Data Science Final Project-Group4

108753205 資科碩一 蔡宗諺 108753208 資科碩一 葉冠宏 107354018 統計碩二 蔡承軒

Table of Contents

- **Dataset**
- **Modeling**
- **Performance**
- **Demo**

- The objective of the dataset is to diagnostically predict whether or not a patient has diabetes.
- 預測患者是否有糖尿病

Dataset

Dataset

 Pima Indians Diabetes Database-Predict the onset of diabetes based on diagnostic measures

Datasource

https://www.kaggle.com/uciml/pima-indians-diabetes-database

INTRODUCTION

- Datasets is originally from the National Institute of Diabetes and Digestive and Kidney Diseases.
- All patients here are females at least 21 years old of Pima Indian heritage.

Data format

*	Pregnancies <i>‡</i>	Glucose ‡	BloodPressure \$	SkinThickness ‡	Insulin ‡	BMI ‡	DiabetesPedigreeFunction =	Age ‡	Outcome 🕏
1	6	148	72	35	0	33.6	0.627	50	1
2	1	85	66	29	0	26.6	0.351	31	0
3	8	183	64	0	0	23.3	0.672	32	1
4	1	89	66	23	94	28.1	0.167	21	0
5	0	137	40	35	168	43.1	2.288	33	1
6	5	116	74	0	0	25.6	0.201	30	0
7	3	78	50	32	88	31.0	0.248	26	1
8	10	115	0	0	0	35.3	0.134	29	0
9	2	197	70	45	543	30.5	0.158	53	1
10	8	125	96	0	0	0.0	0.232	54	1
11	4	110	92	0	0	37.6	0.191	30	0
12	10	168	74	0	0	38.0	0.537	34	1
13	10	139	80	0	0	27.1	1.441	57	0
14	1	189	60	23	846	30.1	0.398	59	1
15	5	166	72	19	175	25.8	0.587	51	1
16	7	100	0	0	0	30.0	0.484	32	1
17	0	118	84	47	230	45.8	0.551	31	1

Data Features

Variables	Description				
Pregnancies	Number of times pregnant				
Glucose	Plasma glucose concentration a 2 hours in an oral glucose tolerance test				
BloodPressure	Diastolic blood pressure (mm Hg)				
SkinThickness	Triceps skin fold thickness (mm)				
Insulin	2-Hour serum insulin (mu U/ml)				
BMI	Body mass index (weight in kg/(height in m)^2)				
DiabetesPedigreeFunction	Diabetes pedigree function				
Age	Age (years)				

Str()

```
$ Pregnancies
                          : num [1:768] 6 1 8 1 0 5 3 10 2 8 ...
$ Glucose
                          : num [1:768] 148 85 183 89 137 116 78 115 197 125 ...
$ BloodPressure
                          : num [1:768] 72 66 64 66 40 74 50 0 70 96 ...
$ SkinThickness
                          : num [1:768] 35 29 0 23 35 0 32 0 45 0 ...
$ Insulin
                          : num [1:768] 0 0 0 94 168 0 88 0 543 0 ...
$ BMI
                          : num [1:768] 33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 ...
$ DiabetesPedigreeFunction: num [1:768] 0.627 0.351 0.672 0.167 2.288 ...
$ Age
                          : num [1:768] 50 31 32 21 33 30 26 29 53 54 ...
                          : num [1:768] 1 0 1 0 1 0 1 0 1 1 ...
$ Outcome
```


Preprocessing

Missing Value

```
> sum(is.na(diabetes))
```

Summary()

```
Pregnancies
                   Glucose
                               BloodPressure
Min. : 0.000
                Min. : 0.0
                               Min.
                                    : 0.00
                1st Qu.: 99.0
                               1st Qu.: 62.00
1st Qu.: 1.000
Median : 3.000
                Median :117.0
                               Median : 72.00
Mean : 3.845
                Mean
                       :120.9
                               Mean
                                      : 69.11
3rd Ou.: 6.000
                3rd Qu.:140.2
                               3rd Qu.: 80.00
Max.
      :17.000
                Max. :199.0
                               Max.
                                      :122.00
SkinThickness
                  Insulin
                                   BMI
Min. : 0.00
               Min. : 0.0
                              Min. : 0.00
1st Qu.: 0.00
              1st Qu.: 0.0
                              1st Qu.:27.30
Median :23.00
               Median: 30.5
                              Median :32.00
      :20.54
               Mean : 79.8
                              Mean :31.99
Mean
               3rd Qu.:127.2
3rd Qu.:32.00
                              3rd Qu.:36.60
      :99.00
               Max.
                      :846.0
                              Max.
                                     :67.10
Max.
DiabetesPedigreeFunction
                            Age
                                          Outcome
                                              :0.000
Min.
      :0.0780
                       Min.
                              :21.00
                                       Min.
1st Ou.:0.2437
                        1st Ou.:24.00
                                       1st Qu.:0.000
Median :0.3725
                       Median :29.00
                                       Median :0.000
Mean :0.4719
                       Mean :33.24
                                       Mean :0.349
                        3rd Qu.:41.00
3rd Qu.:0.6262
                                       3rd Qu.:1.000
Max.
      :2.4200
                        Max.
                               :81.00
                                       Max.
                                              :1.000
```


Pregnancies

Glucose Vs Outcome 15factor(Outcome) 10count 150 100 200 Glucose

Glucose

Blood Pressure

SkinThickness Vs Outcome 100 factor(Outcome) 50 -100 SkinThickness

SkinThickness

60 -

Outcome

SkinThickness

Insulin

BMI

DiabetesPedigreeFunction

DiabetesPedigree Function

DiabetesPedigree Function

Box-Plot

\$

Data Preprocessing

```
df <- df[df$Pregnancies <= 14.5,]
df <- df[df$Glucose >= 10,]
df <- df[df$BloodPressure >= 10,]
df <- df[df$SkinThickness <= 80 & df$SkinThickness > 0,]
df <- df[df$Insulin <= 600 ,]
df <- df[df$BMI <= 60 & df$BMI >= 10,]
df <- df[df$DiabetesPedigreeFunction <= 65,]
df <- df[df$Age <= 75,]</pre>
```


Features Correlation Matrix

- x1: Pregnancies
- x2: Glucose
- x3: BloodPressure
- x4: SkinThickness
- x5: Insulin
- x6: BMI
- x7: DiabetesPedigreeFunction
- x8: Age

Features Correlation Matrix

Feature Selection

- All Features
- Without Insulin/DiabetesPedigreeFunction
- Without Insulin/DiabetesPedigreeFunction/Pregnancies)
- Without Insulin/DiabetesPedigreeFunction/Age)

Shuffle the Data

```
set.seed(9850)
g<-runif(nrow(df))
data<-df[order(g),]

RR<-dim(data)[1]
CC<-dim(data)[2]</pre>
```

Modeling

Methods

- Decision Tree
- Logistic Regression
- Null Model

Null Model:

0	1	
500	268	

Accuracy: 65%

Average Accuracy	Training	Validation	Testing
All Features	0.81	0.78	0.71
Without x5/x7	0.78	0.77	0.75
Without x1/x5/x7	0.75	0.74	0.85
Without x5/x7/x8	0.78	0.78	0.74

	Training	Validation	Testing
fold=1			
fold=2			
fold=3	0.76	0.76	0.78
fold=4	0.77	0.75	0.79
fold=5	0.75	0.74	0.85
fold=6	0.76	0.75	0.86
fold=7	0.79	0.76	0.83
fold=8	0.76	0.75	0.89
fold=9	0.76	0.76	0.88
fold=10	0.76	0.75	0.86
Ave.	0.76	0.75	0.84

Average Accuracy	Training	Validation	Testing
All Features	0.83	0.81	0.67
Without x5/x7	0.77	0.78	0.78
Without x1/x5/x7	0.78	0.76	0.78
Without x5/x7/x8	0.78	0.77	0.80

	Training	Validation	Testing
fold=1			
fold=2			
fold=3	0.78	0.76	0.77
fold=4	0.78	0.75	0.78
fold=5	0.78	0.77	0.80
fold=6	0.78	0.78	0.78
fold=7	0.78	0.77	0.76
fold=8	0.78	0.78	0.74
fold=9	0.79	0.78	0.71
fold=10	0.79	0.78	0.71
Ave.	0.78	0.77	0.76

Results

Is your improvement significant?

- As the result shows, if we put all features to train our model, no matter the logistic regression or decision tree, the training accuracy are the highest but the testing accuracy are lowest.
- We thought that putting all features to train model would cause model be overfitted. Thus we took away the features that have high correlation to avoid the collinearity.
- Eventually, we constructed a model which achieved 80% testing accuracy only trained with five features. The improvement is significantly higher than the null model.

Demo

Demo

Performance

Rscript code/rproject.R --fold n --train data/diabetes.csv --report performance.csv --predict predict.csv

Reference

Packages we use

- library(rpart)
- library(caret)
- library(party)
- library(varhandle)
- library(ggplot)
- library(corrplot)
- library(Hmisc)
- library(ggcorrplot)

REFERENCE

- https://www.kaggle.com/devisangeetha/which-factor-causes-diabetes
- https://medium.com/datainpoint/r-essentials-ggplot2-visualizations-817d2416b83e
- https://www.kaggle.com/uciml/pima-indians-diabetes-database
- http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-usi-ng-ggplot2

THANKS!