TRAVALHO INDIVIDUAL # 1 COMUNICAÇÃO UART

Vilmey Francisco Romano Filho - 11/0021380

Programa de Graduação em Engenharia Eletrônica, Faculdade Gama Universidade de Brasília Gama, DF, Brasil email: vilmeyr@gmail.com

1. OBJETIVO

Esta trabalho prático tem a finalidade exemplificar e reunir técnicas aprendidas em sala de aula para a solução de problemas. Nesta prática damos ênfase a comunicação entre um sistema complexo com SO embarcado e um microcontrolado, neste caso um Raspberry PI e um arduino (via UART).

2. INTRODUÇÃO

O microcontrolador ATmega possui muitas ferramentas úteis ao engenheiro, este controlador pode se communicar com outros dispositivos atravéz de protocolo de comunicação serial UART(Universal asynchronous receiver/transmitter). Para a comunicação entre a (Raspberry Pi) e o microcontrolator esse protocolo se mostra eficiente, pois ambos não tem que compartilhar um sinal de clock.

O programa em C deve ser capaz de receber comandos via terminal (Raspberry PI) e ser capaz de enviar e receber strings, inteiros e ponto flutuantes do controlador.

3. ESPECIFICAÇÃO

3.1. Escrita de dados

Todas as mensagens de solicitação de dados enviadas pela porta serial devem seguir o padrão: Código do comando solicitado figura[1] + Quatro últimos dígitos da matrícula em formado char. Exemplo de Mensagem com o comando 0xA3 (Hexadecimal) = 163 (Decimal) e a matrícula ?1380? ao final: char[] = 163, 1, 3, 8, 0; Já as mensagens de envio de dados deverão ser compostas por: Comando + Dado + Matrícula. No caso do envio de uma String, o formato deverá ser: Comando + Tamanho da String (1 byte) + String + Matrícula.

3.2. Leitura de dados

A leitura de dados deve seguir o padrão de retorno da Tabela 1. Para valores inteiros (int) ou reais (float), deverão ser lidos 4 bytes e armazenados em uma variável int ou float, respectivamente. Para leitura de strings, a mensagem de retorno irá conter o número total de caracteres da string no primeiro byte (Valor entre 0 e 255), em seguida, é possível ler o conteúdo da mensagem que deverá ser armazenada em um array de char (char[]);

Tabela 1 - Códigos do Protocolo de Comunicação - Solicitação de Informações

Código	Comando de Solicitação de Dados	Mensagem de Retorno
0xA1	Solicitação de dado inteiro: integer	int (4 bytes)
0xA2	Solicitação de dado real: float	float (4 bytes)
0xA3	Solicitação de dado do tipo string: char[]	char (1 byte com o tamanho da string) + char[] (nbytes com o conteúdo da string)

Tabela 2 - Códigos do Protocolo de Comunicação - Envio de Dados

Código	Comando de Envio de Dados	Mensagem de Retorno
0xB1	Envio de um dado no formato integer	int (4 bytes)
0xB2	Envio de um dado no formato float	float (4 bytes)
0xB3	Envio de uma string: char[]	char (1 byte com o tamanho da string) + char[] (nbytes com o conteúdo da string)

Fig. 1. Comandos para envio e tipo de retorno.

4. IMPLEMENTAÇÃO

Foi criado um menu com as opções de solicitar: inteiro, float ou string, assim como enviar: inteiro, float ou string ao controlador. Quando o usuário seliciona a opção desejada é direcionado a uma função específica que é responsável por tratar os dados e realizar a comunicação devidamente.

A main do programa passa os parâmetros basicos para os procedimentos como o comando, a matricula e o filestream. Já dentro dos procedimentos a sua função irá variar de acordo com o tipo de variável (de envio ou recebimento).

O que ocorre no geral é a concatenação das informações e consequentemente o envio deste ao arduino por meio do comando write.

As concatenações foram feitas utilizando o comando *memcpy*, que é uma versão mais baixo nível em relação as funções formatadas.

Quando é necessário a leitura de um retorno utilizamos o comando *read* que irá armazenar a resultado em um *void buffer*.

Os dados recebidos são apresentados em tela com o comando *printf*.

5. CONCLUSÕES

A prova prática foi contrutiva no tocante a parte de comunicação entre dispositivos, pois a mesma englobou um protocolo bastante usado para comunicação entre dispositivos e perifericos.

O experimeto ocorreu bem, apesar das dificuldades inicias para transmitir os comando para o controlador. Porém uma vez aprendido esses conceitos foi possivel extende-los ao esperado no final do trabalho prático.

6. CÓDIGO

```
#include <termios.h>
  #include <fcntl.h>
  #include <unistd.h>
  #include <stdio.h>
  #include <string.h>
  #define DEVICE_FILE
                        "/dev/ttvAMA0"
  // Configura os parametros da comunicacao UART
  void Uart_Config(int * uart0_filestream)
    struct termios options;
    tcgetattr(*uart0_filestream, &options);
    options.c_cflag = B9600 | CS8 | CLOCAL | CREAD;
       // Set baud rate
    options.c_iflag = IGNPAR;
    options.c_oflag = 0;
    options.c_lflag = 0;
    tcflush(*uart0_filestream, TCIFLUSH);
    tcsetattr(*uart0_filestream, TCSANOW, &options)
21 }
  // Constroi o menu de opcoes
  void Menu ()
  {
    printf("(1) Solicita int\n");
    printf("(2) Solicita float\n");
    printf("(3) Solicita char\n");
    printf("(4) Envia int\n");
    printf("(5) Envia float\n");
    printf("(6) Envia char\n");
    printf ("Digite uma opA§A£o: ");
35
  void Solicita_int (char Comando, char *matricula,
       int *uart0_filestream)
    int retorno;
    char chave[60] = {Comando};
    memcpy(&chave[1], matricula, 4);
    *uart0_filestream = open(DEVICE_FILE, O.RDWR |
      O_NOCTTY |O_NDELAY);
    int tx_length = write(*uart0_filestream, chave,
       (int) strlen(chave));
      if (tx_length < 0)
        printf("Erro na transmissao - UART TX\n");
    int rx_length = read(*uart0_filestream, &
      retorno , sizeof(int));
      if (rx_length < 0)
        perror("Falha na leitura");
      else if (rx_length == 0)
        printf("Nenhum dado disponivel\n");
        printf("\n|%i bytes lidos|", rx_length);
```

```
close (*uart0_filestream);
    printf("\n\nRetorno int: %d\n\n\n", retorno);
  }
65
  void Solicita_float (char Comando, char *
       matricula, int *uart0_filestream)
67
     float retorno;
    char chave[60] = {Comando};
    memcpy(&chave[1], matricula, 4);
    *uart0_filestream = open(DEVICE_FILE, O_RDWR |
      O_NOCTTY |O_NDELAY);
    int tx_length = write(*uart0_filestream, chave,
       (int) strlen(chave));
       if (tx\_length < 0)
        printf("Erro na transmissao - UART TX\n");
    int rx_length = read(*uart0_filestream, &
       retorno, sizeof(float));
      if (rx_length < 0)
        perror("Falha na leitura");
83
      else if (rx_length == 0)
         printf("Nenhum dado disponivel\n");
85
        printf("\n|%i bytes lidos|", rx_length);
    close(*uart0_filestream);
91
    printf("\n\nRetorno float: %f\n\n", retorno);
93 }
  void Solicita_char (char Comando, char *matricula
       , int *uart0_filestream)
    char retorno[256], string[256];
    char chave[60] = {Comando};
    memcpy(&chave[1], matricula, 4);
101
    *uart0_filestream = open(DEVICE_FILE, O_RDWR |
      O_NOCTTY | O_NDELAY);
    int tx_length = write(*uart0_filestream, chave,
       (int) strlen(chave));
      if (tx_length < 0)
105
        printf("Erro na transmissao - UART TX\n");
    int rx_length = read(*uart0_filestream, retorno
       , 255);
      if (rx_length < 0)
        perror("Falha na leitura");
      else if (rx_length == 0)
        printf("Nenhum dado disponivel\n");
        printf("| %i bytes lidos |", rx_length);
    close(*uart0_filestream);
```

```
int rx_length = read(*uart0_filestream, &
     printf("\n\nTamanho recebido : %d \n", (int)
                                                                retorno , sizeof(float));
       retorno[0]); //Imprime o tamanho da string
                                                                if (rx_length < 0)
                                                                  perror("Falha na leitura \n");
       recebida
     printf ("Retorno string: (\%s) (\%s) \n \n',
       string, retorno);
                                                                else if (rx_length == 0)
                                                                  printf("Nenhum dado disponivel \n");
                                                         181
  void Envia_int (char Comando, char *matricula,
                                                         183
                                                                  printf("\n|%i bytes lidos |", rx_length);
       int *uart0_filestream)
                                                         185
                                                              close(*uart0_filestream);
    int i, retorno;
    char chave[60] = {Comando};
                                                              printf("\nRetorno float: %f\n\n\n", retorno);
     printf("\nDigite o inteiro a ser enviado: ");
                                                           }
                                                         189
     scanf("%d", &i);
                                                         191
    memcpy(&chave[1], &i, 4);
                                                            void Envia_char (char Comando, char *matricula,
    memcpy(&chave[5], matricula, 4);
                                                                int *uart0_filestream)
                                                           {
                                                         193
                                                              char retorno [256];
    *uart0_filestream = open(DEVICE_FILE, O_RDWR |
                                                              int tam;
                                                         195
      O_NOCTTY |O_NDELAY);
                                                              char tamanho_msg, buffer[60], chave[60] = {
    int tx_length = write(*uart0_filestream, chave,
                                                         197
                                                              printf("\nDigite a string a ser enviada: ");
        (int) strlen(chave));
       if (tx_length < 0)
                                                         199
         printf("Erro na transmissao - UART TX\n");
                                                              getchar();
                                                              fgets (buffer, 60, stdin); // String a ser
    int rx_length = read(*uart0_filestream, &
                                                                enviada
                                                                tamanho_msg = (char) strlen (buffer);
       retorno , sizeof(int));
     if (rx_length < 0)
143
       perror("Falha na leitura");
                                                                buffer[strcspn(buffer, "\n")] = 0;
                                                         205
    else if (rx_length == 0)
                                                              memcpy(\&chave[1], \&tamanho\_msg, 1);
                                                              memcpy(&chave[2], buffer, (int) strlen(buffer));
       printf("Nenhum dado disponivel \n");
147
                                                         207
                                                              memcpy(&chave[2+((int)strlen(buffer))],
                                                                matricula, 4);
149
       printf("\n|%i bytes lidos |", rx_length);
                                                         209
                                                              *uart0_filestream = open(DEVICE_FILE, O_RDWR |
    close(*uart0_filestream);
                                                                O_NOCTTY |O_NDELAY);
                                                              int tx_length = write(*uart0_filestream, chave,
    printf("\nRetorno int: %d\n\n", retorno);
                                                                 (int) strlen(chave));
155
                                                         213
                                                                if (tx_length < 0)
                                                                  printf("Erro na transmissao - UART TX\n");
  void Envia_float (char Comando, char *matricula,
                                                         215
       int *uart0_filestream)
                                                              int rx_length = read(*uart0_filestream, retorno
                                                                , 1);
159
     float i, retorno;
                                                                if (rx_length < 0)
    char chave[60] = {Comando};
                                                                  perror("Falha na leitura");
161
                                                         219
     printf("\nDigite o real a ser enviado: ");
                                                                else if (rx_length == 0)
    scanf("%f", &i);
                                                                  printf("Nenhum dado disponivel \n");
165
    memcpy(&chave[1], &i, 4);
    memcpy(&chave[5], matricula, 4);
                                                                  printf("\n|%i bytes lidos |", rx_length);
167
                                                              close(*uart0_filestream);
169
    *uart0_filestream = open(DEVICE_FILE, O_RDWR |
      O_NOCTTY |O_NDELAY);
                                                              printf("\nRetorno string: %s\n\n", retorno);
                                                         229 }
    int tx_length = write(*uart0_filestream, chave,
        (int) strlen(chave));
                                                            int main ()
       if (tx_length < 0)
                                                              int uart0_filestream = -1;
         printf("Erro na transmissao - UART TX\n");
                                                              char matricula [4] = \{'1', '3', '8', '0'\};
```

```
char RCV_INTEGER = 0xA1;
     char RCV_FLOAT
                       = 0xA2;
     char RCV_CHAR
                       = 0xA3;
     char SND_INTEGER = 0xB1;
     char SND_FLOAT
                       = 0xB2;
     char SND_CHAR
                    = 0xB3;
     Uart_Config(&uart0_filestream);
243
     while (1)
245
       int opcao;
      Menu();
       scanf("%d", &opcao);
       system("clear");
253
       switch(opcao)
       {
         case 1:
           Solicita\_int(RCV\_INTEGER, \ matricula \ , \ \&
       uart0_filestream);
           break;
         case 2:
           Solicita_float (RCV_FLOAT, matricula, &
       uart0_filestream);
           break;
         case 3:
           Solicita_char(RCV_CHAR, matricula, &
       uart0_filestream);
          break:
         case 4:
           Envia_int(SND_INTEGER, matricula, &
       uart0\_filestream);
           break;
         case 5:
           Envia_float(SND_FLOAT, matricula, &
       uart0_filestream);
           break;
         case 6:
           Envia_char(SND_CHAR, matricula, &
       uart0_filestream);
           break;
         default:
           printf("Opção InvÃ;lida !\n");
    }
279
     return 0;
```

Codigo/From_scratch.c