In this notebook we try to find an obvious manifestation of Rydberb blockade.

Some definitions

Cooking data

Importation of the two files: Forster resonance ON and Forster OFF

Reading the files

```
col = 1;(*color selection*)
A25 = Import["A25.tsv"]; A26 = Import["A26.tsv"];
```

Parsing the files. We consider the sum of signal on channel P and S, as suggested by Igor

```
i = 1; f = 200;
SS = A25[[i;; f, 12]] + A25[[i;; f, 18]];
S1 = A25[[i;; f, 7]] + A25[[i;; f, 13]];
S2 = A25[[i;; f, 8]] + A25[[i;; f, 14]];
S3 = A25[[i;; f, 9]] + A25[[i;; f, 15]];
S4 = A25[[i;; f, 10]] + A25[[i;; f, 16]];
S5 = A25[[i;; f, 11]] + A25[[i;; f, 17]];

SSn = A26[[i;; f, 12]] + A26[[i;; f, 18]];
S1n = A26[[i;; f, 7]] + A26[[i;; f, 13]];
S2n = A26[[i;; f, 8]] + A26[[i;; f, 14]];
S3n = A26[[i;; f, 9]] + A26[[i;; f, 16]];
S4n = A26[[i;; f, 10]] + A26[[i;; f, 16]];
S5n = A26[[i;; f, 11]] + A26[[i;; f, 17]];
```

Creating the graphs for each number of atoms

```
GSS = ListPlot[SS, Joined → True, PlotStyle → ColorData[col, "ColorList"][[2]]];
GS1 = ListPlot[S1, Joined → True, PlotStyle → ColorData[col, "ColorList"][[3]]];
GS2 = ListPlot[S2, Joined → True, PlotStyle → ColorData[col, "ColorList"][[4]]];
GS3 = ListPlot[S3, Joined → True, PlotStyle → ColorData[col, "ColorList"][[5]]];
GS4 = ListPlot[S4, Joined → True, PlotStyle → ColorData[col, "ColorList"][[6]]];
GS5 = ListPlot[S5, Joined → True, PlotStyle → ColorData[col, "ColorList"][[7]]];
GSSn = ListPlot[SSn, Joined → True, PlotStyle → ColorData[col, "ColorList"][[2]]];
GS1n = ListPlot[S1n, Joined → True, PlotStyle → ColorData[col, "ColorList"][[3]]];
GS2n = ListPlot[S2n, Joined → True, PlotStyle → ColorData[col, "ColorList"][[4]]];
GS3n = ListPlot[S3n, Joined → True, PlotStyle → ColorData[col, "ColorList"][[5]]];
GS4n = ListPlot[S4n, Joined → True, PlotStyle → ColorData[col, "ColorList"][[6]]];
GS5n = ListPlot[S5n, Joined → True, PlotStyle → ColorData[col, "ColorList"][[7]]];
```

Analysis of the data

Fitting the total signal on a Lorentzian

```
FSS = FindFit[SS, L[A, \Gamma, t0], {A, \Gamma, t0}, t, MaxIterations \rightarrow 10 000]
FSSn = FindFit[SSn, L[A, \Gamma, t0], \{A, \Gamma, t0\}, t, MaxIterations \rightarrow 10000]
(*FSS=FindFit[SS,G[A,Γ,t0],{A,Γ,t0},t,MaxIterations→10000]*)
(* There is no large profit using a gaussian instead of a lorentzian *)
\{A \rightarrow 0.903012, \Gamma \rightarrow 0.00874229, t0 \rightarrow 98.9096\}
\{A \rightarrow 1.18862, \Gamma \rightarrow 0.0121193, t0 \rightarrow 79.9893\}
```

Comparing the data with the rescaling of the total signal using the binomial distribution for each number of atom

```
N0 = 5;
(* We assume the total number of atoms in the interaction volume is N0=5 *)
GFSS = Plot[L[A, \Gamma, t0] /. FSS, {t, 0, f - i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[2]], Thick, Dashed]];
GFS1 = Plot[Sbin[N0, 1, L[A, \Gamma, t0]] /. FSS, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[3]], Thick, Dashed]];
GFS2 = Plot[Sbin[N0, 2, L[A, \Gamma, t0]] /. FSS, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[4]], Thick, Dashed]];
GFS3 = Plot[Sbin[N0, 3, L[A, \Gamma, t0]] /. FSS, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[5]], Thick, Dashed]];
GFS4 = Plot[Sbin[N0, 4, L[A, \Gamma, t0]] /. FSS, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[6]], Thick, Dashed]];
GFS5 = Plot[Sbin[N0, 5, L[A, \Gamma, t0]] /. FSS, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[7]], Thick, Dashed]];
GFSSn = Plot[L[A, \Gamma, t0] /. FSSn, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[2]], Thick, Dashed]];
GFS1n = Plot[Sbin[N0, 1, L[A, \Gamma, t0]] /. FSSn, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[3]], Thick, Dashed]];
GFS2n = Plot[Sbin[N0, 2, L[A, \Gamma, t0]] /. FSSn, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[4]], Thick, Dashed]];
GFS3n = Plot[Sbin[N0, 3, L[A, \Gamma, t0]] /. FSSn, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[5]], Thick, Dashed]];
GFS4n = Plot[Sbin[N0, 4, L[A, \Gamma, t0]] /. FSSn, \{t, 0, f-i\}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[6]], Thick, Dashed]];
GFS5n = Plot[Sbin[N0, 5, L[A, \Gamma, t0]] /. FSSn, {t, 0, f-i}, PlotRange \rightarrow All,
    PlotStyle → Directive[ColorData[col, "ColorList"][[7]], Thick, Dashed]];
Grid[Transpose[{Show[GSS, GFSS, PlotRange \rightarrow {0, Max[SS]}, ImageSize \rightarrow Medium],}]
     Show[GS1, GFS1, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
     Show[GS2, GFS2, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
     Show[GS3, GFS3, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
     Show[GS4, GFS4, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
     Show[GS5, GFS5, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium]},
    \{\texttt{Show}[\texttt{GSSn},\,\texttt{GFSSn},\,\texttt{PlotRange} \rightarrow \{\texttt{0},\,\texttt{Max}[\texttt{SSn}]\},\,\texttt{ImageSize} \rightarrow \texttt{Medium}]\,,
     Show[GS1n, GFS1n, PlotRange \rightarrow \{0, 0.4\}, ImageSize \rightarrow Medium],
     Show[GS2n, GFS2n, PlotRange \rightarrow \{0, 0.4\}, ImageSize \rightarrow Medium],
     Show[GS3n, GFS3n, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
     Show[GS4n, GFS4n, PlotRange \rightarrow \{0, 0.4\}, ImageSize \rightarrow Medium],
     Show[GS5n, GFS5n, PlotRange \rightarrow \{0, 0.4\}, ImageSize \rightarrow Medium]}
   }]]
```


Plotting two Rydberg blockade criteria (these quantities should be always equal to zero)

```
Sbin[N0, 2, S] / Sbin[N0, 1, S] * (N0 - S) / (S * (N0 - 1)) - 1 // Simplify
(* first criterion: verification that this is really equal to zero *)
Grid[{\{ListPlot[S2 / S1 * (N0 - SS) / (SS * (N0 - 1)) - 1,\}\}}]
     Joined → True, ImageSize → Medium, Frame → True,
     FrameLabel \rightarrow {{"Modified \theta parameter", None}, {"Frequency(a.u.)", None}},
      \label{eq:labelStyle} \texttt{LabelStyle} \rightarrow \texttt{Bold]} \texttt{, ListPlot[S2n/S1n*(N0-SSn)/(SSn*(N0-1))-1,} 
     Joined \rightarrow True, ImageSize \rightarrow Medium, Frame \rightarrow True,
     FrameLabel \rightarrow {{"Modified \theta parameter", None}, {"Frequency(a.u.)", None}},
     LabelStyle → Bold]}, {"Forster ON", "Forster OFF"}}]
0
   10
Modified 	heta parameter
                                                              Modified \theta parameter
                                             150
                           Frequency(a.u.)
                                                                                         Frequency(a.u.)
                       Forster ON
                                                                                     Forster OFF
Sbin[N0, 2, S] / Sbin[N0, 1, S] ^2 * (1 - S / N0) ^N0 / (1 - 1 / N0) - 1 // Simplify
(* second criterion: verification that this is really equal to zero *)
Grid[{\{ListPlot[S2/S1^2*(1-SS/N0)^N0/(1-1/N0) - 1, Joined \rightarrow True,\}\}}]
     ImageSize \rightarrow Medium], ListPlot[S2n/S1n^2 * (1 - SSn/N0)^N0/(1 - 1/N0) - 1,
     Joined → True, ImageSize → Medium]}, {"Forster ON", "Forster OFF"}}]
0
12
10
                             100
```

Dealing with mean data (taking the even and the odd parts of

Forster OFF

Forster ON

the spectra)

```
ff = 99 * 2 + 1; (* we have select the right size of the spectrum,
99 is the maximum*)
S1e = (S1[[i;; ff]] + Reverse[S1[[i;; ff]]]) / 2;
(*the even part is the sum of the original spectrum and the reversed spectrum*)
S2e = (S2[[i;; ff]] + Reverse[S2[[i;; ff]]]) / 2;
S3e = (S3[[i;; ff]] + Reverse[S3[[i;; ff]]]) / 2;
S4e = (S4[[i;; ff]] + Reverse[S4[[i;; ff]]]) / 2;
S5e = (S4[[i;; ff]] + Reverse[S5[[i;; ff]]]) / 2;
SSe = (SS[[i;; ff]] + Reverse[SS[[i;; ff]]]) / 2;
S1o = (S1[[i;; ff]] - Reverse[S1[[i;; ff]]]) / 2; (*the odd part is the
 difference between the original spectrum and the reversed spectrum*)
S2o = (S2[[i;; ff]] - Reverse[S2[[i;; ff]]]) / 2;
S3o = (S3[[i;; ff]] - Reverse[S3[[i;; ff]]]) / 2;
S4o = (S4[[i;; ff]] - Reverse[S4[[i;; ff]]]) / 2;
S5o = (S5[[i;; ff]] - Reverse[S5[[i;; ff]]]) / 2;
SSo = (SS[[i;; ff]] - Reverse[SS[[i;; ff]]]) / 2;
ffn = 80 * 2 + 1;
Slen = (Sln[[i;; ffn]] + Reverse[Sln[[i;; ffn]]]) / 2;
S2en = (S2n[[i ;; ffn]] + Reverse[S2n[[i ;; ffn]]]) / 2;
S3en = (S3n[[i;; ffn]] + Reverse[S3n[[i;; ffn]]]) / 2;
S4en = (S4n[[i;; ffn]] + Reverse[S4n[[i;; ffn]]]) / 2;
S5en = (S5n[[i;; ffn]] + Reverse[S5n[[i;; ffn]]]) / 2;
SSen = (SSn[[i;; ffn]] + Reverse[SSn[[i;; ffn]]]) / 2;
Slon = (Sln[[i;; ffn]] - Reverse[Sln[[i;; ffn]]]) / 2;
S2on = (S2n[[i;; ffn]] - Reverse[S2n[[i;; ffn]]]) / 2;
S3on = (S3n[[i;; ffn]] - Reverse[S3n[[i;; ffn]]]) / 2;
S4on = (S4n[[i;; ffn]] - Reverse[S4n[[i;; ffn]]]) / 2;
S5on = (S5n[[i;; ffn]] - Reverse[S5n[[i;; ffn]]]) / 2;
SSon = (SSn[[i;; ffn]] - Reverse[SSn[[i;; ffn]]]) / 2;
```

Plotting the even parts for 1 and 2 atoms (these graphs are even)

 $\texttt{ListPlot}[\{\texttt{S1e},\, \texttt{S1en}\},\, \texttt{PlotRange} \rightarrow \texttt{All},\, \texttt{Joined} \rightarrow \texttt{True}]$ $\texttt{ListPlot[\{S2e, S2en\}, PlotRange} \rightarrow \texttt{All, Joined} \rightarrow \texttt{True]}$

Plotting the odd part for 1 and 2 atoms (the graph must be null)

 $\texttt{ListPlot}[\{\texttt{S1o},\,\texttt{S1on}\}\,,\,\texttt{PlotRange} \rightarrow \texttt{All},\,\texttt{Joined} \rightarrow \texttt{True}]$ $\texttt{ListPlot}[\{\texttt{S2o},\,\texttt{S2on}\},\,\texttt{PlotRange} \rightarrow \texttt{All},\,\texttt{Joined} \rightarrow \texttt{True}]$

Plotting the even and the odd part for the total signal (Forester ON and OFF)

Comparing the even part of the data with the rescaling of the total signal using the binomial distribution for each number of atom (

```
GSSe = ListPlot[SSe, Joined → True, PlotStyle → ColorData[col, "ColorList"][[2]]];
GS1e = ListPlot[S1e, Joined → True, PlotStyle → ColorData[col, "ColorList"][[3]]];
GS2e = ListPlot[S2e, Joined → True, PlotStyle → ColorData[col, "ColorList"][[4]]];
GS3e = ListPlot[S3e, Joined → True, PlotStyle → ColorData[col, "ColorList"][[5]]];
GS4e = ListPlot[S4e, Joined → True, PlotStyle → ColorData[col, "ColorList"][[6]]];
GS5e = ListPlot[S5e, Joined → True, PlotStyle → ColorData[col, "ColorList"][[7]]];
GSSen = ListPlot[SSen, Joined → True, PlotStyle → ColorData[col, "ColorList"][[2]]];
GS1en = ListPlot[S1en, Joined → True, PlotStyle → ColorData[col, "ColorList"][[3]]];
GS2en = ListPlot[S2en, Joined → True, PlotStyle → ColorData[col, "ColorList"][[4]]];
GS3en = ListPlot[S3en, Joined → True, PlotStyle → ColorData[col, "ColorList"][[5]]];
GS4en = ListPlot[S4en, Joined → True, PlotStyle → ColorData[col, "ColorList"][[6]]];
GS5en = ListPlot[S5en, Joined → True, PlotStyle → ColorData[col, "ColorList"][[7]]];
```

```
Grid[Transpose[{Show[GSSe, GFSS, PlotRange \rightarrow {0, Max[SS]}, ImageSize \rightarrow Medium], }]
      Show[GS1e, GFS1, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
      Show[GS2e, GFS2, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
      Show[GS3e, GFS3, PlotRange → {0, 0.4}, ImageSize → Medium],
      Show[GS4e, GFS4, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
      Show[GS5e, GFS5, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium]},
     \{Show[GSSen, GFSSn, PlotRange \rightarrow \{0, Max[SSn]\}, ImageSize \rightarrow Medium], \}
      Show[GS1en, GFS1n, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
      Show[GS2en, GFS2n, PlotRange \rightarrow \{0, 0.4\}, ImageSize \rightarrow Medium],
      Show[GS3en, GFS3n, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium],
      Show[GS4en, GFS4n, PlotRange \rightarrow \{0, 0.4\}, ImageSize \rightarrow Medium],
      Show[GS5en, GFS5n, PlotRange \rightarrow {0, 0.4}, ImageSize \rightarrow Medium]}
   }]]
                                                                    1.2
                                                                    1.0
0.8
                                                                    0.8
0.6
                                                                    0.6
0.4
                                                                    0.4
0.2
                                                                    0.2
                                 100
                                                                                                     100
                                                                                                                     150
                                                150
                                                                200
                                                                                      50
0.4
                                                                    0.4
                                                                    0.3
0.3
                                                                    0.2
0.2
0.1
                                                                    0.1
                                                                                      50
                                                                                                     100
                                                                                                                     150
                                 100
                                                150
                                                                200
```


Plotting the two previous Rydberg blockade criteria with the even part of the spectra

```
\label{eq:condition} \texttt{Grid}[\{\texttt{ListPlot}[\texttt{S2e} \,/\, \texttt{S1e} \, \star \, (\texttt{N0} \, -\, \texttt{SSe}) \,\,/\, (\texttt{SSe} \, \star \, (\texttt{N0} \, -\, \texttt{1}) \,) \,\, -\, \texttt{1, Joined} \, \rightarrow \, \texttt{True,} \\
          \label{eq:size} {\tt ImageSize} \rightarrow {\tt Medium]}, \ {\tt ListPlot[S2en/S1en*(N0-SSen)/(SSen*(N0-1))-1},
          Joined → True, ImageSize → Medium] }, { "Forster ON", "Forster OFF" } } ]
```


Reproducing the graph on the poster

 $\texttt{ListPlot[Table[N*SS^N*Exp[-SS]/N!, \{N, 1, 5\}], Joined} \rightarrow \texttt{True, PlotRange} \rightarrow \{0, 0.4\}]$

