CLAIMS

What is claimed is:

- 1 1. A system for optimizing non-interactive three-dimensional image data comprising:
- 2 an optimizing encoder for generating three-dimensional rendering information optimized
- 3 for real-time rendering of an image having an image quality within an error criteria of an image
- 4 quality standard for a target computer system, and the optimizing encoder further having a model
- 5 representing the larget computer system for performing rendering of the rendering information,
- 6 the target computer system represented being a type of computer system having a three-
- 7 dimensional renderer.
 - 2. The system of claim 1 wherein the optimizing encoder performs an optimization of the three-dimensional rendering information based upon criteria including a graphics processor capability of the target computer system.
 - 3. The system of claim 2 wherein the optimizing encoder performs an optimization of the three-dimensional rendering information based upon criteria including characteristics of a physical infrastructure for transferring the optimized three-dimensional rendering information to the target computer system.
- 1 4. The system of claim 3 wherein the physical infrastructure is the Internet.
- 1 5. The system of claim 3 wherein the physical infrastructure is a digital versatile disc.
- 1 6. The system of claim 3 wherein the computer system is an interactive game console.
- 1 7. The system of claim 2 wherein the optimizing encoder performs an optimization of the
- 2 three-dimensional rendering information based upon criteria including feedback information
- 3 generated by the model during rendering of the three-dimensional rendering information.

- 1 8. The system of claim 7 wherein the feedback information includes a rendering time
- 2 measurement for a subset of a scene.
- 1 9. The system of claim 7 wherein the feedback information includes a rendering time
- 2 measurement for a scene.
- 1 10. The system of slaim 7 wherein the optimizing encoder has a memory and the feedback
- 2 information includes rendered pixels generated by the model in rendering the optimized three-
- 3 dimensional rendering information.
- 1 11. The system of claim 7 wherein the feedback information includes command error
- 2 reporting.
- The system of claim 7 wherein the optimizing encoder has a processor and a memory and
 - 2 the model is a software emulation of the target computer system executing on the processor for
- rendering three-dimensional rendering information.
- 1 13. The system of claim 7 wherein the model comprises a graphics processor for rendering
- the optimized three dimensional image data.
- 1 14. The system of claim 7 wherein the model is a graphics sub-system embodied in a
- 2 peripheral of the optimizing encoder.
- 1 15. The system of claim 1 therein the optimizing encoder comprises:
- 2 an import unit for converting three-dimensional descriptions to an intermediate
- 3 format suitable for a plurality of target computer systems;
- 4 a multi-platform unit for generating a first optimized three-dimensional data set
- by performing computations applicable to a plurality of target computer systems;

۱
ū
ļ.
≅
<u> </u>
į.
P. E.
<u></u>

6	a\target-specific optimization unit for generating a second optimized three-
7	dimensional data set for a selected one of the target computer systems by performing at
8	least one optimization applicable to the selected target system; and
9	a bandwidth tuning unit for encoding the second optimized three-dimensional dat
10	set in a three-dimensional protocol accounting for the characteristics of a physical infrastructure
11	from which the selected target computer system will access the second data set.
1	16. A method for optimizing non-interactive three-dimensional image data for rendering by
2	target computer system comprising:
3	generating three-dimensional rendering information optimized for real-time rendering of
4	an image having an image quality within an error criteria of an image quality standard for the
5	target computer system, the target computer system represented being a type of computer system
6	having a three-dimensional renderer; and
7	encoding the optimized three-dimensional image data into a three-dimensional protocol.
1	17. The method of claim 16 wherein the three-dimensional protocol is a streaming protocol.
1	18. The method of claim 16 wherein generating three-dimensional rendering information
2	optimized for real-time rendering of an image having an image quality within an error criteria of
3	an image quality standard for the target computer system comprises:
4	performing an optimization based upon the graphics processor capability of the target
5	computer system.
1	19. The method of claim 16 wherein generating three-dimensional rendering information
2	optimized for real-time rendering of an image having an image quality within an error criteria of
3	an image quality standard for the target computer system comprises:

4	receiving feedback information from a rendering of the image by a model of the target
5	system; and
6	selecting an optimization to be performed based on the feedback information.
1	20. The method of claim 16 wherein the encoding of the optimized three-dimensional image
2	data into a three-dimensional protocol comprises:
3	encoding the tendering information to satisfy the bandwidth requirement of a physical
4	infrastructure used for transferring the optimized information to the target computer system.
1	21. The method of claim 16 wherein generating three-dimensional rendering information
2	optimized for real-time rendering of an image having an image quality within an error criteria of
≟ 3	an image quality standard for the target computer system comprises the following:
3 4 5 5 6	converting three-dimensional descriptions to an intermediate format suitable for a
5	plurality of target computer systems;
≟ 6	generating a first optimized three-dimensional data set by performing
±7 ±	computations applicable to a plurality of target computer systems;
4 4 4 9	generating a second optimized three-dimensional data set for a selected one of the
- - - - - -	target computer systems by performing at least one optimization applicable to the
10	selected target system; and
11	encoding the second optimized three dimensional data set in a three-dimensional
12	protocol accounting for the characteristics of a physical infrastructure from which the
13	selected target computer system will access the second data set.
1	22. The method of claim 21 wherein the at least one optimization is an optimization based or
2	microcode generation.

looutgol lieyol

- 1 23. The method of claim 21 wherein the at least one optimization is an optimization
- 2 involving injecting corrective data
- 1 24. The method of claim 21 wherein the at least one optimization is an optimization based on
- 2 scheduling of object rendering and reordering of objects to be rendered.
- 1 25. The method of claim 21 wherein the at least one optimization is an image based
- 2 rendering technique.
- 1 26. The method of claim 21 wherein the at least one optimization is an optimization
- 2 involving deletion of unused data or delaying of rendering of data.
- 1 27. The method of claim 21 wherein the at least one optimization is an optimization
- ² involving pre-computing runtime parameters.
- 1 28. The method of claim 21 wherein the at least one optimization is an optimization
- 2 involving optimizing assets.
- 1 29. The method of claim 2 wherein the at least one optimization is an optimization
- involving texture creation.
- 1 30. The method of claim 21 wherein the at least one optimization is an optimization
- 2 involving shading computations.
- 1 31. The method of claim 21 wherein the at least one optimization is an optimization
- 2 involving manipulating geometry of objects within the image.
- 1 32. The method of claim 21 wherein the at least one optimization is an optimization
- 2 involving visibility determination of objects within the image.
- 1 33. The method of claim 21 wherein the at least one optimization is an optimization
- 2 involving compression.

