

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07C 233/57, C07D 333/04, 207/00, A01N 53/00, 43/10, 43/36, C07C 255/19, A01N 37/34 (11) International Publication Number:

WO 98/33765

Å1

(43) International Publication Date:

6 August 1998 (06.08.98)

(21) International Application Number:

PCT/US98/01668

(22) International Filing Date:

27 January 1998 (27.01.98)

(30) Priority Data:

60/037,207

4 February 1997 (04.02.97) U

us

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BASARAB, Gregory, Steven [US/US]; 24 Tall Oaks Drive, Hockessin, DE 19707 (US). HANSEN, Stephen, L. [US/US]; 702 Old Westtown Road, West Chester, PA 19382 (US). JORDAN, Douglas, Brian [US/US]; 2715 North Harrison Street, Wilmington, DE 19802 (US). LESSEN, Thomas, Arend [US/US]; 203 Sunset Lane, Lincoln University, PA 19352 (US).
- (74) Agent: HEISER, David, E.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GW, HU, ID, IL, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: FUNGICIDAL CARBOXAMIDES

$$Q \xrightarrow{\text{N}} X - Z \qquad (1)$$

$$R^{7}$$
 R^{8}
 R^{9}
 R^{9}
 R^{9}
 R^{9}
 R^{9}
 R^{10}
 R^{9}
 R^{10}
 R^{10}
 R^{10}

(57) Abstract

Compounds of Formula (I) are disclosed which are useful as fungicides, wherein Q is: (Q-1) or (Q-2), Z is (Z-1); (Z-2); (Z-3) or (Z-4); X is -0, $-CH(R^{11})$ or $-C(R^{11})$; R^1 is H or C_1-C_2 alkyl; R^2 is H; C_1-C_6 alkyl; C_3-C_6 cycloalkyl; or phenyl optionally substituted with halogen, cyano, C_1-C_2 alkyl or C_1-C_2 alkoxy; and R^3-R^{11} are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula (I) and a method for controlling plant diseases caused by fungal plant pathogens which involves applying an effective amount of a compound of Formula (I).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Scnegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Стессе		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IR	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil .	lL	[srae]	MR	Mauritania	UG	Uganda
BY	Belanis	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CC	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	KZ	Kazakstan	RO	Romania		•
CZ.	Czech Republic	1.C	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE

FUNGICIDAL CARBOXAMIDES

BACKGROUND OF THE INVENTION

This invention relates to certain N-(arylpropyl), N-(aryloxyethyl), and N-(arylallyl)-carboxamides, their agriculturally suitable salts and compositions, and methods of their use as fungicides.

The control of plant diseases caused by fungal plant pathogens is extremely important in achieving high crop efficiency. Plant disease damage to ornamental, vegetable, field, cereal, and fruit crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

U.S. Patent No. 4,710,518 discloses compounds of Formula i and compositions thereof as fungicides:

15

20

10

5

$$R^3$$
 R^2
 R^1
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

wherein

X is halogen;

n is 1 or 2;

R1 is hydrogen, halogen or lower alkyl;

R² is lower alkyl, halogen-substituted lower alkyl or hydrogen; and

R³ is hydrogen or lower alkyl.

U.S. Patent No. 4,946,867 discloses compounds of Formula ii, and compositions and method of use thereof, as fungicides:

25 wherein

R is C_2 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl; and X is Cl, Br, CF₃ or lower fluoroalkoxy group.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I (including all geometric and stereoisomers), agricultural compositions containing them and their use as fungicides:

$$Q \xrightarrow{N} H \xrightarrow{R^1} X - Z$$

I

5 wherein

10

15

20

Q is

$$R^5$$
 R^4
 R^3
or
 R^6
 $Q-1$
 $Q-2$

Z is

$$\mathbb{R}^7$$
 \mathbb{R}^8
 \mathbb{R}^9
 \mathbb{R}^9

X is -O-, -CH(R^{11})- or =C(R^{11})-;

R1 is H or C1-C2 alkyl;

R² is H; C₁-C₆ alkyl; C₃-C₆ cycloalkyl; or phenyl optionally substituted with halogen, cyano, C₁-C₂ alkyl or C₁-C₂ alkoxy;

R³ is H, C₁-C₃ alkyl optionally substituted with halogen or CN;

 R^4 is H or C_1 - C_2 alkyl; or

R³ and R⁴ can be taken together as -CH₂CH₂CH₂- or -CH₂CH₂CH₂-;

R⁵ is H, C₁-C₂ alkyl optionally substituted with halogen or CN;

R⁶ is C₂-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₂-C₈ alkynylalkenyl or C₃-C₈ cycloalkyl, each optionally substituted with halogen;

 R^7 is H, CN, halogen, C_1 - C_2 haloalkoxy or C_1 - C_2 haloalkylthio; or C_1 - C_4 alkyl, C_2 - C_4 alkenyl or C_2 - C_4 alkynyl, each optionally substituted with halogen or CN;

 R^8 , R^9 and R^{10} are each independently H, halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, or $Si(CH_3)_3$; and

R¹¹ is H, C₁-C₅ alkyl, C₂-C₅ alkenyl or C₂-C₅ alkynyl.

5

10

15

20

25

30

35

DETAILS OF THE INVENTION

In the above recitations, the term "alkyl", used in compound words such as "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, *n*-propyl or *i*-propyl. The term "alkyl", used alone includes straight-chain or branched alkyl, such as, methyl, ethyl, *n*-propyl, *i*-propyl, or the different butyl, pentyl, hexyl, heptyl or octyl isomers. "Alkenyl" includes straight-chain or branched alkenes such as vinyl, 1-propenyl, 2-propenyl and the different butenyl, pentenyl, hexenyl, heptenyl and octenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl, hexynyl, heptynyl and octynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. "Alkynylalkenyl" is a compound word and includes straight-chain or branched alkyne substituted on a straight-chain or branched alkene. Examples of "alkynylalkenyl" include

H₂C=CHC(CH₃)(C=CH) and HC=CCH=CHC(CH₃)₂.

In the above recitations, the term "alkoxy", used in compound words such as "haloalkoxy" or "haloalkylthio" includes methyl and ethyl. Examples of "haloalkoxy" include CF₃CH₂O, CF₃O, CHF₂CF₂O, HF₂CO and CCl₃CCl₂O. Examples of "haloalkylthio" include CF₃S, HF₂CS, CCl₃S, CHF₂CF₂S and CF₃CH₂S.

The term "halogen", either alone, when a group is "optionally substituted with halogen" or in compound words such as "haloalkyl", "haloalkoxy" or "haloalkylthio"; includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl" or when a group is "optionally substituted with halogen", said alkyl or group may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and CF₃CCl₂. Examples of an alkyl group "optionally substituted with halogen" include CH(F)=CHC(CH₃)(CH₂F) and CH₂=CHC(CH₃)(CH₂F).

The total number of carbon atoms in a substituent group is indicated by the " C_i - C_j " prefix where i and j are numbers from 1 to 6. For example, C_1 - C_3 alkyl designates methyl through propyl. When a group contains a substituent which can be hydrogen, for example R^1 or R^3 , then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One

skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

Of note are compounds where R^7 is other than H, especially when Z is Z-1. Also of note are compounds where R^7 is hydrogen and R^8 is other than hydrogen and when Z is Z-1 is attached to the carbon adjacent to the R^7 substituted carbon. Further of note are compounds where the carbon attached to R^1 has the (R) configuration.

Also of note are compounds wherein R^1 is H or CH_3 ; R^2 is H or CH_3 ; R^6 is C_2 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl each optionally substituted with halogen; and R^7 is H, CN, halogen, C_1 - C_4 haloalkyl, C_1 - C_4 alkyl, C_2 - C_4 alkenyl or C_2 - C_4 alkynyl each optionally substituted with halogen or CN.

Compounds of the invention include compounds of Formula Ia, Ib and Ic.

$$Q \xrightarrow[H]{R^1} O - Z \qquad Q \xrightarrow[H]{R^1} CH(R^{11}) - Z \qquad Q \xrightarrow[H]{R^1} C(R^{11}) - Z$$

$$Ia \qquad Ib \qquad Ic$$

Preferred compounds for reasons of better activity and/or ease of synthesis are: Preferred 1. Compounds of Formula I above and agriculturally suitable salts thereof,

20

5

10

15

Q is Q-1;

wherein:

R¹ is CH₃;

 R^2 is H;

R3 is CH2CH3; and

R4 is CH3.

25

Preferred 2. Compounds of Preferred 1 wherein:

Z is Z-1 or Z-4;

R⁷ is H, halogen, CN, C₁-C₄ alkyl or C₂-C₄ alkenyl;

 R^8 is H or F and is in the para position with respect to X when Z is Z-1; and R^9 is in the para position with respect to R^7 when Z is Z-1.

30 Preferred 3. Compounds of Preferred 1 wherein:

Z is Z-2 or Z-3; and

R7 is H, halogen, CN, C1-C3 alkyl or C2-C4 alkenyl.

10

15

20

25

30

Preferred 4. Compounds of Formula I above and agriculturally suitable salts thereof, wherein:

Q is Q-2;

R¹ is CH₂;

 R^2 is H or phenyl optionally substituted with halogen, cyano, C_1 - C_2 alkyl or C_1 - C_2 alkoxy; and

R⁶ is C₂-C₆ alkyl or C₂-C₆ alkenyl each optionally substituted with halogen.

Preferred 5. Compounds of Preferred 4 wherein:

Z is Z-1 or Z-4;

 R^7 is H, halogen, C_1 - C_3 alkyl, C_2 - C_4 alkenyl or C_2 - C_4 alkynyl;

 R^8 is H or F and is in the para position with respect to X when Z is Z-1; and R^9 is in the para position with respect to R^7 when Z is Z-1.

Preferred 6. Compounds of Preferred 4 wherein:

Z is Z-2 or Z-3; and

R⁷ is H, halogen, C₁-C₄ alkyl, C₂-C₄ alkenyl or C₂-C₄ alkynyl.

This invention also relates to fungicidal compositions comprising fungicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also relates to a method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof, or to the plant seed or seedling, a fungicidally effective amount of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE SYNTHESIS

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes I. The definitions of Q, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, X and Z in the compounds of Formulae I-XXXIII below are as defined above in the Summary of the Invention.

Scheme 1

When A is OH, the amine of Formula II is condensed with the carboxylic acid of Formula III in the presence of a dehydrating reagent, such as N,N'-dicyclohexylcarbodiimide

10

. 15

20

25

(DCC) or carbonyl diimidazole (CDI), in the presence of an inert solvent. The process can be carried out over a wide temperature range in a wide variety of solvents. Generally, the condensation is carried out at a temperature between 20 °C and the boiling point of the reaction mixture, preferably about 100 °C, for 0.1 to 72 h. Examples of suitable solvents include methylene chloride, toluene, diethyl ether, tetrahydrofuran, acetone and acetonitrile.

When A is chlorine, the amine of Formula II is condensed with the carboxylic acid chloride of Formula III in the presence of an acid acceptor such as triethylamine, in an inert solvent. Suitable reaction temperatures, times, solvents, and pressures are the same as described for the condensation wherein A is OH.

The amines of Formula II are known or can be prepared by a variety of methods. Formula II amines can be prepared from carbamates IV wherein R¹² is typically *t*-butyl or benzyl or from V in which Y is typically phenyl (forming a phthalimide ring) or bis-*t*-butoxycarbonyl (forming a bis-*t*-butoxycarbonyl protecting group). The removal of the carbamate and phthalimide protecting groups of IV and V to form II can be effected by methods set out in the literature such as those referenced in Greene, T.W. *Protective Groups in Organic Synthesis*; John Wiley & Sons, New York, NY, (1991), Chapter 7.

$$R^{12}$$
 O
 R^{1}
 H
 R^{2}
 IV

The compounds of Formulas IVa and Va in which X is carbon with a double bond attachment are subsets of Formula IV and V compounds and can be prepared by treatment of protected amines of Formulas VIa and VIb, respectively, with aromatic bromides or iodides (for the cases in which Z is phenyl or thiophene) of Formula VII and 1-10 mole % of an appropriate Pd (II) catalyst. Appropriate catalysts include PdCl₂ and Pd(OAc)₂ complexed with a 2-4 fold excess of a phosphine ligand such as triphenylphosphine. The reactions are performed between 0 °C and 100 °C with a 1-3 molar equivalents of a base such as K₂CO₃ or triethylamine. Oftentimes 10-50 mole % of an ammonium phase transfer catalyst is used in the reaction mixture. Typical solvents include acetonitrile or dimethylformamide.

 \dot{R}^2

IVa

7

Br - Z

I-Z

Scheme 3

Formula VI compounds are made from the corresponding unprotected amines by methods set out in the literature such as those referenced in Greene, T.W., *Protective Groups in Organic Synthesis*; John Wiley & Sons, New York, NY, (1991), Chapter 7. Alternatively, they may be prepared by displacement of a leaving group LG from compounds of Formula VIII with carbamates or diimides of Formula IXa or IXb in the presence of a base such as alkoxide salts as potassium *t*-butoxide, hydride salts as sodium hydride, or amine bases as diisopropyl ethylamine. Typical leaving groups LG includes chloride, bromide, iodide, (methylsulfonyl)oxy or [(4-methylphenyl)sulfonyl]oxy.

Formula VII, VIII and IX compounds are commercially available or are synthesized by procedures set out in the literature.

Alternatively, compounds of Formula IVa (for the cases in which Z is phenyl or thiophene) can be made from compounds of Formula XXXV by treatment with a phosphine such as triphenylphosphine in the presence of aromatic aldehydes and ketones of

10

Formula XXXVI. The reactions are run in ethereal solvents such as glyme or tetrahydrofuran, hydrocarbon solvents such as toluene or protic solvents such as isopropyl alcohol or ethanol at temperatures ranging between 20 °C and 150 °C. Formula XXXV and XXXVI are either commercially available or easily synthesized by methods set out in the literature.

Compounds of Formulas IVb and Vb are a subset of Formula IV and Formula V compounds in which X is carbon with a single bond attachment and can be prepared from compounds of Formulas IVa and Va, respectively, by hydrogenation over an appropriate transition metal catalyst such as palladium, platinum or rhodium. Typically the catalyst is deposited over an inert support such as carbon, alumina or calcium carbonate. The hydrogenations are carried out in protic solvents such as ethanol or non-protic solvents such as tetrahydrofuran or ethyl acetate. Pressures of 1-10 torr of hydrogen are required. The hydrogenations are run at 25 °C but may be run at temperatures up to 100 °C.

Alternatively, compounds of Formula IIb in which Z is phenyl or thiophene and X is carbon with a single bond attachment can be prepared from compounds of Formula X by reductive amination with an excess of an ammonium halide or acetate salt in the presence of a 1-10 equivalents of hydride reducing reagent such as sodium or tetrabutyl cyanoborohydride or sodium triacetoxyborohydride. The reaction can be run in protic solvents such as methanol or in aprotic solvents such as tetrahydrofuran or dichloromethane.

10

. 15

20

An acid catalyst such as HCl or p-toluenesulfonic acid is often added portionwise so as to maintain a pH of 3-5 as determined by a pH meter or an indicator dye such as bromocresol green or methyl orange. Typical temperatures for the reductive aminations range from -5 °C to 60 °C.

Compounds of Formula X can be prepared from compounds of Formula XI in which Z is phenyl or thiophene, by hydrogenation under the conditions described for the conversion of compounds IVa and Va to compounds IVb and Vb. Compounds of Formula XI can be prepared by olefination of compounds of Formula XII in which Z is phenyl or thiophene with an appropriate triphenylphosphonium ylide or an appropriate phophonate anion. The olefination reactions are typically carried out in ethereal solvents such as tetrahydrofuran or dimethoxyethane or in polar aprotic solvents such as dimethylsulfoxide or dimethylformamide at temperatures ranging from 0 to the 100 °C. The ylides and phosphonate anions are generated with alkoxide or hydride bases respectively and by methods set out otherwise in the literature (see March J. Advanced Organic Chemistry; John Wiley & Sons: New York, (1992); 4th Ed., pp 956-963).

Scheme 8

Compounds of Formula IVb or Vb in which Z is pyrrolyl can be prepared by displacement of the leaving group LG of compounds of Formulas XIIIa or XIIIb in the presence of an acid acceptor which can be a tertiary amine such as triethylamine, an alkoxide such as potassium *t*-butoxide or a carbonate such as potassium carbonate. The leaving group LG is as described for Formula VIII compounds. The displacements can be carried out in polar aprotic solvents such as dimethylformamide or dimethylsulfoxide, ethereal solvents

such as tetrahydrofuran or dioxane, or in protic solvents such as ethanol. Reaction temperatures can vary from 20 °C to 150 °C.

Compounds of Formula XIII can be prepared from the compounds of Formulas XIVa or XIVb by standard methods for the conversion of alcohols to halides (March, J. Advanced Organic Chemistry; John Wiley & Sons: New York, (1992); 4th Ed., pp 431-433) and for the conversion of alcohols to sulfonates (March, J. Advanced Organic Chemistry; John Wiley & Sons: New York, (1992); 4th Ed., pp 498-499). Compounds XIV can, in turn, be prepared from the aminoalcohol by methods set out in the literature such as those referenced in Greene, T.W. Protective Groups in Organic Synthesis; John Wiley & Sons, New York, NY, (1991), Chapter 7.

10

15

Scheme 10

$$R^{17}$$
 O
 R^{1}
 R^{11}
 R^{11

Compounds of Formula IVc and Vc are a subset of compounds of Formula IV in which X is O and can be prepared from compounds of Formula XVa and XVb, respectively, by displacement of the leaving group LG with compounds of Formula XVI under conditions as described for the conversion of XIII to IVb and Vb. The leaving group LG is as described for Formula VIII compounds. Formula XVa and XVb compounds can be prepared from the corresponding alcohols XVIIa and XVIIb as described for Formula XIII compounds. Alternatively, IVc and Vc can be prepared directly from XVIIa and XVIIb, respectively, and XVI in the presence of 1-2 equivalents of triphenylphosphine and 1-2 equivalents of diethylazodicarboxylate. The reaction is generally run in an inert solvent such as methylene chloride or tetrahydrofuran at a temperature range of 0 °C to 100 °C. Compounds of Formula XVI are generally commercially available or can be prepared by methods set out in the literature. For a review of literature methods for when Z is pyrrolyl, see Achesson, R.M. Adv. Heterocycl. Chem. (1990), 51, 115-119. Compounds of Formula XVII are prepared from the corresponding aminoalcohol as described for the preparation of compounds of Formula XIV.

Alternatively, compounds of Formula IVc in which Z is phenyl or thiophene can be prepared by reaction of compounds XVIIa with base and an activated aryl fluoride of Formula XVIII. Appropriate bases include hydride salts such as sodium hydride, amine salts such as lithium diisopropylamine and alkoxide salts such as potassium *t*-butoxide. Solvents for the reaction can include ethereal solvents such as tetrahydrofuran or polar aprotic solvents such as dimethylformamide. Reaction temperatures can vary from -20 °C to 150 °C. The reaction is facilitated for the cases in XVIII wherein at least one of R⁷, R⁸, R⁹, or R¹⁰ is an electron withdrawing group such as CN or halogen.

10

.15

20

Z is phenyl or thiophene

ΙVc

Compounds of Formula IIIa, a subset of Formula III compounds wherein A is OH, can be prepared from the corresponding esters of Formula XIX wherein R¹³ is C₁-C₅ alkyl or optionally substituted benzyl via standard methods for ester hydrolysis (see Greene, T.W. *Protective Groups in Organic Synthesis*; John Wiley & Sons, New York, NY, (1991), pp 227-260).

Scheme 13

Compounds of Formula XIXa, a subset of Formula XIX compounds, can be prepared from compounds of Formula XX by treatment with excess dichlorocarbene. Dichlorocarbene can be generated in chloroform solvent and reacted with XX in a biphasic mixture with 5-20 equivalents of sodium or potassium hydroxide facilitated by 1-20 mole % of a tetraalkyl ammonium halide or a crown ether phase transfer catalyst. The reaction is run at temperatures ranging from 0 °C to 60 °C. The conversion of XX to XIXa can also be effected by treatment with 1-5 equivalents of the alkali metal salts of trichloroacetic acid in ethereal solvents such as diglyme or dioxane or aromatic hydrocarbon solvents such as benzene or toluene or under neat conditions. The reaction temperatures can vary from 60 °C to 150 °C. Addition of 1-20 mole % of a phase transfer catalyst such as 18-crown-6 or tetrabutyl ammonium chloride can enhance the reaction. Alternatively, the conversion of XX to XIX can be effected by treatment with 1-5 equivalents of methyl or ethyl esters of trichloroacetic acid in the presence of 1-5 equivalents of sodium methoxide or sodium ethoxide. Appropriate solvents include hydrocarbons such as pentane or cyclohexane, ethers such as tetrahydrofuran or dimethoxyethane or aromatic hydrocarbons such as benzene or toluene. The temperature of the reaction can vary from -20 °C to 120 °C.

10

15

Scheme 14

$$R^{5}$$
 CI
 CI
 CI
 OR^{13}
 R^{5}
 R^{4}
 R^{3}
 XX
 $XIXa$

Compounds of Formula XX are prepared via condensation of compounds of Formula XXI and XXII. The conditions for such condensations are described in the references contained in March, J. Advanced Organic Chemistry; John Wiley & Sons: New York, (1992); 4th Ed., pp 944-945.

Scheme 15

$$R^5$$
 R^4
 XXI
 $XXII$
 $XXII$
 $XXII$

Alternatively, compounds of Formula IIIb, a subset of Formula IIIa compounds, can be prepared by oxidation of compounds of Formula XXIII via a variety of methods set out in the literature for the oxidation of alcohols to acids (see Larock, R.C. Comprehensive Organic Transformations; VCH Publishers: New York, (1989), pp 834-837). The dichlorocyclopropane of XXIII can be introduced by reaction of compounds of Formula XXIV via conditions described for the conversion of XX to XIXa.

Scheme 16

$$R^5$$
 OH R^5 OH

The conversion of XXIV to XXIII can sometimes be more efficiently mediated by the use of protecting group chemistry. Thus the alcohol of XXIV can be converted to an ether XXV in which PG can be an alkyl, benzyl or silyl protecting group. Conversion to XXIII is effected by subsequent cyclopropanation to XXVI via conditions described for the conversion of XIX to IIIa followed by removal of the protecting group. Appropriate protecting groups PG and the condition for their introduction and removal are described in Greene, T.W. *Protective Groups in Organic Synthesis*; John Wiley & Sons, New York, NY, (1991), pp 10-86.

10

15

Compounds of Formula XXIV can be prepared from compounds of Formula XXVII by addition of 2-5 equivalents of Grignard reagents XXVIII and quenching via the dropwise addition of an excess of either a protic solvent such as water, methanol or acetic acid optionally containing a dissolved proton donor such as ammonium chloride or hydrogen chloride or a reagent of Formula XXIX in which LG is a leaving group as described for Formula VIII compounds. The reaction is performed in ethereal solvents such as diethyl ether or tetrahydrofuran at temperatures ranging from 0 °C to 60 °C with quenching carried out at temperatures ranging from -20 °C to 30 °C.

Scheme 18

Alternatively, compounds of Formula XXIV can be prepared from compounds of Formula XXX by treatment with a 2-5 equivalents of a Grignard or zinc organometallic reagent of Formula XXXI (M is a magnesium halide or a zinc halide) in the presence of 1-10% of a transition metal catalyst such as $((C_6H_5)_3P)_2NiCl_2$ or $((C_6H_5)_3P)_4Pd$. The reaction is typically run in an ethereal solvent such as ethyl ether or tetrahydrofuran or a polar aprotic solvent such as dimethylformamide at temperatures ranging from -20 °C to 60 °C.

Compounds of Formula XXX can be prepared as described for the preparation of compounds of Formula XXIV with the modification that the reaction mixture is quenched with an excess of either I₂ or Br₂ added dropwise in the chosen reaction solvent.

10

15

20

Compounds of Formula XIXb, as subset of Formula XIX compounds, are well known in the literature (see, for example, Alexander, E.R.; McCollum, J.D. and Pour, D.E. J. Org. Chem. (1950), 72, 4791-4972; Stevens, R. V.; Christenson, C. G.; Edmonson, W. L.; Kaplan, M.; Reid, E. B.; Wentlant, M. P. J. Am. Chem. Soc. (1971), 93, 6624-6637; and Anonymous, USA Res. Discl. (1985), 55, 249) and can be prepared by addition of a 1-2 equivalents of an alkyl magnesium, copper, zinc or lithium reagent of Formula XXXII in which R¹⁶ is C₁-C₄ alkyl, C2-C4 alkenyl or C2-C4 alkynyl optionally substituted with CN to compounds of Formula XXXIII. R¹⁴ and R¹⁵ in XXXIII are independently H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with halogen. The reaction is typically run in an ethereal solvent such as diethyl ether or tetrahydrofuran at temperatures ranging from -20 °C to 60 °C. Optionally, a Cu (I) catalyst (1-10 mole %) such as copper (I) halide can be added to facilitate the reaction. Alternatively, XXXIII can be hydrogenated to XIXb under the conditions described for the conversion of IVa and Va to IVb and Vb. Compounds of Formula XXXIII are well known in the literature and are prepared by Knoevenagle condensation of cyanoacetic esters with aldehydes and ketones (see Jones, G. Organic Reactions John Wiley & Sons: New York, (1967); Vol. 15 pp 238-244).

Scheme 21

NC
$$OR^{13}$$
 R^{14}
 R^{15}
 $XXXIII$
 R^{16}
 $XXXIII$
 R^{16}
 $XXXIII$
 R^{16}
 $XXXIII$

Compounds of Formula IIIc, a subset of Formula IIIa compounds in which Q is Q-2; R¹⁴ and R¹⁵ are as described previously; and R¹⁷, R¹⁸, R¹⁹ are independently halogen, C₁-C₂ alkyl, C₂ alkenyl, C₂ alkynyl each optionally substituted with halogen can be prepared from compounds of Formula XXXIV. The rearrangement of Formula XXXIV compounds to Formula IIIc compounds can be carried out by procedures set out in the literature (see March, J. Advanced Organic Chemistry; John Wiley & Sons: New York,

10

15

20

(1992); 4th Ed., pp 1136-1141). Typically XXXXIV is treated with 1 equivalent of a lithium or potassium amide or alkoxide base such as lithium disopropyl amine or potassium *t*-butoxide in an inert solvent such as tetrahydrofuran or toluene at temperatures ranging from -78 °C to 150 °C. Additionally, the intermediacy of silyl ketene acetals can be involved for the conversion by heating XXXIV to reflux in a solvent such as hexamethyldisilazane or in an inert solvent such as benzene or toluene in the presence of 1-10 equivalents of hexamethyldisilazane. The product of the silyl ketene acetal mediated rearrangement is a silyl ester which can be converted to the acid by acid or base hydrolysis.

NC
$$R^{18}$$
 R^{19} R^{15} R^{15} R^{18} R^{19} R^{15} R^{19} R^{15} R^{19} R^{10} R^{19} R^{10} R^{10} R^{10} R^{10}

Compounds of Formula XXXIV can be prepared from compounds of Formula XXXV by standard conditions of esterification (see March, J. Advanced Organic Chemistry; John Wiley & Sons: New York, (1992); 4th Ed., pp 392-401). Formula XXXV compounds are generally commercially available or readily synthesized by methods set out in the literature.

Scheme 23

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in

10

15

20

25

30

detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, d = doublet of doublets, d = doublet of triplets, d = doublet of tripl

EXAMPLE 1

Step A: Preparation of (cis)-2-ethyl-2-buten-1-ol

A solution of 800 mL of 3.0 M ethylmagesium bromide in ether was added dropwise to a solution of 40 ml (690 mmol) propargyl alcohol and 13.1 g (69 mmol) of copper iodide in 1 L ether cooled to 0 °C. The mixture was allowed to warm to room temperature and stirred for 3 days. After cooling to 0 °C, 295 g of iodine was added portionwise. The mixture was acidified with concentrated HCl and partitioned between ether and water. The ether was separated and washed with saturated aqueous NaHSO₃, water and brine. Drying (MgSO₄) and removal of solvent gave an oil which was distilled at 5 torr. The fraction boiling from 74-81 °C was the product, (trans)-2-(iodomethylene)-1-butanol, 49 g. This fraction was dissolved in 500 mL ether along with 7.8 g (12 mmol) of bis-triphenylphospine nickel(II) chloride and cooled to 0 °C. A solution of 231 mL of 3.0 M methylmagnesium bromide in ether was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight. Quenching first with 1N HCl and then with concentrated HCl was followed by partitioning between ether and water. The ether was separated and washed with water, aqueous NaHSO₃, water and brine. Drying (MgSO₄) and removal of solvent gave an oil which was distilled at 0.5 torr. The fraction boiling from 83-96 °C was the product, (cis)-2-ethyl-2-buten-1-ol, 9.6 g.

WO 98/33765

19

Preparation of (cis)-2,2-dichloro-1-ethyl-3-methylcyclopropanecarboxylic Step B: acid

A solution of 9.6 g (96 mmol) of (cis)-2-ethyl-2-buten-1-ol, and 0.44 g benzyltriethyl ammonium chloride in 200 mL of chloroform was cooled to 0 °C and a solution of 95.5 mL of 50% sodium hydroxide was added dropwise. After stirring 2 h, the mixture was diluted with water and extracted 3 times with ether. The ether was dried (MgSO₄) and stripped to give 19.4 g of an oil that was used further without purification. A solution of 16.7 g (91.7 mmol) of the oil was dissolved in 100 mL acetone and cooled to 0 °C. A solution of 18.3 g (183 mmol) of CrO₃ in 125 mL of 25% H₂SO₄ was added dropwise. After stirring 5 min, a solution of saturated aqueous NaHSO3 was added dropwise. The mixture was extracted with ether. The ether was washed with water and 3 times with 1N sodium hydroxide. The base extracts were acidified and extracted 3 times with ether. The ether was dried (MgSO₄) and stripped to give 9.32 g of product (cis)-2,2-dichloro-1-ethyl-3methylcyclopropanecarboxylic acid as an oil that slowly solidified, mp 68-70 °C, ¹H NMR (CDCl₃): δ 1.0 (t, 3H), 1.25 (d, 3H), 1.25 (m, 1H), 2.25 (m, 1H), 2.35 (q, 1H).

Step C: Preparation of (cis)-2,2-dichloro-1-ethyl-3-methyl-N-(3phenylpropyl)cyclopropanecarboxamide

5

10

15

20

25

30

35

A solution of 2.06 g (10.5 mmol) of (cis)-2,2-dichloro-1-ethyl-3-methyl 1cyclopropane carboxylic acid in 10 mL thionyl chloride was heated at reflux for 30 min. Solvent was removed in vacuo. The residue was dissolved in 18 mL of dichloromethane. A portion (5 mL, 2.55 mmol) of this solution was added to a solution of 0.4 mL (2.8 mmol) 3-phenyl-1-propylamine and 0.33 mL (3.05 mmol) triethylamine in 25 mL dichloromethane. After stirring at room temperature overnight, the mixture was diluted with ethyl acetate and washed with water and brine. Drying (MgSO₄) and removal of solvent gave an oil which was chromatographed on silica gel (2:1 hexanes/ether) to give 260 mg of the title compound, mp 66-70 °C, ¹H NMR (CDCl₃) 1.05 (t, 3H), 1.3(d, 3H), 1.5 (m, 1H), 1.8-2.0 (m, 4H), 2.65 (t, 2H), 3.3-3.5 (m, 2H), 5.6 (br s, 1H), 7.2-7.4 (m, 5H).

EXAMPLE 2

Step A: Preparation of (trans)-2-ethyl-2-buten-1-ol

A solution 1070 mL (2.15 mol) of 2.0 M ethylmagnesium chloride in ether was added dropwise to a solution of 50 mL (720 mmol) of 2-butyn-1-ol and 14.9 g (78 mmol) of copper iodide in 1L of 4:1 ether/tetrahydrofuran at 0 °C under an argon atmosphere. The solution was heated at reflux for 6 days. A solution of 65 mL of 25% by weight ethylmagnesium chloride in tetrahydrofuran was added. Heating at reflux was continued for another day. The reaction was quenched by dropwise addition of saturated aqueous NH₄Cl and the mixture was partitioned between water and ether. The ether layer was separated and washed with

water. Drying (MgSO₄) and removal of solvent gave 53.5 g of (trans)-2-ethyl-2-buten-1-ol as a mobile oil.

5

10

15

25

30

35

Step B: <u>Preparation of (trans)-2,2-dichloro-1-ethyl-3-methylcyclopropanemethanol</u> Imidazole (13.6 g, 200 mmol) was added portionwise to a solution of 8.0 g (80 mmol) of (trans)-2-ethyl-2-buten-1-ol and 14.5 g (96 mmol) of t-butyldimethylsilyl chloride in 20 mL of DMF and the mixture was stirred at room temperature overnight. The solution was poured into water and extracted with ethyl acetate. The ethyl acetate was washed 4 times with water and with brine. Drying (MgSO₄) and removal of solvent gave 17 g of (trans)-(1,1-dimethylethyl)[(2-ethyl-2-butenyl)oxy]dimethylsilane as a mobile oil. A solution of 10 g (46.6 mmol) of the oil and 0.21 g of benzyl triethylammonium chloride in 100 mL CHCl₃ was cooled to -5 °C. A solution of 45 mL (85 mmol) of 50% sodium hydroxide was added dropwise and the mixture was warmed to room temperature and stirred for 3 h. The mixture was diluted with methylene chloride and washed with 3 times with water, 1N HCl and brine. Drying (MgSO₄) and removal of solvent gave 14 g of (trans)-[(2,2-dichloro-1ethyl-3-methylcyclopropyl)methoxy](1,1-dimethylethyl)dimethylsilane as a viscous oil. This oil was dissolved in 200 mL of ethanolic 1% HCl which was heated at reflux for 2.5 h. Solvent was removed and the residue was diluted with methylene chloride and washed with water and brine. Drying (MgSO₄) and removal of solvent gave 8.95 g of (trans)-2,2dichloro-1-ethyl-3-methylcyclopropanemethanol.

20 Preparation of (trans)-2,2-dichloro-1-ethyl-3-methylcyclopropanecarboxylic Step C: acid

Sodium periodate (21 g, 98 mmol) was added portionwise to a solution of 8.91 g (4.92 mmol) of (trans)-2,2-dichloro-1-ethyl-3-methyl-cyclopropanemethanol and 0.22 g (1 mmol) of RuCl₃·H₂0 in 100 mL of 1:1 acetonitrile/carbon tetrachloride and 70 mL of water. After stirring 3 h, the mixture was diluted with methylene chloride and washed with water and brine, dried (MgSO₄) and stripped. The residue was dissolved in ether and washed 2 times with 1N sodium hydroxide and with water. The combined aqueous layers were acidified and extracted 2 times with ether. The ether was washed with water and dried (MgSO₄). Removal of solvent gave 6.1 g of (trans)-2,2-dichloro-1-ethyl-3methylcyclopropanecarboxylic acid as an oil that slowly solidified, mp 61-63 °C.

Preparation of (R)-2-[1-methyl-2-[(methylsulfonyl)oxy]ethyl]-1H-isoindole-Step D: 1,3(2H)-dione

Methanesulfonyl chloride (9.4 mL, 68 mmol) was added to a solution of 12.6 g (61.5 mmol) of (R)-2-(2-hydroxy-1-methylethyl)-1H-isoindole-1,3(2H)-dione (Becker, Y. J. Org. Chem. (1980), 45 (11), pp 2145-2151) and 5.23 mL (67.6 mmol) of methanesulfonyl chloride, and the mixture was stirred at room temperature overnight. Solvent was removed. and the residue was dissolved in ethyl acetate which was washed with water and brine.

10

15

20

25

30

.35

Drying (MgSO₄) and removal of solvent gave 17 g of a tan oil which slowly solidified. Recrystallization from n-butylchloride gave (R)-2-[1-methyl-2-[(methylsulfonyl)oxy]ethyl]-1H-isoindole-1,3(2H)-dione as a white solid, mp 75-77 °C.

Step E: Preparation of 5-chloro-6-methyl-2-pyridinamine 1-oxide, hydrochloride

To a solution of 110 g (666 mmol) of 5-chloro-6-methyl-pyridineamine (Kress, T.J.; Moore, L.L.; Costantino, S.M. J. Org. Chem. (1976) 41(1), pp 93-96) in 1 L of dichloromethane was added 164 g (666 mmol) of m-chloroperoxybenzoic acid. The mixture was stirred at room temperature overnight and 20 g more of m-chloroperoxybenzoic acid was added. The mixture was stirred 1 h and 50 mL of saturated aqueous NaHSO₃ were added. The solvent was removed and the residue was taken up in 1L of 1N HCl. The insoluble solids were filtered and washed with 3N HCl. Solvent was removed from the aqueous filtrate to give a solid which was recrystallized from ethanol affording 56.9 g of 5-chloro-6-methyl-2-pyridinamine 1-oxide, hydrochloride as a white solid, mp > 250 °C.

Step F: Preparation of 4-chloro-1-hydroxy-5-methyl-1*H*-pyrrole-2-carbonitrile

A solution of 55.9 g (287 mmol) of 5-chloro-6-methyl-2-pyridinamine-1-oxide, hydrochloride in 1 L 10% aq HCl was cooled to 0 °C. An aqueous solution of 25.5 g (365 mmol) of sodium nitrite was added dropwise. After stirring 15 min, an aqueous solution of 23.7 g (365 mmol) sodium azide was added dropwise. The mixture was stirred at room temperature overnight then extracted 3 times with methylene chloride. Drying (MgSO₄) and removal of solvent gave 35 g of an orange solid which was dissolved in chloroform and heated at reflux for 4 days. Removal of solvent gave product which was purified by chromatography on silica gel (CH₂Cl₂ followed by ether) to isolate 2 components: 4.8 g of a higher R_f material identified as 4-chloro-5-methyl-1*H*-pyrrole-2-carbonitrile. 1 H NMR (CDCl₃) δ 2.3 (s, 3H), 6.7 (s, 1H), 8.9 (br s, 1H) and 17.8 g of 4-chloro-1-hydroxy-5-methyl-1*H*-pyrrole-2-carbonitrile, mp 91-101 °C, 1 H NMR (CDCl₃) δ 2.25 (s, 3H), 6.5 (s, 1H).

Step G: Preparation of (R)-4-chloro-1-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)propoxy]-5-methyl-1H-pyrrole-2-carbonitrile

A solution of 3.0 g (10.6 mmol) of (R)-2-[1-methyl-2-[(methylsulfonyl)oxy]ethyl]-1H-isoindole-1,3(2H)-dione, 2.0 g (12.7 mmol) of N-chloro-1-hydroxy-5-methyl-1H-pyrrole-2-carbonitrile and 1.76 g (12.7 mmol) of K₂CO₃ in 60 mL acetonitrile was heated at reflux overnight. Solvent was removed and the residue was taken up in ethyl acetate which was washed with water and brine. Drying (MgSO₄) and removal of solvent gave an oil which was chromatographed on silica gel (35% ether in hexanes) to give 2.55 g of (R)-4-chloro-1-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)propoxy]-5-methyl-1H-pyrrole-2-carbonitrile as a white solid, ¹H NMR (CDCl₃) δ 1.55 (d, 3H), 2.15 (s, 3H), 4.45 (m, 1H), 4.8 (m, 2H), 6.5 (s, 1H), 7.75 (m, 2H), 7.85 (m, 2H).

Step H: Preparation of (R)-1-(2-aminopropoxy)-4-chloro-5-methyl-1-1H-pyrrole-2carbonitrile

A solution of 0.6 g (1.75 mmol) of (R)-4-chloro-1-[2-(1,3-dihydro-1,3-dioxo-2Hisoindol-2-yl)propoxy]-5-methyl-1*H*-pyrrole-2-carbonitrile and 0.42 mL (8.7 mmol) of hydrazine was heated at reflux for 50 min and cooled to room temperature. Precipitated solids were filtered and rinsed with ether. Solvent from the filtrate was removed and the residue was taken up in ether. The insoluble solids were filtered and rinsed with ether. The filtrate was stripped to afford 0.43 g of (R)-1-(2-aminopropoxy)-4-chloro-5-methyl-1-1Hpyrrole-2-carbonitrile as an oil.

5

15

20

25

30

. 35

Preparation of $[1R-[1\alpha(R^*),3\alpha]]-2,2$ -diehloro-N-[2-[(3-chloro-5-cyano-2-10 Step I: methyl-1*H*-pyrrol-1-yl)oxy]-1-methylethyl]-1-ethyl-3methylcyclopropanecarboxamide mixed 1:1 with $[1S-[1\alpha(S^*),3\beta]]-2,2$ dichloro-N-[2-[(3-chloro-5-cyano-2-methyl-1H-pyrrol-1-yl)oxy]-1methylethyl]-1-ethyl-3-methylcyclopropanecarboxamide

In a separate flask, 0.34 g (1.75 mmol) of (trans)-2,2-dichloro-1-ethyl-3methylcyclopropanecarboxylic acid in 15 mL thionyl chloride was heated at reflux for 30 min. The thionyl chloride was stripped and the residue was dried in vacuo. The residue was dissolved in 20 mL methylene chloride and a solution of 0.43 g of (R)-1-(2-aminopropoxy)-4-chloro-5-methyl-1H-pyrrole-2-carbonitrile and 0.25 mL (1.8 mmol) triethylamine was added dropwise. The mixture was stirred at room temperature overnight. Solvent was stripped and the residue was taken up in ethyl acetate which was washed with water and brine. Drying (MgSO₄) and removal of solvent gave an oil which was chromatographed (40% ether in hexanes) on silica gel to give the title compounds as a 1:1 mixture of diastereomers as an oil, ¹H NMR (CDCl₃) δ 1.0 (m, 3H), 1.2 (d, 3H), 1.4 (2d, 3H, 1:1 ratio). 1.5-1.65 (m, 1H), 2.0-2.2 (m, 1H), 2.2 (s, 3H), 2.2-2.3 (m, 1H), 4.2-4.4 (m, 2H), 4.4-4.6 (m, 1H), 6.05 and 6.15 (2d, 1H, 1:1 ratio), 6.55 (2s, 1H, 1:1 ratio).

EXAMPLE 3

Step A: Preparation of 1,1-dimethylethyl[2-(2-cyano-4-fluorophenoxy)-1methylethyllcarbonate

Sodium hydride (1.26 g of a 60% dispersion in oil, 31.5 mmol) was rinsed 3 times with hexanes and suspended in 30 mL DMF at 5 °C. Added was 4.5 mL (49.6 mmol) of 2,5-difluorobenzonitrile followed by 5.0 g (28.6 mmol) of (2-hydroxy-1-methylethyl)carbamic acid-1,1-dimethylethyl ester portionwise. The mixture was stirred at room temperature overnight before being quenched with saturated aqueous NH₄Cl. After partitioning between ether and water, the ether was separated and washed 2 times with water and with brine. Drying (MgSO₄) and removal of solvent gave a solid which was triturated

15

20

30

35

with hexanes to give 6.3 g of 1,1-dimethylethyl[2-(2-cyano-4-fluorophenoxy)-1-methylethyl]carbamate as a white solid, mp 77-78 °C.

Step B: Preparation of 2-(2-aminopropoxy)-5-fluorobenzonitrile

A solution of 1.0 mL trifluoroacetic acid and 1.2 g (4.08 mmol) of 1,1-dimethylethyl[2-(2-cyano-4-fluorophenoxy)-1-methylethyl]carbamate in 10 mL methylene chloride was stirred at ambient temperature for 3 days. Solvent was removed and the residue was taken up in aqueous Na₂CO₃ and ethyl acetate. The organic layer was separated and washed with water and brine. Drying (MgSO₄) and removal of solvent gave 650 mg of 2-(2-aminopropoxy)-5-fluorobenzonitrile as an oil.

10 Step C: Preparation of (trans)-2,2-dichloro-N-[2-(2-cyano-4-fluorophenoxy-1-methylethyl]-1-ethyl-3-methylcyclopropanecarboxamide

In a separate flask, 750 mg (3.8 mmol) of (trans)-2,2-dichloro-1-ethyl-3-methylcyclopropanecarboxylic acid in 20 mL thionyl chloride was heated at reflux for 30 min. The thionyl chloride was stripped and the residue was dried in vacuo. The residue was then dissolved in 20 mL methylene chloride and a solution of 0.67 g (3.45 mmol) 2-(2-aminopropoxy)-5-fluorobenzonitrile and 0.55 mL (3.95 mmol) triethylamine was added dropwise. The mixture was stirred at room temperature overnight. Solvent was stripped and the residue was taken up in ethyl acetate which was washed with water and brine. Drying (MgSO₄) and removal of solvent gave an oil which was chromatographed (50% ether in hexanes) on silica gel to give the title compound as a 1:1 mixture of diastereomers, mp 119-123 °C. ¹H NMR (CDCl₃) δ 0.9 and 0.95 (2t, 3H, 1:1 ratio), 1.2 (d, 3H), 1.45 (m, 3H), 1.5-1.6 (m, 1H), 2.0-2.1 (m, 1H), 2.2 (m, 1H), 4.0-4.2 (m, 2H), 4.45 (m, 1H), 6.95 (m, 1H), 7.3 (m, 2H).

EXAMPLE 4

25 Step A: Preparation of 2-[1-methyl-2-[(methylsulfonyl)oxy]propyl]-1*H*-isoindole-1,3(2*H*)-dione

Methanesulfonyl chloride (9.7 mL, 56 mmol) was added to a solution of 10.5 g (48 mmol) of 2-(2-hydroxy-1-methylpropyl)-1*H*-isoindole-1,3(2*H*)-dione (JP 01242569 A2) and 8.1 mL (58 mmol) of triethylamine and the mixture was stirred at room temperature overnight. The mixture was diluted with ether and washed with water and brine. Drying (MgSO₄) and removal of solvent gave an oil which slowly solidified. Trituration with hexanes gave 11.8 g of 2-[1-methyl-2-[(methylsulfonyl)oxy]propyl]-1*H*-isoindole-1,3(2*H*)-dione as a white solid, mp 67-73 °C.

Step B: Preparation of 4-chloro-1-[3-(1,3-dihydro-1,3-dioxo-2*H*-isoindol-2-yl)butyl]5-methyl-1*H*-pyrrole-2-carbonitrile

A solution of 4.23g (14.2 mmol) of 2-[1-methyl-2-[(methylsulfonyl)oxy]propyl]-1*H*-isoindole-1,3(2*H*)-dione, 2.05 g (14.2 mmol) of 4-chloro-5-methyl-1*H*-pyrrole-2-carbonitrile

15

20

25

30

35

and 2.35 g (14.2 mmol) of K_2CO_3 in 60 mL DMF was heated at 60 °C overnight. The mixture was diluted with ether and washed 4 times with water. Drying (MgSO₄) and removal of solvent gave an oil which was chromatographed on silica gel (15% ethyl acetate in hexanes) to give 3.2 g of 4-chloro-1-[3-(1,3-dihydro-1,3-dioxo-2*H*-isoindol-2-yl)butyl]-5-methyl-1*H*-pyrrole-2-carbonitrile as a solid, ¹NMR (CDCl₃) δ 1.5 (d, 3H), 2.2 (s, 3H and m, 1H), 2.7 (m, 1H), 3.9 (m, 1H), 4.05 (m, 1H), 4.4 (m, 1H), 6.6 (s, 1H), 7.85 (m, 2H), 7.9 (m, 2H).

Step C: Preparation of 1-(3-aminobutyl)-4-chloro-5-methyl-1*H*-pyrrole-2-carbonitrile

A solution of 3.2 g (9.4 mmol) of 4-chloro-1-[3-(1,3-dihydro-1,3-dioxo-2*H*-isoindol-2-yl)butyl]-5-methyl-1*H*-pyrrole-2-carbonitrile and 4.8 mL (94 mmol) of hydrazine in ethanol was heated at reflux for 60 min and cooled to room temperature. Precipitated solids were filtered and rinsed with ethyl acetate and the filtrate was concentrated to afford 1-(3-aminobutyl)-4-chloro-5-methyl-1*H*-pyrrole-2-carbonitrile as an oil.

Step D: Preparation of 2-cyano-3,4,4-trimethylpentanoic acid

A solution of 10 g (50 mmol) of ethyl 2-cyano-3,4,4-trimethylpentanote (Clarke, N.C.; Runciman, P.J.I.; Utley, J.H.P.; Landquist, J.K. J. Chem. Soc., Perkin Trans. 2 (1987) (4), pp 435-439) and 2.93 g (52 mmol) of potassium hydroxide in 50 mL ethanol was heated at reflux for 3 h and stirred at room temperature overnight. The mixture was diluted with water and extracted twice with ether. The aqueous layer was acidified with concentrated HCl and extracted twice with ether which was washed with brine, dried (MgSO₄) and concentrated to afford 9.6 g of 2-cyano-3,4,4-trimethylpentanoic acid as a mixture of diastereomers, mp 68-78 °C.

Step E: Preparation of N-[3-(3-chloro-5-cyano-2-methyl-1H-pyrrol-1-yl)-1-methylpropyl]-2-cyano-3,4,4-trimethylpentanamide

A solution of 0.54 g (3.5 mmol) 2-cyano-3,4,4-trimethylpentanoic acid in 15 mL thionyl chloride was heated at reflux for 30 min. The thionyl chloride was stripped and the residue was dried *in vacuo*. The residue was then dissolved in 20 mL methylene chloride and a solution of 0.66 g (3.13 mmol) of 1-(3-aminobutyl)-4-chloro-5-methyl-1*H*-pyrrole-2-carbonitrile and 0.59 mL (4.2 mmol) triethylamine was added dropwise. The mixture was stirred at room temperature overnight. Solvent was stripped and the residue was taken up in ethyl acetate which was washed with water and brine. Drying (MgSO₄) and removal of solvent gave an oil which was chromatographed (40% ether in hexanes) on silica gel to give the title compound as a mixture of diastereomers, mp 111-118 °C. ¹H NMR (CDCl₃) δ 1.0 (m, 3H), 1.2-1.3 (2m, 6H), 1.4 (d, 1H), 1.6 (m, 2H), 1.9 (m, 2H), 2.2 (m, 3H), 4.1 (2m, 2H), 5.7 (m, 1H), 6.65 (2s, 1H).

EXAMPLE 5

Preparation of bis(1,1-dimethylethyl)-1-propenylimidodicarbonate Step A:

A solution of commercially available di-tert-butyliminodicarboxylate (25.0 g, 0.115 mol) in 100 mL of tetrahydrofuran was added to hexanes rinsed sodium hydride (5.0 g of 60% oil suspension, 0.125 mol) and stirred for 3 h at 20 °C. A solution of allyl bromide (12.0 mL, 0.139 mol) in 30 mL tetrahydrofuran was added dropwise and the mixture was stirred 20 h. The reaction was quenched dropwise with 10 mL water, evaporated to a paste, treated with 200 mL water and extracted twice with ethyl acetate. The organic layers were combined, washed with saturated solution of ammonium chloride then concentrated to give an oil. The oil was purified by flash silica chromatography using 5 % ethyl acetate/hexanes solution as eluent to give 26.0 g (88%) of bis(1,1-dimethylethyl)-1propenylimidodicarbonate as colorless crystals: mp 44-46 °C; ¹H NMR (300MHz, CDCl₂) δ 1.50 (s, 18H), 4.18 (m, 2H), 5.14 (m, 2H), 6.85 (m, 1H).

Preparation of bis(1,1-dimethylethyl)-2-propenyl-3-(2-Step B: fluorophenyl)imidodicarboxylate

5

10

15

20

25

30

A solution of bis(1,1-dimethylethyl)-2-propenylimidodicarbonate (7.00) g, 27 mmol) and o-fluoroiodobenzene (8.10 g, 36.5 mmol) in 40 mL acetonitrile was treated with triphenylphosphine (2.2 g, 8.4 mmol), tetrabutylammonium chloride (5.30 g, 18.3 mmol), potassium carbonate (12.4 g, 89.7 mmol) and palladium acetate (0.640 g, 2.85 mmol). The reaction mixture was heated at 65° C for 4 h then treated with more palladium acetate (0.320 g, 1.43 mmol). The reaction mixture was stirred an additional 20 h at 65° C. The solvent was evaporated and the residue was purified by flash chromatography using 5 % ethyl acetate/hexanes solution as eluent to give 4.0 g (42%) of bis(1,1-dimethylethyl)-2propenyl-3-(2-fluorophenyl)imidodicarboxylate as a light yellow oil: ¹H NMR (CDCl₂) δ 1.52 (s, 18H), 4.36 (d, 2H), 6.30 (dt, 1H), 6.70 (d, 1H), 7.10 (m, 2H), 7.20 (m, 1H), 7.40 (t, 1H).

Step C: Preparation of (trans)-3-(2-fluorophenyl)-2-propen-1-amine hydrochloride A solution of bis(1,1dimethylethyl)-2-propenyl-3-(2-fluorophenyl) imidodicarboxylate (4.0 g, 11 mmol) in 30 mL of methylene chloride and 15 mL of trifluoroacetic acid was stirred at 20 °C for 18 h. The reaction mixture was evaporated and the residue diluted in ethyl acetate and washed twice with 1 N sodium hydroxide solution. Organic layer was evaporated to give the crude amine. Free amine was precipitated with hydrogen chloride (1) N in diethyl ether) and filtered through a fritted funnel to give 2.42 g (91%) of (trans)-3-(2fluorophenyl)-2-propen-1-amine hydrochloride as a white powder: mp 205-208 °C; ¹H 35 NMR (Me₂SO- d_6) δ 3.66 (d, 2H), 6.40 (dt, 1H), 6.81 (d, 1H), 7.24 (m, 2H), 7.40 (m, 1H). 7.60 (m, 1H), 8.20 (br s, 3H).

Step D: Preparation of (trans)-2,2-dichloro-1-ethyl-N-[3-(2-fluororphenyl)-2-propenyl]-3-methylcyclopropanecarboxamide

5

10

15

20

. 25

30

35

A solution of (trans)-2,2-dichloro-1-ethyl-3-methylcyclopropanecarboxylic acid (see above) (5.1 g, 25.9 mmol) and 40 mL of toluene was treated with thionyl chloride (5.0 mL, 69 mmol) and warmed at 65 °C for 3 h. The solvent was evaporated and the residue was diluted in 5% toluene/Hexanes and treated with activated carbon. The suspension was filtered and the filtrate was concentrated in vacuo to give 5.05 g (91%) of the (trans)-2,2-dichloro-1-ethyl-3-methylcyclopropanecarbonyl chloride as a clear oil. A solution of acid chloride (0.33 g, 1.53 mmol) in 10 mL methylene chloride was added dropwise to a solution of amine of (trans)-3-(2-fluorophenyl)-2-propen-1-amine hydrochloride (0.40 g, 2.1 mmol), triethyl amine (1.0 mL, 7.2 mmol) in 30 mL methylene chloride. The reaction mixture was stirred for 2 h then concentrated in vacuo. The residue was purified by flash chromatography using 10% ethyl acetate/hexanes as eluent to give 0.480 g (95 %) of the title compound as white solid: mp 103-105 °C, ¹H NMR (CDCl₃) δ 1.01 (t, 3H), 1.25 (m, 3H), 1.60 (m, 1H), 2.00 (m, 1H), 2.22 (m, 1H), 4.11 (m, 2H), 5.90 (br s, 1H), 6.30 (dt, 1H), 6.75 (d, 1H), 7.07 (m, 2H), 7.20 (m, 1H), 7.40 (t, 1H).

EXAMPLE 6

Step A: Preparation of 2-[2-(2-ethylphenoxy)-1-methylethyl]-1*H*-isoindole-1,3(2*H*)-dione

A solution of 5.0 g (24.4 mmol) of 2-(2-hydroxy-1-methylethyl)-1*H*-isoindole-1,3(2*H*)-dione (Y. Becker, A. Eisenstadt, J. K. Stille, *J. Org. Chem.*, 1980, 45, 2145) and triphenylphosphine (7.00 g, 27.0 mmol) in 40 mL of dry tetrahydrofuran was stirred at 20 °C for 1 h. To the solution was added 2-ethylphenol (3.90 g, 32.0 mmol) and diethyl azodicarboxylate (5.0 mL, 32.0 mmol) and the solution was stirred an additional 40 h. The reaction mixture was concentrated *in vacuo* and the residue was diluted in diethyl ether and washed with water and brine. The organic layer was concentrated *in vacuo* and the crude product was purified by flash silica chromatography using 5 % ethyl acetate/hexanes solution as eluent to give 3.0 g (40%) of 2-[2-(2-ethylphenoxy)-1-methylethyl]-1*H*-isoindole-1,3(2*H*)-dione as a colorless oil: ¹H NMR (CDCl₃) 8 0.96 (t, 3H), 1.60 (d, 3H), 2.40 (m, 2H), 4.18 (dd, 1H), 4.48 (t, 1H), 4.84 (m, 1H), 6.80 (m, 1H), 6.90 (m, 1H), 7.10 (m, 2H), 7.70 (m, 2H), 7.84 (m, 2H).

Step B: Preparation of 1-(2-ethylphenoxy)propanamine hydrochloride

2-[2-(2-Ethylphenoxy)-1-methylethyl]-1*H*-isoindole-1,3(2*H*)-dione (3.0 g, 9.7 mmol) was dissolved in 300 mL of absolute ethanol and treated with anhydrous hydrazine (3.0 mL, 96 mmol) at reflux for 2 h. Reaction mixture was cooled and filtered through a fritted funnel and then the filtrate was concentrated. The residue was diluted in ethyl acetate and filtered mixture through a fritted funnel. The organic layer was extracted twice with 1 N hydrogen

10

15

25

30

35

chloride solution. Aqueous layer was treated with 1 N sodium hydroxide solution (until solution pH = 8-10), and was then extracted with ethyl acetate. The final organic layer was concentrated *in vacuo* to give 1-methyl-2-(2-fluorophenoxy)ethylamine as an oil. Free amine was precipitated with hydrogen chloride (1 N in diethyl ether) and filtered via a fritted funnel to give 1.30 g (62%) of 1-(2-ethylphenoxy)propanamine hydrochloride as a white powder: mp 131-133 °C; ¹H NMR (Me₂SO- d_6) δ 1.18 (t, 3H), 1.40 (d, 3H), 2.75 (m, 1H), 3.62 (m, 1H), 4.10 (m, 2H), 6.95 (m, 2H), 7.20 (m, 2H), 8.25 (br s, 3H).

Step C: Preparation of 2-cyano-N-[2-(2-ethylphenoxy)-1-methylethyl]-3,3-dimethylbutanamide

A solution of 2-cyano-3,3-dimethylbutanoyl chloride (E. Schaumann, H. Mrotzek; *J. Org. Chem.*, 1979, 35, 1965) (0.364 g, 2.28 mmol) in 10 mL methylene chloride was added dropwise to a solution of 1-(2-ethylphenoxy)propanamine hydrochloride (0.56 g, 2.6 mmol), triethyl amine (1.0 mL, 7.2 mmol) in 30 mL methylene chloride. The reaction mixture was stirred for 2 h then concentrated *in vacuo*. The residue was purified by flash chromatography using 20% ethyl acetate/hexanes as eluent to give 0.290 g (42%) of the title compound as a white solid: mp 94-97 °C, 1 H NMR (CDCl₃) δ 1.20 (m, 12H), 1.40 (m, 3H), 2.65 (q, 2H), 3.16 (dd, 1H), 3.98 (m, 1H), 4.05 (m, 1H), 4.40 (m, 1H), 6.00 (d, 1H), 6.25 (dd, 1H), 6.95 (t, 1H), 7.18 (t, 2H).

EXAMPLE 7

20 Step A: Preparation of 2-fluoro-3-methyl-2-butenyl cyanoacetate

A solution of cyano acetic acid (2.25 g, 26.4 mmol) in 30 mL dry CH_2Cl_2 was cooled in ice water before 2.3 mL (26.4 mmol) of oxalyl chloride and 3 drops of DMF were added. The mixture was warmed to room temperature with stirring overnight before being added dropwise to an ice-cooled solution of 2.5 g (24 mmol) of 2-fluoro-4-methyl-2-buten-1-ol (Cane, D. E.; Yang, G.; Xue, Q.; Shin, J.H. *Biochemistry* (1995), 3418, 2471-9) and 3.7 mL (26.4 mmol) triethylamine. After stirring 3 h at room temperature, solvent was removed and the residue was partitioned between water and ether. The ether layer was separated and washed with brine. The combined aqueous washings were extracted with ether which was washed with brine. The combined ether extracts were dried (MgSO₄), and solvent was removed to afford 3.5 g of the title compound of Step A as an oil, ¹H NMR (CDCl₃) δ 1.7 (m, 6H), 3.5 (s, 2H), 4.85 (d, J = 22 Hz, 2H).

Step B: Preparation of 2-cyano-4-fluoro-3,3-dimethyl-4-pentenoic acid

A solution of (3.5 g, 20.5 mmol) the product from Example 7, Step A in 25 mL hexamethyldisilazane was heated at reflux for 2 h. Solvent was removed and the residue was dissolved in 50 mL 1N HCl. The mixture was heated at reflux for 20 min. After cooling, the mixture was extracted with ether which was washed with brine and dried (MgSO₄). Removal of solvent gave 3.2 g of the title compound of Step B as an oil, ¹H NMR (CDCl₃) δ

10

15

20

25

30

1.4 (s, 3H), 1.45 (s, 3H), 3.8 (s, 1H), 4.55 (d of d, J = 50, 4 Hz, 1H), 4.75 (d of d, J = 25, 1 Hz, 1H), 6.5 (br s, 1H).

Step C: Preparation of (R)-2-[2-(2,5-difluorophenoxy)-1-methylethyl]-1H-isoindole-1,3(2H)-dione

A solution of 15.8 g (77 mmol) of (R)-2-(2-hydroxy-1-methylethyl)-1H-isoindole-1,3(2H)-dione, 24.2 g (92 mmol) of triphenylphosphine and 10.0 g (77 mmol) of 2,5-difluorophenol was stirred while 18.2 mL (116 mmol) of diethylazodicarboxylate was added dropwise. After stirring at ambient temperature overnight, solvent was removed and the residue was dissolved in ethyl acetate. The ethyl acetate was washed with water and brine. Drying (MgSO₄) and removal of solvent gave an oil which was chromatographed on silica gel to give 15.6 g of the title compound of Step C as an oil, 1H NMR (CDCl₃) δ 1.55 (d, 3H), 4.25 (m, 1H), 4.8 (m, 1H), 6.55 (m, 1H), 6.65 (m, 1H), 6.9 (m, 1H), 7.7 (m, 2H), 7.85 (m, 2H).

Step D: Preparation of 1-(2.5-difluorophenoxy)proponamine hydrochloride

A solution of 15.6 g (44.2 mmol) of (R)-2-[2-(2,5-difluorophenoxy-1-methylethyl]-1H-isoindole-1,3(2H)-dione and 7.7 mL of anhydrous hydrazine in 400 mL ethanol was heated at reflux for 2 h. Solids were filtered and rinsed with ethyl acetate. Solvent was removed and the residue was partitioned between ether and 1N HCl (aq). The aqueous layer was separated, basified with 50% sodium hydroxide and extracted with ether. The ether was washed with brine and dried (MgSO₄). After removal of solvent, the residue was redissolved in ether and 45 mL of 1N HCl in ether was added to form the hydrochloride salt precipitate. The precipitate was filtered and rinsed with ether affording 8.5 g of the title compound of Step D as a white solid, mp 127-129 °C.

Step E: Preparation of [R-(R*,R*)]-2-cyano-N-[2-(2,5-difluorophenoxy)-1-methylethyl]-4-fluoro-3,3-dimethyl-4-pentenamide mixed 1:1 with

[R-(R*,S*)]-2-cyano-N-[2-(2,5-difluorophenoxy)-1-methylethyl]-4-fluoro-3,3-dimethyl-4-pentenamide

A solution of 370 mg (2.16 mmol) of the acid from Step A, 0.19 mL (2.15 mmol) oxalyl chloride and 2 drops DMF in 10 mL CH₂Cl₂ was stirred at room temperature overnight. This mixture was added to a solution of 400 mg (1.8 mmol) of the amine salt of Step D and 0.52 mL (3.7 mmol) triethylamine in 10 mL CH₂Cl₂. After stirring overnight, 0.3 g Amberlite IRA-78 resin was added and the mixture was filtered through silica gel, rinsing through with ethyl acetate. The filtrate was concentrated to give 570 mg of the title compound of Step E as a solid, mp 106-110 °C.

10

15

20

25

30

35

EXAMPLE 8

Step A: Preparation of [R-(E)]-phenylmethyl [3-(2,5-difluorophenyl)-1-methyl-2-propenyl]carbamate

A solution of 4.0 g (21 mmol) of (*R*)-phenylmethyl 2-methyl-1-aziridinecarboxylate (Dellaria, J. F. Jr.; Sallin, K. J. *Tetrahedron Lett.* (1990), 31, 2661), 5.0 g (35 mmol) of 2,5-difluorobenzaldehyde (Aldrich) and 6.5 g (26 mmol) of triphenylphosphine (Aldrich) in 100 mL isopropyl alcohol was heated at reflux for 4 h. The mixture was cooled to 22 °C and stirred 20 h. The reaction mixture was concentrated to an oil then purified by flash silica chromatography (5% ethyl acetate in hexanes) to give 4.0 g of title compound of Step A as a 4 to 5 mixture of cis to trans isomers as a white solid mp 82-84 °C, ¹H NMR (CDCl₃) *trans* isomer: δ 7.35 (m, 5H), 7.10 (m, 1H), 6.95 (m, 2H), 6.60 (d, 1H), 6.25 (dd, 1H), 5.12 (s, 2H), 4.80 (m, 1H), 4.60 (m, 1H), 1.36 (d, 3H); *cis* isomer: δ 7.35 (m, 5H), 7.10 (m, 1H), 6.95 (m, 2H), 6.40 (d, 1H), 5.65 (dd, 1H), 5.07 (s, 2H), 4.80 (m, 1H), 4.60 (m, 1H), 1.27 (d, 3H).

Step B: Preparation of [*R*-(*E*)]-4-(2,5-difluorophenyl)-3-buten-2-amine hydrochloride

In a small flask, 3.1 g (9.8 mmol) of the product of Example 8, Step A was treated with

In a small flask, 3.1 g (9.8 mmol) of the product of Example 8, Step A was treated with 8 mL of 30% hydrogen bromide in acetic acid. The reaction mixture was stirred at 22 °C for 8 h. Diluted reaction mixture with 200 mL ethyl acetate then washed twice with 100 mL of 1N sodium hydroxide, then once with 50 mL brine. Extracted the ethyl acetate layer twice with 100 mL of 1N HCl. Treated the acidic aqueous layer with 250 mL of 1N sodium hydroxide. Then extracted this solution with ethyl acetate. Concentrated this final organic layer to give the free amine as an oil. Diluted the free amine oil in 100 mL of dry ether then treated with 20 mL of 1N HCl in ether. A white precipitate was filtered and dried to give 1.0 g of title compound of Step B as a 3 to 7 mixture of cis to trans isomers. Amine salt is a white solid, mp 133-136 °C, 1 H NMR ((CH₃)₂SO- 1 G) trans isomer: δ 8.30 (br s, 3H), 7.50 (m, 1H), 7.30 (m, 2H), 6.80 (d, 1H), 6.50 (dd, 1H), 4.00 (m, 1H), 1.39 (d, 3H); cis isomer: δ 8.30 (br s, 3H), 7.50 (m, 1H), 7.30 (m, 2H), 6.62 (d, 1H), 5.90 (t, 1H), 4.00 (m, 1H), 1.31 (d, 3H).

Step C: Preparation of [1[R-(E)]-trans]-2,2-dichloro-N-[3-(2,5-difluorophenyl)-1-methyl-2-propenyl]-1-ethyl-3-methylcyclopropanecarboxamide

In a separate flask 0.50 g (2.5 mmol) of (trans)-2,2-dichloro-1-ethyl-3-methylcyclopropanecarboxlic acid in 20 mL thionyl chloride was heated at reflux for 30 min. The reaction mixture was concentrated and the residue was dried *in vacuo*. The crude acid chloride was diluted in 20 mL of methylene chloride and added dropwise to a solution of 0.42 g (1.9 mmol) of [R-(E)]-4-(2,5-difluorophenyl)-3-buten-2-amine hydrochloride and 1.0 mL (7.1 mmol) of triethylamine in 20 mL of methylene chloride. The reaction mixture was stirred at 22 °C for 2 h then diluted with 100 mL methylene chloride and washed with 100 mL in HCl. The organic layer was concentrated to an oil. The crude amide was purified

10

by flash silica chromatography using 20% ethyl acetate in hexanes as eluent to give 130 mg of a less polar trans isomer as an oil. 1 H NMR (CDCl₃) δ 7.10 (m, 1H), 6.95 (m, 2H), 6.65 (d, 1H), 6.30 (dd, 1H), 5.80 (br s, 1H), 4.05 (m, 1H), 2.20 (q, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (d, 3H), 1.20 (d, 3H), 1.00 (t, 3H) and 140 mg of a more polar trans isomer as a white solid, mp 102-105 °C, 1 H NMR (CDCl₃) δ 7.10 (m, 1H), 6.95 (m, 2H), 6.70 (d, 1H), 6.28 (dd, 1H), 5.80 (br s, 1H), 4.85 (m, 1H), 2.23 (q, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (d, 3H), 1.20 (d, 3H), 1.00 (t, 3H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 9 can be prepared. The following abbreviations are used in the Tables which follow: t = tertiary, n = normal, i = iso, c = cyclo, F = fluorine, $B_T = \text{bromine}$, C = chlorine, $C = \text{chlori$

Z =

	Column 1	Column 2	Column 3
1	C ₆ H ₅	2- <i>n</i> -Pr-6-CN-C ₆ H ₃	2-CF ₃ -1 <i>H</i> -pyrrol-1-yl
2	2-F-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃	2,3-diCl-1 <i>H</i> -pyrrol-1-yl
3	3-F-C ₆ H ₄	2-F-3-Me-C ₆ H ₃	2,4-diCl-1 <i>H</i> -pyrrol-1-yl
4	4-F-C ₆ H ₄	2-F-5-Me-C ₆ H ₃	3,4-diCl-1 <i>H</i> -pyrrol-1-yl
5	2-C1-C ₆ H ₄	3-F-6-Me-C ₆ H ₃	2,3-diBr-1 <i>H</i> -pyrrol-1-yl
6	3-C1-C ₆ H ₄	2-thienyl	2,4-diBr-1 <i>H</i> -pyrrol-1-yl
7	4-Cl-C ₆ H ₄	3-F-2-thienyl	4-F-5-Br-1 <i>H</i> -рутгоl-1-уl
8	2-Br-C ₆ H ₄	4-F-2-thienyl	2-Cl-3-Br-1 <i>H</i> -pyrrol-1-yl
9	3-Br-C ₆ H ₄	5-Et-2-thienyl	2-Cl-4-Br-1 <i>H</i> -pyrrol-1-yl
10	4-Br-C ₆ H ₄	3-Cl-2-thienyl	3-Cl-4-Br-1 <i>H</i> -руггоl-1-уl
11	2-I-C ₆ H ₄	4-Cl-2-thienyl	3-Cl-5-Br-1 <i>H</i> -рутгоl-1-уl
12	3-I-C ₆ H ₄	5-Cl-2-thienyl	4-F-5-Me-1 <i>H</i> -pyrrol-1-yl
13	4-I-C ₆ H ₄	3-(C≡CH)-2-thienyl	2-Cl-3-Me-1 <i>H</i> -pyrrol-1-yl
14	2-Me-C ₆ H ₄	4-Br-2-thienyl	2-Cl-4-Me-1 <i>H</i> -pyrrol-1-yl
15	3-Me-C ₆ H ₄	5-Br-2-thienyl	2-Cl-5-Me-1 <i>H</i> -pyrrol-1-yl
16	4-Me-C ₆ H ₄	3-(CH=CH ₂)-2-thienyl	3-Cl-4-Me-1 <i>H</i> -рупоl-1-уl

	Column 1	Column 2	Column 3
17	2-Et-C ₆ H ₄	3,4-diF-2-thienyl	3-Cl-5-Me-1 <i>H</i> -руггоl-1-уl
18	2-CN-C ₆ H ₄	3-F-5-Br-2-thienyl	4-Cl-5-Me-1 <i>H</i> -pyrrol-1-yl
19	2-CF ₃ -C ₆ H ₄	4-F-5-Br-2-thienyl	2-Br-3-Me-1 <i>H</i> -pyrrol-1-yl
20	2-n-Pt-C6H4	3-Br-4-F-2-thienyl	2-Br-4-Me-1 <i>H</i> -рутгоl-1-уl
21	2- <i>i-</i> Pr-C ₆ H ₄	3-Br-5-F-2-thienyl	2-Br-5-Me-1 <i>H-</i> руттоl-1-уl
22	2-n-Bu-C ₆ H ₄	4-Br-5-F-2-thienyl	3-Br-4-Me-1 <i>H</i> -pyrrol-1-yl
23	2-SiMe ₃ -C ₆ H ₄	3-F-4-Me-2-thienyl	3-Br-5-Me-1 <i>H</i> -pyrrol-1-yl
24	2-CH ₂ F-C ₆ H ₄	3-F-5-Me-2-thienyl	4-Br-5-Me-1 <i>H</i> -рупоl-1-уl
25	3-CH ₂ F-C ₆ H ₄	4-F-5-Me-2-thienyl ~	2-n-Pr-3-F-1H-pyrrol-1-yl
26	2-CH ₂ CN-C ₆ H ₄	3-Me-4-F-2-thienyl	2-n-Pr-4-F-1H-pyrrol-1-yl
27	2-CH ₂ CH ₂ F-C ₆ H ₄	3-Me-5-F-2-thienyl	2-n-Pr-5-F-1H-pyrrol-1-yl
28	2-(CH=CH ₂)-C ₆ H ₄	4-Me-5-F-2-thienyl	2-n-Pr-3-Cl-1H-pyrrol-1-yl
29	2-(CH ₂ CH=CH ₂)-C ₆ H ₄	3-Me-5-Cl-2-thienyl	2-n-Pr-4-Cl-1H-pyrrol-1-yl
30	2-(CH=CHCN)-C ₆ H ₄	3-Br-5-Me-2-thienyl	2-n-Pr-5-Cl-1H-pyrrol-1-yl
31	2-(C≡CH)-C ₆ H ₄	3-Me-5-Br-2-thienyl	2-n-Pr-3-Br-1H-pyrrol-1-yl
32	2-(CH ₂ C≡CH)-C ₆ H ₄	4-Me-5-Br-2-thienyl	2-n-Pr-4-Br-1H-pyrrol-1-yl
33	2-(C≡CMe)-C ₆ H ₄	3-n-Pr-4-F-2-thienyl	2- <i>n</i> -Pr-5-Br-1 <i>H</i> -pyrrol-1-yl
34	2-(t-Bu)-C ₆ H ₄	3-n-Pr-5-F-2-thienyl	2-n-Pr-3-Me-1H-pyrrol-1-yl
35	2-[CH(F)Me]-C ₆ H ₄	3-CN-5-Br-2-thienyl	2-n-Pr-4-Me-1H-pyrrol-1-yl
36	2,3-diF-C ₆ H ₃	3-thienyl	2-n-Pr-5-Me-1 <i>H</i> -pyrrol-1-yl
37	2,4-diF-C ₆ H ₃	2-F-3-thienyl	2-CN-3-F-1H-pyrrol-1-yl
38	2,5-diF-C ₆ H ₃	4-F-3-thienyl	2-CN-4-F-1 <i>H</i> -рутгоl-1-уl
39	2,6-diF-C ₆ H ₃	5-F-3-thienyl	2-CN-5-F-1 <i>H</i> -рулгоl-1-уl
40	3,4-diF-C ₆ H ₃	2-Cl-3-thienyl	2-CN-3-Cl-1 <i>H</i> -pyrrol-1-yl
41	3,5-diF-C ₆ H ₃	4-Cl-3-thienyl	2-CN-4-Cl-1 <i>H</i> -pyrrol-1-yl
42	2,3-diCl-C ₆ H ₃	5-Cl-3-thienyl	2-CN-5-Cl-1 <i>H</i> -pyrrol-1-yl
43	2,4-diCl-C ₆ H ₃	2-CN-3-thienyl	2-CN-3-Br-1 <i>H</i> -рупоl-1-уl
44	2,5-diCl-C ₆ H ₃	5-CN-3-thienyl	2-CN-4-Br-1H-pyrrol-1-yl
45	2,6-diCl-C ₆ H ₃	2-Br-3-thienyl	2-CN-5-Br-1H-pyrrol-1-yl
46	3,4-diCl-C ₆ H ₃	5-Br-3-thienyl	2-CN-3-Me-1H-pyrrol-1-yl
47	3,5-diCl-C ₆ H ₃	2-n-Pr-3-thienyl	2-CN-4-Me-1H-pyrrol-1-yl
48	2,5-diBr-C ₆ H ₃	2-(CH ₂ CN)-3-thienyl	2-CN-5-Me-1 <i>H</i> -pyrrol-1-yl
49	2-Br-5-Cl-C ₆ H ₃	2,5-diCl-3-thienyl	2-CN-5-n-Pr-1H-pyrrol-1-yl
50	3-Br-6-Cl-C ₆ H ₃	2,5-diBr-3-thienyl	2,3,4-triCl-1 <i>H</i> -pyrrol-1-yl
51	2-Br-5-Me-C ₆ H ₃	2-F-5-Cl-3-thienyl	2,3,5-triCl-1 <i>H</i> -рупоl-1-уl
52	3-Br-6-Me-C ₆ H ₃	2-Cl-5-F-3-thienyl	2,3-diCl-4-Me-1 <i>H</i> -pyrrol-1-yl

	Column 1	Column 2	Column 3
53	2-CN-3-F-C ₆ H ₃	2-F-5-Br-3-thienyl	2,3-diCl-5-Me-1 <i>H</i> -pyrrol-1-yl
54	2-CN-5-F-C ₆ H ₃	2-Br-5-F-3-thienyl	2,4-diCl-3-Me-1 <i>H</i> -pyrrol-1-yl
55	2-CN-6-F-C ₆ H ₃	2-Cl-5-Br-3-thienyl	2,4-diCl-5-Me-1 <i>H</i> -pyrrol-1-yl
56	2-CN-3-Cl-C ₆ H ₃	2-Br-5-Cl-3-thienyl	2,5-diCl-3-Me-1 <i>H</i> -pyrrol-1-yl
57	2-CN-5-CI-C ₆ H ₃	2-n-Pr-5-F-3-thienyl	2-CN-3,5-diMe-1H-pyrrol-1-yl
58	2-CN-6-Cl-C ₆ H ₃	2-CN-5-F-3-thienyl	2-CN-4,5-diMe-1H-pyrrol-1-yl
59	2-CN-5-Br-C ₆ H ₃	2-CN-5-Cl-3-thienyl	2-CN-3,4-diCl-1 <i>H</i> -pyrrol-1-yl
60	2-CN-3-CF ₃ -C ₆ H ₃	2-CN-5-Br-3-thienyl	2-CN-3,5-diCl-1 <i>H</i> -pyrrol-1-yl
61	2-CN-3-Me-C ₆ H ₃	2-CN-5-Me-3-thienyl	2-CN-4,5-diCl-1 <i>H</i> -pyrrol-1-yl
62	2-CN-5-Me-C ₆ H ₃	1 <i>H</i> -pyrrol-1-yl	2-CN-3-Cl-4-Me-1H-pyrrol-1-yl
63	2-CN-6-Me-C ₆ H ₃	2-F-1 <i>H</i> -pyrrol-1-yl	2-CN-3-Cl-5-Me-1H-pyrrol-1-yl
64	2-Br-4-F-C ₆ H ₃	3-F-1 <i>H</i> -pyrrol-1-yl	2-CN-3-Me-4-Cl-1 <i>H</i> -ругтоl-1-уl
65	2-Br-5-F-C ₆ H ₃	2-I-1 <i>H</i> -pyrrol-1-yl	2-CN-3-Me-5-Cl-1 <i>H</i> -ру л тоl-1-уl
66	2-Cl-3-Me-C ₆ H ₃	2-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-4-Me-5-Cl-1 <i>H</i> -py rr ol-1-yl
67	2-Cl-5-Me-C ₆ H ₃	3-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-4-Cl-5-Me-1H-pyrrol-1-yl
68	2-Cl-6-Me-C ₆ H ₃	2-CN-1 <i>H</i> -pyrrol-1-yl	2-CN-4-Br-5-Me-1H-pyrrol-1-yl
69	3-Cl-5-Me-C ₆ H ₃	2-Br-1 <i>H</i> -pyrrol-1-yl	2,3,4,5-tetraCl-1 <i>H</i> -pyrrol-1-yl
70	2-n-Pr-3-F-C ₆ H ₃	2-n-Pr-1H-pyrrol-1-yl	2,3,5-triCl-4-Me-1H-pyrrol-1-yl
71	2-n-Pr-4-F-C ₆ H ₃	2-i-Pr-1H-pyrrol-1-yl	2,5-diCl-3,4-diMe-1 <i>H</i> -pyrrol-1-yl
72	2-n-Pr-5-F-C ₆ H ₃	2- <i>n</i> -Bu-1 <i>H</i> -pyrrol-1-yl	2,3,4-triCl-5-CN-1H-pyrrol-1-yl
73	2-n-Pr-3-Cl-C ₆ H ₃	2-CH ₂ CN-1 <i>H</i> -pyrrol-1-yl	2,3,4-triMe-5-CN-1H-pyrrol-1-yl
74	2-n-Pr-5-Cl-C ₆ H ₃	2-t-Bu-1H-pyrrol-1-yl	2,3-Cl-4-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
·75	2-n-Pr-5-Br-C ₆ H ₃	5-Et-1 <i>H</i> -pyrrol-1-yl	2,4-Cl-3-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
76	2-n-Pr-5-Me-C ₆ H ₃	2-(C≡CH)-1 <i>H</i> -pyrrol-1-yl	3,4-Cl-2-Me-5-CN-1 <i>H</i> -руггоl-1-уl

Z =

	Column 1	Column 2	Column 3
1	C ₆ H ₅	2-CN-5-I-C ₆ H ₃	3-CH ₂ Cl-2-thienyl
2	2-F-C ₆ H ₄	2-CN-6-Me-C ₆ H ₃	3-CH ₂ Br-2-thienyl
3	3-F-C ₆ H ₄	2-Br-4-F-C ₆ H ₃	3-(CH ₂ CN)-2-thienyl

	Column 1	Column 2	Column 3
4	4-F-C ₆ H ₄	2-Br-5-F-C ₆ H ₃	5-SiMe ₃ -2-thienyl
5	2-Cl-C ₆ H ₄	3-Br-6-F-C ₆ H ₃	3-(CH=CH ₂)-2-thienyl
6	3-Cl-C ₆ H ₄	2-Cl-3-Me-C ₆ H ₃	3-(CH=CHMe)-2-thienyl
7	4-Cl-C ₆ H ₄	2-Cl-5-Me-C6H3	3-(CH ₂ CH=CH ₂)-2-thienyl
8	2-Br-C ₆ H ₄	2-Cl-6-Me-C ₆ H ₃	3-(CH ₂ C≡CH)-2-thienyl
9	3-Br-C ₆ H ₄	3-Cl-5-Me-C ₆ H ₃	3-(C=CMe)-2-thienyl
10	4-Br-C ₆ H ₄	3-Cl-6-Me-C ₆ H ₃	3-(CH=CHCN)-2-thienyl
11	2-I-C ₆ H ₄	2-n-Pr-3-F-C ₆ H ₃	3,5-diF-2-thienyl
12	3-I-C ₆ H ₄	2-n-Pr-5-F-C ₆ H ₃	3,5-diCl-2-thienyl
13	4-I-C ₆ H ₄	2-n-Pr-6-F-C ₆ H ₃	3-F-5-Cl-2-thienyl
14	2-Me-C ₆ H ₄	2-n-Pr-3-Cl-C ₆ H ₃	3-Cl-5-F-2-thienyl
15	3-Me-C ₆ H ₄	2-n-Pr-5-Cl-C ₆ H ₃	3-F-5-Br-2-thienyl
16	4-Me-C ₆ H ₄	2- <i>n</i> -Рт-5-Вг-С ₆ Н ₃	3-Br-4-F-2-thienyl
17	2-Et-C ₆ H ₄	2- <i>п</i> -Рт-5-Ме-С ₆ Н ₃	3-Br-5-F-2-thienyl
18	3-Et-C ₆ H ₄	2-n-Pr-6-CN-C ₆ H ₃	3-F-5-Me-2-thienyl
19	2-CN-C ₆ H ₄	2-Cl-3-F-C ₆ H ₃	3-Me-5-F-2-thienyl
20	2-CF ₃ -C ₆ H ₄	2-Cl-5-F-C ₆ H ₃	3-Br-5-Cl-2-thienyl
21	2-n-Pr-C ₆ H ₄	2-Cl-6-F-C ₆ H ₃	3-Cl-5-Me-2-thienyl
22	3- <i>n</i> -Pr-C ₆ H ₄	3-Cl-2-F-C ₆ H ₃	3-Me-5-Cl-2-thienyl
23	2-i-Pr-C ₆ H ₄	3-Cl-6-F-C ₆ H ₃	3-Br-5-Me-2-thienyl
24	3-i-Pr-C ₆ H ₄	4-Cl-2-F-C ₆ H ₃	3-Me-5-Br-2-thienyl
25	3-SCF ₃ -C ₆ H ₄	2-F-3-Me-C ₆ H ₃	3-n-Pr-5-Cl-2-thienyl
26	2-n-Bu-C ₆ H ₄	2-F-5-Me-C ₆ H ₃	3-CN-5-F-2-thienyl
27	3-SiMe ₃ -C ₆ H ₄	2-F-6-Me-C ₆ H ₃	3-CN-5-Cl-2-thienyl
28	3-SCF ₂ H-C ₆ H ₄	3-F-6-Me-C ₆ H ₃	3-CN-5-Br-2-thienyl
29	2-CH ₂ F-C ₆ H ₄	2,3,4-triF-C ₆ H ₂	3-CN-5-Me-2-thienyl
30	3-CH ₂ F-C ₆ H ₄	2,3,5-triF-C ₆ H ₂	3-thienyl
31	2-CH ₂ Cl-C ₆ H ₄	2,3,6-triF-C ₆ H ₂	2-F-3-thienyl
32	2-CH ₂ Br-C ₆ H ₄	2,4,5-triF-C ₆ H ₂	4-F-3-thienyl
33	2-CH ₂ CN-C ₆ H ₄	2,3,5-triCl-C ₆ H ₂	5-F-3-thienyl
34	2-CH ₂ CH ₂ F-C ₆ H ₄	2,3,6-triCl-C ₆ H ₂	2-I-3-thienyl
35	2-CH ₂ CH ₂ Cl-C ₆ H ₄	2,4,6-triCl-C ₆ H ₂	5-I-3-thienyl
36	2-CH ₂ CH ₂ CN-C ₆ H ₄	2,5-diF-3-Cl-C ₆ H ₂	2-Me-3-thienyl
37	2-(CH=CH ₂)-C ₆ H ₄	2,5-diF-6-Cl-C ₆ H ₂	5-Me-3-thienyl
38	2-(CH=CHMe)-C ₆ H ₄	2,3-diCl-5-F-C ₆ H ₂	2-Et-3-thienyl
39	2-(CH ₂ CH=CH ₂)-C ₆ H ₄	2,3-diCl-6-F-C ₆ H ₂	2-Cl-3-thienyl

	Column 1	Column 2	Column 3
40	2-(CH=CHCN)-C6H4	2,5-diCl-3-F-C ₆ H ₂	4-Cl-3-thienyl
41	2-(C≡CH)-C ₆ H ₄	2,5-diCl-6-F-C ₆ H ₂	5-Cl-3-thienyl
42	2-(CH ₂ C≡CH)-C ₆ H ₄	2,6-diCl-3-F-C ₆ H ₂	2-CN-3-thienyl
43	2-(C≡CMe)-C ₆ H ₄	2,3-diF-5-Me-C ₆ H ₂	2-(C≡CH)-3-thienyl
44	2-(t-Bu)-C ₆ H ₄	2,5-diF-3-Me-C ₆ H ₂	2-Br-3-thienyl
45	2-(CH ₂ C≡CMe)-C ₆ H ₄	2,5-diF-6-Me-C ₆ H ₂	5-Br-3-thienyl
46	2-[CH(F)Me]-C ₆ H ₄	2-CN-3,5-diF-C ₆ H ₂	2-n-Pr-3-thienyl
47	2-[CH(Cl)Me]-C ₆ H ₄	2-CN-3,6-diF-C ₆ H ₂	2-i-Pr-3-thienyl
48	2-[CH(Br)Me]-C ₆ H ₄	2-CN-5,6-diF-C ₆ H ₂	2-n-Bu-3-thienyl
49	2-[CH(CN)Me]-C ₆ H ₄	2-CN-3-F-5-Cl-C ₆ H ₂	2-CH ₂ F-3-thienyl
50	2-[CH(CN)CH ₂ Me]-C ₆ H ₄	2-CN-3-Me-5-Cl-C ₆ H ₂	2-(CH ₂ CN)-3-thienyl
51	2-(CH ₂ CH ₂ C≡CH)-C ₆ H ₄	2-CN-3-Me-5-F-C ₆ H ₂	2-t-Bu-3-thienyl
52	2,3-diF-C ₆ H ₃	2-CN-5-F-6-Cl-C ₆ H ₂	2-(CH ₂ CH ₂ CN)-3-thienyl
53	2,4-diF-C ₆ H ₃	2-Cl-3-F-5-Me-C ₆ H ₂	2-(CH=CH ₂)-3-thienyl
54	2,5-diF-C ₆ H ₃	2-F-3-Cl-5-Me-C ₆ H ₂	2-(CH=CHMe)-3-thienyl
55	2,6-diF-C ₆ H ₃	2,3,4,5-tetraF-C ₆ H	2-(CH ₂ CH=CH ₂)-3-thienyl
56	3,4-diF-C ₆ H ₃	2,3,4,6-tetraF-C ₆ H	2-(CH ₂ C≡CH)-3-thienyl
57	3,5-diF-C ₆ H ₃	2,3,5,6-tetraF-C ₆ H	2-(C≡CMe)-3-thienyl
58	2,5-diCl-C ₆ H ₃	2-thienyl	2-(CH=CHCN)-3-thienyl
59	2,6-diCl-C ₆ H ₃	3-F-2-thienyl	2,4-diF-3-thienyl
60	3,5-diCl-C ₆ H ₃	4-F-2-thienyl	2,5-diF-3-thienyl
61	2,5-diBr-C ₆ H ₃	5-F-2-thienyl	4,5-diF-3-thienyl
62	2-Br-5-Cl-C ₆ H ₃	5-I-2-thienyl	2,5-diCl-3-thienyl
63	2-Br-5-Me-C ₆ H ₃	3-Me-2-thienyl	2,5-diBr-3-thienyl
64	2-CN-3-F-C ₆ H ₃	5-Me-2-thienyl	2-Cl-5-Br-3-thienyl
65	2-CN-4-F-C ₆ H ₃	3-Cl-2-thienyl	2-Br-5-Cl-3-thienyl
66	2-CN-5-F-C ₆ H ₃	4-Cl-2-thienyl	2-Br-5-Me-3-thienyl
67	2-CN-6-F-C ₆ H ₃	5-Cl-2-thienyl	2-Me-5-Br-3-thienyl
68.	2-CN-3-CI-C ₆ H ₃	3-CN-2-thienyl	2-n-Pr-5-Cl-3-thienyl
69	2-CN-5-CI-C ₆ H ₃	5-(C≡CH)-2-thienyl	2-n-Pr-5-Br-3-thienyl
70	2-CN-6-CI-C ₆ H ₃	3-Br-2-thienyl	2-CN-5-Cl-3-thienyl
71	2-CN-5-Br-C ₆ H ₃	5-Br-2-thienyl	2-CN-5-Br-3-thienyl
72	2-CN-3-I-C ₆ H ₃	3-n-Pr-2-thienyl	2-CN-5-Me-3-thienyl
73	2-CN-3-Me-C ₆ H ₃	5-n-Pr-2-thienyl	2-CN-5-t-Bu-C ₆ H ₃
74	2-CN-5-Me-C ₆ H ₃	5-i-Pr-2-thienyl	

	Column 1	Column 2	Column 3
1	C ₆ H ₅	2-CN-3-Cl-C ₆ H ₃	2,3,5,6-tetraCl-C ₆ H
2	2-F-C ₆ H ₄	2-CN-4-CI-C ₆ H ₃	2,3,5-triCl-6-CN-C ₆ H
3	3-F-C ₆ H ₄	2-CN-5-CI-C6H3	2,3,4-triF-6-CN-C ₆ H
4	4-F-C ₆ H ₄	2-CN-6-C1-C ₆ H ₃	2,5-diCl-3,6-diF-C ₆ H
5	2-CI-C ₆ H ₄	2-CN-5-Br-C ₆ H ₃	2,5-diF-3-Cl-6-CN-C ₆ H
6	3-Cl-C ₆ H ₄	2-CN-3-I-C ₆ H ₃	1 <i>H-</i> pyrrol-1-yl
7	4-Cl-C ₆ H ₄	2-CN-3-CF ₃ -C ₆ H ₃	2-F-1 <i>H</i> -pyrrol-1-yl
8	2-Вт-С ₆ Н ₄	2-CN-6-CF ₃ -C ₆ H ₃	3-F-1 <i>H</i> -pyrrol-1-yl
9	3-Br-C ₆ H ₄	2-CN-3-Me-C ₆ H ₃	2-I-1 <i>H</i> -pyrrol-1-yl
10	4-Br-C ₆ H ₄	2-CN-5-Me-C ₆ H ₃	2-Cl-1 <i>H</i> -руггоl-1-уl
11	2-I-C ₆ H ₄	2-Br-4-F-C ₆ H ₃	3-Cl-1 <i>H</i> -pyrrol-1-yl
12	3-I-C ₆ H ₄	2-Br-5-F-C ₆ H ₃	2-CN-1H-pyrrol-1-yl
13	4-I-C ₆ H ₄	3-Br-6-F-C ₆ H ₃	2-Br-1 <i>H</i> -pyrrol-1-yl
14	2-Me-C ₆ H ₄	2-CI-3-Me-C ₆ H ₃	2-n-Pr-1H-pyrrol-1-yl
15	3-Me-C ₆ H ₄	2-Cl-5-Me-C ₆ H ₃	2- <i>n</i> -Bu-1 <i>H</i> -рупоl-1-уl
16	4-Me-C ₆ H ₄	3-C1-5-Me-C ₆ H ₃	2-t-Bu-1 <i>H</i> -pyrrol-1-yl
17	2-Et-C ₆ H ₄	2-n-Pr-3-F-C ₆ H ₃	2,3-diCl-1 <i>H</i> -pyrrol-1-yl
18	3-Et-C ₆ H ₄	2-n-Pr-4-F-C ₆ H ₃ .	2,4-diCl-1 <i>H-</i> pyrrol-1-yl
19	2-CN-C ₆ H ₄	2- <i>n</i> -Pr-5-F-C ₆ H ₃	2,5-diCl-1 <i>H</i> -pyrrol-1-yl
20	2-CF ₃ -C ₆ H ₄	2- <i>n</i> -Pr-6-F-C ₆ H ₃	2,3-diBr-1H-pyrrol-1-yl
21	2-n-Pr-C ₆ H ₄	2- <i>n</i> -Pr-3-Cl-C ₆ H ₃	2,4-diBr-1H-pyrrol-1-yl
22	3-n-Pr-C ₆ H ₄	2-n-Pr-5-Cl-C ₆ H ₃	2,5-diBr-1H-pyrrol-1-yl
23	2-i-Pr-C ₆ H ₄	2- <i>n</i> -Pr-5-Br-C ₆ H ₃	2-Cl-3-Br-1 <i>H</i> -pyrrol-1-yl
24	3-i-Pr-C ₆ H ₄	2-n-Pr-5-Me-C ₆ H ₃	2-Cl-4-Br-1 <i>H</i> -pyrrol-1-yl
25	2-n-Bu-C ₆ H ₄	2-Cl-3-F-C ₆ H ₃	2-Cl-5-Br-1H-pyrrol-1-yl
26	3-SiMe ₃ -C ₆ H ₄	2-Cl-4-F-C ₆ H ₃	3-Cl-5-Br-1 <i>H</i> -pyrrol-1-yl
27	2-CH ₂ F-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃	4-Cl-5-Br-1H-pyrrol-1-yl
28	3-CH ₂ F-C ₆ H ₄	2-Cl-6-F-C ₆ H ₃	2-Cl-3-Me-1 <i>H</i> -pyrrol-1-yl
29	2-CH ₂ Cl-C ₆ H ₄	3-Cl-2-F-C ₆ H ₃	2-Cl-4-Me-1H-pyrrol-1-yl

	Column 1	Column 2	Column 3
30	2-CH ₂ Br-C ₆ H ₄	3-Cl-6-F-C ₆ H ₃	2-Cl-5-Me-1 <i>H-</i> pyrrol-1-yl
31	2-CH ₂ CN-C ₆ H ₄	2-F-3-Me-C ₆ H ₃	2-Br-3-Me-1H-pyrrol-1-yl
32	2-CH ₂ CH ₂ F-C ₆ H ₄	2-F-5-Me-C ₆ H ₃	2-Br-4-Me-1H-pyrrol-1-yl
33	2-CH ₂ CH ₂ Cl-C ₆ H ₄	2-F-6-Me-C ₆ H ₃	2-Br-5-Me-1 <i>H</i> -pyrrol-1-yl
34	2-CH ₂ CH ₂ CN-C ₆ H ₄	3-F-6-Me-C ₆ H ₃	3-Br-4-Me-1 <i>H</i> -pyrrol-1-yl
35	2-(CH=CH ₂)-C ₆ H ₄	2,3,4-triF-C ₆ H ₂	2-CN-3-Cl-1 <i>H</i> -pyrrol-1-yl
36	2-(CH=CHMe)-C ₆ H ₄	2,3,5-triF-C ₆ H ₂	2-CN-4-Cl-1 <i>H</i> -pyrrol-1-yl
37	2-(CH ₂ CH=CH ₂)-C ₆ H ₄	2,3,6-triF-C ₆ H ₂	2-CN-5-Cl-1 <i>H</i> -pyrrol-1-yl
38	2-(C≡CH)-C ₆ H ₄	2,4,5-triF-C ₆ H ₂	2-CN-3-Br-1 <i>H</i> -pyrrol-1-yl
39	2-(CH ₂ C≡CH)-C ₆ H ₄	2,4,6-triF-C ₆ H ₂	2-CN-4-Br-1H-pyrrol-1-yl
40	2-(C≡CMe)-C ₆ H ₄	2,3,5-triCl-C ₆ H ₂	2-CN-5-Br-1H-pyrrol-1-yl
41	2-(C≡CCH ₂ Me)-C ₆ H ₄	2,3,6-triCl-C ₆ H ₂	2-CN-3-Me-1H-pyrrol-1-yl
42	2-(t-Bu)-C ₆ H ₄	2,3-diF-5-Cl-C ₆ H ₂	2-CN-4-Me-1H-pyrrol-1-yl
43	2-[CH(F)Me]-C ₆ H ₄	2,3-diF-6-Cl-C ₆ H ₂	2-CN-5-Me-1 <i>H</i> -pyrrol-1-yl
44	2-[CH(Cl)Me]-C ₆ H ₄	2,5-diF-3-Cl-C ₆ H ₂	2-CN-5-n-Pr-1H-pyrrol-1-yl
45	2-[CH(Br)Me]-C ₆ H ₄	2,5-diF-6-Cl-C ₆ H ₂	2,3,4-triCl-1 <i>H</i> -pyrrol-1-yl
46	2-[CH(CN)Me]-C ₆ H ₄	2,6-diF-3-Cl-C ₆ H ₂	2,3,5-triCl-1 <i>H</i> -pyrrol-1-yl
47	2-[CH=C(Me) ₂]-C ₆ H ₄	2,3-diCl-5-F-C ₆ H ₂	2,3-diCl-4-Me-1 <i>H</i> -pyrrol-1-yl
48	2-[CH(Me)CH=CH ₂]-C ₆ H ₄	2,5-diCl-3-F-C ₆ H ₂	2,3-diCl-5-Me-1 <i>H</i> -pyrrol-1-yl
49	2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄	2,5-diCl-6-F-C ₆ H ₂	2,4-diCl-3-Me-1 <i>H</i> -pyrrol-1-yl
50	2-(CH ₂ CH ₂ C≡CH)-C ₆ H ₄	2,3-diF-5-Me-C ₆ H ₂	2,4-diCl-5-Me-1H-pyrrol-1-yl
51	2,3-diF-C ₆ H ₃	2,5-diF-3-Me-C ₆ H ₂	2,5-diCl-3-Me-1 <i>H</i> -pyrrol-1-yl
52	2,4-diF-C ₆ H ₃	2,5-diF-6-Me-C ₆ H ₂	2-CN-3,5-diMe-1 <i>H</i> -pyrrol-1-yl
53	2,5-diF-C ₆ H ₃	2,5-diCl-3-Me-C ₆ H ₂	2-CN-4,5-diMe-1H-pyrrol-1-yl
54	2,6-diF-C ₆ H ₃	2,5-diCl-6-Me-C ₆ H ₂	2-CN-3,5-diCl-1H-pyrrol-1-yl
55	3,4-diF-C ₆ H ₃	2-CN-3,5-diMe-C ₆ H ₂	2-CN-4,5-diCl-1H-pyrrol-1-yl
56	3,5-diF-C ₆ H ₃	2-CN-3,5-diCl-C ₆ H ₂	2-CN-3-Cl-4-Me-1H-pyrrol-1-yl
57	2,3-diCl-C ₆ H ₃	2-CN-3,5-diF-C ₆ H ₂	2-CN-3-Cl-5-Me-1H-pyrrol-1-yl
58 .	2,4-diCl-C ₆ H ₃	2-CN-5,6-diF-C ₆ H ₂	2-CN-3-Me-4-Cl-1 <i>H</i> -рутгоl-1-уl
59	2,5-diCl-C ₆ H ₃	2-CN-3-F-5-Cl-C ₆ H ₂	2-CN-3-Me-5-Cl-1H-pyrrol-1-yl
60	2,6-diCl-C ₆ H ₃	2-CN-3-Me-5-Cl-C ₆ H ₂	2-CN-4-Me-5-Cl-1 <i>H</i> -pyrrol-1-yl
61	3,4-diCl-C ₆ H ₃	2-CN-3-Me-5-F-C ₆ H ₂	2-CN-4-Cl-5-Me-1H-pyrrol-1-yl
62	3,5-diCl-C ₆ H ₃	2-CN-5-F-6-Cl-C ₆ H ₂	2-CN-4-Br-5-Me-1 <i>H</i>
63	2,5-diBr-C ₆ H ₃	2-Cl-3-F-5-Me-C ₆ H ₂	2,3,4,5-tetraCl-1 <i>H</i> -pyrrol-1-yl
64	2-Br-5-Cl-C ₆ H ₃	2-Cl-3-F-6-Me-C ₆ H ₂	2,3,5-triCl-4-Me-1H-pyrrol-1-yl
65	3-Br-6-Cl-C ₆ H ₃	2-F-3-Cl-5-Me-C6H2	2,5-diCl-3,4-diMe-1 <i>H</i> -pyrrol-1-yl

	Column 1	Column 2	Column 3
66	2-Br-5-Me-C ₆ H ₃	2,3,4,5-tetraF-C ₆ H	2,3,4-triCl-5-CN-1 <i>H</i> -pyrrol-1-yl
67	3-Br-6-Me-C ₆ H ₃	2,3,4,6-tetraF-C ₆ H	2,3,4-triMe-5-CN-1 <i>H</i> -pyrrol-1-yl
68	2-CN-3-F-C ₆ H ₃	2,3,5,6-tetraF-C ₆ H	2,3-Cl-4-Me-5-CN-1 <i>H</i> -рутгоl-1-уl
69	2-CN-4-F-C ₆ H ₃	2,3,4,5-tetraCl-C ₆ H	2,4-Cl-3-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
70	2-CN-5-F-C ₆ H ₃	2,3,4,6-tetraCl-C ₆ H	3,4-Cl-2-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
71	2-CN-6-F-C ₆ H ₃		

TABLE 4

$$NC \bigvee_{R^6}^{O} \bigvee_{R^2}^{R^1} X \bigvee_{Z}$$

\mathbb{R}^{1}	\mathbb{R}^2	R ⁶	x		Column 1	Column 2
H	Н	t-Bu	0	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
н	Н	t-Bu	O	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Н	H	t-Bu	O	Z=	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
H	Н	t-Bu	Ο	Z=	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
·H	H	<i>t-</i> Bu	O	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
н	H	t-Bu	0	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Н	H	t-Bu	CH ₂	Z=	С ₆ Н ₅	2,5-diF-C ₆ H ₃
н	H	t-Bu	CH ₂	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Н	H	t-Bu	с н ₂	Z=	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Н	H	t-Bu	CH ₂	Z =	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
H	H	t-Bu	CH ₂	Z =	. 3-C1-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Н	H	t-Bu	СH ₂	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Н	H	<i>t</i> -Bu	=CH	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
H	Н	t-Bu	=CH	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
H	H	t-Bu	=CH	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Н	Н	t-Bu	=CH	Z =	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
H	Н	<i>t</i> -Bu	=CH	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
H	H	<i>t</i> -Bu	=CH	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	Me	t-Bu	Ο	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Me	t-Bu	Ο	<u>z</u> =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Me	t-Bu	Ο	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Me	<i>t</i> -Bu	0	Z =	2-CN-C ₆ H ₄	2-C1-5-F-C ₆ H ₃
Me	Me	t-Bu	0	Z =	3-Cl-C6H4	2-CN-5-F-C ₆ H ₃

$\mathbb{R}^{\mathbb{I}}$	R ²	R ⁶	x		Column 1	Column 2
Me	Me	t-Bu	0	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	Et	<i>t</i> -Bu	0	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Et	t-Bu	О	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Et	t-Bu	O	Z=	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Et	t-Bu	0	Z=	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Et	t-Bu	О	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Et	<i>t</i> -Bu	0	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	t-Bu	CH(Me)	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	H	<i>t</i> -Bu	CH(Me)	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Н	t-Bu	CH(Me)	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Н	<i>t</i> -Bu	CH(Me)	Z =	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Н	t-Bu	CH(Me)	Z=	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	t-Bu	CH(Me)	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	t-Bu	CH(Et)	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Н	t-Bu	CH(Et)	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Н	t-Bu	CH(Et)	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	H	t-Bu	CH(Et)	Z =	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	H	t-Bu	CH(Et)	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C6H3
Me	н	t-Bu	CH(Et)	z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	Н	t-Bu	CH(n-Pr)	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	H	<i>t</i> -Bu	CH(n-Pr)	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	t-Bu	CH(n-Pr)	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Ме	Н	t-Bu	CH(n-Pr)	Z =	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	H	<i>t-</i> Bu	CH(n-Pr)	Z =	3-C1-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	<i>t</i> -Bu	CH(n-Pr)	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	<i>t-</i> Bu	=C(Me)	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	H	t-Bu	=C(Me)	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	<i>t</i> -Bu	=C(Me)	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Н.	<i>t</i> -Bu	=C(Me)	Z =	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	н	<i>t</i> -Bu	=C(Me)	$\mathbf{Z} =$	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	н	<i>t</i> -Bu	=C(Me)	Z=	3-F-C ₆ H ₄	2-CN-5-C1-C6H3
Me	н	<i>t</i> -Bu	=C(Et)	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	н	t-Bu	=C(Et)	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	н	t-Bu	=C(Et)	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	н	t-Bu	=C(Et)	Z =	2-CN-C6H4	2-Cl-5-F-C ₆ H ₃
Me	н	<i>t</i> -Bu	=C(Et)	Z =	3-C1-C ₆ H ₄	2-CN-5-F-C ₆ H ₃

\mathbb{R}^{1}	R ²	R ⁶	х		Column 1	Column 2
Me	Н	<i>t</i> -Bu	=C(Et)	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Н	Н	t-Bu	CH ₂	Z=	2-thienyl	3,5-diF-2-thienyl
Н	Н	t-Bu	CH ₂	Z=	3-F-2-thienyl	3,5-diCl-2-thienyl
н	Н	t-Bu	CH ₂	Z=	3-Cl-2-thienyl	3-Cl-5-F-2-thienyl
н	H	<i>t</i> -Bu	CH ₂	Z=	3-CN-2-thienyl	3-F-5-Cl-2-thienyl
Н	H	t-Bu	CH ₂	Z=	5-F-2-thienyl	3-CN-5-F-2-thienyl
н	H	t-Bu	CH ₂	Z =	5-Cl-2-thienyl	3-CN-5-Cl-2-thienyl
Н	Н	<i>t-</i> Bu	=CH	Z =	2-thienyl	3,5-diF-2-thienyl
Н	Н	<i>t</i> -Bu	=CH	Z=	3-F-2-thienyl	3,5-diCl-2-thienyl
Н	H	<i>t</i> -Bu	=CH	Z=	3-Cl-2-thienyl	' 3-Cl-5-F-2-thienyl
Н	H	<i>t</i> -Bu	=CH	Z =	3-CN-2-thienyl	3-F-5-Cl-2-thienyl
Н	H	<i>t</i> -Bu	=CH	Z =	5-F-2-thienyl	3-CN-5-F-2-thienyl
Н	Н	t-Bu	=CH	Z =	5-Cl-2-thienyl	3-CN-5-Cl-2-thienyl
Н	н	<i>t</i> -Bu	CH ₂	Z =	3-thienyl	2,5-diF-3-thienyl
· H	н	t-Bu	CH_2	Z =	2-F-3-thienyl	2,5-diCl-3-thienyl
Н	Н	t-Bu	CH_2	Z =	2-Cl-3-thienyl	2-Cl-5-F-3-thienyl
Н	Н	<i>t</i> -Bu	CH ₂	Z =	2-CN-3-thienyl	2-F-5-Cl-3-thienyl
н	Н	<i>t</i> -Bu	CH ₂	Z =	5-F-3-thienyl	2-CN-5-F-3-thienyl
Н	H	t-Bu	CH ₂	Z =	5-Cl-3-thienyl	2-CN-5-Cl-3-thienyl
Н	H	t-Bu	=CH	Z =	3-thienyl	2,5-diF-3-thienyl
Н	H	<i>t</i> -Bu	=CH	Z =	2-F-3-thienyl	2,5-diCl-3-thienyl
H	H	t-Bu	=CH	Z =	2-Cl-3-thienyl	2-Cl-5-F-3-thienyl
H	H	t-Bu	=CH	Z =	2-CN-3-thienyl	2-F-5-Cl-3-thienyl
Н	Н	t-Bu	=CH	Z =	5-F-3-thienyl	2-CN-5-F-3-thienyl
Н	H	t-Bu	=CH	Z=	5-Cl-3-thienyl	2-CN-5-Cl-3-thienyl
Н	H	t-Bu	CH ₂	Z =	1 <i>H</i> -рултоl-1-уl	2,5-diF-1 <i>H-</i> руптоl-1-уl
H	Н	<i>t</i> -Bu	СH ₂	Z =	2-F-1 <i>H</i> -pyrrol-1-yl	2,5-diCl-1 <i>H</i> -pyrrol-1-yl
H	H	t-Bu	CH ₂	Z =	2-Cl-1 <i>H-</i> pyrrol-1-yl	2-Cl-5-F-1 <i>H</i> -pyπol-1-yl
Н	H	t-Bu	CH ₂	Z =	2-CN-1 <i>H</i> -pyrrol-1-yl	2-F-5-Cl-1 <i>H</i> -pyrrol-1-yl
Н	H	t-Bu	CH ₂	Z =	5-F-1 <i>H-</i> pyrrol-1-yl	2-CN-5-Cl-1 <i>H</i> -рупоl-1-уl
Н	H	<i>t</i> -Bu	CH ₂	Z =	5-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-5-F-1H-pyrrol-1-yl
Н	Н	t-Bu	=CH	Z =	1 <i>H-</i> pyrrol-1-yl	2,5-diF-1 <i>H</i> -pyrrol-1-yl
Н	Н	t-Bu	=CH	Z =	2-F-1 <i>H</i> -pyrrol-1-yl	2,5-diCl-1 <i>H</i> -pyrrol-1-yl
Н	Н	t-Bu	=CH	Z =	2-CI-1H-pyrrol-1-yl	2-Cl-5-F-1H-pyrrol-1-yl
H	Н	t-Bu	=СН	Z =	2-CN-1 <i>H</i> -pyrrol-1-yl	2-F-5-Cl-1 <i>H</i> -pyrrol-1-yl
Н	н	t-Bu	=CH	Z =	5-F-1 <i>H-</i> pyrrol-1-yl	2-CN-5-Cl-1H-pyrrol-1-yl

				_		
\mathbb{R}^1	R ²	R ⁶	х		Column 1	Column 2
Н	н	<i>t</i> -Bu	=CH	Z =	5-Cl-1 <i>H-</i> pyrrol-1-yl	2-CN-5-F-1 <i>H</i> -pyrrol-1-yl
н	н	<i>t</i> -Bu	0	Z=	1 <i>H-</i> pyrrol-1-yl	2,5-diF-1 <i>H</i> -pyrrol-1-yl
н	Н	t-Bu	O	Z =	2-F-1 <i>H-</i> pyrrol-1-yl	2,5-diCl-1 <i>H-</i> pyrrol-1-yl
н	н	t-Bu	0	Z =	2-Cl-1 <i>H</i> -pyrrol-1-yl	2-Cl-5-F-1 <i>H</i> -pyrrol-1-yl
Н	H	<i>t</i> -Bu	O	Z=	2-CN-1H-pyrrol-1-yl	2-F-5-Cl-1 <i>H</i> -pyrrol-1-yl
Н	Н	t-Bu	0	Z=	5-F-1 <i>H</i> -pyrrol-1-yl	2-CN-5-Cl-1 <i>H</i> -pyrrol-1-yl
Н	H	t-Bu	0	Z=	5-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-5-F-1 <i>H</i> -рулгоl-1-уl
Ме	Н	CH(Me)C(Me)3	O	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Н	CH(Me)C(Me)3	0	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	CH(Me)C(Me)3	0	Z=	2-Cl-C ₆ H ₄	2-F-5-CI-C ₆ H ₃
Me	H	CH(Me)C(Me)3	0	Z=	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Н	CH(Me)C(Me)3	О	Z=	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Н	CH(Me)C(Me)3	0	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	Н	CH(Me)C(Me)3	=CH	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Н	CH(Me)C(Me)3	=CH	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	н	CH(Me)C(Me)3	=CH	Z =	2-C1-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Н	CH(Me)C(Me)3	=CH	Z =	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	H	CH(Me)C(Me)3	=CH	Z =	3-CI-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	· H	CH(Me)C(Me)3	=CH	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	CH(Me)C(Me) ₃	CH ₂	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	H	CH(Me)C(Me)3	CH ₂	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	CH(Me)C(Me)3	CH ₂	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	H	CH(Me)C(Me) ₃	CH ₂	Z=	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	H	CH(Me)C(Me) ₃	CH ₂	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	CH(Me)C(Me) ₃	CH ₂	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
, H	H	CH(Me)C(Me) ₃	0	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
H	H	CH(Me)C(Me) ₃	0	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Н	н	CH(Me)C(Me)3	О	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Н	H	CH(Me)C(Me) ₃	0	Z=	2-CN-C6H4	2-Cl-5-F-C ₆ H ₃
H	H	CH(Me)C(Me) ₃	0	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Н	Н	CH(Me)C(Me) ₃	0	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Н	Н	CH(Me)C(Me)3	=CH	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
н	Н	CH(Me)C(Me)3	=CH	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Н	н	CH(Me)C(Me)3	=CH	Z =	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Н	н	CH(Me)C(Me)3	=CH	Z=	2-CN-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Н	н	CH(Me)C(Me)3	=СН	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃

_R ¹	R ²	R ⁶	Х		Column 1	Column 2
H	H	CH(Me)C(Me)3	=CH	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
H	H	CH(Me)C(Me) ₃	CH ₂	z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
H	H	CH(Me)C(Me) ₃	CH ₂	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
H	H	CH(Me)C(Me) ₃	CH ₂	Z=	2-Cl-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Н	H	CH(Me)C(Me) ₃	CH ₂	Z =	2-CN-C6H4	2-Cl-5-F-C ₆ H ₃
H	H	CH(Me)C(Me)3	CH ₂	Z=	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
H	H	CH(Me)C(Me) ₃	CH ₂	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	CH(Me)C(Me) ₃	CH ₂	Z=	1 <i>H</i> -pyrrol-1-yl	2,5-diF-1 <i>H</i> -pyrrol-1-yl
Me	H	CH(Me)C(Me) ₃	CH ₂	Z=	2-F-1 <i>H</i> -pyrrol-1-yl	2,5-diCl-1 <i>H-</i> pyrrol-1-yl
Me	H	CH(Me)C(Me) ₃	СH ₂	Z=	2-Cl-1 <i>H</i> -pyrrol-1-yl	2-Cl-5-F-1 <i>H-</i> руптоl-1-уl
Me	H	CH(Me)C(Me)3	СH ₂	Z=	2-CN-1H-pyrrol-1-yl	2-F-5-Cl-1 <i>H</i> -pyrrol-1-yl
Me	H	CH(Me)C(Me) ₃	CH ₂	Z=	5-F-1 <i>H</i> -pyrrol-1-yl	2-CN-5-Cl-1 <i>H</i> -pyrrol-1-yl
Me	H	CH(Me)C(Me)3	СH ₂	Z=	5-Cl-1 <i>H</i> -рупоl-1-уl	2-CN-5-F-1 <i>H</i> -pyrrol-1-yl
Me	Ph	CH ₂ CH ₃	Ο	Z=	2-CN-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Mc	Ph	CH ₂ CH ₃	0	Z=	2,5-diF-C ₆ H ₃	2-Cl-5-F-C ₆ H ₃
Me	Ph	CH(Me) ₂	Ο	Z =	2-CN-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Ph	C(Me) ₃	0	Z=	2-CN-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Ph	$CH_2CH=CH_2$	Ο	Z =	2-CN-C ₆ H ₄	2-CN-5-Cl-1 <i>H</i> -pyrrol-1-yl
Me	Ph	CH ₂ CH=CH ₂	O	Z =	2,5-diF-C ₆ H ₃	2-CN-5-F-1 <i>H</i> -pyrrol-1-yl
Me	H	CH(Me)C(Me) ₃	O	Z =	1 <i>H-</i> pyrrol-1-yl	2-Cl-5-F-C ₆ H ₃
Me	H	CH(Me)C(Me) ₃	О	Z =	2-F-1 <i>H-</i> pyrrol-1-yl	2,5-diCl-1 <i>H</i> -pyrrol-1-yl
Me	H	CH(Me)C(Me) ₃	Ο	Z =	2-Cl-1 <i>H</i> -pyrrol-1-yl	2-Cl-5-F-1 <i>H</i> -pyrrol-1-yl
Me	H	CH(Me)C(Me) ₃	0	Z =	2-CN-1 <i>H</i> -pyrrol-1-yl	2-F-5-Cl-1 <i>H</i> -pyrrol-1-yl
Me	H	CH(Me)C(Me) ₃	Ο	Z =	5-F-1 <i>H-</i> рупоі-1-уі	2-CN-5-Cl-1 <i>H</i> -pyrrol-1-yl
Me	H	CH(Me)C(Me)3	0	Z =	5-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-5-F-1H-pyrrol-1-yl
H	H	CH(Me)C(Me) ₃	CH ₂	Z =	1 <i>H</i> -pyrrol-1-yl	2,5-diF-1 <i>H</i> -pyrrol-1-yl
H	H	CH(Me)C(Me) ₃	CH ₂	Z =	2-F-1 <i>H-</i> pyrrol-1-yl	2,5-diCl-1 <i>H</i> -pyrrol-1-yl
H	H	CH(Me)C(Me) ₃	CH ₂	Z =	2-Cl-1 <i>H</i> -pyrrol-1-yl	2-Cl-5-F-1 <i>H-</i> pyrrol-1-yl
H	. Н	CH(Me)C(Me)3	CH ₂	Z =	2-CN-1H-pyrrol-1-yl	2-F-5-Cl-1 <i>H</i> -pyrrol-1-yl
H	H	CH(Me)C(Me) ₃	CH ₂	Z =	5-F-1 <i>H</i> -pyrrol-1-yl	2-CN-5-Cl-1 <i>H</i> -рупоl-1-уl
Н	H	CH(Me)C(Me)3	CH ₂	Z =	5-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-5-F-1 <i>H</i> -pyrrol-1-yl
Me	Ph	CH ₂ CH ₃	0	Z =	2-F-5-Cl-C ₆ H ₃	2-CN-5-CI-C ₆ H ₃
Me	Ph	CH ₂ CH ₃	0	Z =	2-F-5-Me-C ₆ H ₃	2-CN-5-Me-C ₆ H ₃
Me	Ph	CH ₂ CH ₂ F	0	Z =	2,5-diF-C ₆ H ₃	2-CN-5-F-C ₆ H ₃
. Me	Ph	CH ₂ CH ₂ Cl	0	Z =	2,5-diF-C ₆ H ₃	2-CN-5-F-C ₆ H ₃
Me	Ph	CH ₂ C≡CH	0	Z =	2,5-diF-C ₆ H ₃	2-CN-5-F-C ₆ H ₃

R ¹	R ²	R ⁶	X		Column 1	Column 2
Me	Ph	$CH_2C(F)=CH_2$	O	Z=	2,5-diF-C ₆ H ₃	2-CN-5-F-C ₆ H ₃
H	Н	CH(Me)C(Me)3	0	Z =	1 <i>H-</i> pyrrol-1-yl	2,5-diF-1 <i>H-</i> pyrrol-1-yl
H	Н	CH(Me)C(Me)3	0	Z=	2-F-1 <i>H-</i> руггоІ-1-уl	2,5-diCl-1 <i>H</i> -pyrrol-1-yl
H	H	CH(Me)C(Me) ₃	0	Z=	2-Cl-1 <i>H-</i> pyrrol-1-yl	2-Cl-5-F-1 <i>H</i> -pyrrol-1-yl
H	H	CH(Me)C(Me)3	O	Z=	2-CN-1H-pyrrol-1-yl	2-F-5-Cl-1 <i>H-</i> pyrrol-1-yl
H	H	CH(Me)C(Me) ₃	O	Z=	5-F-1 <i>H</i> -pyrrol-1-yl	2-CN-5-Cl-1H-pyrrol-1-yl
Н	H	CH(Me)C(Me) ₃	0	Z =	5-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-5-F-1H-pyrrol-1-yl
Me	H	i-Pr	O	Z =	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	i-Pr	O	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	<i>i</i> -Pr	Ο	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	Н	C(Me) ₂ CH=CH ₂	0	Z =	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-CI-C ₆ H ₃
Me	Н	C(Me) ₂ CH=CH ₂	0	Z =	2-Cl-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	H	C(Me) ₂ CH=CH ₂	0	Z=	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	H	C(Me) ₂ CH=CH ₂	0	Z=	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	C(Me) ₂ CH=CH ₂	0	Z=	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	C(Me) ₂ CH=CH ₂	0	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	CH(Me)CH(Me) ₂	O	Z =	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	CH(Me)CH(Me) ₂	0	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	Н	CH(Me)CH(Me) ₂	O	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	c-Pr	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	c-Pr	Ο	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	c-Pr	0	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	CH(Me)-c-Pr	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	CH(Me)-c-Pr	0	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	CH(Me)-c-Pr	0	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	C(Me) ₂ CF=CH ₂	0	Z=	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	H	C(Me) ₂ CF=CH ₂	O	Z =	2-CI-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	H	$C(Me)_2CF=CH_2$	0	Z =	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	, H	C(Me) ₂ CF=CH ₂	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	C(Me) ₂ CF=CH ₂	0	Z=	2-CI-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	C(Me) ₂ CF=CH ₂	0	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	C(Me) ₂ CH=CHF	0	Z =	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	H	C(Me) ₂ CH=CHF	Ο	Z =	2-CI-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	H	C(Me) ₂ CH=CHF	0	Z =	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	H	C(Me) ₂ CH=CHF	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	C(Me) ₂ CH=CHF	0	Z =	2-CI-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃

R^1	R ²	R ⁶	x	_	Column 1	Column 2
Me	Н	C(Me) ₂ CH=CHF	0	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	Н	C(Me)(CH ₂ F)CH=CH ₂	0	Z =	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	H	C(Me)(CH ₂ F)CH=CH ₂	0	Z=	2-Cl-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	H	C(Me)(CH ₂ F)CH=CH ₂	0	Z =	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	H	C(Me)(CH ₂ F)CH=CH ₂	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	C(Me)(CH ₂ F)CH=CH ₂	Ο	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	C(Me)(CH ₂ F)CH=CH ₂	Ο	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	C(Me)(CH ₂ F)CF=CH ₂	0	Z =	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	Н	C(Me)(CH ₂ F)CF=CH ₂	0	Z =	2-Cl-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	Н	C(Me)(CH ₂ F)CF=CH ₂	Ο	Z=	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	H	C(Me)(CH ₂ F)CF=CH ₂	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	C(Me)(CH ₂ F)CF=CH ₂	Ο	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Mc	Н	C(Me)(CH ₂ F)CF=CH ₂	0	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	$C(CH_2F)_2CH=CH_2$	0	Z =	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	Н	C(CH ₂ F) ₂ CH=CH ₂	0	Z =	2-Cl-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	H	C(CH ₂ F) ₂ CH=CH ₂	0	Z =	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	H	C(CH ₂ F) ₂ CH=CH ₂	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-CI-C ₆ H ₃
Me	H	$C(CH_2F)_2CH=CH_2$	0	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	$C(CH_2F)_2CH=CH_2$	0	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	C(Me) ₂ CCl=CH ₂	0	Z =	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	H	C(Me) ₂ CCl=CH ₂	0	Z =	2-Cl-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	H	C(Me) ₂ CCl=CH ₂	0	Z =	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	H	C(Me) ₂ CCI=CH ₂	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-CI-C ₆ H ₃
Me	H	C(Me) ₂ CCl=CH ₂	O	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	C(Me) ₂ CCl=CH ₂	0	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	C(CH ₂ Cl) ₂ CH=CH ₂	0	Z =	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	H	C(CH ₂ Cl) ₂ CH=CH ₂	0	Z =	2-Cl-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	H	$C(CH_2CI)_2CH=CH_2$	0	Z =	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	H	C(CH ₂ CI) ₂ CH=CH ₂	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-Cl-C ₆ H ₃
Me	H	C(CH ₂ CI) ₂ CH=CH ₂	0	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	C(CH ₂ CI) ₂ CH=CH ₂	0	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	$C(Me)_2$ -c-Pr	О	Z =	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	H	$C(Me)_2$ -c-Pr	O	Z=	2-Cl-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	H	C(Me) ₂ -c-Pr	O	Z =	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	H	C(Me) ₂ -c-Pr	0	Z =	2,5-diF-C ₆ H ₃	2-Me-5-CI-C ₆ H ₃
Me	H	C(Me) ₂ -c-Pr	0	Z =	2-C1-5-Me-C ₆ H ₃	2,5-diCl-C6H3

<u>R¹</u>	R ²	R ⁶	X	_	Column 1	Column 2
Me	H	C(Me) ₂ -c-Pr	0	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	C(Me) ₂ CF=CF ₂	0	Z =	2-OCH ₂ F-5-F-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	Н	C(Me) ₂ CF=CF ₂	0	Z =	2-Cl-5-F-C ₆ H ₃	2-F-5-Br-C ₆ H ₃
Me	H	C(Me) ₂ CF=CF ₂	0	Z =	2-Br-5-F-C ₆ H ₃	2-F-5-Me-C ₆ H ₃
Me	H	C(Me) ₂ CF=CF ₂	0	Z=	2,5-diF-C ₆ H ₃	2 -Me- 5 -Cl-C $_6$ H $_3$
Me	H	C(Me) ₂ CF=CF ₂	0	Z =	2-Cl-5-Me-C ₆ H ₃	2,5-diCl-C ₆ H ₃
Me	H	C(Me) ₂ CF=CF ₂	0	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	н	$C(CH_3)(C=CH)CH=CH_2$	0	Z =	2,5-diF-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	Н	C(CH ₃)(C≡CH)CH=CH ₂	0	$\mathbf{Z} =$	2-Cl-5-F-C ₆ H ₃	2-CN-5-F-C ₆ H ₃
Me	Н	$C(CH_3)(C=CH)CH=CH_2$	0	Z =	2,5-diCl-C ₆ H ₃	2-CN-5-Cl-C ₆ H ₃
Me	Н	$C(CH=CH_2)_2CH_3$	0	Z =	2,5-diF-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	H	$C(CH=CH_2)_2CH_3$	0	Z =	2-CI-5-F-C ₆ H ₃	2-CN-5-F-C ₆ H ₃
Me	H	$C(CH=CH_2)_2CH_3$	0	Z =	2,5-diCl-C ₆ H ₃	2-CN-5-Cl-C ₆ H ₃
Me	Н	C(CH ₃) ₂ CH=CHC≡CH	0	Z =	2,5-diF-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	Н	C(CH ₃) ₂ CH=CHC≡CH	0	Z=	2-Cl-5-F-C ₆ H ₃	2-CN-5-F-C ₆ H ₃
Me	H	C(CH ₃) ₂ CH=CHC≡CH	0	Z=	2,5-diCl-C ₆ H ₃	2-CN-5-Cl-C ₆ H ₃

7. -

۷ =			
	Column 1	Column 2	Column 3
1	C ₆ H ₅	2-F-5-Me-C ₆ H ₃	2-I-1 <i>H</i> -pyrrol-1-yl
2	2-F-C ₆ H ₄	2-F-6-Me-C ₆ H ₃	2-Cl-1 <i>H</i> -pyrrol-1-yl
3	3-F-C ₆ H ₄	3-F-6-Me-C ₆ H ₃	3-Cl-1 <i>H</i> -pyrrol-1-yl
4 .	4-F-C ₆ H ₄	2,3,4-triF-C ₆ H ₂	2-CN-1 <i>H</i> -pyrrol-1-yl
5	2-CI-C ₆ H ₄	2,3,5-triF-C ₆ H ₂	2-Br-1 <i>H</i> -pyrrol-1-yl
6	3-C1-C ₆ H ₄	2,3,6-triF-C ₆ H ₂	2-n-Pr-1 <i>H</i> -pyrrol-1-yl
7	4-CI-C ₆ H ₄	2,3-diF-5-Cl-C ₆ H ₂	2- <i>i</i> -Pr-1 <i>H</i> -рутгоl-1-уl
8	2-Br-C ₆ H ₄	2,6-diF-3-C1-C ₆ H ₂	2- <i>n</i> -Bu-1 <i>H</i> -рутгоl-1-уl
9	3-Br-C ₆ H ₄	2,5-diCl-3-F-C ₆ H ₂	2-CH ₂ CN-1 <i>H</i> -pyrrol-1-yl
10	4-Br-C ₆ H ₄	2,5-diCl-6-F-C ₆ H ₂	2-1-Bu-1H-pyrrol-1-yl
11	2-I-C ₆ H ₄	2,3-diF-5-Me-C ₆ H ₂	2-CN-5-F-3-thienyl

	Column 1	Column 2	·Column 3	
12	3-I-C ₆ H ₄	2,5-diF-3-Me-C ₆ H ₂	2-Me-4-CN-3-thienyl	
13	4-I-C ₆ H ₄	2,5-diF-6-Me-C ₆ H ₂	l <i>H-</i> pyrrol-1-yl	
14	2-Me-C ₆ H ₄	2-CN-3,5-diMe-C ₆ H ₂	2-F-1 <i>H</i> -рупо!-1-уl	
15	3-Me-C ₆ H ₄	2-CN-3,5-diCl-C ₆ H ₂	5-F-1 <i>H</i> -рупоl-1-уl	
16	4-Me-C ₆ H ₄	2-CN-3,5-diF-C ₆ H ₂	5-Et-1 <i>H-</i> pyrrol-1-yl	
17	2-Et-C ₆ H ₄	2-CN-3,6-diF-C ₆ H ₂	5-Cl-1 <i>H</i> -pyrrol-1-yl	
18	2-CN-C ₆ H ₄	2-CN-5,6-diF-C ₆ H ₂	2-(С≡СН)-1 <i>H</i> -рутгоl-1-уl	
19	2-CF ₃ -C ₆ H ₄	2-CN-3-F-5-CI-C ₆ H ₂	5-Br-1 <i>H</i> -pyrrol-1-yl	
20	2-n-Pr-C ₆ H ₄	2-CN-3-Me-5-CI-C ₆ H ₂	2-n-Pr-1H-pyrrol-1-yl	
21	3- <i>n</i> -Pr-C ₆ H ₄	2-CN-3-Me-5-F-C ₆ H ₂	2- <i>i</i> -Pr-1 <i>H</i> -pytrol-1-yl	
22	2- <i>i</i> -Pr-C ₆ H ₄	2-Cl-3-F-5-Me-C ₆ H ₂	2-CF ₃ -1 <i>H</i> -pyrrol-1-yl	
23	3- <i>i</i> -Pr - C ₆ H ₄	2-F-3-Cl-5-Me-C ₆ H ₂	2,3-diCl-1 <i>H</i> -pyrrol-1-yl	
24	2-n-Bu-C ₆ H ₄	2,3,4,5-tetraF-C ₆ H	2,4-diCl-1 <i>H</i> -pyrrol-1-yl	
25	2-CH ₂ F-C ₆ H ₄	2,3,4,6-tetraF-C ₆ H	3,4-diCl-1 <i>H</i> -pyrrol-1-yl	
26	3-CH ₂ F-C ₆ H ₄	2,3,5,6-tetraF-C ₆ H	2,3-diBr-1 <i>H</i> -pyrrol-1-yl	
27	2-CH ₂ CN-C ₆ H ₄	2-thienyl	2,4-diBr-1 <i>H</i> -pyrrol-1-yl	
28	2-CH ₂ CH ₂ F-C ₆ H ₄	3-F-2-thienyl	4-F-5-Br-1 <i>H</i> -pyrrol-1-yl	
29	2-CH ₂ CH ₂ Cl-C ₆ H ₄	4-F-2-thienyl	2-Cl-3-Br-1 <i>H</i> -pyrrol-1-yl	
30	2-CH ₂ CH ₂ CN-C ₆ H ₄	5-Et-2-thienyl	2-Cl-4-Br-1 <i>H</i> -pyrrol-1-yl	
31	2-(CH=CH ₂)-C ₆ H ₄	3-Cl-2-thienyl	3-Cl-4-Br-1 <i>H</i> -pyrrol-1-yl	
32	2-(C≡CH)-C ₆ H ₄	4-Cl-2-thienyl	3-Cl-5-Br-1 <i>H</i> -pyrrol-1-yl	
33	2-(C≡CMe)-C ₆ H ₄	5-Cl-2-thienyl	4-F-5-Me-1 <i>H</i> -pyrrol-1-yl	
34	2-(t-Bu)-C ₆ H ₄	3-(C=CH)-2-thienyl	2-Cl-3-Me-1 <i>H</i> -рутгоl-1-уl	
35	2-[CH(F)Me]-C ₆ H ₄	4-Br-2-thienyl	2-Cl-4-Me-1H-pyrrol-1-yl	
36	2-[CH(Cl)Me]-C6H4	5-Br-2-thienyl	2-Cl-5-Me-1 <i>H</i> -pyrrol-1-yl	
37	2-[CH(Br)Me]-C ₆ H ₄	3-[CH ₂ CH(CN)Me]-2-	3-Cl-4-Me-1 <i>H</i> -pyrrol-1-yl	
		thienyl		
38	2-[CH(CN)Me]-C ₆ H ₄	3-(CH=CH ₂)-2-thienyl	3-Cl-5-Me-1 <i>H</i> -pyrrol-1-yl	
39	2-[CH(CN)CH ₂ Me]-C ₆ H ₄	3,4-diF-2-thienyl	4-Cl-5-Me-1 <i>H</i> -pyrrol-1-yl	
40	2,3-diF-C ₆ H ₃	3,4-diF-2-thienyl	2-Br-3-Me-1 <i>H</i> -pyrrol-1-yl	
41	2,4-diF-C ₆ H ₃	3-F-4-Br-2-thienyl	2-Br-4-Me-1 <i>H</i> -рупоl-1-уl	
42	2,5-diF-C ₆ H ₃	3-F-5-Br-2-thienyl	2-Br-5-Me-1 <i>H</i> -pyrrol-1-yl	
43	2,6-diF-C ₆ H ₃	3-Br-5-F-2-thienyl	3-Br-4-Me-1 <i>H</i> -pyrrol-1-yl	
44	3,4-diF-C ₆ H ₃	4-Br-5-F-2-thienyl	3-Br-5-Me-1 <i>H</i> -pyrrol-1-yl	
45	3,5-diF-C ₆ H ₃	3-F-4-Me-2-thienyl	4-Br-5-Me-1 <i>H</i> -pyrrol-1-yl	
46	2,3-diCl-C ₆ H ₃	3-F-5-Me-2-thienyl	2- <i>n</i> -Pr-3-F-1 <i>H</i> -pyrrol-1-yl	

	Column 1	Column 2	Column 3	
47	2,4-diCl-C ₆ H ₃	4-F-5-Me-2-thienyl	2- <i>n</i> -Pr-4-F-1 <i>H</i> -pyrrol-1-yl	
48	2,5-diCl-C ₆ H ₃	3-Cl-5-Br-2-thienyl	2- <i>n</i> -Pr-5-F-1 <i>H</i> -pyrrol-1-yl	
49	2,6-diCl-C ₆ H ₃	3-Me-4-F-2-thienyl	2- <i>n</i> -Pr-3-Cl-1 <i>H</i> -pyrrol-1-yl	
50	3,4-diCl-C ₆ H ₃	3-Me-5-F-2-thienyl	2-n-Pr-4-Cl-1H-pyrrol-1-yl	
51	3,5-diCl-C ₆ H ₃	3-Br-5-Cl-2-thienyl	2-n-Pr-5-Cl-1H-pyrrol-1-yl	
52	2,5-diBr-C ₆ H ₃	4-Br-5-Cl-2-thienyl	2-n-Pr-3-Br-1H-pyrrol-1-yl	
53	2-Br-5-Cl-C ₆ H ₃	3-Cl-5-Me-2-thienyl	2- <i>n</i> -Pr-4-Br-1 <i>H</i> -pyrrol-1-yl	
54	2-Br-5-Me-C ₆ H ₃	3-Me-5-Cl-2-thienyl	2-n-Pr-5-Br-1 <i>H</i> -pyrrol-1-yl	
55	3-Br-6-Me-C ₆ H ₃	3-Br-5-Me-2-thienyl	2-CN-3-F-1H-pyrrol-1-yl	
56	2-CN-3-F-C ₆ H ₃	3-Me-5-Br-2-thienyl	2-CN-4-F-1 <i>H</i> -pyrrol-1-yl	
57	2-CN-4-F-C ₆ H ₃	4-Me-5-Br-2-thienyl	2-CN-5-F-1 <i>H</i> -pyrrol-1-yl	
58	2-CN-5-F-C ₆ H ₃	3-n-Pr-4-F-2-thienyl	2-CN-3-Cl-1H-pyrrol-1-yl	
59	2-CN-6-F-C6H3	3-n-Pr-5-F-2-thienyl	2-CN-4-Cl-1H-pyrrol-1-yl	
60	2-CN-3-Cl-C ₆ H ₃	3-CN-5-Cl-2-thienyl	2-CN-5-Cl-1H-pyrrol-1-yl	
61	2-CN-5-Cl-C ₆ H ₃	3-CN-5-Br-2-thienyl	2-CN-3-Br-1H-pyrrol-1-yl	
62	2-CN-5-Br-C ₆ H ₃	3-thienyl	2-CN-4-Br-1 <i>H</i> -pyrrol-1-yl	
63	2-CN-3-I-C ₆ H ₃	2-F-3-thienyl	2-CN-5-Br-1 <i>H</i> -pyrrol-1-yl	
64	2-CN-3-CF ₃ -C ₆ H ₃	4-F-3-thienyl	2-CN-3-Me-1 <i>H</i> -pyrrol-1-yl	
65	2-CN-6-CF ₃ -C ₆ H ₃	5-F-3-thienyl	2-CN-4-Me-1 <i>H</i> -руптоl-1-уl	
66	2-CN-3-Me-C ₆ H ₃	2-Cl-3-thienyl	2-CN-5-Me-1 <i>H</i> -pyπol-1-yl	
67	2-CN-4-Me-C6H3	4-Cl-3-thienyl	2-CN-5-n-Pr-1H-pyrrol-1-yl	
68	2-CN-5-Me-C ₆ H ₃	5-Cl-3-thienyl	2,3,4-triCl-1 <i>H</i> -pyrrol-1-yl	
69	2-CN-6-Me-C ₆ H ₃	2-CN-3-thienyl	2,3,5-triCl-1 <i>H</i> -pyrrol-1-yl	
70	2-Br-4-F-C ₆ H ₃	2-Br-3-thienyl	2,3-diCl-4-Me-1H-pyrrol-1-yl	
71	2-Br-5-F-C ₆ H ₃	5-Br-3-thienyl	2,3-diCl-5-Me-1H-pyrrol-1-yl	
72	3-Br-6-F-C ₆ H ₃	2-n-Pr-3-thienyl	2,4-diCl-3-Me-1H-pyrrol-1-yl	
73	2-Cl-5-Me-C ₆ H ₃	2-(CH ₂ CN)-3-thienyl	2,4-diCl-5-Me-1H-pyrrol-1-yl	
74	3-CI-5-Me-C ₆ H ₃	2,5-diCl-3-thienyl	2,5-diCl-3-Me-1H-pyrrol-1-yl	
75	3-Cl-6-Me-C ₆ H ₃	2,5-diBr-3-thienyl	2-CN-3,4-diCl-1 <i>H</i> -pyrrol-1-yl	
76	2-n-Pr-3-F-C ₆ H ₃	2-F-5-Cl-3-thienyl	2-CN-3,5-diCl-1H-pyrrol-1-yl	
77	2-n-Pr-5-F-C ₆ H ₃	2-Cl-5-F-3-thienyl	2-CN-4,5-diCl-1 <i>H</i> -pyrrol-1-yl	
78	2-n-Pr-5-Cl-C ₆ H ₃	2-F-5-Br-3-thienyl	2-CN-3-Cl-4-Me-1 <i>H</i> -рутгоl-1-уl	
79	2-n-Pr-5-Br-C ₆ H ₃	2-Br-5-F-3-thienyl	2-CN-3-Cl-5-Me-1H-pyrrol-1-yl	
80	2-n-Pr-5-Me-C ₆ H ₃	2-Cl-5-Br-3-thienyl	2-CN-3-Me-4-Cl-1H-pyrrol-1-yl	
81	2-Cl-3-F-C ₆ H ₃	2-Br-5-Cl-3-thienyl	2-CN-3-Me-5-Cl-1H-pyrrol-1-yl	
82	2-Cl-4-F-C ₆ H ₃	2-n-Pr-5-F-3-thienyl	2-CN-4-Me-5-Cl-1H-pyrrol-1-yl	

	Column 1	Column 2	Column 3
83	2-C1-5-F-C ₆ H ₃	2-CN-5-F-3-thienyl	2-CN-4-Cl-5-Me-1 <i>H</i> -рутгоl-1-уl
84	2-Cl-6-F-C ₆ H ₃	2-CN-5-Cl-3-thienyl	2-CN-4Br-5-Me-1H-pyrrol-1-yl
85	3-Cl-2-F-C ₆ H ₃	2-CN-5-Br-3-thienyl	2,3,4-triCl-5-CN-1 <i>H</i> -pyrrol-1-yl
86	3-Cl-6-F-C ₆ H ₃	2-CN-5-Me-3-thienyl	2,3-Cl-4-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
87	4-Cl-2-F-C ₆ H ₃	1 <i>H</i> -рупоl-1-yl	2,4-Cl-3-Me-5-CN-1 <i>H</i> -рутгоl-1-уl
88	2-F-3-Me-C ₆ H ₃	2-F-1 <i>H</i> -pyrrol-1-yl	3,4-Cl-2-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
89	2-F-4-Me-C ₆ H ₃	3-F-1 <i>H</i> -pyrrol-1-yl	

<u>Z = </u>

	Column 1	Column 2	Column 3
1	1 <i>H</i> -pyrrol-1-yl	2-Cl-4-Me-1 <i>H</i> -pyrrol-1-yl	2-CN-5-Me-1H-pyrrol-1-yl
2	2-Cl-1 <i>H-</i> руттоl-1-уl	2-Cl-5-Me-1 <i>H-</i> рутгоl-1-уl	2-CN-5-n-Pr-1H-pyrrol-1-yl
3	3-Cl-1 <i>H</i> -pyrrol-1-yl	2-Br-3-Me-1 <i>H</i> -pyrrol-1-yl	2,3,4-triCl-1 <i>H</i> -pyrrol-1-yl
4	2-CN-1 <i>H</i> -pyrrol-1-yl	2-Br-4-Me-1 <i>H</i> -pyrrol-1-yl	2,3,5-triCl-1 <i>H</i> -pyrrol-1-yl
5	2-Вт-1 <i>Н-</i> рутгоl-1-уl	2-Br-5-Me-1 <i>H</i> -pyrrol-1-yl	2-CN-3,4-diCl-1 <i>H</i> -pyπol-1-yl
6	3-Br-1 <i>H-</i> рупоl-1-уl	2-n-Pr-5-Br-1H-pyrrol-1-yl	2-CN-3,5-diCl-1 <i>H</i> -рупоl-1-уl
7	2-CH ₂ CN-1 <i>H</i> -pyrrol-1-yl	2-CN-3-Cl-1 <i>H</i> -pyπol-1-yl	2-CN-4,5-diCl-1 <i>H</i> -рупоl-1-yl
8	2,3-diCl-1 <i>H</i> -pyπol-1-yl	2-CN-4-Cl-1 <i>H</i> -рутгоl-1-уl	2-CN-3-Cl-4-Me-1H-pyrrol-1-yl
9	2,4-diCl-1 <i>H</i> -pyrrol-1-yl	2-CN-5-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-3-Cl-5-Me-1H-pyrrol-1-yl
10	2,5-diCl-1 <i>H</i> -pyrrol-1-yl	2-CN-3-Br-1 <i>H</i> -pyrrol-1-yl	2-CN-3-Me-4-Cl-1 <i>H</i> -pyrrol-1-yl
11	3,4-diCl-1 <i>H</i> -pyrrol-1-yl	2-CN-4-Br-1 <i>H</i> -руптоl-1-уl	2-CN-3-Me-5-Cl-1H-pyrrol-1-yl
12	2,3-diBr-1 <i>H</i> -pyrrol-1-yl	2-CN-5-Br-1 <i>H</i> -pyrrol-1-yl	2-CN-4-Me-5-Cl-1H-pyrrol-1-yl
13	2,4-diBr-1 <i>H</i> -pyrrol-1-yl	2-CN-4-Me-1H-pyrrol-1-yl	2-CN-4-Cl-5-Me-1H-pyrrol-1-yl
14	2,5-diBr-1 <i>H</i> -pyrrol-1-yl	2,3-diCl-4-Me-1 <i>H</i> -pyrrol-1-yl	2,3,4,5-tetraCl-1 <i>H</i> -pyrrol-1-yl
15	3,4-diBr-1 <i>H</i> -pyrrol-1-yl	2,3-diCl-5-Me-1H-pyrrol-1-yl	2,3,4-triCl-5-Me-1 <i>H</i> -pyrrol-1-yl
16	2-Cl-3-Br-1 <i>H</i> -pyrrol-1-yl	2,4-diCl-3-Me-1H-pyrrol-1-yl	2,3,5-triCl-4-Me-1H-pyrrol-1-yl
17	2-Cl-4-Br-1 <i>H-</i> pyrrol-1-yl	2,4-diCl-5-Me-1 <i>H</i> -pyrrol-1-yl	2,4-diCl-3,5-diMe-1 <i>H</i> -pyrrol-1-yl
18	2-Cl-5-Br-1 <i>H</i> -pyrrol-1-yl	2,5-diCl-3-Me-1 <i>H</i> -pyrrol-1-yl	2,5-diCl-3,4-diMe-1 <i>H</i> -pyrrol-1-yl
19	3-Cl-4-Br-1 <i>H</i> -pyrrol-1-yl	3,4-diCl-5-Me-1 <i>H</i> -pyrrol-1-yl	3,4-diCl-2,5-diMe-1 <i>H</i> -pyrrol-1-yl

	Column 1	Column 2	Column 3
20	3-Cl-5-Br-1 <i>H</i> -pyrrol-1-yl	2-CN-3,4-diMe-1 <i>H</i> -рупоl-1-уl	2,3,4-triCl-5-CN-1 <i>H</i> -pyrrol-1-yl
21	4-Cl-5-Br-1 <i>H</i> -pyrrol-1-yl	2-CN-3,5-diMe-1 <i>H</i> -pyrrol-1-yl	2,4-Cl-3-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
22	2-Cl-3-Me-1 <i>H</i> -pyrrol-1-yl	2-CN-4,5-diMe-1H-pyrrol-1-yl	

Z =

	Column 1	Column 2	Column 3	
1	C ₆ H ₅	2-CN-4-Me-C ₆ H ₃	5-Br-2-thienyl	
2	2-F-C ₆ H ₄	2-CN-5-Me-C ₆ H ₃	3-n-Pr-2-thienyl	
3	3-F-C ₆ H ₄	2-CN-6-Me-C ₆ H ₃	5-n-Pr-2-thienyl	
4	4-F-C ₆ H ₄	2-Br-4-F-C ₆ H ₃	5-i-Pr-2-thienyl	
5	2-Cl-C ₆ H ₄	2-Br-5-F-C ₆ H ₃	3-(CH ₂ CN)-2-thienyl	
6	3-Cl-C ₆ H ₄	3-Br-6-F-C ₆ H ₃	3-(CH=CH ₂)-2-thienyl	
7	4-Cl-C ₆ H ₄	4-Br-2-F-C ₆ H ₃	3-(CH=CHMe)-2-thienyl	
8	2-Br-C ₆ H ₄	2-Cl-5-Me-C ₆ H ₃	3-(CH ₂ CH=CH ₂)-2-thienyl	
9	3-Br-C ₆ H ₄	3-Cl-5-Me-C ₆ H ₃	3-(CH ₂ C≡CH)-2-thienyl	
10	4-Br-C ₆ H ₄	3-Cl-6-Me-C ₆ H ₃	3-(C≡CMe)-2-thienyl	
11	2-I-C ₆ H ₄	2-n-Pr-3-F-C ₆ H ₃	3-(CH=CHBr)-2-thienyl	
12	3-I-C ₆ H ₄	2-n-Pr-4-F-C ₆ H ₃	3-(CH=CHCN)-2-thienyl	
13	4-I-C ₆ H ₄	2-n-Pr-5-F-C ₆ H ₃	3,5-diF-2-thienyl	
14	2-Me-C ₆ H ₄	2- <i>n</i> -Pr-6-F-C ₆ H ₃	3,5-diCl-2-thienyl	
15	3-Me-C ₆ H ₄	2-n-Pr-3-Cl-C ₆ H ₃	3,5-diBr-2-thienyl	
16	4-Me-C ₆ H ₄	2-n-Pr-5-Cl-C ₆ H ₃	3-F-5-Cl-2-thienyl	
17	2-Et-C ₆ H ₄	2- <i>n</i> -Pr-5-Br-C ₆ H ₃	3-Cl-5-F-2-thienyl	
18	2-CN-C ₆ H ₄	2- <i>n</i> -Pr-5-Me-C ₆ H ₃	3-F-5-Br-2-thienyl	
19	2-CF ₃ -C ₆ H ₄	2-n-Pr-6-CN-C ₆ H ₃	3-Br-4-F-2-thienyl	
20	2-n-Pr-C ₆ H ₄	2-Cl-3-F-C ₆ H ₃	3-Br-5-F-2-thienyl	
21	2- <i>i</i> -Pr-C ₆ H ₄	2-Cl-4-F-C ₆ H ₃	3-F-5-Me-2-thienyl	
22	2-n-Bu-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃	3-Me-5-F-2-thienyl	
23	3-SiMe ₃ -C ₆ H ₄	2-Cl-6-F-C ₆ H ₃	3-Br-5-Cl-2-thienyl	
24	2-CH ₂ F-C ₆ H ₄	3-Cl-2-F-C ₆ H ₃	3-Cl-5-Me-2-thienyl	

2-CH2CN-C6H4 2-CH2CN-C6H4 2-F-C-6H3 3-Br-5-Me-C-2-thienyl 3-Me-5-Br-2-thienyl 3-CN-5-Cl-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Me-2-thienyl 3-CN-5-Me-2-thienyl 3-CN-5-Me-2-thienyl 3-CN-5-Me-2-thienyl 3-CN-5-He-2-thienyl 3-F-6-Me-C-6H2 2-F-3-thienyl 2-F-3-t		Column 1	Column 2	Column 3
2-CH2CH2FL-C ₆ H ₄ 2-F-3-Me-C ₆ H ₃ 3-Me-5-Br-2-thienyl 2-CH2CH2CN-C ₆ H ₄ 2-F-5-Me-C ₆ H ₃ 3-m-Pr-5-Cl-2-thienyl 3-m-Pr-5-Cl-2-thienyl 3-CN-5-F-2-thienyl 3-CN-5-F-2-thienyl 3-CN-5-F-2-thienyl 3-CN-5-F-2-thienyl 3-CN-5-F-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Me-2-thienyl 3-CN-5-dif-C-6H2 3-CN-3-thienyl 3-CN-3-dif-C-6H2 3-CN-3-thienyl 3-CN-3-thien	25	3-CH ₂ F-C ₆ H ₄	3-Cl-6-F-C ₆ H ₃	3-Me-5-Cl-2-thienyl
28	26	2-CH ₂ CN-C ₆ H ₄	4-Cl-2-F-C ₆ H ₃	3-Br-5-Me-2-thienyl
2-(CH=CH2)-C ₆ H ₄ 2-(CH=CHMe)-C ₆ H ₄ 3-F-6-Me-C ₆ H ₃ 3-CN-5-Cl-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Br-2-thienyl 3-CN-5-Me-2-thienyl 3-CN-5-Me-C-6H ₂ 3-CN-5-Me-C-6H ₂ 3-CN-5-Me-C-6H ₂ 3-CN-5-Me-C-6H ₂ 3-CN-5-Me-C-6H ₂ 3-CN-3-thienyl 3-CN-5-Me-C-6H ₂ 3-CN-3-thienyl 3-CN-3-dif-C-6H ₂ 3-CN-3-thienyl 3-CN-3-f-6-He-C-6H ₂ 3-f-3-thienyl 3-CN-3-f-6-He-C-6H ₂ 3-f	27	2-CH ₂ CH ₂ F-C ₆ H ₄	2-F-3-Me-C ₆ H ₃	3-Me-5-Br-2-thienyl
3-CH-CHMe)-C ₆ H ₄ 3-CCH ₂ CH ₂ CH ₂ CH ₂ CH ₄ 3-CCH ₂ CH ₄ CH ₄ 3-CCH ₄ CH ₄ CH ₄ 3-CCH ₄ CH ₄ CH ₄ CH ₄ 3-CCH ₄ CH ₄	28	2-CH ₂ CH ₂ CN-C ₆ H ₄	2-F-5-Me-C ₆ H ₃	3-n-Pr-5-Cl-2-thienyl
2-(CH2CH=CH2)-C ₆ H ₄ 2-(CH=CHCl)-C ₆ H ₄ 2-(CH2C=CH)-C ₆ H ₄ 2-(CH2C=CM ₆)-C ₆ H ₄ 2-(CH(CN)Me]-C ₆ H ₄ 2-(CH(CN)Me]-C ₆ H ₄ 2-(CH(CN)Me]-C ₆ H ₄ 2-(CH2C(M ₆)-C ₆ H ₃ 2-(CN-3,6-dic-C ₆ H ₂ 2-(CH2CN)-3-thienyl	29	2-(CH=CH ₂)-C ₆ H ₄	2-F-6-Me-C ₆ H ₃	3-CN-5-F-2-thienyl
2-(CH=CHCI)-C ₆ H ₄ 2-(CH=CHBr)-C ₆ H ₄ 2-(CH=CHBr)-C ₆ H ₄ 2-(CH=CHCN)-C ₆ H ₄ 2-(CH=CHCN)-C ₆ H ₄ 2-(CH=CHCN)-C ₆ H ₄ 2-(CH=CHCN)-C ₆ H ₄ 2-(CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C=CM ₂)-C ₆ H ₄ 2-(CH ₂ C)-C ₆ H ₃ 2-(CN-3,6-diC-C ₆ H ₂ 2-(CH ₂ C)-3-thienyl 2-(CH ₂ C)-3	30	2-(CH=CHMe)-C ₆ H ₄	3-F-6-Me-C ₆ H ₃	3-CN-5-Cl-2-thienyl
2-(CH=CHBr)-C ₆ H ₄ 2-(CH=CHCN)-C ₆ H ₄ 2-(C=CH)-C ₆ H ₄ 2-(C=CH)-C ₆ H ₄ 2-(C=CH)-C ₆ H ₄ 2-(CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C=CM ₆)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CM ₆)-C ₆ H ₂ 2-(CH ₂ CH ₂ C-CM ₆)-C ₆ H ₂ 2-(CH ₂ CH ₂ C-CM ₆)-C ₆ H ₂ 2-(CH ₂ CH ₂ C-CM ₆)-C ₆ H ₃ 2-(CN-3-Me-5-Cl-C ₆ H ₂ 2-(CH ₂ CH ₂ CN)-3-thienyl 2-(CH ₂ CH ₂ CH ₂ C-C ₆ H ₃ 2-(CH ₂ CH ₂ CH ₂ C-CM ₆)-3-thienyl 2-(CH ₂ CH ₂ CH ₂ C-CM ₆)-3-thienyl 2-(CH ₂ CH ₂ CH ₂ C-C-CM ₆ C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	31	2-(CH ₂ CH=CH ₂)-C ₆ H ₄	2,3,4-triF-C ₆ H ₂	3-CN-5-Br-2-thienyl
2-(CH=CHCN)-C ₆ H ₄ 2,4,5-triF-C ₆ H ₂ 2-F-3-thienyl 2-(C=CH)-C ₆ H ₄ 2,3-triCl-C ₆ H ₂ 5-F-3-thienyl 3-F-3-thienyl 2-(CH ₂ C=CH)-C ₆ H ₄ 2,3-diF-5-Cl-C ₆ H ₂ 2-I-3-thienyl 3-F-3-thienyl 3-F-3-thienyl 2-(CH ₂ C=CM ₆)-C ₆ H ₄ 2,5-diF-3-Cl-C ₆ H ₂ 2-I-3-thienyl 3-I-3-thienyl 3-I-3-thienyl 2-(CH ₂ C=CM ₆)-C ₆ H ₄ 2,5-diF-3-Cl-C ₆ H ₂ 2-M-3-thienyl 3-I-3-thienyl 3-I-3-thienyl 2-(CH ₂ C=CM ₆)-C ₆ H ₄ 2,5-diCl-5-F-C ₆ H ₂ 2-Et-3-thienyl 3-I-3-thienyl	32	2-(CH=CHCl)-C ₆ H ₄	2,3,5-triF-C ₆ H ₂	3-CN-5-Me-2-thienyl
2-(C=CH)-C ₆ H ₄ 2-(CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C=CMe)-C ₆ H ₄ 2-(F ₂ Bu)-C ₆ H ₄ 2-(F ₂ Bu)-C ₆ H ₄ 2-(CH ₂ C=CMe)-C ₆ H ₄ 2-(CH ₂ CH)-C ₆ H ₃ 2-CN-3,5-diCl-C ₆ H ₂ 2-F ₂ -3-thienyl	33	2-(CH=CHBr)-C ₆ H ₄	2,3,6-triF-C ₆ H ₂	3-thienyl
2-(CH2CECH)-C ₆ H ₄ 2-(C=CMe)-C ₆ H ₄ 2-(F-Bu)-C ₆ H ₄ 2-(F-Bu)-C ₆ H ₄ 2-(CH2C=CMe)-C ₆ H ₄ 2-(CH2C)-C ₆ H ₄ 2-(CH2C)-C ₆ H ₄ 2-(CH(CI)Me]-C ₆ H ₄ 2-(CH(CN)Me]-C ₆ H ₄ 2-(CH(CN)Me]-C ₆ H ₄ 2-(CH(CN)Me]-C ₆ H ₄ 2-(CH(CN)Me]-C ₆ H ₄ 2-(CH2CMe)-C ₆ H ₃ 2-(CN-3,6-diCl-C ₆ H ₂ 2-(N-3,6-diCl-C ₆ H ₂ 2-(N-3-thienyl) 2-(CH2CN)-3-thienyl 2-(CH2CN)-3-thienyl 2-(CH2CN)-3-thienyl 2-(CH2CN)-3-thienyl 2-(CH2CN)-3-thienyl 2-(CH2CN)-3-thienyl 2-(CH2CH2CN)-3-thienyl 2-(CH2CM2CN)-3-th	34	2-(CH=CHCN)-C6H4	2,4,5-triF-C ₆ H ₂	2-F-3-thienyl
2-(C=CMe)-C ₆ H ₄ 2-(cH ₂ D)-C ₆ H ₃ 2-(cH ₂ C)-C ₆ D)-C ₆ H ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C ₆ D)-C ₆ D ₂ 2-(cH ₂ C)-C ₆ D)-C	35	2-(C≡CH)-C ₆ H ₄	2,3,5-triCl-C ₆ H ₂	4-F-3-thienyl
2-(r-Bu)-C ₆ H ₄ 2-(CH ₂ C=CMe)-C ₆ H ₄ 2-(CH ₂ C=CMe)-C ₆ H ₄ 2-[CH(F)Me]-C ₆ H ₄ 2-[CH(CI)Me]-C ₆ H ₄ 2-[CH(CI)Me]-C ₆ H ₄ 2-[CH(CN)Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-[CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CH)-C ₆ H ₃ 2-(CN-3,6-diF-C ₆ H ₂ 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CH ₂ CN)-3-thienyl 2-(C	36	2-(CH ₂ C≡CH)-C ₆ H ₄	2,3-diF-5-Cl-C ₆ H ₂	5-F-3-thienyl
2-(CH ₂ C=CMe)-C ₆ H ₄ 2-[CH(F)Me]-C ₆ H ₄ 2-[CH(C)Me]-C ₆ H ₄ 2-[CH(C)Me]-C ₆ H ₄ 2-[CH(Br)Me]-C ₆ H ₄ 2-[CH(Br)Me]-C ₆ H ₄ 2-[CH(Br)Me]-C ₆ H ₄ 2-[CH(CN)Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-[CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CH)-C ₆ H ₄ 2-(CN-3,5-diCl-C ₆ H ₂ 2-P-3-thienyl 2-2-P-3-thienyl	37	2-(C≡CMe)-C ₆ H ₄	2,3-diF-6-Cl-C ₆ H ₂	2-I-3-thienyl
2-[CH(F)Me]-C ₆ H ₄ 2,6-diF-3-Cl-C ₆ H ₂ 2-Et-3-thienyl 2-[CH(Cl)Me]-C ₆ H ₄ 2,3-diCl-5-F-C ₆ H ₂ 2-Cl-3-thienyl 2-[CH(CN)Me]-C ₆ H ₄ 2,5-diCl-3-F-C ₆ H ₂ 4-Cl-3-thienyl 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2,5-diCl-6-F-C ₆ H ₂ 4-Cl-3-thienyl 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2,5-diCl-6-F-C ₆ H ₂ 2-CN-3-thienyl 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2,6-diCl-3-F-C ₆ H ₂ 2-CN-3-thienyl 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2,5-diF-3-Me-C ₆ H ₂ 2-CN-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CECH)-C ₆ H ₄ 2,5-diF-3-Me-C ₆ H ₂ 2-Br-3-thienyl 2-Br-3-thienyl 2-G-N-3,5-diCl-C ₆ H ₂ 2-Pr-3-thienyl 2-F-3-thienyl 2-F-3-thienyl 2-F-3-thienyl 2-F-3-thienyl 2-F-3-thienyl 2-F-3-thienyl 2-F-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CH ₃ 2-CN-3,6-diF-C ₆ H ₂ 2-P-Bu-3-thienyl 2-F-3-thienyl 2-F-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-F-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-F-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-F-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-G-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-G-CH ₂ CH ₂	38	2-(t-Bu)-C ₆ H ₄	2,5-diF-3-Cl-C ₆ H ₂	5-1-3-thienyl
2-[CH(Cl)Me]-C ₆ H ₄ 2-[CH(Br)Me]-C ₆ H ₄ 2-[CH(CN)Me]-C ₆ H ₄ 2-[CH(CN)Me]-C ₆ H ₄ 2-[CH(CN)Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH=C(Me) ₂]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ C ₁ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CH)-C ₆ H ₃ 2-(CN-3,6-diCl-C ₆ H ₂ 2-(CH ₂ C-S-3-thienyl) 2-(CH ₂ C-S-3-thieny	39	2-(CH ₂ C≡CMe)-C ₆ H ₄	2,5-diF-6-Cl-C ₆ H ₂	2-Me-3-thienyl
2-[CH(Br)Me]-C ₆ H ₄ 2-[CH(CN)Me]-C ₆ H ₄ 2-[CH(CN)Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH=C(Me) ₂]-C ₆ H ₄ 2-[CH=C(Me) ₂]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CH)-C ₆ H ₃ 2-(CN-3,6-diCl-C ₆ H ₂ 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CH)-3-thienyl	40	2-[CH(F)Me]-C ₆ H ₄	2,6-diF-3-Cl-C ₆ H ₂	5-Me-3-thienyl
2-[CH(CN)Me]-C ₆ H ₄ 2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH=C(Me) ₂]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CH)-C ₆ H ₃ 2-(CN-3,5-diCl-C ₆ H ₂ 2-(CH ₂ C-3-thienyl) 2-(CH ₂ C-3-thienyl) 2-(CH ₂ C-3-thienyl) 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CH)-3-thienyl	41	2-[CH(Cl)Me]-C6H4	2,3-diCl-5-F-C ₆ H ₂	2-Et-3-thienyl
2-[CH(CN)CH ₂ Me]-C ₆ H ₄ 2-[CH=C(Me) ₂]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CH)-C ₆ H ₃ 2-(CN-3,5-diCl-C ₆ H ₂ 2-(CH ₂ C-C-3-thienyl) 2-(CH ₂ CH)-3-thienyl 2-(CH ₂ CH)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CN)-3-thienyl 2-(CH ₂ CH)-3-thienyl 2-(CH ₂ CH ₂ CN)-3-thienyl 2-(CH ₂ CH ₂ CH)-3-thienyl	42	2-[CH(Br)Me]-C ₆ H ₄	2,3-diCl-6-F-C ₆ H ₂	2-Cl-3-thienyl
2-[CH=C(Me) ₂]-C ₆ H ₄ 2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 47 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 48 2-(CH ₂ CH ₂ C=CH)-C ₆ H ₄ 49 2,3-diF-C ₆ H ₃ 2-CN-3,5-diCl-C ₆ H ₂ 2-Pr-3-thienyl 50 2,4-diF-C ₆ H ₃ 2-CN-3,5-diF-C ₆ H ₂ 2-Pr-3-thienyl 51 2,5-diF-C ₆ H ₃ 2-CN-3,5-diF-C ₆ H ₂ 2-Pr-3-thienyl 52 2,6-diF-C ₆ H ₃ 2-CN-3,5-diF-C ₆ H ₂ 2-Pr-3-thienyl 53 3,4-diF-C ₆ H ₃ 2-CN-3,5-diF-C ₆ H ₂ 2-Pr-3-thienyl 54 3,5-diF-C ₆ H ₃ 2-CN-3,6-diF-C ₆ H ₂ 2-CH ₂ F-3-thienyl 55 2,3-diCl-C ₆ H ₃ 2-CN-3-F-5-Cl-C ₆ H ₂ 2-F-3-thienyl 55 2,3-diCl-C ₆ H ₃ 2-CN-3-F-5-Cl-C ₆ H ₂ 2-F-3-thienyl 55 2,5-diBr-C ₆ H ₃ 2-CN-3-Me-5-Cl-C ₆ H ₂ 2-F-3-thienyl 2-CH ₂ CN-3-thienyl 2-CH ₂ CN-3-thienyl 2-CH ₂ CN-3-thienyl 2-CN-3-Me-5-Cl-C ₆ H ₂ 2-F-3-thienyl 2-CH ₂ CN-3-thienyl 2-CH ₂ CN-3-thienyl 2-CH ₂ CH ₂ CN-3-thienyl 2-CH ₂ CH ₂ CN-3-thienyl 2-CH ₂ CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-CH ₂ CH ₂ CH ₂ CH ₂ CN-3-thienyl 2-CH ₂ CH ₂	43	2-[CH(CN)Me]-C ₆ H ₄	2,5-diCl-3-F-C ₆ H ₂	4-Cl-3-thienyl
2-[CH(Me)CH=CH ₂]-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CH)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CH)-3-thienyl 3-n-Pr-3-thienyl 2-n-Pr-3-thienyl 2-n-Pr-3-th	44	2-[CH(CN)CH ₂ Me]-C ₆ H ₄	2,5-diCl-6-F-C ₆ H ₂	5-Cl-3-thienyl
2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄ 2-(CH ₂ CH ₂ C=CH)-C ₆ H ₄ 2,5-diF-3-Me-C ₆ H ₂ 5-Br-3-thienyl 5	45	2-[CH=C(Me) ₂]-C ₆ H ₄	2,6-diCl-3-F-C ₆ H ₂	2-CN-3-thienyl
2-(CH ₂ CH ₂ C=CH)-C ₆ H ₄ 2,3-diF-C ₆ H ₃ 2-CN-3,5-diCl-C ₆ H ₂ 2- <i>i</i> -Pr-3-thienyl 2-CH ₂ F-3-thienyl 2-CH ₂ F-3-thienyl 2-CH ₂ CN)-3-thienyl 2- <i>i</i> -Bu-3-thienyl 2- <i>i</i> -CH ₂ CH ₂ CN)-3-thienyl 2- <i>i</i> -Bu-3-thienyl	46	2-[CH(Me)CH=CH ₂]-C ₆ H ₄	2,3-diF-5-Me-C ₆ H ₂	2-(C≡CH)-3-thienyl
2,3-diF-C ₆ H ₃ 2,4-diF-C ₆ H ₃ 2,5-diF-C ₆ H ₃ 2,5-diF-C ₆ H ₃ 2,6-diF-C ₆ H ₃ 2,7-diCl-C ₆ H ₃ 2,7-diCl-C ₆ H ₃ 2,7-diCl-C ₆ H ₃ 2,8-diCl-C ₆ H ₃ 2,8-diF-C ₆ H ₂ 2,8-diF-C ₆ H ₂ 2-(CH ₂ CH ₂ CN)-3-thienyl 2-(CH ₂ CH ₂	47	2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄	2,5-diF-3-Me-C ₆ H ₂	2-Br-3-thienyl
2-CN-3,6-diCl-C ₆ H ₂ 2-i-Pr-3-thienyl 2-cN-3,5-diF-C ₆ H ₂ 2-i-Pr-3-thienyl 2-i-Pr-3-thi	48	2-(CH ₂ CH ₂ C≡CH)-C ₆ H ₄	2,5-diF-6-Me-C ₆ H ₂	5-Br-3-thienyl
2-CN-3,5-diF-C ₆ H ₂ 2-n-Bu-3-thienyl 2-CN-3,6-diF-C ₆ H ₂ 2-CH ₂ F-3-thienyl 2-CH ₂ CN-3-thienyl 2-CH ₂ CN-3-thienyl 2-CH ₂ CN-3-thienyl 2-CN-3-Me-5-Cl-C ₆ H ₂ 2-SiMe ₃ -3-thienyl 2-SiMe ₃ -3-thienyl 2-CH ₂ CH ₂ CN)-3-thienyl 2-CH ₂ CH ₂ CN)-3-thienyl 2-CH ₂ CH ₂ CH ₂ CN)-3-thienyl 2-CH ₃ CH ₂ CH ₂ CN)-3-thienyl 2-CH ₃ CH ₂ CH ₂ CH ₂ CN)-3-thienyl 2-CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃	49	2,3-diF-C ₆ H ₃	2-CN-3,5-diCl-C ₆ H ₂	2-n-Pr-3-thienyl
52 2,6-diF-C ₆ H ₃ 2-CN-3,6-diF-C ₆ H ₂ 2-CH ₂ F-3-thienyl 53 3,4-diF-C ₆ H ₃ 2-CN-5,6-diF-C ₆ H ₂ 2-(CH ₂ CN)-3-thienyl 54 3,5-diF-C ₆ H ₃ 2-CN-3-F-5-Cl-C ₆ H ₂ 2-t-Bu-3-thienyl 55 2,3-diCl-C ₆ H ₃ 2-CN-3-Me-5-Cl-C ₆ H ₂ 2-SiMe ₃ -3-thienyl 56 2,5-diCl-C ₆ H ₃ 2-CN-3-Me-5-F-C ₆ H ₂ 2-(CH ₂ CH ₂ CN)-3-thienyl 57 2,5-diBr-C ₆ H ₃ 2-Cl-3-F-5-Me-C ₆ H ₂ 2-(CH=CH ₂)-3-thienyl 58 2-Br-5-Cl-C ₆ H ₃ 2-F-3-Cl-5-Me-C ₆ H ₂ 2-(CH=CHMe)-3-thienyl 59 3-Br-2-Cl-C ₆ H ₃ 2,3,4,5-tetraF-C ₆ H 2-(CH ₂ CH=CH ₂)-3-thienyl	50	2,4-diF-C ₆ H ₃	2-CN-3,6-diCl-C ₆ H ₂	2-i-Pr-3-thienyl
53 3,4-diF-C ₆ H ₃ 2-CN-5,6-diF-C ₆ H ₂ 2-(CH ₂ CN)-3-thienyl 54 3,5-diF-C ₆ H ₃ 2-CN-3-F-5-Cl-C ₆ H ₂ 2-t-Bu-3-thienyl 55 2,3-diCl-C ₆ H ₃ 2-CN-3-Me-5-Cl-C ₆ H ₂ 2-SiMe ₃ -3-thienyl 56 2,5-diCl-C ₆ H ₃ 2-CN-3-Me-5-F-C ₆ H ₂ 2-(CH ₂ CH ₂ CN)-3-thienyl 57 2,5-diBr-C ₆ H ₃ 2-Cl-3-F-5-Me-C ₆ H ₂ 2-(CH=CH ₂)-3-thienyl 58 2-Br-5-Cl-C ₆ H ₃ 2-F-3-Cl-5-Me-C ₆ H ₂ 2-(CH=CHMe)-3-thienyl 59 3-Br-2-Cl-C ₆ H ₃ 2,3,4,5-tetraF-C ₆ H 2-(CH ₂ CH=CH ₂)-3-thienyl	51	2,5-diF-C ₆ H ₃	2-CN-3,5-diF-C ₆ H ₂	2-n-Bu-3-thienyl
54 3,5-diF-C ₆ H ₃ 2-CN-3-F-5-Cl-C ₆ H ₂ 2-t-Bu-3-thienyl 55 2,3-diCl-C ₆ H ₃ 2-CN-3-Me-5-Cl-C ₆ H ₂ 2-SiMe ₃ -3-thienyl 56 2,5-diCl-C ₆ H ₃ 2-CN-3-Me-5-F-C ₆ H ₂ 2-(CH ₂ CH ₂ CN)-3-thienyl 57 2,5-diBr-C ₆ H ₃ 2-Cl-3-F-5-Me-C ₆ H ₂ 2-(CH=CH ₂)-3-thienyl 58 2-Br-5-Cl-C ₆ H ₃ 2-F-3-Cl-5-Me-C ₆ H ₂ 2-(CH=CHMe)-3-thienyl 59 3-Br-2-Cl-C ₆ H ₃ 2,3,4,5-tetraF-C ₆ H 2-(CH ₂ CH=CH ₂)-3-thienyl	52	2,6-diF-C ₆ H ₃	2-CN-3,6-diF-C ₆ H ₂	2-CH ₂ F-3-thienyl
55 2,3-diCl-C ₆ H ₃ 2-CN-3-Me-5-Cl-C ₆ H ₂ 2-SiMe ₃ -3-thienyl 56 2,5-diCl-C ₆ H ₃ 2-CN-3-Me-5-F-C ₆ H ₂ 2-(CH ₂ CH ₂ CN)-3-thienyl 57 2,5-diBr-C ₆ H ₃ 2-Cl-3-F-5-Me-C ₆ H ₂ 2-(CH=CH ₂)-3-thienyl 58 2-Br-5-Cl-C ₆ H ₃ 2-F-3-Cl-5-Me-C ₆ H ₂ 2-(CH=CHMe)-3-thienyl 59 3-Br-2-Cl-C ₆ H ₃ 2,3,4,5-tetraF-C ₆ H 2-(CH ₂ CH=CH ₂)-3-thienyl	53	3,4-diF-C ₆ H ₃	2-CN-5,6-diF-C ₆ H ₂	2-(CH ₂ CN)-3-thienyl
56 2,5-diCl-C ₆ H ₃ 2-CN-3-Me-5-F-C ₆ H ₂ 2-(CH ₂ CH ₂ CN)-3-thienyl 57 2,5-diBr-C ₆ H ₃ 2-Cl-3-F-5-Me-C ₆ H ₂ 2-(CH=CH ₂)-3-thienyl 58 2-Br-5-Cl-C ₆ H ₃ 2-F-3-Cl-5-Me-C ₆ H ₂ 2-(CH=CHMe)-3-thienyl 59 3-Br-2-Cl-C ₆ H ₃ 2,3,4,5-tetraF-C ₆ H 2-(CH ₂ CH=CH ₂)-3-thienyl	54	3,5-diF-C ₆ H ₃	2-CN-3-F-5-Cl-C ₆ H ₂	2-t-Bu-3-thienyl
57 2,5-diBr-C ₆ H ₃ 2-Cl-3-F-5-Me-C ₆ H ₂ 2-(CH=CH ₂)-3-thienyl 58 2-Br-5-Cl-C ₆ H ₃ 2-F-3-Cl-5-Me-C ₆ H ₂ 2-(CH=CHMe)-3-thienyl 59 3-Br-2-Cl-C ₆ H ₃ 2,3,4,5-tetraF-C ₆ H 2-(CH ₂ CH=CH ₂)-3-thienyl	55	2,3-diCl-C ₆ H ₃	2-CN-3-Me-5-CI-C ₆ H ₂	2-SiMe ₃ -3-thienyl
58	56	2,5-diCl-C ₆ H ₃	2-CN-3-Me-5-F-C ₆ H ₂	2-(CH ₂ CH ₂ CN)-3-thienyl
59 3-Br-2-Cl-C ₆ H ₃ 2,3,4,5-tetraF-C ₆ H 2-(CH ₂ CH=CH ₂)-3-thieny	57	2,5-diBr-C ₆ H ₃	2-Cl-3-F-5-Me-C ₆ H ₂	2-(CH=CH ₂)-3-thienyl
	58	2-Br-5-CI-C ₆ H ₃	2-F-3-Cl-5-Me-C ₆ H ₂	2-(CH=CHMe)-3-thienyl
60 3-Br-6-Cl-C ₆ H ₃ 2,3,4,6-tetraF-C ₆ H 2-(CH ₂ C=CH)-3-thienyl	59	3-Br-2-Cl-C ₆ H ₃	2,3,4,5-tetraF-C ₆ H	2-(CH ₂ CH=CH ₂)-3-thienyl
	60	3-Br-6-Cl-C ₆ H ₃	2,3,4,6-tetraF-C ₆ H	2-(CH ₂ C=CH)-3-thienyl

	Column 1	Column 2	Column 3
61	4-Br-2-Cl-C ₆ H ₃	2,3,5,6-tetraF-C ₆ H	2-(C≡CMe)-3-thienyl
62	2-Br-4-Me-C ₆ H ₃	2-thienyl	2-(CH=CHCN)-3-thienyl
63	2-Br-5-Me-C ₆ H ₃	3-F-2-thienyl	2,4-diF-3-thienyl
64	3-Br-6-Me-C ₆ H ₃	4-F-2-thienyl	2,5-diF-3-thienyl
65	2-CN-3-F-C ₆ H ₃	5-F-2-thienyl	2,4-diCl-3-thienyl
66	2-CN-4-F-C ₆ H ₃	5-I-2-thienyl	2,5-diCl-3-thienyl
67	2-CN-5-F-C ₆ H ₃	3-Me-2-thienyl	2,5-diBr-3-thienyl
68	2-CN-6-F-C ₆ H ₃	5-Me-2-thienyl	2-Cl-5-Br-3-thienyl
69	2-CN-3-Cl-C ₆ H ₃	3-Et-2-thienyl	2-Br-5-Cl-3-thienyl
70	2-CN-5-Cl-C ₆ H ₃	5-Et-2-thienyl	2-Br-5-Me-3-thienyl
71	2-CN-6-Cl-C ₆ H ₃	3-Cl-2-thienyl	2-Me-5-Br-3-thienyl
72	2-CN-5-Br-C ₆ H ₃	4-Cl-2-thienyl	2-n-Pr-5-Cl-3-thienyl
73	2-CN-3-I-C ₆ H ₃	5-Cl-2-thienyl	2-n-Pr-5-Br-3-thienyl
74	2-CN-3-CF ₃ -C ₆ H ₃	3-CN-2-thienyl	2-CN-5-Cl-3-thienyl
75	2-CN-6-CF ₃ -C ₆ H ₃	5-(C≡CH)-2-thienyl	2-CN-5-Br-3-thienyl
76	2-CN-3-Me-C ₆ H ₃	3-Br-2-thienyl	2-CN-5-Me-3-thienyl

Z =

	Column 1	Column 2	Column 3
1	C ₆ H ₅	2-CN-3-CI-C ₆ H ₃	2,3,5,6-tetraCl-C ₆ H
2	2-F-C ₆ H ₄	2-CN-4-Cl-C ₆ H ₃	2,3,5-triCl-6-CN-C ₆ H
3	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃	2,3,4-triF-6-CN-C ₆ H
4	4-F-C ₆ H ₄	2-CN-6-Cl-C6H3	2,5-diCl-3,6-diF-C ₆ H
5	2-Cl-C ₆ H ₄	2-CN-5-Br-C ₆ H ₃	2,5-diF-3-Cl-6-CN-C ₆ H
6	3-Cl-C ₆ H ₄	2-CN-3-I-C ₆ H ₃	1 <i>H</i> -pyrrol-1-yl
7	4-Cl-C ₆ H ₄	2-CN-3-CF ₃ -C ₆ H ₃	2-F-1 <i>H</i> -pyrrol-1-yl
8	2-Br-C ₆ H ₄	2-CN-6-CF ₃ -C ₆ H ₃	3-F-1 <i>H</i> -pyrrol-1-yl
9	3-Br-C ₆ H ₄	2-CN-3-Me-C ₆ H ₃	2-I-1 <i>H</i> -pyrrol-1-yl
10	4-Br-C ₆ H ₄	2-CN-5-Me-C ₆ H ₃	2-Cl-1 <i>H</i> -pyrrol-1-yl
11	2-I-C ₆ H ₄	2-Br-4-F-C ₆ H ₃	3-Cl-1 <i>H</i> -pyrrol-1-yl

	Column 1	Column 2	Column 3
12	3-I-C ₆ H ₄	2-Br-5-F-C ₆ H ₃	2-CN-1H-pyrrol-1-yl
13	4-J-C ₆ H ₄	3-Br-6-F-C ₆ H ₃	2-Br-1 <i>H-</i> pyrrol-1-yl
14	2-Me-C ₆ H ₄	2-Cl-3-Me-C ₆ H ₃	2- <i>n</i> -Pr-1 <i>H</i> -pyrrol-1-yl
15	3-Me-C ₆ H ₄	2-Cl-5-Me-C ₆ H ₃	2- <i>n</i> -Bu-1 <i>H-</i> рутгоl-1-уl
16	4-Me-C ₆ H ₄	3-Cl-5-Me-C ₆ H ₃	2- <i>t</i> -Bu-1 <i>H</i> -руггоl-1-уl
17	2-Et-C6H4	2-n-Pr-3-F-C ₆ H ₃	2,3-diCl-1 <i>H</i> -pyrrol-1-yl
18	2-CN-C6H4	2-n-Pr-4-F-C ₆ H ₃	2,4-diCl-1 <i>H</i> -pyrrol-1-yl
19	2-CF ₃ -C ₆ H ₄	2-n-Pr-5-F-C ₆ H ₃	2,5-diCl-1 <i>H</i> -pyrrol-1-yl
20	2-n-Pr-C ₆ H ₄	2-n-Pr-6-F-C ₆ H ₃	2,3-diBr-1 <i>H</i> -pyrrol-1-yl
21	3-n-Pr-C ₆ H ₄	2-n-Pr-3-Cl-C ₆ H ₃	2,4-diBr-1 <i>H</i> -pyrrol-1-yl
22	2-i-Pr-C ₆ H ₄	2-n-Pr-5-Cl-C ₆ H ₃	2,5-diBr-1 <i>H</i> -pyrrol-1-yl
23	3- <i>i</i> -Pr-C ₆ H ₄	2-n-Pr-5-Br-C ₆ H ₃	2-Cl-3-Br-1 <i>H</i> -pyrrol-1-yl
24	2-n-Bu-C ₆ H ₄	2-n-Pr-5-Me-C ₆ H ₃	2-Cl-4-Br-1 <i>H</i> -pyrrol-1-yl
25	3-SiMe ₃ -C ₆ H ₄	2-Cl-3-F-C ₆ H ₃	2-Cl-5-Br-1 <i>H</i> -pyrrol-1-yl
26	2-CH ₂ F-C ₆ H ₄	2-Cl-4-F-C ₆ H ₃	3-Cl-5-Br-1 <i>H</i> -pyrrol-1-yl
27	3-CH ₂ F-C ₆ H ₄	2-C1-5-F-C ₆ H ₃	4-Cl-5-Br-1 <i>H</i> -pyrrol-1-yl
28	2-CH ₂ Cl-C ₆ H ₄	2-Cl-6-F-C ₆ H ₃	2-Cl-3-Me-1 <i>H</i> -pyrrol-1-yl
29	2-CH ₂ Br-C ₆ H ₄	3-C1-2-F-C ₆ H ₃	2-Cl-4-Me-1 <i>H</i> -pyrrol-1-yl
30	2-CH ₂ CN-C ₆ H ₄	3-Cl-6-F-C ₆ H ₃	2-Cl-5-Me-1 <i>H-</i> pyrrol-1-yl
31	2-CH ₂ CH ₂ F-C ₆ H ₄	2-F-3-Me-C ₆ H ₃	2-Br-3-Me-1 <i>H</i> -pyrrol-1-yl
32	2-CH ₂ CH ₂ Cl-C ₆ H ₄	2-F-5-Me-C ₆ H ₃	2-Br-4-Me-1H-pyrrol-1-yl
33	2-CH ₂ CH ₂ CN-C ₆ H ₄	2-F-6-Me-C ₆ H ₃	2-Br-5-Me-1 <i>H</i> -pyrrol-1-yl
34	2-(CH=CH ₂)-C ₆ H ₄	3-F-6-Me-C ₆ H ₃	3-Br-4-Me-1 <i>H</i> -pyrrol-1-yl
35	2-(CH=CHMe)-C ₆ H ₄	2,3,4-triF-C ₆ H ₂	2-CN-3-Cl-1 <i>H</i> -pyrrol-1-yl
36	2-(CH ₂ CH=CH ₂)-C ₆ H ₄	2,3,5-triF-C ₆ H ₂	2-CN-4-Cl-1 <i>H</i> -pyrrol-1-yl
37	2-(C≡CH)-C ₆ H ₄	2,3,6-triF-C ₆ H ₂	2-CN-5-Cl-1 <i>H</i> -pyrrol-1-yl
38	2-(CH ₂ C≡CH)-C ₆ H ₄	2,4,5-triF-C ₆ H ₂	2-CN-3-Br-1H-pyrrol-1-yl
39	2-(C≡CMc)-C ₆ H ₄	2,4,6-triF-C ₆ H ₂	2-CN-4-Br-1H-pyrrol-1-yl
40	2-(C≡CCH ₂ Me)-C ₆ H ₄	2,3,5-triCl-C ₆ H ₂	2-CN-5-Br-1 <i>H</i> -pyrrol-1-yl
41	2-(t-Bu)-C ₆ H ₄	2,3,6-triCl-C ₆ H ₂	2-CN-3-Me-1 <i>H</i> -pyπol-1-yl
42	2-[CH(F)Me]-C ₆ H ₄	2,3-diF-5-Cl-C ₆ H ₂	2-CN-4-Me-1 <i>H</i> -pyrrol-1-yl
43	2-[CH(Cl)Me]-C ₆ H ₄	2,3-diF-6-Cl-C ₆ H ₂	2-CN-5-Me-1H-pyrrol-1-yl
44	2-[CH(Br)Me]-C ₆ H ₄	2,5-diF-3-Cl-C ₆ H ₂	2-CN-5-n-Pr-1H-pyrrol-1-yl
45	2-[CH(CN)Me]-C ₆ H ₄	2,5-diF-6-Cl-C ₆ H ₂	2,3,4-triCl-1 <i>H</i> -pyrrol-1-yl
46	2-[CH=C(Me) ₂]-C ₆ H ₄	2,6-diF-3-Cl-C ₆ H ₂	2,3,5-triCl-1 <i>H</i> -pyrrol-1-yl
47	2-[CH(Me)CH=CH ₂]-C ₆ H ₄	2,3-diCl-5-F-C ₆ H ₂	2,3-diCl-4-Me-1H-pyrrol-1-yl

	Column 1	Column 2	Column 3
48	2-(CH ₂ C(Me)=CH ₂)-C ₆ H ₄	2,5-diCl-3-F-C ₆ H ₂	2,3-diCl-5-Me-1H-pyrrol-1-yl
49	2-(CH ₂ CH ₂ C≡CH)-C ₆ H ₄	2,5-diCl-6-F-C ₆ H ₂	2,4-diCl-3-Me-1H-pyrrol-1-yl
50	2,3-diF-C ₆ H ₃	2,6-diCl-3-F-C ₆ H ₂	2,4-diCl-5-Me-1H-pyrrol-1-yl
51	2,4-diF-C ₆ H ₃	2,3-diF-5-Me-C ₆ H ₂	2,5-diCl-3-Me-1H-pyrrol-1-yl
52	2,5-diF-C ₆ H ₃	2,5-diF-3-Me-C ₆ H ₂	2-CN-3,5-diMe-1H-pyrrol-1-yl
53	2,6-diF-C ₆ H ₃	2,5-diF-6-Me-C ₆ H ₂	2-CN-4,5-diMe-1H-pyrrol-1-yl
54	3,4-diF-C ₆ H ₃	2,5-diCl-3-Me-C ₆ H ₂	2-CN-3,5-diCl-1 <i>H</i> -pyrrol-1-yl
55	3,5-diF-C ₆ H ₃	2,5-diCl-6-Me-C ₆ H ₂	2-CN-4,5-diCl-1H-pyrrol-1-yl
56	2,3-diCl-C ₆ H ₃	2-CN-3,5-diMe-C ₆ H ₂	2-CN-3-Cl-4-Me-1 <i>H</i> -pyrrol-1-yl
57	2,4-diCl-C ₆ H ₃	2-CN-3,5-diCl-C ₆ H ₂	2-CN-3-Cl-5-Me-1H-pyrrol-1-yl
58	2,5-diCl-C ₆ H ₃	2-CN-3,5-diF-C ₆ H ₂	2-CN-3-Me-4-Cl-1 <i>H</i> -pyrrol-1-yl
59	2,6-diCl-C ₆ H ₃	2-CN-5,6-diF-C ₆ H ₂	2-CN-3-Me-5-Cl-1 <i>H</i> -pyrrol-1-yl
60	3,4-diCl-C ₆ H ₃	2-CN-3-F-5-Cl-C ₆ H ₂	2-CN-4-Me-5-Cl-1 <i>H</i> -pyrrol-1-yl
61	3,5-diCl-C ₆ H ₃	2-CN-3-Me-5-Cl-C ₆ H ₂	2-CN-4-Cl-5-Me-1H-pyrrol-1-yl
62	2,5-diBr-C ₆ H ₃	2-CN-3-Me-5-F-C ₆ H ₂	2-CN-4-Br-5-Me-1 <i>H</i>
63	2-Br-5-Cl-C ₆ H ₃	2-CN-5-F-6-Cl-C ₆ H ₂	2,3,4,5-tetraCl-1 <i>H</i> -pyrrol-1-yl
64	3-Br-2-Cl-C ₆ H ₃	2-Cl-3-F-5-Me-C ₆ H ₂	2,3,5-triCl-4-Me-1 <i>H</i> -pyrrol-1-yl
65	3-Br-6-Cl-C ₆ H ₃	2-Cl-3-F-6-Me-C ₆ H ₂	2,5-diCl-3,4-diMe-1H-pyrrol-1-yl
66	2-Br-5-Me-C ₆ H ₃	2-F-3-Cl-5-Me-C ₆ H ₂	2,3,4-triCl-5-CN-1H-pyrrol-1-yl
67	3-Br-6-Me-C ₆ H ₃	2,3,4,5-tetraF-C ₆ H	2,3,4-triMe-5-CN-1 <i>H</i> -pyrrol-1-yl
68	2-CN-3-F-C ₆ H ₃	2,3,4,6-tetraF-C ₆ H	2,3-Cl-4-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
69	2-CN-4-F-C ₆ H ₃	2,3,5,6-tetraF-C ₆ H	2,4-Cl-3-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
70	2-CN-5-F-C ₆ H ₃	2,3,4,5-tetraCl-C ₆ H	3,4-Cl-2-Me-5-CN-1 <i>H</i> -pyrrol-1-yl
71	2-CN-6-F-C ₆ H ₃	2,3,4,6-tetraCl-C ₆ H	

Rl	R ²	R ³	R ⁴	R ⁵	X	_	Column 1	Column 2
H	Н	Et	Me	Н	сн ₂	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
H	Н	Et	Me	H	CH ₂	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Н	H	Et	Me	H	CH ₂	Z =	2-Cl-C ₆ H ₄	2-CI-5-F-C ₆ H ₃
H	H	Et	Me	H	CH ₂	Z=	2-CN-C6H4	2-F-5-Cl-C ₆ H ₃

Rl	R ²	R ³	R ⁴	R ⁵	X	_	Column 1	Column 2
Н	н	Et	Me	H	CH ₂	Z=	3-CI-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Н	H	Et	Me	H	CH ₂	Z=	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
H	H	Et	Me	H	=CH	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
H	H	Et	Me	H	=CH	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
H	H	Et	Me	H	=CH	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Н	H	Et	Me	H	=CH	Z=	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Н	Н	Et	Me	H	=CH	Z=	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Н	H	Et	Me	H	=CH	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Н	H	Et	Me	Н	Ο	Z=	~ С ₆ Н ₅	2,5-diF-C ₆ H ₃
Н	Н	Et	Me	H	0	Z =	2-F-C ₆ H ₄	[.] 2,5-diCl-C ₆ H ₃
H	H	Et	Me	H	Ο	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Н	H	Et	Me	H	0	Z =	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
H	H	Et	Me	Н	0	Z =	3-C1-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
н	H	Et	Me	Н	0	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	Me	Et	Me	H	0	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Me	Et	Me	H	0	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Me	Et	Me	H	O	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Me	Et	Me	Н	О	Z=	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Me	Et	Me	H	Ο	Z=	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Me	Et	Mc	H	O	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	Et	Et	Me	H	O	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Mc	Et	Et	Me	H	Ο	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Et	Et	Me	H	Ο	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Et	Et	Me	H	Ο	Z=	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Et	Et	Me	H	Ο	Z≃	· 3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Et	Et	Me	Н	Ο	Z=	3-F-C ₆ H ₄	2-CN-5-C1-C ₆ H ₃
Me	Н	Et	Me	Н	CH(Me)	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	H	Et	Me	H	CH(Me)	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	Et	Me	H	CH(Me)	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	H	Et	Me	Н	CH(Me)	Z=	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	H	Et	Me	H	CH(Me)	Z=	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	Et	Me	H	CH(Me)	Z=	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	Н	Et	Me	Н	CH(Et)	Z=	С ₆ Н ₅	2,5-diF-C ₆ H ₃
Me	H	Et	Me	Н	CH(Et)	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	Et	Me	H	CH(Et)	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	H	Et	Me	Н	CH(Et)	Z=	2-CN-C ₆ H ₄	2-F-5-CI-C ₆ H ₃

\mathbb{R}^{1}	\mathbb{R}^2	R ³	R ⁴	R ⁵	x		Column 1	Column 2
Me	н	Et	Me	Н	CH(Et)	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	н	Et	Me	H	CH(Et)	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	н	Et	Me	H	CH(n-Pr)	z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Н	Et	Me	H	CH(n-Pr)	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Мс	Н	Et	Me	Н	CH(n-Pr)	Z =	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	н	Et	Me	н	CH(n-Pr)	z=	2-CN-C6H4	2-F-5-Cl-C ₆ H ₃
Me	Н	Et	Me	H	CH(n-Pr)	Z=	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Н	Et	Me	Н	CH(n-Pr)	Z=	3-F-C ₆ H ₄	2-CN-5-Cl-C6H3
Me	Н	Et	Me	H	=C(Me)	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	н	Et	Me	II	=C(Me)	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Н	Et	Me	H	=C(Me)	Z =	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Н	Et	Me	Н	=C(Me)	Z =	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	H	Et	Me	H	=C(Me)	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Н	Et	Me	H	=C(Me)	Z=	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	Н	Et	Me	Н	=C(Et)	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Н	Et	Me	H	=C(Et)	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Н	Et	Mc	Н	=C(Et)	Z =	2-C1-C6H4	2-Cl-5-F-C ₆ H ₃
Me	Н	Et	Me	H	=C(Et)	Z =	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Н	Et	Mc	H	=C(Et)	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Н	Et	Me	Н	=C(Et)	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Ме	Н	Et	Me	H	CH ₂	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	H	Et	Me	H	CH ₂	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	Et	Me	H	СH ₂	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	H	Et	Me	H	CH ₂	Z=	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	H	Et	Me	H	CH ₂	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	Et	Me	Н	CH ₂	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	Et	Me	Н	=CH	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Н	Et	Me	H	=CH	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Н	Et	Me	H	=CH	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Н	Et	Me	Н	=CH	Z =	l	2-F-5-Cl-C ₆ H ₃
Me	Н	Et	Me	H	=CH	Z =	1 .	2-CN-5-F-C ₆ H ₃
Me	Н	Et	Me	H	=CH	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	Et	H	Me	0	Z =	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	н	Et	Н	Me	O	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	н	Et	Н	Me	0	Z=		2-Cl-5-F-C ₆ H ₃
Me	н	Et	Н	Me	0	Z =	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃

						_		
Rl	R ²	R ³	R ⁴	R ⁵	х	.	Column 1	Column 2
Me	Н	Et	Н	Me	0	Z=	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	Et	Н	Me	0	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	Et	Н	Me	CH ₂	Z=	С ₆ Н ₅	2,5-diF-C ₆ H ₃
Me	H	Et	H	Me	CH_2	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	н	Et	Н	Me	CH_2	Z =	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Н	Et	Н	Me	CH ₂	Z =	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	H	Et	H	Me	CH ₂	Z =	3-CI-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	Et	Н	Me	CH ₂	Z =	3-F-C ₆ H ₄	2-CN-5-Cl-C ₆ H ₃
Me	H	Et	Н	Me	=CH	Z=	⁻ C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	H	Et	H	Me	=CH	Z =	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	Et	H	Me	=CH	Z≂	2-CI-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Н	Et	Н	Me	=CH	Z=	2-CN-C6H4	2-F-5-Cl-C ₆ H ₃
Me	Н	' Et	H	Me	=CH	Z=	3-CI-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	Et	H	Me	=CH	Z=	3-F-C ₆ H ₄	2-CN-5-C1-C ₆ H ₃
Me	H	-(CH ₂))4-	Me	0	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	Н	-(CH ₂)	-(CH ₂) ₄ -		0	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	-(CH ₂)	-(CH ₂) ₄ -		0	z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	Н	-(CH ₂)	-(CH ₂) ₄ -		0	Z=	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Н	-(CH ₂)	-(CH ₂) ₄ -		0	Z =	3-C1-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	-(CH ₂))4-	Me	0	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	-(CH ₂))3-	Me	0	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	H	-(CH ₂))3-	Me	0	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	Н	-(CH ₂))3-	Me	0	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	H	-(CH ₂))3-	Me	0	Z=	2-CN-C6H4	2-F-5-CI-C ₆ H ₃
Me	H	-(CH ₂))3-	Me	0	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	H	-(CH ₂))3-	Mc	0	Z=	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
Me	H	-(CH ₂)3-	Me	CH ₂	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
Me	H	-(CH ₂)3-	Me	CH ₂	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
Me	H	-(CH ₂)3-	Me	CH_2	Z=	2-Cl-C ₆ H ₄	2-Cl-5-F-C ₆ H ₃
Me	H	-(CH ₂)3-	Me	CH ₂	Z=	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃
Me	Н	-(CH ₂)3-	Me	CH ₂	Z =	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Н	-(CH ₂)3-	Me	CH ₂	Z =	3-F-C ₆ H ₄	2-CN-5-CI-C ₆ H ₃
H	Н	Et	Me	Н	CH ₂	Z=	C ₆ H ₅	2,5-diF-C ₆ H ₃
H	H	Et	Me	Н	CH_2	Z=	2-F-C ₆ H ₄	2,5-diCl-C ₆ H ₃
H	H	Et	Me	Н	CH ₂	Z =	2-CI-C ₆ H ₄	2-С1-5-F-С ₆ Н ₃
Н	н	Et	Me	Н	CH ₂	Z =	2-CN-C ₆ H ₄	2-F-5-Cl-C ₆ H ₃

						,		,
<u>R¹</u>	R ²	R ³	R ⁴	R ⁵	Х	_	Column 1	Column 2
H	H	Et	Me	H	CH_2	Z=	3-Cl-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
H	Н	Et	Me	H	CH ₂	Z=	3-F-C ₆ H ₄	2-CN-5-CI-C6H3
H	H	Et	Me	H	CH ₂	Z=	2-thienyl	3,5-diF-2-thienyl
H	H	Et	Me	H	СH ₂	Z=	3-F-2-thienyl	3,5-diCl-2-thienyl
H	H	Et	Me	H	CH ₂	Z=	3-Cl-2-thienyl	3-Cl-5-F-2-thienyl
H	H	Et	Me	H	CH ₂	Z =	3-CN-2-thienyl	3-F-5-Cl-2-thienyl
H	H	Et	Me	H	CH ₂	Z =	5-F-2-thienyl	3-CN-5-F-2-thienyl
H	H	Et	Me	H	CH ₂	Z =	5-Cl-2-thienyl	3-CN-5-Cl-2-thienyl
H	H	Et	Me	H	CH ₂	Z=	3-thienyl	2,5-diF-3-thienyl
H	H	Et	Me	H	CH ₂	Z=	2-F-3-thienyl	2,5-diCl-3-thienyl
Н	H	Et	Me	H	CH ₂	Z=	2-Cl-3-thienyl	2-Cl-5-F-3-thienyl
Н	H	Et	Me	Н	CH ₂	Z=	2-CN-3-thienyl	2-F-5-Cl-3-thienyl
Н	H	Et	Me	н	CH ₂	Z=	5-F-3-thienyl	2-CN-5-F-3-thienyl
H	H	Et	Me	H	CH ₂	Z=	5-Cl-3-thienyl	2-CN-5-Cl-3-thienyl
Н	H	Et	Me	H	CH ₂	Z =	1 <i>H</i> -pyrrol-1-yl	2,5-diF-1 <i>H</i> -pyrrol-1-yl
H	H	Et	Me	H	CH ₂	Z =	2-F-1H-pyrrol-1-yl	2,5-diCl-1 <i>H</i> -pyrrol-1-yl
H	H	Et	Me	H	CH ₂	Z=	2-Cl-1 <i>H</i> -pyrrol-1-yl	2-Cl-5-F-1 <i>H</i> -pyrrol-1-yl
H	H	Et	Me	H	CH ₂	Z=	2-CN-1H-pyrrol-1-yl	2-F-5-Cl-1 <i>H</i> -pyrrol-1-yl
H	H	Et	Me	H	CH_2	Z=	5-F-1 <i>H</i> -pyrrol-1-yl	2-CN-5-Cl-1 <i>H</i> -pyrrol-1-yl
H	Н	Et	Me	H	CH ₂	Z=	5-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-5-F-1 <i>H</i> -pyrrol-1-yl
H	H	Et	Me	H	=CH	Z=	2-thienyl	3,5-diF-2-thienyl
H	H	Et	Me	H	=CH	Z=	3-F-2-thienyl	3,5-diCl-2-thienyl
H	H	Et	Me	Н	=CH	Z=	3-Cl-2-thienyl	3-Cl-5-F-2-thienyl
H	H	Et	Me	H	=CH	Z=	3-CN-2-thienyl	3-F-5-Cl-2-thienyl
H	H	Et	Me	H	=CH	Z=	5-F-2-thienyl	3-CN-5-F-2-thienyl
H	H	Et	Me	H	=CH	Z=	5-Cl-2-thienyl	3-CN-5-Cl-2-thienyl
H	H	Et	Me	H	=CH	Z=	3-thienyl	2,5-diF-3-thienyl
H	H	Eı	Me	Н	=CH	Z=	2-F-3-thienyl	2,5-diCl-3-thienyl
H	H	Et	Me	H	=CH	Z=	2-Cl-3-thienyl	2-Cl-5-F-3-thienyl
H	H	Et	Me	H	=CH	Z=	2-CN-3-thienyl	2-F-5-Cl-3-thienyl
H	H	· Et	Me	H	=CH	Z=	5-F-3-thienyl	2-CN-5-F-3-thienyl
H	H	Et	Me	H	=CH	Z=	5-Cl-3-thienyl	2-CN-5-Cl-3-thienyl
Me	Ph	H	Me	Н	О	Z =	2-CN-C ₆ H ₄	2-CN-5-F-C ₆ H ₃
Me	Ph	H	Me	H	0	Z =	2-CN-5-CI-C ₆ H ₃	2-CN-5-Me-C ₆ H ₃
Me	Ph	H	Me	H	0	Z=	2,5-diF-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
Me	Ph	H	H	Me	0	Z=	2-CN-C ₆ H ₄	2-CN-5-F-C6H3

R^{1}	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R ⁵	х		Column 1	Column 2
Me	Ph	Н	Н	Me	0	- Z=	2-CN-5-CI-C ₆ H ₃	2-CN-5-Me-C ₆ H ₃
Me	Ph	н	H	Me	0	z =	2,5-diF-C ₆ H ₃	2-F-5-Cl-C ₆ H ₃
					-		•	1
H	H	Et	Me	H	О	Z=	l <i>H-</i> pyrrol-1-yl	2,5-diF-1 <i>H</i> -pyrrol-1-yl
H	H	Et	Me	H	0	Z=	2-F-1 <i>H</i> -pyrrol-1-yl	2,5-diCl-1 <i>H-</i> pyrrol-1-yl
Н	H	Et	Me	H	0	Z=	2-Cl-1 <i>H</i> -рупоl-1-уl	2-Cl-5-F-1 <i>H-</i> pyrrol-1-yl
Н	H	Et	Me	Н	0	Z=	2-CN-1 <i>H</i> -pyrrol-1-yl	2-F-5-Cl-1 <i>H</i> -pyrrol-1-yl
Н	Н	Et	Me	H	0	Z=	5-F-1 <i>H-</i> pyrrol-1-yl	2-CN-5-Cl-1H-pyrrol-1-yl
Н	Н	Et	Me	Н	0	Z =	5-Cl-1 <i>H</i> -pyrrol-1-yl	2-CN-5-F-1 <i>H-</i> pyrrol-1-yl
Me	Н	Н	Me	Et	Ο	Z=	3-F-C ₆ H ₄	2-CN-3-Cl-C ₆ H ₃
Me	H	H	Me	Et	Ο	Z =	2,5-diF-C ₆ H ₃	•
Me	Н	(CH ₂) ₂ CN	Me	H	0	Z =	3-F-C ₆ H ₄	2-CN-3-Cl-C ₆ H ₃
Me	Н	(CH ₂) ₂ CN	Mc	H	О	Z=	2,5-diF-C ₆ H ₃	
Me	H	(CH ₂) ₂ F	Me	H	O	Z=	3-F-C ₆ H ₄	2-CN-3-Cl-C ₆ H ₃
Ме	Н	(CH ₂) ₂ F	Me	H	O	Z=	2,5-diF-C ₆ H ₃	
Me	Н	CH ₂ CN	Me	Н	O	Z=	3-F-C ₆ H ₄	2-CN-3-Cl-C ₆ H ₃
Me	Н	CH ₂ CN	Me	H	0	Z=	2,5-diF-C ₆ H ₃	
Me	H	(CH ₂) ₂ Cl	Me	H	0	Z=	3-F-C ₆ H ₄	2-CN-3-Cl-C ₆ H ₃
Me	H	(CH ₂) ₂ Cl	Me	H	0	Z=	2,5-diF-C ₆ H ₃	

Formulation/Utility

10

.15.

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

5

10

15

20

25

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

	•	Weight Percent	
-	Active Ingredient	<u>Diluent</u>	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	590	094	1–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	40–95 ~	0–15
Dusts Granules and Pellets	1–25 0.01–99	70–99 5–99.99	0-5 0-15
High Strength Compositions	90-99	0-10	02

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, *N*,*N*-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, *N*,*N*-dimethylformamide, dimethyl sulfoxide, *N*-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for

5

example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", *Chemical Engineering*, December 4, 1967, pp 147-48, *Perry's Chemical Engineer's Handbook*, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-D.

20	Example A	
	Wettable Powder	
	Compound 2	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
	sodium ligninsulfonate	4.0%
25	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%.
	Example B	
	<u>Granule</u>	
	Compound 13	10.0%
30	attapulgite granules (low volatile matter,	
	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.

PCT/US98/01668

60

Example C

	Extruded Pellet	
	Compound 80	25.0%
	anhydrous sodium sulfate	10.0%
5	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.
	Example D	
	Emulsifiable Concentrate	
0	Compound 2	20.0%
	blend of oil soluble sulfonates	•
	and polyoxyethylene ethers	10.0%
	isophorone	70.0%.

1

15

20

25

30

35

The compounds of this invention are useful as plant disease control agents. The present invention therefore further comprises a method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof to be protected, or to the plant seed or seedling to be protected, an effective amount of a compound of the invention or a fungicidal composition containing said compound. The compounds and compositions of this invention provide control of diseases caused by a broad spectrum of fungal plant pathogens in the Basidiomycete, Ascomycete, Oomycete and Deuteromycete classes. They are effective in controlling a broad spectrum of plant diseases, particularly foliar pathogens of ornamental, vegetable, field, cereal, and fruit crops. These pathogens include Plasmopara viticola, Phytophthora infestans, Peronospora tabacina, Pseudoperonospora cubensis, Pythium aphanidermatum, Alternaria brassicae, Septoria nodorum, Septoria tritici, Cercosporidium personatum, Cercospora arachidicola, Pseudocercosporella herpotrichoides, Cercospora beticola, Botrytis cinerea, Monilinia fructicola, Pyricularia oryzae, Podosphaera leucotricha, Venturia inaequalis, Erysiphe graminis, Uncinula necatur, Puccinia recondita, Puccinia graminis, Hemileia vastatrix, Puccinia striiformis, Puccinia arachidis, Rhizoctonia solani, Sphaerotheca fuliginea, Fusarium oxysporum, Verticillium dahliae, Pythium aphanidermatum, Phytophthora megasperma, Sclerotinia sclerotiorum, Sclerotium rolfsii, Erysiphe polygoni, Pyrenophora teres, Gaeumannomyces graminis, Rynchosporium secalis, Fusarium roseum, Bremia lactucae and other generea and species closely related to these pathogens.

Compounds of this invention can also be mixed with one or more other insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants or other biologically active compounds to form a multi-component pesticide giving an even broader spectrum of

35

agricultural protection. Examples of such agricultural protectants with which compounds of this invention can be formulated are: insecticides such as abamectin, acephate, azinphos-methyl, bifenthrin, buprofezin, carbofuran, chlorfenapyr, chlorpyrifos, chlorpyrifos-methyl, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, deltamethrin, diafenthiuron, diazinon, diflubenzuron, dimethoate, esfenvalerate, fenoxycarb, fenpropathrin, fenvalerate, fipronil, flucythrinate, tau-fluvalinate, fonophos, imidacloprid, isofenphos, malathion, metaldehyde, methamidophos, methidathion, methomyl, methoprene, methoxychlor, methyl 7-chloro-2,5-dihydro-2-[[N-(methoxycarbonyl)-N-[4-(trifluoromethoxy)phenyl]amino]carbonyl]indeno[1,2-e][1,3,4]oxadiazine-4a(3H)carboxylate (DPX-JW062), monocrotophos, oxamyl, parathion, parathion-methyl, 10 permethrin, phorate, phosalone, phosmet, phosphamidon, pirimicarb, profenofos, rotenone, sulprofos, tebufenozide, tefluthrin, terbufos, tetrachlorvinphos, thiodicarb, tralomethrin, trichlorfon and triflumuron; fungicides such as azoxystrobin, benomyl, blasticidin-S, Bordeaux mixture (tribasic copper sulfate), bromuconazole, captafol, captan, carbendazim, chloroneb, chlorothalonil, copper oxychloride, copper salts, cymoxanil, cyproconazole, 15 cyprodinil (CGA 219417), diclomezine, dicloran, difenoconazole, dimethomorph, diniconazole, diniconazole-M, dodine, edifenphos, epoxiconazole (BAS 480F), famoxadone, fenarimol, fenbuconazole, fenpiclonil, fenpropidin, fenpropimorph, fluazinam, fluquinconazole, flusilazole, flutolanil, flutriafol, folpet, fosetyl-aluminum, furalaxyl, hexaconazole, ipconazole, iprobenfos, iprodione, isoprothiolane, kasugamycin, 20 kresoxim-methyl, mancozeb, maneb, mepronil, metalaxyl, metconazole, S-methyl 7-benzothiazolecarbothioate (CGA 245704), myclobutanil, neo-asozin (ferric methanearsonate), oxadixyl, penconazole, pencycuron, probenazole, prochloraz, propiconazole, pyrifenox, pyroquilon, quinoxyfen, spiroxamine (KWG4168), sulfur, tebuconazole, tetraconazole, thiabendazole, thiophanate-methyl, thiram, triadimefon, 25 triadimenol, tricyclazole, triticonazole, validamycin and vinclozolin; nematocides such as aldoxycarb and fenamiphos; bactericides such as streptomycin; acaricides such as amitraz, chinomethionat, chlorobenzilate, cyhexatin, dicofol, dienochlor, etoxazole, fenazaquin. fenbutatin oxide, fenpropathrin, fenpyroximate, hexythiazox, propargite, pyridaben and tebufenpyrad; and biological agents such as Bacillus thuringiensis, Bacillus thuringiensis 30 delta endotoxin, baculovirus, and entomopathogenic bacteria, virus and fungi.

In certain instances, combinations with other fungicides having a similar spectrum of control but a different mode of action will be particularly advantageous for resistance management.

Plant disease control is ordinarily accomplished by applying an effective amount of a compound of this invention either pre- or post-infection, to the portion of the plant to be protected such as the roots, stems, foliage, fruit, seeds, tubers or bulbs, or to the media (soil

WO 98/33765

10

15

or sand) in which the plants to be protected are growing. The compounds can also be applied to the seed to protect the seed and seedling.

Rates of application for these compounds can be influenced by many factors of the environment and should be determined under actual use conditions. Foliage can normally be protected when treated at a rate of from less than 1 g/ha to 5,000 g/ha of active ingredient. Seed and seedlings can normally be protected when seed is treated at a rate of from 0.1 to 10 g per kilogram of seed.

The following TESTS demonstrate the control efficacy of compounds of this invention on specific pathogens. The pathogen control protection afforded by the compounds is not limited, however, to these species. See Index Tables A-E for compound descriptions. The following abbreviations are used in the Index Tables which follow: t = tertiary, n = normal, i = iso, F = fluorine, Br = bromine, Cl = chlorine, I = iodine, I = methyl, I = ethyl, I = methyl, $I = \text{methyl$

The compounds listed below are mixtures of diastereoisomers unless indicated otherwise.

<u>Cmpd</u>	<u>C</u>	onf. at		Conf. at				
<u>No.</u>	R^{1}	*	<u>R</u> 2	**	<u>R</u> 6	<u>x</u>	<u>z</u>	mp (°C)
la	Me	R,S	H	-	t-Bu	0	C ₆ H ₅	125-133
1b#	Me	R,S	H	-	<i>t</i> -Bu	.0	C ₆ H ₅	132-138
1c##	Me	R,S	H	-	t-Bu	О	C ₆ H ₅	111-114
ld#	Me	R	H	-	t-Bu	0	C ₆ H ₅	78-80
1e##	Me	R	Н	-	t-Bu	0	C ₆ H ₅	78-80
2a	Me	R,S	Н	-	t-Bu	0	2-F-C ₆ H ₄	Oil•
2b#	Me	R	H	-	t-Bu	0	2-F-C ₆ H ₄	Oil•
2c##	Me	R	H	-	<i>t</i> -Bu	0	2-F-C ₆ H ₄	100-102
3a	Me	R,S	H	-	t-Bu	О	3-F-C ₆ H ₄	Oil*
3b#	Me	R,S	Н	-	t-Bu	0	3-F-C ₆ H ₄	131-133
3c##	Me	R,S	H	-	t-Bu	0	3-F-C ₆ H ₄	112-115
3d#	Me	R	H	-	t-Bu	0	3-F-C ₆ H ₄	Oil*
3e##	Me	R	H	-	t-Bu	0	3-F-C ₆ H ₄	96-98
4a [#]	Me	R,S	H	-	<i>t</i> -Bu	О	4-F-C ₆ H ₄	Oil•

Cmpd	С	onf. at		Conf. at				
No.	R1	*	<u>R</u> 2	**	<u>R</u> 6	X	<u>Z</u>	mp (°C)
4b##		R,S	Н	_	t-Bu	0	4-F-C ₆ H ₄	85-88
4c	Me	R	Н	-	t-Bu	0	4-F-C ₆ H ₄	Oil*
5a	Me	R,S	Н	-	t-Bu	0	2-Cl-C ₆ H ₄	Oil•
5b	Me	R	Н	-	<i>t</i> -Bu	0	2-Cl-C ₆ H ₄	104-107
6a [#]	Me	R,S	Н	-	t-Bu	0	3-Cl-C ₆ H ₄	112-114
6b	Me	R,S	Н	-	t-Bu	0	3-Cl-C ₆ H ₄	Oil [●]
6c##	Me	R,S	H	-	t-Bu	0	3-Cl-C ₆ H ₄	132-135
6d#	Me	R	Н	-	<i>t</i> -Bu	Ô	3-Cl-C ₆ H ₄	Oil*
6e##	Me	R	H	-	<i>t</i> -Bu	0	3-Cl-C ₆ H ₄	Oil [•]
7a#	Me	R,S	Н	-	<i>t-</i> Bu	0	4-Cl-C ₆ H ₄	Oil [•]
7b##	Me	R,S	Н	•	t-Bu	0	4-Cl-C ₆ H ₄	107-110
7c#	Me	R	Н	-	t-Bu	0	4-Cl-C ₆ H ₄	Oil*
7d##	Me	R	H	-	t-Bu	O	4-Cl-C ₆ H ₄	Oil [•]
8a	Me	R,S	H	-	t-Bu	0	2-Br-C ₆ H ₄	123-125
8b#	Me	R	H	-	t-Bu	0	2-Br-C ₆ H ₄	103-105
8c##	Me	R	H	-	t-Bu	0	2-Br-C ₆ H ₄	112-114
9a	Me	R,S	Н	-	<i>t</i> -Bu	0	3-Br-C ₆ H ₄	Oil*
9b#	Me	R	H	-	t-Bu	0	3-Br-C ₆ H ₄	106-108
9c##	Me	R	H	-	t-Bu	0	3-Br-C ₆ H ₄	Oil*
10a#	Me	R,S	H	-	t-Bu	0	4-Br-C ₆ H ₄	Oil [•]
10b##	Me	R,S	H	-	t-Bu	0	4-Br-C ₆ H ₄	Oil [•]
10c#	Me	R	H	-	<i>t</i> -Bu	Ο	4-Br-C ₆ H ₄	Oil [•]
10d##	Me	R	H	-	t-Bu	.0	4-Br-C ₆ H ₄	Oil*
11a	Me	R,S	H	-	t-Bu	0	2-I-C ₆ H ₄	140-142
11b	Me	R	H	-	t-Bu	0	2-I-C ₆ H ₄	124-126
12a#	Me		H	-	<i>t</i> -Bu	O	3-I-C ₆ H ₄	Oil*
12b##	Me	R	H	-	t-Bu	O	3-I-C ₆ H ₄	Oil*
13a		R,S	H	-	t-Bu	0	2-CN-C ₆ H ₄	Oil [●]
13b [#]	Me	R	H	-	t-Bu	0	2-CN-C ₆ H ₄	Oil*
13c##	Me	R	H	•	t-Bu	Ο	2-CN-C ₆ H ₄	Oil*
14a#	Me	R	H	-	t-Bu	0	2-Cl-4-Me-C ₆ H ₃	Oil*
14b##	Me	R	Н	-	t-Bu	O	2-CI-4-Me-C ₆ H ₃	Oil*
15a#	Me	R	H	-	t-Bu	0	2-Cl-5-Me-C ₆ H ₃	103-106
15b##	Me	R	H	-	t-Bu	0	2-CI-5-Me-C ₆ H ₃	112-115
16	Me	R	H	-	t-Bu	0	2-(CH ₂ CN)-C ₆ H ₄	120-122

Cmpd	<u>C</u>	onf. at		Conf. at				
No.	$\underline{R^1}$	*	$\underline{R^2}$	**	<u>R</u> 6	<u>X</u>	<u>z</u>	mp (°C)
17a	Me	R,S	Н	-	t-Bu	0	2-CF ₃ -C ₆ H ₄	92-94
17b	Me	R	H	-	t-Bu	0	2-CF ₃ -C ₆ H ₄	92-94
18a#	Me	R	Н	-	t-Bu	0	3-CF ₃ -C ₆ H ₄	Oil*
18b##	Me	R	Н	-	t-Bu	0	3-CF ₃ -C ₆ H ₄	98-100
19	Me	R	H	-	t-Bu	0	2-Me-C ₆ H ₄	104-107
20a	Me	R,S	H	-	t-Bu	0	2-Et-C ₆ H ₄	94-97
Ex. 6						~		
20b	Me	R	Н	-	t-Bu	0	2-Et-C ₆ H ₄	102-104
21a	Me	R,S	H	-	t-Bu	0	2- <i>n</i> -Pr-C ₆ H ₄	95-97
21b	Me	R	H	-	t-Bu	0	2- <i>n</i> -Pr-C ₆ H ₄	78-81
22	Ме	R	Н	-	t-Bu	0	2- <i>i</i> -Pr-C ₆ H ₄	112-114
23	Me	Ŕ	H	-	t-Bu	0	2- <i>t</i> -Bu-C ₆ H ₄	Oil*
24	Me	R	H	-	t-Bu	0	4- <i>t</i> -Bu-C ₆ H ₄	97-100
25a	Me	R,S	H	-	t-Bu	0	2-(CH ₂ CH=CH ₂)-C ₆ H ₄	Oil*
25b	Me	R	H	-	t-Bu	0	$2-(CH_2CH=CH_2)-C_6H_4$	70-72
26a#	Me	R	H	-	t-Bu	0	2,3-diF-C ₆ H ₃	86-88
26b##	Me	R	H	-	t-Bu	0	2,3-diF-C ₆ H ₃	120-122
27a [#]	Me	R	Н	-	t-Bu	0	2,4-diF-C ₆ H ₃	Oil*
27b##	Me	R	Н	-	t-Bu	0	2,4-diF-C ₆ H ₃	Oil [•]
28a#	Me	R	H	-	t-Bu	0	2,5-diF-C ₆ H ₃	104-106
28b##	Me	R	H	-	t-Bu	0	2,5-diF-C ₆ H ₃	Oil*
28c	Me	R	Н	-	t-Bu	0	2,5-diF-C ₆ H ₃	101-103
29a	Me	R,S	H	-	t-Bu	0	2,6-diF-C ₆ H ₃	Oil*
29b	Me	R	H	-	<i>t</i> -Bu	Ō	2,6-diF-C ₆ H ₃	Oil*
30a [#]	Me	R	Н	-	t-Bu	0	3,4-diF-C ₆ H ₃	Oil [•]
30b##	Me	R	Н	-	t-Bu	0	3,4-diF-C ₆ H ₃	Oil*
. 31a#	Me	R	H	-	t-Bu	O	$2,3$ -diCl-C $_6$ H $_3$	122-124
31b##	Me	R	H	-	t-Bu	0	$2,3$ -diCl-C $_6$ H $_3$	104-106
32a [#]	Me	R	H	-	t-Bu	0	$2,4$ -diCl-C $_6$ H $_3$	Oil*
32b##	Me	R	H	-	t-Bu	0	$2,4$ -diCl-C $_6$ H $_3$	Oil*
33a [#]	Me	R	H	-	t-Bu	0	2,5-diCl-C ₆ H ₃	103-105
33b##	Me	R	H	-	t-Bu	0	2,5-diCl-C ₆ H ₃	103-105
33c	Me	R	Н	-	t-Bu	О	2,5-diCl-C ₆ H ₃	110-112
34	Me	R	H	-	t-Bu	О	2,6-diCl-C ₆ H ₃	128-130
35a#	Me	R	H	-	t-Bu	0	3,5-diCl-C ₆ H ₃	135-137

<u>Cmpd</u>	<u>C</u>	onf. at		Conf. at				
<u>No.</u>	<u>R</u> 1	*	<u>R</u> 2	**	<u>R</u> 6	<u>x</u>	<u>z</u>	<u>mp (°C)</u>
35b##	Me	R	н	-	t-Bu	0	3,5-diCl-C ₆ H ₃	121-123
36a [#]	Ме	R	Н	-	<i>t</i> -Bu	0	2-F-4-Cl-C ₆ H ₃	Oil•
36b##	Me	R	Н	-	t-Bu	0	2-F-4-Cl-C ₆ H ₃	Oil•
37a [#]	Me	R	H	-	t-Bu	0	2-Cl-4-F-C ₆ H ₃	88-90
37b##	Me	R	Ĥ	-	t-Bu	0	2-Cl-4-F-C ₆ H ₃	Oil*
38	Me	R,S	Н	-	t-Bu	0	2-F-4-Br-C ₆ H ₃	Oil*
39	Me	R,S	Н	-	t-Bu	0	2-CN-3-F-C ₆ H ₃	143-149
40	Me	R,S	H	-	<i>t</i> -Bu	Õ	2-CN-4-F-C ₆ H ₃	110-116
41	Me	R	H	-	<i>t</i> -Bu	0	2-CN-5-F-C6H3	Oil•
42	Me	R,S	H	-	t-Bu	0	2-CN-3-Cl-C ₆ H ₃	115-135
43	Me	R	H	-	t-Bu	0.	2-CN-5-CI-C ₆ H ₃	Oil^{ullet}
44	Me	R	H	•	<i>t</i> -Bu	0	2-CN-5-Br-C ₆ H ₃	\mathbf{Oil}^{ullet}
45	Me	R,S	Н	-	t-Bu	0	2-CN-3-I-C ₆ H ₃	53-73
46	Me	R	Н	-	t-Bu	О	2-CN-5-I-C ₆ H ₃	Oil*
47	Me	R,S	H	-	t-Bu	О	2-CN-3-CF ₃ -C ₆ H ₃	60-90
48	Me	R,S	Н	-	<i>t</i> -Bu	O	2-CF ₃ -6-CN-C ₆ H ₃	135-170
49	Ме	R,S	H	-	t-Bu	0	2-Me-3-Cl-5-CN-1 <i>H</i> -рупоl-1-уl	127-129
50	Me	R,S	H	-	t-Bu	0	2-Me-3-Br-5-CN-1 <i>H</i> -pyrrol-1-yl	$\operatorname{Oil}^{ullet}$
51	Me	R	Н	-	t-Bu	0	2,3-diCl-5-CN-1 <i>H</i> -pyrrol-1-yl	110-116
52	Me	R	Н	-	t-Bu	0	2,3,4-triCl-5-CN-1 <i>H</i> -pyrrol-1-yl	110-116
53	Me	R,S	H	-	<i>t</i> -Bu	CH_2	3-Cl-5-CN-1H-pyrrol-1-yl	75-106
54#	H	-	H	-	<i>t</i> -Bu	CH ₂	C ₆ H ₅	93-96
55#	H	-	H	-	t-Bu	CH ₂	2,3-diCl-5-CN-1 <i>H</i> -pyrrol-1-yl	Oil*
56	Me	R	Н	-	CH(Me)C(Me) ₃	O	C ₆ H ₅	Oil*
57	Me	R	H	-	CH(Me)C(Me) ₃	O	2-F-C ₆ H ₄	\mathbf{Oil}^{ullet}
58	Me	R	Н	-	CH(Me)C(Me) ₃	0	2-Cl-C ₆ H ₄	Oil*
59	Me	R	Н	-	CH(Me)C(Me) ₃	Ο	2-Br-C ₆ H ₄	Oil [®]
60 .	Me	R	H	-	CH(Me)C(Me) ₃	0	2-CN-C ₆ H ₄	Oil [•]
61	Me	R	H	-	CH(Me)C(Me) ₃	0	2-(CH ₂ CN)-C ₆ H ₄	Oil*
62	Me	R	H	-	CH(Me)C(Me)3	0	2,5-diCl-C ₆ H ₃	Oil [•]
63	Me	R,S	H	-	CH(Me)C(Me) ₃	0	2-CN-3-F-C ₆ H ₃	Oil*
64	Me	R,S	H	-	CH(Me)C(Me) ₃	0	2-CN-3-Cl-C ₆ H ₃	Oil^{\bullet}
65	Me	R,S	H	-	CH(Me)C(Me) ₃	О	2-CN-3-I-C ₆ H ₃	Oil•
66	Me	R,S	H	-	CH(Me)C(Me)3	0	2-CN-3-CF ₃ -C ₆ H ₃	$\operatorname{Oil}^{ullet}$
67	Me	R,S	Н	-	CH(Me)C(Me) ₃	0	2-F-6-CN-C ₆ H ₃	147-165

Cmpd	<u>c</u>	onf. at		Conf. at				
<u>No.</u>	<u>R</u> 1	*	$\underline{\mathbb{R}^2}$	**	<u>R</u> 6	<u>X</u>	<u>Z</u>	mp (°C)
68	Me	R,S	Н	-	CH(Me)C(Me)3	0	2-CF ₃ -6-CN-C ₆ H ₃	Oil*
69	Ме	R,S	Н	•	CH(Me)C(Me)3	0	2-CN-3,5-diF-C ₆ H ₂	Oil*
70	Me	R,S	Н	-	CH(Me)C(Me)3	0	2-Me-3-Br-5-CN-1H-pyrrol-1-yl	Oil*
71a	Me	R,S	Н	-	CH(Me)C(Me)3	0	2-Me-3-Cl-5-CN-1 <i>H</i> -pyrrol-1-yl	Oil*
71b	Me	R,S	Н	-	CH(Me)C(Me)3	О	2-Me-3-Cl-5-CN-1H-pyrrol-1-yl	Oil*
72	Me	R,S	H	-	CH(Me)C(Me) ₃	CH ₂	2-Me-3-Cl-5-CN-1H-pyrrol-1-yl	111-118
Ex.4								
73	Me	R,S	Н	-	CH(Me)C(Me) ₃	CH ₂	2-Me-3-Br-5-CN-1 <i>H</i> -pyrrol-1-yl	Oil•
74	Me	R,S	H	-	CH(Me)C(Me) ₃	CH ₂	3-Cl-5-CN-1 <i>H</i> -pyrrol-1-yl	Oil*
165a#	Me	R	H	-	t-Bu	0	2-Br-4-F-C ₆ H ₃	95-98
165b##	Me	R	H	-	<i>t</i> -Bu	0	2-Br-4-F-C ₆ H ₃	Oil*
166a#	Me	R	H	-	t-Bu	0	2-Br-5-F-C ₆ H ₃	95-98
166b##	Me	R	Н	-	t-Bu	0	2-Br-5-F-C ₆ H ₃	77-80
168a#	Me	R	Н	_	<i>t</i> -Bu	0	2,3,5-triF-C ₆ H ₂	111-114
168b##	Me	R	H	-	t-Bu	0	2,3,5-triF-C ₆ H ₂	116-119
169a#	Me	R	H	-	<i>t</i> -Bu	0	2-Cl-3,5-diF-C ₆ H ₂	109-112
169b##	Me	R	H	-	<i>t</i> -Bu	Ο	2-Cl-3,5-diF-C ₆ H ₂	Oil*
170a#	Me	R	H	-	t-Bu	0	2,3,5-triCl-C ₆ H ₂	Oil*
170ъ##	Me	R	H	-	t-Bu	0	2,3,5-triCl-C ₆ H ₂	109-112
171a#	Me	R	H	-	t-Bu	0	$2,3,6$ -triCl-C $_6$ H $_2$	Oil*
171b##	Me	R	H	-	<i>t</i> -Bu	0	2,3,6-triCl-C ₆ H ₂	Oil*
172	Me	R	H	-	t-Bu	0	2,4,6-triCl-C ₆ H ₂	81-83
173a#	Me	R	H	-	<i>t</i> -Bu	0	4-Cl-2,5-diF-C ₆ H ₂	93-95
173b##	Me	R	H	-	<i>t</i> -Bu	O	4-Cl-2,5-diF-C ₆ H ₂	112-115
174a#	Me	R	H	•	<i>t</i> -Bu	0	2,4,5-triCl-C ₆ H ₂	Oil*
174b##	Me	R	H	-	<i>t</i> -Bu	0	2,4,5-triCl-C ₆ H ₂	139-142
175	Me	R,S	H	-	t-Bu	0	2-(CH ₂ F)-C ₆ H ₄	139-142
176	Me	R	H	-	t-Bu	0	$3-Me-C_6H_4$	Oil*
177	Me	R	H	-	<i>t</i> -Bu	0	3-Et-C ₆ H ₄	Oil*
181a#	Me	R	H	-	<i>t</i> -Bu	0	3,4-diCl-C ₆ H ₃	Oil*
181Ь##	Me	R	H	-	t-Bu	0	3,4-diCl-C ₆ H ₃	Oil ^o
182a#	Me	R	Н	-	<i>t</i> -Bu	0	3-F-4-CI-C ₆ H ₃	Oil*
182Ъ##	Me	R	H	-	t-Bu	О	3-F-4-CI-C ₆ H ₃	Oil*
183a#	Me	R	H	-	t-Bu	O	3-Cl-4-F-C ₆ H ₃	Oil*
183Ъ##	Me	R	H	-	t-Bu	0	3-Cl-4-F-C ₆ H ₃	85-88

Cmpd	<u>C</u>	onf. a	<u>t</u>	Conf. at				
No.	<u>R</u> 1	*	<u>R</u> 2	**	<u>R</u> 6	<u>x</u>	<u>z</u>	mp (°C)
184a#	Me	R	Н	-	t-Bu	0	3,5-diF-C ₆ H ₃	123-126
184b##	Me	R	H	•	t-Bu	0	3,5-diF-C ₆ H ₃	85-88
185	Me	R	H	-	t-Bu	0	2-(CH ₂ CH=CH ₂)-4-Me-C ₆ H ₃	84-86
186	Me	R	H	-	t-Bu	0	2,3,6-triF-C ₆ H ₂	Oil [●]
187a#	Me	R	Н	-	t-Bu	0	2-Br-3,4-diF-C ₆ H ₂	115-118
187b##	Me	R	Н	-	t-Bu	0	2-Br-3,4-diF-C ₆ H ₂	Oil•
188a#	Me	R	H	-	t-Bu	0	2,4,5-triF-C ₆ H ₂	Oil*
1 8 8b##	Me	R	H	-	t-Bu	Õ	2,4,5-triF-C ₆ H ₂	Oil*
189a#	Me	R	H	-	t-Bu	0	2,4,6-triF-C ₆ H ₂	76-79
189b##	Me	R	H	-	t-Bu	0	2,4,6-triF-C ₆ H ₂	Oil*
190a#	Me	R	Н	-	t-Bu	О	2,3,4-triF-C ₆ H ₂	Oil*
190b##	Me	R	H	-	t-Bu	O	2,3,4-triF-C ₆ H ₂	Oil•.
191a#	Me	R	H	-	t-Bu	Ο	2-Cl-5-F-C ₆ H ₃	Oil*
191b##	Me	R	Н	-	t-Bu	О	2-Cl-5-F-C ₆ H ₃	Oil*
191c	Me	R	H	-	t-Bu	0	2-Cl-5-F-C ₆ H ₃	Oil*
192a#	Me	R	Н	-	C(Me) ₂ CH=CH ₂	0	2-Cl-5-F-C ₆ H ₃	79-81
192b##	Me	R	Н	-	C(Me) ₂ CH=CH ₂	O	2-Cl-5-F-C ₆ H ₃	Oil [●]
193	Me	R	H	-	C(Me) ₂ C≡CH	0	2-Cl-5-F-C ₆ H ₃	99-102
194	Me	Ŕ	H	-	CH(Me)C(Me) ₃	0	2-Cl-5-F-C ₆ H ₃	99-102
195	Me	R	H	-	t-Bu	0	2,3,5,6-tetraF-C ₆ H	81-83
196	Me	R	H	-	t-Bu	0	2,6-diBr-4-F-C ₆ H ₂	130-133
197	Me	R	H	-	t-Bu	0	2,6-diCl-4-F-C ₆ H ₂	120-123
198a#	Me	R	H	-	t-Bu	0	2-F-5-Cl-C ₆ H ₃	101-104
198b##	Me	R	H	-	t-Bu	Ö	2-F-5-Cl-C ₆ H ₃	Oil*
199	Me	R	H	-	CH(Me)C(Me) ₃	О	2-F-5-Cl-C ₆ H ₃	Oil*
200a#	Me	R	H	-	$C(Me)_2CH=CH_2$	0	2-F-5-Cl-C ₆ H ₃	104-107
200b##	Me	R	H	-	C(Me) ₂ CH=CH ₂	0	2-F-5-Cl-C ₆ H ₃	Oil*
201	Me	R,S	H	~	t-Bu	0	2-(OCF ₂ CF ₂ H)-C ₆ H ₄	Oil*
202	Me	R,S	H	-	t-Bu	Ο	2-(SCF ₂ CF ₂ H)-C ₆ H ₄	80-110
203	Me	R,S	Н	-	t-Bu	0	2-F-6-CN-C ₆ H ₃	Oil [●]
204	Me	R,S	H	-	t-Bu	0	2-(CH ₂ CH=CH ₂)-6-CN-C ₆ H ₃	Oil•
205	Me	R,S	H	-	t-Bu	0	2-(CH ₂ CH ₂ CH ₃)-6-CN-C ₆ H ₃	Oil [®]
206	Me	R,S	Н	-	t-Bu	O	2-CF ₂ H-6-CN-C ₆ H ₃	93-145
207	Me	R,S	Н	-	t-Bu	0	2-CN-4,5-diF-C ₆ H ₂	55-105
208	Me	R,S	Н	-	t-Bu	0	2-CN-3,6-diF-C ₆ H ₂	113-156

Cmpd	Co	onf. at		Conf. at				
No.	<u>R</u> 1	<u>*</u>	<u>R</u> 2	**	<u>R</u> 6	<u>X</u>	<u>Z</u>	mp (°C)
209	Me	R,S	H	-	t-Bu	0	2-CN-6-Me-C ₆ H ₃	Oil [●]
210	Me	R,S	Н	-	t-Bu	0	2-CN-6-Cl-C ₆ H ₃	118-150
211	Me	R	н	-	C(Me) ₂ C≡CH	0	2,5-diF-C ₆ H ₃	85-87
212	Me	R	Н	-	C(Me) ₂ C≡CH	0	2,5-diCl-C ₆ H ₃	93-97
213	Me	R	Н	-	C(Me) ₂ C≡CH	0	2-Cl-5-Me-C ₆ H ₃	84-86
214	Me	R	Н	-	C(Me) ₂ CH=CH ₂	0	2,5-diF-C ₆ H ₃	107-112
215a#	Me	R	H	•	C(Me) ₂ CH=CH ₂	0 ្	2,5-diCl-C ₆ H ₃	82-110
215b##	Me	R	Н	-	C(Me) ₂ CH=CH ₂	0	2,5-diCl-C ₆ H ₃	Oil•
216	Me	R,S	H	-	t-Bu	0	2-(C≡CH)-C ₆ H ₄	128-146
217	Me	R	H	-	C(Me) ₂ CF=CH ₂	0	2,5-diF-C ₆ H ₃	106-110
Ex. 7								
218	Me	R	Н	-	C(Me)(CH ₂ F)CH=CH ₂	0	2,5-diF-C ₆ H ₃	70-85
219	Me	R	H	•	C(Me)(CH ₂ F)CH=CH ₂	0	2,5-diCl-C ₆ H ₃	Oil•
220	Me	R	H	•	C(Me)(CH ₂ F)CH=CH ₂	0	2-Cl-5-F-C ₆ H ₃	73-88
221a#	Me	R	Н	-	C(Me) ₂ CH=CHF	0	$2,5$ -dif- C_6H_3	Oil [•]
221b##	Me	R	H	-	C(Me) ₂ CH=CHF	0	2,5-diF-C ₆ H ₃	Oil*
222	Me	R	H	-	C(Me) ₂ CH=CHF	0	2-Cl-5-F-C ₆ H ₃	Oil•
223	Me	R	H	-	C(Me) ₂ CF=CH ₂	0	2-Cl-5-F-C ₆ H ₃	Oil*
224	Me	R	H	•	C(Me) ₂ CH=CHF	0	2-F-5-Cl-C ₆ H ₃	78-86
225	Me	R	H	•	C(Me)(CH ₂ F)CH=CHF	0	2-(OCF ₂ CF ₂ H)-5-F-C ₆ H ₃	Oil*
226	Me	R	H	-	C(Me)(CH ₂ F)CH=CHF	0	2-F-5-Me-C ₆ H ₃	70-81
227	Me	R	H	-	C(Me)(CH ₂ F)CH=CHF	0	2-Cl-5-Me-C ₆ H ₃	Oil*
320	Me	R	Н	• .	C(Me) ₂ C≡CH	0	2-F-5-Cl-C ₆ H ₃	98-101
275	Me	R,S	H	•	CH(Me)C(Me) ₃	Ö	2-(CH ₂ CH=CH ₂)-6-CN-C ₆ H ₃	Oil*
276	Me	R,S	H	•	CH(Me)C(Me) ₃	0	2-(CH ₂ CH ₂ CH ₃)-6-CN-C ₆ H ₃	Oil*
277	Me	R,S	Н	•	CH(Me)C(Me) ₃	0	2-CN-5-(OCF ₂ H)-C ₆ H ₃	Oil*
278	Me	R,S	H	-	CH(Me)C(Me) ₃	0	2-CN-4,5-diF-C ₆ H ₂	Oil*
279	Me	R,S	H	-	CH(Me)C(Me) ₃	0	2-CN-3,6-diF-C ₆ H ₂	Oil*
280	Ме	R,S	Н	-	CH(Me)C(Me) ₃	0	$2\text{-CN-6-Me-C}_6\text{H}_3$	Oil*
281	Me	R,S	H	-	CH(Me)C(Me) ₃	0	2-CN-6-CI-C ₆ H ₃	Oil*
282	Me	R	H	-	CH(Me) ₂ CH=CH ₂	0	2-F-5-Me-C ₆ H ₃	102-108
283	Me	R	C ₆ H	I ₅ S	CH ₂ CH=CH ₂	0	2,5-diF-C ₆ H ₃	Oil*
284	Me	R	C ₆ H	I ₅ S	CH ₂ CH=CH ₂	0	2-CN-5-F-C ₆ H ₃	Oil*
285	Me	R	C ₆ H	1 ₅ S	CH ₂ CH=CH ₂	0	2-CN-C ₆ H ₄	Oil*
286	Me	R	C ₆ H	I ₅ S	CH₂CH₃	0	2-CN-5-F-C ₆ H ₃	Oil [●]

Cmpd	Conf. at		at (Conf. a	<u>t</u> .			
<u>No.</u>	$\underline{R^1}$	*	$\underline{R^2}$	**	<u>R</u> 6	<u>X</u>	<u>Z</u>	<u>mp (°C)</u>
287	Me	R	C ₆ H ₅	S	CH ₂ CH ₂ CH ₃	0	2-CN-5-F-C ₆ H ₃	Oil ^e
288	Me	R	C ₆ H ₅	S	CH ₂ CH ₂ CH ₃	O	2-CN-C6H4	Oil*
289	Me	R	C ₆ H ₅	S	CH(CH ₃) ₂	0	2-CN-5-F-C6H3	Oil*
290	Me	R	C ₆ H ₅	S	CH(CH ₃) ₂	О	2-CN-C6H4	Oil*
291	Me	R	C ₆ H ₅	S	C(CH ₃) ₃	0	2-CN-C ₆ H ₄	Oil*
292	Me	R	H	-	C(CH ₃) ₃	O	2-(OCF ₂ H)-5-F-C ₆ H ₃	Oil [●]
293	Me	R	C ₆ H ₅	R	CH ₂ CH ₃	O	2,5-diF-C ₆ H ₃	Oil [●]
294	Me	R	Ħ	-	CH(Me) ₂ CH=CH ₂	õ	2-(OCF ₂ H)-5-F-C ₆ H ₃	Oil [●]
295	Me	R	H	-	CH(Me) ₂ C≡CH	o	2-(OCF ₂ H)-5-F-C ₆ H ₃	Oil [●]
296	Me	R	H	-	CH(Me)(Et)CH=CH ₂	О	2,5-diF-C ₆ H ₃	96-106
297	Me	R	H		CH(Me)(Et)CH=CH ₂	o	2-F-5-CI-C ₆ H ₃	Oil [●]
298	Me	R	H	-	CH(Me)(Et)CH=CH ₂	0	2-Cl-5-F-C ₆ H ₃	93-104
299	Me	R	H	-	CH(Me) ₂ CF=CH ₂	0	2-F-5-Cl-C ₆ H ₃	115-123
300	Me	·R	H	-	CH(Me) ₂ CF=CH ₂	0	2,5-diCl-C ₆ H ₃	94-99
301	Me	R	H	-	CH(Me)(C≡CH)CH=CH ₂	0	2,5-diF-C ₆ H ₃	84-92
302	Me	R	H	-	CH(Me)(C=CH)CH=CH ₂	O	2-F-5-CI-C ₆ H ₃	Oil•
303	Me	R	Н	-	CH(Me)(C=CH)CH=CH ₂	О	2-Cl-5-F-C ₆ H ₃	60-83
304	Me	R	C ₆ H ₅	R	CH ₂ CH ₃	0	2-CN-C6H4	Oil*
305	Me	R	Н	-	t-Bu	О	2-CN-5-1-Bu-C6H3	Oil*
306	Me	R	Н	-	t-Bu	0	2-CH(Me)(Et)-C ₆ H ₄	Oil*

^{*}See Index Table E for ¹H NMR data.

INDEX TABLE B

The compounds listed below are mixtures of diastereoisomers unless indicated otherwise.

Cmpd		Configuration			
<u>No.</u>	<u>R1</u>	<u>at *</u>	<u>R</u> 6	<u>z</u>	<u>mp (°C)</u>
75	H	-	CH(Me)C(Me) ₃	2-F-C ₆ H ₄	Oil [●]
76	H	-	CH(Me)C(Me) ₃	3-Br-C ₆ H ₄	Oil [●]
167	H	-	t-Bu	C ₆ H ₅	144-147

[#] Single diastereomer A.

^{##} Single diastereomer B.

Cmpd		Configuration			
No.	<u>R1</u>	<u>at *</u>	<u>R</u> 6	<u>Z</u>	<u>mp (°C)</u>
178	H	-	t-Bu	2-F-C ₆ H ₄	114-117
179	H	-	<i>t</i> -Bu	2-Cl-C ₆ H ₄	105-108
180	Н	-	<i>t</i> -Bu	3-Cl-C ₆ H ₄	112-115
228	Me	R,S	t-Bu	C ₆ H ₅	Oil [●]
229a#	Me	R	t-Bu	2,5-diF-C ₆ H ₃	Oil•
229b##	Me	R	t-Bu	$2,5$ -diF-C $_6$ H $_3$	Oil*
272	н	-	t-Bu	3-Br-C ₆ H ₄	112-115
273	Н	-	t-Bu	2,4-diF-C ₆ H ₃	122-125
274	Н	-	t-Bu	2,4-diCl-C ₆ H ₃	83-86
307	Me	R	t-Bu	2-CN-C ₆ H ₄	Oil*
308	Me	R	t-Bu	2-F-C ₆ H ₄	Oil*
309	Me	R	t-Bu	2,4-diF-C ₆ H ₃	Oil•

[•]See Index Table E for ¹H NMR data.

INDEX TABLE C

$$R^{5}$$
 R^{1} R^{2} R^{2} R^{2} R^{3} R^{2} R^{2}

The compounds listed below are mixtures of diastereoisomers unless indicated otherwise.

Cmpd		Config.					•		
<u>No</u>	$\underline{\mathbf{R}^1}$	<u>at *</u>	<u>R</u> 2	$\underline{\mathbb{R}^3}$	<u>R</u> 4	<u>R</u> 5	<u>x</u>	<u>Z</u>	mp (°C)
77a	Me	R,S	H	Et	Me	Н	Ο	C ₆ H ₅	95-99
77b	Me	R	H	Et	Me	H	0	C ₆ H ₅	94-96
78a	Me	R,S	Н	Et	Me	H	0	2-F-C ₆ H ₄	94-96
78b	Me	R	H	Et	Me	H	0	2-F-C ₆ H ₄	77-79
79a	Me	R,S	H	Et	Me	H	0	3-F-C ₆ H ₄	110-113
79b	Me	R	Н	Et	Me	H	0	3-F-C ₆ H ₄	86-88
80a	Me	R,S	H	Et	Me	H	0	4-F-C ₆ H ₄	104-107
80b	Me	R	H	Et	Me	H	0	4-F-C ₆ H ₄	Oil*
81a	Me	R,S	Н	Et	Me	H	0	2-CI-C ₆ H ₄	114-117
81b	Me	R	H	Et	Me	H	0	2-Cl-C ₆ H ₄	96-98

[#]Single diastereomer A.

^{##} Single diastereomer B.

Cmpd		Config.							
No	<u>R</u> 1	<u>at *</u>	<u>R</u> 2	<u>R³</u>	<u>R</u> 4	<u>R</u> 5	X	<u>Z</u>	mp (°C)
82a	Me	R,S	Н	Et	Me	H	0	3-Cl-C ₆ H ₄	118-121
82b	Me	R	Н	Et	Me	н	0	3-Cl-C ₆ H ₄	Oil•
83a	Me	R,S	Н	Et	Me	Н	0	4-Cl-C ₆ H ₄	121-124
83b	Me	R	Н	Et	Me	н	0	4-CI-C ₆ H ₄	77-79
84a	Me	R,S	Н	Et	Me	H	0	2-Br-C ₆ H ₄	124-126
84b	Me	R	Н	Et	Me	H	0	2-Br-C ₆ H ₄	Oil*
85a	Mc	R,S	Н	Et	Me	Н	0 _	3-Br-C ₆ H ₄	83-86
85b	Me	R	Н	Et	Me	н	0	3-Br-C ₆ H ₄	Oil•
86a	Me	R,S	H	Et	Me	Н	0	4-Br-C ₆ H ₄	124-127
86b	Me	R	н	Et	Me	H	0	4-Br-C ₆ H ₄	102-104
87a	Me	R,S	Н	Et	Me	H	0	2-I-C ₆ H ₄	108-111
87b	Me	R	H	Et	Me	H	0	2-I-C ₆ H ₄	Oil*
88	Me	R	Н	Et	Me	Н	0	3-I-C ₆ H ₄	75-77
89a	Me	R,S	Н	Et	Me	H	0	2-CN-C ₆ H ₄	134-136
89b	Me	R	н	Et	Me	H	0	2-CN-C ₆ H ₄	Oil [®]
90	Me	R,S	Н	Et	Me	H	0	2-(OCF ₂ CF ₂ H)-C ₆ H ₄	90-98
91	Me	R,S	H	Et	Me	Н	0	2-(SCF ₂ CF ₂ H)-C ₆ H ₄	61-76
92	Me	R,S	H	Et	Me	H	0	2-CH ₂ F-C ₆ H ₄	105-107
93	Me	R,S	H	Et	Me	H	0	3-CH ₂ F-C ₆ H ₄	123-125
94a	Me	R,S	H	Et	Me	Н	0	2-CF ₃ -C ₆ H ₄	131-132
94b	Me	R	H	Et	Me	H	0	2-CF ₃ -C ₆ H ₄	Oil ^e
95	Me	R	H	Et	Me	H	0	2-Me-C ₆ H ₄	Oil*
96	Me	R	H	Et	Me	H	0	3-Me-C ₆ H ₄	80-82
97a	Me	R,S	H	Et	Me	Н	Ó	2-Et-C ₆ H ₄	102-105
97b	Me	R	H	Et	Me	Н	0	2-Et-C ₆ H ₄	Oil*
98a	Me	R,S	H	Et	Me	H	0	2- <i>n</i> -Pr-C ₆ H ₄	90-92
98b	Me	R	Н	Et	Me	H	0	2-n-Pr-C ₆ H ₄	Oil*
99 .	Me	R	H	Et	Me	H	0	2- <i>i</i> -Pr-C ₆ H ₄	Oil*
100	Me	R	H	Et	Me	Н	0	2- <i>t</i> -Bu-C ₆ H ₄	Oil*
101a	Me	R,S	Н	Et	Me	H	0	2-(CH ₂ CH=CH ₂)-C ₆ H ₄	90-92
101b	Me	R	H	Et	Me	H	0	$2-(CH_2CH=CH_2)-C_6H_4$	Oil [•]
102	Me	R,S	H	Et	Me	H	0	3-CH ₂ F-C ₆ H ₄	105-107
103	Me	R	Н	Et	Me	H	0	2-(CH ₂ CN)-C ₆ H ₄	Oil*
104	Mc	R	н	Et	Me	Н	О	2,3-diF-C ₆ H ₃	95-97
105a	Me	R,S	H	Et	Me	H	Ο	2,6-diF-C ₆ H ₃	95-97

Cmpd		Config.							
No	<u>R</u> 1	at *	<u>R</u> 2	<u>R³</u>	$\underline{\mathbf{R^4}}$	<u>R</u> 5	<u>X</u>	<u>Z</u>	mp (°C)
105b	Me	R	Н	Et	Me	Н	0	2,6-diF-C ₆ H ₃	Oil•
106	Me	R	H	Et	Me	H	O	2,4-diF-C ₆ H ₃	Oil [●]
107	Me	R	H	Et	Me	H	0	2,5-diF-C ₆ H ₃	67-72
108	Me	R	H	Et	Me	H	0	3,4-diF-C ₆ H ₃	Oil [●]
109	Me	R	н	Et	Me	H	0	2,3,5-triF-C ₆ H ₂	86-88
110	Me	R	н	Et	Me	Н	0	2,4,5-triF-C ₆ H ₂	69-71
111	Me	R	H	Et	Me	H	0	2,3-diCl-C ₆ H ₃	87-89
112	Me	R	H	Et ·	Me	Н	0	2,4-diCl-C ₆ H ₃	70-72
113	Me	R	H	Et	Mc	н	0	2,5-diCl-C ₆ H ₃	93-95
114	Me	R	H	Et	Me	H	0	2,6-diCl-C ₆ H ₃	87-89
115	Me	R	H	Et	Me	H	0	3,5-diCl-C ₆ H ₃	87-89
116	Me	R	H	Et	Me	Н	0	2,3,5-triCI-C ₆ H ₂	94-96
117	Me	R	Н	Et	Me	H	0	2,3,6-triCl-C ₆ H ₂	95-97
118	Me	R	H	Et	Me	H	0	2,4,6-triCl-C ₆ H ₂	118-121
119	Me	R	H	Et	Me	Н	0	2-(CH ₂ CH=CH ₂)-6-Me-C ₆ H ₃	Oil*
120	Me	R	H	Et	Me	H	0	2-F-4-Cl-C ₆ H ₃	Oil*
121	Me	R	H	Et	Me	H	0	2-Cl-4-F-C ₆ H ₃	65-67
122	Me	R,S	H	Et	Me	H	0	2-F-4-Br-C ₆ H ₃	107-109
123	Me	R	H	Et	Me	H	Ο	2-Cl-3,5-diF-C ₆ H ₂	84-86
124	Me	R	H	Et	Me	Н	0	2-Br-4-F-C ₆ H ₃	62-64
125	Me	R	H	Et	Me	Н	0	2-Br-5-F-C ₆ H ₃	73-75
126	Me	R	H	Et	Me	Н	0	2-CI-4-Me-C ₆ H ₃	73-74
127	Me	R	Н	Et	Me	H	0	2-CI-5-Me-C ₆ H ₃	102-104
128	Me	R,S	H	Et	Me	H	oʻ	2-F-6-CN-C ₆ H ₃	102-106
129	Me	R,S	H	Et	Me	H	0	2-CN-4-F-C ₆ H ₃	119-123
Ex.3									
130	Me	R,S	H	Et	Me	H	0	2-CN-3-F-C ₆ H ₃	143-149
131	Me	R,S	Н	Et	Me	H	0	2-CN-3-Cl-C ₆ H ₃	120-122
132	Me	R,S	H	Et	Me	H	0	2-CN-3-I-C ₆ H ₃	146-151
133	Me	R,S	Н	Et	Me	H	0	2-CN-3-CF ₃ -C ₆ H ₃	120-138
134	Me	R,S	H	Et	Me	H	0	2-CN-6-CF ₃ -C ₆ H ₃	110-134
135	Me	R,S	H	Et	Me	H	0	2-CN-3,5-diF-C ₆ H ₂	164-166
136	Me	R,S	Н	Et	Me	H	0	2-CN-3,5-diMe-1H-pyrrol-1-yl	Oil⁴
137	Me	R,S	H	Et	Me	H	0	3-Br-5-CN-1H-pyrrol-1-yl	130-146
138	Me	R,S	Н	Et	Me	H	0	3-Cl-5-CN-1H-pyrrol-1-yl	108-112

Cmpd		Config.							
No	<u>R</u> 1	<u>at *</u>	<u>R</u> 2	<u>R</u> 3	<u>R</u> 4	<u>R⁵</u>	X	<u>Z</u>	mp (°C)
139	Me	R,S	н	Et	Me	H	0	2,3-diCl-5-CN-1H-pyrrol-1-yl	Oil*
140a	Me	R,S	н	Et	Me	H	O	2-Me-3-Cl-5-CN-1H-pyrrol-1-yl	107-117
140b	Me	R	Н	Et	Me	Н	0	2-Me-3-Cl-5-CN-1H-pyrrol-1-yl	Oil*
Ex.2									
141	Me	R,S	Н	Et	Me	Н	Ο	2-Me-3-Br-5-CN-1 <i>H</i> -pyrrol-1-yl	Oil*
142	Me	R,S	H	Et	Me	Н	CH ₂	2-Me-3-Cl-5-CN-1 <i>H</i> -рутгоl-1-уl	109-115
143	Me	R,S	Н	Et	Me	Н	CH_2	2-Me-3-Br-5-CN-1 <i>H</i> -pyrrol-1-yl	123-141
144	Мε	R,S	Н	Et	Me	H	CH ₂	3-Cl-5-CN-1 <i>H</i> -руггоl-1-уl	Oil*
145#	H	-	H	Et	Me	Н	CH ₂	1 <i>H</i> -pyrrôl-1-yl	71-78
146#	Н	-	H	Ει	Me	H	CH_2	2-Cl-1 <i>H</i> -pyrrol-1-yl	98-100
147#	Н	-	H	Et	Me	Н	CH ₂	2,5-diCl-1 <i>H</i> -pyrrol-1-yl	105-110
148#	Н	· -	H	Et	Me	Н	CH ₂	2,3,5-triCl-1 <i>H</i> -pyrrol-1-yl	131-133
149#	Н	-	Н	Et	Me	Н	CH_2	2-CN-1 <i>H</i> -pyrrol-1-yl	Oil*
150 [#]	H	-	H	Et	Me	Н	CH ₂	2-CN-3,5-diMe-1H-pyrrol-1-yl	82-84
151#	Н	-	H	Et	Me	Н	CH_2	2,3-diCl-5-CN-1H-pyrrol-1-yl	138-142
152 [#]	H	-	H	Et	Me	Н	CH ₂	2-Cl-5-CN-1 <i>H</i> -pyrrol-1-yl	Oil*
153#	н	-	Н	Et	Me	H	0	C ₆ H ₅	65-69
154#	Н	-	H	Et	Me	Н	CH ₂	C ₆ H ₅	93-95
155#	н	-	Н	Et	H	Me	CH ₂	C ₆ H ₅	66-70
Ex.1									
230	Me	R	H	Et	Me	H	0	3,4-diCl-C ₆ H ₃	Oil*
231	Me	R	Н	Et	Me	H	0	3-F-4-Cl-C ₆ H ₃	Oil [●]
232	Mę	R	Н	Et	Me	Н	0	3-Cl-4-F-C ₆ H ₃	77-80
233	Me	R	Н	Et	Me	Н	oʻ	2,3,6-triF-C ₆ H ₂	81-84
234	Me	R	H	Et	Me	Н	0	3,5-diF-C ₆ H ₃	84-87
235	Me	R	Н	Et	Me	H	0	2-Br-4,5-diF-C ₆ H ₂	Oil*
236	Me	R	Н	Et	Me	H	0	2,4,5-triF-C ₆ H ₂	Oil*
237	Mc	R	H	Et	Me	H	0	2,4,6-triF-C ₆ H ₂	Oil*
238	Me	R	Н	Et	Me	H	0	2,3,4-triF-C ₆ H ₂	Oil*
239	Me	R	H	Et	Me	H	0	2-CN-5-CI-C6H3	Oil*
240	Me	R	H	Et	Me	H	0	3-Et-C ₆ H ₄	Oil*
241	Me	R	Н	Et	Me	H	0	4-1-Bu-C6H4	Oil*
242	Me	R	H	Et	Me	н	0	2,4,5-triCl-C ₆ H ₂	80-83
243	Me	R	Н	Et	Me	Н	0	2,3,4-triCl-C ₆ H ₂	82-85
244	Me	R,S	H	Et	Me	H	CH ₂	C ₆ H ₅	105-108

Cmpd		Config.							
<u>No</u>	$\underline{R^1}$	<u>at *</u>	<u>R</u> 2	<u>R</u> 3	<u>R</u> ⁴	<u>R</u> 5	<u>X</u>	<u>Z</u>	mp (°C)
245	Me	R	H	Et	Me	H	0	2-CN-5-F-C ₆ H ₃	Oil*
246	Me	R	H	Et	Me	H	0	2-CN-5-Br-C ₆ H ₃	Oil*
247	Me	R	H	Et	Me	н	0	2-CN-5-I-C ₆ H ₃	Oil [®]
248	Me	R	Н	Et	Me	Н	0	2-CN-5-t-Bu-C ₆ H ₃	Oil [•]
249	Me	R	H	Et	Me	H	0	2,3,5,6-tetraF-C ₆ H	92-95
250	Me	R	H	Et	Me	• н	O	2,6-diBr-4-F-C ₆ H ₂	88-90
251	Me	R	Н	Et	Me	H	Ο,	2,6-diCl-4-F-C ₆ H ₂	85-88
252	Me	R	H	Et	Me	H	0	2-F-5-Cl-C ₆ H ₃	110-113
253	Me	R	Н	Et	Me	H	0	2-Cl-5-F-C ₆ H ₃	97-100
254	Me	R,S	H	Et	Me	H	0	2-(CH ₂ CH=CH ₂)-6-CN-C ₆ H ₃	Oil*
255	Me	R,S	Н	Et	Me	Н	0	2-(CH ₂ CH ₂ CH ₃)-6-CN-C ₆ H ₃	Oil*
256	Me	R,S	H	Et	Me	H	Ο	2-CN-5-(OCF ₂ H)-C ₆ H ₃	Oil*
257	Me	R,S	Н	Et	Me	Н	0	$3,4$ -diF-6-CN-C $_6$ H $_2$	Oil*
258	Me	R,S	H	Et	Me	H	0	$2,5$ -diF-6-CN-C $_6$ H $_2$	98-108
259	Ме	R,S	H	Et	Me	H	Ο	2 -CN- 6 -Me- C_6 H $_3$	97-114
260	Me	R,S	H	Et	Me	H	Ο	2-Cl-6-CN-C ₆ H ₃	90-92
310	Me	R,S	H	Me	Me	Н	Ο	C ₆ H ₅	70-75
311	Me	R,S	H	Me	Н	Н	0	C ₆ H ₅	Oil*
312	Me	R,S	Н	Me	н	н	Ο	2-CF ₃ -C ₆ H ₄	Oil*
313	Me	R,S	н	Me	H	H	0	2-Br-C ₆ H ₄	Oil*
314	Me	R,S	H	Me	H	Н	0	2-(CH ₂ CH=CH ₂)-C ₆ H ₄	Oil•
315	Me	R,S	H	Me	H	Н	O	2-F-C ₆ H ₄	Oil*
316	Me	R,S	H	Et	Me	Н	0	2-CN-6-F-C ₆ H ₃	87-94
317	Me	R,S	Н	Et	Me	H	oʻ	3-(CH ₂ F)-C ₆ H ₄	123-125
318	Me	R	Н	Et	Me	н	0	$2\text{-Cl-3,5-diF-C}_6\text{H}_2$	84-86

[•]See Index Table E for ¹H NMR data.

[#] Single diastereomer.

INDEX TABLE D

The compounds listed below are mixtures of diastereoisomers unless indicated otherwise.

O 42. - 1 1 1.						
Cmpd No	<u>R ¹</u>	Configuration at *	$\underline{\mathbb{R}^2}$	X	<u>Z</u>	mp (°C)
156#	H	•	H	СН	_ C ₆ H ₅	109-111
157#	н	-	H	CH	2-F-C ₆ H ₄	103-105
Ex. 5					•	
158#	H	-	H	CH	2-Cl-C ₆ H ₄	143-145
159#	Н	-	H	СН	3-Cl-C ₆ H ₄	Oil*
160#	H	-	H	СН	3-Br-C ₆ H ₄	Oil*
161#	Н	-	H	CH	2-(CH ₂ CN)-C ₆ H ₄	Oil [•]
162#	H	-	H	CH	2,4-diF-C ₆ H ₃	Oil*
163#	Н	-	H	CH	2,5-diCl-C ₆ H ₄	170-172
164#	H	-	H	СН	2-thienyl	120-122
261	Me	R,S	н	CH	4-F-C ₆ H ₄	90-92
262#	H	-	Н	C(Et)	2,5-diCl-C ₆ H ₃	Oil [®]
263	Me	R,S	Н	CH	C ₆ H ₅	Oil*
264#	Н	-	H	CH	3-F-C ₆ H ₄	Oil*
265#	Н	-	Me	СН	C ₆ H ₅	Oil*
266	Me	R	Н	CH	2,4-diCl-C ₆ H ₃	Oil [•]
267a#	Me	R	H	СН	2,5-diF-C ₆ H ₃	Oil ^e
Ex. 8						
267ъ##	Me	R	Н	CH	2,5-diF-C ₆ H ₃	102-105
Ex. 8						
268#	Н	-	Н	C(Me)	C ₆ H ₅	Oil*
269#	н	-	H	C(Et)	C ₆ H ₅	120-123
270#	Н	-	Me	CH	2,5-diCl-C ₆ H ₃	Oil*
271#	Н	-	H	C(Me)	2,5-diCl-C ₆ H ₃	Oil*

^{*}See Index Table E for ¹H NMR data.

[#]Single diastereomer A

^{##} Single diastereomer B.

INDEX TABLE E

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
2a	δ 7.10 (m, 2H), 6.95 (m, 2H), 6.90 (dd, 1H), 4.40 (m, 1H), 4.08 (m, 2H), 1.40 (dd, 3H),
	1.24 (d, 9H)
2b	δ 7.08 (m, 2H), 6.95 (m, 2H), 6.42 (d, 1H), 4.40 (m, 1H), 4.05 (m, 2H), 3.15 (2s, 1H),
	1,40 (d, 3H), 1.20 (2s, 9H)
3a	δ 7.22 (m, 1H), 6.65 (m, 2H), 6.10 (m, 1H), 4.40 (m, 1H), 4.05 (m, 2H), 3.15 (2s, 1H),
	1.40 (d, 3H), 1.20 (2s, 9H)
3d	δ 7.22 (m, 1H), 6.65 (m, 3H), 6.12 (d, 1H), 4.44 (m, 1H), 4.00 (m, 2H), 3.16 (s, 1H),
	1.40 (d, 3H), 1.20 (s, 9H)
4a	δ 7.00 (d, 2H), 6.82 (d, 2H), 6.18 (dd, 1H), 4.40 (m, 1H), 3.95 (m, 2H), 3.15 (2s, 1H),
	1.37 (d, 3H), 1.20 (2s, 9H)
4c	δ 7.00 (d, 2H), 6.82 (d, 2H), 6.18 (dd, 1H), 4.40 (m, 1H), 3.95 (m, 2H), 3.14 (d, 1H),
	1.40 (d, 3H), 1.20 (d, 9H)
5a	δ 7.25 (m, 2H), 6.82 (m, 2H), 6.15 (m, 1H), 4.40 (m, 1H), 3.98 (m, 2H), 3.15 (2s, 1H),
	1.40 (d, 3H), 1.20 (2s, 9H)
6b	δ 7.20 (m, 2H), 6.96 (d, 2H), 6.90 (m, 1H), 6.80 (dd, 1H), 6.18 (d, 1H) 4.44 (m, 1H),
	4.00 (m, 2H), 3.15 (2s, 1H), 1.38 (d, 3H), 1.24 (2s, 9H)
6d	δ 7.21 (t, 2H), 6.98 (dd, 2H), 6.90 (t, 1H), 6.80 (m, 1H), 6.10 (dd, 1H) 4.40 (m, 1H),
	4.00 (dd, 1H), 3.96 (dd, 1H), 3.15 (s, 1H), 1.38 (d, 3H), 1.24 (s, 9H)
6e	δ 7.21 (t, 2H), 6.98 (dd, 2H), 6.90 (t, 1H), 6.80 (m, 1H), 6.18 (dd, 1H) 4.40 (m, 1H),
	3.96 (ddd, 2H), 3.13 (s, 1H), 1.38 (d, 3H), 1.24 (s, 9H)
7a	δ 7.22 (d, 2H), 6.82 (d, 2H), 6.18 (d, 1H), 4.40 (m, 1H), 3.93 (m, 2H), 3.16 (s, 1H), 1.37
	(d, 3H), 1.20 (s, 9H)
7c	δ 7.25 (d, 2H), 6.80 (d, 2H), 6.15 (br d, 1H), 4.40 (m, 1H), 4.00 (dd, 1H), 3.90 (dd, 1H),
	3.15 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
7d	8 7.25 (d, 2H), 6.80 (d, 2H), 6.15 (br d, 1H), 4.40 (m, 1H), 4.00 (m, 2H), 3.12 (s, 1H),
0	1.40 (d, 3H), 1.20 (s, 9H)
9a	8 7.12 (m, 2H), 7.05 (m, 1H), 6.80 (m, 1H), 6.15 (d, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	3.12 (2s, 1H), 1.36 (m, 3H), 1.18 (2s, 9H)
9c	δ 7.18 (m, 2H), 7.08 (m, 1H), 6.82 (m, 1H), 6.15 (dd, 1H), 4.40 (m, 1H), 4.00 (dd, 2H),
100	3.12 (s, 1H), 1.40 (d, 3H), 1.28 (s, 9H)
10a	8 7.40 (d, 2H), 6.80 (d, 2H), 6.12 (d, 1H), 4.40 (m, 1H), 3.95 (ddd, 2H), 3.15 (s, 1H),
106	1.36 (d, 3H), 1.20 (s, 9H) 5.740 (d, 2H), 6.80 (d, 2H), 6.20 (d, 1H), 4.40 (m, 1H), 2.05 (m, 2H), 2.12 (c, 1H)
10b	δ 7.40 (d, 2H), 6.80 (d, 2H), 6.20 (d, 1H), 4.40 (m, 1H), 3.95 (m, 2H), 3.12 (s, 1H),
	1.36 (d, 3H), 1.20 (s, 9H)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
10c	δ 7.40 (d, 2H), 6.80 (d, 2H), 6.10 (br d, 1H), 4.40 (m, 1H), 4.00 (dd, 1H), 3.90 (dd, 1H),
	3.15 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
10d	8 7.40 (d, 2H), 6.80 (d, 2H), 6.10 (br d, 1H), 4.40 (m, 1H), 4.00 (m, 2H), 3.12 (s, 1H),
	1.40 (d, 3H), 1.20 (s, 9H)
12a	δ 7.32 (m, 1H), 7.25 (m, 1H), 7.02 (t, 1H), 6.82 (dd, 1H), 6.10 (d, 1H), 4.40 (m, 1H),
	4.40 (m, 1H), 4.00 (dd, 1H), 3.90 (dd, 1H), 3.15 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
12b	δ 7.32 (m, 1H), 7.25 (m, 1H), 7.02 (t, 1H), 6.82 (dd, 1H), 6.10 (d, 1H), 4.40 (m, 1H),
	4.40 (m, 1H), 4.00 (dd, 1H), 3.90 (dd, 1H), 3.15 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
13a	8 7.60 (m, 2H), 7.15 (m, 1H), 7.02 (m, 1H), 6.60 (d, 1H), 4.65 (dd, 1H), 4.20 (m, 2H),
	3.21 (d, 1H), 1.30 (m, 3H), 1.10 (d, 9H)
13b	δ 7.57 (dt, 2H), 7.05 (t, 1H), 7.02 (m, 1H), 6.30 (d, 1H), 4.41 (dd, 1H), 4.10 (m, 2H),
	3.18 (s, 1H), 1.42 (m, 3H), 1.18 (d, 9H)
13 c	δ 7.57 (dt, 2H), 7.02 (m, 2H), 6.30 (d, 1H), 4.41 (dd, 1H), 4.10 (m, 2H), 3.18 (s, 1H),
	1.42 (m, 3H), 1.18 (d, 9H)
14a	δ 7.20 (s, 1H), 7.00 (d, 1H), 6.80 (d, 1H), 6.35 (br d, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	3.14 (s, 1H), 2.27 (s, 3H), 1.42 (d, 3H), 1.20 (s, 9H)
14b	δ 7.20 (s, 1H), 7.00 (d, 1H), 6.80 (d, 1H), 6.40 (br d, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	3.13 (s, 1H), 2.27 (s, 3H), 1.42 (d, 3H), 1.17 (s, 9H)
18a	δ 7.60 (d, 1H), 7.50 (t, 1H), 7.08 (t, 1H), 6.97 (d, 1H), 6.30 (2d, 1H), 4.40 (m, 1H),
	4.10 (m, 2H), 3.11 (2s, 1H), 1.38 (d, 3H), 1.20 (2s, 9H)
23	δ 7.30 (d, 1H), 7.20 (t, 1H), 6.92 (t, 1H), 6.84 (d, 1H), 4.50 (m, 1H), 4.05 (m, 2H),
	3.13 (s, 1H), 1.40 (m, 12H), 1.20 (2s, 9H)
25a	δ 7.20 (t, 2H), 6.90 (t, 1H), 6.80 (d, 1H), 6.20 (dd, 1H), 6.00 (m, 1H), 5.05 (m, 2H),
	4.40 (m, 1H), 4.00 (m, 2H), 3.40 (m, 2H), 3.12 (2s, 1H), 1.40 (d, 3H), 1.20 (2s, 9H)
27a	δ 6.90 (m, 3H), 6.18 (d, 1H) 4.40 (m, 1H), 4.05 (m, 2H), 3.95 (dd, 1H), 3.15 (s, 1H),
	1.40 (d, 3H), 1.20 (s, 9H)
27Ъ	δ 6.90 (m, 3H), 6.21 (d, 1H) 4.40 (m, 1H), 4.05 (m, 2H), 3.95 (dd, 1H), 3.14 (s, 1H),
	1.40 (d, 3H), 1.20 (s, 9H)
28Ь	δ 7.00 (m, 1H), 6.70 (m, 1H), 6.62 (m, 1H), 6.20 (d, 1H), 4.40 (m, 1H), 4.02 (m, 2H),
	3.13 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
29a	δ 6.95 (m, 3H), 6.40 (dd, 1H), 4.35 (m, 1H), 4.10 (m, 2H), 3.17 (s, 1H), 1.40 (d, 3H),
	1.20 (s, 9H)
29b	δ 6.95 (m, 3H), 6.40 (dd, 1H), 4.35 (m, 1H), 4.10 (m, 2H), 3.17 (2s, 1H), 1.40 (d, 3H),
	1.20 (s, 9H)
30a	δ 7.10 (dd, 1H), 6.72 (m, 1H), 6.60 (m, 1H), 6.10 (d, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	3.15 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
30b	δ 7.10 (dd, 1H), 6.72 (m, 1H), 6.60 (m, 1H), 6.15 (d, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	3.13 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
32a	δ 7.39 (d, 1H), 7.20 (dd, 1H), 6.83 (dd, 1H), 6.22 (d, 1H), 4.40 (m, 1H), 4.02 (m, 2H),
	3.15 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
32b	δ 7.39 (d, 1H), 7.20 (dd, 1H), 6.83 (dd, 1H), 6.30 (d, 1H), 4.40 (m, 1H), 4.02 (m, 2H),
	3.13 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
36a	δ 7.10 (d, 1H), 7.05 (d, 1H), 6.90 (t, 1H), 6.20 (d, 1H), 4.40 (m, 1H), 4.05 (dd, 1H),
	3.98 (dd, 1H), 3.16 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
36b	δ 7.10 (d, 1H), 7.05 (d, 1H), 6.90 (t, 1H), 6.19 (d, 1H), 4.40 (m, 1H), 4.05 (dd, 1H),
	3.98 (dd, 1H), 3.12 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
37b	δ 7.15 (dd, 1H), 6.90 (m, 2H), 6.25 (d, 1H) 4.40 (m, 1H), 4.02 (m, 2H), 3.15 (s, 1H),
	1.40 (d, 3H), 1.17 (s, 9H)
38	δ 7.22 (m, 2H), 6.90 (m, 1H), 6.20 (dd, 1H), 4.40 (m, 1H), 4.02 (m, 2H), 3.15 (d, 1H),
	1.40 (dd, 3H), 1.17 (d, 9H)
41	δ 7.60 (t, 1H), 6.77 (m, 2H), 6.20 (d, 1H), 4.41 (m, 1H), 4.10 (m, 2H), 3.15 (s, 1H),
	1.42 (d, 3H), 1.17 (s, 9H)
43	δ 7.50 (d, 1H), 7.08 (d, 1H), 7.00 (s, 1H), 6.20 (dd, 1H), 4.41 (m, 1H), 4.10 (m, 2H),
	3.15 (s, 1H), 1.42 (d, 3H), 1.17 (s, 9H)
44	δ 7.41 (d, 1H), 7.22 (d, 1H), 7.17 (s, 1H), 6.20 (dd, 1H), 4.41 (m, 1H), 4.10 (m, 2H),
	3.15 (s, 1H), 1.42 (d, 3H), 1.17 (s, 9H)
46	δ 7.41 (d, 1H), 7.32 (d, 1H), 7.25 (s, 1H), 6.18 (dd, 1H), 4.41 (m, 1H), 4.10 (m, 2H),
	3.15 (2s, 1H), 1.42 (d, 3H), 1.17 (s, 9H)
50	δ 6.60 (s, 1H), 6.20 (d, 1H), 4.14 (m, 1H), 4.25 (d, 2H), 3.20 (s, 3H), 1.40 (d, 3H),
	1.20 (s, 9H)
55	δ 6.80 (s, 1H), 6.30 (br s, 1H), 4.15 (t, 2H), 3.35 (q, 2H), 3.15 (s, 1H), 2.00 (m, 2H),
	1.20 (s, 9H)
56	δ 7.30 (m, 4H), 6.95 (m, 3H), 6.60 (dd, 1H), 4.40 (m, 1H), 4.02 (m, 2H), 3.60 (d, 1H),
	2.20 (m, 1H), 1.40 (m, 3H), 1.00 (m, 12H)
57	δ 7.00 (m, 4H), 6.60 (m, 1H), 4.40 (m, 1H), 4.02 (m, 2H), 3.60 (d, 1H), 2.20 (m, 1H),
	1.40 (m, 3H), 1.05 (m, 12H)
58	δ 7.40 (m, 1H), 7.20 (t, 1H), 6.95 (m, 2H), 6.63 (br s, 1H), 4.42 (m, 1H), 4.04 (m, 2H),
	3.60 (d, 1H), 2.20 (m, 1H), 1.40 (d, 3H), 1.00 (m, 12H)
59	δ 7.57 (m, 1H), 7.30 (t, 1H), 6.90 (m, 2H), 6.70 (br s, 1H), 4.40 (m, 1H), 4.05 (m, 2H),
	3.60 (d, 1H), 2.20 (m, 1H), 1.40 (m, 3H), 1.00 (m, 12H)
60	δ 7.80 (m, 1H), 7.50 (m, 2H), 7.00 (m, 1H), 6.60 (d, 1H), 4.40 (m, 1H), 4.07 (m, 2H),
	3.60 (d, 1H), 2.18 (m, 1H), 1.40 (m, 3H), 1.20 (m, 3H), 1.00 (m, 9H)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
61	δ 7.30 (d, 1H), 6.90 (m, 2H), 6.60 (d, 1H), 4.40 (m, 1H), 4.03 (m, 2H), 3.60 (d, 1H),
	2.20 (m, 1H), 1.40 (d, 3H), 1.00 (m, 12H)
62	8 7.30 (d, 2H), 7.00 (t, 1H), 6.90 (m, 1H), 6.63 (d, 1H), 4.44 (m, 1H), 4.05 (m, 2H),
	3.70 (s, 2H), 3.60 (d, 1H), 2.20 (m, 1H), 1.40 (d, 3H), 1.00 (m, 12H)
63	δ 7.50 (m, 1H), 6.80 (m, 2H), 6.75 (m, 1H), 4.40 (m, 1H), 4.15 (m, 2H), 3.75 (s, 1H),
	3.35 (m, 1H), 3.60 (d, 1H), 2.20 (m, 1H), 1.45 (d, 3H), 1.10 (m, 3H), 1.00 (s, 9H)
64	δ 7.45 (t, 1H), 7.1 (d, 1H), 6.4 (m, 1H), 6.1 (s, 1H), 4.4 (m, 1H), 4.1 (m, 2H),
	3.3 (m, 2H), 2.2 (m, 1H), 1.41 (d, 3H), 1.0 (s, 9H)
65	δ 7.50 (d, 1H), 7.20 (t, 1H), 6.95 (m, 1H), 6.40 (br s, 1H), 4.40 (m, 1H), 4.10 (m, 2H),
	3.50 (m, 1H), 2.10 (m, 1H), 1.40 (dd, 3H), 1.15 (m, 3H), 1.00 (s, 9H)
66	δ 7.50 (t, 1H), 7.40 (d, 1H), 7.20 (d, 1H), 6.60 (br s, 1H), 4.45 (m, 1H), 4.20 (m, 2H),
	3.80 (s, 1H), 3.65 (d, 1H), 3.55 (m, 1H), 2.10 (m, 1H), 1.45 (d, 3H), 1.10 (dd, 3H),
	1.00 (s, 9H)
68	δ 7.90 (d, 1H), 7.80 (d, 1H), 7.30 (t, 1H), 6.60 (m, 1H), 4.20 (m, 3H), 3.50 (m, 1H), 2.10
	(m, 2H), 1.45 (m, 3H), 1.10 (m, 3H), 1.00 (s, 9H)
69	δ 6.60 (t, 2H), 6.46 (m, 1H), 4.40 (m, 1H), 4.10 (m, 1H), 4.00 (m, 1H), 3.60 (dd, 1H),
	2.20 (m, 1H), 1.45 (dd, 3H), 1.10 (m, 1H), 1.00 (m, 12H)
70	δ 6.8 (s, 1H), 6.6 (m, 1H), 4.75 (m, 1H), 4.4 (m, 1H), 3.6 (s, 1H), 2.3 (s, 3H),
•	2.7 (m, 1H), 1.45 (d, 3H), 1.1 (dd, 3H), 1.0 (s, 9H)
71a	δ 6.8 (s, 1H), 6.6 (m, 1H), 4.75 (m, 1H), 4.4 (m, 1H), 3.6 (s, 1H), 2.3 (s, 3H),
	2.7 (m, 1H), 1.45 (d, 3H), 1.1 (dd, 3H), 1.0 (s, 9H)
71b	δ 6.8 (s, 1H), 6.6 (m, 1H), 4.75 (m, 1H), 4.4 (m, 1H), 3.6 (s, 1H), 2.3 (s, 3H),
	2.7 (m, 1H), 1.45 (d, 3H), 1.1 (dd, 3H), 1.0 (s, 9H)
73	δ 6.75 (s, 1H), 6.2 (m, 1H), 4.1 (m, 3H), 3.4 (2s, 2H), 2.3 (s, 3H), 2.2 (m, 1H),
	1.9 (m, 2H), 1.3 (m, 3H), 1.1 (m, 3H), 1.0 (s, 9H)
74	δ 6.9 (s, 1H), 6.7 (s, 1H), 6.2 (d, 1H), 4.0 (m, 3H), 3.4 (2s, 1H), 2.7 (m, 1H), 2.0 (m,
	1H), 1.25 (m, 3H), 1.2 (m, 3H), 1.0 (s, 9H)
75	δ 7.40 (dt, 1H), 7.22 (m, 1H), 7.10 (m, 2H), 6.70 (d, 1H), 6.55 (br s, 1H), 6.27 (dt, 1H),
•	4.10 (m, 2H), 3.63 (d, 1H), 2.22 (m, 1H), 1.00 (m, 12H)
. 76	δ 7.50 (s, 1H), 7.40 (d, 1H), 7.30 (m, 1H), 7.20 (t, 1H), 6.60 (br s, 1H), 6.50 (d, 1H),
	6.20 (m, 1H), 4.10 (m, 2H), 3.60 (d, 1H), 2.22 (m, 1H), 1.00 (m, 12H)
80ъ	δ 7.00 (m, 2H), 6.86 (m, 2H), 5.94 (d, 1H), 4.42 (m, 1H), 3.96 (m, 1H), 2.20 (m, 1H),
	1.95 (m, 1H), 1.60 (m, 1H), 1.38 (t, 3H), 1.22 (d, 3H), 0.98 (2t, 3H)
82b	δ 7.21 (t, 1H), 6.98 (dd, 1H), 6.90 (t, 1H), 6.80 (dd, 1H), 6.18 (d, 1H) 4.42 (m, 2H),
	4.00 (m, 2H), 2.20 (m, 1H), 1.95 (m, 1H), 1.60 (m, 1H), 1.38 (t, 3H), 1.22 (d, 3H),
	0.98 (2t, 3H)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
84b	δ 7.21 (d, 1H), 7.24 (m, 1H), 6.83 (m, 1H), 6.37 (2d, 1H), 4.40 (m, 2H), 4.00 (m, 2H),
0.0	2.20 (m, 1H), 1.95 (m, 1H), 1.57 (m, 1H), 1.42 (t, 3H), 1.22 (d, 3H), 0.98 (2t, 3H)
85b	δ 7.10 (m, 3H), 6.82 (m, 1H), 6.00 (d, 1H), 4.42 (m, 1H), 4.00 (m, 2H), 2.20 (m, 1H),
	1.98 (m, 1H), 1.57 (m, 1H), 1.38 (t, 3H), 1.22 (d, 3H), 0.98 (2t, 3H)
87b	δ 7.80 (dd, 1H), 7.30 (m, 1H), 6.80 (m, 2H), 6.40 (2d, 1H), 4.44 (m, 2H), 4.04 (m, 2H),
	2.20 (m, 1H), 1.99 (m, 1H), 1.62 (m, 1H), 1.44 (t, 3H), 1.22 (d, 3H), 0.95 (2t, 3H)
89b	8 7.60 (m, 2H), 7.00 (m, 2H), 6.10 (2d, 1H), 4.50 (m, 1H), 4.10 (m, 2H), 2.20 (m, 1H),
	2.05 (m, 1H), 1.62 (m, 1H), 1.46 (t, 3H), 1.22 (d, 3H), 0.90 (2t, 3H)
94b	δ 7.60 (t, 1H), 7.52 (m, 1H), 7.10 (t, 1H), 6.97 (dd, 1H), 6.08 (d, 1H), 4.44 (m, 1H),
	4.10 (m, 2H), 2.20 (m, 1H), 2.00 (m, 1H), 1.52 (m, 1H), 1.40 (dt, 3H), 1.22 (d, 3H),
	0.95 (dt, 3H)
95	δ 7.20 (m, 2H), 6.92 (m, 1H), 6.82 (m, 1H), 6.00 (t, 1H), 4.44 (m, 1H), 4.00 (m, 2H),
	2.26 (s, 3H), 2.22 (m, 1H), 1.95 (m, 1H), 1.50 (m, 1H), 1.40 (t, 3H), 1.22 (d, 3H),
	1.00 (dt, 3H)
97b	δ 7.20 (m, 2H), 6.95 (dt, 1H), 6.82 (m, 1H), 4.44 (m, 1H), 4.00 (m, 2H), 2.63 (m, 2H),
	2.22 (m, 1H), 1.95 (m, 1H), 1.60 (m, 3H), 1.40 (t, 3H), 1.22 (d, 3H), 0.95 (dt, 3H)
98b	·δ 7.18 (m, 2H), 6.90 (dt, 1H), 6.80 (m, 1H), 6.00 (m, 1H), 4.44 (m, 1H), 4.00 (m, 2H),
	2.68 (m, 2H), 2.22 (m, 1H), 1.95 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.22 (d, 3H),
	1.00 (dt, 3H)
99	δ 7.25 (m, 1H), 7.18 (m, 1H), 6.95 (m, 2H), 6.82 (t, 2H), 6.00 (dd, 1H), 4.44 (m, 1H),
	4.00 (m, 2H), 3.38 (m, 1H), 2.22 (m, 1H), 1.95 (m, 1H), 1.55 (m, 3H), 1.40 (t, 3H),
	1.27 (d, 6H), 1.22 (d, 3H), 1.00 (dt, 6H)
100	δ 7.25 (m, 1H), 7.19 (m, 1H), 6.95 (m, 2H), 6.82 (t, 2H), 6.05 (dd, 1H), 4.50 (m, 1H),
	4.05 (m, 2H), 2.22 (m, 1H), 1.95 (m, 1H), 1.55 (m, 15H), 1.22 (d, 3H), 1.00 (dt, 6H)
101b	δ 7.20 (m, 2H), 7.08 (m, 2H), 6.78 (t, 1H), 6.00 (m, 2H), 5.10 (m, 2H), 4.40 (m, 1H),
	4.22 (m, 2H), 4.00 (m, 2H), 3.40 (m, 2H), 2.22 (m, 1H), 1.95 (m, 1H), 1.58 (m, 1H),
	1.30 (m, 3H), 1.22 (d, 3H), 0.95 (dt, 3H)
103	δ 7.30 (m, 2H), 6.94 (m, 2H), 6.50 (dt, 1H), 4.55 (m, 1H), 4.10 (m, 2H), 3.65 (ddd, 2H),
	2.20 (q, 1H), 2.05 (m, 1H), 1.50 (m, 1H), 1.40 (dt, 3H), 1.20 (d, 3H), 0.94 (dt, 3H)
105Ъ	δ 6.95 (m, 3H), 6.30 (dd, 1H), 4.44 (m, 1H), 4.10 (m, 2H), 2.22 (m, 1H), 1.95 (m, 1H),
	1.60 (m, 3H), 1.40 (t, 3H), 1.22 (d, 3H), 0.95 (dt, 3H)
106	δ 6.84 (m, 3H), 6.05 (d, 1H), 4.42 (m, 1H), 4.01 (m, 2H), 2.20 (m, 1H), 2.00 (m, 1H),
	1.55 (m, 1H), 1.40 (t, 3H), 1.24 (d, 3H), 0.98 (dt, 3H)
107	δ 7.02 (m, 1H), 6.70 (m,1H), 6.60 (m, 1H), 6.00 (d, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	2.20 (m, 1H), 2.00 (m, 1H), 1.55 (m, 1H), 1.40 (t, 3H), 1.22 (d, 3H), 0.97 (dt, 3H)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
108	δ 7.03 (m, 1H), 6.70 (m, 1H), 6.60 (m, 1H), 6.20 (d, 1H), 4.42 (m, 1H), 3.97 (m, 2H),
	2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.22 (d, 3H), 0.98 (m, 3H)
119	δ 7.00 (m, 3H), 6.30 (2d, 1H), 6.00 (m, 1H), 5.05 (m, 2H), 4.44 (m, 1H), 3.80 (m, 2H),
	3.42 (m, 2H), 2.33 (s, 3H), 2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.42 (t, 3H),
	1.22 (d, 3H), 0.98 (dt, 3H)
120	δ 7.10 (dd, 1H), 7.02 (m, 1H), 6.92 (m, 1H), 6.05 (d, 1H), 4.40 (m, 1H), 4.01 (m, 1H),
	2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.22 (d, 3H), 0.97 (dt, 3H)
136	δ 6.6 (br s, 1H), 6.2 (m, 1H), 5.65 (m, 1H), 4.5 (m, 1H), 4.2 (m, 1H), 3.7 (m, 1H),
	2.2 (s, 3H), 2.15 (s, 3H), 2.1 (m, 3H), 1.6 (m, 1H), 1.2 (d, 3H), 1.0 (m, 3H)
139	δ 6.6 (2s, 1H), 6.1 (2d, 1H), 4.2 (m, 3H), 2.25 (m, 1H), 2.1 (m, 1H), 1.6 (m, 1H),
	1.45 (t, 3H), 1.25 (d, 3H), 1.0 (m, 3H)
140b	δ 6.55 (2s, 1H), 6.15 and 5.05 (2d, 1H), 4.4-4.6 (m, 1H), 4.2-4.4 (m, 2H), 2.2 (s, 3H),
	2.2-2.3 (m, 1H), 2.0-2.2 (m, 1H), 1.5-1.65 (m, 1H), 1.4 (2d, 3H), 1.2 (d, 3H), 1.0 (m,
	3H)
141	δ 6.6 (2s, 1H), 6.1 (2d, 1H), 4.3 (m, 2H), 4.1 (m, 1H), 2.3 (s, 3H), 2.2 (m, 1H),
	2.1 (m, 1H), 1.6 (m, 1H), 1.4 (t, 3H), 1.2 (d, 3H), 1.0 (d, 3H)
144	δ 6.95 (2s, 1H), 6.7 (s, 1H), 5.91 (t, 1H), 4.1 (m, 3H), 2.24 (m, 1H), 2.0 (m, 3H),
	1.5 (m, 1H), 1.2 (m, 6H), 1.0 (m, 3H)
149	δ 6.95 (d, 1H), 6.8 (d, 1H), 6.4 (d, 1H), 6.1 (m, 1H), 4.15 (m, 2H), 3.4 (m, 1H),
	3.25 (m, 1H), 2.1 (q, 1H), 2.0 (m, 3H), 1.55 (m, 1H), 1.2 (d, 3H), 1.0 (t, 3H)
152	δ 6.9 (s, 1H), 6.7 (s, 1H), 6.05 (m, 1H), 4.1 (m, 2H), 3.4 (m, 1H), 3.25 (m, 1H),
	2.0 (m, 3H), 1.5 (m, 1H), 1.2 (d, 3H), 1.0 (t, 3H)
159	δ 7.32 (s, 1H), 7.23 (m, 3H), 6.60 (d, 1H), 6.20 (dt, 1H), 5.95 (d, 1H), 4.12 (m, 2H),
	2.22 (m, 1H), 2.00 (m, 1H), 1.21 (d, 3H), 1.00 (t, 3H)
160	δ 7.50 (s, 1H), 7.40 (d, 1H), 7.24 (d, 1H), 7.18 (t, 1H), 6.50 (d, 1H), 6.20 (dt, 1H),
	6.00 (br s, 1H), 4.18 (m, 2H), 2.22 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.24 (m,
	3H), 1.00 (m, 3H)
161	δ 7.32 (m, 4H), 6.70 (d, 1H), 6.15 (dt, 1H), 6.00 (br s, 1H), 4.20 (m, 2H), 3.74 (s, 2H),
	2.25 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.24 (d, 3H), 1.00 (t, 3H)
162	δ 7.32 (m, 1H), 6.80 (m, 2H), 6.70 (d, 1H), 6.20 (t, 1H), 5.95 (br s, 1H), 4.12 (m, 2H),
	2.24 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.20 (d, 3H), 1.00 (t, 3H)
165b	δ 7.31 (dd, 1H), 7.00 (dt, 1H), 6.80 (dd, 1H), 6.30 (br d, 1H), 4.40 (m, 1H), 4.00 (m,
•	2H), 3.14 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
169b	δ 6.60 (dt, 1H), 6.50 (dt, 1H), 6.25 (d, 1H), 4.40 (m, 1H), 4.05 (m, 2H), 3.14 (d, 1H),
	1.40 (d, 3H), 1.20 (d, 9H)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
170a	8 7.14 (d, 1H), 6.81 (d, 1H), 6.20 (d, 1H), 4.40 (m, 1H), 4.05 (m, 2H), 3.15 (d, 1H), 1.40
	(d, 3H), 1.18 (d, 9H)
171a	δ 7.22 (dd, 2H), 6.50 (dd, 1H), 4.40 (m, 1H), 4.05 (m, 2H), 3.18 (d, 1H), 1.40 (d, 3H),
	1.20 (d, 9H)
171b	δ 7.22 (dd, 2H), 6.50 (dd, 1H), 4.40 (m, 1H), 4.00 (m, 2H), 3.16 (d, 1H), 1.40 (d, 3H),
	1.20 (d, 9H)
174a	δ 7.46 (s, 1H), 7.00 (s, 1H), 6.20 (d, 1H), 4.40 (m, 1H), 4.10 (dd, 1H), 4.00 (dd, 1H),
	3.15 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
176	δ 7.20 (t, 1H), 6.80 (d, 1H), 6.70 (d, 2H), 6.18 (dd, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	3.33 (s, 3H), 3.15 (s, 1H), 1.40 (d, 3H), 1.20 (dd, 9H)
177	δ 7.20 (t, 1H), 6.80 (d, 1H), 6.70 (d, 2H), 6.20 (dd, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	3.15 (s, 1H), 2.60 (q, 2H), 1.40 (d, 3H), 1.25 (m, 3H), 1.20 (dd, 9H)
181a	δ 7.35 (d, 1H), 7.00 (d, 1H), 6.78 (dd, 1H), 6.10 (br d, 1H), 4.40 (m, 1H), 4.00 (dd, 1H),
	3.90 (dd, 1H), 3.15 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
181b	δ 7.35 (d, 1H), 7.00 (d, 1H), 6.78 (dd, 1H), 6.20 (br d, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	3.13 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
182a	δ 7.25 (d, 1H), 6.70 (m, 2H), 6.10 (br d, 1H), 4.40 (m, 1H), 4.00 (dd, 1H), 3.90 (dd, 1H),
	3.16 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
182b	δ 7.25 (d, 1H), 6.70 (m, 2H), 6.10 (br d, 1H), 4.40 (m, 1H), 3.95 (m, 2H), 3.13 (s, 1H),
	1.40 (d, 3H), 1.20 (s, 9H)
183a	δ 7.05 (t, 1H), 6.95 (m, 1H), 6.75 (m, 1H), 6.10 (br d, 1H), 4.40 (m, 1H), 4.00 (dd, 1H),
	3.90 (dd, 1H), 3.16 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
186	δ 6.90 (m, 2H), 6.30 (br t, 1H), 4.40 (m, 1H), 4.20 (m, 2H), 3.16 (s, 1H), 1.40 (dd, 3H),
1051	1.20 (s, 9H)
187b	8 7.40 (t, 1H), 6.80 (t, 1H), 6.30 (br d, 1H), 4.40 (m, 1H), 4.00 (m, 2H), 3.14 (s, 1H),
1000	1.40 (d, 3H), 1.20 (s, 9H)
188a	δ 7.00 (m, 1H), 6.82 (m, 1H), 6.10 (br d, 1H), 4.40 (m, 1H), 4.05 (dd, 1H), 3.95 (dd,
188b	1H), 3.16 (s, 1H), 1.40 (dd, 3H), 1.20 (s, 9H)
1000	δ 7.00 (m, 1H), 6.82 (m, 1H), 6.10 (br d, 1H), 4.40 (m, 1H), 4.00 (m, 2H), 3.15 (s, 1H),
189Ъ	1.40 (dd, 3H), 1.20 (s, 9H) δ 6.70 (m, 2H), 6.35 (br d, 1H) 4.40 (m, 1H), 4.05 (m, 2H), 3.16 (s, 1H), 1.40 (dd, 3H),
1670	1.20 (s, 9H)
190a	δ 6.90 (m, 1H), 6.70 (m, 1H), 6.15 (d, 1H), 4.40 (m, 1H), 4.10 (dd, 1H), 3.95 (dd, 1H),
-/04	3.16 (s, 1H), 1.40 (dd, 3H), 1.20 (s, 9H)
190b	δ 6.90 (m, 1H), 6.70 (m, 1H), 6.15 (d, 1H), 4.40 (m, 1H), 4.05 (m, 2H), 3.14 (s, 1H),
.,,,,	1.40 (dd, 3H), 1.20 (s, 9H)
	() (-))

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
191a	δ 7.30 (m, 1H), 6.64 (m, 1H), 6.30 (br d, 1H), 4.40 (m, 1H), 4.05 (m, 2H), 3.15 (s, 1H),
	1.40 (d, 3H), 1.20 (s, 9H)
191b	δ 7.30 (m, 1H), 6.64 (m, 1H), 6.30 (br d, 1H), 4.40 (m, 1H), 4.05 (m, 2H), 3.14 (s, 1H),
	1.40 (d, 3H), 1.20 (s, 9H)
191c	δ 7.30 (m, 1H), 6.64 (m, 2H), 6.25 (br dd, 1H), 4.42 (m, 1H), 4.05 (m, 2H), 3.15 (s,1H),
	1.40 (d, 3H), 1.20 (d, 9H)
192b	δ 7.30 (m, 1H), 6.64 (m, 2H), 6.20 (br d, 1H), 5.90 (dd, 1H), 5.10 (dd, 2H),), 4.40 (m,
	1H), 4.00 (m, 2H), 3.25 (s, 1H), 1.40 (d, 3H), 1.25 (d, 6H)
198b	8 7.00 (t, 1H), 6.95 (m, 2H), 6.18 (d, 1H), 4.40 (m, 1H), 4.10 (m, 2H), 3.13 (s, 1H), 1.40
	(d, 3H), 1.20 (s, 9H)
199	δ 7.00 (m, 3H), 6.55 (m, 1H), 4.40 (m, 1H), 4.10 (m, 2H), 3.60 (m, 1H), 2.20 (m, 1H),
	1.40 (d, 3H), 1.10 (m, 3H), 1.00 (s, 9H)
200b	δ 7.00 (t, 1H), 6.95 (m, 2H), 6.15 (br d, 1H), 5.95 (dd, 1H), 5.20 (m, 2H), 4.40 (m, 1H),
	4.00 (m, 2H), 3.24 (s, 1H), 1.35 (d, 3H), 1.25 (d, 6H)
201	δ 7.25 (m, 1H), 7.00 (m, 2H), 6.20 (m, 1H), 6.00 (t, 1H), 4.45 (m, 1H), 4.00 (m, 2H),
	3.10 (2s, 1H), 1.45 (2d, 3H), 1.15 (s, 9H)
203	δ 7.35 (m,2H), 7.10 (m, 1H), 6.35 (d, 1H), 4.30 (m, 3H), 3.20 (2s, 1H), 1.45 (2d, 3H),
	1.20 (s, 9H)
204	δ 7.45 (m, 2H), 7.15 (m, 1H), 6.50 (d, 1H), 5.95 (m, 1H), 5.10 (m, 2H), 4.40 (m, 1H),
	4.0-4.2 (m, 2H), 3.45 (m, 2H), 3.2 (2s, 1H), 1.4 (2d, 3H), 1.2 (s, 9H)
205	8 7.45 (m, 1H), 7.15 (m, 2H), 6.5 (d, 1H), 4.4 (m, 1H), 4.0-4.2 (m, 2H), 3.2 (2s, 1H), 2.6
200	(m, 2H), 1.6-1.7 (m, 2H), 1.45 (2d,3H), 1.2 (s, 9H), 0.95 (t, 3H)
209	8 7.45 (m, 2H), 7.10 (m, 1H), 6.50 (d, 1H), 4.45 (m, 1H), 4.0-4.2 (m, 2H), 3.20 (s, 1H),
01.51	2.30 and 2.35 (2s, 3H), 1.45 (2d, 3H), 1.20 (s, 9H)
215b	8 7.25 (d, 1H) 6.70 (m, 2H), 6.2-6.3 (m, 1H), 5.8-6.0 (m, 1H), 5.1-5.2 (m, 2H), 4.40 (m,
210	1H), 3.9-4.1 (m, 2H), 3.25 (2s, 1H), 2.30 (s, 2H), 1.40 (2d, 3H), 1.25 (m, 6H)
219	δ 7.30 (m, 2H), 6.90 (m, 2H), 5.8-6.0 (m, 1H), 5.2-5.4 (m, 2H), 4.1-4.6 (m, 3H), 4.00 (m, 2H), 3.60 (s, 1H), 1.05-1.4 (m, 6H)
221a	δ 7.00 (m, 1H), 6.70 (m, 1H), 6.65 (m, 1H), 6.60 (m, 1H), 6.10 and 6.20 (2d, 1H), 5.5-
2214	5.6 (m, 1H), 4.40 (m, 1H), 3.9-4.1 (m, 2H), 3.20 (2s, 1H), 1.1-1.4 (m, 9H)
221b	δ 7.30 (m, 1H), 6.65 (m, 2H), 6.45 (m, 1H), 6.20 and 6.25 (2d, 1H), 5.4-5.6 (m, 1H),
2210	4.40 (m, 1H), 3.9-4.1 (m, 2H), 3.20 (2s, 1H), 1.40 (d, 3H), 1.30 (m, 6H)
222	δ 7.30 (m, 1H), 6.6-6.7 (m, 2H), 6.10 (m, 1H), 4.4-4.7 (m, 2H), 4.40 (m, 1H), 4.00 (m,
222	2H), 3.60 (s, 1H), 1.40 (m, 9H)
223	δ 7.00 (m, 1H), 6.6-6.7 (m, 2H), 6.40 (dt, 1H), 6.20 (m, 1H), 4.80 (m, 1H), 4.40 (m, 1H),
	4.05 (m, 1H), 3.95 (m, 1H), 3.50 (s, 1H), 1.40 (m, 9H)
	(,, (, (, (,)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
225	δ 7.15 (m, 1H), 6.65 (m, 2H), 6.50 (2t, 1H), 6.25 (m, 1H), 5.8-6.0 (m, 1H), 5.2-5.4 (m,
	2H), 4.2-4.4 (m, 3H), 3.9-4.1 (m, 2H), 3.60 (s, 1H), 1.30 and 1.35 (2m, 6H)
227	δ 7.20 (d, 1H), 6.70 (m, 2H), 6.3-6.4 (m, 1H), 5.8-6.0 (m, 1H), 5.2-5.4 (m, 2H), 4.2-4.6
	(m, 3H), 3.95-4.10 (m, 2H), 3.60 (s, 1H), 2.30 (s, 3H), 1.25-1.40 (m, 6H)
228	δ 7.35 (m, 5H), 6.56 (d, 1H), 6.18 (dt, 1H), 6.00 (m, 1H), 4.80 (m, 1H), 3.16 (d, 1H),
	1.40 (d, 3H), 1.20 (d, 9H)
229a	δ 7.10 (m, 1H), 7.00 (m, 2H), 6.64 (d, 1H), 6.42 (dd, 1H), 4.80 (m, 1H), 3.17 (s, 1H),
	1.40 (d, 3H), 1.20 (s, 9H)
229b	δ 7.10 (m, 1H), 7.00 (m, 2H), 6.64 (d, 1H), 6.42 (dd, 1H), 4.80 (m, 1H), 3.15 (s, 1H),
	1.40 (d, 3H), 1.20 (s, 9H)
230	8 7.28 (dd, 1H), 7.05 (t, 1H), 6.80 (dt, 1H), 5.90 (br d, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	3.10 (m, 1H), 2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (m, 3H), 1.30 (m, 3H),
	1.00 (m, 3H)
231	δ 7.30 (m, 1H), 6.65 (m, 2H), 5.90 (d, 1H), 4.45 (m, 1H), 3.95 (m, 2H), 3.10 (m, 1H),
	2.20 (m, 1H), 1.90 (m, 1H), 1.60 (m, 1H), 1.40 (m, 3H), 1.20 (m, 3H), 1.00 (m, 3H)
235	δ 7.40 (dt, 1H), 6.80 (m, 1H), 6.15 (dd, 1H), 4.45 (m, 1H), 4.00 (m, 2H), 2.20 (m, 1H),
	2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.20 (d, 3H), 1.00 (dt, 3H)
236	δ 7.00 (m, 1H), 6.85 (m, 1H), 6.00 (d, 1H), 4.45 (m, 1H), 4.00 (m, 2H), 2.20 (m, 1H),
	2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.20 (d, 3H), 1.00 (dt, 3H)
237	δ 6.70 (m, 2H), 6.20 (dd, 1H), 4.40 (m, 1H), 4.10 (m, 2H), 2.20 (m, 1H), 2.00 (m, 1H),
	1.60 (m, 1H), 1.40 (t, 3H), 1.20 (d, 3H), 1.00 (dt, 3H)
238	δ 6.90 (m, 1H), 6.70 (m, 1H), 6.00 (d, 1H), 4.45 (m, 1H), 4.05 (m, 2H), 2.20 (m, 1H),
	2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.25 (d, 3H), 1.00 (dt, 3H)
239	δ 7.50 (d, 1H), 7.05 (m, 1H), 6.95 (m, 1H), 6.10 (dd, 1H), 4.40 (m, 1H), 4.15 (m, 2H),
	2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.25 (d, 3H), 1.00 (dt, 3H)
240	δ 7.20 (m, 1H), 6.80 (m, 1H), 6.75 (m, 2H), 6.00 (br s, 1H), 4.40 (m, 1H), 4.00 (m, 2H),
	2.60 (m, 2H), 2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.25 (m, 6H),
	1.00 (dt, 3H)
241	δ 7.30 (d, 2H), 6.84 (d, 2H), 6.00 (d, 1H), 4.40 (m, 1H), 4.00 (m, 2H), 2.20 (m, 1H),
	1.95 (m, 1H), 1.55 (m, 1H), 1.35 (t, 3H), 1.30 (s, 9H), 1.20 (d, 3H), 1.00 (dt, 3H)
245	δ 7.60 (m, 1H), 6.70 (m, 2H), 6.10 (br t, 1H), 4.45 (m, 1H), 4.00 (m, 2H), 2.20 (m, 1H),
	2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.25 (d, 3H), 1.00 (dt, 3H)
246	δ 7.40 (d, 1H), 7.20 (m, 2H), 6.10 (br t, 1H), 4.45 (m, 1H), 4.15 (m, 2H), 2.20 (m, 1H),
	2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.25 (d, 3H), 1.00 (dt, 3H)
247	δ 7.40 (dt, 1H), 7.30 (d, 1H), 7.25 (d, 1H), 6.10 (br t, 1H), 4.45 (m, 1H), 4.10 (m, 2H),
	2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.25 (d, 3H), 1.00 (dt, 3H)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
248	8 7.50 (d, 1H), 7.10 (dt, 1H), 6.95 (d, 1H), 6.10 (dd, 1H), 4.45 (m, 1H), 4.10 (m, 2H),
	2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (t, 3H), 1.30 (s, 9H), 1.25 (d, 3H),
	1.00 (dt, 3H)
254	δ 7:40-7.50 (m, 2H), 7.15 (m, 1H), 6.25 and 6.50 (2d, 1H), 5.85-6.00 (m, 1H), 5.00-5.20
	(m, 2H), 4.45 (m, 1H), 4.00-4.20 (m, 2H), 3.45 (d, 2H), 2.20-2.30 (m, 1H), 2.00-2.20
	(m, 1H), 1.50-1.60 (m, 1H), 1.45 (2d, 3H), 1.20 (d, 3H), 0.95 (m, 3H)
255	δ 7.00-7.40 (m, 3H), 6.30 and 6.50 (2d, 1H), 4.40-4.50 (m, 1H), 4.00-4.20 (m, 2H), 2.60
	(t, 2H), 2.00-2.40 (m, 2H), 1.40-1.70 (m, 9H), 1.20 (m, 3H), 0.80-1.10 (m, 6H)
256	δ 7.55 (d, 1H), 6.70-6.90 (m, 2H), 6.60 (t, 1H), 6.00 (m, 1H), 4.40-4.50 (m, 1H), 4.05-
	4.20 (m, 2H), 2.20 (m, 1H), 1.95-2.15 (m, 1H), 1.60 (m, 1H), 1.45 (m, 3H), 1.20 (d,
	3H), 0.90 and 1.00 (2t, 3H)
257	δ 7.55 (d, 1H), 6.70-6.90 (m, 2H), 6.60 (t, 1H), 6.00 (m, 1H), 4.40-4.50 (m, 1H), 4.05-
	4.20 (m, 2H), 2.20 (m, 1H), 1.95-2.15 (m, 1H), 1.60 (m, 1H), 1.45 (m, 3H), 1.20 (d,
	3H), 0.90 and 1.00 (2t, 3H)
262	δ 7.30 (m, 3H), 5.80 (m, 2H), 4.15 (m, 2H), 2.50 (m, 2H), 2.20 (m, 1H), 2.00 (m, 1H),
	1.50 (m, 1H), 1.20 (m, 3H), 1.00 (m, 3H)
263	δ 7.20 (m, 5H), 6.50 (t, 1H), 6.20 (dd, 1H), 5.70 (t, 1H), 4.80 (m, 1H), 2.22 (m, 1H),
	2.00 (m, 1H), 1.40 (dd, 3H), 1.20 (dd, 3H), 1.00 (dt, 3H)
264	δ 7.30 (dt, 1H), 7.10 (d, 1H), 7.05 (d, 1H), 6.95 (dt, 1H), 6.50 (dt, 1H), 6.00 (br s, 1H),
	4.08 (m, 2H), 2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.20 (d, 3H), 1.00 (t, 3H)
265	δ 7.30 (m, 5H), 6.50 (s, 1H), 5.90 (s, 1H), 4,10 (d, 2H), 2.30 (m, 1H), 2.20 (m, 1H), 1.60
	(m, 1H), 1.90 (s, 3H), 1.22 (m, 3H), 1.00 (m, 3H)
266	δ 7.40 (m, 1H), 7.20 (m, 1H), 6.95 (m, 1H), 6.20 (m, 1H), 5.75 (d, 1H), 4.85 (m, 1H),
	2.20 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (m, 3H), 1.25 (m, 3H), 1.00 (m, 3H)
267a	δ 7.10 (m, 1H), 6.95 (m, 2H), 6.65 (d, 1H), 6.30 (dd, 1H), 5.80 (br s, 1H), 4.05 (m, 1H),
	2.20 (q, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.40 (d, 3H), 1.20 (d, 3H), 1.00 (t, 3H)
268	δ 7.35 (m, 5H), 6.40 (m, 1h), 5.80 (m, 1H), 4.15 (m, 2H), 2.20 (m, 1H), 2.00 (m, 1H),
	1.60(m, 1H), 1.20 (m, 3H), 1.10 (m, 3H), 1.00 (m, 3H)
270	δ 7.30 (m, 2H), 7.20 (m, 2H), 6.45 (s, 1H), 5.90 (m, 1H), 4.10 (m, 2H), 3.45 (s, 3H),
	2.25 (m, 1H), 2.00 (m, 1H), 1.60 (m, 1H), 1.44 (m, 3H), 1.00 (m, 3H)
271	δ 7.35 (m, 3H), 6.80 (m, 1H), 5.80 (m, 1H), 4.10 (m, 2H), 2.20 (m, 1H), 2.00 (m, 1H),
	1.55 (m, 1H), 1.25 (m, 3H), 1.15 (m, 3H), 1.00 (m, 3H)
275	8 7.4-7.5 (m, 2H), 7.15 (m, 1H), 6.70 (m, 1H), 5.8-6.0 (m, 1H), 5.0-5.2 (m, 2H), 4.40
	(m, 1H), 3.8-4.2 (m, 2H), 3.40 and 3.50 (2d, 1H), 3.40 (m, 2H), 2.1-2.5 (m, 1H), 1.4-
	1.5 (m, 3H), 1.10 and 1.20 (2d, 3H), 1.00 (s, 9H)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
276	δ 7.40 (m, 1H), 7.1-7.2 (m, 1H), 6.70 (m, 1H), 4.40 (m, 1H), 3.8-4.2 (m, 2H), 3.45-3.7
	(m, 1H), 2.60 (m, 2H), 2.1-2.5 (m, 1H), 1.60 (m, 2H), 1.45 (d, 2H), 1.10 and 1.20
	(2m, 3H), 1.00 (s, 9H), 0.90-1.00 (m, 3H)
277	δ 7.55 (d, 1H), 6.30-6.4 (m, 3H), 4.40 (m, 1H), 3.80-4.20 (m, 3H), 3.40-3.65 (m, 1H),
	2.15 (m, 1H), 1.45 (d, 3H), 1.00-1.25 (m, 3H), 1.00 (s, 9H)
278	δ 7.50 (m, 1H), 6.75-6.90 (m, 1H), 6.20-6.50 (m, 1H), 4.40 (m, 1H), 3.90-4.20 (m, 2H),
	3.60 (m, 1H), 2.20 (m, 1H), 1.40 (d, 3H), 1.00-1.25 (m, 3H), 1.00 (s, 9H)
279	δ 7.20-7.40 (m, 1H), 6.80-6.90 (m, 1H), 6.50 (m, 1H), 4.00-4.50 (m, 3H), 3.45-3.70 (m,
	1H), 2.10-2.25 (m, 1H), 1.40 (m, 3H), 1.00-1.20 (m, 3H), 1.00 (s, 9H)
280	δ 7.40 (m, 2H), 7.00-7.15 (m, 1H), 6.70 (m, 1H), 4.40 (m, 1H), 3.80-4.20 (m, 2H), 3.45-
	3.70 (m, 1H), 2.30 (s, 3H), 2.10-2.30 (m, 1H), 1.50 (d, 3H), 1.10-1.20 (m, 3H), 1.00
	(s, 9H)
281	δ 7.65 (m, 1H), 7.50 (m, 1H), 7.20 (m, 1H), 6.75 (m, 1H), 3.90-4.50 (m, 3H), 3.45-3.70
	(m, 1H), 2.10-2.40 (m, 1H), 1.60 (m, 3H), 1.00-1.20 (m, 3H), 1.00 (s, 9H)
283	δ 1.2 (d, 3H), 2.6-2.7 (m, 2H), 3.4 (m, 1H), 4.4 (m, 1H), 5.0-5.3 (m, 3H), 5.6-5.85 (m,
	1H), 6.6 (m, 1H), 7.0 (m, 1H), 7.3-7.5 (m, 5H)
284	δ 1.25 (m, 3H), 2.65 (m, 2H), 3.45 (m, 1H), 4.4 (m, 1H), 5.0-5.3 (m, 2H), 5.4 (s, 1H),
	5.6-5.85 (m, 1H), 6.35-6.45 (m, 2H), 6.7 (m, 1H), 7.3-7.5 (m, 5H), 7.5-7.6 (m, 1H)
285	δ 1.25 (m, 3H), 2.65 (m, 2H), 3.45 (m, 1H), 4.4 (m, 1H), 5.0-5.2 (m, 2H), 5.4 (s, 1H),
	5.6-5.8 (m, 1H), 6.45 (m, 1H), 6.65 (d, 1H), 7.0 (t, 1H), 7.3-7.4 (m, 6H), 7.8 (d, 1H)
286	δ 1.0-1.1 (m, 3H), 1.25 (d, 3H), 1.9-2.05 (m, 1H), 3.3-3.4 (m, 1H), 4.4 (m, 1H), 5.4 (m,
	1H), 6.2 (d, 2H), 6.7 (m, 1H), 7.5 (m, 5H), 7.5-7.6 (m, 1H)
287	δ 0.9 (m, 3H), 1.25 (d, 3H), 1.4 (m, 2H), 1.8-1.95 (m, 2H), 3.4 (m, 1H), 4.4 (m, 1H), 5.2
	(s, 1H), 6.6 (d, 2H), 6.7 (m, 1H), 7.3-7.45 (m, 5H), 7.7-7.8 (m, 1H)
288	δ 0.9 (m, 3H), 1.25 (d, 3H), 1.4 (m, 2H), 1.8-1.95 (m, 2H), 3.4 (m, 1H), 4.4 (m, 1H),
	5.45 (s, 1H), 6.4 (m, 1H), 6.65 (d, 1H), 7.0 (t, 1H), 7.3-7.4 (m, 6H), 7.6 (d, 1H)
289	δ 0.95-1.1 (m, 6H), 1.25 (d, 3H), 2.4 (m, 1H), 3.3 (m, 1H), 4.4 (m, 1H), 5.4 (s, 1H), 6.4
	(d, 2H), 6.7 (t, 1H), 7.4 (m, 5H), 7.55 (m, 1H)
290	8 0.95-1.1 (m, 6H), 1.25 (d, 3H), 2.4 (m, 1H), 3.3 (m, 1H), 4.4 (m, 1H), 5.45 (s, 1H), 6.4
	(m, 1H), 6.65 (d, 1H), 7.0 (t, 1H), 7.3-7.4 (m, 6H), 7.6 (d, 1H)
291	δ 1.1 (s, 9H), 1.25 (m, 3H), 3.15 (2s, 1H), 4.4 (m, 1H), 5.45 and 5.5 (2d, 1H), 6.25 (d,
	1H), 6.65 (m, 1H), 7.0 (m, 1H), 7.3-7.4 (m, 6H), 7.6 (d of m, 1H)
292	1.15 (2s, 9H), 1.4 (d, 3H), 3.1 (s, 1H), 3.95-4.1 (m, 2H), 4.4 (m, 1H), 6.2 (m, 1H), 6.5 (t,
	1H) 6.7 (d, 2H), 7.5 (m, 1H)
293	δ 1.0 and 1.1 (2t, 3H), 1.25 (d, 3H), 1.7-2.1 (m, 2H), 3.3-3.4 (m, 1H), 4.4 (m, 1H), 5.3
	(m, 1H), 6.4 (m, 2H), 6.7-6.8 (m, 1H), 7.0 (m, 1H), 7.3-7.4 (m, 5H)

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
294	δ 1.25 (m, 6H), 1.35 (d, 3H), 3.2 (s, 1H), 4.0 (m, 2H), 4.4 (m, 1H), 5.1-5.2 (m, 2H), 5.8-
	6.0 (m, 1H), 6.15 (m, 1H), 6.45 (2t, 1H), 6.6-6.7 (m, 2H), 7.15 (m, 1H)
295	δ 1.4-1.5 (m, 9H), 2.4 (2s, 1H), 3.15 (2s, 1H), 4.0-4.1 (m, 2H), 4.4-4.5 (m, 1H), 6.45 (t,
	1H), 6.4-6.7 (m, 3H), 7.15 (m, 1H)
297	δ 0.8-0.9 (m, 3H), 1.2-1.4 (m, 6H), 1.5-1.7 (m, 2H), 3.3 (4s, 1H), 3.9-4.1 (m, 2H), 4.2
	and 4.4 (2m, 1H), 5.1-5.4 (m, 2H), 5.75-5.9 (m, 1H), 6.0-6.2 (m, 1H), 6.9-7.1 (m,
	3H)
302	δ 1.3-1.4 (m 3H), 1.5-1.6 (m, 3H), 2.6-2.7 (3s, 1H), 3.4-3.4 (4s, 1H), 3.9-4.1 (m, 2H),
	4.2 and 4.4 (2m, 1H), 5.2-5.9 (m, 3H), 6.1 and 6.2 (2m, 1H), 6.9-7.1 (m, 3H)
304	δ 1.0 (m, 3H), 1.3 (d, 3H), 2.0 (m, 2H), 3.23 (q, 1H), 4.4 (m, 1H), 5.45 (m, 1H), 6.5 (d,
	1H), 6.65 (d, 1H), 7.0 (t, 1H), 7.3-7.5 (m, 6H), 7.6 (d, 1H)
305	8 7.47 (d, 1H), 7.08 (dt, 1H), 6.97 (d, 1H), 6.30 (br dd, 1H), 4.42 (m, 1H), 4.12 (m, 2H),
	3.17 (s, 1H), 1.42 (d, 3H), 1.20 (s, 9H)
306	δ 7.18 (m, 2H), 6.97 (t, 1H), 6.80 (d, 1H), 6.21 (m, 1H), 4.42 (m, 1H), 4.00 (m, 2H),
	3.16 (s, 1H), 3.10 (m, 1H), 1.60 (m, 2H), 1.40 (d, 3H), 1.20 (m, 12H), 0.85 (m, 3H)
307	δ 7.65 (t, 1H), 7.58 (t, 1H), 7.35 (t, 1H), 6.90 (d, 1H), 6.40 (dd, 1H), 6.20 (br d, 1H),
	4.80 (m, 1H), 3.20 (s, 1H), 1.42 (d, 3H), 1.20 (s, 9H)
308	8 7.40 (q, 1H), 7.30 (m, 1H), 7.10 (t, 1H), 7.05 (t, 1H), 6.50 (d, 1H), 5.90 (m, 1H) 5.63
	(q, 1H), 4.90 (m, 1H), 3.10 (s, 1H), 1.30 (d, 3H), 1.20 (s, 9H)
309	8 7.40 (m,1H), 6.90 (m, 1H), 6.85 (m, 1H), 6.50 (d, 1H), 6.00 (br s, 1H), 5.60 (m, 1H),
	4.82 (m, 1H), 3.10 (s, 1H), 1.40 (d, 3H), 1.20 (s, 9H)
311	δ 7.30 (m, 2H), 6.95 (m, 3H), 6.00 (m, 1H), 4.40 (m, 1H), 4.00 (m, 2H), 2.20 (m, 1H),
	1.60 (m, 4H)
312	δ 7.60 (d, 1H), 7.50 (m, 1H), 7.05 (t, 1H), 6.98 (t, 1H), 6.15 (m, 1H), 4.50 (m, 1H), 4.00
	(m, 2H), 2.20 (m, 2H), 1.50 (m, 3H), 1.20 (m, 3H)
313	7.50 (m, 1H), 7.25 (m, 1H), 6.90 (m, 2H), 6.25 (m, 1H), 4.40 (m, 1H), 4.05 (m, 2H),
	2.20 (m, 1H), 1.60 (d, 3H), 1.40 (m, 4H)
314	7.20 (m, 2H), 6.95 (t, 1H), 6.90 (t, 1H), 6.05 (m, 2H), 5.08 (m, 2H), 4.42 (m, 1H), 4.00
•	(m,2H), 3.42 (m, 2H), 2.20 (m, 1H), 1.60 (d, 3H), 1.40 (m, 4H)
315	7.00 (m, 4H), 6.05 (m, 1H), 4.40 (m, 1H), 4.05 (m, 2H), 2.20 (m, 1H), 1.60 (m, 3H),
	1.40 (m, 4H)

a 1H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet,
 (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (dt)-doublet of triplets,
 (br s)-broad singlet. A number in front of the coupling indicates more than one set of peaks with this coupling. For example, "2d, 3H" indicates two doublets each with three protons.

5

10

15

20

25

30

35

BIOLOGICAL EXAMPLES OF THE INVENTION

Test compounds were first dissolved in acetone in an amount equal to 3% of the final volume and then suspended at a concentration of 200 ppm in purified water containing 250 ppm of the surfactant Trem[®] 014 (polyhydric alcohol esters). The resulting test suspensions were then used in the following tests. Spraying these 200 ppm test suspensions to the point of run-off on the test plants is the equivalent of a rate of 500 g/ha.

TEST A

The test suspension was sprayed to the point of run-off on wheat seedlings. The following day the seedlings were inoculated with a spore dust of *Erysiphe graminis* f. sp. tritici, (the causal agent of wheat powdery mildew) and incubated in a growth chamber at 20°C for 7 days, after which disease ratings were made.

TEST B

The test suspension was sprayed to the point of run-off on wheat seedlings. The following day the seedlings were inoculated with a spore suspension of *Puccinia recondita* (the causal agent of wheat leaf rust) and incubated in a saturated atmosphere at 20°C for 24 h, and then moved to a growth chamber at 20°C for 6 days, after which disease ratings were made.

TEST C

The test suspension was sprayed to the point of run-off on rice seedlings. The following day the seedlings were inoculated with a spore suspension of *Pyricularia oryzae* (the causal agent of rice blast) and incubated in a saturated atmosphere at 27°C for 24 h, and then moved to a growth chamber at 30°C for 5 days, after which disease ratings were made.

TEST D

The test suspension was sprayed to the point of run-off on tomato seedlings. The following day the seedlings were inoculated with a spore suspension of *Phytophthora* infestans (the causal agent of potato and tomato late-blight) and incubated in a saturated atmosphere at 20°C for 24 h, and then moved to a growth chamber at 20°C for 5 days, after which disease ratings were made.

TEST E

The test suspension was sprayed to the point of run-off on cucumber seedlings. The following day the seedlings were inoculated with a spore suspension of *Botrytis cinerea* (the causal agent of gray mold on many crops) and incubated in a saturated atmosphere at 20°C for 48 h, and moved to a growth chamber at 20°C for 5 days, after which disease ratings were made.

Results for Tests A-E are given in Table A. In the table, a rating of 100 indicates 100% disease control and a rating of 0 indicates no disease control (relative to the controls).

A dash (-) indicates no test results. ND indicates disease control not determined due to phytotoxicity.

phytotoxicity	•	-	TABLE A		
Count No	Test A	Test B	Test C	Test D	Test E
Cmpd. No	60	0	53	0	0
la		11	74	0	0
Ib	34	85	73	16	0
lc	60	0	100	0	0
1d	92		100	80	47
le 2-	92	0	86 ~	0	55
2a	0	0	100	0	0
2b	0	0		•	
2c	86	0	100 94	24 0	0 55
3a	85	0			
3b	. 0	0	86	32	0
3c	38	0	100	4	0
3d	92	0	100	99	0
3e	86	0	100	68	0
. 4a	0	67	99	66	0
4b	86	0	99	89	82
4c	35	0	94	0	58
5a	0	68	0	0	0
5b	0	86	100	24	0
6a	0	0	74	0	0
6b	38	68	53	4	0
6c	0	0	97	9	0
6d	77	28	97 ·	0	0
6e	0	0	100	96	70
7a	77	85	91	89	0
7b	77	0	74	89	47
7c	0	0	86	. 9	45
7 d	62	68	99	0	6
8a	0	0	85	0	7
8b	37	0	100	89	47
8c	0	0	100	0	0
9a	0	0	53	0	0
9b	62	68	99	28	0
9c	62	28	100	51	0

10a 0 27 86 23 0 10b 62 67 86 95 0 10c 0 86 53 35 0 10d 77 0 74 35 45 11a 77 0 97 0 82 11b 77 85 99 23 0 12a 86 68 91 0 0 12b 77 0 94 68 0 13a 34 0 51 0 0 13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 48 0 17a 85 67 30 16				T C	Test D	Test E
10b 62 67 86 95 0 10c 0 86 53 35 0 10d 77 0 74 35 45 11a 77 0 97 0 82 11b 77 85 99 23 0 12a 86 68 91 0 0 12b 77 0 94 68 0 13a 34 0 51 0 0 13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 <t< td=""><td>Cmpd. No</td><td>Test A</td><td>Test B</td><td>Test C</td><td>Test D</td><td></td></t<>	Cmpd. No	Test A	Test B	Test C	Test D	
10c 0 86 53 35 0 10d 77 0 74 35 45 11a 77 0 97 0 82 11b 77 85 99 23 0 12a 86 68 91 0 0 12b 77 0 94 68 0 13a 34 0 51 0 0 13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 97 0 0 1						
10d 77 0 74 35 45 11a 77 0 97 0 82 11b 77 85 99 23 0 12a 86 68 91 0 0 12b 77 0 94 68 0 13a 34 0 51 0 0 13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19						
11a 77 0 97 0 82 11b 77 85 99 23 0 12a 86 68 91 0 0 12b 77 0 94 68 0 13a 34 0 51 0 0 13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0						
11b 77 85 99 23 0 12a 86 68 91 0 0 12b 77 0 94 68 0 13a 34 0 51 0 0 13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0						
12a 86 68 91 0 0 12b 77 0 94 68 0 13a 34 0 51 0 0 13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0						
12b 77 0 94 68 0 13a 34 0 51 0 0 13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	116					
13a 34 0 51 0 0 13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	12a	86				
13b 0 0 86 4 83 14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	12b	77				
14a 0 0 94 45 58 14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	13a	34				
14b 61 0 86 23 0 15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	13b	0	0			
15a 0 28 97 92 86 15b 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	14a	0	0			
15b 0 0 0 97 45 0 16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	14b	61	0	86		
16 0 0 97 48 0 17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	15a	. 0	28	97		86
17a 85 67 30 16 0 17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	15b	0	0	97		
17b 38 28 100 0 0 18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	16	0	0	97	48	0
18a 0 0 91 0 0 18b 77 0 94 0 0 19 0 0 97 0 0	17a	85	67	30	16	0
18b 77 0 94 0 0 19 0 0 97 0 0	17b	38	28	100	0	0
19 0 0 97 0 0	18a	0	0	91	0	0
	18b	77	0	94	0	0
20a 63 0 97 70 0	19	0	0	97	0	0
	20a	63	O	97	70	0
20b 0 0 100 0 0	20b	0	0	100	0	0
21a 38 68 99 4 0	21a	38	68	99	4	0
21b 37 27 99 - 0	21b	37	27	99	-	0
22 0 0 100 0	22	0	0	100 .	0	0
23 0 0 97 48 0	23	0	0	97	48	0
24 62 0 53 66 94	24	62	0	53	66	94
25a 95 28 32 0 0	25a	95	28	32	0	0
25b 63 0 97 24 0	25b	63	0	97	24	0
26a 38 28 97 51 0	26a	38	28	97	51	0
26b 38 68 100 81 0	26b	38	68	100	81	0
		38	0	100	81	0
			0	100	0	0
			28	100	68	0
				100	96	0
				74	35	6

Cmpd. No	Test A	Test B	<u>Test C</u>	Test D	Test E
29b	0	0	100	23	0
30a	0	0	100	0	0
30b	77	27	97	0	0
31a	62	68	74	51	0
31b	0	0	94	0.	0
32a	0	27	91	0	0
32b	0	27	94	23	0
33a	0	0	97	0	0
33b	0	67	100	80	0
34	62	85	. 91	0 .	0
35a	0	0	74	80	0
35b	37	0	91	0	0
36a	. 0	27	99	89	0
36b	62	27	100	80	0
37a	62	68	100	68	0
37b	77	68	99	96	0
38	0	28	53	0	22
39	0	0	86	2	0
40	21	0	86	0	0
41	62	0	97	66	47
42	0	0	53	2	0
43	0	0	86	66	0
44	0	0	94	89	0
45	- 0	0	86	0	0
46	0	0	53 .	66	0
47	0	0	53	52	0
48	. 0	0	91	0 .	0
49	0	0	0	0	0
50	86	28	53	57	0
51	71	0	53	68	0
52	71	86	0	81	0
53	0	0	53	0	0
54	34	11	32	0	16
55	0	0	85	0	0
56*	74	0	85	0	0
57*	91	0	85	0	0

Cmpd. No	Test A	Test B	Test C	Test D	Test E
58*	57	0	52	0	0
59*	0	0 .	52	0	0
60*	91	0	0	0	0
61*	74	0	73	0	0
62*	74	0	52	0	0
63	0	0	0	2	0
64	0	0	53	2	0
65	0	0	0 ~	2	0
66	0	0	0	69	0
67	0	0	0	92	. 0
68	62	27	86	82	0
69	0	0	53	2	0
70	63	0	0	13	0
71a	0	0	53	19	0
71b**	0	0	0	19	0
72	0	0	91	0	0
73	30	28	53	0	11
74	0	86	53	23	0
75*	0	0	52	19	0
76*	0	0	0	19	0
77a	73	28	86	•	0
77b*	33	0	74	0	0
78a	0	93	90	0	74
78b	84	0	99	-	0
79a*	0	0	53 .	0	0
79b*	0	0	100	0	0
80a*	0	0	86	20	0
80b*	83	0	97	0	0
81a	0	0	0	0	55
81b*	85	0	74	0	0
82a*	0	0	53	43	0
82b	31	0	97	15	0
83a*	0	0	32	0	0
83b*	52	0	53	0	0
84a*	29	0	0	20	0
84b*	57	28	73	75	0

Cmpd. No	Test A	Test B	<u>Test C</u>	Test D	Test E
85a	55	0	53		0
85b*	0	0	53	0	0
86a*	0	67	0	0	0
86b*	52	0	0	28	0
87a*	0	0	74	0	0
87b*	52	0	0	0	0
88*	52	0	0	0	0
89a	0	0	74	20	0
89b	26	68	91 ~	-	47
90	84	0	32	0 .	0
91	74	0	53	0	0
92*	60	0	0	0	0
93*	. 57	0	85	19	0
94a	0	0	0	0	0
94b*	71	0	0	0	0
95*	52	86	94	0	0
96*	0	0	0	90	0
97a*	0	0	0	20	0
97b*	71	0	53	0	0
98a	0	0	53	24	0
98b*	52	0	74	0	0
99*	83	0	0	68	0
100*	52	0	0	0	0
101a	0	0	0	46	22
101b*	0	0	0 .	0	0
102*	60	0	0	0	0
103	0	26	53	0	0
104*	84	0	97	0	0
105a	0	0	53	0	55
105b*	21	0	74	0	0
106*	84	0	97	19	0
107*	71	0	100	0	0
108*	57	0	94	0	0
109*	52	0	53	0	0
110*	90	0	97	0	0
111*	90	0	0	90	0

0 137	Toot A	Test B	Test C	Test D	Test E
Cmpd. No	<u>Test A</u> 71	0	0	0	0
112*	0	0	97	19	0
113* 114*	83	0	0	0	0
115*	52	0	32	0	0
116*	21	0	0	0	0
117*	83	0	74	0	0
118*	83	0	0	0	0
119	31	0	32	0	0
120*	29	0	52	.19	0
121*	71	0	53	0	. 0
122	0	0	0	0	0
123*	90	0	53	0	0
124*	83	0	0	0	0
125*	90	0	99	0	0
126*	0	0	73	0	0
127*	0	0	94	19	0
128	86	0	74	13	0
129	38	26	74	0	0
130	0	0	32	2	0
131	0	0	53	52	0
132	0	0	0	2	0
133	0	0	0	0	0
134	0	0	0	30	0
135	0	0	53	2	0
136	34	0	78 .	0	0
137	0	0	53	0	0
138	0	0	53	13	0
139	71	0	91	0	0
140a	29	0	90	0	0
140b	63	28	74	38	0
141	38	68	74	84	0
143	0	0	53	0	0
144	0	28	. 53	0	. 0
145	0	9	0	20	0
146	0	22	0	0	0
148	0	0	74	0	0

- 117	77	T4 D	Total C	Took D	Toot E
Cmpd. No	Test A	Test B	Test C	Test D 0	<u>Test E</u> 0
149	30	27	53		
150	0	0	60	0	87
151	0	0	91	•	0
152	55	68	86	•	0
153	92	64	94	92	0
154	52	0	52	0	0
155	71	0	86	23	0
156*	0	0	0 ~	0	0
157*	0	0	97	0	0
158*	0	0	52	0	0
159	0	0	0	0	47
160*	57	86	52	85	0
161*	. 0	0	0	0	0
162	0	0	74	95	82
163*	0	0	52	42	0
. 164	0	0	72 ·	56	7
165a	86	0	74	23	86
165b	95	0	94	23	95
166a	0	0	99	76	58
166b	0	0	99	0	0
167	0	0	74	23	0
168a	76	0	74	0	58
168b	95	0	94	45	86
169a	84	27	91	24	0
169b	0	0	97 .	0	0
170a	35	0	53	0	58
170b	61	68	53	23	95
171a	0	0	86	0	0
171b	91	0	53	0	58
172	0	0	86	0	95
173a	63	28	52	33	0
173b	0	0	90	91	0
174a	0	0	31	54	0
174b	0	28	52	91	. 0
175*	0	0	74	33	0
176	77	0	94	56	6
1/0	//	U	77	50	U

Cmpd. No	Test A	Test B	Test C	Test D	Test E
177	62	0	94	35	6
178	0	0 53		0	58
179	35	0	74	23	58
180	61	0	74	76	0
181a	0	0	86	56	69
181b	37	0	74	0	90
182a	0	0	0	0	0
182b	0	68	94	0	0
183a	0	28	86	35	0
183b	86	28	94	35	. 69
184a	62	0	74	0	6
184b	62	0	74	9	45
185	. 0	28	86	9	45
186	0	0	100	0	45
187a	0	28	94	9	6
187b	77	68	94	91	6
188a	0	0	97	56	0
1 88 b	0	0	100	35	45
189a	0	0	97	0	6
189b	0	0	100	35	0
190a	0	0	91	0	6
190b	0	0	94	0	0
191a	0	0	100	25	85
1916	0	0	100	47	55
191c	86	0	100 '	23	0
192a	0	0	100	0	85
192b	0	0	100	0	0
. 193	0	0	100	0	55
194	0	0	100	0	0
195	85	0	99	32	-
196	0	0	86	0	-
197	59	0	86	0	-
198a	75	28	100	5	-
198b	59	28	100	5	-
199	85	68	97	5	· -
200a	0	0	100	5	-

Cmpd. No	Test A	Test B	Test C	Test D	<u>Test E</u>
200b	0	0	100	5	-
201	90	0	53	46	0
202	0	0	53	0	0
203	0	28	91	0	0
204	0	0	74	0	0
205	0	68	74	0	0
206	0	0	74	0	0
207	0	0	0	0	0
208	0	28	94 ~	45	0
209	0	0	86	0 -	0
210	0	0	91	0	0
211	63	0	100	76	0
212	. 0	0	100	23	0
213	63	0	99	62	0
214	0	0	100	23	0
215a	63	0	99	45	0
215b	0	28	99	76	83
216	0	0	99	9	45
217	0	0	99	0	0
218	86	68	100	17	0
219	86	86	99	96	0
220	. 0	0	100	85	0
221a	0	0	100	41	0
221Ъ	62	68	100	41	0 .
222	62	28	100 .	41	0
223	62	28	100	41	0
224	85	0	100	5	-
225	91	86	100	5	-
226	0	0	100	0	-
227	0	0	100	0	-
228	95	0	52	7	47
229a	0	0	100	0	55
229Ъ	0	0	100	25	95
230	0	0	53	0	45
231	0	0	97	0	93
232	62	0	100	35	69

					20 0 1 0 0
Cmpd. No	Test A	Test B	Test C	Test D	Test E
233	62	0	94	9	6
234	0	0	100	0	0
235	0	0	91	0	ND
236	77	0	97	0	0
237	62	0	53	9	0
238	62	0	74	0	ND
239	0	0	97	88	0
240	63	0	94 ~	96	0
241	38	0	74	74	0
242	0	0	74	96	. 0
243	38	0	74	74	0
244	86	0	99	74	0
245	72	0	100	0	0
246	53	0	97	0	0
247	53	0	85	0	0
248	53	0	90	62	83
249	0	0	94	0	0
250	0	0	52	0	85
251	0	0	94	0	0
252	0	0	99	5	-
253	59	0	100	0	-
254	0	0	53	0	0
255	28	0	74	0	0
256	56	0	0	0	0
257	0	0	0 .	0	0
258	74	27	94	0	0
259	84	0	91	0	48
260	0	0	74	24	83
261	0	0	100	54	0
262	98	0	53	99	0
263	86	0	86	33	0
264	0	0	90	54	94
265	77	0	91	96	0
266	63	, O	91	74	Ó
267a	78	0	97	0	55
267b	92	0	100	0	55

Cmpd. No	Test A	<u>Test B</u>	<u>Test C</u>	Test D	Test E
268	38	0	91	88	0
269	98	0	94	74	0 .
270	77	0	91	96	O
271	77	0	94	96	0
272	76	0	53	63	0
273	86	0	53	23	0
274	61	28	74	23	58
275	0	0	53	0	99
276	0	0	0 ~	0	94
277	0	0	0	0 .	0
278	56	67	32	0	94
279	56	0	0	0	0
280	56	0	74	0	0
281	56	0	53	0	0
282	0	0	100	24	0
283	0	0	99	0	0
284	0	0	99	0	0
285	59	0	97	0	0
286	76	0	99	0	0
287	0	0	97	23	0
288	33	0	86	0	0
289	0	0	90	45	0
290	59	0	90	0	0
291	0	0	90	0	0
292	0	0	99 .	46	0
293	0	0	100	23	0
294	0	0	99	24	0
295	0	0	100	0	0
296	0	0	100	24	0
297	0	0	100	46	0
298	62	0	99	99	0
301	62	0	100	24	0
302	0	0	99	24	0
303	0	0	99	100	0
304	0	0	97	0	0
305	0	0	53	0	0

WO 98/33765 PCT/US98/01668

100

Cmpd. No	Test A	Test B	Test C	Test D	Test E
306	0	67	99	0	94
307	36	0	94	0	0
308	86	28	100	45	0
309	86	0	91	23	0
310	84	25	53	0	18
311	84	0	0	0	0
312	0	0	0	82	0
313	0	0	26	32 .	47
314	0	0	72	0	0
315	60	99	51	16	0
316	0	0	53	0	0
317*	57	0	85	19	0
318*	90	0	53	0	0
320	59	68	100	0	-

^{*} Tested at 40 ppm.

^{**} Tested at 100 ppm.

CLAIMS

What is claimed is:

1. A compound selected from Formula I,

$$Q \xrightarrow{N \atop H} X^{-1} X - Z$$

I

wherein

5 Q is

$$R^5$$
 R^4
 R^3
 $Q-1$
 $Q-2$

Z is

X is -O-, -CH(R^{11})- or =C(R^{11})-;

R1 is H or C1-C2 alkyl;

10 R² is H; C₁-C₆ alkyl; C₃-C₆ cycloalkyl; or phenyl optionally substituted with halogen, cyano, C₁-C₂ alkyl or C₁-C₂ alkoxy;

R³ is H, C₁-C₃ alkyl optionally substituted with halogen or CN;

R4 is H or C1-C2 alkyl; or

R³ and R⁴ can be taken together as -CH₂CH₂CH₂- or -CH₂CH₂CH₂CH₂-;

15 R⁵ is H, C₁-C₂ alkyl optionally substituted with halogen or CN;

R⁶ is C₂-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₂-C₈ alkynylalkenyl or C₃-C₈ cycloalkyl, each optionally substituted with halogen;

 R^7 is H, CN, halogen, C_1 - C_2 haloalkoxy or C_1 - C_2 haloalkylthio; or C_1 - C_4 alkyl, C_2 - C_4 alkenyl or C_2 - C_4 alkynyl, each optionally substituted with halogen or CN;

5

. 10

15

20

25

30

 R^8 , R^9 and R^{10} are each independently H, halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, or $Si(CH_3)_3$; and R^{11} is H, C_1 - C_5 alkyl, C_2 - C_5 alkenyl or C_2 - C_5 alkynyl.

2. A compound of Claim 1 wherein:

Q is Q-1;

 R^1 is CH_3 ;

 R^2 is H;

R3 is CH2CH3; and

R⁴ is CH₃.

3. A compound of Claim 2 wherein

Z is Z-1 or Z-4;

 R^7 is H, halogen, CN, C_1 - C_4 alkyl or C_2 - C_4 alkenyl;

 R^8 is H or F and is in the para position with respect to X when Z is Z-1; and R^9 is in the para position with respect to R^7 when Z is Z-1.

4. A compound of Claim 2 wherein

Z is Z-2 or Z-3; and

R⁷ is H, halogen, CN, C₁-C₃ alkyl or C₂-C₄ alkenyl.

5. A compound of Claim 1 wherein

Q is Q-2;

R¹ is CH₃;

R² is H or phenyl optionally substituted with halogen, cyano, C₁-C₂ alkyl or C₁-C₂ alkoxy; and

R6 is C2-C6 alkyl or C2-C6 alkenyl each optionally substituted with halogen.

6. A compound of Claim 5 wherein

Z is Z-1 or Z-4;

 R^7 is H, halogen, CN, C_1 - C_3 alkyl, C_2 - C_4 alkenyl or C_2 - C_4 alkynyl; R^8 is H or F and is in the para position with respect to X when Z is Z-1; and R^9 is in the para position with respect to R^7 when Z is Z-1.

35 7. A compound of Claim 5 wherein

Z is Z-2 or Z-3; and

 R^7 is H, halogen, CN, C_1 - C_4 alkyl, C_2 - C_4 alkenyl or C_2 - C_4 alkynyl.

- A compound of Claim 1 wherein
 Q is Q-1 or Q-2;
 R⁷ is other than H; and
 Z is Z-1.
- 9. A fungicidal composition comprising a fungicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 10. A method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof, or to the plant seed or seedling, a fungicidally effective amount of a compound of Claim 1.

nterna .: :al Application No PCT/US 98/01668

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07C233/57 C07D333/04 A01N43/10 A01N53/00 C07D207/00 C07C255/19 A01N37/34 A01N43/36 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (olassification system followed by classification symbols) CO7C CO7D A01N IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ' US 4 710 518 A (KURAHASHI YOSHIO ET AL) 1 1-4,8-10 December 1987 cited in the application see the whole document 1-4,8-10 EP 0 350 688 A (BASF AG) 17 January 1990 see the whole document EP 0 467 840 A (CIBA GEIGY AG) 22 January 1-4,8-10 Y 1992 see the whole document 1-4.8-10 US 5 034 408 A (WOLLWEBER DETLEF ET AL) Α 23 July 1991 1-4.8-10 EP 0 258 733 A (BASF AG) 9 March 1988 A -/--Patent family members are listed in annex. lx | Further documents are listed in the continuation of box C. "T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *E* earlier document but published on or after the international filing date "Y" document of particular relevance; the olaimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person sidiled in the art. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or "P" document published prior to the international fifing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 0 3. 07. 98 3 June 1998 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Janus, S

1

Intern. .nel Application No PCT/US 98/01668

Category °	ion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
1	DE 37 02 964 A (SHELL AGRAR GMBH & CO KG) 11 August 1988 see the whole document	1,5-10
Y	US 4 946 867 A (MANABE AKIO ET AL) 7 August 1990 cited in the application see the whole document	1,5-10
	^	

1

Information on patent family members

Intern nal Application No PCT/US 98/01668

				1 701/03	
Patent document cited in search report		Publication date	Patent fa membe		Publication date
US 4710518	A	01-12-1987	JP 15 JP 616 JP 17 JP 46 JP 616 BR 85 EP 05 US 56 US 55 JP 17 JP 46	49344 B 65197 C 15867 A 54836 C 142376 B 18751 A 103154 A 170842 A 117053 A 1779320 C 1066473 B 1066473 B	24-10-1989 25-06-1990 23-01-1986 23-04-1993 13-07-1992 27-01-1986 25-03-1986 12-02-1986 29-10-1991 26-05-1992 13-08-1993 23-10-1992 05-09-1987
EP 0350688	A	17-01-1990	CA -1 ES 2 JP 2	823521 A 314563 A 054933 T 072146 A 0615210 B	15-02-1990 16-03-1993 16-08-1994 12-03-1990 28-05-1997
EP 0467840	A	22-01-1992	CA 2 HR IL JP SI 1 RU US	288 A 647500 B 3116291 A 2047157 A 940504 A 98802 A 4342544 A 9111245 A 2068839 C 5326901 A 5578595 A	21-10-1993 24-03-1994 23-01-1992 19-01-1992 30-04-1996 26-05-1995 30-11-1992 30-04-1995 10-11-1996 05-07-1994 26-11-1996
US 5034408	Α	23-07-1991	DE 5 EP	3915756 A 9002430 D 0398059 A 2683141 B 3017051 A	29-11-1990 30-09-1993 22-11-1990 26-11-1997 25-01-1991
EP 0258733	A	09-03-1988	DE CA	3628082 A 1292245 A	03-03-1988 19-11-1991

Information on patent family members

Intern. Anal Application No PCT/US 98/01668

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0258733 A		JP 2063287 C JP 7094415 B JP 63051365 A US 4859706 A	24-06-1996 11-10-1995 04-03-1988 22-08-1989
DE 3702964 A	11-08-1988	AU 610079 B AU 7766787 A CA 1311240 A CN 1019485 B DE 3783415 A DK 451887 A EG 18578 A EP 0262393 A ES 2043625 T JP 2632863 B JP 63132867 A JP 9118659 A KR 9611716 B PT 85616 B	16-05-1991 03-03-1988 08-12-1992 16-12-1992 18-02-1993 01-03-1988 30-07-1993 06-04-1988 01-01-1994 23-07-1997 04-06-1988 06-05-1997 30-08-1996 31-05-1990
US 4946867	A 07-08-1990	JP 1261357 A KR 9609116 B JP 2076845 A JP 2692177 B PH 25387 A JP 2076846 A JP 2692266 B JP 1156951 A JP 2508189 B PH 25875 A	18-10-1989 13-07-1996 16-03-1990 17-12-1997 03-06-1991 16-03-1990 17-12-1997 20-06-1989 19-06-1996 02-12-1991

THIS PAGE BLANK (USPT.O)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

