Classe d'Euler des fibrés orientés en sphères

Abdelhak ABOUQATEB Faculté des Sciences et Techniques de Marrakech

Séminaire "Géométrie, Topologie et Applications" Université Cadi Ayyad de Marrakech Février 2018

Résumé : Ces notes sont rédigées dans le cadre du séminaire mensuel "Géométrie, Topologie et Applications" à l'université Cadi Ayyad de Marrakech durant l'année universitaire 2017-2018. La classe d'Euler, étudiée dans ce mini-cours, est le premier exemple de classe caractéristique qu'on rencontre en géométrie différentielle, c'est une obstruction à l'existence d'une section d'un fibré orienté en sphères S^{r-1} , et en particulier obstruction à l'existence d'une section partout non nulle d'un fibré vectoriel orienté de rang r. Pour les fibrés en sphères associés à un fibré vectoriel réel orienté de rang pair, il est aussi possible la définir à l'aide de la courbure d'une connexion riemannienne (théorème de Gauss-Bonnet). Il existe des fibrés en sphères SE pour lesquels il n'existe pas de fibré vectoriel dont le fibré en sphères associé soit isomorphe à SE.

Dans ce texte $p: SE \to V$ désignera un fibré différentiable en sphères S^{r-1} , pas nécéssairement associé à un fibré vectoriel.

1 Espaces fibrés localement triviaux

Soit V une variété différentiable sans bord et F une variété différentiable à bord.

Définition 1.1. Se donner un fibré différentiable localement trivial de base V, fibre-type F (ou plus brièvement fibre), et d'espace total E, c'est se donner une variété différentiable E et une application différentiable $\pi: E \to V$ telles que tout point de V admette un voisinage ouvert U dans V possédant la propriété suivante :

Il existe un difféomorphisme $\Phi_U: F \times U \to \pi^{-1}(U)$ tel que $\pi|_U \circ \Phi_U = p_2$, où p_2 désigne la deuxième projection.

Cette définition implique en particulier que π soit une submersion de E sur V, et que la restriction Φ_m de Φ à $F \times \{m\} \cong F$ soit un difféomorphisme de F sur l'image réciproque $E_m = \pi^{-1}(m)$ d'un point m de V (on appelle E_m la fibre de E en m).

Un difféomorphisme tel que Φ_U s'appelle une trivialisation locale de E.

Définition 1.2 (Fibrés triviaux). On prend pour E le produit $F \times V$ des deux variétés fibre et base, et pour π la deuxième projection p_2 .

Définition 1.3. On appelle section (sous-entendu : différentiable) du fibré $\pi: E \to V$ toute application différentiable $s: V \to E$ telle que $\pi \circ s$ soit l'identité dans V.

Comme le prouve l'existence de surfaces n'admettant pas de champs de vecteurs partout définis et de norme 1 pour une métrique riemannienne donnée, de telles sections n'existent pas toujours.

Définition 1.4. On appelle morphisme (resp. isomorphisme) du fibré $\pi: E \to V$ dans (resp. sur) le fibré $\pi': E' \to V$ de même base V toute application différentiable (resp. tout difféomorphisme) $f: E \to E'$ telle que $\pi' \circ f = \pi$: la restriction f_m de f à une fibre E_m prend ses valeurs dans la fibre E'_m .

Lorsque le bord ∂F de F n'est pas vide, le bord ∂E de l'espace total E s'identifie à = $\bigcup_{m \in V} \partial E_m$ et possède naturellement une structure de fibré différentiable

$$\partial \pi: \partial E \to V$$

de base V et fibre ∂F . On notera alors $\iota: \partial E \to E$ l'inclusion naturelle, qui vérifie $\pi \circ \iota = \partial \pi$ et est donc un morphisme d'espaces fibrés.

Etant donnés un système de coordonnées locales $x=(x_1,\cdots,x_n)$ sur un ouvert U de la base V du fibré, et un système de coordonnées locales $y=(y_1,\cdots,y_r)$ sur sa fibre-type F, on obtient naturellement un système de coordonées locales (x,y) sur $F\times U$, et par conséquent sur l'espace total du fibré $E|_U$ à l'aide du difféomorphisme donné par une trivialisation locale $\Phi_U: F\times U \stackrel{\cong}{\to} \pi^{-1}(U)$.

Définition 1.5. Un tel système de coordonnées locales sur l'espace total du fibré sera dit adapté à la fibration.

Si (x', y') désigne un autre système de coordonnées locales adapté, le changement de coordonnées locales est de la forme x = x(x'), y = y(x', y'), avec $\det\left(\frac{D(x_1, \dots, x_n)}{D(x'_1, \dots, x'_n)}\right)$ et $\det\left(\frac{D(y_1, \dots, y_r)}{D(y'_1, \dots, y'_r)}\right)$ partout $\neq 0$.

Soit $\pi: E \to V$ un fibré différentiable, et $f: V' \to V$ une application différentiable. Soit E' le sous-ensemble de $V' \times E$ constitué par les couples (m', e) tels que $f(m') = \pi(e)$. L'application $\pi': E' \to V'$ définie par $\pi' \big((m', e) \big) = m'$ fait de E' un fibré différentiable localement trivial de base V' et de même fibre-type F que E: si $\Phi: F \times U \stackrel{\cong}{\longrightarrow} E|_U$ est une trivialisation locale de E, on définit une trivialisation locale $\Phi': F \times f^{-1}(U) \to E'|_{f^{-1}(U)}$ de E' en posant $\Phi'(\lambda, m') = \Phi(\lambda, f(m'))$ pour tout $\lambda \in F$ et $m' \in f^{-1}(U)$. La fibre $E'_{m'}$ de E' en un point $m' \in V'$ est naturellement difféomorphe à $E_{f(m')}$. On identifiera souvent ces deux espaces.

Définition 1.6 (Images réciproques). Le fibré $\pi': E' \to V'$ est appelé image réciproque de E par f, et est parfois noté $f^{-1}(E)$.

Par exemple:

Définition 1.7 (Fibrés induits). Pour toute sous-variété différentiable W de V, l'image réciproque d'un fibré E de base V par l'inclusion $W \subset V$ possède une structure naturelle de fibré différentiable de base W et de même fibre-type que E, qu'on appelle le fibré induit par E sur W, ou restriction de E à W, et qu'on notera $E|_{W}$.

Soient $\pi_1: E_1 \to V$ et $\pi_2: E_2 \to V$ deux fibrés différentiables localement triviaux de même base V, et de fibres-type respectives F_1 et F_2 . Le sous-espace $E_1 \times_V E_2$ de $E_1 \times E_2$ défini comme l'ensemble des couples $(e_1, e_2) \in E_1 \times E_2$ tels que $\pi_1(e_1) = \pi_2(e_2)$ possède une structure naturelle de fibré localement trivial de base V et de fibre-type $F_1 \times F_2$, la projection d'un point $(e_1, e_2) \in E_1 \times_V E_2$ étant égale à $\pi_1(e_1) (= \pi_2(e_2)) :$ si $\Phi_1: F_1 \times U \xrightarrow{\cong} E_1|_U$ et $\Phi_2: F_1 \times U \xrightarrow{\cong} E_2|_U$ désignent des trivialisations locales de E_1 et E_2 au dessus d'un même ouvert U de V, on définit une trivialisation locale $\Phi: (F_1 \times \Phi_2) \times U \to (E_1 \times_V E_2)|_U$ en posant $\Phi((\lambda_1, \lambda_2), m) = (\Phi_1(\lambda_1, m), \Phi_2(\lambda_2, m))$ pour tous $\lambda_1 \in F_1$, $\lambda_2 \in F_2$ et $m \in U$. La fibre de $E_1 \times_V E_2$ en un point $m \in V$ est égale à $(E_1)_m \times (E_2)_m$.

Définition 1.8 (Produits fibrés). Le fibré $E_1 \times_V E_2 \to V$ ainsi défini est appelé produit fibré de E_1 et E_2 .

Définition 1.9 (Champs de vecteurs projetables). On dit qu'un champ de vecteurs \widetilde{X} sur l'espace total E d'un fibré différentiable localement trivial $\pi: E \to V$ est projetable si, pour tous e_1, e_2 appartenant à la même fibre E_m , les images $\pi'_{e_1}(\widetilde{X}_{e_1})$ et $\pi'_{e_2}(\widetilde{X}_{e_2})$ de \widetilde{X}_{e_1} et de \widetilde{X}_{e_2} sur T_mV par la différentielle π_* de π sont les mêmes. Il existe alors un unique champ de vecteurs X sur V, parfois noté $\pi_*(\widetilde{X})$, dont la valeur en m est la projection $\pi_*(\widetilde{X}_e)$ pour n'importe quel e au dessus de m.

Exercice 1.1.

- (i) Soit \widetilde{X} un champ de vecteurs projetable sur l'espace total E d'un fibré $\pi: E \to V$, et $(\widetilde{\varphi}_t)_t$ le flot qu'il engendre. Soit $X = \pi_*(\widetilde{X})$ sa projection sur V, et $(\widetilde{\varphi}_t)_t$ le flot correspondant. Montrer que les difféomorphismes locaux $\widetilde{\varphi}_t$ vérifient $\varphi_t \circ \pi = \pi \circ \widetilde{\varphi}_t$ pour tout t, et appliquent donc fibres sur fibres.
- (ii) Soient \widetilde{X} et \widetilde{Y} deux champs de vecteurs projetable sur E. Montrer que le crochet $[\widetilde{X},\widetilde{Y}]$ est encore un champ de vecteurs projetable. Vérifier la formule :

$$\pi_*([\widetilde{X},\widetilde{Y}]) = [\pi_*(\widetilde{X}), \pi_*(\widetilde{Y})].$$

Orientation et intégration le long des fibres

On dira qu'un fibré différentiable localement trivial $E \to V$, dont les fibres sont de dimension r, est orientable si ses fibres sont orientables et peuvent être orientées de façon "compatible" au sens suivant : il existe une r-forme η sur l'espace total E, dont la restriction $\eta|_{E_m}$ à chaque fibre E_m est une forme volume sur cette fibre (notée désormais pour simplifier η_m plutôt que $\eta|_{E_m}$). On dira que deux telles formes η et η' définissent la même orientation sur E, si elles induisent sur chaque fibre des formes volume de même signe : c'est une relation d'équivalence, et l'on appelle orientation du fibré la classe d'équivalence d'une telle forme η . Si les fibres sont

compactes, on peut toujours supposer que $\int_{E_m} \eta_m \equiv 1$, une fois E orienté, quitte à diviser η par une fonction sur V partout > 0: on dira alors que η est "normalisée".

Remarque 1.1. Une autre définition équivalente de l'orientabilité d'un fibré $E \to V$ de fibre type F est que la fibre type F est orientable et qu'il existe un recouvrement ouvert (U_{α}) de V et des trivialisations locales $p^{-1}(U_{\alpha}) \to F \times U_{\alpha}$ tels que les difféomorphismes de recollements $g_{\alpha\beta}(y) \in \text{Diff}(F)$ préservent l'orientation de F pour tous $x \in U_{\alpha} \cap U_{\beta}$.

Exercice 1.2. Soit $TM \to M$ le fibré tangent d'une variété différentiable M. Montrer que :

- 1. L'espace total TM est une variété orientable.
- 2. Le fibré tangent $TM \to M$ est un fibré orientable si et seuelement si la variété M est orientable.

Remarque 1.2 (Convention: Orientation produit local "fibre d'abord"!).

Lorsqu'un fibré $E \to V$ est orienté par η et que la base V est orienté par ω_V alors l'espace total est orienté par $\omega_E := \eta \wedge p^* \omega_V$, c'est l'orientation produit local "fibre d'abord". On peut montrer (exercice) : Si on munit le bord ∂F de l'orientation de stokes et la variété ∂E de l'orientation produit local "fibre d'abord", alors celle-ci coincide avec l'orientation de stokes de ∂E en tant que bord de la variété E.

Exercice 1.3. Montrer que la bande Moebius

$$M = \left([-1, 1] \times [0, 2\pi] \right) / \mathcal{R} ,$$

qui est l'espace quotient du produit $[-1,1] \times [0,2\pi]$ par la relation d'équivalence $(t,0) \stackrel{\mathcal{R}}{\sim} (-t,2\pi)$ consistant, pour tout $t \in [-1,+1]$, à identifier les points (t,0) et $(-t,2\pi)$, peut être munie d'une structure de fibré de base le cercle S^1 , et de fibre l'intervalle [-1+1]. Montrer que ce fibré n'est pas orientable, bien que sa base et sa fibre-type le soient.

Soit $\pi: E \to V$ un fibré orienté de fibre-type F de dimension r. On rappelle que le support supp ω d'une forme différentiable ω est l'adhérence de l'ensemble des points où $\omega \neq 0$. On dira qu'une forme ω est à support verticalement compact si pour tout compact $K \subset V$, l'ensemble $\pi^{-1}(K) \cap \text{supp}\omega$ est compact. On désigne par $\Omega_F^*(E)$ l'espace de telles formes. Notons que $\Omega_F^*(E) = \Omega^*(E)$ lorsque F est compacte, et que $\Omega_F^*(E) = \Omega_c^*(E)$ lorsque V est compacte. On va définir une application linéaire

$$f_{\pi}: \Omega_F^*(E) \to \Omega^{*-r}(V),$$

que l'on appelle intégration le long de la fibre.

Soit $\omega \in \Omega_F^{r+p}(E)$ (avec $p \ge 0$). Pour tout $x \in V$ et $X_x^1, \dots, X_x^p \in T_xV$, on intégre sur le fibre E_x la forme à support compact $\omega^{X_x^1, \dots, X_x^p}$ définie par :

$$\omega_z^{X_z^1,\cdots,X_z^p}:(Y_z^1,\ldots,Y_z^r)\mapsto\omega_z(Y_z^1,\ldots,Y_z^r,\tilde{X}_z^1,\ldots,\tilde{X}_z^1)$$

pour tout $z \in E_x$ et $Y_z^1, \dots, Y_z^r \in T_z E_x$ où $\tilde{X}_z^1 \in T_z E$ avec $\pi_* * (\tilde{X}_z^i) = X_z^i$, et on pose

$$(\int_{\pi}\omega)_x(X_x^1,\ldots,X_x^p):=\int_{E_x}\omega_z^{X_x^1,\cdots,X_x^p}$$

— Lorsque ω est une r-forme (p=0), on obtient une fonction sur V:

$$\oint_{\pi} \omega : x \mapsto \int_{E_x} \omega_{|E_x|}$$

— Le fibré trivial $F \times U \to U$: Supposons la variété F orientée par une forme volume ω_F . Notons $p_1: (y, x) \mapsto x$ et $p_2: (y, x) \mapsto x$ les deux projections de $F \times U$ respectivement sur F et sur V. Lorsque α est une forme différentiable sur F et β est une forme différentiable sur V, on pose $\alpha \times \beta := p_1^* \alpha \wedge p_2^* \beta$ l'espace de telles formes différentiables engendre le $C^{\infty}(E)$ -module des formes différentiables sur $F \times V$. Si $f \in C^{\infty}(E)$, l'intégrale le long de la fibre de la forme $\omega = f\alpha \times \beta$ est donnée par :

$$\oint_{\tau} f\alpha \times \beta = \begin{cases} 0 & si \mid \alpha \mid < r \\ (\int_{F} f(., x)\alpha)\beta & si \mid \alpha \mid = r \end{cases}$$

Théorème 1.1. L'intégration le long de la fibre vérifie les formules suivantes :

- $(i) \qquad f \circ \pi^* = 0,$
- (ii) $f_{\pi}(\alpha \wedge \pi^*\beta) = (f_{\pi}\alpha) \wedge \beta$ (formule de la projection).
- (iii) $\int_{\pi} \circ d (-1)^r d \circ \int_{\pi} = \int_{\partial \pi} \circ \iota^*$ (formule de Stokes), où ι désigne l'inclusion naturelle $\partial E \subset E$ du bord fibré de E dans E. En particulier, si F est sans bord

$$\int_{\pi} \circ d = (-1)^r d \circ \int_{\pi}$$

(iv) En outre, si la base V est compacte, est vérifiée la formule de Fubini :

$$\int_E = \int_V \circ \int_{\pi}$$
 .

Corollaire 1.1 (Opérateur d'homotopie). Deux applications différentiables différentiablement homotopes induisent la même application en cohomologie de de Rham.

Démonstration. Soit $h: V' \times [0,1] \to V$ une homotopie différentiable entre deux applications différentiables h_0 et h_1 de V' dans V. D'après la formule de Stokes, l'intégration f_0^1 des formes différentielles sur $V' \times [0,1]$ le long de la fibre de la projection $p_1: V' \times [0,1] \to V'$, composée avec $h^*: \Omega_{DR}^*(V) \to \Omega_{DR}^*(V' \times [0,1])$ vérifie $f_0^1 \circ d \circ h^* + d \circ f_0^1 \circ h^* = h_1^* - h_0^*$. Par conséquent $h_1^*(\alpha) - h_0^*(\alpha) = d(f_0^1 \circ h^*(\alpha))$ dès que α est une forme fermée.

2 Classe d'Euler des fibrés orientés en sphères

Puisque la fibre S^{r-1} est sans bord, l'intégration $f_p: \Omega^*_{DR}(SE) \to \Omega^{*-r+1}_{DR}(V)$ le long de la fibre commute (au signe près) avec la différentielle d'après la formule de Stokes, et induit par conséquent une application $H^*(SE) \to H^{*-r+1}(V)$ en cohomologie, encore notée f_p .

Puisque $f_p \circ p^* = 0$, l'image réciproque $p^* : \Omega^*_{DR}(V) \to \Omega^*_{DR}(SE)$ prend ses valeurs dans le noyau K de l'intégration $f_p : \Omega^*_{DR}(SE) \to \Omega^{*-r+1}_{DR}(V)$ le long de la fibre.

Lemme 2.1. Le morphisme $p^*: \Omega^*_{DR}(V) \to K$ induit un isomorphisme

$$p_K^*: H^*(V) \stackrel{\cong}{\to} H^*(K)$$

en cohomologie.

Démonstration.

Première étape : Supposons d'abord le fibré trivial $SE = S^{r-1} \times V$, p étant la deuxième projection. La méthode consiste alors à remplacer l'algèbre $\Omega_{DR}^*(SE)$ par la sous-algèbre $\Omega_{DR}^*(S^{r-1}) \otimes \Omega_{DR}^*(V)$: la restriction I_1 à cette sous-algèbre de l'intégration $I = \int_p$ le long des fibres est égale à $\int_{S^{r-1}} \otimes Id_{\Omega_{DR}^*(V)}$, et l'image réciproque des formes différentielles $p^* : \Omega_{DR}^*(V) \to \Omega_{DR}^*(SE)$ se factorise à travers la sous-algèbre par l'application $1 \otimes Id_{\Omega_{DR}^*(V)}$. Puisque

$$Ker I_1 = \left(\Omega_{DR}^{\leq r-1}(S^{r-1}) \oplus d \Omega_{DR}^{r-2}(S^{r-1})\right) \otimes \Omega_{DR}^*(V),$$

on vérifie facilement que $1 \otimes Id_{\Omega_{DR}^*(V)}$ induit un isomorphisme en cohomologie de $H^*(V)$ sur $H^*(Ker\ I_1)$. Comme le diagramme commutatif suivant de suites exactes courtes

$$0 \to Ker I_1 \to \Omega_{DR}^*(S^{r-1}) \otimes \Omega_{DR}^*(V) \xrightarrow{I_1} \Omega_{DR}^*(V) \to 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad ||$$

$$0 \to K \to \Omega_{DR}^*(E) \xrightarrow{I} \Omega_{DR}^*(V) \to 0$$

induit en cohomologie un isomorphisme de suite exactes longues d'après le lemme des cinq, la conclusion en résulte.

Deuxième étape : Soit $V = U_0 \cup U_1$ un recouvrement de V par deux ouverts U_0 et U_1 . Notons SE_0 , SE_1 et SE_{01} les restrictions du fibré en sphères SE à U_0 , U_1 et U_{01} . On définit alors le diagramme commutatif suivant, entre modules différentiels gradués :

où $\delta(\omega_0, \omega_1) = \omega_1 - \omega_0$, tandis que K, K_0, K_1 et K_{01} désignent les noyaux des flèches verticales. Le lemme du serpent permet d'en déduire une suite exacte

$$0 \to K \to K_0 \oplus K_1 \xrightarrow{\delta} K_{01} \to 0$$
,

d'où un diagramme commutatif de modules différentiels gradués

Passant à la cohomologie, on obtient alors un morphisme des suites exactes longues de Mayer-Vietoris.

Si les flèches verticales $p_{K_0}^*$, $p_{K_1}^*$ et $p_{K_{01}}^*$ induisent des isomorphismes en cohomologie, le lemme des cinq permet donc d'affirmer qu'il en est de même pour p_K^* . Lorsque la variété V est compacte, elle est réunion d'un nombre fini d'ouverts au dessus de chacun desquels le fibré SE est trivial, et une récurrence sur le nombre de ces ouverts nous permet alors de conclure.

Troisième étape : Lorsque la variété V n'est pas compacte, mais seulement paracompacte, elle admet un recouvrement localement fini par une famille dénombrable $(\theta_n)_n$ d'ouverts θ_n relativement compacts (tout point de V n'appartient qu'à un nombre fini d'ouverts θ_n), et il existe une partition de l'unité par des fonctions $\rho_n : V \to [0,1]$ subordonnée à ce recouvrement (le support de ρ_n est inclus dans θ_n pour tout n, et $\sum_n \rho_n \equiv 1$).

La fonction $f: V \to [0, +\infty[$ égale à

$$f = \sum_{n} n\rho_n$$

est propre (l'image réciproque de tout compact est un compact). La variété V est recouverte par les compacts $Kn=f^{-1}([n-\frac{1}{2},n+\frac{3}{2}])$ et les ouverts $U_n'=f^{-1}(]n-\frac{1}{2},n+\frac{3}{2}[)$:

$$U'_n \subset K_n$$
.

Le compact K_n peut être recouvert par une réunion finie d'ouverts trivialisants pour le fibré SE, et par conséquent l'ouvert U'_n aussi.

Les ouverts U'_{2j} étant tous disjoints, leur réunion $U_0 = \bigcup_j U'_{2j}$ est également recouvert par une réunion finie d'ouverts trivialisants pour SE, de même que $U_1 = \bigcup_j U'_{2j+1}$. Puisque $V = U_0 \cup U_1$, elle peut donc être recouvert par une réunion finie d'ouverts trivialisants pour le fibré SE, il suffit d'appliquer le résultat de la deuxième étape pour conclure.

Théorème 2.1 (suite exacte de Gysin).

La suite

$$\cdots \to H^{*-r}(V) \xrightarrow{G} H^*(V) \xrightarrow{p^*} H^*(SE) \xrightarrow{f_p} H^{*-r+1}(V) \to \cdots,$$

est exacte, avec $G = (p_K^*)^{-1} \circ \partial$, ∂ désigne le connectant en cohomologie de la suite exacte longue induite par la suite exacte de modules différentiels gradués

$$0 \to K \xrightarrow{\subset} \Omega_{DR}^*(SE) \xrightarrow{f_p} \Omega_{DR}^{*-r+1}(V) \to 0$$
.

Démonstration. Il suffit en effet, pour conclure, de remplacer $H^*(K)$ par $H^*(V)$ à l'aide de l'isomorphisme p_K^* du lemme qui précède, dans la suite exacte longue induite en cohomologie par la suite exacte courte ci-dessus.

Le morphisme $G: H^{*-r}(V) \to H^*(V)$ de cette suite exacte est appelée morphisme de Gysin, et la suite exacte précédente suite exacte de Gysin.

Définition 2.1 (classe d'Euler). La classe de cohomologie

$$Eul(p) = -G([1])$$

dans $H^r(V)$, image de $-[1] \in H^0(V)$ par le morphisme de Gysin¹, s'appelle la classe d'Euler du fibré en sphères.

Définition 2.2. Une (r-1)-forme normalisée η sur SE est appelée forme angulaire globale. Par extension, on appellera encore forme angulaire globale toute (r-1)-forme η sur SE telle que $\int_p \eta \equiv 1$, autorisant éventuellement la restriction η_m de η à s'annuler en certains points de la fibre SE_m .

Lemme 2.2 (classe d'Euler et formes angulaires globales).

(i) Pour toute r-forme fermée e sur V représentant Eul(p), il existe une forme angulaire globale η , telle que

$$d\eta = -p^*(e).$$

- (ii) Si η est une forme angulaire globale et vérifie $d\eta = -p^*(e)$, e est une forme fermée représentant la classe d'Euler.
- (iii) Si e représente la classe d'Euler, et si $d\eta = -p^*(e)$, η est nécéssairement une forme angulaire globale.
- (iv) Le morphisme de Gysin est égal à l'opposé de la multiplication par la classe d'Euler :

$$G([\gamma]) = -[e \wedge \gamma].$$

^{1.} L'intégration $Eul(p) \frown [V]$ de la classe d'Euler, lorsque V est une variété de dimension r, est un entier, égal à la somme des degrés locaux d'une section à singularités isolées (théorème de Poincaré-Hopf). C'est précisément, pour avoir une telle formule, que l'on met le signe - dans la définition de Eul(p) = -G([1]), convention qui pourrait a priori sembler artificielle.

Démonstration. Si η est une forme angulaire globale sur SE, le connectant $\partial: H^*(V) \to H^{*+r}(SE)$ est donné par la formule $\partial([\gamma]) = [d(\eta \wedge p^*(\gamma))]_K$, où $[...]_K$ désigne la classe de cohomologie dans K, soit $\partial([\gamma]) = [d\eta \wedge p^*(\gamma)]_K$. En particulier, pour $[\gamma] = 1$, $\partial([1]) = [d\eta]_K$. Puisque p_K^* est un isomorphisme, il existe, pour tout représentant e de la classe d'Euler, un élément $x \in K$ tel que $d\eta + p^*(e) = dx$. La forme $\eta' = \eta - x$ est encore une forme angulaire globale, et vérifie $d\eta' = -p^*(e)$. Plus généralement, $\partial([\gamma]) = -[p^*(e \wedge \gamma)]_K$, soit $G([\gamma]) = -[e \wedge \gamma]$.

Réciproquement si η est une forme angulaire globale et vérifie $d\eta = -p^*(e)$, la forme e est nécéssairement fermée car p^* est injectif au niveau des formes, et G([e]) = -[1], ce qui prouve que e est nécéssairement un représentant de la classe d'Euler.

Enfin, si e représente la classe d'Euler, et si η est une forme sur E telle que $d\eta = -p^*(e)$, η est nécessairement une forme angulaire globale. Il existe en effet une forme angulaire globale η_0 vérifiant $d\eta_0 = -p^*(e)$; on en déduit l'existence d'une r-2-forme u sur SE telle que $\eta = \eta_0 + du$, d'où : $\int_p \eta = 1 + \int_p du$. Mais $\int_p du = \pm d\int_p u$, et $\int_p u$ ne peut qu'être nulle pour des raisons de dimension.

Théorème 2.2. La classe d'Euler Eul(p) est nulle dans les deux cas suivants :

- l'entier r est impair,
- l'entier r est pair, et le fibré $p: SE \to V$ admet une section.

Démonstration.

Avec les notations ci-dessus, soit $e \in \Omega^r_{DR}(V)$ une forme fermée représentant Eul(p), et η telle que $d\eta = -p^*(e)$.

Si r est impair, $p^*(e) \wedge \eta$ est donc égal à $-\frac{1}{2}$ $d(\eta \wedge \eta)$, et $e = -\frac{1}{2}$ $d \oint_{\mathcal{P}} (\eta \wedge \eta)$ est un cobord.

Si $p:SE\to V$ admet une section s, l'égalité $d\eta=-p^*(e)$ implique, quelle que soit d'ailleurs la parité de r :

$$e = d(-s^*(\eta)).$$

Corollaire 2.1. S'il existe une section de SE, ou si r est impair, la suite

$$0 \to H^*(V) \xrightarrow{p^*} H^*(SE) \xrightarrow{f_p} H^{*-r+1}(V) \to 0$$

est exacte.

Démonstration. En effet dans ces cas là, e=0, le morphisme de Gysin $[\gamma] \mapsto -[e \land \gamma]$ est nul, et p* est injectif en cohomologie.

Exercice 2.1. Montrer la "naturalité" de la classe d'Euler : si $p: SE \to V$ désigne un fibré en sphères , et $f: V' \to V$ une application différentiable, alors :

$$Eul(f^{-1}(p)) = f^*(Eul(p)),$$

où $f^{-1}(p)$ désigne le fibré en sphères image réciproque de p.

Remarque 2.1. La classe d'Euler d'un fibré en sphères S^{r-1} apparaît donc, au moins lorsque r est pair, comme une "obstruction" à l'existence d'une section. En particulier, il n'est pas étonnant que $p^*(e)$ soit un cobord dans SE, puisque le fibré image réciproque de $p^{-1}(p)$ de base SE admet une section évidente (appelée section tautologique).

Exercice 2.2. Montrer que si la classe d'Euler Eul(p) est nulle, il existe un isomorphisme d'espace vectoriels gradués

$$H(V) \otimes H(S^{r-1}) \xrightarrow{\cong} H(SE)^{-2}$$

Remarque 2.2 (Théorème de Leray-Hirsch). (voir [2] p. 50).

Soit F une variété compacte et $\pi: M \to V$ un fibré localement trivial orienté de base V variété compacte connexe. On suppose que pour un certain $x \in V$, il existe des classes de cohomologie $e_1, \dots, e_k \in H(M)$ telles que leurs restrictions à $H(M_x)$ engendre l'algèbre de cohomologie de la fibre M_x . Alors : H(M) est un H(V)-module libre engendré par e_1, \dots, e_k . On a donc

$$H(M) \cong H(V) \otimes H(F)$$
.

3 Classe de Thom et Classe d'Euler topologique

Soit V une variété compacte orientée de dimension n et $\pi: E \to V$ un fibré vectoriel orientée de rang r. Une orientation naturelle de la variété E en est alors induite. Par dualité de Poincaré, nous obtenons des isomorphismes : $\mathcal{P}_E: H_c^{r+k}(E) \xrightarrow{\cong} H_{n-k}(E)$ et $\mathcal{P}_V: H^k(V) \xrightarrow{\cong} H_{n-k}(V)$. D'un autre côté, l'homomorphisme $H_*(\pi): H_*(V) \to H_*(E)$ est un isomorphisme (pour une section arbitraire s du fibré on a $\pi \circ s = id_V$ et $s \circ \pi$ est homotope à id_E : il suffit d'utiliser la structure d'espace vectoriel des fibres). Nous obtenons ainsi par composition un isomorphisme :

$$\mathcal{T}: H^*(V) \xrightarrow{\cong} H_c^{r+*}(E),$$

appelé isomorphisme Thom. De manière plus explicite, on considère l'opérateur d'intégration le long des fibres $f_{\pi}: \Omega_c^{r+*}(E) \to \Omega_c^*(V)$; celui-ci commute aux différentiels et passe à la cohomologie :

$$H(\int_{\pi}): H_c^{r+*}(E) \to H^*(V).$$

Il est facile de voir (en utilisant le théorème de Fubini de l'intégration le long des fibre) que c'est la bijection inverse de l'isomorphisme de Thom³ : $H(f) = \mathcal{T}^{-1}$.

La classe de cohomologie $\mathcal{T}(1) \in H_c^r(E)$, image de $1 \in H^0(V)$ par l'isomorphisem de Thom, sera appelée classe de Thom de E; elle sera notée $\tau(E)$. Autrement dit, c'est l'unique calsse dans $H_c^r(E)$ dont l'intégrale sur la fibre E_x est égale à 1, pour tout $x \in V$. Comme exercice facile, on montre la propositon qui suit.

^{2.} voir [3] page 324 pour le corrigé et plus de précisions.

^{3.} en fait lorsque V n'est pas compacte, on peut toujours étendre l'intégration le long des fibres aux formes à support compacts dans la direction de la fibre et obtenir un isomorphisme de Thom plus général [2]

RÉFÉRENCES 11

Proposition 3.1. Si $\vartheta \in \Omega_c^r(E)$ est un représentant de la classe de Thom, alors l'isomorphisme de Thom $\mathcal{T}: H^*(V) \to H_c^{*+r}(E)$ est réalisé par l'application $[\omega] \mapsto [\pi^*(\omega) \wedge \vartheta]$.

On vérifie sans problème le lemme qui suit.

Lemme 3.1. Soit $\vartheta \in \Omega_c^r(E)$ un représentant de la classe de Thom, et soit s une section arbitraire de E. Alors la classe de cohomologie $[s^*\vartheta] \in H^r(V)$ ne dépend pas des choix de ϑ et s.

On notera alors $e_{\tau}(E) \in H^{r}(V)$ la classe de cohomologie $[s^{*}\vartheta]$ (on peut prendre pour s la section nulle par exemple); on l'appellera classe d'Euler topologique du fibré vectoriel $E \to V$.

Lemme 3.2. Soit $\pi: E \to V$ un fibré vectoriel orienté. Alors : L'existence d'une section $s: V \to E$ partout non nulle implique la nullité de la classe d'Euler topologique.

Démonstration du lemme. Soit <, > une métrique riemannienne sur E. Désignons par $\rho: E \to \mathbb{R}$ la fonction radiale définie par $\rho(v) = \parallel v \parallel$. Soit ϑ un représentant de la classe de Thom et K le support de ϑ . La fonction ρ est continue donc bornée sur K. Posons $c = 1 + \sup_{v \in K} \rho(v)$; le support de s est ainsi contenu dans $\{v \in E/\rho(v) < c\}$. Autrement dit, $\vartheta_v = 0$ dès que $\rho(v) \ge c$. D'un autre côté, puisque s est partout non nulle, il existe $\epsilon > 0$ telle que $\rho(s(x)) \ge \epsilon$ pour tout $x \in \pi(K)$. Considérons maintenant la section $\sigma = \frac{c}{\epsilon}s$. Il est alors facile de voir que $\sigma^*(\vartheta) = 0$. D'où : $e_{\tau}(E) = 0$. \square

Une autre description de la classe $e_{\tau}(E)$ est donnée par la proposition suivante.

Proposition 3.2. On a l'égalité :

$$e_{\tau}(E) = \mathcal{T}^{-1}(\tau(E) \frown \tau(E))$$

où \frown est la multiplication canonique de $H_c^*(E)$. En particulier $e_{\tau}(E) = 0$ lorsque le rang du fibré est impaire.

Démonstration. Soit ϑ un représentant de $\tau(E)$. D'après le théorème ci-dessus on a : $\mathcal{T}(e(E)) = [\pi^*(s^*\vartheta) \wedge \vartheta]$. D'un autre côté, du fait que $s \circ \pi$ est homotope à id_E il en découle que $\pi^* \circ s^*(\vartheta)$ est cohomologue à ϑ . D'où le résultat.

Théorème 3.1. Pour tout fibré vectoriel riemannien orienté $E \to V$ de base V, la classe d'Euler topologique $e_{\tau}(E)$ coïncide avec la classe d'Euler Eul(p) du fibré en sphères $SE \to V$ associés (celui-ci étant muni de l'orientation induite).

Références

- [1] A. Abouqateb et D. Lehmann : Classes caractéristiques et résidus en Géométrie différentielle. Editions Ellipses 2010.
- [2] R. Bott et LW. Tu: Differential forms in algebraic topology. Graduate texts in Mathematics, Springer, 1982.

RÉFÉRENCES 12

[3] W. Greub, S. Halperin and R. Vanstone: Connections, Curvature, and Cohomology. Vol. I,II Academic Press 1972.

- [4] I. Liviu Nicolaescu: Lectures on the Geometry of Manifolds. World Scientific, 2007.
- [5] I. H. MADSEN and J. TORNEHAVE, From calculus to cohomology : de Rham cohomology and characteristic classes. Cambridge University Press, 1997.