Feature Selection and Lasso

/ questio	ons	
	fit model of size 5 (i.e., with 5 feat es from best fit model of size 4.	cures) always contains the set
•	ilse	
-	potential features, how many mo subsets algorithm? 576	dels do you have to evaluate
you are ru	potential features, how many mo unning the forward stepwise gree lgorithm all the way to the full fea	edy algorithm? Assume you
400	3. 2 2 2 3 2 3 10 10	

4.

Which of the plots could correspond to a lasso coefficient path? Select ALL that apply.

Hint: notice $\lambda = \infty$ in the bottom right of the plots. How should coefficients behave eventually as λ goes to infinity?

1 point

5.

Which of the following statements about coordinate descent is true? (Select all that apply.)

A small enough step size should be chosen to guarantee convergence.

the maximum step you take as you cycle through coordinates.
Coordinate descent cannot be used to optimize the ordinary least squares objective.
Coordinate descent is always less efficient than gradient descent, but is often easier to implement.

To test the convergence of coordinate descent, look at the size of

1 point

6.

Using normalized features, the <u>ordinary least squares</u> coordinate descent update for feature j has the form (with ρ j defined as in the videos):

0

$$\hat{w}_j = \rho_j$$

O

$$\hat{w}_j = (\rho_j)^2$$

0

$$\hat{w}_j = \rho_j - \lambda$$

0

$$\hat{w}_j = \rho_j/2 - \lambda$$

1 point

7.

Using normalized features, the <u>ridge regression</u> coordinate descent update for feature j has the form (with pj defined as in the videos)

0

$$\hat{w}_j = \rho_j - \lambda$$

O

$$\hat{w}_j = \rho_j/2 - \lambda$$

 O

$$\hat{w}_j = \rho_j/(\lambda + 1)$$

0

$$\hat{w}_j = \rho_j$$