

# Mixed Graphical Models for Microbiome and Metabolomic Data

Jing Ma

Public Health Sciences Division Fred Hutch Cancer Research Center jingma@fredhutch.org

August 1, 2018



► Communities of microbes that colonize all body surfaces.



Fig: Compositional differences in human microbiome<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Lasken and McLean, Nature Rev Genet, 2014



- Communities of microbes that colonize all body surfaces.
- Important in health and disease.



Fig: Compositional differences in human microbiome<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Lasken and McLean, Nature Rev Genet, 2014



- Communities of microbes that colonize all body surfaces.
- Important in health and disease.
- More microbial cells than human cells.



Fig: Compositional differences in human microbiome<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Lasken and McLean, Nature Rev Genet, 2014



- Communities of microbes that colonize all body surfaces.
- Important in health and disease.
- More microbial cells than human cells.
- Who they are → What they are doing.



Fig: Compositional differences in human microbiome<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Lasken and McLean, Nature Rev Genet, 2014

### iHMP-IBD





# Metabolic Activity of the Microbiome





#### Gut bacteria

- Synthesize amino acids and vitamins
- Break down indigestible plant polysaccharides
- Produce metabolites involved in energy metabolism

### Microbe - Metabolite Interactions



### Problem of Interest

Can we use probabilistic graphical models to infer microbe-metabolite interactions from data?

### Microbe - Metabolite Interactions



### Problem of Interest

Can we use probabilistic graphical models to infer microbe-metabolite interactions from data?











► OTU counts are noisy





- ► OTU counts are noisy
- OTU matrix is sparse





► Sequencing depth/library size varies.

 $<sup>^2</sup>$  Kurtz et al. PLoS Comp Bio. 2015





- ► Sequencing depth/library size varies.
- Existing networks are based on dissimilarity, correlation, graphical models<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup> Kurtz et al. PLoS Comp Bio. 2015





- ► Sequencing depth/library size varies.
- Existing networks are based on dissimilarity, correlation, graphical models<sup>2</sup>.
- CLR transformed data are not even close to Gaussian!

<sup>&</sup>lt;sup>2</sup> Kurtz et al. PLoS Comp Bio. 2015

### Our Framework



Key Idea: from compositional to ordinal data

0.4 0.28

### Our Framework



Key Idea: from compositional to ordinal data





▶ Let  $m{Y}^* \sim \mathcal{N}(0, \Sigma_{m{Y}^*})$  be the latent variables and  $Y_i^* \sim \mathcal{N}(0, 1)$ .



- ▶ Let  $\mathbf{Y}^* \sim \mathcal{N}(0, \mathbf{\Sigma}_{\mathbf{Y}^*})$  be the latent variables and  $Y_i^* \sim \mathcal{N}(0, 1)$ .
- $ightharpoonup \Sigma_{Y^*}^{-1}$  captures the conditional independence.



- ▶ Let  $\mathbf{Y}^* \sim \mathcal{N}(0, \mathbf{\Sigma}_{\mathbf{Y}^*})$  be the latent variables and  $Y_i^* \sim \mathcal{N}(0, 1)$ .
- $ightharpoonup \Sigma_{V^*}^{-1}$  captures the conditional independence.
- ▶ Ordinal data  $\mathbf{Y} = (Y_1, ..., Y_p)$  are discrete versions of  $\mathbf{Y}^*$ :

$$Y_{j} = \begin{cases} 0, & Y_{j}^{*} \in (-\infty, \theta_{1j}), \\ 1, & Y_{j}^{*} \in [\theta_{1j}, \theta_{2j}), \\ \vdots & \vdots \\ M - 1, & Y_{j}^{*} \in [\theta_{M-1,j}, \infty). \end{cases}$$



- ▶ Let  $Y^* \sim \mathcal{N}(0, \Sigma_{Y^*})$  be the latent variables and  $Y_i^* \sim \mathcal{N}(0, 1)$ .
- $ightharpoonup \Sigma_{V^*}^{-1}$  captures the conditional independence.
- ▶ Ordinal data  $\mathbf{Y} = (Y_1, ..., Y_p)$  are discrete versions of  $\mathbf{Y}^*$ :

$$Y_{j} = \begin{cases} 0, & Y_{j}^{*} \in (-\infty, \theta_{1j}), \\ 1, & Y_{j}^{*} \in [\theta_{1j}, \theta_{2j}), \\ \vdots & \vdots \\ M - 1, & Y_{j}^{*} \in [\theta_{M-1,j}, \infty). \end{cases}$$

 $\triangleright$   $\Theta$  and  $\Sigma_{Y^*}$  are unknown.

W.l.o.g, assume  $Y_i^* \sim \mathcal{N}(0,1)$ .

# Why Ordinal?



 Discretization preserves key features of microbial interactions while mitigating noises

# Why Ordinal?



- Discretization preserves key features of microbial interactions while mitigating noises
- ▶ Lead to a robust and more interpretable model
  - Conditional independence
  - + partial correlation implies co-existence
  - partial correlation implies co-exclusiveness

# Why Ordinal?



- Discretization preserves key features of microbial interactions while mitigating noises
- ▶ Lead to a robust and more interpretable model
  - Conditional independence
  - + partial correlation implies co-existence
  - partial correlation implies co-exclusiveness
- ▶ Joint inference becomes easy

# Mixed Graphical Models



- lacktriangle Mixed data  $oldsymbol{Y}_{\mathrm{ordinal}}$  and  $oldsymbol{Z}_{\mathrm{con't}}$
- ▶ **Y** is discrete version of **Y**\*

# Mixed Graphical Models



- $\blacktriangleright$  Mixed data  $\begin{tabular}{c} \textbf{Y} \\ \mathrm{ordinal} \end{tabular}$  and  $\begin{tabular}{c} \textbf{Z} \\ \mathrm{con't} \end{tabular}$
- ▶ **Y** is discrete version of **Y**\*
- ▶ The joint distribution of  $(Y^*, Z) \sim \mathcal{N}(0, \Omega^{-1})$ , where

$$\Omega^{-1} = \begin{pmatrix} \Sigma_{Y^*} & \Sigma_{Y^*Z} \\ \Sigma_{ZY^*} & \Sigma_Z \end{pmatrix}.$$

# Mixed Graphical Models



- lacktriangle Mixed data  $oldsymbol{Y}_{
  m ordinal}$  and  $oldsymbol{Z}_{
  m con't}$
- ▶ **Y** is discrete version of **Y**\*
- ▶ The joint distribution of  $(Y^*, Z) \sim \mathcal{N}(0, \Omega^{-1})$ , where

$$\Omega^{-1} = egin{pmatrix} \Sigma_{Y^*} & \Sigma_{Y^*Z} \ \Sigma_{ZY^*} & \Sigma_{Z} \end{pmatrix}.$$

▶ Goal: infer  $\Omega$  (and  $\Theta$ ) given i.i.d.  $\{y^{(i)}, z^{(i)}\}$ .

# Estimation $\widehat{\Sigma}$



$$\blacktriangleright \ \mathsf{Get} \ \widehat{\Sigma} = \begin{pmatrix} \widehat{\Sigma}_{Y^*} & \widehat{\Sigma}_{Y^*Z} \\ \widehat{\Sigma}_{ZY^*} & \widehat{\Sigma}_{Z} \end{pmatrix}.$$

- ▶ Easy for  $\widehat{\Sigma}_{Z}$ !
- ▶ What about  $\widehat{\Sigma}_{Y^*}$  and  $\widehat{\Sigma}_{Y^*Z}$ ?

# Estimation $\widehat{\Sigma}$



$$\blacktriangleright \ \, \mathsf{Get} \, \, \widehat{\Sigma} = \begin{pmatrix} \widehat{\Sigma}_{Y^*} & \widehat{\Sigma}_{Y^*Z} \\ \widehat{\Sigma}_{ZY^*} & \widehat{\Sigma}_{Z} \end{pmatrix}.$$

- ▶ Easy for  $\widehat{\Sigma}_Z$ !
- ▶ What about  $\widehat{\Sigma}_{Y^*}$  and  $\widehat{\Sigma}_{Y^*Z}$ ?
- ► Estimate Ô

$$\hat{\theta}_{mj} = \Phi^{-1}(n^{-1}\sum_{i=1}^{n}\mathbf{1}(\mathbf{y}_{j}^{(i)} \leq m-1)) \quad m=1,\ldots,M.$$

# Estimation $\widehat{\Sigma}_{Y^*}$



• Estimate  $\hat{\Sigma}_{jk}$ 

$$\hat{\Sigma}_{jk} = \underset{\sigma \in (-1,1)}{\arg \max} \, \ell_{jk}(\sigma; \hat{\Theta}),$$

where

$$\ell_{jk}(\sigma;\Theta) = \sum_{a=0}^{M} \sum_{b=0}^{M} \frac{n_{ab}}{n} \log P(Y_j = a, Y_k = b; \Theta, \sigma)$$

and 
$$n_{ab} = \sum_{i=1}^{n} \mathbf{1}(\mathbf{y}_{j}^{(i)} = a, \mathbf{y}_{k}^{(i)} = b).$$

# Estimation $\widehat{\Sigma}_{Y^*Z}$



▶ Estimate  $\hat{\Sigma}_{j,p+k}$ 

$$\hat{\Sigma}_{j,p+k} = \underset{\sigma \in (-1,1)}{\operatorname{arg max}} \ell_{j,p+k}(\sigma; \hat{\Theta}),$$

where

$$\ell_{j,p+k}(\sigma;\Theta) = \sum_{a=0}^{M} \frac{\sum_{i=1}^{n} \mathbf{1}(\mathbf{y}_{j}^{(i)} = a)}{n} \log P(Y_{j} = a, \mathbf{z}_{k}^{(i)}; \Theta, \sigma).$$

### Inference



► Apply graphical lasso

$$\widetilde{\Omega} = \operatorname*{arg\,min}_{\Omega \succ 0} \left\{ \operatorname{tr}(\widehat{\Sigma}\Omega) - \log \det(\Omega) + \lambda_n \|\Omega\|_{1,\mathrm{off}} \right\}$$

<sup>&</sup>lt;sup>3</sup> Jankova and van de Geer. EJS. 2015

### Inference



► Apply graphical lasso

$$\widetilde{\Omega} = \operatorname*{arg\,min}_{\Omega \succ 0} \left\{ \operatorname{tr}(\widehat{\Sigma}\Omega) - \log \det(\Omega) + \lambda_n \|\Omega\|_{1,\mathrm{off}} \right\}$$

▶ Debias<sup>3</sup>

$$\widehat{\Omega}=2\widetilde{\Omega}-\widetilde{\Omega}\widehat{\Sigma}\widetilde{\Omega}$$

<sup>&</sup>lt;sup>3</sup> Jankova and van de Geer. EJS. 2015



Denote  $p' = \max\{p + q, n\}$  and  $s_0 = \#\{\Omega_{jk} \neq 0 : 1 \leq j < k \leq p + q\}$ .



Denote  $p' = \max\{p+q, n\}$  and  $s_0 = \#\{\Omega_{jk} \neq 0 : 1 \leq j < k \leq p+q\}$ .

### Theorem

Under some regularity conditions on  $\Omega^*$ ,  $P(Y_j = a, Y_k = b; \Theta^*, \sigma)$  and  $P(Y_j = a, \mathbf{z}_k; \Theta^*, \sigma)$ , for  $n \gtrsim s_0^2 \log p'$  and  $\lambda_n = O(\sqrt{\log p'/n})$ , we have w.h.p

$$\max_{j,k} |\widehat{\Sigma}_{jk} - \Sigma_{jk}^*| \le \sqrt{\frac{\log p'}{n}}.$$



Denote  $p' = \max\{p + q, n\}$  and  $s_0 = \#\{\Omega_{jk} \neq 0 : 1 \leq j < k \leq p + q\}$ .

### Theorem

Under some regularity conditions on  $\Omega^*$ ,  $P(Y_j = a, Y_k = b; \Theta^*, \sigma)$  and  $P(Y_j = a, \mathbf{z}_k; \Theta^*, \sigma)$ , for  $n \gtrsim s_0^2 \log p'$  and  $\lambda_n = O(\sqrt{\log p'/n})$ , we have w.h.p

$$\max_{j,k} |\widehat{\Sigma}_{jk} - \Sigma_{jk}^*| \le \sqrt{\frac{\log p'}{n}}.$$

#### Intuition:

- $\widehat{\Sigma}_{jk}$ : empirical loss function  $\ell_{jk}(\cdot)$  is non-convex.
- Assumptions ensure a one-to-one correspondence between critical points of the empirical loss and the population loss.



Denote 
$$s_{jk}^2 = \Omega_{jj}^* \Omega_{kk}^* + \Omega_{jk}^{*2}$$
.

### Corollary

Under an additional irrepresentable condition on  $\Sigma^* \otimes \Sigma^*$ 

$$\sqrt{n}(\widehat{\Omega}_{jk}-\Omega_{jk}^*)/s_{jk}=W_{jk}^n+o_p(1),$$

where  $W_{jk}^n$  converges weakly to  $\mathcal{N}(0,1)$ .



Denote 
$$s_{jk}^2 = \Omega_{jj}^* \Omega_{kk}^* + \Omega_{jk}^{*2}$$
.

### Corollary

Under an additional irrepresentable condition on  $\Sigma^* \otimes \Sigma^*$ 

$$\sqrt{n}(\widehat{\Omega}_{jk}-\Omega_{jk}^*)/s_{jk}=W_{jk}^n+o_p(1),$$

where  $W_{jk}^n$  converges weakly to  $\mathcal{N}(0,1)$ .

#### Structural Recovery:

- ▶ For each pair  $1 \le j < k \le p + q$ , test  $H_{0,j,k} : \Omega_{jk} = 0$
- Correct for multiple testing via BH

### Multi-Omics Analysis of IBD



- Number of subjects n = 81
- ▶ 982 OTUs  $\rightarrow$  p = 68 after removing sparse ones
- ▶ Discretization: use 0 and 67% quantile (M=3)
- ▶ 304 metabolites  $\rightarrow$  q = 169 after removing those with small correlations
- Visualize the top 81 most significant edges

# Results (Colored Nodes: Taxa)





# Results (Colored Nodes: Taxa)





- ▶ Edges colored in red represent positive partial correlations.
- ► Two nodes named Streptococcus have distinct OTU IDs.
- ► Acinetobacter sp. are capable of converting p-hydroxyphenylacetate into biochemical metabolites necessary for their growth<sup>4</sup>.

<sup>&</sup>lt;sup>4</sup> Thotsaporna et al. J Mol Catal B Enzym. 2016

# Summary





► A framework for joint analysis of microbiome and metabolomic data using mixed graphical models

 An inferential procedure for uncertainty quantification of each interaction

# Thank You





# Link to Latent Variable Graphical Model<sup>5</sup>



$$\begin{pmatrix} \Sigma_{Y^*} & \Sigma_{Y^*Z} \\ \Sigma_{ZY^*} & \Sigma_{Z} \end{pmatrix}^{-1} = \begin{pmatrix} \Omega_{Y^*} & \Omega_{Y^*Z} \\ \Omega_{ZY^*} & \Omega_{Z} \end{pmatrix}$$

- ▶ Let Z be observed and Y\* be hidden variables.
- Schur complement

$$\Sigma_{Z}^{-1} = \underbrace{\Omega_{Z}}_{\text{sparse}} - \underbrace{\Omega_{ZY^{*}}(\Omega_{Y^{*}})^{-1}\Omega_{Y^{*}Z}}_{\text{low-rank}}$$

We assume knowledge of  $Y^*$  in the form of ordinal variables whereas Chandrasekaran et al. (2012) assumes no knowledge of  $Y^*$ .

<sup>&</sup>lt;sup>5</sup> Chandrasekaran et al. Ann. Statist. 2012

### Simulation



- ► A scale-free network
- Colored nodes are ordinal
- ▶ Generate  $(Y^*, \mathbb{Z})$  from  $\Omega$
- ► *M* = 3
- ▶  $\theta_{mj} \in \{\pm 0.5, \pm 0.8\}$
- ▶ Generate Y from Y\* and  $\Theta$
- Estimate Ω from  $(Y, \mathbb{Z})$



# n = 100, p = 40, q = 60



### BH correction with $\alpha = 0.25$

