Limited Dependent Variables

Today's Outline

- Limited dependent variables
 - Linear Probability Model
 - Logit
 - Probit
 - Interpretation
 - Prediction
 - Multinomial Logit
 - Poisson

Binary prediction Example

- The goal is to predict whether or not an individual chooses a car for transportation given some difference in the bus and car commutes (dtime)
- In other words we want to estimate:

$$P(Y = 1 | X) = P(Auto = 1 | dtime)$$

We want the estimated probability to be between 0 and 1

Linear Probability Model

It is possible to run a typical linear regression to estimate the desired probability

$$P(Auto = 1 | dtime) = \beta_0 + \beta_1 dtime + e$$

Why would this not always yield a desirable result?

```
1 ols1 = smf.ols('auto ~ dtime', data).fit()
  2 ols1.summarv()
OLS Regression Results
    Dep. Variable:
                               auto
                                          R-squared:
                                                         0.611
           Model:
                               OLS
                                      Adj. R-squared:
                                                        0.591
          Method:
                      Least Squares
                                          F-statistic:
                                                        29 88
            Date: Wed, 30 Nov 2022 Prob (F-statistic): 2.83e-05
                           15:42:49
                                     Log-Likelihood:
                                                       -5.2951
            Time:
No. Observations:
                                21
                                                AIC:
                                                        14.59
     Df Residuals:
                                19
                                                BIC:
                                                         16.68
        Df Model:
                                 1
 Covariance Type:
                          nonrobust
                              t P>|t| [0.025 0.975]
            coef std err
 Intercept 0.4848
                   0.071 6.785 0.000
                                              0.634
   dtime 0.0703
                   0.013 5.467 0.000
                                       0.043 0.097
      Omnibus: 2 283
                         Durbin-Watson: 1 979
Prob(Omnibus): 0.319 Jarque-Bera (JB): 0.807
          Skew: 0.293
                               Prob(JB): 0.668
       Kurtosis: 3.761
                              Cond. No. 5.56
```

Logit Model

 The logit model can be broken into the link function G() and the linear function inside the link function

$$P(y=1|x)=G(eta_0+eta_1x_1+\ldots+eta_kx_k)$$

- The smf.logit() performs maximum likelihood estimation of the betas automatically
- The link function takes in the values of the linear model and always outputs a value between 0 and 1
- The link function for the probit model is the standard normal CDF:

$$G(z) = rac{exp(z)}{1 + exp(z)}$$

 The function also returns the pseudo r-squared and tests of significance

: Logit Regression Results

Iterations 7

Dep. V	/ariable:		aut	o No.	Observa	21	
	Model:		Log	it	Df Resi	19	
ı	Method:		ML	E	Df I	1	
	Date:	Wed, 30	Nov 202	2 F	seudo R	0.5757	
	Time:		15:43:1	8 L	og-Likeli	-6.1660	
converged:			Tru	е	LI	-14.532	
Covariano	e Type:		nonrobus	st	LLR p-	value:	4.304e-05
	coef	std err	z	P> z	[0.025	0.975]	
Intercept	-0.2376	0.750	-0.317	0.752	-1.708	1.233	
dtime	0.5311	0.206	2.573	0.010	0.127	0.936	

nterpretation of the coefficients

Probit Model

The probit model can be broken into the link function G() and the linear function inside the link function

$$P(y=1|x)=G(eta_0+eta_1x_1+\ldots+eta_kx_k)$$

- The smf.probit() performs maximum likelihood estimation of the betas automatically
- The link function takes in the values of the linear model and always outputs a value between 0 and 1
- The link function for the probit model is the standard normal CDF:

$$G(z) = rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}(z)^2}$$

The function also returns the pseudo r-squared and tests of significance

```
probit1 = smf.probit('auto ~ dtime', data).fit(disp = 0)
probit1.summarv()
```

Probit Regression Results

21	tions:	Observa	No.	aut		Dep. Variable:			
19	duals:	Df Resid	t	Prob		Model:			
1	Model:	Df N		MLE		Method:			
0.5758	-squ.:	seudo R	2 P	ov 202	Wed, 30	Date:			
-6.1652	hood:	og-Likeli	S Lo	5:45:1		Time:	Time:		
-14.532	-Null:	LL	9	Tru		verged:	con		
4.300e-05	value:	LLR p-	t	nrobus	П	Covariance Type:			
	0.975]	[0.025	P> z	z	std err	coef			
	0.718	-0.847	0.872	0.161	0.399	-0.0644	Intercept		

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.0644	0.399	-0.161	0.872	-0.847	0.718
dtime	0.3000	0.103	2.916	0.004	0.098	0.502

Coefficient Interpretations (Partial Effects)

 The approximate change in the probability y = 1 for a one-unit increase in x can be found at a particular point by applying:

$$\hat{\beta}_i * g(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_k x_k)$$

Where g() is the pdf of the link function

```
beta_j = logit.params[1]
linear = logit.fittedvalues[0]
partial= logit.params[1]*stats.logistic.pdf(linear)

# the partial effect of x_j on y changes depending on the values of the other regressors
print("The approximate change in the probability that someone will commute in a car at " +
str(linear), "is " + str(partial))
```

The approximate change in the probability that someone will commute in a car at -2.8134020769391905 is 0.02836075171600828

```
beta_j = logit.params[1]
linear = logit.fittedvalues[2]
partial= logit.params[1]*stats.logistic.pdf(linear)

# Note that the increase in probability is much smaller
print("The approximate change in the probability that someone will commute in a car at " +
str(linear), "is " + str(partial))
```

The approximate change in the probability that someone will commute in a car at 4.1599182693181325 is 0.008036971009232381

Partial Effects at the Average (PEA)

 One quick way to get a quick measure of the partial effect of a variable is take the average of the x variables and apply the partial effect formula

$$PEA = \hat{eta}_j * g(\bar{x}\hat{eta})$$

```
logit_pea = logit.params*stats.logistic.pdf(logit.params[0] + logit.params[1]*data.dtime.mean())
probit_pea = probit1.params*stats.norm.pdf(probit1.params[0] + probit1.params[1]*data.dtime.mean())
print("Logistic APE: ", logit_ape, "Probit PEA: ", probit_pea)
```

```
Logistic APE: Intercept -0.020646

dtime 0.046154

dtype: float64 Logistic PEA: Intercept -0.058055

dtime 0.129781

dtype: float64
```

Average Partial Effects

- The PEA method is often not preferred since averages don't make sense for binary variables (male/female) and transformed continuous variables
- The APE method takes the average of the pdf over the fitted values

$$APE = \hat{eta}_j * g(x\hat{eta})$$

```
probit_ape = probit1.params*stats.norm.pdf(probit1.fittedvalues).mean()
logit_ape = logit.params*stats.logistic.pdf(logit.fittedvalues).mean()
print("Probit APE: ", probit_ape, "Probit PEA: ", probit_pea)
```

```
Probit APE: Intercept -0.010397

dtime 0.048407

dtype: float64 Probit PEA: Intercept -0.025574

dtime 0.119068

dtype: float64
```

Average Partial Effects (Method)

• The get_margeff() method will automatically calculate the APE for us

Marginal Effects (Automatically calculate the APE)

Predictions

$$P(y=1|x)=G(eta_0+eta_1x_1+\ldots+eta_kx_k)$$

There are three separate prediction methods to be aware of for fitted logit and probit models:

results.fittedvalues gives: 1 1 # below we have the fitetd values from the logit model 2 # note these are not probabilities 3 print(logit.fittedvalues.min()) 4 print(logit.fittedvalues.max()) $x_i\hat{eta}$ -1.2980561792904026 0.6952090574421678 1 logit.predict() results.predict() gives: array([0.05660423, 0.74236637, 0.98463106, 0.17594335, 0.12832551, 0.99000296, 0.92618052, 0.00742605, 0.24223912, 0.04867308, $G(x_i\hat{eta})$ 0.00633924, 0.96235264, 0.07080376, 0.3522088 , 0.92434429,

results.predict(newdata) can tell us what our model says for unseen value s

0.91778346])

```
# create some new values to predict with the same
 2 # regressor names
 3 newdata = pd.DataFrame([1,2,3,4], columns = ["dtime"])
  logit.predict(newdata)
     0.572858
     0.695216
     0.795063
     0.868392
dtvpe: float64
```

0.81505287, 0.02875512, 0.82752096, 0.77629228, 0.01615431,

Predictions (Probit)

- Predictions are made the same way with the probit model
- Ultimately we need to decide whether a prediction is 0 or 1
- On the right the threshold is set to .5

```
import scipy.stats as stats
   3 # convert to probabilities
  4 stats.norm.cdf(probit1.fittedvalues)[:10]
 array([0.61478336, 0.57195901, 0.60921791, 0.6348224 , 0.56892911,
        0.61993933, 0.62339582, 0.61483263, 0.58300447, 0.60484237])
     # get the probabilities for teh fitted values
   probit1.predict()[:10]
array([0.61478336, 0.57195901, 0.60921791, 0.6348224, 0.56892911,
        0.61993933, 0.62339582, 0.61483263, 0.58300447, 0.60484237])
  1 # predict new values
  probit1.predict(newdata)
      0.357771
     0.703864
      0.798292
      9.871922
 dtvpe: float64
     # Set a threshold where we will predict 1 if the probability is greater than .5
   2 np.where(probit1.predict(newdata) >.5, 1, 0)
array([0, 1, 1, 1])
```

Confusion Matrix

- Looking at accuracy (percent predicted correctly) alone can be misleading
- For example, if negatives are rare, a high accuracy can be achieved by only ever guessing positive
- We can visualize the relationships between true or false positives in a confusion matrix

```
1 from sklearn.metrics import confusion matrix
  predictions = np.where(logit.predict() > .5, 1, 0)
    cm = confusion matrix(actual, predictions)\
    actual = data.auto
  5 cm
array([[10, 1],
       [ 1, 9]], dtype=int64)
    import seaborn as sn
  plt.figure(figsize = (7,5))
    sn.heatmap(cm, annot=True)
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
  6 plt.show()
```

Predicted Label

Multinomial Logistic Regression

- The mnlogit() function gives the coefficient estimates for each level of the response variable
- Below we have reproduced an example for school choice from ECON 430
- The response variable can take three values
- We can also get the marginal effect of each variable for each level

```
1 results mn = smf.mnlogit('psechoice ~ grades', nels).fit(disp = 0)
  1 results mn.summary()
MNLogit Regression Results
    Dep. Variable:
                          psechoice No. Observations:
                                                         6649
          Model:
                           MNLogit
                                         Df Residuals:
                                                         6645
                                            Df Model:
                                                            2
         Method:
                               MLE
            Date: Wed, 30 Nov 2022
                                       Pseudo R-squ.:
                                                       0.1360
            Time:
                           16:35:10
                                      Log-Likelihood:
                                                       -5869.6
      converged:
                               True
                                              LL-Null:
                                                       -6793.2
 Covariance Type:
                          nonrobust
                                         LLR p-value:
                                                         0.000
 psechoice=2
                                              [0.025 0.975]
    Intercept
               2.5015
                        0.157
                               15.955
                                                      2.809
              -0.2945
                        0.020
                              -14.938
                                      0.000 -0.333 -0.256
                                       P>|z| [0.025 0.975]
 psechoice=3
                       std err
               5.6268
                        0.153
                               36.794 0.000 5.327
                                                      5 927
              -0.6910
                        0.020
                               -34.141 0.000 -0.731 -0.651
   me = results mn.get margeff(at = 'overall', method = 'dydx')
   # get the APE of the predictors for each level
   # hypothesis test are automatically computed
3 me.summary frame()
                            Std. Err.
                                                     Pr(>|z|) Conf. Int. Low Cont. Int. Hi.
     endog
                                                                0.065181
                                                                            0.072899
                   0.069040
                           0.001969
                                              2.316117e-269
                                                9.779134e-43
                                                                0.024685
                                                                            0.032925
                   0.028805
                           0.002102
psechoice=3 grades -0.097845 0.001671 -58.537530 0.000000e+00
                                                                -0.101121
                                                                           -0.094569
```

Multinomial Logistic Regression

- The mnlogit() function gives the coefficient estimates for each level of the response variable
- Below we have reproduced an example for school choice from ECON 430
- The response variable can take three values
- We can also get the marginal effect of each variable for each level

```
1 results mn = smf.mnlogit('psechoice ~ grades', nels).fit(disp = 0)
  1 results mn.summary()
MNLogit Regression Results
    Dep. Variable:
                          psechoice No. Observations:
                                                         6649
          Model:
                           MNLogit
                                         Df Residuals:
                                                         6645
                                            Df Model:
                                                            2
         Method:
                               MLE
            Date: Wed, 30 Nov 2022
                                       Pseudo R-squ.:
                                                       0.1360
            Time:
                           16:35:10
                                      Log-Likelihood:
                                                       -5869.6
      converged:
                               True
                                              LL-Null:
                                                       -6793.2
 Covariance Type:
                          nonrobust
                                         LLR p-value:
                                                         0.000
 psechoice=2
                                              [0.025 0.975]
    Intercept
               2.5015
                        0.157
                               15.955
                                                      2.809
              -0.2945
                        0.020
                              -14.938
                                      0.000 -0.333 -0.256
                                       P>|z| [0.025 0.975]
 psechoice=3
                       std err
               5.6268
                        0.153
                               36.794 0.000 5.327
                                                      5 927
              -0.6910
                        0.020
                               -34.141 0.000 -0.731 -0.651
   me = results mn.get margeff(at = 'overall', method = 'dydx')
   # get the APE of the predictors for each level
   # hypothesis test are automatically computed
3 me.summary frame()
                            Std. Err.
                                                     Pr(>|z|) Conf. Int. Low Cont. Int. Hi.
     endog
                                                                0.065181
                                                                            0.072899
                   0.069040
                           0.001969
                                              2.316117e-269
                                                9.779134e-43
                                                                0.024685
                                                                            0.032925
                   0.028805
                           0.002102
psechoice=3 grades -0.097845 0.001671 -58.537530 0.000000e+00
                                                                -0.101121
                                                                           -0.094569
```

Classification Exercise

Use the LOANAPP data from

- Estimate a probit model of approve on white. Find the estimated probability of loan approval for both whites and nonwhites. How do these compare with the linear probability model?
- Add the variables unem, male, and married to the model and reestimate.
- What is the APE for each predictor? How do they compare?
- What is the probability of being a married, non-white, man, with a net worth of 1,000 being approved?

Poisson Regression

- A poisson regression is used when we have data where the dependent variable is some sort of count, y = 0, 1, 2, 3...
- Examples could be trips to the doctor, arrests, cigarettes smoked, etc.
- For a poisson random variable, we know:

$$f(y) = \Pr(Y = y) = \frac{e^{-\lambda}\lambda^y}{y!}, \quad y = 0, 1, 2, ...$$

 Prediction of the conditional mean of y for a given observation is just:

$$\widehat{E}(y_0) = \widehat{\lambda}_0 = \exp(\widehat{\beta}_1 + \widehat{\beta}_2 x_0)$$

Poisson Regression

- A poisson regression can be performed in statsmodels
- The betas in the summary correspond are used to make a linear prediction
- These linear predictions are used to make the mean prediction (of cigarette consumption for example)

$$\widehat{E}(y_0) = \widehat{\lambda}_0 = \exp\left(\widehat{\beta}_1 + \widehat{\beta}_2 x_0\right)$$

results_poisson.summary()

Poisson Regression Results

Dep. V	ariable:		cigs	No. Ob	servatio	ns:	138		
	Model:		Poisson	Di	f Residu	als:	1384		
N	/lethod:		MLE		Df Mod	del:	0.0428		
	Date:	Thu, 16 N	lov 2023	Pse	udo R-so	qu.:			
	Time:		14:13:17	Log-	Likeliho	od:	-6166.2		
con	verged:		True		LL-N	ull:	-6441.9		
Covariance Type:		n	onrobust	L	LR p-val	ue: 3.5	517e-119		
	coef	std err	z	P> z	[0.025	0.975]			
Intercept	2.2532	0.417	5.410	0.000	1.437	3.069			
cigprice	-0.0062	0.004	-1.580	0.114	-0.014	0.001			
cigtax	0.0196	0.005	3.811	0.000	0.010	0.030			
Ifamine	-0.3831	0.016	-24 452	0.000	-0.414	-0.352			

Prediction Using a Poisson Regression

 Statsmodels provides options for the type of prediction you would like to make

$$\widehat{E}(y_0) = \widehat{\lambda}_0 = \exp\left(\widehat{\beta}_1 + \widehat{\beta}_2 x_0\right)$$

which : 'mean', 'linear', 'var', 'prob' (optional)

Statitistic to predict. Default is 'mean'.

- * 'mean' returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor.
- 'linear' returns the linear predictor of the mean function.
- 'var' returns the estimated variance of endog implied by the model.
- 'prob' return probabilities for counts from 0 to max(endog) or for y_values if those are provided.

$$\widehat{\Pr}(Y = y) = \frac{\exp(\widehat{\lambda})\widehat{\lambda}^y}{y!},$$

*Note that to get the probability you have to divide the number above by the sum of total probabilities for a given lambda

Prediction Using a Poisson Regression (Linear and Mean)

1387

1.337445 Length: 1388, dtype: float64

as you would any regression

0.825926

1.051128

2.088676

0.772996 0.553327

0.719256

1.335888

0.080019

0.409592

0.290761

0.825926

1.051128

2.088676

0.772996

0.553327

0.719256

1.335888

0.080019

0.409592

0.290761

Length: 1388, dtype: float64

1383

1384

1385

1386

1387

1383

1384

1385

1386

1387

Prediction Using a Poisson Regression (Probability)

 Which = 'prob' will give you the probability Y = y for each observation over which you make a prediction

robs	robsO = results_poisson.predict(birth, which = 'prob')														
robs	robs0														
	0	1	2	3	4	5	6	7	8	9		41	42	43	
0	0.101876	0.232685	0.265726	0.202306	0.115516	0.052768	0.020087	0.006554	0.001871	0.000475		1.549336e- 36	8.425416e- 38	4.475257e- 39	2.323060
1	0.057219	0.163695	0.234156	0.223297	0.159706	0.091380	0.043571	0.017807	0.006368	0.002024		8.903577e- 33	6.064768e- 34	4.035010e- 35	2.623559
2	0.000311	0.002515	0.010153	0.027325	0.055157	0.089070	0.119862	0.138256	0.139539	0.125185		1.445773e- 16	2.779401e- 17	5.218950e- 18	9.577031
3	0.114607	0.248267	0.268904	0.194171	0.105155	0.045558	0.016448	0.005090	0.001378	0.000332		1.989779e- 37	1.026274e- 38	5.170146e- 40	2.545411
4	0.175691	0.305532	0.265664	0.153999	0.066952	0.023286	0.006749	0.001677	0.000364	0.000070		3.740271e- 41	1.548676e- 42	6.263240e- 44	2.475445
					•••	•••			•••				•••		
1383	0.128361	0.263514	0.270484	0.185093	0.094995	0.039003	0.013345	0.003914	0.001004	0.000229		2.461154e- 38	1.202981e- 39	5.743271e- 41	2.679636
1384	0.022295	0.084798	0.161259	0.204443	0.194393	0.147870	0.093734	0.050929	0.024213	0.010232		4.080476e- 28	3.695136e- 29	3.268367e- 30	2.825186
1385	0.338474	0.366672	0.198609	0.071718	0.019423	0.004208	0.000760	0.000118	0.000016	0.000002		2.691029e- 49	6.940980e- 51	1.748655e- 52	4.305297

Prediction Using a Poisson Regression (Probability)

 The dataframe of probabilities in the previous slide is constructed using teh following procedure for each Y

```
probs = np.array([])
                                                                                     ps.round(4)[:12]
# for each possible count
for y in range(0,51):
                                                                                       0 0.1019
    # calculate the mean
    l = results poisson.predict(birth, which = 'mean')
                                                                                       1 0.2327
                                                                                                 probs0.loc[0].round(4)[:12]
                                                                                       2 0.2657
                                                                                                      0.1019
    # plug the estimated lambda into the pdf for the poisson distribution
                                                                                       3 0.2023
                                                                                                      0.2327
    probs = np.append(probs,((l[0]**y)*np.exp(l[0]))/np.math.factorial(y))
                                                                                                      0.2657
                                                                                       4 0.1155
                                                                                                      0.2023
                                                                                                      0.1155
                                                                                       5 0.0528
# Take the sum and divide the estimated probabilities by 1 to get the
                                                                                                      0.0528
                                                                                       6 0.0201
                                                                                                      0.0201
# probability that the observation is equal to a given count
                                                                                                      0.0066
ps = pd.DataFrame(probs/probs.sum())
                                                                                       7 0.0066
                                                                                                      0.0019
                                                                                                      0.0005
                                                                                       8 0.0019
                                                                                                      0.0001
                                                                                       9 0.0005
                                                                                                      0.0000
                                                                                                      0, dtype: float64
                                                                                      10 0.0001
```

11 0.0000

$$\widehat{\Pr}(Y = y) = \frac{\exp(\widehat{\lambda})\widehat{\lambda}^y}{y!},$$