

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Estructuras Discretas Tarea 3

PRESENTA

Castañon Maldonado Carlos Emilio Bazán Rojas Karina Ivonne

PROFESORA

Araceli Liliana Reyes Cabello

AYUDANTES

Rafael Reyes Sánchez Ricardo Rubén Gónzalez García José Eliseo Ortíz Montaño Javier Enríquez Mendoza

Estructuras Discretas

Tarea Semanal 3: Inducción

Mediante inducción matemática, demuestra que cada afirmación se cumple:

1 $2n+1 \le 2^n$ para todo n=3,4,...**Paso Base:** n=3

$$2(3) + 1 \le 2^3$$
$$6 + 1 < 8$$

Hipótesis Inductiva: Suponemos que se cumple para n, es decir:

$$2n + 1 \le 2^n$$

Paso Inductivo: Probaremos que se cumple para el siguiente elemento n+1, es decir:

$$2(n+1) + 1 \le 2^{n+1}$$

Podemos observar que:

$$2(n+1) + 1 \le 2^{n+1}$$

$$2^{n+1} \ge 2(n+1) + 1$$

Notemos que $2^{n+1}=2(2^n)$ además de que $2(n+1)+1=2n+2+1=\frac{2n+3}{2}=2(n+\frac{3}{2})$ Volviendo a nuestra desigualdad tendremos entonces que:

$$2^{n+1} \ge 2(n+1) + 1$$

$$2(2^n) \ge 2(n + \frac{3}{2})$$

$$2(2^n) \ge 2(2n+1)$$
 Por H.I

$$2(2^n) \ge 2(2n+1) = 4n+2 = 2n+2n+1+1 \ge \frac{2n+3}{2}$$

Por lo tanto, queda demostrado por el principio de inducción que:

$$2n+1 \leq 2^n$$
 para todo $n=3,4,...$

2 Demuestra que $n^3 + 2n$ es divisible entre 3 para todo $n \in \mathbb{N}$

Paso Base:
$$n=1$$
 $\frac{1^3+2(1)}{3}=\frac{1+2}{3}=\frac{3}{3}=1$

Hipótesis Inductiva: Suponemos que se cumple para n, es decir:

$$n^{3} + 2n$$

Paso Inductivo: Probaremos que se cumple para el siguiente elemento n+1, es decir: $\frac{(n+1)^3+2(n+1)}{3}$

Podemos observar que:

$$\frac{(n+1)^3+2(n+1)}{3} = \frac{n^3+3n^2+3n+1+2n+2}{3} = \frac{n^3+3n^2+3n+2n+1+2}{3} = \frac{n^3+2n+3n^2+3n+1+2}{3} = \frac{n^3+2n+3n^2+3n+1+2}{3} = \frac{n^3+2n+3n^2+3n+1+2}{3} = \frac{n^3+2n+3n^2+3n+3}{3} = \frac{n^3+2n}{3} + \frac{3n^2+3n+3}{3} = \frac{n^3+2n}{3} + \frac{3(n^2+n+1)}{3} \quad \text{Por H.I}$$

Por lo tanto, queda demostrado por el principio de inducción que:

$$n^3 + 2n$$
 es divisible entre 3 para todo $n \in \mathbb{N}$

3 Los números de Lucas están definidos como:

$$L_0=2, L_1=1 \ y \ L_n=L_{n-1}+L_{n-2}$$
, para toda $n\geq 2$

Pruebe por inducción la siguiente identidad de los número de Lucas:

$$L_1 + L_2 + ... + L_n = L_{n+2} - 3$$
 para todo $n \ge 1$

Paso Base: n=1

$$L_n = L_{n+2} - 3$$

$$L_1 = L_{1+2} - 3$$

 $1 = L_3 - 3$, pero sabemos que $L_3 = L_2 + L_1$, entonces: $L_3 - 3 = L_2 + L_1 - 3$

$$1 = L_2 + L_1 - 3 = L_2 + 1 - 3 = L_2 + (-2)$$
, obtenemos $L_2 = L_1 + L_0 = 1 + 2 = 3$

$$1 = 3 + (-2) = 1$$

$$1 = 1$$

Hipótesis Inductiva: Suponemos que se cumple para n, es decir:

$$L_1 + L_2 + \dots + L_n = L_{n+2} - 3$$

Paso Inductivo: Probaremos que se cumple para el siguiente elemento n+1, es decir:

$$L_1 + L_2 + \dots + L_n + L_{n+1} = L_{(n+1)+2} - 3$$

por HI tenemos $L_1 + L_2 + ... + L_n = L_{n+2} - 3$, entonces

$$(L_{n+2}-3) + L_{n+1} = L_{n+2} + L_{n+1} - 3 = L_{n+3} - 3 = L_{(n+1)+2} - 3$$

$$L_{(n+1)+2} - 3 = L_{(n+1)+2} - 3$$

Por lo tanto, queda demostrado por el principio de inducción que:

$$L_1 + L_2 + ... + L_n = L_{n+2} - 3$$
 para todo $n \ge 1$