Property	Signal	Fourier Transform	
	$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df$	$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$	
	$y(t) = \int_{-\infty}^{-\infty} Y(f) e^{j2\pi f t} df$	$Y(f) = \int_{-\infty}^{-\infty} y(t) e^{-j2\pi f t} dt$	
Linearity	Ax(t) + By(t)	AX(f) + BY(f)	
Time Shift	$x(t-t_0)$	$e^{-j2\pi f t_0}X(f)$	
Frequency Shift	$e^{j2\pi f_0 t} x(t)$	$X(f-f_0)$	
Scaling	x(at)	$\frac{1}{ a }X\left(\frac{f}{a}\right)$	
Duality	X(t)	x(-f)	
Complex Conjugate	$x^*(t)$	$X^*(-f)$	
Area	$X(0) = \int_{-\infty}^{\infty} x(t) dt$		
	$x(0) = \int_{-\infty}^{\infty} X(f) \mathrm{d}f$		
	$x^{'}(t)$	$j2\pi fX(f)$	
Time Differentiation	$\frac{\mathrm{d}^n x(t)}{\mathrm{d}t^n}$	$(j2\pi f)^n X(f)$	
	$-j2\pi tx(t)$	$X^{'}(f)$	
Freq. Differentiation	$(-j2\pi t)^n x(t)$	$\frac{\mathrm{d}^n X(f)}{\mathrm{d}f^n}$	
Time Integration	$\int_{-\infty}^t x(\tau) \mathrm{d}\tau$	$\frac{1}{j2\pi f}X(f), \text{ for } X(0) = 0$	
Convolution	$\int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$	X(f)Y(f)	
Multiplication		$\int_{-\infty}^{\infty} X(\nu)Y(f-\nu)\mathrm{d}\nu$	
Energy Conservation (Parseval's Theorem)	$x(t)y(t) \qquad \int_{-\infty}^{\infty} X(\nu)Y(f-\nu)d\nu$ $\int_{-\infty}^{\infty} x(t) ^2 dt = \int_{-\infty}^{\infty} X(f) ^2 df$		

Figure 4.1: Properties of the Fourier Transform

	g(t)	G(f)	
	$e^{-at}u(t)$	$\frac{1}{a+j2\pi f}$	a > 0
2	$e^{at}u(-t)$	$\frac{1}{a - j2\pi f}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2 + (2\pi f)^2}$	
4	$te^{-at}u(t)$	$\frac{1}{(a+j2\pi f)^2}$	a > 0
5	$t^n e^{-at}u(t)$	$\frac{n!}{(a+j2\pi f)^{n+1}}$	
6	$\delta(t)$	1	
7	1	$\delta(f)$	
8	$e^{j2\pi f_0 t}$	$\delta(f-f_0)$	
9	$\cos 2\pi f_0 t$	$0.5[\delta(f+f_0)+\delta(f-f_0)]$	
10	$\sin 2\pi f_0 t$	$j0.5[\delta(f+f_0)-\delta(f-f_0)]$	
11	u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$	
12	sgn t	$\frac{2}{i2\pi f}$	
	$\cos2\pi f_0tu(t)$	$\frac{1}{4}[\delta(f-f_0)+\delta(f+f_0)]+\frac{j2\pi f}{(2\pi f_0)^2-(2\pi f)^2}$	
14	$\sin 2\pi f_0 t u(t)$	$\frac{1}{4j}[\delta(f-f_0)-\delta(f+f_0)]+\frac{2\pi f_0}{(2\pi f_0)^2-(2\pi f)^2}$	
15	$e^{-at}\sin2\pi f_0tu(t)$	$\frac{2\pi f_0}{(a+j2\pi f)^2+4\pi^2 f_0^2}$	
16	$e^{-at}\cos 2\pi f_0 t u(t)$	$\frac{a+j2\pi f}{(a+j2\pi f)^2+4\pi^2 f_0^2}$	
	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \cdot \operatorname{sinc}(f\tau)$	
18	sinc(2Bt)	$\frac{1}{2B} \operatorname{rect}\left(\frac{t}{2B}\right)$	
19	$ au$ tri $\left(rac{t}{ au} ight)$	$ au^2 \operatorname{sinc}^2(f au)$	
20	$\operatorname{sinc}^2(2Bt)$	$\frac{1}{2B}\operatorname{tri}\left(\frac{f}{2B}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$f_0 \sum_{n=-\infty}^{\infty} \delta(f - nf_0)$	
22	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-2(\sigma\pi f)^2}$	

Figure 4.2: Table of the Fourier Transform