Testes automatizados empregados no ciclo de desenvolvimento de software

estudo de caso da implementação em uma aplicação web

Orientador: Márcio Augusto de Souza

Coorientador: Luiz Pedro Petroski

<u>Introdução</u>

Atividades de teste são fundamentais.

Mudanças nos últimos anos;

Automação reduz tempo de outras atividades;

Conhecimentos distintos;

Deixada de lado frente a urgências;

Persuasão com exemplos reais.

<u>Objetivo</u>

método para implementação de testes automatizados

Levantamento teórico

Cenários em mapas mentais Teste em métodos ágeis Estudo de caso

Boas práticas

Levantamento teórico

Processos de desenvolvimento de software

- Ações a serem seguidas;
- Gerenciar o trabalho;
- Produtividade;
- Alinhamento;
- Todos cientes.

Processo cascata

abordagem de fases sequenciais

- Levantamento de requisitos;
- Planejamento;
- Modelagem;
- Construção;
- Entrega.

Projetos reais dificilmente são sequenciais;

Problemas do processo cascata

Dificuldade de revelar as necessidades já no início;

Feedback tardio do clientes.

<u>Métodos ágeis</u>

alternativa ao cascata

Profissionais insatisfeitos;

Engenharia de Software é diferente;

Processos diferentes.

Manifesto ágil

valores ágeis

- Indivíduos e interações mais que processos e ferramentas;
- Validação do software mais que documentação abrangente;
- Colaboração com cliente mais que negociação de contratos;
- Responder a mudanças mais que seguir um plano;

Características ágeis

comuns à maioria dos projetos ágeis

Iterações	Pouca	Pequenas	Novas práticas	Time inteiro
	documentação	eguipes		

Programação Extrema (XP)

Método

- Requisitos imprecisos;
- Não define sequência de passos;
- Valores, princípios e práticas

Valores

- Comunicação;
- Simplicidade;
- Feedback;
- Coragem;
- Respeito.

Princípios

- Humanidade;
- Economicidade;
- Benefícios Mútuo;
- Melhorias Contínuas;
- Falhas acontecem;
- Baby steps;
- Responsabilidade pessoal.

Práticas XP

Técnicas

- TDD;
- Pair programming;
- Design simples;
- Refatoração;

Equipe

- Integração contínua;
- Propriedade coletiva;
- Ritmo sutentável;
- Metáforas.

Negócios

- Equipe como um todo;
- Planejamento do jogo;
- Testes de aceitação;
- Pequenas versões;

Teste de software

- Software faz o que propõe;
- Previsíveis e consistentes;
- Sem surpresas indesejadas;
- Necessidades e expectativas dos usuários.

Testes automatizados

códigos computacionais

- Automáticos;
- Rápida execução;
- Repetíveis;
- Permitem execução simultânea;
- Condições difíceis.

Estrutura dos testes automatizados

Configuração

Chamada

Asserção

Níveis de testes

Unitário

Integração

Sistema

<u>Tipos de testes</u>

Funcionais

Não funcionais

Técnicas de teste

Caixa-branca

Caixa-preta

<u>Material e métodos</u>

admink

Aplicação web; Laravel;

Estúdios de tatuagem; Factories;

Gerenciamento de informações. PHPUnit.

<u>Planejamento de testes</u>

análise da documentação e representação dos cenários

Testes funcionais de integração; Mapas mentais;

Efetuar Login e Manter Orçamentos. Leves e acessíveis;

Caixa-preta. Principais informações;

<u>Método de representação baseado em</u> mapas mentais

INFORMAÇÃO CENTRAL CENÁRIOS E MASSA

DE DADOS

DESCRIÇÃO DOS CENÁRIOS E DOS **DADOS**

PRÉ-CONDIÇÕES **PASSOS E RESULTADO**

<u>Diagrama Explicando o Método baseado em mapas mentais</u>

Massas de dados

Cenários

Representação dos cenários

Efetuar Login

Manter Orçamentos

<u>Implementação dos scripts</u>

Documentação

Mapas mentais

<u>Implementação e execução</u>

Criação da classe

Massa de dados e métodos de teste Pré-condições e passos Resultado

Execução

Resultados

<u>Diagramas</u>

- Efetuar Login;
- Cadastro de Orçamentos;
- Listagem e Deleção de Orçamentos;
- Edição de Orçamentos.

Scripts

Scripts de testes criados a partir dos diagramas.

Diagrama de Cenários de teste da funcionalidade Efetuar Login

Massa de dados

Massa de dados

* email e senha válidos (de um usuário previamente cadastrado)

Cenários

Cenários restantes

Código da Classe de teste de Login

Comparação do cenário no diagrama com o script criado

Execução

- Configurações;
- 30 execuções sucessivas;
- 19 métodos e 84 asserções;
- Maior tempo: menos de 3 segundos;
- Tempo em média: menor que 1,7 segundos.

```
joao.martins@NT-11597 MINGW64 ~/Docu
 composer test
> vendor/bin/phpunit
PHPUnit 9.5.17 #StandWithUkraine
Time: 00:01.426, Memory: 28.00 MB
OK (19 tests, 84 assertions)
```


Recomendações

para implementação de testes

PLANEJAMENTO

DOCUMENTAÇÃO

NOMENCLATURA

Recomendações

para implementação de testes

DEPENDÊNCIAS

DADOS PARA TESTES

ASSERÇÕES

REPOSITÓRIO

<u>Dificuldades encontradas</u>

nas asserções

404

HTML NOS RETORNOS

STATUS CODES

Conclusões

<u>Diferentes</u> <u>conhecimentos</u>

Recomendações prospostas

Trabalhos futuros

NECESSÁRIOS PARA AUTOMAÇÃO DE TESTE

POTENCIAL PARA AUXILIAR POSSIBILIDADES DE ESTUDO

Trabalho selecionado para apresentação prévia

CERTIFICADO

CERTIFICAMOS QUE

João Vitor Martins dos Santos

participou do 2º Ciclo Virtual de Palestras de Engenharia de Computação e Engenharia de Software da UEPG (CIVECES) e COMPWEEK - Semana Acadêmica de Engenharia de Computação da UEPG, que ocorreu entre os dias 08 e 12 de novembro de 2021, no formato online, como APRESENTADOR(A) do trabalho: Testes automatizados empregados no ciclo de vida de desenvolvimento de software.

Ponta Grossa, 13 de novembro de 2021.

ea159dc9788ffac311592613b7f71fbb

Os dados desta certidão são fiéis e autênticos, conforme nossos registros e podem ser verificados no endereço https://app.eventoum.com.br/index.php/check/index. Certificado registrado online no dia 07/12/2021. Para maiores informações entre em contato com o suporte.

Prof. Albino Szesz Junior Coordenador Geral

Engenharia de Software Prof. Mauricio Zadra Pacheco Coordenador Engenharia de Computação
Prof. Dierone César Foltran Junior
Coordenador

Licenciatura em Computação

Prof/Marcelo Ferrasa

Coordenador

Obrigado!

