Numer studenta:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Za każde zadanie możesz uzyskać 0 lub 1 punkt. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

TABLICA ODPOWIEDZI

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

1. Wskaż tautologie rachunku zdań.

(a)
$$(p \to q) \to (\neg p \lor q)$$
,

(b)
$$\neg (p \to q) \to (p \land \neg q)$$
.

(a)
$$(p \to q) \to (\neg p \lor q)$$
, (b) $\neg (p \to q) \to (p \land \neg q)$, (c) $((p \to q) \lor (p \to r)) \leftrightarrow (p \to (q \lor r))$.

- 2. Niech predykat K(x,y,t) wyraża, że osoba x kocha osobę y w czasie t. Formuła $\exists_v \forall_x \forall_t K(x,y,t)$ wyraża, że
 - (a) Kiedyś każdy kocha każdego.
- (b) Każdy kocha kogoś kiedyś.
- (c) Ktoś nigdy nie jest kochany przez nikogo.
- 3. Relacja r jest zdefiniowana w zbiorze ciągów binarnych długości co najmniej 4, tak że $(x,y) \in r$ wttw ciągi x i y mają takie same 4 pierwsze pozycje. Ile klas abstrakcji ma ta relacja?
 - (a) 8, (b) ∞ , (c) 16.
- 4. Wskaż relacje równoważności.
 - (a) r jest relacją określoną w zbiorze ciągów polskich liter, taką że $(a,b) \in r$ wttw l(a) > l(b), gdzie l(x) jest długością ciągu x.
 - (b) $r \subseteq \mathbb{R}^2$, $(x,y) \in r$ wttw |x-y| < 8. (c) $r \subseteq \mathbb{Z}^2$, $(a,b) \in r$ wttw a-b jest podzielne przez
- 5. Niech $r \subseteq \mathbb{Z}^2$. Wskaż relacje spełniające podany warunek.
 - (a) $(x,y) \in r$ iff $x^2 = y^2$; antysymetryczność, (b) $(x,y) \in r$ iff |x-y| > 10; przechodniość,
 - (c) $(x, y) \in r$ iff |x| |y| > 0; przeciwzwrotność.
- 6. Stosując zasadę szufladkową Dirichleta można udowodnić, że jeśli z pierwszych 6 dodatnich liczb całkowitych wybierzemy k, to wśród nich musi istnieć para liczb, których suma wynosi 7, jeśli
 - (a) k = 3,
- (b) k = 4,
- (c) k = 5.
- 7. Na ile sposobów można ułożyć 8 różnych, kolorowych kluczy na breloczku (czyli w kółko) tak by dwa klucze od domu (czerwony) i od piwnicy (niebieski) nie znajdowały się obok siebie.
 - (a) 7!,
- (b) $2 \cdot 5 \cdot 6!$,
- (c) $5 \cdot 6!$.
- 8. Załóżmy, że 30 studentów zebrało się by grać w piłkę nożną. Istnieje 5 małych, różnych boisk, gdzie studenci moga poćwiczyć. Na ile różnych sposbów można przypisać studentów do bojsk, tak by na każdym ktoś grał?
 - (a) S(30,5),
- (b) $S(30,5) \cdot 5!$, (c) $C_{30}^6 \cdot C_{24}^6 \cdot C_{18}^6 \cdot C_{12}^6 \cdot C_{6}^6$.
- 9. Załóżmy, że 10 studentów zebrało się by grać w piłkę nożną. Istnieją 4 małe, różne boiska, gdzie studenci mogą poćwiczyć. Studenci mają 8 identycznych piłek. Na ile sposbów można rozdzielić piłki, tak by na każdym boisku była co najmniej jedna?

 - (a) \overline{C}_4^4 , (b) $S(8,4) \cdot 4!$, (c) C_4^7

- 10. Wskaż zbiory uporządkowane (tzn. zbiory ze zdefiniowaną w nich relacją porządku częściowego).
 - (a) $A = \mathbb{Z}, r = \{(a, b) : b = a \cdot k \ dla \ k \in \mathbb{Z}\},$ (b) $A = \mathbb{Z}, r = \{(a, b) : |a| = |b|\}$
 - (c) A jest zbiorem potęgowym pewnego zbioru, $r = \{(X, Y) : X \cup Y = Y\},\$
- 11. Ile pięciocyfrowych kodów można zbudować z różnych cyfr, tak aby różnica między największą i najmniejszą cyfrą nie była większa niż 4?
 - (b) $7 \cdot 4!$, (c) $6 \cdot 5!$. (a) $C_{10}^5 \cdot 5!$,
- 12. Istnieje cześciowo uporzadkowany zbiór, który
 - (a) nie ma ani największego, ani maksymalnego elementu.
 - (b) ma minimalny element, ale nie ma najmniejszego.
 - (c) ma największy element, ale nie ma maksymalnego.
- 13. Które stwierdzenia są prawdziwe?
 - (a) Jeśli G jest nieskierowanym, spójnym grafem, który ma n wierzchołków, to ma on co najmniej n-1 krawędzi.
 - (b) Jeśli G jest skierowanym grafem, to każde dwa wierzchołki sa połaczone droga.
 - (c) Jeśli G jest nieskierowanym, acyklicznym grafem, który ma n wierzchołków, to G ma co najwyżej n-1 krawędzi.
- 14. Niech zbiór potegowy zbioru N będzie uporządkowany przez relację **zawierania** (⊆). Wskaż poprawne zależności.
 - (a) Jeśli $A = \{1, 3, 5\}, B = \{2, 3, 4, 6\}, C = \{1\}, \text{ to } \sup\{A, B, C\} = \{2, 3, 4, 6\}.$
 - (b) Jeśli $A = \{1, 2, 10\}, B = \{1, 2, 4, 6, \}, C = \{1, 2\}, \text{ to } inf\{A, B, C\} = \{1, 2\}.$
 - (c) Jeśli $A = \{1, 2\}$ i $B = \{2, 4\}$, to $\sup\{A, B\} = \{2, 4\}$.
- 15. Wskaż zbiory przeliczalne.
 - (a) Zbiór wszystkich ciągów binarnych. (b) Zbiór wszystkich podzbiorów zbioru ℕ.
 - (c) Zbiór potegowy zbioru $\{-4, 0, 3, 2\}$.
- 16. Wskaż poprawne zależności.
 - (a) $7n^2 + \sqrt{n} = \mathcal{O}(n^2 \cdot lg(n)),$ (b) $(n^5 + n) \cdot lg(n^n) = \mathcal{O}(n^6 + lg(n^n)),$
 - (c) $2^n + n! = \mathcal{O}(n^n + n^2)$.
- 17. Niech $\Omega = \{ @, \#, \$, \% \}$ będzie uniwersum oraz $A = \{ @, \# \}, B = \{ \#, \$, \% \}$. Wówczas

 - (a) $(A \cup B)' = \emptyset$, (b) $(\Omega \cap B)' = \emptyset$, (c) $(\Omega \setminus B)' = B$.
- 18. Implikacja "Jeśli A jest podzbiorem B i B jest elementem C, to A jest elementem C" jest prawdziwa
 - (a) dla dowolnych zbiorów A, B, C,
- (b) dla pewnych zbiorów A, B, C,
- (c) nigdy.

- 19. Ciag $s(n) = 3^n 2n3^n$ jest rozwiązaniem rekurencji
 - (a) s(0) = s(1) = 1; s(n) = 6s(n-1) 9s(n-2) dla n > 1,
 - (b) s(0) = 1, s(1) = -3; s(n) = 6s(n-1) s(n-2) dla n > 1,
 - (c) s(0) = 1, s(1) = -3; s(n) = 6s(n-1) 9s(n-2) dla n > 1.
- 20. Nie pamiętasz jaki jest kod do czterocyfrowego zamka w Twojej walizce. Wiesz tylko, że nie użyłeś żadnej cyfry więcej niż raz. Ile (maksymalnie) różnych sposobów musisz wypróbować?
 - (a) 4!, (b) C_{10}^4 , (c) 5040.

Oznaczenia:

 $C_n^k \ (V_n^k)$ - liczba k-elementowych kombinacji (wariacji) ze zbioru n-elementowego. $\overline{C}_n^k \ (\overline{V}_n^k)$ - liczba k-elementowych kombinacji (wariacji) z powtórzeniami ze zbioru n-elementowego. S(n,k) - liczba sposobów podzielenia n obiektów na k niepuste podzbiory.

ODPOWIEDZI: 1abc 2- 3c 4c 5c 6bc 7c 8b 9ac 10c 11c 12ab 13ac 14b 15- 16ac 17ac 18b 19c 20c

Numer studenta:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

- 1. W teorii grafów mostem nazywamy taka krawędź grafu spójnego, po której usunięciu przestaje być on spójny. Jeśli w grafie każdy wierzchołek ma parzysty stopień, to graf ten
 - (a) nie zawiera mostu,
- (b) może zawierać most,
- (c) na pewno posiada most.
- 2. Formula $(p \to (q \to r)) \to ((p \land q) \to r)$ jest
- (a) tautologia, (b) spełnialna, (c) falsyfikowalna.
- 3. Zbiór wszystkich funkcji ze zbioru liczb parzystych w zbiór $\{a, b, c\}$ jest
 - (a) równoliczny ze zbiorem liczb rzeczywistych,
- (b) przeliczalny,
- (c) nieprzeliczalny.
- 4. W zbiorze liczb zespolonych $\mathbb C$ wprowadzamy relację r wzorem $(x,y) \in r$ wttw $Re(y) \leq Re(x)$ oraz $Im(y) \leq Im(x)$, gdzie Re(x) oznacza część rzeczywistą liczby x, a Im(x) oznacza część urojoną liczby x. Zbiór (\mathbb{C}, r) jest
 - (a) częściowo uporządkowany,
- (b) liniowo uporządkowany,
- (c) dobrze uporządkowany.
- 5. Stosując zasadę indukcji matematycznej można udowodnić, że dla dowolnej liczby naturalnej n, $n^7 - n$ jest podzielne przez
 - (a) 7,
- (b) 2,
- (c) 14.
- 6. Dana jest rekurencyjna definicja ciągu. Wzór ogólny na n-ty wyraz ciągu a(0) = 2, a(1) = 3, a(n+1) = 3a(n) - 2a(n-1) dla n > 0 to
 - (a) $a(n) = 1 + 2^n$,
- (b) $a(n) = 2^n$, (c) $a(n) = 2^{n+1}$.
- 7. Na półce stoi 15 książek. Iloma sposobami można spośród nich wybrać 5 książek, tak aby nie brać żadnych dwóch stojących obok siebie?
 - (a) $\begin{pmatrix} 11 \\ 6 \end{pmatrix}$, (b) $\begin{pmatrix} 10 \\ 5 \end{pmatrix}$, (c) $\begin{pmatrix} 15 \\ 5 \end{pmatrix}$.
- 8. Na arenę cyrkową mają wejść 4 lwy i 3 tygrysy. Nie można dopuścić do tego by jeden tygrys wchodził zaraz po drugim. Na ile sposobów można je ustawić do wejścia, jeśli założymy, że lwy są nieodróżnialne i tygrysy są nieodróżnialne?
 - (a) 6,
- (b) 4,
- (c) 35.
- 9. Rzucamy 3 razy dwiema sześciennymi kostkami do gry. Niech X oznacza zmienną losową określającą liczbę rzutów, w których suma wyrzuconych oczek jest nieparzysta. P(X=0) wynosi
- (b) $\frac{1}{8}$,
- (c) $\frac{3}{8}$.
- 10. Niech $A = \{Kant, Hegel, Bismarck, Sartre, Napoleon, Marks\}$ oraz $r \subseteq A^2$ i $r = \{(Kant, Hegel),$ (Kant, Bismarck), (Bismarck, Kant), (Sartre, Napoleon), (Sartre, Marks). Wskaż poprawne zależności:
- (a) $(Kant, Kant) \in r \circ r$, (b) $(Kant, Kant) \in r^{-1}$, (c) $(Kant, Bismarck) \in r^{-1}$.

- 11. Które z podanych formuł są tautologiami rachunku predykatów?
 - (a) $\neg \forall_x \forall_y P(x,y) \rightarrow \exists_x \exists_y (\neg P(x,y)),$
- (b) $\forall_x \exists_y P(x,y) \to \exists_x \forall_y P(x,y)$,
- (c) $(\forall_x P(x) \lor \forall_x Q(x)) \to \forall_x (P(x) \lor Q(x)).$
- 12. Przypomnijmy, że |A| oznacza moc zbioru A. Rozważmy zbiór X taki, że |X| = 100. Wówczas $|\{X\}|$ wynosi
 - (a) 1,
 - (b) 100,
- (c) 101.
- 13. Relacja r taka, że $(a,b) \in r$ wttw a lubi b określona w zbiorze ludzi jest
 - (a) symetryczna,
- (b) przechodnia,
- (c) zwrotna.
- 14. Niech r będzie relacją równoważności określoną w zbiorze X takim, że |X|>1. Wiemy, że r ma dwie klasy abstrakcji. Jeśli $a \in X$ i $a \in [x]_r - [y]_r$ dla pewnych elementów $x, y \in X$, to
- b) $(a, y) \in r$,
- c) $(x, y) \in r$.
- 15. Niech $S = \{a, b, c\}$ będzie alfabetem wraz z określoną w nim relacją $r = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$. Relacja ta jest relacją porządku
 - (a) częściowego,
- b) liniowego,
- c) dobrego.
- 16. Jeśli $f(n) = 2^n \cdot (n + n^3 + 1)$, i $g(n) = (n^3 + n) \cdot (2^n + n + 1)$, to
 - (a) $(g + f) = \mathcal{O}(f)$, (b) $g = \mathcal{O}(f)$, (c) $f = \mathcal{O}(g)$.
- 17. Jeśli $|A \times B| = |B \times A|$, to
 - (a) $A = B = \emptyset$, (b) |A| = |B|, (c) A = B.
- 18. Czy schemat $\frac{A \to (B \wedge C)}{(\neg B) \to (\neg A)}$ jest poprawną regułą wnioskowania rachunku zdań?
 - a) nie,
- (b) tak,
- (c) nie można tego ustalić.
- 19. Wskaż prawdziwe własności?
 - (a) Jeśli G jest grafem nieskierowanym, posiadającym k wierzchołków, takim że każdy wierzchołek jest incydentny z parzystą liczbą krawędzi, to G posiada cykl.
 - (b) Jeśli G jest grafem nieskierowanym, takim że dla każdych dwóch wierzchołków istnieje co najmniej jedna ścieżka łącząca je, to G ma cykl.
 - (c) Jeśli G jest grafem nieskierowanym i spójnym, to dla każdych dwóch wierzchołków istnieje ścieżka łącząca je.
- 20. Jeżeli liczba trzyelementowych kombinacji pewnego zbioru n elementowego jest sześć razy mniejsza od liczby trzyelementowych wariacji bez powtórzeń tego zbioru, to
 - (a) n może być dowolną liczbą naturalną większą niż 2
 - (b) n musi być równe 3,
 - (c) n może być dowolną liczbą naturalną mniejszą niż 3.

ODPOWIEDZI: 1a 2ab 3c 4a 5abc 6a 7a 8- 9b 10ac 11ac 12a 13- 14a 15- 16abc 17- 18b 19ac 20a

2

Numer studenta:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

- 1. Formula $((p \to q) \lor \neg r) \to (r \to \neg p)$ jest
 - (a) tautologia,
- (b) spełnialna,
- (c) falsyfikowalna.
- 2. Zbiór wszystkich liczb rzeczywistych z przedziału (2,3) jest
 - (a) równoliczny ze zbiorem liczb rzeczywistych,
- (b) przeliczalny,
- (c) nieprzeliczalny.
- 3. W zbiorze liczb zespolonych $\mathbb C$ wprowadzamy relację r wzorem $(x,y) \in r$ wttw $Re(y) \leq Re(x)$ oraz $Im(y) \leq Im(x)$, gdzie Re(x) oznacza część rzeczywistą liczby x, a Im(x) oznacza część urojoną liczby x. Zbiór (\mathbb{C}, r) jest
 - (a) częściowo uporządkowany,
- (b) liniowo uporzadkowany,
- (c) dobrze uporządkowany.
- 4. Rzucamy 3 razy dwiema sześciennymi kostkami do gry. Niech X oznacza zmienną losową określającą liczbę rzutów, w których suma wyrzuconych oczek jest nieparzysta. P(X=0) wynosi
 - (a) 0, (b) $\frac{1}{8}$, (c) $\frac{3}{8}$.
- 5. Niech $A = \{Kant, Hegel, Bismarck, Sartre, Napoleon, Marks\}$ oraz $r \subseteq A^2$ i $r = \{(Kant, Hegel),$ (Kant, Bismarck), (Bismarck, Kant), (Sartre, Napoleon), (Sartre, Marks), (Hegel, Marks). poprawne zależności:
 - (a) $(Bismarck, Bismarck) \in r \circ r$, (b) $(Bismarck, Kant) \in r^{-1}$, (c) $(Kant, Marks) \in r \circ r$.
- 6. Które z podanych formuł są tautologiami rachunku predykatów?
 - (a) $\neg \exists_x \exists_y P(x,y) \rightarrow \forall_x \forall_y (\neg P(x,y)),$
- (b) $\exists_x \forall_y P(x,y) \rightarrow \forall_x \exists_y P(x,y)$,
- (c) $\forall_x (P(x) \lor Q(x)) \to (\forall_x P(x) \lor \forall_x Q(x)).$
- 7. Przypomnijmy, że |A| oznacza moc zbioru A. Rozważmy zbiór X taki, że |X|=100. Wówczas $|\{X,\{X\}\}|$ wynosi
 - (a) 1, (b) 200,
- (c) 102.
- 8. Relacja r taka, że $(a,b) \in r$ wttw a jest klientem b określona w zbiorze firm jest
 - (a) antysymetryczna,
- (b) przechodnia,
- (c) spójna.
- 9. Niech r będzie relacja równoważności określona w zbiorze X takim, że |X| > 1. Wiemy, że r ma dwie klasy abstrakcji. Jeśli $a \in X$ i $a \in [x]_r \cap [y]_r$ dla pewnych elementów $x, y \in X$, to
- b) $(a, y) \in r$,
- c) $(x,y) \in r$.
- 10. Niech $S = \{a, b, c\}$ będzie alfabetem wraz z określoną w nim relacją $r = \{(a, a), (a, b), (b, b), (b, c), (c, c)\}$. Relacja ta jest relacją porządku
 - (a) częściowego,
- b) liniowego,
- c) dobrego.
- 11. Jeśli $f(n) = n^2 \cdot (n + n^3 + 1)$, i $g(n) = (n^3 + n) \cdot (2^n + n + 1)$, to
 - (a) $(g+f) = \mathcal{O}(f)$, (b) $g = \mathcal{O}(f)$, (c) $f = \mathcal{O}(g)$.

12. Czy schemat $\frac{A \to (B \lor C)}{(\neg B) \to (\neg A)}$ jest poprawną regułą wnioskowania rachunku zdań?

- a) nie,
- (b) tak,
- (c) nie można tego ustalić.

13. W koszu są 2 jabłka zielone, 3 czerwone i 4 żółte. Jan z zawiązanymi oczami wybiera z kosza dowolną liczbe jabłek. Ile najmniej powinien ich wziąć by mieć pewność, że ma dwa jabłka tego samego koloru?

- (a) 4,
 - (b) 3, (c) 2.

14. Na ile sposobów można rozmieścić 10 osób w 3 różnych pokojach tak, by żaden z pokoi nie pozostał pusty?

- (a) S(10,3),
- (b) 10^3 ,
- (c) $S(7,4) \cdot 4!$.

15. 10 osób dzielimy na 3 grupy (grupy nie muszą być równoliczne, ale muszą być dokładnie 3). Każda grupa będzie miała do wykonania to samo zadanie. Na ile sposobów można dokonać takiego podziału?

- (a) S(10,3),
- (b) 10^3 ,
- (c) $S(7,4) \cdot 4!$.

16. Ile jest różnych bajtów zawierających dokładnie 3 jedynki? Bajt to słowo ośmiobitowe, czyli złożone z ośmiu cyfr 0 lub 1.

- (a) V_8^3 , (b) C_8^3 , (c) \overline{C}_8^3 .

17. Jeżeli liczba czteroelementowych kombinacji pewnego zbioru n elementowego jest dwadzieścia cztery razy mniejsza od liczby czteroelementowych wariacji bez powtórzeń tego zbioru, to

(a) n może być dowolną liczbą naturalną większą niż 2,

(b) n może być dowolną liczbą naturalną większą niż 3.

(c) n może być dowolną liczbą naturalną.

18. Na arene cyrkowa ma wejść 7 lwów i 8 tygrysów. Nie można dopuścić do tego by jeden tygrys wchodził zaraz po drugim. Na ile sposobów można je ustawić do wejścia, jeśli założymy, że lwy i tygrysy ubrane są w odróżniające je, różnokolorowe chusty?

- (b) $\binom{14}{7}$, (c) $5 \cdot 4! \cdot 4!$.

19. Dana jest rekurencyjna definicja ciągu. Wzór ogólny na n-ty wyraz ciągu a(0) = 2, a(1) = -1, a(n+1) = -a(n) + 6a(n-1) dla n > 0 to

- (a) $a(n) = 2^n + (-3)^n$, (b) $a(n) = (-2)^n + 3^n$, (c) $a(n) = \frac{1}{2} \cdot (-1)^n + \frac{3}{2} \cdot 3^n$.

20. Jeśli G = (V, E) jest grafem niezorientowanym, spójnym, o n wierzchołkach, to G

- (a) ma co najmniej n-1 krawedzi,
- (b) jest drzewem,
- (c) ma co najwyżej n-1 krawedzi.

Notacia:

 $C_n^k \ (V_n^k)$ - liczba k-elementowych kombinacji (wariacji) bez powtórzeń ze zbiorun-elementowego.

 $\overline{C}_n^k(\overline{V}_n^k)$ - liczba k-elementowych kombinacji (wariacji) z powtórzeniami ze zbioru n-elementowego.

S(n,k) - liczba Stirlinga II rodzaju wyznaczająca liczbę sposobów podziału zbioru n-elementowego na kniepustych podzbiorów,

 B_n - liczba Bella dla liczby naturalnej n.

ODPOWIEDZI: 1bc 2c 3a 4b 5abc 6ab 7– 8– 9abc 10– 11c 12a 13a 14– 15a 16b 17b 18a 19a 20a

Numer studenta:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

- 1. Załóżmy, że zdanie a jest fałszywe. Wskaż zdania, które są prawdziwe dla każdego zdania b.
 - (a) $(a \lor b) \leftrightarrow b$,
- (b) $(a \lor b) \leftrightarrow (a \land b)$, (c) $a \to (a \to b)$.
- 2. Który z podanych schematów (przesłanki | wniosek) jest poprawną regułą wnioskowania?
 - (a) $(p \vee q)|(p \wedge q)$,
- (b) $p|(p \vee q)$,
- (c) $p|(p \wedge q)$.
- 3. Jaka jest moc zbioru A wszystkich liczb rzeczywistych spełniających funkcję zdaniową $(\exists x)(x^2+y^2=$ 1)
 - (a) Zbiór A jest równoliczny ze zbiorem wszystkich liczb rzeczywistych. (b) Zbiór A jest skoń-(c) Moc zbioru A jest równa continuum.
- 4. Ile jest liczb, które w zapisie binarnym mają 10 cyfr i cyfra 1 występuje dokładnie 7 razy?
 - (a) N(9,6),
- (b) 7*N(9,6),
- (c) N(7,3).
- 5. Niech X będzie skończonym zbiorem, który ma dokładnie 35 podzbiorów trzyelementowych. Ile podzbiorów pięcioelementowych ma ten zbiór?
 - (a) 21,
- (b) 35,
- (c) 165.
- 6. Rozważmy grupę 100 studentów. 40 z nich zdało egzamin A, 50 z nich zdało egzamin B, 60 zdało egzamin C. 37 studentów zdało zarówno egzamin A jak i B, egzaminy B i C zdało
 - 40 studentów, a egzaminy A i C zdało tylko 32 studentów. Wszystkie trzy egzaminy zdało 30 studentów. Ilu studentów nie zdało żadnego egzaminu?
 - (a) 35,
- (b) 29,
- (c) 27.
- 7. Jaka jest moc zbioru wszystkich funkcji rosnących $f:\{1,2,\ldots,k\}\to\{1,2,\ldots,n\}$ dla k mniejszego lub równego n?
 - (a) N(n, k),
- (b) n!/(n-k)!,
- (c) k!.
- 8. Wskaż zdania prawdziwe.
 - (a) Wykresem funkcji zdaniowej w dziedzinie liczb rzeczywistych $(\exists z)(x^2+z^2=y)$ jest zbiór $\{(x,y): x^2 < y \text{ lub } x^2 = y\}.$
 - (b) Wykresem funkcji zdaniowej w dziedzinie liczb rzeczywistych $(\exists z)(x^2+z^2=y)$ jest parabola $y = x^2$.
 - (c) Wykresem funkcji zdaniowej w dziedzinie liczb rzeczywistych $(\exists z)(x^2+z=y)$ jest zbiór par liczb rzeczywistych.
- 9. Wskaż zdania prawdziwe (notacja asymptotyczna).
 - (a) $n+2 = \mathcal{O}(\sqrt{n} \cdot \log(n)),$
- (b) $\log(n^n) = \Omega(\log(2^n)),$
- (c) Jeśli $f(n) = (2n^n) + (n^5 + 3n^2 + 7)$ i g(n) = 4n + n!, to $f = \mathcal{O}(q)$.

- 10. Wskaż zdania prawdziwe (własności relacji).
 - (a) Niech $r \subset R \times R$, $n \in m$ wttw |n-m| < 3. Wówczas r jest relacją antysymetryczną lub zwrotną.
 - (b) Niech $r \subset Z \times Z$, a r b wttw a|b. Wówczas r jest relacją zwrotną.
 - (c) Niech $r \subseteq N^+ \times N^+$, a r b wttw a|b. Wówczas r jest relacją spójną.
- 11. Wskaż zdania prawdziwe.
 - (a) Jeśli $A = \{x, y, z\}, B = \{x, z\}, \text{ to } A \cap B = \{x, y, z\}.$
 - (b) Jeśli $A = \{x, y, z\}, B = \{x, z\},$ to $A \setminus B$ jest podzbiorem B.
 - (c) Jeśli $A = \{p, q, r\}, B = \{p, r\}, \text{ to } A \setminus B \text{ jest podzbiorem } A.$
- 12. Które z wymienionych własności iloczynu kartezjańskiego zbiorów są prawdziwe dla dowolnych zbiorów X, Y, A, B?
 - (a) $X \times (A \cup B) = (X \times A) \cup (X \times B)$, (b) $X \times Y = Y \times X$, (c) $X \times (A \setminus B) = (X \setminus A) \times (X \setminus B)$.
- 13. Niech G będzie danym grafem prostym o n wierzchołkach i m krawędziach. Która z własności jest prawdziwa?
 - (a) Jeśli n=m, to G jest spójny. (b) Jeśli m>n, to graf G ma cykl. (c) Jeśli G jest grafem pełnym, to $m=n^2$.
- 14. Która z własności jest prawdziwa?
 - (a) Jeśli G jest grafem zorientowanym, to relacja sąsiedztwa jest symetryczna.
 - (b) Jeśli G jest niezorientowanym grafem spójnym, to dla dowolnych dwóch wierzchołków istnieje łącząca je droga.
 - (c) Jeśli G jest grafem zorientowanym, to istnieje co najmniej jedna droga między dowolnymi wierzchołkami.
- 15. Niech A_i będzie nieskończoną rodziną zbiorów $A_i = \{x : x < -i \text{ oraz } x \text{ jest liczbą całkowitą } \}$ dla i = 0, 1, 2..., oraz niech A oznacza przecięcie uogólnione zbiorów tej rodziny.
 - (a) A jest zbiorem pustym. (b) $A = \{-$
- (b) $A = \{-1\}.$ (c) $A = Z \setminus N.$
- 16. W zbiorze wszystkich funkcji $f: N \to R^+$ określamy relację równoważności następująco: f r g wttw $f = \Theta(g)$, tzn. rzędy funkcji f i g są takie same. Które z wymienionych zdań są prawdziwe?
 - (a) Funkcje n i n^2 należą do tej samej klasy abstrakcji tej relacji.
 - (b) Relacja r ma nieskończenie wiele klas abstrakcji.
 - (c) Wszystkie funkcje należące do klasy wyznaczonej przez funkcję h(n) = n są funkcjami liniowymi.
- 17. Wskaż zdania prawdziwe.
 - (a) Istnieja skończone zbiory uporządkowane, które nie maja elementów minimalnych.
 - (b) Każdy skończony zbiór uporządkowany ma element minimalny i element maksymalny.
 - (c)Każdy zbiór liniowo uporządkowany posiada element największy i najmniejszy.
- 18. Mamy dany algorytm Alg z argumentem n będącym liczbą całkowitą dodatnią większą od 80.

Które z podanych wyrażeń są niezmiennikami poniższej pętli?

$$Alg(n) = \{p := 1, t := 2 \text{ while } t < n \text{ do } \{t := t + 1, p := pt\}\}.$$

(a) p < t, (b) pt > 0, (c) $p = \frac{t!}{2!}$.

- 19. Wskaż wzór jawny ciągu a(n) zdefiniowanego rekurencyjne: a(0)=2, a(1)=4, a(n+2)=-3a(n+1)+10a(n) dla n większego lub równego 0.
 - (a) $a(n) = 2^{n+1}$, (b) $a(n) = 2^n$, (c) $a(n) = 2 \cdot 2^n + (-5)^n$.
- 20. Jeżeli liczba trzyelementowych kombinacji pewnego zbioru n elementowego jest sześć razy mniejsza od liczby trzyelementowych wariacji bez powtórzeń tego zbioru, to
 - (a) n może być dowolną liczbą naturalną większą niż 2
 - (b) n musi być równe 3,
 - (c) n może być dowolną liczbą naturalną mniejszą niż 3.

Notacja: N(a,b) oznacza liczbę b-elementowych kombinacji ze zbioru a-elementowego ODPOWIEDZI: 1ac 2b 3ac 4a 5a 6b 7a 8ac 9b 10a 11c 12a 13b 14b 15a 16b 17b 18bc 19a 20a

Numer legitymacji studenckiej:

Data:

Numer grupy ćw:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji, wpisz ∅. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

- 1. Niech $A_i = \{1, 2, ..., i\}$. Wówczas
 - (a) $\bigcup_{i=2}^{100} (A_i) = \{1, 2, \dots, 100\},\$
 - (b) $\bigcap_{i=2}^{100} (A_i) = \{1\},$
 - (c) $A_7 \setminus A_5 = \{1, 2, \dots, 5\}.$
- 2. Rozważ relację $r = \{(A, B) : A \subset B\}$ zdefiniowaną w zbiorze $2^{\mathbb{Z}}$. Ta relacja jest
 - (a) przeciwzwrotna,
- (b) symetryczna,
- (c) przechodnia.
- 3. Rozważ relację równoważności r zdefiniowaną w zbiorze $\mathbb Z$ taką, że $(x,y) \in r$ wttw 3|(x-y). Wówczas (a) $[2] \cup [-1] = \mathbb{Z}$, (b) $[3] \cup [5] = [-3]$,
- (c) [1] = [-1].
- 4. Rozważ funkcję $f: \mathbb{R} \to \mathbb{R}, f(x) = 2^{x^2}$. Wówczas f jest
 - (a) bijekcją,
 - (b) suriekcją,
 - (c) iniekcją.
- 5. Rozważ relację $r = \{(x, y) : x | y\}$ zdefiniowaną w zbiorze $U = \{3, 9, 27, 81\}$. Wówczas
 - (a) r jest relacją dobrego porządku w zbiorze U,
 - (b) 81 jest elementem największym w U,
 - (c) $\inf\{27, 9\} = 3$.
- 6. Formula $(p \to (q \land r)) \to (\neg q \to \neg p)$ jest
 - (a) tautologią rachunku zdań, (b) spełnialna,
- (c) falsyfikowalna.
- 7. Formuła $\forall k \exists p (p+1=k)$ jest prawdziwa w zbiorze
 - (a) \mathbb{N} ,
- (b) \mathbb{Z} ,
- (c) \mathbb{R}^+ .
- 8. Niech r będzie relacją taką, że $r = \{(a, b) \in (\mathbb{Z}^+ \times \mathbb{Z}^+) : a|b\}$. Wówczas
 - (a) r jest częściowym porządkiem w \mathbb{Z}^+ ,
 - (b) r jest liniowym porzadkiem w \mathbb{Z}^+ ,
 - (c) r jest dobrym porządkiem w \mathbb{Z}^+ .
- 9. W każdym częściowo uporządkowanym zbiorze skończonym istnieje
 - (a) co najmniej jeden element maksymalny,
 - (b) co najmniej jeden element minimalny,
 - (c) element najmniejszy.

- 10. Które z podanych zbiorów są nieprzeliczalne?
 - (a) zbiór wszystkich funkcji $f: \mathbb{N} \to \mathbb{N}$,
 - (b) zbiór wszystkich (skończonych i nieskończonych) ciągów binarnych,
 - (c) każdy nieskończony podzbiór zbioru \mathbb{R} .
- 11. Niezorientowany, prosty i spójny graf, którego każdy wierzchołek jest stopnia 2 jest grafem
 - (a) Eulera, ale nie Hamiltona,
 - (b) Hamiltona, ale nie Eulera,
 - (c) Eulera i Hamiltona jednocześnie.
- 12. Jeżeli G = (V, E) jest grafem acyklicznym o n wierzchołkach, to ma
 - (a) więcej niż n-1 krawędzi,
 - (b) mniej niż n-1 krawędzi, (c) dokładnie n-1 krawędzi.
- 13. Rozwiązaniem rekurencji: t(0) = 1, t(1) = 2, t(n+2) = 3t(n+1) 2t(n) dla $n \ge 0$ jest
 - (a) $t(n) = 2^{n+1} 1$, (b) $t(n) = 3^n 1$, (c) $t(n) = 2^n$.
- 14. Liczba bijekcji ze zbioru X do zbioru Y, gdzie |X| = |Y| = k, wynosi
 - (a) $C_k^n \cdot n!$, (b) V_k^n , (c) k!.
- 15. Ile relacji przeciwzwrotnych można określić w zbiorze n-elementowym ?
 - (a) $2^n \cdot 2^{\frac{n^2-n}{2}}$, (b) 2^{n^2-n} , (c) 2^{n^2-n} .

- 16. Grafem izomorficznym z grafem zorientowanym G = (V, E) gdzie $V = \{1, 2, 3, 4\}$,
 - $E = \{(1,2), (1,3), (1,4)\}$ jest graf
 - (a) G = (V, E) gdzie $V = \{1, 2, 3, 4, 5\}, E = \{(1, 2), (1, 3), (1, 4)\},$
 - (b) G = (V, E) with $V = \{1, 2, 3, 4, 5\}, E = \{(2, 1), (3, 1), (4, 1)\},$
 - (c) G = (V, E) gdzie $V = \{1, 2, 3, 4\}, E = \{(2, 1), (3, 1), (4, 1)\}.$
- 17. Na ile sposobów można wybrać 2 różne liczby ze zbioru $\{1, 2, \dots, 100\}$ tak, aby ich arytmetyczna suma była liczbą nieparzystą?
- (a) $(C_{50}^1)^2$, (b) $2 \cdot C_{50}^2$, (c) $C_{50}^1 \cdot C_{48}^1$.
- 18. 20 przyjaciół wybrało się do kina. O tej porze sa grane równocześnie 4 filmy. Na ile sposobów moga się podzielić, jeśli każda osoba ma obejrzeć dokładnie jeden film?
 - (a) $S(20,4) \cdot 4!$,
- (b) 20^4 ,
- (c) 4^{20} .
- 19. Iloma sposobami można ustawić 8 wież na szachownicy (8×8) tak, aby nie atakowały się wzajemnie (tzn. aby żadna z nich nie mogła bić innych)?
 - (a) $64 \cdot 63 \cdot \dots \cdot 58 \cdot 57$, (b) 8!, (c) $\frac{64!}{8! \cdot 56!}$
- 20. Wskaż poprawne zakończenie zdania: "Jeśli suma dziewieciu liczb naturalnych jest równa 101, to wśród nich ..."
 - (a) jest pięć, których suma wynosi co najmniej 57.
 - (b) sa trzy, których suma wynosi co najmniej 60.
 - (c) jest sześć, których suma wynosi co najmniej 71.

Notacja:

- $C_n^k \ (V_n^k)$ liczba k-elementowych kombinacji (wariacji) ze zbioru n-elementowego.
- \overline{V}_n^k liczba k-elementowych wariacji z powtórzeniami ze zbioru n-elementowego.
- S(n,k) liczba sposobów podziału zbioru n-elementowego na k niepustych podzbiorów.

Odpowiedzi:

1A 2AC 3- 4- 5AB 6AB 7B 8A 9AB 10AB 11C 12- 13C 14C 15BC 16- 17A 18C 19B 20A

Numer legitymacji studenckiej:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

- 1. Wskaż zbiór, który jest wartością wyrażenia $(A \cup B) \setminus C$

 - (a) A, gdy B = C, (b) $A \cup B$, gdy $C \cap A = \emptyset$ i $C \cap B = \emptyset$, (c) \emptyset , gdy A = B = C.
- 2. Rozważamy relację binarną r w zbiorze liczb rzeczywistych. Której z podanych definicji relacji rprzysługują wymienione obok własności?
 - (a) $(x,y) \in r$ wttw 2x 2y > 0; antysymetria i przechodniość,
 - (b) $(x, y) \in r$ wttw $x = y^2$; symetria,
 - (c) $(x,y) \in r$ wttw x+y>0; zwrotność i symetria.
- 3. Niech r będzie relacją porządku określoną w zbiorze liczb naturalnych dodatnich następująco: x ry wttw x jest dzielnikiem y. Które z wymienionych zdań są prawdziwe?
 - (a) Kresem górnym zbioru $\{1, 2, 3, 4, 5\}$ jest liczba 60.
 - (b) Kresem dolnym zbioru złożonego z wszystkich potęg 2 jest liczba 1.
 - (c) Kresem górnym zbioru $\{2k : 0 \le k < 16\}$ jest liczba 31.
- 4. Wskaż relacje r, które są relacjami równoważności.
 - (a) r jest relacją binarną w zbiorze $\{a, b, c\}$ taką, że $r = \{(a, a), (b, b), (c, c), (a, c), (c, a)\}$.
 - (b) r jest relacją binarną w zbiorze $\{a, b, c, d\}$ taką, że $r = \{(a, a), (b, b), (c, c), (d, d)\}$.
 - (c) r jest relacją w zbiorze ludzi X taką, że $(a,b) \in r$ wttw, gdy a i b mają wspólnego rodzica.
- 5. Czy rozumowanie "Jeżeli liczba naturalna x dzieli się przez 3, to jeżeli x nie dzieli się przez 3, to dzieli się przez 5." jest oparte na niezawodnej regule wnioskowania rachunku zdań?
- (b) NIE,
- (c) nie można tego jednoznacznie ustalić.
- 6. Załóżmy, że zdanie $\neg(a \to b)$ jest prawdziwe. Które z poniższych zdań są wówczas fałszywe?
 - (a) $a \wedge b$,
- (b) $\neg a \lor b$, (c) $(a \to a) \to b$.
- 7. Wskaż formułę prawdziwą w zbiorze liczb naturalnych ($\mathbb{N} = \{0, 1, 2, \dots\}$).
 - (a) $\forall x \forall y (x < y \rightarrow (\exists z (x + z < y))),$
- (b) $\forall x \forall y (x < y \rightarrow (\exists z (x + z = y))),$
- (c) $\forall x \forall y (x < y \rightarrow (\exists z (x + z > y))),$
- 8. Które z wymienionych par zbiorów są równoliczne?
 - (a) Dowolny nieskończony podzbiór zbioru liczb naturalnych i zbiór liczb naturalnych.
 - (b) Zbiór liczb wymiernych z przedziału [1,100] i zbiór liczb niewymiernych z przedziału [0,1].
 - (c) Zbiór X i zbiór potegowy P(X) dla dowolnego X.
- 9. Która z wymienionych relacji binarnych, określonych w zbiorze liczb rzeczywistych, jest funkcją?
 - (a) $(x, y) \in r \text{ iff } x = y^2$,
- (b) $(x, y) \in r$ iff $x^2 = y^2$, (c) $(x, y) \in r$ iff $x^2 = y^3$.

10. Wskaż poprawne oszacowania.

(a)
$$\frac{2n^3+2n^2-1}{n^2+1} = \Theta(n^3+1)$$
, (b) $\sqrt{n} \cdot \log(n)^n = \Omega(\sqrt{n})$, (c) $2^n \cdot \log(n) + n = O(n^n + \log(n))$.

11. Niech dostępny zbiór znaków zawiera 26 liter, 10 cyfr i 15 innych symboli. Załóżmy, że nazwa pliku może się składać co najwyżej z 8 i co najmniej z 6 znaków, i trzyznakowego rozszerzenia złożonego z różnych liter. Ile różnych nazw plików można utworzyć zgodnie z podanymi zasadami?

(a)
$$\binom{51}{6} \cdot \binom{51}{7} \cdot \binom{51}{8} \cdot \binom{26}{3} \cdot 3!$$
, (b) $(51^6 + 51^7 + 51^8) \cdot 26 \cdot 25 \cdot 24$,

- 12. W grupie 20 osób, 13 zdało ASD, 9 zdało MAD i 10 zdało TAK. Każdy zdał chociaż jeden egzamin. Dla każdej pary przedmiotów są 4 osoby, które je zaliczyły. Ile osób zdało wszystkie trzy egzaminy?

 (a) jedna, (b) dwie, (c) żadna.
- 13. Jaka jest liczba potrzebnych połączeń lotniczych, jeżeli 15 miast ma mieć bezpośrednie połączenie?

(a) 105, (b)
$$\binom{15}{2}$$
, (c) 2^{15} .

14. Rozważmy algorytm $\{s:=0; k:=1; \text{ while } k\leq n \text{ do } s:=s+k^2; \ k:=k+1 \text{ od}\}$. Która z wymienionych formuł jest niezmiennikiem pętli w tym algorytmie?

(a)
$$s = \sum_{i=1}^{k} (i-1)^2$$
, (b) $s = \sum_{i=1}^{k} i^2$, (c) $s = \sum_{i=1}^{k} (i+k^2)$.

- 15. Rozwiązaniem którego z równań rekurencyjnych jest funkcja $T(n) = 2^n$?
 - (a) T(1) = 2, T(n) = 2T(n-1) dla wszystkich n > 1,
 - (b) T(0) = 1, T(1) = 2, T(i+1) = T(i) + 2T(i-1) dla wszystkich i > 1,
 - (c) T(1) = 1, T(n) = T(n-1) + 1 dla wszystkich n > 1.
- 16. Czy istnieje niezorientowany graf prosty $G = \langle V, E \rangle$ spełniający podaną własność?
 - (a) G ma k wierzchołków i k^2 krawędzi, dla $k \ge 2$. (b) G ma 4 wierzchołki i 6 krawędzi.
 - (c) G ma 4 wierzchołki, w tym 2 wierzchołki stopnia 4 i 2 wierzchołki stopnia 5.
- 17. Grafem izomorficznym z grafem zorientowanym G=(V,E) gdzie $V=\{1,2,3,4,5,6\},$

$$E = \{(1,2), (2,3), (2,4), (3,4), (4,5), (4,6)\}$$
 jest graf

- (a) G = (V, E) gdzie $V = \{1, 2, 3, 4, 5, 6\}, E = \{(1, 2), (2, 4), (2, 6), (3, 5), (5, 1), (5, 2)\},$
- (b) G = (V, E) with $V = \{1, 2, 3, 4, 5\}$, $E = \{(1, 2), (2, 4), (3, 5), (5, 1), (5, 2)\}$,
- (c) G = (V, E) gdzie $V = \{1, 2, 3, 4, 5, 6\}, E = \{(1, 2), (2, 4), (2, 6), (3, 5), (5, 1)\}.$
- 18. Rozkładamy 10 piłek w 5 pudełkach. Zgodnie z Zasadą Szufladkową Dirichleta
 - (a) istnieje pudełko, w którym są dokładnie 2 piłki, (b) żadne pudełko nie jest puste,
 - (c) istnieje pudełko, w którym są co najmniej 2 piłki.
- 19. 20 przyjaciół wybrało się do kina. O tej porze są grane równocześnie 4 filmy. Na ile sposobów mogą się podzielić, jeśli każdy film musi obejrzeć co najmniej jedna osoba z tej grupy?

(a)
$$S(20,4) \cdot 4!$$
, (b) 20^4 , (c) 4^{20} .

- 20. Poniżej przedstawiono dane dotyczące wysokości, w metrach nad poziomem morza, trzech wybranych szczytów górskich: Makalu 8464, Annapurna 8091, Lhotse 8516. Niech zmienna X przyjmuje wartości wysokości tych szczytów. Wówczas:
 - (a) E(X) > 8200, (b) E(X) < 8100, (c) Średnia wysokość szczytów wynosi 8521.

Notacja:

 $C_n^k \ (V_n^{\bar k})$ - liczba k-elementowych kombinacji (wariacji) bez powtórzeń ze zbioru n-elementowego.

 $\overline{C}_n^{\vec{k}}(\overline{V}_n^{\vec{k}})$ - liczba k-elementowych kombinacji (wariacji) z powtórzeniami ze zbioru n-elementowego.

S(n,k) - liczba Stirlinga II rodzaju wyznaczająca liczbę sposobów podziału zbioru n-elementowego na k niepustych podzbiorów.

ODPOWIEDZI: 1bc 2a 3ab 4ab 5a 6abc 7abc 8a 9c 10bc 11b 12c 13ab 14a 15ab 16b 17a 18c 19a 20a

Numer legitymacji studenckiej:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

TABLICA ODPOWIEDZI

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

- 1. Wskaż zbiór, który jest wartością wyrażenia $(A \cup B) \setminus C$
 - (a) A, gdy B = C, (b) C, gdy $A \cup B$ jest zbiorem pustym,
 - (c) \mathbb{N} , gdy A = B oraz A jest zbiorem liczb rzeczywistych, a C jest zbiorem liczb wymiernych.
- 2. Rozważamy relację binarną r w zbiorze liczb rzeczywistych. Której z podanych definicji relacji r przysługują wymienione obok własności?
 - (a) $(x, y) \in r$ wttw |x| = |y|; antysymetria i przechodniość,
 - (b) $(x, y) \in r$ wttw $x^2 = y$; przeciwzwrotność,
 - (c) $(x,y) \in r$ wttw |x-y| < 1; zwrotność i symetria.
- 3. Niech r będzie relacją porządku określoną w zbiorze liczb naturalnych dodatnich następująco: x r y wttw x jest dzielnikiem y. Które z wymienionych zdań są prawdziwe?
 - (a) Kresem górnym zbioru $\{1, 2, 3, 4\}$ jest liczba 60.
 - (b) Każdy skończony podzbiór zbioru liczb naturalnych ma w sensie relacji r kres górny.
 - (c) Ograniczeniami dolnymi zbioru {6, 9, 27} są liczby 1,3.
- 4. Wskaż relacje r, które są relacjami równoważności.
 - (a) Dla dowolnych $x,y\in\mathbb{Z},\,x$ r y wttw, gdy $x^2\leq y^2.$
 - (b) Dla dowolnych liczb $x, y \in \mathbb{N}$, x r y wttw, gdy 5|(x + y).
 - (c) Niech X będzie zbiorem ludzi i r relacją w X taką, że dla dowolnych $a,b,\,(a,b)\in r$ wttw, gdy a i b maja wspólna córkę.
- 5. Czy rozumowanie "Jeżeli relacja jest przechodnia, to z tego że jest zwrotna, wynika że jest przechodnia i zwrotna." jest oparte na niezawodnej regule wnioskowania rachunku zdań?
 - (a) NIE, (b) TAK, (c) nie można tego jednoznacznie ustalić.
- 6. Załóżmy, że zdanie $\neg(a \to b)$ jest prawdziwe. Które z poniższych zdań są wówczas **fałszywe**?
 - (a) $a \lor b$, (b) $(a \to b) \lor (b \to a)$, (c) $b \to a$.
- 7. Wskaż formułę prawdziwą w zbiorze liczb naturalnych dodatnich.
 - (a) $\forall x \forall y (x < y \rightarrow (\exists z (x + z < y))),$ (b) $\forall x \forall y (x < y \rightarrow (\exists z (x + z = y))),$
 - (c) $\forall x \forall y (x < y \rightarrow (\exists z (x + z > y))),$
- 8. Które z podanych zbiorów sa równoliczne?
 - (a) Dowolne dwa nieskończone podzbiory zbioru liczb rzeczywistych.
 - (b) Zbiór wszystkich liczb całkowitych i zbiór wszystkich liczb naturalnych.
 - (c) Zbiór wszystkich liczb rzeczywistych z przedziału [0,1] i zbiór wszystkich liczb niewymiernych z przedziału [0,2].

zestaw B $\hspace{1cm}$ dr Magdalena Kacprzak

- 9. Która z wymienionych funkcji jest różnowartościowa?
 - (a) $g: \mathbb{Z} \to \mathbb{R}$ taka, że $g(x) = x \mod 5$ dla dowolnej liczby całkowitej x.
 - (b) $f: \mathbb{N} \to \mathbb{R}$ taka, że dla dowolnego x naturalnego $f(x) = x^2 + 2x 3$.
 - (c) $h: \mathbb{N} \to \mathbb{N}$ taka, że $h(x) = max(\{x, 4\})$.
- 10. Wskaż poprawne oszacowania.

(a)
$$\frac{n^3 + 2n^2 - 1}{n+1} = \Theta(n^2 + 1)$$
, (b) $\sqrt{n} + \log(n)^n = \Omega(\sqrt{n})$, (c) $n! = O(n^n + \log(n))$.

- 11. Poniżej przedstawiono dane dotyczące wysokości, w metrach nad poziomem morza, trzech wybranych szczytów górskich: Makalu 8464, Annapurna 8091, Lhotse 8516. Niech zmienna X przyjmuje wartości wysokości tych szczytów. Wówczas:
 - (a) Średnia wysokość wymienionych szczytów wynosi 8521 metrów nad poziomem morza,
 - (b) E(X) < 3500, (c) E(X) > 8200.
- 12. Dany jest zbiór $A=\{1,2,3,4,5\}$. Liczba funkcji $f:A\to A$, których zbiór wartości jest dwuelementowy wynosi:
 - (a) $C_5^2 \cdot S(5,2) \cdot 2!$, (b) $C_5^2 \cdot 5!$, (c) $C_5^2 \cdot 2^5$.
- 13. Ile relacji równoważności można określić w zbiorze trzyelementowym?
 - (a) S(3,2), (b) S(3,1) + S(3,2) + S(3,3), (c) 5.
- 14. Do sesji egzaminacyjnej przystąpiło 100 studentów. 40 z nich zdało egzamin z MAD, 50 zdało egzamin z TAK, a 60 zdało PJ. Ponadto wiadomo, że MAD i TAK zdało 30 studentów, TAK i PJ zdało 40, a PJ i MAD tylko 30 studentów. Wszystkie trzy egzaminy zaliczyło 20 studentów. Ilu studentów nie zaliczyło żadnego egzaminu?
 - (a) 30, (b) 20, (c) 15.
- 15. Które z poniższych warunków spełnia ciąg $S(n) = 3^n(1-2n)$?
 - (a) S(0) = 1, S(1) = -3 oraz S(n) = 6S(n-1) 9S(n-2) dla n > 1,
 - (b) 54S(1) = S(2) + S(3),
 - (c) S(0) = 1, S(1) = -3 oraz S(n) = -2S(n-1) + 3S(n-2) dla n > 1.
- 16. Rozważmy algorytm $\{suma := 0; i := 1; \text{ while } i \leq n \text{ do } suma := suma + (2i 1); i := i + 1 \text{ od}\}.$ Która z wymienionych formuł jest niezmiennikiem pętli w tym algorytmie?
 - (a) $i \le n$, (b) $i \le n + 1$, (c) $suma = (i 1)^2$.
- 17. Czy istnieje niezorientowany graf prosty $G = \langle V, E \rangle$ spełniający podaną własność?
 - (a) G ma k wierzchołków i $\frac{k^2}{2}$ krawędzi, dla $k \geq 2$. (b) G ma 3 wierzchołki i 5 krawędzi.
 - (c) G ma 6 wierzchołków, w tym 2 stopnia 4, 2 stopnia 5 i 3 stopnia 1.
- 18. Graf G = (V, E) gdzie $V = \{1, 2, 3, 4, 5\}, E = \{(1, 4), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 3), (5, 2)\}$
 - (a) jest drzewem, (b) jest planarny, (c) jest dwudzielny.
- 19. Rozkładamy 20 piłek w 3 pudełkach. Zgodnie z Zasada Szufladkowa Dirichleta
 - (a) istnieje pudełko, w którym jest co najmniej 7 piłek, (b) wszystkie pudełka zawierają po co najmniej 6 piłek, (c) istnieje pudełko, w którym jest nie więcej niż 7 piłek.
- 20. 20 przyjaciół ma pojechać na przyjęcie 3 autobusami. Każdy autobus może zabrać nie więcej niż 20 osób. Na ile sposobów przyjaciele mogą się rozdzielić jeśli żaden autobus nie może być pusty oraz autobusy są nieodróżnialne w tym sensie, że nie ważne kto, w którym jedzie, ale kto z kim.
 - (a) $S(20,3) \cdot 3!$, (b) S(20,3), (c) $\frac{20!}{3! \cdot 17!}$.

Notacja:

- $C_n^k (V_n^{\bar{k}})$ liczba k-elementowych kombinacji (wariacji) bez powtórzeń ze zbioru n-elementowego.
- $\overline{C}_n^k(\overline{V}_n^k)$ liczba k-elementowych kombinacji (wariacji) z powtórzeniami ze zbioru n-elementowego.
- S(n,k) liczba Stirlinga II rodzaju wyznaczająca liczbę sposobów podziału zbioru n-elementowego na k niepustych podzbiorów.
- ODPOWIEDZI: 1- 2c 3bc 4- 5b 6- 7bc 8bc 9b 10abc 11c 12a 13bc 14a 15ab 16bc 17- 18abc 19a lub ac 20b

2

Numer studenta:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

- 1. Wskaż poprawne własności iloczynu Kartezjańskiego. Dla dowolnych zbiorów X, Y,
 - (a) jeśli $X \times Y = Y \times X$, to $X = \emptyset$ lub $Y = \emptyset$,
 - (b) jeśli |X| = n i |Y| = k dla $n, k \in \mathbb{N}$, to $|X \times Y| = |X| \cdot |Y|$,
 - (c) jeśli $X \neq Y$, to $|X \times Y| \neq |X|$.
- 2. Niech r bedzie binarną relacja określona w zbiorze liczb rzeczywistych. Której z podanych definicji relacji r przysługuje wymieniona obok własność?
 - (a) x r y iff |x| = |y|; antysymetryczność,
- (b) x r y iff |x y| < 2; przechodniość,
- (c) x r y iff x = 2y; przeciwzwrotność.
- 3. Które z wymienionych formuł sa tautologiami rachunku zdań?
 - (a) $(p \to q) \to (\neg p \to \neg q)$, (b) $(p \to (q \land \neg q)) \to \neg p$, (c) $((p \to q) \to p) \leftrightarrow p$.

- 4. Wskaż formułę prawdziwą w strukturze liczb naturalnych.
 - (a) $\forall_n \forall_k \exists_t (|n+k| = |t|),$
- (b) $\forall_n \forall_k \exists_t (|n+t| = |k|),$ (c) $\forall_n \forall_k \exists_t (|n| = |k| + |t|).$
- 5. Wskaż relację (relacje) liniowego porządku.
 - (a) $r \subseteq \mathbb{Z}^2$, gdzie dla dowolnych $x, y, (x, y) \in r$ wttw $x \mod 2 = y \mod 2$.
 - (b) $r \subseteq \mathbb{N}^2$, gdzie dla dowolnych $x, y, (x, y) \in r$ wttw $|x| \leq |y|$.
 - (c) $r \subseteq \mathbb{R}^2$, gdzie dla dowolnych $x, y, (x, y) \in r$ wttw $2^x 2^y \ge 0$.
- 6. Wskaż poprawne oszacowania.
 - (a) $n^n + \lg(n) + 1 = \Theta(\log n^n)$,
- (b) $(2^n + n) \cdot \log(n) = O(n!)$, (c) $(3^n + n^2) \cdot n = \Omega(n^2 \cdot 2^n)$.
- 7. Niech k będzie liczbą naturalną większą od 1. Ile klas abstrakcji ma relacja $r = \{(x,y) : x,y \in \mathbb{N} \mid x \in \mathbb{N} \in \mathbb{N} \mid x \in \mathbb{N} \in \mathbb{N} \in \mathbb{N} \mid x \in$ $(x \bmod k) = (y \bmod k)\}.$
 - (a) 3 dla k = 3,
- (b) 4 dla k = 4,
- (c) 15 dla k = 15.
- 8. Wskaż, które z wymienionych relacji to relacje równoważności.
 - (a) r jest relacją określoną na zbiorze ludzi taką, że x r y wttw x i y mówią w tym samym języku (np. polskim, angielski, japońskim itp.),
 - (b) r jest binarną relacją określoną na zbiorze $\{1, 2, 3, 4\}$ taką, że $r = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$,
 - (c) r jest binarną relacją określoną na zbiorze \mathbb{Z} taką, że x r y wttw 2 dzieli (x y).
- 9. Które z wymienionych zbiorów A i B sa równoliczne?
 - (a) A jest zbiorem wszystkich podzbiorów zbioru \mathbb{N} , $B = \mathbb{R}$,
 - (b) $A = \mathbb{R}, B = (-10, 10) \subseteq \mathbb{R},$ (c) $A = \mathbb{Q}, B = \mathbb{N}.$

- 10. Wskaż zbiory nieprzeliczalne.
 - (a) Zbiór wszystkich ciągów binarnych. (b) Zbiór wszystkich podzbiorów zbioru ℝ.
 - (c) Zbiór potęgowy zbioru $\{1, 2, 3, ..., 10^{100}\}$.
- 11. Ile jest różnych sposobów rozdzielenia 9 różnych prac między 3 pracowników tak, aby każdy pracownik dostał do wykonania tyle samo prac?
 - (a) $\frac{9!}{3!3!3!}$,
- (b) $C_9^3 \cdot C_6^3$,
- (c) $S(9,3) \cdot 3!$
- 12. Rozważmy algorytm Alg(m), $m \in \mathbb{Z}^+$ taki, że $Alg(m) = \{z := 2; k := 1; while (k \le m) do k := k+1; z := z \cdot k; while (k \le m) do k := k+1; z := z \cdot k; while (k \le m) do k := k+1; z := z \cdot k; while (k \le m) do k := k+1; z := z \cdot k; while (k \le m) do k := k+1; z := z \cdot k; while (k \le m) do k := k+1; z := z \cdot k; whi$ od; }. Która z poniższych formuł jest niezmiennikiem pętli w tym algorytmie?
 - (a) $z = 2 \cdot k!$,
- (b) k = z!,
- (c) k < z.
- 13. Grafem izomorficznym z grafem zorientowanym G = (V, E), gdzie $V = \{1, 2, 3, 4, 5, 6\}$,

$$E = \{(2,1), (2,3), (4,1), (4,3), (5,1), (6,3)\}$$
 jest graf

- (a) G = (V, E) gdzie $V = \{1, 2, 3, 4, 5, 6\}, E = \{(1, 3), (2, 6), (2, 3), (4, 6), (5, 3), (5, 6)\},$
- (b) G = (V, E) with $V = \{1, 2, 3, 4, 5\}$, $E = \{(2, 1), (2, 3), (4, 1), (4, 3), (5, 1), (5, 3)\}$,
- (c) G = (V, E) gdzie $V = \{1, 2, 3, 4, 5, 6\}, E = \{(1, 6), (2, 6), (2, 3), (4, 3), (5, 3), (5, 6)\}.$
- 14. Ile jest różnych bajtów zawierających dokładnie 2 jedynki? Bajt to słowo ośmiobitowe, czyli złożone z ośmiu cyfr 0 lub 1.
 - (c) V_{s}^{2} . (a) 2^8 , (b) C_8^2 ,
- 15. Na ile sposobów można rozmieścić n osób w m różnych pokojach tak, by żaden z pokoi nie pozostał pusty.
 - (a) $S(n,m) \cdot m!$,
- (b) C_n^m ,
- (c) V_n^m .
- 16. Na ile sposobów można usadzić n osób przy k nieodróżnialnych stolikach tak, by przy każdym ze stolików siedziała co najmniej jedna osoba?
 - (a) $S(n,m) \cdot m!$,
- (b) C_n^m ,
- (c) S(n,m).
- 17. Stosując Zasadę Szufladkowa Dirichleta można udowodnić, że wśród 5 liczb całkowitych dodatnich jest x takich, że ich suma dzieli się przez 3, jeśli
 - (a) x = 2,
- (b) x = 3,
- (c) x = 4.
- 18. Wskaż ciąg, który jest rozwiązaniem następującego równania rekurencyjnego: F(0) = 3, F(1) = 1, F(n+2) = -F(n+1) + 6F(n)dla $n \in \mathbb{N}$.
 - (a) $F(n) = 2^n + (-3)^n$,
- (b) $F(n) = 2^{n+1}$, (c) $F(n) = 2^{n+1} + (-3)^n$.
- 19. Wskaż prawdziwe własności?
 - (a) Jeśli G jest grafem posiadającym k wierzchołków takim, że każdy wierzchołek jest incydentny z parzystą liczbą krawędzi, to G posiada cykl.
 - (b) Jeśli G jest grafem nieskierowanym takim, że dla każdych dwóch wierzchołków istnieje co najmniej jedna ścieżka łącząca je, to G ma cykl.
 - (c) Jeśli G jest grafem nieskierowanym i spójnym, to dla każdych dwóch wierzchołków istnieje ścieżka łącząca je.
- 20. Rzucono kostką do gry. Niech zmienna losowa X oznacza liczbę wyrzuconych oczek. Wskaż własności prawdziwe.

 - (a) $E(X^2) = 20$, (b) E(X) = 3.5, (c) E(X) = 3.

Notacja:

- $C_n^k (V_n^k)$ liczba k-elementowych kombinacji (wariacji) bez powtórzeń ze zbioru n-elementowego.
- $\overline{C}_n^k(\overline{V}_n^k)$ liczba k-elementowych kombinacji (wariacji) z powtórzeniami ze zbioru n-elementowego.
- S(n,k) liczba Stirlinga II rodzaju wyznaczająca liczbę sposobów podziału zbioru n-elementowego na k niepustych podzbiorów.

ODPOWIEDZI: 1b 2- 3bc 4a 5bc 6bc 7abc 8bc 9abc 10ab 11ab 12ac 13ac 14b 15a 16c 17b 18c 19ac 20b

Numer studenta:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

TABLICA ODPOWIEDZI

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

- 1. Stosując Zasadę Szufladkową Dirichleta można udowodnić, że w każdym zbiorze zawierającym 5 różnych liczb całkowitych $\{a_1, a_2, \dots, a_5\}$ istnieje podzbiór o sumie elementów podzielnej przez
 - (a) 5, (b) 7, (c) 3.
- 2. Czterech gości pewnego przyjęcia położyło na stole 4 swoje kapelusze. Następnie każdej osobie losowo przydzielono jeden. Ile jest wyników takiego losowania, w którym żadna osoba nie otrzymała swojego kapelusza?
 - (c) 24. (a) 9. (b) 15,
- 3. W loterii jest 30 losów, w tym 3 wygrywajace. Losy wygrywajace sa równorzedne. 10 osób kupiło po 3 losy. Ile jest sposobów rozmieszczenia losów wygrywających?
 - (a) C_{10}^3 , (b) C_{30}^3 , (c) C_{12}^3 .
- 4. Ile jest czterocyfrowych kodów zbudowanych z różnych cyfr takich, że różnica cyfry największej i najmniejszej nie przekracza 3?
 - (a) $5 \cdot C_6^4 \cdot 4!$, (b) $7 \cdot 4!$, (c) $6 \cdot 4!$.
- 5. Jaka jest najmniejsza liczba studentów zdających egzamin z Matematyki Dyskretnej zapewnająca, że co najmniej 6 osób otrzyma tę samę ocenę. Przyjmijmy, że są 4 możliwe oceny: 2,3,4,5.
 - (a) 24, (b) 21. (c) 25.
- 6. Rzucono kostką do gry. Niech zmienna losowa X oznacza liczbę wyrzuconych oczek. Wskaż własności prawdziwe.
 - (a) $E(X^2) = 20$, (b) E(X) = 3, 5, (c) E(X) = 3.
- 7. Czy prawdą jest, że A=B, jeśli przyjmiemy, że A,B,C są zbiorami spełniającymi zależność
 - (b) $A \cap C = B \cap C$? (a) $A \cup C = B \cup C$?
 - (c) $A \cup C = B \cup C$ i $A \cap C = B \cap C$?
- 8. Różnica symetryczna zbiorów A i B, oznaczana $A \oplus B$, jest zbiorem zawierającym elementy należące do zbioru A lub zbioru B, ale nie należące do cześci wspólnej tych zbiorów. Jeśli A i B są podzbiorami pewnego uniwersum U, to
 - (a) $A \oplus B = (A \cup B) \setminus (A \cap B)$, (b) $A \oplus B = (A \setminus B) \cup (B \setminus A)$, (c) $A \oplus U = U \setminus A$.
- 9. Czasami zbiory częściowo uporządkowane są nazywane posetami (z ang. partially ordered set). Wskaż posety.
 - (a) Zbiór liczb rzeczywsitych z relacją \leq .
 - (b) Zbiór potęgowy pewnego zbioru X z relacją \subseteq .
 - (c) Zbiór wierzchołków pewnego skierowanego acyklicznego grafu z relacją osiągalności (wierzchołek v_2 jest osiągalny z v_1 , jeśli istnieje ścieżka z v_1 do v_2).

1 zestaw A dr Magdalena Kacprzak

- 10. Istnieje zbiór częściowo uporządkowany, który
 - (a) ma element minimalny, ale nie ma elementu maksymalnego.
 - (b) ma element największy, ale nie ma elementu najmniejszego.
 - (c) nie ma ani elementu największego, ani najmniejszego.
- 11. 4. Niech f będzie funkcją ze zbioru X do zbioru Y. Niech A i B będą podzbiorami zbioru X. Które własności są prawdziwe. (f(A)) jest obrazem zbioru A względem funkcji f).
 - (a) $f(A \cup B) \subset f(A) \cup f(B)$,
- (b) $f(A) \setminus f(B) \subset f(A \setminus B)$,
- (c) $f(A \cap B) \subset f(A) \cap f(B)$.

- 12. Wskaż poprawne oszacowania.
 - (a) $n + \sqrt{n} + 2^n = \mathcal{O}(2^n \cdot lg(n)),$ (b) $(n^5 + n) \cdot lg(n) = \mathcal{O}(lg(n^n)),$
 - (c) $2^n + n^3 \cdot n! = \mathcal{O}(n^n + n^2 + \lg(n)).$
- 13. Rozważmy relację r określoną na zbiorze ciagów binarnych długości co najmnej 3 taką, że $(x,y) \in r$ wttw x i y są ciągami, które zgadzają się na trzech pierwszych pozycjach. Ile klas abstrakcji ma ta relacja równoważności?
 - (a) 3, (b) ∞ , (c) 8.
- 14. Wskaż, które z wymienionych relacji to relacje równoważności.
 - (a) r jest relacją zdefiniowaną w zbiorze ciągów polskich liter taką, że $(a,b) \in r$ wttw l(a) = l(b), gdzie l(x) jest długością ciągu x.
 - (b) r jest relacją zdefiniowaną w zbiorze liczb rzeczywistych taką, że $(x,y) \in r$ wttw |x-y| < 1.
 - (c) r jest relacją zdefiniowaną w zbiorze liczb rzeczywistych taką, że $(a,b) \in r$ wttw a-b jest liczbą całkowita.
- 15. Które z wymienionych zbiorów A i B sa równoliczne?
- (a) $A = \mathbb{N} \times \mathbb{Z}$, $B = \mathbb{Q}$. (b) $A = \mathbb{Q}$, $B = \mathbb{Z} \times \mathbb{R}$. (c) $A = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$, $B = \mathbb{R} \cup \mathbb{Z}$.
- 16. Wskaż zbiory przeliczalne.
 - (a) Zbiór wszystkich skończonych ciągów ternarnych. (b) Zbiór potęgowy zbioru $\{-4,0,3,2\}$.
 - (c) Zbiór wszystkich podzbiorów zbioru \mathbb{Z} .
- 17. Niech r będzie binarną relacją określoną w zbiorze liczb całkowitych. Której z podanych definicji relacji r przysługuje wymieniona obok własność?
 - (a) x r y wttw $(x+1)^2 = (y+1)^2$; przechodniość, (b) x r y wttw $2^{|x|} = 2^{|y|}$; antysymetryczność,
 - (c) x r y wttw 2x 2y > 0; przeciwzwrotność.
- 18. Które z wymienionych formuł są tautologiami rachunku zdań?
 - (a) $(p \lor q) \to (p \land q)$,
- (b) $\neg (t \lor s) \to ((t \lor s) \to (\neg p \lor q)),$
- (c) $((p \land q) \to p) \to (\neg(p \land q))$.
- 19. Rozważmy zbiór potęgowy zbioru N z relacją inkluzji ⊆. Wskaż prawdziwe własności.
 - (a) Jeśli $A = \{1, 3, 5\}$ i $B = \{2, 3, 4, 6\}$, to $\sup\{A, B\} = \{1, 2, 3, 4, 5, 6\}$.
 - (b) Jeśli $A = \{1, 2, 10\}$ i $B = \{1, 2, 4, 6, \}$, to $\inf\{A, B\} = \{1\}$.
 - (c) Jeśli $A = \{1, 2, 3, 4\}$ i $B = \{2, 4, 6, 8\}$, to $\sup\{A, B\} = \{1, 2, 3, 4, 5, 6, 7, 8\}$.
- 20. Wskaż prawdziwe własności?
 - (a) Jeśli G jest grafem posiadającym k wierzchołków takim, że każdy wierzchołek jest incydentny z parzystą liczbą krawędzi, to G posiada cykl.
 - (b) Jeśli G jest grafem nieskierowanym takim, że dla każdych dwóch wierzchołków istnieje co najmniej jedna ścieżka łącząca je, to G ma cykl.
 - (c) Jeśli G jest grafem nieskierowanym i spójnym, to dla każdych dwóch wierzchołków istnieje ścieżka łącząca je.
 - liczba k-elementowych kombinacji bez powtórzeń ze zbioru n-elementowego.

ODPOWIEDZI: 1ac 2a 3c 4b 5b 6b 7c 8abc 9abc 10abc 11abc 12ac 13c 14ac 15ac 16a 17ac 18b 19a 20ac

Numer studenta:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

- 1. Załóżmy, że zdanie a jest fałszywe. Wskaż zdania, które są prawdziwe dla każdego zdania b.
 - (a) $(a \lor b) \leftrightarrow b$,
- (b) $(a \lor b) \leftrightarrow (a \land b)$, (c) $a \to (a \to b)$.
- 2. Który z podanych schematów (przesłanki | wniosek) jest poprawną regułą wnioskowania?
 - (a) $(p \vee q)|(p \wedge q)$,
- (b) $p|(p \vee q)$,
- (c) $p|(p \wedge q)$.
- 3. Jaka jest moc zbioru A wszystkich liczb rzeczywistych spełniających funkcję zdaniową $(\exists x)(x^2+y^2=$ 1)
 - (a) Zbiór A jest równoliczny ze zbiorem wszystkich liczb rzeczywistych. (b) Zbiór A jest skoń-(c) Moc zbioru A jest równa continuum.
- 4. Ile jest liczb, które w zapisie binarnym mają 10 cyfr i cyfra 1 występuje dokładnie 7 razy?
 - (a) N(9,6),
- (b) 7*N(9,6),
- (c) N(7,3).
- 5. Niech X będzie skończonym zbiorem, który ma dokładnie 35 podzbiorów trzyelementowych. Ile podzbiorów pięcioelementowych ma ten zbiór?
 - (a) 21,
- (b) 35,
- (c) 165.
- 6. Rozważmy grupę 100 studentów. 40 z nich zdało egzamin A, 50 z nich zdało egzamin B, 60 zdało egzamin C. 37 studentów zdało zarówno egzamin A jak i B, egzaminy B i C zdało
 - 40 studentów, a egzaminy A i C zdało tylko 32 studentów. Wszystkie trzy egzaminy zdało 30 studentów. Ilu studentów nie zdało żadnego egzaminu?
 - (a) 35,
- (b) 29,
- (c) 27.
- 7. Jaka jest moc zbioru wszystkich funkcji rosnących $f:\{1,2,\ldots,k\}\to\{1,2,\ldots,n\}$ dla k mniejszego lub równego n?
 - (a) N(n, k),
- (b) n!/(n-k)!,
- (c) k!.
- 8. Wskaż zdania prawdziwe.
 - (a) Wykresem funkcji zdaniowej w dziedzinie liczb rzeczywistych $(\exists z)(x^2+z^2=y)$ jest zbiór $\{(x,y): x^2 < y \text{ lub } x^2 = y\}.$
 - (b) Wykresem funkcji zdaniowej w dziedzinie liczb rzeczywistych $(\exists z)(x^2+z^2=y)$ jest parabola $y = x^2$.
 - (c) Wykresem funkcji zdaniowej w dziedzinie liczb rzeczywistych $(\exists z)(x^2+z=y)$ jest zbiór par liczb rzeczywistych.
- 9. Wskaż zdania prawdziwe (notacja asymptotyczna).
 - (a) $n+2 = \mathcal{O}(\sqrt{n} \cdot \log(n)),$
- (b) $\log(n^n) = \Omega(\log(2^n)),$
- (c) Jeśli $f(n) = (2n^n) + (n^5 + 3n^2 + 7)$ i g(n) = 4n + n!, to $f = \mathcal{O}(q)$.

dr Magdalena Kacprzak

- 10. Wskaż zdania prawdziwe (własności relacji).
 - (a) Niech $r \subset R \times R$, $n \in m$ wttw |n-m| < 3. Wówczas r jest relacją antysymetryczną lub zwrotną.
 - (b) Niech $r \subset Z \times Z$, a r b wttw a|b. Wówczas r jest relacją zwrotną.
 - (c) Niech $r \subseteq N^+ \times N^+$, a r b wttw a|b. Wówczas r jest relacją spójną.
- 11. Wskaż zdania prawdziwe.
 - (a) Jeśli $A = \{x, y, z\}, B = \{x, z\}, \text{ to } A \cap B = \{x, y, z\}.$
 - (b) Jeśli $A = \{x, y, z\}, B = \{x, z\},$ to $A \setminus B$ jest podzbiorem B.
 - (c) Jeśli $A = \{p, q, r\}, B = \{p, r\}, \text{ to } A \setminus B \text{ jest podzbiorem } A.$
- 12. Które z wymienionych własności iloczynu kartezjańskiego zbiorów są prawdziwe dla dowolnych zbiorów X, Y, A, B?
 - (a) $X \times (A \cup B) = (X \times A) \cup (X \times B)$, (b) $X \times Y = Y \times X$, (c) $X \times (A \setminus B) = (X \setminus A) \times (X \setminus B)$.
- 13. Niech G będzie danym grafem prostym o n wierzchołkach i m krawędziach. Która z własności jest prawdziwa?
 - (a) Jeśli n=m, to G jest spójny. (b) Jeśli m>n, to graf G ma cykl. (c) Jeśli G jest grafem pełnym, to $m=n^2$.
- 14. Która z własności jest prawdziwa?
 - (a) Jeśli G jest grafem zorientowanym, to relacja sąsiedztwa jest symetryczna.
 - (b) Jeśli G jest niezorientowanym grafem spójnym, to dla dowolnych dwóch wierzchołków istnieje łącząca je droga.
 - (c) Jeśli G jest grafem zorientowanym, to istnieje co najmniej jedna droga między dowolnymi wierzchołkami.
- 15. Niech A_i będzie nieskończoną rodziną zbiorów $A_i = \{x : x < -i \text{ oraz } x \text{ jest liczbą całkowitą } \}$ dla i = 0, 1, 2..., oraz niech A oznacza przecięcie uogólnione zbiorów tej rodziny.
 - (a) A jest zbiorem pustym. (b) $A = \{-1\}$. (c) $A = Z \setminus N$.
- 16. W zbiorze wszystkich funkcji $f: N \to R^+$ określamy relację równoważności następująco: f r g wttw $f = \Theta(g)$, tzn. rzędy funkcji f i g są takie same. Które z wymienionych zdań są prawdziwe?
 - (a) Funkcje n i n^2 należą do tej samej klasy abstrakcji tej relacji.
 - (b) Relacja r ma nieskończenie wiele klas abstrakcji.
 - (c) Wszystkie funkcje należące do klasy wyznaczonej przez funkcję h(n) = n są funkcjami liniowymi.
- 17. Wskaż zdania prawdziwe.
 - (a) Istnieja skończone zbiory uporządkowane, które nie maja elementów minimalnych.
 - (b) Każdy skończony zbiór uporządkowany ma element minimalny i element maksymalny.
 - (c)Każdy zbiór liniowo uporządkowany posiada element największy i najmniejszy.
- 18. Mamy dany algoryt
mAlgz argumentem nbędącym liczbą całkowitą dodatnią większą od 80.

Które z podanych wyrażeń są niezmiennikami poniższej pętli?

$$Alg(n) = \{p := 1, t := 2 \text{ while } t < n \text{ do } \{t := t + 1, p := pt\}\}.$$

(a)
$$p < t$$
, (b) $pt > 0$, (c) $p = \frac{t!}{2!}$.

- 19. Wskaż wzór jawny ciągu a(n) zdefiniowanego rekurencyjne: a(0) = 2, a(1) = 4, a(n+2) = -3a(n+1) + 10a(n) dla n większego lub równego 0.
 - (a) $a(n) = 2^{n+1}$, (b) $a(n) = 2^n$, (c) $a(n) = 2 \cdot 2^n + (-5)^n$.
- 20. Jeżeli liczba trzyelementowych kombinacji pewnego zbioru n elementowego jest sześć razy mniejsza od liczby trzyelementowych wariacji bez powtórzeń tego zbioru, to
 - (a) n może być dowolną liczbą naturalną większą niż 2
 - (b) n musi być równe 3,
 - (c) n może być dowolną liczbą naturalną mniejszą niż 3.

Notacja: N(a,b) oznacza liczbę b-elementowych kombinacji ze zbioru a-elementowego ODPOWIEDZI: 1ac 2b 3ac 4a 5a 6b 7a 8ac 9b 10a 11c 12a 13b 14b 15a 16b 17b 18bc 19a 20a

Numer studenta:

Data:

To jest test wielokrotnego wyboru. W każdym pytaniu mogą być 0, 1, 2 lub 3 poprawne opcje. Zaznacz je w tabelce. Jeśli nie ma poprawnej opcji wpisz BRAK. Za każde zadanie możesz uzyskać 0 lub 1 punkt. Na wszystkie odpowiedzi masz 90 min. Powodzenia!

TABLICA ODPOWIEDZI

pytanie	1	2	3	4	5	6	7	8	9	10
odpowiedź										
pytanie	11	12	13	14	15	16	17	18	19	20
odpowiedź										

1. Wskaż tautologie rachunku zdań.

(a)
$$(p \to q) \to (\neg p \lor q)$$
,

(b)
$$\neg (p \to q) \to (p \land \neg q)$$
.

(a)
$$(p \to q) \to (\neg p \lor q)$$
, (b) $\neg (p \to q) \to (p \land \neg q)$, (c) $((p \to q) \lor (p \to r)) \leftrightarrow (p \to (q \lor r))$.

- 2. Niech predykat K(x,y,t) wyraża, że osoba x kocha osobę y w czasie t. Formuła $\exists_v \forall_x \forall_t K(x,y,t)$ wyraża, że
 - (a) Kiedyś każdy kocha każdego.
- (b) Każdy kocha kogoś kiedyś.
- (c) Ktoś nigdy nie jest kochany przez nikogo.
- 3. Relacja r jest zdefiniowana w zbiorze ciągów binarnych długości co najmniej 4, tak że $(x,y) \in r$ wttw ciągi x i y mają takie same 4 pierwsze pozycje. Ile klas abstrakcji ma ta relacja?
 - (a) 8, (b) ∞ , (c) 16.
- 4. Wskaż relacje równoważności.
 - (a) r jest relacją określoną w zbiorze ciągów polskich liter, taką że $(a,b) \in r$ wttw l(a) > l(b), gdzie l(x) jest długością ciągu x.
 - (b) $r \subseteq \mathbb{R}^2$, $(x,y) \in r$ wttw |x-y| < 8. (c) $r \subseteq \mathbb{Z}^2$, $(a,b) \in r$ wttw a-b jest podzielne przez
- 5. Niech $r \subseteq \mathbb{Z}^2$. Wskaż relacje spełniające podany warunek.
 - (a) $(x,y) \in r$ iff $x^2 = y^2$; antysymetryczność, (b) $(x,y) \in r$ iff |x-y| > 10; przechodniość,
 - (c) $(x, y) \in r$ iff |x| |y| > 0; przeciwzwrotność.
- 6. Stosując zasadę szufladkową Dirichleta można udowodnić, że jeśli z pierwszych 6 dodatnich liczb całkowitych wybierzemy k, to wśród nich musi istnieć para liczb, których suma wynosi 7, jeśli
 - (a) k = 3,
- (b) k = 4,
- (c) k = 5.
- 7. Na ile sposobów można ułożyć 8 różnych, kolorowych kluczy na breloczku (czyli w kółko) tak by dwa klucze od domu (czerwony) i od piwnicy (niebieski) nie znajdowały się obok siebie.
 - (a) 7!,
- (b) $2 \cdot 5 \cdot 6!$,
- (c) $5 \cdot 6!$.
- 8. Załóżmy, że 30 studentów zebrało się by grać w piłkę nożną. Istnieje 5 małych, różnych boisk, gdzie studenci moga poćwiczyć. Na ile różnych sposbów można przypisać studentów do bojsk, tak by na każdym ktoś grał?
 - (a) S(30,5),
- (b) $S(30,5) \cdot 5!$, (c) $C_{30}^6 \cdot C_{24}^6 \cdot C_{18}^6 \cdot C_{12}^6 \cdot C_{6}^6$.
- 9. Załóżmy, że 10 studentów zebrało się by grać w piłkę nożną. Istnieją 4 małe, różne boiska, gdzie studenci mogą poćwiczyć. Studenci mają 8 identycznych piłek. Na ile sposbów można rozdzielić piłki, tak by na każdym boisku była co najmniej jedna?

 - (a) \overline{C}_4^4 , (b) $S(8,4) \cdot 4!$, (c) C_4^7

- 10. Wskaż zbiory uporządkowane (tzn. zbiory ze zdefiniowaną w nich relacją porządku częściowego).
 - (a) $A = \mathbb{Z}, r = \{(a, b) : b = a \cdot k \ dla \ k \in \mathbb{Z}\},$ (b) $A = \mathbb{Z}, r = \{(a, b) : |a| = |b|\}$
 - (c) A jest zbiorem potęgowym pewnego zbioru, $r = \{(X, Y) : X \cup Y = Y\},\$
- 11. Ile pięciocyfrowych kodów można zbudować z różnych cyfr, tak aby różnica między największą i najmniejszą cyfrą nie była większa niż 4?
 - (b) $7 \cdot 4!$, (c) $6 \cdot 5!$. (a) $C_{10}^5 \cdot 5!$,
- 12. Istnieje cześciowo uporzadkowany zbiór, który
 - (a) nie ma ani największego, ani maksymalnego elementu.
 - (b) ma minimalny element, ale nie ma najmniejszego.
 - (c) ma największy element, ale nie ma maksymalnego.
- 13. Które stwierdzenia są prawdziwe?
 - (a) Jeśli G jest nieskierowanym, spójnym grafem, który ma n wierzchołków, to ma on co najmniej n-1 krawędzi.
 - (b) Jeśli G jest skierowanym grafem, to każde dwa wierzchołki sa połaczone droga.
 - (c) Jeśli G jest nieskierowanym, acyklicznym grafem, który ma n wierzchołków, to G ma co najwyżej n-1 krawędzi.
- 14. Niech zbiór potegowy zbioru N będzie uporządkowany przez relację **zawierania** (⊆). Wskaż poprawne zależności.
 - (a) Jeśli $A = \{1, 3, 5\}, B = \{2, 3, 4, 6\}, C = \{1\}, \text{ to } \sup\{A, B, C\} = \{2, 3, 4, 6\}.$
 - (b) Jeśli $A = \{1, 2, 10\}, B = \{1, 2, 4, 6, \}, C = \{1, 2\}, \text{ to } inf\{A, B, C\} = \{1, 2\}.$
 - (c) Jeśli $A = \{1, 2\}$ i $B = \{2, 4\}$, to $\sup\{A, B\} = \{2, 4\}$.
- 15. Wskaż zbiory przeliczalne.
 - (a) Zbiór wszystkich ciągów binarnych. (b) Zbiór wszystkich podzbiorów zbioru ℕ.
 - (c) Zbiór potegowy zbioru $\{-4, 0, 3, 2\}$.
- 16. Wskaż poprawne zależności.
 - (a) $7n^2 + \sqrt{n} = \mathcal{O}(n^2 \cdot lg(n)),$ (b) $(n^5 + n) \cdot lg(n^n) = \mathcal{O}(n^6 + lg(n^n)),$
 - (c) $2^n + n! = \mathcal{O}(n^n + n^2)$.
- 17. Niech $\Omega = \{ @, \#, \$, \% \}$ będzie uniwersum oraz $A = \{ @, \# \}, B = \{ \#, \$, \% \}$. Wówczas
 - (a) $(A \cup B)' = \emptyset$, (b) $(\Omega \cap B)' = \emptyset$, (c) $(\Omega \setminus B)' = B$.
- 18. Implikacja "Jeśli A jest podzbiorem B i B jest elementem C, to A jest elementem C" jest prawdziwa
 - (a) dla dowolnych zbiorów A, B, C, (b) dla pewnych zbiorów A, B, C, (c) nigdy.
- 19. Ciag $s(n) = 3^n 2n3^n$ jest rozwiązaniem rekurencji
 - (a) s(0) = s(1) = 1; s(n) = 6s(n-1) 9s(n-2) dla n > 1,
 - (b) s(0) = 1, s(1) = -3; s(n) = 6s(n-1) s(n-2) dla n > 1,
 - (c) s(0) = 1, s(1) = -3; s(n) = 6s(n-1) 9s(n-2) dla n > 1.
- 20. Nie pamiętasz jaki jest kod do czterocyfrowego zamka w Twojej walizce. Wiesz tylko, że nie użyłeś żadnej cyfry więcej niż raz. Ile (maksymalnie) różnych sposobów musisz wypróbować?
 - (a) 4!, (b) C_{10}^4 , (c) 5040.

Oznaczenia:

- $C_n^k \ (V_n^k)$ liczba k-elementowych kombinacji (wariacji) ze zbioru n-elementowego. $\overline{C}_n^k \ (\overline{V}_n^k)$ liczba k-elementowych kombinacji (wariacji) z powtórzeniami ze zbioru n-elementowego. S(n,k) - liczba sposobów podzielenia n obiektów na k niepuste podzbiory.
- ODPOWIEDZI: 1abc 2- 3c 4c 5c 6bc 7c 8b 9ac 10c 11c 12ab 13ac 14b 15- 16ac 17ac 18b 19c 20c