Variables dynamiques

Table of Contents

Facteur dynamique traitée de manière fixe	1
Estimation avec une variable dynamique	3
Modèle de Cox	3
Modèle à temps discret	5
Quelques remarques sur les problèmes de causalité avec les variables dynamiques	

Cette section sera principalement traitée par l'exemple.

- Dans un modèle de durée, une variable dynamique peut-être appréhendée comme une intéraction entre la durée et une variable.
- Pour un modèle de Cox, l'hypothèse de risque proportionnel ne peut donc pas être testée.
- Ne pas tenir compte du caractère dynamique d'une dimension peut conduire à des interprétations erronées.
- La façon de modéliser les dimensions dynamiques en analyse des durées peut conduire à des biais de causalité, en particulier dans sciences sociales, en omettant les effets d'anticipation. C'est une situation classique avec des covariables dynamiques de type discrètes. Les techniques standards ne peuvent modéliser que des effets d'adaptation (la cause observée précède l'effet).

Cette partie sera principalement traité par l'exemple, et on s'intéressera uniquement aux variables de type discrète.

Facteur dynamique traitée de manière fixe

On reprend l'exemple sur les transplantations cardiaques.

On a dans la base 2 variables: une variable binaire pour savoir si l'individu à été greffé, **tranplant**, et une variable continue tronquée donnant la durée en jour jusqu'à la greffe greffe (0 si pas de greffe), **wait**.

On va estimer le modèle (de Cox) avec la variable fixe transplant.

Cox regression -	- Efron met	thod for tie	S			
No. of subjects	=	103		Number o	of obs =	103
No. of failures	=	75				
Time at risk	= 31	L938				
				LR chi2(4) =	49.81
Log likelihood	= -273.23	L499		Prob > c	hi2 =	0.0000
t	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
vear	-0.0909	0.0659	-1.38	0.168	-0.2201	0.0383
age	0.0579	0.0147	3.95	0.000	0.0292	0.0866
1.surgery	-0.6547	0.4475	-1.46	0.143	-1.5318	0.2224
			-5.90	0.000	-2.1957	-1.1011

Interprétation?

Au niveau des données le modèle à été estimé, pour une personne greffée, à partir de ce mapping:

_t0	_t	_d	wait	transp~t	surgery	age	year	id
0	1	0	12	1	0	42	68	 10
1	2	0	12	1	0	42	68	10
2	3	0	12	1	0	42	68	10
3	5	0	12	1	0	42	68	10
5	5.0999999	0	12	1	0	42	68	10
5.0999999	6	0	12	1	0	42	68	 10
6	8	0	12	1	0	42	68	10
8	9	0	12	1	0	42	68	10
9	12	0	12	1	0	42	68	10
12	16	0	12	1	0	42	68	10
16	17	0	12	1	0	42	68	 10
17	18	0	12	1	0	42	68	10
18	21	0	12	1	0	42	68	10
21	28	0	12	1	0	42	68	10
28	30	0	12	1	0	42	68	10
30	32	0	12	1	0	42	68	 10
32	35	0	12	1	0	42	68	10
35	36	0	12	1	0	42	68	10
36	37	0	12	1	0	42	68	10
37	39	0	12	1	0	42	68	10
39	40	0	12	1	0	 42	68	 10
40	43	0	12	1	0	42	68	10
43	45	0	12	1	0	42	68	10
45	50	0	12	1	0	42	68	10

10	68	42	0	1	12	0	51	50
10	68	42	0	1	12	0	53	51
10	68	42	0	1	12	1	58	53

Problème: une personne est codée transplantée avant le jour le la transplantation. L'effet causal est donc mal mesuré si sa dimension temporelle a été ignorée.

Estimation avec une variable dynamique

Il convient donc de modifier l'information avec le délai d'attente jusqu'à la greffe: tvc = transplant, si transplant = 1 et $_t < wait$ alors tvc = 0.

Modèle de Cox

id	year	age	surgery	tvc	wait	_d	_t	_t0
10	68	42		0	12	0	1	0
10	68	42	0	0	12	0	2	1
10	68	42	0	0	12	0	3	2
10	68	42	0	0	12	0	5	3
10	68	42	0	0	12	0	5.0999999	5
10	68	42	0		12	0	6 8 9	5.0999999
10	68	42	0	0	12	0	8	6
10	68	42	0	0	12	0	9	8
10	68	42	0	1	12	0	12	9
10	68	42	0	1	12	0	16	12
10	68	42	0		12	0	17	16
10	68	42	0	1	12	0	18	17
10	68	42	0	1	12	0	21	18
10	68	42	0	1	12	0	28	21
10	68	42	0	1	12	0	30	28
10	68	42	0	1	12	0	32	30
10	68	42	0	1	12	0	35	32
10	68	42	0	1	12	0	36	35
10	68	42	0	1	12	0	37	36
10	68	42	0	1	12	0	39	37
10	68	42	0	1	12	0	40	39
10	68	42	0	1	12	0	43	40
10	68	42	0	1	12	0	45	43
10	68	42	0	1	12	0	50	45
10	68	42	0	1	12	0	51	50
10	68	42		1	12	0	53	51
10	68	42	0	1	12	1	58	53

Estimation du modèle avec la variable dynamique (Cox)

Cox regression	Efron met	thod for tie	S			
No. of subject No. of failure Time at risk	s =	103 75 38.1		Number	of obs =	3,668
				LR chi2	• •	
Log likelihood	= -289.27	7058		Prob >	chi2 =	0.0014
_t	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
year	1202612	.0673414	-1.79	0.074	252248	.0117256
age	.0304498	.0138998	2.19	0.028	.0032068	.0576929
1.surgery	9829386	.4365524	-2.25	0.024	-1.838566	1273116
1.tvc	0826682	.3047751	-0.27	0.786	6800165	.51468

Interprétation?

Solutions avec les logiciels :

- R, Stata, Python: la base doit être transformée en format long aux temps d'évènement (survsplit avec R, stsplit avec Stata) avant la création de la variable dynamique.
- Sas: la base n'est pas modifiée et la création de la TVC est faite "en aveugle" dans la procédure phreg

Modèle à temps discret

Même principe pour la construction de la variable dynamique

		: 	mwait t	tvc	surgery	age	year
		.	2 1	0	0	54	68
			2 2	1	0	54	68
		3	2 3	1	0	54	68
1,127 90.73 0.0000	(7) =	Number of LR chi2 Prob > o					c regre
0.1645	R2 =	Pseudo F			9.32152	= -236	elihood
	?2 = [95% Conf.		Z	 cd. Err.			elihood e
Interval]	[95% Conf.		z 		Coef. St	 (
	[95% Conf.	P> z			Coef. St	 () 	e
Interval]	[95% Conf.	P> z 0.000	-3.99	915105	Coef. St	 (36	e +
Interval] 1856907 .0243606	[95% Conf. 5444052 .0034846	P> z 0.000 0.009	-3.99 2.61	 0915105 0053256	Coef. St 	 (36	e + t t2
Interval]1856907 .0243606 -2.27e-06		P> z 0.000 0.009 0.047	-3.99 2.61 -1.99	9915105 9053256 9000815	Coef. St 	 36 .013 06	e t t2 t3
Interval]1856907 .0243606 -2.27e-06	[95% Conf. 5444052 .0034846 0003217 2770433	P> z 0.000 0.009 0.047 0.072	-3.99 2.61 -1.99 -1.80	0915105 0053256 000815 0737516 0149503	Coef. St 55048 .6 39226 .6 00162 .6 24928 .6	36 . 013 06 132	e t t2 t3 year
Interval]1856907 .0243606 -2.27e-06 .0120577	[95% Conf. 5444052 .0034846 0003217 2770433 .004527	P> z 0.000 0.009 0.047 0.072 0.024	-3.99 2.61 -1.99 -1.80 2.26	0915105 0053256 000815 0737516 0149503	Coef. St 55048 .6 39226 .6 30162 .6 24928 .6 33829 .6	36 . 013 06 132	e t t2 t3 year age

Quelques remarques sur les problèmes de causalité avec les variables dynamiques

- Rappel: la cause précède toujours l'effet.
- Lorsque l'évènement étudié n'est pas intrasèquement de type absorbant (décès), la "cause" peut se manifester après la survenue de l'évènement étudié.
- Les modèles de durée standards ne peuvent pas gérer ces situations car l'observation sort du risque après la survenue de l'évènement.
- Logique d'adaptation: la "cause" identifiée est mesurée avant l'évènement étudié [**OK**].
- Logique d'anticipation: la "cause" identifiée est mesurée après l'évènement étudié [**Problème**]. L'origine causale est bien antérieure à l'évènement, mais elle n'est pas observable.