WHAT IS CLAIMED IS:

1. A compound of the following formula:

$$A_1 \underbrace{\qquad \qquad }_{R^1} (CH_2)_m \underbrace{\qquad \qquad }_{(X)_x} (CH_2)_n \underbrace{\qquad \qquad }_{(Y)_y} (CH_2)_p \underbrace{\qquad \qquad }_{Q^2} \underbrace{\qquad \qquad }_{R^2}$$

wherein

each of R^1 and R^2 , independently, is H, halo, C_{1-5} alkyl, C_{1-5} haloalkyl, C_{6-12} aryl, C_{6-12} aralkyl, or heteroaryl, optionally substituted with halo, $-OR^a$, C_{1-5} alkyl, substituted aryl, substituted heteroaryl, C_{1-5} haloalkyl, C_{1-5} alkyl- OR^a , -CN, $-C(O)R^a$, $-SR^a$, $-S(O)R^a$, $-S(O)_2R^a$, $-NR^aR^a$, $-C(O)OR^a$, $-C(O)NR^aR^a$, $-NO_2$, $-OC(O)R^a$, $-NR^aC(O)R^a$, $-NR^aC(O)OR^a$, or $-NR^aC(O)NR^aR^a$; in which each of R^a , R^a , and R^a , independently, is H, C_{1-5} alkyl, or aryl;

each of A_1 and A_2 , independently, is C_{6-12} aryl, C_{6-12} aralkyl, or heteroaryl, optionally substituted with halo, $-OR^b$, C_{1-5} alkyl, C_{1-5} haloalkyl, C_{1-5} alkyl- OR^b , -CN, $-NO_2$, $-C(O)R^b$, $-SR^b$, $-S(O)R^b$, $-S(O)_2R^b$, $-NR^bR^b$, $-C(O)OR^b$, $-C(O)NR^bR^b$, $-NO_2$, $-OC(O)R^b$, $-NR^bC(O)OR^b$, or $-NR^bC(O)NR^bR^b$, provided that if A_1 is heteroaryl, it forms a C-N bond with the imidazolidinone ring; in which each of R^b , R^b , and R^b , independently, is H, C_{1-5} alkyl, or aryl;

each of X and Y, independently, is $-C(H)(R^c)$, $-C(R^c)(R^{c'})$ -, $-NR^{c''}$ -, -S-, -S(O)-, $-S(O)_2$ -, $-C(H)(OR^d)$ -, $-C(H)[OC(O)R^d]$ -, $-C(H)(NR^dR^{d'})$ -, $-C(H)[NR^dC(O)R^{d'}]$ -, $-C(H)[NR^dC(O)OR^{d'}]$, $-C(H)[NR^dC(O)NR^{d'}R^{d''}]$, -C(H)(SH)-, $-C(H)(SR^d)$ -, $-C(H)(SOR^d)$ -,

-C(H)(SO₂R^d)-, C₆₋₁₂ aryl, cyclyl, heterocyclyl, heteroaryl, alkenyl, alkynyl, or; in which each of R^c and R^c, independently, is halo, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₁₋₅ alkoxy, C₁₋₅ aryloxy, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; R^c is C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₆₋₁₂ aryl, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; and each of R^d, R^d, and R^d, independently, is H, C₁₋₅ alkyl, or aryl; each of m, n, and p, independently, is 0, 1, 2, 3, 4, or 5; and

each of x and y, independently, is 0 or 1, provided that at least one of x and y is 1.

- 2. The compound of claim 1, wherein x is 1, y is 0, and p is 0.
- 3. The compound of claim 2, wherein R^1 is H.
- 4. The compound of claim 3, wherein A_1 is pyridin-4-yl.
- 5. The compound of claim 4, wherein A_2 is aryl.
- 6. The compound of claim 5, wherein A_2 is phenyl.
- 7. The compound of claim 6, wherein R² is substituted at position 4 of phenyl.
- 8. The compound of claim 7, wherein R^2 is C_{6-12} aryl or heteroaryl, optionally substituted with halo, C_{1-5} alkyl, or C_{1-5} haloalkyl.
- 9. The compound of claim 8, wherein X is $-C(H)(R^c)$ -, $-C(R^c)(R^{c'})$ -, $-NR^{c''}$ -, or phenyl.
 - 10. The compound of claim 9, wherein X is $-C(H)(CH_3)$ -.
- 11. The compound of claim 10, wherein R^2 is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C_{1-5} alkyl.
- 12. The compound of claim 11, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
 - 13. The compound of claim 12, wherein the sum of m and n is 4.
 - 14. The compound of claim 9, wherein X is $-C(CH_3)(CH_3)$ -.

- 15. The compound of claim 14, wherein R^2 is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C_{1-5} alkyl.
- 16. The compound of claim 15, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
 - 17. The compound of claim 16, wherein the sum of m and n is 4.
 - 18. The compound of claim 9, wherein X is $-N(CH_3)$ -.
- 19. The compound of claim 18, wherein R^2 is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C_{1-5} alkyl.
- 20. The compound of claim 19, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
 - 21. The compound of claim 20, wherein the sum of m and n is 4.
 - 22. The compound of claim 9, wherein X is phenyl.
- 23. The compound of claim 22, wherein R^2 is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C_{1-5} alkyl.
- 24. The compound of claim 23, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
 - 25. The compound of claim 24, wherein the sum of m and n is 4.

- 26. The compound of claim 9, wherein X is $-C(H)(CF_3)$ -.
- 27. The compound of claim 26, wherein R^2 is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl optionally substituted with halo or C_{1-5} alkyl.
- 28. The compound of claim 27, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
 - 29. The compound of claim 28, wherein the sum of m and n is 4.
 - 30. The compound of claim 8, wherein R² is phenyl optionally substituted with halo.
- 31. The compound of claim 30, wherein X is $-C(H)(R^c)$ -, $-C(R^c)(R^{c'})$ -, $-NR^{c''}$ -, or phenyl.
- 32. The compound of claim 31, wherein X is $-N(CH_3)$ -, $-C(H)(CH_3)$ -, $-C(H)(CF_3)$ -, $-C(CH_3)(CH_3)$ -, or phenyl.
- 33. The compound of claim 8, wherein X is 1,2,4-oxadiazoly1,2,4-oxadiazoly1, tetrazoly1, or thienyl, optionally substituted with halo or C_{1-5} alkyl.
- 34. The compound of claim 33, wherein X is, $-C(H)(R^c)$ -, $-C(R^c)(R^{c'})$ -, $-NR^{c''}$ -or phenyl.
- 35. The compound of claim 34, wherein X is $-N(CH_3)$ -, $-C(H)(CH_3)$ -, $-C(H)(CF_3)$ -, $-C(CH_3)(CH_3)$ -, or phenyl.
 - 36. The compound of claim 1, wherein A_2 is phenyl.

- 37. The compound of claim 36, wherein R^1 is H.
- 38. The compound of claim 37, wherein A_1 is pyridin-4-yl.
- 39. The compound of claim 1, wherein R^1 is H.
- 40. The compound of claim 39, wherein A_1 is pyridin-4-yl.
- 41. The compound of claim 1, wherein the compound is

42. A method of treating infection by enterovirus, comprising administering to a subject in need thereof an effective amount of a compound of the following formula:

$$A_1 \xrightarrow{N} (CH_2)_m \xrightarrow{(CH_2)_n} (Y)_y (CH_2)_p \xrightarrow{A_2} R^2$$

wherein

each of R^1 and R^2 , independently, is H, halo, C_{1-5} alkyl, C_{1-5} haloalkyl, C_{6-12} aryl, C_{6-12} aralkyl, or heteroaryl, optionally substituted with halo, $-OR^a$, C_{1-5} alkyl, substituted aryl, substituted heteroaryl, C_{1-5} haloalkyl, C_{1-5} alkyl- OR^a , -CN, $-C(O)R^a$, $-SR^a$, $-S(O)R^a$, $-S(O)_2R^a$, $-NR^aR^a$, $-C(O)OR^a$, $-C(O)NR^aR^a$, $-NO_2$, $-OC(O)R^a$, $-NR^aC(O)R^a$, $-NR^aC(O)OR^a$, or $-NR^aC(O)NR^aR^a$; in which each of R^a , R^a , and R^a , independently, is H, C_{1-5} alkyl, or aryl;

each of A_1 and A_2 , independently, is C_{6-12} aryl, C_{6-12} aralkyl, or heteroaryl, optionally substituted with halo, $-OR^b$, C_{1-5} alkyl, C_{1-5} haloalkyl, C_{1-5} alkyl- OR^b , -CN, $-NO_2$, $-C(O)R^b$, $-S(O)_2R^b$, $-S(O)_2R^b$, $-NR^bR^b$, $-C(O)OR^b$, $-C(O)NR^bR^b$, $-NO_2$, $-OC(O)R^b$, $-NR^bC(O)R^b$, or $-NR^bC(O)NR^bR^b$, provided that if A_1 is heteroaryl, it forms a C-N bond with the imidazolidinone ring; in which each of R^b , R^b , and R^b , independently, is H, C_{1-5} alkyl, or aryl;

each of X and Y, independently, is $-C(H)(R^c)$, $-C(R^c)(R^{c'})$ -, $-NR^{c''}$ -, -S-, -S(O)-, $-S(O)_2$ -, $-C(H)(OR^d)$ -, $-C(H)[OC(O)R^d]$ -, $-C(H)(NR^dR^{d'})$ -, $-C(H)[NR^dC(O)R^{d'}]$ -, $-C(H)[NR^dC(O)NR^dR^{d'}]$, -C(H)(SH)-, $-C(H)(SR^d)$ -, $-C(H)(SOR^d)$ -, -C(H

-C(H)(SO₂R^d)-, C₆₋₁₂ aryl, cyclyl, heterocyclyl, heteroaryl, alkenyl, alkynyl, or ; in which each of R^c and R^c, independently, is halo, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₁₋₅ alkoxy, C₁₋₅ aryloxy, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; R^c is C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₆₋₁₂ aryl, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; and each of R^d, R^d, and R^d, independently, is H, C₁₋₅ alkyl, or aryl; each of m, n, and p, independently, is 0, 1, 2, 3, 4, or 5; and

each of x and y, independently, is 0 or 1, provided that at least one of x and y is 1.

- 43. The method of claim 42, wherein x is 1, y is 0, and p is 0.
- 44. The method of claim 43, wherein R¹ is H.
- 45. The method of claim 44, wherein A_1 is pyridin-4-yl.
- 46. The method of claim 45, wherein A_2 is phenyl.
- 47. The method of claim 46, wherein R² is substituted at position 4 of phenyl.
- 48. The method of claim 47, wherein R^2 is C_{6-12} aryl or heteroaryl, optionally substituted with halo, C_{1-5} alkyl, or C_{1-5} haloalkyl.
- 49. The method of claim 48, wherein X is $-C(H)(R^c)$ -, $-C(R^c)(R^{c'})$ -, $-NR^{c''}$ -, or phenyl.
- 50. The method of claim 49, wherein R^2 is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C_{1-5} alkyl.
- 51. The method of claim 50, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
 - 52. The method of claim 51, wherein the sum of m and n is 4.
 - 53. The method of claim 43, wherein R¹ is H.
 - 54. The method of claim 53, wherein A_1 is pyridin-4-yl.
 - 55. The method of claim 42, wherein the compound is

56. A pharmaceutical composition comprising a compound of the following formula:

$$A_1 \underbrace{\qquad \qquad }_{R^1} (CH_2)_m \underbrace{\qquad \qquad }_{(X)_x} (CH_2)_n \underbrace{\qquad \qquad }_{(Y)_y} (CH_2)_p \underbrace{\qquad \qquad }_{R^2}$$

wherein

each of R^1 and R^2 , independently, is H, halo, C_{1-5} alkyl, C_{1-5} haloalkyl, C_{6-12} aryl, C_{6-12} aralkyl, or heteroaryl, optionally substituted with halo, $-OR^a$, C_{1-5} alkyl, substituted aryl, substituted heteroaryl, C_{1-5} haloalkyl, C_{1-5} alkyl- OR^a , -CN, $-C(O)R^a$, $-SR^a$, $-S(O)R^a$, $-S(O)_2R^a$, $-NR^aR^a$, $-C(O)OR^a$, $-C(O)NR^aR^a$, $-NO_2$, $-OC(O)R^a$, $-NR^aC(O)R^a$, $-NR^aC(O)OR^a$, or $-NR^aC(O)NR^aR^a$; in which each of R^a , R^a , and R^a , independently, is H, C_{1-5} alkyl, or aryl;

each of A_1 and A_2 , independently, is C_{6-12} aryl, C_{6-12} aralkyl, or heteroaryl, optionally substituted with halo, $-OR^b$, C_{1-5} alkyl, C_{1-5} haloalkyl, C_{1-5} alkyl- OR^b , -CN, $-NO_2$, $-C(O)R^b$, $-S(O)R^b$, $-S(O)_2R^b$, $-NR^bR^b$, $-C(O)OR^b$, $-C(O)NR^bR^b$, $-NO_2$, $-OC(O)R^b$, $-NR^bC(O)R^b$, or $-NR^bC(O)NR^bR^b$, provided that if A_1 is heteroaryl, it forms a C-N bond with the imidazolidinone ring; in which each of R^b , R^b , and R^b , independently, is H, C_{1-5} alkyl, or aryl;

$$\begin{split} & \text{ each of } X \text{ and } Y, \text{ independently, is -C(H)(R^c), -C(R^c)(R^{c'})-, -NR^{c''}-, -S-, -S(O)-,} \\ & -S(O)_2\text{-, -C(H)(OR^d)-, -C(H)[OC(O)R^d]-, -C(H)(NR^dR^{d'})-, -C(H)[NR^dC(O)R^{d'}]-,} \\ & -C(H)[NR^dC(O)OR^{d'}], -C(H)[NR^dC(O)NR^{d'}R^{d''}], -C(H)(SH)-, -C(H)(SR^d)-, -C(H)(SOR^d)-,} \\ \end{aligned}$$

-C(H)(SO₂R^d)-, C₆₋₁₂ aryl, cyclyl, heterocyclyl, heteroaryl, alkenyl, alkynyl, or ; in which each of R^c and R^c, independently, is halo, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₁₋₅ alkoxy, C₁₋₅ aryloxy, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; R^c is C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; and each of R^d, R^d, and R^d, independently, is H, C₁₋₅ alkyl, or aryl;

each of m, n, and p, independently, is 0, 1, 2, 3, 4, or 5; and

each of x and y, independently, is 0 or 1, provided that at least one of x and y is 1; and a pharmaceutically acceptable carrier.

- 57. The composition of claim 56, wherein R^1 is H, A_1 is pyridin-4-yl, A_2 is phenyl.
- 58. The composition of claim 57, wherein x is 1; y is 0; p is 0; and R^2 is C_{6-12} aryl or heteroaryl, optionally substituted with halo, C_{1-5} alkyl, or C_{1-5} haloalkyl.
- 59. The composition of claim 58, wherein X is $-C(H)(R^c)$ -, $-C(R^c)(R^c)$ -, $-NR^{c''}$ -, or phenyl.
 - 60. The composition of claim 56, wherein the compound is