Inhaltsverzeichnis

1	Kon	nplexe Zahlen	4
	1.1	Definition	4
	1.2	Veranschaulichung	4
	1.3		4
	1.4		5
	1.5	Rechenreglen für den Absolutbetrag	6
	1.6	Darstellung durch Polarkoordinaten	6
	1.7	Additionstheoreme der Trigonometrie	7
	1.8		7
	1.9		8
	1.10		9
		•	9
	1.12	Bemerkung	9
2	Folg	gen und Reihen 1	0
	2.1	Definition	0
	2.2	Beispiel	0
	2.3	Definition	1
	2.4	Definition	1
	2.5	Beispiele	2
	2.6	Satz: Beschränktheit und Konvergenz	3
	2.7	Bemerkung	3
	2.8	Satz (Rechenregeln für konvergente Folgen)	3
	2.9	Satz: Kriterien für Nullfolgen	4
	2.10		6
	2.11	Definition	6
	2.12	Satz: Landausymbole bei Polynomen	7
	2.13	Bemerkung	7
	2.14	Definition	7
	2.15	Beispiel	7
	2.16	Satz: Monotonie und Konvergenz	8
			8
			8
	2.19	Satz: Reihenkonvergenz	9
			20
		1	2
			2
		,	22
		1	23

	2.25	Korollar
	2.26	Satz: Wurzel- und Quotientenkriterium
	2.27	Bemerkung
	2.28	Beispiel
	2.29	Bemerkung
	2.30	Definition
	2.31	Satz: Konvergenz im Cauchy Produkt
3	Pote	enzreihen 26
	3.1	Definition
	3.2	Beispiel
	3.3	Satz
	3.4	Bemerkung
	3.5	Die Exponentialreihe
4	Fun	ktionen und Grenzwerte 31
	4.1	Definition
	4.2	Beispiel
	4.3	Definition
	4.4	Beispiel
	4.5	Definition
	4.6	Beispiel
	4.7	Satz $(\varepsilon - \delta)$ -Kriterium
	4.8	Satz (Rechenregeln für Grenzwerte)
	4.9	Beispiel
	4.10	Bemerkung
		Beispiel
	4.12	Definition
	4.13	Beispiel
	4.14	Bemerkung
	4.15	Definition
	4.16	Satz: Grenzwerte gegen unendlich
	4.17	Beispiel
A	bbi	ldungsverzeichnis
	1	Veranschaulichung Komplexe Zahlen
	2	Absolutbetrag
	3	Imaginäre Zahlen im Koordinatensystem durch Polarkoordinaten 6
	4	Winkel im Bogenmaß

5	Multiplizieren komplexer Zahlen
6	Multiplikation mit i
7	Beschränktheit von Folgen
8	Beschränkte aber nicht konvergente Folge
9	Cauchy'sches Konvergenzkriterium
10	Monotonie
11	Konvergenzradien
12	Die Exponentialreihe
13	$f(x) = x^3 - 2x^2 - x + 2$
14	$e^x \dots \dots$
15	Bogenmaß
16	Sinus und Cosinus
17	Tangens und Kotangens
18	x^2
19	x+1
20	Abschnittsweise definierte Funktion
21	$\sin(\frac{1}{x}) \dots \dots \dots 37$
22	$x \cdot \sin(\frac{1}{x}) \dots \dots 38$
23	geometrische Darstellung des $\varepsilon - \delta$ Kriteriums
24	Abschnittsweise definierte Funktion
25	Grenzwerte gegen einen Festen Wert
26	Funktionen $\lim_{n \to \infty} = \infty$
27	$sin(\frac{1}{x}) \dots \dots$

1 Komplexe Zahlen

1.1 Definition

```
Menge der komplexen Zahlen \mathbb{C} = \{a+bi: a,b \in \mathbb{R}\}

Addition: (a+bi)+(c+di)=(a+c)+(b+d)i

Multiplikation: (a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i

(Ausmultiplizieren und i^2=-1 beachten)

\mathbb{R} \subset \mathbb{C}

a \in \mathbb{R}: a+0 \cdot i=a

Rein imaginäre Zahlen: bi, b \in \mathbb{R}, (0+bi)

i imaginäre Einheit

z=a+bi \in \mathbb{C}

a=\Re(z) Realteil von z(Re(z))

b=\Im(z) Imaginärteil von z(Im(z))

\bar{z}=a-bi(=a+(-b)i)

Die zu z konjugiert komplexe Zahl
```

1.2 Veranschaulichung

Abbildung 1: Addition entspricht Vektoraddition

1.3 Rechenregeln in \mathbb{C}

a) Es gelten alle Rechenregeln wie in \mathbb{R} . (z.B Kommutativität bzgl. $+, \cdot : z_1 + z_2 = z_2 + z_1$ und $z_1 \cdot z_2 = z_2 \cdot z_1$)

Inversenbildung bzgl. : $\overline{z = a + bi \neq 0, \text{ d.h } a \neq 0 \text{ oder } b \neq 0}$ $z^{-1} = \frac{1}{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$

$$z \cdot z^{-1} = \frac{1}{\frac{5-7i}{3+2i}} = (5-7i) \cdot (3+2i)^{-1}$$
Beispiel:
$$= (5-7i) \cdot (\frac{3}{13} - \frac{2}{13}i)$$

$$= (\frac{15}{13} - \frac{14}{13}) + (-\frac{10}{13} - \frac{21}{13})i$$

$$= \frac{1}{13} - \frac{31}{13}i$$
Speziell: $(bi)^{-1} = \frac{1}{bi} = -\frac{1}{b}i$; insbesondere: $\frac{1}{i} = -i$

b) $z, z_1, z_2 \in \mathbb{C}$:

$$\begin{split} \frac{\bar{\bar{z}}=z}{z_1+z_2}&=\bar{z_1}+\bar{z_2}\\ \overline{z_1\cdot z_2}&=\bar{z_1}\cdot \bar{z_2} \end{split}$$

1.4 Definition Absolutbetrag

a) Absolutbetrag von $z = a + bi\mathbb{C}$:

Absolution
$$z = a + bic$$
:
$$|z| = + \underbrace{\sqrt{a^2 + b^2}}_{\in \mathbb{R}, \geq 0}$$

$$|a^2 + b^2 = z \cdot \overline{z}|$$

$$|z| = + \sqrt{z \cdot \overline{z}}$$

$$(a + bi) \cdot (a - bi) = (a^2 + b^2) + 0i = a^2 + b^2$$

$$|z| = \text{Abstand von } z \text{ zu } 0$$

$$= \text{Länge des Vektors, der } z \text{ entspricht}$$

Abbildung 2: Graphische Definition des Absolutbetrages

b) Abstand von
$$z_1, z_2 \in \mathbb{C}$$
:
 $d(z_1, z_2) := |z_1 - z_2|$

1.5 Rechenreglen für den Absolutbetrag

$$z, z_1, z_2 \in \mathbb{C}$$

a)
$$|z| = 0 \Leftrightarrow z = 0$$

b)
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

c)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

 $||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$
 $|-z| = |z|$

1.6 Darstellung durch Polarkoordinaten

a) Jeder Punkt \neq (0,0) lässt sich durch seine Polarkoordinaten (r,φ) beschreiben:

$$-r \ge 0, r \in \mathbb{R}$$

Abbildung 3: Polarkoordinaten

 $0 \leq \varphi \leq 2\pi,$ wird gemessen von der positiven x-Achse entgegen des Uhrzeigersinnes

Umfang: 2π

 φ in Grad $\hat{=}\frac{2\pi\cdot\varphi}{360}$ im Bogenmaß

Für Punkte mit kartesischen Koordinaten \neq (0,0) werden als Polarkoordinate (r, φ) verwendet.

b) komplexe Zahl z = a + ib

Abbildung 4: Umrechnung Grad zu Bogenmaß

$$r = |z| = +\sqrt{a^2 + b^2}$$

$$a = |z| \cdot \cos(\varphi)$$

$$b = |z| \cdot \sin(\varphi)$$

$$z = |z| \cdot \cos(\varphi) + i \cdot |z| \cdot \sin(\varphi)$$

$$z = |z|(\cos(\varphi) + i \cdot \sin(\varphi))$$

Darstellung von z durch Polarkoordinate

Beispiel:

a)
$$z_1 = 2 \cdot (\cos(\frac{\pi}{4}) + i \cdot \sin(\frac{\pi}{4}))$$

= $2 \cdot (0.5\sqrt{2} + i \cdot 0.5\sqrt{2})$

b)
$$z_2 = 2 + i$$

 $|z_2| = \sqrt{5}$
 $z_2 = \sqrt{5} \cdot (\frac{2}{\sqrt{5} + \frac{1}{\sqrt{5}}}i)$ Suche φ mit $0 \le 2\pi$ mit $\cos(\varphi) = \frac{2}{\sqrt{5}}, \sin(\frac{1}{\sqrt{5}}z_2 \approx \sqrt{5} \cdot (\cos(0, 46) + i \cdot \sin(0, 46))$

c) Die komplexen Zahlen von Betrag 1 entsprechen den Punkten auf Einheitskreis: $\cos(\varphi)+i\sin(\varphi), 0\leq\varphi\leq 2\pi$

1.7 Additionstheoreme der Trigonometrie

a)
$$\sin(\varphi + \psi) = \sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi)$$

b)
$$\cos(\varphi + \psi) = \cos(\varphi) \cdot \cos(\psi) - \sin(\varphi) \cdot \sin(\varphi) \cdot \sin(\psi)$$

1.8 geometrische Interpretation der Multiplikation

a)
$$w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$

 $z = |z| \cdot (\cos(\psi) + i \cdot \sin(\psi))$

 $w \cdot z = |w| \cdot |z| \cdot (\cos(\varphi) \cdot \cos(\psi) - \sin(\varphi) \cdot \sin(\psi)) + i(\sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi))$ $w \cdot z = |w \cdot z| (\cos(\varphi + \psi) + i \cdot \sin(\varphi + \psi))$

Abbildung 5: Multiplizieren komplexer Zahlen

b)
$$z = i, w = a + ib$$

 $i \cdot w = -b \cdot ia$
Multiplikation mit i $\hat{=}$ Drehung um 90°

Abbildung 6: Multiplikation mit i

1.9 Bemerkung und Definition

Wir werden später die komplexe Exponentialfunktion einführen. e^z für alle $z\in\mathbb{C}$ e = Euler'sche Zahl $\approx 2,718718\ldots$

$$\begin{array}{l} e^{z_1}=cde^{z_2}=e^{z_1+z_2}, e^{-z}=\frac{1}{e^z}\\ \text{Es gilt: } t\in\mathbb{R}: e^{it}=\cos(t)+i\cdot\sin(t)\\ \text{Jede komplexe Zahl lässt sich schreiben } z=r\cdot e^{i\cdot\varphi}, r=|z|, \varphi \text{ Winkel } r\cdot(\cos(\varphi)+i\sin(\varphi)) \text{ ist Polarform von } z.\\ z=a+bi \text{ ist kartesische Form von z.} \bullet(r,\varphi) \text{ Polarkoordinaten } |e^{i\varphi}|=+\sqrt{\cos^2(\varphi)+\sin^2(\varphi)}=1\\ e^{i\varphi}, 0\leq\varphi\leq 2\pi, \text{ Punkte auf dem Einheitskreis.}\\ e^{i\pi}=-1\\ \hline |e^{i\pi}+1=0| \text{ Euler'sche Gleichung} \end{array}$$

1.10 Satz

Sei $w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) \in \mathbb{C}$

a) Ist
$$m \in \mathbb{Z}$$
, so ist $w^m = |w|^m \cdot (\cos(m \cdot \varphi) + i \cdot \sin(m \cdot \varphi))$ $(m < 0 : w^m = \frac{1}{w^{|m|}}), w \neq 0$

- b) Quadratwurzeln
- c) Ist $n \in \mathbb{N}, w \neq 0$, so gibt es genau n n-te Wurzeln von w: $\sqrt[n]{w} = + \sqrt[n]{|w|} \cdot (\cos(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n}) + i\sin(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n})), n \in \mathbb{N}, k \in \{0, \dots, n-1\}$

Beweis. a) richtig, wenn m = 0, 1

 $m \ge 2$. Folgt aus (\star)

$$\begin{split} & m = -a: \\ & w^{-1} = \frac{1}{w} = \frac{1}{|w|^2 \cdot (\cos^2(\varphi) + i \cdot \sin^2(\varphi))} \cdot \mid w \mid \cdot \cos(\varphi) - \sin(\varphi) \\ & = \frac{1}{w} = \frac{1}{midw \mid \cdot \underbrace{(\cos^2(\varphi) + i \cdot \sin^2(\varphi))}_{=1} - i} \cdot \mid w \mid \cdot \cos(\varphi) - \sin(\varphi) \\ & = \frac{1}{|w|} \cdot (\cos(-\varphi + i \cdot \sin(-\varphi)) = \mid w \mid^{-1} \cdot (\cos(-\varphi) + \sin(-\varphi)) \end{split}$$

1.11 Beispiel

Quadratwurzel aus i:

$$|i| = 1$$

Nach 1.10 b):
$$\sqrt{i} = \pm(\cos(\frac{\pi}{4} + i \cdot \sin(\frac{\pi}{4})))$$

= $\pm(\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i)$

1.12 Bemerkung

Nach 1.10 hat jedes Polynom $x^n - w \ (w \in \mathbb{C})$

eine Nullstelle in \mathbb{C} (sogar n verschiedene wenn $w \neq 0$)

Es gilt sogar : Fundamentalsatz der Algebra

(C. F. Gauß 1777-1855)

Jedes Polynom $a_n x^n + \ldots + a_0$

mit irgendwelchen Koeffizienten: $a_n \dots a_0 \in \mathbb{C}$ hat Nullstelle in \mathbb{C}

2 Folgen und Reihen

2.1 Definition

Sei $k \in \mathbb{Z}, A_k := \{m \in \mathbb{Z} : m > k\}$

$$(k = 0A_0 \in \mathbb{N}_0, k = 1, A_n \in \mathbb{N})$$

Abbildung a : $A \Rightarrow \mathbb{R}(\text{oder } \mathbb{C})$

$$m \Rightarrow a_n$$

heißt Folge reeller Zahlen

$$(a_k, a_{k-1} \ldots)$$

Schreibweise:

 $(a_m)_{m>k}$ oder einfach (a_m)

 a_m heißt m-tes Glied der Folge, m Index

2.2 Beispiel

- b) $a_n = n$ für alle n > 1 (1,2,3,4,5,6,7,8,9,10,...)
- c) $a_n = \frac{1}{n}$ $(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$
- d) $a_n \frac{(n+1)^2}{2^n}$ $(2, \frac{9}{4}, 2, \frac{25}{16}, \ldots)$
- e) $a_n = (-1)^n$ $(-1, 1, -1, 1, -1, 1, \ldots)$

f)
$$a_n = \frac{1}{2}a_{n_1} = \frac{1}{a_{n-1}}$$
 für $n \ge 2, a_1 = 1$ $(1, \frac{3}{2}, \frac{17}{12}, \dots)$

g)
$$a_n = \sum_{i=1}^n \frac{1}{i}$$

 $(1, \frac{3}{2}, \frac{11}{6}, \dots)$

h)
$$a_n = \sum_{i=1}^n (-1)^i \cdot \frac{1}{i}$$

 $(-1, \frac{-1}{2}, -\frac{-5}{6}, \dots)$

2.3 Definition

Eine Folge $(a_n)_{n>k}$ heißt <u>beschränkt</u>, wenn die Menge der Folgenglieder beschränkt ist.

D.h. $\exists D > 0 : -D \le a_n \le D$ für alle n > k.

2.4 Definition

Eine Folge $(a_n)_{n\geq k}$ heißt konvergent gegen $\varepsilon\in\mathbb{R}$ (konvergent gegen ε), falls gilt:

 $\forall \varepsilon > 0 \exists n(\varepsilon) \in \mathbb{N} \forall n \geq n(\varepsilon) : |a_n - c| < \varepsilon$

 $c = \lim_{n \to \infty} a_n$ (oder einfach $c = \lim a_n$)

c heißt Grenzwert (oder Limes) der Folge (a_n)

(Grenzwert hängt nicht von endlich vielen Anfangsgliedern ab (der Folge))

Eine Folge die gegen 0 konvertiert, heißt Nullfolge

2.5 Beispiele

- a) $r \in \mathbb{R} : a_n = r$ für alle $n \ge 1$ (r, r, \ldots) $\lim_{n \to \infty} = r$ $|a_n r| = 0$ für alle nFür jedes $\varepsilon > 0$ kann man $n(\varepsilon) = 1$ wählen
- b) $a_n = n$ für alle $n \ge 1$ Folge ist nicht beschränkt, konvergiert nicht.

 $|a_n - 0| < \frac{1}{n} < \varepsilon$ für alle $n \ge n(\varepsilon)$

- c) $a_n = \frac{1}{n}$ für alle $n \ge 1$ (a_n) ist Nullfolge. Sei $\varepsilon > 0$ beliebig. Suche Index $n(\varepsilon)$ mit $|a_n - o| < \varepsilon$ für alle $n \ge n(\varepsilon)$ D.s. es muss gelten. $\frac{1}{n} < \varepsilon$ für alle $n \ge n(\varepsilon)$ Ich brauche : $\frac{1}{n(\varepsilon)} < \varepsilon$ Ich brauche $n(\varepsilon) > \frac{1}{\varepsilon}$ Aus Mathe I folgt, dass solch ein $n(\varepsilon)$ existiert. z.B $n(\varepsilon) - \lceil \frac{1}{2} \rceil + 1 > \frac{1}{\varepsilon}$ Dann:
- d) $a_n = \frac{3n^2+1}{n^2+n+1}$ für lle $n \ge 1$ Behauptung: $\lim_{n \to \infty} a_n = 3$ $|a-3| = \left|\frac{3n^2+1}{n^2+n+1} - 3\right| = \left|\frac{3n^2+1-3(n^2+n+1)}{n^2+n+1}\right|$ $= \left|\frac{-3n-2}{n^2+n+1}\right| = \frac{3n+2}{n^2+n+1}$ Sei $\varepsilon > 0$. Benötigt wird $n(\varepsilon) \in \mathbb{N}$ mit $\frac{3n+2}{n^2+n+1} < \varepsilon$ für alle $n > n(\varepsilon)$. $\frac{3n+2}{n^2+n+1} \le \frac{5n}{n^2} = \frac{5}{n}$ Wähle $n(\varepsilon)$ so, dass $n(\varepsilon) > \frac{5}{\varepsilon}$ Dann gilt für alle $n \ge n(\varepsilon)$. $|a_n-3| = \frac{3n+2}{n^2+n+1} \le \frac{5}{n} \le \frac{5}{n(\varepsilon)} < \frac{5\varepsilon}{5} = \varepsilon$ Für alle $n \ge n(\varepsilon)$
- e) $a_n=(-1)^n$ beschränkte Folge $-1\le a\le 1$ konvergiert nicht. Sei $c\in\mathbb{R}$ beliebig, Wähle $\varepsilon=\frac12$

$$2 = |a_n - a_{n+1}| \le |a_n - c| + |c - a_{n+1}| < \frac{1}{2} + \frac{1}{2} = \underline{1} \$$

Abbildung 8: $(-1)^n$ ist beschränkt aber konvergiert nicht

2.6 Satz

Jede konvergente Folge ist beschränkt. (Umkehrung nicht: 2.5_{e})

Beweis. Sei $c = \lim a_n$, wähle $\varepsilon = 1$, Es existiert $n(1) \in \mathbb{N}$ mit $|a_n - c| < 1$ für alle $n \ge n(1)$ Dann ist $|a_n| = |a_n - c + c| \le |a_n - c| + |c| < 1 + |c|$ für alle $n \ge n(1)$ $M = \max\{|a_k|, |a_{k+1}|, \dots, |a_{n(1)-1}|, 1 + |c|\}$ Dann: $|a_n| \le M$ für alle $n \ge k$ $-M \le a_n \le M$

2.7 Bemerkung

- a) $(a_n)_{n\geq 1}$ Nullfolge $\Leftrightarrow (|a_n|)_{n\geq 1}$ Nullfolge $(|a_n-0|=|a_n|-||a_n|-0|)$
- b) $\lim_{n\to\infty} a_n = c \Leftrightarrow (a_n c)_{n\geq k}$ ist Nullfolge $\Leftrightarrow (|a_n c|)_{n\geq k}$ ist Nullfolge

2.8 Satz (Rechenregeln für konvergente Folgen)

Seien $(a_n)_{n\geq k}$ und $(b_n)_{n\geq k}$ konvergente Folgen, $\lim a_n=c, \lim b_n=d$.

- a) $\lim |a_n| = |c|$
- b) $\lim(a_n \pm b_n) = c \pm d$
- c) $\lim(a_n \cdot b_n) = c \cdot d$ insbesondere $\lim(r \cdot b_N) = r \cdot \lim b_n = r \cdot d$ für jedes $r \in \mathbb{R}$.

- d) Ist $b_n \neq 0$ für alle $n \geq k$ und ist $d \neq 0$, so $\lim \left(\frac{a_n}{k_n}\right) = \frac{c}{d}$
- e) Ist (b_n) Nullfolge, $b_n \neq 0$ für alle $n \geq k$, so konvergiert $(\frac{1}{b_n} \text{ nicht}!$.
- f) Existiert $m \ge k$ mit $a_n \le b_n$ für alle $n \ge m$, so ist $c \le d$.
- g) Ist $(c_n)_{n\geq k}$ Folge und existiert $m\geq k$ mit $0\leq c_n\leq a_n$ für alle $n\geq m$ und ist (a_n) eine Nullfolge, so ist auch (c_n) eine Nullfolge.
- h) Ist $(c_n)_{n\geq l}$ beschränkte Folge und ist $(a_n)_{n\geq k}$ Nullfolge, so ist auch $(c_n\cdot a_n)_{n\geq k}$ Nullfolge.

 c_n muss nicht konvergieren!

Beweis. Exemplarisch:

- b) Sei $\varepsilon > 0$. Dann existiert $n_1(\frac{\varepsilon}{2})$ und $n_2(\frac{\varepsilon}{2})$ und $|a_n c| < \frac{\varepsilon}{2}$ für alle $n \ge n_1(\frac{\varepsilon}{2})$ $|b_n d| < \frac{\varepsilon}{2}$ für alle $n \ge n_2(\frac{\varepsilon}{2})$ Suche $n(\varepsilon) = \max(n_1(\frac{\varepsilon}{2}, n_2(\frac{\varepsilon}{2}))$ Dann gilt für alle $n > n(\varepsilon)$: $|a_n + b_n (c + d)| = |(a_n c) + (b_n d)| \le |a_n c| + |b_n d| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
- f) Angenommen c > d. Setze $\delta = c d > 0$ Es existiert $\tilde{m} \ge m$ mit $|c - a_n| < \frac{\delta}{2}$ und $|b_n - d| < \frac{\delta}{2}$ für alle $n \ge \tilde{m}$. Für diese n gilt: $0 < \delta \le \delta + b_n - a_n = c - d + b_n - a_n \ge 0$ nach Voraussetzung $= |c - a_n - d + b_n| \le |c - a_n| + |d - b_n|$ $\le \frac{\delta}{2} + \frac{\delta}{2} = \delta \frac{1}{2}$

2.9 Satz

- a) $0 \le q \le 1$ Dann ist $(q^n)_{n \ge 1}$ Nullfolge
- b) Ist $m \in \mathbb{N}$, so ist $\left(\left(\frac{1}{n^m}\right)_{n\geq 1}\right)$ Nullfolge.
- c) Sei $0 \le q < 1, m \in \mathbb{N}$ Dann ist $(n^m \cdot q^n)_{n \ge 1}$ Nullfolge
- d) Ist $r>1, m\in\mathbb{N},$ so ist $(\frac{n^m}{r^n}_{r\geq 1}$ eine Nullfolge

e)
$$P(x) = a_m \cdot x^m + \dots a_0, a_i \in \mathbb{R}, a_m \neq 0$$

 $Q(x) = b_e \cdot x^e + \dots b_0, b_i \in \mathbb{R}, b_e \neq 0$
Sei $Q(n) \neq 0$ für alle $n \geq k$.

- Ist m > e, so ist $\frac{P(n)}{Q(n)}$ nicht konvergent
- Ist m = e, so ist $\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \frac{a_m}{b_e} = \frac{a_m}{b_m}$
- Ist m < l, so $\operatorname{ist}(\frac{P(n)}{Q(n)})$ ein Nullfolge
- a) Sei $0 \le q \le 1$ Dann ist $(q^n)_{n \ge}$ eine Nullfolge

Beweis. a) Richtig für
$$q > 0$$
. Sei jetzt $q > 0$. Sei $\varepsilon > 0$. Mathe I: Es gibt ein $n(\varepsilon) \in \mathbb{N}$ mit $q^{n(\varepsilon)} < \varepsilon$. Für alle $n \geq n(\varepsilon)$ gilt: $|q^n - o| = q^n < q^{n(\varepsilon)} < \varepsilon$.

- b) 2.5.c): $\frac{1}{n n > 1}$ Nullfolge Beh. folgt mit 2.8.c)
- c) Richtig für q=0. Sei jetzt q>0. $\frac{1.\operatorname{Fall}\colon \mathbf{m}=1}{\frac{1}{q}=1+t, t>0}.$ $(t+1)^n = 1+nt+\frac{n(n+1)}{2}t^2>\frac{n(n-1)}{2}t^2 \text{ für alle } n\geq 2$ $q^n=\frac{1}{(1+t)^n}<\frac{2}{n(n-1)t^2}$ $0\leq n\cdot q^n<\frac{2}{(n-1)t^2} \Leftarrow \text{Nullfolge } 2.5\text{e}), 2.8\text{e})$ Nach 2.9g ist $(n\cdot q^n)_{n\geq q}$ Nullfolge, also auch $(n\cdot q^n)_{n\geq 1}$. $\frac{2.\operatorname{Fall}\colon m>1}{\operatorname{Setze}\ 0< q'=\sqrt[m]{q}\in\mathbb{R}}$ $n^m\cdot q^n=n^m\cdot (q')^n)^m)^n=(n\cdot (q')^n)^m)^n=(n\cdot (q')^n)^m)^n=1$ anwenden 0< q'< 1 $(n^m+q^n)_{n\geq 1} \text{ Nullfolge noch Fall } m=1 \text{ und } 2.8\text{e})$
- d) Folgt aus c) und $q = \frac{1}{r}$
- e) Ist $m \leq l$, so ist $\frac{P(n)}{Q(n)} = \frac{n^m (a_m + a_{m-1} \cdot \frac{1}{n} + \dots + a_1 \cdot \frac{1}{n^{m-1}} + a_0 \cdot \frac{1}{n^m})}{n^l (b_l + b_{l-1} \cdot \frac{1}{n} + \dots + b_1 \cdot \frac{1}{n^{l-1}} + b_0 \cdot \frac{1}{n^l})} = \frac{1}{n^{l-m}} \cdot \frac{I}{II}$ $(I) \longrightarrow a_m, (II) \longrightarrow b_l \xrightarrow{(I)} \frac{a_m}{b_l}$

$$n < l, \frac{1}{n^{l-m}}$$
 Nullfolge
$$\frac{P(n)}{Q(n)} \Rightarrow 0 \cdot \frac{a_m}{b_l}$$
 $m > l$:

Beh. folgt aus Fall m < l und 2.8e).

2.10 Bemerkung

Betrachte Bijektionsverfahren, die Zahl $x \in \mathbb{R}$ bestimmt.

$$a_0 \le a_1 \le a_2 \le \dots$$

 $b_0 \ge b_1 \ge b_2 \ge \dots$
 $a_n \le x \le b_n$
 $0 < b_n - a_n = \frac{b_0 - a_0}{2^n}$
 $0 \le |x - a_n| \le b_n - a_n = \frac{b_0 - a_n}{2} \iff \text{Nullfolge (2.9b)}$
 $2.8e)(|x - a_n|) \text{ Nullfolge.}$
 $2.7e)$: $\lim_{n \to \infty} a_n = x$
Analog: $\lim_{n \to \infty} b_n = x$

2.9 d) e) sind Beispiele für asymptotischen Vergleich von Folgen

2.11 Definition

a) Eine Folge $(a_n)_{n\geq k}$ heißt strikt positiv, falls $a_n>0$ für alle $n\geq k$. Sei im Folgenden $(a_n)_{n\geq k}$ eine strikt positive Folge.

b)
$$\mathbb{O}(a_n) = \{(b_n)_{n \geq k} : \text{ist beschränkt}\}\$$

= $\{(b_n)_{n \geq k} \exists C > 0 \text{ mit } |b_n| \leq C \cdot a_n\}$

c)
$$O(a_n) = \{(b_n)_{n \geq k} : (\frac{b_n}{a_n} \text{ist Nullfolge}\}$$

 $(b_n) \in o(a_n)$ heißt Folge (a_n) wächst wesentlich schneller als die Folge (b_n) .
Klar: $o(a_n) \subset O(a_n)$
 $O, o($ "groß Oh", "klein Oh")

Landau-Symbole

z.B
$$(n^2) \in o(n^3)$$

 $(n^2 + n + 1) \in O(n^2)$ $n^2 + n + 1 \le 3n^2$
 $(n^2) \in O(n^2 + n + 1)$ $n^2 \le n^2 + n + 1$

O(1) = Menge der beschränkten Folgen

o(1) = Menge aller Nullfolgen

Häufig gewählte Schreibweise:

$$n^2 \underbrace{=}_{\text{eig. falsch!}} o(n^2) \text{ statt } (n^2) \in o(n^3)$$

 $n^2 + n + 1 = O(n^2) \text{ statt } (n^2 + n + 1)$

2.12 Satz

Sei $P(x) = a_m \cdot x^m + \ldots + a_1 \cdot x + a_0, m \ge 0, a_m \ne 0.$

- a) $(P(n)) \in o(n!)$ für alle l > m und $(P(n)) \in O(n')$ für alle $l \ge m$.
- b) ist r > 1, so ist $(P(n)) \in o(r^n)$. $[(r^n)$ wächst deutlich schneller als (P(n))]

Beweis. a) folgt aus 2.9e).
$$m = l$$
 (2.6)
b) folgt aus 2.9d) und 2.8 b)c)

2.13 Bemerkung

Algorithmus:

Sei t_n = maximale Anzahl von Reihenschritten des Algorithmus' bei Input der Länge n (binär codiert).

Worst-Case-Komplexität:

Algorithmus hat polynomielle Zeitkomplexität, falls ein $l \in \mathbb{N}$ existiert mit $(t_n) \in O(n^l)$. (gutartig)

Algorithmus hat polynomielle Zeitkomplexität, falls ein $l \in \mathbb{N}$ existiert mindestens exponentielle Zeitkomplexität, falls r > 1 exestiert mit $(r^n) \in O(b_n)$ (bösartig)

2.14 Definition

- a) Eine Folge $(a_n)_{n\geq k}$ heißt monoton wachsend (steigend), wenn $a_n \leq a_{n+1}$ für alle $n\geq k$. Sie heißt steng monoton wachsend (steigend), wenn $a_n < a_{n+1}$ für alle $n\geq k$
- b) $(a_n)_{n\geq k}$ heißt monoton fallend, falls $a\geq a_{n+1}$ für alle $n\geq k$

2.15 Beispiel

- a) $a_n = 1$ für alle $n > 1(a_n)$ ist monoton steigend und monoton fallend.
- b) $a_n = \frac{1}{n}$ für alle $n \ge 1$. (a_n) streng monoton fallend.
- c) $a_n = \sqrt{n}$ (positive Wuzel) $(a_n)n \ge 1$ streng monoton steigend.

- d) $a_n = 1 \frac{1}{n}, n \ge 1$ $(a_n)_{n \ge 1}$ streng monoton steigend.
- e) $a_n = (-1)^n, n \ge 1$ (a_n) ist weder monoton steigend noch monoton fallend.

2.16 Satz

- a) Ist $(a_n)_{n\geq k}$ monoton steigend und nach oben beschränkt (d.h es existiert $D\in\mathbb{R}$ mit $a_n\leq D$ für alle $n\geq k$), so konvergiert $(a_n)'$ und $\lim_{n\to\infty}a_n=\sup\{a_n:n\geq k\}$
- b) $(a_n)_{n\geq k}$ monoton fallend und nach unten beschränkt, so konvergiert $(a_n)_{n\geq k}$ und $\lim_{n\to\infty} a_n = \inf\{a_n : n\geq k\}.$

Beweis. a)

 $c \sup\{a_n : n \ge k\}$. existiert (Mathe I). Zeige: $\lim_{n \to \infty} c$.

Sei $\varepsilon > 0$. Dann existiert $n(\varepsilon)$ mit $c - \varepsilon < a_{n(\varepsilon)} \le c$

Denn sonst $a_n \leq c - \varepsilon$ für alle $n \geq k$ und $c - \varepsilon$ wäre obere Schranke für $\{a_n : n \geq k\}$ Widerspruch dazu, dass c kleinste obere Schranke. Für alle $n \geq n(\varepsilon)$

$$c - \varepsilon \le a_{n(\varepsilon)} \le a_n \le c$$

 $|a_n - c| < \varepsilon$ für alle $n \ge n(\varepsilon)$. b) analog

2.17 Satz (Cauchy'sches Konvergenzkriterium)

(Cauchy, 1789 - 1859)

Sei $(a_n)_{n>k}$ eine Folge. Dann sind äquivalent:

- (1) $(a_n)_{n\geq k}$ konvergent
- (2) $\forall \varepsilon > 0 \exists N M(\varepsilon) \forall n, m \geq N : |a_n a_m| < \varepsilon \text{ (Cauchyfolge)}$ Grenzwert muss nicht bekannt sein!

2.18 Definition

a) Sei $(a_i)_{i \geq k}$ eine Folge, $s_n \sum_{i=k}^n a_i, n \geq k$ (Partialsummen der Folge)

Dann heißt $(s_n)_{n\geq k}$ eine <u>unendliche Reihe</u> $(k-1:a_1,a_1+a_2,a_1+a_2+a_2,\ldots)$

Schreibweise :
$$\sum_{i=k}^{\infty} a_i$$

Abbildung 9: Cauchy'sches Konvergenzkriterium

- b) Ist die Folge $(s_n)_{n\geq k}$ konvergent mit $\lim_{n\to\infty} s_n = c$, so schreibt man $\sum_{i=k}^{\infty} a_i = c$. Reihe <u>konvergiert</u>.

 Wenn (s_n) nicht konvergiert, so heißt die Reihe $\sum_{i=k}^{\infty} a_i$ <u>divergent</u>.

 (Zwei Bedeutungen von $\sum_{i=k}^{\infty} a_i$:
 - Folge der Partialsummen
 - Grenzwert von (s_n) , falls dieser existiert

$$\sum_{i=k}^{\infty} a_i = \sum_{n=k}^{\infty} a_n = (s_m)_{m \ge k}$$

2.19 Satz

- a) Ist die Reihe $\sum_{i=k}^{\infty} a_1$ konvergent, so ist $(a_1)_{i \geq k}$ eine Nullfolge.
- b) Ist die Folge der Partialsummen $s_n=\sum\limits_{i=k}^{\infty}a_i$ beschränkt und ist $a_i\geq 0$ für alle i, so ist $\sum\limits_{i=k}^{\infty}a_i$ konvergent.

Beweis. a) Sei
$$\sum_{i=k}^{\infty} a_i = c$$
.

Sei
$$\varepsilon > 0$$
 Dann existiert $n(\frac{\varepsilon}{2}) \ge k$ mit $|\sum_{i=k}^{\infty} 2a_i - c| < \frac{\varepsilon}{2}$ für alle $n \ge n(\frac{\varepsilon}{2})$
Dann gilt $|a_{n+1} - o| = |a_n + 1| = |\sum_{i=k}^{n+1} a_i + \sum_{i=k}^n a_i| =$

$$|\sum_{i=k}^{n+1} a_i + c - \sum_{i=k}^n a_i + c| \le |\sum_{i=k}^{n+1} a_i + c| + |\sum_{i=k}^n a_i - c| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

$$|\sum_{i=k} a_i + c - \sum_{i=k} a_i + c| \le |\sum_{i=k} a_i + c| + |\sum_{i=k} a_i - c| < \frac{1}{2} + \frac{1}{2} =$$

b) folgt aus 2.16a), denn (s_n) ist monoton steigend

2.20Beispiele

a) Sei $q \in \mathbb{R}$.

Ist
$$q \neq 1$$
, so ist $\sum_{i=1}^{n} q^{i} = \frac{q^{n+1}-1}{q-1}$

$$\begin{aligned} & \left[\left(\sum_{i=k}^{n} q^{i} \right) \cdot (q-1) \right] \\ & \operatorname{Sei} |q| < 1, \, \operatorname{d.h} \, -1 < q < 1. \end{aligned}$$

Sei
$$|q| < 1$$
, d.h $-1 < q < 1$

Dann ist $\sum_{i=1}^{\infty} q^i = \frac{1}{1-q}$ (konvergiert)

$$s_n = \sum_{i=1}^n q^1 = \frac{q^{n+1}-1}{q-1}$$

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{q^{n+1}}{q-1}$$

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{q^{n+1} = 1}{q-1}$$
 (q^n) Nullfolge (2.9_a) für $q \ge 0, 2.8_e) + 2.9_a$ für $q < 0, q = -|q|$

Sei $|q| \ge 1$. Dann ist $\sum_{i=1}^{\infty} q^i$ divergent, da dann (q^i) keine Nullfolge (2.18_a)

b) $\sum_{i=k}^{\infty} \frac{1}{i}$ divergiert

harmonische Reihe

$$\sum_{i=k}^{n} \frac{1}{n}$$

$$\frac{\sum_{i=k}^{n} \frac{1}{n}}{n}$$

$$n = 2^{0} = 1 : s_{1} = 1$$

$$n = 2^{1} = 2 : s_{2} = 1 + \frac{1}{2}$$

...
$$n=2^3=8: s_8=1+\tfrac{1}{2}+\tfrac{1}{3}+\tfrac{1}{4}+\tfrac{1}{5}+\tfrac{1}{6}+\tfrac{1}{7}+\tfrac{1}{8}>s_7>s_6\dots$$
 Per Induktion zu beweisen!

c) $\sum_{i=0}^{\infty} \frac{1}{n^2}$ konvergiert.

Folge der Partialsummen ist monoton steigend.

2.16a) Zeige, dass die Folge der Partialsummen nach aber beschränkt ist.

$$s_n \le s_{2^n - 1} = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2}\right) + \dots + \left(\frac{1}{(2^{n-1})^2} + \dots + \frac{1}{(2^{n-1})^2}\right)$$

$$\le 1 + 2 \cdot \frac{2}{2^2} + 4 \cdot \frac{1}{4^4} + \dots + 2^{n-1} \cdot \frac{1}{(2^{n-1})^2}$$

$$\le \sum_{i=0}^{\infty} \frac{1}{2^i} = \frac{1}{1 - \frac{1}{2}} = 2$$

2.16a) $\sum_{i=0}^{\infty} \frac{1}{2^i}$ Kgt., Grenzwert ≤ 2 . (später: Grenzwert ist $\frac{\pi^2}{6}$)

Es gilt allgemeiner:

$$s \in \mathbb{N}, s \ge 2 \Rightarrow \sum_{i=0}^{\infty} \frac{1}{i^s}$$
 konvergiert.

Allgemeiner: $s \in \mathbb{R}, s > 1 \Rightarrow \sum_{i=0}^{\infty} \frac{i}{i^2}$ konvergiert

d)
$$\sum_{i=0}^{\infty} (-1)^i \cdot \frac{1}{i}$$
 konvergiert:

$$s_{2n} = \underbrace{(-1 + \frac{1}{2})}_{<0} + \underbrace{(-\frac{1}{3} + \frac{1}{4})}_{<0} + \dots \underbrace{(-\frac{1}{2n-1} + \frac{1}{2n})}_{<0}$$

$$(s_{2n})$$
 ist monoton fallend. $s_{2n-1} = -1 + \underbrace{(\frac{1}{2} - \frac{1}{3})}_{>0} + \dots + \underbrace{(\frac{1}{2n-2} - \frac{1}{2n-1})}_{>0}$

 (s_{2n-1}) ist monoton wachsend

Ist k ungerade, so ist $s_k < s_l$: Wähle n so, dass $2n - a \ge k, 2n \ge l$

$$s_k \leq s_{2n-1} < s_{2n} \leq s_l$$

$$s_{2n} = s_{2n-1} + \frac{1}{2n}$$

 $s_{2n} = s_{2n-1} + \frac{1}{2n}$ Abstand $s_{2n} - s_{2n-1} = \frac{1}{2n}$ geht gegen 0.

Abbildung 10: Monotonie

$$\sup \{s_{2n-1} : n \ge 1\}$$

$$\inf \{s_{2n} : n \ge 1\}$$

$$= \lim_{i \leftarrow \infty} (-1^i) \frac{1}{i} \in]-1, -\frac{1}{2}[\text{ (Es gilt } limes = -\ln 2)$$

Bemerkung

Was bedeutet $0.\bar{8} = 0.88888888...$? (Dezimalsystem)

$$0.\overline{8} = \frac{8}{10} + \frac{8}{100} + \frac{8}{1000} + \dots = 8 \cdot \sum_{i=0}^{\infty} \frac{1}{10^i} = 8 \cdot (\frac{10}{9} - 1) = \frac{8}{9}$$

$$\sum_{i=0}^{\infty} \frac{1}{10^i} = \sum_{i=0}^{\infty} (\frac{1}{10})^i = \frac{1}{1 - \frac{1}{10}} = \frac{10}{9}$$

Satz (Leibniz-Kriterium)

Ist $(a_i)_{i\geq k}$ eine monoton fallende Nullfolge (insbesondere $a_i\geq 0$ falls $i\geq k$), so ist $\sum_{i=1}^{\infty} (-1)^i a_i$ konvergent.

Satz (Majoranten-Kriterium)

Seien $(a_i)_{i \geq k}$, $(b_i)_{i \geq k}$ Folgen, wobei $b_i \geq 0$ für alle $i \geq k$ und $|a_i| \leq b_i$ für alle $i \geq k$.

Ist $\sum_{i=k}^{\infty} b_i$ konvergent, so auch $\sum_{i=k}^{\infty} a_i$ und $\sum_{i=k}^{\infty} |a_i|$. Für die Grenzwerte gilt:

$$\left|\sum_{i=k}^{\infty} a_i\right| \le \sum_{i=k}^{\infty} |a_i| \le \sum_{i=k}^{\infty} b_i$$

Beweis. Konvergenz

von $\sum_{i=1}^{\infty} |a_i|$ folgt aus 2.16 a).

$$\sum_{i=k}^{\infty} |a_i| \le \sum_{i=k}^{\infty} b_i \text{ folgt aus } 2.8 \text{ f}).$$

Sei
$$m > n$$
:
$$\left| \sum_{i=k}^{m} a_i - \sum_{i=k}^{n} b_i \right| = \sum_{i=n+1}^{m} a_i \le \sum_{i=n+1}^{m} |a_i| = \left| \sum_{i=k}^{m} |a_i| - \sum_{i=k}^{n} |a_i| \right|$$
Mit Cauchy-Kriterium 2.17 folgt daher aus der Konye

Mit Cauchy-Kriterium 2.17 folgt daher aus der Konvergenz von $\sum_{i=-L}^{m} |a_i|$ auch die von $\sum_{i=k}^{\infty} a_i$.

2.23 Beispiel

$$\sum_{i=1}^{\infty} \frac{1}{+\sqrt{i}}$$

$$\sqrt[i-1]{i} \leq i \text{ für alle } i \in \mathbb{N}$$

$$\frac{1}{\sqrt{i}} \geq \frac{1}{i} \text{ für alle } i \in \mathbb{N}$$

Ang. $\sum_{i=1}^{\infty} \frac{1}{+\sqrt{i}}$ konvergiert. $\Rightarrow \sum_{i=1}^{\infty} \frac{1}{i}$ konvergiert. \nleq

Widerspruch zu 2.20 b)

$$a_i = (-1)^{i \frac{1}{i}}$$

2.20d): $\sum_{i=1}^{\infty} a_i$ konvergiert, aber $\sum_{i=1}^{\infty} |a_i|$ konvergiert nicht. (\star)

2.24 Definition

 $\sum\limits_{i=k}^{\infty}a_i$ heißt <u>absolut konvergent</u>, falls $\sum\limits_{i=k}^{\infty}|a_i|$ konvergiert. (Falls alle $a_i\geq 0$: Konvergent = absolut Konvergent)

2.25 Korollar

Ist $\sum_{i=k}^{\infty} a_i$ absolut konvergent, sp ist auch konvergiert. Die Umkehrung gilt im Allgemeinen nicht.

<u>Beweis</u>: 1.Behauptung 2.22 mit $b_i = |a_i|$ Umkehrung siehe (\star)

Bermerkung

Was bedeutet $0, a_1, a_2, a_3, a_4 \dots$ $a_i \in \{0 \dots 9\}$ (Dezimalsystem) $a_1 \cdot \frac{1}{10} a_2 \cdot \frac{1}{100} \dots a_n \cdot \frac{1}{10^n} \leq 9 \cdot \frac{1}{10} 9 \cdot \frac{1}{100} \dots 9 \cdot \frac{1}{10^n}$ $a_i \frac{1}{10} \leq 9 \frac{1}{10}$ $\sum_{i=k}^{\infty} 9 \frac{1}{10} = 9 \cdot (\frac{1}{1-\frac{1}{10}} - 1) = 1 \Rightarrow \sum_{i=k}^{\infty} a_i \frac{1}{10} \text{ konvergiert}$

2.26 Satz

Sei $\sum_{i=k}^{\infty} a_i$ eine Reihe.

a) Wurzelkriterium

Existiert q < 1 und ein Index i_0 , so dass $\sqrt[i]{|a_i|} \le q$ für alle $i \ge i_0$. so konvergiert die Reihe $\sum_{i=k}^{\infty} a_i$ absolut.

Ist $\sqrt[i]{|a_i|} \ge 1$ für unendlich viele i so divergiert $\sum_{i=k}^{\infty} a_i$.

b) Quotientenkriterium

Existiert q > 1 und ein Index i_0 , so dass $\left| \frac{a_{i+1}}{a_i} \right| \le$ für alle $i \ge i_0$, so konvergiert $\sum_{i=k}^{\infty} a_i$ absolut.

Beweis.

a)
$$|a_i| \le q^i$$
 für alle $i \ge i_0$
$$\sum_{i=i_0}^{\infty} q^i \text{ konvergiert (2.20 a))}$$

$$\Rightarrow \sum_{i=i_0}^{\infty} |a_i|$$
 konvergiert

$$\Rightarrow \sum_{i=k}^{\infty} |a_i|$$
 konvergiert.

$$\sqrt[i]{|a_i|} \geq 1$$
 für unendlich viele i

$$\Rightarrow |a_i| \ge 1$$
 für unendlich viele i

$$\Rightarrow$$
 (a_i) sind keine Nullfolge

$$\Rightarrow \sum_{i=k}^{\infty} a_i$$
 divergiert.

b) Sei
$$i \geq i_0$$
.
$$\begin{vmatrix} \frac{a_i}{a_{i0}} \end{vmatrix} = \begin{vmatrix} \frac{a_i}{a_{i-1}} \end{vmatrix} \cdot \begin{vmatrix} \frac{a_i}{a_{i-2}} \end{vmatrix} \cdot \dots \cdot \begin{vmatrix} \frac{a_{io+1}}{a_{i0}} \end{vmatrix} \leq q \cdot q \cdot \dots \leq = q^{i-i0} = \frac{q^i}{q^{i0}}$$

$$\uparrow \text{ Voraussetzung:}$$

$$\text{jeder dieser Quotienten ist } \leq q$$

$$|a_i| \leq \underbrace{\frac{|a_i0|}{q^{i0}}}_{=:c} \cdot q^i \quad \sum_{i=i_0}^{\infty} c \cdot q^i \text{ konvergent}$$

$$\Rightarrow \sum_{i=i_0}^{\infty} |a_i|$$
 konvergiert.

$$\Rightarrow \sum_{i=k}^{\infty} |a_i|$$
 konvergiert

Bemerkung 2.27

- a) Es reicht <u>nicht</u> in 2.26 nur vorauszusetzen, dass $\sqrt[i]{|a_i|} > 1$ für alle $i \geq i_o$ bzw. $\frac{a_{i+1}}{a_i} < 1$ für alle $i \ge i_0$.
 - z.B. harmonische Reihen : $\sum_{i=1}^{\infty} \frac{1}{i}$ divergiert.

Aber:
$$\sqrt[i]{\frac{1}{i}} > 1$$
 für alle i. $\frac{i}{i+1} < 1$ für alle i

b) Es gibt Beispiele von absolut konvergenten Reihen mit $\left|\frac{a_{i+1}}{a_i}\right|$ für unendlich viele

2.28Beispiel

Sei $x \in \mathbb{R}$. Dann konvergiert $\sum_{i=0}^{\infty} \frac{x^i}{i!}$ absolut $(0^0 = 1, 0! = 1)$:

Quotientenkriterium:
$$|\frac{x^{i+1} \cdot i!}{(i+1)! \cdot x^i}| = |fracxi+1| = \frac{|x|}{i+1} \text{ W\"ahle } i_o, \text{ so dass } i_0+1>2 \cdot |x|$$
 F¨ur alle $i \geq i_0$:
$$\frac{|x|}{(i+1)} \leq \frac{|x|}{(i_0+1)} < \frac{|x|}{2 \cdot |x|} = \frac{1}{2} = q.$$

2.29 Bemerkung

Gegeben seien zwei endliche Summen

$$\sum_{a_n}^k n = 0, \sum_{b_n}^l n = 0.$$

$$(\sum_{a_n}^k n = 0)(\sum_{b_n}^l n = 0) \quad (\bigstar)$$

Distributivgesetz: Multipliziere a_i mit jedem b_i und addiere diese Produkte.

$$\left(\star\right) = \underbrace{a_0b_0}_{\text{Indexsumme 0}} + \underbrace{(a_0b_1 + a_1b_0)}_{\text{Indexsumme 2}} + \ldots + \underbrace{a_kb_l}_{\text{Indexsumme k+l}}$$

Definition 2.30

Seien $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ unendliche Reihen.

Das <u>Cauchy-Produkt</u>(<u>Faltungsprodukt</u>) der beiden Reihen ist die Reihe $\sum_{n=0}^{\infty} c_n$, wo-

bei
$$c_n = \sum_{i=0}^{\infty} a_i \cdot b_{n-1} = a_0 b_n + a b_{n-1} + \dots a_n b_0$$

2.31 Satz

Sind $\sum_{i=0}^{\infty} a_n$, $\sum_{i=0}^{\infty} b_n$ absolut konvergent Reihen mit Grenzwert c, d, so ist das Cauchy Produkt auch absolut konvergent mit Grenzwert $c \cdot d$.

Beweis: [1]

3 Potenzreihen

3.1 Definition

Sei (b_n) eine reelle Zahlenfolge, $a \in \Re$

Dann heißt $\sum_{n=0}^{\infty} b_n \cdot (x-a)^n$ eine <u>Potenzreihe</u> (mit <u>Entwicklungspunkt</u> a)) Speziell:

$$a = 0$$

$$\sum_{n=0}^{\infty} b_n \cdot x^n$$

(Potenzreihe im engeren Sinne)

Hauptfolge: Für welche $x \in \mathbb{R}$ konv. die Potenzreihe (absolut)?

Suche für x = a

Dann Grenzwert b_0 (da $0^0 = 1$)

Ob Potenzreihe für andere x konvergiert, hängt von b_n ab!

3.2 Beispiel

- a) $\sum_{i=0}^{\infty} x^n (b_n = 1 \text{ für alle } n)$ geometrische Reihe, konvergiert für alle $x \in]-1,1[$
- b) $\sum_{i=0}^{\infty} 2^n \cdot x^n (b_n = 2^n) = \sum_{i=0}^{\infty} (2 \cdot x)^n \text{ konvergiert genau dann nach a), wenn } |2x| < 1,$ d.h $|x| < \frac{1}{2}$ d.h. $x \in]-0.5, 0.5[$
- c) $\sum_{i=0}^{\infty} \frac{x^n}{n!} (b_n = \frac{1}{n})$ konvergiert für alle $x, x \in]-\infty, \infty[=\mathbb{R}$

3.3 Satz

Sei $\sum_{i=0}^{\infty} b_n \cdot x^n$ eine Potenzreihe (um 0). Dann gibt es $R \in \mathbb{R} \cup \{\infty\}, R \geq 0$, so dass gilt.

- 1. Für alle $x \in \mathbb{R}$ und |x| < R konvergiert Potenzreihe absolut (d.h. $\sum_{i=0}^{\infty} b_n \cdot x^n$ konvergiert, dann auch $\sum_{i=0}^{\infty} b_n \cdot x^n$)
 Falls $R = \infty$, so heißt das, dass Potenzreihe für alle $x \in \mathbb{R}$ absolut konvergiert.
- 2. Für alle $x \in \mathbb{R}$ mit |x| > R divergiert $\sum_{i=0}^{\infty} b_n \cdot x^n$ $(\lim_{n \to \infty} \sqrt[n]{|b_n|} = 0 \Rightarrow R = \infty)$ (Für |x| = R lassen sich keine allgemeine

Abbildung 11: Konvergenzradien und ihre Aussagen

Aussagen treffen).

R heißt der Konvergenzradius der Potenzreihe $\sum_{i=0}^{\infty} b_n \cdot x^n$

Konvergenzintervall < -R, R >

besteht aus allen x für die $\sum_{i=0}^{\infty} b_n \cdot x^n$ konvergiert.

< kann [oder] bedeuten.

> kann] oder [bedeuten.

Beweis. $|x_1, x_2| \mathbb{R}, |x_1| \le |x_2|$

Dann: Falls
$$\sum_{i=0}^{\infty} |b_n| \cdot |x_n|^n$$
 konvergiert, so auch $\sum_{i=0}^{\infty} |b_n| \cdot |x_n|^n$ (2.22) (\bigstar)

Falls $\sum b_n \cdot x_n$ für alle x absolut konvergiert, so setze $R = \infty$

Wenn nicht, so setze $R = \sup\{|x| : x \in \mathbb{R}, \sum_{i=0}^{\infty} |b_n| \cdot |x_n| \text{ konvergient}\} < \infty \text{ Nach } (\star)$

gilt: $|x| < R \Rightarrow \sum b_n x^n$ konvergiert absolut.

Für |x| > R konvergiert $\sum b_n x^n$ nicht absolut.

Sie konvergiert sogar selbst nicht. ([?])

$$\sqrt[n]{|b_n| \cdot |x|^n} \le q < 1$$
 für alle $n \ge n_0$

$$\Leftrightarrow |x| \cdot \sqrt[n]{|b_n|} \le 1 < 1 \text{ für alle } n \ge n_0$$

$$\Leftrightarrow \lim_{n \to \infty} |x_n| \cdot \sqrt[n]{|b_n|} < 1$$

$$\uparrow$$
 (setze $\varepsilon = 1 - \lim_{n \to \infty} |x| \cdot \sqrt[n]{|b_n|} > 0$)

$$\Leftrightarrow |x| < \frac{1}{\lim_{x \to \infty} \sqrt[n]{|b_n|}}$$

$$\exists n_0 \forall n \geq n_0 : s - \frac{\varepsilon}{2} < |x| \cdot \sqrt[n]{b_n} \leq s + \frac{\varepsilon}{2} =: q < 1$$

3.4 Bemerkung

Konvergenz von Potenzreihen der Form $\sum_{i=0}^{\infty} b_n \cdot (x-a)^n$:

gleichen Konvergenzradius R wie $\sum_{i=0}^{\infty} b_n \cdot x^n$

konvergiert absolut für |x-a| < R, d.h $x \in]a-R, a+R[$ Divergiert für |x-a| > R. Keine Aussage für |x-a| = R, d.h x = a-R oder x = a+R Konvergenzintervall < a-R, a+R >

3.5 Die Exponentialreihe

a) Exponentialreihe

$$\sum_{i=0}^{\infty} \frac{x^n}{n!} (b_n = \frac{1}{n!})$$

2.28 Reihe konvergiert für alle $x \in \mathbb{R}$.

Setze für $x \in \mathbb{R} : \exp(x) := \sum_{i=0}^{\infty} \frac{x^i}{n!}$ Exponentialfunktion $\exp(0) = \frac{0^n}{0!} = 1$

b) Serien $x, y \in \mathbb{R}$ $\exp(x) \cdot \exp(y) = \lim_{x \to 0} \text{Limes des Cauchy Produkts der beiden Reihen.}$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \frac{x^i}{i!} \cdot \frac{y^{n-i}}{(n-i)!} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \frac{1}{n!} \cdot \frac{n!}{i! \cdot (n-i)!} \cdot x^i \cdot y^{n-i}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \binom{n}{i} \cdot x \cdot y^{n-i}\right)$$

$$= \sum_{i=0}^{\infty} \frac{1}{n!} \cdot (x+y)^n = \exp(x+y)$$

$$= \exp(x+y) = \exp(x) \cdot \exp(y) \text{ für alle } x, y \in \mathbb{R}$$

$$= \exp(x+y) = \exp(x) \cdot \exp(y) \text{ für alle } x, y \in \mathbb{R}$$

$$= \exp(x+y) = \exp(x) \cdot \exp(x) = \exp(x+(-x)) = \exp(x) \cdot \exp(-x)$$

$$= \exp(-x) = \frac{1}{\exp(x)} \text{ für alle } x \in \mathbb{R}$$

$$= \exp(x) > 0 \text{ für alle } x \in \mathbb{R}$$

Abbildung 12: Die Exponentialreihe

c)
$$\exp(1) = \sum_{i=0}^{\infty} \frac{1}{n!} = e$$

$$\underbrace{\text{Euler'sche Zahl}}_{\text{Approximation } e \text{ durch } \sum_{i=0}^{\infty} \frac{1}{n!} \ m = 2 \qquad 1 + 1 + \frac{1}{2} = 2, 5$$

$$\text{Approximation } e \text{ durch } \sum_{i=0}^{\infty} \frac{1}{n!} \ m = 3 \qquad 2, 5 + \frac{1}{6} = 2, \overline{6}$$

$$\dots m = 6 \quad \frac{326}{126} + \frac{1}{720} = 2, 7180\overline{5}$$

$$\text{Es ist: } e \approx 2, 71828 \dots \text{ (irrationale Zahl)}$$

$$\sum_{i=0}^{\infty} \frac{1}{n!} \text{ konvergiert schnell}$$

$$m \in \mathbb{N}$$

$$\exp(m) = \exp(1 + \dots + 1)$$

$$\exp(1)^m = e^m$$

$$e^0 = 1 \exp(-m) = \frac{1}{\exp(m)} = e^{-m}$$

$$n \neq 0, n \in \mathbb{N} :$$

$$e = \exp(1) = \exp(\frac{n}{n}) = \exp(\frac{1}{n})$$

$$\exp(\frac{1}{n}) = + \sqrt[n]{e} = e^{\frac{1}{n}}$$

$$\exp(\frac{m}{n}) = e^{\frac{m}{n}}.$$
From all $n \in \mathbb{N}$ of the part $\exp(n)$ and

Für alle $x \in \mathbb{Q}$ stimmt $\exp(x)$ mit der 'normalen' Potenz e^x überein.

Dann definiert man für beliebige $x \in R$:

$$e^x := \exp(x) = \sum_{i=0}^{\infty} \frac{x^n}{n!}$$

In kürze: Definition $a^{\vec{x}}$ für $a > 0, x \in \mathbb{R}$

d) Bei komplexen Zahlen kam e^{it} $(i^2 = -1, t \in \mathbb{R})$ vor als Abkürzung für $\cos(t) + i\sin(t)$

Tatsächlich kann auch für jedes $z \in \mathbb{C}$ definieren $e^z = \sum_{n=1}^{\infty} \frac{z^n}{n!}$

Dabei: Konvergenz von Folgen/Reihen in \mathbb{C} wie in \mathbb{R} mit komplexem Absolutbetrag.

Man kann dann zeigen:

$$\sum\limits_{i=0}^{\infty}\frac{z^n}{n!}$$
konvergiert für alle $z\in\mathbb{C}.$

Dass tatsächlich dann gilt:

$$e^{it} = \sum_{i=0}^{\infty} \frac{(it)^n}{n!} = \cos(t) + \sin(t)$$
. zeigen wir später

2.718...) Man kann zeigen.

$$\frac{e = \lim_{n \to \infty} (1 + (\frac{1}{n})^n)}{\text{Bedeutung:}}$$

- Angelegtes Guthaben G wird in einem Jahr mit 100% verzinst. Guthaben am Ende eines Jahres 2G(=G(1+1)
- Angelegtes Geld wird jedes halbe Jahr mit 50% verzinst. Am Ende eines Jahres (mit Zinsenzinsen)

$$G(1+\frac{1}{2})(1+\frac{1}{2}) = 2,25G$$

 $G(1+\frac{1}{2})(1+\frac{1}{2})=2,25G$ n- mal pro Jahr mit $\frac{100}{n}\%$ verzinsen. Am Ende desx Jahres $G(1+\frac{1}{n})^n$. $\lim_{n\to\infty}G(1+\frac{1}{n})^n=e\cdot G\approx 2.718\ldots G$ (stetige Verzinsung)

$$\lim_{n \to \infty} G(1 + \frac{1}{n})^n = e \cdot G \approx 2.718 \dots \cdot G \text{ (stetige Verzinsung)}$$

a% statt $100\% \cdot Ge^{\frac{a}{100}}$

4 Reelle Funktionen und Grenzwerte von Funktionen

4.1 Definition

Reelle Funktionen f in einer Variable ist Abbildung $f: D \to \mathbb{R}$, wobei $D \subset \mathbb{R}$ (D = Definitionsbereich). Typisch: $D = \mathbb{R}$, Intervall, Verschachtelung von Intervallen

4.2 Beispiel

a) Polynomfunktionen (ganzrationale Funktion, Polynome) $\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to a_n \cdot x^n + \dots a_1 x + a_0 \\ f(x) = a_n \cdot x^n + \dots a_1 \cdot x + q \\ a_n \neq 0 : n = \text{Grad } (f) \text{ } f = 0 \text{ (Nullfunktion), } \text{Grad}(f) = \infty \\ \text{Grad } 0 \text{: konstante Funktionen} \neq 0 \\ \text{Graph von } f \text{:} \end{cases}$

Abbildung 13: $f(x) = x^3 - 2x^2 - x + 2$

b) $f, g: D \to R$ $(f \pm g)(x) := f(x) \pm g(x)$ für alle $x \in D$ <u>Summe</u>: Differenz, Produkt von f und g. Ist $g(x) \neq 0$ für $x \in D$, so <u>Quotient</u>. $\frac{f}{g}(x) := \frac{f(x)}{g(x)}$ für alle $x \in D$, Quotient von Polynomen = (gebrochen-)rationalen Funktionen |f|(x) := |f(x)| Betrag von f. c) Potenzreihe definiert Funktion auf ihrem Konvergenzintervall.

z.B :
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Fkt. $\mathbb{R} \to \mathbb{R}$

d) Hintereinanderausführung von Funktionen:

$$f: D_1 \to \mathbb{R}, g: D_2 \to \mathbb{R}f(D_1) \subset f(D_2), \text{ dann } g \circ f:$$

$$\begin{cases} D_1 \Rightarrow \mathbb{R} \\ x \to g(f(x)) \end{cases}$$

e)
$$f(x) = e^x, g(x) = x^2 + 1$$

 $f, g : \mathbb{R} \to \mathbb{R}$
 $(g \circ f)(x) = g(e^x) = (e^x)^2 + 1 = e^2x + 1$
 $(f \circ g)(x) = f(x^2 + 1) = e^{x^2 + 1}$

f) Trigonometrische Funktionen: Sinus- und Cosinus
funktion (vgl. $\mathbb C)$

$$0 \ge x \ge 2\pi$$
 x = Bogenmaß von φ in Grad, so $x = \frac{\varphi}{360} \cdot \pi$

$$\sin(x) = s, \cos(x) = c$$
 Für beliebig $x \in \mathbb{R}$:

Periodische Fortsetzung, d.h. $x \in \mathbb{R}.x = x' + k \cdot 2\pi, k \in \mathbb{Z}, x' \in [0, 2\pi[$

$$\sin(x) := \sin(x')$$

$$cos(x) := cos(x')$$

$$|\cos(x)|, |\sin(x)| \le 1$$

$$\cos^2(x) + \sin^2(x) = 1$$

$$\cos(x) = \sin(x + \frac{\pi}{2})$$

$$\sin(x) = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z}$$

Abbildung 15: Bogenmaß

Abbildung 16: sin(x) und cos(x)

$$\cos(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
Tangens und Cotangensfunktion
$$\tan(x) = \frac{\sin(x)}{\cos(x)} \text{ für alle } x \in \mathbb{R} \text{ mit } \cos(x) \neq 0$$

$$\cot(x) = \frac{\cos(x)}{\sin(x)} \text{ für alle } x \in \mathbb{R} \text{ mit } \sin(x) \neq 0$$

4.3 Definition

Sei $D \subset \mathbb{R}, c \in \mathbb{R}$ heißt Adharenzpunkt von D, falls es eine Folge $(a_n)_n, a_n \in D$, mit $\lim_{n \to \infty} a_n = c$ gibt.

 $\bar{D}=$ Menge der Adharenzpunkte von D

Abbildung 17: tan(x) and cot(x)

= Abschluss von D

klar: $D \subset \bar{D}$.

 $d \in D$. konstante Folge $(a_n)_{n \ge 1}$ mit $a_n = d$. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} d = d$.

Also: $d \in \bar{D}$.

4.4 Beispiel:

a)
$$a, b \in \mathbb{R}, a > b, D =]a, b[$$
c
a
b

$$\bar{D} = \underline{[}a,b]D \in \bar{D}$$

$$a \in \bar{D}$$

$$a_n = a + \frac{b-a}{n} \in D, n \ge 2$$

$$\lim_{n \to \infty} a_n = a$$

$$\lim_{n \to \infty} a_n = a$$

Also
$$[a,b] \subset \bar{D}$$
.

Ist $c \notin [a,b]$, etwa c < a, dann ist $|a_n - c| \ge a - c > 0$ für alle $a_n \in]a,b[$ Also: $\lim \neq c$

b) \mathcal{I} Intervall in $\mathbb{R}, x_1, \ldots, x_r \in \mathcal{I}$,

$$D = \mathcal{I} \{x_1, \dots, x_r\}$$
a $x_1 x_2 x_3 x_4 x_5 \dots x_r$ b

$$\bar{D} = \bar{\mathcal{I}} = [a, b],$$

falls
$$\mathcal{I} = \langle a, b \rangle$$
.

$$\begin{array}{cc} c) & \mathbb{Q} \subset \mathbb{R} \\ \bar{\mathbb{Q}} = \mathbb{R} \end{array}$$

4.5 Definition

$$f: D \to, c \in \bar{D}$$
.

 $d \in \mathbb{R}$ heißt Grenzwert von f(x) für x gegen $c,d = \lim_{x \to c}$, wenn für jede Folge $(a_n) \in D$, die gegen c konvergiert, die Bildfolge $(f(a_n))_n$ gegen d konvergiert.

4.6 Beispiel:

a) Sei
$$f(x) = b_k x^k + \ldots + b_1 x + b_0$$
, eine Polynomfunktion, $c \in \mathbb{R}$. Sei (a_n) Folge mit $\lim_{n \to \infty} a_n = c$ $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} b_k x^k + \ldots + b_1 x + b_0$

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} b_k x^k + \dots + b_1 x + b_0$$

$$= b_k (\lim_{n \to \infty} a_n)^k + b_{k-1} \cdot (\lim_{n \to \infty} a_n)^{k-1} + \dots + b_0 \quad \text{Rechengeln für Folgen, 2.8}$$

$$= b_k \cdot c^k + b_{k-1} \cdot c^{k-1} + \dots + b_1 \cdot c + b_0 = f(c).$$

Abbildung 18: x^2

b) Sei
$$f(x) = \frac{x^2 - 1}{x - 1}$$
,
 $D = R \setminus \{1\}$
Auf D ist $f(x) = \frac{(x + 1)(x - 1)}{(x - 1)} = (x + 1) \bar{D} = \mathbb{R}$
 $\lim_{x \to 1} f(x) = ?$

Abbildung 19: x+1

Sei
$$(a_n)$$
 Folge mit $D = \mathbb{R} \setminus \{1\}$ mit $\lim_{n \to \infty} a_n = 1$
 $f(a_n) = a_n + 1$
 $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} (a_n + 1) = 1 + 1 + 2$. $\lim_{n \to \infty} 1 = 2$.

c)
$$f(x) = \begin{cases} 1 & \text{für } x > 0 \\ 0 & \text{für } x < 0 \end{cases} D = \mathbb{R}$$
$$\lim_{x \to 0} f(x) ?$$

Abbildung 20: Abschnittsweise definierte Funktion

$$a_n = \frac{1}{n} \cdot \lim a_n = 0.$$

$$\lim_{x \to \infty} f(a_n) = \lim_{n \to \infty} 1 = \underline{1}$$

$$a_n = -\frac{1}{n}, \lim_{n \to \infty} a_n = 0$$

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} 0 = \underline{0}.$$

$$\lim_{x \to 0} \text{ existiert nicht.}$$

d)
$$f(x) = \sin(\frac{1}{x}), D = \mathbb{R} \setminus \{0\}$$
 $a_n = \frac{1}{n\pi}, f(a_n) = \sin(n\pi) = 0$

Abbildung 21: $\sin(\frac{1}{x})$

$$a'_n = \frac{1}{(2n + \frac{1}{2}\pi)} \to 0, f(a'n) = \sin(2\pi n + \frac{\pi}{2}) = 1$$

 $\lim(a_n) = 0$
 $\lim(f(a_n)) = \lim 0 = 0 \lim(f(a'_n)) = \lim 1 = 1$
 $\lim(f(x))_{x\to 0}$ existiert nicht

e)
$$f(x) = x \cdot \sin(\frac{1}{x}), D = \mathbb{R} \setminus \{0\} \lim_{x \to 0} f(x) = 0 \text{ dann:}$$

 $(a_n) \to 0, a_n \in \mathbb{R} \setminus \{0\}$
 $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_n \cdot \sin(\frac{1}{a_n}) = 0$

4.7 Satz $(\varepsilon - \delta)$ -Kriterium

 $f: D \to \mathbb{R}, c \in \bar{D}$. Dann gilt: $\lim_{x \to c} f(x) = d \Leftrightarrow \forall \varepsilon > 0 \exists \delta \forall x \in D: |x - c| \leq \delta \to |f(x) - d| \leq \varepsilon$

Beweis. \rightarrow : Angenommen falsch.

Dass heißt $\exists \varepsilon > 0$, so dass für alle $\delta > 0$ (z.B $\delta = \frac{1}{n}$) ein $x_n \in D$ existiert mit $|x_n - c| \leq \frac{1}{n}$ und $|f(x_n) - d| > \varepsilon$ $\lim_{n \to \infty} x_n = c$. Aber:

Abbildung 22: $x \cdot \sin(\frac{1}{x})$

Abbildung 23: geometrische Darstellung des $\varepsilon - \delta$ Kriteriums

 $\lim_{n \to \infty} f(x_n) \neq d \xi$ \(\phi:\) Sei (a_n) Folge, $a_n \in D$ $\lim_{\substack{n\to\infty\\ \text{Zu zeigen}}} a_n = c.$ Zu zeigen : $\lim_{\substack{n\to\infty\\ n\to\infty}} f(a_n) = d, \text{ d.h } \forall \varepsilon > 0 \exists n(\varepsilon) \forall n \geq n(\varepsilon) : |f(a_n) - d| < \varepsilon.$

Sei $\varepsilon > 0$ beliebig, ex. d > 0:

 (\star)

Für alle $x \in D$ mit $|x - c| \le \delta$ gilt $|f(x) - d| < \varepsilon$. Da $\lim_{n \to \infty} a_n = c$, existiert n_0 mit $|a_n - c| \ge \delta$ für alle $n \ge n_0$ Nach (\star) gilt: $|f(a_n) - d| < \varepsilon \forall n \ge n_0. \checkmark$

Bemerkung

 $\lim_{x\to c} f(x) = d \Leftrightarrow \text{Für alle Folgen } (a_n), a_n \in D, \text{ mit } \lim_{n\to\infty} a_n = c \text{ gilt } \lim_{n\to\infty} f(a_n) = e$ Wenn man zeigen will, dass $\lim_{x\to c} f(x)$ nicht existiert, gibt es 2 Möglichkeiten:

- Suche <u>eine bestimmte</u> Folge (a_n) , $\lim_{n\to\infty} a_n = c$, so dass $\lim_{x\to\infty} f(a_n)$ nicht existiert.
- Suche zwei Folgen $(a_n), (b_n), \lim_{x \to \infty} a_n = c, \lim_{x \to \infty} b_n = c \text{ und } \lim_{x \to \infty} f(a_n) \neq \lim_{x \to \infty} f(b_n)$

Abbildung 24: Abschnittsweise definierte Funktion

$$a_n = (-1)^n \cdot \frac{1}{n}$$

$$\lim_{n \to \infty} a_n = 0$$

$$f(a_n) = (101010...)$$

$$\lim_{n \to \infty} f(a_n) \text{ existiert nicht.}$$
Oder:
$$a_n = \frac{1}{n} \lim_{n \to \infty} a_n = 0$$

$$b_n = -\frac{1}{n} \lim_{n \to \infty} b_n = 0$$
Aber:
$$\lim_{x \to \infty} f(a_n) \neq \lim_{x \to \infty} f(b_n)$$

4.8 Satz (Rechenregeln für Grenzwerte)

 $f, g, D \to \mathbb{R}, c \in \overline{D}$, Existieren die Grenzwerte auf der rechten Seite der folgenden Gleichungen, so auch die auf der linken (und es gilt Gleichheit)

a)
$$\lim_{x \to c} (f \pm / \cdot g) = \lim_{x \to c} f(x) \pm / \cdot \lim_{x \to c} g(x)$$
.

b) Ist $g(x) \neq 0$ für alle $x \in D$ und $\lim_{x \to c} g(x) \neq 0$, so

$$\lim_{x \to c} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

c)
$$\lim_{x \to c} |f(x)| = |\lim_{x \to c} f(x)|$$

Beweis. Folgt aus den entsprechenden Regeln für Folgen.

4.9 Beispiel:

$$f(x) = \frac{x^3 + 3x + 1}{2x^2 + 1}, D = \mathbb{R}$$

$$\lim_{x \to 2} = \frac{\lim_{x \to 2} (x^3 + 3x + 1)}{\lim_{x \to 2} (2x^2 + 1)}$$

$$= \frac{4 + 6 + 1}{8 + 1} = \frac{11}{9}$$

4.10 Bemerkung

Rechts- und linksseitige Grenzwerte:

Rechtsseitiger Grenzwert:

$$\lim_{x\to c^+} f(x) = d \Rightarrow \forall (a_n)_n, a_n \in D, a_n \geq c \text{ und } \lim_{n\to\infty} a_n = c \text{ gilt: } \lim_{n\to\infty} f(a_n) = d.$$
 Analog: linksseitiger Grenzwert: $\lim_{x\to c^-} f(x) = d$
$$(a_n \leq c).$$

4.11 Beispiel:

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases} D = \mathbb{R} \setminus \{0\}, c = 0 \in \bar{D}$$

$$\lim_{x \to 0^+} f(x) = 1, \lim_{x \to 0^-} f(x) = 0.$$

$$\lim_{x \to 0} f(x) \text{ existiert nicht.}$$
 Falls
$$\lim_{x \to c^+} \text{ und } \lim_{x \to c^+} \text{ where } x \to c^-$$

$$\underline{\text{und }} \lim_{x \to c^+} f(x) = \lim_{x \to c^-} d$$
 so exisitiert
$$\lim_{x \to c} f(x) = d. \text{ Grenzwert: } d \in \mathbb{R}$$

Abbildung 25: Grenzwerte gegen einen Festen Wert

4.12Definition

$$\begin{array}{l} D=< b, \infty[, f:D\to \mathbb{R} & (\text{z.B }D=\mathbb{R}) \\ \frac{f \text{ konvergiert gegen }d\in \mathbb{R} \text{ f\"ur x gegen unendlich},}{\lim_{f(x)} = d, \text{falls gilt:}} \\ \forall \varepsilon>0 \exists M=M(\varepsilon) \forall x\geq M: |f(x)-d|<\varepsilon. \\ (\text{Analog:}\lim_{x\to -\infty} f(x)=d) \end{array}$$

Beispiel 4.13

a)
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
 $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Sei $\varepsilon > 0$. Wähle $M = \frac{1}{\varepsilon}$. Dann gilt für alle $x \ge M$: $|f(x) - 0| = |\frac{1}{x}| \le \frac{1}{m} = \varepsilon$.

b) Allgemein gilt:

P,Q Polynome vom Grad k bzw. l $l \geq k$

$$P(x) = a_k \cdot x^k + \dots, Q(x) = b_i \cdot x^i + \dots, a_k \neq 0, b_i \neq 0 \lim_{x \to \infty} \frac{P(x)}{Q(x)} = \begin{cases} 0 & \text{für } l \geq k \\ \frac{a_k}{b_k} & \text{für } l = k \end{cases}$$
 (Beweis wie für Folgen $\lim_{x \to \infty} \frac{P(n)}{Q(n)}$)
$$\lim_{x \to \infty} \frac{7x^5 + 205x^3 + x^2 + 17}{14x^5 + 0,5} = \frac{1}{2}$$

$$\lim_{x \to \infty} \frac{7x^5 + 205x^3 + x^2 + 17}{14x^5 + 0.5} = \frac{1}{2}$$

4.14 Bemerkung

Die Rechenregeln aus 4.8 gelten auch für $x \to \infty/-\infty$

4.15 Definition

- a) $f: D \to \mathbb{R}, c \in \overline{D}$ $\underbrace{\frac{f \text{ geht gegen } \infty \text{ für x gegen c}}{\lim_{x \to c} f(x) = \infty, \text{ falls gilt:}}}_{x \to c}$ $\forall L > 0 \exists \delta > 0 \forall x \in D: |x - c| \leq \delta \Rightarrow f(x) \geq L.$
- b) $< b, \infty[\supset D, f: D \to \mathbb{R}, \underline{\text{f geht gegen } \infty, \text{ für x gegen } \infty}: \lim_{x \to \infty} f(x) = \infty,$ falls gilt: $\forall L > 0 \exists M > 0 \forall x \in D, x \geq M, f(x) \geq L.$

Abbildung 26: Funktionen $\lim_{x\to\infty} = \infty$

(Entsprechend:
$$\lim_{x\to c} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = -\infty \xrightarrow{-4} -224 \xrightarrow{2} 2 \xrightarrow{4}$$

$$\lim_{x \to -\infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

4.16 Satz

 $f:D\to\mathbb{R}$.

- a) Sei $c \in \bar{D}$, oder $c = \infty, -\infty$ falls $\lim_{x \to c} f(x) = \infty$ oder $-\infty$, so ist $\lim_{x \to c} \frac{1}{f(x)} = 0$.
- b) $c \in \bar{D} \supset \mathbb{R}$. Falls $\lim_{x \to c} f(x) = 0$ und falls s > 0existiert mit f(x) > 0 für alle $x \in [c - s, c + s], (f(x) < 0)$ dann ist $\lim_{x \to c} \frac{1}{f(x)} = \infty(-\infty)$

Abbildung 27: $sin(\frac{1}{x})$

c) Falls
$$\lim_{\substack{x\to\infty\\x\to\infty}}=0$$
 und falls $T>0$ existiert mit $f(x)>0$ $f.ax\geq T$, so $(f(x)<0)$ ist $\lim_{\substack{x\to\infty\\x\to\infty}}\frac{1}{f(x)}=\infty(-\infty)$ (Entsprechend für $\lim_{\substack{x\to-\infty}}$)

LITERATUR 4.17 Beispiel

4.17 Beispiel

- a) $f(x) = \frac{1}{x}, D =]0, \infty[$ $\lim_{x \to 0} f(x) = \infty$
 - $f(x) = \frac{1}{x}, D =]-\infty, 0[$ $\lim_{x\to 0} f(x) = -\infty$
 - $f(x) = \frac{1}{x}, D =]0, \infty[$ $\lim_{x \to 0} f(x) = \infty$
- b) $\lim_{x \to \infty} \sin(x)$ existiert nicht -4 2 2 4
- c) $P(x) = ak_x^k + \ldots + a_0$. $\lim_{x \to \infty} P(x) = \begin{cases} \infty, \text{falls} & a_k > 0 \\ -\infty, \text{falls} & a_k < 0 \end{cases}$ $\lim_{x \to -\infty} P(x) = \begin{cases} \infty, \text{falls} & a_k > 0 \text{k gerade oder } a_k < 0 \text{ k ungerade} \\ -\infty, \text{falls} & a_k < 0 \text{k gerade oder } a_k > 0 \text{ k ungerade} \end{cases}$
- d) P(x) wie in c) $Q(x) = b_l^l + \ldots + b_0$ $\lim_{x \to \infty} \frac{P(x)}{Q(x)} = \begin{cases} \infty, & \text{falls } a_k \text{ und } b_k \text{ gleiche Vorzeichen} \\ -\infty, & \text{falls } a_k \text{ und } b_k \text{ verschiedene Vorzeichen} \end{cases}$

Literatur

- [1] Kreußler, Phister Satz 33.16
- [2] WHK 5.37