1 文档介绍

1.1 文档范围

本文介绍了工厂测试指令AT+FACTORY的使用方式。

1.2 命令语法

1.2.1 命令格式

本手册中所有命令行必须以"AT"或"at"作为开头,以回车()作为结尾。响应通常紧随命令之后,且通常以"<回车><换行><响应内容><回车><换行>"(<响应内容>)的形式出现。在命令介绍时,"<回车><换行>"()通常被省略了。

1.2.2 命令类型

通常命令可以有如下表所示的四种类型中的一种或多种形式。

类型	格式	说明
测试命令	AT+ <cmd>=?</cmd>	用于查询设置命令或内部 程序设置的参数及其取值 范围
查询命令	AT+ <cmd>?</cmd>	用于返回参数的当前值
设置命令	AT+ <cmd>=<></cmd>	用于设置用户自定义的参 数值
执行命令	AT+ <cmd></cmd>	用于读取只读参数或不需 要额外参数的情况

1.2.3 参数类型

命令参数虽然多种多样,但是都可以简单地归结为整数类型和字符串类型(包括不带双引号的字符串和带双引号的字符串)这两种基本的类型,如下表所示。

类型	示例
整数类型	123
字符串类型	abc
子行中关至	"hellow ,world"

1.2.4 注意事项

- AT串口输入时不支持回删键(backspace)功能。
- AT指令不区分大小写。

2 AT+FACTORY命令详细说明

2.1 命令说明

Command	Possible response(s)
+FACTORY= <type>,<data>,<data1></data1></data></type>	+FACTORY= <type>,<value></value></type>
	OK
	ERROR

2.2 参数说明

不同的测试类别用<type>表示,其对应的<data>和<data1>的含义以及返回数据不一样,下面以表格说明.

功能	type	data	data1	Possible response(s)
测试WIoTa收发	0	sub_type	参数	-
测试GPIO	1	GPIO的引脚值	PIN高低	-
测试I2C	2	无意义,设置 为0	无意义,设置为0	-
测试AD	3	通道号 (1~7)	无意义,设置为0	+FACTORY:3, <value></value>
测试DA	4	通道号 (0或 1)	DA输出值	-
测试UART	5	无意义,设置 为0	无意义,设置为0	-
测试PWM	6	脉冲周期	脉冲宽度	ОК

2.3 WIoTa 收发测试

WIoTa收发测试需要用到两块模组版,一个参考模组A,为AP模组,一个是待测模组B,为终端模组, 将两者的天线接口直接相连并增加60db衰减器,两者的UART1均连接上位机。

2.3.1 收发测试AT指令

待测模组A的协议栈相关的指令列表:

待测模组A	command	Possible response(s)
初始化协议栈	at+wiotainit	OK
启动协议栈	at+wiotarun=1	OK
关闭协议栈	at+wiotarun=0	OK

待测模组A收发测试指令列表:

待测模组A	type	data	data1	Possible response(s)
频点配置	0	2	频点值,例如 49700,表示 497MHz	ОК
设置终端ID	0	6	终端ID,如 63c8b54c	ОК
收发测试开始	0	4	1	OK
收发测试停止	0	4	0	+FACTORY:4, <value></value>

参考模组B的协议栈相关的指令列表:

参考模组B	command	Possible response(s)
初始化协议栈	at+wiotainit	OK
启动协议栈	at+wiotarun=1	OK
查询用户ID	at+wiotauserid=?	+WIOTAUSERID=0x63c8b54c
开始同步	at+wiotaconnect=1,0	OK
同步查询	at+wiotaconnect?	+WIOTACONNECT= <state>,<time></time></state>
同步停止	at+wiotaconnect=0,0	OK
关闭协议栈	at+wiotarun=0	OK

参考模组B收发测试指令列表:

参考模组B	type	data	data1	Possible response(s)
频点配置	0	2	频点值,例如 49700,表示 497MHz	OK
收发测试开始	0	4	帧数,如100,表示 收发测试100帧, 100帧后自动停止	+FACTORY:4, <value></value>

2.3.2 收发测试流程

- 1) 给参考模组A发送初始化指令: at+wiotainit, 初始化协议栈
- 2) 给参考模组A发送频点设置指令: at+factory=0,2,49700,设置频点为497MHz
- 3) 给参考模组A发送启动指令: at+wiotarun=1, 启动协议栈
- 4) 给参考模组B发送初始化指令: at+wiotainit, 初始化协议栈
- 5) 给参考模组B发送频点设置指令: at+factory=0,2,49700,设置频点为497MHz
- 6) 给参考模组B发送有源晶体设置指令: at+wiotaosc=1
- 7) 给参考模组B发送启动指令: at+wiotarun=1, 启动协议栈

- 8) 给参考模组B发送同步指令: at+wiotaconnect=1,0
- 9) 给待测模组B发送userID查询指令: at+wiotauserid? (返回结果例子:

+WIOTAUSERID=0x63c8b54c)

- 10) 给参考模组A发送ID设置指令: at+factory=0,6,63c8b54c (userID来自上一步)
- 11) 在同步之后,查询待测模组B的同步状态,发送查询指令: at+wiotaconnect?
- 12) 给参考模组A发送收发测试开始指令: at+factory=0,4,1
- 13) 给待测模组B发送收发测试开始指令: at+factory=0,4,10,设置测试帧数为10,建议测试帧数N为10~100帧
- 14) 待测模组B在N帧之后上报接收结果,+FACTORY=4,成功接收下行短消息数量
- 15) 给待测模组A发送收发测试停止指令: at+factory=0,4,0
- 16) 给待测模组A发送收发测试停止指令后,返回测试结果,+FACTORY=4,成功接收上行短消息数量
- 17) 给待测模组B发送同步停止指令: at+wiotaconnect=0,0
- 18) 针对不同上下行功率值与AGC挡位, 重复以上步骤2-3次
- 19) 最后关掉协议栈指令: at+wiotarun=0, 这步必须有, 否则无法保存校准参数!

2.4 外设测试

2.4.1 GPIO 测试

示例如下:

```
AT+FACTORY=1,4,1
OK
```

返回OK表示拉高GPIO4成功, ERROR表示失败。

```
AT+FACTORY=1,4,0
OK
```

返回OK表示拉低GPIO4成功, ERROR表示失败。

2.4.2 I2C 测试

测试I2C需要连接外设,如果没有连接外设执行该指令会死循环在读取位置。

示例如下:

```
AT+FACTORY=2,0,0
OK
```

返回OK表示读写I2C正常,ERROR表示读写异常。

2.4.3 AD 测试

测试板子A的AD通道1示例:

- 1)连接板子B的DA(8088_AUXDAC),设置DA的值为500,使用DA测试AT指令AT+FACTORY=4,1,500
- 2) 使用万用表测量8088_AUXDAC电压大约为706mv
- 3) 使用AD的AT测试指令AT+FACTORY=3,1,0,读取AD通道1的值,大约为1996
- 4) 换算该值为电压: 1996/4096*1.45约等于706, 则说明AD读取的值正常

5) 通道2和通道3测试方法一样一样,不同的是通道3带有增益,读取到的值略大于通道1和通道2的值

```
AT+FACTORY=3,1,0
+FACTORY=3,1996
OK
```

返回OK表示AD获取数据正常, ERROR表示AD获取数据异常。

2.4.4 DA 测试

DA通道1测试,通道可取值0 (暂不可用)、1 (辅助DA通道)

DA功能测试和AD是互逆的

```
AT+FACTORY=4,1,500
OK
```

返回OK表示DA设置数据正常, ERROR表示DA设置数据异常。

2.4.5 PWM测试

设置PWM2的周期为1000,脉冲宽度为300

```
AT+FACTORY=6,1000,300
OK
```

返回OK表示设置成功,ERROR表示设置失败。在用逻辑分析仪或示波器观察波形。