Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów w sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 2, zadanie nr 1

Zespół Z01

Hubert Kozubek, Przemysław Michalczewski

Spis treści

1.	Labo	oratorium
	1.	Cel laboratorium
		Przebieg laboratorium
	3.	Punkt pracy stanowiska
	4.	Odpowiedzi skokowe toru zakłócenie-wyjście
	5.	Odpowiedzi skokowe dla algorytmu DMC
	6.	Algorytm DMC z pomiarem zakłóceń
	7.	Dobór parametrów dla algorytmu DMC
2.	Proj	\mathbf{ekt}
	1.	Informacje wstępne
	2.	Sprawdzenie poprawności punktu pracy

1. Cel laboratorium

Celem niniejszego laboratorium była implementacja, weryfikacja poprawności działania i dobór parametrów algorytmów regulacji jednowymiarowego procesu laboratoryjnego z pomiarem zakłócenia dla stanowiska grzejąco-chłodzącego przedstawionego na rys. 1.1.

Rys. 1.1. Stanowisko grzejąco-chłodzące używane w trakcie laboratoriów.

2. Przebieg laboratorium

Rozpoczynając pracę na stanowisku grzejąco-chłodzącym sprawdzono możliwość sterowania i pomiaru w komunikacji za stanowiskiem. W szczególności sygnały sterujące wykorzystywane podczas niniejszego laboratorium W1, G1, Z oraz pomiaru T1 (elementy wykonawcze przedstawiono na rys. 1.2). Przez cały czas trwania laboratorium moc wentylatora W1 była ustawiona na 50%, a wentylator traktowany jako cecha otoczenia. Dodatkowo sprawiał on, że temperatura grzałki opadała szybciej, co było szczególnie przydatne pomiędzy doświadczeniami.

W ramach laboratorium należało wykonać 5 zadań:

- 1. Odczytać wartość pomiaru temperatury dla termometru T1 dla mocy 26% grzałki G1 w stanie ustalonym (wyznaczyć punkt pracy).
- 2. Wyznaczyć odpowiedzi skokowe toru zakłócenie-wyjście dla trzech różych zmian sygnału zakłócającego Z rozpoczynając z punktu pracy.
- 3. Przygotować odpowiedzi skokowe wykorzystywane w algorytmie DMC.
- 4. Zaimplementować algorytm DMC do regulacji procesu stanowiska w języku MATLAB.
- 5. Dobrać parametr D^{z} dla algorytmu DMC i przeprowadzić eksperymenty.

Rys. 1.2. Schemat stanowiska grzejąco-chłodzącego; zaznaczone elementy wykonawcze: wentylatory W1, W2, W3, W4, grzałki G1, G2, czujniki temperatury T1, T2, T3, T4, T5 (temperatura otoczenia), pomiar prądu P1, pomiar napięcia P2.

3. Punkt pracy stanowiska

W celu wyznaczenia punktu pracy stanowiska dla mocy grzałki G1=26% zadano tę wartość dla sygnału sterującego grzałką. Następnie poczekano, aż temperatura T1 ustali się. Wynik eksperymentu przedstawiono na rys. 2.1. Odczytana wartość temperatury dla termometru T1 wyniosła 28,12 °C.

Rys. 1.3. Ustalanie się temperatury dla punktu pracy.

4. Odpowiedzi skokowe toru zakłócenie-wyjście

Dla stanowiska pracującego w ustalonym punkcie pracy (G1=26%; T1=28,12°C) zadano 3 różne wartości skoku zakłócenia. Eksperyment wykonano dla skoków sygnału zawsze z wartości Z=0 do kolejno wartości: Z=10, Z=20 oraz Z=30. Wyniki przedstawiono na rys. 1.4. Różnica w początkowych wartościach temperatury T1 dla poszczególnych skoków wynika z zakłóceń powodowanch przez zmianę temperatury w pracowni laboratoryjnej oraz nagrzewania się stanowiska grzejąco-chłodzącego.

Na podstawie wyznaczonej charakterystyki statycznej dla toru zakłócenie-wyjście przedstawionej na rys. 1.5 możemy stwierdzono, że właściwości statyczne są w przybliżeniu liniowe. Wzmocenienie statyczne dla tego toru procesu wyznaczono metodą najmniejszych kwadratów i otrzymano wartość $K_{\rm stat}=0.1725$.

Rys. 1.4. Odpowiedzi skokowe dla toru zakłócenie - wyjście.

Rys. 1.5. Charakterystyka statyczna dla toru zakłócenie - wyjście.

5. Odpowiedzi skokowe dla algorytmu DMC

W celu wyznaczenia odpowiedzi skokowej toru zakłócenie-wyjście wybrano trzecią odpowiedź skokową przedstawioną na rys. 1.4, tj. skok zakłócenia do wartości Z=30. Do przekształcenia zebranej odpowiedzi skokowej skorzystano z przekształcenia:

$$S(i) = \frac{Y(i) - Y_{\text{pp}}}{Z_{\text{skok}} - Z_{\text{pp}}}$$

$$\tag{1.1}$$

gdzie:

- S(i) odpowiedź skokowa potrzebna do algorytmu DMC,
- Y(i) odpowiedź skokowa przed przekształceniem,
- Y_{pp} wartość wyjścia w chwili k=0 (tutaj $Y_{pp}=27.93$),
- $Z_{\rm skok}$ wartość sterowanie w chwili k=0 i później (tutaj $Z_{\rm skok} = 30$),
- Z_{pp} wartość sterowania przed chwilą k=0 (tutaj $Z_{pp}=0$)

Otrzymana odpowiedź skokowa dla toru zakłócenie wyjście została przedsawiona na rys. 1.6. Następnie dokonano aproksymacji odpowiedzi skokowej poprzez przybliżenie używając w tym celu członu inercyjnego drugiego stopnia z opóźnieniem:

$$G(s) = \frac{K}{(sT_1 + 1)(sT_2 + 1)}e^{-T_{d}s}$$
(1.2)

Po dyskretyzacji danej transmitancji otrzymujemy:

$$G(z) = \frac{b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} z^{-T_{\rm d}}$$
(1.3)

gdzie:

$$a_{1} = -\alpha_{1} - \alpha_{2}$$

$$a_{2} = \alpha_{1}\alpha_{2}$$

$$\alpha_{1} = e^{-\frac{1}{T_{1}}}$$

$$\alpha_{2} = e^{-\frac{1}{T_{2}}}$$

$$b_{1} = \frac{K}{T_{1} - T_{2}} [T_{1}(1 - \alpha_{1}) - T_{2}(1 - \alpha_{2})]$$

$$b_{2} = \frac{K}{T_{1} - T_{2}} [\alpha_{1}T_{2}(1 - \alpha_{2}) - \alpha_{2}T_{1}(1 - \alpha_{1})]$$

$$(1.4)$$

Dla otrzymanej w ten sposób transmitancji w postaci dyskretnej napisano funkcję $AproksSkokZak_DMC(X)$, która przyjmowała parametry T_1 , T_2 oraz K. Wartość parametru $T_d = 12$ odczytano z odpowiedzi skokwej, ponieważ jest to opóźnienie. Funkcja ta zwracała sumaryczny błąd kwadratowy pomiędzy aproksymacją otrzymaną dla zadanych parametrów a eksperymentalnie wyznaczoną odpowiedzią skokową dla toru zakłócenie-wyjście po przekształceniu dla algorytmu regulacji DMC. Implementacja funkcji $AproksSkokZak_DMC(X)$:

```
T1 = X(1);
    T2 = X(2);
   K = X(3);
    Td = 12;
    z(1:time) = 0;
    alpha1 = exp(-1/T1);
    alpha2 = exp(-1/T2);
    a1 = -alpha1 - alpha2;
    a2 = alpha1*alpha2;
    b1 = K*(T1*(1 - alpha1) - T2*(1 - alpha2))/(T1-T2);
    b2 = K*(alpha1*T2*(1-alpha2)-alpha2*T1*(1-alpha1))/(T1-T2);
    for k = Td+3: time
        z(k) = b1 + b2 - a1*z(k-1) - a2*z(k-2);
    end
    e = S_z - z';
   ERR = (norm(e))^2;
end
```

Do wyznaczenia współczynników transmitancji użyto funkcji ga dostępnej w programie MA-TLAB, która wykorzystuje algorytm generyczny do wyznaczenia minimum funkcji. Dla naszej funkcji jest to równoważne ze znalezieniem najlepiej dopasowanej aproksymacji odpowiedzi skokowej toru zakłócenie-wyjście. Paramerty związane z algorytmem generycznym to kolejno:

$$StallGenLimit = 200$$

 $PopulationSize = 400$
 $FunctionTolerance = 1e^{-8}$ (1.5)

gdzie:

- *StallGenLimit* oznacza maksymalną ilość iteracji algorytmu, dla których wartość różnicy między wartościami wyniku funkcji optymalizowanej jest mniejsza niż *FunctionTolerance*.
- PopulationSize oznacza ilość ziaren dla algorytmu generytecznego w każdej iteracji.
- FunctionTolerance oznacza wartość wskaźnika toleracji, który determinuje dla jakiej dokładoności algorytm uznaje, że otrzymany wynik jest ostateczy.

Wybrane wartości powyższych parametrów pozwalają na aproksymację z małym błędem, co sprawdzono poprzez kilkukrotne wywołanie algorytmu i dostrojenie eksperymentalne parametrów. Implementacja optymalizacji:

```
ERR = @(X) AproksSkokZak_DMC(X);

options = optimoptions('ga', 'StallGenLimit', 200, ...
    'PopulationSize', 400, 'FunctionTolerance', 1e-8);
[x_apro_zak, Err_apro_zak] = ga(ERR, 3, [], [], [], ...
[], [], [], [], options);

fprintf('\nT1 = %f; T2 = %f; K = %f;\n', x_apro_zak)
% T1=88.311400; T2=0.010351; K=0.177293;
```

Ponieważ do minimalizacji funkcji użyto algorytmu generycznego to wyniki podczas kolejnych odtworzeń mogą się różnic. Jednak po wykonaniu testów, dla których błąd aproksymacji był bardzo zbliżony przyjęto wartości parametrów:

$$K = 0.1772938$$

 $T_1 = 88.311400$
 $T_2 = 0.010351$
 $T_d = 12$ (1.6)

Otrzymaną aproksymowaną odpowiedź skokową dla toru zakłócenie-wyjście dla algorytmu regulacji DMC przedstawiono na rys. 1.7.

Rys. 1.6. Odpowiedź skokowa toru zakłócenie-wyjście dla algorytmu DMC.

Rys. 1.7. Aproksymacja odpowiedzi skokowej toru zakłócenie-wyjście dla algorytmu DMC.

Odpowiedź skokowa toru wejście-wyjście dla algorytmu DMC została zaczerpnięta z laboratorium nr 1, przedstawiono ją na rys. 1.8. Analogicznie jak dla odpowiedzi skokowej toru zakłócenie-wyjście wykonano dla niej aproksymacje przedstawioną na rys. 1.9.

Rys. 1.8. Odpowiedź skokowa toru wejście-wyjście dla algorytmu DMC.

Rys. 1.9. Aproksymacja odpowiedzi skokowej toru wejście-wyjście dla algorytmu DMC.

6. Algorytm DMC z pomiarem zakłóceń

Do sterowania procesem zaimplementowano algorytm DMC z pomiarem zakłóceń w języku MATLAB. TODO(nie wiem bardziej omawiać implementacje, czy komentarze są wystarczające, bo w poleceniu jest aby omówić program?)

```
%implementacja DMC z pomiarem zaklocen
function U = DMC_zak(yzad, y, D, z, Dz, N, Nu, lambda)
    persistent init
    persistent S
    persistent S_z
    persistent M
    persistent Mp
    persistent Mzp
    persistent K
    persistent dUP
    persistent dZP
    persistent zp
    persistent Upop
    if isempty (init)
        %liczone offline
        % Wczytanie macierzy S z pliku dane1.mat
        data = load ('dane1.mat');
        S = data.S;
        % Wczytanie macierzy S_z
        data2 = load('S_z.mat');
        S_z = data2.S_Z;
          data3 = load('S_z_apro.mat');
%
          S_z = data3.S_Z_apro;
        % przedluzenie wektora S
        for i = D+1:D+N
            S(i) = S(D);
        end
        % przedluzenie wektora S_z
        for i = Dz+1:Dz+N
            S_z(i) = S_z(Dz);
        end
        % Inicjalizacja macierzy
        M = zeros(N, Nu);
        for i = 1:Nu
            M(i:N, i)=S(1:N-i+1);
        end
```

```
Mp = zeros(N, D-1);
    for i = 1:(D-1)
        Mp(1:N, i) = S(i+1:N+i) - S(i);
    end
    Mzp = zeros(N, Dz);
    Mzp(1:N, 1) = S_z(1:N);
    for i = 2:Dz
        Mzp(1:N, i) = S_z(i:N+i-1) - S_z(i-1);
    end
    I = eye(Nu);
    K = ((M'*M + lambda*I)^{(-1)})*M';
    dUP = zeros(D-1,1);
    dZP = zeros(Dz,1);
    Upop = 26;
    zp = 0;
    init = 1;
end
% Ograniczenia sterowania
Gmax = 100;
Gmin = 0;
Y0 = zeros(N,1);
dU = zeros(Nu, 1);
% liczone online
Yzad = yzad*ones(N,1);
Y = y*ones(N,1);
Y0 = Y + Mp*dUP + Mzp*dZP;
dU = K*(Yzad - Y0);
du = dU(1);
for n = D-1:-1:2
  dUP(n) = dUP(n-1);
end
dUP(1) = du;
for n = Dz:-1:2
    dZP(n) = dZP(n-1);
end
dZP(1) = z - zp;
zp = z;
U = Upop + du;
% ograniczenia sterowania
if U > Gmax
```

```
U = Gmax; end if \ U < Gmin U = Gmin; end Upop = U; end
```

7. Dobór parametrów dla algorytmu DMC

Rys. 1.10. Dobór parametrów dla algorytmu DMC: D=300, N=10, N $_{\rm u}=1, \lambda=1.$ Wskaźnik jakości regulacji E=2808.

Rys. 1.11. Dobór parametrów dla algorytmu DMC: D=300, N=50, Nu = 10, $\lambda=1.$ Wskaźnik jakości regulacji E=1467.

Rys. 1.12. Regulacja z wykorzystaniem algorytmu DMC bez pomiaru zakłóceń. Użyte parametry DMC: Dz = $500, D = 300, N = 50, N_{\rm u} = 10, \lambda = 1$. Wskaźnik jakości regulacji E=1750.

Rys. 1.13. Regulacja z wykorzystaniem algorytmu DMC z pomiarem zakłóceń, odpowiedź skokowa toru zakłócenie-wyjście wyznaczona eksperymentalnie. Użyte parametry DMC: $D_z=500, D=300, N=50, N_u=10, \lambda=1.$ Wskaźnik jakości regulacji E=1391.

Rys. 1.14. Regulacja z wykorzystaniem algorytmu DMC z pomiarem zakłóceń, odpowiedź skokowa toru zakłócenie-wyjście wyznaczona aproksymacyjnie. Użyte parametry DMC: $D_z=500, D=300, N=50, N_u=10, \lambda=1.$ Wskaźnik jakości regulacji E=1477.

2. Projekt

1. Informacje wstępne

Zadanie projektowe wykorzystywało symulowany obiekt regulacji. Wyjście obiektu można wyznaczyć przy pomocy polecenia:

 $y(k) = symulacja_obiektu1y_p2(u(k-6), u(k-7), z(k-2), z(k-3), y(k-1), y(k-2))$

Wartości sygnałów wejścia, wyjścia i zakłócenia procesu w punkcie pracy wynoszą u=y=z=0; okres próbkowania wynosi 0,5 sekundy.

2. Sprawdzenie poprawności punktu pracy

W celu sprawdzenia poprawności punktu pracy została przeprowadzona symulacja, gdzie na wejście podano sterowanie u=0, jako poprzednie wartości wyjścia podano y=0, wartość zakłócenia podano z=0 i sprawdzono wartość wyjścia procesu w następnych chwilach. Wyniki symulacji przedstawstawiono na rys. 2.1. Wartość sygnału wyjściowego pozostała bez zmian, co potwierdza poprawność podanego punktu pracy.

Rys. 2.1. Sprawdzenie poprawności punktu pracy