ASSIGNMENT-4 PROCESS ENGINEERING

Since 99.8% conversion will need more hydrogen than given in the feed as per given specifications, I raised hydrogen stream flow rate to 340 lbmol/hr, so that more than sufficient hydrogen is available at the reactor.

1. Capital Cost

Equipment	Size	Equip	Installed	Total
		ment	cost (\$)	Capital
		cost (\$)		Cost (\$)
Heaters	Tube outside diameter [meter] 0.0254 (for all)			
(x4)	Tube length extended [meter] 6.096 (for all)			
	Tube pitch [meter] 0.03175 (for all)			
	Heat transfer area [sqm] 5.7896190206766 9.18395			
	6.6001 3.1488	44600	294700	339300
Reactor	Liquid volume [I] 1459.507849			
	Vessel diameter [meter] 0.762			
	Vessel tangent to tangent height [meter] 3.2004	87500	245400	332900
Flash	Liquid volume [I] 3269.297609			
	Vessel diameter [meter] 1.0668			
	Vessel tangent to tangent height [meter] 3.6576	24800	116800	141600
Distillation	Diameter Bottom section [meter] 0.6096			
column	Bottom tangent to tangent height [meter] 15.24			
	Number of trays Bottom section 19	123200	518000	641200
Total Cost		\$ 383361	<u>LO</u>	

2. Operating Costs

a = 0, b = 2, c = 0.

Heating cost = (30 + 0 + 2 + 0) = 32 / KBTU

Cooling cost = (19 - 0 + 2 - 0) = 21 / KBTU

Used 1 cal/sec = 125061.27 BTU/year

Item	Amount per year (BTU / yr)	Cost per year (\$ / yr)
Heating	3.3879*10 ¹⁰	1.0841*10 ⁹
Cooling	9.8436*10 ¹⁰	2.0672*10 ⁹
Total	1.3231*10 ¹¹	3.1513*10 ⁹

3.

To decrease capital costs, one can decrease the number of stages. Maintaining other specs same will result in an increase in operating costs. We also note that, since feed stage is fixed to be 8, we can't reduce number of stages below 8.

Item	Old design (15 stages)	New design 1 (13 stages)	New design 2 (10 stages)
Capital cost (in \$)	\$ 3,833,610	\$ 3,804,860	\$ 3,791,000
Operating cost (in \$/year)	\$ 1,751,780	\$ 1,749,840	\$ 1,748,060

We see as number of stages increases, both operating costs and capital costs decrease. But as we can see the reduction in capital costs is minimal (~1.11%). So even if we allow the number of stages to vary, we can't significantly reduce the capital cost.

Summary:

- Yes, capital cost reduces. But not significant enough.
- Operating costs have also decreased by an insignificant amount of 0.21%