

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia de Teleinformática Sistemas de Comunicações Digitais - TI0069

Trabalho 01: Modulação Digital

Aluno:

Lucas de Souza Abdalah 385472

Professor: André Almeida

Data de Entrega do Relatório: 28/03/2021

Fortaleza 2021

Sumário

1	Inti	rodução	2		
2	Sim	nulações	2		
	2.1	Problema 1 - <i>M</i> -QAM	2		
		Problema 1 - M -QAM	2		
		2.1.2 Distância Mínima entre Símbolos	2		
		2.1.3 Modulador (Codificação de Gray)	3		
		2.1.4 Demodulador			
	2.2	Problema 2 - Probabilidade de Erro	7		
	2.3	Problema 3 - Canal RAGB	8		
	2.4	Problema 4 - Modulação $M\text{-PSK}$	10		
3	Conclusão e Resultados				
\mathbf{R}	eferê	ncias	12		

1 Introdução

2 Simulações

2.1 Problema 1 - M-QAM

Considere a modulação M-QAM, em que o sinal em banda base é dado por:

$$s_m(t) = (A_m^{\text{(real)}} + jA_m^{\text{(imag)}})g(t),$$

em que g(t) é um pulso transmitido, $A_m^{\text{(real)}}$ e $A_m^{\text{(imag)}}$ são amplitudes da parte real e imaginária da forma de onda transmitida, respectivamente.

real e imaginária da forma de onda transmitida, respectivamente. Considere $\int_{-\inf}^{\inf} |g(t)|^2 dt = \mathcal{E}_g = 1$, isto é, o pulto g(t) possui energia unitária. Suponha a transmissão de uma sequência de símbolo $\{s_m\}$ de tamanho L = 26400bits

- 1. A energia média \mathcal{E}_m de cada constelação;
- 2. A distância mínima d_{min} entre dois símbolos;
- 3. O modulador (mapeamento bit-símbolo) usando a codificação de Gray;
- 4. O demodulador (mapeamento símbolo-bit).

2.1.1 Energia da Constelação

O desenvolvimento é citado em [1], [2].

$$\mathcal{E}_{media} = \frac{M-1}{3} \mathcal{E}_g$$

$$\mathcal{E}_{media(bit)} = \frac{M-1}{3\log_2 M} \mathcal{E}_g$$

2.1.2 Distância Mínima entre Símbolos

Como calcular os coeficiente para constelação M-QAM retangular, onde \sqrt{M} assume valores inteiros. Os coeficientes em quadratura a_i e b_i são obtidos através da equação: $\{(2i-\sqrt{M}-1)d\}_{i=1}^{\sqrt{M}}$

A distância eucliadiana entre os sinais na modulação QAM é

$$d_{mn} = \sqrt{||s_m - s_n||^2}$$

$$= \sqrt{\frac{\mathcal{E}_g}{2}[(A_{mi} - A_{ni})^2 + (A_{mq} - A_{nq})^2]}$$

$$\sqrt{\frac{3\mathcal{E}_{media}}{2(M-1)}}$$

M-QAM	\mathcal{E}_{media}	$\mathcal{E}_{media(bit)}$	d
M	$rac{M-1}{3}\mathcal{E}_g$	$rac{M-1}{3\log_2 M}\mathcal{E}_g$	$\sqrt{\frac{3\mathcal{E}_{media}}{2(M-1)}}$
4	1	1.67×10^{-1}	$\frac{\sqrt{2}}{2}$
16	5	4.67×10^{-1}	$\frac{\sqrt{2}}{2}$
64	21	1.17×10^{0}	$\frac{\sqrt{2}}{2}$

Tabela 1: Informações gerais calculadas para a modulação $M\text{-}\mathrm{QAM}.$

2.1.3 Modulador (Codificação de Gray)

Figura 1: Exemplo de 4-QAM plot.

Figura 2: Exemplo de 16-QAM plot.

Figura 3: Exemplo de 64-QAM plot.

2.1.4 Demodulador

Considerando $\mathcal{E}_g=\int_{-\infty}^\infty |g(t)|^2\,dt=1$, a energia média da constelação pode ser calculada por ϵ

2.2 Problema 2 - Probabilidade de Erro

Para calcular a probabilidade de erro P(e) de cada constelação 1 desenvolvida em [2].

$$P(e) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right) - 4\left(1 - \frac{1}{\sqrt{M}}\right)^2Q^2\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right)$$
(1)

Para valores mais elevados de SNR, a equação da probabilidade do M-QAM pode ser reduzida para 2, pois o segundo termo ao quadrado passa a ser irrelevante.

$$P(e) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}}\frac{E_s}{N_0}\right)$$
 (2)

Nas simulações realizadas, as curvas utilizando ambas as equações são bem semelhantes, principalmente para constelação 4-QAM, além de reduzir o custo computacional. Entretanto, para manter a fidedignidade do gráfico mostrado na 4, a probabilidade P(e) é caculada a partir da equação completa 1.

Figura 4: Probabilidade de erro (P(e)) teórico M-QAM.

2.3 Problema 3 - Canal RAGB

Figura 5: Simulação de transmissão 4-QAM, com SNR de 25dB.

Figura 6: Simulação de transmissão 16-QAM, com SNR de 25dB.

Figura 7: Simulação de transmissão 64-QAM, com SNR de 25dB.

Figura 8: Probabilidade teórica de erro v
s. simulação de transmissão $M\text{-}\,\mathrm{QAM}$ em canal RAGB.

2.4 Problema 4 - Modulação M-PSK

3 Conclusão e Resultados

Referências

- [1] J. G. Proakis e M. Salehi, *Digital Communications*, 5^a ed. 1995.
- [2] C. Pimentel, Comunicação Digital, 1ª ed. 2007.