$$A_n = \left\{ (x,y) | (x - (-1)^n/n)^2 + (y)^2 < 1 \right\}$$

$$\liminf A_n = \left\{ (x,y) | x^2 + y^2 < 1 \right\}$$

lim inf is contained by the unit circle

$$\limsup A_n = \{(x,y)|x^2 + y^2 \le 1\} - \{(0,1), (0,-1)\}$$

lim sup is equal to the unit circle except for the points (0,1) and (0,-1)

Figure 1: The center of the circle that contains A_n

Figure 2: The circle that contains A_n

Let $\mathcal{F} = \{A : A \text{ is countable or } A^c \text{ is countable}\}$

We know that \emptyset is countable

Therefore $\emptyset \in \mathcal{F}$

Thus \mathcal{F} is nonempty

Let $B_n = \text{All } A_n$ that is countable

Then $B_n \in \mathcal{F}$ and all $B_n{}^c$ have countable complements

Which means all $B_n{}^c \in \mathcal{F}$

Therefore \mathcal{F} is closed under complementation

We have two cases:

Case 1: All A_n is countable

Then \bigcup_{A_n} is countable

Therefore $\bigcup_{A_n} \in \mathcal{F}$

Thus \mathcal{F} is closed under countable union

Case 2: At least one A_n is not countable

Then
$$\bigcup_{A_n} \in \mathcal{F} \iff \left(\bigcup_{A_n}\right)^c \in \mathcal{F}$$
 (1)

Then by DeMorgan's Rule $\left(\bigcup_{A_n}\right)^c = \bigcap_{A_n^c}$

 $\bigcap_{A \in \mathcal{C}}$ is countable because at least one A_n^c is countable

Thus
$$\bigcap_{A_n^c} \in \mathcal{F}$$

By (1) and DeMorgan's Rule, $\bigcup_{A_n} \in \mathcal{F}$

Therefore \mathcal{F} is closed under countable union Conclude \mathcal{F} is a σ field

Suppose
$$\chi_1,\chi_2$$
 are σ fields Let $A \in \chi_1 \cap \chi_2$ Then $\chi_1 \cap \chi_2$ is nonempty and $A \in \chi_1$ and χ_2 Which means $A^c \in \chi_1$ and χ_2 Which means $\chi_1 \cap \chi_2$ is closed under complementation Also if $A_1,A_2,\ldots \in \chi_1 \cap \chi_2$ Then $A_1,A_2,\ldots \in \chi_1,\chi_2$ Which means $\bigcup_{i=1}^{\infty} A_i \in \chi_1,\chi_2$ Which means $\bigcup_{i=1}^{\infty} A_i \in \chi_1,\chi_2$

Therefore $\chi_1 \cap \chi_2$ is closed under countable unions

Conclude $\chi_1 \cap \chi_2$ is a σ field

Problem 4

Suppose G is a collection of σ fields $\text{Let } G = \chi_1, \chi_2, \dots, \chi_n \text{ where each } \chi \text{ is a } \sigma \text{ field}$ We know from problem 3 if: $\chi_1, \chi_2 \text{ are } \sigma \text{ fields then } \chi_1 \cap \chi_2 \text{ is a } \sigma \text{ field}$ Therefore $\forall \chi_i \cap \chi_j \text{ where } \chi_i, \chi_j \in G$ Then each of these $\chi_i \cap \chi_j$ is also a σ field and thus any of these $\chi_i \cap \chi_j$ interesected with another sigma field in G is also a σ field Therefore $\bigcap_{\chi \in G} \chi$ is also a σ field

Suppose
$$\chi_1 = \{\emptyset, A, A^c, \Omega\}$$
 and $\chi_2 = \{\emptyset, B, B^c, \Omega\}$ and χ_1, χ_2 are σ fields

Then $\chi_1 \cup \chi_2 = \{\emptyset, A, A^c, B, B^c, \Omega\}$

Since $A \cup B^c \notin \chi_1 \cup \chi_2$
 $\chi_1 \cup \chi_2$ is not closed under countable unions

Therefore $\chi_1 \cup \chi_2$ is not a σ field

Problem 6

Dr. Cai's increasing sequence of sets proof from class

We want to prove if $\{E_n\}$ is an increasing sequence of sets and $E_n \in \mathcal{A}$ then $P(\lim_{n \to \infty} E_n) = \lim_{n \to \infty} P(E_n)$ Proof: Let $F_1 = E_1$ and let $F_j = E_j - E_{j-1}$ for j > 1Then $\lim_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} F_n$ and $P(\lim_{n \to \infty} E_n) = P\left(\bigcup_{n=1}^{\infty} F_n\right)$ $= \sum_{n=1}^{\infty} P(F_n)$ by countable additivity $= \sum_{n=1}^{\infty} [P(E_n) - P(E_n - 1)]$ $= \lim_{n \to \infty} P(E_n)$ Therefore we have proven $P(\lim_{n \to \infty} E_n) = \lim_{n \to \infty} P(E_n)$

Problem 6 Proof

We want to prove
$$P\left(\lim_{n\to\infty}A_n\right)=\lim_{n\to\infty}P(A_n)$$

Let $\{A_n\}$ be a decreasing sequence of sets

Which means
$$A_1 \supset A_2 \supset \cdots \supset A_n$$

Thus
$$A_1^c \subset A_2^c \subset \cdots \subset A_n^c$$

Therefore $\{A_n^c\}$ is an increasing sequence of sets

This means
$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

and $P\left(\lim_{n \to \infty} A_n\right) = P\left(\bigcap_{n=1}^{\infty} A_n\right)$
Also $\lim_{n \to \infty} A_n^c = \bigcup_{n=1}^{\infty} A_n^c$

and
$$P\left(\lim_{n\to\infty} A_n^c\right) = P\left(\bigcup_{n=1}^{\infty} A_n^c\right)$$
 (2)

From the proof of the increasing sequence of sets from class,

we know that
$$(2) = \lim_{n \to \infty} P(A_n^c)$$

Using DeMorgan's Law
$$\bigcup_{n=1}^{\infty} A_n{}^c = \left(\bigcap_{n=1}^{\infty} A_n\right)^c$$

Substituting this into the right side of (2) we get

$$P\left(\left(\bigcap_{n=1}^{\infty} A_n\right)^c\right) = \lim_{n \to \infty} P(A_n^c)$$

$$1 - P\left(\bigcap_{n=1}^{\infty} A_n\right) = 1 - \lim_{n \to \infty} P(A_n)$$
Using algebra we obtain
$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} P(A_n)$$
(3)

Using (1) and (3) we can conclude

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = P\left(\lim_{n\to\infty} A_n\right) = \lim_{n\to\infty} P(A_n)$$

Homework 2 Problems 5-8 Ty Darnell

Problem 7

$$\begin{split} P(E \cup F \cup G) &= P[(E \cup F) \cup G] \\ &= P(E \cup F) + P(G) - P[(E \cup F) \cap G] \\ &= P(E \cup F) + P(G) - P([E \cap G] \cup [F \cap G]) \\ &= P(E) + P(F) - P(E \cap F) + P(G) - P([E \cap G] \cup [F \cap G]) \\ &= P(E) + P(F) - P(E \cap F) + P(G) - P(E \cap G) - P(F \cap G) + P([E \cap G] \cap [F \cap G]) \\ &= P(E) + P(F) + P(G) - P(E \cap F) - P(E \cap G) - P(F \cap G) + P(E \cap F \cap G) \end{split}$$

Problem 8

 \mathbf{a}

$$P(A \cup B) = P(A) + P(B) \quad \text{where } A \in \mathcal{B} \text{ and } B \in \mathcal{B} \text{ are disjoint (Finite additivity)}$$
 (1)
$$(1)$$
 If $A_1, A_2, \dots \in B$ are pairwise disjoint, then $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ (Countable additivity) (2)
$$(2)$$
 We want to prove $(2) \Longrightarrow (1)$ Let A and B be disjoint sets Let $A_1 = A, A_2 = B,$ and $A_i = \emptyset$ for $i > 2$ Since $A_i \cap A_j = \emptyset \quad \forall i \neq j$ Then by $(2) \quad P(A \cup B) = P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ Since $P(\emptyset) = 0, \quad \sum_{i=1}^{\infty} P(A_i) = P(A) + P(B)$ Therefore we have proven $(2) \Longrightarrow (1)$

b

$$\lim_{n \to \infty} A_n = \emptyset \implies \lim_{n \to \infty} P(A_n) = 0 \quad \text{(Continuity)}$$
 (3)

We want to prove (1) and $(3) \implies (2)$

Let A_1, A_2, \ldots be pairwise disjoint

Then
$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\bigcup_{i=1}^{n} A_i \cup \bigcup_{i=n+1}^{\infty} A_i\right)$$

$$= P\left(\bigcup_{i=1}^{n} A_i\right) + P\left(\bigcup_{i=n+1}^{\infty} A_i\right) \quad \text{since all } A_i \text{ is disjoint}$$

$$= \sum_{i=1}^{n} P(A_i) + P\left(\bigcup_{i=n+1}^{\infty} A_i\right) \quad \text{using finite additivity}$$

$$(4)$$

Let
$$B_k = \bigcup_{i=k}^{\infty} A_i$$

Then $B_k \supset B_{k+1} \quad \forall \ k$

That is
$$\lim_{k \to \infty} B_k = \emptyset$$

because
$$\bigcap_{k=1}^{\infty} B_k = \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} A_n = \emptyset$$
 since all A_i is disjoint

Thus $\limsup A_n = \emptyset$

Since $\liminf A_n \subset \limsup A_n$

because $\limsup A_n = \emptyset$ and the only thing \emptyset can contain is \emptyset

Which means $\liminf A_n = \emptyset$

Thus $\limsup A_n = \liminf A_n = \emptyset$

Therefore $\lim_{n\to\infty} A_n = \emptyset$

That is
$$\lim_{k\to\infty} B_k = \emptyset$$

Then from (3) we have $\lim_{k\to\infty} P(B_k) = 0$

Therefore
$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} P\left(\bigcup_{i=1}^{\infty} A_i\right)$$

$$= \lim_{n \to \infty} \left[\sum_{i=1}^{n} P(A_i) + P\left(\bigcup_{i=n+1}^{\infty} A_i\right)\right] \quad \text{from (4)}$$

Since $\bigcup_{i=n+1}^{\infty} A_i = B_{n+1}$ we can write the above equation as

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \left[\sum_{i=1}^{n} P(A_i) + P(B_{n+1})\right]$$

Since
$$\lim_{n\to\infty} P(B_{n+1}) = 0$$

We have
$$P\left(\bigcup_{i=1}^{\infty} A_1\right) = \sum_{i=1}^{\infty} P(A_i)$$

We have shown
$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$
 where $A_i \cap A_j = \emptyset \quad \forall i \neq j$

Therefore we have proven (1) and $(3) \implies (2)$

 \mathbf{a}

If
$$P(E)=.9$$
 and $P(F)=.8$
Then by the inclusion exclusion identity:
$$P(E\cup F)=P(E)+P(F)-P(E\cap F)$$
Then $P(E\cup F)=.9+.8-P(E\cap F)$
Then $P(E\cup F)=1.7-P(E\cap F)$
Rearranging we get $P(E\cap F)=1.7-P(E\cup F)$
Since $P(E\cup F)\le 1$
and $1.7-1=.7$
 $P(E\cap F)\ge .7$

b

We want to show
$$P(E\cap F)\geq P(E)+P(F)-1$$
 By the inclusion exclusion identity:
$$P(E\cup F)=P(E)+P(F)-P(E\cap F)$$
 Rearranging we get $P(E\cap F)=P(E)+P(F)-P(E\cup F)$ Since $P(E\cup F)\leq 1$
$$P(E)+P(F)-P(E\cup F)\geq P(E)+P(F)-1$$
 Therefore $P(E\cap F)\geq P(E)+P(F)-1$

Proof by induction:

$$\forall n \in \mathbb{N} \text{ let } P(n) \text{ be:}$$

$$P(E_1 \cap E_2 \cap \dots \cap E_n) \ge P(E_1) + P(E_2) + \dots + P(E_n) - (n-1)$$

Basis Step:
$$P(1) = P(E_1) \ge P(E_1) - (1-1)$$

Thus P(1) is true

Inductive Step: Let $k \in \mathbb{N}$ and assume P(k) is true:

$$P(E_1 \cap E_2 \cap \dots \cap E_k) \ge P(E_1) + P(E_2) + \dots + P(E_k) - (k-1)$$
(1)

We will prove P(k+1) is true:

$$P(E_1 \cap E_2 \cap \dots \cap E_{k+1}) \ge P(E_1) + P(E_2) + \dots + P(E_{k+1}) - ((k+1) - 1)$$

$$P(E_1 \cap E_2 \cap \dots \cap E_{k+1}) \ge P(E_1) + P(E_2) + \dots + P(E_{k+1}) - k$$
 (2)

We can rewrite the left side using associativity of intersections

$$P(E_1 \cap E_2 \cap \dots \cap E_{k+1}) = P(E_1 \cap E_2 \cap \dots \cap E_{k-1} \cap (E_k \cap E_{k+1}))$$

$$\geq P(E_1) + \dots + P(E_{k-1}) + P(E_k \cap E_{k+1}) - (k-1)$$
(3)

We know from problem 9 that $P(E_k \cap E_{k+1}) \ge P(E_k) + P(E_{k+1}) - 1$

So we can write (3) as

$$P(E_1 \cap E_2 \cap \dots \cap E_{k+1}) \ge P(E_1) + \dots + P(E_{k-1}) + P(E_k) + P(E_{k+1}) - 1 - (k-1)$$

$$\ge P(E_1) + \dots + P(E_k) + P(E_{k+1}) - k$$

Which is the same as (2)

Hence the inductive step has been established and by PMI we have proven that:

$$\forall\ n\in\mathbb{N}$$

$$P(E_1 \cap E_2 \cap \dots \cap E_n) \ge P(E_1) + P(E_2) + \dots + P(E_n) - (n-1)$$

Problem 11

$$\mathbf{a} \quad \frac{3}{5}$$

b
$$\frac{3}{5} * \frac{2}{5} + \frac{2}{5} * \frac{3}{4} = \frac{3}{5}$$

$$\mathbf{c} \quad \frac{3}{5} * \frac{2}{4} = \frac{3}{10}$$