Forecasting Stock Returns via Supervised Learning



Machine Learning Final Project STAT 479 Samuel Ilic Jonathan Santoso Meenmo Kang

#### **Contents**

(1) Motivation & Intro

(2) Methods & Experiments

Results

4 Conclusion

### **Motivation Is the Most Popular Financial Theory Even True?**

- Efficient Market Hypothesis (EMH)
  - Stock prices reflect all publicly available information and beating the market is **NOT possible.**
- Is the Stock Market is Completely Efficient?
  - If Yes: Any attempt at forecasting returns is pointless!
  - If Not: Money is being left on the table and a good algorithm stands to make billions!

### Motivation Market Isn't Completely Efficient (But it's CLOSE)

Can you beat the Market? **YES** 

- >10,000 Hedge Funds
  - Only a handful have done it
- So How do they do it?
  - o 100's of PhDs (Math, Stats, CS)
  - Make > 2 Terabytes of Daily Data
  - Machine Learning!





#### **Intro**

#### **Forecasting IBM's Stock Price**

- Want to: Forecast IBM's <u>Daily Stock Returns</u>
- Goal: Generate Positive Predictive Performance
  - Positive out-of-sample **R-squared**
- What's Considered Good?
  - > .025% → You can Start Your Own Hedge Fund
  - > 0.001% → Statistically Significant → EMH Not True
- Source: Gu, Kelly and Xiu (2018)
  - They work for one of the funds on the last page

### **Experiments Data Collection**

| 63 | Date     | High       | Low        | Open       | Close      | Volume  | Adj Close |
|----|----------|------------|------------|------------|------------|---------|-----------|
| 0  | 1/2/2002 | 121.500000 | 119.800003 | 120.599999 | 121.500000 | 6862800 | 84.677422 |
| 1  | 1/3/2002 | 124.220001 | 120.250000 | 121.500000 | 123.660004 | 8621700 | 86.182800 |
| 2  | 1/4/2002 | 125.599999 | 123.980003 | 124.050003 | 125.599999 | 8405200 | 87.534859 |
| 3  | 1/7/2002 | 126.190002 | 123.699997 | 125.000000 | 124.050003 | 5939600 | 86.454575 |
| 4  | 1/8/2002 | 125.199997 | 123.730003 | 124.250000 | 124.699997 | 5311800 | 86.907600 |

Source: https://finance.yahoo.com/quote/IBM/history

- Daily Prices from 01/01/2002 --- 10/31/2018
- Calculated Daily Returns

$$R_t = rac{Adj \, Close_t}{Adj \, Close_{t-1}} - 1$$

# **Experiments Exploratory Data Analysis**

- Used ~20 Technical Indicators to create Over 40 Features
- Technical Indicator
  - Financial Jargon for a new feature calculated on existing data



# **Dimensionality Reduction (PCA & LASSO)**LASSO

- Implemented **BOTH** LASSO & PCA
- Why?
  - Want to see if either can generate improved predictive performance over original dataset.
- Result?
  - Both Worse than Original Data?!?!
- Why?
  - O Dimension reduction steps don't incorporate our ultimate objective of forecasting returns.
  - O Hence, they condense data prior to forecasting & pay no consideration to how the predictors are associated with future returns.



# **Experiments Exploratory Data Analysis**





- Adj Close price ranged from \$38.59 to \$175.26
- Daily returns ranged from -10.11% to 10.56%
- Average returns = 0.02%
- Stock returns are difficult to predict

# **Experiments Standardization & Train-Test Split**

| Step 1:       |      |                         |      |      |   |
|---------------|------|-------------------------|------|------|---|
| Train on past | Test | Future remain in future |      |      |   |
| Step 2:       |      |                         |      |      |   |
| Train         |      | Test                    |      |      |   |
| Step 3:       |      |                         |      |      |   |
| Train         |      |                         | Test |      |   |
| Step 4:       |      |                         |      |      |   |
| Train         |      |                         |      | Test |   |
|               |      |                         |      |      | · |
| Timeline      |      |                         |      |      |   |

$$x_{std}^{[i]} = rac{x^{[i]} - \mu_x}{\sigma_x}$$

- **Standardization** → prevent dominance of one feature
- TimeSeriesSplit → prevent data leakage (look-ahead bias)
  - Train/Validation Set = Jan 2002 Dec 2017
  - **Test Set** = Jan 2018 Oct 2018
- # of Splits = 10 (due to limited computing power)

# **Experiments Models and Hyper Parameters Tuning**

- Multivariate Regression (Benchmark)
- Ensemble Models
  - Random Forest
  - Bagging
  - AdaBoost
- Train Decision Tree Models on Each Fold
- ullet Calculate average MSE and  $R^2$  across all folds
- Why Decision Trees?
  - $\circ$  Gu, Kelly, Xiu (2018)  $\rightarrow$  **DTs are the Best!** 
    - (After Deep Learning)



### **Experiments Hyperparameter Tuning on Validation Set**



- $R^2$  Calculated across All 10 Folds of Time Series Split
- $R^2$  is Still Negative  $\rightarrow$  We are Predicting **WORSE** than the a Horizontal Line!
- No Parameter Tuning for Multivariate Regression

#### Results

#### **Model Evaluation on Test Set**

- Best Model: AdaBoost
  - o **Positive** R^2: **0.064**% (0.0064)
  - o MSE: 1.06
- All Other Models
  - Negative R-squared
- Models Performed BETTER overall when trained on R-squared over MSE

$$egin{aligned} R^2 &= 1 - rac{SS_{res}}{SS_{tot}} \ MSE &= rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2 \end{aligned}$$



#### **Results**

#### Forecasted Returns of Best Model (2018)



# Results Cumulative Returns of Best Model (2018)



# **Results Binary Classification**



predicted label

predicted label

|          |                        |                   | Accuracy |
|----------|------------------------|-------------------|----------|
|          |                        | Random Forest     | 55.23%   |
| $\int 1$ | Price up<br>Price down | Bagging           | 54.29%   |
| (0       | Price down             | Boosting          | 53.33%   |
|          |                        | Linear Regression | 52.38%   |

- 0 = tomorrow's stock return < 0
- 1 = tomorrow's stock return >= 0
- Utilized regression prediction for classification
- Bagging with optimal hyperparameter performed best

#### **Results**

#### **Receiver Operating Characteristics (Area Under Curve)**



|                   | AUC   |
|-------------------|-------|
| Bagging           | 0.571 |
| Random Forest     | 0.552 |
| Boosting          | 0.568 |
| Linear Regression | 0.549 |
|                   |       |

- Scaled regression prediction using Min/Max scaler to obtain probabilities
- Bagging performs best under AUC metric

#### Conclusion

- Predicting Stock Returns **Difficult**!
- R-squared of .06% is **Positive!**
- IBMs Stock is **NOT** Completely Efficient