1. Digitalni sustavi i obrada podataka

Pregled tema

- Podaci i informacija
- Predstavljanje binarnih brojeva električkim veličinama
- Prijenos podataka
- Problemi elektroničke implementacije
- Pretvorba analognih veličina
- Osnovna struktura digitalnog sustava

Podaci i informacija

- opažanje različitih pojava obilježja
- mjerljiva obilježja veličine
 - kontinuirane
 - diskretne (vremenski/prostorno)
- izmjerena vrijednost neke veličine podatak
- proces kojim se skup podataka pretvara u informaciju
 obrada podataka
- informacija može se prikazati u analognom ili digitalnom obliku

Analogni prikaz podataka

- mjerena veličina izražava se (drugom) odgovarajućom veličinom
 - razmak između dva zareza na štapu
 - električka veličina analogna fizikalnoj veličini

Digitalni prikaz podataka

veličina izražena brojem i oznakom standardne jedinice

analogno-diskretni prikaz

Pretvorba analognih veličina

- digitalni sustav u stvarnom svijetu
- fizikalne veličine: kontinuirane u prostoru (po amplitudi) i vremenu
- analogne veličine, digitalne veličine

Uzorkovanje

- mjerni pretvornik prikazuje mjerenu veličinu analognom kontinuiranom električkom veličinom (napon)
- informacija o ponašanju kontinuirane veličine može se dobiti uzimanjem uzoraka amplitude napona u jednakim vremenskim razmacima - *uzorkovanjem* (engl. sampling) ⇒ diskretizacija po vremenu

Shannonov teorem uzorkovanja

- Shannonov teorem uzorkovanja (1949.)
 informacija će biti očuvana ako se uzorci uzimaju u
 diskretnim intervalima ∆t tako da je
 ∆t ≤ 1/(2 f_g)
- f_g je gornja granična frekvencija spektra valnog oblika iz kojeg se uzimaju uzorci
- vremenski diskretan analogni prikaz

Kvantizacija

- da bi se iz analognog oblika dobio digitalni oblik, veličina mora proći analogno/digitalnu pretvorbu (ADC)
- proces kvantizacije ⇒ diskretizacija po amplitudi
- pogreška kvantizacije uzima se najbliži cjelobrojni višekratnik kvanta
- prikaz broja kvanata

Kvantizacija

Binarni prikaz podataka

- za prikaz podataka brojevima proizvoljni brojevni sustav
- ostvarivanje u tehničkom sustavu na prikladan način predočiti svaku znamenku posebnim fizičkim stanjem
- različita stanja se moraju jasno prepoznavati i međusobno razlikovati
- najjednostavnije i najefikasnije realizacija 2 stanja
 - ⇒ binarni sustav kao osnova svih digitalnih ektroničkih sustava

Binarna znamenka

- binarna znamenka (0 ili 1) naziva se bit (engl. BInary digiT)
- u digitalnim sustavima podaci se prikazuju pomoću grupe bitova
 - grupa od 8 bitova → oktet (*engl. byte*)
 - grupa od 4 bita → kvartet (*engl. nibble*)
 - osnovna grupa bitova → riječ (*engl. word*)
 tipično 8, 16, 32, 64, ... bita

Blokovi

- za pohranu na magnetskim medijima koriste se veće grupe riječi - blokovi
- vrijeme pristupa u usporedbi s vremenom čitanja podataka
- učinkovitost

Ostvarenje binarnog zapisa

- binarne znamenke: 0 i 1
- fizičko predočavanje:
 - mehanička sklopka
 - papirna traka
 - magnetski medij
 - tranzistorska sklopka

- nositelj informacije:
 - pozitivni i negativni impulsi
 - nizovi impulsa

Predočavanje binarnih veličina

mehanička sklopka

bušene kartice

Predočavanje binarnih veličina

primjer tranzistorske sklopke

Prikaz naponskim razinama

- realizacija elektroničkim sklopovima najprikladnije je značenje 0 i 1 pridijeliti naponskim razinama (npr. 0 V → binarna 0, +5 V → binarna 1)
- problemi tehničke izvedbe (tolerancije, opterećenja, otpornost na smetnje)
 - ⇒ naponska područja umjesto razina

Unipolarni i bipolarni signali

- unipolarni signali unutar digitalnog sustava
- bipolarni signali između digitalnih sustava mogućnost otkrivanja prekida linije

Prijenos podataka

- prijenos informacija (podataka) primanje i slanje
- binarna informacija (riječ, blok podataka) može se prenositi paralelno ili serijski

Serijski prijenos

- po jednom vodiču bitovi slijede u vremenskom nizu u jednakim razmacima
- razlučiti trenutke očitanja vrijednosti pojedinog bita ⇒ sinkronizacijski (taktni) impulsi CP (Clock Pulse)

Paralelni prijenos

- bitovi jedne riječi prenose se paralelno (istovremeno)
- riječi se prenose slijedno (serijski)
- bitovi unutar grupe se prenose paralelno, grupe kao cjeline prenose se serijski
- prijenos podataka po sabirnicama digitalnog sustava

Problemi elektroničke implementacije

- tok podataka u digitalnom sustavu niz pravokutnih naponskih impulsa
- u realnim uvjetima električki impulsi kojima se ostvaruju digitalni podaci nisu idealno pravokutni ⇒ impulsna elektronika
- djelovanje parazitnih kapacitivnosti

Parazitne kapacitivnosti

Uzrok izobličenja impulsa

→ tipično: utjecaj *parazitnih* kapacitivnosti između voda signala i mase

Parazitne kapacitivnosti

4

Parametri impulsa

- vrijeme porasta t_r
- vrijeme pada t_f
- vrijeme trajanja T

- povećanje frekvencije
 - ⇒ skraćenje vremena t_r, t_f i T
 - ⇒ spori i brzi impulsi

Vrijeme kašnjenja

- na ulaz digitalnog sklopa dovode se električki impulsi (signali) koji uzrokuju električnu promjenu na izlazu
- pri prolazu kroz sklopovlje impulsima je potrebno neko vrijeme

Vrijeme kašnjenja

- vrijeme kašnjenja sklopa t_d
 - vrijeme od polovice promjene ulaznog napona do polovice promjene izlaznog napona
- važan parametar pri prolazu kroz više sklopova vrijeme kašnjenja sa akumulira, što može dovesti do pogrešaka u radu sustava
- dinamička analiza / statička analiza sklopovlja

Prednosti digitalnog prikaza i obrade

- prikazivanje podataka diskretnim električkim signalima (impulsima)
- informacija nije sadržana u amplitudi nego u prisutnosti/neprisutnosti impulsa
- manja podložnost smetnjama, veća pouzdanost
- objedinjeni prikaz i obrada numeričkih i nenumeričkih (simboličkih) veličina
- točnost ovisi o broju bitova (brojnih mjesta kojim prikazujemo podatke)

Osnovna struktura digitalnog sustava

- funkcije digitalnog sustava:
 - obrada podataka
 - obavljanje aritmetičkih i logičkih operacija
 - donošenje odluka
- u općem slučaju 5 podsustava:
 - ulazna jedinica
 - izlazna jedinica
 - memorija
 - aritmetičko-logička jedinica
 - upravljačka jedinica

Osnovna struktura digitalnog sustava

Osnovna struktura digitalnog sustava

- univerzalni digitalni sustav ⇒ funkcija mu se mijenja programiranjem ⇒ računalo
- univerzalni stroj za obradu podataka, upravljanje sustavima, distribuciju informacija
- raširenost i prožimanje digitalnih sustava i računala u svakodnevni život