BN Supplementary Materials

Arkadiusz Okupski

Repository: GitHub/BN-Field-Hypothesis **Status**: Preprint — Open for Discussion

Abstract

We propose a novel vortex field \mathbf{B}_N coupled to gravity via torsional spacetime dynamics. The field is sourced by time-varying gravitational potentials $\mathbf{g}(t)$ and gravitational currents J_g^{μ} , inducing velocity-dependent forces on matter $(\mathbf{F}_{BN} = m\mathbf{v} \times \mathbf{B}_N)$. Key predictions include:

- Modified galactic rotation without dark matter,
- Transient torsional effects in core-collapse supernovae ($\tau \sim 1 \, \mathrm{ms}$),
- High-frequency gravitational wave polarizations detectable by LISA.

1 Introduction

While General Relativity (GR) successfully describes gravity at macroscopic scales, observational anomalies (e.g., galaxy rotation curves, gravitational wave signatures) suggest missing physics. We introduce \mathbf{B}_N as a **torsional companion** to the gravitational field, analogous to magnetism in electromagnetism.

Key motivation: If variable $\mathbf{g}(t)$ induces \mathbf{B}_N , and \mathbf{B}_N backreacts on matter, could this explain dark matter/energy phenomena?

2 Mathematical Framework

2.1 Field Equations

The field \mathbf{B}_N obeys:

$$\nabla \times \mathbf{B}_N = -\frac{1}{c^2} \left(\frac{\partial \mathbf{g}}{\partial t} + \frac{\mathbf{g}}{\tau} \right)$$
 (Damped induction law)

where $\tau \sim 1 \,\mathrm{ms}$ is the field's decay timescale.

2.2 Coupling to Matter

The interaction Lagrangian:

$$\mathcal{L}_{int} = 10^{-19} \, \bar{\psi} \gamma_{\mu} \psi B_N^{\mu}$$
 (Ultra-weak coupling)

3 Observational Signatures

3.1 Supernovae

- **Prediction**: \mathbf{B}_N briefly slows core collapse, altering neutrino emission timing.
- Test: Compare SN 1987A neutrino data with τ -dependent models.

3.2 Gravitational Waves

- **Prediction**: Torsional polarizations (h_{\otimes}) below 10 Hz (LISA band).
- Null result in LIGO: Explained by B_N 's decay for $f > 100 \,\mathrm{Hz}$.

4 Discussion

4.1 Strengths

- No conflict with current GW/SN data.
- Testable via low-frequency GW detectors (LISA) or neutrino telescopes.

4.2 Open Questions

- Quantum origin of \mathbf{B}_N ?
- Does \mathbf{B}_N couple to dark sector particles?

5 Conclusion

The \mathbf{B}_N hypothesis offers a torsion-based alternative to dark matter/energy in specific regimes. While speculative, it is **falsifiable** and merits further study.

Invitation: We welcome collaboration to refine predictions or analyze archival data.

References

- 1. Einstein, A. (1915). GR field equations.
- 2. Hulse, R. & Taylor, J. (1975). Binary pulsar PSR B1913+16.
- 3. LIGO Collaboration (2016). GW150914 detection.