Gruppe A

Beispiel 1

Zeigen Sie durch vollständige Induktion, dass für alle $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} j(j+1) = \frac{n(n+1)(n+2)}{3}.$$

Lösung:

• Induktionsvoraussetzung:

$$\sum_{j=1}^{n} j(j+1) = \frac{n(n+1)(n+2)}{3}$$

• Induktionsanfang: Setze n = 1 ein

$$\sum_{i=1}^{1} j(j+1) = 1 \cdot 2 = \frac{1 \cdot 2 \cdot 3}{3}$$

• <u>Induktionsschritt:</u> Zieht man den letzten Summanden aus der Summe erhält man

$$\sum_{j=1}^{n+1} j(j+1) = \sum_{j=1}^{n} j(j+1) + (n+1)(n+2)$$

Nun kann man die Induktionsvoraussetzung auf die Summe, die bis n läuft anwenden. Bringt man die zwei Summanden dann noch auf gleichen Nenner so erhält man

$$\frac{n(n+1)(n+2)}{3} + (n+1)(n+2) = \frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3}$$

Hebt man nun (n+1)(n+2) im Zähler heraus so bekommt man

$$\frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3} = \frac{(n+1)(n+2)(n+3)}{3}$$

Beispiel 2

Sei $(K,+,\cdot,P)$ ein angeordneter Körper. Man bestimme die Menge aller oberen Schranken und die Menge aller unteren Schranken der Teilmenge

$$M := \{-1_K\} \cup \bigcup_{n \in \mathbb{N}} (1_K + \frac{1_K}{n \cdot 1_K}, 1_K + 1_K) \cup [2_K, 3_K) \subseteq K.$$

Hat diese Menge ein Infimum/Supremum in K? Falls ja, dann bestimme man diese und überprüfe, ob diese auch Minimum bzw. Maximum von M sind! Begründen Sie alle Ihre Antworten.

Lösung:

$$M := \underbrace{\{-1_K\}}_{:=M_1} \cup \underbrace{\bigcup_{n \in \mathbb{N}} (1_K + \frac{1_K}{n \cdot 1_K}, 1_K + 1_K)}_{:=M_2} \cup \underbrace{[2_K, 3_K)}_{:=M_3}$$

Als erstes wird gezeigt, dass -1_K das Minimum der Menge M ist. Dazu wird zu nächst gezeigt, dass -1_K eine untere Schranke von M_1 , M_2 , und M_3 ist und damit eine untere Schranke von M.

• Da M_1 nur -1_K enthält und \leq reflexiv ist gilt

$$-1_K \le m \quad \forall m \in M_1$$

• Aus der Definition von M_2 kann man herauslesen, dass für jedes $m \in M_2$ ein $n \in \mathbb{N}$ existiert, sodass $1_K + \frac{1_K}{n \cdot 1_K} < m$ ist.

$$-1_K < 1_K + \frac{1_K}{n \cdot 1_K} \quad \forall n \in \mathbb{N}$$

Nachdem $1_K + \frac{1_K}{n \cdot 1_K} - (-1_K) = 2_K + \frac{1_K}{n \cdot 1_K} \in P(\text{positiv Bereich})$, da jeder Summand im positiv Bereich ist. Nun erhält man wegen der Transitivität von <

$$-1_K < m \quad \forall m \in M_2$$

 \bullet Da $2_K \leq m$ für alle $m \in M_3$ gilt und $-1_K \leq 2_K$ erhält man wegen der Transitivität von \leq

$$-1_K \le m \quad \forall m \in M_3$$

Insgesamt weiß man nun, dass -1_K eine untere Schranke ist die noch dazu in M enthalten ist. Also ist -1_K das Minimum und damit auch das Infimum.

$$\min M = \inf M = -1_K$$

Damit erhält man auch unmittelbar wieder wegen der Transitivität von \leq , dass die Menge der unteren Schranken

$$U = \{x \in K \mid x \le -1_K\} = (-\infty, -1_K].$$

So als nächstes wird gezeigt, dass 3_K das Supremum der Menge M ist.

- Offensichtlich ist 3_K eine obere Schranke für M_1 .
- Wegen der Definition von M_3 ist 3_K auch eine obere Schranke von M_3 .
- Da $m < 1_K + 1_K = 2_K$ für alle $m \in M_2$ gilt, folgt aus der Transitivität, dass 3_K auch eine obere Schranke für M_2 ist.

Angenommen es gäbe eine kleinere obere Schranke $o < 3_K$ für M dann werden 2 Fälle unterschieden.

• 1. Fall: $o \leq 2_K$. In diesem Fall erhält man wegen

$$o \leq 2 < \underbrace{\frac{2_K + 3_K}{2}}_{\in M_3} < 3_K$$

einen Widerspruch zu o ist eine obere Schranke.

• <u>2. Fall:</u> $o > 2_K$. Jetzt erhält man wegen

$$2_K < o < \underbrace{\frac{o + 3_K}{2}}_{\in M_3} < 3_K$$

einen Widerspruch zu o ist eine obere Schranke.

Also gibt es keine kleinere obere Schranke als 3_K , womit sup $M=3_K$. Da 3_K nicht in M enthalten ist, hat M kein Maximum. Wegen der Transitivität von < erhält man die Menge der oberen Schranken

$$O = \{x \in K \,|\, 3_K \le x\} = [3_K, +\infty).$$