Nama : Muhammad Emir Al Hafidz

Kelas : GK 1

NIM : 20507334030

Deadline : Senin, 14 Februari 2022

Dasar PLC

Programmable Logic Controllers (PLC) dirancang untuk menggantikan suatu rangkaian relay sequential dalam suatu sistem kendali yang dapat diprogram. Pada dasarnya, PLC dapat melakukan beberapa hal sebagai berikut:

- **Programmable**, menunjukkan kemampuan dalam hal memori untuk menyimpan program yang telah dibuat yang dengan mudah diubah-ubah fungsi atau kegunaannya.
- Logic, menunjukkan kemampuan dalam memproses input secara aritmatik dan logic (ALU), yakni melakukan operasi membandingkan, menjumlahkan, mengalikan, membagi, mengurangi, negasi, AND, OR, dan lain sebagainya.
- Controller, menunjukkan kemampuan dalam mengendalikan dan mengatur proses sehingga menghasilkan output yang diinginkan.

Cara kerja sebuah PLC adalah menerima sinyal masukan proses yang dikendalikan lalu melakukan serangkaian instruksi logika terhadap sinyal masukan tersebut sesuai dengan program yang tersimpan dalam memory lalu menghasilkan sinyal keluaran untuk mengendalikan aktuator atau peralatan lainnya.

Check Point

Carilah daftar PLC yang digunakan di industri.

No.	Seri PLC	Produsen
1.	CPM1A, CP1E & CP1L	Omron
2.	Modicon M340	Scheneider
3.	S7-200 & S7-1200	Siemens
4.	MELSEC FX3UC, MELSEC FX3G, MELSEC FX1N & MELSEC FX1S	Mitsubishi

Langkah Kerja

- 1. Buka https://app.plcsimulator.online/
- 2. Perhatikan penjelasan saat kuliah terkait fungsi ladder diagram.
- 3. Kita dapat menambahkan Contact sebagai input.

4. Kita dapat menambahkan Coil sebagai output.

5. Kita dapat menambahkan Branch untuk percabangan.

6. Kita dapat menambahkan Rung baru.

7. Buatlah ladder diagram sesuai gambar berikut.

8. Tambahkan variable berikut.

No.	Nama Variable	Jenis	Fungsi
1.	A	Boole	Input
2.	В	Boole	Input
3.	O1	Boole	Output
4.	O2	Boole	Output
5.	O3	Boole	Output
6.	O4	Boole	Output
7.	O5	Boole	Output
8.	O6	Boole	Output
9.	O7	Boole	Output
10.	O8	Boole	Output

11. O9 Boole Input dan Output	11.	09	Boole	Input dan Output
-------------------------------------	-----	----	-------	------------------

9. Isilah tabel kebenaran berikut.

Input	Output
A	O1
False	False
True	True

Input	Output
A	O2
False	True
True	False

Catatan, untuk rung pertama dan kedua saling berkebalikan. Rung kedua merupakan fungsi NOT dari rung pertama.

Input			Output
A	A B		O3
False	False		False
False	True		False
True	False		False
True	True		True
Rung ketiga merupakan fungsi logika		AND	

Input			Output
A	В		O4
False	False		True
False	True		True
True	False		True
True True			False
Rung keempat merupakan fungsi logika		NOR	

Inp	Output	
A	O5	
False	False	False
False	True	True

True	False		True
True	True		True
Rung kelima merupakan fungsi l	ogika	OR	

Input			Output
A	В		O6
False	False		True
False	True		False
True	False		False
True	True		False
Rung keenam merupakan fungsi logika		NAND	

Input			Output
A	В		O7
False	False		False
False	True		True
True	False		True
True	True		False
Rung ketujuh merupakan fungsi logika		XOR	

Input	Output		
A	В		O8
False	False		True
False	True		False
True	False		False
True	True		True
Rung kedelapan merupakan fung	gsi logika	X-NOR	

- 10. Analisis kerja rung kesembilan. Jawab pertanyaan berikut.
 - 1. Apa syarat atau langkah-langkah agar output O9 bernilai True? Syarat agar coil O9 bernilai true adalah kondisi kontak A Normally Open ditekan atau diubah ke NC, dan kontak B tetap dalam kondisi NC dengan demikian arus akan mengalir menuju coil O9 dan mengaktifkan kontak NO O9 yang terhubung parallel sebagai pengunci sehingga kondisi coil O9 bertahan menjadi true

INPUT		OUTPUT
\mathbf{A}	В	O9
False	False	False
False	True	False
True	False	True
True	True	False

- 2. Setelah output O9 bernilai True, bagaimana cara mengembalikannya agar bernilai False? Cara mengembalikan agar output O9 adalah dengan mengubah kontak B yang semula NC menjadi NO agar kontak pengunci O9 terputus
- 11. Buat analisis dan kesimpulan praktikum berdasarkan setiap rung.
 - 1. Rung 1 = agar koil O1 bernilai true maka kontak A (NO) harus bernilai True (NC)
 - 2. Rung 2 = agar koil O2 bernilai true maka kontak A (NC) harus bernilai False (NC) yang artinya kontak NC dalam keadaan tetap
 - Kesimpulan = rangkaian ini menerapkan gerbang logika OR
 - 3. Rung 3 = agar koil O3 bernilai True maka kontak A dan B (NO) keduanya harus bernilai True, jika salah satu kontak bernilai False maka koil 03 akan bernilai False Kesimpulan = rangkaian ini menerapkan gerbang logika AND
 - 4. Rung 4 = agar koil O4 bernilai True maka salah satu atau kedua dari kontak A dan B (NC) harus bernilai False, jika keduanya bernilai True maka koil O4 akan bernilai False Kesimpulan = rangkaian ini menerapkan gerbang logika NOR
 - 5. Rung 5 = agar koil O5 bernilai True maka salah satu atau kedia dari kontak A dan B (NO) harus bernilai True, jika keduanya bernilai False maka koil O5 akan bernilai False Kesimpulan = rangkaian ini menerapkan gerbang logika OR
 - 6. Rung 6 = agar koil O6 bernilai True maka kedua kontak A dan B (NC) harus bernilai False, apabila salah satu kontak ada yang bernilai True maka koil O6 akan bernilai False Kesimpulan = rangkaian ini menerapkan gerbang logika NAND
 - 7. Rung 7 = agar koil O7 bernilai True maka kondisi kedua kontak A dan B harus berbeda, apabila kondisi kedua kontak sama maka koil O7 akan berkondisi False Kesimpulan = rangkaian ini menerapkan gerbang logika XOR
 - 8. Rung 8 = agar koil O8 bernilai True maka kondisi kedua kontak A dan B harus sama, apabila kondisi kedua kontak berbeda maka koil O8 akan bernilai False Kesimpulan = rangkaian ini menerapkan gerbang logika X-NOR

Catatan:

Beberapa kata kunci yang perlu diperhatikan dalam menyusun analisis dan kesimpulan: Gerbang Logika, NOT, AND, OR, XOR, NAND, NOR, X-NOR, dan Latch.