Bike case study

Rodrigo

2023-10-07

```
options(repos = "https://cran.rstudio.com/")
library(installr)
```

Bike Case Study

We will start by installing the packages we will use

```
install.packages("tidyverse")
install.packages("ggplot2")
install.packages("dplyr")
install.packages("here")

library(tidyverse)
library(ggplot2)
library(dplyr)
library(readr)
library(here)
```

We continue by importing the data, in this case we will import the trips data sets from 2022 and they are separated in months.

```
jan <- here("Data trip 2022","202201-divvy-tripdata.csv")</pre>
feb <- here("Data trip 2022","202202-divvy-tripdata.csv")</pre>
mar <- here("Data trip 2022","202203-divvy-tripdata.csv")</pre>
apr <- here("Data trip 2022","202204-divvy-tripdata.csv")</pre>
mayy <- here("Data trip 2022","202205-divvy-tripdata.csv")</pre>
ju <- here("Data trip 2022","202206-divvy-tripdata.csv")</pre>
jul <- here("Data trip 2022","202207-divvy-tripdata.csv")</pre>
aug <- here("Data trip 2022","202208-divvy-tripdata.csv")</pre>
sep <- here("Data trip 2022","202209-divvy-publictripdata.csv")</pre>
oct <- here("Data trip 2022","202210-divvy-tripdata.csv")</pre>
nov <- here("Data trip 2022","202211-divvy-tripdata.csv")</pre>
dec <- here("Data trip 2022","202212-divvy-tripdata.csv")</pre>
January <- read_csv(jan)</pre>
February <-read_csv(feb)
March <-read_csv(mar)</pre>
April <-read_csv(apr)</pre>
May <-read_csv(mayy)</pre>
```

```
June <-read_csv(ju)

July <-read_csv(jul)

August <-read_csv(aug)

September <-read_csv(sep)

October <-read_csv(oct)

November <-read_csv(nov)

December <-read_csv(dec)
```

Combine the data

We will use a function to combine all the data from each month into one data set so we can work with only one data frame.

```
bike_data_Set<-rbind(January, February, March, April, May, June, July, August, September, October, November, Decem
```

Now that we have all the data together we can start the cleaning process.

Cleaning the data

We start by eliminating the columns we won't use.

```
New_bike_dset <-subset(bike_data_Set,select=-c(start_lat,end_lat,start_lng,end_lng))</pre>
```

Then we change the name of the columns, we will change the name of the columns that shows the user types and the bike types

```
New_bike_dset <- New_bike_dset %>% rename(ride_type=rideable_type)
New_bike_dset <- New_bike_dset %>% rename(user_type=member_casual)
```

We take a look at our data after changing some columns and see what contains now

```
glimpse(New_bike_dset) # We see what type of data are the variables
nrow(New_bike_dset) # We see how many rows have our data
colnames(New_bike_dset) # We see what are the names of the columns
dim(New_bike_dset) # We see how many rows and columns have our data
```

For analysis it will be a good a idea to have different columns with the month, day and year for the trips

```
New_bike_dset$date <- as.Date(New_bike_dset$started_at)
New_bike_dset$month <- format(as.Date(New_bike_dset$date), "%m")
New_bike_dset$day <- format(as.Date(New_bike_dset$date), "%d")
New_bike_dset$year <- format(as.Date(New_bike_dset$date), "%Y")
New_bike_dset$day_of_week <- format(as.Date(New_bike_dset$date), "%A")</pre>
```

We transform the dates so we can create a new column to determine the length of the ride

We turn the ride_length column into a numeric

We eliminate the trips that don't contain the Stations name and create a New data frame with only the data doesn't have NA

After the cleaning of the columns and adding columns that we will use we can start the next phase.

Analyse the data

14

member

We start by finding some important insights from the data with these functions to get a better sense of the usage of the bikes

```
summary(Trips_data$ride_length)
##
                                Mean 3rd Qu.
      Min. 1st Qu.
                     Median
                                                 Max.
                                        1141 2061244
##
    -10122
                363
                        636
                                1026
Average trip length compare from the user types
aggregate(Trips_data$ride_length ~ Trips_data$user_type, FUN = mean)
##
     Trips_data$user_type Trips_data$ride_length
## 1
                    casual
                                         1439.5232
## 2
                    member
                                          747.0765
Median trip length comprare from the user types
aggregate(Trips_data$ride_length ~ Trips_data$user_type, FUN = median)
     Trips_data$user_type Trips_data$ride_length
## 1
                    casual
                                                831
## 2
                                                539
                    member
Min length trip from the user type
aggregate(Trips_data$ride_length ~ Trips_data$user_type, FUN = min)
##
     Trips_data$user_type Trips_data$ride_length
                                             -7621
## 1
                    casual
## 2
                                             -10122
                    member
We see the average length ride over the days of the week per type of user
aggregate(Trips_data$ride_length ~Trips_data$user_type +Trips_data$day_of_week, FUN=mean)
##
      Trips_data$user_type Trips_data$day_of_week Trips_data$ride_length
## 1
                     casual
                                            domingo
                                                                   1633.3988
## 2
                     member
                                                                    830.9191
                                             domingo
## 3
                     casual
                                              jueves
                                                                   1284.1945
## 4
                                                                    721.8816
                     member
                                             jueves
## 5
                                               lunes
                                                                   1490.0326
                     casual
## 6
                     member
                                               lunes
                                                                    721.9661
## 7
                                                                   1286.4023
                     casual
                                             martes
## 8
                                                                    707.4372
                     member
                                             martes
## 9
                                          miércoles
                                                                   1243.0783
                     casual
## 10
                     member
                                          miércoles
                                                                    710.8126
## 11
                                              sábado
                                                                   1605.9442
                     casual
## 12
                     member
                                             sábado
                                                                    838.8782
## 13
                                                                   1341.4220
                     casual
                                            viernes
```

viernes

733.6143

We can make it better and show us the number of ride per day and the average length arrange by user type

```
Trips_data %>%
group_by(user_type,day_of_week) %>%
summarise(total rides=n(),
average_length=mean(ride_length)) %>%
arrange(user_type,day_of_week)
## 'summarise()' has grouped output by 'user_type'. You can override using the
## '.groups' argument.
## # A tibble: 14 x 4
## # Groups:
               user_type [2]
##
      user_type day_of_week total_rides average_length
##
      <chr>
                <chr>
                                  <int>
                                                  <dbl>
   1 casual
                                 301316
                                                  1633.
##
                domingo
## 2 casual
                jueves
                                 230007
                                                  1284.
## 3 casual
                lunes
                                 210759
                                                  1490.
## 4 casual
               martes
                                 196390
                                                  1286.
## 5 casual
              miércoles
                                 203576
                                                  1243.
## 6 casual
               sábado
                                 367344
                                                  1606.
## 7 casual
                viernes
                                 248797
                                                  1341.
## 8 member
                domingo
                                 297733
                                                   831.
## 9 member
                jueves
                                 415890
                                                   722.
## 10 member
                                                   722.
                lunes
                                 375171
## 11 member
                                 411249
                                                   707.
                martes
## 12 member
                miércoles
                                 412795
                                                   711.
## 13 member
                sábado
                                 338279
                                                   839.
## 14 member
                viernes
                                 360054
                                                   734.
```

We've created a table that shows what type of vehicle is used on each day

```
Trips_data %>%
group_by(user_type,day_of_week,ride_type) %>%
summarise(table(ride_type))
## 'summarise()' has grouped output by 'user_type', 'day_of_week'. You can
## override using the '.groups' argument.
## # A tibble: 35 x 4
## # Groups:
               user_type, day_of_week [14]
##
     user_type day_of_week ride_type
                                           'table(ride_type)'
                <chr>
##
      <chr>
                            <chr>
                                          <table[1d]>
##
   1 casual
                            classic_bike
                                          158094
                domingo
## 2 casual
                domingo
                            docked_bike
                                           35192
## 3 casual
                domingo
                            electric_bike 108030
## 4 casual
                jueves
                            classic_bike
                                          113477
## 5 casual
                jueves
                            docked_bike
                                           19486
## 6 casual
                jueves
                            electric bike 97044
## 7 casual
                lunes
                            classic_bike
                                         103966
## 8 casual
                lunes
                            docked bike
                                           22197
## 9 casual
                lunes
                            electric_bike 84596
## 10 casual
                            classic_bike
                                           95811
                martes
## # i 25 more rows
```

We see who has more trips in total in the 12 months

```
Trips_data %>%
group_by(user_type) %>%
summarise(table(user_type))
## # A tibble: 2 x 2
##
     user_type 'table(user_type)'
##
             <table[1d]>
     <chr>
## 1 casual
               1758189
## 2 member
               2611171
We see which type of bike is the most used
Trips_data %>%
group_by(ride_type) %>%
summarise(table(ride_type))
## # A tibble: 3 x 2
                   'table(ride_type)'
##
     ride_type
##
     <chr>>
                   <table[1d]>
## 1 classic_bike 2597426
## 2 docked_bike
                    174858
## 3 electric_bike 1597076
Most visited stations by casual users top 10 stations
Trips_data %>% group_by(start_station_name,user_type) %>%
filter(user_type=="casual") %>%
summarise(average_ride=mean(ride_length), rides_by_station=n()) %>%
arrange(-rides_by_station) %>% head(10)
## 'summarise()' has grouped output by 'start_station_name'. You can override
## using the '.groups' argument.
## # A tibble: 10 x 4
## # Groups:
               start_station_name [10]
##
      start_station_name
                                          user_type average_ride rides_by_station
##
      <chr>
                                                            <dbl>
                                          <chr>
                                                                             <int>
## 1 Streeter Dr & Grand Ave
                                          casual
                                                            2155.
                                                                             55061
## 2 DuSable Lake Shore Dr & Monroe St
                                                                             30262
                                          casual
                                                            2236.
## 3 Millennium Park
                                          casual
                                                            2456.
                                                                             23951
## 4 Michigan Ave & Oak St
                                          casual
                                                            2173.
                                                                             23761
## 5 DuSable Lake Shore Dr & North Blvd casual
                                                            1758.
                                                                             22157
## 6 Shedd Aquarium
                                          casual
                                                            1835.
                                                                             19421
## 7 Theater on the Lake
                                                            1838.
                                                                             17333
                                          casual
## 8 Wells St & Concord Ln
                                                                             14834
                                          casual
                                                            1063.
## 9 Dusable Harbor
                                          casual
                                                           2173.
                                                                             13271
## 10 Clark St & Armitage Ave
                                          casual
                                                           1339.
                                                                             12779
```

Most visited stations by member users top 10 stations

```
Trips_data %>% group_by(start_station_name,user_type) %>%
filter(user_type=="member") %>%
summarise(average_ride=mean(ride_length), rides_by_station=n()) %>%
arrange(-rides_by_station) %>% head(10)
## 'summarise()' has grouped output by 'start_station_name'. You can override
## using the '.groups' argument.
## # A tibble: 10 x 4
## # Groups:
              start_station_name [10]
##
                                   user_type average_ride rides_by_station
      start_station_name
##
      <chr>
                                   <chr>
                                                    <dbl>
                                                                      <int>
## 1 Kingsbury St & Kinzie St
                                                     549.
                                                                      23523
                                   member
## 2 Clark St & Elm St
                                   member
                                                                      20581
                                                     709.
## 3 Wells St & Concord Ln
                                   member
                                                     698.
                                                                      19674
## 4 Clinton St & Washington Blvd member
                                                     636.
                                                                      18828
## 5 Loomis St & Lexington St
                                   member
                                                     564.
                                                                      18252
## 6 Clinton St & Madison St
                                   member
                                                     614.
                                                                      18007
## 7 University Ave & 57th St
                                   member
                                                     487.
                                                                      17581
## 8 Ellis Ave & 60th St
                                   member
                                                     410.
                                                                      17504
## 9 Wells St & Elm St
                                   member
                                                     644.
                                                                      17496
```

Once we have the data analysed and we've got the information we need we will begin the visualitions:

member

Visualization

Total distance driven daily by user and bike

10 Streeter Dr & Grand Ave

```
Trips_data %% filter(ride_length <1500000) %%
ggplot(aes(x= day_of_week, y=ride_length))+
geom_boxplot(aes(colour= ride_type, alpha = 0.5))+
facet_wrap(~user_type)+theme_bw()+labs(y="Total distance driven",x="Day of the week", title = "Total")</pre>
```

1245.

16208

Total rides by user and separated by type of bike

```
Trips_data %>%
   ggplot(aes(x=user_type))+
   geom_bar(aes(fill= ride_type))+
   facet_wrap(~ride_type)+theme_bw()+labs(y="Total trips",x="User",title="Total trips by type of bike and
```

Total trips by type of bike and user

Average ride time by user with separated by type of bike

Average ride time by user and bike type

Average ride time by user daily

Average ride by user in a week

Average ride time by user monthly

No summary function supplied, defaulting to 'mean_se()'

Average ride length through the months

Total rides by user monthly

'summarise()' has grouped output by 'month', 'user_type'. You can override
using the '.groups' argument.

Total rides throughout the year by user

```
Trips_data %>% group_by(user_type) %>%
summarise(total_rides=n()) %>%
ggplot(aes(user_type,total_rides,fill=user_type))+geom_bar(stat = "summary")+scale_y_continuous(break)
```

No summary function supplied, defaulting to 'mean_se()'

