AD-A023 758

RIA-76-U202

Cy No. 1

TECHNICAL

AD-A023 158 R-TR 76-013

SHOT-PEENING PROCEDURES FOR HELICAL COMPRESSION SPRINGS

HENRY P. SWIESKOWSKI

APRIL 1976

FINAL REPORT

RESEARCH DIRECTORATE

Approved for public release, distribution unlimited.

GENERAL THOMAS J. RODMAN LABORATORY
ROCK ISLAND ARSENAL
ROCK ISLAND, ILLINOIS 61201

DISPOSITION INSTRUCTIONS:

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER:

The findings of this report are not to be construed as an Official Department of the Army position unless so designated by other authorized documents.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER
. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERE
SHOT-PEENING PROCEDURES FOR HELICAL COMPRESSION	Final (Jun 73 - Jan 75)
SPRINGS	6. PERFORMING ORG. REPORT NUMBER
. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*)
HENRY P. SWIESKOWSKI	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Research Directorate, SARRI-LR	AREA & WORK UNIT NUMBERS
GEN Thomas J. Rodman Laboratory	11/5 0005 06 5050
Rock Island Arsenal, Rock Island, IL 61201	AMS 3297.06.7259
1. CONTROLLING OFFICE NAME AND ADDRESS CMDR, Rock Island Arsenal	12. REPORT DATE
GEN Thomas J. Rodman Laboratory, SARRI-LR	September 1975
Rock Island, IL 61201	23
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	INVENTAGE TELEP
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release, distribution unlimite	ea.
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)
DISTRIBUTION STATEMENT (of the source direct in block 20, it shidelin its	at reporty
8. SUPPLEMENTARY NOTES	
 KEY WORDS (Continue on reverse side if necessary and identify by block number, 	
9. KEY WORDS (Continue on reverse side if necessary and identify by block number, Shot-Peening	
9. KEY WORDS (Continue on reverse side it necessary and identify by block number) Shot-Peening Manufacturing Methods	
9. KEY WORDS (Continue on reverse side it necessary and identify by block number) Shot-Peening Manufacturing Methods Helical Springs	
9. KEY WORDS (Continue on reverse side it necessary and identify by block number) Shot-Peening Manufacturing Methods	

Various shot-peening procedures for the manufacture of cold-wound helical compression springs were investigated to establish optimum shot-peening methods to increase the life endurance properties of springs. Production springs that are typical of small arms applications were fabricated from music wire and stainless steel materials. The springs were given different shot-peening treatments with the exception of control groups that were not shot-peened.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)	
Effect of the various shot-peening proced laboratory endurance tests. Recommended test results are given for the spring mainvestigated in this project.	shot-peening procedures based on

CONTENTS

	z ⁱ		Page
DD Fon	n 1473		i
Conten	ts		iii
Object:	ive		<u>.</u> 1
Introd	uction		1
Α.	Discovery of Shot-Peening		ı
В.	Beneficial Effects of Shot-Peening		1
C.	Controlling Shot-Peening	,	2
D.	The Proper Shot-Peening for Springs		2
Discus	sion		2
A.	Material and Test Procedures		2
В.	Test Results		4
Conclu	sions and Recommendations		6
Append:	ix		7
Diatri	oution		g)

SHOT-PEENING PROCEDURES FOR HELICAL COMPRESSION SPRINGS

OBJECTIVE

The objective of this program was to determine the optimum shotpeening procedures to increase the endurance properties of helical compression springs.

INTRODUCTION

A. Discovery of Shot-Peening

The improvement of fatigue properties of metal components by shotpeening was discovered by accident and in connection with compression springs. The process was originally developed as a cleaning operation and was called shot-blasting. According to J. O. Almen, the beneficial effects of shot-peening were first observed by O. Burkhardt and J. P. Heiss who were trying to improve the fatigue durability of valve springs. Broken valve springs were quite common in those days before peening. Burkhardt and Heiss suspected that particles of scale which adhered to the wire surface might be a cause of failures and requested that a special lot of springs be thoroughly cleaned. When the order was delivered, they were disturbed to find that all the springs were "bruised" and roughened by the shot-blasting which had been used to clean them. Though they were dissatisfied with the appearance of the springs, they proceeded to test these springs and were surprised to discover that they out-performed all previous spring samples. Because this performance seemed incredible to the investigators as well as to the spring supplier that shot-blasting could improve spring life, they decided to repeat the tests. Again, the shot-blasted springs proved superior. The expression "shot-peening" was introduced to distinguish the controlled process for improvement of spring life from the haphazard shotblasting operation which led to the original discovery.

In a short time, practically all spring manufacturers were convinced that shot-peening could greatly increase the endurance properties of springs. The practice of shot-peening then spread from the spring industry to other industries in which fatigue life of highly stressed parts is an important consideration. Some academic groups were more dubious at first, but eventually they recognized the beneficial effects of this practice; thus, today, shot-peening is discussed in many textbooks on strength of materials.

B. Beneficial Effects of Shot-Peening

Shot-peening improves the fatigue durability of metal parts by the altering of the surface layers in two different ways. First, the surface of the part is cold-worked by the pelting of the shot particles and thus its

¹J. O. Almen:, "Effect of Residual Stresses on Rolling Bodies," S.A.E. Preprint 467A, Jan. 8, 1962.

physical properties are improved. The second result is more important, but not so obvious. It consists of prestressing the surface layers and inducing a residual compressive stress within the material. This residual stress will resist a subsequently applied tensile stress and must be counteracted before the material can be stressed in tension; thus, the load-carrying capacity of the material is increased.

C. Controlling Shot-Peening

The Almen strip is the basic control tool in shot-peening. It measures the effect of peening by the curvature produced on a standarized strip of spring steel which is peened on one side only. Holding fixture and gage used for measuring the curvature are also standarized. This is a very practical method, developed over 40 years ago by J. O. Almen of the Research Laboratories Division of General Motors Corporation. Three standard Almen strips are available that are designated N, A, and C with the following respective thicknesses: .031, .051, and .0938 inch. However, all the strips have the same rectangular shape of 3.000 inches by .750 inchs. An intensity given as .008A means that as a result of shot-peening, the arc height (curvature) on an A strip will measure .008 inch. An important consideration in shot-peening is "saturation". A surface of an Almen strip is considered saturated at a given intensity when additional peening produces no further appreciable curvature.

D. Proper Shot-Peening for Springs

Shot-peening procedures that would be most effective in prolonging spring life have not been established. Generally, specifications of a shot-peening process for a particular spring design depend mainly on the discretion of the project engineer and without assurance that it will be the optimum process. The aim of this report is to determine optimum shot-peening manufacturing specifications for helical compression springs of the type that are used in Army weapons. Emphasis will be placed on shot-peening of music wire springs since approximately 95 per cent of all small arms springs are fabricated from this material.

DISCUSSION

A. Material and Test Procedures

The helical compression springs that were used in this program were fabricated from the following spring tempered materials and given the specified stress-relieving treatments.

1. Music Wire, QQ-W-470
Wire diameters, .035 and .080 inch
Stress-Relieve-Heat at 450°F + 10° for 30 minutes

2. Stainless Steel, QQ-W-423, Comp. FS302
Wire diameters, .035 and .080 inch
Stress-Relieve-Heat at 600°F + 25° for 30 minutes

Four basic spring designs were prepared for this project. Designs 1 and 2 were formed of .035 inch wire and with spring indices of 6 and 9, respectively. Designs 3 and 4 were formed of .080 inch wire and with spring indices of 6 and 9, respectively. Complete specifications for the four spring designs are given in the Appendix. Seventy springs of each design were fabricated from music wire material. Also, seventy springs each of Designs 1, 3, and 4 were fabricated from stainless steel material. Each group of seventy springs was divided into seven sets of ten springs each and given the following shot-peening treatments after the stress-relieving operation. Set No. 1 was selected as the control group and received no shot-peening.

Springs Coiled from .035 Inch Wire

Set No.	Shot Size (Inch)	Intensity (Arc Height)
1 2 3 4 5 6 7	No shot-peening .007 .007 .007 .011 .011	.004n006n .010n012n .016n018n .004n006n .010n012n .016n018n

Springs Coiled from .080 Inch Wire

Set No.	Shot Size (Inch)	Intensity (Arc Height)
1	No shot-peening	
2	.011	.002A004A
3	.011	.006A008A
4	.011	.010A012A
5	.017	.002A004A
6	.017	.006A008A
7	.017	.010A012A

All shot-peening was performed with cast-steel shot of hardness $R_{\rm c}$ 45-50 and in accordance with MIL-S-13165B.

A requirement of all wire material used in this program was that it had to be free from surface irregularities. Therefore, prior to coiling, the material was examined thoroughly for surface defects with the use of a microscope. No cracks or surface defects were observed and the material was accepted for coiling. After shot-peening, all springs were preset by the compression to solid height three times. Measurements were taken and recorded of the free height, load at assembled height, and load at minimum operating height of all springs.

Test fixtures for use on the Krouse spring tester for the endurance testing of the springs were designed and fabricated. A photograph of a test spring assembled onto the Krouse tester is shown in the Appendix. Testing was initially performed between the stress levels of 75,000 psi and 150,000 psi and at a rate of 1,000 cycles per minute. However, because of the lack of spring breakage, the stress conditions were subsequently intensified and the cyclic rate was increased to 1,200 r.p.m.

B. Test Results

The springs fabricated from music wire in accordance with Design 1 were tested at a rate of 1,000 compressions per minute between the heights of 1.966 inches and 1.243 inches which correspond to stress levels of 75,000 psi and 150,000 psi, respectively. Eight springs of Set 1 (control group) broke after an average of 141,375 cycles. However, practically all the springs in Set 2 through Set 7 sustained 500,000 cycles each and insufficient test data were generated on which to draw inferences as to the optimum shot-peening process. Therefore, to obtain comparative test data, 5 springs that had sustained 500,000 cycles each were selected from Sets 2 through 7 for additional testing. Test operating conditions were revised and made more severe so as to induce spring breakage. The cyclic rate was increased to 1200 compressions per minute. Furthermore, the spring test heights on the Krouse tester were changed to 2.500 inches (20,000 psi) and 1.200 inches (155,000 psi), thereby appreciably increasing the stress range through which the spring must work. Breakage occurred to all the music wire springs of Design 1 in the subsequent endurance testing. Test results for this group are shown in Table 1 on the Appendix.

Design 2 of music wire material was the second group of springs that was endurance tested. The initial test procedures for this group were revised to intensify the stress conditions to induce spring breakage. The springs were cycled between the heights of 2.480 inches (20,000 psi) and .810 inches (155,000 psi), and at a rate of 1200 cycles per minute. Test results for this group are shown in Table 2 in the Appendix.

Test results for Designs 3 and 4 of music wire material are shown in Tables 3 and 4, respectively. Endurance testing for these two groups was conducted between the stress levels of 20,000 psi and 135,000 psi, and with a cyclic rate of 1200 compressions per minute. Note that many springs of Design 4 sustained 1,000,000 cycles without breakage. If a spring sustained 1,000,000 cycles, it was considered to have indefinite life and the endurance testing was concluded. However, to measure the relative beneficial effect of the different shot-peening procedures, the average life of springs in Design 4 was computed by consideration of 1,000,000 cycles as the life of an unbroken spring.

In the endurance testing of the stainless steel springs, Design 1 was cycled between the stress levels of 75,000 psi and 150,000 psi, and at a rate of 1200 cycles per minute. Designs 3 and 4 were cycled between the

stress levels of 20,000 psi and 138,000 psi, and also at a rate of 1200 cycles per minute. The testing of each spring was concluded either at breakage or at the completion of 500,000 cycles, whichever occurred first. Test results obtained with the stainless steel springs are shown in Tables 5, 6, and 7 in the Appendix.

The shot-peening treatments that were most effective in increasing the life of the music wire springs are shown in numerical order in Table 8. It also presents data on which to base a comprehensive type statement as to an optimum shot-peening procedure. The average life of each set of music wire springs is listed in Table 8 under its appropriate design group. However, the average life for Set 1 of Design 1 is not included since all the springs in this set had broken previously under moderate stress conditions. Also, the shot-peening procedure that was applied is indicated along the side of each set. A similar summary of the average life results obtained in the endurance testing of the stainless steel springs is shown in Table 9.

An examination of the life values given for spring Designs 1 and 2 in Table 8 shows that the most effective shot-peening treatment for music wire of .035 inch is the one applied to Set 2, i.e., a shot size of .007 inch and an intensity of .004N-.006N. Note that the next most beneficial treatment (Set 5) had the same intensity of .004N-.006N, but a larger shot particle. An inspection of the test data for Designs 3 and 4 indicates that the optimum shot-peening procedure for music wire of .080 inch consists of a shot size of .011 inch and an intensity of .006A-.008A. Again, note that the shot-peening process of the same intensity (Set 6) is the next most beneficial one for Design 4 and practically so for Design 3.

In a comparison of the designs of the same wire diameter, greater life benefits were obtained from shot-peening with Design 2 than with Design 1, and with Design 4 than with Design 3. This can be attributed to the spring index and the coil pitch which were much larger for Designs 2 and 4; thus, better coverage was possible in shot-peening the inside diameter of the spring. Also, with regards to surface accessibility, note that the most effective shot-peening procedure for each design involved the smaller shot size particles which offered more open passage between the coils; thus, better coverage of the inside diameter was attained. According to Henry 0. Fuchs and Paul E. Bickel, 2 a general guide is that the shot size should be no larger than $\frac{1}{4}$ of the smallest opening through which the shot must pass.

²Henry O. Fuchs and Paul E. Bickel, "Shot-Peening of Springs," Article in Springs Magazine, May 1963

Review of the stainless steel spring test data shown in Table 9 does not indicate any reasonable alignment as was the case with the music wire results. A puzzling discrepancy occurs between Designs 3 and 4, in which the shot-peening process of .Oll inch shot and .OO2A-.OO4A intensity ranks highest for Design 3 and poorest for Design 4. However, shot-peening does have a noticeable effect on the life of stainless steel springs as is shown in Table 9. A minimum of a threefold increase in spring life is gained even with the least effective shot-peening treatment.

Reasonable inferences that can be drawn from the test data as to optimum shot-peening procedures for stainless steel springs are given below:

For .035 inch wire - .007 shot, .010N-.012N intensity For .080 inch wire - .011 shot, .010A-.012A intensity

CONCLUSIONS AND RECOMMENDATIONS

Effective shot-peen coverage of the inside diameter of helical compression springs can be attained by use of the smallest size shot particle that is practical.

The following shot-peening procedures are recommended:

For Music Wire Material

- 1. Wire size approximately .035 inch
 Stress range of 20,000 psi to 155,000 psi
 Shot size of .007 inch
 Intensity .004N .006N
- 2. Wire size approximately .080 inch
 Stress range of 20,000 psi to 135,000 psi
 Shot size of .011 inch
 Intensity .006A .008A

For Stainless Steel Material

- 1. Wire size approximately .035 inch
 Stress range of 75,000 psi to 150,000 psi
 Shot size of .007 inch
 Intensity .010N .012N
- 2. Wire size approximately .080 inch Stress range of 20,000 psi to 138,000 psi Shot size of .011 inch Intensity - .010A - .012A

APPENDIX

	Page
Design No. 1	8
Design No. 2	9
Design No. 3	10
Design No. 4	11
Photograph, Test Spring	12
Table 1, Design No. 1, Music Wire Springs	13
Table 2, Design No. 2, Music Wire Springs	14
Table 3, Design No. 3, Music Wire Springs	15
Table 4, Design No. 4, Music Wire Springs	16
Table 5, Design No. 1, Stainless Steel Springs	17
Table 6, Design No. 3, Stainless Steel Springs	18
Table 7, Design No. 4, Stainless Steel Springs	19
Table 8, Average Life of Spring Sets (Music Wire Springs)	20
Table 9, Average Life of Spring Sets	22

SPRING SPECIFICATIONS DESIGN NO. 1

WIRE SIZE (IN.)	.035
OUTSIDE DIAMETER (IN.)	·245 <u>+</u> ·005
TOTAL COILS	30
TYPE OF ENDS	Closed and Ground
FREE HEIGHT, APPROX. (IN.)	2.69 (2.93)
MEAN ASSEMBLED HEIGHT (IN.)	1.966 (2.102)
LOAD AT MEAN ASSEMBLED HEIGHT (LB)	6.0 <u>+</u> .6
MINIMUM OPERATING HEIGHT (IN.)	1.243 (1.270)
LOAD AT MINIMUM OPERATING HEIGHT (LB)	12.0 <u>+</u> 1.2
LOAD - DEFLECTION RATE (LB/IN.)	8.3 (7.2)
MAXIMUM SOLID HEIGHT (IN.)	1.100
SPRING HELIX	L. H.

VALUES IN PARENTHESES APPLY ONLY TO SPRINGS FABRICATED FROM STAINLESS STEEL MATERIAL.

SPRING SPECIFICATIONS DESIGN NO. 2

WIRE SIZE (IN.)	.035
OUTSIDE DIAMETER (IN.)	.350 <u>+</u> .005
TOTAL COILS	18
TYPE OF ENDS	Closed and Ground
FREE HEIGHT, APPROX. (IN.)	2.73 (2.97)
MEAN ASSEMBLED HEIGHT (IN.)	1.805 (1.901)
LOAD AT MEAN ASSEMBLED HEIGHT (LB)	4.0 <u>+</u> .4
MINIMUM OPERATING HEIGHT (IN.)	.876 (.832)
LOAD AT MINIMUM OPERATING HEIGHT (LB)	8.0 <u>+</u> .8
LOAD - DEFLECTION RATE (LB/IN.)	4.3 (3.7)
MAXIMUM SOLID HEIGHT (IN.)	.680
SPRING HELIX	L. H.

VALUES IN PARENTHESES APPLY ONLY TO SPRINGS FABRICATED FROM STAINLESS STEEL MATERIAL.

SPRING SPECIFICATIONS DESIGN NO. 3

WIRE SIZE (IN.)	.080
OUTSIDE DIAMETER (IN.)	.560 <u>+</u> .007
TOTAL COILS	15
TYPE OF ENDS	Closed and Ground
FREE HEIGHT, APPROX. (IN.)	2.73 (2.93)
MEAN ASSEMBLED HEIGHT (IN.)	2.070 (2.165)
LOAD AT MEAN ASSEMBLED HEIGHT (LB)	27 <u>+</u> 3.0
MINIMUM OPERATING HEIGHT (IN.)	1.405 (1.400)
LOAD AT MINIMUM OPERATING HEIGHT (LB)	54 <u>+</u> 6.0
LOAD - DEFLECTION RATE (LB/IN.)	41 (36)
MAXIMUM SOLID HEIGHT (IN.)	1.250
SPRING HELIX	L. H.

VALUES IN PARENTHESIS APPLY ONLY TO SPRINGS FABRICATED FROM STAINLESS STEEL MATERIAL.

SPRING SPECIFICATIONS DESIGN NO. 4

WIRE SIZE (IN.)	.080
OUTSIDE DIAMETER (IN.)	.800 <u>+</u> .008
TOTAL COILS	9•5
TYPE OF ENDS	Closed and Ground
FREE HEIGHT, APPROX. (IN.)	2.75 (2.95)
MEAN ASSEMBLED HEIGHT (IN.)	1.890 (1.957)
LOAD AT MEAN ASSEMBLED HEIGHT (LB)	18.0 <u>+</u> 2.0
MINIMUM OPERATING HEIGHT (IN.)	1.027 (.964)
LOAD AT MINIMUM OPERATING HEIGHT (LB)	36 <u>+</u> 4.0
LOAD - DEFLECTION RATE (LB/IN.)	21 (18)
MAXIMUM SOLID HEIGHT (IN.)	.810
SPRING HELIX	L. H.

VALUES IN PARENTHESES APPLY ONLY TO SPRINGS FABRICATED FROM STAINLESS STEEL MATERIAL.

PRODUCTION SPRING INSTALLED ON ENDURANCE TESTER

TABLE 1, TEST RESULTS DESIGN 1, MUSIC WIRE SPRINGS

Wire size = .035 In.

Spring index = 6.0

Number	of	Cycles	at	Spring	Breakage
--------	----	--------	----	--------	----------

Spring/	Set Number		3	_		_
i	2 59,500	41,500	24,700	5 4 5,1 00	6 36,400	54,200
2	50,600	32,800	77,400	51,000	39,600	42,100
3	23,300	46,400	25,500	36,400	37,400	41,000
4	84,400	27,400	36,900	60,800	48,500	38,500
5	52,400	39,600	30,800	52,100	42,700	53,800
Average	Number of C	ycles:				
	54,040	37,540	39,060	49,080	40,920	45,920

NOTE: Above listed springs were previously cycled 500,000 times, each under moderate stress conditions.

TABLE 2, TEST RESULTS DESIGN 2, MUSIC WIRE SPRINGS

Wire size = .035 In.

Spring index = 9.0

S	prina	g/Set Numl	per					
	1	1 59,900	2 184,900	3 79,500	4 81,500	5 131,900	6 50,800	7 63,500
	2	67,800	47,400	49,700	57,000	74,400	70,300	36,900
	3	66,400	81,200	66,200	67,300	66,400	66,700	108,400
	14	66,900	99,200	53,100	65,200	60,600	74,800	61,200
	5	56,700	105,700	88,000	97,900	59,200	78,500	73,000
Average Number of Cycles:								
٠		63,540	103,640	67,300	73,780	78,500	68,220	68,600

TABLE 3, TEST RESULTS DESIGN 3, MUSIC WIRE SPRINGS

Wire size = .080 In.

Spring index = 6.0

Number of Cycles at Spring Breakage

Spring	Set Number	er					
1	171,100	2	3 345,500	4 196,700	185 1100	6 135,200	7 206,100
1	1/1,100	130,000	347,700	190,100	10),+00	137,200	200,100
2	185,500	142,600	478,000	197,500	315,200	220,100	230,700
3	121,900	228,400	311,600	190,800	164,100	231,300	379,100
4	114,500	116,200	216,000	116,700	297,700	462,100	241,500
5	123,000	160,000	364,000	159,500	155,300	206,500	223,100
Averag	ge Number o	of Cycles:					
	148,250	167,040	343,020	172,240	223,540	251,040	256,100

TABLE 4, TEST RESULTS DESIGN 4, MUSIC WIRE SPRINGS

Wire size = .080 In.

Spring index = 9.0

Number of Cycles at Spring Breakage

Spring/Set Number

1 2 3 4 5 6 7 1 108,100 526,600 1,000,000* 770,500 478,200 1,000,000* 658,500

2 108,400 1,000,000* 1,000,000* 1,000,000* 1,000,000* 1,000,000*

3 79,900 375,000 1,000,000* 1,000,000* 1,000,000* 942,900 616,600

4 107,600 1,000,000* 1,000,000* 1,000,000* 299,700 1,000,000* 1,000,000*

5 103,300 1,000,000* 1,000,000* 1,000,000* 1,000,000* 1,000,000*

Average Number of Cycles:

101,460 780,320 1,000,000 954,100 755,580 988,580 865,020

^{*}Endurance-testing was terminated upon completion of 1,000,000 cycles

TABLE 5, TEST RESULTS DESIGN 1, STAINLESS STEEL SPRINGS

Wire size = .035 In.

Spring index = 6.0

Number of Cycles at Spring Breakage

Spring	Spring/Set Number								
1	25,800	2 500,000	203,600	500,000	5 148,400	6 73,400	86,600		
2	107,000	212,600	500,000	173,000	261,900	396,500	500,000		
3	47,100	92,000	82,600	491,100	321,100	95,000	500,000		
4	55,300	211,400	394,300	438,000	191,400	369,300	40,000		
5	38,400	351,100	475,000	97,700	96,000	500,000	213,500		
6	*	227,800	500,000	133,300	88,100	156,300	500,000		
7	*	500,000	500,000	313,200	106,600	98,000	500,000		
8	*	77,900	435,200	269,300	158,300	300,300	500,000		
9	*	*	500,000	482,000	151,000	217,000	500,000		
10	*	*	500,000	90,600	142,700	387,000	500,000		
Average	e Number o	of Cycles:							
	54,720	271,600	409,070	298,820	166,550	259,280	384,000		

^{*}These springs were used to establish test conditions for the operating stress levels and cyclic frequency.

TABLE 6, TEST RESULTS DESIGN 3, STAINLESS STEEL SPRINGS

Wire size = .080 In.

Spring index = 6.0

Spring/	Spring/Set Number								
1	1 45,300	2 495,700	3 352,500	4 429,000	5 500,000	6 370,800	370 ,8 00		
2	36,800	291,800	270,500	396,000	81,400	324,500	369,700		
3	30,800	500,000	500,000	500,000	500,000	317,600	353,100		
4	37,200	500,000	500,000	412,500	229,800	446,400	500,000		
5	37,200	500,000	346,600	500,000	500,000	394,700	302,400		
6	39,400	500,000	307,600	410,000	500,000	314,600	416,200		
7	47,200	500,000	463,000	440,400	500,000	466,500	500,000		
8	35,900	500,000	314,600	452,000	500,000	360,100	500,000		
9	37,300	500,000	288,800	500,000	500,000	387,600	389,900		
10	36,100	500,000	349,300	475,400	500,000	500,000	497,000		
Average	Number o	of Cycles:							
	38,320	478,750	369,290	451,530	431,120	388,280	419,910		

TABLE 7, TEST RESULTS DESIGN 4, STAINLESS STEEL SPRINGS

Wire size = .080 In.

Spring index = 9.0

Number o	f	Cycles	at	Spring	Breakage
----------	---	--------	----	--------	----------

Spring	Set Numb	er					
1	140,200	188,400	3 150,200	4 133,100	5 500,000	6 194,500	7 230,300
2	47,200	164,200	203,200	265,000	500,000	182,200	232,400
.3	37,500	41,700	129,400	281,500	233,500	163,700	152,200
4.	38,300	224,100	285,800	241,100	500,000	229,000	225,200
5	40,200	175,400	294,000	256,000	330,200	92,000	208,900
6	35,400	87,800	121,200	169,800	500,000	204,500	218,800
7	51,600	72,500	177,400	275,500	280,000	238,200	225,700
8	28,800	85,300	76,800	241,500	486,200	274,500	210,000
9	39,800	85,200	110,700	205,200	269,700	196,300	280,400
10	42,100	142,900	211,000	221,000	216,400	193,000	249,200
	773	- O Charles					
Average	Number	of Cycles:					
	40,110	126,750	175,970	228,970	381,650	197,790	223,310

TABLE 8, AVERAGE LIFE OF SPRING SETS

Music Wire Springs

DESIGN NO. 1

Set No.	Average Life (Cycles)	Shot Size (In.)	Intensity
2	54,040	.007	.004N006N
5	49,080	.011	.004N006N
7	45,920	.011	.016N018N
6	40,920	.011	.010N012N
4	39,060	.007	.016N018N
3	37,500	.007	.OlonOl2N

DESIGN NO. 2

Cot No	Arramana Tifa (Cralas)	Shot Size (In.)	Intonsita
Set No.	Average Life (Cycles)	Shot Size (in.)	Intensity
2	103,640	.007	.004n006n
5	78,500	.011	.004N006N
4	73,780	.007	.016N018N
7	68,600	.011	.016N018N
6	68,220	.011	.OlonOl2N
3	67,300	.007	.010N012N
1	63,540	Not Shot-Peen	ed

DESIGN NO. 3

Set No.	Average Life (Cycles)	Shot Size (In.)	Intensity
3	343,020	.011	.006A008A
7	256,100	.017	.010A012A
6	251,040	.017	.006A008A
5	223,540	.017	.002A004A
14	172,240	.011	.010A012A
2	167,040	.011	.002A004A
ı	148,250	Not Shot-Peened	

DESIGN NO. 4

Set No.	Average Life (Cycles)	Shot Size (In.)	Intensity
3	1,000,000	.011	.006A008A
6	988,580	.017	.006A008A
14	954,100	.011	.010A012A
7	865,020	.017	.010A012A
2	780,320	.011	.002A004A
5	755,580	.017	.002A004A
1	101,460	Not Shot-Peene	ed

TABLE 9, AVERAGE LIFE OF SPRING SETS

Stainless Steel Springs

DESIGN NO. 1

Set No.	Average Life (Cycles)	Shot Size (In.)	Intensity
3	409,070	.007	.010N012N
7	384,000	.011	.016N018N
4	298,820	.007	.016N018N
2	271,600	.007	.004N006N
6	259,280	.011	.010N012N
5	166,550	.011	.004N006N
ı	54,720	Not Shot-Peens	ed

DESIGN NO. 3

Set No.	Average Life (Cycles)	Shot Size (In.)	Intensity
2	478,750	.011	.002A004A
14	451,530	.011	.010A012A
5	431,120	.017	.002A004A
7	419,910	.017	.010A012A
6	388,280	.017	.006A008A
3	369,290	.011	.006A008A
1	38,320	Not Shot-Peene	ed.

DESIGN NO. 4

Set No.	Average Life (Cycles)	Shot Size (In.)	Intensity
. 5	381,650	.017	.002A004A
4	228,970	.011	.010A012A
7 .	223,310	.017	.010A012A
6	197,790	.017	.006A008A
3	175,970	.011	.006A008A
2	126,750	.011	.002A004A
1 .	40,110	Not Shot-Peened	r:

1	5.0	No.		-	. — IIII				
Bar.									
									1.0
									4.5
								. 31	
								100	we did
									47.3
									2. 200
									1,394
									1.3
									53.3
									4.1
									- F
									3
275									111
									3.3
EMBLE I	وقياري								

		Copies
A.	Department of Defense	
	Office of the Director of Defense Research & Engineering ATIN: Mr. J. C. Barrett Room 3D-1085, The Pentagon Washington, DC 20301	- 1 - 1
	Defense Documentation Center ATIN: TIPDR Cameron Station Alexandria, VA 22314	12
В.	Department of the Army	
	Commander U. S. Army Materiel Development & Readiness Command ATTN: DRCRD-TO DRCRD-R, Mr. H. Cohen 5001 Eisenhower Avenue Alexandria, VA 22333	1
	Commander U. S. Army Armament Command ATIN: DRSAR-RDP DRSAR-PP DRSAR-PPI DRSAR-TDC Rock Island, IL 61201	1 1 2
	Commander U. S. Army Electronics Command ATTN: DRSEL_TL_ME Fort Monmouth, NJ 07703	1
	Commander Rock Island Arsenal ATTN: SARRI-LA SARRI-LE SARRI-LS SARRI-LW SARRI-LPL SARRI-LPL SARRI-LT Rock Island, IL 61201	1 1 1 2 20 1
	Commander U. S. Army Missile Command ATTN: DRSMI-RP DRSMD-RRS Mr. R. E. Ely DRSMI-RSM Mr. Whellahan Redstone Arsenal, AL 35809	2

•	Copies
Commander U. S. Army MERDC ATTN: STSFB-GL Fort Belvoir, VA 22060	1
Commander U. S. Army Environmental Hygiene Agency Edgewood Arsenal, MD 21010	1
Commender U. S. Army Medical Biomechanical Research Laboratory ATTN: Library Fort Detrick Bldg. 568 Frederick, MD 21701	1
Commander Natick Laboratories Natick, MA 01760	1
Commander U. S. Army Aviation School ATTN: Office of the Librarian Fort Rucker, AL 36362	1
Director Joint Military Packaging Training Center ATTN: AMXPT-PT Aberdeen Proving Ground, MD 21005	1
Commander U. S. Army Tropic Test Center ATTN: STETC-MO-A Technical Library Drawer 942	
Fort Clayton, Canal Zone 09827 Commander Tobyhanna Army Depot	1
ATTN: AMC Packaging, Storage & Containerization Center Tobyhanna, PA 18466	. 1
Commander U. S. Army Production Equipment Agency Rock Island Arsenal Rock Island. IL 61201	2

	Copies
Commander U. S. Army Tank-Automotive Command ATTN: DRSTA-RFL Technical Library DRSTA-RK Materials Laboratory Warren, MI 48090	1
U. S. Army Research & Development Group (Europe) ATTN: Chief, Chemistry Branch FPO New York 09510	1
Commander U. S. Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709	1
Commander Army Materials and Mechanics Research Center ATTN: AMXMR-PL Watertown, MA 02172	1
Commander Frankford Arsenal ATTN: SARFA-L1000 SARFA-C2500 Philadelphia, PA 19137	1
Commander Picatinny Arsenal ATTN: Plastics & Packaging Lab PLASTEC Dover, NJ 07801	1
Commander Edgewood Arsenal ATTN: SAREA-CL-A Edgewood, MD 21010	1.
Commander Watervliet Arsenal ATTN: SARWV-RDR SARWV-RDT Library Watervliet, NY 12189	1

C.	Department of Navy	Copies
	Office of Naval Research ATTN: ONR-471 Room 928, Ballston Tower No. 1 Arlington, VA 22217	1
	Commander Naval Sea Systems Command ATTN: SEA-03 ATTN: RRMA-54 ATTN: SP-271 Washington, DC 20362	1 1
	Commander Naval Supply Systems Command ATTN: NSUP-048 Washington, DC 20376	1
	Commander U. S. Naval Surface Weapons Center ATTN: NDL-211 Silver Springs, ND 20910	ı
	Commander U. S. Naval Research Laboratory ATTN: NRL-2600 Washington, DC 20375	ı
	Commander U. S. Naval Ordnance Test Station ATTN: Code 753 Technical Library China Lake, CA 93555	. 1
	Commander Mare Island Naval Shipyard ATTN: Rubber Laboratory	,

D.	Department of the Air Force	Copies
	HQ USAF RDP Room 4D-313, The Pentagon Washington, DC 20330	1
	AFML/LTM Wright-Patterson AFB, OH 45433	2
	AFML/MB Wright-Patterson AFB, OH 45433	1
	AFFTC Edwards AFB, CA 93523	1
E.	Other Government Agencies	
	Energy Research and Development Agency Division of Reactor Development and Technology Washington, DC 20545	1
	George C. Marshall Space Flight Center, NASA ATTN: M-S&E M-A&PS Humtsville, AL, 35812	i

ACCESSION NO. UNCLASSIFIED ACCESSION NO.

SHOT-PREMING PROCEDURES FOR HELICAL COMPRESSION SPRINGS Research Directorate GEW Thomas J. Rodman Laboratory Rock Island Arsenal, Rock Island, IL 61201

Prepared by: Henry P. Swieskowski

Technical Report No.

23 pages, Incl Figures & Tables

compression springs procedures for the manufacture of cold wound helical compression springs when investigated to establish optimes after-genering emptings that are typical of small arms applications were fibriteted from must with and stainless steel materials. The springs were given must were and stainless steel materials. The springs were given that were not shot-peened. Effect of the various shot-peening procedures approach to the commended shot-peened. Effect of the various shot-peening procedures abort-peening procedures have present of the various shot-peening procedures abort-peening procedures have an an expession of contributions that were investigated in this project.

ACCESSION NO.

SHOT-PRENING PROCEDURES FOR HELICAL COMPRESSION SPRINGS

Research Directorate GEN Thomas J. Rodman Laboratory Rock Island Arsenal, Rock Island, IL 61201

Prepared by: Henry P. Swieskowski

Technical Report No.

23 pages, Incl Figures & Tables

Various shot-peening procedures for the manufacture of cold wound helical compression springs were intestigated to establish optimus abet-peening methods to increase the life endurance properties of springs. Froduction mention is of springs that are typical of estal are applicated towns were fibricated from music wire and stainless steal materials. The springs were given that the screening trenchments with the acception of control groups that were not shot-peening freetaness with the acception of control groups on spring life was evaluated by laboratory endurance tests. Recommended such-peening procedures have seval water insults are given for the spring materials and stress conditions that were investigated in this project.

- Research Directorate GEM Thomas J. Rodman Laboratory Rock Island Arsenal, Rock Island, IL 61201
- Shot-Peening Manufacturing Methods Helical Springs Increased Life Endurance Tests

Manufacturing Methods Helical Springs Increased Life Endurance Tests

4 0 m 4 m

UNCLASSIFIED

- 400045
- SHOT-PRENING PROCEDURES FOR HELICAL COMPRESSION SPRINGS Prepared by: Henry P. Swieskowski

Technical Report No.

23 pages, Incl Figures & Tables

Various shot-peening procedures for the manufacture of cold wound helical compression springs were interstigated to cetabilish optimum shot-peening methods to increase the life endiumene properties of springs. Froduction springs that are typical of small are as splitesticated from music wire and stainless steel materials. The springs were given that the scalar strategies of springs were given or a spring that were not shot-peening trentments with the exception of control groups that were not shot-peening procedures are seriated by laboratory endurance tests. Becommended such creating such control shot-peening procedures based on test results are given for the spring such relating such relating such relating short-peening and stress conditions that were investigated in this project.

UNCLASSIFIED

9

- Shot-Peening Methods Manufacturing Methods Relical Springs Increased Life Endurance Tests 10000

ACCESSION NO.

Shot-Feening Manufacturing Methods Malical Springs Increased Life Endurance Tests

40045

UNCLASSIFIED

Research Directorate GEM Thomas J. Rodman Laboratory Rock Island Arsenal, Rock Island, IL 61201

SHOT-PERNING PROCEDURES FOR HELICAL COMPRESSION SPRINGS

Prepared by: Henry P. Swieskowski

Pechnical Report No.

23 pages, Incl Figures & Tables

Various shot-peening procedures for the manufacture of cold wound helical concression springs were interstigated to cetabilish optimus abet-peening methods to increase the life endurance properties of springs. Froduction springs that are typical of seall are spilosettican swer Educated from music wire and stainless steel materials. The springs were given that were most should properties of springs were given that were most short-peening procedures on spring life was evaluated by laboratory endurance tasts. Recommended such peening procedures bear and stress on conditions that were investigated in this project.

					さんこと		Y	The state of the s						
											名のことを		A L	
					7.			W.						
		4												
	(7)			4.		13.								
` ' '														
								Y	A Committee of the Comm				N N	
				: / 2))) (4)	Ye	· , , ,				" \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 12 15

