Force Analysis Of Holonomic Wheels

Nex+Gen Griffin Robotics FTC Team 7582

Cameron Pase
Douglas Pase, dmpase@gmail.com

Bearing 0° velocity 2

FL: -V2/2

FR: +\(\sqrt{2}\)

BR: +√2/2

BL: -√2/2

Bearing 45° velocity 2

FL: -1

FR: 0

BR: +1

BL: 0

Bearing 90° velocity 2

FL: -√2/2

FR: -√2/2

BR: +√2/2

BL: +\v2/2

Bearing 135° velocity 2

FL: 0

FR: -1

BR: 0

BL: +1

5

Bearing 180°

velocity 2

FL: +√2/2

FR: -√2/2

BR: -√2/2

BL: +\v2/2

Bearing 225° velocity 2

FL: +1

FR: 0

BR: -1

BL: 0

Bearing 270°

velocity 2

FL: +√2/2

FR: +\(\sqrt{2}\)

BR: -√2/2

BL: -√2/2

Bearing 315° velocity 2

FL: 0

FR: +1

BR: 0

BL: -1

Computing Motor Power From A Bearing

Bearing	0°	45°	90°	135°	180°	225°	270°	315°	Power
Front Left	-√2/2	-1	-√2/2	0	+√2/2	+1	+√2/2	0	-sin(b+45°)
Front Right	+√2/2	0	-√2/2	-1	-√2/2	0	+√2/2	+1	cos(b+45°)
Back Right	+√2/2	+1	+√2/2	0	-√2/2	-1	-√2/2	0	sin(b+45°)
Back Left	-√2/2	0	+√2/2	+1	+√2/2	0	-√2/2	-1	-cos(b+45°)
sin(b+45°)	+√2/2	+1	+√2/2	0	-√2/2	-1	-√2/2	0	
cos(b+45°)	+√2/2	0	-√2/2	-1	-√2/2	0	+√2/2	+1	

Rotation

Rotate Right velocity 2

FL: -1

FR: -1

BR: -1

BL: -1

Rotate Left velocity 2

FL: +1

FR: +1

BR: +1

BL: +1

Joystick Calculations

The Gamepad Joysticks

- Each gamepad has two joysticks, left and right
- Joysticks have two axes, x and y
- Each axis is given a name that reflects the gamepad, joystick and axis
 - double gamepad1.left_stick_x
 - double gamepad1.left_stick_y
 - double gamepad2.right_stick_x
 - ...
- We can read each axis value individually using that name

Joystick Conventions

- Joysticks follow the conventions of computer graphics displays
- The x axis increases from left to right, like in mathematics
- But the y axis is upside down, it increases from top to bottom, which is the opposite of math
- The joystick x and y have a range of -1.0 to +1.0
- We can use the values of x and y to compute the direction the driver is telling the robot to go

Trigonometry Review

- Start with a unit circle (radius=1)
- For some angle α ...
- $x = \cos \alpha$
- $y = \sin \alpha$
- $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$
- Pythagorean theorem says,

$$x^2 + y^2 = (\cos \alpha)^2 + (\sin \alpha)^2 = 1$$

The Math.atan2(y, x) function

- If you know a point (x, y) on the line, you can find the angle α to the x-axis
- α = Math.atan2(y, x)
- Notice α is the angle from the x-axis to the line, in radians
- We can use this to find the direction the joystick is pointing, but we have to convert α to a bearing, in degrees

Comparing α to a Bearing

180°
10/13/2018 Griffin Robotics 7582 19

Comparing α to a Bearing

α

- α is in radians
- α is an angle from the *x*-axis
- α increases in a counterclockwise direction

Bearing

- bearing is in degrees
- bearing is an angle from the y-axis
- bearing increases in a clockwise direction

Converting Between α and a Bearing

```
x = gamepad1.left_stick_x

y = -gamepad1.left_stick_y

\alpha = Math.atan2(y, x)
```

- To get the bearing in degrees bearing = $90^{\circ} 180^{\circ} * \alpha / \pi$
- Math.sin() and Math.cos() need the bearing in radians radians = π * bearing / 180°

The Final Step

- Motor output should be proportional to how far the joystick is moved
 - All the way forward means as fast as possible
 - A little push means a little speed
- The length (distance from the center to the joystick position) can be calculated from x and y using the Pythagorean Theorem

length =
$$\sqrt{x^2 + y^2}$$
 = Math.sqrt($x*x+y*y$)

 The length should never be greater than +1.0 or the motors will throw an exception

length = Math.min(length, 1.0)

 $x = \text{gamepad1.left_stick_x}$ $y = -\text{gamepad1.left_stick_y}$ $\alpha = \text{Math.atan2}(y, x)$ $bearing = 90^{\circ} - \alpha * 180^{\circ}/\pi$ $length = V(x^2+y^2)$ speed = min(length, 1.0)

Questions?