APPLICATION DES MATHEMATIQUES : Contrôle N° 1

Durée : 1 heure 45 minutes - Barème : 20 points donnent la note 6

<i>NOM</i> :		
	GROUPE	
PRENOM:		

1. On considère la suite de polynômes $(Q_n)_{n\in\mathbb{N}^*}$ définie par :

$$Q_n(x) = \prod_{i=0}^{n-1} (x+i)$$
 pour $n \ge 1$; $(Q_n \text{ est de deg\'e } n)$

a) Ecrire $Q_1(x)$, $Q_2(x)$ et $Q_3(x)$.

On note S(n,k) le coefficient de x^k dans $Q_n(x)$, par exemple S(1,1)=1 et S(1,0)=0 (étant entendu que S(n,k)=0 si k>n).

- b) Que valent les coefficients S(n,0) et S(n,n) pour $n \ge 1$?
- c) Montrer que S(n,1) = (n-1)! (pour $n \ge 1$).
- d) Exprimer $Q_{n+1}(x)$ en fonction de $Q_n(x)$ et de (x+n).
- e) Démontrer la relation

$$S(n+1,k) = S(n,k-1) + nS(n,k), k > 1, n > 1$$

f) Montrer que:

$$S(n+1,2) = n! \sum_{k=1}^{n} \frac{1}{k}$$
 5\frac{1}{2}pts

2. a) Pour chacun des 2 ensembles suivants, montrer s'il est minoré, majoré, s'il possède une borne inféreure, une borne supérieure, un minimum, un maximum.

i)
$$E = \left\{ y = \frac{1}{1+x^2}, \quad x \in [-1, 1] \right\}$$
 ii) $F = \left\{ y = 1 + \operatorname{tg}^2(x), \quad x \in] - \frac{\pi}{2}, \frac{\pi}{2}[\right\}$

b) Montrer que $\frac{1}{3}$ est un minorant de

$$G = \left\{ \frac{(3n)!(n+1)}{(3n+1)!}, \quad n \in \mathbb{N} \right\}$$

et que $\inf(G) = \frac{1}{3}$. G a-t-il un minimum ? 3. Le tableau suivant représente une distribution statistique d'un échantillon de taille N=80 d'un caractère X continue, les valeurs prises par la variable sont divisées en classes :

Classes de X	Effectifs n_i	Classes de Y	Centre de classes c_i	Valeurs pondérées $n_i c_i$	$n_i c_i^2$
[33, 35[1				
[35, 37[2				
[37, 39[8				
[39, 41[13				
[41, 43[25				
[43, 45[16				
[45, 47[13				
[47, 49[2				
Total	80				

- a) Déterminer la médiane.
- b) A l'aide du changement de variable $Y = \frac{X 42}{2}$ et en complétant les 3 premières colonnes vides du tableau, calculer la moyenne \overline{x} .
- c) A l'aide du même changement de variable, et en complétant la dernière colonne du tableau, calculer l'EQM (équart quadratique moyen) et la variance de X.

5pts

- **4.** Dans un groupe de 10 femmes et 8 hommes, on doit former un comité de 3 femmes et 3 hommes.
 - a) Déterminer le nombre de comités différents qu'on peut former.
 - b) Combien y a-t-il de comités différents si 2 des hommes refusent d'être ensemble dans le comité ?
 - c) Même question que b) si 2 des femmes refusent d'être ensemble dans le comité?
 - d) Même question si 1 homme et 1 femme refusent d'être ensemble dans le comité?

5pts