Control y Servomecanismos A

Control Automático I

Tema: Estabilidad – Diagramas de Bode

Cursada Virtual 2020 F. Valenciaga

Conceptos de Estabilidad

Entrada Acotada – Salida Acotada

Criterios de ESTABILIDAD

BIBO

(Bounded Input – Bounded Output)

$$\int_{-\infty}^{\infty} |h(t)| \, dt < \infty \quad \textit{donde} \quad h(t) = \mathcal{I}^{-1}\{\mathsf{G}(\mathsf{s})\} \quad \xrightarrow{} \quad \lim_{t \to \infty} h(t) = 0$$

Conceptos de Estabilidad

Transferencia Lazo Cerrado

$$T(s) = \frac{Y(s)}{R(s)} = \frac{KG(s)}{1 + KG(s)H(s)}$$
 Ec. Característica
$$1 + KG(s)H(s) = 0$$

Análisis de ESTABILIDAD

Criterio de BODE

 Permite establecer márgenes de estabilidad relativa de un sistema a lazo cerrado a partir de la gráfica de respuesta en frecuencia de la transferencia GH(s)

• Eje horizontal logarítmico (log $_{10}$ (ω)): permite graficar un gran espectro de frecuencias en un gráfico reducido

$$KG(j\omega)H(j\omega) = \frac{KL_c}{L_aL_bL_d}e^{-j(\varphi_a+\varphi_b+\varphi_d-\varphi_c)}$$

 $M \circ dulo$ \longrightarrow 20 $log_{10}(|GH(j\omega)|)=20 log K+20 log(L_c)-20 log(L_a)-20 log(L_b)-20 log(L_d)$

Fase
$$-\varphi_a - \varphi_b - \varphi_d + \varphi_c$$

K>1 positivo en dB

$$KG(s)H(s) = \frac{\pm Ks^{n_1} \left(1 \pm \frac{s}{z_1}\right)^{n_2} \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^{n_3}}{s^{m_1} \left(1 \pm \frac{s}{p_1}\right)^{m_2} \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^{m_3}} \longrightarrow \text{Forma de Bode}$$

Factor Ganancia \longrightarrow 20 log₁₀(|K|)= xx dB

$$KG(s)H(s) = \frac{\pm Ks^{n_1} \left(1 + \frac{s}{z_1}\right)^{n_2} \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^{n_3}}{s^{m_1} \left(1 + \frac{s}{p_1}\right)^{m_2} \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^{m_3}} \longrightarrow \text{Forma de Bode}$$

• Factores Integral/ Derivativo $s^{\pm 1}$

 $20 \log (|j\omega|) = 20 \log (\omega)$ ó $20 \log (|j\omega|^{-1}) = -20 \log (\omega)$

$$tg^{-1} (\omega/0) = \pi/2$$
 ó $tg^{-1} (-\omega/0) = -\pi/2$

$$KG(s)H(s) = \frac{\pm Ks^{n_1} \left(1 \pm \frac{s}{z_1}\right)^{n_2} \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^{n_3}}{s^{m_1} \left(1 \pm \frac{s}{p_1}\right)^{m_2} \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^{m_3}} \longrightarrow \text{Forma de Bode}$$

• Factores 1er. Orden \longrightarrow $(1+s/a)^{\pm 1}$ Fase Mínima

 $\omega >> a$ 20 log (|j ω/a |)=20 log (ω/a)

 $\omega << a \ 20 \log (|1|) = 0 dB$

$$tg^{-1} (\omega / a) \longrightarrow \begin{array}{c} \omega = 0 & 0 \\ \omega = a & \pi / 4 \\ \omega = \infty & \pi / 2 \end{array}$$

$$KG(s)H(s) = \frac{\pm Ks^{n_1} \left(1 \pm \frac{s}{z_1}\right)^{n_2} \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^{n_3}}{s^{m_1} \left(1 \pm \frac{s}{p_1}\right)^{m_2} \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^{m_3}}$$
 Forma de Bode

• Factores 1er. Orden \longrightarrow $(1 - s/a)^{\pm 1}$

Fase No Mínima

- $\omega >> a$ 20 log ($|-j\omega/a|$)=20 log (ω/a)
- $\omega << \acute{o} 20 \log (|1|) = 0 dB$

• Factores
$$2 \text{do.Orden} \longrightarrow \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^1 \longrightarrow P. \text{ Real } \left(1 - \frac{\omega^2}{\omega_n^2}\right)$$

$$p \text{ Imag.} \left(\pm \frac{2j\xi\omega}{\omega_n}\right)$$

Ceros mínima o no mínima fase

Módulo
$$\longrightarrow 20\log^2 \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(\pm \frac{2\xi\omega}{\omega_n}\right)^2} \qquad \omega >> \omega_n \quad 20\log\frac{\omega^2}{\omega_n^2} = 40\log\frac{\omega}{\omega_n}$$

$$\omega << \omega_n \quad 20\log 1 = 0$$

• Factores
$$2 \text{do.Orden} \longrightarrow \left(\frac{s^2}{\omega_n^2} \pm \frac{2\xi s}{\omega_n} + 1\right)^{-1} \longrightarrow P. \text{ Real } \left(1 - \frac{\omega^2}{\omega_n^2}\right)$$

$$2 \text{ P Imag.} \left(\pm \frac{2j\xi\omega}{\omega_n}\right)$$

Polos mínima o no mínima fase

• Factores 2do.Orden
$$\longrightarrow \left(\frac{s^2}{\omega_n^2} + \frac{2\xi s}{\omega_n} + 1\right)^1 \longrightarrow \Pr{\text{P. Real}} \left(\frac{1 - \frac{\omega^2}{\omega_n^2}}{\frac{2j\xi\omega}{\omega_n}}\right) \qquad \xi = \frac{\cos(\varphi)}{\cos(\varphi)} \xrightarrow{\text{Real}} \left(\frac{1 - \frac{\omega^2}{\omega_n^2}}{\frac{2j\xi\omega}{\omega_n}}\right) = \frac{\log(\varphi)}{\log(\varphi)}$$

Ceros Fase Mínima

Fase
$$tg^{-1} \frac{\left(\frac{2\xi\omega}{\omega_n}\right)}{\left(1-\frac{\omega^2}{\omega_n^2}\right)}$$
 $\omega = \omega_n$ $tg^{-1} \frac{\left(\frac{2\xi\omega}{\omega_n}\right)}{\left(-\frac{\omega^2}{\omega_n^2}\right)}$ $\pi/2$

Factores 2do.Orden
$$\longrightarrow \left(\frac{s^2}{\omega_n^2} - \frac{2\xi s}{\omega_n} + 1\right)^1 \longrightarrow \Pr{\text{P. Real}} \left(\frac{1 - \frac{\omega^2}{\omega_n^2}}{(-\frac{2j\xi\omega}{\omega_n})}\right)$$

$$= \frac{1}{2} \left(\frac{1 - \frac{\omega^2}{\omega_n^2}}{(-\frac{2j\xi\omega}{\omega_n})}\right)$$

$$= \frac{1}{2} \left(\frac{1 - \frac{\omega^2}{\omega_n^2}}{(-\frac{2j\xi\omega}{\omega_n})}\right)$$

$$\begin{pmatrix}
1 - \frac{\omega^2}{\omega_n^2} \\
- \frac{2j\xi\omega}{\omega_n}
\end{pmatrix}$$

Ceros Fase No Mínima

Fase
$$tg^{-1} \frac{\left(-\frac{2\xi\omega}{\omega_n}\right)}{\left(1 - \frac{\omega^2}{\omega_n^2}\right)} \qquad \omega = \omega_n \qquad tg^{-1} \frac{\left(-\frac{2\xi\omega}{\omega_n}\right)}{\left(-\frac{\omega^2}{\omega_n^2}\right)} \qquad -\pi/2$$

$$\omega = \omega \qquad tg^{-1} \frac{\left(-\frac{2\xi\omega}{\omega_n}\right)}{\left(-\frac{\omega^2}{\omega_n^2}\right)} \qquad -\pi$$

• Factores 2do.Orden
$$\longrightarrow \left(\frac{s^2}{\omega_n^2} + \frac{2\xi s}{\omega_n} + 1\right)^{-1} \longrightarrow P. \text{ Real } \left(\frac{1 - \frac{\omega^2}{\omega_n^2}}{\varepsilon}\right) \qquad \xi = \frac{\mathsf{x}}{\cos(\varphi)} \longrightarrow R\epsilon$$

Polos Fase Mínima

• Factores
$$2$$
do.Orden $\longrightarrow \left(\frac{s^2}{\omega_n^2} + \frac{2\xi s}{\omega_n} + 1\right)^{-1} \longrightarrow P. \text{ Real } \left(1 - \frac{\omega^2}{\omega_n^2}\right)$

$$\left(1 - \frac{\omega^2}{\omega_n^2}\right) \\
\left(\frac{2j\xi\omega}{\omega_n}\right)$$

Polos Fase No Mínima

Fase
$$\longrightarrow -tg^{-1} \frac{\left(-\frac{2\xi\omega}{\omega_n}\right)}{\left(1-\frac{\omega^2}{\omega_n^2}\right)} \qquad \bigoplus \begin{array}{l} \omega = 0 & 0 \\ \omega = \omega_n & tg^{-1} \frac{2\xi}{0} \\ \omega = \infty & tg^{-1} \frac{\left(\frac{2\xi\omega}{\omega_n}\right)}{\left(-\frac{\omega^2}{\omega_n^2}\right)} \end{array} \qquad \longrightarrow \pi/2$$

ESTABILIDAD POR BODE

$$T(s) = \frac{Y(s)}{R(s)} = \frac{KG(s)}{1 + KG(s)H(s)}$$

Ec. Característica

$$1 + KG(s)H(s) = 0$$

$$KG(s)H(s) = -1$$

$$|KG(s)H(s)| = 1$$

Frecuencia de transición de ganancia

$$KG(s)H(s) = -180^{\circ}$$

Frecuencia de transición de fase

Margen de Ganancia: ganancia que debe aplicarse al sistema para que |G(s)H(s)|=1 en la frecuencia de transición de fase.

Margen de Fase: fase que debe adicionarse al sistema para que en la frecuencia de transición de ganancia posea -180º de fase.

ESTABILIDAD POR BODE

Margen de Ganancia: ganancia que debe aplicarse al sistema para que |G(s)H(s)|=1 en la frecuencia de transición de fase.

Margen de Fase: fase que debe adicionarse al sistema para que en la frecuencia de transición de ganancia posea -180º de fase.

ESTABILIDAD POR BODE

	MG>0	MG<0
MF>0	Estable	?
MF<0	?	Inestable

RELACION CON LR

