(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 April 2001 (12.04.2001)

PCT

(10) International Publication Number

(51) International Patent Classification7:

A61B

WO 01/24681 A2

- (21) International Application Number: PCT/US00/21660
- (22) International Filing Date: 9 August 2000 (09.08.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/147,488 60/190,057

9 August 1999 (09.08.1999) US

- 17 March 2000 (17.03.2000)
- (71) Applicant: UNIVERSITY OF UTAH RESEARCH FOUNDATION [US/US]; Suite 110, 615 Arapeen Drive, Salt Lake City, UT 84108 (US).
- (72) Inventors: KEATING, Mark, T.; 78 Laurel Street, Salt Lake City, UT 84103 (US). SPLAWSKI, Igor; Apartment 140, 900 East Street, Salt Lake City, UT 84124 (US).
- (74) Agents: SAXE, Stephen, A. et al.; Rothwell, Figg, Ernst & Manbeck, 555 13th Street N.W. Suite 701 East, Columbia Square, Washington, DC 20004 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM. HR, HU, ID, IL, IN, IS. JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

BEST AVAILABLE COPY

(54) Title: ALTERATIONS IN THE LONG QT SYNDROME GENES KVLQTI AND SCN5A AND METHODS FOR DETECT-ING SAME

(57) Abstract: Long QT Syndrome (LQTS) is a cardiovascular disorder characterized by prolongation of the QT interval on electrocardiogram and presence of syncope, seizures and sudden death. Five genes have been implicated in Romano-Ward syndrome, the autosomal dominant form of LQTS. These genes are KVLQT1, HERG, SCN5A, KCNE1 and KCNE2. Mutations in KVLQT1 and KCNE1 also cause the Jervell and Lange-Nielsen syndrome, a form of LQTS associated with deafness, a phenotypic abnormality inherited in an autosomal recessive fashion. Mutational analyses were used to screen 262 unrelated individuals with LQTS for mutations in the five defined genes. A total of 134 mutations were observed of which eighty were novel.

TITLE OF THE INVENTION

ALTERATIONS IN THE LONG QT SYNDROME GENES *KVLQT1* AND *SCN5A* AND METHODS FOR DETECTING SAME

5

This application was made with Government support from NHLBI under Grant Nos. RO1-HL46401, RO1-HL33843, RO1-HL51618, P50-HL52338 and MO1-RR000064. The federal government may have certain rights in this invention.

BACKGROUND OF THE INVENTION

10

15

Long QT Syndrome (LQTS) is a cardiovascular disorder characterized by prolongation of the QT interval on electrocardiogram and presence of syncope, seizures and sudden death, usually in young, otherwise healthy individuals (Jervell and Lange-Nielsen, 1957; Romano et al., 1963; Ward, 1964). The clinical features of LQTS result from episodic ventricular tachyarrhythmias, such as *torsade de pointes* and ventricular fibrillation (Schwartz et al., 1975; Moss et al., 1991). Two inherited forms of LQTS exist. The more common form, Romano-Ward syndrome (RW), is not associated with other phenotypic abnormalities and is inherited as an autosomal dominant trait with variable penetrance (Roman et al., 1963; Ward, 1964). Jervell and Lange-Nielsen syndrome (JLN) is characterized by the presence of deafness, a phenotypic abnormality inherited as an autosomal recessive trait (Jervell and Lange-Nielsen, 1957). LQTS can also be acquired, usually as a result of pharmacologic therapy.

20

25

In previous studies, we mapped LQTS loci to chromosomes 11p15.5 (*LQT1*) (Keating et al., 1991), 7 q35-36 (*LQT2*) (Jiang et al., 1994) and *LQT3* to 3p21-24 (Jiang et al., 1994). A fourth locus (*LQT4*) was mapped to 4q25-27 (Schott et al., 1995). Five genes have been implicated in Romano-Ward syndrome, the autosomal dominant form of LQTS. These genes are *KVLQT1* (*LQT1*) (Wang Q. et al., 1996a), *HERG* (*LQT2*) (Curran et al., 1995), *SCN5A* (*LQT3*) (Wang et al., 1995a), and two genes located at 21q22 - *KCNE1* (*LQT5*) (Splawski et al., 1997a) and *KCNE2* (*LQT6*) (Abbott et al., 1999). Mutations in *KVLQT1* and *KCNE1* also cause the Jervell and Lange-Nielsen syndrome, a form of LQTS associated with deafness, a phenotypic abnormality inherited in an autosomal recessive fashion.

30

KVLQT1, HERG, KCNE1 and KCNE2 encode potassium channel subunits. Four KVLQT1 α -subunits assemble with minK (β -subunits encoded by KCNE1, stoichiometry is

unknown) to form I_{Ks} channels underlying the slowly activating delayed rectifier potassium current in the heart (Sanguinetti et al., 1996a; Barhanin et al., 1996). Four HERG α -subunits assemble with MiRP1 (encoded by *KCNE2*, stoichiometry unknown) to form I_{Ks} channels, which underlie the rapidly activating, delayed rectifier potassium current (Abbott et al., 1999). Mutant subunits lead to reduction of I_{Ks} or I_{Kr} by a loss-of-function mechanism, often with a dominant-negative effect (Chouabe et al., 1997; Shalaby et al., 1997; Wollnik et al., 1997; Sanguinetti et al., 1996b). *SCN5A* encodes the cardiac sodium channel that is responsible for I_{Na} , the sodium current in the heart (Gellens et al., 1992). LQTS-associated mutations in *SCN5A* cause a gain-of-function (Bennett et al., 1995; Dumaine et al., 1996). In the heart, reduced I_{Ks} or I_{Kr} or increased I_{Na} leads to prolongation of the cardiac action potential, lengthening of the QT interval and increased risk of arrhythmia. *KVLQT1* and *KCNE1* are also expressed in the inner ear (Neyroud et al., 1997; Vetter et al., 1996). Others and we demonstrated that complete loss of I_{Ks} causes the severe cardiac phenotype and deafness in JLN (Neyroud et al., 1997; Splawski et al., 1997b; Tyson et al., 1997; Schulze-Bahr et al., 1997).

15

20

10

5

Presymptomatic diagnosis of LQTS is currently based on prolongation of the QT interval on electrocardiogram. Genetic studies, however, have shown that diagnosis based solely on electrocardiogram is neither sensitive nor specific (Vincent et al., 1992; Priori et al., 1999). Genetic screening using mutational analysis can improve presymptomatic diagnosis. However, a comprehensive study identifying and cataloging all LQTS-associated mutations in all five genes has not been achieved. To determine the relative frequency of mutations in each gene, facilitate presymptomatic diagnosis and enable genotype-phenotype studies, we screened a pool of 262 unrelated individuals with LQTS for mutations in the five defined genes. The results of these studies are presented in the Examples below.

25

30

The present invention relates to alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes and methods for detecting such alterations.

The publications and other materials used herein to illuminate the background of the invention or provide additional details respecting the practice, are incorporated by reference, and for convenience are respectively grouped in the appended List of References.

The present invention is directed to alterations in genes and gene products associated with long QT syndrome and to a process for the diagnosis and prevention of LQTS. LQTS is

diagnosed in accordance with the present invention by analyzing the DNA sequence of the KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 gene of an individual to be tested and comparing the respective DNA sequence to the known DNA sequence of the normal gene. Alternatively, these genes of an individual to be tested can be screened for mutations which cause LQTS. Prediction of LQTS will enable practitioners to prevent this disorder using existing medical therapy.

SUMMARY OF THE INVENTION

5

10

15

20

25

The present invention relates to alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes and methods for detecting such alterations. The alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes include mutations and polymorphisms. Included among the mutations are frameshift, nonsense, splice, regulatory and missense mutations. Any method which is capable of detecting the alterations described herein can be used. Such methods include, but are not limited to, DNA sequencing, allele-specific probing, mismatch detection, single stranded conformation polymorphism detection and allele-specific PCR amplification.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a schematic representation of the predicted topology of KVLQT1 and the locations of LQTS-associated mutations. KVLQT1 consists of six putative transmembrane segments (S1 to S6) and a pore (Pore) region. Each circle represents an amino acid. The approximate location of LQTS-associated mutations identified in our laboratory are shown with filled circles.

Figure 2 is a schematic representation of HERG mutations. HERG consists of six putative transmembrane segments (S1 to S6) and a pore (Pore) region. Location of LQTS-associated mutations are shown with filled circles.

Figure 3 is a schematic representation of SCN5A and locations of LQTS-associated mutations. SCN5A consists of four domain (DI to DIV), each of which has six putative

transmembrane segments (S1 to S6) and a pore (Pore) region. Location of LQTS-associated mutations identified in our laboratory are shown with filled circles.

Figure 4 is a schematic representation of minK and locations of LQT-associated mutations. MinK consists of one putative transmembrane domain (S1). The approximate location of LQTS-associated mutations identified in our laboratory are shown with filled circles.

Figure 5 is a schematic representation of the predicted topology of MiRP1 and locations of arrhythmia-associated mutations. MiRP1 consists of one putative transmembrane domain (S1). The approximate location of arrhythmia-associated mutations identified in our laboratory are shown with filled circles.

10

15

5

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes and methods for detecting such alterations. The alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes include mutations and polymorphisms. Included among the mutations are frameshift, nonsense, splice, regulatory and missense mutations. Any method which is capable of detecting the mutations and polymorphisms described herein can be used. Such methods include, but are not limited to, DNA sequencing, allele-specific probing, mismatch detection, single stranded conformation polymorphism detection and allele-specific PCR amplification.

20

25

KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 mutations cause increased risk for LQTS. Many different mutations occur in KVLQT1, HERG, SCN5A, KCNE1 and KCNE2. In order to detect the presence of alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes, a biological sample such as blood is prepared and analyzed for the presence or absence of a given alteration of KVLQT1, HERG, SCN5A, KCNE1 or KCNE2. In order to detect the increased risk for LQTS or for the lack of such increased risk, a biological sample is prepared and analyzed for the presence or absence of a mutant allele of KVLQT1, HERG, SCN5A, KCNE1 or KCNE2. Results of these tests and interpretive information are returned to the health care provider for communication to the tested individual. Such diagnoses may be performed by diagnostic

10

15

20

25

30

laboratories or, alternatively, diagnostic kits are manufactured and sold to health care providers or to private individuals for self-diagnosis.

The presence of hereditary LQTS may be ascertained by testing any tissue of a human for mutations of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* gene. For example, a person who has inherited a germline *HERG* mutation would be prone to develop LQTS. This can be determined by testing DNA from any tissue of the person's body. Most simply, blood can be drawn and DNA extracted from the cells of the blood. In addition, prenatal diagnosis can be accomplished by testing fetal cells, placental cells or amniotic cells for mutations of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* gene. Alteration of a wild-type *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* allele, whether, for example, by point mutation or deletion, can be detected by any of the means discussed herein.

There are several methods that can be used to detect DNA sequence variation. Direct DNA sequencing, either manual sequencing or automated fluorescent sequencing can detect sequence variation. Another approach is the single-stranded conformation polymorphism assay (SSCP) (Orita et al., 1989). This method does not detect all sequence changes, especially if the DNA fragment size is greater than 200 bp, but can be optimized to detect most DNA sequence variation. The reduced detection sensitivity is a disadvantage, but the increased throughput possible with SSCP makes it an attractive, viable alternative to direct sequencing for mutation detection on a research basis. The fragments which have shifted mobility on SSCP gels are then sequenced to determine the exact nature of the DNA sequence variation. Other approaches based on the detection of mismatches between the two complementary DNA strands include clamped denaturing gel electrophoresis (CDGE) (Sheffield et al., 1991), heteroduplex analysis (HA) (White et al., 1992) and chemical mismatch cleavage (CMC) (Grompe et al., 1989). None of the methods described above will detect large deletions, duplications or insertions, nor will they detect a regulatory mutation which affects transcription or translation of the protein. Other methods which might detect these classes of mutations such as a protein truncation assay or the asymmetric assay, detect only specific types of mutations and would not detect missense mutations. A review of currently available methods of detecting DNA sequence variation can be found in a recent review by Grompe (1993). Once a mutation is known, an allele specific detection approach such as allele specific oligonucleotide (ASO) hybridization can be utilized to rapidly screen large numbers of other samples for that same mutation. Such a technique can

6

utilize probes which are labeled with gold nanoparticles to yield a visual color result (Elghanian et al., 1997).

A rapid preliminary analysis to detect polymorphisms in DNA sequences can be performed by looking at a series of Southern blots of DNA cut with one or more restriction enzymes, preferably with a large number of restriction enzymes. Each blot contains a series of normal individuals and a series of LQTS cases. Southern blots displaying hybridizing fragments (differing in length from control DNA when probed with sequences near or including the *HERG* locus) indicate a possible mutation. If restriction enzymes which produce very large restriction fragments are used, then pulsed field gel electrophoresis (PFGE) is employed.

10

5

Detection of point mutations may be accomplished by molecular cloning of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* alleles and sequencing the alleles using techniques well known in the art. Also, the gene or portions of the gene may be amplified, e.g., by PCR or other amplification technique, and the amplified gene or amplified portions of the gene may be sequenced.

15

20

25

30

There are six well known methods for a more complete, yet still indirect, test for confirming the presence of a susceptibility allele: 1) single stranded conformation analysis (SSCP) (Orita et al., 1989); 2) denaturing gradient gel electrophoresis (DGGE) (Wartell et al., 1990; Sheffield et al., 1989); 3) RNase protection assays (Finkelstein et al., 1990; Kinszler et al., 1991); 4) allele-specific oligonucleotides (ASOs) (Conner et al., 1983); 5) the use of proteins which recognize nucleotide mismatches, such as the E. coli mutS protein (Modrich, 1991); and 6) allele-specific PCR (Ruano and Kidd, 1989). For allele-specific PCR, primers are used which hybridize at their 3' ends to a particular KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 mutation. If the particular mutation is not present, an amplification product is not observed. Amplification Refractory Mutation System (ARMS) can also be used, as disclosed in European Patent Application Publication No. 0332435 and in Newton et al., 1989. Insertions and deletions of genes can also be detected by cloning, sequencing and amplification. In addition, restriction fragment length polymorphism (RFLP) probes for the gene or surrounding marker genes can be used to score alteration of an allele or an insertion in a polymorphic fragment. Such a method is particularly useful for screening relatives of an affected individual for the presence of the mutation found in that individual. Other techniques for detecting insertions and deletions as known in the art can be used.

7

In the first three methods (SSCP, DGGE and RNase protection assay), a new electrophoretic band appears. SSCP detects a band which migrates differentially because the sequence change causes a difference in single-strand, intramolecular base pairing. RNase protection involves cleavage of the mutant polynucleotide into two or more smaller fragments. DGGE detects differences in migration rates of mutant sequences compared to wild-type sequences, using a denaturing gradient gel. In an allele-specific oligonucleotide assay, an oligonucleotide is designed which detects a specific sequence, and the assay is performed by detecting the presence or absence of a hybridization signal. In the mutS assay, the protein binds only to sequences that contain a nucleotide mismatch in a heteroduplex between mutant and wild-type sequences.

5

10

15

20

25

30

Mismatches, according to the present invention, are hybridized nucleic acid duplexes in which the two strands are not 100% complementary. Lack of total homology may be due to deletions, insertions, inversions or substitutions. Mismatch detection can be used to detect point mutations in the gene or in its mRNA product. While these techniques are less sensitive than sequencing, they are simpler to perform on a large number of samples. An example of a mismatch cleavage technique is the RNase protection method. In the practice of the present invention, the method involves the use of a labeled riboprobe which is complementary to the human wild-type KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 gene coding sequence. The riboprobe and either mRNA or DNA isolated from the person are annealed (hybridized) together and subsequently digested with the enzyme RNase A which is able to detect some mismatches in a duplex RNA structure. If a mismatch is detected by RNase A, it cleaves at the site of the mismatch. Thus, when the annealed RNA preparation is separated on an electrophoretic gel matrix, if a mismatch has been detected and cleaved by RNase A, an RNA product will be seen which is smaller than the full length duplex RNA for the riboprobe and the mRNA or DNA. The riboprobe need not be the full length of the mRNA or gene but can be a segment of either. If the riboprobe comprises only a segment of the mRNA or gene, it will be desirable to use a number of these probes to screen the whole mRNA sequence for mismatches.

In similar fashion, DNA probes can be used to detect mismatches, through enzymatic or chemical cleavage. See, e.g., Cotton et al., 1988: Shenk et al., 1975; Novack et al., 1986. Alternatively, mismatches can be detected by shifts in the electrophoretic mobility of mismatched duplexes relative to matched duplexes. See, e.g., Cariello, 1988. With either riboprobes or DNA

8

probes, the cellular mRNA or DNA which might contain a mutation can be amplified using PCR (see below) before hybridization. Changes in DNA of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* gene can also be detected using Southern hybridization, especially if the changes are gross rearrangements, such as deletions and insertions.

5

DNA sequences of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* gene which have been amplified by use of PCR may also be screened using allele-specific probes. These probes are nucleic acid oligomers, each of which contains a region of the gene sequence harboring a known mutation. For example, one oligomer may be about 30 nucleotides in length, corresponding to a portion of the gene sequence. By use of a battery of such allele-specific probes, PCR amplification products can be screened to identify the presence of a previously identified mutation in the gene. Hybridization of allele-specific probes with amplified *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* sequences can be performed, for example, on a nylon filter. Hybridization to a particular probe under high stringency hybridization conditions indicates the presence of the same mutation in the tissue as in the allele-specific probe.

15

20

25

30

10

The newly developed technique of nucleic acid analysis via microchip technology is also applicable to the present invention. In this technique, literally thousands of distinct oligonucleotide probes are built up in an array on a silicon chip. Nucleic acid to be analyzed is fluorescently labeled and hybridized to the probes on the chip. It is also possible to study nucleic acid-protein interactions using these nucleic acid microchips. Using this technique one can determine the presence of mutations or even sequence the nucleic acid being analyzed or one can measure expression levels of a gene of interest. The method is one of parallel processing of many, even thousands, of probes at once and can tremendously increase the rate of analysis. Several papers have been published which use this technique. Some of these are Hacia et al., 1996; Shoemaker et al., 1996; Chee et al., 1996; Lockhart et al., 1996; DeRisi et al., 1996; Lipshutz et al., 1995. This method has already been used to screen people for mutations in the breast cancer gene *BRCA1* (Hacia et al., 1996). This new technology has been reviewed in a news article in Chemical and Engineering News (Borman, 1996) and been the subject of an editorial (Editorial, Nature Genetics, 1996). Also see Fodor (1997).

The most definitive test for mutations in a candidate locus is to directly compare genomic KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 sequences from patients with those from a control

10

15

20

25

30

population. Alternatively, one could sequence messenger RNA after amplification, e.g., by PCR, thereby eliminating the necessity of determining the exon structure of the candidate gene.

Mutations from patients falling outside the coding region of KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 can be detected by examining the non-coding regions, such as introns and regulatory sequences near or within the genes. An early indication that mutations in noncoding regions are important may come from Northern blot experiments that reveal messenger RNA molecules of abnormal size or abundance in patients as compared to control individuals.

Alteration of KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 mRNA expression can be detected by any techniques known in the art. These include Northern blot analysis, PCR amplification and RNase protection. Diminished mRNA expression indicates an alteration of the wild-type gene. Alteration of wild-type genes can also be detected by screening for alteration of wild-type KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 protein. For example, monoclonal antibodies immunoreactive with HERG can be used to screen a tissue. Lack of cognate antigen would indicate a mutation. Antibodies specific for products of mutant alleles could also be used to detect mutant gene product. Such immunological assays can be done in any convenient formats known in the art. These include Western blots, immunohistochemical assays and ELISA assays. Any means for detecting an altered KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 protein can be used to detect alteration of wild-type KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 denes. Functional assays, such as protein binding determinations, can be used. In addition, assays can be used which detect KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 gene product indicates alteration of a wild-type KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 gene

Mutant KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 genes or gene products can also be detected in other human body samples, such as serum, stool, urine and sputum. The same techniques discussed above for detection of mutant genes or gene products in tissues can be applied to other body samples. By screening such body samples, a simple early diagnosis can be achieved for hereditary LQTS.

Initially, the screening method involves amplification of the relevant KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 sequence. In another preferred embodiment of the invention, the screening method involves a non-PCR based strategy. Such screening methods include two-step label amplification methodologies that are well known in the art. Both PCR and non-PCR based

10

screening strategies can detect target sequences with a high level of sensitivity. Further details of these methods are briefly presented below and further descriptions can be found in PCT published application WO 96/05306, incorporated herein by reference.

The most popular method used today is target amplification. Here, the target nucleic acid sequence is amplified with polymerases. One particularly preferred method using polymerase-driven amplification is the polymerase chain reaction (PCR). The polymerase chain reaction and other polymerase-driven amplification assays can achieve over a million-fold increase in copy number through the use of polymerase-driven amplification cycles. Once amplified, the resulting nucleic acid can be sequenced or used as a substrate for DNA probes.

10

5

When the probes are used to detect the presence of the target sequences, the biological sample to be analyzed, such as blood or serum, may be treated, if desired, to extract the nucleic acids. The sample nucleic acid may be prepared in various ways to facilitate detection of the target sequence; e.g. denaturation, restriction digestion, electrophoresis or dot blotting. The targeted region of the analyte nucleic acid usually must be at least partially single-stranded to form hybrids with the targeting sequence of the probe. If the sequence is naturally single-stranded, denaturation will not be required. However, if the sequence is double-stranded, the sequence will probably need to be denatured. Denaturation can be carried out by various techniques known in the art.

20

15

Analyte nucleic acid and probe are incubated under conditions which promote stable hybrid formation of the target sequence in the probe with the putative targeted sequence in the analyte. The region of the probes which is used to bind to the analyte can be made completely complementary to the targeted region of the genes. Therefore, high stringency conditions are desirable in order to prevent false positives. However, conditions of high stringency are used only if the probes are complementary to regions of the chromosome which are unique in the genome. The stringency of hybridization is determined by a number of factors during hybridization and during the washing procedure, including temperature, ionic strength, base composition, probe length, and concentration of formamide. Under certain circumstances, the formation of higher order hybrids, such as triplexes, quadraplexes, etc., may be desired to provide the means of detecting target sequences.

30

25

Detection, if any, of the resulting hybrid is usually accomplished by the use of labeled probes. Alternatively, the probe may be unlabeled, but may be detectable by specific binding

10

15

20

25

30

with a ligand which is labeled, either directly or indirectly. Suitable labels, and methods for labeling probes and ligands are known in the art, and include, for example, radioactive labels which may be incorporated by known methods (e.g., nick translation, random priming or kinasing), biotin, fluorescent groups, chemiluminescent groups (e.g., dioxetanes, particularly triggered dioxetanes), enzymes, antibodies and the like. Variations of this basic scheme are known in the art, and include those variations that facilitate separation of the hybrids to be detected from extraneous materials and/or that amplify the signal from the labeled moiety. A number of these variations are well known.

As noted above, non-PCR based screening assays are also contemplated in this invention. This procedure hybridizes a nucleic acid probe (or an analog such as a methyl phosphonate backbone replacing the normal phosphodiester), to the low level DNA target. This probe may have an enzyme covalently linked to the probe, such that the covalent linkage does not interfere with the specificity of the hybridization. This enzyme-probe-conjugate-target nucleic acid complex can then be isolated away from the free probe enzyme conjugate and a substrate is added for enzyme detection. Enzymatic activity is observed as a change in color development or luminescent output resulting in a 10³-10⁶ increase in sensitivity. For example, the preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes are well known.

Two-step label amplification methodologies are known in the art. These assays work on the principle that a small ligand (such as digoxigenin, biotin, or the like) is attached to a nucleic acid probe capable of specifically binding the target gene. Allele specific probes are also contemplated within the scope of this example.

In one example, the small ligand attached to the nucleic acid probe is specifically recognized by an antibody-enzyme conjugate. In one embodiment of this example, digoxigenin is attached to the nucleic acid probe. Hybridization is detected by an antibody-alkaline phosphatase conjugate which turns over a chemiluminescent substrate. In a second example, the small ligand is recognized by a second ligand-enzyme conjugate that is capable of specifically complexing to the first ligand. A well known embodiment of this example is the biotin-avidin type of interactions. Methods for labeling nucleic acid probes and their use in biotin-avidin based assays are well known.

WO 01/24681

PCT/US00/21660

It is also contemplated within the scope of this invention that the nucleic acid probe assays of this invention will employ a cocktail of nucleic acid probes capable of detecting the gene or genes. Thus, in one example to detect the presence of *KVLQT1* in a cell sample, more than one probe complementary to *KVLQT1* is employed and in particular the number of different probes is alternatively 2, 3, or 5 different nucleic acid probe sequences. In another example, to detect the presence of mutations in the *KVLQT1* gene sequence in a patient, more than one probe complementary to *KVLQT1* is employed where the cocktail includes probes capable of binding to the allele-specific mutations identified in populations of patients with alterations in *KVLQT1*. In this embodiment, any number of probes can be used.

10

15

5

Large amounts of the polynucleotides of the present invention may be produced by replication in a suitable host cell. Natural or synthetic polynucleotide fragments coding for a desired fragment will be incorporated into recombinant polynucleotide constructs, usually DNA constructs, capable of introduction into and replication in a prokaryotic or eukaryotic cell. Usually the polynucleotide constructs will be suitable for replication in a unicellular host, such as yeast or bacteria, but may also be intended for introduction to (with and without integration within the genome) cultured mammalian or plant or other eukaryotic cell lines. The purification of nucleic acids produced by the methods of the present invention are described, e.g., in Sambrook et al., 1989 or Ausubel et al., 1992.

20

The polynucleotides of the present invention may also be produced by chemical synthesis, e.g., by the phosphoramidite method described by Beaucage and Caruthers (1981) or the triester method according to Matteucci and Caruthers (1981) and may be performed on commercial, automated oligonucleotide synthesizers. A double-stranded fragment may be obtained from the single-stranded product of chemical synthesis either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

25

30

Polynucleotide constructs prepared for introduction into a prokaryotic or eukaryotic host may comprise a replication system recognized by the host, including the intended polynucleotide fragment encoding the desired polypeptide, and will preferably also include transcription and translational initiation regulatory sequences operably linked to the polypeptide encoding segment. Expression vectors may include, for example, an origin of replication or autonomously replicating sequence (ARS) and expression control sequences, a promoter, an enhancer and

necessary processing information sites, such as ribosome-binding sites, RNA splice sites, polyadenylation sites, transcriptional terminator sequences, and mRNA stabilizing sequences. Such vectors may be prepared by means of standard recombinant techniques well known in the art and discussed, for example, in Sambrook et al. (1989) or Ausubel et al. (1992).

5

10

15

An appropriate promoter and other necessary vector sequences will be selected so as to be functional in the host, and may include, when appropriate, those naturally associated with the KVLQT1 or other gene. Examples of workable combinations of cell lines and expression vectors are described in Sambrook et al. (1989) or Ausubel et al. (1992); see also, e.g., Metzger et al. (1988). Many useful vectors are known in the art and may be obtained from such vendors as Stratagene, New England Biolabs, Promega Biotech, and others. Promoters such as the trp, lac and phage promoters, tRNA promoters and glycolytic enzyme promoters may be used in prokaryotic hosts. Useful yeast promoters include promoter regions for metallothionein, 3phosphoglycerate kinase or other glycolytic enzymes such as enolase or glyceraldehyde-3phosphate dehydrogenase, enzymes responsible for maltose and galactose utilization, and others. Vectors and promoters suitable for use in yeast expression are further described in Hitzeman et al., EP 73,675A. Appropriate non-native mammalian promoters might include the early and late promoters from SV40 (Fiers et al., 1978) or promoters derived from murine Molony leukemia virus, mouse tumor virus, avian sarcoma viruses, adenovirus II, bovine papilloma virus or polyoma. Insect promoters may be derived from baculovirus. In addition, the construct may be joined to an amplifiable gene (e.g., DHFR) so that multiple copies of the gene may be made. For appropriate enhancer and other expression control sequences, see also Enhancers and Eukaryotic Gene Expression, Cold Spring Harbor Press, Cold Spring Harbor, New York (1983). See also, e.g., U.S. Patent Nos. 5,691,198; 5.735,500; 5,747,469 and 5,436,146.

20

While such expression vectors may replicate autonomously, they may also replicate by being inserted into the genome of the host cell, by methods well known in the art.

25

30

Expression and cloning vectors will likely contain a selectable marker, a gene encoding a protein necessary for survival or growth of a host cell transformed with the vector. The presence of this gene ensures growth of only those host cells which express the inserts. Typical selection genes encode proteins that a) confer resistance to antibiotics or other toxic substances, e.g. ampicillin, neomycin, methotrexate, etc., b) complement auxotrophic deficiencies, or c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine

10

15

20

25

30

racemase for *Bacilli*. The choice of the proper selectable marker will depend on the host cell, and appropriate markers for different hosts are well known in the art.

The vectors containing the nucleic acids of interest can be transcribed *in vitro*, and the resulting RNA introduced into the host cell by well-known methods, e.g., by injection (see, Kubo et al. (1988)), or the vectors can be introduced directly into host cells by methods well known in the art, which vary depending on the type of cellular host, including electroporation; transfection employing calcium chloride, rubidium chloride calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; infection (where the vector is an infectious agent, such as a retroviral genome); and other methods. See generally, Sambrook et al. (1989) and Ausubel et al. (1992). The introduction of the polynucleotides into the host cell by any method known in the art, including, *inter alia*, those described above, will be referred to herein as "transformation." The cells into which have been introduced nucleic acids described above are meant to also include the progeny of such cells.

Large quantities of the nucleic acids and polypeptides of the present invention may be prepared by expressing the *KVLQT1* nucleic acid or portions thereof in vectors or other expression vehicles in compatible prokaryotic or eukaryotic host cells. The most commonly used prokaryotic hosts are strains of *Escherichia coli*, although other prokaryotes, such as *Bacillus subtilis* or *Pseudomonas* may also be used.

Mammalian or other eukaryotic host cells, such as those of yeast, filamentous fungi, plant, insect, or amphibian or avian species, may also be useful for production of the proteins of the present invention. Propagation of mammalian cells in culture is *per se* well known. See, Jakoby and Pastan (eds.) (1979). Examples of commonly used mammalian host cell lines are VERO and HeLa cells. Chinese hamster ovary (CHO) cells, and WI38, BHK, and COS cell lines, although it will be appreciated by the skilled practitioner that other cell lines may be appropriate, e.g., to provide higher expression, desirable glycosylation patterns, or other features. An example of a commonly used insect cell line is SF9.

Clones are selected by using markers depending on the mode of the vector construction. The marker may be on the same or a different DNA molecule, preferably the same DNA molecule. In prokaryotic hosts, the transformant may be selected, e.g., by resistance to ampicillin, tetracycline or other antibiotics. Production of a particular product based on temperature sensitivity may also serve as an appropriate marker.

Prokaryotic or eukaryotic cells transformed with the polynucleotides of the present invention will be useful not only for the production of the nucleic acids and polypeptides of the present invention, but also, for example, in studying the characteristics of KVLQT1 or other polypeptides.

5

The probes and primers based on the *KVLQT1* or other gene sequences disclosed herein are used to identify homologous *KVLQT1* or other gene sequences and proteins in other species. These gene sequences and proteins are used in the diagnostic/prognostic, therapeutic and drug screening methods described herein for the species from which they have been isolated.

10

15

20

The studies described in the Examples below resulted in the determination of many novel mutations. Previous studies had defined 126 distinct disease causing mutations in the LQTS genes KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 (Wang Q. et al., 1996a; Curran et al., 1995; Wang et al., 1995a; Splawski et al., 1997a; Abbott et al., 1999; Chouabe et al., 1997; Wollnik et al., 1997; Neyroud et al., 1997; Splawski et al., 1997b; Tyson et al., 1997; Schulze-Bahr et al., 1997; Priori et al., 1999; Splawski et al., 1998; Wang et al., 1995b; Russell et al., 1996; Neyroud et al., 1998; Neyroud et al., 1999; Donger et al., 1997; Tanaka et al., 1997; Jongbloed et al., 1999; Priori et al., 1998; Itoh et al., 1998a; Itoh et al., 1998b; Mohammad-Panah et al., 1999; Saarinen et al., 1998; Ackerman et al., 1998; Berthet et al., 1999; Kanters, 1998; van den Berg et al., 1997; Dausse et al., 1996; Benson et al., 1996; Akimoto et al., 1998; Satler et al., 1996; Satler et al., 1998; Makita et al., 1998, An et al., 1998; Schulze-Bahr et al., 1995; Duggal et àl., 1998; Chen Q. et al., 1999; Li et al., 1998; Wei et al., 1999; Larsen et al., 1999a; Bianchi et al., 1999; Ackerman et al., 1999a; Ackerman et al., 1999b; Murray et al., 1999; Larsen et al., 1999b; Yoshida et al., 1999; Wattanasirichaigoon et al., 1999; Bezzina et al., 1999; Hoorntje et al., 1999). The sequence of each wild-type gene has been published. The KVLQT1 can be found in Splawski et al. (1998) and the coding region of the cDNA is shown herein as SEQ ID NO:1 and the encoded KVLQT1 is shown as SEQ ID NO:2. SCN5A was reported by Gellens et al. (1992) and its sequence is provided by GenBank Accession No. NM_000335. The coding sequence of SCN5A is shown herein as SEQ ID NO:3 and the encoded SCN5A is shown as SEQ ID NO:4. Most of the mutations were found in KVLQT1 (Yoshida et al., 1999) and HERG (Itoh et al., 1998b), and fewer in SCN5A (Wang Q. et al., 1996a), KCNE1 (Jiang et al., 1994) and KCNE2 (Ward, 1964). These mutations were identified in regions with known intron/exon structure, primarily the transmembrane and pore domains. In this study, we screened 262 individuals with

30

16

LQTS for mutations in all known arrhythmia genes. We identified 134 mutations, 80 of which were novel. Together with 43 mutations reported in our previous studies, we have now identified 177 mutations in these 262 LQTS individuals (68%). The failure to identify mutations in 32% of the individuals may result from phenotypic errors, incomplete sensitivity of SSCP or presence of mutations in regulatory sequences. However, it is also clear that additional LQTS genes await discovery (Jiang et al., 1994; Schott et al., 1995).

5

10

15

20

25

30

Missense mutations were most common (72%), followed by frameshift mutations (10%), in-frame deletions, nonsense and splice site mutations (5-7% each). Most mutations resided in intracellular (52%) and transmembrane (30%) domains; 12% were found in pore and 6% in extracellular segments. One hundred one of the 129 distinct LQTS mutations (78%) were identified in single families or individuals. Most of the 177 mutations were found in *KVLQT1* (75 or 42%) and *HERG* (80 or 45%). These two genes accounted for 87% of the identified mutations, while mutations in *SCN5A* (14 or 8%), *KCNE1* (5 or 3%) and *KCNE2* (3 or 2%) accounted for the other 13%.

Multiple mutations were found in regions encoding S5, S5/P, P and S6 of KVLQT1 and HERG. The P region of potassium channels forms the outer pore and contains the selectivity filter (Doyle et al., 1998). Transmembrane segment 6, corresponding to the inner helix of KcsA, forms the inner 2/3 of the pore. This structure is supported by the S5 transmembrane segment, corresponding to the outer helix of KcsA, and is conserved from prokaryotes to eukaryotes ((MacKinnon et al., 1998). Mutations in these regions will likely disrupt potassium transport. Many mutations were identified in the C-termini of KVLQT1 and HERG. Changes in the C-terminus of HERG could lead to anomalies in tetramerization as it has been proposed that the C-terminus of eag, which is related to HERG, is involved in this process (Ludwig et al, 1994).

Multiple mutations were also identified in regions that were different for *KVLQT1* and *HERG*. In *KVLQT1*, multiple mutations were found in the sequences coding for the S2/S3 and S4/S5 linkers. Coexpression of S2/S3 mutants with wild-type KVLQT1 in *Xenopus* oocytes led to simple loss of function or dominant-negative effect without significantly changing the biophysical properties of I_{Ks} channels (Chouabe et al., 1997; Shalaby et al., 1997; Wang et al., 1999). On the other hand, S4/S5 mutations altered the gating properties of the channels and modified KVLQT1 interactions with minK subunits (Wang et al., 1999; Franqueza et al., 1999).

10

15

20

25

In *HERG*, more than 20 mutations were identified in the N-terminus. HERG channels lacking this region deactivate faster and mutations in the region had a similar effect (Chen J. et al., 1999).

Mutations in *KCNE1* and *KCNE2*, encoding minK and MiRP1, the respective I_{Ks} and I_{Kr} β -subunits, altered the biophysical properties of the channels (Splawski et al., 1997a; Abbott et al., 1999; Sesti and Goldstein, 1998). A MiRP1 mutant, involved in clarithromyocin-induced arrhythmia, increased channel blockade by the antibiotic (Abbott et al., 1999). Mutations in *SCN5A*, the sodium channel α -subunit responsible for cardiac I_{Na} , destabilized the inactivation gate causing delayed channel inactivation and dispersed reopenings (Bennett et al., 1995; Dumaine et al., 1996; Wei et al., 1999; Wang DW et al., 1996). One SCN5A mutant affected the interactions with the sodium channel β -subunit (An et al., 1998).

It is interesting to note that probands with KCNE1 and KCNE2 mutations were older and had shorter QTc than probands with the other genotypes. The significance of these differences is unknown, however, as the number of probands with KCNE1 and KCNE2 genotypes was small.

This catalogue of mutations will facilitate genotype-phenotype analyses. It also has clinical implications for presymptomatic diagnosis and, in some cases, for therapy. Patients with mutations in *KVLQT1*, *HERG*, *KCNE1* and *KCNE2*, for example, may benefit from potassium therapy (Compton et al., 1996). Sodium channel blockers, on the other hand, might be helpful in patients with *SCN5A* mutations (Schwartz et al. (1995). The identification of mutations is of importance for ion channel studies as well. The expression of mutant channels in heterologous systems can reveal how structural changes influence the behavior of the channel or how mutations affect processing (Zhou et al., 1998; Furutani et al., 1999). These studies improve our understanding of channel function and provide insights into mechanisms of disease. Finally, mutation identification will contribute to the development of genetic screening for arrhythmia susceptibility.

The present invention is described by reference to the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well known in the art or the techniques specifically described in the Examples were utilized.

18

Example 1

Ascertainment and Phenotyping

Individuals were ascertained in clinics from North America and Europe. Individuals were evaluated for LQTS based on QTc (the QT interval corrected for heart rate) and for the presence of symptoms. In this study, we focused on the probands. Individuals show prolongation of the QT interval (QTc≥460 ms) and/or documented *torsade de pointes*, ventricular fibrillation, cardiac arrest or aborted sudden death. Informed consent was obtained in accordance with local institutional review board guidelines. Phenotypic data were interpreted without knowledge of genotype. Sequence changes altering coding regions or predicted to affect splicing that were not detected in at least 400 control chromosomes were defined as mutations. No changes except known polymorphisms were detected ina ny of the genes in the control population. This does not exclude the possibility that some mutations are rare variants not associated with disease.

5

10

15

20

25

Example 2

Mutational Analyses

To determine the spectrum of LQTS mutations, we used SSCP (Single Stand Conformation Polymorphism) and DNA sequence analyses to screen 262 unrelated individuals with LQTS. Seventeen primer pairs were used to screen *KVLQT1* (Splawski et al., 1998), twenty-one primer pairs were used for *HERG* (Splawski et al., 1998) and three primer pairs were used for *KCNE1* (Splawski et al., 1997a) and *KCNE2* (Abbott et al., 1999). Thirty-three primer pairs (Wang Q. et al., 1996b) were used in SSCP analysis to screen all *SCN5A* exons in 50 individuals with suspected abnormalities in I_{Na} . Exons 23-28, in which mutations were

Gender, age, QTc and presence of symptoms are summarized in Table 1. The average age at ascertainment was 29 with a corrected QT interval of 492 ms. Seventy-five percent had a history of symptoms and females predominated with an ~ 2:1 ratio. Although the numbers were small, corrected QT intervals for individuals harboring KCNE1 and KCNE2 mutations were shorter at 457 ms.

previously identified, were screened in all 262 individuals.

<u>Table 1</u>
Age, QTc, Gender and Presence of Symptoms

Genotype	Age*, y	Gender (F/M)	QTc, ms	-Symptoms [†]
	(mean±SD)		(mean±SD)	
KVLQT1	32 ± 19	52/23	493 ± 45	78%
HERG	31 ± 19	51/29	498 ± 48	71%
SCN5A	32 ± 24	8/6	511 ± 42	55%
KCNE1	43 ± 16	3/2	457 ± 25	40%
KCNE2	54 ± 20	3/0	457 ± 05	67%
unknown	25 ± 16	56/29	484 ± 46	81%
all	29 ± 19	173/89	492 ± 47	75%

^{* -} age at ascertainment

The SSCP analyses revealed many mutations. *KVLQT1* mutations associated with LQTS were identified in 52 individuals (Figure 1 and Table 2). Twenty of the mutations were novel. *HERG* mutations were identified in 68 LQTS individuals (Figure 2 and Table 3). Fifty-two of these mutations were novel. *SCN5A* mutations were identified in eight cases (Figure 3 and Table 4). Five of the mutations were novel. Three novel *KCNE1* mutations were identified (Figure 4 and Table 5) and three mutations were identified in *KCNE2* (Figure 5 and Table 6) (Abbott et al., 1999). None of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* and *KCNE2* mutations was observed in 400 control chromosomes.

<u>Table 2</u>
<u>Summary of All KVLQT1 Mutations</u>

Nucleotide Change [†]	Coding Effect	Position	Exon	Number of	Study
del211-219	4-171 72	NI tomoimus	1	families [‡]	A.l. 1000
A332G †	del71-73 Y111C	N-terminus N-terminus	1	1	Ackerman et al., 1999a This

10

5

15

20

^{† -} symptoms include syncope, cardiac arrest or sudden death

25	Nucleotide	Coding	Position	Exon	Number	Study
	Change [†]	Effect			of	:
					families [‡]	
	del451-452	A150fs/132	S2	2	1 JLN	Chen Q. et al., 1999
	T470G	F157C	S2	1	1	Larsen et al., 1999a
	G477+1A	M159sp	S2	2	1 JLN,	This; Donger et al., 1997
					1 UK	
	G477+5A	M159sp	S2	1	1	Ackerman et al., 1999b
5	G478A †	E160K	S 2	3	1	This
	del500-502	F167W/del	S2	3	1	Wang Q. et al., 1996a
	•	G168				
	G502A	G168R	S2	3	7	This; Splawski et al.,
	:					1998; Donger et al., 1997
	C520T	R174C	S2/S3	3	1	Donger et al., 1997
	G521A †	R174H	S2/S3	3	1	This
10	G532A	A178T	S2/S3	3	1	Tanaka et al., 1997
	G532C	A178P	S2/S3	3	1	Wang Q. et al., 1996a
	G535A †	G179S	S2/S3	3	1	This
	A551C	Y184S	S2/S3	3	2	This; Jongbloed et al.,
						1999
	G565A	G189R	S2/S3	3	3	Wang Q. et al., 1996a;
	*	,				Jongbloed et al., 1999
15	insG567-	G189fs/94	S2/S3	3	1 (RW +	Splawski et al., 1997b
	568				JLN)	
	G569A	R190Q	S2/S3	3	2	Splawski et al., 1998;
						Donger et al., 1997
	del572-576	L191fs/90	S2/S3	3	1 JLN,	Tyson et al., 1997;
		,			1 RW	Ackerman et al., 1999b
					2 (JLN +	
					RW)	

25	Nucleotide	Coding	Position	Exon	Number	Study
	Change [†]	Effect			of	
					families [‡]	
	G580C †	A194P	S2/S3	3	1	This
	C674T	S225L	S4	.4	2	This; Priori et al., 1999
: 1	G724A	D242N	S4/S5	5	1	Itoh et al., 1998b
	C727T†	R243C	S4/S5	5	.2	This
5	G728A	R243H	S4/S5	5	1 JLN	Saarinen et al., 1998
	T742C†	W248R	S4/S5	5	1	This
	T749A	L250H	S4/S5	5	1	Itoh et al., 1998a
	G760A	V254M	S4/S5	5	4	This; Wang Q. et al.,
		,				1996a; Donger et al.,
						1997
	G781A	E261K	S4/S5	6	1	Donger et al., 1997
10	T797C†	L266P	S 5	6	1	This
	G805A	G269S	S 5	6	1	Ackerman et al., 1999b
	G806A	G269D	S 5	6	3	This; Donger et al., 1997
	C817T	L273F	S 5	6	. 2	This; Wang Q. et al.,
						1996a
	A842G	Y281C	S 5	6	1	Priori et al., 1999
15 .	G898A	A300T	S5/Pore	6	1	Priori et al., 1998
`	* G914C	W305S	Pore	6	1 JLN	Chouabe et al., 1997
	G916A	G306R	Pore	6	1	Wang Q. et al, 1996a
	del921-	V307sp	Pore	6	1	Li et al., 1998
	(921+2)				·	
20	G921+1T†	V307sp	Pore	6	1	This
	A922-2C†	V307sp	Pore	7	1	This
	G922-1C	V307sp	Pore	7	1	Murray et al., 1999
	C926G	T309R	Pore	7	1	Donger et al., 1997

25	Nucleotide	Coding	Position	Exon	Number	Study
4	Change [†]	Effect		*	of	٠.
					families [‡]	
	G928A †	V310I	Pore	7	1	This
	C932T	T311I	Pore	7	1	Saarinen et al., 1998
•	C935T	T312I	Pore	7	2	This; Wang Q. et al.,
						1996a
	C939G	I313M	Pore	7	1	Tanaka et al., 1997
5	G940A	G314S	Pore	7	7	Splawski et al., 1998;
						Russell et al., 1996;
						Donger et al., 1997;
						Jongbloed et al., 1999;
						Itoh et al., 1998b
	A944C	Y315S	Pore	7	3	Donger et al., 1997;
						Jongbloed et al., 1999
	A944G	Y315C	Pore	7	2	Priori et al., 1999;
						Splawski et al., 1998
	G949A	D317N	Pore	7	2	Wollnik et al., 1997;
			•			Saarinen et al., 1998
	G954C	K318N	Pore	7	1 .	Splawski et al., 1998
10	C958G	P320A	Pore	7	1	Donger et al., 1997
	³ G973A	G325R	S 6	7	4	This; Donger et al., 1997;
						Tanaka et al., 1997
	del1017-	delF340	S6	. 7	.2	This; Ackerman et al.,
	1019					1998
	C1022A	A341E	S6	7	5	This; Wang Q. et al.,
						1996a; Berthet et al., 1999

25	Nucleotide	Coding	Position	Exon	Number	Study
	Change⁺	Effect			of	
					families [‡]	
	C1022T	A341V	\$6	7	7	This; Wang Q. et al.,
				·		1996a; Russell et al.,
						1996; Donger et al., 1997;
						Li et al., 1998
,	C1024T	L342F	S6	7	1	Donger et al., 1997
	C1031T	A344V	S6	7	1.	Donger et al., 1997
	G1032A	A344sp	S6	7	9	This; Kanters, 1998; Li et
				•		al., 1998; Ackerman et al.,
						1999b; Murray et al.,
		•				1999
5	G1032C	A344sp	S6	7	1	Murray et al., 1999
	G1033C	G345R	S6	8	1	van den Berg et al., 1997
	G1034A	G345E	S6	8	1	Wang Q. et al., 1996a
	C1046G †	S349W	S6	8	1	This
	T1058C	L353P	S6	8	1	Splawski et al., 1998
10	C1066T †	Q356X	C-terminus	8	1	This
	C1096T	R366W	C-terminus	8	1	Splawski et al., 1998
	G1097A †	R366Q	C-terminus	8	1	This
	. G1097C	R366P	C-terminus	8	1	Tanaka et al., 1997
	G1111A	A371T	C-terminus	8	1	Donger et al., 1997
15	T1117C	S373P	C-terminus	8	1	Jongbloed et al., 1999
	C1172T †	T391I	C-terminus	9	1	This
	T1174C	W392R	C-terminus	9	1	Jongbloed et al., 1999
	C1343G †	P448R	C-terminus	10	2	This
	C1522T	R518X	C-terminus	12	1 JLN,	This; Larsen et al., 1999
					3 RW	

25	Nucleotide	Coding	Position	Exon	Number	Study
	Change [†]	Effect			of	
·					families [‡]	
	G1573A	A525T	C-terminus	12	1	Larsen et al., 1999b
	C1588T †	Q530X	C-terminus	12	1 JLN,	This
		j - I	-		1 RW	
	C1615T	R539W	C-terminus	13	1	Chouabe et al., 1997
	del6/ins7	E543fs/107	C-terminus	13	1 JLN	Neyroud et al., 1997
5	C1663T	R555C	C-terminus	13	3	Donger et al., 1997
	C1697T †	S566F	C-terminus	14	3	This
	C1747T†	R583C	C-terminus	15	1	This
	C1760T	T587M	C-terminus	15	1 JLN,	Donger et al., 1997;
					1 RW	Itoh et al., 1998b
	G1772A	R591H	C-terminus	15	1	Donger et al., 1997
10	G1781A †	R594Q	C-terminus	15	3	This
	del1892-	P630fs/13	C-terminus	16	1 JLN	Donger et al., 1997
	1911					
	insC1893-	P631fs/19	C-terminus	16	1	Donger et al., 1997
	1894					

• - ins denotes insertion; del denotes deletion; sp denotes the last unaffected amino acid before the predicted splice mutation; fs denotes the last amino acid unaffected by a frameshift, following fs is the number of amino acids before termination; X denotes a stop codon occurred.

^{† -} denotes novel mutation

^{‡ -} Number of Romano-Ward families unless otherwise indicated (UK - unknown)

<u>Table 3</u> <u>Summary of All HERG Mutations</u>

	Nucleotide	Coding	Position	Exon	Number	Study
	Change	Effect			of RW	
					Families	
5	C87A †	F29L	N-terminus	2	1	This
	A98C †	N33T	N-terminus	2	2	This
	C132A †	C44X	N-terminus	2	1	This
	G140T†	G47V	N-terminus	2	. 1	This
:	G157C†	G53R	N-terminus	2 ·	1	This
10	G167A†	R56Q	N-terminus	2	1	This
	T196G†	C66G	N-terminus	2	1	This
	A209G†	H70R	N-terminus	2	2	This
	- C215A †	P72Q	N-terminus	2	2	This
	del221-251 †	R73fs/31	N-terminus	2	1	This
15	G232C†	A78P	N-terminus	2	1	This
	dupl234-250†	A83fs/37	N-terminus	2	1	This
	C241T †	Q81X	N-terminus	2	1	This
	T257G †	L86R	N-terminus	2	1	This
	insC422-423†	P141fs/2	N-terminus	3	1	This
20	insC453-454†	P151fs/	N-terminus	3	1	This
	*	179	·			
	dupl558-600	L200fs/	N-terminus	4	1	Hoorntje et al., 1999
		144				
	insC724-725†	P241fs/89	N-terminus	4	1 .	This
	de1885 †	V295fs/63	N-terminus	4	1	This
	C934T †	R312C	N-terminus	5	1	This
25	C1039T†	P347S	N-terminus	5	1	This
	G1128A †	Q376sp	N-terminus	5	1	This

,	Nucleotide	Coding	Position	Exon	Number	Study
	Change	Effect			of RW	
				-	Families	
	A1129-2G †	Q376sp	N-terminus	6	1	This
	del1261	Y420fs/12	S1	6	1	Curran et al., 1995
	C1283A	S428X	S1/S2	6	1	Priori et al., 1999
	C1307T	T436M	S1/S2	6	1	Priori et al., 1999
5	A1408G	N470D	S2	6	1	Curran et al., 1995
	C1421T	T474I	S2/S3	6	1	Tanaka et al., 1997
	C1479G	Y493X	S2/S3	6	1	Itoh et al., 1998a
	del1498-1524	del500-	S3	6	1	Curran et al., 1995
		508				
	G1592A †	R531Q	S4	7	. 1	This
0	C1600T	R534C	S4	7	1	Itoh et al., 1998a
	T1655C †	L552S	S 5	7	1	This
	delT1671	T556fs/7	S5	7	1	Schulze-Bahr et al., 1995
	G1672C	A558P	S5	7	1	Jongbloed et al., 1999
	G1681A	A561T	S5	7	4	This; Dausse et al., 1996
5	C1682T	A561V	S5	7	4	This; Curran et al., 1995;
						Priori et al., 1999
	G1714C	G572R	S5/Pore	7	1	Larsen et al., 1999a
	* G1714T	G572C	S5/Pore	7	1	Splawski et al., 1998
	C1744T	R582C	S5/Pore	7	1	Jongbloed et al., 1999
	G1750A †	G584S	S5/Pore	7	1	This
0	G1755T †	W585C	S5/Pore	7	1	This
	A1762G	N588D	S5/Pore	7	1	Splawski et al., 1998
	T1778C †	1593T	S5/Pore	7	1	This
	T1778G	I593R	S5/Pore	7	1	Benson et al., 1996
	G1801A	G601S	S5/Pore	7	1	Akimoto et al., 1998

					
Nucleotide	Coding	Position	Exon	Number	Study
Change	Effect			of RW	·
				Families	
G1810A	G604S	S5/Pore	7	2	This; Jongbloed et al.,
					1999
G1825A †	D609N	S5/Pore	7	1	This
T1831C	Y611H	S5/Pore	7.	1	Tanaka et al., 1997
T1833 (A or	Y611X	S5/Pore	7	1	Schulze-Bahr et al., 1995
G)					·
G1834T	V612L	Pore	7	1	Satler et al., 1998
C1838T	T613M	Pore	7	4	This; Jongbloed et al.,
					1999
C1841T	A614V	Pore	7	. 6	Priori et al., 1999;
					Splawski et al., 1998;
					Tanaka et al., 1997;
					Satler et al., 1998
C1843G †	L615V	Pore	7	1	This
G1876A †	G626S	Pore	7	1	This
C1881G †	F627L	Pore	7	1	This
G1882A	G628S	Pore	7	2	This; Curran et al., 1995
A1885G	N629D	Pore	7	1	Satler et al., 1998
. A1886G	N629S	Pore	7	1	Satler et al., 1998
C1887A	N629K	Pore	7	1	Yoshida et al., 1999
G1888C	V630L	Pore	7	1	Tanaka et al., 1997
T1889C	V630A	Pore	7	1	Splawski et al., 1998
C1894T †	P632S	Pore	7	1	This
A1898G	N633S	Pore	7	1	Satler et al., 1998
A1912G †	K638E	S6	7	1	This
del1913-1915†	delK638	S6	7	1	This

	Nucleotide	Coding	Position	Exon	Number	Study
	Change	Effect			of RW	
					Families	
	C1920A	F640L	S6	7	1	Jongbloed et al., 1999
	A1933T†	M645L	S6	7	1	This
	del1951-1952	L650fs/2	S 6	8	1	Itoh et al., 1998a
	G2044T†	E682X	S6/cNBD	8	1	This
5	C2173T	Q725X	S6/cNBD	9	1	Itoh et al., 1998a
	insT2218-	H739fs/63	S6/cNBD	9	1	This
	2219†					
	C2254T †	R752W	S6/cNBD	9	1	This
	dupl2356-2386	V796fs/22	cNBD	9	1	Itoh et al., 1998a
10	del2395 †	1798fs/10	cNBD	9	1	This
	G2398+1C	L799sp	cNBD	9	2	This; Curran et al., 1995
	T2414C †	F805S	cNBD	10	1	This
	T2414G †	F805C	cNBD	10	1	This
	C2453T	S818L	cNBD	10	1	Berthet et al., 1999
15	G2464A	V822M	cNBD	10	. 2	Berthet et al., 1999;
,		·				Satler et al., 1996
•	C2467T †	R823W	cNBD	10	2	This
	A2582T †	N861I	C-terminus	10	1	This
	* G2592+1A	D864sp	C-terminus	10	2	This; Berthet et al., 1999
	del2660 †	K886fs/85	C-terminus	11	1	This
20	C2750T †	P917L	C-terminus	12	1	This
٠	del2762 †	R920fs/51	C-terminus	12	1	This
	C2764T †	R922W	C-terminus	12	1	This
į	insG2775-	G925fs/13	C-terminus	12	1	This
	2776 †				!	
25	del2906 †	P968fs/4	C-terminus	12	1	This

Nucleotide	Coding	Position	Exon	Number	Study
Change	Effect	·		of RW	
				Families	
del2959-2960†	P986fs/	C-terminus	12	1	This
	130				
C3040T †	R1014X	C-terminus	13	2	This
del3094 †	G1031fs/	C-terminus	13	. 1	This
	24				
insG3107-	G1036fs/	C-terminus	13	1	Berthet et al., 1999
3108	82				
insC3303-	P1101fs	C-terminus	14	1	This
3304 †					

⁻ all characters same as in Table 2

15

20

<u>Table 4</u> <u>Summary of All SCN5A Mutations</u>

Nucleotide	Coding	Position	Exon	Number	Study
Change	Effect			of RW	
				Families	
G3340A †	D1114N	DII/DIII	18	1	This
C3911T	T1304M	DIII/S4	22	1	Wattanasirichaigoon et al.,
					1999
* A3974G	N1325S	DIII/S4/S5	23	1	Wang et al., 1995b
C4501G †	L1501V	DIII/DIV	26	1	This
del4511-	del1505 -	DIII/DIV	26	4	Wang et al., 1995a; Wang et
4519	1507				al., 1995b
del4850-	delF1617	DIV/S3/S4	28	1	This
4852 †					
G4868A	R1623Q	DIV/S4	28	2	This; Makita et al., 1998
G4868T †	R1623L	DIV/S4	28	1	This

Nucleotide	Coding	Position	Exon	Number	Study
Change	Effect			of RW	•
				Families	
G4931A	R1644H	DIV/S4	28	2	This; Wang et al., 1995b
C4934T	T1645M	DIV/S4	28	1	Wattanasirichaigoon et al.,
					1999
G5350A †	E1784K	C-terminus	28	2	This; Wei et al., 1999
G5360A †	S1787N	C-terminus	28	1	This
A5369G	D1790G	C-terminus	28	1	An et al., 1998
insTGA	insD1795	C-terminus	28	1	Bezzina et al., 1999
5385-5386	-1796				

^{*-} all characters same as in Table 2. Fifty individuals with suspected abnormalities in I_{Na} were screened for all SCN5A exons. All individuals were screened for exons 23-28.

<u>Table 5</u> <u>Summary of All KCNE1 Mutations*</u>

Nucleotide Change	Coding Effect	Position	Exon	Number of Families	Study
C20T	T7I	N-terminus	3	1 JLN	Schulze-
					Bahr et al.,
		,			1997
੍ਰ G95A †	R32H	N-terminus	3	1	This
G139T	V47F	S1	3	1 JLN	Bianchi et
					al., 1999
TG151-	L51H	S1	3	1 JLN	Bianchi et
152AT					al., 1999
A172C/TG	TL58-59PP	S1	3	1 JLN	Tyson et al.,
176-177CT					1997
C221T	S74L	C-terminus	3	1	Splawski et
					al., 1997a

10

15

10

Nucleotide Change	Coding Effect	Position	Exon	Number of Families	Study
G226A	D76N	C-terminus	3	1 JLN,	Splawski et
	·	,		1 RW,	al., 1997a;
				1 (JLN + RW)	Tyson et al.,
					1997;
					Duggal et
					al., 1998
T259C	W87R	C-terminus	3	1	Bianchi et
					al., 1999
C292T †	R98W	C-terminus	3	1	This
C379A †	P127T	C-terminus	3	1	This

^{* -} all characters same as in Table 2

<u>Table 6</u> <u>Summary of All KCNE2 Mutations</u>

Nucleotide Change	Coding Effect	Position	Exon	Number of Families	Study
C25G	Q9E	N-terminus	1	1	Abbott et al., 1999
* T161T	M54T	S1	1	1 .	Abbott et al., 1999
T170C	I57T	S1	1	1	Abbott et al., 1999

32

<u>Table 7</u>
<u>Mutations by Type</u>

Туре	KVLQT1	HERG	SCN5A	KCNE1	KCNE2	Total
Missense	59	52	9	5	3	128
Nonsense	6	5	0	0	0	11
AA deletion	2	2	5	0	. 0	9
Frameshift	1	16	0	0	0	17
Splice	7	5	0	0	0	12
Total	75	80	14	5	3	177

⁻ AA denotes amino acid

10

15

20

25

<u>Table 8</u>
<u>Mutations by Position</u>

Gene Protein	KVLQT1 KVLQT1	HERG HERG	SCN5A SCN5A	KCNE1 minK	KCNE2 MiRP1	
Position						Total
Extracellular	0	7	1	1	1	10
Transmembrane	. 33	13	5	0	2	53
Pore	9	12	0	N/A	N/A	21
Intracellular	33	48	8	4	0	93
Total	75	80	14	5	3	177

While the invention has been disclosed in this patent application by reference to the details of preferred embodiments of the invention, it is to be understood that the disclosure is intended in an illustrative rather than in a limiting sense, as it is contemplated that modifications will readily occur to those skilled in the art, within the spirit of the invention and the scope of the appended claims.

LIST OF REFERENCES

Abbott GW, et al. (1999). Cell <u>97</u>:175-187.

Ackerman MJ, et al. (1998). Pediatr. Res. 44:148-153.

Ackerman MJ, et al. (1999a). N. Engl. J. Med. 341:1121-1125.

Ackerman MJ, et al. (1999b). Mayo Clin. Proc. 74:1088-1094.

Akimoto K, et al. (1998). Hum. Mutat. 1:S184-S186.

An RH, et al. (1998). Circ. Res. 83:141-146.

Ausubel FM, et al. (1992). <u>Current Protocols in Molecular Biology</u>, (John Wiley and Sons, New York, New York).

Barhanin J, et al. (1996). Nature 384:78-80.

Beaucage SL and Caruthers MH (1981). Tetra. Letts. 22:1859-1862.

Bennett PB, et al. (1995). Nature 376:683-685.

Benson DW, et al. (1996). Circulation 93:1791-1795.

Berthet M, et al. (1999). Circulation 99:1464-1470.

Bezzina C, et al. (1999). Circ. Res. 85:1206-1213.

Bianchi L, et al. (1999). Hum. Mol. Genet. 8:1499-1507.

Borman S (1996). Chemical & Engineering News, December 9 issue, pp. 42-43.

Cariello NF (1988). Am. J. Human Genetics 42:726-734.

Chee M, et al. (1996). Science 274:610-614.

Chen J. et al. (1999). J. Biol. Chem. 274:10113-10118.

Chen Q. et al. (1999). Circulation 99:1344-1347.

Chouabe C, et al. (1997). EMBO J. 16:5472-5479.

Compton SJ, et al. (1996). Circulation 94:1018-1022.

Conner BJ, et al. (1983). Proc. Natl. Acad. Sci. USA 80:278-282.

Cotton RG, et al. (1988). Proc. Natl. Acad. Sci. USA 85:4397-4401.

Curran ME, et al. (1995). Cell 80:795-803.

Dausse E, et al. (1996). J. Mol. Cell. Cardiol. 28:1609-1615.

DeRisi J, et al. (1996). Nat. Genet. 14:457-460.

Donger C, et al. (1997). Circulation <u>96</u>:2778-2781.

Doyle DA, et al. (1998). Science 280:69-77.

Duggal P, et al. (1998). Circulation 97:142-146.

Dumaine R, et al. (1996). Circ. Res. 78:914-924.

Editorial (1996). Nature Genetics 14:367-370.

Elghanian R, et al. (1997). Science 277:1078-1081.

Enhancers and Eukaryotic Gene Expression, Cold Spring Harbor Press, Cold Spring Harbor, New York (1983).

Fiers W, et al. (1978). *Nature* 273:113-120.

Finkelstein J, et al. (1990). Genomics 7:167-172.

Fodor SPA (1997). Science 277:393-395.

Franqueza L, et al. (1999). J. Biol. Chem. 274:21063-21070.

Furutani M, et al. (1999). Circulation 99:2290-2294.

Gellens M, et al. (1992). Proc. Natl. Acad. Sci. USA 89:554-558.

Grompe M (1993). *Nature Genetics* 5:111-117.

Grompe M, et al., (1989). Proc. Natl. Acad. Sci. USA 86:5855-5892.

Hacia JG, et al. (1996). Nature Genetics 14:441-447.

Hoomtje T, et al. (1999). Circulation 100:1264-1267.

Itoh T, et al. (1998a). Hum. Genet. 102:435-439.

Itoh T, et al. (1998b). Hum. Genet. 103:290-294.

Jakoby WB and Pastan IH (eds.) (1979). <u>Cell Culture</u>. *Methods in Enzymology* volume 58 (Academic Press, Inc., Harcourt Brace Jovanovich (New York)).

Jervell A and Lange-Nielsen F (1957). Am. Heart J. 54:59-68.

Jiang C, et al. (1994). Nat. Genet. 8:141-147.

Jongbloed RJ, et al. (1999). Hum. Mutat. 13:301-310.

Kanters J (1998). J. Cardiovasc. Electrophysiol. 9:620-624.

Keating M, et al. (1991). Science 252:704-706.

Kinszler KW, et al. (1991). Science 251:1366-1370.

Kubo T, et al. (1988). FEBS Lett. 241:119.

Larsen LA, et al. (1999a). Hum. Mutat. 13:318-327.

Larsen LA, et al. (1999b). Eur. J. Hum. Genet. 7:724-728.

Li H, et al. (1998). Circulation <u>97</u>:1264-1269.

Lipshutz RJ, et al. (1995). Biotechniques 19:442-447.

Lockhart DJ, et al. (1996). Nature Biotechnology 14:1675-1680.

Ludwig J, et al. (1994). EMBO J. 13:4451-4458.

MacKinnon R, et al. (1998). Science 280:106-109.

Makita N, et al. (1998). FEBS Lett. 423:5-9.

Matteucci MD and Caruthers MH (1981). J. Am. Chem. Soc. 103:3185.

Metzger D, et al. (1988). Nature 334:31-36.

Modrich P (1991). Ann. Rev. Genet. 25:229-253.

Mohammad-Panah R, et al. (1999). Am. J. Hum. Genet. 64:1015-1023.

Moss A, et al. (1991). Circulation 84:1136-1144.

Murray A, et al. (1999). Circulation 100:1077-1084.

Newton CR, et al. (1989). Nucl. Acids Res. 17:2503-2516.

Neyroud N, et al. (1997). Nat. Genet. 15:186-189.

Neyroud N, et al. (1998). Eur. J. Hum. Genet. 6:129-133.

Neyroud N, et al. (1999). Circ. Res. 84:290-297.

Novack DF, et al. (1986). Proc. Natl. Acad. Sci. USA 83:586-590.

Orita M, et al. (1989). Proc. Natl. Acad. Sci. USA 86:2766-2770.

Priori SG, et al. (1998). Circulation 97:2420-2425.

Priori SG, et al. (1999). Circulation 99:529-533.

Romano C, et al. (1963). Clin. Pediatr. 45:656-683.

Ruano G and Kidd KK (1989). Nucl. Acids Res. 17:8392.

Russell MW, et al. (1996). Hum. Mol. Genet. 5:1319-1324.

Saarinen K, et al. (1998). Hum. Mutat. 11:158-165.

Sambrook J, et al. (1989). Molecular Cloning: A Laboratory Manual, 2nd Ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

Sanguinetti MC, et al. (1996a). Nature <u>384</u>:80-83.

Sanguinetti MC, et al. (1996b). Proc. Natl. Acad. Sci. USA 93:2208-2212.

Satler CA, et al. (1996). Am. J. Med. Genet. 65:27-35.

Satler CA, et al. (1998). Hum. Genet. 102:265-272.

Schott J, et al. (1995). Am. J. Hum. Genet. 57:1114-1122.

Schulze-Bahr E, et al. (1995). N. Engl. J. Med. 333:1783-1784.

Schulze-Bahr E, et al. (1997). Nat. Genet. 17:267-268.

Schwartz PJ, et al. (1975). Am. Heart J. 89:378-390.

Schwartz PJ, et al. (1995). Circulation 92:3381-3386.

Sesti F and Goldstein SA (1998). J. Gen. Physiol. 112:651-663.

Shalaby FY, et al. (1997). Circulation 96:1733-1736.

Sheffield VC, et al. (1989). Proc. Natl. Acad. Sci. USA 86:232-236.

Sheffield VC, et al. (1991). Am. J. Hum. Genet. 49:699-706.

Shenk TE, et al. (1975). Proc. Natl. Acad. Sci. USA 72:989-993.

Shoemaker DD, et al. (1996). Nature Genetics 14:450-456.

Splawski I, et al. (1997a). Nat. Genet. 17:338-340.

Splawski I, et al. (1997b). N. Engl. J. Med. 336:1562-1567.

Splawski I, et al. (1998). Genomics 51:86-97.

Tanaka T, et al. (1997). Circulation 95:565-567.

Tyson J, et al. (1997). Hum. Mol. Genet. 6:2179-2185.

van den Berg MH, et al. (1997). Hum. Genet. 100:356-361.

Vetter DE, et al. (1996). Neuron 17:1251-1264.

Vincent GM, et al. (1992). N. Engl. J. Med. 327:846-852.

Wang DW (1996). Proc. Natl. Acad. Sci. USA 93:13200-13205.

Wang Q, et al. (1995a). Cell 80:805-811.

Wang Q, et al. (1995b). Hum. Mol. Genet. 4:1603-1607.

Wang Q, et al. (1996a). Nat. Genet. 12:17-23.

Wang Q, et al. (1996b). Genomics <u>34</u>:9-16.

Wang Z, et al. (1999). J. Cardiovasc. Electrophysiol. 10:817-826.

Ward OC (1964). J. Ir. Med. Assoc. 54:103-106.

Wartell RM, et al. (1990). Nucl. Acids Res. 18:2699-2705.

Wattanasirichaigoon D, et al. (1999). Am. J. Med. Genet. 86:470-476.

Wei J, et al. (1999). Circulation 99:3165-3171.

White MB, et al. (1992). Genomics 12:301-306.

Wollnik B, et al. (1997). Hum. Mol. Genet. 6:1943-1949.

Yoshida H, et al. (1999). J. Cardiovasc. Electrophysiol. 10:1262-1270.

Zhou Z, et al. (1998). J. Biol. Chem. 273:21061-21066.

Hitzeman et al., EP 73,675A.

European Patent Application Publication No. 0332435.

U.S. Patent No. 5,436,146

U.S. Patent No. 5,691,198

U.S. Patent No. 5,735,500

U.S. Patent No. 5,747,469

WHAT IS CLAIMED IS:

- An isolated DNA comprising a sequence of SEQ ID NO:1 as altered by one or more mutations selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A.
- 2. A nucleic acid probe specifically hybridizable to a human mutated *KVLQT1* and not to wild-type DNA, said mutated *KVLQT1* comprising a mutation of SEQ ID NO:1 selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A.
- 3. A method for detecting a mutation in *KVLQT1* said mutation selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A which comprises analyzing a sequence of said gene or RNA from a human sample or analyzing the sequence of cDNA made from mRNA from said sample.
- 4. The method of claim 3 wherein said mutation is detected by a method selected from the group consisting of:
 - a) hybridizing a probe specific for one of said mutations to RNA isolated from said human sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - b) hybridizing a probe specific for one of said mutations to cDNA made from RNA isolated from said sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - c) hybridizing a probe specific for one of said mutations to genomic DNA isolated from said sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;

- d) amplifying all or part of said gene in said sample using a set of primers to produce amplified nucleic acids and sequencing the amplified nucleic acids;
- e) amplifying part of said gene in said sample using a primer specific for one of said mutations and detecting the presence of an amplified product, wherein the presence of said product indicates the presence of said mutation in the sample;
- f) molecularly cloning all or part of said gene in said sample to produce a cloned nucleic acid and sequencing the cloned nucleic acid;
- g) amplifying said gene to produce amplified nucleic acids, hybridizing the amplified nucleic acids to a DNA probe specific for one of said mutations and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation;
- h) forming single-stranded DNA from a gene fragment of said gene from said human sample and single-stranded DNA from a corresponding fragment of a wild-type gene, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel and comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said sample is shifted relative to wild-type and sequencing said single-stranded DNA having a shift in mobility;
- i) forming a heteroduplex consisting of a first strand of nucleic acid selected from the group consisting of a genomic DNA fragment isolated from said sample, an RNA fragment isolated from said sample and a cDNA fragment made from mRNA from said sample and a second strand of a nucleic acid consisting of a corresponding human wild-type gene fragment, analyzing for the presence of a mismatch in said heteroduplex, and sequencing said first strand of nucleic acid having a mismatch;
- j) forming single-stranded DNA from said gene of said human sample and from a corresponding fragment of an allele specific for one of said mutations, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel and comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said sample is shifted relative to said allele, wherein no shift in electrophoretic mobility of the single-stranded DNA relative to the allele indicates the presence of said mutation in said sample; and

- k) forming a heteroduplex consisting of a first strand of nucleic acid selected from the group consisting of a genomic DNA fragment of said gene isolated from said sample, an RNA fragment isolated from said sample and a cDNA fragment made from mRNA from said sample and a second strand of a nucleic acid consisting of a corresponding gene allele fragment specific for one of said mutations and analyzing for the presence of a mismatch in said heteroduplex, wherein no mismatch indicates the presence of said mutation.
- 5. A method according to claim 4 wherein hybridization is performed in situ.
- 6. An isolated human polypeptide encoded by KVLQT1 comprising a mutation of SEQ ID NO:2 selected from the group consisting of Y111C, E160K, R174H, G179S, A194P, R243C, W248R, L266P, V307sp, V310I, S349W, Q356X, R366Q, T391I, P448R, Q530X, S566F, R583C and R594Q.
- 7. An antibody capable of binding the polypeptide of claim 6 but incapable of binding a wild-type polypeptide.
- 8. An antibody according to claim 7 wherein said antibody is a monoclonal antibody.
- 9. A method of assessing a risk in a human subject for long QT syndrome which comprises screening said subject for a mutation in *KVLQT1* by comparing the sequence of said *KVLQT1* or its expression products isolated from a tissue sample of said subject with a wild-type sequence of said *KVLQT1* or its expression products, wherein a mutation in the sequence of the subject indicates a risk for long QT syndrome.
- 10. The method of claim 9 wherein said expression product is selected from mRNA of said gene or a polypeptide encoded by said gene.

- 11. The method of claim 9 wherein one or more of the following procedures is carried out:
 - (a) observing shifts in electrophoretic mobility of single-stranded DNA from said sample on non-denaturing polyacrylamide gels;
 - (b) hybridizing a probe to genomic DNA isolated from said sample under conditions suitable for hybridization of said probe to said gene;
 - (c) determining hybridization of an allele-specific probe to genomic DNA from said sample;
 - (d) amplifying all or part of said gene from said sample to produce an amplified sequence and sequencing the amplified sequence;
 - (e) determining by nucleic acid amplification the presence of a specific mutant allele in said sample;
 - (f) molecularly cloning all or part of said gene from said sample to produce a cloned sequence and sequencing the cloned sequence;
 - (g) determining whether there is a mismatch between molecules (1) said gene genomic DNA or mRNA isolated from said sample, and (2) a nucleic acid probe complementary to the human wild-type gene DNA, when molecules (1) and (2) are hybridized to each other to form a duplex;
 - (h) amplification of said gene sequences in said sample and hybridization of the amplified sequences to nucleic acid probes which comprise wild-type gene sequences;
 - (i) amplification of said gene sequences in said tissue and hybridization of the amplified sequences to nucleic acid probes which comprise said mutant gene sequences;
 - (j) screening for a deletion mutation;
 - (k) screening for a point mutation;
 - (1) screening for an insertion mutation;
 - (m) determining in situ hybridization of said gene in said sample with one or more nucleic acid probes which comprise said gene sequence or a mutant sequence of said gene;
 - (n) immunoblotting;
 - (o) immunocytochemistry;

- (p) assaying for binding interactions between said gene protein isolated from said tissue and a binding partner capable of specifically binding the polypeptide expression product of a mutant allele and/or a binding partner for the polypeptide; and
- (q) assaying for the inhibition of biochemical activity of said binding partner.
- A nucleic acid probe which hybridizes to the isolated DNA of claim 1 under conditions at which it will not hybridize to wild-type DNA.
 - 13. A method for diagnosing a mutation which causes long QT syndrome comprising hybridizing a probe of claim 12 to a patient's sample of DNA or RNA, the presence of a hybridization signal being indicative of long QT syndrome.
 - 14. A method according to claim 13 wherein the patient's DNA or RNA has been amplified and said amplified DNA or RNA is hybridized with a probe of claim 12.
 - 15. A method according to claim 13 wherein said hybridization is performed in situ.
 - 16. A method according to claim 13 wherein said assay is performed using nucleic acid microchip technology.
 - 17. A method for diagnosing a mutation which causes long QT syndrome comprising amplifying a region of gene or RNA for *KVLQT1* and sequencing the amplified gene or RNA wherein long QT syndrome is indicated by any one or more mutations selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A.
 - 18. A method for diagnosing a mutation which causes long QT syndrome comprising identifying a mismatch between a patient's DNA or RNA and a wild-type DNA or RNA probe wherein said probe hybridizes to a region of DNA or RNA wherein said region comprises a mutation of SEQ ID NO:1 selected from the group consisting of A332G.

- G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A.
- 19. The method of claim 18 wherein the mismatch is identified by an RNase assay.
- 20. A method for diagnosing long QT syndrome said method consisting of an assay for the presence of mutant KVLQT1 polypeptide in a patient by reacting a patient's sample with an antibody of claim 7, the presence of a positive reaction being indicative of long QT syndrome.
- 21. The method of claim 20 wherein said assay comprises immunoblotting.
- 22. The method of claim 20 wherein said assay comprises an immunocytochemical technique.
- 23. A method for diagnosing long QT syndrome, said method comprising analyzing a KVLQT1 polypeptide, a mutation in said polypeptide being indicative of long QT syndrome wherein said mutation is a mutation selected from the group consisting of Y111C, E160K, R174H, G179S, A194P, R243C, W248R, L266P, V307sp, V310I, S349W, Q356X, R366Q, T391I, P448R, Q530X, S566F, R583C and R594Q.
- 24. A method to screen for drugs which are useful in treating a person with a mutation in KVLQT1 wherein said mutation is selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A, said method comprising:
 - a) placing a first set of cells expressing KVLQT1 with a mutation, wherein said mutation is selected from the group consisting of Y111C, E160K, R174H, G179S, A194P, R243C, W248R, L266P, V307sp, V310I, S349W, Q356X, R366Q, T391I, P448R, Q530X, S566F, R583C and R594Q, into a bathing solution;
 - b) inducing a first induced K⁺ current in the cells of step (a);
 - c) measuring said first induced K⁺ current;

- d) placing a second set of cells expressing wild-type KVLQT1 into a bathing solution
- e) inducing a second induced K⁺ current in the cells of step (d);
- f) measuring said second induced K⁺ current;
- g) adding a drug to the bathing solution of step (a);
- h) inducing a third induced K⁺ current in the cells of step (g);
- i) measuring said third induced K⁺ current; and
- j) determining whether the third induced K^+ current is more similar to the second induced K^+ current than is the first induced K^+ current, wherein drugs resulting in a third induced K^+ current which is closer to the second induced K^+ current than is the first induced K^+ current are useful in treating said persons.
- 25. An isolated DNA encoding a KVLQT1 polypeptide of SEQ ID NO:2 having a mutation selected from the group consisting of Y111C, E160K, R174H, G179S, A194P, R243C, W248R, L266P, V307sp, V310I, S349W, Q356X, R366Q, T391I, P448R, Q530X, S566F, R583C and R594Q.
- 26. An isolated DNA comprising a sequence of SEQ ID NO:3 as altered by one or more mutations selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A.
- A nucleic acid probe specifically hybridizable to a human mutated *SCN5A* and not to wild-type DNA, said mutated *SCN5A* comprising a mutation of SEQ ID NO:3 selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A.
- 28. A method for detecting a mutation in SCN5A said mutation selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A which comprises analyzing a sequence of said gene or RNA from a human sample or analyzing the sequence of cDNA made from mRNA from said sample.

- 29. The method of claim 28 wherein said mutation is detected by a method selected from the group consisting of:
 - a) hybridizing a probe specific for one of said mutations to RNA isolated from said human sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - b) hybridizing a probe specific for one of said mutations to cDNA made from RNA isolated from said sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - c) hybridizing a probe specific for one of said mutations to genomic DNA isolated from said sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - d) amplifying all or part of said gene in said sample using a set of primers to produce amplified nucleic acids and sequencing the amplified nucleic acids;
 - e) amplifying part of said gene in said sample using a primer specific for one of said mutations and detecting the presence of an amplified product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - f) molecularly cloning all or part of said gene in said sample to produce a cloned nucleic acid and sequencing the cloned nucleic acid;
 - g) amplifying said gene to produce amplified nucleic acids, hybridizing the amplified nucleic acids to a DNA probe specific for one of said mutations and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation;
 - h) forming single-stranded DNA from a gene fragment of said gene from said human sample and single-stranded DNA from a corresponding fragment of a wild-type gene, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel and comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said sample is shifted relative to wild-type and sequencing said single-stranded DNA having a shift in mobility;
 - i) forming a heteroduplex consisting of a first strand of nucleic acid selected from the group consisting of a genomic DNA fragment isolated from said sample, an RNA fragment isolated from said sample and a cDNA fragment made from mRNA from said

sample and a second strand of a nucleic acid consisting of a corresponding human wildtype gene fragment, analyzing for the presence of a mismatch in said heteroduplex, and sequencing said first strand of nucleic acid having a mismatch;

- j) forming single-stranded DNA from said gene of said human sample and from a corresponding fragment of an allele specific for one of said mutations, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel and comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said sample is shifted relative to said allele, wherein no shift in electrophoretic mobility of the single-stranded DNA relative to the allele indicates the presence of said mutation in said sample; and
- k) forming a heteroduplex consisting of a first strand of nucleic acid selected from the group consisting of a genomic DNA fragment of said gene isolated from said sample, an RNA fragment isolated from said sample and a cDNA fragment made from mRNA from said sample and a second strand of a nucleic acid consisting of a corresponding gene allele fragment specific for one of said mutations and analyzing for the presence of a mismatch in said heteroduplex, wherein no mismatch indicates the presence of said mutation.
- 30. A method according to claim 29 wherein hybridization is performed in situ.
- 31. An isolated human polypeptide encoded by *SCN5A* comprising a mutation of SEQ ID NO:4 selected from the group consisting of D1114N, L1501V, delF1617, R1623L, E1784K and S1787N.
- 32. An antibody capable of binding the polypeptide of claim 31 but incapable of binding a wild-type polypeptide.
- 33. An antibody according to claim 32 wherein said antibody is a monoclonal antibody.
- 34. A method of assessing a risk in a human subject for long QT syndrome which comprises screening said subject for a mutation in SCN5A by comparing the sequence of said

SCN5A or its expression products isolated from a tissue sample of said subject with a wild-type sequence of said SCN5A or its expression products, wherein a mutation in the sequence of the subject indicates a risk for long QT syndrome.

- 35. The method of claim 34 wherein said expression product is selected from mRNA of said gene or a polypeptide encoded by said gene.
- 36. The method of claim 34 wherein one or more of the following procedures is carried out:
 - (a) observing shifts in electrophoretic mobility of single-stranded DNA from said sample on non-denaturing polyacrylamide gels;
 - (b) hybridizing a probe to genomic DNA isolated from said sample under conditions suitable for hybridization of said probe to said gene;
 - (c) determining hybridization of an allele-specific probe to genomic DNA from said sample;
 - (d) amplifying all or part of said gene from said sample to produce an amplified sequence and sequencing the amplified sequence;
 - (e) determining by nucleic acid amplification the presence of a specific mutant allele in said sample;
 - (f) molecularly cloning all or part of said gene from said sample to produce a cloned sequence and sequencing the cloned sequence;
 - (g) determining whether there is a mismatch between molecules (1) said gene genomic DNA or mRNA isolated from said sample, and (2) a nucleic acid probe complementary to the human wild-type gene DNA, when molecules (1) and (2) are hybridized to each other to form a duplex;
 - (h) amplification of said gene sequences in said sample and hybridization of the amplified sequences to nucleic acid probes which comprise wild-type gene sequences;
 - (i) amplification of said gene sequences in said tissue and hybridization of the amplified sequences to nucleic acid probes which comprise said mutant gene sequences;
 - (j) screening for a deletion mutation;
 - (k) screening for a point mutation;
 - (1) screening for an insertion mutation;

- (m) determining in situ hybridization of said gene in said sample with one or more nucleic acid probes which comprise said gene sequence or a mutant sequence of said gene;
- (n) immunoblotting;
- (o) immunocytochemistry;
- (p) assaying for binding interactions between said gene protein isolated from said tissue and a binding partner capable of specifically binding the polypeptide expression product of a mutant allele and/or a binding partner for the polypeptide; and
- (q) assaying for the inhibition of biochemical activity of said binding partner.
- 37. A nucleic acid probe which hybridizes to the isolated DNA of claim 26 under conditions at which it will not hybridize to wild-type DNA.
- 38. A method for diagnosing a mutation which causes long QT syndrome comprising hybridizing a probe of claim 37 to a patient's sample of DNA or RNA, the presence of a hybridization signal being indicative of long QT syndrome.
- 39. A method according to claim 38 wherein the patient's DNA or RNA has been amplified and said amplified DNA or RNA is hybridized with a probe of claim 37.
- 40. A method according to claim 38 wherein said hybridization is performed in situ.
- 41. A method according to claim 38 wherein said assay is performed using nucleic acid microchip technology.
- 42. A method for diagnosing a mutation which causes long QT syndrome comprising amplifying a region of gene or RNA for *SCN5A* and sequencing the amplified gene or RNA wherein long QT syndrome is indicated by any one or more mutations selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A.

- 43. A method for diagnosing a mutation which causes long QT syndrome comprising identifying a mismatch between a patient's DNA or RNA and a wild-type DNA or RNA probe wherein said probe hybridizes to a region of DNA or RNA wherein said region comprises a mutation of SEQ ID NO:3 selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A.
- 44. The method of claim 43 wherein the mismatch is identified by an RNase assay.
- 45. A method for diagnosing long QT syndrome said method consisting of an assay for the presence of mutant SCN5A polypeptide in a patient by reacting a patient's sample with an antibody of claim 32, the presence of a positive reaction being indicative of long QT syndrome.
- 46. The method of claim 45 wherein said assay comprises immunoblotting.
- 47. The method of claim 45 wherein said assay comprises an immunocytochemical technique.
- 48. A method for diagnosing long QT syndrome, said method comprising analyzing a SCN5A polypeptide, a mutation in said polypeptide being indicative of long QT syndrome wherein said mutation is a mutation selected from the group consisting of D1114N, L1501V, delF1617, R1623L, E1784K and S1787N.
- 49. A method to screen for drugs which are useful in treating a person with a mutation in *SCN5A* wherein said mutation is selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A, said method comprising:
 - a) placing a first set of cells expressing SCN5A with a mutation, wherein said mutation is selected from the group consisting of D1114N, L1501V, delF1617, R1623L, E1784K and S1787N, into a bathing solution;
 - b) inducing a first induced Na⁺ current in the cells of step (a);
 - c) measuring said first induced Na⁺ current;
 - d) placing a second set of cells expressing wild-type SCN5A into a bathing solution;

WO 01/24681 PCT/US00/21660

50

- e) inducing a second induced Na⁺ current in the cells of step (d);
- f) measuring said second induced Na⁺ current;
- g) adding a drug to the bathing solution of step (a);
- h) inducing a third induced Na⁺ current in the cells in step (g);
- i) measuring said third induced Na⁺ current; and
- j) determining whether the third induced Na⁺ current is more similar to the second induced Na⁺ current than is the first induced Na⁺ current, wherein drugs resulting in a third induced Na⁺ current which is closer to the second induced Na⁺ current than is the first induced Na⁺ current are useful in treating said persons.
- 50. An isolated DNA encoding an SCN5A polypeptide of SEQ ID NO:4 having a mutation selected from the group consisting of D1114N, L1501V, delF1617, R1623L, E1784K and S1787N.

F16. 1

19.5

下,四,4

-1G,5

1

SEQUENCE LISTING

																٠.
<11	ŀ	Splaw Keati Unive	ng,	Mark	T.	h Re	sear	ch F	`ound	atio	ת					
<12	0> A	LTER CN5A	ATIC AND	NS I	N TH HODS	E LO	NG Q DET	T SY ECTI	NDRO	ME G AME	ENES	KVL	QT1	AND		
<13	0> 2	323-	155.	PCT						•				÷		
		lot y 2000-			ned-				•							
		0/19 000-	•													
		0/14 999-														
<16	0> 4															
<17	0> P	aten	tIn	Ver.	2.0											
<21:	0> 1 1> 2 2> D 3> H	028	sapi	ens												
	i> C	DS 1)	(202	8)												
<400	0> 1															
atg Met 1	gcc Ala	gcg Ala	gcc Ala	tcc Ser 5	tcc Ser	ccg Pro	ccc Pro	agg Arg	gcc Ala 10	gag Glu	agg Arg	aag Lys	cgc Arg	tgg Trp 15	ggt Gly	48
tgg Trp	Gly	cgc Arg	ctg Leu 20	cca Pro	ggc Gly	gcc Ala	cgg Arg	cgg Arg 25	ggc Gly	agc Ser	gcg Ala	ggc Gly	ctg Leu 30	gcc Ala	aag Lys	96
aag Lys	tgc Cys	ccc Pro 35	ttc Phe	tcg Ser	ctg Leu	gag Glu	ctg Leu 40	gcg Ala	gag Glu	ggc Gly	ggc Gly	ccg Pro 45	gcg Ala	ggc Gly	ggc Gly	144
gcg	ctc Leu 50	tac Tyr	gcg Ala	ccc Pro	atc Ile	gcg Ala 55	ccc Pro	ggc Gly	gcc Ala	cca Pro	ggt Gly 60	ccc Pro	gcg Ala	ccc Pro	cct Pro	192
gcg Ala 65	tcc Ser	ccg Pro	gcc Ala	gcg Ala	ccc Pro 70	gcc Ala	gcg Ala	ccc Pro	cca Pro	gtt Val 75	gcc Ala	tcc Ser	gac Asp	ctt Leu	ggc Gly 80	240
ccg Pro	cgg Arg	ccg Pro	ccg Pro	gtg Val 85	agc Ser	cta Leu	gac Asp	ccg Pro	cgc Arg 90	gtc Val	tcc Ser	atc Ile	tac Tyr	agc Ser 95	acg Thr	288
cgc Arg	cgc Arg	ccg Pro	gtg Val 100	ttg Leu	gcg Ala	cgc Arg	acc Thr	cac His 105	gtc Val	cag Gln	ggc Gly	cgc Arg	gtc Val 110	tac Tyr	aac Asn	336

			_	ccc Pro					_		_				-	384
				gtc Val												432
				gcc Ala												480
				gtg Val 165												528
	-		-	cgc Arg	_	-								_	-	576
				ccc Pro												624
				ctc Leu												672
				ggc Gly												720
				gga Gly 245												768
				gag Glu												816
	atc	t+c														
	Ile			tcg Ser												864
	gag	Phe 275 tca	Ser ggc		Tyr	Phe gag	Val 280	Tyr	Leu agc	Ala	Glu gca Ala	Lys 285 gat Asp	Asp	Ala	Val tgg	912
Asn * tgg	gag Glu 290 ggg Gly	Phe 275 tca Ser	Ser ggc Gly gtc	Ser cgc Arg	gtg Val	gag Glu 295	Val 280 ttc Phe	Tyr ggc Gly atc	agc Ser	Ala tac Tyr	gca Ala 300	Lys 285 gat Asp	gcg Ala	Ala ctg Leu	tgg Trp	,
tgg Trp 305	gag Glu 290 ggg Gly	Phe 275 tca Ser gtg Val	ggc Gly gtc Val	ser cgc Arg	gtg Val gtc Val 310	gag Glu 295 acc Thr	Val 280 ttc Phe acc Thr	ggc Gly atc Ile	agc Ser ggc Gly	tac Tyr tat Tyr 315	gca Ala 300 ggg Gly	Lys 285 gat Asp gac Asp	gcg Ala aag Lys	Ala ctg Leu gtg Val	tgg Trp ccc Pro 320	912
Asn tgg Trp 305 cag Gln	gag Glu 290 ggg Gly acg	Phe 275 tca Ser gtg Val tgg Trp ttc	ggc Gly gtc Val gtc Val	cgc Arg aca Thr ggg Gly 325 gcg Ala	gtg Val gtc Val 310 aag Lys	gag Glu 295 acc Thr acc	Val 280 ttc Phe acc Thr atc Ile	ggc Gly atc Ile gcc Ala	agc Ser ggc Gly tcc Ser 330	tac Tyr tat Tyr 315 tgc Cys	gca Ala 300 ggg Gly ttc Phe	Lys 285 gat Asp gac Asp tct Ser	gcg Ala aag Lys gtc Val	Ala ctg Leu gtg Val ttt Phe 335	tgg Trp ccc Pro 320 gcc Ala	912

ccg Pro	gcg Ala 370	gca Ala	gcc Ala	tca Ser	ctc Leu	att Ile 375	cag Gln	acc Thr	gca Ala	tgg Trp	agg Arg 380	tgc Cys	tat Tyr	gct [.] Ala	gcc Ala	1152
gag Glu 385	aac Asn	ccc Pro	gac Asp	tcc Ser	tcc Ser 390	acc Thr	tgg Trp	aag Lys	atc Ile	tac Tyr 395	atc Ile	cgg Arg	aag Lys	gcc Ala	Pro 400	1200
cgg Arg	agc Ser	cac His	act Thr	ctg Leu 405	ctg Leu	tca Ser	ccc Pro	agc Ser	ccc Pro 410	aaa Lys	ccc Pro	aag Lys	aag Lys	tct Ser 415	gtg Val	1248
gtg Val	gta Val	aag Lys	aaa Lys 420	aaa Lys	aag Lys	ttc Phe	aag Lys	ctg Leu 425	gac Asp	aaa Lys	gac Asp	aat Asn	999 Gly 430	gtg Val	act Thr	1296
cct Pro	gga Gly	gag Glu 435	aag Lys	atg Met	ctc Leu	aca Thr	gtc Val 440	ccc Pro	cat His	atc Ile	acg Thr	tgc Cys 445	gac Asp	ccc Pro	cca Pro	1344
gaa Glu	gag Glu 450	cgg Arg	cgg Arg	ctg Leu	gac Asp	cac His 455	ttc Phe	tct Ser	gtc Val	gac Asp	ggc Gly 460	tat Tyr	gac Asp	agt Ser	tct Ser	1392
gta Val 465	agg Arg	aag Lys	agc Ser	cca Pro	aca Thr 470	ctg Leu	ctg Leu	gaa Glu	gtg Val	agc Ser 475	atg Met	ccc Pro	cat His	ttc Phe	atg Met 480	1440
aga Arg	acc Thr	aac Asn	agc Ser	ttc Phe 485	gcc Ala	gag Glu	gac Asp	ctg Leu	gac Asp 490	ctg Leu	gaa Glu	ggg Gly	gag Glu	act Thr 495	ctg Leu	1488
ctg Leu	aca Thr	ccc Pro	atc Ile 500	acc Thr	cac His	atc Ile	tca Ser	cag Gln 505	ctg Leu	cgg Arg	gaa Glu	cac His	cat His 510	cgg Arg	gcc Ala	1536
acc Thr	att Ile	aag Lys 515	gtc Val	att Ile	cga Arg	cgc Arg	atg Met 520	cag Gln	tac Tyr	ttt Phe	gtg Val	gcc Ala 525	aag Lys	aag Lys	aaa Lys	1584
ttc Phe	cag Gln 530	caa Gln	gcg Ala	cgg Arg	aag Lys	cct Pro 535	tac Tyr	gat Asp	gtg Val	cgg Arg	gac Asp 540	gtc Val	att Ile	gag Glu	cag Gln	1632
tac Tyr 545	tcg Ser	cag Gln	ggc Gly	cac His	ctc Leu 550	aac Asn	ctc Leu	atg Met	gtg Val	cgc Arg 555	atc Ile	aag Lys	gag Glu	ctg Leu	cag Gln 560	1680
agg Arg	agg Arg	ctg Leu	gac Asp	cag Gln 565	tcc Ser	att Ile	ggg Gly	aag Lys	ccc Pro 570	tca Ser	ctg Leu	ttc Phe	atc Ile	tcc Ser 575	gtc Val	1728
tca Ser	gaa Glu	aag Lys	agc Ser 580	aag Lys	gat Asp	cgc Arg	ggc Gly	agc Ser 585	aac Asn	acg Thr	atc Ile	ggc Gly	gcc Ala 590	cgc Arg	ctg Leu	1776
aac Asn	cga Arg	gta Val 595	gaa Glu	gac Asp	aag Lys	gtg Val	acg Thr 600	cag Gln	ctg Leu	gac Asp	cag Gln	agg Arg 605	ctg Leu	gca Ala	ctc Leu	1824
atc Ile	acc Thr 610	gac Asp	atg Met	ctt Leu	cac His	cag Gln 615	ctg Leu	ctc Leu	tcc Ser	ttg Leu	cac His 620	ggt Gly	ggc Gly	agc Ser	acc Thr	1872

ccc ggc agc Pro Gly Ser 625								Thr		1920
ccc tgc ggc Pro Cys Gly							Leu			1968
aac acc ctg Asn Thr Leu			Gln L	_						2016
gat gag ggg Asp Glu Gly 675										2028
<210> 2 <211> 676 <212> PRT <213> Homo	sapiens									
<400> 2 Met Ala Ala 1	Ala Ser 5		Pro A	Arg Ala 10	Glu A	arg Lys	Arg	Trp 15	Gly	
Trp Gly Arg	Leu Pro 20	Gly Ala	Arg A	Arg Gly 25	Ser A	ala Gly	Leu 30	Ala	Lys	
Lys Cys Pro 35		Leu Glu	1 Leu <i>F</i> 40	Ala Glu	Gly G	Sly Pro 45	Ala	Gly	Gly	
Ala Leu Tyr 50	Ala Pro	Ile Ala		Gly Ala	Pro G	Sly Pro 60	Ala	Pro	Pro	
Ala Ser Pro 65	Ala Ala	Pro Ala	Ala E	Pro Pro	Val A 75	Ala Ser	Asp	Leu	Gly 80	
Pro Arg Pro	Pro Val		Asp I	Pro Arg 90	Val S	Ser Ile	Tyr	Ser 95	Thr	
Arg Arg Pro	Val Leu 100	Ala Arq		His Val 105	Gln G	Sly Arg	Val 110	Tyr	Asn	
Phe Leu Glu 115		Thr Gly	7 Trp I 120	Lys Cys	Phe V	/al Tyr 125	His	Phe	Ala	
Val Phe Leu 130	lle Val	Leu Val		Leu Ile		Ser Val 140	Leu	Ser	Thr	
Ile Glu Gln 145	Tyr Ala	Ala Le	a Ala 1	Thr Gly	Thr I 155	Leu Phe	Trp	Met	Glu 160	
Ile Val Leu	Val Val		e Gly '	Thr Glu 170		Val Val	Arg	Leu 175	Trp	
Ser Ala Gly	Cys Arg	Ser Ly		Val Gly 185	Leu 1	rp Gly	Arg 190	Leu	Arg	
Phe Ala Arg 195	_	lle Se	200	Ile Asp	Leu 1	lle Val 205	Val	Val	Ala	

Ser	210	Val	l Val	l Lei	ı Cys	215	l Gly	/ Ser	Lys	s Gly	/ Glr 220		Phe	· Ala	Th
Ser 225	Ala	a Ile	e Aro	g Gly	/ Ile 230	Arç	Phe	e Leu	Glr	11e 235		Arg	Met	Leu	Hi. 24
Val	Asp	Arç	g Glr	1 Gly 245	/ Gly	Thr	Trp	Arg	250		Gly	Ser	Val	Val 255	
Ile	His	Arg	g Glr 260	ı Glu	ı Leu	Ile	e Thr	Thr 265	Leu	Tyr	·Ile	Gly	Phe 270		G1
Leu	Ile	275	e Ser	Ser	Tyr	Phe	Val 280		Leu	Ala	Glu	Lys 285		Ala	Va:
Asn	Glu 290	Ser	Gly	Arg	Val	Glu 295	Phe	Gly	Ser	Tyr	Ala 300		Ala	Leu	Tr
Trp 305	Gly	Val	. Val	Thr	Val 310	Thr	Thr	Ile	Gly	Tyr 315		Asp	Lys	Val	Pro 320
Gln	Thr	Trp	Val	Gly 325	Lys	Thr	Ile	Ala	Ser 330		Phe	Ser	Val	Phe 335	Ala
Ile	Ser	Phe	Phe 340	Ala	Leu	Pro	Ala	Gly 345		Leu	Gly	Ser	Gly 350	Phe	Ala
Leu	Lys	Val 355	Gln	Gln	Lys	Gln	Arg 360	Gln	Lys	His	Phe	Asn 365	Arg	Gln	Ile
Pro	Ala 370	Ala	Ala	Ser	Leu	11e 375	Gln	Thr	Ala	Trp	Arg 380	Суѕ	Туr	Ala	Ala
Glu 385	Asn	Pro	Asp	Ser	Ser 390	Thr	Trp	Lys	Ile	Tyr 395	Ile	Arg	Lys	Ala	Pro 400
Arg	Ser	His	Thr	Leu 405	Leu	Ser	Pro	Ser	Pro 410	Lys	Pro	Lys	Lys	Ser 415	Val
			420		Lys			425					430		
		435			Leu		440					445			
Glu *	Glu 450	Arg	Arg	Leu	Asp	His 455	Phe	Ser	Val	Asp	Gly 460	Tyr	Asp	Ser	Ser
Val 465	Arg	Lys	Ser	Pro	Thr 470	Leu	Leu	Glu	Val	Ser 475	Met	Pro	His	Phe	Met 480
Arg	Thr	Asn	Ser	Phe 485	Ala	Glu	Asp	Leu	Asp 490	Leu	Glu	Gly	Glu	Thr 495	Leu
Ļeu	Thr	Pro	Ile 500	Thr	His	Ile	Ser	Gln 505	Leu	Arg	Glu	His	His 510	Arg	Ala
Thr	Ile	Lys 515	Val	Ile	Arg	Arg	Met 520	Gln	Tyr	Phe	Val	Ala 525	Lys	Lys	Lys
Phe	Gln 530	Gln	Ala	Arg	Lys	Pro 535	Tyr	Asp	Val	Arg	Asp 540	Val	Ile	Glu	Gln

Tyr Ser Gln Gly His Leu Asn Leu Met Val Arg Ile Lys Glu Leu Gln Arg Arg Leu Asp Gln Ser Ile Gly Lys Pro Ser Leu Phe Ile Ser Val 570 Ser Glu Lys Ser Lys Asp Arg Gly Ser Asn Thr Ile Gly Ala Arg Leu 585 590 Asn Arg Val Glu Asp Lys Val Thr Gln Leu Asp Gln Arg Leu Ala Leu 600 595 Ile Thr Asp Met Leu His Gln Leu Leu Ser Leu His Gly Gly Ser Thr Pro Gly Ser Gly Gly Pro Pro Arg Glu Gly Gly Ala His Ile Thr Gln Pro Cys Gly Ser Gly Gly Ser Val Asp Pro Glu Leu Phe Leu Pro Ser 650 Asn Thr Leu Pro Thr Tyr Glu Gln Leu Thr Val Pro Arg Arg Gly Pro 665 660 Asp Glu Gly Ser 675 <210> 3 <211> 6048 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(6048) 48 atg gca aac ttc cta tta cct cgg ggc acc agc agc ttc cgc agg ttc Met Ala Asn Phe Leu Leu Pro Arg Gly Thr Ser Ser Phe Arg Arg Phe 10 aca cgg gag tcc ctg gca gcc atc gag aag cgc atg gcg gag aag caa 96 Thr Arg Glu Ser Leu Ala Ala Ile Glu Lys Arg Met Ala Glu Lys Gln gcc cgc ggc tca acc acc ttg cag gag agc cga gag ggg ctg ccc gag 144 Ala Arg Gly Ser Thr Thr Leu Gln Glu Ser Arg Glu Gly Leu Pro Glu gag gag gct ccc cgg ccc cag ctg gac ctg cag gcc tcc aaa aag ctg 192 Glu Glu Ala Pro Arg Pro Gln Leu Asp Leu Gln Ala Ser Lys Lys Leu 50 240 cca gat ctc tat ggc aat cca ccc caa gag ctc atc gga gag ccc ctg Pro Asp Leu Tyr Gly Asn Pro Pro Gln Glu Leu Ile Gly Glu Pro Leu 65 70 gag gac ctg gac ccc ttc tat agc acc caa aag act ttc atc gta ctg Glu Asp Leu Asp Pro Phe Tyr Ser Thr Gln Lys Thr Phe Ile Val Leu

aat Asn	aaa Lys	ggc	aag Lys 100	Thr	atc	ttc Phe	cgg Arg	ttc Phe 105	Ser	gcc Ala	acc Thr	aac Asn	gcc Ala 110	Leu	tat Tyr	336
gtc Val	ctc Leu	agt Ser 115	Pro	ttc Phe	cac	cca Pro	gtt Val 120	Arg	aga Arg	gcg	gct Ala	gtg Val 125	aag Lys	att Ile	ctg Leu	384
gtt Val	cac His 130	Ser	ctc Leu	ttc Phe	aac Asn	atg Met 135	Leu	atc Ile	atg Met	tgc Cys	acc Thr 140	Ile	ctc Leu	acc Thr	aac Asn	432
tgc Cys 145	Val	ttc Phe	atg Met	gcc Ala	cag Gln 150	cac His	gac Asp	cct Pro	cca Pro	ccc Pro 155	tgg Trp	acc Thr	aag Lys	tat Tyr	gtc Val 160	480
gag Glu	tac Tyr	acc Thr	ttc Phe	acc Thr 165	gcc Ala	att Ile	tac Tyr	acc Thr	ttt Phe 170	gag Glu	tct Ser	ctg Leu	gtc Val	aag Lys 175	att Ile	528
ctg Leu	gct Ala	cga Arg	gct Ala 180	ttc Phe	tgc Cys	ctg Leu	cac His	gcg Ala 185	ttc Phe	act Thr	ttc Phe	ctt Leu	cgg Arg 190	gac Asp	cca Pro	576
tgg Trp	aac Asn	tgg Trp 195	ctg Leu	gac Asp	ttt Phe	agt Ser	gtg Val 200	att Ile	atc Ile	atg Met	gca Ala	tac Tyr 205	aca Thr	act Thr	gaa Glu	624
ttt Phe	gtg Val 210	gac Asp	ctg Leu	ggc Gly	aat Asn	gtc Val 215	tca Ser	gcc Ala	tta Leu	cgc Arg	acc Thr 220	ttc Phe	cga Arg	gtc Val	ctc Leu	672
cgg Arg 225	gcc Ala	ctg Leu	aaa Lys	act Thr	ata Ile 230	tca Ser	gtc Val	att Ile	tca Ser	ggg Gly 235	ctg Leu	aag Lys	acc Thr	atc Ile	gtg Val 240	720
ggg Gly	gcc Ala	ctg Leu	atc Ile	cag Gln 245	tct Ser	gtg Val	aag Lys	aag Lys	ctg Leu 250	gct Ala	gat Asp	gtg Val	atg Met	gtc Val 255	ctc Leu	768
aca Thr	gtc Val	ttc Phe	tgc Cys 260	ctc Leu	agc Ser	gtc Val	ttt Phe	gcc Ala 265	ctc Leu	atc Ile	ggc Gly	ctg Leu	cag Gln 270	ctc Leu	ttc Phe	816
atg Met	ggc Gly	aac Asn 275	cta Leu	agg Arg	cac His	aag Lys	tgt Cys 280	gtg Val	cgc Arg	aac Asn	ttc Phe	aca Thr 285	gcg Ala	ctc Leu	aac Asn	864
ggc Gly	acc Thr 290	aac Asn	ggc Gly	tcc Ser	gtg Val	gag Glu 295	gcc Ala	gac Asp	ggc Gly	ttg Leu	gtc Val 300	tgg Trp	gaa Glu	tcc Ser	ctg Leu	912
gac Asp 305	ctt Leu	tac Tyr	ctc Leu	agt Ser	gat Asp 310	cca Pro	gaa Glu	aat Asn	tac Tyr	ctg Leu 315	ctc Leu	aag Lys	aac Asn	ggc Gly	acc Thr 320	960
tct Ser	gat Asp	gtg Val	tta Leu	ctg Leu 325	tgt Cys	Gly ggg	aac Asn	Ser	tct Ser 330	gac Asp	gct Ala	ggg Gly	aca Thr	tgt Cys 335	ccg Pro	1008
gag Glu	ggc Gly	tac Tyr	cgg Arg 340	tgc Cys	cta Leu	aag Lys	gca Ala	ggc Gly 345	gag Glu	aac Asn	ccc Pro	gac Asp	cac His 350	ggc Gly	tac Tyr	1056

acc Thr	agc Ser	ttc Phe 355	gat Asp	tcc Ser	ttt Phe	gcc Ala	tgg Trp 360	gcc Ala	ttt Phe	ctt Leu	gca Ala	ctc Leu 365	ttc Phe	cgc Arg	ctg Leu	1104
atg Met	acg Thr 370	cag Gln	gac Asp	tgc Cys	tgg Trp	gag Glu 375	cgc Arg	ctc Leu	tat Tyr	cag Gln	cag Gln 380	acc Thr	ctc Leu	agg Arg	tcc Ser	1152
gca Ala 385	ggg Gly	aag Lys	atc Ile	tac Tyr	atg Met 390	atc Ile	ttc Phe	ttc Phe	atg Met	ctt Leu 395	gtc Val	atc Ile	ttc Phe	ctg Leu	ggg Gly 400	1200
tcc Ser	ttc Phe	tac Tyr	ctg Leu	gtg Val 405	aac Asn	ctg Leu	atc Ile	ctg Leu	gcc Ala 410	gtg Val	gtc Val	gca Ala	atg Met	gcc Ala 415	tat Tyr	1248
gag Glu	gag Glu	caa Gln	aac Asn 420	caa Gln	gcc Ala	acc Thr	atc Ile	gct Ala 425	gag Glu	acc Thr	gag Glu	gag Glu	aag Lys 430	gaa Glu	aag Lys	1296
cgc Arg	ttc Phe	cag Gln 435	gag Glu	gcc Ala	atg Met	gaa Glu	atg Met 440	ctc Leu	aag Lys	aaa Lys	gaa Glu	cac His 445	gag Glu	gcc Ala	ctc Leu	1344
acc Thr	atc Ile 450	agg Arg	ggt Gly	gtg Val	gat Asp	acc Thr 455	gtg Val	tcc Ser	cgt Arg	agc Ser	tcc Ser 460	ttg Leu	gag Glu	atg Met	tcc Ser	1392
cct Pro 465	ttg Leu	gcc Ala	cca Pro	gta Val	aac Asn 470	agc Ser	cat His	gag Glu	aga Arg	aga Arg 475	Ser	aag Lys	agg Arg	aga Arg	aaa Lys 480	1440
cgg Arg	atg Met	tct Ser	tca Ser	gga Gly 485	act Thr	gag Glu	gag Glu	tgt Cys	999 Gly 490	Glu	gac Asp	agg Arg	ctc Leu	ccc Pro 495	aag Lys	1488
tct Ser	gac Asp	tca Ser	gaa Glu 500	Asp	ggt Gly	ccc Pro	aga Arg	gca Ala 505	Met	aat Asn	cat His	ctc Leu	agc Ser 510	Leu	acc	1536
cgt Arg	ggc	ctc Leu 515	Ser	agg Arg	act Thr	tct Ser	atg Met 520	Lys	cca Pro	cgt Arg	tcc Ser	s ago Ser 525	Arg	ggg Gly	agc Ser	1584
att Ile	ttc Phe 530	Thr	ttt Phe	cgc Arg	agg Arg	cga Arg 535	Asp	ctg Leu	ggt Gly	tct Ser	gaa Glu 540	Ala	gat Asp	ttt Phe	gca Ala	1632
gat Asp 545	Asp	gaa Glu	aac Asr	ago Ser	aca Thr 550	Ala	cgg Arg	gag Glu	ago Ser	gaç Glu 555	ı Ser	cac His	cac His	aca Thi	tca Ser 560	1680
cto Lev	rctg Lev	g gtg ı Val	Pro	tgg Trp 565	Pro	cto Leu	cgo Arg	e egg g Arg	aco Thi 570	Ser	gco Ala	caç a Glr	gga Gly	Glr 575	g ccc n Pro	1728
agt Ser	ccc Pro	gga Gly	a acc 7 Thi 580	Ser	g gct Ala	cct Pro	ggo Gly	cac His 585	: Ala	c cto a Lei	c cat u His	ggc Gly	aaa Lys 590	Ly	g aac s Asn	1776
ago Sei	act Thr	gtg Val 595	Asp	tgo Cys	c aat s Asr	gly ggg	g gto Val 600	l Val	tca Ser	a tta r Lei	a cto u Leo	g ggg 1 Gly 605	/ Ala	a ggo	c gac y Asp	1824

cca Pro	gag Glu 610	Ala	aca Thr	tcc Ser	cca Pro	gga Gly 615	agc Ser	cac His	ctc Leu	ctc Leu	cgc Arg 620	cct Pro	gtg Val	atg Met	cta Leu	1872
gag Glu 625	cac His	ccg Pro	cca Pro	gac Asp	acg Thr 630	acc Thr	acg Thr	cca Pro	tcg Ser	gag Glu 635	gag Glu	cca Pro	ggc Gly	ggc Gly	ccc Pro 640	1920
cag Gln	atg Met	ctg Leu	acc Thr	tcc Ser 645	cag Gln	gct Ala	ccg Pro	tgt Cys	gta Val 650	gat Asp	ggc Gly	ttc Phe	gag Glu	gag Glu 655	cca Pro	1968
gga Gly	gca Ala	cgg Arg	cag Gln 660	cgg Arg	gcc Ala	ctc Leu	agc Ser	gca Ala 665	gtc Val	agc Ser	gtc Val	ctc Leu	aca Thr 670	agc Ser	gca Ala	2016
ctg Leu	gaa Glu	gag Glu 675	tta Leu	gag Glu	gag Glu	tct Ser	cgc Arg 680	cac His	aag Lys	tgt Cys	cca Pro	cca Pro 685	tgc Cys	tgg Trp	aac Asn	2064
cgt Arg	ctc Leu 690	gcc Ala	cag Gln	cgc Arg	tac Tyr	ctg Leu 695	atc Ile	tgg Trp	gag Glu	tgc Cys	tgc Cys 700	ccg Pro	ctg Leu	tgg Trp	atg Met	2112
tcc Ser 705	atc Ile	aag Lys	cag Gln	gga Gly	gtg Val 710	aag Lys	ttg Leu	gtg Val	gtc Val	atg Met 715	gac Asp	ccg Pro	ttt Phe	act Thr	gac Asp 720	2160
ctc Leu	acc Thr	atc Ile	act Thr	atg Met 725	tgc Cys	atc Ile	gta Val	ctc Leu	aac Asn 730	aca Thr	ctc Leu	ttc Phe	atg Met	gcg Ala 735	ctg Leu	2208
gag Glu	cac His	tac Tyr	aac Asn 740	atg Met	aca Thr	agt Ser	gaa Glu	ttc Phe 745	gag Glu	gag Glu	atg Met	ctg Leu	cag Gln 750	gtc Val	gga Gly	2256
aac Asn	ctg Leu	gtc Val 755	ttc Phe	aca Thr	ggg Gly	att	ttc Phe 760	aca Thr	gca Ala	gag Glu	atg Met	acc Thr 765	ttc Phe	aag Lys	atc Ile	2304
att Ile	gcc Ala 770	ctc Leu	gac Asp	ccc Pro	tac Tyr	tac Tyr 775	tac Tyr	ttc Phe	caa Gln	cag Gln	ggc Gly 780	tgg Trp	aac Asn	atc Ile	ttc Phe	2352
gac Asp 785	agc Ser	atc Ile	atc Ile	gtc Val	atc Ile 790	ctt Leu	agc Ser	ctc Leu	atg Met	gag Glu 795	ctg Leu	ggc Gly	ctg Leu	tcc Ser	cgc Arg 800	2400
					gtg Val											2448
aag Lys	ctg Leu	gcc Ala	aaa Lys 820	tca Ser	tgg Trp	ccc Pro	acc Thr	ctg Leu 825	aac Asn	aca Thr	ctc Leu	atc Ile	aag Lys 830	atc Ile	atc Ile	2496
ggg Gly	aac Asn	tca Ser 835	gtg Val	ggg Gly	gca Ala	ctg Leu	ggg Gly 840	aac Asn	ctg Leu	aca Thr	ctg Leu	gtg Val 845	cta Leu	gcc Ala	atc Ile	2544
atc Ile	gtg Val 850	ttc Phe	atc Ile	ttt Phe	gct Ala	gtg Val 855	gtg Val	ggc Gly	atg Met	cag Gln	ctc Leu 860	ttt Phe	ggc Gly	aag Lys	aac Asn	2592

tac Tyr 865	tcg Ser	gag Glu	ctg Leu	agg Arg	gac Asp 870	agc Ser	gac Asp	tca Ser	ggc Gly	ctg Leu 875	ctg Leu	cct Pro	cgc Arg	tgg Trp	cac His 880	2640
atg Met	atg Met	gac Asp	ttc Phe	ttt Phe 885	cat His	gcc Ala	ttc Phe	cta Leu	atc Ile 890	atc Ile	ttc Phe	cgc Arg	atc Ile	ctc Leu 895	tgt Cys	2688
gga Gly	gag Glu	tgg Trp	atc Ile 900	gag Glu	acc Thr	atg Met	tgg Trp	gac Asp 905	tgc Cys	atg Met	gag Glu	gtg Val	tcg Ser 910	ggg Gly	cag Gln	2736
tca Ser	tta Leu	tgc Cys 915	ctg Leu	ctg Leu	gtc Val	ttc Phe	ttg Leu 920	ctt Leu	gtt Val	atg Met	gtc Val	att Ile 925	ggc Gly	aac Asn	ctt Leu	2784
gtg Val	gtc Val 930	ctg Leu	aat Asn	ctc Leu	ttc Phe	ctg Leu 935	gcc Ala	ttg Leu	ctg Leu	ctc Leu	agc Ser 940	tcc Ser	ttc Phe	agt Ser	gca Ala	2832
gac Asp 945	aac Asn	ctc Leu	aca Thr	gcc Ala	cct Pro 950	gat Asp	gag Glu	gac Asp	aga Arg	gag Glu 955	atg Met	aac Asn	aac Asn	ctc Leu	cag Gln 960	2880
ctg Leu	gcc Ala	ctg Leu	gcc Ala	cgc Arg 965	atc	cag Gln	agg Arg	ggc Gly	ctg Leu 970	Arg	ttt Phe	gtc Val	aag Lys	cgg Arg 975	acc Thr	2928
acc Thr	tgg Trp	gat Asp	ttc Phe 980	Cys	tgt Cys	ggt Gly	ctc Leu	ctg Leu 985	cgg Arg	cac His	cgg Arg	cct Pro	cag Gln 990	Lys	ccc Pro	2976
gca Ala	gcc Ala	ctt Leu 995	Ala	gcc Ala	cag Gln	ggc Gly	cag Gln 1000	Leu	ccc	agc Ser	tgc Cys	att Ile 1005	Ala	acc Thr	ccc Pro	3024
Tyr	tcc Ser 1010	Pro	cca	ccc Pro	cca Pro	gag Glu 1015	Thr	gag Glu	aag Lys	gtg Val	pcct Pro 1020	Pro	acc Thr	cgc Arg	aag Lys	3072
gaa Glu 102	Thr	cag Gln	ttt Phe	gag Glu	gaa Glu 1030	Gly	gag Glu	caa Glr	cca Pro	ggc Gly 1035	/ Gln	ggc Gly	acc Thr	ccc Pro	ggg Gly 1040	3120
gat Asp	cca Pro	gag Glu	cco Pro	gtg Val 1045	Cys	gtg Val	Pro	ato Ile	gct Ala 1050	a Val	g gcc L Ala	gaç Glu	g tca i Ser	gac Asp 1055	aca Thr	3168
gat Asp	gac Asp	caa Glr	gaa Glu 1060	ı Glü	gat Asp	gaç Glu	g gag n Glu	aad Asr 1065	ı Seı	c cto	g ggo ı Gly	acq Thi	g gaq Glu 1070	ı GI	g gag 1 Glu	3216
tcc Ser	ago Ser	aac Lys 1075	Glr	g caq n Glr	g gaa n Glu	tco Sei	caç Glr 1080) Pro	gto Val	g too l Se:	c ggo r Gly	tg 7 Tr: 108	o Pro	aga Arg	g Gly	3264
cct	cco Pro 1090	Asp	tco Sei	age Are	g acc	tgc Trp 1095	Se:	c caq	g gto n Val	g to: l Se:	a gco r Ala 1100	a Thi	t gco r Ala	a Se	c tct r Ser	3312
gaç Gli 110	ı Ala	e gaq a Gli	g gco n Ala	c agt a Sei	gca Ala 1110	a Se	caq c Gl	g gca n Ala	c ga a As	c tg p Tr 111	p Ar	g cad g Gli	g cae	g tg n Tr	g aaa p Lys 1120	336.0

WO 01/24681 PCT/US00/21660

				a gag gac agt o Glu Asp Ser 1135	Cys
Ser Glu Gly			Asn Thr Al	t gag ctc ctg a Glu Leu Leu 1150	
				a gag gac tgc o Glu Asp Cys 1165	
	Cys Val Arg			g gtg gac acc a Val Asp Thr 0	
cag gcc cca Gln Ala Pro 1185	ggg aag gtc Gly Lys Val 1190	tgg tgg cgg Trp Trp Arg	g ttg cgc aad g Leu Arg Lyd 1195	g acc tgc tac s Thr Cys Tyr	cac 3600 His 1200
				c ttc atg atc e Phe Met Ile 1215	Leu
Leu Ser Ser			Asp Ile Ty	c cta gag gag r Leu Glu Glu 1230	
				g atg ttc aca s Met Phe Thr 1245	
gtc ttc gtg Val Phe Val 1250	Leu Glu Met	ctg ctc aag Leu Leu Lys 1255	g tgg gtg gc s Trp Val Ala 126	c tac ggc ttc a Tyr Gly Phe 0	aag 3792 Lys
				c ctc atc gta e Leu Ile Val	
				c ttt gcc gag y Phe Ala Glu 1295	Met
Gly Pro Ile			Arg Ala Le	c cgt cct ctg u Arg Pro Leu 1310	
				c aat gcc ctg l Asn Ala Leu 1325	
	Pro Ser Ile			c tgc ctc atc l Cys Leu Ile O	
				t gcg ggg aag e Ala Gly Lys	
				t ttg aac tac o Leu Asn Tyr 1375	

atc gtg aac aac aag a Ile Val Asn Asn Lys S 1380			nr Gly Glu
ttg tac tgg acc aag g Leu Tyr Trp Thr Lys V 1395			
tac ctg gcc ctt ctg c Tyr Leu Ala Leu Leu G 1410	ag gtg gca aca ln Val Ala Thr 1415	ttt aaa ggc tgg a Phe Lys Gly Trp Me 1420	tg gac att 4272 et Asp Ile
atg tat gca gct gtg g Met Tyr Ala Ala Val A 1425 14	ac tcc agg ggg asp Ser Arg Gly 30	tat gaa gag cag c Tyr Glu Glu Gln P 1435	ct cag tgg 4320 ro Gln Trp 1440
gaa tac aac ctc tac a Glu Tyr Asn Leu Tyr M 1445	Met Tyr Ile Tyr	ttt gtc att ttc a Phe Val Ile Phe I 1450	tc atc ttt 4368 le Ile Phe 1455
ggg tct ttc ttc acc of Gly Ser Phe Phe Thr I	etg aac ctc ttt Leu Asn Leu Phe 1465	Ile Gly Val Ile I	tt gac aac 4416 le Asp Asn 70
ttc aac caa cag aag a Phe Asn Gln Gln Lys 1 1475	aaa aag tta ggg Lys Lys Leu Gly 1480	ggc cag gac atc t Gly Gln Asp Ile F 1485	tc atg aca 4464 The Met Thr
gag gag cag aag aag t Glu Glu Gln Lys Lys 1 1490	tac tac aat gcc Tyr Tyr Asn Ala 1495	atg aag aag ctg g Met Lys Lys Leu G 1500	gc tcc aag 4512 Sly Ser Lys
aag ccc cag aag ccc Lys Pro Gln Lys Pro 1505	atc cca cgg ccc Ile Pro Arg Pro 510	ctg aac aag tac c Leu Asn Lys Tyr C 1515	eag ggc ttc 4560 Sln Gly Phe 1520
ata ttc gac att gtg Ile Phe Asp Ile Val 1525	Thr Lys Gln Ala	ttt gac gtc acc a Phe Asp Val Thr 1 1530	atc atg ttt 4608 [le Met Phe 1535
ctg atc tgc ttg aat Leu Ile Cys Leu Asn 1540	atg gtg acc atg Met Val Thr Met 1545	Met Val Glu Thr	gat gac caa 4656 Asp Asp Gln 550
agt cct gag aaa atc Ser Pro Glu Lys Ile 1555	aac atc ttg gcc Asn Ile Leu Ala 1560	aag atc aac ctg (Lys Ile Asn Leu 1 1565	ctc ttt gtg 4704 Leu Phe Val
gcc atc ttc aca ggc Ala Ile Phe Thr Gly 1570	gag tgt att gto Glu Cys Ile Val 1575	aag ctg gct gcc Lys Leu Ala Ala 1580	ctg cgc cac 4752 Leu Arg His
tac tac ttc acc aac Tyr Tyr Phe Thr Asn 1585	agc tgg aat atc Ser Trp Asn Ile 590	ttc gac ttc gtg Phe Asp Phe Val 1595	gtt gtc atc 4800 Val Val Ile 1600
ctc tcc atc gtg ggc Leu Ser Ile Val Gly 1605	act gtg ctc tcc Thr Val Leu Ser	g gac atc atc cag Asp Ile Ile Gln 1610	aag tac ttc 4848 Lys Tyr Phe 1615
ttc tcc ccg acg ctc Phe Ser Pro Thr Leu 1620	ttc cga gtc atc Phe Arg Val Ile 162	e Arg Leu Ala Arg	ata ggc cgc 4896 Ile Gly Arg 630

	Ile Arg Gly		tc cgc acg ctg ctc le Arg Thr Leu Leu 1645	
			ac atc ggg ctg ctg sn Ile Gly Leu Leu 1660	
ttc ctc gtc atg Phe Leu Val Met 1665	ttc atc tac Phe Ile Tyr 1670	tcc atc ttt g Ser Ile Phe G 16	gc atg gcc aac ttc ly Met Ala Asn Phe 75	gct 5040 Ala 680
Tyr Val Lys Trp			tg ttc aac ttc cag et Phe Asn Phe Gln 1695	
ttc gcc aac agc Phe Ala Asn Ser 1700	Met Leu Cys	ctc ttc cag a Leu Phe Gln I 1705	tc acc acg tcg gcc le Thr Thr Ser Ala 1710	ggc 5136 Gly
	Leu Ser Pro		ct ggg ccg ccc tac hr Gly Pro Pro Tyr 1725	
			gg ggg gac tgc ggg rg Gly Asp Cys Gly 1740	
		Phe Thr Thr T	ac atc atc atc tcc yr Ile Ile Ile Ser 55 1	
Leu Ile Val Val			tc ctg gag aac ttc le Leu Glu Asn Phe 1775	
			gt gag gac gac ttc er Glu Asp Asp Phe 1790	
	Ile Trp Glu		ca gag gcc act cag ro Glu Ala Thr Gln 1805	
			ac gcc ctg tct gag sp Ala Leu Ser Glu 1820	
		Gln Ile Ser L	tc atc aac atg gac eu Ile Asn Met Asp 35 1	
Pro Met Val Ser			tg gac att ctc ttt et Asp Ile Leu Phe 1855	
			ag atg gac gcc ctg lu Met Asp Ala Leu 1870	
	Glu Lys Phe		ac cca tcc aag atc sn Pro Ser Lys Ile 1885	

tac Tyr (gag Glu 890	ccc Pro	atc Ile	acc Thr	Thr	aca Thr 895	ctc Leu	cgg Arg	cgc Arg	Lys	cac His 900	gaa Glu	gag Glu	gtg Val	tcg Ser	5712
gcc Ala 1905	Met	gtt Val	atc Ile	Gln	aga Arg 910	gcc Ala	ttc Phe	cgc Arg	Arg	cac His 915	ctg Leu _,	ctg Leu	caa Gln	Arg	tct Ser 920	5760
ttg Leu	aag Lys	cat His	Ala	tcc Ser 925	ttc Phe	ctc Leu	ttc Phe	Arg	cag Gln 930	cag Gln	gcg Ala	ggc Gly	Ser	ggc Gly 935	ctc Leu	5808
tcc Ser	gaa Glu	Glu	gat Asp 1940	gcc Ala	cct Pro	gag Glu	Arg	gag Glu .945	ggc Gly	ctc Leu	atc Ile	Ala	tac Tyr 950	gtg Val	atg Met	5856
agt Ser	Glu	aac Asn 1955	ttc Phe	tcc Ser	cga Arg	Pro	ctt Leu 960	ggc Gly	cca Pro	ccc Pro	Ser	agc Ser 965	tcc Ser	tcc Ser	atc Ile	5904
Ser	tcc Ser 970	act Thr	tcc Ser	ttc Phe	cca Pro	ccc Pro L975	tcc Ser	tat Tyr	gac Asp	Ser	gtc Val 1980	act Thr	aga Arg	gcc Ala	acc Thr	5952
agc Ser 1985	Asp	aac Asn	ctc Leu	Gln	gtg Val 1990	cgg Arg	GJÀ ààà	tct Ser	Asp	tac Tyr 1995	agc Ser	cac His	agt Ser	Glu	gat Asp 2000	6000
ctc Leu	gcc Ala	gac Asp	Phe	ccc Pro 2005	cct Pro	tct Ser	ccg Pro	Asp	agg Arg 2010	gac Asp	cgt Arg	gag Glu	Ser	atc Ile 2015	gtg Val	6048
<212	l> 2 2> P	ŔŦ	sapi													
<213 <213 <213	1> 2 2> P 3> H	RT omo	sapi	ens	Leu	Pro	Arg	Gly	Thr 10		Ser	Phe	Arg	Arg 15	Phe	
<213 <213 <213 <400 Met	l> 2 2> P 3> H 0> 4 Ala	RT omo Asn	sapi Phe	ens Leu 5				*	10					15 Lys		
<213 <213 <213 <400 Met 1	l> 2 2> P 3> H D> 4 Ala	RT omo Asn Glu	sapi Phe Ser 20	ens Leu 5 Leu		Ala	Ile	Glu 25 Glu	10 Lys	Arg	Met	Ala	Glu 30	15 Lys	Gln	
<211 <212 <213 <400 Met 1 Thr	1> 2 2> P 3> H 0> 4 Ala Arg	Asn Glu Gly 35	Sapi Phe Ser 20	ens Leu 5 Leu Thr	Ala	Ala Leu	Ile Gln 40 Leu	Glu 25 Glu	10 Lys Ser	Arg Arg	Met Glu	Ala Gly 45 Ser	Glu 30 Leu	Lys Pro	Gln Glu	
<213 <213 <213 <400 Met 1 Thr Ala	1> 2 2> P 3> H 0> 4 Ala Arg Glu 50 Asp	Asn Glu Gly 35	Sapi Phe Ser 20 Ser	ens Leu 5 Leu Thr	Ala Thr	Ala Leu Gln 55	Ile Gln 40 Leu	Glu 25 Glu Asp	10 Lys Ser Leu	Arg Arg Gln	Met Glu Ala 60	Ala Gly 45 Ser	Glu 30 Leu Lys	Lys Pro	Gln Glu Leu	
<213 <213 <213 <400 Met 1 Thr Ala Glu Pro 65	1> 2 2> P 3> H 0> 4 Ala Arg Glu 50 Asp	Asn Glu Gly 35 Ala	sapi Phe Ser 20 Ser Pro	ens Leu 5 Leu Thr	Ala Thr Pro Asn 70 Phe	Ala Leu Gln 55	Gln 40 Leu	Glu 25 Glu Asp	Lys Ser Leu Glu	Arg Arg Gln Leu 75	Met Glu Ala 60	Ala Gly 45 Ser	Glu 30 Leu Lys	Lys Pro Lys	Glu Glu Leu 80 Leu	
<21: <21: <21: <400 Met 1 Thr Ala Glu Pro 65 Glu	Arg Arg Arg Asp	Asn Glu Gly 35 Ala Leu	sapi Phe Ser 20 Ser Pro	ens Leu 5 Leu Thr Arg	Ala Thr Pro Asn 70 Phe	Leu Gln 55 Pro	Gln 40 Leu Pro	Glu 25 Glu Asp Gln	Leu Glu Glr 90	Arg Arg Gln Leu 75	Met Glu Ala 60 Ile	Ala Gly 45 Ser Gly	Glu 30 Leu Lys Glu	Lys Pro Lys Pro Lys Pro	Glu Glu Leu 80 Leu	

Val	His 130	Ser	Leu	Phe	Asn	Met 135	Leu	Ile	Met	Cys	Thr 140	Ile	Leu	Thr	Asn
Cys 145	Val	Phe	Met	Ala	Gln 150	His	Asp	Pro	Pro	Pro 155	Trp	Thr	Lys	Tyr	Val 160
Glu	Tyr	Thr	Phe	Thr 165	Ala	Ile	Tyr	Thr.	Phe 170	Glu	Ser	Leu	Val	Lys 175	Ile
Leu	Ala	Arg	Ala 180	Phe	Cys	Leu	His	Ala 185	Phe	Thr	Phe	Leu	Arg 190	Asp	Pro
Trp	Asn	Trp 195	Leu	Asp	Phe	Ser	Val 200	Ile	Ile	Met	Ala	Tyr 205	Thr	Thr	Glu
Phe	Val 210	Asp	Leu	Gly	Asn	Val 215	Ser	Ala	Leu	Arg	Thr 220	Phe	Arg	Va1	Leu
Arg 225	Ala	Leu	Lys	Thr	Ile 230	Ser	Val	Ile	Ser	Gly 235	Leu	Lys	Thr	Ile	Val 240
Gly	Ala	Leu	Ile	Gln 245	Ser	Val.	Lys	Lys	Leu 250	Ala	Asp	Val	Met	Val 255	Leu
Thr	Val	Phe	Cys 260	Leu	Ser	Val	Phe	Ala 265	Leu	Ile	Gly	Leu	Gln 270	Leu	Phe
Met	Gly	Asn 275	Leu	Arg	His	Lys	Cys 280	Val	Arg	Asn	Phe	Thr 285	Ala	Leu	Asn
Gly	Thr 290	Asn	Gly	Ser	Val	Glu 295	Ala	Asp	Gly	Leu	Val 300	Trp	Glu	Ser	Leu
Asp 305	Leu	Tyr	Leu	Ser	Asp 310	Pro	Glu	Asn	Tyr	Leu 315	Leu	Lys	Asn	Gly	Thr 320
Ser	Asp	Val	Leu	Leu 325	Cys	Gly	Asn	Ser	Ser 330	Asp	Ala	Gly	Thr	Cys 335	Pro
Glu	Gly	Tyr	Arg 340	Cys	Leu	Lys	Ala	Gly 345	Glu	Asn	Pro	Asp	His 350	Gly	Tyr
Thr	Ser	Phe 355	Asp	Ser	Phe	Ala	Trp 360	Ala	Phe	Leu	Ala	Leu 365	Phe	Arg	Leu
Met	Thr 370	Gln	Asp	Cys	Trp	Glu 375	Arg	Leu	Tyr	Gln	Gln 380	Thr	Leu	Arg	Ser
	Gly	Lys	Ile	Tyr	Met 390	Ile	Phe	Phe	Met	Leu 395	Val	Ile	Phe	Leu	Gly 400
Ser	Phe	Tyr	Leu	Val 405	Asn	Leu	Ile	Leu	Ala 410	Val	Val	Ala	Met	Ala 415	Tyr
Glu	Glu	Gln	Asn 420	Gln	Ala	Thr	Ile	Ala 425	Glu	Thr	Glu	Glu	Lys 430	Glu	Lys
Arg	Phe	Gln 435	Glu	Ala	Met	Glu	Met 440	Leu	Lys	Lys	Glu	His 445	Glu	Ala	Leu
Thr	Ile 450	Arg	Gly	Val	Asp	Thr 455	Val	Ser	Arg	Ser	Ser 460	Leu	Glu	Met	Ser

Pro 465	Leu	Ala	Pro	Val	Asn 470	Ser	His	Glu	Arg	Arg 475	Ser	Lys	Arg	Arg	Lys 480
Arg	Met.	Ser	Ser	Gly 485	Thr	Glu	Glu	Cys	Gly 490	Glu	Asp	Arg		Pro 495	Lys
Ser	Asp	Ser	Glu 500	Asp	Gly	Pro	Arg	Ala 505	Met	Asn	His	Leu	Ser 510	Leu	Thr
Arg	Gly	Leu 515	Ser	Arg	Thr	Ser	Met 520	Lys	Pro	Arg	Ser	Ser 525	Arg	Gly	Ser
Ile	Phe 530	Thr	Phe	Arg	Arg	Arg 535	Asp	Leu	Gly	Ser	Glu 540	Ala	Asp	Phe	Ala
Asp 545	Asp	Glu	Asn	Ser	Thr 550	Ala	Arg	Glu	Ser	Glu 555	Ser	His	His	Thr	Ser 560
Leu	Leu	Val	Pro	Trp 565	Pro	Leu	Arg	Arg	Thr 570	Ser	Ala	Gln	Gly	Gln 575	Pro
Ser	Pro	Gly	Thr 580	Ser	Ala	Pro	Gly	His 585	Ala	Leu	His	Gly	Lys 590	Lys	Asn
Ser	Thr	Val 595	Asp	Cys	Asn	Gly	Val 600	Val	Ser	Leu	Leu	Gly 605	Ala	Gly	Asp
Pro	Glu 610	Ala	Thr	Ser	Pro	Gly 615	Ser	His	Leu	Leu	Arg 620	Pro	Val	Met	Leu
Glu 625	His	Pro	Pro	Asp	Thr 630	Thr	Thr	Pro	Ser	Glu 635	Glu	Pro	Gly	Gly	Pro 640
Gln	Met	Leu	Thr	Ser 645	Gln	Ala	Pro	Cys	Val 650	Asp	Gly	Phe	Glu	Glu 655	Pro
Gly	Ala	Arg	Gln 660	Arg	Ala	Leu	Ser	Ala 665	Val	Ser	Val	Leu	Thr 670	Ser	Ala
Leu	Glu	Glu 675	Leu	Glu	Glu	Ser	Arg 680	His	Lys	Cys	Pro	Pro 685		Trp	Asn
Arg	Leu 690		Gln	Arg	Tyr	Leu 695	Ile	Trp	Glu	Cys	Cys 700		Leu	Trp	Met
705		Lys	Gln	Gly	Val 710	Lys	Leu	Val	Val	Met 715		Pro	Phe	Thr	Asp 720
Leu	Thr	Ile	Thr	Met 725	Cys	Ile	Val	Leu	Asn 730		Leu	Phe	Met	Ala 735	Leu
Glu	His	Tyr	Asn 740	Met	Thr	Ser	Glu	Phe 745		Glu	Met	Leu	Gln 750		Gly
Asn	Leu	Val 755		Thr	Gly	Ile	Phe 760		Ala	Glu	Met	Thr 765		Lys	Ile
Ile	Ala 770		Asp	Pro	Tyr	Tyr 775		Phe	Gln	Gln	Gly 780		Asn	Ile	Phe
Asp 785		Ile	Ile	Val	Ile 790		Ser	Leu	Met	Glu 795		Gly	Leu	Ser	Arg 800

Met	Ser	Asn	Leu	Ser 805	Val	Leu	Arg	Ser	Phe 810	Arg	Leu	Leu	Arg	Val 815	Phe
Lys	Leu	Ala	Lys 820	Ser	Trp	Pro	Thr	Leu 825		Thr	Leu	Ile	Lys 830	Ile	Ile
Gly	Asn	Ser 835	Val	Gly	Ala	Leu	Gly 840	Asn	Leu	Thr	Leu	Val 845	Leu	Ala	Ile
Ile	Val 850	Phe	Ile	Phe	Ala	Val 855	Val	Gly	Met	Gln	Leu 860	Phe	Gly	Lys	Asn
Tyr 865	Ser	Glu	Leu	Arg	Asp 870	Ser	Asp	Ser	Gly	Leu 875	Leu	Pro	Arg	Trp	His 880
Met	Met	Asp	Phe	Phe 885	His	Ala	Phe	Leu	Ile 890	Ile	Phe	Arg	Ile	Leu 895	Cys
Gly	Glu	Trp	Ile 900	Glu	Thr	Met	Trp	Asp 905	Cys	Met	Glu	Val	Ser 910	Gly	Gln
Ser	Leu	Cys 915	Leu	Leu	Val	Phe	Leu 920	Leu	Val	Met	Val	Ile 925	Gly	Asn	Leu
Val	Val 930	Leu	Asn	Leu	Phe	Leu 935	Ala	Leu	Leu	Leu	Ser 940	Ser	Phe	Ser	Ala
Asp 945	Asn	Leu	Thr	Ala	Pro 950	Asp	Glu	Asp	Arg	Glu 955	Met	Asn	Asn	Leu	Gln 960
Leu	Ala	Leu	Ala	Arg 965	Ile	Gln	Arg	Gly	Leu 970	Arg	Phe	Val	Lys	Arg 975	Thr
Thr	Trp	Asp	Phe 980	Cys	Cys	Gly	Leu	Leu 985	Arg	His	Arg	Pro	Gln 990	Lys	Pro
Ala	Ala	Leu 995	Ala	Ala	Gln		Gln 1000	Leu	Pro	Ser		11e .005	Ala	Thr	Pro
Tyr 1	Ser 1010	Pro	Pro	Pro	Pro]	Glu 1015	Thr	Glu	Lys		Pro 1020	Pro	Thr	Arg	Lys
Glu 1025	Thr	Gln	Phe	Glu	Glu 1030	Gly	Glu	Gln		Gly .035	Gln	G] y	Thr		Gly .040
Asp	Pro	Glu	Pro]	Val 1045	Cys	Val	Pro		Ala 1050	Val	Ala	Glu		Asp .055	Thr
Asp	Asp	Gln 1	Glu 1060	Glu	Asp	Glu		Asn .065	Ser	Leu	Gly		Glu .070	Glu	Glu
Ser	Ser 1	Lys 1075	Gln	Gln	Glu		Gln .080	Pro	Val	Ser		Trp 085	Pro	Arg	Gly
Pro 1	Pro 090	Asp	Ser	Arg	Thr 1	Trp .095	Ser	Gln	Val		Ala 100	Thr	Ala	Ser	Ser
Glu 1105	Ala	Glu	Ala	Ser 1	Ala 1110	Ser	Gln	Ala		Trp 115	Arg	Gln	Gln	_	Lys 120
Ala	Glu	Pro	Gln 1	Ala 125	Pro	Gly	Cys		Glu 130		Pro	Glu		Ser	Cys

- Ser Glu Gly Ser Thr Ala Asp Met Thr Asn Thr Ala Glu Leu Leu Glu 1140 1145 1150
- Gln Ile Pro Asp Leu Gly Gln Asp Val Lys Asp Pro Glu Asp Cys Phe 1155 1160 1165
- Thr Glu Gly Cys Val Arg Arg Cys Pro Cys Cys Ala Val Asp Thr Thr 1170 1175 1180
- Gln Ala Pro Gly Lys Val Trp Trp Arg Leu Arg Lys Thr Cys Tyr His 1185 1190 1195 1200
- Ile Val Glu His Ser Trp Phe Glu Thr Phe Ile Ile Phe Met Ile Leu 1205 1210 1215
- Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Leu Glu Glu Arg 1220 1225 $^{\circ}$ 1230
- Lys Thr Ile Lys Val Leu Leu Glu Tyr Ala Asp Lys Met Phe Thr Tyr 1235 1240 1245
- Val Phe Val Leu Glu Met Leu Lys Trp Val Ala Tyr Gly Phe Lys 1250 1255 1260
- Lys Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp 1265 1270 1275 1280
- Val Ser Leu Val Ser Leu Val Ala Asn Thr Leu Gly Phe Ala Glu Met 1285 1290 1295
- Gly Pro Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro Leu Arg 1300 1305 1310
- Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Asn Ala Leu Val 1315 1320 1325
- Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val Cys Leu Ile Phe 1330 1340
- Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe 1345 1350 1355 1360
- Gly Arg Cys Ile Asn Gln Thr Glu Gly Asp Leu Pro Leu Asn Tyr Thr 1365 1370 1375
- Ile Val Asn Asn Lys Ser Gln Cys Glu Ser Leu Asn Leu Thr Gly Glu 1380 1385 1390
- Leu Tyr Trp Thr Lys Val Lys Val Asn Phe Asp Asn Val Gly Ala Gly 1395 1400 1405
- Tyr Leu Ala Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile 1410 1415 1420
- Met Tyr Ala Ala Val Asp Ser Arg Gly Tyr Glu Glu Gln Pro Gln Trp 1425 1430 1435 1440
- Glu Tyr Asn Leu Tyr Met Tyr Ile Tyr Phe Val Ile Phe Ile Ile Phe 1445
- Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn 1460 1465 1470

- Phe Asn Gln Gln Lys Lys Leu Gly Gly Gln Asp Ile Phe Met Thr 1475 1480 1485
- Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys 1490 1495 1500
- Lys Pro Gln Lys Pro Ile Pro Arg Pro Leu Asn Lys Tyr Gln Gly Phe 1505 1510 1515 1520
- Ile Phe Asp Ile Val Thr Lys Gln Ala Phe Asp Val Thr Ile Met Phe 1525 1530 1535
- Leu Ile Cys Leu Asn Met Val Thr Met Met Val Glu Thr Asp Asp Gln 1540 1545 1550
- Ser Pro Glu Lys Ile Asn Ile Leu Ala Lys Ile Asn Leu Leu Phe Val 1555 1560 1565
- Ala Ile Phe Thr Gly Glu Cys Ile Val Lys Leu Ala Ala Leu Arg His 1570 1575 1580
- Tyr Tyr Phe Thr Asn Ser Trp Asn Ile Phe Asp Phe Val Val Val Ile 1585 1590 1595 1600
- Leu Ser Ile Val Gly Thr Val Leu Ser Asp Ile Ile Gln Lys Tyr Phe 1605 1610 1615
- Phe Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg 1620 1625 1630
- Ile Leu Arg Leu Ile Arg Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe 1635 1640 1645
- Ala Leu Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu 1650 1655 1660
- Phe Leu Val Met Phe Ile Tyr Ser Ile Phe Gly Met Ala Asn Phe Ala 1665 1670 1675 1680
- Tyr Val Lys Trp Glu Ala Gly Ile Asp Asp Met Phe Asn Phe Gln Thr 1685 1690 1695
- Phe Ala Asn Ser Met Leu Cys Leu Phe Gln Ile Thr Thr Ser Ala Gly 1700 1705 1710
- Trp Asp Gly Leu Leu Ser Pro Ile Leu Asn Thr Gly Pro Pro Tyr Cys 1715 1720 1725
- Asp Pro Thr Leu Pro Asn Ser Asn Gly Ser Arg Gly Asp Cys Gly Ser 1730 1740
- Pro Ala Val Gly Ile Leu Phe Phe Thr Thr Tyr Ile Ile Ile Ser Phe 1745 1750 1755 1760
- Leu Ile Val Val Asn Met Tyr Ile Ala Ile Ile Leu Glu Asn Phe Ser 1765 1770 1775
- Val Ala Thr Glu Glu Ser Thr Glu Pro Leu Ser Glu Asp Asp Phe Asp 1780 1785 1790
- Met Phe Tyr Glu Ile Trp Glu Lys Phe Asp Pro Glu Ala Thr Gln Phe 1795 1800 1805

- Ile Glu Tyr Ser Val Leu Ser Asp Phe Ala Asp Ala Leu Ser Glu Pro 1810 1815 1820
- Leu Arg Ile Ala Lys Pro Asn Gln Ile Ser Leu Ile Asn Met Asp Leu 1825 1830 1835 1840
- Pro Met Val Ser Gly Asp Arg Ile His Cys Met Asp Ile Leu Phe Ala 1845 1850 1855
- Phe Thr Lys Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Lys 1860 1865 1870
- Ile Gln Met Glu Glu Lys Phe Met Ala Ala Asn Pro Ser Lys Ile Ser 1875 1880 1885
- Tyr Glu Pro Ile Thr Thr Thr Leu Arg Arg Lys His Glu Glu Val Ser 1890 1895 1900
- Ala Met Val Ile Gln Arg Ala Phe Arg Arg His Leu Leu Gln Arg Ser 1905 1910 1915 1920
- Leu Lys His Ala Ser Phe Leu Phe Arg Gln Gln Ala Gly Ser Gly Leu 1925 1930 1935
- Ser Glu Glu Asp Ala Pro Glu Arg Glu Gly Leu Ile Ala Tyr Val Met 1940 1945 1950
- Ser Glu Asn Phe Ser Arg Pro Leu Gly Pro Pro Ser Ser Ser Ile 1955 1960 1965
- Ser Ser Thr Ser Phe Pro Pro Ser Tyr Asp Ser Val Thr Arg Ala Thr 1970 1980
- Ser Asp Asn Leu Gln Val Arg Gly Ser Asp Tyr Ser His Ser Glu Asp 1985 1990 1995 2000
- Leu Ala Asp Phe Pro Pro Ser Pro Asp Arg Asp Arg Glu Ser Ile Val2005 2010 2015

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 April 2001 (12.04.2001)

PCT

(10) International Publication Number WO 01/024681 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US00/21660

(22) International Filing Date: 9 August 2000 (09.08.2000)

(25) Filing Language:

English

A61B

(26) Publication Language:

English

(30) Priority Data:

60/147,488 60/190,057 9 August 1999 (09.08.1999) US 17 March 2000 (17.03.2000) US

(71) Applicant: UNIVERSITY OF UTAH RESEARCH
FOUNDATION [US/US]; Suite 110, 615 Arapeen Drive,
Salt Lake City, UT 84108 (US).

- (72) Inventors: KEATING, Mark, T.; 78 Laurel Street, Salt Lake City, UT 84103 (US). SPLAWSKI, Igor; Apartment 140, 900 East Street, Salt Lake City, UT 84124 (US).
- (74) Agents: SAXE, Stephen, A. et al.; Rothwell, Figg, Ernst & Manbeck, 555 13th Street N.W. Suite 701 East, Columbia Square, Washington, DC 20004 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,

DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- (48) Date of publication of this corrected version:

6 September 2002

(15) Information about Correction:

see PCT Gazette No. 36/2002 of 6 September 2002, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

(54) Title: ALTERATIONS IN THE LONG QT SYNDROME GENES KVLQTI AND SCN5A AND METHODS FOR DETECTING SAME

(57) Abstract: Long QT Syndrome (LQTS) is a cardiovascular disorder characterized by prolongation of the QT interval on electrocardiogram and presence of syncope, seizures and sudden death. Five genes have been implicated in Romano-Ward syndrome, the autosomal dominant form of LQTS. These genes are KVLQT1, HERG, SCN5A, KCNE1 and KCNE2. Mutations in KVLQT1 and KCNE1 also cause the Jervell and Lange-Nielsen syndrome, a form of LQTS associated with deafness, a phenotypic abnormality inherited in an autosomal recessive fashion. Mutational analyses were used to screen 262 unrelated individuals with LQTS for mutations in the five defined genes. A total of 134 mutations were observed of which eighty were novel.

TITLE OF THE INVENTION

ALTERATIONS IN THE LONG QT SYNDROME GENES $\mathit{KVLQT1}$ AND $\mathit{SCN5A}$ AND METHODS FOR DETECTING SAME

5

This application was made with Government support from NHLBI under Grant Nos. RO1-HL46401, RO1-HL33843, RO1-HL51618, P50-HL52338 and MO1-RR000064. The federal government may have certain rights in this invention.

BACKGROUND OF THE INVENTION

10

15

Long QT Syndrome (LQTS) is a cardiovascular disorder characterized by prolongation of the QT interval on electrocardiogram and presence of syncope, seizures and sudden death, usually in young, otherwise healthy individuals (Jervell and Lange-Nielsen, 1957; Romano et al., 1963; Ward, 1964). The clinical features of LQTS result from episodic ventricular tachyarrhythmias, such as *torsade de pointes* and ventricular fibrillation (Schwartz et al., 1975; Moss et al., 1991). Two inherited forms of LQTS exist. The more common form, Romano-Ward syndrome (RW), is not associated with other phenotypic abnormalities and is inherited as an autosomal dominant trait with variable penetrance (Roman et al., 1963; Ward, 1964). Jervell and Lange-Nielsen syndrome (JLN) is characterized by the presence of deafness, a phenotypic abnormality inherited as an autosomal recessive trait (Jervell and Lange-Nielsen, 1957). LQTS can also be acquired, usually as a result of pharmacologic therapy.

20

25

In previous studies, we mapped LQTS loci to chromosomes 11p15.5 (*LQTI*) (Keating et al., 1991), 7 q35-36 (*LQT2*) (Jiang et al., 1994) and *LQT3* to 3p21-24 (Jiang et al., 1994). A fourth locus (*LQT4*) was mapped to 4q25-27 (Schott et al., 1995). Five genes have been implicated in Romano-Ward syndrome, the autosomal dominant form of LQTS. These genes are *KVLQT1* (*LQT1*) (Wang Q. et al., 1996a), *HERG* (*LQT2*) (Curran et al., 1995), *SCN5A* (*LQT3*) (Wang et al., 1995a), and two genes located at 21q22 - *KCNE1* (*LQT5*) (Splawski et al., 1997a) and *KCNE2* (*LQT6*) (Abbott et al., 1999). Mutations in *KVLQT1* and *KCNE1* also cause the Jervell and Lange-Nielsen syndrome, a form of LQTS associated with deafness, a phenotypic abnormality inherited in an autosomal recessive fashion.

30

KVLQT1, HERG, KCNE1 and KCNE2 encode potassium channel subunits. Four KVLQT1 α -subunits assemble with minK (β -subunits encoded by KCNE1, stoichiometry is

unknown) to form I_{KS} channels underlying the slowly activating delayed rectifier potassium current in the heart (Sanguinetti et al., 1996a; Barhanin et al., 1996). Four HERG α -subunits assemble with MiRP1 (encoded by KCNE2, stoichiometry unknown) to form I_{Kr} channels, which underlie the rapidly activating, delayed rectifier potassium current (Abbott et al., 1999). Mutant subunits lead to reduction of I_{KS} or I_{Kr} by a loss-of-function mechanism, often with a dominant-negative effect (Chouabe et al., 1997; Shalaby et al., 1997; Wollnik et al., 1997; Sanguinetti et al., 1996b). SCN5A encodes the cardiac sodium channel that is responsible for I_{NS} , the sodium current in the heart (Gellens et al., 1992). LQTS-associated mutations in SCN5A cause a gain-of-function (Bennett et al., 1995; Dumaine et al., 1996). In the heart, reduced I_{KS} or I_{Kr} or increased I_{NS} leads to prolongation of the cardiac action potential, lengthening of the QT interval and increased risk of arrhythmia. KVLQT1 and KCNE1 are also expressed in the inner ear (Neyroud et al., 1997; Vetter et al., 1996). Others and we demonstrated that complete loss of I_{KS} causes the severe cardiac phenotype and deafness in JLN (Neyroud et al., 1997; Splawski et al., 1997b; Tyson et al., 1997; Schulze-Bahr et al., 1997).

15

20

25

30

10

5

Presymptomatic diagnosis of LQTS is currently based on prolongation of the QT interval on electrocardiogram. Genetic studies, however, have shown that diagnosis based solely on electrocardiogram is neither sensitive nor specific (Vincent et al., 1992; Priori et al., 1999). Genetic screening using mutational analysis can improve presymptomatic diagnosis. However, a comprehensive study identifying and cataloging all LQTS-associated mutations in all five genes has not been achieved. To determine the relative frequency of mutations in each gene, facilitate presymptomatic diagnosis and enable genotype-phenotype studies, we screened a pool of 262 unrelated individuals with LQTS for mutations in the five defined genes. The results of these studies are presented in the Examples below.

The present invention relates to alterations in the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* and *KCNE2* genes and methods for detecting such alterations.

The publications and other materials used herein to illuminate the background of the invention or provide additional details respecting the practice, are incorporated by reference, and for convenience are respectively grouped in the appended List of References.

The present invention is directed to alterations in genes and gene products associated with long QT syndrome and to a process for the diagnosis and prevention of LQTS. LQTS is

10

15

20

25

diagnosed in accordance with the present invention by analyzing the DNA sequence of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* gene of an individual to be tested and comparing the respective DNA sequence to the known DNA sequence of the normal gene. Alternatively, these genes of an individual to be tested can be screened for mutations which cause LQTS. Prediction of LQTS will enable practitioners to prevent this disorder using existing medical therapy.

SUMMARY OF THE INVENTION

The present invention relates to alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes and methods for detecting such alterations. The alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes include mutations and polymorphisms. Included among the mutations are frameshift, nonsense, splice, regulatory and missense mutations. Any method which is capable of detecting the alterations described herein can be used. Such methods include, but are not limited to, DNA sequencing, allele-specific probing, mismatch detection, single stranded conformation polymorphism detection and allele-specific PCR amplification.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a schematic representation of the predicted topology of KVLQT1 and the locations of LQTS-associated mutations. KVLQT1 consists of six putative transmembrane segments (S1 to S6) and a pore (Pore) region. Each circle represents an amino acid. The approximate location of LQTS-associated mutations identified in our laboratory are shown with filled circles.

Figure 2 is a schematic representation of HERG mutations. HERG consists of six putative transmembrane segments (S1 to S6) and a pore (Pore) region. Location of LQTS-associated mutations are shown with filled circles.

Figure 3 is a schematic representation of SCN5A and locations of LQTS-associated mutations. SCN5A consists of four domain (DI to DIV), each of which has six putative

4

transmembrane segments (S1 to S6) and a pore (Pore) region. Location of LQTS-associated mutations identified in our laboratory are shown with filled circles.

Figure 4 is a schematic representation of minK and locations of LQT-associated mutations. MinK consists of one putative transmembrane domain (S1). The approximate location of LQTS-associated mutations identified in our laboratory are shown with filled circles.

Figure 5 is a schematic representation of the predicted topology of MiRP1 and locations of arrhythmia-associated mutations. MiRP1 consists of one putative transmembrane domain (S1). The approximate location of arrhythmia-associated mutations identified in our laboratory are shown with filled circles.

10

5

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes and methods for detecting such alterations. The alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes include mutations and polymorphisms. Included among the mutations are frameshift, nonsense, splice, regulatory and missense mutations. Any method which is capable of detecting the mutations and polymorphisms described herein can be used. Such methods include, but are not limited to, DNA sequencing, allele-specific probing, mismatch detection, single stranded conformation polymorphism detection and allele-specific PCR amplification.

20

25

15

KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 mutations cause increased risk for LQTS. Many different mutations occur in KVLQT1, HERG, SCN5A, KCNE1 and KCNE2. In order to detect the presence of alterations in the KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 genes, a biological sample such as blood is prepared and analyzed for the presence or absence of a given alteration of KVLQT1, HERG, SCN5A, KCNE1 or KCNE2. In order to detect the increased risk for LQTS or for the lack of such increased risk, a biological sample is prepared and analyzed for the presence or absence of a mutant allele of KVLQT1, HERG, SCN5A, KCNE1 or KCNE2. Results of these tests and interpretive information are returned to the health care provider for communication to the tested individual. Such diagnoses may be performed by diagnostic

5

laboratories or, alternatively, diagnostic kits are manufactured and sold to health care providers or to private individuals for self-diagnosis.

The presence of hereditary LQTS may be ascertained by testing any tissue of a human for mutations of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* gene. For example, a person who has inherited a germline *HERG* mutation would be prone to develop LQTS. This can be determined by testing DNA from any tissue of the person's body. Most simply, blood can be drawn and DNA extracted from the cells of the blood. In addition, prenatal diagnosis can be accomplished by testing fetal cells, placental cells or amniotic cells for mutations of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* gene. Alteration of a wild-type *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* allele, whether, for example, by point mutation or deletion, can be detected by any of the means discussed herein.

5

10

15

20

25

30

There are several methods that can be used to detect DNA sequence variation. Direct DNA sequencing, either manual sequencing or automated fluorescent sequencing can detect sequence variation. Another approach is the single-stranded conformation polymorphism assay (SSCP) (Orita et al., 1989). This method does not detect all sequence changes, especially if the DNA fragment size is greater than 200 bp, but can be optimized to detect most DNA sequence variation. The reduced detection sensitivity is a disadvantage, but the increased throughput possible with SSCP makes it an attractive, viable alternative to direct sequencing for mutation detection on a research basis. The fragments which have shifted mobility on SSCP gels are then sequenced to determine the exact nature of the DNA sequence variation. Other approaches based on the detection of mismatches between the two complementary DNA strands include clamped denaturing gel electrophoresis (CDGE) (Sheffield et al., 1991), heteroduplex analysis (HA) (White et al., 1992) and chemical mismatch cleavage (CMC) (Grompe et al., 1989). None of the methods described above will detect large deletions, duplications or insertions, nor will they detect a regulatory mutation which affects transcription or translation of the protein. Other methods which might detect these classes of mutations such as a protein truncation assay or the asymmetric assay, detect only specific types of mutations and would not detect missense mutations. A review of currently available methods of detecting DNA sequence variation can be found in a recent review by Grompe (1993). Once a mutation is known, an allele specific detection approach such as allele specific oligonucleotide (ASO) hybridization can be utilized to rapidly screen large numbers of other samples for that same mutation. Such a technique can

6

utilize probes which are labeled with gold nanoparticles to yield a visual color result (Elghanian et al., 1997).

A rapid preliminary analysis to detect polymorphisms in DNA sequences can be performed by looking at a series of Southern blots of DNA cut with one or more restriction enzymes, preferably with a large number of restriction enzymes. Each blot contains a series of normal individuals and a series of LQTS cases. Southern blots displaying hybridizing fragments (differing in length from control DNA when probed with sequences near or including the *HERG* locus) indicate a possible mutation. If restriction enzymes which produce very large restriction fragments are used, then pulsed field gel electrophoresis (PFGE) is employed.

10

5

Detection of point mutations may be accomplished by molecular cloning of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* alleles and sequencing the alleles using techniques well known in the art. Also, the gene or portions of the gene may be amplified, e.g., by PCR or other amplification technique, and the amplified gene or amplified portions of the gene may be sequenced.

15

20

25

30

There are six well known methods for a more complete, yet still indirect, test for confirming the presence of a susceptibility allele: 1) single stranded conformation analysis (SSCP) (Orita et al., 1989); 2) denaturing gradient gel electrophoresis (DGGE) (Wartell et al., 1990; Sheffield et al., 1989); 3) RNase protection assays (Finkelstein et al., 1990; Kinszler et al., 1991); 4) allele-specific oligonucleotides (ASOs) (Conner et al., 1983); 5) the use of proteins which recognize nucleotide mismatches, such as the E. coli mutS protein (Modrich, 1991); and 6) allele-specific PCR (Ruano and Kidd, 1989). For allele-specific PCR, primers are used which hybridize at their 3' ends to a particular KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 mutation. If the particular mutation is not present, an amplification product is not observed. Amplification Refractory Mutation System (ARMS) can also be used, as disclosed in European Patent Application Publication No. 0332435 and in Newton et al., 1989. Insertions and deletions of genes can also be detected by cloning, sequencing and amplification. In addition, restriction fragment length polymorphism (RFLP) probes for the gene or surrounding marker genes can be used to score alteration of an allele or an insertion in a polymorphic fragment. Such a method is particularly useful for screening relatives of an affected individual for the presence of the mutation found in that individual. Other techniques for detecting insertions and deletions as known in the art can be used.

7

In the first three methods (SSCP, DGGE and RNase protection assay), a new electrophoretic band appears. SSCP detects a band which migrates differentially because the sequence change causes a difference in single-strand, intramolecular base pairing. RNase protection involves cleavage of the mutant polynucleotide into two or more smaller fragments. DGGE detects differences in migration rates of mutant sequences compared to wild-type sequences, using a denaturing gradient gel. In an allele-specific oligonucleotide assay, an oligonucleotide is designed which detects a specific sequence, and the assay is performed by detecting the presence or absence of a hybridization signal. In the mutS assay, the protein binds only to sequences that contain a nucleotide mismatch in a heteroduplex between mutant and wild-type sequences.

5

10

15

20

25

30

Mismatches, according to the present invention, are hybridized nucleic acid duplexes in which the two strands are not 100% complementary. Lack of total homology may be due to deletions, insertions, inversions or substitutions. Mismatch detection can be used to detect point mutations in the gene or in its mRNA product. While these techniques are less sensitive than sequencing, they are simpler to perform on a large number of samples. An example of a mismatch cleavage technique is the RNase protection method. In the practice of the present invention, the method involves the use of a labeled riboprobe which is complementary to the human wild-type KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 gene coding sequence. The riboprobe and either mRNA or DNA isolated from the person are annealed (hybridized) together and subsequently digested with the enzyme RNase A which is able to detect some mismatches in a duplex RNA structure. If a mismatch is detected by RNase A, it cleaves at the site of the mismatch. Thus, when the annealed RNA preparation is separated on an electrophoretic gel matrix, if a mismatch has been detected and cleaved by RNase A, an RNA product will be seen which is smaller than the full length duplex RNA for the riboprobe and the mRNA or DNA. The riboprobe need not be the full length of the mRNA or gene but can be a segment of either. If the riboprobe comprises only a segment of the mRNA or gene, it will be desirable to use a number of these probes to screen the whole mRNA sequence for mismatches.

In similar fashion, DNA probes can be used to detect mismatches, through enzymatic or chemical cleavage. See, e.g., Cotton et al., 1988; Shenk et al., 1975; Novack et al., 1986. Alternatively, mismatches can be detected by shifts in the electrophoretic mobility of mismatched duplexes relative to matched duplexes. See, e.g., Cariello, 1988. With either riboprobes or DNA

probes, the cellular mRNA or DNA which might contain a mutation can be amplified using PCR (see below) before hybridization. Changes in DNA of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* gene can also be detected using Southern hybridization, especially if the changes are gross rearrangements, such as deletions and insertions.

5

10

15

20

25

30

DNA sequences of the KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 gene which have been amplified by use of PCR may also be screened using allele-specific probes. These probes are nucleic acid oligomers, each of which contains a region of the gene sequence harboring a known mutation. For example, one oligomer may be about 30 nucleotides in length, corresponding to a portion of the gene sequence. By use of a battery of such allele-specific probes, PCR amplification products can be screened to identify the presence of a previously identified mutation in the gene. Hybridization of allele-specific probes with amplified KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 sequences can be performed, for example, on a nylon filter. Hybridization to a particular probe under high stringency hybridization conditions indicates the presence of the same mutation in the tissue as in the allele-specific probe.

The newly developed technique of nucleic acid analysis via microchip technology is also applicable to the present invention. In this technique, literally thousands of distinct oligonucleotide probes are built up in an array on a silicon chip. Nucleic acid to be analyzed is fluorescently labeled and hybridized to the probes on the chip. It is also possible to study nucleic acid-protein interactions using these nucleic acid microchips. Using this technique one can determine the presence of mutations or even sequence the nucleic acid being analyzed or one can measure expression levels of a gene of interest. The method is one of parallel processing of many, even thousands, of probes at once and can tremendously increase the rate of analysis. Several papers have been published which use this technique. Some of these are Hacia et al., 1996; Shoemaker et al., 1996; Chee et al., 1996; Lockhart et al., 1996; DeRisi et al., 1996; Lipshutz et al., 1995. This method has already been used to screen people for mutations in the breast cancer gene *BRCA1* (Hacia et al., 1996). This new technology has been reviewed in a news article in Chemical and Engineering News (Borman, 1996) and been the subject of an editorial (Editorial, Nature Genetics, 1996). Also see Fodor (1997).

The most definitive test for mutations in a candidate locus is to directly compare genomic KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 sequences from patients with those from a control

population. Alternatively, one could sequence messenger RNA after amplification, e.g., by PCR, thereby eliminating the necessity of determining the exon structure of the candidate gene.

Mutations from patients falling outside the coding region of KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 can be detected by examining the non-coding regions, such as introns and regulatory sequences near or within the genes. An early indication that mutations in noncoding regions are important may come from Northern blot experiments that reveal messenger RNA molecules of abnormal size or abundance in patients as compared to control individuals.

5

10

15

20

25

30

Alteration of KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 mRNA expression can be detected by any techniques known in the art. These include Northern blot analysis, PCR amplification and RNase protection. Diminished mRNA expression indicates an alteration of the wild-type gene. Alteration of wild-type genes can also be detected by screening for alteration of wild-type KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 protein. For example, monoclonal antibodies immunoreactive with HERG can be used to screen a tissue. Lack of cognate antigen would indicate a mutation. Antibodies specific for products of mutant alleles could also be used to detect mutant gene product. Such immunological assays can be done in any convenient formats known in the art. These include Western blots, immunohistochemical assays and ELISA assays. Any means for detecting an altered KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 protein can be used to detect alteration of wild-type KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 genes. Functional assays, such as protein binding determinations, can be used. In addition, assays can be used which detect KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 biochemical function. Finding a mutant KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 gene product indicates alteration of a wild-type KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 gene.

Mutant KVLQT1, HERG, SCN5A, KCNE1 or KCNE2 genes or gene products can also be detected in other human body samples, such as serum, stool, urine and sputum. The same techniques discussed above for detection of mutant genes or gene products in tissues can be applied to other body samples. By screening such body samples, a simple early diagnosis can be achieved for hereditary LQTS.

Initially, the screening method involves amplification of the relevant *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* or *KCNE2* sequence. In another preferred embodiment of the invention, the screening method involves a non-PCR based strategy. Such screening methods include two-step label amplification methodologies that are well known in the art. Both PCR and non-PCR based

10

screening strategies can detect target sequences with a high level of sensitivity. Further details of these methods are briefly presented below and further descriptions can be found in PCT published application WO 96/05306, incorporated herein by reference.

The most popular method used today is target amplification. Here, the target nucleic acid sequence is amplified with polymerases. One particularly preferred method using polymerase-driven amplification is the polymerase chain reaction (PCR). The polymerase chain reaction and other polymerase-driven amplification assays can achieve over a million-fold increase in copy number through the use of polymerase-driven amplification cycles. Once amplified, the resulting nucleic acid can be sequenced or used as a substrate for DNA probes.

5

10

15

20

25

30

When the probes are used to detect the presence of the target sequences, the biological sample to be analyzed, such as blood or serum, may be treated, if desired, to extract the nucleic acids. The sample nucleic acid may be prepared in various ways to facilitate detection of the target sequence; e.g. denaturation, restriction digestion, electrophoresis or dot blotting. The targeted region of the analyte nucleic acid usually must be at least partially single-stranded to form hybrids with the targeting sequence of the probe. If the sequence is naturally single-stranded, denaturation will not be required. However, if the sequence is double-stranded, the sequence will probably need to be denatured. Denaturation can be carried out by various techniques known in the art.

Analyte nucleic acid and probe are incubated under conditions which promote stable hybrid formation of the target sequence in the probe with the putative targeted sequence in the analyte. The region of the probes which is used to bind to the analyte can be made completely complementary to the targeted region of the genes. Therefore, high stringency conditions are desirable in order to prevent false positives. However, conditions of high stringency are used only if the probes are complementary to regions of the chromosome which are unique in the genome. The stringency of hybridization is determined by a number of factors during hybridization and during the washing procedure, including temperature, ionic strength, base composition, probe length, and concentration of formamide. Under certain circumstances, the formation of higher order hybrids, such as triplexes, quadraplexes, etc., may be desired to provide the means of detecting target sequences.

Detection, if any, of the resulting hybrid is usually accomplished by the use of labeled probes. Alternatively, the probe may be unlabeled, but may be detectable by specific binding

with a ligand which is labeled, either directly or indirectly. Suitable labels, and methods for labeling probes and ligands are known in the art, and include, for example, radioactive labels which may be incorporated by known methods (e.g., nick translation, random priming or kinasing), biotin, fluorescent groups, chemiluminescent groups (e.g., dioxetanes, particularly triggered dioxetanes), enzymes, antibodies and the like. Variations of this basic scheme are known in the art, and include those variations that facilitate separation of the hybrids to be detected from extraneous materials and/or that amplify the signal from the labeled moiety. A number of these variations are well known.

5

10

15

20

25

30

As noted above, non-PCR based screening assays are also contemplated in this invention. This procedure hybridizes a nucleic acid probe (or an analog such as a methyl phosphonate backbone replacing the normal phosphodiester), to the low level DNA target. This probe may have an enzyme covalently linked to the probe, such that the covalent linkage does not interfere with the specificity of the hybridization. This enzyme-probe-conjugate-target nucleic acid complex can then be isolated away from the free probe enzyme conjugate and a substrate is added for enzyme detection. Enzymatic activity is observed as a change in color development or luminescent output resulting in a 10³-10⁶ increase in sensitivity. For example, the preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes are well known.

Two-step label amplification methodologies are known in the art. These assays work on the principle that a small ligand (such as digoxigenin, biotin, or the like) is attached to a nucleic acid probe capable of specifically binding the target gene. Allele specific probes are also contemplated within the scope of this example.

In one example, the small ligand attached to the nucleic acid probe is specifically recognized by an antibody-enzyme conjugate. In one embodiment of this example, digoxigenin is attached to the nucleic acid probe. Hybridization is detected by an antibody-alkaline phosphatase conjugate which turns over a chemiluminescent substrate. In a second example, the small ligand is recognized by a second ligand-enzyme conjugate that is capable of specifically complexing to the first ligand. A well known embodiment of this example is the biotin-avidin type of interactions. Methods for labeling nucleic acid probes and their use in biotin-avidin based assays are well known.

12

It is also contemplated within the scope of this invention that the nucleic acid probe assays of this invention will employ a cocktail of nucleic acid probes capable of detecting the gene or genes. Thus, in one example to detect the presence of *KVLQT1* in a cell sample, more than one probe complementary to *KVLQT1* is employed and in particular the number of different probes is alternatively 2, 3, or 5 different nucleic acid probe sequences. In another example, to detect the presence of mutations in the *KVLQT1* gene sequence in a patient, more than one probe complementary to *KVLQT1* is employed where the cocktail includes probes capable of binding to the allele-specific mutations identified in populations of patients with alterations in *KVLQT1*. In this embodiment, any number of probes can be used.

10

5

Large amounts of the polynucleotides of the present invention may be produced by replication in a suitable host cell. Natural or synthetic polynucleotide fragments coding for a desired fragment will be incorporated into recombinant polynucleotide constructs, usually DNA constructs, capable of introduction into and replication in a prokaryotic or eukaryotic cell. Usually the polynucleotide constructs will be suitable for replication in a unicellular host, such as yeast or bacteria, but may also be intended for introduction to (with and without integration within the genome) cultured mammalian or plant or other eukaryotic cell lines. The purification of nucleic acids produced by the methods of the present invention are described, e.g., in Sambrook et al., 1989 or Ausubel et al., 1992.

20

15

The polynucleotides of the present invention may also be produced by chemical synthesis, e.g., by the phosphoramidite method described by Beaucage and Caruthers (1981) or the triester method according to Matteucci and Caruthers (1981) and may be performed on commercial, automated oligonucleotide synthesizers. A double-stranded fragment may be obtained from the single-stranded product of chemical synthesis either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

25

30

Polynucleotide constructs prepared for introduction into a prokaryotic or eukaryotic host may comprise a replication system recognized by the host, including the intended polynucleotide fragment encoding the desired polypeptide, and will preferably also include transcription and translational initiation regulatory sequences operably linked to the polypeptide encoding segment. Expression vectors may include, for example, an origin of replication or autonomously replicating sequence (ARS) and expression control sequences, a promoter, an enhancer and

necessary processing information sites, such as ribosome-binding sites, RNA splice sites, polyadenylation sites, transcriptional terminator sequences, and mRNA stabilizing sequences. Such vectors may be prepared by means of standard recombinant techniques well known in the art and discussed, for example, in Sambrook et al. (1989) or Ausubel et al. (1992).

5

10

15

An appropriate promoter and other necessary vector sequences will be selected so as to be functional in the host, and may include, when appropriate, those naturally associated with the KVLOT1 or other gene. Examples of workable combinations of cell lines and expression vectors are described in Sambrook et al. (1989) or Ausubel et al. (1992); see also, e.g., Metzger et al. (1988). Many useful vectors are known in the art and may be obtained from such vendors as Stratagene, New England Biolabs, Promega Biotech, and others. Promoters such as the trp, lac and phage promoters, tRNA promoters and glycolytic enzyme promoters may be used in prokaryotic hosts. Useful yeast promoters include promoter regions for metallothionein, 3phosphoglycerate kinase or other glycolytic enzymes such as enolase or glyceraldehyde-3phosphate dehydrogenase, enzymes responsible for maltose and galactose utilization, and others. Vectors and promoters suitable for use in yeast expression are further described in Hitzeman et al., EP 73,675A. Appropriate non-native mammalian promoters might include the early and late promoters from SV40 (Fiers et al., 1978) or promoters derived from murine Molony leukemia virus, mouse tumor virus, avian sarcoma viruses, adenovirus II, bovine papilloma virus or polyoma. Insect promoters may be derived from baculovirus. In addition, the construct may be joined to an amplifiable gene (e.g., DHFR) so that multiple copies of the gene may be made. For appropriate enhancer and other expression control sequences, see also Enhancers and Eukaryotic Gene Expression, Cold Spring Harbor Press, Cold Spring Harbor, New York (1983). See also, e.g., U.S. Patent Nos. 5,691,198; 5,735,500; 5,747,469 and 5,436,146.

20

While such expression vectors may replicate autonomously, they may also replicate by being inserted into the genome of the host cell, by methods well known in the art.

25

30

Expression and cloning vectors will likely contain a selectable marker, a gene encoding a protein necessary for survival or growth of a host cell transformed with the vector. The presence of this gene ensures growth of only those host cells which express the inserts. Typical selection genes encode proteins that a) confer resistance to antibiotics or other toxic substances, e.g. ampicillin, neomycin, methotrexate, etc., b) complement auxotrophic deficiencies, or c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine

racemase for *Bacilli*. The choice of the proper selectable marker will depend on the host cell, and appropriate markers for different hosts are well known in the art.

The vectors containing the nucleic acids of interest can be transcribed *in vitro*, and the resulting RNA introduced into the host cell by well-known methods, e.g., by injection (see, Kubo et al. (1988)), or the vectors can be introduced directly into host cells by methods well known in the art, which vary depending on the type of cellular host, including electroporation; transfection employing calcium chloride, rubidium chloride calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; infection (where the vector is an infectious agent, such as a retroviral genome); and other methods. See generally, Sambrook et al. (1989) and Ausubel et al. (1992). The introduction of the polynucleotides into the host cell by any method known in the art, including, *inter alia*, those described above, will be referred to herein as "transformation." The cells into which have been introduced nucleic acids described above are meant to also include the progeny of such cells.

5

10

15

20

25

30

BRIGHTON ID: >WO

0104601A0 IA-

Large quantities of the nucleic acids and polypeptides of the present invention may be prepared by expressing the *KVLQT1* nucleic acid or portions thereof in vectors or other expression vehicles in compatible prokaryotic or eukaryotic host cells. The most commonly used prokaryotic hosts are strains of *Escherichia coli*, although other prokaryotes, such as *Bacillus subtilis* or *Pseudomonas* may also be used.

Mammalian or other eukaryotic host cells, such as those of yeast, filamentous fungi, plant, insect, or amphibian or avian species, may also be useful for production of the proteins of the present invention. Propagation of mammalian cells in culture is *per se* well known. See, Jakoby and Pastan (eds.) (1979). Examples of commonly used mammalian host cell lines are VERO and HeLa cells, Chinese hamster ovary (CHO) cells, and WI38, BHK, and COS cell lines, although it will be appreciated by the skilled practitioner that other cell lines may be appropriate, e.g., to provide higher expression, desirable glycosylation patterns, or other features. An example of a commonly used insect cell line is SF9.

Clones are selected by using markers depending on the mode of the vector construction. The marker may be on the same or a different DNA molecule, preferably the same DNA molecule. In prokaryotic hosts, the transformant may be selected, e.g., by resistance to ampicillin, tetracycline or other antibiotics. Production of a particular product based on temperature sensitivity may also serve as an appropriate marker.

10

15

20

25

30

DISCOUNT -IMO

0104601A0 IA.

Prokaryotic or eukaryotic cells transformed with the polynucleotides of the present invention will be useful not only for the production of the nucleic acids and polypeptides of the present invention, but also, for example, in studying the characteristics of KVLQT1 or other polypeptides.

The probes and primers based on the *KVLQT1* or other gene sequences disclosed herein are used to identify homologous *KVLQT1* or other gene sequences and proteins in other species. These gene sequences and proteins are used in the diagnostic/prognostic, therapeutic and drug screening methods described herein for the species from which they have been isolated.

The studies described in the Examples below resulted in the determination of many novel mutations. Previous studies had defined 126 distinct disease causing mutations in the LQTS genes KVLQT1, HERG, SCN5A, KCNE1 and KCNE2 (Wang Q. et al., 1996a; Curran et al., 1995; Wang et al., 1995a; Splawski et al., 1997a; Abbott et al., 1999; Chouabe et al., 1997; Wollnik et al., 1997; Nevroud et al., 1997; Splawski et al., 1997b; Tyson et al., 1997; Schulze-Bahr et al., 1997; Priori et al., 1999; Splawski et al., 1998; Wang et al., 1995b; Russell et al., 1996; Neyroud et al., 1998; Neyroud et al., 1999; Donger et al., 1997; Tanaka et al., 1997; Jongbloed et al., 1999; Priori et al., 1998; Itoh et al., 1998a; Itoh et al., 1998b; Mohammad-Panah et al., 1999; Saarinen et al., 1998; Ackerman et al., 1998; Berthet et al., 1999; Kanters, 1998; van den Berg et al., 1997; Dausse et al., 1996; Benson et al., 1996; Akimoto et al., 1998; Satler et al., 1996; Satler et al., 1998; Makita et al., 1998, An et al., 1998; Schulze-Bahr et al., 1995; Duggal et al., 1998; Chen Q. et al., 1999; Li et al., 1998; Wei et al., 1999; Larsen et al., 1999a; Bianchi et al., 1999; Ackerman et al., 1999a; Ackerman et al., 1999b; Murray et al., 1999; Larsen et al., 1999b; Yoshida et al., 1999; Wattanasirichaigoon et al., 1999; Bezzina et al., 1999; Hoorntje et al., 1999). The sequence of each wild-type gene has been published. The KVLQT1 can be found in Splawski et al. (1998) and the coding region of the cDNA is shown herein as SEQ ID NO:1 and the encoded KVLQT1 is shown as SEQ ID NO:2. SCN5A was reported by Gellens et al. (1992) and its sequence is provided by GenBank Accession No. NM 000335. The coding sequence of SCN5A is shown herein as SEQ ID NO:3 and the encoded SCN5A is shown as SEQ ID NO:4. Most of the mutations were found in KVLQT1 (Yoshida et al., 1999) and HERG (Itoh et al., 1998b), and fewer in SCN5A (Wang Q. et al., 1996a), KCNE1 (Jiang et al., 1994) and KCNE2 (Ward, 1964). These mutations were identified in regions with known intron/exon structure, primarily the transmembrane and pore domains. In this study, we screened 262 individuals with

10

15

20

25

30

LQTS for mutations in all known arrhythmia genes. We identified 134 mutations, 80 of which were novel. Together with 43 mutations reported in our previous studies, we have now identified 177 mutations in these 262 LQTS individuals (68%). The failure to identify mutations in 32% of the individuals may result from phenotypic errors, incomplete sensitivity of SSCP or presence of mutations in regulatory sequences. However, it is also clear that additional LQTS genes await discovery (Jiang et al., 1994; Schott et al., 1995).

Missense mutations were most common (72%), followed by frameshift mutations (10%), in-frame deletions, nonsense and splice site mutations (5-7% each). Most mutations resided in intracellular (52%) and transmembrane (30%) domains; 12% were found in pore and 6% in extracellular segments. One hundred one of the 129 distinct LQTS mutations (78%) were identified in single families or individuals. Most of the 177 mutations were found in *KVLQT1* (75 or 42%) and *HERG* (80 or 45%). These two genes accounted for 87% of the identified mutations, while mutations in *SCN5A* (14 or 8%), *KCNE1* (5 or 3%) and *KCNE2* (3 or 2%) accounted for the other 13%.

Multiple mutations were found in regions encoding S5, S5/P, P and S6 of KVLQT1 and HERG. The P region of potassium channels forms the outer pore and contains the selectivity filter (Doyle et al., 1998). Transmembrane segment 6, corresponding to the inner helix of KcsA, forms the inner 2/3 of the pore. This structure is supported by the S5 transmembrane segment, corresponding to the outer helix of KcsA, and is conserved from prokaryotes to eukaryotes ((MacKinnon et al., 1998). Mutations in these regions will likely disrupt potassium transport. Many mutations were identified in the C-termini of KVLQT1 and HERG. Changes in the C-terminus of HERG could lead to anomalies in tetramerization as it has been proposed that the C-terminus of eag, which is related to HERG, is involved in this process (Ludwig et al, 1994).

Multiple mutations were also identified in regions that were different for KVLQT1 and HERG. In KVLQT1, multiple mutations were found in the sequences coding for the S2/S3 and S4/S5 linkers. Coexpression of S2/S3 mutants with wild-type KVLQT1 in Xenopus oocytes led to simple loss of function or dominant-negative effect without significantly changing the biophysical properties of I_{Ks} channels (Chouabe et al., 1997; Shalaby et al., 1997; Wang et al., 1999). On the other hand, S4/S5 mutations altered the gating properties of the channels and modified KVLQT1 interactions with minK subunits (Wang et al., 1999; Franqueza et al., 1999).

In *HERG*, more than 20 mutations were identified in the N-terminus. HERG channels lacking this region deactivate faster and mutations in the region had a similar effect (Chen J. et al., 1999).

Mutations in *KCNE1* and *KCNE2*, encoding minK and MiRP1, the respective I_{Ks} and I_{Kr} β-subunits, altered the biophysical properties of the channels (Splawski et al., 1997a; Abbott et al., 1999; Sesti and Goldstein, 1998). A MiRP1 mutant, involved in clarithromyocin-induced arrhythmia, increased channel blockade by the antibiotic (Abbott et al., 1999). Mutations in *SCN5A*, the sodium channel α-subunit responsible for cardiac I_{Na} , destabilized the inactivation gate causing delayed channel inactivation and dispersed reopenings (Bennett et al., 1995; Dumaine et al., 1996; Wei et al., 1999; Wang DW et al., 1996). One SCN5A mutant affected the interactions with the sodium channel β-subunit (An et al., 1998).

It is interesting to note that probands with KCNE1 and KCNE2 mutations were older and had shorter QTc than probands with the other genotypes. The significance of these differences is unknown, however, as the number of probands with KCNE1 and KCNE2 genotypes was small.

This catalogue of mutations will facilitate genotype-phenotype analyses. It also has clinical implications for presymptomatic diagnosis and, in some cases, for therapy. Patients with mutations in *KVLQT1*, *HERG*, *KCNE1* and *KCNE2*, for example, may benefit from potassium therapy (Compton et al., 1996). Sodium channel blockers, on the other hand, might be helpful in patients with *SCN5A* mutations (Schwartz et al. (1995). The identification of mutations is of importance for ion channel studies as well. The expression of mutant channels in heterologous systems can reveal how structural changes influence the behavior of the channel or how mutations affect processing (Zhou et al., 1998; Furutani et al., 1999). These studies improve our understanding of channel function and provide insights into mechanisms of disease. Finally, mutation identification will contribute to the development of genetic screening for arrhythmia susceptibility.

The present invention is described by reference to the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well known in the art or the techniques specifically described in the Examples were utilized.

5

10

15

20

Example 1

Ascertainment and Phenotyping

Individuals were ascertained in clinics from North America and Europe. Individuals were evaluated for LQTS based on QTc (the QT interval corrected for heart rate) and for the presence of symptoms. In this study, we focused on the probands. Individuals show prolongation of the QT interval (QTc≥460 ms) and/or documented *torsade de pointes*, ventricular fibrillation, cardiac arrest or aborted sudden death. Informed consent was obtained in accordance with local institutional review board guidelines. Phenotypic data were interpreted without knowledge of genotype. Sequence changes altering coding regions or predicted to affect splicing that were not detected in at least 400 control chromosomes were defined as mutations. No changes except known polymorphisms were detected ina ny of the genes in the control population. This does not exclude the possibility that some mutations are rare variants not associated with disease.

Example 2

Mutational Analyses

15

20

25

10

5

To determine the spectrum of LQTS mutations, we used SSCP (Single Stand Conformation Polymorphism) and DNA sequence analyses to screen 262 unrelated individuals with LQTS. Seventeen primer pairs were used to screen *KVLQT1* (Splawski et al., 1998), twenty-one primer pairs were used for *HERG* (Splawski et al., 1998) and three primer pairs were used for *KCNE1* (Splawski et al., 1997a) and *KCNE2* (Abbott et al., 1999). Thirty-three primer pairs (Wang Q. et al., 1996b) were used in SSCP analysis to screen all *SCN5A* exons in 50 individuals with suspected abnormalities in I_{Na}. Exons 23-28, in which mutations were previously identified, were screened in all 262 individuals.

Gender, age, QTc and presence of symptoms are summarized in Table 1. The average age at ascertainment was 29 with a corrected QT interval of 492 ms. Seventy-five percent had a history of symptoms and females predominated with an ~ 2:1 ratio. Although the numbers were small, corrected QT intervals for individuals harboring *KCNE1* and *KCNE2* mutations were shorter at 457 ms.

<u>Table 1</u>

Age, QTc, Gender and Presence of Symptoms

Genotype	Age*, y	Gender (F/M)	QTc, ms	Symptoms [†]
	(mean±SD)		(mean±SD)	
KVLQT1	32 ± 19	52/23	493 ± 45	78%
HERG	31 ± 19	51/29	498 ± 48	71%
SCN5A	32 ± 24	8/6	511 ± 42	55%
KCNE1	43 ± 16	3/2	457 ± 25	40%
KCNE2	54 ± 20	3/0	457 ± 05	67%
unknown	25 ± 16	56/29	484 ± 46	81%
all	29 ± 19	173/89	492 ± 47	75%

^{* -} age at ascertainment

10

15

20

25

The SSCP analyses revealed many mutations. *KVLQT1* mutations associated with LQTS were identified in 52 individuals (Figure 1 and Table 2). Twenty of the mutations were novel. *HERG* mutations were identified in 68 LQTS individuals (Figure 2 and Table 3). Fifty-two of these mutations were novel. *SCN5A* mutations were identified in eight cases (Figure 3 and Table 4). Five of the mutations were novel. Three novel *KCNE1* mutations were identified (Figure 4 and Table 5) and three mutations were identified in *KCNE2* (Figure 5 and Table 6) (Abbott et al., 1999). None of the *KVLQT1*, *HERG*, *SCN5A*, *KCNE1* and *KCNE2* mutations was observed in 400 control chromosomes.

<u>Table 2</u>
<u>Summary of All KVLQT1 Mutations*</u>

Nucleotide	Coding	Position	Exon	Number	Study
Change [†]	Effect			of	
				families [‡]	
del211-219	del71-73	N-terminus	1	1	Ackerman et al., 1999a
A332G †	Y111C	N-terminus	1	1	This

^{† -} symptoms include syncope, cardiac arrest or sudden death

25	Nucleotide	Coding	Position	Exon	Number	Study
	Change [†]	Effect			of	
					families [‡]	
	del451-452	A150fs/132	S2	2	1 JLN	Chen Q. et al., 1999
	T470G	F157C	S2	1	1	Larsen et al., 1999a
1	G477+1A	M159sp	S2	2	1 JLN,	This; Donger et al., 1997
					1 UK	
	G477+5A	M159sp	S2	1	1	Ackerman et al., 1999b
5	G478A †	E160K	S2	3	1	This
	del500-502	F167W/del	S2	3	1	Wang Q. et al., 1996a
		G168				
	G502A	G168R	S2	3	7	This; Splawski et al.,
		:				1998; Donger et al., 1997
	C520T	R174C	S2/S3	3	1	Donger et al., 1997
`	G521A †	R174H	S2/S3	3	1	This
10	G532A	A178T	S2/S3	3	1	Tanaka et al., 1997
	G532C	A178P	S2/S3	3	1	Wang Q. et al., 1996a
	G535A †	G179S	S2/S3	3	1	This
	A551C	Y184S	S2/S3	3	2	This; Jongbloed et al.,
						1999
	G565A	G189R	S2/S3	3	3	Wang Q. et al., 1996a;
	-3.					Jongbloed et al., 1999
15.	insG567-	G189fs/94	S2/S3	3	1 (RW +	Splawski et al., 1997b
	568				JLN)	
	G569A	R190Q	S2/S3	3	2	Splawski et al., 1998;
						Donger et al., 1997
	del572-576	L191fs/90	S2/S3	3	1 JLN,	Tyson et al., 1997;
					1 RW	Ackerman et al., 1999b
					2 (JLN +	
					RW)]

25	Nucleotide	Coding	Position	Exon	Number	Study
	Change [†]	Effect			of	
					families [‡]	
•	G580C †	A194P	S2/S3	3	1	This
	C674T	S225L	S4	4	2	This; Priori et al., 1999
	G724A	D242N	S4/S5	5	1	Itoh et al., 1998b
	C727T †	R243C	S4/S5	5	2	This
5	G728A	R243H	S4/S5	5	1 JLN	Saarinen et al., 1998
	T742C †	W248R	S4/S5	5	1	This
	T749A	L250H	S4/S5	5	1	Itoh et al., 1998a
	G760A	V254M	S4/S5	5	4	This; Wang Q. et al.,
						1996a; Donger et al.,
						1997
	G781A	E261K	S4/S5	6	1	Donger et al., 1997
10	T797C †	L266P	S5	6	1	This
	G805A	G269S	S5	6	1	Ackerman et al., 1999b
	G806A	G269D	S5	6	3	This; Donger et al., 1997
	C817T	L273F	S5	6	. 2	This; Wang Q. et al.,
						1996a
	A842G	Y281C	S5	6	1	Priori et al., 1999
15	G898A	A300T	S5/Pore	6	1	Priori et al., 1998
	* G914C	W305S	Pore	6	1 JLN	Chouabe et al., 1997
	G916A	G306R	Pore	6	1	Wang Q. et al, 1996a
	del921-	V307sp	Pore	6	1	Li et al., 1998
	(921+2)					
20	G921+1T†	V307sp	Pore	6	1	This
	A922-2C†	V307sp	Pore	7	1	This
	G922-1C	V307sp	Pore	7	1	Murray et al., 1999
	C926G	T309R	Pore	7	1	Donger et al., 1997

25	Nucleotide	Coding	Position	Exon	Number	Study
	Change [†]	Effect	·		of	
					families [‡]	
	G928A †	V310I ,	Pore	7	1	This
	С932Т	T311I	Pore	7	· 1	Saarinen et al., 1998
	C935T	T312I	Pore	7	2	This; Wang Q. et al.,
						1996a
	C939G	I313M	Pore	7	1	Tanaka et al., 1997
5	G940A	G314S	Pore	7	7	Splawski et al., 1998;
						Russell et al., 1996;
						Donger et al., 1997;
						Jongbloed et al., 1999;
						Itoh et al., 1998b
•	A944C	Y315S	Pore	7	3	Donger et al., 1997;
						Jongbloed et al., 1999
	A944G	Y315C	Pore	7	2	Priori et al., 1999;
						Splawski et al., 1998
	G949A	D317N	Pore	7	2	Wollnik et al., 1997;
						Saarinen et al., 1998
	G954C	K318N	Pore	7	1	Splawski et al., 1998
10	C958G	P320A	Pore	7	1	Donger et al., 1997
	. G973A	G325R	S 6	7	4	This; Donger et al., 1997;
						Tanaka et al., 1997
	del1017-	delF340	S6	7	2	This; Ackerman et al.,
	1019			·		1998
	C1022A	A341E	S6	7	5	This; Wang Q. et al.,
						1996a; Berthet et al., 1999

25	Nucleotide	Coding	Position	Exon	Number	Study
	Change [†]	Effect			of	
					families [‡]	
	C1022T	A341V	S6	7	7	This; Wang Q. et al.,
						1996a; Russell et al.,
:						1996; Donger et al., 1997;
						Li et al., 1998
	C1024T	L342F	S6	7	1	Donger et al., 1997
,	C1031T	A344V	S6	7	1	Donger et al., 1997
	G1032A	A344sp	S6	7	9	This; Kanters, 1998; Li et
						al., 1998; Ackerman et al.,
	·					1999b; Murray et al.,
						1999
5	G1032C	A344sp	S6	7	1	Murray et al., 1999
	G1033C	G345R	S6	8	1 :	van den Berg et al., 1997
	G1034A	G345E	S6	8	1	Wang Q. et al., 1996a
	C1046G†	S349W	S6	8	1	This
	T1058C	L353P	S6	8	1	Splawski et al., 1998
10	C1066T†	Q356X	C-terminus	8	1	This
•	C1096T	R366W	C-terminus	8	1	Splawski et al., 1998
	G1097A†	R366Q	C-terminus	8	1	This
	G1097C	R366P	C-terminus	8	1	Tanaka et al., 1997
	G1111A	A371T	C-terminus	8	1	Donger et al., 1997
15	T1117C	S373P	C-terminus	8	1	Jongbloed et al., 1999
	C1172T †	T391I	C-terminus	9	1	This
	T1174C	W392R	C-terminus	9	1	Jongbloed et al., 1999
	C1343G†	P448R	C-terminus	10	2	This
-	C1522T	R518X	C-terminus	12	1 JLN,	This; Larsen et al., 1999
					3 RW	

25	Nucleotide	Coding	Position	Exon	Number	Study
	Change [†]	Effect	·		of	·
		-			families [‡]	
	G1573A	A525T	C-terminus	12	1	Larsen et al., 1999b
	C1588T †	Q530X	C-terminus	12	1 JLN,	This
					1 RW	
	C1615T	R539W	C-terminus	13	1	Chouabe et al., 1997
	del6/ins7	E543fs/107	C-terminus	13	1 JLN	Neyroud et al., 1997
5	C1663T	R555C	C-terminus	13	3	Donger et al., 1997
	C1697T †	S566F	C-terminus	14	3	This
	C1747T †	R583C	C-terminus	15	1	This
	C1760T	T587M	C-terminus	15	1 JLN,	Donger et al., 1997;
					1 RW	Itoh et al., 1998b
	G1772A	R591H	C-terminus	15	1	Donger et al., 1997
10	G1781A†	R594Q	C-terminus	15	3	This
,	del1892-	P630fs/13	C-terminus	16	1 JLN	Donger et al., 1997
	1911	•				
	insC1893-	P631fs/19	C-terminus	16	1	Donger et al., 1997
	1894					
15	* - ins d	enotes insertion	; del denotes o	deletion;	sp denotes t	he last unaffected amino acid

^{*-} ins denotes insertion; del denotes deletion; sp denotes the last unaffected amino acid before the predicted splice mutation; fs denotes the last amino acid unaffected by a frameshift, following fs is the number of amino acids before termination; X denotes a stop codon occurred.

^{† -} denotes novel mutation

^{‡ -} Number of Romano-Ward families unless otherwise indicated (UK - unknown)

25

<u>Table 3</u> <u>Summary of All *HERG* Mutations*</u>

	Nucleotide	Coding	Position	Exon	Number	Study
	Change	Effect			of RW	·
			-		Families	
5	C87A †	F29L	N-terminus	2	1	This
	A98C†	N33T	N-terminus	2	2	This
	C132A †	C44X	N-terminus	2	1	This
	G140T†	G47V	N-terminus	2	1	This
	G157C†	G53R	N-terminus	2	1	This
10	G167A †	R56Q	N-terminus	2	,1	This
	T196G†	C66G	N-terminus	2	1	This
	A209G†	H70R	N-terminus	2	2	This
	C215A†	P72Q	N-terminus	2	2	This
	del221-251 †	R73fs/31	N-terminus	2	1	This
15	G232C†	A78P	N-terminus	2	1	This
	dupl234-250†	A83fs/37	N-terminus	2	. 1	This
	C241T†	Q81X	N-terminus	2	1	This
	T257G†	L86R	N-terminus	2	1	This
	insC422-423†	P141fs/2	N-terminus	3	1	This
20	insC453-454†	P151fs/	N-terminus	3	1	This
	*	.179				
	dupl558-600	L200fs/	N-terminus	4	1	Hoorntje et al., 1999
		144				
	insC724-725†	P241fs/89	N-terminus	4	1	This
	del885 †	V295fs/63	N-terminus	4	1	This
	C934T†	R312C	N-terminus	5	1	This
25	C1039T †	P347S	N-terminus	5	1	This
	G1128A †	Q376sp	N-terminus	5.	1	This

DEDDOOID 380 01020044

	Nucleotide	Coding	Position	Exon	Number	Study
	Change	Effect			of RW	
					Families	
	A1129-2G†	Q376sp	N-terminus	6	1	This
	del1261	Y420fs/12	S1	6	1 .	Curran et al., 1995
	C1283A	S428X	S1/S2	6	1	Priori et al., 1999
	C1307T	T436M	S1/S2	6	1	Priori et al., 1999
5	A1408G	N470D	S2	6	1	Curran et al., 1995
	C1421T	T474I	S2/S3	6	1.	Tanaka et al., 1997
	C1479G	Y493X	S2/S3	6	1	Itoh et al., 1998a
	del1498-1524	de1500-	S3	6	1	Curran et al., 1995
·		508				
	G1592A †	R531Q	S4	7	1	This
10	C1600T	R534C	S4	7	1	Itoh et al., 1998a
	T1655C†	L552S .	S5	7	1	This
	delT1671	T556fs/7	S5	7	1	Schulze-Bahr et al., 1995
	G1672C	A558P	S5 ,	7	1	Jongbloed et al., 1999
	G1681A	A561T	S5	7	4	This; Dausse et al., 1996
15	C1682T	A561V	S 5	7	4	This; Curran et al., 1995;
		·	;			Priori et al., 1999
	G1714C	G572R	S5/Pore	7	1	Larsen et al., 1999a
	* G1714T	G572C -	S5/Pore	7	1	Splawski et al., 1998
	C1744T	R582C	S5/Pore	7	1 ,	Jongbloed et al., 1999
	G1750A†	G584S	S5/Pore	7	1	This
20	G1755T †	W585C	S5/Pore	7	1	This
	A1762G	N588D	S5/Pore	7	1	Splawski et al., 1998
	T1778C †	I593T	S5/Pore	7	1	This
	T1778G	I593R	S5/Pore	7	1	Benson et al., 1996
	G1801A	G601S	S5/Pore	7	1	Akimoto et al., 1998

DNEDOCID: JAIO 010400140

					·
Nucleotide	Coding	Position	Exon	Number	Study
Change	Effect			of RW	
				Families	
G1810A ·	G604S	S5/Pore	7	2	This; Jongbloed et al.,
					1999
G1825A†	D609N	S5/Pore	7	1	This
T1831C	Y611H	S5/Pore	7	1	Tanaka et al., 1997
T1833 (A or	Y611X	S5/Pore	7	1	Schulze-Bahr et al., 1995
- G)	•				
G1834T	V612L	Pore	7	1	Satler et al., 1998
C1838T	T613M	Pore	7	4	This; Jongbloed et al.,
					1999
C1841T	A614V	Pore	7	6	Priori et al., 1999;
					Splawski et al., 1998;
					Tanaka et al., 1997;
					Satler et al., 1998
C1843G†	L615V	Pore	7	1	This
G1876A†	G626S	Pore	7	1	This
C1881G †	F627L	Pore	7	1	This
G1882A	G628S	Pore	7	2	This; Curran et al., 1995
A1885G	N629D	Pore	7	1	Satler et al., 1998
* A1886G	N629S	Pore	7	1	Satler et al., 1998
C1887A	N629K	Pore	7	1	Yoshida et al., 1999
G1888C	V630L	Pore	7	1 .	Tanaka et al., 1997
T1889C	V630A	Pore	7	1 .	Splawski et al., 1998
C1894T†	P632S	Pore	7	1	This
A1898G	N633S	Pore	7	1	Satler et al., 1998
A1912G†	K638E	S6	7	1	This
del1913-1915†	delK638	S6	7	1	This

	Nucleotide	Coding	Position	Exon	Number	Study
	Change	Effect			of RW	
	·				Families	
74	C1920A	F640L	.S6	7	1	Jongbloed et al., 1999
	A1933T†	M645L	S6	7	1	This
	del1951-1952	L650fs/2	S6	8	1	Itoh et al., 1998a
	G2044T†	E682X	S6/cNBD	8	1	This
5	C2173T	Q725X	S6/cNBD	9	1	Itoh et al., 1998a
•	insT2218-	H739fs/63	S6/cNBD	9	1	This
	2219 †					
	C2254T†	R752W	S6/cNBD	9	1	This
	dupl2356-2386	V796fs/22	cNBD	9	1	Itoh et al., 1998a
10	del2395 †	I798fs/10	cNBD	9	1	This
	G2398+1C	L799sp	cNBD	9	2	This; Curran et al., 1995
	T2414C †	F805S	cNBD	10	1	This
	T2414G †	F805C	cNBD	10	1	This
	C2453T	S818L	cNBD	10	1	Berthet et al., 1999
15	G2464A	V822M	cNBD	10	2	Berthet et al., 1999;
						Satler et al., 1996
:	C2467T †	R823W	cNBD	10	2	This
	A2582T †	N861I	C-terminus	10	1	This
	* G2592+1A	D864sp	C-terminus	10	2	This; Berthet et al., 1999
	del2660 †	K886fs/85	C-terminus	11	1	This
20	C2750T †	P917L	C-terminus	12	1	This
	del2762 †	R920fs/51	C-terminus	12	1	This
	C2764T†	Ř922W	C-terminus	12	1	This
	insG2775-	G925fs/13	C-terminus	12	1	This
	2776 †					
25	del2906 †	P968fs/4	C-terminus	12	1	This

Nucleotide	Coding	Position	Exon	Number	Study
Change	Effect	-		of RW	
				Families	
del2959-2960†	P986fs/	C-terminus	12	1	This
	130	,			
C3040T†	R1014X	C-terminus	13	2	This
del3094 †	G1031fs/	C-terminus	13	1	This
·	24				
insG3107-	G1036fs/	C-terminus	13	1	Berthet et al., 1999
3108	82				·
insC3303-	P1101fs	C-terminus	14	1	This
3304 †					

^{* -} all characters same as in Table 2

15 .

20

<u>Table 4</u> <u>Summary of All SCN5A Mutations</u>

Nucleotide	Coding	Position	Exon	Number	Study
Change	Effect			of RW	
				Families	
G3340A †	D1114N	DII/DIII	18	1	This
C3911T	T1304M	DIII/S4	22	1	Wattanasirichaigoon et al.,
<u>.</u>	·				1999
A3974G	N1325S	DIII/S4/S5	23	1	Wang et al., 1995b
C4501G†	L1501V	DIII/DIV	26	1	This
del4511-	del1505 -	DIII/DIV	26	4	Wang et al., 1995a; Wang et
4519	1507				al., 1995b
del4850-	delF1617	DIV/S3/S4	28	1	This
4852 †		·			
G4868A	R1623Q	DIV/S4	28	2	This; Makita et al., 1998
G4868T†	R1623L	DIV/S4	28	1	This

Nucleotide	Coding	Position	Exon	Number	Study
Change	Effect			of RW	
				Families	
G4931A	R1644H	DIV/S4	28	2	This; Wang et al., 1995b
C4934T	T1645M	DIV/S4	28	1	Wattanasirichaigoon et al.,
					1999
G5350A †	E1784K	C-terminus	28	2	This; Wei et al., 1999
G5360A †	S1787N	C-terminus	28	1	This
A5369G	D1790G	C-terminus	28	1	An et al., 1998
insTGA	insD1795	C-terminus	28	1	Bezzina et al., 1999
5385-5386	-1796	:			

 * - all characters same as in Table 2. Fifty individuals with suspected abnormalities in I_{Na} were screened for all SCN5A exons. All individuals were screened for exons 23-28.

<u>Table 5</u>
'Summary of All KCNE1 Mutations'

Nucleotide Change	Coding Effect	Position	Exon	Number of Families	Study
					611
C20T	T7I	N-terminus	3	1 JLN	Schulze-
					Bahr et al.,
		·			1997
₃ G95A†	R32H	N-terminus	3	1	This
G139T	V47F	S1	3 .	- 1 JLN	Bianchi et
					al., 1999
TG151-	L51H	S1	3	1 JLN	Bianchi et
152AT					al., 1999
A172C/TG	TL58-59PP	S1	3	1 JLN	Tyson et al.,
176-177CT					1997
C221T	S74L	C-terminus	3	1	Splawski et
					al., 1997a

5

10

Nucleotide Change	Coding Effect	Position	Exon	Number of Families	Study
G226A	D76N	C-terminus	3	1 JLN,	Splawski et
				1 RW,	al., 1997a;
·	. ,			1 (JLN + RW)	Tyson et al.,
				İ	1997;
					Duggal et
	^				al., 1998
T259C	W87R	C-terminus	3	1	Bianchi et
					al., 1999
C292T †	R98W	C-terminus	3	1	This
C379A †	P127T	C-terminus	3	1	This

^{* -} all characters same as in Table 2

10

<u>Table 6</u> <u>Summary of All KCNE2 Mutations</u>

Nucleotide Change	Coding Effect	Position	Exon	Number of Families	Study
C25G	Q9E	N-terminus	1	1	Abbott et al., 1999
T161T T170C	M54T I57T	S1 S1	1	1	Abbott et al., 1999 Abbott et al., 1999

WO 01/024681 PCT/US00/21660

32

<u>Table 7</u>

<u>Mutations by Type</u>

Туре	KVLQT1	HERG	SCN5A	KCNE1	KCNE2	Total
Missense	59	52	9	5	3	128
Nonsense	6	5	0	0	0	11
AA deletion*	2	2	:5	0	0	9
Frameshift	1	16	0	0	0	17
Splice	7	5	0	0	0	12
Total	75	80	14	5	3	177

* - AA denotes amino acid

<u>Table 8</u>

Mutations by Position

Gene Protein	KVLQT1 KVLQT1	HERG HERG	SCN5A SCN5A	KCNE1 minK	KCNE2 MiRP1	
Position						Total
Extracellular	0	7	1	1	1	10
Transmembrane	33	13	5	0	2 .	53
Pore	9	12	0	N/A	N/A	21
Intracellular	33	48	8	4	0	93
Total	75	80	14	5	3	177

While the invention has been disclosed in this patent application by reference to the details of preferred embodiments of the invention, it is to be understood that the disclosure is intended in an illustrative rather than in a limiting sense, as it is contemplated that modifications will readily occur to those skilled in the art, within the spirit of the invention and the scope of the appended claims.

10

15

5

20

25

LIST OF REFERENCES

Abbott GW, et al. (1999). Cell <u>97</u>:175-187.

Ackerman MJ, et al. (1998). Pediatr. Res. 44:148-153.

Ackerman MJ, et al. (1999a). N. Engl. J. Med. 341:1121-1125.

Ackerman MJ, et al. (1999b). Mayo Clin. Proc. 74:1088-1094.

Akimoto K, et al. (1998). Hum. Mutat. 1:S184-S186.

An RH, et al. (1998). Circ. Res. 83:141-146.

Ausubel FM, et al. (1992). <u>Current Protocols in Molecular Biology</u>, (John Wiley and Sons, New York, New York).

Barhanin J, et al. (1996). Nature 384:78-80.

Beaucage SL and Caruthers MH (1981). Tetra. Letts. 22:1859-1862.

Bennett PB, et al. (1995). Nature 376:683-685.

Benson DW, et al. (1996). Circulation 93:1791-1795.

Berthet M, et al. (1999). Circulation 99:1464-1470.

Bezzina C, et al. (1999). Circ. Res. 85:1206-1213.

Bianchi L, et al. (1999). Hum. Mol. Genet. 8:1499-1507.

Borman S (1996). Chemical & Engineering News, December 9 issue, pp. 42-43.

Cariello NF (1988). Am. J. Human Genetics 42:726-734.

Chee M, et al. (1996). Science 274:610-614.

Chen J, et al. (1999). J. Biol. Chem. 274:10113-10118.

Chen Q, et al. (1999). Circulation 99:1344-1347.

Chouabe C, et al. (1997). EMBO J. 16:5472-5479.

Compton SJ, et al. (1996). Circulation 94:1018-1022.

Conner BJ, et al. (1983). Proc. Natl. Acad. Sci. USA 80:278-282.

Cotton RG, et al. (1988). Proc. Natl. Acad. Sci. USA 85:4397-4401.

Curran ME, et al. (1995). Cell 80:795-803.

Dausse E, et al. (1996). J. Mol. Cell. Cardiol. 28:1609-1615.

DeRisi J, et al. (1996). Nat. Genet. 14:457-460.

Donger C, et al. (1997). Circulation 96:2778-2781.

Doyle DA, et al. (1998). Science 280:69-77.

Duggal P, et al. (1998). Circulation 97:142-146.

Dumaine R, et al. (1996). Circ. Res. 78:914-924.

Editorial (1996). Nature Genetics 14:367-370.

Elghanian R, et al. (1997). Science 277:1078-1081.

Enhancers and Eukaryotic Gene Expression, Cold Spring Harbor Press, Cold Spring Harbor, New York (1983).

Fiers W, et al. (1978). Nature <u>273</u>:113-120.

Finkelstein J, et al. (1990). Genomics 7:167-172.

Fodor SPA (1997). Science 277:393-395.

Franqueza L, et al. (1999). J. Biol. Chem. 274:21063-21070.

Furutani M, et al. (1999). Circulation 99:2290-2294.

Gellens M, et al. (1992). Proc. Natl. Acad. Sci. USA 89:554-558.

Grompe M (1993). *Nature Genetics* <u>5</u>:111-117.

Grompe M, et al., (1989). Proc. Natl. Acad. Sci. USA 86:5855-5892.

Hacia JG, et al. (1996). Nature Genetics 14:441-447.

Hoorntje T, et al. (1999). Circulation 100:1264-1267.

Itoh T, et al. (1998a). Hum. Genet. 102:435-439.

Itoh T, et al. (1998b). Hum. Genet. 103:290-294.

Jakoby WB and Pastan IH (eds.) (1979). <u>Cell Culture</u>. *Methods in Enzymology* volume 58 (Academic Press, Inc., Harcourt Brace Jovanovich (New York)).

Jervell A and Lange-Nielsen F (1957). Am. Heart J. 54:59-68.

Jiang C, et al. (1994). Nat. Genet. 8:141-147.

Jongbloed RJ, et al. (1999). Hum. Mutat. 13:301-310.

Kanters J (1998). J. Cardiovasc. Electrophysiol. 9:620-624.

Keating M, et al. (1991). Science 252:704-706.

Kinszler KW, et al. (1991). Science 251:1366-1370.

Kubo T, et al. (1988). FEBS Lett. 241:119.

Larsen LA, et al. (1999a). Hum. Mutat. 13:318-327.

Larsen LA, et al. (1999b). Eur. J. Hum. Genet. 7:724-728.

Li H, et al. (1998). Circulation 97:1264-1269.

Lipshutz RJ, et al. (1995). *Biotechniques* <u>19</u>:442-447.

Lockhart DJ, et al. (1996). Nature Biotechnology 14:1675-1680.

Ludwig J, et al. (1994). EMBO J. 13:4451-4458.

MacKinnon R, et al. (1998). Science 280:106-109.

Makita N, et al. (1998). FEBS Lett. 423:5-9.

Matteucci MD and Caruthers MH (1981). J. Am. Chem. Soc. 103:3185.

Metzger D, et al. (1988). Nature <u>334</u>:31-36.

Modrich P (1991). Ann. Rev. Genet. 25:229-253.

Mohammad-Panah R, et al. (1999). Am. J. Hum. Genet. 64:1015-1023.

Moss A, et al. (1991). Circulation 84:1136-1144.

Murray A, et al. (1999). Circulation 100:1077-1084.

Newton CR, et al. (1989). Nucl. Acids Res. 17:2503-2516.

Neyroud N, et al. (1997). Nat. Genet. 15:186-189.

Neyroud N, et al. (1998). Eur. J. Hum. Genet. 6:129-133.

Neyroud N, et al. (1999). Circ. Res. 84:290-297.

Novack DF, et al. (1986). Proc. Natl. Acad. Sci. USA 83:586-590.

Orita M, et al. (1989). Proc. Natl. Acad. Sci. USA 86:2766-2770.

Priori SG, et al. (1998). Circulation 97:2420-2425.

Priori SG, et al. (1999). Circulation <u>99</u>:529-533.

Romano C, et al. (1963). Clin. Pediatr. 45:656-683.

Ruano G and Kidd KK (1989). Nucl. Acids Res. 17:8392.

Russell MW, et al. (1996). Hum. Mol. Genet. 5:1319-1324.

Saarinen K, et al. (1998). Hum. Mutat. 11:158-165.

Sambrook J, et al. (1989). Molecular Cloning: A Laboratory Manual, 2nd Ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

Sanguinetti MC, et al. (1996a). Nature 384:80-83.

Sanguinetti MC, et al. (1996b). Proc. Natl. Acad. Sci. USA <u>93</u>:2208-2212.

Satler CA, et al. (1996). Am. J. Med. Genet. 65:27-35.

Satler CA, et al. (1998). Hum. Genet. 102:265-272.

Schott J, et al. (1995). Am. J. Hum. Genet. <u>57</u>:1114-1122.

Schulze-Bahr E, et al. (1995). N. Engl. J. Med. 333:1783-1784.

Schulze-Bahr E, et al. (1997). Nat. Genet. <u>17</u>:267-268.

Schwartz PJ, et al. (1975). Am. Heart J. 89:378-390.

Schwartz PJ, et al. (1995). Circulation 92:3381-3386.

Sesti F and Goldstein SA (1998). J. Gen. Physiol. 112:651-663.

Shalaby FY, et al. (1997). Circulation 96:1733-1736.

Sheffield VC, et al. (1989). Proc. Natl. Acad. Sci. USA 86:232-236.

Sheffield VC, et al. (1991). Am. J. Hum. Genet. 49:699-706.

Shenk TE, et al. (1975). Proc. Natl. Acad. Sci. USA 72:989-993.

Shoemaker DD, et al. (1996). Nature Genetics 14:450-456.

Splawski I, et al. (1997a). Nat. Genet. 17:338-340.

Splawski I, et al. (1997b). N. Engl. J. Med. 336:1562-1567.

Splawski I, et al. (1998). Genomics <u>51</u>:86-97.

Tanaka T, et al. (1997). Circulation 95:565-567.

Tyson J, et al. (1997). Hum. Mol. Genet. 6:2179-2185.

van den Berg MH, et al. (1997). Hum. Genet. 100:356-361.

Vetter DE, et al. (1996). Neuron 17:1251-1264.

Vincent GM, et al. (1992). N. Engl. J. Med. 327:846-852.

Wang DW (1996). Proc. Natl. Acad. Sci. USA 93:13200-13205.

Wang Q, et al. (1995a). Cell 80:805-811.

Wang Q, et al. (1995b). Hum. Mol. Genet. 4:1603-1607.

Wang Q, et al. (1996a). Nat. Genet. 12:17-23.

Wang Q, et al. (1996b). Genomics 34:9-16.

Wang Z, et al. (1999). J. Cardiovasc. Electrophysiol. 10:817-826.

Ward OC (1964). J. Ir. Med. Assoc. 54:103-106.

Wartell RM, et al. (1990). Nucl. Acids Res. 18:2699-2705.

Wattanasirichaigoon D, et al. (1999). Am. J. Med. Genet. 86:470-476.

Wei J, et al. (1999). Circulation 99:3165-3171.

White MB, et al. (1992). Genomics 12:301-306.

Wollnik B, et al. (1997). Hum. Mol. Genet. 6:1943-1949.

Yoshida H, et al. (1999). J. Cardiovasc. Electrophysiol. 10:1262-1270.

Zhou Z, et al. (1998). J. Biol. Chem. 273:21061-21066.

Hitzeman et al., EP 73,675A.

European Patent Application Publication No. 0332435.

U.S. Patent No. 5,436,146

U.S. Patent No. 5,691,198

U.S. Patent No. 5,735,500

U.S. Patent No. 5,747,469

WHAT IS CLAIMED IS:

- An isolated DNA comprising a sequence of SEQ ID NO:1 as altered by one or more mutations selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A.
- A nucleic acid probe specifically hybridizable to a human mutated KVLQT1 and not to wild-type DNA, said mutated KVLQT1 comprising a mutation of SEQ ID NO:1 selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A.
- 3. A method for detecting a mutation in *KVLQT1* said mutation selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A which comprises analyzing a sequence of said gene or RNA from a human sample or analyzing the sequence of cDNA made from mRNA from said sample.
- 4. The method of claim 3 wherein said mutation is detected by a method selected from the group consisting of:
 - a) hybridizing a probe specific for one of said mutations to RNA isolated from said human sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - b) hybridizing a probe specific for one of said mutations to cDNA made from RNA isolated from said sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - c) hybridizing a probe specific for one of said mutations to genomic DNA isolated from said sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;

- d) amplifying all or part of said gene in said sample using a set of primers to produce amplified nucleic acids and sequencing the amplified nucleic acids;
- e) amplifying part of said gene in said sample using a primer specific for one of said mutations and detecting the presence of an amplified product, wherein the presence of said product indicates the presence of said mutation in the sample;
- f) molecularly cloning all or part of said gene in said sample to produce a cloned nucleic acid and sequencing the cloned nucleic acid;
- g) amplifying said gene to produce amplified nucleic acids, hybridizing the amplified nucleic acids to a DNA probe specific for one of said mutations and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation;
- h) forming single-stranded DNA from a gene fragment of said gene from said human sample and single-stranded DNA from a corresponding fragment of a wild-type gene, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel and comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said sample is shifted relative to wild-type and sequencing said single-stranded DNA having a shift in mobility;
- i) forming a heteroduplex consisting of a first strand of nucleic acid selected from the group consisting of a genomic DNA fragment isolated from said sample, an RNA fragment isolated from said sample and a cDNA fragment made from mRNA from said sample and a second strand of a nucleic acid consisting of a corresponding human wild-type gene fragment, analyzing for the presence of a mismatch in said heteroduplex, and sequencing said first strand of nucleic acid having a mismatch;
- j) forming single-stranded DNA from said gene of said human sample and from a corresponding fragment of an allele specific for one of said mutations, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel and comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said sample is shifted relative to said allele, wherein no shift in electrophoretic mobility of the single-stranded DNA relative to the allele indicates the presence of said mutation in said sample; and

- k) forming a heteroduplex consisting of a first strand of nucleic acid selected from the group consisting of a genomic DNA fragment of said gene isolated from said sample, an RNA fragment isolated from said sample and a cDNA fragment made from mRNA from said sample and a second strand of a nucleic acid consisting of a corresponding gene allele fragment specific for one of said mutations and analyzing for the presence of a mismatch in said heteroduplex, wherein no mismatch indicates the presence of said mutation.
- 5. A method according to claim 4 wherein hybridization is performed in situ.
- 6. An isolated human polypeptide encoded by KVLQT1 comprising a mutation of SEQ ID NO:2 selected from the group consisting of Y111C, E160K, R174H, G179S, A194P, R243C, W248R, L266P, V307sp, V310I, S349W, Q356X, R366Q, T391I, P448R, Q530X, S566F, R583C and R594Q.
- 7. An antibody capable of binding the polypeptide of claim 6 but incapable of binding a wild-type polypeptide.
- 8. An antibody according to claim 7 wherein said antibody is a monoclonal antibody.
- 9. A method of assessing a risk in a human subject for long QT syndrome which comprises screening said subject for a mutation in *KVLQT1* by comparing the sequence of said *KVLQT1* or its expression products isolated from a tissue sample of said subject with a wild-type sequence of said *KVLQT1* or its expression products, wherein a mutation in the sequence of the subject indicates a risk for long QT syndrome.
- 10. The method of claim 9 wherein said expression product is selected from mRNA of said gene or a polypeptide encoded by said gene.

- 11. The method of claim 9 wherein one or more of the following procedures is carried out:
 - (a) observing shifts in electrophoretic mobility of single-stranded DNA from said sample on non-denaturing polyacrylamide gels;
 - (b) hybridizing a probe to genomic DNA isolated from said sample under conditions suitable for hybridization of said probe to said gene;
 - (c) determining hybridization of an allele-specific probe to genomic DNA from said sample;
 - (d) amplifying all or part of said gene from said sample to produce an amplified sequence and sequencing the amplified sequence;
 - (e) determining by nucleic acid amplification the presence of a specific mutant allele in said sample;
 - (f) molecularly cloning all or part of said gene from said sample to produce a cloned sequence and sequencing the cloned sequence;
 - (g) determining whether there is a mismatch between molecules (1) said gene genomic DNA or mRNA isolated from said sample, and (2) a nucleic acid probe complementary to the human wild-type gene DNA, when molecules (1) and (2) are hybridized to each other to form a duplex;
 - (h) amplification of said gene sequences in said sample and hybridization of the amplified sequences to nucleic acid probes which comprise wild-type gene sequences;
 - (i) amplification of said gene sequences in said tissue and hybridization of the amplified sequences to nucleic acid probes which comprise said mutant gene sequences;
 - (j) screening for a deletion mutation;
 - (k) screening for a point mutation;
 - (l) screening for an insertion mutation;
 - (m) determining in situ hybridization of said gene in said sample with one or more nucleic acid probes which comprise said gene sequence or a mutant sequence of said gene;
 - (n) immunoblotting;
 - (o) immunocytochemistry;

- (p) assaying for binding interactions between said gene protein isolated from said tissue and a binding partner capable of specifically binding the polypeptide expression product of a mutant allele and/or a binding partner for the polypeptide; and
- (q) assaying for the inhibition of biochemical activity of said binding partner.
- 12. A nucleic acid probe which hybridizes to the isolated DNA of claim 1 under conditions at which it will not hybridize to wild-type DNA.
 - 13. A method for diagnosing a mutation which causes long QT syndrome comprising hybridizing a probe of claim 12 to a patient's sample of DNA or RNA, the presence of a hybridization signal being indicative of long QT syndrome.
 - 14. A method according to claim 13 wherein the patient's DNA or RNA has been amplified and said amplified DNA or RNA is hybridized with a probe of claim 12.
 - 15. A method according to claim 13 wherein said hybridization is performed in situ.
 - 16. A method according to claim 13 wherein said assay is performed using nucleic acid microchip technology.
 - 17. A method for diagnosing a mutation which causes long QT syndrome comprising amplifying a region of gene or RNA for *KVLQT1* and sequencing the amplified gene or RNA wherein long QT syndrome is indicated by any one or more mutations selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A.
 - 18. A method for diagnosing a mutation which causes long QT syndrome comprising identifying a mismatch between a patient's DNA or RNA and a wild-type DNA or RNA probe wherein said probe hybridizes to a region of DNA or RNA wherein said region comprises a mutation of SEQ ID NO:1 selected from the group consisting of A332G,

- G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A.
- 19. The method of claim 18 wherein the mismatch is identified by an RNase assay.
- 20. A method for diagnosing long QT syndrome said method consisting of an assay for the presence of mutant KVLQT1 polypeptide in a patient by reacting a patient's sample with an antibody of claim 7, the presence of a positive reaction being indicative of long QT syndrome.
- 21. The method of claim 20 wherein said assay comprises immunoblotting.
- 22. The method of claim 20 wherein said assay comprises an immunocytochemical technique.
- A method for diagnosing long QT syndrome, said method comprising analyzing a KVLQT1 polypeptide, a mutation in said polypeptide being indicative of long QT syndrome wherein said mutation is a mutation selected from the group consisting of Y111C, E160K, R174H, G179S, A194P, R243C, W248R, L266P, V307sp, V310I, S349W, Q356X, R366Q, T391I, P448R, Q530X, S566F, R583C and R594Q.
- 24. A method to screen for drugs which are useful in treating a person with a mutation in KVLQTI wherein said mutation is selected from the group consisting of A332G, G478A, G521A, G535A, G580C, C727T, T742C, T797C, G921+1T, A922-2C, G928A, C1046G, C1066T, G1097A, C1172T, C1343G, C1588T, C1697T, C1747T and G1781A, said method comprising:
 - a) placing a first set of cells expressing KVLQT1 with a mutation, wherein said mutation is selected from the group consisting of Y111C, E160K, R174H, G179S, A194P, R243C, W248R, L266P, V307sp, V310I, S349W, Q356X, R366Q, T391I, P448R, Q530X, S566F, R583C and R594Q, into a bathing solution;
 - b) inducing a first induced K⁺ current in the cells of step (a);
 - c) measuring said first induced K⁺ current;

- d) placing a second set of cells expressing wild-type KVLQT1 into a bathing solution
- e) inducing a second induced K⁺ current in the cells of step (d);
- f) measuring said second induced K⁺ current;
- g) adding a drug to the bathing solution of step (a);
- h) inducing a third induced K⁺ current in the cells of step (g);
- i) measuring said third induced K+ current; and
- j) determining whether the third induced K⁺ current is more similar to the second induced K⁺ current than is the first induced K⁺ current, wherein drugs resulting in a third induced K⁺ current which is closer to the second induced K⁺ current than is the first induced K⁺ current are useful in treating said persons.
- 25. An isolated DNA encoding a KVLQT1 polypeptide of SEQ ID NO:2 having a mutation selected from the group consisting of Y111C, E160K, R174H, G179S, A194P, R243C, W248R, L266P, V307sp, V310I, S349W, Q356X, R366Q, T391I, P448R, Q530X, S566F, R583C and R594Q.
- 26. An isolated DNA comprising a sequence of SEQ ID NO:3 as altered by one or more mutations selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A.
- 27. A nucleic acid probe specifically hybridizable to a human mutated *SCN5A* and not to wild-type DNA, said mutated *SCN5A* comprising a mutation of SEQ ID NO:3 selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A.
- 28. A method for detecting a mutation in *SCN5A* said mutation selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A which comprises analyzing a sequence of said gene or RNA from a human sample or analyzing the sequence of cDNA made from mRNA from said sample.

- 29. The method of claim 28 wherein said mutation is detected by a method selected from the group consisting of:
 - a) hybridizing a probe specific for one of said mutations to RNA isolated from said human sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - b) hybridizing a probe specific for one of said mutations to cDNA made from RNA isolated from said sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - c) hybridizing a probe specific for one of said mutations to genomic DNA isolated from said sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - d) amplifying all or part of said gene in said sample using a set of primers to produce amplified nucleic acids and sequencing the amplified nucleic acids;
 - e) amplifying part of said gene in said sample using a primer specific for one of said mutations and detecting the presence of an amplified product, wherein the presence of said product indicates the presence of said mutation in the sample;
 - f) molecularly cloning all or part of said gene in said sample to produce a cloned nucleic acid and sequencing the cloned nucleic acid;
 - g) amplifying said gene to produce amplified nucleic acids, hybridizing the amplified nucleic acids to a DNA probe specific for one of said mutations and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said mutation;
 - h) forming single-stranded DNA from a gene fragment of said gene from said human sample and single-stranded DNA from a corresponding fragment of a wild-type gene, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel and comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said sample is shifted relative to wild-type and sequencing said single-stranded DNA having a shift in mobility;
 - i) forming a heteroduplex consisting of a first strand of nucleic acid selected from the group consisting of a genomic DNA fragment isolated from said sample, an RNA fragment isolated from said sample and a cDNA fragment made from mRNA from said

sample and a second strand of a nucleic acid consisting of a corresponding human wildtype gene fragment, analyzing for the presence of a mismatch in said heteroduplex, and sequencing said first strand of nucleic acid having a mismatch;

- j) forming single-stranded DNA from said gene of said human sample and from a corresponding fragment of an allele specific for one of said mutations, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel and comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said sample is shifted relative to said allele, wherein no shift in electrophoretic mobility of the single-stranded DNA relative to the allele indicates the presence of said mutation in said sample; and
- k) forming a heteroduplex consisting of a first strand of nucleic acid selected from the group consisting of a genomic DNA fragment of said gene isolated from said sample, an RNA fragment isolated from said sample and a cDNA fragment made from mRNA from said sample and a second strand of a nucleic acid consisting of a corresponding gene allele fragment specific for one of said mutations and analyzing for the presence of a mismatch in said heteroduplex, wherein no mismatch indicates the presence of said mutation.
- 30. A method according to claim 29 wherein hybridization is performed in situ.
- 31. An isolated human polypeptide encoded by *SCN5A* comprising a mutation of SEQ ID NO:4 selected from the group consisting of D1114N, L1501V, delF1617, R1623L, E1784K and S1787N.
- 32. An antibody capable of binding the polypeptide of claim 31 but incapable of binding a wild-type polypeptide.
- 33. An antibody according to claim 32 wherein said antibody is a monoclonal antibody.
- 34. A method of assessing a risk in a human subject for long QT syndrome which comprises screening said subject for a mutation in SCN5A by comparing the sequence of said

SCN5A or its expression products isolated from a tissue sample of said subject with a wild-type sequence of said SCN5A or its expression products, wherein a mutation in the sequence of the subject indicates a risk for long QT syndrome.

- 35. The method of claim 34 wherein said expression product is selected from mRNA of said gene or a polypeptide encoded by said gene.
- 36. The method of claim 34 wherein one or more of the following procedures is carried out:
 - (a) observing shifts in electrophoretic mobility of single-stranded DNA from said sample on non-denaturing polyacrylamide gels;
 - (b) hybridizing a probe to genomic DNA isolated from said sample under conditions suitable for hybridization of said probe to said gene;
 - (c) determining hybridization of an allele-specific probe to genomic DNA from said sample;
 - (d) amplifying all or part of said gene from said sample to produce an amplified sequence and sequencing the amplified sequence;
 - (e) determining by nucleic acid amplification the presence of a specific mutant allele in said sample;
 - (f) molecularly cloning all or part of said gene from said sample to produce a cloned sequence and sequencing the cloned sequence;
 - (g) determining whether there is a mismatch between molecules (1) said gene genomic DNA or mRNA isolated from said sample, and (2) a nucleic acid probe complementary to the human wild-type gene DNA, when molecules (1) and (2) are hybridized to each other to form a duplex;
 - (h) amplification of said gene sequences in said sample and hybridization of the amplified sequences to nucleic acid probes which comprise wild-type gene sequences;
 - (i) amplification of said gene sequences in said tissue and hybridization of the amplified sequences to nucleic acid probes which comprise said mutant gene sequences;
 - (j) screening for a deletion mutation;
 - (k) screening for a point mutation;
 - (1) screening for an insertion mutation;

- (m) determining in situ hybridization of said gene in said sample with one or more nucleic acid probes which comprise said gene sequence or a mutant sequence of said gene;
- (n) immunoblotting;
- (o) immunocytochemistry;
- (p) assaying for binding interactions between said gene protein isolated from said tissue and a binding partner capable of specifically binding the polypeptide expression product of a mutant allele and/or a binding partner for the polypeptide; and
- (q) assaying for the inhibition of biochemical activity of said binding partner.
- 37. A nucleic acid probe which hybridizes to the isolated DNA of claim 26 under conditions at which it will not hybridize to wild-type DNA.
- 38. A method for diagnosing a mutation which causes long QT syndrome comprising hybridizing a probe of claim 37 to a patient's sample of DNA or RNA, the presence of a hybridization signal being indicative of long QT syndrome.
- 39. A method according to claim 38 wherein the patient's DNA or RNA has been amplified and said amplified DNA or RNA is hybridized with a probe of claim 37.
- 40. A method according to claim 38 wherein said hybridization is performed in situ.
- 41. A method according to claim 38 wherein said assay is performed using nucleic acid microchip technology.
- 42. A method for diagnosing a mutation which causes long QT syndrome comprising amplifying a region of gene or RNA for *SCN5A* and sequencing the amplified gene or RNA wherein long QT syndrome is indicated by any one or more mutations selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A.

- 43. A method for diagnosing a mutation which causes long QT syndrome comprising identifying a mismatch between a patient's DNA or RNA and a wild-type DNA or RNA probe wherein said probe hybridizes to a region of DNA or RNA wherein said region comprises a mutation of SEQ ID NO:3 selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A.
- 44. The method of claim 43 wherein the mismatch is identified by an RNase assay.
- 45. A method for diagnosing long QT syndrome said method consisting of an assay for the presence of mutant SCN5A polypeptide in a patient by reacting a patient's sample with an antibody of claim 32, the presence of a positive reaction being indicative of long QT syndrome.
- 46. The method of claim 45 wherein said assay comprises immunoblotting.
- 47. The method of claim 45 wherein said assay comprises an immunocytochemical technique.
- 48. A method for diagnosing long QT syndrome, said method comprising analyzing a SCN5A polypeptide, a mutation in said polypeptide being indicative of long QT syndrome wherein said mutation is a mutation selected from the group consisting of D1114N, L1501V, delF1617, R1623L, E1784K and S1787N.
- 49. A method to screen for drugs which are useful in treating a person with a mutation in SCN5A wherein said mutation is selected from the group consisting of G3340A, C4501G, del4850-4852, G4868T, G5349A and G5360A, said method comprising:
 - a) placing a first set of cells expressing SCN5A with a mutation, wherein said mutation is selected from the group consisting of D1114N, L1501V, delF1617, R1623L, E1784K and S1787N, into a bathing solution;
 - b) inducing a first induced Na⁺ current in the cells of step (a);
 - c) measuring said first induced Na⁺ current;
 - d) placing a second set of cells expressing wild-type SCN5A into a bathing solution;

- e) inducing a second induced Na⁺ current in the cells of step (d);
- f) measuring said second induced Na⁺ current;
- g) adding a drug to the bathing solution of step (a);
- h) inducing a third induced Na⁺ current in the cells in step (g);
- i) measuring said third induced Na+ current; and
- j) determining whether the third induced Na⁺ current is more similar to the second induced Na⁺ current than is the first induced Na⁺ current, wherein drugs resulting in a third induced Na⁺ current which is closer to the second induced Na⁺ current than is the first induced Na⁺ current are useful in treating said persons.
- 50. An isolated DNA encoding an SCN5A polypeptide of SEQ ID NO:4 having a mutation selected from the group consisting of D1114N, L1501V, delF1617, R1623L, E1784K and S1787N.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

1

SEQUENCE LISTING

<110	Kε	eatir	ski, ng, N rsity	Mark	T.	n Res	sear	ch Fo	ounda	atio	า		٠			
<120			ATION AND								ENES	KVL	2T1 /	ДИA		
<130	> 23	323-3	155.I	PCT												
<140 <141					ned											
<150 <151																
<150 <151																
<160	> 4															
<170	> Pa	atent	In V	Jer.	2.0			•								
<210 <211 <212 <213	> 20 > DN	ΑI	sapie	ens												
<220 <221 <222	> CI	_	(2028	3)												
<400														.		4.0
atg Met . 1																48
tgg Trp	ggc Gly	cgc Arg	ctg Leu 20	cca Pro	ggc Gly	gcc Ala	cgg Arg	cgg Arg 25	ggc Gly	agc Ser	gcg Ala	ggc Gly	.ctg Leu 30	gcc Ala	aag Lys	96
aag Lys																144
gcg Ala	ctc Leu 50	tac Tyr	gcg Ala	ccc Pro	atc Ile	gcg Ala 55	ccc Pro	ggc Gly	gcc Ala	cca Pro	ggt Gly 60	ccc Pro	gcg Ala	ccc Pro	cct	192
gcg Ala 65	tcc Ser	ccg Pro	gcc Ala	gcg Ala	ccc Pro 70	gcc Ala	gcg Ala	ccc Pro	cca Pro	gtt Val 75	gcc Ala	tcc Ser	gac Asp	ctt Leu	ggc Gly 80	240
ccg Pro	cgg Arg	ccg Pro	ccg Pro	gtg Val 85	agc Ser	cta Leu	gac Asp	ccg Pro	cgc Arg 90	gtc Val	tcc Ser	atc Ile	tac Tyr	agc Ser 95	acg Thr	288
cgc Arg	cgc Arg	ccg Pro	gtg Val 100	ttg Leu	gcg Ala	cgc Arg	acc Thr	cac His 105	gtc Val	cag Gln	Gly ggc	cgc Arg	gtc Val 110	tac Tyr	aac Asn	336

ttc Phe	ctc Leu	gag Glu 115	cgt Arg	ccc Pro	acc Thr	ggc	tgg Trp 120	aaa Lys	tgc Cys	ttc Phe	gtt Val	tac Tyr 125	cac His	ttc Phe	gcc Ala	384
gtc Val	ttc Phe 130	ctc Leu	atc Ile	gtc Val	ctg Leu	gtc Val 135	tgc Cys	ctc Leu	atc Ile	ttc Phe	agc Ser 140	gtg Val	ctg Leu	tcc Ser	acc . Thr	432
atc Ile 145	gag Glu	cag Gln	tat Tyr	gcc Ala	gcc Ala 150	ctg Leu	gcc Ala	acg Thr	ggg Gly	act Thr 155	ctc Leu	ttc Phe	tgg Trp	atg Met	gag Glu 160	480
atc Ile	gtg Val	ctg Leu	gtg Val	gtg Val 165	ttc Phe	ttc Phe	ggg ggg	acg Thr	gag Glu 170	tac Tyr	gtg Val	gtc Val	cgc Arg	ctc Leu 175	tgg Trp	528
tcc Ser	gcc Ala	ggc Gly	tgc Cys 180	cgc Arg	agc Ser	aag Lys	tac Tyr	gtg Val 185	ggc Gly	ctc Leu	tgg Trp	GJ y ggg	cgg Arg 190	ctg Leu	cgc Arg	576
ttt Phe	gcc Ala	cgg Arg 195	aag Lys	ccc Pro	att Ile	tcc Ser	atc Ile 200	atc Ile	gac Asp	ctc Leu	atc Ile	gtg Val 205	gtc Val	gtg Val	gcc Ala	624
tcc Ser	atg Met 210	gtg Val	gtc Val	ctc Leu	tgc Cys	gtg Val 215	ggc Gly	tcc Ser	aag Lys	Gly ggg	cag Gln 220	gtg Val	ttt Phe	gcc Ala	acg Thr	672
tcg Ser 225	gcc Ala	atc Ile	agg Arg	ggc Gly	atc Ile 230	cgc Arg	ttc Phe	ctg Leu	cag Gln	atc Ile 235	ctg Leu	agg Arg	atg Met	cta Leu	cac His 240	720
gtc Val	gac Asp	cgc Arg	cag Gln	gga Gly 245	ggc Gly	acc Thr	tgg Trp	agg Arg	ctc Leu 250	ctg Leu	ggc Gly	tcc Ser	gtg Val	gtc Val 255	ttc Phe	768
atc Ile	cac His	cgc Arg	cag Gln 260	gag Glu	ctg Leu	ata Ile	acc Thr	acc Thr 265	ctg Leu	tac Tyr	atc Ile	ggc Gly	ttc Phe 270	ctg Leu	ggc Gly	816
ctc Leu	atc Ile	ttc Phe 275	tcc Ser	tcg Ser	tac Tyr	ttt Phe	gtg Val 280	tac Tyr	ctg Leu	gct Ala	gag Glu	aag Lys 285	gac Asp	gcg Ala	gtg Val	864
aac A s n	gag Glu 290	tca Ser	ggc Gly	cgc Arg	gtg Val	gag Glu 295	ttc Phe	ggc Gly	agc Ser	tac Tyr	gca Ala 300	gat Asp	gcg Ala	ctg Leu	tgg Trp	912
tgg Trp 305	GJ A GGG	gtg Val	gtc Val	aca Thr	gtc Val 310	acc Thr	acc Thr	atc	ggc Gly	tat Tyr 315	ejà aaa	gac Asp	aag Lys	gtg Val	ccc Pro 320	960
cag Gln	acg Thr	tgg Trp	gtc Val	999 Gly 325	aag Lys	acc Thr	atc Ile	gcc Ala	tcc Ser 330	tgc Cys	tt <i>c</i> Phe	tct Ser	gt <i>c</i> Val	ttt Phe 335	gcc Ala	1008
atc Ile	tcc Ser	ttc Phe	ttt Phe 340	gcg Ala	ctc Leu	cca Pro	gcg Ala	ggg Gly 345	att Ile	ctt Leu	ggc ggc	tcg Ser	999 Gly 350	ttt Phe	gcc Ala	1056
ctg Leu	aag Lys	gtg Val 355	cag Gln	cag Gln	aag Lys	cag Gln	agg Arg 360	cag Gln	aag Lys	cac His	ttc Phe	aac Asn 365	cgg Arg	cag Gln	atc Ile	1104

3

						att Ile 375										1152
						acc Thr									ccc~ Pro 400	1200
	_			_	_	tca Ser		_				-	_			1248
						ttc Phe										1296
						aca Thr										1344
						cac His 455										1392
						ctg Leu										1440
						gag Glu										1488
_						atc Ile		_	-		_					1536
		-	_		_	cgc Arg	_	_				_	_	_		1584
						cct Pro 535										1632
						aac Asn										1680
agg Arg	agg Arg	ctg Leu	gac Asp	cag Gln 565	tcc Ser	att Ile	Gly ggg	aag Lys	ccc Pro 570	tca Ser	ctg Leu	ttc Phe	atc Ile	tcc Ser 575	gtc Val	1728
						cgc Arg										1776
						gtg Val										1824
						cag Gln 615										1872

ccc Pro 625	ggc Gly _,	agc. Ser	Gly	ggc	ccc Pro 630	ccc Pro	aga Arg	gag Glu	ggc	ggg Gly 635	gcc Ala	cac His	atc Ile	acc Thr	cag Gln 640	1920
ccc Pro	tgc Cys	ggc	agt Ser	ggc Gly 645	ggc Gly	tcc Ser	gtc Val	gac Asp	cct Pro 650	gag Glu	ctc Leu	ttc Phe	ctg Leu	ccc Pro 655	agc Ser	1968
aac Asn	acc Thr	ctg Leu	ccc Pro 660	acc Thr	tac Tyr	gag Glu	cag Gln	ctg Leu 665	acc Thr	gtg Val	ccc Pro	agg Arg	agg Arg 670	ggc Gly	ecc Pro	2016
_		ggg Gly 675														2028
<212	l> 67 2> PF		sapie	ens						·						
<400 Met 1		Ala	Ala	Ser 5	Ser	Pro	Pro	Arg	Ala 10	Glu	Arg	Lys	Arg	Trp 15	Gly	
Trp	Gly	Arġ	Leu 20	Pro	Gly	Ala	Arg	Arg 25	Gly	Ser	Ala	Gly	Leu 30	Ala	Lys	
Lys	Cys	Pro 35	Phe	Ser	Leu	Glu	Leu 40	Ala	Glu	Gly	Gly	Pro 45	Ala	Gly	Gly	
Ala	Leu 50	Tyr	Ala	Pro	Ile	Ala 55	Pro	Gly	Ala	Pro	Gly 60	Pro	Ala	Pro	Pro	
Ala 65	Ser	Pro	Ala	Ala	Pro 70	Ala	Ala	Pro	Pro	Val 75	Ala	Ser	Asp	Leu	Gly 80	
Pro	Arg	Pro	Pro	Val 85	Ser	Leu	Asp	Pro	Arg 90	Val	Ser	Ile	Tyr	Ser 95	Thr	
Arg	Arg	Pro	Val 100	Leu	Ala	Arg	Thr	His 105	Val	Gln	Gly	Arg	Val 110	Tyr	Asn	
Phe	Leu	Glu 115	Arg	Pro	Thr	Gly	Trp 120	Lys	Cys	Phe	Val	Tyr 125	His	Phe	Ala	
Val	Phe 130	Leu	Ile	Val	Leu	Val 135	Cys	Leu	Ile	Phe	Ser 140	Val	Leu	Ser	Thr	
Ile 145	Glu	Gln	Tyr	Ala	Ala 150	Leu	Ala	Thr	Gly	Thr 155	Leu	Phe	Trp	Met	Glu 160	
Ile	Val	Leu	Val	Val 165	Phe	Phe	Gly	Thr	Glu 170	Tyr	Val	Val	Arg	Leu 175	Trp	
Ser	Ala	Gly	Cys 180	Arg	Ser	Lys	Tyr	Val 185	Gly	Leu	Trp	Gly	Arg 190	Leu	Arg	
Phe	Ala	Arg 195	Lys	Pro	Ile	Ser	Ile 200	Ile	Asp	Leu	Ile	Val 205	Val	Val	Ala	

S	er	Met 210	Val	Val	Leu	Cys	Val 215	Gly	Ser	Lys	Gly	Gln 220	Val	Phe	Ala	Thr
	er 25	Ala	Ile	Arg	Gly	Ile 230	Arg	Phe	Leu	Gln	Ile 235	Leu	Arg	Met	Leu	His 240
V	al	Asp	Arg	Gln	Gly 245	Gly	Thr	Trp	Arg	Leu 250	Leu	Gly	Ser	Val	Val 255	Phe
Ι	le	His	Arg	Gln 260	Glu	Leu	Ile	Thr	Thr 265	Leu	Tyr	Ile	Gly	Phe 270	Leu	Gly
L	eu	Ile	Phe 275	Ser	Ser	Tyr	Phe	Val 280	Tyr	Leu	Ala	Glu	Lys 285	Asp	Ala	Val
A	sn	Glu 290	Ser	Gly	Arg	Val	Glu 295	Phe	Gly	Ser	Tyr	Ala 300	Asp	Ala	Leu	Trp
	rp 05	Gly	Val	Val	Thr	Val 310	Thr	Thr	Ile	Gly	Tyr 315	Gly	Asp	Lys	Val	Pro 320
G.	ln	Thr	Trp	Val	Gly 325	Lys	Thr	Ile	Ala	Ser 330	Cys	Phe	Ser	Val	Phe 335	Ala
I	le	Ser	Phe	Phe 340	Ala	Leu	Pro	Ala	Gly 345	Ile	Leu	Gly	Ser	Gly 350	Phe	Ala
L	eu	Lys	Val 355	Gln	Gln	Lys	Gln	Arg 360	Gln	Lys	His	Phe	Asn 365	Arg	Gln	Ile
P	ro	Ala 370	Ala	Ala	Ser	Leu	Ile 375	Gln	Thr	Ala	Trp	Arg 380	Cys	Tyr	Ala	Ala
	1ս 85	Asn	Pro	Asp	Ser	Ser 390	Thr	Trp	Lys	Ile	Tyr 395	Ile	Arg	Lys	Ala	Pro 400
A:	rg	Ser	His	Thr	Leu 405	Leu	Ser	Pro	Ser	Pro 410	Lys	Pro	Lys	Lys	Ser 415	Val
V	al	Val	Lys	Lys 420	Lys	Lys	Phe	Lys	Leu 425	Asp	Lys	Asp	Asn	Gly 430	Val	Thr
Pi	ro	Gly	Glu 435	Lys	Met	Leu	Thr	Val 440	Pro	His	Ile	Thr	Cys 445	Asp	Pro	Pro
G.	łu	Glu 450	Arg	Arg	Leu	Asp	His 455	Phe	Ser	Val	Asp	Gly 460	Tyr	Asp	Ser	Ser
	al 65	Arg	Lys	Ser	Pro	Thr 470	Leu	Leu	Glu	Val	Ser 475	Met	Pro	His	Phe	Met 480
A	rg	Thr	Asn	Ser	Phe 485	Ala	Glu	Asp	Leu	Asp 490	Leu	Glu	Gly	Glu	Thr 495	Leu
Le	eu	Thr	Pro	Ile 500	Thr	His	Ile	Ser	Gln 505	Leu	Arg	Glu	His	His 510	Arg	Ala
Tì	nr	Ile	Lys 515	Val	Ile	Arg	Arg	Met 520	Gln	Tyr	Phe	Val	Ala 525	Lys	Lys	Lys
Pł	ne	Gln 530	Gln	Ala	Arg	Lys	Pro 535	Tyr	Asp	Val	Arg	Asp 540	Val	Ile	Glu	Gln

545	261	GIn	Gly	His	Leu 550	Asn	Leu	Met	Val ·	Arg 555	Ile	Lys	Glu	Leu	Gln 560	
Arg	Arg	Leu	Asp	Gln 565	Ser	Ile	Gly	Lys	Pro 570	Ser	Leu	Phe	Ile	Ser 575	Val	
Ser	Glu	Lys	Ser 580	Lys	Asp	Arg	Gly	Ser 585	Asn	Thr	Ile	Gly	Ala 590	Arg	Leu	
Asn	Arg	Val 595	Glu	Asp	Lys	Val	Thr 600	Gln	Leu	Asp	Gln	Arg 605	Leu	Ala	Leu	
Ile	Thr 610	Asp	Met	Leu	His	Gln 615	Leu	Leu	Ser	Leu	His 620	Gly	Gly	Ser	Thr	
Pro 625	Gly	Ser	Gly	Gly	Pro 630	Pro	Arg	Glu	Gly	Gly 635	Ala	His	Ile	Thr	Gln 640	
Pro	Cys	Gly	Ser	Gly 645	Gly	Ser	Val	Asp	Pro 650	Glu	Leu	Phe	Leu	Pro 655	Ser	
Asn	Thr	Leu	Pro 660	Thr	Tyr	Glu	Gln	Leu 665	Thr	Val	Pro	Arg	Arg 670	Gly	Pro	
Asp	Glu	Gly 675	Ser						,							
<213 <213	0> 3 1> 60 2> D1 3> Ho	4V	sapie	ens												
<220	0>															
	1> CI 2> (1		(6048	3)												
<222 <400 atg	1> CI	l)	ttc	cta	tta Leu	cct Pro	cgg Arg	ggc Gly	acc Thr 10	agc Ser	agc Ser	ttc Phe	cgc Arg	agg Arg 15	ttc Phe	48
<222 <400 atg Met 1 aca	1> CI 2> (1 0> 3 gca	aac Asn gag	ttc Phe	cta Leu 5	Leu gca	Pro	Arg	Gly	Thr 10 aag	Ser	Ser	Phe	Arg	Arg 15 aag	Phe caa	48 96
<22: <400 atg Met 1 aca Thr	1> CI 2> (1 0> 3 gca Ala cgg	aac Asn gag Glu	ttc Phe tcc Ser 20	cta Leu 5 ctg Leu	Leu gca Ala acc	Pro gcc Ala ttg	Arg atc Ile cag	gag Glu 25 gag	Thr 10 aag Lys	ser cgc Arg	Ser atg Met	Phe gcg Ala ggg	gag Glu 30	Arg 15 aag Lys	Phe caa Gln gag	
<222 <400 atg Met 1 aca Thr gcc Ala	1> CI 2> (1 0> 3 gca Ala cgg Arg	aac Asn gag Glu ggc Gly 35	ttc Phe tcc Ser 20 tca Ser	cta Leu 5 ctg Leu acc Thr	Leu gca Ala acc Thr	gcc Ala	atc Ile cag Gln 40	gag Glu 25 gag Glu	Thr 10 aag Lys agc Ser ctg	ser cgc Arg cga Arg	ser atg Met gag Glu gcc	gcg Ala ggg Gly 45	gag Glu 30 ctg Leu	Arg 15 aag Lys ccc Pro	Caa Gln gag Glu	96
<222 <400 atg Met 1 aca Thr gcc Ala gag Glu cca	1> CI 2> (1 0> 3 gca Ala cgg Arg cgc Arg	aac Asn gag Glu ggc Gly 35 gct Ala	ttc Phe tcc Ser 20 tca Ser ccc Pro	cta Leu 5 ctg Leu acc Thr	gca Ala acc Thr ccc Pro	gcc Ala ttg Leu cag Gln 55 cca	atc Ile cag Gln 40 ctg Leu ccc	gag Glu 25 gag Glu gac Asp	Thr 10 aag Lys agc Ser ctg Leu	cgc Arg cga Arg cag Gln	ser atg Met gag Glu gcc Ala 60 atc	gcg Ala ggg Gly 45 tcc Ser	gag Glu 30 ctg Leu aaa Lys	Arg 15 aag Lys ccc Pro aag Lys	Caa Gln gag Glu ctg Leu	96 144

					atc Ile											336
gtc Val	ctc Leu	agt Ser 115	ccc Pro	ttc Phe	cac His	cca Pro	gtt Val 120	cgg Arg	aga Arg	gcg Ala	gct Ala	gtg Val 125	aag Lys	att Ile	ctg Leu	384
-		_			aac Asn	_			_	_						432
					cag Gln 150											480
					gcc Ala											528
ctg Leu	gct Ala	cga Arg	gct Ala 180	ttc Phe	tgc Cys	ctg Leu	cac His	gcg Ala 185	ttc Phe	act Thr	ttc Phe	ctt Leu	cgg Arg 190	gac Asp	cca Pro	576
					ttt Phe											624
					aat Asn											672
					ata Ile 230											720
					tct Ser											768
					agc Ser											816
					cac His											864
					gtg Val											912
					gat Asp 310											960
					tgt Cys											1008
gag Glu	ggc Gly	tac Tyr	cgg Arg 340	tgc Cys	cta Leu	aag Lys	gca Ala	ggc Gly 345	gag Glu	aac Asn	ccc Pro	gac Asp	cac His 350	ggc Gly	tac Tyr	1056

	gat Asp								1104
	gac Asp				Gln			tcc Ser	1152
	atc Ile								1200
	ctg Leu								1248
	aac Asn 420								1296
	gag Glu								1344
	ggt Gly								1392
	cca Pro								1440
	tca Ser								1488
	gaa Glu 500								1536
	agc Ser								1584
	ttt Phe								1632
	aac Asn								1680
	ccc Pro								1728
	acc Thr 580								1776
	gac Asp								1824

cca Pro	gag Glu 610	Ala	aca Thr	tcc Ser	cca Pro	gga Gly 615	Ser	cac His	ctc Leu	ctc Leu	cgc Arg 620	Pro	gtg Val	atg Met	cta Leu	1872
gag Glu 625	His	ccg Pro	cca Pro	gac Asp	acg Thr 630	acc Thr	acg Thr	cca Pro	tcg Ser	gag Glu 635	Glu	cca Pro	ggc Gly	ggc Gly	ccc Pro 640	1920
cag Gln	atg Met	ctg Leu	acc Thr	tcc Ser 645	cag Gln	gct Ala	ccg Pro	tgt Cys	gta Val 650	gat Asp	Gly	ttc Phe	gag Glu	gag Glu 655	cca Pro	1968
gga Gly	gca Ala	cgg Arg	cag Gln 660	cgg Arg	gcc Ala	ctc Leu	agc Ser	gca Ala 665	gtc Val	agc Ser	gtc Val	ctc Leu	aca Thr 670	agc Ser	gca Ala	2016
ctg Leu	gaa Glu	gag Glu 675	tta Leu	gag Glu	gag Glu	tct Ser	cgc Arg 680	cac His	aag Lys	tgt Cys	cca Pro	cca Pro 685	tgc Cys	tgg Trp	aac Asn	2064
cgt Arg	ctc Leu 690	gcc Ala	cag Gln	cgc Arg	tac Tyr	ctg Leu 695	atc Ile	tgg Trp	gag Glu	tgc Cys	tgc Cys 700	ccg Pro	ctg Leu	tgg Trp	atg Met	2112
tcc Ser 705	atc Ile	aag Lys	cag Gln	gga Gly	gtg Val 710	aag Lys	ttg Leu	gtg Val	gtc Val	atg Met 715	Asp	ccg Pro	ttt Phe	act Thr	gac Asp 720	2160
ctc Leu	acc Thr	atc Ile	act Thr	atg Met 725	tgc Cys	atc Ile	gta Val	ctc Leu	aac Asn 730	aca Thr	ctc Leu	ttc Phe	atg Met	gcg Ala 735	ctg Leu	2208
gag Glu	cac His	tac Tyr	aac Asn 740	atg Met	aca Thr	agt Ser	gaa Glu	ttc Phe 745	gag Glu	gag Glu	atg Met	ctg Leu	cag Gln 750	gtc Val	gga Gly	2256
aac Asn	ctg Leu	gtc Val 755	ttc Phe	aca Thr	Gly ggg	att Ile	ttc Phe 760	aca Thr	gca Ala	gag Glu	atg Met	acc Thr 765	ttc Phe	aag Lys	atc Ile	2304
att Ile	gcc Ala 770	ctc Leu	gac Asp	ccc Pro	tac Tyr	tac Tyr 775	tac Tyr	ttc Phe	caa Gln	cag Gln	ggc Gly 780	tgg Trp	aac Asn	atc Ile	ttc Phe	2352
gac Aşp 785	agc Ser	atc Ile	atc Ile	gtc Val	atc Ile 790	ctt Leu	agc Ser	ctc Leu	atg Met	gag Glu 795	ctg Leu	ggc Gly	ctg Leu	tcc Ser	cgc Arg 800	2400
atg Met	agc Ser	aac Asn	ttg Leu	tcg Ser 805	gtg Val	ctg Leu	cgc Arg	tcc Ser	ttc Phe 810	cgc Arg	ctg Leu	ctg Leu	cgg Arg	gtc Val 815	ttc Phe	2448
aag Lys	ctg Leu	gcc Ala	aaa Lys 820	tca Ser	tgg Trp	ccc Pro	acc Thr	ctg Leu 825	aac Asn	aca Thr	ctc Leu	atc Ile	aag Lys 830	atc Ile	atc Ile	2496
Gly	aac Asn	tca Ser 835	gtg Val	Gly ggg	gca Ala	ctg Leu	ggg Gly 840	aac Asn	ctg Leu	aca Thr	ctg Leu	gtg Val 845	cta Leu	gcc Ala	atc Ile	2544
atc Ile	gtg Val 850	ttc Phe	atc Ile	ttt Phe	gct Ala	gtg Val 855	gtg Val	ggc Gly	atg Met	cag Gln	ctc Leu 860	ttt Phe	ggc Gly	aag Lys	aac Asn	2592

										ctg Leu 875						2640
_	_	_				_				atc Ile		_			tgt Cys	2688
										atg Met						2736
tca Ser	tta Leu	tgc Cys 915	ctg Leu	ctg Leu	gtc Val	ttc Phe	ttg Leu 920	ctt Leu	gtt Val	atg Met	gtc Val	att Ile 925	ggc Gly	aac Asn	ctt Leu	2784
_	_	_				_	_	_	_	ctc Leu	_				-	2832
										gag Glu 955						2880
										cgc Arg						2928
										cac His						2976
						Gly				agc Ser	Cys					3024
Tyr					Pro					gtg Val						3072
	Thr			Glu					Pro	ggc Gly 1035				Pro		3120
			Pro					Ile		gtg Val			Ser			3168
		Gln					Glu			ctg Leu		Thr				3216
	Ser					Ser				tcc Ser	Ğİy					3264
Pro					Thr					tca Ser						3312
	Āla			Ser					Asp	tgg Trp 1115				Trp		3360

gcg Ala	gaa Glu	Pro	GIn	gcc Ala 1125	Pro	ggg	tgc Cys	Gly	gag Glu 1130	acc Thr	cca Pro	gag Glu	gac Asp	agt Ser 1135	tgc Cys	3408
tcc Ser	gag Glu	Gly	agc Ser 1140	Thr	gca Ala	gac Asp	atg Met	acc Thr 1145	aac Asn	acc Thr	gct Ala	Glu	ctc Leu 1150	Leu	gag Glu	3456
cag Gln	тте	cct Pro 1155	gac Asp	ctc Leu	Gly	Gln	gat Asp 1160	Val	aag Lys	gac Asp	Pro	gag Glu 1165	gac Asp	tgc Cys	ttc Phe	3504
Thr	gaa Glu 170	ggc	tgt Cys	gtc Val	Arg	cgc Arg 1175	tgt Cys	ccc Pro	tgc Cys	Cys	gcg Ala 1180	gtg Val	gac Asp	acc Thr	aca Thr	3552
cag Gln 1185	Ala	cca Pro	ggg Gly	Lys	gtc Val 1190	tgg Trp	tgg Trp	cgg. Arg	Leu	cgc Arg 1195	aag Lys	acc Thr	tgc Cys	Tyr	cac His 1200	3600
atc Ile	gtg Val	gag Glu	His	agc Ser 1205	tgg Trp	ttc Phe	gag Glu	Thr	ttc Phe 1210	atc Ile	atc Ile	ttc Phe	Met	atc Ile 1215	cta Leu	3648
ctc Leu	agc Ser	Ser	gga Gly 1220	gcg Ala	ctg Leu	gcc Ala	Phe	gag Glu 1225	gac Asp	atc Ile	tac Tyr	Leu	gag Glu .230	gag Glu	cgg Arg	3696
aag Lys	Thr	atc Ile 1235	aag Lys	gtt Val	ctg Leu	Leu	gag Glu 1240	tat Tyr	gcc Ala	gac Asp	aag Lys 1	atg Met 245	ttc Phe	aca Thr	tat Tyr	3744
Val	ttc Phe 250	gtg Val	ctg Leu	gag Glu	Met	ctg Leu 255	ctc Leu	aag Lys	tgg Trp	Val	gcc Ala 1260	tac Tyr	Gly ggc	ttc Phe	aag Lys	3792
aag Lys 1265	tac Tyr	ttc Phe	acc Thr	Asn	gec Ala .270	tgg Trp	tgc Cys	tgg Trp	Leu	gac Asp 275	ttc Phe	ctc Leu	atc Ile	Val	gac Asp .280	3840
gtc Val	tct Ser	ctg Leu	Val	agc Ser 285	ctg Leu	gtg Val	gcc Ala	Asn	acc Thr 290	ctg Leu	ggc Gly	ttt Phe	Ala	gag Glu 295	atg Met	3888
GĴλ gàc (ccc Pro	Ile	aag Lys 300	tca Ser	ctg Leu	cgg Arg	Thr	ctg Leu 305	cgt Arg	gca Ala	ctc Leu	Arg	cct Pro 310	ctg Leu	aga Arg	3936
gct (Ala]	Leu	tca Ser 315	cga Arg	ttt Phe	gag Glu	Gly	atg Met 320	agg Arg	gtg Val	gtg Val	Val	aat Asn . 325	gcc Ala	ctg Leu	gtg Val	3984
ggc q Gly 1	gcc Ala 330	atc Ile	ccg Pro	tcc Ser	Ile	atg Met 335	aac Asn	gtc Val	ctc Leu	Leu	gtc Val 340	tgc Cys :	ctc Leu	atc Ile	ttc Phe	4032
tgg o Trp I 1345	ctc Leu	atc Ile	ttc Phe	Ser	atc Ile 350	atg (Met	ggc Gly	gtg Val	Asn :	ctc Leu 355	ttt (Phe	gcg (Ala (31 y 39g	Lys	ttt Phe 360	4080
ggg a Gly A	agg Arg	tgc Cys	Ile	aac Asn 365	cag Gln	aca (Thr (gag Glu	Gly .	gac (Asp 1 370	ttg Leu	cct f Pro I	ttg a Leu A	Asn '	tac Tyr '	acc Thr	4128

atc gtg aac aac Ile Val Asn Asn 1380			Leu Asn Leu		4176
ttg tac tgg acc Leu Tyr Trp Thr 1395	Lys Val Lys	gtc aac ttt Val Asn Phe 1400	gac aac gtg Asp Asn Val 1405	ggg gcc ggg Gly Ala Gly	4224
tac ctg gcc ctt Tyr Leu Ala Leu 1410	ctg cag gtg Leu Gln Val 1415	gca aca ttt Ala Thr Phe	aaa ggc tgg Lys Gly Trp 1420	atg gac att Met Asp Ile	4272
atg tat gca gct Met Tyr Ala Ala 1425		Arg Gly Tyr			4320
gaa tac aac ctc Glu Tyr Asn Leu	tac atg tac Tyr Met Tyr 1445	atc tat ttt Ile Tyr Phe 1450	gtc att ttc Val Ile Phe	atc atc ttt Ile Ile Phe 1455	4368
ggg tct ttc ttc Gly Ser Phe Phe 1460			Gly Val Ile		4416
ttc aac caa cag Phe Asn Gln Gln 1475					4464
gag gag cag aag Glu Glu Gln Lys 1490		Asn Ala Met			4512
aag ccc cag aag Lys Pro Gln Lys 1505	ccc atc cca Pro Ile Pro 1510	Arg Pro Leu	aac aag tac Asn Lys Tyr 1515	cag ggc ttc Gln Gly Phe 1520	4560
ata ttc gac att Ile Phe Asp Ile	gtg acc aag Val Thr Lys 1525	cag gcc ttt Gln Ala Phe 1530	gac gtc acc Asp Val Thr	atc atg ttt Ile Met Phe 1535	4608
ctg atc tgc ttg Leu Ile Cys Leu 1540	Asn Met Val	acc atg atg Thr Met Met 1545	Val Glu Thr	gat gac caa Asp Asp Gln 550	4656
agt cct gag aaa Ser Pro Glu Lys 1555	atc aac atc Ile Asn Ile	ttg gcc aag Leu Ala Lys 1560	atc aac ctg Ile Asn Leu 1565	ctc ttt gtg Leu Phe Val	4704
gcc atc ttc aca Ala Ile Phe Thr 1570	ggc gag tgt Gly Glu Cys 1575	: Ile Val Lys	ctg gct gcc Leu Ala Ala 1580	ctg cgc cac Leu Arg His	4752
tac tac ttc acc Tyr Tyr Phe Thr 1585	aac agc tgc Asn Ser Trp 1590	Asn Ile Phe	gac ttc gtg Asp Phe Val 1595	gtt gtc atc Val Val Ile 1600	4800
ctc tcc atc gtg Leu Ser Ile Val	ggc act gto Gly Thr Val	g ctc tcg gac Leu Ser Asp 1610	Ile Ile Gln	aag tac ttc Lys Tyr Phe 1615	4848
ttc tcc ccg acg Phe Ser Pro Thr 1620	Leu Phe Arg		Leu Ala Arg		4896

ato Ile	cto Lev	aga Arg 1635	Leu	ato	cga Arg	Gly	gcc Ala 1640	Lys	Gly	ato Ile	Arg	acg Thr 1645	Leu	ctc Leu	ttt Phe	4944
gec	cto Leu 1650	Met	atg Met	tcc Ser	Leu	cct Pro 1655	gcc Ala	ctc	ttc Phe	Asn	atc Ile 1660	Gly	ctg Leu	ctg Leu	ctc Leu	4992
tto Phe 166	Leu	gtc Val	atg Met	Phe	atc Ile 1670	tac Tyr	tcc Ser	atc Ile	Phe	ggc Gly 1675	atg Met	gcc Ala	aac Asn	Phe	gct Ala 1680	5040
tat Tyr	gtc Val	aag Lys	\mathtt{Trp}	gag Glu 1685	gct Ala	ggc	atc Ile	Asp	gac Asp 1690	Met	ttc Phe	aac Asn	Phe	cag Gln 1695	acc Thr	5088
ttc Phe	gcc Ala	aac Asn	agc Ser 1700	atg Met	ctg Leu	tgc Cys	Leu	ttc Phe 1705	cag Gln	atc Ile	acc Thr	Thr	tcg Ser 1710	gcc Ala	ggc Gly	5136
tgg Trp	Asp	ggc Gly 1715	ctc Leu	ctc Leu	agc Ser	Pro	atc Ile 1720	ctc Leu	aac Asn	act Thr	Gly	ccg Pro 1725	ccc Pro	tac Tyr	tgc Cys	5184
Asp	ccc Pro 1730	act Thr	ctg Leu	ccc Pro	Asn	agc Ser 1735	aat Asn	ggc Gly	tct Ser	Arg	999 Gly 1740	gac Asp	tgc Cys	Gly	agc Ser	5232
cca Pro 174	Ala	gtg Val	ggc Gly	Ile	ctc Leu 1750	ttc Phe	ttc Phe	acc Thr	Thr	tac Tyr 1755	atc Ile	atc Ile	atc Ile	Ser	ttc Phe 1760	5280
ctc Leu	atc	gtg Val	Val	aac Asn 1765	atg Met	tac Tyr	att Ile	Ala	atc Ile 1770	atc Ile	ctg Leu	gag Glu	Asn	ttc Phe 1775	agc Ser	5328
gtg Val	gcc Ala	acg Thr	gag Glu 1780	gag Glu	agc Ser	acc Thr	Glu	ccc Pro 1785	ctg Leu	agt Ser	gag Glu	Asp	gac Asp 1790	ttc Phe	gat Asp	5376
atg Met	Phe	tat Tyr 1795	gag Glu	atc Ile	tgg Trp	Glu	aaa Lys .800	ttt Phe	gac Asp	cca Pro	Glu	gcc Ala 805	act Thr	cag Gln	ttt Phe	5424
Ile	gag Glu 1810	tat Tyr	tcg Ser	gtc Val	Leu	tct Ser 815	gac Asp	ttt Phe	gcc Ala	Asp	gcc Ala 820	ctg Leu	tct Ser	gag Glu	cca Pro	5472
ctc Leu 1825	Arg	atc Ile	gcc Ala	Lys	ccc Pro .830	aac Asn	cag Gln	ata Ile	Ser	ctc Leu .835	atc Ile	aac Asn	atg Met	Asp	ctg Leu .840	5520
ccc Pro	atg Met	gtg Val	Ser	ggg Gly 845	gac Asp	cgc Arg	atc Ile	His	tgc Cys .850	atg Met	gac Asp	att Ile	Leu	ttt Phe 855	gcc Ala	5568
ttc Phe	acc Thr	aaa Lys 1	agg Arg 860	gtc Val	ctg Leu	GJA aaa	Glu	tct Ser 865	GJ À aaa	gag Glu	atg Met	Asp	gcc Ala 870	ctg Leu	aag Lys	5616
atc Ile	Gln	atg Met .875	gag Glu	gag Glu	aag Lys	Phe	atg Met 880	gca Ala	gcc Ala	aac Asn	Pro	tcc Ser 885	aag Lys	atc Ile	tcc Ser	5664

									14							
_					Thr					Lys			gag Glu			5712
gcc Ala 1905	Met	gtt Val	atc Ile	Gln	aga Arg 1910	gcc Ala	ttc Phe	cgc Arg	Arg	cac His 915	ctg Leu	ctg Leu	caa Gln	Arg	tct Ser .920	5760
			Ala					Arg					agc Ser			5808
tcc Ser	gaa Glu	Glu	gat Asp 940	gcc Ala	cct Pro	gag Glu	Arg	gag Glu 1945	ggc Gly	ctc Leu	atc Ile	Ala	tac Tyr 1950	gtg Val	atg Met	5856
agt Ser	Glu	aac Asn 1955	ttc Phe	tcc Ser	cga Arg	Pro	ctt Leu 1960	ggc Gly	cca Pro	ccc Pro	Ser	agc Ser 1965	tcc Ser	tcc Ser	atc Ile	5904
Ser	tcc Ser 970	act Thr	tcc Ser	ttc Phe	Pro	ccc Pro L975	tcc Ser	tat Tyr	gac Asp	Ser	gtc Val 1980	act Thr	aga Arg	gcc Ala	acc Thr	5952
agc Ser 1985	Asp	aac Asn	ctc Leu	Gln	gtg Val 1990	cgg Arg	ggg Gly	tct Ser	Asp	tac Tyr 1995	agc Ser	cac His	agt Ser	Glu	gat Asp 2000	6000
			Phe					Asp					tcc Ser			6048
<212	.> 20 ?> PI		sapie	ens												
<400 Met 1		Asn	Phe	Leu 5	Leu	Pro	Arg	Gly	Thr 10	Ser	Ser	Phe	Arg	Arg 15	Phe	
Thr	Arg	Glu	Ser 20	Leu	Ala	Ala	Ile	Glu 25	Lys	Arg	Met	Äla	Glu 30	Lys	Gln	
Ala	Arg	Gly 35	Ser	Thr	Thr	Leu	Gln 40	Glu	Ser	Arg	Glu	Gly 45	Leu	Pro	Glu	
Glu	Glu 50	Ala	Pro	Arg	Pro	Gln 55	Leu	Asp	Leu	Gln	Ala 60	Ser	Lys	Lys	Leu	
Pro 65	Asp	Leu	Tyr	Gly	Asn 70	Pro	Pro	Gln	Glu	Leu 75		Gly	Glu	Pro	Leu 80	
Glu	Asp	Leu	Asp	Pro 85		Tyr	Ser	Thr	Gln 90	Lys	Thr	Phe	Ile	Val 95	Leu	
Ásn	Lys	Gly	Lys 100		Ile	Phe	Arg	Phe 105		Ala	Thr	Asn	Ala 110		Tyr	

Val Leu Ser Pro Phe His Pro Val Arg Arg Ala Ala Val Lys Ile Leu 115 120 125

Val	130	ser	ьеu	rne	ASII	135	ren	тте	Met	Cys	140	тте	rea	inr	ASI
Cys 145	Val	Phe	Met	Ala	Gln 150	His	Asp	Pro	Pro	Pro 155	Trp	Thr	Lys	Tyr	Va:
Glu	Tyr	Thr	Phe	Thr 165	Ala	Ile	Tyr	Thr	Phe 170	Glu	Ser	Leu	Val	Lys 175	Ile
Leu	Ala	Arg	Ala 180	Phe	Cys	Leu	His	Ala 185	Phe	Thr	Phe	Leu	Arg 190	Asp	Pro
Trp	Asn	Trp 195	Leu	Asp	Phe	Ser	Val 200	Ile	Ile	Met	Ala	Tyr 205	Thr	Thr	Glı
Phe	Val 210	Asp	Leu	Gly	Asn	Val 215	Ser	Ala	Leu	Arg	Thr 220	Phe	Arg	Val	Let
Arg 225	Ala	Leu	Lys	Thr	Ile 230	Ser	Val	Ile	Ser	Gly 235	Leu	Lys	Thr	Ile	Va] 240
Gly	Ala	Leu	Ile	Gln 245	Ser	Val	Lys	Lys	Leu 250	Ala	Asp	Val	Met	Val 255	Leu
Thr	Val	Phe	Cys 260	Leu	Ser	Val	Phe	Ala 265	Leu	Ile	Gly	Leu	Gln 270	Leu	Ph∈
Met	Gly	Asn 275	Leu	Arg	His	Lys	Cys 280	Val	Arg	Asn	Phe	Thr 285	Ala	Leu	Asr
Gly	Thr 290	Asn	Gly	Ser	Val	Glu 295	Ala	Asp	Gly	Leu	Val 300	Trp	Glu	Ser	Lei
Asp 305	Leu	Tyr	Leu	Ser	Asp 310	Pro	Glu	Asn	Tyr	Leu 315	Leu	Lys	Asn	Gly	Thr 320
Ser	Asp	Val	Leu	Leu 325	Cys	Gly	Asn	Ser	Ser 330	Asp	Ala	Gly	Thr	Cys 335	Pro
Glu	Gly	Tyr	Arg 340	Cys	Leu	Lys	Ala	Gly 345	Glu	Asn	Pro	Asp	His 350	Gly	Туг
Thr	Ser	Phe 355	Asp	Ser	Phe	Ala	Trp 360	Ala	Phe	Leu	Ala	Leu 365	Phe	Arg	Let
Met	Thr 370	Gln	Asp	Cys	Trp	Glu 375	Arg	Leu	Tyr	Gln	Gln 380	Thr	Leu	Arg	Ser
Ala 385	Gly	Lys	Ile	Tyr	Met 390	Ile	Phe	Phe	Met	Leu 395	Val	Ile	Phe	Leu	Gly 400
Ser	Phe	Tyr	Leu	Val 405	Asn	Leu	Ile	Leu	Ala 410	Val	Val	Ala	Met	Ala 415	Tyr
Glu	Glu	Gln	Asn 420	Gln	Ala	Thr	Ile	Ala 425	Glu	Thr	Glu	Glu	Lys 430	Glu	Lys
Arg	Phe	Gln 435	Glu -	Ala	Met	Glu	Met 440	Leu	Lys	Lys	Glu	His 445	Glu	Ala	Leu
Thr	Ile 450	Arg	Gly	Val	Asp	Thr 455	Val	Ser	Arg	Ser	Ser 460	Leu	Glu	Met	Ser

Pro Leu Ala Pro Val Asn Ser His Glu Arg Arg Ser Lys Arg Arg Lys 475 470 Arg Met Ser Ser Gly Thr Glu Glu Cys Gly Glu Asp Arg Leu Pro Lys Ser Asp Ser Glu Asp Gly Pro Arg Ala Met Asn His Leu Ser Leu Thr 505 Arg Gly Leu Ser Arg Thr Ser Met Lys Pro Arg Ser Ser Arg Gly Ser 520 Ile Phe Thr Phe Arg Arg Arg Asp Leu Gly Ser Glu Ala Asp Phe Ala Asp Asp Glu Asn Ser Thr Ala Arg Glu Ser Glu Ser His His Thr Ser Leu Leu Val Pro Trp Pro Leu Arg Arg Thr Ser Ala Gln Gly Gln Pro Ser Pro Gly Thr Ser Ala Pro Gly His Ala Leu His Gly Lys Lys Asn 580 585 Ser Thr Val Asp Cys Asn Gly Val Val Ser Leu Leu Gly Ala Gly Asp Pro Glu Ala Thr Ser Pro Gly Ser His Leu Leu Arg Pro Val Met Leu Glu His Pro Pro Asp Thr Thr Thr Pro Ser Glu Glu Pro Gly Gly Pro Gln Met Leu Thr Ser Gln Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Gly Ala Arg Gln Arg Ala Leu Ser Ala Val Ser Val Leu Thr Ser Ala Leu Glu Glu Leu Glu Glu Ser Arg His Lys Cys Pro Pro Cys Trp Asn Arg Leu Ala Gln Arg Tyr Leu Ile Trp Glu Cys Cys Pro Leu Trp Met Ser Ile Lys Gln Gly Val Lys Leu Val Val Met Asp Pro Phe Thr Asp Leu Thr Ile Thr Met Cys Ile Val Leu Asn Thr Leu Phe Met Ala Leu Glu His Tyr Asn Met Thr Ser Glu Phe Glu Glu Met Leu Gln Val Gly 745 Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Thr Phe Lys Ile Ile Ala Leu Asp Pro Tyr Tyr Tyr Phe Gln Gln Gly Trp Asn Ile Phe Asp Ser Ile Ile Val Ile Leu Ser Leu Met Glu Leu Gly Leu Ser Arg 785 790 795

Met	Ser	Asn	Leu	Ser 805	Val	Leu	Arg	Ser	Phe 810		Leu	Leu	Arg	Val 815	
Lys	Leu	Ala	Lys 820	Ser	Trp	Pro	Thr	Leu 825		Thr	Leu	Ile	Lys 830	Ile	Ile
Gly	Asn	Ser 835	Val	Gly	Ala	Leu	Gly 840		Leu	Thr	Leu	Val 845	Leu	Ala	Ile
Ile	Val 850	Phe	Île	Phe	Ala	Val 855	Val	Gly	Met	Gln	Leu 860	Phe	Gly	Lys	Ası
Tyr 865	Ser	Glu	Leu	Arg	Asp 870	Ser	Asp	Ser	Gly	Leu 875	Leu	Pro	Arg	Trp	His 880
Met	Met	Asp	Phe	Phe 885	His	Ala	Phe	Leu	Il∙e 890	Ile	Phe	Arg	Ile	Leu 895	Cys
Gly	Glu	Trp	Ile 900	Glu	Thr	Met	Trp	Asp 905		Met	Glu	Val	Ser 910	Gly	Glr
Ser	Leu	Cys 915	Leu	Leu	Val	Phe	Ьеи 920	Leu	Val	Met	Val	Ile .925	Gly	Asn	Leu
Val	Val 930	Leu	Asn	Leu	Phe	Leu 935	Ala	Leu	Leu	Leu	Ser 940	Ser	Phe	Ser	Ala
Asp 945	Asn	Leu	Thr	Ala	Pro 950	Asp	Glu	Asp	Arg	Glu 955	Met	Asn	Asn	Leu	Glr 960
Leu	Ala	Leu	Ala	Arg 965	Ile	Gln	Arg	Gly	Leu 970	Arg	Phe	Val	Lys	Arg 975	Thr
Thr	Trp	Asp	Phe 980	Cys	Cys	Gly	Leu	Leu 985	Arg	His	Arg	Pro	Gln 990	Lys	Pro
Ala	Ala	Leu 995	Ala	Ala	Gln		Gln LOOO	Leu	Pro	Ser		Ile 1005	Ala	Thr	Pro
	Ser 1010	Pro	Pro	Pro		Glu 1015	Thr	Glu	Lys		Pro 1020	Pro	Thr	Arg	Lys
Glu 1025		Gln	Phe		Glu 1030	Gly	Glu	Gln		Gly 1035	Gln	Gly	Thr		Gly 1040
Asp	Pro	Glu		Val 1045	Cys	Val	Pro		Ala 1050	Val	Ala	Glu		Asp .055	Thr
Asp	Asp	Gln 1	Glu .060	Glu	Asp	Glu		Asn 1065	Ser	Leu	Gly		Glu 1070	Glu	Glu
Ser		Lys 1075	Gln.	Gln	Glu		Gln 1080	Pro	Val	Ser		Trp .085	Pro	Arg	Gly
	Pro .090	Asp	Ser	Arg		Trp .095	Ser	Gln	Val		Ala 1100	Thr	Ala	Ser	Ser
Glu 1105	Ala	Glu	Ala		Ala 110	Ser	Gln	Ala		Trp 1115	Arg	Gln	Gln		Lys .120
Ala	Glu	Pro		Ala 125	Pro	Gly	Cys		Glu 1130	Thr	Pro	Glu	_	Ser 135	Cys

- Ser Glu Gly Ser Thr Ala Asp Met Thr Asn Thr Ala Glu Leu Leu Glu 1140 1145 1150
- Gln Ile Pro Asp Leu Gly Gln Asp Val Lys Asp Pro Glu Asp Cys Phe 1155 1160 1165
- Thr Glu Gly Cys Val Arg Arg Cys Pro Cys Cys Ala Val Asp Thr Thr 1170 1175 1180
- Gln Ala Pro Gly Lys Val Trp Trp Arg Leu Arg Lys Thr Cys Tyr His 1185 1190 1195 1200
- Ile Val Glu His Ser Trp Phe Glu Thr Phe Ile Ile Phe Met Ile Leu 1205 1210 1215
- Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Leu Glu Glu Arg 1220 1225 1230
- Lys Thr Ile Lys Val Leu Leu Glu Tyr Ala Asp Lys Met Phe Thr Tyr 1235 1240 1245
- Val Phe Val Leu Glu Met Leu Lys Trp Val Ala Tyr Gly Phe Lys 1250 1255 1260
- Lys Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp 1265 1270 1275 1280
- Val Ser Leu Val Ser Leu Val Ala Asn Thr Leu Gly Phe Ala Glu Met 1285 1290 1295
- Gly Pro Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro Leu Arg 1300 1305 1310
- Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Val Asn Ala Leu Val 1315 1320 1325
- Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val Cys Leu Ile Phe 1330 1335 1340
- Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe 1345 1350 1355 1360
- Gly Arg Cys Ile Asn Gln Thr Glu Gly Asp Leu Pro Leu Asn Tyr Thr 1365 1370 1375
- Ile Val Asn Asn Lys Ser Gln Cys Glu Ser Leu Asn Leu Thr Gly Glu 1380 1385 1390
- Leu Tyr Trp Thr Lys Val Lys Val Asn Phe Asp Asn Val Gly Ala Gly 1395 1400 1405
- Tyr Leu Ala Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile 1410 1415 1420
- Met Tyr Ala Ala Val Asp Ser Arg Gly Tyr Glu Glu Gln Pro Gln Trp 1425 1430 1435 1440
- Glu Tyr Asn Leu Tyr Met Tyr Ile Tyr Phe Val Ile Phe Ile Ile Phe 1445 1450 1455
- Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn 1460 1465 1470

- Phe Asn Gln Gln Lys Lys Leu Gly Gly Gln Asp Ile Phe Met Thr 1475 1480 1485
- Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys 1490 1495 1500
- Lys Pro Gln Lys Pro Ile Pro Arg Pro Leu Asn Lys Tyr Gln Gly Phe 1505 1510 1515 1520
- Ile Phe Asp Ile Val Thr Lys Gln Ala Phe Asp Val Thr Ile Met Phe 1525 1530 1535
- Leu Ile Cys Leu Asn Met Val Thr Met Met Val Glu Thr Asp Asp Gln
 1540 1545 1550
- Ser Pro Glu Lys Ile Asn Ile Leu Ala Lys Ile Asn Leu Phe Val 1555 1560 1565
- Ala Ile Phe Thr Gly Glu Cys Ile Val Lys Leu Ala Ala Leu Arg His 1570 1575 1580
- Tyr Tyr Phe Thr Asn Ser Trp Asn Ile Phe Asp Phe Val Val Val Ile 1585 1590 1595 1600
- Leu Ser Ile Val Gly Thr Val Leu Ser Asp Ile Ile Gln Lys Tyr Phe
 1605 1610 1615
- Phe Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg 1620 1625 1630
- Ile Leu Arg Leu Ile Arg Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe . 1635 1640 1645
- Ala Leu Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Leu 1650 1660
- Phe Leu Val Met Phe Ile Tyr Ser Ile Phe Gly Met Ala Asn Phe Ala 1665 1670 1675 1680
- Tyr Val Lys Trp Glu Ala Gly Ile Asp Asp Met Phe Asn Phe Gln Thr 1685 1690 1695
- Phe Ala Asn Ser Met Leu Cys Leu Phe Gln Ile Thr Thr Ser Ala Gly 1700 1705 1710
- Prp Asp Gly Leu Leu Ser Pro Ile Leu Asn Thr Gly Pro Pro Tyr Cys 1715 1720 1725
- Asp Pro Thr Leu Pro Asn Ser Asn Gly Ser Arg Gly Asp Cys Gly Ser 1730 1735 1740
- Pro Ala Val Gly Ile Leu Phe Phe Thr Thr Tyr Ile Ile Ile Ser Phe 1745 1750 1755 1760
- Leu Ile Val Val Asn Met Tyr Ile Ala Ile Ile Leu Glu Asn Phe Ser 1765 1770 1775
- Val Ala Thr Glu Glu Ser Thr Glu Pro Leu Ser Glu Asp Asp Phe Asp 1780 1785 1790
- Met Phe Tyr Glu Ile Trp Glu Lys Phe Asp Pro Glu Ala Thr Gln Phe 1795 1800 1805

- Ile Glu Tyr Ser Val Leu Ser Asp Phe Ala Asp Ala Leu Ser Glu Pro 1810 1815 1820
- Leu Arg Ile Ala Lys Pro Asn Gln Ile Ser Leu Ile Asn Met Asp Leu 1825 1830 1835 1840
- Pro Met Val Ser Gly Asp Arg Ile His Cys Met Asp Ile Leu Phe Ala 1845 1850 1855
- Phe Thr Lys Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Lys 1860 1865 1870
- Ile Gln Met Glu Glu Lys Phe Met Ala Ala Asn Pro Ser Lys Ile Ser 1875 1880 1885
- Tyr Glu Pro Ile Thr Thr Leu Arg Arg Lys His Glu Glu Val Ser 1890 1895 1900
- Ala Met Val Ile Gln Arg Ala Phe Arg Arg His Leu Leu Gln Arg Ser 1905 1910 1915 1920
- Leu Lys His Ala Ser Phe Leu Phe Arg Gln Gln Ala Gly Ser Gly Leu 1925 1930 1935
- Ser Glu Glu Asp Ala Pro Glu Arg Glu Gly Leu Ile Ala Tyr Val Met 1940 1945 · 1950
- Ser Glu Asn Phe Ser Arg Pro Leu Gly Pro Pro Ser Ser Ser Ile 1955 1960 1965
- Ser Ser Thr Ser Phe Pro Pro Ser Tyr Asp Ser Val Thr Arg Ala Thr 1970 1975 1980
- Ser Asp Asn Leu Gln Val Arg Gly Ser Asp Tyr Ser His Ser Glu Asp 1985 1990 1995 2000
- Leu Ala Asp Phe Pro Pro Ser Pro Asp Arg Asp Arg Glu Ser Ile Val2005 2010 2015

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 April 2001 (12.04.2001)

PCT

(10) International Publication Number WO 01/024681 A3

- (51) International Patent Classification⁷: C12Q 1/68, C12P 19/34, C07H 21/04, C07K 14/00, 16/00
- (21) International Application Number: PCT/US00/21660
- (22) International Filing Date: 9 August 2000 (09.08.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/147,488 60/190,057 9 August 1999 (09.08.1999) US 17 March 2000 (17.03.2000) US

- (71) Applicant: UNIVERSITY OF UTAH RESEARCH FOUNDATION [US/US]; Suite 110, 615 Arapeen Drive, Salt Lake City, UT 84108 (US).
- (72) Inventors: KEATING, Mark, T.; 78 Laurel Street, Salt Lake City, UT 84103 (US). SPLAWSKI, Igor; Apartment 140, 900 East Street, Salt Lake City, UT 84124 (US).
- (74) Agents: SAXE, Stephen, A. et al.; Rothwell, Figg, Ernst & Manbeck, 555 13th Street N.W. Suite 701 East, Columbia Square, Washington, DC 20004 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 1 May 2003
- (15) Information about Correction:

Previous Correction:

see PCT Gazette No. 36/2002 of 6 September 2002, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

(54) Title: ALTERATIONS IN THE LONG QT SYNDROME GENES KVLQT1 AND SCN5A AND METHODS FOR DETECTING SAME

(57) Abstract: Long QT Syndrome (LQTS) is a cardiovascular disorder characterized by prolongation of the QT interval on electrocardiogram and presence of syncope, seizures and sudden death. Five genes have been implicated in Romano-Ward syndrome, the autosomal dominant form of LQTS. These genes are KVLQT1, HERG, SCN5A, KCNE1 and KCNE2. Mutations in KVLQT1 and KCNE1 also cause the Jervell and Lange-Nielsen syndrome, a form of LQTS associated with deafness, a phenotypic abnormality inherited in an autosomal recessive fashion. Mutational analyses were used to screen 262 unrelated individuals with LQTS for mutations in the five defined genes. A total of 134 mutations were observed of which eighty were novel.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/21660

IPC(7) US CL According to I B. FIELI Minimum doc U.S.: 43	SIFICATION OF SUBJECT MATTER : C12Q 1/68; C12P 19/34; C07H 21/04; C07K 14/ : 435/6, 91.1, 91.2; 536/23.1, 24.1; 530/350, 387. International Patent Classification (IPC) or to both national SEARCHED umentation searched (classification system followed by 5/6, 91.1, 91.2; 536/23.1, 24.1; 530/350, 387.1 In searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the expression of the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation to the searched other than minimum documentation the searched other than minimum documentation the searched other than minimum documentation the searched other than minim	l onal classif classificati	ion symbols)	the fields searched					
Please See Co	a base consulted during the international search (name intinuation Sheet	of data bas	e and, where practicable, sear	ch terms used)					
C. DOCI	IMENTS CONSIDERED TO BE RELEVANT			Relevant to claim No.					
Category *	Citation of document, with indication, where ap	propriate, o	of the relevant passages	Relevant to claim No.					
X	FRANQUEZA et al. Long QT Syndrome-associated	Mutations	in the S4-S5 Linker of						
Ÿ	KvLQT1 Potassium Channels Modify Gating and Interaction with minK Subunits. Journal of Biological Chemistry. July 23, 1999. Vol. 274, No. 30. pages 21063-21070, see especially abstract, page 21063, fig 1, page 21069.								
Y	The second Constant C								
Y	AN et al. Novel LQT-3 Mutation Affects Na+ Char Between alpha and beta 1-Subunits. Circulation Rese see especially page 141.	nel Activil	y Through Interactions	34-36					
Eurethan	r documents are listed in the continuation of Box C.		See patent family annex.						
• •	Special categories of cited documents: It defining the general state of the art which is not considered to be	w.l.u	later document published after the inte date and not in conflict with the appli- principle or theory underlying the inv	cation but cited to understand the					
of partie	ular relevance oplication or patent published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive when the document is taken alone							
establish specified	nt which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as i) It referring to an oral disclosure, use, exhibition or other means	document of particular relevance; the considered to involve an inventive ste combined with one or more other such being obvious to a person skilled in the	h documents, such combination						
"P" documer	nt published prior to the international filing date but later than the date claimed	<i>"&</i> "	document member of the same patent	family					
Date of the	actual completion of the international search	Date of r	nailing of the international sea	rch report					
1	2 December 2001		TOFFR 20	100					
Co Bo	nailing address of the ISA/US mmissioner of Patents and Trademarks x PCT ashington, D.C. 20231	JEHANNE SOUAYA Ch							
l l	io. 703 305-3230	Telephone No. 703 308-1235							

Form PCT/ISA/210 (second sheet) (July 1998)

	PCT/US00/21660
INTERNATIONAL SEARCH REPORT	101/0300/21000
MITERIALIONAL SEARCH REPORT	
	• *
Continuation of B. FIELDS SEARCHED Item 3:	
STN, MEDLINE, CAPLUS, BIOSIS, GENBANK, EAST, WEST search terms: KvLQT1, SCN5A, mutation, polymorphism, long qt syndrome, revi	
search terms: KvLQT1, SCN5A, mutation, polymorphism, long qt syndrome, revi	iew
· ·	·
. ,	
·	
	•
•	
3 .	
	•
Form PCT/ISA/210 (second sheet) (July 1998)	

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)