Конспект

по Математически Анализ за специалност "Приложна математика", 2008/2009 учебна година

1. Кратен интеграл в \mathbb{R}^n . Дефиниция и основни свойства.

Паралелотопи – дефиниция, мярка, адитивност на мярката. Разбивания. Малки и големи суми на Дарбу. Горен и долен интеграл. Риманови суми. Две необходими и достатъчни условия за интегруемост.

2. Пренебрежимост по Лебег. Теорема на Лебег.

Дефиниция и основни свойства на пренебрежимите множества. Теорема на Лебег за интегруемост в риманов смисъл.

3. Измерими множества и интегриране върху тях.

Измерими множества. Мярка на Пеано-Жордан. Свойства. Интегриране върху измерими множества. Свойства.

4. Теорема на Фубини. Приложения.

Теорема на Фубини. Интегриране върху криволинеен трапец. Интегриране върху цилиндрично тяло. Принцип на Кавалиери. Обем на ротационно тяло.

5. Криволинеен интеграл от първи род.

Частично гладка крива. Дефиниция и основни свойства на криволинеен интеграл от първи род. Физическа интерпретация. Приложение към гравитационно поле, създадено от материална нишка.

6. Криволинеен интеграл от втори род.

Векторно поле. Работа на силово поле. Дефиниция и основни свойства на криволинейния интеграл от втори род. Примери.

7. Независимост от пътя на криволинейния интеграл от втори род.

Теорема за независимостта от пътя и потенциалните полета. Необходимо условие за потенциалност. Пресмятане на потенциала в правоъгълна област.

8. Лице на повърхнина.

Повърхнина. Лице на повърхнина. Примери.

9. Повърхнинни интеграли от първи род.

Повърхнинен интеграл от първи род. Свеждане към двоен интеграл. Обяснение на формулата за смяна на променливите при кратни интеграли.

10. Повърхнинни интеграли от втори род.

Дефиниция, основни свойства и физическа интерпретация на повърхнинните интеграли от втори род.

11. Повърхнини с край. Индуцирана ориентация на края.

Дефиниция на повърхнина с край. Вектори, допирателни към края, сочещи навън и сочещи навътре. Локални параметризации. Индуцирана ориентация. Частично гладки ориентирани повърхнини.

12. Формула на Стокс.

Разбиване на единицата. Ротор. Формула на Грийн за криволинеен трапец. Пренасяне на формулата с двукратно гладки изображения. Доказателство на формулата на Стокс.

13. Следствия от формулата на Стокс.

Обобщение за частично гладки повърхнини. Формула на Γ рийн. Достатъчно условие за независимост от пътя в равнината и в пространството.

14. Формула на Гаус-Остроградски.

Дивергенция. Формула на Гаус-Остроградски. Доказателство на формулата за цилиндрични тела. Приложения - закон на Архимед и интеграл на Гаус.

доц. д-р Надежда Рибарска