```
In [1]: import pandas as pd
In [2]: import warnings
         warnings.filterwarnings('ignore')
In [3]: data=pd.read csv("/home/placement/Downloads/TelecomCustomerChurn.csv")
In [4]: data.describe()
Out[4]:
                SeniorCitizen
                                 tenure MonthlyCharges
                7043.000000 7043.000000
                                           7043.000000
          count
                    0.162147
                              32.371149
                                             64.761692
          mean
                                             30.090047
                    0.368612
                              24.559481
            std
                    0.000000
                                             18.250000
                               0.000000
            min
           25%
                    0.000000
                               9.000000
                                             35.500000
           50%
                    0.000000
                                             70.350000
                              29.000000
                                             89.850000
                    0.000000
                              55.000000
           75%
                    1.000000
                              72.000000
                                           118.750000
           max
In [5]: data["TotalCharges"]=pd.to numeric(data["TotalCharges"],errors='coerce')
```

```
In [6]: data.isna().sum()
Out[6]: customerID
                              0
        gender
        SeniorCitizen
        Partner
        Dependents
        tenure
        PhoneService
        MultipleLines
        InternetService
                              0
        OnlineSecurity
        OnlineBackup
        DeviceProtection
        TechSupport
        StreamingTV
        StreamingMovies
                              0
        Contract
        PaperlessBilling
                              0
        PaymentMethod
                              0
        MonthlyCharges
                             0
        TotalCharges
                             11
        Churn
        dtype: int64
In [7]: data1=data.fillna(data.median())
```

In [8]:	<pre>data1.isna().sum()</pre>	
	datal.isna().sum() customerID gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport StreamingTV StreamingMovies Contract PaperlessBilling PaymentMethod MonthlyCharges TotalCharges Churn	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	dtype: int64	

```
In [9]: data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7043 entries, 0 to 7042 Data columns (total 21 columns): Column Non-Null Count Dtype 0 object customerID 7043 non-null 1 gender 7043 non-null object int64 SeniorCitizen 7043 non-null 3 Partner 7043 non-null object Dependents 7043 non-null object 7043 non-null int64 tenure PhoneService 7043 non-null object MultipleLines 7043 non-null object InternetService 7043 non-null object 9 **OnlineSecurity** 7043 non-null object 10 **OnlineBackup** 7043 non-null object 11 DeviceProtection 7043 non-null object TechSupport 7043 non-null object 12 StreamingTV 7043 non-null object 14 StreamingMovies 7043 non-null object 7043 non-null object 15 Contract 16 PaperlessBilling 7043 non-null object PaymentMethod 7043 non-null object 17 MonthlyCharges float64 7043 non-null 19 TotalCharges 7032 non-null float64 Churn 7043 non-null object 20 dtypes: float64(2), int64(2), object(17) memory usage: 1.1+ MB

```
In [10]: list(data1)
Out[10]: ['customerID',
           'gender',
           'SeniorCitizen',
           'Partner',
           'Dependents',
           'tenure',
           'PhoneService',
           'MultipleLines',
           'InternetService',
           'OnlineSecurity',
           'OnlineBackup',
           'DeviceProtection',
           'TechSupport',
           'StreamingTV',
           'StreamingMovies',
           'Contract',
           'PaperlessBilling',
           'PaymentMethod'
           'MonthlyCharges',
           'TotalCharges',
           'Churn']
In [11]: data1.shape
Out[11]: (7043, 21)
In [12]: data2=data1.drop(['customerID'],axis=1)
```

In [13]: data2

Out[13]:

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProte
0	Female	0	Yes	No	1	No	No phone service	DSL	No	Yes	
1	Male	0	No	No	34	Yes	No	DSL	Yes	No	
2	Male	0	No	No	2	Yes	No	DSL	Yes	Yes	
3	Male	0	No	No	45	No	No phone service	DSL	Yes	No	
4	Female	0	No	No	2	Yes	No	Fiber optic	No	No	
7038	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes	No	
7039	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No	Yes	
7040	Female	0	Yes	Yes	11	No	No phone service	DSL	Yes	No	
7041	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No	No	
7042	Male	0	No	No	66	Yes	No	Fiber optic	Yes	No	

7043 rows × 20 columns

In [14]: data2['Churn']=data2['Churn'].map({'Yes':1,'No':0})

In [15]: data2

\sim		_	г 1	_	1
	11.	г.		'	
v	u	L	ı	LJ	

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProte
0	Female	0	Yes	No	1	No	No phone service	DSL	No	Yes	
1	Male	0	No	No	34	Yes	No	DSL	Yes	No	
2	Male	0	No	No	2	Yes	No	DSL	Yes	Yes	
3	Male	0	No	No	45	No	No phone service	DSL	Yes	No	
4	Female	0	No	No	2	Yes	No	Fiber optic	No	No	
										•••	
7038	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes	No	
7039	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No	Yes	
7040	Female	0	Yes	Yes	11	No	No phone service	DSL	Yes	No	
7041	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No	No	
7042	Male	0	No	No	66	Yes	No	Fiber optic	Yes	No	

7043 rows × 20 columns

```
In [16]: x=data1.drop(['customerID','Churn'],axis=1)
y=data1['Churn']
```

In [17]: x=pd.get_dummies(x)
x

Out[17]:

:	SeniorCitizen	tenure	MonthlyCharges	TotalCharges	gender_Female	gender_Male	Partner_No	Partner_Yes	Dependents_No	Dependents_Y
0	0	1	29.85	29.85	1	0	0	1	1	
1	0	34	56.95	1889.50	0	1	1	0	1	
2	0	2	53.85	108.15	0	1	1	0	1	
3	0	45	42.30	1840.75	0	1	1	0	1	
4	0	2	70.70	151.65	1	0	1	0	1	
7038	0	24	84.80	1990.50	0	1	0	1	0	
7039	0	72	103.20	7362.90	1	0	0	1	0	
7040	0	11	29.60	346.45	1	0	0	1	0	
7041	1	4	74.40	306.60	0	1	0	1	1	
7042	0	66	105.65	6844.50	0	1	1	0	1	

7043 rows × 45 columns

	SeniorCitizen	tenure	MonthlyCharges	TotalCharges	gender Female	gender Male	Partner No	Partner Yes	Dependents No	Dependents Yes
_						9				
0	0	1	29.85	29.85	1	0	0	1	1	(
1	0	34	56.95	1889.50	0	1	1	0	1	(
2	0	2	53.85	108.15	0	1	1	0	1	(
3	0	45	42.30	1840.75	0	1	1	0	1	(
4	4 0	2	70.70	151.65	1	0	1	0	1	(
_	4-									
3	rows × 45 colur	11115								
_	_train, x_te	est, y	_train, y_tes	t=train_tes						
23]: fi fi cl n_ ci ma pa Ri	rom sklearn. rom sklearn. ls=RandomFor estimators= riterion=['g ax_depth=[3, arameters={'	model ensemb estCla [25,50 jini', 5,10] n_esti	_train, y_tes _selection import Ranasifier() 0,75,100,125, entropy'] #c #maximum numb mators': n_eachCV(cls, para	port GridSendomForestO 150,175,200 riteria for ber of nodes stimators,	earchCV #Gric Classifier o] #number or choosing no	dSearchCV if decision odes default =	is for par trees in lt = 'gin: None (it	rameter tu the fores i' will go t	ning t, default = ill all possi	ible nodes)
23]: fi fi cl n_ ci ma pa Ri Ri	rom sklearn. rom sklearn. ls=RandomFor _estimators= riterion=['g ax_depth=[3, arameters={' FC_cls = Gri FC_cls.fit(x	model ensemb estCla [25,50 jini', 5,10] n_esti	_train, y_tes _selection import Ranasifier() 0,75,100,125, entropy'] #c #maximum numb mators': n_eachCV(cls, para	port GridSendomForestO	earchCV #GriceClassifier mail	dSearchCV if decision odes default =	is for par trees in lt = 'gin: None (it	rameter tu the fores i' will go t	ning t, default = ill all possi	ible nodes)
23]: fi fi cl n_ ci ma pa Ri Ri	rom sklearn. rom sklearn. ls=RandomFor _estimators= riterion=['g ax_depth=[3, arameters={' FC_cls = Gri FC_cls.fit(x	model ensemb estCla [25,50 jini', 5,10] n_esti dSearca (estima	_train, y_test _selection import Rainsifier() 0,75,100,125, entropy'] #c #maximum numn Lmators': n_e chCV(cls, parain,y_train) ator=RandomFo _grid={'crite	port GridSendomForestO 150,175,200 riteria for ber of node stimators, ameters) restClassifrion': ['gi	earchCV #Grice Classifier a) #number of choosing notes in a tree criterion': fier(), ini', 'entrop	dSearchCV in the decision odes default = criterion,	is for par trees in lt = 'gin: None (it	rameter tu the fores i' will go t	ning t, default = ill all possi	ible nodes)
[23]: fi fi cl n_ ci ma pa RI RI	rom sklearn. rom sklearn. ls=RandomFor _estimators= riterion=['g ax_depth=[3, arameters={' FC_cls = Gri FC_cls.fit(x	model ensemb estCla [25,50 jini', 5,10] n_esti dSearca (estima	_selection import Ranassifier() 0,75,100,125, entropy'] #c #maximum numb Lmators': n_e chCV(cls, para n,y_train) ator=RandomFo grid={'crite 'max_d	port GridSendomForestClassifrion': ['giepth': [3,	earchCV #Grice Classifier a) #number of choosing notes in a tree criterion': fier(), ini', 'entrop	dSearchCV in the decision odes default = criterion, by],	is for par trees in lt = 'gin: None (it 'max_depth	the fores i' will go t	ning t, default = ill all possi	ible nodes)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

[24]:	x_train.isna().sum()		
[24]:	SeniorCitizen	0	
	tenure	0	
	MonthlyCharges	0	
	TotalCharges	0	
	gender Female	0	
	gender Male	0	
	Partner No	0	
	Partner Yes	0	
	Dependents No	0	
	Dependents Yes	0	
	PhoneService No	0	
	PhoneService Yes	0	
	MultipleLines No	0	
	MultipleLines No phone service	0	
	MultipleLines Yes	0	
	InternetService DSL	0	
	InternetService Fiber optic	0	
	InternetService_No	0	
	OnlineSecurity_No	0	
	OnlineSecurity_No internet service	0	
	OnlineSecurity_Yes	Θ	
	OnlineBackup_No	Θ	
	OnlineBackup_No internet service	0	
	OnlineBackup_Yes	0	
	DeviceProtection_No	0	
	DeviceProtection_No internet service	Θ	
	DeviceProtection_Yes	Θ	
	TechSupport_No	Θ	
	TechSupport_No internet service	0	
	TechSupport_Yes	0	
	StreamingTV_No	0	
	StreamingTV_No internet service	0	
	StreamingTV_Yes	0	
	StreamingMovies_No	0	
	StreamingMovies_No internet service	0	
	StreamingMovies_Yes	0	
	Contract_Month-to-month	0	
	Contract_One year	0	

```
Contract Two year
         PaperlessBilling No
         PaperlessBilling Yes
         PaymentMethod Bank transfer (automatic)
         PaymentMethod Credit card (automatic)
         PaymentMethod Electronic check
         PaymentMethod Mailed check
         dtvpe: int64
In [26]: RFC cls.best params
Out[26]: {'criterion': 'gini', 'max depth': 10, 'n estimators': 50}
In [29]: cls=RandomForestClassifier(n estimators=100,criterion='entropy',max depth=10)
In [30]: cls.fit(x train,y train)
Out[30]: RandomForestClassifier(criterion='entropy', max depth=10)
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [31]: rfy pred=cls.predict(x test)
In [32]: rfy pred
Out[32]: array(['Yes', 'No', 'No', 'Yes', 'No', 'No'], dtype=object)
In [33]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,rfy pred)
Out[33]: array([[1553, 144],
                [ 296, 332]])
In [34]: from sklearn.metrics import accuracy score
         accuracy score(y test,rfy pred)
Out[34]: 0.810752688172043
```

```
In [35]: from sklearn.linear model import LogisticRegression
         classifier=LogisticRegression()
         classifier.fit(x train,y train)
Out[35]: LogisticRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [36]: y pred=classifier.predict(x test)
         y pred
Out[36]: array(['Yes', 'No', 'No', 'Yes', 'No', 'No'], dtype=object)
In [38]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,y pred)
Out[38]: array([[1526, 171],
                 [ 266, 362]])
In [39]: from sklearn.metrics import accuracy score
         accuracy score(y test,y_pred)
Out[39]: 0.8120430107526881
 In [ ]:
```