Sample Homework

Eugene Katsevich

August 27, 2023

Problem 1. Quadratic theorem.

Consider a right triangle with legs of lengths a and b and hypotenuse of length c.

- (a) State the Pythagorean theorem.
- (b) Who initially proposed this theorem?

Solution 1.

- (a) $a^2 + b^2 = c^2$.
- (b) Pythagoras.

Problem 2. Simulation of normal random variables.

Consider $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} N(0, 1)$.

- (a) Draw n = 1000 random samples and create a histogram of their distribution.
- (b) Comment on the shape of your histogram.

Solution 2.

(a) Figure 1 shows the desired histogram.

Figure 1: A sample of 1000 standard normal random variables.

(b) The histogram looks bell-shaped, as one would expect.

Problem 3. Data analysis: Diamonds.

Consider the diamonds dataset built into ggplot2, whose first few rows are shown below.

carat	cut	color	clarity	depth	table	price	X	у	\mathbf{z}
0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43
0.21	Premium	\mathbf{E}	SI1	59.8	61	326	3.89	3.84	2.31
0.23	Good	\mathbf{E}	VS1	56.9	65	327	4.05	4.07	2.31
0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

Table 1: First five rows of diamonds data.

- (a) Create a histogram of the diamond price, and comment on its shape.
- (b) Create a table of average price by diamond cut, and comment on any trends.
- (c) Run a linear regression of price on carat, and print a table of the regression summary. Comment on the results.

Solution 3.

(a) Figure 2 shows the distribution of diamond price. We see that the distribution has a long right tail.

Figure 2: The distribution of price in the diamonds dataset.

- (b) Table 2 shows the mean diamond price by cut. Surprisingly, the mean diamond price appears to decrease as cut improves!
- (c) Table 3 shows the regression output. It appears that the carat of a diamond has an extremely significant impact on its price.

Table 2: Mean diamond price by cut.

Cut	Mean Price (\$)
Fair	4358.76
Good	3928.86
Very Good	3981.76
Premium	4584.26
Ideal	3457.54

Table 3: Results of regressing price on carat.

	Dependent variable:
	price
carat	7,756.426***
	(14.067)
Constant	-2,256.361***
	(13.055)
Observations	53,940
\mathbb{R}^2	0.849
Adjusted \mathbb{R}^2	0.849
Residual Std. Error	1,548.562 (df = 53938)
F Statistic	$304,050.900^{***} \text{ (df = 1; 53938)}$
Note:	*p<0.1; **p<0.05; ***p<0.01