Grado en Informática y Mátematicas Métodos Numéricos I. Curso 2011/12.

Convocatoria de Septiembre (10-09-2012):

ALUMNO: D.N.I.:

1. Resuelve el siguiente problema de interpolación:

Hallar el spline cuadrático, $s(x) \in S(2, 1; \{-1, 1, 3\})$, que cumple:

$$s(-1) = 0$$
, $s(0) = -1$, $s(1) = 0$, $s(3) = 4$

(Nota: puedes usar el procedimiento Global o trozo a trozo)

2. Calcula el interpolante polinomial, mediante el método de Diferencias Divididas, para los datos siguientes:

x_i	-1	0	1
y_i	7	5	3
d_i	0	-3	0

- 3. Se considera el sistema de ecuaciones lineales, $\mathbf{A}\mathbf{x} = \mathbf{b}$, donde $\mathbf{A} = \begin{pmatrix} 2 & -1 & 2 \\ 1 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ y $\mathbf{b} = \begin{pmatrix} 9 \\ -5 \\ -1 \end{pmatrix}$
 - (a) calcula la solución exacta mediante el método de Gauss con pivote parcial escalado.
 - (b) escribe las ecuaciones del método iterativo de Jacobi para aproximar la solución del sistema y calcula 2 aproximaciones desde la aproximación inicial: $x_1^{(0)} = 1$, $x_2^{(0)} = -1$, $x_3^{(0)} = 0$.
 - (c) estudia la convergencia del método a partir de:
 - i. da la matriz del método de Jacobi; es decir, \mathbf{B}_{i} .
 - ii. calcula una aproximación del valor propio dominante de \mathbf{B}_j mediante la aplicación del método de las potencias tres veces partiendo de vector inicial: $\mathbf{x}^{(0)} = (1, 1, 1)^t$ (Use dos decimales en los cálculos)
 - iii. teniendo en cuenta los resultados obtenidos, ¿que se puede decir sobre la convergencia del método de Jacobi?
- 4. Dada la función, f(x) = 1/x con $x \in [1, 4]$, se pide:
 - (a) calcula la mejor aproximación m.c. continua mediante funciones del tipo: $u(x)=ax+bx^2$ con $a,b\in\mathbb{R}$
 - (b) calcula la mejor aproximación m.c. discreta para f(x) en los nodos $x_i := \{1, 2, 3, 4\}$ con funciones del tipo: $u(x) = ax + bx^2$ con $a, b \in \mathbb{R}$
 - (c) si consideramos como medida del error el siguiente: $E = max\{|f(x) u(x)| : 1 \le x \le 4\}$, ¿cuál de las dos aproximaciones es mejor?