MAVs Multiagente para Búsqueda de "Persona de Interés"

Simulación Unity – Coordinación, percepción emulada y aterrizaje seguro

Equipo: Patricio, Esteban, José Pablo, Edgardo, Jesús Casique

Tecnología Avanzada para Búsqueda y Localización

Resumen Ejecutivo

Objetivo Principal

Simular un sistema multiagente con drones que despegan, patrullan, **identifican por atributos** y **aterrizan ~2 m** del objetivo

Caso de Negocio

Búsqueda rápida de perfiles en obras/eventos/plantas → menos tiempo, más seguridad

Tecnología Core

Unity 6 (URP), C#, percepción emulada con "seam" listo para ML (Barracuda)

Mensaje clave: coordinación entre 3 drones + prompt de misión configurable

Problema y Contexto del Reto

Necesidad Identificada

- Localizar persona descrita basada en sus atributos
- Aproximarse sin contacto físico directo
- Acelerar procesos de búsqueda y localización

Desafíos Técnicos

- Detección imperfecta desde altura
- Descenso para confirmación visual
- Colaboración multi-MAV sin duplicidades

Aplicaciones: seguridad industrial, eventos masivos, búsqueda y rescate, control de perímetros

Arquitectura de Solución

Agentes Autónomos

3 drones con FSM: Idle \rightarrow Takeoff \rightarrow Patrol \rightarrow Approach \rightarrow Land \rightarrow Landed

Sistema de Navegación

Movimiento inteligente, evitación de obstáculos y rutas optimizadas

Percepción Emulada

FOV, detección por atributos, preparado para integración ML

Coordinación Multi-MAV

Prevención de duplicidades, asignación inteligente de objetivos

Aterrizaje Seguro

5

Aproximación vertical, raycast, posicionamiento preciso ≤2m

Percepción y Prompt de Misión

Sistema de Percepción Emulada

- FOV configurable: campo de visión ajustable
- Radio de detección: alcance personalizable
- Manejo de oclusores: obstáculos y sombras
- Score de coincidencia: vs missionQuery (texto)
 - Seam arquitectónico para sustituir emulación por ML real (Barracuda/ONNX) sin reescribir código

Prompt Global Editable

Configuración runtime opcional para cambiar objetivo al vuelo sin reiniciar la misión

Coordinación Multi-MAV

Detección Individual

Cada dron identifica su "mejor match" basado en atributos del prompt

Resolución de Conflictos

Sistema de coordinación: gana el más cercano al objetivo

Continuidad Operativa

Los drones no asignados continúan patrulla para nueva búsqueda

Beneficios clave: mayor eficiencia, menor congestión aérea, mejor cobertura del área de operación

Flujo Operativo End-to-End

Componentes Clave en Código

Despegar.cs

FSM de vuelo, patrulla, approach/land, integración completa con detector de atributos

MissionPromptController.cs

Gestión de prompt global con capacidad de modificación en runtime

AttributeDetector.cs

Detección emulada, missionQuery, TryFindBestMatchingPerson() y TryGetNearestTargetPoint()

SimpleMultiDroneCoordinato

r.cs

Coordinación y asignación única de objetivos entre múltiples drones

NPCSpawner.cs

Población sintética con IDs únicos y combinaciones diversas de atributos

Demostración y Casos de Uso

Búsqueda Dirigida

Configurar missionQuery específico y observar asignación automática + aterrizaje preciso del dron ganador

Cambio en Vivo

Modificar prompt durante runtime y observar replanificación inteligente sin necesidad de reiniciar

Coordinación Multi-Dron

Tres drones patrullando simultáneamente, evitando perseguir el mismo objetivo

Métricas de Éxito (KPIs)

- T_búsqueda: tiempo hasta detección/aterrizaje
- Precisión: aterrizaje ≤ 2m, sin contacto
- Coordinación: tasa de duplicidad evitada
- Estabilidad: sin colisiones, FPS estable

Valor de Negocio y Próximos Pasos

Impacto Empresarial

- Eficiencia: localización rápida y precisa
- Seguridad: reducción de riesgo humano
- Escalabilidad: arquitectura multi-drone
- Evolutivo: preparado para ML real

Roadmap Siguiente Iteración

- Integrar tracking multi-objeto y consenso
- Añadir no-fly zones y mayor separación MAVs
- Conectar modelo ML (Barracuda) en seam
- Telemetría/reportes y replay de misiones

Estado Actual: Repositorio etiquetado "REVIEW 3", evidencia en docs/Revision3-EvidenciaReto.pdf

Simulación:

3 MAV (Agentes) despegan de Takeoff zone:

Objetivo: Despegar despues identificar individuo especifico y aterrizar cerca de el.

Spawnean 64 Personas en lugares random del campo con **colores diferentes, objetos y sombreros** estos son los parametros que el dron busca:

Mission: (Color, Sombrero, Objeto)

Ipad, Guitarra, Sombrero de Santa, Sombrero Fiesta etc...

Se identifican mediante un "query".

Finalmente despues de identificar a su objetivo el MAV aterriza cerca de el:

DEMO:

