. Shlanta)		Director Office of Naval Research	
Code 3194 (R. Erickson)	· 1		1
Code 39042		Attn: Code 465 (J. Hughes)	1
(Dr. L. Wilkins)	1	800 N. Quincy Street	
Code 39403		Arlington, VA 22217	•
(Dr. J. Wunderlich)	1	•	
Code 753 Technical Library	1 .	Naval Air Test Center	
China Lake, CA 93555		Attn: SA83B (D. McCoy) SATD-EWNR	1
Commander		Patuxent kiver, MD 20670	
Naval Postgraduate School			4 %
Attn: Dr. K. Davidson SMC #2756	1	Department of the Navy NAVAIRSYSCOM	
Monterey, CA 93940	•	Attn: PMTC L/O, F. S. Cavanaugh Washington, DC 20361	1 '
Commanding Officer			, '
Naval Environmental Prediction		Commanding Officer	
Research Facility		Fleet Numerical Oceanography	
Attn: NEPRF (A. Weinstein)	1.1	Center	
NEPRF (A. Gorozh)	1	Monterey, CA 93940	1
Monterey, CA 93940			
		Commander in Chief	
Commanding Officer		U.S. Atlantic Fleet	
Naval Intelligence Support Center		Attn: Geophysics Officer	1.
Attn: Mr. C. Kaessinger	1	Norfolk, VA 23511	_
4301 Suitland Road	-		,
Washington, DC 20390	÷		•
Haditaliguon, bo 20070			

	Copies		Copies:
Commander in Chief		COMFAIRMED	
U.S. Pacific Fleet		Science Advisor's Office	
Attn: Geophysics Officer	1	(Code O3A)	
Box 28	•	Attn: E. Whitman	' 1
Camp H. M. Smith, HI 96861		FPO New York 09521	•
camp no m. Smith, ni 90001		TTO NEW TOTA 09321	
Commander		ACOS Tactical Dev. & Evaluation	
Third Fleet		CINCLANTFLT Compount	
Attn: Staff Geophysics Officer	1 .	Attn: Science Advisor:	
Pearl Harbor, HI 96860		M. McCloud	1
		Second Fleet, Box 100	
Commander		Norfolk, VA 23511	
Seventh Fleet		NOTIOIR, VA 23511	٠
	3	Commander Naval Air Force	
Attn: Staff Geophysics Officer	1		
FPO San Francisco 96601		U.S. Atlantic Fleet (30F)	
		Attn: Science Advisor:	
Commanding Officer	•	J. Martin	1
Third Fleet (Code 009)		Naval Air Station	
Attn: Science Advisor:		Norfolk, VA 23511	
C. Sturtevant	1		
U.S. Pacific Fleet		Commanding General	
Pearl Harbor, HI 96860	•	Development Center, MCDEC	•
		Attn: Science Advisor: M. Rindt	. 1
Naval Oceanography Command		Quantico, VA 22134	_
Detachment		Quantito, vn 22154	
National Climatic Center		Commanding Officer	
Attn: CDR T. Fitzpatrick	1		_
	1	Naval Western Oceanography Center	
Federal Building	•	Box 113	_
Asheville, NC 28801		Pearl Harbor, HI 96860	1
Commanding Officer	•	Commanding Officer	
Naval Oceanography Command	•	USS MIDWAY (CV-41)	÷
Center		Attn: Meteorological Officer	1
Box 12 COMNAVMARIANAS		FPO San Francisco 96631	
FPO San Francisco 96630	1 '		
110 5411 1141101500 70050	• '	Commanding Officer	
Commander Naval Air Force		USS CORAL SEA (CV-43)	
			•
U.S. Pacific Fleet		Attn: Meteorological Officer	, 1
Attn: Science Advisor:	. <u>.</u>	FPO San Francisco 96632	
J. Leavens	1		
Naval Air Station, North Island		Commanding Officer	
San Diego, CA 92135		USS RANGER (CV-61)	,
		Attn: Meteorological Officer	1
COMSEVENTHFLT		FPO San Francisco 96633	
Attn: Science Advisor:	•		
D. Marsh	1	Commanding Officer	
Box 167	-	USS KITTY HAWK (CV-63)	
FPO San Francisco 96601		Attn: Meteorological Officer	11
FIG Jan Flancisco 70001			-,1
•		FPO San Francisco 96634	

	Copies		Copies
Commanding Officer	,	Commander	
USS CONSTELLATION (CV-64)	•	USAF Air Development Test Center	
Attn: Meteorological Officer	1	Attn: ADTC/WE (E. Keppel)	1
FPO San Francisco 96634		Eglin AFB, FL 32542	
Commanding Officer	,	Commander	
USS ENTERPRISE (CV-65)		U.S. Air Force Geophysics	
Attn: Meteorological Officer	1	Laboratory	
FPO San Francisco 96636	•	Attn: OPI (Dr. R. McClatchey)	1
·		OPM (Dr. R. Fenn)	1
Commanding Officer		LYD (Dr. D. Grantham)	1 .
USS BLUE RIDGE (LCC-19)		Hanscom AFB	•
Attn: Meteorological Officer FPO San Francisco 96628	1 '	Bedford, MA 01730	
* - P	,	Commander	
Director	100	Aeronautical Systems Division	
Night Vision and Electro-optics		Attn: ASD/WE (MAJ Blish)	1
Laboratory (NVEOL)		Wright-Patterson AFB, OH 45433	
Attn: DEONV-D (Dr. L. Cameron)	1		
DEONV-L (Dr. R. Buser)	1	Commader	
DEONV-DI (R. Moulton)	1	USAF Air Weather Service	•
DEONV-L (Dr. R. Rohde)	1	Attn: AWS/DNDP	
DEONV-L (J. Gibson)	1	(MAJ J. Cottrell)	1 ,
DEONV-L (C. Fox)		Scott AFB, IL 62225	
Fort Belvoir, VA 22060			
		RADC/WE	
U.S. Army Electronics Research &	•	Attn: CAPT P. Mader	. 1
Development Command,		Griffiss AFB, NY 13441	
Atmospheric Sciences Laboratory			
Attn: DELAS-EO-MO (Dr. R. Gomez)		Director	
DELAS-EO-ME (D. Snider)		NASA	
DELAS-AS-T (R. Bonner)	1	Atun: 474 (R. Davis)	1
DELAS-DD (Dr. H. Rachele)	1	Langley Research Center	
White Sands Missile Range NM 88002	•	Hampton, VA 23665	
00002		Institute for Defense Analysis	
Commander	,	Attn: Dr. E. Bauer	1
Air Force Wright Aeronautical		Dr. H. Holfhard	ī
Laboratories		Mr. L. Biberman	· 1
Attn: AFWAL/WEA (F. Jenks)	1	400 Army-Navy Drive	_
Wright-Patterson AFB, OH 45433		Arlington, VA 22202	
- · · · · · · · · · · · · · · · · · · ·			
Commander		Science Applications, Inc.	
USAF Environmental Technical	,	Attn: Dr. R. E. Walker	. 1
Application Center		5055 E. Broadway, Suite A214	
Attn: USAFETAC/TS	1	Tucson, AZ 85711	
USAFETAC/ENS (C. Elam)	1 .		•
Scott AFB, IL 62225			

	Copies		Copies
Riverside Research Institute		Hughes Aircraft Company	•
Attn: Mr. J. Siderowitz	1	Attn: J. Fisk, Bldg. 6, MS E132	1
80 West End Avenue	_	D. Holscher, Bldg. 5,	_
New York, NY 10023	•	MS B105	1
		P. Beckett, Bldg. 6,	
Johns Hopkins University	4.	MS E182	1
Applied Physics Laboratory	•	K. Powers, Bldg. 5,	
Attn: Dr. H. I. Heaton	.1	MS B169	1
Building 7, Room 304 Johns Hopkins Road		Technical Document Center, Bldg. 6 MS EllO	1
Laurel, MD 20810		Culver City, CA 90230	•
20010		outver orty, an jozzo	
Meteorological Satellite		Hughes Aircraft Co.	
Laboratory		Missile Systems Group	
National Environmental Satellite		Attn: Dr. R. Sendall	1
Service		Fallbrook Avenue	
Attn: Dr. L. L. Stowe,		Mail Station C48, Bldg. 262	
Research Meteorologist	, 1	Canoco Park, CA 91304	
Washington, DC 20233		Courses Assessed Courses	
Science Applications, Inc.		Grumman Aerospace Corporation Attn: Dr. J. Selvy	1
Attn: R. J. Nelson,		Mail Stop A08-35	
Staff Meteorologist	1	Bethpage, NY 11714	
505 Marquette NW, Suite 1100			
Albuquerque, NM 87102		General Dynamics Convair Division	1
		Attn: F. W. Anding,	1
SRI International		Mail Zone 33-6050	
Attn: Dr. J. Malik	1	MRASM Operations Research	
333 Ravenwood Avenue		P.O. Box 80847	•
Menlo Park, CA 94025		San Diego, CA 92138	
Sylvania Systems Group		OptiMetrics, Inc.	
GTE Sylvania Inc.	•	Attn: R. Meredith	1
Attn: R. Lintrell	•	P.O. Box 7766	_
(Electro-Optics Org.)	1	Ann Arbor, MI 48107	
P.O. Box 188	,		
Mountain View, CA 94042	•	Aerodyne Research, Inc.	_
Danid Companyation		Attn: M. Camac	1
Rand Corporation Attn: R. Huschke	1	Bedford, MA 01730	•
1700 Main Street	• , ,	Aerospace Corporation	•
Santa Monica, CA 90406		Attn: Technical Information	
, , , , ,		Services	1
		P.O. Box 92957	
		Los Angeles, CA 90009	
•			
$\mathbf{c}_{i} = \mathbf{c}_{i} + \mathbf{c}_{i} $		Boeing Company	•
	•	Attn: Aerospace Library	1
	• .	P.O. Box 3707	
		Seattle, WA 98124	•

DISTRIBUTION (Cont.)

Copies

General Dynamics Attn: N. Barton Pomona Division P.O. Box 2507 Pomona, CA 91766	1
Honeywell, Inc. Attn: R. Zimmerman 7900 Westpark Drive McLean, VA 22101	1
Environmental Research Institute of Michigan Attn: Dr. G. Zissis Dr. A. LaRocca P.O. Box 8618 Ann Arbor, MI 48196	1 .
Defense Technical Information Center Cameron Station Alexandria, VA 22314 Headquarters Air Force Special Communications Center	12
USAFSS San Antonio, TX 78243	1

TO AID IN UPDATING THE DISTRIBUTION LIST FOR NAVAL SURFACE WEAPONS CENTER, WHITE OAK TECHNICAL REPORTS PLEASE COMPLETE THE FORM BELOW:

TO ALL HOLDERS OF NSWC TR 78-143

by B. Katz, F. DeBold, J. Perez-Esandi, Code R42

DO NOT RETURN THIS FORM IF ALL INFORMATION IS CURRENT

A. FACILITY NAME AND ADDRESS (OLD)) (Show Zip Code)		•
•			
•	. •	•	٠.
÷			
NEW ADDRESS (Show Zip Code)			
1			
•			
		•	
4			
B. ATTENTION LINE ADDRESSES:			
	•		•
·			
C.	• • • • • • • • • • • • • • • • • • • •		
, .	•		
THE BEHAVE THE EACH ITY PROM TH	45 DISTRIBUTION 1 .47 EOR TE	CHNICAL REPORTS ON THIS SUBJECT.	
THE HOVE THIS PACIETY PROM TH	E DISTRIBUTION EIST FOR TE	CHAICAE REPORTS ON THIS SUBSECT.	
, which is the second of the			
•			
D.	· · · · · · · · · · · · · · · · · · ·		
NUMBER OF COPIES DESIRED			
	•		