MATLAB / Simulink Lab Course Symbolic Math Toolbox

Objectives & Preparation "Symbolic Math Toolbox"

- Which MathWorks products are covered?
 - ⇒ Symbolic Math Toolbox
- What skills are learnt?
 - ⇒ Usage of symbolic objects within MATLAB
 - ⇒ Symbolic calculus including differentiation, integration and vector analysis
 - Solving symbolic algebraic equations and equation systems
 - Solving symbolic differential equations and symbolic Laplace transform
- How to prepare for the session?
 - MathWorks Tutorials:
 - https://de.mathworks.com/help/symbolic/getting-started-with-symbolic-mathtoolbox.html?s tid=CRUX Iftnav
 - https://de.mathworks.com/help/symbolic/create-symbolic-numbers-variables-and-expressions.html
 - https://de.mathworks.com/help/symbolic/create-symbolic-functions.html

Outline

- 1. Introduction
- 2. Symbolic Objects
 - Variables, Numbers, Expressions & Functions
 - Assumptions & Simplification
 - Variable Precision Arithmetic
- 3. Calculus
 - Differentiation & Integration
 - Vector Analysis
 - Series & Limits
 - Transforms
- 4. Equation Solving
 - Algebraic equations
 - Ordinary differential equations (ODEs)
- 5. Graphics
- 6. Code Generation
- 7. List of Useful Commands

1. Introduction

Introduction

SYMBOLIC

- "you write it down"
- The symbol π stands for an infinite number
- $y = \sin^2 x + \cos^2 x$ can be simplified to y = 1
- Computation of indefinite integrals
- Results are always exact

vs. NUMERIC

- "you (or a computer) compute it"
- A finite number must be used to approximate π
- $y = \sin^2 x + \cos^2 x$ can be computed for different values of x. The result is always close to 1, depending on the numerical precision.
- Computation of definite integrals
- Results are always approximate

Introduction

Software for symbolic computations

Introduction – Toolbox Features

Symbolic Math Toolbox features:

Analytically manipulate and solve symbolic math expressions.

Simplification Differentiation Series Transforms

Equation Solving Integration Limits Vector Analysis

Perform variable-precision arithmetic (VPA).

Exact computations

VPA

Double-precision floating-point arithmetic

3FD5 5555 5555 5555 5555₁₆

- Generate code from symbolic expressions for MATLAB, Simulink, Simscape, C, Fortran, MathML, and TeX
- The Symbolic Math Toolbox includes the MuPAD language,
 which is optimized for handling and operating on symbolic math expressions.
 - Combinatorics, number theory, and other mathematical areas
 - MuPAD Notebook for performing and documenting symbolic calculations

2. Symbolic Objects

Symbolic Objects – Overview

The following four types of symbolic objects are distinguished.

Symbolic Variables

rho, s

MATLAB data type: sym

Symbolic Numbers

sqrt(2), 1/3

MATLAB data type: sym

Symbolic Expressions

distance = rho*exp(s)

MATLAB data type: sym

Symbolic Functions

distance(rho,s) = rho*exp(s)

MATLAB data type: symfun

Symbolic Objects – Symbolic Variables

There are two ways to create symbolic variables:

```
x = sym('x');
y = sym('y');

Or

syms x y
```

MATLAB language vector and matrix notation extends to symbolic variables:

```
A = x.^((0:2)'*(0:2));

A = [1, 1, 1] [1, x, x^2] Note: in the MATLAB command window, symbolic results are not indented!
```

Symbolic Objects – Symbolic Variables

There are two ways to create symbolic variables:

MATLAB language vector and matrix notation extends to symbolic variables:

command window, symbolic results are not indented!

Symbolic Objects – Symbolic Matrices

■ To create matrices of symbolic variables, either create the matrix elements and assemble them, or use the functionality of the sym command.

```
syms a b c d
A = [a,b; c,d];
B = sym('b', 2);
C = sym('val%d%d', [2,3]);
         val i,j
A =
[a, b]
[c, d]
B =
[b1_1, b1_2]
[b2_1, b2_2]
C =
[val11, val12, val13]
[val21, val22, val23]
```

Note: only when using the first method, the individual matrix elements are created in the workspace.

Example for operations with symbolic matrices:

```
A = sym('a',2);

det(A)

ans =

a1_1*a2_2 - a1_2*a2_1
```

Symbolic Objects – Assumptions

It is possible to define assumptions about symbolic variables in several ways:

```
I = sym('I', 'integer');
P = sym('P', 'positive');
Q = sym('Q', 'rational');
syms R
assume(R, 'real');
```

To add further assumptions after the first one:

```
assumeAlso(I ~= 5);
```

To check what assumptions are currently being made:

```
assumptions
[0 < P, in(Q, 'rational'), in(R, 'real'), I ~= 5, in(I, 'integer')]</pre>
```

```
[0 < P, III(Q, lactonal), III(N, leaf), I \sim 3, III(I, linegel)
```

To remove an assumption:

```
assume(R, 'clear')
```

Symbolic Objects – Symbolic Numbers

Symbolic numbers are created in a similar way: There are no floating point approximations – **symbolic numbers are exact!**

```
sum of angles of a triangle = sym('pi');
one_third = sym('1/3');
two fifths = sym('2/5');
one_third + two_fifths
ans =
11/15
```

To convert symbolic numbers to a numeric representation:

```
s = sym(str2sym('sqrt(2)'))
s numeric = double(s)
s =
                                                                    entries.
                                      Note the indentation! It
2^{(1/2)}
                                       indicates that a numeric
s numeric =
                                       representation is shown.
     1.4142
```

Note: The function str2sym has been introduced in R2017b for non-number

Symbolic Objects – Symbolic Numbers

Symbolic numbers are created in a similar way:
 There are no floating point approximations – symbolic numbers are exact!

```
sum_of_angles_of_a_triangle = sym('pi');
one_third = sym('1/3');
two_fifths = sym('2/5');
one_third + two_fifths
```

ans = 11/15

To convert symbolic numbers to a numeric representation:

```
s = sym(str2sym('sqrt(2)'))
s_numeric = double(s)

Note: The function str2sym has been introduced in R2017b for non-number entries.

Note the indentation! It indicates that a numeric representation is shown.
```

■ It is also possible to convert numeric values to symbolic numbers. For highest accuracy, be sure to use sym subexpressions instead of using sym on an entire expression:

```
s1 = 1/sym(234567)
                                                                  Note: The string represents
                                                                  a number and can be
s2 = sym(1/234567)
                                                                   entered without str2sym.
s3 = sym('1/234567')
s1 =
                                                                  This ratio is not exactly
1/234567
                                                                   1/234567, but it can be
s2 =
                                                                  represented exactly by a
5033067825897979/1180591620717411303424
                                                                  double-precision floating
                                                                   point number.
s3 =
1/234567
```

• When using sym on an entire expression, the expression is converted to a floating point number first and this floating point number then is converted to a symbolic number.

The conversion technique can be chosen by specifying a second function argument. It can be either 'r' (default), 'f', 'e', or 'd'.

```
s_rational = sym(0.1,'r')
s_rational =
```

- 'r' stands for rational. 分数 Floating point numbers obtained by evaluating expressions of the form
 - \blacksquare p/q,

1/10

- $p \cdot \pi/q$,
- \sqrt{p}
- 2^q and
- 10^q

for modest sized integers p and q are converted to the corresponding symbolic form.

```
s_float = sym(0.1,'f')
s_eps = sym(0.1,'e')

s_float =
3602879701896397/36028797018963968
s_eps =
eps/40 + 1/10
```

- 'f' stands for floating point. The floating point value is captured exactly.
- 'e' stands for estimate error. The 'r' form is supplemented by a term involving the variable eps, which estimates the difference between the theoretical rational expression and its actual floating point value.

Note: eps is the distance from 1.0 to the next largest double-precision number. eps = 2^-52 0.10000000000000000555111512312578

Symbolic Objects – Numeric to Symbolic Conversion

```
s_decimal = sym(0.1,'d')
s_decimal =
```

- 'd' stands for decimal.
 This 32 digit result does not end in a string of zeros, but is an accurate decimal representation of the floating point number nearest to 0.1.
- The number of significant decimal digits can be changed using the digits command. Note the different result in the numeric to symbolic conversion!

```
digits(15)
s_decimal = sym(0.1,'d')
s decimal =
```

0.1

The following example illustrates possible consequences of non-exact floating point approximations. The signum or sign function is defined as follows:

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{for } x > 0 \\ 0 & \text{for } x = 0 \\ -1 & \text{for } x < 0 \end{cases}$$

Thus, $sgn(sin(\pi)) = 0$

In this case, sin(pi) is computed with floating point accuracy before being converted to symbolic. The floating point approximation is not exactly zero! This is the cause for the incorrect result.

Symbolic Objects – Symbolic Expressions

 $A^2*\cos(\text{omega*t})^2 + A^2*\sin(\text{omega*t})^2$

Symbolic variables can be combined in symbolic expressions:

```
syms A omega t
d = A*sin(omega*t);
e = d^2 + (A*cos(omega*t))^2
e =
```

 In symbolic expressions, each symbolic variable can be substituted by a numeric value or by another symbolic variable.

```
f = subs(e, [omega,t], [A,2])
f =
```

It is quite obvious that the expression for f can be simplified.
The next slide shows how...

 $A^2*\cos(2*A)^2 + A^2*\sin(2*A)^2$

Symbolic Objects – Simplification

Here is an example for simplification:

```
syms A omega t
e = (A^2*cos(omega*t)^2 + A^2*sin(omega*t)^2)^(1/2);
simplify(e)
```

```
ans = (A^2)^(1/2)
```

Note: simplified expressions are always mathematically equivalent to initial expressions! Therefore, the result is not A.

- The toolbox can simplify expressions and functions with
 - polynomials,
 - trigonometric,
 - logarithmic, and
 - other functions (e.g., Gamma or Bessel function)
- simplify(f,'Steps',n) with a positive integer n > 0 can increase simplification of a complex expression f

Note: assumptions can be helpful in this case. If A is assumed to be positive, the result of simplify(e) is indeed A.

Symbolic Objects – Symbolic Functions

Symbolic functions are created by specifying the function variables and the function itself:

```
syms A omega t
f(A,omega,t) = A*sin(omega*t);
```

A generic function and its variables can be created simply by:

```
syms g(x,y)
```

Symbolic functions can be evaluated as follows, without using the command subs

```
f(3, 0.1*t, t)
ans =
3*sin(t^2/10)
```

To find all symbolic variables in expressions, functions and matrices, use

```
symvar(f)
ans =
[A, omega, t]
```

Symbolic Objects – Variable Precision Arithmetic

Symbolic numbers can be approximated with varying accuracy. Default accuracy, defined
in significant decimal digits, can be retrieved or set with the digits command.

```
old_digits_setting = digits;
digits(3);
```

■ The approximation itself is done using the vpa command:

```
v1 = vpa('1/2')
                                           Note: the second
v2 = vpa('1/3000')
                                           argument of the vpa
v3 = vpa(str2sym('sqrt(2)'), 20)
                                           command substitutes
                                           the digits accuracy.
v1 =
0.5
                              Note: accuracy cannot be
v2 =
                              read from individual numbers.
3.33e-4
                              (Accuracy is 3 here as well.)
                                                                    VPA lets you trade off
v3 =
                                                                     accuracy and code
1.4142135623730950488
                                                                        performance!
```

3. Calculus

https://upload.wikimedia.org /wikipedia/commons/3/39/G odfreyKneller-IsaacNewton-1689.jpg

https://upload.wiki media.org/wikipedi a/commons/8/8d/C hristoph_Bernhard_ Francke -

_Bildnis_des_Philos ophen_Leibniz_%2 8ca._1695%29.jpg

Calculus – Differentiation

Symbolic expressions or functions can be differentiated as follows:

```
syms A omega t x y
f = A*sin(omega*t);
g(x,y) = x^2 + x^*y^2;
df_dt = diff(f,t)
ddf dtdt = diff(f,t,2)
ddg \ dxdy = diff(g,x,y)
df dt =
A*omega*cos(omega*t)
                                                    Note how the function /
ddf dtdt =
                                                    expression character is
-A*omega^2*sin(omega*t)
                                                    conserved.
ddg dxdy(x,y) =
2*y
```

 Avoid not specifying the variable to be differentiated by! The diff(f) command would then assume the default variable, given by symvar(f,1). Whatever this will be...

Calculus - Integration

Similarly, you can perform indefinite and definite integrations (same functions f, g as above)

By default, the integration function also considers special cases:

```
int(x^t, x)
int(x^t, x, 'IgnoreSpecialCases', true)

ans=
piecewise([t == -1, log(x)], [t ~= -1, x^(t+1)/(t+1)])
ans =
x^(t+1)/(t+1)
```

Calculus - Vector Analysis

There are various functions for vector analysis, including gradient

```
syms x y z
m = x*y*z;
n = gradient(m, [x,y,z])
n =
y*z
x*z
x*y
   ...and divergence
                                                                     Other functions for
                                                                     vector analysis:
p = [x, 2*y^2, 3*z^3];
                                                                     curl
q = divergence(p, [x,y,z])
                                                                     hessian
                                                                     jacobian
0 =
                                                                     laplacian
9*z^2 + 4*v + 1
                                                                     potential
                                                                     vectorPotential
```

Calculus – Series and Limits

Examples of operations on series include symbolic summations

```
syms x k
                                                    Remember that the
                                                                                        Other functions for
s = symsum(x^k, k, 0, inf)
                                                                                       series and limits:
                                                    geometric series is
                                                   only finite for |x| < 1
                                                                                        cumprod
S =
                                                                                        cumsum
piecewise([1 \le x, Inf], [abs(x) < 1, -1/(x-1)])
                                                                                        pade
                                                                                        rsums
     ...and taylor series
                                                                                        symprod
                                                                                       limit
f = 1/(5 + 4*cos(x));
                                                                                       Taylor Tool
T = taylor(f, 'Order', 8)
                                                                                        File Edit View Insert Tools Desktop Window Help
                                                                                                Taylor Series Approximation
T =
(49*x^6)/131220 + (5*x^4)/1458 + (2*x^2)/81 + 1/9
                                                                                          T_N(x) = (2 x^2)/81 + (5 x^4)/1458 + (49 x^6)/131220 + ... + 1/9
     Taylor series can also be graphically manipulated:
                                                                                           f(x) = 1/(4*\cos(x) + 5)
taylortool(f)
                                                                                           -2*pi < x < 2*pi
```

Calculus – Transforms

You can also perform Fourier, Laplace and Z-Transforms

```
syms x s
f = 1/sqrt(x);
Lf = laplace(f, x, s)

Lf =
pi^(1/2)/s^(1/2)
```

...and the inverse of these transforms

```
iLf = ilaplace(Lf, s, x)

iLf =

iLf =

//x^(1/2)

Other functions
for transforms:
fourier
ifourier
ztrans
iztrans
```

These transforms can be used to solve differential equations.
 A more efficient way to do solve equations is shown in the following section.

4. Equation Solving

$$1 + 1 = \sin^{2}(u) + \cos^{2}(u) + \ln(e)$$

$$= \sin^{2}(u) + \cos^{2}(u) + \ln\left(\lim_{c \to \infty} \left(1 + \frac{1}{c}\right)^{c}\right)$$

$$= \sum_{n=0}^{\infty} \frac{\cosh(s) \cdot \sqrt{1 - \tanh^{2}(s)}}{2^{n}}$$

$$= \sum_{n=0}^{\infty} \frac{1}{2^{n}}$$

$$= ???$$

Linear and Nonlinear Equations and Systems

Introduction

SYMBOLIC SOLVER vs. NUMERIC SOLVER

solve

vpasolve

- Returns exact solutions, which can then be approximated using vpa
- Returns approximate solutions, whose precision can be controlled using digits
- Returns a general form of the solution, providing insight into the solution.
- Returns all/the first numeric solution(s) of polynomial/nonpolynomial equations.

Search ranges can be specified using inequalities.

Search ranges and starting points can be specified.

Can return parameterized solutions

- Does not return parameterized solutions.
- Equations may comprise parameters and inequalities
- Runs faster than the symbolic solver.

Equation Solving – Algebraic Equations

An equation can be defined and solved as follows:

```
syms a b c x

eqn = a*x^2 + b*x + c == 0;

sol_x = solve(eqn, x)

Advice: make assumptions on equation variables whenever possible. Thereby, only relevant solutions will appear!

-(b - (b^2 - 4*a*c)^(1/2))/(2*a)
```

- With the second argument of the solve function, specify the variable to solve for!
 Otherwise, solve(eqn) would solve for the default variable, given by symvar(eqn,1).
- Here, the same equation is solved for a different variable:

```
sol_b = solve(eqn, b)

sol_b =

-(a*x^2 + c)/x
```

Equation Solving – Algebraic Equations

The solve function does not return all solutions by default:

```
syms x
sol_x = solve(cos(x) == -sin(x), x)
sol_x =
-pi/4
```

 To return all solutions along with the parameters in the solution and the conditions on the solution, set the ReturnConditions option to true.

```
[sol_x, parameters, conditions] = solve(cos(x) == -sin(x), x, 'ReturnConditions', true)
sol_x =
pi*k - pi/4
parameters =
k
conditions =
in(k, 'integer')
```

Equation Solving – Algebraic Equations

• Moreover, it is possible to use the parameters and conditions to find solutions under additional conditions. For instance, to find values of $x \in (0,2\pi)$

```
assume(conditions)
sol_k = solve(0 < sol_x, sol_x < 2*pi, parameters)

sol_k =

1

It is possible to hand over multiple equations and</pre>
```

■ To find values of x corresponding to these values of k, use substo substitute for k in sol x.

```
x_values = subs(sol_x, sol_k)

x_values =
(3*pi)/4
(7*pi)/4
```

even multiple variables!

2

Equation Solving – Systems of Algebraic Equations

When solving for multiple variables at a time, solve returns a structure of solutions.

```
syms u v a
S = solve(u^2 - v^2 == a^2, u + v == 1, a^2 - 2*a == 3, [a, u, v])
                                                                            The system of
                                                                            equations in a
S =
                                                                            more readable
                                        Specifying the variables is
     a: [2x1 sym]
                                                                            form:
                                        optional when the number
     u: [2x1 sym]
                                                                             u^2 - v^2 = a^2
                                        of equations equals the
                                                                              u + v = 1
     v: [2x1 sym]
                                        number of variables.
                                                                             a^2 - 2a = 3
```

The system of equations has 2 solutions. The second solution can be visualized as follows.

```
s2 = [S.a(2), S.u(2), S.v(2)]
s2 =
[3, 5, -4]
```

Equation Solving – Systems of Linear Algebraic Equations

Systems of linear algebraic equations can also be solved using matrix division.

```
syms u v x y
equations = [x + 2*y == u, 4*x + 5*y == v];
[A,b] = equationsToMatrix(equations, x, y)
S = A b
A =
[1, 2]
[4, 5]
b =
 u
 ٧
S =
 (2*v)/3 - (5*u)/3
     (4*u)/3 - v/3
```

Remember: this expression solves $A \cdot S = b$ for S.

An alternative would be to use the MATLAB function linsolve:

S = linsolve(A, b)

Equation Solving – Numerical Solving: Polynomial Roots

 Equations can be solved numerically using vpasolve. This is especially useful to find polynomial roots.

```
f(x) = x^2 - 2;
sol_x = vpasolve(f)
sol_x = vpasolve(f) = 0
vpasolve(f) = 0
vpasolve(f) = 0
```

- -1.4142135623730950488016887242097
- 1.4142135623730950488016887242097

Again, digits can be used to adjust the desired precision.

Equation Solving - Numerical Solving: Nonpolynomial Equations

Nonpolynomial equations can be solved numerically as well. Consider the function $f(x) = e^x + e^{-x} - 10$, with a minimum f(0) = -8 and two roots.

```
syms f(x)

f(x) = exp(x) + exp(-x) - 10;

sol_x = vpasolve(f)
```

• Note that only one root has been found! To find the second root, provide an initial guess:

```
sol_x = vpasolve(f, -2)
```

It is also possible to make a random initial guess

```
sol x = vpasolve(f, 'random', true)
```

The initial guess can also be a range. However, vpasolve(f, [-3, 3]) only finds -2.29. To avoid this, combine the range with a random initial guess.

Ordinary Differential Equations (ODEs) and Systems of ODEs

常微分方程

Equation Solving – Ordinary Differential Equations

ODEs can be solved using dsolve

Note that dsolve works with integration constants. They can be directly eliminated by specifying initial conditions:

```
syms x(t)
x(t) = dsolve(diff(x,t) == -5*x, x(0) == -3)

x(t) =
-3*exp(-5*t)
```

Equation Solving – Ordinary Differential Equations

• Higher order ODEs require multiple initial conditions. To be able to specify these, create additional symbolic functions like Du in this case.

```
syms u(b)
Du = diff(u,b);
u(b) = dsolve(diff(u, b, b) == cos(2*b) - u, u(0) == 1, Du(0) == 0)

u(b) =
1 - (8*sin(x/2)^4)/3
```

Nonlinear ODEs can have multiple solutions, even if initial conditions are specified.

```
syms x(t)

x(t) = dsolve((diff(x,t) + x)^2 == 1, x(0) == 0)

x(t) = exp(-t) - 1
```

 $1 - \exp(-t)$

Equation Solving – Systems of Ordinary Differential Equations

Systems of differential equations can be solved much like systems of algebraic equations.

```
syms f(t) g(t)
S = dsolve(diff(f,t) == 3*f + 4*g, diff(g,t) == -4*f + 3*g)
S =
   g: [1x1 sym]
```

It is also possible to retrieve f and g directly:

```
[f(t), g(t)] = dsolve(diff(f,t) == 3*f + 4*g, diff(g,t) == -4*f + 3*g)

f(t) =
C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)
```

```
C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)

g(t) =

C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)
```

f: [1x1 sym]

Equation Solving – Systems of Ordinary Differential Equations

Systems of differential equations can also be solved in matrix form:

```
syms x1(t) x2(t)
A = [1 \ 2; -1 \ 1];
B = [1; t];
                                                                              \dot{x} = Ax + B
x = [x1; x2];
                                                                     \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ t \end{bmatrix}
[x1, x2] = dsolve(diff(x) == A*x + B)
x1 =
2^{(1/2)} \exp(t) * \cos(2^{(1/2)} * t) * (C3 + (\exp(-t)) * (4*\sin(2^{(1/2)} * t) + 2^{(1/2)} * \cos(2^{(1/2)} * t)
+ 6*t*sin(2^{(1/2)*t}) + 6*2^{(1/2)*t*cos(2^{(1/2)*t})))/18) +
2^{(1/2)} \exp(t) * \sin(2^{(1/2)} * t) * (C2 - (exp(-t)) * (4 * \cos(2^{(1/2)} * t) - 2^{(1/2)} * \sin(2^{(1/2)} * t)
+ 6*t*cos(2^{(1/2)*t}) - 6*2^{(1/2)*t*sin(2^{(1/2)*t}))/18)
x2 =
\exp(t)*\cos(2^{(1/2)*t})*(C2 - (\exp(-t)*(4*\cos(2^{(1/2)*t}) - 2^{(1/2)*\sin(2^{(1/2)*t}) +
6*t*cos(2^{(1/2)*t}) - 6*2^{(1/2)*t}sin(2^{(1/2)*t}))/18) - exp(t)*sin(2^{(1/2)*t})*(C3 + C3)
(\exp(-t)^*(4*\sin(2^{(1/2)*t}) + 2^{(1/2)*\cos(2^{(1/2)*t}) + 6*t*\sin(2^{(1/2)*t}) +
6*2^(1/2)*t*cos(2^(1/2)*t)))/18)
```

5. Symbolic Plotting Functions

Symbolic Plotting Functions

 Apart from the standard MATLAB plotting functions, there are also symbolic plotting functions. Here are very simple example (corresponding figure on the bottom left):

```
syms x;
fplot(sin(6*x));
```

• With fimplicit, it is possible to combine two variables and plot an implicit equation:

```
syms x y;
fimplicit(sin(x) + sin(y) == sin(x*y));
```


Title and labels have been added separately.

Symbolic Plotting Functions

Numeric and symbolic plots can be combined

```
x = 0:pi/10:4*pi;
y = sin(x) + (-1).^randi(10, 1, 41).*rand(1, 41)./2;
syms t;
figure; plot(x,y,'o'); hold on;
fplot(sin(t),[0, 4*pi]);
```

3-D symbolic plots are possible as well

```
syms t;
x = (1-t)*sin(100*t);
y = (1-t)*cos(100*t);
z = sqrt(1 - x^2 - y^2);
fplot3(x, y, z, [0 1]);
```


Title and labels have been added separately.

Symbolic Plotting Functions

Examples for other symbolic plots:

6. Code Generation

Code Generation – MATLAB Functions

 Symbolic expressions and functions can be converted into code (MATLAB, Simulink, Simscape, C, Fortran, MathML, and TeX).
 Here an example for the creation of a MATLAB function:

```
syms x y;

z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;

matlabFunction(z,'file','MExample.m');
```

The file created has the following content:

Code Generation – Simulink Blocks, C-Code

Similarly, blocks can be created in a Simulink model. First, the model needs to be opened. Then, a block (type: MATLAB function) named pythagoras can be created as follows:

```
syms a b;
c = sqrt(a^2 + b^2);
matlabFunctionBlock('simulink_system/pythagoras',c);
```

It is also possible to generate optimized C-Code:

```
syms x y;
z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;
ccode(z,'file','CExample');
```

The output file looks like this:

```
t2 = y*y;
t0 = ((x*x*x*x)*3.0E+1)/(t2*x+1.0E+1)-(x*x*x)*pow(t2+1.0,2.0);
```

7. List of Commands

List of Commands

Command	Explanation	Slide #	
sym	Create symbolic object	9	
syms	Create symbolic object	9	
assume	Make/clear an assumption	11	
assumeAlso	Add assumptions	11	
assumptions	Show assumptions	11	
subs	Substitute	18	
simplify	Simplify expression/function	19	
symvar	Show symbolic variables	20	
digits	Show/set signif. decim. digits	16, 21	
vpa	Variable Precision Arithmetic	21	
diff	Differentiate	23	
int	Integrate	24	
gradient	Compute gradient	25	
divergence	Compute divergence	25	
curl	Curl of vector field	-	

Command	Explanation	Slide #
hessian	Hessian matrix	-
jacobian	Jacobian matrix	-
laplacian	Laplacian of scalar function	-
potential	Potential of vector field	-
vectorPotential	Vector potential of vec. field	-
symsum	Sum of series	26
symprod	Product of series	-
cumsum	Cumulative sum	-
cumprod	Cumulative product	-
taylor	Taylor series expansion	26
taylortool	Taylor series calculator	26
pade	Padé approximant	-
rsums	Riemann sums (interactive)	-
limit	Compute limit	-
sympref	Symbolic preferences	-

List of Commands

Command	Explanation	Slide #
laplace	Laplace transform	27
ilaplace	Inverse Laplace transform	27
fourier	Fourier transform	-
ifourier	Inverse Fourier transform	-
ztrans	Z-transform	-
iztrans	Inverse Z-transform	-
solve	Symbolic solver	31
vpasolve	Numeric solver	36
equationsToMatrix	Convert set of linear equations to matrix form	35
dsolve	ODE solver	39

Command	Explanation	Slide
Command	Lapianation	#
fplot	Symbolic 2D plot	45
fplot3	Symbolic 3D plot	46
ezpolar	Symbolic polar plot	-
fsurf	Symbolic surface plot	47
fmesh	Symbolic mesh plot	47
fcontour	Symbolic contour plot	47
fimplicit	Implicit function 2D plot	45
fimplicit3	Implicit function 3D plot	-
matlabFunction	Generate MATLAB function	49
matlabFunctionBlock	Generate MATLAB function block for Simulink	50
ccode	Generate C-Code	50