Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2019 EN3BS04 Engineering Chemistry

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	The permissible limit for dissolved oxygen in potable water is			
		(a) 8 ppm (b) 2 ppm	(c) 5 ppm (d) 6 ppm		
	ii.	Chloramine is used in drinki	Chloramine is used in drinking water for		
		(a) Sterilization	(b) Purification		
		(c) Disinfection	(d) None of these		
	iii.	Octane rating was introduced by		1	
		(a) Dalton (b) 2 Bohr	(c) Heisenberg (d) Edger		
	iv.	Power alcohol is		1	
		(a) Ethanol + Petrol	(b) Ethanol + Diesel		
		(c) Methanol + Petrol	(d) Methanol + Diesel		
	v.	Most commonly used solid lubricant is:		1	
		(a) KOH	(b) Graphite		
		(c) Carbon block	(d) Sulphur		
	vi.	Natural polymer?	1		
		(a) Nucleic acid	(b) Protein		
		(c) Cellulose	(d) All of these		
	vii.	Alumina refractory is		1	
		(a) Acidic	(b) Basic		
		(c) Both (a) and (b)	(d) Neutral		
	viii.	The phenomenon on which of	optical fibre work is	1	
		(a) Resonance	(b) Scattering		
		(c) Total internal reflection	(d) Polarization		

P.T.O.

1

1

3

5

2

[3]

		(b) Percentage composition of dry products of combustion by volume when 20% excess air is used.	
Q.4	i.	Define lubricants. Explain different types of mechanism of lubrication with example.	4
	ii.	Define following properties with significance (a) Viscosity and viscosity index (b) Flash and fire point	6
OR	iii.	Discuss the preparation, properties and uses of the following: (a) HDPE (b) Nylon 6:6	6
Q.5 i.		What are refractories. Explain pyrometric Segar cone test method for testing refractory material.	4
	ii.	Explain the complete process for the formation of cement with reactions in different zone. Also draw well labelled diagram.	6
OR	iii.	Write short note with applications. (a) Optical Fibre (b) Super conductivity (c) Carbon nanotubes	6
Q.6	i. ii. iii.	Attempt any two: State Lambert's Beer law and write its applications and limitations. Explain the principle of IR Spectroscopy and its applications. Define the term chromatography. Write the principle, diagram and applications of gas chromatography.	5 5

Marking Scheme EN3BS04 Engineering Chemistry

Q.1	i.	The permissible limit for dissolved oxygen in potable water is			
		(a) 8 ppm			
	ii.	Chloramine is used in drinking water for		1	
		(c) Disinfection			
	iii.	Octane rating was introduced by		1	
		(d) Edger			
i	iv.	Power alcohol is		1	
		(a) Ethanol + Petrol			
	v.	Most commonly used solid lubricant is:		1	
		(b) Graphite			
	vi.	Which of the following is a Natural polymer?		1	
		(d) All of these			
	vii.	Alumina refractory is		1	
		(a) Acidic		1	
	viii.	The phenomenon on which optical fibre work is			
		(c) Total internal reflection			
	ix.	A mixture of volatile compounds can be easily separated by		1	
		(c) Gas chromatography			
	х.	an be done by	1		
		(a) IR Spectroscopy			
Q.2	i.	Carbonate and non-carbonate hardness	1 mark	2	
		It can be removed from hard water	1 mark		
	ii.	Disinfection methods with reactions.		3	
	iii.	Difference b/w permutit and ion exchange process	3 marks	5	
		Reactions	1 mark		
		Diagram	1 mark		
OR	iv.	Equation	1 mark	5	
		Formula	1 mark		
		Substance	1 mark		
		Ans with unit	1 mark		
		Total hardness and alkalinity of water sample.	1 mark		
Q.3	i.	Calorific value	1 mark	2	
	-			_	

		Its type	1 mark	
	ii.	Difference b/w octane number and cetane number		3
		1 mark for each difference	(1 mark * 3)	
	iii.	Calculate:		5
		(a) The minimum amount of O ₂ and air by weigh	nt necessary for	
		complete combustion of 1 Kg of coal	2 marks	
		(b) Weight of air required	1 mark	
		(c) Gross and net calorific value of coal sample	using Dulong's	
		formula.	1 mark	
		(d) Dry product percentage composition by weight	1 mark	
OR	iv	Calculate:		5
		(a) Minimum quantity of air required for complete	combustion of	
		1 m ³ of the fuel gas.	3 marks	
		(b) Percentage composition of dry products of	combustion by	
		volume when 20% excess air is used.	2 marks	
Q.4	i.	Definition of lubricants	1 mark	4
		Types of mechanism of lubrication with example	3 marks	
	ii.	Define following properties with significance		6
		(a) Viscosity and viscosity index	3 marks	
		(b) Flash and fire point	3 marks	
		Discuss the preparation, properties and uses of the following:		
		(a) HDPE	3 marks	
		(b) Nylon 6:6	3 marks	
Q.5	i.	Refractories	1 mark	4
		Pyrometric Segar cone test method	3 marks	
	ii.	Process for the formation of cement	2 marks	6
		With reactions in different zone	2 marks	
		Diagram	2 marks	
OR	iii.	Write short note with applications.		6
		(a) Optical Fibre	2 marks	
		(b) Super conductivity	2 marks	
		(c) Carbon nanotubes	2 marks	
Q.6		Attempt any two:		
		With reactions in different zone Diagram Write short note with applications. (a) Optical Fibre (b) Super conductivity (c) Carbon nanotubes	2 marks 2 marks 2 marks 2 marks	

i.	State Lambert's Beer law	3 marks	5
	Its applications	1 mark	
	Limitations	1 mark	
ii.	Principle of IR Spectroscopy	2 marks	5
	Its applications	3 marks	
iii.	Definition of chromatography	1 mark	5
	Principle	1 mark	
	Diagram	1 mark	
	Applications of gas chromatography	2 marks	
