Art Unit: 2616

AMENDMENTS TO THE SPECIFICATION:

Pages 7-8, amend paragraph [0015] as:

[0015] In an OFDM based cellular system, suppose that there are J cells in a cluster

and cell j is the desired cell to be searched for. The J cells are differentiated by using J

different cell codes, denoted by $C^{(i)}[k]$, $k = 0 \sim L_C - 1$, $i = 1 \sim J$, where L_C is the length of

the cell codes. The length L_C is chosen such that unique cell identification in every

cluster of J cells can be achieved, and it is not necessary to be identical to the number of

sub-carriers (K). To reduce the complexity of cell identification, every cell code can be

further represented by two or more sequences. Without loss of generality, let a cell code

be represented by two sequences $P^{(i)}[k]$, $k = 0 \sim L_P - 1$, $i \in \{1, 2, ..., P - 1\}$, and $Q^{(l)}[k]$, $k = 0 \sim L_P - 1$, and $k = 0 \sim L_P - 1$, $k = 0 \sim L_P$

 $= 0 \sim L_Q - 1, l \in \{1, 2, ..., Q - 1\}, \text{ where } L_P \text{ and } L_Q \text{ are the length of } P^{(i)}[k] \text{ and } Q^{(l)}[k],$

respectively, and $P \cdot Q \ge J$. Furthermore, let the cell code $C^{(j)}[k]$ associated with cell j be

represented by the two sequences $P^{(p)}[k]$ and $Q^{(q)}[k]$. Then, identification of the cell code

 $C^{(j)}[k]$ is turn turned into the problem of identifying both the sequences $P^{(p)}[k]$ and

 $Q^{(q)}[k]..$

2