MISR UNIVERSITY FOR SCIENCE AND TECHNOLOGY COLLEGE OF ENGINEERING MECHATRONICS DEPARTMENT

MTE 506 DIGITAL CONTROL

LAB 1 - SPRING 2019

Goals of The Lab

Discretization of Analog Control Systems

Assertion on the notion of modeling and simulation

Converting a dynamic system to mathematical model

Lab 1

Software For Simulation

Needed for all labs

MATLAB

R2017b or above

Student must install software in advance before attending any lab

Simulating Water Tank

From physical simulation to modeling

Simulating behavior

Using MATLAB script for simulation

Mathematical Modeling

Using Simulink for implementing tank response

Quick review on concepts

Mechatronics notation

Modeling

Converting behavior of objects into mathematical equations stating the relationship of system input(s) and output(s)

Examples

Mechanical: $mx\ddot{(t)} + c\dot{x}(t) + kx(t) = f(t)$

Electrical: Li(t) + Ri(t) = v(t)

Lab₁

Quick review on concepts

Mechatronics notation

Modeling

Converting behavior of objects into mathematical equations stating the relationship of system input(s) and output(s)

Examples

Mechanical: $mx\ddot{(t)} + c\dot{x}(t) + kx(t) = f(t)$

Electrical: Li(t) + Ri(t) = v(t)

Quick review on concepts

Mechatronics notation

Simulation

Plotting the output(s) when the model is stimulated by an input

Quick review on concepts

Mechatronics notation

Control

Forcing an output to reach a desired level based on knowing the error in reading and desired input

Modeling of the tank

Simple example

We will ignore input valve (for simplification)

$$\Delta V = q_o - q_i$$

$$A \frac{h(t) - h(t - \Delta t)}{t - (t - \Delta t)} = q_o - q_i$$

$$q_o = kh(t - \Delta t)$$

water flow in valve

$$A = Area \text{ of tank (i.e., fluid surface)}$$

water flow out

$$Q_{i}$$

water flow out

$$Q_{i}$$

$$h(t) = \frac{\Delta t * (kh(t - \Delta t) - q_i)}{A} + h(t - \Delta t)$$

Lab₁

Modeling of the tank

Simple example

$$\Delta V = q_i - q_o$$

$$A\frac{h(t) - h(t - \Delta t)}{t - (t - \Delta t)} = q_i - q_o$$

$$q_o = kh(t - \Delta t)$$

dh

 q_i ... Tank input flowrate $(\frac{m^3}{2})$

 q_o ... Tank output flowrate (

h ... Tank height (m)A ... Tank cross sectional area (m^2)

k ... friction coefficient $(\frac{m^2}{2})$

$$h(t) = \frac{\Delta t * (q_o - q_i)}{A}$$

$$-\left|h(t-\Delta t)\right|$$

Previous State

Lab₁

MATLAB scripting

Exercise 1

- What is the value of qin to reach a level of 3m?
- Will the final level be changed if K is changed?

Modeling of the tank

Laplace Transform

We will ignore input valve (for simplification)

$$\Delta V = q_i - q_o$$

$$A \frac{h(t) - h(t - \Delta t)}{t - (t - \Delta t)} = q_i - q_o$$

$$A\frac{dh}{dt} = q_i - kh$$

$$A\frac{dh}{dt} + kh = q_i \qquad \frac{A}{k}\frac{dh}{dt} + h = \frac{q_i}{k} \qquad \tau \frac{dh}{dt} + h = K_2 q_i$$

Modeling of the tank

Laplace Transform

$$\Delta V = q_i - q_o$$

$$A\frac{h(t) - h(t - \Delta t)}{t - (t - \Delta t)} = q_i - q_o$$

$$A\frac{dh}{dt} = q_i - kh$$

$$A\frac{dh}{dt} + kh = q_i \qquad \frac{A}{k}\frac{dh}{dt} + h = \frac{q_i}{k} \qquad \tau \frac{dh}{dt} + h = K_2 q_i$$

$$\tau = \frac{A}{k} \qquad K_2 = \frac{1}{k}$$

$$\frac{H(s)}{Q_i(s)} = \frac{K_2}{\tau S + 1}$$

First Order System

$$\tau \frac{dh}{dt} + h = K_2 q_i$$

Lab 1 SIMULINK

Exercise 2

- What is the value of qin to reach a level of 3m?
- Will the final level be changed if K is changed?

Full Name, ID, Email address and GitHub handle to be able to get lab notes and exercises.

http://bit.ly/MTE506s2019

END OF LAB 1