《第二次课后作业》

- **22** 计算单位冲激响应为h(t)的 LTI 系统在给定输入为x(t)时的响应y(t),并简要地画出计算结果。
 - (b) x(t) = u(t) 2u(t-2) + u(t-5), $h(t) = e^{2t}u(1-t)$
 - (c) x(t) 和 h(t) 如下图所示:

- 44 (a) 若 x(t)=0, $|t|>T_1$ 和 h(t)=0, $|t|>T_2$ 则 x(t)*h(t)=0, $|t|>T_3$, T_3 是 某个整数。试用 T_1 和 T_2 来表示 T_3 。
 - (b) 一个离散时间 LTI 系统输入为 x[n],单位脉冲响应为 h[n],输出为 y[n]。 若已知 h[n]在 $N_0 \le n \le N_1$ 区间外都是零,同时 x[n]在 $N_2 \le n \le N_3$ 区间以外都是零,那么输出 y[n]除了在某一区间 $N_4 \le n \le N_5$ 内,其余地方也都是零。
 - (i) 利用 N_0 , N_1 , N_2 和 N_3 来确定 N_4 和 N_5 。
 - (ii) 若间隔 $N_0 \le n \le N_1$ 的长度为 M_h , $N_2 \le n \le N_3$ 的长度为 M_x ,同时 $N_4 \le n \le N_5$ 的长度为 M_y ,请用 M_h 和 M_x 表示 M_y 。
- 13 考虑一个离散时间系统S₁, 其单位脉冲响应为

$$h[n] = (\frac{1}{5})^n u[n]$$

- (a) 确定整数 A 使得 $h[n]-Ah[n-1]=\delta[n]$ 成立。
- (b) 利用(a)中的结果,求 S_1 的逆系统 S_2 (LTI)的单位脉冲响应。
- 19 考虑如下图所示的两个系统 S_1 和 S_2 的级联:

 S_2 : 因果 LTI, $y[n] = \alpha y[n-1] + \beta w[n]$ 。

x[n] 与 y[n] 的 关 系 由 下 面 的 差 分 方 程 给 出 : $y[n] = -\frac{1}{8}y[n-2] + \frac{3}{4}y[n-1] + x[n]$

- (a) 求 α 和 β 。
- (b) 给出S₁和S₂级联后的单位脉冲响应。
- 24 考虑图(a)中三个因果 LTI 系统的级联,其中单位脉冲响应h,[n]为

$$h_2[n] = u[n] - u[n-2]$$

整个系统的单位脉冲响应如图(b)所示。

- (a) 求 $h_1[n]$ 。
- (b) 求整个系统对输入 $x[n] = \delta[n] \delta[n-1]$ 的响

应。

28 下面均为离散时间 LTI 系统的单位脉冲响应,试判定每一系统是否是因果和/或稳定的。陈述理由。

(a)
$$h[n] = (\frac{1}{5})^n u[n]$$
 (c) $h[n] = (\frac{1}{2})^n u[-n]$ (g) $h[n] = n(\frac{1}{3})^n u[n-1]$