Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 2.5.1

по курсу общей физики
на тему:
«Измерение коэффициента
поверхностного натяжения жидкости»

Работу выполнил: Баринов Леонид (группа Б02-827) Оборудование

1 Аннотация

В работе будет установлена температурная зависимость коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта.

Также будет определена полная поверхностная энергия и теплота, необходимая для изотермического образования единицы поверхности жидкости при различной температуре.

2 Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r} \tag{1}$$

где σ — коэффициент поверхностного натяжения, $P_{\text{внутри}}$ и $P_{\text{снаружи}}$ — давление внутри пузырька и снаружи, r — радиус кривизны поверхности раздела двух фаз.

Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

3 Оборудование

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) B (рис.1). Тестовая жидкость (этиловый спирт) наливается в сосуд E. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла C. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора A. Кран K2 разделяет две полости аспиратора. Верхняя полость при закрытом кране K2 заполняется водой. Затем кран K2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана K1, когда вода вытекает из неё по каплям. В колбах B и C, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Для стабилизации температуры исследуемой жидкости через рубашку D колбы B непрерывно прогоняется вода из термостата.

Рис. 1. Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения

4 Результаты измерений и обработка результатов

Измерим максимальное давление $\Delta P_{\text{спирт}}$ при пробулькивании пузырьков воздуха через спирт. Результаты занесем в Таблицу 1.

$\mathcal{N}_{\overline{0}}$	1	2	3	4	5
$\Delta P_{\text{спирт}}, \Pi a$	70,595	70,595	70,595	72,200	68,991
Nº	6	7	8	9	10
$\Delta P_{\text{спирт}}, \Pi a$	70,595	70,595	68,991	70,595	72,200

Таблица 1. максимальное давление $\Delta P_{\text{спирт}}$ при пробулькивании пузырьков воздуха через спирт

$$\Delta P_{\text{спирт}} = (70.6 \pm 1.9) \; \Pi \mathrm{a}$$

Пользуясь табличным значением коэффициента поверхностного натяжения спирта,

$$\sigma_{\text{спирт}} = 21,66 \text{ мH/м}$$

определим по формуле (1) диаметр иглы.

$$d_1 = (1.24 \pm 0.03)$$
 MM

Сравним полученный результат с диаметром иглы, измеренным по микроскопу.

$$d_2 = (1.30 \pm 0.05) \text{ MM}$$

Результаты сходятся в пределах погрешности. Для дальнейших вычислений будем использовать диаметр, измеренный по микроскопу, то есть d_2

Перенесем предварительно промытую и просушенную от спирта иглу в колбу с дистиллированной водой. Измерим максимальное давление P_1 при пробулькивании пузырьков, когда игла лишь касается поверхности воды. Результаты занесем в Таблицу 2.

Nº	1	2	3	4	5
$P_1, \Pi a$	210,18	211,79	211,79	211,79	213,39

Таблица 2. Максимальное давление P_1 при пробулькивании пузырьков, когда игла лишь касается поверхности воды.

Усредняя, получим

$$P_1 = (211.8 \pm 1.9) \text{ }\Pi \text{a}$$

Измерьте расстояние между верхним концом иглы и любой неподвижной часть прибора h_1

$$h_1 = (6.0 \pm 0.1) \text{ cm}$$

Утопим иглу до предела и измерим максимальное давление P_2 при пробулькивании пузырьков. Результаты занесем в Таблицу 3.

$N_{\overline{0}}$	1	2	3	4	5
$P_2, \Pi a$	311,26	311,26	311,26	311,26	309,66

Таблица 3. Максимальное давление P_2 при пробулькивании пузырьков, когда игла утоплена до предела.

Усредняя, получим

$$P_2 = (310.9 \pm 1.7) \text{ }\Pi\text{a}$$

Также измерим расстояние h_2 до неподвижной части установки.

$$h_2 = (7.3 \pm 0.1)$$
cm

Плотность спирта в микроманометре при комнатной температуре и заданной концентрации:

$$\rho = 802,22 \text{ kg/m}^3$$

По разности давлений $\Delta P = P_2 - P_1$ определим глубину погружения Δh_1 иглы

$$\Delta h_1 = (1,236 \pm 0,013) \text{ cm}$$

По разности h1 и h2 определим глубину погружения иглы Δh_2

$$\Delta h_2 = (1.30 \pm 0.03) \text{ cm}$$

Результаты почти совпадают в пределах погрешности. За основное значение примем Δh_2 , так как это прямые измерения интересующей величины.

Снимите температурную зависимость $\sigma(T)$ дистиллированной воды. Результаты занесем в Таблицу 4

$T_1, ^{\circ}C$	$P_1, \Pi a$	$P_{1\mathrm{cp}}, \Pi \mathrm{a}$	$T_2,^{\circ}C$	$P_2, \Pi a$	$P_{2\mathrm{cp}}, \Pi \mathrm{a}$	$T_3, ^{\circ}C$	$P_3, \Pi a$	$P_{3\mathrm{cp}}, \Pi \mathrm{a}$
	311,26			309,66			306,45	
	311,26			308,05			306,45	
26,6	311,26	310,94	32,4	308,05	308,69	37,3	308,05	307,09
	311,26			308,05			308,05	
	309,66			309,66			306,45	
$T_4,^{\circ}C$	$P_4, \Pi a$	$P_{4\mathrm{cp}}, \Pi \mathrm{a}$	T_5 ,° C	$P_5, \Pi a$	$P_{5 ext{cp}}, \Pi ext{a}$	T_6 ,° C	$P_6, \Pi a$	$P_{6\mathrm{cp}}, \Pi \mathrm{a}$
	303,24			301,63			298,43	
	304,84			301,63			298,43	
42,3	303,24	304,20	47,2	303,24	301,63	52,2	298,43	298,75
	304,84			300,03			300,03	
	304,84			301,63			298,43	
$T_7,^{\circ}C$	$P_7, \Pi a$	$P_{7\mathrm{cp}}, \Pi \mathrm{a}$						
	295,22							
	293,61							
57	296,82	294,90						
	295,22							
	293,61							

Таблица 4. Максимальное давление P_n при пробулькивании пузырьков, когда игла утоплена до предела при заданной температуре T_n

По результатам Таблицы 4 вычислим значение поверхностного натяжения в каждой точки и результаты занесем в Таблицу 5

По результатам в Таблице 5 построим график зависимости коэффициента поверхностного натяжения σ от температуры T (Puc. 2)

σ , м $H/$ м	σ_{σ} , м $H/$ м
64,44	1,55
62,98	1,52
61,94	1,49
60,06	1,45
58,39	1,41
56,52	1,36
54,01	1,31
	64,44 62,98 61,94 60,06 58,39 56,52

Таблица 5. Зависимость коэффициента поверхностного натяжения σ от температуры T

Рис. 2. График зависимости коэффициента поверхностного натяжения σ от температуры T

Определим по графику температурный коэффициент $d\sigma/dT$

$$\frac{d\sigma}{dT} = (-0.34 \pm 0.02) \ \frac{\text{MH}}{\text{M} \cdot \text{K}}$$

Также построим график зависимость теплоты образования единицы поверхности жидкости (Puc. 3)

$$q = -T\frac{d\sigma}{dT}$$

и поверхностной энергии U единицы площади F от температуры (Рис. 3)

$$\frac{U}{F} = \left(\sigma - T\frac{d\sigma}{dT}\right)$$

T, K	q, м H /м	σ_q , м $H/$ м	U/F, MH/M	$\sigma_{U/F}, { m MH/M}$
299,60	101,46	6,45	165,91	10,54
305,40	103,43	6,57	166,41	10,58
310,30	105,09	6,68	167,03	10,62
315,30	106,78	6,79	166,84	10,61
320,20	108,44	6,90	166,83	10,61
325,20	110,13	7,00	166,65	10,59
330,00	111,76	7,11	165,77	10,55

Таблица 6. Зависимость теплоты образования единицы поверхности жидкости q и поверхностной энергии U единицы площади F от температуры T

Рис. 3. График зависимости теплоты образования единицы поверхности жидкости q, поверхностной энергии U единицы площади F, коэффициента поверхностного натяжения σ от температуры T

5 Обсуждение результатов и выводы

В работе была установлена температурная зависимость коэффициента поверхностного натяжения дистиллированной воды (Рис. 2). По графику был определен температурный коэффициент $d\sigma/dT$

$$\frac{d\sigma}{dT} = (-0.34 \pm 0.02) \ \frac{\text{MH}}{\text{M} \cdot \text{K}}$$

Также была измерена полная поверхностная энергия и теплота, необходимая для изотермического образования единицы поверхности жидкости при различной температуре (Таблица 6, Рис. 3)