

# Year 11 Mathematics Specialist Test 6 2016

## Calculator Free Mathematical induction and complex numbers

| STUDENT'S NAME                                     |                                                                      |                   |
|----------------------------------------------------|----------------------------------------------------------------------|-------------------|
| DATE:                                              | TIME: 50 minutes                                                     | <b>MARKS</b> : 51 |
| INSTRUCTIONS:<br>Standard Items:<br>Special Items: | Pens, pencils, ruler, eraser.<br>Formula sheet                       |                   |
| Questions or parts of q                            | uestions worth more than 2 marks require working to be shown to reco | eive full marks.  |

1. (5 marks)

If  $(a + bi)^2 = 3 + 4i$ , where a and b are real numbers, determine the values of a and b.

$$a^{2}+2abi-b^{2}=3+4i=7$$
 $2ab=4=3$ 

$$a^{2}-\frac{4}{a^{2}}=3$$

$$a^{2}-\frac{4}{a^{2}}=3$$

$$a^{2}-4=0$$

$$a^{2}+17(a^{2}-4)=0$$

$$a=\pm 2\cdot b=\pm 1$$

### 2. (3 marks)

Determine the quadratic equation whose roots are 1 + 5i and 1 - 5i.

or 
$$x = 1 \pm 5i$$

$$= 1 \pm \sqrt{-25}$$

$$x - 1 = \pm \sqrt{-25}$$

$$(x - 1)^2 = -25$$

$$(x - 1)^2 + 25 = 0$$

$$x - 2x + 26 = 0$$

## 3. (4 marks)

One root of the equation  $z^2 + az + b = 0$ , where a and b are real constants, is 2 + 3i. Determine the values of a and b.

$$5 + 2a + b + i (3a + 12) = 0 = 3a + 12 = 0 = ) a = -4$$

$$+ - 5 + 2a + b = 0 = ) b = 13$$

### 4. (6 marks)

The complex number z satisfies  $\frac{z}{z+2} = 2-i$ . Determine the real and imaginary parts of z. (Hint: let z = a + bi).

$$= 2a + 4 - i2 - 2i$$

$$= (2 - i)(a + bi) + 4 - 2i$$

$$= (2a + 4 + b) + i(2b - a - 2)$$

$$= 2a + 4 + b = a + 2b - a - 2 = 6$$

$$= 2a + 4 + b = 4 + a - b = -2$$

$$=2+i2$$
 =  $4-2i$   
 $=2-2i$  =  $1-2i$   
 $=1+i$  =  $1-2i$   
 $=1-3-i$  =  $1-2-i$   
 $=1-3-i$  =  $1-2-i$   
 $=1-3-i$  =  $1-3-i$ 

$$\frac{a+bi}{(a+2)+bi} \cdot \frac{(a+2)-bi}{(a+2)-bi}$$

$$= \frac{a^{2}+2a+b^{2}}{(a+2)^{2}+b^{2}} + \frac{i2b}{(a+2)^{2}+b^{2}} = 2-i$$

=) 
$$\frac{a^2+2a+b^2}{(a+2)^2+b^2} = 2$$
  $+\frac{2b}{(a+2)^2+b^2} = -1$ 

$$\frac{a+1a+b}{(a+2)^{2}+b^{2}} = 2$$

$$a^{2}+b^{2} = -6a-8$$

$$(a+(a+2)^2 = -6a - 8)$$

$$a^2 + 5a + 6$$
 $(a + 3)(a + 1)$ 
 $b = -1$  or  $a = -3$  or  $a = -3$ 

#### 5. (9 marks)

Simplify the following complex expressions leaving your answer in the form a + bi

(a) 
$$2-i-(-3+2i)$$
 [1]

(b) 
$$(3-2i)(-2+5i)$$
 [2]

(c) 
$$\frac{-3-i}{2+3i}$$
,  $\frac{2-3i}{2-3i}$ 

#### 6. (5 marks)

Using the principle of mathematical induction prove

$$2^{0} + 2^{1} + 2^{2} + \dots + \dots + 2^{n} = 2^{n+1} - 1$$
 for  $n \ge 0$ 

assume true for no k

the for No K+1

#### 7. (6 marks)

Using the principle of mathematical induction prove that  $9^n - 2^n$  is divisible by seven for

$$N = k+1$$
  $q^{k+1} = k+1$   
=  $q, q^{k} = 2.2^{k}$ 

Prove 
$$\begin{bmatrix} -2 & 9 \\ -1 & 4 \end{bmatrix}^n = \begin{bmatrix} -3n+1 & 9n \\ -n & 3n+1 \end{bmatrix}$$
 for  $n \ge 1$  using mathematical induction

$$N=1$$
,  $LHS = \begin{bmatrix} -29 \\ -14 \end{bmatrix}$ ,  $RHS = \begin{bmatrix} -29 \\ -14 \end{bmatrix}$ : the for  $N=1$ 

$$= \begin{bmatrix} -3k+1 & 9k \\ -k & 3k+1 \end{bmatrix} \begin{bmatrix} -2 & 9 \\ -1 & 1+ \end{bmatrix}$$

$$= \begin{bmatrix} 6k-1-9k & -27k+9+36k \\ 2k-3k-1 & -9k+nk+4 \end{bmatrix}$$

$$= \begin{bmatrix} -3k-2 & 9k+9 \\ -k-1 & .3k+4 \end{bmatrix}$$

= 
$$\left[-3(k+1)+1 \quad 9(k+1)\right]$$
 : 0 is true for n=k+1   
  $\left[-(k+1) \quad 3(k+1)+1\right]$ 

is true Yn71

9. (6 marks)

Prove that  $\cos x + \cos 3x + \cos 5x + ... + \cos [(2n-1)x] = \frac{\sin 2nx}{2\sin x}$  for  $n \in \mathbb{Z}^+$ 

N=1 LHS = won, RHS = Sin 2x = 25Excush

= coon -- true for n=1

2(k+1)-1

assure true for n=k

ie wort wort + work + ... + cos [(2k-1)x] = 5/2/2 x

ty rokx

THS= won + mosu + mosu + -- mo [(2k-1)n] + mo [(2k+1)n]

= Sin 2kn + 600 [(2kn)) by assumption

= SILZKN + SIN[x+(2k+1)N] + SIN[x-(2k+1)N]
25EN

2 2 2 2 2 km

= 5/h 2kn + sin [2(k+1)n] (+ sin [-2kn]) = - sin 2kn

= SIL [2(k+i) n] 256 N

which is O with Note!

by Pr of MI