Honneur - Fraternité - Justice

Baccalauréat 2006

Session normale

Séries : C & TMGM Epreuve: Mathématiques Durée: 4 heures Coefficients: 9 & 6

exercice 1 (4 points)

Exercise 1 (4 points)	
Dans un plan muni d'un repère orthonormé direct (O; i, j), on considère la parabole (P) de foyer	
$F(0,2)$ et de directrice la droite (D) d'équation : $y = 4$. On désigne par (Δ) la droite parallèle à (D) et	
passant par le point F.	
1. Soit M un point de (P) d'ordonnée inférieure strictement à 2 et H le projeté orthogonal de M $sur(\Delta)$.	
a) Montrer que : $MF - MH = 2$.	(0,5pt)
b) En déduire que le cercle de centre M et de rayon MH est tangent au cercle de diamètre AB où A et	
B sont les points d'intersection de (P) avec la droite (Δ) .	(0,5pt)
2.a) Trouver une équation de (P) dans le repère (O; i, j) puis tracer(P).	(0,5pt)
b) Soit (D_m) une droite variable d'équation $y = mx + 2$ où m est un paramètre réel. La droite	
(D _m) coupe (P) en S et T. Montrer que, le milieu I de [ST], appartient à une conique fixe (P') dont on	
donnera une équation dans le repère (O; i, j).	(0,5pt)
3. Soit l'ellipse (E) d'excentricité $e = \frac{1}{3}$, de foyer $F(0,2)$ et de directrice associée la droite (D).	
a) Justifier que (P) et (E) n'ont aucun point commun.	(0,5pt)
b) Trouver une équation de (E) dans le repère (O; i, j).	(0,5pt)
c) Déterminer les sommets de (E), son deuxième foyer F' et sa deuxième directrice (D').	(0,5pt)
d) Tracer F', (D') et (E) dans le repère (O; i, j).	(0,5pt)
Exercice 2 (5 points)	
Dans le plan orienté, on considère le carré direct ABCD de centre O. On désigne par I, J et K les milieux respectifs de [AB], [AD] et [BC].	
1. Montrer qu'il existe un seul antidéplacement f qui transforme Den A et J en I. Vérifier que	
$\mathbf{f} = \mathbf{S}_{(DB)} \circ \mathbf{t}_{\overline{JK}}$ où $\mathbf{t}_{\overline{JK}}$ est la translation de vecteur \overline{JK} et $\mathbf{S}_{(DB)}$ est la réflexion d'axe (DB) .	(0,5pt)
2. Caractériser l'antidéplacement f :	
a) En décomposant convenablement la translation t	(0,5pt)
b) En exploitant l'écriture complexe de f dans le repère orthonormé direct (A; \overrightarrow{AI} , \overrightarrow{AJ})	(0,5pt)
3. Montrer que : $f(A) = B$	(0,25pt)
4. On pose : $g = S_{(AI)} \circ f$. Montrer que g est un déplacement que l'on caractérisera.	
5. Soit S la similitude directe qui transforme D en O et C en I.	(0,5pt)
a) Donner le rapport et un angle de S.	(0,5pt)
b) Préciser $S[(BC)]$ et $S[(BD)]$, en déduire $S(B)$.	(0,25pt)
c) Montrer que : $S(A) = J$.	(0,25pt)
d) Soit Ω le centre de S . Montrer que les points Ω , I , B et C sont cocycliques.	(0,25pt)
6.a) Donner la nature de S o S et préciser ses éléments caractéristiques.	(0,5pt)
b) En déduire que Ω est le barycentre des deux points $(B,1)$ et $(J,4)$ puis construire Ω .	(0,25pt)
7. Soit E le point du plan défini par : $\overrightarrow{BE} = 2\overrightarrow{BA}$ et soit S' la similitude directe de centre B qui	
transforme C en E . Caractériser $S \circ S'$ et montrer que $\Omega E = 2\Omega D$ et que $(\Omega E) \perp (\Omega D)$.	(0,75pt)

Partie A

Soit f la fonction de variable réelle x définie par :

$$f(x) = \begin{cases} \frac{e^{x}}{e^{2x} + 1} & x \ge 0\\ \frac{-\ln(1 - x)}{2x} & x < 0 \end{cases}$$

 $Soit(C_f)$ sa courbe représentative dans un repère orthonormé direct (0; i, j) d'unité 2cm.

1. Etudier la continuité de f en 0.

(0,25pt)

2. Justifier que f est dérivable sur $-\infty$, 0 et sur $[0, +\infty]$. Donner la valeur de la dérivé à droite de 0.

(0,25pt)

3. Soit **h** un réel strictement négatif. On définit sur $-\infty$, 0 la fonction **u** par :

$$u(x) = \left(\frac{\ln(1-h) + h}{h^2}\right)x^2 - \ln(1-x) - x$$

a) En utilisant le théorème des accroissements finis, montrer qu'il existe un réel c appartenant à h, 0 tel que :

 $\frac{\ln(1-h)+h}{h^2} = \frac{1}{2(c-1)}.$ (0,5pt)

- b) Prouver que : $\lim_{h\to 0^{-}} \frac{\ln(1-h) + h}{h^{2}} = -\frac{1}{2}$
- (0,25pt)c) Prouver que f est dérivable à gauche en 0 et donner la valeur de la dérivé à gauche en 0. (0,25pt)
- d) f est elle dérivable en 0? (0,25pt)4.a) Calculer f'(x) pour x > 0. En déduire le sens de variation de f sur $[0, +\infty]$.
 - (0,25pt)b) Calculer f'(x) pour x < 0. (0,25pt)
 - c) Pour $x \le 0$, on pose: $v(x) = x + (1 x) \ln(1 x)$. Etablir le tableau de variation de la fonction v puis déterminer le signe de f'(x) pour x < 0. (0,25pt)
- d) Dresser le tableau de variation de f en y précisant les limites de f en $+\infty$ et en $-\infty$. (0,25pt)5. Tracer la courbe (C₁) dans le repère précédent (O; i, j).
 - (0,25pt)

- 1. Justifier que f possède des primitives sur $[0, +\infty[$. (0,25pt)
- 2. Soit la fonction G définie sur $I = [\pi/4, \pi/2]$ par : $G(x) = \int_0^{\ln(\tan x)} f(t)dt$. a) Calculer $G(\pi/4)$ et G'(x) pour tout x de I. (0,5pt)
 - b) Prouver que : $\forall x \in I$, $G(x) = x - \pi/4$ (0,25pt)
 - c) Soit β un réel positif, justifier l'existence d'un unique réel α de I tel que : $\beta = \ln(\tan \alpha)$. (0,25pt)
- d) On suppose que si β tend vers $+\infty$ alors α tend vers $\frac{\pi}{2}$. Calculer en cm², l'aire $A(\beta)$ de la partie du plan délimitée par la courbe (C_s) , l'axe des abscisses et les droites d'équations x = 0 et $x = \beta$ puis calculer $\lim A(\beta)$.

(0,75pt)