Annals of Mathematics

Paths and Root Operators in Representation Theory

Author(s): Peter Littelmann

Reviewed work(s):

Source: The Annals of Mathematics, Second Series, Vol. 142, No. 3 (Nov., 1995), pp. 499-525

Published by: Annals of Mathematics

Stable URL: http://www.jstor.org/stable/2118553

Accessed: 29/08/2012 18:45

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to *The Annals of Mathematics*.

Paths and root operators in representation theory

By PETER LITTELMANN*

Introduction

Let X be the weight lattice of a complex symmetrizable Kac-Moody algebra $\mathfrak g$ and denote by Π the set of all piecewise linear paths $\pi:[0,1]\to X_{\mathbb Q}$ starting at 0. In [8] we associated to a simple root α linear operators e_{α} and f_{α} on the $\mathbb Z$ -module $\mathbb Z\Pi$ spanned by Π . Let $\mathcal A\subset\operatorname{End}_{\mathbb Z}\mathbb Z\Pi$ be the subalgebra generated by these operators.

We studied in [8] a special \mathcal{A} -submodule of $\mathbb{Z}\Pi$: For a dominant weight λ let π_{λ} be the path $t \mapsto t\lambda$ and denote by M_{λ} the \mathcal{A} -module $\mathcal{A}\pi_{\lambda}$ generated by π_{λ} . Considered as a \mathbb{Z} -module, the module M_{λ} has as a basis the set B_{λ} consisting of all paths contained in M_{λ} .

We showed that B_{λ} has some remarkable properties which are closely related to the representation theory of \mathfrak{g} : The sum $\sum e^{\pi(1)}$ over the endpoints of all paths in B_{λ} is the character of the irreducible representation V_{λ} of \mathfrak{g} of highest weight λ . Further, the Littlewood-Richardson rule to decompose tensor products of representations of $\mathfrak{g} = \mathfrak{gl}_{\mathfrak{n}}$ can be generalized in a straightforward way to all symmetrizable Kac-Moody algebras using the paths in B_{λ} .

The aim of this article is to show that the results in [8] are independent of the choice of the path connecting the origin with λ . As a consequence one obtains a very interesting interpretation (and a new proof) of the decomposition rules proved in [8]: The concatenation of paths can be viewed as a "model" for the tensor product of representations of \mathfrak{g} .

We describe first the operators f_{α} and e_{α} : Let α^{\vee} be the coroot of α . According to the behavior of the function $t \mapsto \langle \pi(t), \alpha^{\vee} \rangle$ we write a path $\pi = \pi_1 * \cdots * \pi_r$ as a concatenation of "smaller" paths. If $f_{\alpha}\pi \neq 0$, then

$$f_{\alpha}\pi = \eta_1 * \cdots * \eta_r,$$

where either $\eta_j = \pi_j$ or $\eta_j = s_{\alpha}(\pi_j)$, and $f_{\alpha}\pi(1) = \pi(1) - \alpha$. The definition of e_{α} is similar, only that $e_{\alpha}\pi(1) = \pi(1) + \alpha$ (see Section 1).

^{*}Supported by the Schweizerischer Nationalfonds

Let \mathcal{P}^+ be the set of paths π such that the image is contained in the dominant Weyl chamber and $\pi(1) \in X$, and for $\pi \in \mathcal{P}^+$ denote by M_{π} the \mathcal{A} -module $\mathcal{A}\pi$. Clearly the set B_{π} of paths contained in M_{π} is a basis for M_{π} . We show that the \mathcal{A} -module structure of M_{π} is invariant under those deformations of π which stay inside the dominant Weyl chamber and fix the starting point and the endpoint of the path:

ISOMORPHISM THEOREM. For $\pi, \pi' \in \mathcal{P}^+$, the A-modules M_{π} and $M_{\pi'}$ are isomorphic if and only if $\pi(1) = \pi'(1)$.

In particular, the isomorphism theorem shows that we always get the same "character" for M_{π} . The character can be calculated using Weyl's character formula (the proof given here is independent of the proof of the character formula given in [8]): Let $\rho \in X$ be such that $\langle \rho, \alpha^{\vee} \rangle = 1$ for all simple roots.

CHARACTER FORMULA. For $\pi \in \mathcal{P}^+$ let Char M_{π} be the character $\sum_{n \in \mathcal{R}_{\pi}} e^{\eta(1)}$ of the \mathcal{A} -module M_{π} . Then:

$$\sum_{\sigma \in W} \operatorname{sgn}(\sigma) e^{\sigma(\rho)} \operatorname{Char} M_{\pi} = \sum_{\sigma \in W} \operatorname{sgn}(\sigma) e^{\sigma(\rho + \lambda)}.$$

In particular, Char M_{π} is equal to the character of the irreducible, integrable \mathfrak{g} -module V_{λ} of highest weight $\lambda := \pi(1)$.

To define an analogue of a tensor product for \mathcal{A} -modules, note that the concatenation of paths induces a map $*: \Pi \times \Pi \to \Pi$, $(\pi_1, \pi_2) \mapsto \pi_1 * \pi_2$. Let \mathcal{O} be the \mathcal{A} -submodule $\mathcal{AP}^+ \subset \mathbb{Z}\Pi$ generated by \mathcal{P}^+ , and extend "*" to a bilinear map $*: \mathbb{Z}\Pi \times \mathbb{Z}\Pi \to \mathbb{Z}\Pi$.

TENSOR PRODUCT RULE. The concatenation induces a bilinear map $*: \mathcal{O} \times \mathcal{O} \to \mathcal{O}$ of \mathcal{A} -modules such that for $\pi_1, \pi_2 \in \mathcal{P}^+$:

$$M_{\pi_1} * M_{\pi_2} = \bigoplus_{\pi} M_{\pi},$$

where π runs over all paths in \mathcal{P}^+ of the form $\pi = \pi_1 * \eta$ for some $\eta \in B_{\pi_2}$.

By the character formula we get immediately the following Littlewood-Richardson type decomposition rule (proved in [8] for a special choice of π_2):

DECOMPOSITION FORMULA. If $\pi_1, \pi_2 \in \mathcal{P}^+$ are such that $\lambda = \pi_1(1)$ and $\mu = \pi_2(1)$, then the tensor product $V_\lambda \otimes V_\mu$ of irreducible \mathfrak{g} -modules decomposes into the direct sum

$$V_{\lambda}\otimes V_{\mu}\simeq igoplus_{\pi}V_{\pi(1)},$$

where π runs over all paths in \mathcal{P}^+ of the form $\pi = \pi_1 * \eta$ for some $\eta \in B_{\pi_2}$.

As described in [8, Section 8], for an appropriate choice of π_2 this rule is for $\mathfrak{g} = \mathfrak{gl}_n$ the Littlewood-Richardson rule. It should be interesting to find a direct correspondence to Lusztig's decomposition formula [9].

For a Levi subalgebra \mathfrak{l} of \mathfrak{g} let $\mathcal{A}_{\mathfrak{l}}$ be the subalgebra generated by those e_{α} , f_{α} such that α is a simple root of \mathfrak{l} . Denote by $\mathcal{P}_{\mathfrak{l}}^+$ the set of paths contained in the dominant Weyl chamber of the root system of \mathfrak{l} , and for $\eta \in \mathcal{P}_{\mathfrak{l}}^+$ denote by N_{η} the $\mathcal{A}_{\mathfrak{l}}$ -module generated by η .

RESTRICTION RULE. The A-module M_{π} , $\pi \in \mathcal{P}^+$, decomposes as an $\mathcal{A}_{\mathfrak{l}}$ -module into the direct sum $M_{\pi} = \bigoplus_{\eta} N_{\eta}$, where η runs over all paths in B_{π} contained in $\mathcal{P}_{\mathfrak{l}}^+$.

By the character formula we get for $\lambda = \pi(1)$: V_{λ} decomposes as an 4-module into the direct sum $\bigoplus_{\eta} U_{\eta(1)}$ of simple 4-modules, where η runs over all paths in B_{π} contained in \mathcal{P}_{1}^{+} .

Let $\Pi_{\text{int}} \subset \Pi$ be the subset of paths such that $\pi(1) \in X$. Using the operators e_{α} and f_{α} , we easily construct for each simple root a Lie subalgebra of $\text{End}_{\mathbb{Z}} \mathbb{Z}\Pi_{\text{int}}$ that is isomorphic to $\mathfrak{sl}_2(\mathbb{Z})$, but these subalgebras (see Section 2) do not satisfy the Serre relations (for different simple roots).

Now we define an action of the Weyl group W of \mathfrak{g} on $\mathbb{Z}\Pi_{\mathrm{int}}$ such that $w(\eta)(1) = w(\eta(1))$ for $w \in W$. We construct also for each simple root an action of the q-analogue $U_q(\mathfrak{sl}_2)$ of the enveloping algebra of $\mathfrak{sl}_2(\mathbb{Z})$ on $\mathbb{Z}[q,q^{-1}]\Pi$.

Another connection between the \mathcal{A} -modules M_{π} and the \mathfrak{g} -module $V_{\pi(1)}$ is given as follows: Let $\mathcal{G}(\pi)$ be the oriented, colored graph having as points the elements of the basis B_{π} , and we put an arrow $\pi_1 \xrightarrow{\alpha} \pi_2$ with color α if and only if $f_{\alpha}(\pi_1) = \pi_2$. Kashiwara [4] and Lakshmibai [6] have proved (independently):

THE CRYSTAL GRAPH. For $\pi = \pi_{\lambda}$ the graph $\mathcal{G}(\pi_{\lambda})$ is isomorphic to the crystal graph of the representation V_{λ} of the q-analogue $U_q(\mathfrak{g})$ of the enveloping algebra of \mathfrak{g} .

The isomorphism has also been proved by Joseph [1] using the isomorphism theorem for \mathcal{A} -modules. He gives a list of properties characterizing the crystal graph uniquely up to isomorphism. The most important condition: For all dominant weights λ , μ the graphs $\mathcal{G}(\pi_{\lambda} * \pi_{\mu})$ and $\mathcal{G}(\pi_{\lambda+\mu})$ are isomorphic, is satisfied by the isomorphism theorem.

Acknowledgments. The author would like to thank M. Kashiwara for help-ful discussions and the RIMS, Kyoto, for its hospitality. I would also like to thank M. Kashiwara and the referee for pointing out a gap in the proof in a preprint version of this article.

FIGURE 1. The part of the new path $e_{\alpha}\pi$ different from π is drawn as a dashed line.

1. The root operators

We write [0,1] for the set $\{t \in \mathbb{Q} \mid 0 \le t \le 1\}$. Denote by Π the set of all piecewise linear paths $\pi:[0,1] \to X_{\mathbb{Q}}$ such that $\pi(0)=0$. We consider two paths π_1, π_2 as identical if there exists a piecewise linear, nondecreasing, surjective, continuous map $\phi:[0,1] \to [0,1]$ such that $\pi_1 = \pi_2 \circ \phi$. Let $\mathbb{Z}\Pi$ be the free \mathbb{Z} -module with basis Π . For each simple root α we define linear operators e_{α} and f_{α} (the root operators) on $\mathbb{Z}\Pi$.

The definition given here is slightly different from the definition given in [8], but the effect on Lakshmibai-Seshadri paths is the same (see Section 4).

Let $\pi, \pi_1, \pi_2 \in \Pi$ be paths. For a simple root α let $s_{\alpha}(\pi)$ be the path given by $s_{\alpha}(\pi)(t) := s_{\alpha}(\pi(t))$. By $\pi := \pi_1 * \pi_2$ we mean the concatenation of the paths, i.e. π is the path defined by

$$\pi(t) := \begin{cases} \pi_1(2t), & \text{if } 0 \le t \le 1/2; \\ \pi_1(1) + \pi_2(2t - 1), & \text{if } 1/2 \le t \le 1. \end{cases}$$

Fix a simple root α . To define the operator e_{α} we cut a path $\pi \in \Pi$ into several parts according to the behavior of the function

$$h_{\alpha}: [0,1] \to \mathbb{Q}, \quad t \mapsto \langle \pi(t), \alpha^{\vee} \rangle.$$

Let $m_{\alpha} := \min\{h_{\alpha}(t) \mid t \in [0,1]\}$ be the minimal value attained by h_{α} .

If $m_{\alpha} \leq -1$, then fix $t_1 \in [0,1]$ minimal such that $h_{\alpha}(t_1) = m_{\alpha}$ and let $t_0 \in [0,t_1]$ be maximal such that $h_{\alpha}(t) \geq m_{\alpha} + 1$ for $t \in [0,t_0]$.

Choose $t_0 = s_0 < s_1 < \cdots < s_r = t_1$ such that either

(1)
$$h_{\alpha}(s_{i-1}) = h_{\alpha}(s_i)$$
 and $h_{\alpha}(t) \ge h_{\alpha}(s_{i-1})$ for $t \in [s_{i-1}, s_i]$;

(2) or h_{α} is strictly decreasing on $[s_{i-1}, s_i]$ and $h_{\alpha}(t) \geq h_{\alpha}(s_{i-1})$ for $t \leq s_{i-1}$.

Set $s_{-1} := 0$ and $s_{r+1} := 1$, and denote by π_i the path defined by

$$\pi_i(t) := \pi((s_{i-1} + t(s_i - s_{i-1})) - \pi(s_{i-1}), \quad i = 0, \dots, r+1.$$

It is clear that $\pi = \pi_0 * \pi_1 * \cdots * \pi_{r+1}$.

Definition. If $m_{\alpha} > -1$, then $e_{\alpha}\pi := 0$. Otherwise,

$$e_{\alpha}\pi := \pi_0 * \eta_1 * \eta_2 * \cdots * \eta_r * \pi_{r+1},$$

where $\eta_i = \pi_i$ if the function h_{α} behaves on $[s_{i-1}, s_i]$ as in (1), and $\eta_i = s_{\alpha}(\pi_i)$ if the function h_{α} behaves on $[s_{i-1}, s_i]$ as in (2).

The definition of the operator f_{α} is similar. Let $t_0 \in [0,1]$ be maximal such that $h_{\alpha}(t_0) = m_{\alpha}$. If $h_{\alpha}(1) - m_{\alpha} \ge 1$, then fix $t_1 \in [t_0,1]$ minimal such that $h_{\alpha}(t) \ge m_{\alpha} + 1$ for $t \in [t_1,1]$.

Choose $t_0 = s_0 < s_1 < \cdots < s_r = t_1$ such that either

- (1) $h_{\alpha}(s_i) = h_{\alpha}(s_{i-1})$ and $h_{\alpha}(t) \ge h_{\alpha}(s_{i-1})$ for $t \in [s_{i-1}, s_i]$;
- (2) or h_{α} is strictly increasing on $[s_{i-1}, s_i]$ and $h_{\alpha}(t) \geq h_{\alpha}(s_i)$ for $t \geq s_i$.

Set $s_{-1} := 0$ and $s_{r+1} := 1$, and denote by π_i the path defined by

$$\pi_i(t) := \pi((s_{i-1} + t(s_i - s_{i-1})) - \pi(s_{i-1}), \quad i = 0, \dots, r+1.$$

It is clear that $\pi = \pi_0 * \pi_1 * \cdots * \pi_{r+1}$.

Definition. If $h_{\alpha}(1) - m_{\alpha} < 1$, then $f_{\alpha}\pi := 0$. Otherwise,

$$f_{\alpha}\pi := \pi_0 * \eta_1 * \eta_2 * \cdots * \eta_r * \pi_{r+1},$$

where $\eta_i = \pi_i$ if the function h_{α} behaves on $[s_{i-1}, s_i]$ as in (1), and $\eta_i = s_{\alpha}(\pi_i)$ if the function h_{α} behaves on $[s_{i-1}, s_i]$ as in (2).

Example. Suppose $\mathfrak{g} = \mathfrak{sl}_3$ and μ is the highest root. The eight paths obtained from $\pi_{\mu}: t \mapsto t\mu$ by applying the operators f_{α}, e_{α} are the paths $\pi_{\beta}(t) := t\beta$, where β is an arbitrary root; for α simple one gets in addition:

$$\pi(t) := \begin{cases} -t\alpha, & \text{for } 0 \le t \le 1/2; \\ (t-1)\alpha, & \text{for } 1/2 \le t \le 1. \end{cases}$$

2. Some simple properties of the operators

Denote by \mathcal{A} the subalgebra of $\operatorname{End}_{\mathbb{Z}}\mathbb{Z}\Pi$ generated by the root operators. For $\pi \in \Pi$ let $m_{\alpha} := \min\{h_{\alpha}(t) \mid t \in [0,1]\}$ be the minimal value attained by the function h_{α} and denote by $\pi^*(t) := \pi(1-t) - \pi(1)$ the dual path of π . The following properties are obvious by the definition of the root operators:

LEMMA 2.1. a) If $e_{\alpha}\pi \neq 0$, then $e_{\alpha}\pi(1) = \pi(1) + \alpha$, and if $f_{\alpha}\pi \neq 0$, then $f_{\alpha}\pi(1) = \pi(1) - \alpha$.

- b) If $e_{\alpha}\pi \neq 0$, then $f_{\alpha}e_{\alpha}\pi = \pi$, and if $f_{\alpha}\pi \neq 0$ then $e_{\alpha}f_{\alpha}\pi = \pi$.
- c) $e_{\alpha}^{n}\pi = 0$ if and only if $n > |m_{\alpha}|$, and $f_{\alpha}^{n}\pi = 0$ if and only if $n > \langle \pi(1), \alpha^{\vee} \rangle m_{\alpha}$.
- d) The A-module $A\pi \subset \mathbb{Z}\Pi$ generated by π has as basis the set of all paths $\eta \in \Pi$ contained in $A\pi$.
 - e) $(f_{\alpha}\pi)^* = e_{\alpha}\pi^*$ and $(e_{\alpha}\pi)^* = f_{\alpha}\pi^*$.

Let $\mathbb{Z}\Pi_{\mathrm{int}}$ be the submodule of $\mathbb{Z}\Pi$ spanned by the paths ending in an integral weight. Clearly, $\mathbb{Z}\Pi_{\mathrm{int}}$ is stable under the root operators. Choose $\rho \in X$ such that $\langle \rho, \alpha^{\vee} \rangle = 1$ for all simple roots. The following is an easy consequence of Lemma 2.1.

- LEMMA 2.2. a) For $\pi \in \Pi_{\text{int}}$ let n_1, n_2 be maximal such that $e_{\alpha}^{n_1} \pi \neq 0$ and $f_{\alpha}^{n_2} \pi \neq 0$. Then $\langle \pi(1), \alpha^{\vee} \rangle = n_2 n_1$.
- b) $e_{\alpha}\pi = 0$ for all simple roots if and only if the shifted path $\rho + \pi$ is completely contained in the interior of the dominant Weyl chamber.

Let $\nu \in X$ be an integral weight and denote by $\Pi_{\rm int}(\nu)$ the set of elements π in $\Pi_{\rm int}$ such that $\pi(1) = \nu$. Fix a simple root α and let $\varphi_j : \Pi_{\rm int}(\nu) \to \Pi_{\rm int}(\nu - j\alpha) \cup \{0\}$ be the map defined by $\pi \mapsto f_{\alpha}^j \pi$ for $j \geq 0$ and $\pi \mapsto e_{\alpha}^j \pi$ for $j \leq 0$. By Lemma 2.2 we have:

LEMMA 2.3. Set $N := \langle \nu, \alpha^{\vee} \rangle$. The map φ_j is injective for $0 \leq j \leq N$ if $N \geq 0$ and for $N \leq j \leq 0$ if $N \leq 0$.

For $n \in \mathbb{N}$ and $\pi \in \Pi$ denote by $n\pi$ the path $(n\pi)(t) := n\pi(t)$. The definition for the operators e_{α} and f_{α} given here has the advantage (compared with [8]) that it is obviously compatible with the "stretching" of paths:

LEMMA 2.4. a)
$$n(f_{\alpha}\pi) = f_{\alpha}^{n}(n\pi)$$
.
b) $n(e_{\alpha}\pi) = e_{\alpha}^{n}(n\pi)$.

Let \mathcal{G} be the colored, oriented graph associated to Π_{int} : The points of \mathcal{G} are the elements of Π_{int} , and we put an arrow colored by a simple root $\pi \xrightarrow{\alpha} \pi'$ between two elements if $f_{\alpha}\pi = \pi'$, or equivalently $e_{\alpha}\pi' = \pi$. For $\pi \in \Pi_{\text{int}}$ let $\mathcal{G}(\pi)$ be the connected component of \mathcal{G} containing π . The set of points of $\mathcal{G}(\pi)$ is then just B_{π} , the set of paths in $\mathcal{A}\pi$. Note that $\mathcal{G}(\pi)$ determines completely the \mathcal{A} -module structure of $\mathcal{A}\pi$.

An isomorphism $\phi: \mathcal{G}(\pi_1) \to \mathcal{G}(\pi_2)$ of such graphs is a map which is a bijection on the set of points of the graphs, and which in addition has the property that $\phi(f_{\alpha}\pi) = f_{\alpha}\phi(\pi)$ for all simple roots and all points π of $\mathcal{G}(\pi_1)$.

LEMMA 2.5. For $\pi, \pi_1, \pi_2 \in \Pi_{int}$ let $\mathcal{G}(\pi), \mathcal{G}(\pi_1)$ and $\mathcal{G}(\pi_2)$ be the associated graphs.

a) The injection $j:B_{\pi} \mapsto B_{n\pi}, \pi' \mapsto n\pi', \text{ satisfies } j(f_{\alpha}\pi') = f_{\alpha}^{n}j(\pi').$

b) If $\phi_n:\mathcal{G}(n\pi_1) \to \mathcal{G}(n\pi_2)$ is an isomorphism for some $n \in \mathbb{N}$ such that $\phi_n(n\pi_1) = n\pi_2$, then there exists an isomorphism $\phi:\mathcal{G}(\pi_1) \to \mathcal{G}(\pi_2)$ such that $\phi(\pi_1) = \pi_2$.

Proof. Part a) is just a reformulation of Lemma 2.4. To prove b) note that the image of $j_1: B_{\pi_1} \mapsto B_{n\pi_1}$ is just the set of paths obtained from $n\pi_1$ by applying the operators e^n_{α} and f^n_{α} . Since the same is true for j_2 , we see that ϕ_n induces a bijection $\text{Im}(j_1) \to \text{Im}(j_2)$ and hence a bijection $\phi: B_{\pi_1} \mapsto B_{\pi_2}$ such that $\phi(\pi_1) = \pi_2$. Since ϕ_n is a graph isomorphism, ϕ induces in fact an isomorphism $\phi: \mathcal{G}(\pi_1) \to \mathcal{G}(\pi_2)$.

2.6. Concatenation of modules. Let $M \subset \mathbb{Z}\Pi_{\mathrm{int}}$ be an \mathcal{A} -stable submodule having as a basis the set of paths $B := M \cap \Pi_{\mathrm{int}}$. We say that B has the integrality property if for all $\pi \in B$ and all simple roots the minimum attained by the function $h_{\alpha}(t) := \langle \pi(t), \alpha^{\vee} \rangle$ is an integer. In the following we set $\pi * 0 = 0 * \pi := 0$ for $\pi \in \Pi$.

Suppose M_1 and M_2 are two \mathcal{A} -submodules of $\mathbb{Z}\Pi_{\mathrm{int}}$ having $B_1, B_2 \subset \Pi_{\mathrm{int}}$ as bases. Assume further that both have the integrality property. For $\pi \in B_1$ and $\eta \in B_2$ let $\pi * \eta$ be the concatenation of the two paths.

Denote by m_1 the minimum of the function h_{α} for π and by m_2 the minimum for η . Since $\pi(1)$ is an integral weight, we get:

$$f_{\alpha}(\pi * \eta) = \begin{cases} (f_{\alpha}\pi) * \eta, & \text{if } m_1 < \langle \pi(1), \alpha^{\vee} \rangle + m_2; \\ \pi * (f_{\alpha}\eta); & \text{otherwise.} \end{cases}$$

By Lemma 2.2 one can describe the action of f_{α} and e_{α} on $\pi * \eta$ as follows:

LEMMA 2.7. Let $M_1, M_2 \subset \mathbb{Z}\Pi_{\mathrm{int}}$ be A-submodules having $B_1, B_2 \subset \Pi_{\mathrm{int}}$ as bases, and suppose that B_1, B_2 have the integrality property. For $\pi \in B_1$ and $\eta \in B_2$,

$$f_{\alpha}(\pi * \eta) = \begin{cases} (f_{\alpha}\pi) * \eta, & \text{if there exists } n \geq 1 \text{ such that } f_{\alpha}^{n}\pi \neq 0 \text{ but } e_{\alpha}^{n}\eta = 0; \\ \pi * (f_{\alpha}\eta), & \text{otherwise.} \end{cases}$$

Similarly, $e_{\alpha}(\pi * \eta) = \pi * (e_{\alpha}\eta)$ if there exists $n \geq 1$ such that $e_{\alpha}^{n}\eta \neq 0$ but $f_{\alpha}^{n}\pi = 0$, and $e_{\alpha}(\pi * \eta) = (e_{\alpha}\pi) * \eta$ otherwise.

In particular, if we denote by $M_1 * M_2$ the \mathbb{Z} -span of the concatenations

$$B_1 * B_2 := \{ \pi * \eta \mid \pi \in B_1, \eta \in B_2 \},\$$

then $M_1 * M_2 \subset \mathbb{Z}\Pi_{int}$ is an A-submodule.

Remark 2.8. For $\pi \in B_1 * B_2$ the minimum of the function h_{α} is an integer for all simple roots, so $B_1 * B_2$ has again the integrality property.

Note that the module structure on $M_1 * M_2$ depends only on the module structure of M_1 and M_2 and not on the paths: Let N_1, N_2 be \mathcal{A} -submodules

of $\mathbb{Z}\Pi_{\text{int}}$ having as bases the subsets $P_1, P_2 \subset \Pi_{\text{int}}$ of paths and suppose that P_1, P_2 have the integrality property. The following is obvious:

LEMMA 2.9. If $\phi_i: N_i \to M_i$, i = 1,2, are A-module isomorphisms such that $\phi_i(P_i) = B_i$, then the induced maps

$$\phi_1 * id: N_1 * M_2 \longrightarrow M_1 * M_2, \quad \pi * \eta \mapsto \phi_1(\pi) * \eta$$

and

$$id * \phi_2 : M_1 * N_2 \longrightarrow M_1 * M_2, \pi * \eta \mapsto \pi * \phi_2(\eta)$$

are isomorphisms of A-modules.

2.10. Some \mathfrak{sl}_2 -theory. The results in 2.1–2.3 show a certain resemblance with standard results in the representation theory of the Lie algebra \mathfrak{sl}_2 . We conclude this section with a few remarks that make this resemblance more explicit. Denote by \mathcal{B} the subalgebra of $\operatorname{End}_{\mathbb{Z}} \mathbb{Z}\Pi_{\operatorname{int}}$ generated by the restriction of the root operators to $\mathbb{Z}\Pi_{\operatorname{int}}$, and let $\hat{\mathcal{B}}$ be the subalgebra of $\operatorname{End}_{\mathbb{Z}} \mathbb{Z}\Pi_{\operatorname{int}}$ consisting of all endomorphisms that can locally be approximated by elements of \mathcal{B} . Since the root operators are locally nilpotent, the operators

$$x_\alpha:=\sum_{i\geq 1}e^i_\alpha f^{i-1}_\alpha,\quad y_\alpha:=\sum_{i\geq 1}f^i_\alpha e^{i-1}_\alpha,\quad h_\alpha:=\sum_{i\geq 1}(e^i_\alpha f^i_\alpha-f^i_\alpha e^i_\alpha)$$

are examples for elements of \mathcal{B} . The following proposition follows easily from Lemma 2.1 and 2.2 by applying the operators to an element in Π_{int} :

PROPOSITION 2.11. If π is an element of Π_{int} , then $h_{\alpha}\pi = \langle \pi(1), \alpha^{\vee} \rangle \pi$. Further,

$$[x_{\alpha},y_{\alpha}]=h_{\alpha},\quad [h_{\alpha},x_{\alpha}]=2x_{\alpha},\quad [h_{\alpha},y_{\alpha}]=-2y_{\alpha},$$

so the elements x_{α}, y_{α} and h_{α} span a Lie subalgebra of $\operatorname{End}_{\mathbb{Z}} \mathbb{Z}\Pi_{\operatorname{int}}$ isomorphic to $\mathfrak{sl}_2(\mathbb{Z})$.

Remark 2.12. The x_{α} respectively y_{α} do not satisfy the Serre relations, but the h_{α} commute. Let \mathfrak{h} be the subalgebra of $\operatorname{End}_{\mathbb{Z}}\mathbb{Z}\Pi_{\operatorname{int}}$ spanned by the h_{α} . The "character" of M_{π} considered in the introduction can hence be viewed as the (usual) character of M_{π} as an \mathfrak{h} -module.

The results above can be easily extended to the q-analogue of \mathfrak{sl}_2 . We define the corresponding operators on $\mathbb{Z}\Pi_{\mathrm{int}}\otimes_{\mathbb{Z}}\mathbb{Z}[q,q^{-1}]$. Set $K_{\alpha}:=q^{h_{\alpha}}$, so that $K_{\alpha}\pi:=q^{\langle \nu,\alpha^{\vee}\rangle}\pi$ for $\pi\in\Pi_{\mathrm{int}}(\nu)$. Let [j] denote the Laurent polynomial $(q^j-q^{-j})/(q-q^{-1})$. We set

$$E_{\alpha} := \sum_{i>1} ([i] - [i-1])e_{\alpha}^{i} f_{\alpha}^{i-1}, \quad F_{\alpha} := \sum_{i>1} ([i] - [i-1])f_{\alpha}^{i} e_{\alpha}^{i-1}$$

and

$$H_{\alpha} := (K_{\alpha} - K_{\alpha}^{-1})/(q - q^{-1}).$$

Proposition 2.13. $H_{\alpha}\pi = [\langle \pi(1), \alpha^{\vee} \rangle]\pi$ for $\pi \in \Pi_{int}$. Further,

$$[E_{\alpha},F_{\alpha}]=H_{\alpha},\quad K_{\alpha}E_{\alpha}K_{\alpha}^{-1}=q^2X_{\alpha}\quad ext{and} \quad K_{\alpha}Y_{\alpha}K^{-1}=q^{-2}F_{\alpha},$$

so the elements K_{α} , E_{α} and F_{α} satisfy the relations of the generators of the q-analogue $U_q(\mathfrak{sl}_2)$ of the enveloping algebra of $\mathfrak{sl}_2(\mathbb{Z})$.

Remark 2.14. The paths form naturally a basis of the crystal lattice in $\mathbb{Z}\Pi_{\mathrm{int}} \otimes_{\mathbb{Z}} \mathbb{Q}(q)$ for the action of $U_q(\mathfrak{sl}_2)$ ([5], [9]). Note that the operators \tilde{f}_{α} and \tilde{e}_{α} associated in [5] to the operators F_{α} and E_{α} are here just again the root operators f_{α} and e_{α} .

3. Continuity

Compared to the definition given in [8], the main advantage of the definition of the root operators given here is that the action is "continuous". For $\pi_1, \pi_2 \in \Pi$, fix a parameterization. With respect to this parameterization we set:

$$d(\pi_1, \pi_2) := \max\{ |\langle \pi_1(t) - \pi_2(t), \alpha^{\vee} \rangle| \mid \alpha \text{ simple, } t \in [0, 1] \}.$$

Denote by \mathfrak{c} the maximum $\max\{\langle \alpha, \gamma^{\vee} \rangle \mid \alpha, \gamma \text{ simple roots } \}$.

PROPOSITION 3.1. a) Let $\pi_1, \pi_2 \in \Pi_{\text{int}}$ be such that $d(\pi_1, \pi_2) < \varepsilon < 1$ and $\min\{\langle \pi_j(t), \alpha^{\vee} \rangle \mid t \in [0,1]\} \in \mathbb{Z}$ for j = 1,2. Then $f_{\alpha}^n \pi_1 \neq 0$ (respectively $e_{\alpha}^n \pi_1 \neq 0$) if and only if $f_{\alpha}^n \pi_2 \neq 0$ (respectively $e_{\alpha}^n \pi_2 \neq 0$) for all $n \geq 1$.

- b) Suppose $\pi_1, \pi_2 \in \Pi$ are paths such that $d(\pi_1, \pi_2) < \varepsilon$ and $f_{\alpha}\pi_1, f_{\alpha}\pi_2 \neq 0$. Then $d(f_{\alpha}\pi_1, f_{\alpha}\pi_2) < 3c\varepsilon$.
- c) Suppose $\pi_1, \pi_2 \in \Pi$ are paths such that $d(\pi_1, \pi_2) < \varepsilon$ and $e_{\alpha}\pi_1, e_{\alpha}\pi_2 \neq 0$. Then $d(e_{\alpha}\pi_1, e_{\alpha}\pi_2) < 3c\varepsilon$.

Proof. If $d(\pi_1, \pi_2) < 1$ and the minima are integers, then we have necessarily

$$m = \min\{\langle \pi_1(t), \alpha^\vee \rangle \mid t \in [0, 1]\} = \min\{\langle \pi_2(t), \alpha^\vee \rangle \mid t \in [0, 1]\} \in \mathbb{Z}$$

and $\langle \pi_1(1), \alpha^{\vee} \rangle = \langle \pi_2(1), \alpha^{\vee} \rangle$, which proves part a) by Lemma 2.1.

To prove b), let φ_1, φ_2 be nondecreasing functions such that $f_{\alpha}\pi_1(t) = \pi_1(t) - \varphi_1(t)\alpha$ and $f_{\alpha}\pi_2(t) = \pi_2(t) - \varphi_2(t)\alpha$. Then

$$\begin{array}{lcl} d(f_{\alpha}\pi_{1},f_{\alpha}\pi_{2}) & = & d(\pi_{1}-\varphi_{1}\alpha,\pi_{2}-\varphi_{2}\alpha) \\ \\ & \leq & d(\pi_{1},\pi_{2})+\mathfrak{c}\max\{|\varphi_{1}(t)-\varphi_{2}(t)| \mid t \in [0,1]\} \\ \\ & < & \varepsilon+\mathfrak{c}\max\{|\varphi_{1}(t)-\varphi_{2}(t)| \mid t \in [0,1]\}. \end{array}$$

Claim. $\max\{|\varphi_1(t) - \varphi_2(t)| \mid t \in [0,1]\} < 2\varepsilon$.

Note that the claim implies the proposition: $d(f_{\alpha}\pi_1, f_{\alpha}\pi_2) < \varepsilon + 2c\varepsilon \leq 3c\varepsilon$.

Proof of the claim. Set $m_i := \min\{\langle \pi_i(t), \alpha^{\vee} \rangle \mid t \in [0, 1]\}, i = 1, 2$. Note that $|m_1 - m_2| < \varepsilon$. Suppose first $t \in [0, 1]$ is such that neither φ_1 nor φ_2 is constant on an arbitrary small neighborhood of t. Since

$$\varphi_1(t) = \langle \pi_1(t), \alpha^{\vee} \rangle - m_1, \quad \varphi_2(t) = \langle \pi_2(t), \alpha^{\vee} \rangle - m_2,$$

we get $|\varphi_1(t) - \varphi_2(t)| \le \varepsilon + |m_1 - m_2| < 2\varepsilon$.

Next suppose $p, q \in [0, 1]$ are such that p < q and φ_2 is constant on [p, q], but φ_2 is not constant on an arbitrary small neighborhood of p and q, or p = 0. In addition we assume that $|\varphi_1(p) - \varphi_2(p)| < 2\varepsilon$. We prove now that $|\varphi_1(t) - \varphi_2(t)| < 2\varepsilon$ for all $t \in [p, q]$:

Since φ_2 is constant and φ_1 is nondecreasing, it suffices to prove that $|\varphi_1(q) - \varphi_2(q)| < 2\varepsilon$. The assumption that φ_2 is not locally constant at q implies $\varphi_2(q) = \langle \pi_2(q), \alpha^\vee \rangle - m_2$. If φ_1 is constant on [p, q] too, then there is nothing to prove. If $\varphi_1(q) < \varphi_2(q)$, then we have $(\varphi_1$ is nondecreasing) $|\varphi_2(q) - \varphi_1(q)| \leq |\varphi_2(p) - \varphi_1(p)| < 2\varepsilon$.

So suppose that $\varphi_1(q) \geq \varphi_2(q)$ and fix now $q_0 \leq q$ maximal such that φ_1 is not locally constant at q_0 . Then $\varphi_1(q) = \varphi_1(q_0) = \langle \pi_1(q_0), \alpha^{\vee} \rangle - m_1 \leq \langle \pi_1(q), \alpha^{\vee} \rangle - m_1$ by the definition of φ_1 . Since we assume that $\varphi_1(q) \geq \varphi_2(q)$, we get

$$|\varphi_1(q) - \varphi_2(q)| \le |\langle \pi_1(q), \alpha^{\vee} \rangle - m_1 - (\langle \pi_2(q), \alpha^{\vee} \rangle - m_2)| < 2\varepsilon.$$

Let x be such that $\varphi_1(t) = 1$ for $t \ge x$ and $\varphi_1(t) < 1$ for t < x. Without loss of generality we assume that $\varphi_2(t) < 1$ for t < x too. Then every point $t \in [0,x]$ is contained in some interval [p,q], p < q, such that either φ_1 and φ_2 are nowhere locally constant on [p,q], or either φ_1 or φ_2 is constant on the interval and the function is not locally constant at p (except p = 0) and q. Since $|\varphi_1(0) - \varphi_2(0)| = 0$, this implies by the considerations above $|\varphi_1(t) - \varphi_2(t)| < 2\varepsilon$ for $t \in [0,x]$.

Since φ_1 is constant, $\varphi_1(t) \geq \varphi_2(t)$ for $t \geq x$ and φ_2 is nondecreasing, $|\varphi_1(x) - \varphi_2(x)| < 2\varepsilon$ implies $|\varphi_1(t) - \varphi_2(t)| < 2\varepsilon$ for $t \geq x$, which finishes the proof of the claim and hence the proof of b).

4. Lakshmibai-Seshadri paths

First let λ be a dominant integral weight. In [8], the \mathcal{A} -module $\mathcal{A}\pi_{\lambda}$ generated by the path $t \mapsto t\lambda$ is described as the module spanned by the Lakshmibai-Seshadri paths (L-S paths) of shape λ .

In this section, we introduce the notion of an L-S path of class λ , where λ is now an arbitrary integral weight (and not necessarily an element of the Tits cone!). The two notions coincide for dominant weights. As in the case of dominant weights, the L-S paths of class λ have the integrality property and they are stable under the action of the root operators. But if λ is not in the Tits cone, then in general the module $\mathcal{A}\pi_{\lambda}$ is a proper submodule of the \mathcal{A} -module spanned by the L-S paths of class λ .

An important notion for the definition of L-S paths is the distance function $\operatorname{dist}(\mu,\nu)$ on Weyl group orbits, which has been proposed by M. Kashiwara to the author as a replacement for the length function on W used in [8]. The use of dist simplified many proofs given in a previous version of this article.

For $\lambda \in X$ and $\nu, \mu \in W\lambda$ write $\nu \geq \mu$ if there exist sequences of weights $\nu = \nu_0, \nu_1, \dots, \nu_s = \mu$ and positive real roots β_1, \dots, β_s such that

$$\nu_i = s_{\beta_i}(\nu_{i-1})$$
 and $\langle \nu_{i-1}, \beta_i^{\vee} \rangle < 0$ for all $i = 1, \dots, s$.

If $\nu \geq \mu$, then denote by $\operatorname{dist}(\nu, \mu)$ the maximal length s of all possible such sequences. Clearly, $\operatorname{dist}(\mu_1, \mu_2) + \operatorname{dist}(\mu_2, \mu_3) \leq \operatorname{dist}(\mu_1, \mu_3)$ if $\mu_1 \geq \mu_2 \geq \mu_3$.

LEMMA 4.1. a) If $\mu \geq \nu$ and α is a simple root such that $\langle \mu, \alpha^{\vee} \rangle < 0$ but $\langle \nu, \alpha^{\vee} \rangle \geq 0$, then $s_{\alpha}(\mu) \geq \nu$ and $\operatorname{dist}(s_{\alpha}(\mu), \nu) < \operatorname{dist}(\mu, \nu)$.

- b) If $\mu \geq \nu$ and α is a simple root such that $\langle \mu, \alpha^{\vee} \rangle \leq 0$ but $\langle \nu, \alpha^{\vee} \rangle > 0$, then $\mu \geq s_{\alpha}(\nu)$ and $\operatorname{dist}(\mu, s_{\alpha}(\nu)) < \operatorname{dist}(\mu, \nu)$.
- c) If $\mu \geq \nu$ and α is a simple root such that $\langle \mu, \alpha^{\vee} \rangle, \langle \nu, \alpha^{\vee} \rangle > 0$ (respectively $\langle \mu, \alpha^{\vee} \rangle, \langle \nu, \alpha^{\vee} \rangle < 0$), then $\operatorname{dist}(\mu, \nu) = \operatorname{dist}(s_{\alpha}(\mu), s_{\alpha}(\nu))$.

COROLLARY 1. Suppose $\mu \geq \nu$ is such that $\operatorname{dist}(\mu,\nu) = 1$ and β is a positive real root such that $s_{\beta}(\mu) = \nu$. If α is a simple root such that $\langle \mu, \alpha^{\vee} \rangle \leq 0$ and $\langle \nu, \alpha^{\vee} \rangle > 0$ (or $\langle \mu, \alpha^{\vee} \rangle < 0$ but $\langle \nu, \alpha^{\vee} \rangle \geq 0$), then $\alpha = \beta$.

Remark 4.2. Suppose λ is a dominant weight, and for $\mu, \nu \in W\lambda$ fix $\tau, \kappa \in W/W_{\lambda}$ such that $\tau(\lambda) = \mu$ and $\kappa(\lambda) = \nu$. Then $\mu \geq \nu$ if and only if $\tau \geq \kappa$ in the Bruhat order, and $\operatorname{dist}(\mu, \nu) = l(\tau) - l(\kappa)$.

Proof of the lemma. Let $\mu = \nu_0, \nu_1, \dots, \nu_s = \nu$ be a sequence of weights of maximal length and let β_1, \dots, β_s be the corresponding positive real roots. Fix i minimal such that $\langle \nu_i, \alpha^{\vee} \rangle < 0$ but $\langle \nu_{i+1}, \alpha^{\vee} \rangle \geq 0$.

The sequence $s_{\alpha}(\mu) = s_{\alpha}(\nu_0), \ s_{\alpha}(\nu_1), \dots, s_{\alpha}(\nu_i)$ has the property that

$$s_{s_{\alpha}(\beta_i)}(s_{\alpha}(\nu_{j-1})) = s_{\alpha}(\nu_j) \quad \text{and} \quad \langle s_{\alpha}(\nu_{j-1}), s_{\alpha}(\beta_i^{\vee}) \rangle < 0.$$

So if we prove that $s_{\alpha}(\nu_i) = \nu_{i+1}$, then it follows that $s_{\alpha}(\mu) \geq \nu$. Further, since any such sequence between $s_{\alpha}(\mu)$ and $s_{\alpha}(\nu_i) = \nu_{i+1}$ can be extended to a sequence between μ and $s_{\alpha}(\nu_i)$ by adding μ to the sequence of weights and α to the sequence of positive real roots $(\langle \mu, \alpha^{\vee} \rangle < 0!)$, the maximality of the length of the sequence we started with implies that $\operatorname{dist}(s_{\alpha}(\mu), \nu) = \operatorname{dist}(\mu, \nu) - 1$.

It remains to prove that $s_{\alpha}(\nu_i) = \nu_{i+1}$. So for simplicity we may assume that $d(\mu, \nu) = 1$, β is a positive real root such that $s_{\beta}(\mu) = \nu$ and α is a simple root such that $\langle \mu, \alpha^{\vee} \rangle < 0$ and $\langle \nu, \alpha^{\vee} \rangle \geq 0$. Suppose that $\alpha \neq \beta$ and consider the sequence $\nu_0 := \mu$, $\nu_1 := s_{\alpha}(\mu)$, $\nu_2 := s_{\alpha}(\nu)$ and $\nu_3 := \nu$. Then $s_{\alpha}(\nu_0) = \nu_1$ and $\langle \nu_0, \alpha^{\vee} \rangle < 0$, and $s_{\alpha}(\nu_2) = \nu_3$ and $\langle \nu_2, \alpha^{\vee} \rangle \leq 0$. Since

$$s_{s_{\alpha}(\beta)}(\nu_1) = \nu_2$$
, and $\langle \nu_1, s_{\alpha}(\beta^{\vee}) \rangle = \langle \mu, \beta^{\vee} \rangle < 0$,

one obtains $\operatorname{dist}(\mu, \nu) \geq 3$ (respectively $\operatorname{dist}(\mu, \nu) \geq 2$ if $\langle \nu_2, \alpha^{\vee} \rangle = 0$), in contradiction to the assumption $\operatorname{dist}(\mu, \nu) = 1$.

Definition. A rational path $\pi = (\underline{\nu},\underline{a})$ of class λ is a pair of sequences where $\underline{\nu}: \nu_1 > \cdots > \nu_s$ is a linearly ordered sequence of weights in $W\lambda$, $\underline{a}: a_0 = 0 < a_1 < \cdots < a_r = 1$ is a sequence of rational numbers. We identify π with the path

$$\pi(t) := \sum_{i=1}^{j-1} (a_i - a_{i-1})\nu_i + (t - a_{j-1})\nu_j \quad \text{for } a_{j-1} \le t \le a_j.$$

To ensure that $\pi(1)$ is an integral weight, we introduce now the a-chain (see [7], [8]). Let 0 < a < 1 be a rational number and $\mu, \nu \in W\lambda$:

Definition. An a-chain for (μ, ν) is a sequence $\mu = \lambda_0 > \lambda_1 > \cdots > \lambda_s = \nu$ of weights in $W\lambda$ such that either s = 0 and $\mu = \lambda_0 = \nu$, or $\lambda_i = s_{\beta_i}(\lambda_{i-1})$ for some positive real roots β_1, \ldots, β_s , and $\operatorname{dist}(\lambda_{i-1}, \lambda_i) = 1$ and $a\langle \lambda_{i-1}, \beta_i^{\vee} \rangle \in \mathbb{Z}$ for all $i = 1, \ldots, s$.

The "integrality" condition implies that $a(\mu - \nu) = \sum_{i=1}^{s} a(\lambda_{i-1} - \lambda_i) = \sum_{i=0}^{s} a(\lambda_{i-1}, \beta_i^{\vee}) \beta_i$ is a sum of positive roots.

Lemma 4.3. Let $\mu=\lambda_0>\lambda_1>\cdots>\lambda_s=\nu$ be an a-chain for (μ,ν) and fix a simple root α .

- a) If $\langle \mu, \alpha^{\vee} \rangle < 0$ and $\langle \lambda_i, \alpha^{\vee} \rangle \geq 0$ for some i, then there exists an a-chain for $(s_{\alpha}(\mu), \nu)$.
- b) If $\langle \nu, \alpha^{\vee} \rangle > 0$ and $\langle \lambda_i, \alpha^{\vee} \rangle \leq 0$ for some i, then there exists an a-chain for $(\mu, s_{\alpha}(\nu))$.

Proof. Assume first that $\langle \mu, \alpha^{\vee} \rangle < 0$, and let i be minimal with the property that $\langle \lambda_{i+1}, \alpha^{\vee} \rangle \geq 0$. Further, let β_1, \ldots, β_s be the positive real roots corresponding to the a-chain. Since $\langle \lambda_j, \beta_j^{\vee} \rangle = \langle s_{\alpha}(\lambda_j), s_{\alpha}(\beta_j^{\vee}) \rangle$, one sees as in the proof of Lemma 4.1 that $s_{\alpha}(\mu) = s_{\alpha}(\lambda_0) > \cdots > s_{\alpha}(\lambda_i) = \lambda_{i+1} > \cdots > \lambda_s = \nu$ is an a-chain for $(s_{\alpha}\mu, \nu)$. The proof of b) is similar.

Definition. A rational path $\pi = (\underline{\nu}; \underline{a})$ of class $\lambda \in X$ is called an L-S path of class λ if for all $i = 1, \ldots, s-1$ there exists an a_i -chain for (ν_i, ν_{i+1}) .

Remark 4.4. a) If $\pi = (\underline{\nu}; \underline{a})$ is an L-S path of class λ , then it is an L-S path of class $w(\lambda)$ for all $w \in W$.

b) See [8]: If λ is a dominant weight, then $\pi = (\underline{\nu}; \underline{a})$ is an L-S path of class λ if and only if $(\tau_1, \ldots, \tau_s; a_0, \ldots, a_s)$ is an L-S path of shape λ , where the $\tau_i \in W/W_{\lambda}$ are such that $\tau_i(\lambda) = \nu_i$.

We say that a function h attains on [0,1] a local minimum at $t=t_0$ if either h is constant, or if there exists an $\varepsilon > 0$ such that $h(t) \ge h(t_0)$ for $|t-t_0| < \varepsilon$ and $h(t) > h(t_0)$ for either $t_0 < t < t_0 + \varepsilon$ or $t_0 - \varepsilon < t < t_0$.

LEMMA 4.5. a) If π is an L-S path of class λ , then $\pi \in \Pi_{int}$.

- b) If $\pi = (\underline{\nu};\underline{a})$ is an L-S path, then $\pi' = (\nu_i, \dots, \nu_j; 0, a_i \dots, a_{j-1}, 1)$ is an L-S path for all $1 \le i \le j \le s$.
- c) If π is an L-S path and $a_{i-1} \leq x \leq a_i$ is such that $\langle \pi(x), \alpha^{\vee} \rangle \in \mathbb{Z}$ for some simple root α , then $x \langle \nu_i, \alpha^{\vee} \rangle \in \mathbb{Z}$.
- d) Let $\pi = (\underline{\nu};\underline{a})$ be an L-S path and fix a simple root α . If the function $h_{\alpha}(t) := \langle \pi(t), \alpha^{\vee} \rangle$ attains at $t = t_0$ a local minimum, then $h_{\alpha}(t_0) \in \mathbb{Z}$.

In particular, the L-S paths have the integrality property.

Proof. The chain condition implies $a_j(\nu_j - \nu_{j+1})$ is a sum of roots, so

$$\pi(1) = \sum_{j=1}^{s} (a_j - a_{j-1})\nu_j = \nu_s + \sum_{j=1}^{s-1} a_j(\nu_j - \nu_{j+1}) \in X,$$

proving a). Similarly, one has for c): $\pi(x) = x\nu_i + \sum_{j=1}^{i-1} a_j(\nu_j - \nu_{j+1})$, which implies that $\langle \pi(x), \alpha^{\vee} \rangle \in \mathbb{Z}$ if and only if $x \langle \nu_i, \alpha^{\vee} \rangle \in \mathbb{Z}$. The proof of b) is obvious; it remains to prove d).

We may assume $t_0 = a_i$ for some i. To prove that $h_{\alpha}(a_i)$ is an integer, by b) one can assume that i = s - 1. So $h_{\alpha}(a_{s-1}) = \langle \pi(1), \alpha^{\vee} \rangle - (1 - a_{s-1}) \langle \nu_s, \alpha^{\vee} \rangle$. Hence it is sufficient to prove that $(1 - a_{s-1}) \langle \nu_s, \alpha^{\vee} \rangle \in \mathbb{Z}$. This is obvious if $\langle \nu_s, \alpha^{\vee} \rangle = 0$. Since $h_{\alpha}(t)$ attains at a_{s-1} a local minimum, one has otherwise $\langle \nu_s, \alpha^{\vee} \rangle > 0$ and $\langle \nu_{s-1}, \alpha^{\vee} \rangle \leq 0$.

By Lemma 4.3 this implies that $\pi' = (\dots, \nu_{s-1}, s_{\alpha}(\nu_s); \dots, a_{s-1}, a_s)$ is an L-S path. Now by the chain condition one knows that $\nu_s - \pi(1)$ as well as $s_{\alpha}(\nu_s) - \pi'(1)$ are elements of the root lattice; so, also, $\pi(1) - \pi'(1)$ is in the root lattice. But $\pi(1) - \pi'(1) = (1 - a_{s-1})\langle \nu_s, \alpha^{\vee} \rangle \alpha$ is in the root lattice only if $(1 - a_{s-1})\langle \nu_s, \alpha^{\vee} \rangle \in \mathbb{Z}$.

Remark 4.6. The same arguments prove the following: For an L-S path $\pi = (\underline{\nu}; \underline{a})$ let $\nu_i = \mu_0 > \mu_1 > \cdots > \mu_r = \nu_{i+1}$ be an a_i -chain for (ν_i, ν_{i+1}) . If $\langle \nu_i, \alpha^{\vee} \rangle < 0$ for a simple root α and $\langle \mu_j, \alpha^{\vee} \rangle \geq 0$ for some j, or $\langle \nu_{i+1}, \alpha^{\vee} \rangle > 0$ and $\langle \mu_j, \alpha^{\vee} \rangle \leq 0$ for some j, then $h_{\alpha}(a_i) = \langle \pi(a_i), \alpha^{\vee} \rangle \in \mathbb{Z}$.

PROPOSITION 4.7. Let $\eta = (\underline{\nu};\underline{a})$ be an L-S path and assume that the function $h_{\alpha}(t) := \langle \eta(t), \alpha^{\vee} \rangle$ attains at $t = a_i$ a local minimum.

a) Suppose there exists a $y > a_i$ such that $h_{\alpha}(y) = h_{\alpha}(a_i) + 1$ and $h_{\alpha}(t) \ge h_{\alpha}(a_i)$ for all $a_i \le t \le y$. Then there exist $a_i \le a_j < x \le y$ such that

$$h_{\alpha}(a_i) = h_{\alpha}(a_j) < h_{\alpha}(t) < h_{\alpha}(x) = h_{\alpha}(y)$$

for $a_j < t < x$, and the function h_{α} is strictly increasing on $[a_j,x]$. Further, η' is an L-S path, where:

$$\eta' := (\nu_1, \dots, \nu_j, s_{\alpha}(\nu_{j+1}), \dots, s_{\alpha}(\nu_l), \nu_l, \dots, \nu_r; a_0, \dots, a_{l-1}, x, a_l, \dots, a_r).$$

b) Suppose there exists an $x < a_i$ such that $h_{\alpha}(a_i) + 1 = h_{\alpha}(x)$ and $h_{\alpha}(t) \ge h_{\alpha}(a_i)$ for all $x \le t \le a_i$. Then there exist $x \le y < a_k \le a_i$ such that

$$h_{\alpha}(x) = h_{\alpha}(y) > h_{\alpha}(t) > h_{\alpha}(a_k) = h_{\alpha}(a_i)$$

for $y < t < a_k$ and the function h_{α} is strictly decreasing on $[y,a_k]$. Further, η' is an L-S path, where:

$$\eta' := (\nu_1, \dots, \nu_l, s_{\alpha}(\nu_l), \dots, s_{\alpha}(\nu_k), \nu_{k+1}, \dots, \nu_r; a_0, \dots, a_{l-1}, y, a_l, \dots, a_r).$$

Remark 4.8. If $s_{\alpha}(\nu_{j+1}) = \nu_j$ or $x = a_l$ etc., then the corresponding entries are not listed twice.

COROLLARY 2. a) The \mathbb{Z} -module $L_{\lambda} \subset \mathbb{Z}\Pi_{\mathrm{int}}$ generated by all L-S paths of class λ is an \mathcal{A} -submodule.

b) On the set of L-S paths the root operators defined in Section 1 coincide with the root operators defined in [8].

COROLLARY 3. If λ is a dominant weight, then π_{λ} is the only L-S path π of class λ such that $e_{\alpha}\pi = 0$ for all simple roots. Further, any L-S path π of class λ is of the form $\pi = f_{\alpha_1} \dots f_{\alpha_r} \pi_{\lambda}$ for some simple roots $\alpha_1, \dots, \alpha_r$.

Remark 4.9. If λ is not in the Tits cone, then $\mathcal{A}\pi_{\lambda}$ can be a proper submodule of L_{λ} . For example, in the rank two case, suppose that λ is not in the Tits cone. Consider the L-S paths $\pi = (\underline{\nu},\underline{a})$ of class λ such that for all i there exists a simple root such that $\nu_{i-1} = s_{\alpha}(\nu_i)$. It is easy to see that these paths span a proper \mathcal{A} -stable submodule of L_{λ} .

Proof of the corollaries. Assume that h_{α} attains at $t_0 = a_i$ its minimum for the last time, and $t_1 > a_i$ is the first time such that h_{α} attains the value $h_{\alpha}(a_i) + 1$. Since by the integrality property one has $h_{\alpha}(t) \geq h_{\alpha}(a_i) + 1$ for $t \geq t_1$, one sees that η' in a) above is $f_{\alpha}\eta$. Similarly, if h_{α} attains at $t_1 = a_i$ its minimum for the first time and $t_0 < a_i$ is the last time such that h_{α} attains the value $h_{\alpha}(a_i) + 1$, then η' in b) above is equal to $e_{\alpha}\eta$.

Further, since h_{α} is always strictly increasing on $[t_0, t_1]$ (respectively decreasing), on the set of L-S paths the root operators defined in Section 1 coincide with the root operators defined in [8].

Suppose now λ is a dominant weight. If $\pi = (\underline{\nu}, \underline{a})$ is an L-S path of class λ such that $\nu_1 \neq \lambda$, then there exists a simple root α such that $\langle \nu_1, \alpha^{\vee} \rangle < 0$. By the integrality property and Lemma 2.1 this implies $e_{\alpha}\pi \neq 0$. So there exist some simple roots such that $\pi' = (\underline{\nu}', \underline{a}') = e_{\alpha_1} \dots e_{\alpha_r}\pi$ is such that $\nu'_1 = \lambda$, and hence $\pi' = \pi_{\lambda}$.

Proof of the proposition. The proofs of a) and b) are similar, so only the proof of a) is given. Let $a_i \leq a_j < y$ be maximal such that $h_{\alpha}(a_i) = h_{\alpha}(a_j)$, and let $a_j < x \leq y$ be minimal such that $h_{\alpha}(x) = h_{\alpha}(y) = h_{\alpha}(a_i) + 1$. By Lemma 4.5 it follows that the function h_{α} is strictly increasing on $[a_j, x]$.

It remains to prove that η' is an L-S path of class λ . Now h_{α} attains at $t=a_{j}$ a local minimum, so $h_{\alpha}(a_{j})\in\mathbb{Z}$, and by the choice of j one has $\langle \nu_{j},\alpha^{\vee}\rangle\leq 0$ and $\langle \nu_{j+1},\alpha^{\vee}\rangle>0$. So by Lemma 4.3 there exists an a_{j} -chain for $(\nu_{j},s_{\alpha}(\nu_{j+1}))$. Further, since $h_{\alpha}(t)\notin\mathbb{Z}$ for $a_{j}< t< x$, it follows by Remark 4.6 that for all $k=j+1,\ldots,l-1$: If $\nu_{k}=\mu_{0}>\cdots>\mu_{r}=\nu_{k+1}$ is an a_{k} -chain for (ν_{k},ν_{k+1}) , then $s_{\alpha}(\nu_{k})>\cdots>s_{\alpha}(\mu_{r})$ is an a_{k} -chain for $(s_{\alpha}(\nu_{k}),s_{\alpha}(\nu_{k+1}))$. Eventually, by Lemma 4.5 c), $s_{\alpha}(\nu_{l})>\nu_{l}$ is an x-chain for $(s_{\alpha}(\nu_{l}),\nu_{l})$, and hence η' is an L-S path of class λ .

5. Gluing L-S paths

The next step towards a proof of the isomorphism theorem will be to investigate modules of the form $\mathcal{A}(\pi_{\lambda} * \pi_{\mu})$, where λ, μ are rational weights and $\lambda + \mu$ is an integral weight.

For a path $\pi \in \Pi$ and $s, s' \in [0, 1]$, $s \leq s'$, let π^s , $\pi_s^{s'}$ and $\pi_{s'}$ be the paths

$$\pi^s: [0,s] \to X_{\mathbb{Q}}, \ t \mapsto \pi(t), \quad \pi_s^{s'}: [s,s'] \to X_{\mathbb{Q}}, \ t \mapsto \pi(t),$$

and $\pi_{s'}: [s',1] \to X_{\mathbb{Q}}, \ t \mapsto \pi(t)$. If π, η, σ are paths, then let $\pi^s \circ \eta_s^{s'} \circ \sigma_{s'}$ be the path obtained by "gluing" the paths $\pi^s, \eta_s^{s'}$ and $\sigma_{s'}$, i.e.:

$$\pi^s \circ \eta_s^{s'} \circ \sigma_{s'}(t) := \begin{cases} \pi(t), & \text{for } t \leq s; \\ \eta(t) + [\pi(s) - \eta(s)], & \text{for } s \leq t \leq s'; \\ \sigma(t) + [\pi(s) - \eta(s) + \eta(s') - \sigma(s')], & \text{for } s' \leq t; \end{cases}$$

For $\lambda, \mu \in X$ let π_{λ} and π_{μ} be the paths $t \mapsto t\lambda$ respectively $t \mapsto t\mu$. Denote by θ the trivial path $t \mapsto 0$ for all $t \in [0, 1]$. To simplify the notation we write also θ for $\theta_s^{s'}$. Next we investigate the \mathcal{A} -module $\mathcal{A}\pi$ generated by $\pi = \pi_{\lambda}^s \circ \theta \circ \pi_{\mu,s'}$.

Remark 5.1. Let λ, μ be rational weights such that $\nu = \lambda + \nu$ is an integral weight. The path $\pi_{\lambda} * \pi_{\mu}$ can also be described in the form above: Fix $n \geq 2$ such that $n\lambda, n\mu \in X$ are integral weights. Then:

$$\pi_{\lambda} * \pi_{\mu} = \pi_{n\lambda}^{\frac{1}{n}} \circ \theta \circ \pi_{n\mu, 1 - \frac{1}{n}}$$

up to reparametrization. The advantage of the somewhat heavy looking notion on the right side is that $\pi_{n\lambda}$ and $\pi_{n\mu}$ are L-S paths.

We introduce now the "gluing pair" which can be viewed as a variation of the defining chain for Young tableaux introduced by Lakshmibai, Musili and Seshadri (see for example [7]). For two rational weights ν , μ we write

$$\nu \triangleright \mu$$
 if for all positive real roots β : $\langle \nu, \beta^{\vee} \rangle < 0 \Rightarrow \langle \mu, \beta^{\vee} \rangle \leq 0$.

Note that if ν is a dominant rational weight, then obviously $\nu \triangleright \mu$ for any μ . The notion $\nu \triangleright \mu$ is due Kashiwara [4].

LEMMA 5.2. a) If $\nu \triangleright \mu$ and α is a simple root such that $\langle \nu, \alpha^{\vee} \rangle < 0$, then $s_{\alpha}(\nu) \triangleright s_{\alpha}(\mu)$.

b) If $\nu \triangleright \mu$ and α is a simple root such that $\langle \nu, \alpha^{\vee} \rangle > 0$ and $\langle \mu, \alpha^{\vee} \rangle \geq 0$, then $s_{\alpha}(\nu) \triangleright s_{\alpha}(\mu)$.

Proof. For any positive real root $\beta \neq \alpha$ we have:

$$\langle s_{\alpha}(\nu), \beta^{\vee} \rangle$$
 $< 0 \Leftrightarrow \langle \nu, s_{\alpha}(\beta^{\vee}) \rangle$
 $< 0 \Rightarrow \langle \mu, s_{\alpha}(\beta^{\vee}) \rangle \leq 0 \Leftrightarrow \langle s_{\alpha}(\mu), \beta^{\vee} \rangle \leq 0.$

5.3. Let $\sigma = (\lambda_1, \ldots, \lambda_r; a_0, \ldots, a_r)$ be an L-S path of class λ and let $\delta = (\mu_1, \ldots, \mu_t; b_0, b_1, \ldots)$ be an L-S path of class μ . Suppose now that $0 < s \le s' < 1$ are such that $a_{r-1} < s$ and $s' < b_1$, and $\eta = \sigma^s \circ \theta \circ \delta_{s'} \in \Pi_{\text{int}}$.

Definition. A pair (λ_{r+1}, μ_0) , $\lambda_{r+1} \in W\lambda$ and $\mu_0 \in W\mu$, of weights is called a *gluing pair* for η if $\lambda_{r+1} \triangleright \mu_0$, and if there exists an s-chain for $(\lambda_r, \lambda_{r+1})$ and an s'-chain for (μ_0, μ_1) .

Remark 5.4. If $\lambda_r \neq \lambda_{r+1}$, then the condition on λ_{r+1} implies that $\sigma' = (\ldots, \lambda_r, \lambda_{r+1}; \ldots, a_{r-1}, s, a_r)$ is an L-S path. Similarly, if $\mu_0 \neq \mu_1$, then the condition on μ_0 implies that $\delta' = (\mu_0, \mu_1, \ldots; b_0, s', b_1, \ldots)$ is an L-S path.

Example. Let λ, μ be rational weights such that $\nu = \lambda + \mu$ is an integral weight. If $\lambda \triangleright \mu$ (for example if λ is dominant!), then by Remark 5.1 one sees that $\pi_{\lambda} * \pi_{\mu}$ is as in 5.3 with gluing pair $(n\lambda, n\mu)$.

LEMMA 5.5. Let $\eta \in \Pi_{int}$ be as in 5.3. If there exists a gluing pair for η , then for all simple roots α the local minima of the function $h_{\alpha}(t) := \langle \eta(t), \alpha^{\vee} \rangle$ are integers.

Proof. If the minimum is attained at $t = t_0$ and $t_0 < s$ or $t_0 > s'$, then the claim follows from the corresponding property for L-S paths (Lemma 4.5) since $\eta(1) \in X$. Suppose now h_{α} attains a local minimum at $t_0 = s$ (or $t_0 = s'$; recall that h_{α} is constant on [s, s']), and this minimum is only attained on [s, s']. We may hence assume that $\langle \lambda_r, \alpha^{\vee} \rangle < 0$ and $\langle \mu_1, \alpha^{\vee} \rangle > 0$.

If $\langle \lambda_{r+1}, \alpha^{\vee} \rangle \geq 0$, then $h_{\alpha}(s) \in \mathbb{Z}$ since $\sigma' = (\ldots, \tau_r, \tau_{r+1}; \ldots, a_{r-1}, s, 1)$ is an L-S path by assumption, and $h_{\alpha}(s) = \langle \eta(s), \alpha^{\vee} \rangle = \langle \sigma'(s), \alpha^{\vee} \rangle \in \mathbb{Z}$ by Lemma 4.5. So we may assume that $\langle \lambda_{r+1}, \alpha^{\vee} \rangle < 0$ and hence $\langle \mu_0, \alpha^{\vee} \rangle \leq 0$. Since $\delta' = (\mu_0, \mu_1, \ldots; b_0, s', b_1, \ldots)$ is an L-S path and $\langle \mu_1, \alpha^{\vee} \rangle > 0$, it follows by Lemma 4.5 that $\langle \delta'(s'), \alpha^{\vee} \rangle \in \mathbb{Z}$. Since $\eta(1) - \delta'(1) = \eta(s') - \delta'(s')$ is an integral weight, it follows that $h_{\alpha}(s') = h_{\alpha}(s) \in \mathbb{Z}$.

PROPOSITION 5.6. Let σ be an L-S path of class λ and let δ be an L-S path of class μ , and suppose $\eta = \sigma^s \circ \theta \circ \delta_{s'} \in \Pi_{int}$ is as in 5.3 with gluing pair (λ_{r+1}, μ_0) . Then the A-module $A\eta$ has the integrality property.

Further, for a path $\eta' \in \mathcal{A}\eta$ there exist an L-S path σ' of class λ and an L-S path δ' of class μ such that $\eta' = \sigma^s \circ \theta \circ \delta_{s'}$ is as in 5.3. Also there exists a $w \in W$ such that $(w(\lambda_{r+1}), w(\mu_0))$ is a gluing pair for η' .

Proof. By Lemma 5.5, the first part of the proposition follows from the second part. To prove the second part, it is sufficient to consider the case $\eta' = f_{\alpha}\eta$ or $\eta' = e_{\alpha}\eta$. Fix a simple root α , and for a root operator, let $t_0 < t_1$ be as in Section 1. If $t_0 > s'$ or $t_1 < s$, then it follows from Proposition 4.7 that one can write $f_{\alpha}\eta$, respectively $e_{\alpha}\eta$, again as $\eta' = \sigma'^s \circ \theta \circ \delta'_{s'}$ as in 5.3, and one can take (λ_{r+1}, μ_0) as a gluing pair.

For f_{α} assume that $t_1 = s$, so that $\langle \lambda_r, \alpha^{\vee} \rangle > 0$. Set $n := \langle \sigma(1) - \sigma(t_0), \alpha^{\vee} \rangle$; then $f_{\alpha} \eta = (f_{\alpha}^n \sigma)^s \circ \theta \circ \delta_{s'}$. And since $h_{\alpha}(t_1) = \langle \sigma(t_1), \alpha^{\vee} \rangle \in \mathbb{Z}$, there exists an s-chain also for $(s_{\alpha}(\lambda_r), \lambda_{r+1})$ (Lemma 4.5 c)), so (λ_{r+1}, μ_0) is a gluing pair for $f_{\alpha} \eta$. The same arguments prove for e_{α} that if $t_0 = s'$ (and hence $\langle \mu_1, \alpha^{\vee} \rangle < 0$), then $e_{\alpha} \eta = \sigma^s \circ \theta \circ (e_{\alpha}^m \delta)_{s'}$ with gluing pair (λ_{r+1}, μ_0) , where $m = -\langle \delta(t_1), \alpha^{\vee} \rangle$.

Similarly, if we assume for f_{α} that $t_0 = s'$ and $\langle \mu_0, \alpha^{\vee} \rangle \leq 0$, then $f_{\alpha} \eta = \sigma^s \circ \theta \circ (f_{\alpha}^m \delta)_{s'}$ with gluing pair (λ_{r+1}, μ_0) , where $m = \langle \delta(t_1), \alpha^{\vee} \rangle$. And if $t_1 = s$ and $\langle \lambda_{r+1}, \alpha^{\vee} \rangle \geq 0$, then $e_{\alpha} \eta = (e_{\alpha}^m \sigma)^s \circ \theta \circ \delta_{s'}$ with gluing pair (λ_{r+1}, μ_0) , where $m = \langle \sigma(t_0) - \sigma(1), \alpha^{\vee} \rangle$.

For f_{α} assume now that $t_0 = s'$ and $\langle \mu_0, \alpha^{\vee} \rangle > 0$. Note that this implies that $\langle \lambda_{r+1}, \alpha \rangle \geq 0$. Further, since $t_0 = s'$, one knows that $\langle \lambda_r, \alpha \rangle \leq 0$, so in any case there exists an s-chain also for $(\lambda_r, s_{\alpha}(\lambda_{r+1}))$ by Lemma 4.3. Also, $h_{\alpha}(s') \in \mathbb{Z}$ implies $\langle \delta(s'), \alpha \rangle \in \mathbb{Z}$, and hence there exists also an s'-chain for $(s_{\alpha}(\mu_0), s_{\alpha}(\mu_1))$. Eventually, by Lemma 5.2 one knows that $s_{\alpha}(\lambda_{r+1}) \triangleright s_{\alpha}(\mu_0)$. So if one sets $n := \langle \delta(s'), \alpha \rangle + 1$, then $f_{\alpha} \eta = \sigma^s \circ \theta \circ (f_{\alpha}^n \delta)_{s'}$ with gluing pair $(s_{\alpha}(\lambda_{r+1}), s_{\alpha}(\mu_0))$.

Similarly, if $t_1 = s$ and $\langle \lambda_{r+1}, \alpha^{\vee} \rangle < 0$, then $e_{\alpha} \eta = (e_{\alpha}^m \sigma)^s \circ \theta \circ \delta_{s'}$ with gluing pair $(s_{\alpha}(\lambda_{r+1}), s_{\alpha}(\mu_0))$, where $m = \langle \sigma(t_0) - \sigma(1), \alpha^{\vee} \rangle$.

Suppose now $t_0 < s \le s' < t_1$. In the following we consider only the operator f_{α} since the proof for e_{α} is similar. By Lemma 5.5 (and the fact $h_{\alpha}(s) = h_{\alpha}(s') \notin \mathbb{Z}$) one has $\langle \lambda_r, \alpha^{\vee} \rangle > 0$ and $\langle \mu_1, \alpha^{\vee} \rangle > 0$. Set $n = \langle \sigma(1) - \sigma(1) \rangle = 0$.

 $\sigma(t_0), \alpha^{\vee}$ and $m = \langle \delta(t_1), \alpha^{\vee} \rangle$ (these are integers!), then $f_{\alpha} \eta = (f_{\alpha}^n \sigma)^s \circ \theta \circ (f_{\alpha}^m \delta)_{s'}$.

If $\lambda_r \neq \lambda_{r+1}$, by Remark 5.4, $\sigma' = (\ldots, \lambda_r, \lambda_{r+1}; \ldots, s, 1)$ is an L-S path of class λ . Since $\langle \sigma'(s), \alpha^{\vee} \rangle = \langle \eta(s), \alpha^{\vee} \rangle \notin \mathbb{Z}$, it follows by Lemma 4.5 that $\langle \lambda_{r+1}, \alpha^{\vee} \rangle > 0$ and, as in the proof of Proposition 4.7, there exists an s-chain for $(s_{\alpha}(\lambda_r), s_{\alpha}(\lambda_{r+1}))$. If $\lambda = \lambda_{r+1}$, such a chain trivially exists.

Note that $\langle \mu_0, \alpha^{\vee} \rangle > 0$; otherwise $\delta' = (\mu_0, \mu_1 \dots; b_0, s', b_1, \dots)$ would be an L-S path with the property: $\langle \delta'(s'), \alpha^{\vee} \rangle \in \mathbb{Z}$. Since $\delta'(s')$ and $\eta(s')$ differ only by an integral weight, this would contradict the assumption $\langle \eta(s'), \alpha^{\vee} \rangle = \langle \eta(s), \alpha^{\vee} \rangle \notin \mathbb{Z}$. Now the same arguments as for λ_{r+1} prove that there exists an s'-chain for $(s_{\alpha}(\mu_0), s_{\alpha}(\mu_1))$. Since $s_{\alpha}(\lambda_{r+1}) \triangleright s_{\alpha}(\mu_0)$ by Lemma 5.2, this proves that $(s_{\alpha}(\lambda_{r+1}), s_{\alpha}(\mu_0))$ is a gluing pair for $f_{\alpha}\eta$.

PROPOSITION 5.7. Let λ,μ be rational weights such that λ is dominant and $\lambda + \mu = \nu$ is an integral dominant weight, and set $\pi = \pi_{\lambda} * \pi_{\mu}$. The module $A\pi$ has the integrality property, and π is the only path in $A\pi$ such that $\pi(1) = \nu$ and $e_{\alpha}\pi = 0$ for all simple roots.

Proof. Fix $n \geq 2$ and s, s' as in Remark 5.1 and Example 5.4 such that $\pi = \pi_{n\lambda}^s \circ \theta \circ \pi_{n\mu,s'}$. Since $(n\lambda, n\mu)$ is a gluing pair for π , the first claim follows from Proposition 5.6. Suppose now $\pi' = \pi_1^s \circ \theta \circ \pi_{2,s'} \in \mathcal{A}\pi$ is such that $\pi'(1) = \nu$ and $e_{\alpha}\pi' = 0$ for all simple roots. Then $e_{\alpha}\pi_1 = 0$ for all simple roots, so $\pi_1 = \pi_{n\lambda}$. Now by Proposition 5.6 one can choose $(n\lambda, w(n\mu))$ as a gluing pair for π' for some $w \in W_{\lambda}$.

Since $\pi = \pi_{\lambda} * \pi_{\mu}$ is in \mathcal{P}^+ , one knows that $\langle \mu, \alpha^{\vee} \rangle \geq 0$ for α simple such that $\langle \lambda, \alpha^{\vee} \rangle = 0$. In particular, if $\langle w(\mu), \alpha^{\vee} \rangle < 0$, then $s_{\alpha}w < w$. But if $\langle w(\mu), \alpha^{\vee} \rangle < 0$ and $\pi_2 = (\underline{\nu}', \underline{a}')$, then $\langle \nu'_1, \alpha^{\vee} \rangle \geq 0$ since $\pi' \in \mathcal{P}^+$. Hence by Lemma 4.3, there exists an a'_1 -chain for $(s_{\alpha}w(n\mu), n\mu)$. Since $n\lambda$ is dominant we have $n\lambda \triangleright s_{\alpha}w(n\mu)$, so that $(n\lambda, s_{\alpha}w(n\mu))$ is also a gluing pair for π' . Thus in the following we may take $(n\lambda, n\mu)$ as a gluing pair for π' . But since $\mu \geq \nu'_1$, one gets $\pi'(1) = \lambda + (\pi_2(1) - \pi_2(s')) = \lambda + \mu = \nu$ if and only if $\pi_2 = \pi_{n\mu}$, and hence $\pi = \pi'$.

6. Linking

Let \mathfrak{c} be the constant introduced in section 3. To use the "continuity" of the root operators, we introduce now the notion of linking. Two paths $\eta, \eta' \in \Pi_{\text{int}}$ such that $\eta(1) = \eta'(1)$ are called linked of level L ($\eta \stackrel{L}{\sim} \eta'$), if there exist paths $\eta = \pi_0, \ldots, \pi_t = \eta'$ such that: $\eta(1) = \pi_i(1)$ for all $0 \le i \le t$, the modules $\mathcal{A}\pi_i$ have the integrality property for all $0 \le i \le t$, and there exist parametrizations of the paths such that $d(\pi_i, \pi_{i+1}) < 3^{-L} \mathfrak{c}^{-L}$ for all $0 \le i \le t$. Such a sequence of paths is called a linking chain.

LEMMA 6.1. If $\eta \stackrel{L}{\sim} \eta'$ and $n_1 + n_2 + \cdots \leq L$, then $f_{\alpha_1}^{n_1} e_{\alpha_2}^{n_2} \dots \eta = 0$ if and only if $f_{\alpha_1}^{n_1} e_{\alpha_2}^{n_2} \dots \eta' = 0$.

Proof. By the definition of linking chain it is sufficient to prove the lemma for η, η' such that $d(\eta, \eta') \leq 3^{-L} \mathfrak{c}^{-L}$. But then the lemma follows immediately from Proposition 3.1.

Example. Let λ, μ be rational weights such that $\nu = \lambda + \mu$ is an integral weight, and assume that $\lambda \triangleright \mu$ (for example if λ is dominant). For $x \in [0,1]$, consider the paths $\pi_x := \pi_{x\lambda} * \pi_{\mu + (1-x)\lambda}$. Then $\pi_0 = \pi_{\nu}$ is an L-S path of class ν , and $\pi_1 = \pi_{\lambda} * \pi_{\mu}$. If x > 0, then for appropriate choices of n, s, s' one gets (modulo reparametrization, see Example 5.4):

$$\pi_x = \pi^s_{nx\lambda} \circ \theta \circ \pi_{s',n(\mu+(1-x)\lambda)},$$

where $n \geq 2$ is chosen such that $nx\lambda$, $n(\mu + (1-x)\lambda)$ are integral weights. Since $\lambda \triangleright \mu$ implies $x\lambda \triangleright \mu + (1-x)\lambda$, $(nx\lambda, n(\mu + (1-x)\lambda))$ is a gluing pair for π_x . In particular, $A\pi_x$ is integral for all $x \in [0,1]$. Further, since $\pi_x(t) - \pi_y(t) = 2t(x-y)\lambda$ for $t \leq 1/2$ and $\pi_x(t) - \pi_y(t) = 2(1-t)(x-y)\lambda$ for $t \geq 1/2$, one can choose, for any given L, $x_0 = 0, \ldots, x_N = 1$ such that $d(\pi_{x_i}, \pi_{x_{i+1}}) < 3^{-L}\mathfrak{c}^{-L}$ for $i = 0, \ldots, N$. Hence: $\pi_{\nu} \stackrel{L}{\sim} \pi_{\lambda} * \pi_{\mu}$ for arbitrary L.

As a first application one can extend the result of Proposition 5.7:

PROPOSITION 6.2. Let λ,μ be rational weights such that λ is dominant and $\nu = \lambda + \mu$ is an integral dominant weight. Then $\pi = \pi_{\lambda} * \pi_{\mu}$ is the only path in $A\pi$ ending in $\nu = \pi(1)$.

Proof. By the example above one knows that $\pi_{\nu} \stackrel{L}{\sim} \pi_{\lambda} * \pi_{\mu}$ for arbitrary L. Let now $D = f_{\alpha_1}^{n_1} e_{\alpha_2}^{n_2} \dots f_{\alpha_t}^{n_t}$ be a monomial in the root operators and suppose that $D\pi(1) = \nu$. By Lemma 6.1 it follows that $D\pi_{\nu} \neq 0$, and since $D\pi_{\nu}(1) = \nu$, one has in fact $D\pi_{\nu} = \pi_{\nu}$ by Corollary 3. Since $e_{\alpha}\pi_{\nu} = 0$ for all simple roots, it follows in turn from Lemma 6.1 that $e_{\alpha}D\pi = 0$ for all simple roots, and now Proposition 5.7 implies that $D\pi = \pi$.

THEOREM 6.3. Let λ,μ be rational weights such that λ is dominant and $\nu = \lambda + \mu$ is an integral dominant weight. The map $\pi_{\lambda} * \pi_{\mu} \mapsto \pi_{\nu}$ extends to an isomorphism $\Phi: \mathcal{A}(\pi_{\lambda} * \pi_{\mu}) \xrightarrow{\sim} \mathcal{A}\pi_{\nu}$ of \mathcal{A} -modules.

Proof. Let $D=f_{\alpha_1}^{n_1}e_{\alpha_2}^{n_2}\dots f_{\alpha_r}^{n_r}$ be a monomial of root operators. By Lemma 6.1 and the example above, one knows that $D\pi_{\nu}=0$ if and only if $D(\pi_{\lambda}*\pi_{\mu})=0$. To prove that the map $\Phi:a(\pi_{\lambda}*\pi_{\mu})\mapsto a(\pi_{\nu})$ is well defined, one has to show that if $D'=f_{\gamma_1}^{m_1}e_{\gamma_2}^{m_2}\dots f_{\gamma_s}^{m_s}$ and $D\pi_{\nu},D'\pi_{\nu}\neq 0$, then

(6.1)
$$D\pi_{\nu} = D'\pi_{\nu} \Leftrightarrow D(\pi_{\lambda} * \pi_{\gamma}) = D'(\pi_{\lambda} * \pi_{\gamma}).$$

Set $D'' = e_{\alpha_r}^{n_r} \dots f_{\alpha_2}^{n_2} e_{\alpha_1}^{n_1} D'$; then 6.1 is equivalent to

(6.2)
$$\pi_{\nu} = D'' \pi_{\nu} \Leftrightarrow \pi_{\lambda} * \pi_{\gamma} = D'' (\pi_{\lambda} * \pi_{\gamma}).$$

If one of the equalities in 6.2 holds, then $D''\pi_{\nu}(1) = D''(\pi_{\lambda} * \pi_{\gamma})(1) = \nu$, so (6.2) follows from Proposition 6.2. Both modules have the paths as a basis, and the morphism maps paths to paths. So $\Phi(a_1\pi_1 + \cdots + a_r\pi_r) = 0$ only if some of the paths with $a_i \neq 0$ have the same image. But this is excluded by (6.1), so Φ is injective. Since Φ is clearly surjective, this proves the theorem.

7. The Isomorphism Theorem for \mathcal{P}^+

For a path $\pi \in \mathcal{P}^+$ let $M_{\pi} := \mathcal{A}\pi$ be the module generated by π and denote by B_{π} the basis of M_{π} consisting of the set of paths contained in M_{π} . For $\lambda := \pi(1)$ let π_{λ} be the path $t \mapsto t\lambda$, set $M_{\lambda} := \mathcal{A}\pi_{\lambda}$ and denote by B_{λ} the basis of M_{λ} of L-S paths.

THEOREM 7.1. The map $\pi_{\lambda} \mapsto \pi$ extends to an isomorphism $M_{\lambda} \to M_{\pi}$ of A-modules.

COROLLARY 1. a) (Integrality property) For any $\eta \in B_{\pi}$ and any simple root α the minimum attained by the function h_{α} is an integer.

- b) π is the only path in B_{π} such that $e_{\alpha}\pi = 0$ for all simple roots.
- c) Every element $\eta \in B_{\pi}$ is of the form $\eta = f_{\alpha_1} f_{\alpha_2} \dots f_{\alpha_s} \pi$.

Proof. Parts b) and c) follow from the isomorphism theorem and the corresponding properties for the set of L-S paths B_{λ} (Corollary 3). To prove a), fix a simple root α and $\eta \in B_{\pi}$. Let $\eta' \in B_{\lambda}$ be the path corresponding to η under the isomorphism $M_{\lambda} \to M_{\pi}$. Since η' has the integrality property, we know that if $n, m \in \mathbb{N}$ are maximal such that $f_{\alpha}^{n} \eta' \neq 0$, respectively $e^{m} \eta' \neq 0$, then pn and pm are maximal such that $f_{\alpha}^{pn}(p\eta') \neq 0$, respectively $e^{pm}(p\eta') \neq 0$. By the isomorphism theorem this is also true for η . For the minimum q attained by h_{α} for the path η we know $m \leq |q|$. Let $p \in \mathbb{N}$ be such that $p|q| \in \mathbb{Z}$. Now pm is maximal such that $e_{\alpha}^{pm}(p\eta) \neq 0$, but $p|q| \geq pm$ and $e_{\alpha}^{p|q|}(p\eta) \neq 0$. This implies p|q| = pm and hence $q = m \in \mathbb{Z}$.

Proof of Theorem 7.1. By Lemma 2.5, it is sufficient to consider the case where $\pi = \pi_{\nu_1} * \cdots * \pi_{\nu_s}$ and ν_1, \ldots, ν_s are integral weights. We proceed by induction on s. If s = 1, then there is nothing to prove; the case s = 2 has been proved in Theorem 6.3. Suppose now $s \geq 3$ and $\pi = \pi_{\nu_1} * \cdots * \pi_{\nu_s}$. Set $\pi_1 := \pi_{\nu_1} * \cdots * \pi_{\nu_{s-1}}$ and $\lambda_1 := \pi_1(1)$. By induction, the map $\pi_{\lambda_1} \to \pi_1$ extends to an isomorphism of \mathcal{A} -modules $\mathcal{A}\pi_{\lambda_1} \to \mathcal{A}\pi_1$, and by Lemma 2.9, this isomorphism induces an isomorphism $\psi : \mathcal{A}\pi_{\lambda_1} * \mathcal{A}\pi_{\nu_s} \to \mathcal{A}\pi_1 * \mathcal{A}\pi_{\nu_s}$

of \mathcal{A} -modules such that $\psi(\pi_{\lambda_1} * \pi_{\nu_s}) = \pi_{\nu_1} * \cdots * \pi_{\nu_{s-1}} * \pi_{\nu_s}$. So we get an isomorphism of \mathcal{A} -modules $\mathcal{A}(\pi_{\lambda_1} * \pi_{\nu_s}) \to \mathcal{A}(\pi_{\nu_1} * \cdots * \pi_{\nu_s}) = \mathcal{A}\pi$.

Now by Theorem 6.3 we have for $\lambda := \lambda_1 + \nu_s = \pi(1)$ an isomorphism $\mathcal{A}\pi_{\lambda} \to \mathcal{A}(\pi_{\lambda_1} * \pi_{\nu_s})$ such that $\pi_{\lambda} \mapsto \pi_{\lambda_1} * \pi_{\nu_s}$, so the composition of these two gives the desired isomorphism $\mathcal{A}\pi_{\lambda} \to \mathcal{A}\pi$ such that $\pi_{\lambda} \mapsto \pi$.

8. The action of the Weyl group

The $\mathfrak{sl}_2(\mathbb{Z})$ -action constructed in subsection 2.10 suggests the following operators on Π_{int} :

$$\tilde{s}_{\alpha}(\pi) := \left\{ egin{array}{ll} f_{\alpha}^{n}\pi; & \mbox{if } n := \langle \pi(1), \alpha^{\vee} \rangle \geq 0, \\ e_{\alpha}^{-n}\pi; & \mbox{if } n := \langle \pi(1), \alpha^{\vee} \rangle < 0. \end{array} \right.$$

Note that $\tilde{s}_{\alpha}^2 = 1$ and $\tilde{s}_{\alpha}(\pi)(1) = s_{\alpha}(\pi(1))$. In fact:

THEOREM 8.1. The map $s_{\alpha} \mapsto \tilde{s}_{\alpha}$ on the simple reflections in W extends to a representation $W \to \operatorname{End}_{\mathbb{Z}} \Pi_{\operatorname{int}}$ such that $w(\pi)(1) = w(\pi(1))$ for $\pi \in \Pi_{\operatorname{int}}$ and $w \in W$.

Proof. It remains to prove that the braid relations are satisfied in the rank two case for $\mathfrak g$ finite-dimensional. Without loss of generality we may assume that $\pi \in \Pi_{\mathrm{int}}$ is such that $\pi(1)$ is a dominant weight. Let $w_0 = s_{\alpha}s_{\gamma}\ldots = s_{\gamma}s_{\alpha}\ldots$ be the two different decompositions of the longest word w_0 in the Weyl group. We have to prove that $\tilde{s}_{\alpha}\tilde{s}_{\gamma}\ldots(\pi) = \tilde{s}_{\gamma}\tilde{s}_{\alpha}\ldots(\pi)$. This is obvious if $\lambda := \pi(1)$ is not regular, so we may assume in the following that λ is regular. Replacing π by $m\pi$ for some $m \in \mathbb{N}$, by Lemma 2.4 we may assume that $\pi = \pi_{\lambda} * \pi_{\mu} * \cdots * \pi_{\nu}$, where $\lambda, \mu, \ldots, \nu$ are integral weights, so that π is a concatenation of L-S paths. Further, if $\pi \in \mathcal{P}^+$, then $\tilde{s}_{\alpha}\tilde{s}_{\gamma}\ldots(\pi) = \tilde{s}_{\gamma}\tilde{s}_{\alpha}\ldots(\pi)$ is the unique path in $\mathcal{A}\pi$ ending in $w_0(\lambda)$. So we may assume $\pi \notin \mathcal{P}^+$.

Denote by π^n the *n*-fold concatenation: $\pi * \cdots * \pi$ and set $\langle \pi(1), \alpha^{\vee} \rangle = k > 0$. Then $f_{\alpha}^m(\pi * \pi) = \tilde{s}_{\alpha}(\pi) * f_{\alpha}^{m-k}\pi$ for $m \geq k$ (Lemma 2.7). Let η be a concatenation of L-S paths. If p is maximal such that $e_{\alpha}^p \eta \neq 0$, then choose N < n such that $\langle \pi^{n-N}(1), \alpha^{\vee} \rangle \geq p$. We get by Lemma 2.7 for $m \geq kN$:

$$f_\alpha^m(\pi^n*\eta)=(\tilde{s}_\alpha\pi)^N*f_\alpha^{m-kN}(\pi^{n-N}*\eta).$$

Let $\rho \in X$ be such that $\langle \rho, \alpha^{\vee} \rangle = \langle \rho, \gamma^{\vee} \rangle = 1$. For $n \in \mathbb{N}$ choose $q \in \mathbb{N}$ such that $\pi_{q\rho} * \pi^n \in \mathcal{P}^+$, so that $\tilde{s}_{\alpha} \tilde{s}_{\gamma} \dots (\pi_{q\rho} * \pi^n) = \tilde{s}_{\gamma} \tilde{s}_{\alpha} \dots (\pi_{q\rho} * \pi^n)$. The arguments above show that for $n \gg 0$ there exist $\pi_1 \in B_{q\rho}$ and $\pi_2 \in \mathcal{A}\pi^{n-1}$ such that

$$\tilde{s}_{\alpha}\tilde{s}_{\gamma}\dots(\pi_{q\rho}*\pi^n)=\pi_1*\tilde{s}_{\alpha}\tilde{s}_{\gamma}\dots(\pi)*\pi_2.$$

Similarly, $\tilde{s}_{\gamma}\tilde{s}_{\alpha}\dots(\pi_{q\rho}*\pi^n)=\pi_1*\tilde{s}_{\gamma}\tilde{s}_{\alpha}\dots(\pi)*\pi_2$, where $\pi_1\in B_{q\rho}$ and $\pi_2\in \mathcal{A}\pi^{n-1}$. But this implies $\tilde{s}_{\gamma}\tilde{s}_{\alpha}\dots(\pi)=\tilde{s}_{\alpha}\tilde{s}_{\gamma}\dots(\pi)$.

9. Weyl's character formula

Fix ρ in the weight lattice X such that $\langle \rho, \alpha^{\vee} \rangle = 1$ for all simple roots. For $\pi \in \mathcal{P}^+$ let $M_{\pi} := \mathcal{A}\pi$ be the \mathcal{A} -module generated by π and let $B_{\pi} := M_{\pi} \cap \Pi$ be the \mathbb{Z} -basis of M_{π} consisting of the paths contained in M_{π} . Denote by Char $M_{\pi} := \sum_{n \in B_{\pi}} e^{\eta(1)}$ the character of M_{π} .

THEOREM 9.1. (Weyl's character formula).

$$\sum_{\sigma \in W} \operatorname{sgn}(\sigma) e^{\sigma(\rho)} \operatorname{Char} M_{\pi} = \sum_{\sigma \in W} \operatorname{sgn}(\sigma) e^{\sigma(\rho + \lambda)}.$$

In particular, Char M_{π} is equal to the character of the irreducible, integrable \mathfrak{g} -module V_{λ} of highest weight $\lambda := \pi(1)$.

Proof. Set $\Omega(\mu) := \{(\eta, \sigma) \mid \eta \in B_{\pi}, \sigma \in W, \sigma(\rho) + \eta(1) = \mu\}$ for $\mu \in X$. Since $\Omega(\tau(\mu)) = \{(\tau(\eta), \tau\sigma) \mid (\eta, \sigma) \in \Omega(\mu)\}$, we may assume that μ is dominant. Further, $\sigma(\rho) \prec \rho$ for $\sigma \neq 1$, and $\eta = f_{\alpha_1}^{n_1} \dots f_{\alpha_r}^{n_r} \pi$, so that $\eta(1) \prec \pi(1) = \lambda$ for $\eta \neq \pi$. Hence $\Omega(\lambda + \rho) = \{(\pi, 1)\}$ and

$$\sum_{(\eta,\sigma)\in\Omega(\lambda+\rho)}\operatorname{sgn}(\sigma)e^{\sigma(\rho)+\eta(1)}=e^{\lambda+\rho}.$$

Let $\mu \neq \rho + \lambda$ be dominant such that $\Omega = \Omega(\mu) \neq \emptyset$. It remains to show:

(9.1)
$$\sum_{(\sigma,\eta)\in\Omega(\mu)}\operatorname{sgn}(\sigma)e^{\sigma(\rho)+\eta(1)}=0.$$

Fix $(\eta_0, \sigma_0) \in \Omega$, and choose $t_0 \in [0, 1]$ maximal such that $\sigma_0(\rho) + \eta_0(t_0)$ is dominant but not regular. If such a t_0 does not exist, then necessarily $\sigma_0 = 1$ and $\langle \rho + \eta_0(t), \alpha^{\vee} \rangle > 0$ for all $t \in [0, 1]$. By the integrality property of the paths this implies $\langle \eta_0(t), \alpha^{\vee} \rangle \geq 0$ for all $t \in [0, 1]$ and hence $\eta_0 = \pi$, in contradiction to the assumption $\mu \neq \rho + \lambda$.

Fix a simple root α such that $\langle \sigma_0(\rho) + \eta_0(t_0), \alpha^{\vee} \rangle = 0$ and consider

$$\Omega_0 := \{(\eta,\sigma) \in \Omega \mid \sigma(\rho) + \eta(t) = \sigma_0(\rho) + \eta_0(t) \text{ for all } t \in [t_0,1]\}.$$

We define an involution i_{α} on Ω_0 such that $i_{\alpha}((\eta, \sigma)) = (\eta', s_{\alpha}\sigma)$. Note that the existence of such an involution implies

$$\sum_{(\eta,\sigma)\in\Omega_0}\operatorname{sgn}(\sigma)e^{\sigma(\rho)+\eta(1)}=0.$$

Since $\Omega = \Omega_0 \cup \cdots \cup \Omega_r$ is a disjoint union for some $\eta_0, \ldots, \eta_r \in \Omega$, this implies 9.1. (Recall that $\Omega = \Omega(\mu)$ is a finite set by Corollary 1). To construct i_{α} let (η, σ) first be such that $\langle \sigma(\rho), \alpha^{\vee} \rangle < 0$. Since $\langle \sigma(\rho) + \eta(t), \alpha^{\vee} \rangle > 0$ for $t > t_0$, for $m := |\langle \sigma(\rho), \alpha^{\vee} \rangle|$ we get $f_{\alpha}^m \eta \neq 0$ and $s_{\alpha} \sigma(\rho) + f_{\alpha}^m \eta(t) = \sigma(\rho) + \eta(t)$ for $t \geq t_0$. In particular, $(f_{\alpha}^m \eta, s_{\alpha} \sigma) \in \Omega_0$. We set $i_{\alpha}(\eta, \sigma) := (f_{\alpha}^m \eta, s_{\alpha} \sigma)$.

Similarly, if $\langle \sigma(\rho), \alpha^{\vee} \rangle = m > 0$, then $i_{\alpha}(\eta, \sigma) := (e_{\alpha}^{m} \eta, s_{\alpha} \sigma) \in \Omega_{0}$. It is now easy to see that $i_{\alpha}^{2} = \mathrm{id}$, so that i_{α} is an involution.

10. The decomposition rules

The decomposition rules stated in the introduction are immediate consequences of the character formula (Theorem 9.1). For $\pi \in \mathcal{P}^+$ let $M_{\pi} := \mathcal{A}\pi$ be the module generated by π and let $B_{\pi} = \Pi \cap M_{\pi}$ be its basis.

For $\pi_1, \pi_2 \in \mathcal{P}^+$ one knows by Corollary 1 that if $\eta \in B_{\pi_1} * B_{\pi_2}$, then its weight $\eta(1)$ can be written as $\pi_1(1) + \pi_2(1) - \sum_i a_i \beta_i$, where the β_i are positive real roots and $a_i \geq 0$. So by weight considerations there exists for η a sequence n_1, \ldots, n_p such that $\pi := e_{\alpha_1}^{n_1} \ldots e_{\alpha_p}^{n_p} \eta$ has the property $e_{\alpha}\pi = 0$ for all simple roots. Since $B_{\pi_1} * B_{\pi_2}$ has the integrality property this implies $\pi \in \mathcal{P}^+$. Since π is the only path in $\mathcal{A}\pi$ such that $e_{\alpha}\pi = 0$ for all simple roots we get:

$$M_{\pi_1}*M_{\pi_2}=igoplus_\pi M_\pi,$$

where π runs over all $\pi \in B_{\pi_1} * B_{\pi_2}$ such that $\pi \in \mathcal{P}^+$. To see that the elements $\pi \in B_{\pi_1} * B_{\pi_2} \cap \mathcal{P}^+$ are in fact of the form $\pi_1 * \pi'$ note that if $\pi = \eta * \pi'$ is such that $e_{\alpha} \eta \neq 0$, then $e_{\alpha} \pi \neq 0$ by Lemma 2.7 and hence $\pi \notin \mathcal{P}^+$. The proof of the restriction formula is similar. By the integrality property and Corollary 1, there exists for $\eta \in B_{\pi}$ a sequence n_1, n_2, \ldots and simple roots in \mathfrak{l} such that $\sigma := e_{\alpha_1}^{n_1} e_{\alpha_2}^{n_2} \ldots \eta \in \mathcal{P}_{\mathfrak{l}}^+$. Since σ is the only path in $\mathcal{A}_{\mathfrak{l}} \sigma$ such that $e_{\alpha} \sigma = 0$ for all simple roots in \mathfrak{l} , we get the following sum over all paths in B_{π} contained in $\mathcal{P}_{\mathfrak{l}}^+$: $M_{\pi} = \bigoplus_{\eta} \mathcal{A}_{\mathfrak{l}} \pi_{\eta}$.

11. The rank 2 case

We conclude with a description of B_{π} , $\pi \in \mathcal{P}^+$, in the rank 2 case. Let α, γ be the simple roots and set $a := |\langle \alpha, \gamma^{\vee} \rangle|$, $b := |\langle \gamma, \alpha^{\vee} \rangle|$ and x := ab. We assume in addition that x > 0. Consider the sequence $\{y_i\}_{i \in \mathbb{N}}$ defined by $y_0 = 1$, and

$$y_i := 1 - \frac{1}{xy_{i-1}}$$
 if $y_{i-1} \neq 0$ and $y_i := 0$ otherwise.

A small calculation shows (compare also [3]):

LEMMA 11.1. a) If x = 1, then $y_0 = 1$ and $y_i = 0$ for $i \ge 1$.

- b) If x = 2, then $y_0 = 1, y_1 = 1/2$ and $y_i = 0$ for $i \ge 2$.
- c) If x = 3, then $y_0 = 1, y_1 = 2/3, y_2 = 1/2, y_3 = 1/3$ and $y_i = 0$ for $i \ge 4$.
- d) If $x \geq 4$, then $y_i \geq 1/2 + \sqrt{1/4 1/x}$ for all $i \geq 0$ and the sequence $\{y_i\}_{i \in \mathbb{N}}$ is strictly decreasing.

Remark 11.2. If $y_i \neq 0$, then $xy_i \geq 1$.

Set $Y_i := y_0 y_1 \dots y_i$, and for a sequence $n_1, m_1, n_2, \dots \geq 0$ of integers set

$$M_{\gamma}^{i} := x^{i-1}(bn_{i}y_{2i-2} - m_{i})Y_{2i-3}, \quad M_{\alpha}^{i} := x^{i-1}b(am_{i}y_{2i-1} - n_{i+1})Y_{2i-2}.$$

THEOREM 11.3. Let $\pi_0 \in \mathcal{P}^+$ be such that $\pi_0(1) = \lambda$. For every element $\pi \in B_{\pi_0}$ there exists a unique sequence of integers $n_1, m_1, n_2, m_2, \ldots$ such that $\pi := f_{\gamma}^{n_1} f_{\alpha}^{m_1} f_{\gamma}^{n_2} \ldots \pi_0$. This sequence satisfies the following inequalities: $am_1y_0 \geq n_2$, $bn_2y_1 \geq m_2$, $am_2y_2 \geq n_3$, ... and

$$0 \leq n_{1} \leq \langle \lambda, \gamma^{\vee} \rangle + a(m_{1} + m_{2} + \cdots) - 2(n_{2} + n_{3} + \cdots),
1 \leq m_{1} \leq \langle \lambda, \alpha^{\vee} \rangle + b(n_{2} + n_{3} + \cdots) - 2(m_{2} + m_{3} + \cdots),
1 \leq n_{2} \leq \langle \lambda, \gamma^{\vee} \rangle + a(m_{2} + m_{3} + \cdots) - 2(n_{3} + n_{4} + \cdots),
\dots$$

Further, if a sequence satisfies these inequalities, then $\pi := f_{\gamma}^{n_1} f_{\alpha}^{m_1} f_{\gamma}^{n_2} \dots \pi_0 \neq 0$, and $e_{\gamma} f_{\alpha}^{m_1} f_{\gamma}^{n_2} f_{\alpha}^{m_2} \dots \pi_0 = 0$, $e_{\alpha} f_{\gamma}^{n_2} f_{\alpha}^{m_2} \dots \pi_0 = 0$, $e_{\gamma} f_{\alpha}^{m_2} \dots \pi_0 = 0$, ... and $m := \max\{0, -M_{\gamma}^1, -M_{\alpha}^1, -M_{\gamma}^2, -M_{\alpha}^2, \dots\}$ is maximal such that $e_{\alpha}^m \pi \neq 0$ and n_1 is maximal such that $e_{\gamma}^{n_1} \pi \neq 0$.

Example. Suppose \mathfrak{g} is of type \mathbb{A}_2 and $\lambda = k\omega_{\gamma} + l\omega_{\alpha}$ (where $\omega_{\gamma}, \omega_{\alpha}$ are the fundamental weights such that $\omega_{\gamma}(\alpha) = 0$ and $\omega_{\alpha}(\gamma) = 0$). Then

$$B_{\pi_{\lambda}} = \{ f_{\gamma}^{n_{1}} \pi_{\lambda} \mid 0 \leq n_{1} \leq k \} \cup \{ f_{\gamma}^{n_{1}} f_{\alpha}^{m_{1}} \pi_{\lambda} \mid 0 \leq n_{1} \leq k + m_{1}, 1 \leq m_{1} \leq l \}$$

$$\cup \{ f_{\gamma}^{n_{1}} f_{\alpha}^{m_{1}} f_{\gamma}^{n_{2}} \pi_{\lambda} \mid 0 \leq n_{1} \leq k + m_{1} - 2n_{2}, 1 \leq m_{1} \leq l + n_{2},$$

$$1 \leq n_{2} \leq k, m_{1} \geq n_{2} \}.$$

If $\pi \in \mathcal{A}\pi_{\lambda}$ is of the first type, then $e_{\alpha}\pi = 0$; if π is of the second type, then $e_{\alpha}^{m}\pi = 0$ for $m > m_{1} - n_{1}$; if π is of the third type, then $e_{\alpha}^{m}\pi = 0$ for $m > \max\{n_{2}, m_{1} - n_{1}\}$.

To prove the theorem by induction, we need the following

LEMMA 11.4. If
$$\pi = f_{\gamma}^{n_1} f_{\alpha}^{m_1} f_{\gamma}^{n_2} \dots \pi_0 \neq 0$$
 is such that
(11.1) $am_1 y_0 - n_2 \geq 0$, $bn_2 y_1 - m_2 \geq 0$, $am_2 y_2 - n_3 \geq 0$, ...
then $m := \max\{m \in \mathbb{N} \mid e_{\alpha}^m \pi \neq 0\} = \max\{0, -M_{\gamma}^1, -M_{\alpha}^1, -M_{\gamma}^2, \dots\}$.

Proof of the theorem. We show first that the lemma implies the theorem. To have m=0, we need $M^i_{\alpha}, M^i_{\gamma} \geq 0$ for all i, which is equivalent to

$$bn_1y_0 - m_1 \ge 0$$
, $am_1y_1 - n_2 \ge 0$, $bn_2y_2 - m_2 \ge 0$, ...

Since the sequence $\{y_i\}$ is not increasing, this proves inductively the equivalence of (11.1) and $e_{\gamma}f_{\alpha}^{m_1}f_{\gamma}^{n_2}\dots\pi_0=0$, $e_{\alpha}f_{\gamma}^{n_2}\dots\pi_0=0$, etc. The second set of inequalities is just to ensure that $\pi\neq 0$:

If
$$e_{\gamma} f_{\alpha}^{m_i} f_{\gamma}^{n_{i+1}} \dots \pi_0 = 0$$
, then $f_{\gamma}^n f_{\alpha}^{m_i} f_{\gamma}^{n_{i+1}} \dots \pi_0 = 0$ if and only if
$$n > \langle f_{\alpha}^{m_i} f_{\gamma}^{n_{i+1}} \dots \pi_0(1), \gamma^{\vee} \rangle = \langle \lambda, \gamma^{\vee} \rangle + a(m_i + m_{i+1} + \dots) - 2(n_{i+1} + \dots).$$

To prove that the sequence is unique, we construct the sequence n_1, m_1, n_2, \ldots as follows: Choose n_1 maximal such that $e_{\alpha}^{n_1} \pi \neq 0$, choose m_1 maximal such that $e_{\alpha}^{m_1} e_{\gamma}^{n_1} \pi \neq 0$, etc. We have seen that the sequence m_1, n_2, \ldots satisfies the inequalities, and the inequality for n_1 is also clearly satisfied. Since the m_1, n_2, \ldots are positive, the construction shows that the sequence is unique. Clearly, n_1 is maximal such that $e_{\gamma}^{n_1} \pi \neq 0$, and the statement about the maximal $m \in \mathbb{N}$ such that $e_{\alpha}^m \pi \neq 0$ follows by the lemma.

Proof of the lemma. We proceed by induction on the length of the sequence. So we may assume that (11.1) is equivalent to

$$e_{\gamma}f_{\alpha}^{m_1}f_{\gamma}^{n_2}\dots\pi_0=0,\quad e_{\alpha}f_{\gamma}^{n_2}\dots\pi_0=0,\dots$$

Let φ^i_{α} and φ^i_{γ} be the increasing functions on [0, 1] defined by

$$f_{\gamma}^{n_i} f_{\alpha}^{m_i} f_{\gamma}^{n_{i+1}} \dots \pi_0(t) = f_{\alpha}^{m_i} f_{\gamma}^{n_{i+1}} \dots \pi_0(t) - \varphi_{\gamma}^i(t) \gamma,$$
and $f_{\alpha}^{m_i} \dots \pi_0(t) = f_{\gamma}^{n_{i+1}} \dots \pi_0(t) - \varphi_{\alpha}^i(t) \alpha.$ If $e_{\gamma}(f_{\alpha}^{m_i} \dots \pi_0) = 0$, then

(11.2)
$$\varphi_{\gamma}^{i}(t) \leq \langle f_{\alpha}^{m_{i}} f_{\gamma}^{n_{i+1}} \dots \pi_{0}(t), \gamma^{\vee} \rangle$$

for all $t \in [0,1]$, and we have equality if φ_{γ}^{i} is not constant on an arbitrary small neighborhood of t. Now in the situation of the lemma we have

(11.3)
$$h_{\alpha}(t) = \langle \pi(t), \alpha^{\vee} \rangle = \langle f_{\gamma}^{n_2} f_{\alpha}^{m_2} \dots \pi_0(t), \alpha^{\vee} \rangle + b\varphi_{\gamma}^1(t) - 2\varphi_{\alpha}^1(t).$$

By assumption (and 11.2) we know that $\langle f_{\gamma}^{n_2} f_{\alpha}^{m_2} \dots \pi(t), \alpha^{\vee} \rangle - \varphi_{\alpha}^{1}(t) \geq 0$. Since φ_{γ}^{1} is not decreasing, we know that if the function $h_{\alpha}(t)$ attains its minimum for the first time at $t = t_0$, then φ_{α}^{1} is not constant near t_0 and hence

(11.4)
$$\langle f_{\gamma}^{n_2} f_{\alpha}^{m_2} \dots \pi(t_0), \alpha^{\vee} \rangle - \varphi_{\alpha}^{1}(t_0) = 0$$

and $-m = \min\{h_{\alpha}(t) \mid t \in [0,1]\} = \min\{b\varphi_{\gamma}^{1}(t) - \varphi_{\alpha}^{1}(t) \mid t \in [0,1]\}$. Set

$$p_i := \min_{t \in [0,1]} \{by_{2i-2}\varphi_{\gamma}^i(t) - \varphi_{\alpha}^i(t)\}, \quad q_i := \min_{t \in [0,1]} \{ay_{2i-1}\varphi_{\alpha}^i(t) - \varphi_{\gamma}^{i+1}(t)\}.$$

SUBLEMMA 11.5. a) Let $p:=p_ix^{i-1}Y_{2i-3}$ and set $q:=q_ibx^{i-1}Y_{2i-2}$. Then $p \leq M_{\gamma}^i$ and $p \leq q$, and if $p < M_{\gamma}^i$ then p = q.

b) Let $q:=q_ibx^{i-1}Y_{2i-2}$ and set $p:=p_{i+1}x^iY_{2i-1}$. Then $q\leq M_\alpha^i$ and $q\leq p$, and if $q< M_\alpha^i$ then q=p.

Proof of the sublemma. Obviously for a):

$$p \le x^{i-1} Y_{2i-3}(b\varphi_{\gamma}^{i}(1) y_{2i-2} - \varphi_{\alpha}^{i}(1)) = M_{\gamma}^{i}.$$

By (11.2),
$$\langle f_{\alpha}^{m_i} f_{\gamma}^{n_{i+1}} \dots \pi_0(t), \gamma^{\vee} \rangle \geq \varphi_{\gamma}^i(t)$$
, and hence

(11.5)
$$p \leq x^{i-1} Y_{2i-3} \min_{t \in [0,1]} \{ b \langle f_{\alpha}^{m_i} f_{\gamma}^{n_{i+1}} \dots \pi_0(t), \gamma^{\vee} \rangle y_{2i-2} - \varphi_{\alpha}^i(t) \}.$$

The function in (11.5) is equal to

$$by_{2i-2}(\langle f_{\alpha}^{m_{i+1}}(t) \dots \pi_0(t), \gamma^{\vee} \rangle - \varphi_{\gamma}^{i+1}(t)) + \varphi_{\alpha}^{i}(t)(xy_{2i-2}-1) - b\varphi_{\gamma}^{i+1}(t)y_{2i-2}.$$

By assumption (see 11.2) the first part is nonnegative, and it is zero at $t = t_0$ if φ_{γ}^{i+1} is not constant on an arbitrary small neighborhood of t_0 . So as in (11.4), the minimum is equal to the minimum of the second part. It follows by (11.5):

$$(11.6) p \leq x^{i-1}Y_{2i-3} \min_{t \in [0,1]} \{ \varphi_{\alpha}^{i}(t)(xy_{2i-2} - 1) - by_{2i-2}\varphi_{\gamma}^{i+1}(t) \}$$
$$= bx^{i-1}Y_{2i-2} \min_{t \in [0,1]} \{ ay_{2i-1}\varphi_{\alpha}^{i}(t) - \varphi_{\gamma}^{i+1}(t) \} = q.$$

It remains to prove that p=q if $p < M_{\gamma}^i$. Let $c_0 \in [0,1]$ be minimal such that φ_{γ}^i is constant for $t \geq c_0$. If $p < M_{\gamma}^i$, then p is attained for some $t_0 \leq c_0$, and in addition we may assume that φ_{γ}^i is not constant in a small neighborhood of t_0 . Hence we have $\langle f_{\alpha}^{m_i} \dots \pi_0(t_0), \gamma^{\vee} \rangle = \varphi_{\gamma}^i(t_0)$ (see 11.2) and equality for $t=t_0$ in (11.5) and (11.6). The proof of b) is similar.

End of the proof of the lemma. We have proved already that

$$-m = \min_{t \in [0,1]} \{b\varphi_{\gamma}^1(t) - \varphi_{\alpha}^1(t)\}.$$

By Lemma 11.5 this implies $-m \leq M_{\alpha}^i, M_{\gamma}^i$ for all i. If $-m < M_{\alpha}^i, M_{\gamma}^i$ for all i, then we obtain by induction and the equality in (11.5) for $\pi = f_{\gamma}^{n_1} \dots f_{\gamma}^{n_s} f_{\alpha}^{m_s} \pi_0$:

$$\begin{array}{lcl} -m & = & c \min_{t \in [0,1]} \{by_{2s-2} \varphi_{\gamma}^s(t) - \varphi_{\alpha}^s(t)\} \\ \\ & = & c \min_{t \in [0,1]} \{by_{2s-2} \langle f_{\alpha}^{m_s} \pi_0(t), \gamma^{\vee} \rangle - \varphi_{\alpha}^s(t)\} \\ \\ & = & c \min_{t \in [0,1]} \{by_{2s-2} \langle \pi_0(t), \gamma^{\vee} \rangle + \varphi_{\alpha}^s(t)(xy_{2s-2} - 1)\} = 0, \end{array}$$

since $(xy_{2s-2}-1) \geq 0$ (Remark 11.2) and $\langle \pi_0(t), \gamma^{\vee} \rangle \geq 0$. The same arguments show that if $\pi = f_{\gamma}^{n_1} f_{\alpha}^{m_1} f_{\gamma}^{n_2} \dots f_{\alpha}^{m_s} f_{\gamma}^{n_{s+1}} \pi_0$, then m = 0, which finishes the proof of the lemma.

Universität Basel, Basel, Switzerland Universite Louis Pasteur, Strasbourg, France

REFERENCES

- [1] A. Joseph, Quantum Groups and their Primitive Ideals, Springer-Verlag, 1994.
- [2] M. Kashiwara, Crystalizing the q-analog of universal enveloping algebras, Commun. Math. Phys. 133(1990), 249–260.
- [3] ______, Crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71(1993), 839–858.
- [4] ______, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73(1994), 383-413.
- [5] _____, Bases cristallines, C. R. Acad. Paris, Série I **311**(1990), 277–280.
- [6] V. Lakshmibai, Demazure modules, to appear in CMS proceedings of the conference on "Representations of groups—Finite, Algebraic, Lie, and Quantum, Banff, 1994.
- [7] V. LAKSHMIBAI, and C. S. SESHADRI, Standard monomial theory, in *Proc. Hyderabad Conf. on Algebraic Groups*, Manoj Prakashan, 1991.
- [8] P. LITTELMANN, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116(1994), 329–346.
- [9] G. Lusztig, Canonical bases arising from quantized enveloping algebras II, Prog. Theor. Phys. 102(1990), 175–201.

(Received September 1, 1993)