# IB107 Vyčíslitelnost a složitost Zkouška 2? ledna 2019

#### Problém 1.

- a) Která z následujících tvrzení jsou pravdivá? Svou odpověď zdůvodněte.
  - (i) Množina  $A_1 \subseteq \mathbb{N}$  je rekurzivní právě tehdy, když existuje totálně vyčíslitelná funkce f taková, že  $x \in A_1 \iff f(x)$  je prvočíslo.
  - (ii) Množina  $A_2\subseteq\mathbb{N}$  obsahující ty  $i\in\mathbb{N}$ , že se i-tý while-program zastaví na každém vstupu, je rekurzivní.
  - (iii) Množina  $A_2 \subseteq \mathbb{N}$  z předchozího bodu je rekurzivně spočetná.
- b) Definujte, kdy je rozhodovací problém PSPACE-úplný a uveď te příklad PSPACEúplného rozhodovacího problému (bez důkazu PSPACE-úplnosti)

### Řešení.

- a) (i) Důkaz povedeme přímo dokázáním obou implikací.
  - $\Leftarrow$  Z rekurzivity  $A_1$  máme *rozhodující* funkci g, tedy  $g(x) = 1 \iff x \in A_1$ . Sestrojíme f pomocí g - funkce na prvcích  $A_1$  vrací například 7 a 42 jinak.
  - $\Rightarrow$  Rozhodnout zda je f(x) prvočíslo jsme schopni pro libovolnou hodnotu<sup>1</sup>. Funkce rozhodující  $A_1$  vrátí  $1 \iff f(x)$  je prvočíslo a 0 jinak.
  - (ii) Taková vlastnost je netriviální a z Riceovy věty plyne, že  $A_2$  není rekurzivní. (Rozhodnout HALT by bylo jednoduché)
  - (iii) Uvažme funkci answer jejíž index  $i \in A_2$  která na 42 vrací 1 a 0 jinak. Pro libovolné  $j \in \mathbb{N}$  takové, že  $\varphi_j$  je její konečná restrikce platí, že  $j \notin A_2$ . Tedy  $A_2$  nemuže být podle "třetí Riceovy" věty ani rekurzivně spočetná.

<sup>&</sup>lt;sup>1</sup>Dokonce v polynomiálním čase - pomocí AKS testu deterministicky s časovou složitostí  $\mathcal{O}(\log(n)^6)$ 

b) Problém L je PSPACE-úplný, pokud  $L \in PSPACE$  a zároveň  $\forall L' \in PSPACE$  platí  $L' \leq_p L$ . Z přednášky známe problém QSAT, který rozhoduje zda je formule obsahující kvantifikátory splnitelná.

Problém 2.

- a) Zformulujte Třetí Riceovu větu.
- b) Necht' B je množina těch  $i \in \mathbb{N}$ , že funkce  $\varphi_i$  je prostá a obor jejich hodnot je  $\mathbb{N}$ .
  - (i) Dokažte, že množina B není rekurzivně spočetná.
  - (ii) Dokaže, že množina  $\overline{B} = \mathbb{N} \setminus B$  není rekurzivně spočetná.

Řešení.

- a) Pokud I je množina která respektuje funkce, a  $\exists i \in I$  takové, že  $j \notin I$  pro každou konečnou restrikci  $\varphi_j$  funkce  $\varphi_i$ , pak I není rekurzivně spočetná.
- b) (i) Uvažme funkci  $\varphi_i=id$  kde zjevně  $i\in B$ , každá konečná restrikce  $\varphi_j$  není definovaná pro celé  $\mathbb N$ , tedy j nepatří do B a z "Třetí Riceovy" věty není B rekurzivně spočetná.
  - (ii)  $\overline{B}$  respektuje funkce. Výše zmíněná  $\varphi_j$  je nevlastním rozšířením funkce  $\varphi_i$ . Zároveň platí, že  $j\in \overline{B}, i\notin \overline{B}$  a tedy podle "Druhé Riceovy" věty není  $\overline{B}$  rekurzivně spočetná.

### Problém 3.

- a) Definujte třídy problémů NL a P.
- b) Dokažte, že NL ⊆ P. Pokud použijete k důkazu obecnější větu z přednášky, tak ji dokažte.

#### Řešení.

- a) NL obsahuje problémy řešitelných v nedeterministickém lineárním prostoru<sup>2</sup>. P je třída problémů řešitelných v polynomiálním čase<sup>3</sup>.
- b) NL = NSPACE(log(n))  $\subseteq$  TIME  $(2^{\mathcal{O}(\log(n))})$  = TIME $(n^{\mathcal{O}(1)})$  = PPrvní inkluze vychází z NSPACE $(f) \subseteq \text{TIME}(2^{\mathcal{O}(f)})$ . Což lze ukázat, že platí obecně pro všechny  $f > \log n$ .

## **Algoritmus 1:** Algoritmus výpočtu NSPACE(f) v deterministickém čase

- 1 nageneruj všechny možné stavy výpočtu  $\dots 2^{\mathcal{O}(f(n))}$
- 2 vytvoř orientovaný graf možných přechodů (obrázek 1)
- 3 if příjímající stav výpočtu je dosažitelný z počátečního then
- ACCEPT
- 5 end



Obrázek 1: Rozšiřování počtu stavů

 $<sup>\</sup>begin{array}{l} ^{2}\text{tedy NL} = \text{NSPACE}(\log(n)) \\ ^{3}\text{tedy P} = \bigcup_{k \in \mathbb{N}} \text{TIME}(n^{k}) \end{array}$