Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

~	Congr	atulations! You passed!	xt Item
	•	1 / 1 points	
		n notation would you use to denote the 3rd layer's activations when the input h example from the 8th minibatch?	is
		$a^{[3]\{7\}(8)}$	
		$a^{[8]\{3\}(7)}$	
	0	$a^{[3]\{8\}(7)}$	
	Corr	rect	
		$a^{[8]\{7\}(3)}$	
	~	1 / 1 points	
	2. Which	of these statements about mini-batch gradient descent do you agree with?	
	0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	
	Corr	rect	
		You should implement mini-batch gradient descent without an explicit for- loop over different mini-batches, so that the algorithm processes all mini- batches at the same time (vectorization).	
		Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.	

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

Why is the best mini-batch size usually not 1 and not m, but instead something inbetween?

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

Correct

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

Correct

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

Un-selected is correct

If the mini-batch size is 1, you end up having to process the entire training set before making any progress.

Un-selected is correct

1/1 points

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

Which of the following do you agree with?

	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
O	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
Corre	ect
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

/

1 / 1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $\theta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

$$v_2=10$$
, $v_2^{corrected}=10$

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = \frac{1}{1+2*t} \alpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$lpha = 0.95^t lpha_0$$

$$\alpha = e^t \alpha_0$$

Correct

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line

Optimization algorithms using $\beta=0.9$. What would happen to your red curve as you **9/10 points (90.00%)** Quiz, 10 questions vary β ? (Check the two that apply)

Un-selected is correct

Optimization algorithms Consider this figure:

9/10 points (90.00%)

Quiz, 10 questions

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

is gradient descent with momentum (small β)

with momentum (small β), (3) is gradient descent

0/1points

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try initializing all the weights to zero

Un-selected is correct

Try mini-batch gradient descent

Correct

Optimization	9/10 points (90.00%)				
Quiz, 10 questions		Try using Adam	·		
	Correct				
	This	Try better random initialization for the weights should be selected			
	IIIIS	Snould be Selected			
		Try tuning the learning rate $lpha$			
	Corr	ect			
	~	1 / 1 points			
	10. Which	of the following statements about Adam is False?			
		We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)			
		The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.			
		Adam combines the advantages of RMSProp and momentum			
	0	Adam should be used with batch gradient computations, not with minibatches.			
	Corr				
	COIT				