1.9.15

EE24BTECH11012 - Bhavanisankar G S

QUESTION

If **a**, **b**, **c** are position vectors of the points $\mathbf{A} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$, $\mathbf{B} \begin{pmatrix} 3 \\ -4 \\ -5 \end{pmatrix}$, and $\mathbf{C} \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$ respectively,

then $|\mathbf{a} + \mathbf{b} + \mathbf{c}|$ is equal to

SOLUTION

Variable name	Description	Fo
A	$\begin{pmatrix} 2\\3\\-4 \end{pmatrix}$	
В	$\begin{pmatrix} 3 \\ -4 \\ -5 \end{pmatrix}$	
С	$\begin{pmatrix} 3\\2\\-3 \end{pmatrix}$	
D	Distance of the point from the origin.	$\mathbf{D} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \sqrt{a^2 + b^2 + c^2} = ? (D ist$

TABLE 0: Variables Used

Let

$$\mathbf{A} + \mathbf{B} + \mathbf{C} = \begin{pmatrix} 8\\1\\-12 \end{pmatrix} \tag{0.1}$$

$$\begin{vmatrix} a \\ b \\ c \end{vmatrix} = \sqrt{a^2 + b^2 + c^2}$$
 (0.2)

$$\implies |\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{209} \tag{0.3}$$

(0.4)

Hence, the answer to the given question is $\sqrt{209}$.

Fig. 0.1: A plot of the points given with the origin