Algoritmos Genéticos Aplicados ao Roteamento *Multicast* na Internet, Contemplando Requisitos de Qualidade de Serviço e Engenharia de Tráfego

Paulo Teixeira de Araújo Gina Maira Barbosa de Oliveira

Universidade Presbiteriana Mackenzie

Motivação

Serviço Best-effort na Internet:

- Não possui tratamento diferenciado
- Dificulta a obtenção de QoS

Aumento de tráfego nas Redes U Engenharia de Tráfego (ET)

 $QoS \Rightarrow$ Roteamento QoS

ET

Roteamento Baseado em Restrições

QoS

QoS em redes: uma série de requisitos de serviços a serem atendidos pela rede durante o transporte de um fluxo de dados.

- Diferente aplicativos ⇒ diferentes requisitos
- Requisitos:
- Largura de banda (bandwidth):
 - Retardo (delay):
 - Variação do retardo (jitter):
 - Probabilidade de perda de pacotes
 - Memória (buffer):;
 - Número de passos (hops count):
- - Distância física:
- - Custo *(cost)*:

ET

- O IETF (Internet Engineering Task Force) criou algumas propostas que definem a QoS e formas de obtê-la: Engenharia de Tráfego (ET).
- Os objetivos da ET referem-se tanto ao tráfego dos aplicativos, quanto aos recursos da rede como um todo:
 - Orientado a tráfego: requisitos QoS no fluxo de dados.
 - <u>Orientado a recurso</u>: assegurar que recursos da rede não sejam utilizados em excesso, tornando-se congestionados, enquanto outros fiquem sub-utilizados.

Problema

• Roteamento:

combinação de 2 ou + métricas aditivas/ multiplicativas

NP Completo

• Roteamento Baseado em Restrições:

Implementação Intratável

• Cálculo de Rotas:

Para ser aceito pelos protocolos da Internet é necessário que o tempo de processamento seja baixo o suficiente para não atrapalhar o dinamismo do tráfego (Evitar Congestionamento)

Solução Analisada

Algoritmo Genético:

Cálculo de rotas QoS em diversos trabalhos

- O modelo discutido é fortemente baseado em (Zhengying et al., 2001).
- Adaptações para endereçar lacunas em (Zhengying et al., 2001).
- Inovações incorporadas para atingir requisitos da ET:
 - Métrica Número de Passos
 - Mecanismo para impedir rotas repetidas

Modelo Original (Zhengying et al., 2001)

O objetivo do AG é encontrar rotas *multicast* que atendam aos requisitos:

- Delay Máximo
- Custo Mínimo
- •Largura de Banda Disponível (*)
- Este modelo, por sua vez, é fortemente baseado em (Ravikumar *et al.*, 1998), que usa as mesmas métricas *QoS*.
- Estas métricas são necessárias à transmissão de aplicativos multimídia em tempo real.

- O objetivo do AG é:
 - Encontrar uma árvore (rota) *multicast* que atenda ao *delay* máx. em cada caminho.
 - Dentre as árvores que atendem ao *delay*, encontrar a árvore de menor custo.

Indivíduos: árvores multicast

• População Inicial: gera aleatoriamente árvores que partem da origem até atingir todos destinos.

Avaliação:

$$F(T) = \frac{1}{\sum_{e \in T} custo(e)} \prod_{t \in D} \left(\omega \left(delay(s, t) - Delay(t) \right) \right)$$

E: conjunto de enlaces. $e \in E$

- s: nó origem e D: conjunto de nós destinos
- T: árvore multicast. T(s,D)
- t: um caminho até um dos destinos em T
- *Delay(t) = Delay* máximo (restrição do roteamento)
- delay(s,t) = atraso partindo de s até um destino t
- ω(X): função de penalidade:

$$\omega(x) = \begin{cases} 1, se \ x <= 0 \\ 0, 5, se \ x > 0 \end{cases}$$

- Crossover composto pelos seguintes passos:
- (1) escolher 2 pais utilizando-se seleção pela roleta;
- (2) comparar pais p/ identificar os arcos idênticos;
- (3) criar sub-árvores a partir destes arcos;
- (4) gerar um filho através da re-conexão das subárvores, realizada respeitando-se o seguinte critério:
- se um dos dois pais atender ao *delay* máx., é utilizado um algoritmo tradicional que encontra o caminho de menor custo entre as sub-árvores;
- senão, o algoritmo de busca encontra o caminho de menor *delay*.

Mutação:

- Eliminamos arcos de um conjunto de nós escolhidos aleatoriamente do indivíduo.
- Como consequência, sub-árvores derivadas deste filho são geradas.
- O algoritmo re-conecta as sub-árvores da nova árvore T utilizando o mesmo processo do método de recombinação.

Modelo Implementado • Lacunas no Modelo Original e Adaptações:					
Inexistência de arcos idênticos	O pai de menor custo (ou delay) é replicado como filho. A decisão custo/delay segue o mesmo critério da conexão.				
Algoritmo utilizado na conexão das sub- árvores.	Busca em profundidade				
Tamanho Elite	50% da população				
Percentual de nós desconectados na mutação.	20% do total de nós				

Modelo Implementado

- Inovações visando ET:
- (1) Inclusão do número de passos como métrica: critério de desempate, quando existirem caminhos de mesmo custo.

Critério: delay/custo/no.passos

(2) Inclusão de um mecanismo para inibir rotas repetidas na população final: a cada filho gerado, verifica se o mesmo já existe na população. Se existe, ocorre mutação.

Modelo Implementado

- Modificações incorporadas são importantes para a ET, pois permitem:
 - A implementação do re-roteamento rápido que, aumenta a confiabilidade da rede através da criação de rotas *backup* a serem utilizadas.
 - A distribuição de carga.
 - A melhoria do desempenho total da rede pois, com a diminuição do número de passos, há uma redução no consumo geral dos recursos da rede.

Experimentos							
Resultados Rede 0							
Np	Ng	% Convergência	Tempo Sala	Delay Médio	Custo Médio	Nº Passos Médio	
15	20	70%	0.46 s	24 ms	74,10	9.85	
30	20	95%	0.90 s	24 ms	69,05	9.95	
Resultados Rede 1							
Np	Ng	% Convergência	Tempo Sala	Delay Médio	Custo Médio	No Passos Médio	
15	20	15%	0.47 s	8 ms	105,20	9.85	
30	20	30%	1.12 s	8 ms	103,05	9.7	

Comentários Finais

- AG implementado converge para a solução ótima global, enquanto que as implementações originais não conseguiram.
- Nas execuções em que o AG não consegue convergir para o ótimo global, são obtidas soluções sub-ótimas que atendem ao delay, com um pequeno acréscimo no custo.
- As rotas sub-ótimas obtidas possuem um pequeno acréscimo de custo, mas mantêm um no. de passos próximo ao ótimo global.

Comentários Finais

- Mecanismo para impedir rotas idênticas, como o implementado, realmente se faz necessário para o re-roteamento: Diversidade: 0 a 11% ⇒79 a 89%
- A solução é sensível à topologia da rede e à distribuição dos valores de custo e *delay*.
- Novos experimentos com o objetivo de obter um ambiente que retorne uma melhor convergência para ambas as redes.
- Utilização de algoritmos mais eficientes na busca do menor caminho na conexão.