In [1]:

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
```

1.Load the dataset

In [2]:

```
df=pd.read_csv("DoctorVisits.csv")
```

2.Display first and last 13 rows

In [3]:

```
df.head(13)
```

Out[3]:

	Unnamed: 0	visits	gender	age	income	illness	reduced	health	private	freepoor	free
0	1	1	female	0.19	0.55	1	4	1	yes	no	
1	2	1	female	0.19	0.45	1	2	1	yes	no	
2	3	1	male	0.19	0.90	3	0	0	no	no	
3	4	1	male	0.19	0.15	1	0	0	no	no	
4	5	1	male	0.19	0.45	2	5	1	no	no	
5	6	1	female	0.19	0.35	5	1	9	no	no	
6	7	1	female	0.19	0.55	4	0	2	no	no	
7	8	1	female	0.19	0.15	3	0	6	no	no	
8	9	1	female	0.19	0.65	2	0	5	yes	no	
9	10	1	male	0.19	0.15	1	0	0	yes	no	
10	11	1	male	0.19	0.45	1	0	0	no	no	
11	12	1	male	0.19	0.25	2	0	2	no	no	
12	13	2	male	0.19	0.55	3	13	1	no	no	
∢											•

In [4]:

df.tail(13)

Out[4]:

	Unnamed: 0	visits	gender	age	income	illness	reduced	health	private	freepoor	fr
5177	5178	0	male	0.72	0.55	0	0	0	no	no	
5178	5179	0	male	0.72	0.25	0	0	0	no	no	
5179	5180	0	female	0.72	0.35	0	0	0	no	no	
5180	5181	0	male	0.19	0.25	1	0	1	no	yes	
5181	5182	0	male	0.19	0.75	1	0	0	no	no	
5182	5183	0	female	0.19	0.45	0	0	0	no	no	
5183	5184	0	male	0.22	1.10	0	0	0	no	no	
5184	5185	0	male	0.22	1.50	0	0	0	no	no	
5185	5186	0	female	0.22	0.55	0	0	0	no	no	
5186	5187	0	male	0.27	1.30	0	0	1	no	no	
5187	5188	0	female	0.37	0.25	1	0	1	no	no	
5188	5189	0	female	0.52	0.65	0	0	0	no	no	
5189	5190	0	male	0.72	0.25	0	0	0	no	no	
4											•

3.Display complete information about the columns of the dataset such as Column name, Count, Data type and overall memory usage.

```
In [5]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5190 entries, 0 to 5189
Data columns (total 13 columns):
    Column
                Non-Null Count Dtype
0
    Unnamed: 0 5190 non-null
                               int64
 1
    visits
               5190 non-null
                               int64
 2
    gender
               5190 non-null object
 3
    age
               5190 non-null float64
 4
    income
                5190 non-null
                               float64
 5
    illness
                               int64
               5190 non-null
 6
    reduced
               5190 non-null
                              int64
 7
    health
                5190 non-null
                              int64
 8
    private
                5190 non-null
                              object
    freepoor
              5190 non-null object
 10 freerepat 5190 non-null
                               object
 11 nchronic
                5190 non-null
                               object
12 lchronic
                5190 non-null
                               object
dtypes: float64(2), int64(5), object(6)
memory usage: 527.2+ KB
```

4. Find out the total no. of people based on their count of illness.

```
In [6]:
```

```
df["illness"].value_counts()

Out[6]:

1    1638
0    1554
2    946
3    542
4    274
5    236
Name: illness, dtype: int64
```

5. Visualize and analyze the maximum, minimum and medium income

```
In [7]:
```

```
y=list(df.income)
plt.boxplot(y)
plt.show()
```


6.Find out no.of days of reduced activity of male and female seperately due to illness.

In [8]:

```
df.groupby(['gender','reduced']).mean()
```

Out[8]:

		Unnamed: 0	visits	age	income	illness	health
gender	reduced						
	0	2524.038512	0.229322	0.465755	0.482735	1.462144	1.115098
	1	1985.768421	0.400000	0.325684	0.542105	2.242105	1.610526
	2	1622.618182	0.672727	0.391455	0.560182	2.236364	1.781818
	3	997.311111	1.333333	0.403111	0.516000	2.733333	1.733333
	4	1237.740741	0.851852	0.458889	0.466667	2.22222	2.074074
	5	1169.055556	1.444444	0.401667	0.614444	2.22222	2.500000
famala	6	1382.545455	1.363636	0.426364	0.622727	2.363636	1.363636
female	7	1034.846154	1.384615	0.436154	0.473462	2.653846	2.230769
	8	1883.090909	1.090909	0.471818	0.404545	2.181818	4.000000
	9	1349.000000	0.500000	0.570000	0.825000	3.000000	1.000000
	10	1099.428571	2.142857	0.512857	0.421429	2.571429	2.000000
	12	1661.000000	2.000000	0.720000	0.250000	3.500000	5.500000
	13	906.000000	4.000000	0.720000	0.300000	4.500000	3.500000
	14	1392.112069	1.543103	0.551724	0.427586	2.534483	4.112069
	0	3008.911019	0.136007	0.344703	0.694398	1.099585	0.924850
	1	2485.158537	0.304878	0.286220	0.676341	1.743902	1.256098
	2	2007.679245	0.471698	0.343585	0.653019	2.358491	1.547170
	3	1909.068966	0.724138	0.334138	0.741379	2.137931	1.689655
	4	1424.000000	0.722222	0.309444	0.869444	2.055556	2.000000
	5	1437.272727	1.136364	0.331818	0.570455	2.272727	2.818182
	6	562.000000	0.833333	0.340000	0.591667	2.500000	2.000000
male	7	1716.750000	0.750000	0.314167	0.655000	2.583333	4.333333
	8	680.666667	1.333333	0.365000	0.833333	2.666667	2.000000
	9	1375.400000	2.200000	0.310000	0.392000	2.400000	2.000000
	10	1543.200000	1.800000	0.480000	0.590000	2.600000	4.600000
	11	355.500000	5.000000	0.320000	1.000000	1.500000	0.500000
	12	781.500000	2.000000	0.370000	0.515000	1.500000	1.000000
	13	508.666667	4.000000	0.510000	0.350000	3.333333	2.333333
	14	1236.069444	1.555556	0.476806	0.598611	2.375000	3.527778

7. Visualize if there is any missing values in the dataset based on a heat map.

In [9]:

```
#missing values
sns.heatmap(df.isnull(),cbar=False,cmap='viridis')
```

Out[9]:

<AxesSubplot:>

8.Find out the correlation between variables in the given dataset correlation between different variables.

In [10]:

```
plt.figure(figsize=(10,10))
sns.heatmap(df.corr(),cbar=True,annot=True,cmap='Greens')
```

Out[10]:

<AxesSubplot:>

9. Analyze how the income of a patient affects the no. of visits to the hospital.

In [11]:

```
#relation between income and visits
plt.figure(figsize=(10,10))
plt.scatter(x='income',y='visits',data=df)
plt.xlabel('income')
plt.ylabel('visits')
```

Out[11]:

Text(0, 0.5, 'visits')

10.Count and visualize the number of males and females affected by illness.

In [14]:

sns.histplot(df.gender,bins=3)

Out[14]:

<AxesSubplot:xlabel='gender', ylabel='Count'>

11. Visualize the percentage of people getting govt health insurance due to low income, old age and also the percentage of people having private health insurance.

In [15]:

```
# % of people getting govt insurance due to low income.
label=['yes','no']
Y = df[df['freepoor']=='yes']
N = df[df['freepoor']=='no']
x = [Y.shape[0], N.shape[0]]
plt.figure(figsize=(5,5))
plt.pie(x,labels=label)
plt.title("% of people getting govt health insurance due to low income")
plt.show()
# % of people having private insurance.
Y = df[df['private']=='yes']
N = df[df['private']=='no']
x = [Y.shape[0], N.shape[0]]
plt.figure(figsize=(5,5))
plt.pie(x,labels=label)
plt.title("% of people having private health insurance")
plt.show()
# % of people getting govt insurance due to old age, disability or veteran status.
Y = df[df['freerepat']=='yes']
N = df[df['freerepat']=='no']
x = [Y.shape[0], N.shape[0]]
plt.figure(figsize=(5,5))
plt.pie(x,labels=label)
plt.title("% of people getting govt insurance due to old age, disability or veteran statu
plt.show()
```

% of people getting govt health insurance due to low income

% of people having private health insurance

% of people getting govt insurance due to old age, disability or veteran status

duced

In [18]:

```
db=df.groupby('gender')['reduced'].sum().to_frame().reset_index()
#Creating the bar chart
plt.barh(db['gender'],db['reduced'],color=['yellow','green'])
#Adding the aesthetics
plt.title('Bar chart')
plt.xlabel('gender')
plt.ylabel('reduced activity')
#Show the plot
plt.show()
```


In []: