Estimation de la taille d'un graphe par marches aléatoires

Matthieu DINOT, Dorian BOULLY

Préliminaires

Montrons deux résultats permettant de légitimer les hypothèses faites dans T2 et T3.

Spectre de la matrice d'adjacence d'un graphe d-régulier connexe

Une interversion de limites

1 Partie théorique

T1. Soient $s \in \{0, \dots, \tau - 1\}$ et $i \in V$. On a :

$$\begin{split} \mathbb{P}(X_{s+1}^t = i) &= \sum_{j \in V} \mathbb{P}((X_{s+1}^t = i) \cap (X_s^t = j)) \\ &= \sum_{j \in V} \frac{1}{d} \mathbb{1}_E(i, j) \mathbb{P}(X_s^t = j) \\ &= \sum_{j \in V} P_{ij} \mathbb{P}(X_s^t = j). \end{split}$$

Ainsi $(\mathbb{P}(X_{s+1}^t=i))_{i\in V}=P\cdot (X_s^t=i)_{i\in V}$. Une récurrence immédiate montre alors que

$$\pi = P^{\tau} \cdot (\delta_{i,i_0})_{i \in V} \tag{1}$$

où δ désigne le symbole de Krönecker.

T2. Le théorème spectral assure l'existence d'une matrice orthogonale O telle que

$$P = {}^{t}O \operatorname{Diag}(1, \lambda_{2}, \dots, \lambda_{N}) O.$$

Vu les valeurs propres de P, on voit que, pour une norme quelconque sur les matrices (N, N) (en particulier la norme subordonnée à $\|\cdot\|_2$):

$$P^{\tau} = {}^{t}O\Delta^{\tau}O \xrightarrow[\tau \to +\infty]{} P^{\infty} := {}^{t}O\operatorname{Diag}(1, 0, \dots, 0) O$$

car la convergence a lieu coefficient par coefficient. La convergence de $(P^{\tau})_{\tau \geqslant 1}$ pour la norme subordonnée à $\|\cdot\|_2$ entraine la convergence simple de la suite d'applications linéaires associées au sens de $\|\cdot\|_2$ vers la même limite. On peut conclure de deux manières :

— Via un calcul explicite:

$$\pi = P^{\tau}(\delta_{i,i_0})_{i \in V} \xrightarrow[\tau \to +\infty]{} P^{\infty}(\delta_{i,i_0})_{i \in V} = O_{1i_0}{}^t O^t(1,0,\ldots,0) = O_{1i_0} O^{-1}{}^t(1,0,\ldots,0).$$

Or $O^{-1}t(1,0,\ldots,0)$ est le vecteur propre normalisé de P de valeur propre 1 (il y en a un seul car la valeur propre 1 était simple). On vérifie facilement qu'il s'agit de $N^{-1/2}t(1,\ldots,1)$. Enfin, on a $O_{1i_0}=N^{-1/2}$ car c'est un coefficient de la première ligne de O, donc de la première colonne de $^tO=O^{-1}$, qui n'est autre que la matrice d'une base orthonormée de diagonalisation de P dans la base canonique. On conclut comme attendu que

$$\lim_{\tau \to +\infty} \pi = N^{-1} t(1, \dots, 1). \tag{2}$$

— En remarquant que $\pi^{\infty} := \lim_{\tau \to +\infty} \pi$ est le vecteur propre de P associé à la valeur propre 1 et dont la somme des coefficients vaut 1. En effet, pour tout τ , la somme des coefficients de π vaut 1, ce qui reste vrai à la limite (en particulier $\pi^{\infty} \neq 0$), et on a :

$$P\pi^{\infty} = P \lim_{\tau \to +\infty} P^{\tau}(\delta_{i,i_0})_{i \in V} = \lim_{\tau \to +\infty} P^{\tau+1}(\delta_{i,i_0})_{i \in V} = \pi^{\infty}.$$

Encore une fois, on trouve la loi uniforme sur V.

T3. Notons

$$A_m = \{(y_1, \dots, y_m) \in V^m \mid \text{Card}\{y_1, \dots, y_{m-1}\} = \text{Card}\{y_1, \dots, y_m\} = m - (\ell - 1)\},$$

de sorte que

$$(C_{\ell-1}=m)=\bigsqcup_{\mathbf{y}\in\mathcal{A}_m}(\mathbf{Y}=\mathbf{y}).$$

Notons aussi $\mathcal{B}_n(U)$ l'ensemble des n-uplets injectifs à valeurs dans $V \setminus U$. On a :

$$\begin{split} \mathbb{P}((C_{\ell} - C_{\ell-1} > n) \cap (C_{\ell-1} = m)) &= \sum_{(y_1, \dots, y_n) \in \mathcal{A}_m} \mathbb{P}\left((C_{\ell} - C_{\ell-1} > n) \cap \bigcap_{1 \leqslant t \leqslant m} (Y_t = y_t)\right) \\ &= \sum_{(y_1, \dots, y_m) \in \mathcal{A}_m} \mathbb{P}\left(\bigcap_{1 \leqslant t \leqslant m+n} (Y_t = y_t)\right) \\ &= \sum_{(y_1, \dots, y_m) \in \mathcal{A}_m} \prod_{1 \leqslant t \leqslant m+n} \mathbb{P}(Y_t = y_t) \\ &= \sum_{(y_1, \dots, y_m) \in \mathcal{A}_m} \prod_{(y_{m+1}, \dots, y_{m+n}) \in \mathcal{B}_n(\{y_1, \dots, y_m\})} \mathbb{P}(Y_t = y_t) \\ &= \sum_{(y_1, \dots, y_m) \in \mathcal{A}_m} \frac{1}{N^{m+n}} \\ &= \frac{1}{N^{m+n}} \sum_{(y_1, \dots, y_m) \in \mathcal{A}_m} \operatorname{Card} \mathcal{B}_n(\{y_1, \dots, y_m\}) \\ &= \frac{1}{N^{m+n}} \sum_{(y_1, \dots, y_m) \in \mathcal{A}_m} \operatorname{Card} \mathcal{B}_n(\{y_1, \dots, y_m\}) \\ &= \frac{1}{N^{m+n}} \sum_{(y_1, \dots, y_m) \in \mathcal{A}_m} \operatorname{Card} \mathcal{B}_n(\{y_1, \dots, y_m\}) \\ &= \frac{(N-m+\ell-1)(N-m+\ell-2) \cdots (N-m+\ell-n)}{N^n} \underbrace{\operatorname{Card} \mathcal{A}_m}_{N^m} \\ &= \underbrace{(N-m+\ell-1)(N-m+\ell-2) \cdots (N-m+\ell-n)}_{N^n} \mathbb{P}(C_{\ell-1} = m). \end{split}$$

On trouve comme attendu:

$$\mathbb{P}((C_{\ell} - C_{\ell-1} > n) \mid (C_{\ell-1} = m)) = \frac{(N - m + \ell - 1)(N - m + \ell - 2) \cdots (N - m + \ell - n)}{N^n}.$$
 (3)

On aurait pu démontrer ce fait de manière moins formelle, les idées essentielles étant que

- les Y_t sont i.i.d. et suivent une loi uniforme sur V;
- le cardinal de $\mathcal{B}_n(U)$ ne dépend que de n et du cardinal de U, mais pas des valeurs de ses éléments.

T4. Nous allons légèrement améliorer le résultat de la première limite pour pouvoir en déduire la seconde. Soient a, b des réels strictement positifs et $(a_N)_{N\geqslant 1}, (b_N)_{N\geqslant 1}$ des suites d'entiers telles que

$$a_N \sim_{+\infty} aN^{1/2}$$
 et $b_N \sim_{+\infty} bN^{1/2}$.

D'après la question précédente, on a :

$$\mathbb{P}((C_{\ell} - C_{\ell-1} > b_N) \mid (C_{\ell-1} = a_N)) = \frac{(N - a_N + \ell - 1)(N - a_N + \ell - 2) \cdots (N - a_N + \ell - b_N)}{N^{b_N}}$$

$$= \frac{(N - (a_N - (\ell - 1)))!}{N^{b_N}(N - b_N - (a_N - (\ell - 1)))!}$$

Posons, pour $N \geqslant 1$

$$u_N = N - (a_N - (\ell - 1))$$

 $v_N = N - b_N - (a_N - (\ell - 1)).$

D'après la formule de Stirling, on a :

$$\mathbb{P}((C_{\ell} - C_{\ell-1} > b_N) \mid (C_{\ell-1} = a_N)) \sim \frac{\sqrt{2\pi u_N}}{\sqrt{2\pi v_N}} \frac{\exp\left[u_N \log u_N - u_N\right]}{\exp\left[b_N \log N + v_N \log v_N - v_N\right]} \sim \exp\left[u_N \log u_N + v_N - u_N - b_N \log N - v_N \log v_N\right].$$

On cherche un développement asymptotique en o(1) de l'argument de l'exponentielle. On procède par étapes :

$$\log u_N = \log N - \frac{a_N - (\ell - 1)}{N} - \frac{(a_N - (\ell - 1))^2}{2N^2} + o(1/N)$$

$$= \log N - \frac{a_N - (\ell - 1)}{N} - \frac{(aN^{1/2} + o(N^{1/2}))^2}{2N^2} + o(1/N)$$

$$= \log N - \frac{a_N - (\ell - 1)}{N} - \frac{a^2}{2N} + o(1/N).$$

De même,

$$\log v_N = \log N - \frac{b_N + a_N - (\ell - 1)}{N} - \frac{(b_N + a_N - (\ell - 1))^2}{2N^2} + o(1/N)$$
$$= \log N - \frac{b_N + a_N - (\ell - 1)}{N} - \frac{(a + b)^2}{2N} + o(1/N).$$

Puis

$$\log u_N - \log v_N = \frac{b_N}{N} + \frac{b(2a+b)}{2N} + o(1/N).$$

D'où, en utilisant le fait que $a_N = aN^{1/2} + o(N^{1/2})$ et $b_N = bN^{1/2} + o(N^{1/2})$

$$v_N(\log u_N - \log v_N) = b_N + \frac{b(2a+b)}{2} - \frac{b_N(b_N + a_N)}{N} + o(1)$$

$$= b_N + \frac{b(2a+b)}{2} - b(a+b) + o(1)$$

$$= b_N - \frac{b^2}{2} + o(1). \tag{4}$$

De plus, pour la même raison,

$$b_N \log u_N = b_N \log N - ab + o(1). \tag{5}$$

Enfin, en utilisant les développements asymptotiques précédents (4 et 5)

$$u_N \log u_N + v_N - u_N - b_N \log N - v_N \log v_N = v_N (\log u_N - \log v_N) + b_N \log u_N - b_N - b_N \log N$$

$$= b_N - \frac{b^2}{2} + b_N \log N - ab - b_N - b_N \log N + o(1)$$

$$= -ab - \frac{b^2}{2} + o(1).$$

Cela montre que

$$\mathbb{P}((C_{\ell} - C_{\ell-1} > b_N) \mid (C_{\ell-1} = a_N)) \xrightarrow[N \to +\infty]{} e^{-ab - b^2/2}.$$
 (6)

Étudions maintenant la suite

$$\mathbb{P}\left(\left(\frac{C_{\ell}^2 - C_{\ell-1}^2}{2N} > y\right) \middle| \left(\frac{C_{\ell-1}^2}{2N} = \frac{\lfloor (2Nx)^{1/2} \rfloor^2}{2N}\right)\right)$$

où x, y > 0. On écrit pour cela

$$\mathbb{P}\left(\left(\frac{C_{\ell}^{2} - C_{\ell-1}^{2}}{2N} > y\right) \middle| \left(\frac{C_{\ell-1}^{2}}{2N} = \frac{\lfloor (2Nx)^{1/2} \rfloor^{2}}{2N}\right)\right) \\
= \mathbb{P}\left(C_{\ell} > \left(\lfloor (2Nx)^{1/2} \rfloor^{2} + (2Ny)\right)^{1/2} \middle| C_{\ell-1} = \lfloor (2Nx) \rfloor^{1/2}\right) \\
= \mathbb{P}\left(C_{\ell} - C_{\ell-1} > \left(\lfloor (2Nx)^{1/2} \rfloor^{2} + (2Ny)\right)^{1/2} - \lfloor (2Nx)^{1/2} \rfloor \middle| C_{\ell-1} = \lfloor (2Nx)^{1/2} \rfloor\right).$$

Or,

$$\lfloor (2Nx)^{1/2} \rfloor \sim_{+\infty} (2Nx)^{1/2}$$

et

$$\left(\lfloor (2Nx)^{1/2}\rfloor^2 + (2Ny)\right)^{1/2} - \lfloor (2Nx)^{1/2}\rfloor = (2N(x+y) + o(N))^{1/2} - (2Nx)^{1/2} + o(N^{1/2})$$
$$= (2N)^{1/2} \left[(x+y)^{1/2} - x^{1/2} \right] + o(N^{1/2}).$$

On peut donc appliquer (6) avec $a = (2x)^{1/2}$ et $b = 2^{1/2} [(x+y)^{1/2} - x^{1/2}]$. On a

$$ab + b^2/2 = 2 \left[x(x+y) \right]^{1/2} - 2x + (x+y) - 2 \left[x(x+y) \right]^{1/2} + x = y,$$

ce qui donne

$$\mathbb{P}\left(\left(\frac{C_{\ell}^2 - C_{\ell-1}^2}{2N} > y\right) \middle| \left(\frac{C_{\ell-1}^2}{2N} = \frac{\lfloor (2Nx)^{1/2} \rfloor^2}{2N}\right)\right) \xrightarrow[N \to +\infty]{} e^{-y}. \tag{7}$$