Evolution of galaxy dynamics over the last 10 Gyrs with MUSE/VLT

de Paris

Author: Mercier Wilfried

Supervisor: Contini Thierry (IRAP) Co-Supervisor: Epinat Benoit (LAM)

June 13, 2019

Galaxy evolution through time

Why studying kinematics?

Explain evolution of morphology with kinematics

- \triangleright main processes responsible for disc formation
- ▷ impact of merging, inflows, outflows can be measured
- ightharpoonup kinematics ightharpoonup rotation curve ightharpoonup dark matter distribution

Integral Field Spectroscopy & MUSE

<u>IFS:</u>

- \triangleright 3D cubes (2D spatial + 1D spectral)
 - \rightarrow photometry + kinematics

MUSE:

- $\triangleright 1 \times 1 \operatorname{arcmin}^2 \operatorname{FoV} \to \mathbf{environment}$
- ▷ 0.2 arcsec spatial sampling
- \triangleright spectral range [4650 Å, 9300 Å]
- > seeing-limited or AO observations
- ${\color{red}\triangleright}\ \ low\text{-mass galaxies}\ +\ blind\ surveys$

MUSE instrument. Credit: Contini Thierry (IRAP)

Our sample

HST image of COSMOS group CGr30

- > 16 MUSE fields in COSMOS area
- \triangleright exposures from 1 to 10 hr
- ightharpoonup seeing-limited (FWHM $\lesssim 0.7$ ") or AO (FWHM $\lesssim 0.5$ ")
 - · deep and best_seeing observations
- $ho \sim 500$ field galaxies with [OII] detection
 - · HST-ACS counterparts
 - 0.4 < z < 1.4

Methodology

- I. Morphological information
 - \triangleright half-light radius $R_{1/2}$ to select resolved galaxies
 - · Cassata, Tasca and Zurich catalogues
 - > ellipticitiy to compute the inclination
 - \cdot fixed input for the kinematical model

- II. Kinematical modelling
 - \triangleright recover $V_{\rm max}$ and $\sigma_{\rm v}$

III. Tully-Fisher relation

Checking morphological parameters Half-light radius

GALFIT run by V. Abril-Melgajero (LAM) on structure galaxies

> GALFIT radius used as a reference

spheroidal disk-like irregulars

Checking morphological parameters **Ellipticity**

values are consistent between catalogues

> scatter is due to bulge dominated (spherically symmetric) systems

Characteristics of our sample Redshift distribution

The total number corresponds to galaxies with photometric data in Cassata and/or Zurich catalogues.

ightharpoonup sample of 103 galaxies with $R_{1/2} > 0.35$ " and SNR > 5

- > we loose galaxies at $z \approx 1.4$
- > redshift distribution is not drastically changed

Characteristics of our sample Mass-SFR relation

massive quiescent (low [OII]) and very low mass galaxies

are lost

Kinematical modelling Cleaning galaxies

Kinematical modelling Fitting a model

Use a ramp model with a linear internal variation and a plateau.

First results $V_{
m max}/\sigma_{
m v}$ distribution

13/15 Mercier Wilfried Evolution of galaxy dynamics over the last 10 Gyrs...

First results
Tully-Fisher relation

Perspectives

Short term:

- \triangleright Tully-Fisher evolution with z
- ➤ Variation between morphological and kinematical PA?

Long term:

- > Morphological modelling
- ➤ Angular momentum evolution?
- Dark matter vs. luminous mass ?
- \triangleright better selection + larger sample

