MTH-222, MTH-6031: Probability and Statistics

Tutorial # 4 (Random Variable, pmf,pdf)

- 1. Consider a binomial random variable X with parameters n and p. Let k^* be the largest integer that is less than or equal to (n+1)p. Show that the PMF $f_X(k)$ is monotonically nondecreasing with k in the range from 0 to k^* , and is monotonically decreasing with k for $k \geq k^*$.
- 2. Let X be the geometric RV with PMF

$$P(X = k) = p(1 - p)^k, k = 0, 1, 2, 3, \cdots$$

Compute $P(n \le X \le N)$, where n, N(N > n) are positive integers?

- 3. Does the function $f_{\theta}(x) = \theta^2 x e^{-\theta x}$ if x > 0, and $x \leq 0$, where $\theta > 0$, define a PDF? if X is an RV with PDF $f_{\theta}(x)$, find $f_{\theta}(x) = 0$.
- 4. Suppose X a continuous random variable such that $P(X \ge x) = 1$ if x < 0, and $= (1 + x/\lambda)^{-\lambda}$, for $x \ge 0$, $\lambda > 0$ is a constant. Find the density function of X.
- 5. Let X be a Poisson random variable with parameter λ . Show that the PMF $f_X(k)$ increases monotonically with k up to the point where k reaches the largest integer not exceeding λ , and after that point decreases monotonically with k.
- 6. If a discrete random variable X taking values on \mathbb{N} satisfies

$$P(X > n + m | X > m) = P(X > n), m, n \text{ nonnegative integers}$$
 (1)

Then show that X is a geometric random variable.

- 7. Let X be an RV defined on [0,1]. If $P\{x < X \le y\}$ depends only on y-x for all $0 \le x \le y \le 1$, then show that X is U[0,1].
- 8. Let X be a random variable taking values in $[0, \infty)$ such that it satisfies memoryless property

$$P(X > r + s | X > s) = P(X > r), \text{ for all } r, s \ge 0.$$
 (2)

Then show that there exists a constant $\lambda > 0$ such that $X \sim \exp(\lambda)$.