PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-216613

(43) Date of publication of application: 06.08.1992

(51)Int.CI.

H01L 21/027

(21)Application number: 02-402984

(71)Applicant: FUJITSU LTD

(22)Date of filing:

18.12.1990

(72)Inventor: YAMAZAKI SATORU

SAKAMOTO JUICHI

(54) TRANSMISSION MASK SUBSTRATE FOR CHARGED PARTICLE EXPOSURE AND MANUFACTURE THEREOF

(57)Abstract:

PURPOSE: To completely avoid the charge up of an upper silicon sheet further providing the mask substrate in high productivity having an affixing structure in relation to the improvement of the title charged beam exposure transmission mask substrate having the affixing structure of upper and lower silicon sheets.

CONSTITUTION: The title mask substrate is composed of an intermediate layer comprising silicon oxide film layer regions 2 passing through both surfaces of the layers and a conductive layer region 5 as well as two silicon sheets 1, 6 affixed to each other through the intermediary of said intermediate layer while in one silicon sheet 1, the parts adjacent to the silicon oxide film layer region 2 are removed. On the other hand, the

manufacturing step of mask substrate is composed of the following three steps i.e., the first step wherein the silicon oxide films 2 formed in the lower silicon sheet 1 are removed by pattern etching step, the second step wherein the conductive film 5 is buried in the removed oxide film regions and the third step wherein the upper silicon sheet 6 and the lower silicon sheet 1 are affixed to each other through the intermediary of the oxide films 2 and the conductive film 5.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-216613

(43)公開日 平成4年(1992)8月6日

(51)Int.Cl. ⁵ H 0 1 L 21/027	識別記号	庁内整理番号	FI	技術表示箇
		7013-4M	H01L	21/30 3 4 1 S
		7352-4M		301 P
		7352-4M		3 2 1
		7013-4M		341 B
				密査請求 未請求 請求項の数3(全 5 頁
(21)出願番号	特願平2-402984		(71)出願人	000005223
				富士通株式会社
(22) 出願日	平成2年(1990)12	月18日		神奈川県川崎市中原区上小田中1015番地
			(72)発明者	
			18	神奈川県川崎市中原区上小田中1015番地 富士通株式会社内
			(72)発明者	
			(15/5/2916	神奈川県川崎市中原区上小田中1015番地
				富士通株式会社内
			(74)代理人	弁理上 井桁 貞一
				7/44 7/10 A
			İ	

(54)【発明の名称】 荷電粒子露光用透過マスク基板,及びその基板製法

(57)【要約】

【目的】 本発明は、酸化膜を介して上部シリコン板と下部シリコン板とを貼り合わせた構造を有する荷電ビーム酸光用透過マスク基板の改良に関し、上部シリコン板のチャーヂアップを完全に防止し、 且つ、貼り合わせ構造を有する生産性の高いマスク基板を提供することを目的とする。

【構成】 該マスク基板は、層の両面に貫通しているシリコン酸化膜層領域2と導電体層領域5より成る中間層と、該中間層を介して両側から貼り合わせられている二つのシリコン板1、6の中、一方のシリコン板のシリコン板化膜層領域2に隣接する部分が欠如しているシリコン板1とより構成される。又、このマスク基板製造方法は、下部シリコン板1に形成されたシリコン酸化膜2をパターンエッチングにより除去する工程と、除去された酸化膜領域跡に導電体膜5を埋めこむ工程と、上部シリコン板6を該酸化膜2と該導電体膜5を介して下部シリコン板6を該酸化膜2と該導電体膜5を介して下部シリコン板6を該酸化膜2と該導電体膜5を介して下部シリコン板1に貼り合わせる工程とを含んで構成さる。

本発明による二種類のマスク基板の断面模式図

1

【特許請求の範囲】

【請求項1】 層の両面に貫通している絶縁層領域と導電体層領域より成る中間層と,該中間層を介して両側から貼り合わせられている二つのシリコン板とを有することを特徴とする貼り合わせ基板

【請求項2 】 層の両面に貫通している絶縁層領域と導電体層領域より成る中間層と、該中間層を介して両側から貼り合わせられている一方の側のシリコン板と、該中間層の絶縁層領域に隣接する部分が除去され絶縁層が露出している他方の側のシリコン板、とを有することを特 10 徴とする荷電粒子露光用透過マスク基板

【請求項3】 (a) 下部シリコン板表面にシリコン酸化 膜を形成する工程と,(b) 該酸化膜上にマスク層を形成 し,パターンエッチングにより閉口部を設ける工程と,

(c) 該開口部の酸化膜を除去して該下部シリコン板表面を露出させる工程と、(d) 工程(c) において除去された酸化膜領域跡に導電体膜を埋め込む工程と、(e) 該導電体膜層を含む該酸化層を平坦化して中間層を形成する工程と、(f) 該中間層上に上部シリコン板を貼り合わせる工程と、(g) 該上部シリコン板及び該下部シリコン板を加磨して所定の厚さにする工程と、(h) 該中間層の下部シリコン板の酸化膜領域に隣接する部分を除去して酸化膜層を露出させる工程とを有することを特徴とする荷電粒子露光用透過マスク基板の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は荷電粒子線透過マスクに関し、具体的には酸化膜を挟んで上部シリコン(Si)板と下部Si板とを貼り合わせた構造を有する荷電ビーム用透過マスク基板の改良に関する。

【0002】近年,集積回路の高密度化に伴い,長年微細パターン形成の主流であったフォトリソグラフィに代わって荷電ビーム,例えば電子ビームやイオンビームによる露光,或いはX線を用いる新しい露光方法が検討され,実用化されてきている。

【0003】このうち、電子ビームを用いてパターンを形成する電子ビーム露光はいわゆる"一筆書き"の描画方法であるために、パターンが微細になればなるほどビーム径の小さいビームによって露光することが必要になり、その結果露光時間は莫大に長くなってしまう。この問題 40を解決するために所謂ブロック露光法が考案された。

【0004】ブロック

広のでは、加工性や強度の点からSiウエファを利用して

変を利用して

変を利用して

変を

なのでは、

なのでは

なる構造では

なるれる

の側面積が大きくなる

ために

を以が付着し

あく、

デャージアップし

易い等の問題が生じるので、

通常はパターン形成領域だけは可能な限り

薄膜(メンブレン)状にして

での上に

パターンが形成される。

[0005]

2

【従来の技術】このようなマスクの製造方法として、
聴部分の厚さを精度良く制御するためには図3 に示す方法がある。即ち図 3(a) に示されるような酸化膜32を挟んで2 枚のSi 板31,33 を貼り合わせた構造のウエフア(貼り合わせウエフア) の表面を図3(b)に示されるように、窒化膜又は窒化膜と酸化膜の複合膜のようなマスク
届34 により被覆し、図3(c)に示されるように下部Si 板31をパターニングして開口35を形成し、図3(d)に示されるように、
苛性カリ溶液により下部Si 板31をパターンエッチングすると、エッチングは酸化膜層32によって阻止されるためにエッチングは酸化膜層32が露出した時点で停止し、この後、マスク層34を除去すれば、図3(e)に示されるように、マスクパターンが製作される薄膜部分36
が残されたマスク基板が得られる。

【0006】この貼り合わせマスクを用いて電粒子ビーム露光する場合,貼り合わせウエフアの上部Si板33は酸化膜層32により絶縁されているから、上部Si板33はチャージアップし易い。 このチャージによる電界のために荷電ビーム軌道はSi板33表面付近で不規則に曲折し、その結果、描画精度は著しく低下する。

【0007】この問題を解決するために、図4に示されるように上部Si板33から下部Si板31に貫通する溝穴37を形成した後、この溝穴37の内面にポリSiのような導電体膜38を形成する。このようにして上部Si板33と下部Si板31は電気的に接続される。かくして上部Si板33は下部Si板31を介して接地されるので、上部Si板33のチャージアップは防止される。

[0008]

【0009】そこで、本発明は上部Si板33の接地抵抗を 大幅に低減してチャーヂアップを完全に防止し、且つ、 貼り合わせ構造を有する生産性の高いマスク基板を提供 することを目的としている。

*(*0 (0010)

【課題を解決するための手段】これらの課題は下記の手段によって解決する。即ち,荷電ビームを用いて所望するパターンを作成するためのマスク基板は,少なくとも層内に絶縁層領域と導電層領域を有する中間層を挟んで上部Si板と下部Si板を貼り合わせた構造であり,上部Si板と下部Si板は該導電層により導通されている。

【0011】このようなマスク基板は、下部Si板表面に酸化膜を形成する工程と、該酸化膜上にマスク層を形成して開口部となるパターンを形成する工程と、該開口部において下部Si板まで該酸化膜を除去して溝穴部を形成

3

する工程と、導電体膜を該滯穴部内に埋め込む工程と、 該導電体膜を含む該酸化膜層を平面に研磨する工程と、 該酸化膜上に上部Si板を貼り合わせる工程と、上部SI板 及び下部Si板を所望の厚さまで研磨する工程によって作 製することができる。

【0012】又, 導電体膜は貼り合わせの強度と実用性の面からポリSi層,或いは高不純物濃度Siエピ層が良い。

[0.013]

【作用】上記のマスク基板構造においては、貼り合わせ 10 ウエフアの段階で、上部Si板と下部Si板とを電気的に導通させることが可能であるばかりでなく、中間層における酸化膜層の配置によって、上部Si板と導電体膜との接触面積は従来のそれよりも格段に大きくすることができる。従って、上部Si板の接地抵抗は大幅に減少する。。また、設接触面積は、従来のようにエッチングによって決まるようなものでないから、ウエフア間、即ちマスク基板間におけるばらつきがない。

[0014]

【実施例】本発明の実施例について,以下図面を用いて 20 説明する。図1 (a), (b)はシリコンウエフアを用いた二種類のマスク基板を示している。

【0015】図1(a)は、中央に大きい面積の酸化膜部を、その周囲に導電体膜を配した中間層を有する貼り合わせウエフアマスク基板の断面図を示している。 図1(a)の上方の二つの図は、元になる貼り合わせウエフアのそれぞれ平面断面図と側面断面図を表している。上部Si板6と下部Si板1 は該導電体膜5 によって電気的に導通されている。酸化膜層の残っている領域は、下部Si板1のエッチングによってメンプレン状になる領域で、ここに対応 30する上部Si板の領域にマスクバターンが形成される。マスクバターン形成領域が可能な限り大きいことが必要な場合には、図1(a)の構造が適当である。

【0016】これに対して、図1(b)は酸化膜層が貼り合わせウエフアの中間層の中で分散して配置され、それ以外の中間層の領域に導電体膜が設けられている場合のマスク基板の断面図を示している。図1(b)の上方の二つの図は元になる貼り合わせウエフアのそれぞれ平面断面図と側面断面図を表している。この場合、下部Si板1のエッチング後に升目状の"梁"が残るから、メンブレン 40 部は丈夫である。従って、マスクパターン形成領域の面積は小さくてもよいがメンブレンの強度を確保したいという場合には、図1(b)の構造が適当である。

【0017】次に、図2に従って本マスク基板の製造方法について説明する。図2は本マスク基板製造の各工程を断面模式図によって示している。図(a)にはマスク基板の中間層が形成される下部Si板1が示されている。(b)に示されるように、下部Si板1の上面に酸化シリコン(SiO₂)膜2が形成され、更にその上にレジスト膜より成るマスク層3が形成される。 次に、(c)に示されるよう 50

に、マスク層3がパターニングされて閉口部4が形成さ 次に, (d) に示されるように, パターニング されたマスク層3 をマスクとしてSiOx膜2 が除去され この酸化膜エッチングは四弗化メタン或いは三弗 化メタンを用いるドライエッチングによって行なう。次 に、(e)に示されるようにパターニングされたマスク層3 が酸素(02)プラズマエッチングによって除去され る。 マスク層3 の除去は過酸化水素(H₂O₂)と硫酸(H₂ SO()の混合溶液で行なうこともできる。 次に,(f)に示 されるように、(d) においてSiO2 膜2 が除去された部分 にポリSiのような導電体膜5がCVD 法により埋め込まれ た後,残されているSiOz膜2 と共に導電体膜5 が研磨さ れて、平坦化される。この平坦化は次に貼り合わせた際 の強度が充分に確保される程度に行なう。次に、(g)に 示されるように、上部Si板6 が、SiO2膜2 と導電体膜5 を介して下部Si板1 の上面に合わされた状態で加熱さ れ、その結果、上部Si板6と下部Si板1が貼り合わされ 次に、(h) に示されるように上部Si板6 及び下部 Si板1 が所望の厚さに研磨される。 最後に、(i)に示 されるように、下部Si板1 がKOH 溶液によりパターンエ ッチされてメンプレン部が形成され、マスク基板が完成 される。

[0018]

【発明の効果】本発明によるマスク基板を有する荷電ビーム用マスクにおいては、上部Si板と下部Si板との電気的接続が確実であるから、荷電ビームによる上部Si板側のチャーデアップを防止することができる。

【図面の簡単な説明】

【図1】 本発明による二種類のマスク基板の断面模式 図である。

【図2】 本発明によるマスク基板の製造工程を表す断面模式図で、(a) は下部Si板の図、(b) は下部Si板の上面に酸化膜及びマスク層形成されている図、(c) はマスク層に開口部が形成されている図、(d) はSi酸化膜がパターンエッチされている図、(e) はパターニングされたマスク層が除去された図、(f) は(d) のSi酸化膜が除去された部分に導電体膜が埋め込まれた後、残されているSi酸化膜と共に導電体膜が研磨され平坦化された図、(g) は上部Si板と下部Si板が所望の厚さに研磨された図、(i)

【図3】 従来のマスク基板の製造工程を表す断面模式図で、(a)はSi酸化膜を挟んだ貼り合わせウエフアの図、(b)はマスク層により(a)の貼り合わせウエフアを被覆した図、(c)は下部Si板をパターニングして開口が設けられた図、(d)は下部Si板がパターンエッチされた図、(e)はマスク層が除去され薄膜部分が残されたマスク基板の図である。

メンプレン部が形成され、完成したマスク基板の図で

【図4】 従来のマスク基板の下部Si板における穴部の

ある。

内面に導電体膜が形成された図である。 【符号の説明】

- 下部シリコン板 1, 31
- 2,32 シリコン酸化膜

3, 34 マスク層

4, 35 開口部

5, 38

導電体膜 6, 33 上部シリコン板

[図1]

本発明による二種類のマスク基版の断面模式図

【図4】

従来のマスク基板の下部Si板における穴部の内面に 導管体展が形成された図

[図2]

木発明によるマスク基板の製造工程 を示す断面模式図

【図3】

従来のマスク基板の製造工程を表わず断面模式図

