1 Theory Of Differential Equations

Definitio 1.1 (Classification of Differential Equations). Differential equations involves in relations of functions and their derivatives. We usually use t as independent variable with physical meaning of time.

If only ordinary derivatives (the function depends only in one variable) are involved, the equation is called an **ordinary differential equation** (ODE). If partial derivatives are involved, the equation is called a **partial differential equation** (PDE).

Order of a differential equation is the order of the highest derivative. A *n*th order ODE can be written as $F(t, x, x'', \dots, x^{(n)}) = 0$. If F is a linear function, we call this a linear ODE.

A linear ODE is **homogeneous** if it can be written as $a_n x^{(n)} + a_{n-1} x^{(n-1)} + \cdots + a_1 x' + a_0 x = 0$ for constants a_i .

Definitio 1.2 (Initial Value Problem).

Theorema 1.1 (Solutions To linear Homogeneous ODE). Solutions to nth degree Linear homogeneous ODE of one function forms a vector space of n dimension.

I.e., with ODE $a_n x^{(n)} + a_{n-1} x^{(n-1)} + \cdots + a_1 x' + a_0 x = 0$, the set of solutions forms a vector space of dimension n.

Theorema 1.2 (Existence And Uniqueness Theore for Initial Value Problem). Assuming we have the system of ODE

$$x'_{1} = f_{1}(t, x_{1}, x_{2}, \dots, x_{n})$$

$$x'_{2} = f_{2}(t, x_{1}, x_{2}, \dots, x_{n})$$

$$\dots$$

$$x'_{n} = f_{n}(t, x_{1}, x_{2}, \dots, x_{n})$$
(1)

with initial condition $x_i(t_0) = x_{i0}$ for $i = 1, 2, \dots, n$.

If f_i and $\partial_{x_j} f_i$ for all applicable i, j are continuous in a region R containing $(t_0, x_{10}, x_{20}, \dots, x_{n0})$, then there exists a unique solution $x_i = x_i(t)$ defined on an interval I containing t_0 .

2 Easy Differential Equations

Theorema 2.1. The equation $\frac{dy}{dt} + p(t)y = g(t)$ is solved by $y(t) = \frac{1}{\mu(t)} (\int \mu(t)g(t)dt + C)$ where $\mu(t) = \exp \int p(t)dt$.

3 Linear ODE

Theorema 3.1 (System of Homogeneous Linear ODE). To find solution to the linear homogeneous system with constant coefficients $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is to find the eigenvalue and eigenvector of \mathbf{A} . If there is eigenvectors forming a basis of \mathbb{R}^n , then the solution is

$$\boldsymbol{x} = \sum_{i=1}^{n} c_i \boldsymbol{\xi}_i e^{\lambda_i t}$$

For n=2. If there is one repeated eigenvalue ρ corresponding the the vector $\boldsymbol{\xi}$. The first solution is $\boldsymbol{x}_1 = \boldsymbol{\xi} e^{\rho t}$, and the second solution is $\boldsymbol{x}_2 = \boldsymbol{\xi} t e^{\rho t} + \boldsymbol{\eta} e^{\rho t}$, where $(\boldsymbol{A} - \rho \boldsymbol{I})\boldsymbol{\eta} = \boldsymbol{\xi}$

Definitio 3.1 (Fundamental Matrix). ψ is fundamental matrix of x' = Ax if each column of it is a solution to the system and det $\psi \neq 0$. (The space of its solutions)

Theorema 3.2 (Non-homogeneous linear ODE problem). Consider Non-homogeneous problem x' = Ax + g

Diagonalisation We can diagonlise $A = T^{-1}DT$. Let x = Ty and solve $y' = Dy + T^{-1}g$, then x = Ty is the solution.

Variation of Parameters Let ψ be the fundamental matrix of x' = Ax. The particular solution is $\psi \int \psi^{-1}gdt$.

4 Laplace Transform

Definitio 4.1 (Laplace Transform).

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t)dt \tag{2}$$

Theorema 4.1 (Tables of Laplace Transform).

1.
$$\mathcal{L}{f^{(n)}(t)} = s^n \mathcal{L}{f(t)} - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$

2.
$$\mathcal{L}\{u_c(t)\}=\frac{e^{-cs}}{s}$$

3.
$$\mathcal{L}\{u_c(t)f(t-c)\}=e^{-cs}\mathcal{L}\{f\}$$
, domain unchanged. $(u_c(t)=t,t< c,1 \text{ otherwise})$

4.
$$\mathcal{L}\lbrace e^{ct}f(t)\rbrace = \mathcal{L}\lbrace f\rbrace(s-c), s-c>a, if \mathcal{L}\lbrace f\rbrace \text{ is defined for } s>a$$

5.
$$\mathcal{L}\{\delta(t-a)\}=e^{-sa}$$

6.
$$\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} \mathcal{L}\{f\}(s)$$

7.
$$\mathcal{L}{f(ct)} = \frac{1}{c}F(\frac{s}{c})$$

8.
$$\mathcal{L}\{1\} = \frac{1}{s}$$

9.
$$\mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a} \text{ for } s > a$$

10.
$$\mathcal{L}\{\sin at\} = \frac{a}{s^2 + a^2} \text{ for } s > 0$$

11.
$$\mathcal{L}\{\cos at\} = \frac{s}{s^2 + a^2} \text{ for } s > 0$$

12.
$$\mathcal{L}\{e^{at}\sin bt\} = \frac{b}{(s-a)^2+b^2} \text{ for } s > a$$

13.
$$\mathcal{L}\{e^{at}\cos bt\} = \frac{s-a}{(s-a)^2+b^2} \text{ for } s > a$$

14.
$$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}} \text{ for } s > 0$$

15.
$$\mathcal{L}\{\sinh at\} = \frac{a}{s^2 - a^2} \text{ for } s > |a|$$

16.
$$\mathcal{L}\{\cosh at\} = \frac{s}{s^2 - a^2} \text{ for } s > |a|$$

17.
$$\mathcal{L}\{t^n e^{at}\} = \frac{n!}{(s-a)^{n+1}} \text{ for } s > a$$

Theorema 4.2 (Convolution Theorem).

$$f * g(t) = \int_0^t f(t - \tau)g(\tau)d\tau$$

- 1. $\mathcal{L}{f * g} = \mathcal{L}{f}\mathcal{L}{g}$
- 2. f * g = g * f
- 3. f * (g * h) = (f * g) * h
- 4. f * (g + h) = f * g + f * h

5 Autonumous System

Considering a system of ODE: $\frac{dx}{dt} = F(x, y), \frac{dy}{dt} = G(x, y)$. F, G are independent of t. This system is **autonomous**.

Definitio 5.1 (Critical Point). (x_0, y_0) is a critical point if $F(x_0, y_0) = G(x_0, y_0) = 0$.

The nature of critical is easy to determine for linear system.

Definitio 5.2 (Almost Linear System). Consider autonomous system $\mathbf{x}' = A\mathbf{x} + \mathbf{g}(\mathbf{x})$. If $\mathbf{0}$ is a critical point, and $\frac{||\mathbf{g}||}{||\mathbf{x}||} \to \mathbf{0}$ as $\mathbf{x} \to \mathbf{0}$, this is an almost linear system. Significantly, if F, G are twice differentiable. The system is almost linear, and is approximated by $\frac{d}{dt}\mathbf{u} = \begin{bmatrix} F_x & F_y \\ G_x & G_y \end{bmatrix} \mathbf{u}$, where $\hat{\mathbf{x}}$ is a critical point, $F_x = F_x(\hat{\mathbf{x}}), \dots, \mathbf{u} = \mathbf{x} - \hat{\mathbf{x}}$. The stability of $\hat{\mathbf{x}}$ for the almost linear system is the same as linear system, except when the linear system has purly imaginary eigenvalues or equal real eigenvalues.

Theorema 5.1 (Lyapunov). For a linear system x' = F(x,y), y' = G(x,y). We can find a Lyapunov function V(x(t), y(t)) such that V is positive definite and $V' = \frac{dV}{dx}\frac{dx}{dt} + \frac{dV}{dy}\frac{dy}{dt}$ is negative definite in a domain containing (0,0), then (0,0) is asymptotic stable critical point. If V' semi negative definite, (0,0) is stable.

If For all interval containing (0,0) there is a point such that V is positive, while V' is positive definite in a domain containing (0,0), $\mathbf{0}$ is unstable.

Theorema 5.2. If F, G has continuous partial derivative is domain D, a close trajectory must contain a critical point that is not a saddle point.

Theorema 5.3. If function F, G has continuous first partial derivative in simply connected domain D. If $F_x + G_y$ has the same sign in D, then there is no close trajectory in D.

Theorema 5.4 (Poincare-Bendixson). Let F, G have continuous first partial derivative. Let D be a closed set containing no critical point. If there exists a trajectory in D for all $t > t_0$, there must be a closed trajectory (periodic solution) in D.

6 Fourier Series

Theorema 6.1 (Fourier Convergence Theorem). Suppose f and f' are piecewise continuous on interval -L < x < L, while f is periodic with period 2L. Then,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}),$$
where $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$, $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$.

7 Sturm Liouville Theory

Theorema 7.1 (Homogeneous Sturm Liouville Problem).

$$[p(x)y']' - q(x)y + \lambda r(x)y = 0$$
(3)

With Boundary Conditions $\alpha_1 y(0) + \alpha_2 y'(0) = 0$, $\beta_1 y(1) = \beta_2 y'(1) = 0$. Which can be written as, with L(y) = -[p(x)y']' + q(x)y:

$$L[y] = \lambda r(x)y$$

For u, v satisfying the boundary conditions, we have: (u, L(v)) = (L(u), v).

 λ is the eigenvalues, ϕ are the eigenfunctions.

A function, f, can be expanded as $f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x)$, where $c_n = \int_0^1 r(x) f(x) \phi_m(x) dx$

Theorema 7.2 (Non-homogeneous Sturm Liouville Problem).

$$[p(x)y']' - q(x)y + \mu r(x)y + f(x) = 0 \iff L[y] = \mu r(x)y + f(x)$$
(4)

Have solution $y = \phi(x) = \sum_{n=1}^{\infty} \frac{c_n}{\lambda_n - \mu}$. Where λ, ϕ are eigenvalues and function to the problem $L[y] = \lambda r(x) y$. $c_n = \int_0^1 r(x) f(x) \phi_n(x) dx$