Introduction to IP Routing

Routing

 How do packets get from A to B in the Internet?

Connectionless Forwarding

 Each router (switch) makes a LOCAL decision to forward the packet towards B

Connectionless Forwarding

- This is termed destination-based connectionless forwarding
- How does each router know the correct local forwarding decision for any possible destination address?
 - Through knowledge of the topology state of the network
 - This knowledge is maintained by a routing protocol

Routing Protocols

- Distribute the knowledge of the current topology state of the network to all routers
- This knowledge is used by each router to generate a forwarding table, which contains the local switching decision for each known destination address

Forwarding Table

```
nancy@sluggo.lab> show route forwarding-table
Internet:
Destination
                                              Type Index NhRef Netif
                  Type RtRef Nexthop
10.100.71.0/24
                  user
                           0 10.100.67.254
                                              ucst
                                                      18 74212 GigE0.0
10.100.71.224/27
                           2 10.100.67.254
                                              ucst
                                                      18 74212 GigE0.0
                  user
10.250.1.36/30
                  intf
                           0 ff.3.0.21
                                                      27
                                                             1 so-2/0/0.0
                                              ucst
10.250.1.37/32
                  intf
                           0 10.250.1.37
                                              locl
                                                      26
                                                             1
10.250.1.103/32
                           0 10.250.1.103
                                                      37
                                                             1 ge-7/2/0.0
                  dest
                                              bost
--- (more) ---
```


Routing Protocols

- correct operation of the routing state of a network is essential for the management of a quality network service
 - accuracy of the routing information
 - dynamic adjustment of the routing information
 - matching aggregate traffic flow to network capacity

ISP Routing Tasks

- customers
- internal
- peer / upstream

Interior Routing

 discovers the topology of a network through the operation of a distributed routing protocol

Path Selection

Minimum cost from A to B is 39 units

Dynamic Path Adjustment

If R5 – R7 breaks, minimum cost path from A to B is Now 46 units

- describe the current network topology
- Routing protocols distribute how to reach address prefix groups
- Routing protocols function through either
 - distributed computing model (distance vector)
 - parallel computing model (link state)

Routing Protocols

- Distance Vector Routing Protocols
 - Each node sends its routing table (dest, distance)
 to all neighbors every 30 seconds
 - Lower distances are updated with the neighbor as next hop
 - cannot scale
 - cannot resolve routing loops quickly
 - RIP is the main offender

Routing Protocols

- Link State Routing Protocols
 - Each link, the connected nodes and the metric is flooded to all routers
 - Each link up/down status change is incrementally flooded
 - Each router re-computes the routing table in parallel using the common link state database.
 - OSPF is the main protocol in use today

Suggestions

- Just engineering a physical link does not ensure that traffic will flow
 - some system somewhere must provide routing information about how to reach the newly connected network
- Installing backup circuits is easy, making the routing work may not be

Suggestions

 need a clear understanding of how the client networks want their traffic to flow before you can start making routing configuration changes

Interior and Exterior Routing Protocols

- You tell me all the address prefixes you can reach, but don't tell me the path you use to get there
 - I'll tell you the same
- If anything changes, please let me know
- If you tell me an address I'll send you traffic destined to that address.
 - If I tell you an address I will accept traffic destined to that address

- Border Gateway Protocol version 4 (BGP4)
- Each interior route collection is described by an Autonomous System (AS) number
- Internal topology is hidden
- Routes are announced with associated AS value
 - 139.130.0.0/16 + AS 1221

BGP example

BGP Example of TRANSIT

AS 1221

AS 3561

139.130.0.0/16 i 203.10.60.0/24 l

148.10.0.0/16 3561 24.192.36.0/24 3561 202.23.45.0/23 3561

210.10.0.0/16 3561,5727 139.1.0.0/16 3561,5727 148.10.0.0/16 i 24.192.36.0/24 i 202.23.45.0/23 i

210.10.0.0/16 5727 130.1.0.0/16 5727

139.130.0.0/16 1221 203.10.60.0/24 1221 **AS 5727**

210.10.0.0/16 i 130.1.0.0/16 l

148.10.0.0/16 3561 24.192.36.0/24 3561 202.23.45.0/23 3561

139.130.0.0/16 3561,1221 203.10.60.0/24 3561,1221

Internal transit paths use I-BGP

Q: How does router A tell router B about AS1221 addresses?

A: Router A sets an INTERIOR BGP session with router B

Normally chose minimal AS path length

```
203.10.60.0/24 701,3561,1221
203.10.60.0/24 5727,1221
```

Selected path is via peer session to AS 5727 as this Is 1 AS shorter that the other path

Exterior POLICY

- How can I share the traffic load between 2 or more exterior providers?
- How can I create a backup link to support my main exterior link?

 You can bias minimal path selection by AS path filter lists or community attributes or local preferences

Exterior Routing Protocols plus Policy

Exterior Routing Protocols plus Policy

- policy settings control
 - what you advertise to your immediate peers
 - What you accept from your immediate peers
 - What transits you will accept (send traffic)
- you cannot control
 - transit path of received traffic
 - symmetry of transit policy

AS16509 Routing Table

Prefix: 23.20.0.0/15

Prefix: 54.169.0.0/17

AS-Path: 14618

AS-Path: 38895

Next-Hop: R2

Next-Hop: R1

AS38895 Routing Table

Prefix: 23.20.0.0/15

Next-Hop: R1

AS-Path:

AS-Path: 16509 14618

Prefix: 54.169.0.0/17

Locally Originated

AS14618 Routing Table

Prefix: 23.20.0.0/15

Locally Originated

Next-Hop: R1

Prefix: 54.169.0.0/17

AS-Path: 16509 38895

AS-Path:

Routing Information Protocol (RIP)

- IP only
- distance vector protocol
- slow convergence
- does not carry mask information
- reasonably simple design &configuration
- does not scale (maximum 15 hops)
- poor metrics (hop-count)

The IGRP metric

- »always get optimal routing metric vector, not single value
 - I. bandwidth
 - II. delay
 - III. hops
 - IV. reliability
 - V. loading

Open Shortest Path First (OSPF)

- I. IP only
- II. link state protocol
- III. fast convergence
- IV. design and architecture very complex
- V. configuration can be simple

Which to use?

- a. Your interior network is actually VERY simple.
- b. Your IGP should only carry your routes and your direct customers'

Problems with "classic" protocols

- ☐ slow convergence
- **\(\subset \)** count to infinity
- □no mask information

Slow convergence

advertisement period

- entire routing table dumped every n seconds timeout period
- Fusually 3 times advertisement period RIP values are normally 30 and 90 seconds!

Count to infinity: hold-down

Link Between A & B is Broken

	A	В	С	D
A	0, -	1, A	2, B	3, C
В	1, B	0, -	2, C	3, D
С	2, B	1, C	0, -	1, C
D	3, B	2, C	1, D	0, -

Count to infinity problem

- Imagine a network with a graph as above.
- As you see in this graph, there is only one link between A and the other parts of the network.
- Now imagine that the link between A and B is cut.
- At this time, B corrects its table.
- After a specific amount of time, routers exchange their tables, and so B receives C's routing table.
- ☑ Since C doesn't know what has happened to the link between A and B, it says that it has a link to A with the weight of 2 (1 for C to B, and 1 for B to A -- it doesn't know B has no link to A).
- B receives this table and thinks there is a separate link between C and A, so it corrects its table and changes infinity to 3 (1 for B to C, and 2 for C to A, as C said).
- Once again, routers exchange their tables.
- ② When C receives B's routing table, it sees that B has changed the weight of its link to A from 1 to 3, so C updates its table and changes the weight of the link to A to 4 (1 for C to B, and 3 for B to A, as B said).
- This process loops until all nodes find out that the weight of link to A is infinity.