

Drivers in the Case of Two Assets

Future Returns Are Random In Nature

Optimizing Portfolio requires expectations:

- about average portfolio return (mean)
- about how far off it may be (variance)

Why?

Portfolio Return Is A Random Variable

Past Performance to Predictions

	Mean Portfolio Return
Computed on a sample of T Historical Returns	$\hat{\mu} = \frac{R_1 + R_2 + \ldots + R_T}{T}$
When the return is a random variable	$\mu = E[R]$

	Portfolio Return Variance
Computed on a sample of T Historical Returns	$\hat{\sigma}^2 = \frac{(R_1 - \hat{\mu})^2 + (R_2 - \hat{\mu})^2 + \dots + (R_T - \hat{\mu})^2}{T - 1}$
When the return is a random variable	$\sigma^2 = E[(R - \mu)^2]$

Drivers of Mean & Variance

Assume two assets:

Asset 1	Asset 2
Weight: w₁	Weight: w₂
Return: R ₁	Return: R ₂

- Portfolio Return $P = w_1 * R_1 + w_2 * R_2$
- Thus: $E[P] = w_1^* E[R_1] + w_2^* E[R_2]$

Portfolio Return Variance

Again, for a portfolio with 2 assets

Variance of Portfolio Return

$$var(P) = E[(P - E[P])^{2}] = w_{1}^{2} * var(R_{1})$$

$$+w_{2}^{2} * var(R_{1})$$

$$+2 * w_{1} * w_{2} * cov(R_{1}, R_{2})$$

Covariance between return 1 and 2

$$Cov(R_1, R_2) = E[(R_1 - E[R_1])(R_2 - E(R_2))]$$

= $StdDev(R_1) * StdDev(R_1) * corr(R_1, R_2)$

Correlations

Take Away Formulas

- E[Portfolio Return] = $E(P) = w_1 * E[R_1] + w_2 * E[R_2]$
- var(Portfolio Return) = $var(P) = w_1^2 * var(R_1)$ $+w_2^2 * var(R_1)$ $+2*w_1*w_2*cov(R_1,R_2)$

Let's practice!

Using Matrix Notation

Variables at Stake for N Assets

• w: the N x 1 column-matrix of portfolio weights

• R: the N x 1 column-matrix of asset returns

 μ: the N x 1 column-matrix of expected returns

$$w = egin{bmatrix} w_1 \ w_2 \ dots \ w_N \end{bmatrix}$$

$$R = \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_N \end{bmatrix}$$

$$\mu = egin{bmatrix} \mu_1 \ \mu_2 \ dots \ \mu_N \end{bmatrix}$$

Variables at Stake for N Assets

 \bullet Σ : The N x N covariance matrix of the N asset returns:

Covariance: Outside Diagonal

Variance: On Diagonal

Generalizing from 2 to N Assets

Portfolio Return

$$w_1 * R_1 + w_2 * R_2$$

$$w_1 * R_1 + \ldots + w_N * R_N$$

Portfolio Expected Return

$$w_1 * \mu_1 + w_2 * \mu_2$$

$$w_1*\mu_1+\ldots+w_N*\mu_N$$

Portfolio Variance

$$w_1^2 * var(R_1) + w_2^2 * var(R_1)$$

 $+2 * w_1 * w_2 * cov(R_1, R_2)$

$$w_1^2 + var(R_1) + \ldots + w_N^2 * var(R_N)$$

 $+2 * w_1 * w_2 * cov(R_1, R_2) + \ldots$
 $+2 * w_{N-1} * w_N * cov(R_{N-1}, R_N)$

Matrices Simplify the Notation

- Avoid large number of terms by using matrix notation
- We have 4 matrices:
 - weights (w), returns (R), expected returns (μ), and covariance matrix (Σ)

$$w = egin{bmatrix} w_1 \ w_2 \ dots \ w_N \end{bmatrix} \qquad w' = egin{bmatrix} w_1 \ w_2 \ \cdots \ w_N \end{bmatrix}$$

Simplifying the Notation

Portfolio Return

$$w_1 * R_1 + \ldots + w_N * R_N$$

Portfolio Expected Return

$$w_1*\mu_1+\ldots+w_N*\mu_N$$

$$\overline{w'\mu}$$

Portfolio Variance

$$w_1^2 + var(R_1) + \dots + w_N^2 * var(R_N)$$

 $+2 * w_1 * w_2 * cov(R_1, R_2) + \dots$
 $+2 * w_{N-1} * w_N * cov(R_{N-1}, R_N)$

 $w'\Sigma w$

Let's practice!

Portfolio Risk Budget

Who Did It?

Capital Allocation Budget

Portfolio Volatility Risk

Portfolio Volatility In Risk Contribution

• Portfolio Volatility =
$$\sum_{i=1}^{N} RC_i$$

• Where:
$$RC_i = \frac{w_i(\sum w)_i}{\sqrt{w'\sum w}}$$

- risk contribution of asset i depends on
 - 1. the complete matrix of weights w
 - 2. the full covariance matrix \sum

Percent Risk Contribution

$$\%RC_i = \frac{RC_i}{\text{portfolio volatility}}$$

where
$$\sum_{i=1}^{N} \% RC_i = 1$$

Relatively more risky assets: $\%RC_i>w_i$

Relatively less risky assets: $\%RC_i < w_i$

Let's practice!