Лабораторная работа №4

Итерационные методы решения нелинейного уравнения f(x) = 0.

Цель работы: изучение методов решения нелинейного уравнения f(x) = 0; сравнение точности и скорости их работы.

Содержание работы

- 1. Реализовать методы Ньютона, секущих, половинного деления в виде программ.
- 2. Отладить алгоритмы на тестовых примерах, решив уравнения (для всех вариантов):

1)
$$2^{x-0.1}-1=0$$
, $x \in [0,1]$;

2)
$$(x-0.2)^3 = 0$$
, $x \in [0,1]$.

3. Результаты представить в виде таблицы:

Метод	Приближенное	Абсолютная	Число	Время
	решение	погрешность	итераций	работы
Ньютона				
Ньютона				
(упрощенный)				
секущих				
половинного				
деления				

Примечание. При реализации метода Ньютона производную следует вычислять по приближенной формуле (центральная разностная производная):

$$f'(x_k) \approx \frac{f(x_k+h)-f(x_k-h)}{2h}$$

если точки $x_k \pm h$ не выходят за пределы отрезка локализации (h выбирается достаточно малой константой, например, $h = 10^{-2}$ или $h = 10^{-3}$).

Для граничных точек, производную следует вычислять по следующим формулам:

а)
$$f'(x_k) \approx \frac{f(x_k) - f(x_k - h)}{h}$$
 для левой границы;

б)
$$f'(x_k) \approx \frac{f(x_k + h) - f(x_k)}{h}$$
 для правой границы.