Резонансные процессы в активной среде

Д.А. Румянцев*, Д.М. Шленев** А.А. Ярков*** Ярославский государственный университет им. П.Г. Демидова, Россия

В работе рассмотрены различные квантовые процессы с учетом резонанса на виртуальном фермионе.

^{*}E-mail: rda@uniyar.ac.ru

^{**}E-mail: allen_caleb@rambler.com

^{***}E-mail: a12l@mail.ru

1 Введение

Резонансные явления в нашей жизни встречаются повсеместно. Большинство этих явлений так или иначе связано с колебательными процессами. Так, резонанс в колебательном контуре дает возможность получать или передавать информацию на определенной частоте с минимально затраченной энергией. В классическом подходе резонанс – это резкое возрастание амплитуды колебаний при приближении частоты внешнего воздействия к собственной частоте системы. В квантовом подходе в силу существования дискретных уровней энергии резонанс означает резкое увеличение вероятности процессов, связанных с переходами между этими уровнями, таких как, например, поглощение фотона с энергией, равной разнице энергий между двумя состояниями. Одним из условий, при которых учет квантовых эффектов при движении частиц становится необходимым, является присутствие сильных магнитных полей, чья индукция приближается к характерному значению, называемому критическим, $B_e = m_e^2/e \simeq 4.41 \times 10^{13} \; \Gamma c^{-1}$. В природе такими экстремально большими магнитными полями, согласно современным моделям [1–3], обладают разновидности нейтронных звезд, называемые радиопульсарами (с магнитными полями порядка 10^{12} Гс) и магнитарами (до $10^{15} \, \Gamma c$).

Кроме сильных магнитных полей в магнитосфере как радиопульсаров, так и магнитаров присутствует относительно горячая и плотная электронпозитронная плазма [1]. Магнитное поле и плазма составляют две компоненты внешней активной среды, присутствие которой значительно изменяет
характеристики протекающих в ней микропроцессов. Во-первых, активная
среда может изменять закон дисперсии находящихся в ней частиц, что приводит к изменению кинематики процессов и вследствие чего могут открываться каналы реакций, которые запрещены или сильно подавлены в вакууме.
Во-вторых, активная среда влияет на амплитуды процессов, в результате че-

 $^{^{1}}$ В работе используется естественная система единиц: $\hbar=c=k=1,\ m_{e}$ – масса электрона, e>0 – элементарный заряд.

го они могут приобретать резонансный характер. Именно эта составляющая влияния внешней активной среды рассматривается в данном обзоре. Вследствие резонанса вклад микропроцессов в макроскопические характеристики астрофизических процессов, такие как светимость и скорость изменения количества частиц, может многократно увеличиваться.

Как известно, в сильном магнитном поле поперечная составляющая импульса электрона квантуется. В таком случае энергия электрона определяется так называемым уровнем Ландау n и проекцией импульса вдоль магнитного поля p_z и в пренебрежении аномальным магнитным моментом электрона выражается следующим образом [4]:

$$E_n = \sqrt{m_e^2 + p_z^2 + 2eBn}. (1)$$

Состояние с n=0, в котором электрон движется вдоль силовой линии магнитного поля, называется основным уровнем Ландау.

В случае, если значение индукции магнитного поля существенно превышает остальные параметры среды: $eB\gg \mu^2, T^2, E^2$, где μ – химический потенциал электронов, E – энергия электронов среды, T – температура плазмы, расчет макроскопических характеристик значительно упрощается. Более строгое соотношение между параметрами, при выполнении которого можно говорить о пределе сильного поля, получается из условия того, что в этом случае плотность энергии магнитного поля во много раз превосходит плотность энергии электрон-позитронного газа [5]:

$$\frac{B^2}{8\pi} \gg \frac{\pi^2 (n_{e^-} - n_{e^+})^2}{eB} + \frac{eBT^2}{12},$$
 (2)

где n_{e^-} и n_{e^+} – концентрации электронов и позитронов плазмы. Такие условия могут, в частности, реализовываться в моделях вспышечной активности источников мягких повторяющихся гамма-всплесков (SGR) [1, 6], которые, как показывают недавние наблюдения, можно отождествить с магнитарами [7–12].

С другой стороны, даже в магнитарных полях условие (2), при котором

магнитное поле является доминирующим параметром, перестает выполняться при высоких значениях плотности плазмы $\rho \gtrsim 10^8 \ r/cm^3$. Такая плотность может достигаться в границе между внешней и внутренней корой магнитара. В результате реакции, в которых электроны (позитроны) находятся в промежуточном состоянии, могут приобретать резонансный характер. Это происходит вследствие того, что начинают возбуждаться высшие уровни Ландау виртуальных электронов. В результате резонанса они становятся реальными с определенным законом дисперсии, то есть будут находиться на массовой поверхности. Однако в этом состоянии они являются нестабильными и могут распадаться за время, обратно пропорциональное вероятности их перехода на низшие уровни Ландау. Эффективность реакций при этом заметно увеличивается, что может иметь наблюдаемые астрофизические следствия.

Резонанс на фотоне наблюдается аналогичным образом: в активной среде его поляризационный оператор приобретает реальную часть, которую можно рассматривать как эффективную массу фотона. В кинематической области, в которой квадрат 4-импульса виртуального фотона равен реальной части его поляризационного оператора, виртуальный фотон становится реальным и нестабильным.

Настоящая статья организована следующим образом. В разделе 2 описывается влияние внешнего магнитного поля на движение фермионов, обсуждаются различные методы представления решения уравнения Дирака во внешнем магнитном поле и получается выражение для пропагатора. В разделе 3 рассматривается распространение радиации в магнитном поле и представлен поляризационный оператор фотона. Раздел 4 посвящен различным двухвершинным процессам, в которых может реализовываться резонанс на виртуальном фермионе и/или фотоне. В разделе 5 описываются сингулярности в фазовых объемах одновершинных процессов и методы их устранения.

2 Движение фермионов во внешнем магнитном поле

2.1 Волновые функции фермионов во внешнем магнитном поле

Для полноты изложения, в этом разделе обсудим влияние внешней активной среды на волновые функции фермионов [13], которые являются решением уравнения Дирака в присутствии внешнего постоянного однородного магнитного поля, направленного вдоль оси z:

$$(i\partial_{\mu}\gamma^{\mu} + e_f A_{\mu}\gamma^{\mu} - m_f)\Psi^s_{p,n}(X) = 0, \qquad (3)$$

где m_f и e_f – масса и заряд фермиона, $A^\mu = (0,0,xB,0)$ – 4-вектор потенциала электромагнитного поля в калибровке Ландау, $X^\mu = (t,x,y,z)$. Решением этого уравнения является набор собственных функций любого оператора, который коммутирует с гамильтонианом Дирака во внешнем магнитном поле: $H = \gamma_0 \, (\gamma P) + m_f \, \gamma_0 + e_f A_0$, где $\mathbf{P} = -i \nabla - e_f \mathbf{A}$. Существует несколько представлений решений уравнения Дирака, из них можно выделить два наиболее распространенных подхода, подробное описание которых имеется в работах [13–18]. При первом из них, предложенным Джонсоном и Липпманом [19], решения выбираются как собственные функции оператора обобщенной спиральности, $T_0 = \frac{1}{m_f}(\mathbf{\Sigma}\mathbf{P})$, где $\mathbf{\Sigma} = -\gamma_0 \gamma \gamma_5$ – трехмерный оператор спина. При этом две верхние компоненты биспиноров соответствуют состояниям фермиона с проекцией спина на направление магнитного поля, равной 1/2 и -1/2.

Другой подход предложен Соколовым и Терновым [4]. Он состоит в выборе волновых функций как собственных функций ковариантного оператора μ_z , который строится следующим образом:

$$\mu_z = m_f \Sigma_z - i \gamma_0 \gamma_5 \left[\mathbf{\Sigma} \times \mathbf{P} \right]_z . \tag{4}$$

Его можно получить непосредственно из введенного в [4] обобщенного оператора спина, являющегося тензором третьего ранга, который можно запи-

сать в координатном представлении следующим образом:

$$F_{\mu\nu\lambda} = -\frac{i}{2} \left(P_{\lambda} \gamma_0 \sigma_{\mu\nu} + \gamma_0 \sigma_{\mu\nu} P_{\lambda} \right), \tag{5}$$

где $\sigma_{\mu\nu} = (\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})/2$, и $P_{\lambda} = i\partial_{\lambda} - e_f A_{\lambda} = (i\partial_0 - e_f A_0, -i\nabla - e_f \mathbf{A})$ – оператор обобщенного 4-импульса. Заметим, что в работе [4] ковариантные билинейные формы были построены из матриц Дирака в обкладках биспиноров ψ^{\dagger} и ψ , тогда как в современной литературе (см., например [20]) билинейные формы строятся из матриц Дирака в обкладках биспиноров $\bar{\psi}$ и ψ . Из пространственных компонент $F_{\mu\nu 0}$ оператора (5) можно построить следующий векторный оператор:

$$\mu_i = -\frac{1}{2} \,\varepsilon_{ijk} \,\mathcal{F}_{jk0} \,, \tag{6}$$

где ε_{ijk} – тензор Леви-Чивита. Построенный таким образом объект (6) имеет смысл оператора поляризации [4,14]. Его можно представить в виде:

$$\boldsymbol{\mu} = m_f \boldsymbol{\Sigma} + i \gamma_0 \gamma_5 [\boldsymbol{\Sigma} \times \boldsymbol{P}]. \tag{7}$$

В нерелятивистском пределе оператор (7), отнесенный к квадрату массы фермиона: μ/m_f^2 , переходит в обычный оператор Паули для магнитного момента [21], который имеет явную физическую интерпретацию оператора спина.

Решения уравнения Дирака в представлении Джонсона и Липпмана широко используются в литературе (см., например, [22–27]). Однако эти функции обладают рядом недостатков, которые проявляются при расчете конкретных характеристик процессов с двумя и более вершинами. Так, лоренцинвариантностью будет обладать только квадрат модуля амплитуды, просуммированный по всем поляризациям фермиона, а не парциальные вклады в него. Более того, как было показано в работах [28, 29], в области резонанса использование функций Джонсона и Липпмана приводит к относительной ошибке в расчетах физических величин порядка $O(B/B_e)$ в древесном приближении и $O[(B/B_e)^2]$ в следующих порядках разложения, что становится существенным при магнитарных магнитных полях.

С другой стороны, использование функций, предложенных Соколовом и Терновым, правильно описывает сечение процессов вблизи резонанса, а также позволяет найти парциальные вклады в амплитуду каждого поляризационного состояния частиц в отдельности, которые будут иметь лоренц-инвариантную структуру. По этой причине далее в этом разделе приведем подробное их описание.

Уравнение для собственных функций оператора (4) имеет следующий вид:

$$\mu_z \Psi_{p,n}^s(X) = s M_n \Psi_{p,n}^s(X) , \qquad (8)$$

где квантовое число $s=\pm 1$ определяет поляризационные состояния фермиона в постоянном однородном магнитном поле.

Как уже упоминалось во Введении, состояния фермиона квантуются по энергетическим состояниям, которые называются уровнями Ландау:

$$E_n = \sqrt{p_z^2 + M_n^2}, \quad n = 0, 1 \dots$$
 (9)

Здесь введено обозначение для эффективной массы фермиона в магнитном поле $M_n = \sqrt{2\beta n + m_f^2}$, где $\beta = |e_f|B$. Каждое состояние является бесконечно вырожденным по p_z и дважды вырожденным по s, кроме состояния n=0, где возможно лишь состояние с s=-1. Решения уравнения Дирака (3) могут быть представлены следующим образом:

$$\Psi_{p,n}^{s}(X) = \frac{e^{-i(E_n X_0 - p_y X_2 - p_z X_3)} U_n^{s}(\xi)}{\sqrt{4E_n M_n (E_n + M_n)(M_n + m_f) L_y L_z}},$$
(10)

где

$$\xi(X_1) = \sqrt{\beta} \left(X_1 - \eta \frac{p_y}{\beta} \right) . \tag{11}$$

Далее, используя обозначение для определения знака заряда фермиона $\eta = e_f/|e_f|$, становится удобным представить биспиноры $U_n^s(\xi)$ в виде отдельной суммы биспиноров соответствующих положительным и отрицательным зарядам $U_{n,\eta}^s(\xi)$:

$$U_n^s(\xi) = \frac{1-\eta}{2} U_{n,-}^s(\xi) + \frac{1+\eta}{2} U_{n,+}^s(\xi), \qquad (12)$$

где

$$U_{n,-}^{-}(\xi) = \begin{pmatrix} -i\sqrt{2\beta n} \, p_z V_{n-1}(\xi) \\ (E_n + M_n)(M_n + m_f) V_n(\xi) \\ -i\sqrt{2\beta n} (E_n + M_n) V_{n-1}(\xi) \\ -p_z(M_n + m_f) V_n(\xi) \end{pmatrix}, \tag{13}$$

$$U_{n,-}^{+}(\xi) = \begin{pmatrix} (E_n + M_n)(M_n + m_f)V_{n-1}(\xi) \\ -i\sqrt{2\beta n} \, p_z V_n(\xi) \\ p_z(M_n + m_f)V_{n-1}(\xi) \\ i\sqrt{2\beta n}(E_n + M_n)V_n(\xi) \end{pmatrix}, \tag{14}$$

$$U_{n,+}^{-}(\xi) = \begin{pmatrix} i\sqrt{2\beta n} \, p_z V_n(\xi) \\ (E_n + M_n)(M_n + m_f) V_{n-1}(\xi) \\ i\sqrt{2\beta n} (E_n + M_n) V_n(\xi) \\ -p_z (M_n + m_f) V_{n-1}(\xi) \end{pmatrix}, \tag{15}$$

$$U_{n,+}^{+}(\xi) = \begin{pmatrix} (E_n + M_n)(M_n + m_f)V_n(\xi) \\ i\sqrt{2\beta n} \, p_z V_{n-1}(\xi) \\ p_z(M_n + m_f)V_n(\xi) \\ -i\sqrt{2\beta n}(E_n + M_n)V_{n-1}(\xi) \end{pmatrix}, \tag{16}$$

 $V_n(\xi)$ — нормированные функции гармонического осциллятора, которые следующим образом выражаются через полиномы Эрмита $H_n(\xi)$ [30]:

$$V_n(\xi) = \frac{\beta^{1/4} e^{-\xi^2/2}}{\sqrt{2^n n! \sqrt{\pi}}} H_n(\xi).$$
 (17)

2.2 Пропагатор фермиона во внешнем магнитном поле

При рассмотрении любого взаимодействия в квантовой теории поля предполагается, что между начальными и конечными состояниями существует обмен виртуальными частицами. "Виртуальность" частицы означает, что ее энергия и импульс не связаны релятивистским соотношением (9). Промежуточное состояние в формализме собственного времени Фока [31] описывается уравнением Дирака с δ -функцией в правой части:

$$(i\partial_{\mu}\gamma^{\mu} + e_f A_{\mu}\gamma^{\mu} - m_f)S(X, X') = \delta(X - X'). \tag{18}$$

Его решение S(X,X') называется пропагатором. В этом разделе мы опишем представление пропагаторов фермионов во внешнем магнитном поле с учетом радиационных поправок к массовому оператору и покажем, как может реализовываться резонанс в квантовых процессах, содержащих фермионы в промежуточном состоянии.

Решения уравнения (18) имеют достаточно громоздкий вид. Поэтому удобно воспользоваться различными приближениями. В относительно сильных полях для частиц, обладающих высоким удельным зарядом, $|e_f|/m_f$, удобно рассматривать пропагатор в виде разложения по уровням Ландау:

$$S(X, X') = \sum_{n=0}^{\infty} \sum_{s=\pm 1} S_n^s(X, X').$$
 (19)

Для построения пропагатора можно воспользоваться полевыми операторами:

$$\Psi(X) = \sum_{n, p_y, p_z, s} (a_{n,p}^s \Psi_{n,p,+}^s(X) + b_{n,p}^{\dagger s} \Psi_{n,p,-}^s(X)), \qquad (20)$$

где a — оператор уничтожения фермиона, b^{\dagger} — оператор рождения фермиона, Ψ_{+} и Ψ_{-} соответствуют решениям уравнения Дирака с положительной и отрицательной энергией соответственно. Стандартным образом пропагатор вычисляется как разность хронологически упорядоченного и нормально упорядоченного произведения полевых операторов:

$$S(X, X') = T(\Psi(X)\overline{\Psi}(X')) - \mathcal{N}(\Psi(X)\overline{\Psi}(X')). \tag{21}$$

Подставляя точные решения уравнения Дирака (10) и вводя для удобства новое обозначение:

$$\phi_{p,n}^s(X_1) = \frac{U_n^s[\xi(X_1)]}{\sqrt{2M_n(E_n + M_n)(M_n + m_f)}},$$
(22)

где U_n^s определяется формулой (12), можно представить вклад в разложение пропагатора от уровня Ландау n и поляризационного состояния s следующим образом:

$$S_n^s(X, X') = \int \frac{\mathrm{d}p_0 \mathrm{d}p_y \mathrm{d}p_z}{(2\pi)^3} \times$$

$$\times \frac{\mathrm{e}^{-\mathrm{i}\,p_0\,(X_0 - X_0') + \mathrm{i}\,p_y\,(X_2 - X_2') + \mathrm{i}\,p_z\,(X_3 - X_3')}}{p_0^2 - p_z^2 - M_n^2 - \mathcal{R}_{\Sigma}^s(p) + \mathrm{i}\,\mathcal{I}_{\Sigma}^s(p)} \phi_{p,n}^s(X_1) \bar{\phi}_{p,n}^s(X_1') ,$$
(23)

где $\mathcal{R}_{\Sigma}^{s}(p)$ и $\mathcal{I}_{\Sigma}^{s}(p)$ – реальная и мнимая части массового оператора фермиона. Для их получения требуется вычислить радиационные поправки к массе фермиона в замагниченной плазме. Реальная часть массового оператора $\mathcal{R}_{\Sigma}^{s}(p)$ определяет изменение закона дисперсии фермиона в присутствии замагниченной плазмы. В слабых магнитных полях, где выполняется $B \ll B_e$, но среду ещё можно рассматривать как поледоминирующую, она определяется отношением [32]:

$$\Re_{\Sigma}^{s}(p) = \frac{4\alpha m_f}{3\pi} \varkappa^2 \left[\ln \varkappa^{-1} + C + \frac{1}{2} \ln 3 - \frac{33}{16} \right], \quad \varkappa \ll 1,$$
 (24)

где C=0.577... - постоянная Эйлера, динамический параметр \varkappa вводится следующим образом:

$$\varkappa = \frac{1}{m_f B_e} [-(F_{\mu\nu} p_{\nu})^2]^{1/2}.$$
 (25)

Для случая сильного магнитного поля, $B \gtrsim B_e$, без учета плазмы лидирующий вклад в сдвиг массы фермиона, находящегося на основном уровне Ландау, описывается квадратом логарифмической функции [33]:

$$\Re_{\Sigma}^{s}(p) = \frac{\alpha}{4\pi} m_f \ln^2(2\beta/m_f^2). \tag{26}$$

Из (24) и (26) следует, что даже для достаточно больших значений магнитного поля вплоть до 10^{16} Гс эта поправка к массе фермиона имеет величину порядка постоянной тонкой структуры α [15,16] и является несущественной.

Резонанс на виртуальном фермионе будет наблюдаться, когда в знаменателе пропагатора (23) реальная часть обращается в ноль. Тогда виртуальная

частица становится реальной, то есть приобретает определенный закон дисперси (9). Анализ кинематики показывает, что это возможно только тогда, когда виртуальный фермион занимает один из высших уровней Ландау, n>0. Частица при этом является нестабильной, и время ее жизни, в нерезонансной области предполагающееся бесконечно большим, определяется мнимой частью массового оператора, $\mathcal{I}_{\Sigma}^{s}(p)$, учет которой становится необходимым. Она может быть получена с помощью оптической теоремы и представлена в следующем виде [34, 35]:

$$\mathfrak{S}_{\Sigma}^{s}(p) = -\frac{1}{2} p_0 \, \Gamma_n^s \,, \tag{27}$$

где Γ_n^s — полная ширина изменения состояния фермиона, находящегося в поляризационном состоянии s и занимающего n-й уровень Ландау. Введенный таким образом пропагатор с учетом конечной ширины изменения состояния фермиона позволяет корректно рассчитывать сечения квантовых процессов в резонансной области.

3 Распространение фотона в замагниченной плазме

Распространение фотона в активной среде удобнее всего описывать в терминах собственных функций (задающих возможные его поляризационные состояния) и собственных значений (определяющих дисперсионные свойства) поляризационного оператора фотона $\mathcal{P}_{\alpha\beta}$, явный вид которого может быть получен из результатов работ [37–40]. Для дальнейшего анализа получим его разложение по базису, построенному на 4-векторе импульса фотона, $q_{\mu} = (\omega, \mathbf{q})$, и обезразмеренном тензоре электромагнитного поля, $\varphi_{\alpha\beta} = F_{\alpha\beta}/B$. В системе отсчета, в которой имеется только магнитное поле, индукция которого направлена вдоль оси z, тензор $\varphi_{\alpha\beta}$ и дуальный к нему $\tilde{\varphi}_{\alpha\beta} = \frac{1}{2} \varepsilon_{\alpha\beta\mu\nu} \varphi^{\mu\nu}$,

принимают следующий вид:

$$\varphi_{\alpha\beta} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \tilde{\varphi}_{\alpha\beta} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}. \tag{28}$$

Составленные из них конструкции: $\Lambda_{\alpha\beta} = (\varphi\varphi)_{\alpha\beta} = \mathrm{diag}(0,1,1,0)$ и $\widetilde{\Lambda}_{\alpha\beta} = (\widetilde{\varphi}\widetilde{\varphi})_{\alpha\beta} = \mathrm{diag}(1,0,0,-1)$ позволяют разбить четырехмерное пространствовремя на подпространства Евклида $\{1,2\}$ и Минковского $\{0,3\}$, обозначенные символами \bot и \parallel , соответственно. Тогда для произвольных векторов имеем:

$$p_{\perp}^{\mu} = (0, p_1, p_2, 0), \quad p_{\parallel}^{\mu} = (p_0, 0, 0, p_3),$$

$$(pq)_{\perp} = (p\Lambda q) = p_1 q_1 + p_2 q_2,$$

$$(pq)_{\parallel} = (p\widetilde{\Lambda}q) = p_0 q_0 - p_3 q_3.$$
(29)

В качестве векторов, на которых мы построим базис для разложения поляризационного оператора фотона, выберем собственные векторы поляризационного оператора в постоянном однородном магнитном поле [39]:

$$b_{\mu}^{(1)} = (\varphi q)_{\mu}, \qquad b_{\mu}^{(2)} = (\tilde{\varphi} q)_{\mu},$$

$$b_{\mu}^{(3)} = q^{2} (\Lambda q)_{\mu} - q_{\mu} q_{\perp}^{2}, \qquad b_{\mu}^{(4)} = q_{\mu},$$

$$(30)$$

Этот базис не является нормированным, модули векторов имеют следующие значения:

$$(b^{(1)}b^{*(1)}) = -q_{\perp}^{2}, \quad (b^{(2)}b^{*(2)}) = -q_{\parallel}^{2},$$

$$(b^{(3)}b^{*(3)}) = -q^{2}q_{\parallel}^{2}q_{\perp}^{2}, \quad (b^{(4)}b^{*(4)}) = q^{2}.$$

$$(31)$$

В замагниченной плазме $\mathcal{P}_{\alpha\beta}$ уже не будет диагональным в базисе из векторов (30), поэтому его удобно разложить по собственным векторам $r_{\alpha}^{(\lambda)}$ в замагниченной плазме с соответствующими собственными значениями $\mathcal{P}^{(\lambda)}$ [37, 41–43]:

$$\mathcal{P}_{\alpha\beta} = \sum_{\lambda=1}^{3} \mathcal{P}^{(\lambda)} \frac{r_{\alpha}^{(\lambda)} (r_{\beta}^{(\lambda)})^{*}}{(r^{(\lambda)})^{2}}, \quad r_{\beta}^{(\lambda)} = \sum_{i=1}^{3} A_{i}^{(\lambda)} b_{\beta}^{(i)},$$
 (32)

где $A_i^{(\lambda)}$ – некоторые комплексные коэффициенты.

Нахождение вида разложения 32 для случая замагниченной плазмы с произвольными характеристиками сопряжено со значительными вычислительными сложностями, поэтому эта задача решалась для случаев, когда один из параметров доминирует над другими. Так, в случае магнитодоминирующей среды (см. Введение), используя результаты работ [37,41–44], в кинематической области вдали от циклотронных резонансов, $q_{\parallel}^2 \ll (m_e + \sqrt{m_e^2 + 2\beta})^2$, можно получить следующее разложение:

$$\mathcal{P}_{\alpha\beta} \simeq -\frac{2\alpha}{\pi} \beta \mathcal{D} \frac{(\tilde{\varphi}q)_{\alpha}(\tilde{\varphi}q)_{\beta}}{q_{\parallel}^{2}} + \frac{\alpha}{3\pi} (\varphi q)_{\alpha} (\varphi q)_{\beta} + \frac{\mathrm{i}\alpha}{\pi} \Delta N \left[\varphi_{\alpha\beta} (qu) + (q\varphi)_{\alpha} u_{\beta} - (q\varphi)_{\beta} u_{\alpha} \right] + \frac{\alpha}{3\pi} \mathcal{V} \left(q^{2} g_{\alpha\beta} - q_{\alpha} q_{\beta} \right) + O\left(\frac{1}{\beta}\right) , \tag{33}$$

где

$$\mathcal{D} = -\mathcal{J}(q_{\parallel}) - H\left(\frac{q_{\parallel}^2}{4m^2}\right) , \qquad (34)$$

$$\mathcal{J}(q_{\parallel}) = 2q_{\parallel}^2 m^2 \int_{-\infty}^{\infty} \frac{\mathrm{d}p_z}{E} \frac{f_{-}(p) + f_{+}(p)}{q_{\parallel}^4 - 4(pq)_{\parallel}^2}, \tag{35}$$

$$f_{\pm}(p) = \frac{1}{1 + \exp\left[((pu)_{\parallel} \pm \mu)/T\right]},$$

$$(pu)_{\parallel} = Eu_0 - p_z u_z, \quad E = \sqrt{p_z^2 + m_e^2}.$$
(36)

Здесь u^{μ} — 4-вектор скорости плазмы, верхний знак соответствует электронной компоненте плазмы, нижний — позитронной.

$$H(z) = \frac{1}{\sqrt{z(1-z)}} \operatorname{arctg} \sqrt{\frac{z}{1-z}} - 1, \quad 0 \leqslant z \leqslant 1,$$

$$\Delta N = \int_{-\infty}^{\infty} \frac{\mathrm{d}p_z}{E} (pu)_{\parallel} [f_{-}(p) - f_{+}(p)] = \frac{(2\pi)^2}{\beta} (n_e - n_{e^{+}}),$$

$$\mathcal{V} = \ln(B/B_e) - 1.792 + \frac{3}{2} \int_{0}^{1} dx (1 - x^2) \ln\left[1 - \frac{q^2}{4m_e^2} (1 - x^2)\right].$$
 (37)

В данном обзоре рассматривается система покоя плазмы, так, что $(pu)_{\scriptscriptstyle \parallel}=E.$ При этом в разложении собственных векторов $r_{\alpha}^{(\lambda)}$ по обратным степеням поля для получения самосогласованных результатов оказывается необходимым учесть следующий порядок малости по $1/\beta$. С учетом этих замечаний получим:

$$r_{\alpha}^{(1,3)} = \left[\mp \sqrt{q_{\perp}^4 + (6\Delta N \,\omega)^2 \frac{q^2}{q_{\parallel}^2} - q_{\perp}^2} \right] b_{\alpha}^{(1)} - \mathrm{i} \, \frac{6\Delta N \,\omega}{q_{\parallel}^2} b_{\alpha}^{(3)} +$$

$$+ \mathrm{i} \, \frac{\Delta N \, k_z \, q_{\perp}^2}{2\beta \, \mathcal{D} \, q_{\parallel}^2} \left[\pm \sqrt{q_{\perp}^4 + (6\Delta N \,\omega)^2 \frac{q^2}{q_{\parallel}^2}} + q_{\perp}^2 \right] b_{\alpha}^{(2)} + O\left(\frac{1}{\beta^2}\right) ,$$

$$r_{\alpha}^{(2)} = b_{\alpha}^{(2)} - \mathrm{i} \, \frac{\Delta N \, k_z}{2\beta \, \mathcal{D}} b_{\alpha}^{(1)} + O\left(\frac{1}{\beta^2}\right) .$$

$$(39)$$

Коэффициенты $A_i^{(\lambda)}$ в разложении (32) с точностью до членов $O(1/\beta^2)$ имеют вид:

$$A_{1}^{(1,3)} = \mp \sqrt{q_{\perp}^{4} + (6\Delta N \,\omega)^{2} \frac{q^{2}}{q_{\parallel}^{2}}} - q_{\perp}^{2}, \qquad (40)$$

$$A_{2}^{(1,3)} = i \frac{\Delta N \, k_{z} \, q_{\perp}^{2}}{2\beta \, \mathcal{D} \, q_{\parallel}^{2}} \left[\pm \sqrt{q_{\perp}^{4} + (6\Delta N \,\omega)^{2} \frac{q^{2}}{q_{\parallel}^{2}}} + q_{\perp}^{2} \right],$$

$$A_{3}^{(1,3)} = -i \frac{6\Delta N \,\omega}{q_{\parallel}^{2}}, \quad A_{1}^{(2)} = -i \frac{\Delta N \, k_{z}}{2\beta \, \mathcal{D}},$$

$$A_{2}^{(2)} = 1, \quad A_{3}^{(2)} = 0.$$

Соответствующие собственные значения в приближениях $O(1/\beta^2)$ для $\mathcal{P}^{(1,3)}$ и $O(1/\beta)$ для $\mathcal{P}^{(2)}$ запишутся следующим образом:

$$\mathcal{P}^{(1,3)} = \frac{\alpha}{3\pi} q^2 \mathcal{V} + \frac{\alpha}{6\pi} \left[\mp \sqrt{q_{\perp}^4 + (6\Delta N \,\omega)^2 \frac{q^2}{q_{\parallel}^2}} - q_{\perp}^2 \right] + O\left(\frac{1}{\beta}\right) \,, \tag{41}$$

$$\mathcal{P}^{(2)} = \frac{\alpha}{3\pi} q^2 \mathcal{V} + \frac{2\alpha}{\pi} \beta \mathcal{D} + O\left(\frac{1}{\beta}\right). \tag{42}$$

Как видно из полученного результата, даже в приближении сильно замагниченной плазмы определение дисперсионных свойств фотонов для всех трех поляризаций представляет собой достаточно сложную задачу. Однако в предельном случае зарядово-симметричной плазмы формулы (40) – (42) значительно упрощаются.

А именно, в случае зарядово-симметричной плазмы, $\Delta N=0$, а также в случае холодной, почти вырожденной, умеренно релятивистской плазмы при выполнении условия $\Delta N/(2m_e)\simeq v_F\ll 1$, где v_F соответствует скорости частицы, находящейся на уровне Ферми, коэффициенты (40) примут вид: $A_1^{(1)}=-2q_\perp^2,\,A_2^{(2)}=1$ (остальные коэффициенты равны нулю). Тогда собственные векторы (38) – (39) и собственные значения (41) – (42) можно представить в виде:

$$r_{\alpha}^{(1)} = -2q_{\perp}^{2}b_{\alpha}^{(1)} + O\left(\frac{1}{\beta^{2}}\right), \quad r_{\alpha}^{(2)} = b_{\alpha}^{(2)} + O\left(\frac{1}{\beta^{2}}\right).$$
 (43)

$$\mathcal{P}^{(1)} = \frac{\alpha}{3\pi} q^2 \mathcal{V} - \frac{\alpha}{3\pi} q_{\perp}^2 + O\left(\frac{1}{\beta}\right), \tag{44}$$

$$\mathcal{P}^{(3)} = \frac{\alpha}{3\pi} q^2 \mathcal{V} + O\left(\frac{1}{\beta}\right) , \qquad (45)$$

а собственное значение $\mathcal{P}^{(2)}$ определяется формулой (42). Вектор $r_{\alpha}^{(3)} \sim O\left(1/\beta^2\right)$ и, следовательно, не может соответствовать фотону с определенным поляризационным состоянием.

Следует отметить, что полученные собственные векторы (43) не являются единичными, и для описания поляризационных состояний фотона удобнее использовать нормированные векторы:

$$\varepsilon_{\alpha}^{(1)}(q) = \frac{r_{\alpha}^{(1)}}{\sqrt{|(r^{(1)}r^{*(1)})|}} = \frac{(q\varphi)_{\alpha}}{\sqrt{q_{\perp}^{2}}}, \quad \varepsilon_{\alpha}^{(2)}(q) = \frac{r_{\alpha}^{(2)}}{\sqrt{|(r^{(2)}r^{*(2)})|}} = \frac{(q\tilde{\varphi})_{\alpha}}{\sqrt{q_{\parallel}^{2}}}. \quad (46)$$

Рис. 1: Законы дисперсии фотона моды 2 в сильном магнитном поле $B/B_e=200$ и нейтральной плазме ($\mu=0$) для различных значений температуры: T=1 МэВ (верхняя кривая), T=0.5 МэВ (средняя кривая), T=0.25 МэВ (нижняя кривая). Дисперсия фотона без плазмы обозначена штриховой линией. Диагональная штриховая линия соответствует вакуумному закону дисперсии, $q^2=0$. Угол между импульсом фотона и направлением магнитного поля равен $\pi/2$.

Здесь символы 1 и 2 соответствуют $\|$ и \bot – поляризациям в чистом магнитном поле [45], X - и O - модам работы [46], и E - и O - модам в замагниченной плазме [2]. Волновые функции фотона $A_{\mu}^{(\lambda)}(X)$ можно представить в виде плосковолновых решений:

$$A_{\mu}^{(\lambda)}(X) = \frac{e^{-i(qX)}}{\sqrt{2q_0V}} \varepsilon_{\mu}^{(\lambda)}(q), \qquad (47)$$

где $V=L_xL_yL_z$ – нормировочный объем и $\lambda=1,2$ – мода фотона.

Нетрудно увидеть, что полученные таким образом собственные векторы и собственные значения поляризационного оператора в плазме с точностью до членов порядка $O(1/\beta^2)$ and $O(\alpha^2)$ совпадают с соответствующими величинами в замагниченном вакууме 2 . Такой вывод находится в согласии с

 $^{^{2}\}Pi$ од термином «замагниченный вакуум» понимается магнитное поле без плазмы.

результатами работы [37] и, для предельного случая $\omega \ll m_e$ и после необходимых преобразований: выбора продольной составляющей $\varepsilon_{\alpha}^{(2)}$ и перехода в систему координат, в которой вектор импульса фотона направлен вдоль оси z, работы [47].

Закон дисперсии фотона моды 1 в приближении $O(1/\beta^2)$ практически не отличается от вакуумного, $q^2 \simeq 0$. Действительно, из закона дисперсии для этой моды:

$$q^2 - \mathcal{P}^{(1)} = 0 (48)$$

и формулы (44) следует, что

$$q_{\parallel}^2 = \left(1 - \frac{\alpha}{3\pi} \frac{1}{1 - \frac{\alpha}{3\pi} \mathcal{V}}\right) q_{\perp}^2 \simeq q_{\perp}^2 \left(1 - \frac{\alpha}{3\pi}\right) , \tag{49}$$

так что $q^2 \simeq 0$, оставаясь при этом отрицательным. Кроме того, из формулы (44) следует, что в кинематической области $q_{\parallel}^2 \ll (m_e + \sqrt{m_e^2 + 2\beta})^2$ собственное значение поляризационного оператора моды 1 не имеет мнимой части ³

С другой стороны, дисперсионные свойства фотона моды 2 претерпевают существенные изменения даже по сравнению с замагниченным вакуумом и, следовательно, будут оказывать дополнительное влияние на кинематику процессов с участием фотонов этой моды. На рис. 1 и 2 представлены законы дисперсии фотона моды 2 в замагниченной зарядово-симметричной ($\mu=0$) плазме, для различных значений температур, углов и импульса фотона, полученные как решения уравнения

$$q^2 - \mathcal{P}^{(2)} = 0. (50)$$

Как нетрудно видеть, в противоположность чистому магнитному полю, в плазме существует область с $q^2>0$ ниже первого циклотронного резонанса, определяемого условием $q_{_{\parallel}}^2=4m_e^2$.

 $^{^{3}}$ Строго говоря, мнимая часть является сильно подавленной по сравнению с реальной частью, так что такой фотон будет квазистабильным.

Рис. 2: Законы дисперсии фотона моды 2 в сильном магнитном поле $B/B_e=200$ и нейтральной плазме (T=1MpB) для различных значений угла между импульсом фотона и направлением магнитного поля $\theta=\pi/2$ (верхняя кривая), $\theta=\pi/6$ (средняя кривая), $\theta=\pi/12$ (нижняя кривая). Дисперсия фотона без плазмы обозначена штриховой линией. Диагональная штриховая линия соответствует вакуумному закону дисперсии, $q^2=0$.

Этот факт связан с появлением плазменной частоты в представлении реальных электронов и позитронов среды, которая может быть определена из уравнения

$$\omega_p^2 - \mathcal{P}^{(2)}(\omega_p, \mathbf{k} \to 0) = 0. \tag{51}$$

Для случая сильно замагниченной зарядово-симметричной нерелятивистской плазмы можно получить приближенное решение этого уравнения. В результате мы получим классическое выражение $\omega_{pl}^2 \simeq 2(4\pi\alpha n_e)/m_e$ (множитель 2 возникает из-за равенства концентраций электронов и позитронов), где

$$n_e \simeq \beta \sqrt{\frac{m_e T}{(2\pi)^3}} e^{-m_e/T}.$$
 (52)

Таким образом, ω_{pl} для зарядово-симметричной плазмы экспоненциально подавлено. С другой стороны, для зарядово-несимметричной плазмы подавление отсутствует и $\omega_{pl}^2 \simeq (2\alpha\beta/\pi)v_F$.

Тем не менее, даже для зарядово-симметричной плазмы при температуре $T=50~{\rm K}$ в и индукции магнитного поля $B=200B_e$ мы получаем такую оценку для плазменной частоты: $\omega_{pl}\simeq 3~{\rm K}$ в учо уже может повлиять на кинематику различных процессов с участием фотона. Например, наличие плазменной частоты приводит к возникновению порога для каналов рассеяния фотона моды 2 на электронах и позитронах плазмы, $\gamma_2 e \to \gamma_1 e, \, \gamma_2 e \to \gamma_2 e,$ который отсутствует в чистом магнитном поле. А для одной из основных реакций, в которых рождаются поляризованные фотоны, – процесса расщепления фотона на два фотона, $\gamma \to \gamma \gamma$, оно приводит к возникновению новых правил отбора по поляризациям: в области ниже порога рождения e^+e^- -пар, $q_\parallel^2=4m^2$, и в области, где $q^2>0$, каналы, в которых рождаются фотоны моды $2,\,\gamma_2\to\gamma_2\gamma_2,\,\gamma_1\to\gamma_2\gamma_2$ и $\gamma_1\to\gamma_1\gamma_2$, кинематически закрыты и становится открытым новый канал $\gamma_2\to\gamma_1\gamma_1$, запрещенный в магнитном поле в отсутствие плазмы.

Пропагатор фотона определяется решением следующего волнового уравнения:

$$(g_{\alpha\rho}\,\partial_{\mu}^2 - \partial_{\alpha}\partial_{\rho})\,G^{\rho}_{\beta}(x) + \int d^4x'\,\mathcal{P}^{(\lambda)}_{\alpha\rho}(x-x')\,G^{\rho}_{\beta}(x) = g_{\alpha\beta}\delta^4(x),$$

где $\delta^4(x) = \delta(t)\delta(x)\delta(y)\delta(z)$.

В координатном пространстве пропагатор фотона можно представить следующим образом:

$$G_{\mu\nu}(x) = \int \frac{\mathrm{d}^4 q}{(2\pi)^4} G_{\mu\nu}(q) e^{-\mathrm{i}qx},$$
 (53)

где

$$G_{\mu\nu}(q) = \sum_{\lambda=1}^{3} \frac{b_{\mu}^{(\lambda)} b_{\nu}^{(\lambda)}}{(b^{(\lambda)})^{2}} \cdot \frac{1}{q^{2} - \mathcal{P}^{(\lambda)}(q)}$$
 (54)

– фурье-образ пропагатора.

4 Резонанс на виртуальном электроне (фермионе)

4.1 Комптоновское рассеяние

Интерес к изучению комптоновского рассеяния $\gamma e \to \gamma e$ в сильном магнитном поле первоначально был вызван неожиданным открытием циклотронных спектральных линий у двойных рентгеновских пульсаров [48–50], которые изначально интерпретировались либо как циклотронное поглощение, либо как циклотронное излучение [48]. Дальнейшее повышение разрешения детекторов по энергии позволило уверенно заключить, что циклотронные особенности связаны именно с резонансным поглощением фотона [51]. При этом под циклотронным резонансом обычно понимается резкое увеличение сечения рассеяния по сравнению с классическим томсоновским сечением $\sigma_T = 8\pi\alpha^2/(3m_e^2)$. В одной из первых работ по этой тематике [52] выражение для сечения комптоновского рассеяния в магнитном поле без плазмы было получено в нерелятивистском пределе, и для фотона, распространяющегося вдоль магнитного поля, в сечении был обнаружен резонансный пик при энергии:

$$\omega_B \simeq \frac{\beta}{m_e}.\tag{55}$$

Кроме того, в работе [52] также было показано, что сечение рассеяния фотона на электроне значительно зависит как от поляризационного состояния фотона, так и от угла между направлением импульса начального фотона и направлением магнитного поля. В последовавшей за ней статье [53] исследовалось изменение энергии фотона в комптоновском процессе, кратное циклотронной частоте ω_B (55). В следующих работах [54,55] были получены результаты для полного сечения рассеяния фотона на электроне с использованием формализма работы [52], которые будут справедливыми только для относительно слабого магнитного поля $B < 10^{12}$ Гс. Однако при значениях магнитного поля $B > 10^{12}$ Гс, как было показано в работах [56,57], учет релятивистских эффектов в сечении комптоновского рассеяния становится существенным.

В представленных выше работах предполагалось, что начальный и конечные электроны находятся на основном уровне Ландау, что является справедливым для предела сильного магнитного поля и/или низких температур $T \ll m_e$ (см. Введение). В этом случае резонансный пик (55) смещается в область более низких энергий фотона, а кроме него возникает бесконечный ряд резонансных пиков, соответствующих разным уровням Ландау n виртуального электрона. Эти пики реализуются при энергиях фотона:

$$\omega_n(\theta) = \frac{\sqrt{m_e^2 + 2\beta n \sin^2 \theta} - m_e}{\sin^2 \theta}, \qquad (56)$$

где θ – угол между импульсом начального фотона и направлением магнитного поля.

С другой стороны, в результате комптоновского процесса могут возбуждаться высшие уровни Ландау начального электрона, что, в свою очередь, может выступать механизмом рождения фотонов малых энергий для магнитных полей $B \lesssim B_e$ [58,59]. В таком случае для произвольных уровней Ландау ℓ начального электрона резонансные пики будут наблюдаться на энергиях:

$$\omega_{n\ell}(\theta) = \frac{\sqrt{M_{\ell}^2 - \sin^2 \theta (M_{\ell}^2 - M_n^2)} - M_{\ell}}{\sin^2 \theta}, \tag{57}$$

где
$$M_\ell = \sqrt{m_e^2 + 2\beta\ell}, \, M_n = \sqrt{m_e^2 + 2\beta n}$$
 и т.п.

В рассмотренных выше работах сечение комптоновского рассеяния становится бесконечным при энергиях фотона, соответствующих циклотронным резонансам (56) вследствие предположения о большом времени жизни виртуальных частиц. По этой причине их результаты справедливы только для областей энергий фотона вдали от резонансов и могут быть применены, например, для моделирования излучения замагниченной холодной плазмы вблизи поверхности нейтронных звезд [60] или же для относительно слабых магнитных полей $B \lesssim 10^{10}~\Gamma c$ [61].

С другой стороны, учет резонансов в комптоновском процессе является необходимым при моделировании спектров излучения сильно замагничен-

ных нейтронных звезд [47, 62–68]. Вблизи поверхности нейтронной звезды, где формируется излучение, резонансный обратный комптоновский процесс рассеяния фотонов малых энергий на высокоэнергетических электронах является доминирующим процессом, который приводит к охлаждению плазмы внутренней магнитосферы и образованию высокоэнергетического хвоста в спектре излучения [69–72].

Вблизи циклотронных резонансов для расчета сечения комптоновского рассеяния требуется учесть полную ширину изменения состояния электрона. В нерелятивистском пределе [52] присутствует лишь одна резонансная частота (56) и сечение рассеяния не зависит от поляризационного состояния электрона (или его спинового состояния), поэтому ввести полную ширину относительно просто [73]. Однако в сильных магнитных полях $B \gtrsim B_e$ и при высоких энергиях частиц требуется учитывать релятивистские поправки, что приводит к тому, что выражение для сечения становится очень громоздким, поскольку оно имеет бесконечное число резонансов (57), содержащихся в сумме по всем промежуточным виртуальным состояниям.

Изначально для учета конечных резонансных пиков использовались усредненные по спину ширины распада промежуточного состояния [25, 74]. Как было указано в работе [29], такой подход не является точным, поскольку усреднение по спину некорректно учитывает спиновую зависимость времени распада виртуального электрона, что приводит к неверному значению сечения комптоновского рассеяния в точке резонанса. Этот недостаток был устранен в работе [46], где представлено сечение рассеяния процесса $\gamma e \to \gamma e$ с учетом ширины распада виртуальных промежуточных состояний, которая зависит от поляризационного состояния электрона. Однако полное сечение комптоновского рассеяния, полученное таким методом, представляет собой громоздкое выражение, что, например, затрудняет его использование в моделях переноса излучения.

В ряде случаев выражение сечения рассеяния можно упростить для получения аналитического решения различных задач. Так, в работе [25] была

использована аппроксимация сечения рассеяния с учетом резонанса в ультрарелятивистском пределе для случая относительно сильного магнитного поля $B>0.1B_e$. В точке циклотронного резонанса виртуальный электрон становится реальным и распадается на масштабе комптоновского времени, поэтому вероятность комптоновского рассеяния сводится к вероятности одновершинного процесса поглощения фотона электроном $\gamma e \to e$. В работе [23] исследовался вопрос аппроксимации комптоновского сечения с помощью одновершинного процесса поглощения фотона электроном для магнитных полей $B\sim 0.1B_e$. При этом различие между одновершинным процессом поглощения и комптоновским рассеянием становится существенным на высших циклотронных резонансах из-за нерезонансного вклада. Еще один подход рассмотрен в работе [75], он заключается в том, что пропагатор виртуального электрона можно заменить на дельта-функцию, когда основной вклад в сечение рассеяния будут давать области вблизи резонансов (приближение узкого пика).

Далее рассмотрим получение сечения рассеяния комптоновского процесса в случае узкого резонансного пика. Лагранжиан взаимодействия электрона с фотоном может быть представлен в виде:

$$\mathcal{L}(X) = -e[\bar{\Psi}_f(X)\gamma^{\mu}A_{\mu}^{(\lambda)}(X)\Psi_f(X)], \qquad (58)$$

где γ^{μ} – гамма-матрицы Дирака, а волновые функции электрона, $\Psi_f(X)$, и фотона, $A_{\mu}^{(\lambda)}(X)$, были введены в предыдущих разделах.

S-матричный элемент рассеяния фотона поляризации λ на электроне с рождением электрона и фотона поляризации λ' , с учетом лагранжиана (58) может быть представлен в виде:

$$S_{\gamma^{(\lambda)}e \to \gamma^{(\lambda')}e'}^{s's} = -e^2 \int d^4X d^4Y A_{\mu}^{(\lambda)}(X) A_{\mu'}^{(\lambda')}(Y) \left[\bar{\Psi}_{p',\ell'}^{s'}(Y) \gamma_{\mu'} S_n^{s''}(Y, X) \gamma_{\mu} \Psi_{p,\ell}^s(X) \right] + (A_{\mu}^{(\lambda)}, \gamma_{\mu} \leftrightarrow A_{\mu'}^{(\lambda')}, \gamma_{\mu'}).$$
(59)

Если в области резонанса выполняется условие $P_0\Gamma_n^{s''}\ll |P_{\scriptscriptstyle \parallel}^2-M_n^2|$, то можно использовать приближение узкого резонансного пика. Здесь $\Gamma_n^{s''}$ – пол-

ная ширина изменения состояния электрона за счет процесса рассеяния фотона на электроне, которую можно выразить через ширину поглощения электрона в процессе $e_n \to e_{\ell'} \gamma$ [36]:

$$\Gamma_n^{s''} \simeq \Gamma_{e_n \to e_{\ell'} \gamma}^{(abs) \, s''} \left[1 + e^{-(E_n'' - \mu)/T} \right] \,, \tag{60}$$

$$\Gamma_{e_{n} \to e_{\ell'} \gamma}^{(abs) \, s''} = \sum_{\ell'=0}^{n-1} \sum_{s'=\pm 1} \sum_{\lambda'} \int \frac{\mathrm{d}p'_{y} \mathrm{d}p'_{z} L_{y} L_{z}}{(2\pi)^{2}} \left[1 - f_{e}(E'_{\ell'}) \right] \times \frac{\mathrm{d}^{3} q' V}{(2\pi)^{3}} \left(1 + f_{\gamma}(\omega') \right) \frac{\left| \mathcal{S}_{e_{n} \to e_{\ell'} \gamma^{(\lambda')}}^{s's''} \right|^{2}}{\tau} , \tag{61}$$

где $f_e(E'_{\ell'}) = (1 + \exp[E'_{\ell'}/T])^{-1}$ – равновесная функция распределения электронов с температурой T и нулевым химическим потенциалом, $f_{\gamma}(\omega') = (\exp[\omega'/T] - 1)^{-1}$ – равновесная функция распределения фотонов. В приближении узкого резонансного пика квадрат знаменателя пропагатора (23) может быть заменен на δ -функцию:

$$\left| \frac{1}{P_{\parallel}^2 - M_n^2 - iP_0\Gamma_n^{s''}/2} \right|^2 \simeq \frac{2\pi}{P_0\Gamma_n^{s''}} \delta(P_{\parallel}^2 - M_n^2). \tag{62}$$

С учетом этого квадрат *S*-матричного элемента, определяющий вероятность процесса и необходимый при расчетах вычисляемых величин, таких как сечение рассеяния, может быть представлен в факторизованном виде:

$$\sum_{s,s'=\pm 1} \frac{|\mathcal{S}_{\gamma^{(\lambda)}e_{\ell}\to\gamma^{(\lambda')}e_{\ell'}}^{s's}|^{2}}{\tau} = \sum_{s,s',s''=\pm 1} \sum_{n=0}^{\infty} \int \frac{\mathrm{d}p_{y}'' \mathrm{d}p_{z}''}{(2\pi)^{2} \Gamma_{n}^{s''}} \frac{|\mathcal{S}_{\gamma^{(\lambda)}e_{\ell}\to e_{n}}^{s''s}|^{2}}{\tau} \frac{|\mathcal{S}_{e_{n}\to\gamma^{(\lambda')}e_{\ell'}}^{s's''}|^{2}}{\tau} (63)$$

где

$$S_{\gamma^{(\lambda)}e_{\ell}\to e_{n}}^{s''s} = \frac{\mathrm{i}(2\pi)^{3}\delta_{0,y,z}^{(3)}(P-p'')}{\sqrt{2q_{0}V2E_{\ell}L_{y}L_{z}2E_{n}''L_{y}L_{z}}} \mathcal{M}_{\gamma^{(\lambda)}e_{\ell}\to e_{n}}^{s''s},$$

$$S_{e_{n}\to\gamma^{(\lambda')}e_{\ell'}} = S_{\gamma^{(\lambda)}e_{\ell}\to e_{n}}(q\to q', E_{\ell}\to E_{\ell'}')$$

$$(64)$$

– S-матричные элементы подпроцессов: поглощения фотона, $e\gamma \to e$, и рождения фотона, $e \to e\gamma$.

Амплитуда $\mathcal{M}^{s''s}_{\gamma^{(\lambda)}e_\ell \to e_n}$ одновершинного процесса записывается следующим образом:

$$\mathcal{M}_{\gamma^{(\lambda)}e_{\ell}\to e_{n}}^{s''s} = \frac{\exp\left[-iq_{x}(p_{y}+p_{y}'')/(2\beta)\right]}{\sqrt{M_{\ell}M_{n}(M_{\ell}+m_{e})(M_{n}+m_{e})}} \left[\frac{q_{y}+iq_{x}}{\sqrt{q_{\perp}^{2}}}\right]^{n-\ell} \mathcal{T}_{V}^{s''s},$$
(65)

 $\mathcal{T}_{V}^{s''s}$ выражаются через лоренц-коварианты и инварианты в подпространстве $\{0,3\}$:

$$\mathcal{K}_{1\alpha} = \sqrt{\frac{2}{(p\widetilde{\Lambda}p'') + M_{\ell}M_n}} \left\{ M_{\ell}(\widetilde{\Lambda}p'')_{\alpha} + M_n(\widetilde{\Lambda}p)_{\alpha} \right\} , \qquad (66)$$

$$\mathcal{K}_{2\alpha} = \sqrt{\frac{2}{(p\widetilde{\Lambda}p'') + M_{\ell}M_n}} \left\{ M_{\ell}(\widetilde{\varphi}p'')_{\alpha} + M_n(\widetilde{\varphi}p)_{\alpha} \right\} , \qquad (67)$$

$$\mathcal{K}_3 = \sqrt{2\left[(p\widetilde{\Lambda}p'') + M_\ell M_n\right]}, \qquad (68)$$

$$\mathcal{K}_4 = -\sqrt{\frac{2}{(p\widetilde{\Lambda}p'') + M_\ell M_n}} (p\widetilde{\varphi}p''). \tag{69}$$

для $n \geqslant \ell$

$$\mathcal{I}_{n,\ell}(x) = \sqrt{\frac{\ell!}{n!}} e^{-x/2} x^{(n-\ell)/2} L_{\ell}^{n-\ell}(x) ,$$

$$\mathcal{I}_{\ell,n}(x) = (-1)^{n-\ell} \mathcal{I}_{n,\ell}(x) ,$$
(70)

и $L_n^k(x)$ – обобщенные полиномы Лагерра [30]. Далее в работе будет использовано обозначение $\mathcal{I}_{n,\ell} \equiv \mathcal{I}_{n,\ell} \left(\frac{q_\perp^2}{2\beta} \right)$ и для определенности рассматриваются электроны, для которых знак заряда $\eta = -1$.

$$\mathcal{T}_{V}^{--} = e[2\beta\sqrt{\ell n}(\mathcal{K}_{1}\varepsilon^{(\lambda)})\mathcal{I}_{n-1,\ell-1} + (m_{e} + M_{\ell})(m_{e} + M_{n}) \times \\
\times (\mathcal{K}_{1}\varepsilon^{(\lambda)})\mathcal{I}_{n,\ell} - \sqrt{2\beta n}(m_{e} + M_{\ell})\mathcal{K}_{3}\frac{(\varepsilon^{(\lambda)}\Lambda q) - \mathrm{i}(\varepsilon^{(\lambda)}\varphi q)}{\sqrt{q_{\perp}^{2}}}\mathcal{I}_{n-1,\ell} - (71) \\
-\sqrt{2\beta\ell}(m_{e} + M_{n})\mathcal{K}_{3}\frac{(\varepsilon^{(\lambda)}\Lambda q) + \mathrm{i}(\varepsilon^{(\lambda)}\varphi q)}{\sqrt{q_{\perp}^{2}}}\mathcal{I}_{n,\ell-1}];$$

$$\mathcal{T}_{V}^{-+} = ie\left[\sqrt{2\beta n}(m_{e} + M_{\ell})(\mathcal{K}_{2}\varepsilon^{(\lambda)})\mathcal{I}_{n-1,\ell-1} - \sqrt{2\beta\ell}(m_{e} + M_{n}) \times \right] \\
\times (\mathcal{K}_{2}\varepsilon^{(\lambda)})\mathcal{I}_{n,l} + 2\beta\sqrt{\ell n}\mathcal{K}_{4} \frac{(\varepsilon^{(\lambda)}\Lambda q) - i(\varepsilon^{(\lambda)}\varphi q)}{\sqrt{q_{\perp}^{2}}}\mathcal{I}_{n-1,\ell} - (72) \\
-(m_{e} + M_{\ell})(m_{e} + M_{n})\mathcal{K}_{4} \frac{(\varepsilon^{(\lambda)}\Lambda q) + i(\varepsilon^{(\lambda)}\varphi q)}{\sqrt{q_{\perp}^{2}}}\mathcal{I}_{n,\ell-1}\right]; \\
\mathcal{T}_{V}^{+-} = -ie\left[\sqrt{2\beta\ell}(m_{e} + M_{n})(\mathcal{K}_{2}\varepsilon^{(\lambda)})\mathcal{I}_{n-1,\ell-1} - \sqrt{2\beta n}(m_{e} + M_{\ell}) \times \right] \\
\times (\mathcal{K}_{2}\varepsilon^{(\lambda)})\mathcal{I}_{n,\ell} + (m_{e} + M_{\ell})(m_{e} + M_{n})\mathcal{K}_{4} \frac{(\varepsilon^{(\lambda)}\Lambda q) - i(\varepsilon^{(\lambda)}\varphi q)}{\sqrt{q_{\perp}^{2}}}\mathcal{I}_{n-1,\ell} - (73) \\
-2\beta\sqrt{\ell n}\mathcal{K}_{4} \frac{(\varepsilon^{(\lambda)}\Lambda q) + i(\varepsilon^{(\lambda)}\varphi q)}{\sqrt{q_{\perp}^{2}}}\mathcal{I}_{n,\ell-1}\right]; \\
\mathcal{T}_{V}^{++} = e\left[2\beta\sqrt{\ell n}(\mathcal{K}_{1}\varepsilon^{(\lambda)})\mathcal{I}_{n,\ell} + (m_{e} + M_{\ell})(m_{e} + M_{n})(\mathcal{K}_{1}\varepsilon^{(\lambda)}) \times \right] \\
\times \mathcal{I}_{n-1,\ell-1} - \sqrt{2\beta\ell}(m_{e} + M_{n})\mathcal{K}_{3} \frac{(\varepsilon^{(\lambda)}\Lambda q) - i(\varepsilon^{(\lambda)}\varphi q)}{\sqrt{q_{\perp}^{2}}}\mathcal{I}_{n-1,\ell} - (74) \\
-\sqrt{2\beta n}(m_{e} + M_{\ell})\mathcal{K}_{3} \frac{(\varepsilon^{(\lambda)}\Lambda q) + i(\varepsilon^{(\lambda)}\varphi q)}{\sqrt{q_{\perp}^{2}}}\mathcal{I}_{n,\ell-1}\right].$$

Для астрофизических приложений полученных результатов удобно вместо сечения использовать коэффициент поглощения фотона – вероятность перехода фотона в другое состояние за счет тех или иных процессов, который для комптоновского процесса был определен, например, в работе [76]:

$$W_{\gamma e \to \gamma e} = \sum_{\ell,\ell'=0}^{\infty} \int \frac{\mathrm{d}p_y \mathrm{d}p_z L_y L_z}{(2\pi)^2} f_e(E_{\ell}) \frac{\mathrm{d}p'_y \mathrm{d}p'_z L_y L_z}{(2\pi)^2} \times$$

$$\times [1 - f_e(E_{\ell'})] \frac{\mathrm{d}^3 q' V}{(2\pi)^3} [1 + f_{\gamma}(\omega')] \sum_{\substack{e \ e' = +1}} \frac{|\mathcal{S}_{\gamma^{(\lambda)} e_{\ell} \to \gamma^{(\lambda')} e_{\ell'}}^{s's}|^2}{\tau} .$$
(75)

С помощью коэффициента поглощения удобно, например, вычислять длину свободного пробега $\ell_{\lambda} = W_{\gamma^{(\lambda)}e \to \gamma e}^{-1}$, а дифференциальный коэффициент поглощения входит в уравнение Больцмана.

Интегрируя выражение 75, суммируя по поляризационным состояниям конечного электрона и фотона и проводя несложное интегрирование, получим:

$$W_{\gamma^{(1)}e \to \gamma e} = \frac{\alpha \beta}{2\omega} \sum_{\ell=0}^{\infty} \sum_{n=n_0}^{\infty} \sum_{\epsilon=\pm 1} \frac{f_e(E_{\ell}^{\epsilon})[1 - f_e(E_{\ell}^{\epsilon} + \omega)]}{\sqrt{(M_n^2 - M_{\ell}^2 - q_{\parallel}^2)^2 - 4q_{\parallel}^2 M_{\ell}^2}} \times \left\{ [2\beta(n+\ell) - q_{\parallel}^2](\mathcal{I}_{n,\ell-1}^2 + \mathcal{I}_{n-1,\ell}^2) - 8\beta\sqrt{\ell n}\mathcal{I}_{n,\ell-1}\mathcal{I}_{n-1,\ell} \right\},$$
(76)

$$W_{\gamma^{(2)}e \to \gamma e} = \frac{\alpha \beta}{2\omega} \sum_{\ell=0}^{\infty} \sum_{n=n_0}^{\infty} \sum_{\epsilon=\pm 1}^{\infty} \frac{f_e(E_{\ell}^{\epsilon})[1 - f_e(E_{\ell}^{\epsilon} + \omega)]}{\sqrt{(M_n^2 - M_{\ell}^2 - q_{\parallel}^2)^2 - 4q_{\parallel}^2 M_{\ell}^2}} \times \left\{ \left[\frac{(2\beta(n-\ell))^2}{q_{\parallel}^2} - 2\beta(n+\ell) - 4m_e^2 \right] (\mathcal{I}_{n,\ell}^2 + \mathcal{I}_{n-1,\ell-1}^2) - 8\beta\sqrt{\ell n} \mathcal{I}_{n,\ell} \mathcal{I}_{n-1,\ell-1} \right\},$$
(77)

где

$$E_{\ell}^{\epsilon} = \frac{1}{2q_{\parallel}^{2}} \left[\omega \left(M_{n}^{2} - M_{\ell}^{2} - q_{\parallel}^{2} \right) + \epsilon k_{z} \sqrt{\left(M_{n}^{2} - M_{\ell}^{2} - q_{\parallel}^{2} \right)^{2} - 4q_{\parallel}^{2} M_{\ell}^{2}} \right].$$

В (76) и (77) суммирование по n ограничено согласно закону сохранения энергии и импульса следующим образом:

$$n_0 = \ell + \left\lceil \frac{q_{\parallel}^2 + 2M_{\ell}\sqrt{q_{\parallel}^2}}{2\beta} \right\rceil , \qquad (78)$$

где [x] – целая часть числа x.

С дифференциальным сечением рассеяния коэффициент поглощения связан следующим образом [77]

$$d\sigma_{\gamma^{(\lambda)}e \to \gamma e} = \frac{dW_{\gamma^{(\lambda)}e \to \gamma e}}{j},\tag{79}$$

где $j=|(pq)_{\parallel}|/(E\omega V)$ – плотность потока падающих частиц в продольном по отношению к магнитному полю подпространстве. В работах [23,46,78] исследовался процесс комптоновского рассеяния в замагниченной плазме при

ненулевых температурах и магнитных полях, характерных для магнитосфер радиопульсаров и магнитаров $10^{12} - 10^{15}$ Гс. В данных работах рассчитано сечение рассеяния при условии, что начальный и конечный электроны находятся на основном уровне Ландау. При расчетах учитывался резонанс на виртуальном электроне с конечной шириной, полученной с использованием корректных решений уравнения Дирака (10).

В данных работах сечение интегрируется по импульсам начального электрона в системе покоя плазмы с нормированной функцией распределения $\overline{f}_{n,s}(E_n)$:

$$\sigma_{\lambda}^* = \int_{-\infty}^{\infty} \overline{f}_{n,s}(E_n) d\sigma_{\gamma^{(\lambda)}e \to \gamma e}, \qquad (80)$$

где

$$d\sigma_{\gamma^{(\lambda)}e \to \gamma e} = \frac{dW_{\gamma^{(\lambda)}e \to \gamma e}}{i},\tag{81}$$

 $j = |(pq)_{\parallel}|/(E\omega V)$ – плотность потока падающих частиц в продольном по отношению к магнитному полю подпространстве. Исходя из нормировки функции распределения:

$$\sum_{n,s} \int_{-\infty}^{\infty} \mathrm{d}p_z \overline{f}_{n,s}(E_n) = 1, \tag{82}$$

представим ее в виде:

$$\overline{f}_{n,s}(p_z) = \frac{\beta}{(2\pi)^2 n_e} \frac{1}{e^{E_n/T} + 1},$$
(83)

где

$$n_e = \frac{\beta}{(2\pi)^2} \sum_{\ell=0}^{\infty} (2 - \delta_{\ell,0}) \int_{-\infty}^{\infty} dp_z f_e(E_{\ell})$$
 (84)

– концентрация электронов во внешнем магнитном поле.

С учетом (80) – (84) дифференциальное сечение рассеяния, просуммированное по поляризациям конечного фотона, может быть выражена через дифференциальный коэффициент поглощения:

$$d\sigma_{\lambda}^* = \frac{E\omega}{(pq)_{\parallel}} \frac{1}{n_e} dW_{\gamma^{(\lambda)}e \to \gamma e} \,. \tag{85}$$

Следует отметить, что для дифференциального коэффициента поглощения, будучи проинтегрировано по импульсам начального электрона, в нерелятивистском пределе переходит в известное классическое соотношение [21]:

$$W_{\gamma^{(\lambda)}e \to \gamma e} = \frac{1}{\ell_{\lambda}} = n_e \sigma_{\gamma^{(\lambda)}e \to \gamma e} \,. \tag{86}$$

Согласно разделу 3 для рассматриваемых параметров магнитного поля и плазмы, можно считать, что закон дисперсии как моды 1, так и моды 2, в пренебрежении ω_{pl} , мало отличается от вакуумного за исключением точек резонансов. В таком случае параллельную магнитному полю компоненту импульса фотона можно положить $q_z \simeq \omega \sin \theta$, где θ — угол между импульсом фотона и направлением магнитного поля. Перенормировка волновых функций фотонов становится существенной вблизи циклотронных резонансов, $q_{\parallel}^2 \simeq (M_n + M_{\ell})^2$, однако, как показывает анализ, при значении магнитного поля $B \simeq 10^{12}$ Гс она становится несущественной, так что $Z_{1,2} \simeq 1$.

Сравнительный анализ усредненного по поляризациям начального фотона сечения комптоновского рассеяния в приближении узкого резонансного пика с результатами работы [23] для различных значений магнитного поля $(B=1.7\times 10^{12}~{\rm \Gamma c}~{\rm H}~B=10^{13}~{\rm \Gamma c})$ и температур $(T=5~{\rm кэB}~{\rm H}~T=50~{\rm кэB})$ представлен на рисунках 3. Полученные результаты показывают, что дельтафункциональное приближение достаточно хорошо описывает резонансные пики. В области резонанса сечение комптоновского рассеяния в данном приближении ожидаемо превышает сечение с учетом конечной ширины, так как знаменатель пропагатора электрона во всей резонансной области при дельтафункциональном приближении всегда дает максимальный вклад в интеграл. С увеличением температуры, помимо уширения резонансных пиков, также наблюдается уменьшение точности дельта-функционального приближения особенно для малых углов между направлением распространения фотона и магнитного поля. Сравнение сечения комптоновского процесса при различных магнитных полях показывает, что резонансные пики, наблюдаемые при энергиях фотона, соответствующих высшим уровням Ландау виртуального электрона n>0, убывают быстрее с ростом энергии для относительно малых магнитных полей.

Как было указано выше, использование дельта-функционального приближения упрощает и ускоряет численный анализ, поэтому представляет интерес, используя приближение узкого резонансного пика, исследовать сечение рассеяния с учетом того, что начальный электрон может занимать произвольный уровень Ландау. Как показал численный анализ, для температуры T=5 кэВ и магнитного поля $B\simeq 10^{12}-10^{13}$ Гс сечение комптоновского рассеяния с учетом высших уровней Ландау начального электрона лишь незначительно модифицируется, поэтому можно уверенно предполагать, что начальные электроны занимают преимущественно основной уровень Ландау. С другой стороны, при температуре $T \simeq 50$ кэВ и магнитном поле $B \simeq 10^{13}$ Гс, как показано на рисунке 4, учет ненулевых уровней Ландау приводит к существенному увеличению значений сечения в области резонанса. К еще большим ошибкам (приблизительно на порядок) будет приводить предположение только основного уровня Ландау начального электрона для малых значений магнитного поля $B \simeq 1.7 \times 10^{12}$ при той же температуре $T \simeq 50$ кэВ. Как следствие, при малых магнитных полях и высоких температурах учет высших уровней Ландау становится важным аспектом при изучении комптоновского рассеяния в плазме. Также в сечении присутствуют узкие максимумы, известные в литературе (см., например, [79–81]), соответствующие энергиям $\omega_{n\ell} = (M_n - M_\ell)/\sin\theta$, которые наиболее ярко выражены для фотонов, распространяющихся поперек магнитного поля (см. рис. 4), но вносят малый вклад в интегральные величины.

Рис. 3: Сечения (в единицах σ_T), усредненного по поляризациям начального фотона, $e\gamma^{(2)} \to e\gamma$, полученном в работе [23] (пунктирная линия) и δ -функциональном приближении (сплошная линия) для различных углов θ между импульсом фотона и направлением магнитного поля. Все начальные и конечные электроны находятся на основном уровне Ландау.

Рис. 4: Сечения (в единицах σ_T), усредненного по поляризациям начального фотона и по поляризациям начального электрона, $e\gamma^{(2)}\to e\gamma$, полученном в работе [23] (пунктирная линия) и δ -функциональном приближении (сплошная линия) для различных углов θ между импульсом фотона и направлением магнитного поля. По начальным электронам взя. Значение температуры T=50 кэВ, а индукция магнитного поля – $B=10^{13}$ Гс.

Отметим, что сечение с учетом вклада конечной ширины поглощение электрона, которое было взято непосредственно из результатов работы [46], имеет завышенные значения по сравнению с дельта-функциональным приближением более чем на 2 порядка во всей области энергий фотона моды 1, за исключением тех случаев, когда фотоны с энергиями вблизи резонанса распространяются поперек магнитного поля (см. рис. 5). С другой стороны в сечении для фотона моды 2 наблюдаются существенно завышенные значения приблизительно на порядок для углов $\theta = 90^\circ$ и $\theta = 60^\circ$ между направлением импульса фотона и направлением магнитного поля (см. рис. 6). Однако сравнительный численный анализ сечения комптоновского рассеяния полученного в работе [46] произведенный в [82] показал, что указанная выше разница отсутствует. При этом результаты работы [82] находятся в хорошем соответствии с результатами настоящей статьи (см. рис. 3), результатами работы [83], а также более ранней работой [84], поэтому наличие существенных различий в результатах работы [46] и настоящей статьи может быть связано с опечатками при построении графиков в [46].

Таким образом, применение приближения (62) правомочно в области полей $B \sim 10^{12}-10^{15}$ Гс, характерных для магнитаров и радиопульсаров. С другой стороны, полученные коэффициенты поглощения фотона (76) и (77) определяются только как сумма конечных выражений (за исключением особенных точек, указанных ранее), что является гораздо более удобным в приложениях (например, к решению задачи переноса излучения), чем точный учет конечной ширины.

Рис. 5: Сечения (в единицах σ_T) рассеяния фотона моды 1, $e\gamma^{(1)} \to e\gamma$, полученном в работе [46] (пунктирная линия) и δ -функциональном приближении (сплошная линия) для различных углов θ между импульсом начального фотона и направлением магнитного поля (значения изображены на графиках). $B=2.2\times 10^{12}~\Gamma c,\, T=20~\kappa pB,\, \mu=0$. Начальные и конечные электроны находятся на основном уровне Ландау.

Рис. 6: То же, что и на рис. 5 для параметров плазмы $B=2.2\times 10^{12}$ Гс, T=20 кэВ, $\mu=0$.

Рассмотрим теперь ситуацию сверхсильного магнитного поля, $B \sim 10^{15}-10^{16}$ Γ с и высоких температур T=1 МэВ, которые характерны для гигантских вспышек SGR (источников мягких повторяющихся гамма-всплесков). Исследование комптоновского процесса в магнитных полях указанного масштаба было проведено, например, в работе [76]. Однако, полученные в этом исследовании результаты будут справедливыми только для области энергий фотонов вдали от резонансов. Поэтому представляет самостоятельный интерес вычислить коэффициент поглощения фотона в пределе сильного поля с учетом возможного резонанса на виртуальном электроне с конечной шириной резонансного пика и сравнить с нерезонансным пределом [76] и дельтафункциональным приближением [75]. Поскольку в пределе сильного магнитного поля начальный и конечный электроны будут преимущественно занимать основной уровень Ландау, а виртуальный электрон – первый уровень Ландау, то коэффициент поглощения фотона с учетом конечной ширины резонансного пика примет достаточно простой для вычисления вид. Как было отмечено в разделе 1.3, в сильном магнитном поле энергии фотона, на которых наблюдается резонанс, выше, чем порог рождения e^+e^- пары $q_{_{\parallel}}^2=4m^2$ для фотона моды 2, то целесообразно рассмотреть только каналы рассеяния $e\gamma^{(1)} \to e\gamma^{(1)}$ и $e\gamma^{(1)} \to e\gamma^{(2)}$. Следует отметить, что для фотона моды 1 порог рождения e^+e^- пары $q_{_{\parallel}}^2=(M_1+m)^2$ заведомо выше рассматриваемой области резонанса $q_{\parallel}^2 = (M_1 - m)^2$.

Исходя из результатов работы [76], представим парциальные амплитуды комптоновского процесса в пределе сильного магнитного поля в виде:

$$\mathcal{M}_{e\gamma^{(1)}\to e\gamma^{(1)}} = \frac{8i\pi\alpha m}{\beta} \frac{(q\varphi q')(q\tilde{\varphi}q')}{\sqrt{q_{\perp}^{2}q_{\perp}'^{2}(-Q_{\parallel}^{2})}},$$

$$\mathcal{M}_{e\gamma^{(1)}\to e\gamma^{(2)}} = \frac{8i\pi\alpha m}{\beta} \frac{(q\Lambda q')(q\tilde{\Lambda}Q)}{\sqrt{q_{\perp}^{2}q_{\parallel}'^{2}(-Q_{\parallel}^{2})}},$$
(87)

где $Q_{\parallel}^2=(q-q')_{\parallel}^2<0,\ q_{\alpha}=(\omega,\mathbf{k})$ и $q'_{\alpha}=(\omega',\mathbf{k}')$ – 4-импульсы начального и конечного фотонов соответственно.

После подстановки (87) в (??) коэффициенты поглощения фотона для каналов $e\gamma^{(1)} \to e\gamma^{(1)}$ и $e\gamma^{(1)} \to e\gamma^{(2)}$ в нерезонансной области для фотонов, распространяющихся под углом $\theta = 90^\circ$ по отношению к направлению магнитного поля, могут быть представлены следующим образом:

$$W_{e\gamma^{(1)}\to e\gamma^{(1)}} = \frac{\omega\alpha^{2}m^{2}}{2\beta\pi} \int dQ_{0}dk'_{z} \frac{{k'_{z}}^{2}}{(-Q_{\parallel}^{2})^{2}\varkappa} \theta(-Q_{\parallel}l^{2})\theta({q'_{\parallel}}^{2}) \times \\ \times \sum_{\sigma} f(E_{\sigma})(1 - f(E_{\sigma} + \omega))(1 + f_{\omega'}),$$
(88)

$$W_{e\gamma^{(1)}\to e\gamma^{(2)}} = \frac{\alpha^2 m^2}{2\beta\pi\omega} \int dQ_0 dk_z' \left(1 - \frac{\mathcal{P}^{(2)}(q')}{{q'}_{\parallel}^2}\right) \frac{{q'}_{\parallel}^2 - \omega\omega'}{(-Q_{\parallel}^2)^2\varkappa} \theta(-Q_{\parallel}^2)\theta({q'}_{\parallel}^2) \times \sum_{\sigma} f_{E_{\sigma}} (1 - f_{E_{\sigma} + \omega})(1 + f_{\omega'}),$$
(89)

где $\theta(x)$ – функция Хевисайда, $\varkappa = \sqrt{1-4m^2/Q_{_\parallel}^2}, E_\sigma = \sqrt{p_{z\sigma}^2+m^2},$ а $p_{z\sigma}$ – корни уравнения $Q_0+E_\sigma-E_\sigma'=0$:

$$p_{z\sigma} = -\frac{Q_z}{2} + \sigma Q_0 \varkappa \,. \tag{90}$$

Воспользовавшись результатами работы [76], амплитуды $\mathcal{M}_{e\gamma^{(1)}\to e\gamma^{(1)}}$, $\mathcal{M}_{e\gamma^{(1)}\to e\gamma^{(2)}}$ в пределе сильного магнитного поля и с учетом конечной ширины резонансного пика можно представить следующим образом:

$$\mathcal{M}_{e\gamma^{(1)} \to e\gamma^{(1)}} = \frac{8m\pi\alpha}{\sqrt{(-Q_{\parallel}^{2})}} \exp\left[-\frac{q_{\perp}^{2} + q_{\perp}^{\prime 2} - 2i(q\varphi q^{\prime})}{4\beta}\right] \cdot \frac{1}{\sqrt{q_{\perp}^{2}q_{\perp}^{\prime 2}}} \times \\ \times \sum_{n=1}^{\infty} \frac{((q\Lambda q^{\prime}) - i(q\varphi q^{\prime}))^{n}}{(n-1)!(2\beta)^{n-1}} \frac{(q\tilde{\varphi}q^{\prime})}{(p+q)_{\parallel}^{2} - M_{n}^{2} + iE_{n}^{"}\Gamma_{n}} + \\ + (q \leftrightarrow -q^{\prime}),$$
(91)

$$\mathcal{M}_{e\gamma^{(1)}\to e\gamma^{(2)}} = \frac{8m\pi\alpha}{\sqrt{(-Q_{\parallel}^{2})}} \exp\left[-\frac{q_{\perp}^{2} + q_{\perp}^{\prime 2} - 2i(q\varphi q')}{4\beta}\right] \cdot \frac{1}{\sqrt{q_{\perp}^{2}q_{\parallel}^{\prime 2}}} \times \left[\sum_{n=1}^{\infty} \frac{((q\Lambda q') - i(q\varphi q'))^{n}}{(n-1)!(2\beta)^{n-1}} \frac{(Q\tilde{\Lambda}q')}{(p+q)_{\parallel}^{2} - M_{n}^{2} + iE_{n}^{"}\Gamma_{n}} + (q \leftrightarrow -q'), \right]$$
(92)

где полная ширина поглощения электрона Γ_n является выражением (60).С другой стороны, как показывает численный анализ, в случае сильно замагниченной, горячей, зарядово-симметричной плазмы полная ширина поглощения электрона мало отличается от соответствующего выражения в сильном магнитном поле и ультрарелятивистских электронов [13]:

$$E_n''\Gamma_n = \alpha\beta \sum_{n'=0}^{n-1} \int_0^{(\sqrt{n}-\sqrt{n'})^2} \frac{dx}{\sqrt{(n+n'-x)^2 - 4nn'}} \times \left\{ (n+n'-x)[\mathcal{I}_{n,n'-1}^2(x) + \mathcal{I}_{n-1,n'}^2(x)] - 4\sqrt{nn'}\mathcal{I}_{n,n'}(x)\mathcal{I}_{n-1,n'-1}(x) \right\},$$
(93)

где $E_n''=E+\omega$ – энергия виртуального электрона.

Парциальные коэффициенты поглощения фотона для каналов $e\gamma^{(1)} \to e\gamma^{(1)}$ и $e\gamma^{(1)} \to e\gamma^{(2)}$ с учетом конечной ширины поглощения электрона в случае, когда начальный фотон распространяется поперек магнитного поля, можно представить следующим образом:

$$\begin{split} W_{e\gamma^{(1)}\to e\gamma^{(1)}} &= \frac{\beta\alpha^2m^2}{\pi} \int dQ_0 dk_z' \frac{{k_z'}^2\omega}{(-Q_{\parallel}^2)^2\varkappa} \exp\left[-\frac{\omega^2 + {q'}_{\perp}^2}{2\beta}\right] \times \\ &\times \sum_{n=1}^{\infty} \sum_{\sigma=\pm 1} \frac{1}{[(n-1)!]^2} \left(\frac{\omega\sqrt{q'_{\perp}^2}}{2\beta}\right)^{2(n-1)} \left\{\frac{1}{((p_{\sigma}+q)_{\parallel}^2 - M_n^2)^2 + (E_n''\Gamma_n)^2} + \right. \\ &+ \frac{1}{((p_{\sigma}-q')_{\parallel}^2 - M_n^2)^2 + (E_n''\Gamma_n)^2} - \\ &- 2\sum_{n'=1}^{\infty} \frac{(n-1)!}{(n'-1)!} \left(\frac{\omega\sqrt{q'_{\perp}^2}}{2\beta}\right)^{n'-n} J_{n+n'} \left(\frac{\omega\sqrt{q'_{\perp}^2}}{\beta}\right) \times \\ &\times \frac{[(p_{\sigma}+q)_{\parallel}^2 - M_n^2][(p_{\sigma}-q')_{\parallel}^2 - M_{n'}^2] + E_n''\Gamma_n E_{n'}''\Gamma_{n'}}{[((p_{\sigma}-q')_{\parallel}^2 - M_n^2)^2 + (E_n''\Gamma_n)^2][((p_{\sigma}+q)_{\parallel}^2 - M_{n'}^2)^2 + (E_n''\Gamma_{n'})^2]} \right\} \times \\ &\times f_{E_{\sigma}} (1 - f_{E_{\sigma}+Q_0})(1 + f_{\omega'}) \,, \end{split}$$

$$W_{e\gamma^{(1)}\to e\gamma^{(2)}} = \frac{\beta\alpha^{2}m^{2}}{\pi} \int dQ_{0}dk'_{z} \frac{q'_{\perp}^{2}\omega}{(-Q_{\parallel}^{2})^{2}\varkappa} \exp\left[-\frac{q_{\perp}^{2} + q'_{\perp}^{2}}{2\beta}\right] \times \\ \times \sum_{n=1}^{\infty} \sum_{\sigma=\pm 1} \frac{1}{[(n-1)!]^{2}} \left(\frac{\omega\sqrt{q'_{\perp}^{2}}}{2\beta}\right)^{2(n-1)} \frac{Q_{0}}{\omega} \left\{ ((p_{\sigma} + q)_{\parallel}^{2} - M_{n}^{2})^{2} + (E''_{n}\Gamma_{n})^{2} + \frac{Q_{0}\omega}{q'_{\parallel}^{2}} \frac{1}{((p_{\sigma} - q')_{\parallel}^{2} - M_{n}^{2})^{2} + (E''_{n}\Gamma_{n})^{2}} - 2\sum_{n'=1}^{\infty} \frac{(n-1)!}{(n'-1)!} \left(\frac{\omega\sqrt{q'_{\perp}^{2}}}{2\beta}\right)^{n'-n} J_{n+n'} \left(\frac{\omega\sqrt{q'_{\perp}^{2}}}{\beta}\right) \times \\ \times \frac{[(p_{\sigma} + q)_{\parallel}^{2} - M_{n}^{2}][(p_{\sigma} - q')_{\parallel}^{2} - M_{n'}^{2}] + E''_{n}\Gamma_{n}E''_{n'}\Gamma_{n'}}{[((p_{\sigma} - q')_{\parallel}^{2} - M_{n}^{2})^{2} + (E''_{n}\Gamma_{n})^{2}][((p_{\sigma} + q)_{\parallel}^{2} - M_{n'}^{2})^{2} + (E''_{n}\Gamma_{n'})^{2}]} \times \\ \times \frac{Q_{0}(\omega - Q_{0})}{q'_{\perp}^{2}} \left\{ f_{E_{\sigma}}(1 - f_{E_{\sigma} + Q_{0}})(1 + f_{\omega'}) \right\},$$

$$(94)$$

где $J_n(x)$ – функция Бесселя целого индекса, $p_{\sigma\parallel}^{\alpha}=(E_{\sigma},p_{z\sigma})$. Поперечная составляющая импульса конечного фотона определяется из уравнения дисперсии:

$$q'^{2}_{\parallel} = q'^{2}_{\perp} + \mathcal{P}^{(\lambda)}(q').$$
 (95)

Имеет смысл провести сравнительный анализ результатов работы [76] с резонансным случаем (94) и (94) для зарядово-симметричной плазмы и поперечного направления распространения импульса фотона по отношению к внешнему магнитному полю для различных значений величины магнитного поля, температуры и энергии начального фотона.

На рис. 7–8 показан коэффициент поглощения $W_{1\to 1}$ рассеяния при температуре T=1 МэВ и величине магнитного поля $B=200B_e$ и $B=20B_e$ соответственно. Как видно из рис. 7–8, коэффициент поглощения для канала $\gamma^{(1)}e \to \gamma^{(1)}e$ согласуется с соответствующими результатами для предела сильного поля и отсутствия резонанса, полученными в работе [76] вплоть до энергий начального фотона $\omega \simeq 3$ МэВ для поля $B=200B_e$ и $\omega \simeq 0.3$ МэВ для поля $B=200B_e$. Отсюда вытекает ограничение на применимость резуль-

Рис. 7: Зависимость коэффициента поглощения от энергии начального фотона для канала $e\gamma^{(1)} \to e\gamma^{(1)}$ при поле $B=200B_e$ и температуре T=1 MэB: сплошная линия – коэффициент поглощения с учетом резонанса; штриховая линия – без учета резонанса; пунктирная линия – дельта-функциональное приближение. Здесь $W_0=(\alpha/\pi)^3m\simeq 3.25\cdot 10^2~{\rm cm}^{-1}$.

татов работы [76] по энергиям начального фотона. Аналогичная ситуация наблюдается и для канала $\gamma^{(1)}e \to \gamma^{(2)}e$ (см. рис. 9–10). На рис. 8 и 10 наиболее ярко видно завышение коэффициента поглощения даже при относительно малых энергиях начального фотона. Этот факт связан с тем, что в пределе сильного магнитного поля разложение амплитуды комптоновского процесса по обратным степеням поля уже не будет правомочным.

Следует отметить что при относительно малых температурах $T\lesssim 50$ кэВ с тем же магнитным полем δ -аппроксимация работает хуже из-за уменьшения области резонанса. В целом δ -функциональное приближение достаточно хорошо описывать лишь первый резонансный пик.

Рис. 8: Зависимость коэффициента поглощения от энергии начального фотона для канала $e\gamma^{(1)} \to e\gamma^{(1)}$ при поле $B=20B_e$ и температуре T=1 МэВ. Обозначение для линий то же, что и для рис. 7.

Рис. 9: Зависимость коэффициента поглощения от энергии начального фотона для канала $e\gamma^{(1)} \to e\gamma^{(2)}$ при поле $B=200B_e$ и температуре T=1 МэВ. Обозначение для линий то же, что и для рис. 7.

Рис. 10: Зависимость коэффициента поглощения от энергии начального фотона для канала $e\gamma^{(1)}\to e\gamma^{(2)}$ при поле $B=20B_e$ и температуре T=1 МэВ. Обозначение для линий то же, что и для рис. 7.

4.2 Фотонейтринный процесс

Еще одним процессом, в котором может реализовываться резонанс на виртуальном электроне, является фоторождение пары нейтрино-антинейтрино на электроне, $e\gamma \to e\nu\bar{\nu}$, называемое фотонейтринным процессом. Наряду с другими реакциями, имеющими нейтринную пару в конечном состоянии, интерес к нему связан с тем, что такие процессы могут играть важную роль в остывании нейтронных звезд, поскольку замагниченная плазма прозрачна для нейтрино при значениях параметров (плотности и температуры), которые дают все существующие модели их внутреннего строения.

Первые работы, посвященные фотонейтринному процессу, вышли в 60-ых годах прошлого века [85,86]. Нейтринная светимость, т.е. энергия, уносимая нейтринной парой из единичного объема за единицу времени, за счет него была вычислена в работах [87–93]. В частности, в [91,92] были получены таблицы с большим количеством данных для фотонейтринной излучательной способности и аналитические аппроксимации для них. При этом вклад реакции в процесс нейтринного остывания нейтронной звезды полагался пренебрежимо малым, как отмечают авторы обзора [94], поскольку в холодной и плотной плазме распад плазмона, $\gamma \to \nu \bar{\nu}$, является намного более эффективным каналом по уносу энергии за счет нейтринных пар.

На следующем этапе фотонейтринный процесс изучался с учетом влияния внешней активной среды на дисперсионные и поляризационные свойства фотона [95–97]. Хотя в этих работах были получены уточнения к нейтринной светимости процесса, общий вывод о том, что фотонейтринный процесс является поправкой более высокого порядка к распаду плазмона, остался неизменным.

Наконец, в [98,99] был рассмотрен резонанс в фотонейтринном процессе. Как было показано в этих работах, даже в магнитарных полях условие (2), при котором магнитное поле является доминирующим параметром среды, перестает выполняться при высоких значениях плотности плазмы $\rho \gtrsim 10^8$

г/см³. Такая плотность может достигаться в границе между внешней и внутренней корой магнитара. В результате у электронов (позитронов) плазмы начинают возбуждаться высшие уровни Ландау, что приводит к возможности резонанса в этой реакции. Это может увеличивать нейтринную светимость (количество энергии, уносимое нейтринными парами из единицы объема вещества за единицу времени) за счет фотонейтринного процесса на 100-200 процентов, чего, однако, недостаточно для того, чтобы он мог конкурировать по эффективности с распадом плазмона.

4.3 Резонансное рождение аксионов в магнитосфере магнитара

Как было отмечено во Введении к настоящей диссертации, аксион, предложенный Печчеи и Куинн [100] для решения проблемы сохранения СР инвариантности сильных взаимодействий, остается в настоящее время не только самым привлекательным решением проблемы СР, но и наиболее вероятным кандидатом на роль холодной темной материи Вселенной. Поскольку масштаб нарушения симметрии Печчеи-Куинн, f_a , оказывается велик, аксионы очень слабо взаимодействуют с веществом (константа взаимодействия $f_a^{-1} \lesssim 10^{-8} \ \Gamma$ 9В $^{-1}$ [101]). В этой связи возникают определенные трудности на пути экспериментального обнаружения аксиона.

Как уже неоднократно отмечалось ранее, влияние внешней активной среды на реакции с участием элементарных частиц и, в частности, аксионов, в зависимости от значений параметров среды (температуры T, химического потенциала μ или индукции магнитного поля B), может как катализировать эти реакции, так и оказывать дополнительное (к f_a^{-1}) их подавление.

В таких условиях представляет интерес рассмотреть процесс рождения аксионов в реакции общего вида $i \to f + a$ (диаграмма на рис. 11), где в начальном (i) и конечном (f) состояниях могут присутствовать заряженные компоненты среды. На рис. 11 зачерненный кружок обозначает эффективную вершину γa взаимодействия (диаграммы на рис. 12). Нетрудно видеть, что из-за наличия виртуального фотона рассматриваемый процесс может иметь

Рис. 11: Диаграммы Фейнмана для процесса общего вида $i \to f + a$. Двойные линии означают, что влияние внешнего поля на начальное и конечное состояния учтено точно.

Рис. 12: Диаграммы Фейнмана для эффективной вершины γa взаимодействия.

резонансный характер. Похожая ситуация для области, близкой к резонансу, была рассмотрена в работе [102] на примере комптоновского рассеяния реликтовых фотонов на электронах и позитронах магнитосферы магнитара. Однако, как будет показано ниже, результаты, полученные в [102], являются неточными.

В существующих аксионных моделях и в присутствии внешнего магнитного поля процесс $i \to f + a$ можно описать эффективным лагранжианом вида [101] (см. также формулы (58) и (??) главы ??):

$$\mathcal{L}_{a\gamma}(x) = g_{a\gamma}\tilde{F}^{\mu\nu}[\partial_{\nu}A_{\mu}(x)]a(x) +$$

$$+ \frac{g_{af}}{2m_{f}}[\bar{\psi}_{f}(x)\gamma^{\mu}\gamma_{5}\psi_{f}(x)]\partial_{\mu}a(x) - e_{f}[\bar{\psi}_{f}(x)\gamma^{\mu}\psi_{f}(x)]A_{\mu}(x).$$
(96)

Напомним, что A_{μ} — четырехмерный потенциал квантованного электромагнитного поля, $\tilde{F}^{\mu\nu}$ — дуальный тензор внешнего поля, $\psi_f(x)$ и a(x) — квантованные фермионное и аксионное поля, $g_{a\gamma}=\alpha\zeta/2\pi f_a$, ζ — модельно зависимый параметр порядка единицы, $g_{af}=C_f m_f/f_a$ — безразмерная Юкавская константа связи аксионов с фермионами с модельно зависимым фактором $C_f,\ e_f$ — электрический заряд фермиона (для электрона $e_f=-e$).

Исходя из лагранжи
ана (96) амплитуда процесса $i \to f + a$ может быть

представлена в следующем виде

$$\mathcal{M}_{i\to f}^{a} = -\frac{\mathcal{M}_{if}^{\gamma} \mathcal{M}_{\gamma\to a}}{q'^2 - \varkappa^{(\varepsilon)}(q')}, \qquad (97)$$

где $\mathcal{M}_{if}^{\gamma}$ – амплитуда процесса $i \to f + \gamma$ с излучением фотона в конечном состоянии,

$$\mathcal{M}_{\gamma \to a} = i\bar{g}_{a\gamma}(\varepsilon \tilde{F} q') \tag{98}$$

— амплитуда перехода фотон \rightarrow аксион, $q'^{\mu}=(\omega',\mathbf{k}')$ — четырехмерный импульс аксиона, $\varkappa^{(\varepsilon)}(q')$ — собственное значение поляризационного оператора фотона, которому соответствует вектор поляризации ε_{α} . Эффективную константу аксион-фотонного взаимодействия, $\bar{g}_{a\gamma}$, можно представить в виде трех слагаемых: $\bar{g}_{a\gamma}=g_{a\gamma}+\Delta g_{a\gamma}^B+\Delta g_{a\gamma}^{pl}$. Первое слагаемое соответствует взаимодействию аксиона с электромагнитным полем, обусловленному аномалией Адлера (диаграмма (а) на рис. 12), второе обусловлено взаимодействием аксиона с фотоном через электронную петлю (диаграмма (b) на рис. 12), а третье — рассеянием вперед на электронах и позитронах плазмы (диаграммы (c) и (d) на рис.2). Подробный расчет $\Delta g_{a\gamma}^B$ и $\Delta g_{a\gamma}^{pl}$ был сделан ранее в работах [103] и [104] соответственно. Здесь мы отметим только, что для корректного вычисления величины $\Delta g_{a\gamma}^B$ в ней необходимо произвести вычитание, соответствующее аномалии Адлера [103]. Этот факт, в частности, не был учтен в работе [102], что является одной из причин ошибочности полученных там результатов.

Далее представим $\varkappa^{(\varepsilon)}(q')$ в виде $\varkappa^{(\varepsilon)} = \Re - i\Im$, где $\Re = Re(\varkappa)$ реальная, а $\Im = Im(\varkappa)$ мнимая части поляризационного оператора. Последняя обусловлена процессами поглощения и излучения фотонов в плазме и, согласно [36], следующим образом выражается через полную ширину рождения фотона, Γ_{cr} :

$$\Im = \omega' \left(e^{\omega'/T} - 1 \right) \Gamma_{cr}, \quad \Gamma_{cr} = \sum_{i,f} \int |\mathcal{M}_{if}^{\gamma}|^2 d\Phi_{if}, \tag{99}$$

где $d\Phi_{if}$ – элемент фазового объема состояний i и f для процесса $i \to f + \gamma$

с учетом соответствующих функций распределения, и сумма берется по всем возможным начальным и конечным состояниям.

С учетом вышесказанного, аксионная светимость за счет всевозможных реакций с участием частиц плазмы может быть представлена в виде

$$Q = \sum_{i,f} \int d\Phi_{if} \, d\Phi' \, \omega' |\mathcal{M}_{if}^{\gamma}|^2 \,, \tag{100}$$

где $d\Phi' = \frac{d^3k'}{(2\pi)^3 2\omega'}$ фазовый объем аксиона.

C учетом (97) и (99) Q примет вид

$$Q = \int \frac{d\Phi' |\mathcal{M}_{\gamma \to a}|^2}{e^{\omega'/T} - 1} \frac{\Im}{(q'^2 - \Re)^2 + \Im^2}.$$
 (101)

Как видно из (101), наиболее существенный вклад в аксионную светимость будет давать область резонанса, т.е. окрестность точки пересечения дисперсионных кривых аксиона $q'^2 = m_a^2$ и фотона, $q'^2 = \Re$, так что фотон становится реальным. В окрестности резонанса часть подынтегрального выражения в (101) можно интерполировать δ -функцией:

$$\frac{\Im}{(q'^2 - \Re)^2 + \Im^2} \simeq \pi \,\delta(q'^2 - \Re). \tag{102}$$

Воспользовавшись свойствами δ -функции, перепишем (102) в виде

$$\frac{\Im}{(q'^2 - \Re)^2 + \Im^2} \simeq \pi \int \frac{d^3k}{2\omega} Z_{\varepsilon} \delta^4(q - q'), \qquad (103)$$

где $Z_{\varepsilon}^{-1}=1-\frac{\partial\Re}{\partial\omega^2}$ соответствует перенормировке волновой функции фотона. С учетом (103) светимость (101) примет вид

$$Q \simeq (2\pi)^4 \int \frac{d^3k}{2\omega(2\pi)^3} \frac{\omega}{e^{\omega/T} - 1} \times$$

$$\times \int \frac{d^3k'}{2\omega'(2\pi)^3} Z_{\varepsilon} |\mathcal{M}_{\gamma \to a}|^2 \delta^4(q - q').$$
(104)

Полученное выражение в точности соответствует формуле для аксионной светимости в процессе $\gamma \to a$. Таким образом, аксионная светимость в области

резонанса за счет всевозможных реакций с участием частиц среды однозначно выражается через светимость перехода фотон \rightarrow аксион.

После интегрирования с δ -функциями светимость приводится к виду

$$Q = \frac{\bar{g}_{a\gamma}^{2}(\beta)^{2}}{32\pi^{2}\alpha} \int_{-1}^{1} \frac{dx}{e^{\omega/T} - 1} \frac{Z_{\varepsilon}k(\varepsilon\tilde{\varphi}q)^{2}}{\left|1 - \frac{d\omega^{2}}{dk^{2}}\right|} \bigg|_{k=k^{*}}.$$
 (105)

Здесь $x=\cos\theta$, θ – угол между направлением импульса фотона и магнитным полем, $k^*=k^*(\theta)$ – корень уравнения $\omega^2(\mathbf{k})=m_a^2+k^2$.

Дальнейшее вычисление светимости будет существенно зависеть от характеристик плазмы, определяющих, в конечном итоге, дисперсионные свойства фотонов. Здесь мы остановимся на двух частных случаях.

і) Слабо замагниченная плотная плазма, $m_a^2 \ll \beta \ll T^2, \mu^2$. В этом случае в качестве ε_α будет выступать вектор поляризации продольного плазмона

$$\varepsilon_{\alpha} = \sqrt{\frac{q^2}{(uq)^2 - q^2}} \left(u_{\alpha} - \frac{(uq)}{q^2} q_{\alpha} \right), \tag{106}$$

где u_{α} — 4-скорость плазмы. Светимость (105) примет простой вид

$$Q = \frac{\bar{g}_{a\gamma}^2(\beta)^2}{48\pi^2\alpha} \frac{(k^*)^3}{e^{k^*/T} - 1}$$
 (107)

в полном согласии с результатом работы [105]. Отметим, что в данном пределе величина k^* не зависит от θ , а определяется только параметрами плазмы.

- іі) Сильно замагниченная нерелятивистская холодная плазма $\beta\gg m^2$, $\mu^2\gg T^2$. Здесь $\varepsilon_{\alpha}=(q\tilde{\varphi})_{\alpha}/\sqrt{q_{\parallel}^2},~\Re\simeq (q\tilde{\varphi}\tilde{\varphi}q)\left(\frac{\omega_p^2(1+\xi)}{\omega^2}-\xi\right)$, и плазменная частота ω_p следующим образом связана с концентрацией электронов: $\omega_p^2=4\pi\alpha n/m;~\xi=(\alpha/3\pi)(B/B_e)$. Кроме того, в рассматриваемом пределе $\bar{g}_{a\gamma}\simeq g_{a\gamma}$. Однако, в отличие от случая слабо замагниченной плазмы, светимость до конца интегрируется лишь в некоторых частных случаях:
 - масса аксиона наименьший параметр задачи, т.е. ω_p , $T \gg m_a$ (например, рождение легких, с массой меньшей, чем 10^{-5} эВ, аксионов в магнитосфере магнитара). В этом случае $k^* \simeq \omega_p \sqrt{1+1/\xi}$ и светимость (105)

примет вид

$$Q \simeq \frac{g_{a\gamma}^2(\beta)^2}{16\pi^2\alpha} \omega_p^3 \frac{(1+\xi)^{3/2}}{\xi^{5/2}} \times \left(\exp\left[\frac{\omega_p}{T}\sqrt{1+\frac{1}{\xi}}\right] - 1\right)^{-1}.$$
 (108)

• $\omega_p \gg T \sim m_a$. Анализ показывает, что в этом случае интеграл в (105) набирает свою величину в области $x \simeq 1$, и, следовательно, $k^* \simeq \omega_p$. Тогда светимость примет вид

$$Q \simeq \frac{g_{a\gamma}^{2}(\beta)^{2}}{16\pi^{2}\alpha} T m_{a}^{2} e^{-\omega_{p}/T}.$$
 (109)

Кроме светимости представляет самостоятельный интерес оценка количества аксионов, рождаемых в магнитосфере магнитара в единице объема за единицу времени с помощью рассмотренного выше резонансного механизма, поскольку аксион является одним из основных кандидатов в составляющие холодной темной материи. Аналогично (105), (108) и (109) получаем:

$$\frac{dN}{dtdV} = \frac{g_{a\gamma}^2(\beta)^2}{32\pi^2\alpha} \int_{-1}^1 \frac{dx}{e^{\omega/T} - 1} \frac{kZ_{\varepsilon}(\varepsilon\tilde{\varphi}q)^2}{\omega \left|1 - \frac{d\omega^2}{dk^2}\right|} \bigg|_{k=k^*},\tag{110}$$

$$\frac{dN}{dtdV} \simeq \frac{g_{a\gamma}^2(\beta)^2}{16\pi^2\alpha} \omega_p^2 \frac{1+\xi}{\xi^2} \times \left(\exp\left[\frac{\omega_p}{T}\sqrt{1+\frac{1}{\xi}}\right] - 1\right)^{-1}, \quad \omega_p, T \gg m_a, \tag{111}$$

$$\frac{dN}{dtdV} \simeq \frac{g_{a\gamma}^2(\beta)^2}{16\pi^2\alpha} \frac{Tm_a^2}{\omega_p} e^{-\omega_p/T}, \quad \omega_p \gg T \sim m_a.$$
 (112)

В частности, для числа аксионов, рождаемых реликтовым излучением $(T \sim m_a \sim 10^{-3}\,\mathrm{sB})$, при минимальной концентрации плазмы $(\sim 10^{15}\,\mathrm{cm}^{-3})$, при которой все еще реализуется резонансный механизм $(\omega_p \gtrsim m_a)$ и величине магнитного поля $B=100B_e$, получаем из (110) следующую максимальную оценку $dN/(dVdt) \sim 10^{10}$ штук в см⁻³ за секунду. Таким образом,

в объеме магнитосферы магнитара ($\sim 10^{19}\,{\rm cm}^3$), заполненной сильным магнитным полем, рождается за секунду 10^{29} аксионов. Оценивая в самом оптимистичном варианте число магнитаров в Галактике $\sim 10^6$, получаем, что за $\sim 10^9$ лет они произведут $\sim 10^{51}$ аксионов, и, следовательно, концентрация аксионов в Галактике должна быть $n_a \sim 10^{-21}\,{\rm cm}^{-3}$. Это число можно сравнить, например, с концентрацией барионов $n_b \sim 10^{-7}\,{\rm cm}^{-3} \gg n_a$. Следовательно, утверждение автора [102] о том, что «окрестности магнитных нейтронных звезд с полями $B \gg B_e$ могут являться мощными генераторами по преобразованию реликтового излучения в аксионную составляющую холодной скрытой массы» не является верным.

4.4 Резонансный механизм рождения e^+e^- пар в полярной шапке магнитара

Наконец, рассмотрим реакцию $\gamma e \to e e^+ e^-$, в которой могут иметь место одновременно два резонанса: на виртуальном фотоне и на виртуальном электроне, что особенно важно для актуальной в настоящее время проблемы описания особенностей радиоизлучения некоторых магнитаров [1–3,106,107].

Согласно общепринятой модели, для формирования радиоизлучения в радиопульсаре необходима эффективная генерация электрон-позитронной плазмы в его магнитосфере [108], причем механизмы рождения e^+e^- -пар в радиопульсарах хорошо известны (см., например, [80, 109]).

В модели магнитосферы магнитара рождение e^+e^- -пар происходит в два этапа [110]. Ускоренная вдоль магнитного поля заряженная частица (электрон или позитрон) резонансно конвертирует мягкий рентгеновский фотон в жесткий, который впоследствии, как предполагается, после набора угла между импульсом фотона и направлением магнитного поля (так называемый питч-угол), должен распадаться на электрон-позитронную пару. Однако в действительности этого не происходит, так как в сильном магнитном поле существенными становятся дисперсионные свойства фотона (см. раздел ?? и рис. 13). Такой фотон, рожденный в реакции $e\gamma \to e\gamma$ с энергией и им-

Рис. 13: Закон дисперсии фотона в сильном магнитном поле. Точкой на дисперсионной кривой показано положение фотона, рождающегося в реакции $e\gamma \to e\gamma$. Цифры 1 и 2 обозначают дисперсионные кривые в областях ниже и выше порога рождения e^+e^- -пар.

пульсом, удовлетворяющими соотношению $\omega^2 - k_z^2 < 4m^2$ (магнитное поле направлено по оси z), в процессе распространения в магнитном поле будет все время оставаться на дисперсионной ветви 1 и не сможет преодолеть зазор между ветвями 1 и 2 с рождением e^+e^- -пары, если величина магнитного поля $B \gtrsim 0.1 B_e$ [111–113], что заведомо выполняется в магнитарах. При достаточно больших q_\perp^2 такой фотон может лишь перейти на асимптотически больших расстояниях в позитроний – связанное состояние e^+e^- -пары.

В связи с этим представляет интерес рассмотреть альтернативный механизм рождения e^+e^- -пар в магнитосфере магнитара. В качестве такого механизма может выступать комптоноподобный процесс $\gamma e \to e e^+e^-$, где под e в дальнейшем понимается электрон или позитрон. Основное преимущество такой реакции по сравнению с принятой моделью состоит в том, что рождение пары происходит практически мгновенно в точке взаимодействия начальных фотона и электрона (в действительности этот масштаб имеет порядок комптоновской длины волны электрона). При таком подходе эффект захвата фотона полем становится несущественным. Вместе с тем, с помощью реакции $\gamma e \to e e^+e^-$ возможно за короткие времена заполнить ограниченную

Рис. 14: Диаграммы Фейнмана для процесса $\gamma + e^- \to e^- + e^+ e^-$. Двойные линии означают, что влияние внешнего поля на начальное и конечное состояния учтено точно.

область достаточно плотной e^+e^- -плазмой, как, например, в процессе гигантской вспышки источника мягких повторяющихся гамма всплесков (SGR).

Процесс рождения электрон-позитронных пар в реакции $\gamma e \to e e^+ e^-$ описывается восемью диаграммами Фейнмана (см. рис. 14). Нетрудно видеть, что резонанс на виртуальном электроне имеет место только в s-канальных диаграммах (рис. 14 a и соответствующая диаграмма с перестановкой $p' \leftrightarrow p_2$). Тем не менее, даже с учетом резонанса поставленная задача будет иметь достаточно громоздкий вид, поскольку заряженные фермионы могут занимать произвольные уровни Ландау. Однако в приложении к магнитарам данную проблему можно значительно упростить. Действительно, рассмотрим ситуацию, когда электрон, ускоренный в электрическом зазоре полярной шапки магнитара, сталкивается с гамма-квантом из равновесной термальной бани, образованной излучением рентгеновских фотонов с поверхности нейтронной звезды. В такой постановке задачи мы будем иметь следующую иерархию параметров: $T^2 \ll m^2 \ll \beta \ll E^2$. Кроме того, электрон, до ускорения нахо-

дившийся на основном уровне Ландау ($\ell = 0$), двигаясь вдоль силовой линии магнитного поля, остается все время на основном уровне. (Мы рассматриваем небольшую окрестность полярной шапки, где электрическое, \mathcal{E} , и магнитное \mathbf{B} поля коллинеарны и при этом $|\mathcal{E}| \ll |\mathbf{B}|$ [110].) Не нарушая общности будем считать, что рассеянный электрон и электрон и позитрон пары также будут находиться на основном уровне Ландау с $\ell' = n_1 = n_2 = 0$. Действительно, как было показано в разделе ??, полученный результат для коэффициента поглощения электрона не будет зависеть от состояния конечных частиц, а будет определяться только начальными состояниями электрона и фотона.

С учетом этого замечания S – матричный элемент процесса $\gamma e \to e e^+ e^-$ может быть записан в виде:

$$S_{\gamma e \to e e^{+} e^{-}} = (ie)^{3} \int d^{4}X d^{4}Y d^{4}Z \times$$

$$\times \{ \bar{\Psi}_{p',0}^{-}(Y) \gamma_{\beta} \hat{S}(X,Y) \hat{A}(X) \Psi_{p,0}^{-}(X) \bar{\Psi}_{p_{2},0}^{-}(Z) \gamma_{\mu} \Psi_{p_{1},0}^{+}(Z) - \bar{\Psi}_{p_{2},0}^{-}(Y) \gamma_{\beta} \hat{S}(X,Y) \hat{A}(X) \Psi_{p,0}^{-}(X) \bar{\Psi}_{p',0}^{-}(Z) \gamma_{\mu} \Psi_{p_{1},0}^{+}(Z) \} G_{\beta\mu}(Z-Y) ,$$
(113)

где $p^{\mu}=(E,\mathbf{p})$ – 4-импульс начального электрона, $p'^{\mu}=(E',\mathbf{p}')$ – 4-импульс конечного электрона, $p_2^{\mu}=(E_2,\mathbf{p}_2)$ и $p_1^{\mu}=(E_1,\mathbf{p}_1)$ – 4-импульсы электрона и позитрона пары соответственно, $X^{\mu}=(X_0,X_1,X_2,X_3),\,Y^{\mu}=(Y_0,Y_1,Y_2,Y_3),\,Z^{\mu}=(Z_0,Z_1,Z_2,Z_3),$

$$A_{\mu}(X) = \frac{\varepsilon_{\mu}(q)e^{-i(qX)}}{\sqrt{2\omega V}}, \qquad (114)$$

– квантованное поле начального фотона, несущего 4-импульс $q^{\mu}=(\omega,\mathbf{k}).$

$$G_{\beta\mu}(Z) = \int \frac{\mathrm{d}^{4}q'}{(2\pi)^{4}} \mathrm{e}^{-\mathrm{i}(q'Z)} \mathcal{G}_{\beta\mu}(q') , \qquad (115)$$

$$\mathcal{G}_{\beta\mu}(q') = \sum_{\lambda=1}^{3} \frac{b_{\beta}^{(\lambda)} b_{\mu}^{(\lambda)}}{(b^{(\lambda)})^{2}} \frac{-i}{q'^{2} - \varkappa^{(\lambda)}(q')} ,$$

– фурье-образ пропагатора виртуального фотона в базисе из 4-векторов $b_{\alpha}^{(\lambda)}$, определяемых согласно (30), $\varkappa^{(\lambda)}(q')$ – собственные значения поляризационного оператора фотона, соответствующие векторам $b_{\alpha}^{(\lambda)}$ (см., например, [111]

и раздел ??), $\Psi_{p,0}^{\mp}(X)$ — волновые функции электрона (позитрона) во внешнем магнитном поле, находящихся на основном уровне Ландау и определяемые формулами (??) и (??) приложения ??, $\hat{S}(X,Y)$ — пропагатор электрона, определяемый формулами (??) — (??).

После интегрирования (113) по d^4X , d^4Y и d^4Z мы получим

$$S_{\gamma e \to e e^+ e^-} = \frac{i(2\pi)^3 \delta^3(\dots) \mathcal{M}_{\gamma e \to e e^+ e^-}}{\sqrt{2\omega V 2E L_y L_z 2E' L_y L_z 2E_1 L_y L_z 2E_2 L_y L_z}}, \qquad (116)$$

где
$$\delta^3(\ldots) \equiv \delta(P_0 - E' - E_1 - E_2)\delta(P_y - p'_y - p_{1y} - p_{2y})\delta(P_z - p'_z - p_{1z} - p_{2z}),$$

 $P_\alpha \equiv (p+q)_\alpha, \ \alpha = 0, 2, 3.$

Амплитуда процесса $\gamma e \to e e^+ e^-$, таким образом, может быть представлена в виде

$$\mathcal{M}_{\gamma e \to e e^{+} e^{-}} \simeq -i \frac{2\sqrt{2}e^{3}m^{2}}{\pi} \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} \frac{dq'_{x}}{q'^{2} - \varkappa^{(2)}(q')} \exp\left[-\frac{i(q\varphi q')}{2eB}\right] \times \\ \times \exp\left[-\frac{i(q_{x} - q'_{x})(p_{y} + p'_{y})}{2eB}\right] \exp\left[\frac{iq'_{x}(p_{1y} - p_{2y})}{2eB}\right] \times \\ \times \exp\left[-\frac{2q'_{\perp}^{2} + q_{\perp}^{2}}{4\beta}\right] \frac{1}{n!} \left(\frac{(q\Lambda q') - i(q\varphi q')}{2\beta}\right)^{n} \times \\ \times \frac{(pq')_{\parallel}[(pq)_{\parallel} + (p'q)_{\parallel}]}{(P_{\parallel}^{2} - m^{2} - 2eBn + iP_{0}\Gamma_{n})\sqrt{q_{\parallel}^{2}q_{\parallel}^{\prime 2}[(pp')_{\parallel} + m^{2}]}} \Big|_{\substack{q'_{\parallel} = p_{1y}^{\alpha} + p_{2y}^{\alpha} \\ q'_{y} = p_{1y} + p_{2y}}} - \\ -(p' \leftrightarrow p_{2}) .$$

$$(117)$$

Здесь необходимо сделать следующее замечание. Мнимая часть пропагатора электрона, связанная с полной шириной поглощения электрона соотношением (27), вообще говоря, зависит от поляризационного состояния электрона, и только в пределе сильного поля, $B \gg B_e$, эта зависимость становится несущественной, что позволяет провести суммирование по поляризациям электрона и представить амплитуду в виде (117).

Для корректного описания рассматриваемого процесса вблизи резонанса необходимо также учесть полную ширину процесса поглощения электрона, Γ_n , основной вклад в которую будет давать переход $e_n \to \gamma + e_{n'}$. Исходя из результатов работ [16,114], величина $P_0\Gamma_n$ в пределе сильного поля и ультрарелятивистских электронов может быть представлена в следующем виде:

$$P_0\Gamma_n \simeq \alpha\beta \sum_{n'=0}^{n-1} \int_0^{(\sqrt{n}-\sqrt{n'})^2} \frac{dx}{\sqrt{(n+n'-x)^2-4nn'}} \times (118)$$

$$\times \{(n+n'-x)[\mathcal{I}_{n,n'-1}^2(x) + \mathcal{I}_{n-1,n'}^2(x)] - 4\sqrt{nn'}\mathcal{I}_{n,n'}(x)\mathcal{I}_{n-1,n'-1}(x)\}.$$

Определяя стандартным путем коэффициент поглощения электрона в равновесном фотонном газе, имеющем температуру T, получим

$$W = \int \frac{\delta^3(\ldots)|\mathcal{M}|^2}{2^5(2\pi)^6\omega E E' E_1 E_2} \frac{d^3q}{e^{\omega/T} - 1} dp'_y dp'_z dp_{1y} dp_{1z} dp_{2y} dp_{2z}.$$
 (119)

Как уже отмечалось, основной вклад в амплитуду будут давать области резонанса, так что мы можем заменить часть подынтегрального выражения в (119) δ -функцией

$$\frac{1}{(P_{\parallel}^2 - m^2 - 2eBn)^2 + P_0^2 \Gamma_n^2} \simeq \frac{\pi}{P_0 \Gamma_n} \delta(P_{\parallel}^2 - m^2 - 2eBn). \tag{120}$$

Вводя новые переменные $y=q_\perp'^2/\beta$ и $z=q_z'/E$, получим в нашем приближении $q_\parallel'^2\simeq 2\beta z$, $(q-q')_\parallel^2\simeq -m^2z^2/(1-z)$. Кроме того, лидирующий вклад от уровней Ландау виртуального электрона будет определяться только уровнем с n=1, вклады высших уровней оказываются подавлены температурой. В этом случае ширина поглощения электрона принимает особенно простой вид: $P_0\Gamma_1\simeq \alpha\beta(1-e^{-1})$. После интегрирования с δ -функциями выражения (119), с учетом вышесказанного, получим

$$W \simeq \frac{\alpha^2 T}{2\pi (1 - e^{-1})} \left(\frac{m}{E}\right)^2 \ln\left(1 - e^{-\frac{\beta}{2ET}}\right)^{-1} \int_{2B_e/B}^1 dz \times$$
 (121)

$$\times \int_{0}^{\infty} \frac{dy y e^{-y}}{z^{2}(2z-y)^{2}+4\alpha^{2}(B_{e}/B)^{2}e^{-y}}.$$

Нетрудно видеть, что и здесь часть подынтегрального выражения можно приближенно заменить δ -функцией:

$$\frac{1}{z^2(2z-y)^2 + 4\alpha^2(B_e/B)^2 e^{-y}} \simeq \frac{\pi e^{y/2}}{2\alpha} \frac{B}{B_e} \delta(2z^2 - yz), \qquad (122)$$

т.е. в процессе $e\gamma \to ee^+e^-$ в пределе сильного магнитного поля и ультрарелятивистских электронов, кроме резонанса на виртуальном электроне становится возможным резонанс на виртуальном фотоне. После подстановки (122) в (121) и несложного интегрирования получим

$$W \simeq \frac{\alpha}{2} T \frac{B}{B_e} \left(\frac{m}{E}\right)^2 \ln\left(1 - e^{-\frac{\beta}{2ET}}\right)^{-1}.$$
 (123)

Вероятность рождения e^+e^- -пар в единицу времени как функция энергии начального электрона представлена на рис. 15.

Рис. 15: Зависимость вероятности рождения электрон-позитронных пар в единицу времени от энергии начального электрона при $B=100B_e$ и T=1 кэВ.

Оценивая минимальную длину свободного пробега электрона с энергией $E \sim 10^4 m$ при величинах магнитного поля и температуры таких же, как

на рис. 15, получим $\ell \simeq 57$ см, что оказывается много меньше величины зазора (~ 100) м. Вместе с тем изменение числа электронов в потоке за счет рождения пар может быть выражено через оптическую толщу τ следующим образом:

$$N = N_0 \exp\left[-\tau\right] \simeq N_0 \exp\left[-\int_0^h dxW\right],\tag{124}$$

где h — ширина электрического зазора, N_0 — начальное число электронов в потоке.

Оценивая отношение N/N_0 при $h \sim 10^4$ см, $E \sim 10^7 m$, получим $N/N_0 \simeq 0.99$. Таким образом, рассматриваемый процесс дает возможность увеличивать количество e^+e^- -плазмы в области полярной шапки. Однако детальный количественный анализ развития каскада e^+e^- -пар требует решения кинетического уравнения, что выходит за рамки нашей задачи.

Наконец, необходимо сделать еще одно замечание. Резонансы на виртуальных электроне и фотоне соответствуют тому факту, что указанные частицы становятся реальными. Таким образом, рассматриваемый процесс схематично можно представить в виде совокупности трех подпроцессов:

- поглощение фотона электроном с рождением электрона на первом уровне Ландау, $e_0 + \gamma \to e_1$;
- переход электрона с первого уровня на нулевой с испусканием жесткого γ -кванта, $e_1 \to e_0 + \gamma$;
- рождение e^+e^- -пары жестким фотоном, $\gamma \to e^+e^-$.

Парциальные вклады (branching fractions) последних двух реакций приближенно равны 1 и 1/2 соответсвенно (множитель 1/2 возникает от того, что в процессе $\gamma \to e^+e^-$ участвует фотон только одной поляризации из двух возможных). Поэтому коэффициент поглощения электрона в процессе $\gamma e \to e e^+e^-$ может быть легко получен из вероятности перехода $\gamma + e_0 \to e_1$, как $W = W_{\gamma + e_0 \to e_1}/2$. При этом вероятность $W_{\gamma + e_0 \to e_1}$ может быть получена из результатов работы [114] и согласуется с нашим результатом (123).

5 Затухание фотона в замагниченной плазме

При исследовании различных физических процессов часто встречаются расходимости, которые связаны с ограниченностью применяемой теории, приводящей к расходящимся выражениям. Примером такой расходимости является ультрафиолетовая расходимость, которая возникает в квантовой теории поля при вычислении пропагаторов частиц. Для устранения этих расходимостей используются, например, метод перенормировки (вычитания бесконечностей), который основывается на очевидных физических требованиях — равенство нулю массы фотона, совпадение заряда и массы электрона их экспериментально наблюдаемым значениям. С другой стороны при рассмотрении одновершинных процессов в выражениях появляются бесконечности (см. раздел 4.1), которые связаны со свойствами фазового объема и не могут быть устранены методами перенормировки. При расчетах физических величин все резонансные бесконечные пики усреднялись [81], что позволило получить конечные результаты, однако такой подход является искусственным.

Как было подчеркнуто в первой главе, в присутствии сильно замагниченной среды возможны изменения дисперсионных и поляризационных свойств фотонов. Этот факт может приводить к существенным изменениям кинематики процессов, в результате которых, например, становятся возможными такие одновершинные реакции, как однофотонное рождение электронпозитронной пары $\gamma \to e^+e^-$ или поглощение фотона $e^\pm \gamma \to e^\pm$, которые кинематически запрещены или подавлены в вакууме. Поскольку в выражениях для этих процессов присутствуют сингулярности (см., например, [37,80, 115–117]), то возникает принципиально важная задача физически корректного определения коэффициента поглощения вблизи их окрестностей. Для этого в работе [37] предлагалось рассматривать фотон как затухающую элек-

тромагнитную волну, то есть исследовать временную зависимость волновой функции фотона. Изначально классическая задача о диссипации в бестолкновительной плазме рассматривалось в работе [118], что в последствии получило название затухание Ландау. Если в классической задаче затухание связано либо с передачей энергии электромагнитного поля частицам, движущимся в фазе с волной, либо с ларморовым вращением частиц, то в квантовой электродинамике затухание квантованной электромагнитной волны определяется квантовыми процессами поглощения и рождения фотонов. Особенностью рассмотренных выше классических и квантовых процессов является их обратимость.

Для определения коэффициента затухания фотона в работе [37] предлагалось решать уравнение дисперсии на втором римановом листе. Однако как было отмечено в работе [119], такой метод имеет ряд недостатков. Во-первых, решения с комплексными энергиями фотона находятся на нефизических римановых листах, количество которых вообще говоря бесконечно. Это приводит к возникновению бесконечного числа решений уравнения дисперсии как с положительными, так и с отрицательными значениями мнимой части энергии. Во-вторых, в данном методе в околопороговой области предполагался экспоненциальный характер затухания электромагнитной волны, что, вообще говоря, согласно выводам авторов [119], не так. Поэтому в работе [119] для исследования временного затухания электромагнитной волны во внешнем магнитном поле был рассмотрен метод, который заключается в нахождении запаздывающего решения уравнения электромагнитного поля в присутствии внешнего источника с учетом поляризации вакуума во внешнем магнитном поле. С другой стороны, в работе [119] неэкспоненциальное затухание фотона рассматривалось в приближении сильного магнитного поля, когда все электроны и позитроны занимают основной уровень Ландау, однако в случае замагниченной плазмы таких исследований не проводилось, поскольку для астрофизических приложений наличие замагниченной среды является наиболее характерным фактором.

В данном разделе рассматривается затухание фотона в сильно замагниченной плазме $\beta\gg T^2$ и нулевом химическом потенциале $\mu=0$ посредством изменения его состояния за счет процессов $\gamma e^\pm\to e^\pm,\,\gamma\to e^+e^-$. Будет использоваться метод, применяемый в теории поля при конечных температурах и в физике плазмы [120], развитый на случай сильного магнитного поля в [119] и адаптированный к ситуации сильно замагниченной плазмы.

5.1 Распространение фотона в замагниченной плазме

Для описания эволюции электромагнитной волны $\mathcal{A}_{\alpha}(x)$, где $x_{\mu}=(t,\mathbf{x})$, во времени воспользуемся методикой, которая была использована еще в классической задаче [118] и развита в работе [119] для квантовой электродинамики с учетом только магнитного поля без плазмы. Данная методика заключается в определении реакции системы ($\mathcal{A}_{\alpha}(x)$ и замагниченной плазмы) на внешний источник [121], создающий начальное состояние, который адиабатически включается при $t=-\infty$ и в момент времени t=0 выключается. При t>0 электромагнитная волна в плазме будет эволюционировать самостоятельно. Для простоты будем рассматривать эволюцию монохроматической волны, поэтому функцию источника, удовлетворяющую вышесказанным условиям, удобно выбрать следующим образом:

$$\mathcal{J}_{\alpha}(x) = j_{\alpha} e^{i \mathbf{k} \mathbf{x}} e^{\varepsilon t} \theta(-t), \quad \varepsilon \to 0^{+}, \tag{125}$$

где $j_{\alpha}=(0,\mathbf{j}),\;\mathbf{j}\cdot\mathbf{k}=0$ — закон сохранения тока. Вообще говоря, в замагниченной плазме из-за наличия анизотропии решение задачи о распространении фотона под произвольным углом к магнитному полю представляет значительные трудности. Поэтому в качестве упрощения рассмотрим частный случай, когда фотоны распространяются поперек магнитного поля так, что $k_z=0$. Зависимость $\mathcal{A}_{\alpha}(x)$ от времени определяется уравнением

$$(g_{\alpha\beta}\,\partial_{\mu}^2 - \partial_{\alpha}\partial_{\beta})\,\mathcal{A}_{\beta}(x) + \int d^4x'\,\mathcal{P}_{\alpha\beta}(x - x')\,\mathcal{A}_{\beta}(x') = \mathcal{J}_{\alpha}(x), \qquad (126)$$

где $\mathcal{P}_{\alpha\beta}(x-x')$ — поляризационный оператор фотона в магнитном поле и плазме. $q^{\mu}=(q_0,\,\mathbf{k})$ — 4-вектор импульса фотона.

Запаздывающее решение уравнения (126) можно представить в следующем виде:

$$\mathcal{A}_{\alpha}(x) = \int d^4x' G_{\alpha\beta}^R(x - x') \mathcal{J}_{\beta}(x'), \qquad (127)$$

где $G^R_{\alpha\beta}(x-x')$ – запаздывающая функция Грина (см., например [122]).

Следуя работе [119], аналогично процессу затухания в магнитном поле воспользуемся следующим соотношением между запаздывающей $G^R_{\alpha\beta}(x-x')$ и причинной $G^C_{\alpha\beta}(x-x')$ функциями Грина:

$$G_{\alpha\beta}^{R}(x-x') = 2\operatorname{Re}\left[G_{\alpha\beta}^{C}(x-x')\right]\theta(t-t'). \tag{128}$$

Аналогично магнитному полю разложим функцию Грина по собственным векторам $r_{\alpha}^{(\lambda)}$ поляризационного оператора в замагниченной плазме:

$$G_{\alpha\beta}^{C}(x) = \int \frac{\mathrm{d}^{4}q}{(2\pi)^{4}} G_{\alpha\beta}^{C}(q) e^{-\mathrm{i}qx}, \qquad (129)$$

$$G_{\alpha\beta}^{C}(q) = \sum_{\lambda=1}^{3} \frac{r_{\alpha}^{(\lambda)} r_{\beta}^{(\lambda)}}{(r^{(\lambda)})^2} \cdot \frac{1}{q^2 - \mathcal{P}^{(\lambda)}(q)}, \qquad (130)$$

где $\mathcal{P}^{(\lambda)}(q)$ — собственные значения поляризационного оператора в замагниченной плазме.

Как было отмечено в разделе 3, в случае сильно замагниченной плазмы $\beta\gg T^2$ и $\mu=0$ собственные вектора поляризационного оператора фотона приближенно будут такими же, как и в чистом магнитном поле:

$$\mathcal{A}_{\alpha}(x) = 2e^{i\mathbf{k}\mathbf{x}} \operatorname{Re} \sum_{\lambda=1}^{3} \int \frac{\mathrm{d}q_0}{2\pi i} \frac{\varepsilon_{\alpha}^{(\lambda)}(\varepsilon^{(\lambda)}j)}{(\varepsilon^{(\lambda)})^2} \frac{e^{-iq_0t}}{(q_0 - i\varepsilon)(q_0^2 - \mathbf{k}^2 - \mathcal{P}^{(\lambda)}(q))}. \tag{131}$$

Рис. 16: Контур интегрирования по q_0 в (135) для моды 2. Штрихами показана область нестабильности фотона. Крестиком обозначен полюс, соответствующий $q_0=\omega$ — вещественному собственному значению поляризационного оператора.

В силу линейного характера уравнения (126), решение (131) для двух возможных поляризаций можно представить в виде:

$$\mathcal{A}_{\alpha}(x) = \mathcal{A}_{\alpha}^{(1)}(x) + \mathcal{A}_{\alpha}^{(2)}(x), \qquad (132)$$

где

$$\mathcal{A}_{\alpha}^{(\lambda)}(x) = V_{\alpha}^{(\lambda)}(0, \mathbf{x}) \operatorname{Re} F^{(\lambda)}(t), \qquad (133)$$

$$V_{\alpha}^{(\lambda)}(0, \mathbf{x}) = 2 e^{i \mathbf{k} \mathbf{x}} \varepsilon_{\alpha}^{(\lambda)} \left(\varepsilon^{(\lambda)} j \right). \tag{134}$$

Как следует из (132) и (131) характер распространения фотона в сильно замагниченной плазме будет полностью определяться функцией $F^{(\lambda)}(t)$, которая имеет мледующий вид Фурье-интеграла:

$$F^{(\lambda)}(t) = \int_C \frac{dq_0}{2\pi i} \frac{e^{-iq_0 t}}{(q_0 - i\varepsilon)(q_0^2 - \mathbf{k}^2 - \mathcal{P}^{(\lambda)}(q))}.$$
 (135)

Контур интегрирования C определяется согласно аналитическим свойствам подынтегрального выражения. В частности, в точке $q_0 = \omega$ подынтегральное выражение (135) имеет полюс, который соответствует уравнению дисперсии:

$$\omega^2 - \mathbf{k}^2 - \mathcal{P}^{(\lambda)}(q) = 0. \tag{136}$$

Рис. 17: Контур интегрирования по q_0 в (135) для моды 1. Штрихами показана область нестабильности фотона. Крестиком обозначен полюс, соответствующий $q_0 = \omega$ — вещественному собственному значению поляризационного оператора, точками обозначены полюса.

С другой стороны, как было показано в работе [119], собственные значения поляризационного оператора как в магнитном поле, так и в замагниченной плазме помимо полюсов $q_{\parallel}^2 = (M_n \pm M_\ell)^2$, отмеченных в разделе 4.1, также имеют разрезы, которые связаны с распадом фотона на e^+e^- -пару и переходом электрона на другие уровни Ландау, т. е. соответствуют областям нестабильности фотона, поэтому с учетом этих особенностей контур интегрирования может быть определен, как показано на рис. 17 и 16.

Следует отметить, что в сильно замагниченной плазме в кинематической области $q_0 < 2m$ мнимая часть поляризационного оператора для обеих мод пренебрежимо мала по сравнению с реальной частью (влияние резонансов отсутствует), поэтому для удобства контур интегрирования как для фотона моды 1, так и для фотона моды 2 можно преобразовать согласно рис. 18. Таким образом, интеграл (135) можно представить в виде двух слагаемых

$$F^{(\lambda)}(t) = F_{pole}^{(\lambda)}(t) + F_{cut}^{(\lambda)}(t), \qquad (137)$$

первое из которых определяется вычетом в точке $q_0 = \omega$, являющейся решением уравнения дисперсии $q^2 - \mathcal{P}^{(\lambda)}(q) = 0$ в кинематической области, где собственное значение поляризационного оператора фотона $\mathcal{P}^{(\lambda)}(q)$ – вещественно.

Рис. 18: Контур интегрирования по q_0 в (138) для мод $\lambda=1,2$. Штриховой линией показана область, где мнимая часть поляризационного оператора двух возможных мод $\lambda=1,2$ существенна. Остальные обозначения аналогичны рис. 16.

Второе слагаемое определяет зависимость потенциалов $\mathcal{A}_{\alpha}^{(\lambda)}(x)$ от времени в области $q_0 > 2m$ и имеет вид фурье-интеграла:

$$F_{cut}^{(\lambda)}(t) = \int_{-\infty}^{\infty} \frac{dq_0}{2\pi} F_{cut}^{(\lambda)}(q_0) e^{-iq_0 t}, \qquad (138)$$

$$F_{cut}^{(\lambda)}(q_0) \simeq \frac{2\theta(q_0 - 2m)I^{(\lambda)}}{q_0([q_0^2 - \mathbf{k}^2 - R^{(\lambda)}]^2 + [I^{(\lambda)}]^2)},$$
 (139)

где $R \equiv \mathrm{Re}\mathcal{P}^{(\lambda)}(q_0)$ – реальная, $I \equiv -\mathrm{Im}\mathcal{P}^{(\lambda)}(q_0+i\varepsilon)$ – мнимая части поляризационного оператора фотона в замагниченной плазме.

Мнимая часть поляризационного оператора может быть получена из коэффициента поглощения фотона и представлена в следующем виде:

$$W_{abs}^{(\lambda)} = W_{\gamma^{(\lambda)} \to e^+ e^-} + W_{\gamma^{(\lambda)} e^{\pm} \to e^{\pm}}. \tag{140}$$

где $W_{\gamma^{(\lambda)} \to e^+e^-}$ — коэффициент поглощения фотона в процессе однофотонного рождения электрон-позитронной пары, $W_{\gamma^{(\lambda)}e^\pm \to e^\pm}$ — коэффициент поглощения фотона в процессе поглощения фотона электроном.

С учетом процессов излучения фотонов, (140) может быть представлена в следующей форме (см., например, [36, 37, 75]):

$$I^{(\lambda)} = \text{Im}\mathcal{P}^{(\lambda)} = -2q_0[1 - \exp(-q_0/T)]W_{abs}^{(\lambda)}.$$
 (141)

Реальная часть поляризационного оператора может быть восстановлена

по его мнимой части с помощью дисперсионного соотношения с одним вычитанием:

$$R^{(\lambda)} = \operatorname{Re}\mathcal{P}^{(\lambda)}(t) = \int_{0}^{\infty} \frac{\operatorname{Im}(\mathcal{P}^{(\lambda)}(t')) dt'}{t' - t - io} - \operatorname{Re}\mathcal{P}^{(\lambda)}(0), \qquad t = q_0^2.$$
 (142)

Следует отметить, что в поставленной задаче рассматриваются процессы только до второго циклотронного резонанса $q_0 = M_1 - m$, поэтому те же процессы с другими уровнями Ландау вклада не дают. Выражения (138)-(140) с учетом (142) решают задачу о нахождении временной зависимости волновой функции фотона в присутствии сильно замагниченной плазмы.

В работе [37] предполагался экспоненциальный характер затухания с декрементом затухания, равным мнимой части энергии фотона, полученным из решения уравнения дисперсии на втором римановом листе. Анализ аналитических свойств фурье-образа $F_{cut}^{(\lambda)}(q_0)$ показывает, что характер временного затухания волновой функции в общем случае является неэкспоненциальным. Тем не менее на протяжении некоторого характерного отрезка времени ($\sim [W_{abs}^{(\lambda)}]^{-1}$) зависимость волновой функции от времени можно приближенно описать как экспоненциально затухающие гармонические колебания:

$$\mathcal{A}_{\mu}^{(\lambda)}(t) \sim e^{-\gamma_{\text{eff}}^{(\lambda)} t/2} \cos(\omega^{(\lambda)} t + \phi_0). \tag{143}$$

Здесь $\omega^{(\lambda)}$ и $\gamma_{\rm eff}^{(\lambda)}$ – эффективная частота и коэффициент поглощения фотона моды λ соответственно, которые должны быть найдены с использованием (138)–(140) для каждого значения импульса \mathbf{k} , что определяет эффективный закон дисперсии фотона в области его нестабильности.

5.2 Численный анализ

Для астрофизических приложений полезно вычислить величину $\gamma_{\rm eff}$, которая определяет интенсивность поглощения γ -квантов в замагниченной плазме за счет процессов $\gamma \to e^+e^-$ и $\gamma e^\pm \to e^\pm$. Обычно в астрофизике используют выражение для коэффициента поглощения, полученное на основе

Рис. 19: Зависимость ширины распада фотона моды 2 от частоты в припороговых областях при $B=200B_e$, T=1 МэВ и $\mu=0$. Линия 1 - коэффициент поглощения фотона $W_{abs}^{(1)}$, вычисленный в древесном приближении и содержащий корневые особенности; линия 2 — ширина распада, полученная из комплексного решения дисперсионного уравнения на втором римановом листе [37]; линия 3 соответствует ширине затухания $\gamma^{(1)}$, вычисленной на основе приближения (143).

вероятности распада $\gamma \to e^+e^-$. Однако в околопороговой области эти выражения содержат корневые сингулярности (см. например [123]), которые были отмечены во введении к данной главе.

Наш анализ показывает, (см. рис. 20 и 19), что вычисление коэффициента поглощения с учетом неэкспоненциального характера затухания приводит к конечному выражению для коэффициента поглощения фотона в окрестности резонансов $q_0 = (\sqrt{m^2 + 2\beta} - m)$ как для фотона моды 2, так и для фотона моды 1. Исходя из рис. 20 можно сделать вывод, что фотон моды 1 является квазистабильным в областях $q_0 < 7$ МэВ и $q_0 > (\sqrt{m^2 + 2\beta} - m) \simeq 9.5$ МэВ. С другой стороны, фотон неустойчив в области, близкой в окрестности резонансов $q_0 = (\sqrt{m^2 + 2\beta} - m)$. Фотон моды 2 можно считать квазиустойчивым в области $q_0 < 4m$ и $q_0 > (\sqrt{m^2 + 2\beta} - m)$. Коэффициент затухания фотона, полученный из результатов работы [37], является завышенным в околопороговой области по сравнению с результатами, полученными с помощью аппроксимации (143). Однако существует область энергий фотона (2.5 $\lesssim q_0 \lesssim 8.5$ МэВ для фотона моды 1), где коэф-

Рис. 20: Зависимость ширины распада фотона моды 1 от частоты в припороговых областях при $B=200B_e$, T=1 МэВ и $\mu=0$. Линия 1 - коэффициент поглощения фотона $W^{(1)}_{abs}$, вычисленный в древесном приближении и содержащий корневые особенности; линия 2 - ширина распада, полученная из комплексного решения дисперсионного уравнения на втором римановом листе [37]; линия 3 соответствует ширине затухания $\gamma^{(1)}$, вычисленной на основе приближения (143).

Рис. 21: Отношение коэффициента затухания фотона $\gamma_{eff}^{(1)}$ к коэффициенту поглощения фотона в процессе $e\gamma^{(1)}\to e\gamma$ при $B=200B_e$ и $T=1~{
m MpB}$

фициенты поглощения, полученные из результатов работы [37] и с помощью аппроксимации (143) совпадают.

Рис. 22: Отношение коэффициента затухания фотона $\gamma_{\rm eff}^{(2)}$ к коэффициенту поглощения фотона в процессе $e\gamma^{(2)}\to e\gamma$ при $B=200B_e$ и $T=1~{
m MpB}$

На основе полученных результатов представляет интерес рассмотреть задачу о возможности формировании комптоновского процесса при условии затухания фотона. Для этого удобно вычислить отношение коэффициента затухания фотона к коэффициенту поглощения фотона $e\gamma^{(1)} \rightarrow e\gamma$ (см. рис. 21), полученном в главе 2 и который определяет время его формирования. Как видно из рисунка 21, комптоновский процесс, несмотря на малый фактор α , успевает формироваться при энергиях фотона $\omega \lesssim 3$ МэВ. Для фотона моды 2 комптоновский процесс формируется только в области энергий фотона $\omega \lesssim 1$ МэВ. В области энергий $\omega > 3$ МэВ для моды 1 и $\omega > 1$ МэВ фотоны будут эффективно затухать, и комптоновский процесс, по-видимому, не успевает сформироваться. Для моды 2 (см. рис. 22) даже с учетом области квазистабильности (вдали от порогов), комптоновский процесс будет формироваться только при энергиях фотона $\omega < 1$ МэВ.

Таким образом, коэффициенты поглощения фотона в комптоновском процессе для двух возможных каналов рассеяния $e\gamma^{(1)} \to e\gamma^{(1)}$ и $e\gamma^{(1)} \to e\gamma^{(2)}$, несмотря на резонансный характер, целесообразно рассматривать лишь вдали от циклотронных резонансах, поэтому для анализа комптоновского про-

цесса при высоких температурах $T\simeq 1$ МэВ и магнитных полях $B=200B_e$ достаточно использовать разложение по обратным степеням напряженности магнитного поля [76]. Каналы же рассеяния $e\gamma^{(2)}\to e\gamma^{(1)}$ и $e\gamma^{(2)}\to e\gamma^{(2)}$ в области резонанса рассматривать нецелесообразно, так как комптоновский процесс не успевает сформироваться для энергий фотона $\omega\gtrsim 2m$.

5.3 Выводы

Исследован процесс распространения квантованной электромагнитной волны в сильно замагниченной, зарядово-симметричной плазме. С учетом изменения дисперсионных свойств фотона в магнитном поле и плазме было установлено, что, аналогично случаю чистого магнитного поля процесс затухания фотона в замагниченной плазме имеет неэкспоненциальный характер.

Для характерного отрезка времени $\sim [W_{abs}^{(\lambda)}]^{-1}$ была использована аппроксимация экспоненциально затухающими колебаниями. В этом случае было показано, что коэффициент поглощения фотона в околопороговой области меньше по сравнению с известными в литературе результатами. Также, следуя данной аппроксимации, были построены дисперсионные кривые, которые и для моды 1, и для моды 2 близки к вакуумным кривым, за исключением околопороговых областей. Полученные результаты согласуются с выводами работы [37].

Бёыл выполнен анализ возможности формирования комптоновского процесса в условиях нестабильности фотона за счет процесса поглощения электроном $e^{\pm}\gamma \rightarrow e^{\pm}$ и распада на электрон-позитронную пару $\gamma \rightarrow e^{+}e^{-}$. Несмотря на малый фактор α , комптоновский процесс преобладает над процессами распада и поглощения в области низких энергий фотона ($\omega < 3$ МэВ при T=1 МэВ и $B=200B_e$). С другой стороны, даже с учетом резонанса на виртуальном электроне, фотоны как моды 1, так и моды 2 в пределе сильного магнитного поля $B=200B_e$ и температуре T=1 МэВ эффективно затухают в резонансной области.

6 Заключение

Список литературы

- [1] Thompson C., Duncan R. C. The soft gamma repeaters as very strongly magnetized neutron stars I. Radiative mechanism for outbursts // Mon. Not. Roy. Astron. Soc. 1995. Vol. 275. P. 255–300.
- [2] Thompson C., Duncan R. C. The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-Ray, and Alfven wave emission // Astrophys. J. 1996. Vol. 473. P. 322–342.
- [3] Thompson C., Lyutikov M., Kulkarni S. R. Electrodynamics of magnetars: implications for the persistent x-ray emission and spindown of the soft gamma repeaters and anomalous x-ray pulsars // Astrophys. J. 2002. Vol. 574, no. 1. P. 332–355.
- [4] Соколов А. А., Тернов И. М. Синхротронное излучение. М.: Наука, 1966. 228 с.
- [5] Кузнецов А. В., Михеев М. В. Взаимодействие нейтрино с сильно замагниченной электрон-позитронной плазмой // ЖЭТФ. 2000. Т. 118, $N \cdot 4$. С. 863–876.
- [6] Бисноватый-Коган Г. С., Чечеткин В. М. Неравновесные оболочки нейтронных звезд, их роль в поддержании рентгеновского излучения и нуклеосинтезе // Усп. физ. наук. 1979. Т. 127, № 2. С. 263–296.
- [7] Kouveliotou C. et al. An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806-20. // Nature. 1998. Vol. 393. P. 235-237.
- [8] Kouveliotou C., Strohmayer T., Hurley K. et al. Discovery of a magnetar associated with the soft gamma repeater SGR 1900+14 // Astrophys. J. 1999. Vol. 510. P. L115–118.

- [9] Gavriil F. P., Kaspi V. M., Woods P. M. Magnetar like x-ray bursts from an anomalous x-ray pulsar // Nature. 2002. Vol. 419. P. 142–144.
- [10] Ibrahim A. I., Safi-Harb S., Swank J. H. et al. Discovery of cyclotron resonance features in the soft gamma repeater SGR 1806-20 // Astrophys. J. 2002. Vol. 574. P. L51–L55.
- [11] Ibrahim A. I., Swank J. H., Parke W. New evidence for proton cyclotron resonance in a magnetar strength field from SGR 1806-20 // Astrophys. J. 2003. Vol. 584. P. L17–L22.
- [12] Olausen S. A., Kaspi V. M. The McGill magnetar catalog // Astrophys. J. Suppl. 2014. Vol. 212, no. 1. P. 6.
- [13] Kuznetsov A., Mikheev N. Electroweak processes in external active media. 2013. Vol. 252. P. pp 1–271.
- [14] Melrose D. B., Parle A. J. Quantum electrodynamics in strong magnetic fields. I Electron States // Aust. J. Phys. 1983. Vol. 36. P. 755–774.
- [15] Соколов А. А., Тернов И. М. Релятивистский электрон. Москва: Наука, 1983. 304 с.
- [16] Kuznetsov A. V., Mikheev N. V. Electroweak processes in external electromagnetic fields. New York: Springer-Verlag, 2003. 120 p.
- [17] Bhattacharya K., Pal P. B. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field // Pramana J. Phys. 2004. Vol. 62. P. 1041–1058.
- [18] Balantsev I. A., Popov Yu. V., Studenikin A. I. On the problem of relativistic particles motion in strong magnetic field and dense matter // J. Phys. 2011. Vol. A44. P. 255301 (1–13).
- [19] Johnson M. H., Lippmann B. A. Motion in a constant magnetic field // Physical Review. 1949. Vol. 76, no. 6. P. 828–832.

- [20] Пескин М., Шредер Д. Введение в квантовую теорию поля. Ижевск: РХД, 2001. 784 с.
- [21] Ландау Л. Д., Лифшиц Е. М. Квантовая механика. Нерелятивисткая теория. Москва: Наука, 1989. 768 с.
- [22] Canuto V. Quantum processes in strong magnetic fields // Ann. N. Y. Acad. Sci. 1975. Vol. 257, no. 1. P. 108–126.
- [23] Harding A. K., Daugherty J. K. Cyclotron Resonant Scattering and Absorption // Astrophys. J. 1991. Vol. 374. P. 687–699.
- [24] Suh I.-S., Mathews G. J. Weak reaction freeze-out constraints on primordial magnetic fields // Phys. rev. D. 1999. Vol. 59, no. 12. P. 123002.
- [25] Gonthier P. L., Harding A. K., Baring M. G. et al. Compton Scattering in Ultrastrong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime // Astrophys. J. 2000. Vol. 540, no. 2. P. 907–922.
- [26] Jones P. B. Electron-positron bremsstrahlung and pair creation in very high magnetic fields // Mon. Not. Roy. Astron. Soc. 2010. Vol. 409, no. 4. P. 1719–1727.
- [27] Melrose D. B. Quantum kinetic theory for unmagnetized and magnetized plasmas // Rev. Mod. Plasma Phys. 2020. Vol. 4, no. 8.
- [28] Graziani C. Strong-Field Cyclotron Scattering. I. Scattering Amplitudes and Natural Line Width // Astrophys. J. 1993. Vol. 412. P. 351–362.
- [29] Gonthier P. L., Baring M. G., Eiles M. T. et al. Compton scattering in strong magnetic fields: Spin-dependent influences at the cyclotron resonance // Phys. Rev. 2014. Vol. D90, no. 4. P. 043014.
- [30] Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. Москва: Гос. изд-во физ.-мат. лит., 1963. 1108 с.

- [31] Schwinger J. On Gauge Invariance and Vacuum Polarization // Phys. Rev. 1951. Jun. Vol. 82. P. 664–679.
- [32] Ритус В. И. Радиационные эффекты и их усиление в интенсивном электромагнитном поле // ЖЭТФ. 1969. Т. 57, № 6. С. 2176–2188.
- [33] Jancovici B. Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field // Phys. Rev. 1969. Vol. 187. P. 2275–2276.
- [34] Борисов А. В., Вшивцев А. С., Жуковский В. Ч., Эминов П. А. Фотоны и лептоны во внешних полях при конечных температуре и плотности // УФН. 1997. Т. 167, № 3. С. 241–267.
- [35] Жуковский В. Ч., Мидодашвили П. Г., Эминов П. А. Мнимая часть массового оператора электрона в постоянном поле при конечной температуре и плотности // ЖЭТФ. 1994. Т. 106, № 4. С. 929–935.
- [36] Weldon H. A. Simple rules for discontinuities in finite temperature Field Theory // Phys. Rev. 1983. Vol. D28. P. 2007–2037.
- [37] Шабад А. Е. Поляризация вакуума и квантового релятивистского газа во внешнем поле // Тр. ФИАН СССР "Поляризационные эффекты во внешних калибровочных полях". 1988. Т. 192. С. 5–152.
- [38] Tsai W. Y. Vacuum polarization in homogeneous magnetic fields // Phys. Rev. 1974. Vol. D10, no. 8. P. 2699–2702.
- [39] Баталин И. А., Шабад А. Е. Функция Грина фотона в постоянном однородном электромагнитном поле общего вида // ЖЭТФ. 1971. Т. 60, № 3. С. 894–900.
- [40] Скобелев В. В. Поляризационный оператор фотона в сверхсильном магнитном поле // Изв. вузов. Физика. 1975. № 10. С. 142–143.

- [41] Перес Рохас У. Поляризационный оператор электрон-позитронного газа в постоянном внешнем магнитном поле // ЖЭТФ. 1979. Т. 76, № 1. С. 3–17.
- [42] Peres Rojas H., Shabad A. E. Absorption and dispersion of electromagnetic eigenwaves of electron-positron plasma in a strong magnetic field // Ann. Phys. (N.Y.). 1982. Vol. 138. P. 1–35.
- [43] Михеев Н. В., Румянцев Д. А., Чистяков М. В. Фоторождение нейтрино на электроне в плотной замагниченной среде // ЖЭТФ. 2014. Т. 146, № 2. С. 289–296.
- [44] Peres Rojas H., Shabad A. E. Polarization of relativistic electron and positron gas in a strong magnetic field. Propagation of electromagnetic waves // Ann. Phys. (N.Y.). 1979. Vol. 121, no. 2. P. 432–464.
- [45] Adler S. L. Photon splitting and photon dispersion in a strong magnetic field. // Annals of Physics. 1971. Vol. 67. P. 599–647.
- [46] Mushtukov A. A., Nagirner D. I., Poutanen J. Compton scattering S-matrix and cross section in strong magnetic field // Phys. Rev. 2016. Vol. D93, no. 10. P. 105003.
- [47] Potekhin A. Y., Lai D., Chabrier G., Ho W. C. G. Electromagnetic Polarization in Partially Ionized Plasmas with Strong Magnetic Fields and Neutron Star Atmosphere Models // Astrophys. J. 2004. Vol. 612, no. 2. P. 1034–1043.
- [48] Trümper J., Pietsch W., Reppin C. et al. Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1 // Astrophys. J. 1978. Vol. 219. P. L105–L110.
- [49] Makishima K., Mihara T., Ishida M., et al. Discovery of a prominent cyclotron absorption feature from the transient X-ray pulsar X0331 + 53 // Astrophys. J. Lett. 1990. Vol. 365. P. L59–L62.

- [50] Grove J. E., Strickman M. S., Johnson W. N., et al. The soft gamma-ray spectrum of A0535+26: Detection of an absorption feature at 110 keV by OSSE // Astrophys. J. Lett. 1995. Vol. 438. P. L25-L28.
- [51] Mihara T., Makishima K., Ohashi T. et al. New observations of the cyclotron absorption feature in Hercules X-1 // Nature. 1990. Vol. 346. P. 250-252.
- [52] Canuto V., Lodenquai J., Ruderman M. Thomson Scattering in a Strong Magnetic Field // Phys. Rev. D. 1971. Vol. 3. P. 2303–2308.
- [53] Гнедин Ю. Н., Сюняев Р. А. Рассеяние излучения на тепловых электронах в магнитном поле // Журн. эксперим. и теор. физ. 1973. Т. 65, № 1. С. 102.
- [54] Borner G., Mészáros P. Classical calculation of Thomson cross-sections in the presence of a strong magnetic field // Plasma Phys. 1979. Vol. 21, no. 4. P. 357.
- [55] Ventura J. Scattering of light in a strongly magnetized plasma // Phys. Rev. 1979. Vol. D19. P. 1684–1695.
- [56] Herold H. Compton and Thomson scattering in strong magnetic fields // Phys. Rev. 1979. Vol. D19. P. 2868.
- [57] Melrose D. B., Parle A. J. Quantum Electrodynamics in Strong Magnetic Fields III. Electron-photon interactions // Aust. J. Phys. 1983. Vol. 36. P. 799.
- [58] Daugherty J. K., Harding A. K. Compton Scattering in Strong Magnetic Fields // Astrophys. J. 1986. Vol. 309. P. 362.
- [59] Bussard R. W., Alexander S. B., Meszaros P. One- and two-photon Compton scattering in strong magnetic fields // Phys. Rev. D. 1986. Vol. 34. P. 440– 451.

- [60] Özel F. Surface Emission Properties of Strongly Magnetic Neutron Stars // The Astrophysical Journal. 2001. Vol. 563, no. 1. P. 276.
- [61] Zavlin V. E., Pavlov G. G., Shibanov Y. A. Model neutron star atmospheres with low magnetic fields. I. Atmospheres in radiative equilibrium. // A&A. 1996. Vol. 315. P. 141–152.
- [62] Alexander S. G., Meszaros P. Cyclotron Harmonics in Accreting Pulsars and Gamma-Ray Bursters: Effect of Two-Photon Processes // Astrophys. J. 1991. Vol. 372. P. 565.
- [63] Araya R. A., Harding A. K. Cyclotron Line Features from Near-critical Magnetic Fields: The Effect of Optical Depth and Plasma Geometry // Astrophys. J. 1999. Vol. 517, no. 1. P. 334–354.
- [64] Ho W. C. G., Lai D. Atmospheres and spectra of strongly magnetized neutron stars // MNRAS. 2001. Vol. 327, no. 4. P. 1081–1096.
- [65] Lyutikov M., Gavriil F. P. Resonant cyclotron scattering and Comptonization in neutron star magnetospheres // MNRAS. 2006. Vol. 368, no. 2. P. 690–706.
- [66] Schönherr G., Wilms J., Kretschmar P. et al. A model for cyclotron resonance scattering features // A&A. 2007. Vol. 472, no. 2. P. 353–365.
- [67] Nishimura O. Formation Mechanism for Broad and Shallow Profiles of Cyclotron Lines in Accreting X-Ray Pulsars // Astrophys. J. 2008. Vol. 672, no. 2. P. 1127–1136.
- [68] Suleimanov V., Potekhin A. Y., Werner K. Models of magnetized neutron star atmospheres: thin atmospheres and partially ionized hydrogen atmospheres with vacuum polarization // A&A. 2009. Vol. 500, no. 2. P. 891–899.

- [69] Fernández R., Thompson C. Resonant Cyclotron Scattering in Three Dimensions and the Quiescent Nonthermal X-ray Emission of Magnetars // Astrophys. J. 2007. Vol. 660, no. 1. P. 615–640.
- [70] Nobili L., Turolla R., Zane S. X-ray spectra from magnetar candidates II. Resonant cross-sections for electron–photon scattering in the relativistic regime // Monthly Notices of the Royal Astronomical Society. 2008. Vol. 389, no. 2. P. 989–1000.
- [71] Wadiasingh Z., Baring M. G., Gonthier P. L., Harding A. K. Resonant Inverse Compton Scattering Spectra from Highly-magnetized Neutron Stars // Astrophys. J. 2018. Vol. 854, no. 2. P. 98.
- [72] Beloborodov A. M. On the Mechanism of Hard X-Ray Emission from Magnetars // Astrophys. J. 2013. Vol. 762, no. 1. P. 13.
- [73] Daugherty J. K., Harding A. K. Comptonization of Thermal Photons by Relativistic Electron Beams // Astrophys. J. 1989. Vol. 336. P. 861.
- [74] Фомин П. И., Холодов Р. И. Резонансное комптоновское рассеяние во внешнем магнитном поле // ЖЭТФ. 2000. Т. 117, № 2. С. 319–325.
- [75] Румянцев Д. А., Шленев Д. М., Ярков А. А. Резонансы в комптоноподобных процессах рассеяния во внешней замагниченной среде // ЖЭТФ. 2017. Т. 152, № 3. С. 483–494.
- [76] Chistyakov M. V., Rumyantsev D. A. Compton effect in strongly magnetized plasma // Int. J. Mod. Phys. 2009. Vol. A24. P. 3995–4008.
- [77] Ландау Л. Д., Лифшиц Е. М., Питаевский Л. Квантовая электродникамика. 4 изд. Москва: ФИЗМАТЛИТ, 2002. Т. 4. 720 с.
- [78] Schwarm F. W., Schönherr G., Falkner S. et al. Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross

- sections, mean free photon-path tables, and electron momentum sampling // A&A. 2017. Vol. 597. P. A3.
- [79] Pavlov G. G., Bezchastnov V. G., Meszaros P., Alexander S. G. Radiative widths and splitting of cyclotron lines in superstrong magnetic fields // Astrophys. J. 1991. Vol. 380. P. 541–549.
- [80] Клепиков Н. П. Излучение фотонов и электрон-позитронных пар в магнитном поле // ЖЭТФ. 1954. Т. 26, № 1. С. 19–34.
- [81] Baier V. N., Katkov V. M. Pair creation by a photon in a strong magnetic field // Phys. Rev. 2007. Vol. D75, no. 7. P. 073009.
- [82] Schwarm F.-W. Monte Carlo Simulation of Cyclotron Lines in Strong Magnetic Fields Theory and Application: Ph. D. thesis / Friedrich-Alexander-Universität Erlangen-Nürnberg. 2017.
- [83] Daugherty J. K., Harding A. K. Compton scattering in strong magnetic fields // Astrophys. J. 1986. Vol. 309. P. 362–371.
- [84] Mushtukov A. A., Suleimanov V. F., Tsygankov S. S., Poutanen J. The critical accretion luminosity for magnetized neutron stars // Mon. Not. Roy. Astron. Soc. 2015. Vol. 447, no. 2. P. 1847–1856.
- [85] Ritus V. I. Photoproduction of Neutrinos on Electrons and Neutrino Radiation from Stars // JETP. 1961. Vol. 41, no. 4. P. 1285–1293.
- [86] Chiu H.-Y., Stabler R. C. Emission of photoneutrinos and pair annihilation neutrinos from stars // Phys. Rev. 1961. Vol. 122. P. 1317–1322.
- [87] Beaudet G., Petrosian V., Salpeter E. E. Energy losses due to neutrino processes // Astrophys. J. 1967. Vol. 150. P. 979–999.
- [88] Dicus D. Stellar energy-loss rates in a convergent theory of a weak and electromagnetic interaction // Phys. Rev. 1972. Vol. D6. P. 941–949.

- [89] Munakata H., Kohyama Y., Itoh N. Neutrino energy loss in stellar interiors // Astrophys. J. 1985. Vol. 296. P. 197–203.
- [90] Schinder P. J., Schramm D. N., Wiita P. J. et al. Neutrino emission by the pair, plasma, and photo processes in the Weinberg-Salam model // Astrophys. J. 1987. Vol. 313. P. 531–542.
- [91] Itoh N., Adachi T., Nakagawa M. et al. Neutrino energy loss in stellar interiors. III. Pair, photo-, plasma, and bremsstrahlung processes // Astrophys. J. 1989. Vol. 339. P. 354–364.
- [92] Itoh N., Hayashi H., Nishikawa A., Kohyama Y. Neutrino energy loss in stellar interiors. VII. Pair, photo-, plasma, bremsstrahlung, and recombination neutrino processes // Astrophys. J. Suppl. 1996. Vol. 102. P. 411–424.
- [93] Скобелев В. В. Комптоновский механизм генерации нейтрино и аксионов на эффективно-двумерном замагниченном ферми-газе // ЖЭТФ. 2000. Т. 117, № 6. С. 1059–1066.
- [94] Yakovlev D. G., Kaminker A. D., Gnedin O. Y., Haensel P. Neutrino emission from neutron stars // Phys. Rep. 2001. Vol. 354. P. 1–155.
- [95] Румянцев Д. А., Чистяков М. В. Влияние фотон-нейтринных процессов на остывание магнитара // ЖЭТФ. 2008. Т. 134, № 4. С. 627–636.
- [96] Борисов А. В., Керимов Б. К., Сизин П. Е. Слабый и электромагнитный механизмы фоторождения нейтринных пар в сильно замагниченном электронном газе // Ядерная физика. 2012. Т. 75, № 11. С. 1379— 1386.
- [97] Михеев Н. В., Румянцев Д. А., Чистяков М. В. Фоторождение нейтрино на электроне в плотной замагниченной среде // ЖЭТФ. 2014. Т. 146, № 2. С. 289–296.

- [98] Chistyakov M. V., Kuznetsov A. V., Mikheev N. V. et al. Neutrino photoproduction on electron in dense magnetized medium // Quarks'2014. Proc. of 18-th Int. Sem. «Quarks'2014», Suzdal, Russia, 2014. Ed. by P. S. Satunin, e.a. Inst. Nucl. Res., Moscow. 2015. P. 322–329.
- [99] Kuznetsov A., Rumyantsev D., Shlenev D. Neutrino photoproduction on the electron in dense magnetized medium // EPJ Web Conf. 2017. Vol. 158. P. 05008.
- [100] Peccei R. D., Quinn H. R. Constraints imposed by CP conservation in the presence of instantons // Phys. Rev. 1977. Vol. D16. P. 1791–1797.
- [101] Raffelt G. G. Stars as laboratories for fundamental physics. Chicago: University of Chicago Press, 1996. 664 p.
- [102] Скобелев В. В. Резонансный механизм фоторождения аксионов на замагниченном электронном газе // ЖЭТФ. 2007. Т. 132, № 5. С. 1121—1126.
- [103] Василевская Л. А., Михеев Н. В., Овчинников О. С., Пархоменко А. Я. Индуцированное взаимодействие аксиона с электронами во внешнем магнитном поле // Ядерная физика. 1999. Т. 62, № 9. С. 1662–1667.
- [104] Mikheev N. V., Narynskaya E. N. Field-induced interaction of a pseudoscalar particle with photon in a magnetized e^-e^+ plasma // Mod. Phys. Lett. 2006. Vol. A21. P. 433–444.
- [105] Mikheev N. V., Raffelt G., Vassilevskaya L. A. Axion emission by magnetic field induced conversion of longitudinal plasmons // Phys. Rev. 1998. Vol. D58. P. 055008 (1–5).
- [106] Малофеев В. М., Малов О. И., Теплых Д. А., и др. Радиоизлучение от двух аномальных рентгеновских пульсаров // Астрон. ж. 2005. Т. 82, № 3. С. 273–280.

- [107] Malofeev V. M., Malov O. I., Teplykh D. A. et al. Radio emission from two anomalous X-ray pulsars // Astronomy Reports. 2005. Vol. 49, no. 3. P. 242–249.
- [108] Ruderman M. A., Sutherland P. G. Theory of pulsars Polar caps, sparks, and coherent microwave radiation // Astrophys. J. 1975. Vol. 196. P. 51–72.
- [109] Erber T. High-energy electromagnetic conversion processes in intense magnetic fields // Rev. Mod. Phys. 1966. Vol. 38. P. 626–659.
- [110] Beloborodov A. M., Thompson C. Corona of magnetars // Astrophys. J. 2007. Vol. 657, no. 2. P. 967–993.
- [111] Shabad A. E. Photon dispersion in a strong magnetic field // Ann. Phys. (N.Y.). 1975. Vol. 90, no. 1. P. 166–195.
- [112] Shabad A. E., Usov V. V. Gamma-quanta capture by magnetic field and pair creation suppression in pulsars // Nature. 1982. Vol. 295. P. 215–217.
- [113] Усов В. В., Шабад А. Е. Светопозитроний в магнитосфере пульсара // Письма в ЖЭТФ. 1985. Т. 42, № 1. С. 17–20.
- [114] Latal H. G. Cyclotron radiation in strong magnetic fields // Astrophys. J. 1986. Vol. 309. P. 372–382.
- [115] Sturrock C. A. A model of pulsars // Astrophys. J. 1971. Vol. 164. P. 529–556.
- [116] Tademaru E. On the energy spectrum of relativistic electrons in the crab nebula // Astrophys. J. 1973. Vol. 183. P. 625–635.
- [117] Daugherty J. K. Pair production in superstrong magnetic fields // Astrophys. J. 1983. Vol. 273. P. 761–773.
- [118] Ландау Л. Д. О колебаниях электронной плазмы // ЖЭТФ. 1946. Vol. 16, no. 574.

- [119] Михеев Н. В., Чистяков М. В. Затухание фотона в результате рождения электрон-позитронной пары в сильном магнитном поле // Письма в ЖЭТФ. 2001. Т. 73, № 12. С. 726–730.
- [120] Boyanovsky D., de Vega H. J., Lee D.-S. et al. Fermion damping in a fermion-scalar plasma // Phys. Rev. D. 1999. Vol. 59, no. 10, 105001.
- [121] Киржниц Д. А. Общие свойства электромагнитных функций отклика // Усп. физ. наук. 1987. Vol. 152, no. 7. P. 399–422.
- [122] Ландау Л. Д., Лифшиц Е. М., Питаевский Л. П. Теоретическая физика: ч. 2. Статистическая физика. Теория конденсированного состояния. ФИЗМАТЛИТ, 2001. Т. IX. 496 с.
- [123] Harding A. C., Baring M. G., Gonthier P. L. Photon Splitting Cascades in Gamma-Ray Pulsars and the Spectrum of PSR1509-58 // Astrophys.J. 1997. Vol. 476. P. 246.