# **MINI PROJECT-1**

# 1.Problem Statement:Which model is suitable best for Insurance Dataset

#### In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
```

# **Data Collection**

# **Read the Data**

## In [2]:

```
df=pd.read_csv(r"C:\Users\Arshad Shaik\Downloads\insurance (1).csv")
df
```

#### Out[2]:

|      | age | sex           | bmi    | children | smoker | region    | charges     |
|------|-----|---------------|--------|----------|--------|-----------|-------------|
| 0    | 19  | female        | 27.900 | 0        | yes    | southwest | 16884.92400 |
| 1    | 18  | male          | 33.770 | 1        | no     | southeast | 1725.55230  |
| 2    | 28  | male          | 33.000 | 3        | no     | southeast | 4449.46200  |
| 3    | 33  | male          | 22.705 | 0        | no     | northwest | 21984.47061 |
| 4    | 32  | male          | 28.880 | 0        | no     | northwest | 3866.85520  |
|      |     |               |        |          |        |           |             |
| 1333 | 50  | ma <b>l</b> e | 30.970 | 3        | no     | northwest | 10600.54830 |
| 1334 | 18  | female        | 31.920 | 0        | no     | northeast | 2205.98080  |
| 1335 | 18  | female        | 36.850 | 0        | no     | southeast | 1629.83350  |
| 1336 | 21  | female        | 25.800 | 0        | no     | southwest | 2007.94500  |
| 1337 | 61  | female        | 29.070 | 0        | yes    | northwest | 29141.36030 |
|      |     |               |        |          |        |           |             |

1338 rows × 7 columns

# 2.Data Cleaning and Preprocessing

```
In [3]:
```

```
df.head()
```

#### Out[3]:

|   | age | sex    | bmi    | children | smoker | region    | charges     |
|---|-----|--------|--------|----------|--------|-----------|-------------|
| 0 | 19  | female | 27.900 | 0        | yes    | southwest | 16884.92400 |
| 1 | 18  | male   | 33.770 | 1        | no     | southeast | 1725.55230  |
| 2 | 28  | male   | 33.000 | 3        | no     | southeast | 4449.46200  |
| 3 | 33  | male   | 22.705 | 0        | no     | northwest | 21984.47061 |
| 4 | 32  | male   | 28.880 | 0        | no     | northwest | 3866.85520  |

#### In [4]:

```
df.columns
```

#### Out[4]:

```
Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], d
type='object')
```

#### In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
 #
     Column
               Non-Null Count Dtype
 0
     age
               1338 non-null
                               int64
 1
               1338 non-null
                               object
     sex
 2
     bmi
               1338 non-null
                               float64
 3
     children 1338 non-null
                               int64
 4
     smoker
               1338 non-null
                               object
 5
               1338 non-null
     region
                               object
     charges
               1338 non-null
                               float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

```
In [6]:
```

```
df.tail()
```

# Out[6]:

|      | age | sex           | bmi   | children | smoker | region    | charges    |
|------|-----|---------------|-------|----------|--------|-----------|------------|
| 1333 | 50  | ma <b>l</b> e | 30.97 | 3        | no     | northwest | 10600.5483 |
| 1334 | 18  | female        | 31.92 | 0        | no     | northeast | 2205.9808  |
| 1335 | 18  | female        | 36.85 | 0        | no     | southeast | 1629.8335  |
| 1336 | 21  | female        | 25.80 | 0        | no     | southwest | 2007.9450  |
| 1337 | 61  | female        | 29.07 | 0        | yes    | northwest | 29141.3603 |

# In [7]:

```
df.shape
```

# Out[7]:

(1338, 7)

# In [8]:

```
df.describe()
```

## Out[8]:

|       | age         | bmi         | children    | charges      |
|-------|-------------|-------------|-------------|--------------|
| count | 1338.000000 | 1338.000000 | 1338.000000 | 1338.000000  |
| mean  | 39.207025   | 30.663397   | 1.094918    | 13270.422265 |
| std   | 14.049960   | 6.098187    | 1.205493    | 12110.011237 |
| min   | 18.000000   | 15.960000   | 0.000000    | 1121.873900  |
| 25%   | 27.000000   | 26.296250   | 0.000000    | 4740.287150  |
| 50%   | 39.000000   | 30.400000   | 1.000000    | 9382.033000  |
| 75%   | 51.000000   | 34.693750   | 2.000000    | 16639.912515 |
| max   | 64.000000   | 53.130000   | 5.000000    | 63770.428010 |

# **To find Duplicate Values**

# In [9]:

```
df.duplicated().sum()
```

# Out[9]:

1

# **To find Unique Values**

```
In [10]:
```

```
df['age'].unique()
df['children'].unique()
df['bmi'].unique()
```

Out[10]:

```
array([27.9 , 33.77 , 33. , 22.705, 28.88 , 25.74 , 33.44 , 27.74 ,
                29.83 , 25.84 , 26.22 , 26.29 , 34.4 , 39.82 , 42.13 , 24.6 ,
                30.78, 23.845, 40.3, 35.3, 36.005, 32.4, 34.1, 31.92,
                28.025, 27.72, 23.085, 32.775, 17.385, 36.3, 35.6, 26.315,
                28.6 , 28.31 , 36.4 , 20.425, 32.965, 20.8 , 36.67 , 39.9
                26.6 , 36.63 , 21.78 , 30.8 , 37.05 , 37.3 , 38.665, 34.77
                24.53 , 35.2 , 35.625, 33.63 , 28. , 34.43 , 28.69 , 36.955,
                31.825, 31.68, 22.88, 37.335, 27.36, 33.66, 24.7, 25.935,
                22.42 , 28.9
                                               , 39.1 , 36.19 , 23.98 , 24.75 , 28.5 , 28.1
                32.01 , 27.4
                                               , 34.01 , 29.59 , 35.53 , 39.805, 26.885, 38.285,
                37.62 , 41.23 , 34.8 , 22.895, 31.16 , 27.2 , 26.98 , 39.49 ,
3.Data Visualize 4 Visualize 4the unique counts
                32.205, 28.595, 49.06, 27.17, 23.37, 37.1, 23.75, 28.975,
In [11] $\frac{3}{2}.04$, $35.9$, $28.785, $28.3$, $37.4$, $17.765, $34.7$, $26.505, $25.04$, $35.9$, $25.555, $28.05$, $25.175, $31.9$, $36.$, $32.49$,
sns.cou\Re \thetap\Re \cot (d \theta) \Re \theta; ]\Re \Re \theta u_e(\Re 0.495, 37.73, 37.43, 24.13, 37.145,
                                                                                                      , 29.8
                                                                                                                         , 29.64 , 28.215,
                39.52 , 24.42 , 27.83 , 36.85 , 39.6
                           , 33.155, 18.905, 41.47 , 30.3 , 15.96 , 33.345, 37.7
Out[11]
                 .
27.835, 29.2 , 26.41 , 30.69 , 41.895, 30.9 , 32.2 , 32.11 ,
\langle Axes: \sqrt[3]{1abel} = \sqrt[3]{26} = \sqrt[3]{1} = \sqrt[3]{6} = \sqrt[3]{1} = \sqrt[3]{6} = \sqrt
                36.08 , 22.3 , 26.4 , 31.8 , 26.73 , 23.1 , 23.21 , 33.7
         500
         400
         300
         200
         100
                                                                                             0
                                                , 21.3 , 33.535, 42.46 , 38.95 , 36.1 , 29.3
                              , 19.
                              , 38.19 , 42.4 , 34.96 , 42.68 , 31.54 , 29.81 , 21.375,
                39.7
, 35.4
                                               , 27.075, 28.405, 21.755, 40.28 , 30.1 , 32.1
                            , 35.5 , 29.15 , 27. , 37.905, 22.77 , 22.8 , 34.58 ,
                27.1 , 19.475, 26.7 , 34.32 , 24.4 , 41.14 , 22.515, 41.8
                26.18 , 42.24 , 26.51 , 35.815, 41.42 , 36.575, 42.94 , 21.01 ,
                24.225, 17.67 , 31.5 , 31.1 , 32.78 , 32.45 , 50.38 , 47.6
                25.4 , 29.9 , 43.7 , 24.86 , 28.8 , 29.5 , 29.04 , 38.94 ,
                            , 20.045, 40.92 , 35.1 , 29.355, 32.585, 32.34 , 39.8
                24.605, 33.99, 28.2, 25.
                                                                                    , 33.2 , 23.2 , 20.1 , 32.5
                37.18 , 46.09 , 39.93 , 35.8 , 31.255, 18.335, 42.9 , 26.79 ,
                39.615, 25.9 , 25.745, 28.16 , 23.56 , 40.5 , 35.42 , 39.995,
```

34.675, 20.52, 23.275, 36.29, 32.7, 19.19, 20.13, 23.32,

```
45.32 , 34.6 , 18.715, 21.565, 23.
                                                           , 37.07 , 52.58 , 42.655,
In [12] 21.66 , 32. , 18.3 , 47.74 , 22.1 , 19.095, 31.24 , 29.925, df.isnu[10] 35 cm (25.85 , 42.75 , 18.6 , 23.87 , 45.9 , 21.5 , 30.305, 44.88 , 41.1 , 40.37 , 28.49 , 33.55 , 40.375, 27.28 , 17.86 ,
In [12]21.66 , 32.
         33.3 , 39.14 , 21.945, 24.97 , 23.94 , 34.485, 21.8 , 23.3 ,
Out[12]36.96 , 21.28 , 29.4 , 27.3 , 37.9 , 37.715, 23.76 , 25.52 ,
         27.61<sub>0</sub>, 27.06 , 39.4 , 34.9 , 22. , 30.36 , 27.8 , 53.13 ,
age
         39.71_0, 32.87, 44.7, 30.97])
sex
bmi
children
                0
smoker
                0
                0
region
charges
dtype: int64
```

#### In [13]:

```
Insuranced=df[['age','bmi','children','charges']]
plt.figure(figsize=(4,4))
sns.heatmap(Insuranced.corr(),annot=True)
```

#### Out[13]:

#### <Axes: >



# To Check The Null values

```
In [14]:
```

```
df.replace(np.nan,'0',inplace=True)
```

```
In [15]:

df.isnull().sum()

Out[15]:

age     0
sex     0
bmi     0
children     0
smoker     0
region     0
charges     0
dtype: int64
```

# Feature Scaling:To Split the data into train and test data

```
In [16]:

x=np.array(df['age']).reshape(-1,1)
y=np.array(df['charges']).reshape(-1,1)
```

#### In [17]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.10825147235999355

# In the Linear Regression is not suitable for this model because of accuracy is very less

# **Logistisc Regression**

```
In [18]:
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

# In [19]:

sns.pairplot(df)

# Out[19]:

<seaborn.axisgrid.PairGrid at 0x1f985525de0>



#### In [20]:

```
Insuranced=df[['age','bmi']]
plt.figure(figsize=(4,4))
sns.heatmap(Insuranced.corr(),annot=True)
```

#### Out[20]:

#### <Axes: >



#### In [25]:

```
x = df.iloc[:,:-1].values
y = df.iloc[:,1].values
```

#### In [26]:

```
#Split the train and test dataset
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2)
```

#### In [27]:

```
ml = LogisticRegression()
```

#### In [29]:

```
x=np.array(df['smoker']).reshape(-1,1)
x=np.array(df['age']).reshape(-1,1)
df.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=1)
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression(max_iter=10000)
```

```
In [30]:
```

```
lr.fit(x_train,y_train)
```

#### Out[30]:

```
LogisticRegression
LogisticRegression(max_iter=10000)
```

## In [31]:

```
score=lr.score(x_test,y_test)
print(score)
```

#### 0.48059701492537316

## In [32]:

```
sns.scatterplot(data=df,x='smoker',y='charges')
```

## Out[32]:

<Axes: xlabel='smoker', ylabel='charges'>



# **Decision Tree**

```
In [33]:
```

```
# Decision Tree
from sklearn.tree import DecisionTreeClassifier
clf=DecisionTreeClassifier()
clf.fit(x_train,y_train)
```

#### Out[33]:

```
v DecisionTreeClassifier
DecisionTreeClassifier()
```

#### In [34]:

```
score=clf.score(x_test,y_test)
print(score)
```

0.36716417910447763

# **Random Forest**

#### In [35]:

```
#random forest
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

#### Out[35]:

```
r RandomForestClassifier
RandomForestClassifier()
```

#### In [36]:

```
params={'max_depth':[2,3,5,10,20],
    'min_samples_leaf':[5,10,20,50,100,200],
    'n_estimators':[10,25,30,50,100,200]}
```

# In [37]:

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=params,cv=2,scoring="accuracy")
```

```
In [38]:
```

```
grid_search.fit(x_train,y_train)
```

#### Out[38]:

```
► GridSearchCV

► estimator: RandomForestClassifier

► RandomForestClassifier
```

### In [39]:

```
grid_search.best_score_
```

#### Out[39]:

0.5134591375018887

#### In [40]:

```
rf_best=grid_search.best_estimator_
rf_best
```

#### Out[40]:

```
RandomForestClassifier

RandomForestClassifier(max_depth=2, min_samples_leaf=200, n_estimators=1
0)
```

#### In [41]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[4],class_names=['1','0'],filled=True);
```

x[0] <= 42.5 gini = 0.499 samples = 633 value = [485, 518] class = 0

```
gini = 0.496
samples = 363
value = [260, 314]
class = 0
```

gini = 0.499 samples = 270 value = [225, 204]class = 1

```
In [42]:
```

```
score=rfc.score(x_test,y_test)
print(score)
```

0.3701492537313433

```
In [43]:
```

```
convert={"sex":{"male":1,"female":0}}
df=df.replace(convert)
df
```

## Out[43]:

|      | age | sex | bmi    | children | smoker | region    | charges     |
|------|-----|-----|--------|----------|--------|-----------|-------------|
| 0    | 19  | 0   | 27.900 | 0        | yes    | southwest | 16884.92400 |
| 1    | 18  | 1   | 33.770 | 1        | no     | southeast | 1725.55230  |
| 2    | 28  | 1   | 33.000 | 3        | no     | southeast | 4449.46200  |
| 3    | 33  | 1   | 22.705 | 0        | no     | northwest | 21984.47061 |
| 4    | 32  | 1   | 28.880 | 0        | no     | northwest | 3866.85520  |
|      |     |     |        |          |        |           |             |
| 1333 | 50  | 1   | 30.970 | 3        | no     | northwest | 10600.54830 |
| 1334 | 18  | 0   | 31.920 | 0        | no     | northeast | 2205.98080  |
| 1335 | 18  | 0   | 36.850 | 0        | no     | southeast | 1629.83350  |
| 1336 | 21  | 0   | 25.800 | 0        | no     | southwest | 2007.94500  |
| 1337 | 61  | 0   | 29.070 | 0        | yes    | northwest | 29141.36030 |

1338 rows × 7 columns

# In [44]:

```
from sklearn.metrics import r2_score
```

## In [45]:

```
import pickle
```

```
In [46]:
```

```
filename="Prediction"
pickle.dump(rfc,open(filename,'wb'))
```

# Conclusion

for the above different types of models we get accuracy based on the accuracy We can predict the which model is better for this dataset .When we comparing the above accuracies Logistic regression is getting more accuracy among all the models.So, the given dataset is best fit for LogisticRegression

| In | []: |  |
|----|-----|--|
|    |     |  |