

Hierarchical Clustering: Objective Functions and Algorithms

Arne Nix

arne.nix@rwth-aachen.de

July 19, 2018, Aachen

Seminar: Theoretical Topics in Data Science 2 Lehrstuhl für Informatik 7, RWTH Aachen University

Outline

Introduction

Motivation Literature

Objective Function for Hierarchical Clustering Admissible Cost Function

Algorithms

Clustering Arbitrary Inputs
Clustering Perfect Inputs

Conclusion and Discussion

Motivation

Advantages of hierarchical clustering:

- No need to specify number of clusters in advance.
- Cluster structure captured on all levels of granularity.
- ▶ Output: Binary cluster tree T with leaves $\mathcal L$ and internal nodes $\mathcal N$
- ▶ Input: Similarity graph G = (V,E,w)▷ $w_{ij} := w(v_i,v_j)$ defines similarity between vertices $v_i,v_j \in V$

Figure: Example of a clustering and the corresponding cluster tree.

Motivation

Advantages of hierarchical clustering:

- No need to specify number of clusters in advance.
- Cluster structure captured on all levels of granularity.
- ▶ Output: Binary cluster tree T with leaves $\mathcal L$ and internal nodes $\mathcal N$
- ▶ Input: Similarity graph G = (V,E,w)▷ $w_{ij} := w(v_i,v_j)$ defines similarity between vertices $v_i,v_j \in V$

Figure: Example of a clustering and the corresponding cluster tree.

Motivation

Advantages of hierarchical clustering:

- No need to specify number of clusters in advance.
- Cluster structure captured on all levels of granularity.
- **Output:** Binary cluster tree T with leaves ${\mathcal L}$ and internal nodes ${\mathcal N}$
- ▶ Input: Similarity graph G = (V,E,w)
 - $riangleright w_{ij} := w(v_i, v_j)$ defines similarity between vertices $v_i, v_j \in V$

Figure: Example of a similarity graph and the corresponding cluster tree.

Literature

S. Dasgupta [Dasgupta 16]

A cost function for similarity-based hierarchical clustering

- Hierarchical clustering as combinatorial optimization problem.
- ► Introduces simple cost function.
- **Proposes Recursive** ϕ -Sparsest-Cut clustering algorithm.

V. Cohen-Addad, V. Kanade et al. [Cohen-Addad & Kanade⁺ 18]: Hierarchical Clustering: Objective Functions and Algorithms

- Continue to formalize hierarchical clustering.
- Develop framework for cost functions in hierarchical clustering.
- Formally define admissible ("good") cost functions.
- Propose and prove new clustering algorithms.

Outline

Introduction

Objective Function for Hierarchical Clustering Admissible Cost Function

Algorithms

Conclusion and Discussion

Cost Function for Cluster Trees

- Most hierarchical clustering algorithms defined procedurally
 - No underlying objective function
 - Output not defined precisely
- Advantages of cost functions:
 - Precise definition possible
 - Study complexity
 - Compare efficiency
 - ▶ Incorporating constraints or prior information gets simpler

Cost Function for Cluster Trees

Definition (Cost Function)

For cluster tree
$$T$$
: $\Gamma(T) = \sum_{N \in \mathcal{N}} \gamma(N)$ For $N \in \mathcal{N}$: $\gamma(N) = \sum_{m{u} \in L(N_l), m{v} \in L(N_r)} w(m{u}, m{v}) \cdot g(|L(N_l)|, |L(N_r)|)$

where

- $ightharpoonup N_l$ and N_r : left and right children of N
- ightharpoonup L(N): leaves of the subtree induced by N

$$\gamma(N) = \sum_{u \in L(N_{\mathsf{I}}), v \in L(N_{\mathsf{r}})} w(u, v) \cdot g(|L(N_{\mathsf{I}})|, |L(N_{\mathsf{r}})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- **▶** Cost function proposed by [Dasgupta 16]:
 - $hd g(a,b):=a+b o ext{total number of leaves below } N$

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $hd g(a,b):=a+b o ext{total number of leaves below } N$

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $hd g(a,b):=a+b o ext{total number of leaves below } N$

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $\triangleright g(a,b) := a+b o ext{total number of leaves below } N$

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $\triangleright g(a,b) := a+b o ext{total number of leaves below } N$

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $\triangleright g(a,b) := a+b o ext{total number of leaves below } N$

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $\triangleright g(a,b) := a+b o ext{total number of leaves below } N$

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $\triangleright g(a,b) := a+b o ext{total number of leaves below } N$

Figure: Example of clustering using cost function \tilde{g} and unit weights.

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $\triangleright g(a,b) := a+b o ext{total number of leaves below } N$

Figure: Example of clustering using cost function \tilde{g} and unit weights.

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $\triangleright g(a,b) := a+b o ext{total number of leaves below } N$

Figure: Example of clustering using cost function \tilde{g} and unit weights.

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $\triangleright g(a,b) := a+b o ext{total number of leaves below } N$

Figure: Example of clustering using cost function \tilde{g} and unit weights.

$$\gamma(N) = \sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u,\!v) \cdot (|L(N_\mathsf{l})| + |L(N_\mathsf{r})|)$$

- ► Idea: Perform expensive cuts as far down as possible.
- Cost function proposed by [Dasgupta 16]:
 - $\triangleright g(a,b) := a+b o ext{total number of leaves below } N$

Figure: Example of clustering using cost function \tilde{g} and unit weights.

Outline

Introduction

Objective Function for Hierarchical Clustering Admissible Cost Function

Algorithms

Conclusion and Discussion

Ultrametrics

Definition (Ultrametric)

An ultrametric is a metric space (X,d) with

$$d(x,y) \le \max\{d(x,z),d(y,z)\} \ \forall x,y,z \in X$$

 \rightarrow Isosceles triangles with two sides longer than one.

Figure: The triangles 3 and 4 violate the condition $d(x,y) \leq \max\{d(x,z),d(y,z)\}$

- ightharpoonup Similarity graph G=(V,E,w)
- ightharpoonup G generated from ultrametric (X,d) if:
 - $\triangleright V \subseteq X$ and
 - $\triangleright w(u,v) = f(d(u,v))$ for every $u,v \in V$ with $u \neq v$
 - $hd f: \mathbb{R}_+
 ightarrow \mathbb{R}_+$ non-increasing function

$$\triangleright$$
 e.g.: $f(x) = \frac{1}{x}$

► G is then called ground-truth input

Figure: Example of a graph generated by an ultrametric.

- ightharpoonup Similarity graph G=(V,E,w)
- ightharpoonup G generated from ultrametric (X,d) if:
 - $\triangleright V \subseteq X$ and
 - $\triangleright w(u,v) = f(d(u,v))$ for every $u,v \in V$ with $u \neq v$
 - $hd f: \mathbb{R}_+
 ightarrow \mathbb{R}_+$ non-increasing function

$$\triangleright$$
 e.g.: $f(x) = \frac{1}{x}$

► G is then called ground-truth input

Figure: Example of a graph generated by an ultrametric.

- ightharpoonup Similarity graph G=(V,E,w)
- ightharpoonup G generated from ultrametric (X,d) if:
 - $\triangleright V \subseteq X$ and
 - $\triangleright w(u,v) = f(d(u,v))$ for every $u,v \in V$ with $u \neq v$
 - $hd f: \mathbb{R}_+
 ightarrow \mathbb{R}_+$ non-increasing function

$$\triangleright$$
 e.g.: $f(x) = \frac{1}{x}$

► G is then called ground-truth input

Figure: Example of a graph generated by an ultrametric.

- ▶ Similarity graph G = (V,E,w)
- ▶ G generated from ultrametric (X,d) if:
 - $\triangleright V \subseteq X$ and
 - $\triangleright w(u,v) = f(d(u,v))$ for every $u,v \in V$ with $u \neq v$
 - $riangleright f: \mathbb{R}_+
 ightarrow \mathbb{R}_+$ non-increasing function
 - ho e.g.: $f(x)=rac{1}{x}$
- ► G is then called ground-truth input

Figure: Example of a similarity graph generated by an ultrametric.

Generating Tree

Definition (Generating Tree)

- lacktriangle Rooted binary tree T with |V| leaves ${\cal L}$ and |V|-1 internal nodes ${\cal N}$
- lacksquare Weight function $W:\mathcal{N}
 ightarrow\mathbb{R}_+$ s.t.:
 - $hd W(N_i) \leq W(N_j)$ for $N_i, N_j \in \mathcal{N}$ if N_i ancestor of N_j
 - $riangleright w(v_i,v_j)=W(\mathsf{LCA}_T(v_i,v_j))$ for every $v_i,v_j\in V$

Figure: Similarity graph and corresponding generating tree with weights on every node.

Generating Tree

Definition (Generating Tree)

- lacktriangle Rooted binary tree T with |V| leaves ${\cal L}$ and |V|-1 internal nodes ${\cal N}$
- lacksquare Weight function $W:\mathcal{N}
 ightarrow\mathbb{R}_+$ s.t.:
 - $hd W(N_i) \leq W(N_j)$ for $N_i, N_j \in \mathcal{N}$ if N_i ancestor of N_j
 - $riangleright w(v_i,v_j)=W(\mathsf{LCA}_T(v_i,v_j))$ for every $v_i,v_j\in V$

Figure: Similarity graph and corresponding generating tree with weights on every node.

Generating Tree

Definition (Generating Tree)

- lacktriangle Rooted binary tree T with |V| leaves ${\cal L}$ and |V|-1 internal nodes ${\cal N}$
- $lackbox{ t Weight function }W:\mathcal{N}
 ightarrow\mathbb{R}_{+} ext{ s.t.: }$
 - $hd W(N_i) \leq W(N_j)$ for $N_i, N_j \in \mathcal{N}$ if N_i ancestor of N_j
 - $riangleright w(v_i,v_j)=W(\mathsf{LCA}_T(v_i,v_j))$ for every $v_i,v_j\in V$

Figure: Similarity graph and corresponding generating tree with weights on every node.

Strict Generating Tree

Definition (Strict Generating Tree)

- lacktriangle Rooted binary tree T with |V| leaves ${\cal L}$ and |V|-1 internal nodes ${\cal N}$
- lacksquare Weight function $W:\mathcal{N}
 ightarrow\mathbb{R}_+$ s.t.:
 - $\triangleright W(N_i) {<} W(N_j)$ for $N_i, N_j \in \mathcal{N}$ if N_i ancestor of N_j
 - $riangleright w(v_i,v_j)=W(\mathsf{LCA}_T(v_i,v_j))$ for every $v_i,v_j\in V$

Figure: Similarity graph and corresponding generating tree with weights on every node.

Admissible Cost Function

$$\Gamma(T) = \sum_{N \in \mathcal{N}} \left(\sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u, v) \cdot g(|L(N_\mathsf{l})|, |L(N_\mathsf{l})|)
ight)$$

Definition (Admissible Cost Function)

 Γ admissible if a cluster tree T for G generated from an ultrametric, achieves minimum cost if and only if it is a generating tree for G.

Admissible Cost Function

$$\Gamma(T) = \sum_{N \in \mathcal{N}} \left(\sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u, v) \cdot g(|L(N_\mathsf{l})|, |L(N_\mathsf{r})|)
ight)$$

Theorem

 Γ admissible if and only if it satifies the follwoing conditions:

- 1. Let G be a clique, i.e. $w(u,v)=1\ \forall u,v\in V$: $\Gamma(T)$ is identical for every cluster tree T of G
- **2.** Symmetry: g(a,b)=g(b,a) for every $a,b\in\mathbb{N}$
- **3.** Monotonicity: g(a+1,b)>g(a,b) for every $a,b\in\mathbb{N}$

Note: Dasgupta's cost function with g(a,b) = a + b is admissible.

Use this cost function for all following proofs and examples

Admissible Cost Function

$$\Gamma(T) = \sum_{N \in \mathcal{N}} \left(\sum_{u \in L(N_\mathsf{l}), v \in L(N_\mathsf{r})} w(u, v) \cdot g(|L(N_\mathsf{l})|, |L(N_\mathsf{r})|)
ight)$$

Theorem

 Γ admissible if and only if it satifies the follwoing conditions:

- 1. Let G be a clique, i.e. $w(u,v)=1 \ \forall u,v \in V$: $\Gamma(T)$ is identical for every cluster tree T of G
- **2.** Symmetry: g(a,b)=g(b,a) for every $a,b\in\mathbb{N}$
- **3.** Monotonicity: g(a+1,b)>g(a,b) for every $a,b\in\mathbb{N}$

Note: Dasgupta's cost function with g(a,b) = a + b is admissible.

Use this cost function for all following proofs and examples

Outline

Introduction

Objective Function for Hierarchical Clustering

Algorithms

Clustering Arbitrary Inputs Clustering Perfect Inputs

Conclusion and Discussion

Outline

Introduction

Objective Function for Hierarchical Clustering

Algorithms

Clustering Arbitrary Inputs

Clustering Perfect Inputs

Conclusion and Discussion

Recursive φ-Sparsest-Cut Algorithm for Hierarchical Clustering

- lacksquare Idea: Minimize sparsity $sp(\{A,Vackslack A\}):=rac{w(A,Vackslack A)}{|A||Vackslack A|}$ in each cut.
 - ho Approximation in $\mathcal{O}(\sqrt{\log(|V|)})$ possible [Arora & Rao⁺ 09]

1. Recursive ϕ -Sparsest-Cut Algorithm

```
1: Input: G = (V,E,w)
```

2: Find $\{A,V\setminus A\}$ with

$$sp(\{A,Vackslash A\}) \leq \phi \cdot \displaystyle{\min_{S \subset V}} sp(\{S,Vackslash S\})$$

3: Repeat recursively on G[A] and G[Vackslash A] to obtain trees T_A and $T_{Vackslash A}$

4: Return: union of T_A and $T_{V\setminus A}$

Where G[A] is subgraph of G induced by $A \subseteq V$.

Recursive ϕ -Sparsest-Cut Algorithm for Hierarchical Clustering

Theorem

For any graph G=(V,E,w) with $w:E\to\mathbb{R}_+$, the ϕ -sparsest-cut algorithm outputs a solution T of cost $\Gamma(T)\leq \frac{27}{4}\phi\Gamma(T^*)$ for any (in particular the optimal) clustering T^*

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

- lacktriangle Descent through T^* in direction of most leaves
- $lacksquare N_{\mathsf{BC}}$ first node found in T^* with $|L(N_{\mathsf{BC}})| < rac{2n}{3} = rac{2|V|}{3}$
 - ightarrow Balanced cut of T^* : $(L(N_{ extsf{BC}}), V ackslash L(N_{ extsf{BC}}))$

Figure: Cut of T

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

- lacksquare Balanced cut of T^* : $(L(N_{ t BC}), V ackslash L(N_{ t BC}))$
- ightharpoonup Pick $A,B,C,D\subseteq V$ s.t.
 - $riangleright (A \cup B, C \cup D) := (L(N_{\mathsf{BC}}), V ackslash L(N_{\mathsf{BC}}))$ in T^* and
 - $hd (A \cup C, B \cup D) := (L(N_0), V \setminus L(N_0))$ cut induced by root of T
- ▶ In our example: $A = \{v_1, v_3\}, B = \{v_5\}, C = \{v_2, v_4\}, D = \{v_6\}$

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

Figure: Cut of T

T output of Algo 1 \Rightarrow $(A \cup C, B \cup D)$ is ϕ -approximate sparsest cut:

$$\frac{w(A \cup C, B \cup D)}{|A \cup C| \cdot |B \cup D|} \leq \phi \frac{w(A \cup B, C \cup D)}{|A \cup B| \cdot |C \cup D|}$$

Weight between $A \cup B$ and $C \cup D \le$ summed weights between all subsets

$$\Rightarrow w(A \cup C, B \cup D) \le \phi \frac{|A \cup C| \cdot |B \cup D|}{|A \cup B| \cdot |C \cup D|} \cdot (w(A,C) + w(A,D) + w(B,C) + w(B,D))$$

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

Figure: Cut of T

T output of Algo 1 \Rightarrow $(A \cup C, B \cup D)$ is ϕ -approximate sparsest cut:

$$\frac{w(A \cup C, B \cup D)}{|A \cup C| \cdot |B \cup D|} \leq \phi \frac{w(A \cup B, C \cup D)}{|A \cup B| \cdot |C \cup D|}$$

Weight between $A \cup B$ and $C \cup D \le$ summed weights between all subsets

$$\Rightarrow w(A \cup C, B \cup D) \le \phi \frac{|A \cup C| \cdot |B \cup D|}{|A \cup B| \cdot |C \cup D|} \cdot (w(A, C) + w(A, D) + w(B, C) + w(B, D))$$

Figure: Cut of T

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

$$\begin{split} w(A \cup C, B \cup D) \leq & \phi \frac{|A \cup C| \cdot |B \cup D|}{|A \cup B| \cdot |C \cup D|} \\ & \cdot (w(A, C) + w(A, D) + w(B, C) + w(B, D)) \end{split}$$

By defintion of N_{BC} :

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

 $w(A \cup C, B \cup D) \le \phi \frac{|A \cup C| \cdot |B \cup D|}{|A \cup B| \cdot |C \cup D|}$

Figure: Cut of T

 $oldsymbol{\cdot} (w(A,\!C) + w(A,\!D) + w(B,\!C) + w(B,\!D))$

Lowerbound $|A \cup B| \cdot |C \cup D| \ge \frac{2n^2}{9}$ and use in the denominator:

$$\leq \phi \frac{9}{2n^2} |A \cup C| \cdot |B \cup D|$$

 $\cdot (w(A,C) + w(A,D) + w(B,C) + w(B,D))$

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

$$w(A \cup C, B \cup D) \le \phi \frac{9}{2n^2} |A \cup C| \cdot |B \cup D| \cdot (w(A, C) + w(A, D) + w(B, C) + w(B, D))$$

Figure: Cut of T

Exploiting the fact that $\frac{|X|}{n} \leq 1$ for any $X \subseteq V$:

$$\leq \phi rac{9}{2} \left(rac{|B \cup D|}{n} w(A,C) + w(A,D) + w(B,C) + rac{|A \cup C|}{n} w(B,D)
ight)$$

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

Figure: Cut of T

Cost induced by the root N_0 satisfies:

$$egin{aligned} \gamma(N_0) &= nw(A \cup C, B \cup D) \leq rac{9}{2}\phi|A \cup C|w(B,D) \ &+ rac{9}{2}\phi|B \cup D|w(A,C) \ &+ rac{9}{2}n\phi[w(A,D) + w(B,C)] \end{aligned}$$

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

Figure: Cut of T

Cost induced by the root N_0 satisfies:

$$\begin{split} \gamma(N_0) &= nw(A \cup C, B \cup D) \leq \frac{9}{2}\phi|A \cup C|w(B,D) \\ &+ \frac{9}{2}\phi|B \cup D|w(A,C) \\ &+ \frac{9}{2}n\phi[w(A,D) + w(B,C)] \end{split}$$

Figure: Cut of T^* ($N_2^*=N_{\mathsf{BC}}$)

Figure: Cut of T

Induction over the nodes proves the theorem:

$$\Gamma(T) = \sum_{N_i \in \mathcal{N}} \gamma(N_i) \leq rac{27}{4} \phi \Gamma(T^*)$$

Adapting balanced cut and rescaling at some point by a factor $\beta(\Gamma)$:

Remark

For any admissible cost function Γ :

Algorithm 1 achieves an $\mathcal{O}(\beta(\Gamma) \cdot \phi)$ -approximation.

A. Nix:Hierarchical Clustering 21/30 19.07.2018

Outline

Introduction

Objective Function for Hierarchical Clustering

Algorithms

Clustering Arbitrary Inputs

Clustering Perfect Inputs

Conclusion and Discussion

Fast and Simple Algorithm for Clustering on Perfect Ground-Truth Inputs

2. Fast and Simple Clustering

```
1: Input: G = (V, E, w)
```

2: $p \leftarrow \text{random vertex of } V$

3: $w_1 > \ldots > w_k$ edge weights of edges $\{\cdot,p\}$

4: Let
$$B_i = \{v|w(p,v) = w_i\}$$
 for $1 \leq i \leq k$

5: Recurse on each $G[B_i]$ and obtain T_1, \ldots, T_k

6: $T_0^* \leftarrow$ tree with p as single vertex

7: $T_i^* \leftarrow \text{union of } T_{i-1}^* \text{ and } T_i$

8: Return: T_k^*

- 1. Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangleright Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$

- **1.** Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangleright Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$

Figure: Example of clustering using the fast and simple clustering algorithm.

- **1.** Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangleright Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$
- 1.1 Recurse on $G[B_1] o \mathsf{Return} \colon T_1 :=$

 $oldsymbol{v_1}$

Figure: Example of clustering using the fast and simple clustering algorithm.

- 1. Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangleright Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$

1.2 Recurse on $G[B_2] o \mathsf{Return} \colon T_2 :=$

Figure: Example of clustering using the fast and simple clustering algorithm.

- 1. Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangle Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$

1.3 Recurse on $G[B_3] o \mathsf{Return} \colon T_3 :=$

- 1. Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangle Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$
- 2. Merge all subtrees:

- 1. Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangleright Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$
- 2. Merge all subtrees:

2.0 Start with
$$T_0^*$$

- 1. Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangleright Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$
- 2. Merge all subtrees:
- **2.1** Start with $T_1^* \leftarrow$ union of T_0^* and T_1

- 1. Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangleright Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$
- 2. Merge all subtrees:
- **2.2** Start with $T_2^* \leftarrow$ union of T_1^* and T_2

- 1. Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangleright Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$
- 2. Merge all subtrees:
- **2.3** Start with $T_3^* \leftarrow$ union of T_2^* and T_3

- 1. Select: $p \leftarrow v_3$ (randomly)
 - riangle Sort edge weights: $w_{13}>w_{23}=w_{34}>w_{35}=w_{36}$
 - riangleright Partition into buckets: $B_1=\{v_1\}, B_2=\{v_2,v_4\}, B_3=\{v_5,v_6\}$
- 2. Merge all subtrees:
- 3. Return T_3^*

Fast and Simple Algorithm for Clustering on Perfect Ground-Truth Inputs

Theorem

For any admissible objective function, the fast and simple clustering algorithm computes a tree of optimal cost

- $ightharpoonup in \mathcal{O}(n\log^2 n)$ with high probability if the input is a strict ground-truth input or
- ightharpoonup in $\mathcal{O}(n^2)$ if the input is a (non-necessarily strict) ground-truth input

Fast and Simple Clustering: Proof of Correctness

- ▶ Pivot element $p \in V$
- ▶ Let $u \in B_i$, $v \in B_j$ for partitions based on p with j > i
- ▶ Let T be a generating tree
- ▶ Observe: w(p,u) > w(p,v) (from construction of B_i,B_j) $\Rightarrow N_v$ ancestor of N_u in T

Figure: Visualizing the proof.

- $lackbox{ left}$ Obeserve: LCA $_T(u,v)=N_v$ $\Rightarrow w(u,v)=W(N_v)=w(p,v)$ for all $u\in B_i$ and $v\in B_j$
- ▶ Apply inductively to all $G[B_i] \Rightarrow$ output is a generating tree for G

Fast and Simple Clustering: Proof of Correctness

- ▶ Pivot element $p \in V$
- ▶ Let $u \in B_i$, $v \in B_j$ for partitions based on p with j > i
- ▶ Let T be a generating tree
- ▶ Observe: w(p,u) > w(p,v) (from construction of B_i,B_j) $\Rightarrow N_v$ ancestor of N_u in T

Figure: Visualizing the proof.

- $lackbox{ left}$ Obeserve: LCA $_T(oldsymbol{u},oldsymbol{v})=N_v \ \Rightarrow w(oldsymbol{u},oldsymbol{v})=W(N_v)=w(oldsymbol{p},oldsymbol{v}) ext{ for all } oldsymbol{u}\in B_i ext{ and } oldsymbol{v}\in B_j$
- ▶ Apply inductively to all $G[B_i] \Rightarrow$ output is a generating tree for G

- ightharpoonup Let input G be strongly generated by some T
- lacktriangle Recursive call on $G[B_0]$ with $|B_0|=n_0$.

If
$$\frac{|B_i|}{n_0-1} \leq \frac{2}{3} \ \forall i \in [1,k]$$
:

► Apply the Master theorem [Cormen & Leiserson⁺ 09]:

$$\mathsf{Time}(n_0) = \sum_{i=1}^k \mathsf{Time}(lpha_i(n_0-1)) + f(n_0)$$

- ▶ $f(n_0)$: Time for recursive call before further recursion
 - hickspace > Fulfills: $f(n_0) \in \mathcal{O}(n_0)$
- $lackbox{} lpha_i = rac{|B_i|}{n_0-1}$
 - ightharpoonup Fulfills: $\sum_{i=1}^k lpha_i = 1$ and $lpha_i < 1$
- \Rightarrow Time $(n) \in \mathcal{O}(n \log n)$.

- ▶ Let input G be strongly generated by some T
- lacktriangle Recursive call on $G[B_0]$ with $|B_0|=n_0$.

If
$$rac{|B_i|}{n_0-1} \leq rac{2}{3} \ orall i \in [1,k]$$
 :

▶ Apply the Master theorem [Cormen & Leiserson⁺ 09]:

$$\mathsf{Time}(n_0) = \sum_{i=1}^k \mathsf{Time}(lpha_i(n_0-1)) + f(n_0)$$

- $ightharpoonup f(n_0)$: Time for recursive call before further recursion
 - hickspace > Fulfills: $f(n_0) \in \mathcal{O}(n_0)$
- lacksquare $lpha_i=rac{|B_i|}{n_0-1}$
 - ightharpoonup Fulfills: $\sum_{i=1}^k lpha_i = 1$ and $lpha_i < 1$
- \Rightarrow Time $(n) \in \mathcal{O}(n \log n)$.

$$|\mathbf{f}||B_i|=n_0-1$$
: $\Rightarrow \mathsf{Time}(n)\in \mathcal{O}(n^2)$.

- ightharpoonup Let input G be strongly generated by some T
- lacktriangle Recursive call on $G[B_0]$ with $|B_0|=n_0$.

If
$$rac{|B_i|}{n_0-1} \leq rac{2}{3} \ orall i \in [1,k]$$
:

▶ Apply the Master theorem [Cormen & Leiserson⁺ 09]:

$$\mathsf{Time}(n_0) = \sum_{i=1}^k \mathsf{Time}(lpha_i(n_0-1)) + f(n_0)$$

- $ightharpoonup f(n_0)$: Time for recursive call before further recursion
 - hickspace > Fulfills: $f(n_0) \in \mathcal{O}(n_0)$
- lacksquare $lpha_i=rac{|B_i|}{n_0-1}$
 - ightharpoonup Fulfills: $\sum_{i=1}^k lpha_i = 1$ and $lpha_i < 1$
- \Rightarrow Time $(n) \in \mathcal{O}(n \log n)$.

If $|B_i|=n_0-1$: o This occurs with low probability.

 \Rightarrow Time $(n) \in \mathcal{O}(n^2)$.

Outline

Introduction

Objective Function for Hierarchical Clustering

Algorithms

Conclusion and Discussion

Conclusion and Discussion

- Framework for objective functions in hierarchical clustering
- Characterization of "good" objective functions
 - → admissible cost functions

- **Proof** Recursive ϕ -Sparsest Cut algorithm:
 - ightharpoonup Proved $\mathcal{O}(\phi)$ approximation of an optimal output

- ► Fast and Simple Clustering algorithm:
 - **D** Guarantees optimal clustering in $\mathcal{O}(n \log^2 n)$ time for perfect inputs
 - ▶ A modified version gives approximate output for unstructured inputs

Thank you for your attention!

Arne Nix

arne.nix@rwth-aachen.de

A. Nix:Hierarchical Clustering 30/30 19.07.2018

- lacksquare Find N^* : descend T towards most leaves until $rac{2n}{3} > |L(N^*)| \geq rac{n}{3}$
- lacksquare Let $p \in L(N^*)$
- ▶ Let $u \in V$ with LCA $_T(u,p)$ ancestor of N^*
 - ho For any $oldsymbol{v} \in L(N^*)$: $oldsymbol{w(u,p)} < oldsymbol{w(v,p)}$
 - $\Rightarrow v$ and u in different B_i
 - $\Rightarrow |B_i| < rac{2n}{3} \ orall i \in [1,k]$ for any partition induced by $p \in L(N^*)$
 - \Rightarrow Each $p \in L(N^*)$ would introduce "good" paritions.
 - $\Rightarrow Pr_{p\sim V}(p ext{ is "bad" pivot}) = Pr_{p\sim V}(p
 otin L(N^*)) \in \mathcal{O}(rac{2}{3}).$

- lacksquare Find N^* : descend T towards most leaves until $rac{2n}{3} > |L(N^*)| \geq rac{n}{3}$
- lacksquare Let $p \in L(N^*)$
- ▶ Let $u \in V$ with LCA $_T(u,p)$ ancestor of N^*
 - ho For any $v \in L(N^*)$: w(u,p) < w(v,p) o strictly generated!
 - $\Rightarrow v$ and u in different B_i
 - $\Rightarrow |B_i| < rac{2n}{3} \ orall i \in [1,k]$ for any partition induced by $p \in L(N^*)$
 - \Rightarrow Each $p \in L(N^*)$ would introduce "good" paritions.
 - $\Rightarrow Pr_{p\sim V}(p ext{ is "bad" pivot}) = Pr_{p\sim V}(p
 otin L(N^*)) \in \mathcal{O}(rac{2}{3}).$

- lacksquare Find N^* : descend T towards most leaves until $rac{2n}{3} > |L(N^*)| \geq rac{n}{3}$
- lacksquare Let $p \in L(N^*)$
- ▶ Let $u \in V$ with LCA $_T(u,p)$ ancestor of N^*
 - ho For any $oldsymbol{v} \in L(N^*)$: $oldsymbol{w(u,p)} < oldsymbol{w(v,p)}$
 - $\Rightarrow v$ and u in different B_i
 - $\Rightarrow |B_i| < rac{2n}{3} \ orall i \in [1,k]$ for any partition induced by $p \in L(N^*)$
 - \Rightarrow Each $p \in L(N^*)$ would introduce "good" paritions.
 - $\Rightarrow Pr_{p\sim V}(p ext{ is "bad" pivot}) = Pr_{p\sim V}(p
 otin L(N^*)) \in \mathcal{O}(rac{2}{3}).$

- lacksquare Find N^* : descend T towards most leaves until $rac{2n}{3} > |L(N^*)| \geq rac{n}{3}$
- lacksquare Let $p \in L(N^*)$
- ▶ Let $u \in V$ with LCA $_T(u,p)$ ancestor of N^*
 - ho For any $oldsymbol{v} \in L(N^*)$: $oldsymbol{w(u,p)} < oldsymbol{w(v,p)}$
 - $\Rightarrow v$ and u in different B_i
 - $i\Rightarrow |B_i| < rac{2n}{3} \ orall i \in [1,k]$ for any partition induced by $p \in L(N^*)$
 - \Rightarrow Each $p \in L(N^*)$ would introduce "good" paritions.
 - $\Rightarrow Pr_{p\sim V}(p ext{ is "bad" pivot}) = Pr_{p\sim V}(p
 otin L(N^*)) \in \mathcal{O}(rac{2}{3}).$

- lacksquare Find N^* : descend T towards most leaves until $rac{2n}{3}>|L(N^*)|\geq rac{n}{3}$
- lacksquare Let $p \in L(N^*)$
- ▶ Let $u \in V$ with LCA $_T(u,p)$ ancestor of N^*
 - ho For any $oldsymbol{v} \in L(N^*)$: $w(oldsymbol{u}, oldsymbol{p}) < w(oldsymbol{v}, oldsymbol{p})$
 - $\Rightarrow v$ and u in different B_i
 - $i\Rightarrow |B_i| < rac{2n}{3} \ orall i \in [1,k]$ for any partition induced by $p \in L(N^*)$
 - \Rightarrow Each $p \in L(N^*)$ would introduce "good" paritions.
 - $\Rightarrow Pr_{p\sim V}(p ext{ is "bad" pivot}) = Pr_{p\sim V}(p
 otin L(N^*)) \in \mathcal{O}(rac{2}{3}).$

- lacksquare Find N^* : descend T towards most leaves until $rac{2n}{3} > |L(N^*)| \geq rac{n}{3}$
- lacksquare Let $p \in L(N^*)$
- ▶ Let $u \in V$ with LCA $_T(u,p)$ ancestor of N^*
 - ho For any $oldsymbol{v} \in L(N^*)$: $w(oldsymbol{u}, oldsymbol{p}) < w(oldsymbol{v}, oldsymbol{p})$
 - $\Rightarrow v$ and u in different B_i
 - $i\Rightarrow |B_i| < rac{2n}{3} \ orall i \in [1,k]$ for any partition induced by $p \in L(N^*)$
 - \Rightarrow Each $p \in L(N^*)$ would introduce "good" paritions.
 - $\Rightarrow Pr_{p\sim V}(p ext{ is "bad" pivot}) = Pr_{p\sim V}(p
 otin L(N^*)) \in \mathcal{O}(rac{2}{3}).$

- ▶ Each p picked independently \Rightarrow Prob. of $p \notin L(N^*)$ after $c \log n$ calls $\in \mathcal{O}((\frac{2}{3})^{c \log n}) = \mathcal{O}(\frac{1}{n^c})$.
- ▶ Not having $\log n$ "good" partitions after $\log(n) \cdot (c \log n)$ calls:

$$egin{aligned} & Pr \ \bigvee_{p_1,...,p_{\log n} \sim V} \left(igvee_{i=1}^{\log n} p_i
otin L(N^*)
ight) \leq \sum_{i=1}^{\log n} Pr_{p_i \sim V} \left(p_i
otin L(N^*)
ight) \ & \in \mathcal{O}(rac{\log n}{n^c}) = \mathcal{O}(rac{1}{n^{c-1}}) \end{aligned}$$

 $\Rightarrow |B_i| \leq rac{2n}{3}$ for runtime $\mathcal{O}(n\log^2 n)$ holds with high probability.

A. Nix:Hierarchical Clustering 32/30 19.07.2018

- S. Arora, S. Rao, U. Vazirani: Expander Flows, Geometric Embeddings and Graph Partitioning. J. ACM, Vol. 56, No. 2, pp. 5:1–5:37, April 2009.
- V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, C. Mathieu: Hierarchical Clustering: Objective Functions and Algorithms, pp. 378–397. 2018.
- T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms, Third Edition.
 The MIT Press, 3rd edition, 2009.
- S. Dasgupta:

A Cost Function for Similarity-based Hierarchical Clustering.

Proc. *Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing*, STOC '16, pp. 118–127, New York, NY, USA, 2016. ACM.