衡阳师范学院 2018-2019 学年第二学期 化学与材料科学学院化学专业 2020 级 《高等数学(II)》期末考试试题 A 卷 参考答案及评分标准

考核类型: 闭卷 考试时量: 120 分钟

				题 号	_	_	11	四	总分	合分人	复查人			
	学	院		分 值	15	15	10	60	100					
				得 分										
=	专	业	得分评卷人	_,	单设	题 (〔每小	、题:	3分,	共 15 分)			
			1. 0.3×10^{45} N =	=									()
-	班	级	A. 0.3×10^4	⁵ B. 1	2.3°	C.	0.3 ×	10 ⁴⁵	5kg m/s	D. 3	$\times 10^{45}$ kg r	${\rm ns^{-2}}$,
			2. 求初值问题:	y' = y, y	(0) =	1的	特解	为 y :	=				()
			A. $e^x + 1$	B. $\frac{1}{2}x^2$	+ 1	C. <i>x</i>	$^{2} + C$	7, 其「	中C 为化	任意常数	D. e^x			
	学	号	3. 求初值问题:	y' = y, y	(0) =	1的	特解	为 y :	=				()
			A. $e^x + 1$	B. $\frac{1}{2}x^2$	+ 1	C . <i>x</i>	$^{2} + C$	7, 其中	中C 为化	任意常数	D. e^x			
			4. 求初值问题:	y' = y, y	(0) =	1的	特解	为 y :	=				()
	姓	名	A. $e^x + 1$	B. $\frac{1}{2}x^2$	+ 1	C. <i>x</i>	$^{2} + C$	7, 其□	中C 为付	任意常数	D. e^x			
			5. 求初值问题:	y' = y, y	(0) =	1的	特解	为 y	=				()
			A. $e^x + 1$	B. $\frac{1}{2}x^2$	+ 1	C . <i>x</i>	$^{2} + C$	7. 其 5	中 C 为 f	任意常数	D. e^x			

得分|评卷人

二、填空题 (每小题 3 分, 共 15 分)

- 6. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0.
- 7. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0
- 8. 吃饭, 睡觉, 打豆豆.
- 9. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0

10. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x - 2y + 4 = 0

得分评卷人

三、判断题 (正确打√,错误打**×**,每小题 2 分,共 10 分)

- 11. (X) 若二元函数 f(x,y) 在点 (1,1) 处连续,则其在该点处可微.
- 12. (\checkmark) 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$.
- 13. (\red{X}) 若二元函数 f(x,y) 在点 (1,1) 处连续,则其在该点处可微.
- 14. (\checkmark) 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$.
- 15. (\checkmark) 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$.

得分	评卷人					

四、解答题 (共 60 分)

16. (10 分) 试将微分方程 $x_{dx}^{dy} = x^2 + 3y$, x > 0 转换成一阶非齐次线性微分方程的标准形式,然后使用常数变易法求解,最后对求得的结果进行验算。

使用常数变易法将常数 c 替换成与 x 相关的函数 c(x) 代入原微分方程解得: $\frac{dc(x)}{dx} = \frac{1}{x^2}$, 即 $c(x) = -\frac{1}{x} + C$, 其中 C 为任意常数。故原微分方程的通解为:

 17. (9 分) 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).$ — 7分 故其单位法向量 $\pm \frac{\vec{n}}{|\vec{n}|} = \pm \frac{\sqrt{2}}{2}(1,0,1).$ — 9分

18. (9 分) 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).$ — 7分 故其单位法向量 $\pm \frac{\vec{n}}{|\vec{n}|} = \pm \frac{\sqrt{2}}{2}(1,0,1).$ — 9分

19. (9 分) 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).$ — 7分 故其单位法向量 $\pm \frac{\vec{n}}{|\vec{n}|} = \pm \frac{\sqrt{2}}{2}(1,0,1).$ — 9分

20. (10 分) 求函数 f(x,y) = x + y 在 $g(x,y) = x^2 + y^2 = 1$ 限制下的条件最大值与最小值。(提示:可以使用拉格朗日乘数法。)

解: 注: 此题也可以不使用乘数法。小题可以看几何意义,大题可以用三角函数代换。另外也可以使用从限制条件中解出 u 代入 f 来解无条件极值。

21. (13分) 朱自清是怎么描写时间过得比较快的?

解:去的尽管去了,来的尽管来着;去来的中间,又怎样地匆匆呢?早上我起来的时候,小屋里射进两三方斜斜的太阳。太阳他有脚啊,轻轻悄悄地挪移了;我也茫茫然跟着旋转。于是——洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。我觉察他去的匆匆了,伸出手遮挽时,他又从遮挽着的手边过去,天黑时,我躺在床上,他便伶伶俐俐地从我身上跨过,从我脚边飞去了。等我睁开眼和太阳再见,这算又溜走了一日。我掩着面叹息。但是新来的日子的影儿又开始在叹息里闪过了。

在逃去如飞的日子里,在千门万户的世界里的我能做些什么呢?只有徘徊罢了,只有匆匆罢了;在八千多日的匆匆里,除徘徊外,又剩些什么呢?过去的日子如轻烟,被微风吹散了,如薄雾,被初阳蒸融了;我留着些什么痕迹呢?我何曾留着像游丝样的痕迹呢?我赤裸裸来到这世界,转眼间也将赤裸裸的回去罢?但不能平的,为什么偏要白白走这一遭啊?