AI-Powered Resume Screening

April 8, 2025

0.1 AI-Powered Resume Screening

1 Let's first load the required Python libraries for data analysis and visualization.

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import re
     import nltk
     import pickle
     from nltk.corpus import stopwords
     from nltk.tokenize import word_tokenize
     from wordcloud import WordCloud
     from sklearn.feature_extraction.text import TfidfVectorizer
     from sklearn.preprocessing import LabelEncoder
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.naive_bayes import MultinomialNB
     from sklearn.linear_model import LogisticRegression
     from sklearn.svm import SVC
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.metrics import accuracy_score, classification_report,_
      ⇔confusion_matrix
     import tensorflow as tf
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Dense, Dropout
     from tensorflow.keras.utils import to_categorical
```

2 Load the Resume Dataset and explore its structure

```
[3]: df = pd.read_csv('UpdatedResumeDataSet.csv')
```

3 Let's take a look at the data to understand its structure

[5]: df.head()

[5]:		Category	Resume
	0	Data Science	Skills * Programming Languages: Python (pandas
	1	Data Science	Education Details \r\nMay 2013 to May 2017 B.E
	2	Data Science	Areas of Interest Deep Learning, Control Syste
	3	Data Science	Skills ⢠R ⢠Python ⢠SAP HANA ⢠Table
	4	Data Science	Education Details \r\n MCA YMCAUST. Faridab

4 Project Title: AI-Powered Resume Screening

4.1 Problem Statement

Recruiters receive thousands of resumes, making it difficult to manually screen and match the right candidates to job roles. Our goal is to automate this process by building a resume screening system using NLP and ML techniques to classify resumes into suitable job categories.

4.2 Objective

To create an AI-driven system that can: - Automatically classify resumes into predefined categories. - Extract and visualize key insights from resumes. - Be deployed for real-time resume screening and matching.

4.3 Tools & Technologies Used

- Programming Language: Python
- Data Handling & EDA: Pandas, NumPy, Matplotlib, Seaborn
- NLP: NLTK, Regular Expressions, WordCloud
- ML Model: Naive Bayes, TF-IDF Vectorizer
- Deep Learning: TensorFlow, Keras, PyTorch (optional and advanced)
- Model Evaluation: Accuracy Score, Confusion Matrix, Classification Report
- **Deployment:** Flask (for real-world backend API)

4.4 Dataset Overview

• Dataset Name: UpdatedResumeDataSet.csv

Total Rows: 962Total Columns: 2

- Category: The job role/category (target variable)

- Resume: The resume content (input feature)

4.5 Final Deliverables

Module	Description
Resume Classifier	ML/DL Model that classifies resumes into job categories
Flask App on localhost	Web API to upload & predict resume category

Module	Description
Resume Insights	Basic analytics (category-wise distribution, word clouds, etc.)
Deployment Ready	Flask app + model pickle + .py files + README

5 In this step, we clean and prepare the resume texts for model training.

We'll perform:

Removing HTML tags, Removing special characters, Converting to lowercase, Removing stopwords, Tokenization and Lemmatization

```
[9]: from nltk.stem import WordNetLemmatizer
    nltk.download('wordnet')
     # Function to clean the resume text
     def clean resume(text):
         # Remove HTML tags
         text = re.sub(r'<[^>]*>', '', text)
         # Remove non-alphabetical characters and convert to lowercase
         text = re.sub(r'[^a-zA-Z]', '', text)
         text = text.lower()
         # Tokenize
         tokens = word_tokenize(text)
         # Remove stopwords
         tokens = [word for word in tokens if word not in stopwords.words('english')_
      \rightarrowand len(word) > 2]
         #Lemmatization
         lemmatizer = WordNetLemmatizer()
         tokens = [lemmatizer.lemmatize(word) for word in tokens]
         # Join tokens back to text
         return ' '.join(tokens)
     # Apply the cleaning function to the Resume column
     df['Cleaned_Resume'] = df['Resume'].apply(clean_resume)
     # Display cleaned data
     df[['Resume', 'Cleaned_Resume']].head(2)
    [nltk_data] Downloading package wordnet to
    [nltk_data]
                    C:\Users\91951\AppData\Roaming\nltk_data...
    [nltk_data]
                  Package wordnet is already up-to-date!
```

1 Education Details \r\nMay 2013 to May 2017 B.E...

```
Cleaned_Resume
```

```
0 skill programming language python panda numpy ...
1 education detail may may uit rgpv data scienti...
```

6 Now let's explore our dataset by analyzing and visualizing:

Number of resumes per job category

Distribution of resume lengths

Most common words per category using WordCloud

```
[11]: # 1. Number of resumes per category
      plt.figure(figsize=(12, 6))
      sns.countplot(data=df, x='Category', order=df['Category'].value_counts().index)
      plt.title('Number of Resumes per Job Category')
      plt.xticks(rotation=90)
      plt.tight_layout()
      plt.show()
      # 2. Distribution of resume lengths
      df['Resume_Length'] = df['Cleaned_Resume'].apply(lambda x: len(x.split()))
      plt.figure(figsize=(10, 5))
      sns.histplot(df['Resume_Length'], bins=30, kde=True)
      plt.title('Distribution of Resume Lengths (in words)')
      plt.xlabel('Number of Words')
      plt.ylabel('Frequency')
      plt.show()
      # 3. WordCloud for top 3 categories
      top_categories = df['Category'].value_counts().head(3).index
      for category in top_categories:
          text = ' '.join(df[df['Category'] == category]['Cleaned_Resume'])
          wc = WordCloud(width=800, height=400, background color='white').
       ⇔generate(text)
          plt.figure(figsize=(10, 5))
          plt.imshow(wc, interpolation='bilinear')
          plt.axis('off')
          plt.title(f'Most Common Words in {category} Resumes')
          plt.show()
```


Most Common Words in Java Developer Resumes

Most Common Words in Testing Resumes

6.0.1 Feature Extraction using TF-IDF

```
[13]: # Transform the cleaned resume texts into numerical features
vectorizer = TfidfVectorizer(max_features=3000)
X = vectorizer.fit_transform(df['Cleaned_Resume'])
y = df['Category']
```

7 Model Building and Evaluation (Traditional ML)

```
y_pred_rf = rf_model.predict(X_test)
print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf))
print(classification_report(y_test, y_pred_rf))
# Save Random Forest Model
with open('random_forest_model.pkl', 'wb') as f:
   pickle.dump(rf_model, f)
# Logistic Regression with GridSearchCV
lr_params = {'C': [0.1, 1, 10], 'solver': ['lbfgs']}
lr_grid = GridSearchCV(LogisticRegression(max_iter=1000), lr_params, cv=3,_
\rightarrown_jobs=-1, verbose=1)
lr_grid.fit(X_train, y_train)
print("Best Logistic Regression Parameters:", lr_grid.best_params_)
lr_model = lr_grid.best_estimator_
y_pred_lr = lr_model.predict(X_test)
print("Logistic Regression Accuracy:", accuracy_score(y_test, y_pred_lr))
print(classification_report(y_test, y_pred_lr))
with open('logistic_regression_model.pkl', 'wb') as f:
   pickle.dump(lr_model, f)
# SVM with GridSearchCV
svm_params = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']}
svm_grid = GridSearchCV(SVC(), svm_params, cv=3, n_jobs=-1, verbose=1)
svm_grid.fit(X_train, y_train)
print("Best SVM Parameters:", svm_grid.best_params_)
svm_model = svm_grid.best_estimator_
y_pred_svm = svm_model.predict(X_test)
print("SVM Accuracy:", accuracy_score(y_test, y_pred_svm))
print(classification_report(y_test, y_pred_svm))
with open('svm_model.pkl', 'wb') as f:
   pickle.dump(svm_model, f)
# Naive Bayes (no tuning needed for basic model)
nb_model = MultinomialNB()
nb_model.fit(X_train, y_train)
y_pred_nb = nb_model.predict(X_test)
print("Naive Bayes Accuracy:", accuracy_score(y_test, y_pred_nb))
print(classification_report(y_test, y_pred_nb))
with open('naive_bayes_model.pkl', 'wb') as f:
   pickle.dump(nb_model, f)
```

Fitting 3 folds for each of 12 candidates, totalling 36 fits

Best Random Forest Parameters: {'max_depth': None, 'min_samples_split': 5,

'n_estimators': 100}

Random Forest Accuracy: 1.0

J				
	precision	recall	f1-score	support
Advocate	1.00	1.00	1.00	3
Arts	1.00	1.00	1.00	6
Automation Testing	1.00	1.00	1.00	5
Blockchain	1.00	1.00	1.00	7
Business Analyst	1.00	1.00	1.00	4
Civil Engineer	1.00	1.00	1.00	9
Data Science	1.00	1.00	1.00	5
Database	1.00	1.00	1.00	8
DevOps Engineer	1.00	1.00	1.00	14
DotNet Developer	1.00	1.00	1.00	5
ETL Developer	1.00	1.00	1.00	7
Electrical Engineering	1.00	1.00	1.00	6
HR	1.00	1.00	1.00	12
Hadoop	1.00	1.00	1.00	4
Health and fitness	1.00	1.00	1.00	7
Java Developer	1.00	1.00	1.00	15
Mechanical Engineer	1.00	1.00	1.00	8
Network Security Engineer	1.00	1.00	1.00	3
Operations Manager	1.00	1.00	1.00	12
PMO	1.00	1.00	1.00	7
Python Developer	1.00	1.00	1.00	10
SAP Developer	1.00	1.00	1.00	7
Sales	1.00	1.00	1.00	8
Testing	1.00	1.00	1.00	16
Web Designing	1.00	1.00	1.00	5
accuracy			1.00	193
macro avg	1.00	1.00	1.00	193
weighted avg	1.00	1.00	1.00	193

Fitting 3 folds for each of 3 candidates, totalling 9 fits
Best Logistic Regression Parameters: {'C': 10, 'solver': 'lbfgs'}
Logistic Regression Accuracy: 0.9948186528497409

	precision	recall	f1-score	support
	_			
Advocate	1.00	1.00	1.00	3
Arts	1.00	1.00	1.00	6
Automation Testing	1.00	1.00	1.00	5
Blockchain	1.00	1.00	1.00	7
Business Analyst	1.00	1.00	1.00	4
Civil Engineer	1.00	1.00	1.00	9
Data Science	1.00	1.00	1.00	5
Database	1.00	1.00	1.00	8

DevOps Engineer	1.00	0.93	0.96	14
DotNet Developer	1.00	1.00	1.00	5
ETL Developer	1.00	1.00	1.00	7
Electrical Engineering	1.00	1.00	1.00	6
HR	1.00	1.00	1.00	12
Hadoop	1.00	1.00	1.00	4
Health and fitness	1.00	1.00	1.00	7
Java Developer	1.00	1.00	1.00	15
Mechanical Engineer	1.00	1.00	1.00	8
Network Security Engineer	1.00	1.00	1.00	3
Operations Manager	1.00	1.00	1.00	12
PMO	0.88	1.00	0.93	7
Python Developer	1.00	1.00	1.00	10
SAP Developer	1.00	1.00	1.00	7
Sales	1.00	1.00	1.00	8
Testing	1.00	1.00	1.00	16
Web Designing	1.00	1.00	1.00	5
accuracy			0.99	193
macro avg	0.99	1.00	1.00	193
weighted avg	1.00	0.99	0.99	193

Fitting 3 folds for each of 6 candidates, totalling 18 fits Best SVM Parameters: {'C': 1, 'kernel': 'linear'}

SVM Accuracy: 0.9948186528497409

	precision	recall	f1-score	support
Advocate	1.00	1.00	1.00	3
Arts	1.00	1.00	1.00	6
Automation Testing	1.00	1.00	1.00	5
Blockchain	1.00	1.00	1.00	7
Business Analyst	0.80	1.00	0.89	4
Civil Engineer	1.00	1.00	1.00	9
Data Science	1.00	1.00	1.00	5
Database	1.00	1.00	1.00	8
DevOps Engineer	1.00	0.93	0.96	14
DotNet Developer	1.00	1.00	1.00	5
ETL Developer	1.00	1.00	1.00	7
Electrical Engineering	1.00	1.00	1.00	6
HR	1.00	1.00	1.00	12
Hadoop	1.00	1.00	1.00	4
Health and fitness	1.00	1.00	1.00	7
Java Developer	1.00	1.00	1.00	15
Mechanical Engineer	1.00	1.00	1.00	8
Network Security Engineer	1.00	1.00	1.00	3
Operations Manager	1.00	1.00	1.00	12
PMO	1.00	1.00	1.00	7
Python Developer	1.00	1.00	1.00	10

SAP Developer	1.00	1.00	1.00	7
Sales	1.00	1.00	1.00	8
Testing	1.00	1.00	1.00	16
Web Designing	1.00	1.00	1.00	5
accuracy			0.99	193
macro avg	0.99	1.00	0.99	193
weighted avg	1.00	0.99	1.00	193
Naive Bayes Accuracy: 0.98	396373056994	818		
naive Bayes necaracy.	precision	recall	f1-score	support
	proceeding	TOUGHT	11 00010	buppor
Advocate	1.00	1.00	1.00	3
Arts	1.00	1.00	1.00	6
Automation Testing	1.00	1.00	1.00	5
Blockchain	1.00	1.00	1.00	7
Business Analyst	1.00	1.00	1.00	4
Civil Engineer	1.00	1.00	1.00	9
Data Science	1.00	1.00	1.00	5
Database	1.00	1.00	1.00	8
DevOps Engineer	1.00	0.93	0.96	14
DotNet Developer	1.00	1.00	1.00	5
ETL Developer	1.00	1.00	1.00	7
Electrical Engineering	1.00	1.00	1.00	6
HR	1.00	0.92	0.96	12
Hadoop	1.00	1.00	1.00	4
Health and fitness	1.00	1.00	1.00	7
Java Developer	0.94	1.00	0.97	15
Mechanical Engineer	1.00	1.00	1.00	8
Network Security Engineer	1.00	1.00	1.00	3
Operations Manager	1.00	1.00	1.00	12
PMO	0.88	1.00	0.93	7
Python Developer	1.00	1.00	1.00	10
SAP Developer	1.00	1.00	1.00	7
Sales	1.00	1.00	1.00	8
Testing	1.00	1.00	1.00	16
Web Designing	1.00	1.00	1.00	5
accuracy			0.99	193
macro avg	0.99	0.99	0.99	193
weighted avg	0.99	0.99	0.99	193

8 Deep Learning Model using TensorFlow/Keras

```
[17]: import warnings
      warnings.filterwarnings('ignore')
      # Convert text data to dense format and labels to one-hot
      X_dense = X.toarray()
      label encoder = LabelEncoder()
      y_encoded = label_encoder.fit_transform(y)
      y_categorical = to_categorical(y_encoded)
      # Split data
      X_train_dl, X_test_dl, y_train_dl, y_test_dl = train_test_split(X_dense,_
       →y_categorical, test_size=0.2, random_state=42)
      # Build the deep learning model
      model = Sequential()
      model.add(Dense(512, activation='relu', input_shape=(X_train_dl.shape[1],)))
      model.add(Dropout(0.3))
     model.add(Dense(256, activation='relu'))
      model.add(Dropout(0.3))
      model.add(Dense(y_categorical.shape[1], activation='softmax'))
      # Compile model
      model.compile(loss='categorical_crossentropy', optimizer='adam',__
       →metrics=['accuracy'])
      # Train the model
      history = model.fit(X_train_dl, y_train_dl, epochs=10, batch_size=32,__
       ⇔validation_data=(X_test_dl, y_test_dl))
      # Evaluate the model
      loss, accuracy = model.evaluate(X_test_dl, y_test_dl)
      print(f"Deep Learning Model Accuracy: {accuracy:.4f}")
      # Save the model
      model.save("deep_learning_resume_classifier.h5")
      # Save the label encoder for decoding predictions later
      with open("label_encoder.pkl", "wb") as f:
          pickle.dump(label_encoder, f)
      #Visualization
      plt.plot(history.history['accuracy'], label='Train Accuracy')
      plt.plot(history.history['val_accuracy'], label='Val Accuracy')
      plt.title('Training vs Validation Accuracy')
      plt.xlabel('Epochs')
     plt.ylabel('Accuracy')
```

```
plt.show()
Epoch 1/10
25/25
                 2s 29ms/step -
accuracy: 0.2634 - loss: 3.1152 - val_accuracy: 0.6269 - val_loss: 2.4483
Epoch 2/10
25/25
                 1s 22ms/step -
accuracy: 0.6928 - loss: 2.0260 - val_accuracy: 0.9430 - val_loss: 0.8868
Epoch 3/10
25/25
                 1s 22ms/step -
accuracy: 0.9520 - loss: 0.5839 - val_accuracy: 0.9948 - val_loss: 0.1754
Epoch 4/10
25/25
                 1s 23ms/step -
accuracy: 0.9979 - loss: 0.1125 - val_accuracy: 0.9948 - val_loss: 0.0554
Epoch 5/10
25/25
                 1s 22ms/step -
accuracy: 1.0000 - loss: 0.0363 - val_accuracy: 0.9948 - val_loss: 0.0302
Epoch 6/10
25/25
                 1s 24ms/step -
accuracy: 1.0000 - loss: 0.0190 - val_accuracy: 0.9948 - val_loss: 0.0258
Epoch 7/10
25/25
                 1s 24ms/step -
accuracy: 1.0000 - loss: 0.0137 - val_accuracy: 0.9948 - val_loss: 0.0175
Epoch 8/10
25/25
                 1s 22ms/step -
accuracy: 1.0000 - loss: 0.0087 - val_accuracy: 0.9948 - val_loss: 0.0189
Epoch 9/10
25/25
                 1s 21ms/step -
accuracy: 1.0000 - loss: 0.0070 - val_accuracy: 0.9948 - val_loss: 0.0185
Epoch 10/10
25/25
                 1s 22ms/step -
accuracy: 1.0000 - loss: 0.0058 - val_accuracy: 0.9948 - val_loss: 0.0149
               0s 5ms/step -
accuracy: 0.9973 - loss: 0.0091
WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or
`keras.saving.save_model(model)`. This file format is considered legacy. We
recommend using instead the native Keras format, e.g.
`model.save('my_model.keras')` or `keras.saving.save_model(model,
'my_model.keras')`.
Deep Learning Model Accuracy: 0.9948
```

plt.legend()

Note on Model Saving Format

While saving the deep learning model, Keras raises a warning that HDF5 format (.h5) is considered legacy. It recommends using the native Keras format instead (.keras extension).

However, .h5 is still widely supported and perfectly fine for most real-world applications and deployments, especially with Flask-based setups. We're continuing with .h5 for compatibility and simplicity.

If preferred, you can replace: model.save("deep_learning_resume_classifier.h5") with: model.save("deep_learning_resume_classifier.keras")

9 Deep Learning with LSTM (Sequential Modeling)

```
[20]: from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout # Prepare text for LSTM
```

```
tokenizer = Tokenizer(num_words=10000, oov_token="<00V>")
tokenizer.fit_on_texts(df['Cleaned_Resume'])
X_seq = tokenizer.texts_to_sequences(df['Cleaned_Resume'])
X_pad = pad_sequences(X_seq, maxlen=300)
# Encode labels again
y_lstm = to_categorical(label_encoder.transform(df['Category']))
X_train_lstm, X_test_lstm, y_train_lstm, y_test_lstm = train_test_split(X_pad,__
 →y_lstm, test_size=0.2, random_state=42)
# LSTM Model
model_lstm = Sequential()
model_lstm.add(Embedding(input_dim=10000, output_dim=128, input_length=300))
model_lstm.add(LSTM(128, return_sequences=False))
model lstm.add(Dropout(0.5))
model_lstm.add(Dense(64, activation='relu'))
model_lstm.add(Dense(y_lstm.shape[1], activation='softmax'))
model_lstm.compile(optimizer='adam', loss='categorical_crossentropy', __
 →metrics=['accuracy'])
history_lstm = model_lstm.fit(X_train_lstm, y_train_lstm, epochs=5,_
 ⇒batch_size=32, validation_data=(X_test_lstm, y_test_lstm))
loss_lstm, acc_lstm = model_lstm.evaluate(X_test_lstm, y_test_lstm)
print(f"LSTM Model Accuracy: {acc_lstm:.4f}")
model_lstm.save("lstm_resume_classifier.h5")
Epoch 1/5
25/25
                 7s 186ms/step -
accuracy: 0.1228 - loss: 3.1966 - val_accuracy: 0.1451 - val_loss: 3.0383
Epoch 2/5
25/25
                 5s 183ms/step -
accuracy: 0.1995 - loss: 2.9340 - val_accuracy: 0.1606 - val_loss: 2.4912
Epoch 3/5
25/25
                 4s 175ms/step -
accuracy: 0.3174 - loss: 2.1789 - val_accuracy: 0.5285 - val_loss: 1.7723
Epoch 4/5
25/25
                 4s 169ms/step -
accuracy: 0.5958 - loss: 1.5631 - val accuracy: 0.6736 - val loss: 1.2248
Epoch 5/5
25/25
                 4s 170ms/step -
accuracy: 0.7250 - loss: 1.0891 - val_accuracy: 0.7409 - val_loss: 0.9937
7/7
               Os 51ms/step -
```

```
accuracy: 0.7257 - loss: 1.0197
     WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or
     `keras.saving.save_model(model)`. This file format is considered legacy. We
     recommend using instead the native Keras format, e.g.
     `model.save('my_model.keras')` or `keras.saving.save_model(model,
     'my_model.keras')`.
     LSTM Model Accuracy: 0.7409
[55]: # Evaluate LSTM model
      loss lstm, acc lstm = model lstm.evaluate(X test lstm, y test lstm)
      print(f"LSTM Model Accuracy: {acc lstm:.4f}")
      # Save the LSTM model
      model_lstm.save("lstm_resume_classifier.h5")
      # Save tokenizer
      with open("tokenizer.pkl", "wb") as f:
          pickle.dump(tokenizer, f)
     7/7
                     1s 62ms/step -
     accuracy: 0.7257 - loss: 1.0197
     WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or
     `keras.saving.save_model(model)`. This file format is considered legacy. We
     recommend using instead the native Keras format, e.g.
     `model.save('my_model.keras')` or `keras.saving.save_model(model,
     'my_model.keras')`.
     LSTM Model Accuracy: 0.7409
          Deployment using Flask
[32]: import os
      # Create main project directory
      os.makedirs("ResumeScreeningApp/templates", exist_ok=True)
      os.makedirs("ResumeScreeningApp/static", exist ok=True)
      os.makedirs("ResumeScreeningApp/models", exist_ok=True)
[47]: # Save your model
```

with open("ResumeScreeningApp/models/random_forest_model.pkl", "wb") as f:

with open("ResumeScreeningApp/models/tfidf_vectorizer.pkl", "wb") as f:

pickle.dump(rf_model, f)

pickle.dump(vectorizer, f)

Save TF-IDF vectorizer

```
# Save label encoder
with open("ResumeScreeningApp/models/label_encoder.pkl", "wb") as f:
    pickle.dump(label_encoder, f)
```

```
[53]: # Create index.html inside templates folder
      with open("ResumeScreeningApp/templates/index.html", "w") as f:
          f.write("""<!DOCTYPE html>
      <html lang="en">
      <head>
          <meta charset="UTF-8">
          <title>Resume Screening App</title>
      </head>
      <body>
          <h2>Resume Screening</h2>
          <form action="/predict" method="post">
              <textarea name="resume" rows="15" cols="100" placeholder="Paste resume∟
       →text here..."></textarea><br><br>
              <input type="submit" value="Predict Job Category">
          </form>
          {% if prediction_text %}
              <h3>{{ prediction_text }}</h3>
          {% endif %}
      </body>
      </html>""")
```

To Test the App:

Run this in terminal:

cd ResumeScreeningApp

flask run

Open browser at: http://127.0.0.1:5000

[]: