TD 09 – Méthode probabiliste

Exercice 1. Théorème de Mycielski

Recall that the *chromatic number* $\chi(G)$ is the smallest number of colors needed to color the vertices of G such that any two adjacent vertices have different colors. Clearly, graphs with large cliques have a high chromatic number, but the opposite is not true. The goal of this exercise is th prove Mycielski's theorem, which states that for any integer $k \geq 2$, there exists a graph G such that G contains no triangles and $\chi(G) \geq k$.

- **1.** Fix $0 < \varepsilon < \frac{1}{3}$ and let G be a random graph on n vertices where each edge appears independently with probability $p = n^{\varepsilon 1}$. Show that when n tends to infinity, the probability that G has more than n/2 triangles tends to 0.
- **2.** Let $\alpha(G)$ be the size of the largest *independent set* of G (A set of vertices X is *independent* if there is no edge between any two vertices of X in G). Show that $\chi(G) \ge n/\alpha(G)$.
- **3.** Let $a = 3n^{1-\varepsilon} \ln n$. Show that when n tends to infinity,

$$\mathbb{P}(\alpha(G) < a) \to 1.$$

Deduce that there exists n and G of size n such that G has at most n/2 triangles and $\alpha(G) < a$.

4. Let G be such a graph. Let G' be a graph obtained from G by removing a minimum number of of vertices so that G' does not contain any triangle. Show that

$$\chi(G') > \frac{n^{\varepsilon}}{6 \ln n}$$

and conclude the proof of Mycielski's Theorem.

Exercice 2. Test

Deux cent étudiants participent à un concours de maths. Le concours comporte 6 questions. Pour chaque question, au moins 120 étudiants ont réussi à répondre correctement à la question. Montrer qu'il existe deux étudiants qui avaient tout bon à eux deux (i.e. tels que pour chaque question, au moins un des étudiants a bien répondu).

Exercice 3. Intervalle

Soit *S* une union d'intervalles inclus dans le segment [0,1]. On suppose que la longueur totale de *S* est strictement supérieure à 1/2. Montrer qu'il existe deux points $x,y \in S$ tels que |x-y| = 0.1.

Exercice 4. Polynome

Soit $P = z^2 + az + b$ un polynôme de degré 2, avec $a, b \in \mathbb{C}$. Supposons que pour tout $z \in \mathbb{C}$ tel que |z| = 1, on ait |P(z)| = 1. Montrer que a = b = 0. Indice : on pourra considérer $\mathbf{E}\left[|P(Z)|^2\right]$, où Z est choisi uniformément sur le cercle unité.

Exercice 5. Lemme local de Lovasz

Soit k > 6. On se donne une famille $(A_i)_{i \in I}$ de sous-ensembles d'un ensemble fini F telle que

- 1. Pour tout $i \in I$, card $(A_i) = k$,
- 2. Pour tout $x \in F$, card $\{i \in I : x \in A_i\} \le \frac{2^k}{8k}$

En utilisant le lemme local de Lovász, montrer qu'il existe une partition $F=F_1\cup F_2$ telle que

$$\forall i \in I$$
, $A_i \cap F_1 \neq \emptyset$ et $A_i \cap F_2 \neq \emptyset$.

Exercice 6.

LargeCut

Given an undirected graph G with n vertices and m edges. Prove that there is a partition of V into two disjoint sets A and B such that at least m/2 edges connect a vertex in A to a vertex in B.