

Faculty of Engineering and Technology				
Ramaiah University of Applied Sciences				
Department	Computer Science and Engineering	Programme	B. Tech. in CSE	
Semester/Batch	5 th / 2018			
Course Code	19CSC304A	Course Title	Operating Systems	
Course Leader(s)	Ms. Jishmi Jos Choondal/Ms. Naveeta			

Assignment							
Regis	Register No. Name of Student						
Sections		Marl	Marking Scheme		Max Marks	First Examiner Marks	Moderator Marks
	Q1.1	Intro	Introduction to 16-bit, 32- bit or 64-bit operating systems				
□	Q1.2	Q1.2 Reasons for the transition from 16-bit to 32- bit and 32-bit to 64-bit operating systems					
Question 1	Q1.3		Reasons for the transition from 64-bit to 128-bit operating systems				
ď	Stance with justification			01			
		Part A			05		
estion 2	Q2.1 Introduction to NRU, FIFO, LRU and second chance algorithms		02				
	Q2.2 Compute the page replaced on a page fault			ge fault	08		

		B2 Max Marks		
			10	
estion3	Q3.1	Problem solving approach for spooler	02	
	Q3.2	Design and implementation of spooler	06	
	Q3.3	Results and analysis of spooler	02	
		B2 Max Marks	10	
	Total Assignment Marks		25	

Course Marks Tabulation					
Component- 1(B) Assignment	First Examiner	Remarks	Moderator	Remarks	
Q1					
Q2					
Q3					
Marks (out of 25)					
	I I		1		

Signature of First Examiner Signature of Second Examiner

Instructions to students:

1. Maximum marks: 25

- 2. The assignment has to be neatly word processed as per the prescribed format.
- 3. The maximum number of pages should be restricted to 10
- 4. The printed assignment must be submitted to the course leader.
- 5. Submission Date: 16/01/2020

Assignment

Question 1 05 Marks

We have seen the evolution of operating systems – from 16-bit to 32-bit operating systems and later from 32-bit to 64-bit operating systems. While in the past, there was a need to address more memory, the current 64-bit systems can address so much RAM that we can't even imagine. To be precise, the amount is 2^64 bytes or 18.44 EB. The 4GB RAM on a 32-bit or 8 GB on a 64-bit OS system would be sufficient for normal office work.

Develop a debate on "Are we going to see 128-bit Operating Systems in the near future?"

Your debate should address the following:

- 1.1. Introduction to 16-bit, 32- bit or 64-bit operating systems.
- 1.2. Reasons for the transition from 16-bit to 32- bit and 32-bit to 64-bit operating systems.
- 1.3. Possible reasons that may lead the transition from 64-bit to 128-bit operating systems.
- 1.4. Your stance with justification.

Question 2 (10 Marks)

An operating system's memory manager supports eight page frames. The time of loading, time of last access, and the R and M bits for each page are as shown in Table 1 (time is in clock tick units):

Table 1

Page	Loaded Time(in clock ticks)	Time of Last Reference(in clock ticks)	R	M
0	250	280	0	1
1	120	285	1	0
2	265	282	0	0
3	110	295	1	0
4	185	289	1	1

5	135	283	0	0
6	275	291	1	1
7	115	279	1	0

The report should contain the following:

- 2.1. Introduction to NRU, FIFO, LRU and second chance algorithms
- 2.2. Compute the page replaced on a page fault, if the following page replacement algorithms are used:
 - NRU
 - FIFO
 - LRU
 - Second Chance

Question 3 (10 Marks)

Develop a program to implement the functionality of printer spooling simulating a printer. Print operations/commands, from multiple processes/ threads, cause files to be written to the printer spool area associated with a printer.

The report should contain the following:

- 3.1. Problem solving approach for spooler.
- 3.2. Design and implementation of spooler.
- 3.3. Results and analysis of spooler.