Re - modelagem V0.1

CONJUNTOS

- I Conjunto dos projetos (inteiro)
- *W* Conjunto de pontos de atenção(inteiro)
- *HP* Conjunto dos meses dentro de um horizonte de Planejamento (inteiro)
- L Conjunto das localizações
- U Conjuntos de pares ordenados que representa a quantidade de unidade geradora de cada localização
- N Conjunto dos inteiros positivos incluindo o 0

PARÂMETROS

De um projeto:

- $p_{\mathcal{L}}$ para todo $p \in I$ Custo de um projeto p
- p_d para todo $p \in I$ Duração em meses de um projeto p Para ter o custo médio mensal de um projeto, basta dividir o custo pela duração.
- p_w para todo $w \in W \subset p \in I$ Risco(s) a ser(em) controlado(s) de um ponto de atenção w relacionado à um projeto p.
- i_p para todo $i \in L \cup p \in I$ Unidade(s) geradora(s) de uma localização n, as quais serão afetadas por um projeto p.
- $o_{p,N}$ para todo $p \in I \cap (p \neq N)$ Interdependência(s) de algum(ns) projeto(s) p° relacionado(s) a outro projeto p^{\bullet} , onde $p^{\bullet} \neq p^{\circ}$.

De um problema:

- b_m para todo $m \in HP$ Recurso disponível em um mês m para ser utilizado neste mesmo mês.

- r_{w} para todo $w \in W$ Risco associado a um ponto de atenção w.

- d_{w} para todo $w \in W$ Deadline associado a um ponto de atenção w.

- $i_{_{II}}$ para todo $i \in L$ Unidades geradoras pertencentes a uma localização L

- i_{min} para todo $i \in L$ Mínimo de unidades geradoras operando em uma localização L.

- *T* Horizonte de planejamento.

VARIÁVEIS

- p_{rv} para todo $w \in W \subset p \in I$ Variável que tem sua influ6encia sob o(s) risco(s) a ser(em) controlado(s) de um ponto de atenção w_n relacionado à um projeto p. Todos ou alguns projetos terão a quantidade de risco controlado de um ou mais pontos de atenção p_w , o resolvedor utilizará essa variável para associar que um projeto que mais contribui para contenção de riscos, deve ser selecionado, ou seja, quanto mais risco um projeto conter, mais alto será o valor contido em p_{rv} .

- s_p para todo $p \in I$ Mês em que um projeto p será executado.

- uv_i para todo $i \in L$ Unidades geradoras ativas restantes, pertencentes a uma localização i.

- vp_n para cada $p \in I$ Vetor para guardar os projetos "válidos". (para aplicação acima, pode ser que haja a necessidade de replicar alguns parâmetros).

FUNÇÃO OBJETIVO

Z =

(Para agendar o máximo de projetos o mais cedo possível e controlar o máximo de riscos possíveis, foi pensado em fazer uma função que maximiza o somatório de riscos de projetos selecionados)

RESTRIÇÕES

- Agendamento consistente:

$$s_p + d_p \leq T, \qquad \forall p \in I$$
 Além disso:
$$s_p \geq 1, \qquad \forall p \in I$$

- Garantia que ao menos um ponto de atenção seja resolvido:

Existe um ponto de atenção w, cujo o somatório de projetos selecionados que contribuem para a contenção de risco desse mesmo ponto de atenção p_w, será maior ou igual que o risco associado ao ponto de atenção w.

- Interdependência de projetos:

$$s_p + d_p \le s_{o_{pN}} \qquad \forall p \in I,$$

- Unidades mínimas operando em uma localização:

$$uv_{i} \geq i_{min}$$
 $\forall i \in L$,

- Obrigatoriedade de selecionar projetos:

$$\left(\sum_{(p \ in \ I)} s_p\right) \ge 1$$
 $\forall p \in I,$

- Restrição de recursos:

$$\left(\sum_{(p \text{ in } I)} c_p\right) \leq \left(\sum_{(m \text{ in } HP)} b_m\right) \qquad \forall p \in I, m \in HP$$

Ignorar por enquanto

- id_n para um $w \in W$ Identificador de ponto(s) de atenção intolerável.
- Controle de riscos associados a pontos de atenção intoleráveis antes de sua deadline:

$$(\sum_{n=0}^{I}p_{_{W}})\geq R_{_{id_{_{n}}}}$$
, $\forall p\in I$, (controle de risco)