Strengthening Landmark Heuristics via Hitting Sets Technical Report: Proofs

Blai Bonet

Departamento de Computación Universidad Simón Bolívar Caracas, Venezuela bonet@ldc.usb.ve

Hitting Sets

Let $A=\{a_1,\ldots,a_n\}$ be a set and $\mathcal{F}=\{F_1,\ldots,F_m\}$ a family of subsets of A. A subset $H\subseteq A$ has the hitting set property, or is a hitting set, iff $H\cap F_i\neq\emptyset$ for $1\leq i\leq m$ (i.e., H "hits" each set F_i). If we are given a cost function $c:A\to\mathbb{N}$, the cost of H is $\sum_{a\in H}c(a)$. A hitting set is of minimum cost if its cost is minimal among all hitting sets.

The problem of finding a minimum-cost hitting set for family $\mathcal F$ and cost function c is denoted by $\langle \mathcal F, c \rangle$, and the cost of its solution by $\min(\mathcal F, c)$. A relaxation for $\langle \mathcal F, c \rangle$ is a problem $\langle \mathcal F', c' \rangle$ such that $c' \leq c$, and for all $F' \in \mathcal F'$ there is $F \in \mathcal F$ with $F \subseteq F'$. In words, $\langle \mathcal F, c \rangle$ can be relaxed by reducing costs, dropping sets from $\mathcal F$, or enlarging elements of $\mathcal F$. Determining the existence of a hitting set for a given cost bound is a classic problem in computer science, one of the first problems to be shown NP-complete (Kar72).

Lemma 1. If $\langle \mathcal{F}', c' \rangle$ is a relaxation of $\langle \mathcal{F}, c \rangle$, then $\min(\mathcal{F}', c') \leq \min(\mathcal{F}, c)$. Furthermore, if $\{\langle \mathcal{F}_i, c_i \rangle\}$ is a collection of relaxations of \mathcal{F} such that $\sum_i c_i \leq c$, then $\sum_i \min(\mathcal{F}_i, c_i) \leq \min(\mathcal{F}, c)$.

Proof. The first claim is direct since a hitting set for \mathcal{F} is also a hitting set for \mathcal{F}' and $c' \leq c$. For the second claim, consider a hitting set H for \mathcal{A} . Then,

$$c(H) \ge \sum_{i} c_i(H) \ge \sum_{i} \min(\mathcal{F}_i, c_i)$$
.

The first inequality holds because $\sum_i c_i \leq c$ and the second because H is a hitting set for each \mathcal{F}_i .

Decomposition and Width

Let \mathcal{F} be a family that can be partitioned into $\Pi = \{\mathcal{F}_1, \dots, \mathcal{F}_m\}$ satisfying $(\bigcup \mathcal{F}_i) \cap (\bigcup \mathcal{F}_j) = \emptyset$ for all $i \neq j$; i.e., the blocks in the partition are pairwise *independent*. Then, for any cost function c, $\min(\mathcal{F}, c) = \sum_{i=1}^m \min(\mathcal{F}_i, c)$ and the problem of finding a minimum-cost hitting set for \mathcal{F} can be decomposed into smaller subproblems. We call the maximum size of a block in Π the width of Π , denoted by width(Π). The width of \mathcal{F} , denoted by width(\mathcal{F}) is the minimum width(Π) over all partitions Π

Copyright © 2010, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Malte Helmert

Albert-Ludwigs-Universität Freiburg Institut für Informatik Georges-Köhler-Allee 52 79110 Freiburg, Germany

helmert@informatik.uni-freiburg.de

of \mathcal{F} into independent blocks. Finding a partition that minimizes the width is an easy problem similar to computing connected components of a graph, so $width(\mathcal{F})$ can be efficiently computed.

Indeed, for a family \mathcal{F} , define the (undirected) graph $G = \langle V, E \rangle$ where $G = \cup \mathcal{F}$ and $\{a, a'\} \in E$ iff $a \neq a'$ and there is $F \in \mathcal{F}$ with $F \supseteq \{a, a'\}$. Then,

Proposition 1. The width of \mathcal{F} equals the size of the largest connected component of G.

Proof. Let $\{G_1, \ldots, G_m\}$ be the connected components of G and w the size of a largest one. We need to show that $width(\mathcal{F}) \leq w$ and $w \leq width(\mathcal{F})$.

For the first inequality, consider the partition $\Pi_G = \{\mathcal{F}_1, \dots, \mathcal{F}_m\}$ of \mathcal{F} defined by $\mathcal{F}_i = \{F \in \mathcal{F} : F \cap G_i \neq \emptyset\}$. It is easy to check that this partition is well defined and with pairwise independent blocks. Therefore,

$$width(\mathcal{F}) \leq width(\Pi_G) = \max_{i,\ldots,m} |\mathcal{F}_i| = w.$$

For the second inequality, let $\Pi = \{\mathcal{F}_1, \dots, \mathcal{F}_k\}$ be a partition of \mathcal{F} into pairwise independent blocks. It will be enough to show that each connected component G_i is contained in some block of Π .

Let a be a vertex in G_i and $\mathcal{F}_j \in \Pi$ a block containing it; i.e., $a \in \cup \mathcal{F}_j$. Consider an arbitrary vertex $a' \in G_i$. Since G_i is connected, there is a path $\langle a = a_0, a_1, \ldots, a_\ell = a' \rangle$ in G_i . We perform induction on ℓ to show that a' is also in $\cup \mathcal{F}_j$. For $\ell = 0$, a = a' and the claim is trivial. Assume that the claim holds for paths of length less than ℓ . Then, $a_{\ell-1}$ is in $\cup \mathcal{F}_j$ by inductive hypothesis. This implies that there is an $F \in \mathcal{F}_j$ such that $a_{\ell-1} \in F$. On the other hand, the edge $\{a_{\ell-1}, a_\ell\}$ implies the existence of F' with $\{a_{\ell-1}, a_\ell\} \subseteq F'$. Therefore, $F \cap F' \neq \emptyset$, $F' \in \mathcal{F}_j$ (because the blocks of Π are pairwise independent), and $a_\ell \in \cup \mathcal{F}_j$.

Let $\mathcal{F}=\{F_1,\ldots,F_k\}$ be a family over A with k subsets, but with no assumptions on the sizes of each F_i or A. We show that $\min(\mathcal{F},c)$ and a hitting set achieving this cost can be computed in time bounded by $O(\|\mathcal{F}\|+k4^k)$. To see this, consider the hypergraph $H_{\mathcal{F}}=(X,E)$ where $X=\{1,\ldots,k\}$ and there is a hyperedge $e(a)=\{i:a\in F_i\}$ with cost c(a) for each $a\in A$. The hitting sets for \mathcal{F} are in one-to-one correspondence with the covers of the hypergraph $H_{\mathcal{F}}$ (a cover is a set of hyperedges that "touch" every

vertex). Hence, finding $\min(\mathcal{F},c)$ is equivalent to finding a minimum-cost cover for $H_{\mathcal{F}}$. For the latter, observe that all hyperedges e(a) for which there is a hyperedge e(a') with e(a)=e(a') and c(a')< c(a) may be removed (and if c(a')=c(a), only one of the hyperedges needs to be kept).

Since a hyperedge is a subset of X, this implies that we only need to consider hypergraphs with at most 2^k edges. Using dynamic programming, a minimum cost cover for such a hypergraph can be found in time $O(k4^k)$. Combining this with the time required for constructing the hypergraph yields the overall $O(\|\mathcal{F}\| + k4^k)$ bound. This is an example of fixed-parameter tractability (FG06).

Theorem 2. The problem of computing $\min(\mathcal{F}, c)$ is fixed-parameter tractable when considering the width of \mathcal{F} as the parameter. In particular, for any fixed bound k, $\min(\mathcal{F}, c)$ for families of width at most k can be computed in linear time.

Proof. We first show that a hitting set problem $\langle \mathcal{F} = \{F_1, \dots, F_k\}, c \rangle$, of arbitrary width, can be solved in time $O(\|\mathcal{F}\| + k4^k)$, where $\|\mathcal{F}\|$ denotes the input size for F.

Consider the hypergraph $H_{\mathcal{F}}=(X,E)$ where $X=\{1,\ldots,k\}$ and there is a hyperedge $e(a)=\{i:a\in F_i\}$ with cost c(a) for each $a\in A$. The hitting sets for \mathcal{F} are in one-to-one correspondence with the covers of $H_{\mathcal{F}}$ (a cover is a set of hyperedges that "touch" every vertex). Hence, finding $\min(\mathcal{F},c)$ is equivalent to finding a minimum-cost cover for $H_{\mathcal{F}}$. For the latter, observe that all hyperedges e(a) for which there is a hyperedge e(a') with e(a)=e(a') and e(a')< e(a) may be removed (if e(a')=e(a)), only one of the hyperedges need to be kept). Thus, we only need to consider hypergraphs with at most e(a')=e(a') edges. The following DP algorithm computes the cost of a minimum-cost cover.

We make use of a table <code>best_cover</code> of size 2^k that maps subsets of $X = \{1, \dots, k\}$ into $[0, \infty) \cup \{\infty\}$. At the end of the algorithm, the entry <code>best_cover[X]</code> contains the cost of a minimum-cost cover for $\langle \mathcal{F}, c \rangle$, and a minimum-cost cover can be recovered from the table in linear time. The algorithm initializes the table as <code>best_cover[\emptyset] := 0</code> and <code>best_cover[X'] := \infty for all $\emptyset \subset X' \subseteq X$. Then, it updates the table using DP as shown in Fig. 1. The initilization loop takes $O(2^k)$ time. The two nested loops make a total of $O(4^k)$ iterations, each taking time O(k). The running time of the DP algorithm is $O(\|\mathcal{F}\|)$ time for constructing the hypergraph, and $O(k4^k)$ time for finding a minimum-cost cover of the hypergraph.</code>

Now, we show that a hitting set problem $\langle \mathcal{F}, c \rangle$ of width at most k can be solved in linear time. By Proposition 1, one can compute in linear time a partition $\Pi = \{\mathcal{F}_1, \ldots, \mathcal{F}_m\}$ of \mathcal{F} into independent blocks. Then, since the blocks are independent, $\min(\mathcal{F},c) = \sum_{i=1}^m \min(\mathcal{F}_i,c)$. Each subproblem $\langle \mathcal{F}_i,c \rangle$ can be solved in time $O(\|\mathcal{F}_i\| + k4^k)$. Therefore, $\langle \mathcal{F},c \rangle$ can be solved in time

$$\sum_{i=1}^{m} O(\|\mathcal{F}_i\| + k4^k) = O(m\|\mathcal{F}_i\| + mk4^k)$$
$$= O(\|\mathcal{F}\| + \|\mathcal{F}\|k4^k)$$

which is linear in $\|\mathcal{F}\|$ since k is fixed and bounded.

Landmarks

A STRIPS problem with action costs is a tuple P = $\langle F, O, I, G, c \rangle$ where F is the set of fluents, O is the set of actions or operators, I and G are the initial state and goal description, and $c: O \to \mathbb{N}$ is the cost function. We are interested in delete relaxations, so we assume that the operators have empty delete lists, and thus 'plan' and 'relaxed plan' shall denote the same. For a definition of the basic concepts underlying delete relaxations, such as the h^{max} and h^+ functions, we refer to the literature (HD09). We also assume from now on that all fluents have finite h^{\max} values, which implies that the problem has finite h^+ value. As additional simplifying assumptions, we require that all operators have nonempty preconditions, that there are two fluents $s, t \in F$ such that $I = \{s\}$ and $G = \{t\}$, and that there is a unique operator fin that adds t. When these simplifying assumptions are not met, they can be achieved through simple linear-time transformations. We denote the precondition and effects of $a \in O$ by pre(a) and post(a). The h^+ value for state I is denoted by $h^+(P)$.

An (action) landmark for P is a disjunction $a_1 \vee \cdots \vee a_n$ of actions such that every plan for P must contain at least one such action. Such a landmark is denoted by the set $\{a_1, \ldots, a_n\}$.

Recall that a pcf D assigns a precondition $D(a) \in \operatorname{pre}(a)$ to each action $a \in O$. Our first result relates cuts in the justification graph G(D) with landmarks for P.

Lemma 3. Let D be a pcf and C an s-t-cut of G(D). Then, the labels of the edges in the cut-set of C form a landmark.

Proof. A relaxed plan defines an s-t-path on G(D) that must cross every s-t-cut. \Box

Given a pcf D, we denote the set of landmarks associated with the cut-sets of G(D) by Landmarks(D). By considering all pcfs and all cuts in the justification graphs, we obtain the hitting set problem $\mathcal{F}_L \doteq \bigcup \{ \text{Landmarks}(D) : D \text{ is a precondition-choice function} \}.$

Theorem 4. If H is a plan for P, then H is a hitting set for \mathcal{F}_L . Conversely, if H is a hitting set for \mathcal{F}_L , then H contains a plan for P. Therefore, $\min(\mathcal{F}_L, c) = h^+(P)$.

Proof. The first claim is direct, since by Lemma 3, every element of \mathcal{F}_L is hit by every plan. The last claim follows from the first two.

For the second claim, let H be a hitting set for \mathcal{F}_L and let R be the set of fluents that can be reached by only using operators in H. If R contains the goal t, then H contains a plan and there is nothing to prove. So, assume $t \notin R$. We construct a pcf D such that G(D) contains an s-t-cut whose cut-set is not hit by H, thus reaching a contradiction. We classify operators into three types and define D:

- T1. If $\operatorname{pre}(a) \subseteq R$ and $\operatorname{post}(a) \subseteq R$, then set D(a) arbitrarily to some $p \in \operatorname{pre}(a)$.
- T2. If $\operatorname{pre}(a) \subseteq R$ and $\operatorname{post}(a) \nsubseteq R$, then set D(a) arbitrarily to some $p \in \operatorname{pre}(a)$.
- T3. If $pre(a) \nsubseteq R$, then set D(a) to some $p \in pre(a) \setminus R$.

```
Input: Hypergraph H = (X, E, c) where X = \{1, \dots, k\}, c is the edge-cost function, and |E| \leq 2^k. Output: best_cover[X'], for X' \subseteq X, is the cost of a minimum-cost cover for the vertices in X'. Thus, best_cover[X] is the cost of a minimum-cost cover for H. best_cover[\emptyset] := 0 forall X' \subseteq \{1, \dots, k\} with X' \neq \emptyset do best_cover[X'] := \infty forall X' \subseteq \{1, \dots, k\} in order of increasing cardinality do forall hyperedges e \in E of the graph do best_cover[X'] := \min(\text{best\_cover}[X'], c(e) + \text{best\_cover}[X' \setminus \{e\}])
```

Figure 1: DP algorithm for computing a minimum-cost cover of an hypergraph.

Now consider the cut (R, R^c) of G(D), where R^c is the set of all fluents not in R. It is a cut since $s \in R$ and $t \notin R$. We show that H does not hit the cut-set, i.e., there exists no operator $a \in H$ that labels an edge going from some fluent in R to some fluent not in R.

Assume that $a \in H$ were such an operator. It cannot be of type T1, because edges labeled by type T1 operators go from R into R. It cannot be of type T2, because $\operatorname{pre}(a) \subseteq R$ and $a \in H$ implies $\operatorname{post}(a) \subseteq R$ (by definition of R). Finally, it cannot be of type T3, as edges labeled by type T3 operators do not start in R. Hence, no such operator exists. \square

In practice, computing \mathcal{F}_L according to the definition above is infeasible because there are usually exponentially many pcfs. However, if we can compute and solve, in polynomial time, a relaxation of \mathcal{F}_L , then this provides a polytime admissible approximation of h^+ .

Corollary 5. Let $\langle \mathcal{F}, c' \rangle$ be a polynomial-time computable relaxation of $\langle \mathcal{F}_L, c \rangle$ (possibly additive¹) whose solution is polynomial-time computable. Then the heuristic $h = \min(\mathcal{F}, c')$ is a polytime admissible approximation of h^+ .

Proof. Direct from the assumptions: the admissibility because $\langle \mathcal{F}, c' \rangle$ is a relaxation of $\langle \mathcal{F}_L, c \rangle$, which defines h^+ , and the polynomial-time computability because $\langle \mathcal{F}, c' \rangle$ is solvabe in polynomial time.

An important special case covered by the corollary are landmark heuristics based on cost partitioning, including LM-cut (see below) and the heuristics of Karpas and Domshlak (KD09). In general, given a set $\mathcal{L} = \{L_1,\ldots,L_n\}$ of landmarks, a cost partitioning for \mathcal{L} is a collection $\mathcal{C} = \{c_1,\ldots,c_n\}$ of cost functions such that $\sum_{i=1}^n c_i(a) \leq c(a)$ for each action a. The partitioning defines the heuristic $h_{\mathcal{C}} \doteq \sum_{i=1}^n \min_{a \in L_i} c_i(a)$, which is an additive relaxation of \mathcal{F}_L when $\mathcal{L} \subseteq \mathcal{F}_L$.

Karpas and Domshlak studied *uniform* cost partitioning, defined as $c_i(a) \doteq 0$ if $a \notin L_i$ and $c_i(a) \doteq c(a)/|\{i: a \in L_i\}|$ if $a \in L_i$, and *optimal* cost partitioning, which maximizes $h_{\mathcal{C}}$ through linear programming (LP). Interestingly,

there is a close connection between the optimal cost partitioning LP and the hitting set ILP for \mathcal{L} .

Theorem 6. Let \mathcal{L} be a collection of landmarks, and let c be the cost function for the actions. Then, the LP that defines the optimal cost partitioning is the dual of the LP relaxation of the ILP for $\langle \mathcal{L}, c \rangle$.

Proof. Let $\mathcal{L} = \{L_j\}_j$ be a collection of landmarks over actions A, and c a cost functions for the actions. The ILP corresponding to $\langle L, c \rangle$ is:

minimize
$$\sum_{a\in A} c(a)\,x_a$$
 subject to
$$(\text{for }L_j\in\mathcal{L})\qquad \sum_{a\in L_j} x_a \geq 1\,,$$

$$(\text{for }a\in A)\qquad \qquad x_a\in\{0,1\}\,.$$

The variables x_a are indicator variables that define the hitting set. The LP relaxation of the ILP is:

minimize
$$\sum_{a \in A} c(a) \, x_a$$
 subject to
$$(\text{for } L_j \in \mathcal{L}) \qquad \sum_{a \in L_j} x_a \geq 1 \, ,$$
 $(\text{for } a \in A) \qquad 0 < x_a < 1 \, .$

The dual of the LP is:

maximize
$$\sum_j y_j$$
 subject to
$$(\text{for } a \in A) \quad \sum_j \llbracket a \in L_j \rrbracket y_j \leq c(a) \, ,$$
 $(\text{for } L_j \in \mathcal{L}) \qquad \qquad y_j \geq 0 \, .$

The variables y_j are the dual variables corresponding to the constraints of the LP. This LP attains the same value of the LP that defines the optimal cost partitioning for \mathcal{L} . Indeed,

¹In the additive case, we slightly abuse notation since $\langle \mathcal{F}, c' \rangle$ should be replaced by a collection $\{\langle \mathcal{F}_i, c_i \rangle\}_i$.

the y_j variables can be interpreted as the cost of each landmark for the optimal cost assignment. The constraints avoid cost partitionings c_j such that $\sum_i c_j(a) \ge c(a)$.

The LM-Cut Heuristic

Theorem 7. Given a set of landmark $\mathcal{L} \subseteq \mathcal{F}_L$ and cost partitioning \mathcal{C} , $h_{\mathcal{C}}$ is an additive relaxation of \mathcal{F}_L . LM-cut is one such relaxation.

Proof. The first claim is direct by definition. For the second claim, we show that there is a collection $\{\mathcal{F}_i\}_{i=1}^n$ of relaxations of \mathcal{F}_L such that

$$h^{ ext{LM-cut}}(P) = \sum_{i=1}^n m_i = \sum_{i=1}^n \min(\mathcal{F}_i, c_i) \le \min(\mathcal{F}_L, c)$$
.

Let L_1,\ldots,L_n and c_1,\ldots,c_n be the landmarks and cost functions computed by LM-cut at each stage. Define $\mathcal{F}_i=\{L_i\}$ and $c_i'(a)=m_i$ if $a\in L_i$ and $c_i'(a)=0$ otherwise. Clearly, each \mathcal{F}_i is a relaxation of \mathcal{F}_L and $\min(\mathcal{F}_i,c_i)=\min(\mathcal{F}_i,c_i')=m_i$. By Lemma 1, it remains to show that $\sum_i c_i' \leq c$.

 $\min(\mathcal{F}_i, c_i') = m_i$. By Lemma 1, it remains to show that $\sum_i c_i' \leq c$. Let $I(a, k) = \{i : a \in L_i, 1 \leq i \leq k\}$ be the set of indices for the landmarks in $\{L_1, \ldots, L_k\}$ that contain a. Using induction it is not difficult to show that $c_{k+1}(a) = c(a) - \sum_{i \in I(a,k)} m_i$. On the other hand,

$$c_1'(a) + c_2'(a) + \dots + c_k'(a) = \sum_{i \in I(a,k)} c_i'(a) = \sum_{i \in I(a,k)} m_i.$$

We show using induction on k that $c_1'(a)+\cdots+c_k'(a)\leq c(a)$ for every action a and $1\leq k\leq n$. The base of the induction is easy. If $a\notin L_1$, then $c_1'(a)=0\leq c(a)$. If $a\in L_1$, then $c_1'(a)=m_1=\min_{a'\in L_1}c_1(a')\leq c(a)$. Suppose that the claim holds up to k. We need to show it for k+1. If $a\notin L_{k+1}$, then $\sum_{i\in I(a,k+1)}c_i'(a)=\sum_{i\in I(a,k)}c_i'(a)\leq c(a)$ by inductive hypothesis. If $a\in L_{k+1}$, then

$$\sum_{i \in I(a,k+1)} c'_i(a) = \sum_{i \in I(a,k)} c'_i(a) + c'_{k+1}(a)$$

$$= \sum_{i \in I(a,k)} m_i + m_{k+1}$$

$$= \sum_{i \in I(a,k)} m_i + \min_{a' \in L_{k+1}} c_{k+1}(a')$$

$$\leq \sum_{i \in I(a,k)} m_i + c_{k+1}(a)$$

$$= \sum_{i \in I(a,k)} m_i + c(a) - \sum_{i \in I(a,k)} m_i$$

$$= c(a).$$

Theorem 8. For any fixed $p \ge 1$ and $k \ge 1$, $h_{p,k}^{LM-cut}$ is computable in polynomial time and dominates h^{LM-cut} .

Proof. Direct.

References

Jörg Flum and Martin Grohe. *Parameterized Complexity Theory*. Springer-Verlag, 2006.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: What's the difference anyway? In *Proc. ICAPS 2009*, pages 162–169, 2009.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, *Complexity of Computer Computations*, pages 85–103. 1972.

Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In *Proc. IJCAI 2009*, pages 1728–1733, 2009.