CS21 Decidability and Tractability

Lecture 7 January 22, 2014

January 22, 2014

CS21 Lecture 7

Outline

- · proof of CFL pumping lemma
- deterministic PDAs
- · deciding CFLs

January 22, 2014

CS21 Lecture 7

Pumping Lemma for CFLs

<u>CFL Pumping Lemma</u>: Let L be a CFL. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \ge p$ can be written as

w = uvxyz such that

- 1. for every $i \geq 0, \, uv^i xy^i z \, \in \, L$, and
- 2. |vy| > 0, and
- 3. $|vxy| \le p$.

January 22, 2014

CS21 Lecture 7

CFL Pumping Lemma Example

<u>Theorem</u>: the following language is not context-free:

$$L = \{a^n b^n c^n : n \ge 0\}.$$

- Proof:
 - let p be the pumping length for L
 - choose w = a^pb^pc^p

w = aaaa...abbbb...bcccc...c

- w = uvxyz, with |vy| > 0 and $|vxy| \le p$.

January 22, 2014

CS21 Lecture 7

CFL Pumping Lemma Example

- possibilities:

(if v, y each contain only one type of symbol, then pumping on them produces a string not in the language)

January 22, 2014

CS21 Lecture 7

CFL Pumping Lemma Example

- possibilities:

(if v or y contain more than one type of symbol, then pumping on them might produce a string with equal numbers of a's, b's, and c's – if vy contains equal numbers of a's, b's, and c's. But they will be out of order.)

January 22, 2014

CS21 Lecture 7

CFL Pumping Lemma

- how large should pumping length p be?
- need to ensure other conditions:

|vv| > 0 $|vxy| \le p$

- -b = max # symbols on rhs of any production(assume b ≥ 2)
- if parse tree has height ≤ h, then string generated has length $\leq b^h$ (so length $> b^h$ implies height > h)

January 22, 2014 CS21 Lecture 7 10

CFL Pumping Lemma

- let m be the # of nonterminals in the grammar
- to ensure path of length at least m+2, require

 $|\mathbf{w}| \ge \mathbf{p} = \mathbf{b}^{\mathsf{m}+2}$

- since $|w| > b^{m+1}$, any parse tree for w has height > m+1
- let T be the smallest parse tree for w
- longest root-leaf path must consist of ≥ m+1 non-terminals and 1 terminal.

January 22, 2014 CS21 Lecture 7 11

CFL Pumping Lemma

- must be a repeated nonterminal A on long path
- select a repetition among the lowest m+1 non-terminals on path.
- pictures show that for every i ≥ 0, $uv^ixy^iz \in L$
- is |vy| > 0?
 - smallest parse tree T ensures
- is |vxy| ≤ p?
 - red path has length \leq m+2, so \leq b^{m+2} = p leaves

January 22, 2014 CS21 Lecture 7

Deterministic PDA

- A NPDA is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where:
 - δ:Q x (Σ \cup {ε}) x (Γ \cup {ε}) \rightarrow \wp (Q x (Γ \cup {ε})) is a function called the transition function
- A deterministic PDA has only one option at every step:
 - for every state $q \in Q$, $a \in \Sigma$, and $t \in (\Gamma \cup \{\epsilon\})$, exactly 1 element in $\delta(q, a, t)$, or
 - exactly 1 element in $\delta(q, \epsilon, t)$, and $\delta(q, a, t)$ empty for all $a \in \Sigma$

January 22, 2014

CS21 Lecture 7

Deterministic PDA

· A technical detail:

we will give our deterministic machine the ability to detect end of input string

- add special symbol to alphabet
- require input tape to contain x
- language recognized by a deterministic PDA is called a deterministic CFL (DCFL)

January 22, 2014

CS21 Lecture 7 14

Example deterministic PDA

(unpictured transitions go to a "reject" state and stay there)

January 22, 2014 CS21 Lecture 7 15

Deterministic PDA

<u>Theorem</u>: DCFLs are closed under complement

(complement of L in Σ^* is (Σ^* - L))

Proof attempt:

- swap accept/non-accept states
- problem: might enter infinite loop before reading entire string
- machine for complement must accept in these cases, and read to end of string

January 22, 2014 CS21 Lecture 7 16

Example of problem

Language of this DPDA is 0Σ*

January 22, 2014 CS21 Lecture 7 17

Example of problem

Language of this DPDA is {E}

January 22, 2014 CS21 Lecture 7 18

Deterministic PDA

Proof:

- convert machine into "normal form"
 - · always reads to end of input
 - always enters either an accept state or single distinguished "reject" state
- step 1: keep track of when we have read to end of input
- step 2: eliminate infinite loops

January 22, 2014

CS21 Lecture 7

19

Deterministic PDA step 1: keep track of when we have read to end of input $\overbrace{q_0 \qquad q_1 \qquad ,? \rightarrow?} \overbrace{q_0 \qquad q_1 \qquad ,? \rightarrow?}$ for accept state q': replace outgoing " ϵ , ? \rightarrow ?" transition with self-loop with same label

