Model checking

- Checking the fit of your model(s)
- Not much advice (in literature) for general likelihood approaches
- Not commonly done for non-standard models (i.e. not standard regression)
- Examining diagnostics: gold-standard practice for linear Normal models
- It should be gold-standard for all models!

What are the issues?

- Systematic departures of the process (biological) model from the data
 - e.g. proposed model is linear whereas the true model is nonlinear
- A poor error distribution
 - e.g. proposed error distribution is Normal whereas the true error distribution is lognormal

What are the issues?

- Mistakes in the data
 - Incorrect entries, broken instruments etc
 - Rule of thumb: 1-5% of data points
- Outliers
 - Data points that lie unexpectedly far from the prediction
 - Could be mistakes (oops)
 - Could be biological exceptions (interesting)

What are the issues?

- Influential data points
 - Data points that cause radically different parameter estimates.

Tools so far

- Plotting the fitted model with the data
- Checking likelihood profiles
 - have we found the minimum?

Linear regression

Linear regression

Linear regression

General likelihood diagnostics

	Normal, linear	Normal, nonlinear	Not
	IIIIeai	Horninear	Normal
Residual vs fitted	X	X	X standardized
Histogram of residuals	X	X	
Q-Q plot	X	X	some
Case deletion	X Cook's	X	X

Standardized residuals

$$\sigma = \sqrt{\text{variance}}$$

Case deletion diagnostics

- Simple idea: leave out each data point in turn and refit the model
- Likelihood displacement

Notice LD is a likelihood ratio

$$LD = 2(\text{nll}(\theta, y_{-i}) - \text{nll}(\theta, y))$$
 full dataset likelity deleting observation in

- Parameter sensitivity
 - percent change in parameter estimate by leaving out the data point

Cook and Weisberg (1982). Residuals and influence in regression. Chapman & Hall.

Nonlinear likelihood

Ricker model:

Negative binomial error

diagnostics2.R

Model checking

Residuals versus fitted values

Shows increasing variance with increasing fv, but this is what you expect from the neg binom

diagnostics2.R

Model checking

Standardized residuals versus fitted values

stand res = residuals / standard deviation of neg binomial

diagnostics2.R

Influence

Influence:

Case deletion diagnostics