

See to the total and decease to the decease of the

Break for Calculus Review

$$\varphi(x) = x^2 \quad , \quad x \in A = (0,3)$$

Break for High School Phys.

d4 - Ewidi Ewi

Back to Probability

$$M = \frac{\sum_{i} p(x_i) X_i}{\sum_{x \in Supp(x)} p(x)}$$

$$= \frac{\sum_{i} p(x_i) X_i}{\sum_{x \in Supp(x)} p(x)}$$

$$= E[x]$$

$$= E[x]$$

$$= expectation'$$

$$x \in Supple)$$

$$\overline{x} \to E(x)$$

$$5p(5) + 6p(6) + 7p(7) + 8p(8)$$

$$X \sim \text{Binomial}(8,376,0.38279)$$

$$X \sim \text{Binomial}(n,p), E(x) = \ln p$$

$$\text{Expectation}$$

$$\text{Were not responsible por Binomial r.v.}$$

$$\text{E}(x) = \sum_{x=3}^{n} \times \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= \ln p \sum_{x=1}^{n} * \frac{(n-1)!}{x!(n-x)!} p^{x-1} (1-p)^{n-x}$$

$$= \ln p \sum_{x=1}^{n} * \frac{(n-1)!}{x!(n-x)!} p^{x-1} (1-p)^{n-x}$$

$$= \ln p \sum_{x=1}^{n} \binom{n-1}{x-1} p^{x} (1-p)^{n-x}$$

$$= \ln p \sum_{x=1}^{n} \binom{n-1}{x-1} p^{x} (1-p)^{n-x-1}$$

$$= \ln p \sum_{x=1}^{n} \binom{n-1}{x} p^{x} (1-p)^{n-x} = \ln p$$

$$E(x) = \sum_{x \in X} \frac{\binom{x}{x} \binom{N-K}{n-x}}{\binom{N}{n}} = \begin{bmatrix} n & K \\ N \\ N \end{bmatrix}$$

X~ Uniporm ({1, 10, 100})

$$E(x) = 1 \cdot \frac{1}{3} + 10 \cdot \frac{1}{3} + 100 \cdot \frac{1}{3}$$

(now many times until you succeed)

X ~ Geometric (.2) = .8x.1.2

Supp(x) = M

				-	M		
	×	p(x)	F(x)		X	b Cx)	F(x)
	1	,200	.200		25	.001	.997
	2	. 160	.360		26	.001	.998
1	3	. 128	.488		27	160.	,999
١	4	. 102	. 596				
1	5	.082	672			1	
۱	6	. 066	, 738		'	,	
I	7	.052	.790	1	Tho	Samo	Some
ı	8	.042	- 832				
۱	9	.039	. 866				
۱	10	.027	.893		1	Bank !	81-15-5
	11	.021	,914				
1	12	,017	.931				
	13	,014	.945			I MAN	
	14	,011	.956			1 8	
	15	-009	.965				
	16	.007	.972				
	17	.006	0978				
	18	-005	. 983				
	19	.004	. 98	7			
	20	.003	, 990				
	21	.002	, 997	2			
	22	-001	, 994				
	23	.001	. 995				
	24	-001	1998	5			1

D(x) X~ Geom (.2) Supplx) = N "Effective Support" Eff Supp(x) = {x:p(x) > 1/1000} X~ Geom (p) $E(x) = \sum_{n=0}^{\infty} x (1-p)^{n-1} p$ point need to know Lhis proop

$$= \underbrace{\underbrace{\underbrace{\underbrace{\underbrace{(y+1)(1-p)^{y}}_{p}}}_{1}}_{\text{M}} \underbrace{\underbrace{\underbrace{(1-p)^{y}}_{p}}_{\text{M}}} \underbrace{\underbrace{\underbrace{(1-p)^{y}}_{p}}_{\text{M}}}_{1}$$

$$\Rightarrow M = (1-p)M+1 \Rightarrow Mp = 1$$

 $\Rightarrow M(1-(1-p)) = 1 \Rightarrow M = 1$

$$E(x) = \frac{1}{.2} = (5)$$

$$Min(x) = min \{ Supp(x) \}$$

 $Max(x) = max \{ Supp(x) \}$
 $Range(x) = Max(x) - Min(x)$

Range
$$(x) = Max(x) - Min(x)$$

Median (x) := Q[x, .5]

IQR(x) = Q(x, .75)- Q(x, .25)

inter- quartile range

Textiles	Quartiles	Quintiles
Q[x, \frac{1}{3}] Q[x, \frac{2}{3}]	$Q[X,\frac{1}{4}]$ $Med(X)$ $Q[Y,\frac{2}{4}]$	Q[x, \frac{7}{5}] Q[x, \frac{7}{5}] Q[x, \frac{7}{5}] Q[x, \frac{7}{5}]

Deciles

 $Q(x, \frac{1}{10})$ $Q(x, \frac{1}{10})$ $Q(x, \frac{1}{10})$

Mode(x) | ·1 ⇒ X is unimodal