Budeme chtít najít kořeny funkce $f(x) = x^2 - x - 2$ pomocí metod pevného bodu.

$$\varphi_1(x) = x^2 - 2,$$
 $\varphi_2(x) = \sqrt{x+2},$ $\varphi_3(x) = 1 + \frac{2}{x},$ $\varphi_4(x) = \frac{x^2 + 2}{2x - 1}.$

Příklad (4.1)

Popište, jak jsou jednotlivé metody $\varphi_1, \ldots, \varphi_4$ odvozeny.

Řešení

$$x = \varphi_1(x) = x^2 \qquad \stackrel{/-x}{\Leftrightarrow} \qquad 0 = x^2 - x - 2 = f(x),$$

$$x = \varphi_2(x) = \sqrt{x+2} \qquad \stackrel{/^2}{\Longrightarrow} \qquad x^2 = x+2 \qquad \stackrel{/-x-2}{\Leftrightarrow} \qquad f(x) = x^2 - x - 2 = 0,$$

$$x = \varphi_3(x) = 1 + \frac{2}{x} \qquad \stackrel{/\cdot x}{\Longrightarrow} \qquad x^2 = x+2 \qquad \stackrel{/-x-2}{\Leftrightarrow} \qquad f(x) = x^2 - x - 2 = 0,$$

$$x = \varphi_4(x) = \frac{x^2+2}{2x-1} \qquad \stackrel{/\cdot (2x-1)}{\Longrightarrow} \qquad 2x^2 - x = x^2 + 2 \qquad \stackrel{/-x^2-2}{\Leftrightarrow} \qquad f(x) = x^2 - x - 2 = 0.$$

Příklad (4.2)

Platí pro všechny metody $\varphi_1, \ldots, \varphi_4$, že jsou oba kořeny f pevnými body?

Řešení

Platí to pro φ_1 , protože děláme ekvivalentní úpravu a pro φ_3 a φ_4 , protože tam jsou pro úpravu problémové body 0 a $\frac{1}{2}$. Pro φ_2 to neplatí, protože úprava není ekvivalencí pro záporná x, tedy ani pro -1. Můžeme vidět, že $\varphi_2(-1)=1$.

Věta 0.1

Nechť $\varphi(\overline{x}) = \overline{x}$ a nechť $I, \overline{x} \in I$, je interval takový, že platí:

- $\varphi \in \mathcal{C}^1(I)$,
- $|\varphi'(x)| < 1 \ \forall x \in I$,
- $\varphi(I) \subseteq I$.

Pokud $x_0 \in I$, pak iterace pevného bodu konverguje do \overline{x} .

$P\check{r}iklad$ (4.3)

Je možné pomocí předchozí věty ukázat, zda budou jednotlivé metody konvergovat pro danou volbu počátečního bodu? Pokud ano, ukažte. $x_{0,\varphi_1}=3,\ x_{0,\varphi_2}=-1.5,\ x_{0,\varphi_3}=3,\ x_{0,\varphi_4}=0.$

Řešení

Pro φ_1 nelze větu použít, jelikož $x_0 = 3 \in I$ a $\varphi'(x_0) = 2x_0 = 6 > 1$. (Navíc φ_1 pro $x_0 = 3$ nekonverguje, ale diverguje k $+\infty$, protože $x^2 - 2 > 2x$ pro všechna $x \ge 3$, tj. diverguje rychleji než 2^n .)

Pro φ_2 zvolíme $I = [-1.5, +\infty)$, $\varphi_2'(x) = \frac{1}{2} \frac{1}{\sqrt{x+2}}$ je zřejmě spojitá pro x > -2, tedy na celém I, zároveň pro $\sqrt{x+2} > 0.5$, tj. pro x > -1.75 (tj. na celém I), je $0 < \varphi_2'(x) < 1$. φ_2 zobrazuje do kladných čísel, tedy do I (a je na celém intervalu I definováno), takže platí i třetí bod. Pevným bodem je $2 \in I$ (a $x_0 = -1.5 \in I$), tedy tato metoda konverguje.

Pro φ_3 zvolíme například interval $\left(\sqrt{2},3\right]=I$, kde $0>\varphi_3'(x)=-\frac{2}{x^2}>-1$ je spojitá a $x_0=3\in I$ a $\overline{x}=2\in I$. Jediné, co zbývá ověřit je $\varphi_3(I)\subset I$, ale φ_3 je klesající a $\varphi_3(3)=1.5>\sqrt{2}$ a $\varphi_3(\sqrt{2})=1+\sqrt{2}<3$. Tedy také tato metoda konverguje podle věty výše.

Pro φ_4 a $x_0=0$ nelze větu použít přímo, protože $x_0\in I$ a $\varphi_4'(x_0)=2\frac{x_0^2-x_0-2}{(2x_0-1)^2}=-4<-1$, ale můžeme si všimnout (např. z následující úlohy), že pro $\tilde{x}_0=\varphi_4(x_0)=\frac{0^2+2}{2\cdot 0-1}=-2$ už můžeme zvolit interval [-2,-1]=I, kde $0\leq \varphi_4'(x)=2\frac{x^2-x-2}{(2x-1)^2}<\frac{1}{2}<1$ je spojitá. Zároveň $\tilde{x}_0, \overline{x}=-1\in I$ a $\varphi_4(I)=\left[-\frac{6}{5},-1\right]\subseteq I$. Tedy φ_4 pro $x_0=0$ konverguje podle předchozí věty a toho, že $\varphi_4(x_0)=-2=\tilde{x}_0$.

Příklad

Chování metody pevných bodů z předchozí úlohy otestujte pomocí náčrtu. Pokud metoda konverguje, přestože věta nešla použít, zdůvodněte proč.

