AArch64
Instructions

Index by Encoding External Registers

VSESR_EL2, Virtual SError Exception Syndrome Register

The VSESR EL2 characteristics are:

Purpose

Provides the syndrome value reported to software on taking a virtual SError interrupt exception to EL1, or on executing an ESB instruction at EL1.

When the virtual SError interrupt injected using <u>HCR_EL2</u>.VSE is taken to EL1 using AArch64, then the syndrome value is reported in <u>ESR_EL1</u>.

When the virtual SError interrupt injected using HCR_EL2.VSE is taken to EL1 using AArch32, then the syndrome value is reported in DFSR. {AET, ExT} and the remainder of DFSR is set as defined by VMSAv8-32. For more information, see The AArch32 Virtual Memory System Architecture.

When the virtual SError interrupt injected using HCR_EL2. VSE is deferred by an ESB instruction, then the syndrome value is written to VDISR EL2.

Configuration

AArch64 System register VSESR_EL2 bits [31:0] are architecturally mapped to AArch32 System register VDFSR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to VSESR_EL2 are undefined.

If EL2 is not implemented, this register is res0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSESR_EL2 is a 64-bit register.

Field descriptions

When EL1 is using AArch32:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

05 02 01 00 55 50 57 50 55 54 55 52 51 50 45 40	0 + 1 + 0 + 3 + 2 + 1 + 0 3 3 3 0 3 1 3 0 3 3 3 + 3 3 3 2
	DECO
	RESU
I RESO	LAFT IRESOIEVTI RESO
INESO	TAET INESOLATI NESO

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, res0.

AET, bits [15:14]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[15:14] is set to VSESR_EL2.AET.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR EL2[15:14] is set to VSESR EL2.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [13]

Reserved, res0.

ExT, bit [12]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[12] is set to VSESR EL2.ExT.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR EL2[12] is set to VSESR EL2.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [11:0]

Reserved, res0.

When EL1 is using AArch64:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

		RES0								
RES0	IDS	ISS								
31 30 29 28 27 26 25	24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 (3 8	7	6	5	4	3	 1	

Bits [63:25]

Reserved, res0.

IDS, bit [24]

When a virtual SError interrupt is taken to EL1 using AArch64, ESR EL1[24] is set to VSESR EL2.IDS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR EL2[24] is set to VSESR EL2.IDS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ISS, bits [23:0]

When a virtual SError interrupt is taken to EL1 using AArch64, <u>ESR_EL1</u>[23:0] is set to VSESR_EL2.ISS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR EL2[23:0] is set to VSESR EL2.ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing VSESR EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSESR EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0101 0b0010		0b011

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        X[t, 64] = NVMem[0x508];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
```

```
elsif PSTATE.EL == EL2 then
  X[t, 64] = VSESR_EL2;
elsif PSTATE.EL == EL3 then
  X[t, 64] = VSESR_EL2;
```

MSR VSESR_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0101	0b0010	0b011

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x508] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    VSESR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    VSESR_EL2 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.