













## Índice

- 1. Dataframe: operaciones de agregación
- 2. Consideraciones sobre rendimiento RDDs: particiones
- 3. Consideraciones sobre rendimiento RDDs: persistencia

 $\otimes$ 

4. Aplicación PySpark: funcionamiento

# 1. Dataframe: operaciones agregación



#### Introducción

- Agregar, resumir información es una operación importante y común en el análisis y tratamiento de datos.
- PySpark ofrece las funciones de agregación más comunes dentro de "pyspark.sql.functions" (count(); countDistinct(); avg(); sum() ...)
- Al igual que en SQL, estas funciones se pueden llamar sobre el conjunto completo de datos (Dataframe). Aunque el mayor uso que se le da y mayor provecho es aplicarlo a agrupaciones.
- Para formar en un Dataframe agrupaciones por una columna o columnas, utilizamos "groupBy(cols)". Lo más usual es a continuación realizar agregados por grupo: ".agg()" (facilita alias, varios agregados)

## "Sales", ejemplos de agregación: count(); countDistinct()

Número de ventas realizadas por región (o por región y país).

```
from pyspark.sql.functions import count, countDistinct
sales_df.groupBy('Region','Country').agg(count('Item_Type').alias('NumVent as')).orderBy('Region','Country').show(10)
```

Ojo: count("\*") contabilizaría también los valores nulos si los hubiera

Número de productos distintos (Item\_Type) vendidos por región (o por región y país).

```
# ¿Cuantos tipos de productos hay?
sales_df.select('Item_Type').distinct().show()

sales_df.groupBy('Region','Country').agg(countDistinct('Item_Type').alias(
'TiposArtículo')).orderBy('Region','Country').show(10)
```

approxCountDistinct (...): ¿vale la pena siempre valor exacto (Big Data)?

## "Sales", ejemplos de agregación: sum(); avg(); stddev()

Unidades vendidas de cada tipo de producto por región, de mayor a menor unidades:

```
from pyspark.sql.functions import col, sum, avg, stddev
sales_df.groupBy('Item_Type','Region').agg(sum('Units_Sold').alias('TotalUnidades')).orderBy(col('TotalUnidades').desc()).show(40,truncate=False)
```

Media y desviación típica de las unidades vendidas por producto y región, orden descendente media.

```
(sales_df.groupBy('Item_Type','Region')
.agg(avg('Units_Sold').alias('MediaUnidades'),stddev('Units_Sold').alias('DesvTip'))
.orderBy(col('MediaUnidades').desc())).show(40,truncate=False)
```

## "Sales", ejemplos de agregación: max(); min()

Podemos seguir indagando con las unidades vendidas de cada tipo de producto por región: pedidos máximos y mínimos.

```
from pyspark.sql.functions import min,max

sales_df.groupBy('Item_Type','Region').agg(max('Units_Sold').alias('Pedido Máximo'),min('Units_Sold').alias('PedidoMínimo')).orderBy(col('PedidoMáximo').desc()).show(40,truncate=False)
```

Vamos a practicar.....

### **EJERCICIOS AGREGACIÓN: Sales**

Partir del Dataframe "Sales" original (desde cero)

#### Preguntas:

- ¿Cuántos tipos de ítems (distintos) hay? ¿Cuáles son?
- > ¿Cuales son los 5 países que más unidades reciben? ¿Y los que menos?
- > Nº de transacciones (no unidades) por región y país, en orden descendente.
- ¿Cuántos países por región reciben mercancías, ordenados de más a menos países?

# 2. Consideraciones sobre rendimiento RDDs: particiones



## **PARTICIONES DATOS (sistema distribuido)**

- Los datos se dividen en particiones que se distribuyen en memoria de distintos nodos (nodos workers)
- Aunque esto no siempre es posible, a cada ejecutor de Spark se le adjudica preferentemente una tarea que requiera leer la partición más cercana a él en la red.



#### SHUFFLE: movimiento de datos en el clúster

- Se produce en determinadas situaciones, como las operaciones de ordenación o reducción.
- Ejemplo: reduceByKey(...). Hay que agrupar en un nodo los elementos de una misma clave, que provendrán de distintos nodos.
- Esto puede ser muy costoso (tiempo), pero es a veces es necesario.



## **Coalesce(numPartitions)**

- Reduce el número de particiones de un RDD a numPartitions (crea uno nuevo)
- Es útil para ejecutar operaciones de forma más eficiente, por ejemplo después de filtrar un número elevado de datos (particiones con pocos elementos, una tarea a cada partición, ineficiente).
- A favor: minimiza el movimiento de datos ("colapsa" particiones en un mismo nodo si puede)
- Contra: No obtiene particiones homogéneas en número de datos (óptimo rendimiento)

## Repartition(numPartitions)

- Puede aumentar o reducir el número de particiones del RDD (crea uno nuevo).
- Las particiones resultantes son de igual tamaño (aprox.) lo que permite ganar posteriormente en velocidad
- A cambio mayor coste: siempre produce movimiento de datos a través del clúster (full shuffle)
- A veces son necesarias (valorar pros/contras en cada caso)
- "repartition" distribuye los datos de forma equitativa, a costa del movimiento de datos.

```
rdd = sc.parallelize([4,5,7,9,6,2,8,3],3)
rdd2 = rdd.repartition(4)
print(rdd2.getNumPartitions())
```

# 3. Consideraciones sobre rendimiento RDDs: persistencia



#### PERSISTENCIA: casos de uso

- Evaluación perezosa: no se almacena ningún dato hasta la acción (símil receta)
- Transformaciones 1 a 3 comunes, se ejecutarían 2 veces (p. ejplo. bifurcaciones por sentencias Joins o GroupBy)
- Mayor tiempo de procesamiento y mayor uso de memoria
- SOLUCIÓN: persistencia



#### PERSISTENCIA: casos de uso

- Se almacena en memoria el RDD resultado de la transformación 3 (proceso 0)
- Procesos 1 y 2 recuperarían el RDD almacenado
- No solo esta aplicación, basta con que tengamos un proceso que lleve mucho tiempo o un conjunto de datos que se utilice con frecuencia
- Dos métodos disponibles:cache() y persist()



#### **PERSISTENCIA:** nodos

Cuando se persiste un RDD, cada nodo con particiones del mismo las mantiene en memoria y las reutiliza en otras acciones. Esto permite que las acciones futuras sean mucho más rápidas (a menudo por más de 10 veces).



### Persist(StorageLevel.<>)

- Permite especificar distintos niveles de almacenamiento como parámetro <>:
  - MEMORY\_ONLY (por defecto)
  - DISK\_ONLY
  - MEMORY\_AND\_DISK (si no cabe en memoria utiliza disco)

```
from pyspark import StorageLevel

file = 'dbfs:/FileStore/shared_uploads/edurf.cld@gmail.com/quijote-1.txt'
lineas = sc.textFile(file)
long_lineas = lineas.map(lambda elemento: len(elemento))
long_lineas.persist(StorageLevel.MEMORY_ONLY)

print(long_lineas.reduce(lambda elem1,elem2: elem1 + elem2))
```

## Cache()

- Es un "atajo" para el nivel de persistencia por defecto (MEMORY\_ONLY): rdd.cache()
- Tanto con "cache()" como con "persist()" es necesario usar una acción posterior para ejecutarlas
- Spark monitorea automáticamente todas las llamadas de persist() y cache() que realiza (consola Spark -> Storage)

```
file = 'dbfs:/FileStore/shared_uploads/edurf.cld@gmail.com/quijote-
1.txt'
lineas = sc.textFile(file)
long_lineas = lineas.flatMap(lambda elemento: elemento.split())
long_lineas.cache()
print(long_lineas.count()
```

## 4. Aplicación PySpark: funcionamiento



## Aplicación PySpark: funcionamiento

- Spark es un motor de procesamiento de datos distribuido, con sus componentes trabajando en colaboración en un clúster de máquinas.
- Estos componentes trabajan juntos y se comunican. Hay un nodo maestro **DRIVER** y uno o más nodos esclavos **WORKERS** (dependiendo modo despliegue).
- A alto nivel una aplicación Spark consiste en un programa controlador (Spark driver o Driver Program) que es responsable de orquestar las operaciones paralelas en el clúster de Spark.
- El controlador (Driver Program) contiene la función 'main ()' con el código que queremos ejecutar. En este código se debe crear la SparkSession (SparkContext).
- El controlador accede a los componentes del clúster (workers y el gestor del clúster) a través de una SparkSession (SparkContext).

```
# Import the necessary libraries.
# Since we are using Python, import the SparkSession and related functions
# from the PySpark module.
import sys
from pyspark.sql import SparkSession
                                                "main"
from pyspark.sql.functions import count
if __name__ == "__main__"
  if len(sys.argv) != 2:
       print("Usage: mnmcount <file>", file=sys.stderr)
       sys.exit(-1)
  # Build a SparkSession using the SparkSession APIs.
   # If one does not exist, then create an instance. There
  # can only be one SparkSession per JVM.
  spark = (SparkSession)
                                             Se crea la
     .builder
     .appName("PythonMnMCount"
                                         "SparkSession"
     .getOrCreate())
  # Get the M&M data set filename from the command-line arguments
  mnm file = svs.arqv[1]
  # Read the file into a Spark DataFrame using the CSV
  # format by inferring the schema and specifying that the
  # file contains a header, which provides column names for comma-
  # separated fields.
  mnm_df = (spark.read.format("csv")
     .option("header", "true")
     .option("inferSchema", "true")
     .load(mnm file))
```

### **Spark funcionamiento interno**

- El controlador (Driver program) crea la sesión (contexto), hace petición de recursos al clúster manager y declara las operaciones sobre los datos utilizando transformaciones y acciones de RDD: crea el grafo DAG y distribuye su ejecución como tareas (Task) a los workers.
- El clúster manager (gestor de recursos) maneja y asigna recursos del clúster. Coordina las diferentes etapas del trabajo. Spark admite varios (YARN, Mesos...)
- Los workers son donde las tareas se ejecutan realmente. Tienen los recursos y la conectividad de red requeridos para ejecutar las operaciones solicitadas en los RDD.



#### Gestores de recursos

Spark admite varios gestores de recursos, entre ellos un gestor de recursos autónomo integrado (Standalone Sheduler), Apache Hadoop YARN y Apache Mesos.



### **SPARK:** reparto de tareas (Task)

Las tareas se asignan a los "executors" (procesos en los nodos "workers")



## Internals of Job Execution In Spark













"El FSE invierte en tu futuro"

#### Fondo Social Europeo



