Differential- und Integralrechnung, Wintersemester 2020-2021

3. Vorlesung

Reelle Zahlenfolgen

Vollständige (mathematische) Induktion

Wie sie funktioniert

Sei $n_0 \in \mathbb{N}$ und A(n) eine Aussage, $n \ge n_0$. Um zu zeigen, dass A(n) für alle $n > n_0$ wahr ist, geht man in 2 Schritten vor:

I (Induktionsanfang): $A(n_0)$ ist wahr.

II (Induktionsschritt): Man nimmt an, A(n) ist für eine natürliche Zahl $n \geq n_0$ wahr (Induktionsannahme) und zeigt, dass auch A(n+1) wahr ist.

Aus I und II $\Rightarrow A(n)$ ist für alle $n \geq n_0$ wahr.

Eine Anwendung der vollständigen Induktion

$Die \ge Bernoulli-Ungleichung$

Für alle $n \in \mathbb{N}^*$ und alle reelle Zahlen $x \ge -1$ gilt $(1+x)^n \ge 1 + nx$.

Bew.: Sei $x \in \mathbb{R}$ mit $x \ge -1$. Wir beweisen mittels Induktion, dass für alle $n \in \mathbb{N}^*$ die Aussage $A(n) = (1+x)^n \ge 1 + nx^n$ wahr ist.

I: $A(1) = 1 + x \ge 1 + x$ " ist wahr.

II: Sei A(n) für irgendein $n \in \mathbb{N}^*$ richtig. Also ist

$$(1+x)^n \ge 1 + nx.$$

Durch Multiplikation mit $1 + x \ge 0$ erhält man

$$(1+x)^{n+1} \ge 1 + x + nx + nx^2 = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x.$$

Somit ist auch A(n+1) richtig.

Aus I und II \Rightarrow die \geq Bernoulli-Ungleichung. \square

Eine Anwendung der vollständigen Induktion

Die > Bernoulli-Ungleichung

Für alle $n\in\mathbb{N}$ mit $n\geq 2$ und alle reellen von Null verschiedenen Zahlen $x\geq -1$ gilt

$$(1) (1+x)^n > 1 + nx.$$

Bew.: \hookrightarrow Hausaufgabe.

Die Folgen $(x_n)_{n\in\mathbb{N}^*}$ und $(y_n)_{n\in\mathbb{N}^*}$ seien wie folgt definiert

$$x_n = \left(1 + \frac{1}{n}\right)^n, \quad y_n = \left(1 + \frac{1}{n}\right)^{n+1}.$$

Dann gelten:

- a) $x_n < x_{n+1} < y_{n+1} < y_n, \forall n \in \mathbb{N}^*$.
- b) $0 < y_n x_n < \frac{4}{n}, \forall n \in \mathbb{N}^*.$
- c) Die Folgen $(x_n)_{n\in\mathbb{N}^*}$ und $(y_n)_{n\in\mathbb{N}^*}$ konvergieren gegen die gleiche Zahl.

Bew.: a) Sei $n \in \mathbb{N}^*$.

$$x_n < x_{n+1} \Leftrightarrow \left(\frac{n+1}{n}\right)^{n+1} \cdot \frac{n}{n+1} < \left(1 + \frac{1}{n+1}\right)^{n+1}$$

$$\Leftrightarrow \frac{n}{n+1} < \left(\frac{(n+2)n}{(n+1)(n+1)}\right)^{n+1} \Leftrightarrow \frac{n}{n+1} < \left(\frac{(n+1)^2 - 1}{(n+1)^2}\right)^{n+1}$$

$$\Leftrightarrow \frac{n}{n+1} < \left(1 - \frac{1}{(n+1)^2}\right)^{n+1}.$$

Aus (1) (angewandt auf $x = -\frac{1}{(n+1)^2} \ge -1$ und $n+1 \ge 2$) \Rightarrow

$$\left(1 - \frac{1}{(n+1)^2}\right)^{n+1} > 1 - (n+1) \cdot \frac{1}{(n+1)^2}$$

$$\Leftrightarrow \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} > 1 - \frac{1}{n+1}$$

$$\Leftrightarrow \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} > \frac{n}{n+1} \Leftrightarrow x_{n+1} > x_n.$$

Es gelten

$$x_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1} \cdot 1 < \left(1 + \frac{1}{n+1}\right)^{n+1} \left(1 + \frac{1}{n+1}\right) = y_{n+1}.$$

Also ist $x_{n+1} < y_{n+1}$.

$$y_{n+1} < y_n \Leftrightarrow \left(1 + \frac{1}{n+1}\right)^{n+2} < \left(1 + \frac{1}{n}\right)^{n+1}$$

$$\Leftrightarrow 1 + \frac{1}{n+1} < \left(1 + \frac{1}{n}\right)^{n+1} \cdot \left(\frac{n+1}{n+2}\right)^{n+1}$$

$$\Leftrightarrow 1 + \frac{1}{n+1} < \left(\frac{(n+1)^2}{n(n+2)}\right)^{n+1} \Leftrightarrow 1 + \frac{1}{n+1} < \left(1 + \frac{1}{n(n+2)}\right)^{n+1}.$$

Aus (1) (angewandt auf
$$x = \frac{1}{n(n+2)} > 0$$
 und $n+1 \ge 2$) \Rightarrow

 $\left(1 + \frac{1}{n(n+2)}\right)^{n+1} > 1 + \frac{n+1}{n(n+2)} > 1 + \frac{1}{n+1}.$

Also ist $y_{n+1} < y_n$.

b) Aus a)
$$\Rightarrow 0 < y_n - x_n, \ \forall \ n \in \mathbb{N}^*$$
. Außerdem gelten $\forall \ n \in \mathbb{N}^*$

$$y_n - x_n = \left(1 + \frac{1}{n}\right)^n \cdot \frac{1}{n} = \frac{x_n}{n} < \frac{y_n}{n} \le \frac{y_1}{n} = \frac{4}{n},$$

also ist $y_n - x_n < \frac{4}{n}$.

c) Aus a) \Rightarrow $(x_n)_{n \in \mathbb{N}^*}$ ist streng wachsend und $x_n < y_1, \forall n \in \mathbb{N}^*$. Aus a) \Rightarrow $(y_n)_{n \in \mathbb{N}^*}$ ist streng fallend und $y_n > x_1, \forall n \in \mathbb{N}^*$.

Nach **Th10** \Rightarrow $(x_n)_{n \in \mathbb{N}^*}$ und $(y_n)_{n \in \mathbb{N}^*}$ sind konvergent. Seien

$$\lim_{n \to \infty} x_n = x \text{ und } \lim_{n \to \infty} y_n = y.$$

Aus b) und **Th5** $\Rightarrow x = y$. \square

Die eulersche Zahl e

- ist der gemeinsame Grenzwert der Folgen $(x_n)_{n\in\mathbb{N}^*}$ und $(y_n)_{n\in\mathbb{N}^*}$;
- Aus **Th9** ⇒

$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}, \forall n \in \mathbb{N}^*.$$

Th13 (Grenzwerte mit e)

Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge mit $x_n>-1$ und $x_n\neq 0, \ \forall \ n\in\mathbb{N}$. Falls $\lim_{n\to\infty}x_n=0$, dann ist

$$\lim_{n \to \infty} (1 + x_n)^{\frac{1}{x_n}} = e.$$

Die eulersche Zahl e

Bsp.:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2 + 2n} \right)^{-2n^2 + 3} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n^2 + 2n} \right)^{n^2 + 2n} \right]^{\frac{-2n^2 + 3}{n^2 + 2n}} = e^{-2}.$$

Bem.: Bei Grenzwerten der Form $\lim_{n\to\infty}(1+x_n)^{y_n}$ kann der Trick mit e nur im Fall $\lim_{n\to\infty}x_n=0$ angewandt werden. Z.B. kann dieser Trick beim Bestimmen des folgenden Grenzwertes NICHT eingesetzt werden.

$$\lim_{n \to \infty} \left(1 + \frac{n^2}{n^2 + 2n} \right)^{\frac{n^2 + 2n}{n^2}} = 2.$$