How to use this R-program to calculate the CO_2 constant rate (CO_2 -CR) and ventilatory efficiency (ηV_E)?

Step 1: The CO₂-CR is the slope obtained from the linear portion of the quadratic regression for the following function:

$$V'CO_2 = a*V'_E^2 + b*V'_E + c$$

 $b = \text{slope or CO}_2\text{-CR},$

Step 2: Your spreadsheet (excel, .xlsx type, for instance) should contain only two columns (see the TEMPLATE). The first one should contain the first line with the variable "x" ($\log_{10} V_E$), and the second column should contain the variable "y" (CO_2 , Liters) at the first line.

Step 3: Copy the path of the file and paste it to the customized R-program (Ventilatory Efficiency, Version 1), at the line

Step 4: After running the program, we could obtain the intercept and slope of the function $\mathbf{b} * V'_E + c$, in "Results" at the end of the running page.

Step 5: The final solution for ventilatory efficiency ηV_{E} (%) is,

$$\eta V_{\rm E} = \left\{ CO_2\text{-CR/(MVV predicted} * 0.22 * 0.863) \right\} * 100,$$

with MVV= predicted maximal voluntary ventilation.