Proposition: Concerning the Fibonacci sequence, $S_n: F_n = \sum_{i=0}^{n-1} {n-i-1 \choose i}$.

Proof. (Induction).

Basis step. Let n = 1.

Observe that $\sum_{i=0}^{1-1} {1-i-1 \choose i} = {0 \choose 0} = 1 = F_1$. Thus S_1 .

Inductive step. Let S_k for $k \in \mathbb{N}$.

We now show S_k implies S_{k+1} . Observe that

$$F_{k+1} = F_k + F_{k-1} \tag{1}$$

$$=\sum_{i=0}^{k-1} {k-i-1 \choose i} + \sum_{i=0}^{(k-1)-1} {(k-1)-i-1 \choose i}$$
 (2)

$$= \left[\binom{k-1}{0} + \binom{k-2}{1} + \ldots + \binom{1}{k-2} + \binom{0}{k-1} \right] + \left[\binom{k-2}{0} + \binom{k-3}{1} + \ldots + \binom{1}{k-3} + \binom{0}{k-2} \right] \tag{3}$$

$$=0+\binom{k-1}{0}+\binom{k-2}{0}+\binom{k-2}{1}+\binom{k-3}{1}+\ldots+\binom{1}{k-3}+\binom{1}{k-2}+\binom{0}{k-2}+\binom{0}{k-1}+0 \tag{4}$$

$$= \left[\binom{k-1}{-1} + \binom{k-1}{0} \right] + \left[\binom{k-2}{0} + \binom{k-2}{1} \right] + \dots + \left[\binom{1}{k-3} + \binom{1}{k-2} \right] + \left[\binom{0}{k-2} + \binom{0}{k-1} \right] + \binom{0}{k} \tag{5}$$

$$= \binom{k}{0} + \binom{k-1}{1} + \binom{k-2}{2} + \dots + \binom{2}{k-2} + \binom{1}{k-1} + \binom{0}{k}$$
 (6)

$$=\sum_{i=0}^{k} \binom{k-i}{i} \tag{7}$$

$$=\sum_{i=0}^{(k+1)-1} \binom{(k+1)-i-1}{i}.$$
 (8)

Thus S_{k+1} .

It follows by mathematical induction that S_n for all $n \in \mathbb{N}$.