

Universidad Nacional Autónoma de México Facultad de Ciencias **OMUM 2025**

Examen selectivo

Fecha: 16/07/2025

Problema 1

Para n un número natural, consider $A_n := \{1, 2, \dots, n\}$. Para $B \subset A_n$ se considera $S_B = a_r - a_{r-1} + a_{r-2} - \dots + (-1)^{r-1}a_1$, si $B = \{a_r > a_{r-1} > \dots > a_1\}$, Calcula:

$$\sum_{B\subset A_n} S_B$$

Demostración.

Tomemos $k \in A_n$, queremos ver la contribución de k en $\sum_{B \subset A_n} S_B$, para esto pensemos en la forma de un conjunto B que contiene a k:

$$B = \{\underbrace{a_1, \dots, k}_{\text{valores} < k}, \underbrace{k, \dots, a_r}_{\text{valores} > k}\}$$

Debido a las hipótesis del problema sabemos que la parte derecha del conjunto determinara el signo de ken S_B , si hay una cantidad par su signo sera positivo y si hay una cantidad impar tendra signo negativo, ahora particionemos A_n en dos conjuntos a partir de k, $A_{\leq} := \{n \in A_n | n \leq k\}$ y $A_{\geq} := \{n \in A_n | n > k\}$, notemos que B puede ser representado por la unión de dos subconjuntos $B_1 \subset A_{<}$ y $B_2 \subset A_{>}$, notemos que es necesario que $k \in B_1$ mientras que B_2 puede ser cualquier subconjunto, hasta el vacio, la cantidad se subconjuntos B_1 de $A_{<}$ que contienen a k es 2^{k-1} , mientras que para $0 \le i \le n-k$ la cantidad de subconjuntos con i elementos de $A_{>}$ es C_{i}^{n-k} , por tanto la cantidad de subconjuntos que cumplen ambas condiciones es $2^{k-1}C_i^{n-k}$, por tanto la conribución total de k en $\sum_{B\subset A_n}S_B$ es:

$$\sum_{i=0}^{n-k} (-1)^i k 2^{k-1} C_i^{n-k}$$

Finalmente iteramos sobre todo A_n :

$$\sum_{B \subset A_n} S_B = \sum_{k=1}^n k \sum_{i=0}^{n-k} (-1)^i 2^{k-1} C_i^{n-k} = \sum_{k=1}^n 2^{k-1} \sum_{i=0}^{n-k} (-1)^i C_i^{n-k}$$

Aplicando la identidad del binomio de Newton:

$$\sum_{B \subset A_n} S_B = \sum_{k=1}^n k 2^{k-1} (1-1)^{n-k} = n2^{n-1}$$

Problema 2

Sea $A := \{n \in \mathbb{N} | n \text{ es compuesto potencia de un primo}\}$, definamos f(n) como el promedio de los divisores de $n \in A$. Demuestra que la siguiente suma converge

$$\sum_{n \in A} \frac{1}{f(n)}$$

Demostración.

Si $n \in A$ entonces $n = p^k \text{ con } k > 1$, $k \in \mathbb{N}$ y p un numero primo, por tanto:

$$f(n) = \frac{\sum_{i=0}^{k} p^{i}}{k+1} = \frac{p^{k+1} - 1}{(k+1)(p-1)} \implies \frac{1}{f(n)} = \frac{(k+1)(p-1)}{p^{k+1} - 1}$$

Como $p>1 \implies p^k>1 \implies -1>-p^k \implies p^{k+1}-1>p^{k+1}-p^k \implies \frac{1}{p^{k+1}-1}<\frac{1}{p^k(p-1)}$ por tanto:

$$\frac{1}{f(n)} < \frac{(k+1)(p-1)}{p^k(p-1)} = \frac{k+1}{p^k}$$

Luego tenemos que:

$$\sum_{n \in A} \frac{1}{f(n)} = \sum_{p \ primo} \sum_{k=2}^{\infty} \frac{(k+1)(p-1)}{p^{k+1}-1} < \sum_{p \ primo} \sum_{k=2}^{\infty} \frac{k+1}{p^k} = \sum_{p \ primo} \sum_{k=3}^{\infty} \frac{k}{p^{k-1}}$$

Recordando la serie de Taylor de la función $\frac{1}{(1-x)^2}$, para 0 < x < 1, obtenemos que:

$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} k x^{k-1}$$

Como $0 < \frac{1}{p} < 1$ para cualquier primo se sigue que:

$$\frac{1}{\left(1 - \frac{1}{p}\right)^2} = \sum_{k=0}^{\infty} \frac{k}{p^{k-1}} \implies \sum_{k=3}^{\infty} \frac{k}{p^{k-1}} = \frac{1}{\left(1 - \frac{1}{p}\right)^2} - \left(1 + \frac{2}{p}\right) = \frac{3p - 2}{p(p-1)^2}$$

Luego tenemos que:

$$\sum_{n \in A} \frac{1}{f(n)} = \sum_{p \; primo} \frac{3p-2}{p(p-1)^2} = \sum_{p \; primo} \left(\frac{3p-3}{p(p-1)^2} + \frac{1}{p(p-1)^2} \right) = \sum_{p \; primo} \left(\frac{3}{p(p-1)} + \frac{1}{p(p-1)^2} \right)$$

Finalmente como p-1

$$\sum_{n \in A} \frac{1}{f(n)} = \sum_{p \; primo} \left(\frac{3}{p(p-1)} + \frac{1}{p(p-1)^2} \right) < \sum_{p \; primo} \left(\frac{3}{(p-1)^2} + \frac{1}{(p-1)^3} \right) < \sum_{k \in \mathbb{N}} \left(\frac{3}{k^2} + \frac{1}{k^3} \right)$$

Como la serie $\sum_{k\in\mathbb{N}} \left(\frac{3}{k^2} + \frac{1}{k^3}\right)$ converge absolutamente tenemos que:

$$\sum_{n \in A} \frac{1}{f(n)}$$

Converge absolutamente.

Problema 3

Sean $p, q \in \mathbb{R}$ tales que $x^2 + px + q \neq 0$ para todo número real x, Si n es un entero positivo impar, Sea $X \in M_n(\mathbb{R})$ entonces $X^2 + pX + qI_n \neq O_n$

Demostración.

Prueba usando el determinante

De nuevo procedemos por contradicción es decir existe $X \in M_n(\mathbb{R})$ tal que $X^2 + pX + qI_n = O_n$, tenemos que:

$$X^2 + pX + qI_n = O_n$$

De donde obtenemos que:

$$\left(X + \frac{p}{2}\right)^2 = \left(\frac{p^2}{4} - q\right)I_n$$

Analizando el determinante tenemos que:

$$\left| Det \left| \left(x + \frac{p}{2} \right)^2 \right| = \left(Det \left(X + \frac{p}{2} \right) \right)^2 = \left(\frac{p^2}{4} - q \right)^n$$

Como $p(x) = x^2 + px + q$ no tiene soluciones entonces $p^2 - 4q < 0 \implies \frac{p^2}{4} - q < 0$, por tanto como n es impar:

$$\left(Det\left(X+\frac{p}{2}\right)\right)^2 = \left(\frac{p^2}{4}-q\right)^n < 0$$

Finalmente como $\left(Det\left(X+\frac{p}{2}\right)\right)\in\mathbb{R}$ entonces $\left(Det\left(X+\frac{p}{2}\right)\right)^2>0$, una contradicción

Problema 5

Sea $f:[0,1]\to\mathbb{R}$ una función continua en [0,1] y diferenciable en (0,1) tal que existe $a\in(0,1]$ tal que $\int_0^a f(x)dx=0$. Demuestre que:

$$\left| \int_0^1 f(x) dx \right| \le \frac{1-a}{2} \sup_{0 < x < 1} |f'(x)|$$

Demostraci'on.

Página 4 de 4