Nom:	Classe :	Copie n°1 (300)
Prénom :	Date :	Spécialité

Bac 1^{ère} Maths - Première Partie : Automatismes

1) Quel est l'inverse du quadruple de 6?

2) Soit
$$F=a+rac{b}{cd}$$
 . Lorsque : $a=rac{1}{10}$; $b=6$; $c=6$; $d=-rac{1}{2}$, quelle est la valeur de F ?

- 3) Le prix d'un article est multiplié par 1.77. Calculer la variation relative V_r de ce prix.
- 4) Le prix d'un article est noté P. Ce prix augmente de 100% puis diminue de 100%. À l'issue de ces deux variations, quelle est la variation relative V_r du prix ?
- 5) On lance un dé à 4 faces. La probabilité d'obtenir chacune des faces est donnée dans le tableau ci-contre. Calculer x.

Face	1	2	3	4
Probabilité	$\frac{5}{6}$	$\frac{1}{12}$	$\frac{1}{24}$	x

- 6) On considère x,y, et u des réels non nuls tels que : $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{u}.$ Exprimer u en fonction de x et y.
- 7) On a représenté ci-contre la parabole d'équation $y=x^2$ ainsi que la droite d'équation y=10. Résoudre sur $\mathbb R$ l'inéquation : $x^2>10$.

8) On a représenté ci-contre une droite $\mathcal D$ dans un repère orthonormé. Donner l'équation de la droite $\mathcal D$ sous la forme y=ax+b.

9) Parmi les 3 fonctions ci-dessous, identifier les fonctions qui sont affines. Quelle est la valeur du coefficient directeur (de ces fonctions qui sont bien affines) avec la plus grande valeur absolue?

f	f_1	f_2	f_3
f(x)	$x^2 - (x+9)^2$	$\boxed{\frac{1}{6}x - \left(1 + \frac{1}{1}\right)}$	$\frac{\frac{8}{6}x+6}{1.75}$

Nom:	Classe :	Copie n°1 (300)
Prénom :	Date :	Spécialité

10) a et c sont des nombres réels. Ci-contre, on a représenté la parabole d'équation $y=ax^2+c$. On suppose que |a|=1. Le point M(0;-6) appartient à la parabole. Donner l'équation de la parabole.

11) On a représenté ci-contre la courbe $\mathcal C$ d'une fonction f. On note A le point d'abscisse $x_A=1$ tel que le point appartienne à la courbe $\mathcal C$. Parmi les deux inégalités suivantes :

$$x_a imes f(x_a) > 0$$
 et $x_a imes f(x_a) < 0$
Laquelle est correcte ?

12) Voici une série de notes avec les coefficients associés. On note m la moyenne de cette série. Quelle valeur de x mène à $m=\frac{96}{8}$?

Note	Coefficient
19	1
11	4
11	x

Nom:	Classe :	Copie n°2 (35)
Prénom :	Date :	Spécialité

Bac 1^{ère} Maths - Première Partie : Automatismes

1) Quel est l'inverse du quadruple de 3?

2) Soit
$$F=a+rac{b}{cd}$$
 . Lorsque : $a=rac{1}{9}$; $b=6$; $c=3$; $d=-rac{1}{7}$, quelle est la valeur de F ?

- 3) Le prix d'un article est multiplié par 1.705. Calculer la variation relative V_r de ce prix.
- 4) Le prix d'un article est noté P. Ce prix augmente de 90% puis diminue de 90%. À l'issue de ces deux variations, quelle est la variation relative V_r du prix ?
- 5) On lance un dé à 4 faces. La probabilité d'obtenir chacune des faces est donnée dans le tableau ci-contre. Calculer \boldsymbol{x} .

Face	1	2	3	4
Probabilité	$\frac{3}{4}$	$\frac{1}{8}$	$\frac{1}{24}$	x

- 6) On considère x,y, et u des réels non nuls tels que : $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{u}.$ Exprimer u en fonction de x et y.
- 7) On a représenté ci-contre la parabole d'équation $y=x^2$ ainsi que la droite d'équation y=9. Résoudre sur $\mathbb R$ l'inéquation : $x^2>9$.

8) On a représenté ci-contre une droite $\mathcal D$ dans un repère orthonormé. Donner l'équation de la droite $\mathcal D$ sous la forme y=ax+b.

9) Parmi les 3 fonctions ci-dessous, identifier les fonctions qui sont affines. Quelle est la valeur du coefficient directeur (de ces fonctions qui sont bien affines) avec la plus grande valeur absolue?

f	f_1	f_2	f_3
f(x)	$x^2 - (x+7)^2$	$\frac{1}{6}x - \left(-6 + \frac{1}{6}\right)$	$\frac{\frac{3}{5}x+3}{1.125}$

Nom :	Classe :	Copie n°2 (35)
Prénom :	Date :	Spécialité

10) a et c sont des nombres réels. Ci-contre, on a représenté la parabole d'équation $y=ax^2+c$. On suppose que |a|=1. Le point M(0;3) appartient à la parabole. Donner l'équation de la parabole.

11) On a représenté ci-contre la courbe $\mathcal C$ d'une fonction f. On note A le point d'abscisse $x_A=1$ tel que le point appartienne à la courbe $\mathcal C$. Parmi les deux inégalités suivantes :

$$x_a imes f(x_a) > 0$$
 et $x_a imes f(x_a) < 0$
Laquelle est correcte ?

12) Voici une série de notes avec les coefficients associés. On note m la moyenne de cette série. Quelle valeur de x mène à $m=\frac{83}{8}$?

Note	Coefficient
17	3
10	2
4	x