TARGETED NEXT-GENERATION SEQUENCING FOR CLINICAL DIAGNOSTICS OF SOLID TUMOURS

by

Shyong Quin Yap

B.Sc. (Hons), Trent University, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Experimental Medicine Program)

The University of British Columbia (Vancouver)

January 2017

© Shyong Quin Yap, 2017

Abstract

This document provides brief instructions for using the ubcdiss class to write a UBC-conformant dissertation in LATEX. This document is itself written using the ubcdiss class and is intended to serve as an example of writing a dissertation in LATEX. This document has embedded Unique Resource Locators (URLS) and is intended to be viewed using a computer-based Portable Document Format (PDF) reader.

Note: Abstracts should generally try to avoid using acronyms.

Note: at University of British Columbia (UBC), both the Graduate and Postdoctoral Studies (GPS) Ph.D. defence programme and the Library's online submission system restricts abstracts to 350 words.

Preface

At UBC, a preface may be required. Be sure to check the GPS guidelines as they may have specific content to be included.

Table of Contents

Al	bstrac	et	ii
Pr	eface		iii
Ta	ble of	f Conte	nts iv
Li	st of '	Fables	vi
Li	st of l	Figures	vii
Gl	lossar	y	viii
A	cknov	vledgme	ents ix
1	Intr	oductio	n
	1.1	Cance	r as an (Epi)genetic Disease
	1.2	The E	ra of Precision Oncology
		1.2.1	Next-Generation Sequencing Technologies in the Clinic
		1.2.2	Clinical Application of Bioinformatics Pipelines
		1.2.3	Molecular Targeted Therapies
		1.2.4	Cancer Pharmacogenomics
	1.3	Challe	nges in Clinical Applications of Next-Generation Sequencing
		1.3.1	Formalin-Fixed Clinical Specimens
		1.3.2	Tumour-Only Profiling
	1.4	BibTe	
		1.4.1	Describing References
		1.4.2	Citing References
		1.4.3	Formatting Cited References
	1.5	Typese	etting Tables
	16	• •	s Graphics and Special Characters 5

1	1.7	7 Special Characters and Symbols		
1	8.1	Changi	ng Page Widths and Heights	6
		1.8.1	The geometry Package	6
		1.8.2	Changing Page Layout Values By Hand	7
		1.8.3	Making Temporary Changes to Page Layout	7
1	.9	Keepin	g Track of Versions with Revision Control	7
1	1.10	Recom	mended Packages	8
		1.10.1	Typesetting	8
		1.10.2	Figures, Tables, and Document Extracts	8
		1.10.3	Bibliography Related Packages	9
1	1.11	Moving	g On	9
Bibl	iogr	aphy .		11
A S	Supp	orting	Materials	12

List of Tables

Table 1.1	Available cite variants; the exact citation style depends on whether the bibli-	
	ography style is numeric or author-year	4
Table 1.2	Useful LATEX symbols	6

List of Figures

Figure 1.1 Proof of LATEX's amazing abilities		5
---	--	---

Glossary

This glossary uses the handy acroynym package to automatically maintain the glossary. It uses the package's printonlyused option to include only those acronyms explicitly referenced in the \LaTeX source.

CTAN	The Common T _E X Archive Network
DOI	Document Object Identifier (see http://doi.org)
GPS	Graduate and Postdoctoral Studies
PDF	Portable Document Format
RCS	Revision control system, a software tool for tracking changes to a set of files
URL	Unique Resource Locator, used to describe a means for obtaining some resource on the world wide web

Acknowledgments

Although this thesis only bears one name, its completion would be impossible without the contribution of many individuals. First and foremost, I would like to express my sincere gratitute to my supervisor, Dr. Aly Karsan, for the opportunity to work in his lab which consists of diverse talents as well as his patience, guidance, and extensive knowledge in clinical informatics.

I would also like to thank my labmates from the bioinformatics team, Kieran and Rod, and members from the Centre of Clinical Genomics, Liz and Jill, for their insightful comments and help throughout my time in the lab. I would like to extend my gratitude to my supervisory committee members, Dr. Ryan Morin and Dr. Martin Hirst, for their knowledgeable feedback and continuous effort in asking me difficult questions which motivated me to widen my research from various perspectives.

My sincere thanks also goes to my friends who supported me and lifted my spirits through the tough times. Last but not least, I would like to thank my family: mom and dad, for always encouraging my interest in science and listening to my endless science talks and my sisters, for believing in my ability even when I doubt myself. I am a lucky person.

Chapter 1

Introduction

1.1 Cancer as an (Epi)genetic Disease

Cancer is a group of disorders defined by abnormal cell growth. Although fundamentally known to arise from genetic mutations, the disease paradigm has expanded to include aberrant epigenetic mechanisms as a contributing factor to oncogenesis. The understanding of cancer pathogenesis has expanded been increasing over the years and a disorder that was fundamentally known to arise from genetic mutations this group of disorders which have been fundamentally known Cancer has been fundamentally known as a genetic disease defined by abnormal proliferation of cells. Our understanding of cancer pathogenesis has been expanding Although the understanding of cancer pathogenesis has been expanding, Cancer has been fundamentally known as a genetic disease.

1.2 The Era of Precision Oncology

The era of precision oncology has been revolutionized by NGS technologies and bioinformatics algorithms etc. This results in the use of molecular targeted therapies to treat patients and PGx info to administer chemo.

- 1.2.1 Next-Generation Sequencing Technologies in the Clinic
- 1.2.2 Clinical Application of Bioinformatics Pipelines
- **1.2.3** Molecular Targeted Therapies
- 1.2.4 Cancer Pharmacogenomics

1.3 Challenges in Clinical Applications of Next-Generation Sequencing

- 1.3.1 Formalin-Fixed Clinical Specimens
- 1.3.2 Tumour-Only Profiling

1.4 BibTeX

One of the primary benefits of using LATEX is its companion program, BibTEX, for managing bibliographies and citations. Managing bibliographies has three parts: (i) describing references, (ii) citing references, and (iii) formatting cited references.

1.4.1 Describing References

BibTeX defines a standard format for recording details about a reference. These references are recorded in a file with a .bib extension. BibTeX supports a broad range of references, such as books, articles, items in a conference proceedings, chapters, technical reports, manuals, dissertations, and unpublished manuscripts. A reference may include attributes such as the authors, the title, the page numbers, the Document Object Identifier (DOI), or a Unique Resource Locator (URL). A reference can also be augmented with personal attributes, such as a rating, notes, or keywords.

Each reference must be described by a unique *key*.¹ A key is a simple sequence of characters, numbers, digits, and some punctuation marks such as ":" and "-"; there should be no spaces. A consistent key format simiplifies remembering how to make references. For example:

where *last-name* represents the last name for the first author, and *contracted-title* is some meaningful contraction of the title. Then Kiczales et al.'s seminal article on aspect-oriented programming [2] (published in 1997) might be given the key kiczales-1997-aop.

¹Note that the citation keys are different from the reference identifiers as described in ??.

An example of a BibTeX .bib file is included as biblio.bib. A description of the format a .bib file is beyond the scope of this document. We instead encourage you to use one of the several reference managers that support the BibTeX format such as JabRef² (multiple platforms) or BibDesk³ (MacOS X only). These front ends are similar to reference manages such as EndNote or RefWorks.

1.4.2 Citing References

Having described some references, we then need to cite them. We do this using a form of the \cite command. For example:

```
\citet{kiczales-1997-aop} present examples of crosscutting from programs written in several languages.
```

When processed, the \citet will cause the paper's authors and a standardized reference to the paper to be inserted in the document, and will also include a formatted citation for the paper in the bibliography. For example:

Kiczales et al. [2] present examples of crosscutting from programs written in several languages.

There are several forms of the \cite command (provided by the natbib package), as demonstrated in Table 1.1. Note that the form of the citation (numeric or author-year) depends on the bibliography style (described in the next section). The \citet variant is used when the author names form an object in the sentence, whereas the \citep variant is used for parenthetic references, more like an end-note.

1.4.3 Formatting Cited References

BibTEX separates the citing of a reference from how the cited reference is formatted for a bibliography, specified with the \bibliographystyle command. There are many varieties, such as plainnat, abbrvnat, unsrtnat, and vancouver. This document was formatted with abbrvnat. Look through your TEX distribution for .bst files. Note that use of some .bst files do not emit all the information necessary to properly use \citet{}, \citep{}, \citeyear{}, and \citeauthor{}.

There are also packages available to place citations on a per-chapter basis (bibunits), as footnotes (footbib), and inline (bibentry). Those who wish to exert maximum control over their bibliography style should see the amazing custom-bib package.

²http://jabref.sourceforge.net

³http://bibdesk.sourceforge.net

Table 1.1: Available cite variants; the exact citation style depends on whether the bibliography style is numeric or author-year.

Variant	Result
\cite	Parenthetical citation (e.g., "[2]" or "(Kiczales et al.
	1997)")
\citet	Textual citation: includes author (e.g., "Kiczales et al.
	[2]" or or "Kiczales et al. (1997)")
\citet*	Textual citation with unabbreviated author list
\citealt	Like \citet but without parentheses
\citep	Parenthetical citation (e.g., "[2]" or "(Kiczales et al.
	1997)")
\citep*	Parenthetical citation with unabbreviated author list
\citealp	Like \citep but without parentheses
\citeauthor	Author only (e.g., "Kiczales et al.")
\citeauthor*	Unabbreviated authors list (e.g., "Kiczales, Lamping,
	Mendhekar, Maeda, Lopes, Loingtier, and Irwin")
\citeyear	Year of citation (e.g., "1997")

1.5 Typesetting Tables

Lamport [3] made one grievous mistake in LaTeX: his suggested manner for typesetting tables produces typographic abominations. These suggestions have unfortunately been replicated in most LaTeX tutorials. These abominations are easily avoided simply by ignoring his examples illustrating the use of horizontal and vertical rules (specifically the use of hline and |) and using the booktabs package instead.

The booktabs package helps produce tables in the form used by most professionally-edited journals through the use of three new types of dividing lines, or *rules*. Tables 1.1 and 1.2 are two examples of tables typeset with the booktabs package. The booktabs package provides three new commands for producing rules: \toprule for the rule to appear at the top of the table, \midrule for the middle rule following the table header, and \bottomrule for the bottommost at the end of the table. These rules differ by their weight (thickness) and the spacing before and after. A table is typeset in the following manner:

```
\begin{table}
\caption{The caption for the table}
\label{tbl:label}
\centering
\begin{tabular}{cc}
\toprule
Header & Elements \\
\midrule
Row 1 & Row 1 \\
Row 2 & Row 2 \\
```

LATEX Rocks!

Figure 1.1: Proof of LATEX's amazing abilities

```
% ... and on and on ...

Row N & Row N \\
\bottomrule
\end{tabular}
\end{table}
```

See the booktabs documentation for advice in dealing with special cases, such as subheading rules, introducing extra space for divisions, and interior rules.

1.6 Figures, Graphics, and Special Characters

Most LATEX beginners find figures to be one of the more challenging topics. In LATEX, a figure is a *floating element*, to be placed where it best fits. The user is not expected to concern him/herself with the placement of the figure. The figure should instead be labelled, and where the figure is used, the text should use \autoref to reference the figure's label. Figure 1.1 is an example of a figure. A figure is generally included as follows:

```
\begin{figure}
\centering
\includegraphics[width=3in]{file}
\caption{A useful caption}
\label{fig:fig-label} % label should change
\end{figure}
```

There are three items of note:

- 1. External files are included using the \includegraphics command. This command is defined by the graphicx package and can often natively import graphics from a variety of formats. The set of formats supported depends on your TeX command processor. Both pdflatex and xelatex, for example, can import GIF, JPG, and PDF. The plain version of latex only supports EPS files.
- 2. The \caption provides a caption to the figure. This caption is normally listed in the List of Figures; you can provide an alternative caption for the LoF by providing an optional argument to the \caption like so:

```
\caption[nice shortened caption for LoF]{% longer detailed caption used for the figure}
```

Graduate and Postdoctoral Studies (GPS) generally prefers shortened single-line captions in the LoF: multiple-line captions are a bit unwieldy.

Table 1.2: Useful LATEX symbols

IAT _E X	Result	ĿŦĘX	Result
\texttrademark	TM	\ &	&
\textcopyright	©	\{ \}	{}
\textregistered	R	\	%
\textsection	§	\verb!~!	~
\textdagger	†	\\$	\$
\textdaggerdbl	‡	\^{}	^
\textless	<	_	
\textgreater	>		

3. The \label command provides for associating a unique, user-defined, and descriptive identifier to the figure. The figure can be can be referenced elsewhere in the text with this identifier as described in ??.

See Keith Reckdahls excellent guide for more details, Using imported graphics in LaTeX2e⁴.

1.7 Special Characters and Symbols

1.8 Changing Page Widths and Heights

The ubcdiss class is based on the standard LATEX book class that selects a line-width to carry approximately 66 characters per line. This character density is claimed to have a pleasing appearance and also supports more rapid reading [1]. I would recommend that you not change the line-widths!

1.8.1 The geometry Package

Some students are unfortunately saddled with misguided supervisors or committee members whom believe that documents should have the narrowest margins possible. The geometry package is helpful in such cases. Using this package is as simple as:

\usepackage[margin=1.25in,top=1.25in,bottom=1.25in]{geometry}

You should check the package's documentation for more complex uses.

⁴http://www.ctan.org/tex-archive/info/epslatex.pdf

1.8.2 Changing Page Layout Values By Hand

There are some miserable students with requirements for page layouts that vary throughout the document. Unfortunately the geometry can only be specified once, in the document's preamble. Such miserable students must set LATEX's layout parameters by hand:

These settings necessarily require assuming a particular page height and width; in the above, the setting for \textwidth assumes a US Letter with an 8.5" width. The geometry package simply uses the page height and other specified values to derive the other layout values. The layout package provides a handy \layout command to show the current page layout parameters.

1.8.3 Making Temporary Changes to Page Layout

There are occasions where it becomes necessary to make temporary changes to the page width, such as to accommodate a larger formula. The changeage package provides an adjustwidth environment that does just this. For example:

```
% Expand left and right margins by 0.75in \begin{adjustwidth}{-0.75in}{-0.75in} % Must adjust the perceived column width for LaTeX to get with it. \addtolength{\columnwidth}{1.5in} \[ an extra long math formula \] \end{adjustwidth}
```

1.9 Keeping Track of Versions with Revision Control

Software engineers have used Revision control system (RCS) to track changes to their software systems for decades. These systems record the changes to the source code along with context as to why the change was required. These systems also support examining and reverting to particular revisions from their system's past.

An RCS can be used to keep track of changes to things other than source code, such as your dissertation. For example, it can be useful to know exactly which revision of your dissertation was sent to a particular committee member. Or to recover an accidentally deleted file, or a badly modified

image. With a revision control system, you can tag or annotate the revision of your dissertation that was sent to your committee, or when you incorporated changes from your supervisor.

Unfortunately current revision control packages are not yet targetted to non-developers. But the Subversion project's TortoiseSVN⁵ has greatly simplified using the Subversion revision control system for Windows users. You should consult your local geek.

A simpler alternative strategy is to create a GoogleMail account and periodically mail yourself zipped copies of your dissertation.

1.10 Recommended Packages

The real strength to LATEX is found in the myriad of free add-on packages available for handling special formatting requirements. In this section we list some helpful packages.

1.10.1 Typesetting

enumitem: Supports pausing and resuming enumerate environments.

ulem: Provides two new commands for striking out and crossing out text (\sout{text} and \xout{text} respectively) The package should likely be used as follows:

```
\usepackage[normalem, normalbf] {ulem}
```

to prevent the package from redefining the emphasis and bold fonts.

chngpage: Support changing the page widths on demand.

mhchem: Support for typesetting chemical formulae and reaction equations.

Although not a package, the latexdiff⁶ command is very useful for creating changebar'd versions of your dissertation.

1.10.2 Figures, Tables, and Document Extracts

pdfpages: Insert pages from other PDF files. Allows referencing the extracted pages in the list of figures, adding labels to reference the page from elsewhere, and add borders to the pages.

subfig: Provides for including subfigures within a figure, and includes being able to separately reference the subfigures. This is a replacement for the older subfigure environment.

⁵http://tortoisesvn.net/docs/release/TortoiseSVN_en/

⁶http://www.ctan.org/tex-archive/support/latexdiff/

rotating: Provides two environments, sidewaystable and sidewaysfigure, for typesetting tables and figures in landscape mode.

longtable: Support for long tables that span multiple pages.

tabularx: Provides an enhanced tabular environment with auto-sizing columns.

ragged2e: Provides several new commands for setting ragged text (e.g., forms of centered or flushed text) that can be used in tabular environments and that support hyphenation.

1.10.3 Bibliography Related Packages

bibunits: Support having per-chapter bibliographies.

footbib: Cause cited works to be rendered using footnotes.

bibentry: Support placing the details of a cited work in-line.

custom-bib: Generate a custom style for your bibliography.

1.11 Moving On

At this point, you should be ready to go. Other handy web resources:

- Common TEX Archive Network (CTAN)⁷ is *the* comprehensive archive site for all things related to TEX and LATEX. Should you have some particular requirement, somebody else is almost certainly to have had the same requirement before you, and the solution will be found on CTAN. The links to various packages in this document are all to CTAN.
- An online reference to LATEX commands⁸ provides a handy quick-reference to the standard LATEX commands.
- The list of Frequently Asked Questions about TEX and LATEX of save you a huge amount of time in finding solutions to common problems.
- The teTeX documentation guide¹⁰ features a very handy list of the most useful packages for LATeX as found in CTAN.

⁷http://www.ctan.org

⁸http://www.ctan.org/get/info/latex2e-help-texinfo/latex2e.html

⁹http://www.tex.ac.uk/cgi-bin/texfaq2html?label=interruptlist

¹⁰ http://www.tug.org/tetex/tetex-texmfdist/doc/

- The color¹¹ package, part of the graphics bundle, provides handy commands for changing text and background colours. Simply changing text to various levels of grey can have a very dramatic effect.
- If you're really keen, you might want to join the TEX Users Group 12.

¹¹ http://www.ctan.org/tex-archive/macros/latex/required/graphics/grfguide.pdf

¹²http://www.tug.org

Bibliography

- [1] R. Bringhurst. *The Elements of Typographic Style*. Hartley & Marks, 2.5 edition, 2002. ISBN 0881791326. → pages 6
- [2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In *Proceedings of the European Conference on Object-Oriented Programming (ECOOP)*, volume 2591 of *Lecture Notes in Computer Science*, pages 220–242, 1997. → pages 2, 3, 4
- [3] L. Lamport. *BT_EX: A Document Preparation System*. Addison-Wesley, 2 edition, 1994. ISBN 0201529831. → pages 4

Appendix A

Supporting Materials

This would be any supporting material not central to the dissertation. For example:

- additional details of methodology and/or data;
- diagrams of specialized equipment developed.;
- copies of questionnaires and survey instruments.