Notes on Kumar's Paper

Ziquan Yang

September 7, 2014

1 Introduction

This report is mainly a reading note of [1]. The main contribution of this paper is to give a bound on the minimum distance of 2-reconstructible codes with locality r and a given rate and to give a construction for certain combinations of these metrics.

2 Notations and Definitions

Notation 2.1.

$$\mathcal{A}_i := \{ c \in C : i \in \text{supp}(c) \}$$

Notation 2.2.

$$\mathcal{B}_0 = \operatorname{span}\{c \in C^{\perp}, |\operatorname{supp}(c)| \le r + 1\}$$

Notation 2.3. C_I denotes the shortened code of C on I and C^I denotes the punctured code of C on I.

Definition 2.4. A code C is 2-reconstructible with locality r if for any pair of disks fails, then there exists a sequence of two parity checks with weight at most r+1 that can be used to recover the pair.

Remark 2.5. In practice the above requirements amount to the following conditions: (i) $|\mathcal{A}_i| \geq 1$ and (ii) $\mathcal{A}_i \neq \mathcal{A}_j, \forall i \neq j$. Proof is straightforward.

Definition 2.6. A subset $I \subset [n], |I| = k$ is said to be a k-core of code C if it does not contain the support of any codewords in C. In other words, $C_I = 0$.

3 Theorems and Results

Lemma 3.1. $\forall I \subset [n], |I| = g_k, \exists I' \subset I \text{ that is a } k\text{-core of } C.$

Proof. First observe that dim $C_I \leq g_k - k$. Suppose not, then dim $C_I \geq g_k - k + 1$, which implies $d_{g_k-k+1} \leq g_k$, contradicting with the fact that the number of GHWs up to g_k is exactly $g_k - k$.

Let $b' = \dim C_I$ and up to permutation of columns we can represent the generator matrix of C as $[I_{b'} \mid P_{b' \times (g_k - b')}]$. Let T be the support of of $P_{b' \times (g_k - b')}$, then any $I' \subset T$ is a

Theorem 3.2. If $B_0 < C^{\perp}$ and any I that is a l-core of B_0 is also a l-core of C^{\perp} , then $d_{\min}(C) = n + 1 - g_k(B_0)$.

Proof. By the previous lemma, for any $I \subset [n], |I| = g_k(\mathcal{B}_0)$, there exists $I' \subset I, |I| = k$ that is a k-core of \mathcal{B}_0 . This implies that $\dim C^I = k, \forall |I| = g_k$, i.e. C punctured on any $I, |I| = g_k$ still has full rank, thus any $I, |I| = g_k$ cannot hold any codewords. Thus $d_{\min}(C) \geq n + 1 - g_k(\mathcal{B}_0)$, however since $d_{\min}(C) = n - g_k(C^{\perp}) + 1 \leq n - g_k(\mathcal{B}_0) + 1$, we have equality.

Theorem 3.3. For a 2-reconstructible LRC with locality r, $b = \dim \mathcal{B}_0 \ge 2n/(r+2)$.

Proof. Let $B_0 = \{p_0, \dots, p_{b-1}\}$ be a basis for \mathcal{B}_0 and $S_i = \text{supp}(p_i)$. Now let

$$s_i := |S_i - \bigcup_{j \neq i} S_j|, 1 \le i \le b$$

. In other words, s_i is the number of coordinates covered uniquely by p_i . We immediately have $s_i \leq 1$. If the $s_i \geq 2$, then if a pair in S_i fails, there is no way to recover it. Coordinates not in any S_i are covered by more than one vectors, thus we have

$$\sum_{i=0}^{b-1} s_i + 2(n - \sum_{i=0}^{b-1} s_i) \le b(r+1)$$

$$2n - b \le 2n - \sum_{i=0}^{b-1} s_i \le b(r+1)$$
$$b \ge \frac{2n}{r+2}$$

Remark 3.4. The use of s_i also appeared in the proof of theorem 3 in Sree's paper.

The following is a pure set-theoretic fact:

Lemma 3.5. Let T be any set such that $|T| = n \ge r+1$ and let $S_i, 0 \le i \le b-1$ be subsets of T such that $\bigcup_{i=0}^{b-1} S_i = T$ and $|S_i| = r+1$. Define

$$f_m = \min_{I \subset [b], |I| = m} |\bigcup_{i \in I} S_i|, 1 \le m \le b$$

then $f_m \leq e_m$ where e_m is defined recursively as:

$$e_b = r$$

$$e_{m-1} = e_m - \lceil \frac{2e_m}{m} \rceil + (r+1), 2 \le m \le b$$

Proof. Suppose $f_m \leq e_m$ is true, then we show that $f_{m-1} \leq e_{m-1}$. Now suppose f_m is achieved by $\{S_i | 0 \leq i \leq m-1\}$. Again we consider s_i that is the number of points uniquely covered by S_i . Then we have

$$\sum_{i=0}^{m-1} s_i + 2(f_m - \sum_{i=0}^{m-1} s_i) \le m(r+1)$$

which gives

$$\sum_{i=0}^{m-1} s_i \ge 2f_m - m(r+1)$$

Now remove the $\max s_i$. Assume s_0 is the largest. Then

$$\left| \bigcup_{i=1}^{m} S_i \right| = f_m - s_0 \le f_m - \frac{\sum_{i=0}^{m-1} s_i}{m} \le \frac{m-2}{m} e_m + (r+1)$$

Applying the above lemma to the set \mathcal{B}_0 , we see that $d_m(\mathcal{B}_0) \leq e_m, 1 \leq m \leq b$. To minimize $g_k(\mathcal{B}_0)$ we want to maximize all the $d_m(\mathcal{B}_0)$.

4 Construction of Optimal Code Based on Turan Graph

The class of optimal code construction has length with the form:

$$n = \frac{(r+\beta)(r+2)}{2}$$

where $\beta \mid r$.

4.1 Description of Construction

Consider a graph of $b = r + \beta$ vertices. Divide the vertices into $x = (r + \beta)/\beta$ partitions, then place exactly one edge between any two vertices belonging to distinct partitions. Then we have exactly

$$\frac{x(x+1)}{2}\beta^2 = n - b$$

edges, and there are exactly r edges incident on one vertex. Label the vertices with indices $1, 2, \dots, b$ and then label the edges with indices $b + 1, b + 2, \dots, n$. Order does not matter. Now for each vertex, we associate a parity check p_i as follows:

$$\mathrm{supp}(p_i) = \{i, j_1, \cdots, j_r : i \in \partial(e_{j_k}), 1 \leq k \leq r\}$$

and p_i is specified to be the all-1 vector with the given support.

4.2 Properties of the Constructed Code

Theorem 4.1. Let $S_i = \text{supp}(p_i)$. Then collection of sets $\{S_i : 1 \leq i \leq b\}$ achieves the bound $f_m = e_m$.

Proof. We want to show that $f_b = n$ and f_m 's satisfy the same recursive relations as e_m , i.e.

$$f_m - f_{m-1} = \lceil \frac{2f_m}{m} \rceil - (r+1)$$

¹There is a hand-drawn picture here.

Consider any subset M of vertices of order m. We have that

$$|\bigcup_{i=1}^{m} S_i| = m + |E|$$

where

$$E = \{e_j : v \in \partial(e_j) \text{ for some } v \in M\}$$

The rest of the edges are those who only incident on the rest of the b-m vertices, so we want to maximize the number of the edges among any b-m vertices. Thus we want them to be as evenly distributed to the partitions as possible. Apply division with remaider we have

$$b - m = r + \beta - m = ux + v, 0 \le v \le x - 1$$

then clearly we should distribute the vertices as illustrated below:

The above chart also clearly shows that if we add one more vertex, then it should at most form (u+1)v + u(x-v-1) new edges. Thus we have

$$f_m - f_{m-1} = (u+1)v + u(x-v-1) + 1 = v + ux - u + 1$$

since to remove one vertex from M we have 1 fewer vertex and (u+1)v + u(x-v-1) fewer edges. Note that in the above equation, u, v are both uniquely determined by m with division with remainder, so this allows us to calculate f_m recursively:

$$f_m = n - \sum_{i=r+\beta}^{m+1} (f_i - f_{i-1})$$

Let $d_i = f_i - f_{i-1}$, then we have that

$$d_i - d_{i-1} = \begin{cases} 0, & \text{if } x \mid m \\ 1, & \text{otherwise} \end{cases}$$

thus we have

$$\sum_{i=b}^{m+1} b_i = \sum_{i=1}^{ux-u+v} i + \sum_{i=1}^{u} (ix - i + 1)$$

where the first term is the sum of all unique d_i 's and the second is that of all repeated terms. Now we apply division by m with remainder again to $2f_m$: $2f_m = mq' + r'$, where

$$q' = (r+1) + (ux + v - u), r' = (r + \beta) - ux - v\beta + uv$$

. Thus we have

$$\lceil \frac{2f_m}{m} \rceil = q' + 1 = r + 1 + ux + v - u + 1$$

and the desired result follows.

Theorem 4.2. Suppose C is a [n,k] linear code and let $\{c_1, \dots, c_k\}$ be a basis. Let $R_i = \text{supp}(c_i)$. If R_i 's satisfy the following three requirements:

- $|R_i \cap R_j| \le 1, \forall i \ne j$
- any $l \in [n]$ belongs to at most two sets among R_i 's
- $|R_i \bigcup_{j \neq i} R_j| \ge 1$

then the generalized Hamming weights are given by:

$$d_m(C) = \min_{I \subset [k], |I| = m} |\bigcup_{i \in I} R_i|, 1 \le m \le k$$

Remark 4.3. The significance of the conclusion is that to calculate d_m we do not need to consider all m dimensional subspaces of C, instead we only need to consider those formed by m vectors in the given basis.

Proof. Consider any m dimensional subcode of C and suppose $\{v_1, \dots, v_m\}$ be a set of basis. Without loss of generality, we can reduce the change of basis matrix (this is a slight abuse since the dimensions on both sides do not match) to the standard form by renumbering c_i 's if necessary.

$$\begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix} = [I_m \mid R_{m \times (b-m)}] \begin{bmatrix} c_1 \\ \vdots \\ c_m \\ c_{m+1} \\ \vdots \\ v_b \end{bmatrix}$$

We can think of v_1, \dots, v_m as generated by starting with c_1, \dots, c_m and adding a linear combination of the rest of the b-m vectors to each of them. Again, let $R_i = \text{supp}(c_i)$ and $R'_i = \text{supp}(v_j)$ then we claim that

$$|\bigcup_{i=1}^{m} R_i'| \ge |\bigcup_{i=1}^{m} R_i|$$

Suppose $x \in \bigcup_{i=1}^m R_i$, we observe that x is either preserved by the subsequent linear transformations or is replaced by another coordinate to appear in $\bigcup_{i=1}^m R_i$. Clearly, if x only belongs to $\bigcup_{i=1}^m R_i$ and does not appear in $\bigcup_{i=m+1}^k R_i$ at all then clearly it is preserved, we only need to discuss the case when $x \in R_i$, R_j where $1 \le i \le m$ and $m+1 \le j \le k$. In this case we focus on the jth column vector in $[I \mid B]$ and consider three subcases:

- $|\text{supp}(\mathbf{b})| = 0$, in other words, c_j does not participate in the linear combinations operated on c_1, \dots, c_m , then clearly x is preserved.
- |supp(b)| = 1. Then we again divide the case into two subcases, as illustrated below:

• $|\text{supp}(b)| \ge 2$, then like the above case, a new element must be introduced.

From the geometric construction of B_0 it is clear that the supports in its parity checks satisfy the conditions in the above theorem, which gives $f_m = d_m$ for B_0 .

References

- [1] N. Prakash, V. Lalitha and P. Vijay Kumar, "Codes with Locality for Two Erasures", 2014 IEEE International Symposium on Information Theory, pp. 1962-1966
- [2] V. K. Wei, "Generalized Hamming weights for linear codes", *IEEE Trans. Inform. Theory*, vol. 37, pp.1412-1418, Sept. 1991
- [3] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes. Cambridge University Press, UK 2003.