Introduction to Digital Signal Processing

2022 Deep Learning in Audio Processing

Daniil Ivanov

Sound representation

What is sound and how to store it in memory?

- Sound representation
- Motivation for spectrograms
- Fourier Transform
- Discrete Fourier Transform
- Short Time Fourier Transform
- Spectrogram
- Mel scale
- MFCC

What is sound?

- Sound wave is the pattern of oscillations caused by the movement of energy traveling through the air
- **Microphone** picks up these air **oscillations** and converts them into electrical vibrations
- These oscillations are converted into an analog signal and then a digital signal

How is sound stored in the computer?

- The analog signal is discretized, quantized and encoded
- An analog signal is **discretized** in that the signal is represented as a sequence of values taken at discrete points in time **t** with step **d**
- Quantisation of a signal consists in splitting the range of signal values into N levels in increments of d and selecting for each reference the level that corresponds to it
- Signal **encoding** is just a way of presenting the signal in a more compact form

Analog-to-Digital Conversion

- Converting analog signals to a sequence of numbers having finite precision
- Corresponding devices are called A/D converters (ADCs)

Digital-to-Analog Conversion

- Process of converting a digital signal into an analog signal
- Interpolation
 - Connecting dots in a digital signal
 - o Approximations: zero-order hold (staircase), linear, quadratic, and so on

What other characteristics are there?

- **Sample rate (SR)** number of audio samples per one second (e.g. 8 kHz, 22.05 kHz, 44.1 kHz)
- **Sample size** number of bits per one sample (e.g. 8, 16, 25, 32 bits)
- **Number of channels** -- how many signals we record in parallel (e.g. mono(1), stereo(2))

8000 Hz

The international G.711 \Box standard for audio used in telephony uses a sample rate of 8000 Hz (8 kHz). This is enough for human speech to be comprehensible.

44100 Hz

The 44.1 kHz sample rate is used for compact disc (CD) audio. CDs provide uncompressed 16-bit stereo sound at 44.1 kHz. Computer audio also frequently uses this frequency by default.

48000 Hz

The audio on DVD is recorded at 48 kHz. This is also often used for computer audio.

96000 Hz

High-resolution audio.

192000 Hz

Ultra-high resolution audio. Not commonly used yet, but this will change over time.

What other characteristics are there?

- Assume **f(n)** is our signal where **n** is time
- Power of signal is $f^2(n)$
- Energy of signal (**E**) is $\sum f^2(n)$
- In practice estimated by some window
- ullet Energy in **decibels**: $10\log_{10}E$
- $ullet ext{SNR}_{dB} = 10 \log_{10} rac{E_{ ext{signal}}}{E_{ ext{noise}}}$

What about audio formats?

- Non-compressed formats: **WAV, AIFF, etc.**
- Lossless compression(2:1): **FLAC**, **ALAC**, **etc**.
- Lossy compression(10:1): **MP3, Opus, etc**
- Bit rate measure a degree of compression. Number of bit that are conveyed or processed per unit of time.

Motivation for spectrograms

Why not just use wave representation for ML?

- Sound representation
- Motivation for spectrograms
- Fourier Transform
- Discrete Fourier Transform
- Short Time Fourier Transform
- Spectrogram
- Mel scale
- MFCC

Problems with the waveform

• One letter/sound consists of 2000-4000 amplitudes, so they are expensive to process and store

- No "invariant" regarding noise and transformations
- Periodical nature of audio signals

Complex waves as a sum of sigmoids

We want to represent a periodic function as a sum of sigmoids with different periods (frequencies), shifts and amplitudes.

$$f(x) = A_1 * sin(freq_1x + \phi_1) + ...$$
...
...
...
 $A_n * sin(freq_nx + \phi_n)$

And for audio processing we are only interested in:

?????

Complex waves as a sum of sigmoids

We want to represent a periodic function as a sum of sigmoids with different periods (frequencies), shifts and amplitudes.

$$f(x) = A_1 * sin(freq_1x + \phi_1) + ...$$
...
...
 $A_n * sin(freq_nx + \phi_n)$

And for audio processing we are only interested in:

- Frequencies
- Amplitudes

Fourier Transform (FT)

How to factorize a periodic function into a sum of sine-waves?

- Sound representation
- Motivation for spectrograms
- Fourier Transform
- Discrete Fourier Transform
- Short Time Fourier Transform
- Spectrogram
- Mel scale
- MFCC

Fourier Transform

- The **Fourier transform(FT)** is a mathematical formula that allows us to decompose a signal into its individual frequencies and the frequency's amplitude
- FT transfer a signal from real-valued function of the time domain to a complex-valued function of frequency domain

Fourier transform integral
$$f: \mathbb{R} o \mathbb{R}$$
 $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) \; e^{-i2\pi\xi x} \, dx, \quad orall \; \xi \in \mathbb{R}.$ $\hat{f}: \mathbb{R} o \mathbb{C}$

$$f: \mathbb{R}
ightarrow \mathbb{R}$$
 $\hat{f}: \mathbb{R}
ightarrow \mathbb{C}$

- The function must meet the following conditions:
 - to be **bounded**
 - to be absolutely integrable
 - to have a **finite number** of minimas, maximas and discontinuities

Fourier Transform

- The Fourier transform(FT) is a mathematical formula that allows us to decompose a signal into its individual frequencies and the frequency's amplitude
- FT transfer a signal from real-valued function of the **time domain** to a complex-valued function of **frequency domain**

Fourier transform integral
$$f: \mathbb{R} o \mathbb{R}$$
 $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) \, e^{-i2\pi \xi x} \, dx, \quad orall \, \xi \in \mathbb{R}.$ $\hat{f}: \mathbb{R} o \mathbb{C}$

Frequency Original signal

Fourier transform integral

$$\left|\hat{f}\left(\xi
ight)=\int_{-\infty}^{\infty}f(x)\;e^{-i2\pi\xi x}\,dx,\quadorall\;\xi\in\mathbb{R}.
ight|$$

Fourier inversion integral

$$f(x)=\int_{-\infty}^{\infty}\hat{f}\left(\xi
ight)e^{i2\pi\xi x}\,d\xi,\quadorall\ x\in\mathbb{R},$$

Fourier transform integral

$$\hat{f}\left(\xi
ight) =\int_{-\infty}^{\infty}f(x)\;e^{-i2\pi\xi x}\,dx,\quadorall\;\xi\in\mathbb{R}.$$

Fourier inversion integral

$$f(x)=\int_{-\infty}^{\infty}\hat{f}\left(\xi
ight)e^{i2\pi\xi x}\,d\xi,\quadorall\ x\in\mathbb{R},$$

$$=2\int_{0}^{\infty}\mathrm{Re}\Big(\hat{f}\left(\xi
ight)\cdot e^{i2\pi\xi x}\Big)d\xi$$

Property of FT

$$\hat{f}\left(\xi
ight) = \left\{ egin{array}{ll} \displaystyle \int_{-\infty}^{\infty} f(x) \; e^{-i2\pi \xi x} \; dx, \qquad & \xi \geq 0 \ \displaystyle \hat{f}^{st}(|\xi|) & & \xi < 0, \end{array}
ight.$$

Property of FT

$$\hat{f}(\xi) = \left\{ egin{aligned} \int_{-\infty}^{\infty} f(x) \ e^{-i2\pi \xi x} \ dx, \qquad & \xi \geq 0 \ \hat{f}^*(|\xi|) & & \xi < 0, \end{aligned}
ight.$$

Fourier transform integral

$$\hat{f}\left(\xi
ight) = \int_{-\infty}^{\infty} f(x) \; e^{-i2\pi \xi x} \, dx, \quad orall \; \xi \in \mathbb{R}.$$

Euler's formula

$$e^{jx} = \cos x + j\sin x$$

Fourier inversion integral

$$f(x) = \int_{-\infty}^{\infty} \hat{f}\left(\xi
ight) e^{i2\pi \xi x} \, d\xi, \quad orall \, x \in \mathbb{R},$$

$$egin{aligned} &=2\int_{0}^{\infty}\mathrm{Re}\Big(\hat{f}\left(\xi
ight)\cdot e^{i2\pi\xi x}\Big)d\xi \ &=2\int_{0}^{\infty}\left(\mathrm{Re}(\hat{f}\left(\xi
ight))\cdot\cos(2\pi\xi x)-\mathrm{Im}(\hat{f}\left(\xi
ight))\cdot\sin(2\pi\xi x)
ight)d\xi. \end{aligned}$$

$$=2\int_{0}^{\infty}\left(\operatorname{Re}(\hat{f}\left(\xi
ight))\cdot\cos(2\pi\xi x)-\operatorname{Im}(\hat{f}\left(\xi
ight))\cdot\sin(2\pi\xi x)
ight)d\xi.$$

$$=2\int_{0}^{\infty}\left(\operatorname{Re}(\hat{f}\left(\xi
ight))\cdot\cos(2\pi\xi x)-\operatorname{Im}(\hat{f}\left(\xi
ight))\cdot\sin(2\pi\xi x)
ight)d\xi.$$

Trigonometry

$$A \cos(\omega t + \phi) = B \cos(\omega t) + C \sin(\omega t)$$

 $A = \sqrt{B^2 + C^2}, \ \tan \phi = \frac{C}{B}$

$$\hat{f}(\xi_1) = c_1$$

$$\hat{f}(\xi_2) = c_2$$

$$f(x) = A_1 \cos(2\pi \xi_1 x + \phi_1) + A_2 \cos(2\pi \xi_2 x + \phi_2)$$

$$A_k = \sqrt{\text{Re}(c_k)^2 + \text{Im}(c_k)^2}$$

$$\tan \phi = \frac{C}{B}$$

$$=2\int_{0}^{\infty}\left(\operatorname{Re}(\hat{f}\left(\xi
ight))\cdot\cos(2\pi\xi x)-\operatorname{Im}(\hat{f}\left(\xi
ight))\cdot\sin(2\pi\xi x)
ight)d\xi.$$

Trigonometry

$$A \cos(\omega t + \phi) = B \cos(\omega t) + C \sin(\omega t)$$

 $A = \sqrt{B^2 + C^2}, \ \tan \phi = \frac{C}{B}$

$$\hat{f}(\xi_1) = c_1$$
 $\hat{f}(\xi_2) = c_2$
 $f(x) = A_1 \cos(2\pi \xi_1 x + \phi_1) + A_2 \cos(2\pi \xi_2 x + \phi_2)$
 $A_k = \sqrt{\text{Re}(c_k)^2 + \text{Im}(c_k)^2}$
 $\tan \phi = \frac{C}{B}$

Discrete Fourier Transform (DFT)

How to calculate Fourier Transform in practice?

- Sound representation
- Motivation for spectrograms
- Fourier Transform
- Discrete Fourier Transform
- Short Time Fourier Transform
- Spectrogram
- Mel scale
- MFCC

Discrete Fourier transform

$$egin{aligned} X &= \mathbf{M} x \ M_{mn} &= \exp\left(-2\pi i rac{(m-1)(n-1)}{N}
ight) \ &= egin{aligned} 1 & 1 & 1 & \dots & 1 \ 1 & e^{-rac{2\pi i}{N}} & e^{-rac{4\pi i}{N}} & e^{-rac{6\pi i}{N}} & \dots & e^{-rac{2\pi i}{N}(N-1)} \ 1 & e^{-rac{4\pi i}{N}} & e^{-rac{8\pi i}{N}} & e^{-rac{12\pi i}{N}} & \dots & e^{-rac{2\pi i}{N}2(N-1)} \ 1 & e^{-rac{6\pi i}{N}} & e^{-rac{12\pi i}{N}} & e^{-rac{18\pi i}{N}} & \dots & e^{-rac{2\pi i}{N}3(N-1)} \ dots & dots & dots & dots & dots & dots & dots \ 1 & e^{-rac{2\pi i}{N}(N-1)} & e^{-rac{2\pi i}{N}2(N-1)} & e^{-rac{2\pi i}{N}3(N-1)} & \dots & e^{-rac{2\pi i}{N}(N-1)^2} \end{pmatrix} \end{aligned}$$

Example of DFT

$$F = 2kHz \ f(t) = 10\sin(2\pi 10t) + 3\sin(2\pi 100t)$$

Example of DFT

Why spectrum is mirroring?

$$egin{aligned} X_m &= \sum_{n=0}^{N-1} x_n \exp\left(-j2\pirac{m}{N}n
ight) \ X_{N-m} &= \sum_{n=0}^{N-1} x_n \exp\left(-j2\pirac{N-m}{N}n
ight) \ &= \sum_{n=0}^{N-1} x_n \exp\left(-j2\pi n + j2\pirac{m}{N}n
ight) \ &= \sum_{n=0}^{N-1} x_n \exp\left(j2\pirac{m}{N}n
ight) \ &= (X_m)^* \end{aligned}$$

Discrete Fourier transform

$$A \cos(\omega t + \phi) = B \cos(\omega t) + C \sin(\omega t)$$
 $A = \sqrt{B^2 + C^2}, \quad \tan \phi = \frac{C}{B}$

$$A=\sqrt{B^2+C^2},\quad an\phi=rac{C}{B}$$

Evaluating quality of DFT

$$f(t) = 5 + 2\sin(2t + 2) - 3\cos(0.2t - 1)$$

Kotelnikov Theorem

- If a function **f(t)** contain no frequencies higher than **B hertz**, it is completely determined by giving its ordinates at series of points spaced **1/2B** seconds apart
- **Example:** If signal contains frequency 100 Hz, the sampling rate for this signal needs to be 200 Hz at least
- DFT of a segment of a signal with sample rate N, will produce amplitudes for n_fft evenly spread frequencies in range [-sample_rate / 2; sample_rate /2]

Short Time Fourier Transform (STFT)

How to apply FT to a long non-periodic signal?

- Sound representation
- Motivation for spectrograms
- Fourier Transform
- Discrete Fourier Transform
- Short Time Fourier Transform
- Spectrogram
- Mel scale
- MFCC

Short-Time Fourier Transform

32/44

Window functions

Short Time Fourier Transform + window function

Spectrogram

Assembling everything together

- Sound representation
- Motivation for spectrograms
- Fourier Transform
- Discrete Fourier Transform
- Short Time Fourier Transform
- Spectrogram
- Mel scale
- MFCC

Spectrogram

Practical use: values of the spectrogram are very small, so typically the log-spectrogram is used instead (don't forget to add +e)

Mel Scale

Compressing the spectrogram

- Sound representation
- Motivation for spectrograms
- Fourier Transform
- Discrete Fourier Transform
- Short Time Fourier Transform
- Spectrogram
- Mel scale
- MFCC

Mel Scale

- Humans perceive sound on a log-scale. For human ear:
 - 500 Hz << 600 Hz
 - but 5000 Hz ~= 5100 Hz

There is no single mel-scale formula. [3] The popular formula from O'Shaughnessy's book can be expressed with different logarithmic bases:

$$m = 2595 \log_{10} \left(1 + rac{f}{700}
ight) = 1127 \ln \left(1 + rac{f}{700}
ight)$$

The corresponding inverse expressions are:

$$f = 700 \left(10^{rac{m}{2595}} - 1
ight) = 700 \left(e^{rac{m}{1127}} - 1
ight)$$

Mel Spectrogram

Spectrogram of a segment of speech

Spectrogram after multiplication with mel-weighted filterbank

MFCC

Decorrelating the spectrogram

- Sound representation
- Motivation for spectrograms
- Fourier Transform
- Discrete Fourier Transform
- Short Time Fourier Transform
- Spectrogram
- Mel scale
- MFCC

Fundamental Frequency

- Fundamental frequency
 refers to the approximate
 frequency of the
 (quasi-)periodic structure of
 voiced speech signals
- Peaks on envelope curve are formants
- **Pitch** is perceptual value, F0 is physical
- F0 lie roughly in the **range 80 to 450 Hz**, where males have lower voices than females and children

Cepstrum

- Fourier spectrum of voice has **periodic** structure
- Apply DCT (Discrete Cosine Transform) to spectrum and obtain Cepstrum
- **Peak** in Cepstrum should be located at \overline{F}

Log-spectrum of speech segment

Cepstrum of speech segment

Mel-Frequency Cepstral Coefficients (MFCCs)

- Algorithm of acquiring MFCC:
 - Apply STFT to the signal
 - o Apply mel filters
 - o Take the log value
 - Apply DCT

Spectrogram after multiplication with mel-weighted filterbank

Corresponding MFCCs

