Congratulations! You passed!

Grade received 100% To pass 76% or higher

Go to next item

1. Given that $f(x,y)=x^2y+3x^2$, find its derivative with respect to x , i.e., find $\frac{\partial f}{\partial x}$.

1/1 point

Note: Please use * to indicate the product in the answer. So, if we would write the entire function f as an answer, it would be $x^2 * y + 3 * x^2$.

$$2xy + 6x$$

⊘ Correct

2. Given that $f(x,y) = xy^2 + 2x + 3y$ its gradient, i.e., $\nabla f(x,y)$ is:

1/1 point

$$\bigcirc \left[\begin{array}{c} 2xy+3\\ y^2+2 \end{array}\right]$$

$$\bigcirc \left[\begin{array}{c} 2xy \\ 2x+3 \end{array}\right]$$

$$\bigcirc \left[\begin{array}{c} y^2 + 2 \\ 2xy + 3 \end{array} \right]$$

$$O\begin{bmatrix} 2y \\ 0 \end{bmatrix}$$

Correct! Applying the gradient's formula: $\nabla f(x,y)=\left[egin{array}{c} rac{\partial f}{\partial x}\\ rac{\partial f}{\partial y} \end{array}
ight]$, you can get the result!

3. Let $f(x,y)=x^2+2y^2+8y$. The minimum value of f is:

1/1 point

 $\label{thm:thm:minimum} \textit{Hint:} \textit{The question asks for the } \textit{minimum value that the function can output, and not the point (x,y) that gives it.$

-8

⊘ Correct

You are correct! Finding the x and y values that satisfies $\nabla f(x,y)=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right)=(0,0)$ and then applying them to f(x,y) gives you the correct result!

4. The gradient of $f(x, y, z) = x^2 + 2xyz + z^2$ is:

1/1 point

- $\bigcirc \left[\begin{array}{c} 2x + 2xz \\ 2yz \\ 2xy + z \end{array}\right]$
- $\bigcirc \left[\begin{array}{c} 2x + 2yz \\ 2xy \\ 2xy + z \end{array} \right]$
- $\left[\begin{array}{c}
 2yz + 2xz \\
 2z \\
 2x
 \end{array}\right]$
- **⊘** Correct

Correct!