Boolean Algebra

- The set of elements, B, that contains at least two elements, a, b where a ≠ b
- The binary operations {AND, OR}, also written as {·, +}
- The unary operation {NOT}, also written as { }

Туре	for a, b, c, 0, 1 ∈ B	
Closure:	$a + b \in B$	$a\cdot b\in B$
Identity:	a + 0 = a	a ·1 = a
	a + 1 = 1	a ⋅0 = 0
Commutative:	a + b = b + a	$a \cdot b = b \cdot a$
Distributive:	$a + (b \cdot c) = (a+b)(a+c)$	$a \cdot (b + c) = a \cdot b + a \cdot c$
Complement:	$a + \overline{a} = 1$	$\mathbf{a} \cdot \overline{\mathbf{a}} = 0$
Involution:	$\overline{\overline{\mathbf{a}}}$ = a	
Idempotent:	a + a = a	a ·a = a
Associative:	a + (b + c) = (a + b) + c	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$
Absorption:	a + a ·b = a	$a \cdot (a + b) = a$
de Morgan's Law:	$\overline{(a+b)} = \overline{a} \cdot \overline{b}$	$\overline{\mathbf{a} \cdot \mathbf{b}} = \overline{\mathbf{a}} + \overline{\mathbf{b}}$
Simplification Laws	a + ab = a	$a\overline{b} + b = a + b$
Consensus	$ab + \overline{a}c + bc = ab + \overline{a}c$	