

Introduction to Convolutions

Prof. Marcelo J. Rovai rovai@unifei.edu.br

UNIFEI - Federal University of Itajuba, Brazil TinyML4D Academic Network Co-Chair

Introducing Convolutions

Beyond weights and biases...

Standard Convolution (1 Channel)

Standard Convolution (3 Channel—e.g., RGB)

Standard Convolution (3 Channel—e.g., RGB)

- Input Feature Map
 - 0 8 X 8 X 3
 - Width X Height X Channels
- Kernel (1 Filter)
 - o 3 X 3 X 3

Current Pixel Value is 192
Consider neighbor Values

Filter Definition

Kernels = Filters

Image Kernels

https://setosa.io/ev/image-kernels/

custom

HUMAN

HORSE

Filters can then be combined with labels to make a prediction of the image contents...

Exploring CNN

CNN Explainer

https://poloclub.github.io/cnn-explainer/

ConvNetJS MNIST demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

ConvNetJS CIFAR-10 demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Thanks

