

Some Properties of the DFT

Itthi Chatnuntawech

Discrete Fourier Transform (DFT)

Time domain

$$X[k]$$
 $X[0]$
 $X[1]$
 $X[N-1]$

scipy.fft.fft

scipy.fft.fft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None)

Compute the 1-D discrete Fourier Transform.

This function computes the 1-D *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [1].

Fast Fourier Transform (FFT) - An efficient algorithm that computes the DFT of a signal

Brain Code O O O Camp 20 Hz sine wave 50 Hz sine wave a = 1, b = 0.5

Linearity

The Convolution Theorem

$$DFT$$

$$x_1[n] \longleftrightarrow X_1[k]$$

$$DFT$$

$$x_2[n] \longleftrightarrow X_2[k]$$

circular convolution
$$DFT$$

$$x_1[n] \overset{\downarrow}{\otimes} x_2[n] \longleftrightarrow X_1[k]X_2[k]$$

Convolution in the time domain corresponds to multiplication in the frequency domain

สร้างคน ข้ามพรมแคน

A Simple Filtering

The Modulation or Windowing Theorem

$$DFT$$

$$x_{1}[n] \longleftrightarrow X_{1}[k]$$

$$DFT$$

$$x_{2}[n] \longleftrightarrow X_{2}[k]$$

$$circular$$

$$convolution$$

$$x_{1}[n]x_{2}[n] \longleftrightarrow \frac{1}{N}X_{1}[k] \overset{\downarrow}{\otimes} X_{2}[k]$$

Multiplication in the time domain corresponds to circular convolution in the frequency domain

Multiplication in the time domain corresponds to circular convolution in the frequency domain

Multiplication in the time domain corresponds to circular convolution in the frequency domain

Multiplication in the time domain corresponds to circular convolution in the frequency domain

Multiplication in the time domain corresponds to circular convolution in the frequency domain

The Inverse Relationship Between Time and Frequency

The Inverse Relationship Between Time and Frequency

