Applications linéaires

Dans tout le chapitre, \mathbb{K} désignera l'un des ensembles \mathbb{R} ou \mathbb{C} .

Généralités 1.

1.1. Définitions

Soient E et F deux \mathbb{K} -espaces vectoriels.

a) Linéarité : l'application $f: E \to F$ est dite linéaire lorsque

$$\forall (x,y) \in E^2, \ f(x+y) = f(x) + f(y)$$
$$\forall x \in E, \ \in \lambda \in \mathbb{K}, \ f(\lambda x) = \lambda f(x)$$

Ces conditions sont équivalentes à la condition suivante :

$$\forall (x,y) \in E^2, \forall \lambda \in \mathbb{K}, \ f(\lambda x + y) = \lambda f(x) + f(y)$$

b) Terminologie:

- On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F
- Si $f \in \mathcal{L}(E, E)$, on dit que f est un **endomorphisme** de E. On note $\mathcal{L}(E) = \mathcal{L}(E, E)$
- Si $f \in \mathcal{L}(E, F)$ est **bijective**, on dit que c'est un **isomorphisme** de E sur F.
- Si $f \in \mathcal{L}(E)$ est un endomorphisme bijectif, on dit que c'est un **automorphisme** de E. On note GL(E) l'ensemble des automorphismes de E.
- Si $f \in \mathcal{L}(E, \mathbb{K})$, on dit que f est une **forme linéaire** sur E (AL à valeurs numériques).
- c) **Propriétés :** soit $f: E \to F$ une application linéaire. Alors :

$$(i) \mid f(0_E) = 0_F$$

(ii)
$$\forall x \in E, \ f(-x) = -f(x)$$

(ii)
$$\forall x \in E, \ f(-x) = -f(x)$$

(iii) Si $(x_1, \dots, x_n) \in E^n$ et $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$, alors $f\left(\sum_{k=1}^n \lambda_k x_k\right) = \sum_{k=1}^n \lambda_k f(x_k)$

1.2. Exemples

a) Exemples élémentaires :

- L'application nulle. $0_{\mathcal{L}(E,F)}: E \to F$ est linéaire. $(x \mapsto 0_F)$
- L'identité. id_E est un endomorphisme de E.
- La dérivation. $D: C^{1}(I) \to C^{0}(I)$ est une application linéaire. (I est un intervalle). **Remarque**: $D: \mathbb{K}[X] \to \mathbb{K}[X]$ est un endomorphisme de $\mathbb{K}[X]$.
- $I:C^{0}\left(\left[a,b\right],\mathbb{R}
 ight)
 ightarrow\mathbb{R}$ définie par $I\left(f
 ight)=\int^{b}f$ est une forme linéaire sur $C^{0}\left(\left[a,b\right],\mathbb{R}
 ight)$.

- b) Applications coordonnées :
 - L'application $\varphi_1: \mathbb{R}^3 \longrightarrow \mathbb{R}$ est une forme linéaire sur \mathbb{R}^3 ("application abscisse"). $X = (x, y, z) \mapsto \varphi_1(X) = x$
 - $\bullet \quad \text{Plus généralement, si } k \in \llbracket 1, n \rrbracket \,, \varphi_k : \quad \mathbb{K}^n \qquad \qquad \to \qquad \quad \mathbb{K} \ \text{ est une forme linéaire sur } \mathbb{K}^n.$ $X = (x_1, \dots, x_n) \mapsto \varphi_k(X) = x_k$
- c) Homothéties vectorielles : si E est un \mathbb{K} -ev, on appelle homothétie de rapport $\lambda \in \mathbb{K}$ l'application

$$h_{\lambda} = \lambda \operatorname{id}_{E}$$

Autrement dit h_{λ} est l'endomorphisme de E défini par

$$\forall x \in E, \ h_{\lambda}(x) = \lambda x$$

Remarque: si $\lambda \neq 0$, alors h_{λ} est un automorphisme de E, de réciproque $h_{\lambda}^{-1} =$

- d) Application linéaire canoniquement associée à une matrice :
 - (i) Soit $A \in \mathcal{M}_{np}\left(\mathbb{K}\right)$. L'application

$$f_A: \mathbb{K}^p \to \mathbb{K}^n$$
$$X \to f_A(X) = AX$$

est une application linéaire dite canoniquement associée à A.

Si C_1,\ldots,C_p sont les colonnes de A et $X=(x_1,\ldots,x_n)$, on a :

$$f_A(X) = x_1 C_1 + \dots + x_p C_p$$

 $\boxed{f_A\left(X\right) = x_1C_1 + \dots + x_pC_p}$ $\bigstar \text{ si } A \text{ est carr\'ee} \left(A \in \mathcal{M}_n\left(\mathbb{K}\right)\right), \text{ alors } f_A \text{ est un endomorphisme de } \mathbb{K}^n$ $\bigstar \text{ si } A \text{ est une ligne } \left(A \in \mathcal{M}_{n1}\left(\mathbb{K}\right)\right), \text{ alors } f_A \text{ est une forme lin\'eaire sur } \mathbb{K}^n$

Exemple 1 : $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$. Expressions de l'application linéaire associée.

Exemple 2 : la matrice nulle est associée à l'application nulle, I_n est associée à $\mathrm{id}_{\mathbb{K}^n}$ et

La matrice scalaire $\lambda I_n = \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & & \lambda \end{pmatrix}$ est associée à l'homothétie $h = \lambda \operatorname{id}_{\mathbb{K}^n}$

Exemple 3: quel est l'endomorphisme de \mathbb{R}^3 associé à $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$? à $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$?

(ii) Réciproquement, si $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, alors il existe une unique matrice $A = \operatorname{Mat}(f)$ telle que

$$\forall X \in \mathbb{K}^p, \ f(X) = AX$$

On dit que A est la matrice canoniquement associée à f.

Si (e_1, \ldots, e_p) est la base canonique de \mathbb{K}^p , alors

la
$$j$$
-ème colonne de A est $f(e_j)$

Exemple: montrer que $f: \mathbb{R}^2 \to \mathbb{R}^3$ $X = \begin{pmatrix} x \\ y \end{pmatrix} \mapsto f(X) = \begin{pmatrix} x+2y \\ 3x+5y \\ 4x-3y \end{pmatrix}$ est linéaire.

1.3. Noyau, image

a) **Définitions**: soit $f: E \to F$ une application linéaire. On note

$$\ker f = \{x \in E \mid f(x) = 0_F\} \subset E$$

ensemble des antécédents de 0_F par f, et appelé **noyau** de f (kernel). Ainsi, si $x \in E$,

$$x \in \ker f \iff f(x) = 0_F$$

et

$$\boxed{\operatorname{Im} f = \{f(x), x \in E\} \subset F}$$

ensemble des images des éléments de E par f, et appelé **image** de f (c'est en fait f (E)). Ainsi, si $y \in F$,

$$y \in \operatorname{Im} f \iff \exists x \in E / f(x) = y$$

Remarque: si $A \in \mathcal{M}_{np}\left(\mathbb{K}\right)$, on note

$$\ker A = \ker f_A = \{X \in \mathbb{K}^p \mid AX = 0_{\mathbb{K}^n}\}$$
 et $\operatorname{Im} A = \operatorname{Im} f_A = \{AX, X \in \mathbb{K}^p\}$

- b) Propriétés fondamentales : soit $f \in \mathcal{L}(E, F)$.
 - (i) $\ker f$ est un sous espace vectoriel de E $\operatorname{Im} f$ est un sous espace vectoriel de F
 - (ii) f est injective $\iff \ker f = \{0_E\}$ f est surjective $\iff \operatorname{Im} f = F$

Exemple1: noyau et image de $D: \mathbb{K}[X] \to \mathbb{K}[X]$. Est-elle injective? surjective?

Exemple2: même question avec $f_A: \mathbb{R}^3 \to \mathbb{R}^2$ de matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$

Exemple: même question avec $f_A: \mathbb{R}^2 \to \mathbb{R}^3$ de matrice $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \\ 4 & -3 \end{pmatrix}$

Une méthode : pour montrer qu'un ensemble F est un SEV de E, il est commode de l'interpréter comme le noyau d'une application linéaire.

Par exemple montrer que $F = \{X = (x, y, z) \mid x - 2y + 3z = 0\}$ est un sous espace vectoriel de \mathbb{R}^3

c) Une méthode de calcul de l'image :

Soit $f \in \mathcal{L}(E, F)$. On suppose que (e_1, \dots, e_n) est génératrice de E. Alors $(f(e_1), \dots, f(e_n))$ est génératrice de $\operatorname{Im} f$.

Autrement dit

$$\boxed{\operatorname{Im} f = \operatorname{Vect} \left(f \left(e_{1} \right), \dots, f \left(e_{n} \right) \right)}$$

3

Ceci est très utilisé lorsque (e_1, \ldots, e_n) est une base de E, particulièrement pour les bases canoniques ...

Exemple 1: soit $E = \mathbb{K}^p$, et $(e_1, \dots e_p)$ sa base canonique.

Si $A\in\mathcal{M}_{np}\left(\mathbb{K}\right)$ et $f_{A}:\mathbb{K}^{p}\to\mathbb{K}^{n}$ est son application linéaire associée, alors

$$\operatorname{Im} f_{A} = \operatorname{Vect} \left(f_{A} \left(e_{1} \right), \dots, f_{A} \left(e_{p} \right) \right) = \operatorname{Vect} \left(C_{1}, \dots, C_{p} \right)$$

où C_1, \ldots, C_p sont les colonnes de A. (car $f(e_j) = C_j$). Autrement dit

L'image d'une matrice est l'espace engendré par ses colonnes

Par exemple si
$$A=\left(\begin{array}{ccc}1&2\\3&4\\5&6\end{array}\right)$$
 et $B=\left(\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right)$, calculer $\operatorname{Im}A$ et $\operatorname{Im}B.$

Exemple 2 : de même si $f: \mathbb{K}_n[X] \to F$ alors $\operatorname{Im} f = \operatorname{Vect}(f(1), f(X), \dots, f(X^n))$

Par exemple, soit $\Delta:\mathbb{K}_{n}\left[X\right]\to\mathbb{K}_{n}\left[X\right]$ définie par $\forall P\in\mathbb{K}_{n}\left[X\right]$

$$\Delta(P) = P(X+1) - P(X)$$

Montrer que Δ est un endomorphisme de $E = \mathbb{K}_n[X]$ et calculer son image $\operatorname{Im} \Delta$.

- d) Propriétés courantes : si $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$, alors, en notant $\mathbb{O} = 0_{\mathcal{L}(E,G)}$
 - (i) $\ker f \subset \ker (g \circ f)$
 - (ii) $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$
 - (iii) $g \circ f = \mathbb{O} \iff \operatorname{Im} f \subset \ker g$
 - (iv) si $\lambda \neq 0$, on a ker $(\lambda f) = \ker f$ et Im $(\lambda f) = \operatorname{Im} f$
 - (v) si $(f,g) \in \mathcal{L}(E,F)^2$, alors $\operatorname{Im}(f+g) \subset \operatorname{Im}(f) + \operatorname{Im}(g)$

Attention : on n'a pas $f \circ g = \mathbb{O} \Rightarrow (f = \mathbb{O} \text{ ou } g = \mathbb{O})$. Contre exemple?

1.4. Opérations sur les applications linéaires

a) Combinaisons linéaires : $\mathcal{L}(E, F)$ est un \mathbb{K} -espace vectoriel

Autrement toute combinaison d'applications linéaires est linéaire

Exemple 1: si $f \in \mathcal{L}(E)$, alors $\forall \lambda \in \mathbb{K}, f - \lambda \operatorname{id}_E \in \mathcal{L}(E)$

Exemple 2: si $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$, alors l'application $\varphi : \mathbb{K}^n \to \mathbb{K}$ qui à $X = (x_1, \ldots, x_n)$ associe

$$\varphi(X) = \lambda_1 x_1 + \dots + \lambda_n x_n$$

est une forme linéaire. Par exemple $\varphi:(x,y,z,t)\to 2x-3y+z-t$ est une forme linéaire de \mathbb{R}^4 .

Exemple 3 : si $(A,B) \in \mathcal{M}_{np}\left(\mathbb{K}\right)$, et $(\lambda,\mu) \in \mathbb{K}^2$, alors $\lambda A + \mu B$ a pour application linéaire associée $\lambda f_A + \mu f_B$

b) Composée: soient E, F, G trois \mathbb{K} -espaces vectoriels.

si
$$f \in \mathcal{L}(E, F)$$
 et $g \in \mathcal{L}(F, G)$, alors $g \circ f \in \mathcal{L}(E, G)$

Autrement dit, la composée de deux applications linéaires est une application linéaire.

En particulier si E=F=G, on obtient la composée de deux endomorphismes de E est un endomorphisme de E

$$\boxed{(f,g)\in\mathcal{L}(E)^2\Rightarrow f\circ g\in\mathcal{L}(E)\text{ et }g\circ f\in\mathcal{L}(E)}$$

Exemple: si $A \in \mathcal{M}_{np}(\mathbb{K})$ et $B \in \mathcal{M}_{pq}(\mathbb{K})$, alors AB a pour application linéaire associée $f_A \circ f_B$

Notation: on notera $f \circ f = f^2 \in \mathcal{L}(E), \ f \circ f \circ f = f^3 \in \mathcal{L}(E),$ et plus généralement

$$f^n = \underbrace{f \circ \cdots \circ f}_{n \text{ fois}}$$

Exemple: soit $\Phi: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ définie par $\Phi(y) = y'' - 3y' + 2y$. Montrer que Φ est linéaire

Montrer que $\Phi=(D-\mathrm{id}_E)\circ(D-2\,\mathrm{id}_E)$ où D est la dérivation de $E=C^\infty\left(\mathbb{R}\right)$.

Remarque: si $A \in \mathcal{M}_n(\mathbb{K})$, alors l'endomorphisme associé à A^n est f_A^n .

c) **Distributivité**: si $(f, f') \in \mathcal{L}(E, F)^2, (g, g') \in \mathcal{L}(F, G)^2$, alors

$$\left\{ \begin{array}{l} f \circ (g+g') = f \circ g + f \circ g' \\ (f+f') \circ g = f \circ g + f' \circ g \end{array} \right.$$

d) Réciproque d'un isomorphisme : $si f \in \mathcal{L}(E, F)$ est un isomorphisme, alors $f^{-1} \in \mathcal{L}(F, E)$

Autrement dit, la réciproque d'un isomorphisme est linéaire (et c'est aussi un isomorphisme).

En particulier, la réciproque d'un automorphisme de E est un automorphisme de E.

Exemple 1: montrer que $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\forall X = \begin{pmatrix} x \\ y \end{pmatrix}, \ f(X) = \begin{pmatrix} x+2y \\ 2x+3y \end{pmatrix}$ est un automorphisme et déterminer f^{-1} .

Exemple 2: si $A \in GL_n(\mathbb{K})$ alors f_A est un isomorphisme, et f_A^{-1} est l'endomorphisme associé à A^{-1}

5

1.5. Equations linéaires

Soit E et F deux \mathbb{K} -espaces vectoriels

a) <u>Définition</u>: on appelle équation linéaire une équation du type

$$f(x) = y \quad (*)$$

avec $f \in \mathcal{L}(E, F)$, $y \in F$ (second membre), et $x \in E$ (inconnue).

- b) Compatibilité: par définition:
 - Si $y \notin \text{Im } f$, alors (*) n'admet aucune solution.
 - Si $y \in \text{Im } f$, alors (*) admet au moins une solution $x_0 \in E$
- c) Structure des solutions : on suppose que $y \in \text{Im } f$, donc que (*) est compatible.

Soit x_0 est solution ("particulière") de (*) (c'est-à-dire un antécédent de y par f).

Alors l'ensemble des solutions de (*) est de la forme

$$f^{-1}\langle\{y\}\rangle = \{x_0 + h, \ h \in \ker f\}$$

On obtient toutes les solutions de (*) en ajoutant à l'une quelconque d'entre elles les éléments du noyau de f

L'ensemble $\{x_0 + h, h \in \ker f\}$ est noté symboliquement $x_0 + \ker f$ et appelé <u>sous espace affine</u> de E de direction $\ker f$ passant par x_0 .

Remarque : cela signifie que si $f \in \mathcal{L}\left(E,F\right)$, alors un élément $y \in F$ admet :

- Soit <u>aucun antécédent</u> si $y \notin \text{Im } f$.
- Soit un unique antécédent si $y \notin \text{Im } f$ et si $\ker f = \{0_E\}$, (i.e. f injective.)
- Soit <u>une infinité d'antécédents</u> formant un espace affine si $y \notin \text{Im } f$ et si $\ker f \neq \{0_E\}$

Exemple 1: soit
$$p: \mathbb{R}^3 \to \mathbb{R}^3$$
 définie si $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ par $p(X) = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$

Discuter sur $y \in \mathbb{R}^3$ les solutions de (*): p(x) = y

Exemple 2: on considère $\Phi: C^2(\mathbb{R}) \to C^0(\mathbb{R})$ définie par $\Phi(y) = y'' - 3y' + 2y$.

Calculer $\ker \Phi.$ Si $u: x \mapsto e^{-x},$ résoudre l'équation $\phi\left(y\right) = u$

Exemple 3: soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire de matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$.

Calculer $\ker f_A$. Si $Y=\begin{pmatrix}1\\3\end{pmatrix}$, trouver une solution particulière de l'équation $f\left(X\right)=Y$, et en déduire l'ensemble de ses solutions

2. Endomorphismes et composition.

2.1. Calculs dans $\mathcal{L}(E)$

a) Structure: soit E un \mathbb{K} -espace vectoriel. $\mathcal{L}(E)$ est alors muni de deux lois internes + et \circ . Elles sont associatives, admettent chacune un élément neutre (\mathbb{O} et id_E), et \circ est distributive sur +. Seule + est commutative.

Morale: on peut effectuer les mêmes routines algébriques avec les lois + et \circ sur $\mathcal{L}(E)$ qu'avec les lois + et \times sur \mathbb{R} , pourvu qu'elles ne fassent pas intervenir la commutativité et l'inversion. id_E joue le rôle de 1 (et on ne l'écrit donc pas dans un produit)

Remarque 1: ces règles de calcul sont rigoureusement les mêmes que celles de $\mathcal{M}_n(\mathbb{K})$

Remarque 2: on a aussi $\forall \lambda \in \mathbb{K}, \ \forall (f,g) \in \mathcal{L}(E)^2, \ (\lambda f) \circ g = f \circ (\lambda g) = \lambda \left(f \circ g \right)$

Exemple: avec $E = \mathbb{R}^2$ et f et g définies, si $X = \begin{pmatrix} x \\ y \end{pmatrix}$, par

$$f(X) = \begin{pmatrix} x - y \\ x + y \end{pmatrix}$$
 et $g(X) = \begin{pmatrix} x + 2y \\ 3x - y \end{pmatrix}$

Calculer $f \circ g$ et $g \circ f$

Exemple: on peut écrire

$$(f-2\mathrm{id})\circ(g+3\mathrm{id})=f\circ g\Leftrightarrow f\circ g+3f-2g-6\mathrm{id}=f\circ g\Leftrightarrow f=\frac{2}{3}g+2\mathrm{id}$$

b) Généralisation des formules d'algèbre : si f et g commutent alors

$$(f \circ g)^n = f^n \circ g^n$$

$$f^{n} - g^{n} = (f - g) \circ \sum_{k=0}^{n-1} f^{k} \circ g^{n-1-k}$$

et

$$f(f+g)^n = \sum_{k=0}^n \binom{n}{k} f^k \circ g^{n-k}$$

Formules **fausses** lorsque $f \circ g \neq g \circ f$. En général, si $(\overline{f,g}) \in \mathcal{L}(E)^2$

$$(f \circ g)^2 = (f \circ g) \circ (f \circ g) = f \circ g \circ f \circ g$$

et

$$(f+g)^2 = (f+g) \circ (f+g) = f^2 + f \circ g + g \circ f + g^2$$

Cas particulier: id_E commute avec tout endomorphisme $(f \circ id_E = id_E \circ f = f)$, on a donc on peut toujours écrire

$$f^{n} - id = (f - id) \circ \sum_{k=0}^{n-1} f^{k} = \sum_{k=0}^{n-1} f^{k} \circ (f - id)$$

et

$$(f + id)^n = \sum_{k=0}^n \binom{n}{k} f^k$$

2.2. Elements inversibles de $\mathcal{L}(E)$

a) Elements inversibles: soit $f \in \mathcal{L}(E)$. On dit que f est inversible lorsque il existe $g \in \mathcal{L}(E)$ tel que

$$f \circ g = g \circ f = \mathrm{id}_E \qquad (*)$$

On sait que (*) revient à : f est bijective de réciproque $f^{-1}=g$, qui est alors linéaire. Ainsi,

les éléments inversibles de $\mathcal{L}\left(E\right)$ sont les automorphismes

L'inverse d'un tel élément f est sa réciproque f^{-1} .

Moralité : si $f \in \mathcal{L}(E)$, on a

$$f$$
 est inversible $\iff \exists g \in \mathcal{L}(E) \ / \ f \circ g = g \circ f = \mathrm{id}_E \iff f$ est bijective de réciproque $f^{-1} = g$

Exemple 1: soit $f \in \mathcal{L}(E)$ vérifiant $f^2 + 3f - 5 \operatorname{id}_E = \mathbb{O}$: montrer que $f \in GL(E)$ et calculer f^{-1}

Exemple2: "pseudo-divisions" dans $\mathcal{L}(E)$: si $(f,g,h) \in \mathcal{L}(E)^3$ et f inversible, alors

$$f \circ g = h \iff g = f^{-1} \circ h$$

et

$$g \circ f = h \iff g = h \circ f^{-1}$$

b) Groupe linéaire : on note $GL\left(E\right)$ l'ensemble des éléments inversibles de $\mathcal{L}\left(E\right)$. On a

La composée de deux automorphismes de ${\cal E}$ est un automorphisme de ${\cal E}$

De plus

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$

Remarque: en particulier, si $f \in GL(E)$, alors $\forall n \in \mathbb{N}, f^n \in GL_n(E)$, et

$$(f^n)^{-1} = (f^{-1})^n$$

On note alors $f^{-n} = (f^n)^{-1} = (f^{-1})^n$

3. Projecteurs-symétries

On se donne E un \mathbb{K} -espace vectoriel non trivial.

3.1. Projecteurs

a) **Définitions**: soient F et G deux sous-espaces vectoriels supplémentaires de E: $E = F \oplus G$ Si $x \in E$, x se décompose de manière unique sous la forme $x = x_F + x_G$, avec $x_F \in F$ et $x_G \in G$. On note

$$p(x) = x_F \in F$$

L'application $p: E \to E$ ainsi construite est appelée **projecteur sur** F **parallèlement à** G. p associe donc à un vecteur sa composante sur F dans la décomposition suivant F et G.

$$\textit{Remarque}: \left\{ \begin{array}{l} \text{si } x \in F, \text{ alors } p\left(x\right) = x \\ \text{si } x \in G, \text{ alors } p\left(x\right) = 0_E \end{array} \right., \\ \text{soit } \underline{p_{|F} = \mathrm{id}_F} \text{ et } \underline{p_{|G} = \mathbb{O}_G}.$$

b) Projecteurs associés: le projecteur q sur G parallèlement à F, est appelé projecteur associé à p (et on dit que p et q sont les projecteurs associés à la décomposition $E = F \oplus G$).

Avec les notations précédentes, si $x = x_F + x_G$, on a $q(x) = x_G$, et pour tout vecteur x de E:

$$x = p(x) + q(x)$$

de sorte que

$$p + q = \mathrm{id}_E$$

Remarque: $q = \operatorname{id} - p$ et $p = \operatorname{id} - q$

Exemple 1: soient $E = \mathbb{R}^3$, $X_0 = (1, 2, -1)$, $F = \mathbb{R}X_0$, $G = \{X = (x, y, z) / x - y + z = 0\}$

Calculer la matrice des projecteurs associés à la décomposition $E = F \oplus G$

Exemple 2: quels sont les projecteurs associés à la décomposition $\mathcal{M}_3(\mathbb{R}) = \mathcal{S}_3 \oplus \mathcal{A}_3$?

c) Propriétés : soit p le projecteur sur F parallèlement à G, q son projecteur associé.

(i)
$$p \in \mathcal{L}(E)$$
 (et $q \in \mathcal{L}(E)$)

(ii)
$$\begin{cases} \operatorname{Im} p = F = \ker q \\ \ker p = G = \operatorname{Im} q \end{cases}$$

(iii)
$$p \circ p = p$$
 (ou $p^2 = p$)

Remarque : le polynôme $X^2 - X = X(X - 1)$ est annulateur de p.

(iv)
$$q \circ p = p \circ q = \mathbb{O}$$

(iv)
$$q \circ p = p \circ q = \mathbb{O}$$

(v) $F = \operatorname{Im} p = \ker (p - \operatorname{id}_E)$

En d'autres termes, F est l'ensemble des points fixes de p: $x \in \text{Im } p \iff p(x) = x$

Remarque 1 : décompositions : de $E = F \oplus G$ on déduit donc

$$E = \ker p \oplus \ker q$$

$$E = \ker p \oplus \ker q$$

$$E = \ker p \oplus \ker (p - \mathrm{id})$$

Remarque 2: $p \notin GL(E)$ sauf si $\ker p = \{0_E\} = F$. Mais alors G = E et $p = \mathrm{id}_E$

Caractérisation des projecteurs : soit $p \in \mathcal{L}(E)$ vérifiant $p \circ p = p$ (*) : alors

(i)
$$E = \operatorname{Im} p \oplus \ker p$$

(ii) p est le projecteur sur $\operatorname{Im} p$ parallèlement à $\ker p$

Moralité: un endomorphisme p de E est un projecteur si et seulement s'il vérifie $p^2 = p$.

Ses éléments caractéristiques sont alors :

$$\begin{cases} & \underline{\text{Espace de projection}} : \operatorname{Im} p = \ker (p - \mathrm{id}_E) \\ & \underline{\text{Direction}} : \ker p \end{cases}$$

Exemple: soit $E = \mathbb{R}^3$, et f l'endomorphisme de E de matrice $A = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix}$.

Montrer que f est un projecteur et déterminer ses éléments caractéristiques.

3.2. Symétries

a) **<u>Définition</u>**: soient F et G deux sous espaces vectoriels supplémentaires de E.

Si $x \in E$, on peut écrire de manière unique $x = x_F + x_G$, avec $x_F \in F$ et $x_G \in G$. On note

$$s\left(x\right) = x_F - x_G$$

L'application $s: E \to E$ ainsi construite est appelée symétrie par rapport à F parallèlement à G.

b) Lien avec les projecteurs : soient p et q les projecteurs associés à la décomposition $E = F \oplus G$. Alors

$$s = p - q \in \mathcal{L}(E)$$

C'est-à-dire $(p + q = id_E)$:

$$s = 2p - \mathrm{id}_E = \mathrm{id}_E - 2q$$

c) Propriétés: avec les mêmes notations:

(i)
$$s^2 = \mathrm{id}_E$$
, et donc $s \in GL(E)$ et $s^{-1} = s$

Remarque 1: $\ker s = \{0_E\}$ et $\operatorname{Im} s = E$.

Remarque 2 : $X^2 - 1 = (X - 1)(X + 1)$ est un polynôme annulateur de s.

(ii) $x \in F \Leftrightarrow s(x) = x \text{ et } x \in G \Longleftrightarrow s(x) = -x$. En d'autres termes : $F = \ker(s - \mathrm{id}), \text{ et } G = \ker(s + \mathrm{id})$

$$F = \ker (s - \mathrm{id}) \,, \, \mathrm{et} \, G = \ker (s + \mathrm{id})$$

d) Caractérisation:

Si $s \in \mathcal{L}(E)$ vérifie $s^2 \stackrel{(*)}{=} \mathrm{id}_E$, alors s est une symétrie vectorielle d'éléments :

- Espace de symétrie : $\ker(s id_E)$ (points fixes)
- Direction : $\ker(s + \mathrm{id}_E)$

On a en particulier

$$E = \ker(s - \mathrm{id}_E) \oplus \ker(s + \mathrm{id}_E)$$

Exemple 1: soit f l'endomorphisme de $E = \mathbb{R}^2$ de matrice $\frac{1}{3}\begin{pmatrix} -1 & 2 \\ 4 & 1 \end{pmatrix}$.

Montrer que f est une symétrie et donner ses éléments caractéristiques.

Exemple 2: montrer que la transposition T dans $\mathcal{M}_n(\mathbb{K})$ est une symétrie vectorielle de $\mathcal{M}_n(\mathbb{K})$ et calculer ses éléments caractéristiques. Retrouver un résultat connu.

10

4. Théorème du rang

4.1. Effet d'une application linéaire sur une famille de vecteurs

On se donne deux \mathbb{K} -espaces vectoriels E et F et une application linéaire $f \in \mathcal{L}\left(E,F\right)$.

a) Familles génératrices :

Si
$$(e_1,\ldots,e_n)$$
 est génératrice de E , alors $(f(e_1),\ldots,f(e_n))$ est génératrice de $\operatorname{Im} f$

En particulier

PCSI

L'image d'une famille génératrice par une application linéaire **surjective** est génératrice.

- b) <u>Familles libres</u>: l'image d'une famille libre par une application linéaire **injective** est libre.
- c) Bases: f est un isomorphisme si et seulement si l'image d'une base de E est une base de F

Remarque: si $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E et y_1, \dots, y_n des vecteurs de F, alors il existe une unique application linéaire $f \in \mathcal{L}(E, F)$ telle que $\forall k \in [[1, n]], f(e_k) = y_k$

4.2. Isomorphismes

On dit que les \mathbb{K} -ev F et G sont **isomorphes** s'il existe un isomorphisme $\varphi: E \to F$.

a) Tout \mathbb{K} -espace vectoriel E de dimension n est isomorphe à \mathbb{K}^n

Plus précisément, si \mathcal{B} est une base de E, l'application $\varphi: E \to \mathbb{K}^n$ qui associe à un vecteur $x \in E$ sa colonne de coordonnées $X = \varphi(x)$ est un isomorphisme. Quelle est sa réciproque?

Exemple: $\mathbb{K}_n[X]$ est isomorphe à \mathbb{K}^{n+1} .

b) Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Alors

E et F sont isomorphes si et seulement si $\dim E = \dim F$

Conséquence : si $m \neq n$, \mathbb{K}^m n'est pas isomorphe à \mathbb{K}^n

PCSI

Espaces vectoriels

4.3. Théorème du rang

On se donne une application linéaire de l'espace E dans l'espace F.

a) Théorème de l'isomorphisme induit :

Si G est un supplémentaire de $\ker f$ dans E, alors f induit un isomorphisme $\tilde{f}:G\to \operatorname{Im} f$

b) Conséquence : théorème du rang :

Si E est de dimension finie alors $\dim \ker f + \dim \operatorname{Im} f = \dim E$

Autrement dit, en posant $\operatorname{rg} f = \dim \operatorname{Im} f$, et $n = \dim E$,

$$gf = n - \dim \ker f$$

Exemple illustratif: calculer Im f puis ker f, où $f \in \mathcal{L}(\mathbb{R}^3)$ est définie par la matrice

$$A = \left(\begin{array}{rrr} 5 & 1 & -2\\ 1 & 5 & 2\\ -2 & 2 & 2 \end{array}\right)$$

Application : noyau d'une forme linéaire. Si $\varphi \in \mathcal{L}(E, \mathbb{K})$ est non nulle alors son noyau est un hyperplan

Par exemple $H=\{X=(x,y,z)\ /\ 2x-y+z=0\}$ est un hyperplan

c) Application à l'inversibilité :

- (i) Si dim $E = \dim F$, alors f est bijective $\iff f$ est injective $\iff f$ est surjective
- (ii) Cas des endomorphismes : si $\dim E = n$ et $f \in \mathcal{L}(E)$. Alors

f est un automorphisme de $E \Longleftrightarrow f$ est injective $\Longleftrightarrow f$ est surjective

Autrement dit, en dimension finie, il suffit de vérifier l'injectivité **ou** la surjectivité d'un endomorphisme pour établir sa bijectivité.

4.4. Rang d'une famille de vecteurs

a) <u>Définition</u>: soient e_1, \ldots, e_p des vecteurs de E. On pose

$$g(e_1,\ldots,e_p) = \dim \operatorname{Vect}(e_1,\ldots,e_p)$$

On montre que $\operatorname{rg}\left(e_1,\ldots,e_p\right)$ est le cardinal maximal d'une famille libre extraite de (e_1,\ldots,e_p) .

b) Propriétés immédiates :

PCSI

- (i) $\operatorname{rg}(e_1,\ldots,e_p)\leqslant p$ et il y a égalité si et seulement si (e_1,\ldots,e_p) est libre
- (ii) $rg(x_1,\ldots,x_p)\leqslant n$ et il y a égalité si et seulement si (e_1,\ldots,e_p) est génératrice

Exemple 1:
$$E = \mathbb{R}^3$$
, $X_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, $X_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$: calculer $\operatorname{rg}(X_1, X_2, X_3)$

Exemple 2:
$$E = \mathbb{R}^2$$
, $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $X_3 = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$, $X_4 = \begin{pmatrix} -1 \\ 17 \end{pmatrix}$, $X_5 = \begin{pmatrix} \pi \\ \ln 3 \end{pmatrix}$

Calculer rg $(X_1, X_2, X_3, X_4, X_5)$.

Exemple 3:
$$E = C^{\infty}(\mathbb{R})$$
, $f_1 = \cos$, $f_2 = \sin$, $f_3: x \to \cos\left(x + \frac{\pi}{4}\right)$, $f_4: x \to \sin\left(x + \frac{\pi}{6}\right)$

Calculer $\operatorname{rg}(f_1, f_2, f_3, f_4)$.

4.5. Lien avec le rang d'une application linéaire

a) **Définition**: soient E et F deux \mathbb{K} -espaces vectoriels de dimension p et n, et $f \in \mathcal{L}(E, F)$. On note

$$\operatorname{rg} f = \dim \operatorname{Im} f$$

Si (e_1,\ldots,e_p) est une base de E, on sait que $\operatorname{Im} f = \operatorname{Vect} (f(e_1),\ldots,f(e_p)) \subset F$. On en déduit que

$$|\operatorname{rg} f = \operatorname{rg} (f(e_1), \dots, f(e_p))|$$

- b) Propriétés immédiates :
 - (i) $\operatorname{rg} f \leqslant \min(p, n)$
 - (ii) $| \operatorname{rg} f = n \iff f \text{ est surjective}$
 - (iii) $| \operatorname{rg} f = p \iff f \text{ est injective}$

Remarque: ainsi on a la caractérisation de l'inversibilité, si dim E = n:

$$f\in\mathcal{L}\left(E\right)$$
 est inversible si et seulement si $\operatorname{rg}f=n$

c) Composition par un isomorphisme :

si
$$f \in \mathcal{L}(E, F)$$
, $u \in GL(E)$ et $v \in GL(F)$, alors
$$\begin{cases} \operatorname{rg}(f \circ u) = \operatorname{rg} f \\ \operatorname{rg}(v \circ f) = \operatorname{rg} f \end{cases}$$

13

Autrement dit on ne change pas le rang en composant à droite ou à gauche par des automorphismes.