Elliptische-Kurven-Kryptgraphie

Kevin Kappelmann, Lukas Stevens 15. April 2016

Inhaltsverzeichnis

1	Einleitung und Motivation				
2	Gru 2.1 2.2	Affine Ebenen	2		
3	Elli 3.1 3.2 3.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2		
4	Ein 4.1 4.2 4.3 4.4	Tangenten elliptischer Kurven	•		
	5.1 5.2	wendung elliptischer Kurven in der Kryptologie ElGamal			
${f T}$	abe	ellenverzeichnis			
	1	Vergleich Schlüssellängen	1		

1 Einleitung und Motivation

Kryptosysteme wie RSA, Diffie-Hellman¹ und ElGamal¹, die sich auf die Schwere der Primafaktorzerlegung bzw. dem diskreten Logarithmenproblem über Ganzzahlen stützen, benötigen sehr große Schlüssellängen, um eine ausreichend hohe Sicherheit zu garantieren. Daraus ergibt sich sowohl eine hoher Energie- als auch Speicherbedarf für die Berechnung der Algorithmen, was vor allem für Microchips und eingebettete Systeme ein Problem darstellt

Eine Lösung für dieses Problem sind elliptische Kurven. Diese algebraischen Kurven tragen eine Gruppenstruktur, über die das diskrete Logarithmenproblem deutlich schwerer lösbar ist, als über Gruppen mit Ganzzahlen. Kryptosysteme, die auf elliptische Kurven beruhen, kommen dadurch mit erheblich kürzeren Schlüsseln bei vergleichbarer Sicherheit aus. [2, Seite 53]

Nachfolgende Tabelle verdeutlicht diesen Sachverhalt. Spalte 1 kennzeichnet die maximale Sicherheit (in Bits) für den jeweiligen Algorithmus und der angegebenen Schlüssellänge (in Bits). Rot markierte Felder gelten als kryptographisch unsicher, grüne als aktuell sicher.

Sicherheitsniveau	RSA/Diffie-Hellman ¹	Elliptische-Kurven
≤ 80	1024	160-223
112	2048	224-255
128	3072	256-383
192	7680	384-511
256	15360	512+

Tabelle 1: Vergleich Schlüssellängen

Die Verwendung elliptischer Kurven in der Kryptographie wurde Mitte der 1980er Jahre von Neal Koblitz [3] und Victor S. Miller [4] unabhängig voneinander vorgeschlagen. Aufgrund der vorteilhaften Eigenschaften gewinnt die Elliptische-Kurven-Kryptographie (kurz ECC für Elliptic Curves Cryptography) stets mehr an Bedeutung und löst ältere Verfahren wie RSA in den verschiedensten Bereichen ab. Vor allem in Umgebungen mit begrenzten Kapazitäten, wie z.B. Smartcards, ist ECC bereits weit verbreitet.

So verwendet beispielsweise Österreich seit 2004 als Vorreiter für alle gängigen Bürgerkarten ECC [1]. Aber auch die Reisepässe der meisten Europäischen Staaten nutzen inzwischen meist in einer Form ECC. [5]

2 Grundbegriffe

2.1 Affine Ebenen

Definition, Beispiele

¹In der jeweiligen Implementierung als Gruppe über ganze Zahlen

2.2 Projektive Ebenen

Definition

2.2.1 Die projektive Ebene $PG(2, \mathbb{F})$

Konstruktion, Beispiel

2.2.2 Konstruktion affiner Ebenen aus projektiven Ebenen

Beweis, Beispiel

3 Elliptische Kurven E

Macht Lukas

3.1 Definiton elliptischer Kurven

Wir haben bereits die projektive Ebene $PG(2, \mathbb{F})$ über beliebige Körper \mathbb{F} eingeführt. Diese hat die folgende Punktemenge:

$$P = \{(u:v:w) \mid (u,v,w) \in \mathbb{F}^3 \setminus (0,0,0)\}$$
 (1)

Nun wollen wir die Punktemenge der elliptischen Kurve einführen. Dazu benötigen wir Polynome in drei Unbestimmten. Der Polynomring mit drei Unbestimmten über \mathbb{F} ist mit

$$\mathbb{F}[X,Y,Z] = \left\{ \sum_{k,l,m \ge 0} a_{k,l,m} X^k Y^l Z^m \mid a_{k,l,m} \in \mathbb{F} \right\}$$
 (2)

definiert. Bemerkung von Kevin: Ich würde Unbekannte statt Unbestimmte verwenden. Ist der gebräuchliche Begriff dazu.

3.2 Die unendliche Gerade über $PG(2, \mathbb{F})$

Isomorphismus von $\mathbb{F}^2 \to \mathcal{P}_U$

3.3 Affine Darstellung elliptischer Kurven

Erklärung, Beispiel(Graphen)

4 Eine Gruppe über E

Macht Kevin bis 4.3

4.1 Tangenten elliptischer Kurven

4.2 Schnittpunkte von Geraden mit elliptischen Kurven

Unendlich ferne Gerade mit Schnittpunkt \mathcal{O} , Affine Geraden, Parallele zur y-Achse

4.3 Die Schnittpunkt-Verknüpfung \oplus über E

Definition, Beweis der Abgeschlossenheit, graphische Interpretation

4.4 Die Gruppe (E, +)

Macht Lukas bis fertig Gruppe ist abelsch mit neutralem Element \mathcal{O} , Beispiel

5 Anwendung elliptischer Kurven in der Kryptologie

5.1 ElGamal

Welche Charakteristiken für elliptische Kurven, Domänenparameter

5.2 Noch einen für Signaturen

Welche Charakteristiken für elliptische Kurven, Domänenparameter

Literaturverzeichnis

- [1] Elliptische Kurven (Elliptic Curve Cryptography ECC). https://www.a-sit.at/de/technologiebeobachtung/ecc_curves/index.php. Abgerufen am 15.04.2016.
- [2] Elaine Barker. Recommendation for Key Management. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf, 2016. Abgerufen am 15.04.2016.
- [3] Neal Koblitz. Elliptic curve cryptosystems, 1987.
- [4] Victor S. Miller. Use of elliptic curves in cryptography, 1985.
- [5] Zdeněk Říha. Electronic passports. https://web.archive.org/web/20100215182600/http://www.buslab.org/SummerSchool2008/slides/Zdenek_Riha.pdf. Archiviert vom Original, abgerufen am 15.04.2016.