

Privacy-Preserving Computation with Fully Homomorphic Encryption

31 October // Washington, DC, USA

Robert Podschwadt <u>rpodschw@odu.edu</u>

Daniel Takabi <u>Takabi@odu.edu</u>

About Us

Robert Podschwadt

Old Dominion University

Norfolk, VA

Daniel Takabi

About Us

Robert Podschwadt, Ph.D

Research Assistant Professor

School of Cybersecurity

Old Dominion University

Norfolk, VA

Email: rpodschw@odu.edu

About Us

Daniel Takabi, Ph.D

Professor, Department of Electrical & Computer Engineering

Batten Endowed Chair in Cybersecurity

Director, School of Cybersecurity

Director, Coastal Virginia Center for Cyber Innovation

Old Dominion University

designated a National Center of Academic Excellence in Cyber Research (CAE-R) by NSA

Norfolk, VA

Email: takabi@odu.edu

Our Work on FHE

- Since 2015
- Primarily focused on privacy-preserving machine learning (PPML)
 - Convolutional Neural Networks (CNN)
 - Recurrent Neural Networks (RNN)
 - GPU Acceleration
 - Image Transformers
 - Memory Efficiency
 - ML pruning/ compression
 - Ongoing Work: compiler tooling, applications & use cases
- Published 20+ papers

Outline

- 1. Introduction to Fully Homomorphic Encryption (FHE)
- 2. Mathematical Background
- 3. FHE schemes and their Properties
- 4. CKKS: The Details
- 5. Computation with FHE
- 6. Hands-on

Introduction to Fully Homomorphic Encryption (FHE)

The Importance of Privacy Preserving Computation

Data Leakage

Encrypted Computation

MILCOM

Homomorphic Encryption

- HE allows for operation on the encrypted data without the need for decryption or access to the secret key
- Perfect for outsourced computation.....
- ... but there is a catch (multiple catches, actually)
 - Only supports addition and multiplication
 - Noise growth
 - Execution time
 - Size
- Pro: No interactions that are not in the plaintext version
- Con: High computational cost
- Basically trade-off network traffic for CPU load

The High-level View

- Encrypt data by adding noise
- Decryption removes the noise
- Multiplication increases the noise in the Ciphertext
- Too much noise prevents correct decryption
- With leveled FHE we can configure the number of multiplications we can perform
- Once all levels are used we can do no further computation
- With bootstrapping we can refresh the number of levels...
- ... unlimited computation!

Homomorphic Encryption - Types

- Partially homomorphic encryption
 - Only support one type of operation like addition or multiplication
- Somewhat homomorphic encryption
 - Support addition and multiplication but not all types of circuits
- Leveled fully homomorphic encryption
 - Support addition and multiplication and circuits with a predefined depth
- Fully homomorphic encryption
 - Support addition and multiplication and circuits of arbitrary depth

Fully Homomorphic Encryption – History 1/2

- First proposed in 1978 after the publication of RSA
 - 30 years of partial results
- First FHE
 - Done by Craig Gentry in 2010
 - Based on ideal lattices
 - Encryption adds noise to the data
 - Operations increase the noise
 - If the noise is too large decryption is impossible
 - Introduction of the bootstrapping trick
 - Use scheme that can evaluate its own decryption function homomorphically
 - This refreshes the noise and allows for further computation

Fully Homomorphic Encryption – History 1/2

- Improved FHE schemes
 - Mostly based on Ring Learning with Errors Problem (RLWE)
 - BGV https://eprint.iacr.org/2011/277
 - BFV https://eprint.iacr.org/2012/144
 - CKKS https://link.springer.com/chapter/10.1007%2F978-3-319-70694-8 15
 - Support for bootstrapping or leveled FHE
 - Faster bootstrapping
 - TFHE https://tfhe.github.io/tfhe/
 - Supports binary gates
 - High level operations need to pieced together

Open-Source Libraries

- HELib (<u>https://github.com/HomEnc/HElib</u>)
 - One of the earliest libraries
 - Supports BGV and CKKS
- HEAAN (https://github.com/snucrypto/HEAAN)
 - Original implementation of the CKKS scheme
- TFHE (https://github.com/tfhe/tfhe)
 - Original implementation of the TFHE scheme
- OpenFHE (<u>https://github.com/openfheorg/openfhe-development</u>)
 - Implementation of the most common schemes with bootstrapping and multiparty support
- SEAL (https://github.com/microsoft/SEAL)
 - BFV and CKKS support
 - Used to be popular among researchers
- Lattigo (https://github.com/ldsec/lattigo)
 - Go implementation of various schemes

Mathematical Background

Learning with Errors

- LWE: adding small, random noise to linear equations makes solving them difficult.
- q: a large prime modulus.
- n: the dimension (typically chosen large for security).
- $s \in \mathbb{Z}_q^n$: a secret vector.
- $A \in \mathbb{Z}_q^{m \times n}$: a randomly chosen matrix.
- $e \in \mathbb{Z}_q^m$ a small error vector, where each entry is drawn from a specific error distribution (usually a discrete Gaussian distribution).

Hardness of Learning with Errors

- Search LWE
 - Given $b = A \cdot s + e \pmod{q}$
 - the hard problem is to find s
- Decision LWE
 - Given A and b, decide if b was generated using noise or if it is just a random vector
- Solving these problems can be linked to lattice problems
 - Problems are believed to quantum hard Shortest Vector Problem

Closest Vector Problem

LWE Example

- Modulus q = 7
- Secret s = [3, 5]
- Randomly choose $A = \begin{bmatrix} 1 & 4 \\ 2 & 6 \end{bmatrix}$
- Random small vector e = [1, 0]
- Compute $b = \begin{bmatrix} 1 & 4 \\ 2 & 6 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 5 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mod 7$

•
$$b = \begin{bmatrix} 1 \cdot 3 + 4 \cdot 5 \\ 2 \cdot 3 + 6 \cdot 5 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mod 7$$

•
$$b = \begin{bmatrix} 24 \\ 36 \end{bmatrix} \mod 7$$

•
$$b = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Ring Learning With Errors 1/2

- Extension of LWE to polynomial rings
- A polynomial ring is a mathematical structure
 - With addition and multiplication
 - Elements are polynomials
- We work with quotient rings
 - All polynomials are modulo q
 - Cyclotomic polynomial f(x)

$$R_q = \mathbb{Z}_q[X]/(f(x))$$

Is the ring with of polynomials with integer coefficients mod q and polynomials are reduced by f(x)

Ring Learning With Errors 2/2

- The components are similar to the LWE
 - a(x) a random polynomial
 - s(x) a secret polynomial
 - e(x) a small error polynomial
- RLWE is more efficient than LWE

Example:

•
$$q = 7, R_7 = \mathbb{Z}_7[X]/(x^2 + 1)$$

•
$$a(x) = 4 + x$$

•
$$s(x) = 3 + 2x$$

•
$$e(x) = 1$$

$$b(x) = a(x) \cdot s(x) + e(x) \bmod 7$$

$$b(x) = (4 + x) \cdot (3 + 2x) + 1 \bmod 7$$

Polynomial multiplication:

$$(4+x)\cdot(3+2x)=12+8x+3x+2x^2$$

Reduce modulo $x^2 + 1$:

$$= 12 + 8x + 3x + 2(-1) = 10 + 11x$$

Reduce coefficients modulo 7 and error e(x) = 1= 10 + 11x = 3 + 4x

Add error
$$e(x) = 1$$

$$4+4x$$

FHE Schemes

Single Instruction Multiple Data (SIMD)

- Most schemes allow encoding multiple messages into a plaintext/ciphertext
- All operations on the plaintext/ciphertext are performed on all messages encoded at no extra cost
- Max. number of messages is called *slots*
- Number of slots typically >1000

BFV/BGV Schemes

- BFV/BGV Schemes (Brakerski-Fan-Vercauteren/Brakerski-Gentry-Vaikuntanathan):
 - Structure:
 - The BFV/BGV scheme supports operations on integers or fixed-point numbers, making it useful for exact computations. BFV focuses more on optimizations.
 - Use Cases:
 - Best for scenarios where exact arithmetic is needed, such as financial computations (e.g., balance calculations) or voting systems.
 - Properties:
 - Precise results and supports both addition and multiplication on ciphertexts.
 - Supports batching (processing multiple encrypted data points at once)

CKKS Scheme

- CKKS (Cheon-Kim-Kim-Song) Scheme
 - Structure:
 - Unlike BFV and BGV, CKKS is designed for computations on real numbers. It enables approximate arithmetic, meaning computations will introduce a small amount of error.
 - Use Cases:
 - Applications requiring computations on real or floating-point numbers, such as machine learning algorithms, image processing, or signal processing. Commonly used in AI/ML, where a high degree of precision is often not needed (approximations are acceptable).
 - Properties:
 - Supports addition and multiplication but introduces a level of approximation (rounding). Provides excellent performance for large-scale computations due to reduced noise accumulation compared to other schemes.
 - Supports batching (processing multiple encrypted data points at once)

- TFHE (Torus Fully Homomorphic Encryption)
 - AKA. CGGI (Chillotti-Gama-Georgieva-Izabachène)
 - Structure:
 - TFHE is optimized for fast and efficient boolean circuit evaluation. It uses operations over the torus, which makes binary computations faster.
 - Use Cases:
 - Ideal for applications that require boolean logic, such as circuits performing logical AND/OR/NOT operations. Examples include secure voting systems, logic gate-based algorithms, or encrypted control systems.
 - Properties:
 - Low Latency: TFHE allows for fast, low-latency operations, making it one of the most efficient schemes for binary data.
 - Binary Gates: Supports the evaluation of encrypted logic gates, making it particularly useful for cryptographic protocols and arbitrary computation.

IEEE
MILCOM

CKKS: The Details

CKKS Overview

CKKS Overview

- Message is the vector $z = [z_1, z_2, ..., z_{N/2}]$
- In the encoded plaintext m(x) the slot i contains the value Δz_i (approximately)
- $m(\zeta_i) \approx \Delta \cdot z_i$ for root ζ_i of $X^N + 1 = 0$

- Message is the vector $z = [z_1, z_2, ..., z_{N/2}]$
- In the encoded plaintext m(x) the slot i contains the value Δz_i (approximately)
- $m(\zeta_i) \approx \Delta \cdot z_i$ for root ζ_i of $X^N + 1 = 0$

- Message is the vector $z = [z_1, z_2, ..., z_{N/2}]$
- In the encoded plaintext m(x) the slot i contains the value Δz_i (approximately)
- $m(\zeta_i) \approx \Delta \cdot z_i$ for root ζ_i of $X^N + 1 = 0$

- Message is the vector $z = [z_1, z_2, ..., z_{N/2}]$
- In the encoded plaintext m(x) the slot i contains the value Δz_i (approximately)
- $m(\zeta_i) \approx \Delta \cdot z_i$ for root ζ_i of $X^N + 1 = 0$

The message vector z is encoded in the plaintext polynomial m(x)

CKKS Encoding Example

•
$$N = 4, \Delta = 2^7$$

- Message: $(z_1, z_2) = (1.2 3.4i, 5.6 + 7.8i)$
- Encoded message: $m(x) = 435 706x + 282x^2 308x^3$
- Complex roots of $X^4 + 1 = 0$
 - $\zeta_1 = (1+i)/\sqrt{2}$
 - $\zeta_2 = -(1+i)/\sqrt{2}$
 - •
- $m(\zeta_1) \approx 153.5 i \cdot 435.0$
- $m(\zeta_1)/\Delta \approx 1.998 i \cdot 3.398$
- $m(\zeta_2) \approx 716.4 + i \cdot 999.0$
- $m(\zeta_2)/\Delta \approx 5.597 + i \cdot 7.805$

CKKS Overview

CKKS Secret and Public Key

- Sample three polynomials from $\mathbb{Z}_q[X]/(X^N+1)$: a, sk, e
 - Secret key: sk
 - Public key: $pk = (-a \cdot sk + e, a)$
 - A small error polynomial *e*

CKKS Encryption

- Encryption:
 - Encrypt the message polynomial m into two polynomials c_0, c_1

$$Enc(m) =$$

$$(m,0) + pk =$$

$$(m - a \cdot sk + e, a) =$$

$$(c_0, c_1) = c$$

(we use m and c_i instead of m(x), $c_i(x)$

CKKS Decryption

$$m(x) \in \mathbb{Z}[X]/(X^N+1)$$

 $c = (c_0(x), c_1(x)) \in R_q^2$

Plaintext

Decryption pk

Ciphertext

- Decryption:
 - Decrypt the ciphertext polynomials c_0 , c_1 into the message polynomial m

Recall:

$$c_0, c_1 = (m - a \cdot sk + e, a)$$

$$Dec(c) =$$

$$c_0 + c_1 sk =$$

$$c_0 + c_1 sk =$$

$$m - a \cdot sk + e + a \cdot sk =$$

$$m + e \approx m$$

CKKS Overview

CKKS Addition

- Given two ciphertexts $c=(c_0,c_1)$, $d=(d_0,d_1)$
- Addition:
 - Straight forward. Add polynomials of both chiphertexts

$$Add(c,d) = (c_0 + d_0, c_1 + d_1)$$

CKKS Multiplication

- Given two ciphertexts $c=(c_0,c_1), d=(d_0,d_1)$
- Multiplication
 - What we want is: $Dec(cd) = Dec(c) \cdot Dec(d)$

$$(c_0 + c_1 \cdot sk) \cdot (d_0 + d_1 \cdot sk) =$$

$$c_0 d_0 + (c_0 d_1 + d_0 c_1) \cdot sk + c_1 d_1 \cdot sk^2$$

We can compute the product as

$$cd = (c_0d_0, c_0d_1 + d_0c_1, c_1d_1)$$

BUT the ciphertext consist of three polynomials now

CKKS Relinearization

- After multiplication the ciphertext consists of three parts
- To bring it back down to two we use relinearization
 - Create a relinearization key:
 - e_0 small random polynomial
 - a_0 random polynomial
 - v a large integer
 - relinearization key $rk = (-a_0 sk + e_0 + sk^2, a_0) \mod vq$
 - $(-a_0 sk + e_0 + sk^2, a_0)$ decrypts to $e_0 + sk^2$
 - p is used to control the noise introduced
 - $Relin(Mult(c,d),rk) = (c_0d_0,c_0d_1+d_0c_1)+\lfloor \frac{c_1d_1\cdot rk}{v} \rfloor$

CKKS Rescaling Motivation

- Recall:
 - The ciphertext c encrypts some message z scaled by Δ
 - $c \cdot c$ encrypts $z^2 \Delta^2$
 - Multiplication causes the scale Δ to grow quadratically
- We want to keep the scale Δ the same size after multiplication to prevent overflow
- Rescaling allows us to reduce the size of Δ after a multiplication

Residue Number System 1/2

- Time for a small detour
- Residue Number System (RNS), related to the Chinese Remainder Theorem
- Given a set of "small" coprime numbers we can represent a large integer as a set of smaller integers
- Given n coprimes c_1, \dots, c_n we can represent numbers between 0 and $-1 + \prod_{i=1}^n c_i$

Residue Number System 2/2

- Almost back on track
- Addition and multiplication is element-wise
- Example:
 - Co-primes: 3, 5, 11
 - Can represent numbers between 0 and 164
 - $16 \rightarrow (1,1,5), 9 \rightarrow (0,4,9)$
 - 16+9=25 -> (1,0,3) = (1,1,5) + (0,4,9) = (1+0,1+4,5+9) = (1,0,3)
 - $16*9 = 144 \rightarrow (0,4,1) = (1,1,5) * (0,4,9) = (1*0,4*1,5*9) = (0,4,1)$
- Why do we need this?
 - Numbers can get 100s of bits large
 - Working with numbers larger than a word (64bit) is slow

CKKS Rescaling

- We can select the ciphertext modulus q as the product of multiple smaller (less than word-size) primes p_l and a prime q_0
- L is the number of the smaller primes p_l
- Select L primes $p_1, \dots p_L$, each $p_l \approx \Delta$, and a prime $q_0 > \Delta$
- After each multiplication, we can "discard" one of the primes
 - Ciphertext c is now $c' \in R_{q'}^2$ with $q' = \frac{q}{\Delta}$
 - Scaling factor Δ^2 is reduced to Δ
 - Doesn't change the encrypted message only the representation
- We can only preform L multiplications -> leveled HE

Security Parameters

- For security increase *n*
- For more levels increase q
- Security of the scheme relies on $\frac{n}{q}$
 - as q increases so must n
- Larger values increase the computational cost
- The HE standard provides values for n and q that provide 128bit security

N	log q
1024	29
2048	56
4096	111
8192	220
16384	440
32768	880

Additional CKKS operations

- Rotation
 - Ciphertexts are encryptions of vectors
 - We can rotate the elements in the vector with wrap around
 - Requires rotation (galois) keys

- Bootstrapping
 - Resets the level of the Ciphertext to allow additional computation
 - Expensive operation

Computation with FHE

Constraints

- No "random" access to slots in the encrypted vector
 - Can't do c[i]
- No inter slot operations
 - Can't do c[i] + c[j]
- With CKKS we can only evaluate Polynomial functions
- Given a ciphertext c we can't (easily) compute, e.g.:
 - $\max(y, c)$
 - Sigmoid: $\frac{1}{1+e^{-c}}$
 - \sqrt{c}
 - *y*^c
 - $\frac{y}{c}$
 - •

Vector Computation

Element-wise operations are simple

a+d b+e b e

be

- But what if we want to compute the inner product?
 - The first part is simple

But how do we sum up the rest?

d d ad d ad ad a a a =

- Simple Solution:
- b b

C

be be e cf

=

More ciphertexts:

Better Vector Computation

- Using multiple ciphertexts is not very efficient
- Better way:
 - Use rotations

Evaluating Non-Polynomial Functions

- What if we want to evaluate functions that are not easily expressed as polynomials?
- Example:
- We can approximate the function using polynomials

 We need to carefully consider the interval. Polynomials can get out of hand quickly

Binary Gate Computation

- FHEW/TFHE support binary gate evaluation
 - AND, OR, NAND, NOR, XOR, XNOR
- We can use the binary gates to (theoretically) express any function or program

Image Credit: Jooja Creative Commons Attribution-Share Alike 4.0 International

Lookup Tables

- Another way to compute functions is lookup tables
- Lookup up tables store a mapping from input to output
- Example: Sigmoid Function

X	f(x)
-1	0.26894142,
-0.5	0.37754067
0	0.
0.5	0.62245933
1	0.7310585786300049

Lookup tables can be efficiently computed using binary schemes

Scheme Switching

- If the only tool you have is a hammer every problem looks like nail
- Schemes are great a different things
 - BFV,BGV, CKKS are great for arithmetic
 - TFHE/FHEW are great for binary computation
- We can use the best scheme for the operation
- From CKKS -> FHEW
 - Perform the decoding homomorphically
 - One CKKS ciphertext into multiple FHEW ciphertexts
- From FHEW -> CKKS
 - Homomorphically evaluate the decryption function
 - Multiple FHEW into one CKKS ciphertexts

Tools For An Easier Life

- LWE/Latice Estimator
 - https://github.com/malb/lattice-estimator
 - Use to estimate security of parameters
- TenSEAL
 - https://github.com/OpenMined/TenSEAL
 - Tensor library build on top of SEAL
- HEIR
 - https://heir.dev/
 - Compiler Toolchain for FHE
- Concrete and Concrete-ML
 - https://github.com/zama-ai/concrete and https://github.com/zama-ai/concrete-ml
 - Concrete is a TFHE compiler
 - Concrete-ML is a machine learning built on top of Concrete

Hands On

Getting Ready

- Here is what you need:
 - A browser with internet access
 - A Google account

github.com/podschwadt/fhe_tutorial