Step-1

Let $\mathbf{A}\mathbf{x} = \mathbf{b}$ has to be solved for three right hand side b. Let the three solutions be as follows:

 $x_1 = (1,1,1)$

 $x_2 = (0,1,1)$

 $x_3 = (0,0,1)$

These solution form a column of matrix X. if matrix b = (3.5.8) solve Ax = b. Challenge problem and find matrix A.

Step-2

Let three right hand sides be:

 $b_1 = [3]$

 $b_2 = [5]$

 $b_3 = [8]$

It can be seen that $x_1, x_2, and x_3$ contains only elements 0 and 1. So to get these right hand sides matrix A must be row matrix defined as follows:

 $A = [3 \ 5 \ 8]$

Step-3

Now solve Ax = b as follows:

$$Ax = 3x_1 + 5x_2 + 8x_3$$

$$= 3\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + 5\begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} + 8\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

$$= \begin{bmatrix} 3\\8\\16 \end{bmatrix}$$

$$\neq b$$

This calculation shows that right hand side is not equal to b = (3,5,8). This gives the challenge to the solution in the problem.

Step-4

To calculate matrix A letâ \in TMs consider the result found above. Consider $x_1, x_2, and x_3$ be the three solutions, then:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \\ 16 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ 3+5 \\ 3+5+8 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 \\ b_1+b_2 \\ b_1+b_2+b_3 \end{bmatrix}$$

Step-5

Write the solution in terms of x as follows:

$$x_1 = 3$$
 $x_2 = 8$
 $= x_1 + b_2$
 $-x_1 + x_2 = b_2$
 $x_3 = 16$
 $= x_2 + b_3$
 $-x_2 + x_3 = b_3$

Step-6

Therefore, solution in the form of matrix will be:

$$A\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_1 + x_2 \\ -x_2 + x_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_1 + x_2 \\ -x_2 + x_3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ 8 \\ 16 \end{bmatrix}$$

Therefore, following matrix A gives the solution $x_1, x_2, and x_3$.

	1	0	οŢ
A =	-1	1	0
	0	-1	1]