

A Trainers Toolkit To Foster STEM Skills Using Microcontroller Applications

Wybór sterowników silnika

Wprowadzenie

Zawartość

>>>> Wybór sterowników silnika

⊙ Mikrokontrolery

Q Podsumowanie

Project No. 2019-1-R001-KA202-063965

- Silniki elektryczne stosowane są w wielu rodzajach mikrokontrolerów, w których konieczne jest sterowanie różnymi parametrami silnika (uruchomienie i zatrzymanie silnika, kierunek obrotów, prędkość obrotowa, itp.)
- Aby sprostać wymaganiom aplikacji i uniknąć uszkodzenia komponentów, ważne jest, aby odpowiednio dobrać metody sterowania silnikiem.

- Główna reguła w sterowaniu silnikiem za pomocą mikrokontrolera leży w sterowaniu silnika – elektronicznym elemencie, który pobiera sygnały sterujące z mikrokontrolera i dostarcza niezbędny prąd napędowy z zasilacza.
- Silniki z prądem stałym, potrzebują znacznie więcej prądu niż ten, który zazwczyaj dostarcza mikrokontroler. Te dwa silniki nie powinny być nigdy połączone do siebie bezpośrednio.

Sterownik silnika vs. napęd silnika

- Terminy sterownik silnika i napęd silnika używane są zamiennie, ale nie zawsze oznaczają to samo.
- Sterownik silnika jest komponentem elektronicznym, który przekształca sygnał wejściowy w ruch silnika bez możliwości wydawania instrukcji (lub sterowania) silnikiem. Sterownik silnika może aktywnie sterować i napędzać sam silnik za pośrednictwem sterownika.
- Czasami sterownik i napęd są oddzielnymi jednostkami, a czasami są one zintegrowane.

DRV8880 sterownik napędu silnika. Źródło: <u>www.robofun.ro/</u>

ZD10LCD 10A sterownik silnika krokowego.

Źródło: www.zikodrive.com/

Silniki

- Trzy rodzaje silników elektrycznych, powszechnie stosowanych w aplikacjach mikrokontrolerów:
 - Silniki pradu stałego
 - Silniki synchroniczne
 - Silniki krokowe.
- Są one wybierane w zależności od konkretnych wymagań aplikacji:
 - Dokładność pozycjonowania
 - Dostępność mocy napedowej
 - Moment obrotowy
 - Przyspieszenie
 - Koszt

Silniki prądu stałego

• Silniki prądu stałego przekształcają energię elektryczną prądu stałego w energię mechaniczną.

Sterowanie silnikami prądu stałego

- Kierunek obrotów można odwrócić poprzez proste odwrócenie biegunowości napięcia
- Prędkość obrotowa może być regulowana poprzez sterowanie napięciem wejściowym do silnika

Bezpośrednie sterowanie silnikami prądu stałego

- W zależności od zastosowania, niektóre działania i parametry silnika mogą być sterowane bez sterownika, przez:
 - Podłączenie zasilania bezpośrednio przez wyłącznik uruchomienie/zatrzymanie silnika
 - Za pomocą potencjometru regulacja prędkości obrotowej
 - Za pomocą Mostku H, prostego układu elektronicznego umożliwiającego zmianę kierunku przepływu prądu przez silnik, a tym samym zmianę kierunku obrotów silnika prądu stałego.

Potencjometr

Mostek H

Schemat Mostku H

Silniki krokowe

- Są to bezszczotkowe silniki prądu stałego, które przekształcają impulsy cyfrowe w mechaniczne obroty.
- Każdy pełny obrót jest podzielony na kilka kroków, a silnik musi otrzymać osobny impuls dla każdego kroku. Silnik krokowy może wykonywać tylko jeden ktok na raz, każdy krok jest tej samej wielkości.

Sterowanie silnikami krokowymi

- Prędkość obrotowa może być regulowana poprzez sterowanie częstotliwością impulsów wejściowych.
- Kierunek obrotów można odwrócić poprzez zmianę biegunowości jednego zwoju lub zamiany zwojów.
- Pozycja silnika może być kontrolowana bez żadnego mechanizmu, ponieważ każdy impuls powoduje, że silnik obraca się o dokładny kąt. Nie mają one jednak możliwości komunikowania swojej pozycji, mogą jedynie przesuwać nakazaną liczbę kroków od swojej aktualnej pozycji.

Metody Sterowania silnikami krokowymi

- Sterowniki silnika krokowego
 - A4988 i DRV8825 są typowym przykładem ekonomicznych sterowników, ale dostępnych jest wiele innych, o różnych kształtach i parametrach.
- Sterownik Mostka H
 - Nie są zalecane, ponieważ nie mają metody ograniczenia wartości prądu, są trudniejsze do podłączenia do Arduino (wymagają większej ilości pinów) i do kontroli (więcej obliczeń wymaganych dla Arduino).

Serwomotory

- Są to urządzenia elektryczne, które pozwalają na precyzyjną kontrolę położenia kątowego.
- Składają się z silnika elektrycznego połączonego z czujnikiem położenia.
- Mają 3 przewody: zasilający (zazwyczaj czerwony), uziemniający (zazwyczaj brązowy lub czarny), oraz sygnał (zazwyczaj biały lub pomarańczowy).

Sterowanie serwomotorami

- Serwomotory są sterowane za pomocą impulsu elektrycznego o regulowanej szerokości lub modulacji szerokości impulsu (PWM), poprzez przewód sygnałowy
- Zazwyczaj wysyłanie impulsu 1ms 5V powoduje obrót serwonapędu o 0° a wysyłanie impulsu 2ms 5V powoduje obrot serwonapędu o 180° przy liniowym skalowaniu długości impulsu.

Źródło: https://howtomechatronics.com/

Sterowanie serwomotorami za pomocą mikrokontrolerów

- Mikrokontrolery mogą z łatwością sterować serwomotorami poprzez PWM, obracając je w żądanej pozycji.
- Przewód sygnałowy serwomechanizmu musi być podłączony do wyjścia cyfrowego mikrokontrolera, które generuje impuls.
- Małe serwomechanizmy mogą być zasilane bezpośrednio przez mikrokontroler, ale jeśli prąd wymagany przez serwomechanizm jest większy niż ten, który może być dostarczony, należy użyć osobnego zasilacza dla serwomechanizmu.

Wybór sterowników silnika

Project No. 2019-1-R001-KA202-063965

Ważne przy wyborze sterownika silnikowego

- Kompatybilne silniki
 - Każdy typ silnika potrzebuje własnego typu sterownika silnika.
- Interfejs
 - Sterownik silnikowy i jego interfejs powinny być dobierane zgodnie z daną aplikacją.
- Napięcie i Natężenie prądu
 - Sterownik silnika musi mieć zakres napięcia odpowiedni dla danego zastosowania i wystarczające natężenie prądu.
 - Najlepiej jest wybrać sterownik o większej mocy niż znamionowa, aby uniknąć jego uszkodzenia i zapewnić pełny zakres wydajności mechanicznej od silnika.

Wybór sterownika – silnik krokowy

Wybierz sterownik silnika krokowego, który może wygodnie dostarczać prąd wymagany przez silnik.

Ekonomiczne sterowniki krokowe, takie jak A4988 i DRV8825 mogą dostarczyć tylko około 2 amperów. Jeśli silnik wymaga wyższego prądu, należy użyć droższych,

komercyjnych sterowników krokowych.

Wybór sterownika prądu stałego lub serwomotoru

Parametr silnika	Wymagania dotyczące sterownika
Napięcie znamionowe (V)	Napięcie musi być zgodne z napięciem znamionowym silnika.
Bieżące (A)	Musi dostarczać prąd równy lub wyższy od stałego poboru prądu silnika pod obciążeniem. Należy upewnić się, że maksymalny prąd znamionowy sterownika jest około dwukrotnie większy niż ciągły prąd roboczy silnika.
Metoda kontrolna	Metoda sterowania musi być odpowiednia dla danego silnika.

Project No. 2019-1-R001-KA202-063965

Wybór sterownika – silnik krokowy

Parametr silnika	Wymagania dotyczące sterownika
Unipolarny czy dwubiegunowy?	Musi być odpowiedni lub być w stanie kontrolować oba typy.
Napięcie znamionowe (V)	Zakres napięcia musi być zgodny z napięciem znamionowym silnika.
Prąd w zwojach (A)	Musi odpowiednio dostarczać prąd (na zwój).
Control method	Metoda sterowania musi być odpowiednia dla danego silnika.

Mikrokontrolery

Project No. 2019-1-R001-KA202-063965

Sterowanie silnikami za pomocą Arduino - biblioteki

- Arduino IDE posiada wbudowane biblioteki, które ułatwiają sterowanie zarówno silnikami krokowymi, jak i serwoelektrycznymi.
 - "Stepper.h" pozwala na sterowanie unipolarnymi lub bipolarnymi silnikami krokowymi
 - "Servo.h" pozwala na sterowanie serwomotorami RC
- Istnieje również wiele bibliotek, które można dodać w Arduino IDE w celu ułatwienia korzystania z różnych sterowników i Mostków H.

File Edit Sketch Tools Help

Sterowanie silnikami za pomocą Arduino - osłony

- Osłony to płyty, które można podłączyć do Arduino w celu rozszerzenia jego możliwości.
- Osłona silnika Arduino pozwala na napędzanie silników prądu stałego i krokowego. Więcej na https://store.arduino.cc/arduino-motor-shield-rev3

oomlout, Osłona silnika na Arduino - ARSH-02-MS (3725118122), CC BY-SA 2.0

Sterowanie silnikami za pomocą Raspberry Pi biblioteki

- Raspberry Pi Motor Library : Biblioteka Pythona 3 dla silników i napędów do połączenia z Raspberry Pi.
- Istnieje również wiele bibliotek dostępnych do zainstalowania na Raspberry Pi w celu ułatwienia korzystania z różnych silników.

Source: https://learn.adafruit.com/

Sterowanie silnikami z Raspberry Pi - HATs

- A HAT (Hardware Attached on Top) jest dodatkową płytą do Raspberry Pi
- Adafruit 16-Channel PWM/Servo HAT pozwala Raspberry Pi na sterowanie wieloma serwomechanizmami jednocześnie
- Adafruit DC i Silnik Krokowy HAT umożliwia napęd do 4 silników krokowych prądu stałego lub 2 silników krokowych z pełną regulacją prędkości obrotowej PWM.

Przydatne linki

- Silniki Prądu Stałego: Podstawy https://itp.nyu.edu/physcomp/lessons/dc-motors/dc-motors-the-basics/
- https://www.robotshop.com/community/tutorials/show/how-to-make-a-robot-lesson-5-choosing-a-motor-controller
- ZNAJDŹ ODPOWIEDNI STEROWNIK DLA SWOJEGO SILNIKA... https://www.zikodrive.com/ufaqs/find-right-motor-controller-motor/
- Sterowanie silnikiem prądu stałego za pomocą Arduino https://core-electronics.com.au/tutorials/dc-motors-with-arduino.html
- Jak sterować silnikiem za pomocą Raspberry Pi https://core-electronics.com.au/tutorials/how-to-control-a-motor-with-the-raspberry-pi.html
- Wprowadzenie do "Motor Driver": Topologia mostku H i kontrola kierunku obrotów https://components101.com/articles/what-is-motor-driver-h-bridge-topology-and-direction-control
- Sterowanie silnikami krokowymi https://itp.nyu.edu/physcomp/lessons/dc-motors/stepper-motors/
- Jak sterować silnikiem krokowym za pomocą sterownika A4988 i Arduino https://howtomechatronics.com/tutorials/arduino/how-to-control-stepper-motor-with-a4988-driver-and-arduino/
- Jak działają serwomotory i jak sterować serwerami za pomocą Arduino https://howtomechatronics.com/how-it-works/how-servo-motors-work-how-to-control-servos-using-arduino/
- Sterowniki silnika krokowego https://www.pololu.com/category/120/stepper-motor-drivers

Wybór sterowników Silnika

Podsumowanie tematu

Oto czego się dowiedzieliśmy

- Umiejętność wyboru silnika: Określanie rodzaju silnika potrzebnego do zastosowania mikrokontrolera
- Wiedza o silnikach elektrycznych: Jakie są i jak działają silniki prądu stałego, serwo i krokowe?
- Wiedza o sterowaniu silnikami: Jakie są metody, sprzęt i oprogramowanie wykorzystywane do sterowania silnikami w aplikacjach mikrokontrolerów?

