203105453 – Data Mining & Business Intelligence

Unit-5 Concept Description and Association Rule Mining

Prof. Prashant V. Sahatiya

□ prashant.sahatiya270187@paruluniversity.ac.in

Outline

- What is concept description?
- Market basket analysis
- Association Rule Mining
- Generating Rules
- Improved apriori algorithm
- Incremental ARM (Association Rule Mining)
- Associative Classification
- Rule Mining

Concept description

- Data mining can be classified into two categories: descriptive data mining and predictive data mining.
- Descriptive data mining describes the data set in a concise and summative manner and presents interesting general properties of the data.
- Predictive data mining analyzes the data in order to construct one or a set of models, and attempts to predict the behavior of new data sets.
- Database is usually storing the large amounts of data in great detail. However users often like to view sets of summarized data in concise, descriptive terms.

Concept description (Cont..)

The simplest kind of descriptive data mining is called

concept description.

- A concept usually refers to a collection of data such as frequent_buyers, graduate_students etc.
- As a data mining task, concept description is not a simple enumeration (number of things done one by one) of the data.
- Concept description generates descriptions for characterization and comparison of the data it is also called class description.

Concept description (Cont..)

- Characterization provides a concise and brief summarization of the data.
- While concept or class comparison (also known as discrimination) provides discriminations (inequity) comparing two or more collections of data.

Example

- Given the ABC Company database, for example, examining individual customer transactions.
- Sales managers may prefer to view the data generalized to higher levels, such as summarized by customer groups according to geographic regions, frequency of purchases per group and customer income.

Market basket analysis

- Market Basket Analysis is a modelling technique.
- It is based on, if you buy a certain group of items, you are more (or less) likely to buy another group of items.
- For example, if you are in a store and you buy a car then you are more likely to buy insurance at the same time than somebody who didn't buy insurance.
- The **set of items** a customer buys is referred to as an **itemset**.
- Market basket analysis seeks to find relationships between purchases (Items).
 - **E.g.** IF {Car, Accessories} THEN {Insurance}

{Car, Accessories} □ {Insurance}

Market basket analysis (Cont..)

{Car, Accessories} [Insurance]

- The probability that a customer will buy car without ar accessories is referred as the support for rule.
- The conditional probability that a customer will purchase Insurance is referred to as the confidence.

Association rule mining

 Given a set of transactions, we need rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Chocolate, Pepsi, Eggs
3	Milk, Chocolate, Pepsi, Coke
4	Bread, Milk, Chocolate, Pepsi
5	Bread, Milk, Chocolate, Coke

Example of Association Rules

```
{Chocolate} → {Pepsi},
{Milk, Bread} → {Eggs, Coke},
{Pepsi, Bread} → {Milk}
```

. Itemset

- A collection of one or more items
 - E.g.: {Milk, Bread, Chocolate}
- k-itemset

An itemset that contains k items

- **Support count (σ)**
 - Frequency of occurrence of an itemset
 - **E.g.** $\sigma(\{Milk, Bread, Chocolate\}) = 2$

Support

- Fraction of transactions that contain an itemset
 - . E.g. s({Milk, Bread, Chocolate}) = 2/5
 - . Frequent Itemset
- An itemset whose support is greater than or equal to a minimum support threshold

TID	Items
1	Bread, Milk
2	Bread, Chocolate, Pepsi, Eggs
3	Milk, Chocolate, Pepsi, Coke
4	Bread, Milk, Chocolate, Pepsi
5	Bread, Milk, Chocolate, Coke

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
 - E.g.: {Milk, Chocolate} → {Pepsi}

Rule Evaluation

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Chocolate, Pepsi, Eggs
3	Milk, Chocolate, Pepsi, Coke
4	Bread, Milk, Chocolate, Pepsi
5	Bread, Milk, Chocolate, Coke

Example:

Find support & confidence for {Milk, Chocolate} ⇒ Pepsi

$$s = \frac{\sigma(Milk,Chocolate,Pepsi)}{|T|} = \frac{2}{5} = \mathbf{0.4}$$

$$c = \frac{\sigma(Milk,Chocolate,Pepsi)}{\sigma(Milk,Chocolate)} = \frac{2}{3} = \mathbf{0.67}$$

Association rule mining - Example

TID	Items
1	Bread, Milk
2	Bread, Chocolate, Pepsi, Eggs
3	Milk, Chocolate, Pepsi, Coke
4	Bread, Milk, Chocolate, Pepsi
5	Bread, Milk, Chocolate, Coke

```
Calculate Support & Confidence:

{Milk, Chocolate} → {Pepsi}

{Milk, Pepsi} → {Chocolate}

{Chocolate, Pepsi} → {Milk}

{Pepsi} → {Milk, Chocolate}

{Chocolate} → {Milk, Pepsi}

{Milk} → {Chocolate, Pepsi}
```

Answer

```
Support (s): 0.4

{Milk, Chocolate} \rightarrow {Pepsi} c = 0.67

{Milk, Pepsi} \rightarrow {Chocolate} c = 1.0

{Chocolate, Pepsi} \rightarrow {Milk} c = 0.67

{Pepsi} \rightarrow {Milk, Chocolate} c = 0.67

{Chocolate} \rightarrow {Milk, Pepsi} c = 0.5

{Milk} \rightarrow {Chocolate, Pepsi} c = 0.5
```

 A common strategy adopted by many association rule mining algorithms is to decompose the problem into two major subtasks:

1. Frequent Itemset Generation

- The objective is to find all the item-sets that satisfy the minimum support threshold.
- These itemsets are called frequent itemsets.

2. Rule Generation

- The objective is to extract all the high-confidence rules from the frequent itemsets found in the previous step.
- These rules are called strong rules.

Apriori algorithm

- Purpose: The Apriori Algorithm is an influential algorithm for mining frequent itemsets for Boolean association rules.
- Key Concepts:
- Frequent Itemsets:

The sets of item which has **minimum support** (denoted by Li for ith-Itemset).

Apriori Property:

Any subset of frequent itemset must be frequent.

• Join Operation:

To find Lk, a set of candidate k-itemsets is generated by joining Lk-1 itself.

Apriori algorithm (Cont..)

Find the frequent itemsets

- The sets of items that have minimum support and a subset of a frequent itemset must also be a frequent itemset (Apriori Property).
- E.g. if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset.
- Use the frequent item sets to generate association rules.
- The Apriori Algorithm : Pseudo code
 - Join Step: Ck is generated by joining Lk-1with itself
 - **Prune Step**: Any (k-1) itemset that is not frequent cannot be a subset of a frequent k-itemset

Apriori algorithm steps (Cont..)

Step 1:

• Start with itemsets containing just a single item (Individual items).

. Step 2:

- Determine the support for itemsets.
- Keep the itemsets that meet your minimum support threshold and remove itemsets that do not support minimum support.

. Step 3:

• Using the itemsets you have kept from Step 1, generate all the possible itemset combinations.

. Step 4:

Repeat steps 1 & 2 until there are no more new itemsets.

Apriori algorithm - Pseudo code (Cont..)

```
Ck: Candidate itemset of size k
Lk: Frequent itemset of size k
L1= {frequent items};
   for (k = 1; Lk != \emptyset; k++) do begin
      Ck+1 = candidates generated from Lk;
   for each transaction t in database do
      Increment the count of all candidates in Ck+1
      That are contained in t
      Lk+1 = candidates in Ck+1 with min support
   end
   return \bigcup k Lk;
```

Apriori algorithm - Example

Minimum Support = 2

{3 5}

TID	lt and				D. 4: C	. ـ ا		
TID	Items		C1	ItemSet	Min. Sup	L1	ItemSet	Min. Sup
100	134		Scan D	{1}	2		{1}	2
200	2 3 5		Scan D	{2}	3		{2}	3
300	123	5		{3}	3		{3}	3
400	2 5			{4}	1	X	{5}	3
				{5}	3			
_ =				C2	Itemset	Min. Sup	C2	Itemset
L2	ltemSet	Min.		C2	Itemset {1 2}	Min. Sup	C2	Itemset {1 2}
L2	ItemSet {1 3}		2	C2	reemset		C2 Scan D	
L2				C2 X ← X	{1 2}	1]	{1 2}
L2	{1 3}		2	C2 X X	{1 2} {1 3}	1 2]	{1 2} {1 3}
L2	{1 3} {2 3}		2	C2 ★	{1 2} {1 3} {1 5}	1 2 1]	{1 2} {1 3} {1 5}

{3 5}

Apriori algorithm - Example

Minimum Support = 2

	ItemSet	Min. Sup
L2	{1 3}	2
	{2 3}	2
	{2 5}	3
	{3 5}	2

X	L3	Items	Sup
$\hat{\mathbf{x}}$		{2 3 5}	2

Support	Confidence	Confidence (%)	
2	2/2 = 1	100 %	1
2	2/2 = 1	100 %	1
2	2/3 = 0.66	66%	
2	2/3 = 0.66	66%	
2	2/3 = 0.66	66%	
2	2/3 = 0.66	66%	
	2 2 2 2 2	2 2/2 = 1 2 2/2 = 1 2 2/3 = 0.66 2 2/3 = 0.66 2 2/3 = 0.66	2 2/2 = 1 100 % 2 2/2 = 1 100 % 2 2/3 = 0.66 66% 2 2/3 = 0.66 66% 2 2/3 = 0.66 66%

Improve apriori's efficiency

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.
- **Transaction reduction**: A transaction that does not contain any frequent k-itemset is useless in subsequent scans.
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.
- Sampling: Mining on a subset of given data, lower support threshold + a method to determine the completeness.
- Dynamic itemset counting: Add new candidate itemsets only when all
 of their subsets are estimated to be frequent.

Incremental Mining of Association Rules

- It is noted that analysis of past transaction data can provide very valuable information on customer buying behavior, and thus improve the quality of business decisions.
- With the increasing use of the record-based databases whose data is being continuously added, updated, deleted etc.
- Examples of such applications include Web log records, stock market data, grocery sales data, transactions in e-commerce, and daily weather/traffic records etc.
- In many applications, we would like to mine the transaction database for a fixed amount of most recent data (say, data in the last 12 months).

Incremental Mining of Association Rules

 Mining is not a one-time operation, a naive approach to solve the incremental mining problem is to re-run the mining algorithm on the updated database.

FP-Growth Algorithm

- The FP-Growth Algorithm is proposed by Han.
- It is an efficient and scalable method for mining the complete set of frequent patterns.
- Using prefix-tree structure for storing information about frequent patterns named frequent-pattern tree (FP-tree).
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent item sets.

FP-Growth Algorithm (Cont..)

Building the FP-Tree

- 1. Scan data to determine the support count of each item.
 - Infrequent items are discarded, while the frequent items are sorted in decreasing support counts.
- 2. Make a second pass over the data to construct the FP-tree.
 - As the transactions are read, before being processed, their items are sorted according to the above order.

FP-Growth Algorithm - Example

FP-Tree Generation

TID	Transactions
1	ABCEFO
2	ACG
3	ΕI
4	ACDEG
5	ACEGL
6	EJ
7	ABCEFP
8	ACD
9	ACEGM
10	ACEGN

Step:1

Freq. 1-Itemsets.
Min_Sup ≥ 2

Transactions

A:8

C:8

E:8

G:5

B:2

D:2

F:2

Remaining all O,I,J,L,P,M & N is with min_sup = 1

Step:2

Transactions with items sorted based on frequencies, and ignoring the infrequent items.

ACEBF

ACG

E

ACEGD

ACEG

E

ACEBF

ACD

ACEG

FP-Tree after reading 1st transaction

ACEBF

ACG

E

ACEGD

ACEG

Ε

ACEBF

ACD

ACEG

FP-Tree after reading 2nd transaction

ACEBF

ACG

E

ACEGD

ACEG

Ε

ACEBF

ACD

ACEG

FP-Tree after reading 3rd transaction

ACEBF

A C G

E

ACEGD

ACEG

Ε

ACEBF

ACD

ACEG

FP-Tree after reading 4th transaction

ACEBF

ACG

E

ACEGD

ACEG

E

ACEBF

ACD

ACEG

FP-Tree after reading 5th transaction

ACEBF

ACG

E

ACEGD

ACEG

Ε

ACEBF

ACD

ACEG

FP-Tree after reading 6th transaction

ACEBF

ACG

E

ACEGD

ACEG

E

ACEBF

ACD

ACEG

FP-Tree after reading 7th transaction

ACEBF

ACG

F

ACEGD

ACEG

E

ACEBF

 $A \subset D$

ACEG

FP-Tree after reading 8th transaction

ACEBF

ACG

E

ACEGD

ACEG

Ε

ACEBF

ACD

ACEG

FP-Tree after reading 9th transaction

ACEBF

ACG

E

ACEGD

ACEG

F

ACEBF

ACD

ACEG

FP-Tree after reading 10th

transaction

ACEBF

ACG

Ε

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Growth algorithm - Example

Minimum Support >= 2

TID	Items
1	A B
2	BCD
3	ACDE
4	ADE
5	ABC
6	ABCD
7	ВС
8	ABC
9	ABD
10	ВСЕ

Header			
Item	Support		
В	8		
Α	7		
С	7		
D	5		

3

Ε

FP-Growth Example (Try it) Minimum Support = 3

TID	Items Bought
100	FACDGIMP
200	ABCFLMO
300	BFHJOW
400	BCKSP
500	AFCELPMN

FP-Growth Example - Answer

FP-Tree Construction

Thank you!