Relation, II

李昂生

Discrete Mathematics U CAS 5, June May, 2018

Outline

- 1. Closures of relations
- 2. Equivalence relation
- 3. Partial order
- 4. The lexicographic order
- 5. Lattices
- Topological sorting
- 7. Exercises

General view

- The role of **Ordering**
- Algebra of discrete objects

Closure of a Relation

Given a set A and a relation on A, the **transitive closure** of R is the \subseteq -least relation S such that

- i) S transitive
- ii) $R \subseteq S$.

Generally,

Definition 1

Let R be a relation on a set A and P be a property. We define the P-closure of R to be the \subseteq -least relation S satisfying

- S satisfies P
- R ⊆ S.

Closes

Given a set A and a relation R on A,

(i) The *reflexive closure* of R is:

$$S = R \cup \{(a, a) \mid a \in A\}. \tag{1}$$

(ii) The symmetric closure of R is

$$S = R \cup R^{-1},$$
 (2) where $R^{-1} = \{(b, a) \mid (a, b) \in R\}.$

Paths in Directed Graphs

Definition 2

Let G = (V, E) be a directed graph. A path from a to b in G is a sequence of vertices of the following form:

$$a = x_0, x_1, \cdots, x_{l-1}, x_l = b$$
 (3)

such that for each i with $0 \le i < l$, (x_i, x_{i+1}) is a directed edge of G, i.e., $(x_i, x_{i+1}) \in E$.

Paths in a Relation on a Set

Let A be a set and R be a relation on A. The notion of paths can be defined for relation R, in which case, the directed edges are the ordered pairs $(a, b) \in R$.

Theorem 3

Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$.

Trivial.

Transitive Closure

Definition 4

Let R be a relation on a set A. Define the **CONNECTIVITY relation** R^* to be the set of all pairs (a, b) such that there is a path from a to b in G. By the definition,

$$R^* = \cup_{i \ge 1} R^i. \tag{4}$$

Theorem 5

The transitive closure of R is R*.

Proof

- (i) $R \subseteq R^*$.
- (ii) R^* is transitive.
- (iii) If S is a transitive relation with $R \subseteq S$, then $R^* \subseteq S$. R^* is the \subseteq -least transitive relation S such that $R \subseteq S$.

Lengths of Paths

Lemma 6

Let A be a set of n elements and R be a relation on A. For any $a, b \in A$, if there is a path from a to b in R, then there is a path of length $\leq n$ from a to b in R.

Suppose to the contrary that for some a and b, there is a path from a to b in R, and that the shortest path from a to b has length m > n.

Consider a shortest path of the following form:

$$P: a = x_0, x_1, \dots, x_{m-1}, x_m = b.$$

There are two cases.

Proof- case 1

Case 1 a = b.

By the pigeonhole principle, there are i and j such that $1 \le i < j \le m$ such that $x_i = x_j$. Therefore,

$$P': a = x_0, x_1, \dots, x_i, x_{i+1}, \dots, x_{m-1}, x_m = b = a,$$

is a path from a to b.

P' has length m' < m. A contradiction.

Proof - case 2

Case 2. $a \neq b$.

Subcase 2a. There is an *i* such that $1 \le i \le m-1$ and $x_i = a$ or $x_i = b$.

In either case, there is a path from a to b of length < m. A contradiction.

Subcase 2b. Otherwise. Then,

$$\{x_1,\cdots,x_{m-1}\}\subseteq A\setminus\{a,b\}.$$

By the pigeonhole principle, there are i and j such that $1 \le i < j \le m-1$ such that $x_i = x_j$. Therefore,

$$a = x_0, x_1, \dots, x_i, x_{i+1}, \dots, x_m = b,$$

is a path from a to b, which has length < m. A contradiction.

Simple proof

Let

$$P: a = x_1, x_2, \cdots, x_l = b$$

be a path from a to b.

For every $y \in R \setminus \{a, b\}$, if there are i < j such that $x_i = y = x_j$, then

set

P be the path obtained from *P* by deleting the elements x_k for all k with $i < k \le j$.

Repeating the procedure we have a path P from a to b such that for every $y \in R \setminus \{a, b\}$, y appears in P at most once. The length of this path is at most n-1.

The Transitive Closure of a Relation

By the Lemma above,

$$R^* = \bigcup_{i=1}^n R^i. \tag{5}$$

In particular,

Theorem 7

Let M_R be the zero-one matrix of the relation R on a set of n elements. Then,

$$M_{R^*} = M_R \vee M_{R^2} \vee \cdots \vee M_{R^n}. \tag{6}$$

Interior Vertices

Let A be a set of n elements and R be a relation on A. Fix an ordering of the elements of A as follows:

$$v_1, v_2, \cdots, v_n,$$

for a path $P: a = x_0, x_1, \dots, x_{m-1}, x_m = b$, we define the *interior vertices* of P to be the set $\{x_1, \dots, x_{m-1}\}$. We use $I_v(P)$ to denote the interior vertices of P.

Connectivity zero-one matrices using interior vertices

We define the connectivity matrices of *R* as follows:

- 1) $W_0 = M_R$.
- 2) For k > 0,

$$W_k=(w_{ij}^{(k)}),$$

where $w_{ij}^{(k)} = 1$ if and only if there is a path P from v_i to v_j such that $I_v(P) \subseteq \{v_1, v_2, \dots, v_k\}$.

Lemma

Lemma 8

For every k, $0 < k \le n$, and for all i, j,

$$w_{ij}^{(k)} = w_{ij}^{(k-1)} \vee (w_{ik}^{(k-1)} \wedge w_{kj}^{(k-1)}). \tag{7}$$

Proof

Clearly, if $w_{ij}^{(k-1)} \vee (w_{ik}^{(k-1)} \wedge w_{kj}^{(k-1)}) = 1$, so is $w_{ij}^{(k)}$. Assume $w_{ij}^{(k)} = 1$. By definition, there is a path P from v_i to v_j such that $I_v(P) \subseteq \{v_1, v_2, \dots, v_k\}$. Let P be the following path

$$v_i = x_0, x_1, \cdots, x_{m-1}, x_m = v_j.$$

There are two cases.

Proof - case 1

Case 1. $v_k \notin I_v(P)$. This means that $w_{ij}^{(k-1)} = 1$.

Proof - case 2

Case 2. Otherwise.

In this case, $v_k = x_i$ for some i with $1 \le i \le m - 1$.

If there are more than one such i's, then let i_0 be the least such i, and i_1 be the greatest such i. Otherwise, then $i_0 = i_1$ be the unique i.

Then,

$$P': v_i = x_0, x_1, \dots, x_{i_0}, x_{i_1+1}, \dots, x_{m-1}, x_m = v_j$$

is a path from v_i to v_j such that

 $P_1: v_i = x_0, x_1, \dots x_{i_0}$ is a path from v_i to v_k such that

$$I_{\nu}(P_1)\subseteq\{v_1,\cdots,v_{k-1}\},$$
 and

 $P_2: x_{i_0}, x_{i_1+1}, \cdots, x_{m-1}, x_m = v_j$ is a path from v_k to v_j with

$$I_{\nu}(P_2)\subseteq \{v_1,\cdots,v_{k-1}\}.$$

Therefore, $w_{ik}^{(k-1)} = w_{ki}^{(k-1)} = 1$.

Warshall's Algorithm

- 1. Let $W_0 = M_R$
- 2. Suppose that W_{k-1} is defined. For every i, j from 1 to n, let

$$w_{ij}^{(k)} = w_{ij}^{(k-1)} \vee (w_{ik}^{(k-1)} \wedge w_{kj}^{(k-1)}).$$

The time complexity:

$$O(n^3)$$
.

Equivalence Relation

Definition 9
A relation R on a set A is an equivalence relation, if R is reflexive, symmetric and transitive.

Equivalence Classes

Definition 10

Let R be an equivalence relation on a set A. For an element $a \in A$, the **equivalence class** of a with respect to R is the set of all $x \in A$ such that $(a, x) \in R$. We use [a] to denote the equivalence class of a, where a is called a **representative** of the equivalence class.

Equivalence Relation Implies Partition

Theorem 11

Let R be an equivalence relation on a set A. Then, for any $a, b \in A$, (i), (ii) and (iii) below are equivalent:

- (i) $(a, b) \in R$.
- (ii) [a] = [b].
- (iii) $[a] \cap [b] \neq \emptyset$.

Partition Implies Equivalence Relation

Theorem 12

- 1. If R is an equivalence relation on A, then $\{[a] \mid a \in A\}$ is a partition of A.
- 2. If $P = \{A_1, A_2, \dots, A_m\}$ is a partition of A, then the partition P defines an equivalence relation on A as follows: For $x, y \in A$,

$$(x, y) \in R \iff \exists i, x, y \in A_i.$$

Partially Ordered Set

Definition 13

Given a set S and a relation R on S, we say that R is a *partial* ordering, or partial order, or partially ordered set, if:

- (i) R is reflexive
- (ii) R is antisymmetric
- (iii) R is transitive

Remark

- In this case, we use $x \le y$ to denote that $(x, y) \in R$.
- If $x \le y$ and $x \ne y$, we write x < y.

We referred the notion as to: partially ordered set, or partial ordering or partial order. Or we simply call it a *poset*.

Examples

- 1. (\mathbb{Z}, \leq)
- 2. $(\mathbb{Z}, |)$ where a|b denotes a divides b.
- 3. $(2^S, ⊆)$.

Incomparable Relationships

In a partial order, there are incomparable elements.

Definition 14

Let (A, \leq) be a partial order. For $a, b \in A$, we say that a and b are *comparable*, if either $a \leq b$ or $b \leq a$, and *incomparable*, otherwise.

Examples:

- 1) $(\mathbb{Z}, |)$ There are integers a and b such that $a \not| b$ and $b \not| a$.
- 1. $(2^A, \subseteq)$ There are sets X, Y such that $X \not\subseteq Y$ and $Y \not\subseteq X$.

Linear Order

Definition 15

Let (S, \leq) be a partial order. We say that it is a *linear order*, or *totally partial order*, or *totally partial ordering*, if for any $x, y \in S$, either $x \leq y$ or $y \leq x$.

Well-Ordered Set

Definition 16

Let (A, \leq) be a partial order. We say that it is a *well-ordered set*, if:

- 1) (A, \leq) is a linear order
- 2) For any set $X \subseteq A$, if $X \neq \emptyset$, then there is an element $x_0 \in X$ such that for any $x \in X$, $x_0 \le x$, that is, X has a least element.
 - (\mathbb{N}, \leq) is a well-ordered set.
 - (\mathbb{Z}, \leq) is not a well-ordered set.

The Principle of Well-Ordered Sets

This is the principle of inductive proofs.

Theorem 17

(The Principle of Well-Ordered Sets) Let (S, \leq) be a well-ordered set, and P be a property. Suppose that For every $x \in S$,

$$(\forall y < x)[P(y) \ holds] \rightarrow P(x) \ holds.$$

Then, for any $x \in S$, P(x) holds.

Proof

Towards a contradiction. Suppose that there is an $x \in S$ such that P(x) fails to hold.

Let *X* be the set of all $x \in S$ at which *P* fail to hold.

Since (S, \leq) is well-ordered, X has the least element x_1 .

Let x_0 be the least element in S.

Case 1 $x_1 = x_0$.

In this case, there is no $y \in S$ such that $y < x_0$, so the assumption implies that $P(x_0)$ holds. A contradiction.

Case 2. $x_0 < x_1$.

By the choice of x_1 , we have that for every $y \in S$, if $y < x_1$, then P(y) holds. By the assumption, $P(x_1)$ holds. A contradiction.

This is actually the principle for inductive proofs.

The Lexicographic Order

Definition 18

Given an alphabet Σ with a fixed order $\{s_1 < s_2 < \cdots < s_k\}$ as they are listed. For any string $x, y \in \Sigma^*$, let $x = a_1 a_2 \cdots a_m$ and $y = b_1 b_2 \cdots b_n$. Then,

- (1) We say that x is an *initial segment* of y, if for every i, if $1 \le i \le m$, then $a_i = b_i$. We use $x \subseteq y$ to denote that x is an initial segment of y. If $x \subseteq y$ and $x \ne y$, then we write $x \subseteq y$.
- (2) For $x \not\subseteq y$. We define $x <_L y$, meaning that x is to the left of y, if there is an i such that
 - 1 ≤ i ≤ m
 - $a_i < b_i$
 - for every j, if $1 \le j < i$, $a_j = b_j$.
- (3) We define $x \le y$, if either $x \subseteq y$ or $x <_L y$. If $x \le y$ and $x \ne y$, we define x < y.

Priority Tree

The lexicographic order defined above gives a priority tree. Given alphabet Σ with order $s_1 < s_2 < \cdots < s_k$. The *priority tree T* is built as follows:

- 1. The root node λ has immediate successors s_1, s_2, \dots, s_k with the order from left to right as they are listed.
- 2. For every node $\alpha \in T$, the immediate successors of α are labelled as

$$s_1, s_2, \cdots, s_k$$

with the left to right order as they are listed.

The priority tree T is exactly the lexicographic order.

Hasse Diagrams

Let (S, \leq) be a partial order. For $x, y \in S$, we say that y covers x if x < y and there is no z such that x < z < y. The Hasse diagram of a partial order is a simplified graphical representation of the partial as follows:

- 1. The diagram is growing upwardly.
- 2. Keep only the edges of covering

Why? Not interesting!

Greatest and Least Elements

For some poset (S, \leq) , there is the greatest and/or the least elements.

- We say that $x \in S$ is the greatest element, if for any $y \in S$, $y \le x$.
 - We use 1 to denote the greatest element of the poset.
- We say that the element s is the least element of the poset, if for any x ∈ S, s ≤ x.
 In this case, we use 0 to denote the least element of the poset.

The Least Upper Bound

Let (S, \leq) be a poset. For $x, y \in S$, the *least upper bound* of x and y is the element $w \in S$ such that both (1) and (2) below hold:

- (1) Both $x \le w$ and $y \le w$ hold.
- (2) For any $z \in S$, if $x \le z$ and $y \le z$, then $w \le z$.

In this case, we use

$$x \vee y$$

to denote the least upper bound of x and y, if it any.

The Greatest Lower Bound

Let (S, \leq) be a poset. For $x, y \in S$, we define the *greatest lower bound* of x and y, if any, to be the element $w \in S$ satisfying the following:

- 1. Both $w \le x$ and $w \le y$ hold
- 2. For any $z \in S$, if $z \le w$ and $z \le y$, then $z \le w$.

We use

$$X \wedge y$$

to denote the greatest lower bound of x and y, if any.

Lattices

Definition 19

Let (S, \leq) be a partial order. We say that (L, \leq) is a *lattice*, if for any $x, y \in L$,

- 1) $x \vee y$ exists.
- 2) $x \wedge y$ exists.

In this case, we use $\langle L,\leq,\vee,\wedge\rangle$ to denote the lattice. Furthermore, if the greatest and the least elements exist, we write

$$\langle L, <, \vee, \wedge, 0, 1 \rangle$$
.

Examples

- 1. $(\mathbb{N}, |)$ is a lattice \vee and \wedge are the least common multiple and the greatest common divisor, respectively.
- 2. $\langle 2^A, \subseteq, \cup, \cap, 0, 1 \rangle$ is a lattice. $0 = \emptyset$, and 1 = A. \cup and \cap are the set union and meet, respectively.
- (Σ*, ⊆) is not a lattice where ⊆ is the relation of initial segment.
 The ∧ exists, but ∨ fails to exist.

Laws of Lattices

Theorem 20

Let $\langle L, \leq, \vee, \wedge \rangle$ be a lattice. Then, for any $x, y, z \in L$,

1. (Commutative laws)

$$x \wedge y = y \wedge x, \ \ x \vee y = y \vee x.$$

2. (Associative laws)

$$(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z).$$

3. (Absorptive laws)

$$X \wedge (X \vee Y) = X, \ X \vee (X \wedge Y) = X.$$

4. (Idempotent laws)

Lattice
$$\langle L, \leq, \vee, \wedge, 0, 1 \rangle$$

In a lattice $\langle L, \leq, \vee, \wedge, 0, 1 \rangle$ with 0 and 1, for any $x \in L$,

- 1. $x \lor 1 = 1$
- 2. $x \wedge 1 = x$
- 3. $x \lor 0 = x$
- 4. $x \wedge 0 = 0$.

Generally, if $x \leq y$, then

$$x \lor y = y$$

$$X \wedge V = X$$

Distributive Lattices

We say that a lattice $\langle L, \leq, \vee, \wedge \rangle$ is *distributive*, if for any $x, y, z \in L$,

(1)
$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

$$(2) x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

Complement in a Lattice

Given a lattice $\langle L, \leq, \vee, \wedge, 0, 1 \rangle$, for $a \in L$ and $b \in L$, if 0 < a, b < 1, we say that b is the *complement* of a, if:

$$a \lor b = 1$$
,

$$a \wedge b = 0$$
.

The Problem

The topological sorting is to **extend** a poset to a linear order, or totally partial order.

Given a poset (S, \leq) , find a partial order \leq_T such that for any $x, y \in S$,

•

$$x \leq y \Rightarrow x \leq_{\mathrm{T}} y$$
,

and

• x and y are \leq_T comparable

Minimal Element

Lemma 21

Every finite nonempty poset (S, \leq) has at least one minimal element.

The Topological Sorting Algorithm

Given a poset (S, \leq) of n elements,

- 1. Let a_1 be a minimal element of $S_0 = S$ Suppose that a_1, \dots, a_k are chosen. Let $S_k = S \setminus \{a_1, \dots, a_k\}$.
- 2. Let a_{k+1} be a minimal element in S_k .
- 3. Fir each i, define

$$a_i \leq_{\mathrm{T}} a_{i+1}$$
.

Proof

Clearly, \leq_T is a total ordering.

We show that \leq_T extends \leq .

Suppose to the contrary the result fails to hold. Then there are x < y and i < j such that $x = a_j$ and $y = a_i$. By the definition of the a_i 's, when we define $a_i = y$ at step i, $x \in S_{i-1}$. By the choice of $a_i = y$, there is no $z \in S_{i-1}$ such that z < y. This is a contradiction.

Exercises

1. Let p(n) be the number of different equivalence relation on a set of n elements. Show that p(n) satisfies the recurrence relation:

$$p(n) = \sum_{j=0}^{n-1} {n-1 \choose j} p(n-j-1),$$

 $P(0) = 1.$

2. Show that every finite partial order can be partitioned into *k* chains, where *k* is the largest number of elements in an anti-chain in the partial order.

Definition Given a partial order P and a subset $S \subset P$, we say that S is a chain of P, if every two elements in S are comparable in P, and that S is an anti-chain of P, if every two elements in S are incomparable in P.

谢谢!