

ECE1504 Project Presentation Trash Classification Using Convolutional Network Upon Colored Image

Yisi Zou 1001826321 Yizhou Liu 1001139822 Lei Hua Huang 1001538204 Tianyi Xie 1000570679

- Introduction
- Background
- Design & Rationale
- Test Results & Discussion
- Conclusion and Questions

- Introduction
- Background
- Design & Rationale
- Test Results & Discussion
- Conclusion and Questions

Introduction

Project Description

- Segregation and recycling of trash have been necessary for a sustainable society. The current segregation and recycling process require facilities to sort garbage manually and use a series of large filters to separate out more defined objects.
- The motivation is to find an automatic method for trash classification.

Introduction

Project Objectives

- Using Machine Learning algorithm of Convolutional Neural Networks (CNN) to classify the input images into six categories: metal, plastic, paper, cardboard, glass and trash.
- Dataset enlargement will be used for training
- ResNet will be used to do the classification

- Introduction
- Background
- Design & Rationale
- Test Results & Discussion
- Conclusion and Questions

5 convolutional neural network cases

Classic networks:

- ► LeNet-5 (1980)
- AlexNet
- VGG

Modern network:

- ResNet
- Inception NN

LeNet-5

- Goal was to recognize handwritten digits
- The raw grey scaled image of 32*32*1 pixels as input.
- Layers:
 - 2 convolutional layers :reduce the dimension of image
 - 2 subsampling (pooling) layers : reduce dimension of both height and width
 - 2 fully connected layers: fully connected nodes to each of neurons

Figure 1. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998.

AlexNet

- Similar to LeNet but much larger with 60 million parameters.
- The raw image would be a 227*227* color image
- The architecture including 5 convolutional layers, 3 max pooling layers and 3 fully connected layers.
- Use ReLU activation function.

VGG

Smaller filters (3*3 convolutional layers) and deeper networks

Figure: Comparison among the architectures of AlexNet, VGG16 and VGG19

ResNet

- In theory, very deep networks can represent very complex functions.
- However, they are hard to train because of vanishing and exploding gradient types of problems.
- Skip connections can take the activation from one layer and suddenly feed it to another layer even much deeper in the neural network.
- Build ResNet enables you to train very, very deep networks, even over 100 layers.

ResNet50

Figure: Resnet50 (Got from Coursera)

Inception NN

- Inception NN is a deeper network with computational efficiency.
- The process of modeling:
 - a good local network topology (network within a network)
 - and then stack these modules on top of each other.
- Apply parallel filter operations on the input from previous layer:
 - Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
 - Pooling operation (3x3)
 - Concatenate all filter outputs together depthwise
 - To avoid expensive computation: adding "bottleneck" layers that use 1x1 convolutions to reduce feature depth

Inception NN

Figure . Inception module with dimension reduction [Szegedy et al., 2014]

- Introduction
- Background
- Design & Rationale
- Test Results & Discussion
- Conclusion and Questions

Design & Rationale

Source of data:

- Original dataset: trashnet.zip
 - spans six classes: glass, paper, cardboard, plastic, metal, and trash
 - consists of 2527 images of different sizes
- New dataset
 - Data augmentation by cropping 9 times
 es and flipping 1 time per image
 - Consists of 2527*18 = 45486 images of same size

Dataset enlargment

Orginal photo

Design Rationale

After enlargement

Design Rationale

After enlargement

- Introduction
- Background
- Design & Rationale
- Test Results & Discussion
- Conclusion and Questions

Test Result & Discussion

Table of loss, accuracy for each epochs

epoch	loss	accuracy
1	1.132	59.92
2	0.855	67.57
3	0.789	73.11
4	0.849	68.45
5	0.853	68.46
6	0.77	73.88
7	0.626	75.27
8	0.5148	79.96

Test Result & Discussion

Accuracy and Loss Over Epoch

Test Result & Discussion

With 8 epochs, the training accuracy is 79.96% and the test accuracy is 79.51%.

More time are needed for getting better results for more epoches.

- Introduction
- Background
- Design & Rationale
- Test Results & Discussion
- Conclusion and Questions

Conclusion

Supported by our enlarged data, the training set we used, known as Resnet50, is better than the orginal model given by the dataset provider.

Thank You For Listening! Any Questions?