Содержание

Ι	Ин	теграл по мере	3
1	Инт	еграл ступенчатой функции	3
	1.1	Свойства	3
	1.2	Определения интеграла функции	4
	1.3	Свойства интегралов	4
	1.4	Лемма	5
		1.4.1 Доказательство	6
	1.5	Теорема	6
		1.5.1 Доказательство	6
	1.6	Следствие	6
	1.7	Следствие 2	7
II	Π	редельный переход под знаком интеграла	7
	1.8	Теорема	7
		1.8.1 Доказательство	7
	1.9	Теорема	8
		1.9.1 Доказательство	8
		1.9.2 Следствие	8
	1.10	Определение	9
	1.11	Теорема об интегрировании положительных рядов	9
		1.11.1 Доказательство	9

	~																						
1 11 9	Следствие																						(
1.11.4	Оледствие															 							

Часть І

Интеграл по мере

1 Интеграл ступенчатой функции

 $f=\sum_{k=1}^n \lambda_k\cdot\chi_{E_k},\, f\geqslant 0$, где $E_k\in\mathcal{A}$ — допустимое разбиение, тогда интеграл ступенчатой функции f на множестве X есть

$$\int\limits_{X} f d\mu = \int\limits_{X} f(x) d\mu(x) = \sum_{k=1}^{n} \lambda_{k} \mu E_{k}$$

Дополнительно будем считать, что $0 \cdot \infty = \infty \cdot 0 = 0$.

1.1 Свойства

• Интеграл не зависит от допустимого разбиения:

$$f = \sum \alpha_j \chi_{F_j} = \sum_{k,\,j} \lambda_k \chi_{E_k \cap F_j}, \text{ тогда } \int F = \sum \lambda_k \mu E_k = \sum_k \lambda_k \sum_j \mu(E_k \cap F_j) = \sum \alpha_j \mu F_i = \int F;$$

•
$$f \leqslant g$$
, to $\int\limits_X f d\mu \leqslant \int\limits_X g d\mu$.

 (X, A, μ) — произвольное пространство с мерой.

 $\mathcal{L}^0(X)$ — множество измеримых почти везде конечных функций.

1.2 Определения интеграла функции

1.
$$f\geqslant 0$$
, измерима, тогда $\int\limits_X f d\mu=\sup_{{\bf g}\text{ - ступенчатая},0\leqslant g\leqslant f} igg(\int gigg).$

Свойства:

- Для ступенчатых функций $f\geqslant 0$ это определение даёт тот же интеграл;
- $0 \leqslant \int f \leqslant +\infty;$
- $0\leqslant g\leqslant f,\,g$ ступенчатая, f измеримая, тогда $\int\limits_V g\leqslant \int\limits_V f.$
- 2. f измеримая, f_+ и f_- срезки, тогда если $\int\limits_X f_+$ или $\int\limits_X f_-$ конечен, тогда

$$\int\limits_X f d\mu := \int\limits_X f_+ - \int\limits_X f_-.$$

3амечание: Если $\int\limits_{Y} f
eq \pm \infty$, то говорят, что f — суммируемая и $\int |f|$ — конечен ($|f| = f_+ + f_-$).

Свойства:

- ullet Если $f\geqslant 0$ измерима, то это определение даёт тот же интеграл, что и предыдущее.
- 3. $E\subset X$ измеримое множество, f измеримо на X, тогда $\int\limits_E fd\mu:=\int\limits_X f\chi_E d\mu.$ f суммируема на E солу $\int\limits_X f$ и $\int\limits_X f$ обо усумуну

E если $\int\limits_{E}f+-$ и $\int\limits_{E}f_{-}$ — оба конечны.

Замечание

(a)
$$f = \sum \lambda_k \chi_{E_k}$$
 u $\int_E f = \sum \lambda_k \mu (E_k \cap E);$

(b)
$$f\geqslant 0$$
 — измерима, тогда $\int\limits_E f d\mu = \sup\limits_{\mathrm{g - ctyn.}, 0\leqslant g\leqslant f} \bigg(\int G\bigg).$

1.3 Свойства интегралов

1. Монотонность:
$$f\leqslant g\Rightarrow\int\limits_{E}f\leqslant\int\limits_{E}g.$$

Доказательство

$$\bullet \ \ 0\leqslant f\leqslant g, \sum_{\widetilde{f}stup, 0\leqslant \widetilde{f}\leqslant f}\int \widetilde{f}\leqslant \sum_{\widetilde{g}stup, 0\leqslant \widetilde{g}\leqslant g}\int \widetilde{g};$$

• f и g — произвольные, то работает со срезками и $f_+ \leqslant g_+,$ а $f_- \geqslant g_-,$ тогда очевидно и для интегралов.

2.
$$\int_{E} 1d\mu = \mu E, \int_{E} 0d\mu = 0;$$

3.
$$\mu E=0,\,f$$
 — измерима, тогда $\int\limits_{E}f=0.$

Доказательство

- \bullet f ступенчатая, то очевидно;
- $f\geqslant 0$ измеримая, то очевидно;
- f любая, то аналогично.

4.
$$\int -f = -\int f, \forall c > 0: \int cf = c \int f.$$

Доказательство

•
$$(-f)_+ = f_- \text{ is } (-f)_= f_+.$$

•
$$f\geqslant 0$$
 — очевидно, $\sum_{gstup,0\leqslant g\leqslant cf}\left(\int G\right)=c\sup_{\widetilde{g}stup,0\leqslant \widetilde{g}\leqslant f}\left(\int g\right)$.

5. Пусть существует
$$\int\limits_E f d\mu$$
, тогда $\left|\int\limits_E f\right| \leqslant \int\limits_E |f|.$

Доказательство

$$-|f| \leqslant f \leqslant |f|$$
$$-\int |f| \leqslant \int f \leqslant \int |f|$$

6.
$$f$$
 — измерима на $E,\,\mu E<+\infty,\,\forall x\in E\,\,a\leqslant f(x)\leqslant b.$ Тогда
$$a\mu E\leqslant \int\limits_E f\leqslant b\mu E.$$

1.4 Лемма

$$A = \bigsqcup A_i,\, A,\, A_i$$
— измеримы, $g \leqslant 0$ — ступенчатые. Тогда

$$\int\limits_A g d\mu = \sum_{i=1}^{+\infty} \int\limits_{A_i} g d\mu.$$

1.4.1 Доказательство

$$g = \sum \lambda_k \chi_{E_k}.$$

$$\int_{A} g d\mu = \sum \lambda_k \mu(A \cap E_k) = \sum_{k} \lambda_k \sum_{i} \mu(A_i \cap E_k) = \sum_{i} \left(\sum_{k} \lambda_k \mu(A_i \cap E_k) \right) = \sum_{i} \int_{A_i} g.$$

1.5 Теорема

 $f:C \to \overline{R},\, f\geqslant 0$ — измеримая на $A,\, A$ — измерима, $A=\bigsqcup A_i,\,$ все A_i — измеримы. Тогда

$$\int\limits_A f d\mu = \sum\limits_i \int\limits_{A_i} f d\mu$$

1.5.1 Доказательство

• >

$$A = A_1 \sqcup A_2, \sum_{A_1} \lambda_k \chi_{E_k} = g_1 \leqslant f \chi_{A_1}, g_2 \leqslant f \cdot \chi_{A_2} = \sum_{A_2} \lambda_k \chi_{E_k}, g_1 + g_2 \leqslant f \cdot \chi_{A_2}$$
$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_{A_2} g_1 + g_2.$$

переходим к $\sup g_1$ и g_2

$$\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_{A} f$$

по индукции разобьём для $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n,\ A=\bigsqcup_{i=1}^{+\infty}A_i$ и $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где

$$B_n = \bigsqcup_{i\geqslant n+1} A_i$$
, тогда

$$\int\limits_{A}\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f+\int\limits_{B}f\geqslant\sum_{i=1}^{n}f\Rightarrow\int\limits_{A}f\geqslant\sum_{i=1}^{+\infty}\int\limits_{A_{i}}f$$

1.6 Следствие

$$f\geqslant 0$$
 — измеримая, $u:\mathcal{A}
ightarrow\overline{\mathbb{R}}_+,\,
u E=\int\limits_E f d\mu.$ Тогда

 ν — мера.

1.7 Следствие 2

$$A = \bigsqcup_{i=1}^{+\infty} A_i, \ f$$
 — суммируема на A , тогда

$$\int\limits_A f = \sum\limits_i \int\limits_{A_i} f.$$

Часть II

Предельный переход под знаком интеграла

1.8 Теорема

 $(X, \mathcal{A}, \mu), f_n$ — измерима, $\forall n : 0 \leqslant f_n(x) \leqslant f_{n+1}(x)$ при почти всех x.

$$f(x) = \lim_{n \to +\infty} f_n(x)$$
 при почти всех x . Тогда

$$\lim_{X} \int_{X} f_n(x) d\mu = \int_{X} f d\mu.$$

1.8.1 Доказательство

f — измерима как предел, измерима.

- \leqslant $f_n(x)\leqslant f(x)$ почти везде, тогда $\forall n:\int\limits_{Y}f_n(x)d\mu\leqslant\int\limits_{Y}fd\mu,$ откуда следует, что и предел не превосходит.
- \geqslant Достаточно доказать, что для любой ступенчатой функции $g:0\leqslant g\leqslant f$ верно $\lim\int\limits_{Y}f_n\geqslant\int\limits_{Y}g.$

Достаточно доказать, что
$$\forall c \in (0,1)$$
 верно $\lim \int_{V} f_n \geqslant c \int_{V} g$.

$$E_n := X (f_n \geqslant cg), E_n \subset E_{n+1} \subset \dots$$

$$\bigcup E_n = X$$
, т.е. $c < 1$, то $cg(x) < f(x)$, $f_n(x) \to f(x) \Rightarrow f_n$ попадёт в с зазор $cg(x) < f(x)$.

$$\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} cg = c \int\limits_{E_n} g,$$

$$\lim_{n\to +\infty}\int\limits_X f_n\geqslant \lim_{n\to +\infty}c\int\limits_{E_n}g=c\int\limits_X g, \text{ потому что это непрерывность снизу меры }A\mapsto \int\limits_A g.$$

1.9 Теорема

Пусть
$$f,\,g$$
 — измеримы на $E,\,f\geqslant 0,\,g\geqslant 0.$ Тогда $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

1.9.1 Доказательство

Если f, g — ступенчатые, то очевидно.

Разберём общий случай. Существуют ступенчатые функции $f_n:0\leqslant f_n\leqslant f_{n+1}\leqslant\ldots\leqslant f$, и $g_n:0\leqslant g_n\leqslant g_{n+1}\leqslant\ldots\leqslant g$, и $f_n(x)\to f(x)$ и $g_n(x)\to g(x)$. Тогда

$$\int\limits_E f_n+g_n=\int\limits_E f_n+\int\limits_E g_n,$$
 сделаем предельный переход, значит при $n\to +\infty$
$$\int\limits_E f+g=\int\limits_f +\int\limits_E g$$

1.9.2 Следствие

Пусть f, g — суммируемые на множестве E, тогда f+g тоже суммируема и $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

Доказательство

$$(f+g)_{\pm}\leqslant |f+g|\leqslant |f|+|g|.$$

$$h := f + g$$

$$h_{+} - h_{-} = f_{+} - f_{-} + g_{+} - g_{-},$$

$$h_+ + f_- + g_- = h_- + f_+ + g_+,$$

$$\int h_{+} + \int f_{-} + \int g_{-} = \int h_{-} + \int f_{+} \int g_{+},$$

$$\int h_{+} - \int h_{-} = \int f_{+} - \int f_{-} + \int g_{+} - \int g_{-}, \text{ тогда}$$

$$\int h = \int f + \int g.$$

1.10 Определение

 $\mathcal{L}(X)$ — множество суммируемых функций. Это линейное пространство.

Интеграл: $\mathcal{L}(X) \to \mathbb{R}$ — это линейная функция, но красивее говорить линейный функционал.

$$f_1,\ldots,f_n\in\mathcal{L}(X),\, \alpha_1,\ldots,\alpha_n\in\mathbb{R},$$
 тогда $\alpha_1f_1+\ldots+\alpha_nf_n\in\mathcal{L}(x).$

$$\int_X f = I(f), \int_X \alpha_1 f_1 + \dots + \alpha_n f_n = \alpha_1 \int_X f_1 + \dots + \alpha_n \int_X f_n$$

$$I(\alpha_1 f_1 + \ldots + \alpha_n f_n) = I(\alpha_1 f_1) + \ldots + I(\alpha_n f_n).$$

1.11 Теорема об интегрировании положительных рядов

 $u_n \geqslant 0$ почти везде, измеримы на E. Тогда

$$\int_{E} \left(\sum_{i=1}^{+\infty} u_n \right) d\mu = \sum_{i \int =1}^{+\infty} \int_{E} u_n d\mu.$$

1.11.1 Доказательство

Очевидно по теореме Леви.

$$S(x) = \sum_{n=1}^{+\infty} u_n(x)$$
 и $p \leqslant S_N \leqslant S_{N+1} \leqslant \dots$ и $S_N \to S(X)$.

$$\lim_{n \to +\infty} \int_{E} S_{N} = \int_{E} S$$

$$\lim \sum_{k=1}^{n} \int_{E} u_k(x) = \int_{E} S(x) d\mu.$$

1.11.2 Следствие

$$u_n$$
 — измеримая функция, $\sum_{n=1}^{+\infty}\int\limits_{E}|u_n|<+\infty.$ Тогда

$$\sum u_n$$
 — абсолютно сходится почти везде на E .

Доказательство

$$S(x) = \sum_{n=1}^{+\infty} |u_n(x)|$$

$$\int\limits_E S(x) = \sum_{n=1}^{+\infty} \int |u_n(x)| < +\infty,$$
 значит $S(x)$ конечна почти всюду.

$$S(x) = +\infty$$
 при $x \in B$, $\mu B > 0$, $S(x) \geqslant n \cdot \chi_B \int\limits_E S(x) \geqslant n \cdot \mu B$.