Selective-X Analysis Guided by Impact Pre-Analysis

Hakjoo Oh¹ Wonchan Lee¹ Kihong Heo¹
Hongseok Yang² Kwangkeun Yi¹

¹Seoul National University ²University of Oxford

Dec. 23, 2013 @SNU

Motivation

Motivation

Motivation

Selective-X Analysis Guided by Impact Pre-Analysis

- Selectively apply a higher precision only when it is likely to benefit the final analysis results
- The selection is guided by an impact pre-analysis
- Two instances
 - selective context-sensitive analysis
 - selective relational analysis

Selective Context-Sensitive Analysis

Example Program

```
void main() {
c1:
   f(4);
c2: f(8);
c3:
    f(2);
    void f(int a) {
      b = g(a);
c4:
      assert (b > 1); // Query1
c5:
      b = g(input());
      assert (b > 1); // Query2
    void g(int a) {
      return a;
```

Context-Insensitive Analysis

```
void main() {
     f(4);
c1:
   f(8);
c2:
c3:
      f(2);
    void f(int a) {
      b = g(a);
c4:
                                    m
      assert (b > 1); // Q1
c5:
      b = g(input());
      assert (b > 1); // Q2
    void g(int a) {
       return a;
```

 $a = [-\infty, +\infty]$

Context-Insensitive Analysis

```
void main() {
c1:
     f(4);
    f(8);
c2:
c3:
       f(2);
     void f(int a) {
       b = g(a);
c4:
                                      m
       assert (b > 1); // Q1
       b = g(input());
c5:
                                                                a = [-\infty, +\infty]
       assert (b > 1); // Q2
     void g(int a) {
       return a;
```

Context-Sensitive Analysis

```
void main() {
       f(4);
c1:
      f(8);
c2:
c3:
       f(2);
    void f(int a) {
       b = g(a);
c4:
       assert (b > 1); // Q1
c5:
       g(input());
       assert (b > 1); // Q2
    void g(int a) {
       return a;
```


Context-Sensitive Analysis

Unnecessarily precise

- Thus, too expensive
 - ex) Sparrow with 3-CFA does not stop after
 30min for 10K programs

Selective Context-Sensitive Analysis

```
void main() {
       f(4);
c1:
c2:
       f(8);
c3:
       f(2);
     void f(int a) {
       b = g(a);
c4:
       assert (b > 1); // Q1
c5:
       g(input());
       assert (b > 1); // Q2
    void g(int a) {
       return a;
```


Selective Context-Sensitive Analysis

Problem

• How to select the contexts?

Our Solution: Impact Pre-Analysis

- An over-approximation of the fully contextsensitive main analysis
- An impact pre-analysis for interval analysis
 - abstract domain: approximation of intervals

$$\mathbb{V} = \{ \bot_v, \bigstar, \top_v \}$$
$$\gamma_v(\bigstar) = \{ [a, b] \in \mathbb{I} \mid 0 \le a \},$$

instead, fully context-sensitive

Example

```
void main() {
c1:
       f(4);
c2:
    f(8);
c3:
       f(2);
                                        cl
     void f(int a) {
       b = g(a);
c4:
                                  m
       assert (b > 1); // Q1
c5:
       g(input());
       assert (b > 1); // Q2
    void g(int a) {
       return a;
```


Example

```
void main() {
c1:
     f(4);
c2:
    f(8);
c3:
       f(2);
    void f(int a) {
       b = g(a);
c4:
       assert (b > 1); // Q1
c5:
      g(input());
       assert (b > 1); // Q2
    void g(int a) {
       return a;
```


Experiments

Program	LOC	Baseline		Our Selectively Context-Sensitive Analysis						imprvd	$overhead_1$	$overhead_2$
		#alarm	time	#alarm	pre	main	total	#selected call-sites	depth			
spell-1.0	2,213	58	0.6	30	0.1	0.8	0.9	25 / 124 (20.2 %)	1.08 (3)	48.3%	16.7%	33.3%
bc-1.06	13,093	606	14.0	483	1.9	14.3	16.2	29 / 777 (3.7 %)	1.16(2)	20.3%	13.6%	2.1%
tar-1.17	20,258	940	42.1	799	5.4	41.8	47.2	51 / 1213 (4.2 %)	1.02 (3)	15.0%	12.8%	-0.7%
less-382	23,822	654	123.0	562	3.3	163.1	166.4	51 / 1,522 (3.4 %)	1.71 (4)	14.1%	2.7%	32.6%
sed-4.0.8	26,807	1,325	107.5	1,238	7.4	110.2	117.6	25 / 868 (2.9 %)	1.4 (3)	6.6%	6.9%	2.5%
make-3.76.1	27,304	1,500	84.4	1,028	7.1	99.1	106.2	67 / 1,050 (6.4 %)	1.20(2)	31.5%	8.4%	17.4%
grep-2.5	31,495	735	12.1	653	2.4	13.5	15.9	33 / 530 (6.2 %)	1.16 (3)	11.2%	19.8%	11.6%
wget-1.9	35,018	1,307	69.0	942	12.5	69.6	82.1	79 / 1,973 (4.0 %)	1.39 (5)	27.9%	18.1%	0.9%
a2ps-4.14	64,590	3,682	118.1	2,121	29.5	148.2	177.7	237 / 2,450 (9.7%)	2.20 (9)	42.4%	25.0%	25.5%
bison-2.5	101,807	1,894	136.3	1,742	34.6	138.8	173.4	173 / 2,038 (8.5 %)	1.54 (4)	8.0%	25.4%	1.8%
Total	346,407	12,701	707.1	9,598	104.2	799.4	903.6	770 / 12,545 (6.1 %)		24.4 %	14.7 %	13.1 %

24.4% reduction with 27.9% overhead

Summary

- Selective context-sensitivity guided by impact preanalysis
- General idea for other selective analyses
 - selective relational analysis with octagons
 - selective flow-sensitive analysis
 - etc