Unit 4

Applications of Boolean Algebra

Logic Circuits (Spring 2022)

Conversion to Boolean Equations

- The first step in designing a logic circuit
- Conversion procedure
 - Break down each sentence into phrases and associate a Boolean variable with each phrase
 - If a phrase can have a value of true or false, we can represent that phrase by a Boolean variable
 - Phrases can be either true or false, or have no truth value

Conversion to Boolean Equations

Example

The alarm will ring if and only if
the alarm switch is turned on and the door is not closed, or
it is after 6 p.m. and the window is not closed.

Conversion

• Logic expression Z = AB' + CD'

4.1 Conversion of English Sentences to Boolean Equations

논리회로 4-3

Logic Design With a Truth Table

■ Example

Three binary digits, A, B, C are given to represent a binary number N The output f=1 iff $N \ge 011_2$ and f=0 iff $N < 011_2$

■ Truth table representation

ABC	f	f'
0 0 0	0	1
0 0 1	0	1
0 1 0	0	1
0 1 1	1	0
1 0 0	1	0
1 0 1	1	0
1 1 0	1	0
1 1 1	1	0

4.2 Combinational Logic Design Using a Truth Table

Logic Design With a Truth Table

- Building a SOP expression
 - OR-ing the terms that yield value 1 f = A'BC + AB'C' + AB'C' + ABC' + ABC'
 - The expression can be simplified f = A'BC + AB' + AB = A'BC + A = A + BC

ABC	f	f
0 0 0	0	1
0 0 1	0	1
0 1 0	0	1
0 1 1	1	0
1 0 0	1	0
1 0 1	1	0
1 1 0	1	0
1 1 1	1	0

- Building a POS expression
 - AND-ing the terms that yield value 0 f = (A + B + C)(A + B + C')(A + B' + C)
 - The expression can be simplified f = (A+B)(A+B'+C) = A+BC

- Building a POS expression using DeMorgan's theorem
 - f' = A'B'C' + A'B'C + A'BC'
 - f = (A + B + C)(A + B + C')(A + B' + C)

4.2 Combinational Logic Design Using a Truth Table

논리회로 4-5

Minterm Expansions

- *Minterm* of *n* variables
 - A *product* of *n* literals
 - Each variable appears exactly once in either true or complemented form, but not both
- Minterms are often written in abbreviated form
 - A'B'C' is designated m_0
 - A'B'C is designated m_1
- Minterm m_i corresponds to row i of the truth table
- Minterm expansion
 - Represent a function as a sum of minterms
 - Standard SOP(sum of products)
- Example

$$f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f(A, B, C) = \sum m(3, 4, 5, 6, 7)$$

4.3 Minterm and Maxterm Expansions

Maxterm Expansions

- *Maxterm* of *n* variables
 - A *sum* of *n* literals
 - Each variable appears exactly once in either true or complemented form, but not both
- Minterms are often written in abbreviated form
 - A+B+C is designated M_0
 - A+B+C' is designated M_1
- A maxterm is the complement of the corresponding minterm
- *Maxterm expansion*
 - Represent a function as a product of maxterms
 - Standard POS(products of sums)
- Example

$$f(A, B, C) = M_0 M_1 M_2$$

 $f(A, B, C) = \Pi M(0, 1, 2)$

4.3 Minterm and Maxterm Expansions

논리회로 4-7

Minterm and Maxterm

Row No.	ABC	Minterms	Maxterms		
0	0 0 0	$A'B'C'=m_0$	$A+B+C=M_0$		
1	0 0 1	$A'B'C = m_1$	$A+B+C'=M_1$		
2	0 1 0	$A'BC' = m_2$	$A + B' + C = M_2$		
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$		
4	1 0 0	$AB'C' = m_4$	$A'+B+C=M_4$		
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$		
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$		
7	1 1 1	$ABC = m_7$	$A' + B' + C' = M_7$		

4.3 Minterm and Maxterm Expansions

Minterm Expansions of the Complement

 \blacksquare Minterm representation of f

$$f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f(A, B, C) = \Sigma m(3, 4, 5, 6, 7)$$

 \blacksquare Maxterm representation of f

$$f(A, B, C) = M_0 M_1 M_2$$

 $f(A, B, C) = \Pi M(0, 1, 2)$

 \blacksquare Minterm expansions for the complement of f

$$f' = m_0 + m_1 + m_2 = \sum m(0, 1, 2)$$

 \blacksquare Applying DeMorgan's theorem to derive the complement of f

$$f' = (M_0 M_1 M_2)' = M_0' + M_1' + M_2' = m_0 + m_1 + m_2$$

4.3 Minterm and Maxterm Expansions

논리회로 4-9

A B C 0 0 0

0 0 1

0 1 0

1 0 0

1 0 1 1 1 0

1 1 1

0

1

Minterm Expansions: Example

Example

Find the minterm expansion of f(a, b, c, d) = a'(b' + d) + acd'.

$$f = a'b' + a'd + acd'$$

$$= a'b'(c + c')(d + d') + a'd(b + b')(c + c') + acd'(b + b')$$

$$= a'b'c'd' + a'b'c'd + a'b'cd' + a'b'cd + a'b'c'd + a'b'cd$$

$$+ a'bc'd + a'bcd + abcd' + ab'cd'$$

The maxterm expansion for f can then be obtained by listing the decimal integers (in the range 0 to 15) which do not correspond to minterms of f:

$$f = \Pi M(4, 6, 8, 9, 11, 12, 13, 15)$$

4.3 Minterm and Maxterm Expansions

Utilizing Minterm Expansions: Example

Example

Show that a'c + b'c' + ab = a'b' + bc + ac'.

We will find the minterm expansion of each side by supplying the missing variables. For the left side,

$$a'c(b + b') + b'c'(a + a') + ab(c + c')$$

= $a'bc + a'b'c + ab'c' + a'b'c' + abc + abc'$
= $m_3 + m_1 + m_4 + m_0 + m_7 + m_6$

For the right side,

$$a'b'(c+c') + bc(a+a') + ac'(b+b')$$

= $a'b'c + a'b'c + abc + a'bc + abc' + ab'c'$
= $m_1 + m_0 + m_7 + m_3 + m_6 + m_4$

Because the two minterm expansions are the same, the equation is valid.

4.3 Minterm and Maxterm Expansions

논리회로 4-11

Review on Minterm/Maxterm Expansion

DESIRED FORM

FORM		Minterm Expansion of <i>f</i>	Maxterm Expansion of <i>f</i>	Minterm Expansion of f'	Maxterm Expansion of f'	
IVEN	$f = \Sigma m(3, 4, 5, 6, 7)$		П М(0, 1, 2)	Σ m(0, 1, 2)	П М(3, 4, 5, 6, 7)	
0	$f = \Pi M(0, 1, 2)$	Σ m(3, 4, 5, 6, 7)		Σ m(0, 1, 2)	П М(3, 4, 5, 6, 7)	

4.4 General Minterm and Maxterm Expansions

Incompletely Specified Functions

- "Incompletely specified"
 - Certain combinations of inputs will never occur
 - We "don't care" what the value is
 - The function is then considered incompletely specified
- Example

Α	В	C	F
0	0	0	1
0	0	1	X
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	X
1	1	1	1

Possible expressions on incompletely specified functions

$$F = A'B'C' + A'BC + ABC = A'B'C' + BC$$

$$F = A'B'C' + A'B'C + A'BC + ABC = A'B' + BC$$

$$F = A'B'C' + A'B'C + A'BC + ABC' + ABC = A'B' + BC + AB$$

4.5 Incompletely Specified Functions

논리회로 4-13

Incompletely Specified Functions

■ Minterm representation

$$F = \sum m(0, 3, 7) + \sum d(1, 6)$$

0	0	0	1
0	0	1	X
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	X
1	1	1	1

Maxterm representation

$$F = \Pi M(2, 4, 5) \cdot \Pi D(1, 6)$$

■ d and D specify "don't cares" in minterm and maxterm expansions

4.5 Incompletely Specified Functions

4-bit (Binary) Adder

- 4-bit parallel adder
 - Adds two 4-bit binary numbers and a carry input
 - Produces a 4-bit sum and a carry output

- Two design methods
 - To construct a truth table with 9 inputs and 5 outputs ⇒ very difficult
 - To design a logic module (full adder) to add two bits and a carry, and connect four modules together (hierarchical design)

4.7 Design of Binary Adders and Subtracters

논리회로 4-15

How the 4-bit Adder Works

■ Example case: 1011 + 1011

4.7 Design of Binary Adders and Subtracters

1-bit (Binary) Adder: Half Adder

- A simple binary adder that adds two 1-bit binary numbers
 - Produces a 2-bit sum

$$X = AB$$
 and $Y = A'B + AB' = A \oplus B$

■ May need another half adder to perform a bit addition completely

4.6 Examples of Truth Table Construction

논리회로 4-17

1-bit (Binary) Adder: Full Adder

		_		_
X	Y	Cin	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$\begin{split} Sum &= X'Y'C_{\text{in}} + X'YC'_{\text{in}} + XY'C'_{\text{in}} + XYC_{\text{in}} \\ &= X'(Y'C_{\text{in}} + YC'_{\text{in}}) + X(Y'C'_{\text{in}} + YC_{\text{in}}) \\ &= X'(Y \oplus C_{\text{in}}) + X(Y \oplus C_{\text{in}})' = X \oplus Y \oplus C_{\text{in}} \\ C_{\text{out}} &= X'YC_{\text{in}} + XY'C_{\text{in}} + XYC'_{\text{in}} + XYC_{\text{in}} \\ &= (X'YC_{\text{in}} + XYC_{\text{in}}) + (XY'C_{\text{in}} + XYC_{\text{in}}) + (XYC'_{\text{in}} + XYC_{\text{in}}) \\ &= YC_{\text{in}} + XC_{\text{in}} + XY \end{split}$$

4.7 Design of Binary Adders and Subtracters

Binary Subtracter

- 4-bit parallel subtracter
 - Subtracts Y from X
 - Produces a 4-bit difference and a borrow output

$x_i y_i b_i$	$b_{i+1}d$
0 0 0	0 0
0 0 1	1 1
0 1 0	1 1
0 1 1	1 0
1 0 0	0 1
1 0 1	0 0
1 1 0	0 0
1 1 1	1 1

- 1-bit subtracter
 - Inputs: x_i , y_i , and b_i
 - Outputs: d_i , and b_{i+1}

	d_n		$\stackrel{d_i}{lack}$		<i>d</i> ₂ ★		<i>d</i> ₁ ♠	
b_{n+1}	Full Subtracter	$b_n = b_{i+1}$	Full Subtracte	$b_i - b_3$	Full Subtracter	b ₂	Full Subtracter	$\leftarrow b_1 = 0$
	x_n y_n	-	\uparrow \uparrow \downarrow x_i y_i	Cell i	$\begin{array}{c c} & & \\ & & \\ x_2 & y_2 \end{array}$		\uparrow \uparrow \downarrow	_

4.7 Design of Binary Adders and Subtracters

논리회로 4-19

Binary Subtracter

■ Circuit to perform A-B using 2's complement

Example

$$A = 0110 \quad (+6)$$
 $B = 0011 \quad (+3)$

The adder output is

 $0110 \quad (+6)$
 $+1100 \quad (1\text{'s complement of 3})$
 $\frac{+1}{0011} = 3 = 6 - 3$

4.7 Design of Binary Adders and Subtracters