Chapter 56

ν -SV Regression

56.1 ν -SV Regression; Derivation of the Dual

Let $\{(x_1, y_1), \ldots, (x_m, y_m)\}$ be a set of observed data usually called a set of training data, with $x_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. As in Chapter 55, we form the $m \times n$ matrix X where the row vectors x_i^{\top} are the rows of X. Our goal is to learn an affine function f of the form $f(x) = x^{\top}w + b$ that fits the set of training data, but does not penalize errors below some given $\epsilon \geq 0$. Geometrically, we view the pairs (x_i, y_i) are points in \mathbb{R}^{n+1} , and we try to fit a hyperplane $H_{w,b}$ of equation

$$(w^{\top} - 1) \begin{pmatrix} x \\ z \end{pmatrix} + b = w^{\top}x - z + b = 0$$

that best fits the set of points (x_i, y_i) (where $(x, z) \in \mathbb{R}^{n+1}$). We seek an $\epsilon > 0$ such that most points (x_i, y_i) are inside the slab (or tube) of width 2ϵ bounded by the hyperplane $H_{w,b-\epsilon}$ of equation

$$(w^{\top} - 1) \begin{pmatrix} x \\ z \end{pmatrix} + b - \epsilon = w^{\top}x - z + b - \epsilon = 0$$

and the hyperplane $H_{w,b+\epsilon}$ of equation

$$(w^{\top} - 1) \begin{pmatrix} x \\ z \end{pmatrix} + b + \epsilon = w^{\top}x - z + b + \epsilon = 0.$$

Observe that the hyperplanes $H_{w,b-\epsilon}$, $H_{w,b}$ and $H_{w,b+\epsilon}$ intersect the z-axis when x=0 for the values $(b-\epsilon,b,b+\epsilon)$. Since $\epsilon \geq 0$, the hyperplane $H_{w,b-\epsilon}$ is below the hyperplane $H_{w,b}$ which is below the hyperplane $H_{w,b+\epsilon}$. We refer to the lower hyperplane $H_{w,b-\epsilon}$ as the blue margin, to the upper hyperplane $H_{w,b+\epsilon}$ as the red margin, and to the hyperplane $H_{w,b}$ as the best fit hyperplane. Also note that since the term -z appears in the equations of these hyperplanes, points for which $w^{\top}x - z + b \leq 0$ are above the hyperplane $H_{w,b}$, and points for which $w^{\top}x - z + b \geq 0$ are below the hyperplane $H_{w,b}$ (and similarly for $H_{w,b-\epsilon}$ and