Working Title: the data science canon

Databrew

2021-03-27

Contents

1	We	come	11
Ι	Co	re theory	13
2	Pri	nciples of data science	15
	2.1	What is data science?	15
	2.2	What is the data life cycle?	15
	2.3	What is a pipeline?	15
	2.4	Data science 'in the wild' \hdots	15
	2.5	The reproducibility crisis	15
3	Vis	ualizing data	17
	3.1	Bad examples	17
	3.2	Good exaples	17
	3.3	Edward Tufte	17
	3.4	Grammar of graphics	17
	3.5	Design principles	17
	3.6	Plots & power	17
4	Wri	ting about data	19
5	Dat	a ethics	21

4		CONTENTS

Π	Getting started	23
6	Setting up RStudio	25
7	Running R code	27
	7.1 Basic math	27
	7.2 Operators	27
8	RStudio workflows	29
	8.1 Tour of RStudio	29
	8.2 Scripts	29
	8.3 Typical workflows	29
9	Objects in R	31
	9.1 Variables	31
	9.2 Vectors	31
10	Calling functions	33
11	Base plots	35
12	2 Packages	37
13	Basics of ggplot	39
II	I Working with data in R	41
14	Importing data	43
	14.1 Working directories	43
	14.2 Reading in data	43
15	5 Dataframes	45
	15.1 Exploration	45
	15.2 Summarization	45

5

16 Data wrangling	47
16.1 Data transformation	47
16.2 The tidyverse and tibbles	47
16.3 Transformation with dplyr	47
IV Exploring & analyzing data	49
17 Exploratory Data Analysis	5 1
17.1 Exploring distributions	51
17.2 Variable types & statistics	51
17.3 Descriptive statistics	51
18 Significance statistics	53
18.1 Thinking about significance	53
18.2 Comparison tests	53
18.3 Correlation tests	53
19 Displaying data	55
19.1 Tables	55
19.2 Base plots	55
19.3 ggplot	55
V Creating your own dataset	57
20 Managing project files	59
21 Formatting your own data	61
22 Reading Excel files	63
23 Reading GoogleSheets	65
24 Reading online data	67

6 CONTENTS

VI Your R tool bag	69
25 Joining datasets	71
26 for loops	73
Learning goals	73
Coming soon	73
Tutorial video	73
Basics	73
Using for loops with data	75
Using a for loop with more complex data	77
Review assignment	80
27 Writing functions	85
28 Working with text	87
29 Working with dates & times	89
30 Working with factors	91
31 Cleaning messy data	93
32 Matrices & lists	95
33 Pipes	97
34 Exporting data & plots	99
VII Interactive dashboards	101
35 Intro to Shiny apps	103
36 Shiny dashboards	105
37 Data entry apps	107

C	ONTENTS	ΓS	,

V	LII	Databases	109
38	Intr	oduction	111
	38.1	What	111
	38.2	Why	111
	38.3	When	111
	38.4	When not	111
39	Plat	forms	113
	39.1	PostgreSQL	113
	39.2	${\rm mySQL} \dots \dots \dots \dots \dots \dots$	113
	39.3	SQLite	113
40	Alte	ernatives	115
	40.1	NoSQL	115
41	Pra	ctices	117
IX		Occumenting your work	119
42	$\mathbf{R} \mathbf{N}$	Iarkdown	121
43	\mathbf{Rep}	roducible research	123
44	Aut	omated reporting	125
45	Fori	natting standards	127
	45.1	Tables	127
	45.2	Figures	127
	45.3	Captions	127
X	Ve	ersion control and teamwork	129
46	Wha	at is version control?	131

8	CONTENTS

47 What is Git?	133
47.1 Repositories	133
47.2 Github	133
48 Standard git operations	135
49 A git workflow	137
50 Other git platforms	139
XI Writing about data	141
51 Types of writing	143
51.1 Grant proposals	143
51.2 Reports and publications	143
51.3 Fundraising	143
51.4 Press releases	143
52 Elements of style	145
53 Sections of a report	147
53.1 Abstract	147
53.2 Introduction	147
53.3 Methods	147
53.4 Results	147
53.5 Discussion	147
53.6 Other elements	147
XII Creating websites	149
XIII Advanced skills	151
54 Mapping	153

CONTENTS	9
----------	---

55 Geographic computing & GIS	155
56 Statistical modeling	157
57 Apply family	159
58 Iterative statistics	161
59 Iterative simulations	163
60 Image analysis	165
61 Machine learning	167

10 CONTENTS

Welcome

Welcome to $Working\ Title,$ the data science can on by DataBrew

Part I Core theory

Principles of data science

- 2.1 What is data science?
- 2.2 What is the data life cycle?
- 2.3 What is a pipeline?
- 2.4 Data science 'in the wild'
- 2.5 The reproducibility crisis

Visualizing data

- 3.1 Bad examples
- 3.2 Good exaples
- 3.3 Edward Tufte
- 3.4 Grammar of graphics
- 3.5 Design principles
- 3.6 Plots & power

The politics of graphics

Writing about data

Data ethics

Part II Getting started

Setting up RStudio

Running R code

- 7.1 Basic math
- 7.2 Operators

RStudio workflows

- 8.1 Tour of RStudio
- 8.2 Scripts
- 8.3 Typical workflows

Objects in R

- 9.1 Variables
- 9.2 Vectors

Calling functions

Base plots

Packages

Basics of ggplot

Part III Working with data in R

Importing data

- 14.1 Working directories
- 14.2 Reading in data

Dataframes

- 15.1 Exploration
- 15.2 Summarization

Data wrangling

- 16.1 Data transformation
- 16.1.1 Filtering
- 16.1.2 Grouping
- 16.1.3 Joining
- 16.2 The tidyverse and tibbles
- 16.3 Transformation with dplyr
- 16.3.1 Filtering
- 16.3.2 Grouping
- 16.3.3 Mutating

Exploratory Data Analysis

- 17.1 Exploring distributions
- 17.2 Variable types & statistics
- 17.3 Descriptive statistics

Significance statistics

- 18.1 Thinking about significance
- 18.2 Comparison tests
- 18.3 Correlation tests

Displaying data

- 19.1 Tables
- 19.2 Base plots

Advanced techniques

19.3 ggplot

Advanced techniques

$\mathbf{Part} \ \mathbf{V}$

Creating your own dataset

Managing project files

Formatting your own data

Reading Excel files

Reading GoogleSheets

Reading online data

Part VI Your R tool bag

Joining datasets

for loops

Learning goals

- What for loops are, and how to use them yourself
- How to use for loops for multi-pane plotting
- How to use for loops to achieve complex plots
- How to use for loops to summarize data efficiently

Coming soon

• Instructor notes and answer keys (hidden from students)

Tutorial video

(coming soon!)

Basics

A for loop is a super powerful coding tool. In a for loop, R loops through a chunk of code for a set number of repititions.

A super basic example:

- [1] 1
- [1] 2
- [1] 3
- [1] 4
- [1] 5

Here's an example of a pretty useless for loop:

```
[1] "I'm just repeating myself."
[1] "I'm just repeating myself."
```

- [1] "I'm just repeating myself."
- [1] "I'm just repeating myself."
- [1] "I'm just repeating myself."

This code is saying:

- For each iteration of this loop, step to the next value in ${\tt x}$ (first example) or 1:5 (second example).
- Store that value in an object i,
- and run the code inside the curly brackets. Repeat until the end of x.

Look at the basic structure:

- In the for() parenthetical, you tell R what values to step through (x), and how to refer to the value in each iteration (i).
- Within the curly brackets, you place the chunk of code you want to repeat.

Another basic example, demonsrating that you can update a variable repeatedly in a loop.

- [1] 4
- [1] 16
- [1] 256
- [1] 65536
- [1] 4294967296

Another silly example:

- [1] "Keri is pretty cool!"
- [1] "Deb is pretty cool!"
- [1] "Ken is pretty cool!"

Exercise 1

Use this space to practice the basics of for loop formatting.

First, create a vector of names (add at least 3)

Using the examples above as a guide, create a for loop that prints the same silly statement about each of these names.

- [1] "Lady Gaga has cooties!"
- [1] "David Haskell has cooties!"
- [1] "Tom Cruise has cooties!"

Using for loops with data

These silly examples above do a poor job of demonstrating how powerful a for loop can be.

Multi-panel plots

For example, a for loop can be a very efficient way of making multi-panel plots.

Let's use a for loop to get a quick overview of the variables included in the airquality dataset built into R.

	Ozone	${\tt Solar.R}$	Wind	Temp	Month	Day
1	41	190	7.4	67	5	1
2	36	118	8.0	72	5	2
3	12	149	12.6	74	5	3
4	18	313	11.5	62	5	4
5	NA	NA	14.3	56	5	5
6	28	NA	14.9	66	5	6

Looks like the first four columns would be interesting to plot.

Tricky plot solutions

for loops are also useful for plotting data in tricky ways. Let's use a different built-in dataset, that shows the performance of various car make/models.

	mpg	cyl	disp	hp	drat	wt	qsec	٧s	\mathtt{am}	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Let's say we want to see how gas mileage is affected by the number of cylinders a car has. It would be nice to create a plot that shows the raw data as well as the mean mileage for each cylinder number.

[1] 6 4 8

Exercise 2

Now try to do something similar on your own with the airquality dataset. Use for loops to create a plot with Month on the x axis and Temperature on the y axis. On this plot, depict all the temperatures recorded in each month in the color grey, then superimpose the mean temperature for each month.

Using a for loop with more complex data

Here's another good example of the power of a good for loop.

First, read in some cool data.

	year	${\tt month}$	day_of_month	day_of_year	year_dec	<pre>frac_of_year</pre>	C02
1	1974	5	26	145.4890	1974.399	0.3986	332.95
2	1974	6	2	152.4970	1974.418	0.4178	332.35
3	1974	6	9	159.5050	1974.437	0.4370	332.20
4	1974	6	16	166.5130	1974.456	0.4562	332.37
5	1974	6	23	173.4845	1974.475	0.4753	331.73
6	1974	6	30	180.4925	1974.495	0.4945	331.68

This is the famous Keeling Curve dataset: long-term monitoring of atmospheric CO2 measured at a volcanic observatory in Hawaii.

Try plotting the Keeling Curve:

There are some erroneous data points! We clearly can't have negative CO2 values. Let's remove those and try again:

What's the deal with those squiggles? Let's investigate!

Let's look at the data a different way: by focusing in on a single year.

	year	${\tt month}$	day_of_month	day_of_year	year_dec	<pre>frac_of_year</pre>	C02
816	1990	1	7	6.4970	1990.018	0.0178	353.58
817	1990	1	14	13.5050	1990.037	0.0370	353.99

```
0.0562 353.92
818 1990
             1
                          21
                                 20.5130 1990.056
819 1990
                          28
                                 27.4845 1990.075
                                                         0.0753 354.39
                                 34.4925 1990.094
                                                         0.0945 355.04
820 1990
                          4
821 1990
                                 41.5005 1990.114
                                                         0.1137 355.09
                          11
```

[1] 354.4538

```
[1] -0.87384615 -0.46384615 -0.53384615 -0.06384615
                                                     0.58615385
                                                                0.63615385
                0.72615385
                            1.13615385 1.33615385
    0.96615385
                                                     1.08615385
                                                                1.67615385
                 1.71615385
                             1.77615385
                                         2.41615385
                                                     2.50615385
[13]
     1.81615385
                                                                3.24615385
[19]
    2.79615385 2.87615385
                            2.92615385 2.52615385
                                                    1.79615385 1.72615385
[25] 1.33615385 1.76615385 0.53615385 -0.16384615 -0.08384615 -0.46384615
[31] -1.28384615 -0.99384615 -1.37384615 -2.65384615 -3.29384615 -3.59384615
[37] -2.70384615 -2.99384615 -3.05384615 -2.91384615 -2.88384615 -2.72384615
[43] -2.05384615 -1.74384615 -1.30384615 -1.00384615 -0.76384615 -0.55384615
[49] 0.01615385 -0.11384615 0.37615385 0.34615385
                                                            NA
```


But this only shows one year of data! How can we include the seasonal squiggle from other years?

Let's use a for loop!

OK – let's redo that graph and add a for loop into the mix:

```
[1] "1974" "1975" "1976" "1977" "1978" "1979" "1980" "1981" "1982" "1983" [11] "1984" "1985" "1986" "1987" "1988" "1989" "1990" "1991" "1992" "1993" [21] "1994" "1995" "1996" "1997" "1998" "1999" "2000" "2001" "2002" "2003" [31] "2004" "2005" "2006" "2007" "2008" "2009" "2010" "2011" "2012" "2013" [41] "2014" "2015" "2016" "2017" "2018" "2019" "2020" "2021" NA
```


Beautiful! So how do you interpret this graph? Why does the squiggle happen every year?

Review assignment

First, read in and format some other cool data. The code for doing so is provided for you here:

This dataset, freely available from World Bank, shows the renewable electricity output for various countries, presented as a percentage of the nation's total electricity output. They provide this data as a time series.

26.0.1 Summarize columns with a for loop

Task 1: Use a for loop to find the change in renewable energy output for each nation in the dataset between 1990 and 2015. Print the difference for each nation in the console.

```
[1] "year" "World" "Australia" "Canada"
[5] "China" "Denmark" "India" "Japan"
[9] "New_Zealand" "Sweden" "Switzerland" "United_Kingdom"
[13] "United_States"
```

```
[1] "World : 3% change."
[1] "Australia : 4% change."
```

```
[1] "Canada : 1% change."
[1] "China : 4% change."
[1] "Denmark : 62% change."
[1] "India : -9% change."
[1] "Japan : 5% change."
[1] "New_Zealand : 0% change."
[1] "Sweden : 12% change."
[1] "Switzerland : 7% change."
[1] "United_Kingdom : 23% change."
[1] "United_States : 2% change."
```

Task 2: Re-do this loop, but instead of printing the differences to the console, save them in a vector.

```
[1] "World : 3% change."
[1] "Australia : 4% change."
[1] "Canada : 1% change."
[1] "China : 4% change."
[1] "Denmark : 62% change."
[1] "India : -9% change."
[1] "Japan : 5% change."
[1] "New_Zealand : 0% change."
[1] "Sweden : 12% change."
[1] "Switzerland : 7% change."
[1] "United_Kingdom : 23% change."
[1] "United_States : 2% change."
[1] "United_States : 2% change."
[1] 3.49241703 3.98181045 0.63273122 3.51887728 62.33064943 -9.14624362
[7] 4.73004321 0.07524008 12.26263811 7.21543884 23.01128298 1.69994636
```

Multi-pane plots with for loops

Practice with a single plot

Task 3: First, get your bearings by figuring out how to use the df dataset to plot the time series for the United States, for the years 1990 - 2015. Label the x axis "Year" and the y axis "% Renewable". Include the full name of the county as the main title for the plot.

```
year World Australia Canada China Denmark India Japan
1 1990 19.36204 9.656031 62.37872 20.40794 3.175275 24.48929 11.254738
2 1991 19.23357 10.598201 61.41041 18.47113 2.892325 22.80740 11.856735
3 1992 19.15840 10.066865 61.67921 17.58468 4.398464 20.75265 10.162888
4 1993 19.78795 10.549144 61.72233 18.12526 4.730088 19.55881 11.454528
```

10.801085

83.85281 47.57878

5 1994 19.53812 10.194474 60.40045 18.08844 4.295431 21.21910 7.993026 6 1995 19.83536 9.624143 61.00410 19.21414 5.035639 17.26054 9.416323 New_Zealand Sweden Switzerland United_Kingdom United_States 80.00620 51.00011 54.98254 1.828767 11.528647 1 77.18945 44.30088 2 57.16370 10.757414 1.656439 3 72.58771 52.33321 56.90938 2.005662 9.916110 4 77.02407 52.92433 59.57279 1.777626 10.484326 5 82.05216 43.02873 9.747236 60.57322 2.139842

57.42996

2.066535

Now loop it!

Task 4: Use that code as the foundation for building up a for loop that displays the same time series for every country in the dataset on a multi-pane graph that with 4 rows and 3 columns.

Now loop it differently!

Task 5: Now try a different presentation. Instead of producing 12 different plots, superimpose the time series for each country on the *same single plot*.

To add some flare, highlight the USA curve by coloring it red and making it thicker.

Writing functions

Working with text

Working with dates & times

Working with factors

Cleaning messy data

Matrices & lists

Pipes

Exporting data & plots

Part VII Interactive dashboards

Intro to Shiny apps

Shiny dashboards

Data entry apps

Part VIII

Databases

Introduction

- **38.1** What
- 38.2 Why
- 38.3 When
- 38.4 When not

Platforms

- 39.1 PostgreSQL
- $39.2 \quad mySQL$
- 39.3 SQLite

Alternatives

40.1 NoSQL

Practices

Spinning up a local DB

Part IX Documenting your work

R Markdown

Reproducible research

Automated reporting

Formatting standards

- 45.1 Tables
- 45.2 Figures
- 45.3 Captions

Part X

Version control and teamwork

What is version control?

What is Git?

- 47.1 Repositories
- 47.2 Github

Standard git operations

A git workflow

Other git platforms

Part XI Writing about data

Types of writing

- 51.1 Grant proposals
- 51.2 Reports and publications
- 51.3 Fundraising
- 51.4 Press releases

Elements of style

Sections of a report

- 53.1 Abstract
- 53.2 Introduction
- 53.3 Methods
- 53.4 Results
- 53.5 Discussion
- 53.6 Other elements
- 53.6.1 Acknowledgments
- 53.6.2 Literature Cited
- **53.6.3** Tables
- 53.6.4 Figures
- 53.6.5 Supplementary Materials

Part XII Creating websites

Part XIII Advanced skills

Mapping

Geographic computing & GIS

Statistical modeling

Apply family

Iterative statistics

Iterative simulations

Image analysis

Machine learning