

MULTI LABEL IMAGE CLASSIFICATION USING ADAPTIVE GRAPH CONVOLUTIONAL NETWORKS (ML-AGCN)

- ICIP2022 BORDEAUX

Inder Pal Singh, Enjie Ghorbel, Oyebade Oyedotun, Djamila Aouada Interdisciplinary Center for Security, Reliability and Trust (SnT), University of Luxembourg

Introduction

Graph-based approaches [1,2] are successful in multilabel image classification. However, they:

- need a **fixed** label graph based on the label cooccurrences [1],
- select empirically a threshold [1,2],
- **loose** the node feature similarity during the GCN aggregation [3],
- achieve a high accuracy at the cost of a large model.

Contributions

- The graph topology is learnt adaptively in an endto-end manner by incorporating:
 - → an attention-based mechanism learning the importance of each node pair
 - → a similarity-based mechanism for **preserving** the node feature similarity.
- An effective approach with a reduced number of model parameters.

ML-AGCN: Architecture Overview

Graph Convolutional Networks

- GCN is an extension of CNN to graphs [1].
- Node features are leaned from each hidden layer as follows;

$$\mathbf{F}^{l+1} = h(\mathbf{A} \, \mathbf{F}^l \, \mathbf{W}^l),$$

A: the adjacency matrix, W^l : the learned weight matrix of the l^{th} layer, F^l : node features from the l^{th} layer.

Proposed Approach

Two additional adaptive graphs (Bl) and (C^l) are proposed, such that;

$$\mathbf{F}^{l+1} = h((\mathbf{A} + \mathbf{B}^l + \mathbf{C}^l) \mathbf{F}^l \mathbf{W}^l)$$

• $\mathbf{B}^l = (b^l_{ij})_{i,j \in \mathcal{L}}$: quantifies the connectivity importance of each node pair [4] as follows;

$$\alpha_{ij}^{(l)} = \frac{\exp(e_{ij}^{(l)})}{\sum_{k \in \mathcal{N}(i)} \exp(e_{ik}^{(l)})},$$

where $e_{ij} = LeakyReLU\left(a^{(l)T}\left(Wf_i^{\ (l)}||Wf_j^{\ (l)}\right)\right)$ and || denotes the concatenation.

Self-importance is estimated;

$$b_{ij}^{(l)} = \begin{cases} \alpha_{ij}^{(l)} + \max_{k \in \mathcal{L}} \left(\alpha_{ik}^{(l)}\right), & \text{if } i = j \\ \alpha_{ij}^{(l)}, & \text{if } i \neq j \end{cases}.$$

• $C^l = (c^l_{ij})_{i,j \in \mathcal{L}}$: computes the cosine similarity between each node feature pair as follows;

$$c_{ij}^{(l)} = \frac{f_i^{(l)}.f_j^{(l)}}{|f_i^{(l)}||f_i^{(l)}|}$$

Comparative Analysis of Performance

MS-COCO: Comparison with the state-of-the-art									
Method	# params (millions)	mAP	СР	CR	CF1	ОР	OR	OF1	
CNN-RNN	66.2	61.2	-	-	-	_	-	_	
SRN	48.0	77.1	81.6	65.4	71.2	82.7	69.9	75.8	
ResNet101	44.5	77.3	80.2	66.7	72.8	83.9	70.8	76.8	
ML-GCN [1] (1-L) *	43.1	80.9	82.9	69.7	75.8	84.8	73.6	78.8	
IML-GCN [2] (1-L) *	29.5	81.3	81.3	72.2	76.0	86.7	77.9	82.1	
ASL (TRESNET-M)	29.5	81.8	82.1	72.6	76.4	83.1	76.1	79.4	
ML-GCN [1]	44.9	83.0	85.1	72.0	78.0	85.8	75.4	80.3	
SSGRL	92.2	83.8	89.9	68.5	76.8	91.3	70.8	79.7	
KGGR	45.0	84.3	85.6	72.7	78.6	87.1	75.6	80.9	
C-Tran	120.0	85.1	86.3	74.3	79.9	87.7	76.5	81.7	
ASL (TRESNET-L)	53.8	86.6	87.4	76.4	81.4	88.1	79.2	81.8	
IML-GCN [2]	31.5	86.6	78.8	82.6	80.2	79.0	85.1	81.9	
Ours: ML-AGCN (1-L)*	29.9	86.7	79.6	82.4	80.7	79.8	84.5	82.1	
Ours: ML-AGCN	35.9	86.9	86.2	78.3	81.7	87.2	80.7	83.8	

VG-500: Comparison with the state-of-the-art						
Method	# params (millions)	mAP				
IML-GCN [2] (1-L) *	30.6	17.01				
ResNet101	44.5	30.9				
ML-GCN [1]	44.9	32.6				
ASL (TResNet-M)	29.5	33.6				
IML-GCN [2]	32.1	34.5				
SSGRL	92.2	36.6				
C-Tran ^T	120 ^T	38.4 ^T				
Ours: ML-AGCN (1-L)*	32.7	37.9				
Ours: ML-AGCN `	37.4	37.1				

^{*}Graph-based approaches with only 1 hidden layer

Conclusion

- We propose ML-AGCN that adaptively learns the label graph topology in an end-to-end manner for multi-label image classification.
- ML-AGCN achieves competitive results in terms of model size and accuracy with respect to current state-of-the-art.

References

[1] Chen, Zhao-Min, et al. "Multi-label image recognition with graph convolutional networks." CVPR 2019.
[2] Singh, Inder Pal, et al. "IML-GCN: Improved Multi-Label Graph Convolutional Network for Efficient yet Precise Image Classification." DLG:AAAI 2022.
[3] Jin, Wei, et al. "Node similarity preserving graph convolutional networks." WSDM. 2021.

Acknowledgement

This work was funded by the Luxembourg National Research Fund (FNR), under the project reference BRIDGES2020/IS/14755859/MEETA/ Aouada.

[4] Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017)

^TThe model is roughly 120 times higher than our proposed model