DigiSem Wir beschaffen und digitalisteren

b UNIVERSITÄT BERN Universitätsbibliothek Bern

Dieses Dokument steht Ihnen online zur Verfügung dank DigiSem, einer Dienstleistung der Universitätsbibliothek Bern.

Kontakt: Gabriela Scherrer Koordinatorin digitale Semesterapparate E-Mail digisem@ub.unibe.ch, Telefon 031 631 93 26 José C. Pinheiro Douglas M. Bates

Mixed-Effects Models in S and S-PLUS

With 172 Illustrations

José C. Pinheiro
Department of Biostatistics
Novartis Pharmaceuticals
One Health Plaza
East Hanover, NJ 07936-1080
USA
jose.pinheiro@pharma.novartis.com

Douglas M. Bates Department of Statistics University of Wisconsin Madison, WI 53706-1685 USA bates@stat.wisc.edu

Series Editors:

J. Chambers Bell Labs, Lucent Technologies 600 Mountain Ave. Murray Hill, NJ 07974 USA W. Eddy Department of Statistics Carnegie Mellon University Pittsburgh, PA 15213 USA W. Härdle Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin Spandauer Str. 1 D-10178 Berlin Germany

S. Sheather Australian Graduate School of Management

University of New South Wales

Sydney NSW 2052 Australia L. Tierney School of Statistics University of Minnesota Vincent Hall Minneapolis, MN 55455

USA

Library of Congress Cataloging-in-Publication Data Pinheiro, José C.

Mixed-effects models in S and S-PLUS / José C. Pinheiro, Douglas M. Bates

Mixed-effects models in S and S-PLUS / Jose p. cm. — (Statistics and computing) Includes bibliographical references and index. ISBN 0-387-98957-9 (alk. paper) I. Bates, Douglas M. II. Title. III. Series. QA76.73.S15P56 2000 005.13'3—dc21

99-053566

Printed on acid-free paper.

© 2000 Springer Verlag New York, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, LLC, 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Printed in the United States of America. (HAM)

9 8 7 6 5 SPIN 10995662

Springer Verlag is a part of Springer Science+Business Media

springeronline.com

Contents

\mathbf{P}_{1}	Preface			vii
Ι	Li	near l	Mixed-Effects Models	1
1	Lin	ear Mi	ixed-Effects Models	3
	1.1	A Sim	aple Example of Random Effects	4
		1.1.1	Fitting the Random-Effects Model With lme	8
		1.1.2	Assessing the Fitted Model	11
	1.2	A Rai	ndomized Block Design	12
		1.2.1	Choosing Contrasts for Fixed-Effects Terms	14
		1.2.2	Examining the Model	19
	1.3	Mixed	d-Effects Models for Replicated, Blocked Designs	21
		1.3.1	Fitting Random Interaction Terms	23
		1.3.2	Unbalanced Data	25
		1.3.3	More General Models for the Random Interaction	
			Effects	27
	1.4	An An	nalysis of Covariance Model	30
		1.4.1	Modeling Simple Linear Growth Curves	30
		1.4.2	Predictions of the Response and the Random Effects	37
	1.5	Model	ls for Nested Classification Factors	40
		1.5.1	Model Building for Multilevel Models	44
	1.6	A Spli	it-Plot Experiment	45
	1.7		er Summary	52
	Exe			52

2	The		d Computational Methods for LME Models	57
	2.1	The L	ME Model Formulation	58
		2.1.1	Single Level of Grouping	58
		2.1.2	A Multilevel LME Model	60
	2.2	Likelih	nood Estimation for LME Models	62
		2.2.1	The Single-Level LME Likelihood Function	62
		2.2.2	Orthogonal-Triangular Decompositions	66
		2.2.3	Evaluating the Likelihood Through Decompositions	68
		2.2.4	Components of the Profiled Log-Likelihood	7.
		2.2.5	Restricted Likelihood Estimation	75
		2.2.6	Multiple Levels of Random Effects	77
		2.2.7	Parameterizing Relative Precision Factors	78
		2.2.8	Optimization Algorithms	79
	2.3		ximate Distributions	8.
	2.4	Hypot	hesis Tests and Confidence Intervals	82
		2.4.1	Likelihood Ratio Tests	83
		2.4.2	Hypothesis Tests for Fixed-Effects Terms	87
		2.4.3	Confidence Intervals	92
	2.5	Fitted	Values and Predictions	94
	2.6	Chapte	er Summary	94
	Exe	rcises .		96
3			the Structure of Grouped Data	97
	3.1		isplay Formula and Its Components	97
	3.2		ructing groupedData Objects	101
		3.2.1	Roles of Other Experimental or Blocking Factors	104
		3.2.2	Constructors for Balanced Data	108
	3.3		olling Trellis Graphics Presentations of Grouped Data	110
		3.3.1	Layout of the Trellis Plot	110
		3.3.2	Modifying the Vertical and Horizontal Scales	113
		3.3.3	Modifying the Panel Function	114
		3.3.4	Plots of Multiply-Nested Data	116
	3.4	Summ		120
	3.5	_	er Summary	130
	Exe	rcises .		130
	T3*44	· · · · · · · · · · · · · · · · · · ·	Maria I mora a Mandala	100
4				133
	4.1	_	g Linear Models in S with 1m and 1mList	134
	4.0	4.1.1	The lmList Function	139
	4.2	-	g Linear Mixed-Effects Models with lme	146
		4.2.1	Fitting Single-Level Models	146
		4.2.2	Patterned Variance—Covariance Matrices for the	155
		400	Random Effects: The pdMat Classes	157
	4.0	4.2.3	Fitting Multilevel Models	167
	4.3	Exami	ning a Fitted Model	174

		Contents	XIII
		4.3.1 Assessing Assumptions on the Within-Group Error	174
		4.3.2 Assessing Assumptions on the Random Effects	
	4.4	Chapter Summary	
		rcises	
	2.10		101
5	Ext	ending the Basic Linear Mixed-Effects Model	201
	5.1	General Formulation of the Extended Model	
		5.1.1 Estimation and Computational Methods	
		5.1.2 The GLS model	
		5.1.3 Decomposing the Within-Group Variance-Covariance	
		Structure	
	5.2	Variance Functions for Modeling Heteroscedasticity	
		5.2.1 varFunc classes in nlme	
		5.2.2 Using varFunc classes with lme	
	5.3	Correlation Structures for Modeling Dependence	
		5.3.1 Serial Correlation Structures	
		5.3.2 Spatial Correlation Structures	
		5.3.3 corStruct classes in nlme	
		5.3.4 Using corStruct Classes with lme	
	5.4	Fitting Extended Linear Models with gls	
	$\frac{5.5}{-}$	Chapter Summary	
	Exe	rcises	. 267
II		Jonlinear Mixed-Effects Models	271
*1		diffical Mixed Effects Models	211
6	NL	ME Models: Basic Concepts and Motivating	
	Exa	amples	273
	6.1	LME Models vs. NLME Models	273
	6.2	Indomethicin Kinetics	. 277
	6.3	Growth of Soybean Plants	287
	6.4	Clinical Study of Phenobarbital Kinetics	294
	6.5	Chapter Summary	300
	Exe	rcises	301
_	m1	LOS CONTRACTOR AS LA	005
7		eory and Computational Methods for NLME Models	305
	7.1	The NLME Model Formulation	
		7.1.1 Single-Level of Grouping	
		7.1.2 Multilevel NLME Models	
	7.0	7.1.3 Other NLME Models	
	7.2	Estimation and Inference in NLME Models	
		7.2.1 Likelihood Estimation	
	7.0	7.2.2 Inference and Predictions	
	7.3	Computational Methods	324
	7.4	Extending the Basic NLME Model	. 328

		7.4.1	General model formulation	328
		7.4.2	Estimation and Computational Methods	329
	7.5	An Ex	stended Nonlinear Regression Model	332
		7.5.1	General Model Formulation	333
		7.5.2	Estimation and Computational Methods	334
	7.6	Chapt	er Summary	
8	Fitt	ing No	onlinear Mixed-Effects Models	337
	8.1	Fittin	g Nonlinear Models in S with nls and nlsList	338
		8.1.1	Using the nls Function	338
		8.1.2	Self-Starting Nonlinear Model Functions	342
		8.1.3	Separate Nonlinear Fits by Group: The nlsList	
			Function	
	8.2	Fitting	g Nonlinear Mixed-Effects Models with nlme	354
		8.2.1	Fitting Single-Level nlme Models	354
		8.2.2	Using Covariates with nlme	365
		8.2.3	Fitting Multilevel nlme Models	385
	8.3	Exten	ding the Basic nlme Model	391
		8.3.1	Variance Functions in nlme	391
		8.3.2	Correlation Structures in nlme	395
		8.3.3	Fitting Extended Nonlinear Regression Models	
			with gnls	401
	8.4	Chapt	er Summary	409
	Exer	rcises		410
	Refe	erence	s	415
A	Dat	a Used	l in Examples and Exercises	423
	A.1		—Split-Plot Experiment on Varieties of Alfalfa	425
	A.2	Assay-	-Bioassay on Cell Culture Plate	425
	A.3	BodyV	Veight—Body Weight Growth in Rats	427
	A.4	Cefam	andole—Pharmacokinetics of Cefamandole	427
	A.5	CO2—	-Carbon Dioxide Uptake	428
	A.6	Dialyze	er—High-Flux Hemodialyzer	429
	A.7	DNase	-Assay Data for the Protein DNase	429
	A.8	Earthq	uake—Earthquake Intensity	430
	A .9	ergoSt	ool—Ergometrics Experiment with Stool Types	431
	A.10	Glucos	e2—Glucose Levels Following Alcohol Ingestion	432
			Radioimmunoassay of IGF-I Protein	
	A.12	Indom	${\sf eth-Indomethacin\ Kinetics\ \dots\ \dots\ \dots\ \dots\ \dots}$	433
			y—Growth of Loblolly Pine Trees	
			nes—Productivity Scores for Machines and Workers .	
	A.15	Oats -	-Split-plot Experiment on Varieties of Oats	435
	A.16	Orange	e—Growth of Orange Trees	436
		_	dont-Orthodontic Growth Data	436

Co	ntents	xv
A 10 Over Counts of Oversion Balling		497
A.18 Ovary—Counts of Ovarian Follicles		
A.19 Oxboys—Heights of Boys in Oxford		
A.20 Oxide—Variability in Semiconductor Manufacturing		
A.21 PBG—Effect of Phenylbiguanide on Blood Pressure.		
A.22 PBIB—A Partially Balanced Incomplete Block Design		
A.23 Phenobarb—Phenobarbitol Kinetics		
A.24 Pixel—Pixel Intensity in Lymphnodes		
A.25 Quinidine—Quinidine Kinetics		
A.26 Rail—Evaluation of Stress in Rails		
A.27 Soybean—Soybean Leaf Weight over Time		
A.28 Spruce—Growth of Spruce Trees		
A.29 Theoph—Theophylline Kinetics		
A.30 Wafer—Modeling of Analog MOS Circuits		
A.31 Wheat2—Wheat Yield Trials		448
B S Functions and Classes		451
ACF		
ACF.lme		
anova.lme		453
coef.lme		
coef.lmList		
fitted.lme		
fixef		
gapply		460
getGroups		461
gls		462
gnls		464
groupedData		466
gsummary		469
intervals		471
intervals.lme		471
intervals.lmList		473
lme		474
<pre>lmeControl</pre>		476
<pre>lmList</pre>		478
logLik		479
nlme		479
nlmeControl		483
nlsList		485
pairs.lme		486
plot.lme		488
plot.nfnGroupedData		490
plot.nmGroupedData		492
plot.Variogram		494
predict.lme		495

xvi Contents

		qqnorm.lme	497
		ranef	498
		ranef.lme	499
		ranef.lmList	501
		residuals.lme	503
		selfStart	504
		selfStart.default	505
		selfStart.formula	506
		Variogram	507
		Variogram.lme	508
C		Collection of Self-Starting Nonlinear Regression	
	Mo		511
	C.1	SSasymp—The Asymptotic Regression Model	511
		C.1.1 Starting Estimates for SSasymp	
	C.2		512
		C.2.1 Starting Estimates for SSasympOff	512
	C.3	SSasympOrig—Asymptotic Regression Through the Origin	513
		C.3.1 Starting Estimates for SSasympOrig	513
	C.4	SSbiexp—Biexponential Model	514
		C.4.1 Starting Estimates for SSbiexp	515
	C.5	SSfol—First-Order Compartment Model	516
		C.5.1 Starting Estimates for SSfol	516
	C.6	SSfpl—Four-Parameter Logistic Model	517
		C.6.1 Starting Estimates for SSfpl	518
	C.7	SSlogis—Simple Logistic Model	519
		C.7.1 Starting Estimates for SSlogis	519
	C.8	SSmicmen—Michaelis-Menten Model	520
		C.8.1 Starting Estimates for SSmicmen	521
	Inde	p.y	523
	TILL	-A	520