FIG. 1A

Met Leu Al I	la Arg Ala Leu 5	Leo Leo Cy	s Ala Val Le 10		er Hi 5
Thr Ala Asi	n Pro Cys Cys 20	Ser His Pro	Cys Gin Asn	Arg Gly Va	al Cys
Met Ser Va 35	l Gly Phe Asp	Gln Tyr Lys 40	Cys Asp Cy	s Thr Arg T 45	br Gl
Phe Tyr Gly 50	y Glu Asa C <u>y</u> s	Ser Thr Pro	Glu Phe Leu 60	Thr Arg Ile	Lys
Leu Phe Le 65	u Lys Pro Thr 1 70	Pro Asn Thr	Val His Tyr 75	Ne Leu Thr	His 80
Phe Lys Gly	y Phe Trp Asn 85	Val Val Asn 90	Asn Ile Pro	Phe Leu Ar 95	g A sn
Ala Ile Met	Ser Tyr Val Le 100	eu Thr Ser A 105	rg Ser His L	eu lle Asp S I 10	er
Pro Pro Thr 115	Tyr Asn Ala A	Asp Tyr Gly 120		Trp Glu Ala 125	Phe
Ser Asn Lei 130	ı Ser Tyr Ty r T !	hr Arg Ala I 35	Leu Pro Pro 140	Val Pro Asp	Asp
Cys Pro Thi 145	Pro Leu Gly V 150	al Lys Gly l	Lys Lys Gln 155	Leu Pro As	Ser 160
Asn Glu Ile	Val Glu Lys L 165	eu Leu Leu A 1	Arg Arg Lys 170	Phe Ile Pro 175	Asp
Pro Gln Gly	Ser Asn Met I 180	Met Phe Ala 185	Phe Phe Ala	Gln His Pho 190	Thu
His Gln Phe 195	Phe Lys Thr A	sp His Lys A 200	Arg Gly Pro	Ala Phe Thi 205	Asn
Gly Leu Gly 210	His Gly Val A	Asp Leu Asn 215	His lle Tyr (220	Gly Glu Thr	Leu
Ala Arg Gin 225	Arg Lys Leu A 230	Arg Leu Phe	Lys Asp Gly 235	Lys Met L	ys T y 24
Gin lie lie A	sp Gly Glu Me 245	t Tyr Pro Pro 250	o Thr Val Ly)	s Asp Thr C 255	iln
Ala Glu Met	lle Tyr Pro Pro 260	o GIn Val Pr 265	o Glu His Le	zu Arg Phe A	Ma
al Gly Gln 275	Glu Val Phe G	ly Leu Val F 280	ro Gly Leu	Met Met Ty 285	r Ala
Thr Ile Trp I 290	.eu Arg Glu Hi 29	s Asa Arg V 5.	al Cys Asp 3	Val Leu Lys	Gln

FIG. 1B

Glu His P 305	ro Glu Trp (Gly Asp Gl 310	u Gln Leu	Phe Gln 315	Thr Ser	Arg Leu 320
He Leu He	Gly Glu TI 325	nr Ne Lys II	le Val Ile 330	Glu Asp	Tyr Val (335	Gin
His Leu S	er Gly Tyr i 340	His Phe Lys	s Leu Lys 345	Phe Asp	Pro Glu 1 350	Leu Leu
Phe Asn I	.ys Gln Phe 55		In Asn Ar 60	g Ile Ala	Ala Glu I 365	Phe Asn
Thr Leu 7 370	yr His Trp]	His Pro Let 375	ı Leu Pro	Asp Thr 380		lle His
Asp Gln I 385	ys Tyr Asn	Tyr Gln G 390	In Phe Ile	Tyr Asn 395	Asn Ser	lle Leu 400
Leu Glu I	lis Gly lle T 405	Thr Gln Phe	Val Glu 410	Ser Phe 1		iln Ile 115
Ala Gly A	Arg Val Ala 420	Gly Gly Aı	rg Asn Va 425	l Pro Pro	Ala Val 430	Gin Lys
Val Ser C	iln Ala Ser I 135	le Asp Gln 440			Lys Tyr C 145	iin Ser
Phe Asn 6 450	Glu Tyr Arg	Lys Arg P 455	he Met Le	eu Lys Pr 46		Ser Phe
Glu Glu I 465	eu Thr Gly	Glu Lys G 470	lu Met Se	r Ala Glu 475	Leu Glu	Ala Leu 480
Tyr Gly A	Asp Ile Asp . .485	Ala Val Gi	u Leu Tyr 490	Pro Ala		Val Glu 495
Lys Pro A	Arg Pro Asp 500	Ala Ile Phe	e Gly Glu 505	Thr Met	Val Glu ' 510	Val Gly
Ala Pro F	he Ser Leu i 15	Lys Gly Le 52		y Asn Va	l Ile Cys 525	Ser Pro
Ala Tyr 7 530	Trp Lys Pro	Ser Thr Pho 535	e Gly Gly	Glu Val 540	Gly Phe	Gln Ne
Ile Asn T 545	hr Ala Ser l 5	le GIn Ser] 50	Leu lle Cy 55		sn Val Ly	s Gly 560
Cys Pro I	Phe Thr Ser 565	Phe Ser Va	l Pro Asp 570	Pro Glu		ys Thr 75
Val Thr I	le Asn Ala S 580	Ser Ser Ser	Arg Ser (585	Gly Leu A	Asp Asp II 590	le Asn
Pro Thr \	/al Leu Leu 95		rg Ser Thi	r Glu Leu	1	

FIG. 2A

GTCCAGGAAC TCCTCAGCAG CGCCTCCTTC AGCTCCACAG CCAGACGCCC TCAGACAGCA	. 60
AAGCCTACCC CCGCGCCGCG CCCTGCCCGC CGCTGCGATG CTCGCCCGCG CCCTGCTGCT	120
GTGCGCGGTC CTGGCGCTCA GCCATACAGC AAATCCTTGC TGTTCCCACC CATGTCAAAA	180
CCGAGGTGTA TGTATGAGTG TGGGATTTGA CCAGTATAAG TGCGATTGTA CCCGGACAGG	240
ATTCTATGGA GAAAACTGCT CAACACCGGA ATTTTTGACA AGAATAAAAT TATTTCTGAA	300
ACCCACTCCA AACACAGTGC ACTACATACT TACCCACTTC AAGGGATTTT GGAACGTTGT	360
GAATAACATT CCCTTCCTTC GAAATGCAAT TATGAGTTAT GTGTTGACAT CCAGATCACA	420
TTTGATTGAC AGTOCACCAA CTTACAATGC TGACTATGGC TACAAAAGCT GGGAAGCCTT	480
CTETAACCTC TCCTATTATA CTAGAGCCCT TCCTCCTGTG CCTGATGATT GCCCGACTCC	540
CITGGGTGTC AAAGGTAAAA AGCAGCITCC TGATTCAAAT GAGATTGTGG AAAAATTGCT	600
TCTAAGAAGA AAGTTCATCC CTGATCCCCA GGGCTCAAAC ATGATGTTTG CATTCTTTGC	660
CCAGCACTTC ACGCACCAGT TITTCAAGAC AGATCATAAG CGAGGGCCAG CTTTCACCAA	720
CGGGCTGGGC CATGGGGTGG ACTTAAATCA TATTTACGGT GAAACTCTGG CTAGACAGCG	780
TAAACTGCGC CTTTTCAAGG ATGGAAAAAT GAAATATCAG ATAATTGATG GAGAGATGTA	
TCCTCCCACA GTCAAAGATA CTCAGGCAGA GATGATCTAC CCTCCTCAAG TCCCTGAGCA	900
TCTACCGTTT GCTGTGGGGC AGGAGGTCTT TGGTCTGGTG CCTGGTCTGA TGATGTATGC	960
CACAATCTGG CTGCGGGAAC ACAACAGAGT ATGTGATGTG	1020
ATGGGGTGAT GAGCAGTTGT TCCAGACAAG CAGGCTAATA CTGATAGGAG AGACTATTAA	
GATTGTGATT GAAGATTATG TGCAACACTT GAGTGGCTAT CACTTCAAAC TGAAATTTGA	1140
CCCAGAACTA CTTTTCAACA AACAATTCCA GTACCAAAAT CGTATTGCTG CTGAATTTAA	1200
CACCCTCTAT CACTGGCATC CCCTTCTGCC TGACACCTTT CAAATTCATG ACCAGAAATA	1260
CAACTATCAA CAGTITATCT ACAACAACTC TATATTGCTG GAACATGGAA TTACCCAGTT	1320
TGTTGAATCA TTCACCAGGC AAATTGCTGG CAGGGTTGCT GGTGGTAGGA ATGTTCCACC	1380
CGCAGTACAG AAAGTATCAC AGGCTTCCAT TGACCAGAGC AGGCAGATGA AATACCAGTC	1440
TTITAATGAG TACCGCAAAC GCTTTATCCT GAACCCCTAT GAACCCCTAT	1500
AGGAGAAAAG GAAATGTCTG CAGAGTTGGA AGCACTCTAT GGTGACATCG ATGCTGTGGA	1560
GCTGTATCCT GCCCTTCTGG TAGAAAAGCC TCCCCCACAT CCCATTCTTTTTTTTTT	1620
GGTAGAAGTT GGAGCACCAT TCTCCTTGAA ACGACTTATC COTTATC	1680
TGCCTACTGG AAGCCAAGCA CTTTTTCCTGG AGAACTGGGT TTTTCAAATTG	1740

FIG. 2B

CTCAATTCAG TCTCTCATCT GCAATAACGT GAAGGGCTGT CCCTTTACTT CATTCAGTGT	1800
TCCAGATCCA GAGCTCATTA AAACAGTCAC CATCAATGCA AGTTCTTCCC GCTCCGGACT	1860
AGATGATATC AATCCCACAG TACTACTAAA AGAACGCTCG ACTGAACTGT AGAAGTCTA	1920
TGATCATATT TATTTATTTA TATGAACCAT GTCTATTAAT TTAATTATTT AATAATATTT	1980
ATATTAAACT CCTTATGTTA CTTAACATCT TCTGTAACAG AAGTCAGTAC TCCTGTTGCG	2040
GAGAAAGGAG TCATACTTGT GAAGACTTTT ATGTCACTAC TCTAAAGATT TTGCTGTTGC	2100
TOTTAAGITT GGAAAACAGT TITTATTCTG TTTTATAAAC CAGAGAGAAA TGAGTTITGA	2160
CGTCTTTTTA CTTGAATTTC AACTTATATT ATAAGGACGA AAGTAAAGAT GTTTGAATAC	2220
TTAAACACTA TCACAAGATG CCAAAATGCT GAAAGTTTTT ACACTGTCGA TGTTTCCAAT	2280
GCATCITCCA TGATGCATTA GAAGTAACTA ATGITTGAAA TTITAAAGTA CTITTGGGTA	2340
TITITCTGTC ATCAAACAAA ACAGGTATCA GTGCATTATT AAATGAATAT TTAAATTAGA	2400
CATTACCAGT AATTICATGT CTACTITITA AAATCAGCAA TGAAACAATA ATTIGAAATT	2460
TCTAAATTCA TAGGGTAGAA TCACCTGTAA AAGCTTGTTT GATTTCTTAA AGTTATTAAA	2520
CTTGTACATA TACCAAAAAG AAGCTGTCTT GGATTTAAAT CTGTAAAATC AGATGAAATT	2580
TTACTACAAT TGCTTGTTAA AATATTTTAT AAGTGATGTT CCTTTTTCAC CAAGAGTATA	2640
AACCITITTA GTGIGACTGI TAAAACITCC TITTAAATCA AAATGCCAAA TITATTAAGG	2700
TGGTGGAGCC ACTGCAGTGT TATCTCAAAA TAAGAATATC CTGTTGAGAT ATTCCAGAAT	2760
CTGTTTATAT GGCTGGTAAC ATGTAAAAAC CCCATAACCC CGCCAAAAGG GGTCCTACCC	2820
TTGAACATAA AGCAATAACC AAAGGAGAAA AGCCCAAATT ATTGGTTCCA AATTTAGGGT	2880
TTAAACTITT TGAAGCAAAC TTITITITAG CCTTGTGCAC TGCAGACCTG GTACTCAGAT	2940
TTTGCTATGA GGITAATGAA GTACCAAGCT GTGCTTGAAT AACGATATGT TTTCTCAGAT	3000
TITCTGTTGT ACAGTITAAT TTAGCAGTCC ATATCACATT GCAAAAGTAG CAATGACCTC	3060
ATAAAATACC TCTTCAAAAT GCTTAAATTC ATTTCACACA TTAATTTTAT CTCAGTCTTG	3120
AAGCCAATTC AGTAGGTGCA TTGGAATCAA GCCTGGCTAC CTGCATGCTG TTCCTTTTCT	3180
TTTCTTCTTT TAGCCATTTT GCTAAGAGAC ACAGTCTTCT CAAACACTTC GTTTCTCCTA	3240
TTTTGTTTTA CTAGTTTTAA GATCAGAGTT CACTTTCTTT GGACTCTGCC TATATTTTCT	3300
TACCTGAACT TTTGCAAGTT TTCAGGTAAA CCTCAGCTCA GGACTGCTAT TTAGCTCCTC	3360
ТТААБААБАТ ТАААААААА АААААБ	2207