Last time

1. Relationships Between RVs 7\_ Inferrence

Joint Conditional Marginal

Bayes Rule

Today: What does "Markou" mean.

## Stochastic Process

Collection of RVs indexed by time.

$$\{x_{+}\}_{+=1}^{\infty} = \{\dot{x}_{1}, x_{2}, x_{3},...\}$$

Example:

$$x_{1} = 0$$
 $x_{++1} = x_{+} + v_{+}$ 
 $x_{-}^{1} = x^{+} \vee v_{+}$ 
 $v_{+} \sim U(\{0,1\})$ 



| X++1   |     |
|--------|-----|
| ×+     | 0,5 |
| ×++1 / | 0.5 |

$$\frac{x_{2}}{0}$$
  $\frac{x_{3}}{0.25}$   $\frac{x_{3}}{0.25}$   $\frac{0.25}{0.25}$   $\frac{0.25}{0.25}$ 

| X,   | KZ | ×3     | 0.5                                                 |
|------|----|--------|-----------------------------------------------------|
| 0000 | 00 | 0(1-)2 | 0.25 P(x=0)P(x=0 x=0) 0.25 P(x=0 x=0) 0.25 0.5 0.25 |

| Markov Process                                                                                                                                  |                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Det. A S.P. \{\times_{\times_{1-1}} \times_{1-2} \cdots_{\times_{1}} \}  P(\times_{+-1} \times_{+-2} \cdots_{\times_{1}} \times_{\times_{1}} \) | Markov if                                                                                                |
| $P(x+1)\times_{1-1},\times_{1-2}\times_{1}$                                                                                                     | $= P(x_{+} x_{+-1})$                                                                                     |
| X+ is known as the                                                                                                                              | "state"                                                                                                  |
| Gaussian random<br>Molse                                                                                                                        | Can this be  described as a Markor  Process  SX = 35 Markor  X+1 = X+   X+   X+   X+   X+   X+   X+   X+ |
|                                                                                                                                                 | 24,3 > Markov!                                                                                           |
| Sometimes you can                                                                                                                               | P(Y+   Y+-1) = P(Y+   Y+.)  + measure the whole state  state                                             |
|                                                                                                                                                 | ( notition is location)                                                                                  |

Hidden Markov Model

| Bayesian Network                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| DAG Node: RV.                                                                                                                                 |
| Edge: Direct Probabilistic Relationship                                                                                                       |
| Concretely $P(xi   X_{lin}i) = P(xi   Pa(xi))$                                                                                                |
| P(B(A,C) = P(B(A))                                                                                                                            |
| Band independent?  BLC Not necessarily  BLC   A                                                                                               |
| Markov Process                                                                                                                                |
| $(S_1) \rightarrow (S_2) \rightarrow (S_3) \rightarrow \cdots$                                                                                |
| Dynamic  Bayesian  Networks                                                                                                                   |
| H M M (O) (O) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S                                                                                          |
| Breakout Rooms Favorite Movie                                                                                                                 |
| Boulder Creek Character has to make                                                                                                           |
| State?  State?  uncertainty  tubers get stuck observation  see bottom                                                                         |
| physical width, length flow rate, precipitation, temp<br>of river width river, volumetric flow nate<br>yource of wate, snow, width, flow vate |



## Markov Decision Process

Decision Network

O chance nodes

I decision node

> utility node

MOP Dynamic Decision Network



Optimization

maximize E[\frac{\xi}{+=1}\rf{}\]

"return"

Finite Rewords

J Finite time

Tr

2] Average reward

lim in the rt

3) Discount

 $\sum_{t=1}^{\infty} y^{t} r_{t} \leq \frac{\overline{r}}{1-y} \quad \text{discount} \quad y \in [0,1)$ 

4) Terminal states

problem reaches terminal state w.p. 1