Université Internationale de Casablanca

Cours de Mathématiques Appliquées à la Gestion

Chapitre: Fonction à une variable réelle

M. TIDLI

Youssef.tidli@gmail.com

A.U: 2015/2016

2. Domaine de définition

$$IR \xrightarrow{f} IR$$

$$x \longmapsto f(x)$$

$$D_f = \left\{ x \in IR \setminus x \text{ admet une image} \right\}$$

$$= \left\{ x \in IR \setminus f(x) \text{ est définie « on peut la calculer »} \right\}$$

1. Fonctions polynômiales :

$$f(x)=a_nx^n+....+a_1x+a_0$$

fonction polynômiale (ou polynôme) de degré n

$$\overline{D_f = IR}$$

Fonctions polynômiales

Exemples:

•
$$f(x)=3x^2+x-5$$

•
$$f(x)=7x^3-x^2+x+15$$

•
$$f(x)=7x^5-x^4+x^2-24$$

Pour toutes ces fonctions:

$$D_f = IR =]-\infty;+\infty[$$

2. Fonctions rationnelles:

$$f(x) = \frac{P(x)}{Q(x)}$$

P(x) et Q(x) sont deux polynômes

$$D_{f} = \left\{ x \in IR \setminus Q(x) \neq 0 \right\}$$

Fonctions rationnelles

Exemple:

$$f(x) = \frac{2x+1}{(x^2-1)(x^2+1)}$$

$$Q(x)=0 \Leftrightarrow (x^2-1)(x^2+1)=0 \Leftrightarrow x^2-1=0$$

Car $x^2+1\neq 0$ ainsi:

$$Q(x)=0 \Leftrightarrow x^2=1 \Leftrightarrow x=\pm 1 \Rightarrow D_f = IR - \{\pm 1\}$$

$$D_{f} =]-\infty;-1[\cup]-1;1[\cup]1;+\infty[$$

3. Fonctions racines (nèmes):

A retenir:

• Sin est pair: $D_f = \{x \in IR \setminus u(x) \ge 0\}$

• Sin est impair :
$$D_f = D_u$$

Fonctions racines (nèmes)

Exemples:

• « racine carrée » : $f(x) = \sqrt{2x+1}$

On doit avoir:

$$2x+1\ge 0 \Leftrightarrow x\ge -1/2 \Rightarrow D_f = [-1/2;+\infty[$$

• « racine cubique » : $f(x) = \sqrt[3]{2x+1}$

$$\begin{array}{c} u(x) \! = \! 2x \! + \! 1 & \text{d\'efinie quelque soit } x \text{ donc} \\ D_f \! = \! D_u \! = \! IR \! = \!] \! - \! \infty \! ; \! + \! \infty \! [\end{array}$$

4. Fonctions puissances:

$$f(x)=u(x)^{\alpha}$$
 est α un nombre rationnel

$$\alpha = m/n$$

m et n sont deux entiers naturels non nuls

On écrit :
$$f(x)=u(x)^{m/n}=(u(x)^m)^{1/n}$$

$$\Rightarrow f(x) = \sqrt[n]{u(x)^m}$$

Fonctions puissances

Exemples:

1.
$$f(x)=(2x+1)^{4/5}$$
 ici $\alpha=4/5$

On a:
$$f(x) = \sqrt[5]{(2x+1)^4}$$
; racine impaire,

on regarde alors le domaine de définition de $(2x+1)^4$:

 $(2x+1)^4$ est une fonction polynômiale définie sur IR donc : $D_f\!=\!IR$

Fonctions puissances

Exemples:

2.
$$f(x)=(2x+1)^{-3/4}$$

On a:
$$f(x) = \frac{1}{\sqrt[4]{(2x+1)^3}}$$
; racine paire,

on doit avoir:
$$(2x+1)^3 \ge 0$$
 et $(2x+1)^3 \ne 0$

$$(2x+1)^3 > 0 \Leftrightarrow 2x+1 > 0 \Leftrightarrow x > -1/2$$

$$D_f =]-1/2;+\infty[$$

5. Fonctions logarithmiques:

$$f(x)=ln(u(x))$$
; In désigne le logarithme népérien

$$D_f = \left\{ x \in IR \setminus u(x) > 0 \right\}$$

Exemple:
$$f(x)=ln(1-x^2)$$

$$D_f = \left\{x \in IR \setminus 1 - x^2 > 0\right\};$$
 or $1 - x^2 = (1 - x)(1 + x)$, tableau des signes

Fonctions logarithmiques

Exemple:
$$f(x)=\ln(1-x^2)$$

X	-1		1	
1-x	+	+	0	-
1+x	- 0	+		+
1-x ²	- 0	+	0	-

Ainsi:
$$D_f =]-1;+1[$$

Exemple 2: f(x)=ln((2x+7)(x-5))

$$D_f = \left\{ x \in IR \setminus (2x+7)(x-5) > 0 \right\}$$

Tableau des signes :

X	-7/2		5	
2x+7	- 0	+		+
x-5	-	-	0	+
Produit	+ 0	-	0	+

Donc:

$$D_f =]-\infty; -7/2[\cup]5; +\infty[$$

6. Fonctions exponentielles:

$$f(x)=e^{u(x)}$$
; alors $D_f=D_u$

« l'exponentielle est toujours définie »

Exemples:

•
$$f(x)=e^{x^2+x+2} \Rightarrow D_f = IR$$
;

•
$$f(x)=e^{\sqrt{X}} \Rightarrow D_f = IR^+$$

•
$$f(x)=e^{1/(x-2)} \Rightarrow D_f = IR - \{2\}$$

3. Continuité

$$I \subset IR \xrightarrow{f} IR$$

$$x \longmapsto f(x)$$

f est une fonction définie sur un intervalle I de IR

a) Continuité en un point a :

a) Continuité en un point a :

Définition : f est continue au point a lorsque :

$$\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = f(a)$$

limite à droite = limite à gauche = image de a

1.
$$f(x) = \begin{cases} \sqrt{x}; si & x \in [0;1] \\ \sqrt{2-x}; si & x \in [1;2] \end{cases}$$
; continuité en 1

On a :
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \sqrt{2-x} = \sqrt{1} = 1$$

 $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \sqrt{x} = \sqrt{1} = 1$
 $\lim_{x \to 1^{-}} x \to 1^{-}$

et
$$f(1) = \sqrt{1} = 1$$
; f est donc continue au point 1

2.
$$f(x) = \begin{cases} x+1; & x \in [0;1[\\ 2-x; & x \in]1;2] \end{cases}$$
; continuité en 1 $f(1) = 3/2$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2 - x = 2 - 1 = 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x + 1 = 1 + 1 = 2$$

et
$$f(1)=3/2$$
;

f est donc discontinue au point 1

b) Continuité sur un intervalle :

Définition:

f est continue sur l'intervalle I=[a;b] lorsque f est continue en tout point de l'intervalle ouvert a;b continue à gauche de b et continue à droite de a.

f est continue à gauche de b lorsque :

$$\lim_{x \to b} f(x) = f(b)$$

• f est continue à droite de a lorsque :

$$\lim_{x \to a^{+}} f(x) = f(a)$$

Continuité sur un intervalle [a; b]

1.
$$f(x) = \begin{cases} \sqrt{x}; si & x \in [0;1] \\ \sqrt{2-x}; si & x \in [1;2] \end{cases}$$
;

f est continue sur l'intervalle [0; 2] car :

- f est continue en tout point de l'intervalle
]0; 2[(en particulier au point 1),
- f est continue a droite de 0 et à gauche de 2.

2.
$$f(x) = \begin{cases} x+1; & x \in [0;1[\\ 2-x; & x \in [1;2]; \\ f(1)=3/2 \end{cases}$$

f n'est pas continue sur l'intervalle [0 ; 2] car elle discontinue au point 1

Propriétés des fonctions continues

Si f et g sont deux fonctions continues sur un intervalle l alors :

- f+g est continue sur l
- αf est continue sur I ($\alpha \in \mathbb{R}$
- $f \times g$ est continue sur I
- f/g est continue sur I ($g \neq 0$ sur I)

Conséquences

 Les fonctions polynômiales sont continues sur IR

 Les fonctions rationnelles ; racines nèmes ; puissances ; logarithmiques et exponentielles sont continues sur leurs domaines de définition

bijection et bijection réciproque

f est une fonction bijective de I vers J. Si f est continue sur l'intervalle I alors sa fonction réciproque f^{-1} est continue sur l'intervalle J (car les courbes de f et f^{-1} sont symétriques par rapport à la droite d'équation y = x)

Remarque

f est continue sur l'intervalle l

sa courbe C_f est continue « ne présente aucune coupure »

Théorème des Valeurs Intermédiaires « T.V.I »

T.V. : Si f est continue sur l'intervalle [a; b]

et $f(a) \times f(b) < 0$ alors f s'annule sur]a ; b[;

C'est-à-dire : $\exists c \in]a;b[$ tel que : f(c)=0

Interprétation géométrique

Ou

Montrer que la fonction $f(x)=x^3+x-3$ s'annule (au moins une fois) sur [0; 2]

La fonction f est une fonction polynomiale donc définie et continue sur IR, en particulier sur l'intervalle [0 ; 2]. De plus :

$$f(0) = -3 < 0$$
 et $f(2) = 7 > 0$

Donc d'après le T.V.I : $\exists c \in]0;2[$ tel que f(c)=0

4. Dérivabilité

$$I \subset IR \xrightarrow{f} IR$$

$$x \longmapsto f(x)$$

f est une fonction définie sur un intervalle I

Définition

On dit que la fonction f est dérivable en x_0 si :

$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} \text{ existe.}$$

Cette limite « quand elle existe » est appelée : dérivée de f au point x_0 et on la note $f'(x_0)$

Ainsi

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

A retenir:

toutes les formules de dérivation qu'on utilise sont une conséquence directe de cette définition.

Exemples

1. Pourquoi la dérivée d'une constante est égale à 0 ?

On pose:
$$f(x)=C$$
, soit $x_0 \in IR$

$$\xrightarrow{\mathsf{X}_0}$$
 IR

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{C - C}{x - x_0} = 0$$

$$\xrightarrow{x \to x_0} 0$$

Ainsi :
$$\forall x_0 \in IR, f'(x_0) = 0$$

Ou encore (en notant x au lieu de x_0):

$$\forall x \in IR, f'(x) = 0$$

Exemples

2. Pourquoi: $(ax^2+bx+c)'=2ax+b$

On pose:
$$f(x)=ax^2+bx+c$$
, soit $x_0 \in IR$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Donc:

$$= \lim_{x \to x_0} \frac{(ax^2 + bx + c) - (ax_0^2 + bx_0 + c)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{a(x^2 - x_0^2) + b(x - x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{a(x + x_0) + b = a(x_0 + x_0) + b}{x - x_0}$$

$$= \lim_{x \to x_0} a(x + x_0) + b = a(x_0 + x_0) + b$$

$$= 2ax_0 + b$$

Ainsi:

$$\forall x_0 \in IR, f'(x_0) = 2ax_0 + b$$

Ou encore (en notant x au lieu de x_0):

$$\forall x \in IR, f'(x) = 2ax + b$$

finalement:

$$f(x)=ax^2+bx+c \Longrightarrow f'(x)=2ax+b$$

Exemples

On pose:
$$f(x) = \frac{1}{x}$$
, soit $x_0 \in IR^*$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Donc:

$$f'(x_0) = \lim_{x \to x_0} \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{\frac{x_0 - x}{xx_0}}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{-(x - x_0)}{xx_0(x - x_0)} = \lim_{x \to x_0} -\frac{1}{xx_0}$$

$$= -\frac{1}{x_0^2} \Rightarrow f'(x_0) = -\frac{1}{x_0^2}$$

finalement:

$$\forall x_0 \in IR^*, f'(x_0) = -\frac{1}{x_0^2}$$

Ou encore (en notant x au lieu de x_0):

$$\forall x \in IR^*, f'(x) = -\frac{1}{x^2}$$

Les formules qui suivront sont aussi conséquence directe de la définition précédente :

b) Mémento du petit dériveur

fonction	fonction dérivée
ax+b	а
\mathbf{X}^{α} ($\alpha \in \mathbf{Q}$)	$\alpha \mathbf{x}^{\alpha-1}$
\sqrt{X}	1/2√X
lnx	1/x

fonction	fonction dérivée
eX	eX
Sin x	Cos x
Cos x	-Sin x
tanx	1+tan2x

Plus général : (u désigne une fonction)

fonction	fonction dérivée
au+b	au'
$u^{\alpha} (\alpha \in Q)$	$\alpha u' \times u^{\alpha-1}$
\sqrt{u}	u'/2√U
lnu	u'/u

fonction	fonction dérivée
eU	u'×e ^U
Sin u	u'×Cos u
Cos u	-u'×Sin u
tanu	(1+tan²u)×u'

Sans oublier, lorsque la fonction se présente sous forme de « blocs », qu'on a :

fonction	fonction dérivée
U+V	u'+v'
U×V	u'v+uv'
u/v	(u'v-uv')/v2
U∘V	(u'∘v)×v'

Exercice

Calculer les dérivées des fonctions suivantes :

1.
$$f(x) = \frac{2x}{x^2 - 1}$$

2.
$$f(x) = ln(x^2+x-3)$$

3.
$$f(x) = \sqrt{x}e^{\sin x}$$

4.
$$f(x) = \sqrt[5]{(x+1)^3}$$

5.
$$f(x) = (x^2+1)^{2/15}$$

Définition

Une fonction f est dérivable sur l'intervalle [a; b] si elle est dérivable en tout point de [a; b]

Exemples

1.
$$f(x) = \sqrt{x}$$
 définie et continue sur $[0;+\infty[$

$$f'(x) = \frac{1}{2\sqrt{x}} \text{ définie pour } x \in]0;+\infty[$$

Donc la fonction f n'est pas dérivable sur

 $[0;+\infty[$ car f n'est pas dérivable en 0, mais dérivable seulement sur l'intervalle $]0;+\infty[$

Exemples

2.
$$f(x) = \sqrt[3]{x-1}$$
 finie et continue IR

Question:

f est-elle dérivable sur l'intervalle [0; 2]?

$$f(x) = \sqrt[3]{x-1} = (x-1)^{1/3} \Rightarrow f'(x) = \frac{1}{3}(x-1)^{-2/3}$$

C'est-à-dire:
$$f$$

C'est-à-dire :
$$f'(x) = \frac{1}{3\sqrt[3]{(x-1)^2}}$$

$$f'(x) = \frac{1}{3\sqrt[3]{(x-1)^2}}$$

donc f n'est pas dérivable en x = 1, et par conséquent f n'est pas dérivable sur l'intervalle [0; 2]

Remarques

1. f est dérivable en $x_0 \implies f$ est continue en x_0

2. f est dérivable sur [a; b] ⇒ f est continue sur [a; b]

Donc « contraposée »

3. f est discontinue en $x_0 \implies$ f n'est pas dérivable en x_0

4. f est discontinue sur [a; b] → f n'est pas dérivable sur [a; b]

Contraposée: $p \Rightarrow q \Leftrightarrow non q \Rightarrow non p$

Exercice « Corrigé »

Calculer les dérivées des fonctions suivantes :

1.
$$f(x) = \frac{2x}{x^2 - 1} \Rightarrow f'(x) = -\frac{2(x^2 + 1)}{(x^2 - 1)^2}$$

2.
$$f(x) = \ln(x^2 + x - 3) \Rightarrow f'(x) = \frac{2x + 1}{x^2 + x - 3}$$

3. $f(x) = \sqrt{x}e^{\sin x}$

3.
$$f(x) = \sqrt{x}e^{\sin x}$$

$$\Rightarrow f'(x) = \frac{1}{2\sqrt{x}} e^{\sin x} + \sqrt{x} \cos x e^{\sin x}$$

Exercice « Corrigé »

4.
$$f(x) = \sqrt[5]{(x+1)^3} = (x+1)^{3/5}$$

$$\Rightarrow f'(x) = \frac{3}{5\sqrt[5]{(x+1)^2}}$$

5.
$$f(x) = (x^2+1)^{2/15}$$

$$\Rightarrow f'(x) = \frac{4x}{15\sqrt[15]{(x^2+1)^{13}}}$$

Théorème de Rolle

Théorème:

```
Si f est une fonction continue sur l'intervalle [a ; b] ; dérivable sur l'intervalle ouvert ]a ; b[ et : f(a)=f(b) alors :
```

 $\exists c \in]a;b[$ tel que f'(c)=0

Interprétation géométrique

Il y a au moins un point de la courbe où la tangente est horizontale

Remarque

```
Les hypothèses du Théorème de Rolle :
```

- a) f est continue sur [a; b]
- b) f est dérivable sur]a ; b[
- c) f(a) = f(b)

sont nécessaires.

Exemple

Peut-on appliquer le Théorème de Rolle à la fonction :

$$f(x)=1-\sqrt[3]{(x-1)^2}$$

sur l'intervalle [0;2]?

Réponse

a) $f(x)=1-\sqrt[3]{(x-1)^2}$ la racine cubique « racine impaire » est définie sur IR, donc

$$D_f = IR$$

• f est la somme d'une fonction constante

«1» et d'une fonction racine « $-\sqrt[3]{(x-1)^2}$ » donc continue sur son domaine de définition IR, en particulier f est continue sur l'intervalle [0 ; 2]

Réponse

b)
$$f(0)=1-\sqrt[3]{(0-1)^2}=1-\sqrt[3]{1}=0$$

 $f(2)=1-\sqrt[3]{(2-1)^2}=1-\sqrt[3]{1}=0$

ainsi
$$f(0) = f(2)$$

Réponse

c) Dérivabilité de f sur l'intervalle]0 ; 2[

$$f(x)=1-\sqrt[3]{(x-1)^2}=1-(x-1)^{2/3}$$

$$\Rightarrow f'(x)=-\frac{2}{3\sqrt[3]{x-1}}$$

f n'est pas dérivable en x = 1 « f'(1) n'est pas définie », donc f n'est pas dérivable sur l'intervalle]0 ; 2[

Conclusion

On ne peut pas appliquer le Théorème de

Rolle à la fonction
$$f(x)=1-\sqrt[3]{(x-1)^2}$$

sur l'intervalle [0 ; 2] car l'hypothèse de dérivabilité n'est pas vérifiée !!!

Voir Exercice 5, Série de TD

Théorème des accroissements finis « T.A.F »

```
Théorème: Si f est une fonction:
```

- a) continue sur [a; b]
- b) dérivable sur]a ; b[

alors:
$$\exists c \in]a;b[$$
 tel que:

$$f(b)-f(a)=(b-a)f'(c)$$

2^{ème} version « T.A.F »

Théorème: Si f est une fonction:

- a) continue sur [a; b]
- b) dérivable sur]a ; b[

alors:
$$\exists c \in]a;b[$$
 tel que:

$$\frac{f(b)-f(a)}{b-a}=f'(c)$$

3^{ème} version « T.A.F » ... premier développement limité

```
Théorème: Si f est une fonction:
```

- a) continue sur [a; b]
- b) dérivable sur]a ; b[

alors:
$$\exists c \in]a;b[$$
 tel que:

$$f(b)=f(a)+(b-a)f'(c)$$

Remarque: Pourquoi on dit: accroissements finis?

Comme
$$f(b)-f(a)=(b-a)f'(c)$$

« 1 ere version »

Si la dérivée première « f' » est une fonction

bornée: $|f'(x)| \le M$ sur l'intervalle considéré,

alors on a : $|f(b)-f(a)| \le M(b-a)$

Ainsi, si l'ordre de grandeur de f' est fixé, les accroissements de la fonction f « f(b)-f(a) » sont bornés « finis »

Interprétation géométrique

$$\exists c \in]a;b[$$
 tel que $\frac{f(b)-f(a)}{b-a}=f'(c)$

Veut dire : Il y a au moins un point de la courbe où la tangente est parallèle au segment AB

Interprétation géométrique

Il y a au moins un point de la courbe où la tangente est parallèle au segment AB

Conséquences

f est une fonction continue et dérivable sur l'intervalle [a; b]:

- Si f'(x)=0 ($\forall x \in [a;b]$) alors f est constante
- Si $f'(x) \ge 0$ ($\forall x \in [a;b]$) alors f est croissante
- Si $f'(x) \le 0$ ($\forall x \in [a;b]$) alors f est décroissante

... sur l'intervalle [a ; b]

Preuve

Soient x et y deux nombres quelconques de l'intervalle [a ; b] tels que : $x \le y$

• Si f'(x)=0 ($\forall x \in [a;b]$), dans ce cas; T.A.F:

$$f(y)-f(x)=(y-x)f'(c)=(y-x)\times 0=0$$

$$\Rightarrow f(y)=f(x)$$
: f est donc constante sur l'intervalle [a; b]

Preuve

• Si $f'(x) \ge 0$ ($\forall x \in [a;b]$), dans ce cas; T.A.F:

$$f(y)-f(x)=(y-x)f'(c)\geq 0$$

$$y-x\ge 0$$
 $f'(c)\ge 0 \Rightarrow f(y)\ge f(x)$

f est donc croissante sur l'intervalle [a; b]

Preuve

Si f'(x)≤0 (∀x∈[a;b]), dans ce cas ; T.A.F :

$$f(y)-f(x)=(y-x)f'(c)\leq 0$$

$$y-x\ge 0$$
 $f'(c)\le 0 \Rightarrow f(y)\le f(x)$

f est donc décroissante sur l'intervalle [a; b]

5. Calcul de limites

« Règle de l'HOSPITAL »

Exemple:
$$\lim_{x\to 0} \frac{\sin x}{x} = ?$$

Problème: lorsque $x \rightarrow 0$:

$$Sinx \rightarrow 0$$
 et $x \rightarrow 0$

$$\frac{0}{0} = ?$$

1.
$$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0$$

$$\lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} \frac{1}{x} = \pm \infty$$

3.
$$\lim_{x \to 0} \frac{5x}{x} = 5$$

La forme indéterminée

Nous avons une forme indéterminée lorsqu'on ne peut pas prévoir le résultat d'avance.

Les formes indéterminées :

$$\frac{0}{0}$$
=?; $\frac{\infty}{\infty}$ =?; ∞ - ∞ =?; $0\times\infty$ =?

$$\frac{0}{0} = ?$$

Pour la forme indéterminée $\frac{0}{0}$ =? , on peut

utiliser la Règle de l'Hospital:

R-H: Si
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$

alors
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

1.
$$\lim_{x \to 0} \frac{\sin x}{x} = ?$$

Règle de l'Hospital:

$$\lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\cos x}{1} = \cos 0 = 1$$

$$\lim_{x \to 1} \frac{\ln x}{x-1} = ?$$

Règle de l'Hospital:

$$\lim_{x \to 1} \frac{\ln x}{x-1} = \lim_{x \to 1} \frac{1/x}{1} = 1/1 = 1$$

3.
$$\lim_{x \to 0^+} \frac{e^x - 1}{x^2} = ?$$

Règle de l'Hospital:

$$\lim_{x \to 0^+} \frac{e^x - 1}{x^2} =$$

$$\lim_{x \to 0+} \frac{e^x}{2x} = \frac{e^0}{0^+} = \frac{1}{0^+} = +\infty$$

Remarque

La règle de l'Hospital est un outil puissant pour le calcul des limites. Elle peut être utilisée plusieurs fois de suite.

4.
$$\lim_{x \to 0} \frac{e^{x} - x - 1}{x^{2}} = ?$$

Règle de l'Hospital « 1ère fois »:

$$= \lim_{x \to 0} \frac{e^{x} - 1}{2x}$$

Règle de l'Hospital « 2ème fois »:

$$=\lim_{x\to 0} \frac{e^x}{2} = \frac{e^0}{2} = \frac{1}{2}$$

5.
$$\lim_{X \to 0^+} \frac{\sin x - x - x^3}{x^4} = ?$$

Règle de l'Hospital « 1ère fois »:

$$= \lim_{x \to 0^+} \frac{\cos x - 1 - 3x^2}{4x^3}$$

Règle de l'Hospital « 2^{ème} fois »:

$$= \lim_{x \to 0^+} \frac{-\sin x - 6x}{12x^2}$$

Règle de l'Hospital « 3^{ème} fois »:

$$= \lim_{x \to 0^{+}} \frac{-\cos x - 6}{24x} = \frac{-7}{0^{+}} = -\infty$$