오픈소스를 통한 알고리즘 통합

Algorithm Integration via Open Source

원대한 KARI_무인이동체 원천기술개발사업단

CONTENTS

- 01 한국항공우주연구원 소개
- 02 무인이동체 원천기술개발사업단
- 03 오픈 소스(PX4, ROS2)
- 04 사업단무인이동체
- 05 맺음말

01 한국항공우주연구원 소개

한국항공우주연구원 소개

국가 발전을 위해 설립된 항공우주 전문 연구기관으로, 도전적이고 선도적인 연구개발을 추진하여 기술을 선도하고 국내 항공우주 산업체를 지원

한국항공우주연구원 소개

발사체

위성영상

인공위성

항공

달탐사

무인이동체

무인이동체 원천기술개발

사업목표

차세대 무인이동체 시장선점을 위한 **혁신적 원천기술 확보** 및 기술경쟁력 제고

사업기간

2020.6~2027.5(7년) 1단계(20~22) / 2단계(23~27)

내역사업 1

무인이동체 공통원천기술 개발

내역사업 2

통합운용 기술실증기 개발

추진내용

육·해·공 무인이동체에 직접 적용 가능한 공통부품기술과, 원천기술을 공유해 무인이동체별 전용부품을 개발하는 공통기반기술 개발

새로운 무인이동체 시스템의 유효성을 입증하고, 운용시험을 통해 성능을 검증하며, 개발방법론 및 적용기술의 적절성 실증

공통원천기술 개발

육·해·공무인이동체에 공통으로 적용할 수 있는 원천기술 개발

탐지 및 인식	통신	자율지능
센서를 통해 정보를 획득 · 분석 · 처리하는 기술	조종기-이동체, 이동체- 이동체 간 정보교환 기술	사람의 개입 없이 상황을 인지 · 판단 · 처리하는 기술
도려워 및 이도	인간-이동체	시스템 토하

동력원 및 이동 이터페이스 시스템 통합 이너지를 공급하고 이동하며 작업하는 기술 의사소통 기술 프로세스, HW, SW 기술

통합운용 기술실증기 개발

육·해·공복수환경 병용, 다수·이종 무인이동체 간 협력 등 통합운용이 가능한 기술실증기 개발

육-해-공자율협력형

다수 · 다종 무인이동체 간 통합운용이 기능한 플랫폼

육-공 분리 합체형

육상에서 운용되는 모듈과 공중에서 운용되는 모듈을 분리· 합체 가능한 플랫폼

해양복합형

USV와 AUV를 복합하여 수상-수중에서 해양임무를 수행하는 복합체계 플랫폼

해양복합: USV

자율협력: UGV

해양복합: AUV

육공복합: UGV

탐지 및 인식

센서를 통해 정보를 획득 · 분석 · 처리하는 기술

통신

조종기-이동체, 이동체-이동체 간 정보교환 기술

자율지능

사람의 개입 없이 상황을 인지 · 판단 · 처리하는 기술

동력원 및 이동

에너지를 공급하고 이동하며 작업하는 기술

인간-이동체 인터페이스

무인이동체 조종 · 감독을 위한 인간-무인이동체 간 의사소통 기술

시스템 통합

자율지능기반 무인이동체 시스템에 적합한 개발 프로세스.HW.SW 기술

다수 · 다종 무인이동체 간 통합운용이 가능한 플랫폼

해양복합형

USV와 AUV를 복합하여 수상-수중에서 해양임무를 수행하는 복합체계 플랫폼

육-공 분리 합체형

육상에서 운용되는 모듈과 공중에서 운용되는 모듈을 분리·합체 가능한 플랫폼

PX4 / Pixhawk

- ➤ 취리히 공대 ETH 출신의 Lorenz Meier
- 저렴한 비용과 가용성으로 소규모 무인기의 개발에 활용
- ▶ 리눅스 재단 소속의 비영리 단체인 Dronecode 프 로젝트 설립
- 오픈소스를 사용하여 드론 생태계에 참여하는 기업이 더 많은 기회를 창출하고 비용을 절감 할 수 있도록 표준 제공

- PX4 / Pixhawk
 - ➤ 오픈 아키텍처 기반 HW, SW
 - ✓ Flight Controller HW → Pixhawk
 - ✓ Flight Controller SW → PX4 Autopilot, Ardupilot

ROS2

➤ ROS(Robot Operating System)는 로봇을 위한 오 픈소스, 메타 운영 시스템이며, 하드웨어 추상화, 하위 디바이스 제어,로보틱스에서 많이 사용되는 센 싱, 인식, 지도 작성, 모션 플래닝 등의 기능 구현과 프로세스 사이의 메시지 패싱, 패키지 관리, 개발환 경에 필요한 라이브러리와 다양한 개발, 디버깅 도구를 제공

- ROS2
 - ▶ 모듈과 모듈의 통신 관리
 - ▶ 하드웨어와 소프트웨어 연동
 - ▶ 소프트웨어 재활용

Lift & Cruise VTOL

» QTP 공중 무인이동체

» LC62-50B

Lift & Cruise VTOL

배터리 구성

- Tattu plus LiPo 6cell 22,000mAh x 6ea (2직렬 3병렬)
- 출력전압: 정격 44.4V, 완충시 50.4V

PDB 구성

- 정격 50V/400A 기준으로 산업용 단자대 활용

파워모듈 구성

- 전력 분석을 위해 모터 회전 방향에 따라 그룹화
- Power module 1: 회전익 모터 2, 4, 5
- Power module 2: 회전익 모터 1, 3, 6
- Power module 3: 고정익 모터
- MAUCH HS-200 200A 제품 사용
 - 전압/전류측정

Lift & Cruise VTOL

» LC62-50B

비행제어기 검증 / 오픈 소스 검증

DroneCAN

Lift & Cruise VTOL

4-Wheel Ackerman UGV

>> UVARC UGV

4-Wheel Ackerman UGV

4-Wheel Ackerman UGV

» 자율협력 UGV

IIIROS2 HUMBLI HUM

탐지 및 인식

센서를 통해 정보를 획득 • 분석 • 처리하는 기술

통신

조종기-이동체, 이동체-이동체 간 정보교환 기술

- 4-Wheel Ackerman UGV
 - 복합항법기술(Integrated navigation system)
 - LIO, VIO, INS/GNSS 정보를 융합하여 최적 항법 해 도출
 - 항우연 실증기에 탑재하여 연계 실증 수행
 - ROS2 기반 통신을 통해 항법 해 제공

[실증시험 통합 알고리즘]

- : Trajectory

[항체 주행 궤적]

4-Wheel Ackerman UGV

4-Wheel Ackerman UGV

〈 센서 연구단 실증 〉

Unmanned Surface Vehicle

융복합 센서

감사합니다

