<u>PSALTer</u> <u>results</u> <u>panel</u>

 $S = \iiint \left(\frac{1}{6}\left(6t_{1}^{*}\mathcal{A}^{\alpha_{i}}_{\alpha}\mathcal{A}^{\theta_{i}} + 6\mathcal{A}^{\alpha\beta\chi}\right) \sigma_{\alpha\beta\chi} + 6f^{\alpha\beta_{i}} \tau_{i}(\Delta+\mathcal{K})_{\alpha\beta_{i}} - 12t_{1}^{*}\mathcal{A}^{\theta_{i}}_{\alpha}\partial_{i}f^{\alpha_{i}} + 12t_{1}^{*}\mathcal{A}^{\theta_{i}}_{\alpha}\partial_{i}f^{\alpha_{i}} - 6t_{1}^{*}\partial_{i}f^{\alpha_{i}}\partial_{i}f^$

<u>Wave</u> <u>operator</u>

_	${}^{0}_{ullet}^{ullet}\mathcal{A}^{\parallel}$	⁰ •f [∥]	${}^{0^{+}}f^{\perp}$	${}^{0^{-}}\mathcal{A}^{\parallel}$	_									
${}^{0^{\scriptscriptstyle +}}_{ullet}{\mathcal R}^{\parallel}$ †	-t. 1	$i\sqrt{2}kt$	· 0	0										
⁰ ⁺ <i>f</i> [∥] †	$-i \sqrt{2} kt$	$-2k^{2}t$	0	0										
⁰ ⁺ f [⊥] †	0	0	0	0										
${}^{0^{-}}_{ullet}\mathcal{H}^{\parallel}$ †	Θ	0	0	t. 2	$\left.^{1^{+}}_{\bullet}\mathcal{A}^{\parallel}_{lphaeta}\right $	${}^{1^+}_{}\mathcal{A}^{\perp}{}_{\alpha\beta}$	$f^{\dagger}f^{\parallel}_{\alpha\beta}$	${}^{1^{-}}_{\bullet}\mathcal{H}^{\parallel}_{lpha}$	$^{1^{-}}_{\bullet}\mathcal{A}^{\perp}{}_{\alpha}$	$\frac{1}{\bullet}f^{\parallel}_{\alpha}$	$\int_{\bullet}^{1} f^{\perp}_{\alpha}$			
				$^{1^{\scriptscriptstyle +}}_{\scriptscriptstyle \bullet}\mathcal{A}^{\parallel} \uparrow^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_{.5} + t_{.7} + 4 t_{.} \right)$				0	0	0			
				$^{1^{+}}_{\cdot}\mathcal{H}^{\perp}\dagger^{\alpha\beta}$	3 42				0	0	0			
				$f^{\dagger}f^{\dagger}$	$\frac{ik\left(t_1-2t_2\right)}{3\sqrt{2}}$	$-\frac{1}{3} i k \left(t_{1} + t_{2}\right)$	$\frac{1}{3} k^2 \left(t_1 + t_2 \right)$	0	Θ	0	0			
				${}^{1}_{\bullet}\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	0	$k^2 r_{\stackrel{\cdot}{5}} - \frac{t_{\stackrel{\cdot}{1}}}{2}$		0	i k t . 1			
				$^{1}_{\bullet}\mathcal{A}^{\perp}\dagger^{\alpha}$	Θ	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0			
				$f^{\parallel} \uparrow^{\alpha}$	0	0	Θ	0	Θ	0	0			
				$^{1}_{\bullet}f^{\perp}\uparrow^{\alpha}$	0	0	0	-i k t .	0	0	0	$\mathcal{A}^{2^{+}}\mathcal{A}^{\parallel}_{\alpha\beta}$	$2^{+}_{\bullet}f^{\parallel}_{\alpha\beta}$	$^{2^{-}}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}_{\bullet}\mathcal{A}^{\parallel}$ † $^{\alpha\beta}$	$\frac{t}{\frac{1}{2}}$	$-\frac{i k t_{\frac{1}{1}}}{\sqrt{2}}$	0
											$f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t$	0
										:	${}^{2^{-}}\mathcal{A}^{\parallel}$ † ${}^{\alpha\beta\chi}$		0	$\frac{t_{\frac{1}{2}}}{2}$

<u>Saturated</u> propagator

<u>Source</u> <u>constraints</u>

Spin-parity form	Covariant form	Multiplicities
${\stackrel{0^+}{\cdot}} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha\tau} \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$-2 i k \cdot \sigma^{\parallel} + 0^{+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1 ⁻ _τ ^α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} {}_{\tau} \ ^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$-2 i k \frac{2^{+}}{2} \sigma^{\parallel}^{\alpha\beta} + \frac{2^{+}}{2} \tau^{\parallel}^{\alpha\beta} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi}_{\ \chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\beta\chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\beta} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\alpha\chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\alpha\chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\beta} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\alpha\chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\beta} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\chi\beta} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\delta}\tau\ (\Delta+\mathcal{K})^{\chi\beta} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\delta}\tau\ (\Delta+\mathcal{K})^{\chi\beta} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}{}_{\tau}(\Delta+\mathcal{K})^{\chi\alpha} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}(\Delta+\mathcal{K})^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}(\Delta+\mathcal{K})^{\beta\alpha} + 4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 4ik^{\chi}\partial_{\epsilon}\partial_{\alpha}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 4ik^{\chi}\partial_{\epsilon}\partial_{\alpha}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 4ik^{\chi}\partial_{\epsilon}\partial_{\alpha}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\alpha}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\alpha}\partial^{\alpha}\sigma^{\delta\beta} - 6ik^{\chi}\partial_{\epsilon}\partial_{$	
	$ 6 \ i \ k^{X} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 \ i \ k^{X} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi\tau} \left(\Delta + \mathcal{K} \right)^{X\delta} - 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} \left(\Delta + \mathcal{K} \right)^{X} - 4 \ i \ \eta^{\alpha\beta} \ k^{X} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0 $	

<u>Massive</u> spectrum

Total expected gauge generators:

Massive particle

Pole residue:	$\frac{\begin{vmatrix} -3t.t.(t.+t.)+3r.(t.^2+2t.^2) \\ \frac{1}{2} & \frac{1}{2} & \frac{2}{5} & \frac{1}{2} \\ \frac{1}{5} & (t.+t.) & (-3t.t.+2r.(t.+t.)) \\ \frac{1}{5} & \frac{1}{2} & \frac{1}{2} & \frac{2}{5} & \frac{1}{1} \end{vmatrix} > 0$
Square mass:	$-\frac{\frac{3t.t.}{\frac{12}{2r.t.+2r.t.}}}{\frac{12}{51} + \frac{12}{52}} > 0$
Spin:	1
Parity:	Even

<u>Massless</u> <u>spectrum</u>

(There are no massless particles)

Gauge symmetries

(Not yet implemented in PSALTer)

<u>Unitarity</u> <u>conditions</u>

 $\left(t. < 0 \, \&\& \left(\left(t. < 0 \, \&\& \, r. > 0\right) || \left(t. > -t. \&\& \, r. > 0\right)\right)\right) || \left(t. > 0 \, \&\& \, -t. < t. < 0 \, \&\& \, r. > 0\right)\right)$

Validity assumptions

(Not yet implemented in PSALTer)