

Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Engenharia Elétrica

PLANO DE ENSINO DE DISCIPLINA	
Professor: Thommas Kevin Sales Flores	
Curso: Engenharia Elétrica	Disciplina: Sistemas Digitais
Data: 20/02/2024	Contato: thommaskevin@gmail.com

EMENTA

Considerações iniciais sobre multiprocessadores: taxonomia; organização de processadores; organização de memória; redes de interconexão; memória compartilhada e coerência de memória cache.

OBJETIVO GERAL

Compreender os multiprocessadores quanto a sua a taxonomia, a organização de processadores, a organização de memória, as redes de interconexão, a memória compartilhada e a coerência de memória cache.

OBJETIVOS ESPECÍFICOS

- Definir o que são multiprocessadores;
- Entender quais são as taxonomias;
- Entender como os processadores e as memórias estão organizados;
- Identificar o que é um problema de coerência de memória cache e suas soluções.

CONTEÚDO PROGRAMÁTICO

Motivação

Introdução aos multiprocessadores

Taxonomia dos multiprocessadores

Arquitetura UMA – Uniform Memory Access

Definição

UMA - Barramento

UMA - Redes Chaveadas

UMA – Redes de Comutação Multiestágio

Arquitetura NUMA – Uniform Memory Access

Definição

NC-NUMA

CC-NUMA

Arquitetura COMA – Cache Only Memory Access

Definição

Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Engenharia Elétrica

Coerência de Memória Cache

Definição

Protocolo de coerência de Cache de escrita direta

Protocolo MESI

METODOLOGIA DE ENSINO

Esta aula se desenvolverá partir da exposição dos conhecimentos acerca das noções básicas de multiprocessadores. Serão expostos exemplos para fixação do conhecimento e interação com os alunos.

RECURSOS DIDÁTICOS

Projetor, quadro Branco e Pincel.

AVALIAÇÃO

Os alunos serão avaliados mediante:

- Exercícios práticos;
- Avaliações complementares durante a aula, por meio da análise de sua desenvoltura/desempenho.

BIBLIOGRAFIA BÁSICA

- TANENBAUM, Andrew S.; ZUCCHI, Wagner Luiz. Organização estruturada de computadores. Pearson Prentice Hall, 2009.
- BIENIA, Christian. Benchmarking modern multiprocessors. Princeton University, 2011.
- SRIRAM, Sundararajan; BHATTACHARYYA, Shuvra S. Embedded multiprocessors: Scheduling and synchronization. CRC press, 2018.

BIBLIOGRAFIA COMPLEMENTAR

- CHAUDHURI, P. Pal. Computer organization and design. PHI Learning Pvt. Ltd., 2008.
- DE BRITO GONÇALVES, João Paulo. Arquitetura e Organização de Computadores.
- KIME, M. Morris Mano Charles. Logic and computer design fundamentals. 2014.
- HERLIHY, Maurice et al. The art of multiprocessor programming. Newnes, 2020.