School of Mathematics, Thapar Institute of Engineering & Technology, Patiala Mid Semester Examination

Name

Roll Number

30 h September, 2019

Course Code: UMA061,

(B.E. 3rd & 4th year)

Course Name: Advanced Numerical Analysis

Time: 2 Hours, M. Marks: 30

Faculty Name: Dr. Sapna Sharma

- 1. Find the solution of the system of nonlinear equations $3x^2 + y^2 = 4$, $x^2 + xy + y^2 = 3$. using Newton Rapshon method. Perform two iterations, starting with $(x_0, y_0) = (0.8, 0.8)$. [8M]
- 2. Solve the following system of linear equations using Choleski method. $4x_1-x_2-x_3=3$, $-x_1+4x_2-3x_3=-0.5$, $-x_1+3x_2+5x_3=0$. [6M]
- 3. Check whether the matrix $A = \begin{bmatrix} 3 & 5 \\ 1 & 7 \end{bmatrix}$ is positive definite or not? Justify. [4M]
- 4. Using Birge Vieta method, find the smallest positive root of the polynomial equation $3x^3 8x^2 31x + 60 = 0$. Do only two iterations and take the midpoint of the integral interval as initial approximation.
- 5. Transform the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$ to tridiagonal form by Givens method and hence find the interval of unit length containing eigen values of A. [6M]