Лекция 9

0371 Кузнецова Елизавета

9 November 2021

Алгоритм Форда-Беллмана

Рис. 1:

A: 3B, 1C

B: 4C

C: 2B

Пути из A

Сначала d:

A	В	С
0	∞	∞
0	3	∞
0	3	∞
0	2	1

Релаксация

 $\mathbf{A} \to \mathbf{B}$

 $0+3<\infty$

 $\mathbf{A} \to \mathbf{C}$

 $0+1<\infty$

 $\mathbf{B} \to \mathbf{C}$

3+4 < 1

 $\mathrm{C} \to \mathrm{B}$

1 + 1 < 3

 $n{=}3 \Rightarrow n{\text -}1{=}\ 2$ цикл

 ${\rm AB, AC, BC, CB}$ - нет улучшений

Ответ:

A B C

0 2 1

Корректность алгоритма

Теорема 1. B конце массив d содержит расстояние $om\ A$

 \mathcal{A} оказательство. После і-го цикла релаксации всех ребер d хранит числа $d(x) \leq \min$ длин путей, в которых \leq і ребер

Рис. 2:

Действительно Б i=0 min (пути из нуля ребер) только A-A d(A)=0 $d(u)=+\infty$ Пусть есть оптимальный путь из i+1 ребра

Рис. 3:

По предположению d(C)=d(B)+d(A,C) Длина пути A-C-B = dist (C) + вес (CB) d(C)=dist(C) Проверка $d(C)+веc(CB) \leq d(B)$ - верно, т.к путь оптимален \Rightarrow d(B)=d(C)+вec(CB)

Рис. 4:

Почему n-1 этап ? Оптимальный путь не содержит циклы

Рис. 5: n-1 ребро

Замечание:

Мы вычисля
ели только расстояния, но путь неизвестен. Как восстанавливать путь?

Будем сохранять информацию об успешных релаксациях

Prev - массив вершин

Если релаксация и—v успешна, то Prev[v]=u (опт. путь в v лежит через u)

Рис. 6:

	A	В	С
d	0	∞	∞
AB	0	3/A	∞
AC	0	3/A	1/A
СВ	0	$2/\mathrm{C}$	1/A

Восстановить путь в В

 $A \rightarrow C \rightarrow B$

prev(C) prev(B)

В общем случае путь A \rightarrow v это $prev(prev(v)) \rightarrow prev(u) \rightarrow v$

Алгоритм Дейкстры

В отличие от ФБ требует, чтобы веса $w(e) \geqslant 0$

Алгоритм

Дан граф $G=(V,E),\ A\in V$ найти расстояния до всех вершин

d(u) = dist(A,u)

Алгоритм

d(A)=0

 $d(u \neq A) = +\infty$

for $v \in V$ (по всем вершинам)

Повторяй n раз (n=V) обработанные вершины

Выбрать $u \in V / P$, где $d(u) \to \min$ (из необработанных $\min d$)

for ее ребра из u, e=(u,v) релаксируем ребро е

 $P=P \cup \{u\}$

Пример:

Рис. 7:

A B C D E
d 0
$$\infty \infty \infty \infty P = \{\emptyset\}$$

1 3 $\infty \infty P = \{A\}$
3 9 $\infty P = \{AB\}$
7 $\infty P = \{ABC\}$
9
 $P = \{ABCD\}$

Рис. 8:

$$u=A$$
 $P=A$ $A \to B$ $0.1 + \infty$ $A \to C$ $0.3 + \infty$ $u=B$ $B \to D$ $1.8 + \infty$ $u=C$ $C \to D$ $3.4.9$ Эффективность $|V| \ge |E| \ge \log |V|$ (выбор min) Корректность Идея. На каждом шаге $d(u)=\min$ путей

Рис. 9:

База
$$\mbox{Шаг}{=}0$$
 $\mbox{d(A)}{=}0$ $\mbox{d(u)}{=}\infty$ Переход

Рис. 10:

Выбрали u=min вершина из V/ $\{P\}$ Пусть есть оптимальный путь в u $A-\overline{u}$ — —u dist $(\overline{u})=$ dist (u)-х обр х по предположению dist $(\overline{u})=$ d (\overline{u}) dist $(u)\Rightarrow$ d (u)> d (\overline{u}) dust $(u)\Rightarrow$?? d(u) был min

Рис. 11:

Оптимальный путь в V идет через и dist(A,u)+bec(u,v)=dist(A,v) \Rightarrow релаксация $u\to v$ успешна и d(v) получит расстояние. Для восстановления пути нужен аналогичный Prev успешная релаксация u-v Prev[v]=u

Рис. 12:

	Α	В	С	D	\mathbf{E}
	0	∞	∞	∞	∞
		1/A	3/A $3/A$	∞	∞
İ			3/A	$\begin{array}{ c c c c } \infty & \\ 9/\mathrm{B} & \end{array}$	∞
İ				7/C	∞
İ				·	9/B

 $A \xrightarrow{} C \xrightarrow{} D \xrightarrow{} E$ prev(C) prev(D) prev(E)