НЕМОНОХРОМАТИЧЕСКИЕ ИСТОЧНИКИ

- **1.** Найти разность длин волн D-линий натрия, если известно, что резкость интерференционной картины, наблюдаемой в интерферометре с двумя лучами, минимальна у 490-й, 1470-й и т.д., а максимальна у 1-й, 980-й и т.д. полос. Средняя длина волны D-линий λ = 589,3 нм.
- 2. Интерференция света от двух малых отверстий в непрозрачном экране наблюдается в точке Р. Позади отверстий на пути лучей поставлены две одинаковые кюветы, наполненные воздухом при одинаковом начальном давлении. При изменении давления в одной

из кювет изменение интенсивности света в точке P имеет осциллирующий характер. Определить разность давлений ΔP газа в кюветах, при которой амплитуда осцилляций становится равной нулю, если 1-й минимум интенсивности наступает при разности давлений $\Delta P_1 = 10^{-3}$ мм. рт. ст. Спектр излучения точечного источника S равномерен в полосе $\Delta \omega$ и имеет относительную ширину $\Delta \omega/\omega = 10^{-5}$.

3. Определить видность $V = \frac{l_{max} - l_{min}}{l_{max} + l_{min}}$ интерференционной картины от двух точечных источников, спектр излучения которых одинаков и изображен на рисунке. Как зависит видность V от ширины спектра Δv ? Разность хода равна Δ .

4. Два пучка белого света от одного источника приходят в точку наблюдения P с разностью хода Δ . С помощью спектроскопа высокой разрешающей способности исследуется распределение энергии в спектре колебаний, возникающих в точке P при

наложении обоих пучков. Оказалось, что наблюдаются чередующиеся максимумы и минимумы спектральной интенсивности I(v), причем частотный интервал между соседними максимумами $\Delta v = 10$ МГц. Определить разность хода Δ .

5. Для исследования спектрального состава источника S одно ИЗ зеркал интерферометра Майкельсона перемещается со скоростью $\mathbf{v} = 0.01$ см/с. Какова зависимость тока фотоприемника от времени I(t), если источник излучает на длине волны λ = 500 нм, причем ширина спектральной линии $\Delta \lambda = 0.01$ нм? Спектральная интенсивность внутри спектральной линии $I(\omega) = I_0 = \text{const.}$ Оценить минимальное время, необходимое для изучения спектрального состава излучения. Нарисовать график зависимости тока от времени.

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ.

- **6.** Оценить, с какого расстояния L можно увидеть раздельно свет от двух фар автомобиля.
- **7.** Самый большой в Европе телескоп был сооружен в России и установлен в астрономической обсерватории на северных отрогах Кавказского хребта, вблизи станицы Зеленчукская. Диаметр зеркала этого телескопа $\mathbf{D} = 6$ м. Найти разрешаемое им угловое расстояние для длины волны $\mathbf{\Lambda} = 550$ нм.
- **8.** При аэрофотосъемке местности используется объектив с фокусным расстоянием $\mathbf{f}=10$ см и диаметром $\mathbf{D}=5$ см. Съемка производится на фотопленку, имеющую разрешающую способность $\mathbf{R}=100$ мм⁻¹. Определить, какие детали местности могут быть разрешены на фотографиях, если съемка производилась с высоты $\mathbf{h}=10$ км.
- **9.** С искусственного спутника Земли, обращающегося по круговой орбите на расстоянии h = 250 км, проводится фотографирование земной поверхности. Разрешающая способность фотопленки N = 500 линий/мм. Какими параметрами должен обладать объектив фотоаппарата (диаметр D, фокусное расстояние f), чтобы при фотографировании разрешались детали с линейными размерами $I \approx 1$ м?
- **10.**Оценить, во сколько раз отличаются напряженности электрического поля монохроматической волны $\lambda = 1$ мкм в фокусе параболического зеркала (диаметр D = 10 см, радиус кривизны R = 1 м) и на его входе.
- **11.**В фокальной плоскости объектива телескопа помещена фотопластинка. Освещенность изображения звезды на фотопластинке в $\boldsymbol{a}=10$ раз меньше освещенности изображения дневного неба. Во сколько раз надо увеличить диаметр объектива, чтобы освещенность изображения звезды на фотопластинке стала в $\boldsymbol{\beta}=10$ раз больше освещенности изображения неба?