- Proofs -

Software Verification via Three-Valued Abstraction and k-Induction

Nils Timm, Stefan Gruner, and Matthias Harvey

Department of Computer Science, University of Pretoria, Pretoria, South Africa {ntimm, sgruner}@cs.up.ac.za

Lemma 1. Let $_{A^r}[\![M,\psi]\!]_k$ be the enhanced encoding of $_{A^r}[\![M,S_0\models_\exists\psi]\!]_k$. Moreover, let C over DL be a definite constraint. Then

$$A^r \llbracket M, \psi \rrbracket_k \vdash C \Rightarrow A^r [M, S_0 \models_{\forall} (\psi \rightarrow btl(C))]_k = true$$

Proof

The premise is $_{A_r}[\![M,\psi]\!]_k^+ \vdash C$ or $_{A_r}[\![M,\psi]\!]_k^- \vdash C$. Since constraints learned for the over-approximation are also valid constraints of the under-approximation and vice versa, we can conclude that the following holds: $_{A_r}[\![M,\psi]\!]_k^+ \models C$ and $_{A_r}[\![M,\psi]\!]_k^- \models C$. The definition of the semantic consequence ' \models ' lets us conclude that the following holds: $\forall \mathcal{A}: Atoms_D \cup Atoms_U \rightarrow \{true, false\}: \mathcal{A}(A_r[\![M,\psi]\!]_k^+) = true \Rightarrow \mathcal{A}(C) = true$ and $\mathcal{A}(A_r[\![M,\psi]\!]_k^-) = true \Rightarrow \mathcal{A}(C) = true$. We now prove by induction on the structure of C that the following holds: $\forall \mathcal{A}: Atoms_D \cup Atoms_U \rightarrow \{true, false\}: \mathcal{A}(C) = true \Rightarrow \mathcal{A}([\![btl(C)]\!]_k^+) = true$ and $\mathcal{A}([\![btl(C)]\!]_k^- = true$:

- 1. Let $C = p[t]_i$. The premise is $\mathcal{A}(p[t]_i) = true$. We have that $btl(p[t]_i) = p_i$, $[\![btl(p[t]_i)]\!]_k^+ \equiv p[u]_i \lor p[t]_i$, and $[\![btl(p[t]_i)]\!]_k^- \equiv p[t]_i$. From the premise we immediately get $\mathcal{A}([\![btl(p[t]_i)]\!]_k^+) = true$ and $\mathcal{A}([\![btl(p[t]_i)]\!]_k^-) = true$.
- 2. Let $C = p[f]_i$. The premise is $\mathcal{A}(p[f]_i) = true$. We have that $btl(p[f]_i) = \neg p_i$, $[\![btl(p[f]_i)]\!]_k^+ \equiv p[u]_i \lor p[f]_i$, and $[\![btl(p[f]_i)]\!]_k^- \equiv p[f]_i$. From the premise we immediately get $\mathcal{A}([\![btl(p[f]_i)]\!]_k^+) = true$ and $\mathcal{A}([\![btl(p[f]_i)]\!]_k^-) = true$.
- 3. Let $C = l_j[r]_i$. The premise is $\mathcal{A}(l_j[r]_i) = true$. We have that $btl(l_j[r]_i) = \bigvee_{(l_m...l_0) \in Loc_j, l_r=1} (pc_j = l_m ... l_0)_i$, $\llbracket btl(l_j[r]_i) \rrbracket_k^+ = \bigvee_{(l_m...l_0) \in Loc_j, l_r=1} \bigwedge_{r'=0}^m (\text{if } l_{r'} = 1 \text{ then } l_j[r']_i \text{ else } \neg l_j[r']_i) \equiv l_j[r]_i$, and $\llbracket btl(l_j[r]_i) \rrbracket_k^- \bigvee_{(l_m...l_0) \in Loc_j, l_r=1} \bigwedge_{r'=0}^m (\text{if } l_{r'} = 1 \text{ then } l_j[r']_i \text{ else } \neg l_j[r']_i) \equiv l_j[r]_i$. From the premise we immediately get $\mathcal{A}(\llbracket btl(l_j[r]_i) \rrbracket_k^+) = true$ and $\mathcal{A}(\llbracket btl(l_j[r]_i) \rrbracket_k^-) = true$.
- 4. Let $C = \neg l_j[r]_i$. The premise is $\mathcal{A}(\neg l_j[r]_i) = true$. We have that $btl(\neg l_j[r]_i) = \bigvee_{(l_m...l_0) \in Loc_j, l_r=0} (pc_j = l_m...l_0)_i$, $\llbracket btl(\neg l_j[r]_i) \rrbracket_k^+ = \bigvee_{(l_m...l_0) \in Loc_j, l_r=0} \bigwedge_{r'=0}^m (\text{if } l_{r'} = 1 \text{ then } l_j[r']_i \text{ else } \neg l_j[r']_i) \equiv \neg l_j[r]_i$, and $\llbracket btl(\neg l_j[r]_i) \rrbracket_k^- \bigvee_{(l_m...l_0) \in Loc_j, l_r=0} \bigwedge_{r'=0}^m (\text{if } l_{r'} = 1 \text{ then } l_j[r']_i \text{ else } \neg l_j[r']_i$. From the premise we immediately get $\mathcal{A}(\llbracket btl(\neg l_j[r]_i) \rrbracket_k^+) = true$ and $\mathcal{A}(\llbracket btl(\neg l_j[r]_i) \rrbracket_k^-) = true$.
- 5. Let $C = c_1 \vee \ldots \vee c_m$. The premise is $\mathcal{A}(c_1 \vee \ldots \vee c_m) = true$. Hence, $\mathcal{A}(c_1) = true \vee \ldots \vee \mathcal{A}(c_m) = true$. Since for each literal c_1, \ldots, c_m one of the cases 1 to 4 must apply, we immediately get $\mathcal{A}(\llbracket btl(c_1 \vee \ldots \vee c_m) \rrbracket_k^+) = true$ and $\mathcal{A}(\llbracket btl(c_1 \vee \ldots \vee c_m) \rrbracket_k^-) = true$.

By combining what we have proven so far we get $\forall \mathcal{A}: Atoms_D \cup Atoms_U \rightarrow \{true, false\}: \mathcal{A}(A_r[\![M,\psi]\!]_k^+) = true \Rightarrow \mathcal{A}([\![btl(C)]\!]_k^+) = true$ and $\mathcal{A}(A_r[\![M,\psi]\!]_k^-) = true \Rightarrow \mathcal{A}([\![btl(C)]\!]_k^-) = true$. Since we have a one-to-one correspondence between assignments to an encoded bounded model checking problem and paths of the actual bounded model checking problem, we can conclude the following: $\forall \pi$ of $M: [\pi \models \psi]_k \Rightarrow [\pi \models btl(C)]_k$ holds. This is equivalent to $[M, S_0 \models_U (\psi \rightarrow btl(C))] = true$ which completes the proof of Lemma 1. \square

Lemma 2. Let $_{A^r}[\![M,\psi]\!]_k$ be the encoding of $_{A^r}[\![M,S_0\models_\exists\psi]\!]_k$ and let C be a definite constraint. Then

$$_{A^r}[M, S_0 \models_{\forall} (\psi \to btl(C))]_k = true \Rightarrow _{A^r}[M, \psi]_k \models C$$

Proof.

The premise is that C be a definite constraint learned from ${}_{A_r}\llbracket M,\psi \rrbracket_k$. Hence, ${}_{A_r}\llbracket M,\psi \rrbracket_k^+ \vdash C$ or ${}_{A_r}\llbracket M,\psi \rrbracket_k^- \vdash C$ holds. Based on Lemma 1 we can conclude that ${}_{A_r}\llbracket M,S_0 \models_U (\psi \to btl(C)) \rrbracket_k = true$ holds. Theorem 1 allows us to transfer this definite model checking result to the refined model checking problem, i.e. ${}_{A'_r}\llbracket M,S_0 \models_U (\psi \to btl(C)) \rrbracket_k = true$ holds as well. Hence, we have that the BTL property $\psi \to btl(C)$ holds universally for the Kripke structure M over A'_r . Consequently, the following equivalence holds: ${}_{A_{r'}}\llbracket M,S_0 \models_E \psi \land (\psi \to btl(C)) \rrbracket_k$, which is equivalent to ${}_{A_{r'}}\llbracket M,S_0 \models_E \psi \land btl(C) \rrbracket_k$. From the definition of sat_3 we immediately get $sat_3({}_{A_{r'}}\llbracket M,\psi \rrbracket_k) \equiv sat_3({}_{A_{r'}}\llbracket M,\psi \rrbracket_k \land C)$ which completes the proof of Lemma 2. \square