Shared Independent Component Analysis for Multi-Subject Neuroimaging

Hugo Richard¹, Pierre Ablin³, Alexandre Gramfort¹, Bertrand Thirion¹, Aapo Hyvarinen²

¹Inria, CEA, Université Paris-Saclay, France ²Department of Computer Science HIIT, University of Helsinki, Finland ³CNRS and DMA, Ecole Normale Supérieure - PSL University, France

https://github.com/hugorichard/ShICA

Problem

- Uncover the shared neural responses of multiple subjects exposed to the same naturalistic stimuli (e.g. movie watching).
- Current well principled approaches need non-Gaussianity of the common sources to be identifiable.

Solution: Shared ICA (ShICA)

ShICA performs multi-subjects ICA while modeling inter-subject variability yielding an identifiable model even when common sources are Gaussian. In practice, it yields better results than competitive methods

ShICA

Given m subjects, we model the data $\mathbf{x}_i \in \mathbb{R}^k$ of subject i as

$$\mathbf{x}_i = A_i(\mathbf{s} + \mathbf{n}_i), i = 1, \dots, m$$
 (1)

- H1: **s** are independent components some of which may be Gaussian
- H2: $\mathbf{n}_i \sim \mathcal{N}(0, \Sigma_i)$ where Σ_i is diagonal positive and \mathbf{n}_i independent from \mathbf{s}
- H3: $\mathbb{E}[\mathbf{x}_i] = 0$, A_i invertible, $\mathbb{E}[\mathbf{s}\mathbf{s}^{\top}] = I_k$ and $m \geq 3$

Definition (Noise diversity): Let \mathcal{G} be the set of Gaussian components. For all $j, j' \in \mathcal{G}, j \neq j'$, the sequences $(\Sigma_{ij})_{i=1...m}$ and $(\Sigma_{ij'})_{i=1...m}$ are different where Σ_{ij} is the j, j entry of Σ_i .

Theorem (Identifiability): Assuming noise diversity, ShICA is identifiable up to a sign and permutation matrix.

Estimation by ShICA-ML

We assume the ShICA model with:

$$s_j \sim \frac{1}{2} \sum_{\alpha \in \{\frac{1}{2}, \frac{3}{2}\}} \mathcal{N}(0, \alpha)$$

Optimization Optimized via an EM algorithm.

E-step:
$$\mathbb{E}[s_j|\mathbf{x}] = \frac{\sum_{\alpha \in \{\frac{1}{2},\frac{3}{2}\}} \theta_{\alpha} h_{\alpha}}{\sum_{\alpha \in \{\frac{1}{2},\frac{3}{2}\}} \theta_{\alpha}}, \quad \mathbb{V}[s_j|\mathbf{x}] = \frac{\sum_{\alpha \in \{\frac{1}{2},\frac{3}{2}\}} \theta_{\alpha} g_{\alpha}}{\sum_{\alpha \in \{\frac{1}{2},\frac{3}{2}\}} \theta_{\alpha}}.$$

M-step: Closed form updates for noise variances and quasi-Newton updates for unmixing matrices.

Estimation by ShICA-J

Background (Multiset CCA): CCA of $(\mathbf{x}_i)_{i=1}^m$ given by solving $C\mathbf{u} = \lambda D\mathbf{u}$ where block i, j of C is $\mathbb{E}[\mathbf{x}_i \mathbf{x}_j^{\top}]$ and D given by diagonal blocks of C.

Theorem (MultisetCCA solves ShICA: Assume \mathbf{x}_i follows ShICA. Let $U = [\mathbf{u}_1 \dots \mathbf{u}_k]$ (first k eigenvectors of CCA problem) and $\lambda_1, \dots, \lambda_k$ (first k eigenvalues). Set $\begin{bmatrix} W_1^\top \\ \vdots \end{bmatrix} = U$ where $W_i \in \mathbb{R}^{k,k}$

 $|\mathbf{u}_i| = U \text{ where } W_i \in \mathbb{R}^{k,k}.$

Then if $\lambda_1 \dots \lambda_k$ are distinct, $W_i = P\Gamma_i A_i^{-1}$ where P is a permutation matrix and Γ_i a scaling matrix.

Serious problem:

- We only have access to empirical covariance estimates
- The mapping from matrices to eigenvectors is highly non smooth
- so <u>MultisetCCA fails in practice</u> (especially when the eigenvalues are close).

Solved by joint diagonalization:

- Large gap between the first k eigenvalues and other: the span of the p leading eigenvectors is preserved: $W_i \approx Q \tilde{W}_i$.
- Recover Q by joint diagonalization of $Q\tilde{W}_{in}^{1}X_{i}X_{i}^{T}\tilde{W}_{i}^{T}Q^{T}$

Last steps: Find scalings and noise variances (see paper)

Related work: SRM [2], MVICA [5], CanICA [6], IVA [1].

Separation performance depending on the density of sources

Data are generated with m=4 views, k=5 components using the ShICA model. Non-Gaussian sources follow a Laplace density.

Figure: (a) Gaussian components with noise diversity (b) non-Gaussian components without noise diversity (c) Half of components are Gaussian with noise diversity, the other half is non-Gaussian without diversity

Reconstruction experiment fMRI

- Subjects exposed to the same stimuli
- 80% runs used to learn unmixing matrices
- In remaining runs we reconstruct the data of 20% of the subjects using the other subjects.

MEG Phantom experiment

- 8 dipoles in a plastic head at different locations separately emit signal S_{true} during n epochs
- 20 sources are estimated: the best one is compared with S_{true} .

References

- [1] Matthew Anderson et al. "Independent vector analysis: Identification conditions and performance bounds". In: *IEEE Transactions on Signal Processing* 62.17 (2014), pp. 4399–4410.
- [2] Po-Hsuan Cameron Chen et al. "A reduced-dimension fMRI shared response model". In: Advances in Neural Information Processing Systems. 2015, pp. 460–468.
- [3] Yi-Ou Li et al. "Joint blind source separation by multiset canonical correlation analysis". In: *IEEE Transactions on Signal Processing* 57.10 (2009), pp. 3918–3929.
- [4] Eric Moulines, Jean-Franccois Cardoso, and Elisabeth Gassiat. "Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models". In: 1997 ieee international conference on acoustics, speech, and signal processing. Vol. 5. IEEE. 1997, pp. 3617–3620.
- [5] H. Richard et al. "Modeling Shared responses in Neuroimaging Studies through MultiView ICA". In: Advances in Neural Information Processing Systems 33. Dec. 2020.
- [6] Gaël Varoquaux et al. "A group model for stable multi-subject ICA on fMRI datasets". In: Neuroimage 51.1 (2010), pp. 288–299.