Определение теплоты испарения жидкости. (2.4.1)

Зайнуллин Амир

3 марта 2023 г.

1 Аннотация

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

В работе используются: термостат, герметический сосуд, заполненный водой, отсчётный микроскоп.

2 Теоретические сведения

Количество теплоты, необходимое для изотермического испарения одного моля жидкости при внешнем давлении, равном упругости ее насыщенных паров, называется молярной теплотой испарения (парообразования).

В данной работе используется метод, основанный на формуле Клапейрона-Клаузиуса (1).

Уравнение Клапейрона-Клаузиуса

$$\frac{dP}{dT} = \frac{L}{T\left(V_2 - V_1\right)}. (1)$$

Здесь P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарения жидкости, V_2 — объем пара, V_1 — объем жидкости. Найдя из опыта dP/dT, T, V_2 и V_1 , можно определить L путем расчета. Величины L, V_2 и V_1 в формуле (1) должны относиться к одному и тому же количеству вещества; мы будем относить их к одному молю.

Так как удельный объем жидкости мал по сравнению с удельным объемом пара, мы можем им пренебречь. Аналогично можно заметить малость коэффициента b в уравнении Ван-Дер-Ваальса. Значит им можно пренебречь. Пренебрежение членом $\frac{a}{V^2}$ вносит ошибку менее 3 процентов. Тогда уравнение Ван-Дер-Ваальса будет как для идеального газа. Выразим объем.

$$V = \frac{RT}{P}$$

Формула для теплоты испарения жидкости

$$L = \frac{RT^2}{\mu P} \frac{dP}{dT} = -\frac{R}{\mu} \frac{d(\ln P)}{d(1/T)} \tag{2}$$

Как видим, если измерить зависимость давления насыщенных паров от температуры по формуле (2) можно получить удельную теплоту испарения.

3 Экспериментальная установка

Измерения проводятся на установке, изображенной на рис. 1. С помощью термостата А выставляется желаемая температура, и с помощью микроскопа С измеряется положение менисков ртути в U-образном монометре 15. Давление насыщенных паров считается как разность высот менисков ртути. Измерения проводятся в 2 этапа. В начале жидкость нагревается, а потом остужается. Это делается для того, чтобы посмотреть зависит ли давление насыщенных паров только от состояния жидкости или нет.

Рис. 1: Установка для определения давления насыщенных паров.

4 Результаты измерений и обработка данных

Измеряем давление по вышеописанной схеме. В таблице (1) h_1 и h_2 это координаты левого и правого менисков соответственно относительно некоторой точки. Для ошибок измерения имеем следующее

$$\Delta h = 0,05\,\text{mm}$$

$$\Delta T = 0,1\,^{\circ}C$$

Используемая формула для давления и его погрешности

$$\Delta P = \rho g(h_2 - h_1)$$

$$\sigma_{\Delta P} = \frac{2\Delta h}{h_2 - h_1} \Delta P$$

Но, посчитав относительную погрешность измерения разности высот, получим что она не больше 0,5 процентов. Пренебрежем ею.

Nº	$T,^{\circ}C$	<i>T</i> , K	h_1 , mm	h_2 , MM	ΔP , Πa	$\frac{1}{T} \cdot 10^3, \frac{1}{K}$	$\ln(P)$
1	21	294	80,2	97,2	2258	3,40	7,72
2	22	295	81,3	97,7	2178	3,39	7,69
3	23	296	80,2	98,1	2378	3,38	7,77
4	24	297	79,4	98,8	2577	3,37	7,85
5	25	298	79,1	99,6	2723	3,36	7,91
6	26	299	78,5	100,2	2882	3,34	7,97
7	27	300	77,4	101,3	3175	3,33	8,06
8	28	301	76,7	102,3	3400	3,32	8,13
9	29	302	75,7	102,9	3613	3,31	8,19
10	30	303	74,7	103,9	3879	3,30	8,26
11	31	304	74,2	105,5	4157	3,29	8,33
12	32	305	73,3	106,1	4357	3,28	8,38
13	33	306	72,4	107,1	4609	3,27	8,44
14	34	307	71,4	108	4861	3,26	8,49
15	35	308	70,5	109,3	5154	$3,\!25$	8,55
16	36	309	69,5	110,5	5446	3,24	8,60
17	37	310	68,6	111,3	5672	3,23	8,64
18	38	311	67,7	112,7	5977	3,22	8,70
19	39	312	66,7	113,5	6216	3,21	8,73
20	40	313	65,7	114,9	6535	3,19	8,78

Таблица 1: Таблица измерений

Рис. 2: Зависимость давления от температуры

Посчитаем коэффициент наклона графика по МНК. Полная погрешность коэффициента наклона графика будет состоять только из случайной погрешности, так как системной мы пренебрегли.

$$\begin{split} \frac{d(\ln\!P)}{d(1/t)} &= \frac{\langle \ln\!P \cdot \frac{1}{T} \rangle - \langle \frac{1}{T} \rangle \langle \ln\!P \rangle}{\langle \frac{1}{T^2} \rangle - \langle \frac{1}{T} \rangle^2} \\ \sigma_{\text{случ}} &= \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\langle \ln\!P \rangle - \langle \ln\!P \rangle^2}{\langle \frac{1}{T^2} \rangle - \langle \frac{1}{T} \rangle^2} - \frac{d(\ln\!P)}{d(1/t)}} \end{split}$$

$$\frac{d(\ln P)}{d(1/t)} = (-5614 \pm 95) \text{ K}$$

По формуле (2) найдем теплоту парообразования.

$$L = (2590 \pm 38) \; \text{кДж/кг}$$

5 Обсуждение результатов и выводы

В данной лабораторной работе мы:

- 1. Исследовали зависимость давления насыщенных паров воды от давления жидкости
- 2. Вычислили теплоту парообразования воды

Сравним полученные данные с табличными. Из справочников $L=2260~{\rm кДж/кг}$. Достаточно большое расхождение около десяти процентов может быть вызвано большим количеством причин. Во-первых в нашей модели мы использовали некоторые упрощения в формуле Клапейрона-Клаузиуса. Мы пренебрегли некоторыми членами: удельным объемом воды и слагаемым b в уравнении Ван-Дер-Ваальса. Во-вторых возможно мы не достаточно много ждали когда установится тепловое равновесие. В третьих, теплота парообразования может зависеть от температуры, что мы не учли в опыте.

Для увеличения точности измерений можно уменьшить диапазон измеряемых температур. Тогда изменением теплоты парообразования можно будет пренебречь, и это внесет меньшую погрешность.