Class 10. 성적 예측에 좋은 스탯

## 질문!

## 그런데 과연 당해 OPS가 좋았던 선수는 다음 시즌 OPS도 좋을까?

비싼 돈 주고 영입했는데 OPS가 확 나빠진다면??

"선수들의 지난해 OPS와 올해 OPS 간의 상관관계"를 살펴보자

# 타자들의 지난해 OPS와 올해 OPS 간의 상관관계

| x             | у             |  |  |  |  |
|---------------|---------------|--|--|--|--|
| 2010년 추신수 OPS | 2011년 추신수 OPS |  |  |  |  |
| 2011년 추신수 OPS | 2012년 추신수 OPS |  |  |  |  |
| 2012년 추신수 OPS | 2013년 추신수 OPS |  |  |  |  |
| 2013년 추신수 OPS | 2014년 추신수 OPS |  |  |  |  |
| •••           | •••           |  |  |  |  |
| 2010년 트라웃 OPS | 2011년 트라웃 OPS |  |  |  |  |
| 2011년 트라웃 OPS | 2012년 트라웃 OPS |  |  |  |  |
| 2012년 트라웃 OPS | 2013년 트라웃 OPS |  |  |  |  |
| 2013년 트라웃 OPS | 2014년 트라웃 OPS |  |  |  |  |
| •••           | •••           |  |  |  |  |

SQL 만으로 이렇게 조회하는 것은 매우 어렵다

파이썬으로 가지고 와서 이러한 형태가 되도록 처리를 해줘야 함

### 지난해 OPS와 올해 OPS 간의 상관관계

ex5.py 코드 상세 설명!

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font manager, rc
from scipy import stats
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
    SELECT playerID, yearID, CAST((H + BB + HBP) AS REAL)/(AB + BB + HBP + SF) + CAST(((H - "2B" -
"3B" - HR) + 2*"2B" + 3*"3B" + 4*HR) AS REAL)/AB AS OPS
    FROM batting WHERE yearID >= 1990 and (AB + BB + HBP + SH + SF) >= 502 ORDER BY playerID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from_records(data=result, columns=cols)
before = []
after = []
for i in range(len(df)-1):
    if df.iloc[i+1, 0] == df.iloc[i, 0]:
        if df.iloc[i+1, 1] == df.iloc[i, 1] + 1:
            before.append(df.iloc[i, 2])
            after.append(df.iloc[i+1, 2])
plt.scatter(before, after, c='b')
plt.title('Correlation between OPS over two consecutive seasons')
plt.xlabel('OPS1')
plt.ylabel('OPS2')
plt.grid(True)
plt.savefig('ex5 img.png')
correlation_coefficient = stats.pearsonr(before, after)
print("상관계수:", correlation coefficient[0])
```





상관계수: 0.6525293122819918

다소 강한 상관관계

특정해에 OPS가 좋았던 선수는 다음 해에도 OPS가 좋을 가능성이 있다

# OPS보다 좀 더 다음 해 성적을 예측하기 좋은 스탯은 무엇일까?

조건: 1990년 이후

타율



상관계수: 0.4905995833790807 다소 강한 상관관계

타율은 다음 시즌의 성적을 예측하는데 있어서 OPS보다 신뢰도가 떨어진다

## OPS보다 좀 더 다음 해 성적을 예측하기 좋은 스탯은 무엇일까?

ex7.py

HR% = 홈런/타석

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font_manager, rc
from scipy import stats
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
   SELECT playerID, yearID, (HR + 0.0)/(AB + BB + HBP + SH + SF) AS "HR%"
   FROM batting WHERE yearID >= 1990 and (AB + BB + HBP + SH + SF) >= 502 ORDER BY playerID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from_records(data=result, columns=cols)
before = []
after = []
for i in range(len(df)-1):
    if df.iloc[i+1, 0] == df.iloc[i, 0]:
        if df.iloc[i+1, 1] == df.iloc[i, 1] + 1:
            before.append(df.iloc[i, 2])
            after.append(df.iloc[i+1, 2])
plt.scatter(before, after, c='b')
plt.title('Correlation between HR% over two consecutive seasons')
plt.xlabel('HR%1')
plt.ylabel('HR%2')
plt.grid(True)
plt.savefig('ex7_img.png')
correlation coefficient = stats.pearsonr(before, after)
print("상관계수:", correlation_coefficient[0])
```

타석당 홈런 비율(HR%)





이번 시즌에 홈런을 잘 친 타자는 다음 시즌에도 홈런을 잘 칠 확률이 높다 (HR% > OPS > AVG)

# 정리

OPS와 같이 성적을 평가하기에 좋은 스탯이 있고

HR%와 같이 내년 성적을 예측하기에 좋은 스탯이 있다

### **TRY**

타자 스탯 중 HR%보다 다음 해 성적을 예측하는데 더 신뢰할 만한 스탯은?

### 지난해 ERA와 올해 ERA 간의 상관관계

#### ex8.py

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font manager, rc
from scipy import stats
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
   SELECT playerID, yearID, ERA
   FROM pitching WHERE yearID >= 1990 and IPouts/3.0 >= 162 ORDER BY playerID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from records(data=result, columns=cols)
before = []
after = []
for i in range(len(df)-1):
    if df.iloc[i+1, 0] == df.iloc[i, 0]:
       if df.iloc[i+1, 1] == df.iloc[i, 1] + 1:
            before.append(df.iloc[i, 2])
            after.append(df.iloc[i+1, 2])
plt.scatter(before, after, c='b')
plt.title('Correlation between ERA over two consecutive seasons')
plt.xlabel('ERA1')
plt.ylabel('ERA2')
plt.grid(True)
plt.savefig('ex8_img.png')
correlation coefficient = stats.pearsonr(before, after)
print("상관계수:", correlation_coefficient[0])
```



상관계수: 0.40008474159986634

다소 강한 상관관계

### 지난해 WHIP와 올해 WHIP 간의 상관관계

#### ex9.py

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font manager, rc
from scipy import stats
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
   SELECT playerID, yearID, (H + BB)/(IPouts/3.0) AS WHIP
    FROM pitching WHERE yearID >= 1990 and IPouts/3.0 >= 162 ORDER BY playerID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from records(data=result, columns=cols)
before = []
after = []
for i in range(len(df)-1):
    if df.iloc[i+1, 0] == df.iloc[i, 0]:
       if df.iloc[i+1, 1] == df.iloc[i, 1] + 1:
            before.append(df.iloc[i, 2])
            after.append(df.iloc[i+1, 2])
plt.scatter(before, after, c='b')
plt.title('Correlation between WHIP over two consecutive seasons')
plt.xlabel('WHIP1')
plt.ylabel('WHIP2')
plt.grid(True)
plt.savefig('ex9_img.png')
correlation coefficient = stats.pearsonr(before, after)
print("상관계수:", correlation_coefficient[0])
```



상 관계수: 0.48334696579423914

다소 강한 상관관계

# 지난해 K/9와 올해 K/9 간의 상관관계

#### ex10.py

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font manager, rc
from scipy import stats
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
   SELECT playerID, yearID, SO*9/(IPouts/3.0) AS "K/9"
    FROM pitching WHERE yearID >= 1990 and IPouts/3.0 >= 162 ORDER BY playerID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from records(data=result, columns=cols)
before = []
after = []
for i in range(len(df)-1):
    if df.iloc[i+1, 0] == df.iloc[i, 0]:
       if df.iloc[i+1, 1] == df.iloc[i, 1] + 1:
            before.append(df.iloc[i, 2])
            after.append(df.iloc[i+1, 2])
plt.scatter(before, after, c='b')
plt.title('Correlation between K/9 over two consecutive seasons')
plt.xlabel('K/9 1')
plt.ylabel('K/9 2')
plt.grid(True)
plt.savefig('ex10_img.png')
correlation coefficient = stats.pearsonr(before, after)
print("상관계수:", correlation_coefficient[0])
```



상관계수 0.8148357919780918

강한 상관관계

| 7  | 본    | 확장  | , F  | 상어율       | 가치 | W    | /P   | 타석   | 타구          |
|----|------|-----|------|-----------|----|------|------|------|-------------|
| 순  | 0    | 름   | 팀    | 정렬<br>K/9 | 출장 | 이닝   | ERA  | FIP  | <b>K</b> /9 |
| 1  | 안우진  |     | 22 키 | 10.67     | 11 | 70.0 | 2.31 | 2.15 | 10.67       |
| 2  | 루친스키 |     | 22 N | 9.71      | 12 | 80.2 | 1.90 | 2.04 | 9.71        |
| 3  | 김공   | 광현  | 22 S | 9.00      | 11 | 71.0 | 1.39 | 2.35 | 9.00        |
| 4  | 2 0  | 일리  | 22 K | 8.85      | 11 | 61.0 | 3.39 | 4.38 | 8.85        |
| 5  | 요?   | 키시  | 22 키 | 8.53      | 12 | 76.0 | 2.72 | 2.45 | 8.53        |
| 6  | 데스피  | 파이네 | 22 K | 8.48      | 12 | 69.0 | 3.78 | 2.60 | 8.48        |
| 7  | 박사   | 네웅  | 22 롲 | 8.47      | 11 | 68.0 | 2.78 | 2.38 | 8.47        |
| 8  | 반    | 즈   | 22 롲 | 8.40      | 14 | 90.0 | 2.60 | 3.01 | 8.40        |
| 9  | 고    | 경표  | 22 K | 8.39      | 11 | 74.0 | 2.80 | 2.56 | 8.39        |
| 10 | 켈    | 리   | 22 L | 8.30      | 10 | 59.2 | 2.72 | 2.93 | 8.30        |

2022년 6월 9일 스탯티즈 기준 2022 KBO K/9 순위

### **TRY**

투수 스탯 중 K/9보다 다음 해 성적을 예측하는데 더 신뢰할 만한 스탯은?