

Corner detection in binary images

- A corner point is an edge point
- A corner point occurs when the edge direction changes

An ideal corner detector:

- Detection
- Localization
- Stability

1

Measures of cornerity

• Curvature

Let
$$P = \{x(p), y(p)\}$$

Tangent:
$$t(p) = \frac{dy}{dx}$$

Curvature:
$$\kappa(p) = \frac{dt(p)}{dp}$$

Radius

$$\kappa(p) = \frac{1}{r(p)}$$

•

Let P be a set of digital boundary

$$P = \{p_i = (x_i, y_i), i = 1, 2, \oplus, n\}$$

Bennett - MacDonald method

Tangent angle:

$$\varphi_i = \tan^{-1} \left[\frac{y_i - y_{i-1}}{x_i - x_{i-1}} \right]$$

Curvature:

$$\kappa = \varphi_i - \varphi_{i-1}$$

Improved B-M method with smoothing

Tangent angle

$$\overline{\varphi}_{i} = \tan^{-1} \left[\frac{1}{s} \sum_{j=1}^{s} \left(\frac{Y_{i+j} - Y_{i-j}}{X_{i+j} - X_{i-j}} \right) \right]$$

$$\overline{\kappa}_{i} = \frac{1}{S} \sum_{j=1}^{S} \left(\overline{\varphi}_{i+j} - \overline{\varphi}_{i-j} \right)$$

where s = the region of support

L

Rosenfeld-Johnson method

Let
$$a_{is} = (x_i - x_{i+s}, y_i - y_{i+s})$$

 $b_{is} = (x_i - x_{i-s}, y_i - y_{i-s})$

The angle between vectors a_{is} and b_{is}

$$\cos\theta_i = \frac{a_{is} \cdot b_{is}}{|a_{is}| \cdot |b_{is}|}$$

 $|\cos \theta_i| \approx 1$, p_i is on a line

 $|\cos\theta_i| << 1$, p_i is a corner

Freeman – Davis method

Define an octal chain code $\{a_i, i = 1, 2, \oplus, n\}$ where $a_i \in \{0,1,2,3,4,5,6,7\}$

let a_{ix} and a_{iy} be the x and y components of a_i

3,	2	, 1
4		0
5	6	7

a_{i}	a_{ix}	a_{iy}
0	1	0
1	1	1
2	0	1
2 3 4	-1	1
4	-1	0
5	-1	-1
6	0	-1
7	1	-1

let L_j^s = a line segment spanning s chain links

$$= a_{j-s+1} \cdot a_{j-s+2} \dots a_j$$

The x and y components of L_i^s

$$X_{j}^{s} = \sum_{i=j-s+1}^{j} a_{ix}$$
 $Y_{j}^{s} = \sum_{i=j-s+1}^{j} a_{iy}$

The tangent angle

$$\theta_j = \tan^{-1} \left(\frac{Y_j^s}{X_j^s} \right)$$
The curvature

$$\kappa_{j} = \theta_{j+1} - \theta_{j-1}$$

Define the cornerity at p_i

$$C_{j} = \ln(t_{1}) \cdot \left(\sum_{i=j}^{j+s} \kappa_{i}\right) \cdot \ln(t_{2})$$
where
$$t_{1} = \max\left\{ t \mid \kappa_{j-v} \in (-\Delta, \Delta), \forall v, 1 \leq v \leq t \right\}$$

$$t_{2} = \max\left\{ t \mid \kappa_{j+s+v} \in (-\Delta, \Delta), \forall v, 1 \leq v \leq t \right\}$$

$$\Delta = \tan^{-1}\left(\frac{1}{s-1}\right)$$
s is the region of support

 t_1 and t_2 represent straight - line segments on both sides of a corner.

Least – squares curve fitting

Given a segment of 2s + 1 boundary points

$$N(p_i) = \{p_j = (x_j, y_j), j = i - s, i - s + 1, ..., i, i + 1, ..., i + s\}$$

$$\operatorname{Min} \sum_{i=i-s}^{i+s} [y_i - f(x_i)]^2$$

where

$$f(x_i) = a + bx_i + cx_i^2 + dx_i^3, \forall i$$

The cubic polynomial curve f(x) is estimated, in the least - square sense, by

$$A \cdot X = b$$

where

$$A = \begin{bmatrix} \sum 1 & \sum x_i & \sum x_i^2 & \sum x_i^3 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 & \sum x_i^5 \\ \sum x_i^3 & \sum x_i^4 & \sum x_i^5 & \sum x_i^6 \end{bmatrix}$$

$$X = [a, b, c, d]$$

$$b = \left[\sum y_i, \sum y_i x_i, \sum y_i x_i^2, \sum y_i x_i^3\right]^T$$

and

$$X = A^{-1} \cdot b$$

For curve:
$$y = a + bx + cx^2 + dx^3$$
,

The tangent slope
$$y' = f'(x_i)$$

The curvature
$$\kappa_i = \frac{y''}{\left[1 + (y')^2\right]^{\frac{3}{2}}}$$

Eigenvalues of covariance matrices

Given a segment of 2s + 1 boundary points

$$N(p_i) = \{p_j = (x_j, y_j), j = i - s, i - s + 1, ..., i, i + 1, ..., i + s\}$$

The covariance matrix M of the segment

$$M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

where

$$m_{11} = \left[\frac{1}{2s+1} \sum_{j=i-s}^{i+s} x_j^2 \right] - \overline{m}_x^2$$

$$m_{12} = m_{21} = \left[\frac{1}{2s+1} \sum_{j=i-s}^{i+s} x_j \cdot y_j \right] - \overline{m}_x^2 \cdot \overline{m}_y^2 \qquad \overline{m}_y = \frac{1}{2s+1} \sum_{j=i-s}^{i+s} y_j$$

$$m_{22} = \left[\frac{1}{2s+1} \sum_{j=i-s}^{i+s} y_j^2 \right] - \overline{m}_y^2$$

$$\frac{-}{m_x} = \frac{1}{2s+1} \sum_{j=i-s}^{i+s} x_j$$

$$\overline{m}_{y} = \frac{1}{2s+1} \sum_{j=i-s}^{i+s} y_{j}$$

The two eigenvalues of the matrix M

$$\lambda_{1} = \frac{1}{2} \left(m_{11} + m_{22} + \left[(m_{11} - m_{22})^{2} + 4m_{12}^{2} \right]^{\frac{1}{2}} \right)$$

$$\lambda_{2} = \frac{1}{2} \left(m_{11} + m_{22} - \left[(m_{11} - m_{22})^{2} + 4m_{12}^{2} \right]^{\frac{1}{2}} \right)$$

IF $N(p_i)$ is an ellipse,

 $\sqrt{\lambda_1}$ and $\sqrt{\lambda_2}$ are the semimajor and semiminor axial length of the ellipse

 $\lambda_2 \approx 0$ for a line

 $\lambda_2 >> 0$ for a corner.

Curve			λ_2 value (21 data points)
	Line (slope angle)	0 [□] 20 [□] 40 [□] 60 [□] 80 [□]	-1.9×10^{-6} 3.8×10^{-6} -7.6×10^{-6} 3.8×10^{-6} -2.6×10^{-6}
	Circle (Radius in pixel)	30 50 70 90	0.256 0.090 0.043 0.024
	Included angle	30 [□] 50 [□] 70 [□] 90 [□]	6.969 5.952 4.845 3.673

Wavelet decomposition approach

Let
$$T = \{\theta(i), i = 1, 2, ..., n\}$$
,

where θ_i = tangent angle of point p_i

Let
$$S_0(i) = \theta(i), i = 1, 2, ..., n$$

$$S_1(x) = \frac{1}{I} \sum_{i=0}^{I-1} L(i) \cdot S_0(x+i)$$

$$D_1(x) = \frac{1}{J} \sum_{j=0}^{i-1} H(j) \cdot S_0(x+j)$$

$$\vdots$$

$$S_N(x) = \frac{1}{I} \sum_{j=0}^{I-1} L(i) \cdot S_{N-1}(x+j)$$

$$D_N(x) = \frac{1}{J} \sum_{j=0}^{I-1} H(j) \cdot S_{N-1}(x+j)$$
where $L(i) = a$ low - pass filter of length I

H(j) = a low - pass filter of length J

Wavelet basis	L	Н
Haar	[0] 0.707106781	[0] 0.707106781
	[1] 0.707106781	[1]-0.707106781
	[0] 0.482962913	[0] 0.129409522
D4	[1] 0.836516303	[1] 0.224143868
(Daubechies)	[2] 0.224143868	[2]-0.836516303
	[3]-0.129409522	[3] 0.482962913

小波轉換簡介

