Αποτελέσματα Αναερόβιας Χώνευσης σε BMPs

Vidianos Giannitsis

April 27, 2024

Contents

1	Dep	pendencies	3
2	Dat 2.1 2.2	a Reading Acetate Experiment S1	3 3
	$\frac{2.2}{2.3}$	*	9
	$\frac{2.5}{2.4}$	FW Hydrolysate Experiment S1 _{R1}	
	2.4	FW Hydrolysate Experiment $S1_{R2}$	13
3	Dat	a Processing	17
	3.1	Curve Fitting	18 20
	3.2	Plotting	21
4	Ace	tate Experiment Processing	23
	4.1	Acetate Test FW	23
	4.2	Acetate Test 0	25
	4.3	Acetate Test 1	28
	4.4	Acetate Test 2	30
	4.5	Acetate Test 4	32
	4.6	Παραγωγή μεθανίου χωρίς feed από το δείγμα Ac	34
	4.7	Update all helper	35
	4.8	Γενικά σχόλια για αυτόν τον κύκλο πειραμάτων	36
5	\mathbf{FW}	Hydrolysate $S1_{R1}$ Processing	38
	5.1	Reactor 0	38
		5.1.1 Results	39
	5.2	Reactor 1	41
		5.2.1 Results	42
	5.3	Reactor 2	45
		5.3.1 Results	46
	5.4	Reactor 4	48
		5.4.1 Results	49
	5.5	Untreated FW	51
		5.5.1 Results	52
	5.6	Update all	55
	5.7	Plotting Methane Potential	56

	5.8	Comparing Kinetic Constants	59
	5.9	Plotting Comparison Plots	61
	5.10	Συμπεράσματα του πειραματικού κύκλου αυτού	63
		Code Block για Tangling	
6		Hydrolysate $S1_{R2}$ Processing	64
	6.1	Reactor 0	
		6.1.1 Results	
	6.2	Reactor 1	
		6.2.1 Results	
	6.3	Reactor 2	70
		6.3.1 Results	71
	6.4	Reactor 4	73
		6.4.1 Results	74
	6.5	Untreated FW	76
		6.5.1 Results	77
	6.6	Update all	79
		6.6.1 Σύγχριση με το προηγούμενο πείραμα	81
	6.7	Plotting Methane Potential	
		6.7.1 Σύγκριση με τον προηγούμενο κύκλο	
	6.8	Kinetic Comparison	
	6.9	Plotting Comparison Plots	
		Συμπεράσματα από τον κύκλο πειραμάτων αυτών	
		Code Block για Tangling	
	0		
7	Ace	tate Experiment Processing S2	86
	7.1	Acetate Test FW	86
		7.1.1 Continued	89
	7.2	Acetate Test 0	92
		7.2.1 Continued	94
	7.3	Acetate Test 1	97
		7.3.1 Continued	100
	7.4	Acetate Test 2	103
		7.4.1 Continued	105
	7.5	Acetate Test 4	
		7.5.1 Continued	
	7.6	Update all helper	
	•••	7.6.1 Slow Growth Phase	
	7.7	Γενικά σχόλια για αυτόν τον κύκλο πειραμάτων	
	• • •	20, mai axama ina aasaa saa magaalaana haraa aa	110
8	\mathbf{FW}	Hydrolysate Data Processing $S2_{R1}$	116
	8.1	Reactor 0	116
		8.1.1 Results	118
	8.2	Reactor 1	120
		8.2.1 Results	
	8.3	Reactor 2	
		8.3.1 Results	
	8.4	Reactor 4	
	-	8.4.1 Results	
			_00

	8.5.1 Results	133
8.6	Update all	135
8.7	Kinetic Comparison	137
8.8	Plotting Comparison Plots	138
8.9	Συμπεράσματα από τον κύκλο αυτόν	4(
8.10	Code Block για Tangling	40

9 Code block για δημιουργία των comparison plots

141

Σκοπός του αρχείου αυτού είναι η ανάλυση όλων των αποτελεσμάτων των διάφορων πειραμάτων αναερόβιας χώνευσης στην διάταξη για την εύρεση του biomethane potential. Αρχικά ορίζεται ένα infrastructure για τις αναλύσεις αυτές και μετά αναλύονται διάφορα πειράματα παραγωγής μεθανίου. Αυτά διακρίνονται από 3 βασικούς παράγοντες. Το υπόστρωμα που χρησιμοποιούν (οξικό, υδρόλυμα FW ή ανεπεξέργαστο FW), την λάσπη που χρησιμοποιούν (παρακάτω θα χρησιμοποιηθούν οι συμβολισμοί s1 και s2 για τις διαφορετικές λάσπες) και ποιό run του πειράματος είναι (γίνονται 2 runs για κάποια πειράματα για καλύτερη επαναληψιμότητα τα οποία θα συμβολίζονται ως r1 και r2). Το αρχείο ./hplc_analysis_notebook.org περιέχει τα αποτελέσματα των πειραμάτων υδρόλυσης και αναλύουν την ποιότητα του κάθε υδρολύματος και γιατί θα χρησιμοποιήσουμε αυτά που επιλέξαμε.

1 Dependencies

Στο αρχείο αυτό θα οριστούν κάποια functions για να διευκολυνθεί η ανάλυση των BMPs, τα οποία θα είναι generic και μετά θα υπάρχουν κάποια specific code blocks για την εφαρμογή σε κάθε πείραμα. Πριν ξεκινήσουμε, κάνουμε activate το DrWatson project για reproducibility. Επίσης κάνουμε load το Dates.jl που θα χρειαστεί παρακάτω, καθώς και τα CSV.jl και DataFrames.jl που είναι πάντα χρήσιμα σε tabular data. Ακόμη, παρακάτω θα χρειαστούν τα LsqFit.jl για την προσαρμογή του μοντέλου Gompertz, StatsBase για υπολογισμό μέσων και Plots.jl για plotting. Το code block αυτό δεν κάνει tangle πουθενά καθώς είναι κομμάτι του generic code που θα χρησιμοποιηθεί σε πολλά σημεία.

deps

using DrWatson

@quickactivate "Masters_Thesis"

using Dates
using StatsBase
using CSV, DataFrames
using LsqFit
using Plots
using LaTeXStrings

2 Data Reading

2.1 Acetate Experiment S1

Τα δεδομένα της αναερόβιας χώνευσης είναι φωτογραφίες των προχωίδων της διάταξης. Εξετάζοντας πόσο έχει μεταβληθεί η στάθμη τους, μπορούμε να υπολογίσουμε τον παραγόμενο

όγχο μεθανίου. Αλλά πρώτα, πρέπει να ξέρουμε σε τι χρόνους έγιναν reactord τα δείγματα. Όλες οι φωτογραφίες έχουν ένα timestamp το οποίο μας βοηθάει να τα διαχρίνουμε. Μπορούμε να αναλύσουμε αυτά ώστε να πάρουμε τις στιγμές που βγήκαν οι φωτογραφίες. Αρχικά, παίρνουμε όλα τα filenames με 1s. Θα χρησιμοποιήσουμε τα flags -m και -Q για να πάρουμε comma separated output και το κάθε string να έχει double quotes.

ls_{outputacetates1}

ls -mQ ../bmp_pictures/Acet_kinetics_screenshots/

```
"bandicam 2024-03-27 18-45-55-857.jpg", "bandicam 2024-03-27 18-46-57-161.jpg",
"bandicam 2024-03-27 18-48-57-160.jpg", "bandicam 2024-03-27 18-50-57-170.jpg",
"bandicam 2024-03-27 18-52-57-164.jpg", "bandicam 2024-03-27 18-54-57-162.jpg",
"bandicam 2024-03-27 18-56-57-167.jpg", "bandicam 2024-03-27 18-58-57-165.jpg",
"bandicam 2024-03-27 19-00-57-170.jpg", "bandicam 2024-03-27 19-02-57-179.jpg",
"bandicam 2024-03-27 19-04-57-173.jpg", "bandicam 2024-03-27 19-06-57-182.jpg",
"bandicam 2024-03-27 19-08-57-185.jpg", "bandicam 2024-03-27 19-10-57-184.jpg",
"bandicam 2024-03-27 19-12-57-189.jpg", "bandicam 2024-03-27 19-14-57-187.jpg",
"bandicam 2024-03-27 19-15-06-279.jpg", "bandicam 2024-03-27 19-19-06-273.jpg",
"bandicam 2024-03-27 19-21-06-276.jpg", "bandicam 2024-03-27 19-23-06-285.jpg",
"bandicam 2024-03-27 19-25-06-290.jpg", "bandicam 2024-03-27 19-27-06-301.jpg",
"bandicam 2024-03-27 19-29-06-303.jpg", "bandicam 2024-03-27 19-31-06-301.jpg",
"bandicam 2024-03-27 19-33-06-297.jpg", "bandicam 2024-03-27 19-35-06-305.jpg",
"bandicam 2024-03-27 19-37-06-299.jpg", "bandicam 2024-03-27 19-39-06-297.jpg",
"bandicam 2024-03-27 19-41-06-307.jpg", "bandicam 2024-03-27 19-43-06-299.jpg",
"bandicam 2024-03-27 19-45-06-298.jpg", "bandicam 2024-03-27 19-47-06-304.jpg",
"bandicam 2024-03-27 19-48-50-591.jpg", "bandicam 2024-03-29 12-23-36-175.jpg",
"bandicam 2024-03-29 12-23-50-142.jpg", "bandicam 2024-03-29 12-24-50-161.jpg",
"bandicam 2024-03-29 12-25-50-156.jpg", "bandicam 2024-03-29 12-26-50-168.jpg",
"bandicam 2024-03-29 12-27-26-514.jpg", "bandicam 2024-03-29 12-28-26-502.jpg",
"bandicam 2024-03-29 12-29-26-497.jpg", "bandicam 2024-03-29 12-29-39-894.jpg",
"bandicam 2024-03-29 12-30-39-902.jpg", "bandicam 2024-03-29 12-31-39-897.jpg",
"bandicam 2024-03-29 12-32-05-844.jpg", "bandicam 2024-03-29 12-33-05-843.jpg",
"bandicam 2024-03-29 12-34-05-832.jpg", "bandicam 2024-03-29 12-35-05-836.jpg",
"bandicam 2024-03-29 12-36-05-835.jpg", "bandicam 2024-03-29 12-37-05-858.jpg",
"bandicam 2024-03-29 12-38-06-101.jpg", "bandicam 2024-03-29 12-38-47-045.jpg",
"bandicam 2024-03-29 12-39-47-039.jpg", "bandicam 2024-03-29 12-40-47-050.jpg",
"bandicam 2024-03-29 12-41-47-047.jpg", "bandicam 2024-03-29 12-42-47-057.jpg",
"bandicam 2024-03-29 12-43-42-169.jpg", "bandicam 2024-03-29 12-44-41-398.jpg"
```

Αρχικά, κάνουμε load τα dependencies στο script στο οποίο θα γίνει η ανάλυση του πειράματος αυτού.

Έπειτα, ξεκινάμε την ανάλυση αποθηκεύοντας τα file names σε ένα vector της Julia κάνοντας copy τα shell results. Αυτό το vector θα γίνεται loaded σε όλα τα code blocks, για να είναι το κάθε ένα reproducible από μόνο του. Έτσι, στο τελικό script θα υπάρχουν πολλές επαναλήψεις.

date_{savingacetates1}

```
file_vec = ["bandicam 2024-03-27 18-45-55-857.jpg", "bandicam 2024-03-27 \rightarrow 18-46-57-161.jpg",
```

```
"bandicam 2024-03-27 18-48-57-160.jpg", "bandicam 2024-03-27
\rightarrow 18-50-57-170.jpg",
"bandicam 2024-03-27 18-52-57-164.jpg", "bandicam 2024-03-27
\rightarrow 18-54-57-162.jpg",
"bandicam 2024-03-27 18-56-57-167.jpg", "bandicam 2024-03-27
\rightarrow 18-58-57-165.jpg",
"bandicam 2024-03-27 19-00-57-170.jpg", "bandicam 2024-03-27
\rightarrow 19-02-57-179.jpg",
"bandicam 2024-03-27 19-04-57-173.jpg", "bandicam 2024-03-27
\rightarrow 19-06-57-182.jpg",
"bandicam 2024-03-27 19-08-57-185.jpg", "bandicam 2024-03-27
\rightarrow 19-10-57-184.jpg",
"bandicam 2024-03-27 19-12-57-189.jpg", "bandicam 2024-03-27
\rightarrow 19-14-57-187.jpg",
"bandicam 2024-03-27 19-15-06-279.jpg", "bandicam 2024-03-27
\rightarrow 19-19-06-273.jpg",
"bandicam 2024-03-27 19-21-06-276.jpg", "bandicam 2024-03-27
\rightarrow 19-23-06-285.jpg",
"bandicam 2024-03-27 19-25-06-290.jpg", "bandicam 2024-03-27
\rightarrow 19-27-06-301.jpg",
"bandicam 2024-03-27 19-29-06-303.jpg", "bandicam 2024-03-27
\rightarrow 19-31-06-301.jpg",
"bandicam 2024-03-27 19-33-06-297.jpg", "bandicam 2024-03-27
\rightarrow 19-35-06-305.jpg",
"bandicam 2024-03-27 19-37-06-299.jpg", "bandicam 2024-03-27
\rightarrow 19-39-06-297.jpg",
"bandicam 2024-03-27 19-41-06-307.jpg", "bandicam 2024-03-27
\rightarrow 19-43-06-299.jpg",
"bandicam 2024-03-27 19-45-06-298.jpg", "bandicam 2024-03-27
\rightarrow 19-47-06-304.jpg",
"bandicam 2024-03-27 19-48-50-591.jpg", "bandicam 2024-03-29
\rightarrow 12-23-36-175.jpg",
"bandicam 2024-03-29 12-23-50-142.jpg", "bandicam 2024-03-29
\rightarrow 12-24-50-161.jpg",
"bandicam 2024-03-29 12-25-50-156.jpg", "bandicam 2024-03-29
\rightarrow 12-26-50-168.jpg",
"bandicam 2024-03-29 12-27-26-514.jpg", "bandicam 2024-03-29
\rightarrow 12-28-26-502.jpg",
"bandicam 2024-03-29 12-29-26-497.jpg", "bandicam 2024-03-29
\rightarrow 12-29-39-894.jpg",
"bandicam 2024-03-29 12-30-39-902.jpg", "bandicam 2024-03-29
→ 12-31-39-897.jpg",
"bandicam 2024-03-29 12-32-05-844.jpg", "bandicam 2024-03-29
\rightarrow 12-33-05-843.jpg",
"bandicam 2024-03-29 12-34-05-832.jpg", "bandicam 2024-03-29
\rightarrow 12-35-05-836.jpg",
"bandicam 2024-03-29 12-36-05-835.jpg", "bandicam 2024-03-29
\rightarrow 12-37-05-858.jpg",
```

```
"bandicam 2024-03-29 12-38-06-101.jpg", "bandicam 2024-03-29 \rightarrow 12-38-47-045.jpg", "bandicam 2024-03-29 12-39-47-039.jpg", "bandicam 2024-03-29 \rightarrow 12-40-47-050.jpg", "bandicam 2024-03-29 12-41-47-047.jpg", "bandicam 2024-03-29 \rightarrow 12-42-47-057.jpg", "bandicam 2024-03-29 12-43-42-169.jpg", "bandicam 2024-03-29 \rightarrow 12-44-41-398.jpg"
```

2.2 Acetate Experiment S2

Λόγω κάποιων προβλημάτων στο προηγούμενο πείραμα και για επιβεβαίωση των αποτελεσμάτων, θα χρησιμοποιηθεί και μία δεύτερη λάσπη για πειράματα. Στο section αυτό θα γίνουν loaded τα απαραίτητα πράγματα για το πείραμα αυτό.

ls_{output acetates1}

ls -mQ ../bmp_pictures/Acet_kinetic_S2/

Αρχικά, κάνουμε load τα dependencies στο script στο οποίο θα γίνει η ανάλυση του πειράματος αυτού.

Έπειτα, ξεκινάμε την ανάλυση αποθηκεύοντας τα file names σε ένα vector της Julia κάνοντας copy τα shell results. Αυτό το vector θα γίνεται loaded σε όλα τα code blocks, για να είναι το κάθε ένα reproducible από μόνο του. Έτσι, στο τελικό script θα υπάρχουν πολλές επαναλήψεις.

date_{savingacetates2}

```
file_vec = ["bandicam 2024-04-10 13-59-53-326.jpg", "bandicam 2024-04-10
\rightarrow 14-00-47-113.jpg",
"bandicam 2024-04-10 14-01-47-127.jpg", "bandicam 2024-04-10
\rightarrow 14-02-24-772.jpg",
"bandicam 2024-04-10 14-03-24-772.jpg", "bandicam 2024-04-10
\rightarrow 14-04-13-064.jpg",
"bandicam 2024-04-10 14-05-10-445.jpg", "bandicam 2024-04-10
\rightarrow 14-06-10-467.jpg",
"bandicam 2024-04-10 14-07-10-457.jpg", "bandicam 2024-04-10
\rightarrow 14-07-29-046.jpg",
"bandicam 2024-04-10 14-08-29-037.jpg", "bandicam 2024-04-10
\rightarrow 14-08-57-059.jpg",
"bandicam 2024-04-10 14-09-57-054.jpg", "bandicam 2024-04-10
\rightarrow 14-10-57-052.jpg",
"bandicam 2024-04-10 14-11-57-074.jpg", "bandicam 2024-04-10
\rightarrow 14-12-57-085.jpg",
"bandicam 2024-04-10 14-13-57-097.jpg", "bandicam 2024-04-10
\rightarrow 14-14-57-102.jpg",
"bandicam 2024-04-10 14-15-57-100.jpg", "bandicam 2024-04-10
\rightarrow 14-16-57-090.jpg",
"bandicam 2024-04-10 14-17-57-101.jpg"
]
```

Περίπου 12 ώρες μετά από αυτό, ενώ είχε σταματήσει η παραγωγή μεθανίου, ξαναξεκίνησε να παράγεται μεθάνιο από κάποιους αντιδραστήρες και κατέληξε να συνεχίζεται για αρκετές μέρες. Τα αποτελέσματα αυτού του κύκλου θα αναλυθούν όπως και τα παραπάνω, αλλά όχι μαζί, επειδή θα δημιουργήσει πιθανόν προβλήματα το κενό 12 ωρών.

ls -mQ ../bmp_pictures/Acet_kinetic_S2_2/

```
file_vec = ["bandicam 2024-04-10 21-34-31-153.jpg", "bandicam 2024-04-10
\rightarrow 22-34-31-192.jpg",
"bandicam 2024-04-10 23-34-31-838.jpg", "bandicam 2024-04-11
\rightarrow 00-34-31-881. jpg",
"bandicam 2024-04-11 01-34-31-928.jpg", "bandicam 2024-04-11
\rightarrow 02-34-31-966.jpg",
"bandicam 2024-04-11 03-34-32-016.jpg", "bandicam 2024-04-11
\rightarrow 04-34-31-806.jpg",
"bandicam 2024-04-11 05-34-31-785.jpg", "bandicam 2024-04-11
\hookrightarrow 06-34-31-782.jpg",
"bandicam 2024-04-11 07-34-31-795.jpg", "bandicam 2024-04-11
\rightarrow 08-34-31-824.jpg",
"bandicam 2024-04-11 09-34-31-841.jpg", "bandicam 2024-04-11
\rightarrow 10-34-31-868.jpg",
"bandicam 2024-04-11 11-34-31-882.jpg", "bandicam 2024-04-11
\rightarrow 12-34-31-908.jpg",
"bandicam 2024-04-11 13-34-32-286.jpg", "bandicam 2024-04-11
\rightarrow 14-34-32-409.jpg",
"bandicam 2024-04-11 15-34-32-463.jpg", "bandicam 2024-04-11
\rightarrow 16-34-32-494.jpg",
"bandicam 2024-04-11 17-34-33-592.jpg", "bandicam 2024-04-11
\rightarrow 18-34-33-623.jpg",
"bandicam 2024-04-11 19-34-33-663.jpg", "bandicam 2024-04-11
\rightarrow 20-34-33-682.jpg",
"bandicam 2024-04-11 21-34-33-727.jpg", "bandicam 2024-04-11
\rightarrow 22-34-33-274.jpg",
"bandicam 2024-04-11 23-34-33-122.jpg", "bandicam 2024-04-12
\rightarrow 00-34-33-121. jpg",
"bandicam 2024-04-12 01-34-33-146.jpg", "bandicam 2024-04-12
\rightarrow 02-34-33-135.jpg",
"bandicam 2024-04-12 03-34-33-141.jpg", "bandicam 2024-04-12
\rightarrow 04-34-33-139.jpg",
"bandicam 2024-04-12 05-34-33-134.jpg", "bandicam 2024-04-12
\rightarrow 06-34-33-141.jpg",
"bandicam 2024-04-12 07-34-33-373.jpg", "bandicam 2024-04-12
\rightarrow 08-34-33-615.jpg",
"bandicam 2024-04-12 09-34-33-682.jpg", "bandicam 2024-04-12
\rightarrow 10-34-33-714.jpg",
"bandicam 2024-04-12 11-34-33-716.jpg", "bandicam 2024-04-12
\rightarrow 12-34-33-715.jpg",
"bandicam 2024-04-12 13-34-33-713.jpg", "bandicam 2024-04-12
\rightarrow 14-34-33-718.jpg",
```

```
"bandicam 2024-04-12 15-34-33-716.jpg", "bandicam 2024-04-12
\rightarrow 16-34-34-089.jpg",
"bandicam 2024-04-12 17-34-34-412.jpg", "bandicam 2024-04-12
\rightarrow 18-34-34-419.jpg",
"bandicam 2024-04-12 19-34-34-416.jpg", "bandicam 2024-04-12
\rightarrow 20-34-34-424. jpg",
"bandicam 2024-04-12 21-34-34-421.jpg", "bandicam 2024-04-12
\rightarrow 22-34-34-427.jpg",
"bandicam 2024-04-12 23-34-34-866.jpg", "bandicam 2024-04-13
\rightarrow 00-34-34-864. jpg",
"bandicam 2024-04-13 01-34-34-867.jpg", "bandicam 2024-04-13
\rightarrow 02-34-34-886.jpg",
"bandicam 2024-04-13 03-34-34-887.jpg", "bandicam 2024-04-13
\rightarrow 04-34-34-893.jpg",
"bandicam 2024-04-13 05-34-34-882.jpg", "bandicam 2024-04-13
\rightarrow 06-34-34-888.jpg",
"bandicam 2024-04-13 07-34-34-885.jpg", "bandicam 2024-04-13
\rightarrow 08-34-34-882.jpg",
"bandicam 2024-04-13 09-34-34-889.jpg", "bandicam 2024-04-13
\rightarrow 10-34-35-226. jpg",
"bandicam 2024-04-13 11-34-35-631.jpg", "bandicam 2024-04-13
\rightarrow 12-34-35-732.jpg",
"bandicam 2024-04-13 13-34-35-813.jpg", "bandicam 2024-04-13
\rightarrow 14-34-35-863.jpg",
"bandicam 2024-04-13 15-34-35-893.jpg", "bandicam 2024-04-13
\rightarrow 16-34-35-945.jpg",
"bandicam 2024-04-13 17-34-36-181.jpg", "bandicam 2024-04-13
\rightarrow 18-34-36-188.jpg",
"bandicam 2024-04-13 19-34-36-196.jpg", "bandicam 2024-04-13
\rightarrow 20-34-36-289.jpg",
"bandicam 2024-04-13 21-34-36-301.jpg", "bandicam 2024-04-13
\rightarrow 22-34-36-318.jpg",
"bandicam 2024-04-13 23-34-36-316.jpg", "bandicam 2024-04-14
\rightarrow 00-34-36-323.jpg",
"bandicam 2024-04-14 01-34-36-320.jpg", "bandicam 2024-04-14
\rightarrow 02-34-36-317.jpg",
"bandicam 2024-04-14 03-34-36-325.jpg", "bandicam 2024-04-14
\rightarrow 04-34-36-504.jpg",
"bandicam 2024-04-14 05-34-36-867.jpg", "bandicam 2024-04-14
\rightarrow 06-34-37-014.jpg",
"bandicam 2024-04-14 07-34-37-065.jpg", "bandicam 2024-04-14
\rightarrow 08-34-37-119.jpg",
"bandicam 2024-04-14 09-34-37-154.jpg", "bandicam 2024-04-14
\rightarrow 10-34-37-196.jpg",
"bandicam 2024-04-14 11-34-37-229.jpg", "bandicam 2024-04-14
\rightarrow 12-34-37-671.jpg",
"bandicam 2024-04-14 13-34-37-699.jpg", "bandicam 2024-04-14
\rightarrow 14-34-37-677.jpg",
```

```
"bandicam 2024-04-14 15-34-37-676.jpg", "bandicam 2024-04-14
\rightarrow 16-34-37-705.jpg",
"bandicam 2024-04-14 17-34-37-893.jpg", "bandicam 2024-04-14
\rightarrow 18-34-37-890.jpg",
"bandicam 2024-04-14 19-34-37-971.jpg", "bandicam 2024-04-14
\rightarrow 20-34-37-904.jpg",
"bandicam 2024-04-14 21-34-37-899.jpg", "bandicam 2024-04-14
\rightarrow 22-34-37-898.jpg",
"bandicam 2024-04-14 23-34-38-497.jpg", "bandicam 2024-04-15
\rightarrow 00-34-38-599.jpg",
"bandicam 2024-04-15 01-34-38-640.jpg", "bandicam 2024-04-15
\rightarrow 02-34-38-641.jpg",
"bandicam 2024-04-15 03-34-38-650.jpg", "bandicam 2024-04-15
\rightarrow 04-34-38-646.jpg",
"bandicam 2024-04-15 05-34-38-657.jpg", "bandicam 2024-04-15
\rightarrow 06-34-38-653.jpg",
"bandicam 2024-04-15 07-34-38-648.jpg", "bandicam 2024-04-15
\rightarrow 08-34-38-862.jpg",
"bandicam 2024-04-15 09-34-38-937.jpg", "bandicam 2024-04-15
→ 10-34-38-979.jpg"
]
```

2.3 FW Hydrolysate Experiment $S1_{R1}$

Με την ίδια λογική με παραπάνω, κάνουμε load ότι θα χρειαστεί για αυτό το πείραμα. lsoutputfws1r1

ls -mQ ../bmp_pictures/Hydrolyzed_FW_S1_R1/

```
<<deps>>
```

```
file_vec = ["bandicam 2024-04-01 11-05-53-069.jpg", "bandicam 2024-04-01
\rightarrow 11-09-37-035.jpg",
"bandicam 2024-04-01 11-11-37-051.jpg", "bandicam 2024-04-01
\rightarrow 11-12-37-060.jpg",
"bandicam 2024-04-01 11-13-26-776.jpg", "bandicam 2024-04-01
\rightarrow 11-14-26-770. jpg",
"bandicam 2024-04-01 11-15-26-780.jpg", "bandicam 2024-04-01
\rightarrow 11-21-53-098.jpg",
"bandicam 2024-04-01 11-52-12-665.jpg", "bandicam 2024-04-01
→ 12-22-12-663.jpg",
"bandicam 2024-04-01 13-52-12-676.jpg", "bandicam 2024-04-01
\rightarrow 15-52-12-680.jpg",
"bandicam 2024-04-01 16-52-12-699.jpg", "bandicam 2024-04-01
\rightarrow 18-52-12-586. jpg",
"bandicam 2024-04-01 20-52-12-578.jpg", "bandicam 2024-04-01
\rightarrow 22-52-12-785.jpg",
```

```
"bandicam 2024-04-02 00-52-13-685.jpg", "bandicam 2024-04-02
\rightarrow 02-52-13-485.jpg",
"bandicam 2024-04-02 04-52-13-458.jpg", "bandicam 2024-04-02
\rightarrow 06-52-14-845.jpg",
"bandicam 2024-04-02 08-52-12-148.jpg", "bandicam 2024-04-02
\rightarrow 10-54-01-344.jpg",
"bandicam 2024-04-02 12-54-01-788.jpg", "bandicam 2024-04-02
\rightarrow 13-24-01-783.jpg",
"bandicam 2024-04-02 13-54-01-797.jpg", "bandicam 2024-04-02
\rightarrow 14-24-01-798.jpg",
"bandicam 2024-04-02 14-54-01-793.jpg", "bandicam 2024-04-02
\rightarrow 15-24-01-786.jpg",
"bandicam 2024-04-02 15-54-01-785.jpg", "bandicam 2024-04-02
\rightarrow 16-24-01-800.jpg",
"bandicam 2024-04-02 16-54-01-801.jpg", "bandicam 2024-04-02
\rightarrow 17-24-01-784.jpg",
"bandicam 2024-04-02 17-54-02-191.jpg", "bandicam 2024-04-02
\rightarrow 19-54-02-222.jpg",
"bandicam 2024-04-02 21-54-02-318.jpg", "bandicam 2024-04-02
\rightarrow 23-54-02-573. jpg",
"bandicam 2024-04-03 01-54-02-576.jpg", "bandicam 2024-04-03
\rightarrow 03-54-02-564.jpg",
"bandicam 2024-04-03 05-54-02-863.jpg", "bandicam 2024-04-03
\rightarrow 07-54-02-978.jpg",
"bandicam 2024-04-03 09-54-02-983.jpg", "bandicam 2024-04-03
\rightarrow 12-54-03-516.jpg",
"bandicam 2024-04-03 13-54-03-505.jpg", "bandicam 2024-04-03
\rightarrow 14-24-03-564.jpg",
"bandicam 2024-04-03 14-54-49-083.jpg", "bandicam 2024-04-03
\rightarrow 15-26-51-834.jpg",
"bandicam 2024-04-03 16-29-08-087.jpg", "bandicam 2024-04-03
\rightarrow 17-29-08-355.jpg",
"bandicam 2024-04-03 18-29-08-352.jpg", "bandicam 2024-04-03
→ 20-29-08-355.jpg"
```

2.4 FW Hydrolysate Experiment S1_{R2}

```
Is<sub>outputfws1r2</sub>
```

```
ls -mQ ../bmp_pictures/Hydrolyzed_FW_S1_R2/
```

```
<<deps>>
```

```
file_vec = ["bandicam 2024-04-03 14-37-15-369.jpg", "bandicam 2024-04-03
\rightarrow 14-45-40-862.jpg",
"bandicam 2024-04-03 14-51-49-082.jpg", "bandicam 2024-04-03
\rightarrow 14-56-51-812.jpg",
```

```
"bandicam 2024-04-03 15-29-08-067.jpg", "bandicam 2024-04-03
\rightarrow 16-29-08-087.jpg",
"bandicam 2024-04-03 17-29-08-355.jpg", "bandicam 2024-04-03
\rightarrow 18-29-08-352.jpg",
"bandicam 2024-04-03 20-29-08-355.jpg", "bandicam 2024-04-03
\rightarrow 22-29-08-353.jpg",
"bandicam 2024-04-04 00-29-08-754.jpg", "bandicam 2024-04-04
\rightarrow 02-29-08-758.jpg",
"bandicam 2024-04-04 04-29-08-760.jpg", "bandicam 2024-04-04
\rightarrow 06-29-08-755. jpg",
"bandicam 2024-04-04 08-29-09-002.jpg", "bandicam 2024-04-04
\rightarrow 10-29-09-357.jpg",
"bandicam 2024-04-04 12-29-09-384.jpg", "bandicam 2024-04-04
\rightarrow 14-29-09-390.jpg",
"bandicam 2024-04-04 16-29-09-384.jpg", "bandicam 2024-04-04
\rightarrow 18-29-10-491.jpg",
"bandicam 2024-04-04 20-29-10-660.jpg", "bandicam 2024-04-04
\rightarrow 22-29-10-735.jpg",
"bandicam 2024-04-05 00-29-10-440.jpg", "bandicam 2024-04-05
\rightarrow 02-29-10-498. jpg",
"bandicam 2024-04-05 04-29-10-676.jpg", "bandicam 2024-04-05
\rightarrow 06-29-10-716.jpg",
"bandicam 2024-04-05 08-29-10-712.jpg", "bandicam 2024-04-05
\rightarrow 09-29-10-696.jpg",
"bandicam 2024-04-05 10-37-27-280.jpg", "bandicam 2024-04-05
\rightarrow 10-38-27-278.jpg",
"bandicam 2024-04-05 10-39-27-276.jpg", "bandicam 2024-04-05
\rightarrow 10-40-25-889.jpg",
"bandicam 2024-04-05 11-40-36-404.jpg", "bandicam 2024-04-05
\rightarrow 12-40-36-754.jpg",
"bandicam 2024-04-05 14-40-36-749.jpg", "bandicam 2024-04-05
\rightarrow 16-40-36-776.jpg",
"bandicam 2024-04-05 18-40-37-133.jpg", "bandicam 2024-04-05
\rightarrow 20-40-37-184.jpg",
"bandicam 2024-04-05 22-40-37-342.jpg", "bandicam 2024-04-06
\rightarrow 00-40-37-559.jpg",
"bandicam 2024-04-06 02-40-37-573.jpg", "bandicam 2024-04-06
\rightarrow 04-40-37-567.jpg",
"bandicam 2024-04-06 06-40-37-889.jpg", "bandicam 2024-04-06
\rightarrow 08-40-38-009.jpg",
"bandicam 2024-04-06 10-40-38-008.jpg", "bandicam 2024-04-06
\rightarrow 12-40-38-486.jpg",
"bandicam 2024-04-06 14-40-38-501.jpg", "bandicam 2024-04-06
\rightarrow 16-40-38-661.jpg",
"bandicam 2024-04-06 18-40-38-699.jpg", "bandicam 2024-04-06
\rightarrow 20-40-38-706.jpg",
"bandicam 2024-04-06 22-40-38-709.jpg", "bandicam 2024-04-07
\rightarrow 00-40-39-320.jpg",
```

```
"bandicam 2024-04-07 02-40-39-358.jpg", "bandicam 2024-04-07
\rightarrow 04-40-39-364.jpg",
"bandicam 2024-04-07 06-40-39-358.jpg", "bandicam 2024-04-07
\rightarrow 08-40-39-476.jpg",
"bandicam 2024-04-07 10-40-40-039.jpg", "bandicam 2024-04-07
\rightarrow 12-40-40-161.jpg",
"bandicam 2024-04-07 14-40-40-252.jpg", "bandicam 2024-04-07
\rightarrow 16-40-40-328.jpg",
"bandicam 2024-04-07 18-40-40-704.jpg", "bandicam 2024-04-07
\rightarrow 20-40-40-780.jpg",
"bandicam 2024-04-07 22-40-40-847.jpg", "bandicam 2024-04-08
\rightarrow 00-40-41-872.jpg",
"bandicam 2024-04-08 02-40-41-942.jpg", "bandicam 2024-04-08
\rightarrow 04-40-41-412.jpg",
"bandicam 2024-04-08 06-40-41-369.jpg", "bandicam 2024-04-08
\rightarrow 08-40-41-364.jpg",
"bandicam 2024-04-08 10-40-41-360.jpg", "bandicam 2024-04-08
\rightarrow 12-40-41-760.jpg",
"bandicam 2024-04-08 14-40-41-959.jpg", "bandicam 2024-04-08
\rightarrow 16-40-41-983.jpg",
"bandicam 2024-04-08 18-40-42-029.jpg", "bandicam 2024-04-08
\rightarrow 20-40-42-035.jpg",
"bandicam 2024-04-08 22-40-42-681.jpg", "bandicam 2024-04-08
\rightarrow 23-40-42-823.jpg",
"bandicam 2024-04-09 00-40-42-828.jpg", "bandicam 2024-04-09
\rightarrow 01-40-42-821.jpg",
"bandicam 2024-04-09 02-40-42-829.jpg", "bandicam 2024-04-09
\rightarrow 03-40-42-815.jpg",
"bandicam 2024-04-09 04-40-42-811.jpg", "bandicam 2024-04-09
\rightarrow 05-40-42-827.jpg",
"bandicam 2024-04-09 06-40-42-990.jpg", "bandicam 2024-04-09
\rightarrow 07-40-43-217.jpg",
"bandicam 2024-04-09 08-40-43-296.jpg", "bandicam 2024-04-09
\rightarrow 09-40-43-311.jpg",
"bandicam 2024-04-09 10-40-43-316.jpg", "bandicam 2024-04-09
\rightarrow 11-19-56-444.jpg",
"bandicam 2024-04-09 12-19-57-641.jpg", "bandicam 2024-04-09
\rightarrow 13-19-57-649.jpg",
"bandicam 2024-04-09 14-19-57-646.jpg", "bandicam 2024-04-09
\rightarrow 15-19-57-536.jpg",
"bandicam 2024-04-09 16-19-57-212.jpg", "bandicam 2024-04-09
\rightarrow 17-19-57-105.jpg",
"bandicam 2024-04-09 18-19-57-234.jpg", "bandicam 2024-04-09
\rightarrow 19-19-57-244.jpg",
"bandicam 2024-04-09 20-19-57-237.jpg", "bandicam 2024-04-09
\rightarrow 21-19-57-252.jpg",
"bandicam 2024-04-09 22-19-57-268.jpg", "bandicam 2024-04-09
\rightarrow 23-19-57-667.jpg",
```

```
"bandicam 2024-04-10 00-19-57-661.jpg", "bandicam 2024-04-10 \rightarrow 01-19-57-748.jpg", "bandicam 2024-04-10 02-19-57-773.jpg", "bandicam 2024-04-10 \rightarrow 03-19-57-782.jpg"
```

2.5 FW Hydrolysate $S2_{R1}$

$ls_{outputfws2r1}$

```
ls -mQ ../bmp_pictures/Hydrolyzed_FW_S2_R1/
```

<<deps>>

```
file_vec = ["bandicam 2024-04-15 12-02-11-665.jpg", "bandicam 2024-04-15
\rightarrow 12-04-11-664.jpg",
"bandicam 2024-04-15 12-06-09-897.jpg", "bandicam 2024-04-15
\rightarrow 12-07-09-919.jpg",
"bandicam 2024-04-15 12-08-09-906.jpg", "bandicam 2024-04-15
\rightarrow 12-11-09-909.jpg",
"bandicam 2024-04-15 12-11-28-595.jpg", "bandicam 2024-04-15
\rightarrow 12-12-28-586.jpg",
"bandicam 2024-04-15 12-13-28-584.jpg", "bandicam 2024-04-15
\rightarrow 12-16-17-597.jpg",
"bandicam 2024-04-15 12-18-17-621.jpg", "bandicam 2024-04-15
\rightarrow 12-19-17-631.jpg",
"bandicam 2024-04-15 12-20-58-735.jpg", "bandicam 2024-04-15
\rightarrow 12-21-58-739.jpg",
"bandicam 2024-04-15 12-29-18-857.jpg", "bandicam 2024-04-15
\rightarrow 13-29-18-859.jpg",
"bandicam 2024-04-15 14-29-18-861.jpg", "bandicam 2024-04-15
\rightarrow 15-29-18-874.jpg",
"bandicam 2024-04-15 16-29-18-867.jpg", "bandicam 2024-04-15
\rightarrow 17-29-19-944. jpg",
"bandicam 2024-04-15 18-29-20-115.jpg", "bandicam 2024-04-15
\rightarrow 19-29-20-359.jpg",
"bandicam 2024-04-15 20-29-20-204.jpg", "bandicam 2024-04-15
\rightarrow 21-29-20-212.jpg",
"bandicam 2024-04-15 22-29-20-206.jpg", "bandicam 2024-04-15
\rightarrow 23-29-19-728.jpg",
"bandicam 2024-04-16 00-29-19-719.jpg", "bandicam 2024-04-16
\rightarrow 01-29-19-733.jpg",
"bandicam 2024-04-16 02-29-19-819.jpg", "bandicam 2024-04-16
\rightarrow 03-29-19-916.jpg",
"bandicam 2024-04-16 04-29-19-934.jpg", "bandicam 2024-04-16
\rightarrow 05-29-19-944.jpg",
"bandicam 2024-04-16 06-29-19-940.jpg", "bandicam 2024-04-16
\rightarrow 07-29-19-944.jpg",
```

```
"bandicam 2024-04-16 08-29-19-956.jpg", "bandicam 2024-04-16
\rightarrow 09-29-19-947.jpg",
"bandicam 2024-04-16 10-26-42-895.jpg", "bandicam 2024-04-16
\rightarrow 11-26-43-205.jpg",
"bandicam 2024-04-16 12-26-43-569.jpg", "bandicam 2024-04-16
\rightarrow 13-26-43-549.jpg",
"bandicam 2024-04-16 14-26-43-562.jpg", "bandicam 2024-04-16
\rightarrow 15-26-43-554.jpg",
"bandicam 2024-04-16 16-26-43-556.jpg", "bandicam 2024-04-16
\rightarrow 17-26-43-559. jpg",
"bandicam 2024-04-16 18-26-43-922.jpg", "bandicam 2024-04-16
\rightarrow 19-26-43-902.jpg",
"bandicam 2024-04-16 20-26-43-931.jpg", "bandicam 2024-04-16
\rightarrow 21-26-44-059.jpg",
"bandicam 2024-04-16 22-26-44-099.jpg", "bandicam 2024-04-16
\rightarrow 23-26-44-848.jpg",
"bandicam 2024-04-17 00-26-44-841.jpg", "bandicam 2024-04-17
\rightarrow 01-26-44-856.jpg",
"bandicam 2024-04-17 02-26-44-847.jpg", "bandicam 2024-04-17
\rightarrow 03-26-44-849.jpg",
"bandicam 2024-04-17 04-26-44-852.jpg", "bandicam 2024-04-17
\rightarrow 05-26-44-794.jpg",
"bandicam 2024-04-17 06-26-44-722.jpg", "bandicam 2024-04-17
\rightarrow 07-26-44-688.jpg",
"bandicam 2024-04-17 08-26-44-694.jpg", "bandicam 2024-04-17
\rightarrow 09-26-44-680.jpg",
"bandicam 2024-04-17 10-29-35-074.jpg", "bandicam 2024-04-17
\rightarrow 11-29-35-078.jpg",
"bandicam 2024-04-17 12-29-36-339.jpg", "bandicam 2024-04-17
\rightarrow 13-29-36-317.jpg",
"bandicam 2024-04-17 13-57-20-002.jpg", "bandicam 2024-04-17
\rightarrow 14-42-00-758.jpg",
"bandicam 2024-04-17 14-46-00-718.jpg", "bandicam 2024-04-17
\rightarrow 14-47-00-711.jpg",
"bandicam 2024-04-17 14-48-00-703.jpg", "bandicam 2024-04-17
\rightarrow 14-49-00-710.jpg",
"bandicam 2024-04-17 14-50-00-719.jpg", "bandicam 2024-04-17
\rightarrow 14-51-00-725.jpg",
"bandicam 2024-04-17 14-52-00-706.jpg", "bandicam 2024-04-17
\rightarrow 14-53-00-719.jpg",
"bandicam 2024-04-17 14-54-00-714.jpg", "bandicam 2024-04-17
\rightarrow 14-55-00-713.jpg",
"bandicam 2024-04-17 14-56-00-708.jpg", "bandicam 2024-04-17
\rightarrow 14-57-00-700.jpg",
"bandicam 2024-04-17 14-58-00-697.jpg", "bandicam 2024-04-17
\rightarrow 14-58-12-799.jpg",
"bandicam 2024-04-17 14-59-49-931.jpg", "bandicam 2024-04-17
\rightarrow 15-00-49-924. jpg",
```

```
"bandicam 2024-04-17 15-01-49-917.jpg", "bandicam 2024-04-17
\rightarrow 15-02-49-912.jpg",
"bandicam 2024-04-17 15-03-49-912.jpg", "bandicam 2024-04-17
\rightarrow 15-04-49-895.jpg",
"bandicam 2024-04-17 15-05-49-891.jpg", "bandicam 2024-04-17
\rightarrow 15-06-49-886.jpg",
"bandicam 2024-04-17 15-07-49-897.jpg", "bandicam 2024-04-17
\rightarrow 15-08-49-883.jpg",
"bandicam 2024-04-17 15-09-49-877.jpg", "bandicam 2024-04-17
\rightarrow 15-10-49-870.jpg",
"bandicam 2024-04-17 15-17-49-851.jpg", "bandicam 2024-04-17
\rightarrow 16-18-50-600.jpg",
"bandicam 2024-04-17 17-18-50-528.jpg", "bandicam 2024-04-17
\rightarrow 18-18-50-857.jpg",
"bandicam 2024-04-17 19-18-50-855.jpg", "bandicam 2024-04-17
\rightarrow 20-18-50-849.jpg",
"bandicam 2024-04-17 21-18-50-850.jpg", "bandicam 2024-04-17
\rightarrow 22-18-50-842.jpg",
"bandicam 2024-04-17 23-18-50-845.jpg", "bandicam 2024-04-18
\rightarrow 00-18-51-075.jpg",
"bandicam 2024-04-18 01-18-51-194.jpg", "bandicam 2024-04-18
\rightarrow 02-18-51-218.jpg",
"bandicam 2024-04-18 03-18-51-246.jpg", "bandicam 2024-04-18
\rightarrow 04-18-51-247.jpg",
"bandicam 2024-04-18 05-18-51-242.jpg", "bandicam 2024-04-18
\rightarrow 06-18-51-245.jpg",
"bandicam 2024-04-18 07-18-51-252.jpg", "bandicam 2024-04-18
\rightarrow 08-18-51-245.jpg",
"bandicam 2024-04-18 09-18-51-684.jpg", "bandicam 2024-04-18
\rightarrow 10-18-51-867.jpg",
"bandicam 2024-04-18 11-18-51-950.jpg", "bandicam 2024-04-18
\rightarrow 12-18-51-999.jpg",
"bandicam 2024-04-18 13-18-52-029.jpg", "bandicam 2024-04-18
\rightarrow 14-18-52-067.jpg",
"bandicam 2024-04-18 15-18-52-113.jpg", "bandicam 2024-04-18
\rightarrow 16-18-52-129.jpg",
"bandicam 2024-04-18 17-18-52-175.jpg", "bandicam 2024-04-18
\rightarrow 18-18-52-388.jpg",
"bandicam 2024-04-18 19-18-52-504.jpg", "bandicam 2024-04-18
\rightarrow 20-18-52-569.jpg",
"bandicam 2024-04-18 21-18-52-612.jpg", "bandicam 2024-04-18
\rightarrow 22-18-52-664.jpg",
"bandicam 2024-04-18 23-18-52-821.jpg", "bandicam 2024-04-19
\rightarrow 00-18-52-826.jpg",
"bandicam 2024-04-19 01-18-52-819.jpg", "bandicam 2024-04-19
\rightarrow 02-18-52-832.jpg",
"bandicam 2024-04-19 03-18-52-926.jpg", "bandicam 2024-04-19
\rightarrow 04-18-53-034.jpg",
```

```
"bandicam 2024-04-19 05-18-53-073.jpg", "bandicam 2024-04-19
\rightarrow 06-18-53-097.jpg",
"bandicam 2024-04-19 07-18-53-092.jpg", "bandicam 2024-04-19
\rightarrow 08-18-53-084.jpg",
"bandicam 2024-04-19 09-18-53-085.jpg", "bandicam 2024-04-19
\rightarrow 10-18-53-088.jpg",
"bandicam 2024-04-19 11-05-06-054.jpg", "bandicam 2024-04-19
\rightarrow 11-50-44-770.jpg",
"bandicam 2024-04-19 12-50-45-166.jpg", "bandicam 2024-04-19
\rightarrow 13-50-45-308.jpg",
"bandicam 2024-04-19 14-50-45-378.jpg", "bandicam 2024-04-19
\rightarrow 15-50-45-434.jpg",
"bandicam 2024-04-19 16-50-45-463.jpg", "bandicam 2024-04-19
\rightarrow 17-50-45-488.jpg",
"bandicam 2024-04-19 18-50-45-535.jpg", "bandicam 2024-04-19
\rightarrow 19-50-45-563.jpg",
"bandicam 2024-04-19 20-50-45-590.jpg", "bandicam 2024-04-19
\rightarrow 21-50-45-855.jpg",
"bandicam 2024-04-19 22-50-45-935.jpg", "bandicam 2024-04-19
\rightarrow 23-50-46-027.jpg",
"bandicam 2024-04-20 00-50-46-019.jpg", "bandicam 2024-04-20
\rightarrow 01-50-46-032.jpg",
"bandicam 2024-04-20 02-50-46-031.jpg", "bandicam 2024-04-20
\rightarrow 03-50-46-047.jpg",
"bandicam 2024-04-20 04-50-46-021.jpg", "bandicam 2024-04-20
\rightarrow 05-50-46-035.jpg",
"bandicam 2024-04-20 06-50-46-215.jpg", "bandicam 2024-04-20
\rightarrow 07-50-46-333.jpg",
"bandicam 2024-04-20 08-50-46-360.jpg", "bandicam 2024-04-20
\rightarrow 09-50-46-383.jpg",
"bandicam 2024-04-20 10-50-46-384.jpg", "bandicam 2024-04-20
\rightarrow 11-50-46-386.jpg",
"bandicam 2024-04-20 12-50-46-388.jpg", "bandicam 2024-04-20
\rightarrow 13-50-46-391.jpg",
"bandicam 2024-04-20 14-50-46-393.jpg", "bandicam 2024-04-20
\rightarrow 15-50-46-883.jpg",
"bandicam 2024-04-20 16-50-47-119.jpg", "bandicam 2024-04-20
\rightarrow 17-50-47-219.jpg",
"bandicam 2024-04-20 18-50-47-280.jpg", "bandicam 2024-04-20
\rightarrow 19-50-47-318.jpg",
"bandicam 2024-04-20 20-50-47-350.jpg", "bandicam 2024-04-20
\rightarrow 21-50-47-415.jpg",
"bandicam 2024-04-20 22-50-47-455.jpg", "bandicam 2024-04-20
\rightarrow 23-50-47-493.jpg",
"bandicam 2024-04-21 00-50-47-684.jpg", "bandicam 2024-04-21
\rightarrow 01-50-47-793.jpg",
"bandicam 2024-04-21 02-50-47-840.jpg", "bandicam 2024-04-21
\rightarrow 03-50-47-891. jpg",
```

```
"bandicam 2024-04-21 04-50-47-912.jpg", "bandicam 2024-04-21
\rightarrow 05-50-47-950.jpg",
"bandicam 2024-04-21 06-50-47-985.jpg", "bandicam 2024-04-21
\rightarrow 07-50-48-014.jpg",
"bandicam 2024-04-21 08-50-48-049.jpg", "bandicam 2024-04-21
\rightarrow 09-50-48-257.jpg",
"bandicam 2024-04-21 10-50-48-390.jpg", "bandicam 2024-04-21
\rightarrow 11-50-48-438.jpg",
"bandicam 2024-04-21 12-50-48-525.jpg", "bandicam 2024-04-21
\rightarrow 13-50-48-519.jpg",
"bandicam 2024-04-21 14-50-48-522.jpg", "bandicam 2024-04-21
\rightarrow 15-50-48-518.jpg",
"bandicam 2024-04-21 16-50-48-539.jpg", "bandicam 2024-04-21
\rightarrow 17-50-48-554.jpg",
"bandicam 2024-04-21 18-50-48-689.jpg", "bandicam 2024-04-21
\rightarrow 19-50-48-905.jpg",
"bandicam 2024-04-21 20-50-48-977.jpg", "bandicam 2024-04-21
\rightarrow 21-50-49-009.jpg",
"bandicam 2024-04-21 22-50-49-023.jpg"
```

3 Data Processing

Έπειτα, μπορούμε να κάνουμε extract τις πληροφορίες που θέλουμε, με το Dates.jl package της Julia. Σε αυτό το code block, δεν θα ορίσουμε το file vector και αυτό θα υποτεθεί defined. Έτσι, δεν μπορούμε να τρέξουμε independently το block αυτό, αλλά μόνο chained σε ένα definition των files, για να μπορεί να τρέξει αντίστοιχα σε κάθε πείραμα. Επίσης, εκτός από να κάνουμε extract τα time stamps, φτιάχνουμε και ένα δεύτερο vector με time stamp $dd/mm_{HH}:MM$ το οποίο είναι πιο βολικό στη χρήση για εμένα.

Στη συνέχεια, ορίζουμε άλλη μία μεταβλητή η οποία δεν υπάρχει, η inds. Αυτή είναι τα νούμερα στο date_{vec} που αντιστοιχούν σε ένα ορισμένο πείραμα. Παίρνουμε τα time stamps και στην αρχική αλλά και στην formatted μορφή για αυτό το πείραμα και μετά υπολογίζουμε τα time steps και σε δευτερόλεπτα αλλά και σε λεπτά. Η αφαίρεση δύο DateTime objects δίνει αποτέλεσμα σε Millisecond, οπότε ο χρόνος σε δευτερόλεπτα διαιρεί με 1000 Millisecond ενώ σε λεπτά με 60000 Millisecond. Έπειτα, ορίζουμε ένα τρίτο undefined variable το exp_{methvol}, το οποίο είναι η παραγωγή μεθανίου μεταξύ των δύο φωτογραφιών, όπως σημειώνεται σε αυτές. Για την κινητική, θέλουμε την αθροιστική παραγωγή μεθανίου, οπότε χρησιμοποιούμε την συνάρτηση cumsum.

Τέλος, αποθηκεύουμε όλα αυτά τα δεδομένα σε ένα table του Tables. jl interface, ώστε να μπορούμε να το κάνουμε DataFrame με headers για καλύτερο readability ή να το κάνουμε export σε csv. Για το csv export χρειαζόμαστε ένα file name. Αυτό μπορεί για άλλη μία φορά να μην οριστεί εδώ και να χρησιμοποιηθεί ως variable. Βέβαια, ένα σημαντικό σημείο είναι πως τα πειράματα με οξικό πάνε γρήγορα, ενώ με το υδρόλυμα των FW αρκετά πιο αργά. Οπότε, αν το variable source είναι ίσο με "Hydrolyzed FW", κάνουμε save τον χρόνο σε λεπτά και ώρες, αλλιώς σε λεπτά και δευτερόλεπτα.

 $\mathrm{bmp}_{\mathrm{dataprocessing}}$

```
formatted_date = [Dates.format(date_vec[i], "dd/mm_HH:MM") for i in
→ 1:length(date_vec)]
exp_stamps = date_vec[inds]
exp_formatted = formatted_date[inds]
exp_sec = round.([(exp_stamps[i] - exp_stamps[1])/Millisecond(1000) for i

    in 1:length(inds)]; digits = 4)

exp_min = round.([(exp_stamps[i] - exp_stamps[1])/Millisecond(60000) for i
→ in 1:length(inds)]; digits = 4)
exp_hour = round.([(exp_stamps[i] - exp_stamps[1])/Millisecond(3600000)
→ for i in 1:length(inds)]; digits = 4)
exp_cum_meth_vol = round.(cumsum(exp_meth_vol); digits = 3)
max_manual_rate = maximum([(exp_cum_meth_vol[i+1] -
   exp_cum_meth_vol[i])/(exp_hour[i+1] - exp_hour[i]) for i in
  1:(length(inds)-1)])
if source == "Acetate"
    exp_data = Tables.table(hcat(exp_formatted, exp_sec, exp_min,
       exp_meth_vol, exp_cum_meth_vol), header = [:Timestamp, :Seconds,
        :Minutes, :Methane_Volume, :Cumulative_Methane_Volume])
else
    exp_data = Tables.table(hcat(exp_formatted, exp_min, exp_hour,
       exp_meth_vol, exp_cum_meth_vol), header = [:Timestamp, :Minutes,
    → :Hours, :Methane_Volume, :Cumulative_Methane_Volume])
end
CSV.write(datadir("exp_pro", exp_name*".csv"), exp_data)
exp_df = DataFrame(exp_data)
```

3.1 Curve Fitting

Επίσης, θέλουμε να κάνουμε fit τα δεδομένα σε κάποιο κινητικό μοντέλο για την διεργασία, κάτι το οποίο θα βοηθήσει στη μοντελοποιήση της. Το μοντέλο Gompertz είναι ένα μοντέλο που χρησιμοποιείται συχνά για kinetic modelling διεργασιών όπως η παραγωγή μεθανίου μέσω αναερόβιας χώνευσης, οπότε θα χρησιμοποιηθεί αυτό. Η εξίσωση που θα πρέπει να προσαρμοστεί είναι η

$$P(t) = P_{\text{max}} \exp \left(-\exp \left[\frac{R_{\text{max}} e(\lambda - t)}{P_{\text{max}}} + 1\right]\right)$$

όπου P(t) η παραγωγή μεθανίου την στιγμή t, P_{max} η μέγιστη ποσότητα μεθανίου που μπορεί να παραχθεί από το υπόστρωμα αυτό, R_{max} ο ειδικός ρυθμός παραγωγής μεθανίου, λ το lag time και e η σταθερά Euler. Παρακάτω φαίνεται το fit των δεδομένων στην συνάρτηση αυτή. Αξίζει να αναφερθεί η χρήση της μεταβλητής input_cod που φαίνεται παρακάτω. Η μεταβλητή αυτή εκφράζει το COD της τροφοδοσίας. Δ ιαιρούμε τον όγκο μεθανίου με αυτήν ώστε το διάγραμμα να εκφράζει ειδικό ρυθμό παραγωγής μεθανίου σε $\frac{mL CH_4}{g \text{ s}COD}$, το οποίο είναι πιο εύκολα συγκρίσιμο με βιβλιογραφία, σε σχέση με τον όγκο μεθανίου. Επίσης, αξίζει να σημειωθεί η χρήση bounded optimization. Οι παραμέτροι του μοντέλου έχουν νόημα μόνο ως θετικοί αριθμοί. Στα πειράματα με χρήση οξικό ως υπόστρωμα, όπου οι μικροοργανισμοί αντιδρούν ταχύτατα στην αλλαγή του περιβάλλοντος, η προσαρμογή του μοντέλου έδινε αρνητικό lag

time. Αυτό προφανώς δεν έχει νόημα και στην πράξη, το συμπέρασμα είναι πως το lag time είναι μηδενικό (σχεδόν ακαριαία αντίδραση των μικροοργανισμών στην προσθήκη οξικού στο σύστημα). Επίσης, αξίζει να αναφερθεί η μεταβλητή kinetics. Σε κάποια πειράματα (πχ τις μετρήσεις παραγωγής μεθανίου χωρίς προσθήκη υποστρώματος που έγινε σε ένα δείγμα) δεν θέλουμε να κάνουμε προσαρμογή με το μοντέλο Gompertz. Αυτή η μεταβλητή είναι στην ουσία ένα toggle off του plot με την κινητική, για όσα πειράματα δεν το χρειάζονται.

Παρακάτω υπάρχουν 2 code blocks. Το πρώτο κάνει fit σε timescale λεπτών ενώ το δεύτερο σε ωρών. Ανάλογα με το πείραμα, μπορεί να βγάλουν ίδια αποτελέσματα, αλλά ενδέχεται να είναι και διαφορετικά.

$bmp_{curvefittingmin}$

```
gompertz_bmp(t, p) = 0. p[1]*exp(-exp((((p[2]*exp(1))/p[1])*(p[3] - t)) +
1b = [0.0, 0.0, 0.0]
ub = [Inf, Inf, Inf]
fit = curve_fit(gompertz_bmp, exp_min, exp_cum_meth_vol, p0, lower = 1b,
\rightarrow upper = ub)
model_params = fit.param
gompertz_bmp(t) = gompertz_bmp(t, model_params)
model_res = fit.resid
SS_res = sum(model_res.^2)
SS_tot = sum([(exp_cum_meth_vol[i] - mean(exp_cum_meth_vol)).^2 for i in
→ 1:length(exp_cum_meth_vol)])
r_squared = 1 - SS_res/SS_tot
kinetics = "bmp"
timescale = "min"
   bmp_{curvefittinghour}
gompertz_bmp(t, p) = 0. p[1]*exp(-exp((((p[2]*exp(1))/p[1])*(p[3] - t)) +
→ 1))
1b = [0.0, 0.0, 0.0]
ub = [Inf, Inf, Inf]
fit = curve_fit(gompertz_bmp, exp_hour, exp_cum_meth_vol, p0, lower = lb,
→ upper = ub)
model_params = fit.param
gompertz_bmp(t) = gompertz_bmp(t, model_params)
model_res = fit.resid
SS_res = sum(model_res.^2)
SS_tot = sum([(exp_cum_meth_vol[i] - mean(exp_cum_meth_vol)).^2 for i in
→ 1:length(exp_cum_meth_vol)])
```

```
r_squared = 1 - SS_res/SS_tot
kinetics = "bmp"
timescale = "hour"
```

3.1.1 Sludge Methanogenic Activity (SMA)

Ένα αχόμη χριτήριο που χρησιμοποιείται συχνά για να χάνουμε assess την ποιότητα της χώνευσης είναι το SMA. Ορίζεται ως ο μέγιστος όγχος μεθανίου ανά ημέρα χαι ανά g VS λάσπης που έχει προστεθεί στον αντιδραστήρα. Οπότε, μπορεί να βρεθεί με αχριβώς ίδια λογιχή με παραπάνω. Για τα πειράματα με οξιχό θα γίνει προσαρμογή σε λεπτά χαι θα πολλαπλασιάσουμε με 60 για να το πάρουμε σε ώρες, ενώ τα FW τα οποία είναι χαι σχετιχά αργά μπορούν να γίνουν fit χατευθείαν σε ώρες.

$sma_{curve fitting min} \\$

```
gompertz\_sma(t, p) = 0. p[1]*exp(-exp((((p[2]*exp(1))/p[1])*(p[3] - t)) +
→ 1))
1b = [0.0, 0.0, 0.0]
ub = [Inf, Inf, Inf]
specific_meth_vol = exp_cum_meth_vol./input_vs
fit = curve_fit(gompertz_sma, exp_min, specific_meth_vol, p0, lower = lb,
→ upper = ub)
model_params = fit.param
gompertz_sma(t) = gompertz_sma(t, model_params)
model_res = fit.resid
SS_res = sum(model_res.^2)
SS_tot = sum([(specific_meth_vol[i] - mean(specific_meth_vol)).^2 for i in
r_squared = 1 - SS_res/SS_tot
kinetics = "sma"
timescale = "min"
   {
m sma}_{
m curvefittinghour}
gompertz_sma(t, p) = 0. p[1]*exp(-exp((((p[2]*exp(1))/p[1])*(p[3] - t)) +
→ 1))
1b = [0.0, 0.0, 0.0]
ub = [Inf, Inf, Inf]
specific_meth_vol = exp_cum_meth_vol./input_vs
fit = curve_fit(gompertz_sma, exp_hour, specific_meth_vol, p0, lower = lb,
\rightarrow upper = ub)
model_params = fit.param
```

3.2 Plotting

Τέλος, έχοντας προσαρμώσει το μοντέλο Gompertz σε κάθε σετ δεδομένων, θέλουμε να φτιάξουμε κάποια διαγράμματα με τα δεδομένα, τα οποία να δείχνουν την παραγόμενη ποσότητα μεθανίου στον χρόνο. Τα πειραματικά δεδομένα θα γίνουν plotted σε scatter plots. Χάριν ευκολίας, μπορούν να γίνουν plotted διαγράμματα και της στιγμιαίας αλλά και της συνολικής παραγωγής μεθανίου και σε άξονα χρόνου είτε λεπτά ή δευτερόλεπτα. Ο παραπάνω κώδικας υπολογίζει το fit του cumulative methane production σε λεπτά, καθώς θεωρείται η πιο χρήσιμη έκφραση, οπότε αυτό θα είναι και το διάγραμμα που έχει fit την καμπύλη. Εδώ θα εκμεταλλευτούμε τα variables που υπολογίζονται παραπάνω καθώς και 2 ακόμη, το reactor και το source. Το source είναι ένα απλό variable το οποίο εκφράζει αν η τροφοδοσία ήταν οξικό ή υδρόλυμα για να τα ξεχωρίζουμε πιο εύκολα. Επίσης, χρησιμοποιείται για να κάνει generate τα σωστά plots (δευτερόλεπτα και λεπτά με fitting σε λεπτά για οξικό, λεπτά και ώρες με fitting ανάλογα το timescale για τα υδρολύματα). Το reactor εκφράζει το νούμερο του δείγματος για να είναι πιο εύκολο το naming scheme.

$bmp_{dataplotting}$

```
if source == "No_Feed"
    bmp_cumulative_scatter_min = Plots.scatter(exp_min, exp_cum_meth_vol,
    → markersize = 5, legend = false, xlabel = "Time (min)", ylabel =
    → "Cumulative Methane Volume (mL)", title = "Cumulative Methane
    → Production from "*source*" \nUsing "*reactor*" "*sludge, size =
    \rightarrow (700, 470))
    savefig(bmp_cumulative_scatter_min, plotsdir("BMPs", source,
    → "cumulative_"*exp_name*"_min.png"))
    bmp_cumulative_scatter_sec = Plots.scatter(exp_sec, exp_cum_meth_vol,
    → markersize = 5, legend = false, xlabel = "Time (sec)", ylabel =
    \hookrightarrow "Cumulative Methane Volume (mL)", title = "Cumulative Methane
    → Production from "*source*" \nUsing "*reactor*" "*sludge, size =
    \rightarrow (700, 470))
    savefig(bmp_cumulative_scatter_sec, plotsdir("BMPs", source,
    → "cumulative_"*exp_name*"_sec.png"))
else
    if timescale == "hour"
        if kinetics == "bmp"
```

```
bmp_cumulative_scatter_hour = Plots.scatter(exp_hour,

→ exp_cum_meth_vol, markersize = 5, legend = :bottomright,
        → label = "Experimental Data", xlabel = "Time (hour)",
        → ylabel = "Cumulative Methane Volume (mL)", title =
        → "Cumulative Methane Production from "*source*" \nUsing
        Plots.plot!(exp_hour, gompertz_bmp(exp_hour), label = "Gompertz

→ Model with "*L"R^2 = "*string(round(r_squared, digits = "")

        → 3)))
       savefig(bmp_cumulative_scatter_hour, plotsdir("BMPs", source,
        → "methane_kinetics_"*exp_name*"_hour.png"))
   elseif kinetics == "sma"
        bmp_specific_methane = Plots.scatter(exp_hour,

    specific_meth_vol, markersize = 5, label = "Experimental"

        → Data", xlabel = "Time (hour)", ylabel = "Cumulative Methane
        \rightarrow Production (mL/g VS)", title = "Methane Production Kinetics

    from "*source*" \nUsing "*reactor*" "*sludge*" "*run_num,
        \rightarrow size = (700, 470), legend = :bottomright)
       Plots.plot!(exp_hour, gompertz_sma(exp_hour), label = "Gompertz

→ Model with "*L"R^2 = "*string(round(r_squared, digits = ""))

        → 3)))
       savefig(bmp_specific_methane, plotsdir("BMPs", source, "specif |

    ic_methane_kinetics_"*exp_name*"_"*timescale*".png"))

   end
elseif timescale == "min"
   if kinetics == "bmp"
       bmp_cumulative_scatter_min = Plots.scatter(exp_min,

    exp_cum_meth_vol, markersize = 5, legend = :bottomright,

        → label = "Experimental Data", xlabel = "Time (min)", ylabel
        \rightarrow = "Cumulative Methane Volume (mL)", title = "Cumulative
        → Methane Production from "*source*" \nUsing "*reactor*"

    "*sludge*" "*run_num, size = (700, 470))

       Plots.plot!(exp_min, gompertz_bmp(exp_min), label = "Gompertz

→ Model with "*L"R^2 = "*string(round(r_squared, digits = ""))

        → 3)))
        savefig(bmp_cumulative_scatter_min, plotsdir("BMPs", source,
        → "methane_kinetics_"*exp_name*"_"*timescale*".png"))
   elseif kinetics == "sma"
       bmp_specific_methane = Plots.scatter(exp_min,
        \hookrightarrow Data", xlabel = "Time (hour)", ylabel = "Cumulative Methane
        → Production (mL/g VS)", title = "Methane Production Kinetics

    from "*source*" \nUsing "*reactor*" "*sludge*" "*run_num,

        \rightarrow size = (700, 470), legend = :bottomright)
       Plots.plot!(exp_min, gompertz_sma(exp_min), label = "Gompertz
        \rightarrow Model with "*L"R^2 = "*string(round(r_squared, digits =

→ 3)))
```

```
savefig(bmp_specific_methane, plotsdir("BMPs", source, "specif]

→ ic_methane_kinetics_"*exp_name*"_"*timescale*".png"))

end
end
end
```

4 Acetate Experiment Processing

Παρακάτω αναφέρονται οι δοκιμές που έγιναν με 100 μL οξικό σε κάθε δείγμα και θα χρησιμοποιηθούν πιθανόν συγκριτικά σε σχέση με τα FW. Μετά από τα code blocks που τρέχουν τον κώδικα θα υπάρχουν και κάποια από τα corresponding αποτελέσματα. Συγκεκριμένα, ο πίνακας με τα κινητικά δεδομένα, το διάγραμμα παραγωγής μεθανίου το οποίο έχει το curve fitting και το διάγραμμα στιγμίαιας παραγωγής μεθανίου. Υπάρχουν και κάποια άλλα χρήσιμα διαγράμματα, τα οποία είναι αποθηκευμένα, αλλά εδώ παρατίθενται κάποια για καλύτερη ανάγνωση του αρχείου.

4.1 Acetate Test FW

Το section αυτό αναφέρεται στη δοχιμή με $100~\mu L$ οξιχό στο δείγμα labelled ως FW (στο οποίο θα τροφοδοτηθούν untreated FW). Notably, δεν είχε διαρροή στις 27/03, αλλά για χάποιον λόγο, στην επαναδοχιμή στις 29/03 δεν παρήγαγε μεθάνιο (τουλάχιστον στην προχοίδα). Οπότε, θα χρησιμοποιηθεί αυτό της 27/03.

 $acet_{testfws1}$

```
### Data Analysis on Reactor FW ###
```

```
<<date_saving_acetate_s1>>
inds = 1:20
exp_meth_vol = [0, 12, 5, 3, 1.5, 1.5, 1, 1.5, 1, 0.5, 0.5, 0.5, 0, 0, 0, 0]
\rightarrow 0, 0, 0, 0, 0]
meth_vol_acet_fw = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_fw_s1"
source = "Acetate"
reactor = "Reactor FW"
sludge = "Sludge 1"
run_num = "Run 1"
input_vs = 1.55
p0 = [25.0, 6.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_fw = max_manual_rate
<<bmp_curve_fitting_min>>
model_acet_fw = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
```

Table 1: Κινητικά δεδομένα

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane Volume}$
$27/03_{18}:45$	0.0	0.0	0.0	0.0
$27/03_{18}:46$	61.304	1.0217	12.0	12.0
$27/03_{18}:48$	181.303	3.0217	5.0	17.0
$27/03_{18}:50$	301.313	5.0219	3.0	20.0
$27/03_{18}:52$	421.307	7.0218	1.5	21.5
$27/03_{18}:54$	541.305	9.0218	1.5	23.0
$27/03_{18}:56$	661.31	11.0218	1.0	24.0
$27/03_{18}:58$	781.308	13.0218	1.5	25.5
$27/03_{19}:00$	901.313	15.0219	1.0	26.5
$27/03_{19}:02$	1021.322	17.022	0.5	27.0
$27/03_{19}:04$	1141.316	19.0219	0.5	27.5
$27/03_{19}:06$	1261.325	21.0221	0.5	28.0
$27/03_{19}$:08	1381.328	23.0221	0.0	28.0
$27/03_{19}:10$	1501.327	25.0221	0.0	28.0
$27/03_{19}:12$	1621.332	27.0222	0.0	28.0
$27/03_{19}:14$	1741.33	29.0222	0.0	28.0
$27/03_{19}:15$	1750.422	29.1737	0.0	28.0
$27/03_{19}:19$	1990.416	33.1736	0.0	28.0
$27/03_{19}$:21	2110.419	35.1736	0.0	28.0
$27/03_{19}$:23	2230.428	37.1738	0.0	28.0

4.2 Acetate Test 0

Το section αυτό αναφέρεται στη δοχιμή με 100 μL οξικό στο δείγμα (0). $\mathbf{acet_{test0s1}}$

Data Analysis on Reactor 0

<date_saving_acetate_s1>>

```
inds = 34:58
exp_meth_vol = [0, 4, 12, 7.5, 4.5, 2.5, 2.5, 4, 0.5, 2, 2, 1, 1, 1, 1, 1,
\rightarrow 0.5, 0.5, 0, 0, 0, 0, 0, 0]
meth_vol_acet_0 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_0_s1"
source = "Acetate"
reactor = "Reactor 0"
sludge = "Sludge 1"
run_num = "Run 1"
input_vs = 1.55
p0 = [40.0, 8.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_0 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_acet_0 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [25.8, 5.0, 1.0]
<<sma_curve_fitting_min>>
sma_acet_0 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 4 <<acet_test_0_s1()>> '(4))
```


		Table 2:	Κινητικά δεδομένο	l
Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$29/03_{12}:23$	0.0	0.0	0.0	0.0
$29/03_{12}:23$	13.967	0.2328	4.0	4.0
$29/03_{12}$:24	73.986	1.2331	12.0	16.0
$29/03_{12}:25$	133.981	2.233	7.5	23.5
$29/03_{12}:26$	193.993	3.2332	4.5	28.0
$29/03_{12}$:27	230.339	3.839	2.5	30.5
$29/03_{12}$:28	290.327	4.8388	2.5	33.0
$29/03_{12}$:29	350.322	5.8387	4.0	37.0
$29/03_{12}$:29	363.719	6.062	0.5	37.5
$29/03_{12}$:30	423.727	7.0621	2.0	39.5
$29/03_{12}$:31	483.722	8.062	2.0	41.5
$29/03_{12}$:32	509.669	8.4945	1.0	42.5
$29/03_{12}$:33	569.668	9.4945	1.0	43.5
$29/03_{12}:34$	629.657	10.4943	1.0	44.5
$29/03_{12}:35$	689.661	11.4944	1.0	45.5
$29/03_{12}$:36	749.66	12.4943	1.0	46.5
$29/03_{12}$:37	809.683	13.4947	0.5	47.0
$29/03_{12}:38$	869.926	14.4988	0.5	47.5
$29/03_{12}:38$	910.87	15.1812	0.0	47.5
$29/03_{12}:39$	970.864	16.1811	0.0	47.5
$29/03_{12}$:40	1030.875	17.1812	0.0	47.5
$29/03_{12}$:41	1090.872	18.1812	0.0	47.5
$29/03_{12}$:42	1150.882	19.1814	0.0	47.5
$29/03_{12}$:43	1205.994	20.0999	0.0	47.5
$29/03_{12}:44$	1265.223	21.087	0.0	47.5

4.3 Acetate Test 1

Το section αυτό αναφέρεται στη δοχιμή με 100 μL οξικό στο δείγμα (1). Αξίζει να αναφερθεί πως την πρώτη πειραματική ημέρα (27/03), παρήγαγε αέριο χωρίς να τροφοδοτηθεί με κάποιο υπόστρωμα. Η κινητική αυτής της παραγωγής (η οποία δεν ξέρουμε σε τι ευθύνεται) θα αναλυθεί παρακάτω. Βέβαια, μόλις τροφοδοτήθηκε με οξικό και η παραγωγή του τελείωσε, σταμάτησε και εκείνη η παραγωγή. Βέβαια, είχε την χαμηλότερη παραγωγή βιοαερίου μόλις τροφοδοτήθηκε με οξικό, οπότε ενδέχεται αυτή η μέτρηση να ήταν προβληματική.

 $acet_{test1s1}$

Data Analysis on Reactor 1

Table 3: Κινητικά δεδομένα

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$29/03_{12}:26$	0.0	0.0	0.0	0.0
$29/03_{12}$:27	36.346	0.6058	6.5	6.5
$29/03_{12}$:28	96.334	1.6056	5.0	11.5
$29/03_{12}$:29	156.329	2.6055	3.0	14.5
$29/03_{12}$:29	169.726	2.8288	0.5	15.0
$29/03_{12}:30$	229.734	3.8289	1.5	16.5
$29/03_{12}:31$	289.729	4.8288	1.5	18.0
$29/03_{12}:32$	315.676	5.2613	0.5	18.5
$29/03_{12}:33$	375.675	6.2613	1.0	19.5
$29/03_{12}:34$	435.664	7.2611	0.5	20.0
$29/03_{12}:35$	495.668	8.2611	0.5	20.5
$29/03_{12}:36$	555.667	9.2611	0.3	20.8
$29/03_{12}:37$	615.69	10.2615	0.2	21.0
$29/03_{12}:38$	675.933	11.2656	0.2	21.2
$29/03_{12}:38$	716.877	11.948	0.1	21.3
$29/03_{12}:39$	776.871	12.9479	0.05	21.35
$29/03_{12}:40$	836.882	13.948	0.05	21.4
$29/03_{12}:41$	896.879	14.948	0.05	21.45
$29/03_{12}:42$	956.889	15.9482	0.05	21.5
$29/03_{12}:43$	1012.001	16.8667	0.0	21.5
$29/03_{12}:44$	1071.23	17.8538	0.0	21.5

4.4 Acetate Test 2

Το section αυτό αναφέρεται στη δοχιμή με 100 μL οξικό στο δείγμα (2). $\mathbf{acet_{test2s1}}$

Data Analysis on Reactor 2

<date_saving_acetate_s1>>

```
inds = 44:58
exp_meth_vol = [0, 4, 7, 5.5, 4.5, 2.5, 2, 1, 1, 1, 0.5, 0.5, 0.45, 0.05,
meth_vol_acet_2 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_2_s1"
source = "Acetate"
reactor = "Reactor 2"
sludge = "Sludge 1"
run_num = "Run 1"
input_vs = 1.55
p0 = [30.0, 6.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_2 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_acet_2 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_min>>
sma_acet_2 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 4 <<acet_test_2_s1()>> '(4))
```

Table 4: Κινητικά Δεδομένα

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane Volume}$
$29/03_{12}:31$	0.0	0.0	0.0	0.0
$29/03_{12}$:32	25.947	0.4324	4.0	4.0
$29/03_{12}:33$	85.946	1.4324	7.0	11.0
$29/03_{12}:34$	145.935	2.4322	5.5	16.5
$29/03_{12}:35$	205.939	3.4323	4.5	21.0
$29/03_{12}:36$	265.938	4.4323	2.5	23.5
$29/03_{12}:37$	325.961	5.4327	2.0	25.5
$29/03_{12}$:38	386.204	6.4367	1.0	26.5
$29/03_{12}$:38	427.148	7.1191	1.0	27.5
$29/03_{12}$:39	487.142	8.119	1.0	28.5
$29/03_{12}:40$	547.153	9.1192	0.5	29.0
$29/03_{12}$:41	607.15	10.1192	0.5	29.5
$29/03_{12}:42$	667.16	11.1193	0.45	29.95
$29/03_{12}:43$	722.272	12.0379	0.05	30.0
$29/03_{12}$:44	781.501	13.025	0.0	30.0

4.5 Acetate Test 4

Το section αυτό αναφέρεται στη δοχιμή με 100 μL οξικό στο δείγμα (4). $\mathbf{acet_{test4s1}}$

Data Analysis on Reactor 4

<<date_saving_acetate_s1>>

```
inds = 41:58
exp_meth_vol = [0, 4, 10, 9, 4, 5, 5, 4, 3, 3, 0, 0, 0, 0, 0, 0, 0]
meth_vol_acet_4 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_4_s1"
source = "Acetate"
reactor = "Reactor 4"
sludge = "Sludge 1"
run_num = "Run 1"
input_vs = 1.55
p0 = [40.0, 10.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_4 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_acet_4 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_min>>
sma_acet_4 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 4 <<acet_test_4_s1()>> '(4))
```

Table 5: Κινητικά δεδομένα

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane Volume}$
$29/03_{12}:29$	0.0	0.0	0	0.0
$29/03_{12}$:29	13.397	0.2233	4	4.0
$29/03_{12}:30$	73.405	1.2234	10	14.0
$29/03_{12}:31$	133.4	2.2233	9	23.0
$29/03_{12}:32$	159.347	2.6558	4	27.0
$29/03_{12}:33$	219.346	3.6558	5	32.0
$29/03_{12}:34$	279.335	4.6556	5	37.0
$29/03_{12}:35$	339.339	5.6556	4	41.0
$29/03_{12}:36$	399.338	6.6556	3	44.0
$29/03_{12}:37$	459.361	7.656	3	47.0
$29/03_{12}:38$	519.604	8.6601	0	47.0
$29/03_{12}:38$	560.548	9.3425	0	47.0
$29/03_{12}:39$	620.542	10.3424	0	47.0
$29/03_{12}:40$	680.553	11.3425	0	47.0
$29/03_{12}:41$	740.55	12.3425	0	47.0
$29/03_{12}:42$	800.56	13.3427	0	47.0
$29/03_{12}$:43	855.672	14.2612	0	47.0
$29/03_{12}$:44	914.901	15.2484	0	47.0

4.6 Παραγωγή μεθανίου χωρίς feed από το δείγμα Ac

Όπως προαναφέρθηκε, το δείγμα Ac παρήγαγε μεθάνιο χωρίς να τροφοδοτηθεί με κάτι για κάποιον ανεξήγητο λόγο. Καθώς έχουμε πειραματικά δεδομένα για αυτή την κατανάλωση (και μάλιστα 2 data sets), θα γίνει και μία ανάλυση για αυτό.

 $no_{feedac1}$

No Feed Data Analysis

```
<<date_saving_acetate_s1>>
inds = 1:17
exp_meth_vol = [0, 9, 3, 2, 3, 3, 3, 2.5, 2.5, 2.5, 1.5, 3, 1, 1, 1.5,
\rightarrow 0.5, 0.1]
exp_name = "no_feed_ac_1"
source = "No_Feed"
reactor = "Reactor Ac"
sludge = "Sludge 1"
kinetics = false
<<bmp_data_processing>>
<<bmp_data_plotting>>
   no_{feedac2}
<date_saving_acetate_s1>>
inds = 18:33
exp_meth_vol = [0, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2.5, 2.5, 2.5, 2.5, 2.5, 2]
exp_name = "no_feed_ac_2"
source = "No_Feed"
reactor = "Reactor Ac"
sludge = "Sludge 1"
kinetics = false
<<br/>bmp_data_processing>>
<<br/>bmp_data_plotting>>
```

4.7 Update all helper

Σε αυτό το section θα υπάρχει ένα helper code block που θα κάνει evaluate όλα τα παραπάνω. Έτσι, αν αλλάξει κάτι το οποίο επηρεάζει περισσότερα από ένα code blocks, θα μπορούν να γίνουν updated ταυτόχρονα πιο εύκολα. Επίσης, μία επιπλέον χρησιμότητα του code block αυτού είναι ότι αποθηκεύει ένα CSV που συγκεντρώνει όλα τα δεδομένα των κινητικών παραμέτρων από την προσαρμογή που έγινε παραπάνω, το οποίο είναι χρήσιμο για συγκρίσεις, παρόλο που τα συγκεκριμένα πειράματα δεν είναι τόσο σημαντικό να συγκριθούν.

update_{acetatetestss1}

```
<<acet_test_0_s1>>
<<acet_test_1_s1>>
<<acet_test_2_s1>>
<<acet_test_4_s1>>
<<acet_test_fw_s1>>
<<no_feed_ac_1>>
<<no_feed_ac_2>>
```

```
model_fit_table = Tables.table(vcat(reshape(model_acet_0, 1, 5),
    reshape(model_acet_1, 1, 5), reshape(model_acet_2, 1, 5),
    reshape(model_acet_4, 1, 5), reshape(model_acet_fw, 1, 5)), header =
→ [:Reactor_Name, :Production_Potential, :Production_Rate, :Lag_Time,

    :R_squared])

CSV.write(datadir("exp_pro", "methane_from_acetate_kinetics_s1.csv"),

→ model_fit_table)

return("../data/exp_pro/methane_from_acetate_kinetics_s1.csv")
(org-table-import-after-n-lines 4 <<update_acetate_tests_s1()>> '(4))
                            Table 6: Kinetic Models
        Reactor<sub>Name</sub>
                    Production<sub>Potential</sub> Production<sub>Rate</sub>
                                                      Lag_{Time}
                                                               R<sub>squared</sub>
        Reactor 0
                               46.633
                                               7.664
                                                          0.0
                                                                 0.971
        Reactor 1
                                20.94
                                               5.448
                                                          0.0
                                                                  0.96
        Reactor 2
                                                          0.0
                                                                  0.99
                               29.389
                                               6.234
        Reactor 4
                               47.228
                                                9.65
                                                          0.0
                                                                 0.994
        Reactor FW
                                               4.901
                                                          0.0
                                                                   0.9
                               27.014
<<acet_test_0_s1>>
<<acet_test_1_s1>>
<<acet_test_2_s1>>
<<acet_test_4_s1>>
<<acet_test_fw_s1>>
sma_table = Tables.table(vcat(reshape(sma_acet_0, 1, 5),

→ reshape(sma_acet_1, 1, 5), reshape(sma_acet_2, 1, 5),
\rightarrow reshape(sma_acet_4, 1, 5), reshape(sma_acet_fw, 1, 5)), header =
CSV.write(datadir("exp_pro", "sma_from_acetate_s1.csv"), sma_table)
return("../data/exp_pro/sma_from_acetate_s1.csv")
```

$Reactor_{Name}$	$Methane_{Potential}$	SMA	Lag_{Time}	R_{sq}
Reactor 0	30.086	4.944	0.0	0.971
Reactor 1	13.51	3.515	0.0	0.96
Reactor 2	18.991	3.942	0.0	0.988
Reactor 4	30.469	6.226	0.0	0.994
Reactor FW	17.428	3.163	0.0	0.9

4.8 Γενικά σχόλια για αυτόν τον κύκλο πειραμάτων

(org-table-import-after-n-lines 3 <<sma_acet_s1()>> '(4))

Ο πρώτος αυτός κύκλος πειραμάτων ήταν για την δοκιμή προσθήκης οξικού οξέος, του ιδανικού υποστρώματος της μεθανογένεσης, για να δούμε πως θα αντιδράσει σε αυτό το σύστημα. Δεν έχει τόσο συγκριτικό χαρακτήρα μεταξύ των πειραμάτων (παρόλο που ένα σχόλιο που μπορεί να γίνει είναι πως τα πειράματα τα οποία ήταν ίδια πρακτικά στην αρχή, είχαν αρκετά διαφορετική απόκριση στην προσθήκη οξικού), αλλά τον χαρακτήρα της βέλτιστης δυνατής μεθανογένεσης από κάποιο υπόστρωμα. Από την μελέτη αυτή, προέκυψαν αρκετά συμπεράσματα.

Ένα ενδιαφέρον σχόλιο είναι πως το σύστημα ανταποκρίνεται στην προσθήκη του οξικού πολύ γρήγορα (μετά από μερικά δευτερόλεπτα κιόλας βλέπουμε παραγωγή μεθανίου) και στο μοντέλο αυτό μεταφράζεται ως μηδενικό lag-phase.

Το δείγμα 4 είχε αναπάντεχα υψηλό ρυθμό παραγωγής μεθανίου, το οποίο φάνηκε από το γεγονός ότι παράχθηκε την μέγιστη ποσότητα οξικού που περιμέναμε σε περίπου 7 λεπτά ενώ τα υπόλοιπα χρειάστηκαν τουλάχιστον 15 λεπτά. Αυτό φάνηκε και στο μοντέλο, όπου το δείγμα αυτό είχε πολύ υψηλό ειδικό ρυθμό παραγωγής μεθανίου. Το δείγμα Ας ήταν αυτό που παρήγαγε αέριο χωρίς κάποιο υπόστρωμα. Μόλις προστέθηκε οξικό, αντέδρασε σε αυτό και ο ρυθμός του αυξήθηκε, αλλά επιβράδυνε πολύ γρήγορα, με αποτέλεσμα να έχει πολύ αργό ρυθμό παραγωγής μεθανίο και το χαμηλότερο δυναμικό παραγωγής μεθανίου. Μπορεί η αλλαγή αυτή να ευθύνεται σε αυτήν την απόκριση. Τα δείγματα 0 και 4 είχαν πολύ μεγαλύτερη παραγωγικότητα από τα άλλα 3, χωρίς να υπάρχει κάποια εύκολη εξήγηση για αυτό.

5 FW Hydrolysate S1_{R1} Processing

Στο section αυτό θα αναλυθούν τα αποτελεσματα του πρώτου πειράματος που χρησιμοποιήσε FW hydrolysate ως υπόστρωμα (συμβολίζεται ως $S1_{R1}$ επειδή είναι το πρώτο run με την πρώτη λάσπη). Σκοπός είναι να γίνει μία σύγκριση αυτού με το οξικό για κάθε δοχείο για να προκύψουν αποτελέσματα για το κάθε πείραμα. Οι 5 δοκιμές που έγιναν ήταν στα δείγματα 0, 1, 2 και 4 (τα οποία πλέον έχουν νόημα επειδή εκφράζουν την ποσότητα mix που προστέθηκε κατά την υδρόλυση) αλλά επίσης έγινε και ένα πείραμα για να μετρηθεί η απόδοση σε μεθάνιο του δείγματος μόνο με FW.

Αξίζει να αναφερθεί πως παρατηρήθηκε μία απότομη μεταβολή της στάθμης του αερίου στην αρχή κάθε πειράματος εκτός από το FW. Αυτή αγνοήθηκε καθώς υποτέθηκε πως έγινε λόγω διαφοράς πίεσης κατά την διαδικασία της τροφοδοσίας. Αυτό μπορεί να οδηγεί σε κάποιο σφάλμα, αλλά αν δεν αγνοηθεί οδηγεί σε πολύ προβληματικά αποτελέσματα.

5.1 Reactor 0

Το δείγμα αυτό είναι labelled ως δείγμα 0 καθώς είναι το δείγμα το οποίο τροφοδοτήθηκε με treated FW, όμως χωρίς προσθήκη του μιξ ενζύμων και μικροοργανισμών. Όπως έχουμε δεί, όλες οι αντιδράσεις που γίνονται κατά την υδρόλυση και ζύμωση μπορούν να γίνουν και χωρίς το μιξ. Όμως, γινόντουσαν πιο αποτελεσματικά με την προσθήκη αυτού. Οπότε, ελπίζουμε πως το δείγμα αυτό θα έχει χειρότερα αποτελέσματα από τα άλλα, το οποίο θα μας οδηγήσει στην υπόθεση ότι το μιξ βελτιώνει όχι μόνο τα κριτήρια υδρόλυσης και οξεογένεσης αλλά και αυτό της μεθανογένεσης.

 $hydrolysate_{0s1r1}$

```
### Data Analysis on Hydrolysate with 0 ml ###
<<date_saving_fw_s1_r1>>
inds = 2:49
exp_meth_vol = [0, 0.2, 0.02, 0.02, 0.01, 0.2, 0.2, 0.5, 0.2, 0.2, 0.2,
\rightarrow 0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05,
\rightarrow 0.1, 0.1, 0.05, 0.05, 0.05, 0, 0, 0, 0, 0]
meth_vol_hydro_0 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_0_s1_r1"
source = "Hydrolyzed FW"
reactor = "Reactor 0"
sludge = "Sludge 1"
run_num = "Run 1"
input_vs = 1.55
<<br/>bmp_data_processing>>
max_rate_hydro_0 = max_manual_rate
# The same model is fit either with min or hour
p0 = [6.0, 0.01, 1.0]
<<br/>bmp_curve_fitting_min>>
```

5.1.1 Results

Παρακάτω φαίνονται τα αποτελέσματα του σχετικού πειράματος.

```
(org-table-import-after-n-lines 3 <<hydrolysate_0_s1_r1()>> '(4))
```

Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane Volume}$
$01/04_{11}$:09	0.0	0.0	0.0	0.0
$01/04_{11}$:11	2.0003	0.0333	0.2	0.2
$01/04_{11}$:12	3.0004	0.05	0.02	0.22
$01/04_{11}:13$	3.829	0.0638	0.02	0.24
$01/04_{11}$:14	4.8289	0.0805	0.01	0.25
$01/04_{11}:15$	5.8291	0.0972	0.2	0.45
$01/04_{11}$:21	12.2677	0.2045	0.2	0.65
$01/04_{11}$:52	42.5938	0.7099	0.5	1.15
$01/04_{12}$:22	72.5938	1.2099	0.2	1.35
$01/04_{13}$:52	162.594	2.7099	0.2	1.55
$01/04_{15}$:52	282.5941	4.7099	0.2	1.75
$01/04_{16}$:52	342.5944	5.7099	0.2	1.95
$01/04_{18}$:52	462.5925	7.7099	0.2	2.15
$01/04_{20}$:52	582.5924	9.7099	0.2	2.35
$01/04_{22}$:52	702.5958	11.7099	0.2	2.55
$02/04_{00}$:52	822.6108	13.7102	0.2	2.75
$02/04_{02}$:52	942.6075	15.7101	0.2	2.95
$02/04_{04}$:52	1062.607	17.7101	0.1	3.05
$02/04_{06}$:52	1182.6302	19.7105	0.1	3.15
$02/04_{08}$:52	1302.5852	21.7098	0.1	3.25
$02/04_{10}$:54	1424.4052	23.7401	0.05	3.3
$02/04_{12}$:54	1544.4126	25.7402	0.05	3.35
$02/04_{13}$:24	1574.4125	26.2402	0.05	3.4
$02/04_{13}$:54	1604.4127	26.7402	0.05	3.45
$02/04_{14}$:24	1634.4127	27.2402	0.05	3.5
$02/04_{14}$:54	1664.4126	27.7402	0.05	3.55
$02/04_{15}$:24	1694.4125	28.2402	0.1	3.65
$02/04_{15}$:54	1724.4125	28.7402	0.1	3.75
$02/04_{16}$:24	1754.4128	29.2402	0.1	3.85
$02/04_{16}$:54	1784.4128	29.7402	0.1	3.95
$02/04_{17}$:24	1814.4125	30.2402	0.1	4.05
$02/04_{17}$:54	1844.4193	30.7403	0.1	4.15
$02/04_{19}:54$	1964.4198	32.7403	0.1	4.25
$02/04_{21}$:54	2084.4214	34.7404	0.1	4.35
$02/04_{23}$:54	2204.4256	36.7404	0.1	4.45
$03/04_{01}$:54	2324.4257	38.7404	0.1	4.55
$03/04_{03}$:54	2444.4255	40.7404	0.1	4.65
$03/04_{05}$:54	2564.4305	42.7405	0.1	4.75
$03/04_{07}$:54	2684.4324	44.7405	0.1	4.85
$03/04_{09}:54$	2804.4325	46.7405	0.05	4.9
$03/04_{12}$:54	2984.4414	49.7407	0.05	4.95
$03/04_{13}$:54	3044.4412	50.7407	0.05	5.0
$03/04_{14}$:24	3074.4422	51.2407	0.0	5.0
$03/04_{14}$:54	3105.2008	51.7533	0.0	5.0
$03/04_{15}$:26	3137.2466	52.2874	0.0	5.0
$03/04_{16}$:29	3199.5175	53.3253	0.0	5.0
$03/04_{17}$:29	3259.522	54.3254	0.0	5.0
$03/04_{18}$:29	3319.522	55.3254	0.0	5.0

5.2 Reactor 1

Το δείγμα αυτό τροφοδοτήθηκε με το υδρόλυμα το οποίο είχε προσθήκη 1 ml mix. Στο αρχικό κινητικό πείραμα, το δείγμα αυτό είχε αρκετά παρόμοια συμπεριφορά με το 0 και χειρότερη αυτής του 1. Από την μέτρηση του COD του, είχε αναπάντεχα υψηλό sCOD. Αυτό σημαίνει είτε πως έγινε κάποιο λάθος στην ανάλυση ή ότι απλώς έγινε πολύ καλύτερη υδρόλυση από ότι περιμέναμε στο πείραμα αυτό. Με βάση το sCOD του, αναμένεται να έχει καλά αποτελέσματα. Με βάση την HPLC του αρχικού πειράματος, θα περιμέναμε να είναι λίγο καλύτερο από το 0.

 $hydrolysate_{1s1r1}$

```
<date_saving_fw_s1_r1>>
inds = 3:49
exp_meth_vol = [0, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0.2, 0.2, 0.2, 0.2, 0.25,
\rightarrow 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.3, 0.3, 0.3, 0.1, 0.5,
\rightarrow 0.5, 0.5, 0.5, 0.4, 0.6, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05,
\rightarrow 0.05, 0.3, 0.2, 0.2, 0, 0, 0, 0, 0, 0]
meth_vol_hydro_1 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_1_s1_r1"
source = "Hydrolyzed FW"
reactor = "Reactor 1"
sludge = "Sludge 1"
run_num = "Run 1"
input_vs = 1.55
p0 = [13.0, 0.1, 1.0]
<<br/>bmp_data_processing>>
max_rate_hydro_1 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_hydro_1_min = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
p0 = [13.0, 1.0, 1.0]
<<bmp_curve_fitting_hour>>
model_hydro_1_hour = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_1 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
```

5.2.1 Results

Το πείραμα αυτό παρήγαγε 10.95 ml μεθάνιο, το οποίο είναι το 50.93% του πειράματος με οξικό καθώς εκείνο το πείραμα είχε μία σχετικά χαμηλή παραγωγικότητα για οξικό.

Από άποψη προσαρμογής, το πείραμα αυτό έχει το πρόβλημα πως η παραγωγή μεθανίου φαίνεται να πηγαίνει με "σκαλοπατάκια". Για κάποια διαστήματα πηγαίνει πολύ γρήγορα, ενώ μετά πηγαίνει αργά. Αυτό συμβαίνει μερικές ώρες μετά την έναρξη, ξαναεπιταχύνει λίγο μετά το 24ωρο και λίγο πριν το τέλος της χώνευσης (στις 49 ώρες), ξαναεπιταχύνει για λίγο. Οπότε, η προσαρμογή του είναι αρκετά δύσκολη.

Με την διόρθωση των δεδομένων σταματάει να υπάρχει το φαινόμενο των 2 ρυθμών (ενός

γρήγορου για τα δείγματα της 1ης μέρας και ενός αργού για μετά), αλλά η προσαρμογή ακόμη δεν είναι τέλεια (παρότι είναι πλέον αρκετά καλή)

(org-table-import-after-n-lines 3 <<hydrolysate_1_s1_r1()>> '(4))

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -			0.2	3.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	340.5941	5.6766	0.2	3.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	460.5922	7.6765	0.25	3.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		580.5921	9.6765	0.25	3.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$01/04_{22}:52$	700.5956	11.6766	0.25	4.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{00}:52$	820.6106	13.6768	0.25	4.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		940.6072	15.6768	0.25	4.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	1060.6068		0.25	4.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	1180.6299	19.6772	0.25	5.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	1300.585	21.6764	0.25	5.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{10}:54$	1422.4049	23.7067	0.3	5.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{12}:54$	1542.4123	25.7069	0.3	5.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{13}$:24	1572.4122	26.2069	0.3	6.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{13}:54$	1602.4124	26.7069	0.1	6.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{14}$:24	1632.4124	27.2069	0.5	6.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{14}$:54	1662.4124	27.7069	0.5	7.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{15}$:24	1692.4122	28.2069	0.5	7.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{15}$:54	1722.4122	28.7069	0.5	8.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{16}$:24	1752.4125	29.2069	0.5	8.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{16}$:54	1782.4125	29.7069	0.4	9.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{17}$:24	1812.4122	30.2069	0.6	9.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{17}$:54	1842.419	30.707	0.1	9.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{19}:54$	1962.4195	32.707	0.05	9.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{21}$:54	2082.4211	34.707	0.05	10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02/04_{23}$:54	2202.4254	36.7071	0.05	10.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/04_{01}$:54	2322.4254	38.7071	0.05	10.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/04_{03}$:54	2442.4252	40.7071	0.05	10.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/04_{05}$:54	2562.4302	42.7072	0.05	10.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/04_{07}$:54	2682.4321	44.7072	0.05	10.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	2802.4322	46.7072	0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	2982.4411	49.7074		10.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$03/04_{16}$:29 3197.5173 53.292 0.0 10.95 $03/04_{17}$:29 3257.5217 54.292 0.0 10.95	,				
$03/04_{17}$:29 3257.5217 54.292 0.0 10.95	,				
,	,				
$03/04_{18}$:29 3317.5217 55.292 0.0 10.95	,				
	$03/04_{18}$:29	3317.5217	55.292	0.0	10.95

5.3 Reactor 2

Το δείγμα το οποίο στην υδρόλυση είχε 2 ml από το μιξ. Με βάση το αρχικό πείραμα υδρόλυσης, αυτό και το 4 ml είχαν το καλύτερο performance και ελάχιστη διαφορά μεταξύ τους (κατά βάση στην συγκέντρωση γαλακτικού οξέος) οπότε θα αναμέναμε εδώ να παρατηρηθεί η καλύτερη μεθανογένεση.

 $hydrolysate_{2s1r1}$

Data Analysis on Hydrolysate with 2 ml

```
<date_saving_fw_s1_r1>>
inds = 8:49
\rightarrow 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0, 0, 0, 0, 0]
meth_vol_hydro_2 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_2_s1_r1"
source = "Hydrolyzed FW"
reactor = "Reactor 2"
sludge = "Sludge 1"
run_num = "Run 1"
input_vs = 1.55
<<br/>bmp_data_processing>>
max_rate_hydro_2 = max_manual_rate
p0 = [10.0, 0.01, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_2_min = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [10.0, 0.2, 0.03]
<<br/>bmp_curve_fitting_hour>>
model_hydro_2_hour = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_2 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
```

5.3.1 Results

Το παραγώμενο μεθάνιο είναι 5.1 ml, δηλαδή 17% του προβλεπόμενου μεθανίου με βάση το οξικό.

1. Διορθωμένα αποτελέσματα Διορθώνοντας το μεγάλο κενό που υπήρξε στο τέλος της 01/04 και αφαιρόντας τα 6 ml που παράγονται το πρώτο λεπτό, το μοντελό αυτό διορθώνεται σε πολύ μεγάλο βαθμό. Το ${\bf R}^2$ είναι πλέον 0.98 και φαίνεται πως η προσαρμογή είναι καλή.

```
(org-table-import-after-n-lines 3 <<hydrolysate_2_s1_r1()>> '(4))
```

Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$01/04_{11}$:21	0.0	0.0	0.0	0.0
$01/04_{11}$:52	30.3261	0.5054	0.5	0.5
$01/04_{12}$:22	60.3261	1.0054	0.1	0.6
$01/04_{13}:52$	150.3263	2.5054	0.3	0.9
$01/04_{15}$:52	270.3264	4.5054	0.3	1.2
$01/04_{16}$:52	330.3267	5.5054	0.3	1.5
$01/04_{18}$:52	450.3248	7.5054	0.3	1.8
$01/04_{20}$:52	570.3247	9.5054	0.3	2.1
$01/04_{22}$:52	690.3281	11.5055	0.3	2.4
$02/04_{00}$:52	810.3431	13.5057	0.3	2.7
$02/04_{02}$:52	930.3398	15.5057	0.3	3.0
$02/04_{04}$:52	1050.3393	17.5057	0.3	3.3
$02/04_{06}$:52	1170.3624	19.506	0.2	3.5
$02/04_{08}$:52	1290.3175	21.5053	0.2	3.7
$02/04_{10}$:54	1412.1374	23.5356	0.2	3.9
$02/04_{12}$:54	1532.1448	25.5357	0.2	4.1
$02/04_{13}$:24	1562.1448	26.0357	0.2	4.3
$02/04_{13}$:54	1592.145	26.5357	0.2	4.5
$02/04_{14}$:24	1622.145	27.0358	0.2	4.7
$02/04_{14}$:54	1652.1449	27.5357	0.2	4.9
$02/04_{15}$:24	1682.1448	28.0357	0.2	5.1
$02/04_{15}$:54	1712.1448	28.5357	0.2	5.3
$02/04_{16}$:24	1742.145	29.0358	0.1	5.4
$02/04_{16}$:54	1772.145	29.5358	0.1	5.5
$02/04_{17}$:24	1802.1448	30.0357	0.1	5.6
$02/04_{17}$:54	1832.1516	30.5359	0.1	5.7
$02/04_{19}:54$	1952.1521	32.5359	0.1	5.8
$02/04_{21}$:54	2072.1537	34.5359	0.1	5.9
$02/04_{23}$:54	2192.1579	36.536	0.1	6.0
$03/04_{01}$:54	2312.158	38.536	0.1	6.1
$03/04_{03}$:54	2432.1578	40.536	0.1	6.2
$03/04_{05}$:54	2552.1628	42.536	0.1	6.3
$03/04_{07}$:54	2672.1647	44.5361	0.1	6.4
$03/04_{09}:54$	2792.1648	46.5361	0.1	6.5
$03/04_{12}$:54	2972.1736	49.5362	0.2	6.7
$03/04_{13}$:54	3032.1734	50.5362	0.2	6.9
$03/04_{14}$:24	3062.1744	51.0362	0.0	6.9
$03/04_{14}$:54	3092.9331	51.5489	0.0	6.9
$03/04_{15}$:26	3124.9789	52.083	0.0	6.9
$03/04_{16}$:29	3187.2498	53.1208	0.0	6.9
$03/04_{17}$:29	3247.2543	54.1209	0.0	6.9
$03/04_{18}$:29	3307.2542	55.1209	0.0	6.9

5.4 Reactor 4

Το δείγμα 4 ήταν αυτό με τα 4 ml mix στην υδρόλυση. Είναι η μέγιστη ποσότητα που χρησιμοποιήθηκε για τα πειράματα χώνευσης καθώς το 8 ml δεν είχε ιδιαίτερα μεγάλη διαφορά και είναι πολύ πιο ακριβό. Όπως προαναφέρθηκε, αναμένουμε να έχει παρόμοια ποιότητα με το 2 ml καθώς με εξαίρεση μίας ποσότητας γαλακτικού είναι σχεδόν ίδια.

 $hydrolysate_{4s1r1} \\$

Data Analysis on Hydrolysate with 4 ml

<<date_saving_fw_s1_r1>>

```
inds = 6:49
exp_meth_vol = [0, 0.1, 0.3, 0.2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.2, 0.2, 0.2,
\rightarrow 0.2, 0.1, 0.2, 0.2, 0.4, 0.3, 0.3, 0.3, 0.1, 0.0, 0.0, 0.0, 0.05,
\rightarrow 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.2, 0.3, 0.2, 0.1, 0,
\rightarrow 0, 0, 0, 0]
meth_vol_hydro_4 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_4_s1_r1"
source = "Hydrolyzed FW"
reactor = "Reactor 4"
sludge = "Sludge 1"
run_num = "Run 1"
input_vs = 1.55
<<br/>bmp_data_processing>>
max_rate_hydro_4 = max_manual_rate
p0 = [17.0, 0.01, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_4_min = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [17.0, 0.8, 0.1]
<<br/>bmp_curve_fitting_hour>>
model_hydro_4_hour = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_4 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
5.4.1 Results
(org-table-import-after-n-lines 3 <<hydrolysate_4_s1_r1()>> '(4))
```

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$02/04_{23}$:54 2199.5967 36.6599 0.05 5.3 $03/04_{01}$:54 2319.5968 38.6599 0.05 5.35
$03/04_{01}$:54 2319.5968 38.6599 0.05 5.35
, -
$03/04_{03}$:54 2439.5966 40.6599 0.05 5.4
/- 00
$03/04_{05}$:54 2559.6016 42.66 0.05 5.45
$03/04_{07}$:54 2679.6035 44.6601 0.2 5.65
$03/04_{09}$:54 2799.6036 46.6601 0.3 5.95
$03/04_{12}$:54 2979.6124 49.6602 0.2 6.15
$03/04_{13}$:54 3039.6122 50.6602 0.1 6.25
$03/04_{14}$:24 3069.6132 51.1602 0.0 6.25
$03/04_{14}$:54 3100.3719 51.6729 0.0 6.25
$03/04_{15}$:26 3132.4177 52.207 0.0 6.25
$03/04_{16}$:29 3194.6886 53.2448 0.0 6.25
$03/04_{17}$:29 3254.6931 54.2449 0.0 6.25
$03/04_{18}$:29 3314.693 55.2449 0.0 6.25

5.5 Untreated FW

Εκτός από τα παραπάνω, σε ένα από τα δοχεία προστέθηκε ανεπεξέργαστο FW. Αυτό έχει διαφορά από το δείγμα 0, καθώς εκείνο υπέστει ζύμωση κατά τις 72 ώρες που ήταν στους 40 ^{o}C ακόμη και χωρίς να προσθέσουμε κάποιο εμβόλιο, ενώ το δείγμα αυτό αναφέρεται σε food waste το οποίο δεν έχει υποστεί καμία επεξεργασία. Θα θέλαμε το δείγμα αυτό να έχει το χειρότερο performance (είτε πολύ αργή παραγωγή, ή μικρή τελική παραγωγή), το οποίο θα μας επιδείκνυε πως η επεξεργασία που έγινε βοηθάει πραγματικά στην χώνευση. Βέβαια, αξίζει να αναφερθεί πως το δοχείο αυτό είχε κάποιο προβλήματα με διαρροή στα αρχικά στάδια

του πειράματος, οπότε ενδέχεται τα αποτελέσματα που θα προκύψουν να μην είναι έγκυρα. Παρακάτω φαίνεται ο κώδικας επεξεργασίας των αποτελεσμάτων του.

$untreated_{fws1r1}$

```
### Data Analysis on Untreated FW ###
```

```
<date_saving_fw_s1_r1>>
inds = 22:50
exp_meth_vol = [0, 0.2, 0, 0.1, 0.1, 0, 0, 0, 0.1, 0.1, 0, 0.1, 0.2, 0.1,
\rightarrow 0.1, 0.1, 0.0, 0.1, 0.2, 0.1, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0]
meth_vol_hydro_fw = cumsum(exp_meth_vol)[end]
exp_name = "untreated_fw_s1_r1"
source = "Untreated FW"
reactor = "FW 1"
sludge = "Sludge 1"
run_num = "Run 1"
input_vs = 1.55
<<bmp_data_processing>>
max_rate_hydro_fw = max_manual_rate
p0 = [2.0, 0.001, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_fw_min = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [2.0, 0.1, 0.1]
<<br/>bmp_curve_fitting_hour>>
model_hydro_fw_hour = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_fw = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
```

"/home/vidianos/Documents/9ο_εξάμηνο/Masters_Thesis/plots/BMPs/Untreated FW/methane_kinetic

5.5.1 Results

Το δείγμα αυτό παρήγαγε μόνο το 7.1% του μεθανίου που είχε παράξει από οξικό και το έκανε αυτό σε έναν αργό σχετικά ρυθμό. Κρίνεται πιθανό να μην επιλύθηκαν τα προβλήματα διαρροής που είχε και η παραγωγή του αερίου να ήταν στην πραγματικότητα μεγαλύτερη. Όμως

όπως και στο δείγμα με 0 ml ένζυμα το οποίο όμως υπέστει 3 μέρες υδρόλυση και ζύμωση, μας "βολεύει" τα ποσοστά αυτά να είναι πολύ χαμηλά επειδή σημαίνει πως η επεξεργασία που κάναμε όντως συνείσφερε στην παραγωγή μεθανίου.

Από άποψη προσαρμογής, το μοντέλο Gompertz μπορεί να προσαρμοστεί πολύ καλά σε τέτοια δεδομένα όπου η παραγωγή μεθανίου γίνεται σε παρόμοιο ρυθμό για όλη την διεργασία. Το μοντέλο που θα αντιστοιχήσει θα είναι ένα μοντέλο χαμηλού ρυθμού (με βάση την παραπάνω διάκριση), το οποίο όμως είναι το μόνο που μπορεί να ισχύει καθώς στην αρχή δεν υπάρχει μία απότομη παραγωγή αερίου ταχύτατα για να μπορεί να προσαρμοστεί κάτι διαφορετικό. Τα μοντέλα σε λεπτά και ώρες δεν προσαρμόζονται με τον ακριβώς ίδιο τρόπο, αλλά οι διαφορές τους είναι μικρές. Ο ειδικός ρυθμός ανάπτυξης είναι της τάξης του $0.0137 \frac{ml}{g \ sCOD \ min}$ ή $0.823 \frac{ml}{g \ sCOD \ hour}$. Τα άλλα μοντέλα που προσαρμόστηκαν με αργό ρυθμό ανάπτυξης είχαν κινητικές της τάξης του 0.03- $0.05 \frac{ml}{g \ sCOD \ min}$ οπότε αυτό είναι πιο αργό αλλά συγκρίσιμο με εκείνα.

(org-table-import-after-n-lines 3 <<untreated_fw_s1_r1()>> '(4))

Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$02/04_{10}:54$	0.0	0.0	0.0	0.0
$02/04_{12}:54$	120.0074	2.0001	0.2	0.2
$02/04_{13}:24$	150.0073	2.5001	0.0	0.2
$02/04_{13}:54$	180.0076	3.0001	0.1	0.3
$02/04_{14}$:24	210.0076	3.5001	0.1	0.4
$02/04_{14}$:54	240.0075	4.0001	0.0	0.4
$02/04_{15}$:24	270.0074	4.5001	0.0	0.4
$02/04_{15}:54$	300.0073	5.0001	0.0	0.4
$02/04_{16}$:24	330.0076	5.5001	0.1	0.5
$02/04_{16}:54$	360.0076	6.0001	0.1	0.6
$02/04_{17}$:24	390.0073	6.5001	0.0	0.6
$02/04_{17}$:54	420.0141	7.0002	0.1	0.7
$02/04_{19}:54$	540.0146	9.0002	0.2	0.9
$02/04_{21}:54$	660.0162	11.0003	0.1	1.0
$02/04_{23}$:54	780.0205	13.0003	0.1	1.1
$03/04_{01}:54$	900.0205	15.0003	0.1	1.2
$03/04_{03}$:54	1020.0203	17.0003	0.0	1.2
$03/04_{05}$:54	1140.0253	19.0004	0.1	1.3
$03/04_{07}$:54	1260.0272	21.0005	0.2	1.5
$03/04_{09}$:54	1380.0273	23.0005	0.1	1.6
$03/04_{12}:54$	1560.0362	26.0006	0.2	1.8
$03/04_{13}$:54	1620.036	27.0006	0.1	1.9
$03/04_{14}$:24	1650.037	27.5006	0.1	2.0
$03/04_{14}:54$	1680.7956	28.0133	0.0	2.0
$03/04_{15}$:26	1712.8415	28.5474	0.0	2.0
$03/04_{16}$:29	1775.1124	29.5852	0.0	2.0
$03/04_{17}$:29	1835.1168	30.5853	0.0	2.0
$03/04_{18}$:29	1895.1168	31.5853	0.0	2.0
$03/04_{20}$:29	2015.1168	33.5853	0.0	2.0

5.6 Update all

 $update_{hydrolysatetestss1r1}$

```
<<hydrolysate_0_s1_r1>>
<<hydrolysate_1_s1_r1>>
<<hydrolysate_2_s1_r1>>
<<hydrolysate_4_s1_r1>>
<<untreated_fw_s1_r1>>
model_fit_table_min = Tables.table(vcat(reshape(model_hydro_0_min, 1, 5),
    reshape(model_hydro_1_min, 1, 5), reshape(model_hydro_2_min, 1, 5),
    reshape(model_hydro_4_min, 1, 5), reshape(model_hydro_fw_min, 1, 5)),
\hookrightarrow
    header = [:Reactor_Name, :Production_Potential, :Production_Rate,
    :Lag_Time, :R_squared])
CSV.write(datadir("exp_pro",
    "methane_from_hydrolysate_kinetics_min_s1_r1.csv"),
    model_fit_table_min)
model_fit_table_hour = Tables.table(vcat(reshape(model_hydro_0_hour, 1,
    5), reshape(model_hydro_1_hour, 1, 5), reshape(model_hydro_2_hour, 1,
    5), reshape(model_hydro_4_hour, 1, 5), reshape(model_hydro_fw_hour, 1,
    5)), header = [:Reactor_Name, :Production_Potential, :Production_Rate,
    :Lag_Time, :R_squared])
CSV.write(datadir("exp_pro",
    "methane_from_hydrolysate_kinetics_hour_s1_r1.csv"),
    model_fit_table_hour)
return("../data/exp_pro/methane_from_hydrolysate_kinetics_min_s1_r1.csv")
```

Table 7: Kinetics with timescale in hours ${
m Reactor_{Name}}$ Production_{Potential} Production_{Rate} $\mathrm{Lag}_{\mathrm{Time}}$ R_{squared} Reactor 0 5.129 0.1480.00.928Reactor 1 12.333 0.29 0.0 0.933 Reactor 2 7.414 0.1870.0 0.988 Reactor 4 6.449 0.1810.00.976FW 1 2.296 0.081 0.00.984

Table 8: Kinetics with timescale in minutes $Reactor_{Name}$ Production_{Potential} $Production_{Rate}$ Lag_{Time} R_{squared} Reactor 0 5.1290.0020.00.928Reactor 1 12.334 0.0050.0 0.933 Reactor 2 7.4710.003 0.0 0.986Reactor 4 6.418 0.003 0.00.976FW 1 2.369 0.001 0.00.982

5.7 Plotting Methane Potential

Σε αυτό το section θα γίνει ένα plot το οποίο θα συγκρίνει μέγιστο μεθάνιο (παραγωγή από οξικό) με αυτό που παράχθηκε από το FW. Το plotting θα γίνει μέσω του CairoMakie.jl

Table 9: SMA Kinetics in hours

$Reactor_{Name}$	$Methane_{Potential}$	SMA	Lag_{Time}	R_{sq}
Reactor 0	3.309	0.096	0.0	0.928
Reactor 1	8.256	0.163	0.0	0.905
Reactor 2	4.822	0.117	0.0	0.986
Reactor 4	4.255	0.105	0.0	0.956
FW 1	1.48	0.052	0.0	0.984

το οποίο είναι αρχετά featureful. Η διαδιχασία είναι πως βάζουμε όλους τους όγχους παραγόμενου μεθανίου σε ένα vector και εκτός από την απόλυτη τιμή, υπολογίζουμε και το ποσοστό του μέγιστου που πετυχαίνει το υδρόλυμα. Όπως έχουν αποθηχευτεί, αυτό είναι διαίρεση του στοιχείου i+5 με το i. Έπειτα φτιάχνουμε ένα string των ποσοστών αυτών μαζί με τα labels που τους αντιστοιχούν. Αυτό θα προστεθεί στο plot που φτιάχνουμε.

Έχοντας κάνει το preprocessing αυτό, ξεκινάμε την δημιουργία διαγραμμάτων. Φτιάχνουμε ένα figure και έναν άξονα πάνω σε αυτό όπου θα κάνουμε τα bar plots που θέλουμε. Οι μεταβλητές κdata και grp είναι απαραίτητες για να φτιαχτεί το plot. Το κdata λέει σε ποιό σημείο του άξονα κ θα πάει κάθε δεδομένο (όπως τα έχουμε ορίσει θα είναι από το 1 εώς το 5 δύο φορές) ενώ το grp λέει σε ποιό group θα ανήκει το κάθε πείραμα. Τα 5 πρώτα είναι στο group 1 (οξικό) ενώ τα άλλα στο 2 (υδρόλυμα). Ορίζουμε και το legend και το plot αυτό είναι έτοιμο. Από κάτω, κάνουμε insert το string με τα ποσοστά που υπολογίστηκε παραπάνω σε ένα text plot του Makie. Έπειτα, κάνουμε save το plot αυτό.

$BMP_{compplot}$

```
using CairoMakie
colors = Makie.wong_colors()
meth_vol = [meth_vol_acet_0, meth_vol_acet_1, meth_vol_acet_2,
meth_vol_acet_4, meth_vol_acet_fw, meth_vol_hydro_0, meth_vol_hydro_1,

→ meth_vol_hydro_2, meth_vol_hydro_4, meth_vol_hydro_fw]

percent_bmp = [meth_vol[i+5]/meth_vol[i] for i in 1:5]
string_bmp = vcat(string.(round.(percent_bmp.*100, digits = 2)).*" "%", ["0
\rightarrow ml", "1 ml", "2 ml", "4 ml", "Untreated \nFW"])
fig = Figure(size = (600, 400))
ax = Axis(fig[1,1], xticks = (1:5, ["0 ml", "1 ml", "2 ml", "4 ml",

    "Untreated FW"]),
         title = "Acetate vs Hydrolysate BMP - "*sludge*run, ylabel =
          xdata = [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
grp = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
barplot!(ax, xdata, meth_vol,
       dodge = grp,
       color = colors[grp])
```

Legend

Για να τρέξουμε αυτό το code block χωρίς προβλήματα, πρέπει να δώσουμε τιμή στο comp_name και να κάνουμε update τα tests ώστε να έχουμε τα σωστά.

```
<<update_acetate_tests_s1>>
<<update_hydrolysate_tests_s1_r1>>

comp_name = "s1_r1"
sludge = "Sludge 1 "
run = "Run 1"
<<BMP_comp_plot>>
```


% of Acetate BMP in Hydrolysates

```
Untreated 0 ml 1 ml 2 ml 4 ml FW 10.53 % 50.93 % 23.0 % 13.3 % 7.14 %
```

5.8 Comparing Kinetic Constants

Έχοντας συγκρίνει το μέγιστο παραγώμενο βιομεθάνιο μεταξύ οξικού και των υδρολυμάτων, αξίζει να συγκρίνουμε και τους ρυθμούς παραγωγής μεθανίου σε κάθε περίπτωση για να δούμε ποιό πείραμα είναι το καλύτερο. Πάλι δεν θα συγκρίνουμε τους ρυθμούς μεταξύ τους, αλλά θα τους συγκρίνουμε με βάση το οξικό τους. Επειδή αρκετά έχουν διαφορετικές μονάδες, θα κάνουμε read τα CSVs τους και θα κάνουμε τα απαραίτητα conversions. Για το πείραμα αυτό που υπάρχουν δυο ρυθμοί, θα πάρουμε τον αργό ρυθμό, καθώς ο γρήγορος είναι μάλλον έντονα επηρεασμένος από το οξικό.

```
acet_kinetics = CSV.read(datadir("exp_pro",
→ "methane_from_acetate_kinetics_"*sludge*".csv"), DataFrame)
hydro_kinetics = CSV.read(datadir("exp_pro", "methane_from_hydrolysate_kin_

    etics_"*timescale*"_"*sludge*"_"*run*".csv"),
→ DataFrame)
# Acetate rates are in minutes while hydrolysate in hours
acet_rates = acet_kinetics.Production_Rate
hydro_rates = hydro_kinetics.Production_Rate
# Convert Acetate rates to hours
acet_rates_hour = acet_rates.*60
# Find what percentage of acetate each hydrolysate is
acet_percent_hydro = round.((hydro_rates./acet_rates_hour).*100, digits =
# Create a new table with the 2 rates and their ratio
kinetic_comp = Tables.table(hcat(acet_kinetics.Reactor_Name,
acet_rates_hour, hydro_rates, acet_percent_hydro), header =
→ [:Reactor_Name, :Acetate, :Hydrolysate, :Ratio])
CSV.write(datadir("exp_pro",

¬ "kinetics_comparison_"*sludge*"_"*run*".csv"), kinetic_comp)

# We can also do this for SMA
acet_sma_kinetics = CSV.read(datadir("exp_pro",

    "sma_from_acetate_"*sludge*".csv"), DataFrame)

hydro_sma_kinetics = CSV.read(datadir("exp_pro",
# Acetate rates are in minutes while hydrolysate in hours
acet_sma = acet_sma_kinetics.SMA
hydro_sma = hydro_sma_kinetics.SMA
# SMA is commonly expressed per day so convert to days
acet_sma_day = round.(acet_sma.*(60*24), digits = 3)
hydro_sma_day = round.(hydro_sma.*24, digits = 3)
# Find what percentage of acetate each hydrolysate is
```

```
acet_percent_hydro_sma = round.((hydro_sma_day./acet_sma_day).*100, digits
\rightarrow = 4)
# Create a new table with the 2 rates and their ratio
sma_comp = Tables.table(hcat(acet_sma_kinetics.Reactor_Name, acet_sma_day,
hydro_sma_day, acet_percent_hydro_sma), header = [:Reactor_Name,
→ :Acetate, :Hydrolysate, :Ratio])
CSV.write(datadir("exp_pro",

¬ "kinetics_comparison_sma_"*sludge*"_"*run*".csv"), sma_comp)

<<update_acetate_tests_s1>>
<<update_hydrolysate_tests_s1_r1>>
sludge = "s1"
run = "r1"
timescale = "hour"
<<ad_kinetics_comparison>>
return("../data/exp_pro/kinetics_comparison_s1_r1.csv")
return("../data/exp_pro/kinetics_comparison_sma_s1_r1.csv")
   Εκτός από αυτή την σύγκριση, θα κάνουμε και μία σύγκριση ρυθμών βασιζόμενοι στον
"μέγιστο" στιγμιαίο ρυθμό παραγωγής που υπολογίζεται αλγεβρικά και όχι με χρήση μον-
τέλου. Αυτοί οι ρυθμοί έχουν γίνουν eval'd για κάθε μοντέλο οπότε μπορούν να γίνουν
exported εδώ για περαιτέρω χρήση.
reactors = ["Reactor 0", "Reactor 1", "Reactor 2", "Reactor 4", "Reactor
→ FW"]
max_rate_acet = round.(vcat(max_rate_acet_0, max_rate_acet_1,
max_rate_acet_2, max_rate_acet_4, max_rate_acet_fw), digits = 3)
max_rate_hydro = round.(vcat(max_rate_hydro_0, max_rate_hydro_1,
max_rate_hydro_2, max_rate_hydro_4, max_rate_hydro_fw), digits = 3)
ratio = round.((max_rate_hydro./max_rate_acet)*100, digits = 3)
max_rate_comp = Tables.table(hcat(reactors, max_rate_acet, max_rate_hydro,
→ ratio), header = [:Reactor, :Acetate, :Hydrolysate, :Ratio])
CSV.write(datadir("exp_pro",
→ "manual_max_rate_comp_"*sludge*"_"*run*".csv"), max_rate_comp)
<<update_acetate_tests_s1>>
<<upd><<upd><<upd>te_hydrolysate_tests_s1_r1>>
sludge = "s1"
run = "r1"
```

```
<<manual_rate_comparison>>
return("../data/exp_pro/manual_max_rate_comp_s1_r1.csv")

(org-table-import-after-n-lines 4 <<kinetics_comp_s1_r1()>> '(4))
```

Table 10: Kinetic Comparison with timescale in hours

$Reactor_{Name}$	Acetate	Hydrolysate	Ratio
Reactor 0	459.84	0.148	0.0322
Reactor 1	326.88	0.29	0.0887
Reactor 2	374.04	0.187	0.05
Reactor 4	579.0	0.181	0.0313
Reactor FW	294.06	0.081	0.0275

(org-table-import-after-n-lines 4 <<sma_comp_s1_r1()>> '(4))

Table 11: SMA Comparison with timescale in days

$Reactor_{Name}$	Acetate	Hydrolysate	Ratio	
Reactor 0	7119.36	2.304	0.0324	
Reactor 1	5061.6	3.912	0.0773	
Reactor 2	5676.48	2.808	0.0495	
Reactor 4	8965.44	2.52	0.0281	
Reactor FW	4554.72	1.248	0.0274	

(org-table-import-after-n-lines 3 <<manual_rates_s1_r1()>> '(4))

Table 12: Max Rate Manually with timescale in hours

Reactor	Acetate	Hydrolysate	Ratio	
Reactor 0	1025.641	11.976	1.168	
Reactor 1	643.564	36.232	5.63	
Reactor 2	555.556	0.989	0.178	
Reactor 4	1081.081	5.988	0.554	
Reactor FW	705.882	0.2	0.028	

5.9 Plotting Comparison Plots

Εκτός από τα παραπάνω, ένα χρήσιμο διάγραμμα θα ήταν να φαίνονται στο ίδιο figure και τα 5 πειράματα με τα υδρολύματα, το οποίο είναι πολύ χρήσιμο για μία όπτικη σύγκριση τους. Καθώς δεν κάνουμε save όλα τα απαραίτητα στοιχεία, το plot θα φτιαχτεί step wise κάνοντας update κάθε καμπύλη.

```
colors = ["#009AFA","#E36F47","#3EA44E","#C371D2","#AC8E18"]
```

```
<<hydrolysate_0_s1_r1>>
methane_s1_r1_comp = scatter(exp_hour, cumsum(exp_meth_vol), markersize =
→ 4, legend = :outerright, label = "Hydrolysate (0 ml mix) Exp", xlabel
→ = "Time (hour)", ylabel = "Cumulative Methane Volume (mL)",
→ markercolor = colors[1], size = (1000, 600), legendfontsize = 12,
→ labelfontsize = 14, tickfontsize = 12, left_margin=3Plots.mm,
→ bottom_margin=3Plots.mm)
plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_0_hour[2:4]), label =
→ "Hydrolysate (0 ml mix) Theoretical\n with "*L"R^2 =

    "*string(model_hydro_0_hour[5]), linecolor = colors[1])

<<hydrolysate_1_s1_r1>>
scatter!(methane_s1_r1_comp, exp_hour, cumsum(exp_meth_vol), markersize =
→ 4, label = "Hydrolysate (1 ml mix) Exp", markercolor = colors[2])
plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_1_hour[2:4]), label =
→ "Hydrolysate (1 ml mix) Theoretical\n with "*L"R^2 =

    "*string(model_hydro_1_hour[5]), linecolor = colors[2])

<<hydrolysate_2_s1_r1>>
scatter!(methane_s1_r1_comp, exp_hour, cumsum(exp_meth_vol), markersize =

→ 4, label = "Hydrolysate (2 ml mix) Exp", markercolor = colors[3])

plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_2_hour[2:4]), label =
→ "Hydrolysate (2 ml mix) Theoretical\n with "*L"R^2 =
→ "*string(model_hydro_2_hour[5]), linecolor = colors[3])
<<hydrolysate_4_s1_r1>>
scatter!(methane_s1_r1_comp, exp_hour, cumsum(exp_meth_vol), markersize =

→ 4, label = "Hydrolysate (4 ml mix) Exp", markercolor = colors[4])

plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_4_hour[2:4]), label =
\rightarrow "Hydrolysate (4 ml mix) Theoretical\n with "*L"R^2 =
   "*string(model_hydro_4_hour[5]), linecolor = colors[4])
<<untreated_fw_s1_r1>>
scatter!(methane_s1_r1_comp, exp_hour, cumsum(exp_meth_vol), markersize =

→ 4, label = "Untreated FW Exp", markercolor = colors[5])

plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_fw_hour[2:4]), label =
→ "Untreated FW Theoretical\n with "*L"R^2 =
→ "*string(model_hydro_fw_hour[5]), linecolor = colors[5])
savefig(methane_s1_r1_comp, plotsdir("BMPs", "methane_s1_r1_comp.svg"))
```


5.10 Σ υμπεράσματα του πειραματικού κύκλου αυτού

Το πείραμα αυτό ήταν το πρώτο πείραμα όπου τροφοδοτήσαμε με υδρολύματα από FW για να δούμε την απόχριση του συστήματος σε αυτά.

Ο κύκλος αυτός είχε κάποια προβλήματα στην ανάλυση δεδομένων, αλλά μετά από κάποια επεξεργασία, ήρθαν σε μία μορφή η οποία βγάζει νόημα και είναι συγκρίσιμη με την άλλη επανάληψη, η οποία φαίνεται παρακάτω.

Μία περίεργη παρατήρηση η οποία σίγουρα αξίζει να σημειωθεί είναι πως κανένα από τα μοντέλα δεν είχε lag time. Αυτό είχε παρατηρηθεί και στα πειράματα με το οξικό. Γενικά, το lag time είναι μία φυσική παράμετρος του συστήματος που εκφράζει πόσο γρήγορα αντιδρά το σύστημα με μία αλλαγή στο περιβάλλον του. Για την προσθήκη οξικού είναι λογικό το μηδενικό lag time καθώς είναι το ιδανικό υπόστρωμα του συστήματος. Για το υδρόλυμα, θα αναμενόταν πιθανόν κάποιο lag time, αλλά στο πείραμα αυτό δεν παρατηρήθηκε κάτι τέτοιο.

Ως προς το biomethane potential (BMP) του συστήματος, όπως θα αναμενόταν τα υδρολύματα παρήγαγαν λιγότερο μεθάνιο από το οξικό. Για την σύγκριση των πειράματων, έγινε έμμεσα συγκρίνοντας τι ποσοστό του αντίστοιχου οξικού ήταν το καθένα. Η χαμηλότερη παραγωγικότητα ήταν από το FW, το οποίο είναι καλό συμπέρασμα επειδή δείχνει την σημασία της προεπεξεργασίας. Υπήρχε μία υπόθεση ότι μπορεί να διέρρεε αέριο από το δοχείο αυτό, αλλά εν τέλει, με βάση τα πειράματα του 2ου κύκλου, έγινε overacidification το οποίο οδήγησε σε κατάρρευση του συστήματος.

 Λ όγω των προβλημάτων που παρουσιάστηκαν και για να επιβεβαιώσουμε αν είναι επαναλήψιμα αυτά, έγινε και ένα δεύτερο πείραμα με τις ίδιες συνθήκες για να δούμε τα αποτελέσματα του.

5.11 Code Block για Tangling

Έχοντας κάνει όλη αυτήν την ανάλυση, κάνουμε tangle ένα συνολικό code block σε ένα julia script file για sharing. Λόγω του structure του αρχείου αυτού και το ότι βασίζεται αρκετά στο org babel και το noweb syntax, το script file θα έχει αναγκαστικά πολλές επαναλήψεις. Αλλά θα είναι perfectly usable σε άλλο υπολογιστή θεωρητικά.

```
<<update_acetate_tests_s1>>
sma_table = Tables.table(vcat(reshape(sma_acet_0, 1, 5),

¬ reshape(sma_acet_1, 1, 5), reshape(sma_acet_2, 1, 5),

→ reshape(sma_acet_4, 1, 5), reshape(sma_acet_fw, 1, 5)), header =
   [:Reactor_Name, :Methane_Potential, :SMA, :Lag_Time, :R_sq])
CSV.write(datadir("exp_pro", "sma_from_acetate_s1.csv"), sma_table)
<<update_hydrolysate_tests_s1_r1>>
sma_table = Tables.table(vcat(reshape(sma_hydro_0, 1, 5),
\rightarrow reshape(sma_hydro_1, 1, 5), reshape(sma_hydro_2, 1, 5),

→ reshape(sma_hydro_4, 1, 5), reshape(sma_hydro_fw, 1, 5)), header =
CSV.write(datadir("exp_pro", "sma_from_hydrolysate_s1_r1.csv"), sma_table)
comp_name = "s1_r1"
sludge = "Sludge 1 "
run = "Run 1"
<<BMP_comp_plot>>
sludge = "s1"
run = "r1"
timescale = "hour"
<<ad_kinetics_comparison>>
<<manual_rate_comparison>>
```

6 FW Hydrolysate S1_{R2} Processing

Στο section αυτό θα αναλυθούν τα αποτελεσματα του δεύτερου πειράματος που χρησιμοποιήσε FW hydrolysate ως υπόστρωμα ($S1_{R2}$ επειδή είναι το δεύτερο run με την πρώτη λάσπη). Βρίσκεται σε πλήρη αντιστοιχία με το προηγούμενο πείραμα και έγινε για επαναληψιμότητα. Οπότε, σκοπός είναι να εξετάσουμε αν είναι παρόμοιο με το προηγούμενο ή αν διαφέρει σημαντικά και στην περίπτωση του 2ου, να κρίνουμε ποιά από τις δύο περιπτώσεις είναι πραγματικά ο outlier. Τα σχόλια για το τι είναι κάθε δείγμα θα μείνουν ίδια με παραπάνω για υπενθύμιση.

6.1 Reactor 0

Το δείγμα αυτό είναι labelled ως δείγμα 0 καθώς είναι το δείγμα το οποίο τροφοδοτήθηκε με treated FW, όμως χωρίς προσθήκη του μιξ ενζύμων και μικροοργανισμών. Όπως έχουμε δεί, όλες οι αντιδράσεις που γίνονται κατά την υδρόλυση και ζύμωση μπορούν να γίνουν και χωρίς το μιξ. Όμως, γινόντουσαν πιο αποτελεσματικά με την προσθήκη αυτού. Οπότε, ελπίζουμε πως το δείγμα αυτό θα έχει χειρότερα αποτελέσματα από τα άλλα, το οποίο θα μας οδηγήσει στην υπόθεση ότι το μιξ βελτιώνει όχι μόνο τα κριτήρια υδρόλυσης και οξεογένεσης αλλά και αυτό της μεθανογένεσης.

 $hydrolysate_{0s1r2}$

```
<<date_saving_fw_s1_r2>>
inds = 1:73
exp_meth_vol = [0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.05, 0.1, 0.1, 0.05,
\rightarrow 0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0, 0, 0,
\rightarrow 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.05, 0.05, 0.1, 0.05, 0, 0, 0.05,
\rightarrow 0.05, 0.05, 0.1, 0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.05, 0.05,
\rightarrow 0.05, 0.05, 0, 0.05, 0, 0.02, 0.02, 0.01, 0, 0, 0, 0, 0, 0, 0]
meth_vol_hydro_0 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_0_s1_r2"
source = "Hydrolyzed FW"
reactor = "Reactor 0"
sludge = "Sludge 1"
run_num = "Run 2"
input_vs = 1.55
<<br/>bmp_data_processing>>
max_rate_hydro_0 = max_manual_rate
# The same model is fit either with min or hour
p0 = [5.0, 0.04, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_0_min = vcat(reactor, round.(model_params, digits = 4),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [4.0, 0.1, 1.0]
<<br/>bmp_curve_fitting_hour>>
model_hydro_0_hour = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_0 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
6.1.1 Results
Παρακάτω φαίνονται τα αποτελέσματα του σχετικού πειράματος.
(org-table-import-after-n-lines 3 <<hydrolysate_0_s1_r2()>> '(4))
```

Data Analysis on Hydrolysate with 0 ml

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, .				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{c} 04/04_{00};29 & 591.8898 & 9.8648 & 0.05 \\ 04/04_{01};29 & 831.8898 & 11.8648 & 0.1 \\ 04/04_{01};29 & 831.8898 & 13.8648 & 0.1 \\ 04/04_{06};29 & 951.8898 & 15.8648 & 0.05 \\ 04/04_{06};29 & 951.8898 & 15.8648 & 0.05 \\ 04/04_{01};29 & 1071.8939 & 17.8649 & 0.1 \\ 04/04_{12};29 & 1311.9002 & 21.865 & 0.1 \\ 04/04_{12};29 & 1311.9002 & 21.865 & 0.1 \\ 04/04_{14};29 & 1431.9003 & 23.865 & 0.1 \\ 04/04_{14};29 & 1551.9002 & 25.865 & 0.1 \\ 04/04_{16};29 & 1551.9002 & 25.865 & 0.1 \\ 04/04_{20};29 & 1791.9215 & 29.8654 & 0.1 \\ 04/04_{20};29 & 1791.9215 & 29.8654 & 0.1 \\ 04/04_{20};29 & 1911.9228 & 31.8654 & 0.1 \\ 05/04_{00};29 & 2031.9178 & 33.8653 & 0.1 \\ 05/04_{00};29 & 2031.9178 & 33.8653 & 0.1 \\ 05/04_{00};29 & 2391.9224 & 39.8654 & 0.1 \\ 05/04_{00};29 & 2571.92218 & 37.8654 & 0.1 \\ 05/04_{00};29 & 2571.9224 & 41.8654 & 0.0 \\ 05/04_{00};29 & 2571.9224 & 41.8654 & 0.0 \\ 05/04_{00};39 & 2571.9224 & 41.8654 & 0.0 \\ 05/04_{01};37 & 2640.1985 & 44.0033 & 0.0 \\ 05/04_{10};37 & 2640.1985 & 44.0033 & 0.0 \\ 05/04_{10};39 & 2642.1984 & 44.0366 & 0.0 \\ 05/04_{11};40 & 2703.3506 & 45.0588 & 0.0 \\ 05/04_{11};40 & 2703.3506 & 45.0588 & 0.0 \\ 05/04_{11};40 & 2703.3506 & 46.0559 & 0.1 \\ 05/04_{10};40 & 2643.1753 & 44.0529 & 0.0 \\ 05/04_{11};40 & 2703.3506 & 46.0559 & 0.1 \\ 05/04_{11};40 & 2703.3506 & 46.0559 & 0.0 \\ 05/04_{11};40 & 2703.3506 & 50.0559 & 0.1 \\ 05/04_{11};40 & 2703.3506 & 46.0559 & 0.0 \\ 05/04_{11};40 & 2703.3506 & 50.0559 & 0.1 \\ 05/04_{12};40 & 363.3701 & 60.0562 & 0.1 \\ 05/04_{12};40 & 363.3701 & 60.0562 & 0.05 & 2.25 \\ 06/04_{00};40 & 3843.3733 & 60.0562 & 0.05 & 2.25 \\ 06/04_{00};40 & 3843.3733 & 60.0562 & 0.05 & 2.25 \\ 06/04_{00};40 & 3843.3733 & 60.0562 & 0.05 & 2.25 \\ 06/04_{01};40 & 4083.3893 & 70.0564 & 0.05 & 2.55 \\ 06/04_{12};40 & 4083.3893 & 70.0564 & 0.05 & 2.55 \\ 06/04_{12};40 & 4083.3893 & 70.0565 & 66 & 0.05 & 2.55 \\ 06/04_{12};40 & 4803.3893 & 70.0565 & 66 & 0.05 & 2.85 \\ 07/04_{01};40 & 4983.3893 & 80.0565 & 66 & 0.05 & 2.85 \\ 07/04_{02};40 & 4683.3893 & 80.0565 & 66 & 0.05 & 2.85 \\ 07/04_{02};4$, -				
$\begin{array}{c} 04/04_{02}:29 & 711.8898 & 11.8648 & 0.1 & 0.55 \\ 04/04_{06}:29 & 951.8898 & 13.8648 & 0.1 & 0.55 \\ 04/04_{06}:29 & 951.8898 & 15.8648 & 0.05 & 0.6 \\ 04/04_{06}:29 & 1071.8939 & 17.8649 & 0.1 & 0.7 \\ 04/04_{10}:29 & 1191.8998 & 19.865 & 0.1 & 0.8 \\ 04/04_{12}:29 & 1311.9002 & 21.865 & 0.1 & 0.9 \\ 04/04_{14}:29 & 1431.9003 & 23.865 & 0.1 & 1.0 \\ 04/04_{16}:29 & 1551.9002 & 25.865 & 0.1 & 1.1 \\ 04/04_{18}:29 & 1671.9187 & 27.8653 & 0.05 & 1.15 \\ 04/04_{20}:29 & 1791.9215 & 29.8654 & 0.1 & 1.25 \\ 04/04_{22}:29 & 1911.9228 & 31.8654 & 0.1 & 1.35 \\ 05/04_{00}:29 & 2031.9178 & 33.8653 & 0.1 & 1.45 \\ 05/04_{00}:29 & 2715.9188 & 35.8653 & 0.1 & 1.55 \\ 05/04_{00}:29 & 2719.1918 & 37.8654 & 0.1 & 1.55 \\ 05/04_{06}:29 & 2391.9224 & 41.8654 & 0.1 & 1.75 \\ 05/04_{06}:29 & 2571.9221 & 42.8654 & 0.0 & 1.75 \\ 05/04_{06}:29 & 2571.9221 & 42.8654 & 0.0 & 1.75 \\ 05/04_{01}:37 & 2640.1985 & 44.0033 & 0.0 & 1.75 \\ 05/04_{10}:38 & 2641.1985 & 44.023 & 0.0 & 1.75 \\ 05/04_{10}:39 & 2642.1984 & 44.0266 & 0.0 & 1.75 \\ 05/04_{11}:40 & 2703.3506 & 45.0558 & 0.0 & 1.75 \\ 05/04_{11}:40 & 2703.3506 & 45.0558 & 0.0 & 1.75 \\ 05/04_{12}:40 & 2763.3564 & 46.0559 & 0.1 & 1.95 \\ 05/04_{12}:40 & 2763.3564 & 46.0559 & 0.1 & 1.95 \\ 05/04_{12}:40 & 2763.3564 & 46.0559 & 0.1 & 1.95 \\ 05/04_{12}:40 & 2763.3564 & 46.0559 & 0.1 & 1.95 \\ 05/04_{12}:40 & 2763.3564 & 46.0559 & 0.1 & 1.95 \\ 05/04_{12}:40 & 3243.3636 & 54.0561 & 0.1 & 2.05 \\ 06/04_{02}:40 & 3043.3698 & 58.0562 & 0.05 & 2.25 \\ 06/04_{04}:40 & 3243.3636 & 54.0561 & 0.1 & 2.05 \\ 06/04_{02}:40 & 3843.3753 & 64.0563 & 0.0 & 2.4 \\ 06/04_{06}:40 & 3843.3753 & 64.0563 & 0.0 & 2.4 \\ 06/04_{06}:40 & 3843.3753 & 64.0563 & 0.0 & 2.4 \\ 06/04_{06}:40 & 3843.3753 & 64.0563 & 0.0 & 5 & 2.5 \\ 06/04_{14}:40 & 4203.3853 & 70.0564 & 0.05 & 2.25 \\ 06/04_{14}:40 & 4203.3853 & 70.0564 & 0.05 & 2.5 \\ 06/04_{14}:40 & 4203.3853 & 70.0564 & 0.05 & 2.5 \\ 06/04_{14}:40 & 4803.3889 & 80.0565 & 66 & 0.05 & 2.8 \\ 07/04_{06}:40 & 4803.3899 & 80.0565 & 66 & 0.05 & 2.8 \\ 07/04_{06}:40 & 4803.3899 & 80.0565 & 60.05 & 2.8 $,				
$\begin{array}{c} 04/04_{04}:29 \\ 04/04_{06}:29 \\ 951.8898 \\ 15.8648 \\ 0.05 \\ 0.1 \\ 0.1 \\ 0.7 \\ 04/04_{06}:29 \\ 1071.8939 \\ 17.8649 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.8 \\ 04/04_{12}:29 \\ 1311.9002 \\ 21.865 \\ 0.1 \\ 0.9 \\ 04/04_{14}:29 \\ 1431.9003 \\ 23.865 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0$,				
$\begin{array}{c} 04/04_{06}:29 & 951.8898 & 15.8648 & 0.05 & 0.6 \\ 04/04_{08}:29 & 1071.8939 & 17.8649 & 0.1 & 0.7 \\ 04/04_{10}:29 & 1191.8998 & 19.865 & 0.1 & 0.9 \\ 04/04_{12}:29 & 1311.9002 & 21.865 & 0.1 & 1.0 \\ 04/04_{12}:29 & 1551.9002 & 25.865 & 0.1 & 1.1 \\ 04/04_{18}:29 & 1551.9002 & 25.865 & 0.1 & 1.1 \\ 04/04_{18}:29 & 1671.9187 & 27.8653 & 0.05 & 1.15 \\ 04/04_{20}:29 & 1791.9215 & 29.8654 & 0.1 & 1.25 \\ 04/04_{22}:29 & 1911.9228 & 31.8654 & 0.1 & 1.35 \\ 05/04_{02}:29 & 2031.9178 & 33.8653 & 0.1 & 1.45 \\ 05/04_{02}:29 & 2031.9178 & 33.8653 & 0.1 & 1.45 \\ 05/04_{02}:29 & 2151.9188 & 35.8653 & 0.1 & 1.55 \\ 05/04_{02}:29 & 2271.9218 & 37.8654 & 0.1 & 1.65 \\ 05/04_{03}:29 & 2271.9218 & 37.8654 & 0.1 & 1.65 \\ 05/04_{03}:29 & 2571.9224 & 41.8654 & 0.0 & 1.75 \\ 05/04_{03}:29 & 2571.9221 & 42.8654 & 0.0 & 1.75 \\ 05/04_{03}:39 & 2641.1985 & 44.02 & 0.0 & 1.75 \\ 05/04_{10}:39 & 2642.1984 & 44.033 & 0.0 & 1.75 \\ 05/04_{10}:39 & 2642.1985 & 44.02 & 0.0 & 1.75 \\ 05/04_{10}:40 & 2643.1753 & 44.0529 & 0.0 & 1.75 \\ 05/04_{11}:40 & 2703.3506 & 45.0558 & 0.0 & 1.75 \\ 05/04_{14}:40 & 2883.3563 & 48.0559 & 0.1 & 1.85 \\ 05/04_{14}:40 & 2763.3564 & 46.0559 & 0.1 & 1.85 \\ 05/04_{14}:40 & 2763.3564 & 46.0559 & 0.1 & 1.85 \\ 05/04_{14}:40 & 2883.3636 & 54.0558 & 0.0 & 1.75 \\ 05/04_{14}:40 & 2833.3636 & 54.0561 & 0.1 & 2.05 \\ 05/04_{14}:40 & 303.3701 & 60.0562 & 0.1 & 2.05 \\ 06/04_{02}:40 & 3603.3701 & 60.0562 & 0.1 & 2.25 \\ 06/04_{04}:40 & 3723.37 & 62.0562 & 0.05 & 2.25 \\ 06/04_{04}:40 & 3723.37 & 62.0562 & 0.05 & 2.25 \\ 06/04_{04}:40 & 3723.37 & 62.0562 & 0.05 & 2.25 \\ 06/04_{14}:40 & 4203.3853 & 70.0564 & 0.05 & 2.5 \\ 06/04_{14}:40 & 4203.3853 & 70.0564 & 0.05 & 2.5 \\ 06/04_{14}:40 & 4203.3853 & 70.0564 & 0.05 & 2.5 \\ 06/04_{14}:40 & 4203.3853 & 70.0564 & 0.05 & 2.5 \\ 06/04_{14}:40 & 4203.3853 & 70.0564 & 0.05 & 2.5 \\ 06/04_{14}:40 & 4203.3853 & 70.0564 & 0.05 & 2.5 \\ 06/04_{14}:40 & 4203.3853 & 70.0565 & 60.05 & 2.85 \\ 07/04_{04}:40 & 4803.3998 & 80.0565 & 60.05 & 2.85 \\ 07/04_{04}:40 & 4803.3998 & 80.0565 & 60.05 & 2.85 \\ 07/04_{04}:$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$07/04_{02}$:40 5043.3998 84.0567 0.1 2.95 $07/04_{04}$:40 5163.3999 86.0567 0.1 3.05	,				
$07/04_{04}:40$ 5163.3999 86.0567 0.1 3.05	,				
,	,				
	$07/04_{06}:40$	5283.3998	88.0567	0.1	3.15

6.2 Reactor 1

Το δείγμα αυτό τροφοδοτήθηκε με το υδρόλυμα το οποίο είχε προσθήκη 1 ml mix. Στο αρχικό κινητικό πείραμα, το δείγμα αυτό είχε αρκετά παρόμοια συμπεριφορά με το 0 και χειρότερη αυτής του 1. Από την μέτρηση του COD του, είχε αναπάντεχα υψηλό sCOD. Αυτό σημαίνει είτε πως έγινε κάποιο λάθος στην ανάλυση ή ότι απλώς έγινε πολύ καλύτερη υδρόλυση από ότι περιμέναμε στο πείραμα αυτό. Με βάση το sCOD του, αναμένεται να έχει καλά αποτελέσματα. Με βάση την HPLC του αρχικού πειράματος, θα περιμέναμε να είναι λίγο καλύτερο από το 0.

 $hydrolysate_{1s1r2}$

```
### Data Analysis on Hydrolysate with 1 ml ###
<date_saving_fw_s1_r2>>
inds = 2:75
\rightarrow 0.1, 0.05, 0.1, 0, 0, 0, 0.1, 0.1, 0.2, 0.4, 0.5, 0.2, 0.1, 0.1, 0.2,
\rightarrow 0, 0.1, 0.2, 0.2, 0.1, 0.3, 0.1, 0.1, 0, 0.1, 0.2, 0.2, 0.1, 0.2, 0.2,
\rightarrow 0.1, 0.1, 0, 0.1, 0.2, 0, 0.1, 0.1, 0.2, 0.2, 0.1, 0, 0, 0, 0, 0]
meth_vol_hydro_1 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_1_s1_r2"
source = "Hydrolyzed FW"
reactor = "Reactor 1"
sludge = "Sludge 1"
run_num = "Run 2"
input_vs = 1.5
p0 = [13.0, 1.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_hydro_1 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_hydro_1_min = vcat(reactor, round.(model_params, digits = 4),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [20.0, 0.5, 1.0]
<<br/>bmp_curve_fitting_hour>>
model_hydro_1_hour = vcat(reactor, round.(model_params, digits = 3),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_1 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
```

(org-table-import-after-n-lines 3 <<hydrolysate_1_s1_r2()>> '(4))

6.2.1 Results

Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$03/04_{14}:45$	0.0	0.0	0.0	0.0
$03/04_{14}:51$	6.137	0.1023	0.0	0.0
$03/04_{14}$:56	11.1825	0.1864	0.0	0.0
$03/04_{15}$:29	43.4534	0.7242	0.0	0.0
$03/04_{16}$:29	103.4538	1.7242	0.0	0.0
$03/04_{17}$:29	163.4582	2.7243	0.2	0.2
$03/04_{18}$:29	223.4582	3.7243	0.2	0.4
$03/04_{20}$:29	343.4582	5.7243	0.2	0.6
$03/04_{22}$:29	463.4582	7.7243	0.2	0.8
$04/04_{00}$:29	583.4649	9.7244	0.2	1.0
$04/04_{02}$:29	703.4649	11.7244	0.2	1.2
$04/04_{04}$:29	823.465	13.7244	0.2	1.4
$04/04_{06}$:29	943.4649	15.7244	0.2	1.6
$04/04_{08}$:29	1063.469	17.7245	0.2	1.8
$04/04_{10}$:29	1183.4749	19.7246	0.2	2.0
$04/04_{12}:29$	1303.4754	21.7246	0.2	2.2
$04/04_{14}$:29	1423.4755	23.7246	0.2	2.4
$04/04_{16}$:29	1543.4754	25.7246	0.2	2.6
$04/04_{18}:29$	1663.4938	27.7249	0.2	2.8
$04/04_{20}$:29	1783.4966	29.7249	0.2	3.0
$04/04_{22}$:29	1903.4979	31.725	0.2	3.2
$05/04_{00}$:29	2023.493	33.7249	0.05	3.25
$05/04_{02}$:29	2143.4939	35.7249	0.1	3.35
$05/04_{04}:29$	2263.4969	37.7249	0.2	3.55
$05/04_{06}$:29	2383.4976	39.725	0.2	3.75
$05/04_{08}$:29	2503.4975	41.725	0.2	3.95
$05/04_{09}$:29	2563.4972	42.725	0.2	4.15
$05/04_{10}:37$	2631.7736	43.8629	0.1	4.25
$05/04_{10}$:38	2632.7736	43.8796	0.05	4.3
$05/04_{10}:39$	2633.7736	43.8962	0.1	4.4
$05/04_{10}:40$	2634.7504	43.9125	0.0	4.4
$05/04_{11}:40$	2694.9257	44.9154	0.0	4.4
$05/04_{12}:40$	2754.9315	45.9155	0.0	4.4
$05/04_{14}:40$	2874.9314	47.9155	0.1	4.5
$05/04_{16}:40$	2994.9319	49.9155	0.1	4.6
$05/04_{18}:40$	3114.9378	51.9156	0.2	4.8
$05/04_{20}:40$	3234.9387	53.9156	0.4	5.2
$05/04_{20}$:40	3354.9413	55.9157	0.5	5.7
$06/04_{22}$:40	3474.945	57.9157	0.2	5.9
$06/04_{02}:40$	3594.9452	59.9158	0.1	6.0
$06/04_{04}:40$	3714.9451	61.9158	0.1	6.1
$06/04_{06}:40$	3834.9504	63.9158	0.2	6.3
$06/04_{08}:40$	3954.9524	65.9159	0.0	6.3
$06/04_{10}:40$	4074.9524	67.9159	0.0	6.4
$06/04_{10}.40$ $06/04_{12}:40$	4194.9604	69.916	0.2	6.6
$06/04_{14}:40$	4314.9606	71.916	0.2	6.8
,	4434.9633			
$06/04_{16}:40$		73.9161	$0.1 \\ 0.3$	$6.9 \\ 7.2$
$06/04_{18}:40$	4554.964	75.9161		
$06/04_{20}:40$	4674.9641	77.9161	0.1	7.3
$06/04_{22}:40$	4794.9641	79.9161	0.1	7.4
$07/04_{00}:40$	4914.9743	81.9162	69 0.0	7.4
$07/04_{02}:40$	5034.9749	83.9162	0.1	7.5
$07/04_{04}:40$	5154.975	85.9163	0.2	7.7
$07/04_{06}:40$	5274.9749	87.9162	0.2	7.9
$07/04_{08}$:40	5394.9769	89.9163	0.1	8.0

6.3 Reactor 2

Το δείγμα το οποίο στην υδρόλυση είχε 2 ml από το μιξ. Με βάση το αρχικό πείραμα υδρόλυσης, αυτό και το 4 ml είχαν το καλύτερο performance και ελάχιστη διαφορά μεταξύ τους (κατά βάση στην συγκέντρωση γαλακτικού οξέος) οπότε θα αναμέναμε εδώ να παρατηρηθεί η καλύτερη μεθανογένεση.

 $hydrolysate_{2s1r2}$

Data Analysis on Hydrolysate with 2 ml

```
<date_saving_fw_s1_r2>>
inds = 4:75
exp_meth_vol = [0, 0.1, 0.1, 1.3, 0, 0.2, 0.1, 0.4, 0.5, 0.2, 0.1, 0.5, 0,
\rightarrow 0.1, 0.2, 0.2, 0.2, 0.1, 0.05, 0.05, 0.05, 0, 0.1, 0.1, 0, 0, 0, 0.1,
\rightarrow 0.1, 0.2, 0.05, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2,
\rightarrow 0.1, 0.05, 0.05, 0, 0.05, 0.1, 0.1, 0, 0.05, 0.1, 0.1, 0.2, 0.2, 0,
\rightarrow 0.1, 0.1, 0, 0, 0, 0, 0, 0.05, 0.05, 0.05, 0, 0, 0, 0]
meth_vol_hydro_2 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_2_s1_r2"
source = "Hydrolyzed FW"
reactor = "Reactor 2"
sludge = "Sludge 1"
run_num = "Run 2"
input_vs = 1.55
<<br/>bmp_data_processing>>
max_rate_hydro_2 = max_manual_rate
p0 = [10.0, 1.50, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_2_min = vcat(reactor, round.(model_params, digits = 4),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [10.0, 0.1, 0.03]
<<br/>bmp_curve_fitting_hour>>
model_hydro_2_hour = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_2 = vcat(reactor, round.(model_params, digits = 3),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
6.3.1 Results
(org-table-import-after-n-lines 3 <<hydrolysate_2_s1_r2()>> '(4))
```

Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$03/04_{14}:56$	0.0	0.0	0.0	0.0
$03/04_{14}.90$ $03/04_{15}:29$	32.2709	0.5378	0.0	0.0
$03/04_{16}:29$	92.2712	1.5379	0.1	0.1
$03/04_{16}.29$ $03/04_{17}:29$	152.2757	2.5379	1.3	1.5
$03/04_{17}.29$ $03/04_{18}:29$	212.2757	3.5379	0.0	1.5
$03/04_{18}.29$ $03/04_{20}:29$	332.2757	5.5379	0.0	1.7
$03/04_{20}.29$ $03/04_{22}:29$	452.2757	7.5379	0.2	1.8
$03/04_{22}.29$ $04/04_{00}:29$	572.2824	9.538	$0.1 \\ 0.4$	$\frac{1.6}{2.2}$
$04/04_{00}.29$ $04/04_{02}:29$	692.2824	9.538	$0.4 \\ 0.5$	$\frac{2.2}{2.7}$
$04/04_{02}.29$ $04/04_{04}:29$			0.3	2.9
,	812.2825	13.538		
$04/04_{06}$:29	932.2824	15.538	0.1	3.0
$04/04_{08}:29$	1052.2865	17.5381	0.5	$3.5 \\ 3.5$
$04/04_{10}:29$	1172.2924	19.5382	0.0	
$04/04_{12}:29$	1292.2929 1412.293	21.5382	0.1	3.6
$04/04_{14}:29$		23.5382	0.2	3.8
$04/04_{16}:29$	1532.2929	25.5382	0.2	4.0
$04/04_{18}:29$	1652.3113	27.5385	0.2	4.2
$04/04_{20}:29$	1772.3141	29.5386	0.1	4.3
$04/04_{22}:29$	1892.3154	31.5386	0.05	4.35
$05/04_{00}:29$	2012.3105	33.5385	0.05	4.4
$05/04_{02}$:29	2132.3114	35.5385	0.05	4.45
$05/04_{04}:29$	2252.3144	37.5386	0.0	4.45
$05/04_{06}$:29	2372.3151	39.5386	0.1	4.55
$05/04_{08}$:29	2492.315	41.5386	0.1	4.65
$05/04_{09}$:29	2552.3147	42.5386	0.0	4.65
$05/04_{10}:37$	2620.5911	43.6765	0.0	4.65
$05/04_{10}:38$	2621.5911	43.6932	0.0	4.65
$05/04_{10}:39$	2622.5911	43.7099	0.1	4.75
$05/04_{10}:40$	2623.568	43.7261	0.1	4.85
$05/04_{11}:40$	2683.7432	44.7291	0.2	5.05
$05/04_{12}:40$	2743.749	45.7292	0.05	5.1
$05/04_{14}:40$	2863.749	47.7291	0.0	5.1
$05/04_{16}:40$	2983.7494	49.7292	0.1	5.2
$05/04_{18}:40$	3103.7554	51.7293	0.1	5.3
$05/04_{20}$:40	3223.7562	53.7293	0.1	5.4
$05/04_{22}:40$	3343.7588	55.7293	0.1	5.5
$06/04_{00}:40$	3463.7624	57.7294	0.1	5.6
$06/04_{02}:40$	3583.7627	59.7294	0.1	5.7
$06/04_{04}:40$	3703.7626	61.7294	0.2	5.9
$06/04_{06}:40$	3823.768	63.7295	0.2	6.1
$06/04_{08}:40$	3943.77	65.7295	0.2	6.3
$06/04_{10}:40$	4063.7699	67.7295	0.2	6.5
$06/04_{12}:40$	4183.7779	69.7296	0.1	6.6
$06/04_{14}:40$	4303.7782	71.7296	0.05	6.65
$06/04_{16}$:40	4423.7808	73.7297	0.05	6.7
$06/04_{18}:40$	4543.7815	75.7297	0.0	6.7
$06/04_{20}$:40	4663.7816	77.7297	0.05	6.75
$06/04_{22}$:40	4783.7816	79.7297	0.1	6.85
$07/04_{00}$:40	4903.7918	81.7299	0.1	6.95
$07/04_{02}$:40	5023.7924	83.7299	0.0	6.95
$07/04_{04}$:40	5143.7925	85.7299	72 0.05	7.0
$07/04_{06}$:40	5263.7924	87.7299	0.1	7.1
$07/04_{08}$:40	5383.7944	89.7299	0.1	7.2
$07/04_{10}$:40	5503.8038	91.7301	0.2	7.4
$07/04_{12}:40$	5623.8058	93.7301	0.2	7.6

6.4 Reactor 4

Το δείγμα 4 ήταν αυτό με τα 4 ml mix στην υδρόλυση. Είναι η μέγιστη ποσότητα που χρησιμοποιήθηκε για τα πειράματα χώνευσης καθώς το 8 ml δεν είχε ιδιαίτερα μεγάλη διαφορά και είναι πολύ πιο ακριβό. Όπως προαναφέρθηκε, αναμένουμε να έχει παρόμοια ποιότητα με το 2 ml καθώς με εξαίρεση μίας ποσότητας γαλακτικού είναι σχεδόν ίδια.

 $hydrolysate_{4s1r2}$

Data Analysis on Hydrolysate with 4 ml

```
<date_saving_fw_s1_r2>>
inds = 3:75
exp_meth_vol = [0, 0, 0, 0, 0.05, 0.1, 0.1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.1,
\rightarrow 0.2, 0.1, 0.1, 0.2, 0.1, 0.1, 0.05, 0.1, 0.2, 0.2, 0.1, 0.05, 0.1,
\rightarrow 0.1, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2,
\rightarrow 0.1, 0.1, 0.2, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1,
\rightarrow 0.1, 0.1, 0.2, 0.2, 0.1, 0, 0.05, 0.05, 0, 0.05, 0.1, 0, 0, 0,
\rightarrow 0, 0]
meth_vol_hydro_4 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_4_s1_r2"
source = "Hydrolyzed FW"
reactor = "Reactor 4"
sludge = "Sludge 1"
run_num = "Run 2"
input_vs = 1.55
<<br/>bmp_data_processing>>
max_rate_hydro_4 = max_manual_rate
p0 = [17.0, 15.0, 1.0]
<<bmp_curve_fitting_min>>
model_hydro_4_min = vcat(reactor, round.(model_params, digits = 4),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [17.0, 100.0, 0.1]
<<br/>bmp_curve_fitting_hour>>
model_hydro_4_hour = vcat(reactor, round.(model_params, digits = 3),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_4 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
6.4.1 Results
(org-table-import-after-n-lines 3 <<hydrolysate_4_s1_r2()>> '(4))
```

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/04_{14}:51$	0.0	0.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/04_{14}:56$	5.0455	0.0841	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/04_{15}:29$	37.3164	0.6219	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/04_{16}:29$	97.3168	1.6219	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/04_{17}:29$	157.3212	2.622	0.05	0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		217.3212	3.622	0.1	0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	337.3212	5.622	0.1	0.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -	457.3212	7.622	0.3	0.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	577.3279	9.6221	0.3	0.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	697.3279	11.6221	0.3	1.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$04/04_{04}:29$	817.328	13.6221	0.3	1.45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$04/04_{06}:29$	937.3279	15.6221	0.3	1.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	1057.332	17.6222	0.1	1.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	1177.3379	19.6223	0.2	2.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$04/04_{12}:29$	1297.3384	21.6223	0.1	2.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$04/04_{14}:29$	1417.3385	23.6223	0.1	2.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$04/04_{16}:29$	1537.3384	25.6223	0.2	2.45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1657.3568	27.6226	0.1	2.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$04/04_{20}$:29	1777.3596	29.6227	0.1	2.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$04/04_{22}$:29	1897.3609	31.6227	0.05	2.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$05/04_{00}$:29	2017.356	33.6226	0.1	2.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$05/04_{02}$:29	2137.3569	35.6226	0.2	3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$05/04_{04}:29$	2257.3599	37.6227	0.2	3.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$05/04_{06}$:29	2377.3606	39.6227	0.1	3.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	2497.3605	41.6227	0.05	3.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2557.3602	42.6227	0.1	3.45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$05/04_{10}$:37	2625.6366	43.7606		3.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	2626.6366	43.7773		3.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$07/04_{06}$:40 5268.8379 87.814 0.1 6.25 $07/04_{08}$:40 5388.8399 89.814 0.1 6.35	,			· -	
$07/04_{08}$:40 5388.8399 89.814 0.1 6.35	,				
•	,				
	,				

6.5 Untreated FW

Εκτός από τα παραπάνω, σε ένα από τα δοχεία προστέθηκε ανεπεξέργαστο FW. Αυτό έχει διαφορά από το δείγμα 0, καθώς εκείνο υπέστει ζύμωση κατά τις 72 ώρες που ήταν στους 40 ^{o}C ακόμη και χωρίς να προσθέσουμε κάποιο εμβόλιο, ενώ το δείγμα αυτό αναφέρεται σε food waste το οποίο δεν έχει υποστεί καμία επεξεργασία. Θα θέλαμε το δείγμα αυτό να έχει το χειρότερο performance (είτε πολύ αργή παραγωγή, ή μικρή τελική παραγωγή), το οποίο θα μας επιδείκνυε πως η επεξεργασία που έγινε βοηθάει πραγματικά στην χώνευση. Βέβαια, αξίζει να αναφερθεί πως το δοχείο αυτό είχε κάποιο προβλήματα με διαρροή στα αρχικά στάδια

του πειράματος, οπότε ενδέχεται τα αποτελέσματα που θα προκύψουν να μην είναι έγκυρα. Παρακάτω φαίνεται ο κώδικας επεξεργασίας των αποτελεσμάτων του.

$untreated_{fws1r2}$

```
### Data Analysis on Untreated FW ###
<<date_saving_fw_s1_r2>>
inds = 33:104
exp_meth_vol = vcat([0, 0.1, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05,
\rightarrow 0.05], zeros(46))
meth_vol_hydro_fw = cumsum(exp_meth_vol)[end]
exp_name = "untreated_fw_s1_r2"
source = "Untreated FW"
reactor = "FW"
sludge = "Sludge 1"
run_num = "Run 2"
input_vs = 1.55
<<br/>bmp_data_processing>>
max_rate_hydro_fw = max_manual_rate
p0 = [2.5, 0.05, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_fw_min = vcat(reactor, round.(model_params, digits = 4),
\rightarrow round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [2.5, 0.1, 0.1]
<<br/>bmp_curve_fitting_hour>>
model_hydro_fw_hour = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_fw = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
6.5.1 Results
```

(org-table-import-after-n-lines 3 <<untreated_fw_s1_r2()>> '(4))

Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$05/04_{11}:40$	0.0	0.0	0.0	0.0
$05/04_{12}:40$	60.0058	1.0001	0.1	0.1
$05/04_{14}:40$	180.0058	3.0001	0.2	0.3
$05/04_{16}$:40	300.0062	5.0001	0.2	0.5
$05/04_{18}$:40	420.0122	7.0002	0.1	0.6
$05/04_{20}$:40	540.013	9.0002	0.1	0.7
$05/04_{22}$:40	660.0156	11.0003	0.1	0.8
$06/04_{00}$:40	780.0193	13.0003	0.1	0.9
$06/04_{02}$:40	900.0195	15.0003	0.1	1.0
$06/04_{04}:40$	1020.0194	17.0003	0.05	1.05
$06/04_{06}$:40	1140.0248	19.0004	0.05	1.1
$06/04_{08}:40$	1260.0268	21.0004	0.0	1.1
$06/04_{10}$:40	1380.0267	23.0004	0.0	1.1
$06/04_{12}:40$	1500.0347	25.0006	0.2	1.3
$06/04_{14}:40$	1620.035	27.0006	0.2	1.5
$06/04_{16}:40$	1740.0376	29.0006	0.1	1.6
$06/04_{18}:40$	1860.0382	31.0006	0.1	1.7
$06/04_{20}:40$	1980.0384	33.0006	0.1	1.8
$06/04_{22}:40$	2100.0384	35.0006	0.0	1.8
$07/04_{00}:40$	2220.0486	37.0008	0.1	1.9
$07/04_{02}:40$	2340.0492	39.0008	0.1	2.0
$07/04_{04}:40$	2460.0493	41.0008	0.1	2.1
$07/04_{06}:40$	2580.0492	43.0008	0.1	2.2
$07/04_{08}:40$	2700.0512	45.0009	0.0	2.2
$07/04_{10}$:40	2820.0606	47.001	0.1	2.3
$07/04_{12}:40$	2940.0626	49.001	0.05	2.35
$07/04_{14}:40$	3060.0641	51.0011	0.0	2.35
$07/04_{16}:40$	3180.0654	53.0011	0.0	2.35
$07/04_{18}:40$	3300.0717	55.0012	0.0	2.35
$07/04_{20}$:40	3420.0729	57.0012	0.0	2.35
$07/04_{22}:40$	3540.074	59.0012	0.0	2.35
$08/04_{00}:40$	3660.0911	61.0015	0.0	2.35
$08/04_{02}:40$	3780.0923	63.0015	0.0	2.35
$08/04_{04}:40$	3900.0835	65.0014	0.0	2.35
$08/04_{06}:40$	4020.0828	67.0014	0.0	2.35
$08/04_{08}:40$	4140.0827	69.0014	0.0	2.35
$08/04_{10}:40$	4260.0826	71.0014	0.0	2.35
$08/04_{12}:40$	4380.0893	73.0015	0.0	2.35
$08/04_{14}:40$	4500.0926	75.0015	0.0	$\frac{2.35}{2.35}$
$08/04_{16}:40$	4620.093	77.0015	0.0	2.35
$08/04_{18}:40$	4740.0938	79.0016	0.0	2.35
$08/04_{20}:40$	4860.0938	81.0016	0.0	$\frac{2.35}{2.35}$
$08/04_{22}:40$	4980.1046	83.0017	0.0	$\frac{2.35}{2.35}$
$08/04_{23}:40$	5040.107	84.0018	0.0	$\frac{2.35}{2.35}$
$09/04_{23}.40$ $09/04_{00}:40$	5100.1071	85.0018	0.0	2.35
$09/04_{00}.40$ $09/04_{01}:40$	5160.1071	86.0018	0.0	2.35
,	5220.1071	87.0018	0.0	
$09/04_{02}:40$ $09/04_{03}:40$	5280.1071	88.0018	0.0	2.35 2.35
,				
$09/04_{04}:40$	5340.1068	89.0018	0.0	2.35
$09/04_{05}:40$	5400.107	90.0018	0.0	2.35
$09/04_{06}:40$	5460.1098	91.0018	78 0.0	2.35
$09/04_{07}:40$	5520.1136	92.0019	0.0	2.35
$09/04_{08}:40$	5580.1149	93.0019	0.0	2.35
$09/04_{09}:40$	5640.1151	94.0019	0.0	2.35
$09/04_{10}:40$	5700.1152	95.0019	0.0	2.35

6.6 Update all

$update_{hydrolysatetestss1r2}$

- <<hydrolysate_0_s1_r2>>
- <<hydrolysate_1_s1_r2>> <<hydrolysate_2_s1_r2>>
- <<hydrolysate_4_s1_r2>>
- <<untreated_fw_s1_r2>>

```
model_fit_table_min = Tables.table(vcat(reshape(model_hydro_0_min, 1, 5),

¬ reshape(model_hydro_1_min, 1, 5), reshape(model_hydro_2_min, 1, 5),
reshape(model_hydro_4_min, 1, 5), reshape(model_hydro_fw_min, 1, 5)),
→ header = [:Reactor_Name, :Production_Potential, :Production_Rate,

    :Lag_Time, :R_squared])

CSV.write(datadir("exp_pro",

    "methane_from_hydrolysate_kinetics_min_s1_r2.csv"),

→ model_fit_table_min)
model_fit_table_hour = Tables.table(vcat(reshape(model_hydro_0_hour, 1,

→ 5), reshape(model_hydro_1_hour, 1, 5), reshape(model_hydro_2_hour, 1,
→ 5), reshape(model_hydro_4_hour, 1, 5), reshape(model_hydro_fw_hour, 1,
→ 5)), header = [:Reactor_Name, :Production_Potential, :Production_Rate,

    :Lag_Time, :R_squared])

CSV.write(datadir("exp_pro",

    "methane_from_hydrolysate_kinetics_hour_s1_r2.csv"),

→ model_fit_table_hour)

return("../data/exp_pro/methane_from_hydrolysate_kinetics_min_s1_r2.csv")
return("../data/exp_pro/methane_from_hydrolysate_kinetics_hour_s1_r2.csv")
(org-table-import-after-n-lines 4
Table 13: Kinetics with timescale in hours
       Reactor_{Name}
                    Production<sub>Potential</sub> Production<sub>Rate</sub> Lag<sub>Time</sub>
                                                              R_{\text{squared}}
       Reactor 0
                                3.726
                                               0.044
                                                        3.854
                                                                 0.992
       Reactor 1
                               10.568
                                               0.107
                                                        4.425
                                                                 0.996
       Reactor 2
                                7.961
                                               0.113
                                                         0.0
                                                                 0.935
       Reactor 4
                                                        0.348
                                8.294
                                                0.08
                                                                 0.988
       FW
                                2.385
                                                0.06
                                                          0.0
                                                                 0.985
(org-table-import-after-n-lines 4 <<update_hydrolysate_tests_s1_r2()>>
```

Table 14:	Kinotice	with	timoggala	in	minutes
Table 14.	TIMENICS	WILLI	uniescare	111	mmudes

D .	D 1	D 1	T	ъ
$Reactor_{Name}$	$Production_{Potential}$	$Production_{Rate}$	Lag_{Time}	R_{squared}
Reactor 0	3.7256	0.0007	231.2325	0.992
Reactor 1	10.5683	0.0018	265.5173	0.996
Reactor 2	7.8381	0.002	0.0	0.94
Reactor 4	8.2938	0.0013	20.8989	0.988
FW	2.385	0.001	0.0	0.985

<<hydrolysate_0_s1_r2>>

Table 15: SMA Kinetics in hours

$Reactor_{Name}$	$Methane_{Potential}$	SMA	Lag_{Time}	R_{sq}
Reactor 0	2.404	0.028	3.854	0.992
Reactor 1	7.046	0.071	4.425	0.996
Reactor 2	5.136	0.073	0.0	0.935
Reactor 4	5.351	0.052	0.348	0.988
FW	1.539	0.039	0.0	0.985

6.6.1 Σύγκριση με το προηγούμενο πείραμα

Γενικά, το 2ο πείραμα αυτό είναι συγκρίσιμο με το προηγούμενο, παρότι όχι ίδιο. Το πρώτο πείραμα έχει γενικά πιο γρήγορους ρυθμούς (κοντά σε 1.5 με 2 φορές αυτά). Επίσης, το πρώτο πείραμα έχει μηδενικό lag time σε όλα τα πειράματα, ενώ σε αυτό το πείραμα, 3 από τα 5 δείγματα είχαν κάποιο lag time και 2 από αυτά ήταν μάλιστα αρκετά σημαντικά.

Από άποψη παραγωγής μεθανίου, δεν υπάρχει κάποια ξεκάθαρη τάση. Σε κάποια δείγματα το ένα πείραμα παρήγαγε λίγο περισσότερο, σε κάποιες το άλλο. Αλλά, είναι γενικά κοντά, το οποίο είναι καλό.

6.7 Plotting Methane Potential

Σε αυτό το section θα γίνει ένα plot το οποίο θα συγχρίνει μέγιστο μεθάνιο (παραγωγή από οξιχό) με αυτό που παράχθηκε από το FW. Θα γίνει με την ίδια λογική που έγινε και παραπάνω για το πρώτο run.

```
<<update_acetate_tests_s1>>
<<update_hydrolysate_tests_s1_r2>>

comp_name = "s1_r2"
sludge = "Sludge 1 "
run = "Run 2"
<<BMP_comp_plot>>
```


% of Acetate BMP in Hydrolysates

				Untreated
0 ml	1 ml	2 ml	4 ml	FW
7.26 %	44.65 %	26.5 %	15.74 %	8.39 %

6.7.1 Σύγκριση με τον προηγούμενο κύκλο

Παρατηρούμε πως τα αποτελέσματα του πειράματος αυτού είναι αρχετά χοντά σε αυτά του προηγούμενου που δείχνει πως υπάρχει μία επαναληψιμότητα. Αχολουθείται η ίδια αχριβώς τάση 1>2>4 στα 3 πρώτα, ενώ το FW με το 0 έχουν εναλλαγεί στο πείραμα αυτό (βέβαια, έχουν και τα δύο πολύ χαμηλά αποτελέσματα οπότε μεταξύ τους σύγχριση δεν μας πειράζει). Βλέπουμε πως με μία εξαίρεση, οι αποχλίσεις είναι της τάξης του 3% και αχόμη και εχείνη είναι 6% το οποίο είναι σχετιχά χαλό.

6.8 Kinetic Comparison

```
<<update_acetate_tests_s1>>
<<update_hydrolysate_tests_s1_r2>>
sludge = "s1"
run = "r2"
timescale = "hour"

<<ad_kinetics_comparison>>
return("../data/exp_pro/kinetics_comparison_s1_r2.csv")

<<update_acetate_tests_s1>>
<<update_hydrolysate_tests_s1_r2>>
sludge = "s1"
run = "r2"

<<manual_rate_comparison>>
```

```
return("../data/exp_pro/manual_max_rate_comp_s1_r2.csv")
return("../data/exp_pro/kinetics_comparison_sma_s1_r2.csv")
(org-table-import-after-n-lines 4 <<kinetics_comp_s1_r2()>> '(4))
```

Table 16: Kinetic Comparison with timescale in hours Hydrolysate Reactor_{Name} Acetate Ratio Reactor 0 459.84 $0.044 \quad 0.0096$ Reactor 1 $0.107 \quad 0.0327$ 326.88 Reactor 2 374.04 $0.113 \quad 0.0302$ Reactor 4 579.0 $0.08 \quad 0.0138$ Reactor FW 294.06 $0.06 \quad 0.0204$

(org-table-import-after-n-lines 4 <<sma_comp_s1_r2()>> '(4))

Table 17: SMA Comparison with timescale in days $Reactor_{Name}$ Acetate Hydrolysate Ratio Reactor 0 7119.36 $0.672 \quad 0.0094$ Reactor 1 5061.6 1.704 0.0337 Reactor 2 5676.48 $1.752 \quad 0.0309$ Reactor 4 8965.44 $1.248 \quad 0.0139$ Reactor FW 4554.72 $0.936 \quad 0.0206$

(org-table-import-after-n-lines 3 <<manual_rates_s1_r2()>> '(4))

Reactor	Acetate	Hydrolysate	Ratio
Reactor 0	1025.641	0.1	0.01
Reactor 1	643.564	6.024	0.936
Reactor 2	555.556	6.173	1.111
Reactor 4	1081.081	0.15	0.014
Reactor FW	705.882	0.1	0.014

6.9 Plotting Comparison Plots

Όπως και στον προηγούμενο κύκλο, φτιάχνουμε αυτό το χρήσιμο διάγραμμα.

```
plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_0_hour[2:4]), label =
→ "Hydrolysate (0 ml mix) Theoretical\n with "*L"R^2 =

    "*string(model_hydro_0_hour[5]), linecolor = colors[1])

<<hydrolysate_1_s1_r2>>
scatter!(methane_s1_r2_comp, exp_hour, cumsum(exp_meth_vol), markersize =
→ 4, label = "Hydrolysate (1 ml mix) Exp", markercolor = colors[2])
plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_1_hour[2:4]), label =
→ "Hydrolysate (1 ml mix) Theoretical\n with "*L"R^2 =

    "*string(model_hydro_1_hour[5]), linecolor = colors[2])

<<hydrolysate_2_s1_r2>>
scatter!(methane_s1_r2_comp, exp_hour, cumsum(exp_meth_vol), markersize =
→ 4, label = "Hydrolysate (2 ml mix) Exp", markercolor = colors[3])
plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_2_hour[2:4]), label =
→ "Hydrolysate (2 ml mix) Theoretical\n with "*L"R^2 =

¬ "*string(model_hydro_2_hour[5]), linecolor = colors[3])

<<hydrolysate_4_s1_r2>>
scatter!(methane_s1_r2_comp, exp_hour, cumsum(exp_meth_vol), markersize =

→ 4, label = "Hydrolysate (4 ml mix) Exp", markercolor = colors[4])

plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_4_hour[2:4]), label =
\rightarrow "Hydrolysate (4 ml mix) Theoretical\n with "*L"R^2 =

    "*string(model_hydro_4_hour[5]), linecolor = colors[4])

<<untreated_fw_s1_r2>>
scatter!(methane_s1_r2_comp, exp_hour, cumsum(exp_meth_vol), markersize =

→ 4, label = "Untreated FW Exp", markercolor = colors[5])

plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_fw_hour[2:4]), label =
\rightarrow "Untreated FW Theoretical\n with "*L"R^2 =
   "*string(model_hydro_fw_hour[5]), linecolor = colors[5])
savefig(methane_s1_r2_comp, plotsdir("BMPs", "methane_s1_r2_comp.svg"))
```


6.10 Συμπεράσματα από τον κύκλο πειραμάτων αυτών

Ο κύκλος αυτός ήταν αρκετά χρήσιμος επειδή μας έδειξε πως τα προηγούμενα αποτελέσματα έχουν σχετικά καλή επαναληψιμότητα καθώς και στους ρυθμούς αλλά και στην τελική παραγωγή μεθανίου, οι δύο κύκλοι είχαν παρόμοια αποτελέσματα. Το πείραμα δεν είναι τέλεια επαναλήψιμο, αλλά υπάρχουν αρκετές ομοιότητες.

Το μοντέλο Gompertz μπορεί να χρησιμοποιηθεί αποτελεσματικά για την κινητική ανάλυση της αναερόβιας χώνευσης καθώς έχει πολύ καλή προσαρμογή στα πειράματα και προβλέπει όλες τις φάσεις της μικροβιακής ανάπτυξης. Βέβαια, σε πολλές περιπτώσεις, παρόλο που το μοντέλο μπορεί να προβλέψει μία στάσιμη φάση, η διάρκεια της βγάινει ίση με 0, το οποίο σημαίνει πως η λάσπη αντιδρά πολύ γρήγορα στην προσθήκη του υποστρώματος αυτού. Πιθανή αιτία είναι πως όλα τα υποστρώματα έχουν κάποια ποσότητα οξικού οξέος, το οποίο ως η ιδανική τροφή της λάσπης καταναλώνεται αμέσως.

Από την άποψη των BMPs, η σειρά είναι $0>\mathrm{FW}>4>2>1$ (ίδια σειρά με πριν με εξαίρεση την αλλαγή του FW με το 0). Το FW και το 0 είναι πάλι και τα 2 πολύ χαμηλά, το οποίο κάνει ξανά validate ότι η προεπεξεργασία που επιλέχθηκε είναι αρκετά αποτελεσματική Το δείγμα 1 έχει και πάλι την περισσότερη ποσότητα μεθανίου. Αυτό δεν μπορεί να αιτιολογηθεί εύκολα από τα αποτελέσματα του αρχικού πειράματος υδρόλυσης σε αυτές τις συνθήκες, αλλά η αναπάντεχα μεγάλη συγκέντρωση sCOD του, οδηγεί στο συμπέρασμα της καλύτερης διαλυτοποίησης σε αυτό το πείραμα και πιθανόν αυτό να ευθύνεται για την αυξημένη παραγωγή μεθανίου.

6.11 Code Block για Tangling

Έχοντας κάνει όλη αυτήν την ανάλυση, κάνουμε tangle ένα συνολικό code block σε ένα julia script file για sharing. Λόγω του structure του αρχείου αυτού και το ότι βασίζεται αρκετά στο org babel και το noweb syntax, το script file θα έχει αναγκαστικά πολλές επαναλήψεις. Αλλά θα είναι perfectly usable σε άλλο υπολογιστή θεωρητικά.

<<upd><<update_acetate_tests_s1>>

```
sma_table = Tables.table(vcat(reshape(sma_acet_0, 1, 5),
    reshape(sma_acet_1, 1, 5), reshape(sma_acet_2, 1, 5),
   reshape(sma_acet_4, 1, 5), reshape(sma_acet_fw, 1, 5)), header =
    [:Reactor_Name, :Methane_Potential, :SMA, :Lag_Time, :R_sq])
CSV.write(datadir("exp_pro", "sma_from_acetate_s1.csv"), sma_table)
<<upd><<upd><<upd>te_hydrolysate_tests_s1_r2>>
sma_table = Tables.table(vcat(reshape(sma_hydro_0, 1, 5),
\rightarrow reshape(sma_hydro_1, 1, 5), reshape(sma_hydro_2, 1, 5),
reshape(sma_hydro_4, 1, 5), reshape(sma_hydro_fw, 1, 5)), header =
    [:Reactor_Name, :Methane_Potential, :SMA, :Lag_Time, :R_sq])
CSV.write(datadir("exp_pro", "sma_from_hydrolysate_s1_r2.csv"), sma_table)
comp_name = "s1_r2"
sludge = "Sludge 1 "
run = "Run 2"
<<BMP_comp_plot>>
sludge = "s1"
run = "r2"
timescale = "hour"
<<ad_kinetics_comparison>>
<<manual_rate_comparison>>
```

7 Acetate Experiment Processing S2

Παρακάτω αναφέρονται οι δοκιμές που έγιναν με 100 μL οξικό σε κάθε δείγμα και θα χρησιμοποιηθούν συγκριτικά σε σχέση με τα FW. Μετά από τα code blocks που τρέχουν τον κώδικα θα υπάρχουν και κάποια από τα corresponding αποτελέσματα. Συγκεκριμένα, ο πίνακας με τα κινητικά δεδομένα και το διάγραμμα παραγωγής μεθανίου το οποίο έχει το curve fitting. Υπάρχουν και κάποια άλλα χρήσιμα διαγράμματα, τα οποία είναι αποθηκευμένα, αλλά εδώ παρατίθενται κάποια για καλύτερη ανάγνωση του αρχείου.

Το section αυτό αφορά την χρήση της 2ης λάσπης. Κατά την χρήση αυτής, παρατηρήθηκε ένα περίεργο φαινόμενο, το οποίο επαναλήφθηκε και στα πειράματα αυτά με το οξικό, αλλά και στα επερχόμενα υδρολύματα. Η λάσπη συνέχιζε να παράγει μεθάνιο σε πολύ μεγάλες ποσότητες για πολύ μεγάλο χρόνο, ξεπερνώντας κατά πολύ την ποσότητα που θα αναμενόταν να παράγουν 100 mg COD. Επίσης, στο οξικό η συνέχεια της παραγωγής έγινε μετά από όταν είχε σταματήσει για περίπου μισή μέρα. Οπότε, έγινε η υπόθεση ότι η συνέχεια της παραγωγής ήταν από κάποια τροφή που είχε αποθηκευμένη η λάσπη και δεν οφειλόταν στην τροφοδοσία που κάναμε. Έτσι την θεωρήσαμε ένα negative blank του πειράματος και αφαιρέσαμε την παραγωγή αυτή από τα υδρολύματα για να βγούν πιο εύλογα συμπεράσματα.

7.1 Acetate Test FW

To section αυτό αναφέρεται στη δοκιμή με 100 μL οξικό στο δείγμα labelled ως FW (στο οποίο θα τροφοδοτηθούν untreated FW).

 $acet_{testfws2}$

```
<date_saving_acetate_s2>>
inds = 1:16
exp_meth_vol = [0, 1.0, 5.0, 3.0, 1.5, 2.0, 0.5, 1.0, 0.5, 0, 0, 0, 0, 0, 0]
\rightarrow 0, 0]
meth_vol_acet_fw = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_fw_s2"
source = "Acetate"
reactor = "Reactor FW"
sludge = "Sludge 2"
run_num = "Run 1"
input_vs = 4.2
p0 = [25.0, 6.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_fw = max_manual_rate
<<bmp_curve_fitting_min>>
model_acet_fw = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_min>>
sma_acet_fw = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 4 <<acet_test_fw_s2()>> '(4))
```

Data Analysis on Reactor FW

Table	18:	Κινη	τικά	δεδο	μένα
-------	-----	------	------	------	------

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane Volume}$
$10/04_{13}$:59	0.0	0.0	0.0	0.0
$10/04_{14}:00$	53.787	0.8964	1.0	1.0
$10/04_{14}:01$	113.801	1.8967	5.0	6.0
$10/04_{14}$:02	151.446	2.5241	3.0	9.0
$10/04_{14}:03$	211.446	3.5241	1.5	10.5
$10/04_{14}$:04	259.738	4.329	2.0	12.5
$10/04_{14}:05$	317.119	5.2853	0.5	13.0
$10/04_{14}:06$	377.141	6.2857	1.0	14.0
$10/04_{14}:07$	437.131	7.2855	0.5	14.5
$10/04_{14}:07$	455.72	7.5953	0.0	14.5
$10/04_{14}:08$	515.711	8.5952	0.0	14.5
$10/04_{14}:08$	543.733	9.0622	0.0	14.5
$10/04_{14}:09$	603.728	10.0621	0.0	14.5
$10/04_{14}:10$	663.726	11.0621	0.0	14.5
$10/04_{14}:11$	723.748	12.0625	0.0	14.5
$10/04_{14}$:12	783.759	13.0626	0.0	14.5

7.1.1 Continued

Αυτό το section είναι για την συνέχεια του πειράματος, η οποία θα χρησιμοποιηθεί ως το negative blank για την ανάλυση των πειραμάτων με υδρόλυμα.

```
<date_saving_acetate_s2_2>>
inds = 33:110
exp_meth_vol = [1, 1, 0.5, 1, 1, 0.2, 0.5, 1, 0.5, 1, 0.5, 0.5, 1, 0.3, 1,
\rightarrow 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 1, 0.5, 1, 0.3, 1, 1, 0.3, 0.5, 1, 1,
\rightarrow 0.5, 1, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 0.5, 1, 1, 1, 1,
   0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 1, 0.5, 1, 0.5, 0.5, 0.2,
meth_vol_acet_fw = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_fw_s2_2"
source = "Acetate"
reactor = "Reactor FW"
sludge = "Sludge 2"
run_num = "Run 2"
input_vs = 4.2
pfw = [90.0, 20.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_fw_2 = max_manual_rate
<<br/>bmp_curve_fitting_hour>>
model_acet_fw = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
```

T	C 1	3.61	3.6 .1	
Timestamp	Seconds	Minutes	Methane _{Volume}	$Cumulative_{Methane Volume}$
$12/04_{05}:34$	0.0	0.0	1.0	1.0
$12/04_{06}:34$	3600.007	60.0001	1.0	2.0
$12/04_{07}:34$	7200.239	120.004	0.5	2.5
$12/04_{08}:34$	10800.481	180.008	1.0	3.5
$12/04_{09}:34$	14400.548	240.0091	1.0	4.5
$12/04_{10}:34$	18000.58	300.0097	0.2	4.7
$12/04_{11}:34$	21600.582	360.0097	0.5	5.2
$12/04_{12}:34$	25200.581	420.0097	1.0	6.2
$12/04_{13}:34$	28800.579	480.0096	0.5	6.7
$12/04_{14}:34$	32400.584	540.0097	1.0	7.7
$12/04_{15}:34$	36000.582	600.0097	0.5	8.2
$12/04_{16}:34$	39600.955	660.0159	0.5	8.7
$12/04_{17}:34$	43201.278	720.0213	1.0	9.7
$12/04_{18}:34$	46801.285	780.0214	0.3	10.0
$12/04_{19}:34$	50401.282	840.0214	1.0	11.0
$12/04_{20}:34$	54001.29	900.0215	0.5	11.5
$12/04_{21}:34$	57601.287	960.0214	0.5	12.0
$12/04_{22}:34$	61201.293	1020.0216	0.5	12.5
$12/04_{23}:34$	64801.732	1080.0289	0.5	13.0
$13/04_{00}:34$	68401.73	1140.0288	0.5	13.5
$13/04_{01}:34$	72001.733	1200.0289	1.0	14.5
$13/04_{02}:34$	75601.752	1260.0292	0.5	15.0
$13/04_{03}:34$	79201.753	1320.0292	1.0	16.0
$13/04_{04}:34$	82801.759	1380.0293	0.5	16.5
$13/04_{05}:34$	86401.748	1440.0291	1.0	17.5
$13/04_{06}:34$	90001.754	1500.0292	0.3	17.8
$13/04_{07}:34$	93601.751	1560.0292	1.0	18.8
$13/04_{08}:34$	97201.748	1620.0291	1.0	19.8
$13/04_{09}:34$	100801.755	1680.0292	0.3	20.1
$13/04_{10}:34$	104402.092	1740.0349	0.5	20.6
$13/04_{11}:34$	108002.497	1800.0416	1.0	21.6
$13/04_{12}:34$	111602.598	1860.0433	1.0	22.6
$13/04_{13}:34$	115202.679	1920.0446	0.5	23.1
$13/04_{14}:34$	118802.729	1980.0455	1.0	24.1
$13/04_{15}$:34	122402.759	2040.046	0.5	24.6
$13/04_{16}:34$	126002.811	2100.0468	0.5	25.1
$13/04_{17}:34$	129603.047	2160.0508	1.0	26.1
$13/04_{18}:34$	133203.054	2220.0509	0.5	26.6
$13/04_{19}:34$	136803.062	2280.051	0.5	27.1
$13/04_{20}:34$	140403.155	2340.0526	0.5	27.6
$13/04_{21}$:34	144003.167	2400.0528	0.5	28.1
$13/04_{22}$:34	147603.184	2460.0531	0.5	28.6
$13/04_{23}$:34	151203.182	2520.053	1.0	29.6
$14/04_{00}$:34	154803.189	2580.0532	1.0	30.6
$14/04_{01}:34$	158403.186	2640.0531	0.5	31.1
$14/04_{02}:34$	162003.183	2700.053	1.0	32.1
$14/04_{03}$:34	165603.191	2760.0532	1.0	33.1
$14/04_{04}:34$	169203.37	2820.0562	1.0	34.1
$14/04_{05}$:34	172803.733	2880.0622	1.0	35.1
$14/04_{06}$:34	176403.88	2940.0647	0.5	35.6
$14/04_{07}$:34	180003.931	3000.0655	91 0.5	36.1
$14/04_{08}:34$	183603.985	3060.0664	0.5	36.6
$14/04_{09}:34$	187204.02	3120.067	0.5	37.1
$14/04_{10}:34$	190804.062	3180.0677	0.5	37.6
$14/04_{11}:34$	194404.095	3240.0682	0.5	38.1

7.2 Acetate Test 0

To section αυτό αναφέρεται στη δοκιμή με 100 μL οξικό στο δείγμα (0). $\mathbf{acet_{test0s2}}$

Data Analysis on Reactor 0

<date_saving_acetate_s2>>

```
inds = 12:21
exp_meth_vol = [0, 5.5, 1.0, 0.5, 0, 0, 0, 0, 0]
meth_vol_acet_0 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_0_s2"
source = "Acetate"
reactor = "Reactor 0"
sludge = "Sludge 2"
run_num = "Run 1"
input\_cod = 4.2
p0 = [40.0, 8.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_0 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_acet_0 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_min>>
sma_acet_0 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 4 <<acet_test_0_s2()>> '(4))
```

Table 19: Κινητικά δεδομένα

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane Volume}$
$10/04_{14}$:08	0.0	0.0	0.0	0.0
$10/04_{14}$:09	59.995	0.9999	5.5	5.5
$10/04_{14}:10$	119.993	1.9999	1.0	6.5
$10/04_{14}$:11	180.015	3.0002	0.5	7.0
$10/04_{14}:12$	240.026	4.0004	0.0	7.0
$10/04_{14}:13$	300.038	5.0006	0.0	7.0
$10/04_{14}:14$	360.043	6.0007	0.0	7.0
$10/04_{14}:15$	420.041	7.0007	0.0	7.0
$10/04_{14}:16$	480.031	8.0005	0.0	7.0
$10/04_{14}$:17	540.042	9.0007	0.0	7.0

7.2.1 Continued

Αυτό το section είναι για την συνέχεια του πειράματος, η οποία θα χρησιμοποιηθεί ως το negative blank για την ανάλυση των πειραμάτων με υδρόλυμα.

<date_saving_acetate_s2_2>>

inds = 7:104

```
exp_meth_vol = [0.5, 0.5, 0.5, 0.5, 1, 1, 1.5, 0.5, 0.5, 0.5, 1, 1, 1,
\rightarrow 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5,
\rightarrow 0.5, 0.2, 0.2, 0.5, 0.5, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5,
\rightarrow 1, 1, 0.5, 0.5, 0.5, 1, 1, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5,
\rightarrow 1, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0,
\rightarrow 0, 0, 0]
meth_vol_acet_0 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_0_s2_2"
source = "Acetate"
reactor = "Reactor 0"
sludge = "Sludge 2"
run_num = "Run 2"
input_vs = 4.2
p0 = [90.0, 20.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_0_2 = max_manual_rate
<<br/>bmp_curve_fitting_hour>>
model_acet_0 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_acet_0 = vcat(reactor, round.(model_params, digits = 3),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 3 <<acet_test_0_s2_2()>> '(4))
```

	~ .	3.51		
Timestamp	Seconds	Minutes	Methane _{Volume}	$Cumulative_{MethaneVolume}$
$11/04_{03}:34$	0.0	0.0	0.5	0.5
$11/04_{04}:34$	3599.79	59.9965	0.5	1.0
$11/04_{05}:34$	7199.769	119.9962	0.5	1.5
$11/04_{06}:34$	10799.766	179.9961	0.5	2.0
$11/04_{07}:34$	14399.779	239.9963	1.0	3.0
$11/04_{08}:34$	17999.808	299.9968	1.0	4.0
$11/04_{09}:34$	21599.825	359.9971	1.5	5.5
$11/04_{10}:34$	25199.852	419.9975	0.5	6.0
$11/04_{11}:34$	28799.866	479.9978	0.5	6.5
$11/04_{12}:34$	32399.892	539.9982	0.5	7.0
$11/04_{13}:34$	36000.27	600.0045	1.0	8.0
$11/04_{14}:34$	39600.393	660.0065	1.0	9.0
$11/04_{15}:34$	43200.447	720.0074	1.0	10.0
$11/04_{16}:34$	46800.478	780.008	0.5	10.5
$11/04_{17}:34$	50401.576	840.0263	0.5	11.0
$11/04_{18}:34$	54001.607	900.0268	0.5	11.5
$11/04_{19}:34$	57601.647	960.0274	0.5	12.0
$11/04_{20}:34$	61201.666	1020.0278	0.5	12.5
$11/04_{21}:34$	64801.711	1080.0285	0.5	13.0
$11/04_{22}:34$	68401.258	1140.021	1.0	14.0
$11/04_{23}$:34	72001.106	1200.0184	1.0	15.0
$12/04_{00}:34$	75601.105	1260.0184	1.0	16.0
$12/04_{01}:34$	79201.13	1320.0188	1.0	17.0
$12/04_{02}:34$	82801.119	1380.0186	1.0	18.0
$12/04_{03}$:34	86401.125	1440.0188	1.0	19.0
$12/04_{04}:34$	90001.123	1500.0187	1.0	20.0
$12/04_{05}$:34	93601.118	1560.0186	1.0	21.0
$12/04_{06}$:34	97201.125	1620.0188	1.0	22.0
$12/04_{07}$:34	100801.357	1680.0226	0.5	22.5
$12/04_{08}:34$	104401.599	1740.0266	0.5	23.0
$12/04_{09}:34$	108001.666	1800.0278	0.5	23.5
$12/04_{10}:34$	111601.698	1860.0283	0.2	23.7
$12/04_{11}:34$	115201.7	1920.0283	0.2	23.9
$12/04_{12}:34$	118801.699	1980.0283	0.5	24.4
$12/04_{13}$:34	122401.697	2040.0283	0.5	24.9
$12/04_{14}:34$	126001.702	2100.0284	1.0	25.9
$12/04_{15}:34$	129601.7	2160.0283	1.0	26.9
$12/04_{16}:34$	133202.073	2220.0346	1.0	27.9
$12/04_{17}:34$	136802.396	2280.0399	0.5	28.4
$12/04_{18}:34$	140402.403	2340.04	0.5	28.9
$12/04_{19}:34$	144002.4	2400.04	0.5	29.4
$12/04_{20}$:34	147602.408	2460.0401	0.5	29.9
$12/04_{21}$:34	151202.405	2520.0401	0.5	30.4
$12/04_{22}$:34	154802.411	2580.0402	1.0	31.4
$12/04_{23}:34$	158402.85	2640.0475	0.5	31.9
$13/04_{00}:34$	162002.848	2700.0475	0.5	32.4
$13/04_{01}:34$	165602.851	2760.0475	0.5	32.9
$13/04_{02}:34$	169202.87	2820.0478	0.5	33.4
$13/04_{03}$:34	172802.871	2880.0478	0.5	33.9
$13/04_{04}$:34	176402.877	2940.048	0.5	34.4
$13/04_{05}$:34	180002.866	3000.0478	96 0.5	34.9
$13/04_{06}$:34	183602.872	3060.0479	0.5	35.4
$13/04_{07}$:34	187202.869	3120.0478	0.5	35.9
$13/04_{08}:34$	190802.866	3180.0478	0.5	36.4
$13/04_{09}:34$	194402.873	3240.0479	0.5	36.9

7.3 Acetate Test 1

Το section αυτό αναφέρεται στη δοχιμή με 100 μL οξικό στο δείγμα (1). Αξίζει να αναφερθεί πως την πρώτη πειραματική ημέρα (27/03), παρήγαγε αέριο χωρίς να τροφοδοτηθεί με κάποιο υπόστρωμα. Η κινητική αυτής της παραγωγής (η οποία δεν ξέρουμε σε τι ευθύνεται) θα αναλυθεί παρακάτω. Βέβαια, μόλις τροφοδοτήθηκε με οξικό και η παραγωγή του τελείωσε, σταμάτησε και εκείνη η παραγωγή. Βέβαια, είχε την χαμηλότερη παραγωγή βιοαερίου μόλις τροφοδοτήθηκε με οξικό, οπότε ενδέχεται αυτή η μέτρηση να ήταν προβληματική.

 $acet_{test1s2}$

```
<date_saving_acetate_s2>>
inds = 7:21
exp_meth_vol = [0, 7, 2, 0.2, 0.8, 0.2, 1.5, 0, 0, 0, 0, 0, 0, 0]
meth_vol_acet_1 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_1_s2"
source = "Acetate"
reactor = "Reactor 1"
sludge = "Sludge 2"
run_num = "Run 1"
input_vs = 4.2
p0 = [20.0, 4.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_1 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_acet_1 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_min>>
sma_acet_1 = vcat(reactor, round.(model_params, digits = 3),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 4 <<acet_test_1_s2()>> '(4))
```

Data Analysis on Reactor 1

		Table 20:	Κινητικά δεδομέν	να
Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane Volume}$
$10/04_{14}$:05	0.0	0.0	0.0	0.0
$10/04_{14}$:06	60.022	1.0004	7.0	7.0
$10/04_{14}$:07	120.012	2.0002	2.0	9.0
$10/04_{14}$:07	138.601	2.31	0.2	9.2
$10/04_{14}$:08	198.592	3.3099	0.8	10.0
$10/04_{14}$:08	226.614	3.7769	0.2	10.2
$10/04_{14}$:09	286.609	4.7768	1.5	11.7
$10/04_{14}:10$	346.607	5.7768	0.0	11.7
$10/04_{14}:11$	406.629	6.7772	0.0	11.7
$10/04_{14}:12$	466.64	7.7773	0.0	11.7
$10/04_{14}:13$	526.652	8.7775	0.0	11.7
$10/04_{14}:14$	586.657	9.7776	0.0	11.7
$10/04_{14}:15$	646.655	10.7776	0.0	11.7
$10/04_{14}:16$	706.645	11.7774	0.0	11.7
$10/04_{14}:17$	766.656	12.7776	0.0	11.7

7.3.1 Continued

Αυτό το section είναι για την συνέχεια του πειράματος, η οποία θα χρησιμοποιηθεί ως το negative blank για την ανάλυση των πειραμάτων με υδρόλυμα.

```
<date_saving_acetate_s2_2>>
inds = 2:75
exp_meth_vol = [0, 0.2, 1, 1.5, 1, 1, 1, 1.5, 1.5, 1.5, 1, 1, 1, 1.5,
1.5, 1, 1.5, 1, 1, 1, 1.5, 1, 1, 1.5, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
  0, 0, 0]
meth_vol_acet_1 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_1_s2_2"
source = "Acetate"
reactor = "Reactor 1"
sludge = "Sludge 2"
run_num = "Run 2"
input_vs = 4.2
p0 = [90.0, 20.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_1_2 = max_manual_rate
<<br/>bmp_curve_fitting_hour>>
model_acet_1 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
```

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane Volume}$
$10/04_{22}:34$	0.0	0.0	0.0	0.0
$10/04_{23}:34$	3600.646	60.0108	0.2	0.2
$11/04_{00}:34$	7200.689	120.0115	1.0	1.2
$11/04_{01}:34$	10800.736	180.0123	1.5	2.7
$11/04_{02}:34$	14400.774	240.0129	1.0	3.7
$11/04_{03}:34$	18000.824	300.0137	1.0	4.7
$11/04_{04}:34$	21600.614	360.0102	1.0	5.7 6.7
$11/04_{05}:34$	25200.593	420.0099 480.0098	1.0	8.2
$11/04_{06}:34$	28800.59		1.5	
$11/04_{07}:34$	32400.603	540.01	1.5	9.7
$11/04_{08}:34$	36000.632	600.0105 660.0108	1.0	10.7 11.7
$11/04_{09}:34$	39600.649 43200.676	720.0113	1.0 1.0	11.7 12.7
$11/04_{10}:34$ $11/04_{11}:34$	46800.69	780.0115	1.0	13.7
$11/04_{11}.34$ $11/04_{12}:34$	50400.716	840.0119	1.5	15.7
$11/04_{12}.34$ $11/04_{13}:34$	54001.094	900.0119	1.5	16.7
$11/04_{13}.34$ $11/04_{14}:34$	57601.094	960.0182	1.0	17.7
$11/04_{14}.34$ $11/04_{15}:34$	61201.271	1020.0212	1.0	18.7
$11/04_{15}.34$ $11/04_{16}:34$	64801.302	1020.0212	1.5	20.2
$11/04_{16}.34$ $11/04_{17}:34$	68402.4	1140.04	1.0	21.2
$11/04_{17}.34$ $11/04_{18}:34$	72002.431	1200.0405	1.0	$\frac{21.2}{22.2}$
$11/04_{18}.34$ $11/04_{19}:34$	75602.471	1260.0403	1.0	23.2
$11/04_{19}.34$ $11/04_{20}:34$	79202.49	1320.0415	1.0	24.2
$11/04_{20}.34$ $11/04_{21}:34$	82802.535	1380.0422	1.0	25.2
$11/04_{21}.34$ $11/04_{22}:34$	86402.082	1440.0347	1.0	$\frac{26.2}{26.2}$
$11/04_{23}:34$ $11/04_{23}:34$	90001.93	1500.0322	1.0	27.2
$12/04_{23}:34$ $12/04_{00}:34$	93601.929	1560.0322	1.5	28.7
$12/04_{00}.34$ $12/04_{01}:34$	97201.954	1620.0326	1.0	29.7
$12/04_{02}:34$	100801.943	1680.0324	1.0	30.7
$12/04_{03}:34$	104401.949	1740.0325	1.0	31.7
$12/04_{04}:34$	108001.947	1800.0324	1.0	32.7
$12/04_{05}:34$	111601.942	1860.0324	1.0	33.7
$12/04_{06}:34$	115201.949	1920.0325	1.5	35.2
$12/04_{07}:34$	118802.181	1980.0364	1.5	36.7
$12/04_{08}:34$	122402.423	2040.0404	1.5	38.2
$12/04_{09}:34$	126002.49	2100.0415	1.5	39.7
$12/04_{10}:34$	129602.522	2160.042	1.5	41.2
$12/04_{11}:34$	133202.524	2220.0421	1.5	42.7
$12/04_{12}:34$	136802.523	2280.042	1.5	44.2
$12/04_{13}:34$	140402.521	2340.042	1.0	45.2
$12/04_{14}:34$	144002.526	2400.0421	1.5	46.7
$12/04_{15}:34$	147602.524	2460.0421	1.5	48.2
$12/04_{16}:34$	151202.897	2520.0483	1.5	49.7
$12/04_{17}:34$	154803.22	2580.0537	1.5	51.2
$12/04_{18}:34$	158403.227	2640.0538	1.0	52.2
$12/04_{19}:34$	162003.224	2700.0537	1.0	53.2
$12/04_{20}:34$	165603.232	2760.0539	1.5	54.7
$12/04_{21}$:34	169203.229	2820.0538	1.5	56.2
$12/04_{22}:34$	172803.235	2880.0539	1.0	57.2
$12/04_{23}:34$	176403.674	2940.0612	1.0	58.2
$13/04_{00}:34$	180003.672	3000.0612	102 1.5	59.7
$13/04_{01}$:34	183603.675	3060.0613	1.0	60.7
$13/04_{02}:34$	187203.694	3120.0616	1.5	62.2
$13/04_{03}:34$	190803.695	3180.0616	1.0	63.2
$13/04_{04}:34$	194403.701	3240.0617	1.0	64.2

7.4 Acetate Test 2

To section αυτό αναφέρεται στη δοκιμή με 100 μL οξικό στο δείγμα (2). $\mathbf{acet_{test2s2}}$

Data Analysis on Reactor 2

<date_saving_acetate_s2>>

```
inds = 4:21
meth_vol_acet_2 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_2_s2"
source = "Acetate"
reactor = "Reactor 2"
sludge = "Sludge 2"
run_num = "Run 1"
input\_cod = 4.2
p0 = [30.0, 6.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_2 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_acet_2 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [7.1, 1.43, 1.0]
<<sma_curve_fitting_min>>
sma_acet_2 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 4 <<acet_test_2_s2()>> '(4))
```


Table 21: Κινητικά Δεδομένα

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane Volume}$
$10/04_{14}:02$	0.0	0.0	0.0	0.0
$10/04_{14}:03$	60.0	1.0	3.5	3.5
$10/04_{14}:04$	108.292	1.8049	3.0	6.5
$10/04_{14}:05$	165.673	2.7612	1.0	7.5
$10/04_{14}$:06	225.695	3.7616	1.0	8.5
$10/04_{14}$:07	285.685	4.7614	1.0	9.5
$10/04_{14}$:07	304.274	5.0712	0.2	9.7
$10/04_{14}:08$	364.265	6.0711	0.4	10.1
$10/04_{14}:08$	392.287	6.5381	0.4	10.5
$10/04_{14}$:09	452.282	7.538	2.0	12.5
$10/04_{14}:10$	512.28	8.538	0.0	12.5
$10/04_{14}$:11	572.302	9.5384	0.0	12.5
$10/04_{14}$:12	632.313	10.5386	0.0	12.5
$10/04_{14}$:13	692.325	11.5388	0.0	12.5
$10/04_{14}:14$	752.33	12.5388	0.0	12.5
$10/04_{14}:15$	812.328	13.5388	0.0	12.5
$10/04_{14}$:16	872.318	14.5386	0.0	12.5
$10/04_{14}:17$	932.329	15.5388	0.0	12.5

7.4.1 Continued

Αυτό το section είναι για την συνέχεια του πειράματος, η οποία θα χρησιμοποιηθεί ως το negative blank για την ανάλυση των πειραμάτων με υδρόλυμα.

<date_saving_acetate_s2_2>>

```
inds = 1:90
exp_meth_vol = [0.5, 0.5, 0.3, 0.3, 0.5, 0.8, 0.8, 0.5, 0.5, 1, 0.5, 0.5,
\rightarrow 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1.5, 1, 1.5, 1.5, 1, 1, 1, 1, 1,
\rightarrow 1, 1, 1, 1, 0.1, 0.1, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
\rightarrow 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]
meth_vol_acet_2 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_2_s2_2"
source = "Acetate"
reactor = "Reactor 2"
sludge = "Sludge 2"
run_num = "Run 2"
input_vs = 4.2
p0 = [90.0, 20.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_2_2 = max_manual_rate
<<br/>bmp_curve_fitting_hour>>
model_acet_2 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_acet_2 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 3 <<acet_test_2_s2_2()>> '(4))
```

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Timostomo	Seconds	Minutes	Mothano	Cumulativa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Timestamp			Methane _{Volume}	$Cumulative_{Methane Volume}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{c} 11/04_{01}34 & 10800.728 & 180.0121 & 0.3 & 1.6 \\ 11/04_{01}34 & 18000.813 & 300.0136 & 0.8 & 2.9 \\ 11/04_{01}34 & 18000.813 & 300.0136 & 0.8 & 3.7 \\ 11/04_{01}34 & 2200.053 & 360.0144 & 0.8 & 3.7 \\ 11/04_{01}34 & 28800.632 & 480.0105 & 0.5 & 4.2 \\ 11/04_{01}34 & 28800.632 & 480.0105 & 0.5 & 4.7 \\ 11/04_{01}34 & 28800.632 & 480.0105 & 1.5 & 6.2 \\ 11/04_{07}34 & 32400.629 & 540.0105 & 1.5 & 6.2 \\ 11/04_{07}34 & 39600.671 & 660.0112 & 1.0 & 8.2 \\ 11/04_{01}34 & 43200.688 & 720.0115 & 1.0 & 9.2 \\ 11/04_{01}34 & 46800.715 & 780.0119 & 1.0 & 10.2 \\ 11/04_{01}34 & 5400.729 & 840.0122 & 1.0 & 11.2 \\ 11/04_{11}34 & 5400.729 & 840.0122 & 1.0 & 11.2 \\ 11/04_{11}34 & 57601.133 & 960.0189 & 1.0 & 13.2 \\ 11/04_{11}34 & 61201.256 & 1020.0209 & 1.0 & 14.2 \\ 11/04_{11}34 & 64801.31 & 1080.0218 & 1.0 & 15.2 \\ 11/04_{11}34 & 75602.47 & 1260.0412 & 1.5 & 18.7 \\ 11/04_{11}34 & 75602.47 & 1260.0412 & 1.5 & 18.7 \\ 11/04_{12}34 & 82802.529 & 1380.0422 & 1.5 & 12.1 \\ 11/04_{22}34 & 9000.2121 & 1500.0354 & 1.0 & 19.7 \\ 11/04_{22}34 & 90002.121 & 1500.0354 & 1.0 & 19.7 \\ 11/04_{22}34 & 90002.121 & 1500.0354 & 1.0 & 23.7 \\ 11/04_{23}4 & 108001.989 & 1660.0328 & 1.0 & 24.7 \\ 12/04_{03}34 & 108001.981 & 1800.0311 & 1.0 & 25.7 \\ 12/04_{03}34 & 108001.981 & 1800.0331 & 1.0 & 26.7 \\ 12/04_{03}34 & 108001.981 & 1800.0331 & 1.0 & 27.7 \\ 12/04_{03}34 & 108001.981 & 1800.0331 & 1.0 & 27.7 \\ 12/04_{03}34 & 108001.981 & 1800.0331 & 1.0 & 27.7 \\ 12/04_{03}34 & 108001.981 & 1800.0331 & 1.0 & 29.7 \\ 12/04_{03}34 & 11601.986 & 1860.0331 & 1.0 & 29.7 \\ 12/04_{03}34 & 11600.262 & 2400.047 & 1.0 & 32.8 \\ 12/04_{01}34 & 118801.988 & 1980.0331 & 1.0 & 30.7 \\ 12/04_{03}34 & 118801.989 & 1980.0331 & 1.0 & 30.7 \\ 12/04_{03}34 & 118001.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{03}34 & 118001.981 & 1920.033 & 1.0 & 30.9 \\ 12/04_{01}34 & 118001.982 & 2460.0428 & 1.0 & 36.9 \\ 12/04_{11}34 & 138002.561 & 2220.0427 & 0.5 & 33.4 \\ 12/04_{11}34 & 144002.56 & 2400.0427 & 1.0 & 36.9 \\ 12/04_{13}34 & 144002.56 & 2400.0427 & 1.0 & 36.9 \\ 12/04_{13}4 & 14600.562.82 & 280$,				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{c} 11/04_{06}:34 & 32400.629 & 540.0105 & 1.5 & 6.2 \\ 11/04_{07}:34 & 36000.642 & 600.0107 & 1.0 & 7.2 \\ 11/04_{06}:34 & 39600.671 & 660.0112 & 1.0 & 8.2 \\ 11/04_{06}:34 & 43200.688 & 720.0115 & 1.0 & 9.2 \\ 11/04_{10}:34 & 46800.715 & 780.0119 & 1.0 & 10.2 \\ 11/04_{11}:34 & 54000.729 & 840.0122 & 1.0 & 11.2 \\ 11/04_{12}:34 & 54000.755 & 900.0126 & 1.0 & 12.2 \\ 11/04_{13}:34 & 57601.133 & 960.0189 & 1.0 & 13.2 \\ 11/04_{15}:34 & 64801.31 & 1080.0218 & 1.0 & 14.2 \\ 11/04_{15}:34 & 68401.341 & 1140.0224 & 1.0 & 16.2 \\ 11/04_{16}:34 & 68401.341 & 1140.0224 & 1.0 & 16.2 \\ 11/04_{16}:34 & 72002.439 & 1200.0406 & 1.0 & 17.2 \\ 11/04_{16}:34 & 75602.47 & 1260.0412 & 1.5 & 18.7 \\ 11/04_{20}:34 & 82802.529 & 1380.0422 & 1.5 & 12.2 \\ 11/04_{21}:34 & 86402.574 & 1440.0429 & 1.5 & 22.7 \\ 11/04_{22}:34 & 90002.121 & 1500.0354 & 1.0 & 23.7 \\ 11/04_{22}:34 & 90002.121 & 1500.0354 & 1.0 & 23.7 \\ 12/04_{00}:34 & 97201.968 & 1620.0328 & 1.0 & 25.7 \\ 12/04_{01}:34 & 108001.993 & 1680.0332 & 1.0 & 25.7 \\ 12/04_{03}:34 & 10401.992 & 1740.033 & 1.0 & 27.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 25.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 29.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 29.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:34 & 118001.988 & 1800.0331 & 1.0 & 29.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:34 & 126002.462 & 2100.041 & 0.1 & 32.8 \\ 12/04_{15}:34 & 14002.562 & 2340.0427 & 0.5 & 33.4 \\ 12/04_{17}:34 & 136802.563 & 2280.0427 & 0.5 & 33.9 \\ 12/04_{15}:34 & 144002.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{15}:34 & 14502.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{15}:34 & 14502.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{15}:34 & 14502.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{15}:34 & 14502.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{15}:34 & 14602.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{15}:34 & 14502.562 & 250.0427 & 1.0 & 35.9 \\ 12/04_{15}:34 & 14602.562 & 2340.0427$, -				
$\begin{array}{c} 11/04_{07}:34 & 36000.642 & 600.0107 & 1.0 & 7.2 \\ 11/04_{08}:34 & 33600.671 & 660.0112 & 1.0 & 8.2 \\ 11/04_{09}:34 & 43200.688 & 720.0115 & 1.0 & 10.2 \\ 11/04_{11}:34 & 50400.729 & 840.0122 & 1.0 & 11.2 \\ 11/04_{12}:34 & 54000.755 & 900.0126 & 1.0 & 12.2 \\ 11/04_{13}:34 & 57601.133 & 960.0189 & 1.0 & 13.2 \\ 11/04_{14}:34 & 61201.256 & 1020.0209 & 1.0 & 14.2 \\ 11/04_{16}:34 & 64801.31 & 1080.0218 & 1.0 & 15.2 \\ 11/04_{16}:34 & 68401.341 & 1140.0224 & 1.0 & 16.2 \\ 11/04_{16}:34 & 68401.341 & 1140.0224 & 1.0 & 16.2 \\ 11/04_{16}:34 & 76002.47 & 1260.0412 & 1.5 & 18.7 \\ 11/04_{19}:34 & 75602.47 & 1260.0412 & 1.5 & 18.7 \\ 11/04_{19}:34 & 76002.439 & 1200.0406 & 1.0 & 17.2 \\ 11/04_{19}:34 & 76002.47 & 1260.0412 & 1.5 & 18.7 \\ 11/04_{20}:34 & 82802.529 & 1380.0422 & 1.5 & 22.7 \\ 11/04_{20}:34 & 86402.574 & 1440.0429 & 1.5 & 22.7 \\ 11/04_{23}:34 & 93601.969 & 1560.0328 & 1.0 & 24.7 \\ 12/04_{00}:34 & 97201.968 & 1620.0328 & 1.0 & 24.7 \\ 12/04_{01}:34 & 108001.988 & 1800.0331 & 1.0 & 27.7 \\ 12/04_{04}:34 & 11601.986 & 1860.0331 & 1.0 & 27.7 \\ 12/04_{04}:34 & 11601.986 & 1860.0331 & 1.0 & 27.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{07}:34 & 122402.22 & 2040.037 & 1.0 & 32.7 \\ 12/04_{07}:34 & 122402.22 & 2040.037 & 1.0 & 32.7 \\ 12/04_{06}:34 & 118801.988 & 1980.0331 & 1.0 & 30.7 \\ 12/04_{06}:34 & 118801.988 & 1980.0331 & 1.0 & 30.7 \\ 12/04_{06}:34 & 118801.986 & 1860.0331 & 1.0 & 32.7 \\ 12/04_{06}:34 & 118801.986 & 1860.0331 & 1.0 & 32.8 \\ 12/04_{07}:34 & 122402.22 & 2040.037 & 1.0 & 32.9 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 0.5 & 33.9 \\ 12/04_{13}:34 & 144002.562 & 2400.0427 & 0.5 & 33.9 \\ 12/04_{13}:34 & 144002.562 & 2400.0427 & 0.5 & 33.9 \\ 12/04_{13}:34 & 144002.562 & 2400.0427 & 0.5 & 33.9 \\ 12/04_{13}:34 & 144002.562 & 2400.0427 & 1.0 & 34.9 \\ 12/04_{13}:34 & 158403.259 & 2580.0489 & 1.0 & 36.9 \\ 12/04_{13}:34 & 154002.563 & 2520.0427 & 0.5 & 33.9 \\ 12/04_{13}:34 & 154002.563 & 2520.0427 & 0.5 & 33.9 \\ 12/04_{21}:34 & 154002.562 & 2400.0546 & 1.0 & 40.9 \\ 12/04_{23}:34 & 165003.268$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{c} 11/04_{01}:34 & 46800.715 & 780.0119 & 1.0 & 10.2 \\ 11/04_{11}:34 & 50400.729 & 840.0122 & 1.0 & 11.2 \\ 11/04_{13}:34 & 57601.133 & 960.0189 & 1.0 & 13.2 \\ 11/04_{13}:34 & 61201.256 & 1020.0209 & 1.0 & 14.2 \\ 11/04_{15}:34 & 64801.31 & 1080.0218 & 1.0 & 15.2 \\ 11/04_{16}:34 & 68401.31 & 1140.0224 & 1.0 & 16.2 \\ 11/04_{17}:34 & 72002.439 & 1200.0406 & 1.0 & 17.2 \\ 11/04_{17}:34 & 75602.47 & 1260.0412 & 1.5 & 18.7 \\ 11/04_{19}:34 & 75602.47 & 1260.0412 & 1.5 & 18.7 \\ 11/04_{21}:34 & 82802.529 & 1380.0422 & 1.5 & 21.2 \\ 11/04_{21}:34 & 86402.574 & 1440.0429 & 1.5 & 22.7 \\ 11/04_{23}:34 & 93601.969 & 1560.0328 & 1.0 & 24.7 \\ 12/04_{01}:34 & 10401.982 & 1740.033 & 1.0 & 25.7 \\ 12/04_{01}:34 & 10401.982 & 1740.033 & 1.0 & 25.7 \\ 12/04_{03}:34 & 10401.982 & 1740.033 & 1.0 & 27.7 \\ 12/04_{03}:34 & 10401.988 & 1800.0331 & 1.0 & 29.7 \\ 12/04_{03}:34 & 11601.986 & 1860.0331 & 1.0 & 29.7 \\ 12/04_{03}:34 & 11501.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{03}:44 & 11501.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:44 & 11501.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:44 & 11501.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:44 & 11501.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:44 & 12402.22 & 2040.037 & 1.0 & 32.7 \\ 12/04_{05}:44 & 126002.462 & 2100.041 & 0.1 & 32.8 \\ 12/04_{05}:44 & 126002.529 & 2160.0422 & 0.1 & 32.9 \\ 12/04_{13}:44 & 136802.563 & 2280.0427 & 0.5 & 33.4 \\ 12/04_{13}:44 & 136802.563 & 2280.0427 & 0.5 & 33.9 \\ 12/04_{13}:44 & 144002.56 & 2340.0427 & 1.0 & 36.9 \\ 12/04_{13}:44 & 154802.936 & 2580.0489 & 1.0 & 36.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 39.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 39.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 39.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 39.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 39.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 39.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 39.9 \\ 12/04_{21}:34 & 172803.268 & 2880.0545 & 1.0 & 44.9 \\ 12/04_{23}:34 & 176403.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{23}:34 & 176403.274 & $,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	46800.715	780.0119	1.0	10.2
$\begin{array}{c} 11/04_{13}:34 & 57601.133 & 960.0189 & 1.0 & 13.2 \\ 11/04_{14}:34 & 61201.256 & 1020.0209 & 1.0 & 14.2 \\ 11/04_{16}:34 & 64801.31 & 1080.0218 & 1.0 & 15.2 \\ 11/04_{16}:34 & 68401.31 & 1140.0224 & 1.0 & 16.2 \\ 11/04_{17}:34 & 72002.439 & 1200.0406 & 1.0 & 17.2 \\ 11/04_{18}:34 & 75602.47 & 1260.0412 & 1.5 & 18.7 \\ 11/04_{19}:34 & 79202.51 & 1320.0418 & 1.0 & 19.7 \\ 11/04_{21}:34 & 86402.574 & 1440.0429 & 1.5 & 21.2 \\ 11/04_{23}:34 & 96002.121 & 1500.0354 & 1.0 & 23.7 \\ 11/04_{23}:34 & 93601.969 & 1560.0328 & 1.0 & 24.7 \\ 12/04_{00}:34 & 97201.968 & 1620.0328 & 1.0 & 25.7 \\ 12/04_{01}:34 & 108001.993 & 1680.0332 & 1.0 & 26.7 \\ 12/04_{03}:34 & 108001.998 & 1800.0331 & 1.0 & 27.7 \\ 12/04_{03}:34 & 108001.988 & 1800.0331 & 1.0 & 29.7 \\ 12/04_{03}:34 & 116001.986 & 1860.0331 & 1.0 & 29.7 \\ 12/04_{03}:34 & 115201.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 31.7 \\ 12/04_{06}:34 & 126002.462 & 2100.041 & 0.1 & 32.8 \\ 12/04_{08}:34 & 126002.462 & 2100.041 & 0.1 & 32.8 \\ 12/04_{08}:34 & 126002.462 & 2100.041 & 0.1 & 32.8 \\ 12/04_{08}:34 & 126002.529 & 2160.0422 & 0.1 & 32.9 \\ 12/04_{13}:34 & 130802.561 & 2220.0427 & 0.5 & 33.4 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 0.5 & 33.9 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 1.0 & 36.9 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 1.0 & 35.9 \\ 12/04_{13}:34 & 151202.563 & 2520.0427 & 1.0 & 35.9 \\ 12/04_{13}:34 & 154802.936 & 2580.0489 & 1.0 & 38.9 \\ 12/04_{13}:34 & 154802.936 & 2580.0489 & 1.0 & 38.9 \\ 12/04_{13}:34 & 154802.936 & 2580.0489 & 1.0 & 38.9 \\ 12/04_{13}:34 & 154802.936 & 2580.0489 & 1.0 & 38.9 \\ 12/04_{13}:34 & 154802.936 & 2580.0489 & 1.0 & 38.9 \\ 12/04_{23}:34 & 165603.263 & 2760.0544 & 1.0 & 40.9 \\ 12/04_{23}:34 & 176403.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{23}:44 & 176403.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{23}:44 & 17603.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{23$		50400.729	840.0122	1.0	11.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$11/04_{12}:34$	54000.755	900.0126	1.0	12.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$11/04_{13}:34$	57601.133	960.0189	1.0	13.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$11/04_{14}:34$	61201.256	1020.0209	1.0	14.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$11/04_{15}:34$	64801.31	1080.0218	1.0	15.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$11/04_{16}$:34	68401.341	1140.0224	1.0	16.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$11/04_{17}$:34	72002.439	1200.0406	1.0	17.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$11/04_{18}:34$	75602.47	1260.0412	1.5	18.7
$\begin{array}{c} 11/04_{21}:34 & 86402.574 & 1440.0429 & 1.5 \\ 11/04_{22}:34 & 90002.121 & 1500.0354 & 1.0 \\ 12/04_{00}:34 & 97201.968 & 1620.0328 & 1.0 \\ 12/04_{01}:34 & 100801.993 & 1680.0332 & 1.0 \\ 12/04_{02}:34 & 104401.982 & 1740.033 & 1.0 \\ 12/04_{03}:34 & 108001.988 & 1800.0331 & 1.0 \\ 12/04_{03}:34 & 108001.988 & 1800.0331 & 1.0 \\ 12/04_{04}:34 & 111601.986 & 1860.0331 & 1.0 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 \\ 12/04_{05}:34 & 118801.988 & 1980.0331 & 1.0 \\ 12/04_{06}:34 & 118801.988 & 1980.0331 & 1.0 \\ 12/04_{06}:34 & 118801.988 & 1980.0331 & 1.0 \\ 12/04_{06}:34 & 118801.988 & 1980.0331 & 1.0 \\ 12/04_{06}:34 & 122402.22 & 2040.037 & 1.0 \\ 12/04_{09}:34 & 122402.22 & 2040.037 & 1.0 \\ 12/04_{09}:34 & 129602.529 & 2160.0422 & 0.1 \\ 12/04_{10}:34 & 133202.561 & 2220.0427 & 0.5 \\ 12/04_{11}:34 & 136802.563 & 2280.0427 & 0.5 \\ 12/04_{12}:34 & 140402.562 & 2340.0427 & 1.0 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 1.0 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 1.0 \\ 34.9 & 12/04_{13}:34 & 147602.565 & 2460.0428 & 1.0 \\ 36.9 & 12/04_{14}:34 & 151202.563 & 2520.0427 & 1.0 \\ 37.9 & 12/04_{16}:34 & 154802.936 & 2580.0489 & 1.0 \\ 38.9 & 12/04_{17}:34 & 158403.259 & 2640.0543 & 1.0 \\ 39.9 & 12/04_{18}:34 & 165603.266 & 2700.0544 & 1.0 \\ 30.9 & 12/04_{19}:34 & 165603.266 & 2700.0544 & 1.0 \\ 30.9 & 12/04_{21}:34 & 169203.271 & 2820.0545 & 1.0 \\ 30.9 & 12/04_{21}:34 & 172803.268 & 2880.0545 & 1.0 \\ 30.9 & 12/04_{21}:34 & 172803.268 & 2880.0545 & 1.0 \\ 30.0 & 44.9 \\ 12/04_{22}:34 & 176403.274 & 2940.0546 & 1.0 \\ 41.9 & 12/04_{23}:34 & 180003.713 & 3000.0619 & 107 & 1.0 \\ 45.9 & 13/04_{01}:34 & 183603.711 & 3060.0618 & 1.0 \\ 47.9 & 13/04_{01}:34 & 187203.714 & 3120.0619 & 1.0 \\ 47.9 & 13/04_{01}:34 & 187203.714 & 3120.0619 & 1.0 \\ 47.9 & 13/04_{01}:34 & 187203.714 & 3120.0619 & 1.0 \\ 47.9 & 13/04_{01}:34 & 187203.714 & 3120.0619 & 1.0 \\ 47.9 & 13/04_{01}:34 & 187203.714 & 3120.0619 & 1.0 \\ 47.9 & 13/04_{01}:34 & 187203.714 & 3120.0619 & 1.0 \\ 47.9 & 13/04_{01}:34 & 187203.714 & 3120.0619 & 1.0 \\ 47.9 & 13/04_{01}:34 &$	$11/04_{19}:34$	79202.51	1320.0418	1.0	19.7
$\begin{array}{c} 11/04_{22}:34 & 90002.121 & 1500.0354 & 1.0 & 23.7 \\ 11/04_{23}:34 & 93601.969 & 1560.0328 & 1.0 & 24.7 \\ 12/04_{00}:34 & 97201.968 & 1620.0328 & 1.0 & 25.7 \\ 12/04_{01}:34 & 100801.993 & 1680.0332 & 1.0 & 26.7 \\ 12/04_{02}:34 & 104401.982 & 1740.033 & 1.0 & 27.7 \\ 12/04_{03}:34 & 108001.988 & 1800.0331 & 1.0 & 28.7 \\ 12/04_{04}:34 & 111601.986 & 1860.0331 & 1.0 & 29.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{05}:34 & 118801.988 & 1980.0331 & 1.0 & 31.7 \\ 12/04_{06}:34 & 118801.988 & 1980.0331 & 1.0 & 31.7 \\ 12/04_{08}:34 & 122402.22 & 2040.037 & 1.0 & 32.7 \\ 12/04_{08}:34 & 122602.462 & 2100.041 & 0.1 & 32.8 \\ 12/04_{09}:34 & 129602.529 & 2160.0422 & 0.1 & 32.9 \\ 12/04_{10}:34 & 133202.561 & 2220.0427 & 0.5 & 33.4 \\ 12/04_{11}:34 & 136802.563 & 2280.0427 & 0.5 & 33.9 \\ 12/04_{12}:34 & 140402.562 & 2340.0427 & 1.0 & 34.9 \\ 12/04_{13}:34 & 144002.56 & 2400.0427 & 1.0 & 34.9 \\ 12/04_{13}:34 & 144002.56 & 2400.0427 & 1.0 & 36.9 \\ 12/04_{15}:34 & 151202.563 & 2520.0427 & 1.0 & 36.9 \\ 12/04_{15}:34 & 151202.563 & 2520.0427 & 1.0 & 36.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 36.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 38.9 \\ 12/04_{17}:34 & 158403.259 & 2640.0543 & 1.0 & 39.9 \\ 12/04_{19}:34 & 158403.259 & 2640.0543 & 1.0 & 39.9 \\ 12/04_{19}:34 & 165603.263 & 2760.0544 & 1.0 & 40.9 \\ 12/04_{20}:34 & 169203.271 & 2820.0545 & 1.0 & 42.9 \\ 12/04_{20}:34 & 169203.271 & 2820.0545 & 1.0 & 42.9 \\ 12/04_{22}:34 & 176403.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{22}:34 & 176403.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{22}:34 & 176403.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{23}:34 & 180003.713 & 3000.0619 & 107 & 1.0 & 45.9 \\ 13/04_{01}:34 & 187203.714 & 3120.0619 & 1.0 & 47.9 \\ \end{array}$	$11/04_{20}$:34	82802.529	1380.0422	1.5	21.2
$\begin{array}{c} 11/04_{23}:34 & 93601.969 & 1560.0328 & 1.0 & 24.7 \\ 12/04_{00}:34 & 97201.968 & 1620.0328 & 1.0 & 25.7 \\ 12/04_{01}:34 & 100801.993 & 1680.0332 & 1.0 & 26.7 \\ 12/04_{02}:34 & 104401.982 & 1740.033 & 1.0 & 27.7 \\ 12/04_{03}:34 & 108001.988 & 1800.0331 & 1.0 & 28.7 \\ 12/04_{04}:34 & 111601.986 & 1860.0331 & 1.0 & 29.7 \\ 12/04_{05}:34 & 115201.981 & 1920.033 & 1.0 & 30.7 \\ 12/04_{06}:34 & 118801.988 & 1980.0331 & 1.0 & 31.7 \\ 12/04_{07}:34 & 122402.22 & 2040.037 & 1.0 & 32.7 \\ 12/04_{08}:34 & 126002.462 & 2100.041 & 0.1 & 32.8 \\ 12/04_{10}:34 & 129602.529 & 2160.0422 & 0.1 & 32.9 \\ 12/04_{10}:34 & 136802.561 & 2220.0427 & 0.5 & 33.4 \\ 12/04_{11}:34 & 136802.563 & 2280.0427 & 0.5 & 33.9 \\ 12/04_{11}:34 & 144002.562 & 2340.0427 & 1.0 & 34.9 \\ 12/04_{13}:34 & 144002.562 & 2340.0427 & 1.0 & 34.9 \\ 12/04_{13}:34 & 144002.56 & 2400.0427 & 1.0 & 36.9 \\ 12/04_{15}:34 & 151202.563 & 2520.0427 & 1.0 & 36.9 \\ 12/04_{15}:34 & 154802.936 & 2580.0489 & 1.0 & 36.9 \\ 12/04_{15}:34 & 158403.259 & 2640.0543 & 1.0 & 39.9 \\ 12/04_{15}:34 & 158403.259 & 2640.0543 & 1.0 & 39.9 \\ 12/04_{15}:34 & 166003.266 & 2700.0544 & 1.0 & 40.9 \\ 12/04_{20}:34 & 169203.271 & 2820.0545 & 1.0 & 42.9 \\ 12/04_{20}:34 & 169203.271 & 2820.0545 & 1.0 & 42.9 \\ 12/04_{22}:34 & 176403.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{22}:34 & 176403.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{22}:34 & 176403.274 & 2940.0546 & 1.0 & 44.9 \\ 12/04_{23}:34 & 180003.713 & 3000.0619 & 107 & 1.0 & 45.9 \\ 13/04_{00}:34 & 183603.711 & 3060.0618 & 1.0 & 46.9 \\ 13/04_{01}:34 & 187203.714 & 3120.0619 & 1.0 & 47.9 \\ \end{array}$	$11/04_{21}$:34	86402.574	1440.0429	1.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$13/04_{00}$:34 183603.711 3060.0618 1.0 46.9 $13/04_{01}$:34 187203.714 3120.0619 1.0 47.9	,				
$13/04_{01}:34$ 187203.714 3120.0619 1.0 47.9	,				
•	,				
$13/04_{02}$:34 190803.733 3180.0622 1.0 48.9	,				
$13/04_{03}$:34	,				

7.5 Acetate Test 4

Το section αυτό αναφέρεται στη δοκιμή με 100 μL οξικό στο δείγμα (4). $\mathbf{acet_{test4s2}}$

Data Analysis on Reactor 4

<date_saving_acetate_s2>>

```
inds = 10:21
exp_meth_vol = [0, 5.5, 2.0, 1.5, 0.5, 0, 0, 0, 0, 0, 0]
meth_vol_acet_4 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_4_s2"
source = "Acetate"
reactor = "Reactor 4"
sludge = "Sludge 2"
run_num = "Run 1"
input_vs = 4.2
p0 = [40.0, 10.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_4 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_acet_4 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_min>>
sma_acet_4 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 4 <<acet_test_4_s2()>> '(4))
```

Table 22: Κινητικά δεδομένα

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$10/04_{14}:07$	0.0	0.0	0.0	0.0
$10/04_{14}$:08	59.991	0.9998	5.5	5.5
$10/04_{14}$:08	88.013	1.4669	2.0	7.5
$10/04_{14}$:09	148.008	2.4668	1.5	9.0
$10/04_{14}:10$	208.006	3.4668	0.5	9.5
$10/04_{14}$:11	268.028	4.4671	0.0	9.5
$10/04_{14}:12$	328.039	5.4673	0.0	9.5
$10/04_{14}$:13	388.051	6.4675	0.0	9.5
$10/04_{14}$:14	448.056	7.4676	0.0	9.5
$10/04_{14}:15$	508.054	8.4676	0.0	9.5
$10/04_{14}$:16	568.044	9.4674	0.0	9.5
$10/04_{14}$:17	628.055	10.4676	0.0	9.5

7.5.1 Continued

Αυτό το section είναι για την συνέχεια του πειράματος, η οποία θα χρησιμοποιηθεί ως το negative blank για την ανάλυση των πειραμάτων με υδρόλυμα.

<<date_saving_acetate_s2_2>>

inds = 13:110

```
exp_meth_vol = [1, 0.5, 0.6, 0.5, 0.5, 0.5, 1, 0.5, 0.8, 0.2, 0.5, 0.5,
\rightarrow 0.5, 1, 0.5, 1, 0.5, 1, 1, 0.5, 1, 1, 1, 1, 1, 0.1, 0.1, 0.1, 0.2,
\rightarrow 0.2, 0.2, 0.1, 1.5, 1, 0.5, 0.5, 1, 1, 0.5, 0.5, 0.7, 0.7, 0.5, 1,
\rightarrow 0.5, 0.5, 0.8, 0.6, 0.3, 0.5, 0.5, 1, 1, 1, 1, 0.8, 0.5, 1, 0.5, 0.5,
\rightarrow 0.5, 1, 0.5, 0.5, 1, 1, 0.5, 0.5, 1, 0.5, 0.5, 1, 0.5, 0.5, 0.5,
\rightarrow 0.3, 0.3, 0.3, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
\rightarrow 0.5, 0.5, 0.5, 0, 0, 0, 0]
meth_vol_acet_4 = cumsum(exp_meth_vol)[end]
exp_name = "acet_test_4_s2_2"
source = "Acetate"
reactor = "Reactor 4"
sludge = "Sludge 2"
run_num = "Run 2"
input_vs = 4.2
p4 = [90.0, 20.0, 1.0]
<<br/>bmp_data_processing>>
max_rate_acet_4_2 = max_manual_rate
<<br/>bmp_curve_fitting_hour>>
model_acet_4 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_acet_4 = vcat(reactor, round.(model_params, digits = 3),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
(org-table-import-after-n-lines 3 <<acet_test_4_s2_2()>> '(4))
```

Timestamp	Seconds	Minutes	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$11/04_{09}:34$	0.0	0.0	1.0	1.0
$11/04_{10}:34$ $11/04_{10}:34$	3600.027	60.0004	0.5	1.5
$11/04_{10}.34$ $11/04_{11}:34$	7200.041	120.0007	0.6	2.1
$11/04_{12}:34$	10800.067	180.0011	0.5	2.6
$11/04_{13}:34$	14400.445	240.0074	0.5	3.1
$11/04_{14}:34$	18000.568	300.0095	0.5	3.6
$11/04_{15}:34$	21600.622	360.0104	1.0	4.6
$11/04_{16}:34$	25200.653	420.0109	0.5	5.1
$11/04_{17}:34$	28801.751	480.0292	0.8	5.9
$11/04_{18}:34$	32401.782	540.0297	0.2	6.1
$11/04_{19}:34$	36001.822	600.0304	0.5	6.6
$11/04_{20}:34$	39601.841	660.0307	0.5	7.1
$11/04_{21}:34$	43201.886	720.0314	0.5	7.6
$11/04_{22}:34$	46801.433	780.0239	1.0	8.6
$11/04_{23}:34$	50401.281	840.0214	0.5	9.1
$12/04_{00}:34$	54001.28	900.0213	1.0	10.1
$12/04_{01}:34$	57601.305	960.0218	0.5	10.6
$12/04_{02}:34$	61201.294	1020.0216	1.0	11.6
$12/04_{03}:34$	64801.3	1080.0217	1.0	12.6
$12/04_{04}:34$	68401.298	1140.0216	0.5	13.1
$12/04_{05}:34$	72001.293	1200.0216	1.0	14.1
$12/04_{06}:34$	75601.3	1260.0217	1.0	15.1
$12/04_{07}:34$	79201.532	1320.0255	1.0	16.1
$12/04_{08}:34$	82801.774	1380.0296	1.0	17.1
$12/04_{09}:34$	86401.841	1440.0307	1.0	18.1
$12/04_{10}:34$	90001.873	1500.0312	0.1	18.2
$12/04_{11}:34$	93601.875	1560.0312	0.1	18.3
$12/04_{12}:34$	97201.874	1620.0312	0.1	18.4
$12/04_{13}:34$	100801.872	1680.0312	0.2	18.6
$12/04_{14}:34$	104401.877	1740.0313	0.2	18.8
$12/04_{15}:34$	108001.875	1800.0312	0.2	19.0
$12/04_{16}:34$	111602.248	1860.0375	0.1	19.1
$12/04_{17}:34$	115202.571	1920.0428	1.5	20.6
$12/04_{18}:34$	118802.578	1980.043	1.0	21.6
$12/04_{19}:34$	122402.575	2040.0429	0.5	22.1
$12/04_{20}$:34	126002.583	2100.0431	0.5	22.6
$12/04_{21}:34$	129602.58	2160.043	1.0	23.6
$12/04_{22}$:34	133202.586	2220.0431	1.0	24.6
$12/04_{23}$:34	136803.025	2280.0504	0.5	25.1
$13/04_{00}:34$	140403.023	2340.0504	0.5	25.6
$13/04_{01}:34$	144003.026	2400.0504	0.7	26.3
$13/04_{02}:34$	147603.045	2460.0508	0.7	27.0
$13/04_{03}:34$	151203.046	2520.0508	0.5	27.5
$13/04_{04}:34$	154803.052	2580.0509	1.0	28.5
$13/04_{05}:34$	158403.041	2640.0507	0.5	29.0
$13/04_{06}:34$	162003.047	2700.0508	0.5	29.5
$13/04_{07}$:34	165603.044	2760.0507	0.8	30.3
$13/04_{08}:34$	169203.041	2820.0507	0.6	30.9
$13/04_{09}:34$	172803.048	2880.0508	0.3	31.2
$13/04_{10}:34$	176403.385	2940.0564	0.5	31.7
$13/04_{11}:34$	180003.79	3000.0632	112 0.5	32.2
$13/04_{12}:34$	183603.891	3060.0649	1.0	33.2
$13/04_{13}:34$	187203.972	3120.0662	1.0	34.2
$13/04_{14}:34$	190804.022	3180.067	1.0	35.2
$13/04_{15}$:34	194404.052	3240.0675	1.0	36.2

7.6 Update all helper

Σε αυτό το section θα υπάρχει ένα helper code block που θα κάνει evaluate όλα τα παραπάνω. Έτσι, αν αλλάξει κάτι το οποίο επηρεάζει περισσότερα από ένα code blocks, θα μπορούν να γίνουν updated ταυτόχρονα πιο εύκολα. Επίσης, μία επιπλέον χρησιμότητα του code block αυτού είναι ότι αποθηκεύει ένα CSV που συγκεντρώνει όλα τα δεδομένα των κινητικών παραμέτρων από την προσαρμογή που έγινε παραπάνω, το οποίο είναι χρήσιμο για συγκρίσεις, παρόλο που τα συγκεκριμένα πειράματα δεν είναι τόσο σημαντικό να συγκριθούν. update_{acetatetestss2}

```
<<acet_test_0_s2>>
<<acet_test_1_s2>>
<<acet_test_2_s2>>
<<acet_test_4_s2>>
<<acet_test_fw_s2>>
model_fit_table = Tables.table(vcat(reshape(model_acet_0, 1, 5),
    reshape(model_acet_1, 1, 5), reshape(model_acet_2, 1, 5),
    reshape(model_acet_4, 1, 5), reshape(model_acet_fw, 1, 5)), header =
    [:Reactor_Name, :Production_Potential, :Production_Rate, :Lag_Time,
    :R_squared])
CSV.write(datadir("exp_pro", "methane_from_acetate_kinetics_s2.csv"),

→ model_fit_table)

return("../data/exp_pro/methane_from_acetate_kinetics_s2.csv")
(org-table-import-after-n-lines 4 <<update_acetate_tests_s2()>> '(4))
                        Table 23: Kinetic Models in Minutes
        {\rm Reactor_{Name}}
                     Production<sub>Potential</sub> Production<sub>Rate</sub>
                                                        Lag_{Time}
                                                                  R_{\text{squared}}
        Reactor 0
                                 6.955
                                                           0.165
                                                 7.392
                                                                    0.996
        Reactor 1
                                11.663
                                                 3.444
                                                             0.0
                                                                    0.843
        Reactor 2
                                12.599
                                                 2.038
                                                             0.0
                                                                    0.921
        Reactor 4
                                 9.484
                                                 6.821
                                                           0.194
                                                                    0.999
        Reactor FW
                                14.451
                                                 4.298
                                                           0.586
                                                                    0.993
<<acet_test_0_s2>>
<<acet_test_1_s2>>
<<acet_test_2_s2>>
<<acet_test_4_s2>>
<<acet_test_fw_s2>>
sma_table = Tables.table(vcat(reshape(sma_acet_0, 1, 5),
    reshape(sma_acet_1, 1, 5), reshape(sma_acet_2, 1, 5),
    reshape(sma_acet_4, 1, 5), reshape(sma_acet_fw, 1, 5)), header =
    [:Reactor_Name, :Methane_Potential, :SMA, :Lag_Time, :R_sq])
CSV.write(datadir("exp_pro", "sma_from_acetate_s2.csv"), sma_table)
return("../data/exp_pro/sma_from_acetate_s2.csv")
(org-table-import-after-n-lines 4 <<sma_acet_s2()>> '(4))
```

7.6.1 Slow Growth Phase

 $update_{acetatetestss22}$

Reactor 0 1.656 1.76 0.1650.996Reactor 1 0.82 2.777 0.00.843Reactor 2 3.0 0.4850.00.921Reactor 4 2.258 1.624 0.1940.999 Reactor FW 3.441 1.023 0.5860.993<<acet_test_0_s2_2>> <<acet_test_1_s2_2>> <<acet_test_2_s2_2>> <<acet_test_4_s2_2>> <<acet_test_fw_s2_2>> model_fit_table = Tables.table(vcat(reshape(model_acet_0, 1, 5), reshape(model_acet_1, 1, 5), reshape(model_acet_2, 1, 5), reshape(model_acet_4, 1, 5), reshape(model_acet_fw, 1, 5)), header = [:Reactor_Name, :Production_Potential, :Production_Rate, :Lag_Time, :R_squared]) CSV.write(datadir("exp_pro", "methane_from_acetate_kinetics_s2_2.csv"), → model_fit_table) return("../data/exp_pro/methane_from_acetate_kinetics_s2_2.csv") (org-table-import-after-n-lines 4 <<update_acetate_tests_s2_2()>> '(4)) Table 25: Kinetic Models in Hours $Production_{Potential}$ $Production_{Rate}$ Reactor_{Name} Lag_{Time} R_{squared} 84.228 Reactor 0 0.7642.585 0.994Reactor 1 98.775 1.383 5.575 0.997 Reactor 2 105.138 1.084 6.5290.995Reactor 4 74.653 0.7344.050.997Reactor FW 60.343 0.7661.903 0.998 <<acet_test_0_s2_2>> <<acet_test_1_s2_2>> <<acet_test_2_s2_2>> <<acet_test_4_s2_2>> <<acet_test_fw_s2_2>> sma_table = Tables.table(vcat(reshape(sma_acet_0, 1, 5), reshape(sma_acet_1, 1, 5), reshape(sma_acet_2, 1, 5), reshape(sma_acet_4, 1, 5), reshape(sma_acet_fw, 1, 5)), header = [:Reactor_Name, :Methane_Potential, :SMA, :Lag_Time, :R_sq]) CSV.write(datadir("exp_pro", "sma_from_acet_s2_2.csv"), sma_table) return("../data/exp_pro/sma_from_acet_s2_2.csv")

Table 24: SMA Kinetics in Minutes

SMA

 Lag_{Time}

 R_{sq}

 $Methane_{Potential}$

 $Reactor_{Name}$

Table 26: SMA Kinetics in Hours

$Reactor_{Name}$	$Methane_{Potential}$	SMA	Lag_{Time}	R_{sq}
Reactor 0	20.054	0.182	2.585	0.994
Reactor 1	23.518	0.329	5.575	0.997
Reactor 2	25.033	0.258	6.529	0.995
Reactor 4	17.775	0.175	4.05	0.997
Reactor FW	14.367	0.182	1.903	0.998

7.7 Γενικά σχόλια για αυτόν τον κύκλο πειραμάτων

Αυτά τα πειράματα έχουν ως σχοπό την σύγχριση με την προηγούμενη λάσπη και μία προσπάθεια επαλήθευσης των αποτελεσμάτων του προηγούμενου χύχλου χρησιμοποιώντας διαφορετιχή λάσπη (το οποίο θα μας επιτρέψει να επιβεβαιώσουμε πως λειτουργούν και οι 2 όπως θα αναμέναμε).

Με βάση τα αποτελέσματα του χύχλου αυτού, παρατηρούμε πως η λάσπη αυτή παράγει πολύ λιγότερο μεθάνιο. Βέβαια, μπορεί να παίζει ρόλο πως έχει προστεθεί αρχετά περισσότερη λάσπη στον αντιδραστήρα (250 g που αντιστοιχούν σε $4 \ \mathrm{g}\ \mathrm{VS}$ αντί για 125 g που αντιστοιχούσαν σε $1.5 \ \mathrm{g}\ \mathrm{VS}$ στο προηγούμενο πείραμα) οπότε ο λόγος τροφής προς μιχροοργανισμούς $(\mathrm{F/M})$ είναι πολύ μιχρότερος.

Επίσης, παρατηρείται πως ο ρυθμός παραγωγής μεθανίου είναι μικρότερος (παρότι της ίδιας τάξης μεγέθους) από το προηγούμενο πείραμα, με εξαίρεση μόνο το δείγμα 0, όπου η λάσπη παρήγαγε πάρα πολύ γρήγορα αέριο.

Ως συμπέρασμα, βλέπουμε πως μία πιθανή αιτία για την μεγάλη διαφορά των δύο λασπών μπορεί να είναι η διαφορετική ποσότητα λάσπης (και άρα να πρέπει αυτή να ληφθεί υπόψην στις κινητικές) πέρα από το γεγονός ότι μπορεί να έχουν απλώς πολύ διαφορετική δραστικότητα.

8 FW Hydrolysate Data Processing $S2_{R1}$

Όπως αναφέρθηκε παραπάνω, τα δείγματα αυτά είχαν πάρα πολύ μεγάλη παραγωγή βιοαερίου, η οποία παρατηρήθηκε και στα πειράματα που τροφοδοτήσαμε με οξικό. Για τον λόγο αυτό, η παραγωγή εκείνη του οξικού θεωρήθηκε negative blank του πειράματος και θα αφαιρεθεί από όλα τα πειράματα.

8.1 Reactor 0

Το δείγμα αυτό είναι labelled ως δείγμα 0 καθώς είναι το δείγμα το οποίο τροφοδοτήθηκε με treated FW, όμως χωρίς προσθήκη του μιξ ενζύμων και μικροοργανισμών. Όπως έχουμε δεί, όλες οι αντιδράσεις που γίνονται κατά την υδρόλυση και ζύμωση μπορούν να γίνουν και χωρίς το μιξ. Όμως, γινόντουσαν πιο αποτελεσματικά με την προσθήκη αυτού. Οπότε, ελπίζουμε πως το δείγμα αυτό θα έχει χειρότερα αποτελέσματα από τα άλλα, το οποίο θα μας οδηγήσει στην υπόθεση ότι το μιξ βελτιώνει όχι μόνο τα κριτήρια υδρόλυσης και οξεογένεσης αλλά και αυτό της μεθανογένεσης.

 $hydrolysate_{0s2r1}$

Data Analysis on Hydrolysate with 0 ml

```
<<acet_test_0_s2_2>>
meth_vol_blank = exp_meth_vol
<<date_saving_fw_s2_r1>>
inds = vcat(14:66, 93:160)
exp_meth_vol = [0, 0, 0.5, 0.6, 0.6, 0.7, 0.8, 0.7, 0.6, 0.7, 1, 0.9, 0.7,
\rightarrow 0.8, 0.8, 0.7, 1, 1, 1, 0.8, 0.7, 1, 0.7, 0.7, 0.6, 1, 0.8, 1.5, 0.7,
\rightarrow 1, 0.9, 0.8, 0.8, 1, 1, 1, 1, 1, 1, 0.9, 1.2, 1, 0.9, 1, 0.8, 0.7,
\rightarrow 0.8, 0.5, 0.5, 0.8, 0.5, 0.3, 0.5, 1.3, 1.2, 1, 1, 1, 0.5, 1, 1.2, 1,
\rightarrow 1, 1, 1, 0.5, 1, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 0.9, 0.8, 0.7,
\rightarrow 0.8, 0.6, 0.7, 0.9, 0.7, 0.7, 0.6, 0.5, 0.5, 0.5, 0.3, 0.2, 0.3, 0.4,
\rightarrow 0.3, 0.2, 0.4, 0.4, 0.5, 0.3, 0.3, 0.3, 0.4, 0.3, 0.3, 0.3, 0.2,
\rightarrow 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0]
meth_vol_blank_complete = vcat(meth_vol_blank, zeros(length(exp_meth_vol))
→ - length(meth_vol_blank)))
meth_vol_diff = round.(exp_meth_vol .- meth_vol_blank_complete, digits = 1)
exp_meth_vol = [meth_vol_diff[i] < 0 ? meth_vol_diff[i] = 0.0 :</pre>
→ meth_vol_diff[i] for i in 1:length(meth_vol_diff)]
meth_vol_hydro_0 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_0_s2_r1"
source = "Hydrolyzed FW"
reactor = "Reactor 0"
sludge = "Sludge 2"
run_num = "Run 1"
input_vs = 4.2
<<br/>bmp_data_processing>>
max_rate_hydro_0 = max_manual_rate
# The same model is fit either with min or hour
p0 = [6.0, 0.01, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_0_min = vcat(reactor, round.(model_params, digits = 3),
\rightarrow round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [6.0, 0.2, 1.0]
<<br/>bmp_curve_fitting_hour>>
model_hydro_0_hour = vcat(reactor, round.(model_params, digits = 3),
\rightarrow round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [6.0, 10.0, 1.0]
<<sma_curve_fitting_hour>>
```

```
sma_hydro_0 = vcat(reactor, round.(model_params, digits = 3),
          round(r_squared, digits = 3))
<<bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
```

8.1.1 Results

Παρακάτω φαίνονται τα αποτελέσματα του σχετικού πειράματος.

```
(org-table-import-after-n-lines 3 <<hydrolysate_0_s2_r1()>> '(4))
```

Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$15/04_{12}:21$	0.0	0.0	0.0	0.0
$15/04_{12}$:29	7.3353	0.1223	0.0	0.0
$15/04_{12}.29$ $15/04_{13}:29$	67.3353	1.1223	0.0	0.0
$15/04_{13}.29$ $15/04_{14}:29$	127.3354	2.1223	0.0	0.0
$15/04_{14}.29$ $15/04_{15}:29$	187.3356	3.1223	0.0	0.1
$15/04_{16}$:29	247.3355	4.1223	0.0	0.1
$15/04_{16}.29$ $15/04_{17}:29$	307.3534	5.1226	0.0	0.1
$15/04_{17}.29$ $15/04_{18}:29$	367.3563	6.1226	0.0	0.1
$15/04_{18}.29$ $15/04_{19}:29$	427.3603	7.1227	0.2	$0.3 \\ 0.4$
,			$0.1 \\ 0.2$	$0.4 \\ 0.6$
$15/04_{20}:29$	487.3578	8.1226		
$15/04_{21}:29$	547.3579	9.1226	0.0	0.6
$15/04_{22}:29$	607.3578	10.1226	0.0	0.6
$15/04_{23}$:29	667.3498	11.1225	0.0	0.6
$16/04_{00}:29$	727.3497	12.1225	0.3	0.9
$16/04_{01}:29$	787.3499	13.1225	0.3	1.2
$16/04_{02}:29$	847.3513	14.1225	0.2	1.4
$16/04_{03}:29$	907.353	15.1225	0.5	1.9
$16/04_{04}:29$	967.3532	16.1226	0.5	2.4
$16/04_{05}:29$	1027.3534	17.1226	0.5	2.9
$16/04_{06}:29$	1087.3534	18.1226	0.0	2.9
$16/04_{07}$:29	1147.3534	19.1226	0.0	2.9
$16/04_{08}:29$	1207.3536	20.1226	0.0	2.9
$16/04_{09}:29$	1267.3535	21.1226	0.0	2.9
$16/04_{10}:26$	1324.7359	22.0789	0.0	2.9
$16/04_{11}:26$	1384.7411	23.079	0.0	2.9
$16/04_{12}:26$	1444.7472	24.0791	0.0	2.9
$16/04_{13}:26$	1504.7468	25.0791	0.0	2.9
$16/04_{14}$:26	1564.747	26.0791	0.5	3.4
$16/04_{15}$:26	1624.7469	27.0791	0.2	3.6
$16/04_{16}$:26	1684.747	28.0791	0.5	4.1
$16/04_{17}$:26	1744.747	29.0791	0.4	4.5
$16/04_{18}:26$	1804.753	30.0792	0.6	5.1
$16/04_{19}$:26	1864.7527	31.0792	0.6	5.7
$16/04_{20}$:26	1924.7532	32.0792	0.5	6.2
$16/04_{21}$:26	1984.7553	33.0793	0.5	6.7
$16/04_{22}$:26	2044.756	34.0793	0.0	6.7
$16/04_{23}$:26	2104.7685	35.0795	0.0	6.7
$17/04_{00}$:26	2164.7684	36.0795	0.0	6.7
$17/04_{01}:26$	2224.7686	37.0795	0.5	7.2
$17/04_{02}$:26	2284.7685	38.0795	0.5	7.7
$17/04_{03}$:26	2344.7685	39.0795	0.4	8.1
$17/04_{04}:26$	2404.7685	40.0795	0.7	8.8
$17/04_{05}$:26	2464.7676	41.0795	0.5	9.3
$17/04_{06}$:26	2524.7664	42.0794	0.0	9.3
$17/04_{07}$:26	2584.7658	43.0794	0.5	9.8
$17/04_{08}$:26	2644.7659	44.0794	0.3	10.1
$17/04_{09}$:26	2704.7657	45.0794	0.2	10.3
$17/04_{10}$:29	2767.6056	46.1268	0.3	10.6
$17/04_{11}$:29	2827.6056	47.1268	0.0	10.6
$17/04_{12}:29$	2887.6267	48.1271	0.0	10.6
$17/04_{13}$:29	2947.6263	49.1271	119 0.3	10.9
$17/04_{13}:57$	2975.3544	49.5892	0.0	10.9
$17/04_{14}:42$	3020.0336	50.3339	0.0	10.9
$17/04_{15}:17$	3055.8519	50.9309	0.0	10.9
$17/04_{16}$:18	3116.8644	51.9477	0.8	11.7

8.2 Reactor 1

Το δείγμα αυτό τροφοδοτήθηκε με το υδρόλυμα το οποίο είχε προσθήκη 1 ml mix. Στο αρχικό κινητικό πείραμα, το δείγμα αυτό είχε αρκετά παρόμοια συμπεριφορά με το 0 και χειρότερη αυτής του 1. Από την μέτρηση του COD του, είχε αναπάντεχα υψηλό sCOD. Αυτό σημαίνει είτε πως έγινε κάποιο λάθος στην ανάλυση ή ότι απλώς έγινε πολύ καλύτερη υδρόλυση από ότι περιμέναμε στο πείραμα αυτό. Με βάση το sCOD του, αναμένεται να έχει καλά αποτελέσματα. Με βάση την HPLC του αρχικού πειράματος, θα περιμέναμε να είναι λίγο καλύτερο από το 0.

 $hydrolysate_{1s2r1}$

```
### Data Analysis on Hydrolysate with 1 ml ###
<<acet_test_1_s2_2>>
meth_vol_blank = exp_meth_vol
<date_saving_fw_s2_r1>>
inds = vcat(6:66, 93:150)
exp_meth_vol = [0, 0.2, 0.7, 0, 0, 0, 0, 0.2, 0.6, 1.7, 1.6, 1.5, 1.3,
\rightarrow 1.4, 1.3, 1.3, 1.4, 1.3, 1.2, 1.2, 1.1, 1.2, 1.4, 1.8, 1.5, 1.9,
\rightarrow 1.2, 1.5, 1.1, 1, 1.3, 1.7, 2, 1.6, 1.4, 1.6, 1.5, 1.3, 1.5, 1.5,
\rightarrow 1.5, 1.7, 1.7, 1.7, 1.7, 1.8, 1.7, 1.8, 1.8, 1.6, 1.7, 1.6, 1.7,
\rightarrow 1.8, 1.7, 1, 0.5, 0.5, 1, 1.2, 1, 1, 1, 1, 1, 1.2, 0.7, 0.7, 0.7, 0.6,
\rightarrow 0.8, 0.7, 0.5, 0.4, 0.5, 0.6, 0.5, 0.6, 0.5, 0.5, 0.4, 0.8, 0.6, 0.5,
\rightarrow 0, 0.3, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1,
\hookrightarrow 0.1, 0.1, 0.1, 0.1, 0.2, 0.3, 0.3, 0.2, 0.1, 0.1, 0.1, 0, 0, 0, 0,
→ 0]
meth_vol_blank_complete = vcat(meth_vol_blank, zeros(length(exp_meth_vol))
→ - length(meth_vol_blank)))
meth_vol_diff = round.(exp_meth_vol .- meth_vol_blank_complete, digits = 1)
exp_meth_vol = [meth_vol_diff[i] < 0 ? meth_vol_diff[i] = 0.0 :</pre>
→ meth_vol_diff[i] for i in 1:length(meth_vol_diff)]
meth_vol_hydro_1 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_1_s2_r1"
source = "Hydrolyzed FW"
reactor = "Reactor 1"
sludge = "Sludge 2"
run_num = "Run 1"
input_vs = 4.2
p0 = [13.0, 0.1, 1.0]
<<br/>bmp_data_processing>>
max_rate_hydro_1 = max_manual_rate
<<br/>bmp_curve_fitting_min>>
model_hydro_1_min = vcat(reactor, round.(model_params, digits = 3),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [13.0, 1.0, 1.0]
<<bmp_curve_fitting_hour>>
model_hydro_1_hour = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
<<sma_curve_fitting_hour>>
```

Timestamp $15/04_{12}:11$	Minutes 0.0	Hours 0.0	$\begin{array}{c} {\rm Methane_{Volume}} \\ {\rm 0.0} \end{array}$	$\begin{array}{c} {\rm Cumulative_{MethaneVolume}} \\ 0.0 \end{array}$
$15/04_{12}.11$ $15/04_{12}:11$	0.3114	0.0052	0.0	0.0
$15/04_{12}.11$ $15/04_{12}:12$	1.3113	0.0032 0.0219	0.0	0.0
$15/04_{12}.12$ $15/04_{12}:13$	2.3112	0.0219 0.0385	0.0	0.0
$15/04_{12}.15$ $15/04_{12}:16$	5.1281	0.0385	0.0	0.0
$15/04_{12}.10$ $15/04_{12}.18$	7.1285	0.0000	0.0	0.0
$15/04_{12}.15$ $15/04_{12}.19$	8.1287	0.1155	0.0	0.0
$15/04_{12}.15$ $15/04_{12}.20$	9.8138	0.1636	0.0	0.0
$15/04_{12}:20$ $15/04_{12}:21$	10.8138	0.1802	0.0	0.0
$15/04_{12}$:29	18.1491	0.3025	0.0	0.0
$15/04_{12}.29$ $15/04_{13}:29$	78.1492	1.3025	0.7	0.7
$15/04_{13}.29$ $15/04_{14}:29$	138.1492	2.3025	0.6	1.3
$15/04_{14}.29$ $15/04_{15}:29$	198.1494	3.3025	0.5	1.8
$15/04_{16}$:29	258.1493	4.3025	0.3	2.1
$15/04_{17}:29$	318.1673	5.3028	0.0	2.1
$15/04_{18}:29$	378.1701	6.3028	0.0	2.1
$15/04_{19}:29$	438.1742	7.3029	0.3	$\frac{2.1}{2.4}$
$15/04_{19}$:29	498.1716	8.3029	0.4	2.8
$15/04_{20}$:29	558.1717	9.3029	0.0	2.8
$15/04_{22}$:29	618.1716	10.3029	0.2	3.0
$15/04_{23}$:29	678.1636	11.3027	0.2	3.2
$16/04_{00}$:29	738.1635	12.3027	0.2	3.4
$16/04_{01}:29$	798.1637	13.3027	0.1	3.5
$16/04_{02}:29$	858.1652	14.3028	0.2	3.7
$16/04_{03}$:29	918.1668	15.3028	0.4	4.1
$16/04_{04}:29$	978.1671	16.3028	0.8	4.9
$16/04_{05}$:29	1038.1672	17.3028	0.0	4.9
$16/04_{06}$:29	1098.1672	18.3028	0.9	5.8
$16/04_{07}$:29	1158.1672	19.3028	0.2	6.0
$16/04_{08}:29$	1218.1674	20.3028	0.5	6.5
$16/04_{09}$:29	1278.1673	21.3028	0.1	6.6
$16/04_{10}$:26	1335.5498	22.2592	0.0	6.6
$16/04_{11}$:26	1395.5549	23.2592	0.0	6.6
$16/04_{12}$:26	1455.561	24.2594	0.2	6.8
$16/04_{13}$:26	1515.5607	25.2593	0.5	7.3
$16/04_{14}$:26	1575.5609	26.2593	0.1	7.4
$16/04_{15}$:26	1635.5608	27.2593	0.0	7.4
$16/04_{16}$:26	1695.5608	28.2593	0.1	7.5
$16/04_{17}$:26	1755.5608	29.2593	0.0	7.5
$16/04_{18}$:26	1815.5669	30.2594	0.3	7.8
$16/04_{19}$:26	1875.5666	31.2594	0.0	7.8
$16/04_{20}$:26	1935.567	32.2595	0.0	7.8
$16/04_{21}$:26	1995.5692	33.2595	0.0	7.8
$16/04_{22}$:26	2055.5698	34.2595	0.0	7.8
$16/04_{23}$:26	2115.5823	35.2597	0.7	8.5
$17/04_{00}$:26	2175.5822	36.2597	0.7	9.2
$17/04_{01}$:26	2235.5824	37.2597	0.2	9.4
$17/04_{02}$:26	2295.5823	38.2597	0.2	9.6
$17/04_{03}$:26	2355.5823	39.2597	0.8	10.4
$17/04_{04}$:26	2415.5824	40.2597	0.7	11.1
$17/04_{05}$:26	2475.5814	41.2597	123 0.2	11.3
$17/04_{06}$:26	2535.5802	42.2597	0.8	12.1
$17/04_{07}$:26	2595.5796	43.2597	0.3	12.4
$17/04_{08}$:26	2655.5798	44.2597	0.6	13.0
$17/04_{09}$:26	2715.5795	45.2597	0.7	13.7

8.3 Reactor 2

Το δείγμα το οποίο στην υδρόλυση είχε 2 ml από το μιξ. Με βάση το αρχικό πείραμα υδρόλυσης, αυτό και το 4 ml είχαν το καλύτερο performance και ελάχιστη διαφορά μεταξύ τους (κατά βάση στην συγκέντρωση γαλακτικού οξέος) οπότε θα αναμέναμε εδώ να παρατηρηθεί η καλύτερη μεθανογένεση.

 $hydrolysate_{2s2r1}$

Data Analysis on Hydrolysate with 2 ml

```
<<acet_test_2_s2_2>>
meth_vol_blank = exp_meth_vol
<date_saving_fw_s2_r1>>
inds = 66:188
exp_meth_vol = vcat([0, 0.1, 0, 0.2, 0.2, 0.2, 0.5, 0.3, 0.2, 0, 0.2, 0,
\rightarrow 0, 0.3, 1.1, 0, 0.7, 1.1, 0, 1.2, 0, 0.1, 1.05, 0, 1.2, 0, 1.5, 1.5,
\rightarrow 1.5, 1.4, 1.2, 1.4, 1.3, 1.2, 1.4, 1.5, 1.5, 1.6, 1.7, 1.2, 1.2, 1.3,
\rightarrow 1.1, 1.4, 1.3, 1.2, 1.6, 1.4, 1.5, 1.4, 1.2, 1.4, 1.3, 1.7, 1.2, 1.5,
\rightarrow 1.4, 1.5, 1.5, 1.4, 1.3, 1.4, 1.2, 1.4, 1.3, 1.3, 1.2, 1.2, 1.4, 1.4,
\rightarrow 0.8, 0.7, 0.5, 0.4, 0.6, 0.4, 0.2, 0.1, 0.3, 0.3, 0.3, 0.2, 0.2, 0.3,
\rightarrow 0.1, 0.1, 0.2, 0.3, 0.3, 0.2, 0.2, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0,
\rightarrow 0, 0, 0, 0], zeros(5))
meth_vol_blank_complete = vcat(meth_vol_blank, zeros(length(exp_meth_vol))
→ - length(meth_vol_blank)))
meth_vol_diff = round.(exp_meth_vol .- meth_vol_blank_complete, digits = 1)
exp_meth_vol = [meth_vol_diff[i] < 0 ? meth_vol_diff[i] = 0.0 :</pre>
→ meth_vol_diff[i] for i in 1:length(meth_vol_diff)]
meth_vol_hydro_2 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_2_s2_r1"
source = "Hydrolyzed FW"
reactor = "Reactor 2"
sludge = "Sludge 2"
run_num = "Run 1"
input_vs = 4.2
<<br/>bmp_data_processing>>
max_rate_hydro_2 = max_manual_rate
p0 = [3.50, 1.0, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_2_min = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [3.50, 10.0, 0.03]
<<br/>bmp_curve_fitting_hour>>
model_hydro_2_hour = vcat(reactor, round.(model_params, digits = 3),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_2 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
```

```
<<bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
```

8.3.1 Results

Τα αποτελέσματα αυτά δεν είναι ιδιαίτερα έμπιστα. Η παραγωγή ήταν πάρα πολύ χαμηλή και την επόμενη μέρα παρατηρήθηκε πως είχε φύγει το σωληνάκι και δεν μπορούσε να συνεχίσει η μέτρηση. Αυτά τα αποτελέσματα υπάρχουν, αλλά δεν πρέπει να βγούν σημαντικά συμπεράσματα από αυτά.

(org-table-import-after-n-lines 3 <<hydrolysate_2_s2_r1()>> '(4))

Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$17/04_{14}:42$	0.0	0.0	0.0	0.0
$17/04_{14}$:46	3.9993	0.0667	0.0	0.0
$17/04_{14}:47$	4.9992	0.0833	0.0	0.0
$17/04_{14}:48$	5.9991	0.1	0.0	0.0
$17/04_{14}:49$	6.9992	0.1167	0.0	0.0
$17/04_{14}:50$	7.9994	0.1333	0.0	0.0
$17/04_{14}$:51	8.9994	0.15	0.0	0.0
$17/04_{14}$:52	9.9991	0.1667	0.0	0.0
$17/04_{14}$:53	10.9994	0.1833	0.0	0.0
$17/04_{14}:54$	11.9993	0.2	0.0	0.0
$17/04_{14}:55$	12.9992	0.2167	0.0	0.0
$17/04_{14}$:56	13.9992	0.2333	0.0	0.0
$17/04_{14}$:57	14.999	0.25	0.0	0.0
$17/04_{14}$:58	15.999	0.2666	0.0	0.0
$17/04_{14}$:58	16.2007	0.27	0.6	0.6
$17/04_{14}:59$	17.8196	0.297	0.0	0.6
$17/04_{15}:00$	18.8194	0.3137	0.2	0.8
$17/04_{15}:01$	19.8193	0.3303	0.1	0.9
$17/04_{15}:02$	20.8192	0.347	0.0	0.9
$17/04_{15}:03$	21.8192	0.3637	0.2	1.1
$17/04_{15}:04$	22.819	0.3803	0.0	1.1
$17/04_{15}:05$	23.8189	0.397	0.0	1.1
$17/04_{15}:06$	24.8188	0.4136	0.1	1.2
$17/04_{15}:07$	25.819	0.4303	0.0	1.2
$17/04_{15}:08$	26.8188	0.447	0.0	1.2
$17/04_{15}:09$	27.8186	0.4636	0.0	1.2
$17/04_{15}:10$	28.8185	0.4803	0.5	1.7
$17/04_{15}:17$	35.8182	0.597	0.5	2.2
$17/04_{16}:18$	96.8307	1.6138	0.5	2.7
$17/04_{17}:18$	156.8295	2.6138	0.4	3.1
$17/04_{18}:18$	216.835	3.6139	0.2	3.3
$17/04_{19}:18$	276.835	4.6139	0.4	3.7
$17/04_{20}:18$	336.8348	5.6139	0.3	4.0
$17/04_{21}:18$	396.8349	6.6139	0.2	4.2
$17/04_{22}:18$	456.8347	7.6139	0.4	4.6
$17/04_{23}:18$	516.8348	8.6139	1.4	6.0
$18/04_{00}:18$	576.8386	9.614	1.4	7.4
$18/04_{01}:18$	636.8406	10.614	1.1	8.5
$18/04_{02}:18$	696.841	11.614	1.2	9.7
$18/04_{03}:18$	756.8415	12.614	0.2	9.9
$18/04_{04}:18$	816.8415	13.614	0.2	10.1
$18/04_{05}:18$	876.8414	14.614	0.3	10.4
$18/04_{06}:18$	936.8414	15.614	0.1	10.5
$18/04_{07}:18$	996.8416	16.614	0.4	10.9
$18/04_{07}$:18	1056.8414	17.614	0.3	11.2
$18/04_{09}:18$	1116.8488	18.6141	0.3	11.4
$18/04_{09}.18$ $18/04_{10}:18$	1176.8518	19.6142	0.6	12.0
$18/04_{10}.18$ $18/04_{11}:18$	1236.8532	20.6142	0.4	12.0 12.4
$18/04_{11}.18$ $18/04_{12}:18$	1230.8332 1296.854	20.0142	$0.4 \\ 0.5$	12.4
$18/04_{12}:18$ $18/04_{13}:18$	1356.8545	21.0142 22.6142	$0.3 \\ 0.4$	13.3
,				
$18/04_{14}:18$	1416.8552 1476.8550	23.6143	127 0.2	13.5
$18/04_{15}:18$	1476.8559	24.6143	0.4	13.9
$18/04_{16}:18$	1536.8562	25.6143	0.3	14.2
$18/04_{17}:18$	1596.857	26.6143	0.7	14.9
$18/04_{18}:18$	1656.8605	27.6143	0.2	15.1

8.4 Reactor 4

Το δείγμα 4 ήταν αυτό με τα 4 ml mix στην υδρόλυση. Είναι η μέγιστη ποσότητα που χρησιμοποιήθηκε για τα πειράματα χώνευσης καθώς το 8 ml δεν είχε ιδιαίτερα μεγάλη διαφορά και είναι πολύ πιο ακριβό. Όπως προαναφέρθηκε, αναμένουμε να έχει παρόμοια ποιότητα με το 2 ml καθώς με εξαίρεση μίας ποσότητας γαλακτικού είναι σχεδόν ίδια.

 $hydrolysate_{4s2r1}$

Data Analysis on Hydrolysate with 4 ml

```
<<acet_test_4_s2_2>>
meth_vol_blank = exp_meth_vol
<date_saving_fw_s2_r1>>
inds = vcat(10:66, 93:156)
exp_meth_vol = [0, 0.8, 0.4, 0, 0, 1, 1, 1, 0.7, 0.8, 0.9, 0.8, 0.5, 1, 1,
\rightarrow 0.7, 1, 1, 0.5, 1, 1, 0.4, 1, 0.5, 0.5, 1.1, 1, 1, 1, 1, 1, 1.5, 1, 1,
\rightarrow 1, 0.5, 1, 0.5, 1, 0.9, 1, 1, 1, 1, 1, 1, 1.5, 0.5, 1.4, 1.3, 1,
\rightarrow 0.5, 0, 0, 0, 0.5, 1, 1, 0.75, 0.75, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 1,
\rightarrow 0.5, 0.5, 0.5, 0.5, 0.5, 0.7, 0.5, 0.5, 0.5, 0.7, 0.3, 0.7, 0.5,
\rightarrow 0.4, 0.5, 0.6, 0.4, 0.5, 0.3, 0.4, 0.4, 0.3, 0.4, 0.2, 0.4, 0.3, 0.4,
\rightarrow 0.2, 0.5, 0.5, 0.5, 0.5, 0.1, 0.1, 0, 0.1, 0.1, 0.2, 0.1, 0.4, 0.4,
\rightarrow 0.2, 0.3, 0.3, 0.3, 0.3, 0.0, 0, 0, 0, 0]
meth_vol_blank_complete = vcat(meth_vol_blank, zeros(length(exp_meth_vol))
→ - length(meth_vol_blank)))
meth_vol_diff = round.(exp_meth_vol .- meth_vol_blank_complete, digits = 1)
exp_meth_vol = [meth_vol_diff[i] < 0 ? meth_vol_diff[i] = 0.0 :</pre>
→ meth_vol_diff[i] for i in 1:length(meth_vol_diff)]
meth_vol_hydro_4 = cumsum(exp_meth_vol)[end]
exp_name = "hydrolysate_4_s2_r1"
source = "Hydrolyzed FW"
reactor = "Reactor 4"
sludge = "Sludge 2"
run_num = "Run 1"
input_vs = 4.2
<<br/>bmp_data_processing>>
max_rate_hydro_4 = max_manual_rate
p0 = [17.0, 0.01, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_4_min = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
p0 = [17.0, 1.0, 0.1]
<<br/>bmp_curve_fitting_hour>>
model_hydro_4_hour = vcat(reactor, round.(model_params, digits = 3),

→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_4 = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
```

```
<<bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
8.4.1 Results
(org-table-import-after-n-lines 3 <<hydrolysate_4_s2_r1()>> '(4))
```

Timestamp	Minutes 0.0	Hours 0.0	Methane _{Volume}	$Cumulative_{Methane Volume}$
$15/04_{12}:16$	2.0004	0.0333	$0.0 \\ 0.3$	$0.0 \\ 0.3$
$15/04_{12}:18$ $15/04_{12}:19$	3.0004	0.0555	0.0	0.3 - 0.3
$15/04_{12}.19$ $15/04_{12}:20$	4.6856	0.03 0.0781	0.0	0.3 - 0.3
$15/04_{12}.20$ $15/04_{12}.21$	5.6857	0.0731	0.0	0.3 - 0.3
$15/04_{12}.21$ $15/04_{12}.29$	13.021	0.0348 0.217	0.5	0.8
$15/04_{12}.29$ $15/04_{13}:29$	73.021	1.217	0.0	0.8 - 0.8
$15/04_{13}.25$ $15/04_{14}:29$	133.0211	2.217	0.5	1.3
$15/04_{14}.29$ $15/04_{15}:29$	193.0211	3.217	0.0	1.3
$15/04_{16}$:29	253.0212	4.217	0.6	1.9
$15/04_{16}.29$ $15/04_{17}:29$	313.0391	5.2173	0.4	$\frac{1.3}{2.3}$
$15/04_{18}$:29	373.042	6.2174	0.3	$\frac{2.6}{2.6}$
$15/04_{18}.29$ $15/04_{19}:29$	433.046	7.2174	0.0	$\frac{2.6}{2.6}$
$15/04_{20}$:29	493.0434	8.2174	0.0	2.6
$15/04_{21}$:29	553.0436	9.2174	0.5	3.1
$15/04_{22}$:29	613.0435	10.2174	0.0	3.1
$15/04_{23}$:29	673.0355	11.2173	0.5	3.6
$16/04_{23}$:29	733.0354	12.2173	0.0	3.6
$16/04_{01}:29$	793.0356	13.2173	0.0	3.6
$16/04_{02}:29$	853.037	14.2173	0.5	4.1
$16/04_{03}:29$	913.0386	15.2173	0.0	4.1
$16/04_{04}:29$	973.039	16.2173	0.0	4.1
$16/04_{05}:29$	1033.0391	17.2173	0.0	4.1
$16/04_{06}:29$	1093.039	18.2173	0.0	4.1
$16/04_{07}$:29	1153.0391	19.2173	0.0	4.1
$16/04_{08}:29$	1213.0393	20.2173	1.0	5.1
$16/04_{09}:29$	1273.0392	21.2173	0.9	6.0
$16/04_{10}:26$	1330.4216	22.1737	0.9	6.9
$16/04_{11}:26$	1390.4268	23.1738	0.8	7.7
$16/04_{12}:26$	1450.4329	24.1739	0.8	8.5
$16/04_{13}:26$	1510.4325	25.1739	0.8	9.3
$16/04_{14}$:26	1570.4328	26.1739	1.4	10.7
$16/04_{15}$:26	1630.4326	27.1739	0.0	10.7
$16/04_{16}$:26	1690.4326	28.1739	0.0	10.7
$16/04_{17}$:26	1750.4327	29.1739	0.5	11.2
$16/04_{18}:26$	1810.4388	30.174	0.0	11.2
$16/04_{19}$:26	1870.4384	31.174	0.0	11.2
$16/04_{20}$:26	1930.4389	32.174	0.0	11.2
$16/04_{21}$:26	1990.441	33.174	0.5	11.7
$16/04_{22}$:26	2050.4417	34.174	0.4	12.1
$16/04_{23}$:26	2110.4542	35.1742	0.3	12.4
$17/04_{00}$:26	2170.4541	36.1742	0.3	12.7
$17/04_{01}$:26	2230.4543	37.1742	0.5	13.2
$17/04_{02}$:26	2290.4542	38.1742	0.0	13.2
$17/04_{03}$:26	2350.4542	39.1742	0.5	13.7
$17/04_{04}$:26	2410.4542	40.1742	0.5	14.2
$17/04_{05}$:26	2470.4533	41.1742	0.2	14.4
$17/04_{06}$:26	2530.4521	42.1742	0.9	15.3
$17/04_{07}$:26	2590.4515	43.1742	0.2	15.5
$17/04_{08}$:26	2650.4516	44.1742	0.9	16.4
$17/04_{09}$:26	2710.4514	45.1742	131 0.8	17.2
$17/04_{10}$:29	2773.2913	46.2215	0.0	17.2
$17/04_{11}$:29	2833.2914	47.2215	0.0	17.2
$17/04_{12}:29$	2893.3124	48.2219	0.0	17.2
$17/04_{13}$:29	2953.312	49.2219	0.0	17.2

8.5 Untreated FW

Εκτός από τα παραπάνω, σε ένα από τα δοχεία προστέθηκε ανεπεξέργαστο FW. Αυτό έχει διαφορά από το δείγμα 0, καθώς εκείνο υπέστει ζύμωση κατά τις 72 ώρες που ήταν στους 40 ^{o}C ακόμη και χωρίς να προσθέσουμε κάποιο εμβόλιο, ενώ το δείγμα αυτό αναφέρεται σε food waste το οποίο δεν έχει υποστεί καμία επεξεργασία. Θα θέλαμε το δείγμα αυτό να έχει το χειρότερο performance (είτε πολύ αργή παραγωγή, ή μικρή τελική παραγωγή), το οποίο θα μας επιδείκνυε πως η επεξεργασία που έγινε βοηθάει πραγματικά στην χώνευση. Βέβαια, αξίζει να αναφερθεί πως το δοχείο αυτό είχε κάποιο προβλήματα με διαρροή στα αρχικά στάδια

του πειράματος, οπότε ενδέχεται τα αποτελέσματα που θα προκύψουν να μην είναι έγκυρα. Παρακάτω φαίνεται ο κώδικας επεξεργασίας των αποτελεσμάτων του.

$untreated_{fws2r1}$

```
### Data Analysis on Untreated FW ###
<date_saving_fw_s2_r1>>
inds = vcat(1:66, 93:145)
exp_meth_vol = vcat([0, 0.2, 0, 0, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
\rightarrow 0.1, 0, 0, 0, 0.1, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0, 0.3, 0.5, 0.3,
\rightarrow 0.2, 0.1, 0.2, 0.4, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.2, 0.2, 0.1],
\rightarrow zeros(56))
meth_vol_hydro_fw = cumsum(exp_meth_vol)[end]
exp_name = "untreated_fw_s2_r1"
source = "Untreated FW"
reactor = "FW 1"
sludge = "Sludge 2"
run_num = "Run 1"
input_vs = 4.2
<<br/>bmp_data_processing>>
max_rate_hydro_fw = max_manual_rate
p0 = [2.0, 0.001, 1.0]
<<br/>bmp_curve_fitting_min>>
model_hydro_fw_min = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
p0 = [2.0, 0.1, 0.1]
<<br/>bmp_curve_fitting_hour>>
model_hydro_fw_hour = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<br/>bmp_data_plotting>>
<<sma_curve_fitting_hour>>
sma_hydro_fw = vcat(reactor, round.(model_params, digits = 3),
→ round(r_squared, digits = 3))
<<bmp_data_plotting>>
return("../data/exp_pro/"*exp_name*".csv")
"/home/vidianos/Documents/9ο_εξάμηνο/Masters_Thesis/plots/BMPs/Untreated FW/methane_kinetic
```

8.5.1 Results

```
(org-table-import-after-n-lines 3 <<untreated_fw_s2_r1()>> '(4))
```

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Timestamp	Minutes	Hours	$Methane_{Volume}$	$Cumulative_{Methane\ Volume}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.9709	0.0828		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	5.9707			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}:11$	8.9707	0.1495	0.1	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}$:11	9.2822	0.1547	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}$:12	10.282	0.1714	0.0	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}:13$	11.282	0.188	0.0	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}:16$	14.0989	0.235	0.0	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}:18$	16.0993	0.2683	0.0	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}:19$	17.0994	0.285	0.0	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}$:20	18.7845	0.3131	0.0	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}$:21	19.7846	0.3297	0.0	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{12}$:29	27.1199	0.452	0.0	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{13}$:29	87.1199	1.452	0.0	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{14}$:29	147.1199	2.452	0.1	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{15}:29$	207.1202	3.452	0.0	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{16}:29$	267.12	4.452	0.0	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{17}:29$	327.138	5.4523	0.0	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15/04_{18}:29$	387.1408	6.4523	0.0	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		447.1449	7.4524	0.1	0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		507.1423	8.4524	0.0	0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		567.1425	9.4524	0.0	0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	627.1424	10.4524	0.1	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			0.0	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.0	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -	867.1359	14.4523	0.0	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.0	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			17.4523	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -			0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$17/04_{02}$:26 2304.553 38.4092 0.4 7.0 $17/04_{03}$:26 2364.5531 39.4092 0.3 7.3	,				
$17/04_{03}$:26 2364.5531 39.4092 0.3 7.3	,				
·					
	$17/04_{04}$:26	2424.5531	40.4092	0.2	7.5

8.6 Update all

 $update_{hydrolysatetestss2r1}$

- <<hydrolysate_0_s2_r1>>
- <<hydrolysate_1_s2_r1>>
- <<hydrolysate_2_s2_r1>>
- <<hydrolysate_4_s2_r1>>
- <<untreated_fw_s2_r1>>

```
model_fit_table_min = Tables.table(vcat(reshape(model_hydro_0_min, 1, 5),
    reshape(model_hydro_1_min, 1, 5), reshape(model_hydro_2_min, 1, 5),
    reshape(model_hydro_4_min, 1, 5), reshape(model_hydro_fw_min, 1, 5)),
    header = [:Reactor_Name, :Production_Potential, :Production_Rate,

    :Lag_Time, :R_squared])

CSV.write(datadir("exp_pro",
  "methane_from_hydrolysate_kinetics_min_s2_r1.csv"),
    model_fit_table_min)
model_fit_table_hour = Tables.table(vcat(reshape(model_hydro_0_hour, 1,

→ 5), reshape(model_hydro_1_hour, 1, 5), reshape(model_hydro_2_hour, 1,
→ 5), reshape(model_hydro_4_hour, 1, 5), reshape(model_hydro_fw_hour, 1,
→ 5)), header = [:Reactor_Name, :Production_Potential, :Production_Rate,

    :Lag_Time, :R_squared])

CSV.write(datadir("exp_pro",

    "methane_from_hydrolysate_kinetics_hour_s2_r1.csv"),

→ model_fit_table_hour)

return("../data/exp_pro/methane_from_hydrolysate_kinetics_min_s2_r1.csv")
return("../data/exp_pro/methane_from_hydrolysate_kinetics_hour_s2_r1.csv")
(org-table-import-after-n-lines 4
<- <<hydrolysate_kinetic_name_hour_s2_r1()>> '(4))
                      Table 27: Kinetics with timescale in hours
        Reactor_{Name}
                      Production<sub>Potential</sub> Production<sub>Rate</sub>
                                                          Lag_{Time}
                                                                    R_{\text{souared}}
        Reactor 0
                                 31.008
                                                   0.279
                                                           13.348
                                                                      0.991
        Reactor 1
                                 43.802
                                                           14.096
                                                                      0.991
                                                   0.455
        Reactor 2
                                 30.014
                                                   0.521
                                                              0.0
                                                                      0.984
        Reactor 4
                                 24.364
                                                    0.36
                                                            2.023
                                                                      0.972
        FW 1
                                  9.242
                                                   0.362
                                                           15.935
                                                                      0.994
(org-table-import-after-n-lines 4 <<update_hydrolysate_tests_s2_r1()>>
Table 28: Kinetics with timescale in minutes
        Reactor_{Name}
                      Production<sub>Potential</sub> Production<sub>Rate</sub>
                                                          Lag<sub>Time</sub>
                                                                    R_{\text{squared}}
        Reactor 0
                                 31.009
                                                   0.005
                                                          800.893
                                                                      0.991
        Reactor 1
                                                          845.736
                                 43.802
                                                   0.008
                                                                      0.991
        Reactor 2
                                 30.014
                                                   0.009
                                                              0.0
                                                                      0.984
        Reactor 4
                                                          121.361
                                                                      0.972
                                 24.364
                                                   0.006
        FW 1
                                  9.242
                                                   0.006
                                                          956.074
                                                                      0.994
```

<<hydrolysate_0_s2_r1>>

Table 29: SMA Kinetics in hours

$Reactor_{Name}$	$Methane_{Potential}$	SMA	Lag_{Time}	R_{sq}
Reactor 0	7.383	0.066	13.348	0.991
Reactor 1	10.429	0.108	14.096	0.991
Reactor 2	7.132	0.125	0.0	0.984
Reactor 4	5.801	0.086	2.023	0.972
FW 1	2.2	0.086	15.935	0.994

8.7 Kinetic Comparison

```
<<update_acetate_tests_s2>>
<<update_hydrolysate_tests_s2_r1>>
sludge = "s2"
run = "r1"
timescale = "hour"

<<ad_kinetics_comparison>>
return("../data/exp_pro/kinetics_comparison_s2_r1.csv")

<<update_acetate_tests_s2>>
<<update_hydrolysate_tests_s2_r1>>
sludge = "s2"
run = "r1"

<<manual_rate_comparison>>
return("../data/exp_pro/manual_max_rate_comp_s2_r1.csv")

return("../data/exp_pro/kinetics_comparison_sma_s2_r1.csv")
```

Table 30: Kinetic Comparison with timescale in hours

$Reactor_{Name}$	Acetate	Hydrolysate	Ratio
Reactor 0	443.5200000000000004	0.279	0.0629
Reactor 1	206.64	0.455	0.2202
Reactor 2	122.279999999999999999999999999999999999	0.521	0.4261
Reactor 4	409.26	0.36	0.088
Reactor FW	257.88	0.362	0.1404

(org-table-import-after-n-lines 4 <<kinetics_comp_s2_r1()>> '(4))

```
(org-table-import-after-n-lines 4 <<sma_comp_s2_r1()>> '(4))
```

Table 31: SMA Comparison with timescale in days

$Reactor_{Name}$	Acetate	Hydrolysate	Ratio
Reactor 0	2534.4	1.584	0.0625
Reactor 1	1180.8	2.592	0.2195
Reactor 2	698.4	3.0	0.4296
Reactor 4	2338.56	2.064	0.0883
Reactor FW	1473.12	2.064	0.1401

(org-table-import-after-n-lines 3 <<manual_rates_s2_r1()>> '(4))

Reactor	Acetate	Hydrolysate	Ratio
Reactor 0	329.341	0.787	0.239
Reactor 1	419.162	1.2	0.286
Reactor 2	223.881	176.471	78.824
Reactor 4	329.341	9.009	2.735
Reactor FW	299.401	6.006	2.006

8.8 Plotting Comparison Plots

Όπως και στον προηγούμενο κύκλο, φτιάχνουμε αυτό το χρήσιμο διάγραμμα.

```
<<hydrolysate_1_s2_r1>>
scatter!(methane_s2_r1_comp, exp_hour, cumsum(exp_meth_vol), markersize =
    4, label = "Hydrolysate (1 ml mix) Exp", markercolor = colors[2])
plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_1_hour[2:4]), label =
    "Hydrolysate (1 ml mix) Theoretical\n with "*L"R^2 =
    "*string(model_hydro_1_hour[5]), linecolor = colors[2])
<<hydrolysate_2_s2_r1>>
scatter!(methane_s2_r1_comp, exp_hour, cumsum(exp_meth_vol), markersize =
→ 4, label = "Hydrolysate (2 ml mix) Exp", markercolor = colors[3])
plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_2_hour[2:4]), label =
    "Hydrolysate (2 ml mix) Theoretical\n with "*L"R^2 =
    "*string(model_hydro_2_hour[5]), linecolor = colors[3])
<<hydrolysate_4_s2_r1>>
scatter!(methane_s2_r1_comp, exp_hour, cumsum(exp_meth_vol), markersize =
→ 4, label = "Hydrolysate (4 ml mix) Exp", markercolor = colors[4])
plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_4_hour[2:4]), label =
    "Hydrolysate (4 ml mix) Theoretical \n with "*L"R^2 =
    "*string(model_hydro_4_hour[5]), linecolor = colors[4])
<<untreated_fw_s2_r1>>
scatter!(methane_s2_r1_comp, exp_hour, cumsum(exp_meth_vol), markersize =

→ 4, label = "Untreated FW Exp", markercolor = colors[5])

plot!(exp_hour, gompertz_bmp(exp_hour, model_hydro_fw_hour[2:4]), label =
    "Untreated FW Theoretical\n with "*L"R^2 =
    "*string(model_hydro_fw_hour[5]), linecolor = colors[5])
savefig(methane_s2_r1_comp, plotsdir("BMPs", "methane_s2_r1_comp.svg"))
       35
                                                      Hydrolysate (0 ml mix) Exp
    Cumulative Methane Volume (mL)
      30
                                                      Hydrolysate (0 ml mix) Theoretical
                                                       with R^2 = 0.991
       25
                                                      Hydrolysate (1 ml mix) Exp
                                                      Hydrolysate (1 ml mix) Theoretical
                                                       with R^2 = 0.991
       20
                                                      Hydrolysate (2 ml mix) Exp
                                                      Hydrolysate (2 ml mix) Theoretical
                                                       with R^2 = 0.984
       15
                                                      Hydrolysate (4 ml mix) Exp
                                                      Hydrolysate (4 ml mix) Theoretical
      10
                                                       with R^2 = 0.972
                                                      Untreated FW Exp
                                                      Untreated FW Theoretical
                                                       with R^2 = 0.994
       0
                 25
                                      100
```

Time (hour)

8.9 Συμπεράσματα από τον κύκλο αυτόν

Ο κύκλος αυτός είχε κάποια περίεργα φαινόμενα. Το βασικότερο του πρόβλημα ήταν η πάρα πολύ μεγάλη παραγωγικότητα σε αέριο που είχαν όλα τα δείγματα. Όπως αναφέρθηκε, θεωρήθηκε αρκετά πιθανό αυτή η παραπάνω παραγωγή να ήταν επειδή η ίδια η λάσπη είχε αποθηκεύσει κάποια τροφή και μπορούσε να παράγει πολύ περισσότερο από ότι εμείς τροφοδοτήσαμε. Για αυτόν τον λόγο, αφαιρέθηκε η παραγωγή εκείνης της ποσότητας με βάση το πείραμα του οξικού από την ίδια ποσότητα στα πειράματα των υδρολυμάτων. Μετά από αυτά, τα πειράματα αυτά είναι αρκετά λογικά. Ακολουθούν την ίδια τάση με τα προηγούμενα πειράματα, έχουν ρυθμό παρόμοιας τάξης αλλά παράγουν περισσότερο βιοαέριο (το οποίο είναι λογικό επειδή αναμέναμε πως η λάσπη αυτή είναι πιο ενεργή).

Με βάση και αυτό το πείραμα, μπορούμε να πούμε με αρκετή βεβαιότητα πως ισχύει η παρατήρηση ότι τα υδρολύματα με 1 και 2 ml μιξ έχουν την καλύτερη απόδοση και ότι το 2 ξεκινάει με γρηγορότερο ρυθμό, αλλά έχει χαμηλότερο peak από το 1. Η εξήγηση για αυτό είναι πως η αναλογία 2 ml/200 g FW έχει καλύτερη ζύμωση και άρα το υδρόλυμα είναι πιο έτοιμο για να χρησιμοποιηθεί σε αναερόβια χώνευση, όμως, το 1 είχε λιγότερους μικροοργανισμούς, οπότε περισσότερη οργανική ύλη, με αποτέλεσμα να έχει μεγαλύτερο δυναμικό μεθανίου.

8.10 Code Block για Tangling

Έχοντας κάνει όλη αυτήν την ανάλυση, κάνουμε tangle ένα συνολικό code block σε ένα julia script file για sharing. Λόγω του structure του αρχείου αυτού και το ότι βασίζεται αρκετά στο org babel και το noweb syntax, το script file θα έχει αναγκαστικά πολλές επαναλήψεις. Αλλά θα είναι perfectly usable σε άλλο υπολογιστή θεωρητικά.

```
<<update_acetate_tests_s1>>
sma_table = Tables.table(vcat(reshape(sma_acet_0, 1, 5),
\rightarrow reshape(sma_acet_1, 1, 5), reshape(sma_acet_2, 1, 5),
reshape(sma_acet_4, 1, 5), reshape(sma_acet_fw, 1, 5)), header =
CSV.write(datadir("exp_pro", "sma_from_acetate_s1.csv"), sma_table)
<<update_hydrolysate_tests_s2_r1>>
sma_table = Tables.table(vcat(reshape(sma_hydro_0, 1, 5),

¬ reshape(sma_hydro_1, 1, 5), reshape(sma_hydro_2, 1, 5),

→ reshape(sma_hydro_4, 1, 5), reshape(sma_hydro_fw, 1, 5)), header =
→ [:Reactor_Name, :Methane_Potential, :SMA, :Lag_Time, :R_sq])
CSV.write(datadir("exp_pro", "sma_from_hydrolysate_s2_r1.csv"), sma_table)
comp_name = "s2_r1"
sludge = "Sludge 2 "
run = "Run 1"
<<BMP_comp_plot>>
sludge = "s1"
run = "r2"
timescale = "hour"
```

```
<<ad_kinetics_comparison>>
<<manual_rate_comparison>>
```

9 Code block για δημιουργία των comparison plots

Ένα από τα πιο ωραία plots που έχω φτιάξει για την ανάλυση των αποτελεσμάτων της αναερόβιας χώνευσης είναι τα comparison plots μεταξύ των πειραμάτων υδρολυμάτων. Στο section αυτό θα οριστεί ένα code block για το tangling αυτών των 3 code block (τα οποία είναι perfectly standalone) σε ένα script file.

```
<<comp_methane_plot_s1_r1>>
<<comp_methane_plot_s1_r2>>
<<comp_methane_plot_s2_r1>>
```