Spectral Theory | Eigenvalue Decomposition (EVD) | Singular Value Decomposition (SVD)

Eigenvalue Decomposition

Office Hours (This week only)

· TW 4:45 ~ 6:15

Contents

Omplex Numbers and Complex Arrays

2 Eigenvalue Decomposition (EVD)

Notes on EVD

Complex Numbers and Complex Arrays

Complex Numbers

In what follows, we assume all scalars, vectors, and matrices may be complex.

Notation.

- \mathbb{R} : the set of all real numbers
- C: the set of all complex numbers, i.e.,

$$\{z=x+iy\,|\,x,y\in\mathbb{R}\}\quad ext{where }i=\sqrt{-1}.$$

Complex Numbers in MATLAB

Let
$$z = x + iy \in \mathbb{C}$$
.

MATLAB	Name	Notation
real(z)	real part of z	$\operatorname{Re} z$
imag(z)	imaginary part of \emph{z}	$\operatorname{Im} z$
conj(z)	conjugate of \emph{z}	\overline{z}
abs(z)	modulus of z	z
angle(z)	argument of \emph{z}	arg(z)

Euler's Formula

• Recall that the Maclaurin series for e^t is

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \dots + \frac{t^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{t^{n}}{n!}, -\infty < t < \infty.$$

 Replacing t by it and separating real and imaginary parts (using the cyclic behavior of powers of i), we obtain

$$e^{it} = \underbrace{\sum_{k=0}^{\infty} \frac{(-1)^k t^{2k}}{(2k)!}}_{\cos(t)} + i \underbrace{\sum_{k=0}^{\infty} \frac{(-1)^k t^{2k+1}}{(2k+1)!}}_{\sin(t)}$$

The result is called the Euler's formula.

$$e^{it} = \cos(t) + i\sin(t).$$

Polar Representation and Complex Exponential

• Polar representation: A complex number $z=x+iy\in\mathbb{C}$ can be written as

$$z=re^{i heta}$$
 where
$$r=\left|z\right|,\quad an heta=rac{y}{x}.$$

• Complex exponentiation:

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y).$$

Complex Vectors

Denote by $\mathbb{C}^n = \mathbb{C}^{n \times 1}$ the space of all column vectors of n complex elements.

• The hermitian or conjugate transpose of $\mathbf{u} \in \mathbb{C}^n$ is denoted by \mathbf{u}^* :

$$\mathbf{u}^* \in \mathbb{C}^{1 \times n}$$
.

• The inner product of $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ is defined by

$$\mathbf{u}^*\mathbf{v} = \sum_{k=1}^n \overline{u}_k v_k.$$

The 2-norm for complex vectors is defined in terms of this inner product:

$$\|\mathbf{u}\|_2^2 = \mathbf{u}^*\mathbf{u}.$$

Complex Matrices

Denote by $\mathbb{C}^{m\times n}$ the space of all complex matrices with m rows and n columns.

• The **hermitian** or conjugate transpose of $A \in \mathbb{C}^{m \times n}$ is denoted by A^* :

$$A^* = (\overline{A})^{\mathrm{T}} = \overline{(A^{\mathrm{T}})} \in \mathbb{C}^{n \times m}.$$

• A unitary matrix is a complex analogue of an orthogonal matrix. If $U \in \mathbb{C}^{n \times n}$ is unitary, then

$$U^*U = UU^* = I$$

and

$$\|U\mathbf{z}\|_2 = \|\mathbf{z}\|_2$$
, for any $\mathbf{z} \in \mathbb{C}^n$.

Complex Matrices: Some Analogies

	Real	Complex
Norm	$\left\ \mathbf{v} ight\ _2 = \sqrt{\mathbf{v}^{\mathrm{T}}\mathbf{v}}$	$\left\ \mathbf{u} ight\ _2 = \sqrt{\mathbf{u^*u}}$
Symmetry	$S^{ m T} = S$ (symmetric matrix)	$S^{st} = S$ (hermitian matrix)
Orthonormality	$Q^{\mathrm{T}}Q=I$ (orthogonal matrix)	$U^*U = I$ (unitary matrix)
Householder	$H = I - \frac{2}{\mathbf{v}^{\mathrm{T}} \mathbf{v}} \mathbf{v} \mathbf{v}^{\mathrm{T}}$	$H = I - \frac{2}{\mathbf{u}^* \mathbf{u}} \mathbf{u} \mathbf{u}^*$

Eigenvalue Decomposition (EVD)

Key Problems in Linear Algebra

- · Given $A \in \mathbb{R}^{n \times n}$ $\vec{b} \in \mathbb{R}^{n}$, find $\vec{x} \in \mathbb{R}^{n}$ s.t. $A\vec{x} = \vec{b}$.
- Given $A \in \mathbb{R}^{m \times n}$ $\overline{b} \in \mathbb{R}^{m}$, find $\overline{x} \in \mathbb{R}^{n}$ s.t. $A\overline{x} = \overline{b}$. $(m \times n)$
- . Given $A \in \mathbb{C}^{n \times n}$, find $\lambda \in \mathbb{C}$ and $\vec{v} \in \mathbb{C}^{n}$ s.t. $A\vec{v} = \lambda \vec{v}$.

n-by-a matrix
With complex entries.

Eigenvalue Decomposition

$\frac{2}{1}, (1,2) = 1+2i$ $|1 \pm 2i| = |1^{2} + 2^{1}$

Eigenvalue Problem

Find a scalar **eigenvalue** λ and an associated <u>nonzero</u> **eigenvector** ${\bf v}$ satisfying

$$A\mathbf{v} = \lambda \mathbf{v}.$$

• The spectrum of A is the set of all eigenvalues; the spectral radius is $\max_j |\lambda_j|$. E.g. if the eigenvalues of A are 3,5,-1±2i,

then

• The problem is equivalent to

$$\vec{O} = A\vec{v} - \lambda\vec{v} = A\vec{v} - \lambda \vec{L}\vec{v}$$
$$= (A - \lambda \vec{L})\vec{v}$$

• An eigenvalue of A is a root of the **characteristic polynomial**

• Spectrum of
$$A = \{3, 5, -1+2i, -1-2i\}$$

• Spectral vadius of $A = \max\{3, 5, \sqrt{5}\}$

V is nonzero iff A-XI is not invertible

off $det(A-\lambda I) = 0$.

Eigenvalue Decomposition (cont')

Then

Let $A \in \mathbb{C}^{n \times n}$ and suppose that $A\mathbf{v}_k = \lambda_k \mathbf{v}_k$ for $k \in \mathbb{N}[1, n]$.

21, ---, In: eigenvalues of A respectively)

 $\begin{bmatrix} A\mathbf{v}_1 & A\mathbf{v}_2 & \cdots & A\mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n \end{bmatrix},$

$$A \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_1 & & \\ & & \lambda_1 & & \\ & & & \lambda_1 & \\ & & & & \lambda_1 &$$

columns are \checkmark diagonal entries e-vee. If A are e-val. of A.

• If V is nonsingular, we can further write

all e-vectors are thearly independent $A = VDV^{-1}$,

which is called an eigenvalue decomposition (EVD) of A. If v is an eigenvector of A, then so is $c\mathbf{v}$, $c \neq 0$. Thus an EVD is not unique.

Eigenvalue Decomposition (cont')

a sufficient cond. For diagonalizability

If A has an EVD, we say that A is **diagonalizable**: otherwise **nondiagonalizable**.

Theorem 1 (Diagonalizability)

If $A \in \mathbb{C}^{n \times n}$ has n distinct eigenvalues, then A is diagonalizable.

Notes.

• Let $A, B \in \mathbb{C}^{n \times n}$. We say that B is similar to A if there exists a nonsingular matrix X such that

$$B = XAX^{-1}.$$

So diagonalizability is similarity to a diagonal matrix.

Similar matrices share the same eigenvalues.

Idea of proof:
$$det(A - \lambda I)$$

Show = $det(XBX^{-1} - \lambda I)$

⇒ A is similar to D.
 ⇒ A is similar to a diag.
 matrix.

Calculating EVD in MATLAB

- E = eig(A)
 produces a column vector E containing the eigenvalues of A.
- [V, D] = eig(A) produces V and D in an EVD of A, $A = VDV^{-1}$.

Notes on EVD

Understanding EVD: Change of Basis

Given Given

Let $X \in \mathbb{C}^{n \times n}$ be a nonsingular matrix.

- The columns $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ of X form a basis of \mathbb{C}^n .
- Any $\mathbf{z} \in \mathbb{C}^n$ is uniquely written as

$$\mathbf{z} = X\mathbf{u} = u_1\mathbf{x}_1 + u_2\mathbf{x}_2 + \dots + u_n\mathbf{x}_n.$$

- The scalars u_1, \ldots, u_n are called the **coordinates** of z with respect to the columns of X.
- The vector $\mathbf{u} = X^{-1}\mathbf{z}$ is the representation of \mathbf{z} with respect to the basis consisting of the columns of X.

Upshot

Left-multiplication by X^{-1} performs a **change of basis** into the coordinates associated with the columns of X.

Understanding EVD: Change of Basis (cont')

nderstanding EVD: Change of Basis (cont') ϕ when ϕ suppose $A \in \mathbb{C}^{n \times n}$ has an EVD $A = VDV^{-1}$. Then, for any $\mathbf{z} \in \mathbb{C}^n$, $\mathbf{y} = A\mathbf{z}$ can be written as

s an EVD
$$A = VDV^{-1}$$
. Then, for any $\mathbf{z} \in \mathbb{C}^n$, $\mathbf{y} = A\mathbf{z}$

$$V^{-1}\mathbf{y} = DV^{-1}\mathbf{z}.$$

Interpretation

The matrix A is a diagonal transformation in the coordinates with respect to the V-basis.

What Is EVD Good For?

When k=2:

Suppose $A \in \mathbb{C}^{n \times n}$ has an EVD $A = VDV^{-1}$.

• Economical computation of powers A^k :

$$\mathbf{x}_{j+1} = A\mathbf{x}_j, \quad j = 1, 2, \dots$$

If x_1 is an eigenvector associated to eigenvalue λ , then

$$\mathbf{x}_1 \longrightarrow \lambda \mathbf{x}_1 \longrightarrow \lambda^2 \mathbf{x}_1 \longrightarrow \cdots \longrightarrow \lambda^{k-1} \mathbf{x}_1 \longrightarrow \cdots$$

Conditioning of Eigenvalues

Theorem 2 (Bauer-Fike)

Let $A \in \mathbb{C}^{n \times n}$ be diagonalizable, $A = VDV^{-1}$, with eigenvalues $\lambda_1, \ldots, \lambda_n$. If μ is an eigenvalue of $A + \delta A$ for a complex matrix δA , then

$$\min_{1 \leqslant j \leqslant n} \left| \mu - \lambda_j \right| \leqslant \kappa_2(V) \left\| \delta A \right\|_2.$$