Enhanced Power Factor in Nanocomposite Chalcogenides

J. Martin, A. Datta, H. Kirby, A. Popescu, L.M. Woods, N. Crane and G.S. Nolas Department of Physics, University of South Florida Tampa, Florida, USA

Marlow Industries

2009 DOE Thermoelectric Applications Workshop

How can we increase ZT?

T.M. Tritt and M.A. Subramanian, MRS Bulletin **31**, 188 (March 2006)

Thus far two approaches have shown the greatest promise:

- 1. Phonon-Glass
 Electron-Crystal
 (G. Slack)
- 2. Low Dimensional Materials (M. Dresselhaus)

TE Enhancement: Nanostructured Materials

- o Multilayered Structures first proposed in 1987^A
- o One dimensional quantum wires^B
- o Bi₂Te₃/Sb₂Te₃ supperlattice: ZT=2.4^C
- o Quantum dot supperlattice: ZT =1.6^D
- o Metal-based supperlattices^E

- o $Ag_mPb_mSbTe_{m+2}$ with nanoscale $PbTe^2$: κ reduction
- o Nanostructured SiGe bulk alloys³: κ reduction
- o Nanostructured Bi₂Te₃ bulk alloys⁴: κ reduction
- o Nanocrystalline CoSb₃⁵: κ reduction
- o PbTe with Pb nanoprecipitates⁶: S increase
- o PbTe nanocomposites^{7,8}: S increase
- o PbTe 'dimensional' nanocomposites^{9, 10}: S increase
- ^AT.E. Whall, *Proc. First Eur. Conf. on Therm.*, D.M. Rowe (Peter Peregrinus Lt., London, 1987)
- ^B L.D. Hicks & M.S. Dresselhaus, PRB **47**, 16631 (1993)
- ^c R. Venkatasubramanian et al, Nature **413**, 597 (2001)
- ^DO.L. Lazarenkova & A.A. Balandin, PRB **66**, 245319 (2002)
- ^E D. Vashaee and A. Shakouri, PRL **92**, 106103 (2004)

- ¹ K.F. Hsu *et al*, Science **303**, 818 (2004)
- ²G. Joshi *et al*, Nano Lett. **8**, 4670 (2008)
- ³ M.S. Toprak *et al*, Adv. Func. Mat. **14**, 1189 (2004)
- ⁴ B. Poudel *et al*, Science **320**, 634 (2008)
- ⁵ X. Ji, T.M. Tritt *et al*, Phys. Stat. Sol. RRL **1**, 229 (2009)
- ⁶ J.P. Heremans *et al*, JAP **98**, 063703 (2005)
- ⁷ J.P. Heremans *et al*, Phys. Rev. B **70**, 115334 (2004)
- ⁸ K. Kishimoto *et al*, JAP **92**, 2544 (2002)
- ⁹ J. Martin *et al*, Appl. Phys. Lett. **90**, 222112 (2007)
- ¹⁰ J. Martin *et al*, Phys. Rev. B **79**, 115311 (2009)

'Dimensional' Nanocomposites

Expectations:

- Reduced thermal conductivity?
- Enhanced thermopower?
- Increased ZT?
- Cheap, self-assembly method

First Steps:

- Synthesis of high yield nanocrystals
- Densify into nanocomposites
- Measure transport properties

Lead Chalcogenides

PbS, PbSe and PbTe

- NaCl-like FCC lattice structure
- Relatively low thermal conductivity
- Direct-gap semiconductor at the *L*-point of the Brillouin zone

Lattice parameter: PbS < PbSe < PbTe

$$\frac{\hbar^2 k_l^2}{2m_l^*} + \frac{\hbar^2 k_t^2}{2m_t^*} = E + E^2 / E_g$$

Bulk Property	PbS	PbSe	РЬТе
Lattice Parameter (Å)	5.94	6.12	6.46
E_g at 77 K (meV)	307	168	215

PbTe energy bandstructure

X. Gao and M.S. Daw, Phys Rev B **77**, 033103 (2008)

Requirement: High Yield Nanocrystal Synthesis

PbTe Nanocomposites

SPS

Size & Shape Selectivity

PbTe nanocrystals within the bulk matrix

J. Martin, G. S. Nolas, W. Zhang, and L. Chen, Appl. Phys. **90**, 222112 (2007)
J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B **79**, 115311 (2009)

Novel Materials Laboratory
University of South Florida

Spark Plasma Sintering

Powder and Polycrystalline XRD

- J. Martin, G. S. Nolas, W. Zhang, and L. Chen, Appl. Phys. 90, 222112 (2007)
- J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009)

PbTe Nanocomposites

@ 300 K	Specimen	D (%)	ρ (mΩ-cm)	S (µV/K)	κ (W-m ⁻¹ K ⁻¹)	p (cm ⁻³)	$S^2 \sigma (\mu W/K^2 cm)$	Pb:Te
	PbTe-I ●	94	24.9	328	2.2	9.5×10^{17}	4.3	49.91 : 50.09
	PbTe-II △	95	12.6	324	2.5	1.5×10^{18}	8.3	50.42:49.58
	B-I Bulk	, 97	37	325	-	8.0×10^{17}	2.9	-
	B-II	97	19	250	-	9.5×10^{17}	3.3	-

J. Martin, G. S. Nolas, W. Zhang, and L. Chen, Appl. Phys. 90, 222112 (2007)

PbTe Nanocomposites

@ 300 K

Specimen	D (%)	ρ (mΩ-cm)	S (μV/K)	; (W-m ⁻¹ K ⁻¹	p (cm ⁻³)	$S^2 \sigma (\mu W/K^2 cm)$	Pb:Te
PbTe-I	94	24.9	328	2.2	9.5×10^{17}	4.3	49.91 : 50.09
PbTe-II	95	12.6	324	2.5	1.5×10^{18}	8.3	50.42 : 49.58
PbTe-III	95	3.9	198	2.8	5.1×10^{18}	10.0	-
PbTe-IV	94	2.9	207	2.7	6.2×10^{18}	14.8	-

J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009)

Thermopower Enhancement in Nanocomposites

red PbTe Nanocomposites △, ○ Bulk PbTe
--- A.J. Crocker *et al.*, Brit. J. Appl. Phys. **18**, 563 (1967)

H. Kirby, J. Martin, L. Chen, and G.S. Nolas, Proc. Mater. Res. Soc. **1166** (2009)

PbTe Nanocomposites

$$\mu_{eff} = \widehat{Lq} \left(\frac{1}{2\pi m * kT} \right)^{1/2} \exp \left(-\frac{\widehat{E_B}}{kT} \right)$$

Density of trapping states: $E_B = \frac{q_t^2 N_t^2}{8\varepsilon \varepsilon_o p}$

Width of space-charge region: $(\widetilde{W}) = \left(\frac{2\varepsilon\varepsilon_o E_B}{\sigma^2 n}\right)^{1/2}$

@ 300 K

0						
Specimen	ρ (mΩ-cm)	p (cm ⁻³)	E _B (meV)	N_t (cm ⁻²)	W (nm)	L (nm)
PbTe I O	24.9	9.5×10^{17}	60	1.0×10^{13}	54	316
PbTe II △	12.6	1.5×10^{18}	60	1.3×10^{13}	43	396
PbTe III ●	3.9	5.1×10^{18}	60	2.4×10^{13}	23	376
PbTe IV ▲	2.9	6.2×10^{18}	60	2.6×10^{13}	21	416

- C. H. Seager, J. Appl. Phys. **52**, 3960 (1981)
- O. Vigil-Galan, J. Appl. Phys. **90**, 3427 (2001)
- J. Y. W. Seto, J. Appl. Phys. **46**, 5247 (1975)

NOVEL MATERIALS LABORATORY
UNIVERSITY OF SOUTH FLORIDA

Model: Granular Nanocomposites

Goal - describe electrical conductivity and Seebeck coefficient - understand the role of grain interface scattering

$$\sigma = \frac{2e^2}{3m^*} \int_{0}^{\infty} \tau(E)g(E)E\left(-\frac{\partial f(E)}{\partial E}\right) dE$$

$$S = \frac{1}{eT} \left[\int_{0}^{\infty} \tau(E)g(E)E^{2} \left(-\frac{\partial f(E)}{\partial E} \right) dE - \mu \right]$$

$$\int_{0}^{\infty} \tau(E)g(E)E \left(-\frac{\partial f(E)}{\partial E} \right) dE$$

diffusive, quasi-equilibrium transport σ , S – derived using linear response theory

e – electron charge

 m^* - effective mass

T – temperature

 μ – chemical potential

 $\tau(E)$ – relaxation rate

g(E) – total density of states (DOS)

f(E) – energy distribution function

A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 305302 (2009)

Scattering Mechanisms

$$\frac{1}{\tau(E)} = \sum_{n} \frac{1}{\tau_{n}(E)}$$

Scattering due to acoustic phonons

$$\tau_{a-ph}(E) = \frac{h^4}{8\pi^3} \frac{\rho v_L^2}{k_B T} \frac{1}{(2m^*)^{3/2} D^2} E^{-1/2}$$

Scattering due to optical phonons

$$\tau(E)_{o-ph} = \frac{h^2}{2^{1/2} m^{*1/2} e^2 k_B T(\varepsilon_{\infty}^{-1} - \varepsilon_0^{-1})} E^{1/2}$$

Scattering due to ionized impurities

$$\tau_{imp}(E) = \left[\frac{Z^2 e^4 N_i}{16\pi (2m^*)^{1/2} \varepsilon^2} \ln \left[1 + \left(\frac{2E}{E_m} \right)^2 \right] \right]^{-1} E^{3/2}$$

Interface grain barriers

$$\tau_b(E) = \lambda / v \qquad v = \sqrt{2E / m^*}$$

$$\lambda = \sum_{n=1}^{\infty} T^n(E) (1 - T(E)) nL = \frac{T(E)L}{1 - T(E)}$$

$$v_{L-} \text{ longitudinal speed of sound } D - \text{ deformation potential constants}$$

$$N_i - \text{ concentration of impurities }$$

$$\varepsilon_{0,\infty} \text{ dielectric constants}$$

Infinite number of barriers:

 E_b – barrier height

w – barrier width

L – distance between the barriers

T(E) – quantum mechanical transmission through one barrier

ρ – mass density

 v_{L-} longitudinal speed of sound

D – deformation potential constant

NOVEL MATERIALS LABORATORY UNIVERSITY OF SOUTH FLORIDA

Comparison: Experiment and Theory

A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 305302 (2009)

TE Transport Properties: The role of Carrier Concentration

Higher concentration results — σ increases & in more transport carriers — S decreases.

Grain Boundary Height

Higher E_b – more carriers are scattered \longrightarrow σ decreases & S increases

Lower E_b – carrier energy larger than barrier σ increases & S decreases

Grain Boundary Width

Larger w – smaller transmission probability T(E) — σ decreases & S increases Smaller w – larger transmission probability T(E) — σ increases & S decreases

Distance (L) Between Barriers

Smaller L – more frequent carrier/interface scattering — σ decreases & S increases

Larger L – less frequent carrier/interface scattering $\longrightarrow \sigma$ increases & S decreases

S²σ for PbTe granular nanocomposites

A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 305302 (2009)

CoSb₃ for PbTe granular nanocomposites

L.M. Woods, A. Popescu, J. Martin, and G.S. Nolas, Proc. Mater. Rec. Soc. 1166 (2009)

Device manufacturing: Self Assembly

Challenge of Self Assembly: Rate & Yield

Assembly yield depend on process and design parameters.

Goal: Develop predictive models of self assembly process rate and yield to facilitate design of high rate and yield processes at industrial scales.

N. Crane, P. Mishra, J. Murray, G.S. Nolas, J. Electronic Mater 38, 1252 (2009)

Acknowledgements

Lidong Chen
Shanghai Institute of Ceramics, China

Jim Salvador & Jihui Yang General Motors Co. Inc., USA

