matrizes e sistemas de equações lineares

página 1/5

Universidade de Aveiro Departamento de Matemática

Matrizes

1. Considere as matrizes

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \qquad C = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

Calcule

- (a) A + B; (b) $D^{\top} 2A$; (c) AD; (d) DA; (e) ACD; (f) $\frac{1}{5} (I_2 (DA)^2)$.
- 2. Considere as matrizes

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \qquad D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

Calcule o produto das matrizes $A, B, C \in D$, considerando estas matrizes ordenadas de forma adequada.

- 3. Indique, justificando, se as afirmações seguintes são verdadeiras ou falsas.
 - (a) Se A e B são matrizes de ordem n, então $(A+B)^2 = A^2 + 2AB + B^2$.
 - (b) Se A e B são matrizes de ordem n, então $(AB)^2 = A^2B^2$.
 - (c) Se A, B, C são matrizes tais que A + C = B + C, então A = B.
 - (d) Se A, B, C são matrizes tais que AB = AC, então A = O (matriz nula) ou B = C.
 - (e) Se A é uma matriz de ordem n tal que $AA^T = O$, então A = O (sendo O a matriz nula de ordem
 - (f) Para $k \in \mathbb{N}_0$,

$$\begin{bmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mu_n \end{bmatrix}^k = \begin{bmatrix} \mu_1^k & 0 & \cdots & 0 \\ 0 & \mu_2^k & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mu_n^k \end{bmatrix}.$$

- 4. Seja A uma matriz quadrada. Mostre que $A + A^T$ é uma matriz simétrica. O que pode afirmar sobre a matriz $A - A^T$?
- 5. Indique quais das seguintes matrizes são matrizes na forma escalonada por linhas:

Determine matrizes equivalentes por linhas às matrizes dadas que estejam:

- (a) na forma escalonada por linhas;
- (b) na forma escalonada por linhas reduzida.

página 2/5

Sistemas de Equações Lineares

6. Resolva, quando possível, os seguintes sistemas usando o método de eliminação de Gauss (ou Gauss-Jordan).

(a)
$$\begin{cases} 3x_1 - x_2 = 4 \\ 2x_1 - \frac{1}{2}x_2 = 1 \end{cases}$$
 (b)
$$\begin{cases} 2x_1 - 3x_2 = 4 \\ x_1 - 3x_2 = 1 \\ x_1 + 3x_2 = 2 \end{cases}$$
 (c)
$$\begin{cases} x_1 + 2x_3 = 0 \\ -x_1 + x_2 + 3x_3 = 2 \\ 2x_1 - x_2 + x_3 = 2 \end{cases}$$
 (d)
$$\begin{cases} x_1 - 2x_2 + 2x_3 = 4 \\ -2x_1 + x_2 + x_3 = 1 \\ x_1 - 5x_2 + 7x_3 = -1 \end{cases}$$
 (e)
$$\begin{cases} 4x_1 + 3x_2 + 2x_3 = 1 \\ x_1 + 3x_2 + 5x_3 = 1 \\ 3x_1 + 6x_2 + 9x_3 = 2 \end{cases}$$
 (f)
$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + 7x_4 = 0 \\ 2x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \\ 4x_1 + 11x_2 - 13x_3 + 16x_4 = 0 \\ 7x_1 - 2x_2 + x_3 + 3x_4 = 0 \end{cases}$$

7. Determine, para cada sistema, os valores de α para os quais o sistema

(a)
$$\begin{cases} \alpha x + y = 1 \\ x + \alpha y = 1 \end{cases}$$
; (b)
$$\begin{cases} x + (\alpha - 1)y + \alpha z = \alpha - 2 \\ (\alpha - 1)y = 1 \\ \alpha z = \alpha - 3 \end{cases}$$
.

- i. não tem solução; ii. tem exatamente uma solução; iii. tem uma infinidade de soluções.
- 8. Considere o sistema de equações

$$\begin{cases} x + \beta y + \beta z = 0 \\ \beta x + y + z = 0 \\ x + y + \beta z = \beta^2 \end{cases}.$$

- (a) Discuta o sistema em função de β .
- (b) Considere $\beta = -1$ e seja A a matriz dos coeficientes do sistema. Determine o espaço nulo de A, $\mathcal{N}(A)$.
- 9. Considere o sistema de equações lineares

$$\begin{cases} x - y - z = a \\ x + y + z = a, \\ x - by + z = -b \end{cases}$$

onde a e b são parâmetros reais.

- (a) Determine os valores de a e b para os quais o sistema é: i. possível e determinado; ii. impossível.
- (b) Sabendo que (1, -1, 1) é uma solução do sistema, determine o conjunto de todas as soluções.
- 10. Considere o sistema de equações lineares

$$\begin{cases} 2x_1 + 4x_2 = 16 \\ 5x_1 - 2x_2 = 4 \\ 3x_1 + ax_2 = 9 \\ 4x_1 + bx_2 = -7 \end{cases}.$$

Verifique que o sistema é possível se e só se 13a - 5b = 38

11. Seja A uma matriz qualquer. Se B é uma coluna de A, mostre que o sistema AX = B é possível e indique uma solução.

Posição relativa de retas e planos

- 12. Considere os sistemas do exercício 6-(c,d,e). Suponha que cada sistema contém as equações cartesianas de uma reta r e a equação geral de um plano P. Em cada alínea, determine a posição relativa da reta r e do plano P. Descreva a interseção de r com P.
- 13. Considere os planos \mathcal{P} e $\mathcal{P}_{a,b}$ de equações x+y+2z=3 e ax+2y+4z=b, respectivamente, com $a,b\in\mathbb{R}$. Discuta a posição relativa dos planos \mathcal{P} e $\mathcal{P}_{a,b}$ em função dos parâmetros reais a e b.
- 14. Considere a reta r definida por x=2y+z=1 e a familia de retas $s_{a,b}$ de equação vetorial

$$(x, y, z) = (a, 0, 1) + \alpha(0, 2, b), \quad \alpha \in \mathbb{R},$$

com $a, b \in \mathbb{R}$. Determine as equações cartesianas de $s_{a,b}$. Discuta a posição relativa das retas r e $s_{a,b}$, em função dos parâmetros a e b.

Matriz Inversa

15. Considere as matrizes

$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}, \qquad B = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}, \qquad C = \begin{bmatrix} 17 & -6 \\ 35 & -12 \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.$$

- (a) Mostre que C = ADB.
- (b) Verifique se B é a matriz inversa de A.
- (c) Calcule C^5 , usando as alíneas anteriores.
- (d) Resolva a equação matricial AXD = B, relativamente à matriz X.
- 16. Averigue se as seguintes matrizes são invertíveis (não singulares) e, em caso afirmativo, determine a respectiva inversa:

(a)
$$\begin{bmatrix} 3 & 2 \\ -6 & -4 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ -2 & -5 & 4 \end{bmatrix}$; (d) $\begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 3 & 4 & 5 \\ 4 & 4 & 4 & 5 \\ 5 & 5 & 5 & 5 \end{bmatrix}$.

- 17. Considere a matriz $M = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & -4 & 2 \end{bmatrix}$.
 - (a) Verifique que M satisfaz a equação $M^3 4M^2 I_3 = 0$.
 - (b) Prove, sem calcular o seu valor, que $M^{-2} = M 4I_3$.
 - (c) Calcule M^{-1} pela equação da alínea anterior e verifique o resultado obtido.
- 18. (a) Seja A uma matriz $n \times n$ qualquer. Suponhamos que existe um número natural k tal que $A^k = O$ (matriz nula $n \times n$). Mostre que $I_n A$ é invertível e que

$$(I_n - A)^{-1} = I_n + A + A^2 + \dots + A^{k-1}.$$

- (b) Usando o exercício anterior, calcule a inversa da matriz $M=\begin{bmatrix}1&-1&0\\0&1&-1\\0&0&1\end{bmatrix}$.
- 19. Considerando as matrizes

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 4 & 0 \\ -4 & 8 \end{bmatrix},$$

resolva as seguintes equações matriciais relativamente à matriz X:

folha de exercícios 1

matrizes e sistemas de equações lineares

página 4/5

(a)
$$((B^{-1})^T X)^{-1} A^{-1} = I;$$

(b)
$$(C^T D^T X)^T = E$$
.

20. Sabendo que

$$A^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix},$$

determine a matriz M que satisfaz a equação matricial AMA = B.

21. Considere o sistema de equações lineares

$$\begin{cases} 4x + y + 3z = 1 \\ 3x + y + 3z = 0 \\ 5x + y + 4z = 1 \end{cases}$$

- (a) Mostre que a matriz dos coeficientes do sistema é invertível e calcule a sua inversa.
- (b) Justifique que o sistema é possível e determinado. Indique a sua solução.

Algumas aplicações

22. Considere o circuito eléctrico representado na figura seguinte:

constituído por dois geradores de tensão $V_A=7\,V$ e $V_B=5\,V$ e três resistências $R_1=10\,k\Omega,\,R_2=5\,k\Omega$ e $R_3=15\,k\Omega$. Determine a intensidade das correntes que passam pelas três resistências.

Observação: Para resolver o exercício é preciso aplicar as Leis de Kirchhoff:

- (lei dos nós) a soma das correntes que entram num nó é igual à soma das correntes que dele saem (ou seja, um nó não acumula carga);
- (lei das malhas) a soma da diferença de potencial eléctrico ao longo de qualquer caminho fechado (malha) é nula.

A direção escolhida para percorrer a malha determina o cálculo das diferenças de potencial consoante as seguintes convenções:

- Num gerador de tensão, a diferença de potencial eléctrico medida do polo positivo para o polo negativo é positiva; caso contrário é negativa.
- Numa resistência R percorrida por uma corrente I, a diferença de potencial eléctrico, medida com o mesmo sentido que a corrente, é dada pela Lei de Ohm, isto é, V = RI; caso contrário, V = -RI.

matrizes e sistemas de equações lineares

página 5/5

23. Uma companhia aérea serve quatro cidades, C_1 , C_2 , C_3 e C_4 , cujas ligações podem ser representadas por um grafo orientado:

- existem voos de C_1 para C_2 e C_3 ;
- existem voos de C_2 para C_1 e C_3 ;
- existem voos de C_3 para C_1 e C_4 ;
- existem voos de C_4 para C_2 e C_3 .
- (a) Escreva a matriz $A = [a_{ij}]_{4\times 4}$, chamada a matriz de adjacência associada ao grafo, tal que

$$a_{ij} = \begin{cases} 1, & \text{se existe um voo de } C_i \text{ para } C_j, \\ 0, & \text{caso contrário.} \end{cases}$$

(b) A matriz $A^r = [a_{ij}^{(r)}]$ é tal que $a_{ij}^{(r)}$ representa o número de itinerários diferentes de ligação da cidade C_i à cidade C_j utilizando r voos. Determine quantos itinerários diferentes existem para irmos da cidade C_4 para a cidade C_1 utilizando:

i. apenas um voo;

ii. dois voos;

iii. três voos.

Para cada uma das alíneas anteriores, determine explicitamente todos os itinerários.

matrizes e sistemas de equações lineares

página 1/2

1. (a)
$$\begin{bmatrix} 2 & 0 \\ 4 & 4 \\ 7 & 9 \end{bmatrix}$$
; (b) $\begin{bmatrix} -2 & 5 \\ -3 & 0 \\ -4 & -4 \end{bmatrix}$; (c) $\begin{bmatrix} -2 & -1 & -4 \\ 0 & -1 & 0 \\ 3 & -2 & 6 \end{bmatrix}$; (d) $\begin{bmatrix} -1 & 0 \\ 5 & 4 \end{bmatrix}$; (e) $\begin{bmatrix} -3 & 1 & -6 \\ 1 & 1 & 2 \\ 8 & 2 & 16 \end{bmatrix}$; (f) $\begin{bmatrix} 0 & 0 \\ -3 & -3 \end{bmatrix}$.

- 2. $ADBC = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$ ou $BADC = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$.
- 3. (a) Falsa (b) Falsa (c) Verdadeira; (d) falsa; (e) Falsa; (f) Verdadeira.

5. ii. e iv. (a) i.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
; iii.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

(b) i.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; ii. \begin{bmatrix} 1 & \frac{4}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}; iii. \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}; iv. \begin{bmatrix} 1 & 0 & \frac{11}{10} & \frac{3}{10} \\ 0 & 1 & 1 & \frac{1}{2} \end{bmatrix}.$$

- 6. (a) $x_1=-2,\ x_2=-10;$ (b) impossível; (c) $x_1=-4,\ x_2=-8,\ x_3=2;$ (d) impossível; (e) $x_1=t,\ x_2=\frac{1}{3}-2t,\ x_3=t,\ t\in\mathbb{R};$ (f) $x_1=\frac{3}{17}t_1-\frac{13}{17}t_2,\ x_2=\frac{19}{17}t_1-\frac{20}{17}t_2,\ x_3=t_1,\ x_4=t_2,\ t_1,t_2\in\mathbb{R};$
- 7. (a) i. $\alpha = -1$, ii. $\alpha \in \mathbb{R} \setminus \{-1,1\}$, iii. $\alpha = 1$; (b) i. $\alpha \in \{0,1\}$ ii. $\alpha \in \mathbb{R} \setminus \{0,1\}$
- 8. (a) O sistema é $\begin{cases} \text{impossível} & \text{se } \beta = 1; \\ \text{possível e indeterminado de grau um se } \beta = -1; \\ \text{possível e determinado} & \text{se } \beta \neq 1 \text{ e } \beta \neq -1. \end{cases}$
 - (b) $\mathcal{N}(A) = \{ (\frac{1}{2} + z, \frac{1}{2}, z) : z \in \mathbb{R} \}$
- 9. (a) i. $a \in \mathbb{R} \in b \in \mathbb{R} \setminus \{-1\}$; ii. $a \in \mathbb{R} \setminus \{1\} \in b = -1$. (b) $\{(1, -z, z) : z \in \mathbb{R}\}$.
- 11. Se B é a coluna i de A, então $X = [0 \cdots 1 \cdots 0]^T$ com 1 na linha i e as restantes entradas nulas é uma solução.
- 12. (c) A reta r e o plano P são concorrentes. Intersetam-se no ponto (-4, -8, 2);
 - (d) A reta r e o plano P são paralelos. A interseção é o conjunto vazio.
 - (e) A reta r está contida no plano P. A interseção é $r=\{(x_1,x_2,x_3)\in\mathbb{R}^3:\ x_1=t,\ x_2=\frac{1}{3}-2t,\ x_3=t,\ t\in\mathbb{R}\},$ isto é, $r=\{(x_1,x_2,x_3)\in\mathbb{R}^3:\ (x_1,x_2,x_3)=(0,\frac{1}{3},0)+t(1,-2,1),\ t\in\mathbb{R}\}.$
- 13. \mathcal{P} e $\mathcal{P}_{a,b}$ são coincidentes se a=2 e b=6; estritamente paralelos se a=2 e $b\neq 6$; concorrentes se $a\neq 2$ e $b\in \mathbb{R}$.
- 14. Equações cartesianas de $s_{a,b}$: $x=a,\,by-2z=-2$. As retas r e $s_{a,b}$ são coincidentes se a=1 e b=-4; estritamente paralelas se $a\neq 1$ e b=-4; concorrentes se a=1 e $b\neq -4$; enviezadas se $a\neq 1$ e $b\neq -4$.

15. (c)
$$C^5 = AD^5B = \begin{bmatrix} 3197 & -1266 \\ 7385 & -2922 \end{bmatrix}$$
.

16. (a) Matriz singular, (b)
$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
; (c)
$$\begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}$$
; (d)
$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -\frac{4}{5} \end{bmatrix}$$
.

17. (c)
$$M^{-1} = M(M - 4I) = \begin{bmatrix} 2 & 0 & 1 \\ -4 & 1 & -2 \\ -7 & 2 & -3 \end{bmatrix}$$
.

18. (a)
$$(I_n + A + A^2 + \dots + A^{k-1})(I_n - A) = I_n - A^k = I_n$$
. (b) $M = I - A \text{ com } A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, sendo $A^3 = O$. Logo, $M^{-1} = (I - A)^{-1} = I + A + A^2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

soluções 1

matrizes e sistemas de equações lineares

página 2/2

19. (a)
$$X = B^T A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}$$
; (b) $X = (E(DC)^{-1})^T = \begin{bmatrix} -1 & 4 \\ 0 & 4 \end{bmatrix}$.

$$20. \ M = \begin{bmatrix} 3 & 1 \\ -1 & -3 \end{bmatrix}.$$

21. (a)
$$\begin{bmatrix} 1 & -1 & 0 \\ 3 & 1 & -3 \\ -2 & 1 & 1 \end{bmatrix}$$
. (b) $x = 1, y = 0, z = -1$.

- 22. $I_1=600\,\mu\mathrm{A}$ (esquerda–direita), $I_2=200\,\mu\mathrm{A}$ e $I_3=400\,\mu\mathrm{A}$ (cima–baixo).
- $23. \ ({\rm i}) \ 0 \ {\rm itiner\'arios}; \ ({\rm ii}) \ 2: \ C_4 \rightarrow C_2 \rightarrow C_1, \ C_4 \rightarrow C_3 \rightarrow C_1; \ ({\rm iii}) \ 1: \ C_4 \rightarrow C_2 \rightarrow C_3 \rightarrow C_1.$