Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Naţională de Matematică Etapa finală, Oradea, 18 aprilie 2011

CLASA a VIII-a – BAREMURI

Problema 1. Deteterminați numerele $x,y,z,t\in[0,\infty)$ știind că verifică simultan relațiile

$$x + y + z \le t$$
, $x^2 + y^2 + z^2 \ge t$ şi $x^3 + y^3 + z^3 \le t$.

Soluţie

Adunând membru cu membru inegalitățile

Dacă exact două dintre numerele x, y, z sunt nule, atunci $1 \le t$ şi $1 \ge t$, prin urmare $t = 1, (x, y, z) \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$

Dacă exact unul dintre numerele x, y, z este nul, atunci $2 \le t$ și $2 \ge t$, deci $t = 2, (x, y, z) \in \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}.$

Dacă
$$x = y = z = 1$$
, deducem că $t = 3 \dots 2$ p

Problema 2. Fie a, b, c numere întregi nenule, distincte două câte două.

- a) Demonstrați că $a^2b^2 + a^2c^2 + b^2c^2 \ge 9$.
- **b)** Dacă, în plus, ab + ac + bc + 3 = abc > 0, arătați că

$$(a-1)(b-1) + (a-1)(c-1) + (b-1)(c-1) \ge 6.$$

Soluţie

- a) Măcar unul dintre numerele a,b,c are modulul cel puţin egal cu 2, prin urmare $a^2b^2 + a^2c^2 + b^2c^2 \ge 1 \cdot 1 + 1 \cdot 4 + 1 \cdot 4 = 9 \dots 3$ p

Problema 3. Fie VABC o piramidă triunghiulară regulată cu baza ABC de centru O. Punctele I și H sunt centrul cercului înscris și respectiv ortocentrul triunghiului VBC. Știind că $AH = 3 \cdot OI$, determinați măsura unghiului dintre muchia laterală a piramidei și planul bazei.

Soluție

Fie M mijlocul muchiei [BC] . Deoarece triunghiul VBC este isoscel cu VB=VC , rezultă că punctele V,H,I și M sunt coliniare. Se demonstrează

că $AH \perp (VBC)$, deci $AH \perp VM$
Fie I' proiecția punctului O pe planul (VBC) ; atunci $I' \in VM$ și $OI' \parallel AH$.
Din teorema fundamentală a asemănării obținem $\frac{OI'}{AH} = \frac{MO}{MA} = \frac{1}{3}$, deci
$AH=3\cdot OI'.$ Dacă $I\neq I'$, atunci $\frac{AH}{3}=OI'< OI=\frac{AH}{3},$ fals. Rămâne că
I = I'
Cum $OI \perp (VBC)$ și I este centrul cercului înscris în triunghiul $VBC,$ rezultă
că O este egal depărtat de VB și BC
Fie J proiecția punctului ${\cal O}$ pe dreapta ${\cal VB}.$ Atunci ${\cal OJ}={\cal OM}$, deci tri-
unghiurile dreptunghice OJB și OMB sunt congruente. (I. C.) Rezultă că
$m\left(\widehat{VB,(ABC)}\right) = m\left(\angle VBO\right) = m\left(\angle MBO\right) = 30^{\circ} . \dots 2 \mathbf{p}$

Problema 4. Un număr natural se numește *tipic* dacă suma cifrelor din scrierea sa în baza 10 este multiplu al numărului 2011.

- a) Arătați că există o infinitate de numere tipice care au, fiecare, cel puţin câte 2011 multipli care sunt, la rândul lor, numere tipice.
- **b)** Există un număr tipic pentru care orice multiplu nenul al său este număr tipic?

Soluţie

- b) Fie n un număr tipic și S(n) suma cifrelor sale, cu S(n) = M2011. Se demonstrează că n are un multiplu de forma $m = \underbrace{99...9}_{l} \underbrace{00...0}_{k}$, despre care

multiplu al lui m (deci și al lui n) și are suma cifrelor $S(m) + 9 \neq M2011$. În concluzie, nu există un număr tipic ai cărui multipli să fie toți tipici. **2 p**