Lecture 9 - Optimization over a Convex Set

Throughout this lecture we will consider the constrained optimization problem (P) given by

(P)
$$\min_{\mathbf{x}.\mathbf{t}.\mathbf{x} \in C} f(\mathbf{x})$$

- \triangleright C closed convex subset of \mathbb{R}^n .
- ightharpoonup f continuously differentiable over C. Not necessarily convex.

Definition of Stationarity. Let f be a continuously differentiable function over a closed and convex set C. Then \mathbf{x}^* is called a stationary point of (P) if

$$\nabla f(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \ge 0$$
 for any $\mathbf{x} \in C$

 $^{^1}$ We use the convention that a function is differentiable over a given set D if it is differentiable over an open set containing D

Stationarity as a Necessary Optimality Condition

Theorem. Let f be a continuously differentiable function over a nonempty closed convex set C, and let \mathbf{x}^* be a local minimum of (P). Then \mathbf{x}^* is a stationary point of (P).

Proof.

- Let \mathbf{x}^* be a local minimum of (P), and assume in contradiction that \mathbf{x}^* is not a stationary point of (P) \Rightarrow there exists $\mathbf{x} \in C$ such that $\nabla f(\mathbf{x}^*)^T(\mathbf{x} \mathbf{x}^*) < 0$.
- ► Thus, $f'(\mathbf{x}^*; \mathbf{d}) < 0$ where $\mathbf{d} = \mathbf{x} \mathbf{x}^*$.
- ▶ Therefore $\exists \varepsilon \in (0,1)$ s.t. $f(\mathbf{x}^* + t\mathbf{d}) < f(\mathbf{x}^*) \forall t \in (0,\varepsilon)$.
- ▶ Since $\mathbf{x}^* + t\mathbf{d} = (1 t)\mathbf{x}^* + t\mathbf{x} \in C \forall t \in (0, \varepsilon)$, we conclude that \mathbf{x}^* is *not* a local optimum point of (P). Contradiction.

Suggestion: As a warm-up, try to picture why this theorem is true in 1-D, when C is a closed interval. What does the stationarity condition mean when x^* is (i) in the interior? (ii) one of the two end points?

Examples

- $ightharpoonup C = \mathbb{R}^n$.
 - ▶ x* is a stationary point of (P) iff

$$(*) \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) \ge 0 \quad \forall \mathbf{x} \in \mathbb{R}^n$$

- We will show that the above condition is equivalent to $\nabla f(\mathbf{x}^*) = \mathbf{0}$. Indeed, if $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then obviously (*) is satisfied.
- ► Suppose that (*) holds.
- ▶ Plugging $\mathbf{x} = \mathbf{x}^* \nabla f(\mathbf{x}^*)$ in the above implies $-\|\nabla f(\mathbf{x}^*)\|^2 \ge 0$.
- ▶ Thus, $\nabla f(\mathbf{x}^*) = \mathbf{0}$.
- $C = \mathbb{R}^n$.
 - $\mathbf{x}^* \in \mathbb{R}^n_+$ is a stationary point iff $\nabla f(\mathbf{x}^*)^T (\mathbf{x} \mathbf{x}^*) \geq 0$ for all $\mathbf{x} \geq \mathbf{0}$.
- $\forall \nabla f(\mathbf{x}^*)^T \mathbf{x} \nabla f(\mathbf{x}^*)^T \mathbf{x}^* \ge 0$ for all $\mathbf{x} \ge \mathbf{0}$. (meaning this holds for both x=0, and x very big.)
- $\Leftrightarrow \nabla f(\mathbf{x}^*) \geq \mathbf{0} \text{ and } \nabla f(\mathbf{x}^*)^T \mathbf{x}^* \leq 0.$ and \mathbf{x}^* why? $\Rightarrow \nabla f(\mathbf{x}^*) \geq \mathbf{0}$ and \mathbf{x}^* are also as \mathbf{x}^* and \mathbf{x}^* and \mathbf{x}^* are also as \mathbf{x}^* and \mathbf{x}^* and \mathbf{x}^* are also as \mathbf{x}^* and \mathbf{x}^* and \mathbf{x}^* are also as
 - **▶** ←

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) \left\{ \begin{array}{ll} = 0 & x_i^* > 0, \\ > 0 & x_i^* = 0. \end{array} \right.$$

Explicit Stationarity Condition

	feasible set	explicit stationarity condition
Ì	\mathbb{R}^n	$ abla f(\mathbf{x}^*) = 0$
	\mathbb{R}^n_+	$rac{\partial f}{\partial x_i}(\mathbf{x}^*) \left\{egin{array}{ll} = 0 & x_i^* > 0 \ \geq 0 & x_i^* = 0 \end{array} ight.$
	$ \left \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{e}^T \mathbf{x} = 1 \right\} \right $	$rac{\partial f}{\partial x_1}(\mathbf{x}^*) = \ldots = rac{\partial f}{\partial x_n}(\mathbf{x}^*)$
	B[0,1]	$ abla f(\mathbf{x}^*) = 0 ext{ or } \ \mathbf{x}^*\ = 1 ext{ and } \exists \lambda \leq 0 : abla f(\mathbf{x}^*) = \lambda \mathbf{x}^* $

see the argument in the book.
Note: this also comes out from
the Lagrange multiplier condition
easily

Stationarity in Convex Optimization

For convex problems, stationarity is a necessary and sufficient condition

Theorem. Let f be a continuously differentiable convex function over a nonempty closed and convex set $C \subseteq \mathbb{R}^n$. Then \mathbf{x}^* is a stationary point of

(P)
$$\min_{\mathbf{x} \in C} f(\mathbf{x})$$

iff \mathbf{x}^* is an optimal solution of (P).

Proof.

- ▶ If \mathbf{x}^* is an optimal solution of (P), then we already showed that it is a stationary point of (P).
- Assume that \mathbf{x}^* is a stationary point of (P).
- ▶ Let $x \in C$. Then

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) \geq f(\mathbf{x}^*),$$

establishing the optimality of x*.

The Second Projection Theorem

Theorem. Let C be a nonempty closed convex set and let $\mathbf{x} \in \mathbb{R}^n$. Then $\mathbf{z} = P_C(\mathbf{x})$ if and only if

$$(\mathbf{x} - \mathbf{z})^T (\mathbf{y} - \mathbf{z}) \le 0 \text{ for any } \mathbf{y} \in C. \tag{1}$$

Proof.

 $\mathbf{z} = P_{\mathcal{C}}(\mathbf{x})$ iff it is the optimal solution of the problem

min
$$g(\mathbf{y}) \equiv \|\mathbf{y} - \mathbf{x}\|^2$$

s.t. $\mathbf{y} \in C$.

▶ By the previous theorem, $z = P_C(x)$ if and only if

$$\nabla g(\mathbf{z})^T(\mathbf{y} - \mathbf{z}) \ge 0$$
 for all $\mathbf{y} \in C$,

which is the same as (1).

Unlike the first projection thm, this one relies heavily on the "conspiracy" that the Euclidean norm/ distance is connected to the inner-product via the formula ||x||^2 = x^T x (or <x,x>).

Properties of the Orthogonal Projection: (Firm) Nonexpansivness

Theorem. Let C be a nonempty closed and convex set. Then

1. For any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$:

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^T(\mathbf{v} - \mathbf{w}) \ge \|P_C(\mathbf{v}) - P_C(\mathbf{w})\|^2.$$
 (2)

2. (non-expansiveness) For any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$:

$$||P_C(\mathbf{v}) - P_C(\mathbf{w})|| \le ||\mathbf{v} - \mathbf{w}||. \tag{3}$$

Proof.

▶ For any $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in C$:

$$(\mathbf{x} - P_C(\mathbf{x}))^T (\mathbf{y} - P_C(\mathbf{x})) \le 0 \quad \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in C$$
 (4)

Substituting $\mathbf{x} = \mathbf{v}, \mathbf{y} = P_{\mathcal{C}}(\mathbf{w})$, we have

$$(\mathbf{v} - P_C(\mathbf{v}))^T (P_C(\mathbf{w}) - P_C(\mathbf{v})) < 0.$$

Proof Contd.

Now, by substituting $\mathbf{x} = \mathbf{w}, \mathbf{y} = P_C(\mathbf{v})$, we obtain

$$(\mathbf{w} - P_C(\mathbf{w}))^T (P_C(\mathbf{v}) - P_C(\mathbf{w})) \le 0.$$
 (6)

Adding the two inequalities (5) and (6),

$$(P_C(\mathbf{w}) - P_C(\mathbf{v}))^T(\mathbf{v} - \mathbf{w} + P_C(\mathbf{w}) - P_C(\mathbf{v})) \le 0,$$

and hence,

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^T(\mathbf{v} - \mathbf{w}) \ge \|P_C(\mathbf{v}) - P_C(\mathbf{w})\|^2.$$

▶ To prove (3), note that if $P_C(\mathbf{v}) = P_C(\mathbf{w})$, the inequality is trivial. Assume then that $P_C(\mathbf{w}) \neq P_C(\mathbf{w})$. By the Cauchy-Schwarz inequality we have

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^T(\mathbf{v} - \mathbf{w}) \le \|P_C(\mathbf{v}) - P_C(\mathbf{w})\| \cdot \|\mathbf{v} - \mathbf{w}\|,$$

which combined with (2) yields the inequality

$$||P_C(\mathbf{v}) - P_C(\mathbf{w})|| \cdot ||\mathbf{v} - \mathbf{w}|| \ge ||P_C(\mathbf{w}) - P_C(\mathbf{w})||^2.$$

Dividing by $||P_C(\mathbf{v}) - P_C(\mathbf{w})||$, implies (3).

Representation of Stationarity via the Orthogonal Projection Operator

Theorem. Let f be a continuously differentiable function over the nonempty closed convex set C, and let s > 0. Then \mathbf{x}^* is a stationary point of

(P)
$$\min_{\mathbf{x}.\mathbf{t}. \mathbf{x} \in C} f(\mathbf{x})$$

if and only if

$$\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*)).$$

This theorem also implies $\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*)).$ That this condition does not depend on a 0depend on s>0.

Proof.

▶ By the second projection theorem, $\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*))$ iff

$$(\mathbf{x}^* - s\nabla f(\mathbf{x}^*) - \mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \leq 0$$
 for any $\mathbf{x} \in C$.

Equivalent to

$$\nabla f(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \geq 0$$
 for any $\mathbf{x} \in C$,

namely to stationarity.

The Gradient Mapping

▶ It is convenient to define the gradient mapping as

$$G_L(\mathbf{x}) = L\left[\mathbf{x} - P_C\left(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x})\right)\right],$$

where L > 0.

- ▶ In the unconstrained case $G_L(\mathbf{x}) = \nabla f(\mathbf{x})$.
- ▶ $G_L(\mathbf{x}) = \mathbf{0}$ if and only if \mathbf{x} is a stationary point of (P). This means that we can consider $||G_L(\mathbf{x})||^2$ to be optimality measure.

The Gradient Projection Method

The Gradient Projection Method

Standard gradient descent when C = R^n

Input: $\varepsilon > 0$ - tolerance parameter.

Initialization: pick $\mathbf{x}_0 \in C$ arbitrarily.

General step: for any k = 0, 1, 2, ... execute the following steps:

- (a) pick a stepsize t_k by a line search procedure.
- (b) set $\mathbf{x}_{k+1} = P_C(\mathbf{x}_k t_k \nabla f(\mathbf{x}_k))$.
- (c) if $\|\mathbf{x}_k \mathbf{x}_{k+1}\| \le \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.
- ▶ There are several strategies for choosing the stepsizes t_k .
- ▶ When $f \in C_L^{1,1}$, we can choose t_k to be constant and equal to $\frac{1}{L}$.

The Gradient Projection Method with Constant Stepsize

The Gradient Projection Method with Constant Stepsize

Input: $\varepsilon>0$ - tolerance parameter. L>0 - an upper bound on the Lipschitz constant of ∇f .

Initialization: pick $\mathbf{x}_0 \in C$ arbitrarily. $\overline{t} > 0$ - constant stepsize. **General step:** for any $k = 0, 1, 2, \ldots$ execute the following steps:

- (a) set $\mathbf{x}_{k+1} = P_C (\mathbf{x}_k \overline{t} \nabla f(\mathbf{x}_k))$.
- (b) if $\|\mathbf{x}_k \mathbf{x}_{k+1}\| \le \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

GPM with Backtracking

Gradient Projection Method with Backtracking Initialization. Take $\mathbf{x}_0 \in C$ and $s > 0, \alpha \in (0,1), \beta \in (0,1)$. General Step (k > 1)

ightharpoonup Pick $t_k = s$. Then, while

$$f(\mathbf{x}_k) - f(P_C(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))) < \alpha t_k \|G_{\frac{1}{t_k}}(\mathbf{x}_k)\|^2$$

set $t_k := \beta t_k$.

Stopping Criteria $\|\mathbf{x}_k - \mathbf{x}_{k+1}\| \leq \varepsilon$.

Convergence of the Gradient Projection Method

Theorem Let $\{\mathbf{x}_k\}$ be the sequence generated by the gradient projection method for solving problem (P) with either a constant stepsize $\bar{t} \in (0, \frac{2}{L})$, where L is a Lipschitz constant of ∇f or a backtracking stepsize strategy. Assume that f is bounded below. Then

- 1. The sequence $\{f(\mathbf{x}_k)\}$ is nonincreasing.
- 2. $G_d(\mathbf{x}_k) \to 0$ as $k \to \infty$, where

$$d = \left\{ egin{array}{ll} 1/ar{t} & ext{constant stepsize}, \ 1/s & ext{backtracking}. \end{array}
ight.$$

See the proof of Theorem 9.14 in the book

- ▶ It is easy to see that this result implies that any limit point of the sequence is a stationary point of the problem.
- ▶ When *f* is convex, it is possible to show that the sequence converges to a global optimal solution.

Sparsity Constrained Problems

The sparsity constrained problem is given by

$$(S): \quad \begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & \|\mathbf{x}\|_0 \leq s, \end{array}$$

This is a huge development in signal processing. Look up, e.g., "compressed sensing". In a nutshell, a lot of signals, in its original form or after a clever transformation, are approximately sparse, i.e. they are very long vectors, but only a few entries are significantly larger than 0.

- ▶ $f : \mathbb{R}^n \to \mathbb{R}$ is a lower-bounded continuously differentiable function.
- s > 0 is an integer smaller than n.
- ▶ $\|\mathbf{x}\|_0$ is the ℓ_0 norm of \mathbf{x} , which counts the number of nonzero components in \mathbf{x} .
- ▶ We do not assume that *f* is a convex function. The constraint set is of course not convex.

Notation.

- ▶ $I_1(\mathbf{x}) \equiv \{i : x_i \neq 0\}$ the support set.
- ▶ $I_0(\mathbf{x}) \equiv \{i : x_i = 0\}$ the off-support set.
- ▶ $C_s = \{\mathbf{x} : \|\mathbf{x}\|_0 \le s\}.$
- ▶ For a vector $\mathbf{x} \in \mathbb{R}^n$ and $i \in \{1, 2, ..., n\}$, the *i*th largest absolute value component in \mathbf{x} is denoted by $M_i(\mathbf{x})$.

A Fundamental Necessary Optimality Condition - Basic Feasibility

Definition. A vector $\mathbf{x}^* \in C_s$ is called a basic feasible (BF) vector of (P) if:

- 1. when $\|\mathbf{x}^*\|_0 < s$, $\nabla f(\mathbf{x}^*) = 0$;
- 2. when $\|\mathbf{x}^*\|_0 = s$, $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0$ for all $i \in I_1(\mathbf{x}^*)$.

Theorem (BF is a necessary optimality condition) Let \mathbf{x}^* be an optimal solution of (P). Then \mathbf{x}^* is a BF vector.

Proof.

▶ If $\|\mathbf{x}^*\|_0 < s$, then for any $i \in \{1, 2, ..., n\}$

$$0 \in \operatorname{argmin}\{g(t) \equiv f(\mathbf{x}^* + t\mathbf{e}_i)\}.$$

Otherwise there would exist a t_0 for which $f(\mathbf{x}^* + t_0 \mathbf{e}_i) < f(\mathbf{x}^*)$, which is a contradiction to the optimality of \mathbf{x}^* .

- ▶ Therefore, we have $\frac{\partial f}{\partial x}(\mathbf{x}^*) = g'(0) = 0$.
- ▶ If $\|\mathbf{x}^*\|_0 = s$, then the same argument holds for any $i \in I_1(\mathbf{x}^*)$.

L-stationarity

Definition. A vector $\mathbf{x}^* \in C_s$ is called an *L*-stationary point of (S) if it satisfies the relation

$$[NC_L] \quad \mathbf{x}^* \in P_{C_s}\left(\mathbf{x}^* - \frac{1}{L}\nabla f(\mathbf{x}^*)\right).$$

- Note that since C_s is not a convex set, the orthogonal projection operator $P_{C_s}(\cdot)$ is not single-valued.
- ▶ Specifically, the members of $P_{C_s}(\mathbf{x})$ are vector consisting of the s components of \mathbf{x} with the largest absolute value and zeros elsewhere.
- ▶ In general, there could be more than one choice to the *s* largest components. For example:

$$P_{C_2}((2,1,1)^T) = \{(2,1,0)^T, (2,0,1)^T\}.$$

Explicit Reformulation of L-stationarity

Lemma. For any L>0, \mathbf{x}^* satisfies $[\mathrm{NC}_L]$ if and only if $\|\mathbf{x}^*\|_0 \leq s$ and

$$\left| \frac{\partial f}{\partial x_i}(\mathbf{x}^*) \right| \left\{ \begin{array}{ll} \leq L M_s(\mathbf{x}^*) & \text{if } i \in I_0(\mathbf{x}^*), \\ = 0 & \text{if } i \in I_1(\mathbf{x}^*). \end{array} \right.$$
 (7)

Proof.([NC_L] \Rightarrow (7)).

- ▶ Suppose that \mathbf{x}^* satisfies $[\mathsf{NC}_L]$. Note that for any index $j \in \{1, 2, ..., n\}$, the j-th component of $P_{C_s}(\mathbf{x}^* \frac{1}{L}\nabla f(\mathbf{x}^*))$ is either zero or equal to $x_i^* \frac{1}{l}\nabla_j f(\mathbf{x}^*)$.
- Since $\mathbf{x}^* \in P_{C_s}(\mathbf{x}^* \frac{1}{L}\nabla f(\mathbf{x}^*))$, it follows that if $i \in I_1(\mathbf{x}^*)$, then $x_i^* = x_i^* \frac{1}{L}\frac{\partial f}{\partial x_i}(\mathbf{x}^*)$, so that $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0$.
- If $i \in I_0(\mathbf{x}^*)$, then $\left|x_i^* \frac{1}{L} \frac{\partial f}{\partial x_i}(\mathbf{x}^*)\right| \leq M_s(\mathbf{x}^*)$, which combined with the fact that $x_i^* = 0$ implies that $\left|\frac{\partial f}{\partial x_i}(\mathbf{x}^*)\right| \leq LM_s(\mathbf{x}^*)$, and consequently (7) holds true.

Proof Contd.

$$((7) \Rightarrow [NC_L]).$$

- Suppose that \mathbf{x}^* satisfies (7). If $\|\mathbf{x}^*\|_0 < s$, then $M_s(\mathbf{x}^*) = 0$ and by (7) it follows that $\nabla f(\mathbf{x}^*) = 0$. Therefore, $P_{C_s}(\mathbf{x}^* \frac{1}{L}\nabla f(\mathbf{x}^*)) = P_{C_s}(\mathbf{x}^*) = \{\mathbf{x}^*\}$.
- ▶ If $\|\mathbf{x}^*\|_0 = s$, then $M_s(\mathbf{x}^*) \neq 0$ and $|I_1(\mathbf{x}^*)| = s$. By (7) $\left|x_i^* 1/L\frac{\partial f}{\partial x_i}(\mathbf{x}^*)\right| \begin{cases} = |x_i^*| & i \in I_1(\mathbf{x}^*) \\ \leq M_s(\mathbf{x}^*) & i \in I_0(\mathbf{x}^*). \end{cases}$
- ▶ Therefore, the vector $\mathbf{x}^* \frac{1}{L}\nabla f(\mathbf{x}^*)$ contains the s components of \mathbf{x}^* with the largest absolute value and all other components are smaller or equal to them, so that $[NC_I]$ holds.

Remark: Note that the condition $[NC_L]$ depends on L in contrast to the stationarity condition over convex sets.

L-Stationarity as a Necessary Optimality Condition

When $f \in C^{1,1}_{L(f)}$, it is possible to show that an optimal solution of (S) is an L-stationary point for any L > L(f).

Theorem. Suppose that $f \in C^{1,1}_{L(f)} \in \mathbb{R}^n$, and that L > L(f). Let \mathbf{x}^* be an optimal solution of (S). Then \mathbf{x}^* is an L-stationary point.

See the proof of Theorem 9.22 in the book.

The Iterative Hard-Thresholding (IHT) Method

The IHT method

Input: a constant $L \ge L(f)$.

- Initialization: Choose $x_0 \in C_s$.
- General step: $\mathbf{x}^{k+1} \in P_{C_s}\left(\mathbf{x}^k \frac{1}{L}\nabla f(\mathbf{x}^k)\right), \quad (k = 0, 1, 2, \ldots)$

Theorem (convergence of IHT) Suppose that $f \in C^{1,1}_{L(f)}$ and let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by the IHT method with stepsize $\frac{1}{L}$ where L > L(f). Then any accumulation point of $\{\mathbf{x}^k\}_{k\geq 0}$ is an L-stationary point.

See the proof of Theorem 9.24 in the book