

Université Libre de Bruxelles

Synthèse

Résistance des matériaux CNST-H-300

Auteur:

Nicolas Englebert

Professeur :
Guy Warzee

Appel à contribution

Synthèse Open Source

Ce document est grandement inspiré de l'excellent cours donné par Guy WARZEE à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de l'améliorer surtout

que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LAT_EX, mais aussi *git*. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi un README contenant de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike~4.0~International~(CC~BY-NC-SA~4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Table des matières

1	Inti	troduction								
	1.1	1 Éléments structuraux		. 1						
	1.2	2 Principe de Barré de Saint-Venant		. 2						
2	App	appuis, représentation et démarches		3						
	2.1	1 Appuis et liaisons		. 3						
		2.1.1 Appuis usuels		. 3						
		2.1.2 Appui déformable et élastique		. 3						
	2.2	2 Isostaticité - Hyperstaticité		. 4						
	2.3	3 Théorie des poutres		. 5						
		2.3.1 La poutre : géométrie		. 5						
		2.3.2 Rappel: notion de contrainte		. 5						
		2.3.3 Poutre : efforts internes (éléments de ré	duction)	. 5						
	2.4	4 Représentations		. 6						
		2.4.1 Conventions de signes des efforts intern	es en 2D (éléments de réductions)) 6						
		2.4.2 Conventions de représentation des diagrandes	rammes M, N, T en 2D	. 6						
	2.5	5 Revenons à notre poutre		. 8						
		2.5.1 Poutre rectiligne en 2D : relation $T \leftrightarrow c$	q(x)	. 8						
		2.5.2 Poutre rectiligne en 2D : relation $M \leftrightarrow$	T	. 8						
		2.5.3 Conséquences pour les diagrammes M e	et T en 2D \dots	. 8						
	2.6	6 Démarches en résistances des matériaux		. 9						
3	Tra	raction - Compression		10						
	3.1	1 Traction		. 10						
		3.1.1 Méthode cinématique		. 10						
		3.1.2 Déplacements - Déformations - Contrais	ntes	. 10						
		3.1.3 Éléments de réduction : section homogè								
		3.1.4 Éléments de réduction : section non hor	nogène	. 11						
	3.2	2 Les treillis articulés		. 12						
		3.2.1 Hypothèses								
		3.2.2 Équilibre d'une poutre		. 12						
		3.2.3 Équilibre des nœuds		. 12						
		3.2.4 Structure isostatique?								
		3.2.5 Coupe de Ritter								
		3.2.6 Quelques nœuds particuliers								
		3.2.7 Dilatation thermique		. 13						

4	Flex	cion pure (plane, circulaire)
	4.1	Théorie
		4.1.1 Méthode cinématique
		4.1.2 Déformations – Contraintes
		4.1.3 Éléments de réduction : section homogène
		4.1.4 Pour une structure plane
		4.1.5 Synthèse
	4.2	Relations particulières
		4.2.1 Module de flexion \leftrightarrow moment d'inertie
	4.3	Bernoulli
		4.3.1 Hypothèse de Bernoulli
		4.3.2 Les contraintes (sous cette hypothèse)
		4.3.3 Relation "moment-courbure"
	4.4	Produit d'inertie
	1.1	4.4.1 Axes principaux d'inertie
		1.1.1 Tixes principuux a morsie
5	Flex	cion simple (cisaillante) 18
	5.1	En route vers l'incohérence
		5.1.1 Méthode cinématique
		5.1.2 Déplacements – Déformations – Contraintes
	5.2	Jourawski
		5.2.1 Un peu d'histoire
		5.2.2 Principe du calcul des contraintes tangentielles
		5.2.3 Équilibre de translation axial
		5.2.4 Contrainte tangentielle moyenne
		5.2.5 Formule de Jourawski
	5.3	Déformation due à l'effort tranchant
6	Flex	tion gauche 22
	6.1	Théorie
		6.1.1 Flexions autour des deux axes
		6.1.2 A la recherche de l'axe neutre
_		•
7		cion composée 23
	7.1	Théorie
		7.1.1 Méthode cinématique
		7.1.2 Déplacements – Déformations – Contraintes
		7.1.3 Éléments de réduction : section constante
	7.2	Répartition de la contrainte et noyau central
		7.2.1 Répartition de la contrainte σ_x
		7.2.2 Le noyau central
8	Thé	orèmes des travaux virtuels 26
Ü	8.1	Pour des déplacements infinitésimaux de corps indéformable
	0.1	8.1.1 Problème à résoudre
		8.1.2 Pourquoi les théorèmes des travaux virtuels?
		8.1.3 Grandeurs réelles et virtuelles
		8.1.4 Travail virtuel des forces extérieures
		8.1.5 Calculs préliminaires
		8.1.6 Le théorème

		8.1.7	Le théorème direct	28
		8.1.8	Le théorème réciproque	28
	8.2	Pour d	les déplacements quelconques	28
		8.2.1	Travail virtuel des forces intérieures	28
		8.2.2	Calculs préliminaires	28
		8.2.3	Travail virtuel total	29
		8.2.4	Le théorème	30
		8.2.5	Le théorème direct	30
		8.2.6	Le théorème réciproque	30
	8.3	Remar	ques	31
		8.3.1	Domaines de validité des théorèmes	31
		8.3.2	Questions d'oral	31
•	<i>~</i> 1			00
9			déplacements	32
	9.1	Equati	ion de la déformée	32
		9.1.1	Cf. titre de section (flemme)	32
		9.1.2	Conditions aux limites	32
	9.2	Théore	èmes de travaux virtuels	33
		9.2.1	Travail virtuel pour des déplacements virtuels	33
		9.2.2	Théorèmes des TV pour des ensembles virtuels	33
		9.2.3	Calcul d'un déplacement	34
		9.2.4	Les intégrales de Mohr	35

Introduction

1.1 Éléments structuraux

Afin de décrire les différents éléments, on va baser nos hypothèses simplificatrices sur une cinématique (déplacement) simplifiée et liées aux caractéristiques géométriques. On classera ensuite les différentes structures en :

- Solides 3D
 - Il n'existe pas de simplifications "directe", si les dimensions de l'objet sont similaires dans les trois directions. Les suivants possèdent des simplifications car une dimension, appelée épaisseur est plus petite que les autres.
- Plaques et coques (minces ou épaisses)
 - Si la structure est plane, on aura la subdivision suivante
 - Si les efforts sont tous <u>dans</u> le plan : **membrane**; si l'on a de la *tension*.
 - Si les efforts sont tous <u>hors</u> plan : **plaque**; si l'on a flexion et cisaillement
 - Si les efforts dans le plan \underline{et} hors plan : **coque plane**; si l'on a tension, flexion et cisaillement

On remarque que dès qu'il y a flexion, il y a cisaillement et si en plus on rajoute de la flexion on a une coque plane, par exemple une voile.

- *Membranes* (états plans, état axisymétrique) Si la structure est **courbe**, on aura la subdivision suivante
 - Membrane
 - Coque

FIGURE 1.1 – Exemples

- Poutres, arcs (minces ou épais), barres et câbles
 - Si la structure est **rectiligne** :
 - S'il existe des efforts <u>hors</u> axe : **poutre**; si l'on a un effort *normal*, de *flexion* et de *cisaillement*
 - Si les efforts sont uniquement <u>selon</u> axe : **barre**; si l'on a un effort de *compression* et de *traction*
 - cable; si l'on a un effort uniquement dans l'axe sans résistance à la compression; traction

Si la structure est courbe :

— \mathbf{Arc} : flexion + tension + cisaillement

Figure 1.2 – Exemples

1.2 Principe de Barré de Saint-Venant

Si l'on considère une section **éloignée** des points d'application des forces, les contraintes ne sont fonction que de la résultante et du moment résultant du systèmes de ces forces. La conséquence - que l'on appliquera toujours - est la suivante :

 $\hat{\mathbf{A}}$ retenir : Si on ne s'intéresse pas à la zone proche a des forces, on peut remplacer celles-ci par leur résultante et leurs moments résultants

a. A moins de deux fois la plus grande dimension transversale.

Appuis, représentation et démarches

2.1 Appuis et liaisons

2.1.1 Appuis usuels

Les trois appuis usuels sont ceux découverts au cours de $M\'{e}canique \ rationnelle \ I$, à savoir l'appui à dilatation (rouleau), l'articulation et l'encastrement.

Appuie à dilatation : rouleau

Le rouleau permet le déplacement dans une direction ainsi que la rotation. Ce genre d'appui est fréquent sous les ponts, souvent de chemins de fer. En 2D, il possède une unique réaction de liaison, les deux autres "mouvements" étant libres.

Articulation

L'articulation permet la rotation mais sans déplacement. Il possède deux réactions de liaisons, bloquant le déplacement.

Encastrement

L'encastrement ne permet ni le déplacement, ni la rotation. En bref, plus rien ne bouge : il possède dès lors trois réactions de liaisons associées. Une éolienne plantée est un bel encastrement.

2.1.2 Appui déformable et élastique

Appui déformable

Par définition, il s'agit d'un appui subissant un déplacement **dépendant** de la valeur de la réaction de liaison reprise.

Plus francisé, il s'agit d'un appui qui tolère un déplacement et ce dernier dépend de l'appui. La force d'Archimède est le plus bel exemple.

FIGURE 2.1 – Appui déformable (gauche) et élastique (droite)

Appuie élastique

Par définition, si le déplacement est **proportionnel** à la réaction de liaison l'appui est dit élastique. On représente ce bo-goss d'appui par un ressort.

De par ces deux définitions, en en déduit que tout appui élastique est forcément déformable, mais pas l'inverse!

Pour bien finir la section, voici un petit tableau récapitulatif (en 2D!) :

FIGURE 2.2

Un degré de liberté (d.d.l.) n'est rien d'autre qu'une composante de déplacement libre.

2.2 Isostaticité - Hyperstaticité

Avant toute chose, reprenons les deux définitions :

isostatique : le problème peut être résolu avec les seules équations d'équilibre.

hyperstatique: il y a plus d'inconnues que d'équations d'équilibre.

Voici un petit tableau pleins d'exemples de nos deux définitions :

FIGURE 2.3

2.3 Théorie des poutres

2.3.1 La poutre : géométrie

La définition d'une poutre c'est le volume engendré par une surface plane A dont le centre O se déplace le long d'une courbe en restant perpendiculaire à celle-ci. La figure A peut varier mais seulement de façon lente et ses dimensions sont petites comparée à la longueur de la poutre.

Figure 2.4

2.3.2 Rappel: notion de contrainte

Considérons un volume quelconque que je coupe afin de regarder un élément de surface dA de normale \vec{n} . A cause de cette coupe, il apparaît par conservation une force $d\vec{F}$. Or, comme $dA \to 0$, on retrouve bien le vecteur contrainte $\vec{T}^{(n)}$ associé à la normale \vec{n} possédant une composante normale σ et une composante tangentielle τ .

$$\vec{T}^{(n)} = \lim_{dA \to 0} \frac{d\vec{F}^{(n)}}{dA} \qquad \Longrightarrow \qquad T_i^{(n)} = \tau_{ij} n_j \tag{2.1}$$

Figure 2.5

où τ_{ij} est le tenseur des contraintes.

La composante tangentielle τ peut être décomposée selon les axes y et $z:\tau_{xy}$ et τ_{xz} .

2.3.3 Poutre : efforts internes (éléments de réduction)

Comme nous le verrons, les couples et résultantes nous permettrons de "résumer" toutes nos forces/couples en un(e) seul(e) : calculons premièrement nos résultantes :

Résultante selon
$$x:$$
 $R_x = \int_A \sigma_x \ dA \Rightarrow N;$ Effort normal Résultante selon $y:$ $R_y = \int_A \tau_{xy} \ dA \Rightarrow T_y;$ Effort tranchant Résultante selon $y:$ $R_z = \int_A \tau_{zy} \ dA \Rightarrow T_z;$ Effort tranchant (2.5)

 R_z dA σ_x y R_y R_x

Néanmoins, nous avons coupé notre volume en deux, comment savoir si j'ai pris la partie gauche ou droite? On se débarrasse de cette ambiguïté en définissant la convention de signe (pour la 2D) présentée sur le schéma ci-contre.

FIGURE 2.6

en deministrati la convention de signe (pour la 2D) presentee sur le senema et contre.

Pour le moment résultant, l'idée est la même et il existe également une convention de signe si l'on est en 2D (semblable à celle pour les résultantes mais avec des couples.

$$\vec{C} = \int_{A} \begin{vmatrix} \vec{1_x} & \vec{1_y} & \vec{1_z} \\ 0 & y & z \\ \sigma_x & \tau_{xy} & \tau_{xz} \end{vmatrix} dA$$
 (2.3)

Ceci nous donne trois moments résultants :

Moment résultant selon x: $C_x = \int_A (\tau_{xz}y - \tau_{xy}z) \ dA$ $\Rightarrow M_x$; Moment de torsion Moment résultant selon y: $C_y = \int_A \sigma_x z \ dA$ $\Rightarrow M_y$; Moment fléchissant Moment résultant selon z: $C_z = -\int_A \sigma_x y \ dA$ $\Rightarrow M_z$; Moment fléchissant (2.4)

2.4 Représentations

2.4.1 Conventions de signes des efforts internes en 2D (éléments de réductions)

En 3D on va travailler avec les axes x,y et z. Pour se faciliter la tâche, en 2D, on travaille avec M,N et T ainsi que des conventions de signes particulières. Il s'agit des fameux éléments de réductions :

M: moment fléchissant $(M_y \text{ ou } M_z)$; Positif si les fibres tendues sont "en dessous"

N: effort normal; Positif si l'on est en traction

T: effort tranchant $^{1}(T_{y})$ où T_{z} ; Positif si la partie de droite descend

FIGURE 2.7

Imaginons que je plie une latte en U. La partie supérieure (le creux du U) va se mettre en compression et celle du dessous en traction.

⚠Dans ce cours, le **signe** est aussi important que la valeur numérique!

2.4.2 Conventions de représentation des diagrammes M, N, T en 2D

Il faut suivre une règle pratique : les valeurs positives du moment fléchissant M (c'est-à-dire si les fibres sont tendues) sont portées **vers le bas** : le diagramme M est donc forcément porté du côté des fibres tendues, pas besoin de préciser d'autres conventions. Pour uniformiser le tout, on dessine les autres diagrammes avec des valeurs positives vers le bas. Histoire d'être sur, on rajoute dans les diagramme un plus ou un moins, indiquant le signe de

6

 $A_{x} = 0$ $A_{y} = Q \frac{b}{L}$ $A_{y} = Q \frac{$

^{1.} Souvent noté V dans la littérature.

la résultante. Il existe d'autres moyen d'indiquer le signe : voir TP et slides 29-30.

EXPLICATIONS COMPLÉMENTAIRES SUR LA FIGURE 2.8:

La première chose est de savoir que l'axe y de la figure du diagramme du corps libre et vers le haut, alors que dans le M, N, T il est axé vers le bas. Par **convention**, on dit que la partie de droite descend impliquant, selon la règle pratique, que T > 0. Si l'on fait une coupure à droite de C, le bilan des forces $_y$ s'écrit $T = -B_y$, d'où le signe négatif sur le diagramme M, N, T. Autre astuce : si on a une force vers le haut sur le DLC, il suffit de "descendre" (aller vers le haut) de la valeur de cette force pour le diagramme de T (comme avec B_y). Pour respecter ces conventions, on commence à tracer ces diagrammes par la droite.

La grande question est de savoir qu'est ce qu'on appelle "haut" et "bas". Par **convention**, on le définit de la façon suivante (et même un exemple en prime, à droite) :

Figure 2.9

Résumons brièvement ce que nous venons de définir :

- Les conventions pour M, N, T ne nécessite pas l'utilisation de système d'axe, ni même de préciser si l'on travaille avec la partie "gauche" ou "droite".
- Ces conventions sont liées au comportement structural.
- Ces conventions ne sont pas cruciales, l'important est dans l'interprétation du diagramme pour la compréhension du comportement structural.

N	T_{y}	T_{z}	M_{x}	M_{y}	M_z	
•	0	0	0	0	0	traction simple
0	0	0	0	0	•	flexion pure
0	•	0	0	0	•	flexion simple
•		0	0	0	•	flexion composée
0	•	•	0		•	flexion oblique
0	0	0		0	0	torsion (autre condition sur l'axe x

Il existe évidemment plein de conventions, mais cellesci sont les plus couramment utilisées. Elles nous permettront de traiter tous les cas figurant dans le tableau ci-contre (l'objet des prochains chapitres).

Figure 2.10

2.5 Revenons à notre poutre

2.5.1 Poutre rectiligne en 2D : relation $T \leftrightarrow q(x)$

On cherche à lier notre effort tranchant T à une charge répartie. Considérons un morceau de quelque chose et regardons ce qui agit dessus : un moment fléchissant ainsi qu'un effort tranchant. Si je considère l'équilibre de translation vertical :

$$-T + q(x) dx + (T + dT) = 0 \qquad \Longrightarrow \qquad \frac{dT}{dx} = -q(x) \quad (2.5)$$

Cette précieuse relation nous informe que si nous avons un tronçons sur laquelle je n'ai pas de charge répartie, dT/dx = 0 impliquant que l'effort tranchant est constant. Ceci est vrai en 3D, pour autant que l'on considère des axes cohérents.

 $\underline{\wedge}$ Retenir que l'effort tranchant est proportionnel à la charge et ensuite regarder sur le dessin pour le signe.

2.5.2 Poutre rectiligne en 2D : relation $M \leftrightarrow T$

Cette fois-ci, je vais écrire l'équilibre de rotation autour du point C. Le choix de ce point est arbitraire, mais C permet de se débarrasser du T+dT. Nous avons donc

$$M + T dx - q(x) dx \frac{dx}{2} - (M + dM) = 0$$
 \Longrightarrow $\frac{dM}{dx} = T$ (2.6)

En effet, les M s'annulent et le produit de dx tend plus rapidement vers 0 que le reste. Ceci à pour conséquence que le moment fléchissant est **extrémum** si T est nul. Il s'agit bien évidemment d'une relation linéaire et les conditions pour passer en 3D sont les mêmes.

Figure 2.12

2.5.3 Conséquences pour les diagrammes M et T en 2D

Si il n'y a pas de charge répartie (q(x) = 0), l'effort tranchant T est constant et le moment fléchissant M varie linéairement (degré 1). Si par contre il y a répartition de charge uniforme (q(x) = cste), T varie linéairement et M quadratiquement.

Si la charge est concentrée (P), l'effort tranchant sera discontinu et la dérivée du moment fléchissant le sera également (la pente de M sera discontinue) :

$$T_{qauche} - T_{droite} = P (2.7)$$

Cette discontinuité est bien celle que nous avions observée pour T sur la Figure 2.8.

EXEMPLES: voir slides 40-44.

2.6 Démarches en résistances des matériaux

Démarches

Il existe deux méthodes en RDM:

- 1. Méthode inverse
 - Postule une distribution de contrainte
 - Déduit les éléments réduction
 - Calcule les déformations
 - Vérifier que les équations de compatibilité sont bonnes (!!)
- 2. Méthode cinématique
 - Postule un champ de déplacement
 - Calcule les déformations
 - Calcule les contraintes
 - Calcule les éléments de réduction
 - Relation contraintes ↔ éléments de réduction : equations de compatibilité automatiquement vérifiées (!!)

La première méthode est intuitive, mais on ne peut pas déduire clairement ce qui est valable ou pas. La seconde est systématiques mais permettent de voir directement ce qui dépend du matériau.

Équations de compatibilité

Ces équations expriment

- Les déplacements par un vecteur (3 composantes)
- Les déformations par un tenseur (6 composantes)
- On obtient ces 6 composantes par dérivées des 3 composantes du vecteur
- \bullet Si on part des déformations : les 3 composantes doivent s'obtenir par intégration des 6 composantes des déformations
- Si on part des déplacement, il suffit de calculer les dérivées ad-hoc.

Traction - Compression

3.1 Traction

3.1.1 Méthode cinématique

Nous allons ici utiliser la méthode cinématique de sorte que les équations de compatibilité soient satisfaites lors de l'obtention de notre relation contrainte $\leftrightarrow N$. Il faut donc postuler un champ de déplacement :

$$u = u_0(x), v = 0, w = 0.$$
 (3.1)

Figure 3.1

On considère un déplacement axial u, uniquement se-

lon x: ne varie pas selon x et y et constante dans toute la section : une section transversale plane, reste plane 1 .

3.1.2 Déplacements - Déformations - Contraintes

Déformations

Maintenant que nous avons notre déplacement, il faut s'intéresser aux déformations :

$$a_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) = \frac{1}{2} (u_{i,j} + u_{j,i})$$
(3.2)

De par notre champ, ϵ_x est constant dans la section transversale et les autres composantes sont nulles :

$$\epsilon_x = \frac{\partial u_0}{\partial x} \tag{3.3}$$

Contraintes

On utilise pour ça la loi de Hooke $\sigma_x = E\epsilon_x$. Notons que si E est constant, σ_x l'est dans la section transversale. On néglige les composantes de Poisson.

^{1.} hypothèse de Bernoulli (1694): les sections droites initialement planes et perpendiculaires à l'axe le restent dans la configuration déformée

3.1.3 Éléments de réduction : section homogène

La suite de notre méthode demande le calcul des éléments de réductions. Supposons que l'on ai une section homogène de sorte que E soit constant. Dès lors, σ_x est également constant. Pour la normale, c'est immédiat :

$$N = \int_{A} \sigma_x \, dA \qquad \Longrightarrow \qquad N = \sigma_x A \tag{3.4}$$

En raison de notre champ uniquement selon x, les résultantes en y et z sont nulles, de même pour le moment selon x

FIGURE 3.2

Pour le moment selon y (et similairement pour z) nous avons :

$$C_y = \int_A \sigma_x z \ dA \qquad \Longrightarrow \qquad C_y = \sigma_x \int_A z \ dA \qquad (3.6)$$

Si l'origine des axes est le **centre géométrique** ² défini tel que

$$\int_{A} y \ dA = 0, \qquad \int_{A} z \ dA = 0. \tag{3.7}$$

ALors, M_y et M_z sont nuls.

En résumé

La poutre est uniquement soumise à un effort **normal** (et pas un tranchant). Pour une poutre de section homogène (E constant), nous avons une distribution uniforme de la contrainte axiale

$$\sigma_x = \frac{N}{A} \tag{3.8}$$

Pour une poutre homogène à effort normal constant (N constant):

$$\epsilon_x = \frac{\Delta L}{L}$$
 d'où $\Delta L = \frac{NL}{EA}$ (3.9)

L'hypothèse de Bernoulli est une hypothèse cinématique (Les sections droites initialement planes et perpendiculaires à l'axe le restent dans la configuration déformée.) et ne fait donc pas intervenir les propriétés physiques du matériau.

∧Il n'y aura traction sans flexion que si les moments des contraintes axiales sont nuls!

3.1.4 Eléments de réduction : section non homogène

Si $E \neq cste$, les relations générales restent inchangées tant que E n'apparaît pas explicitement. Dès qu'il apparaît :

$$\sigma_x(x, y, z) = E(x, y, z)\epsilon_x(x) \tag{3.10}$$

^{2.} Centre de "gravité" sans masse.

La répartition de σ_x dans une section transversale (x = cste) est dès lors donné par

$$\sigma_x(y,z) = E(y,z)\epsilon_x \tag{3.11}$$

Au niveau des éléments de réduction $R_{y,z}, M_{x,y,z}$ restent inchangés (nuls³). Par contre, N n'a plus la même expression, σ_x n'étant plus constant.

EXEMPLE: slide 15-16.

3.2 Les treillis articulés

3.2.1 Hypothèses

Deux hypothèses sont d'application :

- 1. Il s'agit d'un ensemble de poutres rectilignes assemblées par des nœuds articulés ne transmettant pas de couple (On peut tourner librement l'extrémité)
- 2. Les forces extérieures sont appliquées uniquement aux nœuds

3.2.2 Équilibre d'une poutre

Dans ce cas-ci, on ne dira pas "poutre" mais barre. Celle-ci est uniquement soumise à un effort normal N. Ses équations d'équilibres s'obtiennent on ne peut plus facilement

FIGURE 3.3

3.2.3 Équilibre des nœuds

Encore une fois rien de difficile, la méthode est systématique :

- Isoler un nœud en coupant les barres qui y aboutissent
- Appliquer les efforts normaux et les efforts extérieurs
- Écrire les équations d'équilibre du nœud

Figure 3.4

3.2.4 Structure isostatique?

La condition d'isostaticité est que le nombre d'inconnues statiques soit égal au nombre d'équations d'équilibres. Nous avons :

- Nombre de barres : $b \to b$ efforts normaux inconnus
- Nombre de RDL : $R \to R$ composantes de réactions inconnues
- Nombre de nœuds : $n \to 2b$ équations d'équilibres en 2D

Une structure est isostatique si (CN mais pas CNS):

$$b + R = 2n \tag{3.13}$$

^{3.} Si l'origine des axes est le centre géométrique!

3.2.5 Coupe de Ritter

Principe

On cherche à calculer l'effort normal dans une barre. On va

- Couper la structure en deux parties disjointes
- Écrire l'équilibre d'une des parties
- S'arranger que cet effort normal soit la seule inconnue

FIGURE 3.5

Les slides 24-25 montrent comment appliquer cette méthode.

3.2.6 Quelques nœuds particuliers

Certains nœuds particuliers permettent de gagner du temps dans les calculs.

Géométrie	2	1 2	1 3	1 2
	Barres alignées	.: - :	Barres 1 et 2 alignées	Barres alignées deux à deux
Propriété	$N_1 = N_2$	$N_1 = 0$ $N_2 = 0$	$ \begin{array}{c} N_1 = N_2 \\ N_3 = 0 \end{array} $	$N_1 = N_3$ $N_2 = N_4$

Tableau 3.1

Barres à efforts nuls

Figure 3.6

En appliquant ce magnifique tableau sur la figure ci-dessous, je peux déjà affirmer que pleins d'efforts normaux seront nuls avant même de commencer à faire des calculs et donc gagner du temps (qui, au vu de la longueur de l'examen peut être précieux). Notons que la barre du bas doit forcément être en traction, sans quoi elle se "barrerait" (pfpfpf) avec le rouleau.

3.2.7 Dilatation thermique

Il peut y avoir déformation axiale du à une élévation ΔT de la température, déformation donnée par $\epsilon_{th} = \alpha \Delta T$.

Si la structure est isostatique, elle est librement dilatable (car pas de T dans les équations d'équilibres) et son allongement est

$$\Delta L_{th} = L\epsilon_{th} = L\alpha\Delta T \tag{3.14}$$

Si la dilatation est empêchée, cela provoque un effort normal

$$N_{th} = -EA\epsilon_{th}$$
 ou $N_{th} = -EA\alpha\Delta T$ (3.15)

Flexion pure (plane, circulaire)

4.1 Théorie

4.1.1 Méthode cinématique

Nous allons cette fois-ci encore utiliser la méthode cinématique, mais avec un autre champ de déplacement :

$$u = z\beta_x(x), \qquad v = 0, \qquad w = w_0(x).$$
 (4.1)

Il s'agit d'un déplacement axial u variant linéairement en fonction de la coordonnée z. Notons O, le centre géométrique.

Figure 4.1

4.1.2 Déformations – Contraintes

Déformations

 ϵ_x est une fonction linéaire en z dans la section transversale :

$$a_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \tag{4.2}$$

Forcement, les composantes autres que ϵ_x et γ_{xz} sont nulles

$$\epsilon_x = z \frac{\partial \beta_x}{\partial x} \qquad \gamma_{xz} = \beta_x + \frac{\partial w_0}{\partial x}$$
 (4.3)

Par contre, ce γ_{xz} non-nul est un peu casse-cojones. Du coup, on supposera plus loin que les déformations normales à la section droite restent normales apres la déformation \rightarrow pas de variation d'angle $\rightarrow \gamma_{xz} = 0$. Oui, tu l'as reconnu! C'est l'hypothèse de Bernoulli.

Contraintes

On conserve la loi de Hooke $\sigma_x = E\epsilon_x$ mais avec l'expression ϵ_x développée ci-dessus. Dans ce cas, si E = cste, σ_x est une fonction linéaire de z dans la section transversale. On néglige encore Poisson et plus tard, on s'intéressera à τ_{xz} .

4.1.3 Éléments de réduction : section homogène

Commençons par calculer la réaction normale (pour une section homogène, E = cste):

$$N = \int_{A} \sigma_{x} dA \qquad \Leftrightarrow \qquad N = E \frac{\partial \beta_{x}}{\partial x} \int_{A} z dA \tag{4.4}$$

Mon rêve est d'avoir N=0. C'est possible si $\int_A z\ dA=0$. Comme nous n'avons que des forces normales, les autres résultantes sont trivialement nulles, de même pour le moment selon x

FIGURE 4.2

Calculons maintenant le moment selon y (signe à adapter selon les convention) :

$$C_y = \int_A \sigma_x z \ dA \qquad \Longrightarrow \qquad M_y = E \frac{\partial \beta_x}{\partial x} \underbrace{\int_A z^2 \ dA}_{I_{zz}}$$
 (4.6)

On reconnaît la définition du moment d'inertie par rapport à l'axe y, aussi appelé I_y :

$$M_y = E \frac{\partial \beta_x}{\partial x} I_{zz} \tag{4.7}$$

Faisons de même pour le moment en z:

$$C_z = \int_A \sigma_x y \ dA \qquad \Longrightarrow \qquad M_z = E \frac{\partial \beta_x}{\partial x} \int_A yz \ dA$$
 (4.8)

Notre rêve (oui, encore) est que $M_z = 0$. Ce sera le cas si $\int_A yz \ dA = 0$.

Comment faire pour que ces intégrales soient nulles?

Oui, comment ?! Il suffit de considérer y et z comme les **axes principaux** d'inertie de la section transversale : ceci défini l'origine des axes, à savoir le **centre géométrique**

En résumé

La poutre est soumise uniquement à un moment fléchissant M_y (ou M_z si l'on considère l'autre axe). Pour une distribution de la contrainte axiale linéaire en fonction de z:

$$\epsilon_x = z \frac{\partial \beta_x}{\partial x}, \qquad \sigma_x = E \epsilon_x, \qquad M_y = E \frac{\partial \beta_x}{\partial x} I_y.$$
 (4.9)

Par remplacement successif, on peut trouver σ_x :

$$\left. \begin{array}{ll}
\sigma_x & = Ez \frac{\partial \beta_x}{\partial x} \\
E \frac{\partial \beta_x}{\partial x} & = \frac{M_y}{I_y}
\end{array} \right\} \Longrightarrow \sigma_x = \frac{M_y}{I_y} z \tag{4.10}$$

Si on considère une flexion selon l'autre axe, on trouvera de façon similaire $\sigma_x = \frac{M_z}{I_z} y$.

4.1.4 Pour une structure plane

Considérons le plan xz de la structure. Si :

- y est perpendiculaire à xz
- \bullet y est un axe principal d'inertie des sections planes (poutres)
- le moment fléchissant M_y est appliqué selon y

Alors ce moment M provoque un déplacement de flexion **dans** le plan $xz \longrightarrow il$ n'y a pas d'effort normal (N=0).

4.1.5 Synthèse

À retenir : Si un axe principal d'inertie de la section transversale est perpendiculaire au plan d'une structure, un moment M perpendiculaire au plan de la structure provoque une flexion dans le plan de la structure

La relation $\sigma_x = \frac{M}{I}y$ est valable **même** sans l'hypothèse de Bernoulli.

Figure 4.3

4.2 Relations particulières

4.2.1 Module de flexion \leftrightarrow moment d'inertie

Une section possède deux caractéristiques importantes :

1. Le module de flexion.

La plus grande valeur pour la contrainte correspond à la fibre la plus éloignée de l'axe neutre. Pour une valeur de M, on peut diminuer σ_x^{max} en augmentant I/y_{max} .

$$\sigma_x^{max} = \frac{M}{I} y_{max}, \qquad M = \frac{I}{y_{max}} \sigma_x^{max}, \qquad \text{module de flexion}: \qquad \frac{I}{y_{max}}$$
 (4.11)

 \wedge Augmenter I augmente aussi y_{max} .

2. Le moment d'inertie.

La flèche d'une poutre dépend de $\frac{1}{EI}$. Pour diminuer la flèche, on choisira une section à I élevé

Il faut donc choisir des sections ayant des valeurs élevées de I et de I/y_{max} sans augmenter y_{max} . En pratique, il y a évidemment d'autres critères de dimensionnement.

4.3 Bernoulli

4.3.1 Hypothèse de Bernoulli

FIGURE 4.4

Considérons toujours notre déplacement $u = z\beta_x(x), v = 0, w = w_0(x)$. Nous avions

$$\gamma_{xz} = \beta_x + \frac{\partial w_0}{\partial x} \qquad (4.12)$$

L'hypothèse de Bernoulli à pour but de considérer γ_{xz} nul, c'est-à-dire :

$$\gamma_{xz} = 0 \qquad \Longrightarrow \qquad \beta_x = -\frac{\partial w_0}{\partial x}$$
(4.13)

4.3.2 Les contraintes (sous cette hypothèse)

Contraintes

En considérant le même déplacement et notre hypothèse fétiche, nous avons : $\gamma_{xz}=0 \Longrightarrow \beta_x=-\frac{\partial w_0}{\partial x}$. On a également

$$\tau_{xz} = G\gamma_{xz} \tag{4.14}$$

Il en résulte que $\tau_{xz}=0$ implique que l'effort tranchant T_z soit nul et donc $M_y=\ cste$ car

$$\frac{dM_y}{dx} = T_z \tag{4.15}$$

4.3.3 Relation "moment-courbure"

Les slides (20-21) ont été lâchement passés. A connaître?

4.4 Produit d'inertie

4.4.1 Axes principaux d'inertie

Ils ont deux propriétés:

- 1. Leur origine est au centre géométrique
- 2. Leur orientation est telle que le produit d'inertie est nul

On peut les calculer de façon analytique ("Beurk, pas dans ce cours"), où avec le cercle de Mohr.

Calcul de moments d'intertie

Soit par calcul (No!), par logiciel, tables, ...Il est possible de les obtenir avec les tables et le théorème de Steiner. Je ne détaille pas ça ici, cf. *Mécanique rationnelle II*.

Flexion simple (cisaillante)

5.1 En route vers l'incohérence

5.1.1 Méthode cinématique

On postule le même champ de déplacement que pour la flexion pure mais on ne postulera **pas** la conservation des normales (hypothèse de Bernoulli)

$$u = z\beta_x(x), \qquad v = 0, \qquad w = w_0(x).$$
 (5.1)

5.1.2 Déplacements – Déformations – Contraintes

Déformation angulaire

Ici la section va tourner, l'axe va également tourner mais leurs angles de rotation ne seront plus identiques (ce qui était le cas avec Bernoulli). En effet, l'hypothèse de Bernoulli est incompatible avec un effort tranchant non-nul, il faut l'abandonner.

On **ne** suppose donc **pas** que les normales à la section droite restent normales après déformation : il y a variation d'angle $\rightarrow \gamma_{xz} \neq 0$. On **remplace** l'hypothèse de Bernoulli par : dans la configuration déformée, les sections droites initialement planes restent planes (mais ne restent pas perpendiculaires à l'axe déformé).

Flexion autour de z

Étudions la flexion autour de z pour le déplacement $u=y\alpha_x(x); v=v_0(x); w=0$. Plaçons nous à l'intérieur d'une section. Dans une section α_x est le même en tout point de la section : il ne dépend donc pas de y et z. Comme on considère $v_0(x)$, tous les points de la section subissent le même déplacement : il ne dépend pas non plus de y et z. Forcément, γ_{xy} est également constant dans une section, impliquant que τ_{xy} l'est aussi.

$$\gamma_{xy} = \alpha_x + \frac{\partial v_0}{\partial x} \qquad \Longrightarrow \qquad \tau_{xy} = G\gamma_{xy}$$
(5.2)

Figure 5.1

Mais est-ce possible? Nous savons que τ_{xy} est nul en surface car il n'y a pas de force de freinage (de même en dessous). Or, τ_{xy} doit être constant (de 0 à 0) mais avec une résultante non nulle (nous venons de le démontrer) : le

résultat est incohérent et n'est évidemment pas possible. Mathématiquement, cette incohérence s'exprime :

$$\tau_{xy} = cste \quad \Leftrightarrow \tau_{xy} = 0 \qquad \Longrightarrow T_y = \int_A \tau_{xy} \ dA = 0 \quad \Longrightarrow \text{Pas d'effort transhant}$$
 (5.3)

5.2 Jourawski

La RDM étant une approximation de l'élasticité, il va falloir procéder autrement, via une solution approchée.

5.2.1 Un peu d'histoire

Jourawski devait employer des poutres en bois pour la construction d'ouvrages d'art d'une ligne de chemin et cherchait à augmenter la résistance et la rigidité de ces poutres. Il a remarqué que si deux poutres étaient mise l'une au des-

Figure 5.2

sus de l'autre et qu'elle ne pouvaient glisser l'une sur l'autre, le moment d'inertie et le module de flexion de la structure seraient respectivement quatre et deux fois plus élevé que dans le cas ou les poutres peuvent glisser librement. Grâce à quoi? A la présence de contraintes tangentielles (contraintes rasantes) qui obligent les fibres des faces communs à garder la même longueur ¹. Comment faire apparaître ces contraintes tangentielles? En plaçant des cales empêchant le glissement entre les poutres.

5.2.2 Principe du calcul des contraintes tangentielles

Figure 5.3

Savoir qu'il en faut c'est bien, pouvoir les calculer c'est mieux! Considérons un tronçon de poutre compris entre x et x+dx soumis aux moments fléchissants M et M+dM=M(x+dx). Les répartitions des contraintes normales suivent la même logique $\sigma_x(x)$ et $\sigma_x(x+dx)$. Isolons une partie intérieure de ce tronçon par une coupe horizontale.

On remarque qu'il faut ajouter des contraintes tangentielles pour équilibrer les forces introduites. Autrement dit, comme les contraintes ne s'équilibrent pas, l'équilibre axial doit être assuré par l'effort rasant le long de la coupe horizontale.

5.2.3 Équilibre de translation axial

Soit une partie cylindrique d'un tronçon de poutre dx. On considère qu'il n'y a pas de force de volume. De plus, nous savons que

$$\oint T_x^{(n)} \ dS = 0$$
(5.4)

Figure 5.4

^{1.} Sinon les fibres inférieures de la poutre du haut s'allongent et les fibres supérieures de la poutre du dessous se raccourcissent.

Écrivons l'équilibre de translation axial

$$\int_{\Sigma} T_x^{(-x)} dS + \int_{\Sigma'} T_x^{(x)} dS + \int_{coupe} T_x^{(n)} dS + \underbrace{\int_{S_{lat}} T_x^{(n)} dS}_{=0} = 0$$
 (5.5)

Le dernier terme est nul car il n'y a pas de force tangentielle en surface. En considérant une poutre prismatique ²

$$\int_{\Sigma} [\sigma_x(x+dx) - \sigma_x(x)] dS + \int_{coupe} \tau_{nx} dL dx = 0$$
(5.6)

$$\int_{\Sigma} \frac{\partial \sigma_x}{\partial x} \, dx dS + \underbrace{\int_{coupe} \tau_{nx} \, dL dx}_{\text{Effort rasant}} = 0$$
 (5.7)

Après division par dx:

$$\int_{\Sigma} \frac{\partial \sigma_x}{\partial x} dS + \int_{AB} \tau_{nx} dL = 0$$
 (5.8)

La répartition de la contrainte axiale σ_x dans une section est donné par $\sigma_x = \frac{M}{I}y$. Avec la relation $T \leftrightarrow M$, on trouve

$$\frac{dM}{dx} = T \qquad \Longrightarrow \qquad \frac{\partial \sigma_x}{\partial x} = \frac{T}{I}y \tag{5.9}$$

Avec $\int_{\Sigma} \frac{\partial \sigma_x}{\partial x} dS + \int_{AB} \tau_{nx} dL = 0$ on trouve

$$\int_{AB} \tau_{nx} dL = -\frac{T}{I} \int_{\Sigma} y dS \qquad \text{ou} \qquad \int_{AB} \tau_{nx} dL = -\frac{T}{I} S(\Sigma)$$
 (5.10)

où $S(\Sigma) = \int_{\Sigma} y \ dS$ est le moment statique de la surface Σ par rapport à l'axe neutre. $\underline{\Lambda}$ \underline{I} est le moment d'inertie par rapport à l'axe neutre, de **toute** section transversale.

5.2.4 Contrainte tangentielle moyenne

On la définit (ci-contre, le plan de coupe de la précédente figure)

$$\overline{\tau}_{nx} = \frac{1}{L_{AB}} \int_{AB} \tau_{nx} \ dL \tag{6}$$

Or comme $\int_{AB} \tau_{nx} dL = -\frac{T}{I} S(\Sigma)$, on obtient

FIGURE 5.5

$$\overline{\tau}_{nx} = -\frac{T}{I} \frac{S(\Sigma)}{L_{AB}} \tag{5.12}$$

^{2.} Pa?

^{3.} Hypothèse des sections planes restant planes.

5.2.5 Formule de Jourawski

Si l'arc AB est une droite parallèle à l'axe z, on peut repartir de $\overline{\tau}_{nx}=-\frac{T}{I}\frac{S(\Sigma)}{L_{AB}}$ en sachant que $\overline{\tau}_{nx}=-\overline{\tau}_{xy}$, pour finalement obtenir

$$\overline{\tau}_{xy} = \frac{T}{I} \frac{S(\Sigma)}{b} \tag{5.13}$$

Figure 5.6

Réciprocité des contraintes tangentielles

Pour faire bref $\tau_{nx}=\tau_{xn}$ et $\tau_{yx}=\tau_{xy}$. On trouve alors :

$$\overline{\tau}_{xy} = \frac{T}{I} \frac{S(\Sigma)}{b};$$
 Contrainte tangentielle moyenne
$$(b\overline{\tau}_{xy}) = \frac{T}{I} S(\Sigma); \quad \text{Effort rasant}$$
(5.14)

Exemple: slide 22.

5.3 Déformation due à l'effort tranchant

C'est le cas ou l'hypothèse "les sections planes restent planes" n'est plus satisfaite : τ_{xy} pas constant $\to \gamma_{xy}$ pas constant \to les sections gauchissent \to théorie de Timoshenko.

Flexion gauche

La flexion gauche, ou oblique, consiste simplement en une combinaison de deux flexions simples.

6.1 Théorie

6.1.1 Flexions autour des deux axes

Précisons avant tout que l'on travaille **en axes principaux!** Sans quoi, il n'y a pas de séparation selon les axes ¹. Considérons nos deux flexions :

Autour de l'axe
$$z$$
: $\sigma_x = -\frac{C_z}{I_z}y$
Autour de l'axe y : $\sigma_x = \frac{C_y}{I_y}z$ (6.1)

En additionnant:

$$\sigma_x = -\frac{C_z}{I_z}y + \frac{C_y}{I_y}z\tag{6.2}$$

6.1.2 A la recherche de l'axe neutre

De façon plus visuelle, nous venons de faire l'opération suivante :

FIGURE 6.1

L'équation de l'axe neutre est alors

$$\sigma_x = 0 \qquad \Longrightarrow -\frac{C_z}{I_z}y + \frac{C_y}{I_y}z = 0$$
 (6.3)

 \triangle Encore une fois, il faut travailler dans les axes principaux de la section!

^{1.} Il est préférable de travailler avec C_y, C_z en 3D pour éviter les conventions de signe de M_y, M_z, \ldots

Flexion composée

7.1 Théorie

7.1.1 Méthode cinématique

On commence à connaître la chanson. Considérons une composition de ce qui a été vu précédemment un déplacement axial u constant et une variation linéaire en fonction de la coordonnée ${\bf Z}$.

$$u = u_0(x) + z\beta_x(x),$$
 $v = 0,$ $w = w_0(x).$ (7.1)

Notons O, le centre géométrique.

Figure 7.1

7.1.2 Déplacements – Déformations – Contraintes

Déformations

On combine : ϵ_x a une répartition constante et est linéaire en z dans la section transversale

$$\epsilon_x = \frac{\partial u_0}{\partial x} + z \frac{\partial \beta_x}{\partial x} \tag{7.2}$$

On fait l'hypothèse que les sections planes restent planes $(\gamma_{xz} = cste)$:

$$\gamma_{xz} = \beta_x + \frac{\partial w_0}{\partial x} \tag{7.3}$$

Contraintes

Toujours notre fameuse loi de Hooke, mais cette fois σ_x a une répartition constante et une répartition linéaire en z dans la section transversale si E est constant. Poisson encore et toujours négligé. Par rapport à τ_{xz} , cela dépend de si on tient compte ou pas de l'hypothèse de Bernoulli.

7.1.3 Éléments de réduction : section constante

A l'aide de la loi de Hooke, nous avons

$$\sigma_x = E\left(\frac{\partial u_0}{\partial x} + z \frac{\partial \beta_x}{\partial x}\right)$$

$$= \sigma_x^0 + Ez \frac{\partial \beta_x}{\partial x}$$
(7.4)

Calculons avant tout notre normale N

$$N = \int_{A} \sigma_x \, dA \qquad \Longrightarrow \qquad N = \sigma_x^0 A \tag{7.5}$$

En effet, σ_x^0 peut être sorti de l'intégrale, étant constant. Comme on a fait dans les chapitres précédents, on suppose $\int_A z \ dA = 0$: ceci est vrai si je passe par le centre géométrique de la figure. Le raisonnement inverse est aussi acceptable : Cette condition doit être vraie pour que mon effort normal ne dépende que de σ .

En faisant un raisonnement similaire pour M_y :

$$M_y = \int_A \sigma_x z \ dA \qquad \Longrightarrow \qquad M_y = E \frac{\partial \beta_x}{\partial x} \int_A z^2 \ dA$$
 (7.6)

Cette fois, le terme en σ_c^0 disparaît : car, encore, $\int_A z \ dA = 0.$ On a donc

$$M_y = E \frac{\partial \beta_x}{\partial x} I_{zz}$$
 avec $I_{zz} = \int_A z^2 dA$ (7.7)

En résumé

La poutre est soumise à un effort normal (N) et à un moment fléchissant (M_y) . Comme nous avons :

Pour la traction :
$$\sigma_x^{(N)} = \frac{N}{A}$$

Pour la flexion : $\sigma_x^{(M)} = \frac{M_y}{I_y} z$ (7.8)

On a donc

$$\sigma_x = \frac{N}{A} + \frac{M_y}{I_y} z \tag{7.9}$$

Synthèse pour une structure plane

Soit xy le plan de la structure. Si un axe **principal d'inertie** de la section transversale est perpendiculaire au plan d'une structure, on a la superposition d'une traction simple (N) et d'une flexion dans le plan de la structure (M).

7.2 Répartition de la contrainte et noyau central

7.2.1 Répartition de la contrainte σ_x

En toute généralité, une section n'est pas forcément rectangulaire : il faut alors calculer la position du centre de figure et déterminer la mi-hauteur.

En fonction de l'intensité de l'effort normal et fléchissant, trois situations sont possibles ¹

^{1.} La somme donne toujours une droite, mais pas forcément la même.

- 1. Ma droite passe par le zéro (à distance y_0) à l'extérieur de la section (gauche). Dans ce cas, ma section sera uniquement en traction.
- 2. Par chance, le zéro arrive juste au bord de la section (milieu). Le signe est toujours le même, mais j'arrive à zéro au bord.
- 3. Le zéro est avant le bord : j'ai de la traction et de la compression (droite).

Comment trouver alors la position de l'axe neutre (et donc notre fameux point y_0 , le point ou la contrainte axiale s'annule)? Il suffit d'égaler la contrainte axiale à zéro

$$\sigma_x = 0 \qquad \Longrightarrow \qquad y_0 = -\frac{N}{M} \frac{I}{A}$$
 (7.10)

7.2.2 Le noyau central

Considérons que l'axe x soit au milieu de la section, section sur laquelle j'applique un effort normal et un moment fléchissant. L'effet causé sera **identique** à celui d'appliquer la même force normale, mais décallée d'une certaine distance (e).

Figure 7.2

La sollicitation "M et N" est ainsi équivalente à un effort axial N (seul) excentré tel que

$$M = Ne (7.11)$$

La position de l'axe neutre est alors

$$y_0 = -\frac{N}{M} \frac{I}{A} \qquad \Longrightarrow \qquad y_0 = -\frac{I}{eA} \tag{7.12}$$

Cherchons maintenant la zone ou, en appliquant cette translation de e, j'ai toujours une normale de même signe (comme les deux premiers cas de la section précédente).

Je définis ainsi le **noyau central** comme étant le lieu des points P d'application de N tels que σ_x ne change pas de signe dans la section.

Figure 7.3

Théorèmes des travaux virtuels

8.1 Pour des déplacements infinitésimaux de corps indéformable

8.1.1 Problème à résoudre

Avant toute chose, les théorèmes des travaux virtuels s'appliquent à des situations d'équilibre. Dans un tel problème, nous avons des forces de volume f_i , de surfaces associées à \vec{n} , $T_i^{(n)}$, des déplacements résultant de ces deux forces mais aussi des contraintes résultant de ces forces τ_{ij} . Pour résoudre un tel système, on peut utiliser :

- Équilibre en volume
 - Translation: $\tau_{ji,j} + f_i = 0$
 - Rotation : $\tau_{[ij]} = 0$ ou $\tau_{ij} = \tau_{ji}$
- Équilibre en surface : $T_i^{(n)} = \tau_{ji} n_j$
- Les équations de comportement
- Les équations de compatibilité

8.1.2 Pourquoi les théorèmes des travaux virtuels?

Si l'on a toutes ces belles équations, pourquoi un nouveau théorèmes? Les raisons sont multiples : impossible de trouver des solutions analytiques, application plus facile, formule indépendante du domaine d'application, . . .

8.1.3 Grandeurs réelles et virtuelles

Deux définitions de grandeurs sont à énoncer

Réelles il s'agit des grandeurs (forces, déplacements, contraintes, ...) **réellement** appliquées au milieu ou subie par le milieu continu étudié.

Virtuelles il s'agit de grandeurs arbitraires choisies judicieusement en fonction de ce que l'on veut calculer.

8.1.4 Travail virtuel des forces extérieures

Nous allons considérer deux ensembles :

- 1. Virtuels : déplacement u_i'
- 2. Réel : forces de volume et de surface : $f_i \ dV$, $T_i^{(n)} \ dS$

On DÉFINIT (\equiv) le travail virtuel des forces extérieures comme le produit scalaire force*déplacement

À retenir:

$$T'_{ext} \equiv \int_{V} f_i u'_i dV + \oint_{S} T_i^{(n)} u'_i dS$$

$$\tag{8.1}$$

Le terme $f_i u_i' dV$ est le travail des forces de volume tandis que le second terme est le travail des forces de surface, ou l'on considère toute la surface fermée.

8.1.5 Calculs préliminaires

Nous allons restreindre les déplacements virtuels à des déplacements **infinitésimaux** de corps **indéformable**

$$\overline{u_P'} = \overline{u_Q'} + \overline{\theta'} \times \overline{QP} \tag{8.2}$$

Considérons le point Q de référence. Le déplacement virtuel de P est une rotation de \overline{OP} autour de Q d'un angle θ . Si ce déplacement est infiniment petit, il s'agit de la tangente au cercle et on peut l'exprimer à l'aide d'un produit vectoriel : si ce n'était pas le cas, ce ne serait pas tangent et bye bye le produit vectoriel.

FIGURE 8.1

Pourquoi est-ce si important d'avoir un produit vectoriel? Car il est nécessaire d'en avoir un pour exprimer la résultante de couple nulle. Reprenons notre travail extérieur

$$T'_{ext} \equiv \int_{V} \overline{f} \cdot \overline{u'_{P}} \ dV + \oint_{S} \overline{T}^{(n)} \cdot \overline{u'_{P}} \ dS \tag{8.3}$$

En remplaçant $\overline{u'_P}$ par son expression

$$T'_{ext} \equiv \int_{V} \overline{f}.(\overline{u'_{Q}} + \overline{\theta'} \times \overline{QP}) \ dV + \oint_{S} \overline{T}^{(n)}.(\overline{u'_{Q}} + \overline{\theta'} \times \overline{QP}) \ dS \tag{8.4}$$

Comme Q est un point fixe de référence ne dépendant pas de x,y,z, son déplacement est une grandeur que l'on peut sortir de l'intégrale. De même, $\vec{\theta}'$ est une rotation : ne dépend pas des axes. Il faut cependant faire une petite manipulation pour mettre $\vec{\theta}'$ en évidence :

$$T'_{ext} \equiv \overline{u'_Q} \left[\int_V \overline{f} \ dV + \oint_S \overline{T}^{(n)} \ dS \right] + \overline{\theta'} \left[\int_V (\overline{QP} \times \overline{f}) \ dV + \oint_S (\overline{QP} \times \overline{T}^{(n)}) \ dS \right]$$
(8.5)

Les expressions de la résultante des forces et du moment résultant des forces par rapport au point Q apparaissent naturellement de sorte que l'on puisse écrire

$$T'_{ext} \equiv \overline{u'_Q}.\overline{R} + \overline{\theta'}.\overline{C_Q} \tag{8.6}$$

8.1.6 Le théorème

Voici l'énoncé complet sous une forme systématique. "Je vous invite à l'imprimer et à la coller sur le miroir de votre salle de bain."

THÉORÈME: TRAV. VIRT. POUR DES DEP. INFINITÉSIMAUX DE CORPS INDÉFORMABLE

- 1. A l'équilibre
- 2. le travail virtuel des forces extérieures
- 3. est nul
- 4. pour tout déplacement infinitésimal de corps indéformable.

$$T'_{ext} \equiv \overline{u'_Q}.\overline{R} + \overline{\theta'}.\overline{C_Q}$$

8.1.7 Le théorème direct

Afin de ne pas confondre avec le théorème indirect, reformulons ce théorème avec des Si...alors...

Si on est à l'équilibre alors le travail virtuel des forces extérieures est nul pour tout déplacement virtuel <u>infinitésimal</u> de corps indéformable.

À retenir:

équilibre
$$\Longrightarrow$$
 $\overline{R} = \overline{0}$ et $\overline{C_Q} = \overline{0}$ $\Longrightarrow T'_{ext} = 0$

8.1.8 Le théorème réciproque

Énonce

 \mathbf{Si} le travail virtuel des forces extérieures est nul pour tout déplacement virtuel <u>infinitésimal</u> de corps indéformable **alors** on est à l'équilibre 1 .

$$T'_{ext} = 0 \Longrightarrow \qquad \overline{u'_Q}.\overline{R} + \overline{\theta'}.\overline{C_Q} = 0 \qquad \forall \overline{u'_Q}, \quad \overline{\theta'}$$

Démonstration

Comme ceci est valable $\forall \ldots$, nous allons gentillement choisir.

Démonstration.

• Choisissons une translation virtuelle quelconque

$$\overline{u_Q'}.\overline{R} + \overline{\theta'}.\overline{C_Q} = 0, \quad \overline{\theta'} = \overline{0} \qquad \Longrightarrow \overline{R} = \overline{0}$$

• Choisissons une rotation virtuelle quelconque

$$\overline{u_Q'}.\overline{R} + \overline{\theta'}.\overline{C_Q} = 0, \quad \overline{u_Q'} = \vec{0} \qquad \Longrightarrow \overline{C_Q} = \overline{0}$$

8.2 Pour des déplacements quelconques

8.2.1 Travail virtuel des forces intérieures

Reconsidérons nos deux ensembles, mais en plus supposons que l'équilibre soit satisfait en surface :

$$T_i^{(n)} = \tau_{ji} n_j \tag{8.7}$$

 \triangle On ne peut supposer la symétrie de τ_{ij} dès le départ, mais ce résultat découlera du théorème.

8.2.2 Calculs préliminaires

Partons de la définition du travail extérieur et appliquons le théorème de Gauss:

$$\oint_{S} T_i^{(n)} u_i' dS = \oint_{S} \tau_{ji} n_j u_i' dS = \int_{V} \partial_j (\tau_{ji} u_i') dV$$
(8.8)

En appliquant la règle de dérivée d'un produit et le développement en une partie symétrique/a-symétrique :

$$\partial_j(\tau_{ji}u_i') = \tau_{ji,j}u_i' + \tau_{ji}u_{i,j}' = \tau_{ji,j}u_i' + \tau_{ji}u_{(i,j)}' + \tau_{ji}u_{[i,j]}'$$
(8.9)

^{1.} C'est souvent le \forall qui est oublié, attention !

Notons (ceci est une **définition!**)

$$a'_{ij} \equiv u'_{(i,j)} \equiv \frac{1}{2}(u'_{i,j} + u'_{j,i})$$
 (8.10)

Le travail extérieur peut alors s'écrire

$$T'_{ext} = \int_{V} f_i u'_i \, dV + \int_{V} [\tau_{ji,j} u'_i + \tau_{ji} a'_{ij} + \tau_{ji} u_{[i,j]}] \, dV$$
 (8.11)

En ordonnant les termes :

$$T'_{ext} \equiv \int_{V} (\tau_{ji,j} + f_i) u'_i \, dV + \int_{V} \tau_{ji} u'_{[i,j]} \, dV + \int_{V} \tau_{ji} a'_{ij} \, dV$$
 (8.12)

S'il y a équilibre, les deux premiers termes sont nuls : équilibre de translation en volume et équilibre de rotation en volume. Donc, à l'équilibre, il reste pour des déplacements virtuels quelconques

$$T'_{ext} = \int_{V} \tau_{ji} a'_{ij} \ dV \tag{8.13}$$

Cette notion conduit à **définir** un travail virtuel pour les forces intérieurs :

$$T'_{int} = -\int_{V} \tau_{ji} a'_{ij} \ dV \tag{8.14}$$

Pourquoi ce signe? Juste pour avoir $T'_{ext} = -T_{int}$ (convention dans le cadre de ce cours). A l'équilibre, le travail virtuel total sera donc forcément nul

$$T'_{tot} \equiv T'_{ext} + T'_{int} \tag{8.15}$$

Comme a'_{ij} est symétrique (def.) on peut écrire T'_{int} de la sorte (permutation des indices) :

$$T'_{int} = -\int_{V} \tau_{ji} a'_{ji} \ dV \tag{8.16}$$

Ce qui donne, après avoir renommer les indices

$$T'_{int} = -\int_{V} \tau_{ij} a'_{ij} \ dV \tag{8.17}$$

8.2.3 Travail virtuel total

Reprenons la définition du travail virtuel total

$$T'_{tot} \equiv \int_{V} f_{i} u'_{i} \, dV + \oint_{S} T_{i}^{(n)} u'_{i} \, dS - \int_{V} \tau_{ji} a_{ij} \, dV$$
 (8.18)

Et transformons la dernière intégrale (sachant que la partie symétrique correspond à "tout" - la partie asymétrique)

$$\tau_{ji}a'_{ij} = \tau_{ji}u'_{(i,j)}
= \tau_{ji}u'_{i,j} - \tau_{ji}u'_{[i,j]}
= \partial_{j}(\tau_{ji}u'_{i}) - \tau_{ji,j}u'_{i} - \tau_{ji}u'_{[i,j]}$$
(8.19)

En appliquant Gauss de façon inversée :

À retenir:

$$T'_{tot} \equiv \int_{V} (\tau_{ji,j} + f_i) u'_i \, dV + \oint_{S} (T_i^{(n)} - \tau_{ji} n_j) u'_i \, dS + \int_{V} \tau_{ji} u'_{[i,j]} \, dV$$
 (8.20)

8.2.4 Le théorème

Il s'agit maintenant du théorème des travaux virtuels pour des déplacements quelconques!

Théorème: Trav. virt. pour des des. quelconque

- 1. A l'équilibre
- 2. le travail virtuel total
- 3. est nul
- 4. pour tout déplacement virtuel

$$T'_{tot} \equiv \int_{V} (\tau_{ji,j} + f_i) u'_i \ dV + \oint_{S} (T_i^{(n)} - \tau_{ji} n_j) u'_i \ dS + \int_{V} \tau_{ji} u'_{[i,j]} \ dV$$

8.2.5 Le théorème direct

Reformulons notre beau théorème

Si l'on est à l'équilibre, alors le travail virtuel total est nul pour tout déplacement virtuel.

Figure 8.2

8.2.6 Le théorème réciproque

Si le travail virtuel total est nul pour tout déplacement virtuel, alors on est à l'équilibre.

$$T'_{tot} = 0 \Longrightarrow \int_{V} (\tau_{ji,j} + f_i) u'_i dV + \oint_{S} (T_i^{(n)} - \tau_{ji} n_j) u'_i dS + \int_{V} \tau_{ji} u'_{[i,j]} dV = 0 \qquad \forall u'_i$$
(8.21)

Démontrons ce théorème des travaux virtuels pour des déplacements que lconques. On peut bien "choisir" car ceci est valable $\forall u_i'$.

Démonstration.

A. Nous allons faire trois choix de déplacement pour prouver notre théorème. Commençons par considérer une translation virtuelle nulle partout en volume et en surface, sauf sur une petite portion de **volume** ou elle est constante. Les deux derniers termes de T'_{tot} sont nuls. Comme je peux faire "balader" cette portion de **volume**, j'ai toujours

$$(\tau_{ji,j} + f_i) = 0 (8.22)$$

La première intégrale de T'_{tot} est forcément nulle.

B. Maintenant, considérerons une translation virtuelle nulle partout en volume et en surface, sauf sur une petite portion de **surface** ou elle est constante. Comme je peux faire "balader"

cette portion de surface, j'ai toujours

$$T_i^{(n)} = \tau_{ji} n_j \tag{8.23}$$

L'intégrale rendue nulle par A est toujours valable, car nous venons de faire un choix "virtuel", n'influençant pas sur notre choix réel. La seconde intégrale de T'_{tot} est forcément nulle (et la première, par A, également).

C. Choisissons un déplacement nul partout en volume et en surface, sauf sur une petite portion de **volume** où on le choisit quelconques. En faisant également "balader" cette portion de volume ²

$$\tau_{ji}u'_{[i,j]} = 0 (8.24)$$

où τ_{ji} est symétrique.

8.3 Remarques

8.3.1 Domaines de validité des théorèmes

Pour un déplacement de corps **indéformable**, les déplacements doivent être infinitésimaux pour pouvoir exprimer les rotations à l'aide d'un produit vectoriel. Les déplacements de corps indéformable \equiv corps rigides doivent ainsi toujours être infinitésimaux sinon le déplacement serait réel.

Néanmoins, pour un déplacement quelconque, ceux-ci ne doivent pas être infinitésimaux.

Les déplacement virtuels :

- sont choisis en fonction de ce que l'on veut calculer
- ne doivent pas respecter les liaisons (forcément, si on veut les calculer il vaut mieux les faire travailler)

<u>∧</u>La loi de comportement n'intervient **pas** dans les théorèmes, ils ne sont donc pas limités au cas du solide linéaire élastique.

8.3.2 Questions d'oral

- Est-il nécessaire de prendre des déplacements infinitésimaux. La réponse de l'étudiant est souvent en quatre temps :
 - 1. Long silence
 - 2. Regard effrayé, le silence se poursuit
 - 3. Il répond "Oui oui" pour me faire plaisir
 - 4. Non non

La réponse est bien sûr non, tout comme la réponse à la prochaine question.

• Les déplacements virtuels doivent-ils respecter les réactions de liaisons ?

^{2.} Les deux premières intégrales étant nulles, celle-ci doit forcément l'être également.

Calcul des déplacements

Dans ce chapitre, nous allons commencer par écrire l'équation de la déformée pour quelques cas particuliers (et donc rares). Nous utiliserons ensuite notre nouveau théorème fétiche pour élaborer une méthode plus générale.

Equation de la déformée 9.1

9.1.1 Cf. titre de section (flemme)

Rappelons les équations obtenues lors de l'étude de la flexion simple ¹

- Relation moment courbure : $v'' = -\frac{M}{EI}$ Relation M T (équilibre de rotation) : $\frac{dM}{dx} = T$ Relation T q (équilibre de translation) : $\frac{dT}{dx} = -q(x)$

Les équations d'équilibres donnent

$$\frac{d^2M}{dx^2} = \frac{dT}{dx}, \qquad \frac{d^2M}{dx^2} = -q(x).$$
(9.1)

On trouve alors (en dérivant deux fois)

$$v'' = -\frac{M}{EI} \longrightarrow EIv'' = -M \longrightarrow (EIv'')'' = -\frac{d^2M}{dx^2}$$
(9.2)

Comme $\frac{d^2M}{dx^2} = -q(x)$, on trouve pour le sections **homogènes** (E = E(x)):

$$(EIv'')'' = q(x) \tag{9.3}$$

ou si j'ai carrément une **poutre homogène** (même chose dans toutes les sections, E = cste):

$$EIv^{(4)} = q(x) (9.4)$$

9.1.2Conditions aux limites

L'ED que nous venons d'obtenir est du quatrième ordre (youhou), il faut donc quatre conditions aux limites (cf. Analyse II):

1. Sur v (imposer la flèche, comme pour un appui)

^{1.} La première relation néglige les déplacements dus à l'effort tranchant.

- 2. sur v' (ça sera donc lié à M. Point au moment fléchissant nul : v''=0, extrémité libre (encastrement))
- 3. Sur v'' (moment fléchissant imposé)
- 4. Sur v''' (dérivée de . . .qui est la dérivée de T : condition sur l'effort tranchant (extrémité libre))(moment tranchant imposé)

Figure 9.1

9.2 Théorèmes de travaux virtuels

9.2.1 Travail virtuel pour des déplacements virtuels

On va à nouveau reconsidérer deux ensembles (virtuels et réels) et reprendre la définition du travail virtuel total $T'_{tot} = T'_{ext} + T'_{int}$, mais encore

$$T'_{tot} \equiv \int_{V} f_{i} u'_{i} \ dV + \oint_{S} T_{i}^{(n)} u'_{i} \ dS - \int_{V} \tau_{ij} a'_{ij} \ dV$$
 (9.5)

Philosophie de l'approche

Toute la subtilité de la technique joue sur l'équivalence entre (9.5) et

$$T'_{tot} \equiv \int_{V} (\tau_{ji,j} + f_i) u'_i \, dV + \oint_{S} (T_i^{(n)} - \tau_{ji} n_j) u'_i \, dS + \int_{V} \tau_{ji} u'_{[i,j]} \, dV$$
 (9.6)

9.2.2 Théorèmes des TV pour des ensembles virtuels

Nous allons reprendre depuit le début en prenant cette fois deux ensembles virtuels distincts :

- 1. Virtuel (') déplacement : u_i'
- 2. Virtuel (") forces de volume et de surface $f_i'' dV \dots T_i^{\prime\prime\prime}(n) dS$

Reprenons le travail virtuel des forces extérieures : rien ne change, il suffit de mettre des secondes partout

$$T'_{ext} \equiv \int_{V} f''_{i} u'_{i} dV + \oint_{S} T''^{(n)} u'_{i} dS$$

$$(9.7)$$

On peut ainsi énoncer (et démontrer) le même théorèmes : il suffit de mettre des secondes aux bons endroits. Le travail virtuel intérieur et total se définit de façon similaire.

Ces deux ensembles permettent de particulariser :

- 1. Déplacement réel & forces virtuelles en équilibre \rightarrow pour calculer un déplacement réel.
- 2. Déplacement virtuel & forces réelles en équilibre \rightarrow pour calculer une force réelle.

Exemple: calcul d'un déplacement

Considérons une patatoïde quelconque soumise à une force quelconque sur laquelle j'identifie un point D. Sous l'effet de tout ce qui est réel, ce point D subit un déplacement u. On s'intéresse à la composante de ce déplacement dans la direction qui nous intéresse, à savoir m. Nous allons donc faire travailler u_m avec une force virtuelle.

Pour se faire, considérons une force $\vec{1''}$ permettant de FIGURE 9.2 trouver u_m . On pourrait dire "TV et équilibre : ma force vaut 1". Non, non et non : il faut considérer tout le tenseur qui va équilibrer le bazar à l'intérieur mais aussi les réactions de liaisons virtuelles qui équilibrent aussi le tout. Mais l'idée est bien la, il faut appliquer le TV pour des déplacements réels et des forces virtuelles en équilibres. Ces forces virtuelles en équilibres sont une force 1" équilibrée selon \vec{m} par les réactions de liaisons.

Comme les déplacements réels ne sont pas infinitésimaux, il faut considérer le théorème général.

9.2.3 Calcul d'un déplacement

Considérons le TV pour les déplacements réels

$$T'_{tot} \equiv \int_{V} f''_{i} u'_{i} \, dV + \oint_{S} T''^{(n)} u'_{i} \, dS - \int_{V} \tau''_{ij} a_{ij} \, dV = 0$$
 (9.8)

Pour la force valant 1 au point D, le TV des forces extérieures se réduit à

$$T'_{ext} \equiv \int_{V} f''_{i} u_{i} \, dV + \oint_{S} T''(n) u_{i} \, dS \qquad \Longrightarrow \qquad T'_{ext} = \vec{1''} \cdot \vec{u} = \vec{u} \cdot \vec{m} = u_{m} \qquad (9.9)$$

On a donc

$$u_m = \int_V \tau_{ij}^{"} a_{ij} \ dV \tag{9.10}$$

Il faut maintenant calculer τ''_{ij} et a_{ij} .

Exemple : les intégrales de Mohr

Grâce à la théorie des poutres, on peut calculer le déplacement d'un point. On va calculer u_m en fonction des contraintes de la théorie des poutres :

- L'application des forces $r\'{e}elles$ (provoquant le déplacement recherché) donne une réparation de M, T et N.
- L'application de la force virtuelle auxiliaire donne une répartition de M", T" et N".

9.2.4 Les intégrales de Mohr

Il faut calculer les contributions du moment fléchissant, de l'effort normal et de l'effort tranchant. J'ai un peu la flemme ², mais c'est pas très dur : cf. slides 19-21.

La contribution totale est obtenue en sommant ces différentes contributions :

$$u_m = \int_{\Gamma} \frac{M''M}{EI} ds + \int_{\Gamma} \frac{N''N}{EA} ds + \int_{\Gamma} \chi \frac{T''T}{GA} ds$$
 (9.11)

où Γ est la longueur de la poutre.

 Λ On peut sommer les contributions grâce au caractère énergétiquement orthogonal des diagrammes M, N, T (évident pour M - N et T). Ceci est démontré au slide 23.

En bref : M, N, T sont dus aux forces réellement appliquées à la structure alors que M", N", T" sont dus à une "force" unitaire appliquée au point dont on cherche le déplacement, selon la ligne d'action et dans le sens de ce déplacement 3 .

Pour calculer ces intégrales, on utilise un tableau des combinaisons les plus usuelles pour

$$\frac{1}{L} \int_{L} M'M'' \, dx \tag{9.12}$$

 \triangle Ce tableau ne contient **pas** le facteur 1/EI à ne pas oublier à l'examen. De plus, il ne faut pas oublier de multiplier par L à cause du 1/L sinon...

Par contre, bonne nouvelle, ce tableau est aussi valable pour les couples N'N" et T'T" ($\underline{\wedge}$ avec le facteur 1/EA).

^{2.} C'est la dernière section de tout le cours, normal non?

^{3. &}lt;u>∧</u>On les note avec des 'ci dessous.

Annexe A

Rappels théoriques

Séance 1

Schéma statique

Les étapes

- Isoler la structure que l'on veut
- Schématiser
- Choisir les éléments structuraux
 - Poutre : $N \neq 0$, $T \neq 0$, $M \neq 0$
 - Barre : $N \neq 0, T = 0, M = 0$
 - Câble : $N \ge 0$, T = 0, M = 0
- Choisir les actions
 - Charge ponctuelle [N]
 - Charge uniforme [N/m]
 - Couple [Nm]
- Choisir les appuis (ddl = degré de liberté, RL = réaction de liaison)
 - Appuis à dilatation : $2 ddl(x, \theta) \Rightarrow 1 RL$
 - Articulation : $1 ddl(\theta) \Rightarrow 2 RL$
 - Encastrement : $0 \, ddl \, () \Rightarrow 3 \, RL$

Calcul de réaction de liaison

On exprime l'équilibre à l'aide de 3 équations :

- Equilibre de translation selon $\mathbf{x} : \sum F_x = 0$
- Equilibre de translation selon y : $\sum F_y = 0$
- Equilibre de rotation en 1 point : $\sum C + \sum Fd = 0$

L'isostaticité en 2D est obtenu lorsqu'on a 3 équations d'équilibre pour 3 inconnues (3 RL).

Diagrammes MNT

Sollicitations

N	Т	M	Sollicitation
≥ 0	=0	=0	Traction pure
≤ 0	=0	=0	Compression pure
=0	=0	$\neq 0$	Flexion pure
=0	$\neq 0$	$\neq 0$	Flexion simple
$\neq 0$	$\neq 0$	$\neq 0$	Flexion composée

On définit les différents éléments structuraux en fonction du type de sollicitation.

