CS & IT
ENGINEERING
Algorithm

Dynamic Programming

Recap of Previous Lecture

Topic

Introduction to Dynamic Programming

Topic

The General Method

DP Vs DandC

Fibonacci Implementation

Topics to be Covered

Multistage Graphs Topic

Topic

Travelling Salesperson Problem

Topic: Dynamic Programming: (DP)

GST(1,1) = mim {
$$C(1/K) + GST(2/K)$$
 } - (1)

GST(i,j)=min{
$$C(3,K)+CosT(i+1,K)$$
} - (2)

$$(j_{ik}) \in E$$
 Cost(2-1, j) = c(j,t)

Cost
$$(i,j)$$
 = min $\left\{ C(j,k) + Cost(i+l,k) \right\} - O$
 $k \in V_{i+1}$
 $(j,k) \in E$

Cost $(k-l,j) = C(j,t) - O$
 $D(i,j) = k'$ that animimizes $e_{i}(0)$

$$GST(1,1) = min \left\{ c(1,2) + cost(2,2), c(1,3) + cost(2,3), c(1,4) + cost(2,4), c(1,5) + cost(2,5) \right\}$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 16$$

$$= 1$$

$$\mathcal{D}(I,I)$$

$$D(s'o(n)) = D(s's)$$

$$D(3'4)$$

GST
$$(4,9) = C(9,1) = 4$$

GST $(4,10) = C(10,1) = 2$
GST $(4,11) = C(11,1) = 5$
COST $(3,6) = mm \left\{ c(6,9) + GST(4,9), \right\}$
 $D(3,6) = 10$
COST $(3,7) = 5$
 $D(3,7) = 10$
COST $(3,8) = 7$
 $D(3,8) = 10$

$$CoST(2,2) = mun \{4+7; 2+5; 1+7\}$$

$$= 7$$

$$D(2,2) = 7$$

COST
$$(2,5)=15$$

D $(2,5)=8$

D(2,4) = 8

Topic: Dynamic Programming: (DP)

Frankelling Salesperson Problem (TSP)

=) The town of TSP Should Start from home city vo & visit remaining (n-) cities enactly once & Come back to home city (vo), S.T, the cost of the Tour is minimum

Let g(i, s) repr. Cost of the Town of 7:5:7 from venter i', a visiting all ventices in the set 's' emoctly once and terminating the town at V_0 ;

$$y_{0}=1$$

 $g(1, \{2,3,4\}) = min \{C(1,K) + g(K, S-\{K\})\}$
 $K \in S$
 $C(1,K) \in E$

$$g(i,s) = \min \{c(i,k) + g(k,s-\{ic)\}\}$$

$$k \in S$$

$$\langle i,k \rangle \in E$$

$$g(i, \emptyset) = C(i, V_0)$$

$$i - V_0$$

$$j -$$

$$70=1 k=2 K=3$$

$$g(1, \{2,3,4\}) = min \{C(1,2)+g(2,\{3,4\}), C(1,3)+g(3,\{2,4\})\}$$

$$151=3 = 35 K=4$$

$$T(1,\{2,3,4\}) = 2 C(1,4)+g(4,\{2,3\})$$

$$20+23$$

$$|S|=0$$

$$|S|=1$$

$$g(2,\omega)=c(2,1)=5$$

$$g(2,\sqrt{3})=c(2,3)+g(3,\omega)=9+6=15$$

$$g(3,\omega)=c(3,1)=6$$

$$g(3,\sqrt{2})=13+5=18$$

$$g(3,\sqrt{2})=13+5=18$$

$$g(3,\sqrt{2})=13+5=18$$

$$\frac{1(5)^{-8+5=13}}{3(4,5)^{-8+5=13}}$$

$$\frac{1(5)^{-8+5=13}}{3(4,5)^{-8+5=13}}$$

$$\frac{1(5)^{-8+5=13}}{3(4,5)^{-8+5=13}}$$

$$\frac{1(6)^{-15}}{3(4,5)^{-8+5=13}}$$

$$\frac{1(6)^{-15}}{3(4,5)^{-8+5=13}}$$

15=1

c(114)+g(4, {2,3})

9(3, [2])=13+5=18

9(3, [4])=15+8=50

$$|S| = 2$$

$$g(2, \{3,4\}) = 25$$

$$J(2, \{3,4\}) = 4$$

$$g(3, \{3,4\}) = 4$$

$$g(3, \{2,4\}) = 25$$
 $J(3, \{2,4\}) = 4$

$$9(4, \{2,3\}) = 23$$

 $J(4, \{2,3\}) = 2$

Jour-Construction:

$$J(1,\{2,3,4\})=2$$

$$J(2,\{3,4\})=4$$

T.S.P is one of the Roblem, for Which there is Polynomial Jime Algo in the Literature)

THANK - YOU