

PASSENGER SATISFACTION

Today, I'm going to present you passenger satisfaction prediction on their overall journey

Summary:

- 1) Context of the dataset
- 2) Cleaning the dataset
- 3) Tableau visualizations
- 4) SQL analyse
- 5) Results

1) Context of the dataset

- US Airline 2015 passengers satisfaction with their flight
- The number of rows and columns:
 - before cleaning: 103 904 rows and 25 columns
 - after cleaning: 75 119 rows and 24 columns

id	gender	customer_type	age	type_of_travel	class	flight_distance	inflight_wifi_service	departure/arrival_time_convenient	ease_of_online_booking
5047	Male	disloyal Customer	25	Business travel	Business	235	3	2	3
110028	Female	Loyal Customer	26	Business travel	Business	1142	2	2	2
24026	Female	Loyal Customer	25	Business travel	Business	562	2	5	5
119299	Male	Loyal Customer	61	Business travel	Business	214	3	3	3
111157	Female	Loyal Customer	26	Personal Travel	Eco	1180	3	4	2

gate_location	food_and_drink	online_boarding	seat_comfort	inflight_entertainment	on- board_service	leg_room_service	baggage_handling	checkin_service
3	1	3	1	1	1	5	3	1
2	5	5	5	5	4	3	4	4
5	2	2	2	2	2	5	3	1
3	4	5	5	3	3	4	4	3
1	1	2	1	1	3	4	4	4

inflight_service	cleanliness	departure_delay_in_minutes	arrival_delay_in_minutes	satisfaction
4	1	1	6.0	neutral or dissatisfied
4	5	0	0.0	satisfied
4	2	11	9.0	neutral or dissatisfied
3	3	0	0.0	satisfied
4	1	0	0.0	neutral or dissatisfied

2) Cleaning the dataset

- Normalizing the columns' name
- Cleaning rows from 1 column: "arrival_delay_in_minutes"
- Checking for duplicates
- Removing outliers from the following columns:
 - flight_distance
 - o departure_delay_in_minutes
 - o arrival_delay_in_minutes
- Saving the cleaned dataset to a new CSV file

3) Tableau visualizations

Average score regarding to the satisfaction

Average scores about online services

Average score regarding to passenger's gender

Average scores about airport's

Average scores about online services

4) SQL analyse

```
query = "'
    SELECT satisfaction, gender, count(id)
    FROM data
    group by satisfaction, gender
    ""

data = pd.read_sql_query(query, engine)
    data.head()
```

	satisfaction	gender	count(id)
0	neutral or dissatisfied	Male	20024
1	satisfied	Female	16960
2	neutral or dissatisfied	Female	21137
3	satisfied	Male	16998

```
query = "
     SELECT class,gender, avg(I.Total_Score)
     FROM (
     SELECT class, gender, (inflight_wifi_service+"departure/arrival_time_convenient"+ease_of_online_booking+
     FROM data) I
     group by class, gender
data = pd.read_sql_query(query, engine)
data.head()
      class gender avg(I.Total_Score)
                             41.730610
0 Business
1 Business Female
                            41.586083
                            36.676786
            Female
2
       Eco
                            36.938678
               Male
3
       Eco
4 Eco Plus Female
                            36.790294
5 Eco Plus
               Male
                             37.154412
```

The scores are on 70.

5) Results

Model	Score	Results
Logistic Regression	0,97	As we can see, the score is really high. I checked through a matrix, to understand better this score. This matrix shows that 97,7% of the preditions are "True" and 2,3% are "False".
Random Forest	0,97	This is obtained with a max_depth = 1 as a parameter. The main paramters are the following : random_state=0, max_depth=1, max_features='sqrt', min_samples_leaf=5, min_samples_split=5, n_estimators=250
	0,99	This is obtained with a max_depth = 2 as a parameter.
	1	This is obtained with a max_depth = 3 as a parameter. After 3, the score is always 1.

I would like to thank
Abhi and his team for
this incredible
experience full of
learning and enjoy!

