## Homework

COMPUTING SYSTEMS ARCHITECTURE Жулин Артем Германович | БПИ204 | 02.09.2021 Вариант – 131 – (5, 10)

## 1. Условие задачи.

| Обобщенный      | Базовые альтернативы       | Общие для     | Общие для        |
|-----------------|----------------------------|---------------|------------------|
| артефакт,       | (уникальные параметры,     | всех          | всех альтернатив |
| используемый в  | Задающие отличительные     | альтернатив   | функции          |
| задании         | признаки альтернатив)      | переменные    |                  |
| Квадратные      | 1. Обычный двумерный       | Размерность   | Вычисление       |
| матрицы с       | массив                     | – целое число | среднего         |
| действительными | 2. Диагональная (на основе |               | арифметического  |
| числами         | одномерного массива)       |               | (действительное  |
|                 | 3. Нижняя треугольная      |               | число)           |
|                 | матрица (одномерный        |               |                  |
|                 | массив с формулой          |               |                  |
|                 | пересчета)                 |               |                  |

# 2.Описание структуры ВС.

| 1 / /1                                        |           |
|-----------------------------------------------|-----------|
| Название                                      | Память    |
| Int                                           | 4         |
| Double                                        | 8         |
| Char                                          | 1         |
| Struct matrix:                                | 9         |
| enum {MAX_LENGTH = 1000000}                   | 4         |
| enum matrixKey {SQUARE, DIAGONAL, L_TRIANGLE} | 4         |
| key: matrixKey                                |           |
| dimension: int                                | 4[0]      |
| correct: bool                                 | 4[4]      |
|                                               | 1[8]      |
| Struct square: matrix                         | 17        |
| array: double**                               | 8 [9]     |
| Struct lTriamgle: matrix                      | 17        |
| array: double*                                | 8[9]      |
| Struct diagonal: matrix                       | 17        |
| array: double*                                | 8 [9]     |
| Struct container                              | 90004     |
| enum {MAX_LEN = 10000}                        | 4         |
| currentLenght: int                            | 4[0]      |
| cont: matrix*[MAX_LEN]                        | 90000[4]  |
| main (int argCount, char* argValues[])        | 90020     |
| argCount: int                                 | 4[0]      |
| argValues: char*[]                            | 8[4]      |
| c: container                                  | 90004[12] |
| length: int                                   | 4[90016]  |

| return 14                          | int              |  |
|------------------------------------|------------------|--|
| /matrix/matrix.cpp:                |                  |  |
| In(ifstream &ifStream)             |                  |  |
| command: char*[matrix::Max_LENGTH] | 8000000[0]       |  |
| key: int                           | 4[8000004]       |  |
| dimension: int                     | 4[8000008]       |  |
| temp: char*[matrix::Max_LENGTH]    | 8000000[8000012] |  |
| m_square: square                   | 17[16000012]     |  |
| m_diagonal: diagonal               | 17[16000012]     |  |
| m_lTriangle: lTriangle             | 17[16000012]     |  |
| return matrix*                     | 8[16000029]      |  |
| /matrix/matrix.cpp:                |                  |  |
| InRandom()                         |                  |  |
| key: int                           | 4[o]             |  |
| dimension: int                     | 4[4]             |  |
| m_square: square                   | 17[8]            |  |
| m_diagonal: diagonal               | 17[8]            |  |
| m_lTriangle: lTriangle             | 17[8]            |  |
| return matrix*                     | 8[25]            |  |
| /matrix/diagonal.cpp:              |                  |  |
| In                                 |                  |  |
| m: diagonal                        | 8[o]             |  |
| temp: char*[matrix::Max_LENGTH]    | 8000000[8]       |  |
| command: char*[matrix::Max_LENGTH] | 8000000[8000008] |  |



Рис. 1 Начало работы



Рис. 2 Блок выполнения ввода данных из файла



Рис. 3 Блок ввода данных случайным образом



Рис. 4 Блок вывода данных в файл, сортировка, и повторный вывод



Рис. 5 Блок очистки памяти от элементов контейнера

#### 3. Входные и выходные данные

1. В консоль поступает команда следующего типа:

Ввод из файл: "ИмяПрограммы.exe -f «ПутьКВходномуФайлу» «ПутьКВыходномуФайлуі» «ПутьКВыходномуФайлуі» "

Случайный ввод: "ИмяПрограммы.exe -n «КоличествоМатриц» «ПутьКВыходномуФайлуз» «ПутьКВыходномуФайлуз»"

2. Образец входных данных:



Где "begin" и "end" означают начало и конец информации о матрице. 1 (2 строка) – это тип матрицы, 2 (3 строка) – это размер матрицы, следом идут элементы самой матрицы.

3. Матрица является некорректной в случае отсутствия хотя бы команды "begin" или "end", некорректного типа матрицы (от 1 до 3), некорректной размерности матрицы (от 1 до 20), некорректных элементов матрицы. В случае, если матрица является некорректной программа ищет начало следующей матрицы или доходит до конца потока, после чего программа корректно продолжает свое выполнение.

4. После обработки данных, программа выводит их в выходной файл, после чего сортирует и выводит аналогичным образом во второй выходной файл. Пример выходных данных:

```
Filled container:
Container contains 1 elements.

1: It's diagonal matrix: dimension = 3

1 0 0

0 2 0

0 0 3

Average: 0.666667

Time: 0.002s
```

В выходном файле также указывается количество времени (в секундах) затраченное программой на обработку данных.

### 4. Краткий отчет

Количество заголовочных файлов: 7 шт Количество модулей реализации: 5 шт Время, затраченное на каждый тест указано в выходном файле соответствующего теста.