

ANSWERS TO ODD-NUMBERED EXERCISES

► Appendix A (Page A1)

- **1.** (e) **3.** (b), (c) **5.** $[-3, 3] \times [0, 5]$
- 7. $[-5, 14] \times [-60, 40]$
- 9. $[-0.1, 0.1] \times [-3, 3]$

11. $[-400, 1050] \times [-1500000, 10000]$ **13.** $[-2, 2] \times [-20, 20]$

- **17.** (a) $f(x) = \sqrt{16 x^2}$
- **(b)** $f(x) = -\sqrt{16 x^2}$ **(e)** no

A46 Answers to Odd-Numbered Exercises

35. (a) $x = 4\cos t$, $y = 3\sin t$ (b) $x = -1 + 4\cos t$, $y = 2 + 3\sin t$

► Appendix B (Page B1)

- **1.** (a) $\frac{5}{12}\pi$ (b) $\frac{13}{6}\pi$ (c) $\frac{1}{9}\pi$ (d) $\frac{23}{30}\pi$
- 3. (a) 12° (b) $(270/\pi)^{\circ}$ (c) 288° (d) 540°

5.		$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
	(a)	$\sqrt{21}/5$	2/5	$\sqrt{21}/2$	$5/\sqrt{21}$	5/2	$2/\sqrt{21}$
	(b)	3/4	$\sqrt{7}/4$	3/√7	4/3	4/√7	$\sqrt{7}/3$
	(c)	3/√10	1/√10	3	$\sqrt{10}/3$	$\sqrt{10}$	1/3

- 7. $\sin \theta = 3/\sqrt{10}$, $\cos \theta = 1/\sqrt{10}$ 9. $\tan \theta = \sqrt{21}/2$, $\csc \theta = 5/\sqrt{21}$
- **11.** 1.8

13.		θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
	(a)	225°	$-1/\sqrt{2}$	$-1/\sqrt{2}$	1	$-\sqrt{2}$	$-\sqrt{2}$	1
	(b)	-210°	1/2	$-\sqrt{3}/2$	$-1/\sqrt{3}$	2	$-2/\sqrt{3}$	$-\sqrt{3}$
	(c)	5π/3	$-\sqrt{3}/2$	1/2	$-\sqrt{3}$	$-2/\sqrt{3}$	2	$-1/\sqrt{3}$
	(d)	$-3\pi/2$	1	0	_	1	_	0

15.		$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
	(a)	4/5	3/5	4/3	5/4	5/3	3/4
	(b)	-4/5	3/5	-4/3	-5/4	5/3	-3/4
	(c)	1/2	$-\sqrt{3}/2$	$-1/\sqrt{3}$	2	$-2/\sqrt{3}$	$-\sqrt{3}$
	(d)	-1/2	$\sqrt{3}/2$	$-1/\sqrt{3}$	-2	$2/\sqrt{3}$	$-\sqrt{3}$
	(e)	$1/\sqrt{2}$	$1/\sqrt{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
	(f)	$1/\sqrt{2}$	$-1/\sqrt{2}$	-1	$\sqrt{2}$	$-\sqrt{2}$	-1

- **17.** (a) 1.2679 (b) 3.5753

	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
(a)	a/3	$\sqrt{9-a^2}/3$	$a/\sqrt{9-a^2}$	3/a	$3/\sqrt{9-a^2}$	$\sqrt{9-a^2}/a$
(b)	$a/\sqrt{a^2+25}$	$5/\sqrt{a^2+25}$	a/5	$\sqrt{a^2+25}/a$	$\sqrt{a^2 + 25}/5$	5/a
(c)	$\sqrt{a^2-1}/a$	1/a	$\sqrt{a^2-1}$	$a/\sqrt{a^2-1}$	а	$1/\sqrt{a^2-1}$

- **21.** (a) $3\pi/4 \pm n\pi$, n = 0, 1, 2, ...
 - **(b)** $\pi/3 \pm 2n\pi$ and $5\pi/3 \pm 2n\pi$, n = 0, 1, 2, ...
- **23.** (a) $\pi/6 \pm n\pi$, n = 0, 1, 2, ...
 - **(b)** $4\pi/3 \pm 2n\pi$ and $5\pi/3 \pm 2n\pi$, n = 0, 1, 2, ...
- **25.** (a) $3\pi/4 \pm n\pi$, n = 0, 1, 2, ...
 - **(b)** $\pi/6 \pm n\pi$, n = 0, 1, 2, ...
- **27.** (a) $\pi/3 \pm 2n\pi$ and $2\pi/3 \pm 2n\pi$, n = 0, 1, 2, ...
 - **(b)** $\pi/6 \pm 2n\pi$ and $11\pi/6 \pm 2n\pi$, n = 0, 1, 2, ...
- **29.** $\sin \theta = 2/5$, $\cos \theta = -\sqrt{21}/5$, $\tan \theta = -2/\sqrt{21}$, $\csc \theta = 5/2, \sec \theta = -5/\sqrt{21}, \cot \theta = -\sqrt{21}/2$
- **31.** (a) $\theta = \pm n\pi$, n = 0, 1, 2, ... (b) $\theta = \pi/2 \pm n\pi$, n = 0, 1, 2, ...
 - (c) $\theta = \pm n\pi, n = 0, 1, 2, \dots$ (d) $\theta = \pm n\pi, n = 0, 1, 2, \dots$ (e) $\theta = \pi/2 \pm n\pi$, n = 0, 1, 2, ... (f) $\theta = \pm n\pi$, n = 0, 1, 2, ...
- **33.** (a) $2\pi/3$ cm (b) $10\pi/3$ cm **35.** $\frac{2}{5}$
- 37. (a) $\frac{2\pi \theta}{2\pi} R$ (b) $\frac{\sqrt{4\pi\theta \theta^2}}{2\pi} R$ 39. $\frac{21}{4}\sqrt{3}$ 41. 9.2 ft 43. $h = d(\tan \beta \tan \alpha)$ 45. (a) $4\sqrt{5}/9$ (b) $-\frac{1}{9}$
- 47. $\sin 3\theta = 3 \sin \theta \cos^2 \theta \sin^3 \theta$, $\cos 3\theta = \cos^3 \theta 3 \sin^2 \theta \cos \theta$

- **61.** (a) $\cos \theta$ (b) $-\sin \theta$ (c) $-\cos \theta$ (d) $\sin \theta$
- **69.** (a) 153° (b) 45° (c) 117° (d) 89° **71.** (a) 60° (b) 117°

► Appendix C (Page C1)

- 1. (a) $q(x) = x^2 + 4x + 2$, r(x) = -11x + 6
 - **(b)** $q(x) = 2x^2 + 4$, r(x) = 9
 - (c) $q(x) = x^3 x^2 + 2x 2$, r(x) = 2x + 1
- 3. (a) $q(x) = 3x^2 + 6x + 8$, r(x) = 15
 - **(b)** $q(x) = x^3 5x^2 + 20x 100, r(x) = 504$
 - (c) $q(x) = x^4 + x^3 + x^2 + x + 1, r(x) = 0$

5.	х	0	1	-3	7
	p(x)	-4	-3	101	5001

- 7. (a) $q(x) = x^2 + 6x + 13$, r = 20 (b) $q(x) = x^2 + 3x 2$, r = -4
- 9. (a) ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , ± 24
 - **(b)** ± 1 , ± 2 , ± 5 , ± 10 , $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{5}{3}$, $\pm \frac{10}{3}$ **(c)** ± 1 , ± 17
- **11.** (x+1)(x-1)(x-2) **13.** $(x+3)^3(x+1)$
- **15.** $(x+3)(x+2)(x+1)^2(x-3)$ **17.** -3 **19.** $-2, -\frac{2}{3}, -1 \pm \sqrt{3}$
- **21.** -2, 2, 3 **23.** 2, 5 **25.** 7 cm

► Appendix E (Page E1)

- 1. (a) rational (b) integer, rational (c) integer, rational (d) rational (e) integer, rational (f) irrational (g) rational
 - 3. (a) $\frac{41}{333}$ (b) $\frac{115}{9}$ (c) $\frac{20943}{550}$ (h) integer, rational
- **5.** (a) $\frac{256}{81}$ (b) worse

7.	Line	2	3	4	5	6	7
	Blocks	3, 4	1, 2	3, 4	2, 4, 5	1, 2	3, 4

- **11. (a)** all values **(b)** none **13.** (a) yes (b) no
- **15.** (a) $\{x : x \text{ is a positive odd integer}\}$ (b) $\{x : x \text{ is an even integer}\}$ (c) $\{x : x \text{ is irrational}\}$ (d) $\{x : x \text{ is an integer and } 7 \le x \le 10\}$
- 17. (a) false (b) true (c) true (d) false (e) true (f) true (g) true

- **21.** (a) [-2, 2] (b) $(-\infty, -2) \cup (2, +\infty)$

43.
$$(2, +\infty)$$
 $\xrightarrow{2}$ **45.** $(-\infty, -3) \cup [2, +\infty)$

47. $77 \le F \le 104$ **55.** $\left(-\infty, -\frac{1}{2}\right)$

Answers to Odd-Numbered Exercises A47

Exercise Set F (Page F1)

- **1.** (a) 7 (b) $\sqrt{2}$ (c) k^2 (d) k^2 **3.** $x \le 3$ **5.** all real x
- 7. $x \ge 0$ or $x = -\frac{2}{3}$ 9. $x \ge -5$
- **13.** (a) 2 (b) 1 (c) 14 (d) $3 + \sqrt{2}$ (e) 7 (f) 5
- **15.** (a) -9 (b) 7 (c) 12
- 17. $-\frac{5}{6}$, $\frac{3}{2}$ 19. $\frac{1}{2}$, $\frac{5}{2}$ 21. $-\frac{11}{10}$, $\frac{11}{8}$ 23. 1, $\frac{17}{5}$
- **25.** (-9, -3) **27.** $\left[-\frac{3}{2}, \frac{9}{2}\right]$ **29.** $(-\infty, -3) \cup (-1, +\infty)$
- 31. $\left(-\infty, \frac{1}{2}\right] \cup \left[\frac{9}{2}, +\infty\right)$ 33. $\left(-\infty, \frac{1}{2}\right) \cup \left(\frac{3}{2}, +\infty\right)$
- **35.** $\left[\frac{1}{8}, \frac{1}{2}\right) \cup \left(\frac{1}{2}, \frac{7}{8}\right]$ **37.** $x \in (-\infty, 2] \cup [3, +\infty)$ **39.** -3, 9

► Appendix G (Page G1)

1. (-4, 7)

3. (a) 5 y x x x x x

13. (a) $\frac{1}{2}$ (b) -1 (c) 0 (d) not defined 15. (a) yes (b) no

- (b) x x (-1, -2)
- 19. III < II < IV < I 21. (a) 14 (b) $-\frac{1}{3}$ 23. 29 25. $\frac{13}{7}$
- 29. (a) 6 y

33.		(a)	(b)	(c)	(d)	(e)
	Slope	3	-1/4	-3/5	0	-b/a
	y-intercept	2	3	8/5	1	b

- **35.** (a) $y = \frac{3}{2}x 3$ (b) $y = -\frac{3}{4}x$ **37.** y = -2x + 4
- **39.** y = 4x + 7 **41.** $y = -\frac{1}{5}x + 6$ **43.** y = 11x 18
- **45.** $y = \frac{1}{2}x + 2$ **47.** y = 1 **49.** (a) parallel
- (b) perpendicular (c) parallel (d) perpendicular (e) neither
- **51.** (a) $-\frac{3}{2}$ **53.** the union of the graphs of x y = 0 and x + y = 0

A48 Answers to Odd-Numbered Exercises

- **61.** (a) y = x/9 (b)
- **65.** (a) $T_C = \frac{5}{9}(T_F 32)$ (b) $\frac{5}{9}$ **63.** y = 1.2x + 2(c) -40° (F or C) (d) 37° C
- **67.** (a) p = 0.098h + 1 (b) 10.20 m
- **69.** (a) r = -0.0125t + 0.8
- **71.** (a) $C_1 = 2x$, $C_2 = 25 + (x/4)$

(c) 26.11 in (**d**) 135 lb

- **(b)** 64 days
- **(b)** x = 15

Appendix H (Page H1)

- 1. in the proof of Theorem H.1 **3. (a)** 10 **(b)** (4, 5)
- **5.** (a) $\sqrt{29}$ (b) $\left(-\frac{9}{2}, -5\right)$ 11. 0 13. y = -3x + 4
- **15.** $\left(-\frac{29}{8}, -\frac{23}{4}\right)$ **17.** 3 **21.** 4 **23.** (a) (0, 0); 5 (b) (1, 4); 4 (c) (-1, -3); $\sqrt{5}$ (d) (0, -2); 1 25. $(x - 3)^2 + (y + 2)^2 = 16$
- **27.** $(x+4)^2 + (y-8)^2 = 64$ **29.** $(x+3)^2 + (y+4)^2 = 25$
- 31. $(x-1)^2 + (y-1)^2 = 2$ 33. circle; center (1, 2), radius 4
- 35. circle; center (-1, 1), radius $\sqrt{2}$ 37. the point (-1, -1)
- 39. circle; center (0, 0), radius $\frac{1}{3}$ 41. no graph
- 43. circle; center $\left(-\frac{5}{4}, -\frac{1}{2}\right)$, radius $\frac{3}{2}$
- **45.** (a) $y = -\sqrt{16 x^2}$ (b) $y = 2 + \sqrt{3 2x x^2}$
- **47.** (a)

(b)

- **49.** $y = -\frac{3}{4}x + \frac{25}{4}$ **51.** (a) inside (b) largest $3\sqrt{5}$, smallest $\sqrt{5}$
- **55.** (a) equation: $2x^2 + 2y^2 12x + 8y + 1 = 0$ 53. $(1/3, \pm \sqrt{8}/3)$ **(b)** center (3, -2), radius $5/\sqrt{2}$
- **57.**

61.

63.

71. (a) $x = \sqrt{3-y}$

(b) $x = 1 - \sqrt{y+1}$

$$(3,1)$$

73. (a)

75. (a)

- **79.** (a) $(-5 \sqrt{33})/4 < x < (-5 + \sqrt{33})/4$ (b) $-\infty < x < +\infty$
- **81.** (a) 30 ft (b) 2.6 s (c) 2.1 s

Appendix I (Page I1)

1. (a) y = x + 2

` ′	-						
(c)	t	0	1	2	3	4	5
	х	-1	0	1	2	3	4
	у	1	2	3	4	5	6

(d)

Answers to Odd-Numbered Exercises A49

5.

- **13.** $x = 5\cos t$, $y = -5\sin t$, $0 \le t \le 2\pi$ **15.** x = 2, y = t
- **17.** $x = t^2$, y = t, $-1 \le t \le 1$
- **19.** (a)

				U			
(b)	t	0	1	2	3	4	5
	x	0	5.5	8	4.5	-8	-32.5
	у	1	1.5	3	5.5	9	13.5

(c) $t = 0, 2\sqrt{3}$ (d) $0 < t < 2\sqrt{2}$ (e) 2

Responses to True-False questions may be abridged to save space.

- 23. True; the graph is the upper half of the unit circle.
- 25. False; the graph is the reflection of the graph of y = f(x) about the line y = x
- **27. (b)** $\frac{1}{2}$ **(c)** $\frac{3}{4}$
- **29. (b)** (x_0, y_0) to (x_1, y_1) **(c)** x = 3 2(t 1), y = -1 + 5(t 1)

- 37. (a) $x = 4\cos t$, $y = 3\sin t$ (b) $x = -1 + 4\cos t$, $y = 2 + 3\sin t$
- 39. (a) ellipses with fixed center, varying axes of symmetry (b) (assume $a \neq 0, b \neq 0$) ellipses with varying center, fixed axes of symmetry (c) circles of radius 1 with centers on line y = x - 1

Appendix J (Page J1)

1. II **3.** S = 0.0815686t + 63.7661, coefficient = 0.104805

- **5.** (a) p = 0.0146T + 3.98, 0.9999 (b) 3.25 atm (c) $\approx -272^{\circ}$ C
- 7. (a) R = 0.00723T + 1.55 (b) ≈ -214 °C
- **9.** (a) $S = 0.50179\omega 0.00643$ (b) ≈ 16.0 lb
- **11.** (a) R = 0.2087h 1.0549, 0.842333

- **13.** (a) 181.8 km/s/Mly (b) $1.492 \times 10^{10} \text{ years}$ (c) increase
- **15.** $T = 849.5 + 143.5 \sin \left[\frac{\pi}{183} t \frac{\pi}{2} \right]$ **17.** $t = 0.445 \sqrt{d}$

► Appendix K (Page K1)

- 1. circle 3. parabola 5. ellipse
- 9. (a) hyperbola **(b)** $y = -\frac{9}{2}x - \frac{1}{2} + \frac{1}{2}\sqrt{73x^2 + 42x + 17}$

► Appendix L (Page L1)

- 3. $y = c_1 e^x + c_2 e^{-4x}$ 5. $y = c_1 e^x + c_2 x e^x$
- 7. $y = c_1 \cos x + c_2 \sin x$ 9. $y = c_1 + c_2 e^x$
- 11. $y = c_1 e^{2t} + c_2 t e^{2t}$ 13. $y = e^{-2x} (c_1 \cos 3x + c_2 \sin 3x)$ 15. $y = c_1 e^{-x/4} + c_2 e^{x/2}$ 17. $y = 3e^x 2e^{-3x}$
- **19.** $y = 2e^{-3x} + xe^{-3x}$ **21.** $y = -e^{-2x}(3\cos x + 6\sin x)$
- **23.** (a) y'' 3y' 10y = 0

-0.4

- **(b)** y'' 8y' + 16y = 0 **(c)** y'' + 2y' + 17y = 0
- **25.** (a) k < 0 or k > 4 (b) 0, 4 (c) 0 < k < 4
- **27.** (a) $y = (1/x)[c_1 \cos(\ln x) + c_2 \sin(\ln x)]$ (b) $y = c_1 x^{1+\sqrt{3}} + c_2 x^{1-\sqrt{3}}$
- **33.** (a) $x(t) = 0.4\cos(t/2)$ m (b) period = 4π s, frequency = $\frac{1}{4\pi}$ Hz (d) $t = \pi s$ (c) (e) $t = 2\pi \text{ s}$ -0.2
- **35.** (a) Maximum speed occurs when x = 0.
 - **(b)** Minimum speed occurs when $x = \pm x_0$.

A50 Answers to Odd-Numbered Exercises

39. (a) $x = e^{-1.2t} + 3.2te^{-1.2t}$ (b) 1.427364 cm

41. (a) $x = e^{-t/2} \cos(\sqrt{19}t/2) - \frac{6}{19} \sqrt{19}e^{-t/2} \sin(\sqrt{19}t/2)$

(b) 1.0545 cm

(c) -3.210357 cm/s (d) 3.210357 cm/s²

43. (a) $x = (4 + 2v_0)e^{-3t/2} - (3 + 2v_0)e^{-2t}$ (b) $8e^{-3t/2} - 7e^{-2t}$, $2e^{-3t/2} - e^{-2t}$, $-4e^{-3t/2} + 5e^{-2t}$

