(a) For $t < \frac{\pi}{6}$ s, the switch is in position X_1 , and at time t = 0 s the capacitor is fully discharged. At time $t = \frac{\pi}{6}$ s, the switch moves from position X_1 to position Y_1 . Find the steady state node voltage waveform $v_a(t)$.

(b) For $t < \frac{\pi}{6}$ s, the switch is in position X_2 , and at time t = 0 s the capacitor is fully discharged. At time $t = \frac{\pi}{6}$ s, the switch moves from position X_2 to position Y_2 . Find the node voltage $v_b(\pi s)$, i.e., at time $t = \pi s$.

(c) For $t < \frac{\pi}{6}$ s, the switch is in position Y₃, and you may assume the system has reached steady state. At time $t = \frac{\pi}{6}$ s, the switch moves from position Y₃ to position X₃. Find the node voltage $v_c(\pi s)$.

(d) For $t < \frac{\pi}{6}$ s, switch 4 is in position Y₄ and switch 5 is open, and you may assume the system has reached steady state. At time $t = \frac{\pi}{6}$ s, switch 4 moves from position Y₄ to position X₄ and switch 5 closes. Find the node voltage $v_d(\pi$ s).

The AC circuit below has ω = 10 rad/s and is in steady state. The phasor diagram shows the phasors of i_S and v_L . You are given the angles α (between $\mathbf{I_S}$ and the x-axis), β (between $\mathbf{V_L}$ and the x-axis), $|\mathbf{I_S}|$ and $|\mathbf{V_L}|$. The diagram is not necessarily drawn to scale.

The element represented by the rectangular box is either an inductor or a capacitor but you are not told which.

- (a) Find the complex power S_L received by the inductor.
- (b) Find the complex power S_S <u>supplied</u> by the current source.
- (c) Find the complex power S_M <u>received</u> by the mystery element.
- (d) What is the mystery element (capacitor or inductor)? (You do not need to find its value, but your answer needs to be motivated)

| Is |: 3 A alpha: 20 degrees | VL |: 4 V Beta: 80 degrees R1: 2 Ω L: 200 mH

Q3

Consider the circuit below.

- (a) Find the voltage v_a .
- (b) Draw the Thevenin model for the circuit between A and B (make sure you label A and B in your drawing).

R1: 18 Ω R2: 3 Ω k: 2 A/A Vs: 3 V Is: 2 A R3: 2 Ω R4: 2 Ω

(c) Connect the circuit on the right to the one on top (A' connected to A and B' connected to B). What is the reading X of the ideal ammeter?

For t < 2 s, the switch is closed, and you may assume the system has reached steady state. The switch opens at time t = 2 s.

- (a) Find $v_b(t)$ for t > 2 s.
- (b) What is the instantaneous power received by the inductor at time $t=2^+\,\mathrm{s}$.

Vs: 4 V R1: 2 Ω R2: 2 Ω R3: 3 Ω L: 200 mH k: 3 A/A

Q5

The circuit below is an AC circuit and is in steady state. The three independent sources all have ω = 10 rad/s.

You measure the waveform $i_a(t) = A_1 \cos(10t + B_1)$.

Now the circuit is changed: the inductor **L** is replaced by capacitor **C**. In this changed circuit, what will be the reading of the ideal voltmeter?

R1: 2 Ω R2: 2 Ω R3: 3 Ω

R4: 2 Ω A1: 10 A

B1: 60 degrees

L: 300 mH C: 40 mF