代数学2,第2回の内容の理解度チェックの解答

- 2025/4/21 担当:那須
- $\boxed{1}$ 次の体 $\mathbb{Z}/p\mathbb{Z}$ とその元 $a \in \mathbb{Z}/p\mathbb{Z}$ に対し, a の乗法逆元 a^{-1} を求めよ.
 - (1) $\mathbb{Z}/5\mathbb{Z}$, a=3
 - (2) $\mathbb{Z}/17\mathbb{Z}$, a = 8
 - (3) $\mathbb{Z}/101\mathbb{Z}$, a = 33

(**解答**) (1)
$$a^{-1} = 2$$
 (2) $a^{-1} = 15$ (3) $a^{-1} = 49$

(**解説**) (3) のみ紹介する. 不定方程式 ax + py = 1 を解けば良い (実際は一つの解を与えるだけで良い). したがってこの場合は

$$33x + 101y = 1\tag{\heartsuit}$$

を解くことになる. 101 と 33 に対しユークリッドの互除法を適用すると

$$101 = 33 \times 3 + 2$$
$$33 = 2 \times 16 + 1$$

となる. したがって

$$1 = 33 - 2 \times 16$$

$$= 33 - (101 - 33 \times 3) \times 16$$

$$= 33 \times (1 + 3 \times 16) - 101 \times 16$$

$$= 33 \times 49 - 101 \times 16$$

となる. (\heartsuit) のひとつの解は (x,y)=(49,-16) である. 式

$$33 \cdot 49 + 101 \cdot (-16) = 1$$

において mod 101 を取ると

$$33 \cdot 49 \equiv 1 \pmod{101}$$

を得る. したがって $33^{-1} = 49$ となる.

- [2] (1) 環 Z/15Z における零因子を求めよ.
 - (2) 環 ℤ/12ℤ におけるべき零元を求めよ.
 - (3) 素数 $p \in \mathbb{Z}$ に対し、環 $\mathbb{Z}/p\mathbb{Z}$ が整域になることを示せ.

(解答)

(1) 整数 $n \in \mathbb{Z}, n > 0$ に対し、 環 $\mathbb{Z}/n\mathbb{Z}$ において

$$a \in \mathbb{Z}/n\mathbb{Z}$$
 が零因子 \iff $a \in \mathbb{Z}/n\mathbb{Z}$ が零日子 \iff $a \in \mathbb{Z}/n\mathbb{Z}$ が零日子 \iff $a \in \mathbb{Z}/n\mathbb{Z}$ が零日子 \iff $a \in \mathbb{Z}/n\mathbb{Z}$ かっという

が成り立つ. したがって $\mathbb{Z}/15\mathbb{Z}$ の零因子は 0,3,5,6,9,10,12 である.

- (2) 0,6 $(12=2\times 3^2 \ \text{$\rlap{$!$}$}\ \text{$\rlap{0}$},\ a\in\mathbb{Z}/12\mathbb{Z}\ \text{がべき零元}\Longleftrightarrow \ \text{$\rlap{$a$}$}\ \text{$
- (3) p は素数であるため、整数 $a,b \in \mathbb{Z}$ に対し $p \mid ab$ ならば $p \mid a$ または $p \mid b$ が成り立つ. したがって p を法として $a \not\equiv 0$ かつ $b \not\equiv 0$ ならば、 $ab \not\equiv 0$ である.

$$\mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$$

が剰余類の演算 $(a,b \in \mathbb{Z}/p\mathbb{Z}$ に対し、和と積をそれぞれ $a+b \pmod p$ と $ab \pmod p$ により定義する) のもとで体になることを示せ.

(解答)

- (1) 和に関して $\mathbb{Z}/p\mathbb{Z}$ は可換群になる.
- (2) p は素数であるため、整数 $a,b \in \mathbb{Z}$ に対し $p \mid ab$ ならば $p \mid a$ または $p \mid b$ が成り立つ. したがって p を法として $a \not\equiv 0$ かつ $b \not\equiv 0$ ならば、 $ab \not\equiv 0$ である. このことから

$$(\mathbb{Z}/p\mathbb{Z})^{\times} := \mathbb{Z}/p\mathbb{Z} \setminus \{0\}$$

は乗法について閉じている。また合同式の性質によって, $(\mathbb{Z}/p\mathbb{Z})^{\times}$ は乗法に関する結合法則を満たし, 1 はその単位元となる。最後に乗法逆元の存在を示す。 $a\not\equiv 0\pmod{p}$ とすると, 不定方程式

$$ax + py = 1$$

は整数解 $x, y \in \mathbb{Z}$ をもつ. したがって, 合同式

$$ax \equiv 1 \pmod{p}$$

は (ただ一つの) 解をもつ. このことは任意の $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ に乗法逆元 a^{-1} が存在することを意味する. したがって, $(\mathbb{Z}/p\mathbb{Z})^{\times}$ は乗法群である.

(3) 任意の整数 n について $\mathbb{Z}/n\mathbb{Z}$ は環となる. したがって n が素数 p のときも, $\mathbb{Z}/p\mathbb{Z}$ は分配法則 を満たす.

^{1※}この講義に関する情報はホームページを参照. https://hirokazunasu.github.io/2025/alg2.html