PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/31, C07K 14/315, 16/12, C12Q 1/68

(11) International Publication Number:

WO 98/18931

(43) International Publication Date:

7 May 1998 (07.05.98)

(21) International Application Number:

PCT/US97/19588

A2

(22) International Filing Date:

30 October 1997 (30.10.97)

(30) Priority Data:

60/029,960

31 October 1996 (31.10.96)

US

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUNSCH, Charles, A. [US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FANNON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A. [US/US]; 708 Meadow Field Court, Mount Airy, MD 21771 (US).

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

The present invention provides polynucleotide sequences of the genome of *Streptococcus pneumoniae*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

BR Brazil IL Israel MR Mongolia UA Ukraine BY Belarus IS Iceland MR Mauritania UG Uganda CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CH Switzerland KG Kyrgyzstan NL Netherlands YU Yugoslavia CI Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PL Poland CN China KR Republic of Korea PT Portugal CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sunders					1 .0	Lambarono baomannie i	nwmanom	ar apprications finder
EK Estonia LR Liberia SG Singapore	AM AT AU AZ BA BB BE BF BG BJ CA CF CG CH CI CM CN CU CZ DE	Armenia Austria Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany	FI FR GA GB GE GH GN GR HU IE IIL IS IT JP KE KG KP KR LL LL LL	Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Rezakstan Saint Lucia Licehtenstein Sri Lanka	LS LT LU LV MC MD MG MK MI MN MR MV NZ PL PT RO RU SD SE	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden	SI SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America

Streptococcus pneumoniae Polynucleotides and Sequences

FIELD OF THE INVENTION

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Streptococcus pneumoniae*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

5

10

15

25

30

BACKGROUND OF THE INVENTION

Streptococcus pneumoniae has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., et al., J. Exp. Med., 79:137-157 (1944)).

In spite of the vast number of publications on S. pneumoniae many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after Haemophilus influenzae type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for H. influenzae type b, pneumococcal meningitis is likely to become increasingly prominent. S. pneumoniae is the most important etiologic agent of community-

acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind Neisseria meningitidis.

The antibiotic generally prescribed to treat S. pneumoniae is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist. Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., et al., J. Med. Microbiol. 28:237-248 (1989).

10

15

25

30

35

S. pneumoniae is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disaccharide receptor on fibronectin, present on human pharyngeal epithelial cells. (Anderson, B.J., et al., J. Immunol. 142:2464-2468 (1989). The mechanisms by which pneumococci translocate from the nasopharynx to the lung, thereby causing 20 pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991).

Various proteins have been suggested to be involved in the pathogenicity of S. pneumoniae, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., et al., Rev. Inf. Dis. 3:521-534 (1981). S. pneumoniae also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell et. al., reported that peptide permeases can modulate

pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions. (DeVelasco, E.A., et al., Micro. Rev. 59:591-603 (1995). A better understanding of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

5

10

15

25

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by S. pneumoniae, infection involves the programmed expression of S. pneumoniae genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S. pneumoniae genes and genomic organization would improve our understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S. pneumoniae would provide reagents for, among other things, detecting, characterizing and controlling S. pneumoniae infections. There is a need to characterize the genome of S. pneumoniae and for polynucleotides of this organism.

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-391.

5

10

15

25

30

35

The present invention provides the nucleotide sequence of several hundred contigs of the *Streptococcus pneumoniae* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-391.

The present invention further provides nucleotide sequences which are at least 95% identical to the nucleotide sequences of SEQ ID NOS:1-391.

The nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Streptococcus pneumoniae* genome.

Another embodiment of the present invention is directed to fragments of the Streptococcus pneumoniae genome having particular structural or functional attributes. Such fragments of the Streptococcus pneumoniae genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs, and fragments which can be used to diagnose the

presence of *Streptococcus pneumoniae* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORFs in fragments of the Streptococcus pneumoniae genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

5

10

15

20

25

30

The present invention further includes recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Streptococcus pneumoniae* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as

a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

5

10

15

25

30

The invention further provides hybridomas which produce the abovedescribed antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b) determining whether the agent binds to said protein.

The present genomic sequences of *Streptococcus pneumoniae* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Streptococcus pneumoniae* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Streptococcus pneumoniae* researchers

and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

5

10

15

25

30

35

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Streptococcus pneumoniae genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Streptococcus pneumoniae relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading

frames (ORFs) is accomplished by processing contigs with zorf or GenMark. The ORFs are searched against *S. pneumoniae* sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul *et al.*, *J. Mol. Biol. 215:* 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

10

The present invention is based on the sequencing of fragments of the Streptococcus pneumoniae genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-391. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Streptococcus pneumoniae* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-391, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

20 -

25

30

35

15

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-391" refers to any portion of the SEQ ID NOS:1-391 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Streptococcus pneumoniae* open reading frames (ORFs), expression modulating fragment (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in sample (DFs). A non-limiting identification of preferred representative fragments is provided in Tables 1-3. As discussed in detail below, the information provided in SEQ ID NOS:1-391 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Streptococcus pneumoniae* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-391 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a

5

10

15

20 -

25

30

35

nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-391. However, once the present invention is made available (i.e., once the information in SEQ ID NOS:1-391 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-391 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-391 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of Streptococcus pneumoniae strains that can be used to prepare S. pneumoniae genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the S. pneumoniae strain that provided the DNA of the present Sequence Listing, Strain 7/87 14.8.91, has been deposited in the ATCC, as a convenience to those of skill in the art. As a further convenience, a library of S. pneumoniae genomic DNA, derived from the same strain, also has been deposited in the ATCC. The S. pneumoniae strain was deposited on October 10, 1996, and was given Deposit No. 55840, and the cDNA library was deposited on October 11, 1996 and was given Deposit No. 97755. The genomic fragments in the library are 15 to 20 kb

fragments generated by partial Sau3A1 digestion and they are inserted into the BamHI site in the well-known lambda-derived vector lambda DASH II (Stratagene, La Jolla, CA). The provision of the deposits is not a waiver of any rights of the inventors or their assignees in the present subject matter.

5

10

15

25

30

35

The nucleotide sequences of the genomes from different strains of *Streptococcus pneumoniae* differ somewhat. However, the nucleotide sequences of the genomes of all *Streptococcus pneumoniae* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-391. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-391 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-391. Such a manufacture provides a large portion of the *Streptococcus pneumoniae* genome and parts thereof (*e.g.*, a *Streptococcus pneumoniae* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using

means not directly applicable to examining the *Streptococcus pneumoniae* genome or a subset thereof as it exists in nature or in purified form.

5

10

15

20

25

30

35

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present A variety of data storage structures are available to a skilled artisan invention. for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-

391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-391 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

5

10

15

25

30

35

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Streptococcus pneumoniae genome which contain homology to ORFs or proteins from both Streptococcus pneumoniae and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Streptococcus pneumoniae genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Streptococcus pneumoniae* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage

means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

5

10

15

20

25

30

35

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Streptococcus pneumoniae* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the Streptococcus pneumoniae genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990), is used to identify open reading frames within the Streptococcus pneumoniae genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

10

15

20

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

10

15

20

30

35

Other embodiments of the present invention are directed to isolated fragments of the *Streptococcus pneumoniae* genome. The fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to fragments which encode peptides and polypeptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Streptococcus pneumoniae* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-391, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, Streptococcus pneumoniae DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a Streptococcus pneumoniae library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS:1-391. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or Streptococcus pneumoniae genomic DNA. Thus, given the availability of SEQ ID NOS:1-391, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-391 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

5

10

15

20

30

35

Tables 1, 2, and 3 list ORFs in the Streptococcus pneumoniae genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

Table 1 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in October, 1997.

Table 2 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in October, 1997.

Table 3 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in October, 1997.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the first nucleotide of the ORF (actually the first nucleotide of the stop codon immediately preceding the ORF), counting from the 5' end of the contig strand; and the fourth column, "stop (nt)" indicates the last nucleotide of the stop codon defining the 3'end of the ORF.

In Tables 1 and 2, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the gene name of the matching sequence; column seven provides the BLAST identity score and column eight the BLAST similarity score from the

comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

10

15

25

30

Each ORF described in the tables is defined by "start (nt)" (5') and "stop (nt)" (3') nucleotide position numbers. These position numbers refer to the boundaries of each ORF and provide orientation with respect to whether the forward or reverse strand is the coding strand and which reading frame the coding sequence is contained. The "start" position is the first nucleotide of the triplet encoding a stop codon just 5' to the ORF and the "stop" position is the last nucleotide of the triplet encoding the next in-frame stop codon (i.e., the stop codon at the 3' end of the ORF). Those of ordinary skill in the art appreciate that preferred fragments within each ORF described in the table include fragments of each ORF which include the entire sequence from the delineated "start" and "stop" positions excepting the first and last three nucleotides since these encode stop codons. Thus, polynucleotides set out as ORFs in the tables but lacking the three (3) 5' nucleotides and the three (3) 3' nucleotides are encompassed by the present invention. Those of skill also appreciate that particularly preferred are fragments within each ORF that are polynucleotide fragments comprising polypeptide coding sequence. As defined herein, "coding sequence" includes the fragment within an ORF beginning at the first in-frame ATG (triplet encoding methionine) and ending with the last nucleotide prior to the triplet encoding the 3' stop codon. Preferred are fragments comprising the entire coding sequence and fragments comprising the entire coding sequence, excepting the coding sequence for the N-terminal methionine. Those of skill appreciate that the N-terminal methionine is often removed during post-translational processing and that polynucleotides lacking the ATG can be used to facilitate production of N-termainal fusion proteins which may be benefical in the production or use of genetically engineered proteins. Of course, due to the degeneracy of the genetic code many polynucleotides can encode a given polypeptide. Thus, the invention further includes polynucleotides comprising a nucleotide sequence encoding a polypeptide sequence itself encoded by the coding sequence within an ORF described in Tables 1-3 herein. Further, polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence to the foregoing polynucleotides, are contemplated by the present invention.

Polypeptides encoded by polynucleotides described above and elsewhere herein are also provided by the present invention as are polypeptide comprising a an amino acid sequence at least about 95%, preferably at least 97% and even more preferably 99% identical to the amino acid sequence of a polypeptide encoded by an ORF shown in Tables 1-3. These polypeptides may or may not comprise an N-terminal methionine.

5

10

15

20

25

30

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the percent identity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Streptococcus pneumoniae* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

5

10

15

25

30

EMF sequences can be identified within the contigs of the Streptococcus pneumoniae genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the Streptococcus pneumoniae genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Streptococcus pneumoniae* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Streptococcus pneumoniae* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers

consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferrably at least 99% and most at least preferably 99.9% identical to SEQ ID NOS:1-391, with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Streptococcus pneumoniae origin isolated by using part or all of the fragments in question as a probe or primer.

10

15

20

25

30

35

Preferred DFs of the present invention comprise at least about 17, preferrably at least about 20, and more preferrably at least about 50 contiguous nucleotides within an ORF set out in Tables 1-3. Most highly preferred DFs specifically hybridize to a polynucleotide containing the sequence of the ORF from which they are derived. Specific hybridization occurs even under stringent conditions defined elsewhere herein.

Each of the ORFs of the Streptococcus pneumoniae genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly Streptococcus pneumoniae. Especially preferred in this regard are ORFs such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Streptococcus pneumoniae. Also particularly preferred are ORFs that can be used to distinguish between strains of Streptococcus pneumoniae, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

5

10

15

20

25

30

35

The present invention further provides recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLnco, pSV2cat, pOG44, pXT1, pSG

(available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

5

10

15

20

25

30

The present invention further provides host cells containing any one of the isolated fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the Streptococcus pneumoniae genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF. The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs and subfragments thereof depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

10

15

25

30

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

5

10 ,

15

25

30

35

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Streptococcus pneumoniae* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express

heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

10

15

25

30

35

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of E. coli, B. subtilis, Salmonella typhimurium and various species within the genera Pseudomonas and Streptomyces. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication

derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

5

10

15

25

30

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

10

20

25

30

35

The invention further provides methods of obtaining homologs from other strains of Streptococcus pneumoniae, of the fragments of the Streptococcus pneumoniae genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Streptococcus pneumoniae is defined as a homolog of a fragment of the Streptococcus pneumoniae fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Streptococcus pneumoniae genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-391 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ

ID NOS:1-391 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis *et al.*, *PCR Protocols*, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-391 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

10

15

20

25

30

35

When using DNA probes derived from SEQ ID NOS:1-391, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Streptococcus pneumoniae*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the

polypeptide. Such identifications permit one skilled in the art to use the Streptococcus pneumoniae ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper et al., Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

10

15

20

25

30

35

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Streptococcus pneumoniae* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-391.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al.,

Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

5

10

20

25

30

The metabolism of sugars is an important aspect of the primary metabolism of *Streptococcus pneumoniae*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>, Rhine *et al.*, Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

10

15

25

30

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other

hand, has been described in detail by Bud et al., Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology 136*:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

5

10

15

20

25

30

35

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques In Biochemistry And Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983), pgs. 77-96 of Cole et al., in Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc. (1985)). Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods

include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

5

10

15

20

25

30

35

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175:109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308

(1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W., J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for in vitro, in vivo, and in situ assays to identify cells or tissues in which a fragment of the Streptococcus pneumoniae genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

5

10

15

20

25

30

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and

5

10

15

20

25

30

Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Trisbuffers, etc.), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

5

10

15

20

25

30

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Streptococcus pneumoniae* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Streptococcus* pneumoniae genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides," in Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

5

10

15

20

25

30

35

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Streptococcus pneumoniae*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Streptococcus pneumoniae or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer

WO 98/18931 PCT/US97/19588

surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

5

10

15

20

25

30

35

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources. **REMINGTON'S** PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may

be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

10

15

20

25

30

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s)

serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

10

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

20

25

30

35

15

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatinemicrocapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

ILLUSTRATIVE EXAMPLES

5

10

15

20

25

30

35

(1980).

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random

WO 98/18931 PCT/US97/19588

sequence has been determined can be calculated by the equation $P = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

10

15

20

25

30

35

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Streptococcus pneumoniae DNA is prepared by phenol extraction. A mixture containing 200 µg DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 µl TE buffer.

To create blunt-ends, a 100 µl aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 µl BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 µl TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the

DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 µg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with Smal and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 µl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 µl TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) containing the v+I linears, 500 µM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50 µl reaction containing 5 µl of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

10

15

20

25

30

35

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 μ l aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 μ l aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 μ l aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and

placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl (1 M), and 1 ml MgSO /100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

10

15

20

25

30

35

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams et al., Science 252:1651 (1991); Adams et al., Nature 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two *Streptococcus pneumoniae* lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, *Streptococcus pneumoniae* DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 µg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One µl of fragments is used with 1 µl of DASHII vector (Stratagene) in the recommended ligation reaction. One µl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage

are plated directly without amplification from the packaging mixture (after dilution with 500 μ l of recommended SM buffer and chloroform treatment). Yield is about 2.5x10³ pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x10⁴ pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x10⁹ pfu/ml.

5

10

15

25

30

35

Liquid lysates (100 μ l) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards et al., Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of both-end sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are

done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

5

10

15

20

25

30

35

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing

47

sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

25

30

35

10

15

20

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 10⁴ fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching

fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library).

The process resulted in 391 contigs as represented by SEQ ID NOs:1-391.

3. Identifying Genes

5

10

15

20.

25

30

The predicted coding regions of the *Streptococcus pneumoniae* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (October, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Streptococcus pneumoniae Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al., Basic Methods in Molecular Biology, Elsevier, New York. Section 21-2 (1989).

25

5

10

15

20

5

10

15

20

25

30

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Streptococcus pneumoniae* genome, such as those of Tables 1-3 and SEQ ID NOS:1-391 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

10

15

20

5. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the *Streptococcus pneumoniae* genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield *et al.*, U. S. Patent No. 5,082,767, incorporated herein by this reference.

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Streptococcus pneumoniae genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using BgII and SalI restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Streptococcus pneumoniae DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Streptococcus pneumoniae DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BglII at the 5' end of the corresponding Streptococcus pneumoniae DNA 3' primer, taking care to ensure that the Streptococcus pneumoniae DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BgIII, purified and ligated to pXT1, now containing a poly A addition sequence and digested BglII.

10

20-

25

30

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Streptococcus pneumoniae* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Streptococcus pneumoniae* DNA.

Alternatively and if antibody production is not possible, the Streptococcus pneumoniae DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the Streptococcus pneumoniae DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using in vitro translation systems such as in vitro ExpressTM Translation Kit (Stratagene).

10

15

20

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start	Stop	match	match gene name	percent	HSP nt }	ORF nt length
-	-	437	1003		Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	95	200	567
2	2	6919	5720		Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	450	450
2	9	6592	6167	emb 283335 SPZ8	S.pneumoniae dexB, capl(A.B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	426	426
^	=	9770	9147	emb 283335 SP28	S.pneumoniae dexB, capi[A,B,C,D,E,F,G,H.I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	96	624	624
r	127	10489	1196	emb 283335 SP28	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	16	819	819
3	13	11546	112019	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	474	474
•	=_	12017	13375	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	1359	1359
	12	13421	14338	[gb]U43526]	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	918	918
-	110	14329	17121	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	843	843
6	127	15132	17282	 gb U43526 	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds. and neuraminidase (nanA) gene, partial cds	66	2151	2151
•	118	17267	18397	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	1069	1131
4	-	9	1188	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3	66	1143	1143
7	-	1 1198	1 2529	emb Y11463 SPDN	Streptococtus pneumoniae dnaG, rpoD, cpoA genes and ORF3	1 66	876	1332
5	-	111297	111473	[gb]U41735	streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	83	175	771
9	17	1125	1 7364	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence 151318 (1372 bp)	93	238	240
9	8	1 7322	1 7570	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence 151381 (966 bp)	98	160	249
9	6	7533	1 7985	emb z77725 SPIS	S.pneumoniae DNA for insertion sequence 151181 (966 bp)	66	453	453
9	2	20197	19733	emb 283335 SP28	S.pneumoniae dexB. capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-thamnose biosynthesis genes and aliA gene	96	465	465
7	02	8305	7682	emb 283335 SP28	S.pneumoniae dexB. capl(A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	95	624	624

pneumoniae - Coding regions containing known sequences

10 13 9304 8078 11 2 548 919 11 3 892 1980 11 1 3 892 1980 11 5 3040 3477 11 6 3480 3247 11 6 3480 3247 11 6 3484 7142 13 1126 13 1126 13 1126 14 4 2518 2108 17 7 3910 3458 17 8 4104 3873 19 1 41 529 19 1 41 529 19 19 19 19 19 19 19	6 emb 283335 SP28 8 gb L29323 emb 279691 SOOR 0 emb 279691 SOOR 7 emb 279691 SOOR	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene Streptococcus pneumoniae methyl transferase (mtr) gene cluster, complete	96	819	
13 9304 2 548 3 892 6 3480 6 3480 7 3601 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(mtr) gene cluster,		-	Ď
2 548 3 892 6 3480 7 3601 7 3601 1 1 53 4 4884 4 4884 1 1 53 4 2518 6 4300 7 132 7 141 8 4300 9 8942 9 8942 1 1 41 1 1 937		spo	93	513	1227
3 892 6 3040 6 3480 6 3480 6 3480 6 3480 6 3480 6 3480 6 3480 6 3480 6 3480 6 6 6 6 6 6 6 6 6	!-!-!-	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	1 66	316	372
6 3480 6 3480 7 3601 10 4884 1 1837 4 2518 4 2518 6 4304 7 3910 8 4304 9 8942 1 1 41 1 1 937	1-1-1	S.pneumonlae yorf[A, B, C, D, E], ftsL, pbpX and regR genes	66	1089	1089
6 3480 7 3601 1 5 5 5 5 5 5 5 5	-	S.pneumoniae yorf(A, B, C, D, E), ftst, pbpX and regR genes	- 66	259	438
7 3601 1 1 1 1 1 1 1 1 1		S.pneumoniae yorf(A, B, C, D, El, ftst, pbpX and regR genes	- 66	234	234
9 4884 10 7132 1 53 1 837 9 8942 9 7 3910 1 1 41 9 8 9 6 9 1 9 9 4 6	7 emb 279691 SOOR	S.pneumoniae yorf(A, B, C, D, El, ftsL, pbpX and regR genes	86	957	957
9 4884 10 7132 1 53 1 8137 9 8942 9 8942 1 41 1 41 1 937	6 emb 279691 SOOR	S.pneumoniae yorf(A, B, C, D, E), ftsL, pbpX and regR genes	66	381	381
1 53 1 53 1 837 1 8 4304 1 9 4842 1 1 41 1 1 41 1 9 37	2 emb X16367 SPPB	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X	96	2259	2259
3 1837 4 2518 9 8942 7 3910 1 41 1 41 1 937	4 emb X16367 SPPB	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2x	96	70	993
9 8942 9 8942 7 3910 1 41 1 41 1 937	6 gb N31296	S.pneumoniae recP gene, complete cds	- 66	437	1074
9 8942 7 3910 7 3910 1 41 1 41 1 937	8 emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose blosynthesis genes and allA gene	87	96	312
9 8942 7 3910 8 4304 1 1 41 1 3 946 1 937	8 gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	411	411
7 3910 1 3 946 1 937	1 gb u09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19faBCDEFGHIJKLMNO) genes, complete cds, and alia gene, partial cds	68	340	432
2 5 4 4 1 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1	8 emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	98	453	453
3 946	3 emb 277727 SPIS	S. pneumoniae DWA for insertion sequence IS1318 (823 bp)	96	382	432
1 937	emb x94909 SPIG	S.pneumoniae iga gene	15	368	489
3 946	[gb]L07752]	Streptococcus pneumoniae attachment site (attB), DNA sequence	66	167	204
1 937	7 gb L07752	Streptococcus pneumoniae attachment site (attB), DNA sequence	94	100	882
		Streptococcus pneumonlae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gin genes	66	756	756
20 2 2271 931	gb U33315	Streptococcus pneumoniae orfi gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tNNA-Arg and tRNA-Gin genes	86	1341	1341

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
50	n	3175	2684	gb U76218	Streptococcus pneumoniae competence stimulating peptide precursor ComC (comC), histidine kinase homolog ComD (comD), and response regulator homolog ComE (comE) genes, complete cds	66	492	492
20	4	3322	4527	gb AF000658	Streptococcus pnaumoniae R801 tRNA-Nrg gene, partial sequence, and putative serine protesse (sphtra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	1206	1206
50	s	4573	5343	[gb AF000658]	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	17.6	177
50	φ	5532	6917	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serinc protesse (sphtra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	1386	1386
50	,	5669	8212	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (apspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	1218	1218
50	œ	8214	8471	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative sarine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	86	258	258
02	6	8534	9670	gb AF000658	Straptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	134	1137
22	14	11887	12267	cmb 277726 SP1S	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	66	226	180
22	115	12708	112256	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	353	453
25	116	13165	12662	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	98	504	204
22	23	18398	18910	emb 286112 SPZ8	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 181515	95	463	513
23	24	18829	19299	emb 286112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 1S1515	66	643	471
23	2	5624	4203	emb[X52474 SPPL	S. pneumoniae ply gene for pneumolysin	- 66	1422	1422
23	9	6063	5629	gb и17717	S.pneumoniae pneumolysin gena, complete cds	86	197	435
56	-	5500	7	emb x94909 SPIG	S. pneumoniae iga gene	87	3487	5499
26	7	5823	5584	95 047687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete cds	66	151	240
90	~	6878	5685	95 047687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete cds	100	80	1194

S. pneumoniae - Coding regions containing known sequences

TABLE 1

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	percent	HSP nt	ORP nt
26		14498	14854	amb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
36		114763	14924	cmb 283335 SP28	S.pneumoniae dexB, capi(A,B,C,D,E,F,G,H,1,J,K) genas, dTDP-rhamnose blosynthesis genes and aliA gene	100	94	162
26	2_	14922	67151	[gb] U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	- 6	242	252
28		08	505	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,B,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	426	426
28	~_	503	952	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	450	450
28	~_	. 780	1298	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	181	519
~		207	1523	ap r08611	Streptococcus pneumoniae maltose/maltodextrin uptake (malX) and two maltodextrin permease (malC and malD) genes, complete cds	66	1317	1317
24	~	1477	2367	95 108611	Streptococcus pneumoniae maltose/maltodextrin uptake (malX) and two maltodextrin permease (malC and malD) genes, complete cds	96	795	891
~	-	2593	3420	gb L21856	Streptococcus pneumoniae melA gene, complete cds; malR gene, complete cds	96	446	828
34	•	2790	2647	gb t21856	Streptococcus pneumoniae malA gena, complete cds; malR gene, complete cds	86	137	144
34	5	3418	4416	195 121856	Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds	96	666	666
76	6	7764	7507	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	93	201	258
34	91	110562	110257	emb x63602 SPBO	S.pneumoniae mmsA-Box	92	238	306
35	-	1176	1439	emb 283335 SP28	S.pneumoniae daxB, cap.[A.B.C.D.E.F.G.H.I.J.K] genes, dtDP-rhamnose biosynthesis genes and aliA gene	87	248	264
35	\$	1458	1961	gb U09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFCHIJKLMNO) genes, complete cds, and aliA gene, partial cds	86	264	504
35	-	26172	15477	emb X85787 SPCP	S.pneumoniae dexB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14I, cps14J, cps14K, cps14L, tasA genes	- 6	969	969
35	18	16961	16170	emb 283335 SPZ8	S.pneumoniae dexB, capl(A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	98	792	792
35	6	17620	16871	gp n09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon. (cps19fABCDEFGHIJKLANO) genes, complete cds, and aliA gene,	83	750	750
				+				

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt
35	50	19061	17604	emb x85787 SPCP	S.pneumoniae dexB. cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14I, cps14X, cps14L, tasA genes	94	1458	1458
95	6	18960	18352	95 040786	Streptococcus pneumoniae surface antigen A variant precursor (psaA) and 18 kDa protein genes, complete cds, and ORPI gene, partial cds	66	609	609
36	50	19934	18966	95 053509	Streptococcus pneumoniae surface adhesin A precursor (psaA) gene, complete cds	66	696	696
1 37	-	2743	179	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	66	2565	2565
1 37	7	2985	2824	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	100	162	162
1,0	_	5034	3070	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	1 66	1965	1961
37	-	.5134	5790	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	66	657	657
7.	5	6171	5833	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	96	1 600	339
38	61	12969	13268	gb M28679	S. pneumoniae promoter region DNA	100	64	300
65	~	1256	2137	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrk) and homoserine kinase homolog (thrB) genes, complete cds	66	882	882
65		2405	3370	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	66	996	996
00	6	5253	7208	gb H29686	S. pneumoniae mismatch repair (hexB) gene, complete cds	1 66	1956	1956
7	-	6	1037	emb 217307 SPRE	S. pneumoniae rech gene encoding Rech	1 66	1027	1035
₹	~	1328	2713	emb z34303 SPCI	Streptococcus pneumoniae cin operon encoding the cinA, recA, dinF, lytA genes, and downstream sequences	- 66	1386	1386
41	-	3083	4045	[gb]H13812]	S. pneumonise autolysin (lytA) gene, complete cds	1 66	696	963
41	-	3272	3096	gb M13812	S. pneumoniae autolysin (lytA) gene, complete cds	100	1 771	1771
=	5	3603	1 3860	gb M13812	S. pneumoniae autolysin (lytA) gene, complete cds	100	258	258
41	9	4755	5162	ap r36660	Streptococcus pneumoniae ORF, complete cds	86	408	408
4	-	5270	5716	85 136660	Streptococcus pneumoniae ORF, complete cds	1 86	447	447
41	8	6112	6918	ap 136660	Streptococcus pnoumoniae ORF, complete cds	86	431	907
4	6	6916	7119	185 136660	Streptococcus pneumoniae ORF, complete cds	1 001	204	204
4	2	7082	1 7660	86 136660	Streptococcus pneumoniae ORF, complete cds	- 16	552	579
4	=	7680	9797	ap 136660	Streptococcus pneumoniae ORF, complete cds	86	81	300
7	112	9169	8717	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	353	453
							• • • • • • • • • • • • • • • • • • • •	

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	natch	match gene name	percent	HSP nt length	ORP nt
41	113	9533	9132	emp 277725 SPIS	S. pneumoniae DNA for insertion sequence IS1381 (966 bp)	56	160	402
41	14	6996	9475	emb 282001 SPZB	S. pneumoniae pcpA gene and open reading frames	100	189	195
84	2	7190	1 7555	emb 282001 SP28	S. pneumoniae pcpA gene and open reading frames	66	366	366
44	9	8059	1097	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence [S1318 (1372 bp)	16	453	453
44	-	8423	8022	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	96	160	402
;	8	8559	1 8365	emb 282001 SP28	S.pneumoniae pcpA gene and open reading frames	1001	189	195
48	6	6480	4687	gb L39074	Streptococcus pneumoniae pyruvate oxidase (spxB) gene, complete cds	1 66	1794	1794
49	7	231	2603	gb t20561	Streptococcus pneumoniae Exp7 gene, partial cds	100	216	2373
S	9	2407	2156	gb 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 1S1202 transposase gene, complete cds		242	252
53	-	2566	2405	emb 283335 SP28	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	001	96	162
S		2831	2475	emb 283335 SP28	S.pneumoniae dexB; capllA,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
86	2	12409	11105	emb 283335 SP28	S.pneumoniae dexB, cap1{A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and aliA gene	69	591	1305
55	22	20488	119949	emb 284379 HS28	S. pneumontae dfr gene (isolate 92)	66	540	540
61	=	11864	0066	emb 216082 PNAL	Streptococcus pneumoniae aliB gene	86	1962	1965
63	-	_	239	gb H18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	100	237	237
63	7	1 233	1 2611	gb M18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	- 66	2330	2379
63	_	1 2557	2823	gb M18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	1 66	266	267
63	-	2958	4664	gb H18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	95	69	1707
67	9	3770	3399	ab 120670	Streptococcus pneumoniae hyaluronidase gene, complete cds	96	372	372
67	_	7161	1 4171	ab 1,20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	- 66	2938	2991
70	-	-	702	gb M14340{	S. pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds	100	693	702
70	~	678	1160	[gb[M14340]	S. pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds	100	483	483
70	_	2490	1210	gb M14339	S. pneumoniae DpnII gene region encoding dpnN, dpnA, dpnB, complete cds	98	462	1281
7.0	-	4230	1 4424	gb[J04234	S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds	66	147	195
70	8	5197	1 4316	gb J04234	S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds	66	881	882

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start	Stop	match	match gone name	percent	HSP nt	ORF nt
20	13	8108	9874	gb 120562	Streptococcus pneumoniae Exp8 gene, partial cds	93	234	1767
17	122	27964	28341	emb x63602 SPBO	S. pneumoniae mmsA-Box	93	233	378
21	<u>د</u>	4607	3552	emb 226850 SPAT	S. pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	92	102	1056
13	-	1 471	133	emb[x63602]SPBO	S. pneumoniae mmsA-Box	91	193	339
23	-	3658	716	gb J04479	S.pneumoniae DNA polymerase I (polA) gene, complete cds	66	2682	2682
۲۲	6	4864	5379	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	318	516
در	~ 	\$622	1999	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	95	624	624
		3341	2523	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	16	819	819
78	-	341	-	emb X77249 SPR6	S.pneumoniae (R6) ciaR/ciaH genes	66	339	139
78	~	1 1095	325	emb x77249 SPR6	S.pneumoniae (R6) ciaR/ciaH genes	66	177	17.6
82	2	11436	10816	186 090721	Streptococcus pneumoniae signal peptidase I (spi) gene, complete cds	97	621	621
93	===	112402	11434	86 093576	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	86	953	696
82	-12	12381	12704	195[093576]	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	100	51	324
63	8	3212	1 3550	emb[277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	290	339
6	2_	4662	6831	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	66	2190	2190
6	=	6849	8213	BD M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	66	1365	1365
8	77	8236	0606	gb[M36180]	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	66	855	855
83	=	9283	13017	[gb[L15190]	Streptococcus pneumoniae SAICAR synthetase (purC) gene, complete cds	100	107	3735
83	- 23	22147	23313	gb L36923	Streptococcus pneumoniae beta-N-acetylhaxosaminidase (strH) gene, complete cds	96	218	1167
83	24	23268	23450	86 136923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	88	172	183
63	-52	27527	23505	95[136923]	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	66	3826	4023
!	: -				· • • • • • • • • • • • • • • • • • • •	+1-1-1-1-1		

S. pncumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
8	126	28472	17.7.72	 gb L36923 	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	66	416	702
88		4554	6173	emb 283335 SP28	S.pneumoniae dexB, cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	697	1620
- 64	9 -	1 5951	5316	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	96	439	636
88		2957	3511	 95 H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	96	555	555
88	9-	3466	4269	 95 H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	96	804	804
89	==	9878	10093	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	6	211	216
68	=-	10062	10412	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	97	335	351
8	==	1 5303	1 4941	emb x63602 SPBO	S.pneumoniae mmsA-Box	68	237	363
97		1708	1520	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	91	140	189
66		68	700	emb z8335 SF28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	93	592	612
66	-	6771	1 775	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	866	666
66	-	2794	1712	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	1083	1083
66	-	3732	1 2788	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	945	945
66	5	5249	1 3714	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	1536	1536
66	-	7262	1 5277	emb X17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	1986	1986
101		216	1538	emb x54225 SPEN	S.pneumoniac epuA and endA genes for 7 kDa protein and membrane endonuclease	66	146	1323
101	7	1492	1719	emb X54225 SPEN	S.pneumoniae epuk and genes for 7 kDa protein and membrane endonuclease	66	228	228
101		1694	1855	emb x54225 SPEN	S.pneumoniae epuk and endk genes for 7 kDa protein and membrane endonuclease	100	162	162
101		1701	2582	emb X54225 SPEN	S.pneumoniae epuk and enda genes for 7 kDa protein and membrane endonuclease	001	883	882
103	-	5556	5041	emb 295914 SP29	Streptococcus pneumoniae sodA gene	001	396	516
104	7	1347	1556	emb 27727 SPIS	S. pncumoniae DNA for insertion sequence [5]318 (823 bp)	83	206	210
			11111					

S. pneumoniae - Coding regions containing known sequences

Cont 1g	ORF 1D	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
105	S	5381	5028	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	98	353	354
105	9	6809	5379	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	98	8	111
107	-	2785	1880	emb X16022 SPPE	S.pneumoniae penA gene	9.6	72	906
107	5	2913	1 4988	emb X16022 SPPE	S.pneumoniae penA gene	66	1692	2076
107	9	4981	5595	emb(x13136 SPPE	Streptococcus pneumoniae penA gene for penicillin binding protein 28 lacking N-term. (penicillin resistant strain)	91	107	615
108	6	8906	9128	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	95	342	351
108	21	11308	10922	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	99	199	387
109		2768	1 2241	emb 277725 SP1S	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	96	61	528
109	-	1 2688	1 2855	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	96	148	168
109	5	2982	3269	emts 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	9.7	353	408
109	9	5320	3584	gb H18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	100	371	1737
113	-	431	m ——	ob H36180 	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	95	429	429
113	2	9788	8532	emb x99400 SPDA	S.pneumoniae dack gene and ORF	66	1257	1257
113	Ξ	0486	110985	emb x99400 SPDA	S.pneumoniae dack gene and ORF	66	1116	1116
114		2530	2030	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	88	481	201
115	3_	11303	10932	gb U04047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds	97	372	372
117	-	F 897	3302	emb x72967 SPNA	S.pneumoniae nank gene	1 66	2402	2406
117	7	722	1 3831	emb X72967 SPNA	S.pneumoniae nank gene	66	237	555
117	m	4327	3899	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	429	429
121	~	1369	1941	95 07270	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	202	573
121	m ——	2412	4253	96 072720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	1842	1842
122	8	9905	5587	ab u04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds	64	451	522
	•	•						

S. pneumoniae - Coding regions containing known sequences

Contig	08. 01	Start (nt)	Stop (nt)	match	match gene name	percent ident	HSP nt length	ORF nt
125		1811	189	QD M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	92	66	1623
128	-13	12496	11204	emb 283335 SP28	S. pneumoniac dexB, capllA, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and alia gene	91	705	1293
134	-	-	1 492	emb Y10818 SPY1	S. pneumoniae spaA gene	1 66	203	492
134	2	556	2652	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	98	683	2097
134	-	1160	1 837	emb Y10818 SPY1	S. pneumoniae spsA gene	98	324	324
134	9	3952	2882	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	86	215	1071
134	œ	7992	9848	gb U12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes. complete cds	66	285	1857
134	<u> </u>	9846	10622	95 012567	Streptococcus pneumoniae P13 glycerol-1-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complate cds	66	570	71.
134	01	10805	11122	95 012567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	100	318	318
137	=	7970	8443	gb U09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLMMO) genes, complete cds, and aliA gene, partial cds	06	420	474
137	7	8590	8775	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,P,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	40	174	186
137	-13	6773	8967	emb 283335 SP28	S.pneumoniae dexB. cap1(A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	195	195
137	91	9223	1 9687	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	96	446	465
137	11	9641	110051	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	96	293	411
139	2	12998	112702	emb x63602 SPBO	S. pneumonlae musA-Box	06	234	297
141	8	7805	8938	emb 249988 SPMM	Streptococcus pneumoniae mmsA gene	66	338	1134
161	6	8936	10972	етр 249988 SРМИ	Streptococcus pneumoniae mmsA gene	- 66	2037	2037
141	120	111472	12467	emb 249988 SPHM	Streptococcus pneumoniae mmsA gene	100	16	966
142	7	1 257	814	gb #80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	96	174	858
142	-	1 787	1 957	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	142	17.1
142	~	980	3022	gb H80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	95	1997	2043

S. pneumoniae - Coding regions containing known sequences

14.2 1 1.1	Contig	OR D	Start (nt)	Stop (nt)	match	match gene name	percent dent	HSP nt length	ORF nt length
1 11 134 90 120315 50 12000 120315 1200 120305 12000 120305 12000 120305 12000 120305 12000	142	s	3020	3595	gb H80215	complete	1001	153	576
1 1334 1355 135	145	-	-	219	emb Z35135 SPAL	alia gene for amia-like	1 6	185	219
1 1374 1766 101910 121 1219 121 1219 121 1219 121 1219 1219 1219 121 1219	145	7	171	1994	gb L20556	pneumoniae plpA gene, partial	66	1811	1824
1 1934 3932 3918 3922 391809227] Streptococcus pneumoniae penicillin-binding protein (ponk) gene, complete 59 3928 3922 391809227] Streptococcus pneumoniae penicillin-binding protein (ponk) gene, complete 59 3928 3922	145	-	2287	7599	emb 247210 SPDE	dexB, cap3A, cap3B and cap3C genes and	66	1052	5313
1 1995 4 amb E32000 SPER S. nomemoniae propia and prop general complete 99 99 99 99 99 99 99	145		9934	7766	gb H90527	pneumoniae penicillin-binding protein (ponA) gene,	66	2169	2169
13 14 90 emb 282002 5728 S. pneumonite pcp8 and pcpC genes 98 98 98 98 98 98 98 9	145	8	10488	9922	gb M90527		66	512	567
11 10678 1039 amb 123702 5728 5 pneumoniae pcp8 and pcpC genes 16 11735 10794 amb 123702 5728 9 pneumoniae pcp8 and pcpC genes 16 11738 10678 amb 1237702 5704 5 pneumoniae ung gene and matX genes encoding uracil-DNA glycosylase and 8- 98 112 11318 10676 amb 1231702 5704 5 pneumoniae ung gene and matX genes encoding uracil-DNA glycosylase and 8- 98 112 11318 10676 amb 1231702 5704 5 pneumoniae ung gene and matX genes encoding uracil-DNA glycosylase and 8- 99 112 10078 amb 1231702 5704 5 pneumoniae ung gene and matX genes encoding uracil-DNA glycosylase and 8- 99 113 10078 amb 1231702 5704 5 pneumoniae used tide matX genes encoding uracil-DNA glycosylase and 8- 99 113 10078 amb 1231702 5704 5 pneumoniae peptide matX genes encoding uracil-DNA glycosylase and 8- 99 113 1134 1402 amb 123692 5704 5 pneumoniae peptide matX genes encoding uracil-DNA glycosylase and 8- 99 113	146	-	159	4	emb 282002 SP28	pcpB and pcpC	98	156	156
11 10679 10202 cmb 220202 SPR28 S. pneumoniae ung gene and mutx genes encoding utacil-DNA glycosylase and 8- 98 coxodory	146	~	344	06	emb 282002 SP28	and pcpC	9.6	255	255
11 10679 10202 cmb 221702 SPUN S.pneaumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8-	146	91		10794	emb[282002 SP28	and pcpC	85	276	1002
12 9009 8815 91041735 Streptococceus penanoniae ung gene and muck genes encoding uracil-DNA glycosylase and 6- 99 12 9009 8815 95 141735 Streptococceus penanoniae peptide methionine sulfoxide reductase (msrA) and 90 13 9048 8521 95 95	147	=_	10678	10202	emb 221702 SPUN	gene and mutX genes encoding uracil-DNA glycosylase and ide triphosphatase	86	477	477
1 154 1154 1402 emb 256850 SPAT Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and 90 1 1 147 emb 226851 SPAT Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase 98 1 1 140 emb 226851 SPAT Streptococcus pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase C 100 1 1 140 emb 226850 SPAT Streptococcus pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase C 99 1 1 1984 emb 226850 SPAT Streptococcus pneumoniae (R22) genes for ATPase a subunit, ATPase b subunit and ATPase C 99 1 1 1984 emb 226850 SPAT Streptococcus pneumoniae (R6) claR/claH genes conting DNA gyrase B subunit and ATPase C 99 1 1 1984 emb 226850 SPAT Streptococcus pneumoniae (R6) claR/claH genes conting DNA gyrase B subunit and ATPase C 99 1 1 1984 emb 226850 SPAT Streptococcus pneumoniae (R6) claR/claH genes encoding DNA gyrase B subunit B 99 1 1 1984 emb 226850 SPAT Streptococcus pneumoniae (R6) claR/claH gene encoding DNA gyrase B subunit B 99 1 1 2 2155 gb L20559 Streptococcus pneumoniae (R52) gene encoding DNA gyrase B subunit B 99 1 2 2155 gb L20559 Streptococcus pneumoniae (R52) gene encoding DNA gyrase B subunit B 99 1 2 2155 gb L20559 Streptococcus pneumoniae R55 gene partial cds 1 2 2155 gb L20559 Streptococcus pneumoniae R55 gene partial cds 1 2 2155 gb L20559 Streptococcus pneumoniae R55 gene R55	147	7 -	11338	10676	emb 221702 SPUN	gene and mutX genes encoding uracil-DNA glycosylase and ide triphosphatase	66	663	663
13 9048 8521 gb H36180 Streptococcus praemoniae transposase, (comA and comB) and SAICAR synthetage 98 10 10 147 emb 226831 SPAT S. pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c 100 10 1406 emb 226851 SPAT S. pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c 99 10 1006 1406 emb 226851 SPAT S. pneumoniae (R22) genes for ATPase a subunit, ATPase b subunit and ATPase c 99 10 10 10 10 10 10 10	148	112	6006	8815	gb U41735	pneumonise peptide methionine sulfoxide reductase (msrA) lnase homolog (thrB) genes, complete cds	06	180	195
13 9048 8521 gb H36180 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase 98 1	156	-	1154	1402	emb x63602 SPBO	S. pneumoniae mmsA-Box	94	185	249
1 1 147 emb 226851 SPAT S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase C 100 2 179 898 emb 226851 SPAT S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase C 99 3 906 1406 emb 226850 SPAT S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase 95 4 1373 1942 cmb 226850 SPAT S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase 95 5 1944 emb 226850 SPAT S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase 99 6 1406 emb 226850 SPAT S.pneumoniae (R6) ciaR/ciaH genes 97 8 7443 9186 emb 281917 SPGY S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit 98 15 8 7443 9186 emb 226559 Streptococcus pneumoniae Exp5 gene, partial cds 98 15 9 2155 9b u20559 Streptococcus pneumoniae Exp5 gene, partial cds 98 15 9 2155 9b u20559 Streptococcus pneumoniae 98 15 9 9 9 9 98 98 98 98	159	=	9048	8521	_	(comA and comB)	86	526	528
a half and ATPase a subunit and ATPase complete (R6) genes for ATPase a subunit, ATPase b subunit and ATPase complete (R22) genes for ATPase a subunit, ATPase b subunit and ATPase complete (R22) genes for ATPase a subunit, ATPase b subunit and ATPase complete (R22) genes for ATPase a subunit, ATPase b subunit and ATPase complete (R22) genes for ATPase a subunit, ATPase b subunit and ATPase complete (R22) genes for ATPase a subunit, ATPase b subunit and ATPase complete (R22) genes for ATPase a subunit, ATPase b subunit complete (R6) claR/claH genes conding DNA gyrase B subunit complete (R6) claR/claH genes conding DNA gyras	160			147	emb 226851 SPAT	(R6) genes for ATPase a subunit, ATPase b subunit and ATPase	100	142	147
3 906 1406 amb 226850 SPAT S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase 95 4 1373 1942 cmb 226850 SPAT S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase 87 5 5 5 5 5 5 5 5 5	160	~	671	868	emb 226851 SPAT	(R6) genes for ATPase a subunit, ATPase b subunit and ATPase	66	720	720
4 1373 1942 cmb 226650 SPAT S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase 87 c subunit c sub	160		906	1406	emb 226850 SPAT	pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and	95	501	501
1 1 984 emb x77249 SPR6 S.pneumoniae (R6) ciaR/ciaH genes 7 6910 7497 emb x83917 SPGY S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit 99 1 8 7443 9386 emb x83917 SPGY S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit 98 1 2 2155 gb L20559 Streptococcus pneumoniae Exp5 gene, partial cds 99 1 2 2155 gb L20559 Streptococcus pneumoniae Exp5 gene, partial cds	160		1373	1942	cmb 226850 SPAT	(M222) genes for ATPase a subunit, ATPase b	87	306	570
7 6910 7497 emb X83917 SPGY S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit 99 1 8 7443 9386 emb X83917 SPGY S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit 98 1 1 2 2155 96 L20559 Streptococcus pneumoniae Exp5 gene, partial cds	191	-	-	984	emb X77249 SPR6	(R6)	1 66	984	984
8 7443 9386 emb X83917 SPGY S.pneumoniae oxflgyrB and gyrB gene encoding DNA gyrase B subunit 98 1 2 2155 gb L20559 Streptococcus pneumoniae Exp5 gene, partial cds	161	_	6910	7497	emb x83917 SPGY	orfleyrB and gyrB gene encoding DNA gyrase B	1 66	437	588
1 2 2155 gb L20559 Streptococcus pneumoniae Exp5 gene, partial cds	161	8	7443	9386	emb x83917 SPGY	orflgyrB and gyrB gene encoding DNA gyrase B	- 86	1912	1944
	163	7	7	2155	de t20559	pneumoniae Exp5 gene, partial	- 86	327	2154

S. pneumoniae - Coding regions containing known sequences

TABLE 1

Contig	ORF ID	Start (nt)	Stop (nt)	metch	match gene name	percent	HSP ot length	ORF nt length
165		32	1618	gb J01796	S.pneumoniae malk and malk genes encoding membrane protein and amylomaltase, complete cds, and malk gene encoding phosphorylase	66	1587	1587
165	7	1608	3902	96 101 46	S.pneumoniae malk and malk genes encoding membrane protain and amylomaltase, complete cds, and malk gene encoding phosphorylase	700	280	2295
166	-	378	-	emb Y11463 SPDN	Streptococcus pneumoniae dnaC, rpoD, cpoA genes and ORF3 and ORF5	1000	375	375
166	2	1507	320	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	66	1188	1188
1 166	<u>~</u>	3240	1432	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	66	563	1809
167	-	1077	328	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	96	155	1 250
167	2	1644	666	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	1 88 1	405	846
167	m	2714	1842	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	1 6	604	678
167	-	3399	2641	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	66	703	1 654
168	-	-	2259	gb £20558	Streptococcus pneumoniae Exp4 gene, partial cds	66	282	2259
170	2	7338	7685	emb 277726 SPIS	pneumoniae DNA for i	1 95	315	348
272	9	2462	4981	95 047625	Streptococcus pneumoniae formate acetyltransferase (exp72) gene, partial cds	97	365	2520
175	-	373	50	gb M36180 	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	88	353	354
175	7	1843	3621	emb 247210 SPDE	S.pneumoniae dexB, cap3A, cap3B and cap3C genes and orfs	95	89	1779
176	2	3984	2980	emb 267739 SPPA	S.pneumonise parC, parE and transposase genes and unknown orf	100	573	1005
178	-	~	425	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	95	423	423
179		426	20	emb 283335 SP28	S.pneumoniae dexB, capl[A,B,C,D,E,F.G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
180	_	3084	1855	emb x95718 SPGY	S.pneumoniae gyrA gene	1 66	381	1230
186	-	714	4	emb 279691 SOOR	S.pneumoniae yorf(A, B, C, D, E), ftsL, pbpX and regR genes	- 86	59	1117
186	~	2254	809	emb 279691 SOOR	S.pneumoniae yorf(A,B,C,D,E), ftsL, pbpx and regR genes	1 86 1	315	1647
981	-	707	880	emb[279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	1 86 1	174	174
189	-	2	259	95 072720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	258	258
189	~	009	385	95/2720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	86	204	216
					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	• •	•	•

S. pneumoniae - Coding regions containing known sequences

Contig	ID I	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
189		1018	851	9610727201	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	168	1 tength
189	-	1012	2154	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	1062	1143
191	6	7829	7524	emb x63602 SPBO	S.pneumoniae mmsA-Box		7.5	
194	-	-	729	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	6	728	729
199	7	1117	881	emb 283335 SP28	S.pneumoniae dexB, cap1{A,B,C,D,E,F,G,H,I,J,K} genes, MTDP-rhamnose blosynthesis genes and aliA gene	96	211	237
199	4	1499	1762	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	89	248	264
661	5	1781	2284	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,1,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	96	504	504
203	-	1977	786	ap 120563	Streptococcus pneumoniae Exp9 gene, partial cds			
204	-	1145	-	ab L36131	Streptococcus pneumoniae expl0 gene, complete cds, recA gene. 5, and			1641
208	7	65	2296	96 089711	protein A PspA (ps	06	471	2238
12		2455	2123	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,B,F,G,H,I,J,K) genes, dTDP-thamnose biosynthesis genes and aliA gene	96	332	333
216		368	12	emb 283335 SPZ8	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and alia gene	66	338	357
216	~	2650	2327	gb M28678	S. pneumoniae promoter sequence DNA			
22		417	4	emb 283335 SP28	S.pneumoniae dexB, capl(A,B,C,D,E,P,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	94	414	926
722	-	5266	4238	emb AJ000336 SP	Streptococcus pneumoniae 1dh gene	- 00	- 0000	
239	-	-	804	[gb M31296	S.pneumoniae recP gene, complete cds		*******	6707
247	e .	1625	1807	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	96	178	183
249		921	1364	emb 283335 SP28	S.pneumoniae dexB, capilA,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and allA gene	94	443	999
253		362	e .	gb[H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	360	360
253	<u></u>	1238	2050	emb 283335 SP28	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	95	420	813
					• • • • • • • • • • • • • • • • • • •		-	

sednences
known
containing
regions
- Coding
pneumoniae -
o,

Contig	ORF ID	Start (nt)	Stop (nt)	match	match gene nome	percent	HSP nt	ORF nt
253	9	2069	2572	emb 283335 SP28	S.pneumoniae dexB. cap1{A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose blosynthesis genes and aliA gene	ident	length 504	length 504
1 255	-	_	800	emb 282002 SP28	S.pneumoniae pcp8 and pcpC genes			
255	7	198	1841	emb 282002 SP28	S.pneumoniae pcp8 and pcpC genes	16	531	1 867
255	e -	2493	1969	emb 267739 SPPA	parE and transposage manage and	97	672	1044
1 257	7	985	077	emb X17337 SPAM	Streptococus pheumoniae and losses	92	435	525
1 257	2	1245	- 206	gb M36180	confering aminopterin	96	117	216
		_	_		Come and comes, complete cds (come and come) and SAICAR synthetese	92	339	339
267	7	495	1208	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	98	84	714
367		1291	7227	95[016156]	Streptococcus pneumoniae dihydroptaroate synthase (sulA), dihydrofolate synthase (sulB), guenosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	- 6	755	987
\$63	-	2261	3601	95 016156	Streptcoccus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), quanosine triphosphate cyclohydrolase (sulB) genes, complete cds	86	1341	1341
267	<u></u>	3561	4136	95 016156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthatase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	66	576	576
267	•	4164	4949	gb U16156	phosphate	66	748	786
267		5544	5140	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), quanosine triphosphate cyclohydrolase (sulB), guanosine triphosphate cyclohydrolase (sulD) genes, complete cde	100	186	405
368	7	1793	1990	emb x63602 SPB0		- ;	-+	-
172	-	562	104	9b H29686	mismatch repair (bexm) send	- 68	194	198
291		25	524	95 004047	pneumoniae SSZ dextra	93 -	160	450
291	~-	1001	525	cmb 283335 SP28		87	205	477
291		807	529	emb z83335 sPz8	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene		170	249
291	- -	1374	1099	9b M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (burC) genes, complete of	85	264	- 326
	+	-	•			_		

sednences
knom
containing
regions
Coding
pneumoníae -
Ś
ILE 1
=

7 -	- ;			-	• -	+	-	+ -	- • -		٠		_	·			_				
ORF nt	length	1671	1284	354	153	-	462	540	163	:	216	1	519	363		672		441	_	237	
HSP nt	length	553	430	153	299		233	89	91		102	-	435	353	-	63	-	441	-	- 54	-
percent	ident	96	66	68	16		100	94	87		1 26		95	94		- 56	-	96	-		-
match gene name	S. pneumoniae gyr8 gene and unknown orf	doxB canla	S promotion to the contract of	77000 000000000000000000000000000000000	S.pneumoniae dexB, cap1 (A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhannose biosynthesis genes and alia gene	+ 2		S. pheumoniae dexB, capilA, B, C, D, E, F, G, H, I, J, Kl genes, qTDP-rhamnose biosynthesis genes and aliA gene	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (technology) and homoserine kinase homology (technology) and homology (Acres Complete Cds	S.pneumoniae (M222) genes for ATPase a subunit. ATPase b subunit and ATPase	S. Dneumoniae DarC. DarF and Francesco	J.O LMOUNTED BEING CHARLES COUNTY OF THE COU	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and allA gene	S Speumoniae days	biosynthesis genes and alia gene	The state of the s	sequence 151202 transposase gene, complete cds	S. Dneumoniae daxB. Cocida contab	CDS14H, CDS141, CDS14J, CDS14K, CDS14E, CDS14E, CDS14E, CDS14G,	
match acession	emb z67740 sPGY s.pneumoniae	emb 247210 SPDE	emb 267739 SPPA		824S crrrs cua	emb 282001 SPZB	emh 283336 chro	B748 ccccoo lama	gb[U41735		emb 226850 SPAT	emb 267739 SPPA		emb 283335 SP28	emb 283335 SP28		gb U04047	•	emb x85787 SPCP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Stop (nt)	1 1673	151	510	485	·	462			545	-	2	519		0061	7		728	_	111		
ID ID (nt)		1634	157	1237		-	603		153	300	5	-	1500		673	- :	1168	-	347	-	
<u> </u>	-	-	-	7		-	-	_ :	-	-	-	-	-	-	-	-	~	- ;	_	- ;	
OI ID	1 293	296	1 317	325	_	326	327	_	334	336		360	360		362	_	362	-	384		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

TABLE 2

<u>a</u>	(ut)	(ut)	acession				(ut)
228 2	11760	1942	pir F60663 F606	translation elongation factor Tu - Streptococcus oralis	100	100	183
319 1	2	1 205	91 984927	neomycin phosphotransferase (Cloning vector pBSL99)	100	100	204
260 1	7	1138	pir F60663 F606	translation elongation factor Tu - Streptococcus oralis	66	86	1137
25 2	-	1394	91 1574495	hypothetical (Haemophilus influentae)	86	96	606
94	685	1002	91 310627	phosphoenolpyruvate:sugar phosphotransferase system HPr (Streptococcus mutans)	86	93	318
312 3	190	7	91 347999	ATP-dependent protessa proteclytic subunit (Streptococous salivarius)	86	96	189
329 1	-	1 807	191 924848	inosine monophosphate dehydrogenase (Streptococcus pyogenes)	86	96	807
336 2	1,290	688	191 987050	lac2 gene product (unidentified cloning vector)	86	96	300
181 9	1 5948	1 7366	gi 153755	phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]	6	1 16	1419
312 2	1 1044	1 361	91 347998	uracil phosphoribosyltransferase [Streptococcus salivarius]	97	88	684
32 8	_	1 7486	Sp P37214 ERA_S	GTP-BINDING PROTEIN ERA HOMOLOG.	96	91	913
		2741	91 153615	phosphoenolpyruvate:sugar phosphotransferase system enzyme I (Streptococcus salivarius)	96	92	1791
127 1	-	168	91 581 299	initiation factor IF-1 (Lactococcus lactis)	96	68	168
128 14	110438	111154	191/1276873	DeoD (Streptococcus thermophilus)	96	93	717
181 4	1 1362	1598	91 46606	lacD polypeptide (AA 1-326) [Staphylococcus aureus]	96	08	237
218 1		834	91 1743856	Intrageneric coaggregation-relevant adhesin (Streptococcus gordonii)	96	93	834
319 2	115	441	91 (208225	heat-shock protein 82/neomcyn phosphotransferase fusion protein (hsp82-neo) (unidentified cloning vector)	96	96	327
54 12	8622	10967	(gn1 PID d100972	Pyruvate formate-lyase (Streptococcus mutans)	56	68	2346
181 2	909 8	1289	91 149396	lacD [Lactococcus lactis]] 56]	68	989
46 3	-	1 3045	91 1850606	YixM (Streptococcus mutans)	76	98	366
89 10	1 7972	1 7337	91 703442	thymidine kinase (Streptococcus gordonii)	96 .	98	636
148 9	6431	1 7354	gi 995767	UDP-glucose pyrophosphorylase (Streptococcus pyogenes)	1 8 1	85	924
160 7	-	5848	91(153573	H+ ATPase [Enterococcus faecalis]	96	87	1419
7	4598	1 3513	[91]153763	plasmin receptor (Streptococcus pyogenes)	93	98	1086
12 8	1 787	1 6204	10111101865	formy -fetrahydrofolate synthetase [Strentococus mutans]	60	Va	7635

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start (nt)	Stop (nt)	match	match gene name	e sie	* ident	(nt)
9	=	4734	5120	91 40150	[L14 protein (AA 1-122) (Bacillus subtilis]	6	87	387
68	-	53	1297	91 47341	antitumor protein (Streptococcus pyogenes)	66	87	1245
88	-	3	299	gn1 P10 d101166	ribosomal protein S7 (Bacillus subtilis)	93	94	297
127		695	1093	91 142462	ribosomal protein S11 [Bacillus subtilis]	1 93	98	399
160	- 2	1924	3462	91 11773264	ATPase, alpha subunit (Streptococcus mutans)	93	85	1539
211	- 5	3757	3047	81 535273	aminopeptidase C (Streptococcus thermophilus)	93	82	711
262	-	16	564	gi 149394	lacB [Lactococcus lactis]	93	90	549
366		197		91 295259	tryptophan synthase beta subunit (Synechocystis sp.	93	91	195
25	-	1392	1976	91 1574496	hypothetical [Haemophilus influentae]	92	90	585
36	-	20781	119927	gi 310632	hydrophobic membrane protein (Streptococcus gordonii)	92	86	855
181	2	1265	1534	91 149396	lacD (Lactococcus lactis)	92	83	270
181		3662	4060	91 149410	enzyme III [Lactococcus lactis]	92	83	399
32	-	5631	1 3937	gn1 PID e294090	[fibronectin-binding protein-like protein A [Streptococcus gordonii]	91	85	1695
46		3054	1462	gi 1850607	signal recognition particle Ffh [Streptococcus mutans]	91	84	1593
65	92	4442	4726	pir S17865 S178	ribosomal protein S17 - Bacillus stearothermophilus	91	90	285
7.6	- 2	260	1900	91 287871	groEL gene product [Lactococcus lactis]	16	85	1641
8	-	7	2056	91 871784	[Clp-like ATP-dependent protease binding subunit [Bos taurus]	91	66	2055
66	8	10750	1 9272	gi 153740	sucrose phosphorylase (Streptococcus mutans)	91	94	1479
66	6	11947	111072	gi 153739	[membrane protein [Streptococcus mutans]	16	7.9	876
127	- 5	2065	2469	pir 507223 R5BS	ribosomal protein L17 - Bacillus stearothermophilus	91	78	405
132	9	9539	9390	gi 143065	hubst (Bacillus stearothermophilus)	16	68	150
137	8	4765	6153	gn1 PtD d100347	Na+ -ATPase beta subunit (Enterococcus hirae)	91	61	1389
151		11119	9734	91 1815634	[glutamine synthetase type 1 [Streptococcus agalactiae]	- 91	82	1386
201	2	1798	278	91 (2208998	dextran glucosidase DexS [Streptococcus suis]	91	79	1521
222	2	673	1839	[gi 153741	ATP-binding protein Streptococcus mutans	1 91	85	1167
293		4113	4400	gi 1196921	unknown protein (Insertion sequence IS861)	91	1.1	288
32		6166	1 6570	loir A36933 A369	diacvicivcerol kinase homolog - Streptococcus mutans	06	77	405

TABLE:

	T	፥ .	÷					
Contig	OR C	Start (nt)	Stop (nt)	match	match gene name	s sim	1 ident	length
3	7	841	527	Bi 1196921	unknown protein Insertion sequence IS861]			(ut)
48	22	120908	19757	gn1 P1D e274705	lactate oxidase (Streptococcus injae)		0/	315
85	<u> </u>	77761	18515	gn1 PID 6221213	Clpk protein [Bacillus subtilis]	06	99	1152
26	7	717	1.6	91 1710133	flagellar filament cap [Borrelia buradorferi	06	75	1263
65	-	-	909	91 1165303		06	99	261
114	-	~	988	91 153562	aspartate beta-semialdehyde dehydrogenase (EC 1.2.1.11) (Streptococcus	06	80	987
120	-	1345	827	91 407880	ONF1 Streptococcus equisimilis			
159	112	1. 7690	8298	91 143012	GMP synthetase (Bacillus subtilis)	06	75	519
166	~	4076	3282	91 1661179	high affinity branched chain amino acid transport protein (Streptococcus mutans)	90	78	609
183	-	28	1395	91 308858	ATP:pyruvate 2-0-phosphotransferase Lactococcus lactis			
191	m	1 2891	1662	91 149521	tryptophan synthase beta subunit (Lactococcus lactis)	26	9/	1368
198	~	1551	436	94 2323342	(AF014460) CcpA (Streptococcus mutans)		8/	1230
305	-	1 37	1 783	91 157353	Asparagine synthetase A (asnA) (Haemophilus influenzae)	0	9/	1116
8		2285	3343	191 149434	putative [Lactococcus lactis]	2	0.00	747
46	8	757	7362	pir A45434 A454	ribosomal protein L19 - Bacillus stearshermonting	60	187	1059
49	6	8363	10342	91 153792		89	1 92	216
51	- 4	18410	119447		APD. D. Frichton C. A. C.	68	83	1980
57	Ξ	9896	10669	C1.0001	No. forming and of the control of	89	81	1038
65	8	2418	2786		Commission over the contract of the contract o	1 68	''	984
65	8	3806	4225		ory (Bactilus subtilis)	68	81	369
65	81	0108	- -	- 4778	MAL PRO	89	82	420
1 5			- j -	191 143417	ribosomal protein SS (Bacillus stearothermophilus)	- 68	1 94	501
		1000	2312	- 1	prs [Listeria monocytogenes]	- 68	70	1023
	-	3360	1465	gn1 P1D e200671	lepA gene product (Bacillus subtilis)	89 1	7 92	1006
66	100	12818	91611	191 153738	membrane protein (Streptococcus mutans)	68		
120	2	3552	1300	91 407881	stringent response-like protein (Streptococcus equisimilis)			2555
221	5	4512	2791	gn1 P1D e280490	unknown (Streptococcus pneumoniae)		81	1722

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	OR T	Start (nt)	Stop (nt)	match	match gene name	E is	% ident	length
176	-	699	4	gi 47394	S-oxoproly -peptidase [Streptococcus pyogenes]	68	78	999
177	9	3050	13934	gi 912423	putative [Lactococcus lactis]	68	11.	885
181	8	4033	5751	gi 149411	enzyme III (Lactococcus lactis)	- 89	08	1719
211	-	3149	2793	91 535273	aminopeptidasa C (Streptococcus thermophilus)		63	357
361	-	431	838	191 1196922	unknown protein (Insertion sequence 18861)	68	04	1 804
7	11	11839	10535	sp P30053 SYH_S	HISTIDYL-TRNA SYNTHETASE (EC 6.1.1.21) (HISTIDINETRNA LIGASE) (HISRS).	88	86 1	1305
38	_	1646	2623	91 2058544	putative ABC transporter subunit ComYA (Streptococcus gordonii)	88	1 84	978
54	-		1227	gn1 P1D d101320	Yogu (Bacillus subtilis)	98	99	225
52	~	611	1468	gn1 P1D e1 34943	putative reductase 1 (Saccharomyces cerevisiae)	88	1 25	858
68	=	5497	6909	A29102 RSB	ribosomal protein L5 - Bacillus stearothermophilus	88	1 25	573
99	20	9030	9500	91 2078381	ribosomal protein L15 [Staphylococcus aureus]	88	63	471
87		3636	1108	gn1 PID d100781	lysyl-aminopeptidase (Lactococcus lactis)	88	- 08	2529
106	77	12965	12054	g1 2407215	(AF017421) putative heat shock protein HtpX (Streptococcus gordonii)	888	127	912
107	~	219	962	gn1 P1D e339862	putative acylneuraminate lyase (Clostridium tertium)	88	1 57	744
111	8	14073	10420	[gi 402363	RNA polymerase beta-subunit (Bacillus subtilis)	88	74	3654
126	6	13096	12062	gn1 PID e311468	unknown (Bacillus subtilis)	88	1 44	1035
071	12	19143	18874	91 11573659	H. influenzae predicted coding region HI0659 (Haemophllus influenzae)	88	- 19	270
144	_	394	555	gn1 PID e274705	lactate oxidase [Streptococcus inlae]	88	75	162
148	-	2723	3493	91 1591672	phosphate transport system ATP-binding protein (Methanococcus jannaschii)	88	68	1111
160	8	5853	6278	91 1773267	ATPase, epsilon subunit (Streptococcus mutans)	88	69	426
711	-	1770	2885	91 149426	putative [Lactococcus lactis]	88	72	1116
1 211	9	4140	3613	91 535273	aminopeptidase C (Streptococcus thermophilus)	88	74	528
231	-	580	957	91 40186	homologous to E.coli ribosomal protein L27 (Bacillus subtilis)	88	78	378
260	- 5	2387	2998	91 1196922	unknown protein [Insertion sequence IS861]	88	69	612
291	9	2017	3375	1901 PID d100571	adenylosuccinate synthetase [Bacillus subtilis]	88	1 57	1359
319	7	658	716	191 603578	serine/threonine kinase [Phytophthora capsici]	88	98	342
40	\$	4353	4514	91 153672	lactose repressor (Streptococcus mutans)	87	95	162
							•	4 4 4 4 4 4 4 4

T.E. 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	1111							
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	t sim	• ident	length (nt)
69	2	10660	110929	91/1196921	unknown protein (Insertion sequence 15861)	87	72	270
65	-	3140	3808	911165309	S3 [Bacillus subtilis]	1 87	23	699
65	115	6623	1 7039	91 1044978	ribosomal protein S8 (Bacillus subtilis)	87	73	417
75	8	5411	6625	91 1877422	galactokinase (Streptococcus mutans)	87	78	1215
80	~	103	2805	gn1 PID d101166	elongation factor G [Bacillus subtilis]	87	1 94	2103
83	-	541	248	91 1196921	unknown protein (Insertion sequence 18861)	87	69	294
140	133	25033	23897	gn1 PID 0254999	phenylalany-tRNA synthetase beta subunit (Bacillus subtilis)	87	74	1137
214	14	10441	8516	91 2281305	glucose inhibited division protein homolog GidA (Lactococcus lactis	87	75	1926
220	2	2742	874	gn1 P10 e324358	product highly similar to alongation factor EF-G (Bacillus subtilis)	87	1 67	1869
360		2096	2389	91 1196921	unknown protein (Insertion sequence 18861)	87	72	294
323	_	22	650	91 897795	30S ribosomal protein (Pediococcus acidilactici)	87	1. 67	624
357	_	154	570	gi 1044978	ribosomal protein S8 (Bacillus subtilis)	1 68	1 67	417
49	=	10927	111445	gi 1196922	unknown protein (Insertion sequence 15861)	98	63	\$19
59	112	7461	9224	191 951051	relaxase [Streptococcus pneumoniae]	98	1 89	1764
65	-	1553	2401	pir A02759 R5BS	ribosomal protein L2 - Bacillus stearothermophilus	98	""	849
65	123	10957	11610	91 44074	adenylate kinsse (Lactococcus lactis)	98	76	654
85	-	4374	4856	91 153745	mannitol-specific enzyme III (Streptococcus mutans)	98	72	483
102	-	4270	4986	gn1 PID e264705	OMP decarboxylase [Lactococcus lactis]	98	76	717
106	9	7824	6880	gn1 PID e1 37598	aspartate transcarbamylase (Lactobacillus leichmannil)	98	89	945
107	7	1	273	gn1 P1D e339862	putative acylneuraminate lyase (Clostridium tertium)	86	71.7	273
111	-	10432	6710	gn1 PtD e228283	DNA-dependent RNA polymerase (Streptococcus pyogenes)	96	- 08	3723
181	6	5704	4892	gi 1661193	polipoprotein diacylglycerol transferase (Streptococcus mutans)	86	71	813
134	-	6430	7980	gi 2388637	glycerol kinase (Enterococcus faccalis)	86	73	1981
146	=	1473	6583	[91[1591731	melvalonate kinase (Methanococcus jannaschii)	98	72	168
153	7	595	2010	91 2160707	dipeptidase [Lactococcus lactis]	98	1 87	1416
154		7	1435	91 1857246	6-phosphogluconate dehydrogenase (Lactococcus lactis)	1 98	74	1434
							1+1111111	

TABLE 2

101	ORF Start ID (nt)	rt Stop	match	match gene name	Eis	* ident	length
161	5 5025	5 6284	91 47529	Unknown (Streptococcus salivarius)	. 98		(30)
184		1483	91 642667	MADP-dependent glyceraldehyde-3-phosphate dehydrogenase (Streptococcus mutans)	98	23	1482
210	8 3659	6571	91(153661	translational initiation factor IF2 (Enterococus faction)			
250	1 2	1 187	[91]157353		98	192	2913
-	4 2644	1 3909	91 2149909	ion protein (Enteroco	98	1 89	186
38	4 2475	5 3587	91 2058545		98	73	1266
38	5 3577	3915	[gi 2058546		\$	22	1113
57	5 2797	1 3789	gn1 P10 d101316	YqfJ (Becillus subtilis)	62	80	339
-	5 4915	6054	91 153746	mannitol-pliosphate dehydronenase (Street coocean	69	72	993
83 115	5 14690	115793	Bi 143371	_	88 -	1 89	1140
87 2	2 1417	2388	1-	Corp (creen) Corp	85 1	- 69	1104
108	3 2666	3154	91133566	DORY (198 property) (Fig. 198	85 -	- 69	972
127 2	2 312	1 692	1044000	the content (called occording)	85	67	489
-	-	-	18 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		88	72	381
-	- ‡ ·	-†	191 1685110	tetrahydrofolate dehydrogenase/cyclohydrolase (Streptococcus thermophilus)	85	12	876
737	2962	1 4767	[gn] [PID]d100347	Na+ -ATPase alpha subunit (Enterococcus hirae)	65	74 1	1806
170 2	2622	709	gn1 P1D d102006	(ABGO1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND NEISSERIA MENINGITIDIS. (Bacillus subcilis)	85	70	1914
187 5	1 3760	4386	91 727436	[putative 20-kDa protein [Lactococcus lactis]			
233 2	1 728	1873	91 1163116	ORF-5 (Streptococcus pneumoniae)	u		770
234 3	1 962	1255	91 2293155	(AF008220) YtiA (Bacillus subtilis)			0077
240 1	1 309	1661	gi 143597	CTP synthetase (Bacillus subtilis)	- 50		867
6 - 1	199	1521	[g1 508979	GrP-binding protein (Bacillus subtilis)	- 98	2	1023
10 - 4	4375	3443	gn1 PID e339862	putative acylneuraminate lyase (Clostridium tertium)			1323
14 1	63	1 2093	gi 520753	DNA topoisomerase I (Bacillus subtilis)			552
19 4	1793	2593	91 2352484	[AF005098) RNASEH II (Lactococcus lactis]	7 7 8		2031
20 17	117720	119687	gn1 P1D d100584	cell division protein (Bacillus subtilis)			109
22 28	21723	20884	91 299163	lalanine dehydrogenase (Ract 1) chtili			ROKT

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	1 ORF	Start (nt)	Stop (nt)	match	match gene name	# sim	* ident	length
e e	2	1 730	6792		[fructokinase [Streptococcus mutans]	- ;		(nt)
6	- 6	1 5650	5300	91 147194	Inha protein (Recharichia calii	84	75	939
36	122	(2155)	120772	1011310031	Lance Lanc	84	11	351
			2//04		ATP binding protein (Streptococcus gordonii)	84	72	780
89	-	2837	2505	[gi 882609	6-phospho-beta-glucosidase (Escherichia coli)	84	69	333
88	-	4	1516	gi 450849	amylase (Streptococcus bovis)	1 86		1436
1 59	01	6715	1 7116	gi 951053	ORF10, putative (Streptococcus pneumoniae)			9/87
62	7	21	644	[gi [806487	ONF211; putative (Lactococcus lactis)		***	405
65	(1)	9777	8207	91 1044980	ribosomal protein L18 (Bacillus subtilis)	50	90	624
65	12	1 9507	110397	191 44073	Secy protein Lactococcus actis		5	429
106	-	5474	1 2262			69	99	891
159	-	1 147	4	193 1806487		84	2	3213
163	-	1 4690	2910	1010000100		84	63	144
				19112493104	(AF008220) SAM synthase [Bacillus subtilis]	84	69	1221
761	-	9	1308	gi 495046	tripeptidase (Lactococcus lactis)	84	1 67	1263
368	-	671	9	91 1787753	(AEGO0245) f346; 79 pct identical to 136 amino acids of ADH1_ZYMHO SW: P20368 but has 10 additional N-ter residues (Escherichia coli)	84	1,	999
	-	1572	3575	gi 143766	(thrSv) (EC 6.1.1.3) (Bacillus subtilis)			
0	9	3893	3417		single strand DNA binding protein (Bacillus subrilis)	3 6		007
17	51	7426	8457	91 520738	comA protein (Streptococcus pneumoniae)	6	80	477
20	=======================================	13860	14144	Bul PID d100583	unknown (Bacillus subtilis)	2	99	1032
æ	4	3358	2606	gi 1788294	(AE000290) o238; This 238 aa orf is 40 pct identical (5 gaps) to 231 residues of an approx. 248 aa protein YEBC_ECOLI SW: P24237 (Escherichia coli)	8 2 2	74	285
28	9	3304	3005	91 1573659	H. influenzae predicted coding region H10659 (Haemophilus influenzae)			
35		5108	3867	91/311707	hypothetical nucleotide binding protein (Acholeplasma laidlawii)		; ; ;	000
55	119	17932	17528	91 537085	ORF_f141 (Escherichia coli)	3 6	6	787
55	20	18539	61671	91 496558	orfX (Bacillus subtilis)			504
65	9	2795	3142	91 1165308	L22 (Bacillus subtilis)			621
68	9	6877	6683	gi 1213494	immunoglobulin Al protesse (Streptococcus pneumonjae)			348
		•	• • • • • • • • • • • • • • • • • • •	+			•	195

pneumoniae - Putative coding regions of noval proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	V Sim	8 ident	length
87	115	15112	14771	gn1 PID e323522				(nt)
96	71	8963	1696	91 47394	5-oxoproly1-peptidase (Streptococus noncono)	83	54	342
9.6	-	-	263	91 1183885		83	73	699
120	4	7170	5233	di 310630	e to a sold line and the sold	83	55	261
127	7	299A	CATA			83	72	1938
				19000011161	M. Jannaschii predicted coding region MJ1665 (Methanococcus jannaschii)	83	72	1350
, , ,	-	7	440	gi 472918	[v-type Na-ATPase (Enterococcus hirae)	83	9	067
160	9	3466	1 4356	191/1173265	ATPase, gamma subunit (Streptococcus mutans)			438
214	-	2278	2964	91 663279	transposase (Streptococcus pneumoniae)	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	169
226	-	2367	2020	91 142154	thioredoxin (Synechococcus PCC6101)	83	22	687
303	-	-	1049	gi 40046		83	1 88	348
303	- - -	1155	1931	91 289282	olutamy - FRNA synthetes (fact)	83	67	1047
1	12	15370	14318	191 633147	Subcatas	83	67	111
7	_	299	96		Tribosons) protein 100 (protein the protein the protei	82	64	1053
6	-	1479	1090	1911385178	Linkson, the contract of the c	82	69	204
6	-	4213	3899	lant landahan		82	46	390
22	-	4688	3043	0/0010101010101010101010101010101010101	11 process	83	09	315
	-			TACOOTO ATTA LTUBI	unknown [Bacillus subtilis]	82	68	787
-	- i	- 1	1483/	g1 520754 	putative (Bacillus subtilis)	82 1	1 69	1416
22	2 +	14897	135658	gn1 PID d101929	uridine monophosphate kinase (Symechocystis sp.)			
2	16 11	11471	10641	gn1 PID d101190	ORP4 (Streptococcus mutans)	7	70	762
35	6	7400	6255	91 1881543	UDP-N-acetylglucosamine-2-epimerase Streptococcus pneumoniae		89	831
9		8003	7533	gi 1173519		70	80	1146
48	32	23159	23437	91 1930092	Other deduced	82		471
		13833 [1	14765	91 142521	deoxyribodinyr(miding shots)	82	61	972
- 09	-	4737	1849	to contract to the contract to	Contributed processing (Bacillus subtilis)	82	61	933
62		- † -	- -	Autleratorical tube		82	1 99	2889
1-	;	- -	:	91 224b 49	(AF009622) thioredoxin reductase [Listeria monocytogenes]	82	63	675
-		-	- 1	_ ; .	85-1,4-galactosyltransferase (Streptococcus pneumoniae)	82	- 09	933
	- †	-	•	985001D aja ru6	unknown (Bacillus subtilis)	82	65	1386

TABLE 2

1 ident 1, 1 2 # sim (AE000557) H. Pylori predicted coding region HP0411 [Hellcobacter pylori] |EcoA type I restriction-modification enzyme S subunit (Escherichia coli) pir|S06097|S060 |type I site-specific deoxyribonuclesse (EC 3.1.21.3) CfrA chain S 5-enolpyruvylshikimate-3-phosphate synthase (Lactococcus lactis) |gn1|PID|d102090 |(AB003927) phospho-beta-galactosidase 1 [Lactobacillus gasseri] (AE000584) conserved hypothetical protein [Helicobacter pylori] |gnl|PID|d100583 |transcription-repair coupling factor (Bacillus subtilis) |tryptophanyl-tRNA synthetase (Clostridium longisporum| putative DNA binding protein (Streptococcus gordonli) group B oligopeptidase PepB (Streptococcus agalactiae) |gnl|PID|e305362 |unnamed protein product [Streptococcus thermophilus] serine hydroxymethyltransferase (Bacillus subtilis) |pir|S08564|R3BS |ribosomal protein S9 - Bacillus stearothermophilus |gnl|PlD|dl00453 |Mannosephosphate Isomerase (Streptococcus mutans) transport protein (Agrobacterium tumefaciens) homologous to E.coli 50K (Bacillus subtilis) |gnl|P10|d100579 |seryl-tRNA synthetase (Bacillus subtilis) |gnl|PID|d100576 |ribosomal protein S18 (Bacillus subtilis) |gnl|PID|d101199 |alkaline amylopullulanase (Bacillus sp.) uracil permease (Bacillus caldolyticus) orf1091 (Streptococcus thermophilus) |pir|S09411|S094 |spoillE protein - Bacillus subtilis |gnl|PID|d101999 | (AB001341) NcrB [Escherichia coli] SecY protein [Lactococcus lactis] |gn1|PID|e199384 |pyrR (Lactobacillus plantarum) enolase (Bacillus subtilis) Citrobacter freundii match gene name acession 91 2313836 91 2058543 191 1685111 91 1100074 91 2313526 gi | 1469939 match 91 683583 gi | 146402 91 460259 91 431231 91 40025 91 154752 91 | 556886 91 44073 ~ ORF 1D D ~ σ ~ = ~ ~ ^ 'n 9 9 ₽ š

TABLE 2

Contia	ORF	Start	20.00					
_ 10 _	20	(at)	(at)	acession	match gene name	e is	* ident	length
151	-	830	3211	gi 304896	EcoE type I restriction-modification enzyme R subunit (Escherichia coli)			(110)
159	=	6722	7837	91 2239288			60	2362
170		1 739	458	[gn1 PID d102006	(ABO01488) FUNCTION UNKNOWN, [Bacillus subrille]	18	69	1116
191	~	1759	893	gi 149522	ounit (Lact	81	55	282
314		2290	1994	91 157587	inscriptase endoniclesco	81	65	1 867
217	-	4415	4008	91 466473	Sterase engine III (e	81	5	297
262	~	695	898	191 153675	tagatose 6-P kinasa Streptococcus mutana	8	65	408
299	-	.663	-	gal PID 6301154	Styski methylase (Salmonella enterire)	81	89	300
366	~	376	- B	gi 149521	han synthase beta subm	81	09	999
12	91	8766	9242	gi 1216490	em flammant inschoologus tactisj	81	65	294
17	==	6050	5748		Innamed protein and the formal streptococcus mutans]	80	1 64	477
17	1 91	8455	9906	91 703126	Product (Streptococcu	80	67	303
18		2440	1613	91 1591672	transport system bytch to 1	80	59	612
27		4248	1579	di 452309		80	58	828
28	-	3671	3288	91 1573660	Post Post of	80	69	2670
32	~	902	1933	lani Ipinias 64409		80	63	384
39	-	-	1266	- 7 -	triburottuare ueiyurogenase B (Lactococcus lactis)	80	99	1032
52	5	F 1889	1501	- 7 -	nom (Lactococcus lactis)	80	63	1266
54	 -		255	1611163884	00 /	80	57	111
-	-			078877 161	(AP004225) Cux/CDP(1B1); Cux/CDP homeoprotein [Mus musculus]	80	09	195
	: -		9897	1911951052	ORF9, putative (Streptococcus pneumoniae)	- 08	89	378
- [-	1230	1550	pir A02815 R585	ribosomal protein L23 - Bacillus stearothermophilus	80	1 69	162
-;		5174	5503	pir A02819 R5BS	ribosomal protein U24 - Bacillus stearothermophilus	08	- 02	
99	-	9884 1	10687	91 2313836	(AE000584) conserved hypothetical protein (Helicobacter mylori)		2 3	950
82	~	648	2438	91 (622991			99	804
85	-	1 056	630	gi 528995	polyketide synthase (Bacillus subtilis)	08		1791
-;	-	6870	5779	91 853776	peptide chain release factor 1 (Bacillus subtilis)	08	46 –	321
93	_	8718	!			08	63	1092
*			•			80	- 09	1281

ABLE 2

Contia	1 log	Start	Ston	do ten	match good name			
<u>a</u>	- :		(uc)	acession	מסונו תפונו	EI G	1 1dent	length (nt)
106	5	6854	1 5751	gn1 P1D e199386	glutaminase of carbamoyl-phosphate synthase [Lectobacillus plantarum]	80	65	1104
601	~	2160	1450	191140056	phoP gene product [Bacillus subtilis]	80	89	711
7.	6	4246	3953	gn1 P1D d102254	[30S ribosomal protein S16 [Bacillus subtilis]	80	1 69	294
128	8	5148	6428	91 2281308	phosphopentomutase [Lactococcus lactis cremoris]	80	99	1281
137	61	12665	11376	fgi 159109	NADP-dependent glutemate dehydrogenase (Giardia intestinalis)	80	89	1290
140	- 2	19699	19457	91 517210	putative transposase [Streptococcus pyogenes]	80	70.	243
158	~	2474	984	gi 1877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	80	9	1491
171	2	1 7474	1 7728	191/397800	Cyclophilin C-associated protein (Nus musculus)	80	1 09	255
181	-	2	619	191 149395	lacC [Lactococcus lactis]	08	99	619
313	-	27	539	gi 143467	ribosomal protein S4 (Bacillus subtilis)	80	1 04	513
329	7	1652	858	gi 533080	Racf protein (Streptococcus pyogenes)	80	63	1 267
176	-	2	958	91 442360	ClpC adenosine triphosphatase (Bacillus subtilis)	80	58	1 726
8	-	4312	5580	gi 149435	putative (Lactococcus lactis)	79	99.	1269
23	-	11175	138	91 1542975	AbcB (Thermoanaerobacterium thermosulfurigenes)	79	61	1041
33	=	9244	8201	gn1 PID e253891	UDP-glucose 4-epimerase (Bacillus subtills)	79	62	1044
36	-	1242	2633	gn1 P1D e324218	[tsA [Enterococcus hirse]	79	58	1392
38	=	1 7155	8378	91 405134	acetate kinase (Bacillus subtilis)	19	58	1224
55	-	9011	8229	91 1146234	dihydrodipicolinate reductase (Bacillus subtilis)	1 62	56	783
65	61	8661	8915	191 2078380	ribosomal protein L30 (Staphylococcus aureus)	79	1 89	255
69	-	1 3678	2128	gn1 PID e311452	unknown (Bacillus subtilis)	1 6′	64	1551
69	-	7881	7279	[gi]677850	hypothetical protein (Staphylococcus aureus)	1 62	59	603
27	2	8491	9783	gn1 PTD d101091	hypothetical protein [Synechocystis sp.]	1 62	62	1293
90	-	1 2906	7300		polymerase III (Bacillus subtilis)	61	9	4395
82	=	13326	15689	gn1 PID e255093	hypothetical protein (Bacillus subtilis)	1 61	65	2364
98	13	112233	111118	91 683582	prephenate dehydrogenase (Lactococcus lactis)	1 61	88	1116
1 92	_	940	1734	lgi 537286	[triosephosphate isomerase [Lactococcus lactis]	1 62	1 59	198
96	9	1 4023	4742	gn1 P1D d100262	LivG protein (Salmonella typhimurium)	1 62	63	720
								*

TABLE:

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	9 ORF	Start (nt)	Stop (nt)	match	match gene name	# sim	8 ident	length
66	112	116315	14150	91 153736	a-galactosidase (Streptococcus mutans)			(ne)
107	_	5684	6406	191 460080		62	64	2166
611	6	6838	8303	91 466882	Innsi: Bild6 C2 100 (March 122)	79	88	123
151	1 2	13424	112213	1011450686	1	62	64	1446
162	7	1158	101		1-Finespingslycerate Kinase (Thermotoga maritima)	67	09	1212
177	-	3686		00/0001761	CapD Staphylococcus aureus	1 61	67	1860
	· ·		7000	1911912423	putative [Lactococcus lactis]	- 62	61	1771
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	=	4198	4563	gi 149429	putative (Lactococcus lactis)	70		
187	_	1,2728	1 2907	gn1 PID d102002	(AB001488) FUNCTION UNKNOWN. (Bacillus subtilis)		70	1995
189	-	3589	4350	gn1 PID e183449	: —	6/	55	180
191	<u>s</u>	4249	1 3449	91 149519		19	61	762
211	_	1805	7575	91 147404	mannose Dermease Submit 1 - Mark 1 - Ma	66	99	801
212		1 3863	3621			1 67	57	933
215	-	1 987	1 715		Paracassis Take Pictern Lactococcus lactis)	62	88	243
323	-	0.5		4 P 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Introduction argumine succinate synthase (Bacillus subtilis)	66	64	273
	- -	000	79/	g1 897795	30S ribosomal protein (Pediococcus acidilactici)	- 62	67	252
280	-	694	2	91 1184680	polymucleotide phosphorylase [Baclllus subtilis]	- 02		
384	~	655	239	[gi 143328	phop protein (put.); putative (Bacillus subtilis			669
9	_	2820	4091	191 853767		6/	- 65	417
	-	05	1786	91 149432	putative [Lactococcus lactis]	78	62 –	1272
6	-	351	124	gi 897793	y98 gens product (Podiococcus acidilartici)	78	63	1737
15	-	7364	8314	gn1 PID d100585	syntheta	78	59	228
30	202	9738	10310	gn1 PID d100583	Stage V sporulation (Bacilling mittain)	1 87	63	951
02	!	17165	17713	gi 49105		78	58	573
22		17388	18416		Voff (Barillus cubtilis)	78	- 65	849
22	127	20971	20612	di 299163		78	09	1029
34	8	7407	7105	91 41015	ASSOCIATE PARTS I I I I I I I I I I I I I I I I I I I	1 84	- 65	360
35	8	6257	5196	di 1657644	Canada Caraca Ca	78	55	303
						78	- 09	1062
					▶ ▶			41111111

S. pneumoniae - Putative coding regions of novel protains bimilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	sim	1 ident	length
40	Ξ_	9287	8001	91/11/3518	GTP cyclohydrase II/ 3,4-dihydroxy-2-butanone-4-phosphate synthase [Actinobacillus pleuropneumoniae]	78	28	1287
48	<u></u>	22422	23183	91 2314330	(AE000623) glutamine ABC transporter, ATP-binding protein (glnQ)	78	58	762
52	~	2101	1430	94 1183887	integral membrane protein (Bacillus subtilis)	78	5.4	672
55	=	13605	12712	gn1 PID d102026	(AB002150) YbbP (Bacillus subtilis)	78	58	894
55		16637	15612	gn1 PID e313027	hypothetical protein (Bacillus subtilis)	78	51	1026
1,1	14	19756	19598	91179764	calcium channel alpha-1D subunit (Homo sapiens)	78	57	051
74	=	15031	14018	gi 1573279	[Holliday junction DNA helicase (ruvB) [Haemophilus influenzae]	78	57	1014
75	6	6623	1972	[91 1877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	78	62	1350
81	112	12125	13906	191 1573607	L-fucose isomerase (fuci) [Haemophilus influenzae]	92	99	1782
82		2423	4417	gi 153744	ORF X; putative (Streptococcus mutans)	78	64	1995
83	118	16926	18500	gi 143373	phosphoribosyl aminoimidazole carboxy formyl formyltransferase/inosine monophosphate cyclohydrolase (PUR-H(J)) (Bacillus subtilis)	78	63	1575
8	02	20212	20775	gi 143364	phosphoribosyl aminoimidazole carboxylase I (PUR-E) (Bacillus subtilis)	78	64	564
92	7	165	878	gn1 P10 d101190	ORF2 (Streptococcus mutans)	78	62	714
86	8	5863	6069	91 2331287	(AF013188) release factor 2 (Bacillus subtilis)	78	63	1047
		1071	2741	gi 580914	dnaZX (Bacillus subtilis)	78	64 1	1671
127	-	1133	2071	gi 142463	RNA polymerase alpha-core-subunit [Bacillus subtilis]	78		916
132	-	2782	497	[91 1561763	pullulanase (Bacteroides thetaiotaomicron)	78	58	2286
135	4	2698	3537	91 1788036	(AE000269) NHJ-dependent NAD synthetase (Escherichia coli)	78		940
140	24	26853	25423	191 1100077	phospho-beta-glucosidase [Clostridium longisporum]	78	64	1431
150 .	2	4690	4514	[91]149464	amino peptidase [Lactococcus lactis]	78	42	122
152	-	-	795	91 639915	NADH dehydrogenase subunit (Thunbergia alata)	78	43	795
162	7	4997	4110	gn1 PID e323528	putative YhaP protein (Bacillus subtilis)	78 1	64	888
181	01	8651	1 7947	gi 149402	lactose repressor (lack; alt.) (Lactococcus lactis)	7.8	48	1 502
200	-	3627	4958	gn1 PID d100172	invertase (Zymomonas mobilis)	1 8/	61	1332
203	-	3230	3015	91 1174237	Cyck (Pseudomonas fluorescens)	78	57	216
								-

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	TORF TO	Start (nt)	Stop (nt)	match acession	match gene name	e sim	1 ident	length (nt)
210	6	6289	2717	gi 580902	ORF6 gene product (Bacillus subtilis)	18	42	384
214	·	3810	7672	gn1 P1D d102049	P. haemolytica o-sialoglycoprotein endopeptidase; P36175 (660) transmembrane [Bacillus subtilis]	78	09	1014
214	=	6322	1 8163	[gi 1377831	unknown [Bacillus subtilis]	9,4	62	1842
217	-	6	1 2717	91 488430	alcohol dehydrogenase 2 (Entamoeba histolytica)	78	64	2709
222	-	2316	3098	91 1573047	spore germination and vegetative growth protein (gerC2) [Haemophilus influenzae]	78	9	783
268	-	742	8	91 517210	putative transposase (Streptococcus pyogenes)	78	65	735
276	-	223	753	gn1 PID d100306	ribosomal protein L1 (Bacillus subtills)	92	9	531
312		1567	1079	191 289261	comE ORF2 (Bacillus subtilis)	87	54	1 689
339	-	1117	794	(gi 1916729	CadD Staphylococcus aureus	1 84	53	678
342	-	762	265	91 1842439	phosphatidylglycerophosphate synthase (Bacillus subtilis)	1 82	1 65	498
383	-	737		91 1184680	polynucleotide phosphorylaso (Bacillus subtilis)	92	64	135
7	115	111923	111018	91 1399855	carboxyltransferase beta subunit [Symechococcus PCC7942]	14	63	906
8	~	1698	2255	gi 149433	putative [Lactococcus lactis]	1 11	59	558
11	2	6948	1 7550	gi 520738	comA protein (Streptococcus pneumoniae)	1 11	1 09	603
30	=	9761	1 8967	gi 1000451	TreP (Bacillus subtilis)	1 4	43	795
36	=	11421	112131	91 1573766	phosphoglyceromutase (gpmA) [Haemophilus influenzae]	1 44	64	1116
55	-	3836	4096	gi 1708640	YeaB (Bacillus subtilis)	1 44	55	261
61	-	1 8377	8054	gi 1890649	multidrug resistance protein LarA (Lactococcus lactis)	1 11	51 [324
65	~	607	1254	gi 40103	ribosomal protein L4 (Bacillus stearothermophilus)		63	648
89	8	7509	7240	91 47551	MRP (Streptococcus suis)	1 11	89	270
69	-	1083	118	gn1 P1D e311493	unknown [Bacillus subtilis]		57	1 996
"	5	4583	4026	gn1 PID e281578	hypothetical 12.2 kd protein (Bacillus subtilis)	-11	1 09	558
83	114	13104	14552	91 1590947	amidophosphoribosyltransferase (Methanococcus jannaschii)	1,4	95	1449
96	-	3006	5444	gn1 P1D e329895	(AJ000496) cyclic nucleotide-gated channel beta subunit (Rattus norvegicus)	1 44	99	2439
96	=	8518	8880	gi 551879	ORF 1 (Lactococcus lactis)	1 "	62	363
66	=	14082	12799	7£7£21 191	sugar-binding protein (Streptococcus mutans)	1 11	19	1284
					• E F I I I I I I I I I I I I I I I I I I	•		*

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins TABLE 2

Contig ID	ORF ID	Start (nt)	Stop (nt)	match	match gene name	mis *	1 ident	length
106	7	1 361	1176	gi 148921	LicD protein (Haemophilus influenzae)	72		(mc)
108	-	3152	4030	[gi[1574730	Lellurite resistance protein (tehB) Haemophilus influenzae	7.7	- 85	
118	-	3520	3131	191 1573900	D-alanine permease (dagA) [Haemophilus influenzae]			
124	-	1796	101	91 1573162	LRNA (guanine-NI)-methyltransferase (trmD) [Haemoph]lus influenzael			066
126	4	6065	4614	[gn1 P1D d101163			000	97/
128	~	630	[1373	gn1 PID d101328	[Yolz [Bacillus subrite]		62	1296
130	-	1	1287	[gn1 P1D e325013	hypothetical protein (Bacillus askille)		88	744
139		4388	3639	91 229 3302		۲,	61	1287
140	三	10931	9582	91 289284	_ : .		85	750
140	18	19451	119263	1911512210	4	77	64	1350
141	7	9.76	1683			77	99	189
	-	2776		Harrieron 1887	UNFS (as 1-573) (Drosophila yakuba)	77	20	708
	, ,		5676	:	secA [Listeria monocytogenes]	רר	59	2559
	7	671	2173	gn1 PID d100585	lysyl-tRNA thynthetase (Bacillus subtilis)	77	61	1503
163		6412	7398	Bi S11015	dihydroorotate dehydrogenase A [Lactococcus lactis]	- "	62	786
164	2	7841	7074	gn1 PID d100964	homologue of iron dicitrate transport ATP-binding protein FecE of E. coli	7.4	52	168
191	8	7257	18791	gi 149516	anthranilate synthase alpha subunit [Lactococcus lactis]	- 12	57	1467
198	8	5377	7,115	91 1573856	hypothetical (Haemophilus influenzae)			
213	-	202	462	91 1743860	Brca2 Mus.musculus			107
250	~	231	509	gn1 PID e334776	Y1bH protein [Bacillus subtilis]	: : :	000	261
289	~	75.71	1276		Ribosomal Protein L10 (Bacillus subtilis)		20	279
292	~	1399	668	gi 143004	transfer RNA-Gln synthetase [Bacillus stearntharmontil]	*	70	462
,	_	2734	1166	gn1 Prp d101824	peptide-chain-release factor 3 (Symanhorusete e. 1	*	88	732
_	23 [1	118474	18235		nonas ohil	1 9/	53	1569
- 6	-	5706	4342		asparaginy - tRNA synthetage (Barilling cuberilling	76	57	240
01	2	4531	4385		hypothetical protein (Clostridium perferingane)	1 94	61	1365
18	7	1615	842	91 1591672	the state of the s	76	53 -	147
•	•	•			Process transport system Air-Dinding protein (Methanococcus januaschii)	1 9/	26	174

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match acession	match gene name	a sim	* ident	length (nt)
22	37	27796	[28173	gn1 P1D e13389	translation initiation factor IF3 (AA 1-172) [Bacillus stearothermophilus]	26	64	378
35	9	3869	2682	91/1773346	Cap5G (Staphylococcus aureus)	94	61	1188
8	28	נוווז	21787	gi 2314328	(AE000623) glutamine ABC transporter, permease protein (glnP) [Helicobacter pylorij	76	52	675
52	112	12881	13786	91 142521	decayribodipyrimidine photolyase (Bacillus subtills)	9,4	58	906
55	01	11521	110571	gn1 PID e283110	[famD [Staphylococcus aureus]	94	61	951
57		7824	6559	91 290561	o188 [Escherichia coll]	9/	42	1266
62	s	2406	2095	gn1 PID e313024	hypothetical protein (Bacillus subtilis)	92	- 65	312
65	6	1 4223	4441	91 40148	[L29 protein (AA 1-66) [Bacillus subtilis]	9,6	58	219
68	~	1328	1 2371	gn1 PID e284233	anabolic ornithine carbamoyltransferase [Lactobacillus plantarum]	94	61	1044
69	8	7297	6009	gn1 PID d101420	Pyrimidine nucleoside phosphorylase (Bacillus stearothermophilus)	9,4	61	1293
7.3	21	7839	1267	gn1 PID e243629	unknown (Mycobacterium tuberculosis)	1 94	53	573
74	5	8433	7039	gn PID d102048	C. thermocellum beta-glucosidase; P26208 (985) [Bacillus subtilis]	76	09	1395
80	5	7643	7936	g1 2314030	(AE000599) conserved hypothetical protein (Helicobacter pylori)	76	61	294
82	135	61091	16996	gi 1573900	D-alanine permease (dagh) (Haemophilus influenzae)	94	26	978
63	61	18616	19884	gi 143374	phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) [Bacillus subtills]	92	09	1269
86	14	13409	112231	91 143806	Arof (Bacillus subtilis)	76	58	1179
87	-	6	1442	91 153804	Bucrose-6-phosphate hydrolase (Streptococcus mutans)	76	39	1440
87	91	15754	15110	[gn1 PID e323500	putative Omk protein (Bacillus subtilis)	76	95	645
93	4	1769	1539	91 1574820	1,4-alpha-glucan branching enzyme (glg8) (Haemophilus influenzae)	76	46	231
94	-	51	365	91 144313	6.0 kd ORP [Plasmid ColE1]	76	13	315
116	7	2151	1678	[91]153841	pneumococcal surface protein A (Streptococcus pneumoniae)	192	59	474
123	9	3442	5895	gi 1314297	ClpC ATPase (Listeria monocytogenes)	76	59	2454
126	~	2156	2832	gn1 PID d101328	Yqiz (Bacillus subtilis)	1 94	61	
128	01	6973	7677	91 944944	purine nucleoside phosphorylase (Bacillus subtilis)	76	- 09	825
161	===	6186	5812	gi 1674310	(AECO0058) Mycoplasma pneumoniae, MGO85 homolog, from M. genitalium [Mycoplasma pneumoniae]	9,6	4.4	375
	• 	• - - - - - -	1				************	

TABLE 2

	Contig	g ORF	Start (nt)	Stop (nt)	match	match gene name	# sia	t ident	length
14 1487 1335 1930 94 1484690 polymet ent. de phosphorytae e [abellius subtilis] 76 78 78 78 78 78 78 78	139	-	3641	3192	91 2293302	(AF008220) YtqA (Bacillus subtilis)	76	53	450
2 328 3305 6114 51015 5102 6114 51015 5102 6114 51015 5102 6114 51015 5102 6114 51015 5102 5114 5115	140	7	114872	112536	91 1184680		76	62	2337
6 1905 6114 pull Publ G100959 propole Recillus subtilis] 76	143	~	2583	1 3905	[91 143795	synthetase (Bacillus	76	61	1323
1 3127 37 91 [40019 OPE '921 [401104 subtilise] 76 1 3128 5228 S158 S228	170	-	5005	6114	gn1 P1D d100959	ycg0 Bacillus subtilis	76	77	1020
1 1312 1324 1312 1314 1315 131	180	7	1927	1 557	g1 40019	(6a 1-821)	76		1261
1 1312 3629 3444 91 2109305 Degluteanic acid adding entyme [Enterconcous facealis] 76 1 131 3629 91 31272 1ysis protein [Bacillus subtilis] 76 1 131 1320 91 31272 1ysis protein [Bacillus subtilis] 76 1 132 1380 91 463739 Cremposase [Streptococcus suis] 76 76 1 132 1340 91 512775 MPP-binding protein [Becherichia colii 76 1 1 1 1 1 1 1 1 1	161	,	5815	5228	91 551880	synthase beta subunit (Lactococcus	76	19	900
1 1914 3629 [4] [431272 194518 procein [Bacillus subtilis] 76 431 307 [4] [1208999 [dextron glucosidase DesS [Streptococcus suis] 76 76 76 76 76 76 76 7	195	~	1 3829	1 2444	gi 2149905	acid adding enryme (Enterococcus	76	9	900
1 121 120 191 120 191 120 191 120 191 120 191 120 191 120 191 120 191 120 191 120 191 120 191 120 191 120 191 120 191 120 191	200	-	1914	3629	91 431272	lysis protein (Bacillus subtilis)	76	85	9121
1 1283 1386 91 (663778 Itramposase (Streptococcus pneumoniae) 76 1 2338 3411 91 (1552775 APP-binding protein (Excherichia coll) 76 1 233 38 91 (537033) OMF_ESS (Excherichia coll) 76 2 842 165 91 (145320) Population cold adding enzyme (Entercoccus facealis) 76 3 784 185 91 (145320) Phosphoribosyl anthranilate isomerase (Lactococcus lactis) 76 4 185 91 (145322) Phosphoribosyl anthranilate isomerase (Lactococcus lactis) 76 19 734 91 (145322) Phosphoribosyl anthranilate isomerase (Lactococcus lactis) 76 10 734 91 (145338) Aspertate anthorized (Lactococcus lactis) 75 10 734 91 (145338) Scerr act bypochetical protein; Wethod: conceptual translation supplied by 75 11 9015 784 91 (145390) Author (Bacillus subtilis) 75 12 202 91 (149493) Author (Bacillus subtilis) 75 1	201	-	431	1 207	191 2208998		92	- 65	366
1 27 274 gill1532775 IATP-binding protein [Escherichia colii] 76 724 gill163115 Ineuraminidase B [Streptococcua pneumoniae] 76 724 gill163115 Ineuraminidase B [Streptococcua pneumoniae] 76 72 72 gill163115 Ineuraminidase B [Streptococcua pneumoniae] 76 72 72 72 72 72 72 72	214	7	1283	2380	91 663278	transposase (Streptococcus pneumoniae)	92		1000
1 27 244 [91] [310313] Oup-fise Estreptococcus preumoniae] 76 76 77 71 71 71 71 71	225	-	2338	3411	91 1552775	ATP-binding protein [Escherichia coli]	36	3	
1 523 186 91 517033 ORF_£136 [Bochertchia coli] 76 76 76 76 77 78 78 78	233	-	7	724	[91]1163115	Streptococcus	92	2	
2 842 165 91 2149905 D-glutamic acid adding enzyme (Enterococcus facealis) 76 76 76 714 346 91 49220 phosphoribosyl anthranilate isomerase (Lactococcus lactis) 75 75 75 75 75 75 75 7	347	-	523	38	94 537033		76	9	704
3 734 348 91 149520 phosphoritosyl anthranilate isomerase [Lactococcus lactis] 75 11894 91 1574293 fimbrial transcription regulation repressor [pil8] [Haemophilus influenzae] 75 11894 91 1574293 fimbrial transcription regulation repressor [pil8] [Haemophilus influenzae] 75 75 11894 91 142538 aspartate aminotransferase [Bacillus sp.] 75 75 11894 91 142538 aspartate aminotransferase [Bacillus sp.] 75 75 75 75 75 75 75 7	356	7	842	165	91 2149905	acid adding enzyme (Enterococcus	76	1 19	97.9
8 12599 11484 91 1574293 fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae] 75 75 12553 11894 911 910 92 92 93 94 92 94 92 94 92 94 93 94 93 94 94 94 94	366	-	1 734	348	191 149520	phosphoribosyl anthranilate isomerase (Lactococcus lactis)	76	69	387
13 12553 11894 gnilpip diococo ydiH (Bacillus subtilis) 75 75 75 75 75 75 75 7	25	8	12599	11484	91 1574293	transcription regulation repressor (pilB) (Haemophilus	75	1 (9	1116
10 7282 6062 gi 142538 aspartate aminotransferase (Bacillus sp. 75 75 75 75 75 75 75	9	=		11894	gn1 P1D d102050		75	1 15	244
12 8080 7940 91 149493 SCRFI methylase [Lactococcus lactis] 75 75 75 75 75 75 75 7	6	01	7282	6062		Aspartate aminotransferase (Bacillus sp.)	75		1331
5 4266 3301 gnl PID d101319 YqgH [Bacillus subtilis] 75 75 7228 gi 1373157 orf-X; hypochetical protein; Method: conceptual translation supplied by 75 7828 gi 153801 anthor [Bacillus subtilis] 75 7828 gi 153801 anzyme scr-II [Streptococcus mutans] 5 2362 2030 gi 2293211 (AF008220) putative thioredoxin [Bacillus subtilis] 75 7484 8359 gnl PID d100560 [formamidopyrimidine-DNA glycosylase [Streptococcus mutans] 75 7684 8484 8484 8485 gnl PID d100560 [formamidopyrimidine-DNA glycosylase [Streptococcus mutans] 75 76 76 76 76 76 76 76	2	122	8080	7940	91 149493	SCRPI methylase [Lactococcus lactis]	75	95	
4 1838 2728 gi 1373157 orf-X; hypothetical protein; Method: conceptual translation supplied by 75 author [Bacillus subtilis] 75 75 75 75 75 75 75 7	81	5	4266	3301	319	YqgH (Bacillus subtilis)	75	52 -	986
11 9015 7828 Gil53801 Ganzyme scr-II (Streptococcus mutans) 75 75 75 75 75 75 75 7	22		1838	2728	91 1373157	hypothetical protein; r (Bacillus subtilis)	75	62	891
5 2362 2030 gi 2293211 (AF008220) putative thioredoxin [Bacillus subtilis] 75 75 764 8359 gnl PID d100560 formamidopyrimidine-DNA glycosylase (Streptococcus mutans) 75 7648 gi 413976 ipa-52r gene product (Bacillus subtilis) 75 76 76 gi 533105 unknown (Bacillus subtilis) 76 77 77 77 77 77 77 7	8	Ξ	9015	7828	Bi 153801	scr-II (Streptococcus	75	64 1	1 8811
9 7484 8359 gnl PID d100560 formamidopyrimidine-DNA glycosylase Streptococcus mutans 75 4 1735 1448 gi 413976 lipa-52r gene product Bacillus subtilis 10 6470 5769 gi 533105 unknown Bacillus subtilis	7	2	2362	2030	gi 2293211	(AF008220) putative thioredoxin [Bacillus subtilis]	75		
4 1735 1448 gi 413976 ipa-52r gene product (Bacillus subtilis) 75 75 10 6470 5769 gi 533105 unknown (Bacillus subtilis)	32	6	7484	8359	: - :	glycosylase (Streptococcus	75	61 –	876
10 6470 5769 gi 533105 unknown (Bacillus subtilis)	33	-	1735	1448	· - •		75	53	288
_	33	10	:	5769	-	unknown (Bacillus subtilis)	75	36	207

TABLE 2

Contig	ORF	Start	Stop	match	match gene name		•	
	2	(<u>if</u>	(nt)	acession		s is	* ident	length (nt)
2	122	6878	1 7183	pir A00205 FECL	ferredoxin [4Fe-4S] - Clostridium thermaceticum	75		905
36		181	~	91 2088739	(AP003141) strong similarity to the FABP/P2/CRBP/CRABP family of transporters [Caenorhabditis elegans]	75	63	180
38	22	14510	(15379	91 1574058	hypothetical (Haemophilus influenzae)	3.5		
48	33	23398	124066	91(1930092	outer membrane protein (Campylobacter jejuni)		00	0/9
51	-	2	319	gi 43985	InitS-like gene (Lactobacillus delbrueckiii	\$	95	699
	0	8318	11683	91 537192	CG Site No. 620; alternate gene names hs, hsp, hsr, rm, apparent frameshift in GenBank Accession Number X06545 [Escherichia coli)	75	85	318
54	8	19566	20759	91 666069	orf2 gene product [Lactobacillus leichmannii]			
57	6	8448	7822	gi 290561	ol88 [Escherichia coli]	6,	96	1194
	7	6072	6356	191 606241	305 ribosomal subunit orotein S14 (Fecharithi, 2011)	75	20 -	627
0,	-	3071	2472	91 1256617		75	64	285
2	; –	30399	29404	91 1574390	C4-dicarboxylate transport protein Hasmonkills is	75	57	009
2	-	910	455	gn1 P1D e249656		75	57	966
1 64	-	1810	493	10611146910	_	75	57	456
-	- i			170717	18.1% of identity to the Escherichia coli GTP-binding protein Era; putative	7.5	59	1320
8	- 	0969	6536	91,1655715	BztD (Rhodobacter capsulatus)	75		
2		1938	2975	gn1 PID e323529	[putative Plsk protein (Bacillus subtilis]	34	3 3	
93	-	7368		9866[16]	methionyl-tRNA synthetase [Bacillus stearothermobhilus		P	1038
93	13	9409	8699	91 1591493	glutamine transport ATP-binding protein Q (Methanococcus januarchii)	6,		2052
95	-	1795	47	gn1 P1D e323510			- BC	111/
_	~	362	1186	gn1 PID e266928	unknown Mycobacterium tuberculosis	5	/6	1749
104	-	691	915	91 460026	repressor protein (Streptococcus pheumonias)	2		825
113	- 5	2951	3883	gni fero dioins	ABC transporter subunit (Symechorus is an	75	54	225
121	-	320	1390			- 25	55	933
127		2614		- † ·	repressor of class I heat shock gene expression HrcA (Streptococcus mutens)	75	58	1071
	- ‡ =	- 1	-;-	- + -	dicted codi	75	44	185
	-	i	1	-	P-glycoprotein 5 (Entamoeba histolytica)	75	52	909
	- ‡	6650	9338	gn1 PID d100582	unknown (Bacillus gubtilis)	75	55	840
					1 + 4 1 2 1 1 1 1 1 1 1 1	**		•

TABLE 2

	_					E	1 ident	
157		9000		acession			_	rength (nt)
		2016	7673	191 40467	HsdS polypeptide, part of CfrA family (Citrobacter freundil)	75	57	1428
851	_	986	-	gn1 PID e253891	UDP-glucose 4-epimerase (Bacillus subtills)	75		
172	-	5653	6774	gi 142978	glycerol dehydrogenese (Bacillus stearothermonhilus)			7
172	6	7139	9730	gn1 PID e268456	tuberculos	75	95	1122
173	-	261	66	gn1 P1D e236469	C10C5.6 [Capure ha half is a location	75	88	2592
185		3066	2014	gi 1574806		75	1 50 1	183
191		5235	4213		influenzae) (Haemophilus	27	95	1053
226	-	45.56		194 149518		75	61	1023
1 162				197 231 4388		75	1 69	594
25	-		5	gi 40173		75	57	153
966	-			194 4293259	(AF008220) YtqI [Bacillus subtilis]	75	59	417
	-	766	151	19111119198	unknown protein (Bacillus subtilis)	75	20	402
	- † ·	8000	3827	191 40011	ORF17 (AA 1-161) (Bacillus subtilis		48	07.4
_		137	628	gi 410137	ORFX13 (Bacillus subtilis)	75	ev	
-;	200	16721	17560	191 2293323	(AF008220) YtdI (Bacillus subtilis)	74		26
-	9	4682	6052	[91]1354211	PET112-11ke protein (Bacillus subtilis)	? ; ;		840
18	-	3341	2427	Gretotal Pro droisse		b /	- 09	1761
	-	5885	4800	81 1072381	glutamyl-aminobeotidasa (larroccoma)	7	54	915
	7	739	548	91 (2314762	_	74	59	1086
25 –	-	~	367	00932	Vermense pr	74	46	192
38	18 11	11432	12964		ODE CASE (FORM ALL)	74	63	366
48 11	10	8924	Ī			74	57	1533
55 11		1	1.	- 1 -	P-Cype adenosine triphosphatase (Listeria monocytogenes)	74	53	2256
-	-	-	-;:	0116	remb (Staphylococcus aureus)	74	. 64	564
	- † ·	- 👬	-;	gi 2293216	(AF008220) putative UDP-N-acetylmuramate-alanine ligase (Bacillus subtilis)	74	55	1356
- [- ‡	_;	8065 19	gn1 P1D d101325 1	YqiB (Bacillus subtilis)	74		0000
=	2	999	926	pir C33496 C334 1	hisC homolog - Bacillus subtilis			0001
99	9 -	6985	8080	91 683585	prephenate dehydratase (Lactococcus lactis)		- 66	261
			•			74	55	906

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1 1 1 1 1 1 1 1 1 1	Contig	ID	Start (nt)	Stop (nt)	match	match gene name	* sim	t ident	length
1 1 1864 1950 1910	102	-	5005	:	gi 143394 ·	OMP-PRPP transferase (Bacillus subtills)			(nt)
1 1 1 1 1 1 1 1 1 1	103	-	1364	!	gn1 PID e323524	Ylow protein (Bacillus subtilis)		\c	648
1 1 100 10	108	_	5864	7592	gn1 PID e257631	methyltransferase [Lactococus arries	,	29	1098
1 136 137 138 138 191 PD 1910 191	131	-	1 8/1	146	gn1 P1D d101320	• -	74	98	729
1 1 15 15 15 15 15 15	1 62	 	380	919	gn1 PID e313025	-	74	45	333
1 1008 1881 post Principal December p	761	 	-	6787	dan Prol d100479		74	09	462
2 244 624 91 533333 mathylanced-DNA-protein methylicansferace (dati) [Heemophilius	149	†-	†-	3883	gn1 PtD d100581	u (Encerococcus hirae)	74	53	621
1 5446 5201 91 41327 1pa-Tr gene product (facillus subtilis) 74 48 55 1 1 1 1 1 1 1 1	157			<u> </u>	91 1573373	methylated-DNA-protein-cysteine methyltransferase (dat1) (Haemophilus	P7	55	976
1 1 1 1118 gni Fib dio2231 bet-galaccoidase Bacillus subtilis 74 55 1 1 1 1 1 1 1 1	164		-	_	gi 410131	ORFX7 (Bacillus subtilis)			
1 1 1 1818 gin [FirD dio2213] beta-galactosidase Bacillus circulans 74 62 62 63 64 1325 gil(46674 callobiose phosphotens/fectase anyve II' (Bacillus stearothermophilus 74 62 65 65 65 65 65 65 65	167	-	<u> </u>	!-	91 413927		74	89	735
1 1064 1392 01 666074 calloblose phosphoransferase enzyme II Bacillus stearchiermophilus 74 50 1 226 3 94 1573666 Marchian Ma	171	-	-	;-	gn1 PID d102251	Deta-galactosidase Bacillus circulane	74	55	246
1 326 3 94 1373646 Hq(3.) transport ArPase protein C (macc) (SP:P22037) [Haemophilus] 74 58 68 2 1089 2018 94 1573008 ArP dependent translocator homolog (macbh) [Haemophilus influenzae] 74 68 11 6691 7174 94 1661199 Saakoin A production response regulator [Streptococcus mutans] 74 60 1 618 7174 94 1661199 Saakoin A production response regulator [Streptococcus mutans] 74 60 1 816 132 94 663320 Argonative ArP binding submit [Bacillus subtilis] 774 60 2 520 1287 94 66332 Similarity with S. cerevisiae hypothetical 13.7 to protein in subtelomeric 74 42 3 1619 3655 94 66332 Argonate region [Secharomyces cerevisiae] 774 60 4 1227 94 66332 Argonate [Bacillus litheniformis] 774 64 5 6 6 6 6 6 6 6 6 6	172	- -	 	;-	91 466474	1:	74	62	1818
2 1089 2018 gill573008 ATP dependent translocator homolog (mabb) [Haemophilus influenzee] 74 64 1 6491 7174 gill661199 sakecin A production response regulator [Streptococcus mutana] 74 60 2 520 1287 gill293207 (AF008220) Ytaq [Bacillus subtilis] 74 55 3 1619 3655 gill66983 putative AFP binding submit (Bacillus subtilis] 74 55 4 1227 gill66983 putative AFP binding submit (Bacillus subtilis] 74 64 5 644 1227 gill663312 Similarity with S. cerevisiae 74 64 6 13357 1321 gillpid diolizat Yepeat region (Saccharomyces cerevisiae) 74 64 7 1 1 942 gill601938 unknown (Saccharomyces cerevisiae) 73 57 14 7 1506 5449 gillpid diolizat YqhX (Bacillus subtilis) 73 55 74 7 556 567 6194 gillpid diolizat YqdX (Bacillus subtilis) 73 55 74 8 567 6194 gillpid diolizat YqdX (Bacillus subtilis) 73 55 74 9 9 9 9 9 9 9 9 9	EB3		56		91 1573646	transport ATPase protein C (mgtC) (inzae)	74	89	1329
11 6491 7174 gil 661199 Sakccin A production response regulator [Streptococcus mutans] 74 60 2 520 1287 gil 65933 [AF008220] Yrmq [Bacillus subtilis] 74 60 3 1619 3655 gil 663332 Similarity with S. cerevisiae hypothetical 137.7 kD protein in subtelomeric 74 42 25 4 1227 gil 66323 Similarity with S. cerevisiae 74 42 22 5 844 1227 gil 60398 [Unknown Saccharomyces cerevisiae] 74 39 54 6 1337 11921 gnl PID d101324 Yqhx Bacillus subtilis 73 73 74 73 74 7 5706 5449 gnl PID d100316 single strand DNA binding protein Bacillus subtilis 73 55 73 74 74 75 6 5667 6194 gnl PID d102131 Yqfc Bacillus subtilis 73 73 74 74 75 75 75 75 75 75	166	_		_		ATP dependent translocator homolog (msbA) (Haemonhills influence			
2 \$20 1287 Gil Gil	_	-	-	-	-	sakacin A production response regulator (Strent procure mit and		64	930
1 836 192 Gil 666983 Putative ATP binding subunit Bacillus subtilis 74 55 55 563212 Similarity with S. cerevisiae hypothetical 117.7 kD protein in subtelomeric 74 42 2 2 2 2 2 2 2 2	-		-	<u> </u>	gi 2293207			09	684
3 1619 3655 g1 663232 Similarity with S. cerevisiae hypothetical 137.7 kD protein in subtelomeric 74 42 22 24 1227 g1 49272 Asparaginase (Bacillus licheniformis) 74 64 74 42 24 24 24 24 24 2	192	-	-	-	-	binding subunit (Bacillus	*	09	768
2 844 1227 91 49272 Asparaginase [Bacillus licheniformis] 74 64 64 1 1 1 1 1 1 1 1 1	263			!		Similarity with S. cerevisiae hypothetical 137.7 kD protein in subtelomeric	2 2	42	2037
1 1 942 g1 601998	-	-	-	į —	-	[Bacs	- :		
16 13357 11921 gml PTD d101324 YqhX (Bacillus subtilis 73 39 73 39 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 57 73 58 73 73 73 73 73 73 73 7	-	-		-	-	Sacc		64	384
10 \$706 \$449 gnl PID e105362 unnamed protein product [Streptococcus thermophilus] 73 47 47 47 47 48 gnl PID d100576 single strand DNA binding protein [Bacillus subtilis] 73 55 6 5667 6194 gnl PID d101315 YqfG Bacillus subtilis 73 58 6 6 5667 6194 gnl PID d102151 (AB001684) ORF42c [Chlorelle vulgaris] 73 46 74 75 75 75 75 75 75 75	-	-		-	Ţ	É	74	- 6E	942
2 522 244 gnl PID d100576 single strand DNA binding protein (Bacillus subtilis) 73 47 55 6194 gnl PID d101115 YqfG Bacillus subtilis 73 55 73 58 73 790 gnl PID d102151 (AB001684) ORF42c (Chlorella vulgaris) 73 46 73 46 73 46 73 46 73 46 73 46 73 46 73 46 73 46 73 46 73 46 73 46 73 46 73 46 73 73 74 74 74 74 74 74		-	<u> </u>	: -			73	57	1437
6 5667 6194 gni Pro d101315 YqfG (Bacillus subtilis) 73 55	-	+-	†-	-	- • -		- 62	47	258
15 10281 9790 gnl PID d102151 (AB001684) ORP42c (Chlorella vulgaria) 73 46	-	-	- † -	- † -	- 1 -	ng protein (Bacillus	73	55	279
(ABUU1084) ORF42c (Chlorella vulgaris)	-	•	· 	• • •	, ; ,	STITION ROOF THE	13	- 85	528
	Ï	•	- ;		- [(ABUU1684) ORF42c (Chlorella vulgaris)	73	46 +	492

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

40								
	22	9876	9226	191(1173517	riboflavin synthase alpha subunit (Actinobacillus pleuropneumoniae)	در ا	33	651
55	7	3592	839	gn1 prD d101887	cation-transporting ATPase PacL (Synechocystis sp.)	67	09	2754
55	118	17494	16586	gn1 PID e265580	unknown (Mycobacterium tuberculosis)	ני	55	606
63	91	7213	1767	91 143419	ribosomal protein L6 [Bacillus stearothermophilus]	در ا	09	588
99	-	3300	3659	gn1 PID 6269883	Lace (Lactobacillus casei)	23	52	360
02	01	5557	5733	01 857631	envelope protein (Human immunodeficiency virus type 1)	73	09	111
12	4	6133	8262	gn1 P10 e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	67	45	2130
72	-	_	851	191 2293177	(APO08220) transporter (Bacillus subtills)	23	20	849
9/	,	7019	6195	gn1 P10 d101325	YqiF (Bacillus subtilis)	در ا	99	825
9/	112	10009	1 9533	9111573086	uridine kinase (uridine monophosphokinase) (udk) (Haemophilus influenzae)	23	54	477
89	_	8113	9372	91 1377823	aminopeptidase (Bacillus subtilis)	73	09	1260
97	s	3389	1668	gn1 PID d101954	dihydroxyacid dehydratase (Synechocystis sp.)	23	54	1722
86	6	6912	7619	gn1 PID e314991	FtsE (Mycobacterium tuberculosis)	52	54	108
108	=	10928	10440	91 388109	regulatory protein (Enterococcus faecalis)	73	24	489
128	9	3632	4222	91 1685111	orf1091 [Streptococcus thermophilus]	13	63	591
138	- 2	1575	394	91 147326	transport protein (Escherichia coli)	در ا	9	1182
140	61	12538	11903	pir E53402 E534	serine O-acetyltransferase (EC 2.3.1.30) - Bacillus stearothermophilus	23	55	909
162	2	5701	4991	gn1 P10 e323511	putative YhaQ protein (Bacillus subtilis)	57	20	1117
164	-	2323	2790	gi 1592076	hypothetical protein (SP:P25768) [Methanococcus jannaschii]	67	52	468
164	8	4815	5546	101 410137	ORFXI3 (Bacillus subtilis)	ני	26	732
170	2	4394	5302	gn1 PID d100959	homologue of unidentified protein of B. coli (Bacillus subtilis)	13	46	606
178	7	3893	4855	91 46242	nodulation protein B, 5'end (Rhizobium lot!)	13	96	963
204	9	9605	4278	gn1 PID e214719	PlcR protein (Bacillus thuringiensis)	13	41	819
213	2	832	2037	91 1565296	ribosomal protein S1 homolog; sequence specific DNA-binding protein [Leuconostoc lactis]	23	55	1206
231	7	96	1 287	gi 40173	homolog of E.coli ribosomal protein L21 (Bacillus subtilis)	73	61	204
237	-	2	505	1816771 181	adenine phosphoribosyltransferase [Escherichia coli]	73	51	504

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont 1g 1D	ORF	Start (nt)	Stop (nt)	match	match gene name	B sim	1 ident	length
269	-	2	169	gn1 PID d101328	YqiX (Bacillus subtilis)	7.3	36	069
289	7	1272	832	p1r A02771 R7MC	ribosomal protein L7/L12 - Micrococcus luteus	73	99	
343		7	484	91 1788125	(AE000276) hypothetical 30.4 kD protein in man2-cspC intergenic region	73	47	471
356	-	222	-	gi 2149905	D-glutamic acid adding enzyme (Enterococcus faecalis)		05	910
,	- 5	3165	4691	gn1 Ptp d101833	amidase (Synechocystis sp.]	72	25	1631
,	6	7195	1 7647	gi 146976	[nusB [Escherichia coli]	72	45	
,	2	13743	13300	gn1 P1D e289141	similar to hydroxymyristoyl-(acyl carrier protein) dehydratase (Bacillus subtilis	27	65	444
22	61		16224	gn1 PID d101929	ribosome releasing factor (Symechocystis sp.)		- 15	000
33	1	12111	111425	gn1 PID d101190	ORP3 (Streptococcus mutans)	72		9
34	-	71147	1 5627	gi 396501	aspartyl-tRNA synthetase [Thermus thermophilus]	72	- 25	1631
B	2	15372	16085	pir H64108 H641	L-ribulose-phosphate 4-epimerase (araD) homolog - Haemophilus influenzae (strain Rd KW20)	72	\$	714
65	- i	5094	6905	gn1 PID e254877	unknown (Nycobacterium tuberculosis)	72	56	1812
•	9	6949	4636	gi 153672	lactose repressor (Streptococcus mutans)	72	- 88	168
48	~	1459	1253	91 310380	Inhibin beta-A-subunit (Ovis arles)	72	33	202
84	29	21729	22424	91 2314329	(AE000623) glutamine ABC transporter, permease protein (glnP) (Helicobacter pylori)	72	49	969
50	- 5	4529	3288	91 1750108	YnbA (Bacillus subtilis]	72	54	1242
51	-	1044	2282	91 2293230	(AF008220) YtbJ (Bacillus subtilis)	72	36	22.5
52	13	13681	13938	gi 142521	deoxyribodipyrimidine photolyase (Bacillus subtilis)	72	45	946
55	-	841	35	91 882518	ORF_0304; GTG start (Escherichia coli)			
75	2	2832		gn1 P1D e209886	mercuric resistance operon regulatory protein (Bacillus subtilis)	72		9
76	9	6229	17.12	91 142450	ahrC protein (Bacillus subtilis)	- 62		
- 60	- 8	5905	4592	gi 2293279	(AF008220) YtcG (Bacillus subtilis)			
87	14 -1	14726	12309	gn1 P1D e323502	putative PriA protein (Bacillus subtilis)	72	52	2418
		444	662	91 [500691	MYOI gene product (Saccharomyces cerevisiae)	72		219
2	7	4516	4764	gi 829615	skeletal muscle sodium channel alpha-subunit [Equus caballus]	72	38	249
						-+		*

pneumoniae - Putative coding regions of novel proteins similar to known proteins

10	2	Start (nt)	Stop (nt)	match	match gene name	s s	* ident	length
98	7	2004	11717	gn1 P1D e323527	putative Asp23 protein (Bacilius subtilis)	72	07	288
109	-	1452	118	gi 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	72	52	2181
126	-	~	2192	gn1 PID d101831	(glutamine-binding periplesmic protein (Symechocystis sp.)	72	46	2190
130	_	1735	2478	91 (2415396	(AP015775) carboxypeptidase (Bacillus subtilis)	72	53	744
137	9	2585	2929	gi 472922	v-type Na-ATPase (Enterococcus hirae)	72	46	
140	01	1096	9203	91 49224	URP 4 (Synechococcus sp.)	72	9	
146	5	1906	1247	gn1 PID e324945	hypothetical protein (Bacillus subtilis)	7.2	4.	667
147	~	2084	1083	gn1 P1D e325016	hypothetical protein (Bacillus subtilis)	72	3,	
147	2	6156	5146	191 472327	TPP-dependent acetoin dehydrogenase beta-subunit (Clostridium magnum)	7.2	45	
148	8	5381	6433	01 974332	NAD(P)H-dependent dihydroxyacetone-phosphate reductase Bacillus subtilis	72	40	
148	=	10256	9675	gn1 PID d101319	YqgN (Bacillus subtilis)	72	50	582
159		4005	4949	gi 1788770	(AEGO0330) 0465; 24 pct identical (44 gaps) to 338 residues from penicillin-binding protein 4', PBPE_BACSU SW: P32959 (451 aa) (Eschorichia coli)	72	43	945
172	91	9907	10620	1911763387	unknown (Saccharomyces cerevisiae)	72	88	214
220		2862	3602	94 1574175	hypothetical (Haemophilus influenzae)		9	
267	-		699	91 290513	[f470 [Escherichia coli]	72	8	
281	7	668	540	gn1 PID d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis [Bacillus subtilis]	72	45	360
290		1018	=	91 474195	This ORF is homologous to a 40.0 kd hypothetical protein in the htrB 3. region from E. coli, Accession Number X61000 (Mycoplasma-like organism)	72	54	1005
300	-	63	587	91 746399	transcription elongation factor (Escherichia coli)	72	50	525
316	-	1326	7	91 158127	protein kinase C (Drosophila melanogaster)	72	0.	1323
342	-	722	-		unknown (Bacillus subtilis)	72	54	225
354	-;	-	1005	gn1 PID d102048	C. thermocellum beta-glucosidase; P26208 (985) [Bacillus subtilis]	72	52	1005
9	= ;	8134	110467	gn1 PID e264229	unknown (Mycobacterium tuberculosis)	111	57	2334
-	02	16231	15464	gi 18046	3-oxoacyl-[acyl-carrier protein] reductase (Cuphea lanceolata)	71	52	768
15	-	1297	~	100571	replicative DNA helicase (Bacillus subtilis)	111	51 (1296
15	- 	4435	3869	gi 499384	orf189 (Bacillus subtilis)	112	47	567

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

# .	903	540	504	2340	456	441	1548	228	1491	888	237	1869	807	666	1089	603	951	642	1956	918	663	477
l length			_	7		! !	-		_		_	-	-	_	-	_	_			! ! !		
1 ident	51	26	48	55	58	44	44	20	48	54	42	52	45	53	58	48	55	20	51	49	88	51
s sim	1,4	71	17	7.1	7.1	17	7.1	71	17	17	7.1	11	11	11	11	17	11	וג	11	17	11	
match gene name	YqgG [Bacillus subtilis]	similar to the 20.2kd protein in TETB-EXOA region of B. subtilis [Escherichia coli]	ORF_0158 [Escherichia coli]	dipeptidyl peptidase IV (Lactococcus lactis)	[AF015453] surface located protain [Lactobacillus rhamnosus]	YqgZ (Bacillus subtilis)	rodD (gtaA) polypeptide (AA 1-673) [Bacillus subtilis]	ORF_oild; Geneplot suggests frameshift near start but none found {Escherichia coll}	lysine decarboxylase [Bacillus subtilis]	similar to rat beta-alanine synthetase encoded by GenBank Accession Number \$27881; contains ATP/GTP binding motif [Parameclum bursaria Chlorella virus 1]	[PN] [Rattus norvegicus]	proly1-tRNA synthetase (proS) (Haemophilus influenzae)	mannose permease subunit II-M-Man [Escherichia coli]	[ss-1, 4-galactosyltransferase (Streptococcus pneumoniae)	(AF014460) PepQ (Streptococcus mutans)	[Lenk [Listeria monocytogenes]	mosA [Rhizobium mellioti]	glutamine transport ATP-binding protein GLNQ [Salmonella typhimurium]	H. influenzae hypothetical ABC transporter; P44808 (974) (Bacillus subtilis)	(AB000015) Mycoplasma pneumoniae, fructose-bisphosphate aldolase; similar to Swiss-Prot Accession Number P13243, from B. subtilis (Mycoplasma pneumoniae)	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	ı
Batch	dcession 	91 1773142	181 537036	gi 149528	91 2343285	gn1 PID d101320	91 580920	91 606028	191 580835	91 624085	91 1906594	91 1573733	91 147404	gn1 PID e322063	91 2323341	gi 1519287	91 310303	91 1649037	gn1 PID d102049	91 1673788	gn1 P1D d100964	gn1 P1D d102005
Stop	4218	540	113830	12676	20585	265	26226	30360	6229	12878	7033	8517	6578	3604	4707	12955	1979	1205	7063	227	4973	7845
Start	5120		72061	15015	21040	705	24679	30587	5239	11991	7269	10385	5772	4602	3619	13557	1029	564	9018	1141	5635	7369
ORF	9	-	ĭ	12	123	~	118	25	9	7	=	9	- 6		7	13	7	7	5		5	_
Contig	87	29	38	51	55	99	12	12	22	72	23	74	18	98	105	106	114	122	132	140	140	141

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	e sim	8 ident	length (at)
193	-		165	91 46912	ribosomal protein L13 (Staphylococcus carnosus)	71		165
194	-	2205	1594	91 53 53 51	CodY (Bacillus subtilis)	1,6	52	612
1 199		1510	1319	91 2182574	(AE000090) Y4pE (Rhitobium sp. NGR234)	717	45	192
208	7	2616	3752	911787378	(AE000213) hypothetical protein in purB 5' region (Escherichia coll)	712		
209	2	2022	1141	91 41432	fepC gene product [Escherichia coli]	717	7	
210	- 2	1161	1 3071	91 49316	ORP2 gene product (Bacillus subtilis)	17		700
210	9	1 3069	3386	91 580900	ORF1 gene product (Bacillus subtilis)		3	1011
212	2	1361	1381	91 557567	ribonucleotide reductase RI subunit (Mycobacterium tuberculosis)		1 65	. 1810
233		2003	2920	410132	YqgR (Bacillus subtilis)	71	2005	810
244		61	1053	gn1 P1D d100964	homologue of aspartokinase 2 alpha and beta subunits Lysc of B. subtilis (Bacillus subtilis)	1,1	55	1041
251	7	1008	1874	91 755601	unknown (Bacillus subtilis)	71	99	867
282	7	906	112	19111353874	unknown (Rhodobacter capsulatus)	112	1 99	195
312	-	72137	1565	gn1 PID d102245	(AB005554) yxbF (Bacillus subtilis)	127	34	573
338	-!	3	683	91 1591045	hypothetical protein (SP:P31466) (Methanococcus jannaschii)	111	- 89	681
346		3	164	91 1591234	hypothetical protein (SP:P42297) (Methanococcus jannaschii)	1 11	36	162
374		619	2	91 397526	clumping factor (Staphylococcus aureus)	112	23	618
77.	-	1 688	2	91 397526	clumping factor (Staphylococcus aureus)	112	23	687
	8	7419	6958	gn1 PID e269486	Unknown (Bacillus subtilis)	06 .	42	462
-	01	8395	9075	gn1 P1D e255543	[putative iron dependant repressor (Staphylococcus epidermidis)	70	46	681
7	=	11024	10254	gn1 PID d100290	undefined open reading frame (Bacillus stearothermophilus)	70		177
,	8.	14213	13719	gn1 PID d101090	biotin carboxyl carrier protein of acetyl-CoA carboxylase (Synechocystis	70	95	495
6	-	1057	287	gn1 PID d100581	unknown (Bacillus subtilis)	70 -	52	177
12	7	2610	1789	gn1 PID d101195	lyycJ (Bacillus subtilis)	70	52	822
21	2	2586	1846	gi 2293447	(AF008930) ATPase (Bacillus subtilis)	70	54	741
	- †	-;	11512	gi 1165295	Ydr540cp [Saccharomyces cerevisiae]	1 0′	1 05	558
30	9	4315	3980	91 39478	ATP binding protein of transport ATPases (Bacillus firmus)	1 0/	51	336
							+	+

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ID I	Start (nt)	Stop (nt)	match	match gene name	sim .	* ident	l length
2	-	370	113	91 662792	single-stranded DNA binding protein (unidentified eubacterium)	70	35	2000
2	15	10639	9521	91/1161219	homolgous to D-amino acid dehydrogenase enzyme (Pseudomonas seruqinosa)	70	95	1110
38	9	3812	4312	91 2058547		96		
38	25	17986	118477	91 537033	ORF_f136 (Escherichia coli)	96		100
9	5	11054	9846	91/1173516	riboflavin-specific deaminase (Actinobacillus pleuropneumoniae)	200		769
42	7	722	1954	91 1146183	putative (Bacillus subtilis)		76	1209
Ş	~	2373	1612	91 1591493	glutamine transport ATP-binding protein 0 (Methanococcus januachii)		7.	1233
45	8	9197	8049	gn1 P1D d1 02 03 6	horylase		9	762
59	~	267	926	gn1 P10 d100302	neopullulanase (Bacillus sp.)		90	1149
99	-	1874	1 795	gn1 P1D e276466	aminopeptidase P (Lactococcus lactis)		42	390
19	-	5553	2437	gn1 PID e275074	ereus	0,	8	1080
19	_	7914	6802	191 1573037	cystathionine gamma-synthase (metB) [Haemophilus influenzae]	0/	51	3117
63	_	5372	7222	gn1 P1D d100974	unknown (Bacillus subtilis)	2	37	
89	7	7126	6962	91 1263014	emm18.1 gene product (Streptococcus pyogenes)		2	1691
2	_	10081	10911	91 2313093	(AE000524) carboxynorspermidine decarboxylase (nspc) (Helicharter milesis		· · · · · · · · · · · · · · · · · · ·	165
_	2	7888	8124	91 1877423	(Streptococcus mutar	2	9.	831
- 62	-	3424	10	Bi 3981	ORF 311 (AA 1-311) (Bacillus subtilis)	2	66	237
	2	9369	7324	gn1 PID e323506	putative Pkn2 protein (Bacillus subtilis)	0/	47	006
	2	10640	11788	 gi 1573209	tRNA-quanine transolveseylake (frt) (Hammall)	10	53	2046
- - -	~	574	1086	191 433630		0,	52	1149
123	-	2901	3461	gul PID d100585	unknown (Bacillus subtilis)	0,	59	513
125	- 5	4593	4282	dal PID e276474	the column content of the column colu	70	45	961
129	-	4500	3464		derection entry chaines 1 (bos taurus)	100	35	312
-	- -		9091	guriFinidio1314	Yqef (Bacillus subtilis)	70	47	1047
- † ·	-	2608	1394	gi 2293312	(AF008220) Ytfp (Bacillus subtilis)	- 0,	20	1215
- †	-	420	662	gn1 PID e265530	yorfE (Streptococcus pneumoniae)	104	47	243
- ; .	- ·	438	~	gi 472919	v-type Na-ATPase (Enterococcus hirae)	70	57	495
138	-	440	3	gi 147336	transmembrane protein (Escherichia coli)	1 07	42	438 1

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig 1D	ID I	Start (nt)	Stop (nt)	match	match gene name	sia -	1 Ident	length
140	9	18796	16364	91 97641	N5-methyltetrahydrofolate homocysteine methyltransferase [Saccharomyces cerevisiae]	70		2433
167	91	8263	6695	gi 149535	D-alanine activating enzyme [Lactobacillus casei]	100	52	1569
204	-	3226	2747	gn1 PID d102049	E. coli hypothetical protein; P31805 (267) [Bacillus subtilis]	02	51	480
207	_ 	1 2627	2869	gn1 PID e309213	racGAP [Dictyostelium discoldeum]	02	45	243
282	-	1136	882	91 1353874	unknown (Rhodobacter capsulatus)	20	9	
9	121	17554	18453	gn1 PID 6233879	hypothetical protein (Bacillus subtilis)	9		
9	22	18482	119471	gi 580883	ipa-88d gene product (Bacillus subtilis	69	; ;	
22	9	. 4682	5824	91 2209379	(AP006720) ProJ (Bacillus subtilis)	69	3 9	
22	6	7992	8651	gnt PID d100580	unknown (Bacillus subtilis)		97	1143
72	77	9871	10767	[gn1 P1D d100581	unknown (Bacillus subtilis		*	
72	-	5857	5348	gn1 PID d102012	[ABO01488] FUNCTION UNKNOWN. (Bacillus subtilis)	69	96	
36	0	7294	110116	gi 437916	isoleucy -tRNA synthetase (Staphylococcus aureus)			200
86	-	2	1090	gi 141900	alcohol dehydrogenase (EC 1.1.1) (Alcaligenes eutrophus)	69	48	2007
40	*	11333	11944	91 1573280	Holliday junction DNA helicase (ruva) (Haemophilus influenzae)	69	99	669
90	15	11942	112517	91 1573653	DNA-3-methyladenine glycosidase I (tagI) [Haemophilus influenzae]	69	98	36.5
\$	9	6947	5490	91 580887	rch (bacterial glycogen) synthase (Bac	- 69	4.7	
8	34	24932	24153		hypothetical protein (Bacillus subtilis)	9	36	90.51
49	9	6183	6521	91 396297	similar to phosphotransferase system enzyme II (Escherichia coli)	69		08/
69	-	7586	8338	91 396420	similar to Alcaligenes eutrophus pHG1 D-ribulose-5-phosphate 3 epimerase [Escherichia coli]	69	69	753
55	9	8262	7033	91 1146238	poly(A) polymerase (Bacillus subtilis)	69	0.5	0.66
59	-	954	2333	gn1 PID e313038	hypothetical protein [Bacillus subtilis]	- 69	3	000
62	-	1170	1418	S	hypothetical protein (Symechocystis sp.)			0007
63	-	1298	7762	gi 293017	ORF3 (put.); putative [Lactococcus lactis]			677
99	-	3657	-	91 153755	phospho-beta-0-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremorie]	3	;	005
99	-	5126	6829	91 433809		- 69	1 99	2021
7	9	110017	110664	gn1 P1D e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	- 69	01	943
						*******		, !

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	-			•				
Contig	ID	Start (nt)	Stop (nt)	match	match gene name	wis .	& Ident	length
11	121	06775	127966	gn1 PID d100649	DE-cadherin (Drosophila melanogasteri			(nt)
- 1.	-	1	237	191 287870	groES gene product Jactonocone groES gene product	69	30	237
18	2	3622	1 4101	lai 1573605		69	44	762
83		40	314			69	25	1 480
Ī	- † -		, , ,	1916 (C3496 C334	hisc homolog - Bacillus subtilis	. 69	97	579
- [-:	15/47	116335	91 143372	phosphoribosyl glycinamide formyltransferase (PUR-N) (Bacillus subtilis)	69	97	705
65	7	1212	916	91 194097	IFN-response element binding factor 1 (Mus musculus)			
16	<u>~</u>	3678	4274	91 1574712	anaerobic ribonuleoside-triphosphate reductase activating protein (nrdG)	69	44	597
98	8	3247	4032	gn1 P1D d100262	Live protein (Salmonella typhimurium)			
108	<u>-</u>	4085	9505	gn1 PID e257629	Transcription factor (Lactococcus Jacris)	60	15	1 786
126	_	3078	4568	gn1 PID d101329	Yord Bacillus subtilies	69	49	972
131	-	4121	2889	lon lotofdiotais		69 -	6	1491
1.36	-	200			rqex (bacitius subtilis)	69	47	1233
	- ; -	COCT	6622	gn1 PID d100581	unknown (Bacillus subtilis)	1 69 1	47	195
- :	-	3852	4763	[gn1 PID e323525	Ylog protein (Bacillus subtilis)	1 69	0.5	
697		9336	10655	91(151571	Homology with E.coli and P. seruginosa lysA gene; product of unknown function; putative (Pseudomonas syringse)	69	\$25	1320
153 .	-	3191	3829	91 1710373	BrnQ (Bacillus subtilis)			-
169		849	-	gn1 PID d100582	temperature sensitive cell division (Bacillus subtillus	69	44	639
180	-	366		91 488339	ified closing workers	69	49	1476
212	 	1196	231	Bi 1395209	1	69	05	564
226		2	199	pir J02285 J022	ybean	69	53	966
233		3249	4766	91 472918	v-type Na-Arbase (Enterococcus hiras)	69	7	099
235	-	1 099	1766	91 148945	methylase (Haemophilus influentae)	69	95	1518
-	~	865	2361	gn1 P1D d100225	ORFS (Bar) av vellas disarf views	- 69	÷	1107
251	- 6	2899	1967	- i -	Tanan	69	69	1497
310	-	-			macrollog-erriux protein (Streptococcus agalactiae)	69	51	933
- ا	-			322442		1 69	55	282
- -	-	749	- -	91.397526	factor	69	22	1 198
•	- {				clumping factor (Staphylococcus aureus)	1 69	21	747
							41111111	

S. pneumoniae - Putative coding regions of novel proteins 'similar to known proteins

	+			acession			10enc	length (nt)
379	-	44	280	gn1 PID d100649	DE-cadherin (Drosophila melanogaster)	69	30	237
388	-	260	2	gi 1787524	(AE000225) hypothetical 32.7 kD protein in trpL-btuR intergenic region [Escherichia coli]	69	44	189
-	~	2006	3040	gn1 PID d101809	ABC transporter [Synechocystis sp.]	69	43	1015
12	2	3958	2600	91 2182992	histidine kinase (Lactococcus lactis cremoris)	89	45	0361
15	~	1790	1313	pir S16974 R5BS	ribosomal protein L9 - Bacillus stearothermophilus	89	56	480
16	•	7353	5701	91 1787041	(AE000184) 0530; This 530 aa orf is 33 pct identical (14 gaps) to 525 residues of an approx. 640 aa protein YHES_HAEIN SN: P44808 [Escherichia coli)	89	45	1653
17	12	6479	6805	91/553165	acetylcholinesterase (Homo sapiens)	89	69	327
20	2	14128	14505	191 142700	P competence protein (ttg start codon) (put.); putative (Bacillus subtilis)		40	378
22	2	24612	25397	91 289262	ComE ONF3 (Bacillus subtilis)	- 89	36	286
200	-	4548	4288	91 311388	ORF1 (Azorhizobium caulinodans)	68	46	261
36	-	3911	4585	191 1573041	hypothetical [Haemophilus influenzae]	1 89	54	829
46	•	5219	6040	91 1790131	(AE000446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region (Escherichia coli)	89	42	822
54	01	6235	7086	91 882579	CG Site No. 29739 (Escherichia coli)	68	58	
- 55	-	7069	5165		ABC transporter (Synechocystis sp.)	89	59	3001
-	-	6134	5613	91 1573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]	89		
17	10) }	91 580866	ipa-12d gene product [Bacillus subtilis]	8,9	2	
17	112 11	17560	18792	81 44073	SecY protein (Lactococcus lactis)	89		
7	17 12	22295	24703	gi 1762349	involved in protein export (Bacillus subtilis)	89	20 1	2409
2	16 11	10208	9729	101 1353537	dUTPase (Bacteriophage rlt)			
96	18	17198	16011	91 413943	ipa-19d gene product (Bacillus subtilis)	89		
87	17	17491		91/150209	ORF 1 [Hycoplasma mycoides]	3	3 3	0017
_	-	5139	4354	gi 1498824	N. jannaschii predicted coding region MJ0062 (Methanococcus immachiii			1920
	=	8021	8242	91 150974			0	786
		6755	5394	91 2367358	(AE000491) hypothetical 52.9 kD protein in aid8-rpsf intergenic region	89	- ; -	1362

pneumoniae - Putative coding regions of novel proteins' similar to known proteins

9	9	(ut)	(at)	match	match gene name	e sia	dident	length
98	_	1 1418	1 2308	gn1 PID d100261	LivA protein (Salmonella typhimur(um)	-	_	(nt)
66	13	116414	117280	91 455363	regulatory protein (Streptonorgue muses)	89	40	891
115	-	5054	1 3693	gi 466474	Dhosohot rang forage on		50	198
124	-	3394	13221		Kana Basaratanananananananananananananananananan	89	7	1362
125	- 2	1 2923	1 1922	lai 1450566	The state of the s	1 68	95	174
22	- 2	1 4858	2888		framewantane protein [bacillus subtilis]	89	1 50	1002
140		7765		75/1010[d13]16	UNA 11gase (Symechocyatis ap.)	- 68	52	1971
			000/ 1	91 1209711	unknown (Saccharomyces cerevisiae		42	
130	- Ĭ	539	- 3	gi 402490	ADP-ribosylarginine hydrolase [Mus musculus]			981
164	-	58	1 867	gn1 PID e255114	(glutamata racemase (bacillus subtilis)	8	60	537
164	7	819	1835	gn1 PID e255117	hypothetical protein (Bacillus subrities)	69	49	810
169	_	3946	4104	pir 854545 8545		69	20	1017
170	-	4247	4396	91 304146	sopre cost problem to the control of the cost of the c	89	9	159
171	8	6002	7054	lqi 138722		69	25	150
198		2673			triculati (am - 20 to 361) (Acinetobacter calcoaceticus)	89	24	1053
			7/07	gnt PID e313075	hypothetical protein (Bacillus subtilis)	1 69	77	
117	7	969	1802	[gi]1439528	EIIC-man [Lactobacillus curvatus]			
214	8	4926	4231	gn1 PID d102049	H. influenzae hypothetical protein: Paleon (19), A. C. C.	90 -	45	834
217	9	4955	5170			69	- 00	969
		_			transcriptese)	89	36	216
238	-	3930	4745	191 2293198	(AF008220) YtgP (Bacillus subtilis)		- •	
220	9	4628	4338	gn1 PID e325791	(AJ000005) orfl (Bacillus megaterium)	200	38	816
236	- 1	746	108	91 410137	ORFX13 (Bacillus subtilis)	89	- 15	291
237	- 2	675	1451	91 396348		68	99	639
250	-	171	1229	ai 1310859		89	49	ררר
25.4	-		•		ont (synechocococus sp.)	- 89	20	459
	;	i	66	91 1787105	(AE000189) o648 was o669; This 669 as orf is 40 pct identical (1 gaps) to lastdues of an approx. 232 as protein YBBA_HAEIN SW: P45247 [Escherichia coli)	89	44	363
337	- 	-	774	gn1 PID e261990	putative orf (Bacillus subtilis)			
345	_	_	653	91 149513	thymidylate synthase (EC) 1 Act (1.25-2-1-1)	-+	47	1 100
		•	+	+	1	89	61	651

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	+	1111111						
Cont 19 1D	ORF	Start (nt)	Stop (nt)	match	natch gene name	# sim	* ident	langth
386	- 5	417	4	gi 1573353	outer membrane integrity protein (tolA) (Haemophilus influenzae)	68		7.17
2	-	5722	4697	91 1592141	M. jannaschii predicted coding region NJ1507 Methanococcus jannaschiil	69	3,6	
	9	1 5397	4591	91 2293175	(AF008220) signal transduction regulator (Bacillus subtilis)			1028
8	7	2301	574	101/2313385	(AE000547) para-aminobenzoate synthetase (pabB) (Helicobacter pylori)	69	, ,	708
9	119	16063	116758	[91] (13931	fpa-7d gene product (Bacillus subtilis)	63		977
22	8	7094	7897	91 1928962	pyrroline-5-carboxylate reductase (Actinidia deliciosa)	5	, , ,	960
29	01	8335	9072	gi 468745	gtcR gene product (Bacillus bravis)	5 5	76	809
1.		1379	1 585	gi 2425123	(AF019986) PksB (Dictyostelium discoideum)		1 08	967
2	Ξ	8849	10150	gi 42029	ORF1 gene product (Escherichia coli)		47	
36	97	14830	15546	g1 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	67	4	5051
38	5	4958	5392	gn1 PID e214803		67	47	435
38	21	113775	114512	1911537037	ORF_0216 [Escherichia coli]	67		23.0
45	6	10428	9181	191 551710	branching enzyme (glgB) (EC 2.4.1.18) [Bacillus stearothermophilus]	67	51	1248
8	123	18344	117514	01/413949	ipa-25d gene product (Bacillus subtilis)	67	3 08	118
30	~	6771	952	gni (Pib) dioi330	YqjQ Bacillus subtilis			
53	-	431	e .	91 1574291	fimbrial transcription regulation repressor (pils) (Haemonhilus influentable	5	3 9	770
55	13		11946	gn1 PID e252990				678
61	6	9210	8329	gn1 PID e264711	ATP-binding cassette transporter A (Staphylococcus aurene)		70	795
7.	7	5614	6117	191 1197667			2	882
18		4489	4983	91 1142714	phosphoenolpyruvate:mannose phosphotransferase element IIB (Lectobacillus curvatus)	1.9	42	695
83	_	2957	3214	91 1276746	Acyl carrier protein (Porphyra purpurea)			
98	8	8140	6899	91 1147744	PSR (Enterococcus hirse)			852
97	~	986	1366	an1 PID d102235	(AB000631) unnamed protein product (Streptococcus mutans)			1332
102	-	601	1413	91 682765	mcc8 gene product (Escherichia coli)			195
106		1109	1987	gi 148921	LicD protein [Haemophilus influenzae]	67	- 43	470
115	-	5982	5656	gi 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	67	44	122
						- +		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop (nt)	match acession	match gene name	s sin	* 1dent	length
115		8421	1 8077	91 466473	cellobiose phosphotransferase enzyme II' (Bacillus stearothermophilus)	67	51	345
127	=	8127	1 7021	91 147326	transport protein [Escherichia coli]	69	45	1107
136	_	1 2215	1 2859	gn1 PtD d100581	unknown (Bacillus subtills)	1 67	49	645
140	121	123317	20906	gn1 PID d101912	[phenylalanyl-tRNA synthetase (Synachocystis sp.)	1 67	43	2412
146	9	2894	1893	91 2182994	histidine kinase [Lactococcus lactis cremoris]	1 67	99	1002
151	80	111476	(11117	gn1 P10 d100085	ORP129 [Bacillus cereus]	69	48	360
160	0	7453	8646	91 2281317	OrfB; similar to a Streptococcus pneumoniae putative membrane protein encoded by GenBank Accession Number X99400; inactivation of the OrfB gene leads to UV-sensitivity and to decrease of homologous recombination (plasmidic test) [Lactococcus 1	67	46	1194
163	-	3099	4505	Ignt Pro drois17	YqfR (Bacillus subtilis)	67	47	1407
167	8	6704	5454	91/1161933	DitB [Lactobacillus casei]	69	45	1251
169	-	2322	1 2879	Ignt PID d101331	YqkG (Bacillus subtilis)	67	41	858
171	=	7656	8384	91 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	67	20 1	729
188		1930	3723	gi 1542975	AbcB (Thermoanserobacterium thermosulfurigenes)	69	46	1794
189	9	1 3599	3141	gn1 PID e325178	Hypothetical protein [Bacillus subtilis]	1 69	52	459
205	_	1663	1 2211	191 606073	ORF_0169 (Escherichia coli)	1 69	47	549
207	~	2896	3456	gi 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	67	64	561
217	-	4086	3703	gi 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	67	42	384
246	7	291	299	gi 1842438	unknown (Bacillus subtilis)	1 69	43	372
252	-	2	745	gi 2351768	PspA (Streptococcus pneumonlae)	1 69 1	41	744
592	_	1134	1811	gi 2313847	(AE000585) L-asparaginase II (ansB) [Helicobacter pylori]	69	42	678
295	7	1	375	91 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	1 69	43	375
1	_	4898	5146	gn1 PID e255179	unknown (Nycobacterium tuberculosis)	99	95	249
	-	389		gn1 PID e269548	Unknown (Bacillus subtilis)	99	48	387
2	20	19267	120805	91 39956	[IG]c [Bacillus subtilis]	99	50	1539
4	F	2545	2718	gi 1787564	(AE000228) phage shock protein C [Escherichia coli]	99	36	174
5	6	76161	12592	91 1574291	fimbrial transcription regulation repressor (pilB) (Haemophilus influenzae)	1 99	1 99	909
					→ {	+		

· S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont 1g ID	ORF	Start (nt)	Stop (nt)	match	match gene name	L sim	* ident	l length
6	-	2872	1451	gn1 PID e266928	[unknown [Mycobacterium tuberculosis]	99	43	1422
12	- 2	1469	1200	91 520407	[orf2; GTG start codon (Bacillus thuringiensis]	99	42	220
15	77	10979	1 9897	91 2314738	(AE000653) translation elongation factor EF-Ts (tsf) [Helicobacter pylori]	99	49	1083
16	7	1312	734	gn1 PID d102245	(AB005554) yxbF (Bacillus gubtilis)	99	35	579
22	~	1372	1881	91 1480916	signal peptidase type II (Lactococcus lactis)	99	82	9
73	7	5828	7096	gn1 PID e206261	gamma-glutamyl phosphate reductase Streptococcus thermophilus	99	16	967
22	20	16194	17138	gn1 P1D e281914	Yith (Bacillus subtilis)	99	95	
30	7	530	976	91 2314379	[AE000627] ABC transporter, ATP-binding protein (yhcG) [Helicobacter pylori]	99	40	447
32	-	199	984	191 312444	ORF2 (Bacillus caldo)yticus)		64	286
2	2	8352	7234	91 1387979	44% identity over 302 residues with hypothetical protein from Synechocystis sp. accession D64006_CD; expression induced by environmental stress; some similarity to glycosyl transferases; two potential membrane-spanning helices {Bacillus subtil	99	44	1119
~	9	8698	4708	gn1 PID e250724	orf2 (Lactobacillus sake)	99	39	951
34	71	9792	9574	[91 1590997	M. Jannaschii predicted coding region MJ0272 (Methanococcus jannaschii)	99	48	219
2	91	15163	14501	191 1773352	Cap5H Staphylococcus auxeus	99	46	699
36	-	6173	9769	91 1518680	minicell-associated protein DivIVA (Bacillus subtilis)	99	35	BOR
36		10396	10824	bbs 155344	insulin activator factor, INSAF (human, Pancreatic insulinoma, Peptide Partial, 744 aaj (Homo sapiens)	99	43	429
48	-	28	1419	gn1 P1D e325204	hypothetical protein (Bacillus subtilis)	99	50	1392
48	-	3810	4112	gi (2182574	(AE000090) Y4pE [Rhizobium sp. NGR234]	99	40	303
52	4	3595	2789	[91]388565	major cell-binding factor (Campylobacter jejuni)	99	52	807
75	-	2662	1076	gn1 PrD d101831	glutamine-binding periplasmic protein (Symechocystis sp.)	99	43	1587
61	100	9740	9183	5	mdr gene product (Staphylococcus aureus)	99	44	858
22	11	10893	11993	91 (2313129	(AE000526) H. pylori predicted coding region HP0049 [Helicobacter pylori]	99	44	1101
2	6	13267	112476	91 1573941	hypothetical (Haemophilus influenzae)	99	43	792
75		-	898	91 1574631	nicotinamide mononucleotide transporter (pnuC) (Haemophilus influenzae)	99	48	198
75	-	5303	4275	gi 41312	put. EBG repressor protein (Escherichia coli)	99	- 00	1029

S. pneumoniae - Putative coding regions of novel proteins Éfhilar to known proteins TABLE 2

Contig	10 P.F.	Start (nt)	Stop (nt)	acession	match gene name	. sim	* ident	length
82	~	6813	8123	gn1 PID e255128	trigger factor (Bacillus subtilis)	99	53	1311
8	-	905	1219	pir C33496 C334	hisc homolog - Bacillus subtilis	99	99	315
98	100	9407	8925	191 683584	shikimate kinase (Lactococcus lactis)	99	41	483
88	70	7001	0909	gi 2098719	putative fimbrial-associated protein (Actinomyces naeslundil)	99	52	942
68	-	951	7	91 410118	ORFX19 (Bacillus subtilis)	99	41	948
93	-	3661	11172	91 1787936	(AE000260) f298; This 298 aa orf is 51 pct identical (5 gaps) to 297 residues of an approx. 304 aa protein YCSN_BACSU SW: R41972 (Escherichia coli)	99	69	951
104	7	1805	3049	9111469784	putative cell division protein ftsw [Enterococcus hirae]	99	48	1245
106	7	13576	14253	gi 40027	homologous to E.coli gidB (Bacillus subtilis)	99	52	678
107	-	596	1864	91 144858	ORF A (Clostridium perfringens)	99	49	006
112	_	5718	6893	91 609332	DprA (Haemophilus influenzee)	99	43	876
115	-	3	302	191/727367	Hyrlp (Saccharomyces cerevisiae)	99	98	300
122	-	· -	996	gn1 PID d101328	Yqiy (Bacillus subtilis)	99	36	564
126	8	11759	11046	[gn1 PID d101163	ORF3 (Bacillus subtilis]	99	48	714
128	=	8201	8431	91 726288	growth associated protein CAP-43 [Xenopus laevis]	99	41 -	231
131	8	4894	4508	[gi 486661	TWnm related protein (Saccharomyces cerevisiae)	99	39	387
140		3236	2574	g1 40056	phoP gene product (Bacillus subtilis)	1 99	36	699
140	51	116318	15434	91 1658189	5,10-methylenetetrahydrofolate reductase (Erwinia carotovora)	99	48	885
146	= = = = = = = = = = = = = = = = = = = =	7926	7636	gn1 PrD d101140	transposase [Synechocystis sp.]	99	42	291
147	-	1 7137	6154	91 472326	TPP-dependent acetoin dehydrogenase alpha-subunit (Clostridium magnum)	99	48	984
149	9	4435	5430	gn1 PID d101887	pentose-5-phosphate-3-epimerase (Symechocystis sp.)	99	46	966
149	=	10754	11575	gi 42371	pyruvate formate-lyase activating enzyme (AA 1-246) (Escherichia coli)	99	42	822
186	-	2578	2270	gn1 PID d101199	ORF11 (Enterococcus faecalis)	99	41	309
207	-	2340	2597	gn1 PID e321893	envelope glycoprotein gpl60 (Human immunodeficiency virus type 1)	99	1 98	258
210		3358	3678	91 49318	ORF4 gene product (Bacillus subtilis)	99	99	321
712	8	5143	5355	91 49538	thrombin receptor (Cricetulus longicaudatus)	99	38	213
220	-	3875	3642	91 466648	alternate name ORFD of L23635 (Escherichia coli)	99	33	234

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	sim .	1 ident	length (nt)
223	-	1070	138	gn1 PID e247187	zinc finger protein (Bacteriophage phigle)	99	45	933
224	~	1 1864	2640	gi 1176399	putative ABC transporter subunit (Staphylococcus epidermidis)	99	7	ררד
243	-		872	dbj AB000617_2	(AB000617) YcdH [Bacillus subtilis]	99	45	670
368	~	1 891	999	94 517210	putative transposase [Streptococcus pyogenes]	99	09	324
322	-	~	643	19111499836	2n protesse (Methanococcus jannaschiil	99	0.0	642
S	10	113909	87161	91 1574292	hypothatical (Haemophilus influenzae)	65	34	732
ν	<u> </u>	10465	11190	91 142854	homologous to E. colf radC gene product and to unidentified protein from Staphylococcus aureus [Bacillus subtilis]	65	8	726
7	~	647	405	pir C64146 C641	hypothetical protein H10259 - Haemophilus influenzae (strain Rd KW20)	65	42	243
۲	-	6246	6821	gn1 P1D d101323	YqhU (Bacillus subtilis)	65	20	576
10	~	1 1873	1397	91/1163111	ORF-1 [Streptococcus pneumoniae]	65	54	477
91	~	1428	1 2222	gn1 PID e325010	hypothetical protein (Bacillus subtilis)	65	45	795
21	-	1 3815	7357	gn1 PID e314910	hypothetical protein (Staphylococcus sciuri)	65	40	459
22	134	125776	126384	91/1123030	CpxA [Actinobacillus pleuropneumoniae]	68	42	609
÷.	- 2	1 1648	290	gi 1044826	F14E5.1 [Caenorhabditis elegans]	65	38	1359
48	13	110062	10856	g1 1573390	hypothetical [Haemophilus influenzae]	65	45	795
9	122	17521	16883	191 1573391	hypothetical (Haemophilus influenzae)	65	37	639
8	125	119027	118533	gn1 PID e264484	YCR020c, len:215 [Saccharomyces cerevisiae]	65	38	495
49		1 3856	5334	91 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	65	32	1479
င္တ	9	5337	4519	[91]171963	tRNA isopentenyl transferase [Saccharomyces cerevisiae]	65	42	819
22	115	14728	15588	gi 1499745	M. jannaschii predicted coding region MJ0912 [Methanococcus jannaschii]	65	46	861
59	٠,	1 3963	4745	91 496514	orf zeta (Streptococcus pyogenes)	65	42	783
89		1 2500	3483	91 887824	ORF_0310 [Escherichia coli]	65	1 97	984
69	-	1 2171	1077	gn1 P1D e311453	unknown [Bacillus subtilis]	65	42	1095
69	۲	6209	5325	gi 809660	deoxyribose-phosphate aldolase (Bacillus subtilis)	65	55	705
17	5	8536	9783	gi 1573224	glycosyl transferase lgtC (GP:U14554_4) [Haemophilus influenzae]	65	42	1248
22		7664	8527	gn1 P1D e267589	Unknown, highly similar to several spermidine synthases (Bacillus subtilis)	9	39	864
	•				**************************************	• • • • • • • • • • • • • • • • • • • •		į

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig JD	ORF ID	Start (nt)	Stop (nt)	match	match gene name	e sin	1 ident	length (nt)
96	5	5773	4097	gn1 PID d101723	DNA REFAIR PROTEIN RECN (RECOMBINATION PROTEIN N). (Escherichia coli)	1 65	44	1677
76	6	8099	7875	91 1574276	exodeoxyribonuclease, small subunit (xse8) (Haemophilus influenzae)	9	38	225
84	~	2870	2352	91 (2313188	[AE000512] conserved hypothetical protein [Helicobacter pylori]	65	41	519
98	115	14495	13407	gn1 PID d101880]-dehydroquinate synthase (Synechocystis sp.	9	44	1089
67	-	3706	2423	(gi 151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii]	9	51	1284
88	7	2425	2736	1911098510	unknown [Lactococcus lactis]	65	30	312
68	~	1627	1007	gn1 PID d102008	(ABGO1488) SIMILAR TO ORF14 OF ENTEROCOCCUS FAECALIS TRANSPOSON TN916.	59	41	621
Ξ	9	6635	6186	gn1 PID e246063	NN23/nucleoside diphosphate kinase (Kenopus laevis)	65	90	450
116	-	e	1016	gn1 PID d101125	queuosine biosynthesis protein QueA (Synechocystis sp.)	1 65	44	1014
123	-	69	389	gi 498839	ORF2 (Clostridium perfringens)	65	36	321
123	_	6522	1190		DNA-binding response regulator (Thermotoga maritima)	1 65 1	39	699
125	_	3821	2859	gn1 PID e257609	sugar-binding transport protein (Anaerocellum thermophilum)	1 65	47	696
137	122	8015	7818	91 2182574	(AE000090) Y4pE (Rhizobium sp. NGR234)	65	41	198
147	4	5021	3885	94 472329	dihydrolipoamide acetyltransferase [Clostridium magnum]	65	47	1137
148	-	1053	1931	gn1 P1D d101319	YqgH (Bacillus subtilis)	1 65 1	42	879
181	7	3212	4687	91 304897	EcoE type I restriction modification enzyme M subunit [Escherichia coli]	9	20	1476
156	7	730	437	91 310893	membrane protein (Theileria parva)	1 65	47	294
164	-	4256	4837	191 410132	ORFX8 (Bacillus subtilis)	1 65	48	582
1691	9	3192	. 3914	19111552737	similar to purine nucleoside phosphorylase (deoD) (Escherichia coli)	9	41	723
176	-	2951	2220	gn1 PrD e339500	oligopeptide binding lipoprotein (Streptococcus pneumoniae)	65	65	732
195	-	4556	3900	91 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschil]	9	40	657
196		160	1572	gn1 P1D d102004	(ABOO1488) PROBABLE UDP-N-ACETYLMURANOYLALANYL-D-GLUTAHYL-2, 6- DIAMINOLIGASE (EC 6.3.2.15). (Bacillus subtilis)	65	51	1413
204	7	2246	1215	gi 143156	membrane bound protein (Bacillus subtilis)	65	37	1032
210	-	1544	1891	gi 49315	ORF1 gene product (Bacillus subtilis)	65	48	348
242	~	1625	723	91 1787540	(AE000226) f249; This 249 aa orf is 32 pct identical (8 gaps) to 244 residues of an approx. 272 aa protein AGAR_ECOLI SW: P42902 (Escherichia coli)	59	42	903
•			 		+ * * * * * * * * * * * * * * * * * * *		*	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

244 1 900 [51] S1508661 Characteristic bacteristics Characteristics Characteristics Characteristics Characteristics Characteristics Characteristics Characteristics Characteristics Characteristics Characteristics	Contig	2 C	Start (nt)	Stop (nt)	match	match gene name	Eis #	\$ ident	length
1 2 574 Gold Temple 200314 Universe in Procedure care in Abbrechists shift and in Abbrechists shift shift shift and in Abbrechists shift sh	284	-	-	006	91 559861				(nt)
1 2 589 pullpD[d102064 k. arogement C-C-epimetes (Nacchaetter Vinilandiii) 650 571 658 mullpD[d102064 k. arogement Mitteldien utilization represent P1220 (159) Disk banding 65 65 65 65 65 65 65 6	304	-	7	574	gn1 P1D e290934	unknown (Mycobacterium tuberculosis)		97	006
1 1 1 1 1 1 1 1 1 1	315	-	2	1483	gi 790694	C-5-epimerase		76	676
1 7 7731 (666) [111041921] [11104192] [1	320	-		898	gn1 PID d102048	aerogenes, Bacillus suk	59	946	1482
1 131 1666	358	-	-	309	gn1 PID e323508				
4 312 6802 gnilpid[didili] mathionine aninopopidase [Synethocyatia sp.] 64 52 52 53 53 58 61 1045933 pub. Mathionine aninopopidase [Synethocyatia sp.] 64 65 65 65 65 65 65 65	7	_	1757	9699	1	Inicotinate-nucleotide pyrophosphorylase Rhodosnirillum ruhrum)			908
4 1379 1866 91 1015335 10Rh helicuse II (Hycoplasma genitalium] 64 56 56 56 56 56 56 56	9	9	5924	6802	[gn1 P10 d101111	methionine aminopeptidase (Symechocystis sp.)		47	976
4 2729 2694 7145 9101/PIDIGASSS239 OrdER Streptococcus pneumoniae 64 66 66 66 66 66 66	8	-	1 3417	1 3686	fgi 1045935		P 0	25	879
11 1958 1989 join projecting homolog (Bearillus subtilis)	11	-	3249	2689	gn1 PID e265529	OrfB (Streptococcus pneumoniae)	5	80	270
11 9548 9895 gail Pirigloio581 unknown laacillus subtilis 10 12750 73174 gil 28260 comm CORF! Bacillus subtilis 64 36 44 46 46 46 46 4	15	_	6504	7145	91 1762328			9	561
10 12201 121174	22	Ξ.	9548	9895	gn1 PID d100581	_	5		042
7 14375 14199 91 409286	22	20	122503	1					348
2 1510 1334 gil40795 Ddel mathylage (Dosulfovibrio vulgaris)	56	_	114375	14199	gi 409286		-	9	672
2 614 297 gil12126168 type VII collagen (Hus musculus) 64 50 2 168 721 pir JCI151 JCI1 hypothetical 20.3K protein (Intertion sequence ISI111) - Agrobacterium 64 50 1 3 449 gil46970 epiD gene product (Staphylococcus epidermidis) 64 45 1 4683 4976 gil1PID e125792 (AJ000005) glucose kinase (Bacillus megaterium) 64 46 46 2 301 1059 gil41985 nif5-like gene [Lactabacillus delbrueckii] 64 46 34 3 1157 555 gil1574292 hypothetical (Heemophilus influenzee) 64 47 64 47 64 3 1157 555 gil1574292 hypothetical (Heemophilus influenzee) 64 47 64 4 5 5211 6556 gil419655 malh) gene products (Becillus stampilus) 64 47 64 5 5211 6556 gil419655 (malh) gene products (Becillus stampilus) 64 47 13 6 535 gil43665 malh) gene products (Becillus stampilus) 64 47 13 6 535 gil43665 malh) gene products (Becillus stampilus) 64 47 13 6 535 gil43665 malh) gene products (Becillus stampilus) 64 47 13 6 5356 6556 6	72	~	1510	1334	gi 40795	DdeI methylase (Desulfovibrio vulgaris)		05	7.71
1 3 449 91 451 501 452 501 452 502 452 468 452 468 452 468 452 468 452 468 452 468 452 468 472 468 472 468 472 472 472 472 472 472 472 472 472 472 472 472 472 472 472 473 474 472 473 474 474 475 474 475	29		614	297	91 2326168	type VII collagen (Mus musculus)	20	76	177
1 3 449 gi 46970 epiD gene product (Staphylococcus epidermidis)	35	~	368	721	pir Jensi Jen	20.3K protein (insertion sequence IS1131) -	***	05	318
7 4683 4976 gnl PID e325792 (AJ0000005) glucose kinase [Bacillus megaterium]				- 7			- -	- -	
7 4683 4976 gnl PID e325792 (AJ000005) glucose kinase Bacillus megaterium 64 45 46 1 1 1 1 1 1 1 1 1	2		-	449	91 46970	epiD gene product (Staphylococcus epidermidis)	- 64	41	447
7 8068 6920 gnl PID[d102036 subunit of ADP-glucose pyrophosphorylase [Bacillus stearothermophilus] 64 40 2 301 1059 gi 43985 InifS-like gene (Lactobacillus delbruackii) 64 54 54 3 1157 555 gi 1574292 hypothetical [Haemophilus influenzae] 64 47 4 4356 gi 1574292 hypothetical [Haemophilus influenzae] 64 47 1 3 1259 gi 895749 putative cellobiose phosphorranaferase enzyme II' (Bacillus subtilis) 64 47 5 5213 6556 gi 436965 [(malA)] gene products (Bacillus stearothermophilus) 64 47 6 5356 4949 gnl PID[d101316 cdd [Bacillus subtilis] 64 67 6 5356 4949 gnl PID[d101316 cdd [Bacillus subtilis] 64 67 7 655 6469 gnl PID[d101316 cdd [Bacillus subtilis] 64 67 8 6356 6449 gnl PID[d101316 cdd [Bacillus subtilis] 64 67 9 64 64 64 64 64 64 64	0		4683	4976	gn1 PID e325792	(AJ000005) glucose kinase (Bacillus megaterium)	64	45	294
2 301 1059 gi 43985 inifs-like gene [Lactobacillus delbrueckii] 64 54 54 13 15251 18397 gi 2293260 [AF008220] DNA-polymerase III alpha-chain [Bacillus subtilis] 64 46 47 47 47 47 47 47	45		8068	6920		of ADP-glucose pyrophosphorylase (Bacillus	64	40	1149
13 15251 18397 gi[2293260 (AF008220) DNA-polymerase III alpha-chain (Bacillus subtilis) 64 46 3 3 1157 555 gi[1573826 alanyl-tRNA synthetase (alaS) [Haemophilus influenzae] 64 47 1 3 1259 gi[895749 putative cellobiose phosphotransferase enzyme II' [Bacillus subtilis] 64 42 1 5 5213 6556 gi[436965 [malA] gene products (Bacillus stearothermophilus) 64 47 1 1 1 1 1 1 1 1 1	51	7	301		gi 43985	nifS-like gene [Lactobacillus delbrueckii]	64 1	5.4	926
3 1157 555 [gil574292 [hypothetical [Haemophilus influenzae] 64 47 2 4236 1606 [gi 573826 alanyl-tRNA synthetase (alas) [Haemophilus influenzae] 64 51 1 3 1259 [gi 895749 [putative cellobiose phosphotranaferase enzyme II.* [Bacillus subtilis] 64 42 5 5213 6556 [gi 436965 [[malA] gene products [Bacillus stearothermophilus] 64 47 6 5356 4949 [gn1] PID[d101316 [cdd [Bacillus subtilis] 64 47	_	_;	_;	_	91 2293260		64	46	
2 4236 1606 Gi 1573826 alanyl-tRNA synthetase (alaS) [Haemophilus influenzee] 64 51 2 3 1259 gi 895749 putative cellobiose phosphotransferase enzyme II' [Bacillus subtilis] 64 42 1 5 5213 6556 gi 436965 [(malA) gene products (Bacillus stearothermophilus) 64 47 1 6 5356 4949 Gn1 Pip d101316 Cdd (Bacillus subtilis) 64 47 1 64 67 64 67 1 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 67	53	-	1157	_		•	1 63		
1 3 1259 gi 895749	88	~	4236		91 1573826				500
5 5213 6556 gild36965 [malA] gene products (Bacillus stearothermophilus) 64 47 6 5356 4949 gnl PID[d101316 Cdd (Bacillus subtilis) 64 64 65 65 65 65 65 65	99	_	3	•	91 895749	cellobiose phosphotransferase enzyme II''			1607
6 5356 4949 gnl PID d101316 Cdd Bacillus subtilis	68	2	5213		91 436965	gene products (Bacillus stearothermophilus)			1621
	69	9	5356	-	9	Cdd [Bacillus subtilis]			1366

S. pneumoniae - Putative coding regions of novel proteins Minilar to known proteins

			,	acession		-	_	(111)
74	4	6948	5038	91 726480	L-glutamine-D-fructose-6-phosphate smidotransferase [Bacillus subtilis]	64	20	1911
27		1283	1465	bbs 133379	TLS-CHOP=fusion protein(CHOP=C/EBP transcription factor, TLS=nuclear RNA-binding protein) human, myxoid liposarcomas cells, Peptide Hutant, 462 aa) [Homo sapiens]	49	57	183
1 9 1	13	14016	14231	gi 143175	methanol dehydrogenase alpha-10 subunit (Bacillus sp.)	64	35	216
83	22	21851	122090	gn1 PID d101315	YqfA (Bacillus subtilis)	64	77	240
87	11	10046	9300	gn1 PID e323505	putative Ptcl protein [Bacillus subtilis]	64	43	747
86	-	5032	5706	gn1 PID e233880	hypothetical protein [Bacillus subtilis]	64	38	675
105	-	2	1276	gi 1657503	similar to S. aureus mercury(II) reductase [Escherichia coli]	64	45	1275
113	_	5136	6410	gn1 P1D d101119	NifS (Synechocystis sp.)	64	05	1275
119	-	7	1297	gn1 P1D e320520	hypothetical protein (Natronobacterium pharaonis)	64	37	1296
123	-	1125	2156	gn1 PID e253284	ORF YDL244w [Saccharomyces cerevisiae]	64	0.7	1032
124	2	2331	1780	PID d101884	hypothetical protein (Synechocystis sp.)	64	005	552
129	-	3467	2709	gn1 P1D d101314	YqeU (Bacillus subtilis	89	52	759
131	-	152	~	gi 1377841	unknown (Bacillus subtilis)	8	42	150
	11	7196	7549	p(r JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid 71	64	05	354
139	-	3226	2651	gi 2293301	(AP008220) YtqB (Bacillus subtilis)	64	44	978
146	10	6730	5648	gi 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	64	45	1083
1 147	~	2	1018	gn1 P1D e137033	unknown gene product (Lactobacillus leichmannii)		46	101
148	11	8430	8783	[gi 2130630	(AF000430) dynamin-like protein (Homo sapiens)	64	28	354
156	_	4313	3612	gn1 PID d102050	transmembrane (Bacillus subtilis)	64	31	702
157	4	1299	2114	gn1 PID d100892	homologous to Gln transport system permease proteins (Bacillus subtilis)	64	43	816
162	9	5880	6362	91 517204	ORF1, putative 42 kDa protein [Streptococcus pyogenes]	64	88	483
		9707	8769	gn1 P1D d100964	homologue of ferric anguibactin transport system permerase protein FatD of V. anguillarum [Bacillus subtilis]	59	0.0	939
175	5	3906	4598	91 534045	antiterminator (Bacillus subtilis)	64	39	693
189	10	6154	6507	101 581307	response regulator (Lactobacillus plantarum)	- 99	. EE	354
191	-	3519	2863	91 149520	phosphoribosyl anthranilate isomerase [Lactococcus lactis]	64	46	657

S. pneumoniae - Putative coding regions of novel proteins Vimilar to known proteins

202	76 234			/ 1 = = = 1 = = = = = = = = = = = = = =	-		+
	234	1140	gn1 PID e293806	O-acetylhomoserine sulfhydrylage. [Leptospire meyeri]		47	1065
_		1571	91 1573393	collagenase (prtC) (Haemophilus influenzae	64	42	1338
	291	647	191 40174	ORF X (Bacillus subtilis)	64	43	357
253 3	709	1089	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	64	95	381
265 [1]	820	~	91 1377832	unknown (Bacillus subtilis)	64	31	819
297 1	-	099	91 (159087)	collagenase (Methanococcus jannaschii)	64	- 82	999
328 1	263	21	91 992651	Gin4p [Saccharomyces cerevisiae]	64	41	243
5 4	8730	8098	91 [556885	Unknown (Bacillus subtilis)	63	6.6	633
9 01	5178	4483	191 (1573101	hypothetical [Haemophilus influenzae]	63	40	969
12 11	9324	9902	91 806536	membrane protein (Bacillus acidopullulyticus)	63	42	1 678
2	8897	9187	91 (722339	unknown (Acetobacter xylinum)	63	40	291
-	1031	309	gn1 P10 e217602	Pinu (Lactobacillus plantarum)	63	32	723
18 81	8777	6975		unknown (Bacillus subtilis)	63	45	804
26 4	9780	7078		ATP-dependent nuclease (Bacillus subtilis)	63	96	2703
29 5	3488	4192	gi 1377829	unknown (Bacillus subtilis)	63	35	105
34 11	8830	7988	gn1 P10 d101198	ORF8 (Enterococcus faecalis)	63	45	843
- 6	1187	876	pi 722339	unknown [Acetobacter xylinum]	63	39	312
48 15 1	12509	11691	91 11573389	hypothetical (Haemophilus influenzae)	63	41	819
111	6	12189	Bi 142450	ahrC protein (Bacillus subtilis)	63	35	531
55 4	3979	5032	gi 1708640	YeaB (Bacillus subtilis)	63	41 -	1044
55 15	13669	14670	gn1 PID e311502	thioredoxine reductase (Bacillus subtilis)	63	44	1002
68 10	9242	8919	sp P37686 Y1AY_	HYPOTHETICAL 40.2 KD PROTEIN IN AUTA-SELB INTERGENIC REGION (F382).	63	40	324
96 7	6554	5685	gi 1574382	lic-1 operon protein (licD) (Haemophilus influenzae)	63	41	870
8 8 8	6085	5180	gi 2098719	putative fimbrial-associated protein (Actinomyces naeslundii)	63	43	1 906
96 8	\$858	6484	91 11052803	orfigyrb gene product (Streptococcus pneumoniae)	63	38	627
100 1	240	1940	1717 18	[ucosidase [Dictyostellum discoideum]	63	36	1701

S. pneumoniae - Putative coding regions of noval proteins similar to known proteins

						•	•	•
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	a is	• ident	length (nt)
104	-	3063	5765	91 144985	phosphoenolpyruvate carboxylage [Corynebacterium glutamicum]	63	96	2703
106	8	9189	8554	gi 533099	endonuclease III (Bacillus subtilis)	63	45	636
122	9	4704	4886	gn1 PID d101139	transposase (Synechocystis sp.)	63	39	183
128	-	4517	5203	gn1 PID d101434	orf2 [Nathanobacterium thermoautotrophicum]	63	20	687
137	~	963	1547	gi 472920	v-type Na-ATPase (Enterococcus hirae)	63	27	585
142	_	4100	4585	gn1 PID e313025	hypothetical protein (Bacillus subtilis)	63	44	486
159	ر 	1741	2571	91 1787043	(AE000184) £271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 [Escherichia coli)	63	39	831
171	112	8803	14406	gn1 P1D e324918	IgAl protease (Streptococcus sanguis)	63	48	5604
17.1	-		347	1911173150	hypothetical 14.8kd protein (Escherichia coli)	63	34	345
178	~	423	1917	91 722339	unknown (Acetobacter xylinum)	63	41	495
178	_	794	1012	gi 1591582	cobalamin biosynthesis protein N (Methanococcus jannaschii)	63	36	219
195	-	7.51	571	[gn1 P1D e324217	[ftsQ [Enterococcus hirae]	63	33	1203
234	2	1739	1527	91 1591582	cobalamin biosynthesis protein N (Methanococcus jannaschii)	63	36	213
249	-	81	257	gi 1000453	Trek (Bacillus subtilis)	63	41	1 771
283	-	127	1 1347	gi 396486	ORF8 (Bacillus subtilis)	63	44	1221
293	-	2804	3466	191 722339	unknown (Acetobacter xylinum)	63	37	663
311	-	908	486	gi 1877424	UDP-galactose 4-epimerase (Streptococcus mutans)	63	46	420
324	7	2	556	191 1477741	histidine periplasmic binding protein P29 (Campylobacter jejuni)	63	36	555
365	-	219	13	gi 2252843	(AF013293) No definition line found (Arabidopsis thaliana)	63	33	207
382	-	98	378	gi 722339	unknown (Acetobacter xylinum)	63	40	291
385	-	364	158	91 2252843	(AF013293) No definition line found (Arabidopsis thallana)	63	33	207
7	-	2495	288	gn1 PID e325007	penicillin-binding protein (Bacillus subtilis)	62	42	2208
	23	23374	24231	gn1 P1D 6254993	hypothetical protein (Bacillus subtilis)	62	35	858
9	116	14320	13193	gn1 PID e349614	inifS-like protein (Mycobacterium leprae)	62	37	1128
7	8	6819	1232	gn1 P1D d101324	[Bacil	62	32	414
7	61	115466	14207	gn1 PID d101804	beta ketoacyl-acyl carrier protein synthase (Synechocystis sp.)	62	43	1260
		•				•	•	•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sin	* ident	length (nt)
,	121	117155	116229	gn1 P1D e323514	putative FabD protein (Bacillus: subtilis)	62	46	927
	24	19526	118519	91 (1276434	beta-ketoacyl-ACP synthase III (Cuphea wright!!)	62	37	1008
12	_	5904	4702	91 1573768	A/G-specific adenine glycosylase (mutY) [Haemophilus influenzae]	62	43	1203
1 12	6	8032	8793	gi 1591587	pantothenate metabolism flavoprotein [Methanococcus jannaschil]	62	33	762
<u>.</u>	=_	9678	9328	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain P022) plasmid Ti	62	\$	351
۲.	-	2609	2442	[91 1591081	M. Jannaschii predicted coding region MJ0374 (Methanoceccus jannaschii)	62	43	168
17	s	3053	2835	91 149570	role in the expression of lactacin F, part of the laf operon (Lactobacillus sp.)	62	77	219
22	10	18627	9538	[gn1 PID d100580	(similar to B. subtilis DnaH (Bacillus subtilis)	62	43	912
30		865	2043	91 2314379	(AE000627) ABC transporter, ATP-binding protein (yhcG) (Helicobacter pylori)	62	43	1179
2	2	2235	1636	91 413976	ipa-52r gene product (Bacillus subtilis)	62	44	009
38	=======================================	1 5689	6123	91 148231		62	34	435
40	12	114272	13328	gn1 PID d101904	hypothetical protein (Symechocystis sp.)	62	43	945
43	-		116	91/1146182	[putative [Bacillus subtilis]	62	41	1 600
44	~_	1267	4005	91 1786952	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 as hypothetical protein fragment YBGB_ECOLI SW: PS4746 (Escherichia coli)	62	43	2739
48	-2	9732	9304	gi 662920	repressor protein (Enterococcus hirae)	62	32	429
51	8	1 5664	7181	gn1 PID e301153	Styski mathylase (salmonella enterica)	62	44	1518
52	-	2791	2099	91/1183886	integral membrane protein (Bacillus subtilis)	62	41	693
55	116	115702	14704	gn1 P1D e313028	hypothetical protein (Bacillus subtilis)	62	- 09	1 666
59	9	3418	3984	91 2065483	unknown [Lactococcus lactis lactis]	62	32	567
3	5	4997	4809	gi 149771	pilin gene inverting protein (PivML) (Moraxella lacunata)	62	28	189
0,	=	10002	10739	191 992977	bplG gene product (Bordetella pertussis)	62	45	738
17	2	18790	20382	91 1280135	coded for by C. elegans CDNA cm21e6; coded for by C. elegans cDNA cm01e2; similar to melibiose carrier protein (thiomethylgalactosido permease II) [Caenorhabditis elegans]	62	63	1593
יי	28	71221	32768	[gn1 PID d101312	YqeG [Bacillus subtilis]	62	35	552
74	_	11666	110383	91 1552753	hypothetical (Escherichia coli)	62	38	1284
					º → 「 4	+	•	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	ORF CI	Start (nt)	Stop (nt)	match acession	match gene name	mis a	& ident	length
80	8	9370	6096	[gn1 P1D d102002	(AB001488) FUNCTION UNKNOWN. (Bacillus subtilis)	<i>C9</i>	77	(au)
7.6	2	9068	1 7041	91 882463	protein-N(pl)-phosphohistidine-sugar phosphotransforase (Forbaciania)	3 (087
86	4	2306	3268	gn1 P1D d101496	BraE (Integral membrane protein) (Pseudomonas aerusinosa)	70	7 47	2028
102	<u> </u>	1 2823	3539			70	2	963
103	m 	2795	1242	gn1 P1D d102049	H. influenzae hypothetical ABC transporter; P44808 (974) (Bacillus subtilis)	62	41	1554
111	7	1 2035	3462	gi 581297	NisP [Lactococcus lactis]			
112		3154	4080	gi 1574379	lic-1 operon protein (lica) (Haemophilus influenzas)	70	7	1428
112	9	4939	5649	gi 1574381	lic-1 operon protein (licc) (Haemophilus influenzas)	70	2	927
124	-	1137	721	91 1573024	anaerobic ribonucleoside-triphosphate reductase (nrdD) (Haemophilus	62	65	417
124	9	3162	2329	gi 609076	leucyl aminopeptidese [Lactobacillus delbrueckii]			
126	_	111073	7516	gn1 P1D d101163	ORF4 (Bacillus subtilis)	3		- BEB
129	9	4983	4540	pir S41509 S415	zinc finger protein EF6 - Chilo iridescent virus	3	000	accr
101		4510	4103	gi 1857245	unknown [Lactococcus lactis]	70	88	944
149		1923	2579	91 1592142	ABC transporter, probable ATP-binding submit 1945.	62	42	408
149		5360	6055	gn1 P1D e323508		62	41	657
156	-	450	238	gn1 P1D e254644	ein Stree	62	00	969
156	9	3606	2935	gn1 P1D d102050		62	40	213
171	- 2	1779	1622	gi 43941	EIII-B Sor PTS (Klebstella monamonical	62	37	672
172	7	385	723		putative cellobiose phosphotransferase envises III (n. 1)	62	35	513
173	~	2599	893	732	cobalt transport ATP-binding protein 0 (Methanococcus inneashii)	29	66	339
179	7	492	1754	gi 1574071	I1038 (Haemorhi	7	72	1707
181	9	2856	3707	91 1777435		7 5	97	1263
165	~	2074	311	91/2182397	(AE000073) Y4fN (Rhizobium sp. NGR234)	3	7,	452 H
200	~	1001	1984	1911450566	transmembrane protein (Bacillus subtilis)	70	61	1764
202	~	2583	3473	191/42219	P35 gene product (AA 1 - 314) (Escherichia colii	79	37	924
210	_	1374	1565	91 49315	ORF1 gene product [Bacillus subtilis]	79	- 17	891
•	•	+				62	45 -	192
								*

S. pneumoniae - Putative coding regions of novel proteins'slailar to known proteins

	*****				•			
Contig	ID	Start (nt)	Stop (nt)	match	match gene namo	sia	* ident	length
211	_	~	176	91 147402	mannose permease subunit III-Man (Escherichia coli)	63		(100)
223	-	1495	1034	lanl Pip dioi 190	ORF2 (Streptococc	C	3 5	KON -
228	-	34	606	[g1]530063	glycerol uptake facilitator Straptococcus pneumoniaa	;		705
234	7	90	917	gi 2293259	(AF008220) Ytq1 (Bacillus subtilis)	78	4	916
292	2	1765	1467	gn1 PID e276475	galactokinase (Arabidopsis	70	86	828
375	-	-	159	91 1674231	(AE000052) Mycoplasma pneumoniae, hypothetical protein homolog; similar to Swiss-Prot Accession Number P35155, from B. subtilis (Mycoplasma pneumoniae)	62 62	40	972
385	-	584	1357	gi 1573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]		43	
_	1 61	18550	19269	191 606162	ORF_f229 Escherichia coli	13	; ;	
,	4	2725	3225	91 2114425	similar to Synechocystis sp. hypothetical protein, encoded by GenBank Accession Number D64006 (Bacillus subtliis)	61	42	501
	•	3326	3054	gi 149569	lactacin F (Lactobacillus sp.)	61	43	223
3	-	4061	4957	gn1 PID d101068	xylose repressor (Synechocystis sp.)	1 19	9	
- 54		8388	7234	gn1 PID d101329	YqjH (Bacillus subtilis)		3	760
52	9	3974	6037	gnl PID d101316	Yqfk (Bacillus subtilis)	19		200
58	-	1356	6565	Sp P45169 POTC_	SPERMIDINE/PUTRESCINE TRANSPORT SYSTEM PERMEASE PROTEIN POTC.	- 19		
67	-	~	692	91 537108	ORP_£254 (Escherichia coli)		3	76/
68	6	8816	7890	gi 19501	PPLZ12 gene product (AA 1-184) {Lupinus polyphy]lus	;		060
	15		12008	91 992976	bplF gene product (Bordetella pertussis)	7	7	927
72	-	9759	10202	gn1 P1D d101833	carboxynorspermidine decarboxylase [Synechocystis sp.]		36	1272
76	-	7881	7003		[farnesyl diphosphate synthase [Bacillus stearothermophilus]	5 5	95	000
87	-	4914	3697	91 528991	unknown (Bacillus subtilis)			679
	13		11361	gi 1789683	(AE000407) methionyl-tRNA formyltransferase [Escherichia coli]	- 19	77	1218
16	-	1167	2989	91 537080	ribonucleoside triphosphate reductase (Escherichia coli)	61 1	45	1000
105	-	2711	3499		hypothetical protein (Symechocystis sp.)	61	44	186
511	- † -	7968	6478	gi 895747	putative cel operon regulator (Bacillus subtilis)	61	36	1491
	5	7181	8518	8i 1209527	protein histidine kinase (Enterococcus faecalis)	61	40	1338
						100000		

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	;		 	match	match dene name			* +
or !	2	(at)	(at)	acession		e sim	t ident	length
126	·	7525	6725	gi 1787043	(AE000184) f271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 [Escherichia coli]		38	801
128	-		639	gn1 P1D d101328	Yqir (Bacillus subtilis)			
139	-	4794	5054	91/1022726	unknown (Staphylococcus haemolyticus)	70	7	639
139	<u> </u>	112632	1 5913	gn1 PID e270014	beta-galactosidase (Thermoanaerohacter ethanolism:	01	7	261
143	-	2552	42	91 520541		61	7	6720
148	- - -	12125	111424	 gi 1552743	forest the chartering	61	42	2511
162	-	4)12	3456	gn1 PID d101829	phosphoglycolate phosphatase (Synachocystis sn.)	61	42	102
27.1		127	1077	gn1 P1D d102048	B. subtilis, cellobiose phosphotransferase system, celA; P46318 (220)	61	44	351
117	-	1101	2771	[gn1 PID d100574	unknown (Bacillus subtilis)			
202	7	1 1278	1 2585	91/1045831	hypothetical protein (GB:L18965_6) [Mycoplasma cenital[]		3	672
224	-	2782	3144	91 1591144	on MJ0440 (M	10	36	1308
225	-	1 3395	3766	91 1552774		19 1	30	363
249	~	212	805	[91]1000453	TreR (Bacillus subtills)	019	0	372
254	-	843	184		ORF120 (Escherichia coli)	7	42	591
257	-	3	1 350		unknown (Mycobacterium tuberculogia)	19	36	360
293		3971	3657	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1111) - Agrobacterium tumefaciens (errain popo) allementation sequence IS1111) - Agrobacterium	19	45	348
101	-	949	11	91/2291209	ntains similarity to souly conference of		-	
נינ	-	1066	1 287	1911393396	CTrvanceome brace	19	1 66	933
	24	24473	24955	91 537093			38	780
9	2	4636	5739	91 2293258	(AF008220) Ycol (Bacillus subtilis)	00	1 /7	483
9		11936	111187	293017	ORP3 (put.); putative [Lactococcus lactis]	00	35	1104
7.1	2	6009	6484	91 149569	lactacin F (Lactobacillus sp.)	09	44	750
18	_	7.69	5670	91/1788140	0481; This 481 as orf is 35 per identical	09	32	225
	Ĭ		-	÷	NOL1_HUMAN SW:	09	 -	1308
20	115	15878	17167	gn1 PiD di00584	unknown (Bacillus subtilis)	09	44	1290

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

10 10	ID (nt)	(nt)	acession	match gene name	eis •	f ident	length (nt)
22 1	1 1	243	gn1 PID d102050	transmembrane (Bacillus subtilis)	09	36	243
32 10	0 8296	8964	gi 2293275	(AF008220) YtaG (Bacillus subtilis)	09	37	699
38 15	5 8837	1 9697	91 (40023	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB (Bacillus subtilis)	09	35	861
43 6	6 8610	5944	191 (171787	protein kinase 1 (Saccharomyces cerevisiae)	09	36	2667
44 1		1269	gn1 PID e235823	unknown (Schizosaccharomyces pombe)	9	4	1269
45 110	0 11138	110368	91 397488	1.4-alpha-glucan branching enzyme [Bacillus subtilis]	09	45	177
48	9 115766	114378	gn1 PID c205173	orfl [Lactobacillus helveticus]	09	39	1389
_	1 16,727	116951	gal PID d102041	(AB002668) unnamed protein product [Haemophilus actinomycetemcomitans]	1 09	32	225
S0 1	7	868	gn1 P1D e246537	ORP286 protein [Pseudomonas stutzeri]	09	31	168
62 2	2 638	11177	gn1 P1D d100587	unknown (Bacillus subtilis)	09	42	540
69 4	4 3590	5203	gi 1573583	H. influenzae predicted coding region H10594 (Haemophilus influenzae)	1 09	36	1614
70 111	1 5781	6182	gn1 PID d102014	(AB001488) SIMILAR TO YDFR GENE PRODUCT OF THIS ENTRY (YDFR_BACSU).	09	33	402
70 112	2 6343	1 8133	gn1 PID e324970	hypothetical protein (Bacillus subtilis)	1 09	38	1911
71 8	-	14157	191 580866	[tpa-12d gene product [Bacillus subtilis]	09	33	2457
74 8	8 (12509	11664	gn1 P1D d101832	phosphatidato cytidylyltransferase (Symechocystis sp.	1 09	45	846
76 4	4116	1 3367	gi 2352096 	orf; similar to serine/threonine protein phosphatase (Fervidobacterium islandicum)	09	39	750
80	4 7372	2992	gi 1786420 	(AED00131) f86; 100 pct identical to GB: ECODINJ_6 ACCESSION; D38582 (Escherichia col1)	09	30	294
81 6	6 4073	4522	gi 147402	mannose permease subunit III-Man (Escherichia coli)	09	35	450
86 1	1 940	1 155	[91[143177	putative (Bacillus subtilis)	09	26	786
92 1	1	192	91 396348	homoserine transsuctinylase (Escherichia coli)	1 09	45	192
93	10619	9384	91 1788389	(AEG00297) o464, This 464 as orf is 33 pct identical (9 gaps) to 331 residues of an approx. 416 as protein MTRC_NEIGO SW: P43505 (Escherichia coli)	09	27	1236
94 5	5 5548	8121	gn1 P1D e329895	(AJ000496) cyclic nucleotide-gated channel beta subunit (Rattus norvegicus)	09	20	2574
97 7	1 5396	4533	gi 1591396	transketolase' (Methanococcus jannaschii)	- 09	43	864
102 2	2 2081	2833	gn1 P1D e320929	hypothetical protein (Mycobacterium tuberculosis)	- 03	* -	

S. pneumoniae - Putative coding regions of novel proteins withlar to known proteins

2	ID (nt)		acession	מנום ומונט	mis *	• ident	length
-	6 9773	9183	gn1 PrD e334782	Ylbn protein (Bacillus subtilis	09		105
113	8 6361	6837	gi 466875	nifU; B1496_C1_157 [Hycobacterium leprae]	09	43	7.70
-	2 2755	_	gn1 PrD e328143	(AJ000332) Glucosidase II (Homo sapiens)	09	: :	
-	7 4763	1 5068	gn1 PID d101876	transposase (Synechocystis sp.)	9		2625
-	8 4510	1 5283	91 1177938	Pgm (Treponema pallidum)		6	900
138	4 3082	1 2672	gn1 PID e325196	hypothetical pratein (Barillia subtilia)	00	98	87.
139 1	1 177	P	gn1 P1D d100680	thermophilusi	09	36	411
119 (11	 =-	1=	91 537145	ORF_[437 [Escherichia coli]	00	88	174
-	2 2592	1249	gi 1209527	protein histidine kinase (Enterococcus faecalis)			7767
161 11	1 210	1049	91 463181	ES ORF from bp 3842 to 4081; putative (Human parillomanians 231		,	1344
-	5 5368	6405	gi 145362	tyrosine-sensitive DAMP synthase (aros) (Bechasicht, 11)	00	96	840
-	6 3558	1 4049	Bi 600711		09	19	1038
148 [10	-	8713	[9n1 PID e313022	hypothetical protein (Bacillus subtilis)	00	37	492
153 5	5 3667	1 4278	gi 2293322	(AP008220) branch-chain amino acid transporter (b.11).	00	/2	972
155 1 1	1 1413	1 248	10112104804	the state of the s	09	42	612
-	- ‡ -		BOCBOT7 TAI	purative UDF-giucose dehydrogenase [Escherichia coli]	09	40	999
5 - 967	3116	1 2472	gn1 Pip d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	09	37	645
159 1 3	1 778	1386	gn1 P1D e308090	product highly similar to Bacillus anthracis CapA protein (Bacillus subtilis)	09	48	609
163 7	8049	8468	gn1 PID d101313	YqaN (Bacilius subtilis)	09	. 8°	430
170	4130	1 2688	191 11574179	H. influenzae predicted coding region HI1244 (Haemophilus influenzae)	9	0,000	
7 171	_	1 5901	91 606076	ORF_0384 (Escherichia coli)	9		
183 3	-	1 2135	gi 1877427	repressor (Streptococcus pyogenes phage T12)	9		1906
191 [10	-	8428	gi 415664	catabolite control protein (Bacillus megaterium)	9		
200 1	139	1083	91 438462	transmembrane protein (Bacillus subtilis)	09	7.6	946
201 3	1 3895	1928	g1 475112	enzyme llabc (Pediococcus pentosaceus)	1 09	39	8491
214 15	110930	110439	gi 1573407	hypothetical (Haemophilus influenzae)	1 09	39	492
218 4	2145	2363	91 608520	myosin heavy chain kinase A (Informatellim discipling			

S. pneumoniae - Putative coding regions of novel proteins s如何lar to known proteins

1 725 2 jul 10270 ju	Contig	ORF S	Start (nt)	Stop (nt)	match acession	match gene name	eis *	& ident	length
1 13 13 14 13 15 16 13 16 133 16 133 16 13 18 16 18 16 10 18 16 16 16 16 16 16 16 16 16 17 16 16 17 16 16 16 16 17 16 16 16 17 16 16 16 16 16 17 16 16 17 16 16 16 17 16 16 17 16 16 17 16 16 16 16 17 16 16 16 16 16 16 16 16 16 16 17 16 16 16 16 16 16 16 16	-	-	1518	2351	gi 437705	1			(10)
1 192 42 14 1244 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15	242	-	725	-	91 43938		3	3 3	907
1 1959 642 [61][131324] [100] [Strophylococcus aurewal] 600 32 32 32 32 32 32 32	245	-	1	288	qi 304897	type I restriction modification enzyme H subunit (Escherichia		7	723
9 1 989 82 [91] [157944 [799] [streptedeccus gooddenil] 60 32 0 1 158 96 [91532173] [be-chylammelline chlocolydrolane (bethanococcus januaceklil 60 32 1 445 9 [911532173] [be-chylammelline chlocolydrolane (bethanococcus januaceklil 60 40 1 445 9 [911532173] [be-chylammelline chlocolydrolane (bethanococcus januaceklil 60 40 1 144 445 25 [9117323147] [be-chylammelline chlocolydrolane (be-chylammelline chlocolydrolane) 60 40 1 1 45 150 [911733147] [be-chylammelline chlocolydrolane (be-chylammelline) 60 40 1 15 150 150 150 150 40 1 150 150 150 150 150 150	251	1 - 3	505	45	[91 671632		3 5		987
1 187 186 187	259	-	69	82	gi 153794	Streptococcus		97	198
1 14.5 2 juli 1997 19 juli 1997 juli 199	260	-	492	1662		transposase -		32	888
1 453 2	274	_	36	96	91 11592173		00	26	171
1 37 1306 grall Pirole 1375464 sack recombinates [Lackbacillus leichassenii] 60 42 1 1 1 1 1 1 1 1 1	-	-	63	2	g1 1787397		09	40	741
1 77 722 qui 509672 repressor protein gactoriophage Puc2009 60 72	-	 		308	gn1 P1D e137594	xerC recombinase (Lactobacillus lateburnei:)	09	43	462
1 576 4	_	<u>-</u>	1 2	522	i	repressor protein (Barterionhae Augusta)	09	42	306
1 1413 4	-	i –	76		191 2293147	AP008220 V** (98-411 m.h+11	09	32	450
1 1413 4		1	1-	17142	gn1 P1D e280724		1 65 1	31	573
6 6463 5136 91 580841 FT [Bacillus subtilis] 59 15 15 139 131 64669 FER [Streptococcus pneumonlacii 59 134 136 139 91 142469 FER [Streptococcus pneumonlacii 59 139 14 130 131 61 61 61 61 61 61 61 61 61 61 61 61 61	-	-	413	-	lai (1353880	A CONTRACT OF THE PROPERTY OF	1 65 1	39	666
2 479 1393 jat part (abscriute subtilis) 59 35 2 479 1393 jail (abscriute subtilis) 59 34 5 2688 4614 gmil [PID]e2806233 PCPA (Straptococcus pneumonise) 59 37 1 268 558 qmil [PID]e2202260 Unknown (Lactobecillus subtilis) 59 37 1 1368 1378 [qmil [PID]e228664] hypothetical protein [Bacillus subtilis] 59 39 14 1378 [qmil [PID]e228664] hypothetical protein [Bacillus subtilis] 59 39 14 1368 [1282 [qmil [PID]e228664] hypothetical protein [Bacillus subtilis] 59 39 18 18076 [1787] [qmil [PID]e228664] hypothetical protein [Bacillus subtilis] 59 39 18 18076 [1787] [qmil [PID]e131594 kerc recombinase [Lactobacillus leichmannii] 59 40 1 2678 [qmil [PID]e1315154 mil [PID]e2115154 mil [PID]e2111655 mil [PID]e2111655 m	-	ŧ-	†-	5156		8	59	41	1410
1 208 4614 gal FTD e200623 RCPA (Streptcoccus pneumoniae) 5 2688 4614 gal FTD e200523 RCPA (Streptcoccus pneumoniae) 5 2688 4614 gal FTD e2005230 Unknown Laccobacillus subtilis 59 37 1 1 208 558 gal FTD e202520 Unknown Laccobacillus sake 13 1320 11071 gal e202520 Unknown Laccobacillus sake 13 1320 11071 gal e202564 hypothetical protein Bacillus subtilis 59 39 1 1 1 1 1 1 1 1 1		- ‡ -	-		TROOPERS	(r. (bacilius subtilis)	- 59	35	1308
1 208 558 gml PID e233868 hypothetical protein (Bacillus subtilis) 59 44 4 4 5678 2455 gml PID e233868 hypothetical protein (Bacillus subtilis) 59 37 59 37 59 38 50 50 50 50 50 50 50 5	-	-	- † .	1393	91 142469	lais operom regulatory protein (Bacillus subtilis)	65	34	915
1 308 558 gnl PID e233868 hypothetical protein (Bacillus subtilis) 59 37 13 12678 2455 gnl PID e202230 unknown (Lactobacillus subtilis) 59 33 13 12201 11071 gnl PID e202230 unknown (Lactobacillus subtilis) 59 33 14 13288 12182 gill657647 Cap8H (Steabylococcus aureus) 59 39 18 18076 17897 gill506315 H. Jannaschil predicted coding region MII635 [Methanococcus Jannaschil] 59 30 12 6172 7137 gill2031235 (AF008220) Ytxk (Bacillus subtilis) 59 40 13 1952 3361 gill1804845 pinin (Conis familiaris) 59 40 13 1952 3161 gill1810[a137594 Act recombinase (Lactobacillus subtilis) 59 41 5 1870 2388 gnl PID e311516 Aminotransferase (Bacillus subtilis) 59 40 6 6812 5628 gnl PID e311516 2-ketco-3-deoxy-6-phosphogluconate a	-	- ‡	-	4614	gn1 PID e280623	PCPA (Streptococcus pneumoniae)	59	98	1917
4 3678 2455 gml PID e202290 unknown [Lactobacillus sake] 1301 11071 gml PID e202890 unknown [Lactobacillus subtills] 59 31 131	30	22	- †	558	gn1 PID e233868		1 65		192
13 12201 11071 gn1 PID e238664 hypothetical protein [Bacillus subtilis] 59 35 35 35 36 37 37 37 37 37 37 37	-	-	-	2455	gn1 [PID] e202290	unknown [Lactobacillus sake]			
14 11288 12182 91 1657647 Cap8H [Staphylococcus aureus] 59 39 39 39 39 39 39 39	_	-	-	! -	gn1 P1D e238664	protein [Bacillus	66	55	1224
18 18076 17897 gi 1500535 W. jannaschii predicted coding region MJ1635 Wethanococcus jannaschii 59 33 13 6172 7137 gi 2293239 (AF008220) YtxK [Bacillus subtilis] 59 7137 gi 2293239 (AF008220) YtxK [Bacillus subtilis] 59 7137 gi 1684845 pinin (Canis familiaris) 50 7138 gi 1684845 pinin (Canis familiaris) 50 7138 gi 1910 9137594 XerC recombinase [Lactobacillus leichmannii 5 1870 2388 gin PID 9115594 XerC recombinase [Lactobacillus subtilis 50 7188 gil PID 911516 aminotransferase (Bacillus subtilis 50 7188 gil PID 931516 aminotransferase (Bacillus subtilis 5188			-	<u> </u>	91(1657647	Cap8H (Staphylococcus aureus)	60	35	1131
12 6172 7137 91 2293239 (AFGO8220) YCK (Bacillus subtilis] 59 34 34 352 3161 91 1688845 pinin (Canis familiaris) 59 40 1 3 2678 1728 91 PID[4101329 YQJK (Bacillus subtilis) 59 41 59 41 50 50 50 50 50 50 50 5			!	-	91 1500535	region Kil635 [Mathanococcus	66	39	1107
3 1952 3361 gi 1684845 pinin (Canis familiaris)	_	_	-	! -	91 2293239	subtilial	6	1 66	180
3 2678 1728 gml PID d101329 VqfK (Bacillus subtilis) 5 1870 2388 gml PID e137594 xerC recombinase (Lactobacillus leichmannii) 5 1870 2388 gml PID e311516 aminotransferase (Bacillus subtilis) 5 2382 3023 gi l1146190 2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis) 5 2382 3023 gi l1146190 2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis) 5 5 5 5 5 5 5 5 5	-	 	 	<u>; – </u>	qi 1684845	6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	- 65 -) be	996
5 1870 2388 gn1 P1D e117594 xerC recombinase [Lactobacillus leichmannii] 5 1870 2388 gn1 P1D e117594 xerC recombinase [Lactobacillus leichmannii] 5 6 6812 5528 gn1 P1D e311516 aminotransferase (Bacillus subtilis) 59 40 11 5 2382 3023 gi[1146190 2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis) 59 36	-	· -	- ‡ -	- † -		Print (cans cantiaris)	65	9	1410
10/0 4388 gnl PID e117594 xerC recombinase [Lactobacillus leichmannii] 59 41	-	-	- † -	- † -	gnt P10 d101329	VqJK (Bacillus subtilis)	- 65	2	951
5 2382 3023 91 116190 2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis) 59 36	-	-	-	- Ţ ·	† .	xerC recombinase [Lactobacillus leichmannii]	65	4	519
1 2362 3023 91 1146190 2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis) 59 36	-	- † -	-	- [-	11516	aminotrensferase (Bacillus subtilis)	- 65	- 0\$	1185
	- ;	- †	- †	_ [_ [2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)	- 65	36	642

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont 19	0 P	Start	Stop	match	match gene name	ais.	* ident	length
69	110	1 8567	6889	gi 1573628	antothenate kinase (coak) [Hamoohi]us influessal			(nt)
87	112	11383	10055			6	B	333
611	=	13927	15894	91 1673731		65	7 0	1968
115	8	9928	8521	gi 1590886	M. jannaschii predicted coding region MJ0110 (Methanococcus jannaschii)	65		7 7 7 7
119	7	1966	1526	gn1 PID e209005	homologous to ORF2 in nrdEF operons of E.coll and S.typhimurium [Lactococcus lactis]	59	43	441
128	117		113178	gn1 PID e279632	unknown Mycobacterium tuberculosis	59	38	261
140	22	23903	23388	91 482922	protein with homology to pail repressor of B. subtilis [Lactobacillus delbrueckii]	59	40	516
148	2	9697	9014	gn1 P10 d102005	(ABO01488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN H. INFLUENZAE AND SYNECHOCYSTIS. (Bacillus subtilis)	59	32	684
149	0.7	7213	8244	191 710422	cmp-binding-factor 1 {Staphylococcus aureus}	1 65	40	1032
164	6	6993	6013	gn1 P1D d100965	ferric anguibactin-binding protein precusor PatB of V. anguillarum	65	41	981
164	112	8836	7823	gn1 PID d100964	homologue of ferric anguibactin transport system permerase protein FatC of V. anguillarum (Bacillus subtilis)	59	35	1014
177	7	401	1072	gi 289759	coded for by C. elegans CDNA CE2G3 (Genbank:Z14728); putative Caenorhabditis elegans	65	0,0	672
177	-	3841	4200	91 2313445	(AE000551) H. pylori predicted coding region HP0342 (Helicobacter pylori)	59	38	360 1
183	-	2768	2508	gi 509672	repressor protein (Bacteriophage Tuc2009)	59	20	261
186	9	3398	2820	91 606080	IORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	65	38	579
190	_	3120	1711	91 1613768	histidine protein kinase (Streptococcus pneumoniae)	59	32	1410 1
194	7	1621	1019	gn1 PID d100579	unknown [Bacillus subtilis]	- 65	40	603
198	1	5205	4306	gn1 PID e313073	hypothetical protein (Bacillus subtilis)	59	38	1 006
220	- 5	4362	3958	[gn] PID d101322	YqhL (Bacillus subtills)	59	1 90	405
242		1573	2367	91 1787045	(AEGOGO184) f308; This 308 as orf is 35 pct identical (35 gaps) to 305 residues of an approx. 296 as protein PFLC_ECOLI SW: P32675 [Escherichia Coll]	65	42	795
247	7	1154	1480	91 40073	ORFIO7 [Bacillus subtilis]	1 65	39	327
					· • · · · · · · · · · · · · · · · · · ·	-+		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

		11+11111						
Contig	ORF S	Start S	Stop (nt)	match	match gene name	# Sim	* ident	length
256	1 8	868	~	gn1 PID d101924	hemolysin (Synechocystis sp.)			(DE)
258		65	820	91 2246532	ORF 73, contains large complex repeat CR 73 [Kaposi's sarcoma-associated herpesvirus]	65	20	1 156
270	7	386 13	1126	Gn1 PID d102092	Yen (Bacillus subtilis)			
182	1 5	552 10	166	91 666062		65	40	741
309	-	3 47	1 64	gi 405879	yeil (Escherichla coli)	- 88	31	1 387
363	1	2 18	1894	ai 915208		59	38	477
387	2 42	425 8	1		Santigen Drecursor (Plasmodium falticatura)	59	31	1693
	6 11223	ĪĒ	; -	gn1 p10 d101812	schocystis	59	44	342
762	4 20	-	3513	61001D dI0	Nat - ATPase submit 1 (Entrangement)	1 58 1	29	759
2	5 405	-	-	• • —	binding protein	1 88 1	39	1416
33	9	_	-	gn1 PID d101164	bt ilis)	85	34	408
36	8 53	-	<u> </u>	gi 1518679	orf (Bacillus subtilis)	88	45	774
-	5 59	-	; –	911788150	(AE000278) protease II (Escherichia cali	85	32	864
46	-	3704 52	1	gnt PID e267329 t	Unknown (Bacillus subtilis)	85	37	1956
_	14 11722	11066	<u> </u>	9n1 PID d101771 t	1,000	88 -	42	1518
52	1 1229	1229 3	-	- † -	reduction (Personal Control of Co	58	34	657
-	2 702	2 412	1-	- †	reservations and reserv	58	35	1227
-	4 650	6586 5498	Ī	gi 147329		58	25	291
 	5 4934	34 3807	Ţ	311492		58	41	1089
2 12	27 (31357	57 32277	Ī	- ; -		58	41	1128
72	4 1 3586	1-	7	- + -	Hypothetical procesh (Schizosaccharomyces pombe)	58	33 (921
74	3 4937	-			nodulin-21 (AA 1-201) (Glycine max)	88	34	705
7.	- † -	-	- ;	- •	(AF008220) YtmO (Bacillus subtilis)	58	33	708
-	-	- † -	- †	6	ORF3 (Streptococcus pneumoniae)	58	44	1173
-	1	-;-	- Ţ.	1	exonuclease V alpha-subunit (Escherichia coli)	- 88	38	2415
- -	14001	-;-		-	5-dehydroquinate hydrolyase (3-dehydroquinase) (Salmonella typhi)	58	32	681
-	-	000 1		g1 153794 r.	rgg (Streptococcus gordonii)	58	32	372

pneumoniae - Putative coding regions of novel proteins similar to known proteins

2 358 3724 [4]1570200 Vacb gone product (Excherichla coll.) 3 358 371 37	10	<u> </u>	Start (nt)	Stop (nt)	match	match gene name	E is	* ident	length (nt)
5 433 5320 jail1922142 Auc Crassporter, probable Arr-binding submit (Methanococcus Januacchii) 58 56 56 57 51 51 51 51 51 51 51	108	2	358	2724	1911537020	vac8 gene product (Escherichia coli)		37	2367
1 111 1651 6110 puri Prio dio1312 Voge (Bacillius abbillia) 1851 1810 181	111	5	1 4593	5240	91 1592142	subunit (Methanococcus	1 58	36	648
15 1111 11571 11571 1150219 Outr U Directococou Milesaj 158 121 1151	120		4421	5110	gn1 P1D d101320	Yqgx [Bacillus	85	47	069
1 111 190 191 18000001 associalde-efflux detecnimant (Streptococcus pneumonihael 55 15 15 15 11 180 191 180 191 180 191 180 191 190 192 192 192 192 192 192 192 192 192 192 192 192 192 193	128	116	;	112673	gi 662919	5	58	42	459
1 111 800 Smill pulle 205988 Universe Decision Decis	132		6174	4939	191 (1800301	{Streptococcus	58	35	1236
1 6615 9865 614(7)901 1041010024 10-11 protein (Remo sapinal) 1 124 2 971 P1D d100024 10-1- protein (Remo sapinal) 1 124 2 971 P1D d100047 Cranslation elongation (sator-) (chlorella virus) 58 31 1 1 1 1 1 1 1 1	133		111	1 890	gn1 PID e269488		58	36	780
1 244 2 501 PTD d1010924 DA-1 protein Homos sapiens 1 244 2 501 PTD d1010944	091	=	8615	9865	gi 473901	ORF1 [Lactococcus lactis]	58	0.0	1361
1 437 2 [pii/12] [International clander of control of con	191	9	6268	6849	gn1 PID d101024	DV-1 protein (Nomo sapiens)	5.8	22	282
1 447 2 91 475114 regulatory protein [Pediococcus pentoaccus] 58 18 18 18 18 18 18 18	691	-	214	7	gn1 P1D d100447	elongation factor-3	85	1	
6 4384 4620 gil 167475 dessication-related procein [Craterostigms plantaginoum] 58 58 58 58 58 58 58 5	187	-	487	7	91 475114	protein [Pediococcus	58	3.8	ARA
2 1464 1640 gni PiD e246727 Competence pheromone [Streptococcus gordonii] 58 188 44 2 2012 1344 gni PiD e1202579 product similar to Wrb. [Lactobacillus aske] 58 44 58 13 55 696 gni PiD e1202579 product similar to Wrb. [Lactobacillus aske] 58 13 58 13 58 13 58 13 58 13 14	187	9	4384	4620	91 167475	dessication-related protein (Craterostigma plantagingum)		55	71.6
1 1392 696 gnl PID d100356 frat GCP160 flattus rattus 58 44 44 58 58 58 58 5	061	~	1464	1640	gn1 PID e246727			38	177
1 1292 696 gml PID e202379 product similar to Wrbh [Lectobecillus sake] 58 313 11 2 2331 555 gml PID e329036 hypothetical protein (Bacillus subtilis) 583 591 5836 5106 gml PID e329036 hypothetical protein (Bacillus subtilis) 5836 5106 gml PID e329036 hypothetical protein (Bacillus subtilis) 5836 5106 gml PID e329036 hypothetical 29.6 kD protein (Bacillus subtilis) 583 319 1 2 715 Gml PID e329036 hypothetical 29.6 kD protein in thrC-talB intergenic region 58 319 1 31 767 gml PID e334780 hach (Bacillus subtilis) 58 77 1 845 31 gml PID e334780 hupothetical 29.6 kD protein in thrC-talB intergenic region 58 319 1 845 31 gml PID e334780 hypothetical 29.6 kD protein in thrC-talB intergenic region 58 319 2 1556 1092 spp P46351 Yzgdo Hypothetical 20.3 kprotein (Trypanosoma brucei subgroup) 58 319 3 1556 1391394 Th-231 membrane associated protein (Trypanosoma brucei subgroup) 58 41 71 4 5 749 519 pir JCIISIJCII hypothetical 20.3 kprotein (Insertion sequence ISIII) - Agrobacterium 58 41 71 5 749 519 pir JCIISIJCII hypothetical 20.3 kprotein (Insertion sequence ISIII) - Agrobacterium 58 41 72 5 749 749 749 749 740-751 plasmid milesetions (SIIII) 1000 100	92	~	2012	1344	gn1 PID d100556		58	77	999
2 2333 555 4914 Problem 1915 1	90	-	1292	969	gn1 PTD e202579	similar to WrbA (Lactobacillus	58	35	597
5 5250 4121 91 466474 cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus] 58 38 44 7 5636 5106 911 PID d102048 B. subtilis cellobiose phosphotransferase system celB; P46317 [998] 58 44 1 2 811 91 573777 cell division ATP-binding protein (freb) [Haemophilus influenzee] 58 32 1 2 115 91 1786187 Racillus subtilis] 58 32 1 3 767 91 1786187 (ARDOULL) Appothetical 29.6 kD protein in thrC-talB intergenic region 58 31 1 4 45 91 1786187 (ARDOULL) Appothetical 29.6 kD protein in thrC-talB intergenic region 58 47 2 3 91 1786187 ARD PROTEIN IN THIAMINASE I 5.REGION 58 51 3 1556 1092 54 160671 5 antigen precursor [Plasmodium falciparum] 58 51 1 806 3 gil39394 Tb-221 membrane associated protein (insertion esquence isling valcerium 58 51 2 749 519 pir[JCI131]JCI1 hypothetical 20.3 k protein (insertion esquence islill) - Agrobacterium 58	16	7	2333	555	gn1 PID e325036	hypothetical protein (Bacillus subtilis)	5.8		9225
1 2 811 91 1773777 Call division ATP-binding protein (ftsE) [Haemophilus influenzae] 58 39 31 2 715 94 973377 Call division ATP-binding protein (ftsE) [Haemophilus influenzae] 58 32 3 767 94 1786187 (AE000111) hypothetical 29.6 kD protein in thrC-talB intergenic region 58 31 1 845 3 971 PID[e334780 YIDL protein (Bacillus subtilis] 58 51 3 1556 1092 59 P46331 YZGD HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I STREGION. 58 37 4 806 3 91 160671 S antigen precursor [Plasmodium falciparum] 58 37 68 5 749 519 Pir JC1151 JC11 hypothetical 20.3 K protein (Insertion sequence IS1131) - Agrobacterium 58 41 72 5 749 519 Pir JC1151 JC11 hypothetical 20.3 K protein (Insertion sequence IS1131) - Agrobacterium 58 41 72 6 749 519 Pir JC1151 JC11 hypothetical 20.3 K protein (Insertion sequence IS1131) - Agrobacterium 58 41 72 7 7 7 7 7 7 7 7 7	17	2	5250	4321	91 466474		85	9	96
1 2 811 Gill573777 Cell division ATP-binding protein (ffsE) [Haemophilus influenzae] 58 39 32 31 32 31 32 32 33 34 34 34 34 34	71		5636	5106	gn1 P1D d102048	subtilis cellobiose phosphotransferase ransmembrane (Bacillus subtilis)	888	*	531
1 2 715 94 973330 NatA (Bacillus subtilis) S8 32 32 33 767 94 1786187 (AECOO111) hypothetical 29.6 kD protein in thrC-talB intergenic region S8 31 S8 31 S8 S8 S8 S8 S8 S8 S8 S	32	-	~	811	gi 1573777	protein (ftsE)	5.8	39	910
1 845 3 97 94 1786187 (AECOO111) hypothetical 29.6 kD protein in thrC-talB intergenic region 58 31 1865 191		-	2	715	1911973330	NatA (Bacillus subtilis)	5.8	32	
1 845 3 gnl PID e334780 Y1bL protein (Bacillus Subtilis) 1556 1092 sp P46551 YZGD_ HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I S'REGION. 58 32 32	8		33	767	91 1786187	29.6 kD protein in thrC-talB intergenic	88	31	735
3 1556 1092 Sp P46351 YZGD_ HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I S'REGION. 58 32 32 32 32 32 32 32 3	90	-	845	-	gn1 PID e334780	YlbL protein (Bacillus subtilis)	58	47 1	- F 8 8
5 2160 1867 91 160611 Santigen precursor [Plasmodium falciparum] 58 51 51 51 529 51 529 51 529 520 5	09		1556	_	sp P46351 YZGD_	45.4 KD PROTEIN IN THIAMINASE I	58	- 22	465
1 806 3 [gi[393394 Tb-291 membrane associated protein (Trypanosoma brucei subgroup) 58 37 2 749 519 pir JC1151 JC11 hypothetical 20.3K protein (insertion sequence [S1131) - Agrobacterium 58 41	63	- 5	2160	_	91 160671		e 5		
2 749 519 pir JC1151 JJC11 hypothetical 20.3k protein (insertion sequence [S1131) - Agrobacterium 58 41 tumefacions (strain PO22) plasmid Ti	72	-	908	<u> </u>	911393394		85	- 62	700
	28		749		; -	20.3K protein (insertion sequence [S1131) (strain PO22) plasmid Ti	8.5	41	231

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

10 10	ID (nt)	(at	(nt) acession	מסינון על פונס וימונים	E S 1	1 ident	length
	8409	17471	gi 1499745	H. Jannaschii predicted coding region MJ0912 [Hethanococcus jannaschii]	47		(nt)
:	7674	7507	91 1737169	homologue to SKP1 (Arabidopsis thaliana)	2.5		656
7 - 77	7	1 412	gn1 PID d100139	ORF (Acetobacter pasteurianus)	- 23	43	
31 4	2032	1388	91 2293213	(AF008220) YEPR (Bacillus subtilis)		;	77
33 [11	16931	6449	gn1 P1D a324949	hypothetical protein [Bacillus subtilis]	3 3		640
45 5	5446	1 5060	gi 1592204	phosphoserine phosphatase (Methanococne samechili	25	36	483
49 7	6523	1 7632	91 155369	PTS enzyme-II fructose (Xanthomonas campestris)	57	44	387
-	4520	6850	91 1574144	single-stranded-DNA-specific exonuclease (rec) [Haemonhilus influence]	· · · · · · · · · · · · · · · · · · ·	S	1110
53 5	2079	11795	191 1843580	virus	.,	65	7331
63 6	1 5312	4995	91 2182608	(AE000094) Y4rJ (Rhizobium sp. NGR234)	; ; ;		787
72 15	13883	13059	[gn] PID d100892	• —	3	67	318
	2561	1815	gn1 P1D d100965	V. harveyi (Bacill	57	44	925
82 9	9836	9763	91 1206045	short region of similarity to glycerophosphoryl diester phosphodiesterases (Caenorhabditis elegans)	57	35	168
86 16	15371	14493	91 1787983	(AE000264) o288; 92 pct identical (1 gaps) to 222 residues of fragment YDIB_ECOLI SW: P28244 (223 aa) (Escherichia coli)	57	34	. 879
93 3	1695	1177	91 1500003	mutator mut7 protein [Methanococcus jannaschli]		- • • • • • • • • • • • • • • • • • • •	
9 96	3026	4519	91 559882	threonine synthase (Arabidopsis thaliana)	; ; ;		919
99 14	11211	18212	gi 773349	Bacillus subtilis	; ; ;	2	1434
112 9	7448	1 7903	81 1591393	M. jannaschii predicted coding region NJ0678 Merhandongus sanasahii	· ·	9	1002
113 16-	18627	18328	pir A45605 A456	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium	25	22	300
123 2	343	1110	pir F64149 F641	hypothetical protein H10355 - Heemophilus influenzae (strain Rd kwon)			
123 4	1 2108	2884	an1 PID d102148			87	768
127 10	6477	5587	91 1573082	Initrogenase C (nifC) (Haemophilus influenzae)	57	35	100
128 13	9251	9790	gi 153692	pneumolysin (Streptococcus pneumoniae)	57	38 1	540
131 4	2139	1363	gi 42081	nagD gene product (AA 1-250) (Escherichia coli)	57	36	

pneumanise - Putative coding regions of novel proteins similar to known proteins

136 1 214 321 321 321 321 321 321 321 321 321 321 322	Contig	ORF St	Start Stop (nt) (nt)	p match	match gene name	e sia	* ident	length
14 5 6195 7436 541905576 Decka-gluosayda permane [Bacillus aublilis] 14 5 5431 7436 541905560 Universal [Schliesarchhacoyce ponch] 14 15 15 15 15 15 15 15	136				SpaA-endocarditis immunodominant antigen (Streptococcus sobrinus, MUCOB 263, Peptide, 1566 aa) (Streptococcus sobrinus)	57	44	1008
14 1 12 12 12 12 12 13 13				-		52	82	100
14 21 211 212 212 412	161	-	-	_	unknown {Schizosaccharomyces pombe}			
15 4 5454 4554 4516 91 61040431 91 920593 1 transerace Egrainia saylooocal 15 16 4877 5854 191 120509 9137 Escherichia coli 16 4022 4436 910	144	- +	-	gn1 PID d10013	ORF	57	42	467
11 9710 9249 64179 6564 611290509 61070 Escherichia colij 61120 9249 61170 611	155	-	-	-	transerase	57	2	
1 3710 9249 gni Pip did00139 GRF Greeobaccer pasteurismus	159	-	-	-		57	56	62.6
1 4 2170 1076 [amil Prob diogood (Amboniese permease subunit III-Han [Escherichia coli] 145 145 1455 [amil Prob diogood (Amboniese) Arr-Derendent Markings Dann Indocude. [Bacillus subtilis] 145 1455 [amil Prob diogood (Amboniese) Arr-Derendent Markings Danis Date 145 1455 [amil Prob diogood (Amboniese) Arr-Derendent Markings Date 145 1455 [amil Prob diogood (Amboniese) Arr-Derendent Markings Date 1451		-	· – i	gn1 P10 d10013	ORF (Acetobacter	57	42	463
1 145	171	-	-		permease	- 25	000	
198 1 145 1455 91 149420	178	-	- :		(AB001488) ATP-DEPENDENT RNA HELICASE DEAD HOMOLOG.	- 25	96	777
1 196 9 55 Gil 522268 Unidentified ORF22 Bacteriophage blid7] 10 10 10 10 10 10 10 1	190	-	-	_	-	57.	1 00	
1 40 507 611 413527 E11A-man [Lactobacillus curvatus] 1 40 507 611 413527 E11A-man [Lactobacillus curvatus] 1 41 41 41 41 41 41 41	198	-		gi 522268	Unidentified ORF22 [Bacteriophage blL67]	57	1 92	
1 40 507 91 1439527 EIIA-man Lactobacillus curvatus 1 4243 3797 91 910 91	203	-	-					
1 12 12 12 12 12 12 12	205	-	-	_			86	0001
1767 1276 91 43979 L.Curvatus small cryptic plasmid gene for rep protein (Lactobacillus Curvatus) 1324 34 91 1210 225 2 91 160671 S antigen precursor (Plasmodium falciparum) 5 10486 8777 91 467199 pksC; L518_FL_2 (Mycobacterium leprae) 10 3 3442 1874 971 91 92101997 sodium-coupled permease (Symechocystis sp.) 22 1 1880 313 91 2113949 (AE000593) osmoprotection protein (proWX) [Helicobacter pylori] 22 23 21968 22456 971 971 97 97 97 97 97					H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189) (Bacillus subtilis)	57	48	447
1 124 34 gnl PID e273871 T03F6.b Caenorhabditis elegans	268			! :	small	57	36	492
6 1 226 2 gill60671 S antigen precursor [Plasmodium falciparum] 5 10486 8777 gil 405857 yebu [Escherichia coli] 6 3 3674 3910 gil 467199 pksC; L518_F1_2 [Mycobacterium leprae] 7 3 3442 1874 gil 1910 dil01907 sodium-coupled permease [Synechocystis sp.] 8 3 442 1874 gil 1910 dil01907 sodium-coupled permease [Synechocystis sp.] 9 21968 22456 gil PID dil02001 (AB001488) PROBABLE ACETYLTRANSFERASE. (Bacillus subtilis) 9 4667 4278 gil 1592090 DNA repair protein RAD2 [Methanococcus jannaschii] 9 4667 4278 gil 1592090 DNA repair protein RAD2 [Methanococcus jannaschii] 9 1 3 386 gil 1910 dil00139 ORF [Acetobacter pasteurianus]	351	-	-	gn1 PID e275871	(TOJF6.b (Caenorhabditis elegans)	57	- 16	1 100
5 10486 8777 91 405857 yehU (Escherichia colij)	386	-	-	gi 160671	antigen precursor (Plasmodium	- 65		1 767
5 3674 3910 g1 467199 pksC; L518_F1_2 [Mycobacterium leprae] 3 3442 1874 gn1 PID d101907 sodium-coupled permease [Synechocystis sp.] 1880 333 gi 2313949 (AE000593) osmoprotection protein (proMX) [Helicobacter pylori] 29 21368 22456 gn1 PID d102001 (AB001488) PROBABLE ACETYLTRANSFEBASE. [Bacillus subtilis] 1 1361 3	-	_;	-	_	yehU (Escherichia coli)	95		
3 3442 1874 gnl PID d101907 sodium-coupled permease [Symechocystis sp.] 1 1880 333 gi 2311949 (AE000593) osmoprotection protein (proWX) [Helicobacter pylori] 129 21968 22456 gnl PID d102001 (AB001488) PROBABLE ACETYLTRANSFERASE. (Bacillus subtilis] 1 1161 3	-	-	-	_	pksC; L518_F1_2 (Mycobacterium leprae)	56	- 65	
1 1880 333 94 2313949 (AE000593) osmoprotection protein (proffX) [Helicobacter pylori] 129 21968 22456 gnl PID d102001 (AE001488) PROBABLE ACETYLTRANSFERASE. (Bacillus subtilis 1 1361 3 94 215132 ea59 (525) (Bacteriophage lambda) 9 4667 4278 94 1592090 DNA repair protein RAD2 Methanococcus jannaschii 1 3 386 9n1 PID d100139 ORF Acetobacter pasteurianus	-	- †	-:	- 1	sodiun-coupled permease (Synechocystis sp.)	98	36	1869
19 21968 22456 gnl PID d102001 (AB001488) PROBABLE ACETYLTRANSFERASE. (Bacillus subtliss) 1 1161 3 gi 215132 ea59 (525) (Bacteriophage lambda) 9 4667 4278 gi 1592090 DNA repair protein RADZ (Methanococcus jannaschii) 1 3 386 gnl PID d100139 ORF Acetobacter pasteurianus	-	- †	-	91 2313949	osmoprotection protein (prowx) (Helicobacter	56		1 248
1 1361 3 94 215132 ea59 (525) (Bacteriophage lambda) 9 4667 4278 91 1592090 DNA repair protein RAD2 (Methanococcus jannaschii) 1 3 386 9n1 PID d100139 ORF (Acetobacter pasteurianus)	Ti	-:	_;		PROBABLE ACETYLTRANSFERASE. (Bacillus	95	37	489
9 4667 4278 gi 1592090 DNA repair protein RAD2 Methanococcus jannaschii 1 3 386 gnl PID d100139 ORF Acetobacter pasteurianus	-†		- ‡	{gi 215132	(525)	95	30	1359
1 3 386 gn1 PID d100139 ORF [Acetobacter pasteurianus]	-	- †·	- †	91 1592090	repair protein RAD2 (Methanococcus	99	29	390
	-	- ‡	386	gn1 PID d100139	ORF Acetobacter pasteurianus	1 95	41	384

S. pneumoniae - Putative coding regions of novel proteins Binilar to known proteins

Loncin	I D	Start (nt)	Stop (nt)	match	match gene name	l sim	1. ident	length
36		5122	5397	pir PQ0053 PQ00	hypothetical protein (proC 3' région) - Pseudomonas aeruginosa (strain PAO)	95	28	(nt) 276
40	4	3137	4318	gi 1800301	macrolide-efflux determinant Streptococcus pneumoniae			-
40	91	112511	13191	gn1 P1D e217602	•			1182
48	12	27761	13023	oi 143729	transcription activator (Bacillus subtilis)	95	38	681
57	-	1674	2594	gn1 PID d102036	membrane protein (Bacillus stearor	90	35	153
88		1842	1459	gn1 P1D d100139		95	35	921
68	-	5815	4940		Pasteut Janus)	99	41	384
105	7	1360	27.18		Product Similar to E.coli PRPA2 protein (Bacillus subtilis)	95	42	918
211	-	1916		CTCTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO		95	37	1359
		1613	3194	191 537201	ORF_0345 [Escherichia coli]	95	1 16	1044
=======================================	- i	2754	1 2963	gn1 PID d100340	ORF [Plum pox virus]			
122		1203	2054	91 1649035	high-affinity periplasmic glutamine binding protein (Salmonolla typhimurium)	95	30	852
124	80	3939	3694	gn1 PID e248893	unknown (Mycobacterium tubercu)osis	- ;	- •	
125	-	4403	4107	lant leroldinossi	Internal property of the control of	98	27	246
127	=	6608	6405	04.43.63.63.64.64.64.64.64.64.64.64.64.64.64.64.64.	Judicali Hour-muscie nyosin heavy chain (Homo sapiens)	95	32	1 62
		4769		1		95	35	204
		7107	1069	0.810191018101810	hypothetical protein (Synechocystis sp.)	95	39	921
		7 100	C\$7,	1102611161	sulfate permease (cysA) (Methanococcus jannaschii)	99	34	432
		6100	4582	pir A47071 A470	forfl immediately 5. of nifs - Bacillus subtilis	96	29	438
97	- ;	4676	3660	116101P a1a 1011	hypothatical protein (Synechocystis sp.)	96	12.	10101
148	-	1906	2739		phosphate transport system permease protein PstA (Synechocystis sp.)			
150		4449	2743	gn1 P1D e304628	probably site-specific recombinase of the resolvase family of enzymes	95	27	17071
172		~	208	91 1787791	(AE000249) [317; This 317 aa orf is 27 pct identical (16 gaps) to 301 residues of an approx. 320 aa protein YXXC_BACSU SW: P39140 [Escherichia coli]	95	34	207
27.1		4979	5668	gi 396293	similar to Bacillus aubtilis hypoth. 20 kDa protein, in tsr 3 region (Escherichia coli)	26	0,	1 069
186	_	132	3367	gi 1732200	PTS permease for mannose subunit IIPMan Ivibrio furcionis			
187	7	2402	819	pir (\$57904 (\$579 ()		- 95	36	366
	-	-		- +		56	35	1584
					•			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig ID	ORF	Start (nt)	Stop (nt)	match acession	match gene name	Eis -	* ident	length (nt)
204	<u> </u>	2772	2239	gi 606376	ORF_0162 (Escherichia coli)	95	35	534
206	7	3342	1633	[91 559861	clyM [Plasmid pAD1]	95	38	1710
219	e .	1689	1096	gi 1146197	putative (Bacillus subtilis)	95	27	594
230	7	409	1485	pir C60328 C603	hypothetical protein 2 (sr 5' region) - Streptococcus mutans (strain OM2175, serotype f)	95	40	1017
233	4	2930	3268	[gi 1041785	[rhoptry protein [Plasmodium yoelli]	56	24	339
273	~	1543	1 2724	1911143089	lep protein (Bacillus subtilis)	95	32	1182
353	-	-	516	gn1 PID e325000	hypothetical protein (Bacillus subtilis)	95	41	516
359		87	641		(AED00176) 0877; 100 pct identical to the first 86 residues of the 100 as hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli!	95	46	555
363	-	4482	4198	gi 1573353	outer membrane integrity protein (tolh) (Haemophilus influenzae)	56	38	285
376		7	508	gn1 PID e325031	hypothetical protein (Bacillus subtilis)	95	33	507
18	-	836	771	gn1 P1D d100872	_	55	31	099
28	7	1824	1618	gn1 PID e316518	STAT protein (Dictyostelium discoldeum)	55	40	207
29	9	4496	5041	191 1088261	unknown protein (Anabaena sp.)	55	31	546
38	116	9698	110702	191 580905	B.subtilis genes rpm4, rnpA, 50kd, gidA and gldB (Bacillus subtilis)	55	31	1008
49	5	5727	6182	91 1786951	(AE000176) heat-responsive regulatory protein [Escherichia coli]	55	29	456
51	-	2381	3241	gn1 P1D d101293	[Ybba [Bacillus subtilis]	55	42	861
52	6	9640	110866	91 153016	ORF 419 protein (Staphylococcus aureus)	55	23	1221
53	-	1813	1349	gi 896042	OspF (Borrelia burgdorferi)	55	30	465
60	5	4794	5756	91 1499876	megnesium and cobalt transport protein [Methanococcus jannaschii]	55	38	963
11,	-	14176	15408	gi 1857120	glycosyl transferase (Neisseria meningitidis)	55	41	1233
75	9	3189	4229	gn1 PID e209890	NAD alcohol dehydrogenase [Bacillus subtilis]	55	44	1041
108	01	10488	9820	gn1 PID e324997	hypothetical protein (Bacillus subtilis)	55	36	699
- 611	13 [1	12273	13037	gn1 P1D e311496	unknown [Bacillus subtilis]	55	34	765
113	= = = = = = = = = = = = = = = = = = = =	13007	13945	91 1573423	1-phosphofructokinase (fruk) [Haemophilus influenzae]	55	39	939
126	<u></u>	6764	5907	91 11790131	AE000446 hypothetical 29.7 kD protein in ibpA-gyrB intergenic region [Escherichia coli]	55	37	858
					······································			

S. pneumoniae - Putative coding regions of novel proteint Samilar to known proteins

Contig	08F	Start (nt)	Stop (nt)	match	match gene name	sim s	1 ident	length
129	<u> </u>	2719	905	gn1 PID d101425	Pz-peptidase (Bacillus licheniformis		35	9194
138	_	2593	1610	gi 142833	ORF2 (Bacillus subtilis)	55	37	486
140	9	6916	5633	gn1 P1D d100964	homologue of hypothetical protein in a rapamycin synthasis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	55	26	1284
147	~	3854	2136	91 472330	dihydrolipoamide dehydrogenase (Clostridium magnum)		39	1719
147	100	10204	8921	gn1 P1D 673078	dlhydroorotase [Lactobacillus leichmannii]	55	38	1284
148	2	3430	4119	91 290572	peripheral membrane protein U (Escherichia coll)	55	29	089
148	9	4171	4650	91/695769	transposase (Kanthobacter autotrophicus)	55	37	2 0 8 4
149	14	12564	11650	gar (Projetoraze	YqjG (Bacillus subtilis)	55	32	918
156	2	6111	250	91 2314496	(AE000634) conserved hypothetical integral membrane protein [Helicobacter pylori]	\$\$	34	564
159	9	6625	5897	[gi 290533	similar to E. coli ORF adjacent to suc operon; similar to gntR class of regulatory proteins [Escherichia coli]	55	29	129
164		1784	2332	gn1 PID e255118	hypothetical protein (Bacillus subtilis)	55	37	549
164	5	2772	3521	91 40348	put. resolvase Inp I (AA 1 - 284) [Bacillus thuringlensis]	55	35	750
164	=	7428	7216	gn1 PID e249407	unknown (Mycobacterium tuberculosis)	88	38	213
167	- 2	3860	3345	91 535052	involved in protein secretion (Bacillus subtilis)	55	28	516
186	5	2880	2563	91 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	55	35	318
189	8	4311	5396	gn1 PID e183450	hypothetical EcsB protein [Bacillus subtilis]	55	32	1086
192	- 5	3270	3079	91 1196504	vitellogenin convertase (Aedes aegypti)	55	38	192
195	7 -	2454	1384	91 1574693	transferase, peptidoglycan synthesis (murG) (Haemophilus influenzae)	55	33	1071
198	-	3013	2471	gn1 PID e313074	hypothetical protein (Bacillus subtilis)	55	29	543
214	-	373	744	gn1 PID d101741	transposase (Synechocystis sp.)	55	33	372
219	~	1115	456	gi 288301	ORF2 gene product (Bacillus megaterium)	55	30	660
263		3742	3443	91 118137	cgcr-4 product (Chlamydomonas reinhardtii)	55	48	300
285		2	829	gn1 P1D d100974	unknown (Bacillus subtilis)	55	40	828
286	-	650	249	91 396844	ORF (18 kDa) (Vibrio cholerae)	55	31 1	402
297	-	1229	9691	gi 150848	prtC (Porphyromonas gingivalis)	55	39	468
					· → 6			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF TD	Start (nt)	Stop (nt)	match acession	match gene name	e sia	1 ident	length
1 309	2	218	982	gi 1574491	hypothetical (Haemophilus influenzae)			(nt)
328	~	646	224	91/571500		6	ç;	765
330	-	1340	474	gi 396397	SoxS (Escherichia coli)	55		423
364		2538	1546	1011393394	13		29	1867
368		941	100		in-121 membrane associated protein (Trypanosoma brucei subgroup)	95	36	993
				191 160671	S antigen precursor (Plasmodium falciparum)	55	9	837
~	- -	4604	1 3624	gi 2293176	(AF008120) signal transduction protein kinase (Bacillus subtilis)		36	
6	= = = = = = = = = = = = = = = = = = = =	7746	7246	91 1146245	putative [Bacillus subtilis]		07	786
38	24	16213	17937	gf 1480429	putative transcriptional regulator (Bacillus stearothermorbilie)	, i		100
9		5076	4882	qi 39989	methiony -tRNA synthetase (Bacillus stearsthermochillus	*	27	1725
\$	-	3960	1 2367	gn1 PID e148611	ABC transporter (Larrobard) Abc transporter	24	1 35	195
52	01	10844	12103		Feral (Stanbu) Accorded to the contract of t	54	25	1614
57	-	3	1 512	lailstain		54	29	1260
8.5	-	27.6			endo-1,4-Deta-xylanase (Cellulomonas fimi)	24	36	510
	- i	1	9576	gn P1D d10 237	hypothetical (Bacillus subtilis)	1 54	29	504
	-	10684	11703	91 510255	orf3 (Escherichia coli)	54	31	0001
7	20	27546	727737	gi 202543	serotonin receptor (Rattus norvegicus)			
127	7	844	1098	gi 148613	srnB gene product (Plasmid F)	7	16	192
_	_	7438	6695	911196496	recombinase (Moraxella bovis	PC	75	255
-	;	14043	13465	91 1200342	ORF 3 gene product (Bradyrhizohium 42000)	54	38	744
74	12	16483	15995	10112200		54	32	579
86	-	782	2166		maturage=related protein (Pseudomonas alcaligenes)	54	000	489
0	· i -			194 40908	orty.6 possibly encodes the O unit polymerase (Salmonella enterica)	54	34	723
		4433	13821	91 147211	phnO protein (Escherichia coli)	54	41	513
- [-		464	gi 2317798	maturase-related protein (Pseudomonas alcaligenes)	54	30	46.2
96	 g	8028	8510	[gn] PID d102015	(ABOO1488) SIMILAR TO SALMONELLA TYPHIMIRIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. [Bacillus subilis]	54	32	453
97	9	4662	3604	gi 1591394	transketolase'' (Methanococcus jannaschii)		-	-
	=======================================	10406	12010	91 606286		54	30	1059
147	- 8	8663	7404	and later than the		54	32	1605
			!	CTOTOTOTOTOTO	OKF_U:031917; similar to (SwissProt Accession Number P37340) [Escherichia coli]	54	35	1260
							-	-

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF TD	Start (nt)	Stop (nt)	match	match gene name	sim s	& ident	length
171	7	1 2477	1 3223	91 1439528	EIIC-man (Lactobacillus curvatus)			(nt.)
174	~	2068	11787	gn1 PID d100518	motor protein [Homo sapiens]	7	9	747
188	-	1 526	1188	gn1 P1D e250352	unknown Mycobacterium tuberculosici	24	35	282
198	- 2	1 3582	1 2884	Acoette for of the		54	31	699
202	-	-	<u> </u>	Piorreal and I mail	hypothetical protein [Bacillus subtilis]	54	33	669
	- . - -		1641	gn1 PID d101813	hypothetical protein (Synechocystis sp.)	1 54	24	1641
770	- i		655	gi 2293206	(AF008220) YtmP (Bacillus subtilis)	54	29	+
225	~	996	1 2357	gn1 PID e330194	R11H6.1 (Caenorhabditis elegans)	45		
77	-	1681	1 347	gn1 P1D d101813	hypothetical protein (Synechocystis sp.)			1387
263	~	1 907	1395		transposase (Synechocystis sp.)	3 3	07	\$1515
263	<u>.</u>	3450	1 2977	191 160671	S antigen precursor (Plasmodium falcinarum)	- PC	30	489
7.7.2	_	1 2517	1363	191 1196926	unknown protein (Streptococus mitane)	54	47	474
307	-	828	-	qi 2293198	(AP00820) Vrob (Breil) in a strict of	54	30	1155
325	-	19	1 768	100000000000000000000000000000000000000	STITION OF THE PROPERTY OF THE	54	28	825
				19414182507	(AE0000083) Y41H (Rhizoblum sp. NGR234)	24	37	750
332	-	1 898	590	91 1591815	ADP-ribosylglycohydrolase (draG) [Methanococcus Jannaschii]	54	32	802
385	-	240	479	gi 530878	Amino acid feature: N-glycosylation sites, aa 41 43, 46 48, 51 53, 72 74, 107 109, 128 130, 132 134, 158 160, 163 165; amino acid feature: Rod protein domain, aa 169 340; amino acid feature: globular protein domai	54	49	240
7	125	119702	19493	gn1 PID 6255111	hypothetical protein (Bacillus subrilie)	-	_	-
23	-	1 2497	1 2011		Tar vana	23	32	210
				STOZOTO OT A TIME	I ABUDIA 88) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SENVIVAL IN MACROPHAGE. [Bacillus subtilis]	83	25	465
53	Ξ	9042	10121	91 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	53	16	- 0801
33	-	1479	1009	pir S10655 S106	hypothetical protein X - Pyrococcus woesei (fragment)	53	33	4-1
26	9	4583	5134	gn1 PID e316029	unknown [Mycobacterium tuberculosis]	53	02	
38	<u>-</u>	8521	8888	91 580904	homologous to E.coli rnpA (Bacillus subtilis)			766
52	_	7007	9898	91 1377831	unknown (Bacillus subtilis)	3		1 8/6
90		i i	19564	1911666069	orf2 gene product [Lactobacillus]eichmannii	5	29	1680
95	-	-	681	lai 1592266		53 -	36	2010
		•		•	rescriction mouthleadion system S subunit [Methanococcus januaschii]	- 83	32	681
								*

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

15 14.15	Contig	_	_	t Stop	match	marth cone			
1 423 42 10 10 10 10 10 10 10 1	2	2	(nt)	-	-	מפום זמונים			length
1 422 4	57	2	9431			f151; Residues 1-121 are 100 pct identical to YOJL_ECOLI 22 aa) and aa 152-351 are 100 pct identical to YOJK_ECOLI scherichia coli!	53	31	(nt)
1 5772 4 11193394 Pi-231 sembrone amonisted protein (Typonogene bruce subgroup) 53 53 53 53 53 53 53 5	61	-	1 429	-	[gn1 PID e236467	B0024.12			
1 1973 921 921 921 921 921 921 921 922	1,	-	5772	4	91 393394	membrane associated protein (m.	53	33	426
14 779 721 611 778 721 611 778 721 612 612 722 612 612 722 722 612	27	-	1 894	2840	91 2293178	VEST (Bacillus entering)	53	33	8769
7 2317 432 641 632 642	73	=======================================	9793	9212	lai 1177855.K		53	27	1947
5 1355 1688 joi 1513106 protective timbrial associated protein (Actinomyces near)unditi 5 632 735 1688 joi 1513106 gilveneace eldoceductase (Gincombacter coydans) 53 735 735 joi 1513204 Gorp. putctive of the poeten (Strephococcus progenes) 53 73 73 73 73 73 73 73	88		1 5217	1 4342	14112000210	coogramin synthesis protein (Escherichia	53	32	582
9 6632 7762 61 573-04 OMF1, putative of diorombatces conditions between conditions	93	- 2	1 2395	1688	4 6 6 1 1 1 1 1 1 1 1	Imbrial-associated protein (Actinomyces	53	38	876
1. 1. 1. 1. 1. 1. 1. 1.	96	6	2199		000000000000000000000000000000000000000	gluconate oxidoreductase Gluconobacter oxydans	53	33	708
1 4412 6972 911 1101 100	801	8	7629	8600	1911317204	ORF1, putative 42 kDa protein (Streptococcus pyogenes)	53	42	1131
12 8429 3253 91311070 pentraxin fusion procein (Xenopus laevis) 53 31 1 1 1 1 1 1 1 1	128	6	6412	6972	create ald Plate	inducation protein (Lactobacillus paracasei)	53	32	972
1 3 950 Diri Adidor Alian Diri Adidor	128	- 21	8429	9253	1911311070	touriest introductorium tuberculosis)	53	36	561
2 2162 3022 gill755150 Inceturnin [Xemopus lacvie] 53 36 3 2204 2624 gill732100 PTS permease for mannose subunit IPPhan (Vibrio furnissii) 53 32 5 3785 3051 gml Projed100572 junfaccor (mannose subunit IPPhan (Vibrio furnissii) 53 32 1 2348 1935 gml Projed100572 junfaccor (Bacillus subtilis) 53 38 2 3844 2406 gil 40162 murE gene product (Bacillus subtilis) 53 30 10 3 473 790 gml Projed101314 YagWi Bacillus subtilis) 53 31 10 1 544 2 gjl 402266 barr U Bacillus subtilis) 53 31 31 2 25402 2315 gil 19869 lace gene product (Agrobacterlum radiobacter) 52 32 31 2 25402 2316 gil 19869 lace gene product (Agrobacterlum radiobacter) 52 32 32 2 25402 gil 19869	48	-	-	1 950	pir A61607 A616		53	31	828
3 2004 26.14 gill732200 PTS permease for mannose subunit IPMan (Wibrio furnissii) 53 30 5 1785 3051 Gmil Projedio0572 [unknown (Bacillus subtilis)] 53 135 5 1786 1951 Gmil Projedio0572 [unknown (Bacillus subtilis)] 53 28 1 5 1884 2406 94 40162 [unknown (Bacillus subtilis)] 53 28 1 1 1 1611 [mil Projedio1314] [mil Bacillus subtilis] 53 31 53 31 1 1 161 [mil Brojedio2386] [math Bacillus subtilis] 53 31 53 31 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 1 2 2 3 3 3 3 3 3 3 3 3 3 <td< td=""><td>63</td><td>- 2</td><td>2162</td><td>3022</td><td>19111755150</td><td>- Streptococcus agalactiae (strain</td><td>53</td><td>36</td><td>948</td></td<>	63	- 2	2162	3022	19111755150	- Streptococcus agalactiae (strain	53	36	948
5 3785 3051 gnl Projection Canterobactin transport Detection (Escherichia coli) 53 355	12	7	2304	1 2624	91 1732200	Dermease for manners controls	53	30	861
3 2348 1955 94 1778505 ferric enterobactin transport protein [Escherichia coli] 53 28 1 1 1 1 1 1 1 1 1	82	5	3785	13051	[gn1 Pro d100572		53	32	321
S 3884 2406 gi 40162 murE gene product [Bacillus subtilis] S3 28 1 1 1611 gil 1910 gil 19176 Yibh protein (Bacillus subtilis] S3 34 1 1 1611 gil 1910 gil 191	6	<u></u>	2948	1935	91/1778505		53	35	735
3 473 790 gnl PID e334776 YlbH protein (Bacillus subtilis) 53 34 1 1 1611 gnl PID e334776 YlbH protein (Bacillus subtilis) 53 35 1 1 1611 gnl PID e2386 bmrU (Bacillus subtilis) 53 31 1 1 1 1 1 1 1 1	18	5	3884	2406	91 40162	gene product (section)	53	28	1014
1 1611 gn1 PID d101314 YqeW Bacillus subtilis 53 30 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 32 32 32 32 32 32 32	20	m .	473	1 790		(Y1bH protein (Bacillus subrite)	53	34	1479
2 2544 2	5.	7	-	1611	† –	Yqew (Bacillus subtilis)	53	30	318
2 2543 3445 gnl PID e233879 hypothetical protein (Bacillus subtilis) 52 39 31	32	-	544	1 2	-		53	35	1611
12 12402 13176 gi 13969 HacF gene product (Agrobacterlum radiobacter) 52 36 39 31 31 32 35 36 32 35 36 32 35 36 32 35 36 32 35 36 32 35 36 32 35 37 38 38 38 38 38 38 38	2	7 7	2543	3445	· † -		53	31	543
3 8094 2356 gnl PrD e324915 IgAl protease (Streptococcus sanguis) 52 36 36 36 36 36 36 36 3	-	; –	:	123376		merical profe	52	39	903
26 19961 20212 91 152901 ORF 3 Spirochaeta aurantia 52 32 32			1	7366	- † .	gene product	52	36	975
12 120212 9 152901 ORF 3 Spirochaeta aurantia 52 35 35	;	1	- ;	0000	324915	protease (Streptococcus	52	32	06.05
31 23140 24666 91 289262	-	- Ţ .	Ĭ	20212	-	3 (Spirochaeta	- 63		
6 5397 4801 91 39573 P20 (AA 1-178) [Bacillus licheniformis] 52 35 35		- [-;	24666	_	ORF3 (Bacillus	*	66	252
52 35	_	9	5397		-	(AA 1-178)	75	32 –	1527
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			52	35	597

pneumoniae - Putative coding regions of novel proteins Similar to known proteins

Contig	ORF Star	Start Stop	p match	match gene name	l sin	* ident	length
35	10 8604	04 7357	gi 508241	putative 0-antigen transporter [Escherichia coli]			(nt)
45	4 4801	3662	gn1 PID d10224	3 (AB005554) homologs are found in E. coll and H. influenzae; see SWISS_PROT ACCE: P42100 (Bacillus subtilis)	52	36	1140
48	18 14385	:		4 orf2 (Lactobacillus helveticus)			
6.	4 5321	11 5755	5 91 2317740	(AF013987) nitrogen regulatory IIA protein (Vihrio chalore)	52	25	099
54	4 2773	3 4668	8 91 1500472	M. jannaschii predicted coding region M1577 (Math	52	19	435
24	6 5250	6964 0	9 91 2182453	(AE000079) X410 [Rhizohium en Monata	52	36	1896
99	9400	0 6955	5 91 43140		52	40	282
11 2	26 30659	9 (31312		+ -	52	30	1446
-	2 1673	3 1035		† -	52	23	654
-	3 1439	9 2893		rhamnulose kinase (Bacillus su	55	27	639
-	8 4987	7 5781	gi 147403	mannose permease subunit II-P-Man (Escherichia coli!	52	32	1455
63	1 20687	7 21853	91 143365	phosphoribosyl aminoimidazole carboxylase II (PUR-K; ttg start codon)	52	1,5	195
86	6 5785	5 4592	[91 [1276879	Epsf (Streptococcus thermophilus)			
86 20	= :	117861	191 454844	ORF 3 (Schistosowa mansoni)			1194
96 13	13 10540	-	g1 288299	ORFI gene product (Bacillus megaterium)	76	97	1530
-	-	-	gi 148309	cytolysin B transport protein (Enterongue faces)	75		982
-	2 1457	1 2167	Bi 471234		52 -	- 72	2025
811		2365	bbs 151233	Hip=14 kda macrophage infectivity potentiator protein [Legionella pneumophila, Philadelphia-1, Peptide, 184 and (Legional)	52 -	33 -	567
122 9	9 5646	1 5951	191 8214	aster]			
122 11	1 6159	6374	91 434025	dihydrolipoamide acetyltransferase [Pelohacter carbinal and		95	306
134 6	9 4880	6313	91 153733	M protein trans-acting positive regulator (street-position)	52	52	216
135 3	1 1238	-	gn1 P1D e245024	lycobacterium	52		1434
-	1691	1 2319	gn1 PID d100573	withown Bacillus subrile:	52	35 -	1479
161	1562	5024	91 1146243	dentity with	52 52	32	639
173 2	896	1 183	 gi 1215693	rf; GT9 or	-		
•	•				52	30	186
							A

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

1 1 1 1 1 1		******					
Cont ig	ORF S	Start St (nt) (n	Stop match (nt) acession	match gene name	a sia	1 ident	length
198	9	4400 35	3567 [gnl Pib e31301	10 hypothetical protein (Bacillus subtilis)			(nt.)
210	112 8	8844 91	9107 91 497647	DNA gyrase subunit B (Mycoplasma genitalium)		07	8.54
214	-	5264 54	5431 gi[550697	envelope protein (Human immunodeficiency virus type 1)	26	87	264
225	-	-	84 gi 155273		76	97	168
230		39 362	[gn] PtD d10058	2 unknown (Bacillus subtilis)	52	34	870
287	1 1 8	871 2		8 protease/peptidase (Mycobacterium Janeas)	52	28	324
363	2 - 1	1305 4	01 393394		52	29	870
23	2 2	2048 1173	gn1 PID e25494	terium tube	52	32	1302
29	3 74	_	21 91 929900	5 -methylthloadenosine phosphorylase (Sulfolohus solfararions)		00	876
45	-	410 1597	97 gi 1877429		10	31	780
_	26 1927	227 18946	46 gi 2314455		16	32	1188
	5 42	4276 4016	16 91 474177	alpha-D-1, 4-qluroxidase (Grache)	51	33	282
81	11 89	8935 12057	57 qi 311070	CONCERN TO THE PROPERTY OF THE	51	31 -	261
83	5 1 11	1195 1 1996			15	ī	3123
	- † -	-	-;:	Yqff (Bacillus subtilis)	51	33	792
	- ‡	1531 (8538	18 91 41500	ORF 3 (AA 1-352); 38 kD (put. ftsX) [Escherichia coli]	51	28	1008
113	6 39	1908 5173)3 gi 466882	pps1; B1496_C2_189 [Mycobacterium leprae]	1 15		
124	1 326	-	91 (2191168	(AF007270) contains similarity to myosin heavy chain (Arabidonnis +haliana)		3	1700
_	10 72	7286 6816	6 91 1046241		10	32 -	270
143	3 49	4963 3983	13 (gi 1354935	Drobball a comparation at a control of the control o		30	471
148	115 (11359	59 (10226	Ţ	(AFORESON)	- 51	26	981
149	09 8	6003	Ϊ-	the course integrate hydrolase (Bacillus subtilis)	51	36	1134
			91 1633572	Herpesvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like	51	21	1311
151	9 (12092	92 11550	0 gn1 P1D e281580	hypothetical 40.7 kd protein (Bacillus subtilis)			
159	6 2555	55 3208	8 9i 146944	CMP-N-acetylneuraminic acid synthetase [Escherichia colii			243
174	1 1797	_	91 1773166	probable copper-transporting atpase [Escherichia coli]	76	97	654
265	4 2231	-	; -	anti-P. (alciparum antigenic polypeptide (Saimiri sciurons)	- 36	28	1794
-	2 643	1111	1 pir 832915 8329		7.	18	459
•					51	33	699

pneumoniae - Putative coding regions of novel proteins stailar to known proteins

6 4 1228 6 4 1228 6 4 2220 9 5 2591 5 1 211 9 7179 9 7179 9 7179 16 16591 17 6031 18 8740 16 16591 17 6031 2 1205 5 1673				TOEDL	Jenarh
5 4 1228 5 5 5 5 5 5 5 5 5	gi 290509	o307 [Escherichia coli!			(nt)
5 5 5174 6 4 2220 9 5 2591 5 4 2701 5 4 2701 6 9 7179 1 1 1155 1 1 1155 1 2 11155 1 3 1673 2	91 1107247	a) CDS (Capporthaldiria	15	30	888
5 5 5174 6 4 2220 5 4 2701 5 1 211 7 4000 7 4000 7 6031 7 6031 7 6031 7 6031 7 6031 7 6031 7 6031 8 8740 8 8740 8 8740 8 8740 8 8740 8 8740 8 8740 8 8740 8 8740 8 8740 8 8740 8 8 8 8 8 8 8 8 8 8 8	Lorrer lial	The same state of the same sta	15	23	3258
6 4 2220 5 4 2701 5 4 2701 6 7 701 7 6031 8 8740 8 8740 1 16 16591 1 1 1155 1 2 1205 2 1205 3 1673 2		291 membra	15	32	1698
\$ 5 2591 \$ 1 211 \$ 1 211 \$ 1 211 \$ 2000 \$ 8 8740 \$ 16591 \$ 1205 \$ 1205 \$ 1673 \$ 5 1673	TCTRCB OTA THBI		05	38	67.B
5 4 2701 5 4 2701 5 1 211 5 4 3416 1 7 4000 1 9 7179 1 8 8740 1 16 16591 1 1 1155 1 2 1205 2 1205 5 1673 5 1673	gnl PID e325010	hypothetical protein (Bacillus subtilis)			
\$ 4 2701 \$ 1 211 \$ 4 3416 \$ 1 4000 \$ 1 7 4000 \$ 1 7 6031 \$ 1 105 11 \$ 1 105 12 \$ 1	[91 1552733	similar to voltage-gated chloride channel protein (schooleti	nc -	29	363
1 211 2 4 3416 9 7179 8 8740 116 16591 12 12 129348 22 2 1205 12 5 1673 2	91 887849		1 20	30	1569
1 7 4000 1 9 7179 8 8740 1 16 16591 1 1 2 1155 1 2 1205 2 1673 2	gn1 P1D e236697	unknown (Saccharomyros caravisis)	1 50 1	27	705
1	gn1 PID d100974		1 50 1	33	207
9 7179 8 8740 16 16591 1 1 1155 1 1 1 1 1 1	gi 1592027	e Synthase, Dvrim(dinoscopie)	50	27	1737
16 16591 1 1 1 1 1 1 1 1 1		hanococcus jannaschiij	os ——	27	1182
8 8740	91 159 1847	Lype I restriction-modification enzyme, S subunit (Methanococcus	05	28	1125
16 16591 7 6031 2 29348 2 1205 2 2 2 2 2 2 2 2 2	91 144297	Acetyl esterase (XynC) Caldocellum saccharolyticum		-:	
7 6031	91 2108229	basic surface protein (Larryhadilling Commenced)	05 -	→ PK	795
23 29348 12 11155 11 2 1205 5 1673	gi 2275264		- 05 -	34	822
2 1205 2 1205 5 1673	actioiblaid line	• ; •	05	0	306
2 1205		(SITION PROPERTY OF THE PROPER	05	- or	996
5 1673	gar F10 6324964	hypothetical protein (Bacillus subtilis)	- 05	24 1	
5 1673	91 1066016	similar to Escherichia coli pyruvate, water dikinase, Swiss-Prot Accession Number P23538 (Pyrococcus furiosus)	80	24	876
	gn1 PID e322433	gamma-glutamylcysteine synthetase (Brassica iuncea)	_ ;		
_	91/151110			29	1287
103 4 3303 2785	191 154330	O-antioen lines (c. 100)	- 20 -	90	954
115 5 6480 5980	1011805747		- 08	31	519
129 11 7559 7105	1011121622	putative cei operon regulator (Bacillus subtilis)	1 05	26	501
-			- 05	32	255
- † -			20 -	30	228
			1 05	35	816
	SINTAL TUBL	(AB001488) SIMILAR TO NITROREDUCTASE. (Bacillus subtilis)	20 -	29	597

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1,	Cont ig 1D	ORF TD	Start (nt)	Stop	match	match gene name	# sim	\$ ident	length
1 1799 6173 6171 6185 618	155	s	5986	5432	gi 1276880	FpsG (Streptococcus thermophilus)	_ •		(nt)
1 1 1 1 1 1 1 1 1 1	160	6	7390	6323	91 1786983	to the 333 As hymothetical	05	28	555
6 7356 9031 9041 [pin1] Propidation 131 Total (1925) Image: Propidation of the product [Bacillus autillis] 50 27 8 5.372 3540 [pin1] [410326] [pin2] [40020]						E_ECOLI SW: P52697; 26 pct identical (7 gaps) to 17 residues of aa protein MLE_TRICU SW: P46057; SW: P52697 (Escherichia coli	08	e 	1068
1 6 5324 394 Gal [192-7] Gene product [Bacillias auatilis] 50 12 12 12 12 12 12 12 1	163	9	7396	8091	gn1 PrD d101313	YqeN (Bacillus subtilis)			
1 1316 1025 91 100 901 100 902	167	9	5232	3940	91 413926	gene product (Bacillus	000	77	969
1 1338 1414 61 130030	169	~	807	130	gn1 PID e304540	endolysin (Bacteriophage Bart)	05	27	1293
1 1338 131	171	5	3168	4025	91 606080	hift linking to 0267, not	50	35	678
1 1338 115 191391396 Trb-222 membrane associated protein [Trypanosoma brucel subgroup] 50 31 11 11 11 15090 19114459 ORF B (Clostridium perfitingens) 49 24 11 11 12689 1911414100 IrrA gene product [Rechinosarcina magnatia] 49 26 11 12689 13249 191141100 IrrA gene product [Rechinosarcina magnatia] 49 26 11 12689 13249 191141100 IrrA gene product [Rechinosarcina magnatia] 49 26 11 12689 13249 191141100 IrrA gene product [Rechinosarcina magnatia] 49 26 12 26 13 27 28 28 28 28 28 28 28			8151	8414	191 330038	ું ત			
1 1991 1996 191144899 ORP B (Cloatidum perfitagens) 49 24 1914	364	-	1538	135	91 393396	membrane associated orosis in	05	25	264
1 1777 4358 gil 1143440 ArP-dependent runclesse Becilius subtilisa 49 24 31 31 31 31 31 31 31 3	2	-	5911	1 5090	gi 144859	B (Clostridium parteines)	05	31	1404
1 17 1777 8138 gil 411170 CrtA gene product (Rechanosarcina mazaii) 49 26 26 264 4648 gil 1910 0285312 Reck protein (Rechanosarcina mazaii) 49 28 28 28 28 28 28 28 2	26	; –	10754	9768			49	24	822
6 5364 4448 901 P10 0285312 RecX Potein (Mycobacterium smagnatis) 49 28 28 1348 901 P10 0285312 RecX Potein (Mycobacterium smagnatis) 49 28 28 28 28 28 28 28 2	99	7	1 1116	6398		Bacillus	49	31	987
13 12689 13249 Start Proceeding the protection amagnatis 49 28 28 28 28 28 28 28 2		9	5364	4640		Tring years product (McChanosarcina mazeii)	64	7 92	1380
9 4866 (531) gall Hoof7 X gene product [Bacillus subtilis] 49 20 5 4019 4986 (451) gall 1571380 11c-1 operon protein (licB) Haemophilus influenzae 49 26 7 6058 4949 gall 1910 accillus subtilis 49 27 5 1875 (438) gall 19573 200 Aa-1-18 (Bacillus lichaniformis) 49 25 5 1870 (438) gall 1910 diol 102 regulatory components of sensory transduction system (Synechocystis sp.) 49 25 5 1870 gall 1910 diol 102 regulatory components of sensory transduction system (Synechocystis sp.) 49 25 5 1870 gall gall 400 diol 400	Ϊ-		- 1	11249	9/14 F.10 6285352	Reck protein (Mycobacterium smegmatis)	49	28	717
5 4019 4948 91 1574380 11c-1 operon protein (11cB) [Haemophilus influenzae] 49 26 27 26 268 4949 91 1574380 11c-1 operon protein (11cB) [Haemophilus influenzae] 49 27 27 27 27 27 27 27 2	!-	-	- 1		1606679 01 1 1 1 1 1 1	Inypothetical protein (Bacillus subtilis)	49	50	561
5 4019 4948 gill574380 l1c-1 operon protein (licB) [Haemophilus influenzae] 49 27 7 6058 4949 [911] Piol [a267587] Unknown [Bacillus subtilis] 49 35 5 1875 4438 [gil] Piol [a102] [A211] Piol [a102] [A212] Piol [a102] 49 35 2 1423 [gol] [Piol [a102] [A212] [a212] [A212] [a212] 49 25 2 1423 [gol] [Piol [a101]] [A212] [a212] [A212] [a212] 49 25 5 1860 [a112] [a102] [A212] [a102] [A212] [a102] 49 25 6 5352 [a123] [a112] [a102] [a112] [a102] [a112] [a102] 49 23 6 5352 [a123] [a112] [a102] [a112] [a102] [a112] [a102] [a112] [a102] [a112] [a102] [a102] <td< td=""><td></td><td>-</td><td></td><td>1604</td><td>191 40067</td><td>X gene product [Bacillus sphaericus]</td><td>49</td><td>26 1</td><td>266</td></td<>		-		1604	191 40067	X gene product [Bacillus sphaericus]	49	26 1	266
7 6058 4949 gml PID e267587 Unknown [Bacillus subtilis]		-	4019	4948	91 1574380	operon protein (licB) [Haemophilus	90		
S 3875 4438 Gal 39573 P20 (AM 1-178) Bacillus lichaniformis 49 25 25 2878 1637 gal P10 P10 P20 (AM 1-178) Bacillus lichaniformis 49 25 29 25 2878 1637 gal P10 P10 P20 P20	129	-	8509	6969	gn1 PID 6267587	Unknown (Bacillus subtilis)		,,,	056
2 1423 1953 gnl PID d101102 regulatory components of sensory transduction system (Symechocystis sp.) 49 29 5 2878 1657 gnl PID d101732 hypothetical protein (Symechocystis sp.) 49 29 1 1850 2940 gil 400324 LORF X gene product LOME X gene X ge	135	-	3875	4438	[pi 39573		49	35	1110
5 2878 1637 gnl[PID]d101732 hypothetical protein (Synechocystis sp.) 49 29 5 3500 2940 gil 190324 LORF X gene product (unidentified) 49 25 1 1057 2 gil 331002 first methionine codon in the ECLF1 ORF (Saimirine herpesvirus 2) 49 25 6 5352 3667 gil 2394472 (AF024499) contains similarity to homeobox domains (Caenorhabditis elegans) 49 23 4 1129 1350 gil 531116 SIR4 protein (Saccharomyces cerevisiae) 49 23 1 600 136 gil 396844 ORF (18 kDa) [Vibrio cholarae) 49 32 3 1435 887 gil 733524 phosphatidylinositol-4,5-diphosphate 3-kinase [Dictyostellum discoideum) 49 24	154	-	1423	1953	1 ~	Sensory transduction seems 19	49	25	564
5 3500 2940 gi 490324 LORF X gene product (unidentified) 49 25 30 31002 first methionine codon in the ECLF1 ORF (Saimirine herpesvirus 2) 49 30 35 3667 gi 2394472 (AF024499) contains similarity to homeobox domains (Caenorhabditis elegans) 49 23 49 1129 11350 gi 5311116 SIRA protein (Saccharomyces cerevisiae) 49 23 49 32 49 49 32 49 49 49 49 49 49 49 4	126	-	2878	1637	1 7	[Synechoveries 2	49	29	531
1 1057 2 gi 331002 first methionine codon in the ECLF1 ORF (Saimiriine herpesvirus 2) 49 25 25 3667 gi 2394472 (AF024499) Contains similarity to homeobox domains (Caenorhabditis elegans) 49 23 14 1129 1350 gi 531116 SIR4 protein (Saccharomyces Cerevistae) 4 1129 1350 gi 531116 GIR4 protein (Saccharomyces Cerevistae) 4 1129 1350 gi 733524 ORF (18 kDa) [Vibrio cholerae) 49 24 1435 887 gi 733524 phosphatidylinositol-4,5-diphosphate 3 kinase [Dictyostellum discoideum) 49 24	2	-	i –	2940		10) Marian (1) 110	49	25	1242
6 5352 3667 gi 2394472 (AF024499) contains similarity to homeobox domains [Caenorhabditis elegans] 49 25 1129 1350 gi 531116 SIR4 protein [Saccharomyces cerevisiae] 49 23 1129 136	-	-	1057	2			49	30	561
4 1129 1350 91 531116 SIR4 protein Saccharomyces cerevisiae	 	-	-	` ! -	41 2394472	codon in the ECLF1 ORF (Saimirine herpesvirus	49	25	1056
1 600 136 gi 396844 ORF (18 KDa) [Vibrio cholarae]	 	-	÷-			contains similarity to homeobox domains (Caenorhabditis	49	23	1686
3 1435 887 91 733524 phosphatidylinositol-4,5-diphosphate 3-kinase [Dictyostellum discoideum) 49 24	-	; -	-	- ; -			49	23	222
191 3324 phosphatidylinositol-4, 5-diphosphate 3-kinase (Dictyostelium discoideum) 49 24	†-	÷-	· ; -	- ; -		UM: (18 KDa) [Vibrio cholarae]	1 64	32	465
			- †		- •	phosphatidylinositol-4,5-diphosphate 3-kinase (Dictyostelium discoideum)	- 64	24	549

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	20.00	-				
e	;	;		acession	match gene name	# sim	1 % ident	Jenoth
365	-	1436	132	gi 393394	Tb-291 membrane associated protein (**)	-		(nt)
23	~	4461	7726	gi 145644		69	31	1305
40	- 2	652	1776			8	26	1185
67	-	1377	2384		to the total decarboxylase	48	29	1125
74	- 2	4269	1 3871	loileis	reconstructionate kinase (Haloferax alicantel)	48	30	1008
18	- 2	1326			Insevential (Rhizobium sp. NGR234)	- 48	27	399
1				7/96/1781	lactose repressor (Streptococcus mutans)	1 48 1		
3	-	1 2981	3646	9i 146042	[tuculose-1-phosphate aldolase (fucA) [Escherichia coli!		5	98/
97	-	602	51	gi 153794	rgg (Streptococcus gordonii)	- 48	30	999
110	_	-	3132	91 1381114	pris gene product (Lactobaci III a Anta-	48	29	552
131	s	1 2914	2147	gn1 PID e183811	Acyl-ACP thloesterase (atmester	48	23	3132
133	-	3494	1 2628			- 48	27	768
139	9	4231	4599	gi 1049388	ZXAJA 1 2000	48	27	867
139	- 8	5036	1 5665		broduct (Caenorhabditis elegans)	48	23	369
340	12	20011			unknown Staphylococcus haemolyticus	48 -	29	0.53
	:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9n1 PID d102049	H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189)	48	27	930
146	6	5670	4654	181 1591731	melvalonate kinase (Methanococous inneres)	- +	_	
191		1280	2374	gn1 P1D d101578		- 48 -	24	1017
- ;	11	,	111048	gn1 PID d101132	Synec	48	24	1095
182	-	2930	2586	gi 40067	TOO CONTRACTOR AND ADDRESS OF THE PROPERTY OF	48	27	468
210	15	10786	111196		In years product (bacillus sphaerfous)	48	37	345
214		1	6483	#D #13940 LE29_	LATE EMBRYOGENESIS ABUNDANT PROTEIN D-29 (LEA D-29)	48	30	411
221	-	100		191 40369	non-toxic components (Clostridium botulinum)	48	26	
	-		1	91 1573364	H. influenzae predicted coding region HI0392 (Haemophilus influenzae)	48		
			3928	91 1673693	(AE000005) Mycoplasma pneumoniae, C09_orf718 Protein (Mycoplasma	48	30	102
253	-	480	158	gn1 PID e236697	unknown (Saccharomyces cereviciae)	-		7
363	_	1874	1122	91 18137	roduct	48	31	279
-	-	505	2	91/18137	3 1 6 1 6 1	48 1	- 0\$	753
3	21 2	20879 2	22258	e264778	Durative maleonetics	48	38	504
:	•	+	•	7	Streptomyces coelicolor	47	33 –	1380
					2 4 4 4 8 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

111111	100	: -	: -	-				
QI.		(nt)	(nt)		match gene name	* sim	1 ident	length
9	7	4089	4658	91 39573	P20 (AA 1-178) [Bacillus licheniformis]			(nt)
15	_	1 3736	1760		unknown (Bacillus subtilis)	44	23	570
35	115	114516	13263		Cap5L Stanby]ncncne aurence	47	25	1977
51	-	1 3547	1 4002		32K antioen premises the second secon	47	20	1254
55	-	10154	9273	91 39848		47	38	456
92	-	1753	1 3276	dent Pipi Page 1		47	26	882
127		5589	5386	gi 1786458	pneumoniae]	42	35	1524
					P43949 (Esc)	6	35	204
0.1	~ ;	1232	1759	gn1 P1D e266555	unknown (Mycobacterium tuberculosis			
140	- -	4951	3542	an1 PID d100964	- i 📆 (47	24	528
151	-	6814	1 6200	91 1522674	M. Janaschi predicted codes			
157		1 803	1174	oct total fund	Vanz (Basilla	47	27	615
178	- 2	1 3267	1 2156		ולקה ומפכודות פתמנדוד של החוד של החוד החוד של החוד החוד החוד החוד החוד החוד החוד החוד	4	25	372
				067.0571.8	VEXEO0130) 0314; sequence change joins ORFs ygjR & ygjS from earlier version (YGJR_ECOLI SW: P42599 and YGJS_ECOLI SW: P42600) [Escherichia coli	47	000	cur
273	-	2	1549	gn1 PID e254973	autolysin sensor kinase [Bacillus enhtilie]			-
300	~	1 880	644	191 1835755	r protein Page 1 (Mag and	47	32	1548
54	=	14182	12638	pir S43609 S436	rofA Drotein - Strantocome	47	22	237
88	-	1 2	1018		8	46	24	1545
96	_	4553	5860	11652	ONF_ID:034715; similar to [SwissProt Accession Number P45272] [Escherichia	46	27	1017
112	-	1127	3	gi (2209215	325) putative olioosacharida vanat		:	805
133					pneumoniae]	46	24	1125
		800/	7867	191 1054776	hr44 gene product (Homo sapiens)	46 6	-	
127	2:	9198	8125	91 1469286	afuk gene product (Actinobacillus pleuropneumoniae)	- ; ;	7	6/9
132	-	7093		gi 153794	rgg (Streptococcus gordonii)	49	28	1074
140	8	8220	-	91 1235795	pullulanase (Thermoanaerobacterium rharmoentering)	46	26	897
140	6	9205	8315	91 407878		46	21	498
		*	•	*	durante de la companya de la company	46	27	891

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ID	Start (nt)	Stop	match acession	match gene name	- sim	t ident	length
162	-	-	1125	Bi 1143209	ORF7: Method: conceptual translation supplied by surbor (chical)			(nt)
199	-	-	585	1717491111		46	25	1125
223	-	1971	1477	sp P02562 MYSS_	+=	98	28	585
232	- 5	760	1608	91 1016112	ycf38 gene product (Cyanophora paradoxa)	46	27	495
292		687	220	91 1673744	(AE000011) Hycoplasma pneumoniae, cytidine deaminase; similar to GenBank Accession Number C53312, from H. pixum (Mycoplasma pneumoniae)	9 9	29	468
30	œ	5843	6472	91 1788049	(AE000270) 0235; This 235 as orf is 29 pct identical (NO gaps) to 198 residues of an approx. 216 as protein YTXB_BACSU SW: P06568 (Escherichia coli)	45	24	630
48	9	3461	1 3868	91 722339	unknown Acetobacter xylinum			
09		307	7	91 1699079	coded for by C. elegans cDNA ykilhi. S. coded for by C. elegans cDNA yki48910.5; coded for by C. elegans cDNA yk595.5; coded for by C. elegans cDNA yk59910.5; coded for by C. elegans cDNA cm20010; coded for by C. elegans cDNA cm20010; coded	45	36	306
27	116	14371	114874	lg1 1321900	NADH dehydrogenase (ubiquinone) Artemia franciscana)			
66	-	9158	7941	91 152192	mutation causes a succinoglucan-minus phenotype; ExoQ is atransmembrane protein; third gene of the exoYPQ operon;; putative (Rhishhim molities)	45	25	504
127	2	7046	9099	bhs 153689	HitB=iron utilization protein (Haemophilus influenzae, type b, DL42, NTHI TN106, Peptide, 506 aal (Heemophilus influenzae, type b, DL42, NTHI	45	24	441
137	2	1561	2619	91 (472921	V-type Na-ATPase (Enterococcus hirae)			-
209	-	474	364	91 304141	1	45	33 –	1059
314		604		gi 1480457		45	28	411
20	<u>;</u> —	19782	20288	91 433942	ORF (Lactococcus lactis)	45	31	603
87	8	7030	6452	191 537207	ORF_E277 [Escherichia coli]	44	26	507
166	5	4909	4037		transmort orotolo (position)	44	26	879
247	-	818	75			44	25	873
32	2	1885	3876		Pank (Strentonous)	44	20	744
36	12	15467	18256		T confer in the contract of th	63	24	1992
54	115	14656	117343		deillin-binding protein and a control of the	43	26	2790
69	~	969	1352	91 536934	Vick dene product (Serbeick).	43	27	2688
601	~	2416	338	gi [396400	tion with the second	43	1 62	657
				•	Control Maryna exchangers (Escherichia coli)	43	24	2079

1144
ength (nt) 1095
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
as and definition of the state
eins ir proteit
legans]
lar to kr beditis el coli s sarcom
eins simi
ovel prot in found in fo
ions of notice (Bacili) hition li hizobium hizobium hizobium hizobium hizobium hizobium hizobium hizobium hizobium hition li hickein
Putative coding regions of novel proteins similar to known proteins match gene name match gene product leacilius subtilis! [Involéées] No définition line found [Geenorhabditis elegans] [Involéées] No définition line found [Geenorhabditis elegans] [Involéées] No définition line found [Geenorhabditis elegans] [Involées] No définition line [Escherichis coli] [Involées] Protein [Triticum aestivum] [Involées] Protein [Synechocystis sp.]
putative coding watch gene name match gene name large and profile 69) No de la putation large and profile 69) No de large and
niae P
S. pneumoniae putative coding regions of novel proteins similar to known proteins amatch gane name match gane name match gane name match gane name match gane product (Bacillus subtilis) 10 10 11315632 10 10 10 10 10 10 10
Start Stop acession (nt) 61 61 61 62 62 62 62 63 64 64 64 64 64 64 64
Start Stop acession Ipa-48r genc product (Bacillus subtilia) 10 1215652 10 121156542 10 121156542 10 121156542 10 12115642 10 12115642 10 12115642 10 12115642 10 12115642 10 12115642 10 10 12115642 10 10 12115642 10 10 12115642 10 10 10 10 10 10 10 1
LABL
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

											 —	· · <u> </u>	•			•	•		• — .	•
	3009	4964	994	1574	6497	25396	26317	1689	12618	12841	15390	9419	9910	4280	5704	6298	6888	7672	-	1456	1434	243	3087	34	1050	4465	15893
Start (nt)	3428	4611	818	1182	5382	5046	5625	1519	2875	13215	7,651	9955	19101	3915	6024	6069	7136	7968	1140	1779	1913	-	5675	324	1451	4890	14544
ORF	-	9	~	_	-	25 2	126 12	~	14	115	118	122	5	9	6	8	6	=	-	2	- 5	-	- 2	-	5	6	14
Contig	1	7	3	3	3	~	3	9	9	9	9	7	7	80	6	10	01	10	12	12	14	16	16	17	17	17	20
ļ	! — ·	<u>. </u>	-	! — .	_	<u> </u>	!	! — ·	ļ —	! —	! —	! —	! — ·	↓ —	! ·	! —	! —	-	-	-	! —	! —	! —	! —	! —	-	-

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

1	1-	<u>†</u> –	1-	† -	† –	<u> </u>	ŧ÷	;-	; —		; –	-	-	;-	; –	: —	: —	: —	: –	. –	-	.	٠.	٠	. –		.
Stop (nt)	2589	4482	17362	19982	25764	26218	27572				2641	4223	4956	1797	3850	4597	5072	4919	5518	8207		2344	5538		7740	8641	7756
Start (nt)	1 (7)	4802	17099	19467	25540	6388	6382	6655	7132			100				5028		9655		5695				327	024	09	667 5
I OR I		-	-	-	= .	-	<u> </u>	-	-	-	-	-		 	 	-		-	_		-	-	2	- 2	-	-	16
†	<u> </u>	<u>.</u>	12	125	8	32	38	_	∞	-	~	-	'n	~	œ	ខ្ម	1	7	∞	•	Ø.	9	s	80	0	7	9
	21										25	27	27	28				29	29	29							34
·	+ — +		-:	- :		- :	- :	- :	- 1			- - ‡			- i		_ ‡							- 	_	_	

pneumoniae - Putative coding regions of novel proteins not \$1\text{hilar} to known proteins

Stop	902	588		41	93	88	95	12 1	01	13	- 90	43	-			-	- S	8	1	2 -	- 6	2		÷	, –		1-
		8 85	-	. ~	=		145			-	1137		ļ	1 1		80			8	58	22			(15764	118351	121776	F
Sta	310	89		m :	111120	10993	12172	4269	4480	5517	10732	1728			8956				•		1 4	9323	13042	16342	17971	21979	209
8 8	138	=	112	7	112	57	115	_	8	97	117	~	-	_	80	4	~	4	7	2	8	=	9 7	20	24	90	-
Contig		35	35		36		36				38	40	\$	43		44	45	4.6	46	48	48	48		48	88	80	6.9
- -				. — ,	- •		-		· — i		· —	:	- 4	- :		-:	- ‡	-+	‡	‡				_		_	· — ‡

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

†	· ; –	;-	; –	; —	; –	; –	;-	†	; —	, –	; –	- -	:	<u>. </u>	• - -	÷ —	· —	•	•	٠.	٠	•	•				
Stop (nt)	2672	3598	12883	5187	5459	6210	17506	10123	12141	1387	1939	2130	2501	7335	430	2736	3063	5549	5929	6451	1772	3176	2	3147	9495	1182	980
Start (nt)	3307	3239	12146	5588	6013	6004	17685	10515	11947	935	1496	1624	2100	7541	7	2416	2734	4743	5459	5741	2395	3316	2722	180	9082	343	165 9
ORF	-	s	=	_	8	6	116	6	77	<u>-</u>	-	- -	-	9	-	-	·~	8	- 6	9	e	s	-	2 1	-	3	1 - 1
Contig	20	51	52	54	54	54	54	55	55	56	95	57	57	58	59	59	59	59	59	09		61	64	99	99	67	- 69
	•	•	-+	•	+			4		:	- :			+	-:	‡		- i	_;	i	- !	- !	_:	_!		· !	!

S. pneumoniae - Putative coding regions of novel proteins not \$Ymflar to known proteins

۵-	7	-	<u> </u>	<u> </u>	† –	†-	;-	:-	† –	-	-	; —	† —	-	-	; –	-	<u>. </u>	÷	÷ — ·	• —	٠	. —	• —		_
Stop (nt)	. 0	05	5504	121901	(22338	27556	8081	4216	4582	4773	6428	9996	195	535	9210	8109	2	8931	1150	6460	2929	1092	2875	114	000	001
Start (nt)	4059	1 (2)	5268	20351	21859	6204	8458	3815	4214	(369	7183	9462	524	867	602	924	44	631	872	10 11	464	47	90	67 17	26 5	9 65
ag CI	s	9	6	_	-	19 2	6	-	-	-	-	2	-	-	1 8	6 7	1 - 2	- 0	-	1168		21	96		53	64
61				_	- ;	_	_	-	-	-	= :	-	-	-	= {	-	-	=	_	= !	_ :		- i	13	2	~
Cont	2	20	2	7	7	7	72			2	27	5	76	76	76	80	81	81	8	83	84	98	96	86	87	87

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Stop	1 02	28	40	- 82	9	621	-	† - 5	-	<u> </u>	-	-	<u>;</u> –	-	-	<u>;</u> –	-	;-	;-	; –	<u>; </u>	;-	;-	; —	† –	; —	† –
t St	176	1179	1 68	1 287		162		2395	952	314	1 369	457	~	237	3712	182	632	1147	1420	6753	18692	19541		299	4373	6735	6517
Star (nt)	117930	18275	1619	1172		2634	1371	669	1143	2959	3170	4253	391	2648	4533	~	904	1407	1250	7043	18522	7176	4094	48	4924	6142	8609
98 G	=	13	7	~	6	<u>-</u>	6	~	î,	~	7	٥	-	9	8	-	~ ~	-	-	-	15	17 11		-	-	5	-
Contig	87	87	88	88		88	88	90	96	16	91	22	93		93	96	96	96	96	97	66	66		0 1	0		105
	•	· = - •	-•	-+		. — .	· — ÷	-+	-:	:	· 		-:	-+			- - ‡	- i	- ∔			_	- :	!		-	

S. pneumoniae - Putative coding regions of novel proteins not slitillar to known proteins

	• – ·	•	+ - - :																								
Stop (nt)	36	10212	268	3788	4606	10438	2121	1357	2333	6199	7416	069	3368	102	724	9509	6277	7621	1.56	5673	11209	1140	3830	134	4521	4532	4875
Start (nt)	- 1	9832.	8	3417	3809	10854	2873	2274	2698	5858	6301	346	2544	689	101	6454	6540	7809	1433	5972	11838	625	2913	325	4027	4840	5363 1
ORF	-	9	-	~	7	10	-	~	-	10	12	7		-	7	6	6	75	-	9	11	~	-	~	~	=	-
Contig	106		108	111	111	115	116	118	122	122	122	124	128	129	129	129	129	129	131	131	134	135	136	137	139	139	139 1
			•		. — .	· — ·	. — •	• — •						· •			4			·		! _ !				· — ·	<u> </u>

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Stop (nt)	20838	285	1 64	78 -	2885	401	1 929	50	1 92	47		36	80	- 00	-	- 6	- 2	-		- -	-	 -	-	-	 -	<u>; </u>	<u>†</u> -†
rr .	2 20	- 2	† *	-	3	9	1106	-6	172	98	47	161	28	- 60	1 579	190	264	174	141	431	294	780	1722	4017	1018	4945	4972
12 2	119822	-	760	1149		8223	9399	10052	7488	8913	5298	7	2557	6258	1355	2556	2061	1953	2181		37	631	1384	3271	1332	5535	406
+	2	-	<u>-</u>	*	7	13	114	115	,	6	7	7	6	6	~	-	m	г Г	-	8	-	- 2	-	-		-	6 - 5
	140	142	146	146	146	146	146	146	147	147	148	149	149	149	150	150	153	54	55				59	59	61	-	9
÷ —— ;			-+	-1	_ i			_ !	_ .	- ‡			-	_ !	_	_	_	-+	_;	-	-	_!	_	-	7	78	16

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Stop	6395	20		6362	6962	7906	7476	1948	2677	835	1789	546	1466	4925	5177	5347	8703	3724	2473		2006	2320	4219	1634	557	363	821	+
Start (nt)	6075	2828	6485	6964	7303	8790	7150	2298	2913	1 659	893	1487	2200	4686	4923	5111	7396	3452	1853	2112	617	2126	4683 4	4846 4	940 3	686 4	183 4	+
g ORF	6		-	8	6	=	6		~	7	-	7	e -	6	2	=	<u> </u>	9	- 2	7 -	e	7	2	9	4	-	5	
Contig	167	169	170	170	170	170	171	172	173	175	175	176	176	177	177	177	771	178	181	182	182	183	185	185	187	188	188	•
					·						•	. — •	+	·.— ÷	-:			+	- ‡	- +	- ‡		·	- :	- - ‡		· ‡	

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

†	- †	;-	;-	; —	! —	•	<u>;</u> —	;-	; - -	;-	; –	;-	, –	; —	÷ —	• -	,	<u>+</u> —	<u>+</u> —	٠.	٠	+	•				
Stop	6493	2844	5564	7	18	2268	2878	5331	839	2127	4543	6231	1849	861	6644	5769	6595	3276	1709		2682	8230	0441	0705	2330	5277	5754
Start	5882	3143	5956	618	10357	2861	3081		766	2315	6249	9620	1553	-	6844	5329	5993	3914	447	2038	2458	1370	9029	0439 1	581	990	966
ORF	9		6	-	Ξ	2	•	-	n	9	s	9	7	-	6	5	•	5	~	-	5	01	: E	<u>.</u>	5 2	9 8	1 5
Contig	188	189		191	191	192	192	192	193	194	195	195	196	197	198	200	200			0 1		01			214	214	214 11
			,				· — •		• •		•									·	- :	· — l		- - i	_ :	· _ ‡	

S. pncumoniae - Putative coding regions of novel proteins not bimilar to known proteins

	· -	•																											
	Stop (nt.)	4	32	972	821	-		-	<u> </u>	2	-	1-	<u>; </u>	<u>; </u>	 -	-	1-	1-	†-	;-	†-	†-	;-	<u>;</u> –	;-	-	; –	; -	•
į			143	5	38	39	009	1967	510	1312	1838	312	687	64		362	1222	792	1616	2123	177	1900	2973	342	1022	1681	981	295	
	Start (nt)	541	7	430	3639	458	69	617		539	16	7			-	<u> </u>	<u> </u>	89	6	0,	 	-	- 6	-	-	-	-	-	-
+		-	<u>.</u>	-	-	-	-	~	<u> </u>	= -	77	5	<u> </u>	099	<u> </u>		4	278	=	17	653	224	356	-	177	1124	857	1684	-
+	I D	7	~	_	9	-	<u>-</u>	-	<u> </u> -	-	٠	-	7	-	-	-	~	m	~	_	-	4	2		7	7	-	-	***
į	Contig	217	218	218	218	219	2	5	,	•	4	2	S			_	_	_	-	-	_	-	-	-	-	-	-	-	-
1	<u> </u>	-	_	7	7	7	5	7	227	2	23	235		238	246	248	24	254	258		263	263			266		272	275	
								•		_,		•	• •	-+	-+					-:	- :	‡	1	_ į	_ į	- i	-‡		

FABLE

S. pneumoniae - Putative coding regions of novel proteins not attiviar to known proteins

-	-	<u> </u>	†-	1-	†-	; –	;-	<u>;</u> –	<u>;</u> –	; -	;-	; –	;-	;-	; —	: —	• - -	<u>+</u>	+	٠		•					
Stop	907	191	1134	826	7	-	1858	2925	809	700	843	530	350	1889	1818	584	יננ	133	607	549	535	82	342	207	101	1 66	98
Start (nt)	7	714	1463	1119	540	684	1589	2539	21	184	670	261	559	249	2087	1048	-	-	2	-	-		-	-	 	-	-
ORF	-	-	<u> </u>	-	-	-	_	-	-	_	<u> </u>	-	-	7	~	=	515	Ş	91	7	7	465	127	~	895	750	-
·	-		-	7	_	-	~	7	-	~	_	-	7	7	~	~	~	~	7	-	-	2	3	-	~	~	
Contig	278	282	282	287	288	289	291	293	294	296	296	302	309	310	316	317	318	319	127	331	333	333	333	4	45	46	49
	,		+	+	 ∔	÷	-+	- :	‡	-+	- ‡	‡	- ‡	i	_ i	_ ;			_!	_!	_	_!	_				

FABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

	Stop (nt)	413	973	448	628	1265	1004	510	693	7	30
	Start (nt)	81	8	929	948	1639	345	683	109	150	1 692
	ORF ID	2	-	7	7	7	-	~	-	-	~
•	Contig	350	355	358	360	364	378	379	381	385	385
		•	•			+	-+	-+	- ∔	÷	-÷

TABLE 3

(1) GENERAL INFORMATION:

(i) APPLICANT: Charles Kunsch

Gil H. Choi

Patrick S. Dillon

Craig A. Rosen

Steven C. Barash

Michael R. Fannon

Brian A. Dougherty

- (ii) TITLE OF INVENTION: Streptococcus pneumoniae Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 391
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: HP Vectra 486/33
 - (C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Brookes, A. Anders
 - (B) REGISTRATION NUMBER: 36,373
 - (C) REFERENCE/DOCKET NUMBER: PB340P1
- (vi) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (301) 309-8504
 - (B) TELEFAX: (301) 309-8512

150

(2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5625 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CCAAGCAAAA CCAGCTACAG CTAAAGGAAC TTACGTAACA AACTTGACTA TCACAACTAC 60 TCAAGGTGTT GGTATCAAAG TTGACGTAAA CTCACTTTAA TCAGTAGTTA AAGTAATGTA 120 AAAAAGTTGA AGACGCTATG TCTCAACTTT TTTTGATGTA CGACGGGCAT GTTGTATAGT 180 AGATGTGTAC TATTCTAGTT TCAATCTACT ATAGTAGCTC AGAAGTCGGT ACTTAAACGT 240 GCTATATCAA AACCAGTCCT TGAAAAACGT GGACTGGTTT CGTGTTTGGA TTATTACCTT 300 GAACGACATG CGTTAAAAGT TAGTTGAACC GCCGTATGCC GAACGGACGT ACGGTGGTGT 360 GAGAGGGGCT AGAGATTATC CCCTACTCGA TTTCGAAATC TAGTGGAATG AATCTGGAAT 420 AGTCCATCGA GCTTTCTAAT ACTCTTCGAA AATCTCTTCA AACCACGTCA ACGTCGCCTT 480 GCCGTGCGTA TGGTTACTGA CTTCGTCAGT TCTATCCACA ACCTCAAAAC AGTGTTTTGA 540 GCTGACTACG TCAGTTCCAT CTACAACCTC AAAACAGTGT TTTGAGCAAC CTGCGGCTAG 600 TTTCCTAGTT TGCTCTTTGG TTTTCATTGA GTATAACACA TTGTTAGAAG TTGGTTAAA 660 TTTCCTAATC AGTTTGTTCA CATTTACCTT CGATATATTA TATCCCATAG TTAAGGTTGG 720 TCATACAGAT GATTATAGTC ATGGAGCCGT AAAACTTAGT GTTTCTTTAG TTGACAAAGA 780 TGCCATGAAA AAAATATTTG TAACTGTAAT AGGATATTTT GAAATAAATA TAGATGAAAA 840 TATCACCGAT ATTCTATACG TAAATGGTAC TGCTATTCTT TATCTTTATT TACGTTCAAT 900 TGTTTCAATA GTTTCGGCAA TTGATAGCAG TGAAGCAATG TTGCTACCTA TCATTAATGT 960 TTTAGAGTTA CTAGATAAAT CTCAACCTTT TGAAGAAGAA TAATTTATTA GCTCACTAAA 1020 TTGAGGGTAA GGAAAAGTAA AAGCAGTAAG AAAAATGTCT TGCATTATAC AGCAACCTTT 1080 TGGGAATGAG TGGATGGATT GAATAAAATT TGATTAAGAG TGGATGATTT ATCTGTAGAT 1140 TATTATTGGA CAGTTAGTCT TGAAGTAGTC TAAGAATTAG GTTATAATCA GTAGAAGCCT 1200 TGCTAATAAT GAGGAGGTTA GTTTATGTAT AGTAGACTGA ATCTAAAATA GTACGAAACA 1260 ATTGCTAAAA CATTTATAGA AATTAATTTT ACTTTCCCAA TCGATTTGTT CTCATCTTAT 1320 TTCAATCCGC TATATATTAT GGTATCGAAT CTTCATCAGA ATGATAAAAT TAATCAATTG 1380 ATATCTGATT ACAAACAGAA TATGAAAGCT TTTTATATCA CTATTGAAAA ATTTATACGA 1440

GATGATGAAA GCCTTAAGTG TTATTTTATA AAGGTTATTT CAAGTCGTTC CAAGGTAACA	1500
AGTCTAGATC AGATTGAAGC TGATAAAACG ATACAAAGAA AATATTCAAG TGAGCTAAAA	1560
AAATTTATTG GATTTTATAA TGAGATTATT TGTGAGGAAA ATAGTTTCCT ACATGTACGA	1620
AAGAGGTGGT CGAGTTGGTT TAGGTAGTCG ATGCGTGAGT TGATAATTCT CAGGGTATGG	1680
ACTTCTTTT CATGAATGAG GTAAAAGAGC AGGTATTGTT TAGAGACAAT CATTCTGAGC	1740
ATATTTTCTG GATAGAGGGA GTATCCGATT TTATGATCAA AGTTAATACC GCCCTCTGGT	1800
GAGAAGATGA GTAGGTTGGT AATTTAAACT ATTAAACAGA ATTTTTGATT AAAAGTATTA	1860
TTTCATGAGA GAAATCCTAA TTTCACAATC CATAGGCAAA CGCTTGCATT TCGTTTTTTA	1920
TTGGACTATA ATAGGTTGGT ATAAAGCCTT CTGTAGTAAT AAAATGTAGA AGGTGTAGAA	1980
AGTAAGGATT TAGAATATTT GTAGTTAAAA ACACAATGTT GCTATTCCTT ACGATAGGGA	2040
GATAGATATG GCAATGATAG AAGTGGAACA TCTTCAGAAA AATTTTGTGA AGACTGTTAA	2100
GGAACCGGGC TTGAAGGGGG CTTTGCGCTC CTTTATTCAT CCTGAAAAGC AGACCTTTGA	2160
AGCGGTCAAG GATTTGACCT TTGAGGTTCC AAAAGGGCAG ATTTTAGGAT TTATCGGGGC	2220
AAATGGTGCT GGGAAGTCGA CAACCATTAA AATGCTGACA GGAATTTTGA AACCAACATC	2280
TGGTTTTTGT CGGATTAACG GCAAGATTCC CCAGGACAAT CGGCAAGATT ATGTCAAAGA	2340
TATTGGCGTA GTCTTTGGAC AACGCACCCA GCTATGGTGG GATTTGGCTC TGCAAGAGAC	2400
CTACACTGTC TTAAAAGAGA TTTATGATGT GCCAGACTCG CTCTTTCATA AGCGTATGGA	2460
CTTTTTGAAT GAAGTCTTGG ATTTGAAGGA CTTTATCAAG GATCCCGTGC GGACTCTTTC	2520
ACTGGGACAA CGGATGCGGG CGGATATTGC GGCCTCCTTG CTCCACAATC CCAAGGTTCT	2580
TTTTTTAGAT GAGCCGACCA TTGGTTTGGA CGTTTCGGTT AAGGATAATA TTCGTCGGGC	2640
AATTACTCAG ATCAATCAAG AGGAAGAAAC TACCATTCTT TTGACCACTC ACGATTTGAG	2700
TGATATTGAG CAACTTTGTG ATCGGATTTT CATGATTGAC AAGGGGCAAG AGATTTTTGA	2760
TGGAACGGTG AGCCAACTCA AGGAGACCTT TGGTAAGATG AAGACTCTCT CTTTTGAACT	2820
GCTACCAGGT CAAAGTCATC TCGTCTCTCA CTATGACGGT CTGTCTGATA TGACCATTGA	2880
TAGACAAGGA AACAGCCTCA ACATTGAATT TGATAGTTCT CGCTACCAGT CAGCTGACAT	2940
TATCAAGCAA ACCCTGTCTG ATTTTGAAAT CCGCGATTTG AAGATGGTGG ATACGGATAT.	3000
TGAGGATATT ATCCGTCGCT TCTACCGAAA GGAGCTCTAG GATGATCAAA TTGTGGAGAC	3060
GTTATAAACC CTTTATCAAT GCAGGGGTTC AGGAGTTGAT TACTTACCGA GTCAACTTTA	3120
TTCTCTATCG GATTGGCGAT GTCATGGGGG CTTTTGTGGC CTTTTATCTC TGGAAGGCTG	3180

152	
TCTTTGATTC TTCGCAAGAG TCTTTGATTC AGGGCTTCAG TATGGCGGAT ATCACCCTCT	3240
ACATCATCAT GAGTTTTGTG ACCAATCTTC TGACTAGATC CGATTCGTCC TTTATGATTG	3300
GGGAGGAGGT CAAGGATGGC TCCATTATCA TGCGTTTGTT GCGACCAGTG CATTTTGCGG	3360
CCTCCTATCT TTTCACCGAG CTTGGTTCCA AGTGGTTGAT TTTTATCAGC GTTGGCCTTC	3420
CATTTTTAAG TGTCATTGTC TTGATGAAAA TCATATCGGG TCAAGGTATT GTAGAGGTGC	3480
TAGGATTAAC TGTCATTTAT CTTTTTAGCT TAACGCTCGC CTATCTGATT AACTTTTTCT	3540
TTAATATTTG CTTTGGATTT TCAGCCTTTG TGTTTAAAAA TCTTTGGGGT TCCAACCTAC	3600
TTAAGACTTC CATAGTGGCT TTTATGTCGG GGAGTTTGAT TCCCTTGGCA TTTTTTCCAA	3660
AGGTTGTTTC AGATATTCTC TCCTTTTTGC CTTTTTCATC CTTGATTTAT ACTCCAGTTA	3720
TGATCATTGT TGGAAAATAC GATGCCAGTC AGATTCTTCA GGCACTCCTT TTGCAGTTCT	3780
TCTGGCTCTT AGTGATGGTG GGATTGTCTC AGTTAATTTG GAAACGGGTC CAGTCCTTTA	3840
TCACCATTCA AGGAGGTTAG TATGAAAAA TATCAACGAA TGCATCTGAT TTTTATCAGA	3900
CAATACATCA AACAAATCAT GGAATATAAG GTAGATTTTG TGGTTGGTGT CTTGGGAGTC	3960
TTTCTGACTC AAGGCTTGAA TCTCTTGTTT CTCAATGTCA TCTTTCAACA TATTCCATTC	4020
CTAGAAGGCT GGACCTTTCA AGAGATAGCT TTCATTTATG GATTTCCTT GATTCCCAAG	4080
GGAATGGACC ATCTCTTTTT TGACAATCTC TGGGCACTAG GGCAACGCCT AGTCCGAAAA	4140
GGGGAGTTTG ACAAGTATCT GACTCGTCCC ATCAATCCTC TCTTTCACAT CCTAGTTGAA	4200
ACCTTTCAGA TTGATGCCTT GGGTGAACTC TTAGTCGGTG GTATTTTATT GGGAACAACA	4260
GTGACCAGCA TTGTTTGGAC TCTTCCAAAA TTCCTGCTTT TCCTAGTTTG TATTCCTTTT	4320
GCGACCTTGA TTTATACTTC TCTTAAAATC GCAACAGCCA GTATCGCCTT TTGGACTAAG	4380
CAGTCAGGCG CCATGATTTA CATCTTCTAT ATGTTCAATG ACTTTGCTAA GTATCCGATT	4440
TCTATTTACA ATTCTCTTCT TCGTTGGTTG ATTAGCTTTA TCGTGCCTTT CGCCTTTACA	4500
GCCTACTATC CAGCTAGCTA TTTCTTACAG GAAAAGGATG TGTTCTTTAA CGTAGGAGGT	4560
TTGATGTTGA TTTCTCTGGT TTTCTTTGTT ATTTCCCTTA AACTTTGGGA TAAGGGCTTA	4620
GATTCCTACG AAAGTGCGGG TTCGTAAAAG CTAAAGTAAG ACTAAAATCA AGAAAGAAAC	4680
TTATGATGTT TGTAATTGAA GAAGTCAAGG ATGAAAATCA AAAAAAGGCA GTTGTCGCTG	4740
AGGTTTTGAA GGATTTGCCA GAATGGTTTG GAATCCCAGA AAGCACACAA GCCTATATAG	4800
AAGGAACCAC GACACTGCAA GTTTGGACCG CCTATCAGGA GAGTGATTTG ACTAGATTTG	4860
TAAGCTTATC CTATTCGAGT GAAGATTGTG CAGAGATTGA TTGTCTCGGC GTAAAAAAGC	4920
TTATCAAGGT AGAAAAATTG GGAGCCAATT GCTTGCTACT TTAGAGAGTG AAGCTCGTAA	4980

153

AAAAGTTGGT	TATCTGCAGG	TCAAAACAGT	GGCAGAAGGT	TCTAATAAAG	ATTATGATCG	5040
AACAAATGAC	TTTTATCGAG	GTCTTGGCTT	ТАААААСТТА	GAGATTTTTC	CTCAACTATG	5100
GAATCCGCAA	AATCCTTGTC	AGATTTTGAT	TAAAAAGCTT	GAATAATATT	ACTTGACATC	5160
TATTCTCAGA	GTGCTATACT	GTAAGTGTAA	TCGCCGATTT	AGCTTAGTTG	GTAGAGCAAG	5220
GCACTCGTAA	AGCCTAGGTT	ATAGGTAGAT	AAACGACTGA	GGATTTGAAA	AAATAGATAG	5280
GTAGAAGATA	ACCGTTAAGC	СТТАСТСТТА	GCGGTTATTT	ATATTGTTTA	ATAGCGCTAA	5340
TATTTTATCA	ATTATGCCTG	TTTTCGTGTT	TCTGGTAGTT	GTTCAAGTTT	ATTGCTACTA	5400
	TATGAATGTG					5460
	ATCTCTTCAA					5520
	TATCCACAAC					5580
	ACACTGTTTT					5625
	מס פחם אחות					2025

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7571 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

CTCTCCAGCT TTCCTTGCGA GTTGGCCATG TTGTGTCTTT AAGAAGTCTA AAAATATCTC 60 CAATAAAACG CATCGCTCTC TCCTATCTCG TTTCTCTGTG TGTAGTGTAC TTGCCACAAT 120 GCTTACAAAA TTTATTTACT TCTAGTCGTG TAGGCTTGAG GTTTCCGCTG ATCTTGATTG 180 AATAGTTTCT CGAACCACAA ACCGCACAAG CTAGGCTTGC TTTTTTTAGT GCCATAACGC 240 CTCCATCTTA TCCATTATAA CAAGAAAGCT AGGCTTTGAC AAGCATCTTA GCGAAATAGA 300 TTGACTATCG AATCCCATAT TGTTTGAGCC TTTTCCTTAA TCTTCGCATC TGAGATAGCC 360 CGGCTAGCCT CATCTACTAG ACTTTGCGCA CGCCCTCGAA TATCAGACAA ATTATCATCT 420 GTCTGGCTAT TATCATTGGT TTGTACTTGT CTTTTTGTAT TGGCTGGTGC AATTCCATTT 480 TGCTTATAAG CATTTTCAAC CGTAAAGGTA CTTCCTGGCG TATAAGGTAA AATGGTATTG 540 GCAATGTTTC TAAAGACATG AGCTGCACCG TTTGAAGTAG AGCCAGCTAG ATAGTGGTTT 600 TCATCAGTGG TCGGAAAGCC AAGCCAGTGG CTAATCACTA CATCCGGAGT ATAACCAATT 660 ACCCACTGGT CACTTGTGTA CTCCGGATTG AAAACTGCTT CAGTTGTTCC AGTTTTCCCT 720

154	
GCCATGACAT AGTCTGCAGG CGATGAACTA ATACCGGTAC CGTTGGTGAA AGTCCCCAAC	780
ATCATACTGG TCATCTTGTC AGCTACAGAC TTATCAATCA CCCGTTTTTG TGAATTTTTA	840
TGACTCGCAA TAACTTGTCC ACTAGCATTT TCAATTCTAC TAATAAAATG AGCTTCAGGC	900
ATTAAACCTT CATTTGCAAA GGCGGCGTAT GCTTGAGCCA TTTGAAGAGG GTTGGTTTCA	960
ACACCGCTTC CCAAGGCGAC ACCAAGAACA CGGTCGACCT TTTCCATGTT GAGTCCGAAT	1020
TTTTCGCCTG CCTCAAAAGC CTTGTCGACA CCCAAATCAT TAACAGTGGC AACAGCAGGT	1080
AGATTAAGCG ATTCTGCCAA GGCTTGATAC ATAGGAACTT CTCGACTCGT TTTGATCCCT	1140
GCATAGTTAT CAACCTTATA GCTGTCATAC TGCATGGTAT GGTTATCCAA CTGCTTATTC	1200
AAAGCCCAGC TTGCTTCAAC TGCTGGCGTA TAAACAACTA AAGGCTTAAT TGTAGAACCA	1260
GGACTACGCT TTGATTGGGT TGCATAGTTG AAATTCCGGA ATCCAGTTTT ATCATTGTCA	1320
GCAACTTGAC CGACAACTCC ACGAACTCCC CCTGTTTTCG GTTCGAGGGC TACACTTCCT	1380
GATTGAGCAA ACGTTCCATC CTCTGCCCTC GGAAATAGCG ATGTGTTTTC ATAAACAATC	1440
TGCATATTTG CTTGGTAGTT TTGGTCCAGC TCTGTGTAAA TGCGGTAGCC ATTATTGACA	1500
ATCTCTTCCT CTGTTAGATT ATACTTGGAA ACAGCTTCAT TAACCACCGC ATCAAAATAA	1560
GAGGGGTAAC GGTAATCTGA GATTTTTCCT TCATACTTAT CGTGCAATTG CGAAGTCATA	1620
TCAACTTCAG CAGCTTTGGT TTCTTGGTTT TTATCAATAT ATCCTGCTGC AACCATATTC	1680
TGCAAGACAG TATCGCGCCG ATTAGTAGAA TCTTCTACGG AATTCAAGGG ATTATACAGT	1740
TCCGGCCCCT TGAGCATCCC TGCCAGAGTC GCAGCTTGAT CCAGACTCAC TTCTGATGCA	1800
GAAACTCCAA AGTATTTCTT ACTCGCATCT TCTACACCCC ACACACCATT TCCAAAATAA	1860
GCGTTGTTAA GGTACATGGT TAGAATTTGC TCCTTACTAT ATTTTTTGCT TAATTCTAAG	1920
GCAAGGAAAA ATTCTTTCGC TTTTCTCTCA ACAGTTTGAT CCTGCGATAA ATAGGCGTTT	1980
TTAGCCAGCT GTTGGGTAAT GGTAGAGCCA CCACCTGAAC GTCCAGCAGT GACAATAGCC	2040
AAGAAAAAAC GGCCATAGTT AATCCCGTCA TTTTTATAGA AAGAACGGTC TTCTGTCGCA	2100
ATAACAGCAT TCTGCAAGTT TTTACTGATG TCAGTCAGCT CAACATAGGT TCCCTTTTGA	2160
CCAGACAAGG CACCAGCCTC TTTTTCTTCA CGGTCAAAAA TAAGAGTCCG AGTTTTCAAG	2220
GCATTTTGCA AATCATTGAC ATTGGTCGAC TTGGCTACAG CAAACAAATA GATTCCAACT	2280
AGCAAGCCTG CACTCAAACC TAGTATAAGG ATAATCTTTG TTAGATGATA ACGACGCCAG	2340
AATTTTCGAA TCGGACCTAC TTGGGCTAAT TTTTTTCGAT CACTACGAGA GCGACGTAAG	2400
ATAGTAGAAT CAGAGTCCTC TAGTTCACTT GTTTCTTTTT TAAAAAGAGA AAGAAATTTC	2460
TCAAATAATT TATCTAATTT CATGCGTTTA TTTTATCATC TTCATCATAG GAAGACAAGA	2520

ATTTAGCTAT TTCCTATCCA AATAGGGCTT TTTTTGTTAC AATATCTGTA TGCAATTCAC	2580
ATTTACATTA CCCGCCTCTC TACCTCAAAT GACAGTAAAG CAATTACTTG AGGAACAACT	2640
CCTCATCCCT AGAAAAATCC GTCATTTTTT GAGAATCAAG AAACATATTT TGATAAATCA	2700
AGAAGAAGTC CACTGGAAGG AAATCGTAAA TCCTGGAGAT GTTTGCCAGT TGACTTTTGA	2760
CGAGGAAGAT TATTCCCAAA AGACGATCCC TTGGGGCAAC CCAGACTTAG TGCAGGAAGT	2820
TTATCAAGAT CAACACTTGA TTATTGTAAA CAAACCAGAG GGGATGAAAA CGCATGGTAA	2880
TCAACCAAAC GAAATTGCCC TTCTTAACCA TGTCAGTACC TATGTTGGCC AAACCTGCTA	2940
TGTCGTTCAT CGTCTGGACA TGGAAACCAG TGGCTTAGTT CTCTTTGCCA AAAATCCTTT	3000
TATCCTGCCC ATTCTCAATC GCTTATTGGA GAAAAAAGAG ATTTCTAGAG AATATTGGGC	3060
TCTAGTTGAT GGAAATATCA ACAGAAAAGA ACTTGTTTTC AGAGACAAAA TTGGACGTGA	3120
TCGCCATGAT CGTAGAAAAA GAATAGTTGA TGCAAAAAAT GGGCAATATG CTGAAACGCA	3180
TGTAAGCAGA TTAAAGCAAT TCTCAAACAA GACTTCCTTG GCTCATTGCA AGCTAAAGAC	3240
AGGGCGAACC CATCAGATTC GTGTGCACCT TTCGCATCAT AATCTTCCTA TCCTGGGAGA	3300
CCCTCTCTAT AATAGTAAAT CAAAGACAAG CCGGCTTATG CTTCATGCCT TCCGACTTTC	3360
CTTTACCCAC CCACTTACTT TAGAGAAGCT AACTTTCACT ACCCTTTCAA ATACATTTGA	3420
AAAAGAATTA AAAAAGAATG GATGATCGTG TCATCCATTT TTCCATATAA AAAAGCAAGA	3480
CCACAAAGCC TTGCTTTCTA TCAACTCAAG AATTATTTAG CAATTTTTGC GAAGTATTCA	3540
AGAGTACGAA CAAGTTGTGC AGTGTATGAC ATTTCGTTGT CGTACCATGA TACAACTTTA	3600
ACCAATTGTT TACCGTCAAC GTCAAGAACT TTAGTTTGAG TTGCGTCAAA CAATGAACCG	3660
TAAGACATAC CTACGATATC TGAAGATACG ATTGGATCTT CTGTGTAACC GTATGATTCG	3720
TTTGAAGCTG CTTTCATAGC TGCGTTCACT TCATCAACAG TAACGTTCTT TTCAAGAACT	3780
GCTACCAATT CAGTAACTGA TCCAGTTGGA GTTGGAACGC GTTGTGCAGA TCCGTCAAGT	3840
TTACCATTCA ATTCTGGGAT TACAAGACCG ATAGCTTTTG CAGCACCAGT TGAGTTAGGA	3900
ACGATGTTTG CAGCACCAGC GCGAGCACGG CGAAGGTCAC CACCACGGTG TGGTCCGTCA	3960
AGGATCATTT GGTCACCAGT GTAAGCGTGG ATAGTAGTCA TCAATCCTTC AACAACACCA	4020
AAGTTGTCTT GAAGAGCTTT AGCCATTGGA GCCAAGCAGT TTGTAGTACA TGAAGCACCT	4080
GAGATAACTG TTTCAGTACC GTCAAGAACG TCGTGGTTAG TGTTGAATAC AACTGTTTTA	4140
ACGTCGTTTC CACCAGGAGC AGTGATAACA ACTTTTTTAG CTCCACCTTT AAGGTGTTTT	4200
TCAGCTGCTT CTTTCTTAGC AAAGAAACCA GTAGCTTCAA GAACGATTTC TACACCGTCA	4260

			156			
GTAGCCCAGT	CGATTTGTTC	TGGATCACGT	TCAGCAGAAA	CTTTGATGAA	TTTACCGTTA	4320
ACTTCAAATC	CACCTTCTT	AACTTCAACA	GTACCGTCGA	AACGACCTTG	AGTTGTGTCG	4380
TATTTCAACA	AGTGTGCAAG	CATAACTGGA	TCTGTAAGGT	CGTTGATGCG	TGTAACTTCA	4440
ACACCTTCTA	CGTTTTGGAT	ACGACGGAAA	GCAAGACGAC	CGATACGTCC	GAAACCGTTA	4500
ATACCAACTT	TAACTACCAT	' TAGTGATTTC	CTCCTTATGA	AAATCATGAA	ATTTTTATTG	4560
TGAAAAGAGT	AACTTGAATC	ACTACAAATC	ACCTTTCAAC	AAACCTATTA	ТАСААСТАТТ	4620
TGAGTTGAAT	TGCAAGTATG	GCCATTGTTT	TTCTATGTTA	GTTTCTTTT	AAGACTGTAA	4680
ACCAAGGAAT	СССТТАСТАТ	TCATAGCATA	ACGATTCTAT	AGGATCCATT	TTACTAATCT	4740
TACGCGCCGG	GAAGTAGGCT	GAGACATAAC	CAAGTAATAG	AGCGAAAACT	AGAGTTCCTA	4800
AAACAGATAA	AAGATTTAAT	TTAAAAACCT	TAGTGATGGA	TGGGTAAAAG	TGACTTACAA	4860
TCGCATTCGC	CAAACTTCCC	ACCCCTTGTG	CAACCAAAAA	TGCCAGCAGC	AAGGCGATGC	4920
CTACAATCCA	GATAGCCTCG	TAAATAAAA	TTCCTTTGAC	ATCACGATTC	TGATAACCAA	4980
CTGCTTTCAT	GACACCTATT	TCCTTGGAAC	GTTGCATGAT	ATTGATGTAA	ATAATGATAC	5040
CAATCATAAC	CGCTGCTACC	ACAATAGCTT	GTGATGAAAG	CACAATCAAT	AATCCCTGAA	5100
TAACACGAAT	AAAGGTAATC	АСААТАТСАА	GAACTCTCTG	TTGAGAAAGC	ACAGTATACT	5160
TCTTATTTTT	CTGTAATTCT	TCTGTTACTA	CTTTTGTCTG	TGATGGATCT	TTGAGTTCCA	5220
AGATAAAATA	AGATACAGCT	TTCGTAAATC	CAGCCTCTTT	CAAAATCGTT	TCCATTTGAT	5280
GAGACAGCAT	GAAACTGTTG	CTGTCCTCCA	TGTCATCTTC	ATCATTGATT	ACACGTACAA	5340
TCTTCGTTTG	AAATTGAGCA	ATCTTACTAG	TTTCGGCAGC	ACTTTCTACA	ATGCTGGCTG	5400
AGACTGATTT	GCCAATAAGA	TCATTAGCTG	TCAAATTTTT	TCCTGTCTGT	TCATTCCAAT	5460
TTTTTAGTAA	ACTGCTTGGA	ATCGTTAATC	CCTGTTCATT	TGTATCAGTA	TAGAGGGATC	5520
CAGCCAACAC	TTTGTCCGTC	TCATTATTAC	TAACAGAGAT	ACTTGTATCA	TCATAAAGAC	5580
TCACTACTTG	AGCATAAGAA	GGCATCGTTT	GACTCAGATC	CATTTCTTGC	CCATCTATAG	5640
TAATATTTGA	CATGTTCATC	CCAAAAGGAC	TCTCCAAATA	TTTAATAGCT	TCTTTCCCAA	5700
CTGTATCCGT	GATATATAGT	CAATTGAAAC	AAGAGCAGGA	TAAAAAAGCC	TCGTAAAAGG	5760
TATTGCAACT	TGGTAATACC	TTTTTGAGGT	GCTTTTTGAT	ATGAGCCCAT	GTTTTCTCAA	5820
TAGGATTGTA	CTCAGGCGAG	TAGGGAGGAA	GAGGTAAAAG	TTTATGCCCA	AACTCTTCGC	5880
ATAAAAGTTC	TAGCTTCCCC	ATTCTATGGA	ATCTTACATT	АТССАТААТА	ATAACCGATG	5940
GTGTGTTTAA	TGTTGGTAAG	AGAAAATTCT	GAAACCAAGC	TTCAAAAAAG	TCGCTCGTCA	6000
TCGTCTCTTC	GTAAGTCATT	GGAGCGATTA	ATTCACCATT	TGTTAGACCT	GCAACCAAAG	6060

3.3.moome	
AAATCCTCTG ATATCTTCTT CCAGATACTT TGCCTCTTAT TAATTGACCT TTTAATGAGC	6120
GACCATATTC TCGATAAAAA TAAGTATCGA ATCCTGTTTC GTCAATCTAA ACAGGTGCTA	6180
GGTGCTTTAA ACTATTAAAA TTCTTAAGAA ATAAGGCTAC TTTTTCTGGG TCTTGTTCAT	6240
AGTAGGTGTG GTTCTTTTTT CGAGTGTAGC CCATAGCTTT GAGCGTATAG TGGATGGTAG	6300
TTGGATGACA GCCAAATTCA GAAGCTATTT CACTCAAATA AGCGTCTGGA TTGTCAGTAA	6360
GATAGTTTTT AAGTCTATCT CTATCAACCT TTCTTGGTTT TATTCCTTTT ACTTGGTGGT	6420
TTAGCTCTCC TGTTTTCTCT TTTAGCTTTA ACCAGCCATA AATGGTATTA CGTGAGATTT	6480
GGAAAACGTG TGATGCTTCT GTTATACTAC CTGTTCGCTC ACAATAAGAG AGAACTTTTT	6540
TACGAAAATC TATTGAATAT GCCATAAAAA GATTATACCA CATTGTGTAC TATTTTTGGT	6600
TCATTTTACT ATATTTGAAG AGGCGTTTAA ACTATCTGAC ATAAAACTCG TTCTAGAGGA	6660
AAGACATCCT TTAAAAAGTT AGTTTATTTT ACAACTTAGA CATCAAGGTA GGTTAACCCC	
TTCATGGAAA AATCAAGACT CTTAGCACTA TGGGTTAAAC TACCACTGGA GACGTAATCA	6720
ATCGCTAAAC CACGAAAACG GCTAATAGTG GTCATATCAA TATTTCCAGA ACATTCAATC	6780
CGAGAACGTC CTGCAATTAG GGTAATGGCC TGTTCAATCT GTTCCAATGA CATATTATCC	6840
AACATGATAA TATCAGCACC CGCCGCCGCA GCTTCTTCGG CAGCAGCAAG GCTTTCCACT	6900
TCCACCTCGA CCATTTTCAC AAAAGGGGCA TAGGCACGCG CTTGAGCAAT TGCCTTTTGA	6960
ACACTACCTA CTGCCGCAAT GTGATTGTCT TTTAGCAGGA TAGCATCTGA TAAATTAAAG	7020
CGATGATTAT AGCCACCGCC AACTCTCACG GCATATTTCT CAAAAAGACG TAAATTAGGA	7080
GTAGTTTTTC GAGTATCAAA TACCTTAATG CAATCATCGC CTAAGGCTTC TACATAAGCA	7140
GCTGTCATCG AAGCAATCCC TGATAAATGT TGTAAAAAAT TCAAGGCAAC GCGTTCACAT	7200
GTTAAGAGAC TTCTCACCGA GCCTATGATT TCTAAAACCA AATCGCCACT AGTCAAACGA	7260
TCCCCATCCT TAAATTGATG AGGATTCTGG AAGGTCACCT CGGCATCAAA TAGGGTAAAA	7320
ACCOTTIGAN ANACGGTTAG COCCGCTANA ACCOCTTIGAN ANACGGTTAGA ANACGGTTAGA ACCOCTTAGA ANACGGTTAGA ACCOCTTAGA ACCOCTT	7380
ACCCTTTGAA AAACGGTTAG CCCCGCTAAA ACACCAGCTT CCTTGGCAAA AAGCGACACC TTGGCTTGGC CATGATGATC AAAAATCCCA TTGCCTAGTGAT	7440
TTGGCTTGGC CATGATGATC AAAAATGGCA TTGGTACTGT AATCTTCGGA ATGAACATCT	7500
TCTCGCAAGG CTGCTTTCAA TGTATCATCT ATTTGAAAAG GGGTTAAATC AGTTGAAATG ATTGACATCA C	7560
· · · · · · · · · · · · · · · · · · ·	7571

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26385 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

60	TGTCGTTTTT	CTAAAAGTCG	TCAGGCGTAT	TTCAGGAAAA	GCTTAAATTC	TTTGCTAGTG
120	CTGTGTTCCA	GAAAACGTGT	CCTACAACTA	TCCTGCTCCC	TATAAAGACT	GTTTCATCTA
180	ATCTGGTGTA	GCGGTAGCGT	TTGCTGTGGA	TTCGATTGAT	GATTAAATAG	GCAAGAAGCT
240	TGTCAACTCA	GATCATCTTT	AATCCAGTAA	AACAGCATCA	ACGCTGAAAT	TAAGCACCAA
300	AACAATAGCC	TTTCAGAACG	TGACTTTTGT	AGACTCAGCT	ТТТААТААТТТ	AATAAATCTT
360	TTGTCCATTT	CTTTCCCCGC	TCAACAATTG	GACTGCTTCT	GTCCTCGTTT	GTTACTTCAT
420	TTTAGTTACA	TTGTAATTAT	ACCTCTCTTG	CATTTTTAT	CTGCTAGTTT	GCTGCAATAA
480	АТСААААТАТ	CTTAATTATT	AATAGTCTTG	AATCAATGTC	CACTCTTAAT	GAAATTGTGA
540	CAACAAATTT	TCTTCTTTGT	TGAAAAAAA	ATGATTCTAG	AAAACTAACC	TTCTACCAAG
600	GTCTGTTTTT	GATCTAAGTT	CATAGCAAGA	СТАТААТААТ	TTTAAACATG	ACTTTCTTGT
660	ATCTGGTCAT	CTCCCCTACT	CTATTCCCAT	TGCGTAGATT	GTGATTATCA	TTAAAACGAG
720	ACCCCCTTAC	GTTGTTTCTG	GTTCTTACTA	TTTATGAGTT	TATTGGCCAC	ATTATTCTTT
780	TCTTGATTGT	CCTCTGGTAA	CTTCTTTACA	ACAATCTTCT	СТСТАТАТАА	ACTCAAGGGA
840	GTAACGGACT	TGGTTAGTTG	CTCACTTTGA	GTTTCCGTTT	TATAGCTACC	ATCGTTACTC
900	TGCTAATCTA	CTAATTTACT	TGAGTTTATA	TAACCTTTGG	TTTACTATCA	GCTCTTTTAC
960	ттстасаааа	ATCAAGCATA	TGGTATTAGC	GCATGGATTC	GCTCTGGTCG	TGAAACAGTT
1020	GCTATAATAA	TCACAATCAT	TTGAAAAATC	CACAAAATCC	AAAAAACTTT	AATGAAAAAC
1080	CTGGAAACGC	TGCGTGGTTG	TACTAGAGAG	AGTCCCTTTC	CAAGTCACTT	TCCATAGAGA
1140	ACGGTGGCCA	ААААСАТААА	GTTTTTTATG	CTACTCTTGA	TAAACTGATA	ATAGGAAGTC
1200	GTGGAACCAC	ATAAATGAAG	TTTGAGGTAC	GTCCCTCTCT	GATCAGAGGT	CGTTAGAGCC
1260	ATGGAGTTGC	GATACTAATT	TTTTTATTAG	ATGTCGCATT	CCTTTCGAGG	GTTGCGACGT
1320	GAAGTTAAGC	TCACGAACTG	GACAAGCTTA	TGGGCAATCC	GGAGCGCAGT	AAGAATTAGT
1380	GATATTGGAA	тттатстаат	ACCTCTTGGC	GTAGAAGAAG	CAAGTGGACG	ATCATGATTC
1440	CCCTACACAC	TGATGAAACA	GACGCTACTA	ACAAAGCAAG	ACTGGTGATG	ATTTCCAACG
1500	CGTTTGGATA	ACTITCTCAA	GGCTATTAGA	AATATCTGGT	ACTTTCAGAA	TGGAACAAAA
1560	TTGAACGTTA	AGAAAAGCAA	TCTCTGATAA	GAAAACTTCC	GACGGAAATG	TAGACATTCT
1620	АТААТАААА	AAACTATGAA	CAATGCTTAG	GATAAAAAAT	GTAGTCTGCT	GGACTTGGAA

AGGAGAACAT	CATGATTAAC	ATTACTTTCC	CAGATGGCGC	TGTTCGTGAA	TTCGAATCTC	1680
GCGTAACAAC	TTTTGAAATT	GCCCAATCTA	TCAGCAATTC	CCTAGCTAAA	AAAGCCTTGG	1740
CTGGTAAATT	CAACGGCAAA	CTCATCGACA	CTACTCGCGC	TATCACTGAA	GATGGAAGCA	1800
TCGAAATTGT	GACACCTGAT	CACGAAGATG	CCCTTCCAAT	CTTGCGTCAC	TCAGCAGCTC	1860
ACTTGTTCGC	CCAAGCAGCT	CGTCGTCTTT	TCCCAGACAT	TCACTTGGGA	GTTGGTCCAG	1920
CCATCGAAGA	TGGTTTCTAC	TACGATACTG	ACAACACAGC	TGGTCAAATC	TCTAACGAAG	1980
ACCTTCCTCG	TATCGAAGAA	GAAATGCAAA	AAATCGTCAA	AGAAAACTTC	CCATCTATTC	2040
GTGAAGAAGT	GACTAAAGAC	GAGGCACGTG	AAATCTTCAA	AAATGACCCT	TACAAGTTGG	2100
AATTGATTGA	AGAACACTCA	GAAGACGAAG	GCGGTTTGAC	TATCTATCGT	CAGGGTGAAT	2160
ATGTAGACCT	CTGCCGTGGA	CCTCACGTTC	CATCAACAGG	TCGTATCCAA	ATCTTCCACC	2220
TTCTCCATGT	AGCTGGTGCG	TACTGGCGTG	GAAACAGCGA	CAACGCTATG	ATGCAACGTA	2280
TCTACGGTAC	AGCTTGGTTT	GACAAGAAAG	ACTTGAAAAA	CTACCTTCAA	ATGCGTGAAG	2340
AAGCTAAGGA	ACGTGACCAC	CGTAAACTTG	GTAAAGAGCT	TGACCTCTTT	ATGATTTCAC	2400
AAGAAGTGGG	ACAAGGTTTG	CCATTCTGGT	TGCCAAATGG	TGCGACTATC	CGTCGTGAAT	2460
TGGAACGCTA	CATCGTAAAC	AAAGAGTTGG	TTTCTGGCTA	CCAACACGTC	TACACTCCAC	2520
CACTTGCTTC	TGTTGAGCTT	TACAAGACTT	CTGGTCACTG	GGATCATTAC	CAAGAAGACA	2580
TGTTCCCAAC	CATGGACATG	GGTGACGGGG	AAGAATTTGT	CCTTCGTCCA	ATGAACTGTC	2640
CGCACCACAT	CCAAGTTTTC	AAACACCATG	TTCACTCTTA	CCGTGAATTG	CCAATCCGTA	2700
TCGCTGAAAT	CGGTATGATG	CACCGTTACG	AAAAATCTGG	TGCCCTCACT	GGCCTTCAAC	2760
GTGTACGTGA	AATGTCACTC	AACGACGGTC	ACCTATTCGT	TACTCCAGAA	CAAATCCAAG	2820
AAGAATTCCA	ACGTGCCCTT	CAGTTGATTA	TCGATGTTTA	TGAAGACTTC	AACTTGACTG	2880
ACTACCGCTT	CCGCCTCTCT	CTTCGTGACC	CTCAAGATAC	TCATAAGTAC	TTTGATAACG	2940
ATGAGATGTG	GGAAAATGCC	CAAACCATGC	TTCGTGCAGC	TCTTGATGAA	ATGGGCGTGG	3000
ACTACTTTGA	AGCCGAAGGT	GAAGCAGCCT	TCTACGGACC	AAAATTGGAT	ATCCAGATTA	3060
AAACTGCCCT '	PGGAAAAGAA	GAAACCCTTT	CTACTATCCA	ACTTGATTTC	TTGTTGCCAG	3120
AACGCTTCGA	CCTCAAATAC	ATCGGAGCTG	ATGGCGAAGA	TCACCGTCCA	GTCATGATCC -	3180
ACCGTGGGGT	PATCTCAACT	ATGGAACGCT	TCACAGCTAT	CTTGATTGAG	AACTACAAGG	3240
GGGCCTTCCC A	AACATGGCTG	GCACCACACC	AAGTAACCCT	CATCCCAGTA	TCTAACGAAA	3300
AACACGTGGA	CTACGCTTGG	GAAGTGGCCA	AGAAACTCCG	TGACCGCGGT	GTCCGTGCAG	3360

			160			
ACGTAGATGA	GCGCAATGAA	AAAATGCAGT	TCAAGATCCG	TGCTTCACAA	ACCAGCAAGA	3420
TTCCTTACCA	ATTAATTGTT	GGAGACAAAG	AAATGGAAGA	CGAAACAGTC	AACGTTCGTC	3480
GCTACGGCCA	AAAAGAAACA	CAAACTGTCT	CAGTTGATAA	TTTTGTTCAA	GCTATCCTAG	3540
CTGATATCGC	CAACAAATCA	CGCGTTGAGA	AATAAGAGTC	TAGCATAAAA	GCCTCCAATC	3600
TGGAGGCTTT	TTCTCATCTA	TTTTTACTCA	AGGACTAAGT	TCACTTGAGC	AAACTGAATC	3660
CGCACTGTCG	TTCCTTTTCC	GACCTCAGAC	TCGATACGAA	TCTGGTGCCC	CAGTTCTTCA	3720
GAAATTTTCT	TAGATAGATA	AAGGCCAAGT	CCAGAGGACT	GCTGGGTCAA	ACGGCCATTG	3780
TATCCTGAAA	AGCCACGTTC	AAATACTCGG	AGGACATCAC	TGTTTTTTAT	CCCGATTCCC	3840
GTATCTTTGA	TACAAAGCTC	TTGGTCATCC	ATATAAATCT	CCAGACCACC	TTCCTTGGTG	3900
TACTTGAGAC	TGTTTGAGAT	GATTTGCTCA	ATAACCACTA	GCAGCCACTT	TTTATCCGTC	3960
ACGATTTCTT	TATCAAGGTC	ATGTAGATTG	ACATTTAAGC	CTTTTTGAAT	AAAGAAAAGA	4020
GCATATTTAC	GAATTATTTC	CTTGACCAAG	TCCTCAATTT	GAACCTGCTT	TAAGACCAAA	4080
TCATCATGGA	AACTTTCTAA	ACGCAGGTAC	TGTAAAACTA	GGTTGGTATA	GGAGTCGATT	4140
TTGAAAATTT	CCTGTTCTAG	CTGCTGCTTC	AGTTGGCGGT	CGACCACTTC	TGCAACTAAG	4200
AGTTGACTGG	CTGCAATGGG	GGTCTTTATC	TGATGGACCC	ACAAGGTATA	GTAATCCAGC	4260
AAATCCGTCA	GTTTTCTTTC	TGCTTTTGAC	CTCTGCTGAT	AGAGTTCCAT	CTCACGCGCT	4320
TCTAATTTTT	CTGCTAAAGC	TATTTCCAAA	GGAGACTTGG	CTTCCCTCTC	TCCATAGAGA	4380
AGTTCCTGGC	GATAGACCTG	CGTTTCCACC	AATATGTCCC	AAGTGAAAAA	TAATATGGTT	4440
ACAAAGCAAC	ACAAGAAGAA	AAAGTAGAGG	AAGTAAATTC	CTAGACTGGC	AAATAAAAAC	4500
TGAAAGAGTA	AGACAAGAAA	TGCCAAAGAA	AGCAGATAGA	TAAAAAGACG	ACTACGGGAG	4560
CGCAGATAGG	CTAGAAAAA	TTGTTTCCAA	TCAAGÇATGC	TTCAATCCGT	ACCCTATTCC	4620
ITTCTTGGTC	TCGATAAATC	CTACCAATCC	CTGCTCCTCC	AACTTTTTAC	GCAAACGAGC	4680
CACATTGACA	GAGAGGGTAT	ТАТСАТСААТ	GAAAAAGTCA	CTGTTCCAAA	GTTCCCGCAT	4740
CAGGTCGTCA	CGTGCTACGA	TGTTGCCTGC	ATGCTCAAAT	AACACGCGTA	AAATCTGGAA	4800
TCATTCTTG	GTCAAATTCA	AGACTTGCCC	TTGATAATGT	AAATCCATGG	ATTTGGTATT	4860
GAGGATAACA	CCAGCATATT	CCAGCAAACT	CTCATCACGC	ССАААСТСАТ	AGGAACGACG	4920
CAACAAGCCC	TGAACCTTAG	CTAAAAGAAC	CTGCTGGTCA	AAAGGCTTGG	TCACAAAGTC	4980
ATCCGCCCCC	ATATTGATTG	CCATGACAAT	ATCCATAGCC	TGGTCTCTCG	AAGAAAGAAA	5040
ATGATAGGT	ACCTTGGAAA	TCTTGCGGAT	TTCCTGACAC	CAGTGATAAC	CATTAAACAA	5100
GGCAAACCA .	ATATCCATGA	GGACCAGATG	AGGTTCCGAC	TGAACAAATA	GACTCAAAAC	5160

TTCCATAAAG TC	CTTCTACCA	GGACCACTTC	AAATCCCCAT	TCAGAGAGCA	ттттсссаат	5220
CTGTTGACGA AT	GACCTGAT	САТСТТСТАТ	TAATAAAATC	TTGTGCATGC	GCTTCTCCTT	5280
TTCCATTATT AT	PAACAGATT	TTTCCATGCT	AGATGGTCTG	AAACTGAATT	TGAAATAGCC	5340
TGTTTTTAGC CA	GTACAAAC	AGGCTATGCT	ACTAGCTAAT	TTGAGGGAAA	TTTGCTAAGA	5400
ТАААТАААА GA	AAGGAGCT	CTTATGGCCA	ATATTTTTGA	CTATCTGAAA	GATGTCGCAT	5460
ATGATTCTTA TT	ACGACCTT	CCCTTGAATG	AGTTAGACAT	TCTAACCTTA	ATAGAAATCA	5520
CCTACCTCTC CT	TTGATAAT	CTGGTCTCCA	CACTTCCTCA	ACGTCTTTTA	GATCTAGCAC	5580
CTCAGGTTCC AA	GAGATCCC	ACCATGCTTA	CTAGCAAAAA	TCGCCTTCAA	TTATTAGATG	5640
AATTGGCTCA AC	ACAAGCGC	ттсааааатт	GCAAACTCTC	CCATTTTATC	AACGACATCG	5700
ACCCTGAACT GC	AAAAGCAA	TTTGCGGCTA	TGACTTATCG	TGTCAGCCTC	GATACCTATC	5760
TGATTGTCTT TC	GTGGGACA	GATGACAGTA	TCATTGGCTG	GAAGGAAGAT	TTCCACCTGA	5820
CCTATATGAA GG	AAATTCCT	GCTCAAAAGC	ACGCCCTTCG	CTATTTAAAG	AACTTTTTTG	5880
CCCATCATCC TA	AGCAAAAG	GTTATTCTAG	CTGGGCATTC	CAAGGGAGGA	AATCTCGCTA	5940
TCTATGCTGC TA	GCCAAATT	GAGCAAAGTT	TGCAAAATCA	GATCACAGCA	GTTTATACAT	6000
TTGATGCACC TG	GTCTCCAT	CAAGAATTGA	CACAGACTGC	GGGTTATCAA	AGGATAATGG	6060
ATAGAAGCAA GA	ТАТТСАТТ	CCACAAGGTT	CCATTATCGG	TATGATGCTG	GAAATTCCTG	6120
CTCACCAAAT CA	TCGTTCAG	AGTACTGCCC	TGGGTGGCAT	CGCCCAGCAC	GATACCTTTA	6180
GTTGGCAGAT TG	AGGACAAG	CACTTCGTCC	AACTGGATAA	GACCAACAGT	GATAGCCAGC	6240
AAGTAGACAC AA	CCTTTAAA (GAATGGGTGG	CCACAGTCCC	TGACGAAGAA	CTTCAGCTCT	6300
ACTTCGACCT CT	ICTTTGGC	ACTATTCTTG	ATGCTGGTAT	TAGCTCTATC	AATGACTTGG	6360
CTTCCTTAAA GG	CGCTTGAA	FACATTCATC	ATCTCTTTGT	CCAAGCTCAA	TCCCTCACTC	6420
CAGAAGAAAG AGA	AAACCTTG (GGTCGCCTTA	CCCAGTTATT	GATTGATACT	CGTTACCAGG	6480
CATGGAAAAA TAG	GATAATAC 1	PCTTGAAAAT	ТАААТСТАТА	СААААСАААА	GACCTAGAAT	6540
ACATACTTTC ATO	GTGCATTC 1	PAAGTCTTTT	ТАААТАGAAT	CTAATAGTCA	АТАААААТСА	6600
AAGAGCATTG AGA	AGATAATG (GGCTTGGAA	CGTCCCTCTC	GCTTCAACAA	AATGACCCCA	6660
PTATAGATTA AA	AAGATGCC /	ACTTAGAAAA .	AGCAAAAAAG	GAAGTAAGAC	AAAGGCAAAT -	6720
ATATAAAAAG CTA	AACTGAAC A	ATTCTCGTAT	CCATTTTTAT	AAAAAAGGTA	GGATAGATAA	6780
AAATAACTTG AAA	NTGAGGGA T	таалаалаат	AATACTGGAT	TCCACAAACT	TCTATTATCC	6840
TTCCAAAATG ACA	СТАТААА С	GCTAATACA	ATTCCTATAA	CGAGATACAT	TTCTTACTCC	6900

			162			
TTTAATAGCT	ACATTTTATC	ATAATTATCC	AAAGAAAAAA	GAGGGCATTT	ATCCCTCTTA	6960
ATCCTTCATC	TGACTCTCTG	CATCGGCCAC	GACTTTTTCT	AGACTGGTTT	GACCAAGTTC	7020
TGCCTCCATA	GTCAACTGAA	TTCTCTCCAA	TTTTTGATCC	AAAACATCAT	GAATATGAGC	7080
TCCTACAGGG	CAATTTGGAT	TCGGATTGTC	ATGGAAACTG	AAGAGTTGAC	CTGTCTTACC	7140
AAGACATTCG	ACCGCCTGAT	AAACATCTAA	AAGACTAATA	TCCTTAAGGT	CCTTGACAAT	7200
CTCTGTTCCG	CCCGTTCCAC	GCGCTACTGA	AATCAGCTCT	GCCTTCTTCA	ACTGGGACAA	7260
GATCTTTCTG	ATAATGACAG	GATTGACCCC	GACACTAGCA	GCCAGAAAAT	CACTGGTCAC	7320
CTTGCTTTCC	TTCCCCTCGA	GGGCAATGAT	TATCAGCATA	. TGAGTCGCAA	TGGTAAATCT	7380
ACTTGGAATT	TGCATCCTCT	TCTCCTTTTT	ACGAGGCTAC	CCTGCCTCTA	CTCTTCTTTT	7440
ТСТАТТАТТА	TACCCTTTTT	AGTTGTAATG	TCAATCGTTA	CCACTTTTCA	ACCAGTCGTC	7500
TAACTCCCGA	TCGCAGCCCT	CTTTCTGAGC	CAATTCTCTC	AAAAATTCCT	GATGATGAGT	7560
ATGGTGGATC	CCATTGACCA	GACTTTCATA	GTAAACCTCA	AAATAGGGAA	GTCTCAGGTC	7620
TTTAGCCAGC	TGCAATTCAG	CTGCTACATC	GTAGTCTACC	CGTCGGAAGT	CCATATCTAC	7680
CAGGCCTTTG	TCATCAAACT	CCAAAATCAT	ATACTGGGCC	CGCAAGTCCT	TCCGTAGCTG	7740
AGCGTCCAAA	AAGAAAGGTT	GGCCAATCGA	ACCCGGATTG	ACAATCAATT	GCCCACCAGT	7800
CCCGTAACGA	AGCAACTGCT	GGTGAATATG	TCCATAAACA	GCAATATCAC	AGGGAGGATG	7860
AGTCACCAAG	CGGTCAAACT	CCTCTTGTTT	GCCAGTATGA	ATCAACTCTC	GCCCCCAGTT	7920
CTTATCAGGC	AGATGATGGC	TAATTCCCAC	CGTCAAATCC	CCAAACTGAC	GATGAATTTG	7980
AAGAGGTTGA	TTGTGGAGCA	CTTCAATTTC	TTCTAGGGAA	ATTTCCTCTA	AAACATACTG	8040
GCACTGGCGC	AAGAGATAGC	GTTGACTGGG	GCGAGTACTG	TCCAATTCCT	TACGGACACC	8100
ATGCCAAAGA	CTGTCTTCCC	AGTTTCCCAA	AACTCTAGCC	GTAATCGGTA	GTTGATCCAA	8160
CAAGTCCAAA	ATCCTTCTAC	GCCCTGTCCC	TGGCATGAGA	АТЛТСТСССА	AAAGCCAGTA	8220
ГТСАТССАСТ	CCTATCTGCC	GAGCATCTGC	CAAAACAGCC	TCCAAGGCGG	TGGTATTTCC	8280
ATGAATATCT	GAAAGAAGAG	CTATTTTCGT	CATATCCATC	TCCTCGTTTT	TTCTCTTGCA	8340
ATAAGTATAA	CATAAAAAGT	CACAGCTAGA	GAAATCTAGC	TTTTTTTGAT	ATACTAGATA	8400
AAGATATTAG	ACAAGAGGAA	ACGAATGACC	CCAAACAAAG	AAGACTATCT	AAAATGTATT	8460
PATGAAATTG	GCATAGACCT	GCATAAGATT	ACCAACAAGG	AAATTGCGGC	TCGCATGCAA	8520
STCTCTCCCC	CTGCCGTAAC	TGAAATGATC	AAACGAATGA	AAAGTGAAAA	TCTCATCCTA	8580
AAGGACAAGG	AATGTGGCTA	TCTACTGACT	GACCTCGGTC	TCAAACTGGT	CTCTGAGCTC	8640
TATCGTAAGC	ACCGCTTGAT	TGAAGTTTTT	CTAGTTCATC	ATTTAGACTA	TACAAGTGAC	8700

CAGATTCACG AGGAAGCTGA G	GTCTTGGAA CA	ACACTGTCT	CTGACCTGTT	CGTGGAAAGA	8760
CTAGATAAAC TGCTAGGTTT CO	CCTAAAACC TG	GCCCCACG	GGGGAACTAT	TCCTGCCAAG	8820
GGAGAACTAC TCGTTGAAAT CA	AATAACCTC CC	CACTAGCTG	ATATCAAGGA	AGCTGGCGCC	8880
TACCGCCTGA CTCGGGTGCA CO	GATAGTTTT GA	ACATTCTCC	ATTATCTGGA	CAAGCACTCA	8940
CTTCACATCG GTGACCAGCT CO	CAAGTCAAG CA	AGTTTGATG	GCTTCAGCAA	TACCTTCACT	9000
ATCCTCAGTA ACGACGAGGA T	ITACAAGTG AA	ATATGGACA	TTGCAAAACA	ACTCTATGTC	9060
GAGAAAATCA ACTAATTTCT CA	AAGTCCCCT AC	CCAACCCTG	AAAGTTTTAT	TTTGGCTCTT	9120
TGTCAACTGT AGTGGGTTGA AC	GTCAGCTAA GC	CTCGAGAAA	GGACAAATTT	TGTCCTTTCT	9180
TTTTTGATAT TCAGAGCGAT A	AAAATCCGT TT	TTTGAAGT	TTTCAAAGTT	CCGAAAACCA	9240
AAGGCATTGC GCTTGATAAG TT	rtgatgaga tt	PATTGGTCG	CTTCCAGTTT	GGCATTAGAA	9300
TAGTGTAGTT GAAGGGCGTT GA	ACAATCTTT TC	TTTATCTT	TGAGGAAGGT	TTTAAAGACA	9360
GTCTGAAAAA TAGGATGAAC CT	rgctttaga tt	GTCCTCAA	TGAGTCCGAA	AAATTTCTCC	9420
GGTTTCTTAT TCTGAAAGTG AA	ACAGCAAG AG	STTGATAGA	GCTGATAGTG	GTGTTTCAAG	9480
TCTTGTGAAT AGCTCAAAAG CT	TTGTCTAAA AT	CTCTTTAT	TGGTTAAGTG	CATACGAAAA	9540
GTAGGACGAT AAAATCGCTT AT	CACTCAGT TT.	'ACGGCTAT (CCTGTTGTAT	GAGCTTCCAG	9600
TAGCGCTTGA TAGCCTTGTA TT	CATGGGAT TT	TCGATCCA	ATTGGTTCAT	AATTTGAACA	9660
CGCACACGAC TCATAGCACG GC	TAAGATGT TG	TACAATGT (GAAAGCGATC	CAACACGATT	9720
TTAGCATTCG GGAGTGAAAC AG	TCTGGGAG AC	TGTTTCAG	CCTGAGCCTA	GAAATTTGAA	9780
AGCGAAGCTG TTTAGCCAAG TC	ATAGTAAG GA	CTAAACAT A	ATCCATCGTA	ATGATTTTCA	9840
CTTGACAACG AACGGCTCTA TC	GTAGCGAA GA	AAGTGATT 1	PCGGATGACA	GCTTGTGTTC	9900
TGCCTTCAAG AACAGTGATA AT	'ATTAAGAT TA'	TCAAAATC 1	PTGCGCAATG	AAACTCATCT	9960
TTCCCTTAGT GAAGGCATAC TC	ATCCCAAG AC	ATAATCTT 1	rggaageega	GAAAAATCAT	10020
GCTCAAAGTG AAAGTCATTG AG	CTTGCGAA TG	ACAGTTGA A	AGTTGAAATG	GCCAGCTGAT	10080
GGGCAATATC AGTCATAGAA AT	тттттсаа тті	AACTTTTG A	AGCAATyTTT	TGGTTGATGA	10140
TACGAGGGAT TTGGTGATTT TT	CTTTACCA GG	GGAGTCTC A	AGCAACCATC .	ATTTTTGAAC	10200
AGTGATAGCA CTTGAAACGA CG	CTTTCTAA GG	AGAATTCT A	AGAAGGCATA	CCAGTCGTTT-	10260
CAAGATAAGG AATTTTAGAA GG	TTTTTGAA AG	TCATATTT (CTTCAATTGG	TTTCCGCACT	10320
CAGGGCAAGA TGGGGCGTCG TA	GTCCAGTT TG	GCGATGAT 1	TCCTTGTGT (GTATCCTTAT	10380
TGATGATGTC TAAAATCTGG AT	ATTAGGGT CT	TTAATGTC T	PAGTAATTTT (GTGATAAAAT	10440

164 GTAATTGTTC CATATGATTC TTTCTAATGA GTTGTTTTGT CGCTTTTCAT TATAGGTCAT 10500 ATGGGACTTT TTTTCTACAA TAAAATAGGC TCCATAATAT CTATAGTGGA TTTACCCACT 10560 ACAAATATTA TAGAACCGTA AAAATAGAAG GAGATAGCAG GTTTTCAAGC CTGCTATCTT 10620 TTTTTGATGA CATTCAGGCT GATACGAAAT CATAAGAGGT CTGAAACTAC TTTCAGAGTA 10680 GTCTGTTCTA TAAAATATAG TAGATTGAAA TAAGATGTGA ACAACTCTAT CAGGAAAGTC 10740 AAATTAATTT ATAGAATTAT TTTAGCAGTC AAGGTGTACT GTTATAGATT CAATATATTA 10800 TATGACTATT AACCTTGTCT TCTCCTAAAA TTGACTTTCT TGTTTTCTTA TCTTGTCCAC 10860 TCGAAACAAG TATTGTAAGA ATTTGATTAT TTTTGAAAGT ACTTTTAATA TACTTGATAT 10920 ΑGTTAAAAAA GATTTGAAAC TAAATTCCAA ATTAGAAAAA GACTTGAAAT ACTAAAAAAA 10980 AAAAAGTATA CTCTAATTGA AAACGGTAAC AAAACTAATT TAGAGAATGA AATATAGAGT 11040 ATTTCTCTCT TAAAAGTTTT TGGTGAAACG AGATGTAGAA AGGAGATTTA GCCAAAGAGT 11100 CTATTAGTGC TAGAATAATA GATTAGAATT ATTTTAGAAA AACGAAGTGA GCAGCTTATA 11160 AATTCAAGTC CCCAAATAGA TTCATACTAG TATCTTTTGC AAAAAATAAA GGGCGACTTC 11220 CTTCATGAAT ATCAATTTCA TCTATAAGGA AGGTAGCTAA TTGAACTAAC TTATTTATTC 11280 TGTTTGTCGC TAGAAAAATC AGACCTCCTT GTGAAGATTG AGGAGATACT TAATGAAAAT 11340 CAAAGAAGAA ACTAGCAAGC TAGTAGCAGA TTGCCCAAAA CACCGCTTTG AGGTTGTAGA 11400 TAAGACTGAC CTATATAATC CAAGGTGAAG CGACTGTGGT TTGAAGAGAT TTTCAAAGAG 11460 TATAGGCTAG AGAGTAGTGT TTTTATGTCC TTCTAGTAGA AAATGCTAGA CAGAAGAATG 11520 GGGAACTTGG ATAGGAAAAA TAGATTGAGA AAGGAGGTTA GAAGAGATGA TTATTACAAA 11580 AATTAGCCGT TTAGGAACTT ATGTGGGAGT AAATCCACAT TTTGCAACAT TAATAGATTT 11640 TCTAGAAAAA ACAGGACTAG AAAATTTAAC AGAAGGTTCG ATTGCTATCG ATGGTAATCG 11700 ATTGTTTGGG AATTGCTTTA CTTATCTAGC AGATGGTCAA GCAGGGGCTT TCTTTGAAAC 11760 CCACCAAAA TATTTGGATA TTCATTTAGT TTTGGAAAAC GAAGAGCCA TGGCTGTTAC 11820 ATCGCCGGAA AATGTAAGCG TTACCCAAGA ATATGATGAA GAGAAAGATA TTGAATTATA 11880 CACAGGGAAA GTGGAACAGT TGGTTCATTT GAGAGCTGGC GAATGCCTCA TCACTTTTCC 11940 AGAAGATTTA CATCAACCCA AGGTTCGTAT AAATGATGAA CCTGTGAAAA AAGTTGTCTT 12000 TAAAGTTGCG ATTTCTTAAT GTAGAAAGAG AAGAACGATG AAAAAAATGA GAAAGTTTTT 12060 12120 AGCTACAACT AGTACTGAAC CACCAACAGA ATTATCTGGT GAGATTACAA TGTGGCACTC 12180 CTTTACTCAA GGACCCCGTT TAGAAAGTAT TCAAAAATCA GCAGATGCTT TCATGCAAAA 12240

GCATCCAAAA	ACGAAAATCA	AGATTGAAAC	ATTTTCTTGG	AATGACTTCT	ATACTAAATG	12300
GACTACAGGT	TTAGCAAATG	GAAATGTGCC	AGATATCAGT	ACAGCTCTTC	CTAACCAAGT	12360
AATGGAAATG	GTCAACTCAG	ATGCTTTGGT	TCCGCTAAAT	GATTCTATCA	AGCGTATTGG	12420
ACAAGATAAA	TTTAACGAAA	CTGCCTTAAA	TGAAGCAAAA	ATCGGAGATG	ATTACTACTC	12480
TGTTCCTCTT	TATTCACATG	CACAAGTCAT	GTGGGTTAGA	ACAGATTTGT	TAAAAGAACA	12540
TAATATTGAG	GTTCCTAAAA	CTTGGGATCA	ACTCTATGAA	GCTTCTAAAA	AATTGAAAGA	12600
AGCTGGAGTT	TATGGCTTGT	CTGTTCCGTT	TGGAACAAAT	GACTTAATGG	CAACACGTTT	12660
CTTGAACTTC	TACGTACGTA	rTGGTGGAGG	AAGCCTCTTA	ACAAAAGATC	TTAAAGCAGA	12720
CTTGACAAGC	CAACTTGCTC	AAGATGGTAT	TAAATACTGG	GTTAAATTGT	ATAAAGAAAT	12780
CTCACCTCAA	GATTCTTTGA	ACTTTAATGT	CCTTCAACAA	GCTACCTTGT	TCTATCAAGG	12840
AAAAACAGCA	TTTGACTTTA	ACTCTGGCTT	CCATATCGGA	GGAATTAATG	CCAACAGTCC	12900
TCAATTGATT	GATTCGATTG	ATGCTTATCC	ТАТТССАААА	ATCAAAGAGT	CTGATAAAGA	12960
CCAAGGAATT	GAAACCTCAA	ACATTCCAAT	GCTTCTTTGG	AAAAATTCAA	AACATCCAGA	13020
AGTTGCTAAA	GCATTCTTAG	AAGCACTTTA	TAATGAAGAA	GACTACGTTA	AATTCCTTGA	13080
TTCAACTCCA	GTAGGTATGT	TGCCAACTAT	TAAGGGGATT	AGCGATTCTG	CAGCCTATAA	13140
AGAAAATGAA	ACTCGTAAGA	AATTTAAACA	TGCTGAAGAA	GTAATTACTG	AAGCTGTTAA	13200
AAAAGGTACT	GCTATTGGTT	ATGAAAATGG	GCCAAGTGTA	CAAGCTGGTA	TGTTGACTAA	13260
CCAACACATT	ATTGAACAAA	TGTTCCAAGA	TATCATTACA	AATGGAACAG	ATCCTATGAA	13320
AGCAGCAAAA	GAAGCAGAAA	AACAATTAAA	TGATTTATTT	GAGGCTGTTC	AGTAGATGTA	13380
AAAGACTAGA	AAATAGGTGG	GATAGTGAGC	TGAAAAGCTC	TAGCCCAATC	TTGTAAAAGA	13440
AGGGAGAAGG	AGAATGGTTA	AAGAACGTAA	TTTAACTCGC	TGGATATTTG	TTTTGCCAGC	13500
TATGATTATC						13560
TACCAATAAG	CATTTGATTA	TGCCTAATTA	TAAATTTGTT	GGTTTGGCTA	ACTATAAAGC	13620
TGTGCTATCA	GATCCCAACT	TCTTTAATGC	GTTCTTTAAT	TCAATTAAGT	GGACCGTTTT	13680
CTCATTAGTT	GGTCAAGTTT	TAGTAGGGTT	TGTATTGGCT	TTAGCTCTTC	ACAGAGTACG	13740
CCACTTCAAG .	ATATTATAA	GGACATTATT	GATTGTTCCT	TGGGCATTTC	CTACCATCGŢ.	13800
TATTGCCTTC	TCTTGGCAGT	GGATTCTAAA	CGGGGTTTAT	GGCTACTTAC	CTAATCTAAT	13860
CGTAAAATTA	GGTTTAATGG	AACATACACC	TGCATTTTTG	ACAGATAGTA	CATGGGCATT	13920
CCTATGTTTG	GTGTTTATCA	ACATTTGGTT	TGGAGCACCA	ATGATTATGG	TTAATGTGCT	13980

166 TTCAGCTTTG CAAACAGTAC CAGAAGAACA ATTTGAGGCT GCTAAGATAG ATGGTGCTTC 14040 AAGTTGGCAG GTGTTCAAGT TTATCGTCTT TCCACATATT AAAGTGGTTG TAGGACTTCT 14100 AGTTGTTTTG AGAACTGTAT GGATCTTTAA TAACTTTGAC ATTATCTACC TCATTACTGG 14160 TGGTGGACCA GCCAATGCTA CAACGACGCT TCCAATTTTT GCTTACAACC TGGGCTGGGG 14220 AACTAAATTG TTGGGTCGTG CTTCAGCAGT TACAGTACTG CTCTTTATCT TCTTGGTGGC 14280 GATTTGCTTT ATCTACTTTG CTATCATCAG TAAGTGGGAA AAGGAGGGTA GAAAATAATG 14340 AAGAAGAAAT CCAGTATTTA TTTAGATATT CTCTCACATG TACTTTTAGT TGGTGCGACC 14400 ATCGTTGCAG TTTTCCCATT GGTATGGATT ATCATATCTT CTGTCAAAGG GAAAGGGGAA 14460 TTAACTCAGT ATCCAACACG ATTTTGGCCT GAACAGTTTA CATTAGATTA TTTCACTCAT 14520 GTTATCAACG ATTTGCACTT CATTGATAAC ATTCGAAACA GTTTAATCAT TGCCTTGGCT 14580 ACAACCCTTA TTGCGATTAT TATTTCTGCT ATGGCAGCCT ATGGTATTGT TCGATTCTTT 14640 CCTAAATTGG GAGCAATCAT GTCGAGACTA CTCGTCATTA CCTACATTTT CCCACCAATT 14700 TTGTTAGCAA TTCCCTATTC AATTGCCATT GCTAAAGTTG GGTTAACAAA TAGTTTATTT 14760 GGCTTGATGA TGGTTTATCT ATCTTTTAGT GTTCCATATG CAGTTTGGCT CTTAGTTGGA 14820 TTTTTCCAAA CAGTTCCAAT TGGAATTGAA GAAGCGGCTA GAATTGATGG TGCAAATAAA 14880 TTTGTTACGT TTTATAAAGT TGTGCTACCG ATTGTAGCAC CAGGTATTGT AGCAACAGCT 14940 ATTTATACAT TTATCAATGC TTGGAATGAA TTCCTGTATG CCTTGATTTT GATTAACAAT 15000 ACAGGAAAGA TGACAGTAGC AGTAGCCCTT CGTTCACTTA ATGGTTCAGA AATACTAGAC 15060 TGGGGAGATA TGATGGCAGC GTCTGTTATT GTAGTTCTTC CATCAATTAT TTTCTTCTCT 15120 ATCATCCAAA ATAAGATTGC AAGTGGATTA TCAGAAGGAT CTGTGAAGTA GACGAAAGAA 15180 GGAAAAAAAT GAATAAAAGA GGTCTTTATT CAAAACTAGG AATTTCCGTT GTAGGCATTA 15240 GTCTTTTAAT GGGAGTCCCC ACTTTGATTC ATGCGAATGA ATTAAACTAT GGTCAACTGT 15300 CCATATCTCC TATTTTTCAA GGAGGTTCAT ATCAACTGAA CAATAAGAGT ATAGATATCA 15360 GCTCTTTGTT ATTAGATAAA TTGTCTGGAG AGAGTCAGAC AGTAGTAATG AAATTTAAAG 15420 CAGATAAACC AAACTCTCTT CAAGCTTTGT TTGGCCTATC TAATAGTAAA GCAGGCTTTA 15480 AAAATAATTA CTTTTCAATT TTCATGAGAG ATTCTGGTGA GATAGGTGTA GAAATAAGAG 15540 ACGCCCAAAA GGGAATAAAT TATTTATTTT CCAGACCAGC TTCATTATGG GGAAAACATA 15600 AAGGACAGGC AGTTGAAAAT ACACTAGTAT TTGTATCTGA TTCTAAAGAT AAAACATACA 15660 CAATGTATGT TAATGGAATA GAAGTGTTCT CTGAAACAGT TGATACATTT TTGCCAATTT 15720 CAAATATAAA TGGTATAGAT AAGGCAACAC TAGGAGCTGT TAATCGTGAA GGTAAGGAAC

ATTACCTCGC AAAAGGAA	GT ATTGATGAA	A TCAGTCTATT	TAACAAAGCA	ATTAGTGATC	15840
AGGAAGTTTC AACTATTC	CC TTGTCAAAT(CATTTCAGTT	AATTTTCCAA	TCAGGAGATT	15900
CTACTCAAGC TAACTATT	PT AGAATACCG	CACTATATAC	ATTAAGTAGT	GGAAGAGTTC	15960
TATCAAGTAT TGATGCAC	gt tatggtggg/	CTCATGATTC	TAAAAGTAAG	ATTAATATTG	16020
CCACTTCTTA TAGTGATG	AT AATGGGAAA	CGTGGAGTGA	GCCAATTTTT	GCTATGAAGT	16080
TTAATGACTA TGAGGAGC	AG TTAGTTTACT	GGCCACGAGA	ТААТАААТТА	AAGAATAGTC	16140
AAATTAGTGG AAGTGCTT	CA TTCATAGATI	CATCCATTGT	TGAAGATAAA	AAATCTGGGA	16200
AAACGATATT ACTAGCTG	AT GTTATGCCTC	G CGGGTATTGG	АААТААТААТ	GCAAATAAAG	16260
CCGACTCAGG TTTTAAAG	A ATAAATGGTO	ATTATTATTT	AAAACTAAAG	AAGAATGGAG	16320
ATAACGATTT CCGTTATAG	CA GTTAGAGAAA	ATGGTGTCGT	TTATAATGAA	АСААСТААТА	16380
ААССТАСААА ТТАТАСТА	PA AATGATAAGI	ATGAAGTTTT	GGAGGGAGGA	AAGTCTTTAA	16440
CAGTCGAACA ATATTCGG	T GATTTTGATA	GTGGCTCTTT	AAGAGAAAGG	CATAATGGAA	16500
AACAGGTTCC TATGAATG	T TTCTACAAAG	ATTCGTTATT	TAAAGTGACT	CCTACTAATT	16560
ATATAGCAAT GACAACTAG	T CAGAATAGAG	GAGAGAGTTG	GGAACAATTT	AAGTTGTTGC	16620
CTCCGTTCTT AGGAGAAA	A CATAATGGAA	CTTACTTATG	TCCCGGACAA	GGTTTAGCAT	16680
TAAAATCAAG TAACAGATT	G ATTTTTGCAA	CATATACTAG	TGGAGAACTA	ACCTATCTCA	16740
TTTCTGATGA TAGTGGTCA	A ACATGGAAGA	AATCCTCAGC	TTCAATTCCG	ТТТАААААТС	16800
CAACAGCAGA AGCACAAAT	G GTTGAACTGA	GAGATGGTGT	GATTAGAACA	TTCTTTAGAA	16860
CCACTACAGG TAAGATAGC	T TATATGACTA	GTAGAGATTC	TGGAGAAACA	TGGTCGAAAG	16920
TTTCGTATAT TGATGGAAT	C CAACAAACTT	CATATGGCAC	ACAAGTATCT	GCAATTAAA T	16980
ACTCTCAATT AATTGATGG	A AAAGAAGCAG	TCATTTTGAG	TACACCAAAT	TCTAGAAGTG	17040
GCCGCAAGGG AGGCCAATT	A GTTGTCGGTT	TAGTCAATAA	AGAAGATGAT	AGTATTGATT	17100
GGAAATACCA CTATGATAT	T GATTTGCCTT	CGTATGGTTA	TGCCTATTCT	GCGATTACAG	17160
AATTGCCAAA TCATCACAT	A GGTGTACTGT	TTGAAAAATA	TGATTCGTGG	TCGAGAAATG	17220
AATTGCATTT AAGCAATGT	A GTTCAGTATA	TAGATTTGGA	AATTAATGAT	ттаасаааат	17280
AAAGGAGAAA AACATGGTT	A AATACGGTGT	TGTTGGAACA	GGGTATTTTG	GAGCTGAATT -	17340
GGCTCGCTAC ATGCAAAAG	A ATGATGGAGC	AGAGATTACT	CTTCTCTATG	ATCCAGATAA	17400
TGCAGAGGCG ATTGCAGAA	G AATTGGGAGC	AAAAGTAGCA	AGTTCCTTAG	ATGAGTTGGT	17460
TTCTAGCGAT GAAGTAGAT	T GTGTTATCGT	CGCAACTCCA	AATAATCTTC	ATAAGGAACC	17520

168	
GGTTATTAAG GCTGCACAGC ATGGTAAAAA TGTTTTCTGT GAAAAACCAA TTGCGCTTTC	17580
TTATCAAGAT TGTCGCGAGA TGGTAGATGC GTGTAAAGAA AACAATGTAA CCTTTATGGC	17640
AGGACATATT ATGAATTTCT TTAATGGTGT TCATCATGCA AAAGAACTCA TTAATCAAGG	17700
AGTTATCGGA GACGTTCTAT ATTGTCATAC AGCTCGTAAT GGTTGGGAAG AACAACAACC	17760
GTCAGTATCA TGGAAAAAA TTCGTGAAAA ATCAGGTGGT CACTTGTATC ACCACATCCA	17820
TGAATTGGAT TGCGTTCAAT TCCTTATGGG GGGCATGCCT GAAACTGTAA CCATGACAGG	17880
TGGAAATGTG GCCCATGAAG GTGAACATTT CGGTGATGAA GATGATATGA TTTTTGTCAA	17940
TATGGAATTT TCTAATAAGC GTTTTGCCTT GTTAGAATGG GGTTCAGCTT ATCGTTGGGG	18000
TGAACATTAT GTCTTAATCC AAGGAAGCAA AGGTGCCATC CGCTTAGACT TATTCAACTG	18060
TAAAGGAACT CTTAAGCTAG ATGGGCAAGA AAGCTATTTC TTGATTCACG AATCGCAAGA	18120
AGAAGATGAT GATCGGACTC GTATCTATCA TAGTACAGAG ATGGATGGAG CAATTGCTTA	18180
TGGTAAACCA GGTAAACGTA CTCCATTATG GCTATCATCT GTCATTGATA AAGAAATGCG	18240
CTATCTGCAT GAGATTATGG AAGGAGCTCC AGTATCAGAA GAATTTGCAA AACTTTTGAC	18300
AGGTGAAGCT GCCCTAGAAG CAATTGCTAC TGCAGATGCT TGTACCCAGT CTATGTTTGA	18360
AGATCGCAAA GTAAAATTGT CAGAAATTGT AAAATAAATT TTGGTATTCT CCTATTTATA	18420
GGTCGACTTG CTCCTCTGAA AGTACTTTTA GAGGAGCTGT TTGACTTTGC TAGTTTTTGA	18480
AACTGAAATC TATTATACTA CAAACTATTG AAAGCGTTTT AATTTTAAGG TATAATAATC	18540
TCATAGAAAT AAAGAAAAGG AGGAAAGAGG ATGCCACAGA TTAGCAAAGA AGCCTTGATT	18600
GAGCAAATCA AAGATGGAAT CATCGTTTCT TGTCAGGCTC TTCCTCATGA ACCGCTTTAT	18660
ACAGAAGCGG GAGGGGTGAT TCCCTTGCTG GTCAAAGCGG CTGAGCAAGG TGGAGCAGTC	18720
GGTATCCGAG CAAACAGTGT TCGCGATATC AAGGAAATTA AGGAAGTCAC TAAACTTCCA	18780
ATCATTGGGA TTATCAAACG TGATTATCCA CCTCAGGAAC CCTTCATCAC GGCTACTATG	18840
AAAGAAGTTG ATGAATTGGC AGAACTGGAC ATCGAGGTGA TTGCTCTGGA TTGTACCAAG	18900
CGTGAACGCT ACGATGGTTT GGAAATTCAA GAGTTCATTC GTCAGGTTAA GGAGAAATAT	18960
CCTAATCAGC TTTTGATGGC TGATACTAGT ATCTTCGAAG AAGGGCTAGC AGCTGTAGAA	19020
GCAGGAATTG ACTITGTCGG AACAACCTTA TCAGGCTACA CATCCTACAG TCCAAAAGTA	19080
GACGGTCCAG ATTTTGAATT GATTAAGAAA CTCTGTGATG CTGGTGTAGA TGTCATTGCA	19140
GAAGGAAAAA TTCATACACC AGAACAAGCC AAACAAATCC TTGAATATGG AGTGCGAGGC	19200
ATCGTTGTTG GTGGCGCCAT TACTAGACCA AAAGAGATTA CAGAACGCTT CGTTGCTAGT	19260
CTTAAATAAG ATGTGAGGGG GAGTTTTATG TTTAAAGTTT TACAAAAAGT TGGAAAAGCT	19320

TTTATGTTAC	CTATAGCTAT	ACTTCCTGCA	GCAGGTCTAC	TTTTGGGGAT	TGGTGGTGCA	19380
CTTTCAAACC	CAACCACGAT	AGCAACTTAT	CCAATACTAG	ACAATAGTAT	TTTTCAATCA	19440
ATATTCCAAG	TAATGAGCTC	TGCAGGAGAG	GTTGTATTCA	GTAATTTGTC	ACTACTTCTC	19500
TGTGTGGGAT	TATGTATTGG	CTTAGCGAAA	CGAGATAAAG	GAACCGCTGC	GTTAGCAGGA	19560
GTAACTGGTT	ACTTAGTTAT	GACTGCAACG	ATCAAAGCTT	TGGTAAAACT	TTTTATGGCA	19620
GAAGGATCTG	CAATTGATAC	TGGAGTTATT	GGAGCATTAG	TTGTCGGAAT	AGTTGCCGTA	19680
TATTTGCACA	ACCGATATAA	CAATATTCAA	TTACCTTCCG	CTTTAGGATT	CTTTGGAGGT	19740
TCACGCTTCG	TTCCTATTGT	TACATCGTTC	TCTTCTATCT	TGATTGGCTT	TGTCTTCTTT	19800
GTTATTTGGC	CACCTTTCCA	ACAACTTCTT	GTTTCTACAG	GTGGATATAT	TTCTCAGGCG	19860
GGTCCAATTG	GAACTTTTCT	ATATGGATTT	TTAATGAGAC	TTTCTGGAGC	AGTAGGCTTA	19920
CATCATATAA	TTTACCCTAT	GTTTTGGTAT	ACTGAACTTG	GTGGTGTTGA	AACTGTTGCA	19980
GGACAAACAG	TGGTTGGAGC	тсалалалта	TTTTTTGCTC	AATTAGCCGA	TTTGGCCCAT	20040
TCTGGATTAT	TTACAGAAGG	AACAAGGTTT	TTTGCAGGTC	GTTTCTCAAC	AATGATGTTC	20100
GGTTTACCGG	CTGCCTGTTT	AGCGATGTAC	CATAGTGTTC	CTAAAAATCG	TCGTAAAAAA	20160
TACGCGGGTT	TGTTTTTTGG	AGTTGCTTTA	ACATCTTTTA	TTACCGGTAT	TACAGAACCA	20220
ATTGAATTTA	TGTTTCTATT	CGTCAGTCCG	GTTCTATATG	TTGTTCACGC	ATTCCTTGAT	20280
GGTGTTAGCT	TCTTTATTGC	AGACGTCTTA	AATATTTCAA	TAGGAAACAC	ATTTTCAGGA	20340
GGTGTAATCG	ATTTCACTTT	ATTTGGAATT	TTGCAGGGGA	ACGCTAAGAC	GAATTGGGTT	20400
CTTCAGATTC	CATTTGGACT	TATTTGGAGT	GTTTTGTATT	ATATTATTT	TAGATGGTTC	20460
ATTACTCAAT	TCAACGTTCT	AACGCCAGGG	CGAGGAGAAG	AAGTAGATTC	TAAAGAAATT	20520
TCTGAATCCG	CAGATTCAAC	TTCAAATACT	GCAGATTATT	TAAAACAGGA	TAGCCTACAA	20580
ATTATCAGAG	CCTTGGGTGG	ATCAAATAAT	ATAGAAGATG	TAGATGCTTG	TGTGACACGT	20640
TTACGTGTAG	CTGTAAAAGA	AGTTAATCAA	GTTGATAAAG	САСТТТТААА	ACAAATTGGT	20700
GCAGTTGATG	TCTTAGAAGT	GAAGGGTGGC	ATTCAAGCAA	TCTATGGAGC	AAAAGCAATC	20760
ТТАТАТАААА	ATAGTATTAA	TGAAATTTTA	GGTGTAGATG	ATTAAGTACT	TACTGACTTA	20820
ATAAAAAACA	GAGGAGAGTG	ATGGATGAGT	AGGATGAAAT	GAAATCGCAT	ACAAGAAATA	- 20880
AAGAACTCAT	TATCCAAGTT	GGATACGCTT	ATTACATAGG	AGAATACAAA	TGAAATTTAG	20940
AAAATTAGCT	TGTACAGTAC	TTGCGGGTGC	TGCGGTTCTT	GGTCTTGCTG	CTTGTGGCAA	21000
TTCTGGCGGA	AGTAAAGATG	CTGCCAAATC	AGGTGGTGAC	GGTGCCAAAA	CAGAAATCAC	21060

170 TTGGTGGGCA TTCCCAGTAT TTACCCAAGA AAAAACTGGT GACGGTGTTG GAACTTATGA 21120 AAAATCAATC ATCGAAGCGT TTGAAAAAGC AAACCCAGAT ATAAAAGTGA AATTGGAAAC 21180 CATCGACTTC AAGTCAGGTC CTGAAAAAAT CACAACAGCC ATCGAAGCAG GAACAGCTCC 21240 AGACGTACTC TTTGATGCAC CAGGACGTAT CATCCAATAC GGTAAAAACG GTAAATTGGC 21300 TGAGTTGAAT GACCTCTTCA CAGATGAATT TGTTAAAGAT GTCAACAATG AAAACATCGT 21360 ACAAGCAAGT AAAGCTGGAG ACAAGGCTTA TATGTATCCG ATTAGTTCTG CCCCATTCTA 21420 CATGGCAATG AACAAGAAAA TGTTAGAAGA TGCTGGAGTA GCAAACCTTG TAAAAGAAGG 21480 TTGGACAACT GATGATTTTG AAAAAGTATT GAAAGCACTT AAAGACAAGG GTTACACACC 21540 AGGTTCATTG TTCAGTTCTG GTCAAGGGGG AGACCAAGGA ACACGTGCCT TTATCTCTAA 21600 CCTTTATAGC GGTTCTGTAA CAGATGAAAA AGTTAGCAAA TATACAACTG ATGATCCTAA 21660 ATTCGTCAAA GGTCTTGAAA AAGCAACTAG CTGGATTAAA GACAATTTGA TCAATAATGG 21720 TTCACAATTT GACGGTGGGG CAGATATCCA AAACTTTGCC AACGGTCAAA CATCTTACAC 21780 AATCCTTTGG GCACCAGCTC AAAATGGTAT CCAAGCTAAA CTTTTAGAAG CAAGTAAGGT 21840 AGAAGTGGTA GAAGTACCAT TCCCATCAGA CGAAGGTAAG CCAGCTCTTG AGTACCTTGT 21900 AAACGGGTTT GCAGTATTCA ACAATAAAGA CGACAAGAAA GTCGCTGCAT CTAAGAAATT 21960 CATCCAGTTT ATCGCAGATG ACAAGGAGTG GGGACCTAAA GACGTAGTTC GTACAGGTGC 22020 . TTTCCCAGTC CGTACTTCAT TTGGAAAACT TTATGAAGAC AAACGCATGG AAACAATCAG 22080 CGGCTGGACT CAATACTACT CACCATACTA CAACACTATT GATGGATTTG CTGAAATGAG 22140 AACACTTTGG TTCCCAATGT TGCAATCTGT ATCAAATGGT GACGAAAAAC CAGCAGATGC 22200 TTTGAAAGCC TTCACTGAAA AAGCGAACGA AACAATCAAA AAAGCTATGA AACAATAGTC 22260 CTTAGTTATT CTATAAAAAG TAGTTTTTTA AAGAACCTAA GAGTGTATAC CCCCTTTTCC 22320 CTCTACACAG ATAGTGTAAG AAAAGGGGGC TTTTGTTTAA AATGTAAGAA ACTGTCACGA 22380 AATTAAAATG AAGTTCTTAC ATAAGCGAAT CATAAAAAAT TTCATTTTGA TTTTAAAACA 22440 GTTCAAGAAA GTCAAAAAAT TATTCTATTT GAAAGAGAGG TGCCGACTGT GAAAGTCAAT 22500 AAAATCCGTA TGCGGGAAAC AGTGATTTCC TACGCTTTCC TAGCACCAGT ATTATTCTTC 22560 TTTGTCATCT TTGTGTTGGC TCCGATGGTG ATGGGCTTCA TTACAAGTTT CTTTAACTAC 22620 TCAATGACTA AATTTGAGTT TGTAGGCTTG GATAACTATA TCCGTATGTT TAAAGATCCT 22680 GTCTTTACAA AATCTCTGAT TAACACAGTT ATTTTGGTTA TTGGATCTGT ACCAGTTGTT 22740 GTTCTATTCT CACTCTTTGT AGCATCTCAG ACCTATCATC AAAATGTCAT TGCCAGATCC 22800 TTCTACCGTT TCGTCTTCTT CCTTCCTGTT GTAACGGGTA GTGTTGCCGT GACAGTTGTT 22860

/	
TGGAAATGGA TTTATGACCC ACTATCAGGG ATTCTAAACT TTGTCCTTAA GTCCAGCCAC	22920
ATCATCAGCC AAAACATTTC TTGGTTGGGA GATAAAAACT GGGCATTGAT GGCGATTATG	22980
ATTATTCTCT TGACCACTTC AGTTGGTCAG CCCATCATCC TTTATATCGC TGCCATGGGG	23040
AATATTGACA ATTCACTGGT TGAAGCGGCG CGTGTTGATG GTGCAACTGA GTTTCAAGTT	23100
TTTTGGAAGA TTAAATGGCC AAGCCTTCTT CCAACAACTC TTTATATTGC AATCATCACA	23160
ACAATTAACT CATTCCAGTG TTTCGCCTTG ATTCAGCTTT TGACATCTGG TGGTCCAAAC	23220
TACTCAACAA GTACCTTGAT GTACTACCTT TACGAAAAAG CCTTCCAATT GACAGAATAC	23280
GGCTATGCCA ACACAATTGG TGTCTTCTTG GCAGTCATGA TTGCTATCGT AAGCTTTGTT	23340
CAATTTAAAG TACTTGGAAA CGACGTAGAA TACTAAAGAA AGGAGACAGC TATGCAATCT	23400
ACAGAAAAA AACCATTAAC AGCCTTTACT GTTATTTCAA CAATCATTTT GCTCTTGTTG	23460
ACTGTGCTGT TCATCTTTCC ATTCTACTGG ATTTTGACAG GGGCATTCAA ATCACAACCT	23520
GATACAATTG TTATTCCTCC TCAGTGGTTC CCTAAAATGC CAACCATGGA AAACTTCCAA	23580
CAACTCATGG TGCAGAACCC TGCCTTGCAA TGGATGTGGA ACTCAGTATT TATCTCATTG	23640
GTAACCATGT TCTTAGTTTG TGCAACCTCA TCTCTAGCAG GTTATGTATT GGCTAAAAAA	23700
CGTTTCTATG GTCAACGCAT TCTATTTGCT ATCTTTATCG CTGCTATGGC GCTTCCAAAA	23760
CAAGTTGTCC TTGTACCATT GGTACGTATC GTCAACTTCA TGGGAATCCA TGATACTCTC	23820
TGGGCAGTTA TCTTGCCTTT GATTGGATGG CCATTCGGTG TCTTCCTCAT GAAACAGTTC	23880
AGTGAAAATA TCCCTACAGA GTTGCTTGAA TCAGCTAAAA TCGACGGTTG TGGTGAGATT	23940
CGTACCTTCT GGAGTGTAGC CTTCCCGATT GTGAAACCAG GGTTTGCAGC CCTTGCAATC	24000
TTTACCTTCA TCAATACTTG GAATGACTAC TTCATGCAAT TGGTAATGTT GACTTCACGT	24060
AACAATTTGA CCATCTCACT TGGGGTTGCG ACCATGCAGG CTGAAATGGC AACCAACTAT	24120
GGTTTGATTA TGGCAGGAGC TGCCCTTGCT GCTGTTCCAA TCGTCACAGT CTTCCTAGTC	24180
TTCCAAAAAT CCTTCACACA GGGTATTACT ATGGGAGCGG TCAAAGGATA ATACTCTGCG	24240
AAAATCTCTT CAAACTACGT CAGCTTCACC TTGCCATACT TAAGTATTGC CTGCGGTTAG	24300
CTTCCTAGTT TGTTCTTCAA TTTTCATTGA GTATAGGAAA ATCAATCTAT CAAGATACAG	24360
AAGTATATTT TATAGATTTA GAGAATATAG AGGTTATAAG TGTCTACAAA ATGGAGGGTA	24420
TGCAGTTACT TTATGAAGTT TTGTCAGACA CTTATAAACT TAAGAATGGT TTTAGTTAAC	24480
TATCAGAAAC GAAGGAAAGA GTATGATTTT TGACGATTTG AAAAACATCA CCTTTTACAA	24540
AGGGATTCAT CCTAATTTAG ACAAGGCTAT CGACTATCTC TACCAACATC GTAAGGATTC	24600

			172			
TTTCGAATTA	GGAAAGTATG	ATATTGATGG	AGATAAAGTC	TITCTAGTTG	TTCAGGAAAA	24660
TGTCCTCAAT	CAAGCTGAAA	ATGATCAATT	TGAGTATCAT	AAGAACTATG	CAGATTTGCA	24720
TTTGCTGGTA	GAAGGACATG	AATATTCGAG	CTACGGTTCA	CGTATCAAAG	ACGAGGCAGT	24780
AGCATTCGAC	GAAGCGAGTG	ACATTGGCTT	TGTTCATTGT	CATGAACACT	ACCCACTCTT	24840
GTTGGGTTAT	CACAATTTTG	CGATTTTCTT	CCCAGGTGAG	CCACATCAGC	CAAATGGTTA	24900
TGCAGGCATG	GAAGAAAAGG	ттссаалата	TCTCTTTAAA	ATTTTGATTG	АТТАААААТА	24960
GGATGAATTG	TTTTTTTGTA	AAGCTTTGAT	AATACTCTAC	CATGAAATTG	ATCTTTGTGA	25020
GGTAGAGAAA	TGAGAATAAA	АТАТТТАААА	ATTGGTATCT	TCTAAGTATG	CTGCAAGAGC	25080
ТАСТТТСТТА	GATGGACAGG	GGATTACAGT	TGATGAGATG	GCTTGGATAA	TTAGGGGCAT	25140
TGTGAATGCA	TTGATTGGTA	GATACATAAA	ATTAGGTACT	TATGCGGCTA	AGTATGGTAT	25200
TAGTATGGCA	CGCTCGATCT	TAAGTAGGGT	AGCTGCAACT	GCAGCAGCAA	GAGTAGGATT	25260
ACTGACCAAG	ATTTCTGGAT	GGATTTTACG	AGTAGCTGTG	AATGTAGCTG	ATGTATATGG	25320
TAATTTTGCC	AACAATATTG	CTGCAGCTTG	GGATGCATAT	GATAAAATTC	CTAACAATGG	25380
TCGTATAAAC	TTTTAAAATG	CGAGAATGAA	AGCACTTTGT	ATTTTTTTAT	TGAATATGTT	25440
AGCTTGGACA	GTGCTTGCAA	TGATAATTCG	TGGAGGGCTA	GATGGATTTG	ATAGGCATAC	25500
TTGGAGTACT	ATTTTAATTG	CGTCGCTGTT	CGGGGTATAT	GATTATAAGC	CCATAGATAA	25560
AAATAGAAAA	AAGTCCAAAA	GAAAAAATAG	ATTTGTTCAT	GGTAGGGACT	TATGAAAGCT	25620
TTACTGACAA	AAAAGAAAAC	AGTTTACAAA	GAAAAATGAT	GGAGGAGCAA	ACATGGCACA	25680
AAAAGGAGTA	AGCCTTATCA	AGGCAGCATT	TGATACAGAT	AACTTTCTCA	TGCGTTTTAG	25740
TGAGAAGGTC	TTGGACATCG	TGACAGCCAA	TCTTCTTTTT	GTCGTCTCTT	GTTTACCCAT	25800
CGTGACGATT	GGAGTGGCTA	AAATCAGCCT	CTACGAGACC	ATGTTCGAAG	TTAAGAAGAG	25860
CAGACGGGTG	CCTGTTTTTA	AAATCTATCT	AAGATCTTTC	AAGCAAAATC	TGAAACTAGG	25920
TCTTCAGCTG	GGTTTAATGG	AGTTAGGAAT	TGTGTTTCTT	ACCCTTTCAG	ATCTCTATCT	25980
TTTCTGGGGT	CAAACAGCTC	TGCCCTTCCA	ATTGCTGAAA	GCCATTTGTT	TAGGTATTCT	26040
GATTTTTCTT	ACTATCGTGA	TGCTGGCTAG	TTACCCTATC	GCGGCACGTT	ATGACCTATC	26100
ITGGAAAGAA	ATTCTTCAAA	AAGGATTGAT	GTTGGCTAGT	TTTAACTTTC	CTTGGTTCTT	26160
CCTCATGTTA	GCCATTCTTG	TCCTCATTGT	GATGGTTCTT	TATCTGTCCG	CCTTCAGTCT	26220
ACTCTTAGGT	GGCTCAGTCT	TCCTACTTTT	TGGGTTTGGA	CTATTGGTCT	TTATCCAGAC	26280
IGGATTGATG	GAGAAAATTT	тсссаалата	CCAATAGGAG	CTTTATTTCT	GAAACTACTT	26340
ICAAAGGCTC	CAAACGCTAT	TCTATAAGCG	AGAAACTAAA	ATCGG		26385

173

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2716 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

CCTGCCCGCA TTGCCCTAGG CATTAAGTAA ACATATAAAA GCATGTGAGA GACTGTTGGA 60 AAAGCGAGGA AATTTCCCCT CTTTTCCTCT AGTCTCTCT TTCTTTTGCT GATTTTATTC 120 AAAGAAAATG ATATAATAGT AGTTATGGAG AAAAAGAAAT TACGCATCAA TATGTTGAGT 180 TCAAGTGAGA AAGTAGCAGG ACAGGGAGTT TCAGGTGCTT ACCGTGAATT AGTTCGTCTT 240 CTTCACCGTG CTGCCAAGGA CCAATTGATT GTTACAGAAA ATCTTCCAAT CGAGGCAGAT 300 GTGACTCACT TTCATACGAT TGATTTTCCC TATTATTTAT CAACCTTCCA AAAGAAACGC 360 TCAGGGAGAA AGATTGGCTA TGTGCATTTC TTGCCAGCTA CACTTGAGGG AAGTTTGAAA 420 ATTCCATTT TCTTAAAGGG AATTGTGAAA CGCTATGTAT TTTCTTTTTA CAACCGGATG 480 GAGCACTTGG TTGTGGTCAA TCCTATGTTT ATTGAGGATT TGGTAGCAGC TGGTATTCCA 540 CGTGAAAAAG TGACCTATAT TCCTAACTTT GTCAACAAGG AAAAATGGCA TCCTCTACCA 600 CAAGAAGAG TAGTCAGACT GCGCACAGAT CTTGGTCTTA GTGACAATCA GTTTATCGTA 660 GTAGGTGCTG GGCAAGTTCA GAAACGTAAA GGGATTGATG ACTTTATCCG TCTGGCTGAG 720 GAATTGCCTC AGATTACCTT TATCTGGGCT GGTGGCTTCT CTTTTGGTGG TATGACAGAT 780 GGTTATGAAC ACTATAAGAA AATTATGGAA AATCCCCCTA AAAATTTGAT TTTTCCAGGC 840 ATTGTATCGC CAGAGCGGAT GCGCGAATTG TATGCTCTAG CGGATCTTTT CTTGTTGCCT 900 AGTTACAATG AGCTCTTTCC TATGACTATT TTAGAAGCTG CGAGTTGTGA GGCTCCTATT 960 ATGTTGCGTG ATTTAGATCT CTATAAGGTG ATTTTGGAGG GAAATTATCG GGCGACAGCG 1020 GGTAGAGAA AGATGAAAGA GGCTATTTTG GAATATCAAG CAAATCCTGC TGTCTTAAAA 1080 GATCTCAAAG AAAAGGCTAA GAATATTTCC AGAGAGTATT CTGAAGAGCA TCTGTTACAA 1140 ATCTGGTTGG ACTTTTATGA GAAACAAGCC GCTTTAGGGA GAAAGTAAAA AGTGAGGTAA 1200 TCTATGCGAA TTGGTTTATT TACAGATACC TATTTTCCTC AGGTTTCTGG TGTTGCGACC 1260 AGTATTCGAA CCTTGAAAAC AGAACTTGAA AAGCAGGGAC ATGCTGTTTT TATCTTTACG 1320 ACGACAGATA AGGATGTCAA TCGCTACGAA GATTGGCAAA TTATCCGCAT TCCAAGTGTT 1380

			174			
CCTTTCTTTG	CTTTTAAGGA	TCGTCGCTTT	GCCTACCGAG	GTTTTAGCAA	GGCACTTGAA	1440
ATTGCTAAAC	AGTATCAGCT	AGATATTATC	CATACTCAGA	CAGAATTTTC	TCTTGGCCTG	1500
TTGGGGATTT	GGATTGCGCG	TGAATTGAAA	ATTCCAGTCA	TCCATACCTA	TCACACCCAG	1560
TATGAAGACT	ATGTCCATTA	TATTGCTAAG	GGGATGTTGA	TCCGGCCGAG	TATGGTCAAG	1620
TATCTGGTTA	GAGGTTTCCT	GCATGATGTG	GATGGGGTTA	TTTGCCCTAG	TGAGATTGTC	1680
CGTGACTTGC	TATCTGATTA	TAAGGTCAAG	GTTGAAAAAC	GGGTCATTCC	TACTGGGATT	1740
GAATTAGCCA	AGTTTGAGCG	TCCGGAAATC	AAGCAGGAAA	ATTTGAAAGA	ACTGCGTAGT	1800
AAACTAGGGA	TTCAAGATGG	TGAAAAGACG	TTGCTTAGTC	TTTCGAGAAT	CTCCTATGAA	1860
AAAAATATTC	AAGCAGTTTT	AGCAGCCTTT	GCTGATGTTC	TGAAAGAGGA	AGACAAGGTT	1920
AAACTGGTAG	TAGCTGGGGA	TGGCCCTTAT	CTGAATGACC	TCAAAGAGCA	AGCCCAGAAC	1980
CTAGAGATTC	AAGACTCAGT	CATCTTTACA	GGGATGATTG	CTCCTAGTGA	GACGGCTCTT	2040
TACTATAAAG	CGGCGGATTT	CTTCATTTCG	GCATCGACAA	GCGAAACGCA	AGGTTTGACC	2100
TACTTGGAAA	GCTTAGCCAG	TGGAACACCT	GTCATTGCTC	ACGGAAATCC	TTATTTGAAC	2160
AACCTCATCA	GTGATAAAAT	GTTTGGAACC	TTGTACTATG	GAGAACATGA	TTTGGCTGGT	2220
GCTATTTTGG	AAGCCCTGAT	TGCAACACCA	GACATGAACG	AGCATACCTT	ATCAGAGAAA	2280
TTGTATGAGA	TTTCAGCTGA	GAACTTTGGG	AAACGAGTGC	ATGAGTTTTA	TCTGGATGCC	2340
ATTATTTCAA	ATAACTTCCA	GAAAGATTTG	GCTAAAGATG	ATACGGTCAG	TCAGCGTATC	2400
TTTAAGACAG	TTTTGTATCT	TCAGCAACAG	GTGGTTGCTG	TACCTGTAAA	AGGATCTAGA	2460
CGCATGTTGA	AGGCTTCAAA	AACACAGTTG	ATCAGTATGA	GAGACTATTG	GAAAGACCAT	2520
GAAGAATAGA	AAGAGGAACA	GCTATGAAAA	AAACAATTAA	TGAGAAGCGG	TCGTGATAAA	2580
AAGATTGCGG	GTGTTTGTGC	TGGGGTGGCC	CATTATCTGG	ATATGGATCC	GACTATCGTT	2640
CAAGTCATTT	GGGGTGTTCT	TACTTGCTGT	TACGGAGCTG	GAATTGTAGC	TTACATTATT	2700
TTATGGATTA	TCGCGA					2716

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13926 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CTTTGGTTTT GCCTTATTCA AGACATGAGG GCCATCAGGA ATGATCTGAA ACTGCGAATC

, -

TGTTAACAGT CTATGGAGAG	CTTTCATAGA	ACTAAGATTC	GGTTTATCTT	TGCTGCCACA	120
AATTAGTAAG GTTGGATAAG	GGTAAGTTCC	TGCTATATCC	GTTAAATCAA	GTGTCTTCAA	180
CTCCTCAGAA ACTCCGACCA	TAAGAGTCTT	GTCTGCTCCC	TGTTTTTCAA	ATACTCTTTT	240
GGGAAGTAGT TTAAAAATCA	GCAATTGAAG	ATAAAATAGG	ATATTCCCTG	CTAATTTAAG	300
CGGGCATCCT GACAGAATCA	AAGCTCGAAG	ATTTGGTAAA	TCGTAACTGG	AAAGTTCTAG	360
TGTCAGGGCA GCACCTAAGG	ACAATCCAAT	CAAAACAAAA	GGTTCTGTCT	CTTGAGCTAG	420
GTGCTGATAA ACTCGCTCTT	TAGCTTGTTG	ATAGTTACTA	ACTCCAGAAG	GAAATAACTC	480
GATAGCCTCA GAAGGATAAT	CTGTCAGTAG	ATTCCGAACT	TCTTTCCAAG	ACTCTGCTGA	540
CTGCCCTAAC CCATGCAAAA	ATATTAATTT	CATCTAGTTC	TCCTCAAGGC	TTAATTCATA	600
CAAGCCTCTC ACTGCATTAC	AGCCGTAAAT	AGCTTCTGCT	TGGGTTAAAT	CTGCCAAGGT	660
CAAGACTTTC TCTTCTACCT	GTCCTGTTTC	TAGCAAATGC	TGACGGTAAA	TTCCTGGCAA	720
GATTCCAAGT CGGATAGGCG	GTGTGTAGAG	TTTTCCAGCG	ATTTTCAGAA	CCAAATTTCC	780
TATAGAGGTT TCAAGCAGTT	CTCCTGACTT	ATTGTGGTAA	ATCTTCTCTT	GTTCTCCTAG	840
GCTCAAATGC GGTCGGTGAG	TGGTTTTAAA	GTAGGTAAAG	GATTGATTCA	AAGCAGCTTC	900
CTGAAGACAG ACTTGGGCCT	GACAAAAGCT	TGTACTGAGA	GGGGTTAATA	CTTGACGATT	960
GACTTCTATC TCTCCAGATT	TGCTAAGGCT	GATTCGCAAG	CGGTAATCTC	GATTAGCTTC	1020
ACAATCCTGA CACTCTTCCT	CAATCTTGTG	TCCCAAGTCT	TCTGCATCAA	AAGGAAAAGC	1080
AAAATAACGA CTAGCTTTTC	TCAGCCTTTC	CAGATGTTGT	TCTTCAAACA	TCAGTTGTTT	1140
TTGGCTGATT TTTCCAGTTG	TAATTAATTG	GAAGCGAGCT	TGTTTACGAT	AGAGAACTGC	1200
TGCCTTTTGA TGAACCTCTC	GGTATTCAGA	TTCCCATGTG	CTATCCCAAG	TAATCCCTCC	1260
GCCAACTCCA TAAATGGCTT	GACCTTTGTG	AAGTTGAATG	GTACGAATGG	CCACATTAAA	1320
AATCCGTCGT CCATTTGGAA	GCAAGAGACC	AATCGTTCCA	CAGTAGACTC	CACGCGGTTG	1380
AGGCTCCAAG TCCTTGATAA	TCTCCATTGT	CGCAATTTTC	GGTGCACCCG	TTATGGAACC	1440
ACAAGGAAAG AGTGAGCGGA	AGATTTCAAC	AAGGTCCACA	TCCTCTCGCA	ACTGACTCTT	1500
GATGGTCGAA GTCATCTGCC	AAACAGTTGA	ATACTGCTCT	ACCTGACACA	GACGCTCCAC	1560
GTGCTCGCTC CCAACTTCAG	AAATACGGTT	CATATCATTG	CGCAAGAGGT	CCACAATCAT -	1620
CATATTTCA GAGCGATTTT	TGGGATCCTG	TTCCAACCAA	CTGGCCTGTT	CAAGATCTTC	1680
TTGGTCAGTT ACCCCACGCT	GAGTCGTCCC	CTTCATTGGT	CGTGTTGTCA	ACTCGCGATC	1740
ATTTTGCTCA AAAAAGAGCT	CTGGGCTCAT	GGAAATCACT	GTCATCTCGT	CATGTTCCAC	1800

			176			
ATAGGCATTG	TAGCCCGCCT	CCTGCTCTAC	CACCATACGA	TTGTAGATGG	CAAAAGGATT	1860
GGCATTTAAC	TTTTGCTTAA	GTTGGACGGT	GTAGTTGACC	TGATAGGTAT	CTCCCTGCCG	1920
TAAATGATGG	TGAATTTGGG	CAATGGCCTT	TTCATAGTCT	GCTGCAGACG	TTACTTCCTG	1980
CCAATTTGAG	GGCAAATCAA	TATCCTCATA	AGTCAGAGGA	ATAGGGGAAG	TTTCTACGAT	2040
ATCATGAACA	GTAAAGTAAA	GCAGGTACTC	TCCCAGTAGG	GGATCCTTGT	GAACTGCTAA	2100
TTTTTCCTCA	AAAGCAGGTG	CAGCCTCGTA	GCTGACATAC	CCCACCACAT	AATAACCTTG	2160
CTCTTGGTAG	CTTTCCACTT	GTGCCAGCAA	ATCTGCCACT	TCTTCTACAT	TTCTCGTTTT	2220
СААСТСТТТА	ATAGGCTGGG	TAAAGGTATA	тстстссссс	AAAGTCCTAA	AATCAATCAC	2280
TGTTTTTCTA	TGCATACCTT	AAGTATAGCA	TAAAATAAGA	AAACCCTCAT	CCGCAAAGCA	2340
Gatgagagat	TTCAATTATT	TAAAGATTGA	AGTTTTAAAG	CTATTTGTTT	GTTGAAGAAG	2400
ТТТСТТАТАА	ACAGCTTCTT	ттаатттаас	TGTATTATTC	ATAGATACTG	TTTTATTACC	2460
GTTTGCTTCT	TGTTTAAGAG	TTTCGGCATC	ттттталса	GCTTCTTTAA	ACAATGTCAG	2520
TAAATCATCG	TATGATGAAA	CGGAAGAACC	ATTTACTTCG	AATGTTGTTA	ATCCTTTCGT	2580
rgctttatct	TTAACTTCTT	TGAAGTAAGC	TAAATTTTTT	TCTTCAATAG	TATTAAATGT	2640
ATTGTTAGAT	ATTTTCTTGA	TAATATATTC	ATCACTTAGA	ACAGACTCAC	CATCTGTTTT	2700
AGATTGTTGT	TTATATTTAT	TTGAAGCATA	ACCTAAGAAC	CCATTTTCGT	ATCCGTAGTA	2760
ACCCCATAAT	CTAAAAGCAT	TATGTTTGAA	TGAAACAGCT	CCAGGAGCAC	CTTTACTAGT	2820
ATTACCTCCG	TAGATACCGG	TCATCATTCT	AACACCTACA	TAAGGTGATT	GATCGTTATA	2880
GCTAATTGCT	TCGGGTTTAT	AGATACCATT	ACCTGGATTG	CGATTAGTCA	TTAATTGTTG	2940
ATCAACTAAA	TCATTAACAG	ATTGAATATT	TAATTCATTT	TTCTCTTCTT	GACTTAGATT	3000
rcgaatttta	TCCCATTGAT	TTAATTTATT	GTTATCACGG	ТАТТСТСТАТ	СТАТТТТТТ	3060
SAACCATGCA	СТАТТТАААТ	CTTTATTTTG	TTGAGAAATC	ACAGATTCAG	CCTCAATTTC	3120
ATCAAGAAGA	GTTAAAGTGT	CATTATAACC	CTTCATATAT	СТАТТААТАТ	CTTCTCGTGT	3180
TTTAGAGTT	TTTGGATCTG	TAATATACCA	CTGATTCCCA	TCATTTTTGC	GTTTAAATAC	3240
ATATTAATA	CCTAAAGAAC	CAAACTCATC	AAATCCACTA	CCAGTAACAG	GAGTTTGTAG	3300
ATACCCTGA	GCATATGCTT	CAGCATCAGT	ACCTTCACGG	TGTCCAAAGC	CACCTAAGTA	3360
ATCGCACGG	TCGTTGACGT	GTGTTGTTTC	ATGTGTGTAA	ACTGAAATAC	CGTATTCACC	3420
ACCATTTCT	AAATGAACAT	АТТТТАСАТС	AGTTCTAATA	TCATCAGAGT	TAGGATATAT	3480
GCAGCATAA	GCTCCTGTTC	CATTATAATT	АТААТАСТТА	TCCATAGGAC	CAAAGAATTC	3540
CTAAGAGGA	GTATATACTT	TGTCGGTATT	ATAGCGGCCA	ТАТТТТСАА	CCCATCCACC	3600

AGGAGCGTT	A TAACCTTCC	AAATAGGAAT	P AACAGCATCT	CTTAGTAGT	GTTGTTTAAC	3660
GTTATCAGA	C GCTAGACGA	P ACCAGAAATO	Э АТААТАСТТ	CTATAACCAT	CTGCAGCTTT	3720
GTTAACGAT	А ТСТТТААТАТ	CTTCTAATGA	TTTTTTACCI	AATCGCTCTC	CACTACCAAA	3780
GGCAATTGC	A TTATAATTTO	З АААТТААА ТА	AAGATGTGCT	TTATCAATAT	TCAGTAGTGG	3840
GAGTATAGT.	A TTTCTAAGG1	GACTTCGTTT	TAAATTATCO	AATGCACGAT	GTTTAGAATT	3900
TTTAATTTC	T TCGACCTCAG	AAGCGCGTTC	TGCGATGTAG	ACATGGTCTT	CTGTAGCATC	3960
AATAAACCA	A TCGTTCATAI	TGTCTATATT	TGTGAACAAT	TGTCTATTAT	АААТТТАААА	4020
TGCATCTAA	A TTACCTGATI	[•] ТАСТАТАТТТ	AGCCAATACT	TGACCGAATC	CGTCGAATGT	4080
ACGTGAACC	TTAATGTTGT	' TCTCTTTAGA	ACCGATTTCA	ATTAATCTGT	СТААТАСССТ	4140
AACTTTTTC	A CCATAGAAAT	CTGGTTTGAA	ТАССАТТААТ	тстттаатат	TAACATCACC	4200
AAATTTAAC	r ccatagtaac	GATTTAGGTA	AGTTAAACCT	AGTAATAAAG	CTGCTTTGTT	4260
TTTCTCGAC	TTATCACGAA	TCATTTGACG	AGCAGCTGGA	GAATCATTTA	GTTGATGTTC	4320
TTCGTTTTG	ACTAATTTTG	TGATTAGGTT	TGTTAAGTTT	TCTTTAACAT	CTGTGAAGCT	4380
TTCTTCTAA	ТАТАААТСТТ	TGATTGCATT	AACTCTATAG	TCACCTAATC	GATTTAGATG	4440
CTGATACATO	GTTTGAGACT	GAAGCTCTAC	TGATTCTAAA	ATAGATTTTA	TATCATTAAC	4500
AAGAGTAGTO	TTATCTTTT	GAACGATATT	AGGTGTATAT	ТТААТТССТА	AGTCAGTTAT	4560
AGTATATTCT	TTTACATTAC	TTAAACCTTC	ACTGCTAGAA	GACAAGTTAA	AGTAATCTTT	4620
TGTACCGTCC	GCATAGTGAA	CAATAATTTT	ATTAGCTTCA	TCTAGGTTTG	TGATAAACTC	4680
ATTGTTGTTC	ATCGCGGTAA	CAGAAAGAAC	TTCTTTAGTA	TTTAGATGGT	GTTCTTTATT	4740
TAATTTATTA	CCTTGATATA	CAATATAATC	TTTATTGTAG	AATGGTATTA	ATTTTTCAAG	4800
ATTTTTATAG	GCTTGGTTAT	ATTCAGCGTT	ATAATCTTGA	ATACTAGAAT	AGGCTTTTTC	4860
TTCATTAAGT	TTTGCAAGAG	GAGATAGATC	ACTTTCTAAT	TTATCAGCAG	TAATATTGAA	4920
AGTAGTAACT	TTAGCATCAG	CTTGTTCTTT	AGTTAATTTA	GTAAATGTTT	TAGATTTCCT	4980
AAATGATCTA	TTACCTGACG	AATATCCCTC	TACCGCATAT	AAATCTTTTA	TATGAGCACT	5040
AGCATAATCA	GAATCATCAA	CGTCGTTAGA	GCCGAATAAC	TCCTCTCCAC	GGATAATCTT	5100
AGCATAGCTG	ACAGAATTAC	TTACCGTACC	TACAGGCCAA	GTCTTACTTG	CTATTGCTCC	5160
AACTTCTACT	GGATTTGAAA	CATCTATTTT	ACCTTTTACA	ACCGACTCAG	TTAGGAGAGC	5220
TTTTGTACCA	ATAAGATGGT	CTAGAGTTAA	TCCATAATCT	ACTTTAGGAA	CTAACAAGCT	5280
GGCGCGTGTT	TTGTTTCCTG	TAATAGTAGC	ATCAACATAT	GCTTTTCTAA	CAATTCCTCT	5340

			178			
ATAGTTTGT	A CCTGCAATT	C CCCCTGTATY	G AGAGCCATT	CCACTTGTAC	AGTGTAGTTT	5400
GCCAAAGAA	A GCAACATTT	r caatacgag	T TCCATCATTC	ATATTATTA	CAAATCCAGC	5460
AACATTATT.	A CGACCTGAA	A GTGTGCCTGT	r aattttgaca	TTTGTAATAA	CTGAAGAACC	5520
TTTCATAGT	A TTGGCTAATO	G ATGCAATATT	r atcttgacca	GAACGTTCTA	TCTCTACATT	5580
TTCAAAATT	C ACATTATTT	A TCGTTGCGTT	TGTTATCACA	ттааатаатс	GATGTTCCAA	5640
TTCAGTAAT	A GCAAATTGT	TTCCTTCAG	ACTTAAAAGT	TTTCCTGTGA	ATTCTTTAGT	5700
GATATATGA	T TTTCCATTAC	GAACAACATI	TCTAGCGCTC	ATTGATTGTC	CCAGACGATA	5760
TTCTTTTGAI	A GGATCGTTT	GAATAGCTTC	CACTAATTCT	ттсалаттат	AATATACATT	5820
ATCTTCGTG	G ACTTTAGGTT	TTTCAATATA	GTGAACGTAT	TCTTCTTCAA	ATTTATTATC	5880
AGCAGTTCT	A GAGACTAAA1	TGTCTGCGAT	TGCTGTAACT	TTATATACAG	GTGTTCCGTT	5940
AACCGTAGT	TCTTCTATAT	TTTTAACAGO	тастаатста	GTTTTCTGAT	TATTTGAAGT	6000
TATTTTTAA	A TAATAATTGO	TCTTATCATC	AGGAATAGTT	GTTATCAGTG	ATTCATTAGT	6060
TTCTTTTCC	A TTTTCGTATI	TGATTAAATC	TGTACGTTTA	ATATTTTTAA	GCTCAACTTT	6120
TTTAAGATCT	T AATTGAATAT	TTTGATTTC	TAGAGTTTCA	GTTTCTTCAC	CGTTACCTCT	6180
GTCGTAAATC	ATAGTTGTAG	ATAGGGTGTA	TTCTTTGTAG	TACTCTAGGT	TCTTAAATGC	6240
AGCGCTTATA	GTTTCTGTTG	TTACCTTGTC	ATCTGTAAGG	ACTACAGTAT	TAATAACTTC	6300
TTCTCCTTTT	TTCAATTCAG	CTGTGATTGA	TTTGATTTT	GTTTTGTTTT	GATTTTCTAG	6360
AGTATACTTA	GCAACAGCTT	CACGTTCCAA	ТАТТТТСТТА	TCGGTACTAG	TCAATGTTAA	6420
TATTGGCTTT	TCAGATAATT	CAACCAATTT	TTCAATAGTT	GCAGTTAATT	TTTCAACAGC	6480
TTCGTTAACT	TCACTTTGTT	TAGCATCTGT	ATTAGCTGCA	ACTTTTTCAG	CCTTTGTAAC	6540
TTCAGTTTGG	AGGTTTTGCC	AACTTCTATC	ACTGTAATGT	TCTTTTACCT	TTGTTTTTGC	6600
ATCTGCAATC	GTATTGTTTA	ATTCAGTTTT	ATCAACGTTT	AGAGCGTCAA	TAGCCGTTTT	6660
AAGTTTATTT	GTCTCGCTAT	TTACCTCAGG	CTGTTTTACA	GGCTCTGAAG	CATAGACACC	6720
TTTTGCAGTT	TCTAAAACAG	GTCCAAGAGC	ATTGTAACTT	GCTGTAGAAT	AATCAGTAGG	6780
AGAAACTGAA	CTAGCTTTAT	CAATTTGATT	ATTTAACTCA	CTTTTATCAA	CTGGTTCTTT	6840
AGTACCAATA	CCCTTTATTT	TATCTTCTGG	TTTCGGTGTT	TCCTCTACAG	CCTTCTCTTC	6900
TTCAGGAACT	TCTGGTTGCT	TTTCTGGCTC	AACTGGTGCC	GTTGGTGCCT	GTTCGTCTTC	6960
TCTTGGCGCG	ACTGGTTCAC	CTGCTTGTTC	AACTTTTGGT	TCCTCTGTTG	GTTCTGTTTG	7020
ТТТТТСТАСА	GCAGGCGTTT	CAACTTTTGG	TTGTTCAATA	GATTGATTAA	CAGTCTCCTC	7080
TTTTGGTTCT	ACAGTTTCTT	CAGCCTTGGT	АТСТССАСТТ	ርልርሚርሚጥርሚጥ	COMO	7140

179	
TTCCTCTACA GCCTTCTCTT CTTCAGGAGC TTCTGGTTGC TTTTCTGGCT CGACTGGTGC	
CITTCGTCT TCTCTTGGCG CGACTGGTTC ACCTGCTTGT TCAACTTTTG ATTCCTTCAACTTTTG	
TOGTTTGTCT GATGGTTGAC TTTCTGGCTT AACTGCTACT TTTTCCTCTG GTTTTCACTG	
AACTTCTCCA CCTACTTCTT CAACTGGAGC TGGTTCTGCT GAATCTTCTT TCCCCTCTTC	
TACTTTAGGA AGGGTGTCGT CAGTAGGTTT TACCTCCGAT TTTGGTTCTT CCTTTGGACT	7380
TTCTTCTGTT TTAGGTGCTT CTTCTTTTGG AGCTTCCTCT GTCTCTACTA CTTGGTTTTC	7440
TGTCCTAGCT TGCTCCTGAT TTGTTATTGA TTGAGGAGTC TCAACTTCGA CCACAGTCAC	7500
CTCTCCAGGT TTTGCTGAGG TTTCTTCTAA AACAGTGTCC AAGCCAAGCG TTTTGAGGAT	7560
GTCACCTGAT AGATAACCAA CATAGCGATA GCCCTCCATT TCAACAACAC CCTCTCGACT	7620
AGCCAGCGCT AGGGTCGCAA CTGGGTCTAC AGCCCCTGCA CTAGGAAGAA CTACCAATCC	7680
CATAGCTCCA ACTAGAAAGA CGCTAGCAAT TTTCTTTCTC TTGTAGATTA AAAGCAAGCT	7740
CCCAACAGTC AGCAAACCAA ABGCTCTGAA AAAGCAAGCT	7800
CCCAACAGTC AGCAAACCAA AAGCTGTCAA AACAGATGCT TCTGTCCCTG TTTGAGGCAA	7860
CTGATCTTTT TGATACACCA AACCATATAC AACTTCATTC CTGTCAGGCT TTCCTGTCTG	7920
AATTAAATCT TTAGCTTCTT GTGAAATAAT CTCTTTATTT ACATAGTGAT AGGTGGCTGC	7980
GTCCACTACA GAAGGAGCCA TCAAAAGGCT TCCAAGAAAT ACAGAGCCTA CAACTCCCTT	8040
AATCTTACGA ATTGAAAAAC GGTCTTTTTT AAACACTTTT ATCTCCTTTA TTCATTCTCA	8100
AAACTTCCTA ATAGCATCTT GCGGATAGTG CGCACGCGCA CCTCCGATTA ATTTTGGACG	8160
ACTAGCCAGT GCCGTTACAT GGGCATGACC AATCTCTCTC AAAATAGGGC GAATCGGAAC	8220
CTGAACATGC TTGACATGCA TGCCAATTGC AGTGTCTCCG ATATCCAATC CAGCATGAGC	8280
CTTGATAAAT TCAACCTCAA CTGGATCCTG CATAAACTTA AAGGCTGCCA ACTGCCCCGA	8340
ACCTCCTGCA TGAAGAGTAG GATGGACACT GACAATTTCC AGACCAAACT GCTCTGCCAC	8400
CTGACGTTCA ACAACGAGAG CCCGATTGAC ATGCTCACAA CCTTGAACTG CTAAATGGAT	8460
ACCTCTACTA CCTAGAATAT CCAAGATAGT CTCCACTATC AGCTCACCAA TCTCTTGACT	8520
GGATTCTTTC CCAATATGAC CACCTAGCAC CTCACTAGAA GATAGACCTA AAACAAAAAG	8580
GGCCCCCTGC TTCAAATTGG TCTTTTCTAA AACATCTTCC ACTACCTGAC GTGTTTCTCT	8640
TIGAATCIGI GICTCGITCA TCTCTGTTAC CTCTGTTGTC ACTCTTCTAT CATACCCTTT	8700
TITCITGTTT TTAGCAAGAT AGACAACCTA GAAAGTTTGC CCAATTACGC ATAAAACTCC	8760
CAGAATTGAC TGGGAGTTAG CTAGTTTCTA TTCTATTTAT ATATATTTCA ACTTTCCTCC	8820
CTTTTTGGGG TCTAGAATCA ATCTTCATAT GGTAATTGGC TCCAAAATGA AGTTTGAGCC	
a GAGCC	8880

180 GTTGATCGAC ATTTTGAAGA CCAACTCCCC CACGTTTGAG TTGACTTTGA CTACTATCAC 8940 CAGCATCTTG GAAGCCAACG CCATCATCCT CAATACGGAT GACCAATCCC GAATCCTGTT 9000 TCTGGACAGA AAGTTTAATA TGGCCCTGAC CTTCCTTTTC CTTAATGCCA TGGTAAAGAG 9060 CATTTTCTAC AAGGGGTTGT AGGACCAGCT TGGGTAAGAC TAAATTATCA AAGGCAACAT 9120 TTTCATTAAT TTCGTATTCC AGCTTATCTC CATAGCGTTG TTTCTGGATA AAGAGATACT 9180 GGCGGACATG ATTGATTTCG TCAGAGAGAC AAATCAAGTC CTTGCCTTGA TTGAGCGCCA 9240 AGCGGAAATA GGTTGCCAAG GACTTGGTCA CCTGCACCAC TCGCTGACTA TCATGAAATT 9300 CAGCCATCCA GATGATGGTG TCCAAAGTGT TATAGAGGAA ATGTGGATTA ATCTGGCTCG 9360 AAAGGGCTTG AAGTTGGTAC TGACGGGTCG TTTCTTCCTG GCTACGAATA GCTACCATCA 9420 ACTGATCAAT CTGATCCAAC ATAGCATTAA ATTGGCGAGT TACTTCTCTC AGTTCATAGG 9480 CACCAACTTC CTTGGCACGA AGATTTTGAG CACCAGAAGC AATTTCCAAC ATGGTTTCTC 9540 TCAAATCCTT CAAAGGAGCA ATCCAGCGTT TAAGACTGAA CCACACTAAG CAGAGACAGA 9600 CAAGAAGAGA TGTGACACTG GCCCCAAGCA AGGTCCACAA GAGCTGACTC CGAACCTGGT 9660 CTAACTTTTC CAATGATGAC ACGCCAAGCA CCGTCCAATC AGTTCCTGCA ATCTTCTCTT 9720 GACTGACGTA GGATTTGTGA CCAGGAGTAT AACCCTGACC TGTATCGATG TAGGGTTTCA 9780 TAGCCTCCAT TTTGCTAGAC GAACTATAAA CTGTGTGTTG AGGATGGTAG ACAAATTCAT 9840 GGTTTTCATT GATAATGAAG GCAAAGCCCT GCTGCCCCAA CTGGAGTTGA TTGAGATAGG 9900 CTTCCAGAGT TTCATAAGAA ATATCCAAAC GAAGCACACC AAGATTGGCT CCCTTTGCAT 9960 CAACAAGTTC TTGAGTGACA GAAATGACCC ACTGACTATC TGATTTACGA GCTGGAGTCA 10020 AAACAGGCAT AGCTCCCTGA TGAATGGCCT TTTGGTACCA ATCCTCAGCC ATCATATCAG 10080 AGGAAGTTTT CATCTGCACA CTGTCATCTG TAGAAATGAC CTGACCAGAT TTGGTCACCA 10140 GCACAACAGT TTTCAAGTCC TTATCTGACT TCAAGATGGT CAAAAACAAA TCTCGGATTC 10200 CCTCGACCTT GTCTTGACTG GGATTCTCAG CATAGGCCAG AACATCCGTC TGCTGGGTCA 10250 AACCAGTCGA GGTGGTTTCT AGTTTTTGA TATAAGACTG AATAAAGTGG CTAGTCTGGC 10320 TGATGGTCGT TTGGCTGTTG CCCTCAATGG TGGCCTCAAT GGCTGAAGAA CTTGATTGAT . 10380 AGTAGAAAGT TCCAACCAGA GCTAGGAGAA TGAGAAAGAC CAGAAAGATG GAAATAACCA 10440 TTCTAACTAA AAGAGAAGAA CGCTTCATCG GTCTTCTCCC TTCTTAAACT GACGAGGTGT 10500 CACACCTGCA ATCTGCTTAA AACGTTGGGT AAAATAGTTC ATATCTTCAA AACCAACCTT 10560 CTCTGCGATC TCATAAATCT TCAGATCTGT AGTTAAAAGC AAGAGCTTGG CTTGTTTAAC 10620 ACGTTCTCTC ACCAGATAAT CCTGAAAAGG CAAGCCCAAC TCTTTCTTAA TCAAGGAACT 10680

181	
CAGATAGGTC GGACTAAAAC CTAAGTCACT GGCTAAAGAC TTTAAACTAA ATTGGCTATC	10740
AGCCAGATGA GACTGGATTT TCTGGGCCAT GTTTCCTTCA AACCTATTAG TCAATAAATC	10800
TTGTAACTGC TCTTCTTTCT CTTCCTTGTC TAGTTTTTGT TTGATTTTCC CCAACATTTC	10860
CTCAATATCC TGACGAGAAA AGGGTTTGAG CAGGTAGTCG TCCACACCTA GTTTGACAGC	10920
AGACAAGGCA TAATCAAAAT CATCGTAACC TGTTAAAAAG ACCAAATGAA CCTGAGGATA	10980
GGTTTCTCGT ACCAGACTGG CCAACTGGAT GCCATTTAGA TGAGGCATGT TGATATCGGT	11040
TARARTGATA TCTGGCACCT GCTTTTGGAT CARTTCCCAA GCCTGCCTTC CATTTTCAGC	11100
CTGACCGATG ATTTCCATAT CGTAGGCTGC TACATTGACC AGTTTAGTCA AACCTTGTCT	11160
TACCAGATAT TCATCTTCTA CGATTAAGAT TGTGTAGGTC ATGCTCTGCT CCTTTACCAC	11220
TTACTAGTAT CAGTATAGCA AAATTCTCCT CTAACTGCTT AGGAAAGACC TCTTATACTC	11220
AATAAAAATC AAAAAGTAAA CTAGGAAGAT AGCCACAGGT TTCTCAAAGT ACCGCTTTGA	
GGTTGTAAAT AAAACTGACG AAGTCGACTC AAAGTATAGC TTTGAGGTTG TAGATAAAAC	11340
TGACGAAGTC GATAACCCTA CATACGGTAA GGCGACGCTG ACGTGGTTTG AAGAGATTTT	11400
CGAAGAGTAT TAATCAACAT AATCTAGTAA ATAAGCGTAC CTTTTTCTTC CATTTGGTCT	11460
TTGGGAATAA AGCGGATAGA GAGGCTATTG ATACAGTAAC GTAAGCCGCC CTTGTCCTGT	11520
GGACCATCCG TAAAGACATG CCCAAGGTGA GAATCTCCTA CTCGGCTCCG CACTTCCATA	11580
CGCGTCATAT TGTAGGACTT ATCTTCCTTG TAGGTGACAA CATCTGGACT GATGGGTTGG	11640
GTAAAACTAG GCCAGCCACA ACCAGACTCA AATTTGTCTT TTGATGAAAA GAGAGGTTCC	11700
CCAGTTGCTA TATCCACATA GATACCGGAT TCAAATTTAT CCCAGTAACG GTTTGAGAAA	11760
GCTCGTTCTG TTTGATTTTC CTGGGTAACT GCATACTCCT CAGGTGACAG GGTCTTTTTC	11820
AATTCCTCAT CACTTGGTTT TGGATATTTG CTGGCATCAA TGACAGGATA GGCCGCCTGA	11880
TTAACATTGA TATGGCAGTA GCCATTTGGA TTTTTCTTGA GATAGTCTTG ATGGTAATCC	11940
TCAGCCACCA CAAAATTCTT CAAGTTTTCC TTTTCAACTG CTAGAGGTTG ATCGTATTTC	12000
	12060
TTAGCCACCT CATCAAAGAC TTGGTTAATC ACTTCCAAAT CCTTGTCATC TGTGTAATAA	12120
ACACCAGTAC GGTACTGGGT CCCCACATCA TTTCCTTGTT TATTTTTGCT GGTTGGATTG	12180
ATAATGCGGA AATAGTGAAG CAGGATTTCC TTGAGAGAAA TTTGCTTGGC ATCATAGGTG	12240
ACATGGACGG TTTCTGCATG ACCTGTTTGG TTAATCAATT CGTACTTGGT TGTTTCTCCT	12300
CTACCATTTG CATAGCCTGA AACGGCATCC GTCACCCCGG GAACACGTGA GAAATATTCC	12360
TCCACTCCCC AGAAACAACC TCCAGCTAGA TAAATTTCGT GCAAGTCTGC GTCTTTACTA	12420

			182			
ATTTCTGTTT	TTTTCACTGC	TTTTCCTCCT		CCGCCTTTTC	AATTTGCGAG	12480
GCATCTGTCT	GCCCTGCATT	TCGTATCAAT	AGAACATAGA	AACCGGTTAT	GGCTAGAAAA	12540
ААТАСТССТА	GCAACAAGAA	GATTTTTAAC	TTATCATTCA	TAAGACGCCT	CCTAGGCTAA	12600
ТТССТТСААА	GTTTGCAAAA	TTGCATCTTT	TTCCATGAAT	CCTGGATGTG	TTTTGACCAG	12660
CTTGCCTTCT	TTGTCTATAA	AGGCTTGGGT	TGGGTAAGAA	CGGACACCAT	AAGTTTCCAA	12720
AAGTTTGCCT	GATGGGTCAA	CTAGGACTGG	GAGATTTTTA	TAATCCAATC	CCTTATACCA	12780
ATTCTTAAAG	TCCGCTTCAG	ATTGCTCTCC	CTTATGTCCT	GGTGACACTA	CTGTCAAGAC	12840
CACATAGTCA	TCACCAGCTT	CTTTAGCAAT	CTCATCCGTA	TCTGGAAGAC	TAGCCAGACA	12900
GATGGAACAC	CAAGAAGCCC	AGAATTTGAG	ATAGACTTTC	TTGCCCTTGT	AATCAGATAA	12960
ACGGTAGGTC	TTGCCATCTA	CTCCCATCAA	TTCAAAATCA	GCCACCTCTT	TCCCTTTAGC	13020
TGCGCTTGTT	TTACTAGCTG	TCTGCTCCGT	CTTCATTTCA	TCTTTCGTTT	GGTGTTCACT	13080
AGTCACGGAC	TTGCCTGAAC	AAGCCGTCAA	ACAAAGGAGC	GAACCTGCTC	CAAGAACACA	13140
TGTTTGCCAT	TTTTTCATAT	TGATATTCCT	TTCCATTTTA	ТТСАААТААТ	TGACTTAAAA	13200
TTGAAGCATT	TCCAAACAGA	ACCAAGAAGC	CCATCACAAT	AATGAGAAAA	CCACCCACTT	13260
TTTTGAGGAT	TCCGAGATAG	GGATGAAGTT	TTCGGAAATG	тттсааааса	TAACTAGAGG	13320
FCAGAGCTAG	AAGCAAGAAT	GGTAGCGCCA	AGCCCAGCGT	АТАСАССААС	ATGAGACCAG	13380
CTCCCTGCCA	AGCTCCTGAA	CCACCTGAAG	CCGCCAAGGC	CAAAACAGAC	CCCAGAACCG	13440
GCCCCACGCA	AGGCGTCCAA	GCAAAACTAA	AGGTCAAGCC	СААТАААААТ	GCCTGACTAT	13500
AGCCCTTACC	ATTTTGCCCC	TGTCCTTGCA	GTTGTAGCCT	СТТТТССТТА	TAAAGCCCCT	13560
TAAAGTGTAG	AATCTCCATT	TGGTGCAAAC	CAAGAAGGAT	AATAATTGCC	CCAGTAAGAT	13620
ATTGGAACCA	AGAAGCATAA	AGCAAATCGC	CTAAAAAACC	AGCTCCATAG	CCCAACAAAA	13680
AAATATAAAT	GGAAATTCCT	GCTATAAAGG	CCAGAGTTCG	ТААТАААСТА	GTAACTGAGA	13740
TGAAAATTT (GCCGCTAGAA	GCCTGAGCAC	CATCCTTATC	ATCTAGTAAC	ACTCCTGTAT	13800
AGACCGGTAA (CAAAGGTAAG	ATACAAGGAG	AAAAGAAGGA	TAGAATCCCT	GCCAAAAAGA	13860
CACTTAGAAA A	АААGААААТА	TGACCCATAA	AGTTCCTCCT	ATCATTTTAT	TGATAGATTT	13920
TTATA						13926
2) TNFORMAT	שם מחש אחדי	O TD NO. 6.				

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20199 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

183

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CCCAGCAGAA AAATGGCATT TGGAGATAAT GGAAATCGTA AAAAAACTAT GTTTGAGAAA 60 ATAACCTTGT TTATCGTGAT TATCATGCTA GTAGCAAGTT TATTGGGAAT TTTTGCAACT 120 GCAATTGGTG CCCTCAGTAA TCTATAAAAT AGATTCAAGA AAATTTAGTG ACTGGGATTT 180 CCCAGCCCTT TTTTAAAGTG AGAAGAATA ATGAGTATGT TTTTAGATAC AGCTAAGATT 240 AAGGTCAAGG CTGGTAATGG TGGCGATGGT ATGGTTGCCT TTCGTCGTGA AAAATATGTC 300 CCTAATGGAG GCCCTTGGGG TGGTGATGGT GGTCGTGGAG GCAATGTGGT CTTCGTTGTA 360 GACGAAGGAC TACGTACCTT GATGGATTTC CGCTACAATC GTCATTTCAA GGCTGATTCT 420 GGTGAAAAAG GGATGACCAA AGGGATGCAT GGTCGTGGTG CTGAGGACCT TAGAGTTCGA 480 GTACCACAG GTACGACTGT TCGTGATGCG GAGACTGGCA AGGTTTTAAC AGATTTGATT 540 GAACATGGGC AAGAATTTAT CGTTGCCCAC GGTGGTCGTG GTGGACGTGG AAATATTCGT 600 TTCGCGACAC CAAAAAATCC TGCACCGGAA ATCTCTGAAA ATGGAGAACC AGGTCAGGAA 660 CGTGAGTTAC AATTGGAACT AAAAATCTTG GCAGATGTCG GTTTAGTAGG ATTCCCATCT 720 GTAGGGAAGT CAACACTTTT AAGTGTTATT ACCTCAGCTA AGCCTAAAAT TGGTGCCTAC 780 CACTTTACCA CTATTGTACC AAATTTAGGT ATGGTTCGCA CCCAATCAGG TGAATCCTTT 840 GCAGTAGCCG ACTTGCCAGG TTTGATTGAA GGGGCTAGTC AAGGTGTTGG TTTGGGAACT 900 CAGTTCCTCC GTCACATCGA GCGTACACGT GTTATCCTTC ACATCATTGA TATGTCAGCT 960 AGCGAGGGCC GTGATCCATA TGAGGACTAC CTAGCTATCA ATAAAGAGCT GGAGTCTTAC 1020 AATCTTCGCC TCATGGAGCG TCCACAGATT ATTGTAGCTA ATAAGATGGA CATGCCTGAG 1080 AGTCAGGAAA ATCTTGAAGA CTTTAAGAAA AAATTGGCTG AAAATTATGA TGAATTTGAA 1140 GAGTTACCAG CTATCTTCCC AATTTCTGGA TTGACCAAGC AAGGTCTGGC AACACTTTTA 1200 GATGCTACAG CTGAATTGTT AGACAAGACA CCAGAATTTT TGCTCTACGA CGAGTCCGAT 1260 ATGGAAGAAG AAGCTTACTA TGGATTTGAC GAAGAAGAAA AAGCCTTTGA AATTAGTCGT 1320 GATGACGATG CGACATGGGT ACTTTCTGGT GAAAAACTCA TGAAACTCTT TAATATGACC 1380 AACTTTGATC GTGATGAATC TGTCATGAAA TTTGCCCGTC AGCTTCGTGG TATGGGGGTT 1440 GATGAAGCCC TTCGTGCGCG TGGAGCTAAA GATGGGGATT TGGTCCGCAT TGGTAAATTT 1500 GAGTTTGAAT TTGTAGACTA GGAGACTGGT ATGGGAGATA AACCGATATC TTTCCGAGAT 1560 GCGGATGGTA ATTTTGTTTC CGCCGCAGAC GTTTGGAATG AAAAGAAATT GGAAGAACTA 1620

TTTAATCGTC TCAATCCAAA TCGTGCCTTG AGATTGGCAC GAACTAAAAA GGAAAATCCA	1680
TCTCAGTAAA GAAGCTAAAA AATCCCGTGC CTCATCAGAC ACGGGATTTT GTGGTACGAC	1740
AGGCATGTAT AGCAAACTGA ATCTGGAATA GCACAGCATA TCTTCTAAAA TATAGTAAAA	1800
TGAAATGAGA ACAGGACAAA TCGATCAGGA CAGTAAAATC GATTTCTAAC AATGTTTTAT	1860
AAGCAGAGAT GTACTATTCT AGTTTCAATC AACTATATTG TTATAAATTG ATTTGAATTT	1920
CAAAATTAAA TTGTTTGATT CTTATTTCAA TTTGTTATAG TATATCTGAT GTCAAAGTTC	1980
TCGGCGAGTC AAATAGCGAT TCCCAAGCCT GACTATCGTG AGGTAGCGGA TTAAAATGGT	2040
CTGGGGATAG ACCGTTTTAA GTCTGACGCT GGAAATAAGA ATTGTCAGAA GAAGGGATAG	2100
CGAAATCGTG GCTCTACGAA CAGGAACGTG ATAATAAGGC GTATATAGCG GATAAGAGGG	2160
CATCAAACTC TAAAGTCCAA AAAGGTAGTC GTAACCTATA TGCGTAAATC ACGAGAGTAA	2220
TTGAATTCGT ACTAAGATTT TCTATTTTCA CTGTAACCTT TTAACGCCCT TATATCTTGT	2280
ATACACGAGG AAAGATGTAC GACTTATCCC GTGAGGTCTA TCACTATAAA GAGAAAACGA	2340
CAGATAGAAG TGATCCTGAG TCACGGTTAT CTGTCTGATA GGACGGTATG TATAAAACGC	2400
TTCTGTGAAC TGAGAGAAGG GGGAGAAGTT CTTGCTAAAA TTTAGTTGAA CAGCCGTATT	2460
CCGATACTTA GATAAGAGAT CTAGTCTTAG CTCCTACTCA GTTTTAGGGG ATAAAAAAGG	2520
GGCAATAGCG ATTCGAGAAA GATTATACTC TTCGAAAATC TCTTCAAATC ACGTCAATAT	2580
CGCCTTGTCG TATGTGTAGG ATACTGACTA CGTCAGTTCC ATCTACAACC TCAAAACAGT	2640
GTTTTGAGCA ACCTGCGGCT AGTTTCCTAG TTTGATCTTT GATTTTCATT GAGTATTAGT	2700
AATTCAGTTA CTAACTCGTC AACTCTGATT TATCCAATAA AATTGAAAAG GATGGAAAAA	2760
AGGATAAATT TATGATATAC TTTATTTTGA AGACCTTATT AGAAATCTTG AAAGAGTATT	2820
GAAAACTTAG AATGAGAAAA ATTGTTATCA ATGGTGGATT ACCACTGCAA GGTGAAATCA	2880
CTATTAGTGG TGCTAAAAAT AGTGTCGTTG CCTTAATTCC AGCTATTATC TTGGCTGATG	2940
ATGTGGTGAC TTTGGATTGC GTTCCAGATA TTTCGGATGT AGCCAGTCTT GTCGAAATCA	3000
TGGAATTGAT GGGAGCTACT GTTAAGCGTT ATGACGATGT ATTGGAGATT GACCCAAGAG	3060
GTGTTCAAAA TATTCCAATG CCTTATGGTA AAATTAACAG TCTTCGTGCA TCTTACTATT	3120
TTTATGGGAG CCTCTTAGGC CGTTTTGGTG AAGCGACAGT TGGTCTACCG GGAGGATGTG	3180
ATCTTGGTCC TCGTCCGATT GACTTACACC TTAAGGCGTT TGAAGCTATG GGTGCCACTG	3240
CTAGCTACGA GGGAGATAAC ATGAAGTTAT CTGCTAAAGA TACAGGACTT CATGGTGCAA	
GTATTTACAT GGATACGGTT AGTGTGGGAG CAACGATTAA TACGATGATT GCTGCGGTTA	3300
AAGCAAATGG TCGTACTATT ATTGAAAATG CAGCCCGTGA ACCTGAGATT ATTGATGTAG	3360
ATTGATGTAG	3420

·	
CTACTCTCTT GAATAATATG GGTGCCCATA TCCGTGGGGC AGGAACTAAT ATCATCATTA	3480
TTGATGGTGT TGAAAGATTA CATGGGACAC GTCATCAGGT GATTCCAGAC CGCATTGAAG	3540
CTGGAACATA TATATCTTTA GCTGCTGCAG TTGGTAAAGG AATTCGTATA AATAATGTTC	3600
TTTACGAACA CCTGGAAGGG TTTATTGCTA AGTTGGAAGA AATGGGAGTG AGAATGACTG	3660
TATCTGAAGA CAGCATTTTT GTCGAGGAAC AGTCTAATTT GAAAGCAATC AATATTAAGA	3720
CAGCTCCTTA CCCAGGCTTT GCAACTGATT TGCAACAACC GCTTACCCCT CTTTTACTAA	3780
GAGCGAATGG TCGTGGTACA ATTGTCGATA CGATTTACGA AAAACGTGTA AATCATGTTT	3840
TTGAACTAGC AAAGATGGAT GCGGATATTT CGACAACAAA TGGTCATATT TTGTACACGG	3900
GTGGACGTGA TTTACGTGGG GCCAGTGTTA AAGCGACCGA CTTAAGAGCT GGGGCTGCAC	3960
TAGTCATTGC TGGGCTTATG GCTGAAGGTA AAACTGAAAT TACCAATATC GAGTTTATCT	4020
TACGTGGTTA TTCTGATATT ATCGAAAAAT TACGTAATTT AGGAGCGGAT ATTAGACTTG	4080
TTGAGGATTA AACCGTAGAG GTGTTTATGA ATATTTGGAC CAAATTAGCA ATGTTTTCTT	4140
TTTTTGAAAC GGATCGCTTG TATTTGCGTC CTTTCTTTT TAGTGATAGT CAGGACTTCC	4200
GCGAGATAGC TTCAAATCCA GAAAATCTTC AATTTATTTT CCCAACGCAG GCAAGTCTGG	4260
AAGAAAGTCA ATATGCACTG GCCAATTACT TTATGAAGTC CCCTTTGGGA GTGTGGGCAA	4320
TTTGTGACCA GAAAAATCAA CAAATGATTG GTTCTATTAA ATTTGAGAAG TTAGATGAAA	4380
TCAAAAAAGA AGCTGAGCTT GGCTATTTTT TGAGAAAAGA TGCTTGGTCG CAAGGATTTA	4440
TGACAGAGGT TGTTAGAAAA ATTTGTCAGC TTTCTTTTGA GGAATTTGGC TTAAAACAAT	4500
TATTTATCAT TACCCACCTT GAAAATAAAG CTAGCCAAAG AGTTGCTCTT AAGTCTGGAT	4560
TTAGTTTGTT CCGTCAGTTT AAGGGAAGTG ATCGTTACAC AAGAAAAATG CGGGATTATC	4620
TTGAATTTCG GTATGTAAAA GGAGAGTTCA ATGAGTAAGC ATCAGGAAAT TCTAAGCTAT	4680
TTGGAGGAAT TACCAGTAGG TAAAAGGGTC AGTGTTCGTA GCATTTCGAA TCATCTAGGA	4740
GTTAGTGATG GAACAGCCTA TCGGGCTATT AAAGAAGCTG AAAACCGTGG AATTGTGGAG	4800
ACCCGTCCTA GAAGTGGAAC AATTCGTGTT AAATCCCAGA AAGTTGCTAT AGAGAGATTA	4860
ACGTTTGCTG AAATTGCAGA AGTGACTTCT TCTGAGGTTC TGGCTGGGCA AGAAGGTTTA	4920
GAGAGAGAAT TTAGTAAGTT TTCAATTGGT GCCATGACTG AACAAAATAT CTTGTCTTAC	4980
CTTCATGATG GGGGGCTCTT GATTGTCGGA GACCGAACCC GTATTCAGTT GCTAGCCTTG	5040
GAAAATGAAA ATGCAGTTCT GGTTACAGGG GGATTTCAGG TTCATGATGA TGTGCTTAAA	5100
CTGGCCAATC AAAAAGGGAT TCCTGTTCTA AGAAGTAAGC ATGATACCTT TACCGTCGCG	5160

ACCATGATCA ATAAAGCCTT GTCAAATGTC CAAATCAAGA CTGATATTCT GACAGTTGAG	5220
AAACTTTATC GCCCTAGTCA TGAGTATGGT TTTCTGAGAG AGACAGATAC AGTTAAAGAT	5280
TATTTGGACT TGGTTCGTAA GAATCGTAGC AGCCGTTTCC CTGTTATCAA TCAACATCAG	5340
GTCGTTGTTG GTGTTGTAAC CATGAGAGAC GCTGGTGATA AATCACCAAG CACGACAATT	5400
GATAAGGTTA TGTCTCGTAG TCTATTTTTG GTTGGATTAT CGACAAATAT TGCCAATGTG	5460
AGTCAACGGA TGATCGCAGA AGACTTTGAA ATGGTACCAG TTGTTCGAAG CAATCAAACT	5520
TTGCTTGGCG TTGTGACGCG ACGAGATGTC ATGGAGAAGA TGAGCCGTTC CCAAGTTTCG	5580
GCTCTACCAA CTTTTTCTGA GCAGATTGGA CAAAAGCTCT CTTATCACCA TGATGAAGTA	5640
GTCATTACAG TGGAACCCTT TATGCTAGAA AAAAATGGAG TTTTGGCTAA TGGTGTATTG	5700
GCAGAAATTC TGACCCACAT GACCCGATTT AGTTGTTAAT AGTGGTCGCA ATCTCATTAT	5760
CGAGCAGATG CTGATCTACT TTTTGCAGGC TGTTCAGATA GATGATATAT TGCGCATTCA	5820
GGCACGGATT ATTCATCATA CGAGACGGTC AGCTATAATT GATTACGATA TTTATCATGG	5880
TCACCAGATT GTTTCAAAAG CAAATGTGAC TGTTAAAATT AATTAGAAAC TAGGAGAAAA	5940
GATGATAACA TTAAAATCAG CTCGTGAAAT CGAAGCTATG GACAAGGCTG GTGATTTTCT	6000
AGCAAGTATT CATATAGGCT TACGTGATTT GATTAAGCCA GGCGTAGATA TGTGGGAAGT	6060
TGAAGAATAT GTCCGCCGTC GTTGTAAAGA AGAAAATTTC CTTCCACTTC AGATTGGGGT	6120
TGACGGTGCC ATGATGGACT ATCCTTATGC TACCTGTTGC TCTCTTAACG ATGAAGTGGC	6180
TCACGCTTTC CCTCGTCATT ATATCTTGAA AGATGGTGAT TTGCTCAAAG TTGATATGGT	6240
TTTGGGAGGT CCCATTGCTA AATCTGACCT AAATGTCTCA AAATTAAACT TCAACAATGT	6300
TGAACAAATG AAAAAATACA CTCAGAGCTA TTCTGGTGGT TTAGCAGACT CATGTTGGGC	6360
TTATGCTGTT GGTACACCGT CCGAAGAAGT CAAAAACTTG ATGGATGTAA CCAAAGAAGC	6420
TATGTACAAG GGTATTGAGC AAGCTGTTGT TGGAAATCGT ATCGGTGATA TCGGTGCGGC	6480
TATTCAAGAA TACGCTGAAA GTCGTGGTTA CGGTGTAGTG CGTGATTTGG TTGGTCATGG	6540
TGTTGGCCCA ACTATGCACG AAGAACCAAT GGTTCCTAAC TATGGTATTG CAGGTCGTGG	6600
ACTCCGTCTT CGTGAAGGAA TGGTCTTAAC CATTGAACCA ATGATCAATA CAGGCGATTG	6660
GGAAATTGAT ACAGATATGA AAACTGGTTG GGCGCATAAG ACCATTGACG GTGGATTGTC	6720
ATGTCAGTAT GAACACCAAT TTGTCATTAC GAAAGATGGA CCTGTTATCT TGACTAGCCA	6780
AGGTGAAGAA GGAACTTATT AATAAAAAGT GAAAAGACTA CTGGAAGTTT ATTTTGATAA	6840
AAAATCCAGT AGATCTTTTC ATAATAAAAC GCATTGTATC AAGTGTTAGG GGCTGATATC	6900
ATGCGTTTTT CTGCTTTTAA GATTTTTTCC AACTCTGTTT GTAAGCGCAT CATAACAAAG	6960

GGTCTAGGA	T TCAGGGCTC	P CCTCCTATA	r actattagt <i>i</i>	AAGTAAAACT	* AAGGGAGGAT	7020
ATTTTAGTG	T CGCAGTCTA	r tgttcctgt/	A GAGATTCCAC	AATATTGTCC	TTTTGATTCT	7080
AAAAAGAGA	A ATGGAATTCT	GTTTAATGT	CGTATTGCCA	ATCTTAAATT	TACTTTTTA	7140
TATTATACT	T CCTGCGAAAC	AAAATATGG	T ATAGTAGTTC	TATGAATGAT	GAAGCAAGTA	7200
AACAACTAA	C TGATGCACGA	TTTAAGCGT	TTGTTGGTGT	TCAGCGTACC	ACTTTTGAAG	7260
AGATGTTAG	C TGTATTAAAA	ACAGCTTATO	AACTTAAACA	CGCAAAAGGT	GGACGAAAAC	7320
СТАААТТАА	G CCTAGAAGAC	CTTCTTATGO	CCACTCTTCA	ATAGTGCGAG	AATATCGAAC	7380
TTATGAAGA!	A ATTGCGGCTG	ATTTTGGTAT	TCACGAAAGC	AACTTTATCC	GTCGGAGCCA	7440
ATGGGTTGAZ	ATAACTCTTG	TTCAAAGTGG	TTTTACGGTT	TCAAGAACTC	CTCTCAGTTC	7500
TGAGGACAC	GTAATGATTG	ATGCGACGGA	AGTAAAAATC	AATCGCCCTA	AAAAAACAAT	7560
TAGCGAATGA	TTCTGGTAAA	AAGAAATTTC	ACGCTATGAA	GGCTCAAGCG	ATTGTCACAA	7620
GTCAAGGGAG	AATTGTTTCT	TTGGATATCG	CTGTGAACTA	TAGTCATGAT	ATGAAGTTGT	7680
TCAAAATGAG	TCGTAGAAAT	ATCGAACAAG	CTGGTAAAAT	CTTGGCTGAC	AGTGGTTATC	7740
AAGGGCTCAT	GAAGATATAT	CCTCAAGCAC	AAACTCCACG	TAAATCCAGC	AAACTCAAGC	7800
CGCTAACAGC	TGAAGATAAA	GCCTATAACC	ATGCGCTATC	TAAGGAAAGA	AGCAAGGTTG	7860
AGAACATCTT	TGCCAAAGTA	AAAACGTTTA	AAATATTTTC	AACAACCTAT	CGAAATCATC	7920
GTAAACGCTT	CGGATTACGA	ATGAATTTGA	GTGCTGGTAT	TATCAATCAT	GAACTAGGAT	7980
TCTAGTTTTG	CAGGAAGTCT	ATTGAGGTAT	TGAGCTAGTT	TATGAAAAA	TTGGGTGAAA	8040
AGTCGAGTGT	TTTAGAAACC	CACAGTGTAG	TATTCTAGTT	TCAATCCACT	ATATTTTGCT	8100
ACTCCCCGTA	AAGTTTCTAT	TTTCCCTGAT	TTCTGATATA	ATAGAAATAT	TGACTTCAAG	8160
AGTAAGGAAG	AGAAGATGAA	CGCATTATTA	AATGGAATGA	ATGACCGTCA	GGCTGAGGCG	8220
GTGCAAACGA	CAGAAGGTCC	CTTGCTAATC	ATGGCAGGGG	CTGGTTCTGG	AAAGACTCGT	8280
GTTTTGACCC	ACCGTATCGC	TTATTTGATT	GATGAAAAGC	TGGTCAATCC	TTGGAATATC	8340
TTGGCCATTA	CCTTTACCAA	CAAGGCTGCG	CGTGAGATGA	AAGAGCGTGC	TTATAGCCTC	8400
AATCCAGCGA	CTCAGGACTG	TCTGATTGCG	ACCTTCCACT	CCATGTGTGT	GCGTATTTTG	8460
CGTCGCGATG	CGGACCATAT	TGGCTACAAT	CGTAATTTTA	CAATTGTGGA	TCCTGGTGAA	8520
CAGCGAACGC	TCATGAAACG	TATTCTCAAA	CAGTTGAACT	TGGACCCTAA	AAAATGGAAT	8580
GAACGAACTA	TTTTGGGGAC	CATTTCCAAT	GCTAAGAATG	ATTTGATTGA	TGATGTTGCT	8640
TATGCTGCCC	AAGCTGGCGA	TATGTATACG	CAAATTGTGG	CCCAGTGTTA	TACAGCCTAT	8700

			188			
					T GCTGACCTTG	8760
CGTCTCTTT	G ATCAAAATC	C TGATGTTTT	G ACCTACTAC	C AGCAAAAAT	CCAATACATC	8820
CACGTTGAT	G AGTACCAAG	A TACCAACCA	C GCTCAGTAC	AATTGGTCA/	A ACTCTTGGCT	8880
TCCCGTTTT	А ААААТАТСТО	G TGTGGTTGG	G GATGCGGAC	AGTCTATCT/	CGGTTGGCGT	8940
GGTGCTGAT	A TGCAGAATAT	CTTGGACTT	r gaaaaggati	ACCCCAAAG	CAAGGTTGTT	9000
TTGTTGGAG	AAAATTACCO	CTCAACCAA	A ACCATTCTC	AAGCGGCCAA	CGAGGTTATT	9060
AAAAATAAT	A AAAATCGCCC	тссталала.	CTCTGGACTC	AAAACGCTG#	TGGGGAGCAA	9120
ATCGTTTACT	P ATCGTGCCGA	TGATGAGCT	GATGAGGCT	TATTTGTAGO	CAGAACCATC	9180
GATGAACTTA	GTCGCAGTCA	AAACTTCCTT	CATAAGGATT	TTGCAGTTCT	CTATCGGACT	9240
AATGCCCAGT	CCCGTACAAT	TGAGGAAGC	CTGCTCAAGT	CTAACATTCC	TTATACCATG	9300
GTTGGCGGAA	ССАААТТСТА	CAGCCGTAAG	GAAATTCGCG	ATATTATTGO	TTATCTCAAC	9360
CTTATTGCTA	ATTTGAGTGA	CAATATTAGT	TTTGAGCGTA	TTATCAACGA	GCCTAAACGT	9420
GGAATTGGTC	TAGGTACAGT	TGAGAAAATC	CGTGATTTTG	CAAATTTGCA	AAATATGTCT	9480
ATGCTGGATG	CTTCTGCTAA	TATTATGTTG	TCTGGTATCA	AGGGTAAGGC	AGCCCAATCT	9540
ATCTGGGATT	TTGCCAATAT	GATGCTTGAT	TTGCGGGAGC	AGCTAGACCA	CTTAAGCATT	9600
ACAGAGTTGG	TTGAGTCCGT	ССТАСАААА	ACAGGTTATG	TCGATATTCT	TAACTCCCAA	9660
GCGACTCTAG	AAAGCAAGGC	ACGGGTTGAA	AATATCGAAG	AGTTTCTTTC	TGTTACGAAG	9720
AACTTTGATG	ACACCACGGA	TGTGACAGAA	GAGGAAACTG	GTCTGGACAA	ACTGAGTCGT	9780
TTCTTAAATG	ACTTGGCTTT	GATTGCCGAC	ACAGATTCAG	GTAGTCAGGA	GACATCAGAA	9840
GTGACCTTGA	TGACCCTGCA	TGCTGCCAAA	GGTCTCGAAT	TTCCAGTTGT	CTTTTTGATT	9900
GGGATGGAAG	AAAATGTCTT	TCCACTTAGT	CGTGCGACTG	AAGATTCAGA	TGAATTAGAA	9960
GAAGAGCGCC	GTCTAGCCTA	TGTAGGTATC	ACGCGTGCAG	AGAAAATTCT	CTATCTGACC	10020
AATGCCAACT	CACGCTTGCT	TTTTGGTCGT	ACCAATTATA	ACCGTCCGAC	TCGTTTTATT	10080
AACGAAATCA	GTTCAGACTT	GCTTGAGTAT	CAAGGTCTGG	CTCGTCCTGC	AAATACAAGC	10140
TTTAAGGCAT	CATATAGCAG	TGGTAGTATT	TCCTTTGGTC	AAGGTATGAG	TTTGGCTCAG	10200
GCTCTTCAAG	ACCGTAAACG	CGGTGCTGCC	CCAAAATCAA	TCCAGTCAAG	CGGTCTTCCA	10260
TTTGGTCAAT	TTACAGCTGG	CGCAAAACCA	GCATCTAGCG	AGGCAAATTG	GTCCATTGGT	10320
GATATTGCTC	TCCACAAGAA	ATGGGGAGAG	GGAACCGTTC	TGGAAGTTTC	AGGTAGCGGT	10380
GCTAGGCAGG	AATTGAAAAT	CAATTTCCCA	GAAGTAGGTT	TGAAAAAACT	TTTAGCCAGT	10440
GTGGCTCCAA	TTGAGAAAAA	AATCTAATTT	TCCATCCTTC	TCACGAATAA	TAAAGTGAGG	10500

AGGATTTTTA	TGTACAGTAT	ТТСАТТССАА	GAAGATTCAC	TATTACCAAG	AGAAAGGCTG	10560
GCCAAGGAAG	GAGTTGAAGC	GCTTAGTAAC	CAAGAGTTGC	TAGCTATTTT	ACTCAGGACA	10620
GGAACACGTC	AAGCTAGCGT	TTTTGAAATT	GCCCAAAAAG	TCTTGAACAA	TCTTTCAAGC	10680
CTAACGGATT	TGAAAAAAAT	GACCCTGCAG	GAATTGCAGA	GTTTGTCTGG	TATTGGGCGT	10740
GTTAAGGCCA	TAGAATTACA	AGCTATGATT	GAACTGGGGC	ATCGTATTCA	CAAACACGAG	10800
ACTCTTGAAA	TGGAAAGTAT	TCTCAGCAGT	CAAAAGTTGG	CCAAGAAGAT	GCAGCAGGAA	10860
TTAGGGGATA	AAAAACAAGA	GCACCTGGTG	GCACTCTATC	тсаатастса	AAATCAAATC	10920
ATCCATCAGC	AGACCATTTT	TATCGGGTCT	GTAACTCGTA	GTATCGCTGA	ACCGCGAGAG	10980
ATTCTTCACT	ATGCAATCAA	GCATATGGCG	ACTTCTCTTA	TCTTGGTCCA	CAATCATCCT	11040
TCAGGAGCGG	TAGCGCCTAG	CCAAAATGAT	GATCATGTCA	CTAAACTTGT	TAAAGAAGCC	11100
TGCGAATTGA	TGGGGATTGT	TCTCTTGGAC	CATTTGATTG	TCTCTCATTC	TAATTACTTT	11160
AGTTATCGTG	AAAAGACAGA	ТТТААТСТАА	AGTTCATTAA	CGACATAGTC	AAAGAGTTTT	11220
TTATCTTTGG	GACGATTTTC	AAAAAGAAGT	TCTGGATGCC	ATTGGACACC	GAGAAAGGCG	11280
ACATCATCCG	TACTCATGAC	AGCCTCAATG	ATACCATCTT	TAGGATCATG	AGCCACAACT	11340
TTTAAATTTG	GTGCTAAGTC	CTTGATGCTC	TGGTGGTGGA	AGGAGTTGAT	ATGAGAGATT	11400
TCTCCATAGA	TTTCTTGGAG	AACGGTATCT	GGTTCTGTTA	CCAAGCGTTG	AGTTGTGTAC	11460
TCAACAGAAG	AATCCTGCCA	ATGGTCTTCG	ATATCTTGGT	ACAAAGTTCC	ACCCATGGCA	11520
ACGTTAAAGA	GTTGGGTACC	ACGGCAGACA	GAGAAAATGG	GCTTTTTCTG	TTTAATAGCT	11580
TCCTTGATGA	GGGCCAGTTC	GAAGATATCT	CTTTGAAGGT	GATAGTCATC	ACTATCAATG	11640
GTTTTGGGTT	CGCCATAAAA	TTTTGGATCG	ACATTTTGCC	CACCTGTCAA	GATGAGCTTG	11700
TCAATCAAAC	TGATATAGTG	GCAGGCCATT	TCTTGATCAC	CAATCGGTAG	GATGATGGGA	11760
ATCCCTCCAG	CATCTTTAAC	GCCTTCAACA	AAGCCTTTTG	CTGCGTAGCT	CATCATGATG	11820
TCATCATCTG (GATGAGTTTT	TTCGTTTCCT	GTAATCCCAA	TAACTGGTTT	ТТТСАТАААА	11880
TGATTTTCGC '	PTTCTAATCC	TCTTTTCGCA	TGAAGTAGAG	GAGGGTTTGG	AGTTCACTTG	11940
TCAAATCGAC	ATACTGAACG	ACCACGTCTT	TTGGTAAATG	CAGATGGACT	GGTGAAAAAC	12000
TGAGAATTCC !	PTTCACACCA	GCATCAACCA	AGAGATTAGC	AACCTCTTGT	GACTTGACGC	12060
TGGGAACAGT	raggatagca ·	GTCTTCACAT	CAGCATCCTT	GATTTTATCC	TTGATCTGAG	12120
AAATCCCGTA	AATGGGAATC	CCGTCAGGAG	TTTGGGTACC	GACTTCAGGA	TGGTCGTCTA	12180
GGTCAAAGGC (CATGATAATC	TTCATCTTGT	TACGTTCGTG	GAAGCGGTAG	TGGAGAAGGG	12240

ANTEGGCANA ANATGTCATT AGTTTTTTGA CATCATAGCC ANAACCACGA CGACCAAGIT CACCAAAAATA GGAAAAATCA CGACGTACGG TCGCTGAATC AATACCGATA GCCTCTGCAA TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT 124 AGAGAGAGAG TCTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT 125 CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGGA AAAAATCAAC AAAAAATAAGA AAAAACTAAG AAAAATCTTA GTTTGATGT AAAAAATCTG CATGGAGAA AAAAACGGTAG AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 129 CTTGTCCAGT GTAAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 129 CTTGTCCAGT ATAATTGATT TAGCCCCTGT AAGTTCCTTG TTAATGATGAT TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTCC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAAG GGCTAAGGAGT 1314 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCAATAT GGCTAACCTC CGATAATTTC TTTTAAAGGTT TTTCCAGAGG TTCTGAGTT TTCACAGGAAA TTCTTTCAGAG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TCCGCCATAC ATGGCTTCAA CAACATAGGT GGAATGGGAT TCCTTCAAGC GTTCTGAATT TCCGCCATAC ATGGCTTCAA CAACATAAGG GGATTGGACA ACGCCTGCAG TACAGCCTGA GCCAATAAGAG ATTGAAATTC 1332 GAACATAAGG GGATTGGACA ACGCCTGCAG TACAGCCTGA GCCAATAAGAG ATTGAAATTC 1334 CAACATAAGG GGATTGGACA ACGCCTGCAG TACAGCCTGA GCCAATAGAG ATTGAAATTC 1336 CAACATAAGG GGATTGAACA ACGCCTGAAT TCCTTCAAC TCCACGTTT 1362 CCAGAAAAGC AGTTCTAGA TTTTCTCTCTTT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1362 CCAGAAAAGCA AGTTCTAGA TTTTTCTCTATA TCGGCAGAAT CTCAATATTCA TTTTCTAGGT 1362 CTTCTTTTTG GGCTGCACC ATGCCTACAA TGGCAGGCAG AATCCAATATCC 1374 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCT ACGCTAGAA AAACCAATA 1396 CAACACAGGTT TCCCTTAGGT ATTTTCCTCTAT TCGGCCAAAA TCCTTCAAA CCCAAAGCGTT 1396 CAACACAGGTT TCCTTTAGAT TTTTCCTCCTA				190			
CACCAAAATA GGAAAAATCA CGACGTACGG TCGCTGAATC AATACCGATA GCCTCTGCAA TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT 124 AGAGGAGAGG TCTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT 125 CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG AAAACGGTAG AGGTCTCCGA CCAGCCCCTG ATAAACTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTA ATGATCCTCA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTA ATGATCCTCA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTAA CATTTTGGCT TACTTGAGAG TACCCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT TACTTGAGAG TACCCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 1290 CTAGCTTCAC TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 1290 CTAGCTTCA CCGCTGTTTG GCACTTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAAGAGT CTAATCCTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TCCCCCATAC ATGGCTTCAA CAAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TCCCCCATAC ATGGCTTCAA CAACATAAGG GGAATGATGT TTTCCTCAAG GTTCTGAATT TCCCCCATAC ATGGCTTCAA CAACATAAGG GAATGATGT TTTCCTCTAT TCAGGGTAATA CCAAGTATTGA 1334 CAACATAAGG AGATGATGT TTTCCTCTAT TCAGGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAAGCC AGTTCTAGA TTTTCTTCACT GTTGAAATT CTTTCTTGTT TTTTCTAGGT 1360 CCAGAAAAGCC AGTTCTAGA TTTTCTTCACT GTTGAAATT CTTTCTTTTT TTTTCTAGGT 1361 CTTCTTTTTTG GGCTGCAC ATGCCTACAA TGGCCAGAA AGCAGTGAGA AAATCAATGC CCAGATAAGC AGTTCTAGA TTTTCTCTCTAT TCAGGGAGA AGCAGTGAGA AAACCAATATGC 1374 CCAGATAAGC AGTTCTAGA TTTTCTCTCTAT TCAGGGAGA AGCAGTGAGA AAACCAATATGC CAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CAAAACCGAT TCCCTTAGGT ATTTCGCCAA TTTCAGCGAT AGGCCTACAA CCAAGATGTT 1386 CAACACTAA ATCAATGGTA GAAACCAAAA TCGTATCCTC ACGTAAAGCC TTTTGA							12300
TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT 124 AGAGAGAGA CTTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT 125 CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA 126 AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCAG CATGAGATAG AAAACGGTAG 126 AGGTCTCCGA CCAGCCCCTG ATAAACTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA AGGTCTCCGA CCAGCCCCTG ATAAACTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA AGGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCC ATGATCCTCA 127 ACTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCCTA ACATTTTGGCT 128 CCTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 129 CCTATCTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 129 CCTATCTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 129 CCTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAAATGATGA TTTTTGAGTTG 130 CAAGACCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 130 CCTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 1314 CTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 1320 CGATAATTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TCCAACGGTA TTTTGTGGCG 1326 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 1332 CAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1334 CAACATAGG GGATGAGAG ACTAAGAGGT CATTTTTCT ACCAGGAAAT CCAATATTGA 1344 CAACATAAGG GAATGATGT TTTCCTCTAT TCAGGGTAATA CTGAATGCCC TCCAGCTCTG 1360 CCAGAAAGGC AGTTCTAGA TTTTGCACAG GTTCTAAATT CTTTCTTGTT TTTTCTAGGT 1350 CCAGAAAAGC AGTTCTAGA TTTTCTCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1362 CCCAGAAAGC AGTTCTAGA TTTTCTCTCAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1362 CTTCTTTTTTG GGCTGAAC ATGCCTACAA TGGCAGGAGA AAATCAATGC 1374 CCAATTCTC CTGGTCTCCG CCATGTAAAT AGGAATCAAA GTCCATGCAT AAACCGTT 1362 CAACATCTCT CTGAATGAT TGTGGCAGA AGCAGTGAGA AAACCATGA 1360 CAACATGCAT TCCCTTAGGA CATGCAAAA TCGTATCGC ACGTAAAGCC TTTTCAATTTC CAATTCTTC TGAATGAAT GGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CAACATCTTC TGAATGAAT GGAATCAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 1392 CCAGACAACTAA ATCAATGCTA ATTTCGCCAA TTTCAGCCAA ACCGATAAGCC	AATCGGCAAA	AAATGTCATT	AGTTTTTTG	A CATCATAGC	CAAAACCACGA	CGACCAAGTT	12360
AGAGAGAGAG TETTTTGET GTAGETTTEG GAATAGCAAA CTGTTTATCT TTCACAAAAT CACAACCTT CTATTCTTCT ATTTTATAGA AACATTGTA AAAAATCAAC AAAAATAAGA 126 CACAACCTT CTATTCTTCT ATTTTATAGA AACATTGTA AAAAATCAAC AAAAATAAGA 126 AAAAACTAAG AAAAATCTTA GTTTGATGT AAAAAATCT CATGAGATAG AAAACGGTAG AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCACAC TGAGAGCCTC ATGATCCTCA TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT TACTTGAGAG TACGCTCTAC ATGATAGCAG TCTACCAAG CTATCCATGA GGAAGTAGAA 1296 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 1296 CTTGTCACTG ATAATTGATT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 1308 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 1314 CTAATCCTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 1320 GAACATAGGT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTACAG ATTGAATTC 1334 CAGCTAAAATC TAGCCGAAG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 1344 CAGCTAAAATC TAGCCGAAGC AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 1344 CAGCTAAAATC TAGCCGAACC ATGCCTACAA TGCGAGACAT CTCAAGGCCT TCTCAGCTCTC 1350 CCAGAAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGCAG ATTTTCAGTT CCTGCACGTT 1362 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGCAG ATTTTCAGTT CCTGCACGTT 1364 CAACATAGGC TCCCTTAGGA CATGCCTACAA TGGCAGCAGA AGCAGTAGAA AAACATGCC CCAGAAAACCGAT TCCCTTAGGA CATGCATAA TGGGAGCAGA AGCAGTAGAA AAACATGCC CCAGATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCT ACATGCATCA ACATGCATGC CAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCT ACATGCATCA ACATGCATGC CAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCT ACCTAAAGCC TTTTGAATTT 1390 CATCAACTTA ATCATTTAGA TTTTCTGGCTA GGATAATGGT TGCTTCAAACC CCAAAGTGTT 1390 CAGCAACTTA ATCAT	CACCAAAATA (GGAAAAATCA	CGACGTACG	G TCGCTGAAT(C AATACCGATA	GCCTCTGCAA	12420
CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG AAAACGGTAG AAGAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG AAAACGGTAG AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAAC CATTTTGGCT TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTCCATGA GGAAGTAGAA 1290 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 1290 CTTGTCAGG ATAATTGATT TAGCCCCTGT AAGTTCCTTG TTAAATGATGA TTTTGAGTTG 1302 GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 1308 CTTAGTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAAGGT 1314 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 1320 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 1326 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 1332 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1338 GAACATAAGG GAGATGATCT TTTCCTCTAT TCAGGTAAAT CTGAATGCCC TCCAGCTCTG 1360 CCAGAAAAGCG AGTTTCTAGA TTTTCTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362 CTTCTTTTTAG GGCGAAGC ACTAAGAGGT CATTTTTCTTG ACCAGGAAAT CCAAATATTGA 1362 CCAGAAAAGCG AGTTTCTAGA TTTTCTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362 CTTCTTTTTAG GGCTGCAAC ATGCCTACAA TGGCAGGAA AGTTTCAGTT CCTGCACGTT 1362 CTTCTTTTTAG GGCTGCAAC ATGCCTACAA TGGCAGGAA AGTTCATAGA GATGCCTTCTTTTTCTAGGT 1366 CTTCTTTTTAG GGCTGCAAC ATGCCTACAA TGGCAGGAAA GTCCATGCAT ACATGATAGC CTTCTTTTTAG GGCTGCAAC ATGCCTACAA TGGCAGGAAA GTCCATGCAT ACATGATAGC CTTCTTTTTAG GGCTGAACT ATTTCTACAA TGGCAGGAAA AAATCAATGC 1374 CCAATTCTTC TGAATGAAT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGC CAATACTTAC TGAATGAAT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGC CAATTATTGAC AAAACATGGTA ATTTCGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 1386 CACCAACGTA ATCAATGGTT TTCAACAGAA TCGTATAGGT TGCTTCAAAC CCAAAGTGTT 1	TTTGCTTAGA (GTTGGCACGT	TCAATCTTT	r ctgcatgaa	ч тстстталал	ATTCGATAGT	12480
AMANACTARG ANAMATCTTA GTTTTGATGT ANAMATCTG CATGAGATAG ANAACGGTAG AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA 127: AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA 127: ACTGTATCTG GTAAGGTTAC ACATCCTGAC ANAGTCACA TGAGGCCTC ATGATCCTCA 127: TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTTOTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 129: CTTGTCAGTG ATAATTGGTT GGCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG 130: GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 130: GTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 1314 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 132: CGATAATTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 132: GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 133: GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 133: CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 1344 GAACATAAGG GAGATGATCT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 135: CCAGCAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAATG TTCTTCTTGT TTTTCTAGGT 136: CTTCTTTTTAG GGCTGCAC CATGTAGAT AGGAATCAAA GTCCATGCTT TTTCTAGGT 136: CTTCTTTTTAG GGCTGCAC CATGTAGAT TGGGCAGAAA GTCCAATATTGA 136: CTTCTTTTTAG GGCTGCAC CATGTAGAT AGGAATCAAA GTCCATGCTA GATGCCTTC 136: CCAGAAAGCC AGTTTCTAGA TTTTGTACAT TGTGGCAGA AATTTCAGTT CCTGCACGTT 136: CTTCTTTTTAG GGCTGCACC CATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 137: CCAGATAACCGAT TCCCTTAGGA CCATGTAGAT AGGAATCAAA GTCCATGCTA AACATGATAGC 137: CCAGAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGCAGA AACTGCATCA ACATGATAGC 136: CAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGCAGA AACTGCATCA ACATGATAGC 136: CAACATCTTC TGAATGAATT GGGAATTTAC CAATAGCCT AACTGCATCA ACATGATAGC 137: CAATTATTGA AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 139: CACTGAGCTG GATTTCTTGA TTTTCTGGCCA GTTATCGTC ACGTAAAGCC TTTTGAATTT 139: CACTGAGCTG GATTTCTTGA TTTTCCTGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 139: CACTGAGCTG AACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 139: CACTGAGCTG AACCAAAA TCGTATCGTC ACGT	AGAGAGAGAG	PCTTTTTGCT	GTAGCTTTT	GAATAGCAA	CTGTTTATCT	ттсасалалт	12540
ACGITACTO GALACTOR ATAAACTIT TIGCCCCTAA AAGTCAGAGA AGTCACATAA ACTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA 1276 TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 1296 CTTGTCAGTG ATATTGGATT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTCC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTC TTTTAAGGTT TTTGCCGAGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAGT 1332 CAGCTAAATC TAGCCGAAG AGTAAGAGGT CATTTTTCT ACCAGGAAAT CCAATATTGA 1344 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1350 CCAGAAAAGC AGTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGAGA ATTTCAGTT CCTGCACGTT 1362 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGAGA ATTTCAGTT CCTGCACGTT 1362 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 1362 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 1362 CTTCTTTTTCTGTC CTGGTCTCCG CCATTGAAT AGGAATCAAA GTCCATGCTA GATCCCTAGA 1368 GAAAACCGAT TCCCTTAGGA CATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 1374 CCAAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 1380 CAACATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATTAGG 1380 CAACATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATTAGG 1380 CAACATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATTAGG 1380 CAACATTCTTC TGAATGAATT TGTGGCCAAA TTTCAGCGAT GGGCAGTAAGC TTTTCATTCTT 1392 CAACCAACTA AACATGGTA AAACCAAAA TCCTATCGTC ACGTAAAGCC TTTTGAATTT 1392 CACCAACTTA ACCAACTA AACCAAAA TCCTATCGTC ACGTAAACCC CCAAAGTGTT 1392 CAACCAACTA ACCAACTA AACCAAAA TCCTATCGTC ACGTAAACCC CCAAAGTGTT 13980	CACAACCTTT (СТАТТСТТСТ	ATTTTATAG	A AACATTGTG	AAAAATCAAC	AAAAATAAGA	12600
AGGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA 1276 TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT 1286 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 1296 CTATCTTCC GATTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGGCCAAA 1296 CTTGTCAGTG ATATTGATT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG 1307 GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 1308 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 1314 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 1320 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 1326 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 1338 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1338 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 1344 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1350 CCAGAAAAGCC AGTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGGT TTTTCTAGGT 1362 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGGT CCTGCACGTT 1362 CCAGATACCTC CTGGTCTCCG CCATGTAGAT TGTGGCAGAA AGCAGTGAGA AAATCAATGC 1374 CCAATTCTTC TGGATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 1374 CCAATTCTTC TGGATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 1374 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATATG 1386 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC CCTGTAAACC CTTTTGAATTT 1398 CCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAC CCAAAGTGTT 1398 CCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAC CCAAAGTGTT 1398 CACCAACTAA ATCAATTCTTT TCAACCACAC CAATGCTTC ACATGATCT CCAAAGTGTT 13980 CACCAACTAA ATCAATTCTTT TCAACCACAC CAATGCGTC CAATAGGCT TTTTGAACTTT TTCAACCACACAAA TCGTTCTCTC CACTAAAACCC TTTTTGAACTTT TTCAACCACACAAA T	AAAAACTAAG A	AAAATCTTA	GTTTTGATG	г аааааатсто	CATGAGATAG	AAAACGGTAG	12660
TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 1296 TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 1296 CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 1308 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 1314 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 1320 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 1326 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 1332 GAACATGAGT GGATTGAACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1338 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 1344 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCC TCCAGCTCTG 1350 CCAGAAAAGGC AGTTCTAGA TTTTCTTCATA TGGCAGGAG ATTTTCATGT TTTTCTAGGT 1362 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGAGA ATTTTCATGT TTTTCTAGGT 1362 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGAGA AGTCCATGCTA GATCCGTAGA 1368 GAAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 1374 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG 1380 CAGCCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGT GGGCAGTAGG TTTCCTGTCT 1362 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTCCAGCTG AACTGCATCA ACATGATAGG 1380 CAGCCAGGGTG TTGCTTGAGT ATTTTGGCCAA TTCCAGCTT AACTGCATCA ACATGATAGG 1380 CAGCCAAGGTG TTGCTTGAGT ATTTTGGCCAA TTCCAGCTT AACTGCATCA ACATGATAGG 1380 CAGCCAGGGTG TTGCTTGAGT ATTTTGGCCAA TTCCAGCGT GGGCAGTAGG TTTCCTGTCT 1362 CAGCCAGGTG TTGCTTGAGT ATTTTGGCCAA TTCCAGCGT CACTGCAACC TTTTGAATTT 1392 CACCAAGTGT AACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 1392 CACCCAAGTTA ATCAATTCTT TCAACCACAAA TCGTATCGTC CACTGAAAGCC TTTTGAATTT 13980 CACCCAAGTTA ATCAATTCTTC TTAACCACAC CACATAGTGTT TTTCAACCACACAAA TCGTATCGTC CACTGAAAGCC TTTTGAATTTT 13980 CACCCAAGTTA ATCAATTCTTC TTAACCACACAAA TCGTATCGTC CACTGAAAGCC TTTTGAATTTT 13980	AGGTCTCCGA (CCAGCCCCTG	ATAAACTTT	TTGCCCCTAA	AAGTCAGAGA	AGTCACATAA	12720
CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 1290 TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 1290 CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 1308 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 1314 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 1320 CGATAAATTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 1332 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1344 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1350 CCAGAAAAGGC AGTTTCTAGA TTTTCTCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1362 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGCAG ATTTTCAGTT CCTGCACGTT 1362 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGCAGA ATTTCATGTA CATGCCTAGA TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 1374 CCAATTCTTC TGAATGAAT GGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGTA GACCGTACA ACATGATAGG CAACATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGTA GACCGATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCCTA ACCTGCATCA ACATGATTAT 13920 CCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAACC CTAAAGCCT TTTTGAATTT 13920 CCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAACC CCAAAGTGTT 13980 CAACCAACTAA ATCAATTGTT TCAAACCAAAA TCGTTACTGTC ACCTAAAGCC TTTTGAATTT 13920 CCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAACC CCAAAGTGTT 13980	AGTGTATCTG G	STAAGGTTAC	ACATCCTGAC	AAAGTCAACA	TGAGAGCCTC	ATGATCCTCA	12780
TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 1296 CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 1308 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 1314 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 1320 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 1326 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 1332 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1338 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1350 CCCAGAAAGCC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGCAG ATTTTCAGTT CCTGCACGTT 1362 CTTCTTTTTG GGCTGCACC ATGCCTACAA TGGCAGCAGA AGCAGTGAGA AAACCAGTA 1374 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 1374 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 1380 CAGCAAGGGT TTGCTTGAGT ATTTGGCCAA TTTCAGCGT GGGCAGTAGG TTTCCTTGTT 1386 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGTT GAGCAGTAGA TTTCCTTGTT 1390 CAACCAACTA AACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 1390 CAACCAACTA AACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 1390 CAACCAACTA AACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 1390 CAACCAACTA AACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAACTTT 1390 CAACCAACTA AACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 1390 CAACCAACTA AACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAACTTT 1390 CAACCAACTA AACATGGTA GAAACCAAAA TCGTATCGTC CACGAAAGCC TTTTGAACTTT 1390 CAACCAACTA AACATGGTA GAAACCAAAA TCGTATCGTC CACGAAAGTGTT 1390 CAACCAACT	TACTTGAGAG T	ACGCTCTAC	ATGATAGCAG	TCCTTATAGG	TCAGTTCAAA	CATTTTGGCT	12840
CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 1308 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 1314 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 1320 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 1326 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 1332 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1344 GAACATAAGC GAGATGATG TTTCCTCTAT TCAGGTAATA CTGAATGCC TCCAGCTCTG 1350 CCAGAAAGGC AGTTTCTAGA TTTTCTCTCTAT TCAGGTAATA CTGAATGCC TCCAGCTCTG 1356 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGCAG ATTTTCAGTT CCTGCACGTT 1362 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT TGTGGGCAGA AGCACTGAGA AAATCAATGC 1374 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 1368 CAGCAGGGTG TTCCTTAGGA ATTTGGCCAA TTTCAGCGT GGGCAGTACG TTTCCTGTCT 1360 CCAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGT GACCGTACA ACATGATAGG 1374 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 1380 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGT GGGCAGTAGG TTTCCTGTCT 1380 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGT GACCGTAGA CCAAAGTGTT 1390 CACCAACTA AACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAACCC TTTTGAATTT 1392 CACCAACTA ATCAATTCTT TCAACCAAAA TCGTATCGTC ACGTAAACCC TTTTGAATTT 1398 CAACCAACTA ATCAATTCTT TCAACCAAAA TCGTATCGTC ACGTAAACCC CCAAAGTGTT 1398 CAACCAACTA ATCAATTCTT TCAACCAAAA TCGTACCATC ACATGAAACC CCAAAGTGTT 1398 CAACCAACTA ATCAATTCTT TCAACCAAAA TCGTATCGTC ACGTAAACCC CCAAAGTGTT 1398 CAACCAACTA ATCAATTCTT TCAACCAAAA TCGTACCATC ACATGAAACC CCAAAGTGTT 13980	CTATCTTTCC G	ATTTTGTAA	AGACACCACG	TTCTACCAAG	CTATCCATGA	GGAAGTAGAA	12900
GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTTCA AATGCCATAT GGCTAACCTC CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATCT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362/ CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAGATTCTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGT GGGCAGTAGG TTTCCTGTCT 1386/ CAGTTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 1398/ GAACCAAGTA ATCAATTCTT TCAACCACAC GATGCTCGAC CCAAAGTGTT TAAACCCAACTA ATCAATTCTT TCAACCACAC GATGCTCGAC CCAAAGTGTT CAACCCAACTA ATCAATTCTT TCAACCACAC GATGCTCGAC CATGCTACAC CCAAAGTGTT CAACCCAACTA ATCAATTCTT TCAACCACAC GATGCTCGAC CATGCTACAC CCAAAGTGTT CAACCCAACTA ATCAATTCTT TCAACCACACAC CATGCTCTCC CAACCTCTCACCCAC CCAAAGTGTT CAACCCAACTA ATCAATTCTT TCAACCACACAC CATGCTCTCC CAACCTCTCACAC CCAAAGTGTT CAACCCAACTA ATCAATTCTT TCAACCACACAC CATGCTCTCCTCTC	TTTTTCCTGA T	'GAATATGGT	GGTCTTCTGA	тттсалалта	TCAACTAGAC	GAAGGCCAAA	12960
CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTT TTAACAGAAG GGCTAAGAGT 1314 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 1320 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 1326 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 1332 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1338 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 1344 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1350 CCAGGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 13620 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 13620 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13740 CCAATTCTTC TGGATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TCCTATCGCT ACGTAAAGCC TTTTGAATTT 13920 GAACCAAGTA ATCAATTGTT TCAACCAACA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980 GAACCCAAGTA ATCAATTCTT TCAACCAACA CCAAAGTGTT TGCATCAACC CCAAAGTGTT 13980 GAACCCAAGTA ATCAATTCTT TCAACCAACA CCAAAGTGTT TGCATCAACC CCAAAGTGTT 13980 GAACCCAAGTA ATCAATTCTT TCAACCAACA CCAAAGTGTT TGCAACCAACA CCAAAAGTGTT TTTCTTGGCT GAATCAATTGT TGCAACCAACA CCAAAAGTGTT TTTCTTGGCT GAATCAATTGT TGCAACCAACA CCAAAAGTGTT TTTCTTGGCT GAATCAATTGT TTTTCTTGGT TTTTCTTGGT TTTTCTTGAATTT TTTTCTAGATTT TTTTCTTGGT TTTTTCTTGGT TTTTTCTTGT TTTTTTTT	CTTGTCAGTG A	TATTGATTT	TAGCCCCTGT	AAGTTCCTTG	TTAATGATGA	TTTTGAGTTG	13020
GTAATCGTAA CGACAATTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATCT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTCAGTT CCTGCACGTT 1368 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TCGTATCGTC ACGTAAAGCC TTTTCAGATTT 13920 GCTGGGCTGT GATTTCTTG TCAACCACAC GATCGCTCG CAATGGTTT CAACCAAGTA ATCAATTCTT TCAACCACAC CATCGCTCG CAATGATCTT CAACCAAGTA ATCAATTCTT TCAACCACAC CAATGGTTT CAACCAAGTA ATCAATTCTT TCAACCACAC CAATGGTTT CAACCAAGTA ATCAATTCTT TCAACCACAC CAATGGTTT CAACCAAGTA ATCAATTCTT TCAACCACAC CAATGGTTT CAACCAAGTA ATCAATTCTT TCAACCACAC CAATGGTT CAACCACACACACACACACACACACACACACACACAC	GAAGCCTTCA C	CGCTGTTTG	GCACTTTTTC	CAAAAGGCGA	GTCAGTTCAT	AGTTACCAAC	13080
CGATAATTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1338 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 1344 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1350 CCAGAAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 1362 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 1374 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 1380 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 1386 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 1392 GAACCAAGTA ATCAATTCTT TCAACCAGG GATAATGGT TGCTTCAAAC CCAAAGTGTT 1398 GAACCAAGTA ATCAATTCTT TCAACCAGG GATCATGGT CATTGCATCA CCAAAGTGTT 1398 GAACCAAGTA ATCAATTCTT TCAACCAGG GATCATGGT CATTGCATCA CCAAAGTGTT 1398 GAACCAACTA ATCAATTCTT TCAACCAGG GATCATTGGT CATTGCATCA CCAAAGTGTT 1398	CTTAGTTTCA A	AAAAGGTGT	TATCTTTGAG	GGTGAATTTT	TTAACAGAAG	GGCTAAGAGT	13140
ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1338 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1350 CCAGAAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1362 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 1368 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 1386 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTAATGGT TGCTTCAAAC CCAAAGTGTT 1392 GAACCAAGTA ATCAATTCTTT TCAACCACAG GATGCTGGGT ACTTCAAAC CCCAAAGTGTT 13980 GAACCAAGTA ATCAATTCTTT TCAACCACAG GATGCTGGGT ACTTCAAAC CCCAAAGTGTT 13980	GTAATCGTAA C	GACAATTTT	TTAACTGAAT	GATTTTTCA	AATGCCATAT	GGCTAACCTC	13200
GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 1338 CAGCTAAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 1344 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1350 CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1356 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 1362 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 1386 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GAACCAACTA ATCAATTCTT TCAACCACAG GATGATGGT TGCTTCAAAC CCAAAGTGTT 13980	CGATAATTTC T	TTTAAGGTT	TTTGCGAGGG	TTTGTAGGTC	TTCAACGGTA	TTTTGTGGCG	13260
CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1350 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 1362 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 1380 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GAACCAAGTA ATCAATTCTT TCAACCACAG GATCATGCATCA ACATGATGT 13980	ACAAACTGAT G	CGAAGGGAT	TCCTTCAAGC	GTTCTGAATT	TGCGCCATAC	ATGGCTTCAA	13320
GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 1350 CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1356 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 1362 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13686 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13746 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13806 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13866 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13926 GCTGGGCTGT GATTTCTTG TCAACCACAG GATAATGGT TGCTTCAAAC CCAAAGTGTT 13986 GAACCAACTA ATCAATTCTT TCAACCACAG GATGATGGT TGCTTCAAAC CCAAAGTGTT 13986	GAACATGGCT G	GATTGGACA	ACGCCTGCAG	TACAGGCTGA	GCCAGTAGAG	ATTGAAATTC	13380
CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 1356 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 13626 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13686 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13746 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13806 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13866 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13926 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13986 GAACCAAGTA ATCAATTCTT TCAACCACAG GATGATGGT TGCTTCAAAC CCAAAGTGTT 13986	CAGCTAAATC T	AGCCGAAGG	AGTAAGAGGT	CATTTTTCTG	ACCAGGAAAT	CCAATATTGA	13440
CTTCTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 13620 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13680 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13740 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980	GAACATAAGG G	AGATGATGT	ТТТССТСТАТ	TCAGGTAATA	CTGAATGCCC	TCCAGCTCTG	13500
TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13680 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13740 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980	CCAGAAAGGC AC	GTTTCTAGA	TTTTGTACAT	GTTGAAAATG	TTCTTCTTGT	TTTTCTAGGT	13560
GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13740 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980	CTTCTTTTAG GO	GCTGCAACC	ATGCCTACAA	TGGCAGGCAG	ATTTTCAGTT	CCTGCACGTT	13620
CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980	TTTTCTGTTC CT	rggtctccg	CCATGTAGAT	AGGAATCAAA	GTCCATGCTA	GATGCGTAGA	13680
CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980	GAAAACCGAT TO	CCTTAGGA	CCATGGAATT	TGTGGGCAGA	AGCAGTGAGA	AAATCAATGC	13740
CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980	CCAATTCTTC TO	AATGAATT (GGGATTTTAC	CAATAGCCTG	AACTGCATCA	ACATGATAGG	13800
GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980	CAGCAGGGTG TT	GCTTGAGT	ATTTGGCCAA	TTTCAGCGAT	GGGCAGTAGG	TTTCCTGTCT	13860
GAACCAACTA ATCAATTCTT TCAACCACAC CATCCTCCTCC CATCCTCCTCC	CATTATTGAC AA	ACATGGTA (GAAACCAAAA	TCGTATCGTC	ACGTAAAGCC	TTTTGAATTT	13920
GAACCAAGTA ATCAATTGTT TCAAGGACAG CATGGTGCTC GATGGCAGTT GTGATGATAT 14040	GCTGGGCTGT GA	TTTCTTGA	PTTTCTGGCT	GGATAATGGT	TGCTTCAAAC	CCAAAGTGTT	13980
22010	GAACCAAGTA AT	CAATTGTT 1	rcaaggacag	CATGGTGCTC	GATGGCAGTT	GTGATGATAT	14040

GTTTTCCTTG TTCTTGGTGA CGAAGACAGT AGCCAATGAT GGTAGTATTA TTGCCTTCAG	14100
TCCCACCAGA AGTGAAAAAG ATATGTTGAG GTTTTGTCCT TAGTAACTGG GCTAGTTCCT	14160
GACGGGCTTC TCGCAAGAGT TTGCCAGCTT GACGACCATG ACCATGAATA CTAGAAGGAT	14220
TTCCGTGGGT TTCTTGCATA ACCTTGGTCA TAGCTGAAAT AGCAACTGCT GACATAGGAG	14280
TCGTTGCAGC ATTGTCCAAA TAAATCAAAG AATCACCTTA TTTCTTTTTA TTGTAGGCAA	14340
AGAGTGGGCT GACTGGTTTT CTTTCGTGAA TACGGACGAT AGCATCACCA ATTAACTCAC	14400
TAGCAGTGAT GTAGCATACA TTTTTAGGAG TTTTTTCTTT TGTTGCTACT GAATCAGTCA	14460
CAAGAATTTC TTTAATATTA GTATTGTCAA GAAGCTCAGC AGCTCCCTCG ACGAAGAGAC	14520
CGTGGCTAGA AACAGCATAA ATTTCTGTAG CTCCTTCACG TTCAACGATT TTAGAAGCTT	14580
CAGAGAAGGT ACGTCCTGTA TTTAAAATAT CATCAATCAA GATAGCTTTC TTACCTTCAA	14640
CATCACCAAT AATATAACCT TCGTTACGAG TTGCATCGTC TTGAGGGTAG TCGATAATGG	14700
CGATAGGAGC ATCAAGATAT TCAGCCAGGC TACGCGCACG TTTGACACCT GAATTTTTAG	14760
GGCTAACGAC AACAACATCT GAACCAAGCA ATCCTTTATC GCAGTAATGT TTTGCGAATA	14820
GGGGAACAGT GAAAAGATTA TCCACTGGAA TATCAAAGAA ACCTTGAACC TGAACGGCAT	14880
GCAAATCAAG AGTCAGGATA CGATCAACTC CAGCCTTAAC CAGCATATTG GCAACTAGTT	14940
TTGCTGTAAG TGGCTCACGA GGACAAGCAA TGCGGTCTTG ACGTGCATAG CCAAAATATG	15000
GAAGGACAAC GTTGATACTG TGGGCACTTG CACGCACACA AGCATCGACC ATGATTAACA	15060
ATTCCATTAG GTGGTTGTTG ACAGGGAAAC TTGTTGATTG GATGATGTAA ACATCATAAC	15120
CACGGACACT TTCTTCGATA TTTACTTGGA TTTCTCCGTC TGAAAATTGA CGTGATGATA	15180
GTTTTCCAAG TGGGACACCA ACAGCTTGGG CAATTTTTTG TGCAATCTCT TGGTTAGAGT	15240
TGAGTGCGAA AAGTTTCATG TTTTTTCTAT CTGACATTAT AGACCGTCCT CTGTAAACTT	15300
TATAAATCCT AGTTATATTT ACCTTACATA TATGAACTGG GATTTGTGTA TTTTTATCTT	15360
TTCTATTTTA CCAAAAATG GAGATTATTT CAGCTATTTT TCATACTTTT GACAAATCGA	15420
ACCAATTTTG AAGGAGCTTT TTGATAGGAA ATCTGATTTT TCTCTAAAAA TTGTCGAAAA	15480
TCCTGTTTGC CTTGCTCATG ATTTCCACT TCAAGCTCCA ATTCGTAATC TGTTATATCA	15540
AAGTATCGGC TCTGATCCAG TGCCATGAGA CCAATAGCTG TTTTCATTTC ATAGCGAAGC.	15600
GTTGTTAGAC AACCAAGAAC CTGCCAGTTC TTACTTTGGA TACCATGTTT CGCCAATTCA	15660
TCCAGTACTA GCCCTTGAGG AAGTTCTTCC TTACTCAGAT AGTTCTCAGC ATCTTTTAGT	15720
TGCAATTTTT GGTTGTATTC CATGTTTCCA ACACTCTGCG GGACTTTGAG TGTCAACTCA	15780

			192			
GCCCAGTCTT	CAAAGGTTCG	AATGCGCATA	GCGACTTTCT	TTTCTCGCAG	ТТСААААТСА	15840
					CTGGTCTTTT	15900
AGACGATTGT	ATTCATCTTT	TTTCAATAGT	GTTTTCAATT	СААТТТСТАА	ATGTTTCATT	15960
TTTCTTACCT	TTTTTTATCG	TTGAAAGCGG	ATTTATGGTA	TAATAAGCAT	TGTATTTATT	16020
GTATATGAAT	CTGGAGAAAA	AATCAAAGAT	ATTTTTGACG	GATAATATGA	GAACAAGGGA	16080
GAATATATGA	CCTTAGAATG	GGAAGAATTT	CTAGATCCTT	ACATTCAACC	TGTTGGTGAG	16140
TTAAAGATTA	AACTTCGTGG	TATTCGTAAG	CAATATCGTA	AGCAAAATAA	GCATTCTCCA	16200
ATTGAGTTTG	TGACCGGTCG	AGTCAAGCCA	ATTGAGAGCA	TCAAAGAAAA	AATGGCTCGT	16260
CGTGGCATTA	CTTATGCGAC	CTTGGAACAC	GATTTGCAGG	ATATTGCTGG	CTTACGTGTG	16320
ATGGTTCAGT	TTGTAGATGA	CGTCAAGGAA	GTAGTGGATA	TTTTGCACAA	GCGTCAGGAT	16380
ATGCGAATCA	TACAGGAGCG	AGATTACATT	ACTCATAGAA	AAGCATCAGG	CTATCGTTCC	16440
TATCATGTGG	TAGTAGAATA	TACGGTTGAT	ACCATCAATG	GAGCTAAGAC	TATTTTGGCA	16500
GAAATTCAAA	TTCGTACTTT	GGCCATGAAT	TTCTGGGCAA	CGATAGAACA	TTCTCTCAAC	16560
TACAAGTACC	AAGGGGATTT	CCCAGATGAG	ATTAAGAAGC	GACTGGAAAT	TACAGCTAGA	16620
ATCGCCCATC	AGTTGGATGA	AGAAATGGGT	GAAATTCGTG	ATGATATCCA	AGAAGCCCAG	16680
GCACTTTTTG	ATCCTTTGAG	TAGAAAATTA	AATGACGGTG	TAGGAAACAG	TGACGATACA	16740
GATGAAGAAT	ACAGGTAAAC	GAATTGATCT	GATAGCCAAT	AGAAAACCGC	AGAGTCAAAG	16800
GGTTTTGTAT	GAATTGCGAG	ATCGTTTGAA	GAGAAATCAG	TTTATACTCA	ATGATACCAA	16860
TCCGGATATT	GTCATTTCCA	TTGGCGGGGA	TGGTATGCTC	TTGTCGGCCT	ТТСАТААСТА	16920
CGAAAATCAG	CTTGACAAGG	TCCGCTTTAT	CGGTCTTCAT	ACTGGACATT	TGGGCTTCTA	16980
TACAGATTAT	CGTGATTTTG	AGTTGGACAA	GCTAGTGACT	AATTTGCAGC	TAGATACTGG	17040
GGCAAGGGTT	TCTTACCCTG	TTCTGAATGT	GAAGGTCTTT	CTTGAAAATG	GTGAAGTTAA	17100
GATTTTCAGA	GCACTCAACG	AAGCCAGCAT	CCGCAGGTCT	GATCGAACCA	TGGTGGCAGA	17160
TATTGTAATA	AATGGTGTTC	CCTTTGAACG	TTTTCGTGGA	GACGGGCTAA	CAGTTTCGAC	17220
ACCGACTGGT	AGTACTGCCT	ATAACAAGTC	TCTTGGCGGT	GCTGTTTTAC	ACCCTACCAT	17280
TGAAGCTTTG	CAATTAACGG	AAATTGCCAG	CCTTAATAAT	CGTGTCTATC	GAACACTGGG	17340
CTCTTCCATT .	ATTGTGCCTA	AGAAGGATAA	GATTGAACTT	ATTCCAACAA	GAAACGATTA	17400
TCATACTATT '	TCGGTTGACA	ATAGCGTTTA	TTCTTTCCGT	AATATTGAGC	GTATTGAGTA	17460
TCAAATCGAC	CATCATAAGA	TTCACTTTGT	CGCGACTCCT	AGCCATACCA	GTTTCTGGAA	17520
CCGTGTTAAG	GACGCCTTTA	TCGGCGAGGT	GGATGAATGA	CCTTTGAATT	TATCGCAGAT	17580

					ATTGCTGGCC	17640
					TGCAACGTAT	17700
CTATTGGACG	TTGGAGACT	CGTTACCAT	r GACATTCCCC	CTGAGAAAGG	CTTTGAAACC	17760
TTGGAGGCTA	TTGAGCTTC	ATTAGATAT	r ctctatgago	ATGACCACTT	TCTAGTCTTG	17820
AATAAACCCT	ATGGAGTGG	TTCTATTCC	r agtgtcaatc	ACTCTAATAC	CATTGCCAAT	17880
TTTATCAAGG	GTTACTATGT	CAAGCAAAA	г татбаааатс	AGCAGGTTCA	CATTGTTACC	17940
AGACTAGATA	GGGATACTTC	TGGCTTGATC	CTCTTTGCCA	AGCACGGTTA	TGCCCATGCA	18000
CGATTAGACA	AGCAGTTGCA	GAAGAAATCI	T ATCGAGAAAC	GCTACTTTGC	TTTGGTTAAG	18060
GGAGATGGAC	ATTTGGAGCC	AGAAGGGGAA	ATTATTGCTC	CGATTGCGCG	TGATGAAGAT	18120
TCCATTATTA	CCAGACGAGT	GGCTAAAGGC	GGAAAGTATG	CCCATACTTC	ATACAAGATT	18180
GTAGCTTCTT	ATGGAAATAT	TCACTTGGTC	TATATTCACC	TGCACACTGG	TCGAACCCAT	18240
CAAATCCGAG	TCCATTTTC	TCATATCGGT	TTTCCTTTGC	TGGGAGATGA	TTTGTATGGT	18300
GGTAGTCTGG	AAGATGGTAT	TCAACGTCAG	GCTCTGCATT	GCCATTACCT	ATCCTTTTAT	18360
CATCCATTTT	TAGAGCAAGA	CTTGCAGTTA	GAAAGTCCCT	TGCCGGATGA	TTTTAGTAAC	18420
CTTATTACCC	AGTTATCAAC	ТААТАСТСТА	ТАААААСТСТ	CTCAGAGTAT	AATTATTATC	18480
TTAAAGGAGA	AAACTCATGG	AAGTTTTTGA	AAGTCTCAAA	GCCAACCTTG	TTGGTAAAAA	18540
TGCTCGTATC	GTTCTCCCTG	AAGGGGAAGA	GCCTCGTATT	CTTCAAGCAA	CAAAACGCTT	18600
AGTAAAAGAA	ACAGAAGTGA	TTCCTGTTTT	GCTTGGAAAT	CCTGAAAAAA	TTAAAATTTA	18660
TCTTGAAATT	GAAGGAATCA	TGGATGGTTA	TGAGGTCATC	GACCCTCAAC	ATTATCCTCA	18720
ATTTGAAGAA	ATGGTTTCTG	CCTTGGTGGA	GCGTCGCAAG	GGCAAAATGA	CTGAAGAAGA	18780
TGTACGCAAG	GTTTTGGTTG	AAGATGTCAA	CTACTTTGGT	GTGATGTTGG	TTTACTTGGG	18840
CTTGGTTGAT (GGAATGGTGT	CAGGAGCGAT	TCACTCAACA	GCTTCAACAG	TTCGCCCAGC	18900
TCTACAAATC	ATCAAAACTC	GTCCAAATGT	AACTCGTACT	TCAGGAGCCT	TCCTCATGGT	18960
TCGTGGTACG (GAACGTTACC	TATTTGGAGA	CTGTGCCATT	AACATCAATC	CAGATGCAGA	19020
AGCCTTGGCT (GAAATTGCCA	TCAACTCAGC	AATCACAGCT	AAGATGTTTG	GCATCGAACC	19080
TAAAATTGCC A	ATGTTGAGCT	ATTCTACTAA	AGGTTCAGGG	TTTGGTGAAA	GCGTTGATAA .	19140
GGTCGTTGAA (GCAACTAAAA	TTGCTCACGA	CTTGCGTCCT	GACCTTGAAA	TCGATGGTGA	19200
GTTGCAATTT (GATGCAGCCT	TTGTTCCTGA	AACTGCAGCT	CTGAAAGCTC	CTGGAAGTAC	19260
GGTAGCTGGT (CAAGCAAATG	TCTTCATCTT	CCCAGGTATC	GAGGCAGGAA .	ATATTGGTTA	19320

			194			
			•		AAGGTTTAAA	19380
CAAGCCAGTT	AATGATCTTT	CTCGTGGATG	TAATGCAGAT	GATGTTTACA	AGTTGACCCT	19440
CATCACAGCA	GCTCAAGCAG	TTCATCAATA	GTGAAAACTA	TAAAGTGATA	TACTATGCTA	19500
TACTGTAGTT	ATGAAACTAT	GTACGAAAAG	CACTGCCATT	AATTCCTGAG	ААСТАААТТА	19560
CTGATTGGTG	TCAAAAAGGA	AAACTTCCAA	GCGATGATAT	CCTGTCTATA	CACGACCTAT	19620
AGAAATCTGT	AATATACATA	TCCGTAAAAC	GATAAATTCC	CTTTTTGATT	TTAAATGAGT	19680
ATGAAAAGAG	AATTTTTTGG	CTCTTTGTCA	ACTGTAGTGG	GTTGAAGAAA	AGCTAAGCTC	19740
GAGAAAGGAC	AAATTTCATC	CTTTCTTTTT	TGATATTCAG	AGCGATAAAA	ATCCGTTTTT	19800
TGAAGTTTTC	AAAGTTCCGA	AAACCAAAGG	CATTGCGCTT	GATAAGTTTG	ATGAGATTAT	19860
TGGTCGCTTC	CAGTTTGGCG	TTAGAATAGT	GTAGTTGAAG	GGCGTTGATA	ATCTTTTCTT	19920
TATCTTTGAG	GAAGGTTTTA	AAGACAGTCT	GAAAAATAGG	ATGAACCTGC	TTAAGATTGT	19980
CCTCAATAAG	TCCGAAAAAT	TTCTCTGGTT	ССТТАТТСТБ	GAAGTGAAAA	AGCAAGAGTT	20040
GATAGAGCTG	ATAGTGGTGT	TTCAAGTCTT	CCGAATAGCT	CAAAAGCTTG	ТТТААААТСТ	20100
CTTTATTGGT	TAAGTGCATA	CGAAAAATAG	GACGATAAAA	TCGCTTATCA	CTCAGTTTAC	20160
GGCTATCCTG	TTGAATGAGT	TTCCAGTAGC	GCTTGATAG			20199
(2) INFORMA	TION FOR SE	Q ID NO: 7:				

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19702 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ACCCGATGTA	TCAGCGGATA	TTTACTCTAT	TTTTCAAACG	ATGTTATACC	САСААТАААА	60
GAAAAAAGAC	CCTAAGGTCT	CCTTTGCTTT	ТАТТАТТААА	CGCGTTCAAC	TTTACCTGAT	120
TTCAAAGCAC	GAGCTGAAGC	CCAAACTTTT	TTAGGTTTAC	CATCGATAAG	AACAGTAACT	180
TTTTGAAGGT	TTGGTTTTAC	GGCACGTTTT	GTTTGGTTCA	TCGCGTGTGA	ACGGTTGTTT	240
CCTGATACAG	TCTTACGACC	TGTAAAGTAA	CATACTTTAG	CCATTGTGTT	TTCCTCCTAT	300
TAGATCTAAT	ATAGCGGATG	TGCTAGCACC	ACATACCGTA	CTATGTTATC	ACATTTTCTT	360
GTTTTTTGCA	AGGGAATTGG	AAGATTTTTT	ATTTGTGTCT	TAAATCAGGT	CTTGCGTGAC	420
ATTTCTGCTC	TCCACATGCC	ATCGTTGATT	AACAGAACAC	CAGAATTAAA	ATTATGTGTA	480
TAAAAATCAT	CTCTAACTGC	AGCTAAGGGT	ATAGCCGTCA	AGTCCAAATC	CCACAGCTCA	540

TCTATCGATT TTCTTACAAC AATATCTGAA TCCAAATACA GTACACGAGA CTCGCTTACA	600
TACTTTGGAA TAAAATACCT AAAAAAGCCG CATATGAAAG TCCCTCAAAG GGGAGACGAT	660
AACCTTTCAG AATATTACTG TCAATCTAAA CATTCACAAT CTCACTATTC AAAGTCTCTA	720
GTCTTTTTTC CATCAATTGG AACCATTCTC GCGGAAGGTC ATCATTAAAA ACATAAAACT	780
TAAGATTATA ATGATGAACA CAAAGAGATT TTATTGTTGT TTCAACTTTA TCCATATAAG	840
CATTATCTGC ACCTAAGACA ATCGCTTTTT TCTCTTCTTT CACTTTTTAT CTCATTTCTT	900
TTTATTCCCA TCATATTATT CCCATCATAT GTTTCCCATC ATATGTTTCT ACGTAACCAT	960
TATTTTCGCC TATTCGTTCG TAAAACCATA CCAGTGGAGA TTTTAGATGA AGTCCCATTA	1020
CGGTTTACAA TTTTTACATT ACGACACGGA GTTTTACAAA TCGATTTCAT TTGCCAAACG	1080
TAGTTAGTGA GGCAGTTAGC TAGTTCGCCA AATAGCGACT AGCGTCCAAC AATTTGGAAC	1140
TTTAGTTCCA ATTGTTGGTA CTGAGTCACA TCTTCTCCTC TAACTCTACG TCTGGATACT	1200
TGTCCGCAAA CCAGCGGAGG GCAAAGTCAT TTTCAAAGAG AAAGACTGGT TGGTCAAAAC	1260
GGTCTTTGGC TAAGATATTG CGACTTGACG ACATCCGTTC ATCCAAGTCC TCAGGCTTGA	1320
TCCAACGAAC GGTCTTTTTA CCCATTGGGT TCATAACTAC TTCCGCATTG TACTCGCCTT	1380
CCATGCGGTG TTTAAAGACT TCAAACTGGA GTTGACCTAC AGCGCCTAGC ATGTACTCAC	1440
CTGTTTGGTA ATTCTTATAA AGCTGAACGG CTCCTTCTTG CACCAATTGC TCAATCCCCT	1500
TGTGGAAGGA TTTTGCTTC ATAACATTCT TAGCAGAAAC TTTCATGAAA ATCTCAGGTG	1560
TAAAGGTTGG CAGGGGTTCA AATTCAAACT TGTTTTTTCC AACCGTCAAG GTATCCCCAA	1620
CCTGATAAGT ACCGGTATCG TAAACCCCGA TAATATCACC TGCCACGGCA TTGGTCACAT	1680
TCTCACGACT CTCCGCCATA AACTGGGTAA CATTAGATAG TTTAGCCCCC TTACCAGTAC	1740
GAGGGAGATT GACACTCATG CCGCGCTCAA ATTCGCCAGA TACGATACGG ACAAAGGCAA	1800
TACGGTCACG GTGACGAGGG TCCATGTTGG CTTGGATTTT AAAGACAAAG CCTGAGAAAT	1860
CCTTGTCATA AGGATCCACA ATTTCACCGT CTGTTTTCTT GTGACCATGT GGTTCTGGAG	1920
CAAACTTGAG GAAGGTTTCA AGGAAGGTCT GCACACCAAA GTTTGTCAGG GCTGAACCGA	1980
AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC TGAAAACTCA TTCCCGGCTT	2040
CATTTAAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA AGGATTGCTA CCAAAGAGTŢ.	2100
TGTCCCCGTC TTCTAGACTG GCAAAACGCT CATCCCCTTT GTAAAGCTCT AAACGTTGGT	2160
TATAGAGGTC ATACAAGCCC TCAAAGGCTT TCCCCATCCC GATAGGCCAG TTCATAGGGT	2220
AGCTAGCAAT GCCCAAGATT TCTTCCAATT CTTGCAAGAG ATCCAAAGGC TCACGACCGT	2280

			196			
					ACAACCTCAA	2340
					ACCGCAGCAT	2400
CCACCGCCA	T CAAGGTACG	A TAGGTATCT	T CTGAGAAGT	CTCGTGCCCT	GGCGTGTCTA	2460
AGATATTCA	C GCGCTTGCC	g tegtagtea	A ATTGCATAAC	AGATGAAGT	ACAGAAATCC	2520
CACGTTGCT	T CTCGATATC	C ATCCAGTCA	G ATTTAGCAAA	AGTCCCTGTT	TTCTTCCCTT	2580
TTACCGTAC	C AGCCTCACG	A ATCTCACCC	C CAAAGTAGAG	TAACTGCTCA	GTGATGGTTG	2640
TTTTCCCCG	C GTCCGGGTG	GAGATAATG	G CAAAGGTACG	ACGTTTCTTA	ATTTCTTCTT	2700
GAATATTCA	F AAGTTCTCT	TCTTTGATT	C TCTATTTTC	TTGTTTCAAT	AGCTGAGAAT	2760
GATTTTTAC	A TTGGATTTT	CCATTCCTT	r caacactcca	TTATATCGGA	TTTTAGCATT	2820
TTTTTCAATT	TCTATTTCT	TTCACTTCC	CCTCCCTTAT	' TTATAGGAAA	ATATGGTAAA	2880
ATAGAACAG	CTAAAAATC	TCATTTCAC	AAAGGATGCA	AGATGAAAAT	TACGCAAGAA	2940
GAGGTAACAC	ACGTTGCCA	TCTTTCAAA	TTAAGATTCT	CTGAAGAAGA	AACTGCTGCC	3000
TTTGCGACCA	CCTTGTCTA	GATTGTTGAC	ATGGTTGAAT	TGCTGGGCGA	AGTTGACACA	3060
ACTGGTGTCG	CACCTACTAC	GACTATGGCT	GACCGCAAGA	CTGTACTCCG	CCCTGATGTG	3120
GCCGAAGAAG	GAATAGACCG	TGATCGCTTC	TTTAAAAACG	TACCTGAAAA	AGACAACTAC	3180
TATATCAAGG	TGCCAGCTAT	CCTAGACAAT	GGAGGAGATG	CCTAATGACT	ТТТААСААТА	3240
AAACTATTGA	AGAGTTGCAC	AATCTCCTTG	TCTCTAAGGA	AATTTCTGCA	ACAGAATTGA	3300
CCCAAGCAAC	ACTTGAAAAT	ATCAAGTCTC	GTGAGGAAGC	CCTCAATTCA	TTTGTCACCA	3360
TCGCTGAGGA	GCAAGCTCTT	GTTCAAGCTA	AAGCCATTGA	TGAAGCTGGA	ATTGATGCTG	3420
ACAATGTCCT	TTCAGGAATT	CCACTTGCTG	TTAAGGATAA	CATCTCTACA	GACGGTATTC	3480
TCACAACTGC	TGCCTCAAAA	ATGCTCTACA	ACTATGAGCC	AATCTTTGAT	GCGACAGCTG	3540
TTGCCAATGC	AAAAACCAAG	GGCATGATTG	TCGTTGGAAA	GACCAACATG	GACGAATTTG	3600
CTATGGGTGG	TTCAGGTGAA	ACTTCACACT	ACGGAGCAAC	TAAAAACGCT	TGGAACCACA	3660
GCAAGGTTCC	TGGTGGGTCA	TCAAGTGGTT	CTGCCGCAGC	TGTAGCCTCA	GGACAAGTTC	3720
GCTTGTCACT	TGGTTCTGAT	ACTGGTGGTT	CCATCCGCCA	ACCTGCTGCC	TTCAACGGAA	3780
TCGTTGGTCT	CAAACCAACC	TACGGAACAG	TTTCACGTTT	CGGTCTCATT	GCCTTTGGTA	3840
GCTCATTAGA	CCAGATTGGA	CCTTTTGCTC	CTACTGTTAA	GGAAAATGCC	CTCTTGCTCA	3900
ACGCTATTGC	CAGCGAAGAT	GCTAAAGACT	CTACTTCTGC	TCCTGTCCGC	ATCGCCGACT	3960
TTACTTCAAA	AATCGGCCAA	GACATCAAGG	GTATGAAAAT	CGCTTTGCCT	AAGGAATACC	4020
TAGGCGAAGG	AATTGATCCA	GAGGTTAAGG	AAACAATCTT	AAACGCGGCC	AAACACጥጥጥር	4000

AAAAATTGGG	TGCTATCGTC	GAAGAAGTCA	GCCTTCCTCA	СТСТАААТАС	GGTGTTGCCG	4140
ТТТАТТАСАТ	CATCGCTTCA	TCAGAAGCTT	CATCAAACTT	GCAACGCTTC	GACGGTATCC	4200
GTTACGGCTA	TCGCGCAGAA	GATGCAACCA	ACCTTGATGA	AATCTATGTA	AACAGCCGAA	4260
GCCAAGGTTT	TGGTGAAGAG	GTAAAACGTC	GTATCATGCT	GGGTACTTTC	AGTCTTTCAT	4320
CAGGTTACTA	TGATGCCTAC	TACAAAAAGG	CTGGTCAAGT	CCGTACCCTC	ATCATTCAAG	4380
ATTTCGAAAA	AGTCTTCGCG	GATTACGATT	TGATTTTGGG	TCCAACTGCT	CCAAGTGTTG	4440
CCTATGACTT	GGATTCTCTC	AACCATGACC	CAGTTGCCAT	GTACTTAGCC	GACCTATTGA	4500
CCATACCTGT	AAACTTGGCA	GGACTGCCTG	GAATTTCGAT	TCCTGCTGGA	TTCTCTCAAG	4560
GTCTACCTGT	CGGACTCCAA	TTGATTGGTC	CCAAGTACTC	TGAGGAAACC	ATTTACCAAG	4620
CTGCTGCTGC	TTTTGAAGCA	ACAACAGACT	ACCACAAACA	ACAACCCGTG	ATTTTTGGAG	4680
GTGACAACTA	ATGAACTTTG	AAACAGTCAT	CGGACTTGAA	GTCCACGTAG	AGCTCAACAC	4740
CAATTCAAAA	ATCTTCTCAC	CTACTTCTGC	CCACTTTGGA	AATGACCAAA	ATGCCAACAC	4800
TAACGTGATT	GACTGGTCTT	TCCCAGGAGT	TCTACCAGTT	CTCAATAAAG	GGGTTGTTGA	4860
TGCCGGTATC	AAGGCTGCTC	TTGCCCTCAA	CATGGACATC	CACAAAAAGA	TGCACTTTGA	4920
CCGCAAGAAC	TACTTCTATC	CTGATAACCC	CAAAGCCTAC	CAAATTTCTC	AGTTTGATGA	4980
ACCAATCGGA	TATAATGGCT	GGATTGAAGT	CAAACTAGAA	GACGGTACGA	CCAAGAAAAT	5040
CGGTATCGAA	CGTGCCCACC	TAGAGGAAGA	CGCTGGTAAA	AACACCCATG	GTACAGATGG	5100
CTACTCTTAT	GTTGACCTCA	ACCGCCAAGG	GGTTCCCTTG	ATTGAGATTG	TATCTGAGGC	5160
AGATATGCGT	TCTCCTGAAG	AAGCCTATGC	TTATCTGACA	GCCCTCAAGG	AAGTTATCCA	5220
GTACGCTGGC	ATTTCTGACG	TTAAGATGGA	GGAAGGTTCG	ATGCGTGTGG	ATGCCAACAT	5280
CTCCCTTCGT	CCTTATGGTC	AAGAGAAATT	CGGTACCAAG	ACTGAATTGA	AGAACCTCAA	5340
CTCCTTCTCA	AACGTTCGTA	AAGGTCTTGA	ATACGAAGTC	CAACGCCAGG	CTGAAATTCT	5400
TCGCTCAGGT	GGTCAAATCC	GCCAAGAAAC	ACGCCGTTAC	GATGAAGCGA	ATAAAGCAAC	5460
CATCCTCATG	CGTGTCAAGG	AAGGGCTGC	TGACTACCGC	TACTTCCCAG	AACCAGACCT	5520
ACCCCTCTTT	GAAATTTCTG	ACGAGTGGAT	TGAGGAAATG	CGGACTGAGT	TGCCAGAGTT	5580
TCCAAAAGAA	CGTCGTGCGC	GTTATGTATC	TGACCTTGGT	TTATCAGACT	ACGATGCTAG	5640
TCAGTTGACT	GCTAATAAAG	TCACTTCTGA	CTTCTTTGAA	AAAGCTGTTG	CCCTAGGTGG	5700
тдатдссааа	CAAGTCTCTA	ACTGGCTCCA	AGGGGAAGTC	GCTCAGTTCT	TGAATGCTGA	5760
AGGTAAAACA	CTGGAACAAA	TCGAATTGAC	ACCAGAAAAC	TTGGTTGAAA	TGATTGCCAT	5820

			198			
CATCGAAGAC	GGTACTATTT	CATCTAAGAT	TGCCAAGAAA	GTCTTTGTCC	ATCTAGCTAA	5880
AAATGGCGGT	GGCGCGCGTG	AATACGTGGA	AAAAGCAGGT	ATGGTTCAAA	TTTCAGATCC	5940
AGCTATCTTG	ATCCCAATCA	TCCACCAAGT	CTTTGCCGAT	AACGAAGCTG	CTGTTGCCGA	6000
CTTCAAGTCA	GGCAAACGTA	ACGCCGACAA	GGCtTTACAG	GATTCCTTAT	GAAGGCAACC	6060
AAAGGCCAAG	CCAACCCACA	AGTTGCCCTT	AAACTACTTG	CACAGGAATT	GGCGAAGTTG	6120
АААСААААСТ	AGACAGAACA	AAACCAGCCC	TAAGGTTGGT	TTTTTCTTCT	CTACCAACTC	6180
ССААТААСТА	TTTTGGCTTT	ATTTCCAGAG	TATTTTATGG	TAAAATGAAG	AGTAATAATA	6240
ТТТАТТАААС	AGGTAAAAAC	ATGATTGAAG	CAAGTACCTT	AAAAGCTGGT	ATGACCTTTG	6300
AAACAGCTGA	CGGCAAATTG	ATTCGCGTTT	TGGAAGCTAG	TCACCACAAA	CCAGGTAAAG	6360
GAAACACGAT	CATGCGTATG	AAATTGCGTG	ATGTCCGTAC	TGGTTCTACA	TTTGACACAA	6420
GCTACCGTCC	AGAGGAAAAA	TTTGAACAAG	CTATTATCGA	GACTGTCCCA	GCTCAATACT	6480
TGTACAAAAT	GGATGACACA	GCATACTTCA	TGAATACAGA	AACTTATGAC	CAATACGAAA	6540
TCCCTGTAGT	CAATGTTGAA	AACGAATTGC	TTTACATCCT	TGAAAACTCT	GATGTGAAAA	6600
TCCAATTCTA	CGGAACTGAA	GTGATCGGTG	TCACCGTTCC	TACTACTGTT	GAGTTGACAG	6660
TTGCTGAAAC	TCAACCATCT	ATCAAAGGTG	CTACTGTTAC	AGGTTCTGGT	AAACCAGCAA	6720
CGATGGAAAC	TGGACTTGTC	GTAAACGTTC	CAGACTTCAT	CGAAGCAGGA	CAAAAACTCG	6780
TTATCAACAC	TGCAGAAGGA	ACTTACGTTT	CTCGTGCCTA	ATCTCTAGAA	AGAGGTCATT	6840
CTATGGGAAT	TGAAGAACAA	CTTGGCGAAA	TCGTTATCGC	CCCACGTGTA	CTTGAAAAA	6900
TCATTGCTAT	CGCTACTGCA	AAGGTAGAGG	GTGTTCACTC	TTTTTCAAAC	AGATCAGTGT	6960
CTGATACCCT	TTCAAAACTT	TCACTCGGCC	GTGGCATTTA	TCTTAAAAAC	GTGGACGAAG	7020
AACTCACAGC	AGATATCTAT	CTCTACCTTG	AGTACGGAGT	AAAAGTTCCT	AAGGTAGCGG	7080
TTGCTATCCA	GAAAGCTGTC	AAAGATGCCG	TCCGTAATAT	GGCTGATGTA	GAACTCGCTG	7140
CTATCAATAT	TCACGTTGCA	GGTATCGTCC	CAGATAAAAC	ACCAAAACCA	GAATTGAAAG	7200
ATCTATTTGA	CGAGGACTTC	CTCAATGACT	AGTCCACTAT	TAGAATCTAG	ACGCCAACTC	7260
CGTAAATGCG	CTTTTCAAGC	TCTCATGAGC	CTTGAGTTCG	GTACGGATGT	CGAAACTGCT	7320
rgtcgtttcg	CCTATACTCA	TGATCGTGAA	GATACGGATG	TACAACTTCC	AGCCTTTTTG	7380
ATAGACCTCG	TTTCTGGTGT	TCAAGCTAAA	AAGGAAGAAC	TAGATAAGCA	AATCACTCAG	7440
CATTTAAAAG	CAGGTTGGAC	CATTGAACGC	TTAACGCTCG	TGGAGAGAAA	CCTCCTTCGC	7500
PTGGGAGTCT	TTGAAATCAC	TTCATTTGAC	ACTCCTCAGC	TGGTTGCTGT	TAATGAAGCT	7560
ATCGAGCTTG	САААССАСТТ	СТСССАТСАА	AAATCTGCCC	GTTTTATCAA	TGGACTGCTC	7620

AGCCAGTTTG TAACAGAAGA ACAATAAGGC TCTTTGTCAA CTGTAGTGGG TTGAAAAAAA	
GCTAAGCTCG AGAAAGGACA AATTTCGTCC TTTCTTTTTT GATGTTCAAA GCGATAAAAA	7680
	7740
TCCGTTTTTT GAAGTTTCA AAGTTTCGAA AACCAAAGGC ATTGCGCTTG ATAAGTTTGA	7800
TGAGATTATT GGTCGCTTCC AGTTTGGCAT TAGAATAGTG TAGTTGAAGG GCGTTGACAA	7860
TCTTTTCTTT ATCTTTGAGG AAGGTTTTAA AGACAGTCTG AAAAATAGGA TGAGCCTGCT	7920
TAAGATTGTC CTCAATAAGT CCGAAAAATT TCTCTGGTTC CTTATTCTGG AAGTGAAACA	7980
GCAAGAGCTG ATAGAGCTGA TAGTGGTGTT TCAAGTCTTG TGAATGGCTC AAAAGCTTGT	8040
CTAAAATCTC TTTATTGGTT AAGTGCATAC GAAAAGTAGG ACGATAAAAT CGCTTATCAC	8100
TCAGTCTACG GCTATCCTGT TGAATGAGTT TCCAGTAGCG CTTGATATCC TTGTATTCAT	8160
GGGATTTTCG ATGAAACTGA TTCATGATTT GGACACGCAC ACGACTCATG GCACGCTAA	8220
GATGTTGTAC AATGTGAAAG CGATCAAGAA CGATTTTAGC ATTCGGGAGT GAAACAGTCT	8280
GGGAGACTGT TTCAGCCTGA GCCTAGGAAT TTGAAAGCGA AGCTGTTTAG CCAAGTCATA	8340
GTAAGGGCTA AACATATCCA TAGTAATAAT TTTGACGCGA CATCGGACAA CTCTATCGTA	8400
GCGAAGAAAG TGATTTCGAA TGATAGCTTG TGTTCTACCC TCAAGAACAG TGATGATATT	8460
GAGATTGTTA AAATCTTGCG CAATGAAGCT CATCTTTCCC TTTGTAAAAG CATACTCATC	8520
CCAAGACATA ATCTCAGGAA GACAAGAAAA ATCATGTTTA AAGTGAAAAT CATTGAGCTT	8580
ACGAATAACA GTTGAAGTTG AGATGGAAAG CTGATGGGCA ATATCAGTCA TAGAAATCTT	8640
TTCAATCAAC TTTTGAGCAA TCTTTTGGTT GATGATACGA GGGATTTGGT GATTTTTCTT	8700
GACGATAGAA GTTTCAGCGA CCATCATTTT TGAACAGTGA TAGCACTTGA ATCGACGCTT	8760
TCTAAGGAGA ATTCTAGTAG GCATACCAGT CGTTTCAAGA TAAGGAATTT TAGAAGGTTT	8820
TTGAAAGTCA TATTTCTTCA ATTGGTTTCC GCACTCAGGG CAAGATGGGG CGTCGTAGTC	8880
CAGTTTGGCG ATGATTTCCT TGTGTGTATC CTTATTGATG ATGTCTAAAA TCTGGATATT	
AGGGTCTTTA ATGTCTAGTA ATTTTGTGAT AAAATGTAAT TGTTCCATAT GAATCTTTCT	8940
	9000
AATGAGTTGT TTTGTCGCTT TTCATTATAG GTCATATGGG ACTTTTTTTC TACAATAAAA	9060
TAGGCTCCAT AATATCTATA GGGGATTTAC CCACTACAAA TATTATAGAG CCAACAATAA	9120
AAAGAAAAG TGTTTGATAG ATATCAAACA CTTTTTTCTT TGCCTCCCAC TATCTAAAAA	9180
AATGATAATA GATATAATTG TAAACAAAAA TCCAGATAGG TTTTGCATGA TTGAGAAAGT	9240
TAAAAAAACT ATGGCAGAGA ATCGTTAATC TCAGATTGTC GGTAGAACGA TAAACAAGGG	9300
CAAAAAAGAA ACCAATCAGA CTATAATATA ATAAACTAAT TGGATCTCTG TGAGATAGTA	9360

200 TCAAATGGCT AATCCCAAAG ATGATAGCAG ATAGGATAAC ATCCAAATAG TACTTGGACT 9420 AGGGAAAGAA GGTATTCATA AAATACCCTC TATCAAGAGT CTCCTCAAAA ACAGGACCGA 9480 TGATTACAGG CAGGACAAAA GATAAGATAG TCGATAAAAA GGTTGGTTGT CCATTTGAAA 9540 AAAGCACGGT AAAATACTCA TCATGAATAT TCCTATGATT AATCAAATGA GCATAGCGTG 9600 CCCAAAAATT ACCGAGAATC TGATAAACCA CATAAGTTGC AAATAAGTAG AAGACAAATG 9660 ACCAGTTCCA GCTCTTTTTC TCAAAGATAA AGAGCATCTT TTTCTTTTTT AACCTCCAAA 9720 TTAATAGAAG GAAACTTCCC ACTAATCCCA TTGTTAAAAT AAGAGAATAG ACATCAGCTC 9780 CTAACCCTAA AATGATCGTC ACATACAATC CAATTGTTTG TGGTAAATAG GTAGATAGTA 9840 AAATAATAAG CAAAAATATT CCAAATTGTC TTAGTTTTTT TGTGTTTCTC ATCGTACTTT 9900 TTTGAAAGAT TACCCTGCTC GGAAGCCGTA CTTCCAAGCA TCTATATAAG AATTAAGTGC 9960 CCCTTGCCTC ATATAGGGAG CAAATTCTCT ATAATATAAC CATCTACTAT ATCCATCTTC 10020 CCAAACAGCA AGACCACCTG AAGTTTGCTC CAAGTCCTCA GTTGAAAGAA CTGTAAATGT 10080 ATTTGTACCT GTCATTGCAA GTACCTTCTT AAAATAGATT GTTGTAGGCT CACATTTATA 10140 GTATATTTCT TTTTTTGTCT ATTTTATAGC CCATCTCCTC AACTGGCAAT TTTTCGACCT 10200 GAATTACATT TTTCCATAAA AAATGAGACC TTTCTAGTCT CATTTAGTCA TTCTTAGTAT 10260 TTTCTAAATC GTTGATAGCG TTCTTCCAGC AACTCTTCTA GCGGTTTTTG TGAAAGTCTA 10320 GCCAGCTCCG TTTGGAGTTC TTTTTTGACA CTCTTAATCA GTTCTTTACT AGAAAGTCCT 10380 ATTTCAGAAA TCACCTTATC CACCACGTCC ATTTCTAACA GTTCATGCGA AGTGATTTTC 10440 ATCAGTTCTG CTGCTTCCAT AGCGCGAGTA CCGTCCTTCC ATAAAATGGA AGCAAAGCCT 10500 TCTGGACTGA GAATGGCATA GATAGAATTT TCCAGCATCC AGACACGGTC CGCGACAGCT 10560 AGAGCCAGAG CCCCGCCTGA ACCACCTTCA CCGATAATAA TGGCGATAAT AGGAACTTTC 10620 AGGTCACTCA TTTCCATGAG ATTGCGAGCG ATAGCTTCCC CTTGACCACG TTCTTCCGCT 10680 CCGACACCAG GATAAGCACC TGCTGTATTG ATAAAGGTCA CAACTGGACG GCCAAATTTC 10740 TCAGCCTGTT TCATCAACCG CAGTGCCTTT CGGTAGCCTT CTGGATGTGG TTGGCCAAAA 10800 TTCCGTTTGA GGTTGTCTTG CAAACTCTTG CCTTTTTGGA TACCAACCAC TGTTACAGCT 10860 TGGTCTCCAA GCCAACCAAT ACCACCAACA ACTGCACCAT CATCACGAAA AGAACGGTCA 10920 CCATGTAATT GGATAAATTC ATCAAAAATG CCTGTCGCAA AGTCCAAGGT TGTCAAGCGA 10980 CTCTGCTCAC GCGCTTCTCT GACTATTTTT GCAATATTCA TCTAGGACTC CCTCCATGCA 11040 ATCTGACTAG GCTAGCAATC GTATCTGGTA AGTCTCTTCT TTTGACAATA GCATCCACAA 11100 AGCCATGTTC TAATAGGAAT TCTGCCTTTT GGAAATCCTC AGGCAAGCTT TCACGAACCG 11160

TATTTTCAAT CACACGACC	C CCAGCAAAA	C CAACCAAGC1	CTGTGGTTC/	GCCAGAATGA	11220
TATCGCCTTC CATAGCGA	A GAAGCTGTC	A CACCACCAG	CGTTGGATC	GTCAAAATGG	11280
TCAGGTAAAA GAGACCAGG	A TTTGAATGG	C GTTTAACCGC	CGCAGAGAT	TTAGCCATCT	11340
GCATGAGACT CATGATTCC	T TCCTGCATA	GGGCTCCACC	AGAGGCTGTG	AATAGGACAA	11400
CTGGCAATTT TTCGACAGT	C GCATACTCA	A ACAAACGAGT	GATTTTTCA	CCTACAACCG	11460
TACCCATAGA AGCCATGAT	A AAGTTAGAA	Г ССАТААТССС	: AAGAGCCACA	GTCTGACCTT	11520
TAATAAGAGC AGTTCCTGT	C ACAACGGCT	CATGCAGACC	TGTTTTTCA	CGCATAGATG	11580
CCAGTTTCTT TTGGTAACC	A GGGAAATGC	AGGGATCCTT	GCTTTCAATC	CCTGTAAACA	11640
ATTCTTTGAA GGTTCCCAT	A TCAATCGTC	AAGCCAAGCG	TTCTTGGGCA	GAAATACGAA	11700
AGGTATAGCT ACAGTGCGG	A CAGATACGTI	CACTTCCCAG	ATCCTTCTGA	TAGATGGTAT	11760
GCTTACAGCC TGGACACTG	G GAAAATAATI	CATCTGGAAC	CTCTGGCTTA	GCTTGAGGTT	11820
TTTCCCTAAC CGAACGATT	G GGATTGATTC	GAATATACTT	ATCTTTTTA	CTAAATAGAG	11880
CCATTGATTC CCCTTTTCG	G TTTAAACTCT	TAAAGTCATT	TTATTCTTTT	TCTTGATATT	11940
TAGGTAAGAA GGTTTCCAT	C AAGAAGGAAG	ТАТСАТААТС	CCCAGCAATG	ACATTGCGAT	12000
CTGAAATGAG GTCAAGCTG	G AAATCTGCAT	TGGTCTGCAC	TCCTTCAATT	TCTAATTCAT	12060
AGAGGGCACG TTGCATTTT	CATCAAGGCGT	CAAAACGATT	TTCGCCGTGT	ACTATGATTT	12120
TGGCAATCAT ACTATCATA	A TAAGGCGGAA	TGGTATAACC	TGGATAAACT	GCTGAATCCA	12180
CGCGCAAGCC AACTCCACC	A CTTGGCAGAT	AGAGATTAGT	AATCTTACCT	GGACTTGGAG	12240
CAAAGTTAAA GGCTGGGTT	TCTGCATTGA	TACGACACTC	GATGGCATGA	CCGCGTAGGA	12300
CAATATCTTC TTGCTTAAC	GACAAAGGCT	GACCTGCCGC	AATGCAAATC	TGTTCCTTAA	12360
CGATATCAAC ACCTGAAACA	A AACTCTGTTA	CTGGATGTTC	TACCTGAACA	CGAGTATTCA	12420
TCTCCATGAA ATAGAAATTO	CTACTTGCTT	CATCAAGAAG	AAATTCAATG	GTTCCTGCAT	12480
TCTCATAGCC AACAAACTCT	GCCGCTCGAA	CAGCAGCAGC	ACCTATTTCA	TGACGCAGCG	12540
TTTTTCCGAT TGCAATCGAC	GGACTTTCTT	CCAAAACCTT	TTGGTTATTC	CTTTGAAGAG	12600
AACAATCCCG TTCACCCAAC	TGAATCACAT	GTCCATGCTC	ATCACCTAGG	ATTTGAACCT	12660
CAATGTGCCG AGCTGGATAG	ATAACCCGTT	CTATGTACAT	GGCACCATTG	CCATAATTGG -	12720
CCTTGGCCTC ACTAGAGGCA	GTTTCAAAGG	CAGAAACGAG	GTCATCTGGT	TTTTCAACCT	12780
TACGAATCCC TTTACCACCT	CCACCTGCTG	AAGCCTTGAG	CATAACAGGA	TAGCCAATTT	12840
TTTCAGCAAC AATCAAAGCT	TCTTCAGAGT	TATGCACTTC	TCCATCTGAA	CCTGGTATAA	12900

		202			
CAGGCACACC TGCTTT					12960
TAACATGACC AGATGG	ACCG ATAAACTTG	A TACCTACTTC	TTCACACATO	GTCGCAAATT	13020
TGGAATTTTC ACTGAG	AAAT CCAAAACCA	G GGTGAATAGC	TTCTGCCTCA	GTCAAGACTG	13080
CAGCTGATAG AACTGC	ATTA ATATTGAGA	r aagactctgt	TGCCTTGCCA	GGACCAATAC	13140
AAACTGCTTC ATCTGC	CAAA AGCGTATGAI	A GAGCTTCCTT	ATCAGCAGTT	GAATAAACCG	13200
CTACCGTCGC AATCCCC	CAAT TCACGTGCC	G CACGGATAAT	ACGAACCGCA	ATTTCACCAC	13260
GATTGGCAAT TAAAAT	PTTT CGAAACATG	G AGAACCTCCT	TAGTTCCCAA	TTGCAAAAGT	13320
AAGGGTACCA CTGGCTG	GCAA GCTTGCCAT	CACTTCAGCC	TTTGCTTCAA	CCACAGCTAT	13380
GGTGCCACGA CGTTTT	ACAA AAGTCGCTG1	CATAACCAAT	TGGTCGCCTG	GTACAACTTG	13440
CTTCTTGAAC TTAACCT	PTGT CCATACCAGO	GTAAAAGACC	AGTTTTCCTT	TATTTTCAGG	13500
TTTTGATAAC TCCAACA	ACAC CGGCAGTTTG	CGCCAAGGCT	TCCATAATCA	CAACACCTGG	13560
CATAACTGGG TATTGAC	GAA AGTGGCCGTT	AAAGAAAGGC	TCGTTGATGG	TCACATTTTT	13620
GATAGCAACA ATGGTAT	CCT CGCTCACTTC	CAAGACACGG	TCCACTAGAA	GCATAGGATA	13680
ACGGTGGGGA AGAGCTI	CTT TGATTCCTTG	AATATCGATC	ATTTGATACG	TACCAATCCT	13740
TTACCAAACT CAACCAT	TTC TTCGTTAGAG	ACGAGAATTT	CCGTTACCAC	ACCATCCTTA	13800
GGAGCTGGGA TTTCATT	CAT GACTTTCATG	GCTTCGATAA	TTACCAATGT	TTGACCTTTT	13860
TTGACACTAT CACCAAC	TGT AACGAAGGCA	GGTTTATCTG	GTCCAGCAGC	CAAGTAAACC	13920
ACTCCAACAA GTGGACT	CTC TACAAGATTT	CCCTCAGTAG	CCACACTTGC	TTCAGCTGGA	13980
GCTGGAACTT CTTCTGC	TAC AGTCTCTGCT	GGAGCAGATG	TAGGAGCTAC	TGGACTCGGT	14040
GTTGCTAGAA CGGGTGC	TGG AGCGACTTGA	GTTGCAACTT	CAGGCACAGG	TCTTGCTTCA	14100
TTCTTGCTAA ACTGCAA	CTC ATCCGTCCCA	TTTTTATAAG	AAAATTCTCT	CAAACTTGAC	14160
TGGTCAAATT GAGTCAT	CAA GTCTTTAATA	TCGTTTAAAT	TCATACTTAT	CTATTCTCCC	14220
AACGTTTGAA AGCAAGA	ACT GCATTGTGGC	CTCCAAAACC	AAAAGTATTT	GAAATAGCGT	14280
ATGGAATTTC TTTCTCC	AAG CCTTGTCCAT	AAACGACATT	AGCTTCGATA	TAATCTGATA	14340
CTTCACTTGT CCCAGCTC	STC ATTGGTACAA	AGTTATGACG	CATAGCTTCG	ATGGTGACGA	14400
TAGCTTCTAC TGCACCCC	GCA GCCCCCAGCA	AATGTCCTGT	AAAAGACTTG	GTTGATGATA	14460
CAGGTACTTC CTTACCA	AGA ACAGCTACGA	TAGCACCACT	TTCTCCTTTT	TCATTGGCAG	14520
GAGTTGACGT TCCGTGAC	GCA TTGACATAGG	CTACTTGCTC	TGGAGAAATC	TCAGCTTCTT	14580
CCAAGGCTAG TTTGATGC	GCC TTGATAGCTC	CCTGACCTTC	TGGATGTGGA	GAAGTCATGT	14640
GGTAGGCATC ACAAGTAT	TTT CCGTAACCAA	CCACTTCAGC	CAGGATAGTA	GCTCCACGTT	14700

TTTCAGCGTG TTCAAGACTT TCTAGAACCA ACATCCCTGA ACCTTCACCC ATAACAAACC	14760
CATTGCGATC CTTATCAAAT GGGATCGAAG CACGAGTTGG ATCCTCTGTA GTAGAGAGAG	14820
CTGTTAAGGC TTGGAAACCA GCGATGGCAA AAGGTGTGAT AGAAGCTTCT GTTCCTCCCA	14880
CCAACATCAC ATCTTGGAAA CCAAACTTAA TGGAGCGGAA GGCATCCCCA ATCGCATCAT	14940
TTGATGAAGA GCAGGCAGTA TTGATAGATT TACAAACACC GTTTGCACCA AAACGCATGG	15000
CTACATTCCC AGAAGCCATA TTTGGTAAAG CTTTTGGAAG AGTCATTGGT TTGACACGTT	15060
TGGGTCCTTT TTCATGAAGG CGAAGTACCT GATCTTCAAT TTCCTTGATT CCACCAATAC	15120
CAGATGCAAC GATAACACCA AAACGATCCC TATTAAGAGC CTCTACATCA AGATTGGCAT	15180
GATTTACAGC CTCTTGGGCT GCATACAAGG CATATAAAGA ATAGTTATCA AAACGGTTGG	15240
TATCTTTTTT TACAAAGTAT TTATCGAACG GAAAATCTTG GATTTCTGCC GCATTATGCA	15300
CATCAAAGTC ACTATGATCA AATTTTGTAA TGCCACCAAT GCCGATTTTC CCAGTTGCTA	15360
AACTATTCCA AAATTCTTCT GGTGTATTTC CGATTGGAGA TGTTACTCCA TAACCTGTTA	15420
CCACTACTCG ATTTAGTTTC ATTCTTTTCA CCTCTAGCTT TCGCTACATA CTTAAGCCAC	15480
CATCAATGGC AACCACTTGT CCAGTTAGAT AATCTTGGCC TGCTAAAAAT ACTGTCAAAT	15540
CTGCAACCTG CTCTGCCTGC CCAAATTCTT TCATCGGAAT CTGAGCTAGT GTAGCTTCCT	15600
TAATCTTATC TGACAGGATA GCGGTCATAT CAGACTCAAT CATTCCTGGA GCAATCACAT	15660
TGACTCGTAT ATTCCGACTA GCGACCTCGC GTGCCACAGA CTTGGTAAAG CCAATCAAGC	15720
CAGCCTTAGA AGCAGCATAA TTAGCTTGAC CAATATTCCC CATCAAACCA ACAACACTAG	15780
ACATATTAAT GATAGCACCT TCTCTGGCTT TCATCATCGG TTTCAAGACT GATTGTGTCA	15840
TATTAAAGGC ACCAGTCAGA TTGACCTTGA GCACTTTTTC AAAATCTGCT TCTGTCATCT	15900
TGAGCATAAG AGTATCTTGG GTAATCCCTG CATTGTTGAC CAAAACATCT ACTGAACCCA	15960
GTTCTGCAAT AGCTTGATCA ATCATACGCT TAGCGTCTGC AAAATCTGAT ACATCTCCTG	16020
AAATGGGAAC CACCTTGATA CCATAGTTTG AAAACTCAGC GAGCAATTCT TCTGAGATTG	16080
CCCCACGACT GTTTAAGACA ATGTTGGCTC CTGCTTGAGC AAACTTGTGG GCGATGGCAA	16140
GACCAATTCC ACGACTCGAA CCTGTAATAA AGATATTTTT ATGTTCTAGT TTCATTTTTT	16200
TCCTTTCAAA ACTTCTACTT ATTTTAGTCT ATTTTTCTAA AAGTGCTACT AAACTCGCTT	16260
GATCTTCCAC ATGAGCTAAG TGAGCAGTTT GATCAATTTT TTTAACAAAA CCTGACAAGA	16320
CTTTCCCCGG TCCAATCTCG ATAAAGTTGC TTATGCCTGC TTCTTGCATG ACCCCAATAC	16380
TTTCATAGAA ACGAACGGGT TCCTTGACCT GACGCGTCAA GAGCTGAGCA ATGTCCTCTT	16440

TTTGCATCAC ACCACCTTCT CTATCAC ACCACCTTCT CTATCAC	
TTTGCATCAC AGCAGCTTCT GTATTGCCGA CTAGGGGACA AGTAAAATCT GAAAAACTTA	16500
CCTGAGCTAG AGTTTCAGCT AGTTTCTGGC TAGCAGGTTC AAGGAGAGCG GTGTGAAAGG	16560
GACCTGACAC CTTAAGAGGA ATCAAGCGTT TGGCACCTGC TTCTTGCAAA AGTTCAACCG	16620
CTCGATCAAC TGCAACCACT TCTCCAGCAA TGACGATTTG TGCAGGTGTG TTATAGTTGG	16680
CTGGAGTAAC CACTCCAAGT TCAGAAGCTT TTTGACAGGC TTCTTCAATG ACCTCTACTG	16740
GCGTATTGAG AACTGCTACC ATCTTGCCAG AGTCAGCAGG AGCCGCTTCT TCCATATAGG	16800
CTCCACGCTT AGCTACCAAG GCAACCGCAT CTTCAAAATC CAAGGCGCCA CTTGCCACCA	16860
AGGCAGAGTA TTCTCCAAGA GACAAACCAG CAACCATATC AGGCTGATAG CCCTTTTCTT	16920
GCAATAAACG GTAGATAGCA ACCGAAGTCG CTAGAATGGC TGGTTGCGTA TAGCGGGTCT	16980
GATTGAGTTT GTCTTCTCC GTATCGATGA GATAACGCAA ATCATAACCG AGCACCTGGC	17040
TCGCTCGATC AATCGTTTCT TTAACAATCG GATACTGATC ATAGAAATCC CGTCCCATCC	17100
CTAGATACTG GGCACCTTGA CCAGCAAATA AAAAGGCTGT TTTAGTCATT TCTTACAACT	17160
CCTGTCCAGC GAGAGGCTTC TTCTTGAATT TTCTTAGCGG CTCCGTAATA CAAATCTTTT	17220
AGGATTTCTT CAGCTGTTTC TTCTTTAGAA ACAAGCCCTG CGATTTGACC TGCCATAACA	17280
GAGCCACCAT CCACATCACC GTGAACAACT GCTTTGGCTA GAGCACCTGC TCCCATTTGT	17340
TCAAAGATTT CTAAATCAGG ATCTTCTTGC TTAAAGGCAT CTTTTTCAGC CAGTTCAAAA	17400
TCTCTAGTCA ACTGATTTTT AATAGCACGA ACAGCATGAC CAAAGTGCTG AGCTGAAATC	17460
GTAGTATCAA TATCCCTTGC TTTTAAAATT TTCTCCTTGT AGTTTGGATG GGCATTCGAC	17520
TCTTTTGCAA CTACAAACCG TGTCCCCACC TGTACAGCCT CTGCACCTAG CATAAAGCCA	17580
GCCGCAGCAC CTTCACCATC CGCAATTCCT CCTGCAGCAA TAACAGGAAT AGATATAGCT	17640
GTGGCTACCT GTCGCACCAA GGTCATGGTT GTTAATTTAC CGATATGCCC CCCAGCTTCC	17700
ATTCCTTCTG CAATAACAGC GTCTGCACCG ATTTTTTCCA TGCGTTTAGC TAAAGCGACA	17760
CTAGGAACAA CAGGAATAAC GATTATCCCA GCTTCATGGA AACGTTCCAT ATACTTGCTT	17820
GGATTTCCTG CTCCTGTTGT GACAACTTTA ACACCTTCTT CAATAACGAG ATCCACGATG	17880
TCTTCCACAA AGGGAGATAA GAGCATGATG TTGACCCCAA AGGGTTTATC AGTCAATGAT	17940
TTGATTTTAT CAATATTGGC CTTGACAACT TCTTTCGGGG CATTTCCCCC ACCGATAATT	18000
CCTAATCCTC CAGCCTTGGA AACAGCCCCT GCCAAATCAC CATCAGCAAC CCAGGCCATC	18060
CCTCCTTGGA AAATAGGATA ATCAATCTTC AATAATTCTG TAATACGCGT TTTCATAGTG	18120
CCTCCAACCT TCCTTGCTTA CGTAATAGTT CGATTTCACC ATAATTTGAC AGTCAAACTA	18180
TTACCTAAAC AAGAGGGAGT GGGTTTCTCC CTACTCCTTC TACTAATATT CTGCTTATTT	18240
	10240

TGCTTGCTC	T TCAACGTAAC	CAACCAAGTO	ACCAACTGTT	TTCAAGTCAT	TTTCTGCTTC	18300
GATTTGGAT	A TCAAAAGCAI	CTTCGATTTC	TGAGATTACT	TGGAACAAGT	CCAATGAATC	18360
TGCGTCCAA	А ТСАТСАААА	TTGATTCAAG	TGTTACTTCT	GATGCGTCTT	TTCCAAGTTC	18420
TTCAACGAT	A ATTTCTTGTA	СТТТТТСААА	TACTGCCATG	ATAGGACTCC	ТТТААААТАА	18480
ATACTTTTT	T TATAACAATG	TGTTCACCAC	ATGATTACCT	AAATTGTAAG	AATGAGCGTG	18540
CCCCAGGTC.	A AGCCTCCACC	GAAGCCTGAT	AGAAGAACAG	TCTGGCTACC	ATCTAAAGGG	18600
ATGAGACCT	I GTTCTACACA	CTCTGAAAGT	AAAATCGGGA	TACTGGCTGC	ACTGGTATTG	18660
CCATATTCC	A TCATATTGGC	TGGAAGTTTG	GCTCGGTCAA	CACCAATTTT	TCTAGCCATC	18720
TTATCCAAA	A TACGGTCATT	GGCTTGATGA	AGTAGCAGAT	AATCCAAGTC	TGTCACCTCT	18780
ATAGGAGAT	r catcaatagt	CTGCTTGATA	GACTTGGCTA	CATCTCGAAT	GGCAAAATCA	18840
AAGACTGTG	GTCCATCCAT	СТТСАААААС	GAATCTGCAC	TTTCTTGATC	TGAAAATGGA	18900
GAATGTAAA	CTGAATGCCC	ATAAGTTAAA	CACTCGCTGC	GACTTCCATC	GCTATTGAGA	18960
CTCTCAGCTA	AGAAATGCTC	TTGCTCGCTA	GCTTCTAACA	AGACACCACC	AGCACCATCT	19020
CCAAACAACA	CAGCTGTTGA	TCGATCCGAC	CAATCGACTG	CCTTAGAGAG	GGTTTCACTA	19080
CCAATCACCA	AGCCTTTTTG	AAAGCGACCA	GAAGCGATAA	ACTTTTCAGC	AGTTGAAAGA	19140
GCAAATACAA	ATCCACTGCA	AGCCGCGGTT	AAGTCAAAAG	CAAAGGCTTT	ATTAGCACCA	19200
ATATTAGCTT	GAACACGAGC	AGCTGTAGAG	GGCATCATCG	AATCTGGAGT	AATGGTAGCT	19260
	AATCCAGTTC					19320
ACCTCTGTAG	CCAAATCACT	GGTAGATTCT	GTTCTTGAAA	TATGCCTTTG	TCGTATTCCC	19380
	AAATCCACTC					19440
	CTGGCACATA					19500
	AAATTGGTAA					19560
	ATCAATAATT					19620
	ACCCTTCTTT					19680
	AATGTAGCCC					19702
						13.02

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6211 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

206

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

GAAAATTTCC TCTCTTCTCT TGAAAAATTT TGAAAAATTG GTATGATAGT AACAAGTTAT	60
TTTTAAGAGG AAAGAAAGGG GAATAATGGA GAAAATCAGT TTAGAATCTC CTAAGACGGG	120
GTCGGACCTA GTTTTGGAAA CACTTCGTGA TTTAGGAGTT GATACCATCT TTGGTTATCC	180
TGGTGGTGCG GTTTTGCCTT TTTATGATGC GATATATAAT TTTAAAGGCA TTCGCCACAT	240
TCTAGGGCGC CATGAGCAAG GTTGTTTGCA TGAAGCTGAA GGTTATGCCA AATCAACTGG	300
AAAGTTGGGT GTTGCCGTCG TCACTAGTGG ACCAGGAGCA ACAAATGCCA TTACAGGGAT	360
TGCGGATGCC ATGAGCGATA GCGTTCCCCT TTTGGTCTTT ACAGGTCAGG TGGCGCGAGC	420
AGGGATTGGG AAGGATGCCT TTCAGGAGGC AGACATCGTG GGAATTACCA TGCCAATCAC	480
TAAGTACAAT TACCAAGTTC GTGAGACAGC TGATATTCCG CGTATCATTA CGGAAGCTGT	540
CCATATCGCA ACTACAGGCC GTCCAGGGCC AGTTGTAATT GACCTACCAA AAGACATATC	600
TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC	660
TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA	720
GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA	780
ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC	840
AACGAGTCAC CCACTCTTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT	900
TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC	960
GGGGAATCCT AAGACTTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC	1020
TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT	1080
GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT	1140
CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	1200
AGCAGTTATT GAACGAATTG GTGAATTGAC GAATGGAGAT GCCATTGTGG TAACAGACGT	1260
TGGTCAACAC CAAATGTGGA CAGCTCAGTA TTATCCCTAC CAAAATGAAC GTCAGTTAGT	1320
GACTTCAGGT GGTTTGGGAA CAATGGGCTT TGGAATTCCA GCAGCAATCG GTGCTAAAAT	1380
TGCTAACCCA GATAAGGAAG TAGTCTTGTT TGTTGGGGAT GGTGGTTTCC AAATGACCAA	1440
CCAGGAGTTG GCTATTTTGA ATATTTACAA GGTGCCAATC AAGGTGGTTA TGCTGAACAA	1500
TCATTCACTT GGAATGGTTC GCCAGTGGCA GGAATCCTTC TATGAAGGCA GAACATCAGA	1560
GTCGGTCTTT GATACCCTTC CTGATTTCCA ATTGATGGCG CAGGCTTATG GTATTAAAAA	1620
CTATAAGTTT GACAATCCTG AGACCTTGGC TCAAGACCTT GAAGTCATCA CTGAGGATGT	1680

TCCTATGCT	A ATTGAGGTA	G ATATTTCTC	G TAAGGAACA	G GTGTTACCAI	TGGTACCGGC	1740
TGGTAAGAG	T AATCATGAG	A TGTTGGGGG	T GCAGTTCCA	T GCGTAGAATC	TTAACAGCAA	1800
AACTACAAA	A TCGTTCAGG	А СТССТСААТ	C GCTTTACAG	G TGTCCTATCT	CGTCGTCAGG	1860
TTAATATTG	A AAGCATCTC	T GTTGGAGCA	A CAGAAGATC	GAATGTATCO	G CGTATCACTA	1920
TTATTATTG	A TGTTGCTTC	T CATGATGAA	G TGGAGCAAA	CATCAAACAG	CTCAATCGTC	1980
AGATTGATG	r gattcgcat	r CGAGATATT	A CAGACAAGC	TCATTTGGAG	CGCGAGGTGA	2040
TTTTGGTTA	A GATGTCAGC	G CCAGCTGAG	A AGAGAGCTG	GATTTTAGCG	ATTATTCAAC	2100
CTTTCCGTG	C AACAGTAGT	A GACGTAGCG	CAAGCTCGAT	TACCATTCAG	ATGACGGGAA	2160
ATGCAGAAA	A GAGCGAAGC	CTATTGCGA	TCATTCGCCC	ATACGGTATT	CGCAATATTG	2220
CTCGAACGG	G TGCAACTGG/	TTTACCCGC	TAAAAATTA	СААСТТАААТ	ТТАТТАААСС	2280
AGCCTAAAA	G GCAATAAAT <i>I</i>	ATAGAAAAG	GAGAAAAGCT	ATGACAGTTC	AAATGGAATA	2340
TGAAAAAGAT	GTTAAAGTAG	CAGCACTTG	CGGTAAAAA	ATCGCCGTTA	TCGGTTATGG	2400
TTCACAAGGC	CATGCGCATG	CTCAAAACTT	GCGTGATTCA	GGTCGTGACG	TTATTATCGG	2460
TGTACGTCCA	GGTAAATCTI	TTGATAAAGC	AAAAGAAGAT	GGATTTGATA	CTTACACAGT	2520
AGCAGAAGCT	ACTAAGTTGG	CTGATGTTAT	CATGATCTTG	GCGCCAGACG	AAATTCAACA	2580
AGAATTGTAC	GAAGCAGAAA	TCGCTCCAAA	CTTGGAAGCT	GGAAACGCAG	TTGGATTTGC	2640
CCATGGTTTC	AACATCCACT	TTGAATTTAT	CAAAGTTCCT	GCGGATGTAG	ATGTCTTCAT	2700
GTGTGCTCCT	AAAGGACCAG	GACACTTGGT	ACGTCGTACT	TACGAAGAAG	GATTTGGTGT	2760
TCCAGCTCTT	TATGCAGTAT	ACCAAGATGC	AACAGGAAAT	GCTAAAAACA	TTGCTATGGA	2820
CTGGTGTAAA	GGTGTTGGAG	CGGCTCGTGT	AGGTCTTCTT	GAAACAACTT	ACAAAGAAGA	2880
AACTGAAGAA	GATTTGTTTG	GTGAACAAGC	TGTACTTTGT	GGTGGTTTGA	CTGCCCTTAT	2940
CGAAGCAGGT	TTCGAAGTCT	TGACAGAAGC	AGGTTACGCT	CCAGAATTGG	CTTACTTTGA	3000
AGTTCTTCAC	GAAATGAAAT	TGATCGTTGA	CTTGATCTAC	GAAGGTGGAT	ТСААGААААТ	3060
GCGTCAATCT	ATTTCAAACA	CTGCTGAATA	CGGTGACTAT	GTATCAGGTC	CACGTGTAAT	3120
CACTGAACAA	GTTAAAGAAA	ATATGAAGGC	TGTCTTGGCA	GACATCCAAA	ATGGTAAATT	3180
TGCAAATGAC	TTTGTAAATG	ACTATAAAGC	TGGACGTCCA	AAATTGACTG	CTTACCGTGA -	3240
ACAAGCAGCT	AACCTTGAAA	TTGAAAAAGT	TGGTGCAGAA	TTGCGTAAAG	CAATGCCATT	3300
CGTTGGTANA	AACGACGATG	ATGCATTCAA	AATCTATAAC	ТААТТАСААА	TATATAGCGC	3360
TGGAGATGAT	TTTATGAAAA	AGATTATGAG	AAAAATTGCA	TCGTTATTAT	TGGTTCTAGT	3420

208	
TGTATAATGT AATTACACCG TCGGTAATAG TGCTAGCAGA CCAAAATAAA GCAGATTGGT	3480
CGTATGATGA AAATGCTGTA ATTAACATTT ATGATGATGC TAATTTTGAA GATGGTAGGT	3540
TGCATATGAA CTTTGAACAA TTCTTCAAAT TGGCACAAAT AGCTAGAGAA GAAGGTCTTG	3600
AAATTCATTC TCCGTTTGAG AGAGCTGGTG CGACTAAATC TGCTCGTTAT ATAGCGAAAT	3660
GGATTTTGAG AAATAAAAAA CATTAACAAA TATAGTTGGT AAATCATTAG GACCTAAATC	3720
AGCTGTTAGA TTCGGAGAAG CTTTATCCTA TATTGAAGGT CCTCTTCGCA GAATAAATGA	3780
GACGATAGAT GGCGGTTTAT ATCAAATAGA GCAAATTATT GCATCTGGAT TGAAAGAATC	3840
GGGTTTAAAT GACTGGACTG CGAAAACTTT AGCTTCAGCT ATTCGTGGGA TATTAGATGT	3900
ACTTATTTAG GGGTTGAAAT CATATGAATA TTACCAATTT GTTTTCTATC AAGACAGGAT	3960
GTGATGAAAC TGATAGGCAA CTGCAAAAAC TATTTTTTCA GTTGGATTTA CAATTGGGAG	4020
AATTGACAGA TCAACTAAGA AAATTAGATT CTAATTTTGT TCCTCGTAGT CAATTTGTAG	4080
ACACGTTGGA TTTGAATGAT GTAGAATATA AAGAAATTTT AAACTATTTT ATCTTCCATC	4140
GTAATGATAG TGAAGAAAGT TTGGTAGAAT GGTTATATGA TTGGATTTCC ACAAATCGTT	4200
ATGAACTTCC TAAAGAGTTT TCGATTCGTA TGGCTCATAA ATACCATGAA AGTGTTACTG	4260
AAGTTTTCGG AGATGAATAA CTAAAAAACA GTCATTAGTG ACTGTTTTTT ATAGAAAAAG	4320
AGGTTTTATA TGTTAAGTTC AAAAGATATA ATCAAGGCTC ACAAGGTCTT GAACGGTGTG	4380
GTTGTGAATA CTCCACTGGA TTACGATCAT TATTTATCGG AGAAGTATGG TGCTAAGATT	4440
TATTTGAAAA AAGAAAATGC CCAGCGTGTT CGCTCCTTTA AAATTCGTGG TGCCTATTAT	4500
GCCATTTCCC AGCTCAGCAA GGAAGAACGT GAACGTGGGG TAGTCTGCGC TTCTGCGGGA	4560
AATCATGCGC AGGGAGTAGC CTATACTTGT AATGAAATGA	4620
ATGCCCATTA CTACGCCACA ACAAAAGATT GGTCAGGTTC GCTTTTTTGG TGGGGATTTT	4680
GTAACTATTA AACTAGTTGG AGATACCTTT GATGCCTCAG CCAAAGCAGC TCAAGAATTT	4740
ACAGTCTCTG AAAATCGTAC CTTTATTGAT CCTTTTGATG ATGCTCATGT TCAAGCAGGT	4800
CAAGGAACAG TTGCTTATGA GATTTTAGAA GAAGCTCGAA AAGAATCGAT TGATTTTGAT	4860
GCTGTCTTGG TTCCTGTTGG TGGTGGCGGT CTCATTGCCG GGGTTTCTAC CTATATCAAG	4920
GAAACAAGTC CAGAGATTGA GGTTATCGGA GTAGAGGCGA ATGGAGCGCG TTCCATGAAA	4980
GCTGCCTTTG AGGCTGGAGG TCCAGTAAAA CTCAAGGAAA TTGATAAATT TGCTGATGGG	5040
ATTGCTGTGC AAAAGGTAGG TCAGTTGACC TATGAAGCAA CTCGTCAACA TATTAAAACT	5100
TTGGTAGGTG TCGATGAGGG ATTGATTTCT GAAACCTTGA TTGACCTTTA CTCTAAGCAA	5160
GGGATAGTCG CAGAACCTGC TGGAGCGGCT AGTATCGCCT CTTTAGAGGT TTTAGCTGAA	5220

209

TATATTAAGG	GGAAAACCAT	TTGTTGTATC	ATTTCTGGAC	GAAATAATGA	TATCAACCGT	5280
ATGCCAGAAA	TGGAAGAGCG	TGCCTTGATT	TATGATGGTA	ТСАААСАТТА	CTTTGTGGTC	5340
AATTTCCCAC	AACGTCCAGG	AGCTTTGCGT	GAGTTTGTAA	ATGATATCCT	GGGGCCAAAT	5400
GATGATATCA	CACGTTTTGA	GTATATCAAA	CGAGCTAGCA	AGGGAACAGG	CCCAGTATTA	5460
ATTGGGATCG	CTTTAGCAGA	TAAGCATGAT	TATGCAGGTT	TGATTCGTAG	AATGGAAGGT	5520
TTTGATCCAG	CTTATATTAA	CTTAAATGGT	AATGAAACGC	TTTATAATAT	GCTTGTCTGA	5580
GGACTAATAA	ааааататса	TACCTTCATT	TTGATTTCCT	ATCTATTGAC	AAGCATAGTC	5640
ACACTGTCTT	PAATACTCTT	CGAAAATCTC	TTCAAACCAC	GTTAGCTCTA	TCTGCAACCT	5700
CAAAACAGTG	ITTTGAGCAA	CTTGCGGCTA	GCTTCCTAGT	TTGCTCTTTG	ATTTTCATTG	5760
AGTATAAGGT A	ATGATTTGAT	TTCTTTTTGT	ТСАСАААТАТ	АСТАТАТТАА	AAAGATATAT	5820
AAGTAATTAA (TGAGCTTAT	CTGTCTTGTC	АТСТСТАТТА	AGGATGGTTT	AGATAATCGG	5880
GTGTCTGCTT (TAGGCTAGC	АССТСААТАТ	CCAAAGGAGT	GATGAATTTG	AAGGACATAA	5940
GGAATACCTA T	CTCTCAGAT	GATTTATTGA	GGAAGAAAGA	TAGGAGTTTT	TGAGCTAGTG	6000
AAGGCTTGGA T	TTCTAAAGG	ТТАСААСТАТ	CATCTTCAGT	TCTTAAATCG	AAGAAATAAG	6060
CTATCTTACG G	AAATAGAGA	AGCATTTTTT	AAGAACTTGA	ATAATTTCGC	ACCTTAAGAG	6120
GGTAATAATA C	AGTATTTTT	ATTAGCAAAT	ATTTATGGTG	TAGAGGCTAG	CAAAACCTAT	6180
ATATTATCGG A						6211
(2) INFORMAT	ION FOR SE	Q ID NO: 9:				

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7939 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CCGGACTCCC	CACGATTCTT	CAAAATAACT	GAGTATATTT	CTATCTTGAT	TTTCAGATAT	60
AAATTCTTCC	TTCTGTGGCC	TCTTCTTACG	CTTGAGAAGA	GCTTCTCCGA	CATGGCTTCT	120
TCCTTACTGA	GCAAAACCTT	GAGCATAGAT	AAGTTTGACT	GGCAAGCGTG	CTCTTGTATA	180
TTTGGCTCCC	TTCCCACTAT	TGTGGATAGC	GAGGCGTCTT	CTCATATCAG	TCGTATAGCC	240
TATATAGTAG	GATCCATCAC	GACACTCCAG	AACGTACATA	TAAGCCTTAT	GATCCATAAT	300
AAATCTCTTC	GATTTCGGGC	GTATAAGAGC	CATCATCATT	GTGGACAATC	AAAGGAGGTA	360

210	
AGACCTTAAA GCCACTTGTT GAGCCATCCT TGATCGCCTC AATCAAAAGC ATATTGGCTT	420
CCTTTTCTCT TTTTGGATAA ACAAACTGCA GGCGCTTAGG GGCTAGATTA TGTCGTTTTA	480
ACGTATCCAA AATATCCAGA AGTCGATCAG GACGATGAAC CATGGCCAAA CGCCCATTAG	540
ACTTGAGAAT ACTCTGGGCA CTACGACAGA TTTCTTCCAA ATTAGTCGTG ATTTCGTGTC	600
GAGCCAAGAG ATAATGTTCA CTCTCGTTCA GATTAGAATA AGGATTCACC TTGAAATAGG	660
GTGGATTACA CAAAATCATA TCCACCTTAC TCCCCTGAAT GTGAGCAGGC ATATTTTTCA	720
AATCATCGCA GATGACCTGC ATTTGCTCCT CTAATCCATT CAAACGGACA GAGCGTTCAG	780
CCATATCCGC CAAACGCTCC TGAATCTCAA CAGACAATAT CTGTGCTTGA GTACGAGTGC	840
TAGCAAAAAG CCCCACTGCT CCATTCCCAG CACAGAAATC CACAATCAAC CCCTTCTTAG	900
GAAAACGTGG AAATCGTGAT AAGAGAACAC TATCCACCGA ATAGCTAAAA ACCTCTCTAT	960
TTTGAATGAT TTTGATATCT GTCGAAAAGA GCTGGTTAAT GCGCTCTCCT GATTTTAATA	1020
ATTGTTCTTC TTCCATGGTC CTATTATAGC AAATTCATAT TAACATTACA AAAAATATAA	1080
AACTCTAAAC TACTTCTTCT TTTTTAAATG GTGCAGGGCT TCTCCAGTCC AGATTGGTAG	1140
CATTCGTCGA AAGGGAGCAA AGCCGTAGTT AAAGCGGTCG CTTGAAAAGC GTCTCCGTCT	1200
AGGAAACTGG TACTTTTCTT CCTCCAAAGT GCGGATAGAA AGACTGGCTT TCCCTGTAAA	1260
TTCATCTARA TCCACTACCT GAACTTGAAC CTCTTCATCG ACTTTCAAGG TTTCATGAAT	1320
ATTITCAATA AATCCTGTCC GAATCTCTGA AATGTGAATC AGCCCCGTAT CACCCGTCTC	1380
TAACTCAACA AAGGCACCGT AGGGCTGAAT CCCTGTAATA CGCCCCTTTA GCTTATCACC	1440
GATTTTCATC TTAGTCCTCG ATTTCAATAG TTTCAATTAC AACATCTTCA ACTGGCTTGT	1500
CCATAGCTCC TGTCTCAACA GCAGCAATGG CATCCAAGAC AGCGTAAGAT GCTTCATCAG	1560
CTAACTGACC AAAAACCGTG TGACGGCGGT CTAGGTGAGG TGTCCCACCT TGATTGGCAT	1620
AGATTTCTGC AATCGGTTCT GGCCAACCAC CACGAGTAAT TTCTTTCTTA GAATAAGGTA	1680
GGTGTTGGTT TTGCACGATA AAGAACTGGC TGCCGTTGGT ATTTGGACCA GCATTTGCCA	1740
TGGAAAGAGC ACCACGGATA TTGTAAAGCT CTTCTGAGAA TTCATCCTCA AAAGATTCGC	1800
CGTAGATTGA CTCGCCACCC ATACCAGTTC CAGTTGGGTC TCCACCTTGG ATCATAAAGT	1860
CCTTGATAAT ACGGTGGAAA ATGACACCAT CATAGTAGCC ATCTTTTGAA AGAGATACAA	
AGTTAGCCAC TGTTTTAGGA GCATGTTCAG GGAAAAGCTT GATACGTAAG TCTCCGTGAT	1920
TGGTCTTAAT AGTCGCAAGA GGACCTTCTA CTGTTTCAAT GTCTACTTGT GGAAAATGCA	1980
ATTCTTTTTC TACCATACCA AATACTTCTA AGGCAGCAAA AATGCCATCT TCTTCTAATG	2040
TTTTTGTAAT ATAATCTGCT TTTTCTTTGA TTTTATCATG AGAAATTCCC ATGGCAACGC	2100
AGAMATICC ATGCAACGC	2160

	TGATTCCAGC	ATAATCAAAG	AGTTCCAAGT	CGTTGAGACC	ATCTCCAAAA	ACCATGACCT	2220
	TCTCTGGTTT	CAAGCCAAGG	TGTTCCACAA	CCTTTTCCAC	CCCCGTCGCT	TTGGAGCCTG	2280
	AAATCGGCAC	AATATCAGAC	GAATGTTGAT	GCCAACGAAC	CATGCGAAGT	TTGTCTGAGA	2340
	GACTGTCAGG	CAAGTGCAAG	TCATCTCCCT	ТАТСТТСААА	AGTCCACATC	TGATAGATAT	2400
	CTTCTTTTTC	ATGGAAATCG	GGATCTACAT	CTAAGTCGGG	ATAAATTGGA	TTGATAGCTT	2460
	CACTCATCAT	ATCGGTGCGA	GTCGACAACT	TGGCATCATG	ACTCCCAACC	AAGCCATACT	2520
	CAATTCCTTC	TTGCTTAGCC	CAAGAGATAT	ACTCCTCAAC	ATCTGACTTT	TCAATCTGAT	2580
	GCTGATAAAT	GACCTGACCT	TTTTTTTTTTT	CGATATAAGC	CCCATTCAAA	GTTACAAAAA	2640
	AGTCAGGCTT	GAGATCACGA	ATCTCTGGAA	CAACACCAAA	AATGCCACGT	CCAGAGGCGA	2700
	TTCCTGTTAA	AATTCCTTTT	TCACGCAACT	GTTTAAAAAC	AGTGGGAATT	GTAGTTGGAA	2760
	TAAACCCTGT	CTTTGAATTC	CGCAATGTAT	CATCAATATC	AAAAAAGACA	ATCTTGATCT	2820
	TCTTTGCCTT	GTATCTTAAT	TTCGCGTCCA	TCTCACTACC	TCTTTCAATC	TAACTCTTTC	2880
	САТТАТАТСА	TAAAGTAGGC	AAATCCCCTA	TTTTCAAAAA	GTTTATCATT	TTTATTTTAA	2940
	TTTCTTGGAT	CAGAAAAGAG	ACATATTTAT	GAAAAAGCTC	CATCGTGCTT	TTAATGTGTT	3000
	CTCTTGTTTT	CAAACTCGTA	AAAAGGGAGC	CACTGATCCT	AACTCGCTCT	CTCATTTCAA	3060
	AGCTTGTGAA	AAAAGACCCG	TTGGGGTCTT	AATTCGCTTT	CTTGTTTTCA	AGCTCATGAA	3120
	AAAGAGACCC	AACTGGGTCT	TTTCTTTAAT	CTTCGTTTAC	GAAAGGCATC	AAAGCCATTA	3180
	CGCGAGCGCG	TTTGATAGCT	GTTGTTACTT	TACGTTGGTT	TTTAGCTGAA	GTTCCTGTTA	3240
	CACGACGAGG	AAGGATTTTC	CCACGTTCTG	AAACGAAACG	GCTAAGAAGC	TCAGTATCTT	3300
	TGTAATCAAC	ATATTCAATT	TTGTTTGCTG	CGATGTAATC	AACTTTTTTA	CGGCGTTTGA	3360
	ATCCGCCACG	ACGTTGTTGA	GCCATGTTTT	TTCTCCTTTA	TAAGTTTAGT	TGTCCATTAG	3420
	AATGGTAAAT	CATCATCTGA	AATATCCAAT	GGGTTTGTTG	CTCCAAATGG	ATTTTCATTA	3480
	CGTGAAAAGT	CTGGTACTGA	ATTTGTAGGT	GCTGAATAGT	TTGCAGTTGG	TGCAGAGTAA	3540
	GCTCCACCTG	TGTGACCCTC	ACGCACACTA	CGGCTTTCCA	ACATTTGGAA	ATTCTCAGCC	3600
	ACGACCTCTG	TCACGTAGAC	ACGTTGTCCT	TGCTGGTTAT	CGTAACTACG	AGTCTGGATA	3660
	CGACCTGTCA	CCCCGATAAG	TGAGCCTTTT	TTAGCCCAGT	TAGCAAGATT	TTCAGCCTGT	3720
	TGGCGCCACA	TAACGACATT	GATAAAATCA	GCCTCACGTT	CACCATTTTG	АСТСТТАААТ	3780
•	GTACGGTTTA	CTGCAAGAGT	AAAAGTCGCA	ACTGCTACAT	TTGATGGGGT	ATAACGCAAC	3840
٠,	TCAGCGTCAC	GTGTCATACG	CCCTACAAGT	ACAACATTGT	TAATCATAGT	TTACCTTCTT	3900

		212			
ACGCGTCAAT TTT					3960
CAAACTCTTT AAG	AGCTGCA TCGTCA	TTTG CTTCAACG	TT AACGATGTGG	TAAAGTCCTT	4020
CACGGAAATC TTG	GATTTCG TATGCA	AGAC GACGTTTI	TC CCAAGTTTTT	GATTCAACAA	4080
CAGTTGCACC GTT	GTCAGTC AAAATA	GAGT CAAAACGI	GC TACCAAAGCG	TTTTTAGCTT	4140
CTTCTTCAAT GTT	TGGACGA ATGATA	TAAA GAATTTCG	TA TTTAGCCATT	GATATGTTCC	4200
TCCTTTTGGT CTA	ATGACCC CAAGAC	ITTG CAAGGGGT	AA GTGAGGTTCG	СТСАСААТАА	4260
ACTATTATAC TAG	AAAAAAT TTTTTT	ACGC AAGTAAAA	AC ACTAGAATTC	GAAAAAACGC	4320
CACATGGGCG TTT	TCCTGTT CTTATG	GTTT GATACGGT	GC AACATACGTG	GGAATGGAAT	4380
AGCTTCACGG ATA	IGTTTG TTCCTG	CTGC GAAGGTTA	CC ATACGTTCGA	TACCGATACC	4440
AAATCCTCCG TGTC	GGAACTG TACCGT	ATTT ACGAAGGT	CA AGGTAGAATT	CATATTCTGT	4500
ACGATCCATG CCA	AGTTCAT CCATCT	AGC GACAAGGG	CA TCGTAATCTT	CCTCACGCAT	4560
AGACCCACCG ATA	ATTTCTC CATAGCO	CTTC TGGAGCAA	GC AAGTCTGCAC	AAAGCACGCG	4620
CTCTGGATTT CCAC	GAACTG GTTTCAT	GTA GAAGGCCT	TG ATGGCTGCTG	GATAGTTCAT	4680
GACAAATGTT GGCA	ACACCAA AGTGGTI	TGA AATCCAAG	T TCGTGTGGTG	ACCCAAAGTC	4740
ATCACCATGC TCAA	GATGCT CGTAGTC	AGC ATCTTCATO	CA TTTTCATGCT	CTTGCAAGAG	4800
GTCAATGGCT TGAT	CGTAAG TGATACG	TTT GAATGGCT	T GCAATGTAGC	GTTTCAAGAG	4860
TTCTGTATCA CGTT	CCAAGG TTTCCAA	GGC TTGAGGCGC	G CGGTCAAGAA	CACCTTGTAG	4920
AAGAGCTTTC ACAT	AAGCTT CTTGCAA	GTC AAGCGACTO	A TCATGTGTCA	AGTATGAGTA	4980
CTCAGCATCC ATCA	TCCAGA ACTCAGT	CAA GTGACGGC	T GTTTTTGATT	TTTCAGCACG	5040
GAAAACTGGA CCAA	AGTCAA AGACACG	ACC AAGAGCCA1	A GCCCCTGCTT	CTAGGTAAAG	5100
CTGACCTGAT TGGC	TCAAGT AGGCTGG	CGT TCCGAAGTA	G TCAGTTTCAA	AGAGTTCTGT	5160
AGAATCTTCT GCCG	CATTTC CTGAAAG	AAT TGGGCTGTC	A AACTTCATAA	AACCGTTCTT	5220
GTCAAAGAAC TCAT	AAGTTG CATAGAT.	AAT AGCGTTACG	G ATTTGCAACA	CAGCTACTTG	5280
CTTACGAGAG CGTA	gCCACA AGTGACG	GTT ATCCATCAA	A AAGTCTGTTC	CGTGTTCTTT	5340
rggtgtgatt gggt	AGTCTT GAGATTC	ACC GATCACTTC	G ATGTCTGTGA	TGTCCAACTC	5400
ATAGCCAAAT TTAG	AACGTT CGTCCTC	TTT GACAATACC	T GTCACATAAA	CAGACGTTTC	5460
TTGGCTCAAG CGTT	rgataa catcaaa	CTT CTCAAGTCC	C ACTTCTTCAC	CAAATTTTTC ·	5520
GACAAAGTTT GGTTT	TAAAAG CCACACC	TTG AAAGAAGGC	T GTTCCATCAC (GCAATTGTAA	5580
GAAAGCGATT TTTC	CTTTTC CTGATTTC	STT GGCAACCCA	A GCGCCAATCG	PCACTTCCTG	5640
ACCAACATAG TCTT1	TTACGT CAATAATO	GT TACACGTTT	GTCATTATTT 7	TTCCTTTTCT	5700

TTTTTATTCT	TTATGGCAAA	CCACCTCTAT	ATTGTTCCC	TCCAGGTCA	TCATAAAAGC	5760
AGCATAGTAA	ATCGGATGCT	CACTTCGATA	ACCAGGAGCC	CCATTGTCTC	GCCCACCTGC	5820
CTCTAAGCCA	GCCTCATAAC	AAGCCTGAAC	ттсттестта	TTTTCTGCT	AAAAAGCAAA	5880
ATGAACAGGA	TCTTGTGTTC	CCTGAGTCAG	CCAAAAATCA	CCACCAGGAT	GAGGGCTGTT	5940
CGGGGATAGA A	АААСТААТТА	GAGAACTAGT	CTTAAAAGCC	AATTTATAGT	CCAAAGGAGC	6000
GAGAAAACTC (CTATAAAATC	CTTATGAAAT	TTGTAAATCC	TTTACCTTAA	TCTCAAAATG	6060
ATCAATCATT (CTCACTACCC	ATAAATGCTT	TCAAGCGTTC	GACTGCTTCT	TTAAGCGTGT	6120
CTAGGTCTGT (CGCATAGCTG	AGGCGGACAT	TTTCTGGTGC	TCCAAATCCA	GCTCCTGTTA	6180
CCAAGGCCAC 1	TCGGCTTCT	TCTAAGATAA	CAGTTGTAAA	GTCTGTCACA	TCCGTGTAGC	6240
CTTTCATCTC (CATGGCCTTT	TTGACATTTG	GGAAGAGATA	GAAGGCCCCT	TGCGGTTTGA	6300
CCACTTCAAA 1	CCTGGTACC	TCTGCAAGGA	GGGGATAGAT	GGTATTAAGA	CGTTCCTCAA	6360
AGGCCTGACG C	CATGCTTTCT	ACAGTATCTT	GCTCACCTGA	TAGAGCCTCA	ACTGCTGCAT	6420
ATTGGGCTAC T	GCTGACGGA	TTCGAAGTTG	TTTGACCTGC	AATCTTGGAC	ATGGCAGCGA	6480
TAATGTCTGC T	TCTCCAACG	GCATAACCAA	TCCGCCAACC	AGTCATGGCA	TAAGTTTTAG	6540
ACACACCATT G	ATGACCACT	GTTTGCTTGC	GAATCGCTTC	CGATAGGCTA	GAAATCGGTG	6600
TGAACTCATG A	CCATTATAA	ACCAAGCGGC	CATAGATATC	GTCTGCTAGG	ATGAGAATAT	6660
CATTTTCTAC A	GCCCAGTTT	CCAATTGCCA	AGAGTTCCTC	ACGGGTGTAA	ATCATACCTG	6720
TGGGATTAGA T	GGCGAATTC /	AGCACCAAAA	CCTTGGTCTT	GTCAGTGCGA	GCTGCTTCTA	6780
ACTGCTCTAC G	GTCACCTTA A	AAGTGATTGT	CTTCCTTAGC	AGAAACAAAG	ACGGGAACGC	6840
CTTCTGCCAT C	TTGACCTGA 1	ICTCCATAGC	TAACCCAGTA	TGGGGTTGGG	ATGATGACTT	6900
CATCACCTGG A	TTGACCACA (GCCATAAAGA	AGGTATAGAG	AGAATATTTG	GCTCCCGCAG	6960
CGACTGTCAC T	TGATTTGAC (GCTACAGAAT	AGCCGTAAAA	GCGCTCAAAG	TAGCTATTGA	7020
CCGCCGCCTT A	AGCTCTGGC 1	AGACCTGAGG	TTACTGTATA	AAAAGAAGCA	CGCCCATCTC	7080
GAATCGATGC A	ATGGCGGCA 1	PCTTGGATAT	TTTTGGGAGT	AGTGAAATCT	GGCTCACCCA	7140
AGGTTAGAGA C	AAAATATCT (CTACCCTCAG	CCTTCAGTGC	TTTGGCACGG	GCTCCAGCAG	7200
CCAAAGTCAC AG	CTTTCTTCC A	ЧТТСТАААА	CACGGTTGGA	TAGTTTCATA	GGCCCTCCTT	7260
GTTGACCAAT GO	CTCCTGTTT (CAAAATCTAC	TAGATAAAA	TCAGATCCTG	ACTTAACTTC	7320
CCAGATTGGC TT	PATCTTGAT A	ACGGCCAAA	GGTTATCTTG	TCAATCTCGC	CAGCTCCCTT	7380
TTCCTTAGAA AC	CCGTTTCTG C	CTTTTTCTTG	TGAAACACCC	TGATTTAGCT	GATAAACGTA	7440

214	
AATCTTATGG TCATCTTTAC CAATCAGGAC AGCAAGCGCT TCTTGCTGTT TGTTACGACC	7500
AAGAACGCTG TAATAAGATT CCAAGCCATT GTATAAATCA ACCTGATCAG CCTGCTCTAA	7560
TCCTGCATAC TGCTGAGCTA ATTTTTCTCC TTCACTTTTA GCTGTTTGAT AGGGTTTCAT	7620
GCTAAGAGAA ACCATATACA GAAAGGAACC ACTGATAACC ACAAACAAAA TCGTCATCCC	7680
TAGACCATAC TGCCACAGTA GATTATTTTT TGCTTTGTTT TGTCTTTTTT TCACTCGTCT	7740
ATTTTACCAT CTATTAAGCT TTATTACAAG TGAATATAAG AATACTCTTC GAAAATCTCT	7800
TCAAACCACG TCAGCTTTAT CTGCAGACCT CAAAGCTGTG CTTTGAGCAA CCAATTCTAT	7860
TTCTCCCTTC AAACAAAACC GATTTTGAAA GTGAAACAGT TCTTACTTTT TCAGTCACAA	7920
ATGATTAGAG TTTGCCGGG	7939
(2) INFORMATION FOR SEQ ID NO: 10:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9897 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
CCGCTCTACC GTCAAATAAT TACCATTTTG TTTAATACCG AAATTTTTAT CTACTGAAAA	60
TTCAGTTGGT CTGTTGGTAC GATCGTCGTA TACAGTACCA TTCTCACGAA TAGTATAATT	120
GTAATCAGTA TCACCTTGTT TCCTTAATTT AAGGTAATAA TTACCATCAA TTTGTTTATA	180
ACCTGAATCT TTTCTAGTTG CTTCTCTAAA ACTTACTCCA GCAGGCATCA CATCAGCAAA	240
CATGAGTACT TGTTTGTTCT TTTTTTCAAC AATAACAGAG TCAATATAGG TTGCACCACC	300
GCTGATTTGT AAGTCACGTC CACCAACTTC ACGAGGCCAT TCTAATGGTA CTGGCGCAAA	360
ATCATCGAAT GCCAATGTTA ATTTTGGTTT AGTCCATGTC TTACCATTAT CATCACTATA	420
ACTTGTAGCA ATATTAATTT TATTCAAGAA ATCATGAGTT CCACCGTAAC GAGCGTCAAT	480
GCTTGAAAAT ACCCGACCAT TGCTAAAAGT ATACAGAACT GGAATACGGA AATAGTTAGA	540
ACCTGTTGTA TCATTAGCCG TATAAATTAA ATGTCCAGTA ACAGCGTTTG TTGTCATCTT	600
TTTAACAGTT TCTTCATCCA ATGCACTATT AAAGAATTTG ATATTTTCTA GTGTTCCGTT	660
AAAACCAAAC GCCGTTTTTC CTGCACGTTT CACTCCCCCA AGCATATAGT AATCAATACC	720
TTTAATATCC TTGATGTTTA GGAAATTATC CACTTTCTTT TCTACTACTT TTGTACCATT	780
TGCGTATAAA GAATATGTTT TTTTGACTGA ATCTGCTACT ACTGCAACAG TGTTAGTCAC	840
AGCCTCTTGT TTGTACTTAC CCCAAACTGA AGCAGGTCTG GATACTAGGT TATTTTTATT	900

213	
GGAAGAAGTA TCACGCGCTT CCATCCCCAA CTCACCATTG TCTCTAAGGA ACACATCTAC	960
ATAACTATTT TGTTGACCGG GTTTGGAATT AGATATTCCA AACAGAGCTT GTAAGCCTTT	1020
CTCACTTGAC TGATTGTACT TAATCACTAC AGTAAAGTCA CCGCTAGTAA ATTTATCCTT	1080
TAACTCTTTA GTAACATTTT CTCCGCCCCC TGTTAAAGTA ACATTATTTT TTTCTAAGAC	1140
AGGAGTTTCT TCCGCTGTAG AAGATGGATC CTTAACAGTA GTTTCAACTG TTCGAGGTTG	1200
TACAGTAACT TCCGAAGAGT TATCCGATGT AGGTTGTACT TCCGAAATCG GAGTCGTTGG	1260
TGCAACAGGT TGCACCAACT TTGGTGTTGA TACTTCAGAA GTTTCAGTCT CCTGAGCTGC	1320
AACTGAGTTA GCAACAAATG CTGATAATAC CACTACAGTA CCTAAGGTTA CATATTGTTT	1380
AATATTTTT TTCATTTAT TTTTCCTCGT TTAAAACTTT GATAACAAGT TTTTTAACAG	1440
TTTCATCATT GCAATGAATC TTTGGTTGGT GAAGATCTTC TTCAAAAGTC ACCAACATAT	1500
TCCCTGGAAG CAATTCAACA ATTTGATAGT CTTTGCTATC GTAAAAAGCA ATATCCTTCT	
CTTCGCTAAA AGGTACACGT GACTGGGCAC GAACTGGGGA AGTTACTGCC ATTTTTTCAG	1560
TATTTTCAAC AACAATATGA ATATCTAAAT ATTTCTTATG AGTTTCAAAA ATATCTCCTG	1620
GAACTCCATC AGCTAGATAA GTCATACAAT TTGCAAAAAC ATTTTCCCCG TCAATATCAA	1680
TTTTTCCATC AACTAAATCT GTCAAATTTG TATTTTCTAA AAAATCACAG ACTTTTGAAA	1740
AATATTTATT GACAGAAGCA TATCGTTTAA AATCAGATTG TTCAGAAATA ATCATATTAT	1800
TTTCTCTTTT CTATTAGTGA CGAACTTCCC AACTTGAATC CGCTTTAATT TCTGTAATAT	1860
CATGAATCGT TGTATATTTA GGTGCAGATA CTTTATTTCC AGTAAGAACA GATACAATAT	1920
AACCTGAAAC TACTGATACA GAGATTGAAA TCAATGAATA TGCCCAGTAG CTAACAGCTG	1980
TTGGAGGAAG GAAGTATTTA ATAAATACCA TGACGATGGT TGATACAATC AGCGCTGCAT	2040
AAGCACCTTG TTTATTTGCT TTTTTAGAAA CAAATCCAAG AATAAATACA CCACCAAGTA	2100
GACCAAGTAC AAGTCCCATG AAACTATTGA ACCATTCGTA TGCAGATTTA ATATCTGAGT	2160
	2220
GAGCCATGAC AATGGAAACA CCAATTGAGA ATAAACCTAC TGCTAGAGAT ACGAATTGTG	2280
CAATTITCGT ACGACGATTG TCTGACATAT TTTTAGAAAT GACATCTTGA ATATCCAATG	2340
TCCATGAAGT TGCAACAGAG TTCAAACCTG TTGAAATAGT TGATTGAGAT GCTGCATAAA	2400
TCGCTGCCAA GATCAAACCT GTGATACCTA CTGGTAACTG GTATGCAATA AAGTACATAA	2460
AGATTTGGTC TTGAGGGATA TTGCTAGCTG CACTATCTGC ATTTTGTACT TGATAGAATA	2520
CGTACAAGCC TGTACCAATC AAGTAAAAGA CTGTTGCAGT TGCAAGTGAC AAAACACCGT	2580
TTGTGAACAA CATCTTATTA AGTTTCTTAA TATTTTGTGT TGTAGTAAAA CGTTGAACCA	2640

AATCTTGAGA TGAAGCATAG GAAGACAAGA TTGTAAAGCC TGAACCCATC ACAATTAAAA	2700
AGATGGAGTT TGAAAGCAAG TTAGGATCGA AAAGTTTTTC ATTTGCAGCA AGGAATTTCC	2700
CGTTTGCTAA TGTTTCTGCT ACTGCACCAA AGCCACCTTT AATATTAGCA ATCAGTACAA	
ATAAAGCTAA AACGACACCA CTAATCAGAA TCACACCTTG AATAAAGTCT GTCCATAATA	2820
CGGATTTTAG ACCACCAGTA TAAGAATAAA CAATTGCAAC TACACCCATC AAAATAATCA	2880
AAATATTGAT GTCAATTCCT GTCAATACTG ATAAACCAGC TGATGGGAGG TACATAATGA	2940
TAGACATACG TCCCAATTGA TAAATAATAA ACAAGAGTGC TGAAATAATA CGAAGTGCTT	3000
TAGAATTAAA ACGTTTATCC AAGTAATCAT ATGCCGTATC GATGTCTATC CGTGCAAAGA	3060
TAGGTAAGAT AAAACGAATT GTCAGTGGAA TAGCTACTAC CATCCCTAAT TGAGCAAACC	3120
ATAAAATCCA GCTACCTGCA TAAGAGCTAC CAGCGAGTCC CAAGAAGGAA ATCGGACTGA	3180
GCATTGTGGC AAAAATGGAT ACCGAAGTAA CATACCAAGG AACCGAACCA TCTCCTTTAA	3240
AGAACTCTTT TCCTTTCATC TCTTTTTTTTT A AGAACTCTTT TCCTTTCATC TCTTTTTTTTTT	3300
AGAACTCTTT TCCTTTCATC TCTTTTTTAG AGAAATAGAT ACCTGCAACC AACACCGCAA	3360
GTAAATAAAC AATCAAGATA ATTAAGTCAA TTATTGTAAA TCCTGTTGTG CCCATAACAT	3420
ATCTCCATAT TGATTTATT TATTATAAAA ATTCTTTTCG TGCTTGTTGA ATAAGTTCTG	3480
CTGCTTGTTT TGCAACTTCC AAGTCACCTT CTGCCAATGC TTCTAAAGGT TGACGAACAG	3540
AACCTAAATC AAGTTTTTCA TTTAGACGCA AAACTTCTTT TGCTACAGCA TACATATTTG	3600
CCTTACCTGA TATCATCTTA TAGATAACTT CATTGATAGC ATATTGAAGT TTTTTAGCTG	3660
TATCTAAATC TCGTTCTTGA ATCAAACTTT CCAATTTCAA GAACAAATCT GGCATAACGC	3720
CATAAGTACC ACCAATACCA GCTTCTGCTC CCATCAAGCG ACCACCAAGA TATTGTTCAT	3780
CTGGACCATT GAATACAATG TAATCTTCTC CACCTGCAGC TACAAACATT TGAATATCTT	3840
GTACAGGCAT AGAAGAATTT TTAACTCCAA TCACACGAGG ATTTTGACGC ATTGTTGCAT	3900
ACAAACTACC AGTCAACGCA ACCCCTGCCA ATTGTGGAAT ATTATAGATA ATAAAATCTG	3960
TATTTGACGC AGCTTCACTC ATTGCATTCC AATATGCTGC GATTGAATAC TCTGGCAATT	4020
TGAAATAAAT AGGTGGGATA GCTGCAATAG CATCGACTCC AACACTTTCT GAATGTTTTG	4080
CCAATTCGAT ACTATCTTTC GTGTTATTAC ATGCAATATG GTTGATAACT GTTAATTTAC	4140
CTTTAGCAAC TTCCATAACA GCTTCAATAA TTTGTTTACG ATCTTCTACA CTTTGGTAAA	4200
TACATTCACC TGAAGAACCA TTTACATAGA TACCTTTTAC ACCTTTGTCA ATGAAATATT	
GTACCAGAGA TTTTACACGA TCTTGGCTAA TTTCACCATT TTCATCATAG CAAGCATAAA	4260
ATGCAGGGAT AACGCCTTTG TATTTAGTTA AATCTTTCAT CAGATTTCTC CTTTATATTG	4320
TTTTTTATTT GATGACATTA ATAAATCGCT GAGCAATTTC TTTTGGACGT GTAATCGCTC	4380
TITIGGACGT GTAATCGCTC	4440

CACCAATGAC TACACTGGTA ACACCTAAAC TATAAGCTTT TTTTAATTGT TCTGGATAAT	4500
GAATTTTTCL TCGGCAATTA CCGGAATATT AAAATCAGCC AATTTTTTCA TTAGTTCAAA	4560
ATCAGGCTCA TCTGATTGTA CACTTGTACT TGTGTAACCT GATAATGTTG TACCAACAAA	4620
ATCAACGCCT GATTTAAATG CATAGAGACC TTCATCTAAA TTACTTACAT CCGCCATCAG	4680
CAATTGATTC GGATATTTTT CTTTTATTTT TTTGATAAAT TCACTGACAA CTAAGCCATC	4740
ATATCTTGGT CTTAAAGTTG CATCAAATGC AATGACTGTT GTTCCGCATT CTACAAGTTC	4800
ATCTACTTCT TTCATCGTAG CAGTAATATA TGGTTCTTGA GGTGGATAAT CCCTTTTGA'I	4860
AATTCCAATT ATTGGTAAAT CTACTACTTT CTGAATTGCT TTAATATCAC GCACAGAATT	4920
TGCGCGAATG CCCACTGCTC CTGCCTCTAA AGCTGCTTTA GCCATAAAAG GCATCAAGCT	4980
AAATTCTTCA TTATAAAGGG CTTCACCAGG TAAAGCTTGA CAAGAAACAA TGACTCCACC	5040
TTGAACTTGG CTTATAAATT TTTCTTTAGT CCAAATTTGG CTCATTTTAT TATTCCTCCT	5100
TATGGATAAT AGTTTGATTG TAATAATATT GTCTCTCTGG ACTTTCCAGA TAATTAGAGA	5160
ATAAGCAGTC TGTAATTAAA AGTATTGGAA ACTGAGGTGA TATGCGATTG CCATACGAGA	5220
GATGATCGGT CGAAGCTAAT AACAATAGTT CATCAAAGAA ACAATCTTCT TCGTCAAATT	5280
TTCTTGTAGT CATTAAAACT GTTTTAGCGC CTTTATCTGC AGCTTTTTGT AGACCTTCTA	
GTACAATATC AGTTTGACCT GAAATGGATG CTCCAATGAC AAGGCAATTT TCATTAAGTA	5340
GTAAGCTACT CCACAAAATC ATATCCTCGT CTGATAATAC TTCACCAATC ACTCCGAGAC	5400
GCATAAATCT CATCTTCATT TCTTGTAAAG CAAGAACAGA ACTTCCTTTA CCGTAGAGAT	5460
ATACACGCTC AGCAGTTTCT ATCATCTCAG CAATACGCTC AAGTTGAACT TCATCAAGAA	5520
CCGTGTAAGT TTTTCTCAAC ATTTCCTCAT AGTCGGATAA AACTTTTTCT GTTGCCTCTG	5580
TATATAATGC CAACTTTTCT TTCTCATGAA TCATCTCTTG GTATTTGAAA ATGAATTGTC	5640
TAAAACCTTT AAAACCACAT TTTTTCGCAA ATCGAGTCAA TGTTGCTTTG GATACATTAA	5700
GGTATTCGCA CAATGCTTTA GATGAATAAT CATTCAGAGG TTGCTGTTTT AAGAAGAATT	5760
	5820
TAGCAATGTC TTTTTCAGCA TATGCCATAT TTGGTAAGTT AGCTTCTATC ATTGGAATTA	5880
GTTCTTTTTG CAGTAACATA TGAGCTCCTT AGTTGAAGTA AACGTTTACA TTCTTTATTT	5940
TAACACTTTT TTTTTTTTC AATATTTTC ATAAATTAGA AACTAGTTTC CAATTTCTTT	6000
CGTTTCATAA CAGAACAACA AACATAAAAA TATAATAGTT TTTATTCTTT TTATCGTAAT	6060
TATATGTATT GTAAGAACGT TTATCACTAA TAATATGTTC ATATTAAAAT ATTTTAGTAA	6120
TATTTATTT TGGTTTTATT ATTTCTTTTC GGAATTTCTA TATAATATTT TATTTCTAAA	6180

218 AAAATTGAAA AAATATTTCT AGTTTCTTTA TTTTATATAG GTAATATATT TTATTTCTAA 6240 ATTAAAAGAG AATCCCATAA AAACTACAGA TTTATGAGAT AAATCAGGTC ACCTATTTTA 6300 AAAAAGCAGC AAACTATAAA CTAAAAAGTT CCACACCAAA TGTAACCCCA TACTTCCCCA 6360 TAAGTCAGAT TTATAGCGCA CCATACCTAA AAACATTCCA AGTGAAACGT ACAGACACCA 6420 AGCTAGAATG GTTCCTGGAT GATGTACTAA GGCAAATAAA ACACTTGTCA AAGCAACTCG 6480 AATATCTAAT TTTCTAACCA AGTTCCATAA AATTTCACGA TACAGAAATT CTTCAACCAT 6540 ACTCGCATTG ATTAAGAACA ATAAAAATGA AAACCAAGGA ACTTGATGTT GAAGGCCAAT 6600 TAAATTTGTT TGATTCGTGC TTCCTTGAGC ATGAATCAGG CTAAAACATA GACTTATAAT 6660 CAGTAGACTA GCTAGTCCAA TACCAAGGCA TTTCATCCTA GTTTTCATAT TGACCTTGAC 6720 CACTTGTTTT CGTTGACCAT ACATCCATAA AAAAGAAAAA AGAGACGCAC CATAGAGAAC 6780 CTGTAGTATA GTTAACTCAC CGATACAAAG AAATTTCAAT AAGTATAGAG ATACCAATAG 6840 GACATTTACT TGTTGGAATA TATAAACTGG AATTATTCTT TTCATAGTTA CCTCCGAAAT 6900 AAATCTTCAT AATCTAAATC TAATATCTGC ACAATCCTTT CTACCCATGG ACTTTGAGGC 6960 ATTCGTTGTT CCATCTTGTA GTGGCGAATC TTTTGATATA AACGATTCAA TTCACTTGGA 7020 TAGTGAAACT CTCCCGCAAA CATTTTTCTG GTTAACTCAA TCCAGCTGAT ATTTCTTTCA 7080 GCCAAAATAA TGGACAAGTT CTCCCAAAAT CGTTCAGCCA TATTYCTTCT CCTTTAGTTA 7140 GATAAATAAT GTGTTTGYGC CATGTAAATC AATTGTTTCG TATCTCTTGG CAATAGAGCT 7200 CTAGCCTCTT CCAAATTCAG ACTTGGATAA ACCCGCTTAT TTGAAACCAC AAAAGGAAGT 7260 CCGATGGTTA GTTCAGGATT TTTTAAAATT ATCTCAACGA AATCCGTTAA TCTTAGATTG 7320 TCACGGTTCT TAAATCGTAA TAAATTGGGA GATAAAAACT CAAAACAATC TGAAGAATAG 7380 CTCATCATCT CAATTAATTT GTCCTTTGTC ATTTCAGAAA CTGAATGACA AGATACCTCA 7440 ATGCCATAGT TTTGGAAGAA GTCTAAAAGA AGTTGATTTC TTTGGCTATT TTTACTTAGA 7500 TAGAGATCAA TCATGGGAGA CCTCCAACAA ATTTGCTTCC ATTTGATATT CTGAGACGAT 7560 TAAGGAATCT AACAACTTTG AGAAGTTAAT CGATTTCTTG TCTTCATCAT AAGCTTTTAC 7620 AGTTACTTGG GTTGTAAGTA TCCCCTCTTT TCCCTCGGCT CGATAGTCTT GTCAATATAA 7680 AACAAAAACA AGATTCTGAT TATCATCTAC AAAGGCATTA ACTCCGTTCT TTATATCCTG 7740 ACTITCAAGG AATTCCATAA CGTTTTGAAG ATAGGATTCA TAAAATAGTG GGTAATTATG 7800 TTTTTTATGG TAATCATCTA AAAATGTTAC CTCAAACTCA CATGGATAAT TGGGCATCAA 7860 AAATATTTGT TCATCCAGCT GTTTGATTTC TGCATCATGT AATTCTGTTT CTAATTCATC 7920 ACAATCTAGT ATTGATTCTT TATTTAATGC TTTTATCTTT TTCCTCTATT TCTTTTAATT 7980

TCTTTGCGAT TGCGGCAATC ACAGGAACGG TTACACTATT ACCAACTTGT TTATAGAGCT	8040
GACTATTAAT AGAGACTTTT CTAGCAGCTT CAAAAGCCTA ATCAGGAAAG CCATGCAATC	8100
GAAAACACTC TTTAGGAGTG ATTCGTCGTA TTCTCAAACG GTAAAATTGT CCATCTATTA	8160
AAACACCAGC TACTTGGTAA ACTTGTTTAT CTTCTCCTTC ATAGCTAGCC ACTACTACTC	8220
CCATTTGACC ACTAGTTGTT AACGTATTAG CTATACCTTT TCCAACTCTA CCACGACGAT	8280
ACTGAGAACT TGGTCTTTCT AAATTGATTG AATCCCCAAT CTCTGCTTGA GCATATCCTT	8340
TTTTCGTTGC TTCCCGTACT TTTAGAAATT GGATTGGTTC TGGAATTAGT ATTTTGGGGA	8400
TTTTATCTCC TCCTTGCATC GTAGTCAGTG TTGGAGATAA GCCCTCACTT CCATAGACAC	8460
GACCTGTCTC CTTAAAGCTA GTCGGTAAAT CTCCAACAAC GACAATGCCA TAACGATCCT	8520
GAGTATTTAA AGTAAACATC GGCTCTTGAT TTTCCTTAAA GCGTCTCCCA TTTTGTCTCT	8580
TGTCTAATCT ATCTGGTGTC ATACAAGGAA TCGCAACTTT AAATCCTTCT CCTTTACCAC	8640
GAACTAAGGT TGGCGCAAGA CCTTCTGAAT AATAGACTTT ACCGCTCATT CCACTTCTTG	8700
ATGGATTCAA ATTTCCTAGT GCTTTCAAAG TCTCAGAGTT AGTTGCTTGA CCTTCTCGTC	8760
TGAAAGGAAA TAAGAGTCTG GTACCTTTCT TTCTAGAATG TCCGATAATA AACACCCTCT	8820
CTCTGTTTTT GGGAACGCCA AAATCCTTAC TGTTAAGCAC CTGCCACTCA ACATCAAACC	8880
CCAACTCATC AAGTGTGGTA AGTATTGTGG TGAACGTCCG TCCCTTATCG TGATTGAGTA	8940
GGCCTTTAAC ATTTTCAAGA AAAAGAAAAC GTGGTTGGAT TTGTTTGGCC GCCCGAGCAA	9000
TTTCAAAGAA CAAAGTTCCT CTAGTATCTT CAAATCCCAA TCGTCTTCCT GCGATTGAAA	9060
ATGCTTGACA AGGGAATCCC CCACAGATGA CATCGACTTT CCCTCTAAGT TTTTTAAATT	9120
CGTCATCTGA AACATCTCGT ATGTCATGAA ATTCTATTTC TCCTTCCGTT TGAAAAATGG	9180
ACTTATAAGA TTTCCTAGCA AATTTATCAA TCTCACAAAA TCCCAAGCAC TCATGCCCTT	9240
GAGCTTCCAT TCCCATCCTA AAGCCTCCTA TCCCAGCAAA TAAATCTAAA ACCCAAATCA	9300
TTCATACCTC TCTCAACTAG ATGTAACTTA CAAAACCCCT GACCTCATGA GCCACTTTCT	9360
TCCTCCTCAT GAGGTCAGTT TTACTTTCTG CTGTTCCAGT ATCGTTTTTC CTCGCTAGAT	9420
TTCCTCAAAA GGGCAGACTC CTCCCTTGGT TCGTCACACG ATTTTTCAT CTCGACTGTT	9480
CTTTAATGCA TCATTAACGA CGCTTTTCTT CTAGGTGGTT CATAAGGAAC AGGAAGATTC	9540
AGGTTGACTT TTCTAATCCT AGAATAAAGT GCTGAAAACA ATTCGGAATA GGCATAGAGA	9600
CTAGACAATT TGAGGAGCTG CTTGCGTCCT GTTCGAACAC ATTTTCCTAC CACGTGAAGA	9660
AAAAGATGGC GGAAGCGTTT GATTGTTAAA GTTTGGAAGT CACCTCCAGC TAGATGTTTC	9720

AGAAAAAGAT AGAGATTGTA GGCGATACAG CTCATCATCA TACGAACTCG TTTTTGATTA 9780 AGGTTGAACT ATCCGTTTTA TCGCCAAAAA ATCCCTCCTT CATCTCCTTG ATGAAATTCT 9840 CGGCTTGACC ACGTCCACGA TAAAGCTGAA ACTGGTCTTG GCTTGTTCCG GTACCGA 9897 (2) INFORMATION FOR SEQ ID NO: 11:

- - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8148 base pairs .
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CCGTGGAACA AGCCAAGACC AGTTTCAGCT TTATCGTGGA CGTGGTCAAG CCGAGAATTT 60 CATCAAGGAG ATGAAGGAGG GATTTTTTGG CGATAAAACG GATAGTTCAA CCTTAATCAA 120 AAACGAAGTT CGTATGATGA TGAGCTGTAT CGCCTACAAT CTCTATCTTT TTCTCAAACA 180 TCTAGCTGGA GGTGACTTCC AAACTTTAAC AATCAAACGC TTCCGCCATC TTTTTCTTCA 240 CGTGGTAGGA AAATGTGTTC GAACAGGACG CAAGCAGCTC CTCAAATTGT CTAGTCTCTA 300 TGCCTATTCC GAATTGTTTT CAGCACTTTA TTCTAGGATT AGAAAAGTCA ACCTGAATCT 360 TCCTGTTCCT TATGAACCAC CTAGAAGAAA AGCGTCGTTA ATGATGCATT AAAGAACAGT 420 CGAGATGAAA AAATCGTGTG ACGAACCAAG GGAGGAGTCT GCCCTTTTGA GGAAATCTAG 480 CGAGGAAAAA CGATACTGGA ACAGCAGAAA GTAAAACTGA CCTCATGAGG AGGAAGAAAG 540 TGGCTCATGA GGTCAGGGGT TTTGTAAGTT ACATCTAGTT GAGAGAGGTA TGAATGATTT 600 GGGTAAATAC AATGAGCTTG AAAGAAGTAG CAAACTCACC AAGCGCCAAT TCTTTGAGAA 660 TCAGATGCTG GATTATACCA TCATTGCGCA TGAGAGTTTT GAAATCATCC GTCATTCTGT 720 CTACCAGACA GATGATCGTG AAGTGGAAAA TGCTCTGGCT TTTGAAGTGA AAAATGATGA 780 AACAGACAAG CTGATTCTGT TATTAAGCGA GGATATTGGT GTAGGTGAAA AATTGTGCCT 840 CGTTGACGGA ACAAAAATGC GTGGAAAATG TTTAGTATAT GATAAAATAA ATGAGAGAAAT 900 GATTCGCTTG CAGTGCTAGA AATAGGCATT TTGAATAGTG AATATGTTAT AATAAGTATT 960 AGTAGGAGGT GTTTTAGATT GGAGAAGAAA CTGACCATAA AAGACATTGC GGAAATGGCT 1020 CAGACCTCGA AAACAACCGT GTCATTTTAC CTAAACGGGA AATATGAAAA AATGTCCCAA 1080 GAGACACGTG AAAAGATTGA AAAAGTTATT CATGAAACAA ATTACAAACC GAGCATTGTT 1140 GCGCGTAGCT TAAACTCCAA ACGAACAAAA TTAATCGGTG TTTTGATTGG TGATATTACC 1200 AACAGTTTCT CAAACCAAAT TGTTAAGGGA ATTGAGGATA TCGCCAGCCA GAATGGCTAC 1260

CAGGTAATGA TAGGAAATAG TAATTAGAGA	
CAGGTAATGA TAGGAAATAG TAATTACAGC CAAGAGAGTG AGGACCGGTA TATTGAAA	GC 1320
CGCTTTATT ATTCACCCC	
AMAGAAGAAA AMCCOOCONOMINE	
ANCUANTARC TATCATORS	_
CATTITICEC TOTAL CAC	
IGGITITIGIG GATCOTONA	
TAGCATACG ADTITUCATE	· -
AMMACTCTG GTATTTA TO	
AGAGTIGAAT TATA COMOCO	
TIGCTTTTCT TOTAL TOTAL	_
GGCTACAAAG ATTTTTCAMMO	
CITGGATTGT ACTOMOS ACTOMOS	1920
MATCTCTGTT AACAAMAA	2040
ALGARATGAG AAATTATOOO	2100
TACTACTACAT AAAACMON	2160
ALLUAAAATT TCCATTCCA	2220
TENGROUGC'I'G COMMON CON-	
TTTTCTCAAG TCCTTTATTG AGCGCAAGAA GAAAGAGGAG TAGGAGTAGT AAAACTGTAT GAGAAATAGC TCCTGAAGTA AGGGCCAAGA	2340
GAGAAATAGC TCCTGAAGTA AGGGCGAAGA AAAGGAAAAT ACTGATAAAA ACATGAATGA TCAGTAGTCT AGCTAGTGAT TTCATAACCC ACCT	2400
TCAGTAGTCT AGCTAGTGAT TTCATAAGGC ACCTCCTAAT CCTGGTCTTT TTTAGCTCTT GCAATACGAA GTGAGTCGAC AATATGTATC ATCACTCCGA AAAAGAAAGC TCCCAGTATA GTTTTAAAAA TATGTTTTCT ATTTAGAAA	2460
GTTTTAAAAA TATGTTTTGT ATTTAGAAGA GAACTGATAA AATTTGGATT TTCACTTGTT AGGGTATCAA TGAGTGGAAT TATAAAAAA	2520
AGGGTATCAA TGAGTGGAAT TATAAAAAAT ATCACTGTTC CATAAATCGA ACCTGCTTTC	2580
AGACCAGGAT AACGTAACTG TTTCTTTTCT TTTTTCATGA GTTTCCTCCT AATCCTCATC	2640
TTGATTTTC TTAGTTTTTG CAATGCGACG GGAGATGAGG AACTGTATGC TCGCTCCGAA	2700
GAAAATAGAA CCGAGAATAC TTGATACACC ATTTCTTATA GTGAGAAGAG AATGAAAATA GTCCTGACCT TCATCTATGA CTATGACTAC	2760
GIATUCIGAG AAGACGACEE	2820
GACCTGGGTA GTCTACTTCC	2880
ATATCTGGT TCAATGACTG TGATGCCTGT TTTTTTCATT TGGTAGGTGA CATAGCCAGA	2940
TOGTAGGTGA CATAGCCAGA	3000

222 AGCGATGAGG GCAATCACTA AAATCAGAGG AGGATAGATT AGAGCCACTT CTTGAGGGTA 3060 TTTATAGGCC AGAAGGAGTG GAATAAGATT TCCGAAAATC ATCAGATAAA AGAGGATGAT 3120 AAAGACTTGG TTCCCAATAC TATCGGCCTC ACGCCGTTTG TATTCGTCAA GGGGACCAGA 3180 AATACCGTAT GTGCGTTTGA TCAGTTTTTC AGTGAAGGTT TCTTTTTTCA TGAGTTTGCT 3240 CCTTTTTTAA AAATCTTCCT CCCAAAAGAG ACTGTTGAGG TCAGTTTGGA GGCTGCGGGC 3300 GAGATTGAGA CAGAGTTCCA AGGTTGGATT GTACTTGTCG TTTTCAATCA TATTGATAGT 3360 CTGTCTCGAG ACACCGATAT CCTTGGCGAG TTCGAGCTGG GAAATACCCA ATTCCTTGCG 3420 AAATTCTTTC ACACGATTCA TCTGTTCTCC TTTCTGATTT ATGTCGTATA TATTTGACTA 3480 TATTATAGTC TTTTAAACAT AAAGTGTCAA GTATTTTTGA CATATTTTTT GAAGAAATAG 3540 TAGTCTCCTT GTCCTATTTG TCTGACAAGT GCAAGCTGGT CGGATTTGTG GTAAAATAGA 3600 TAAGATATGA CAAAAGAATT TCATCATGTA ACGGTCTTAC TCCACGAAAC GATTGATATG 3660 CTTGACGTAA AGCCTGATGG TATCTACGTT GATGCGACTT TGGGCGGAGC AGGACATAGC 3720 GAGTATTTAT TAAGTAAATT AAGTGAAAAA GGCCATCTCT ATGCCTTTGA CCAGGATCAG 3780 AATGCCATTG ACAATGCGCA AAAACGCTTG GCACCTTACA TTGAGAAGGG AATGGTGACC 3840 TTTATCAAGG ACAACTTCCG TCATTTACAG GCATGTTTGC GCGAAGCTGG TGTTCAGGAA 3900 ATTGATGGAA TTTGTTATGA CTTGGGAGTG TCTAGTCCTC AATTAGACCA GCGTGAGCGT 3960 GGTTTTTCTT ATAAAAAGGA TGCGCCACTG GACATGCGGA TGAATCAGGA TGCTAGCCTG 4020 ACAGCCTATG AAGTGGTGAA CAATTATGAC TATCATGACT TGGTTCGTAT TTTCTTCAAG 4080 TATGGAGAGG ACAAATTCTC TAAACAGATT GCGCGTAAGA TTGAGCAAGC GCGTGAAGTG 4140 AAGCCGATTG AGACAACGAC TGAGTTAGCA GAGATTATCA AGTTGGTCAA ACCTGCCAAG 4200 GAACTCAAGA AGAAGGGGCA TCCTGCTAAG CAGATTTTCC AGGCTATTCG AATTGAAGTC 4260 AATGATGAAC TGGGAGCGGC AGATGAGTCC ATCCAGCAGG CTATGGATAT GTTGGCTCTG 4320 GATGGTAGAA TTTCAGTGAT TACCTTTCAT TCCTTAGAAG ACCGCTTGAC CAAGCAAT:'G 4380 TTCAAGGAAG CTTCAACAGT TGAAGTTCCA AAAGGCTTGC CTTTCATCCC AGATGATCTC 4440 AAGCCCAAGA TGGAATTGGT GTCCCGTAAG CCAATCTTGC CAAGTGCGGA AGAGTTAGAA 4500 GCCAATAACC GCTCGCACTC AGCCAAGTTG CGCGTGGTCA GAAAAATTCA CAAGTAAGAG 4560 GGAAAAAGAT GGCAGAAAAA ATGGAAAAAA CAGGTCAAAT ACTACAGATG CAACTTAAAC 4620 GGTTTTCGCG TGTGGAAAAA GCTTTTTACT TTTCCATTGC TGTAACCACT CTTATTGTAG 4680 CCATTAGTAT TATTTTTATG CAGACCAAGC TCTTGCAAGT GCAGAATGAT TTGACAAAAA 4740 TCAATGCGCA GATAGAGGAA AAGAAGACCG AATTGGACGA TGCCAAGCAA GAGGTCAATG 4800

AACTATTACG TGCAGAACGT TTGAAAGAAA TTGCCAATTC ACACGATTTG CAATTAAACA ATGAAAATAT TAGAATAGCG GAGTAAGATA TGAAGTGGAC AAAAAGAGTA ATCCGTTATG 4860 CGACCAAAAA TCGGAAATCG CCGGCTGAAA ACAGACGCAG AGTTGGAAAA AGTCTGAGTT 4920 TATTATCTGT CTTTGTTTTT GCCATTTTTT TAGTCAATTT TGCGGTCATT ATTGGGACAG 4980 GCACTCGCTT TGGAACAGAT TTAGCGAAGG AAGCTAAGAA GGTTCATCAA ACCACCCGTA 5040 CAGTTCCTGC CAAACGTGGG ACTATTTATG ACCGAAATGG AGTCCCGATT GCTGAGGATG 5100 CAACCTCCTA TAATGTCTAT GCGGTCATTG ATGAGAACTA TAAGTCAGCA ACGGGTAAGA 5160 TTCTTTACGT AGAAAAAACA CAATTTAACA AGGTTGCAGA GGTCTTTCAT AAGTATCTGG 5220 ACATGGAAGA ATCCTATGTA AGAGAGCAAC TCTCGCAACC TAATCTCAAG CAAGTTTCCT 5280 TTGGAGCAAA GGGAAATGGG ATTACCTATG CCAATATGAT GTCTATCAAA AAAGAATTGG 5340 AAGCTGCAGA GGTCAAGGGG ATTGATTTTA CAACCAGTCC CAATCGTAGT TACCCAAACG 5400 GACAATTTGC TTCTAGTTTT ATCGGTCTAG CTCAGCTCCA TGAAAATGAA GATGGAAGCA 5460 AGAGCTTGCT GGGAACCTCT GGAATGGAGA GTTCCTTGAA CAGTATTCTT GCAGGGACAG 5520 ACGGCATTAT TACCTATGAA AAGGATCGTC TGGGTAATAT TGTACCCGGA ACAGAACAAG 5580 TTTCCCAACG AACGATGGAC GGTAAGGATG TTTATACAAC CATTTCCAGC CCCCTCCAGT 5640 CCTTTATGGA AACCCAGATG GATGCTTTTC AAGAGAAGGT AAAAGGAAAG TACATGACAG 5700 CGACTTTGGT CAGTGCTAAA ACAGGGGAAA TTCTGGCAAC AACGCAACGA CCGACCTTTG 5760 ATGCAGATAC AAAAGAAGGC ATTACAGAGG ACTTTGTTTG GCGTGATATC CTTTACCAAA 5820 GTAACTATGA GCCAGGTTCC ACTATGAAAG TGATGATGTT GGCTGCTGCT ATTGATAATA 5880 ATACCTTTCC AGGAGGAGAA GTCTTTAATA GTAGTGAGTT AAAAATTGCA GATGCCACGA 5940 TTCGAGATTG GGACGTTAAT GAAGGATTGA CTGGTGGCAG AACGATGACT TTTTCTCAAG 6000 GTTTTGCACA CTCAAGTAAC GTTGGGATGA CCCTCCTTGA GCAAAAGATG GGAGATGCTA 6060 CCTGGCTTGA TTATCTTAAT CGTTTTAAAT TTGGAGTTCC GACCCGTTTC GGTTTGACGG 6120 ATGAGTATGC TGGTCAGCTT CCTGCGGATA ATATTGTCAA CATTGCGCAA AGCTCATTTG 6180 GACAAGGGAT TTCAGTGACC CAGACGCAAA TGATTCGTGC CTTTACAGCT ATTGCTAATG 6240 ACGGTGTCAT GCTGGAGCCT AAATTTATTA GTGCCATTTA TGATCCAAAT GATCAAACTG 6300 CTCGGAAATC TCAAAAAGAA ATTGTGGGAA ATCCTGTTTC TAAAGATGCA GCTAGTCTAA 6360 CTCGGACTAA CATGGTTTTG GTAGGGACGG ATCCGGTTTA TGGAACCATG TATAACCACA 6420 GCACAGGCAA GCCAACTGTA ACTGTTCCTG GGCAAAATGT AGCCCTCAAG TCTGGTACGG 6480 6540

224 CTCAGATTGC TGACGAGAAA AATGGTGGTT ATCTAGTCGG GTTAACCGAC TATATTTTCT	6600
CGGCTGTATC GATGAGTCCG GCTGAAAATC CTGATTTTAT CTTGTATGTG ACGGTCCAAC	6660
AACCTGAACA TTATTCAGGT ATTCAGTTGG GAGAATTTGC CAATCCTATC TTGGAGCGGG	6720
CTTCAGCTAT GAAAGACTCT CTCAATCTTC AAACAACAGC TAAGGCTTTA GAGCAAGTAA	6780
GTCAACAAG TCCTTATCCT ATGCCTAGTG TCAAGGATAT TTCACCTGGT GATTTAGCAG	6840
AAGAATTGCG TCGCAATCTT GTACAACCCA TCGTTGTGGG AACAGGAACG AAGATTAAAA	6900
ACAGTTCTGC TGAAGAAGGG AAGAATCTTG CCCCGAACCA GCAAGTCCTT ATCTTATCTG	6960
ATAAAGCAGA GGAGGTTCCA GATATGTATG GTTGGACAAA GGAGACTGCT GAGACCCTTG	7020
CTAAGTGGCT CAATATAGAA CTTGAATTTC AAGGTTCGGG CTCTACTGTG CAGAAGCAAG	7080
ATGTTCGTGC TAACACAGCT ATCAAGGACA TTAAAAAAAT TACATTAACT TTAGGAGACT	7140
AATATGTTTA TTTCCATCAG TGCTGGAATT GTGACATTT TACTAACTTT AGTAGAAATT	7200
CCGGCCTTTA TCCAATTTTA TAGAAAGGCG CAAATTACAG GCCAGCAGAT GCATGAGGAT	7260
GTCAAACAGC ATCAGGCAAA AGCTGGGACT CCTACAATGG GAGGTTTGGT TTTCTTGATT	7320
ACTTCTGTTT TGGTTGCTTT CTTTTTCGCC CTATTTAGTA GCCAATTCAG CAATAATGTG	7380
GGAATGATTT TGTTCATCTT GGTCTTGTAT GGCTTGGTCG GATTTTTAGA TGACTTTCTC	7440
AAGGTCTTTC GTAAAATCAA TGAGGGGCTT AATCCTAAGC AAAAATTAGC TCTTCAGCTT	7500
CTAGGTGGAG TTATCTTCTA TCTTTTCTAT GAGCGCGGTG GCGATATCCT GTCTGTCTTT	7560
GGTTATCCAG TTCATTTGGG ATTTTTCTAT ATTTTCTTCG CTCTTTTCTG GCTAGTCGGT	7620
TTTTCAAACG CAGTAAACTT GACAGACGGT GTTGACGGTT TAGCTAGTAT TTCCGTTGTG	7680
ATTAGTTTGT CTGCCTATGG AGTTATTGCC TATGTGCAAG GTCAGATGGA TATTCTTCTA	7740
GTGATTCTTG CCATGATTGG TGGTTTGCTC GGTTTCTTCA TCTTTAACCA TAAGCCTGCC	7800
AAGGTCTTTA TGGGTGATGT GGGAAGTTTG GCCCTAGGTG GGATGCTGGC AGCTATCTCT	7860
ATGGCTCTCC ACCAAGAATG GACTCTCTTG ATTATCGGAA TTGTGTATGT TTTTGAAACA	7920
ACTTCTGTTA TGATGCAAGT CAGTTATTTC AAACTGACAG GTGGTAAACG TATTTTCCGT	
ATGACGCCTG TACATCACCA TTTTGAGCTT GGGGGATTGT CTGGTAAAGG AAATCCTTGG	7980
AGCGAGTGGA AGGTTGACTT CTTCTTTTGG GGAGTGGGAC TTCTAGCAAG TCTCCTGACC	8040
CTAGCAATTT TATATTTGAT GTAAGAATGG CACCCTGATG TTTCAGGG	8100
	8148

(2) INFORMATION FOR SEQ ID NO: 12:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9909 base pairs
(B) TYPE: nucleic acid

225

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

TACTCCACCC TTAATATCCG TTCCTGTAAA TACTTTACCG CTTTTAAGTT CATAGAATTG 60 AACTITTAAA TGCTTGTCTT CAAGCATCTT TTCCATCCAA TTTTTAGGAG TTTGACCAGC 120 TTTAAATAAA AACCTTGCTG GGGTGATTAG TATAGATTTA TCTGCGATTT TATAAGCTTC 180 ATCAATAAAA TAGTGATATA TCGGCTCATC TCTGGCTTCT CCTGTTTCCT GATACGGAGG 240 ATTTCCTATC ACGACATCAA ATTTCATTTC ACTTTCCTCG CTAGATAGGC GCTCAAAACC 300 TATCATTCTA TTCTTTTTCC AGTCTTTGAT ATGGGTTTTA GATTCTTCTA CTTCTTGGAC 360 TTCTAGCTCA TCCGCAAACA AACTCAATTG TTGAGATTGC TTTTGTTTAG CTGAATAAGG 420 ACTACTTTTT TTCAATCCAT CCATCTGAAA GACATTGTAA GAGATAATAG TCGCAATTTC 480 TTTCTTTTGC TCTAATGTTG GTTGATTTCC AGTCTTAGCT AGATAATAGT CCTCAAAAGT TGCCAAAAGA TTCTCACGCG CCAAAAGGAG AGAATCTCCT TGATACTCAT AACCATACGA 600 AGCATGATAA GCATCTTTTA CAAGTTTATA AAATGTGACT TCATCTGAAA CCTCACGACT 660 AATCCGTTGC AGTTTTCTAT CAACAAAACC AACTCGCTCA GATAATGGAA TTTCCTCACC 720 AGTTACGGTA TCATATCTCG TTACCATATA AGGTGCTTCA CCACAAGTTA CCTCTAACCA 780 TCGTAAGTCC ACATACTCCT CAAGACTTAA CGAGCCTAAT TTCGATTCTA CATATCCATT 840 TTGCTTTGCG ACCAACCACG TTGGTGTAAA CACTTCTGCC CTTATTTTTG TCCGATCTTT 900 TTGTTCATAT TTGGATTTTT CAGATCTGGG CTGAATCAAG TTGGCAAAGT TTCCAGTAAC 960 CTTACTTGGA TTGATGCGAT CACTTGGAGC AAATCCCTTT CCTAACAATT CATAAGAATG 1020 CGTANGCCAA ACAATTGATT TCTTTGTCGT TCGATCTTTT AAAAGAATTT TTAATAAGTC 1080 AGCCGATTCT TTAGCCAAAC TTTCTTCACT AATATCTATT GTCATCAGCA ACCTCTCTTA 1140 TATTGTAAGC CCTATTATAT CATATTTTAA AGAATGAAAA TTTACTTGAA AAAAGTAATT 1200 CAATAAATAT CTCTCCGATG ACCAACTTCT AGAGTAGCAA CGACTAATTC ATCATCTACA 1260 ATTTGTACGA TAACTCGATA ATTACCAATT CTATAGCGCC ATTGACCAAC GCGATTACCA 1320 ACCAAAGCCT TTCCGTGTCG TCTTGGGTCT TCCAAAACAT TGGTTTGTAA ATAGTTTGTA 1380 ATTAGCTTCT GCGTATAACG GTCCAATTTT TTCAATTGCT TGATAAAACG TCTTGTTGGA 1440 ACTAATTAT ACAAATTATT CATCCTTCAA GCCTAAATCA TGCATCATTT CTTCCCAAGT 1500 AATGGGTTCA ACTCCTTTTT CCAAGTCTTC TAAATACTCT TGATAGGCTA AATCTGCCAC 1560

226	
ACGAGCATCG TATTCATCTT CTAGGGCTTC AAGAGTTTTG GTGCGAATAA GTTCCGAAAG	1620
GGAAACTCCT TCAAACTTAG CCATTGCTTT CATAAATGTT TTATCAGCTT CAGAAACTTT	1680
TAATGTAATA GTAGTCATCT TTTGTGCTCC CTTTTTTAAT GGTAACACCA TTGTATTACT	1740
TTTTAGGTGT TCAGTCAATA TAAAAAGAAC ACCTTCTCAG CGTTCTTTCT ATATCTCTGT	1800
CAATGGTGTT GCGGTATCTG GTGAGGTATC ATAAACCTTA AAGTCTACTC CGACTCCCAG	1860
ATCAGCTTGA GCCAGCTGAT TGACCATGGT CATATGAGCC AGTTCCTTGA TATTGTTTTC	1920
CTTAGATAAA TGCCCAAGGT AAATCTTCTT AGTACGATTT CCTAGCGTCC GAATCATAGC	1980
TTCAGCACCG TCCTCGTTAG AAAGGTGACC AAGGTCAGAT AGGATTCGTT GTTTGAGTCG	2040
CCAAGCGTAA GAACCTGATC GCAAAATCTC TACATCATGG TTGGCCTCGA TAAGATAACC	2100
ATCCGCATTT TCGACAATGC CCGCCATACG GTCACTGACA TAACCTGTAT CTGTCAAGAG	2160
GACAAAACTC TTATCATCCT TCATAAAGCG ATAGAACTGC GGTGCGACTG CATCATGGCT	2220
TACACCAAAA CTCTCGATGT CGATATCTCC AAAGGTTTTG GTTTTACCCA TTTCAAAAAT	2280
ATGCTTTTGC GAAGAATCCA CCTTGCCAAG ATATTTACTA TTTTCCATAG CTTGCCAGGT	2340
CTTTTCATTG GCATAAAGAT CCATACCATA CTTGCGAGCC AAAACGCCTA CTCCATGGAT	2400
ATGATCTGAA TGCTCATGGG TAATCAAGAT GGCATCCAGG TCTTCTGGCT TACGGTTAAT	2460
TTCAGCTAGC AGACTGGTAA TTTTCTTGCC AGACAAGCCT GCATCTACTA AAAGCTTCTT	2520
TTTTGAGGTT TCCAGATAAA AAGAATTTCC ACTGGAACCC GACGCTAAAA TACTGTATTT	2580
AAAGCCTATT TCACTCATTC TAGTCTTCTA CTTCATCCTC CCATACTTCT TCTTTCACTG	2640
CATCCTTATC ATAAGGGAGT ACAATGGTAA AGGTTGAACC CTTGCCGTAT TCACTCTTGG	2700
CCCAAATAAA GCCCTTATGT TGTTTGATAA TTTCTTTAGC GATAGACAGT CCTAGACCTG	2760
TACCACCTTG TGCACGACTT CTAGCACGAT CCACACGATA GAAACGGTCA AAGATACGTG	
GTAAATCCTG CTTAGGAATC CCCAAACCGT GGTCAGAAAT GGATAAAATC ATCTGGTCTT	2820
CAGTTGTCTT CATTCTGACA GTGATTTTAC CCCCATCTGG CGAATACTTA ATAGCATTAT	2880
TTAAAATATT GTCGACAACC TGCGTCATCT TATCTGTATC AATTTCCATC CAGATAGAAT	2940
TGATGGGATA ATCTCTCACC AACTCATATT TTTTCTCCTT TTCCTGTCCT TTCATCTTGT	3000
CAAAACGATT GAGGATAAAG GTAATAAAAG CAGTGAAGTT AATCAGTTCC ACATCTAGGT	3060
GACTGGTAGC ATTATCAATA CGTGAAAGAT GGAGGAGATC CGTCACCATG CGCATCATAC	3120
GGTTGGTCTC ATCAAGAGAA ACCTTGATAA AGTCTGGTGC TACAGTTTCA CACAAAGCCC	3180
CCTCATCCAA GGCTTCAAGA TAGGATTTTA CGCTAGTCAG AGGAGTCCGT AACTCATGGC	3240
	3300
TAACATTGGA AACAAAGAGT CTTCGTTCGC GTTCTTCCTT CTCCTGCTCC GTCGTATCAT	3360

GCAAAACAGC CACCAAAGG	
GCAAAACAGC CACCAAACCT GAAATAAAGC CAGACTCTCG ACGTATCAAG GCAAAGCGAA	3420
CTCGAAGGTT CAAATATTCG CCATTGATAT CTTGGGAATC TAGCAACAAT TCTGGACTTT	3480
GGGTAATCAA ATCACGCAAT TCATAGTTTT CTTCTATCTT GAGCAATTCC AAAATGCTTC	3540
TATTCAGAAC ATCTTCCTTA ACCAACCCCA GTTGCTTCTT GGCTGTATCG TTAATCATGA	3600
TAATCTGACC CCGACGGTTA GTCGCAAGAA CCCCATCTGT CATATAAAAC AGAATACTAT	3660
TRACCTCTT ACTCTCTTGT TCTAGATTTT CCTGAGTGAG ACGAATAACC TCCGACAACT	
CATTCAAATT ATTGGTAATA TTGGTGATTT CAGACCCACC TTGCATATCA AGAACCTTGG	3720
AATAATCTCC TGCAATCAAA TCTTTAACCT TTTGATTGAC TTGCTTCAAC TGAATATTAT	3780
CACGTCTATT TTCCAGTAAT AAGAGGGTCA CAACAAGGAT GAAACCTAAC AAAATCAGGA	3840
TAAAGATAAA ATCTCTGGTA AAAATGGTTT GTTTCAGTAA ATCAAGCATT ATTTCTCATG	3900
TAATACCCTA CACCACGGCG CGTCAAGATA TACTCTGGTC GGCTGGGCGT ATCTTCAATC	3960
TTCTCACGCA GACGTCGTAC AGTCACATCA ACTGTACGGA CATCACCAAA ATAGTCATAA	4020
CCCCAGACAG TCTCAAGCAA GTGTTCGCGC GTGATGACTT GACCTGTATG CGATGCTAAA	4080
TGATACAAAA GCTCAAATTC ACCATGCCTT AACCATT GACCTGTATG CGATGCTAAA	4140
TGATACAAAA GCTCAAATTC ACGATGGGTT AAGTCTAGTT CTTCGCCATA TTTTTTAGCC	4200
ACGTAGGCGT CTGGAACAAT TTCTAAATCC CCAATTTGGA TAGGTTGAGG TTTACTATCT	4260
GCTTCCTGAC CATCTACTGG CATAGGTTGA GAACGACGCA GAAGAGCTTT AACACGCGCC	4320
TGCAACTCAC GATTGGAGAA GGGTTTTGTT ACATAGTCAT CTGCCCCAAG TTCCAAACCG	4380
ATAACCTTAT CAAATTCACT ATCTTTGGCT GAAAGCATAA GAATGGGCAC ACTGCTTGTC	4440
TTACGAATGG TCTTAGCAAC TTCTAAACCA TCAATTTCTG GAAGCATCAA ATCCAGAATA	4500
ATAATATCTG GTTGCTCTGC TTCAAATTGC TCTAGCGCTT CACGACCATT AAAAGCAGTT	4560
ACAACTTCGT AACCTTCCTT GGTCATATTA AACTTGATAA TATCCGAGAT TGGTTTCTCA	4620
TCATCTACAA TTAGTATTTT TTTCATATGT TCACCTTTTT CTCTACTATT ATACCAAAAA	4680
AATAGTCAGA AGACACAATA GCTAGTCTTG GCTACTGTCT AAGTTGGCTT GTGCATAAAC	4740
CTGCCAGATT TTTTGTTGGG GTTTGGCAAG TGGGTAATTC TTGAATTCTT CTGCTGAAAC	4800
CCAGCGAACT TCCCTATCTG AAAAATCATG GAAGTCACTC ACCTGACCTG	
TACATGCCAT TTTCGATGAC TAAAAACATG CTGGACTGTA TCAAAACAAA CATCAAGCCA	4860
ATCAACATCT AGGTCATAGT CCTGCTGGAA ACTCTCTTCT GGACTGGGAC CAAAGTTCAC	4920
ACTITICTICC GCAACCIGAT GAAAGAGGTC AAACIGCTCI TCTTGCGAAA AGTTATCAAC	4980
TTCTATAAAG GGGAAATGCC AAAAACCTGC CAAGAGCTTT TCGCTTTCAT TTTTTTCAAG	5040
TOGETTECAT TTTTTTCAAG	5100

TAAAAATTGT CCTTGACAAT TTTTTGCACAAA TTAAAAATTGT	
TAAAAATTGT CCTTGAGAAT TTTTCACAAC TAAGGCTTTA AGATAAATAG GAACCGGCTT	5160
TTTCTTAGGA GATTTAATTG GATAACGGTC CATGGTTCCA TTCTGATATG CCGCACTAAA	5220
GTCCTTGACT GGGCTTTCTT CAGGTCTGGG ATTTACAGGA GACTCAATAT CAGACCCTAA	5280
GTCCATCAAG GCTTGATTAA AATCACCCGG ACGATCCGGA TTAATCAAGA TCTCCATCAT	5340
TGCCTGAAAA ATTITTCGAT TACTTGGAAT CCCAATATCG TGGTTGACTT CAAACAGACG	5400
CGCCAAGACC CGCATGACAT TACCATCTAC AGCTGGCTCA GGCAAGTTAA AAGCAATACT	5460
GGAAATGGCT CCTGCTGTGT AAGGTCCAAT CCCTTTCAAG CTGGAAATTC CTTCATAGGT	5520
ATTTGGAAAT TGGCCACCAA AGTCAGTCAT AATCTGCTGG GCTGCAGCCT GCATATTGCG	5580
AACTCGAGAA TAATAGCCCA AGCCCTCCCA AGCTTTCAGT AAACTCTCCT CAGGCGCAGT	5640
TGCCAGACTT TCGACAGTTG GAAACCAGTC CAAAAATCTT TCGTAGTAAG GGATAACTGT	5700
ATCCACCCTG GTCTGCTGAA GCATGATTTC AGATACCCAG ATGTGATAAG GATTTTTACT	5760
TCTCCTCCAA GGCAAATCTC TTTTGTTTTC ATCATACCAA GCGAGAAGTT TCTCACGGAA	5820
AGAAATGACT TTCTCCTCCG GCCACATGAC GATACCGTAT TCTTTCAAAT CTAACATATC	5880
TCTAGTATAA CACAGAAGGT TTCACCTGTC TTTGTATCTG ATTTATAATA TTTTCAATAG	5940
ATAGTATATA ACTITITCTAT CTACTTATAC TCAATGAAAA TCAAAGAGCA AACTAGGAAG	6000
CTAGCCGCAG GTTGCTCAAA ACACTGTTTT GAGGTTGTGG ATAGAACTGA CAGAGTCAGT	6060
ATCATATACT ACGGCAAGGT GAAGCTGACG TAGTTTGAAG AGATTTTCGA AGAGTATAAA	6120
TCTTATTGAT GAACTGCTTG CAGTCTGAGA AAAAATGAGC TTGGATATTA TTTCCAAACT	6180
CACTTAAAGT CAATTTCAAT CCACTAGAAC AAGCCTAGTA CAGTTCCATC GCTTTCAACA	6240
TCCATGTTGA GAGCTGCTGG ACGTTTTGGA AGACCTGGCA TGGTCATAAC ATCACCAGTT	6300
AAGGCAACGA TGAAGCCTGC ACCTAATTTT GGTACCAATT CACGAATGGT AATTTCAAAG	6360
TTTTCTGGTG CTCCAAGCGC ATTTGGATTG TCTGAGAAAC TGTATTGAGT TTTAGCCATA	6420
CAGATTGGCA ATTTGTCCCA ACCGTTTGA ACGATTTGAG CAATTTGTGT TTGAGCTTTC	6480
TTCTCAAAGT TCACTTTGCT ACCACGATAG ATTTCAGTGA CAATTTTTTC AATCTTTTCT	6540
TGGACAGAAA GGTCATTATC ATACAAACGT TTATAGTTAG CTGGATTTTC AGCAATTGTC	6600
TTAACAACTG TTTCGGCAAG TGCTACTCCA CCTTCTGCTC CATCAGCCCA GACACTAGCC	6660
AATTCAACTG GTACATCGAT TGAGGCACAG AGTTCTTTTA AGGCTGCAAT TTCAGCTTCT	6720
GTATCAGATA CARATTCGTT ARTAGCTACA ACTGCTGGAA TACCGAACTT ACGGATATTT	6780
TCAACGTGGC GTTTCAAGTT AGCAAAACCT GCACGAACTG CCTCTACATT TTCTTCAGTC	
AGAGCGTCTT TAGCCACACC ACCATTCATC TTAAGGGCAC GAAGGGTTGC GACAATAACA	6840
THAGGGCAC GAAGGGTTGC GACAATAACA	6900

ACTGCATCTG GAGATGTTGG CAAGTTTGGT GTCTTGATAT CAAGGAATTT CTCAGCACCA	6960
AGGTCCGCAC CAAAACCAGC TTCAGTAACA GTGTAATCAG CCAAGTGAAG GGCTGTTGTC	7020
GTCGCCAAAA CAGAGTTACA GCCATGAGCG ATATTGGCAA ATGGACCACC GTGTACAAAG	7080
GCAGGTGTAC CGTAAATTGT CTGAACCAAG TTTGGCTTAA TAGCATCCTT CAAAATCAAA	7140
GCCAAGGCAC CCTCAACCTG CAAATCACCT ACAGAAACAG GCGTACGGTC ATAGCGATAA	7200
CCAATAACGA TATTCGCCAA ACGACGTTTC AAGTCCTCGA TGTCCGTTGC CAAGCAAAGA	7260
ATTGCCATGA TTTCTGAAGC AACTGTAATA TCAAAACCAT CCTCACGTGG AATACCGTTT	7320
AGAGGACCAC CAAGACCAAC AGTCACATGG CGGAGCGTAC GGTCGTTCAA GTCCACAACG	7380
CGTTTCCAGA GGATACGACG TTGATCAATT CCCAGCTCAT TCCCTTGGTG CAAGTGGTTG	7440
TCAATCAAGG CAGAAAGGGC ATTGTTGGCA GTTGTAATAG CATGCATATC TCCAGTAAAG	7500
TGGAGGTTGA TGTCTTCCAT TGGCAGAACT TGTGCATACC CACCACCAGC AGCACCACCC	7560
TTGATCCCCA TGACTGGACC AAGAGACGGT TCGCGGATAG CAATCATGGT TTTCTTGCCA	7620
ATCTTGTTCA AGGCATCCGC AAGACCAATG GTAAGCGTCG ACTTTCCTTC ACCTGCAGGT	7680
GTTGGGTTGA TGGCAGTAAC CAAGATCAAT TTACCGACTG GATTGCTCTC AACTGCACGA	7740
ATTTTATCAA AGCTGAGTTT AGCCTTGTAC TTTCCGTACA ACTCCAAATC GTCATAAGAA	7800
ATACCAAGTT TCTCTACAAC ATCAACAATT GGCTTCAACT CAATACTCTG TGCGATTTCA	7860
ATATCTGTTT TCATTCAAAA TTCCTCTAAC CTCTTATATG ATAATTCATT ATATCACAAA	7920
ACAAGATTTT TAACATCCTA AAACTCTCTA AACGTTCGTA AATATCTCTG TTTTTAAGAC	7980
TTTTAGAGTC CTTTCTTAAA TTTTATATGG CTTTATAGTT TGAAACTATA ATAAATCTTC	8040
GTTTTTACCA AAAATTTATC ACTTTCATTT TACTTACCGC TTATTTTTGT GTACAATAGT	8100
GCTATGAAAA TTTTAGTTAC ATCGGGCGGT ACCAGTGAAG CTATCGATAG CGTCCGCTCT	8160
ATCACTAACC ATTCTACAGG TCACTTGGGG AAAATTATCA CAGAGACTTT GCTTTCTGCA	8220
GGGTATGAAG TTTGTTTAAT TACGACAAAA CGAGCTCTGA AGCCAGAGCC TCATCCTAAC	8280
CTAAGTATTC GAGAAATTAC CAATACCAAG GACCTTCTAA TAGAAATGCA AGAACGTGTT	8340
CAGGATTATC AGGTCTTGAT CCACTCAATG GCTGTTTCTG ACTACACTCC TGTTTATATG	8400
ACAGGGCTTG AGGAAGTTCA GGCTAGCTCC AATCTAAAAG AATTTTTAAG CAAGCAAAAT	8460
CATCAGGCCA AGATTTCTTC AACTGATGAG GTTCAGGTTT TGTTCCTTAA AAAGACACCC	8520
AAAATCATAT CCCTAGTCAA GGAATGGAAT CCTACTATTC ATCTGATTGG TTTCAAACTG	8580
CTGGTTGATG TTACCGAAGA TCATCTGGTT GACATTGCAC GAAAAAGTCT TATCAAGAAT	8640

230 CAAGCAGATT TAATCATCGC GAATGACCTG ACTCAAATTT CAGCAGATCA GCACCGAGCT	8700
ATATTTGTTG AGAAAAATCA GCTTCAAACA GTCCAGACTA AAGAAGAAAT TGCAGAACTC	8760
CTCCTTGAAA AAATTCAAGC CTATCATTCT TAGAAAGGAA AACTATGGCA AACATTCTCT	8820
TGGCTGTAAC GGGTTCAATC GCCTCTTATA AGTCGGCAGA TTTAGTCAGT TCTCTAAAAA	8880
AACAAGGCCA TCAAGTCACT GTCTTAATGA CTCAGGCTGC TACAGAGTTT ATCCAACCTT	8940
TGACACTACA GGTACTCTCA CAGAATCCTG TCCACTTGGA TGTCATGAAG GAACCCTATC	9000
CTGATCAGGT CAATCATATC GAACTTGGAA AAAAAGCAGA TTTATTTATC GTGGTACCTG	9060
CAACTGCTAA CACTATTGCA AAACTAGCTC ACGGATTTGC GGACAACATG GTAACCAGTA	9120
CAGCTCTAGC CCTACCAAGT CATATTCCCA AACTAATAGC TCCTGCTATG AATACAAAAA	9180
TGTATGACCA TCCAGTAACT CAGAATAATC TGAAAACATT AGAAACTACG GCTATCAGCT	9240
GATTGCTCCT AAGGAATCCC TACTAGCTTG TGGAGACCAC GGACGAGGAG CTTTAGCTGA	9300
CCTCACAATT ATTTTAGAAA GAATAAAGGA AACTATCGAT GAAAAAACGC TCTAATATTG	9360
CACCCATTGC TATCTTTTT GCTACCATGC TCGTGATACA CTTTCTGAGC TCACTTATCT	9420
TTAACCTTTT TCCATTTCCA ATCAAACCGA CCATTGTTCA TATTCCTGTC ATTATTGCCA	9480
GCATTATTTA TGGTCCACGA GTTGGGGTTA CACTTGGATT TTTGATGGGA TTACTTAGCT	9540
TGACGGTTAA CACGATTACG ATTCTACCGA CAAGCTACCT CTTCTCTCCC TTCGTACCAA	9600
ACGGAAACAT CTACTCAGCT ATCATTGCCA TCGTCCCACG TATTTTGATT GGTTTAACTC	9660
CTTACTTAGT CTATAAACTG ATGAAAAACA AGACTGGTCT GATTTTAGCT GGAGCCCTTG	9720
GTTCCTTGAC AAATACTATC TTTGTCCTTG GAGGAATCTT CTTCCTATTT GGAAATGTTT	9780
ATAATGGAAA TATCCAACTT CTTCTGGCAA CCGTTATCTC AACAAATTCA ATTGCTGAAT	9840
TGGTCATTC TGCAATTCTA ACCCTAGCCA TTGTTCCACG ACTACAAACC TTGAAAAAAT	9900
AAAAACAGG	9909
(2) INFORMATION FOR SEQ ID NO: 13:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1126 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATTTCAT ATAATAGTAA AATAGAATGT GTGATTCAAT AATCACCTCA AATAGAAAGG 60 AAATTCTATG TCAAATCTAT CTGTTAATGC AATTCGTTTT CTAGGTATTG ACGCCATTAA 120

TAAAGCCAAC	TCAGGTCATC	CAGGTGTGGT	TATGGGAGCG	GCTCCGATGG	CTTACAGCCT	180
СТТТАСАААА	СААСТТСАТА	TCAATCCAGC	TCAACCAAAC	TGGATTAACC	GCGACCGCTT	240
TATTCTTTCA	GCAGGTCATG	GTTCAATGCT	CCTTTATGCT	CTTCTTCACC	TTTCTGGTTT	300
TGAAGATGTC	AGCATGGATG	AGATTAAGAG	TTTCCGTCAA	TGGGGTTCAA	AAACACCAGG	360
TCACCCAGAA	TTTGGTCATA	CGGCAGGGAT	TGATGCTACG	ACAGGTCCTC	TAGGGCAAGG	420
GATTTCAACT	GCTACTGGTT	TTGCCCAAGC	AGAACGTTTC	TTGGCAGCCA	AATATAACCG	480
TGAAGGTTAC	AATATCTTTG	ACCACTATAC	TTACGTTATC	TGTGGAGACG	GAGACTTGAT	540
GGAAGGTGTC	TCAAGCGAGG	CAGCTTCATA	CGCAGGCTTG	CAAAAACTTG	ATAAGTTGGT	600
TGTTCTTTAT	GATTCAAATG	ATATCAACTT	GGATGGTGAG	ACAAAGGATT	CCTTTACAGA	660
AAGTGTTCGT	GACCGTTACA	ATGCCTACGG	TTGGCATACT	GCCTTGGTTG	AAAATGGAAC	720
AGACTTGGAA	GCCATCCATG	CTGCTATCGA	AACAGCAAAA	GCTTCAGGCA	AGCCATCTTT	780
GATTGAAGTG	AAGACGGTTA	TTGGATACGG	TTCTCCAAAC	AAACAAGGAA	CTAATGCTGT	840
ACACGGCGCC	CCTCTTGGAG	CAGATGAAAC	TGCATCAACT	CGTCAAGCCC	TCGGTTGGGA	900
				TTCAAAGAAC		960
				GCAGATTATA		1020
				CGTGATCCAG		1080
	TTCCCAGCTT					1126
(2) *******						20

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2520 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CCGGCAACAA	AAAAGAAAA	ATCAACAGTT	AAAAAAAATC	TAGTCATCGT	GGAGTCGCCT	60
GCTAAGCCAA	GACGATTGAA	AAATATCTAG	GCAGAAACTA	CAAGGTTTTA	GCCAGTGTCG	120
GGCATATCCG	TGATTTGAAG	AAATCCAGTA	TGTCCGTCGA	TATTGAAAAT	AATTATGAAC	180
CGCAATATAT	TAATATCCGA	GGAAAAGGCC	CTCTTATCAA	TGACTTGAAA	AAAGAAGCTA	240
AAAAAGCTAA	TAAAGTTTTT	CTCGCGAGTG	ACCCGGACCG	TGAAGGAGAA	GCGATTTCTT	300
GGCATTTGGC	CCATATTCTC	AACTTGGATG	AAAATGATGC	CAACCGTGTG	GTCTTCAATG	360

AAATCACCAA GGATGCAGTC AAAAATGCTT TTAAAGAACC TCGTAAGATC GATATGGACT TGGTCGATGC CCAACAAGCT CGTCGGATCT TGGATCGCTT GGTAGGGTAT TCGATTTCGC 420 CTATTTTGTG GAAGAAGGTC AAGAAGGGCT TGTCAGCAGG TCGCGTTCAG TCCATTGCCC 480 TTAAACTCAT CATTGACCGT GAAAATGAAA TCAATGCCTT CCAGCCAGAA GAATACTGGA 540 CAGTTGATGC TGTCTTTAAA AAGGGAACCA AACAATTTCA TGCTTCCTTC TATGGAGTAG 600 ATGGTAAAAA GATGAAACTG ACCAGCAATA ACGAAGTCAA GGAAGTCTTG TCTCGTCTGA 660 CGAGTAAAGA CTTTTCAGTA GATCAGGTGG ATAAGAAAGA GCGCAAGCGC AATGCTCCTT 720 TACCCTATAC CACTTCATCT ATGCAGATGG ATGCTGCCAA TAAAATCAAT TTCCGTACTC 780 GAAAAACCAT GATGGTTGCC CAACAGCTCT ATGAAGGAAT TAATATCGGT TCTGGTGTTC 840 AAGGTTTGAT TACCTATATG CGTACCGATT CGACTCGTAT CAGTCCTGTA GCGCAAAATG 900 AGGCGGCAAG CTTCATTACG GATCGTTTTG GTAGCAAGTA TTCTAAGCAC GGTAGCAAGG 960 TCAAAAACGC ATCAGGTGCT CAGGATGCCC ATGAGGCTAT TCGTCCGTCA AGTGTCTTTA 1020 ATACACCAGA AAGCATCGCT AAGTATCTGG ACAAGGATCA GCTTAAGCTA TATACCCTTA 1080 TCTGGAATCG TTTTGTGGCT AGCCAGATGA CAGCGGCCGT TTTTGATACC ATGGCTGTTA 1140 AATTGTCTCA AAAAGGGGTT CAATTTGCTG CCAATGGTAG TCAGGTTAAG TTTGATGGTT 1200 ATCTTGCCAT TTATAATGAT TCTGACAAGA ATAAGATGTT ACCGGACATG GTTGTTGGAG 1260 ATGTGGTCAA ACAGGTCAAT AGCAAACCAG AGCAACATTT CACCCAACCG CCTGCCCGTT 1320 ATTCTGAAGC AACACTGATT AAAACCTTAG AGGAAAATGG GGTTGGACGT CCATCAACCT 1380 ACGCGCCAAC CATTGAAACC ATTCAGAAAC GTTATTATGT TCGCCTGGCA GCCAAACGTT 1440 TTGAACCGAC AGAGTTGGGA GAAATTGTCA ATAAGCTCAT CGTTGAATAT TTCCCAGATA 1500 TCGTAAACGT GACCTTCACA GCTGAAATGG AAGGTAAACT GGATGATGTC GAAGTTGGAA 1560 AAGAGCAGTG GCGACGGGTC ATTGATGCCT TTTACAAACC ATTCTCTAAA GAAGTTGCCA 1620 AGGCTGAAGA AGAAATGGAA AAAATCCAGA TTAAGGATGA ACCAGCTGGA TTTGACTGTG 1680 AAGTGTGTGG CAGTCCAATG GTCATTAAAC TTGGTCGTTT TGGTAAATTC TACGCTTGTA 1740 GCAATTTCCC AGATTGCCGT CATACCCAAG CAATCGTGAA AGAGATTGGT GTTGAGTGTC 1800 CAAGCTGTCA TCAGGGACAA ATTATTGAGC GAAAAACCAA GCGTAATCGC CTATTCTATG 1860 GTTGCAATCG CTATCCAGAA TGTGAATTTA CCTCTTGGGA CAAGCCTGTT GGTCGTGACT 1920 GTCCAAAATG TGGCAACTTC CTCATGGAGA AAAAAGTCCG TGGTGGTGGC AAGCAGGTTG 1980 TTTGTAGCAA AGGCGACTAC GAGGAAGAAA AGATGGCTCT TTGTCAACTG TAGTGGGTTG 2040 AAGTCAGCTA AGCTCGAGAA AGGACAAATT TTGTCCTTTC TTTTTTGATA TTCAGAGCGA 2100

TAAAAATCCG TTTTTGAAG TTTTCAAAGT TCCGAAAACC AAAGGCATTG CGCTTGATAA 2220
GTTTGATGAG ATTATTGGTC GCTTCCAATT TGGCGTTAGA ATAGTGTAGT TGAAGGGCGT 2280
TGACGATTTT CTCTTTGTCC TTTAGAAAGG TTTTAAAGAC AGTCTGAAAA AGAGGATGAA 2340
CCTGCTTTAG ATTGTCCTCA ATGAGTCCGA AAAATTTCTC CGGTTCCTTA TTCTGAAAGT 2400
GAAACAGCAA GAGTTGATAG AGCTGATAGT GATGTTTCAA GTCTTGTGAA TAGCTCAAAA 2460
GCTTGTTTAA AATCTCTTTA TTGGTTAAAT GCATACGAAA AGTAGGGCGA TAAAAATGTT 2520

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10993 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTTCTCGAT AATAACTTCC ACCTTATTAT TTGGGATACC CTCCTCTTCT TCACCACCAC 60 GTTCATAGTA GTCATCGCGA TAGAGAAAAG CTACGATATC AGCGTCCTGC TCAATAGACC 120 CAGATTCACG AATATCAGAC AAGACCGGTC TCTTGTCCTG ACGTTGTTCT ACACCACGAG 180 AAAGCTGACT CAGAGCGATT ACTGGAACCT TCAATTCCTT GGCTAGTATT TTCAACTGAC 240 GAGAAATTTC AGAAACTTCT TGTTGACGAT TTTCTCGACC AGTTCCCGTG ATAAGTTGCA 300 AATAGTCTAT CAAAATCAAA CCAAGATTTC CAGTTTCTTG AGCCAATTTA CGAGAACGAG 360 AACGAATCTC TGTAATCCGA ATACCTGGCG TATCATCGAT ATAGATACTG GCGTTAGCTA 420 GATTACCCTG AGCAATAGTA TATTTTTGCC ACTCCTCATC TGTCAATTGC CCTGTACGGA 480 TAGAATGTGA CTCCACTAAG CCTTCTGCAG CTAACATACG ATCTACCAAG CTTTCCGCAC 540 CCATTTCGAG TGAAAAAATA GCAACCGTTT TGTCCAACTT AGTCCCAATG TTCTGAGCGA 600 TATTCAAGGC AAATGCTGTC TTACCAACTG CTGGACGAGC TGCTAAGATA ATCAACTCCT 660 CCTCATGAAG TCCTGTTGTC ATATGATCCA AATCACGATA ACCTGTCGCA ATACCTGTAA 720 TATCGGTCGT TTGTTGCGAG CGAGCTTCCA GATTTCCAAA GTTGAGATTC AACACATCTC 780 GAATGITCTT AAACCCGCTT CGATTTGCAT TITCACTGAC ATCAATCAAC CCTTTTTCTG 840 CCTGAGCAAT AATTTCATCA GCTGGTTGTG ACGCTTCGTA AGCTTGGTTG ACAGACTCTG 900 TCAACTTGGC AATTAAACGA CGTAGCATTG CTTTTTCTGC AACAATCTTA GCATAATACT 960 CCGCATTAGC AGAAGTTGGC ACAGAATTAA CAATCTCAAC CAAGTAAGAC AAGCCACCAA 1020

234 FACGA

TATTCTGTAA ATCACCTTGA TTATCAAGGA TAGTACGAAC CGTTGTTGCA TCTATGGCAT	1080
CACCACGATC GGATAAATCG ACCATGGCTT GGAAAATCAA ACGATGGGCA TACTTAAAAA	
AGTCCCGAGA CTCAATGTAT TCTCGCACAA AAACAAGTTT ACTCTCATCA ATAAAGATAG	1200
CCCCTAAAAC GGATTGCTCA GCTAAGATAT CTTGAGGTTG TACTCGTAAC TCTTCTACTT	1260
CTGCCATCAG ACTTCCCTTC CTTTTACAAT CTTGTCAAGA AGGTGTAAAC TTATCCTTCT	1320
TTCACACGAA GATTGATTAC ACTTGTGATA TCTTGATAGA TTTTCACTGG CACATCAATC	
AAACCAACCG CTCGAATCGG AGCTTGTACT TGAATATGAC GTTTATCAAT CTTAATTCCA	
AATTGCTTTT GCAATTCTTC TGCAATCTTC TTATTGGTAA TAGAACCAAA GGTACGACCA	1500
TCTGGACCAA CTTTTTCAAC AAATTCTACA ACAGTTTCTT CTGCTTCAAG TTGTGCTTTA	
ATTGCTTTTC CTTCTGCAAT CATCTCAGCG TGAGCTTTTT CTTCCGATTT TTGTTTACCA	
CGAAGTTCAC CTACAGCTTG AGCAGTCGCT TCTTTGGCTA GATTCTTTTT GATAAGAAAG	
TTTTGCGCAT ACCCTGTTGG TACTTCCTTA ATTTCGCCTT TTTTACCTTT TCCTTTAACA	
TCTGCTAAAA AGATTACTTT CATTCTTCTT TCTCCTTTTC CTTCATTTCA TTTAATACAA	
TTTCTGTCAG TTTTTCACCT GCTTCTGACA AGGTTACATC TTTAATTTGA GCTGCTGCCA	1860
AATTAAAGTG GCCTCCACCG CCTAACTCTT CCATAATCCG TTGTACATTC AGTTTACTAC	1920
GACTTCGAGC TGAGATAGAG ATAAATCCTT GTGTATTCTT CGCAAGAACA AAACTCGCTT	1980
CAATACCTGA CATGGCTAAC ATGGCATCTG CTGCCTTACT AATAACAACT GTATCATAGC	2040
ATTTCATGTC CTTAGCCTCT GCTATTAGTA CATCTGAACC TAATTTACGC CCCTGTAAAA	2100
TAAGTTCATT GACCTCACGA TATTCTTCAA AATCTGTCGC AGCGATTTCC TGGATAGCAA	2160
TACTATCACT TCCGCGCGTT CTGAGATAGC TAGCAACATC AAATGTCCGA CTAGTTACTC	2220
GCGAGGTGAA ATTTTTAGTA TCCAACATCA TACCAGCCAT CAAGACACTT GCTTGCATAC	2280
GACTCAAACG ATTTTCTTA GAATTCTGGA ACTGAATCAA TTCCGTTACC AACTCACTGG	2340
CACTACTTGC ACCACTTTCG ATATAAGTAA TAACCGCATT ATCTGGAAAA TCCTGATCCC	2400
TTCTATGGTG GTCAATAACA ATGGTTTGGG TAAATAAATC ATAAAATTCT TTTGATAATG	2460
TTAAGGCTGT CTTTGAATGG TCTACAAGAA TCAACAAGA ACGATTGGTC ACCATCCCCA	2520
TTGCATCCTT AACAGACAAC AACTTCGTAA CTCCTTCTTT TTCTATGAAT GAAACAGCTC	-
GTTCAATATC TGGAGACATT TGTTCTTCAT CATAAAGAGC ATAGCTATTT TCAATCACAT	2580
TGCTGGCGAA CAACTGCATA CCTACAGCAG AGCCCAAAGC ATCCATGTCT AAATTTTTGT	2640
GACCGACTAC AAAAACCTGA TCTACACTCC GAATCTTATC TGAAATAGCT GTCATCATAG	2700
CGCGCGTACG AGTCCGTGTA CGCTTGATTG AAGCAGCAGA CCCACCACCA AAATAAACTG	2760
AND	2820

GATTTTTCGT	TTCGTCGTT	т тестталса	A CCACCTGGT	C GCCACCACG	T ACTTCAGCCA	2880
AGTTCAAATT	GAGCAAAGC	A ACTITCCCT	а тстсатсат	G ATTTCCATC	G CCATAAGAAA	2940
ATCCCATACT	TAAGGTCAA	G GGCAACTGT	C TCTGTTTCG	A CTCTTCTCT	G AAAGCATCAA	3000
TAACAGAAAA	TTTATCATT	C ATCAAGCCC	T CAAGCACCG	T GTAGTCAGT	A AATAGATAAA	3060
ATCGATCCAT	ACTTACCCG	A CGAGAAAAC	A TCATGTGTT	T TTCTGAAAA	C TCTGATATAA	3120
AATTAGCTAC	AAAACTATT	ATTTGACTA	A TATCTGACTY	C AGAAGTTTC.	а тестесалат	3180
CATCATAATT	ATCCACAGAC	ACAATCCCA	A TCACTGGTC	r acttgttac	C AATTCATCTG	3240
TTATGGCTTG	TTCCCTGGAT	ACATCTACA	A AATACAAAA	C ACCGGAAGAI	A GCATCCATAT	3300
GAACAGCATA	ACGCTTCTCA	CCAAGCTTG	G CATAAGTAG	A CGGATTTCC	I ACTGAAGCCT	3360
TGATAATCGT	TTGAACAGCT	TCTAAATCA	AATCACCATC	TTCCTTGGT	C AAAATCAATT	3420
CAGCATAGGG	ATTAAACCAC	TCAACCTCTC	CAGAAGATAA	ATTCAATTTC	ATAACACCTA	3480
CAGGCATCTG	TTCCAATAGA	GCTGTCAAA	TTTCTTCCGC	TTGGTGGTT	ACATACTGTA	3540
TCTGTTCTAC	ATCACTCCTT	GTATAATGC#	CTCTCAGTTT	СТТАААТАА	AAAACATAGC	3600
CTCCTACAAA	AAGAAACAAA	ATTAAAACCG	TCAACAGATT	ATTATTAACA	AAAATAATGA	3660
AAGTGGATAA	GACTCCAAAC	GCAATCAATC	CTACTAGAAT	' AGGAAAATT	GGACTTACAT	3720
AAAATTTTTT	CATTCAAAAC	CTCTTGGCAC	CCATTATACC	ATAATACCCC	TCAAAAAGCG	3780
ACTTTTTAAA	AGTGTAATCA	GTAATTCTAT	CANTTATAAG	AAAAAGGTAG	TTTACAATTC	3840
AGTAAACCTA	CCTTTACACA	TATTGAAATT	AAGATTCTTT	AACCTCTAAC	AAACCAATTT	3900
CGCCATCCTC	ACGACGATAA	ATCACATTGG	TTGTCTGATC	TTCAACATCC	ACATAGATAA	3960
AGAAATCATG	ССССААТААА	TCCATTTGTA	GAATTGCTTC	TTCCAAATCC	ATTGGTTTTA	4020
AATCAATTTG	TTTTGAACGA	ACAACTTTAG	ACTGGACAAT	ATTTGAATCT	TCCACCAAAG	4080
CATCTGTAAA	TAATTGACCA	GTTGCTACCT	TATTTTTATT	TTTACGCTCG	ATTTTTGTTT	4140
TATTTTTACG .	AATCTGACGT	TCAATTTTAT	CAGTTACAAG	GTCAATTGAA	ССАТАСАТАТ	4200
CTTGAGATAC A	ATCTTCTGCG	CGGAGAGTAA	TAGATCCAAG	CGGAATCGTT	ACTTCCACTT	4260
TAGCCGTTTT	TTCACGATAA	ACTTTTAAGT	TAATTCGGGC	ATCCAACTCT	TGTTCTGGTT	4320
GGAAGTACTT :	TTCGATCTTT	TCGAGTTTAG	AAACTACATA	ATCACGAATT	GCTTCTGTTA	4380
CTTCTAGGTT 1	PTCACCACGG	АТАСТАТАТТ	TAATCATATG	AGTACCTTCT	TTCTAAACAT	4440
TTTTGTTTT /	ATGATTTTAT	TATAACGCTT	TCATTCTATT	TTTGCAAATT	TTTTCCTCAT	4500
CTTACAAGGG /					•	4560

236	
CGATTTATAG TTGCTCCTGT AGTATAGATA TCATCTATAA GTAGGATTTT TTTAGGAATA	4620
GTGACTCCAC TTTTAATAAA GAAAGGAAGT TCTGTCCCCA AGCGCTCTGA ACGATTTTTA	4680
GAAGAACTGG CTCTCTTC TCTTTTCTCT AATAAATCCA GATACTCAAA GCCTGCTGCC	4740
TCTACCAAGC CCTCAACCTG ATTAAATCCT CTATTAGCAT ATCTATCAGG ACTTAGGGGA	4800
ATTACAACAA ATTGATACTC TTTGTACTTT TTCAACTCCT CACTTAAAAA TGAAGCGAAA	4860
ACTITICITA ACAGGAAGIC ICCATCAAAC ITATACCGAC IGAAAAAATC CITCATAGCI	4920
TGATTGTAAG TAAAAATCGC TCTATGACTG ACTTCAACTC CCTCTTTACA CCAAAGTTGA	4980
CAATCTTGAC ACTTTGTTGA CAACTCTGTT TTCATACAAT TTGGACAGTT CTCTTCCCCA	5040
ATTCTTTCAA AAGTAGAATC ACAGTCTGAA CAAAGACAAG AGTCATCATT CCTCAGAAGT	5100
AAGAGACTAC TAAAAGTTAA AACAGTCTTC ATAGTCTGCC CACATAACAA GCACTTCATA	5160
GACCAGCCTC CTTATTCATC ATCTGAATTT CCTTAATCGC CTTCTTGATT GAAGCATTTA	5220
ACCCATCATG GAAGAAAAGC AAATCTCCTG TCGGTCTATC CATGCTTCGT CCAACTCGTC	5280
CACCAATCTG AATCAAACTA GACTTGGTAA ACAAACGATG ATTGGCCTCT ACTACGAAAA	5340
CATCCACACA AGGGAAGGTA ACTCCGCGCT CCAAGATTGT CGTACTGATA AGTATTGTCA	5400
GTTCTCCATC TCGAAAAGCT TGTACTTGCT CTAATCGATC CTCTGTTACA GAAGATACAA	5460
AGCCAATTTT CTCATTTGGA AATTGCTCCT GTAAGATTTC TGCTAACTGC TCCCCTTTCT	5520
TAATTTCTGA AGCAAAAATG AGTAACGGAT AAGCTGTCTT TCTCTGCTTC TCAATATAGG	5580
ACTITAACTI TGGTGACAAA CGATTCTTGT CTAAGTAGCG ATTAAAATCC GATAACCAAA	5640
TTGGTTTTGG AATAATCAAC GGATTTCCAT GAAACCGTCT CGGTAAATTC AGTCTTTTTA	5700
GTTCTCCTAA ACGGACCTTT TTATCTAACT CATTGGTCGA AGTCGCTGTT AAAAAGATTC	5760
TCAATCCATT CTCCTTTACA CTATTCTTGA CAGCGTGGTA AAGCATGGGA TTATCAACAT	5820
AAGGAAAAGC ATCTACTTCA TCCACTATCA GCAAATCAAA AGCTTGATAA AACTTCAATA	5880
ACTGATGGGT TGTTGCAACA ACTAGTGGTG TTCGAAAATA AGGTTCCGAT TCTCCATGTA	5940
GCAAAGCTAT CCCGCAAGAA AAATCCTGTT GCAGGCGCTT GTACAGCTCC AAACAAACAT	6000
CTATGCGAGG ACTAGCCAAA CACACTGCAC CACCCGCATT GATCACTTTA GCCACTACTT	6060
GATAAATCAT TTCTGTCTTT CCAGCTCCTG TTACCGCATG AACTAAGGTT GGCTTTTGCT	6120
TGTCTACTAC TTGAAGCAAT CCCTCTGACA CCTTCTCTTG AAAAGGAGTT AATTGGCCGC	6180
GCCATTTGAG AACATCTTGC TTTGGAAAAT CCTCCTGCGG AAAATAGTAT AAAGTTTGAT	6240
CACTTCTGAC TCGCTTCATC AGCAAGCACT CTCGACAATA GTAAGCACCG ATGGGCAAAT	6300
ACCATTCTTC TAGAATAGTA CTATTACAGC GITGACAGAA AAGTTTCCCC TTCTCCTTTC	6360

TCATTGCTGG AAGTTTCTCC GCCAACTGAC GTTCTTCTTC TGTTAATTCA TTCTCAGTAA ATAAACGACC GAGATAATCT AAATTTACTT TCATACTTCT TTATTCGTAA AAACTAGCAC	6420
CAGATAATCT AAATTTACTT TCATACTTOTT	•
TTTAGATCAT TTATTCGTAA AAACTAGCAC	6480
TITITAGTAC AATTAAATCA TGGAATTTAG GACAATTAAA CAGAA	6540
AGAAATCAAA AAATCTCGCT TTATCTGCCA TCCCAACCCT	6600
TOTAL TOTAL ATTACTACCA TCAAAAAAGA ACACTACAAA GCACTACAAA	6660
GGAGAACGTA GTGAAATTAA ACGTACAACT CATCAACT	6720
TACTGCTGGT GTTCCCATGC TTGGGGTACT AGAAAATCAG	6780
GGTCGTGACA CGCTACTTTG GTGGTATTAA ACTACCCCCT COLON	6840
CGCCGGCAGT GTCGCCTTAG CTGTCAAAGA AATTGGTATT ATTACK	6900
TOGCATTGCT ATTCAAATGT CTTATGCTCA GTACCAACAC TAGCAACAC	6960
ACATGGTCTC ATGGAGCTGG ATACAAACTT TACACATCAA	7020
TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTCTC	7080
CACITITAACT GACCAAGGTT TACGAGAGGT TGAACTTTCOM	7140
GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTETT ACCOUNTS	7200
ATAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATTCAAACGA AACCTGATAT	7260
CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA	7320
CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA	7380
AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT	7440
TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC	7500
ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCCTT AGCATGATTG AAAAAGCTGA	7560
ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG	7620
TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA	7680
AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC	7740
TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG	7800
TGATGGTTTC CTTCCTCTTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC AACAGGAGCT GAGATAGTAG GTTAGTAGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC	7860
AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG AGTAGGTACT GCTGGAACGA TTAGATGCCT TTGTTGCTGG 7	7920
AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATTCTAA CATTCAAGTT TTTGCACTAC AACATCAA 7	980
CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG TCCTCACAAA ATTCAACCTA TGTCAACCTA TGTCAACAAAACCTGG 8.	040
TCCTCACAAA ATTCAAGGTA TCTCAGCTGG ATTTATTCCT GATACACTTG ATACTAAAGC 8:	100

OTT - 220	
CTATGATGGT ATCGTTCGTG TAACATCAGA TGACGCTCTT GCACTCGGAC GTGAAATTGG	G 8160
TAGGGATTTC CTCAGCTGCA GCTATCTAGC CAGCAGCTGCA	
AAATTAGGTA CAGGTAAAAA AGTCCTTGCC CTAGCACCAC	
TCTACAGCAC TTTATGAATT GTAACCGTCC AATAACCAAC TOTATA	
TOTAL CIAGAGAACT CACGGATAGT TCCTAATCTG GAGATTTCTTT ATTTTCCT	
ACTITACE ACTITACTOC ATGGTAAATA GGCCTCTAAA ACCTCTTTTCT TTT	8400
TTCCACGTTT GGAAGACATT CTAGAAGATA GGATAGATAT TTCTCACTAT TTATAATGGA	8460
TTGAAATAAG ATATGAACAA ATCGATTAGA ACATGATGGT AAAGCGTAAT CCCTTGTTTC	8520
TCAGCTTTCC CAGACAAAAA AGTCCAATAG TAAGTCAGCT GACTATCACT CTCTAGCACC	8580
CTATAAGAAG TTTCATCCGC ATGAAGTAAG GGCTGAGTCA ATAGTCTCTC TCGCAAGAGG	8640
TTATAAAGGG GCTCCAAATA GTATTGACTC GTCTTGATAT GCCAATTAGA GATTTCCTTA	8700
CGTGTGATTG GTAAACCCAT CCTACGGGAA TOTAGA GATTTCCTTA	8760
CGTGTGATTG GTAAACCCAT CCTAGCCCAA TCTTCTTCTT GGCGATAATT GGGTACCTTC	8820
AGATTAAACT TCTGATGGAT GGTGTGAGCG ATAATAGAAG CTGAGCCAAA GTTATGCGCT	8880
AAAGGGGCTT TAGGAATAGG AGCTTTCACA AGCTTATCCA GATGATTATC TTTTACTCGT	8940
TATGGACAAT GCTATATGGC ATAAATCAAG TACCTTAAAG ATTCCGACTA ATATTGGCTT	9000
TGCATTTATT CCTCCATACA CACCAGAGAT GAACCCCATT GAACAAGTGT GGAAAGAGAT	9060
TCGTAAACGT GGATTTAAGA ATAAAGCCTT TCGAACTTTG GAAGATGTCA TACAAGGACT	9120
GGAGAAGGAG GTGATAAAGT CCATCGTTAA TCGGAGACGG ACTAGAATGC TTTTTGAAAA	9180
CAGATGAGTA TAAAAAGAAA GTCCTCATTT CAATAGAAAT CACGACTTTC TGATGAATTT	9240
GAAATAAGAA CAGGATAGTC AAATCGATTT CTAACAATCM	9300
ANATOCACTA TATTTGGGGA GTGATACAAA AGGGGTA	9360
TTTGACATCT ACTTGTTCAG GTGCGAGAGC TTTGACATCC TTTTCTCTAG MCGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	9420
THE CONTRACTOR OF THE TATALAN TATECAAAAT COTTGACCAT COOLERS	
THAMAG CGGTCTTTAC GTCCACCACA AAAGAGAAAG ACTTGATCGG ACALLOGG	9480
TGGGTTTTAA CTACATAGGC TAATGAGTCT ATTCCCTCCC TCATTAGAGTCT	9540
OTTGCCACAA ACAAGGTGAA CTTGACCTAA ATCACTTAGT TGAATTATGA TAGA	9600
CCTTTCCTCC GATAATTATT TTTTATCTGG TATACTGGAA GTTGGGGAAT TAGGATAGAT	9660
ACCTTGTTAT GACGCGCTTA CTATGAATTT GAAGTATAGT CTCCTAAATG CACTTAGCCC	9720
TTATTATAGG GCTTTTGTT TTAATTATTC TAATCGAGTG AGACTGGGGA AAAAACAATT	9780
TCAGGAAAAA TCTAAGCCCT ATACAAAAAA GGAAGCAATT TGCTTCCTTT CTATTATTAG	9840
GONAGCAATT TGCTTCCTTT CTATTATTAG	9900

239

	G CTGCTGCCAT					9960
TCGATACCTT	' CACCAACTTC	AAAGCGAGCA	AACTCAACTA	CCGAAGCGTT	AACTGATTCA	10020
AGGTATGCTT	CAACTGTCTT	GCTGTCATCC	ATGATGTAAA	CTTGTGCAAG	AAGTGTGTAA	10080
GCTTGGTCAA	CTTTAGTGTT	ATCAAGCATG	AAGCGATCCA	TTTTACCTGG	AATAATTTTG	10140
TCCCAGATTT	· TTTCTGGTTT	GCCTTCTGCA	GCCAATTCAG	CTTTGATGTC	AGCTTCAGCT	10200
TGAGCAATAA	CATCATCAGT	TAATTGAGCT	TTTGATCCAT	ACTTCAAGTG	TGGAAGAGCT	10260
GGTTTATTAA	CCATTGCACG	GCTTTCGTTG	TCTTGGTCGA	TAACGTGATT	CAATTGTGCC	10320
AACTCATCTT	TAACGAATTG	CTCATCCAAT	TCTTTGTAAG	AAAGAACTGT	TGGTTTCATC	10380
GCTGCGATGT	GCATTGACAA	TTGTTTAGCA	AGTGCTTCGT	CTCCACCTTC	AACAACTGAA	10440
ATAACACCGA	TACGTCCACC	GTTATGTTGG	TATGCTCCAA	AGTGTTGTGC	GTCTGTTTTT	10500
TCAATCAATG	CAAAGCGACG	GAATGAGATT	TTCTCTCCGA	TAGTTGCTGT	TGCAGATACG	10560
TATGCAGCTT	CAAGAGTTTC	ACCTGAAGGC	ATTATCAAAG	CAAGAGCTTC	TTCGTTGTTA	10620
GCAGGTTTTC	CTTCAGCAAT	GACTTTAGCT	GTAGTATTTA	CCAATTCAAC	GAATTGAGCG	10680
ТТТТТССАА	CGAAGTCAGT	TTCAGCGTTT	ACTTCAATAA	CTGCTGCAAC	ATTACCGTTA	10740
ACATAAACAC	CAGTCAAACC	TTCTGCAGCA	ACACGGTCAG	CTTTCTTAGC	TGCCTTAGCC	10800
ATACCTTTTT	CACGAAGCAA	TTCAATCGCT	TTTTCGATGT	CACCGTCTGT	TTCTACAAGC	10860
GCTTTTTTAG	CGTCCATAAC	ACCGGCACCA	GATTTTTCAC	GCAACTCTTT	PACAAGTTTA	10920
GCTGTAATTT	CTGCCATTTT .	AATTCTCCTA	TATTTTTGA .	AAATAGGAGA (GCGCGGCTAA	10980
SCCCCGCCTC	CGG					10993

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8411 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CGACGGGGAG	GTTTGGCACC	TCGATGTCGG	CTCGTCGCAT	CCTGGGGCTG	TAGTCGGTCC .	60
CAAGGGTTGG	GCTGTTCGCC	CATTAAAGCG	GCACGCGAGC	TGGGTTCAGA	ACGTCGTGAG	120
ACAGTTCGGT	CCCTATCCGT	CGCGGGCGTA	GGAAATTTGA	GAGGATCTGC	TCCTAGTACG	180
AGAGGACCAG	AGTGGACTTA	CCGCTGGTGT	ACCAGTTGTC	TTGCCAAAGG	CATCGCTGGG	240

240 TAGCTATGTA GGGAAGGGAT AAACGCTGAA AGCATCTAAG TGTGAAACCC ACCTCAAGAT 300 GAGATTTCCC ATGATTATAT ATCAGTAAGA GCCCTGAGAG ATGATCAGGT AGATAGGTTA 360 GAAGTGGAAG TGTGGCGACA CATGTAGCGG ACTAATACTA ATAGCTCGAG GACTTATCCA 420 AAGTAACTGA GAATATGAAA GCGAACGGTT TTCTTAAATT GAATAGATAT TCAATTTTGA 480 GTAGGTATTA CTCAGAGTTA AGTGACGATA GCCTAGGAGA TACACCTGTA CCCATGCCGA 540 ACACAGAAGT TAAGCCCTAG AACGCCGGAA GTAGTTGGGG GTTGCCCCCT GTGAGATAGG 600 GAAGTCGCTT AGCTTTAATC CGCCATAGCT CAGTTGGTAG TAGCGCATGA CTGTTAATCA 660 TGATGTCGTA GGTTCGAGTC CTACTGGCGG AGTAATLGAT AAAAGGGAAC ACAGCTGTGT 720 TCCTCTTTT GTATCAATTT GTATCACCAA GCATTTTCAT AAGGAAGTCT GTTATTTCTT 780 GAGAACTTTC TTTTTTTCCA TGTGCAATCC AAGTTTGGCA GACACCAAAA AGTGCATGAG 840 TTAGATAGAT GCTACTATAT TCTAATTCAG TGGTATTTAG ATTCAGTTGC ATAAATCGCT 900 TTTGTAAATC TGTACTAAGC ATGATATGAA GTTTATTTCG TAAGAAATTT TGGATTTCTT 960 TAGTCCCATT TTCAGAAAGA AGGGCAGCCA GAAGTGGTTC TGACTCTAGA TATTCAAAAA 1020 CTTCTAAAAT AGCGTCTCTT TTGTGATGAG CATGTTTTTG AAAAATATAT TCAAATGTAT 1080 GGAATAGCTT GCTTTGATAG TGCTCAATCA TATCATACTT ATCCTTATAG TGAGTATAGA 1140 AGCTGGAACG ACTAATTCCG GCTTTTTCTA CTAATTTGAC AGTAGAAATT TTATCAAATG 1200 GCTGTTCCAT CAGTAATTGT ACCATAGCAT TTTCAATAGT TCGCTTTGTT TTTAAGCGTT 1260 TGTTACTTTC TTGCATATTT CCTCCTTGTA AACAAATTAG ACTATATGTC TAAAAATAGA 1320 TTTTTTATCT TGTAATTTAG ATTTTTAAT GTATAATCTA TTATATCAAA ATTTTAGACA 1380 ATATGTTTAA AAAAGGAGAA ACTAAGTTTA AAGAATGGAA AGCAATTTAA AAAAAACCAA 1440 CCTTTATTAT TGTCATGATC GGGATTTCTC TTATTCCAGA TCTGTACAAT ATCATATTTT 1500 TGTCATCAAT GTGGGATCCA TATGGGCAAT TGTCTGACTT ACCTGTGGCA GTTGTAAATA 1560 ATGATAAAGA GGCTTCCTAT AATGGTAATA CTATGGCAAT AGGAAAAGAC ATGGTGTCCA 1620 ATTTAAAAGA AAATAAAACC TTGGATTTTC ATTTTGTAGA TGAAGAGGAA GGAAAGAAGG 1680 GATTGGAAGA TGGCGATTAC TATATGGTAG TGACTTTACC AAGTGATTA TCTGAAAAAA 1740 CAACTACATT ATCCAATATT CAATCGACAG CAGCTTATCA ATCATTGACA AGTGAGCAAC 1800 AAACTGAGAT AAGTGATTCT GTATCTCAAA ATTCAACTGA TAGTATTCAA TCGGCTCAGT 1860 CAATTGTAGC TTTAGTACAA GATTTACAGG GAAGTTTAGA AAACTTACAA AATCAATCTT 1920 CTAATCTTTC GACTTTAAAA AATCAATCTA ATCAAGTATC ACCTATTACT TCTACTTCTT 1980 TGATAGGATT GTCAAGTGGA TTAACAGAGA TACAAGGAGA TGTTACTAGC AAATTAGTTC 2040

CTGCCAGTCA	GTCGATTGCA	TCAGGTGTAA	ACGCATATAC	TACAGGTGTT	GATAAAGTTT	2100
CTCAGGGCGC	AAGTCAACTA	AGTGAAAAAA	ATGCCACCTT	GACAGGTAGT	TTGGATAAAC	2160
TAGTTTCAGG	CTCAAACACC	TTGACACAAA	AATCTTCTAG	ATTGACAGCA	GGAGTTGGTT	2220
AATTACAATC	AGGATCTGGG	CAATTAGCAG	ACAAATCCAG	TCAGTTACTT	TCAGGTGCTT	2280
CTCCATTAGA	GAATAGAGCT	AATAAATTGG	CAGATGGATC	TGGGAAACTA	GCAGAAGGTG	2340
GAACAAAGTT	AACTTCTGGA	TTGGAAGATT	TACAGACAGG	ACTTGCTTCT	TTAGGACAAG	2400
GACTAGGTAA	TGCTAGTGAT	CAACTCAAAT	CAGTATCAAC	AGAATCTAAA	AATGCAGAGA	2460
TTTTGTCAAA	TCCACTCAAT	СТТТСААААА	CAGACAATGA	TCAAGTTCCT	GTAAATGGAA	2520
TCGCAATAGC	TCCTTATATG	ATATCAGTTG	CTCTTTTTT	GCAGCAATAT	СААСАААТАТ	2580
GATATTTGCG	AAATTGCCTT	CAGGACGTCA	TCCAGAGAGC	CGTTGGGCTT	GGTTGAAATC	2640
TTGAGCTGAA	ATAAATGGTA	TTATAGCTGT	TTTGGCAGGA	ATTTTGGTAT	ATGGAGGAGT	2700
TCAGCTTATT	GGTTTAACTG	CTAATCATGA	GATGAGAATA	TTTATTCTCA	TCATCCTAAC	2760
AAGTTTAGTA	TTCATGTCTA	TGGTGACCAC	TTTAGCAACG	TGGAATAGCC	GTATAGGAGC	2820
TTTTTTCTCA	CTTATTTTGC	TTTTACTACA	GTTAGCATCA	AGTGCAGGTA	CTTATCCACT	2880
TGCTTTGACA	AATGATTTCT	TTAGATCTAT	TAATCCCTGG	TTACCAATGA	GCTATTCAGT	2940
TTCGGGATTA	CGACAAACAA	TCTCTATCAA	CAAGTCATTT	TCCTAGCTGT	CATACTAGTT	3000
СТАТТТАСТА	GTTTAGGTAT	GCTAGCCTAT	CAACATAAGA	AAATGGAAGA	AGATTAAAAA	3060
AATCGACCGA	TTAACTGGTC	GATTTTTTAT	CCCTTAGATG	ACTTTCGTCT	GTGATTATAG	3120
ATTCCAAATA	GTAAGAGAGA	AGTAAAGGAA	CAGATTGCTC	CAGTAATAAA	ACCATTGGGA	3180
ATGAAGGAAA	GTGTAATAGT	TCCTTTCCCC	TTGGGAATGT	CAACTTTCAT	AAATCCAGTT	3240
TGAGCTTGTT	TAATTTCTAT	TTTCTTACCA	TCTTGGTAGG	CAGACCAACC	TTTGTCATAA	3300
GGAATGGTGA	AGAAAATAGA	TGTATCTTGT	TGGACATCAT	ATGTAGCAAA	AACCTTGTTT	3360
TTAGAAGTTG	ATACTGTGAC	AGGTTGTTCT	TTAATTTTTT	GAATTGCCTC	GGTGAAAGTT	3420
TTGGTATCTA	AACGATAGAA	GGTAGGAGAT	TCAAATGATA	CTTGTGAATT	TCCAGGGAAA	3480
CTAACATTGA	TATTGAAAGT	TTTTTTCTCT	TTAGTATATC	CTAGATTAAA	GAAGGAGAAG	3540
ACATTATCAG	TTGTAAAAGT	CTTTTTTCA	CCATTTACAA	GGATGTCAAC	CTTCTTTTGT	- 3600
TTATCGTTAG	AAAAGTGAAG	GTTTATGAAA	GAGAGATAAA	CTTGGCTGTT	TTCTGGAACT	3660
TCAATTTGAT	ACTGGATTGC	TGCATCTTCA	TTTGAAGAAC	TTGTGACACT	латсалатса	3720
TTAGTATTTT	CTATTTTTC	TGTTTTTCA	TAAGGTATTG	GAGAAAAATA	ATCAAAATTG	3780

ACGTTAGCAA GTTGATTTAA AAATGAGGCC TGATTATCCA AGGTATGTTC ATTGAACTTG 3840 ACATCATTGT AAACAGATTG ACTCGCAACT GCAATCGGAA GAGAGTATTG ATTTTCATAT 3900 AGGGTAAGAT TATCTTTTTG ATAGATATCT TTAAAGCCAT ACTTATCAAT AGGACTGTCT 3960 GAGATATTGT ACTGGATACC AAATAAACTA TCAGCCAAAA TACTATTATT TGCATATCGG 4020 AGATTGAGAT TAGTCCCAGA GGATTTAAAA CCAAGTTTAT CTAAAGTAGA GCTTGATGAA 4080 CGATTTCGAA CAGATGAAAA TTGAGAGATT CCATTGTAGT TGAATTTCAT ACTGTCATTT 4140 CCTGTCTGAG TTTGTAGTTT TTCAGTACGA GTAAATTGAT TTCCAATATA TGTTGAGAAA 4200 GATTCCATAG CTGGGATATC TCGACTATAA GCACTTCGAG AAGCAAATCC CCATTCCTTA 4260 GCAATTCCGT CCATTTGAGA TGAAGCATTT AAACTCATTT CAACCAGTAT AAATAAAGAG 4320 ATTAGAATGG CAAATAGATT CACAGATATA AACTTTTTGA TAACTGCAAG GAGTAAAAGA 4380 GAATAGACAA CCAAAAATTC AAGAGTAAGC AGAATATTCA AATCTGTTAA AAAAGAATAA 4440 TGCGATTTTA GATAGATGGT AGCTAAAAAT CCTGCTACTA CAAGAAAAAG CGAAACTAAA 4500 AAATTCCAGA CTTTAAGTTC TTTCAGACGC TTTAAGACTT CTGCTGCTGT GTAAATTAAC 4560 AAGGTAGAGA AAATCCAAGC ATAGCGATGT AAAAACATGT TTGGAGTATG CATGCCTTGC 4620 CAAAATAAGT CAAGAGCTTC TATGTAAAAG CTTGCAATTA GAAATGCAAA GAATATTACA 4680 4740 AAGGGAAATA GTCCAACAAA AATCATTGGG ATGGCCCCAT ACTTTGTTGT GTCAAAGGAA 4800 CCAATGAATT GCTTAGCAAA GAGATCAAGA TACCAGCTAC TTTCAGTTTG AAACTTTGTA 4860 ACTICAGICA ATTITICCCC ATGIGICTGT ANATCANATA GAGIGGAAG AGICATANIC 4920 AAACTAGCCA TACCAGCTAA AAAGGAGATA ACTATGAAAT CAAGAACAGA TGATTTTCGA 4980 GTCTTAAAGT CCCACGAAAT TTGACAGAGA TACCAGAAAA TAAGAAACAA TACTGTCATA 5040 TATCCAAAAT AATAATTTTG AATAAATAAG ATTGACAGAC TTGTAAAGTA CAATAGGAGT 5100 TTCTTTTCAG TTATCAGTAG ATGTAAACCA GTTATAATTA AAGGAATCAA GATAAAAACA 5160 TCTAGCCAGG TTTTTATCTC TAATTGACTG ACAGTGAAAC TCATCAGAGC ATAGGAAGTA 5220 GATAAGGCTA GTTTTAAAAT CTGAGGGATA GATTGAAACA ATTTATTCAA ACTAAAAAAG 5280 GTTGACAGAC CAATCAATCC AAATTTTAAG AGAGTTGTCA GATAGATAGC ATCTGGCATA 5340 TTCGTTAGAT CAAAAAAGTA AACCAGAGGC GCGAGAAAAC TACCCAAGTA ATAACTAGAT 5400 AGGGCATAGA AGTTTAGCCC TAGACCACTT GTAAAGGTGT AAAACAGATT ACTATTTCCA 5460 TGTAGGATAT TTCGTAAGGC TACATCAAAA ATAACGTATT GATGAAAGCC ATCTCCTAAT 5520 AGAGGAGAGT TGTCGCTATT CCAGTAGATA CTTTGAGATA GATATACTCC AGACATAATC 5580

242

ACGTTAGCAA GTTGATTTAA AAATGAGGCC TGATTATCCA AGGTATGTTC ATTGAACTTG 3840 ACATCATTGT AAACAGATTG ACTCGCAACT GCAATCGGAA GAGAGTATTG ATTTTCATAT 3900 AGGGTAAGAT TATCTTTTTG ATAGATATCT TTAAAGCCAT ACTTATCAAT AGGACTGTCT 3960 GAGATATTGT ACTGGATACC AAATAAACTA TCAGCCAAAA TACTATTATT TGCATATCGG 4020 AGATTGAGAT TAGTCCCAGA GGATTTAAAA CCAAGTTTAT CTAAAGTAGA GCTTGATGAA 4080 CGATTTCGAA CAGATGAAAA TTGAGAGATT CCATTGTAGT TGAATTTCAT ACTGTCATTT 4140 CCTGTCTGAG TTTGTAGTTT TTCAGTACGA GTAAATTGAT TTCCAATATA TGTTGAGAAA 4200 GATTCCATAG CTGGGATATC TCGACTATAA GCACTTCGAG AAGCAAATCC CCATTCCTTA 4260 GCAATTCCGT CCATTTGAGA TGAAGCATTT AAACTCATTT CAACCAGTAT AAATAAAGAG 4320 ATTAGAATGG CAAATAGATT CACAGATATA AACTTTTTGA TAACTGCAAG GAGTAAAAGA 4380 GAATAGACAA CCAAAAATTC AAGAGTAAGC AGAATATTCA AATCTGTTAA AAAAGAATAA 4440 TGCGATTTTA GATAGATGGT AGCTAAAAAT CCTGCTACTA CAAGAAAAAG CGAAACTAAA 4500 AAATTCCAGA CTTTAAGTTC TTTCAGACGC TTTAAGACTT CTGCTGCTGT GTAAATTAAC 4560 AAGGTAGAGA AAATCCAAGC ATAGCGATGT AAAAACATGT TTGGAGTATG CATGCCTTGC 4620 CAAAATAAGT CAAGAGCTTC TATGTAAAAG CTTGCAATTA GAAATGCAAA GAATATTACA 4680 4740 AAGGGAAATA GTCCAACAAA AATCATTGGG ATGGCCCCAT ACTTTGTTGT GTCAAAGGAA 4800 CCAATGAATT GCTTAGCAAA GAGATCAAGA TACCAGCTAC TTTCAGTTTG AAACTTTGTA 4860 ACTTCAGTCA ATTTTTCCCC ATGTGTCTGT AAATCAAATA GAGTGGGAAG AGTCATAATC 4920 AAACTAGCCA TACCAGCTAA AAAGGAGATA ACTATGAAAT CAAGAACAGA TGATTTTCGA 4980 GTCTTAAAGT CCCACGAAAT TTGACAGAGA TACCAGAAAA TAAGAAACAA TACTGTCATA 5040 TATCCAAAAT AATAATTTTG AATAAATAAG ATTGACAGAC TTGTAAAGTA CAATAGGAGT 5100 TTCTTTTCAG TTATCAGTAG ATGTAAACCA GTTATAATTA AAGGAATCAA GATAAAAACA 5160 TCTAGCCAGG TTTTTATCTC TAATTGACTG ACAGTGAAAC TCATCAGAGC ATAGGAAGTA 5220 GATAAGGCTA GTTTTAAAAT CTGAGGGATA GATTGAAACA ATTTATTCAA ACTAAAAAAG 5280 GTTGACAGAC CAATCAATCC AAATTTTAAG AGAGTTGTCA GATAGATAGC ATCTGGCATA 5340 TTCGTTAGAT CAAAAAAGTA AACCAGAGGC GCGAGAAAAC TACCCAAGTA ATAACTAGAT 5400 AGGGCATAGA AGTTTAGCCC TAGACCACTT GTAAAGGTGT AAAACAGATT ACTATTTCCA 5460 TGTAGGATAT TTCGTAAGGC TACATCAAAA ATAACGTATT GATGAAAGCC ATCTCCTAAT 5520 AGAGGAGAGT TGTCGCTATT CCAGTAGATA CTTTGAGATA GATATACTCC AGACATAATC 5580

ACTACAGGAA	TGATGAAAGA	AATAAAATAG	GTTCGATATG	ттттааааа	TGATTTCATG	5640
TTACCTCGTA	GAATGATAGA	AAACTCAGTT	GGTTAACCCA	ACTGAGTTTT	GAAGTTTTAT	5700
TTAGTCTTTC	CAAAGTTCTT	TAACTTTTGC	TTGTACTTCT	GCATTTTCTA	GGAATTCATC	5760
GTAGGTTTCA	TCGATACGGT	CAATGACGCC	ATTTTTAGAT	AAGACAATGA	TATGGTTAGC	5820
CAAAGTTTGA	ATAAATTCGT	GGTCATGGCT	GGCAAAGATG	ATTGATTCTT	TAAAGTTTTT	5880
CAATCCATCA	TTCAAGCTTG	AGATAGATTC	CAAGTCCAAG	TGATTTGTTG	GATCATCAAG	5940
TACAAGGACA	TTTGATTTTA	AGAGCATGAG	TTTTGAAAGC	ATGACACGAA	CTTTTTCTCC	6000
CCCTGACAAG	ACATTTACAG	GTTTGTTAAC	TTCATCTCCA	GAGAAGAGCA	TACGGCCGAG	6060
GAAGCCACGT	AGGAAAGTAT	TGTCATCTTC	TTCTTTACTT	GCGAATTGAC	GCAACCAGTC	6120
AAGAATTGAT	TCTCCTCCTG	CAAAATCAGC	TGAGTTATCT	TTTGGTAGGT	AAGATTGACT	6180
AGTTGTAACT	CCCCACTTGA	CAGTTCCTTC	ATAGTCAATA	TCTCCCATGA	TTGCACGAAT	6240
TAATGCAGTC	GTTTGAATAT	CATTTTGTCC	AATAAGTGCT	GTCTTATCAT	CTGGACGCAA	6300
GATGAAACTA	ATATTATCCA	AGATAGTTTC	ACCATCAATC	TTTACAGTTA	AATTTTCTAC	6360
TGTCAAGAGA	TCATTACCAA	TCTCACGTTC	CGCTTTAAAG	TTGATAAATG	GATATTTACG	6420
ACTAGATGGC	ACAATCTCTT	CTAGCTCAAT	CTTATCAAGC	ATTCTCTTAC	GTGATGTTGC	6480
CTGCCTTGAC	TTAGAAGCAT	TGGCAGAGAA	ACGAGCAACA	AATTCTTGCA	ATTGTTTAAT	6540
TTTTTCTTCT	GCTTTAGCAT	TACGGTCTGC	TAGCAATTTA	GCAGCAAGCT	CAGAAGATTC	6600
CTTCCAGAAG	TCGTAGTTTC	CGACATAGAG	TTTGATTTTT	CCAAAGTCAA	GGTCGGCCAT	6660
GTGAGTACAA	ACTTTGTTTA	AGAAGTGACG	GTCGTGGGAT	ACTACGATAA	CTGTGTTATC	6720
AAAGTCAATC	AAGAAGTCTT	CTAACCAAGT	AATCGATTGG	ATATCCAAAC	CGTTAGTAGG	6780
CTCGTCCAAG	AGAAGAACAT	CTGGTTTACC	AAAAAGTGCT	TTGGCGAGGA	GAACCTTTAC	6840
TTTTTCACCG	TTGGCCAATT	CGCTCATGTT	TTGGTAGTGT	AATTCTTCTG	GAATGTTTAG	6900
GTTTTGAAGT	AGTTGAGAGG	CTTCACTCTC	TGCTTCCCAA	CCTCCAAGTT	CGGCAAACTC	6960
TCCTTCGAGT	TCGGCAGCAC	GAACCCCGTC	CTCGTCTGAG	AAATCTTCCT	TCATGTAGAT	7020
AGCATCTTTC	TCTTTCATGA	TGCTATAAAG	TTTTTCATTT	CCCATGATAA	CGACATCAAT	7080
GGCACGTTCA	TCTTCGTAGT	CAAAGTGATT	TTGACGAAGA	ACAGAGAGAC	GTTCATCTGG -	7140
ACCAAGAGAG	ATGTGACCAG	TAGTAGGTTC	GATATCTCCA	GCTAAAATTT	TTAAAAAGGT	7200
TGATTTTCCG	GCACCATTAG	CACCGATTAA	TCCGTAAGTA	TTTCCTTCTG	TAAATTTGAT	7260
ATTGACATCA	тсааааастт	TGCGATCACT	AAAACGTAGT	GAAACATCAG	ATACTGTAAG	7320

> 244 CAATGTTTTT CTCCTATATG TGTAATATAT TTATTCTACT AGAAAATACA GAAATATTCA 7380 AATTTTTATT TGTCAATTTT GTGTAAATTA TATTTACAGT ATCCTTTACA CAAATCTGTA 7440 AAAAGCAAGG CTGATTTATT TTGATAAATT ACGGTTATTT CATTAAAAAA ATGCTATAAT 7500 TGAAAGGACT ATATCGAAGG AGAACAAAAT GACTAAACCC ATTATTTTAA CAGGAGACCG 7560 TCCAACAGGA AAATTGCATA TTGGACATTA TGTTGGAAGT CTCAAAAATC GAGTATTATT 7620 ACAGGAAGAG GATAAGTATG ATATGTTTGT GTTCTTGGCT GACCAACAAG CCTTGACAGA 7680 TCATGCCAAA GATCCTCAAA CCATTGTAGA GTCTATCGGA AATGTGGCTT TGGATTATCT 7740 TGCAGTTGGA TTGGATCCAA ATAAGTCAAC TATTTTTATT CAAAGCCAGA TTCCAGAGTT 7800 GGCTGAGTTG TCTATGTATT ATATGAATCT AGTTTCGTTA GCACGTTTGG AGCGAAATCC 7860 AACAGTCAAG ACAGAGATTT CTCAGAAAGG ATTTGGAGAA AGCATTCCGA CAGGATTCTT 7920 GGTCTATCCA ATCGCTCAAG CAGCTGATAT CACAGCTTTC AAGGCTAATT ATGTTCCTGT 7980 TGGGACAGAT CAGAAACCAA TGATTGAGCA AACTCGTGAA ATTGTTCGTT CTTTTAACAA 8040 TGCATATAAC TGTGATGTCT TGGTAGAGCC GGAAGGTATT TATCCAGAAA ATGAGAGAGC 8100 AGGGCGTTTG CCTGGTTTAG ATGGAAATGC TAAAATGTCT AAATCACTAA ATAATGGTAT 8160 TTATTTAGCT GATGATGCGG ATACTTTGCG TAAAAAAGTA ATGAGTATGT ATACAGATCC 8220 AGATCATATC CGCGTTGAGG ATCCAGGTAA GATTGAGGGA AATATGGTTT TCCATTATCT 8280 AGATGTTTTT GGTCGTCCAG AAGATGCTCA AGAAATTGCT GATATGAAAG AACGTTATCA 8340 ACGAGGTGGT CTTGGTGATG TGAAGACCAA GCGTTATCTA CTTGAAATAT TAGAACGTGA 8400 ACTGGGTCCG G 8411

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9064 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

TG	CCGTACTC	AAGTACAGCC	TGCGCTAAGT	TTCCTAGTTT	GCTCTTTGAT	TTTCATTGAG	60
TAT	TAGTAAC	CAAAATCCGA	CCACATAGCC	AGCCCCTATG	AATATAGCCA	TTAAAGCTAG	120
CA	rggaattt	AGGAAATTAA	AAACCACCGC	AGATACAAAG	GTTAGCACAA	AAACATTAAA	180
AGO	CAATGGTG	TCAGAAGCCA	AGACTAGAAT	ATAGGGTGTC	AACCGATCTA	AAGTTTTGGA	240
ATO	CTAGGAAA	AATAAGTGTT	TATACATGAT	GACCTCCTCT	ATGGCTGAAA	AGCAAGCCTT	300

ТТСТЧТТТТ ЭСССАТОВ	
TTGTTTTTTT ACCCCAAGAC CCTATGTAGA AAAGTGAGCA AAAACGGGAA GGTCGCTACA	360
ATATTATTGA TCACATGCAC CGCATAGGAT GGATAAATGC TCTTGGTATA GCGGGTCAAA	420
CCAGCAAAGA TGATTCCAAC TGTTGCAAAG ACGAAGATAT CTAACAGACT AGGCAGGCTT	480
GAAAAATGAG GGAGAGCAAA TAAAATAGAA GGAAGAAGCA AATCAAGACC AAATCGCGAA	540
TGCTTAAAGA AAGCATGTTG CAGTAATCCT CTATAAATCA ATTCTTCCAT CAGTGGAACC	600
AGAAAGAACA GGGCTATATA AATACCTAGC TCTGCAAAGT TAGTCCCACT ATAACCAATC	660
AATACAGCCC AACCTTCCGC AGTTGACTGA ACATGTTTAG CTGTCTGAAC GTTAAAAGAC	720
ATCTGGAACA CTAGCACTAA TACTGTCAAA ATCGAATACC AAAGCCATTT TTTTCTTGGA	780
ATGCGGAAGA GATAACCATG GCCTGTCTTA ACAAGAACCA CAATCATGAC TCCAATAAAA	
AGTAAACTCA AGATATTTTG AATCCAGAAT AAATTGCCTA TCTGAGAAGA AAATTGCCAA	840
TAGTTTTGGA CGATAAGCGT CAGCTGAGAA AGACTAAATA CGAAAAATAA GTAAGAGAAG	900
ACTGCACTTA TTTTGAATAG AAGTTGATAC TTTTTCATAG AAATCCTCCC TACTATGACC	960
TCACCTTGTC AGGCTCTACT GCTGTAAGAT TAAGAAGACA GTTTGTTTTT TTTAAGGCTA	1020
ACCTGACTAC TAGATAATAG ATACATTAAG GCATTAAAGA CAATGAAAAT ATGTCCATAG	1080
AATAAAATCA ACCTCGCATC CAAACCAAGA TAAAGTTTGA TTATCAAAAA GATGAGCAAA	1140
AGAATTTGAA ACCATAAGGT TTTTCCAAAA ATAAATTTAA AGCGATTTCG AATATCTACT	1200
TCCTTGATTT TTACCGCCAC CCCTTTATTA GCAAGAAGGA AAACTCCTGC TTCAAACAAA	1260
CCACTGTAAA GAACAAGCCA CCCAATAGAT ACGATAGAGA TTTGTAAAAA TGTCCCTAAA	1320
AGAATATCCA ACACACTACT CAAGAAAATA ACAAAAAATA ATCTGTATTT CATATTAAAT	1380
ACCTCCATTC ATTTATTTCA CTAACAATTT AATAGAGCCT TCTACTCAAA TATCCTGTCA	1440
GAAAAGGATA GAAAGCTACT TTTTTTTTTTTTTTTTTT	1500
GAAAAGGATA GAAAGCTACT TTTTATAATA CTTCAAGCCC CACATGAGCA GAAGCGTGAT	1560
AAACAAGCAG AGAATACACC TATATAAGCG ATTAGTTGTT GATAGAATTC TGTTTCTGAA	1620
ATACCTCTAT ACAAACAAAT GACAAACATA AAATCTGCCA AGCCGATAAA CATAAGTTGA	1680
TTGGTTCTAG GACTAACCAA ATCATCATTT ACTTATATTT AAGAGTATCT CTTTTATTTT	1740
AATGTATGTT AGCACTGAAA AGCAAGACAG GCCAATAATA TTTAAAATGA ACAGTAACGG	1800
GGTTAAGTCT CTAAAAAAAT TATCTACTGA CACTACAAGA AATACTATAC ATATTATAGT	1860
CGAAACTATC TTTTTCTTAT CCATAATTAT TTACTCCTTT CCTAACAAAT CCAGCTTATC	1920
AATCAAGAGC GATTTTTAAC ATAATGTAGC AGCACCCGTT GCAACTTTGA CAAGTTTAGT	1980
ATATCATTGT TTTTTAAAAT TTTTCATCCA AATCTTGAAT TGTCATCGAA ACATCTTGAA	2040

246

TTGTTAAAAA ATTTAAAAAG TAAGCATTAA AAACATACTT TCCTCTTTAT ATTGTATTGA 2100 TACCAACTTG TTTGTAGACT TTTCATCCTG CTATCACATA TCATTTTGAC AGGCGAAACA 2160 ATATTAAAGA AACTCCCCTG TAAATTAAGC TAGCAAATAC AGGGGAGAAA TTTATTTTTT 2220 AGAGAGTACT ATCCGTATCC TTTTTGGAAG ATTTTGAAAA TATTTTTCTA ATTAAGTCAT 2280 CCATATAAGG ACCAAATATA CCAACTACTA AACCAATAAT AAAACTTTTA AAATCCATAA 2340 TTACCACCAA CATATTGCTG CATAGGCTAC ACCTCCAAGT ATAGCTCCAC CTGCAGCACC 2400 AGTTACACCT ATTCCTATAG CAAATGGTCC CAATAGAAAT GTCAAACCGT TGTTGCACAC 2460 CCATCAATTG CGCCATATGC AACCCCTGCT GCACAACTAA TTTTTCTTCC CCAATCAATA 2520 TCTCCACCTT CAACGCAAGC AAGCATTTCA TTATCCATAA CTGCAAATTG TGACATCATT 2580 TTTGTATCCA TATAGTGTAT CACTTTTCAG TTACGGAACA AGTTTAATAT AAAAATTATC 2640 AAAAAAACAT AGGCAATAAA GAGAAAAATT AATTTATCAT AGATTAGAAA TAATATGACA 2700 AAACAATTCA ATGATGTTAA TTCAATAGTC TTTTGTTTTT TATCGGAGAT ACTTATGGAT 2760 AGATAAATAA GATAGGTTTG AAAAGCGAAG AGAATAATAA AGAATATAGC CTTCATAAAA 2820 TTTAGCTTTC ATTTTTATGA TGTAGCGGTA TAGGCTAAAT ATCCACAAAC CACTGCTCCT 2880 CCAATTCCTC CTATTGCAGC GCCCCATGGT CCTAGAAGTC TCCCATATTT CACTCCACCC 2940 GCTGCACAAC CTAAAGCAGC AACTACAGCT GCTCCTCCGG AATTACCTCC ATAAACCTCA 3000 CTCAGCATTG TTTCATTTAT ATTACAATAA GTATTCATAC AAGTCTCCTT TTATTAAAAT 3060 CCACCCGTTG CCCCTGTTAC TCCTGCCCAA AGATCCACAC CAAATTTAGC TCCTATGTAT 3120 CCACATGCTC CCATAAATGG TGCTCCAACA CCACTCGCAG CACAAATAGC TGTCCCTAGC 3180 CCCCAGCCAC CAAAAGCAGC ACCACCACCT TCTAAGACAT TAGTTTGCCA ATTATTCTTG 3240 CCTCCTTCAA TACTAGATAA CATAGTTATA TCCATTTCAT GAAATTGTTC CATAATTTTT 3300 GTATCCATGA CAAATACTCT TTTTTATTTT TAATTTTTGT CTTGTTAA CTTTGACAAG 3360 TTTAGTATAT CATCGTTTTT TAAAATTTTT CATCCAGATT TTGAATAGTC ATCGAAACGT 3420 CTTGAATTGC AAAAATTACA TTAGACTTCC TGCAAAACTA GAATCCTAGT TCATGATTGA 3480 TAATACCAGC ACTCAAATTC ATTCGTAATC CGAAGCGTTT ACGATGACTT CGATAGGTTG 3540 TTGAAAACAT TTTAAACGTT TTTACTTTGG CAAAGATGTT CTCAACCTTG CTTCTCTCT 3600 TAGATAGCGC ATGGTTACAG GCTTTATCTT CAACTGTTAG CGGTTTGAGT TTGCTGGATT 3660 TACGTGAAGT TTGTGCTTGA GGATATATCT TCATGAGCCC TTGATAACCA CTGTCAGCCA 3720 AGATTTTACC AGCTTGTCCG ATATTTCTGC GACTCATTTT GAACAACTTC ATATCATGAC 3780 AATAGTTCAC AGTGATATCC AAAGAAACAA TTCTCCCTTG ACTTGTGACA ATCGCTTGAG 3840

TCTTCATAGC GTGAAATTTC	TTTTTACCAG	AATCATTCGC	ТААТТСТТТТ	TTTAGGGCGA	3900
TTGATTTTTA CTTCCGTCGC	ATCAATCATT	ACCGTGTCCT	CAGAACTGAG	AGGAGTTCTT	3960
GAAATCGTAA CACCACTTTG	AACAAGAGTT	ACTTCAACCC	ATTGGCTCCG	ACGGAGTAAG	4020
TTGCTTTCGT GAACACCAAA	ATCAGCCGCA	ATTTCTTCAT	AAGTGCGGTA	TTCTCGCACA	4080
TATTGAAGAG TGGCCATAAG	AAGGTCTTCT	AGGCTTAATT	TAGGTTTTCG	TCCACCTTTT	4140
GCGTGTTTAA GTTGATAAGC	TGTTTTTAAT	ACAGCTAGCA	TCTCTTCAAA	AGTCGTGCGC	4200
TGAACACCAA CAAGACGCTT	AAATCGTGCA	TCAGTTAGTT	GTTTACTTGC	TTCATAATTC	4260
ATAGAACTAT AGTAAAATGA	AATAAGAACA	GGATAAATCG	ATCAGGACAG	TCAAATCGAT	4320
TTCTAACAAT GTTTTAGAAG	TAGAGGCGTA	CTATTCTAGT	TTCAATCTAC	TATACTATAC	4380
CATATTTTGT TTCGCAGGGA	ATCTATTATA	AAAGGGTAAG	TATTGCAAAA	ACACTTACCC	4440
TTTTCTTTTA TACTTCATTA	AGCTCTACTT	TTTATAATAC	TTCAAGCCCC	ACATGAGCAG	4500
AAGCATGATG ATTAAGCAGA	GAACAGCGCC	AATATAAGCG	ATTATTTGTT	GGTAGGATTC	4560
TCCTGCTGTG ATACCTCTAT	ACAAACAAAT	AATAGACATA	AAACCTGTCA	AGCCGATGAA	4620
CATAAGTTGA TTGGTTCTAG	GACTAACCAA	ATCATCATCT	TCAAACTCTC	TTATCCTCAT	4680
TTCCCTAGTG AGATAAACAG	ТААССААААТ	AGAAGCCAAG	ттаатааста	СТААААСААА	4740
TTGGAAAACT ACGGAAAAAT	TTAAAAACTG	ACGAGATAGA	AATAGATAAG	TAGAAACAAG	4800
CAAGGGCAAC TGACCTAAGA	ACAATCTCGC	AAGGAAGATG	TTCCGTTTTT	TAGCAAGAAA	4860
AGTTTTCATT TCTTTTCTCC	TTTCTTTTTA	TTGATAGCAA	AATAGATCAT	AACTGCAATC	4920
ACATAGGCTA TGGTATAAAA	TAGCTGATAC	CAAGCACTCT	CCCTAAGCGG	ATATAGAAAG	4980
ATGGACATGA TTAGATACAG	AACGAAAATA	ATCAGTATTT	TTTTCTTCAT	AAGATTTCCT	5040
CCTAAATGTG CGATTTATCT	TAGTTGAGCA	AGAACATTTA	CACTGCTAGT	ATAGCACTTA	5100
TTTTGACCTT GGATCACTCA	AATCATAAAT	GGTCATCAAA	ACCTCTTGAA	TTGTAAAAAT	5160
TAAAAAAGCA AGCATGAAAA	ACATACTTTC	CTCTTTATAT	TGTATTGATA	CCAACTTGTT	5220
TGTAGACTTT TCATCCTGCT	ATCACATATC	ATTTTGACAG	GCGAAACAAT	ATTAAAGAAA	5280
CTCCCCTGTA AATTAAGCTA	GCAAATACAG	GGGAGAAATT	TATTTTTAG	AGAGTACTAT	5340
CCGTATCCTT TTTGGAAGAT	TTTGAAAATA	TTTTTCTAAT	TAAGTCATCC	ATATAAGGAC	5400
САААТАТАСС ААСТАСТААА	ССААТААТАА	AACTTTTAAA	ATCCATAATT	ACCACCAACA	5460
TGTTGCTGCA TAGGCTACAC	CTCCAAGTAT	AGCTCCACCC	GCAGCACCAG	TTGCTGCACC	5520
TTGCCATGTT CCTGTTTTAA	TGCCTAGTTG	AAGACCTCTT	GCTGCTCCTC	CTCCAACACC	5580

240	
248 TGCTTTGGCA AAATCTCCCC AATTGCATCC GCCACCTTCA ACGCAAGCAA GCATTTCAGT	5640
ATCCATAACA GAAAATTGTG ACATCATTTT TGTATCCATG ACAAATACTC CTTTTTTAAA	5700
AAACTAAAAT AAATCAGAAT AGAATCCTCA TAATTTTACT ATAAGTCTTA CCAACTTAGT	5760
CCCAATTTAT CACCAACCAT ACCTCCTAAG CATGTTAATC CACCCCCAAT TGCACCAATG	5820
TGTGCTCCAA CAAATGCACC AGCAAGTCCA GCTACTCCTA AAGTGGCCAA ACCTGCTCCA	5880
GTTCCACCAG TTATAATTCC CGTAGTGACT CCTGTAATCA GTGCATTTTG ACAATCAGTG	5940
GAGCTATACC CCCCTTCAAC TTTCGCAAGC ATTTCAGTAT CCATAACCTC TAACTGTGAC	6000
AACATTTTTG TATTCATGAT GAATACCTCC TTTTTATTTT CAATTTGTTA CCAAAGTCTT	6060
AAATTCAATA AACAAATAGA TTTTTTATAG TATCTTTTTG ATTTTCTTAA AAAAGTATAT	6120
ACGTCTACTA TCTTCTTAAA GGTAGCAGTA CCTATTTTTT AGTCTAAGAT TTCAATAATC	6180
TTGAGTATCT AAAATATCTT AATTTCGTTA TTCTCCTTGC AATAAAAAGT TTTACTATAC	6240
TATTTATTAA CTTGCAGAAA GCAAAAAATA TTAGTAAATA ATAGTTTATA GTTAAGTTTT	6300
TTATTCCTAC CAATCCATCA ACTAAGTAAA GCATCAACGA TTACATAAAC GATTGATAAT	6360
ATAATTAAAA TTTTGCTAAC TATCTTATTC TCATCATTCT TAGATAACTT TGATATTTTG	6420
TAAGTAAGTA AATAAGACAG TAAATTAATA GCGATAATAA TACTATATTT AAGAATCATA	6480
ATCTTACAAA GAGGACATAA TTCCTGAACC TACACAAATA AGTGTTGCTG CTCCCCCAGT	6540
PATCGGACCA GTCGCAGCAG CTAATAGTAC TGCTCCAATA CAACCACCGA TTGCAGATCC	6600
PAAATTGCCT CTTCCTCCAC TAACTATTTC GAGTTCTTCA TTATCCATAA CAGAAAATTG	6660
FTCCATCATT TTTGTATTCA TGACAAATAC TCCTTTTTTC TTTTTTTATT TTTGTCTTGT	6720
CGTAACTTTG ATAAGTTTAG TATATCATCG TTTTTTAAAA TTTTTCATCC AGATCTTGAA	6780
PTGTCATCGA AACGTCTTGA ATTAGCTTTT TTATTTCAAG CCACCTCTAA ATGTTTAAAA	6840
AAAATAATTT CTAATCACTT TTTTACCATT CAGGAAGTTT TAATGACTAT TCAAGATTTC	6900
ATAAAATATG AACTTAGTTT TATGACATAA TAGACCTATC CACTATATGA AAGGAATTGC	6960
CAATGACTTC TTATAAACGT ACATTTGTTC CTCAAATAGA TGCGAGAGAC TGTGGTGTCG	7020
TGCCTTAGC CTCGATTGCT AAATTCTATG GTTCAGATTT TTCTCTAGCT CACTTGAGAG	7080
ACTTGCAAA GACCAATAAA GAAGGGACGA CTGCTCTTGG CATTGTAAAA GCCGCTGATG	7140
AATGGGCTT TGAAACAAGA CCTGTTCAAG CAGATAAAAC GCTCTTTGAC ATGAGTGATG	7200
CCCCTATCC ATTTATCGTT CACGTTAACA AAGAAGGAAA ACTCCAACAT TACTATGTTG	7260
CTATCAAAC AAAGAAAGAC TATCTGATTA TTGGTGATCC TGACCCTTCT CTAAAAATCA	7770

CTAAAATGTC AAAAGAACGC TTTTTCTATG AATGGACTGG AGTAGCTATT TTTCTAGCTA 7380

CCAR Acces -	
CCAAACCCAG CTATCAACCC CATAAAGATA AAAAGAATGG TCTACTAAGC AAGCTTCCT	r 7440
TCANACAAAA ATCTCTCATT GCTTACATTG TTCTCTCATA	
ATATAGGTGG TTCTTACTAT CTCCAAGGAA TCTTCCATCA	
AATCAACTTT AGGAATCATC TCAGTTGGTC TGGTTATGAG	
TORGETTETE CAGAGATTAT CTCCTAACCG TTCTCACCG	
TITTATCCTA TATTCGCCAT ATTTTTGAAC TTCCCATCTC	
CAGGAGAAAT CATTTCACGA TTCACAGATG CTAACTCTAR TAGGATG	7740
TTGGCTTCTA CCATTCTTC TCTTTTTCTG GATGTTTCTA TTCTGATTCT TGTAGGAGGC	7800
GTCTTACTGG CACAAAACCC TAATCTCTTC CTTCTTTCTC TTATTTCCAT TCCTATATAC	7860
ATGTTCATCA TCTTTTCTTT TATGAAACCT TTCGAAAAAA TGAACCATGA TGTCATGCAA	7920
AGTAATTCTA TGGTTAGCTC TGCCATTATC GAAGATATCA ACGGGATTGA AACTATAAAG	7980
TCGCTCACGA GTGAAGAAAA TCGCTATCAA AATATAGACA GCGAATTTGT AGATTATTTG	8040
GAAAAATCCT TTAAGCTCAG TAAATATTCT ATTTTACAAA CGAGTTTAAA GCAGGGAACA	8100
AAATTAGTTC TGAATATCCT TATCCTATGG TTTGGCGCTC AATTAGTCAT GTCAAGTAAA	8160
ATTTCTATCG GTCAGCTGAT TACCTTTAAC ACACTTTTTT CTTACTTTAC AACTCCTATG	8220
GANAATATTA TCAACCTCCA AACCAAACTC CAATCTGCGA AGGTCGCTAA TAACCGTTTG	8280
AACGAAGTCT ATCTAGTCGA ATCTCAATTTT CAATCTGCGA AGGTCGCTAA TAACCGTTTG	8340
AACGAAGTCT ATCTAGTCGA ATCTGAATTT CAAGTTCAAG AAAACCCTGT TCATTCACAT	8400
TTTTTGATGG GCGATATTGA ATTTGATGAC CTTTCTTATA AGTATGGTTT TGGATGAGAT ACCTTAACAG ATATTAATCT CACCATTALA	8460
ACCTTAACAG ATATTAATCT CACGATTAAA CAAGGAGATA AGGTTAGCCT AGTTGGAGTT AGTGGTTCTG GTAAAACAAC mmmaccaa	8520
AGTGGTTCTG GTAAAACAAC TTTAGCCAAA ATGATTGTCA ATTTCTTTGA ACCCTACAAA	8580
GGGCATATTT CCATCAATCA TCAGGATATT AAAAACATTG ATAAAAAAGT CTTGCGCCGT	8640
CATATTAATT ACCTACCCCA ACAAGCCTAT ATCTTTAATG GCTCTATTTT GGAAAACTTA	8700
ACCTTGGGCG GTAATCATAT GATTAGTCAA GAAGATATTC TAAAAGCTTG TGAAGTAGCT	8760
GAAATCCGTC AAGACATTGA AAGAATGCCT ATGGGCTATC AAACTCAGCT CTCTGATGGA	8820
GCTGGTCTAT CAGGAGGACA GAAGCAACGA ATCGCTCTCG CTCGTGCTCT TTTAACTAAA	8880
TAATACTAGA TGAAGCTACT AGCGGTCTTG ATGTCTTCAG TGAGAGCTACT	8940
ATCITATGTC TCTAACTGAT AAAACCATTC TCTTTCTACC COLOR	
AACGAACCAA CCGTGTCATT GTTCTTGACC AGGGGAAAAT CATTGALL	9000
GGTA	9060
	9064

250

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7780 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

CTCCATTTTT TTGATTTCAT AAATAAACAA CCTCTCTGTT AATTTTGTAT AATTATAACG ATATCCAAGT TACTTGTCAA GTGTTTTTTA AATTTTTATC TCAAAAATAT TTTTTCGTTC 60 AAAAAAAGGA GCCATCAGTT GATTTCAAGC TCCCTTTTAT ACAGAATTAA ACTATTTTAT 120 AGTTCGACAA TCTTACCTGT TTCAAAGTAG ACAACCCATT CACAGATATT TTTAGCATAG 180 TCACCGATAC GCTCCAAGTA GGAAATAACT TGGAAATAAT CACGACCCGT AACAATGGCT 240 TCTGGATTTT TCTTAATCTC TTCAGTCGCA AGGTCACGGA TAGTTTCAAA ATAGTGGTTA 300 ATTTGCTCAT CCATGGAGGC CACCCGGTAT GCGTCGTCAA CAGAACCATT AAGATAAAGA 360 TCAAGTGCTG CTTCCACAAC GCTTTTAACT TCACGTCCCA TTTTTTTAAT TTCTTCCTCT 420 ACAGCTGGAA TGCGCTCTTC CCCCTTCATA CGGATGGTTG CCTGGGCAAT GGCTACAGCG 480 TGATCCCCCA TACGCTCCAC ATCTGATACA GCCTTAAGGA CAGTCAAGAC TGTACGCAAA 540 TCTTGAGAGA CTGGTTGTTG GAGTGCGATC ATTTCAAATG ATTTCTTTTC CAGTTTCACT 600 TCGTATTCAT TTACTTCTGC ATCATCTTCG ATGACCTCTT TTGCCAGGTC ACGGTCATGC 660 GTGACAAAAG CACGTACCGT ACGATTGATT TGTGAGAGCA CTTCTTGTCC CATAGCGTAG 720 AACTGGTTAT GTAATTTCTC TAAATCTTCT TCAAATTGAG ATCGTAACAT CTTTCATCTC 780 CTTATCCAAA TTTTCCTGTA ATATAGTCTT CCGTTTCCTT GTGTTGGGGA TCAAGGAACA 840 TCTGCTTGGT ATCATTAAAT TCAATCAAAT CTCCATCTAG GAAAAATCCT GTCTTATCAG 900 AGATACGTGA AGCTTGCTGC ATGGAACGGG TTACCAGAAG CATGGTGTAC TTGTCTTTTA 960 GACCATACAA GGTTTCCTCA ATTTTACCAG CTGAAATCGG ATCCAAAGCC GAAGTTGGCT 1020 CATCCAAGAG GATGATTTTA GGACTAGTTG CCAAGACACG GGCCACGCAG ACACGCTGCT 1080 GTTGACCACC TGACAATCCA ATAGCTGAAT CATATAGACG ATCCTTGACC TCATCCCAGA 1140 TAGAGGCACC TTGCAAGGCT TTTTCTACGG CTTCATCCAG AACCTGCTTA TCCTTAATTC 1200 CATTGATACG AAGCCCGTAG ACAACATTCT CATAGATAGT CATAGGGAAA GGATTAGGTT 1260 GTTGGAAAAC CATTCCGATT TCCTTACGTA ATTCAACCGT ATCTGTACGC GGACTGTAGA 1320 TGTTGTGACC ATTGTACACC ACGGATCCAG TTGTGGTCAC CTCTGGATTG AGATCTCCCA 1380 1440

TGCGGTTGAG	AGACTTGAGG	AGGGTTGACT	TCCCTGATCC	AGATGGACCA	ATCAAGGCTG	1500
TAATTTCCTT	AGGTTGGAAA	GATAGGGAAA	CACTATTCAA	AGCCTTCTTT	ттаттатаат	1560
AAACGGACAG	GTCTGATACC	TGTAAAATCG	CATCTGTCAT	ACGGTTTCCT	TTCTAACCAA	1620
AGTGACCAGA	TACATAGTCA	TTGGTGGACT	GTAGCTTGGC	ATTTTGGAAA	ATAGTTGCAG	1680
TCTTGTCATA	CTCAATCAAA	TCACCCAAGT	AAAAGAAGCC	TGTATAGTCA	CTTGCACGAG	1740
CAGCCTGCTG	CATATTATGC	GTTACAATGA	TGATGGTAAA	GTTTTTCTTG	AGCTCAAACA	1800
TGGTCTCTTC	TAGTTGCATG	GTCGCAATCG	GATCCAAGGC	TGAGGCTGGC	TCATCCATTA	1860
AGAGGATATC	TGGCTTAACA	GAGATGGCAC	GAGCGATACA	GAGACGTTGT	TGCTGACCAC	1920
CTGATAAGGT	CAAGGCTGAC	TTGTGGAGAT	CGTCTTTAAC	CTGATCCCAG	AGGGCAGCCT	1980
GACGAAGGGA	GGTTTCTACG	ATTTCATCTA	GGACTTGCTT	АТССТТААСТ	CCAGCACGTT	2040
CATGCGCAAA	GGTAATATTA	CGGTAAATTG	ACTTAGCAAA	TGGATTGGGA	CGTTGAAAAA	2100
CCATTCCAAT	GTGTTTACGC	АТТТСАТААА	CGTTGATTTC	TGGACGGTTG	ACATCAATTC	2160
CACGATAGAG	AATCTGCCCA	GTTACTTTAG	СЛАТАТСААТ	AGTATCATTC	ATGCGATTGA	2220
GACTGCGTAA	GTAGGTAGAT	TTCCCCGATC	CCGACGGGCC	AATCAAAGCT	GTAATTTTAT	2280
ттстттсааа	TTGCATATCA	ATCCCCTTAA	TGGATTCATT	TTTACCATAG	TAAACATGGA	2340
CATCCTTAGT	AGAAAGGGCT	ACTTTTTCTT	CAGGAAAGGT	AAGGATATGC	TTCTCATCCC	2400
AGTTATATGT	TGACATGGCT	TCTCCTTTAG	GCAGCGGTTA	ATTTCTTGTG	TAGATAGCTT	2460
CCGAACTTAC	GAGCTCCAAA	GTTAAAAATC	AGGATAAAGA	TCAGGAGCAC	AGCGGCAGAA	2520
CCTGCTGATA	CAATGGTTCC	ATCTGGAATA	GTGCCTTCAC	TATTGACTTT	CCAGATATGG	2580
ACAGCCAAGG	TTTCTGCTTG	ACGGAAGATA	GAGATGGGGC	TAGTCACACT	GAGGATATTC	2640
CAGTTAGACC	AGTCAAGAGC	TGGCGCCGAT	TGCCCTGCTG	TATAGATCAG	AGCTGCAGCT	2700
TCGCCAAAGA	TACGACCAGA	TGCCAAGACG	ACACCCGTTA	CAATACCTGG	AAGCGCTTCC	2760
GGAATAACAA	CATGAACCAC	TGTCTCCCAG	CGAGAAATCC	CAAGAGCCAG	ACCAGCCTCA	2820
CGTTGGGTAT	GGTGAACGTG	тттсаааста	TCCTCTACAT	TACGCGTCAT	CTGAGGCAAG	2880
TTAAAGACTG	TCAAGGCCAA	GGCACCTGAA	ATGATTGAAA	ATCCATACTC	AAACTGGACT	2940
ACAAAGATCA	AGTAACCAAA	GAGACCCACC	ACCACTGATG	GTAAAGAGGA	CAAAATTTCA	3000
ATACAAGTCC	GCACAAAGTT	GGTAACAGGA	CCTTTTTTAG	CATATTCAGC	CAAGTAAATC	3060
CCAGCTCCCA	TAGAAAGAGG	TACAGAAATA	ATCAAGGTAA	TGACCAATAG	GAAAAAGGAA	3120
TTGTAAAGCT	GAATGCCAAT	CCCACCACCT	GCTTGAAAAG	CAGAAGACCT	TCCAGTCAAG	3180

252	
AAAGACCAAG AGATATGGGG CAAGCCCCGA ACCAAGATAT AGAGAATCAA GGAAGCCAAG	3240
ATTGTCACAA TGATGCTAGC AATCGTATAG AGGACAGCTG TTGCAAGTTT ATCTAATTTC	3300
TTAGCGCGCA TAATTTTTCT TTCCTCTTTC TTTCGTAATC AATTTAATCA CACTGTTAAA	3360
AACTAAGCTC ATCAAGAGCA GTACCAAGGC CAGTGACCAG AGAACATTAT TATTTACAGT	3420
TCCCATGACA GTGTTCCCAA TTCCCATAGT TAATATAGAA GTTAAAGTTG CAGCTGGTGT	3480
GGTCAAGGAA GTTGGGATAA CAGCTGAGTT TCCGACAACC ATCTGGATAG CTAGAGCCTC	3540
ACCAAAGGCA CGCGCCATCC CAAAGACCAC TGCAGTGAAA ATACCAGAAC GGGCCGCCTT	3600
CAAGATCACA CGCCAGATAG TCTGCCAGCG AGTGGCTCCC ATAGCGAAAC TGGCTTCACG	3660
ATAATAACGA GGAACCGCAC GCAAGCTATC CGTTGTCATA AAGGTTACGG TCGGCAAAAT	3720
CATGACAAAG AGGACGGAAA TCCCTGACAA AATCCCAAAA CCAGTCCCAC CAAAGACACT	3780
GCGAACAAAG GGAACGACGA CTTGCAAGCC AATAAATCCG TACACTACTG AAGGAATCCC	3840
AACCAGGAGT TCAATAGCTG GTTGCAAAAT CTTCGCCCCT TTTGGTGATA CTTCGGTCAT	3900
AAAAACTGCT GCACCAATAG CAAAGGGTGT TGCGATAAGG GCTGAGAGAA TGGTAACGAT	3960
AAAGGAACCC AAAATCATAG GAAGGGCACC AAATTCTTTA CTAGAAGGAT TCCAAGTTCC	4020
TCCCAAAAGA AAGTCAAAGA TATTCACACC ATTGACAAAG AAGGTCGACA AGCCTTTTTG	4080
CGCTACGAAA ACCAAAATCA TGGCCACAAG GATGACTATC AAAGAAAGAC AGGCAAAGGT	4140
CAAACCTTTT CCTAATTTCT CCAGACGAGA ATTCTTTGAT GGAAGCAACA TTTTCTTAGC	4200
TAATTCTTCT TGATTCATTA TTGTCTCCCT TCCAACACTG TCACAGTTCC GGCAGCATCT	4260
TTTTCAACCT TCATTTCCTT AATCGGAATA TACTTCAATC CTTTGACAAT CCCTTCTTGG	4320
GTCTCATCCG AGAGAACAAA ATTGAGAAAT TCTGCAGCCA ACTCATTGGG CTGCCCCAAT	4380
GTATACATAT GCTCATAAGA CCACAAGGGC CAATTATTGC TACTTATATT TTCTGGACTT	4440
AAGTCATAGC CATTCAACTT CATGCTTTTG ACCGAATCAT CTATATAGGT AAGAGATAAA	4500
TAAGAGATAG CTCCTGGACT TTTTGATACG ATTGATTTTA CCGCTCCATT TGAATCCTGC	4560
TCCTGACTTT GCATGGCAGA CTGACCTTCC ATAATGACAG TATCAAAGGT AGCACGAGAG	4620
CCAGAGCCGG CTGCCCGATT GATAACAGAG ATGGGTAAGT CCTTACCACC AACCTCTTTC	4680
CAATTGGTTA CCTCACCTAT GAAGATTTGA CGAAGTTGCT CTGTCGTTAG GTTATCAACA	4740
TCAACCTCCT TATTGACAAT CAGAGCCAAG CCAGCTACCG CGACCTTGTG GTCAACAAGA	4800
GCAGAAGCAT CAATTCCGTC TTTTTCCTCA GCAAATACAT CTGAGTTTCC TATATCAACT	4860
GCCCCAGACT GAACCTGGGA CAAGCCTGTA CCAGAACCTC CCCCTTGGAC ATTGACCGTT	4920
TTTCCAACAT GGATCGTGCC AAATTCATCT GCCGCTACTT CAACCAAGGG. TTGCAAGGCA	4980

GTTGAGCCAA CAGCCGTTAT GGATTCTCCA CGATCAATCC AGCTAGCACA GCCTACTAAA	5040
CAAGCCGTCA GCCAAAAAGC GATAAGAGAC AGAGCAAGCT TTTTTCTTTT TTTCACTGTT	5100
TTTCTCCTCG AAAATAATTA TGAATACTGT GAATTTTTTA AGTAGTTCTT TATGAGTTGA	5160
CGCATGAATT CTTACCAAAT TTCTGCGCAA TTGATTATTT ATATAATATA	5220
CTCTTTCCTA ACCTCCTTTT TTCATATGTG GATAAAATCT CTTGTCTATC CCTTCCCCCA	5280
TTGTCACCCA TTATAGTCAT TTCGTGTCTC TTTTTCCCCT TTTTAATGCA AGGGAAATTA	5340
CTCTCCTTAG ATGATAATCC AAAAGCTAGA AAGGTATCTC AAACCTCTCT ACTCTCCCAG	5400
ACTAGTTTAC AACTAAAAGG AAAAGATTCT ATTTTATGAG AAATCTAGTT TACAAGCGGT	5460
AAGAACGCTA ATAACTAAAC TTCTTGTACT CTTTGAAAAT CTCTTCAAAC CAGTGTTTTG	5520
AGCTATCTAT GGCTAGCTTC CTAGTTTGCT CTTTGATTTT CATTGAGTAG TAAAACTACA	5580
TGTAATGGCA ATCAAGATAT CAAGAATCAT CCTACTAAAA AAATCCATAC TTTCACTATA	5640
ACATAGAATA AGATATTTGA CTAGCATTTT CATTTGAATC TGAGGCCTTT TGGAAAATAA	5700
TTTTTCAAAA CATTTCCAGT AACCTTTGCA AAGCCCAAGC CATTGCCTTT AACCAAAACT	5760
TGGTACCAAC CATTTGGCAG ACTTTCTGCC AGCTGAACGG TTTCTCCAGC CGCATACTTG	5820
ACAAACGCTT CTTGGCCAAT TTCAACCGAC TGTTCGACCT GACTCGGTTT CAAGGCTAAA	5880
CCAAGAGCGA AACTGGGCTC AAAGCGTTTC TTCTTAAAAG TACCCAGATG CAGTCCATTG	5940
CGAGCAATCT TGAGCTTCCA TAAATCTGGC AAAAGTTCTG GCAAGAGATA AAGCTGGTCT	6000
CCAAAAATCT GCAAGATACC CGGTAGATTG ACCTTCAAAT GGTTTTGGGC AAATTCCTGC	6060
CACAAGGCAA CTTGTTCACG GCTGAGGTTA CTCTTACTTG CCTTAAATTT AGGAGCTGGA	6120
TTGTTACCCT TARACTGTAG ATGGGCAACA AACTGACCCT CTCCCTTARA CTGATGAGGA	6180
TACATCCGAG CCGTTTCTGG CAGGTCAATA CCAGCTACCA TTCCATTGAT ATGCTCTACT	6240
GGCAACAAGT CAAAATCATA CTCTTCCAGC AACCAATTGA CAATCTCTTC GTTTTCCTCG	6300
GGTGCCCAGG TACAGGTCGA ATAAACCAGA TGACCACCTT CAGCTAACAT GGTCACTGCA	6360
TCCTCCAGAA TTTCTCTTTG CAAGCTAGCA CATTGACTCG GATAATCTAA GCTCCAATAG	6420
TCCATAGCAT CAGGTTGCTT ACGAAACATT CCTTCACCAG AGCAAGGGGC ATCAAGAACG	6480
ATTAAGTCAA AATAGCCTTT AAAGACCTTG ACCAAGCGGT CGGCAGATTC ATTGGTCACC	6540
ACGACATTTG TCGCTCCAAA ACGCTCCATG TTTTCAACCA AAATCTTAGC CCGTTTGCTT	6600
GAAATTTCAT TGGAANCAAG TAGCCCCTCC CCTGCTAGAT AGGCTGCCAG TTGAGTTGAT	6660
TTGCCCCCCG GTGCAGCAGC CAAGTCCAAG ACCTTCATAC CAGGACTGGG TTGGGCTACT	6720

TGAGCCACCA	mmmca caa ca	\ 0.00000000000000000000000000000000000	254			
					ATGCTCAGGC	6780
GATTTCCCTG	AAACCTTCCC	ATAGTGGCCC	CAAGGGGTTT	GAGTAATGGC	ATCAGAAAAG	6840
GAAAGTTGCT	CTTCTTTTAA	GGGATTGACC	CGAAAGGCCG	AAACCGCTTC	CTCCTCAAAA	6900
GAGGCAAGAA	AATCTCTTGC	CTCATCTCCT	AGTATCTCTT	TATATTTTC	AACAAATCCT	6960
TCTGGAAATT	GCATTTAAGT	TCTTTTCCTT	TCGTAAATAT	AGGACTGAAT	TTCCTCCTGC	7020
ATCTCAAGAG	GCACCATCAT	GACCGGCTGT	CTGGTTTGAA	AATCAGGAGC	ТТСАССАААА	7080
AGGGTCACAA	CCCGATAGCC	CAGACTTTCC	CCTAAAATAC	TAGCTGCGGC	ATAATCCCAT	7140
GGTTGCAGAT	AAGTGAGATA	GGTCAACAAA	CGCCCTGACA	AAATCTTGGC	AAAACTAATG	7200
GCCGCACTTC	CATAGACACG	AACACCAAGA	ACCGCTCGGC	TCAAATCAGC	CAGCCCCCAT	7260
TCATTGGTTT	CCAGCATACC	ACTATTCCCT	GCAATGAGAA	AATCTCCAAG	TGGTTTAGTT	7320
TTAAAAGGAG	CTAGGGACCT	ATCATTTAGA	CAAACTGGAA	ATTCCCCACC	ACCGTGGTAA	7380
CAATCCCCTT	TGACCACATC	ATAAATCAGA	CCAAACTGTC	CCTGACCATT	ТТСААААТАА	7440
GCCATCATAA	CAGCAAAATC	TTCCTGCTGG	GCTACAAAAT	TATTGGTACC	ATCAATGGGA	7500
TCAATGACCC	AAACCTTGCC	CTCTTGAACC	GAGGCTCGCA	GACAACCTTC	TTCAGCACAA	7560
ATCTTATCCT	CAGGATAACG	GGACAAAATC	TCACCAACCA	AGAGTTCCTG	AACTTCTTTG	7620
TCCAGTCTGG	TCACCAAATC	TGTTGGAGAG	GACTTGGTTT	CAACACGCAA	GTCTTCCTGC	7680
ATATGGTCAA	GAATGTACTG	ACCTGCTTTC	TTAACAAGCT	CTTTAGCAAA	ТТСАААТТТА	7740
CTTTCCAAGA	GAAATCTTTC	СТТССССТТТ	TTCTTTGGGG			7780
(2) INFORMA	TION FOR SE	Q ID NO: 19	:			
(, () ()	QUENCE CHAR. A) LENGTH: B) TYPE: nuc C) STRANDEDI D) TOPOLOGY	4820 base p cleic acid NESS: doubl	airs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

GTAATGATAT	AGGAACACCA	GGTGACCTGA	TGGGACGTCG	TAAGCCTATG	AACTACTAGC	60
TGCTAAAGGC	TTTAAAGATG	GTATGGTACC	ATATATCTCA	AACCAATACG	AAGAAGAAGC	120
CAAACAAAAG	GGCAAGACAA	TCAATCTCTA	CGGTAAAACA	AGAGGTTTGG	TTACAGATGA	180
CTTGGTTTTG	GAAAAGGTAT	TTAATAACCA	ATATCATACT	TGGAGTGAGT	TTAAGAAAGC	240
TATGTATCAA	GAACGACAAG	ATCAGTTTGA	TAGATTGAAC	AAAGTTACTT	TTAATGATAC	300
AACACAGCCT	TGGCAAACAT	TTGCCAAGAA	AACTACAAGC	AGTGTAGATG	AATTACAGAA	360

ATTAATGGAC GTTGCTGTTC GTAAGGATGC AGAACACAAT TACTACCATT GGAATAACTA	420
CAATCCAGAC ATAGATAGTG AAGTCCACAA GCTCAAGAGA GCAATCTTTA AAGCCTATCT	480
TGACCAAACA AATGATTTTA GAAGTTCAAT TTTTGAGAAT AAAAAATAGT GTCTACTATT	540
AGGAAATAAA GTTTAAAAAG GTGATGAAGA ACAAACCAAG ATTCAAGCAG GAATTCCTAC	600
TGATAATGAA GTAAGTTATG ATCTTATTTA TCAGCAGGAA ACTCTTCCTG CAACAGGTTC	660
ATCAACTTCT GAGCTTACAG CTTTAGGCCT ATTAGCTGTT GGTAGTTTAG TTCTTTTGGT	720
TCATAATATG ACGGGAACAG TTTTTTGCTC CCTCTGAAAA GTCATCATTT GATGGCTTTT	780
TTCTATATAG GGTAAAAGAT AGGGTAAAAG GCTATCATCG GACAAAATAA AGAAGGCATG	840
ATATAATATA AAGTAGATTT CTATGTCATA AAACAAGAAC TGTTTGGACA TCATTCATTT	900
GAAAACTCTC TATGTTCAAA CAATAGTAAA ATAAAATAGG GGATCTAAAT CCTTGCTATG	960
AAAGGAAAAA ACTCAATGGC TACTATTCAA TGGTTTCCTG GTCACATGTC TAAAGCTCGT	1020
CGACAGGTGC AGGAGAATTT AAAATTTGTT GATTTTGTGA CGATTTTAGT AGATGCACGC	1080
TTGCCTCTAT CTAGTCAAAA TCCTATGTTG ACCAAGATTG TTGGTGATAA ACCAAAACTC	1140
TTGATTTTAA ACAAGGCCGA CTTGGCTGAT CCAGCAATGA CCAAGGAATG GCGTCAGTAT	1200
TTTGAATCAC AAGGAATCCA GACGCTAGCT ATCAACTCCA AAGAGCAAGT GACTGTAAAA	1260
GTTGTAACAG ATGCGGCCAA GAAGCTCATG GCTGATAAGA TTGCTCGCCA GAAAGAACGT	1320
GGGATTCAGA TTGAAACCTT GCGTACTATG ATTATCGGGA TTCCAAACGC TGGTAAATCA	1380
ACTCTGATGA ACCGTTTGGC TGGTAAAAAG ATTGCTGTTG TTGGAAACAA GCCAGGGGTC	1440
ACAAAAGGTC AACAATGGCT TAAAACCAAT AAAGACCTGG AAATCTTGGA TACACCGGGG	1500
ATTCTCTGGC CTAAGTTTGA GGATGAAACT GTTGCACTTA AGTTGGCATT GACTGGAGCT	1560
ATCAAAGACC AGTTGCTTCC TATGGATGAG GTTACCATTT TTGGTATCAA TTATTTCAAA	1620
GAACATTATC CAGAAAAGCT GGCTGAACGC TTCAAACAAA TGAAAATTGA AGAAGAAGCG	1680
CCTGTGATTA TTATGGATAT GACCCGCGCC CTCGGTTTCC GTGATGACTA TGACCGTTTT	1740
PACAGTETET TEGTGAAGGA AGTEEGTGAT GGCAAACTEG GTAACTATAE ETTAGATACA	1800
TGGAAGACC TCGATGGCAA CGATTAAAGA AATCAAAGAA TTCCTTGTGA CAGTCAAGGA	1860
TTAGAAAGC CCTATTTTT TAGAGCTTGA AAAGGATAAT CGCTCAGGAG TTCAAAAGGA	1920
ATCAGCAAG CGTAAAAGAG CCATTCAAGC TGAATTAGAT GAAAATTTGC GCTTGGAATC	1980
ATGCTTTCT TATGAAAAAG AACTTTATAA GCAAGGATTG ACCTTAATTG CAGGTATTGA	2040
GAGGTTGGT CGTGGTCCTC TTGCTGGTCC TGTAGTCGCT GCGGCCGTTA TTTTATCTAA	2100

256 AAATTGTAAG ATTAAAGGTC TCAACGACAG CAAGAAAATT CCTAAAAAGA AACATCTGGA 2160 GATTTTCCAA GCCGTTCAAG ACCAAGCCTT GTCGATTGGA ATTGGTATCA TAGATAATCA 2220 GGTCATCGAC CAAGTCAACA TCTATGAAGC AACCAAACTA GCCATGCAAG AAGCAATCTC 2280 CCAGCTCAGC CCTCAACCAG AGCACCTTTT GATTGATGCC ATGAAACTGG ACTTGCCCAT 2340 TTCACAAACC TCCATTATCA AAGGAGATGC CAACTCCCTC TCTATCGCAG CAGCATCTAT 2400 AGTAGCCAAG GTAACACGTG ATGAATTGCT GAAAGAATAC GATCAGCAGT TCCCTGGCTA 2460 TGATTTCGCT ACTAATGCAG GATATGGCAC AGCTAAACAT CTGGAAGGCC TCACAAACT 2520 AGGAGTTACC CCAATTCACC GAACCAGCTT TGAACCCGTT AAATCACTGG TTTTAGGTAA 2580 AAAAGAAAGT TAATTGAAAG GAAATAACAT GGAGGAACAG TCGGAAATAG TCCGTTCTAA 2640 GAAAGAATTC GCCTTTGCAT CCAGCACTAT ACTATCCCAA GTTGGTCGAG GAATCATTGT 2700 CGGCCTCATC GTTGGAATTA TCGTCGGATC CTTTCGTTTC TTAATTGAAA AGGGCTTCCA 2760 CCTGATACAA GGAGTTTATC AAGATCAAGG GTACTTAGTG CGCAATCTTT TTGTACTGGT 2820 TTTGTTTTAT ATACTCATCT GTTGGCTCAG TGCCAAACTA ACACGGTCAG AAAAAGATAT 2880 TAAAGGCTCA GGAATTCCTC AAGTCGAAGC CGAACTGAAA GGCCTCATGT CCCTCAACTG 2940 GTGGGGCATT CTTTGGAAAA AATATGTGCT AGGTATTCTT GCTATTGCCA GTGGACTCAT 3000 GCTGGGTCGA GAGGGACCCA GCATTCAACT TGGAGCAGTT GGTGGTAAAG GAATTGCCAA 3060 GTGGCTCAAA TCCAGTCCAG TAGAGGAACG TTCCTTGATT GCCAGTGGAG CTGCAGCAGG 3120 TTTAGCCGCA GCCTTTAATG CTCCTATTGC AGCACTTCTC TTTGTTGTAG AAGAAGTCTA 3180 TCACCATTTT TCGCGCTTTT TCTGGGTCTC AACTCTAGCA GCCAGCATCG TAGCAAACTT 3240 TGTGTCTCTA CTCATGTTCG GTTTGACACC AGTATTGGAT ATGCCAGATA ACATTCCTCC 3300 CATGACCCTA GATCAGTATT GGATATATCT CGTCATGGGA ATTTTCCTTG GATTTTCAGG 3360 TTTTCTCTAT GAGAAAGCTG TATTAAACGT TGGAAGAGTT TATGACTTGA TTGGTCAAAA 3420 AATCCATTTG GATAGGGCTT ATTATCCCAT CTTGGCTTTT ATCCTTATCA TACCAGTCGG 3480 AATCTTCTTA CCTCAAATCA TTGGTGGCGG AAATCAGCTT GTCCTTTCTT TAACTGAACA 3540 AAATTTTAGT TTCCAAGTTT TATTAGCTTA CTTTTTTAATC CGCTTTATTT GGAGTATGAT 3600 TAGCTATGGA AGTGGACTGC CAGGAGGAAT TTTCCTCCCC ATTTTAGCTC TTGGTTCTTT 3660 GCTTGGTGCC TTAGTTGGTG TTATCTGTGT CAATCTTGGA CTTGTCAGTC AAGAGCAATT 3720 CCCTATATTT GTCATTCTAG GAATGAGTGG CTATTTTGGA GCCATATCAA AAGCTCCCTT 3780 AACCGCTATG ATCCTCGTAA CTGAGATGGT AGGAGATATT CGCAACCTTA TGCCACTTGG 3840 TCTTGTCACT CTTGTTTCTT ATATTATCAT GGATTTGCTC AAAGGTACGC CAGTCTATGA 3900

257

AGCCATGCTG	GAAAAAATGC	TTCCAGAAGA	AGTATCTAGC	GAAGGAGAAG	TTACACTTAT	3960
CGAAATACCA	GTTTCTGATA	AAATTGCTGG	GAAACAAGTT	CATGAACTCA	ACTTACCACA	4020
CAACGTCCTC	ATCACAACTC	AAGTCCATAA	TGGCAAGAGC	CAAACAGTTA	ACGGCTCAAC	4080
CAGAATGTAT	CTGGGTGATA	TGATTCACCT	GGTTATTCCA	AAAAGTGAAA	TTGGAAAAGT	4140
CAAAGATTTG	TTGTTGTAGT	ATGAGTATTT	ACATAATTTA	TGTTATGTAA	ATGATCAGTT	4200
TGATTTATTT	AGAAAACCGA	TTCTCAGGAA	TGAGATCGGT	TATTTTTTAC	TGATGAGGAA	4260
TTTTACATAT	AAATAATTGA	ACTTTATTAA	AAATAAGACT	ATAATTAAGT	TAGAAATGAT	4320
Aaagtataaa	GCTAGAAAGG	AGTTTACTGT	ATCAAATCTG	TACAGTAAGA	TTAAAATCAT	4380
GAAAAAGAAA	ACAATAGCAA	TTATATAGAG	AAATGAAATA	GAAATAGGAT	AAAACAATCA	4440
GGACAATCAA	ATCAATTTCT	AGCAATGTTT	TAGAAGTCCA	GATGTACTAT	TCTAGTTTCA	4500
АТСТАТТАТА	CAATGTGTTT	TGTATCTCAT	AGCTCCTTAT	ATAGCTCTTC	AGTTATGTAG	4560
TATTAACAGA	AGTTTAGTGG	GTGAGATTTT	TATTATTTTC	CTTATTCTGT	TTTGTTTGTA	4620
GGTCTAAGTC	TTTTTATCAC	TTTGAAAAAC	TCCTATAACA	TCTTTCCGAA	АААСТАТААТ	4680
TTTCTTGAAA	AATATACAAG	TCTATGCTAT	ACTACTAGTA	ТАСТТАСТТА	TGGAGAAAAT	4740
ACATGAAACG	TGAGATTTTA	CTGGAACGAA	TCGACAAACT	ААААСААСТС	ATGCCCTGGT	4800
AAGTTCTGGA	ATACTACCAA					4820

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21338 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CTACGACATC	ATGATTAACA	GTCATGCGCT	ACTACCAACT	GAGCTATGGC	GGATAAAATA	60
GTCCGTACGG	GATTCGAACC	CGTGTTACCG	CCGTGAAAAG	GCGGTGTCTT	AACCCCTTGA	120
CCAACGGACC	TTCTATCTGT	AGCAGATATA	ACCATTATAT	CAATTTCTTG	CTAATTGTCA	180
ATCACTTTTG	AGATTTTTTC	тсталалтат	CTTTTAATTT	TCTAATTTTT	AATCTTGAAA -	240
TAGGACAACG	ATGGTCTTCA	TAGAAAACAA	TTTCTAAGTT	TTTTCGATCA	ATTTCTCTGA	300
TATTACCTAT	ATTTACCAAA	AATGACTTGT	GAGGAGAATA	AAATCGCTGA	GTATGTTTGT	360
CCTTTTCCTG	AATATCTGTC	ATGGTACCAT	AAAACTCTTT	TGCAAAATTC	ТТАССААТАА	420

			258			
TGCGCAATTI	ATGAGATAC	CCTGTTGTT	r caatataca.	AATATCATGO	TAAGGAATTT	480
ТТАААТСАТТ	TCCCTTGTA	A TTGTAGTCG	A AATAATCTAC	AACATCTTC#	TTTTCAAGTA	540
ACATACTCTT	CGTGTAGAAC	ATATTTTGC	P CAATTCTCTI	CTTAAACATO	TCATCATTGA	600
TATCCTTATC	AACAAAATCT	AGGGCTGAT	CCTGGTATTT	ATAGGTTAGA	GTCGCAAACT	660
CTGATCGACT	AGTGATAAAC	ACGATAATA	G CGTAAGGATT	GTAATGACGA	ATGAGCTGAG	720
CCACTTCAAA	TCCCTTTTTC	TCAATTCCAT	GAATATCGAT	ATCTAGGAAA	TAAAGCTGAT	780
TTACTTCATC	ATTTTCAATC	TATTCTTCA	ATTCACGGAC	TTTTCCCGTT	GTCTTGTATG	840
ATATTGGAAT	ATTCGATTCI	TTCGAAATTT	CATCCAATAT	TCTCTCTAGT	CTCACTTGAT	900
GTTCAATAAC	ATCTTCTAAA	ATTAAAACTT	TCATTCAAAT	ТСССТСТТАА	ATCTAATGAT	960
TTGTCTAAAT	GTACTGCCTT	CCATCTCTGT	ттсталалта	ATATTGTTGT	ACTTATCTAG	1020
TAGTTCTTTC	ACATTATTTA	ATCCGACTCC	GCGATTTCTT	CCCTTAGTGG	AGAATCCTAA	1080
GGCAAATAGA	TCTCCTGAAG	GAGTCATCGT	CATTTTACAT	GAATTCTGAA	TCACAATAAC	1140
TGTTTCAGTT	TCCATCTTAA	ТААСТССТАС	TTCCATCTGC	TTTTTATAGC	TATCAGCCGA	1200
TCCTTCGACA	GCATTATTCA	ATAAAACGCT	CATGATACGA	ACCAAATCCA	ATAGTTCAAT	1260
TGGAAGCTTG	GTAATCGTAT	CTTTTACTTC	CAGTGTAAAC	TCTACACCAT	TATTTCGAGC	1320
ATAGACAATT	GACTGAGCAA	CCAAACTTCG	TAAAGCTGAG	TCTTCTATGT	TGTTCAAATC	1380
AAAGTAAGTG	TACTTATCTG	AACGCAATTT	ATGATTTGCT	TTGACTAAAA	CTTCATTGTA	1440
AATTCTGTCA	ATTTCCTGTA	AATTACCACT	GTCAATTGCC	ATCTGCATGC	TGACAAGCAT	1500
TCCAGCATAA	TCATGTCGAA	AACCACGGAT	TTCATTATAC	AGACCAACAA	TTTCATCTGT	1560
GTAATTCTGT	AAATGTTTCT	GTTCAAATTT	CTTCTGCTTC	AAAGCAATCT	CTTTCTCCAT	1620
TTGAACTTTA	TGAGAATTCA	TTGCAAAGAA	GGTCAAAAGG	AGAGAGATAA	AGACAATAGA	1680
TGACAAAATA	CTTCCAAAAC	TATTCAAATG	TTTAATCGTA	CTTACCATAT	CTGAAACGAA	1740
AGATACAATA	TGTAGCAATA	GTAAAGCAAA	AAATACTTTT	TTCAAGAAAG	GATAAAGGTA	1800
GTCCTTGTCA	AAATAGGCTA	GTTCCAAATG	GAAATAGTAA	ATGATTTTTA	ATGTAACAAA	1860
ATAGGTTAAC	ACCGTCACAA	CGAAAAAGAA	TGGGAAATGA	TATTGTAAAA	CAAAATTATC	1920
TCCTGTTATA	GAGGAGAAAA	TTACGGACAG	Aaagttatga	GTGCTCTCAT	ATAAAAGAGA	1980
TAGTAGTAAA	CTTAGGAATA	GTCCTCTATC	CCTCTCATAC	TGTTTCATCC	ATCGAAAATA	2040
GGAATATAAG	CCCAAAGGAA	ATAAAAATCT	TTCAATCCCT	ATTTTATCTA	AATATAGAAG	2100
ATAAAAGGAA	AATTCAAGTA	CTATTTCAGT	TAGTAATGTA	TAAGCACCAA	AAACGTATAA	2160
TTCTTTTCTA	TTTATTCGAC	СТТТАСАААТ	TAAACGGTAA	CTGTGACTAA	ТААТТАААА	2220

ATGAACAATA	A ACTGTCCCAA	ATCCAAGTAA	ATCCATTACT	CTTTCTCCTT	ATTTCATTAC	2280
TTTTTTCGT	GGAAAAGAAA	ATCAAGGATG	ATTCTTGAAA	TCCTCATCTC	CCCACCTTTA	2340
ATCTTTTGT	AGTCTTTTC	CTTCAAAGCT	ACAAACTGTT	CCAATTTAAC	TGTGTTTTTC	2400
PAAAAATA	СТССТААЛАТ	GTTTTTTCTT	GTAAGCTAAC	ТТАСАААААС	CATTATACAA	2460
AATGGAATTI	CGTTTTAGAT	AAAATTCTCT	CAACTGTCAT	TTTTTTCTCC	CAAAGTGTAC	2520
TTTTTTAAGA	AAAAAGCCGG	GAAAATTCCC	AGCTTTGCTA	TTATATTGAT	CCCAGCAGGA	2580
TTCGAACCTG	CGACCGTTCG	CTTAGAAGGC	GAATGCTCTA	TCCAGCTGAG	CTATGAGACC	2640
TAATACAATT	ATTCTACCAA	AAATTCAATT	AAAAGTCAAT	TTTCTATTTA	TGGTAGGGGA	2700
ATCCCTGCTG	AATCGTAAAA	GCGCGATAGA	TTTGTTCAAC	AAGAACTAGT	СТСАТТААСТ	2760
GATGGGGTAA	GGTTAGGCGA	CCAAAACTGA	CAGAAAGATT	GGCTCTATTT	TTTACAGATG	2820
ATGATAATCC	TAAACTTCCC	ССААТААТАА	AAGTAAGAGT	AGAAAATCCT	TTTATAGAAG	2880
TTTCTTCTAA	CTGCTTACTA	AATTCTTCTG	AGAAGAAAGT	TTTCCCTTCA	ATGGCTAACA	2940
CAATAACGAA	ATCACGGTCA	GCAATTTTTG	ATAAAATTCT	CTGACCTTCT	АТТТСТАААА	3000
TCTTTTGATT	TTCTGATTCA	CTGGCCTTAT	CTGGTGTTTT	TTCATCTGAT	AACTCAATCA	3060
TTTCAAACTT	AGCAAATCTA	GAAATTCGTT	TTGAATACTC	TGCGATACCA	TCTTTTAAAT	3120
ACTTTTCTTT	CAGTTTCCCA	ACTGTTACAA	CTTTAATTTT	CATGACTCTA	TTCTAACATA	3180
TTCTCTATTT	TTTCACATCT	TATTCACAAA	АТААААААТА	GATTTCAATT	AAGAAAATCA	3240
СААТТТСААА	AGAGTTATCC	ACAGTTTGTG	TAAAACTTTT	GTGTTTAAGT	TATAATTAAG	3300
CTAGTCAGTT	TATACTTTCA	GTAATTCAAA	CATATGGAGG	CAAATATGAA	ACATCTAAAA	3360
ACATTTTACA	AAAAATGGTT	TCAATTATTA	GTCGTTATCG	TCATTAGCTT	TTTTAGTGGA	3420
GCCTTGGGTA	GTTTTTCAAT	AACTCAACTA	АСТСАААААА	GTAGTGTAAA	CAACTCTAAC	3480
AACAATAGTA	CTATTACACA	AACTGCCTAT	AAGAACGAAA	ATTCAACAAC	ACAGGCTGTT	3540
AACAAAGTAA	AAGATGCTGT	TGTTTCTGTT	ATTACTTATT	CGGCAAACAG	ACAAAATAGC	3600
GTATTTGGCA	ATGATGATAC	TGACACAGAT	TCTCAGCGAA	TCTCTAGTGA	AGGATCTGGA	3660
GTTATTTATA	AAAAGAATGA	TAAAGAAGCT	TACATCGTCA	CCAACAATCA	CGTTATTAAT	3720
GGCGCCAgCA	AAGTAGATAT	TCGATTGTCA	GATGGGACTA	AAGTACCTGG	AGAAATTGTC -	3780
GGAGCTGACA	CTTTCTCTGA	TATTGCTGTC	GTCAAAATCT	CTTCAGAAAA	AGTGACAACA	3840
GTAGCTGAGT	TTGGTGATTC	TAGTAAGTTA	ACTGTAGGAG	AAACTGCTAT	TGCCATCGGT	3900
AGCCCGTTAG	GTTCTGAATA	TGCAAATACT	GTCACTCAAG	GTATCGTATC	CAGTCTCAAT	3960

260 AGAAATGTAT CCTTAAAATC GGAAGATGGA CAAGCTATTT CTACAAAAGC CATCCAAACT 4020 GATACTGCTA TTAACCCAGG TAACTCTGGC GGCCCACTGA TCAATATTCA AGGGCAGGTT 4080 ATCGGAATTA CCTCAAGTAA AATTGCTACA AATGGAGGAA CATCTGTAGA AGGTCTTGGT 4140 TTCGCAATTC CTGCAAATGA TGCTATCAAT ATTATTGAAC AGTTAGAAAA AAACGGAAAA 4200 GTGACGCGTC CAGCTTTGGG AATCCAGATG GTTAATTTAT CTAATGTGAG TACAAGCGAC 4260 ATCAGAAGAC TCAATATTCC AAGTAATGTT ACATCTGGTG TAATTGTTCG TTCGGTACAA 4320 AGTAATATGC CTGCCAATGG TCACCTTGAA AAATACGATG TAATTACAAA AGTAGATGAC 4380 AAAGAGATTG CTTCATCAAC AGACTTACAA AGTGCTCTTT ACAACCATTC TATCGGAGAC 4440 ACCATTAAGA TAACCTACTA TCGTAACGGG AAAGAAGAAA CTACCTCTAT CAAACTTAAC 4500 AAGAGTTCAG GTGATTTAGA ATCTTAATTG ACATCTATGT AAAGAAAGCT TTACATAAGA 4560 GAAAAGATGT GTTAGTGTAG AATCATGGAA AAATTTGAAA TGATTTCTAT CACAGATATA 4620 CAAAAAAATC CCTATCAACC CCGAAAAGAA TTTGATAGAG AAAAACTAGA TGAACTAGCA 4680 CAGTCTATCA AAGAAAATGG GGTCATTCAA CCGATTATTG TTCGTCAATC TCCTGTTATT 4740 GGTTATGAAA TCCTTGCAGG AGAGAGACGC TATCGGGCTT CACTTTTAGC TGGTCTACGG 4800 TCTATCCCAG CTGTTGTTAA ACAGATTTCA GACCAAGAGA TGATGGTCCA GTCCATTATT 4860 GAAAATTTAC AGAGAGAAAA TTTAAACCCA ATAGAAGAAG CACGCGCCTA TGAATCTCTC 4920 GTAGAGAAAG GATTCACCCA TGCTGAAATT GCAGATAAGA TGGGCAAGTC TCGTCCATAT 4980 ATCAGCAACT CCATTCGTTT ACTTTCCTTG CCAGAACAGA TTCTTTCAGA AGTAGAAAAT 5040 GGCAAACTAT CACAAGCCCA TGCGCGTTCC CTAGTTGGGT TAAATAAGGA ACAACAAGAC 5100 TATTTCTTTC AACGGATTAT AGAAGAAGAT ATTTCTGTAA GGAAATTAGA AGCTCTTCTG 5160 ACAGAGAAAA AACAAAAGAA ACAGCAAAAA ACTAATCATT TCATACAAAA TGAAGAAAAA 5220 CAGTTAAGAA AACTACTCGG ATTAGATGTA GAAATTAAAC TATCTAAAAA AGACAGTGGA 5280 AAAATCATTA TTTCTTTTTC AAATCAAGAA GAATATAGTA GAATTATCAA CAGCCTGAAA 5340 TAAGGCTGTT CTTTATTTT TTTATCTCAC AAGGTTATCC ACTATGTTTT TCGATAAAAA 5400 GCTTAATAAA TCAATAATTT CTTCTTTTAT CCCCAACCTG TGGATAAAGT TTGGTAACAT 5460 TGTGGATTAT TTTTCACAGC TTGTGGAAAA TTCTTGCTAT CTATGGTAAA ATATCTCTAG 5520 TATTAAACTT TTAAATAGTA AAGGAGGAGA AAGGATTGAA AGAAAAACAA TTTTGGAATC 5580 GTATATTAGA ATTTGCACAA GAAAGACTGA CTCGATCCAT GTATGATTTC TATGCTATTC 5640 AAGCTGAACT CATCAAGGTA GAGGAAAATG TTGCCACTAT ATTTCTACCT CGCTCTGAAA 5700 TGGAAATGGT CTGGGAAAAA CAACTAAAAG ATATTATTGT AGTAGCTGGT TTTGAAATTT 5760

ATGACGCTCA AAMAACTICCO CACTATATATATATATATATATATATATATATATATATA	
ATGACGCTGA AATAACTCCC CACTATATTT TCACCAAACC TCAAGATACG ACTAGCTCAC	5820
AAGTTGAAGA AGCTACAAAT TTAACTCTTT ATAACTATAG TCCAAAGTTA GTATCTATTC	5880
CTTATTCAGA TACGGGATTA AAAGAAAAGT ATACCTTTGA TAACTTTATT CAAGGGGATG	5940
GAAATGTTTG GGCTGTATCA GCCGCTTTAG CTGTCTCTGA AGATTTGGCT CTGACCTATA	6000
ACCCTCTTTT TATCTATGGA GGACCAGGCC TTGGTAAGAC TCACTTATTA AACGCTATTG	6060
GAAATGAAAT TCTAAAAAAT ATTCCTAATG CGCGTGTTAA ATATATCCCT GCCGAAAGCT	6120
TTATTAATGA CTTTCTTGAT CACCTAAGAC TTGGGGAAAT GGAAAAGTTT AAAAAGACCT	6180
ATCGTAGTCT TGATCTTTG TTAATCGATG ATATCCAGTC ACTCAGCGGA AAAAAAGTCG	6240
CAACTCAGGA AGAATTTTTC AATACCTTTA ACGCCCTTCA TGACAAGCAA AAACAGATTG	6300
TCCTAACGAG TGATCGTAGT CCAAAACATC TAGAAGGGCT CGAGGAGAG CTTGTCACGC	
GTTTTAGTTG GGGATTGACA CAAACTATCA CCCCCCTGA CTTTGAAACA CGTATTGCCA	6360
TTTTACAAAG TAAGACGGAA CATTTAGGCT ACAATTTCCA AAGTGATACT CTAGAATACC	6420
TAGCTGGGCA ATTTGATTCA AATGTTCGAG ATCTTGAGGG AGCCATCAAC GACATCACTT	6480
TAATTGCCAG AGTAAAAAA ATCAAGGATA TCACTATTGA TATTGCTGCA GAAGCCATTA	6540
GAGCCCGCAA ACAAGATGTT AGCCAAATGC TCGTCATCCC AATTGATAAA ATCCAAACTG	6600
	6660
AAGTTGGTAA CTTTTATGGT GTTAGTATCA AAGAAATGAA GGGAAGTAGA CGCCTTCAAA	6720
ATATTGTTTT GGCCCGTCAA GTAGCCATGT ATTTATCTAG AGAACTAACA GATAATAGTC	6780
TTCCAAAAAT TGGGAAGGAA TTTGGGGGAA AAGATCATAC CACAGTCATT CATGCCCATG	6840
CCAAAATAAA ATCTTTGATT GATCAAGACG ATAATTTACG TTTAGAAATT GAATCAATCA	6900
AAAAGAAAAT CAAATAATTT GTGGATAACT TTTAGTTTTT TATCTTTTTT ATCCACATTT	6960
TTTAAACAAG CTAAAAAACT TGATATGACT TGTTTAAAGG CTGTTTTCCA CAGATTTCAC	7020
AGACTCTATT ATTACTATTA TCTTTCTAAT ACTAAAAATA AATAAAGGAG AATCCATGAT	7080
TCATTTTCA ATTAATAAAA ATTTATTTCT ACAAGCATTA AATACTACTA AGAGAGCTAT	7140
TAGTTCTAAA AATGCCATTC CTATTTTATC AACAGTAAAA ATTGACGTGA CCAATGAAGG	7200
TATTACTTTA ATTGGTTCAA ATGGTCAAAT TTCAATTGAA AATTTTATTT CTCAAAAAA	7260
TGAAGATGCT GGTTTGTTAA TTACTTCTTT AGGTTCGATC CTTCTTGAAG CTTCTTTCTT.	7320
TATCAATGTA GTATCTAGTT TACCTGATGT AACTCTTGAT TTTAAAGAAA TTGAACAAAA	7380
PCAAATTGTT TTAACCAGTG GCAAATCAGA AATTACCCTA AAAGGAAAAG ATAGCGAACA	7440
ATATCCACGA ATCCAAGAAA TTTCAGCAAG CACTCCTTTA ATACTTGAAA CAAAATTACT	7500

				262			
CAAG	AAAATT	ATTAATGAAA	CAGCCTTTGC	TGCAAGTACA	CAAGAGAGTC	GTCCGATTTT	7560
AACA	GGTGTC	CACTTCGTAT	TGAGTCAACA	CAAAGAGTTA	AAAACAGTTG	CAACAGACTC	7620
TCAT	CGCCTA	AGCCAGAAAA	AATTGACTCT	TGAAAAAAT	AGTGATGATT	TTGATGTCGT	7680
AATT	CCTAGC	CGTTCTCTAC	GCGAATTTTC	AGCGGTATTT	ACAGATGATA	TCGAAACTGT	7740
AGAG	ATTTTC	TTTGCCAATA	ACCAAATCCT	CTTTAGAAGC	GAAAATATTA	GCTTCTATAC	7800
TCGT	CTCCTA	GAAGGAAACT	ATCCTGATAC	AGATCGCTTG	ATTCCAACAG	ACTTTAACAC	7860
TACT.	ATTACT	TTTAATGTGG	TAAACTTACG	CCAGTCAATG	GAGCGTGCCC	GTCTTTTATC	7920
AAGT	GCGACT	CAAAATGGTA	CTGTGAAACT	TGAAATTAAG	GATGGGGTTG	TTAGCGCCCA	7980
TGTT	CACTCT	CCAGAAGTTG	GTAAAGTAAA	CGAAGAAATC	GATACTGATC	AGGTTACTGG	8040
TGAA	GATTTG	ACCATTAGTT	TCAACCCAAC	TTACTTGATT	GATTCTCTTA	AAGCTTTAAA	8100
TAGC	GAAAAG	GTGACTATTA	GCTTTATCTC	AGCTGTTCGT	CCATTTACTC	TTGTGCCAGC	8160
AGAT	ACTGAC	GAAGACTTCA	TGCAGCTCAT	TACACCAGTT	CGTACAAATT	AAGTGAAAGA	8220
GGTT	GAGCCT	GGCTCGCCTC	TTTTATGATA	TAATCGAAAA	AGAAAAGGAG	AGTAGTATGT	8280
ATCA	AGTTGG	AAATTTTGTT	GAGATGAAAA	AATCACACGC	TTGTACAATC	AAGTCGACTG	8340
GTAA	AAAGGC	TAATCGTTGG	GAAATTACAC	GTGTAGGAGC	AGATATCAAA	АТААААТСТА	8400
GTAA'	TGTGA	GCATGTTGTC	ATGATGGGGC	GATATGATTT	TGAGCGAAAA	АТСААТАААА	8460
TTAT?	FGACTG	AGAACCCTTA	GTTAGAGGGT	TAGCACTTTA	TCCCTTTTTG	TGTTATAATA	8520
TTAGO	GATTG	AAATGAAAAC	GGAGAATGAG	AAATATGGCT	TTGACAGCAG	GTATCGTTGG	8580
TTTGO	CAAAC	GTTGGTAAAT	CAACACTATT	TAATGCAATT	ACAAAAGCAG	GAGCAGAGGC	8640
AGCAZ	VACTAC	CCATTTGCGA	CGATTGATCC	AAATGTTGGA	ATGGTGGAAG	TTCCAGATGA	8700
ACGCC	TACAA	AAACTAACTG	AAATGATAAC	TCCTAAAAAG	ACAGTTCCCA	CAACATTTGA	8760
ATTT	CAGAT	ATTGCAGGGA	TTGTAAAAGG	AGCTTCAAAA	GGAGAGGGGC	TAGGGAATAA	8820
ATTCI	TGGCC	AATATTCGTG	AAGTAGATGC	GATTGTTCAC	GTAGTTCGTG	CTTTTGATGA	8880
TGAAA	ATGTA	ATGCGCGAGC	AAGGACGTGA	AGACGCCTTT	GTAGATCCAC	TTGCAGATAT	8940
TGATA	CCATT	AATCTGGAAT	TGATTCTTGC	TGACTTAGAA	TCAGTGAACA	AACGATATGC	9000
GCGTG	TAGAA	AAGATGGCAC	GTACGCAAAA	AGATAAAGAA	TCAGTAGCAG	AATTCAATGT	9060
TCTTC	:AAAAG	ATTAAACCAG	TCCTAGAAGA	CGGGAAATCA	GCTCGTACCA	TTGAATTTAC	9120
AGATG	AGGAA	CAAAAGGTTG	TCAAAGGTCT	TTTCCTTTTG	ACGACTAAAC	CAGTTCTTTA	9180
TGTAG	СТААТ	GTGGACGAGG	ATGTGGTTTC	AGAACCTGAC	TCTATCGACT	ATGTCAAACA	9240
ААТТС	GTGAA	TTTGCAGCGA	CAGAAAATGC	TGAAGTAGTC	GTTATTTCTG	CGCGTGCTGA	9300

GGAAGAAATT	TCTGAATTGA	ATGATGAAGA	TAAAAAAGAG	TTTCTTGAAG	CCATTGGTTT	9360
GACAGAATCA	GGTGTAGATA	AGTTGACGCG	TGCAGCTTAC	CACTTGCTTG	GATTGGGAAC	9420
TTACTTCACA	GCTGGTGAAA	AAGAAGTTCG	CGCTTGGACT	TTCAAACGTG	GTATGAAGGC	9480
TCCTCAAGCA	GCTGGTATTA	TCCACTCAGA	CTTTGAAAAA	GGCTTTATTC	GTGCAGTAAC	9540
CATGTCATAT	GAAGATCTAG	TGAAATACGG	ATCTGAAAAG	GCCGTAAAAG	AAGCTGGACG	9600
CTTGCGTGAA	GAAGGAAAAG	AATATATCGT	TCAAGATGGC	GATATCATGG	AATTCCGCTT	9660
TAATGTCTAA	AATTAATAA	ATGGTGTCAA	TTAGGTTGGA	AAAAAATTCC	AACCCTTTTG	9720
GCTTTTGAAA	GGAAAAATAA	ATGACCAAAT	TACTTGTAGG	CTTGGGAAAT	CCAGGGGATA	9780
AATATTTTGA	AACAAAACAC	AATGTTGGTT	TTATGTTGAT	TGATCAACTA	GCGAAGAAAC	9840
AGAATGTCAC	TTTTACACAC	GATAAGATAT	TTCAAGCTGA	CCTAGCATCC	ТТТТТССТАА	9900
ATGGAGAAAA	AATTTATCTG	GTTAAACCAA	CGACCTTTAT	GAATGAAAGT	GGAAAAGCAG	9960
TTCATGCTTT	ATTAACTTAC	TATGGTTTGG	ATATTGACGA	TTTACTTATC	ATTTACGATG	10020
ATCTTGACAT	GGAAGTTGGG	AAAATTCGTT	TAAGAGCAAA	AGGCTCAGCA	GGTGGTCATA	10080
ATGGTATCAA	GTCTATTATT	CAACATATAG	GAACTCAGGT	CTTTAACCGT	GTTAAGATTG	10140
GAATTGGAAG	ACCTAAAAAT	GGTATGTCAG	TTGTTCATCA	TGTTTTGAGT	AAGTTTGACA	10200
GGGATGATTA	TATCGGTATT	TTACAGTCTG	TTGACAAAGT	TGACGATTCT	GTAAACTACT	10260
ATTTACAAGA	GAAAAATTTT	GAGAAAACAA	TGCAGAGGTA	TAACGGATAA	ATGGTGACCT	10320
TATTAGATTT	ATTCTCAGAA	AATGATCAGA	TTAAAAAATG	GCATCAAAAT	TTAACAGATA	10380
AGAAAAGACA	ACTAATACTT	GGTTTATCAA	CATCTACTAA	GGCTCTTGCA	ATTGCAAGCA	10440
GTTTAGAAAA	AGAAGATAGG	ATTGTGTTAT	TGACGTCAAC	TTATGGAGAA	GCAGAAGGAC	10500
TTGTTAGTGA	TCTTATTTCT	ATCTTGGGTG	AGGAACTCGT	CTATCCATTT	TTGGTAGATG	10560
ATGCTCCTAT	GGTGGAGTTT	TTGATGTCTT	CACAGGAAAA	AATTATTTCA	CGGGTTGAAG	10620
CCTTGCGTTT	TTTGACTGAT	TCATCTAAGA	AAGGGATTTT	AGTTTGTAAT	ATCGCAGCAA	10680
GTCGATTGAT	TTTACCGTCT	CCCAATGCAT	TCAAAGATAG	TATTGTAAAA	ATCTCAGTTG	10740
GTGAAGAATA	TGATCAACAC	GCGTTTATCC	ATCAGTTAAA	GGAAAATGGC	TATCGAAAAG	10800
TTACTCAAGT	ACAAACTCAG	GGCGAATTTA	GTCTTCGAGG	AGATATTTTA	GATATTTTTG ⁻	10860
AAATATCCCA	GTTAGAACCT	TGTCGAATTG	AGTTTTTTGG	TGATGAAATT	GATGGTATCA	10920
GGTCATTTGA	AGTAGAAACA	CAATTATCGA	AAGAAAATAA	GACAGAACTC	ACTATCTTTC	10980
CAGCTAGTGA	TATGCTTTTG	AGAGAAAAGG	ATTATCAACG	AGGACAGTCA	GCTTTAGAAA	11040

			264			
AACAAATTT	С АААААСТТТА	TCACCTATTT	TGAAATCATA	CCTAGAAGAA	ATTCTTTCAA	11100
GTTTTCACC	A AAAACAAAGT	CATGCAGACT	CTCGGAAGTT	TTTATCTTG	TGCTATGATA	11160
AGACATGGA	C TGTCTTTGAT	TATATTGAAA	AAGATACTCC	AATATTCTTT	GATGATTATC	11220
AAAAATTGA	r gaatcagtat	GAAGTCTTTG	AAAGAGACTT	AGCGCAGTAC	TTTACAGAAG	11280
AATTACAGA	A TAGTAAAGCA	ттттстсата	TGCAGTATTT	TTCTGATATT	GAACAAATCT	11340
ATAAAAAAC	A AAGTCCAGTG	ACCTTTTTCT	СТААТСТТСА	AAAGGGTTTA	GGAAATCTCA	11400
AATTTGACA	A AATTTATCAA	ттсаатсаат	ATCCTATGCA	GGAATTTTTC	AATCAGTTTT	11460
СТТТТСТАА	A AGAAGAAATT	GAACGATATA	AAAAAATGGA	TTACACCATT	ATTCTGCAGT	11520
CTAGCAATT	CAATGGGAAGT	AAAACATTGG	AGGATATGTT	AGAGGAATAT	CAGATTAAAT	11580
TGGATTCTAC	G AGATAAGACA	AATATCTGTA	AAGAATCTGT	AAACTTAATA	GAGGGTAATC	11640
TCAGACATGO	TTTTCATTT	GTAGATGAAA	AGATTTTATT	GATAACTGAA	CATGAGATTT	11700
TTCAAAAGA	A ATTAAAGCGT	CGTTTTCGAA	GACAACATGT	TTCAAATGCA	GAGAGATTAA	11760
AAGATTACAA	A TGAACTTGAA	AAAGGGGACT	ATGTTGTCCA	TCATATCCAT	GGGATTGGTC	11820
AATATCTAGO	AATTGAAACC	ATTGAAATCA	AGGGAATTCA	TCGCGATTAT	GTCAGTGTCC	11880
AATACCAAA	TGGTGATCAA	ATTTCTATCC	CCGTGGAACA	GATTCATCTA	CTGTCCAAAT	11940
ATATTTCAAC	G TGATGGTAAA	GCTCCAAAAC	TCAATAAATT	AAATGACGGT	САТТТТАААА	12000
AGGCCAAGC	AAAGGTTAAG	AACCAGGTAG	AGGATATAGC	TGATGATTTA	ATCAAACTCT	12060
ACTCTGAACG	TAGTCAGTTG	AAGGGTTTTG	CTTTCTCAGC	TGATGATGAT	GATCAAGATG	12120
CCTTTGATGA	TGCTTTCCCT	TATGTTGAAA	CGGATGATCA	ACTTCGTAGT	ATTGAGGAAA	12180
TCAAGAGGGA	TATGCAGGCT	TCTCAGCCAA	TGGATCGACT	TTTAGTTGGG	GATGTTGGTT	12240
TTGGAAAGAC	TGAAGTTGCT	ATGCGTGCAG	CCTTTAAAGC	AGTCAATGAT	CACAAACAGG	12300
TTGTCATTCT	AGTTCCGACG	ACGGTTTTAG	CGCAACAGCA	CTATACGAAT	TTTAAGGAAC	12360
GATTCCAAAA	TTTTGCAGTT	AATATTGATG	TGTTGAGTCG	CTTTAGAAGT	AAAAAAGAGC	12420
AGACTGCAAC	ACTTGAAAAA	TTGAAAAACG	GTCAAGTCGA	TATTTTGATT	GGAACACATC	12480
GTGTTTTGTC	AAAAGATGTT	GTGTTTGCTG	ATTTGGGCTT	GATGATTATT	GATGAGGAAC	12540
AGCGATTTGG	TGTCAAGCAT	AAGGAAACTT	TGAAAGAACT	GAAGAAACAA	GTGGATGTCC	12600
TAACCTTGAC	CGCTACGCCA	ATCCCTCGTA	CCCTCCATAT	GTCTATGCTG	GGAATCAGAG	12660
ATTTATCTGT	TATTGAAACT	CCGCCGACTA	ATCGCTATCC	TGTTCAGACC	TATGTTTTGG	12720
aaaagaatga	TAGTGTCATT	CGTGATGCTG	TCTTGCGTGA	AATGGAGCGT	GGAGGTCAAG	12780
тттаттатст	TTACAACAAA	GTTGACACAA	TTGTTCAGAA	GGTTTCAGAA	TTACAGGAGT	12840

TGATTCCGGA	GGCTTCGATT	GGATATGTTC	ATGGTCGAAT	GAGTGAAGTC	CAGTTGGAAA	12900
ATACTCTATT	AGACTTTATT	GAGGGACAAT	ACGATATCTT	GGTGACGACT	ACTATTATTG	12960
AGACAGGGGT	GGACATTCCA	AATGCTAATA	CTTTATTTAT	TGAAAATGCG	GACCATATGG	13020
GCTTGTCAAC	CTTATATCAG	TTAAGAGGAA	GAGTCGGTCG	TAGTAATCGT	ATTGCTTATG	13080
CTTATCTCAT	GTATCGTCCA	GAAAAATCAA	TCAGTGAAGT	CTCTGAAAAG	AGATTAGAAG	13140
CGATTAAAGG	ATTTACAGAA	TTGGGCTCTG	GCTTTAAGAT	TGCAATGCGA	GATCTTTCGA	13200
TTCGTGGAGC	AGGAAATCTT	TTAGGAAAAT	CCCAGTCTGG	TTTCATTGAT	TCTGTTGGTT	13260
TTGAATTGTA	TTCGCAGTTA	TTAGAGGAAG	CTATTGCTAA	ACGAAACGGT	AATGCTAACG	13320
CTAACACAAG	AACCAAAGGG	AATGCTGAGT	TGATTTTGCA	AATTGATGCC	TATCTTCCTG	13380
АТАСТТАТАТ	TTCTGATCAA	CGACATAAGA	TTGAAATTTA	CAAGAAAATT	CGTCAAATTG	13440
ACAACCGTGT	CAATTATGAA	GAGTTACAAG	AGGAGTTGAT	AGACCGTTTT	GGAGAATACC	13500
CAGATGTAGT	AGCCTATCTG	TTAGAGATTG	GTTTGGTCAA	ATCATACTTG	GACAAGGTCT	13560
TTGTTCAACG	TGTGGAAAGA	AAAGATAATA	AAATTACAAT	TCANTTTGAA	AAAGTCACTC	13620
AACGACTGTT	TTTAGCTCAA	GATTATTTTA	AAGCTTTATC	CGTAACGAAC	TTAAAAGCAG	13680
GCATCGCTGA	GAATAAGGGA	TTAATGGAGC	TTGTATTTGA	TGTCCAAAAT	AAGAAAGATT	13740
ATGAAATTTT	AGAAGGTTTG	CTGATTTTTG	GAGAAAGTTT	ATTAGAGATA	AAAGAGTCTA	13800
AGGAAGAAAA	TTCCATTTGA	TATTTTTCTT	СТАТААААТА	GATAAAAATG	GTACAATAAT	13860
AAATTGAGGT	AATAAGGATG	AGATTAGATA	AAATTTTAAA	AGTATCGCGA	ATTATCAAGC	13920
GTCGTACAGT	CGCAAAGGAA	GTAGCAGATA	AAGGTAGAAT	CAAGGTTAAT	GGAATCTTGG	13980
CCAAAAGTTC	AACGGACTTG	AAAGTTAATG	ACCAAGTTGA	AATTCGCTTT	GGCAATAAGT	14040
TGCTGCTTGT	AAAAGTACTA	GAGATGAAAG	ATAGTACAAA	AAAAGAAGAT	GCAGCAGGAA	14100
TGTATGAAAT	TATCAGTGAA	ACACGGGTAG	AAGAAAATGT	СТАААААТАТ	TGTACAATTG	14160
AATAATTCTT	TTATTCAAAA	TGAATACCAA	CGTCGTCGCT	ACCTGATGAA	AGAACGACAA	14220
AAACGGAATC	GTTTTATGGG	AGGGGTATTG	ATTTTGATTA	TGCTATTATT	TATCTTGCCA	14280
ACTTTTAATT	TAGCGCAGAG	TTATCAGCAA	TTACTCCAAA	GACGTCAGCA	ATTAGCAGAC	14340
TTGCAAACTC	AGTATCAAAC	TTTGAGTGAT	GAAAAGGATA	AGGAGACAGC	ATTTGCTACC	14400
AAGTTGAAAG	ATGAAGATTA	TGCTGCTAAA	TATACACGAG	CGAAGTACTA	TTATTCTAAG	14460
TCGAGGGAAA	AAGTTTATAC	GATTCCTGAC	TTGCTTCAAA	GGTGATAAAA	TGGAAAATTT	14520
ATTAGACGTA	ATAGAGCAAT	TTTTGAGTTT	GTCAGATGAA	AAGCTGGAAG	AATTGGCTGA	14580

265 14640 TTATTTTGTT GCTACCAAGT TTTTTGACCA TTTCAAAAGT CGTTAGCACA GAAAAAGAAG 14700 TCGTCTATAC TTCGAAAGAA ATTTATTACC TTTCACAATC TGACTTTGGT ATTTATTTTA 14760 GAGAAAAATT AAGTTCTCCC ATGGTTTATG GAGAGGTTCC TGTTTATGCG AATGAAGATT 14820 TAGTAGTGGA ATCTGGGAAA TTGACTCCCA AAACAAGTTT TCAAATAACC GAGTGGCGCT 14880 TAAATAAACA AGGAATTCCA GTATTTAAGC TATCAAATCA TCAATTTATA GCTGCGGACA 14940 AACGATTTT ATATGATCAA TCAGAGGTAA CTCCAACAAT AAAAAAAGTA TGGTTAGAAT 15000 CTGACTTTAA ACTGTACAAT AGTCCTTATG ATTTAAAAGA AGTGAAATCA TCCTTATCAG 15060 CTTATTCGCA AGTATCAATC GACAAGACCA TGTTTGTAGA AGGAAGAGAA TTTCTACATA 15120 TTGATCAGGC TGGATGGGTA GCTAAAGAAT CAACTTCTGA AGAAGATAAT CGGATGAGTA 15180 AAGTTCAAGA AATGTTATCT GAAAAATATC AGAAAGATTC TTTCTCTATT TATGTTAAGC 15240 AACTGACTAC TGGAAAAGAA GCTGGTATCA ATCAAGATGA AAAGATGTAT GCAGCCAGCG 15300 TTTTGAAACT CTCTTATCTC TATTATACGC AAGAAAAAT AAATGAGGGT CTTTATCAGT 15360 TAGATACGAC TGTAAAATAC GTATCTGCAG TCAATGATTT TCCAGGTTCT TATAAACCAG 15420 AGGGAAGTGG TAGTCTTCCT AAAAAAGAAG ATAATAAAGA ATATTCTTTA AAGGATTTAA 15480 TTACGAAAGT ATCAAAAGAA TCTGATAATG TAGCTCATAA TCTATTGGGA TATTACATTT 15540 CAAACCAATC TGATGCCACA TTCAAATCCA AGATGTCTGC CATTATGGGA GATGATTGGG 15600 ATCCAAAAGA AAAATTGATT TCTTCTAAGA TGGCCGGGAA GTTTATGGAA GCTATTTATA 15660 ATCAAAATGG ATTTGTGCTA GAGTCTTTGA CTAAAACAGA TTTTGATAGT CAGCGAATTG 15720 CCAAAGGTGT TTCTGTTAAA GTAGCTCATA AAATTGGAGA TGCGGATGAA TTTAAGCATG 15780 ATACGGGTGT TGTCTATGCA GATTCTCCAT TTATTCTTTC TATTTTCACT AAGAATTCTG 15840 ATTATGATAC GATTTCTAAG ATAGCCAAGG ATGTTTATGA GGTTCTAAAA TGAGGGAACC 15900 AGATTTTTTA AATCATTTTC TCAAGAAGGG ATATTTCAAA AAGCATGCTA AGGCGGTTCT 15960 AGCTCTTTCT GGTGGATTAG ATTCCATGTT TCTATTTAAG GTATTGTCTA CTTATCAAAA 16020 AGAGTTAGAG ATTGAATTGA TTCTAGCTCA TGTGAATCAT AAGCAGAGAA TTGAATCAGA 16080 TTGGGAAGAA AAGGAATTAA GGAAGTTGGC TGCTGAAGCA GAGCTTCCTA TTTATATCAG 16140 CAATTTTCA GGAGAATTT CAGAAGCGCG TGCACGAAAT TTTCGTTATG ATTTTTTCA 16200 AGAGGTCATG AAAAAGACAG GTGCGACAGC TTTAGTCACT GCCCACCATG CTGATGATCA 16260 GGTGGAAACG ATTTTTATGC GCTTGATTCG AGGAACTCGC TTGCGCTATC TATCAGGAAT 16320 TAAGGAGAAG CAAGTAGTCG GAGAGATAGA AATCATTCGT CCCTTCTTGC ATTTTCAGAA 16380

AAAAGACTTT	CCATCAATTT	TTCACTTTGA	AGATACATCA	AATCAGGAGA	ATCATTATTT	16440
TCGAAATCGT	ATTCGAAATT	CTTACTTACC	AGAATTGGAA	AAAGAAAATC	CTCGATTTAG	16500
GGATGCAATC	TTAGGCATTG	GCAATGAAAT	TTTAGATTAT	GATTTGGCAA	TAGCTGAATT	16560
ATCTAACAAT	ATTAATGTGG	AAGATTTACA	GCAGTTATTT	TCTTACTCTG	AGTCTACACA	16620
AAGAGTTTTA	CTTCAAACTT	ATCTGAATCG	TTTTCCAGAT	TTGAATCTTA	CAAAAGCTCA	16680
GTTTGCTGAA	GTTCAGCAGA	TTTTAAAATC	TAAAAGCCAG	TATCGTCATC	CGATTAAAAA	16740
TGGCTATGAA	TTGATAAAAG	AGTACCAACA	GTTTCAGATT	TGTAAAATCA	GTCCGCAGgC	16800
TGATGAAAAG	GAAGATGAAC	TTGTGTTACA	CTATCAAAAT	CAGGTAGCTT	ATCAAGGATA	16860
TTTATTTTCT	TTTGGACTTC	CATTAGAAGG	TGAATTAATT	CAACAAATAC	CTGTTTCACG	16920
TGAAACATCC	ATACACATTC	GTCATCGAAA	AACAGGAGAT	GTTTTGATTA	AAAATGGGCA	16980
TAGAAAAAA	CTCAGACGTT	TATTTATTGA	TTTGAAAATC	CCTATGGAAA	AGAGAAACTC	17040
TGCTCTTATT	ATTGAGCAAT	TTGGTGAAAT	TGTCTCAATT	TTGGGAATTG	CGACCAATAA	17100
TTTGAGTAAA	AAAACGAAAA	ATGATATAAT	GAACACTGTA	CTTTATATAG	AAAAAATAGA	17160
TAGGTAAAAA	ATGTTAGAAA	ACGATATTAA	AAAAGTCCTC	GTTTCACACG	ATGAAATTAC	17220
AGAAGCAGCT	AAAAAACTAG	GTGCTCAATT	AACTAAAGAC	TATGCAGGAA	AAAATCCAAT	17280
CTTAGTTGGG	ATTTTAAAAG	GATCTATTCC	TTTTATGGCT	GAATTGGTCA	AACATATTGA	17340
TACACATATT	GAAATGGACT	TCATGATGGT	TTCTAGCTAC	CATGGTGGAA	CAGCAAGTAG	17400
TGGTGTTATC	AATATTAAAC	AAGATGTGAC	TCAAGATATC	AAAGGAAGAC	ATGTTCTATT	17460
TGTAGAAGAT	ATCATTGATA	CAGGTCAAAC	TTTGAAGAAT	TTGCGAGATA	TGTTTAAAGA	17520
AAGAGAAGCA	GCTTCTGTTA	AAATTGCAAC	CTTGTTGGAT	AAACCAGAAG	GACGTGTTGT	17580
AGAAATTGAG	GCAGACTATA	CTTGCTTTAC	TATCCCAAAT	GAGTTTGTAG	TAGGTTATGG	17640
TTTAGACTAC	AAAGAAAATT	ATCGTAATCT	TCCTTATATT	GGAGTATTGA	AAGAGGAAGT	17700
GTATTCAAAT	TAGAAAGAAT	AATCTTTAAT	GAAAAAACAA	AATAATGGTT	TAATTAAAA	17760
TCCTTTTCTA	TGGTTATTAT	TTATCTTTT	CCTTGTGACA	GGATTCCAGT	ATTTCTATTC	17820
TGGGAATAAC	TCAGGAGGAA	GTCAGCAAAT	CAACTATACT	GAGTTGGTAC	AAGAAATTAC	17880
CGATGGTAAT	GTAAAAGAAT	TAACTTACCA	ACCAAATGGT	AGTGTTATCG	AAGTTTCTGG ·	17940
TGTCTATAAA	ААТССТАААА	CAAGTAAAGA	AGAAACAGGT	ATTCAGTTTT	TCACGCCATC	18000
TGTTACTAAG	GTAGAGAAAT	TTACCAGCAC	TATTCTTCCT	GCAGATACTA	CCGTATCAGA	18060
ATTGCAAAAA	CTTGCTACTG	ACCATAAAGC	AGAAGTAACT	GTTAAGCATG	AAAGTTCAAG	18120

268 TGGTATATGG ATTAATCTAC TCGTATCCAT TGTGCCATTT GGAATTCTAT TCTTCTTCCT 18180 ATTCTCTATG ATGGGAAATA TGGGAGGAGG CAATGGCCGT AATCCAATGA GTTTTGGACG 18240 TAGTAAGGCT AAAGCAGCAA ATAAAGAAGA TATTAAAGTA AGATTTTCAG ATGTTGCTGG 18300 AGCTGAGGAA GAAAAACAAG AACTAGTTGA AGTTGTTGAG TTCTTAAAAG ATCCAAAACG 18360 ATTCACAAAA CTTGGAGCCC GTATTCCAGC AGGTGTTCTT TTGGAGGGAC CTCCGGGGAC 18420 AGGTAAAACT TTGCTTGCTA AGGCAGTCGC TGGAGAAGCA GGTGTTCCAT TCTTTAGTAT 18480 CTCAGGTTCT GACTTTGTAG AAATGTTTGT CGGAGTTGGA GCTAGTCGTG TTCGCTCTCT 18540 TTTTGAGGAT GCCAAAAAAG CAGCACCAGC TATCATCTTT ATCGATGAAA TTGATGCTGT 18600 TGGACGTCAA CGTGGAGTCG GTCTCGGCGG AGGTAATGAC GAACGTGAAC AAACCTTGAA 18660 CCAACTTTTG ATTGAGATGG ATGGTTTTGA GGGAAATGAA GGGATTATCG TCATCGCTGC 18720 GACAAACCGT TCAGATGTAC TTGACCCTGC CCTTTTGCGT CCAGGACGTT TTGATAGAAA 18780 AGTATTGGTT GGTCGTCCTG ATGTTAAAGG TCGTGAAGCA ATCTTGAAAG TTCACGCTAA 18840 GAATAAGCCT TTAGCAGAAG ATGTTGATTT GAAATTAGTG GCTCAACAAA CTCCAGGCTT 18900 TGTTGGTGCT GATTTAGAGA ATGTCTTGAA TGAAGCAGCT TTAGTTGCTG CTCGTCGCAA 18960 TAAATCGATA ATTGATGCTT CAGATATTGA TGAAGCAGAA GATAGAGTTA TTGCTGGACC 19020 TTCTAAGAAA GATAAGACAG TTTCACAAAA AGAACGAGAA TTGGTTGCTT ACCATGAGGC 19080 AGGACATACC ATTGTTGGTC TAGTCTTGTC GAATGCTCGC GTTGTCCATA AGGTTACAAT 19140 TGTACCACGC GGCCGTGCAG GCGGATACAT GATTGCACTT CCTAAAGAGG ATCAAATGCT 19200 TCTATCTAAA GAAGATATGA AAGAGCAATT GGCTGGCTTA ATGGGTGGAC GTGTAGCTGA 19260 AGAAATTATC TTTAATGTCC AAACCACAGG AGCTTCAAAC GACTTTGAAC AAGCGACACA 19320 AATGGCACGT GCAATGGTTA CAGAGTACGG TATGAGTGAA AAACTTGGCC CAGTACAATA 19380 TGAAGGAAAC CATGCTATGC TTGGTGCACA GAGTCCTCAA AAATCAATTT CAGAACAAAC 19440 AGCTTATGAA ATTGATGAAG AGGTTCGTTC ATTATTAAAT GAGGCACGAA ATAAAGCTGC 19500 TGAAATTATT CAGTCAAATC GTGAAACTCA CAAGTTAATT GCAGAAGCAT TATTGAAATA 19560 CGAAACATTG GATAGTACAC AAATTAAAGC TCTTTACGAA ACAGGAAAGA TGCCTGAAGC 19620 AGTAGAAGAG GAATCTCATG CACTATCCTA TGATGAAGTA AAGTCAAAAA TGAATGACGA 19680 AAAATAACCC TGAGAGAGGC TGGAGCCTCT CTTTTTTGTG CAGTTTAGGA GCTAAAGGGA 19740 ACAGAATGGA GAAAATGGAA CAAATGTGTT TTCTAATCTG TTAGACTGTA TCTAGAAAGG 19800 GGAAAATTAT GATTAAAGAA TTGTATGAAG AAGTCCAAGG GACTGTGTAT AAGTGTAGAA 19860

ATGAATATTA CCTTCATTTA TGGGAATTGT CGGATTGGGA GCAAGAAGGC ATGCTCTGCT

TACATGAATT GATTAGTAGA GAAGAAGGAC TGGTAGACGA TATTCCACGT TTAAGGA	AAT 19980
ATTTCAAGAC CAAGTTTCGA AATCGAATTT TAGACTATAT CCGTAAACAG GAAAGTC	AGA 20040
AGCGTAGATA CGATAAAGAA CCCTATGAAG AAGTGGGTGA GATCAGTCAT CGTATAA	GTG 20100
AGGGGGGTCT CTGGCTAGAT GATTATTATC TCTTTCATGA AACACTAAGA GATTATA	GAA 20160
ACAAACAAAG TAAAGAGAAA CAAGAAGAAC TAGAACGCGT CTTAAGCAAT GAACGAT	TTC 20220
GAGGGCGTCA AAGAGTATTA AGAGACTTAC GCATTGTGTT TAAGGAGTTT ACTATCC	GTA 20280
CCCACTAGTA AGTCATGCAA AAAAATGAA AAAAATTAGA AAAAGTAGTT GACAAAG	TTT 20340
GAAAAGGCTG TATAATAGTA AGAGTTGAAA ATAACAACTC AGGTCCGTTG GTCAAGG	GGT 20400
TAAGACACCG CCTTTTCACG GCGGTAACAC GGGTTCGAAT CCCGTACGGA CTATGGT	ATG 20460
TTGCGTCAGG ACCACTTGAT GAAAAAAGT TTAAAAAAAC TTAAAAAATCT TCAAAAA	AGT 20520
GTTGACAAGC GAAAGCAGTT GTGATATACT AATATAGTTG TCGCTTGAGA GAAGCAA	GTG 20580
ACAAAGACCT TTGAAAACTG AACAAGACGA ACCAATGTGC AGGGCGCTAC AACGTAA	GTT 20640
GTAGTACTGA ACAATGAAAA AAACAATAAA TCTGTCAGTG ACAGAAATGA GTAAGAA	CTC 20700
AAACTTTTTA ATGAGAGTTT GATCCTGGCT CAGGACGAAC GCTGGCGGCG TGCCTAA	TAC 20760
ATGCAAGTAG AACGCTGAAG GAGGAGCTTG CTTCTCTGGA TGAGTTGCGA ACGGGTGA	AGT 20820
AACGCGTAGG TAACCTGCCT GGTAGCGGGG GATAACTATT GGAAACGATA GCTAATAG	CCG 20880
CATAAGAGTA GATGTTGCAT GACATTTGCT TAAAAGGTGC ACTTGCATCA CTACCAGA	ATG 20940
GACCTGCGTT GTATTAGCTA GTTGGTGGGG TAACGGCTCA CCAAGGCGAC GATACATA	AGC 21000
CGACCTGAGA GGGTGATCGG CCACACTGGG ACTGAGACAC GGCCCAGACT CCTACGGC	GAG 21060
GCAGCAGTAG GGAATCTTCG GCAATGGACG GAAGTCTGAC CGAGCAACGC CGCGTGAC	STG 21120
AAGAAGGTTT TCGGATCGTA AAGCTCTGTT GTAAGAGAAG AACGAGTGTG AGAGTGGA	AA 21180
GTTCACACTG TGACGGTATC TTACCAGAAA GGGACGGCTA ACTACGTGCC AGCAGCCC	CCG 21240
GTAATACGTA GGTCCCGAGC GTTGTCCGGA TTTATTGGGC GTAAAGCGAG CGCAGGCC	GT 21300
TAGATAAGTC TGAAGTTAAA GGCTGTGGCT TAACCATA	21338

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6273 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

270 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TGTTTTTAAA GAGCCGTGTC TGGATAGACT TTCGGACGCA ACGCTCTATT AGATAATGA	A 60
CTGCCTATAC ACAAGATTTC TAACCTTAGT CGACATGAGC TGAAACCTCT TATTTGTTA	A 120
GTAGTTCACA AAATATTATA CACCTATTTT ATGAATAGTC AACTGTCTTT ACAGTAAAA	т 180
TTTAGAAAAT CATGAAAATT TTCTCTTTCT TTCCATTTTA AGTGACATTC AGTCATTCT	C 240
ACATCAAAAA AGCCCAGACG AAATTGTCTG AGCATTCTTT TATCTAGTCG TTTAAGGAA	G 300
TTGAGTTCAG TATGTTTAAA GTCTCTGTCC CATCATTTCT TCAACAAACC TTGTTCTTG	G 360
AGAAACTCCT TGGCTACTTG CTTTGCTGAC TTGCCTTCAA CACCGACTTG GTAGTTGAG	C 420
TGGCTCATCT GGCTTTCTGT AATCTTACCA GCCAATGTAT TAAGAACTCT TTCCAACTC	T 480
GGGTGTTTCT TGAGAAGAGC TTCTTTCATG AGTGGAGCCC CTTGATAAGG TGGGAAGAG	T 540
TGCTTGTCAT CTTCCAAGAC CTGTAAATCA TAACGCTCCA ATTCCGCATC AGTCGAATA	G 600
GCATCCGTGA TTTGAATATC CCCTGACTGA ATAGCCTGAT AGCGAAGGGC TGGCTCAATG	G 660
GTCGCTACAT TGAGATTGAG ACCATACATT GATTGCAAGC CCTTATTTCC ATCTTCACGG	G 720
TCGTTAAACT CGAGTGTAAA ACCTGCCTTC AACTGCCCTT CCACTTTTTT CAAGTCTGA	A 780
ATGGTCTTCA AGCCATATTC TTGAGCAATC TTTTTCGGAA CAGCTACAGC ATAGGTGTT	г 840
TGATAAGACA TGGGTTTGAG ATAGGCTAGA TGATCCTGCT TAGCAATGCC ATCACGCGCC	900
ACCTGATAAA CCTGTTCTGG TTCATGACTC ACCTTGGGTG ATGGTTGAAG CAAACTTTC	960
GTCACCGTAC CAGTAAATTC AGGATAGATG TCAATATCGC CTTTTTTCAG AGCTTCATAA	1020
AGGAAGCTTG TCTTCCCAAA ATTCGGTTTA ACAGTCGCAG TCATGCTGGT ATTTTCTTCA	1080
ATCAGCAACT TATACATATT GGCCAAAATT TCTGGTTCTG GACCTATTTT CCCAGCAATA	1140
ACCAAGTTTT CCTTCTCTT TTGAACCAAA AGAGCTGGAC TATAAGACAG ACCCAGTAAT	1200
AAAGCCACCA AGGCAAAACC TGAGAAAATC GTCCGTAATT TTGCTTTTTC CATCACTTTT	1260
AGTAGGAAGT TAAAGGCAAT GGCTAGCACT GCAGAAGAAA GTGCCCCAAT CAAAATCAAA	1320
CTGGCATTAT TACGGTCAAT TCCCAAAAGA ATAAAGGAAC CTAGTCCCCC TGCACCAATC	1380
AAGGCCGCCA AGGTTGCCGT ACCGATAATC AAAACAGCTG CCGTCCGAAT CCCAGACATC	1440
ATAACAGGCA TGGCGAGTGG AATTTCAAAT TTCTTGAGAC GTTCCCATCT GGTCATCCCA	1500
AAGGCAATCC CAGCCTCTTG CAGGTTCGGA TCAATTCCCT TCAGCCCAGT GATAGTATTT	1560
TGCAAAATAG GGAAAATCGC ATAAATCACT AGAGCTGTCA AAGCCGGCAA GGTCCCAATT	1620
CCCATCAAAG GGATAAAGAG CCCCAACAAG GCCAGAGACG GGATGGTCTG GAAAATACCT	1680
GCAATCTGCA AGACCCAGTC GGCCAGCTTC TCATGATAGC GAAGAAAAAC AGCCAAGGGA	1740

ATCGCAAGCA AAATAGCT	AG TAACAAGGTO	AAAAGCGACA	ACTGCAAATG	TTGAGATAGA	1800
GCTGTCAACC AATCACTA	AA ACGATCCTGA	AAAGTTGCAA	ТТАААТТАСТ	CATGAACACT	1860
ACCTCCAAAC AAGTCTGC	TA CAAAGTCTG1	TGCAGGCGCT	TTTAAAATTG	TCTCGGGATT	1920
CGCTACCTGG CGAATTTC	TC CATCCTGCA	GACAGCAATA	CGGTCCGCCA	ACTTCAAGGC	1980
TTCATCCGTA TCATGGGT	та сааааатсст	TGTCATCCCA	AACTCTTTAT	GCAATTCTTT	2040
TGTCAGAACC TGCAACTG	TT TTCTCGAAA1	AGCATCCAAG	GCCGAAAAGG	GTTCATCCAT	2100
GAGGAAAATC TTGGGCTG	AC CAATCATAGO	TCGGACAATA	CCGACCCGTT	GCTGTTCTCC	2160
ACCAGATAAT TCACTAGG	TA AGCGATGCCC	ATACTCGGCT	ACTGGTAAAC	CAACCTTAGC	2220
CAAAAGCTCT TCTGTTTT	CT TCGTAATTTC	TTCCTTGCTC	CACCCCTTCA	TTTCAGGAAT	2280
GAGAGCAATA TTTTCCGC	AA CTGTTAGATT	TGGAAAAAGA	GCAATAGCCT	GTAAAACATA	2340
ACCAGTAGAA AGACGAAG	TT CACGCTCATC	ATAGTCTTTG	ATGCGCTTCC	CATCCATATA	2400
AATATTTCCA TCAGTTGG	TT CCAAAAGACG	GTTAATCATC	TTGAGCATGG	TCGTCTTACC	2460
TGACCCAGAA GGCCCTAC	ГА АААССАТААА	TTCCCCATCC	TCAATCTGTA	AGTTGACATC	2520
TCTCAAGACA TCCTTTTC	FG TGTAGCGCAG	TGCTACATTT	TTGTATTCAA	TCATTCTTTG	2580
TCCTCAATTT AAAACTTC	CC TCGATTGGTC	AAGTCTTCTA	CCTTAGGCAT	AACTTCCTTA	2640
TTATCCCAAT GCTCCACA	AT TTTCCCGTTC	TCTAAACGGA	AGATATCGTA	CTGGGCATAA	2700
GCAACGCCAT CAATCTGAG	GT CTGACCATAG	CTAACCACAT	AGTTTCCTTG	TCCTAAGAGT	2760
TGGAAAACAA AGTCAAAA	GT GACACTATAT	TCAGCCACAT	AGTTTTTATA	AGCAGCACTT	2820
CCTTGTCCAA TATCATGAT	T ATGCTGAATC	AAATCGTCTG	CCACATAATC	ACTCCACTGC	2880
TCTAGCTCCC CATTTTGG	A AATTTCTGTC	AAGAAACGGC	GAACCAGCTT	TTTATTTTCT	2940
GCTTTCTTAT CCAAATCCT	T GATTTCAAAA	TCTCCAAAAA	TTTGATCTAG	TTGGTCATTT	3000
TCAGGTGTTC GATAGTAGT	C AATGACATCC	CAATGCTCAA	CAATACAACC	ATTCTCATCC	3060
TCACGGAAAG TATCCGTCG	T CACCCATTGA	GCTTCTCCAC	CATTCAGATA	TTGATGAACA	3120
TGAACAAAGA CCAGATTGO	C ATCCTCAATG	GTGCGGACAA	TCTTAATCTG	ACGCTCTGGA	3180
TGACGCTCAA AGAAATCTC	C AAAGAAGGCT	GCAAATCCTT	CTTTCCCGTC	AGGAACACCT	3240
GTCGAATGTT GGATATAGG	T ATCCCCTACA	GACTGGGCTT	GAGCCTCAGC	AACTCGTCCG -	3300
TCTTGAATGG CATGGATGT	'A TAGGTTGTGA	GCATTTTTCA	CTTGTTGTGA	САТАТТСТАА	3360
ACCTCATTTC CCTTCTCTT	T CAGATTCGCC	AAAATTCTTT	CTTGAAAACC	TTCAAATTGG	3420
TGAATTTCTT CCTCTGAAA	A TCCTTTGTAA	AAGATAGTAT	CCAATTTCTG	ACTGACACGA	3480

			272			
TGCCCCACTT	CTTTCTGGGA	CTTGCCTAAC	TCCGTTAAAA	СТАААТАСТТ	CTTACGCTTG	3540
TCTTTTCCAC	ACGGACTAAC	`AATTACAAGC	TTTTGTTCCT	CTAGCTTTTT	TATCATAGTC	3600
GTCAGCGTAT	TATTCGCAAG	TCCAGTCGCA	AGCGCGATAT	CTGTCGCAGT	TGCGCAGCCA	3660
GTTTCACTAT	TCCATAAAAC	CGCTAAAATC	TTGCCCTGTT	CACCCCTATA	AAGAGCCTCA	3720
GGATCTTGAC	TCAGTAACTT	TTGAAAAATC	CGCCCATTCA	ACAAACGAAT	ATGATGGCT	3780
AGCAAATGAC	CATCTTTCAT	AACACCTCCA	ATTTATTTCG	ATATCGAAAT	GAATAAAACA	3840
ATTGTAACAC	TCATCGTTCT	AACTGTCAAC	TATTTCGATT	TAGAAATAAT	TTTTGATAAT	3900
TATCCACACC	ACCATACTCC	GGCTCAACTA	ACTTTTAACG	AGAGTTTCTA	AACTCCTTCG	3960
TCCTCCAGTC	TACAAAAGCC	TTCCATTCGT	ACTATCCTAT	ATTTTATGAG	GGGACACATT	4020
TTTCCTATCA	GACCATTTAT	TTTAAAGATA	GAAGTAAATC	ATAATTGCTT	CCATCTGTTC	4080
TTTTATAGTA	TATTGAAGTT	AGACTAGAGC	ACTGTATCTT	CTAAAACATT	GATAGAAAGC	4140
GATTTGAATT	TCCCAATCAA	TTTGTTCGTA	TTTATAGCAT	TTCGAAACTG	GAATAGGACA	4200
CCATGACTGC	TAAAAGATTT	СТАТАААТТС	ATTTAATTTC	СТСААТСААТ	TTGTTCATAT	4260
CTTATTTCAT	TCCGCTATAA	TTTCACCTTA	CCCTATCTTT	TTCGTAGCAC	CCTTCAAACA	4320
GCCTATCCCC	TACCGTTTGA	CGATTCCTCA	CTTCGCTCCA	CTTCCATTAC	AGAAGTTTCT	4380
тсастастат	GGGCTCGGCT	GACTTCTCAT	GATTCCTTGT	TACTACTATT	TGAACGCTCA	4440
CGAGATAGAT	СТТАСААААА	ATGCTTTGAT	CCACAATGGA	ATCAAAGCAT	TTTAAAGAGT	4500
TCCTCATACA	TAAGCGCAGA	AGTCGCAGTT	CCTCTGTACT	TGGCTTCTTC	TCTTTTGACA	4560
AAGCGAGCCA	AGTTGAGCAA	CTCAGGTGCT	GGATGTTTGG	GATTTAGGAG	CAATTCACGA	4620
TTGACCAGGC	CTGAGAGACG	AACTGCCTGC	AATTGCTCAT	TTGTAGTAGG	CAGTTTTTTA	4680
GTAGTCTCTA	GGAGAGCAGC	AACTAAATCT	TCACTCAAAT	CATGTCGAGC	ATGATTGTAA	4740
AGATCTTTTA	TAAGGCTTTC	TAGGTTTGGT	TCTACCATCC	CTACCACCTC	CCTTATGGTT	4800
TAATAATGTT	TAATCAAATC	AACCGTTGAA	CGATCCAATT	TCTTCACCAA	GGCTTGTAAG	4860
AAAGCTTGCG	CTTCTAGGAA	GTCATCCATT	GCATAGAGGG	TTTGGTGAGA	ATGGATATAA	4920
CGAGCGCAGA	CACCGATAGT	TGTTGATGGG	ACACCACCAT	TTTTCAGATG	AGCTGCACCT	4980
GCATCTGTTC	CGCCTTTACC	ACAGTAGTAT	TGGTACTTGA	TACCAGCTTC	TTCAGCCGTT	5040
GTCAAAAGGA	AATCCTTCAT	CCCTGGGAGA	AGCAAGTGAC	CTGGATCATA	GAAACGAATC	5100
AAGGTTCCAT	CTCCAATCTT	GCCTTGACCA	CCGTAGACAT	CACCTGCTGG	TGAGCAATCA	5160
ACTGCGAGGA	AGACTTCTGG	GTCAAACTTG	GTTGTAGAGG	TATGAGCGCC	ACGCAGACCA	5220
Ծ C վուլի (Նարի Հայաստանի (Հայաստանի (Հայաստանի Հայաստանի (Հայաստանի (Հայաստ	CCACCTTACA	ACCCACAMAC	እርጥጥሮአጥጥሮር	CCACMMMMM	ACCCCAMAAA	E200

GCTTCAGCT	GCTCGCTTAC	CATGAGGACA	CCGTAGCGGT	TATCCCAAGC	TTTTGAGATG	5340
ATATTTTTT	CATTGGCTGT	CAAAATTGCA	GAACTATCTG	GTACAATGGT	ATCACCAGGA	5400
CGGATGCCA	AACTTTCTGC	CTCAGCCTTG	TCCGCAAAAC	CACCATCAAA	AACGATATCG	5460
GCAATGGCTG	GCATGGTTGG	TCCCCCCTTT	CCACGAGTCA	AATGCGGAGG	AACAGAACCT	5520
GAAATCACAG	GAATTTCATG	ACCATCACGA	GTCAAGAGTT	TGAAACGTTG	GCTGCTAACC	5580
ACCATGGGGT	TCCAGCCACC	GATTTCTACG	ACACGGAAGG	TACCATCTGG	CTTGATTTCG	5640
CTGACCATAA	AACCAACTTC	GTCCATATGA	GAAGCGACCA	AGACGCGCGG	TGCATCCACA	5700
GCTTCTGAAT	GTTTGATACC	AAAAATACCA	CCCAAGCCAT	CTGTCACCAC	TTCATCCACA	5760
TGCGGTGTCA	ACTTTTCACG	AAGATAAGCA	CGGACAGGCG	CTTCATGACC	TGAGACTGCA	5820
GCAAGTTCTG	TTACTTCTTT	AATTTTTGAA	AATAATGTTG	TCATTTCAGT	TCCTTCTTTC	5880
TTTCATCCAT	TTTACCACTT	TTTATAGGAG	AAGGATAGTG	GGAAGGTGGA	ТТТСТААСТТ	5940
AGTATCTTAG	TCCTGCTCTA	TCTTAGAAAA	GGATAGTATT	CTCTTGCATG	TAGTGCAAAA	6000
TCTAGTAAAC	ATTCCAAAAT	TAACTCGAAT	ATTTATTTCC	АААСАААААА	ACAATACACC	6060
ATCAAAGTTG	TTTGGATTTT	TCATGAAATT	TACAGAAAAT	AGTTGACTTC	CCTTTCTTCT	6120
ттстттааат	ATATAGTTGG	TTGAGTTTGG	AATAGTACGC	TGTAGCTGCT	AAAACATTTC	6180
ТАСАААТТАА	TTTGACTTTC	CTAATAGAGT	TGTTCATATC	TTATTTCAAT	TTACTATAGT	6240
ACAAAACTAG	AAAAGGAAAA	AATCATGACC	AGG			6273
(2) INFORM	ATION FOR SE	Q ID NO: 22	2:			
/33 0	PATIENTON 01115					

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28171 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACAACCTTTT TCAAAAACTC ACCTTGGTAC GGAGATGTTT TGCTTTCTGC TATTATTTTC 60 GGTTATATTC ATATCAATTT TGCTTTAACT CCTCTTGCTT TTTTCATTTA TGCTAGTGGA 120 GGTCTTATTT TAGCTCTATT GTATCGCATG ACTAAAAATC TCTACTATCC AATACTAGTT. 180 CATATTCTCA TTAATATCAC TGCCTTCTGG GATGTGTGGT TGCTCCTATT TTCAGGAAGT 240 TAGCTTACTA AAATAATGTC GGAACTTTCC GGCATTTTCT TTTTTCACAA ATAGTCAACG 300 TTTTTCTTTT CGATATTGTA GTGGTGTGTA TCCAGTTATT TTTTTGAATT GATTTTGAAA 360

			274			
ATAAGGTTGA	CTTGAGAAAG	GCAGATAGTG	AAGATAGTTA	AGAAGAATAG	GATGTTCTTT	420
TTTCCTTTTT	GGAAAACTTC	TAAAATATGG	TATAATGAAA	AGATAAAGAA	GTTGGGGGTA	480
GAAGATGAAC	ATTCAACAAT	TACGCTATGT	TGTGGCTATT	GCCAATAGTG	GTACTTTTCG	540
TGAAGCTGCT	GAAAAGATGT	ATGTTAGTCA	GCCGAGTCTG	TCTATTTCTG	TTCGTGATTT	600
GGAAAAAGAG	TTGGGCTTTA	AGATTTTCCG	TCGGACCAGC	TCAGGGACTT	TCTTGACCCG	660
TCGTGGGATG	GAATTTTATG	AAAAATCGCA	AGAATTGGTT	AAAGGATTTG	ATATTTTTCA	720
AAATCAGTAT	GCCAATCCTG	AAGAAGAAAA	AGATGAATTT	TCTGTTGCTA	GCCAGCACTA	780
TGACTTCTTG	CCACCAACTA	TTACGGCCTT	TTCAGAGCGC	TATCCTGACT	ATAAGAACTT	840
CCGTATTTT	GAATCAACTA	CTGTTCAAAT	ATTAGATGAA	GTGGCGCAAG	GGCATAGTGA	900
GATTGGGATT	ATCTACCTCA	ACAATCAAAA	TAAAAAGGGG	ATTATGCAAC	GGGTTGAAAA	960
ATTAGGTCTG	GAGGTCATCG	AATTGATTCC	TTTCCATACC	CATATTTATC	TCCGTGAGGG	1020
TCATCCTTTA	GCCCAGAAAG	AGGAATTAGT	CATGGAGGAT	TTAGCGGATT	TACCAACGGT	1080
TCGTTTCACT	CAAGAGAAAG	ACGAGTACCT	TTATTATTCA	GAGAACTTTG	TCGATACCAG	1140
CGCTAGCTCA	CAGATGTTTA	ATGTGACAGA	CCGTGCCACC	TTGAATGGTA	TTTTGGAGCG	1200
GACGGACGCC	TATGCGACAG	GTTCTGGATT	TTTAGATAGT	GACAGTGTTA	ATGGCATTAC	1260
AGTTATTCGT	CTCAAGGATA	ACCTAGATAA	CCGCATGGTC	MATGTTAAAC	GTGAAGAAGT	1320
GGAGCTTAGT	CAAGCTGGGA	CTCTCTTCGT	AGAAGTCATG	CAAGAATATT	TTGATCAAAA	1380
GAGGAAATCA	TGAAAAAAAG	AGCAATAGTG	GCAGTCATTG	TACTGCTTTT	GATTGGGCTG	1440
GATCAGTTGG	TCAAATCCTA	TATCGTCCAG	CAGATTCCAC	TGGGTGAAGT	GCGCTCCTGG	1500
ATCCCCAATT	TCGTTAGCTT	GACCTACCTG	CAAAATCGAG	GTGCAGCCTT	ТТСТАТСТТА	1560
CAAGATCAGC	AGCTGTTATT	CGCTGTCATT	ACTCTGGTTG	TCGTGATAGG	TGCCATTTGG	1620
ГАТТТАСАТА	AACACATGGA	GGACTCATTC	TGGATGGTCT	TGGGTTTGAC	TCTAATAATC	1680
CCGGGTGGTC	TTGGAAACTT	TATTGACAGG	GTCAGTCAGG	GCTTTGTTGT	GGATATGTTC	1740
CACCTTGACT	TTATCAACTT	TGCAATTTTC	AATGTGGCAG	ATAGCTATCT	GACGGTTGGA	1800
GTGATT ATT T	TATTGATTGC	AATGCTAAAA	GAGGAAATAA	ATGGAAATTA	AAATTGAAAC	1860
rggtggtctg	CGTTTGGATA	AGGCTTTGTC	AGATTTGTCA	GAATTATCAC	GTAGTCTCGC	1920
GAATGAACAA	ATTAAATCAG	GCCAGGTCTT	GGTCAATGGT	CAAGTCAAGA	AAGCTAAATA	1980
CACAGTCCAA	GAGGGTGATG	TCGTCACTTA	CCATGTGCCA	GAACCAGAGG	TATTAGAGTA	2040
TGTGGCTGAG	GATCTTCCGC	TAGAAATAGT	CTACCAAGAT	GAGGATGTGG	CTGTCGTTAA	2100
AAACCTCAG	GGAATGGTTG	TGCACCCGAG	TGCTGGTCAT	ACCAGTGGAA	CCCTAGTAAA	2160

TGCCCTCATG	татсататта	AGGACTTGTC	GGGTATCAAT	GGGGTTCTGC	GTCCAGGGAT	2220
TGTTCACCGT	ATTGATAAGG	ATACGTCAGG	TCTTCTCATG	ATTGCTAAAA	ACGATGATGC	2280
GCATCTAGCA	CTTGCCCAAG	AACTCAAGGA	TAAAAAGTCT	CTCCGCAAAT	ATTGGGCGAT	2340
TGTTCATGGA	ААТСТАССТА	ATGATCGTGG	TGTAATTGAA	GCGCCGATTG	GCCGGAGTGA	2400
AAAAGACCGT	AAGAAACAGG	CTGTAACTGC	TAAAGGGAAG	CCTGCAGTGA	CGCGTTTTCA	2460
CGTCTTGGAA	CGCTTTGGCG	ATTATAGCTT	AGTAGAGTTG	CAACTGGAGA	CAGGGCGCAC	2520
TCATCAAATC	CGTGTCCACA	TGGCTTATAT	CGGCCATCCA	GTCGCTGGTG	ATGAGGTCTA	2580
TGGTCCTCGC	AAGACTTTGA	AAGGACATGG	ACAATTTCTT	CATGCCAAGA	CTTTAGGTTT	2640
TACTCATCCG	AGAACAGGTA	AGACCTTGGA	ATTTAAAGCA	GATATCCCAG	AGATTTTTAA	2700
GGAAACCTTG	GAGAGATTGA	GAAAGTAAGA	ATGAAAAAGA	AATTAACTAG	TTTAGCACTT	2760
GTAGGCGCTT	TTTTAGGTTT	GTCATGGTAT	GGGAATGTTC	AGGCTCAAGA	AAGTTCAGGA	2820
AATAAAATCC	ACTTTATCAA	TGTTCAAGAA	GGTGGCAGTG	ATGCGATTAT	TCTTGAAAGC	2880
AATGGACATT	TTGCCATGGT	GGATACAGGA	GAAGATTATG	ATTTCCCAGA	TGGAAGTGAT	2940
TCTCGCTATC	CATGGAGAGA	AGGAATTGAA	ACGTCTTATA	AGCATGTTCT	AACAGACCGT	3000
GTCTTTCGTC	GTTTGAAGGA	ATTGGGTGTC	CAAAAACTTG	ATTTTATTT	GGTGACCCAT	3060
ACCCACAGTG	ATCATATTGG	AAATGTTGAT	GAATTACTGT	CTACCTATCC	AGTTGACCGA	3120
GTCTATCTTA	AGAAATATAG	TGATAGTCGT	ATTACTAATT	CTGAACGTCT	ATGGGATAAT	3180
CTGTATGGCT	ATGATAAGGT	TTTACAGACT	GCTGCAGAAA	AAGGTGTTTC	AGTTATTCAA	3240
AATATCACAC	AAGGGGATGC	TCATTTTCAG	TTTGGGGACA	TGGATATTCA	GCTCTATAAT	3300
TATGAAAATG	AAACTGATTC	ATCGGGTGAA	TTAAAGAAAA	TTTGGGATGA	CAATTCCAAT	3360
TCCTTGATTA	GCGTGGTGAA	AGTCAATGGC	AAGAAAATTT	ACCTTGGGGG	CGATTTAGAT	3420
AATGTTCATG	GAGCAGAAGA	CAAGTATGGT	CCTCTCATTG	GAAAAGTTGA	TTTGATGAAG	3480
TTTAATCATC	ACCATGATAC	CAACAAATCA	AATACCAAGG	ATTTCATTAA	AAATTTGAGT	3540
CCGAGTTTGA	TTGTTCAAAC	TTCGGATAGT	CTACCTTGGA	AAAATGGTGT	TGATAGTGAG	3600
TATGTTAATT	GGCTCAAAGA	ACGAGGAATT	GAGAGAATCA	ACGCAGCCAG	CAAAGACTAT	3660
GATGCAACAG	TTTTTGATAT	TCGAAAAGAC	GGTTTTGTCA	ATATTTCAAC	ATCCTACAAG.	3720
CCGATTCCAA	GTTTTCAAGC	TGGTTGGCAT	AAGAGTGCAT	ATGGGAACTG	GTGGTATCAA	3780
GCGCCTGATT	CTACAGGAGA	GTATGCTGTC	GGTTGGAATG	AAATCGAAGG	TGAATGGTAT	3840
TACTTTAACC	AAACGGGTAT	CTTGTTACAG	AATCAATGGA	AAAAATGGAA	CAATCATTGG	3900

			276			
ТТСТАТТТGA	CAGACTCTGG	TGCTTCTGCT	AAAAATTGGA	AGAAAATCGC	TGGAATCTGG	3960
TATTATTTA	ACAAAGAAAA	CCAGATGGAA	ATTGGTTGGA	TTCAAGATAA	AGAGCAGTGG	4020
TATTATTTGG	ATGTTGATGG	TTCTATGAAG	ACAGGATGGC	TTCAATATAT	GGGCAATGG	4080
TATTACTTTG	CTCCATCAGG	GGAAATGAAA	ATGGGCTGGG	TAAAAGATAA	AGAAACCTGG	4140
TACTATATGG	ATTCTACTGG	TGTCATGAAG	ACAGGTGAGA	TAGAAGTTGC	TGGTCAACAT	4200
TATTATCTGG	AAGATTCAGG	AGCTATGAAG	CAAGGCTGGC	ATAAAAAGGC	AAATGATTGG	4260
ТАТТТСТАСА	AGACAGACGG	TTCACGAGCT	GTGGGTTGGA	TCAAGGACAA	GGATAAATGG	4320
TACTTCTTGA	AAGAAAATGG	TCAATTACTT	GTGAACGGTA	AGACACCAGA	AGGTTATACT	4380
GTGGATTCAA	GTGGTGCCTG	GTTAGTGGAT	GTTTCGATCG	AGAAATCTGC	TACAATTAAA	4440
ACTACAAGTC	ATTCAGAAAT	AAAAGAATCC	AAAGAAGTAG	TGAAAAAGGA	TCTTGAAAAT	4500
AAAGAAACGA	GTCAACATGA	AAGTGTTACA	AATTTTTCAA	CTAGTCAAGA	TTTGACATCC	4560
TCAACTTCAC	AAAGCTCTGA	AACGAGTGTA	AACAAATCGG	AATCAGAACA	GTAGTAGAAA	4620
AGAAGGTTTT	AGGGCCTTCT	TTTTCCTATC	AACTCTTTTC	TATTTCCTGT	TATTCATGTT	4680
ATAATGGATA	AATATGAATA	ATCGGAGTGA	GACTATGAAA	TACAAACGGA	TTGTCTTTAA	4740
GGTGGGTACT	TCTTCTCTGA	CAAATGAGGA	TGGAAGTTTA	TCACGTAGTA	AGGTAAAGGA	4800
TATTACCCAG	CAGTTGGCTA	TGCTGCACGA	GGCTGGTCAT	GAGTTGATTT	TGGTGTCTTC	4860
AGGTGCCATT	GCGGCTGGTT	TTGGAGCCTT	AGGATTTAAA	AAGCGTCCGA	CTAAGATTGC	4920
PGATAAACAG	GCTTCAGCAG	CGGTAGGGCA	GGGGCTTTTG	TTGGAAGAAT	АТАСААССАА	4980
PCTTCTCTTG	CGTCAAATCG	TTTCTGCACA	AATCTTGCTG	ACCCAAGATG	ACTTTGTGGA	5040
PAAGCGTCGT	TATAAAAATG	CCCATCAGGC	TTTGTCGGTT	TTGCTCAACC	GTGGGGCAAT	5100
CCTATCATC	AATGAGAATG	atagtgtcgt	TATTGATGAG	CTCAAGGTTG	GGGACAATGA	5160
CACTCTAAGT	GCTCAAGTAG	CGGCGATGGT	CCAAGCAGAC	CTTTTAGTTT	TCTTGACAGA	5220
TGTGGACGGT	CTCTATACTG	GAAATCCTAA	TTCAGATCCA	AGAGCCAAAC	GCTTGGAGAG	5280
ATCGAGACC	ATCAATCGTG	AGATTATTGA	TATGGCTGGT	GGAGCTGGTT	CGTCAAACGG	5340
ACTGGGGGT	ATGTTAACCA	AAATCAAGGC	TGCAACTATC	GCGACGGAAT	CAGGAGTTCC	5400
GTTTATATC	TGCTCATCCT	TGAAATCAGA	TTCCATGATT	GAGGCGGCAG	AGGAGACCGA	5460
GATGGTTCT	TACTTTGTTG	CTCAAGAGAA	GGGGCTTCGT	ACCCAGAAAC	AATGGCTTGC	5520
CTTCTATGCT	CAGAGTCAAG	GTTCTATTTG	GGTTGATAAA	GGGGCTGCGG	AAGCTCTCTC	5580
CAATATGGA	AAGAGTCTTC	TCTTATCTGG	TATCGTTGAA	GCAGAAGGAG	ТСТТТТСТТА	5640
GGTGATATC	GTGACAGTAT	TTGACAAGGA	AAGTGGAAAA	TCACTTGGAA	AAGGACGCGT	5700

GCAATTTGGA	GCATCTGCTT	TGGAGGATAT	GTTGCGTTCT	CAAAAAGCCA	AGGGTGTCTT	5760
GATTTACCGT	GACGACTGGA	TTTCCATTAC	TCCTGAAATC	CAACTACTTT	TTACAGAATT	5820
TTAGAGGTAA	ACTATGGTGA	GTAGACAAGA	ACAATTTGAA	CAGGTACAGG	CTGTTAAAAA	5880
ATCGATTAAC	ACAGCTAGTG	AAGAAGTGAA	AAACCAAGCC	TTGCTAGCCA	TGGCTGATCA	5940
CTTAGTGGCT	GCTACTGAGG	AAATTTTAGC	GGCTAATGCC	CTCGATATGG	CAGCGGCTAA	6000
GGGGAAAATC	TCAGATGTGA	TGTTGGATCG	TCTTTATTTG	GATGCAGATC	GTATAGAAGC	6060
GATGGCAAGA	GGAATTCGTG	AAGTGGTTGC	CTTACCAGAT	CCAATCGGTG	AAGTTTTAGA	6120
AACAAGTCAG	CTTGAAAATG	GTTTGGTTAT	САСАААААА	CGTGTAGCTA	TGGGTGTCAT	6180
CGGTATTATC	TATGAAAGCC	GTCCAAATGT	GACGTCTGAT	GCGGCTGCTT	TGACTCTTAA	6240
GAGTGGAAAT	GCGGTTGTTC	TTCGTAGTGG	TAAGGATGCC	ТАТСАААСАА	CCCATGCCAT	6300
TGTCACAGCC	TTGAAGAAGG	GCTTGGAGAC	GACTACTATT	CATCCAAATG	TGATTCAACT	6360
GGTGGAGGAT	ACTAGCCGTG	AAAGTAGTTA	TGCTATGATG	AAGGCCAAGG	GCTATCTAGA	6420
CCTTCTCATT	CCTCGTGGAG	GAGCTGGCTT	GATCAATGCA	GTGGTTGAGA	ATGCGATTGT	6480
ACCTGTTATC	GAGACAGGGA	CTGGGATTGT	CCATGTCTAT	GTGGATAAGG	ATGCAGACGA	6540
AGACAAGGCG	CTGTCTATCA	TCAACAATGC	TAAAACCAGT	CGTCCTTCTG	TTTGTAATGC	6600
CATGGAGGTT	CTGCTGGTTC	ATGAAAACAA	GGCAGCAAGC	TTCCTTCCTC	GCTTGGAGCA	6660
AGTGTTGGTT	GCAGAGCGTA	AGGAAGCTGG	ACTGGAACCA	ATTCAATTCC	GCCTAGATAG	6720
CAAAGCAAGC	CAGTTTGTTT	CAGGTCAAGC	AGCTGAGACC	CAAGACTTTG	ACACCGAGTT	6780
TTTAGACTAT	GTCCTTGCTG	TTAAGGTTGT	GAGCAGTTTA	GAAGAAGCGG	TTGCGCACAT	6840
TGAATCCCAC	AGCACCCATC	ATTCGGATGC	TATTGTGACG	GAAAATGCTG	AAGCTGCAGC	6900
ATACTTTACA	GATCAAGTGG	ACTCTGCAGC	GGTGTATGTT	AATGCCTCAA	CTCGTTTCAC	6960
AGATGGAGGA	CAATTTGGTC	TTGGTTGTGA	AATGGGGATT	TCTACTCAGA	AATTGCACGC	7020
GCGTGGTCCC	ATGGGCTTGA	AAGAGTTGAC	CAGCTACAAG	TATGTGGTTG	CCGGTGATGG	7080
GCAGATAAGG	GAGTAAGAGA	TGAAGATTGG	ATTTATCGGT	TTGGGGAATA	TGGGTGCTAG	7140
CTTGGCAAAA	TCTGTCTTGC	AGACTAGGAC	GTCAGATGAG	ATTCTCCTTG	CCAATCGTAG	7200
TCAAGCTAAG	GTAGATGCTT	TCATTGCAGA	CTTTGGTGGT	CAGGCTTCCA	GCAATGAAGA .	7260
AATGTTTGCA	GAAGCAGATG	TGATTTTCT	AGGAGTTAAG	CCTGCTCAGT	TTTCTGAACT	7320
GCTTTCTCAA	TACCAGACCA	TCCTTGAAAA	AAGAGAAAGT	CTTCTTTTGA	TTTCGATGGC	7380
AGCTGGATTG	ACCTTAGAAA	AACTAGCAAG	TCTTATCCCA	AGTCAACACC	GAATTATTCG	7440

			278			
TATGATGCCT	AATACCCCTG	CTTCTATCGG	GCAAGGAGTG	ATTAGTTATG	CCTTGTCTCC	7500
TAATTGCAGG	GCTGAGGACA	GTGAGCTCTT	TTATCAGCTT	TTAGCCAAGG	CTGGTCTCTT	7560
GGTTGAACTA	GGAGAAAGTT	TAATCGATGC	AGCGACAGGT	CTTGCAGGTT	GTGGACCAGC	7620
CTTTGTCTAT	CTTTTTATCG	AGGCCTTGGC	AGATGCAGGT	GTTCAGACAG	GATTACCACG	7680
AGAAATAGCA	TTGAAAATGG	CAGCACAAAC	TGTGGTAGGA	GCTGGGCAAT	TGGTCCTTGA	7740
AAGTCAGCAA	CATCCTGGAG	TATTGAAAGA	CCAAGTCTGT	AGCCCAGGCG	GTTCGACTAT	7800
CGCTGGTGTA	GCAAGCCTAG	AAGCGCATGC	TTTCCGAGGA	ACAGTCATGG	ATGCAGTTCA	7860
TCAAGCCTAC	AAACGAACAC	AAGAACTAGG	TAAATAAGAG	GTAGTTTTGA	CTGCCTCTTT	7920
TATGGTGGCT	GAAATGAGAA	GACACAAAAA	GATTGTCACA	AACCCCTATT	TTTTTGATAG	7980
AATAGAAGTA	GTAAAAAAGA	AATGAGTTAG	ACATGTCAAA	AGGATTTTTA	GTCTCTCTTG	8040
AGGGACCAGA	GGGAGCAGGC	AAGACCAGTG	TTTTAGAGGC	TCTGCTACCA	ATTTTAGAGG	8100
aaaaaggagt	AGAGGTGTTG	ACGACCCGTG	AACCTGGCGG	AGTCTTGATT	GGGGAGAAGA	8160
TTCGGGAAGT	GATTTTGGAT	CCAAGTCATA	CTCAGATGGA	TGCTAAAACA	GAGCTACTTC	8220
TCTATATTGC	CAGTCGCAGA	CAGCATTTGG	TGGAAAAAGT	TCTTCCAGCC	CTTGAAGCTG	8280
GCAAGTTGGT	CATCATGGAT	CGTTTTATCG	ATAGTTCTGT	TGCCTATCAG	GGATTTGGTC	8340
GTGGCTTAGA	TATTGAAGCC	ATTGACTGGC	TCAATCAGTT	TGCGACAGAT	GGCCTCAAAC	8400
CCGATTTGAC	ACTCTATTTT	GACATCGAGG	TGGAAGAAGG	GCTGGCTCGT	ATTGCTGCTA	8460
ATAGTGACCG	CGAGGTTAAT	CGTTTGGATT	TGGAAGGGTT	GGACTTGCAT	AAAAAGTTC	8520
GTCAAGGCTA	ССТТТСТСТТ	CTGGATAAAG	AGGGAAATCG	CATTGTCAAG	ATTGATGCTA	8580
GTCTCCCTTT	GGAGCAAGTT	GTGGAAACTA	CCAAGGCTGT	CTTGTTTGAC	GGAATGGGCT	8640
TGGCCAAATG	AAACAAGATC	AACTAAAGGC	TTGGCAACCA	GCTCAGTTTG	ACCGTTTTGT	8700
CCGTATCTTA	GAACAAGACC	AGCTCAATCA	CGCCTATCTC	TTTTCAGGTT	TCTTTGAAAG	8760
CTTGGAAATG	GCGCAATTTT	TAGCTAAGAG	CCTCTTTTGT	ACGGATAAAG	TTGGCGTCTT	8820
ACCATGTGAG	AAATGCCGAA	GTTGCAAGCT	GATTGAACAG	GGAGAATTTC	CCGATGTCAC	8880
CTTGATTAAA	CCAGTTAATC	AGGTCATTAA	GACGGAACGC	ATTCGAGAAT	TGGTGGGTCA	8940
GTTTTCTCAA	GCAGGGATTG	AAAGCCAGCA	ACAGGTCTTT	ATCATCGAGC	AAGCGGATAA	9000
AATGCATCCC	AACGCAGCCA	ATTCTCTGCT	CAAGGTCATC	GAAGAACCCC	AGAGTGAAGT	9060
TTATATTTC	ТТСТТБАСТА	GCGATGAGGA	AAAGATGTTA	CCGACAATCC	GAAGTCGGAC	9120
TCAGATCTTC	САСТТТАААА	AGCAAGAAGA	AAAACTTATC	TTACTCTTAG	AACAAATGGG	9180
ACTTGTTAAG	AAAAAAGCGA	CTCTTTTAGC	TAAGTTTAGT	CAATCGCGAG	CTGAAGCAGA	9240

AAAGTTGGCT	AATCAGGCAA	GTTTTTGGAC	CTTGGTCGAT	GAAAGTGAAC	GCCTGCTGAC	9300
TTGGTTAGTA	GCTAAGAAAA	AAGAAAGTTA	TCTACAGGTT	GCCAAATTAG	CCAACTTGGC	9360
AGATGATAAG	GAAAAACAGG	ATCAGGTTTT	ACGGATTCTT	GAAGTTCTCT	GTGGGCAGGA	9420
CCTCTTGCAG	GTAAGAGTAA	GAGTGATTCT	ACAAGATTTA	CTAGAAGCTA	GAAAAATGTG	9480
GCAAGCTAAT	GTCAGCTTTC	AAAATGCCAT	GGAATATCTG	GTCTTGAAAG	AAATATAAAC	9540
TCAAAAATGA	atgataaaga	AAGGAAAGGG	CTGTTTTATG	GACAAAAAAG	AATTATTTGA	9600
CGCGCTGGAT	GATTTTTCCC	AACAATTATT	GGTAACCTTA	GCCGATGTGG	AAGCCATCAA	9660
GAAAAATCTC	AAGAGCCTGG	TAGAGGAAAA	TACAGCTCTT	CGCTTGGAAA	ATAGTAAGTT	9720
GCGAGAACGC	TTGGGTGAGG	TGGAAGCAGA	TGCTCCTGTC	AAGGCCAAGC	ATGTTCGTGA	9780
AAGTGTCCGT	CGCATTTACC	GTGATGGATT	TCACGTATGT	AATGATTTTT	ATGGACAACG	9840
TCGAGAGCAG	GACGAGGAAT	GTATGTTTTG	TGACGAGTTG	CTATACAGGG	AGTAGGCATG	9900
CAGATTCAAA	AAAGTTTTAA	GGGGCAGTCT	CCCTATGGCA	AGCTGTATCT	AGTGGCAACG	9960
CCGATTGGCA	ATCTAGATGA	TATGACTTTT	CGTGCTATCC	AGACCTTGAA	AGAAGTGGAC	10020
TGGATTGCTG	CTGAGGATAC	GCGCAATACA	GGGCTTTTGC	TCAAGCATTT	TGACATTTCC	10080
ACCAAGCAGA	TCAGTTTTCA	TGAGCACAAT	GCCAAGGAAA	AAATTCCTGA	TTTGATTGGT	10140
TTCTTGAAAG	CAGGGCAAAG	TATTGCTCAG	GTCTCTGATG	CCGGTTTGCC	TAGCATTTCA	10200
GACCCTGGTC	ATGATTTAGT	TAAGGCAGCT	ATTGAGGAAG	AAATTGCAGT	TGTGACAGTT	10260
CCAGGTGCCT	CTGCAGGAAT	TTCTGCCTTG	ATTGCCAGTG	GTTTAGCGCC	ACAGCCACAT	10320
ATCTTTTACG	GTTTTTTACC	GAGAAAATCA	GGTCAGCAGA	AGCAATTTTT	TGGCTTGAAA	10380
AAAGATTATC	CTGAAACACA	GATTTTTTAT	GAATCACCTC	ATCGTGTAGC	AGACACGTTG	10440
GAAAATATGT	TAGAAGTCTA	CGGTGACCGC	TCCGTTGTCT	TGGTCAGGGA	ATTGACCAAA	10500
ATCTATGAAG	AATACCAACG	AGGTACTATC	TCTGAGTTAT	TAGAAAGCAT	TGCTGAAACG	10560
CCACTCAAGG	GCGAATGTCT	TCTCATTGTT	GAGGGTGCCA	GTCAGGGTGT	GGAGGAAAAG	10620
GACGAGGAAG	ACTTGTTCGT	AGAAATTCAA	ACCCGCATCC	AGCAAGGTGT	GAAGAAAAAC	10680
CAAGCTATCA	AGGAAGTCGC	TAAGATTTAC	CAGTGGAATA	AAAGTCAGCT	CTACGCTGCC	10740
TACCACGACT	GGGAAGAAAA	ACAATAAAGG	GAGACAGGAT	GTAATAATTC	TGTCTGTTTC	10800
TGTTTAACTT	AATTAGTGAT	GATAATATAA	AGATGTATCA	CTTGGTATAG	AAGCTTTGGT	10860
ATTAAGTTTT	TTATTAAGCC	CATACGGAAT	ACCGATGGTT	GGAGCAGCAG	TTATAGCGTT	10920
CTTAGAAGGT	ATAAATAGAA	AAATAAGGTC	ATTTTAAATC	AAAGGATTGA	TAAATCAGAA	10980

280 AGAAGGTGAT TTTTTGCGAA CATACGAAAA TAAAGAAGAA CTAAAAGCTG AGATAGAGAA 11040 AACATTTGAG AAATATTTT TAGAATTTGA TAATATTCCA GAAAATTTAA AAGATAAGAG 11100 AGCTGATGAA GTTGACAGAA CTCCAGCAGA AAACCTTGCT TATCAGGTTG GTTGGACCAA 11160 CTTGGTTCTT AAATGGGAAG AAGATGAAAG AAAGGGGCTT CAAGTAAAAA CACCATCGGA 11220 TAAATTTAAA TGGAATCAAC TTGGTGAATT ATATCAGTGG TTCACAGATA CCTACGCTCA 11280 TTTATCTCTG CAAGAGTTGA AAGCAAAATT AAATGAAAAT ATTAATTCTA TCTCTGCAAT 11340 GATTGATTCG TTGAGTGAGG AAGAATTATT TGAACCGCAT ATGAGAAAGT GGGCTGATGA 11400 AGCGACTAAA ACAGCGACTT GGGAAGTGTA TAAGTTTATT CATGTAAATA CGGTTGCACC 11460 TTTTGGAACT TTCAGAACTA AAATCAGAAA ATGGAAGAAG ATAGTATTAT AAATTATATT 11520 TTTAACTTTA AAAAATTCA TAAAAATGGT TACCAAAGGC GATAGAAGAA AAACTATCGT 11580 CTTTTTCTTT GCAAATTTTT AAGAAGGAG GTGATCTTGC ATGGACTTTG AATATTTTTA 11640 TAACAGAGAA GCGGAAAGAT TTAACTTCTT AAAAGTACCG GAGATATTAG TTGATAGAGA 11700 AGAATTTCGG GGCTTATCAG CAGAAGCAAT TATCCTTTAT TCCATACTTC TTAAACAGAC 11760 AGGAATGTCA TTTAAGAATA ACTGGATAGA CAAGGAAGGC AGAGTATTTA TCTATTTTAC 11820 TGTCGAAGAA ATTATGAAAA GAAGAAATAT CTCAAAGCCA ACTGCCATAA AAACATTAGA 11880 TGAGCTTGAT GTAAAAAAGG AATAGGACTG ATCGAAAGAG TAAGGCTTGG ACTTGGTAAG 11940 CCGAACATCA TITATGITAA AGACTITATG AGTATATITC AGGTAAAAGA AAATGACTTA 12000 CAGAAGTCAA AAAACTTAAC TTCAGAAGTA AAAGATTTTA ACCTCAGAAG TAAAGAAAAT 12060 GAACTTCAAG AGGTTAAGAA CCTTGACTCT AACTATATAG AGAATAATAA GAGTAAGTAT 12120 AGTAAGAGAG AATATAGTTT TGGTGAAAAC GGACTTGGAA CATTTCAAAA TGTGTTTTTA 12180 GCTGCTGAAG ATATATCGGA TTTACAAATC ATAATGAACT CACAGCTTGA GAATTACATT 12240 AGACTTCCTG CAAAACTAGA ATCCTAGTTC ATGATTGATA ATGCCAGCAA TCAAATTCAT 12300 TCGTAATCCG AAGCGTTTAC GATGATTTCG ATAGATTGTT GAAAACATTT TAAACGTTTT 12360 TACTTTGGCA AAGATGTTCT CAATCTTGCT TCTCTCCTTG GATAGCGCAT GGTTACAGGC 12420 TTTATCTTCA GCTGTTAGCG GCTTGAGTTT GCTGGATTTA CGTGGAGTTT GTACTTGAGG 12480 ATATATCTTC ATGAGCCCTT GATAACCACT GTCAGACAAG ATTTTACCAG CTTGTCCGAT 12540 ATTTCTGCGA CTCATTTTGA ACAACTTCAT ATCACGACAA TAGTTCACAG CGATATCCAA 12600 AGAAACAATT CTCCCTTGAC TTGTGACAAT CGCTTGAGCC TTCATAGCGT GAAATTTCTT 12660 TTTACCAGAA TGATTCGCTA ATTCTTTTTT TAGGGCGATT GATTTTACT TCCGTCGCAT 12720 CAATCATTAC CGTGTCCTCA GAACTGAGAG GAGTTCTTGA AATCGTAACA CCACTTTGAA 12780

(CAAGAGTTAC	TTCAACCCAT	TGGCTCCGAC	GGATTAAGTT	GCTTTCGTGA	ATACCAAAAT	12840
(CAGCCGCAAT	TTGTTCATAA	GTTCGATATT	CTCGCACATA	TTGAAGAGTG	GCCATAAGAA	12900
(GTCTTCTAG	GCTTAATTTA	GGTTTTCGTC	CACCTTTTGC	GTGTTTAAGT	TGATAAGCTG	12960
7	TTTTAATAC	AGCTAATATC	TCTTCAAAAG	TCGTGCGCTG	AACACCAACA	AGACGCTTAA	13020
2	ATCGTGCATC	AGTTAGTTGT	TTACTTGCTT	CATCATTCAT	AGAACTACTA	TACCATATTT	13080
7	rgtttcgcag	GAAGTCTATT	GGAAAGTAAG	AAATATTGAA	GCTGAGGCTA	TTAGAAGAAA	13140
7	TTGTGAGCGT	GGTGCTATTT	TTTCAGGTAA	AATAAAATAT	CACGAAGATT	CACAGTTTAA	13200
Į	AGGAGATCAC	TATGTTGAAT	GTTATGCTGT	TTTAGATAAT	ACGGTTATAG	CAAGAGATAG	13260
I	ATAACAGTC	CCTATCGATC	CGTTATGTGG	AAAAGATTTT	ATAGAGTAGC	ATATAATTGA	13320
1	TCTTAACTG	GAATACTCAC	TATCTCTTTA	CATCAAGAAA	ATGACTAAAC	AGGGAAGTTT	13380
C	CCTTCTTCC	CTTTTTTTGT	TATACTAGTA	GAAGAAAAA	TTAGAAAGAT	TTGTGGGTGT	13440
C	AAACAGCCC	AGTGGGGTGT	TTTAATATGG	ACTTAGGTCC	CACCCAAAGA	GGTATTAGTG	13500
T	CGTGTCTCA	ATCTTATATC	AATGTTATCG	GTGCTGGTTT	GGCAGGTTCT	GAAGCAGCTT	13560
A	CCAAATCGC	AGAGCGTGGT	ATTCCAGTTA	AACTATATGA	AATGCGTGGT	GTCAAGTCTA	13620
C	ACCCCAGCA	TAAAACAGAC	AATTTTGCTG	AGTTGGTTTG	TTCCAATTCT	TTGCGTGGGG	13680
A	TGCTTTGAC	AAATGCAGTT	GGTCTTCTCA	AGGAAGAAAT	GCGTCGCTTG	GGTTCTGTTA	13740
T	CTTGGAATC	TGCTGAGGCT	ACACGTGTTC	CTGCAGGTGG	TGCCCTTGCA	GTGGACCGTG	13800
A	TGGTTTCTC	TCAAATGGTG	ACCGAAAAAG	TTGCCAACCA	CCCCTTGATT	GAAGTGGTTC	13860
G	TGATGAAAT	TACAGAATTG	CCGACAGATG	TTATTACGGT	TATCGCTACT	GGTCCTTTGA	13920
С	AAGTGATGC	CTTGGCTGAA	AAGATTCATG	CTCTTAATGA	CGGTGCTGGT	TTTTATTTCT	13980
A	CGATGCGGC	AGCGCCTATT	ATCGATGTCA	ACACTATCGA	TATGAGCAAG	GTCTACCTCA	14040
A	ATCACGTTA	TGATAAGGGA	GAAGCGGCCT	ACCTCAATGC	CCCTATGACC	AAGCAAGAAT	14100
T	TATGGATTT	CCATGAAGCT	TTGGTCAATG	CAGAAGAAGC	ACCGCTTAGT	TCTTTTGAAA	14160
A	AGAAAAGTA	CTTTGAAGGA	TGTATGCCTA	TCGAAGTCAT	GGCCAAACGT	GGCATTAAAA	14220
С	ТАТССТТТА	TGGCCCTATG	AAGCCAGTCG	GTCTTGAGTA	CCCAGACGAC	TATACAGGAC	14280
С	TCGTGATGG	AGAATTTAAA	ACACCTTATG	CGGTTGTGCA	ACTTCGTCAG	GATAATGCAG.	14340
C	TGGTAGCCT	CTACAATATT	GTTGGTTTCC	AGACCCACCT	CAAATGGGGA	GAACAAAAGC	14400
G	TGTCTTCCA	AATGATTCCG	GGTCTTGAAA	ATGCGGAGTT	TGTCCGTTAT	GGTGTGATGC	14460
A	TCGCAATTC	TTACATGGAT	TCACCAAATC	TTCTTGAGCA	GACTTACCGT	TCTAAGAAAC	14520

AACCAAATCT CTTCTTTGCT GGTCAAATGA CGGGTGTGGA AGGCTATGTT GAGTCGGCG	
CTTCAGGCTT AGTTGCGGGA AUTHANCESIS CONTROL AGGCTATGTT GAGTCGGCG	G 14580
CTTCAGGCTT AGTTGCGGGA ATTAACGCAG CTCGTCTCTT CAAGGAAGAA AGCGAGGCT.	A 14640
TTTTCCCCGA GACGACAGCG ATTGGAAGCT TAGCTCATTA CATTACCCAT GCCGACAGCA	A 14700
AACATTTCCA ACCAATGAAT GTCAATTTTG GGATCATCAA GGAGTTGGAA GGCGAGCGTA	14760
TCCGTGATAA GAAGGCTCGT TATGAAAAAA TTGCAGAGCG TGCCCTTGCC GACTTAGAGG	14820
AATTITIGAC TGTCTAATTT TTTTGAAAGA ATTGCTCATG ATACTATAAA AATCTTTAGAA	
ATTGTGATAA AATAGGTAGG ATGAAAGAAG GAGAGTGAAA ATGGCGAATC CCAACTATA	
ACGIATTITA ATCAAGTTAT CAGGTGAAGC CCTTGCCGGT GAACGTGGCG TAGGGATTAGA	
TATCCAAACA GTTCAAACAA TCGCAAAAGA GATTCAAGAA GTTCATAGCT TACCTATAGCT	
AATTGCCCTT GTTATCGGTG GAGGAAATCT CTGGCGTGGA GAACCTGCAG CAGAAGCAGG	
TATGGACCGT GTTCAGGCAG ATTACACAGG AATGCTTGGG ACTGTTATGA ATGCTCTTGT	15120
GATGGCAGAT TCATTGCAAC AAGTTGGGGT TGATACGCGT GTACAAACAG CTATTGCCAT	15180
GCAACAAGTG GCAGAGCCTT ATGTCCGTGG ACGTGCCCTT CGTCACCTTG AAAAAGGCCG	15240
TATCGTTATC TTTGGTGCTG GAATTGGTTC ACCTTACTTC TCGACAGATA CAACAGCGGC	15300
CCTTCGTGCA GCTGAAATCG AACGACACATTC TCGACAGATA CAACAGCGGC	15360
CCTTCGTGCA GCTGAAATCG AAGCAGATGC CATCCTCATG GCTAAAAATG GTGTCGATGG	15420
TGTTTACAAT GCCGATCCTA AGAAAGATAA GACAGCTGTT AAGTTTGAAG AATTGACCCA	15480
CCGTGACGTT ATCAATAAAG GTCTTCGTAT CATGGACTCA ACAGCTTCAA CCCTCTCAAT	15540
GGACAACGAC ATTGACTTGG TTGTATTCAA CATGAACCAA CCAGGCAACA TCAAACGTGT	15600
CGTATTTGGT GAAAATATCG GAACAACAGT TTCAAATAAT ATCGAAGAAA AGGAATAAGA	15660
AAGAATATGG CTAACGCAAT TATTGAAAAA GCTAAAGAGA GAATGACCCA GTCTCACCAA	15720
TCACTTGCTC GTGAATTTGG TGGTATCCGT GCTGGTCGTG CCAATGCAAG CTTCCTTTGAG	15780
CGTGTACATG TAGAATACTA TGGAGTCGAA ACTCCTCTTA ACCAAATCGC TTCAATTAGC	15840
ATTCCAGAAG CGCGTGTTTT GTTGGTAACA CCATTTGACA AGTCTTCATT CAAACAGAGG	
GAACGTGCCT TGAACGCTTC TGATATTGGT ATCACACCGG CTAATGACGG TTCTGTGATT	15900
CGCTTGGTTA TCCCAGCTCT TACAGAAGAA ACTCGTCGTG ACCTTGCTAA AGAAGTGAAG	15960
AAGGTCGGCG AAAATGCTAA AGTGGCTGTC CGCAATATCC GTCGCGATGC TATGGACGAA	16020
GCTAAGAAAC GAGAAAAAGC AAAAGAAATC ACTGAAGACG AATTGAAGAC TCTTGAAAAA	16080
GACATTCAAA AAGTAACAGA CGATGCTCTTT ANGACG AATTGAAGAC TCTTGAAAAA	16140
GACATTCAAA AAGTAACAGA CGATGCTGTT AAACACATCG ACGACATGAC TGCTAACAAA GAGAAAGAAC TTTTGGAAGT CTAAAAAAA	16200
GAGAAAGAAC TTTTGGAAGT CTAAAAATAA ACAGAAAAAC TCAGTTGGCA TTGCTGGCTG	16260
AGTTTTATTC GAAAGAAGGA AATATGAATA CAAATCTTGC AAGTTTTATC GTTGGACTGA	16320

TCATCGATGA	AAACGACCGT	TTTTACTTTG	TGCAAAAGGA	TGGTCAAACC	TATGCTCTTG	16380
CTAAGGAAGA	AGGCCAACAT	ACAGTAGGGG	ATACGGTCAA	AGGTTTTGCA	TACACGGATA	16440
TGAAGCAAAA	ACTCCGCCTG	ACAACCTTAG	AAGTGACTGC	CACTCAGGAC	CAATTTGGTT	16500
GGGGACGTGT	CACAGAGGTT	CGTAAGGACT	TGGGTGTCTT	TGTGGATACA	GGCCTTCCTG	16560
ACAAGGAAAT	CGTTGTGTCA	CTCGATATTC	TCCCTGAGCT	CAAGGAACTC	TGGCCTAAGA	16620
AGGGCGACCA	ACTCTACATC	CGTCTTGAAG	TGGATAAGAA	AGACCGTATC	TGGGGCCTCT	16680
TGGCTTATCA	AGAAGACTTC	CAACGTCTTG	CTCGTCCTGC	CTACAACAAC	ATGCAGAACC	16740
AAAACTGGCC	AGCCATTGTT	TACCGTCTCA	AGCTGTCAGG	AACTTTTGTT	TACCTACCAG	16800
AAAATAATAT	GCTTGGTTTT	ATTCATCCTA	GCGAGCGTTA	CGCAGAGCCA	CGTTTGGGGC	16860
AAGTATTAGA	TGCGCGCGTT	ATTGGTTTCC	GTGAAGTGGA	CCGCACTCTG	AACCTCTCCC	16920
TCAAACCACG	CTCCTTTGAA	ATGTTGGAAA	ACGATGCTCA	GATGATTTTG	ACTTATTTGG	16980
AAAGCAATGG	CGGTTTCATG	ACCTTAAATG	ACAAGTCATC	TCCAGACGAC	ATCAAGGCAA	17040
CCTTTGGCAT	TTCTAAAGGT	CAGTTCAAGA	AAGCTTTAGG	TGGTCTTATG	AAGGCTGGTA	17100
AAATCAAGCA	GGACCAGTTT	GGGACAGAGT	TGATTTAGGG	AGGCTTATGA	GAAAATCATT	17160
TTACACTTGG	CTCATGACCG	AGCGCAATCC	TAAAAGTAAC	AGTCCCAAAG	CAATTTTGGC	17220
AGACCTCGCT	TTTGAAGAGT	CAGCCTTTCC	AAAACACACA	GATGATTTTG	ATGAGGTCAG	17280
TCGCTTTTTG	GAGGAGCATG	CCAGTTTCTC	TTTTAACCTA	GGAGATTTTG	ACAGCATTTG	17340
GCAGGAATAT	CTAGAACACT	AGCATTTATT	CATTGGGTTT	GGGCTAGTAA	TTTCTCCATC	17400
CCTCTGCTAT	AATAAAAAGA	AATAAAAGGA	TTAGAGAGGT	TCTTTATTTG	AAGGAACATT	17460
CAATAGACAT	TCAACTGAGT	CATCCAGATG	ACCTGTTTCA	TCTTTTTGGT	TCCAATGAAC	17520
GCCATCTTCG	TTTGATGGAA	GAAGAGCTTG	ATGTTGTGAT	TCATGCTCGT	ACGGAGATTG	17580
TCCAGGTTTT	GGGAGAAGAG	TCTGCCTGTG	AGGAAGCCCG	TCAAGTTATT	CAGGCTTTGA	17640
TGGTCTTGGT	AAATCGTGGG	ATGACCGTTG	GTACGCCAGA	TGTAGTCACT	GCGATTAGCA	17700
TGGTCAAAAA	TGATGAAATT	GACAAGTTTG	TCGCCCTTTA	CGAAGAAGAA	ATTATCAAGG	17760
ATAATACTGG	GAAACCTATC	CGTGTCAAAA	CCCTAGGGCA	AAAGCTTTAT	GTGGACAGTG	17820
TCAAACAGCA	TGATGTGACC	TTTGGAATTG	GGCCAGCAGG	TACAGGGAAG	ACCTTCCTTG .	17880
CAGTGACCTT	GGCAGTGACT	GCCCTTAAAC	GTGGGCAAGT	CAAGCGAATT	ATCCTAACTC	17940
GTCCAGCGGT	GGAAGCGGGA	GAGAGTCTTG	GATTTCTTCC	GGGTGATCTT	AAGGAGAAGG	18000
TGGATCCTTA	CCTTCGTCCT	GTTTACGATG	CCTTGTATCA	AATTCTTGGG	AAAGACCAAA	18060

284 CGACTCGTCT CATGGAGCGT GAAATTATCG AAATTGCGCC CCTTGCCTAT ATGCGTGGCC 18120 GGACCTTGGA TGATGCCTTT GTCATTCTCG ATGAGGCGCA AAACACGACC ATCATGCAGA 18180 TGAAGATGTT CTTGACGCGT TTAGGTTTTC ATTCTAAGAT GATTGTCAAT GGAGATATTA 18240 GTCAGATTGA CCTGCCACGT AATGTCAAGT CCGGTTTGAT TGATGCTCAA GAGAAACTCA 18300 AGAACATCCA TCAGATTGAC TTTGTTCATT TTTCAGCCAA GGATGTGGTT CGCCATCCTG 18360 TTGTCGCTCA GATTATCCGA GCCTATGAAT ATTCTACTGA AGTTGCACAC GACTGATTTT 18420 GAGGAAGTTC GCCTGCAAAA GAATAGACTT GTTCGGTAAC TGTAAAAAGT GTTATACTAT 18480 TTTTATGGAA ACAGTATACG ACAAAGCACA AAAACTTAAC TCAAAAAACT TCAAACTATT 18540 GATTGGTGTC AAAAAGGAAA CCTTTCAACT CATGCTAGAA CACCTGAATT CAGCCTATCA 18600 GATTCAGCAC CGAAAAGGTG GACGTCCACG TAGTCTGCCC ATGGAAGACC AGCTCATTAT 18660 GACCCTCCGT TACTTGCGAT ATTATCCCAC TCAGCGTCTG CTGGCCTTTG ATTTTGGCGT 18720 CGGTGTAGCT ACGGTAAATG CCATCATCAC TTGGGTGGAG GATACACTTC GTGCGTCAGG 18780 TAGCTTTGAT TTGGACCATT TAGAAGCCCC GAGTGCTGCT GTGGCTATTG ACGTGACCGA 18840 AAGTCCGATT CAGCGTCCAA ACAAAACCAA AGCAAAAATT ATTCTGGTAA AAAGAAACGA 18900 CACACCTTAA AAACTCAAAT TATGCTGGAT TTGACGACAC ATAAAGTCTG TCAAATGGCC 18960 TTTTCTGACG GACATACGCA TGATTTTACT CTCTTCAAAG AAAGTATTGG ACAAAGTTTG 19020 CCTGAAACGA CGCTTGCCTT TGTTGACCTA GGTTATTTAG GCATCTTGAA ATTTCATGAG 19080 AATACTTTCA TTCCTGCTAA AAATTCCAAA AATCGCCGCC TGAGTGAGGA TGATAAGCAG 19140 TTAAATAAAG AGATGTCAGC GATACGAATT GAAATTGAAC ATTTTAACGC TAAATTCAAG 19200 ACCTTCCAAA TCATGTCAGT CCCTTATCGT AACCGCAGAA AACGTTTCGA GTTACGGCCG 19260 GAATTAATTT GTGCCATCAT CAATTATGAA GTGAACTAGA TTCCGAACAA GTCTAATATA 19320 CTTTTGAGAG AGGAAAATCC AGTTGTATAG GCTAAAGGTT TTATCCAAAG GTCTGAGACA 19380 ACGATTAGGC ACGATGGAAA GAACTTTTAT GTGGCTGATG ACGATCAGTG CATCTTCCTG 19440 TGTCATAATC ACAGGCACA AGAAAGTAGG AATTTGAAAA GATGATTGAC CAACTATCTA 19500 AGTATTACAG TTGTAGGATA CTAACTGAAA AGGATATTCC AAGTATTTTA TCTTTATATG 19560 AAAGTAATCC TCTGTATTTT CAGCATTGTC CACCAGAGCC AAATTTTGCA ACTGTAAAAG 19620 AGGACATGCT TTGTCTACCT GAAGGTAAAG CTAAGGCTGA TAAGTTTTTT GTTGGATTTT 19680 GGAATGGATC TGACCTTGTG GCTGTTATGG ATTTTGTCTA TGCATATCCT GATGAGGAGA 19740 CTGTTTTAT TGGTTTGTTT ATGGTTGATC AAGCCTATCA GAGAAAAGGG ATTGGTAGTC 19800 ATATTGTGAC AGAAGCACTA GCTTATTTTG CTAAGAACTT TCGAAAGGCA CGTTTGGCTT 19860

ATGTTAAGGG AAATCCGCA	TCTCAGCATT	TTTGGGAAAA	GCAGGGCTTT	AAATCAATTG	19920
GATGCGAGGT TAAGCAAGA	A CTCTATACGG	TTGTTATCGC	TGAACAGAGC	CTAGAAGATT	19980
AGAAATGGCA TCAAGTAAG	A ACTATTTGGA	ATTTGTTTTG	GAACAATTAT	CAGGATTAGA	20040
TGATGTGACT TACCGTTCC	TGATGGGGGA	GTATATTCTT	TACTTCCGCG	GCAAGATTAT	20100
TGGCGGCATT TATGACGAT	C GCTTTTTAGT	TAAACCCGTG	CAAGCAGTCT	TAGATAAGAT	20160
TGACCAATCT TCTTTTGAG	ттссатасаа	AGGTGCCAAA	GAAATGATTT	GAGTGGAAGA	20220
ACTTGATAAT AAGATGTTT	TATAAGACCT	AATTTTAGCT	ATGTATAACC	AACTGCCAAC	20280
GCCCAAACCT AAAAAGAAA	AGCAAGGGTG	AACGAAGTAA	AAAAGAAGTC	TGCTAAGGCC	20340
CTGTCTTTGC ACGGGTAAA	A TTTTATATAT	AAAAAGAAGC	TGGGACTAAA	GAGCTCAGCT	20400
TCCTTTGGTT TATATAATT	TCATTACAAG	ACGAAGTGGT	TGGGCGAAAC	TCTGTTGACT	20460
TTATTCAATT TAGAGTTTC	TATGCACAAT	TGAGTCTGGA	ACGAAAGTCT	CCAGTTGCAA	20520
AGTATACAGT ACAATAAAC	AACGATGTAA	TAGCTGATGA	CACAAAGCAC	AGTGGGTAGG	20580
ACTTGCGAAG TCACCCTTT	CTTTTCAAAA	ТТТАТАСТАА	ATCATTGATA	TCAGTGTAGT	20640
CACGATTAAG TCCTTGAGC	ACTGGTAGGT	TAGTCAAGTA	ACCTTGATAA	GTAGTCACAC	20700
CTTGACGCAA GCCTTCATC	TCAGAGATTG	CTTGTGCGAA	TCCTTTGCCA	GCCAAAGCTT	20760
CGATATAAGG AAGAGTGAC	A TTGGTTAGGG	CGATGGTTGA	AGTGCGAGCA	ACCGCACCAG	20820
GGATATTGGC AACGGCATAG	TGGAGAACAC	CGTGTTTTTC	ATAGACGGGT	TCATCGTGCG	20880
TTGTCACACG GTCAGCTGT	TCGATAACGC	CACCTTGGTC	AACAGCAACG	TCAACGATAC	20940
AGAGCCTGGA CGCATTTGT	TGACCATCTC	ATCTGTCACC	AATTCCGGTG	CTTTTGCACC	21000
AGGGATGAGA ATGGCTCCA	TCACCACATC	AGCATCTCTC	ACACTTGCTT	CAATGTTGAA	21060
TGAATTAGAC ATAAGAGTT	GAATTTGACT	TCCAAAGACT	TCTTCTAGAA	CTGAGAGACG	21120
CTTGGAACTA ATATCTAAA	TAGTCACTTG	AGCACCAAGA	CCAAGGGCGA	TGCGGGCAGC	21180
ATGTGTACCG ACGACACCA	CACCGATGAT	AGTTACTTTT	CCTTTTGGAA	CACCTGGTAC	21240
ACCACCAAGT AGAACACCAG	AGCCACCAGC	TTGCTTAGTA	AGGAAGTGAG	CTCCGATTTG	21300
AACAGCCATA CGACCTGCAA	CCTCACTCAT	AGGAACGAGG	AGCGGTAGTT	GTCCTTGATT	21360
GTCACGAACA GTTTCAGTTC	TTTTTGCTGT	TAACATAGCA	TCTGCTAATT	CTGGAGCAGC .	21420
GGCCATGTGC AAGTAGGTGA	AGAGAAGAAG	ATCGTCGCGC	AAGTAACCGT	ATTCAGAACT	21480
TAAAGATTCT TTTACTTTC	CAACCAACTC	TGCTGCCCAA	GCTTCACCAG	CAGTAGCGAC	21540
AATCTCAGCT CCTTGCTTT	GATAGTCAGC	ATCAGTAAAG	CCAGAACCGA	GACCAGCATT	21600

286 TGTTTCGATA AGGACACGAT GACCACGACT AACTAAGCTA TGAACACCTG CAGGTGTGAG 21660 GGCGACACGG TTTTCGTTAT TTTTAATTTC TTTTGGGATT CCGATTAACA TTGAGATAAC 21720 CTACCTTCA ATTGACGGTC TTGTTTTGGT TGTCACATTC CAGTTCATAA ATCAAAAATG 21780 TGACGGTTTC ATTGTATATG AAACCGCTTC AAAAATCAAG AAAAACTTGT CATCCAAATT 21840 TTTTTATGCT AGACTAGTGA AAATCAAGCT CTAATGGAGG GAAAAGTATG GAATCAATAT 21900 TTGTGAAATT TGCCCAGTAT CCGTCTATAG AAACGGAGCG TTTATTGCTC AGACCTGTAA 21960 CTTTGGATGA TGCGGAACAA TGTTTGACTA TGCCTCGGAC AAGGGTAATA CACGTTACAC 22020 TTTTCCAACC AATCAAAGCT TGGAAGAAAC CAAGAATAAC ATTGCTCAGT TCTACTTGGC 22080 TAATCCCTTG GGACGTTGGG GAATAGAACT AAAAAGCAAT GGTCAGTTTA TTGGAACCAT 22140 TGACTTGCAC AAGATTGATT CTGTTCTTAA GAAGGCAGCT ATTGGCTACA TTATCAATAA 22200 AAAGTATTGG AATCAAGGAT TAACGACAGA AGCCAATCGT GCTGTGATTG AGCTAGCTTT 22260 TGAGAAGATA GGGATGAATA AGTTGACTGC CCTTCACGAT AAGGCTAATC CCGCGTCAGG 22320 AAAGGTCATG GAGAAATCAG GCATGCGTTT TTCCCATGCA GAACCATATG CTTGTATGGA 22380 CCAGCATGAA AAAGGCCGAA TCGTGACAAG AGTTCATTAT GTCTTGACCA AGGAAGACTA 22440 TTTTGCAAAT AAATAAGCAG TTGAAAAGAA ATTTTTCGAC TGTTTTTTCT TCCTCTTACG 22500 AATAATCTAA GAGAGGAGAA AATATGGAAG CAATTATCGA GAAAATCAAA GAGTATAAAA 22560 TCATCGTCAT CTGTACTGGT CTGGGCTTGC TTGTAGGAGG ATTTTTCCTG CTAAAACCAG 22620 CTCCACAAAC ACCTGTCAAA GAGACGAATT TGCAGGCTGA AGTTGCAGGT GTTTCCAAGG 22680 ACTCATCGAC CGAAAAGGAA GTGAAGAAGG AAGAAAAGGA AGAACCCCTT GAACAAGATC 22740 TAATCACAGT AGATGTCAAA GGTGCTGTCA AATCGCCAGG GATTTATGAC TTGCCTGTAG 22800 GTAGTCGAGT CAATGATGCT GTTCAGAAGG CTGGTGGCTT GACAGAGCAA GCAGACAGCA 22860 AGTCGCTCAA TCTAGCTCAG AAAGTTAGTG ATGAGGCTCT GGTTTACGTT CCTACTAAGG 22920 GAGAAGAAGC AGTTAGTCAA CAGACTGGTT CGGGGACAGC TTCTTCAACA AGCAAGGAAA 22980 AGAAGGTCAA TCTCAACAAG GCCAGTCTGG AAGAACTCAA GCAGGTCAAG GGACTGGGAG 23040 GAAAACGAGC TCAGGACATT ATTGACCATC GTGAGGCAAA TGGCAAGTTC AAGTCAGTAG 23100 ACGAGCTCAA GAAGGTCTCT GGCATTGGTG GCAAAACAAT AGAAAAGCTT AAAGACTATG 23160 TTACAGTGGA TTAAGAATTT CTCTATTCCC CTAATTTACC TGAGTTTTCT ATTACTTTGG 23220 CTTTATTACG CTATTTCTC AGCATCTTAT CTTGCTTTGT TGGGCTTTGT TTTTCTGCTA 23280 GTCTGTCTCT TTATCCAATT TCCGTGGAAA TCTGCTGGTA AAGTTCTAAT AATTTGCGGA 23340 ATCTTTGGAT TTTGGTTTGT TTTTCAAAAT TGGCAACAGA GTCAAGCGAG TCAAAATCTG 23400

GCGGATTCTG	TTGAAAGGGT	ACGGATTTTG	CCTGATACTA	TTAAGGTTAA	TGGTGATAGT	23460
CTATCCTTTC	GTGGCAAGTC	TAACGGTCGT	GCTTTCCAAG	ТСТАТТАТАА	ACTCCAGTCC	23520
GAGGAGGAGA	AAGAAGCCTT	TCAAGCTTTA	ACTGACCTGC	ATGAGATAGG	ACTAGAAGGG	23580
AAGCTTTCGG	AGCCAGAAGG	GCAGAGAAAT	TTTGGTGGCT	ттааттасса	AGCCTATCTG	23640
AAGACTCAGG	GAATTTACCA	GACTCTCAAT	АТСААААСАА	TCCAGTCACT	TCAAAAGATT	23700
GGCAGTTGGG	ATATAGGAGA	AAACTTGTCC	AGTTTACGTC	GAAAGGCTGT	GGTTTGGATT	23760
AAGACGCACT	TTCCAGACCC	TATGGGCAAT	TACATGACAG	GACTCTTGCT	GGGACATCTG	23820
GACACCGACT	TTGAGGAGAT	GAATGAGCTT	TATTCCAGTC	TAGGAATTAT	CCACCTCTTT	23880
GCCCTATCTG	GCATGCAGGT	AGGTTTTTTC	ATGAATGGAT	TTAAGAAACT	TCTCTTGCGA	23940
TTGGGCTTGA	CCCAAGAAAA	GTTGAAATGG	CTGACTTATC	CCTTTTCCCT	TATCTATGCG	24000
GGACTAACTG	GATTTTCAGC	ATCGGTTATT	CGCAGTCTCT	TGCAAAAGCT	ACTGGCTCAA	24060
CATGGGGTTA	AGGCTTGGA	TAATTTTGCC	TTGACGGTGC	TTGTCCTCTT	TATTGTCATG	24120
CCAAACTTTT	TCTTGACAGC	AGGAGGAGTC	TTGTCCTGCG	CTTATGCTTT	TATCCTGACC	24180
ATGACCAGCA	AAGAAGGGGA	GGGGCTCAAG	GCTGTTACTA	GTGAAAGTCT	AGTCATCTCC	24240
TTGGGCATAT	TGCCCATTCT	ATCCTTCTAT	TTTGCGGAAT	TTCAACCTTG	GTCTATCCTT	24300
TTGACCTTTG	TCTTTTCCTT	TCTTTTTGAC	TTGGTCTTCT	TACCGCTCTT	GTCTATCTTA	24360
TTTGTCCTTT	CCTTTCTCTA	TCCAGTCATT	CAGCTGAACT	TTATCTTTGA	ATGGTTAGAG	24420
GGCATTATTC	GCTTGGTCTC	GCAGGTGGCA	AGGAGACCAC	TTGTCTTTGG	TCAACCCAAC	24480
GCATGGCTTT	TAATCTTATT	GTTAATTTCC	TTGGCTTTGG	TCTATGATTT	GAGGAAAAAC	24540
ATTAAAGGAT	TAACAGTATT	GAGTTTATTG	ATTACAGGTC	TCTTTTTCCT	TACCAAGTAT	24600
CCACTGGAAA	ATGAAATCAC	CATGCTGGAT	GTGGGGCAAG	GAGAAAGTAT	TTTCTACGGG	24660
ATGTAACTGG	GAAAACCATT	CTCATAGATG	TAGGTGGTAA	GGCAGAATCT	TATAAGAAAA	24720
TCAAAAAATG	GCAAGAAAAG	ATGACGACCA	GCAATGCCCA	GCGAACCTTG	ATTCCCTATC	24780
TCAAAAGTCG	AGGAGTAGCT	AAGATTGACC	AGCTAATTTT	GACTAACACG	GACAAGGAGC	24840
ATGTTGGAGA	TTTGTCAGAG	ATGACCAAGG	CTTTCCATGT	AGGGGAGATT	CTAGTATCAA	24900
AAGACAGTCT	GAAACAGAAG	GAATTTGTGG	CAGAACTACA	GGCGACTCAA	ACAAAGGTGC -	24960
GTAGTATGAT	AGTAGGGGAG	AACTTGCCCA	TTTTTGGAAG	TCAGTTAGAA	GTTCTATCTC	25020
CAAGGAAAAT	GGGAGATGGA	GGACACGATG	ATACCCTAGT	TCTGTATGGG	AAATTCTTGG	25080
ATAAGCAATT	TCTCTTCACG	GGAAATTTGG	AGGAGAAAGG	AGAGAAGGAC	TTGCTGAAGC	25140

NOTE THE STATE OF	CMMC > > CM >	> > magramac >	288	1010000110		25222
	CTTGAAAGTA					25200
	CTTTCTAGAA					25260
GCAATCGAAT	GAAACTCCCC	CATCAGGAAA	CATTGACACG	ACTGGAAGGT	ATCAATAGCA	25320
AAGTTTATCG	AACTGACCAG	CAAGGAGCTA	TACGTTTTAA	GGGGTTGGAT	AGTTGGAAAA	25380
TCGAAAGTGT	TCGATAGGAA	GGATAAATGT	TGTAGATTAG	TGAAATAAAC	TAAAAATTTG	25440
TTGCATAATA	ATGATAAAA	TGGTATAATG	AAAACGTATT	CAATATTGAG	GATATAAAAT	25500
CATTAAAAAT	CAGCAAAAGT	TGTTTTATTA	GTTAGTTTAT	AATCTATTGG	TCTTCTTCAG	25560
TCCAGTGTAT	CTGCTGTGAC	AGTCACTAAA	AGTTACAAGT	ATGATTGGAA	TACGGTTTGG	25620
GAATATAGTA	CCAACTATCA	CGACCATCAG	TATGCTTGGA	TTCCGTCATG	GTCTCGTTAT	25680
GACAGCTATT	CTGAGTATAA	AGTTGGCGGA	GGCTGGAACT	ACGCTCGTTA	TGAGGTCATA	25740
AACTATTACA	GCGGAGGCTA	TTAATTCTTA	AAGAGTGAGA	AAAAGGAGGG	CTAGATATGT	25800
TGCAGCTTAC	TCATGTGACC	TTAAAAACGC	GACAAGTCAT	CTTGCAAGAT	GTGGATTTCA	25860
ССТТТААААА	GGGTAGGGTT	TATGGTCTTC	TTGCTATCAA	TGGCTCTGGA	AAGACGACCC	25920
TGTTCCGTGC	CATTAGCAAT	TTAATTCCCA	TAAGTAGTGG	AAATATCGCA	GCCCCTCCTT	25980
CTTTATTTTA	TTATGAGAGT	ATTGAATGGC	TGGATGGAAA	CTTAAGTGGG	ATGGACTACC	26040
TTCGTCTTAT	CAAAAACATC	TGGAAGTCAG	GTCTGAACTT	GAGGGATGAA	ATCGCCTATT	26100
GGGAAATGTC	TGACTATATC	AGTCTTCCCA	TTCGCAAGTA	TTCCTTAGGC	ATGAAGCAAC	26160
GCTTGGTGAT	TGCCATGTAT	TTCCTCAGTC	AGGCCAAATG	CTGGCTCATG	GATGAGATTA	26220
CAAATGGCTT	AGATGAGTAT	TATCGACAGA	AGTTTTTTGA	TAGGCTAGCA	САЛАТСБАТА	26280
GACAAGAACA	GCTGGTTCTT	TTAAGTTCCC	ACTATAAGGA	AGAGTTGGTT	GATGTCTGCG	26340
ATAGAGTAGT	AACCATTCAT	CAGGGGCAGA	TAGAAGAGGT	TTAGTTTATG	AAAGATGTTA	26400
GTCTATTTTT	ATTGAAAAAA	GTTTTCAAAA	GCCGCTTAAA	CTGGATTGTC	TTAGCTTTAT	26460
TTGTATCTGT	ACTCGGTGTT	ACCTTTTATT	TAAATAGTCA	GACTGCAAAC	TCACACAGCT	26520
TGGAGAGCAG	GTTGGAAAGT	CGCATTGCAG	CCAACGAGAG	GGCTATCAAT	GAAAATGAAG	26580
AGAAACTCTC	CCAAATGTCT	GATACCAGCT	CGGAGGAATA	CCAGTTTGCT	АААААТААТТ	26640
TAGACGTGCA	AAAAAATCTT	TTGACGCGAA	AGACAGAAAT	TCTGACTTTA	TTAAAAGAAG	26700
GGCGCTGGAA	AGAAGCCTAC	TATTTGCAGT	GGCAAGATGA	AGAGAAGAAT	TATGAATTTG	26760
TATCAAATGA	CCCGACTGCT	AGCCCTGGCT	TAAAAATGGG	GGTTGACCGC	GAACGGAAGA	26820
TTTACCAAGC	CCTGTATCCC	TTGAACATAA	AAGCACATAC	TTTGGAGTTT	CCGACCCACG	26880
GGATTGATCA	GATTGTCTGG	ATTTTAGAGG	TTATCATCCC	AAGTTTGTTT	GTGGTTGCTA	26940

TTATTTTAT	GCTAACACAA	CTATTTGCAG	AAAGATATCA	AAATCATCTG	GACACAGCTC	27000
ACTTATATCC	ТСТТТСАААА	GTGACATTTG	CAATATCCTC	TCTTGGAGTT	GGAGTGGGAT	27060
ATGTAACTGT	GCTGTTTATC	GGAATCTGTG	GCTTTTCTTT	TCTAGTGGGA	AGTCTGATAA	2712
GTGGTTTTGG	ACAGTTAGAT	TATCCCTACC	CAATTTATAG	CTTAGTGAAT	CAAGAAGTAA	27180
CTATTGGGAA	AATACAAGAT	GTATTATTTC	CTGGCTTGCT	CTTAGCTTTC	TTAGCCTTTA	27240
TCGTCATTGT	GGAAGTTGTG	TACTTGATTG	CTTACTTTTT	CAAGCAAAAA	ATGCCTGTCC	27300
TCTTTCTTTC	ACTCATTGGG	ATTGTTGGCT	TATTGTTTGG	TATCCAAACC	ATTCAGCCTC	27360
TTCAAAGGAT	TGCACATCTG	ATTCCCTTTA	CTTACTTGCG	TTCAGTGGAG	ATTTTATCTG	27420
GAAGATTACC	TAAGCAGATT	GATAATGTCG	ATCTAAATTG	GAGCATGGGA	ATGGTCTTAC	27480
TTCCTTGCCT	GATTATCTTT	TTGCTATTGG	GAATTCTATT	TATTGAAAGA	TGGGGAAGTT	27540
CACAGAAAA	AGAATTTTTT	AATAGATTCT	AGCTTTCCTA	TAGGTAGGGA	AAATAAGTAA	27600
AAACTAACAT	AGAGAGGGAA	TCAACTTGAT	TCTCTCTTTT	TGATTCGAAA	ACCAAACCAA	27660
AATACAAACA	CAAACTTTTC	AAAAAATAAC	TTTTTATCTT	GACAAGAGCT	AGAAAACTTG	27720
GTATCATATA	AAAGTTGAGA	AAAGCAGAAG	TGAGAGCTTC	TCGCCTTGTG	ACATTAAGTT	27780
GCCTGGCCCT	ACGGATGAAA	AGTTTCGAAG	AAACGCTATC	ATAACGTGCG	GGCTTGTATA	27840
TTTACAAGTC	CGCTATTGTT	TTTCTCTAAT	AAAACAAAAG	AGGTGAAAAC	CATAGCAAAG	27900
CAAGACTTAT	TCATCAATGA	TGAGATTCGT	GTACGTGAAG	TTCGCTTGAT	TGGTCTTGAA	27960
GGAGAACAGC	TAGGTATCAA	GCCACTCAGT	GAAGCGCAAG	CTTTGGCTGA	TAACGCTAAT	28020
GTTGACCTAG	TATTGATTCA	ACCCCAAGCC	AAACCGCCTG	TTGCAAAAAT	TATGGACTAC	28080
GGTAAGTTCA	AATTTGAGTA	CCAGAAGAAG	CAAAAAGAAC	AACGTAAAAA	ACAAAGCGTT	28140
GTTACTGTGA	AAGAAGTTCG	TCTAAGTCCG	G			28171

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7147 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CCGCTCAACT TTTGCAATCA AGGCTAAGTA GACAGCAGCA AATTTCATAT TGTATAATTT 60 CTGACTCATA CTTCTCTTT TCTATGTGTA CTAGTATAAA TAAGAAAAAG AAGGCCGTCA 120

٠				290			
	AGCCTTCTTT	TGATTTATTC	TTCTGCTTCA	TCTTCTGTAA	ATTGACTATT	GTACAAGTCA	18
•	GCGTAGAAGC	CACCTTGCGC	CATCAGTTCC	TCATAGTTGC	CTTGCTCGAT	GATATTTCCA	24
•	PCTTTCATGA	CCAAGATCAA	GTCTGCATTT	CGGATGGTTG	ACAAGCGGTG	GGCAATGACA	30
2	AAGGATGTGC	GTCCTTCCAT	CAAACGGTCC	ATGGCTTTTT	GGATCAATTC	CTCTGTCCGT	36
•	GTGTCAACAG	AAGAAGTCGC	СТСАТССААА	ATCAAAAGCG	GTGCATCCTT	AAGAAGGCA	420
(CGAGCAATAG	TCAATAGTTG	TTTTTGTCTT	ACAGACAAGG	TCACGGTGTC	ATCCAAGATG	486
•	GTATCATAGC	CATCTGGCAA	GGTCATAATA	AAGTGGTGAA	TTCCCACAGC	CTTACTAGCT	540
•	PCCATCATTC	GTTCATCACT	AATCCCTATT	TGATTATAGA	TGAGATTGTC	TCGAATAGTT	600
•	CCTTCAAAGA	GCCAGGTATC	CTGCAAGACC	ATTGAAAAGG	CATCATGCAC	TTCTGAACGC	660
(GTCATAGCCT	TGGTATCCAC	ACCATCAATG	CGAATACTTC	CCTTATCAAT	CTCATAGAAT	720
•	ГТСАТСАААА	GATTGACAAT	GGTTGTCTTA	CCAGCCCCAG	TCGGCCCAAC	AATGGCAACC	780
•	TTTTGACCAG	CATGAGCTGT	CGCAGAGAAG	TCATAGTCTT	GAACATTGAC	ACCGTCCACC	840
1	AGAATTTCTC	CTGCTGACAC	GTCGTAGAAA	CGTGGAATCA	GATTGACCAG	AGTTGATTTA	900
•	CCAGAACCTG	TTGACCCAAT	AAAGGCCACT	GTTTGACCAG	TTTCTGCTTT	AAAGCTAACA	960
•	rgttcaataa	CTGCCTCCGA	ATTTGCCGCA	TAGCGgAAGG	TCACATCCTT	AAACTCGACC	1020
5	rgacctttga	AGTTTTCATC	AGTCAGCTGC	ACTTGAACAG	GGTTTTGGAT	AGAAGAATGC	1080
7	AAATCTAAAA	CTTGATTAAT	CCGCTTAGCA	GAGACCATAG	TTCGGGGAAG	AACGATGAAG	1140
2	AGTGCTCCCA	TGAGAAGGAA	GCCCATGACA	ACCTACATGG	CATAAGACAT	GAAAACAATC	1200
7	TGTCACTAA	AGAGAGGCAG	ACGCGCTATC	GGAGCAGCGT	CGTTAATCAC	ATAGGCCCCA	1260
3	TCCAGTAAA	TCGCCACACT	CAAACCACTT	GAAATCCCCA	TCATGATAGG	АТТСААААТА	1320
C	CCATAAGAC	GGTTGACAAA	CAAATTCAAA	CGGGTCAATT	CATCATTTAC	TGCTGCAAAT	1380
2	TTTCATTT	GATAATCCTC	TGCATTGTAG	GCACGAACGA	CACGAATACC	TGTTAAACTC	1440
7	CACGAGTGA	TACTGTTCAG	TTTATCTGTC	AGCCCCTGAA	TCAAGGACTG	TTTTGGAAAG	1500
C	SCTAGCGTCA	TCAAAACGGT	CGTCATCAGG	ACGTTGATAA	TCACTGCCAC	AAGTACGGCC	1560
C	AGAGCCAGT	ATTCTGAATG	ACCTAAAATC	TTCCCAATAG	CCCAGATAGC	CATAATTGAA	1620
¢	CACGCGTTA	CCACTTGCAA	GCCCATAGTA	ATCAACATTT	GAACTTGAGT	AATGTCATTG	1680
C	STAGTACGCG	TCAAGAGGCT	AGGAATTGAA	AATTTCTTAA	TCTCTGTCTG	CGAGTAATCC	1740
F	AAACTCGGT	тааааататс	ACTTCTCAGC	CTACTAGTAT	AAGAAGCCGC	CACTCGGGAT	1800
C	CAAAAAATC	CAACTGCAAC	TACGGACAAG	AAGGCAAGAA	AGGACATTCC	CATCATCATG	1860
c	TTGCCGACT	GCCACAACTC	АТСТАААТТА	GTTTCTTGAC	TACCTAGCAA	ATCCGTAATT	1920

TTCGAGATAT	AGGTCGGCAC	TTCCAACTCT	AGATAGACCG	AAAAGCAAGT	AAAGAGAATG	1980
GCTAGTAAAA	TCATCCCCCA	ттстттста	CTAATTCTTT	TGGCTAATTT	CTTTATTCTC	2040
TCCTCCTATT	CCCTTGATAT	TTTGCCTGTA	GTTGACCGAG	AACCTTCTCA	AAAATCAGTA	2100
ATTCATCTTC	ATCAATGTCT	TCCATCAACT	GCTTGTCTAT	GCGTTCAAAA	AAAGCCTTAA	2160
CCTGTTGCAT	CTGAGAACGT	GCTTTGTCCG	TCAGACGAAC	AAACTTAGCC	CGCTTATCAA	2220
CAGGACTCGC	CTCCAATTCC	ACCAAACCAT	TTTGCACTAT	ACGCTTAACC	AGATTACTAG	2280
CAACAGGCTT	GGTAATATTG	AGTTCCTGCT	CGATATCTTT	AATCAAGACC	AAGTCTTGGT	2340
TTTTCTCGCG	АТТАТССААА	AAACGCACAA	CCTGACCTTG	CGGCCCACCC	АТАААТТСАА	2400
TGCCGCAACG	TTTGGCTTCC	TTTTGCACCA	TCAGGTGAAT	TTGATGACCA	AAACGCTTAA	2460
AGACTAACAT	CGGTTTATCC	ATAATCTCCC	CCTTCTAAAT	AAAAATAGTT	CTCTGGAGAA	2520
TAATTAAATT	TCTATGAGAA	CTATTTTCTT	GATTAAAAA	ATCCCAAGTG	ATTTTCTCAC	2580
TTAGGATCAT	GTTCTATAGG	TTAAATTAAA	ACCCATCTAC	GTTCGTATAA	ATCTTTTGGA	2640
CGTCTTCGTC	GTCTTCAAGA	ACGCTGTAAA	GTTTTTCAAA	GGTTTCAAGG	TCTTCGCCTG	2700
ACAATTCCAC	TTCTGACTGA	GGAATCATTT	CCAATTCAGT	CACTTGGAAT	TCTTCAATAC	2760
CAGACTCACG	GAGGGCAACG	ATAGCCTTGT	GAAGGTCAGT	TGGCGCTGTG	TAAACTGTGA	2820
TTGTACCTTC	TTGTGCTTCT	ACGTCATCCA	CATCCACATC	CGCTTCGAGC	AATTGCTCAA	2880
AGACTGCGTC	CGCATCTTCA	CCTCCAAATA	CAATAACACC	TTTGTTGTCA	AAGAGGTAAG	2940
AAACAGAACC	TGAAGCGCCC	ATGTTTCCGC	CGTTTTTACC	AAAGGCTGCA	CGGACATTGG	3000
CTGCTGTACG	GTTGACGTTA	GAAGTCAAAG	TATCCACAAT	TAGCATAGAG	CCATTTGGCC	3060
CAAAACCTTC	GTAACGTCCT	TCTGTAAAGG	TTTCGTCTGT	GTTTCCTTTG	GCTTTATCAA	3120
TCGCTTTATC	GATAATGTGT	TTTGGCACTT	GGGCTTGTTT	AGCACGGTCG	ATAACGAATT	3180
TCAAAGCTGA	GTTTGATTCT	GGATCTGGAT	CACCTTTTTT	AGCTGCTACA	TAGATTTCTA	3240
CACCAAATTT	TGCATATACT	TTAGAGTTAG	CTCCATCTTT	AGCCGTTTTC	TTGGCTACGA	3300
TATTGGCCCA	TTTACGTCCC	ATTAGGAATC	TCCTTTTTTC	ACATTTTAAT	СТТТСТТАТТ	3360
ATAACACAAG	TTTTTTTGAT	TTTCACTAGA	GGAAATGGAT	TTTATTAGCA	AATCAAGCTA	3420
GGATAGCACT	TTACCTGCTA	AGATGGTCTT	GCCTTTCTAT	CTTTATCAAC	AGGCACTCAT	3480
CCACATTCAA .	ААААСАААСТ	AGACCATTAT	CTGCAAATAG	AAAGTTTCAG	CCAAGTTTGA	3540
CAAAGTCAGC	TCAAATTACT	GTTTGAAGTT	TGTAGATATA	AGCGACAAAA	ACAATCATAC	3600
TGCACCTTTT	GTTGACAGTC	TACTCCAGAC	ATATCATAGT	TCAAGTAAAT	ACTTTGAAAT	3660

			292			
TCAACAGTTC	TTATAGGCGC	TATTGTATTC	TAAGAAATCA	ATAGAAGAGT	TTCTAAGCAA	3720
ACCTCTAATA	CTCAATAAAA	ATCAAAGAGC	AAACTAGAAA	GCTAGCCTCA	GGTTGCTCAA	3780
AACACTGTTT	TGAGGTTGCG	GATGGGGCTG	ACATGGTTTG	AAGAGATTTT	CGAAGAGTAT	3840
AATTTACGTG	TTCCCAAGAT	GGAGAAGTTA	GACTAGTACA	CTGGCACTTC	TAAAACATTG	3900
CTAGCAATTG	ATTTGTTCAT	ATTTAATTTC	ATTTTTTCCA	TAAATGGGTA	TTAGATATAA	3960
ACAGCAAAAT	ATTTCCGATA	CGTGTCGTTC	TTGAATTTCC	ААТСАТСТАА	AACAAGTAAA	4020
GGATAATCAA	TCCCCTGTAT	ATCAAGGAAT	TGGCTACCCT	TTTTACTTTT	TTACACATTC	4080
TGTTTGATAG	ATTCATTTTA	ACATCACGAG	CATACTCCAA	TGGAAATCGC	TAGGCAAGAG	4140
ATAAACTTTC	AGATATCCGC	AGAGAGATCA	TCGCCTCTTT	TTGTCGCAAG	CATTCTCCTC	4200
TCCTAGTCAT	TTTCTACCTT	ATCTTCTACC	TGAGGATAGA	GAGTTGTTCC	CCAAATAGAA	4260
ATCGTCCGCT	TACGCACTAG	TGGCAAATCG	GTTTTTTCAT	AAACCGTACG	CCACCATTCC	4320
CAGGCAAGCC	CGGTACACTC	TCTAATTTTG	ACAGAGAGAT	TACGAACATT	CCCTTTTAAA	4380
GGAATACTAG	TGGTAAAGTG	AGCCGTTAAA	TCCTGCCCAT	TTCTGTCCCA	AGCCTTAGGA	4440
GTCAAGACTT	CCTTACCTTG	ATGATCATAG	GATAATTCAT	TCCAAGTAAT	ATAATATTGG	4500
GCAACATAGG	CACCACTATG	ATCCAGCAGT	AAATCTCCGT	TTCTGTAAGC	TGTAACCTTA	4560
GTCTCAACAT	AGTCTGTACT	ATTTTGAAAG	GTCGCAACTA	CATTGTCACG	TAAAAAAGAA	4620
GTTGTATAGG	AAATCGGCAA	GCCTGGATGA	TCTGCTGTAA	AGCGACTGCC	TTCTTGAATC	4680
AAGTCCTCTA	CCATATCCAC	CTTGCCTGTT	ACAACTCGGG	CACCCGAACT	TGGGTCGCCC	4740
ССТААААТАА	CCGCCTTCAC	TTCTGTATTG	TCCAAAATCT	GTTTCCACTC	TGTCTGAGGA	4800
GCTACCTTGA	CTCCTTTTAT	CAAAGCTTCA	AAAGCAGCCT	CTACTTCATC	ACTCTTACTC	4860
GTGGTTTCCA	ACTTGAGATA	GACTTGGCGC	CCATAAGCAA	CACTCGAAAT	ATAGACCAAA	4920
GGACGCTCTG	CAGAAATTCC	TCTCTGTTTT	AAATCCTCTA	CCGTTACAGT	ATCTTGAAAC	4980
ACATCTCCTG	GATTTTTAAC	AGCATCTACG	CTGACTGTAT	AATAAATCTG	СТТААААТТА	5040
ACAATCTGAA	TCTGCTTTTC	GCCTGAATGG	ACAGAGTTAA	AATCAATATC	AAGAGAATTC	5100
CCTGTCTTTT	CAAAGTCAGA	ACCAAACTTG	ACCTTGAGTT	GTTCCATGCT	GTGAGCCGTG	5160
ATTTTTTCAT	ACTGCATTCT	AGCTGGGACA	TTATTGACCT	GACCATAATC	TTGATGCCAC	5220
TTAGCCAACA	AATCGTTTAC	CGCTCCGCGA	ACACTTGAAT	TGCTGGGGTC	TTCCACTTGG	5280

AGAAAGCTAT CGCTACTTGC CAAACCAGGC AAATCAATAC TATAAGTCAT CGGAGCACGA

TCGACCGCAA GAAGAGTGGG ATTATTCTCT AACAAGGTCT CATCCACTAC GAGAAGTGCT

CCAGGATAGA GGCGACTGTC GTTGGTAGCT GTTACAGAAA TATCACTTGT ATTTGTCGAC

5340

5400

AAGCTCCGCT	TCTTTCTTTC	GATAACAACA	AACTCATCGG	GTAGCTGATT	ACCCTCTTTG	5520
ATGAAACGAT	TTTCAATACT	TTCTCCCTGA	TGGGTCAAGA	GTTTCTTTT	ATCGTAATTC	5580
ATAGCTAGTA	TAAAGTCATT	TACTGCTTTA	TTTGCCATCT	TCTACCTCCT	AATAAGTTCC	5640
TGGATTGAGT	TGCATAAACT	CAGACTTGTT	CAGCGAAATC	AGCCGTGGTT	GGACTAAGTA	5700
ATCCAAAATT	TCCTCGTACA	ATTCTTCTGA	GACATTGCGT	CGCCGTCTGG	CTAAATAAGA	5760
agtcggaatg	ACCGTATTAT	CCAACATAAA	TACCTTATCT	AAGTCAATCA	AGGTTGGTCT	5820
TGTAAAAGGA	TTACGAGCTA	GATCCGGCTC	TTCTATCATA	AAGTTCTTGA	CCAAACGTCT	5880
GGTCAAGAGA	GCTGGTTTGA	AGGTCTGATT	TTTAACCAAC	TCTTTGTTT	TAGTCATGCT	5940
GTTGTCAATA	CAGATATACA	TATGATTCTT	CACAGCCAAA	TCGCTACTAA	TAGTCGGAAA	6000
AGGCAAATAA	AGAGCTACAA	CATCTCCTCT	CTTAATCAAG	CAAGAGCACC	CCCTTTTCTC	6060
CTAATGTAAC	ATAGACAGGA	TTGACCAAGT	CTTCTGATTG	ACTCAGAATT	TCCAAAGTTT	6120
GAGTTTGGCG	CGCTGTCAAT	TTAGTAGCAT	CTTGTCTCTT	СААТАСАААА	TGCTTGTCGC	6180
CAATAACCTT	GACAATATAA	TCCTTCTCCA	AAGCTGACTG	GTAAATCCAC	ATCAGATGTT	6240
STCTGTCCTG	AGAACTCAAG	AGAGAAGGAT	TTTCAAGCCT	CCCGATAGTC	TGATAAAAAT	6300
CAAAAACAGG	AGCTAACTCC	TGCCAATCTG	ATTGGCTAGT	TGTCAAGGCT	AGAAAAAGGG	6360
CTTTGCGAGC	TGATACTTCT	TGGTTAGCCT	TGAGAGTTAC	TTTCCCCTCC	AAGTTTTTTA	6420
GAAATCGGGA	AACTCCAGAA	AGCAAATTTT	TCTCTAACTG	CGAGAAATAA	AAACCTTTCG	6480
PTCCCAGACA	TAAGTCTTTC	ATGTCGCTTT	CTCTAGCAAA	TAAGAGCTCA	AACATTTGAT	6540
AGTAAAAGAA	AAATATCTGG	CACTGGGTCG	CGCTCATCTT	TTCCTTATCG	GCTTCTTTTT	6600
TTAACCAGAG	CAAGGGCGAC	AGGTAGCTGG	ATTGAGACAT	TTCCTCTACC	TCCTACTCTT	6660
TTTAACTGG	AGCATCTGCA	CTAGCTGCCA	CTTCTTTTGA	CTGGATACTT	TCCCACTGGT	6720
PAATCTCCTC	TGAGATAAGA	CCTTCGCATG	TCTTGACAAA	TAGGGCAAAA	GCCTTGGTCT	6780
TCCTGCATA	TTTCTCCGTT	TGGCATTGAT	AGAGGAATTT	TTCTTTCTCC	AGGAGTTGCG	6840
CAGTTTTTTG	GTAAGAAATC	СААТТТТССТ	TTGCATTATA	CAAATTGATA	ATCCCCTCAC	6900
CAGCAAGCC	GAGACTGGAT	AAGGCAACCG	AAATCAAACG	GTAGCGATCA	CCTGGCATAG	6960
SAATAGCACA	AAAGACAGCT	ATGAGGAAAC	CTGCCACGAT	TTCTGTTATT	TTTAATACCT	7020
PATAGCGCCT	ACGATGTTGA	ACGCTTTTCT	TTAAAAAATG	AGCTATCTGT	ACGTCTAATC	7080
CTCTGTCAG	GTACATTTCT	TCTGGCGTCA	TATTCGTAAC	TCCTTTCATT	TACTTTGATA	7140
TCAGGG						7147

(2)	INFORMATION	FOR	SEO	TD	NO.	24.

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 755 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

C	CGCATGGGA	TTGGTGTCCT	TTTGGGCAAT	CTCTTTGACC	AAACTGGAAA	CATGTTTTAT	60
G	CGCCTGCCT	TTACTGCCCT	TGTCGGCGGT	ACGTCTATAT	GATCCTAGTC	GCAAAAGTTC	120
C	GCGCTTTGG	AGCCATTACC	ACTATCGGCC	TTGTCATTGC	CCTCTTTTTC	TTGGGAACTA	180
A	ACACGGTGC	TGGTTCCTTC	CTTCCTGGAA	TTATCTGTGG	CCTCCTAGCA	GATGGAGTAG	240
C.	PCATTTAGG	AAAATACAAG	GACAAAACAA	AGAACTTCCT	TTCTTTCATT	ATTTTCGCCT	300
T	PAGTACAAC	AGGACCAATC	TTGCTTATGT	GGATTGCGCC	CAAAGCCTAT	ATGGCTACTC	360
T.	rctggcaag	AGGAAAATCC	CAAGAATATA	TCGACCGTAT	CATGGTCGCT	CCAAACCCTG	420
G/	ACTGTCCT	TCTATTTATC	GCAAGTATTG	TCATCGGAGC	CCTAGTGGGT	GCCTTGATTG	480
G/	ACAAGCCTT	GAGTAAAAA	TTTGCCCAGA	AAATCTGATC	AGTTAAAAAG	AGCCACGCGG	540
CI	CTTTTTTA	TTTATGGCTC	AATTTCTTAG	TCAAGAAATC	TCCCAAGAAT	TGGATTGCAA	600
AC	SATAATCAA	AATGATAATA	ATGGTTGCCA	AGATGGTCAC	ATCGTGATTG	TAGCGGTTAA	660
ľΑ	CCATAAGC	GATGGCTACG	TTACCGATAC	CACCAGCTCC	AACCGCACCG	GCCATAGCTG	720
ΤΊ	tcccaaca	AGGGaAtCAA	GGTcACAGTC	GTCAC			755

(2) INFORMATION FOR SEQ ID NO: 25:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3010 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TTCAATTGGT	ATCTCAATCA	ACGGTCTTCA	CATGGTTTCA	ACTGGTTTGA	CTCTTGAAAA	60
AGCGAAAGCT	GCTGGTTACA	ACGCAACTGA	AACAGGCTTT	AACGATCTTC	AAAAACCAGA	120
ATTCATGAAA	CATGACAACC	ATGAAGTAGC	AATTAAGATT	GTCTTTGACA	AAGATAGCCG	180
TGAAATTCTT	GGTGCCCAAA	TGGTTTCACA	TGATATTGCA	ATTAGCATGG	GAATCCACAT	240
GTTCTCACTT	GCTATCCAAG	AGCATGTGAC	AATTGATAAA	TTGGCATTGA	CAGACCTCTT	300

CTTCTTGCCA	CACTTCAACA	AACCATACAA	CTACATCACA	ATGGCTGCCC	TTACGGCTGA	360
AAAATTAAAA	TGAATGAGCT	ATCTGGCCTT	AAGTTAAGGT	CAGATAGTTT	TTAGCTAATT	420
TGTCCCCATA	CAATTATAGT	TTTTTTATCT	TGTGCTTCAT	TCTGTTCTGA	СТТААААТСА	480
AAAGGTAGCT	ACCAATACAA	ATGATGAGGA	ТААААСАААТ	GACTGAAAAT	CGTTATGAAC	540
AAAATAAA T	CTTGGCACAG	ATGCTCAAGG	GTGGTGTTAT	TATGGATGTG	CAGAATCCTG	600
AACAGGCTCG	TATCGCAGAA	GCTGCTGGTG	CGGCAGCTGT	GATGGCCTTG	GAACGAATTC	660
CGGCTGATAT	TCGTGCAGCT	GGAGGAGTTT	CCCGCATGAG	CGACCCAAAG	ATGATTAAGG	720
AAATCCAAGA	AGCGGTTAGT	ATTCCAGTAA	TGGCTAAGGT	CAGAATCGGG	CATTTTGTTG	780
AAGCTCAGAT	TTTAGAGGCT	ATTGAAATTG	ATTATATCGA	CGAGAGTGAA	GTTCTATCTC	840
CAGCTGATGA	CCGTTTCCAT	GTGGACAAGA	AAGAATTCCA	AGTTCCTTTT	GTCTGTGGTG	900
CTAAGGATTT	GGGTGAAGCC	TTGCGTCGTA	TCGCTGAAGG	TGCTTCCATG	ATTCGTACCA	960
AAGGAGAACC	AGGGACAGGG	GATATCGTCC	AAGCTGTTCG	TCATATGCGT	ATGATGAATC	1020
AGGAAATTCG	CCGCATTCAA	AACTTACGTG	AGGACGAGCT	TTATGTTGCT	GCCAAGGATT	1080
TGCAAGTCCC	TGTAGAATTG	GTCCAATATG	TTCATGAACA	TGGAAAATTG	CCAGTTGTAA	1140
ATTTCGCTGC	TGGAGGTGTT	GCAACGCCAG	CAGATGCTGC	GTTAATGATG	CAATTAGGGG	1200
CAGAGGGGGT	CTTTGTCGGT	TCAGGTATTT	TCAAGTCAGG	AGATCCTGTT	AAACGAGCGA	1260
STGCCATTGT	TAAGGCTGTG	ACTAACTTCC	GTAATCCTCA	AATCCTAGCT	CAAATCTCTG	1320
AGATTTAGG	AGAAGCCATG	GTTGGTATTA	atgaaaatga	AATCCAAATT	CTCATGGCTG	1380
ACGAGGAAA	ATAGATGAAA	ATCGGAATAT	TGGCCTTGCA	AGGGGCCTTT	GCAGAACATG	1440
CAAAAGTGCT	AGATCAATTA	GGTGTCGAGA	GTGTAGAACT	CAGAAATCTA	GATGATTTTC	1500
AGCAAGATCA	GAGTGACTTG	TCGGGTTTGA	TTTTGCCTGG	TGGTGAGTCT	ACAACCATGG	1560
CAAGCTCTT	ACGTGACCAG	AACATGCTAC	TTCCCATCCG	AGAAGCCATT	CTATCTGGCT	1620
ACCAGTGTT	TGGGACCTGT	GCGGGCTTAA	TTTTGCTGGC	TAAGGAAATC	ACTTCTCAGA	1680
AGAGAGTCA	TCTAGGAACT	ATGGATATGG	TGGTCGAGCG	TAATGCTTAT	GGGCGCCAAT	1740
'AGGAAGTTT	CTACACGGAA	GCAGAATGTA	AGGGAGTTGG	CAAGATTCCA	ATGACCTTTA	1800
CCGTGGTCC	GATTATCAGT	AGTGTTGGTG	agggtgtaga	AATTTTAGCA	ACAGTGAACA-	1860
TCAAATTGT	TGCAGCCCAA	GAAAAAAATA	TGTTGGTAAG	TTCTTTTCAT	CCAGAATTGA	1920
TGATGATGT	GCGCTTGCAC	CAGTACTTTA	TCAATATGTG	TAAAGAAAAA	AGTTGAGATT	1980
AATTTCTCA	ACTITITAC	ATGTAATAAA	CAATAGCGAT	GTATTGAAGT	GCGGACGCAG	2040

			296			
CTAGGATAAA	GAGATGCCAA	ATCATGTGGA	AATAAGGTTT	TTTCTTGGCA	TAAAATCCAG	2100
CTCCAACTGT	ATAACAGAGT	CCGCCAGTTA	CCATGAGACT	CCAGAAAACG	GGTGTCGTTT	2160
GACTGATAAT	GGCAGGAATG	ATAGCCAGAA	CCAACCAGCC	CATAATCAGG	TAAAGAGCAA	2220
GGCTAAATTT	CTCATTGACC	TTTTTAGCAA	AGATTTTATA	GAGAATACCA	AAGATGGTCG	2280
TTCCCCATTG	GATGACAATA	ATCAGATAGC	CAAACCAGTT	ATTCATCAAG	GTCAAGACAA	2340
CGGGCGTGTA	TGAGCCGGCA	ATGGCÄACGT	AAATCATAGA	ATGGTCAATG	ATTCGCAAAA	2400
CATATTTGTG	GGTCGAACCA	TAGGCCATAG	AGTGATAAAT	GGTGGATGAT	AGGAACATGA	2460
GAAAGAGACT	GATGACGAAA	ATGGAAACGC	CGATAGAGGA	тааааатссс	TGTGCTTCAT	2520
ААСТАТАСАТ	GGATGAAATA	GGCAGCAAGA	TAAGCATGAT	GACTGCACCC	ACAGCATGGG	2580
TCACGCTATT	AGCAATCTCC	TCTCCAAAAC	TGAGTTGTTT	GCTGAGTTTA	AGACTAGTGT	2640
TCATTGGATT	ACCTCCTCTT	GAGTATGATC	GATTAAGTCT	AGAGTTTGAT	GATAGAGTTT	2700
AACGGTTTGG	CAGCTGGTTT	GGATAATAGG	GTTAGCTGGG	TCAATTCCTT	GGTTCATGTA	2760
GTCCACAAAA	GCATCGTAGA	GTTGGTCTGA	ACTTGCTTGA	GTTTGTAGAG	TATTAAGTGT	2820
CTGGGCTATT	TCTTGAATAG	AAAATACAGA	CTTGAGGGTT	GTGATAGCAA	TCAAACGGGC	2880
AATCTGTTGG	CGTTGGTATT	TTTTTTTGTC	AGGCTTTGTC	AGGTAACCAT	TTTTCACATA	2940
ATTGTTGACC	ATAGATGCTG	TTAGGCCCTT	GTCTTTATTA	GGAGAGATAG	GGGCGCAGAC	3000
CTGATTGACA						3010
/21 THEODY	MION BOD CE	O TO NO. 26	•.			

(2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 15213 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CATAAATC	G TGCAAATAAC	TTAATAGTGA	AGTAGCCATT	TCTTTCGTAT	TTACCTGAGG	60
CATATTCC	CT AGACGAAAGA	ATATTATTAT	CAATCAAATC	ATTGAATGAA	CGTAGTCTTT	120
CAACTTCT	rc tactgttaga	TTTCTGACAA	CATTTGTTGC	ATAGACCTTA	TTTCCATCAG	180
GATCAGGA!	rg gtactcattt	GTAACTTTTC	TAAGAAGTTG	TTGTTTTTGA	TTCGTATCCA	240
ATTTAAGA	AT TGAATTTCCT	TCGAGATATT	CCAACATATA	AACAACGTCA	AACATGTTGT	300
GGACATAT	rg cttcaaatca	TCTGCATTAT	TAAATCTTGT	AGTTGGATCA	AGTACTTGTA	360
ATCGTCGAC	T TTCTGTACTA	TCAGATTTTG	AATGTTTCAA	GATGGAGTTG	ATGGTAATGG	420

480	TCTGGTCCCA	AGCAAAGAAC	ATAATCCTTT	GGTGCTTGTA	TGGATGGTCT	TCGCATCATC
540	TGTGTCATCT	ATCTGAGTCA	AAATGTCCTG	CCTCCAAGAT	TCGACCATAT	AGCCACTTCT
600	TAATAAACTG	ATAACCCATA	CCAACATTCG	CCATCCTTAT	AGTAATAGCT	CATGCGTATA
660	ACAGGTCCAA	тттатттсса	TATGCCCAAC	CCGTGTTGAT	AGCATAAGCA	CATCACCTGT
720	GCTTTCCCTA	CACTTCTGTA	CAAAATCTGC	TTTGGATTAT	CATTGCAGGA	AGAAATGTTG
780	TAAAGTTTTT	AATATTTCTA	CGTAAAGCAA	TTATAAGCAT	ATCGCCAAAT	CGGTATTATC
840	TGACGTTTGG	GTGATCTCGC	AATAATCGTA	ATACGATACC	GTCGTCTAAA	CACGTGCATT
900	TTATGGTCAC	CTTGCCCGCT	CATTGAGAGC	TCAACAAAAT	CGCATTTTCT	CTGTTTCACG
960	ATGACAAATA	CATGGTCGAG	CTAGACTAGA	GCTCCAAATC	GCGATCATAA	TACTGCGGTA
1020	CATGTGGCAC	GCGGTATTTC	AGACCATATT	AGGAGAGGCA	TGGCAAGGTC	CGGATCTCTC
1080	TGCTTCGTTT	AGCTAACCCT	ACTTGGTGCC	CCGATAGAAT	АТСАТАААСА	TCGTGATACG
1140	GATTTAAACC	CTTAGTCTCT	CAATGTAAGC	TTTTCTTCGA	GATAGTGGAT	PCACCTCTTC
1200	GTGCTAAACA	ATGTTCCAGC	CTTTTCGGTA	GGTAAAAAGA	GCTTGTATTT	AGTCATTATT
1260	TTATTCTTAG	AGTATCGACA	TGATACCATA	CTGGCAAGAC	TCCATGTTGA	AATCTGTCGT
1320	GGTGAAGCAT	AGTATCTAAT	ACTCAATCAG	GATTTACCCA	GTTAAAGCCA	CTAGAAGATT
1380	ACCTGACCAT	TTTGACATTC	GAACTAGGTC	AAATGGTACA	AAAGAAGTCC	PCCCCTTACC
1440	TCCTTGTTGC	TAGCAAGGCT	TCAAGCCAAG	TCCAGATAGG	ATACCACCGT	AGCTAAAGTT
1500	AGTCCAGCAT	AGCACTAGCC	TGACGGGGTT	TAACCTTCAG	ATCTACAAGA	GTTTGATTTT
1560	GCGAACTGGT	TTTTGTTTTG	CCAGTTGTTG	AAACTGTCTT	GAGTTTTTTC	CCGCTGACAA
1620	TTTCTGATGG	ACCCAGCGTC	TTGGAGAAAT	TGCTTGACGT	GAGCTCAGTT	CTTCTAGATA
1680	ATAGAGGTTT	TTGCTTGATG	CAGGTAAGAC	TTTTGTAAGT	ATAGTCAACC	CTTCTGAATG
1740	CTATATTCTG	ATTGCCCAGA	GAAGTCCAGT	GGCGTATAGA	GAATTGGTTT	GTCATACAG
1800	TCATCCTTGT	CTCAGATAAA	GATCCAGCTT	TGGTATTTGA	GAAATCATTC	TAATTTGGC
1860	ATGACTTGGT	AATGTCTGTG	TGTTAGAAAC	GCAGTCTGTT	GAGTTTGTTT	AGTGAAGCAA
1920	TTCTCATTGA	TAAAAGACTG	CTTTTTGATA	GACAAGAGTT	CATGACTGCT	PGTCCTTCAT
1980	TTTTCAATGT -	AGGTAGCAAT	TGTTGTAGAA	ATGGTTGCCT	GTATTTGACG	CAGGTTTCC
2040	TCACTGTCTT	CTTAGAAAAA	AATAGGCCAC	TTAGCTTGAT	CAAGTTGCGC	TTTATAAGT
2100	ATTTCTGCTT	GAGAGGATTG	TTGGTAAAAT	GGCTCCACTG	TGTTGAAAGT	TTTGCCACT
2160	GATTCCTTGC	TTCTTCAAAG	TTGTTCCTCT	GCATCTAGCA	AATTTGAGAA	TTTGCTTGC

			298			
TGACGACCTC	ATCCTTGACC	AAGGTGACAT	TGTAGACTCT	GTTGGCCTTG	CTGCTGAATG	2220
TGTCCTTTAC	CTTCATTTCG	TTATAGTGGT	AACCAGTGAT	GGCATTTCCG	TTGGTTACAT	2280
TAACATCGCT	GAGAACATTG	GTCAAACTTC	CAGCATGCCT	AACATCACCA	GAAGTTCGAT	2340
CCCACAAATT	GCCTGCCACT	CCAGCGACTC	TACCAAAGTG	CTTGACATTG	TTGATATCAC	2400
CTTCAGCATA	GCTATCTTGG	ATCTGTGCAT	CTCGGTCTAC	TAGGCCTGCA	AGTCCACCCA	2460
CAGTCTGATC	TGAAGTATTT	GTGTTAGATG	AAATGGCTAC	TGTCGCTTTT	GACTTAGTAA	2520
GTAAAGCCTT	GTCACCTGTC	AAATGACCGA	CCATACCACC	GATATTGTAG	GCAGCAGTCG	2580
TTTCATAAGT	GTTGATAATT	CTTCCCTTGA	AACTGCTCTC	TGTGATGCTT	GATTGCTCAG	2640
CCTTAGCCAG	CAAACCACCG	ATACCACGTT	CACCAGCCAG	AACACCATCG	ACGTGAACTT	2700
GCTTAATTTT	TGTGTTATTC	TGAGCTTCAT	TTGCCAGTGA	ACCGATATCA	TCTTTCCCTG	2760
AAATAGCAAC	ATTTTTTAGA	CTCAGTTTTT	CTACTGTAGC	ACCACTCAAG	TTTTCAAACA	2820
GAGGTTTTTT	CAAATTATAG	ATAGCATAAT	TCTTGCCATC	TTTTTCACCG	ATTAAACGAC	2880
CAGTAAAGGT	GTCCTTGATA	TAGGATCTTT	CATCAGGACC	AAGCTCCACT	TCGTTAGCAT	2940
TCAGGCTGGC	CGCTAAATGA	TAGGTTCCAG	AGGGATTTTG	GTTTATAGCT	TTGACCAGAT	3000
TACTAAAGGA	AGTAAAGTTT	GTTGTTTCTT	CTGTTCCCTT	CTTAGCTAGA	TAGAAGGTAA	3060
AATTATCTTT	ATATCTGCTT	TCTATCTCCT	GCTGAAGCTT	CTCTACTTTT	GCTGTGATTT	3120
TATAAAGGAT	TTTATCATTT	TTTCTTTCCT	CTGATATTGA	TGCTACTGGT	AGGTATACAT	3180
CTTTGAATGA	AGAAGATTTC	ACTTTAACAA	AGTAGCTATT	TGGATTGCTT	GGAACTTGCT	3240
CTAACGAAAT	GTGTTGTTTA	TAAGTACCAT	TTGACAAACT	GTATAACTCT	AGGTCGGAAA	3300
CATTTCTTAA	TTCAAGTGTT	TTCTCTGGTT	CTTCTACCTT	TTTATCAGGG	TCTAGTTCAT	3360
TTTCTTGTTT	AATTTCTTCG	TTTCCATTTG	AATTGGATGT	GTTTGATTCG	GTTGAAACAT	3420
CCTCAGTTGA	ATTTCCGTTT	GATGGTTCTG	GTTCTGTTTG	TCCATTCTCT	GATGTTGTAT	3480
TACCTGAATT	TTCTGGTTTT	GTTGCAGTTC	CGTTTTTTC	TGGTTGATTT	GATTCTTCAA	3540
CTGGTGGTTT	TGAATCACTA	GGTTTATTGG	ATACTTCTCC	AGTATTTTCG	TTAGCTATTT	3600
TCCCAGAGTT	TGTTTGTGTT	TCTTCTGCAG	GTTGAACTGG	TTTTTCTGTT	TCTTGATTTG	3660
AGGTACCTTC	TACTGTGCCT	TCATTTGGAT	TTACTGGAAC	ттсттстаса	GTTTTTTCTG	3720
AATTTTCATT	TTTAGAGTCA	TTATGTTCTG	GTTTATTTGA	TTCTCCAACT	GAGGTTGTCG	3780
AATCACTAGG	ATTACTGGAC	ACTTCCCCAG	TATTTTTGCT	AGATGTATCT	GGTGATACTT	3840
TCTCTGAATT	CGTTGTTGAT	TCTTCTGCAG	GTTGAACTGG	ATTTTCTGCT	TCTTGAATTG	3900
AGGTTCCTTC	TGTAGTACCT	TCATTTGGAT	TTACTGGTGT	TTCTTCTGTT	GGTTTTACTG	3960

CAACGETCTETC	Σ Cidabababababαh	CCACCTTCTT	СфффССфСфф	CTCAACCGGA	CTTTCAGGTT	4020
						4080
				TACCTGCTCT		
TATCACTTAC	CACAGTATCT	GGCGACTCTG	GTTGAACCTC	AGTCTCACCT	TTGTCGGTCA'	4140
CAACTGCTTC	GGGTAATGTA	GGTTGAACTT	CTGGTTCGCC	TTTGTCACTT	ACTACAGCTT	4200
CGGGCAACTC	AGGCTGAATT	GCGGGTTCAA	CAATAGCTCC	AGACTGTACG	TCCTTATGTT	4260
CTACACCAGT	CTCAGGTTGT	TCCTTTATAA	CTTGAGTTTT	TTTAGTACCT	TTTTCGACTA	4320
TTCTTGGACT	AGGCGCAGTC	GTTGAAGTTG	AAACAATTTC	TCGCGAAACT	TCTTCCTTGT	4380
TTACAGAGAA	TATTCTGACG	ATTTCAACTT	TCTTACCTAA	TTTACCTTCT	TGTTTTACTC	4440
TTACAGTTCC	TTCAGCTAAA	TCAGGATTTT	CTTGAATTTC	TTCTTGAAAA	TCTATTTTTG	4500
TCTCCATAGT	TTCCTCACGA	TATAAGAGTT	CAGGTTTGTT	CAATTGACCT	GATAAAACTT	4560
CATCCTGTGG	ATTTAATGTA	TTTACCCCAG	TCTTTTCTTT	TGGAGAAATC	TTCTCCTCTT	4620
TCTTCGTTTC	TAGATTCTTA	TGTTCGGCTA	ATTGTTCTTG	AGAATCTGAA	GATTGTTTCT	4680
CTTCTTTTCT	TGGATTGATT	AATTCAGTAG	AGAAAGGTTT	TTCAACTACT	TGAACTTCTG	4740
TCGGCTTAGT	TGAAGAAACA	GGTGTTTGTT	CCTGAATAGC	TTGTACTGTT	GATGGATGGT	4800
CTACAAAATT	CGGTGTAACA	TTATAATCCA	CCTTTTGTTG	TTTTGTAGGA	GTGGCAACTG	4860
AACTCTTTTG	ATTACTTACT	TCAGACTCAG	AAGTCGTTTT	TCCCTCTTTG	ATATATCCAA	4920
TATAAGTGTA	ACCTGAAATC	TCTTTAGGAA	GAGGTAATTT	TTCTCCAGAG	GTCAATTCAT	4980
AGTCCGTATT	GTAATTTAGC	AAAAGATGAT	TTTCTAAAGC	ATGGACTGAA	ACTAAGACAC	5040
CATTTCCTAT	CCCTGCAACC	AATACTAAAT	GTAATACCGT	TTTATTCTTA	ACCTTTTTCT	5100
TGGAAACAGC	аааааттааа	ATTCCCATAG	CAGCTAAGCT	AGCACCAGCA	ACTAGGGCTT	5160
GCCTCTCATT	CTTGCTTCCA	GTATTTGGCA	ATTCCGCCAG	TTGATTTTGA	GAATTTAACT	5220
TATAAACAAG	ATAATAAGTT	TCATCATCAT	TCTCCACGTA	TGTCGGAATA	TCATAGACAA	5280
GCTGCTTCTT	TTCTTCTGAT	GATAGCTCTG	AATCTGCCAC	ATATTTATAG	TGAACTCCCG	5340
CAGTTTCTTG	AGCATCCACA	GATGAACTAG	CTAATACAGA	CATAAAAAAT	AAACTTGAAA	5400
TCGTTGCAGA	TACAAGTCCT	ACTGATAATT	TTCTAAATGA	AAAACGCTCT	TGTTTTTCAC	5460
СААААТАСТТ	TTCCATTATT	CCTCCTTGAA	АТААААТТТА	TATATGTTAC	AAAGACCTTT	5520
ATTATATTAG	TGTATTATCT	АТТАТСТАТА	GAAAAGGCAG	татассттаа	TTATACTCTT	5580
ААТТТАСААА	AAAGTCTTAA	AATTGAGATG	CGCTTTCATA	CTTTGTTTTA	TATTATTTGG	5640
AGGTACAATA	ACACCTACCA	TGAAATTTAC	ACGGTAGGTG	TTACTCATAT	CACTAATCGT	5700

			300			
TCTAAAAAT	G GTTTGAGGC	A GTTGAGGAG	A ATTCCTTCT	A TCCAGCTTC	TTGTGCTGAT	576
GAGCGATGG	T CTTCCTGCA	G GCTTTTTTT	P AGAAAATCT(GGACTTGTT	TGGTGCGATT	582
TCAAATTCA	A AGGCTTTCA	T TTTATAGAA	A AAGTCGATGA	A GATGATCTG	CAGGTATTCA	588
GTTGAAAAG	G GTACTTCAC	C ACTITITCT	TATTCTAAT!	AGAGTCTAG	AAATCGAGCT	594
TTTTCTTCA	G GAAGCTCAC	G AAAATAGGAA	TTGAGGATCO	AAGTCTGCTT	CTGTTTTCTT	600
TCAATTGGA	T CCTGACTGG	AATTCGTTGC	TCTTTTTCCA	GCTCTTTTT	GTATTGTTTG	606
GCCTTGATA	G CTCGTTCTG	C TCTATTTT	CCAAAAAGAA	TTTTTTCCCA	CTTGCGTTCT	612
TCTTGAGTC	A GGGTCTCTG	AAAGCCAAAG	TAATCTTGAT	AAGCACGCTC	TGCGGGTCCC	618
ATGGCTAGA	A CCAGATTGT	TGCATATTGC	TTGGCGATTT	татесететт	CTTGCGTTCT	624
TTCTCTGCC	r ggatacgga	TTCTTGTTCG	TAGTCAATTT	TCTCCTTGCC	TAGCTTGACA	630
AGGTAGAGT	r ggtcatccg/	TTTCCCAAGT	AAAAAGGGTT	TGATACACTT	TTCAAGGACT	636
TCTTCCATC	C GAGCCTTTTT	CTTTGGTTCC	GCCTTGGTCC	AACTTCCTCC	CTGAAAGACT	642
TCTAGGAAA	GCTGGTAGTC	TCTCTUAGGC	GCAAATTGAT	TGCCACGATT	GGGTTTGAAA	648
ACACCTTTTT	CCCAGAGCCA	TTTTAGAAGT	CGCTCGTCAA	AGTTACTTTT	ATTGACCTTG	6540
ATTTTTTCCT	TTTTCTGAGC	TTTTCTGGTT	AGATTTTCAA	CCTTTCTGAG	CAGTTTTTCT	6600
TCCTCTTCCA	ATTGCTGGTC	AAGGGACAAT	CGATGAAAAT	GACGAACACA	GTCGCTACCA	6660
ATTGGAAAGA	GCCTTCCCC	TGTGACACCG	TTAAAGAGTT	CATAAGCGTA	TTTGATGGCA	6720
TTTCCACAGA	CACAATTGCT	ACGGCCGATA	CCGTTAAAAA	TAAAGGAAAC	TTCATTCCAT	6780
TCCTTGGTAG	CTTGTTCCCA	AGTATCCGCT	TTCGAAGCCT	GTAAAACTGC	ATCGTGCAGG	6840
GATTTTCTAA	CTGGAAGTGT	CATGAGGTCT	CCTTTCTAAT	АСТСААТААА	AATCAAAGAG	6900
CAAACTAGAA	AGCTAGCCGC	AATCAGCTCA	AAACACTGTT	TTGAGGTTGT	AGATAGAACT	6960
GACGAAGTCA	GCtCAAAACA	CTGTTTTGAG	GTTGTGGATA	GAACTGACGA	AGTCAgTAAC	7020
CATATATACA	GCAAGGCGAA	GCTGACGTGG	TTTGAAGAGA	TTTTCAAAGA	GTATAAGTTA	7080
TACTTTTACA	ACTTGAACCT	CGTCTTTACC	GAGTAAAATC	AAGTATTTTT	CAATATTTTC	7140
AATCGAATAG	GCTCGTGATA	AAGCCTCTTC	GTATAGAGCT	AACTGACCAC	GATAGCGGTC	7200
TACGAGTTGA	CTTGGTTCAT	CATAGCGGTC	TGTCTTGTAG	TCGAACAGAA	CAATTTTGTT	7260
TTCGTAAAGC	AGATAGCCAT	CAAGGATACC	ACGGACAACA	AAGTCTTCCT	GACTCTTTTG	7320
GTCTCGTTTG	AGCATGGAGA	AAGGTTGCTC	GCGATAAAGA	TGGTCGGTAT	TAGCAAGAAT	7380
TTCCTGACCG	AGTACTGTGT	CAAAGAAAGC	AAGAATTTTA	TCAAGATTGA	TCTTGTCTCT	7440
GACAGCTTGG	CTAGTTTGAA	CTTGTTTGAG	TGTTTCTGTT	AGGCTAGCAA	GGGTTAGTTG	7500

CTGGCTGAG	TCAATTCTCT	GCATGAGTTC	GTGAGTAGCA	CTACCAATCT	CAGCTCCAGT	7560
TACCTTTTC	TTGGTTGAAA	AATCTGGCAA	ATCGAAGCTG	ATTTTCTTGC	CTACTGACTG	7620
ACCTTGACC#	GCAATCTCGA	CACCTTCCAT	' A'I'CCATAACT	GGTTCGTAGA	ATTTCTTGAT	7680
TTGACTTGGC	GTTTGAACAC	TAGGAAGTTC	AATAGCTGCG	CGGTGAAGAG	TATTATAAAC	7740
TCCACCTCC	TTCAGCATTT	CCAGAGCTTC	TTTGATGGTA	TCTGACTGAC	GATTGTCTGC	7800
PTGGGAGCTA	TCTTGGAGAG	GACTCTTGGT	TTCCAACTCT	CCGATAGCTT	CTCTGGTCAA	7860
CTGATCTTCC	CCAATAAAAC	GATAACTAAA	GTTGAGCTTG	TCCTTAGTAA	ACACTTTACT	7920
GATAGCCCAA	AGCCAATCTT	GGAAATTCCG	TGCTTGCAGT	CTAGTATTGC	TATTTAGTTT	7980
CCCATTTTTC	GCTGCTGGGT	. ATTCCTTGGA	TTCCAGCTTT	TCACGAGAAC	CCTTGCCGAC	8040
AAGATAGAGO	TTTTTCTCAG	CCCGCGTCAT	AGCAACATAC	AGCAAACGCA	TCTGCTCAGA	8100
ATAGCTTGCT	AGCTGTAATT	CCTCTTCGTT	CTGCCTATAG	GTCAGACTAG	GAATGGAGAG	8160
TTTGATGGTT	TTAGGATAGT	GGTCTTCTAC	TGCCCCTGTC	TCCATCTTGG	CAATATATIT	8220
GACACCAAGA	CCATTCTGAC	GACTGAGAAT	GACTTCTGAC	ATAGAGTCTT	GCTTGTTGAA	8280
ATCTTGATCC	ATATTGAGGA	TAAAGACGTA	AGGAAACTCC	AGCCCTTTAC	TCTTGTGGAT	8340
GTCATGAGC	TCTACTGCAT	CTTTTGGCGG	TGCGACGGCC	ACGCTTGCCA	AATCGTGCTG	8400
GCTTCTAAG	ACTTGGTCAA	TCATACGAAT	AAAACGCGAC	AAACCTTTGA	AATTGCTCTT	8460
TCAAATTGA	TCAGCACGCA	GTGCTAGGGC	ATAGAGATTG	GCCTGCCTAG	CAGGACCATT	8520
GGCAAAGCC	CCAACATAGT	САТААТАХАА	ACGGTCGTTG	TAAATCTTCC	AAATCAAGTC	8580
TAGAGAGAG	TGGGTTTTGG	CATACAAGCG	CCAAGAAGCT	AGGATATCCA	TGAATTGCTT	8640
AGTTTTTCA	GCTAGAGCTG	TGTGAATCAA	GCCTTTTTGA	CTACTTGCCA	TTTTTTGTGC	8700
TTGACCAGT	TTCTCATAGA	GATTTTCGTG	GAUTTMATCC	TCTCCTTTCT	GAAGGGACAA	8760
CGTGCTAGC	TCATCCTCAT	CAAAACCAAA	CATTGGAGAC	TTCATAAGGG	CAACCAAGGC	8820
TAGTCTTGC	AGGGGATTGT	GAATGACACG	AAGAGTGTCT	AGCATGACTT	GCACTTCTAG	8880
GATTGGAGA	TAATTGTTTT	GCTCTCCGTC	AGTTTTGACA	GGAATTCCGT	ACTCAGACAG	8940
GCGAGGAGA	ATCTGGTCAT	TACGACTGCG	GCTGGAGGTC	AGAAGGGCAA	TTTCCTTAAA	9000
GCAACACCT	TTTTCTTGAT	GAAGTTTCAG	AATCTCCTTG	ATAACTAAGC	GCATTTCGCC	- 9060
GTTAGTTTC	GTTTCTGTTT	GACTCTCTTC	TTCCTCACCT	GTATCGTCCT	TGTCGTAGAG	9120
AGAAATGCT	GCCTTGTTGT	CTGGATTGGG	AGTCAGTTTG	GTATTGGCAA	AAACAAGCTG	9180
ጥርርጥጥርጥ ጥ አ	ТСАТАСТТСА	TTTCCCCCAC	CHCHACCHCC	ATCACACCTO	CAAACACATO	9240

302 ATTGGTTGCT GACAGCACTT CTGAACTACT ACGGAAATTT TCCTTGAGGA TAATGAGCCT 9300 GCCTTCTTGG GGATTTTGCG CATAGCGTTG GAATTTCTCA TTGAAAATCT GCGGGTCTGC 9360 CTGACGGAAA CGATAGATGG ATTGCTTGAT ATCTCCCACC ATAAAGCGAT TGTGGCCATT 9420 AGACAACAAT TCCAGCATCC GTTCTTGAAT ATGGTTGGTA TCCTGATACT CATCGACCAT 9480 GACTTCATGG AAGCGCTCCT GATAAGACTC ACGAACTTGT GGGAAATTCT CTAAAATCTC 9540 AATGGTGTAA TGGCTGATAT CAGCGAATTC GAAGGCATTT TCCTGTCGTT TTCTCTGACG 9600 ATAAGCCTCT ACAAAATCGC TCATGAAAGA TTGGAAGGTT TTAGCTAGTT TCCAAGTGTC 9660 TCCATGATAA CGTTCTTGAT AGTCGAGAAT CGCTATCTGG TCTGATAATT GTCCTAGTTT 9720 AGCAAACTGG GTCTTTCTCT CTTCGTTGTA GGCATCAGCC AGGGGCTTCA AATCAGCCTA 9780 CGGCTGGCAT TAGTCAGAGC TCGACCGTTT TTCTCCTTAG AGATGGCGAC AACACGCGCA 9840 AGCACTGCCT GATAAGCCTG ACTATCGGAC TCCTGATTTA GGGAGCCAAT TTCATCCAGA 9900 ATTAACTGAA CATTTTCTAA ATAGGCAGCC TTTGCAAACT CCTTGGCATC GTTATCCAGA 9960 TGGTAACGGA AAAAGCTTTC CAAATCCCAA AGGGCTTGTT TGATTTGCTC GGTCAGTTTT 10020 TCTTTTCAC TGGTAAAATC AGCTTTCTCA AATCCTTTGA GGAAAGATTC ACTCAGCCAC 10080 TTTTGAGGAT TACTGGTGGA TTGGAGGAAG TCATAGATTT TATAGACCTG CTGGCGCAGA 10140 CCCCGTTCGT CCTTGCCACG CCCAGCAAAG TTTTTCAGCA AATGACTAAA GGTCTCTTTC 10200 TGTTTACCTT GGTAATGCGC TTCAAAGACC TCATGAAAGA CTTCGTTTTC GAGAATAAGT 10260 TGCTCGCTTT GGTTTTGTAA AATACGGAAA TTAGGTGCAA TATCAAGCAG ATAACCATGT 10320 TTGCCAAGGA ATTTTTGTGT GAAAGAATCC ATGGTTCCAA TGGCAGCGTT GGGTAGGTCT 10380 GCCAACTGGC GACCCAAGTG TTGTTTGAGG TCGACATCAT CTGTTTCTTG GATTTTCTTG 10440 CTGATTTTT TCTCTAAACG TTCTTTAAGT TCAGTTGCAG CCTTGACGGT AAAGGTTGAG 10500 ATAAAGAGTT GAGAAATTTC GACACCACGC GCCAATTGGT CCAGAATGCG CTCTGCCATG 10560 ACAAAGGTCT TTCCAGAACC AGCCGATGCT GAGACCAGGA TATTCTGGGC AGAAGTGTAG 10620 ATAGCTTCGA TTTGCTCGGC AGTTTTCTTC TGTTCCTTGC TCGAATTTGC TTCTGCTTCT 10680 TGCAGTTTTT GAATCTCCTC CTCACTTAAA AAGGGAATAA GCTTCATCGA TTCAACTCCT 10740 CTCTTATTTT TTCAAGCCAA GCTTGCTTGA GTTTTTCTCC GACCAGACGC TTGCCATCAG 10800 CTAGGTCCAA CTTTTCTAGG AAACGGGCTT GGCCCAGATG GTAATTGGCT TCAAAGCCTG 10860 TAATAGCCTG ATGTTGCTGG ACGTATGGGG CAATGCTTCT GCCATTTTCA GTATAAGGAT 10920 TGATGGCGAA CCGGCCTGCT AAAATCTTCT CAGCAGCTTT CTTGTAAAGA TAGGCATTGT 10980 AGTCCAGTAG GAGCTGAAAT TCCTCATCTG TCAGTTGATT AGCCTTGTTT TTGTTATAAA 11040

ATTCGCCTAA	ATAACTGCTT	TCTTTTTCCA	AGAAGAGCCC	TTGGTATTTC	ATAGATTTGC	11100
TGGCTTCTAC	CACTGCTCCT	GCCAGACTTT	TTACCGCCAT	CAGAGATTGG	ACAGGTTCAG	11160
CCATTTCCAA	GTACATGGCG	CCGAAAAAGT	TCTGCTCCCC	TTCTCTTTTT	AGGGCAGCAA	11220
GATAGGTTGG	TAACTGAGAA	TTGAGCCCAT	TAAAGAAATG	AGGAAACTGG	AACTGAGTCA	11280
GACTGGATTT	GTAGTCTACT	ACTCCTATCG	CTCCATTAGC	TTTCAAACGG	TCAATCCGGT	11340
CCACCTTGCC	TCGTACAAAG	ACACTGCGTC	CATTGTCTAA	TTGAATAAAG	GCTTGGTCTT	11400
TTCCACCAAA	ATTTGCTTCT	TCTTTGATGG	TTTCGATGGC	TGGATTGTGT	CGGAGAATAT	11460
GTCCAGTTGT	CCGTGCAACA	TCAAGCAAAA	CTTCCTTGGT	AAACTGGGCT	TCCAAACTTT	11520
CTTGATAAAT	AGCTTCAAAT	TCGCGTTCTT	GACTGGTTTC	TTGAATAGCT	TGTTCTAGAC	11580
GTTGGTCAAA	GGAATCTTCA	TTAGGCAACT	GTAAGGCGCG	TTCAAAGATA	CGATGCAAGA	11640
AATTCCCGTG	ACTACGGGCA	TCAGGATGCA	AACGTAATTC	CTCCTGCAAG	CCTAAAACGT	11700
AGCGTAGGAA	ATAACTGTAT	TCATTGCGAT	AAAACTCTGT	CAAACCCGAC	GTAGACAGGT	11760
AAAACTCCTG	TTTGGCAGGA	TAGAGAGCTT	GCAAGGTGTC	CTTGGCTAAG	GTCTTGCTGC	11820
TTGGACTGGT	TGGGATAGCT	GGATTTTCCA	GACCTTGCTG	ATCTAGTTTT	TTACCTATGA	11880
CACGCGACAG	AACCTTGACA	AAAGTCAAAT	CTTGCTCAGT	ATCGCTCATC	TCACCCTGCT	11940
GGTGATAGGC	AACCAGACTA	GACAAAAGAC	TGTGATAGGA	CCCCATATCC	TCCTTAGACA	12000
GTCCTTTGTG	ATTCATCCTC	TTCTCTCTCC	GCCTAAATCC	AAAATGGATC	AACTCTTGAA	12060
GATAGGCAGA	TTCCTTACTT	TCACTTTCGT	TAAAAAGGCT	TGGAGCCGAC	AAGAACAACT	12120
GCTTACGAGC	AGAATTGACC	AAGGAAAGCA	TAGTGTAGCG	ATTTTTCTTG	AGATTTTCAC	12180
TGCTGGCAAT	CAGTAATTGA	ACGCCTTCTT	CGGTCGCTTG	GTTTAGGTTT	TGCCTTTCTT	12240
CATCTGTCAG	AAGACTGGTG	TTTTGAGAAA	TTTTTGGTAA	ATTGTCCTGA	GTTAGTCCAA	12300
TAGCATAGAC	AAAGTCAGCA	GTCAATGGTG	CAATCAAATC	GTAACTCTGC	ACCAGAACAG	12360
TGTCCACTGT	TGCTGGAATG	GTACGGTATT	GGGACAAACT	CATTCCAGAA	TGGAGCAAGG	12420
CTAGGAAGTC	TTCCAGACTA	ACCTGTGAAC	CAGCAAAAAC	AGTCGCAAAT	TGTTCTAAAA	12480
CATGGCAGAA	AGCCTTCCAA	ACTTCGGCTT	GTCTTTCCTG	TTCTACAGCT	TCCAAAGTGG	12540
TTGTCAAATC	TTGTAACTGC	TTGGTCACAG	CTCCTTCTTT	TAGAAAGACA	CTCCATTTTT	12600
GTAGGAGTTT	TTCAGCCTTT	TGTTTTCGGC	TGGCAAAGAG	GGTTTCAAGA	GGTGCTAAAA	12660
TTCTCAGGCG	GAGGACATTC	AAACGCTCAA	GATTAAATTT	TCCATGGTGG	GATTTGGTGA	12720
AGGTTTGCTG	AAAGGCTGGC	AAGCCATTGA	TACCAAGATA	GCGGATATAT	TGCTCAAAAG	12780

			304			
CATCAATATC	AGACTGACTG	AGGTCAGTAT	ACAAATCAGT	TCTAAGAAGA	TTAATCAAAT	12840
CCTCCTGACG	AAAACGGTAA	CGTTTTAAAG	CTAAAATAGA	CTCGACAAAC	TGAGTCAAGG	12900
GATGATGAGC	CATGGCTTCG	CTTCTACCAA	GATAAAAAGG	AATCTGATAC	TGGTCAAAAA	12960
TGGTTTTGAG	AGATAACTGG	TAAGAAGCTA	CATCCCCCAA	GAGAATACGA	AAATGCTTGT	13020
AGCTCAGGTC	TGAGTTCTCA	TGTAATTTCT	GACGAATACT	ACGGGCTACT	AGCTCCAACT	13080
CCTCCTTTTG	CGTCAAACAA	GACCAGATTT	GTAAATTTTC	ACGGTCTTTC	TCATCGACAT	13140
CCAAAGCGAG	TTCTGAAAAG	TCATAAGAAG	ACTCCAACAA	ACGAGAGGCC	TTGTCAAAAC	13200
TATCCATCTT	CTCATGAGTT	TGAGAACAGT	CCTGAGCAGG	CGTTTGGTAT	TTAGAAGCCA	13260
GATGATGGAG	AAATTTTACG	CTGGCTTGGT	AGAGATTGCC	CTCGCTAAAA	GGACTGGTAT	13320
AGGCTTTCTT	ACTAGCATAA	GCCCCGATAA	CAATCTCAAC	ACCTTTGCCG	TGAAGTAAGT	13380
CCACAACCCG	CTCTTCCTCA	GCAGAAAAAC	GAGTAAAGCC	GTĆAATGACC	AAGGCGATTT	13440
GATTAAAATC	ACTACTTACC	TTGTCATTCT	CAATAGCCTC	AATCAAATGG	GACAACTGAC	13500
TTTCCTGGGC	TAACTGACCT	TGATTAAGAT	AGGCTGTTAC	TTTCTCAAAA	ATCAAGAGTA	13560
AATCCGCCCT	CTTATCCTCA	TCTGTTAAAT	TCTCCAAGTC	СААААААСТС	ATCTGAGATT	13620
TGGTCATCTC	ATGGTAAAGC	TCAATTAACT	GCTGGATCAA	TTGAGGATCC	TGCTTAATAG	13680
CGCCATAAAC	ACGCAAGTCC	TTGGGATCGA	GTTCGGCAAG	GCATTTGTAA	AAGGCCAACC	13740
CAAGACCGAT	ATCATCAAGA	GTAGTTTTAG	CTGGTAAATC	ATTCAAGACC	AGATAGCGAG	13800
CCATTTGAGC	AAAGCGCGTG	ACGGTAATCG	AAAAAGAAGC	CTGCTGGGAC	AAGTATTCCA	13860
GCACGGCGCG	TTCCTTTTCA	AAAGAAAGAG	AGTTGGGGGC	aatgtagaag	ACCCGCTTGC	13920
CAGCTGCAAC	TAGCTCTTCT	GCCTCTCTTG	TTAGAATTTC	TGTCAAAGAA	GTCCGAATAT	13980
CAGTATAAAG	TAATTTCATC	TCAGCCTCGT	TGGAATTTTT	CATCACCCTA	TATTATACCA	14040
GATTAGCCT	CGTAAATCTG	ТТААААТАТТ	TAGGCCATCC	TTTCTTTTCT	TCATCATCTG	14100
СТАААТСТТА	AATACTTAGC	TTTACTTGTA	TTAGATAGAA	TAAGTCTGGC	TACTGAAAAT	14160
CACATAATAA	AAAAGCCTCG	GTAACAAGGC	TTTGAGTTTT	ATGATTGTTT	CTTAGGTACG	14220
SAATACACTT	CAATGTGTTG	TCCCAGTATC	TTAATGTCGA	CTGGTAGATT	GTCTGATTTA	14280
CGCCATCAA	CATCGGACTC	TAATTCGATA	TCAGAAGAAG	TTTTAATATT	ACGTGCCTTT	14340
TATATTCAA	ТАТТСТТСАТ	AGAATGATTG	AACTATAGTA	AATTGAAACT	ATAATAGTAC	14400
ACCGTGGATG	СТААААТАТТ	TCTAGAAATT	AATTTGATTT	СССТААТСАА	GCTATTCGTA	14460
CTTATTTCA	АТСТАСТАТА	АТААААТСАА	CCAAAAATAG	TACACAATGT	GGTATAATCT	14520
CTTATGGCA	TATTCAATAG	ATTTTCGTAA	AAAAGTTCTC	TCTTATTGTG	AGCGAACAGG	14580

WO 98/18931

PCT/US97/19588

305

TAGTATAACA	GAAGCATCAC	ACGTTTTCCA	AATCTCACGT	AATACCATTT	ATGGCTGGTT	14640
AAAGCTAAAA	GAGAAAACAG	GAGAGCTAAA	CCACCAAGTA	AAAGGAACAA	AACCAAGAAA	14700
AGTTGATAGA	GATAGACTTA	AAAACTATCT	TACTGACAAT	CCAGATGCTT	ATTTGACTGA	14760
AATAGCTTCT	GACTTTGGCT	GTCATCCAAC	TACCATCCAC	TATGCGCTCA	AAGCTATGGG	14820
CTACACTCGA	AAAAAAGAAC	CACACCTACT	ATGAACAAGA	CCCAGAAAAA	GTAGCCTTAT	14880
TTCTTAAGAA	TTTTAATAGT	TTAAAGCACC	TAGCACCTGT	TTAGATTGAC	GAAACAGGAT	14940
TCGATACTTA	TTTTTATCGA	GAATATGGTC	GCTCATTAAA	AGGTCAGTTA	ATAAGAGGCA	15000
AAGTATCTGG	AAGAAGATAT	CAGAGGATTT	CTTTGGTTGC	AGGTCTAACA	AATGGTGAAT	15060
TAATCGCTCC	AATGACTTAC	GAAGAGACGA	TGACGAGCGA	CTTTTTTGAA	GCTTGGTTTC	15120
AGAAGTTTCT	CTTACCAACA	TTAACCACAC	CATCGGTTAT	TATAGTAAAA	TGAAATAAGA	15180
atagggggg	GGGGGGAGGG	GGGGGGAGGG	AGA			15213

(2) INFORMATION FOR SEQ ID NO: 27:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6004 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TTATTACCTG	AAACATTAAA	TTTAATTGGA	CATCCCGTTA	TCAATTTTAT	AATATCATCA	60
AGATTTTTAT	TATCTGATTC	AGGAATTTTA	TCTGATATAA	CAACACCATT	TTCAAGATAG	120
ТТСАТТАААТ	TATTTGATTC	ACTAACATTA	GTGTTTTGAT	CTCCATCAAG	ССАААААТАА	180
TGGTTATCGG	AATCTAAATA	CGATGAGTTT	AAAATATTAT	TACAAATTAT	TTGATTTGCT	240
CCACCAGGAA	TATATCTCAC	TACTAAATTC	TGTTTAAGAT	TCTCACTACC	TGAATGAGTG	300
ATAACAAACT	CTAGAATATA	TTTAGCTAGT	CTATCTTCAA	САТАААТСАТ	CTTCCTAGAA	360
TGATACACAT	CACCTAATTC	AAAAAATGCA	TCCTGATAAT	СААТАТТТТС	ААТААСАТСТ	420
ACCTTTTCTC	CGTTTTTCAC	TAAAAGTTTC	ACGCCTTCTC	TAGGAAAATC	TTTTATAAGT	480
TGTGTAGAAT	GTGTAGTGAT	AATAATTTGA	TGTTTTTTAT	TTAAACACTC	TTGAAGTAAA	540
AACTCTTTAA	ATTTATAGAT	TGCACTCGGA	TGAAGTGAGA	TTTCAGGTTC	АТСТАТТААТ	600
ATTAATGAAT	TTGATTGCGC	ATTTACTATA	TCATTTACTA	АСААААТААТ	TCTAGCCTCA	660
CCTGTTCCTG	CAAAAGCCTC	GGAATATTCT	TTTCCAGATT	TTTTCATCCA	AATAGTTTTG	720

			306			
GAAGCTTTTA	TATCATCACC	TTTTGAATAC	AACTTATGTG	TTAAAATTTG	AATGTCTGTA	780
TAAGATTCAT	CCATTATTTC	ACTAATAATT	TCACAAACTT	TATCATCAAC	TTTAACATTA	840
TCTATAACCA	TTTCCTTTTT	ATAACGCGTA	TAGCTACTTG	TATTATTCTT	ТААААТАТСА	900
GCAACTGGCT	TAGATCGTAA	ТСТТАТАААА	TCTTGTTTAC	TACGTTGAGT	AGAAATTTTT	960
ТТААААТТАТ	AGTGATAGAA	АААТАААТСА	AAAGCAGAAA	CATATTCTTT	ACAATCACAA	1020
AAGACAACAT	ТТТТТТСААТ	GCCATCCCAT	CTGTCTGTCG	AAGAACTTCC	AATATATTTA	1080
TTTTTGGGTA	ATCTTTCCAT	CTCATATTGT	TTTTGAGGAG	CATATGGTTC	CCAATAATCT	1140
AATCCTTTTT	TTGTTCCAGA	ACGGCCTTTA	AGAACTTCTA	CATTTCTAGA	AGCTTTAATG	1200
TTATAATATG	AATAGATTAA	ACATTGTTTC	CCATCCACTT	CATCTATTTG	ATCAACATTT	1260
GTACTAAACC	AATATTCAGA	CACACTTTTA	TTGGCTGGAG	AACCATATAA	AGCTTGTAAA	1320
ATTGAAGTTT	TATTTACTCC	ATATCTATTA	CAGACACCTC	AGGATTATTT	AACTTATAAG	1380
TTTTAACAGC	TACGGAATCA	ATTTCAACAG	CAACTTGAAC	ATCTATGCCT	GATTTTTTAA	1440
GGCCACTTGT	AGTGCCACCT	GCACCGTTAA	ATAAATCAAT	AGCAACAATT	TTCCCCATAG	1500
ТАТТСТССТА	AAGTTTCTCC	TTTTTATTAT	AACATTATCA	AATGTAAAAC	CCAACCCGAT	1560
AGGGTTAGGT	TTTTAACATC	ATTTCACCAA	CTTCTTCATC	TCATCAATAC	GTGCGACGGT	1620
CGCGTCATAT	TTAGCTTGGT	AGTCAGCTTG	TTTGTCGCAT	TCTTTTTGGA	CGACTTCTGG	1680
TTTGGCGTTG	GCTACGAAGC	GTTCGTTAGA	GAGTTTCTTA	CCAACCATGT	CCAGTTCTTT	1740
TTGCCATTTA	GCAAGTTCCT	TGTCGAGACG	GGCCAGTTCT	TCTTCAACAT	TGAGGAGATC	1800
GGCCAGTGGC	AGGTAGATTT	CTGCTCCTGT	GATGACACTT	GACATAGCCA	GTTCAGGTGC	1860
AGGGATGGTT	GATGCGATTT	CCAAGTGTTC	TGGATTTGTA	AAGCGTTTGA	TATACTTGAC	1920
ATTGCTGTTA	AAGAAGGCTT	CCAAGTCGCT	ATCGCTTGTC	TTAACAAGGA	TGGTGATAGG	1980
CTTGCTTGGT	GCTACATTTA	CTTCCGCACG	CGCATTCCGA	ACAGCACGAA	TCAAGTCTTT	2040
GAGACTTTCC	ACACCAGTGT	GAGCCGCAAG	GTCTTCAAAG	GCTAGATTAA	CAGTTGGGTA	2100
TGCAGCTGTC	ACGATAGAAC	CTTCTGAGAT	TTGTCCAAAG	ATTTCCTCTG	TCACGAATGG	2160
CATGATTGGG	TGAAGGAGAC	GAAGGATCTT	GTCCAGCGTA	TAGAGGAGAA	CAGATCGAGT	2220
AATGACCTTA	TCGTCTTCAT	TGTCGCTGTA	TAGAACTTCC	TTGGTCAACT	CAACATACCA	2280
GTTGGCAAAT	TCTTCCCAGA	TGAAGTTGTA	AAGGATATGA	CCAGCCACAC	CAAACTCGAA	2340
CTTATCAAAG	TTTTCAGTAA	CTTTTGCAAT	GGTTTCGTTG	AGATTGTGGA	GAATCCAGCG	2400
GTCCGTCACA	TTACCAGCCT	CACCTGTTGC	AACTTTTGTG	ACATTGTCAT	GCGCCACATC	2460
CAGCGTCAAA	CCTTCATTGT	TCATGAGGAT	ATAGCGAGAA	ATGTTCCAAA	ТТТТСТТААТ	2520

AAAGTTCCAT	GAAGCATCCA	TTTTCTCGTA	AGAGAAACGA	ACGTCTTGAC	CTGGTGCGGA	2580
ACCGTTTGA	AGGAACCAAC	GAAGGGCATC	AGCACCGTAT	TTCTCGATGA	CATCCATTGG	2640
GTCAATCCCC	TTACCGAGAG	ATTTAGACAT	CTTGCGTCCT	TGCTCGTCAC	GGATGAGACC	2700
GTGGATAAGC	ACGTTTTGGA	ATGGCTGACG	ACCAGTAAAT	TCCAAGGACT	GGAAGATCAT	2760
ACGAGACACC	CAGAAGAAGA	TGATGTCGTA	ACCTGTTACC	AAGGTTGAAG	TTGGGAAATA	2820
ACGTTTAAAG	TCTTCTGAGT	CGACTTCAGG	CCAGCCCATG	GTTGAAAATG	GCCAGAGGGC	2880
AGAACTGAAC	CAAGTATCCA	AGACGTCTTC	GTCCTGAGTC	CATCCGTCAC	CTTCTGGAGC	2940
TTCTTCGCCG	ACATACATTT	CACCATCAGC	ATTGTACCAG	GCAGGGATTT	GGTGACCCCA	3000
CCAAAGCTGA	CGAGAGATAA	CCCAGTCGTG	GACATTTTCC	ATCCATTGAA	GGAAGGTATC	3060
GTTGAAACGA	GGTGGGTAGA	ATTCGACCTT	GTCCTCTGTG	TCTTGGTTAG	CAATGGCGTT	3120
CTTAGCCAAT	TGGTCCATCT	TGACGAACCA	TTGAGTAGAC	AAGCGTGGCT	CAACTACGAC	3180
ACCTGTACGT	TCTGAGTGAC	CAACACTGTG	GACACGTTTT	TCGATTTTGA	CAAGGGCACC	3240
GATTTCTTCC	AACTTAGCAA	CGACTGCCTT	ACGAGCTTCA	AAACGATCCA	TGCCTGAAAA	3300
TTCAAAGGCA	AGCTCATTCA	TAGTTCCGTC	GTCGTTCATG	ACGTTGACTT	GTGGCAAGTT	3360
ATGACGTTGG	CCAACCAAGA	AGTCATTTGG	ATCGTGGGCA	GGTGTGATTT	TCACGACACC	3420
AGTACCAAGC	TCAGGATCTG	CGTGCTCATC	TCCAACGATT	GGGATGAGTT	TATTAGCGAT	3480
TGGAAGGATG	ACGTTTTTAC	CAATCAAGTC	CTTGTAGCGC	GGGTCTTCTG	GATTAACCGC	3540
AACCGCAACG	TCCCCAAACA	TAGTCTCAGG	ACGAGTTGTA	GCAACTTCAA	GGGCGCGTGA	3600
ACCATCTTCC	AGCATGTAAT	TCATGTGGTA	GAAGGCACCT	TCTACATCCT	TGTGAATCAC	3660
CTCAATATCA	GAAAGGGCTG	TGCGAGCTGC	TGGGTCCCAG	TTGATGATAA	ACTCACCACG	3720
ATAGATCCAG	CCTTTCTTGT	AAAGGTTCAC	AAAGACCTTA	CGAACAGCTT	TTGACAAACC	3780
TTCATCAAGA	GTGAAACGCT	CACGAGAATA	GTCTACAGAA	AGCCCCATCT	TGCCCCATTG	3840
TTCCTTGATG	GTAGTGGCAT	ATTCGTCTTT	CCATTCCCAG	ACCTTCGTCA	AGAAAGACTC	3900
ACGACCTAGG	TCATAACGCG	TAATACCCTC	ACCACGTAAG	CGCTCCTCAA	CCTTAGCCTG	3960
AGTCGCAATA	CCAGCGTGGT	CCATACCTGG	AAGCCAAAGG	GTATCAAAGC	CTTGCATGCG	4020
TTTTTGACGG	ATGATGATAT	CCTGCAAAGT	CGTATCCCAA	GCGTGACCAA	GGTGAAGTTT	4080
CCCAGTTACG	TTTGGTGGTG	GAATCACGAT	TGAATAAGGC	TTAGCCTTTT	GATCGCCTGA	4140
AGGCTTGAAA	ACATCCGCAT	CAAGCCATTT	TTGGTAACGA	CCAGCCTCAA	CCTCGGCTGG	4200
ATTGTATTTA	GGTGAAAGTT	CTTTAGACAT	GTGTGTGTCC	TTTCTCTATT	TTGTTTATTT	4260

			308			
TATTTTGAAT	TTGCTTAGCA	GCTTCTTCTG	CAGACAAATT	CGTATTATTT	ATTTTAAAGT	4320
AGTGGTGCAA	CTCATTCGGT	TGATGTTGGG	AATTTAATTG	AAGTGTTTCA	GCGGTCTCTA	4380
AAATTTCTCT	TTCAGATACC	TCAATATGTC	GTTTTAAGGG	TTTGTGCTTT	AATCGATTCT	4440
CCGTTCGATT	TCGACGTATG	CACTCTTCAA	GACTTGTTTC	CAATTCAACA	AACAGAATCT	4500
CTTGATGAAA	GTTATCCAAT	AAATCCTGAA	TTTGCTTTAA	ATACATCAGC	TGGTACTGAT	4560
ТТСАААААТС	AATTACGTCT	GTTAAAATTA	CTGATCGCTG	ATTTCTTGCA	CTTGCTCCAA	4620
GGAAAGAAAA	GGTAATTCCA	CGAACAAATT	CCCACATCTC	CTCGGTATAA	TCCTGATAGA	4680
TCTCTAGTGC	AAAATCAATG	GCTTGATGGT	татаааатлс	GGTAGCATCC	GTCAGTCGAG	4740
ATAATTCTTG	ACCAATGGTC	ATTTTTCCTG	ATGCTGGAGC	ACCAATGATG	AAAAGATGCA	4800
TCAAATCACC	TCCCACTCAC	TCCTCAGCAA	GCCATATCTC	AAATCATCAC	AGCAGTTGCC	4860
TTGAGCATCT	TTGCGGTCTC	TTATGCGAGC	TTCGAGGGTA	AAGCCAAGCT	TTTCCGAGAC	4920
TCGTTGACTT	TGAAGGTTAT	ATCCAAAGCA	AGTTAGTTCA	ATCTTGTGAA	GACCAAGTTC	4980
TTTAAAAGCT	AGATCAATCA	AGGAACACGC	TGCTTCTGGA	ACATAACCTC	GACCCCAATA	5040
GTCTGGGTGC	AAGGTATAGC	CAAGCTCTAG	CACATCATCC	GCATGAAGAT	GGTTGAAGTC	5100
AACAGAACCA	ATGACTTTAT	CGGTTCCTTT	GACGACAATC	CCATAGCCAG	CTGGGAGATT	5160
TTCCTTTTGA	GTACGCTCCG	GAAGAATGTG	CTCCAGATAA	TAAATCTCAT	CTTCCAAGAT	5220
CTTGACTGGA	GGAAAACCTG	CTGGATAGGC	GACCTCTGGC	AAACTAGCGT	AGGTATGGAT	5280
ATCCTCAGCA	TCCACCACTG	TGCGGACTCG	TAAAACGAGA	CGTTCTGTTT	CGATTTTATC	5340
TGGCAGCTCA	GTTCTTGCCA	TCCTTCTTCC	TCGCTTTTTT	GATGAAACTG	CCCTTCATAT	5400
CTACACGCTT	GTCCAGATAG	CGATAAACGC	GCTGATATCC	ATCTCCCATG	AAATAGGTTG	5460
GGGCAAACAG	TTGATTTTTA	AAATGTCCCT	TTTCATCCAG	GAGTTCTGGG	GCAACAAGTC	5520
GCTCAAGAAT	CTTGGCAAAG	ATGTGGCAAA	TACCGTCTTC	CTCAACAATC	CTATCTACCC	5580
GACAATCTAA	AACAAGTGGA	CAGGCGTCTA	AAATAGGAGT	CTGAGTTCGT	TCAGAAATIT	5640
CATAATGCAC	TCCCAAACGT	TCCAATTTCT	CCTGATGACT	GATAAAACCA	GCCTGCTCCA	5700
TCGCAAGCAT	AGAAGTTTCA	TCAGAAATAT	TCACAGTAAA	TTTTTGATAC	TGTTTGATCT	5760
GCTCTGCGGC	ATTCTCTCTC	GCAACGACTC	CAATCACAAC	CCAATCTCCT	AGACTATAAG	5820
AGGAACTACA	GGTCGTGATG	TTATAGCCAA	AATTCTAATC	TTGATATCCT	AAAATAAAA	5880
CAGGAAAACC	ATAATATAGT	TTACTTGTGT	TAAAAGATTG	СТТСАТААСА	ACCCCCTTTG	5940
ACTAAGACGT	AAAAGAAAAG	CCCTGCCATC	TACATGACAG	GGACGAATGT	GTTTATCCGC	6000
GGGG						6004

(2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5857 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

TGTAGAATTC	ACGACAATGO	TTCGTTGAT	TCTGGGTTGA	TTTCGTCGCC	TTCTGGCAAG	60
CGAGTCAATC	а алссалалат	AGTACACAA1	GTGGTATAAT	CCTTTTATGO	CATATTCAAT	120
AGATTTTCGT	` AAAAAAGTTC	TCTCTTATTC	TGAGCGAACA	GGTAGTATAA	CAGAAGCATC	180
ACACGTTTTC	CAAATCTCAC	GTAATACCAT	TTATGGCTGG	TTAAAGCTAA	AAGAGAAAAC	240
AGGAGAGCTA	AACCACCAAG	TAAAAGGAAC	AAAACCAAGA	AAAGTTGATA	GAGATAGACT	300
ТАААААСТАТ	CTTACTGACA	ATCCAGATGC	TTATTTGACT	GAAATAGCTT	CTGACTTTGG	360
CTGTCATCCA	ACTACCATCC	ACTATGCGCT	CAAAGCTATG	GGCTACACTC	GAAAAAAGAA	420
CCACACCTAC	TATGAACAAG	ACCCAGAAAA	AGTAGCCTTA	TTTCTTAAGA	ATTTTAATAG	480
TTTAAAGCAC	CTAACACCTG	TTTAGATTGA	CGAAACAGGA	TTCGATACTT	ATTTTTATCG	540
AGAATATGGT	CGCTCATTAA	AAGGTCAGTT	AATAAGAGGC	AAAGTATCTG	GAAGAAGATA	600
TCAGAGGATT	TCTTTGGTTG	CAGGTCTAAC	AAATGGTGAG	TTAATCGCTC	CAATGACTTA	660
CGAAGAGACG	ATGACGAGCG	ACTTTTTTGA	AGCTTGGTTT	CAGAAGTTTC	TCTTACCAAC	720
ATTAACCACA	CCATCGGTTA	TTATTATGGA	TAATGCAAGA	TTCCATAGAA	TGGGGAAGCT	780
AGAACTCTTG	TGTGAAGAGT	TTGGGTATAA	ACTTTTACCT	CTTCCTCCCT	ACTCACCTGA	840
GTACAATCCT	ATTGAGAAAA	CATGGGCTCA	TATCAAAAAG	CACCTCAAAA	AGGTATTACC	900
AAGTTGCAAT	ACCTTTTATG	AGGCTTTTTT	GTCTTGTTCT	TGTTTCAATT	GACTATATAA	960
ATTGTCTAAG	CGAAACAACC	GATAAGAATT	GGCACAÄAAG	CGACCGTATT	TTTGTTACCA	1020
ATACAGGAAA	AACAGTTCAT	AGTTCTATCT	TGAGCAAGTC	TCTCCAGCGA	GCAAACGAAC	1080
GCCTTAAAAA	ACCAATTCCC	AAACATCTGT	CCCCTCACAT	CTTCAGACAC	ACCACTATTA	1140
GCATCTTATC	AGAAAATAAA	ATTCCTTTAA	AAACAATCAC	GGACAGGGTT	GGTCATCCCG	1200
ACTCTGAAGT	CACTACTTCC	ATCTACACCC	ACGTCACAAA	GAACATGAAA	GATGAAGCAA	1260
TCAATGTACT	GGATAAAGTT	ATGAAAAAGA	тттттаааа	AGTTTTGTCC	CTTTTTTGCC	1320
CTCTAAATAC	AAAAATAGCC	CTTCGGATAA	AATCCGAGGG	GCTAGAAACG	TTGTTAAATC	1380

AACGGCCGAA CTTTTGAATT TCATGGTTCG GGATAAAATA GTTCACTGAA CTATTTTATT 1440 TTTTAAGGTT ATCATAATAT CAAATAGTTC AATTAAATAC GCTAAATTAC TAATATACTT 1500 TTTACCTTTT TCATTCTAAA ATGTAAAGTA CAAACAATTA CAATATACTA GAGGGGGAGT 1560 AAAAAAGGTA TTAAATCGAT GAGTTCAGCA GGCAAGAAAA TAGCACCTTT ACGGGTGCTA 1620 TTTTTTAATT AACGCCACGT TAACTTTTGA TTGATGAATT TTATTGTTTG GCACTTCTTT 1680 CATTICACGG TAAACATCGA TGAAATTCTT TCCAACATTA TITTTGGAGT TAACTGCATT 1740 TATTTTTGTA TTAATAACTT TTTTAGTATC GAAAGAATGG TTTAAGAAAT CCATAACTAA 1800 CTCTCCTTTC TCATCCTGTA ATCAAGATTT TTATCAATGT CAAAATAGTA TTTTCTATCA 1860 ATCCAAATTG GTCCTTCTCC TTTAGAAATA GCAAGTACAT CTACCGGACC TCCTACTGTT 1920 TCAAGAGTGT TGACAATTTT TCTCTTAAAT GAAGTTAATT CAATAAATGT TTTAGCTGTA 1980 CTCGCCATTT CATTAGGGG TTGCATTCCA ATAAGGTCTA TTATAGGATT TATATAATAT 2040 TTTTGCTGTA TAGATGATAT ATTTTCAAAT ATATTCTCAA TTTCATCACC CAATCCATTT 2100 TTCTCCATAA CTGATGATAC TTGCTCTGCG ATATATACAT TTAAGTTAGG ATCTATACCA 2160 TTCATAATCG TCTCAACCAT CTCTGACTGT GCAAAAGGGA TTATATGACA AGTTTTATGA 2220 TGATTTATCA CACTTTCATT AATAACTTTC CAAATTAATC GTTTAGAAAA AATTCCATAT 2280 AATTCAATTT GTCTTATAGA TGGAAATATC TCGTCTGTAC CATAACCTGC TATAACTAAT 2340 CCAGTTATGT TTGTTGAGTC ATATCCAATG AAAATCGCTT TATATAAAGA TTTAGCAATA 2400 ACTTCAACCT CATCATCAGT ATGAGGAAAG GATTTAAAAA CATCGTCTAC AATGCTTTTT 2460 ATTAACTCTA ACTCAGCTTC AAAAAATTCA AAATTACTTT CAGCTTCTAC TTTTGAAATT 2520 TCTAAACTAA AATTAGTTAT AGCATTTAAT AAAATTTTAT TAAAATCATC TAGAGTGATG 2580 GTTTCACCAT TAGAAACTCT TAAATCAGCT GTTTCTTGCG CTTCATAGGC AATGCTGTCC 2640 AAAATACTTC TTGTACTTCT GACAATATAA TTTCTTAATA AATCCTCAAC TTGTAGATGT 2700 TTAAAGGAAA TTAAAAATTC TATTAGCTTT TCAACGTATT GGGCAGTATT ATCTAATAAA 2760 TCTGTGCCAA TAGCCTGCTT AAACTCATTT AAAATTACCT CCCACGGAAT TTCCATAAAC 2820 GAAGCGTTCC CATATATCAT GATCCCCACG GAATGTTCTT TTGATAAAGT GAATAATTTT 2880 CGGGCGCTAT TAAAAACTIT TGAATITTTC CCGTCTGATA AGGTTACAGC GCTATCAGAA 2940 GCCAATACAA CACCATTTTT ATTTAATATT CCAATTTCTG CTGTCAAAAT ATCACCTAAA 3000 CTTTCTAAAC CTGCTCATGC TCTAATGGTA CAACAGCTAA GGTCTTACCA AGACTTGCCA 3060 ACACTTTTAA TACTGTATCA AGTTGTGGGC TTGTCTTTCC TGTTTCCATT CTAGCGATAA 3120 CTGGCTGACT AACACCGCTC ATCTCCTCTA GTTTCTTCTG ACTAATACCC TTTTCATTTC 3180

TAGCCTCGAT AAGCTCACTC	ATGATAGCCA	CGCGCATATC	ACTTTCCAAA	ATTTCCTCTT	3240
TGCTGAATAA TTCAGCTCTT	ACATCTTTCC	AGTTACTACC	AATAGCATTA	TTTTTCATTG	3300
TCTAAACCTC TTTCTTTAA	ATCTGCAAGT	TCACGTTTAG	CTTGCTCAAT	CTCTCTTTTG	3360
GGTGTTTTCT GTGTCCTTTT	CATAAAATGA	TGCAGTAAAA	CAAAACTACC	ATCCATCCAA	3420
GCAACAAATA AAATTCTATC	TCTAAGTGGT	CTCAGCTCCC	AAATTTCAGC	ATCTAAATGC	3480
TTAATATATG GTTCGCCTGC	GCGTGTTCCA	TGTTGGCTTA	ACAACTCAAT	ATAATCATTA	3540
ATTTTATTAA GCTTAATTCT	GCTATCTTTC	CCTTTTTTAC	TGGTAAGCTC	TCGCATATAA	3600
TCAAAAACAG GCTCATTGCC	GTTTTTATCC	TTGTAAAAAT	AGATATTATG	CACTATTAAC	3660
ACCTCTTCCT AATAACAATT	ТАТААССТААА	AGTTATTGTT	TGTAAATACT	TTTAAGTTAT	3720
TAAAATAAAA AGCACCTAGT	TTCCTAGATG	CTAGCACAAT	GACACGGATT	CGCACCGTGG	3780
CTACCTCTAT CAAGGTGTAC	тссттстата	CTATCCCTTG	TGCTTTAGAA	TATTATACCA	3840
CACAATCAAC TAGATACCTA	CCATCTCATG	ATATACCCCC	ATTTTGGGCA	AGGGTACAAC	3900
GCTAAAATAC AAATCAGAAT	AGATATTAAA	CCACTTATTT	AACTTATCAT	AAGCTGGTGA	3960
TTGACTGATA AATAATATCC	GCTGACAAGC	TCCGATAACA	TTCATGTGAT	TGTACACATA	4020
AACCTCTTTT ACAGCCTCTA	AAATGTCAGC	CTCACTTGTT	TGTACCCTAA	TATCTGTTAT	4080
CTGCTTGATA GTTGCGTATT	TTTGATAAGC	TAGCATATCT	TGATTTTAG	CAGCATCAAA	4140
CATTTTACGC TCAAGGACAC	TATACTTAGG	TTGTTCTTTA	TCTCGCATGA	AATACCACTT	4200
GAGCCATAAA ATCTTTTCTC	GGTGTATTAC	AGAAATACGC	TCAATTTTCT	TCTTTGTCAT	4260
TGCTACCTCC TAAATCATCA	ATTTAACAAT	TCTAACCACT	CACTTTTAGA	AATAGTTGCA	4320
TAGATCTTGT TCGATGTATG	ATACAAAGGT	TCTAAATCTT	TTTCCACCCT	AATATAGTTC	4380
ATCTTATCCT CATGAGTAGG	AAAGTATAGT	ATTTCCGTTT	CATCCTCGTT	TAGGATACGA	4440
TTGCACCAAT CATCAATAAT	AACTGGCACT	TCCCACTCAC	GCCATTTTT	AAGGTTTTCT	4500
AAAAGTTCAT TATCACTAAA	TAGCTCGCCA	TCTATTTGGA	AAAATTCCCC	TAAGTCATTG	4560
ТТТССТТСАА СААТААТААА	CTCTGGCATA	TTTCTATTAC	TTAATAACTC	CTTGAGTTCT	4620
TGTAACTCTT TGATTTCCTT	TAGATACTTC	CTCAATTTCC	AACCTCAATT	CTTCAATCTG	4680
CCTTACTACT CCAAAATTT	CATGGGTCTT	ATAAGATTGT	TCAAGTATAG	CCTTTGCTGC	4740
TTGAGTTCTT ATAAACGGGT	TGACCTTACT	GTCCATCATA	ATATCATTGA	GTACAGAAAC	4800
AGCGTTAGAT GATGCTAAAT	AAAGCATTTG	AGTTGTTTTA	TCCATCATCT	CATCTTGCTT	4860
TATCCTCAAT GTCTTTTAA	CCGCTGCAAC	TTTTAGATAC	TTATGACCTG	TTGCGCGTGA	4920

TACCCCTGCT TTTTGACATG CTTTGTCTAT	312 CGTTGGCTCG	GTAAGCATGG	САТСТАТСА д	4986
TTTAATTTGC TTGGACGTAA GGTTATCATT				5040
TATCAAAATA AAGGGTTGCC CCTTTATTTC				
CCATTGCCTC TGAATTGCCC TCAACAATCA				5100
CGTTAATAAG TAAACCACCG TGGAAATAAT				5160
				5220
TTTCAAGGCG TTGCTGTTGG CTGAATTGCT				5280
TATCATTATC CATAATATCT TCTAATTTTC				5340
CTAGGTATTC TCTCATTTCT GCCACTGTTA				5400
CTGCATCATC TGCTGTAATA GGCTCTTCTT				5460
TCTCTTTTTC TAGTTGCTGA TACAATAGCT	GAGCAGTATT	TTGGGAATAG	TTTTCGCCCT	5520
CTTTTTATA TTTTAAAAGT TCTTGCTCTG	CATACACTTT	CCCGATAATC	ACTTCCTTAT	5580
AAACTAATTG CCCATCTTGA GCTTTTAGCT	TAATACTCCC	ATGCTCTGGA	ATTTCAATAT	5640
ACTTAATTAT ACCATTTTTT GAGTATAAAA	CAAAGCCTTT	CTCCATCATT	TTAATAATT	5700
PATCATCCTT GTTTTCAGTC ATGCTTTTCT	CCTTTATTTC	ATTTTATTAT	AATCTGAATA	5760
CCCCTAGTCT ATTTATTTCA CTAGGTTTTT	AGGGTTCGTA	TGCTAAAATA	CTACCCTTTT	5820
TGTGTACCTT ATGGCTGACT TTTCAAATTG	GTTAGTT			5857
(2) INFORMATION FOR SEQ ID NO: 29	9:			
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 10254 base				
(B) TYPE: nucleic acid	paris			
(C) STRANDEDNESS: doub]	le			
(D) TOPOLOGY: linear				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

AAAATGATAG	CAGGAGAGTT	TTCCCGTCCA	TCAGACCCAG	AACTGAGAGC	CTTAGCTCAG	60
GCTTCTCGCC	AAAAACAGGC	CGCCTTTAAC	AAGGAAGAGA	ACCCCTTGAA	GGGAGCCGAA	120
ATCATCAAGA	CTTGGTTTGC	CTCAACCGGG	AAAAATCTTT	ACATCAACAC	TCGCTTGATG	180
GTGGACTACG	GTGTCAACAT	CCATCTAGGG	GAAAATTTTT	ATTCTAATTG	GAACTTGACC	240
ATGCTGGATA	TCTGTCCCAT	TCGTATCGGG	GACAATGCTA	TGATTGGTCC	TAATTGTCAĠ ¯	300
TTTTTGACAC	CCCTCCATCC	ACTAGATCCA	CAGGAACGCA	ATTCAGGTAT	CGAGTACGGA	360
AAGCCTATCA	CAATCGGAGA	TAATTTCTGG	ACTGGTGGTG	GCGTCATTGT	CCTTCCTGGA	420
GTGACACTGG	GAAATAATGT	CGTTGCAGGA	GCAGGGGCAG	ТААТТАССАА	ATCTTTTGGC	480

GACAACGTTG	TCCTAGCTGG	CAATCCTGCG	CGCGTGATTA	AGGAAATACC	TGTTAAATAG	540
ААСТАААААС	GAACAGCTGG	GGTTGTTTCT	TTTTTGTAGG	TTTCATCATI	TTTTACCCAG	600
ТТСАСАТТТА	ССТАСТСТАТ	CTCTTAGCAA	GTCTGTTTCA	TTAAGCAAGT	TCAAAGCATC	660
TCGTAAGTGG	GATGTTTTTC	TCCTCAGTTC	ATCAGCTTCC	TCCTTGACAC	TCGGTCAGAT	720
TTTGATACAA	ТАСТАСААА	TTAGAGGAGG	CAGGCTATGA	TTCAGAAACA	TGCGATTCCT	780
ATTTTAGAGT	TTGATGACAA	TCCTCAGGCG	GTTATCATGC	CCAATCACGA	GGGGCTGGAC	840
TTGCAGTTGC	CAAAGAAGTG	TGTTTATGCA	TTTTTAGGTG	AGGAGATTGA	CCGCTATGCG	900
AGGGAAGTAG	GGGCGAACTG	TGTTGGCGAA	TTTGTTTCTG	CCACCAAGAC	CTATCCAGTT	960
TATGTCGTGA	ACTACAAGGA	CGAGGAGGTC	TGTCTGGCTC	AGGCTCCTGT	TGGCTCCGCT	1020
CCAGCAGCCC	AGTTTATGGA	TTGGTTGATT	GGCTATGGTG	TGGAGCAGAT	ТАТСТСТАСТ	1080
GGGACCTGTG	GTGTCCTAGC	TGATATAGAG	GAAAATGCCT	TTCTAGTCCC	TGTTCGCGCT	1140
CTGCGAGATG	AAGGAGCCAG	TTACCACTAT	GTGGCACCTT	GTCGTTATAT	GGAAATGCAG	1200
CCAGAGGCTA	TTGCTGCTAT	TGAGGAAGTT	TTGGAAGACA	GAGGGATTCC	TTATGAAGAA	1260
GTCATGACCT	GGACGACAGA	CGGTTTTTAC	CGAGAAACGG	CTGAAAAGGT	GGCTTATCGT	1320
AAGGAAGAAG	GCTGTGCTGT	TGTGGAGATG	GAGTGTTCTG	CTCTTGCGGC	AGTAGCTCAA	1380
PTGCGTGGGG	TTCTCTGGGG	TGAATTGTTG	TTCACAGCAG	ATTCTCTAGC	GGACTTGGAC	1440
CAGTACGACA	GTCGTGACTG	GGGCTCGGAA	GCTTTTAATA	AGGCGCTAGA	ACTGAGTTTA	1500
GCAAGTGTTC	ACCACCTTTA	GTTGTACTGG	CAAAGGATTT	GTTTTATCAT	AAAATGTCTA	1560
GCTCATACTT	TTCAAAAATA	TGTTTAAACG	AGGTCACCTT	CCTCTTGTCC	TAGGCATGTT	1620
Gaggttggga	AAAATCTTTA	AAATCAGAAA	AACGTATCAT	ATCAGGTGAT	GAAAACTTTG	1680
ACACTATGCG	TTTTATGTCG	ATAAGATTTA	GAGTGAGATG	AAATGATACT	CTTCGAAAAT	1740
CTCTTCAAAC	CAGGTCAGCT	TCACCTTGCC	GTAGGTATAT	GTTACTGACT	TCGTCAGTCT	1800
PATCCGGCAA	CCTCAAAACG	GTGTTTTGAG	CTGACTTCGT	CAGTTCTATT	TGCAACCTCA	1860
AAACAGTGTT	TTGAGCAACC	TGTGACTAGC	TTTCTAATCG	ATGCCTTGGT	TTTCATTGCC	1920
ATAATCAAA	aagagaaatt	TTCTCCTGAA	AAGCATATAG	AGTAGCTGGC	GTTAAAAGCT	1980
CTGTCTTGC	TTTTTTGACC	TATAGTCACA	TCTATCAAGT	ATTGTTCTTG	CCTAAGCTAT	2040
:AATAAAAAG	GTGGCATTTT	TTAGGCTTGG	TGTTAGTAGA	TTTTGCCTTA	тсстатства	2100
TCATTTCGA	ACTTTTTATG	GTACAATGGA	AACATGTTAT	тсаааттатс	TAAGGAAAAA	2160
TAGAGCTAG	GCTTATCTCG	TTTATCGCCA	GCCCGTCGTA	TTTTTTGAG	TTTTGCCTTG	2220

			314			
GTCATTTTAC	TAGGCTCTCT	TCTTTTGAGC	TTGCCCTTTG	TCCAAGTTGA	AAGCTCACGA	2280
GCGACTTATT	TTGATCATCT	TTTCACTGCT	GTCTCTGCAG	TCTGTGTGAC	GGGTCTCTCA	2340
ACCCTTCCAG	TAGCTCACAC	СТАТААТАТС	TGGGGTCAAA	TAATCTGTTT	GCTCTTGATT	2400
CAGATCGGTG	GTCTAGGGCT	CATGACCTTT	ATTGGGGTTT	TCTATATCCA	GAGCAAGCAA	2460
AAGCTTAGTC	TTCGTAGCCG	TGCAACTATT	CAGGATAGTT	TTAGTTATGG	AGAAACTCGA	2520
TCTTTGAGAA	AGTTTGTCTA	TTCTATTTT	CTCACGACCT	TTTTGGTTGA	GAGCTTGGGA	2580
GCTATTTTGC	TTAGTTTTCG	CCTTATTCCT	CAACTTGGCT	GGGGACGTGG	TCTTTTTAGT	2640
TCCATTTTTC	TAGCGATCTC	AGCCTTCTGT	AATGCCGGTT	TTGATAATTT	AGGGAGCACC	2700
AGTTTATTTG	CTTTTCAGAC	CGATTTACTG	GTCAATCTGG	TGATTGCAGG	CTTGATTATT	2760
ACAGGCGGCC	TTGGTTTTAT	GGTCTGGTTT	GATTTGGCTG	GTCATGTAGG	AAGAAAGAAA	2820
AAAGGACGTC	TGCACTTTCA	TACGAAGCTT	GTACTATTAT	TGACTATAGG	TTTGTTGTTA	2880
TTTGGAACAG	CAACTACTCT	CTTTCTTGAG	TGGAACAATG	CTGGAACGAT	TGGCAATCTC	2940
CCTGTTGCCG	ATAAGGTTTT	AGTTAGCTTT	TTTCAAACAG	TGACGATGCG	AACAGCTGGC	3000
TTTTCTACGA	TAGATTATAC	TCAGGCTCAT	CCTGTGACTC	TTTTGATTTA	TATCTTACAG	3060
ATGTTTCTAG	GTGGGGCACC	TGGAGGAACA	GCTGGGGGAC	TCAAGATTAC	GACATTTTTT	3120
GTCCTCTTGG	TCTTTGCACG	AAGTGAGCTT	CTAGGCTTGC	CTCATGCCAA	TGTTGCGAGA	3180
CGAACGATCG	CGCCGCGAAC	GGTTCAAAAA	TCCTTTAGTG	TCTTTATTAT	CTTTTTGATG	3240
AGCTTCTTGA	TAGGATTGAT	TCTGCTAGGG	ATAACAGCCA	AAGGCAATCC	TCCCTTTATC	3300
CACCTCGTAT	TTGAAACCAT	TTCAGCTCTT	AGTACAGTTG	GTGTAACGGC	AAATCTGACT	3360
CCTGACCTTG	GGAAATTGGC	TCTCAGTGTT	ATCATGCCAC	TTATGTTTAT	GGGACGAATT	3420
GGTCCCTTGA	CCTTGTTTGT	TAGCTTGGCA	GATTACCATC	CAGAAAAGAA	AGATATGATT	3480
CACTATATGA	AAGCAGATAT	TAGTATTGGT	TAAGAAAGGA	AAGAGCATGT	CAGATCGTAC	3540
GATTGGAATT	TTGGGCTTGG	GAATTTTTGG	GAGCAGTGTC	CTAGCTGCCC	TAGCCAAGCA	3600
GGATATGAAT	ATTATCGCTA	TTGATGACCA	CGCAGAGCGC	ATCAATCAGT	TTGAGCCAGT	3660
TTTGGCGCGT	GGAGTGATTG	GTGACATCAC	AGATGAAGAA	TTATTGAGAT	CAGCAGGGAT	3720
TGATACCTGC	GATACCGTTG	TAGTCGCGAC	AGGTGAAAAT	CTGGAGTCGA	GTGTGCTTGC	3780
GGTTATGCAC	TGTAAGAGTT	TGGGGGTACC	GACTGTTATT	GCTAAGGTCA	AAAGTCAGAC	3840
CGCTAAGAAA	GTGCTAGAAA	AGATTGGAGC	TGACTCGGTT	ATCTCGCCAG	AGTATGAAAT	3900
GGGCAGTCT	CTAGCACAGA	CCATTCTTTT	CCATAATAGT	GTTGATGTCT	TTCAGTTGGA	3960
PAAAAATGTG	TCTATCGTGG	AGATGAAAAT	TCCTCAGTCT	ጥርርርርር እርርጥር	ል ል ል GTCTC ል C	4020

TAAATTAGA	C CTCCGTGGC	A AATACAATC	т саататтт	G GGTTTCCGA	G AGCAGGAAAA	4080
					\ ССТАТАТТТ	
GGCAGTCAT	C AACAACCAG	T ATTTGGATA	CCTAGTAGC	A TTGAATTCG	T AAAGAGGGAT	4200
GACCCCTCT	T TTTTGATGC	C TAAGATGGC	A AATAGAGAC	A GAAGCCCCT	GTCTTCTAGT	4260
AAAAGTTCT	T CAAAGGCTG	G ACTTTATGG	T AAAATAGAA	A GAAGTGACA	GAGAGAGTAA	4320
TACTCAATG	A AAATCAAAG	A TCAAACTAGO	AAACTAGCT	A CGGGCTGCTC	AAAACACTGT	4380
TTTGAGGTTY	G CAGATAGAA	TGACGAAGTC	AGTAACATC	T ATACGGCAAC	GCGACGTTGA	4440
CGCGGTTTG	A AGAGATTTT	GAAGAGTATA	AGAAAAAT	C AGTCCCCTAP	AGGAGTAGAT	4500
TATGAAGTT	A TTGTCTATCO	CAATTTCTAC	CTATAATGC	A GCAGCCTATC	TTCATTACTG	4560
TGTGGAGTC	CTAGTGATTC	GTGGTGAGCA	AGTTGGGAT	TTGATTATCA	ATGACGGGTC	4620
TCAGGATCAG	ACTCAGGAA	TCGCTGAGTG	TTTAGCTAG	AAGTATCCTA	ATATCGTTAG	4680
AGCCATCTAT	CAGGAAAATA	AATGCCATGG	CGGTGCGGT	AATCGTGGCT	TGGTAGAGGC	4740
TTCTGGGCGC	TATTTTAAAG	TAGTTGACAG	TGATGACTG	GTGGATCCTC	GTGCCTACTT	4800
GAAAATTCT1	GAAACCTTGC	AGGAACTTGA	GAGCAAAGGT	CAAGAGGTGG	ATGTCTTTGT	4860
GACCAATTTI	GTCTATGAAA	AGGAAGGGCA	GTCTCGTAAG	AAGAGTATGA	GTTACGATTC	4920
AGTCTTGCC1	GTTCGGCAGA	TTTTTGGCTG	GGACCAGGTC	GGAAATTTCT	CCAAAGGCCA	4980
TATACCATG	ATGCACTCGC	TGATTTATCG	GACAGATTTG	TTGCGTGCTA	GCCAGTTCTA	5040
CTGCCTGAA	CATACTTTTT	ATGTCGATAA	TCTCTTTGTC	TTTACGCCCC	TTCAGCAGGT	5100
CAAGACCATG	TACTATCTGC	CTGTCGATTT	CTATCGTTAT	TTGATTGGGC	GTGAGGACCA	5160
STCTGTCAAT	GAGCAAGTGA	TGATTAAGTG	CATTGACCAG	CAACTCAAGG	TCAATCGACT	5220
TTGATAGAC	CAACTTGATT	TGTCCCAAGT	GAGTCATCCC	AAAATGCGAG	AATATCTGCT	5280
AATCATATT	GAACTCACGA	CGGTGATTTC	CAGTACCCTG	CTCAACCGAT	CTGGAACAGC	5340
GAGCATCTG	GCAAAAAAAC	GCCAATTGTG	GACCTATATT	CAGCAGAAAA	ATCCAGAAGT	5400
TTTCAGGCT	ATTCGTAAGA	CCATGTTGAG	CCGTTTGACC	AAACATTCTG	TCTTGCCAGA	5460
CGCAAACTG	TCCAATGTCG	TCTATCAAAT	CACCAAATCT	GTTTATGGAT	ттааттаата	5520
AAGTGTTTT	ATAAGAGGGA	TTTAAGAAAA	ATTTTAACTT	TTTCTTAGTC	СТТТТТААТТ	5580
CAGGAGATT	ATACTAGAGT	САТСАААТАА	AGAAAGACTC	TAAGGAGAAT	ССТАТБАААТ	5640
CAATCCAAA	TCAAAGATAT	ACTCGTTGGT	CTATTCGCCG	TCTCAGTGTC	GGTGTTGCCT	5700
AGTTGTTGT	GGCTAGTGGC	TTCTTTGTCC	TAGTTGGTCA	GCCAAGTTCT	GTACGTGCCG	5760

			316			
ATGGGCTCAA	TCCAACCCCA	GGTCAAGTCT	TACCTGAAGA	GACATCGGGA	ACGAAAGAGG	5820
GTGACTTATC	AGAAAAACCA	GGAGACACCG	TTCTCACTCA	AGCGAAACCT	GAGGGCGTTA	5880
CTGGAAATAC	GAATTCACTT	CCGACACCTA	CAGAAAGAAC	TGAAGTGAGC	GAGGAAACAA	5940
GCCCTTCTAG	TCTGGATACA	CTTTTTGAAA	AAGATGAAGA	AGCTCAAAAA	AATCCAGAGC	6000
TAACAGATGT	CTTAAAAGAA	ACTGTAGATA	CAGCTGATGT	GGATGGGACA	CAAGCAAGTC	6060
CAGCAGAAAC	TACTCCTGAA	CAAGTAAAAG	GTGGAGTGAA	AGAAAATACA	AAAGACAGCA	6120
TCGATGTTCC	TGCTGCTTAT	CTTGAAAAAG	CTGAAGGGAA	AGGTCCTTTC	ACTGCCGGTG	6180
PAAACCAAGT	AATTCCTTAT	GAACTATTCG	CTGGTGATGG	TATGTTAACT	CGTCTATTAC	6240
Paaaagcttc	GGATAATGCT	CCTTGGTCTG	ACAATGGTAC	TGCTAAAAAT	CCTGCTTTAC	6300
CTCCTCTTGA	AGGATTAACA	AAAGGGAAAT	ACTTCTATGA	AGTAGACTTA	AATGGCAATA	6360
CTGTTGGTAA	ACAAGGTCAA	GCTTTAATTG	ATCAACTTCG	CGCTAATGGT	ACTCAAACTT	6420
ATAAAGCTAC	TGTTAAAGTT	TACGGAAATA	AAGACGGTAA	AGCTGACTTG	ACTAATCTAG	6480
TGCTACTAA	AAATGTAGAC	ATCAACATCA	ATGGATTAGT	TGCTAAAGAA	ACAGTTCAAA	6540
AAGCCGTTGC	AGACAACGTT	AAAGACAGTA	TCGATGTTCC	AGCAGCCTAC	CTAGAAAAAG	6600
CCAAGGGTGA	AGGTCCATTC	ACAGCAGGTG	TCAACCATGT	GATTCCATAC	GAACTCTTCG	6660
CAGGTGATGG	CATGTTGACT	CGTCTCTTGC	TCAAGGCATC	TGACAAGGCA	CCATGGTCAG	6720
ATAACGGCGA	CGCTAAAAAC	CCAGCCCTAT	CTCCACTAGG	CGAAAACGTG	AAGACCAAAG	6780
STCAATACTT	CTATCAAGTA	GCCTTGGACG	GAAATGTAGC	TGGCAAAGAA	AAACAAGCGC	6840
CATTGACCA	GTTCCGAGCA	AAyGGTACTC	AAACTTACAG	CGCTACAGTC	AATGTCTATG	6900
STAACAAAGA	CGGTAAACCA	GACTTGGACA	ACATCGTAGC	AACTAAAAA	GTCACTATTA	6960
CATAAACGG	TTTAATTTCT	AAAGAAACAG	TTCAAAAAGC	CGTTGCAGAC	AACGTTAAAG	7020
CAGTATCGA	TGTTCCAGCA	GCCTACCTAG	AAAAAGCCAA	GGGTGAAGGT	CCATTCACAG	7080
CAGGTGTCAA	CCATGTGATT	CCATACGAAC	TCTTCGCAGG	TGATGGTATG	TTGACTCGTC	7140
CTTGCTCAA	GGCATCTGAC	AAGGCACCAT	GGTCAGATAA	CGGTGACGCT	AAAAACCCAG	7200
CCTATCTCC	ACTAGGTGAA	AACGTGAAGA	CCAAAGGTCA	ATACTTCTAT	CAATTAGCCT	7260
'GGACGGAAA	TGTAGCTGGC	AAAGAAAAAC	AAGCGCTCAT	TGACCAGTTC	CGAGCAAACG	7320
TACTCAAAC	TTACAGCGCT	ACAGTCAATG	TCTATGGTAA	CAAAGACGGT	AAACCAGACT	7380
GGACAACAT	CGTAGCAACT	AAAAAAGTCA	CTATTAACAT	AAACGGTTTA	ATTTCTAAAG	7440
AACAGTTCA	AAAAGCCGTT	GCAGACAACG	TTAAGGACAG	TATCGATGTT	CCAGCAGCCT	7500
CCTAGAAAA	GGCCAAGGGT	GAAGGTCCAT	TCACAGCAGG	TGTCAACCAT	GTGATTCCAT	7560

ACGAACTCTT	CGCAGGTGAT	GGCATGTTGA	CTCGTCTCTT	GCTCAAGGCA	TCTGACAAGG	7620
CACCATGGTC	AGATAACGGC	GACGCTAAAA	ACCCAGCTCT	ATCTCCACTA	GGTGAAAACG	7680
TGAAGACCAA	AGGTCAATAC	TTCTATCAAG	TAGCCTTGGA	CGGAAATGTA	GCTGGCAAAG	7740
AAAAACAAGC	GCTCATTGAC	CAGTTCCGAG	CAAACGGTAC	TCAAACTTAC	AGCGCTACAG	7800
TCAATGTCTA	TGGTAACAAA	GACGGTAAAC	CAGACTTGGA	CAACATCGTA	GCAACTAAAA	7860
AAGTCACTAT	TAAGATAAAT	GTTAAAGAAA	CATCAGACAC	AGCAAATGGT	TCATTATCAC	7920
CTTCTAACTC	TGGTTCTGGC	GTGACTCCGA	TGAATCACAA	TCATGCTACA	GGTACTACAG	7980
ATAGCATGCC	TGCTGACACC	ATGACAAGTT	CTACCAACAC	GATGGCAGGT	GAAAACATGG	8040
CTGCTTCTGC	TAACAAGATG	TCTGATACGA	TGATGTCAGA	GGATAAAGCT	ATGCTACCAA	8100
ATACTGGTGA	GACTCAAACA	TCAATGGCAA	GTATTGGTTT	CCTTGGGCTT	GCGCTTGCAG	8160
GTTTACTCGG	TGGTCTAGGT	TTGAAAAACA	AAAAAGAAGA	AAACTAATCA	GCTAAGGAAA	8220
TAAATGATGG	ATAGTGGGCT	GACTAAGATT	AGTTTAACAA	CTCAATCAGC	AATCAGGACT	8280
TTCTTTCAAT	AGCAGATTAA	AATCATCGTA	ЛААСААТАА А	AATAGTGTTA	TACTTAAAGC	8340
AGTATAGCAC	TGTTTTTATC	AAAGGAGAGA	CAGATGGGAA	AGACAATTTT	ACTCGTTGAC	8400
GACGAGGTAG	AAATCACAGA	TATTCATCAG	AGATACTTAA	TTCAGGCAGG	TTATCAGGTC	8460
TTGGTAGCCC	ATGATGGACT	GGAAGCGCTA	GAGCTGTTCA	AGAAAAAACC	GATTGATTTG	8520
ATTATCACAG	ATGTCATGAT	GCCTCGGATG	GATGGTTATG	ATTTAATCAG	TGAGGTTCAA	8580
TACTTATCAC	CAGAGCAGCC	TTTCCTATTT	ATTACTGCTA	AGACCAGTGA	ACAGGACAAG	8640
ATTTACGGCC	TGAGCTTGGG	AGCAGATGAT	TTTATTGCTA	AGCCTTTTAG	CCCACGTGAG	8700
CTGGTTTTGC	GTGTCCACAA	TATTTTGCGC	CGCCTTCATC	GTGGGGGCGA	AACAGAGCTG	8760
ATTTCCCTTG	GCAATCTAAA	AATGAATCAT	AGTAGTCATG	AAGTTCAAAT	AGGAGAAGAA	8820
ATGCTGGATT	TAACTGTTAA	ATCATTTGAA	TTGCTGTGGA	TTTTAGCTAG	TAATCCAGAG	8880
CGAGTTTTCT	CCAAGACAGA	CCTCTATGAA	AAGATCTGGA	AAGAAGACTA	CGTGGATGAC	8940
ACCAATACCT	TGAATGTGCA	TATCCATGCT	CTTCGACAGG	AGCTGGCAAA	Atatagtagt	9000
GACCAAACTC	CCACTATTAA	GACAGTTTGG	GGGTTGGGAT	ATAAGATAGA	GAAACCGAGA	9060
GGACAAACAT	GAAACTAAAA	AGTTATATTT	TGGTTGGATA	TATTATTTCA	ACCCTCTTAA .	9120
CCATTTTGGT	TGTTTTTTGG	GCTGTTCAAA	AAATGCTGAT	TGCGAAAGGC	GAGATTTACT	9180
TTTTGCTTGG	GATGACCATC	GTTGCCAGCC	TTGTCGGTGC	TGGGATTAGT	CTCTTTCTCC	9240
TATTGCCAGT	CTTTACGTCG	TTGGGCAAAC	TCAAGGAGCA	TGCCAAGCGG	GTAGCGGCCA	9300

			318			
AGGATTTTCC	TTCAAATTTG	GAGGTTCAAG		ATTTCAGCAA	TTAGGGCAAA	9360
CTTTTAATGA	GATGTCCCAT	GATTTGCAGG	TAAGCTTTGA	TTCCTTGGAA	GAAAGCGAAC	9420
GAGAAAAGGG	CTTGATGATT	GCCCAGTTGT	CGCATGATAT	TAAGACTCCT	ATCACTTCGA	9480
TCCAAGCGAC	GGTAGAAGGG	ATTTTGGATG	GGATTATCAA	GGAGTCGGAG	CAAGCTCATT	9540
ATCTAGCAAC	CATTGGACGC	CAGACGGAGA	GGCTCAATAA	ACTGGTTGAG	GAGTTGAATT	9600
TTTTGACCCT	AAACACAGCT	AGAAATCAGG	TGGAAACTAC	CAGTAAAGAC	AGTATTTTTC	9660
TGGACAAGCT	CTTAATTGAG	TGCATGAGTG	AATTTCAGTT	TTTGATTGAG	CAGGAGAGAA	9720
GAGATGTCCA	CTTGCAGGTA	ATCCCAGAGT	CTGCCCGGAT	TGAGGGAGAT	TATGCTAAGC	9780
TTTCTCGTAT	CTTGGTGAAT	CTGGTCGATA	ACGCTTTTAA	ATATTCTGCT	CCAGGAACCA	9840
AGCTGGAAGT	GGTGGCTAAG	CTGGAGAAGG	ACCAGCTTTC	AATCAGTGTG	ACCGATGAAG	9900
GGCAGGGTAT	TGCCCCAGAG	GATTTGGAAA	ATATTTTCAA	ACGCCTTTAT	CGTGTCGAAA	9960
CTTCGCGTAA	CATGAAGACA	GGTGGTCATG	GATTAGGACT	TGCGATTGCG	CGTGAATTGG	10020
CCCATCAATT	GGGTGGGGAA	ATCACAGTCA	GCAGCCAGTA	CGGTCTAGGA	AGTACCTTTA	10080
CCCTCGTTCT	CAACCTCTCT	GGTAGTGAAA	ATAAAGCCTA	AAACCCCTTT	ACAAATCCAG	10140
CTATTCATGG	TAGAATAGAT	TTTGTGTGAA	ATATCAGCAG	GAAAGCATGA	AGCTCGTCAA	10200
CAGGTGTCTT	ATGACAAGTA	ACCTTGGCTG	TTTAGGCGAA	GGGCATCTGC	ACGG	10254
(2) INFORMA	TION FOR SE	Q ID NO: 30):			

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9769 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

CCGGCGACTA TCGATAACAC	TTGACTTGGT	AGCCCCACAT	TTTGGACAAC	GCATCCTTTC	60
CCTCCTTATC GTTTTCTTTT	CATTATACCA	TTTTTTAAGC	GATTCCCAAA	ACAATTCTTC	120
TTTTTGCTTG ACAAGTTTTT	TGTTTTGTTG	TATTATTTAA	TTAAGACAAC	AAGGTAAAAG	180
AAAGGAGACT AAGATGTCCT	GGACATTTGA	CAACAAAAA	CCCATCTATT	TACAGATTAT	240
GGAGAAAATC AAGCTTCAGA	TTGTTTCCCA	TACACTGGAA	CCCAATCAAC	AACTTCCAAC	300
CGTGAGGAGC TAGCTAGCGA	GGCTGGTGTC	AATCCCAATA	CCATCCAAAG	AGCCTTATCA	360
GACCTTGAAC GAGAAGGATT	TGTCTACAGC	AAGCGAACAA	CTGGACGATT	TGTGACTAAG	420
GATAAGGAGC TAATCGCCCA	GTCACGCAAA	CAATTATCAG	AAGAAGAATT	GGAACACTTC	480

GTTTCCTCC	A TGACCCATT	r tggctatga	A AAAGAAGAA	C TACCAGGCG1	AGTCAGTGAT	540
AAATTATATAT	G GAGTTTAAG	C CTATGTCAT	F ACTAGTATT	r gaaaatgtat	ССАААТСАТА	600
TGGAGCAAC	A CCAGCCCTTC	AAAATGTTTC	TCTTGACAT	CCAGCTGGAA	AAATTGTCGG	660
CCTTCTTGG	G CCAAACGGC	r caggaaaaa	AACCCTGAT	Г АААСТААТТА	ATGGCCTCTT	720
ACAACCAGA1	CAAGGACGTC	TCCTCATCA	CGACATGGAC	CCAAGCCCAG	CAACCAAGGC	780
CGTTGTAGCT	TATTTGCCTC	ATACGACCTA	TCTCAATGAC	G CAAATGAAGG	TCAAAGAAGC	840
ССТААССТАС	TTCAAGACCT	TCTATAAAGA	TTGTCAGATO	TTGAACGCGC	CCATCATCTA	900
CTTGCAGACC	TGGGCATTGA	TGAAAATAGT	CGTCTCAAGA	AACTATCAAA	AGGAAACAAA	960
GAAAAGGTTC	AACTGATTT	GGTTATGAGC	CGTGATGCTC	GTCTCTATGT	TTTGGACGAA	1020
CCCATTGGTG	GGGTGGATCC	AGCAGCCCGT	GCTTATATCC	TCAATACCAT	TATCAACAAC	1080
TACTCACCAA	CTTCTACCGI	TTTGATTTCT	ACCCACTTGA	TTTCTGATAT	CGAGCCAATC	1140
TTGGATGAAA	TTGTCTTCCT	' AAAAGACGGA	AAAGTCGTCC	GTCAAGGAAA	TGTAGATGAT	1200
ATTCGCTACG	AGTCAGGTGA	ATCCATTGAC	CAACTCTTCC	GTCAGaATTT	AAGGCCTAAG	1260
CAAAGGAGAT	ТАТТТАТСТТ	TTGGAATTTA	GTTCGCTACG	ААТТТАААА	TGTTAACAAG	1320
PGGTATTTAG	CCCTCTACGC	AGCCGTGCTA	GTCCTTTCTG	CCCTCATCGG	AATACAGACA	1380
CAAGGCTTTA	AAAATCTACC	TTACCAAGAA	AGTCAGGCTA	CTATGCTACT	TTTTCTAGCT	1440
ACAGTCTTTG	GTGGCTTGAT	GCTTACACTT	GGGATTTCAA	CCATTTTCTT	GATTATTAAA	1500
CGCTTCAAAG	GTAGTGTCTA	CGACCGACAA	GGCTATCTGA	CTTTGACCTT	GCCAGTTTCT	1560
GAACACCATA	TCATCACAGC	САААСТААТС	GGTGCCTTTA	TCTGGTCATT	GATTAGCACC	1620
GCTGTATTGG	CTCTAAGTGC	TGTTATTATT	CTGGCTTTAA	CAGCTCCAGA	ATGGATTCCT	1680
CTTTCTTATG	TGATTACATT	TGTAGAAACA	CATCTCCCTC	AGATCTTTCT	TACAGGTATA	1740
CCTTCCTAC	TAAATACTAT	TTCAGGAATC	CTCTGCATCT	ACCTGGCTAT	TTCCATTGGA	1800
AGCTTTTCA	ATGAATACCG	TACAGCACTC	GCTGTTGCAG	TCTACATTGG	TATCCAAATC	1860
STCATTGGAT	TTATTGAACT	TTTCTTCAAT	CTTAGTTCTA	ATTTCTATGT	CAATTCACTG	1920
TAGGACTCA	ATGACCATTT	CTATATGGGA	GCAGGTATAG	CCATTGTTGA	AGAACTCATA	1980
TCATAGCTA	TCTTTTATCT	CGGAACCTAC	TACATCTTGA	GAAATAAGGT	TAATTTGCTT	2040
'AAATAA ጉ ጉጉ	TTACCTAGAT	ATGTAACATA	CTCATAGAAC	AAAAGAGACC	AGGCAAAAAG	2100
CTTTAAAAT	TAGAAAACGC	ATAGTATCAG	GTGTTGAATA	TGTACTGCcC	CCCAAAAGTT	2160
GATTTTTTC	TGTCTAACTT	TTGGGGGCAG	TTCATAAGAA	CCTTGGTAAT	ATGCGTTTTT	2220

			320			
TGTGAGCTGA	CTTATTTCCT	TTCACTATAT	CGCAAAATGA	AATAAGAACG	GAACGATGGG	2280
ATTTTGGAAT	TCAAATCAAT	TTATAAGAAT	GTTTTAGAAG	TAATATTATC	CTATTCCAGA	2340
TTCAGTTCAC	TATACAATTG	AGTTTTCAAG	CAACCTGTTT	ACATAATGTG	TACATAATTA	2400
GGTTCGTGAT	TCCACCCTTT	TCACCTTTAA	AAACCTCGCT	TTCGCAAGGC	TCTTCTATTT	2460
ATAAGATAAG	GCACGTTTAA	AGGTTTTCCA	ААТСССТААА	TCATCCGTTT	GAAGAACGAG	2520
ACTAGCATAC	ATGCGTCCGA	TAAATCCTGT	TGCTACCACC	GCAAAAATCA	CTGTAATAGC	2580
AAGTGAAATC	CATGCTTCTG	CTCCCCCCCC	ATAGTCATTA	ATCGTTCGAA	ACGCCATAAA	2640
GAAGGTCGAA	ATAAAGGGAA	TATAAGAACC	AATCTTCAAG	AGGAGATTGT	CACCAGCTGC	2700
ACCTAGAGCT	GTCACTCCAA	AAAAACCACC	CATAATCAAA	ATCATCAAAG	GCGACAAGGC	2760
TTTCCCTGAG	TCCTCAGGAC	GAGAAACCAT	AGATCCTAGG	AAGGCTGCCA	AGACTACGTA	2820
CATGAAAAGA	CTGATCAAAA	TAAAGAGCAA	GGTATTCAGT	GAGATAGCAT	CTCCCAAGTG	2880
АТССААААТА	CCAGACTGAG	CCAAGAATGG	CAAATCTTTA	AAGAGCAAAA	CGGCAGCCAG	2940
ACCACCTACA	ACATAGATCC	CAATATGCGT	TAAAATCACT	AGAAACAGAG	CCATCATCCG	3000
CGCATAGAAA	TAGTGACTTG	CCCTTATGCT	AGAAAAAACG	ACTTCCATAA	TTTTGGTGCC	3060
TTTTTCACTG	GCAACTTCCT	GAGCTGTTAC	ACCCGCATAG	GTAATCAGAA	TCATATAAAG	3120
AAAGAATCCT	AAGGCACCTG	CTGCAATTGT	TTGAATAAAC	TTTTATTT	CCTTGGCTTC	3180
ATCAATCTTT	TCTGTGAATT	GAATTGTCTG	CGCTAAGCGT	TTTTCCTGCT	CTTGAGACAA	3240
GGAAGCAGTT	GAACGATTAA	GCTGATTTTG	CAGTTCATTG	AGTGTACCTG	TAACCTCAAA	3300
TTTAATTCCA	TTTTCAAGCG	ATGTTTCGCC	ATGATAAACT	GCCTTTAGAA	CACTATCTTC	3360
TTGATCAATG	GTCAAATAAC	CTTTTAATTT	TTCTTCTTTA	ATTGCTTCTT	TGGCACTTGC	3420
TTCGTCTTTA	TAGTCGAAGT	TAACACCATT	TACATTCTTC	AGTCCTTCTG	CTACAGATGG	3480
CACTGTTGTC	ACTACTGCCA	CTTTATTATT	TTTAGCCATA	GAAGAACCTT	GGAGATGCCC	3540
AATTCCTACA	GAGATTCCTA	AAAAGAGGAA	CGGCGAAATC	ACCATAAAGA	AGAAACTCCA	3600
TGACTCGACA	TGTCGAAGAT	AGGTTTCCTT	GATTACAACC	CACATATTTC	TCATACTTCC	3660
ACTCCTGATT	CTAGTTTAAA	GATTTCATCG	ATAGTTGGCG	CTTGTTGGTC	AAATGTTGCG	3720
ATATATTGAC	CTTGAGTCAA	GATTGAGAAG	AGTTCCCTTC	CAGCGCTCTC	ATCCTCCAAA	3780
ATCAATTTCC	AACTGCCTTG	TTTGGTCAAG	CTCACCTGTT	TGACATGAGG	AAGATTTTCC	3840
AATTCTTCCT	TGCTTCGTTC	ACTTGAAACA	AAGAGACGCG	TTTTCCCGTA	TTGATTGCGG	3900
ACATCCTGAA	CTGGTCCGTG	CAAGACCACA	CGGCCATCTC	GGATCATCAG	AATATCGTCA	3960
CAAAGTTCCT	CAACATTGGT	CATGACATGG	TCAGAAAAGA	TAATGGTTGT	CCGCGCTCTT	4020

THETCHECAN NAMES COMME	
TTTCCTGAAA AATGACTTGT TTGAGCAATT CTGTATTAAC TGGGTCCAAT CCACTAAAAG	4080
GCTCATCCAA GATAATCAGG TCTGGTTCAT GAATCAGAGT AATAATGAGC TGAATCTTCT	4140
GCTGATTTCC TTTTGACAGA CTCTTGATTT TATCTGTCAG CTTTCCTTTC	4200
TCTTCATCCA TTGAGGGAGT TTTTCTTTGA CTTCTTTGGC ATCCATGCCT TTTAGAGTCG	4260
CCAAGTAGCG AACTTGTTCA AGAACTGTCA ATTTAGGCAT GAGATGCGTT CTTCAGGCAG	4320
ATAACCAATC CGAGCATAGG TCTCCTGACG AATATCCTGA CCATCCAGAC CGATTTCTCC	4380
CTGATATTCT AGGAATTTCA AAATACTATG GAAAATCGTT GTTTTTCCAG CACCATTTTT	4440
TCCGACTAGT CCCAAAATAC GACCTGGTCG CGCTTGAAAG TCAATACCAA ACAAAACTTG	4500
CTTGGATCCA AAACTTTTCT CTAGACTTCT TACTTCTAGC ATCTTTCACC TCCGAAATTT	4560
CTTGCACTCA TTATACTCCT TTTTGATAGC CTTTACAATG TTTTTTGTCC ATTTTTAGAA	
GACTATTGCT GTGTAAAATA TGGCCTGGAG CACTTTTATA CTCAATGAAA ATCAAAGAGC	4620
AAACTAGGAA GCTAGCCGTA GACTGCTCAA AGTACAGCTT TGAGGTTGCA GATAAAACTG	4680
ACGAAGTCGA CTCAAAACAC TGTTTTGAGG TTGTGGATAG AACTGACGAA kCrTAaCTAT	4740
ATCTACGGCA AGGCGAACTG ACGTGGTTTG AAGAGATTTT CGAAGAGTAT TAGTGATAAA	4800
TCCATTATAC AGCAGCAAAC TTAATTTATA CCTTCCGCTC CTCAACTGTC TATTTTTAAT	4860
CCTGAATTGT TATTTGAGTA ACTCCTTTTT CCTCGTAAAG TTTTCTTCCT CTAAAACTTC	4920
TGGAAAAAGG CTAATAGTTT CAGACAACAT TTTTATAAGA AACAAGTTCA TCTGTCATTT	4980
CAAGAAGGAG TAATCCTTTA TCTACTAATG GACGGAACAG AATTCAACCG CTTGTCCGAT	5040
	5100
ATGTTTTCTA AGGATTATAT AGTAAAATGA AATAAGAACA GGACAAATTG ATCAGGACAG TCAAATTGAT TTCTAACAAT COMMUNICANA TAAAAAAAAAAA GGACAAATTG ATCAGGACAG	5160
TCAAATTGAT TTCTAACAAT GTTTTAGAAG TAGATGTATA CTATTCTAGT TTCAATCTGC	5220
TATATCTATT ATGCACACCC CTATAGGATC TAATGAAAAT CACAACAGGC TCATTCATAG	5280
ATGGTTACCT AAGCCTAAGG GAACTAAGAA AACGACTACC AAGGAAGTCG CATTCATCGA	5340
AAAGTAGATT AACAACTATC CTAAAAAATG CTTGAACTAC AAGTCCCCCA GAGAAGACTT	5400
CTGGATGACT AACTTGAACT TGAAATTTAG CAATAATTAA TTCACTATCT AACTATATTT	5460
AGTAATTATT TCAGAACTGA TTAATATTAA AATTAACTAA CAATTCAAAG GATTCATACT	5520
AGCCATAAAT TACGTCCATC AGAGAGAGAC TCTTACTACT TTTAGATTTT AGTCTTTCTA	5580
SCTTCAGAAT ACATCTAAAC TTTAGGGAAA ATGACTATTC GAAAGCGCGA ATGCCTCAAA	5640
ATTATCTCAG ATAAGCTATT CGAAACTTAG AATGCTTTTA AATTTATGGA ATTGCGATTA	5700
TCGAAACCT AGAATGCATA TAACCTTTAG TTGACAGACC TATTCTAAGT CTCGAAGGGC	5760

322

TATTTACTTT CTATTCCTTA TCAAAAAAGA CTCATTCCCC CTTTCTCCTC CAAAATATGG

5820 TATAGTAGAA ATATACTATC TATGAGGAGT TTACATGTCA CAGGATAAAC AAATGAAAGC 5880 TGTTTCTCCC CTTCTGCAGC GAGTTATCAA TATCTCATCG ATTGTCGGTG GGGTTGGGAG 5940 TTTGATTTTC TGTATTTGGG CTTATCAGGC TGGGATTTTA CAATCCAAGG AAACCCTCTC 6000 TGCCTTTATC CAGCAGGCAG GCATCTGGGG TCCACCTCTC TTTATCTTTT TACAGATTTT 6060 ACAGACTGTC GTCCCTATCA TTCCAGGGGC CTTGACCTCG GTGGCTGGGG TCTTTATCTA 6120 CGGGCACATC ATCGGGACTA TCTACAACTA TATCGGCATC GTGATTGGCT GTGCCATTAT 6180 CTTTTATCTA GTGCGCCTAT ACGGAGCTGC CTTTGTCCAG TCTGTCGTCA GCAAGCGCAC 6240 CTACGACAAG TACATCGACT GGCTAGATAA GGGCAATCGT TTTGACCGCT TCTTTATTTT 6300 TATGATGATT TGGCCCATTA GCCCAGCTGA CTTTCTCTGT ATGCTGGCTG CCCTGACCAA 6360 GATGAGCTTC AAGCGCTACA TGACCATCAT CATTCTGACC AAACCCTTTA CCCTCGTGGT 6420 TTATACCTAC GGTCTGACCT ATATTATTGA CTTTTTCTGG CAAATGCTTT GACACGTAAA 6480 AAATCCGTTT GGTTTCCCAA GTGGATTTTT AAAGCGTAGA TTAACTATAG CTTGATACTA 6540 AATATACTTT GGTATGGAAA TCATGCATAT TTTTCGATAG TGAGGCGAGG ACTTACCTAG 6600 CCTTTCCGCC GTGATAGAAA CACCTGAAAT CTAATGGTTT CAGGTATTCG GAAACTTTGA 6660 GCCTAGTGTC TCAAAGTTTA GGTATGGAAT TTTGAAGAAA GTCGCTACCG TCCGTAATCA 6720 CTTAAGGAAA GGCTCAAAAA TATTGTTTTC AACCACAAAA TCCGTTTGGT TTCCCAAGCG 6780 GATTTTGTGC TTTATTTTGA AACTTCTTTT GCAAGAACAA AGTTCCCAAG TGTGGCAGAA 6840 CCATTTCCTG CGACTGCTGG CGTCACGATA TAGTCACGCA CATCTGGTAC TGGTAGGTAA 6900 CCATTAAGAA GAGATGTAAA TTTCTCACGG ACACGGTCCA GCATATGTTG TTGAGCCATG 6960 ACCCCTCCAC CAAAGACAAT CACGTCTGGG CGGAAAGTCA CTGTCGCATT AACCGCAGCT 7020 TGAGCGATAT AGTAGGCTTG AACATCCCAA ACAGGGTTGT TGAGTTCAAT AGTTTCCCCA 7080 CGTACACCTG TACGAGCTTC CAAACTTGGA CCAGCTGCAT AACCTTCTAG ACATCCCTTA 7140 TGGAAAGGAC AAACACCCTT AAACTCTTTT TCAATATCCA TTGGGTGTCT AGCAACATAA 7200 TAATGACCCA TTTCAGGGTG ACCCACACCA CCGATAAACT CACCACGTTG GATGACGCCT 7260 GCACCGATAC CTGTACCGAT TGTGTAGTAA ACCAAGTTTT CGATACGACC ACCAGCATTG 7320 TTACGGGCAA CCATTTCACC GTAAGCAGAG CTGTTTACGT CTGTTGTGAA GTACATTGGC 7380 ACGTTTAGGG CGCGACGAAG GGCACCAAGC AAGTCTACAT TTGCCCAGTT TGGTTTTGGA 7440 GTCGTCGTGA TAAAGCCATA AGTTTTTGAG TTTTTGTCAA TATCAATCGG CCCAAATGAA 7500 CCAACTGCAA GACCAGCAAG GTTATCGAAT TTTGAGAAGA ACTCAATGGT TTTATCGATT 7560

GTTTCGATTG	CACTTCTTCT	TGGAAATTGT	GTTTTTTCTA	CAACGTTAAA	GTTTTCATCA	7620
CCGACAGCAC	AGACAAACTT	TGTACCGCCC	GCTTCCAAGC	ТТССАТАТАА	TTTTGTCATG	7680
ATAAACCTCT	T GTTTTTATT	TTCTTTATTA	TAGCATACTT	CGAAAGTCTA	AATGTCTCTA	7740
TTTTTTAGAT	TTTCCTCTGT	AAATCTTACT	АТСТААТААА	AACGAACAAA	CATGTCATTT	7800
GTTCGTTTTC	ACATTAGAGA	GGATTGATTA	GATTTTCACT	TCGATCACAG	CATCCCCCTT	7860
AGCAACTGAA	CCTGTTGCGA	CTGGAGCTAC	TGAAGCGTAG	TCACCTGTAT	TTGTAACGAT	7920
AACCATTGTT	GTATCATCAA	GTCCAGCTGC	AGCGATTTTG	TTTGAGTCAA	ATGTTCCAAG	7980
AACATCGCCA	GCTTTCACCT	TATTACCTTG	AGCAACTTTT	GTTTCAAAAC	CGTCACCGTT	8040
CATAGATACA	GTATCAATAC	CAACATGAAT	CAAAACTTCA	GCACCATTTC	TTGTTTTCAA	8100
ACCAAAAGCG	TGCCCTGTTG	GAAAGGCAAT	TGAAACTTCA	GCATCAGCTG	GTGCATAGAC	8160
CACGCCTTGG	CTTGGTTTCA	CAACGATACC	TTGTCCCATA	GCTCCACTTG	AGAAGACTGG	8220
GTCATTGACA	TCAGCAAGAG	CGACAACATC	ACCGACGATA	GGAGTTACAA	GTGTTTCATT	8280
TTGAAGAGCT	GCTGGCGCAA	CTTCTTCTTT	TTCTTCAGCC	ACTTCAGCTC	GTTTTGCAGC	8340
TGCAGTTGCG	TCTACTTCAT	CTTCGTAACC	AAACATGTAA	GTAAGAGCAA	AACCAAGGGC	8400
AAATGATACA	GCTACCATAA	GAAGGTATTG	TGGAAGTTGT	CCGTTACCAA	CATAAAGCAT	8460
TGTACCAGGG	ATGATGGTGA	TACCATTACC	AGTACCAGCA	AGTCCAAGGA	TAGAAGCCAA	8520
TCCACCACCG	ATTGCACCAG	CAATCAATGA	AAGGAAGAAT	GGTTTACGGA	AGCGCAAGTT	8580
CACCCCGAAG	ATAGCAGGCT	CTGTAATACC	TAGGAAGGCA	GAAAGAGCAG	CCGGGAAAGC	8640
AAGTGTTTTC	AGTTTTGGAT	TTTTTGTTTT	AACACCAACC	GCAACAGTAG	CAGCACCTTG	8700
AGCTGTCATA	GCAGCTGTGA	TGATAGCGTT	GAATGGGTTA	GCATGGTCAG	CAGCAAGTAA	8760
TTGCACTTCA	AGCAAGTTGA	AGATGTGGTG	CACACCTGAC	ACGACGATCA	ATTGGTGAAC	8820
CCCACCAATC	AAGAAACCAC	CAAGACCAAA	TGGCATGCTA	AGAATCGCTT	TTGTAGCAAT	8880
AAGGATGTAG	TTTTCAACAA	CGTGGAAAAC	TGGTCCAATG	ACAAAGAGTC	CAAGGATAGA	8940
CATGACCAAA	AGTGTCACGA	ATGGTGTTAC	CAAGAGGTCA	ATGACATCTG	GAACAACTTG	9000
CGGACAGCTT	TTTCAAATTT	AGCTCCGACA	ACCCCGATGA	TGAAGGCTGG	AAGAACGGAA	9060
CCTTGCAAAC	CAACAACAGG	GATGAAACCA	AAGAAGTTCA	TCGCTGTTAC	TTCACCACCT .	9120
TGAGCAACTG	CCCAAGCGTT	TGGAAGTGAG	CCAGAGACAA	GCATCATACC	AAGAACGATA	9180
CCAACGGCAG	GATTTCCACC	AAATACACGG	AAGGTTGACC	ACACAACCAA	ACCTGGCAAG	9240
ATGATGAAGG	CTGTATCTGT	CAAGATTTGT	GTGTAAGTTG	CAAAGTCACC	TGGAAGTGGC	9300

ATTTCAAGAG	CGTTGAAAAG	ACCACGCACA	324 CCCATGAAGA	GACCTGTCGC	TACGATAACT	9360		
GGGATGATTG	GAACGAAAAC	ATCACCAAAA	GTACGGATAG	CACGTTGGAA	CCAGTTCCCT	9420		
TGTTTAGCAA	CTTCTGCTTT	CATGTCATCC	TTAGATGATG	TTGGTAATCC	AAGTACAACA	9480		
ACTTCATCGT	ACATTTTGTT	AACTGTACCT	GTACCAAAGA	TAATTTGGTA	TTGCCCTGAG	9540		
TTAAAGAAAG	CACCTTGAAC	TTTTTCCAAG	TTCTCAATCA	CTTCTTTATT	GATTTTCTCT	9600		
TCATCTTTGA	CCATGACACG	TAGACGAGTC	GCACAGTGGG	CAACACTATT	GACATTTTCA	9660		
CGTCCGCCCA	AGGCATCGAT	GACTTTTTT	GCAATTTCCT	GATTGTTCAT	TTGCAAAAAT	9720		
CTCCTTATAT	AACATTTTGT	TCTTGTTTGA	AAGCGATTTT	ATTCGCCGG		9769		
(2) INFORM	(2) INFORMATION FOR SEQ ID NO: 31:							
(i) S	(i) SEQUENCE CHARACTERISTICS:							

- (A) LENGTH: 3149 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

CGCTTGAGTG CTAATTCATA GTTCTATTGT ATCACTTGGT CAGAAATAAT CAAGAAAAAA 60 GTCTGACTTT CTCAAGATAA AAAGCCTGAG ACCAACTCAG ACTTTTTAAT TCTTAAAATG 120 GCAATTCTTC CTCTTCCAAG ACCAAATCTG CCAAATCTTG GCCTGCATTA TTTTCACGCA 180 TAGCACCTTG GGCACGACTT TCCAAGAGTT GGAATCCTGT GACAAGTACT TCGGTCACGT 240 AGTTCATTTG GCCATTTTC TCAAAGCGAC GGGTACGCAA TTCTCCATCA ACGGAAATGA 300 GACTACCTTT GGTTGCGTAC TTGCCAAAGT TTCTGCTAGT CTGCCCCATA GGACCATATT 360 GACAAAATCA GCTTCACGTT CACCGTTTTG GTCTTTGTAA CGACGGTTCA CAGCGATAGT 420 TGCTCGCGCT ACCGACTTGT CATTGTTGGT TTTGTGCAAT TCTGGTGTAG ACGTTAAACG 480 TCCAATCAAG ATAACTTTAT TATACATATT TTCTTCCTCC TACTTATCTA TTCGTAGGAA 540 ATCAAAAAA GTTACAGAAA TTTGTAACTT TTCGAGAAAA TTTTTTATTT TTTATGAACC 600 ATGAAACCTG TCGCCTGTTG ATTGGCCATA ATGGTCATAT CTGTAATCTG AACACGACGA 660 GGTTGACTAG TCACATAGAC TACTGTATCT GCAATATCCT GAGCTTGCAA AGCTTCTATT 720 CCTTGGTAAA CGGACGCAGC TCGTTCTTTA TCACCATGAA AACGCACTGT AGAAAAATCT 780 GTTTCGACAA TTCCAGGCTG AATGGTCGTC ACCTTGATAT CCGTTGCGAT GGTATCAATT 840 CGCAGTCCAT CTGAAAAGGT CTTAACTGCC GCCTTGGTGG CTGAGTAAAC AGCTGCACCA 900 GCATAGGCAT AAATTCCTGC GGTTGACCCC ATATTGATAA TATGACCTTG ATTGGCTTTT 960

ACCATTGCTG	GCAAGAAACA	GCGAGTGACT	GCCATCAAAC	CTTTGACATT	GGTATCCAAC	1020
ATGGTCAGCA	TATCCAACTC	TTCATAGTCT	TGATAGGGAG	CTAAGCCAAG	AGCCAGTCCT	1080
GCGTTATTGA	CCAGGATGTC	AATCTGACCT	ATCGTTTCTA	AAATATCAGA	GCAGACAGTC	1140
TTTACCATTG	TCATATCCGT	GACATCTAGG	AGAAAAGTCC	AAACTGTTTG	ATTTGGAAAA	1200
GTTTCTGCAA	ACTCCGCCTT	AAGAGCTTCT	AGTCTGTCTA	TCCGTCGTCC	TGTTAGAACG	1260
ACATCCTCAC	CCTGCTCCAG	ATAAGCACGC	GCAATCGCTT	CACCGATTCC	TGATGTCGCT	1320
CCTGTAATCA	CAACATTTTT	TGCCATCTTA	TTTCCTTCTA	GCTGGTCTAT	CAGATATTAA	1380
CAACTTCTTA	GGCAGTCCAG	TGTTTCGCTG	GGTCGAACGG	TGTTCCGACA	ACTTGGTCTT	1440
CTGATAATTC	AAGCACCCCA	CGTTTTTGTG	GAGCATTTGG	CAGATGCAAT	TCACGAGGAC	1500
TGCACATCAT	ACCAAAACTC	TTTTCACCAC	GAAGTTCACC	TGGGAAAATG	AGATTCCCTT	1560
TTGGCATCAT	AGCTCCAGGA	AGCGCGACAA	TGGTTTTCAA	CCCCACACGC	GCATTGGGAG	1620
CTCCTGCAAC	GATTTGTACA	GTCTTATCAC	TTGCGACTGC	AACTTGGCAG	ATGTTGAGGT	1680
GGTCACTATC	TGGATGGGCT	ACCATCTCAA	CAATTTCACC	TACAACAAAC	TTAGGTTCCT	1740
TATCATTAAC	AATTTCTTCT	GTAAAACCTT	CCGCCTGCAA	CTCTTGGTTC	AAACGAGCGA	1800
CTTGCTCATC	TGTCAAAAAG	ACTTGACCGC	GCTCTGCAAT	ТТСАААТААА	CTTGAAACTT	1860
ССААААТАТТ	CCAAGCCACT	GTTTCCCCAT	TATCTTTGAG	AAAAACACGG	GCTACCTTGC	1920
CTTTGCGCTC	CACATCCAGT	TTGGCATCTC	CGCTATTTTT	CACGATGACC	ATAAGGACAT	1980
CACCGACATG	TTCTTTATTA	TATGTAAAAA	TCATTGTTTC	CTTTTTCTCC	TATTTCAGTC	2040
CTGCTAAAAA	GTCATTGATT	TGTTGCTTGC	TTTTACGGTC	GCGATTGACA	AAACGACCGA	2100
TTTCCTTGTC	CTTTTCTAGA	ACAACAAGGC	TAGGAATTCC	GTAAACATCC	CAGAGTTTGG	2160
CCAAATCCAT	ATACTGATCT	CGGTCCATTC	GAATAAAGGT	GAACTCTGGA	TTGGTCTCCT	2220
CAATCTCTGG	TAAGGCAGGA	TAAATATAAC	GACAATCGCT	ACACCAGTCT	GCCACAAAAA	2280
TGAAGACCTT	CTTGCCCGCT	TTTTCCACTA	AAGATGCTAA	TTCTTCTAAA	CTTGCTGGCT	2340
GTATCATAAG	ACTTCCTCCT	CATAGACTAG	GTCTTCATTT	TCATAGACAA	AGGTATAATG	2400
ACGGCCATCC	TCAAAAATGA	CGCCACCAAC	CAAGCTCTCC	AGACTGCTTT	CGTAAACTTG	2460
AACATAAAGG	GTCGCAATTT	CCCCCATGTC	GGAAAAATGG	TCTCGCACAA	TCTCTGTCAA	2520
CTCTTCCTGA	GTCTTCATGA	GCTTACGGTC	ATCTGCAACT	TTTTTCGTAG	CAAGAGCAAG	2580
GCTTCCGATA	CCTAGCAGAG	CCAAGCCTGC	CATCCACATT	TTTTTAGCTT	TCATACCATT	2640
CATTTTAACA	CAAAAAAGGC	TTCAGGACAA	ATGAGGAAGC	AGCAGAAAAG	CAAGTAAAAA	2700

326	
GCCTCTTCCT TTAAGGAAAA GGACTTCTTA TACTCAATGA AAATCAAAGA CCAAACTAGG	2760
AAGCTAGCCG CAGGCTGCTC AAAGCACTGC TTTGAGGTTG TAGATAGAAC TGACGAGTCa	2820
CTCAAAACAC TGTTTTGAGG TTGTGGATGA AGCTGACGTG GTTTGAAGAG ATTTTCGAAG	2880
AGTATTATTC TTATTGCCAG GCACCTAAGT TGCCAACGTA GTAACTATCA GGTGTGTAGG	2940
TATTGCGAGC ATCTTACCTG ATGAAGCCAG ATAATACTAC TTGCCATTGT CTTTGACCCA	3000
ATCATTCGCA ATCATGGAAC CAGAAGAACT TACATAATAC CATTCTCCCT TGTCATAAAC	3060
CCAAGTACTG ACTTTCATGG TTCCTGAGCA ATTAAAGGCA AAAAAACTGT CCAATAACAT	3120
TCGTTTTTTA AAAGCATTTG ACACTACAT	3149
(2) INFORMATION FOR SEQ ID NO: 32:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10240 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
CCAAAAATTC AACCTTTAAG GGGAGTCCAG AGAGACTCAC AAGGTGTCAG ATAAAAGAAT	60
GGTGCAATTT TCTAGAGGAG ACTTTTTGAG TGTGCTCTCT TGTGTTGTAC GATTTTAACT	120
GAGGCCTTGC ACTAGCAAGG TCTTTTCTTT ATCTGGTCCC CTTAAAATTT AAGGAGGAAA	180
AGTTATGAAT CCCACATGTA AGAAGCGTTT GGGTGTCATT CGGTTGGAAA CCATGAAGGT	240
GGTTGCACAA GAGGAAATCG CGCCACAATC TTTGAATTAG TCCTAGAAGG AGAAATGGTT	300
GAAGCCATGC GAGCAGGCCA ATTTCTTCAT CTGCGTGTAC CGGACGATGC CCATCTCTTA	360
CGTCGTCCTA TTTCAATTTC GTCTATTGAC AAGGCAAACA AGCAGTGTCA CCTCATTTAT	420
CGGATTGACG GAGCTGGGAC TGCAATTTTT TCAACCTTAA GTCAGGGAGA CACTCTTGAT	480
GTGATGGGGC CTCAGGGAAA TGGTTTTGAC TTGTCTGACC TTGATGAGCA GAATCAGGTT	540
CTCCTTGTTG GTGGTGGGAT TGGTGTTCCA CCCTTGCTTG AGGTGGCCAA GGAATTGCAT	600

GAACGTGGAG TGAAAGTAGT GACAGTCCTC GGTTTTGCTA ATAAGGATGC TGTTATTTTG

AAAACGGAAT TGGCTCAGTA TGGTCAGGTC TTTGTAACGA CAGATGATGG TTCTTATGGC

ATCAAGGGAA ATGTTTCCGT TGTTATCAAT GATTTAGACA GTCAGTTTGA TGCTGTTTAC

TCGTGTGGGG CTCCAGGAAT GATGAAGTAT ATCAATCAAA CCTTTGATGA TCACCCAAGA

GCCTATTTAT CTCTGGAATC TCGTATGGCT TGTGGGATGG GAGCTTGCTA TGCCTGTGTT

CTAAAAGTAC CAGAAAACGA GACGGTCAGC CAACGCGTCT GTGAAGATGG TCCTGTTTTC

660

720

780

840

900

CGCACAGGAA	CAGTTGTATT	ATAAGGAGAA	AATTATGACT	ACAAATCGAT	TACAAGTTTC	1020
TCTACCTGGT	TTGGATTTGA	AAAATCCGAT	TATTCCAGCA	TCAGGCTGTT	TTGGCTTTGG	1080
ACAAGAGTAT	GCCAAGTACT	ATGATTTAGA	CCTTTTAGGT	ТСТАТТАТGA	TCAAGGCGAC	1140
AACCCTTGAA	CCACGTTTTG	GGAATCCAAC	TCCAAGAGTG	GCAGAGACGC	CTGCTGGTAT	1200
GCTCAATGCA	ATTGGCTTGC	AAAATCCTGG	TTTAGAGGTT	GTTTTGGCTG	AAAAGCTACC	1260
TTGGCTGGAA	AGAGAATATC	CAAATCTTCC	TATTATTGCC	AATGTAGCTG	GTTTTTCAAA	1320
ACAAGAGTAT	GCAGCTGTTT	CTCATGGGAT	TTCCAAGGCA	ACTAATGTAA	AAGCTATCGA	1380
GCTCAATATT	TCTTGTCCCA	ATGTTGACCA	CTGTAATCAT	GGACTTTTGA	TTGGTCAAGA	1440
TCCAGATTTG	GCTTATGATG	TGGTGAAAGC	AGCTGTGGAA	GCCTCAGAAG	TGCCAGTTTA	1500
TGTCAAATTA	ACCCCGAGTG	TGACCGATAT	CGTTACTGTC	GCAAAAGCTG	CAGAAGATGC	1560
GGGAGCAAGT	GGCTTGACCA	TGATCAATAC	TCTGGTTGGA	ATGCGCTTTG	ACCTCAAAAC	1620
TAGAAAACCA	ATCTTGGCCA	ATGGAACAGG	TGGAATGTCT	GGTCCAGCAG	TCTTTCCAGT	1680
AGCCCTCAAA	CTCATCCGCC	AAGTTGCCCA	AACAACAGAC	CTGCCTATCA	TTGGAATGGG	1740
AGGAGTGGAT	TCGGCTGAAG	CTGCCCTAGA	AATGTATCTG	GCTGGGGCAT	CTGCTATCGG	1800
AGTTGGAACA	GCTAACTTTA	CCAATCCTTA	TGCCTGCCCT	GACATCATCG	AAAATTTACC	1860
AAAAGTCATG	GATAAATACG	GTATTAGCAG	TCTGGAAGAA	CTCCGTCAGG	AAGTAAAAGA	1920
GTCTCTGAGG	TAAACTGCAA	TCAATCTGTT	CTTGATTTTT	TATTAGTTTG	TAATATGAAT	1980
TTAGGAGAAT	TTTGGTACAA	TAAAATAAAT	AAGAACAGAG	GAAGAAGGTT	AATGAAGAAA	2040
GTAAGATTTA	TTTTTTTAGC	TCTGCTATTT	TTCTTAGCTA	GTCCAGAGGG	TGCAATGGCT	2100
AGTGATGGTA	CTTGGCAAGG	AAAACAGTAT	CTGAAAGAAG	ATGGCAGTCA	AGCAGCAAAT	2160
GAGTGGGTTT	TTGATACTCA	TTATCAATCT	TGGTTCTATA	TAAAAGCAGA	TGCTAACTAT	2220
GCTGAAAATG	AATGGCTAAA	GCAAGGTGAC	GACTATTTTT	ACCTCAAATC	TGGTGGCTAT	2280
ATGGCCAAAT	CAGAATGGGT	AGAAGACAAG	GGAGCCTTTT	ATTATCTTGA	CCAAGATGGA	2340
AAGATGAAAA	GAAATGCTTG	GGTAGGAACT	TCCTATGTTG	GTGCAACAGG	TGCCAAAGTA	2400
ATAGAAGACT	GGGTCTATGA	TTCTCAATAC	GATGCTTGGT	TTTATATCAA	AGCAGATGGA	2460
CAGCACGCAG	AGAAAGAATG	GCTCCAAATT	AAAGGGAAGG	ACTATTATTT	CAAATCCGGT	2520
GGTTATCTAC	TGACAAGTCA	GTGGATTAAT	CAAGCTTATG	TGAATGCTAG	TGGTGCCAAA	2580
GTACAGCAAG	GTTGGCTTTT	TGACAAACAA	тассаатстт	GGTTTTACAT	CAAAGAAAAT	2640
GGAAACTATG	CTGATAAAGA	ATGGATTTTC	GAGAATGGTC	АСТАТТАТТА	TCTAAAATCC	2700

			328			
GGTGGYTACA	TGGCAGCCAA	TGAATGGATT	TGGGATAAGG	AATCTTGGTT	ТТАТСТСААА	2760
TyTGATGGGA	AAATrGCTGA	AAAAGAATGG	GTCTACGATT	CTCATAGTCA	AGCTTGGTAC	2820
TACTTCAAAT	CCGGTGGTTA	CATGACAGCC	AATGAATGGA	TTTGGGATAA	GGAATCTTGG	2880
TTTTACCTCA	AATCTGATGG	GAAAATAGCT	GAAAAAGAAT	GGGTCTACGA	TTCTCATAGT	2940
CAAGCTTGGT	' ACTACTTCAA	ATCTGGTGGC	TACATGGCGA	AAAATGAGAC	AGTAGATGGT	3000
TATCAGCTTG	GAAGCGATGG	TAAATGGCTT	GGAGGAAAAA	CTACAAATGA	AAATGCTGCT	3060
TACTATCAAG	TAGTGCCTGT	TACAGCCAAT	GTTTATGATT	CAGATGGTGA	AAAGCTTTCC	3120
TATATATCGC	AAGGTAGTGT	CGTATGGCTA	GATAAGGATA	CAAAAAGTGA	TGACAAGCGC	3180
TTGGCTATTA	CTATTTCTGG	TTTGTCAGGC	TATATGAAAA	CAGAAGATTT	ACAAGCGCTA	3240
GATGCTAGTA	AGGACTTTAT	CCCTTATTAT	GAGAGTGATG	GCCACCGTTT	TTATCACTAT	3300
GTGGCTCAGA	ATGCTAGTAT	CCCAGTAGCT	TCTCATCTTT	CTGATATGGA	AGTAGGCAAG	3360
AAATATTATT	CGGCAGATGG	CCTGCATTTT	GATGGTTTTA	AGCTTGAGAA	TCCCTTCCTT	3420
TTCAAAGATT	TAACAGAGGC	TACAAACTAC	AGTGCTGAAG	AATTGGATAA	GGTATTTAGT	3480
TTGCTAAACA	TTAACAATAG	CCTTTTGGAG	AACAAGGGCG	СТАСТТТТАА	GGAAGCCGAA	3540
GAACATTACC	ATATCAATGC	TCTTTATCTC	CTTGCCCATA	GTGCCCTAGA	AAGTAACTGG	3600
GGAAGAAGTA	AAATTGCCAA	AGATAAGAAT	AATTTCTTTG	GCATTACAGC	CTATGATACG	3660
ACCCCTTACC	TTTCTGCTAA	GACATTTGAT	GATGTGGATA	AGGGAATTTT	AGGTGCAACC	3720
AAGTGGATTA	AGGAAAATTA	TATCGATAGG	GGAAGAACTT	TCCTTGGAAA	CAAGGCTTCT	3780
GGTATGAATG	TGGAATATGC	TTCAGACCCT	TATTGGGGCG	AAAAAATTGC	TAGTGTGATG	3840
ATGAAAATCA	ATGAGAAGCT	AGGTGGCAAA	GATTAGTACT	ATAAGTGAAT	ATGATTTGAG	3900
TGAATAGTAA	GTTAAAAATC	CTGATTTCAA	GTAAAATCAG	GATTTTTTCA	TGGATGCAAT	3960
TTTTTTGGAG	TCTGGTGTGA	CGCGGAGGGT	CTTTTGTCCT	GTGTAAGTGA	CAAAGCCGGG	4020
TTTTCCACCA	GTTGGTTTAT	TGAGTTTTTT	GACTTCAATC	ATATCTACCT	GCACCAGAT*T	4080
CGACAGGCGC	CCTTGAGAGA	AGTAGGCAGC	TAACTCTGCT	GCGTCTGTCT	TGACTGCATC	4140
AGATGGGTCA	AGATTTCCTG	AGATGACAAC	ATGGCTTCCA	GGAATGTCCT	TAGCATGGAA	4200
CCAAAGTTCC	TCCTTGCGGG	CCATTTTAAA	GGTCAATTCC	TCATTTTGAA	GATTGTTTCG	4260
rccgacatag	ATGATGGTTT 1	TGCCATCGCT	TGCTAGATAT	TGTTCTAGTT	TTTTGCGTTT	4320
CTGGATTTTC	TCCCGTTGTC	TTCTGCGGAT	AAAACCTGTT '	TGAATCAATT	CTTCACGGAT	4380
TTCAGCGATT	TCTTCCAGTC (CAGCTTGGTT	GAGGACGGTT '	PCTACACTTT (CCAGATAGAG	4440
ATAGTGGCT	ጥጥርርጥጥጥርጥጥ (ግል ልጥሮል ል አጥሮ	እርጥሮ እ እርጠ አጠ <i>ነ</i>	TIETIC N C N C COMM		

CTGATACCGT	TTAAAATAGC	GTTGGGCATT	CTGGTTGGGA	GTCAGAGCCT	TATCAAGCGC	456
аатсатбата	GGTTGGTTGG	TATAGTAGTT	GTCTAGGATA	ACCTGGTCTT	GGTCGTTAGG	4620
CACTTGGTGG	AGGAAGGTTG	TCAGCAATTC	TCCTTTTTGA	CGAAATTCTT	CAGCGTTGTC	4680
TGTCGCCAGT	AACTCTTTTT	CCTGTTTTTT	GAGTTTGTGT	CGGTTTTTCT	GAAGTTCATT	4740
TTCAACACGA	CGAATCAGTT	CACTGGCCTG	CTGTTTGACG	CGGTCGCGCT	CAGCCTTATC	4800
CTTATAGTAG	GTGTCCAACA	AATCAGAAAG	ATTTGCAAAA	GGCTCTCCCA	CCTGATTTGC	4860
AAAAGGAACT	GGACTGAAGG	AAGTCTCAGT	CAAGCATGGC	TTGGTTTCTT	GATTGAAAAA	4920
ATTTCGGAAA	GCGGAAAGTT	TTTCACTAAC	CAGTATCCTT	тссааттсат	TTGCCGTATC	4980
GCGTCCCAGA	CCTTGAAAGA	GGCTTTGAAG	ATTTTTTGCT	GTTAGTTCTT	GGGTTTGCAG	5040
GATTTCAAAG	AGCTTTTCAT	CCTTGATAGT	AAAAGGATTG	AGAGATTTTG	TACTTGGCGG	5100
AGCGATATAG	GTCGATCCTG	GAAGTAAGGT	GCGGTAGCTA	TTTTGTGAAA	AGCCGACGTG	5160
PTTGATAACT	TCGAGGATTT	TATGACTGCT	TTTATCGACC	AGTAGAATAT	TACTGTGTTT	5220
CCCCATAATT	TCGATAATCA	AGGTAGCCTG	GATATGGTCT	CCAATCTCGT	TTTTATTGGA	5280
AACTGTAATT	TCCACAATAC	GGTCATTTTC	CACTTGCTCA	ATCGACTCAA	TCAGGGCCCC	5340
CTGCAAATAC	TTTCTCAAAA	CCATGATAAA	GGTAGAAGGT	TGAGCTGGAT	TTTCAAAAGT	5400
CGTTTGGGTC	AGCTGAATGC	GTCCAAAAAC	TGGATGGGCA	GAAAGGAGCA	GGCGATGGCT	5460
TTGGCGATTG	CTGCGGATTT	GCAAGACCAA	CTCTTGTTCA	AAAGGCTGAT	TGATTTTCTG	5520
GATGCGACCA	TTCACTAATT	CGCTTCGCAA	TTCCTCAACT	ATGTGGTGTA	AAAAAAATCC	5580
GTCAAATGAC	ATCGTTCTCT	CCTTGTGATT	GTATTCCATA	GTATTATATC	AAAAAGGTAG	5640
ATAAAATCA	TGGAAATGTG	GTATAATAAA	GCCAAGTAAA	GAGAAACGAG	AAGCACATGT	5700
ЧАТТСАААТ	GGTAGATGAA	ACTGGTCAAG	TTTCAAAAGA	AATGTTGCAA	CAAACCCAAG	5760
\AATTTTGGA	ATTTGCAGCC	CAAAAATTAG	GAAAAGAAGA	CAAGGAGATG	GCAGTCACTT	5820
TTGTGACCAA	TGAGCGTAGT	CATGAACTTA	ATCTGGAGTA	CCGTAACACC	GACCGTCCGA	5880
CAGATGTCAT	CAGCCTTGAG	TATAAACCAG	AATTGGAAAT	TGCCTTTGAC	GAAGAGGATT	5940
TGCTTGAAAA	TTCAGAATTG	GCAGAGATGA	TGTCTGAGTT	TGATGCCTAT	ATTGGGGAAT	6000
GTTCATCTC	TATCGATAAG	GCTCATGAGC	AGGCCGAAGA	ATATGGTCAC	AGCTTTGAGC-	6060
STGAGATGGG	CTTCTTGGCA	GTACACGGCT	TTTTACATAT	TAACGGCTAT	GATCACTACA	6120
TCCGGAAGA	AGAAGCGGAG	ATGTTCGGTT	TACAAGAAGA	AATTTTGACA	GCCTATGGAC	6180
CACAGACA	BTBBBCCBBB	ATCCA A A A A T	CCTC A CTTC A	ጥል ምር ርጉሙ ርጉሙ ጥ	A C A A MOTOR COM	6240

			330			
TTGACAGGTA	TTTTTACTGC	TATCAAGGAA	GAACGCAATA	TGCGAAAACA	CGCAGTGACG	6300
GCTCTAGTGG	TCATCCTTGC	AGGTTTTGTT	TTTCAGGTGT	CACGAATCGA	ATGGCTCTTT	6360
CTCCTATTGA	GTATTTTCTT	GGTAGTAGCC	TTTGAGATTA	TCAACTCTGC	ТАТТСААААТ	6420
GTGGTGGATT	TGGCCAGTCA	CTATCACTTT	TCCATGCTGG	CTAAAAATGC	CAAGGATATG	6480
GCGGCCGGCG	CGGTATTAGT	GGTTTCTCTT	TTCGCAGCCT	TAACAGGCGC	ATTGATTTTT	6540
CTCCCACGAA	TCTGGGATTT	ATTATTTTAA	ACAGTAAGAG	GAAATTATGA	CTTTTAAATC	6600
AGGCTTTGTA	GCCATTTTAG	GACGTCCCAA	TGTTGGGAAG	TCAACCTTTT	TAAATCACGT	6660
TATGGGGCAA	AAGATTGCCA	TCATGAGTGA	CAAGGCGCAG	ACAACGCGCA	ATAAAATCAT	6720
GGGAATTTAC	ACGACTGATA	AGGAGCAAAT	TGTCTTTATC	GACACACCAG	GGATTCACAA	6780
GCCTAAAACA	GCTCTCGGAG	ATTTCATGGT	TGAGTCTGCC	TACAGTACCC	TTCGCGAAGT	6840
GGACACTGTT	CTTTTCATGG	TGCCTGCTGA	TGAAGCGCGT	GGTAAGGGGG	ACGATATGAT	6900
TATCGAGCGT	CTCAAGGCTG	CCAAGGTTCC	TGTGATTTTG	GTGGTGAATA	AAATCGATAA	6960
GGTCCATCCA	GACCAGCTCT	TGTCTCAGAT	TGATGACTTC	CGTAATCAAA	TGGACTTTAA	7020
GGAAATTGTT	CCAATCTCAG	CCCTTCAGGG	AAATAACGTG	TCTCGTCTAG	TGGATATTTT	7080
GAGTGAAAAT	CTGGATGAAG	GTTTCCAATA	TTTCCCGTCT	GATCAAATCA	CAGACCATCC	7140
AGAACGTTTC	TTGGTTTCAG	AAATGGTTCG	CGAGAAAGTC	TTGCACCTAA	CTCGTGAAGA	7200
GATTCCGCAT	TCTGTAGCAG	TAGTTGTTGA	CTCTATGAAA	CGAGACGAAG	AGACAGACAA	7260
GGTTCACATC	CGTGCAACCA	TCATGGTCGA	GCGCGATAGC	CAAAAAGGGA	TTATCATCGG	7320
TAAAGGTGGC	GCTATGCTTA	AGAAAATCGG	TAGCATGGCC	CGTCGTGATA	TCGAACTCAT	7380
GCTAGGAGAC	AAGGTCTTCC	TAGAAACCTG	GGTCAAGGTC	AAGAAAAACT	GGCGCGATAA	7440
AAAGCTAGAT	TTGGCTGACT	TTGGCTATAA	TGAAAGAGAA	TACTAAGTAG	AGGTAGGCTC	7500
ATGCCTGCTT	CTTGTTTTTA	CAGAAGGAGG	ACTTATGCCT	GAATTACCTG	AGGTTGAAAC	7560
CGTTTGTCGT	GGCTTAGAAA	AATTGATTAT	AGGAAAGAAG	ATTTCGAGTA	TAGAAATTCG	7620
CTACCCCAAG	ATGATTAAGA	CGGATTTGGA	AGAGTTTCAA	AGGGAATTGC	CTAGTCAGAT	7680
TATCGAGTCA	ATGGGACGTC	GTGGAAAATA	TTTGCTTTTT	TATCTGACAG	ACAAGGTCTT	7740
GATTTCCCAT	TTGCGGATGG	AGGGCAAGTA	TTTTTACTAT	CCAGACCAAG	GACCTGAACG	7800
CAAGCATGCC	CATGTTTTCT	TTCATTTTGA	AGATGGTGGC	ACGCTTGTTT	ATGAGGATGT	7860
TCGCAAGTTT	GGAACCATGG	AACTCTTGGT	GCCTGACCTT	TTAGACGTCT	ACTTTATTTC	7920
аттаааааат	GGTCCTGAAC	CAAGCGAACA	AGACTTTGAT	TTACAGGTCT	TTCAATCTGC	7980
CCTTGCCAAG	TCCAAAAAGC	СТАТСАААТС	CCATCTCCTA	GACCAGACCT	TGGTAGCTGG	8040

ACTTGGCAAT ATCTATGTG	G ATGAGGTTC	CTGGCGAGCT	' CAGGTTCATC	CACCTACACC	8100
TTCCCAGACT TTGACAGCA					
					8160
GGGCCAGGCT GTTGAAAAA					8220
AGATGGAAGC ATGCAGGAC	r TTCATCAGG	CTATGATAAG	ACTGGTCAAG	AATGTGTACG	8280
CTGTGGTACC ATCATTGAG	A AAATTCAACT	AGGCGGACGT	GGAACCCACT	TTTGTCCAAA	8340
CTGTCAAAGG AGGGACTGA	r gggaaaaat	: ÀTCGGAATCA	CTGGGGGAAT	TGCCTCTGGT	8400
AAGTCAACTG TGACAAATT	TCTAAGACAG	CAAGGCTTTC	AAGTAGTGGA	TGCCGACGCA	8460
GTCGTCCACC AACTACAGA	ACCTGGTGGT	CGTCTGTTTG	AGGCTCTAGT	ACAGCACTTT	8520
GGGCAAGAAA TCATTCTTGA	AAACGGAGAA	CTCAATCGCC	CTCTCCTAGC	TAGTCTCATC	8580
TTTTCAAATC CTGATGAACC	G AGAATGGTCT	AAGCAAATTC	AAGGGGAGAT	TATCCGTGAG	8640
GAACTGGCTA CTTTGAGAGA	ACAGTTGGCT	' CAGACAGAAG	AGATTTTCTT	CATGGATATT	8700
CCCCTACTTT TTGAGCAGGA	CTACAGCGAT	TGGTTTGCTG	AGACTTGGTT	GGTCTATGTG	8760
GACCGAGATG CCCAAGTGGA	ACGCTTAATG	AAAAGGGACC	AGTTGTCCAA	AGATGAAGCT	8820
GAGTCTCGTC TGGCAGCCCA	GTGGCCTTTA	GAAAAAAAGA	AAGATTTGGC	CAGCCAGGTT	8880
CTTGATAATA ATGGCAATCA	GAACCAGCTT	CTTAATCAAG	TGCATATCCT	TCTTGAGGGA	8940
GGTAGGCAAG ATGACAGAGA	TTAACTGGAA	GGATAATCTG	CGCATTGCCT	GGTTTGGTAA	9000
TTTTCTGACA GGAGCCAGTA	. ТТТСТТТGGT	TGTACCTTTT	ATGCCCATCT	TCGTGGAAAA	9060
TCTAGGTGTA GGGAGTCAGC	AAGTCGCTTT	TTATGCAGGC	TTAGCAATTT	CTGTCTCTGC	9120
TATTTCCGCG GCGCTCTTTT	CTCCTATTTG	GGGTATTCTT	GCTGACAAAT	ACGGCCGAAA	9180
ACCCATGATG ATTCGGGCAG	GTCTTGCTAT	GACTATCACT	ATGGGAGGCT	TGGCCTTTGT	9240
CCCAAATATC TATTGGTTAA	TCTTTCTTCG	TTTACTAAAC	GGTGTATTTG	CAGGTTTTGT	9300
TCCTAATGCA ACGGCACTGA	TAGCCAGTCA	GGTTCCAAAG	GAGAAATCAG	GCTCTGCCTT	9360
AGGTACTTTG TCTACAGGCG	TAGTTGCAGG	TACTCTAACT	GGTCCCTTTA	TTGGTGGCTT	9420
TATCGCAGAA TTATTTGGCA	TTCGTACAGT	TTTCTTACTG	GTTGGTAGTT	TTCTATTTTT	9480
AGCTGCTATT TTGACTATTT	GCTTTATCAA	GGAAGATTTT	CAACCAGTAG	CCAAGGAAAA	9540
GGCTATTCCA ACAAAGGAAT	TATTTACCTC	GGTTAAATAT	CCCTATCTTT	TGCTCAATCT	9600
CTTTTTAACC AGTTTTGTCA	TCCAATTTTC	AGCTCAATCG	ATTGGCCCTA	TTTTGGCTCT	9660
TTATGTACGC GACTTAGGGC	AGACAGAGAA	TCTTCTTTTT	GTCTCTGGTT	TGATTGTGTC	9720
CAGTATGGGC TTTTCCAGCA	TGATGAGTGC	AGGAGTCATG	GGCAAGCTAG	GTGACAAGGT	9780

			332			
GGGCAATCAT	CGTCTCTTGG	TTGTCGCCCA	GTTTTATTCA	GTCATCATCT	ATCTCCTCTG	9840
TGCCAATGCC	TCTAGCCCCC	TTCAACTAGG	ACTCTATCGT	TTCCTCTTTG	GATTGGGAAC	9900
CGGTGCCTTG	ATTCCCGGGG	TTAATGCCCT	ACTCAGCAAA	ATGACTCCCA	AAGCCGGCAT	9960
TTCGAGGGTC	TTTGCCTTCA	ATCAGGTATT	CTTTTATCTG	GGAGGTGTTG	TTGGTCCCAT	10020
GGCAGGTTCT	GCAGTAGCAG	GTCAATTTGG	CTACCATGCT	GTCTTTTATG	CGACAAGCCT	10080
TTGTGTTGCC	TTTAGTTGTC	TCTTTAACCT	GATTCAATTT	ССВАСАТТАТ	TAAAAGTAAA	10140
GGAAATCTAG	TGCGAGTAAA	AATCAATCTC	AAATGCTCCT	CTTGTGGCAG	ТАТСЛАТТАС	10200
CTAACCAGTA	AAAATTCAAA	AACCCATCCA	GACAGATTGA			10240
			_			

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13206 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGCTTTATCG TGGACGTGGT CAAGCCGAGA ATTTCATCAA GGAGATGAAG GAGGGATTTT 60 TTGGCGATAA AACGGATAGT TCAACCTTAA TCAAAAACGA AGTTCGTATG ATGATGAGCT 120 GTATCGCCTA CAATCTCTAT CTTTTCTCA AACATCTAGC TGGAGGTGAC TTCCAAACTT 180 TAACAATCAA ACGCTTCCGC CATCTTTTC TTCACGTGGT GGGAAAATGT GTTCGAACAG 240 GACGCAAGCA GCTCCTCAAA TTGTCTAGTC TCTATGCCTA TTCCGAATTG TTTTCAGCAC 300 TTTATTCTAG GATTAGAAAA GTCAACCTGA ATCTTCCTGT TCCTTATGAA CCACCTAGAA 360 GAAAAGCGTC GTTAATGATG CATTAAAGAA CAGTCGAGAT GAAAAAATCG TGTGACGCAC 420 CAAGGGAGGA GTCTGCCCTT TTGAGGAAAT CTAGCGAGGA AAAACGATAC TGGAACAGCA 480 GAAAGTAAAA CTGACCTCAT GAGGAGGAAG AAAGTGGCTC ATGAGGTCAG GGGTTTTGTA 540 AGTTACATCT AGTTGAGAGA GGTATGAATG ATTTGGGATT AATCATTTCT TGTTTTAAAT 600 CAGGAGAATA GTAACGATTT TTTCCTTTTT TGACGAACTC TATTCCGTAA CGATCAATCA 660 ATTTAATCAT GTACCTAATA TTAGAATTGT TTATCCCAAA TTTATTTGAA AGCTTCTCTA 720 AGCTATATCC TTGTTTTCTA AGTTCATAGA TCTGAACTTT ATCATCATAA GTTAGTTTCA 780 TAATAAAAC ACCCCAAAAG TTAGATTTTT TCTGTCTAAC TTTTGGGGGG CAGTTCATTC 840 AACACCTGAT ACTATGCGTT TTTCTTATTT GAAATACTTT TTACTCAACC TCTTTATACT 900 CAATGAAAAT CAAAGTGCAA ACTAGAAAGC TAGCCTCAGG CTGCTCAAAA CAGTGTTTTG 960

AGGTTGCAGA	TGGAAGCTGA	CGTGGTTTGA	AGAGATTTTC	GAAGAGTATT	ACTTAATCTT	1020
CTTGATACTT	TGACTAAGAA	тааатсстас	AATCATCCCT	ACCATATTTT	GCATAAAATT	1080
CGGTAGAATT	TCTGGGAGGG	CTGCTGCCCA	GCCATTCATC	AAAGCAGAAC	CCAAGGCGTA	1140
GCCTCCTACC	ATGGCAATAG	TTGCTAAAAT	AAGGCCTAAC	CACTGACTTT	TTCCTTTAAA	1200
TCCTGCGAAA	AATCCCTGCA	AGCCATGGTT	GACCAAGCTA	AAGAACATCC	ACTGAGGGTA	1260
GCCTGATAAG	AGGTCAATCA	AGAAACTTGC	TAGTCCTCCG	ACTACCGCTC	CTTCACGACT	1320
ACCAAAGTAA	AAGGCCGCAA	AGAAGACACC	AGCATCTAAA	AGAGTTAGAA	TTCCTGTAGG	1380
TGTTGGGATT	TTTAAGAAAT	AACCTAGAAC	CACAGAAAGG	GCGGTTAATA	GGGATACAAG	1440
GGCGATTTTA	GTTGTTTTTG	TTTGCTTCAT	ATTGTCTTAC	TCCATACTGA	TCTGCTTGTG	1500
CAATAGCACG	ATAAACGAAA	GCCTTAGAGC	TTTCTACTGC	TGGCAAAAGT	TTATCACCTT	1560
TAACCAGGTG	ACTGGCAATG	CTAGAGSCAA	AGGTACAACs	TGCACCAGCA	TTTTGGCCTT	1620
GGATAACTGG	ATTTTCTAGG	ATAGTAAAGG	TCTGTCCATC	ATAAAAGACA	TCCACAGCCT	1680
TGTCCTGACT	AAGACGATTG	CCTCCCTTGA	TAATGACTGt	GGCGCTCCTA	AATCATGCAA	1740
TTTCTGCGCT	GCAGTTTTCA	TGTCTTCCAA	GGTTTTAATT	TCCTGACCGG	ATAATAATTC	1800
TGCTTCTGGG	AGATTAGGCG	TAATCACACT	GACATAAGGG	AAAAAGCGAA	TCAACTCTTG	1860
GCAGAGCTCA	CTGACAGCTA	CATCATGCGT	TTCCTTGCAG	ACCAAGACAG	GATCCAACAC	1920
CACAGGTACT	CCTGGGCGTT	GTTTGATAAA	GTCCAAGGCC	TTCTCAGCCA	CGCTGACAGT	1980
AGGGAGAAGA	CCAATCTTAA	TTCCCCCAAA	TTCCACATCA	CGCAAGCTAT	CTAATTCATG	2040
TTGAAAAATG	GTATCATCAG	TTGGAAAGAC	TTCAAATCCT	TTTTCTGTCA	AGGCTGTCAA	2100
ACAAGTCACT	GCTACAAACC	CATGCAAGCC	GTTCAAGGTA	TAGGTAGCCA	AATCAGCTGA	2160
CAGTCCACCA	CCACTAAAAA	TATCATTTCC	AGAAAGTGCT	AAAATACGAT	TATTCTTCAT	2220
AACGAATCTC	CTTTAAATAC	AAACCATTTG	GTGCTGCAGT	GGGACCTGCA	AGTTGCCTGT	2280
CCTTCTTCTC	CAAGATGAGA	TCAATCTGCT	CTACTGGCAT	GCGGTTGTTA	CCGATTTTGA	2340
GAAGAGTCCC	CACCATATTG	CGAATCTGTT	TATACAAGAA	ACCATTTCCT	GAAAAGGTAA	2400
AGGTCAAAAA	TTGTCCTGTC	TCATCGACTA	TTAAACTAGC	TTCTGTGATG	GTGCGAACCT	2460
ТАТССТСТАС	ACTAGTCCCA	GAGGCTGTAA	AACCGGTAAA	ATCATGGGTT	CCCTCTAGCT.	2520
TTTTGATTGC	AATCTGCATT	CGTTCCACAT	CGAGTGGGTA	GGGAAAGTGG	GTGGCATAGT	2580
GACGGCGCAT	CGGATTTTTG	GGACGTCCTC	TATCCACAGT	AAACTCATAG	GTCTTGCTAT	2640
GCTTGGCATA	ACGGCAATGA	AAATCATCTG	CCACAAGCTC	AATCGAAATC	ACATCAATAT	2700

			334			
CTTCAGGAGA	CTGGGTATCC	AAGGCAAAAC	GGAGTTTCTC	CTCATCCATC	TGATAAGGCA	2760
GGTCAAAATG	AATCACCTGT	CCCAGGGCAT	GAACCCCACT	ATCTGTCCTA	CCAGCACCGT	2820
GAACAGTAAT	GGCTTGCCCT	TTATTTAATC	TGGTCAAGGT	TTTTTCAATT	TCTTCCTGAA	2880
CGCTACGCGC	ATGAGGCTGG	CGCTGAAAGC	CAGCAAAGGC	ATAACCATCA	TAGGAAATAG	2940
TTGCTTTATA	TCTCGTCATA	GCCTCTATTT	TATCAAGAAA	TTAGTCTGTA	AACAAGGACC	3000
ТААААСАААТ	ATTGTATGGG	татааааатс	TCATACTCTT	CGAAAATCTC	TTCAAACCAC	3060
GTCAGTTTCC	ATCTGCAACC	TCAACACACT	ATTTTGAGCA	ACCTGCGGCT	AGCTTTCTAT	3120
AGTAGATTGA	AATAAGATAT	GAACAACTCT	ATTAGGAAAG	ТСАААТТААТ	ТТСТАGАААТ	3180
ATTTTAGCAG	CTACAGCGTA	СТАТТССААА	CTCAATCAAC	TATAGTTTGC	TCTTTGATTT	3240
TCATTGAGTA	TCAAAAGAAA	AACTTAGGAA	TCAATCCTAA	GCTCTCTTCT	GAAGTAGGTA	3300
CATGACAAAG	ATAGAGATTA	CAATCAACCA	ACCTCCTAAG	ATACTAAAGA	CCAACATCCC	3360
ATTGTGAGTT	AGTAAGCCAA	TTGCACCTAG	AACGAATGGG	GTCGTAAAGG	CTCCGAAACT	3420
ACAGCCTAAT	ACAGCAAATG	AAGTTGCTTG	ATTGAGGAGT	TTAGCTGGAA	TTCGTTCAGA	3480
GACAAGTTGA	AAGACCGTCG	TCAAGACTAC	ACTATAGGCA	AATCCAGCCA	GAACACTTCC	3540
IGCTACTACC	ACCCACAAGG	ATGAAGACAA	GGCAATCACG	ATTTGCCCCA	AGCCAAAGGT	3600
AATACCAGAC	CAGAGGAGCA	GTTTCTCTTT	AAAGATAGAA	ATCAAGAAAG	AAAAACTCAC	3660
CCCAGCCACA	ATCCCGATCA	ACTGCATGAT	ACTAAGAACA	AAACTAGATA	ACTGGGCATC	3720
CCCAATCCT	CTTTCCACCA	TCAAACTTGG	AATACGGATG	GTAATAGCTG	TATTGGTACA	3780
AACTACAACT	GCCGCTTCGA	TAGCTAAGGT	AAAAATCAAG	CCTTTCATTT	CTCGAGTTAA	3840
ACGACTTGCT	TCCTTCGCTC	TTTTCTTGAC	TTCTTTCTTT	GATTTTCCAT	AAGGGACAAA	3900
GAGCAGATAA	AGGGGCAGCA	CCAAAAATCC	AGCACTATAG	GCTAGAAAGA	TAGCTGTCCA	3960
ACCAAAGGCC	AACAACTGAC	CGACGCCAA	GGTAATGAGA	GAAGCTCCAA	CGACCTCTGC	4020
AGAAGCGCGT	AGCCCTAACA	TCTGAATTCG	CCTTTTTCCT	TGGTAGCGTT	CACTGATAAT	4080
AGAAATGGCC	TTGGCATTGA	TCATCCCAAG	ACCCAAACCA	AAGAGAAGCC	GTGTTCCAAA	4140
GACAAAGGGA	TAGGCTTGGT	ACCAGAAGGG	AGCTGTACCG	CTCAATGATA	AAATCAGCAA	4200
GCCCAAACTA	ATCTGTAAGC	GCTCAGGAAA	TATTTTTTCT	AAGAAACCAT	TTAGCAGTAA	4260
CATCATCATG	ATTCCAAAGG	AAGGCAAGCT	CACCAAGAGC	TCAATTTGTT	CCTTAGAATA	4320
ACCCTGATAA	TAGTCAAACA	TGGCTGGTAG	GGCACTCGAA	ATGGAAAAGG	AGGTAATCAA	4380
AACGAGGGAG	AGAGCCAAAA	TGCTGGCCCG	ттстааааат	TGTTTCATGA	AATCTCTTTC	4440
PATATTTCTC	ттаатсттст	ACTTTTTTGA	TAGTTATCAA	ATAAGCAAGA	AAAGAAGAAG	4500

CCTCATTGGT	TTGTAGACTC	CTTCTTAAAT	TCGAAAATGA	ATCCCTTGTA	TCTTATACTC	4560
AATGAAAATC	AAAGAGCAAA	CTAGGAAGCT	AGCCGCAGGT	TGTTCAAAAC	AGTGTTTTGA	4620
GGTTGCAGAT	GGAAACTGAC	GTGGTTTGAA	GAGATTTTCG	AAGAGTATTA	GGATGACTTT	4680
CTCTTGATTT	GCTTGATAAA	GTAGAAAATA	AATCCTGCTA	CCATATAGGC	AACAAAGATA	4740
ATCAGACACC	ACTTAAACAC	AACATTCCAA	CCCTTGTTCA	CATTCAAAAA	GAAGTAAGGG	4800
AAAGGATTAT	CCTTGGCATT	TGGAATATTG	agttttagaa	CCAAGCCATT	AAAAAGAGCA	4860
AACATCATAT	ACAGAAAGGG	TAAAATGGTC	CACACTGCTG	GATCCCAAAT	CTTGTATTGA	4920
CCCTGTTTGT	CAAAAAAGAG	GGTATCCGCT	AAAAACCAGA	TGGGAACGAT	ATAGTGGCAA	4980
AGGAAATTTT	CTAGGGTATA	GAAATTAGTC	GCAATGGGCG	CCAAGAGGAA	ATGGTAAATC	5040
ACACAGGTAA	TCATGATACT	CATGGTGACC	CCACCTTTTA	AGCGCAAGAG	ACTTGGCCTT	5100
TGCCAATTTT	CACCTACACG	GCTCATAACC	TTTAGAAGAT	AAAGGGTAAA	AATAGTTACC	5160
AAGAGGTTGG	ACAGAACCGT	GTAATAGAGA	AGCATCCCAA	AACCACCATG	CTTAGTAATT	5220
TCAAGATAAA	CTCCCGTAAA	AGCCGCTAGA	AACAAGAAGA	TACGGCTATA	AAATACAAGT	5280
TTATAGTGTT	TTGACATGCT	TAAATCTTCC	TCACAAACTC	TGATTTAAGT	TTCATGGCAC	5340
CAAAACCATC	AATCTTACAG	TCGATATTGT	GGTCGCCTTC	TACGATGCGG	ATATTTTTCA	5400
CGCGCGTCCC	TTGTTTCAAA	TCTTTTGGCG	CACCTTTTAC	TTTCAAGTCC	TTGATGAGAG	5460
TTACTGTATC	ACCATCAGCC	AATTTATTTC	CGTTGGCATC	GATAGCGACA	AGACCTTCTT	5520
CTACTTCTGC	AACTTCAGCA	GGATTCCACT	CATGAGCACA	CTCTGGGCAA	ACCAGTAGGG	5580
CACCGTCTTC	GTAGACATAC	TCTGAGTTAC	ATTTTGGACA	ATTTGGTAAA	TTGTTCATGG	5640
TTTCTCCTTA	TCATCATTCA	CTATTCTTTG	AAAATCAAAA	TTTCTCGAAC	AGCAACTATT	5700
ATACCCTAAA	ATCAGCATTT	TGACAAATTT	AGAAAAAAAC	CGATATCAAT	CTATCGGCTT	5760
TTCTACATTT	ACATTCTTTT	TTCAGCTTCT	GCTTTGATTT	TTTCAACTAC	TTCTTGAATG	5820
TTCAAACCAG	TTGTATCAAG	GTAGACAGCA	TCCTCTGCTT	GTTTGAGAGG	AGAAGTCTCA	5880
CGATGACTAT	CCTTGTAGTC	ACGCGCAGCA	ATTTCCTTTT	TTAGGGTTTC	AAGGTCTGTT	5940
TCAATTCCCT	TGGCAATATT	TTCCTTGTAA	CGACGCTCTG	CTCTCTCATC	AACAGAAGCT	6000
ACTAGGAAAA	TTTTCAATTC	TGCTTGTGGC	AATACAACAG	TTCCAATATC	GCGACCATCC	6060
ATGACAATCC	CCCCTTCCTC	GGCAATTTCT	TGTTGGAGAG	AAACCAGTTT	CTCACGCACT	6120
TGAGGAATTG	CTGCAATAGC	AGAAACATGA	TTGGTCACTT	CATTTTCACG	GATAGGATGG	6180
GTAATATCCA	CATCTCCTAC	AAAAACAAGC	TGGTCTCCAG	TTTCTGAACG	TCCAAAGCTG	6240

336 ATTGGATGCT GGTCCAACAA GGCTAGAAGG GCTTCGACTT CTTCAACTCC TAATTGGTTC 6300 TTAAGAGCCA TATAGGTCGC TGCACGATAC ATAGCTCCTG TATCAAGGTA GGTGAATCCA 6360 AAATCCTTAG CAATAATCTT TGCGACCGTA CTCTTACCGC TGGAAGCAGG ACCATCAATA 6420 6480 CAAACCAAGA TCCTGTAGCC ATGTGCCCAG GATTCAAGGC CTCTAACTGA GCAATGGAGA 6540 TTCCTGCACG AGCGGCAATA GCTGCTTCCC CTTCTCCTGC GAGAACTTTA ATCGTTCCTT 6600 CAGGATTAGC AGCTTCTTCT GAACTACTAG AAGTAGATTC TGGCTCTGAA CTCTGCTCAG 6660 GCTGAGAACT ACTTGAAGAT GAGATTTGTA CTACACTGGC ATCAGAATCA TGAAAGCCTT 6720 TTAAGGCTGC TGTGCGATTA CTCCCCCCG ATGATAGATA GATGAGAACG ATGACCATCA 6780 CCACCACAAT TACAAAGAAA ATACTAGCTA GGATCGTCAA AATACGATTA GCCATCCTAT 6840 CAGCCCCTCC GTGGTTTCGA TGCCGACGCT CTGCTCTTGA TTCTTCTTGA TCATAGATAT 6900 CTTCTTGCCA CGGTTCTTTT GCCATACCTT ACTCCTTGTT TTTTTTTTACT TTTCTTATTA 6960 CANTATAAAT ATGAACATGA AAATCACACT TATACCTGAA CGATGTATCG CCTGTGGGCT 7020 TTGCCAAACT TATTCTGATT TATTTGATTA CCACGATAAT GGAATCGTGC GTTTTTACGA 7080 TGACCCTGAC CAACTGGAAA AAGAAATTC TCCTAGTCAG GATATCTTAG AGGCTGTTAA 7140 AAATTGCCCA ACTCGCGCCC TGATTGGAAA CCAGGAAGCC TAAATCAATG GCGATAATCC 7200 ACTCCCTCTA GTTTAGCACA TTTCCATGTA AAATTATAGT CTTTTCACTT TATTTTTTTC 7260 7320 TAAATAAATC TTACTGATAT ACTTGCCGAG AATCCCAATG GTCAAGAGTT GAATGCCTCC 7380 AAGAAAGAGA ATAACAGCCA TCAGAGAGGT CCAACCAGAT GTCGGATTGC CCAAAATGAG 7440 GGTCCGAACC ACAACAAAAA AGGTCATCAG CAGAGAAAGA AAACAAGATA GGAGACCAGC 7500 TACAAAGGCT ATAATCAAGG GAAAATCTGA AAAATTAATA ATCCCTTCAA TGGAGTAGAA 7560 AAAGAGTTGC CTAAAACTCC AACTTGTCTT GCCAGCCTGC CTTTCGACAT TTGGATAGTC 7620 CAAATAGTAG GTTTTGAAAC CCACCCAGGC GAAGAGCCCC TTTGAAAAAC GATTGGACTC 7680 GGTCAAGCTT AAAATGGCAT CGACTACAGA CCTTCTCATC ATACGAAAAT CACGGACACC 7740 CGACGGCAGA GCTACTGGGC TGATTTTTTG CATGAGGCGA TAAAAGAGAA CAGCACAGAA 7800 ACTGCGAAAG AAGGGTTCTC CCTCCCGACT AGTTCTCCGT GTCCCAACGC AGTCCAAGTC 7860 TACATTTTTG TCTAATACAT TTTTCATCTC AAACAACATA CTAGGAGGAT CTTGGAGGTC 7920 TGCATCCATC ACCACCACA AATCTCCTGT CGCATATTGC AAGCCTGCAT AAAGGGCTGC 7980 TTCTTTGCCA AAATTTCGAG AGAAAGAAAT ATAATGGACT GCCGGATTTT GCTCCCGATA 8040

GGCCTTTAAG	AGTTCCAAGG	TCCCATCACT	TGATCCATCA	TCGACAAAGA	CATACTCGAT	8100
TTCTGTTTCC	AAATCTGGAA	GTAAAGCTTC	CAGAGCCTGA	TAAAAAAGAG	GAAGTACTTC	8160
CTCTTCGTTT	AAACAAGGGA	CGATGATTGA	AATCATCATC	TTAGTCTTCA	AATCCATTTG	8220
GATGCTTGCT	TTGCCAACGC	CATGCGTCTT	CACACATTTG	GGTGATGTCG	AGTTCTGCTT	8280
CCCAACCGAG	TTCTGCTTTA	GCTTTTGCCG	GGTCTGAGTA	GCAGGCAGCG	ATATCACCTG	8340
GGCGACGTTC	TACGATGCGG	TAAGGAATAG	GACGGCCCAC	CGCTTTTTCC	ATGTTTTGGA	8400
TAATTTCAAG	AACTGAGTAA	CCTTTACCAG	TTCCAAGGTT	ATAAACGTTT	AGTCCTGAAC	8460
CTTTTTGGAT	TTTTTTCAAA	GCTGCAACGT	GACCCTTAGC	CAAATCGACA	ACGTGGATAT	8520
AGTCACGAAC	ACCTGTTCCA	TCTTCCGTAT	CGTAATCGTC	TCCAAACACT	TGCACTTGCT	8580
CTAATTTTCC	AACGGCTACT	TGAGTCACAT	ATGGCAAGAG	ATTGTTTGGA	ATACCGTTTG	8640
GATTTTCTCC	CAAATCACCA	CTCTCATGGG	CTCCGATTGG	GTTAAAGTAA	CGAAGCAAGA	8700
CAACATTCCA	TTCTGAGTCT	GCTTTGTAAA	TATCAGTCAA	AATTTCCTCT	AGCATGAGCT	8760
TAGTACGACC	GTATGGGTTG	GTCACTGAAA	GTGGGAAATC	TTCCAAGATG	GGCACTGTGT	8820
GCGGATCCCC	GTAAACTGTC	GCAGAAGAAC	TGAAGATGAT	GTTTTTACAG	TTGTTTTCTT	8880
CCATGGCTTT	CAAAAGGCTG	ACAGTTCCAG	CGATATTGTT	GTCATAGTAG	GCAAGAGGGA	8940
TACGTGTTGA	TTCGCCAACA	GCCTTCAAAC	CAGCAAAGTG	AATGACACCA	GTCGGTTCTT	9000
CCTGCTTGAA	AATATCTCTG	AGGGTATCTG	TGTCACGAAT	ATCTGCCTCA	TAGAAAGGAA	9060
TCTCAACTCC	TGTGATTCCT	TCAACAACTT	CTAAACTCTT	ACGATTGCTA	TTGACAAGAT	9120
TATCCACCAC	AACAACTTGA	TGACCTGCTT	GGATCAATTC	AATAACAGTG	TGGGTTCCAA	9180
TAAAACCGGC	ACCACCAGTT	ACCAAAATCT	TTTCTTGCAT	CTTTTTTCCT	CGATTCTCAG	9240
ATTATTTTT	CTTATTTTAC	CATTTTTGAC	AGGGAATGTC	ATTTGCCATC	CTAAACTACC	9300
TGATAAAATT	TCAGTAAAAT	GCTTATACTC	TTCGAAAATC	CAATTCAAAC	TACGTCAACG	9360
TCGCCTTGCC	ATGGGTATGG	TTACTGACTT	CGTCAGTTCT	ATCCACAACC	TCAAAACAGT	9420
GTTTTGAGCT	GACTTCGTCA	GTTCTATCCA	CAACCTCAAA	GCAGTGCTTT	GAGTAACCCG	9480
CGGCTAGTTT	CCTAGTTTGT	TCTTTGATTT	TTATTGAGTA	TTATTCGCTT	TTTACTCGTT	9540
TGACATAGTT	TTCAATTGGG	TAATTTAGAG	GGTCCAAGGT	CAACTCCTTG	TCTTGGATCA	9600
GTTGGGCTAG	ATGGTAACCA	ATGATAGGAC	CAGTTGTGAG	GCCTGATGAA	CCTAGTCCAC	9660
TGGCTGCATA	GACACCAGTT	AAGTCAGGCA	CCTGCCCAAA	GAAAGGAGAG	AAATCACTGG	9720
TGTAGGCACG	GATTCCAACA	CGCTCAGATT	TTGAAGTAGC	TTCAGCCAAA	ATCAGATAGT	9780

338 9840 CCATGTCATT TTCGTGGGTA GCGCCTAAGG ATAATTTCCC ACCTGCAAAG GGAATCAAAT 9900 CCCACTCCCC TTCTGGCATG ACAACAGGGT AATCTTCCAT GTCTTGGGCA AGCTGATAAT 9960 CTCGTAGTTG TCCTTTTTGA GGACGGACAT CCACTTCATA ACCTAAAGGC TCTAACATGT 10020 CCCCCAACCA AGCTCCCGTC GCCAAAATAA CCTGCTCAAA CTCCTCTTCA CCAATCTGGT 10080 AGCCTGATGC TAACGGTGTC AGAGTCACTT TTTCTTTGAC CAGCTTGACA TGACTGACTT 10140 CCAGCAAACG AGTCACTAAA AGTTGGCCAT CTACTCTCGC TCCACCAGAA GCATAGAGCA 10200 GGCGGTCAAN TCCCTGCAAA CCAGGGAATA ATTCATTAGC TGAGGCTTGG TTCAGAATGG 10260 CTAATTGCCC TATCAAGGGA GATTCTTCTC TGCGCTGGAG GGCCAGTTGA TAAAGTTCTT 10320 CCAAATTGGA TTCATCCTTT TTCAAGAGAA AGACTCCCGA ACGCTGGTAA AAGTCGATTT 10380 CTTGTCCTGA TTTCTCTAAA TCAGCTAATA AATCCACATA AAAATCAGCC CCCAAGCGCG 10440 CCATCTTGTA CCAGGCTTTA TTACGGCGTT TGGAAAACCA AGGACTGATA ATTCCTGCTG 10500 CGGCCTTGGT GGCTTGACCT TGCTCATGGT CAAAAACGGT CACCTCTAGG TCACTTTCTC 10560 TCGAGAGGTA GTAGGCAGCT GTTGCTCCCA CAATTCCTGC TCCAATAATG GCAACTTTTT 10620 TCATTGTCTT CACTTTCTAA CTAGATATGA TGGAAAGGAT TGGTTGATGC CTGACTAGGC 10680 AAGATATCAA TAGACCACCC CTTATCTTCC TTCCATTGAC TAAGAAGTGC TGCGATTTTT 10740 TCTACAAAAA TCACTTCGAT ATAGTGACCT GGGTCCAATG CAAGCAACCC ATCAGATAGC 10800 ATATCCTGAG CAGTATGGTA GTAGATATCA CCAGTGATAT AGACATCTGC CCCCTTTGCC 10860 AAAGCATCCT TATAGAAAGA CTGCCCGCTT CCACCACAAA TTGCTACTCT TGAAATAGGC 10920 TTCTGCAAAT CATCCTCTG ATAATGCACC ATTCGAAGGC TATCTAGGTC AAAGACTTGC 10980 TTGACCTGTT GGGCCAATTC CCAAAATGTC TGAGGCTGAA TATTCCCAAT ACGTCCAATT 11040 CCACGTTCTG GACCTGTTTC CTGCAGATAA GTCGTCTCCT CGATTCCTAG CATCTGACAA 11100 AACCAGTCAT TGAGCCCATT TTCAACGATA TCAATATTGG TATGGCTGAC ATAAACTGCG 11160 ATATCATGCT TAATCAGGTC GATGTAAATC TGATTTTGCG GACGGCTGGC AAGCAAGTCC 11220 TTGATAGGAC GAAAGATAGG CGCGTGCTTG ACGATAATCA AGTCCACACC CTTTTCAATG 11280 GCCTCTGCCA CTGTCTCTTC ACGAATATCG AGGGCAACCA TGACCCTTTG GATACCCTTG 11340 TCTAAAGTGC CAATTTGCAG ACCACGGCTG TCTCCCTCCA TAGAAAATTC CTGAGGGCAA 11400 AAGGCTTCAT AAGCTTGGAT CACTTCACTT GCTAACATGG AGCACCTCCT TGATAGCTTG 11460 AATCTTATCT ACTAGAACTT GACGTTCTTC CAGATTTTTT TCTGGGATTT GTCCGAGGGC 11520 GAACTCTAGC TTCTCAGCTT CTTTTTGCCA TTTTTGGACA AATACTGGAC TGACTTCTTT 11580

	GGACAAGAAG	GGACCAAAGC	GAACATCACT	GGCTGATAGC	TTCATTTGTC	CTGCTTCCAC	11640
	CACCANAATC	TCATAAAACT	TTCCAGCTTC	TTCTAAGATG	CTTTCTGCTA	CAATCTGGAA	11700
	TCCATGATCC	TGTAGCCAGA	TACGCAAGTC	GTCTTCACGA	TTATTGGGCT	GGAGGATCAA	11760
	ACGCTCTACA	TTAGCTAACT	TCCCCAAACC	ТТСТТСТААА	ATCCTAGCAA	TCAAACGACC	11820
	ACCCATGCCA	GCAATGGTAA	TGACAGACAC	TTGGTCAGTC	TCTTCAAAAG	CTGCCAAGCC	11880
	ATTGGCTAAA	CGGACTTGGA	TTTTCTCCTT	TAGGCCGTGA	GCCTCAACAT	TTTTAACCGC	11940
	AGACTGATAG	GGACCTTCCA	CCACCTCACC	TGCAATAGCG	CTTTTGATTT	GGCCTCTCTC	12000
	AACCAACTCG	ATAGGCAGAT	AAGCATGGTC	ACTTCCCACA	TCTAGTAAAA	TAGCCCCCTG	12060
	TGACACAAAG	GAAGCTACCA	ATTCTAATCT	CTTTGAAATC	ATCTTCTCTC	ACTTTCCAAA	12120
	ACTCTATTAC	СТСТТАТТАТ	ACCACATTTC	AATCTTCAAC	TTCCCAGTAA	TATAAGCACC	12180
	TCTGGCGAAA	GAAGTTTCAA	TGTCCTAAAG	TAATAAGTGA	ATCCAATTGA	AAGATTTTAA	12240
	ACAATTTGCA	AAAATGTCAA	AAAATAAAA	ATAAACAGTT	TATTCAGAAA	ATTCTTGACA	12300
	татаааааса	CATGGTAGAA	TATAATTAGA	AAGTTAGAAA	AAATAAAAGT	TTGACTAAAA	12360
	TTTGTATTTG	AAGGTGGŤGT	TCAGATAAGA	AATTTAGTCA	GACGAACCAC	GAATTTGCTC	12420
	TATGCTTTCT	GGAATTTATC	ATAACAGGAG	GATACAGTCA	TGGAACAAAC	ATTGTTTGAA	12480
	TTAGAACTAC	TTCCAGAGGA	AGATATCATT	GTCACAGGTC	TCCCTAAGTA	TTGTTCTTTT	12540
	ACTTGTTTAA	TTACAGGTCG	CTAGTTATAT	TTTATATAAA	ATAAGTAGCT	TTACTTACGG	12600
	AATAGGCTAG	TGCTGTGTCT	CTAGCCTATT	TTAATAATTA	GGAGTTTGTT	ATGGATTTAT	12660
	TAGAGAAAGA	ATGTTTAAAA	TGTGATAAAA	ATTTCCAACA	GGGTGATATT	TGGAATTACT	12720
	ATTATTTATC	AGATAAGATG	CCTGCACAAG	GGTGGAAAAT	ACACATAAGC	тсссааатаа	12780
	AAGACGCTGT	TTTTTATAAA	AAGATTGTGT	ATAAACTATC	CCAACTAAAT	AATTGTAGCT	12840
	TTAAAGTTGT	TAAAAATTTA	GAGGAATTAA	ааааааттаа	TTCCCCTAGG	GAAATGAGCC	12900
	CTACTGCTAA	САААТТТАТА	ACTCTATATC	CTAAGTCAGA	ATCTGAAGCT	AAGAGTATGA	12960
,	TTTGTAATCT	TACGAATAGA	CTGTCAGAAT	TTAAGGCTCC	АААААТАСТА	TCTGACTATC	13020
	aatgtggaat	GCATTCTCCA	GTTCATTATA	GATATGGGGC	тттттаааа	AAACAAGCTT	13080
•	ATGATGAAAA	АААТААААА	GTCATCTATT	TATTGCTAGA	TGAAAAAAGG	AAGAACTATG -	13140
•	TAGAAGATAA	GAGACAAAAT	TTCCCTAGTC	TTCCTAGCTG	GAAAATGGAT	TTATTTTCAG	13200
	AAGAAG						13206

⁽²⁾ INFORMATION FOR SEQ ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13104 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

CCGGATCCAG CGAAAAATAT GCTCTTTGAT GCTGTAAGTG GTCAAAAAGA TGCTAAAACA 60 GCTGCTAACG ATGCTGTAAC ATTGATCAAA GAAACAATCA AACAAAAATT TGGTGAATAA 120 AAAATTTGTT CAAGGGGGGT GGAAATCAAA TCCCCCTTTG AATTTATCAA TAGAGACACA 180 AATAATTTAG CTTTCTTATA AAAAAGTAGT ATCCTATGAA AGGAGTTAAT ATGGAAAAGC 240 AACAACCTAG TAAAGCAGCC CTGCTGTCTA TCATTCCTGG GTTAGGACAG ATTTACAATA 300 AACAAAAAGC CAAAGGTTTT ATCTTCCTTG GTGTAACCAT CGTATTTGTC CTTTACTTCC 360 TAGCACTTGC AACCCCTGAA TTGAGCAACC TCATCACTCT TGGTGACAAA CCAGGTCGTG 420 ATAATTCCCT CTTTATGCTG ATTCGTGGTG CCTTCCATCT AATCTTTGTA ATCGTTTATG 480 TACTCTTTTA TTTCTCAAAT ATCAAAGATG CACATACGAT TGCAAAACGC ATTAACAATG 540 GAATTCCAGT TCCACGCACA CTCAAAGACA TGATCAAAGG GATTTATGAA AATGGCTTCC 600 CTTACCTCTT GATCATTCCA TCTTATGTTG CCATGACCTT CGCGATTATC TTCCCAGTTA 660 TCGTAACCTT GATGATCGCC TTTACCAACT ACGACTTCCA ACACTTGCCA CCAAACAAGT 720 TGTTGGACTG GGTTGGTTTG ACCAACTTTA CAAACATTTG GAGCTTGAGT ACCTTCCGTT 780 CTGCCTTTGG TTCTGTTCTT TCTTGGACTA TCATTTGGGC TTTGGCAGCT TCTACTTTAC 840 AAATCGTAAT TGGTATCTTC ACAGCTATCA TTGCCAACCA ACCATTTATC AAAGGAAAAC 900 GTATCTTTGG TGTTATTTTC CTTCTTCCTT GGGCTGTCCC AGCCTTCATC ACTATCTTGA 960 CATTCTCAAA CATGTTTAAC GATAGTGTCG GTGCTATCAA CACTCAAGTA TTGCCAATCT 1020 TGGCTAAATT CCTTCCTTTC CTTGATGGAG CTCTTATTCC TTGGAAAACA GACCCAACTT 1080 GGACTAAGAT TGCCTTGATT ATGATGCAAG GTTGGCTCGG ATTCCCATAC ATCTACGTTC 1140 TGACCTTGGG TATCTTGCAA TCTATTCCTA ACGACCTTTA CGAAGCAGCT TATATTGACG 1200 GTGCCAACGC TTGGCAAAAA TTCCGCAACA TCACTTTCCC AATGATTTTG GCTGTTGCGG 1260 CACCTACTTT GATTAGCCAA TACACCTTCA ACTTTAACAA CTTCTCTATC ATGTACCTCT 1320 TCAATGGTGG AGGACCTGGT AGTGTCGGAG GTGGAGCTGG TTCAACCGAT ATCTTGATCT 1380 CATGGATCTA CCGTTTGACA ACAGGTACAT CTCCTCAATA CTCAATGGCG GCAGCTGTTA 1440 CCTTGATTAT CTCTATCATT GTCATCTCAA TCTCTATGAT CGCATTCAAG AAACTACACG 1500

CATTTGATAT GGAGGACGTC TAAGATGAAT AACTCAATTA AACTCAAACG TAGACTGACT	1560
CAAAGCCTTA CTTACCTTTA CCTGATTGGT CTATCAATTG TAATTATCTA TCCACTGTTG	1.000
ATTACCATTA TGTCAGCCTT TAAAGCAGGT AACGTCTCAG CCTTTAAACT AGATACTAAT	1680
ATCGACCTCA ATTTTGATAA CTTTAAAGGC CTCTTCACTG AAACCTTGTA CGGTACTTCG	1740
TACCTCAACA CTTTGATTAT CGCCTTAATT ACCATGGCTG TTCAAACAAG TATCATCGTA	1800
CTTGCTGGTT ATGCTTACAG CCGTTACAAC TTCTTGGCTC GTAAACAAAG TTTGGTCTTC	
TTCTTGATCA TCCAAATGGT GCCAACTATG GCCGCTTTGA CAGCCTTCTT CGTTATGGCG	1860
CTTATGTTGA ACGCCCTTAA CCACAACTGG TTCCTCATCT TCCTCTACGT TGGTGGTGGT	1920
ATCCCGATGA ATGCTTGGCT CATGAAAGGC TACTTCGATA CAGTGCCAAT GTCTTTAGAC	1980
GAATCTGCAA AACTAGACGG TGCAGGACAC TTCCGCCGCT TCTGGCAAAT TGTTCTACCA	2040
CTTGTTCGCC CAATGGTTGC CGTACAAGCT CTCTGGGCCT TCATGGGACC TTTCGGGGAC	2100
TACATCCTCT CTAGTTTCTT GCTTCGTGAG AAAGAATACT TTACTGTTGC CGTAGGTCTC	2160
CAAACCTTCG TTAACAATGC GAAAAACTTG AAGATTGCCT ACTTCTCAGC AGGTGCTATC	2220
CTCATCGCCC TTCCAATCTG TATTCTCTTC TTCTTCCTAC AAAAGAACTT TGTTTCAGGA	2280
CTTACAAGTG GTGGCGACAA GGGATAATTT ATCCCCGCCA CCCTTTTCA TTTTATACTC	2340
TTCGAAAATC TCTTCAAACC ACCTGACCTT TTCGAAAATC TCTTCAAACC ACCTGACCTT TTCGAAAATC TCTTCAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAAATC TCTTCAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAAACC ACCTGACCTT TTCGAAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTT TTCGAAAACC ACCTGACCTACAACCAACAACAACAACAACAACAACAACAACAAC	2400
TTCGAAAATC TCTTCAAACC ACGTCAGCTT TATCTCCAAC CTCAAAGTTG TGCTTTGAGC	2460
AACCTGTGGC TAGTTTGCAC TTTGATTTTC ATTGATTATT AGCAATTGTC ACTGTAAATA	2520
ATATCCTTGT AGCAAGCAAT TTTTCTCCTA GACTTGAAAT AAAGCGCATT TCTCTATATA	2580
ATAATACTCA TATAGAAAAC ACCTTTTAGA AAGATACCTA TGCTTCCATA TCCATTTTCC	2640
TATTTTCAA GTATTTGGGG GGTTCGTAAG CCCCTGTCCA AACGTTTCGA GCTCAACTGG	2700
TTTCAACTTC TCTTTACCAG TATCTTCCTT ATCAGCTTGT CTATGGTACC CATTGCTATC	2760
CAAAACAGCT CCCAGGAGAC CTATCCGCTA GAAACTTTTA TCGATAATGT CTATGAACCT	2820
CTGACAGATA AGGTTGTCCA GGATCTCTCT GAACATGCTA CAATTGTCGA TGGCACATTA	2880
ACTTATACTG GAACAGCTAG TCAAGCCCCT TCTGTTGTGA TTGGTCCAAG TCAAATCAAG	2940
GAATTACCTA AGGACTTGCA ACTGCATTTC GATACAAATG AGCTAGTCAT CAGCAAGGAA	3000
AGCAAGGAAC TGACCCGCAT CTCTTACCGA GCCATTCAGA CTGAGAGTTT CAAAAGCAAA	3060
GACAGCTTGA CCCAAGCAAT TTCTAAAGAC TGGTACCAAC AAAATCGTGT CTATATCAGC	3120
CTCTTCCTAG TTCTCGGTGC GAGCTTCCTC TTTGGTTTGA ATTTCTTTAT CGTCTCTT	
GGAGCTAGCT TTCTCCTTTA TATCACCAAA AGATCACGCC TCTTTTCATT TAATACCTTT	3180
vwinchill	3240

342	
AAAGAGTGCT ACCATTTTAT CTTGAACTGT TTAGGATTGC CGACTCTGAT TACACTTATT	3300
TTGGGATTAT TTGGCCAAAA TATGACAACC CTGATTACTG TACAAAATAT TCTTTTTGTT	3360
CTGTATCTGG TCACTATCTT TTATAAAACA CATTTCCGTG ATCCAAATTA CCATAAATAG	3420
GAGATTTTTA TGCCCGTTAC GATTAAAGAC GTGGCCAAGG CTGCTGGTGT TTCGCCTTCA	3480
ACCGTAACCC GTGTTATTCA AAATAAATCA ACCATTAGCG ACGAAACAAA AAAACGTGTT	3540
CGCAAAGCTA TGAAGGAACT CAACTACCAC CCAAACCTCA ACGCTCGTAG CTTGGTAAGC	3600
AGCTATACTC AGGTTATCGG ATTAGTTCTT CCTGATGACT CAGACGCCTT CTACCAGAAT	3660
CCTTTCTTTC CATCGGTTCT ACGTGGCATC TCTCAAGTCG CATCTGAAAA CCACTATGCC	3720
ATTCAGATAG CAACAGGGAA AGATGAGAAG GAGCGTCTCA ACGCTATTTC ACAAATGGTC	3780
TACGGCAAGC GTGTAGATGG GCTAATTTTT CTCTATGCCC AAGAAGAAGA CCCTCTCGTA	3840
AAACTCGTCG CAGAAGAACA GTTCCCCTTC CTTATCTTAG GTAAATCTCT ATCTCCTTTC	3900
ATCCCACTTG TCGACAACGA CAATGTTCAA GCTGGTTTTG ATGCGACTGA ATATTTCATC	3960
AAAAAAGGCT GCAAACGCAT TGCCTTTATC GGAGGAAGTA AAAAGCTCTT CGTGACCAAA	4020
GACCGTTTAA CAGGCTATGA ACAGGCGCTT AAACATTACA AACTTACCAC TGACAACAAT	4080
CGCATCTACT TTGCCGACGA GTTTCTGGAA GAAAAGGGCT ATAAATTTAG CAAGCGATTA	4140
TTCAAGCACG ATCCACAAAT TGATGCTATC ATCACAACCG ATAGCCTCCT AGCTGAAGGT	4200
GTTTGTAACT ATATTGCCAA ACACCAGCTG GATGTCCCTG TTCTCAGCTT TGACTCGGTT	4260
AATCCCAAGC TCAACTTGGC AGCCTATGTC GATATCAATA GTTTAGAGCT TGGTCGTGTT	4320
TCCCTTGAAA CTATTCTCCA GATTATTAAT GATAATAAAA ACAATAAACA AATTTGTTAC	4380
CGTCAATTGA TCGCCCACAA AATTATCGAA AAATAAGAGA CTGGGCAAAA AGTCGTTAAA	4440
AGCAAAAACG CATACTATCA GGTATTGAAA AAACTTGATA CTATGCGTTT TATTGTGGGA	4500
AGATTTACTT CCTTTTCTAC TGAAATTGAG TCTTTTCCCA AGATCTTTTT ATACTCAATG	4560
AAAATCAAAG TGCAAACTAG GAAGCTAGCC GCAGGTTGCT CAAAACACTG TTTTGAGGTT	4620
GTAGATGAAA CTGACGAAGT CAGTAACCAT ACCTACGGCA AGGTGAAGCT GACGTGGTTT	4680
GAAGAGATTT TCGAAGAGTA TTAATCACTA ATTATCTATC TCAACAAATC TTCCTAGAAT	4740
ATGAACATTT TCCGAGACAG AGACAAAGGA GCTTGGATCC ACTTGTGTCA TAATCTGTTT	4800
AAATTCATTA AACTCTGCAC GTGTAATGAC AGTGATTAAA ACTGCCTTTC TCTCGTGATT	4860
ATAGGTTCCT TCTGCATCGT GGATCATGGT TGCTCCGCGG TGCAATTTTT TATGGATTTT	4920
TTCAATTACC TTCTCTGGAT GATTTGTCAC AATCATGGCC TGCATACGCT TTTGCTTAGT	4980
AAAGACTGCG TCTGTCACAC GGCTAGAGAC AAAGATGGTA ATCATAGAAT AAAGAGCGTA	5040

TTTCCAACC	A AAGGTCAAA	CTGCTATCA	G CATGATAGT	CCATTTACC	A AGAAAGAAAT	5100
ACTACCGAC	A TTCTTACCC	TTTTCTTAC	G AATAGTCAG	G CTGACGATA	r ccgrcccacc	5160
ACTGGAGATA	A TTGTTTCGA	A GAGCAAAAC	C AATCCCCAA	A CCCATAACA	A CACCCCAAA	5220
AAGGGAATT	ATAATGGGAT	CCTCTGTCA	GGTTGCCAC	GGGACAAAC1	r ggataaagaa	5280
GGAACTCATA	A GATACCGTGA	TAAAGGTAAA	A GACGGTGAAC	TTATGGCCA	A TCTGATACCA	5340
AGCTAAGACO	ATCAAAGGGA	AGTTAATGGG	GTAGAAGCTT	AGCGAAATC	GAATATGAAA	5400
ACCAAACCAG	G TGATTACTCA	AGGCAGAGAT	AATCTGTGCC	AGACCTGTTC	CACCACTCGA	5460
ATACACATGO	CCTGGTTGGA	AAAAGAAATT	AACTGCTACT	GCTGATAAA	AACCATAGAC	5520
CAGAGAGGCC	GAAATCTTCT	CATCATACTI	TTCTCGAGAG	ATACTTTGTA	AGACACGTAA	5580
AATTTTTATO	TGATAAGCAA	AGCGGCGCAG	ATAATAGCGC	CACCGCTTAA	TTCGTTTTGT	5640
TTGTTTCATC	TTCTTCTACT	TGTAAGCTGA	GTTCCTCTAG	TTGTTTGAGA	GCGACTGTTG	5700
ATGGAGCTTG	TGTCATTGGG	TCAGTTGCCT	тсттсттстт	AGGAAAGGCA	ATGACTTCAC	5760
GGATATTTTC	TTCTCCAGCA	AGCAACATGA	CAAAACGGTC	AAGCCCGATA	GCCAAACCAC	5820
CGTGTGGTGG	GAAACCATAG	TCCATGGCTT	CAAGAAGGAA	ACCAAACTGG	TCATTGGCTT	5880
CTTCAGTTGA	GAAACCAAGA	GCCTTGAACA	TGCGTTCTTG	AAGGTCTTTT	TGGTTGATAC	5940
GAAGGCTACC	ACCACCAAGC	TCATAACCGT	TCAAGACGAT	ATCGTAAGCA	ATGGCACGAA	6000
CCTTAGCCAA	ATCACCTTCT	AATTCATGAG	CAGTCTCTTC	CTGTGGAAGT	GTGAAAGGAT	6060
GGTGGGCGCT	CATGTAGCGG	CCTTCTTCTT	CAGACCATTC	AAACATCGGC	CAGTCAACCA	6120
CCCAAAGGAA	GTTGAACTTA	TCATTATCAA	TCAAGCCAAG	CTCTTTAGCA	ATACGTCCAC	6180
GAAGGGCACC	CAGTGTTGCA	TTAGCCACTT	CAAGCGTATC	CGCCACAAAG	AGAACCAAGT	6240
CCTTATCTTC	AAGAACAAGC	GCTGTTGTCA	ATTCTTCTTG	GATACCAGTC	AAGAACTTGG	6300
CAACTGGTCC	GTTTAATTCT	CCATCAACCA	CCTTGACCCA	AGCAAGACCT	TTGGCACCAT	6360
ACTGTTTGGC	TACTTCCGTC	ATCTTGTCGA	TGTCTTTACG	TGAATAGTTG	TCCGCAGCTC	6420
CTGTGACCAC	AATCGCTTTT	ACAGCAGGTG	CTTCTGAAAA	GACTTTAAAG	TCTACACCTC	6480
GGACCACTTC	TGTCAAGTCC	TGAAGCAACA	TGTCAAAACG	AGTATCTGGC	TTGTCAGAAC	6540
CGTAAAGAGC	CATAGCATCA	TCGTATTTCA	TACGAGGGAA	TGGTAGCGTT	ACTTCGATGC	6600
CTTTTGTTTC	CTTCATCACG	CGCGCGATCA	AGCTTTCTGT	AATATCTTGG	ATTTCTTGCT	6660
CAGTAAGGAA	GGACGTTTCC	AAGTCGACCT	GAGTAAATTC	AGGCTGGCGG	TCTCCACGCA	6720
AGTCCTCGTC	ACGGAAACAT	TTAACGATTT	GGTAGTAACG	GTCAAAACCA	GCATTCATCA	6780

344	
AGAGCTGTTT CGTGATTTGT GGACTTTGAG GAAGAGCGTA AAAATGCCCC TTATTAACAC	6840
GAGACGGCAC TAAATAATCA CGCGCCCCTT CAGGCGTTGA CTTAGAAAGG AATGGTGTCT	6900
CCACGTCGAT AAACTCCAAC TCATCCAAGT AGTTGCGGAT AGAGTGGGTC ACCTTGGCAC	6960
GAAGTTTAAG ATTTTCCAAC ATTTCTGGAC GACGAAGGTC AAGGTAACGG TAACGCAAAC	7020
GTGTATCGTC ATTTGCCTCA ATGCCATCCT TAATCTCAAA TGGTGTTGTC TTAGCTGTGT	7080
TAAGCACAAT AAGAGCTGTC ACGTTTAACT CAACCGCACC AGTTGGCAAC TTATCATTGG	7140
CTTGTCACGC GCAGCGACCT GACCAGTCAC CTCAATAACA AATTCGCTAC GAAGGCTTTC	7200
AGCTGTTGCC ATAACCTCTG CAGATACTTT TTCAGGGTTG ATAACCAACT GCATGATTCC	7260
TTCACGGTCA CGAAGATCGA TAAAGATCAA ACCACCAAGG TCACGACGAC GGCCAACCCA	7320
TCCTTTCAAG GTTATTTCTT GTCCGATGTG TTCCTCACGA ACACGACCAG CATACATACT	7380
ACGTTTCATT ATTTCTCTCC TCTTTTATTC TGTTACTATT TTACCATAAA AGCGCAGCTC	7440
TTCATGAAAA TCATCAGAAA AGTTTGCCAG TCTTTAAAAG TCAGGTGAAA GCCCTAAAAA	7500
TTAGCGCTAA TACTCTTCGA AAATCTCTTC AAACCACGTC AGCGTCGCCT TACCGTATGT	7560
ATGGTTACTG ACTTCGTCAG TTTCATCTAC AACCTCAAAA CCATGTTTTG AGCTGACTTC	7620
GTCAGTTCTA TCCACAACCT CAAAACAGTG TTTTGAGCAA CCTGCGGCTA GCTTCCTAGT	7680
TTGCTCTTTG ATTTTCATTG AGTATAATAC AAAAATCCGA TGAACTTCAC CGGACTCTTT	7740
TATTTTGAAT TTTTGCCTGC TTTACGCTTT TCAGCGATTT CGGCTGCCTT TCGAGGCAAG	7800
ACAATTTCCG TTATGTAAGC CGTCCCAAAA CGCAGTACAC CTGCAATAGG AGCAAAGACA	7860
ACTGCTAGAT AGTTATAGAA GAAATCGCCT TTGAAGGCAT AAGCTAGCGC TCCAATGATG	7920
AAAAATAGAA CGACTGCCTG AATCACTGCT AATAAAATTA CTCGTTTCAT GTGACCTCCT	7980
GACTCTATTA TAGCATGAGA ATCATCAAAA AGCCGACTAA ATTATTCAAA GCGTGAAGAG	8040
AAATACTGTA GACCAGACCT TTTCTGCTAA TGTAAGCCAA ACCCAAACTA AAACCAAGGC	8100
TAAAATAGAC AAAAAATTGT TGCACATCAC CTGGAAAATG AATCAAGGCA AATAGAAGAC	8160
TAGATACCAG AAGAAAAATC AGGGTTCGTT TACTATTGTC CTGCTTAGGA AAGAGATAGC	3220
GTGCTAACAT CCCTCTAAAA ACAATCTCTT CCGTCAAAGG AGCAAAAATA ACCACAGCAA	8280
AGAATGAGAA AAGTGGTTGA GACAAGGTCA AGTCTGTCGC TATTTGCTGA TTTACTGAAG	8340
GATCATCTGG CAAGAAGAAT TGAACGACCA GAGATAAGAA CCAAACCAAG ACAGGAAGCC	8400
AAATAAATCG ATTAAAGCCG CTCTTCTCAA TATGAACAGG AGCCTTCTGA TACCATTTGT	8460
AAATGCCGTA CACATATACT CCAGCCAAGG CCACATAGAG TAGAGTAACA GCATAGGGTG	8520
AAGCGCCTAA AGCAAGCGAC GCAGTCGCGA GCCCCTGAAT AAAGCCATAG ATAAATAAAA	8580

AGGATAGAAG GGCTAGAAGA ATCCAGCCAA GGTTTTTAAG TAATTTCATA GATAACTCC	
TTATTTGAAA TAACGTTTTA CCATAGGTAA CTGCATCACA TTGATATAAA CATGGATGGC	r 8640
TCCTACAAGC AAGAAACCTA CTAACCAACA TTGATATAAA CATGGATGGC	8700
TCCTACAAGC AAGAAAGCTA GTAACTGAAT CTCTCCTGTC AAGAAAGAAA TGATAATAAG	8760
AAAAATATAT AAGGCTGGTA AGACATATTG GTGTAATTGG AATAAAATTC GAAAACTCTG	8820
TTCCAAATTA GCCTGACGCT CCCCTTCATC ATAAGAATTT ATATAGTTCA AGACATCCTT	8880
TGGTGTAGCG AAAAATTCCA AATCAAACTG ACGAACAATC GCAATGGTTT TAAAAAAGAA	8940
TTTTTGAGCG ACTAAGAATA CCACAAAGAG TAAGAAAGAA AGGAAAAATG TTTGACCCTT	9000
TGTATGCAAT ATAATCACCT CACTTAATGA AATAAAAATA GCCAATGGAA TCGCTACACC	
TGTAATATTA AAAGCAATGG TTCCAAACTC AAGATTCCGA TACATTTGCA CATAATAGGT	9060
TTCATTCAGA TCGTCATCCA TTTCCTCTTG ATACAAAGAA TGAAATTTTC TGCTTTTCTT	9120
TAAGAAATTG AAAGTCAAAA ACATACTAAT GAAACCTATC AGTAAACAAA TAGCTGATAT	9180
CCATGGCATC AAGGCTTTTA CATCTAAAAT AATTTCGTGG GATTCGACAC GTGCCTTAAA	9240
CATCCCTACA AACATCCCCA ACAACCATCA ACAACAACAACAACAACAACAACAACAACAACAACAA	9300
CATCCCTACA AACATGCCCA AGAACCCCCC AAGACAATAG ACATCAAAAA TAACAATCTA	9360
CGTTTCTTTT TCATATTCAT TCTCCTTTTT CACTTGCTAG ATTTTTGGAT TTCTTTTCAA	9420
TCCATTCAAT TACTGGGATG AGAGCAAAGT AGACCCAAAC AAATTGGTCG CTTTGATAGG	9480
GATTAAACCA GCTTAGGTCC ATCCCAATCA GTAGAAATAC GCTGACTAAT AAAGCTATGA	9540
CCACTACATA ATAAATCACT TTATACTTGT TCATCACTCG TCCTCCTCCA AACGAAATAC	9600
CGATTCGACT GTTTCGTTGA AAATTTGAGA TATTTTCAGG GCAATGATAA TGGATGGCT	9660
GTACTCATCC CGTTCTAGTA GGCTAATGGT CTGTCTGGAA ACCCCTGCCA GTTTCGCTAC	9720
GTCGGTTTGA TTGAGACCAT CGCGAGCTCG AAGCTCTTTT AGACGATTTT TTAGTTGCAT	
GTTACACACC TACTCTCCGT CAAATTCAAC GGTTTGGATA TCCTCAATAC GTTGCAACTT	9780
GAATTTTTCT TTTCCCGTAT TATCTACACG TCGTAGCTTT ACCCATTCCT CATCAACATC	9840
CACAACTTCC CAGTTATCTG GCCCAATATA CACTCCCGTT ATAATTGGTT CCTTTCCAAT	9900
CATTTCTTGT AATAATCTCG ACATTTCTGC GTTTCCTTTC TCTTTTCGCT CAAGTCTTTT	9960
GATTTTATTC TCTAGTTTCT TGATTTTTTT AGAATTATTA GAATAAAAGA AAATCATAAA	10020
TAGTATAAAT CCTACTACCC AGATTATTA GAATTATTA GAATAAAAGA AAATCATAAA	10080
TAGTATAAAT CCTAGTACCC ACATTATAAC TCCTTTCTGC TTCCTATTTC TTAACTTGAA	10140
TTCATTGTAA CATATCTTTT TCTTTTTGAC AAGTATAGTT GTCAAAAAAA TTATGATTTT	10200
TGTCATTTTG CAAAAGAAAA AGGTCAGGAG TAGGTTCCTG ACCACTTTAT CTATCATTAA	10260
PACTOTTOTA AAATOTOTTO AAACCACGTO AGCTTCACCT TGCCGTAGGT ATGGTTACTG	10320

346	
ACTTCGTCAG TTTCATCTAC AACCTCAAAA CCATGTTTTG AGCTGACTTC GTCAGTTCTA	10380
TCCACAACCT CAAAACCATG TTTTGAGCTG ACTTCGTCAG TTCTATCCAC AACCTCAAAA	10440
CCATGTTTTG AGCTGACTTC GTCAGTTCTA TCCACAACCT CAAAACAGTG TTTTGAGCAA	10500
CCTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTTATTG AGTATAAAAT CCTAGTTTTT	10560
CAAAGATTTC TGAGAAGTTT TGGCTGATTG TCTCAAGTGA CACTTGCACT TCTTCTCGGG	10620
TTTGGTTGTT CTTGACCGTC ACTTGTCCGC TTTCGACTTC GCTCTCCT AGGGTGATGA	10680
GGGTCTTAGC CGCAAAGACA TCGGCTGACT TGAACTGAGC TTTTAGTTTA CGGTTGAGGT	10740
AATCACGCTC TGCTTTGAAA CCTTGTTGGC GAAGAGCCTG TACCAATTCC AAGGCCTTGA	10800
TATTTGCCCC TTCGCCCAAG ACTGCGATAT AGACATCTAG GGCGTTTTCG ATAGGGAGGG	10860
TCACACCTTG CTTTTCAAGG ATGAGAAGCA GGCGCTCTAC ACCAAGTCCA AAACCAAATC	10920
CAGCAGTTTC AGGGCCTCCA AAGTAAGCAA CCAAACCATC GTAGCGACCA CCCGCACAGA	10980
CGGTCAGGTC ATTGCCCTCA ATCTCTGTGA TAAACTCGAA AATGGTGTGG TTGTAGTAGT	11040
CCAGACCACG CACCATATTG GTATCGATGA TGTAATCTAC TCCAAGATTT TCCAACATCT	11100
GACGCACAGC ATCAAAATGA GCTTGGCTTT CTTCATCAAG AAAGTCCAAG ATAGACGGCG	11160
CATTCTCTAC TGCCACCTTG TCTTCTTTTT CCTTAGAGTC CAAGACACGA AGAGGATTTT	11220
CCTCCAAGCG ACGTTGGCTA TCCTTAGACA AGGTCTCCTT GAGCGGTGTC AAATAGTCAA	11280
TCAAGGCTTG GCGGTAGGCT GCACGGCTCT CAGGATTTCC AAGAGTGTTG AGGTGCAATT	11340
TGACACCTTG AATACCGATT TCCTTCAAAA AATGGGCTGC CATAGCGATT GTTTCCACAT	11400
CGGTAGCTGG ATTGCTAGAG CCAAAACACT CAACACCAAT CTGGTGGAAT TGGCGCAAGC	11460
GCCCTGCCTG TGGACGCTCA TAACGGAACA TAGGTCCCAT GTAGTAGAAC TTGCTTGGCT	11520
TTTGCACTTC TGGGGCGAAA AGTTTATTTT CCACATAGGA ACGGACAACG GGTGCAGTTC	11580
CTTCTGGACG GAGGGTAATA TGACGGTCAC CCTTGTCATA AAAATCGTAC ATTTCCTTGG	11640
TTACGATATC CGTTGTATCT CCGACAGAGC GACTGATAAC CTCGTAATGC TCAAAAATAG	11700
GCGTGCGCAC TTCTGCATAG TTGTAGCGTT TGAAAATCTC ACGGGCAAAG CCCTCAACGT	11760
ACTGCCACTT AGCAGACTCA GCAGGTAAAA TATCCTGCGT TCCTTTTGGT TTTTGTAATT	11820
TCATAGGGAA TCCTCTTAA ACTTAATAGT CTTATTTTAC CATAAATAGA GGGATTAAAA	11880
CAGTAAGAAA AAAATTAGGA TTTAGATATC ATTTTTGAGA TTAAGAATTG TCAAAAAAAT	11940
AGCTAGCAAG GAAAGACCAA CAAATAGCAT CCAAGTCAAC TGTATATTCC ATACGGCTAC	12000
TAGTGAAAAA CAAGCTGTTC CCACAGGTAT GGATAAGGTA AACAATAGAC CTAAAAAATT	12000
ACTAGTACGA GCTAGAACCT CTGGAGCTAG ATTTTTCATG AGCATGGCAC TAATCTTTGG	
· · · · · · · · · · · · · · · · · · ·	12120

TTGAACTTTA CCAGACACAT ACAGAGTAAA GAAGAGAAAT AGCAAACCAA GCACGACTTG	12180
ATTGAATAAA TTAGCCAAAC CAACTAGACT AAGTCCTACG GTCTCCCACA TCATCAATCT	12240
AGGCAAGGAC TGCTTCCCAA AATAATCATT GCCCGTAAGG CTACTGATGA TGACTGATAC	12300
TAAAACACAG AATTGATTGA TAAATAGTGC CTCTGTATAA GAAAAATTCA AGAGAGAATG	12360
GCTCAAAAAG AAGATATTAT AAATTCCACC CAAAGCGCCA CCCAAGGAAT TAATAAGCAA	12420
GACAGCAAAG AGCATAAAAC CAAAGTTTTT CTGTCCACTT TTAAGAAAAA CGAGACGTAA	12480
ATTTCGGTAA ATTGTTAGGA ACTGGTCTTT GATAGAAAGC TTCTCATTTT TTAAGTTTTC	12540
ACCATCAGCA GATGACATTG ACAGGCTCAA TTTGCTTTTT CCTAAAAAGA GGATAGTGGC	12600
TGATACTAGG AAAAAGCAGG CATTGATTCC CGCAACGAGA GAAAAATTGT TGACCGATAG	12660
AGCTAAGAGC CAGACTCCGA AAGCTTGACC ACCAATAGCT GAAATATAGG TGATGAACTG	12720
TGAAAAAGAA TAAGCCTCCA TCAGATCATC TTCAGCTACT TTTTCCTTAA TAAGAGGCAT	12780
ACGCAGGCCA CCTGCAAAAT CACTGATGAT ATCACTAATG ACATTGATCA AACACAGGCT	12840
AGAAAAGGCA AAGAGACTAG CTTGCTGAAC AACTAGGGCT GCTAGAAAAA ATAGAACCGC	12900
CTGAAACAAA CCGCTATAGA CCATCCATTT GACCTTGTCC CTCGTGTAAT CTGCCCGAAT	12960
CCCTGCAAAA ACTGTAAAGA GGGTCGGAAG AATCATGACA ATATTCGCCA TAGCAACAGC	13020
AAAAGATGCT TGTGACAAGG TCGATGCATA GACGATAAAG ACCAGGTTGA AAATCGAAAC	13080
ACCAAAAGCA TTGAAGAAGC GTGG	13104
/31	

(2) INFORMATION FOR SEQ ID NO: 35:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 19250 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

CCGGGCAAAT	AGTTTTGAAC	TTTTCATCAT	ТТТСТССТТТ	AAAACTTTCT	СТССАТТАТА	60
GACTCTTTTC	AGAAAGTTGT	CAACAGAATT	TTCAGAATTT	TTGAAAATTA	TTTTCAAAC	120
AACATCTTTG	САААААТАТ	GAATATCGTA	AGCGCGTCAT	AACAAGGTAT	СТАТСАТТСА	180
TGGAGCTCCT	CCTGTATACT	ATTAGTAAAG	TAAATATTGG	AGGATATTTT	AATGCCACAA	240
CCTATTGTTC	CTGTAGAGAT	TCCACAATCT	CGTCGTTTTG	АТТСТААААА	GAGAAATGAT	300
ATTCTTCTTA	AAATTCGTAT	TGGCAAGCTT	GAAGTAAGTT	TTTTTCAATC	TCTCAATCTC	360

GAAATGATAG AACAGCTTTT GGATAAGGTG TTGCTCTATG ACAATTCATC TATCTAGCC	
AGGGCAGGTC TATCTCGTGT GTGGGAAAAC TGATATGAGA CAAGGAATCG ATTCACTGGG	T 420
TTATCTCGTT AAAACCCACT TTGAATTGGA TCCTTTCTCC GGTCAAATCT TTCTCTTTTC	480
TGGTGGACGT AAAGACCGCT TTAAAGTCCT TTACTGGGAT GGTCAAGGAT TTTGGCTACT	540
ATATAAACGC TTTGAGAACG GCACACTCAC	600
ATATAAACGC TTTGAGAACG GCAGACTGAC TTGGCCCAGT ACAGAAAAGG ATGTCAAAGC TCTCGCACCT GAACAAGTAC ATTGGCCTALT	660
TCTCGCACCT GAACAAGTAG ATTGGCTGAT GAAAGGCTTT TCTATCACTC CAAAAATATA	720
GTAGATTGAA ACTAGAATAG TACACCTCTG CTTCTAAAAC ATTGTTAGAA ATCGATTTTA	780
CTGTCCTGAT CGATTTGTCC TGTTATTATT TCATTTTACT ATAAATCCAT CAGAAAGTCG	840
TGATTTCTAT TGAAATGAGG ACTTTCTTT TATACTCATC TGCTTTCAAA AAGCACTCTA	900
CTCCATCTCC GATTAACGAT GGACTTTATC ACCTCCTTCT CCAGTCCTTG TATAACATCT	960
TGAAGTTGAT TCATGACATC TTCCAAAGTT CGAAAGGCTT TATTCTTAAA TCCACGTTTA	1020
TOTAL TOTAL TOTAL TECHNOLOGIC TECHNOLOGIC ACCOUNT	1080
TATTAGTCGG AATCTTTAAG GTACTTGATT TATGCCATAT ACCOUNT	1140
AAAGATAATC ATCTGGATAA GCTTGTGAAA GCTCCTATTG	1200
TITALCCT CTTGCGAGAG AGACTATTGA CTCAGCCCTT ACTTCATCCC CATTON	
TCTAGAGAGT GATAGCCATC TGACCTACTA TTGGACTTTTT TTGGACTTTTTT	1260
ACAAGGGATT ACGCTTTACC ACCATGATCA GTGTCGAACT GGTTCGAACT	1320
THE THE COTAGGAGAT TATTCTGGCT ATGTTCATTG TGATATGTTC COCCA-	1380
AGTOCTOTAG TTCTGCCTAT GCGATAGCAG TCCAAGCTTT AGGATAGCAG	1440
TOTAL CITGGTAAAC TGCGAACAGC TAGAAGCTTA TCGTCAACTC GAAGAAGCTTA	1500
ATGITGG ATGITGGGCG CATGITGAGAA GGAAGTTTTT TGAAGTCCC CCCAAGAA	1560
THE ATCCTTAGGA GCTAAAGGTT TAGCCTATTG TGATCAGTTA THE TOTAL ACCTTA THE TAGCCTATTG TGATCAGTTA	1620
AAAGAGACTG GGAGGCTTTG CCAGCTGATG AACGGCTACA GAAACGTCAA GAACATCTCC	1680
AACCCCTACT GGAAGACTTC TTTGCTTGGT GCCGTCGTCA GTCAGTTTTA TCGGGTTCAA	1740
AACTAGGAAG GGCAATTGAA TACAGCCTCA AGTATGAAGA AACCTTTAAG ACCATTTAA	1800
AAGACGGACA TCTGGTCCTT TCCAATAATC TAGCTGAACG CGCCATTAAA TCATTGGTTA	1860
TGGGACGGAG TAAAAGAGTC CAGTGGACTC TTTTAGCCTA AGCTCAGTTT AAAAAAACGA	1920
GGGTGGTTAT TTTTAAAAAA GCGAGGGTGG TTTAGGCTTA AGCTCAGTTT AAAAAAACGA	1980
GGGTGGTTAT TTTTAAAAAA GCGAGGGTGG TTATTTCTC AAAGTTTTGA AGGAGCTAAA GCAAGAGCTA TTATTATGAG TTTCTTTGAA	2040
GCAAGAGCTA TTATTATGAG TTTGTTGGAA ACAGCTAAAC GTCATCAATT ATAGTGCGTT	2100
SAATCTATAA CAGTACGCAT CGACTGCTAA AATATTTCTA TAAATCAATT TTCCTTTCCT	2160

AATCGATTT	G TTCATATCTT	ATTACAATCO	TAAATATTA	A GCGAGAAATA	TCTATCCTAT	2220
CTTCTAGAA	r grettecaaa	CGAGGAAACT	CTCGTAAAC	AAGAGGTTT	AGAGGCCTAT	2280
TTACCGTGG	A CTAAAGTTGT	ACAAGAAAA G	TGCAAATAAC	AAATCTCCAG	ATTAGGAACT	2340
ATATATGAGT	TCTCTAGTCT	GGAGATTTT	CAATAGACTI	CGTTATTGGG	CGGTTACTTT	2400
CGAAACTTTC	AAAACTTCAA	AAAACGGATT	TTTATCGCTC	TGAACATCAA	AAAAGAAAGG	2460
ACGAAATTTC	TCCTTTCTCA	AGCTTAGCTT	TTCTTCAACC	CACTACAGTT	GACAAAGAGC	2520
CCTTTATTCT	* ATCAAACATG	AAGCGCAAAA	ACAAGCCAAA	AATCCGATAG	AATGGCTATC	2580
CCTCGACTAT	CAAGTAAGAC	ATTTCCATCA	AATACGTTCA	ATTTTACTCT	TGTTCTACTA	2640
AGAATTAATC	ATCTCGTTTT	GATTTATTAA	AAATATACAA	TTCAGCTTTT	CCTCCAAACT	2700
ATTTTATCCA	CTATCCCTGT	ATAGCTCTGT	ATTATCTTAA	. CAACTTTAGT	AGAGACATTT	2760
TCCTCAACAT	· AATCCGGAAC	CGGTAATCCA	AAATCCTCAT	CTTGTGCCAA	GCTAACAGCA	2820
GTTTCAACTG	CTTGAAGAAG	AGAATTTTCA	TCAATGCCTG	CCAAAATAAA	TCCTGCCTTA	2880
TCTAAGGACT	CAGGACGTTC	TGTACTTGTA	CGAATACATA	CAGCGGGAAA	AGGATAACCT	2940
TGACTAGTAA	AGAAACTACT	TTCTTCCGGT	AAAGTTCCCG	AATCAGATAC	TACAACAAAT	3000
GCATTCATCT	GTAAACAATT	ATAGTCATGG	AATCCTAGTG	GCTCATGCTG	AATCACACGT	3060
PTATCTAGTT	TAAAACCGCT	CTCTTGTAGC	CTTTTCTTTG	ATCTAGGATG	GCAAGAATAT	3120
AAGATTGGCA	TATTATACTT	TTCAGCTAAT	TGATTAATTG	CTGTAAAGAG	AGAAATAAAA	3180
ГТТТТАТСТG	TATCAATATT	TTCCTCACGG	TGAGCTGAAA	GTAAGATATA	ACCTCCTTTT	3240
ГТСААТСССА	AACGTTCATG	GATATCTGAA	GACTCAATAG	CAGATAAATT	TTTATGTAAC	3300
ACTTCTGCCA	TAGGAGAACC	AGTTACATAT	GTGCGCTCTT	TAGGTAAACC	ACACTCATGT	3360
AATACTTAC	GTGCATGTTC	AGAGTATGCT	AAGTTAACAT	CTGAAATAAC	ATCAACAATC	3420
CGACGATTAG	TCTCTTCCGG	TAGGCACTCA	TCTTTACAGC	GATTGCCAGC	CTCCATATGA	3480
AAATTGGAA	TATGTAAACG	CTTGGCAGCA	ATAGCTGATA	AACAAGAATT	TGTATCCCCT	3540
AAATCAATA	AAGCATCTGG	TTTAATTTGA	TTCATCAATT	TGTATGAAGT	АТТААТААТА	3600
TCCCTACAG	TAGCACCAAG	ATCATCTCCA	ACAGCATCCA	TGTATACGTC	CGGAGTGTCT	3660
ACCCTAAAT	TATCAAAGAA	AATACCATTT	AAATTGTAAT	CATAGITTTG	TCCAGTATGT	3720
ССААААТАА	CATCAAAATA	CTTTCGACAT	TTAGTGATAA	CACTACTTAG	ACGTATAATC	3780
CTGGACGTG	TTCCCACAAT	AATCAATAAC	TTAAGTTTGC	CATTATCTTT	AAAGTGAATA	3840
САСТАТААТ	CTGTCTTAAT	TTTCATTTAT	ጥጥርጥር ር ልርጥ ጥ	CTTCAAAAA	እ ርሞኔ ጥርጥር ር እ	3000

TGTCTAGGAT CAAATGACTC ATTAGCCCAG 350	
TGTCTAGGAT CAAATGACTC ATTAGCCCAC ATGACAGTAA TTAGATTTTC TGTATCAGA.	A 3960
AGATTAATAA TATTATGTGC ATAGCCCGGT ATCATATGTA TTGCTTCAAT CTTATCGCCC	2 4020
GACACTTCAA AGTTCAGAAT AGGATACTCT TGACCGTTTT CATCCAGCCC TATCCTACGC	4080
TCTTGTATTA AAGCACGACC AGAAACAACC ATGAAAAATT CCCACTTAGA ATGATGCCAA	4140
TGTTGCCCTT TGGTAATGCC AGGTTTAGAA ATATTAACAG AAAATTGACC CGTATTTTCT	4200
GTTTTTAATA ATTCCGTAAA ACTACCTCGT TCATCTATAT TCATTTTTAG AGGAAACTTA	4260
CIGGTAAATA AGATAGGTAG GTAGAATACA ATTTCTTTTTTT	
CAGGCATAAC TAAACTATCA GGCTGTTTTT TAAATCTTTT	
CTAAGGTTGC ACGATGAGTC GTTGGTACGT AGCAGTACTT	4440
TITIGIAATCC ATCTAGATTA CAACGATGAG GATTTCCTTG	
GTATCAAATC ATCAATATAC AGCAACTCCA ATTCTACACT	4500
GTAAATCGTG AGCTAGATTA TAACAGAAAG TTGCTAGAGA	4560
ACCACTTCCC ATAAAGATTC GGGAAACGGT AAACTAACAC	4620
CATATTCAAA GAAGAGTTCT TCCCCTGCTA GCTTACATTC TCCCCTGCTA	4680
GAGTTTGAAA ATCGGCCTTC TAAACTAGCT TGAGTAGAAC TTGAGAGTAG AACAGGACAA	4740
GTGTTTTCAT ACTTTTCTAA AATCTCCAAT AATCTACTTG AAAAACCGTA ATTTCCCTCC	4800
ATGAATTCAT CAGGATTCTG TGGACGATTG ACACCAGCTA AATGGAATAC GAAATCGGCC	4860
TTCTTACAAT ATTCATCTAA TAAAATCGGA TCTGTATCAC GATCATACTG AAAAATCTCT	4920
CCAATCTCTA AATTAGGACG AGTCCTATCT CGTCCATCTT TCAAAGCTTC CAGAGTACAG	4980
ATAAGATTT TTCCTACAAA TCCTTTCGCT CCTGTGATTA AAATATTTT AATCATGCCC	5040
CCTCCTTATT TTATATGCTG TTTTAATAGT TAACTCTCTC GACAATACAT GATACATTAT	5100
ATATCCTTGA TAATTTTAAT GTATCTTAAA AGATTTTACA TCTCTTCGTC TGCTACCATA	5160
TCACGAATTG CTGTCTGTAT TTCATCONANT CONTRACT TCTCTTCGTC TGCTACCATA	5220
TCACGAATTG CTGTCTGTAT TTCATCTAAT TCTAGCAACT TTCTTTTAAC TTGCTCTACA	5280
TCCATCAAAT CGGTATTATT ACTATTGAAT TCTGTCAACA AATTTCTATT CGTACTACCA	5340
TCTTTGAAAT ACTTATCATA GTTAAGATTA CGATTATCAC TAGGAACTCT ATAAAAATCA	5400
CCCAAATCAA TTGCATTTGC GCACTCTTCG TTAGTTAATA GTGTTTCATA CCTTTTTTCT	5460
CCGTGTCTAA TACCTATAAT CTTAATATCT TGTTCTGAGG CAAAAATTTC TGATACAGCC	5520
THE CANCA CTICAATCGT ACATGCTGGT GCTTTCTGAA CTAGTATATC TOOLS	5580
ATGCAAATAA AACCAAGTCT ACTGCTTCTT CCAATGTCAT CLOCK	5640
GTCATGCTAG GTTCAGTAAT TGTAAGAGCA TTTCCTTGCT TAATTTGCTC AATCCAAAGA	5700

GGAACGACAC AMCCACCOOM AND	
GGAACGACAG ATCCACGGCT ACACAGAACA TTCCCATAGC GAGTCACACA TATCTTTGTA	5760
TGCTCAGGAT TTACCGTCCT GGACTTAGCA ACAGCAATCT TTTCCATCAT AGCCTTGGAT	5820
GTTCCCATAG CATTGACAGG ATAAGCCGCC TTATCTGTAG AAAGACAGAT AACTTGCTTT	5880
ACACCAGCTT CGATAGCCGC AGTGAGGACA TTCTCCGTTC CCAAAATGTT AGTTTTTACC	5940
GCTTCTACAG GGAAAAATTC ACAAGAAGGT ACTTGTTTAA GAGCAGCAGC GTGAAAAACA	6000
TAATCCACAC CATGCATAGC ATTTTTTACC GAAGCTAAGT CACGCACATC TCCAAGGTAA	
AAACGGATTT TCCCAGCCAC TTCTGGTACT TTTACCTGAA ACTCATGACG CATATCATCT	6060
TGTTTCTTTT CATCTCGCGA AAATATACGA ATCTCTGAGA CATCTGTTTC TAAAAAACGC	6120
TTGAGAACCG CATTCCCAAA TGAACCTGTC CCTCCTGTAA TTAGGAGAGT TTTTCCTGTA	6180
AATTGTGACA TATATTACAC TTCTCCTTCT AGTATGTCTG CAATTTTCTT ACAAGCCGTT	6240
CCATCTCCAT ATGGATTTGA AGCTTGACTC ATTGCTTGAT AAACTGAATC ATTTTCTAAT	6300
AATTCTTTAA AATGCCTATA AATATTATTT TCATCAGCAC CTACAAGTTT CAAAGTCCCT	6360
GCTTCAATTC CCTCTGGACG TTCAGTTGTA TCTCTCATAA CCAAAACAGG TTTTCCTAAA	6420
CTTGGAGCCT CTTCCTGAAT ACCAGACTA TOTCTCATAA CCAAAACAGG TTTTCCTAAA	6480
CTTGGAGCCT CTTCCTGAAT ACCACCACTA TCTGTTAAAA TTAAATAACT TCTTGATAAA	6540
AAATTGTGAA AATCTAATAC TTCTAAAGGT TCGATCATCT TGATACGTTC ACAGCCACTT	6600
AGTTCTTCCT CAGCAATTTG GCGAACACGA GGATTCATAT GGATAGGATA	6660
ACATCTGAAT ATTCTTCAAT AATCCTTCTA ATTGCTCTAA ACATATGTCT CATCGGTTCA	6720
CCAAGATTTT CACGACGATG AGCTGTAATT AGAATAAACC TGCTTTCTCC TATCCATTCT	6780
AACTCAGGAT GCGTATAGTC CTCTTGAATT GTAGTTTGTA AAGCATCAAT CGCCGTATTA	6840
CCTGTCACAA ATATGCTCTC TGGAGTTTTT CCTTCTCTTA AAAGATTATC TTTTGAAAGT	6900
TGTGTTGGTG TAAAATGATA CTGAGCCAAA ACCCCAACTG CTTGACGATT AAACTCTTCA	6960
GGATATGGTG AATAGATATC GTAAGTGCGC AAACCAGCTT CAACATGACC AATTGGAATC	7020
TGTAAATAAA AGGCCGCCAG TGAACTAGCG AAGGTCGTAC TTGTATCCCC ATGAACTAAC	7080
ACCAAATCAG GTTTTTCTGA CTCTAAAATA GCCTTCATTC CTTCCAAAAT GCCAATGGTC	7140
ACATCAAATA AAGTTTGTTT ATCTTTCATA ATAGACAAAT CAAAATCGGG AATAATCCCA	7200
AATGTGTCCA AGACCTGATC CAACATTTGA CGGTGTTGGC CCGTAACGCA AACTAATGTT	
TCAATATTCT TACGTGTTCT TAACTCTTTG ACCAAAGGAC ACATCTTGAT GGCTTCTGGA	7260
CGAGTTCCAA ATACTACAAC TACTTTTTC ATATATTTAC TTACTCCTAA CAAATAATGA	7320
ACGGTTCTTA AAATAAATTA GATAACGGCT AATCCATAAC ACCACCTCAG ACATACTTGA	7380
ACCACCTCAG ACATACTTGA	7440

			352			
ACAAATAGCT	AATGTTACTA	AACTAAAATI	* ATCAGACAAC	ATAAATATTO	CTAATCCCAA	7500
AGTTTGGACA	ATCGAAGCTA	ATATAGTTGT	CATTGTAGTT	TCTTTCACTI	TATCAATAGC	7560
TCCTAAGACA	GCCATCCGT	' AAATCATAGA	АТАААААСТА	GCAACAAAAG	CGGGTAATAA	7620
GTACTTAAGA	AAATCTGCTG	AAACGGTATA	TTTTTCACCA	CCAATTATAG	AAAGAATTT G	7680
ATTTGAAAAG	ААТААААСТА	TCAAAACTCC	AAAGATAATA	GGAATAAACA	TAATCCGATT	7740
ААТАСТСТТА	ACCGATTGTA	TATCTTTAGT	ACGTATCATA	TGCGGATATA	AACTATTCGC	7800
TATAGGATTA	TACAATGATT	TTGCTGCTGA	AAGCAGTTGC	ATTGCTATCC	CCCAAAAGGC	7860
TATCTCTTGA	СТТТСТАААТ	AAAAACCCGA	AATGACTGTC	GTAAAGACGC	САААААТАСТ	7920
AGTTGCAAAA	TTGGATAAAA	AATAAATAGA	GGATTCCTTT	AAATCTTTAA	CCCAAACAGA	7980
CAGATAAGAA	AATGATAATT	TAATTCCATA	ATAATGAAGG	AATCTATAAG	AAACTACTGC	8040
AGCAACTAAA	TTCCCAATTC	CTTCCAATAT	AGGAATCCAT	AAAATAGAAG	AATCATCTTT	8100
FACTACAATA	AATGTCAAAA	TTGTAATGAT	AGTTTTAGAA	ATAATATAAG	GAATTGCAAC	8160
I GCATGCATC	TTTTCAATTC	CACGAAATAA	AAAGTCAAAG	АТАААААТАТ	TGGTCACTGT	8220
AGCTAACAAA	TAAAAAACTG	AAAAAAGAAT	ATTCTCTCTC	ATTATTGGGA	TTTGCCACAT	8280
CAATATGGTG	TAAATTAGAA	TCGAAATGAT	AGATAAAAAT	ATTTTTTCAA	CTAGAGTATC	8340
CCAACTATC	CTTCCAATCT	TTGAGGGAGT	AGTACAAGCA	TTTACAATAT	TTTTTGTAGC	8400
GATATCATG	AAACCAAAAT	CAATCACCAG	TTGAACATAA	GCTATTAACG	СТТТААСАТА	8460
ATAACCATT	CCATACGCGT	CTAGCGAAAG	CACCCTTGTC	AAATACGGGA	GTGTTAATAA	8520
AGGAAATAGT	AATTTAACAA	TATTCAGAAT	ATAGAGAGAA	CTTGTATTTT	TTATAAATGA	8580
ATTCTATCA	ACTTTCACGA	ACTAGTCCTT	CCAAAAAAAG	ATCTAAATAG	TCCAAACTAC	8640
TCTCGCTTT	CAACACCAAT	TCTGAAGGTA	TTGTTATCGG	TTTTAGATGA	AAAGTTTCAA	8700
TTTCTTTAC	AATACTATTA	ACACTTGAAT	CAAATAAAGA	TTCACAACGT	TGTAACTCTC	8760
AATTGCTCC	ATAATAACGT	GCTGTTTTTT	CTGGATGGCA	TGCAATGGCA	ATCACAGATT	8820
'ATTAAAACA	TGTTGCCACT	ACCCCAACAT	GTAATTTACA	AGTTAAAACC	ACATCTACCA	8880
TTTCAACAA	TGATGTCATT	TCTGCAGGAG	AATGATACTT	Gaattgaaaa	CAATCCTCAG	8940
ТСТААСТАА	TTTTCTAAAT	TCCTGATAAT	AAGCATCTTC	ATAAGGTAGA	ATGGAATCCG	9000
AGTTACTAC	AACATAATAG	TTAGGATTGT	TTTCTAGAAA	AAGACTAATT	GATTCCGCAA	9060
TTTTTCAAG	AGCTTTTTTG	GAATGATTAT	AGTGAACAAG	AATTATCTTC	TTATCTTTAG	9120
TTCTCTTTT	CAATTGACAC	AGCTGCTCTG	TTTTTTCTTC	TCTTAATTTA	CTTGAAATAA	9180
TAAATCAAA	GGTTTCATGC	ACTGGAGCCG	AAGGCGACAA	ልጥርርጥጥ ር ስ ስ ስ	CAATCAAATC	0240

ATTCTCGAT	C ACGAACTGT/	ATAAATTGA	G CATGATTAAT	AATTCTCTT	ТАТАССАТАЛТ	9300
TCATCAAAG	ATCGTTATT!	GCCCTGCA	CAATACCTA	ТАСТССТАТА	GCCTTTTTAA	9360
AATATGAAG	CCAAATTCCC	AAAGGTAAA	ATCGTTTAA!	TTGGATTAAA	TTATCACGAA	9420
AACGTGCAT	T ATGCCCTTCC	CCAAAATAT	CTCCCGGGAT	АТАСААААТА	GCATCTGCTT	9480
GTTTTTTAG	PAAAACTTTGT	TTTTGGCGA	ATTCTTTCAA	GTACATTTGA	AAGAAATCTG	9540
ATGGATTATA	AAAAGAAACT	TCATATCCTT	TAGATTCTAA	TAAATCATAG	ACAATCTCAC	9600
CGTAAAGATA	ATCACCGTAA	TTACTTGAAC	CATAATCCGT	TGCACCATGT	AACATAATTT	9660
TTTTCACCAC	ТАТТТТТСА	ACCTCCTAAA	AATAAATATC	ATAATCAAAC	TATACATAAT	9720
AGGACGATAA	ACATCTATTG	AACTACTTCT	CACTAAAAGC	AATAGTTGAG	AAATTACCGA	9780
AAAATAAATA	ACTTTTGAGA	TTTTACTTGT	TTGAAAAGCT	CTGAAATTTA	ATCGCCATCC	9840
ACTAAATATI	CCCAAAACAA	AACTCCAAAA	AACACCACCA	TAGTAACCAA	AGTTCCAAAA	9900
TAATTCTTCC	ACAAAAGAAG	AGCCTACAGG	TAACCCCAAA	AATTTATTAA	TAACAACCGT	9960
CGCTGATGCT	ТТАТСААААА	AATCACCAAC	TAACCATCCA	ATAGGAAAAA	TTGATAGGAT	10020
AGTGCGTAGA	AATGTCATCC	CATATTCATA	TGGAATGCTA	CTAGGCACAA	CAGTTACAGC	10080
AGAAGCTACT	GTTAGGCTGG	TCAGTCCCGA	CTCTGAAAAT	ACTTCCCCTA	GTATATTCTT	10140
TACAAAATCT	AATGAAGAAA	AGGAATCAAA	TAAGTATATA	CCTATAGTAT	TCAAGTCGAA	10200
ACGGTGCCCC	СТААТААСАА	CTAATACATT	TAATAGAAAT	ACAGTTACTA	TTAAAAATAC	10260
AAGTACTCTT	TTCTTCGAAA	AAGTAATCCC	TAAAGATTGT	GTGTATACTA	AAACCAACGC	10320
CAAGATTGAA	AACACCTGGA	TTTTACGACT	TCCTGTTAGG	ATCATTATCA	AAATTAGGTA	10380
AAACAACATT	ACCCAAAAAA	TAGTACGCTT	TATAACTCGG	GACAGCTTAT	СТБААТААА	10440
CAAGGAGAAC	ACACCAGGAA	GCATAAGTAC	TCCTAAATCA	TCTATTATTC	CTGAACTAGC	. 10500
TGCCTCTGAA	TATGCTGAAT	AGCTATTCGC	CGCTCTAACT	GCTAGTACTG	TTTTAGAATC	10560
AGTTATTACC	CTAGAAATAA	AGCCCACTCC	TGTTAAAATC	CTACCCGCAT	ТСТАСААААТ	10620
TTTCTCTTCA	TTTTCCTGAT	AATTTTGTAC	TTCTGAATGA	TAATGTACCT	TTCCATCACT	10680
АТААААААТ	AAATAGCCTA	CAGAATAACA	АААСААААТС	САААТТАТАА	AAATATATGA	10740
ATGAAATAAT	TCTTCATTAT	TATAGAAGTT	ACTAGGGCTC	CACAGCAGAG	TTGTTTGAAA	10800
CCCCATATAC	TCATTGAAAA	ттаатссааа	САТАААААА	TAAGATAAAA	TCAGATACCA	10860
PACAGAAAA	TCATATATAC	TAACTTTTTG	AAAATAAAA	CCAGTAATTT	GAAAAATA AT	10920
PAGAAAGCAA	ACCCATATAA	ATATAGACGG	ААСАТААТТА	GATATAAGAA	AACCATTATT	10980

_	_	_
- 3	5	4

CCAATTATCG AGAGTCCAGA ACAAGTAACA GAAAGCAAAT ATAAAACTTA ATGTCACTAG	
TGTCACTCTA CAAATATACT TTGTCTGCAT CTATATCTCC TTTATTACAC ACATTCTTG	1104
ATAACGATTC AATAATTTAC TAGCTTGATA ACAAATATCA TAGAGTCCAT CTGTCATACT	1110
GTTATTTATT TCAAAACGAT TGCATTCCTC AGATGTTAAA GACAGTACTT TATCTTTCCA	11160
TAGCAACACA GACTCTTCCT TCATACCTAA GACAGTACTT TATCTTTCCA	11220
TAGCAACACA GACTCTTCGT TGATAGGTAA GTAACTAATG TTTTTGGTCA CATCTACTTC	11280
TTGCGTCACT GTATCTGACG ATAAAATTTG TAATCCCGAT GCCTGAGCCT CTACTAGAGA	11340
AACAGGCAAC CCCTCATATT TAGACGGAAG CAAAAAAACA TCCATCGCAG ATAATAAATC	11400
AGAAATATCA GTCCTTCTCC CTAAAAATAG CACATATGGG GTCAGATTTA GTTCTAAAGC	11460
TTTCTGTTT AATTTCTGCT CATCCTCACC ATTACCAACT AGGAGTAAAA TAACATTTGG	11520
TTTGATTAAA ATGAGTTCTT TTAAAACGTT AAATAAATAA CTTTGGTTTT TTTGATCTGA	11580
TAGGCGAGCT ATATTTCCTA ATACGAACTT ATTTGACACA TCTAATTCTC TACGACATTT	11640
TTCTCTAACA TCTGACAAAA ATTGATACTT TTTCAAATCA ATTGCATTAA AAATAATTTC	11700
AATTTTTCCG TCTTTATACG CTTTCTCTCC ATATAACCAC TTAGCCGAAT CTTCCCCACA	11760
TGCAAACCAA TGAGTTGCTA AGATTTTTAC CAAAATTGTT ACTAATTTAC GCAATACTTT	
TTGAAAACTG TTTTCTGTTA CATAAGCCAT ATGACTATGA ATAATTCTAA TTTTACAACC	11820
AATTATTTTA GATAAGATCA GACCAATTGC AGATTTATAG CCATGGCAAT GAACTATATC	11880
ATAATCTCCT TTCTTTATTA TTCTAGCAAG AGAGAGAAAC TGATGTAGAG GCTTTTTCCT	11940
TAATAGAGGC ACATGATAAA CCTTTGCACC CAATTCTTC ATTTTATCCT CTAAAAATCC	12000
TTGTTCTTTT CCAGGCACAA TAAAATCAAA TTGAATTTTT TTTCTATCAA TGTGAGAATA	12060
ATAGTTGAAT AGAAAACTTT CTACTCCACC ACTATCTAGT GTTGTAAATA GATGTAATAC	12120
TTTAATCATT CTTCTTCCTT AAGCTTAAGA TTCGCTTCTC TAATTCTATT TCTGTTTTTT	12180
GTTTTTCTAA ACTAATICTA TOCATCA	12240
GTTTTTCTAA ACTAATTCTG TCCATGAAGT TATCACAATT CTTAATTAGC TGTTTCCTGT	12300
CAAGGTTTTG AATATACAAA GCCAAACAAT CTTTTTCCGA TTCATCCTTC ATAGGTAAAA	12360
CGAAACCAAA ACCATTCTCT ATTGACACTT TTTCCATATA AGTATCTTCA CAAACTAAAA	12420
TAGGTTTATA CAACAATGCA GCAAAGTAGA GTTTATTAGA CAAAGCATAG TCTAGTAAGG	12480
GAGTGTGATT CCCGTATAAA TTCAAAACAA CATCTGTATT CTTATAAAAA GACATGGTAT	12540
CTTTAGGCTG GAATGTGTCC ACCAAGTTAA CATTGCTGAT ATTTTTTTCT TGACAAAATT	12600
CCCTTAATTC TCCTGCATTA GTACCTATAA AATTCAACTG AAATCGACTG TCATTTGCAA	12660
AAAAATCGAT TATTTTTTTA TTTTGTTCTT GAAAACGAAT TAAACCAATG TAGGAAAGTT	12720
GAATTGGAAA CGTACTATTA TTTTTTAACT GCTTTACCTC GTTTAATTCT ATCATATTGG	12720

CM) COMPA	
GTAGGTTATG GGTAGTAAAA TACTCTCCCA TTGGTAAAAA AAATTTATAG CCGTCTGAAC	12840
AAACGATATT CATTAAAGAA TTTTTCACCA ATTGTTTCTG AACCAAACGA TAAACCAAAA	12900
ATTTTCATA ACTGTAATCA CGAATATCAT AAATATATCT ATTTTTAAAT GAAAAGAGAA	12960
GAAAATCTAC TAAAATGAAA GACACAATAC TATGTAACGG CAATATCATA TCATAATCAT	13020
TTTCTTTTAG CTTCTTTTTA ATTTCTTTTC TGAATTTTAC ATAACCTAAT ATCTTACTTA	13080
ATTTTCCTTT ACCAGAAAAA GAAATACGAT AGTAGTTTTG TTTTGTAATA ATCTCGTTAA	13140
TATTCTTATC CCAATATATA ACATCGTAAC TAATAGACAG TTTCTTCAAT AATTCTTTAT	13200
AAAAATTGAA GTAAGGAGTT AGATATATAT TATCAGATAG TATAAACAGT ACTCTCATTA	13260
AATTATTCTT TCTTACTTTC CCTCTCTAAA CATGTCTCCA GTTCGAGCAT AAACTGCTCT	13320
TTTGAAAAGT GATTTTCATA GTAACAACGA GCTTTCTTTC CTAACTCTCT TTGTCTCTTA	13380
ATAGATAACA TACTAAATTT ACAAATATTT TTTGCCAATT GTTTTACATC TCGTTCGGGA	13440
CTAACATATC CACAATTTGC TTCTTCTACA ATTATTTTAG CATCTCCTGA AATTGCACCT	13500
ATAATTGGTT TGCCTGCCGC CATATAAGAK TGTACCTTCC CAGGTATAGT ACGAGAAACT	13560
ATCGAGTCTC CTATTAAAGA AACTAACATA GCATCTGATT TTTTATAGAA GGATGGCATT	13620
TCCTCCAAAG AACGTCTTCC ATAGAAGGAA ATATTCTTTA ACTCCAATTC ATGAGCTAAT	13680
GCTTTCATGC TTAACAATTC CGTACCATCT CCAACAAAAT GAAAATGAAT TTTCTTGGGT	13740
AAATTGGTAT TCTTCTCTAT CAAACTGGCA GCTTTCAAAA TAGTTTCCAA ATTTTGTGCT	13800
TTGCCAATAT TACCAGCAAA AGTTAGGTCA ACACTTTCTT TATTAACTAT AGATTCATCA	13860
GGGATAAAAA GATCTTCTGC ATATTGTGGC AAATATGTAA TCTTTTGTTC GGATATGTCA	13920
AATTGCTTCA CAAAATAATT TTTAAATGAT GGACTAGTGA CAAATATATA ATCACTAGCT	13920
CGGTAAACTT TTTTTGAGAT AAATTTAAAC AGCTTGAAAA TCAAGCCATC TTGTTTCACT	
CCACCTACGG TTAAACTATC TGGCCAAACA TCCATACAAT ATAGAAACAT CGGTTTCTTA	14040
TATTTTTTT TATAAGCCAT ACCAGCCCAT GCCATCATAA CTGGAGACAA TTGGTTAACG	14100
AATACACAGT CAAAATTCGA TCCATCTTTC GTTTTATACC TCCCCAATAA AACTCCTAAA	14160
GTAGAACTAA TTGCAAAGCT AAAATAATTC AACAATCGAA ATACAACACT TTTTTTTCTA	14220
GGGATTGTAT AAGAACGATA TATCGTAACA CCTTCTATAA TCTCACGTCT TTTTTTTATTA	14280
TGACGATAAT CTGCATATAT CTTCCCTTCA GGGTAATTAG GAATCCCAGC CAAAACAGAG	14340
ACTICATGCC CITTICGAAC TAAATCITCA CAAATATCIG ACAACCIGAA IGGIICITGGC	14400
TTATAATGTT GGCAAACAAA TAGTATTTTC ATTGTCCAAT TTAACTTTCT TTCTTACCAC	14460
· · · · · · · · · · · · · · · · · · ·	14520

356 TACCCTCTAC AATACCTTTT CGTTTCAGTA CGTAAGGTAT TGTCTTAACT ATACATCTAA 14580 TATCCATTAT CAAAGACAGA TGTTTAACAT AGTAGCCATC TAACTCCGTC TTCATCTCAA 14640 CAGACAAAGT ATCACGCCCG TTAATTTGTG CCCATCCAGT TAACCCTGGC AAGATATCAT 14700 TTGCTCCATA CTTATCTCTC TCTGCAATCA AATCTAGTTC ATTTATACCC GCTGGTCTAG 14760 GACCTACAAT ACTCATATTA CCAACAAGAA TATTAAACAA TTGTGGTAGT TCATCCAAAG 14820 ATGTTTTCG CAAGAAAGCC CCTACTTTG TAATCYATTG CTCTGGATTA TATAAGTTTC 14880 GAGGCGCCAC ATTTTTAGGT GCATCTATTT TCATAGACCT AAATTTCAAA ATATAGAAGT 14940 ATTCTTTATG AATACCAAAG CGTTTTTGCT TAAATATAAC CGGACCTTCT GAATCAAGTT 15000 TAATCGCAAT TGCAATTATC ATAAAAACCG GACACAATAT TATTATCCCT ATTAAAGATA 15060 ATAATATATC ACCTAATCGT TTTATTATAC CGTACATAAA CAACCTCCAA CTATAAATTC 15120 TATTTCCATT TTTCATTCTA TTTCCATTTG ACAAATTAAA TCAGGCAGTA CATGCAACTA 15180 CAGAAACTCA ATATATATT GGTCACTCAA TGATTTTCAG AAATATAATT CTTTTATCCT 15240 CTACGTCAGA TAAAACTTTT CTCCATCTAA ACAAAATTTA TTTGTTTCAG TAATATATGA 15300 GTTCTCAATA ATGAATTAGA AGGTCCAGTT CAATTATTCT TCCAAATAGA CCGAATATTA 15360 TTTGAAGACA TATCGGTTTC TGAAATTGCA ATCAGTACAT AAGCTAATAA ACTGATAAGT 15420 ATGCTCTGTA AGAATGCCAG AGTTATATTG TAGTCCCCTT CCATACTATA TTCATTTTAT 15480 TTTTTACCAT AATTTCCATA GGAACCGTAA ACTCCATACT TATTAACCGA GATATCCAAT 15540 TTATTTAAAA CAACTCCTAG GAACAGTTTC CCTGTTTGTT TTAATTGTTG TTTCGCTTTT 15600 TGGATATCAC GTTTATTCGC CTCACCTGTT GCTGTTACCA AGATGGACGC ATCACACTTT 15660 TGAGTGATAA TTGCCGCATC AATAACAATT CCAATAGGCG GTGTATCAAT AATGATATAA 15720 TCAAAATATT TACGCAATGT TTCAATCATA TCATTAAAAT TTTTACTTTG TAACAAGGCT 15780 GTAGGGTTTG GTGATACAGA TCCCGATTGA ACTACAAATA AATTTTCAAT ATTTGTATCA 15840 CATAAACCGT GAGATAAATC AGCTGTCCCA GATAAAAATT CTGTTAGCCC TGTAATTTTT 15900 TCACGAGATT TAAAAACTCC TAACATAACT GAATTTCGAG TATCGCCATC GATCAAAAGA 15960 GTTTTATAGC CTGCACGCGC AAACGACCAT GCTATATTTA TGGAAGTAGT TGTTTTCCT 16020 TCCCCAGGGT TAACAGAAGT AACGGAAATT ACTTTTAGTT TATCTCCGCT CAACTGTATA 16080 TTTGTACACA AGGCATTGTA ATATTCTTCT GCCTTCTTAA TGAACTCCAG TTTTTTTTGT 16140 GCTATTTCTA ATGTCGGCAT CCTTCTCTC TATTTCAACT TACCCAAGTT TGGCACAACT 16200 CCCAAAAGTG TCATCTGCAA TGTATTTTCG ATATCTTCCG GACGTTTCAC ACGAGTATCC 16260 AAAAGTTCAA GATGAAGAAC TATAACACTA GTTCCAATCA CCCCTGCCAA AAAACCAATT 16320

AGTGTATTGC GTTTAATATT TGGCGAAGAC GGGGATATCG CCGGCCTTGC CTCCTCCAGT	
GTTGTCACGT CAGAAACACG AGTAATACTG ATAATTTTTT GAGCAGCTAC TTCTCTCAAA	16380
GAGTTAGCGA TACCCCTTYCC COCONTOLOGY	16440
GAGTTAGCGA TACGGCTTGC CTCTTCAGGA ACTCGATCAT TAACTGAAAT AGAGACAATA	16500
CGGGTATCAA CTGGTACTGT CACTTTAATT TTATTAGCCA AACCTTTTGG CGTCAAATCT	16560
AGTTTCAAAT CAGAAACAAC TTCCTCCAAA ACATCCTGCG AAAGGATAAT CTCACGGTAG	16620
TCTTTTACCA GATAAGTTCC TGCCTGCAAA TCCTGATTTG TCAACCCCGG CTTGTCTCCT	16680
TGATTGCGAT TCACTACGTA AATTCGCGTG GTACTCGTAT ATTCTGGCTT AACAATAAAA	16740
GTGCTATATG CAAAAGCCCC CGCACCTGTC ACAAGTGCCA CTATTAAAAT CATTAGCTTG	16/40
CGTTTCCACA AGCTTTTAAC TAATTGAAAT ACATCGATTT CTATCGTATT TTGTTCTTTC	
ATCATTTCTC CTAAATTAGT TGATCCATTA CAATTTTTCG AGGATTGTCT ATAAAAAGTT	16860
CCTGAGCCTT CGCTTCTCCG TATTTTTGGG TAACAAGGTC ATATGCTTCT GCCATATGAG	16920
GAGGTCTACC GTCTAGATTC TCCAMATGAG TTGCATATGAG	16980
GAGGTCTACC GTCTAGATTG TGCATATCAC TTGCAATGAC ATGAACCAAA TCCTGCTCTA	17040
AAAAATACTG AGCTCTTTTT TTCATGAATT TATAACGTTC GCCAAAAAGT TTGGGTTTGA	17100
GGACATGTGA ACTATTTACT TGCGTGTAAC AGCCCATATC GATCAGTTCT CGAACGCGTT	17160
TTTCATTATT TTCAAGAGCA TCATAGCGCT CAATGTGGGC AATGACTGGA GTAATTCCCA	17220
ACATCAAGAT CTTGCTCAAG GCGCTATGAA TATCGCGATA AGGAGTGTTC ATACTAAACT	17280
CTATCAAGGC ATAACGACTA TCATTGAGGG TCGGAATCCG CTTTTTTTCC AGCTTATCCA	17340
GAACATCTGG TGTGTAATAA ATTTCAGCCC CGTAAGCAAT GACCAAGTCA CTCGCCACTT	17400
CCTTAGCTAT TTCCCGAACC TGAAGAAAGT TTTCTGCTAT CTTCTCTTCC GGAGTTTCAA	
ACATGCCCTT GCGACGGTGA GAGGTAGAAA CAATGGTTCG CACCCCCTGT CTGTAGGATT	17460
CTGCCAAGAG AGCCTTGCTT TCCTCTTTG ACTTGGGACC GTCATCTACA TCAAAAACGA	17520
TATGCGAATG GATGTCTATC ATTTCATCTA CCCTCCATCA CATCCTGTAT AGCTGCTTTA	17580
ACTACAGCTA AACTACTATC ATCTATTTCC ATTCTATTTCC ATCTATTCATTC	17640
ACTACAGCTA AACTACTATC ATCTATTTCC ATCACATAGA GGTTACTGTC TGGCATTGCA	17700
TAAGAAGGAA GATCCATCCG ACCTGTCCCT TTTAAATCTT GAGAATTTAC TTTATAATTC	17760
CCTCCACTT CTAACTGAGC ATTGACCAAA TTTATCATGG TCTCAAGTGG CATATTTGTT	17820
TGGATAGAAT CTTGCAAGCT ATTAATGATC GTACTATAAT TTTTCAGCAC TTCGGTTGAC	17880
GTTAATTTTT GAAGGATAGC CACAATCACC TTTTGTTGAT GGCGCCCGCG GTCACGATCG	17940
CCATCTGCTA GGGAGTAGCG CTCACGAACA AAACCGAGAG CCTGTTCTGA ATCAAGATGA	18000
ACATTGCCTG CAGGGTAATA CTTTCCATTC GTATGGGCAG TAAATTCTTG ATCATTATAA	
TO THE STATE OF TH	18060

			358			
ACATCAATTO	CACCCAACAA	ATCAATCAAT		AAGTGAAGTT	CAATCGCACA	18120
TAGTAATTGA	TATCCACTCC	ATAGAGATTT	TCTAAGGTGT	GAATGGACGA	ATCAACTCCA	18180
TAAATGCCCC	CATGAGTCAA	TTTATCTTTT	TGATTATTTC	CACCATCTGC	GATTGGTACA	18240
TAGGCATCAC	GTGGCGTTGT	GGTCAAGAGG	ATTTTCTTGG	TATCTCGATT	GACAGTCATC	18300
AGGATGTTGA	CATCTGATCG	CGACACCGAA	CTAATAGGAC	CATAGGTGTC	AATTCCACTA	18360
ACATAGATAT	TGAAAGACTG	ACTCTTAGAC	GTCTTAGGAG	CTTCTACTTT	TTTAGTGAAT	18420
CCCTTAGTAT	AAATCTTTTT	TATCTTCGAT	GCGTAGTCTG	GATACTCTGA	CTCGATGATG	18480
TTTTCAAAGA	CACTATTTAG	GACAATGGCC	TTAGTCTCCC	CTGCAATCAA	ACTCTTGTAA	18540
GCTGCCAAGT	AAGACGAACT	CTGGTTGACC	GTCAAATCGG	TATTCTGACT	TGACTTGATA	18600
TCAGCTAGTA	ATTTCTGAAT	ATTTTCATTA	TTAGTCCCAG	TCGGTGCTGT	CACACTCGTC	18660
AGTTGCGTAA	CATTTTCGAT	CTCACTATCT	GCTAAAACAG	CGACACTGAT	TGAATATTCT	18720
GAGTAATTAG	AAGTCGCATT	TAAACGATTG	GTCAGTCCAA	CAAACTGCTG	TACTGCAAAG	18780
AGCGACACAG	AGCTGACAAG	GATAGAGAAC	ACCAACAGAA	AAATAGTAAA	CTTTTCAGCT	18840
TTTTTATAGA	TAATCAAGAG	TAGCCCTACC	AAGGCAACTA	GTAGGACTAA	CGCAGTTACC	18900
ACTAGATTAA	GATATCTAAA	AGCAAGGATA	TTGTACTTAA	AGATTAAGAA	СААТААААА	18960
CAAACTAACA	TAAATAAAT	AGTCAGCAAA	ACTATATTAA	CACTTCGCTT	CACTTTCTGT	19020
GAACGTGATT	TTTTAAAACG	TCTACTCATG	ATTAATACCT	ATACATTGAA	CATTATACGA	19080
TTATATCACT	TTTTTACGGT	AATGTCTACA	CCTTTATTTT	TACTATCTGC	ATCTTTAAGT	19140
ATCTTAGTAG	ACTTCCCGCG	АААСАААААТ	АТАСТААААТ	GAAATAAGAA	CAGAACAAAT	19200
CGTTCAGGAC	AGTCAAATCG	ATTTCTAACA	ATGTTTTAGA	AGCAGAGGTG		19250
(2) INFORM	ATION FOR SE	Q ID NO: 36	;:			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 21706 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

AAAGTTGAAA	GACTGCTAGC	TGTTTTTGAT	ACCAATCGTT	TCCAACTACA	GAGCAAACAG	60
TATACAAAGT	TTGTTTTTGG	ATGTAAGCTT	CTTGATGGAC	AATTCCAAGA	AAATCAAGAA	120
ATTGCTGACC	TTCAATTTT	TGCCATTGAC	CAACTGCCGA	ACTTATCTGA	AAAACGCATT	180
ACCAAGGAGC	AAATAGAGCT	TCTTTGGCAG	GTTTATCAAG	GTCATAGGGG	GCAATATCTT	240

GACTARCARC	
GACTAAGAAG ATGATTATCG TATTTCTAAA TCCATTTTTA ACAACTAGCA TGGTATAATA	300
ATATGCAGGA AAATTTTGAA TTATGAGGAA GACTAGATGA ATTTATGGGA TATTTTCTTT	360
ACGACTCAGG CAACCGAGCC GCCCAAATTT GACCTTTTTT GGTATGTTAG CCTATTTACG	420
CTCTTAGCCT TAACCTTTTA TACAGCCCAT CGCTATCGTG AAAAGAAGGT TTACCAACGA	480
TTTTCCAAA TCTTGCAGAC TGTTCAGTTA ATCCTTCTTT ATGGTTGGTA CTGGGTCAAT	540
CATATGCCAC TGTCAGAAAG CCTACCCTTT TACCATTGCC GTATGGCTAT GTTTGTGGTA	600
CTCTTGCTTC CTGGTCAATC CAAATATAAA CAATACTTTG CATTATTGGG AACATTTGGG	660
ACATTAGCAG CCTTTGTTTA TCCAGTGCCA GATGCTTACC CTTTTCCACA TATCACCATT	720
CTATCCTTTA TCTTTGGTCA TTTAGCACTC TTGGGGAACT CTCTAGTTTA TCTATTGAGA	
CAGTATAATG CGCGATTGCT GGATGTGAAG GGAATTTTTC TCATGACCTT TGCCCTAAAT	780
GCCTTGATTT TTGTGGTCAA TTTGGTGACA GGTGGCGATT ACGGATTTTT GACAAAACCG	840
CCATTGGTTG GGGATCACGG TCTAGTAGCT AATTATTTAC TTGTTTCAAT TGTGCTGGTA	900
GCTACTATCA GTTTGACTAA GAAAATCTTA GAATTCTTTT TAGCTCAAGA AGCAGAAAAA	960
ATGATTGCAA AGGAAGCTTA ACACAGAGCT TTCTTTTTTG CTCTTAGAGA GTTTTTACAA	1020
GCAGCTTATA AAATAAGAAT TTCTGAATAG ACAAACTCAA AAAATGGCTG GGAAATTTAG	1080
GAAAAAAGCA AGCACGATTA AATTTTTTGT GTTATAATAT TTTGTGAATA GCTATGCCTA	1140
TGTTTAGCTA TGGAATAATA CGAAGTGCGA AACTTGGAAG ATAGAGAGGA AGCGATGTAA	1200
TGGCTAGAGA AGGCTTTTTT ACAGGTCTAG ATATTGGAAC AAGCTCTGTC AAGGTGCTTG	1260
TGGCCGAGCA GAGARATYCOT CARTERANTO TARGET AAGCTCTGTC AAGGTGCTTG	1320
TGGCCGAGCA GAGAAATGGT GAATTAAATG TAATTGGCCT GAGTAATGCC AAAAGTAAAG	1380
GTGTAAAGGA TGGAATTATT GTTGATATTG ATGCAGCAGC AACTGCTATC AAGTCAGCCA	1440
TTTCCCAAGC GGAAGAAAAG GCAGGCATTT CGATTAAATC AGTGAATGTC GGCTTGCCTG	1500
GTAATCTTTT GCAGGTAGAA CCAACTCAGG GGATGATTCC AGTAACATCT GATACTAAGG	1560
AAATTACGGA TCAAGATGTT GAAAATGTTG TCAAATCAGC TTTGACAAAG AGTATGACAC	1620
CTGACCGTGA AGTCATTACC TTTATTCCTG AAGAATTTAT TGTGGATGGT TTCCAAGGGA	1680
TTCGTGACCC ACGTGGCATG ATGGGGGTTC GCCTTGAAAT GCGTGGTTTG CTTTATACAG	1740
GACCTCGTAC TATCTTGCAC AATTTGCGTA AGACGGTTGA GCGTGCAGGT GTTCAGGTTG	1800
AAAATGTTAT CATTTCACCA CTAGCAATGG TTCAGTCTGT TTTGAACGAA GGGGAACGTG	1860
AATTTGGTGC TACAGTGATT GATATGGGGG CAGGTCAAAC GACTGTCGCT ACAATCCGTA	1920
ATCAAGAACT CCAGTTCACA CATATTCTCC AAGAAGGTGG AGATTATGTA ACTAAAGATA	1980

TCTCCAAGGT TTTGAAAACC TCTCGCAAAT TAGCGGAAGG CTTGAAACTG AATTACGGGG 2040 AAGCCTATCC GCCTCTTGCA AGCAAAGAAA CCTTCCAAGT AGAGGTTATT GGAGAAGTAG AAGCAGTCGA AGTGACGGAA GCCTACTTGT CAGAAATTAT TTCTGCACGA ATCAAGCACA 2100 TCCTTGAACA AATCAAGCAA GAATTAGATA GAAGGCGTCT ATTGGACCTC CCTGGTGGTA 2160 TTGTCTTAAT CGGTGGGAAT GCCATTTTAC CAGGTATGGT TGAGCTTGCT CAGGAAGTCT 2220 2280 TTGGCGTCCG TGTCAAGCTT TATGTTCCAA ATCAAGTTGG TATCCGTAAT CCAGCCTTTG CGCATGTGAT TAGTTTATCA GAATTTGCGG GTCAATTAAC AGAAGTTAAT CTTTTGGCTC 2340 AGGGAGCGAT AAAAGGTGAG AATGACTTAA GTCATCAGCC AATTAGTTTT GGTGGGATGC 2400 TGCAAAAAAC AGCTCAGTTT GTACAATCAA CGCCTGTTCA ACCAGCTCCT GCTCCAGAAG 2460 2520 TAGAGCCGGT GGCGCCTACA GAACCAATGG CGGATTTCCA ACAAGCTTCA CAAAATAAAC 2580 CGAAATTAGC AGATCGTTTC CGTGGATTGA TCGGAAGCAT GTTTGACGAA TAAAGAGGAA AAATAAATTA TGACATTTTC ATTTGATACA GCTGCTGCTC AAGGGGCAGT GATTAAAGTA 2640 2700 ATTGGTGTCG GTGGAGGTGG TGGCAATGCC ATCAACCGTA TGGTCGACGA AGGTGTTACA GGCGTAGAAT TTATCGCAGC AAACACAGAT GTACAAGCAT TGAGTAGTAC AAAAGCTGAG 2760 2820 ACTGTTATTC AGTTGGGACC TAAATTGACT CGTGGTTTGG GTGCAGGAGG TCAACCTGAG GTTGGTCGTA AAGCCGCTGA AGAAAGCGAA GAAACACTGA CGGAAGCTAT TAGTGGTGCC 2880 GATATGGTCT TCATCACTGC TGGTATGGGA GGAGGCTCTG GAACTGGAGC TGCTCCTGTT 2940 3000 ATTGCTCGTA TCGCCAAAGA TTTAGGTGCG CTTACAGTTG GTGTTGTAAC ACGTCCCTTT 3060 GGTTTTGAAG GAAGTAAGCG TGGACAATTT GCTGTAGAAG GAATCAATCA ACTTCGTGAG 3120 CATGTAGACA CTCTATTGAT TATCTCAAAC AACAATTTGC TTGAAATTGT TGATAAGAAA 3180 ACACCGCTTT TGGAGGCTCT TAGCGAAGCG GATAACGTTC TTCGTCAAGG TGTTCAAGGG ATTACCGATT TGATTACCAA TCCAGGATTG ATTAACCTTG ACTTTGCCGA TGTGAAAACG 3240 3300 GTAATGGCAA ACAAAGGGAA TGCTCTTATG GGTATTGGTA TCGGTAGTGG AGAAGAACCT 3360 GTGGTAGAAG CGGCACGTAA GGCAATCTAT TCACCACTTC TTGAAACAAC TATTGACGGT GCTGAGGATG TTATCGTCAA CGTTACTGGT GGTCTTGACT TAACCTTGAT TGAGGCAGAA 3420 3480 GAGGCTTCAC AAATTGTGAA CCAGGCAGCA GGTCAAGGAG TGAACATCTG GCTCGGTACT 3540 TCAATTGATG AAAGTATGCG TGATGAAATT CGTGTAACAG TTGTTGCAAC GGGTGTTCGT CAAGACCGCG TAGAAAAGGT TGTGGCTCCA CAAGCTAGAT CTGCTACTAA CTACCGTGAG 3600 3660 ACAGTGAAAC CAGCTCATTC ACATGGCTTT GATCGTCATT TTGATATGGC AGAAACAGTT 3720 GAATTGCCAA AACAAAATCC ACGTCGTTTG GAACCAACTC AGGCATCTGC TTTTGGTGAT 3780

TGGGATCTTC GCCGTGAATC GATTGTTCGT ACAACAGATT CAGTCGTTTC TCCAGTCGAC	
CGCTTTGAAG CCCCAATTTC ACAACAGATT CAGTCGTTTC TCCAGTCGAC	3840
CGCTTTGAAG CCCCAATTTC ACAAGATGAA GATGAATTGG ATACACCTCC ATTTTTCAAA	3900
AATCGTTAAG TAAATGAATG TAAAAGAAAA TACAGAACTT GTTTTTCGAG AAGTTGCAGA	3960
GGCTAGTCTG AGTGCTCATC GAGAGAGTGG TTCGGTCTCT GTCATTGCAG TTACCAAGTA	4020
TOTAGATGTA CCGACAGCGG AAGCCTTGCT TCCGCTAGGT GTCCATCATA TCCCTCALL	
TCGTGTAGAT AAGTTTCTGG AAAAATATGA AGCTTTAAAA GATCGAGATG TCACTTCCCA	
TTTGATTGGT ACCTTGCAAA GACGTAAGGT GAAAGATGTC ATTCAATACG TTGATTATTT	4140
CCATGCATTG GACTCAGTAA AGCTAGCAGG GGAAATTCAA AAAAGAAGTG ACCGAGTCAT	4200
CAAGTGTTC CTTCAAGTAA ATATTTCTAA AGAAGAAAGC AAACACGGTT TTTCGAGAGA	4260
GGAACTGCTG GAAATCTTGC CAGACTTTACG GAAACACGGTT TTTCGAGAGA	4320
GGAACTGCTG GAAATCTTGC CAGAGTTAGC CAGACTAGAT AAGATTGAAT ATGTTGGTTT AATGACGATG GCACCTTTTTC AGGTTAGC CAGACTAGAT AAGATTGAAT ATGTTGGTTT	4380
AATGACGATG GCACCTTTTG AGGCTAGCAG TGAGCAGTTG AAAGAGATTT TCAAGGCGGC	4440
CCAAGATTTA CAAAGAGAAA TTCAAGAGAA ACAAATTCCA AATATGCCTA TGACCGAGTT	4500
AAGTATGGGA ATGAGTCGTG ATTATAAAGA AGCGATTCAA TTCGGTTCCA CTTTTGTTCG	4560
TATAGGTACA TCATTTTTTA AGTAGGAGAG AACCATGTCT TTAAAAGATA GATTCGATAG	4620
ATTTATAGAT TATTTTACGG AGGATGAGGA TTCAAGTCTC CCTTATGAAA AAACAGATGA	4680
GCCTGTGTTT ACTTCAGTAA ATTCTTCACA GGAACCGGCT CTCCCAATGA ATCAACGTTC	-
ACAGTCGGCT GGCACAAAAG AGAACAATAT CACCAGACTT CATGCAAGAC AACAGGAATT	4740
GGCAAATCAG AGTCAGCGTG CAACGGATAA GGTCATTATA GATGTTCGTT ATCCTAGAAA	4800
ATATGAGGAT GCAACAGAAA TTGTTGATTT ATTGGCAGGA AACGAAAGTA TCTTGATTGA	4860
TTTTCAGTAT ATGACAGAGG TGCAGGCTCG TCGTTGTTTG GACTATTTGG ATGAGGCTTG	4920
TCATGTTTTA GCTGGAAATT TCAAAACCT ACCT ACC	4980
TCATGTTTTA GCTGGAAATT TGAAAAAGGT AGCTTCTACC ATGTATTTGT TGACACCAGT	5040
GAACGTTATT GTAAATGTTG AAGATATCCG TTTACCAGAT GAAGATCAAC AGGGTGAGTT	5100
CGGTTTTGAT ATGAAGCGAA ATAGAGTACG ATAATGATTT TTTTAATTCG TATGATTTAT	5160
AATGCAGTGG ATATTTACTC CCTGATTTTG GTAGCCTTCG CTGTCATGTC TTGGTTTCCA	5220
GOTGCCTACG AATCCAGTTT AGGTCGTTGG ATTGTAGCGT TGGTGAAACC ACTCCTTACCT	5280
CCCTTGCAAC GCCTGCCTTT ACAGATAGCG GGTCTTGATT TATCTGTTTG GGTTGCCATT	
GTTTTGGTTC GATTTTTAGG AGAAAACCTA GTGCGTTTTC TGGCGATGAT AGGATGAATA	5340
AAGGGATTTA TCAGCATTTC TCCATAGAAG ATCGTCCATT TCTTGACAAG GGAATGGAAT	5400
GGATAAAGAA GGTAGAAGAT AGCTATGCTC CTTTTTTAAC TCCTTTTATC AATCCTCATC	5460
CITTITAAC TCCTTTTATC AATCCTCATC	5520

		362			
AGGAGAAGCT ATTAAAC	SATT TTGGCCAAAA CO	CTATGGTCT T	rgcttgtagc	AGTAGTGGGG	5580
AATTCGTCTC GAGTGAC	STAT GTTCGAGTTT TA	ATTATACCC F	AGATTATTTC	CAACCAGAGT	5640
TTTCAGATTT TGAAATA	ATCT CTCCAGGAAA T	TGTGTATTC C	TTTAAATAA	GAACATTTAA	5700
CGCATGCTAA GATTTTA	AGGG ACAGTCATCA AT	TCAATTAGG C	GAŢTGAACGG	AAACTTTTTG	5760
GAGATATCCT AGTAGAT	GAA GAACGGGCGC AC	GATTATGAT I	TAATCAGCAG	TTTCTTCTTC	5820
TCTTTCAAGA TGGACTA	AAG AAAATTGGTC GT	TATACCTGT 1	TCGCTGGAG	GAACGTCCTT	5880
TCACCGAGAA AATAGAT	AAG CTAGAACAGT AT	TCGAGAACT C	GATTTATCT	GTGTCTAGTT	5940
TTCGATTAGA TGTTCTT	TTA TCAAATGTTT TO	GAAACTATC 1	PAGGAATCAA	GCAAACCAGT	6000
TGATTGAAAA GAAACTT	GTC CAAGTAAATT AI	TCATGTGGT A	GACAAATCA	GATTACACTG	6060
TTCAAGTTGG AGACTTC	ATT AGTGTGAGAA AA	ATTTGGTCG C	CTTGAGATTA	CTTCAAGATA	6120
AGGGACAAAC GAAAAAA	AGAG AAGAAAAAA TA	AACCGTCCA G	STTATTATTA	AGTAAGTGAG	6180
GAATAGAATG CCAATTA	CAT CATTAGAAAT AA	AAGGACAAG A	ACTTTTGGAA	CTCGATTCAG	6240
AGGTTTTGAT CCAGAAG	AAG TCGATGAATT T	TTAGATATT C	STGGTTCGTG	ATTACGAAGA	6300
TCTTGTGCGT GCGAATO	ATG ATAAAAATTT GO	CGTATTAAG A	AGTTTAGAAG	AGCGTTTGTC	6360
TTACTTTGAT GAAATAA	AAG ATTCATTGAG CO	CAGTCTGTA I	TGATTGCTC	AGGATACAGC	6420
TGAGAGAGTG AAACAGG	CCGC CCCATGAACG TT	TCAAACAAT A	TCATTCATC	AAGCAGAGCA	6480
AGATGCGCAA CGCTTGT	TGG AAGAAGCTAA AT	TATAAGGCA A	ACGAGATTC	TTCGTCAAGC	6540
AACTGATAAT GCTAAGA	AAG TCGCTGTTGA AA	ACAGAAGAA 1	TGAAGAACA	AGAGCCGTGT	6600
CTTCCACCAA CGTCTCA	AAT CTACAATTGA GA	AGTCAGTTG G	CTATTGTTG	AATCTTCAGA	6660
TTGGGAAGAT ATTCTCC	GTC CAACAGCTAC TI	TATCTTCAA A	CCAGTGATG	AAGCCTTTAA	6720
AGAAGTGGTT AGCGAAG	TAC TTGGAGAACC GA	ATTCCAGCT C	CAATTGAAG	AAGAACCAAT	6780
TGATATGACA CGTCAGT	TCT CTCAAGCAGA AA	ATGGCAGAA T	TACAAGCTC	GTATTGAGGT	6840
AGCCGATAAA GAATTGT	CTG AATTTGAAGC TO	CAGATTAAA C	CAGGAAGTGG	AAGCTCCAAC	6900
TCCTGTAGTG AGTCCTC	AAG TTGAAGAAGA GO	CCTCTGCTC A	TCCAGTTGG	CCCAATGTAT	6960
GAAGAACCAG AAGTAGC	TCC AATGCATCCG AT	TAGGTCCAA C	CACCAGCTAC	AGAAACTGTT	7020
GATTCAATAC CGGGATT	TGA AGCACCGCAA GA	AATCTGTTA C	AATTTTATA	AGAAATATTC	7080
TGAGAACAAT ATCTTAT	CCT TATATTTCCA GO	CGAGCAGGA G	SATGGTGTGA	GTCCTGTAAT	7140
CCCTATTGAT AAGATTA	TCC TCTCAAAAAC TC	CAAGTCTGA A	GCTAGTAAG	ATTTGACGTT	7200
TCCCACGTTA CGGGATA	aga gggagaaaga ci	тааатсттт т	TCCGAATAA	AGGTGGTACC	7260
ACGATTTCG TCCTTT	TGG AAGTCGTGGT TI	TTTAATTTG T	TATTATTA	TAAAGGAGAT	7320

ACCATICAAAC	TCAAAGACAC	COMMA AMOUNT	CCCAAAACTC	እ አመጥረርር እ አጥ	CCCTCCACCC	7380
						7380
CTTCCTACCA	AAGAGCCAGT	TTGGCAAAAG	GAATGGGAAG	ATGCAAAACT	TTATCAACGT	7440
CGTCAAGAAT	TGAACCAAGG	AAAACCTCAT	TTCACCTTGC	ATGATGGCCC	TCCATACGCT	7500
AACGGAAATA	TCCACGTTGG	ACATGCTATG	AACAAGATTT	CAAAAGATAT	CATTGTTCGT	7560
TCTAAGTCTA	TGTCAGGATT	TTACGCACCA	TTTATTCCTG	GTTGGGATAC	TCATGGTCTG	7620
CCAATCGAGC	AAGTCTTGTC	AAAACAAGGT	GTCAAACGTA	AAGAAATGGA	CTTGGTTGAG	7680
TACTTGAAAC	TTTGCCGTGA	GTACGCTCTT	TCTCAAGTAG	ATAAACAACG	TGAAGATTTT	7740
AAACGTTTGG	GTGTTTCTGG	TGACTGGGAA	AATCCATATG	TGACCTTGAC	TCCTGACTAT	7800
GAAGCAGCTC	AAATTCGTGT	ATTTGGTGAG	ATGGCTAATA	AGGGTTATAT	CTACCGTGGT	7860
GCTAAGCCAG	TTTACTGGTC	ATGGTCATCT	GAGTCAGCAC	TTGCTGAAGC	AGAGATTGAA	7920
TACCATGACT	TGGTTTCAAC	TTCCCTTTAC	TATGCCAACA	AGGTAAAAGA	TGGCAAAGGA	7980
GTTCTAGATA	CAGATACTTA	TATCGTTGTC	TGGACAACGA	CTCCATTTAC	CATCACAGCT	8040
TCTCGTGGTT	TGACGGTTGG	TGCAGATATT	GATTACGTTT	TGGTTCAACC	TGCTGGTGAA	8100
GCTCGTAAGT	TTGTCGTTGC	TGCTGAATTA	TTGACTAGCT	TGTCTGAGAA	ATTTGGCTGG	8160
GCTGATGTTC	AAGTTTTGGA	AACTTACCGT	GGCCAAGAAC	TCAACCACAT	CGTAACAGAA	8220
CACCCATGGG	ATACAGCTGT	AGAAGAGTTG	GTAATTCTTG	GTGACCACGT	TACGACTGAC	8280
TCTGGTACAG	GTATTGTCCA	TACAGCCCCT	GGTTTTGGTG	AGGACGATTA	CAATGTTGGT	8340
ATTGCTAATA	ATCTTGAAGT	CGCAGTGACT	GTTGATGAAC	GTGGTATCAT	GATGAAGAAT	8400
GCTGGTCCTG	AATTTGAAGG	TCAATTCTAT	GAAAAGGTAG	TTCCAACTGT	TATTGAAAAA	8460
CTTGGTAACC	TCCTTCTTGC	CCAAGAAGAA	ATCTCTCACT	CATATCCATT	TGACTGGCGT	8520
ACTAAGAAAC	CAATCATCTG	GCGTGCAGTT	CCACAATGGT	TTGCCTCAGT	ТТСТАААТТС	8580
CGTCAAGAAA	TCTTGGACGA	AATTGAAAAA	GTGAAATTCC	ACTCAGAATG	GGGTAAAGTC	8640
CGTCTTTACA	ATATGATCCG	TGACCGTGGT	GACTGGGTTA	TCTCTCGTCA	ACGTGCTTGG	8700
GGTGTTCCAC	TTCCTATCTT	CTACGCTGAA	GATGGTACAG	CTATCATGGT	AGCTGAAACT	8760
ATTGAACACG	TAGCTCAACT	TTTTGAAGAA	TATGGTTCAA	GCATTTGGTG	GGAACGTGAT	8820
GCCAAAGACC	TCTTGCCAGA	AGGATTTACT	CATCCAGGTT	CACCAAACGG	CGAGTTCAAA	8880
AAAGAAACTG	ATATCATGGA	CGTTTGGTTT	GACTCAGGTT	CATCATGGAA	TGGAGTGGTG	8940
GTAAACCGTC	CTGAATTGAC	TTACCCAGCC	GACCTTTACC	TAGAAGGTTC	TGACCAATAC	9000
CGTGGTTGGT	TTAACTCATC	ACTTATCACA	TCTGTTGCCA	ACCATGGCGT	AGCACCTTAC	9060

AAACAAATCT TGTCACAAGG TTTTGCCCTT GATGGTAAAG GTGAGAAGAT GTCTAAATCT 9120 CTTGGAAATA CTATTGCTCC AAGCGATGTT GAAAAACAAT TCGGTGCTGA AATCTTGCGT 9180 CTCTGGGTAA CAAGTGTTGA CTCAAGCAAT GACGTGCGTA TCTCTATGGA TATCTTGAGC 9240 CAAGTTTCTG AAACTTACCG TAAGATTCGT AACACTCTTC GTTTCTTGAT TGCCAATACA 9300 TCTGACTTTA ACCCAGCTCA AGATACAGTC GCTTACGATG AGCTTCGTTC AGTTGATAAG 9360 TACATGACGA TTCGCTTTAA CCAGCTTGTC AAGACCATTC GTGATGCCTA TGCAGACTTT 9420 GAATTCTTGA CGATCTACAA GGCCTTGGTG AACTTTATCA ACGTTGACTT GTCAGCCTTC 9480 TACCTTGATT TTGCCAAAGA TGTTGTTTAC ATTGAAGGTG CCAAATCACT GGAACGCCGT 9540 CAAATGCAGA CTGTCTTCTA TGACATTCTT GTCAAAATCA CCAAACTCTT GACACCAATC 9600 CTTCCTCACA CTGCGGAAGA AATCTGGTCA TATCTTGAGT TTGAAACAGA AGACTTCGTC 9660 CAATTGTCAG AATTACCAGA AGTTCAAACT TTTGCTAACC AAGAAGAAAT CTTGGATACA 9720 TGGGCAGCCT TCATGGACTT TCGTGGACAA GCACAAAAAG CCTTGGAAGA AGCTCGTAAT 9780 GCAAAAGTTA TCGGTAAATC ACTTGAAGCA CACTTGACAG TTTATCCAAA TGAAGTTGTG 9840 AAAACTCTAC TCGAAGCAGT AAACAGCAAT GTAGCACAAC TTTTGATCGT GTCTGAGTTG 9900 ACCATCGCAG AAGGACCAGC TCCGGAAGCT GCCCTTAGCT TCGAAGATGT AGCCTTCACA 9960 GTTGAACGTG CTACTGGTGA AGTATGTGAC CGTTGCCGTC GTATCGACCC AACAACAGCA 10020 GAACGCAGCT ACCAGGCAGT TATCTGTGAC CACTGTGCAA GCATCGTAGA AGAAAACTTT 10080 GCGGAAGCAG TCGCAGAAGG ATTTGAAGAG AAATAAGATT GAAAAGTCTA GGCAAAATTC 10140 AATTTGAGAA GAAAAGACAA CTAATTTTAT AGTCTATTAA ACGCATTGTA TCACGTTTTT 10200 GAATACCTGA TATGATGCGT TTTTTATTTA TTTTAAAAAT TTGCGAGGTA TGACTTTTTA 10260 TACTCAACAA GAATCAAAGA GAAACTTAGC AAGCTAACAG TAGTAAGATA AAATAGGAAT 10320 TTGATATTAG GGATAAGATT GGTAAATAGT GTAATATTTT TACAACAATA AATTTATATA 10380 GTTATTTCTG GTTTCTGAAA AGTATTATAT TTTATTTCAT ATTATACAAA TTTTTATTTT 10440 ATAATATCAG AACATACTTT TTTTAAAAGC AAATATGATA CAATTTTATT TGAAAAAAA 10500 AAAAAAGGAG ATTTTATTAT AAAATTAAAA AGACTTGCTT TAATTAGTGG TATCGTCGGT 10560 CTTGTGGGAG GAATTTTACT TCTTATTGGT CCTTTTGTCT TGTTGGGAAT AGCGGTAAAC 10620 ACAGCTGCTA CAACTCTTAA TGGAGGAGCT ACTGCAGGGG CTTTTTCAGG TGTAGCCTTA 10680 CTCTTGAATG CCTTGAAGAT TGCAAATCTT GTTCTTGGTA TCATTGCTAT TGTTTACTAT 10740 AAAGGAGATA AGCGTGTAGG TGCAGCTCCG TCTGTACTAA TGATTGTTTC TGGTGGAGTT 10800 AGTCTCATTC TATTCCGTTC TTAGGATGGG TTGGGGGGAT TTTTGCTATT ATCGGAGGAT 10860

CTCTATTCCT TTCAACATTG AAGAAATTCA AATCAGAAGA ATAAAAGGTA TTTTAGCATG	10920
AAAAGAACAA AAAAGTTTAT CGGTATAGGA GTAGCTCTAT TATCTCTTTC TCTTCTAGTT	10980
GCATGTGGAA CATAAAGTTC AAAGAATACT TCAACAAGTA ATGATGAGAA GACAGTAGCA	11040
ACATCCAATA GTTCAAAAGA AACAATCACT TTCGATACAC CGGTTGTAAC AGACGATGCG	11100
ATTGAATCAA TACGCACTTA TGCAGATTAT ATAGATCTTT ATAAAAATAT TTTTGATGAT	11160
TATTTTACTA AAGCTGAGGA AGGTTTCAAA GGCATAGCTA TGGAAAATAA TGACTCGTTT	11220
ACTAAACTAA AAGAGTCAAC TCAAAAATTA TTCGATGCGC AGAAAAAAAG GTTAAATAAT	11280
GAAGATAGAA TAGAAACAAC CAAAAACAAT GTGATTGCCA AACATTGTCA AACAGTCCTT	11340
TCCTTTTTGG TTTTGACTAG CTTTTTTGTG AAAAATTGTG TAAAATAGAA TAGATAAACG	11400
AGGGGAAACC TCGGAAAATT TAAAGGAGAA TCCATCTAAT GGTAAAATTG GTTTTTGCTC	11460
GCCACGGTGA GTCTGAATGG AACAAAGCTA ACCTTTTCAC TGGTTGGGCT GATGTTGATT	11520
TGTCTGAAAA AGGTACACAA CAAGCGATTG ACGCTGGTAA ATTGATCAAA GAAGCTGGTA	11580
TCGAATTTGA CCAAGCTTAC ACTTCAGTAT TGAAACGTGC TATCAAAACA ACTAACTTGG	11640
CTCTTGAAGC TTCTGACCAA TTGTGGGTTC CAGTTGAAAA ATCATGGCGC TTGAACGAAC	11700
GTCACTACGG TGGTTTGACT GGTAAAAACA AAGCTGAAGC TGCTGAACAA TTTGGTGATG	11760
AGCAAGTTCA CATCTGGCGT CGTTCATACG ATGTATTGCC TCCAAACATG GACCGTGATG	11820
ATGAGCACTC AGCTCACACA GACCGTCGTT ACGCTTCACT TGACGACTCA GTTATCCCAG	11880
ATGCTGAAAA CTTGAAAGTG ACTTTGGAAC GTGCTCTTCC ATTCTGGGAA GATAAAATCG	11940
CTCCAGCTCT TAAAGATGGT AAAAACGTAT TCGTAGGAGC TCACGGTAAC TCAATCCGTG	12000
CCCTTGTAAA ACACATCAAA GGTTTGTCAG ATGACGAGAT CATGGACGTG GAAATCCCTA	12060
ACTTCCCACC ATTGGTATTC GAATTCGACG AAAAATTGAA CGTCGTTTCT GAATACTACC	12120
TTGGAAAATA AAAAATTGTA AGTCTAGAAT TGATTTCTAG GCTTTTTATG TTAGTATGGA	12180
AGTATGATAA GGAATAAAAA ACAAGATTAT GTACTGGCCT ACAAGCAACC AGCTTCAACC	12240
ACTTACATGG GTTGGGAAGA AGAAGCTTTA CCGATAGGCA ATGGTTCTTT AGGAGCAAAA	12300
GTATTTGGCC TTATAGGGGC TGAACGGATT CAATTTAATG AAAAAAGTCT CTGGTCTGGA	12360
GGTCCACTTC CTGATAGTTC AGATTATCAG GGTGGAAATC TTCAGGATCA GTATGTTTTT	12420
TTAGCTGAGA TTCGGCAGGC TTTGGAGAAG AGAGATTACA ATCTGGCTAA GGAACTGGCT	12480
GAGCAGCACC TAATTGGGCC AAAAACGAGT CAATATGGGA CCTATCTGTC TTTTGGGGAT	12540
ATTCACATTG AGTTCAGCCA GCAAGGTACG ACTTTGTCTC AGGTGACGGA CTATCAGAGA	12600

366 CAGCTGAATA TTAGTAAGGC ACTTGCGACG ACTTCTTATG TCTATAAGGG AACGCGATTT 12660 GAACGTAAAG CTTTTGCGAG TTTTCCAGAT GATCTCTTGG TTCAATGTTT TACTAAGGAA 12720 GGGTTGGAAA CTCTAGATTT TACTATAGAA CTATCCTTGA CCTGTGATTT GGCTTCTGAT 12780 GGAAAGTATG AGCAGGAAAA ATCTGATTAC AAGGAGTGTA AGTTGGATAT TACTGATTCT 12840 CATATCTTGA TGAAGGGAAG AGTTAAGGAT AATGATCTGC GGTTTGCTAG TTATCTAGCT 12900 TGGGAAACGG ATGGAGATAT TAGAGTTTGG TCAGATAGGG TTCAGATATC AGGAGCCAGT 12960 TATGCCAATC TCTTCTTGGC CGCTAAGACG GATTTTGCCC AAAATCCTGC TAGCAATTAT 13020 CGCAAGAAAC TAGATTTAGA GCAACAGGTG ATAGACTTGG TGGACACAGC TAAAGAAAAG 13080 GGCTATACCC AATTGAAATC AAGGCATATC GAGGACTACC AAGCCTTATT CCAGCGTGTT 13140 CAATTGGATT TGGAAGCTGA TGTTGACGCA TCCACTACAG ATGATTTGTT AAAAAATTAT 13200 AAGCCACAAG AAGGGCAGGC TTTGGAGGAG CTGTTCTTCC AGTATGGACG GTATTTATTG 13260 ATTAGTTCGT CCAGAGACTG CCCAGATGCT CTACCAGCTA ACCTACAGGG AGTCTGGAAT 13320 GCGGTCGACA ATCCTCCTTG GAATTCGGAC TATCACTTAA ATGTCAATCT GCAGCTGAAT 13380 TATTGGCCAG CCTATGTTAC CAATCTCCTA GAGACGGTCT TTCCAGTCAT CAACTATGTA 13440 GATGATTTGC GTGTCTATGG TCGTCTAGCG GCTGTAAAGT ATGCAGGAAT CGTCTCTCAG 13500 AAAGGTGAGG AGAATGGTTG GTTGGTTCAT ACTCAAGCGA CTCCCTTTGG TTGGACGGCA 13560 CCTGGTTGGG ATTACTATTG GGGTTGGTCA CCAGCTGCCA ATGCGTGGAT GATGCAAACC 13620 GTTTATGAAG CCTATTTATT TTATAGGGAC CAAGACTATC TCAGGGAGAA AATTTATCCC 13680 ATGTTGAGGG AAACGGTTCG TTTTTGGAAT GCCTTTTTAC ATAAGGATCA GCAGGCGCAG 13740 CGTTGGGTGT CTTCTCCGTC TTATTCCCCA GAACATGGGC CGATTTCGAT TGGCAATACC 13800 TATGACCAAT CTCTGATTTG GCAGTTATTT CATGATTTTA TTCAGGCTGC TCAGGAATTG 13860 GGACTGGATG AGGACTTGTT GACTGAGGTT AAGGAGAAGT CTGATTTACT AAATCCTTTG 13920 CAAATCACTC AATCTGGTCG AATCAGGGAG TGGTATGAGG AGGAAGAGCA GTATTTTCAA 13980 AATGAGAAAG TGGAGGCCCA GCATCGGCAC GCTTCCCATC TAGTGGGACT CTATCCTGGC 14040 AATCTCTTTA GCTACAAGGG ACAAGAGTAT ATTGAAGCGG CGCGTGCTAG CCTCAATGAT 14100 CGTGGAGATG GCGGCACAGG CTGGTCCAAG GCTAATAAGA TCAATCTCTG GGCGCGTTTG 14160 GGAGATGGCA ATCGAGCCCA TAAATTATTG GCAGAGCAGT TAAAGACATC CACCTTGCAA 14220 AATCTTTGGT GTAGCCATCC TCCTTTTCAG ATAGATGGTA ATTTTGGTGC TACTAGTGGC 14280 ATGGCAGAAA TGTTACTCCA GTCTCATGCA GCTTATCTGG TACCTCTAGC TGCCCTACCT 14340 GATGCTTGGT CAACAGGTTC TGTTTCAGGC TTAATGGCAC GTGGACATTT TGAAGTGAGC 14400

ATGAGCTGGG	AAGATAAAA	ACTCTTACAG	TTGACCATTT	TATCAAGGAG	TGGAGGAGAT	14460
TTGCGAGTTT	CTTATCCAGA	TATTGAGAAG	AGTGTGATTA	AAATGAATCA	AGAAAAATA	14520
AAAGCGAAAT	GCATGGGGAA	AGATTGTATT	TCGGTGGCAA	CAGCAGAAGG	TGATCTTGTT	14580
CAATTTTATT	TTTAAGAAGA	TGTTATAAGG	CAGTAATTTG	AAACTGCCTT	TTAATAAGGA	14640
TTTAAGAATA	TAAGCAGTTT	TCAACTAGTT	GAAAAAACGT	TATAATGATA	ATAGGAAGTA	14700
ATACTCAATG	AAAATCAAAG	AGCACAAACT	AGGAAGCTAG	CCGCAGGTTG	CTCAAAACAG	14760
TGTTTTGAGG	TTGCAGATGG	AAGCTGACGT	GGTTTGAAGA	GAGATTTTCG	AGGAGTATAA	14820
TTTGTTTGAT	AGAGGGTGGG	TCTGATGGCT	TATATTGAGA	TGAAACACTG	TTACAAGCGT	14880
TATCAGGTTG	GGGACACGGA	GATTGTGGCC	AATTGTGATG	TGAATTTTGA	GATTGAAAAG	14940
GGGGAGCTGG	TTATTATCCT	TGGTGCTTCA	GGTGCAGGCA	AGTCAACAGT	TCTTAACCTT	15000
CTTGGGGGAA	TGGATACCAA	TGATGAAGGG	GAAATCTGGA	TTGATGGTGT	TAATATTGCG	15060
GATTATAGTT	CCCACCAGCG	CACCAATTAC	CGTAGAAATG	ATGTGGGGTT	TGTTTTTCAG	15120
TTTTATAATC	TAGTTTCTAA	TCTGACAGCT	AAGGAAAATG	TGGAACTGGC	TTCTGAAATT	15180
GTGACAGATG	CCTTGAATCC	TGATCAGGCC	TTGACAGATG	TAGGTCTGGC	TCATCGTCTC	15240
AATAACTTTC	CAGCCCAGCT	TTCTGGAGGG	GAGCAACAGC	GAGTCTCCAT	TGCACGCGCG	15300
GTAGCCAAAA	АТССТААААТ	TCTCCTTTGT	GATGAACCGA	CTGGAGCCTT	GGATTATCAG	15360
ACGGGCAAGC	AGGTTTTGAA	AATTCTCCAA	GACATGTCTC	GTCAAAAGGG	AGCGACGGTG	15420
ATCATCGTGA	CTCATAATGG	AGCTTTGGCG	CCCATTGCTG	ATCGCGTGAT	TCAAATGCAC	15480
GATGCCAGTG	TCAAGGATGT	GGTGCTCAAC	CAGCATCCTC	AGGATATTGA	CAGTTTGGAG	15540
TACTAGCATG	ATCAAGCGAA	AAACTTATTG	GAAGGACTTA	GTTCAGTCCT	TCACAGGCTC	15600
CAAGGGGCGT	TTTTTATCCA	TCTTGATCCT	GATGATGTTG	GGATCTCTAG	CCTTAGTAGG	15660
CCTCAAAGTA	ACCAGTCCCA	ACATGGAGGC	GACAGCTAAT	GCTTATTTAA	CAACTGCTCA	15720
AACCTTGGAT	TTGGCAGTCA	TGTCTAACTA	TGGCTTGGAT	CAAGCAGACC	AAGAAGAACT	15780
AAAACAGACG	GAGGGCGCAG	AGGTCGAGTT	TGGCTATTTG	ACAGATGTGA	CTATGGATAA	15840
TGGGCAGGAT	GCCATTCGGC	TGTACTCCAA	ACCAGAGCGA	ATTTCAACCT	TTCAGCTAAG	15900
AAAGGGACGA	CTTCCTCAGT	CAGACAAGGA	AATCGCTTTG	GCCACTCATT	TGCAAGGCCA	15960
ATACAGCGTG	GGACAGGAGA	ттастттаа	AGAAAAAGAA	GAGGGTCATT	CCTCTTTAAA	16020
AGACCATACT	TATACCATTA	CTGGTTTTGT	GGATTCGGCT	GAAATCCTCT	CCCAGCGAGA	16080
TATGGGCTAC	GCAGGAAGTG	GAAGTGGGAC	TCTGACAGCC	TATGGGGTGA	TTTTACCTAG	16140

368 TCAATTTGAT CAGAAAGTCT ACAATATAGC TCGTTTGAAA TATCAAGATT TAGCGGGTTT 15200 AAATGCCTTT TCATCAGCTT ATGAAGAAAA ATCCAAGCAA CATCAAGAAG AGCTTGAACA 16260 AATTTTATCA GATAATGGCA AGGTACGTCT GCAACTTTTG AAAAAAGAAG GACAAGAGTC 16320 TCTAGACAAG GGGCAAGAGA CCCTTGACAA GGCTCAGACT AATTTGCAGG AAGGCAAGCG 16380 TCGTTTAGCA GCTGCTCAAG CTCGTATACA GGCTCAAGAA AGTCAACTAG CCTTGTTTCC 16440 TCAAGTTCAG AGAGAGCAGG CTAGTGCTCA ACTTACCCAA GCCAAGCAGG AATTGGGCAA 16500 GGAAGAGGAC AAACTAAAGC AAGCTGAACA AAATCTAGCC CAAGAAAAGG AAAAATTAGA 16560 AAAACATCAG CAAGTCTTGG ATGATTTGGC GGAGCCAAGG TATCAGGTTT ATAATCGTCA 16620 GACCATGCCA GGTGGTCAGG GCTATCTTAT GTATAGCAAT GCTTCATCCA GTATTCGAGC 16680 AGTGGGCAAT ATCTTTCCTG TGGTACTTTA TGCCGTAGCA GCCATGGTGA CCTTTACGAC 16740 CATGACTCGC TTTGTAGACG AAGAGCGAAC TCATGCAGGG ATTTTTAAGG CCTTGGGTTA 16800 TCGTAGTAAG GATATTATCG CCAAGTTTCT CCTTTATGGA CTAGTAGCTG GGACTGTCGG 16860 AACGGCTCTA GGTAGTATAC TTGGTCATTA TTTGCTAGCC AGTGTAATTT CAAGTGTCAT 16920 TACAAAAGGC ATGGTGGTGG GAGAAACTCA GATTCAGTTC TATTGGACCT ATAGCTTACT 16980 AGCTTTTGTC TTGAGCTTGT TGGCGAGTGT GTTACCAGCC TATCTGGTGG CTTGGAGGGA 17040 ACTTCATGAC GAAGCAGCCC AGCTTCTACT TCCTAAACCT CCTGTCAAAG GAGCTAAAAT 17100 CTTATTGGAG CGTATCGGTT TTATCTGGCG TCGTCTCAGT TTTACTCATA AGGTAACAGC 17160 CCGCAACATC TTTCGTTATA AGCAGAGAAT GTTGATGACA ATCTTTGGTG TGGCAGGTTC 17220 TGTAGCTCTG CTCTTTGCAG GTTTGGGAAT CCAATCTTCT GTAGCAGGAG TTCCGTCTAA 17280 ACAGTTTCAA CAAATCCAAC AGTATCAGAT GCTTGTCTCT GAAAATCCTA GTGCGACCAA 17340 TCAGGACAAG GTAGAGCTAG CAGAAGTGTT GAAAGGGCAG GAGATACTAG CCTACCAGAA 17400 AATCTATTCT AAAGCGCTAT ACAAGGATTT CAAAGGCAAA GCTGGTCTTC AAAACATTAC 17460 TCTTATGATG ATAGAGAAGG AAGATTTGAC TCCCTTTATC CATCTTCAAC ATCATCAGCA 17520 GGAGCTGACA TTAAAAGATG GCATCGTTAT TACAGCTAAA CTCGCCCAGC TGGCAGGTGT 17580 CAAGGTTGGG CAGACTTTAG AAATTGAAGG TAAGGAACTA AAGGTCGTTG CTATTACTGA 17640 GAACTACGTT GGTCACTTTA TTTATATGAG TCAGGCTAGC TATGAGCAAC TTTACGGACA 17700 GCTACCCCAA GCCAACACTT ATCTGGTCTC ATTAAGGGAT ACCAGTGCAA CTAGTATCGA 17760 AAGTCAGGCG GGCTTGCTTA TGAATCAATC TGCGGTGTCC AGCGTTGTCC AAAATGCTTC 17820 AGCCATTCGA CTCTTCGACT CTATCGCTAG CTCACTCAAT CAGACCATGA CCATCTTGGT 17880 CATCGTATCG GTTCTATTAG CTATTGTCAT CCTTTACAAT CTGACCAATA TCAACGTAGC 17940

TG	AGAGAATC	CGTGAACTCT	CCACTATCA	GGTTCTTGGT	ТТТСАТААТА	ATGAAGTCAC	18000
CC	TCTACATT	TACCGTGAGA	CGATTGTGCT	GTCCCTTGTG	GGAATCGTAC	TTGGTCTGAT	18060
AG	CTGGTTTC	TATTTACACC	AATTTTTGAT	TCAAATGATT	TCGCCTGCGA	CTATTCTCTT	18120
TT	ATCCGCAG	GTAGGCTGGG	AAGTCTATGT	* AATCCCAGTG	GCAGCAGTAA	GCATCATTTT	18180
GA	CCTTGCTT	GGTTTCTTCG	ТСААТТАТТА	TCTGAGAAAG	GTTGATATGT	TAGAAGCCCT	18240
GA	AATCTGTA	GAGTAAGGTA	GTTATTTTA	GCTGATTGAA	СТТСТАТТТА	СТААТАТТСА	18300
AA	AATCCTCC	GTTTCAAAGA	GCAGGGAACT	CTTTGTGACA	GAGGATTTTT	TCTATAGGGC	18360
TT	TAGCAGCT	GCAATTGCGG	CTTCGAAGTT	TGGCTCAGAA	TTGATATTAT	CCACGTATTC	18420
AA	CGTAGCGA	ATCGTATTGT	CAGTATCGAG	GACAAAGACT	GCGCGTGCTA	ATAGGTGCCA	18480
TT	CGTTGATC	AAGAGGGCAT	AATCGCGCCC	GAAAGAATGG	TCAAAGTAGT	CTGAAAGCAT	18540
AA'	rggcatt g	TCAAGGCCTT	CAGCACCGCA	CCAACGTTTT	TGAGCAAAAG	GTAGGTCCAT	18600
TG	AAACAGTC	AATACGACCG	TGTTGTCCAG	TCCAGCCAAT	TCTTCATTAA	AACGACGTGT	18660
TT	GAGTTGAG	CAGATGCCTG	TATCGATAGA	AGGAACGACA	CTCAAGACTT	TTTTCTTGCC	18720
ΑTO	CAAAATCA	GCCAGAGATT	TTTTAGAAAG	ATCTGTTGTA	GTAAGAGAAA	AATCAAGCGC	18780
CT	rgtcgccg	ACTTGTAGTT	GTTTACCTGT	AAAGCTCACA	GGATTTCCGA	GAAAAGTTAC	18840
CA	PAGGATAC	TCCAATCTTT	TTTCTTCCAT	TTTAGCTGAA	ACAGTCGGAA	TTTTCCAATG	18900
ATT	TGACCGG	AAATATGGGC	ATAGAAAAAA	CGCCAGCTCA	TGTGAGAATG	ACGTTTTTCA	18960
TAC	GTTTATT	TTGCCAATCC	TTCAGCAATC	TTGTCAAGGT	TGTATTTCAT	CATGCTGTAG	19020
TAC	CTGTCGC	CTTCTTTACC	TTGTTCTGCG	ATAGAGTCAG	TAAAGATTTG	AGCGTAGATT	19080
GGG	SATGTTTG	TGTCTTGAGA	AACAGTTTTC	ATTGGACGGT	CATCCACACT	TGATTCTACA	19140
AAC	SAGTGATG	GAACTTTTGT	TTGGCGAAGT	TTTTCAACCA	AGGTCTTGAT	TTGTTCAGGA	19200
GT7	CCTTCTT	CTTCAGTATT	GATTTCCCAG	ATGTAAGCAC	TTGGGACACC	ATAGGCTTTA	19260
GAC	SAAGTATT	TGAATGCTCC	TTCGCTGGTT	ACAATGAGTT	TCTTTTCAGC	AGGGATCTTA	19320
TTA	LAATTTAT	CCTTACTTTC	TTTATCAAGT	TTGTCTAACT	TATCAGTATA	TTCTTTGAGA	19380
TTI	TTTTCAT	AGAATTCTTT	ATTGTTAGGG	TCTTTGGCGC	TCAATTGTTT	GGCGATATTT	19440
TTA	GCAAAAA	TAATACCGTT	TTCAAGGTTA	AGCCAAGCGT	GTGGGTCTTC	TTTTCCTTTT	19500
TCA	TTTTGAC	CTTCAAGGTA	GATAACATCA	ACGCCGTCGC	TGACTGCGAA	GTAGTCTTTG	19560
TTI	TCAGTTT	TCTTGGCATT	TTCTACCAAT	TTTGTAAACC	AAGCATTGCC	ACCTGTTTCA	19620
AGG	TTGATAC	CGTTATAGAA	ААТСАААТТА	GCCTCAGAAG	TTTTCTTAAC	GTCTTCAGGA	19680

AGTGGTTCGT	ATTCGTGTGG	GTCTTGCCCA	370 ATCGGAACGA	TACTATGAAG	GTCAATTTTG	19740
TCACCAGCAA	TATTTTAGT	AATATCAGCG	ATGATTGAGT	TTGTAGCAAC	AACTTTTAGT	19800
TTTTGACCAG	AAGTTGTATC	TTTTTTTCCG	CTAGCACATG	CTACAAGAAT	GATTGCAGAA	19860
AGAAAGAGAA	CGAGTAATGT	ACCTAATTT	TTCATTAGAT	CCTCCAATTT	ATTAGGGCTT	19920
TGCCCCTTAT	ТТТААСАААТ	GTTTATTTT	CAGTTTCAAA	TATCGTTGTT	TGGGAGCGAT	19980
AAAGAAGCTA	ATGAGAAAGA	AACTAGCAGC	TGTAAGCACG	ATACTAGAAC	CTGCCGCAAC	20040
АТТААААСТА	TAGCCAATAA	AGAGTCCCAA	AACTGAAGCA	GTAGCTCCGA	AGGTTGAGGA	20100
AAGGAAAATC	ATACTTTTCA	GACTATTAGC	ATACAGATAA	GCAGTTGCAG	CTGGGGTAAT	20160
CAGCATGGCT	ACAATCAGGA	TAGTTCCGAC	ACTTTGCATG	GCTGTCACAG	ACACGAGAGT	20220
CAGGAGTACC	ATGAGAAGGT	AGTGATAGAA	ATTGACAGGC	ATTCCCATGG	CTTTAGCCAA	20280
GAGTTCATCA	AAGGAAGTTA	TCAAGAGTTG	CTTGAAGAAA	ATCCAGATTA	ACAAGAGGAT	20340
AGCTGCCCCC	ACACCCATAG	ТААТАААСАТ	ATCCGTATCT	TGGACGGCCA	GGATATTACC	20400
AAAAAGGATA	TGGAAAAGGT	CAGTTGAACT	TTTAGCGACA	CCAATCAAGA	TGATACCGAG	20460
GGCTAAGAAA	GAAGAAAAGG	TAATGCCGAT	GGCGGTATCG	CTTTTGATAA	TCGAGTTTCC	20520
TTTGATGTAG	GTAATGATGA	TGGCAGCTAG	CAATCCAAAG	ACAATGGCTC	CGATAAAGAA	20580
GTCAAGGCCC	AAGATGAAGG	ATAGGGCTAC	ACCTGGTAAG	ACAGCATGTG	AAATGGCATC	20640
TCCCATGAGT	GACATCCCGC	GTAGAATAAT	GAAACATCCC	ACAGCTCCAG	CTACAATCCC	20700
GACGACAATA	GCTGTTATCA	AGGCATTTTG	TAGGAAATGG	AATTTTTGCA	ATCCATCGAT	20760
AAATTCTGCA	ATCATAGGTC	ACCTCCATTG	AAAAAGAGTT	GATTACCGTA	AGCTTCTTTT	20820
AGATTGGTTT	CGGTAAAAGT	TTCTTTTGTT	GGACCAAAGG	CAATCACTTC	TCGATTGACA	20880
AGTAAGACTT	GATCGAAGTA	GTGGGGAATC	TTGCTGAGGT	CGTGGTGAAC	GATGAGAACC	20940
GTCTTCCCAG	CTTTTTTCAA	ATCTCTCAGC	GTATTCATGA	TGATTTCCTC	ACTGACAGAG	21000
TCAATCCCAG	CAAAGGGTTC	ATCCAAGAGG	ATATAGTCGG	CTTCCTGCAC	CAAACATCTG	21060
GCAATCAAGA	CCCGCTGGAA	TTGACCTCCA	GACAGTTGAC	TAATTTGACG	TTCAGCGTAG	21120
TCAGCTAGGC	CGACGATTTC	AAGGCCTCT	TGCACTTTCT	TCCAATGTTT	AGCCTTTAAA	21180
CTTCGAAAGA	GAGGAATAGA	GGGAAATAGT	CCTAACGAGA	CGCATTCCTT	GACCTTGATG	21240
GGAAAGTTGT	AGTCGATATT	GATTTTTTGT	TCGACATAGG	CAATTCGGTG	TAAGGATTTT	21300
TTAACTTCCT	TGTCATCGAG	AAATGCCTGA	CCTTGATGTG	GGATAATTCC	CAACATACCT	21360
TTTAATAGTG	TTGATTTCCC	AGCGCCGTTT	GGACCAATGA	TGCCGGTAAT	TGTTGGTCCA	21420
TGGAGCACTA	GTGAAATATC	CTTAAGTGCC	AACGTTTCTT	TGTAGGAGAC	ACTGAGGTTT	21480

371

TCGATACGTA TCATAAACTT GTATTCCTCC TGTCTCTTAA TATACATTAA AAAAAAAATT 21540
AAGTCAAGTT AATTTTGAA AAAATTAAAA TAATAACTGA AAAATAGATT CTAAAGATAA 21660
CTTTCAGGAT AAATTTCTAA ATTATAAAAC GCATAGTATC AAGTGAAAA AACTTGGAAT 21660
TATGCGTTTT ATCATGGAAA GATTTTTAT AATAGCTAAA AAATAA 21706

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6171 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

GATCCCCAGG AAAAACCGAG GTTTTCCCAA TCAATCGTTA CTGTCATATT CCACTCCTTA 60 TTCTAAAAAC CTATTTCTTA TATTCTACAC TATTTTTCTA AAATAGCAAG TATATTTTCT 120 AATTTTCAGA AAATTTCTCC AATAAAAACC AACTCTTAGA ACTGATTCTT CATTTCACTT 180 ATTTATCTTC AGTAACTACT TCCTGAAGAT AAGCGTCAAA AACTTCTTCA TCTGAAATCG 240 TGTCAGAAAT GAAGCTTCCA TTGCTAGTGC GTTCTGACAA GTTCAAGTCT TGCAATCGGC 300 TTTCATAGAT TGTTCCTTTA TTGGATTGGA CAAGCAGAGT TTGGTCGTTC ACATCCACTT 360 CCGTACTGAA GAAATCGCCA ACAAATCCTT GCTCTGCAAC TGCTCCTGCC AAGAAGACAC 420 GATGCGGTTT GTTTTCAAC TCACGCAAGA CTTGTAATCC TCGTTTGGCA CGGCTGGTTG 480 CTAGAATTTC CTCAATGGAA ACACGTTTCA AGCTTCCACG CTGGGTCAAG AGGTAGAAGG 540 ACGAAGTATT ACAGATAAAG CCAGATTGGA GGACATCATC TTCTTTCAAA TTCATAGCCT 600 TGACACCTGC TGCCTTAGCA CCGACAACCG GAACCTCTTC GATATTGAAA CGCAGGGCAT 660 AACCATTTTG ACTAACCAAG ACAACATCAT CTAGTTTAAT CGGAGCCACT GCTACAATCT 720 GATCTGTATC GTCTTTGAGC TTAGCATACT TGACAGACTT AGATCTATAG GTCCGCCATG 780 GAGTGAATTC TTTTCGCTCT ACCCGTTTGA TTTGACCAAG GCGAGTCACT GCAAAGTAGG 840 TTGTCGCATC GTCAAACTGA TCCAGTACTT CCACATAAAG GATTTCTTCA TTCGTTTCAA 900 AGTTTGTGAT GGTTTGGCTC AGATGCTCTC CGATGTCCTT CCAACGAATA TCTGCCAACT 960 CATGGATTGG TCTGTAGATG ACATTTCCAA GACTTGTGAA CATCAAGAGG TGCTGGGTTG 1020 TCTTGGCAGA TTGAACAAAA ATCAAACGGT CATCATCACG CTTGCCAATT TCTTCCAAGG 1080 TGGAAGCCGC AAAGGAACGT GGACTGGTAC GCTTGATGTA ACCTGCCTTG GTCACGCTGA 1140

CGTAGGTATC	TTCCTCAGCG	ATAAGACTAG	372 CTGTATCAAT	CTCAATTGCT	TTCGCAGTGT	1200
CTTCTAAAGA	ACTCAAACGA	GGAGTTGCAA	ATTTCTTCTT	GACCTCACGA	AGTTCTTTCT	1260
TCATGAGATT	GTACATAGTC	CTTTCATCAC	CGATAATAGC	CGCCAGCATA	GCAATCTTCT	1320
CACGAAGCTC	TGCTTCTTCT	TCCTGCAAGA	CAACCACATC	GGTATTGGTC	AAACGGTACA	1380
GTTGCAAAGT	TACGATAGCC	TCAGCCTGTT	CTTCCGTAAA	ATCATAGCTA	ACTTTGAGGT	1440
TTTCCTTGGC	GTCCGCCTTA	TTCTCAGAAG	CACGGATAAG	AGCAATGACT	тсатссаала	1500
TCGAAATCAC	ACGAATCAAA	CCTTCGACGA	TATGGAGACG	TTTCTCAGCC	ТТТТСТТТ GТ	1560
CAAAGCGTGA	ACGCGCCAAA	ATCACTTCTC	GACGGTGAGC	GATATAGCTA	GACAGGATTG	1620
GAACAATCCC	AACCTGACGA	GGTGTGAAAT	TGTCAATCGC	САССАТАТТА	AAGTTGTAGT	1680
TGATTTGTAG	GTCGGTGTAC	TTAAATAAGT	AGTTGAGAAC	AAGCTCAGTA	TTAGCGTCTT	1740
TCTTAAGTTC	GATAGCGATA	CGAAGACCAT	CACGGTCAGA	CTCATCACGA	ACCTCAGCAA	1800
TCCCAGCTAC	CTTGTTATTA	ACACGAACAT	CATCGATTTT	CTTGACTAGA	TTGGCCTTAT	1860
TGATTTCATA	AGGAATCTCA	ATAATAACGA	TTTGTTCCTT	ACCACCTTTT	AGCTTTTCAA	1920
TTTCAGTCTT	GGAACGAACA	ACCACGCGCC	CTTTCCCAGT	CTCATAAGCT	TTCTTGATTT	1980
CATCACGACC	CTGAATAATA	GCCCCTGTAG	GGAAGTCTGG	TCCAGGCAAG	AATTCCATGA	2040
GTTTATCAAT	CTTTGCAGTT	GGGTGGTCAA	TCATGTAAAC	TGCAGCATCT	ATGACCTCAG	2100
CTAAATTATG	GGGAGGAATG	TCTGTGGCAT	AACCAGCCGA	AATCCCAGTC	GAACCATTGA	2160
CCAAGAGGTT	TGGAAAGGCT	GCTGGCAAGA	CCGTTGGTTC	TTTCTCCGTA	TCGTCAAAGT	2220
TCCATGCAAA	AGGAACTGTC	TTTTTCTCGA	TATCCTGAAG	AAGGTAGCCT	GCAATTTCAG	2280
ACAAACGTGC	CTCAGTATAA	CGCATAGCCG	CAGGAGGATC	TCCGTCCATA	GAACCGTTAT	2340
TACCGTGCAT	TTCAACTAGA	ATCTCACGAT	TTTTCCAGTT	CTGTGACATA	CGAACCATGG	2400
CATCATAGAT	AGAAGAATCC	CCGTGTGGGT	GGAAATTCCC	CATGATGTTC	CCGACTGACT	2460
TGGCCGACTT	ACGGTAGCTC	TTGTCAAAAG	TATTGCTATC	CTTATTCATA	GAATAAAGAA	2520
TACGGCGCTG	AACCGGCTTC	AACCCATCAC	GAATATCTGG	CAAAGCCCGG	TCTTGAATAA	2580
TGTACTTGGA	GTAGCGACCA	AAGCGCTCTC	CCATGATGTC	CTCCAGGGAC	ATGTTTTGAA	2640
TGTTAGACAT	AAGATACAAA	GCCCATAAAA	TACCAAGTGA	AAATAGAAAA	TTCTTGAAGT	2700
AAGCAAACTC	ACAAGAGAAT	TTATCTTTTT	CACACAGTAT	CTAGGGCGTG	TTCAACTCCT	2760
TTCAAAGAAT	GTAGAGTAGG	TTTTTATGCA	GTAAAAGATA	TTTTACGGGA	ATTCCTCCCG	2820
TGTTCAGTTA	CGATAAGTAA	CCAAACTATC	CTGTTTGTAT	TTTTCAATAT	GAAAATCTGG	2880
TTTTCCAAAA	TTAGTCTTAG	TTTGTGTCTT	AGCCGCTCCC	TTAAGCGCCT	CTTTGAGATA	2940

AGCACTCATA	GCAGATTCTT	САТТААТААТ	CCTGCAATTT	TTTCAAACCA	AGATTTTCAA	3000
ACTGCTTTTT	CACATAGTCA	TTCACATCCG	ACTCTAATTT	CCAGTTTACT	AACATATTAT	3060
TTTCTTTCAT	TAAAACACTG	TCGTTTCTTC	TAGCGTAAAC	TTGACATTAT	CTTCAATCCA	3120
TTTACGGCGT	GGTTCTACCT	TATCTCCCAT	GAGAACATTG	ACGCGGCGTT	CGGCGCGCGC	3180
TAAATCTTCA	ATTGTGACAC	GGATGAGGGT	ACGIGITICT	GGGTTCATGG	TTGTTTCCCA	3240
GAGCTGGTCC	GCATTCATCT	CACCAAGTCC	TTTGTATCGT	TGGAGGGTAG	CGCCTTTACC	3300
GAACTGTTTA	CGGAGTTCTT	CTAGTTCTCC	GTCCGTCCAA	GCGTAGGCCA	CTTCTTCTTT	3360
CTTGCCTTTA	CCTTTGGACA	TCTTGTAAAG	AGGTGGGAGG	GCAATATAGA	CATGACCTGC	3420
CTCGACTAGO	GGACGCATGT	AACGGTAGAA	AAATGTCAAG	AGCAAGGTCT	GGATATGGGC	3480
ACCGTCGGTA	TCCGCATCGG	TCATGATAAT	GATCTTATCA	TAGTTGGCAT	CTTCAATAGA	3540
GAAGTCTGCT	CCAACACCCG	CACCAATGGT	ATAAATCATG	GTATTGATCT	CTTCATTTTT	3600
GAGGATATCC	GCCATCTTGG	CCTTGGCTGT	ATTGACAACC	TTACCACGAA	GAGGTAGAAT	3660
AGCCTGGAAC	TTGCGGTCAC	GACCTTGTTT	GGCAGAACCA	CCGGCAGAGT	CCCCCTCAAC	3720
TAGATAGAGT	TCATTCTTAG	CAGGATTCTT	AGATTGGGCT	GGGGTCAATT	TCCCAGACAA	3780
CAAGCCCTTA	TCTTTCTTGT	TTTTCTTCCC	ATTTCGGCTC	TCATCACGCG	CCTTACGTGC	3840
TGCTTCACGA	GCATCACGGG	CCTTGATAGC	CTTGCGGATG	AGGTTAGAAG	CTAATTCCCC	3900
ATTTTCCATA	AGGAAAAAGG	TCAACTTATC	AGCCACTATT	CCATCCACAA	CTGGGCGAGC	3960
TAGGGGGCTT	CCTAGTTTAT	CCTTGGTCTG	TCCTTCAAAC	TGCAAGTGTT	CTTCAGGAAC	4020
TAAGATAGAA	AGAACGGCCG	CTAGTCCCTC	ACGATAGTCT	GAACCTTCAA	GGTTTTTATC	4080
TTTTTCCTTG	AGAAGACCTG	TTTTACGTGC	ATAGTCATTC	ATGACCTTGG	TAATGGCAGA	4140
CTTGAGTCCT	GTCTCGTGCG	TTCCACCGTC	CTTGGTGCGA	ACGTTATTGA	CAAAAGATAG	4200
AATGTTATCT	GAGAATCCGT	CATTGTACTG	GAGGGCTACT	TCCACTTGAA	AACCATTGTC	4260
TTCCCCTTCA	AAGTAAAGAA	CTGGCGTCAA	GATTTCCTTA	TCTTCGTTGA	GATAAGAAAC	4320
AAAATCTTGT	ACTCCATTCT	CATAGTGGAA	CTCAATCGCT	TCATTTGTTC	GCTTGTCCGT	4380
TAAAGACAAG	GTCACATTTT	TCAAGAGAAA	GGCTGATTCA	TTAAGGCGCT	CTGAAATGGT	4440
ATTGTACTTG	AAATCTGTCG	TAGAAAATAT	AGTCGCGTCA	GGCATAAAAG	TAACTTTGGT	4500
GCCTGTTTTA	GACTTGGGTG	CTGTACCGAT	TTTCTTCAAA	GTCGTGACAG	GTTTTCCACC	4560
ATTTTCGAAA	CGTTGCTTGT	AAACTGCGCC	ATCACGGGTA	ATTICAACTT	CTAACCAGCT	4620
AGAAAGGGCG	TTAACAACGG	AAGAACCCAC	TCCGTGAAGT	CCACCTGATG	TCTTATAGCC	4680

100			374			
ACCITGACCG	AATTTCCCTC	CGGCATGAAG	AATGGTAAAG	ATAACCTCAA	CAGTTGGAAT	4740
TCCCATAGCG	TGCATACCTG	TCGGCATCCC	ACGTCCATGG	TCTTGAACCG	TTAGACTACC	4800
GTCTTTATTG	ATAGTTACAT	CAATACGATC	ACCAAACCCA	GACAAGGCTT	CATCGACTGC	4860
ATTATCAACG	ATTTCCCAAA	CTAGGTGATG	AAGACCAGCG	CCATCGGTCG	АТССААТАТА	4920
CATCCCTGGA	CGTTTTCGGA	CCGCATCCAA	CCCTTCTAGC	ACCTGAATAG	CATCATCATT	4980
ATAATTGTTA	ATATTGATTT	CCTTTTTGA	CACAAGGAAC	CTCCTATTCG	TTCATCTTTA	5040
СТАТТСТАСА	GGTTTTCCAA	GGATTTTGCA	AAATTTTTCT	TTCTCCGATG	TGACAATTTC	5100
AGCAGAGATT	CTCTGCTTTT	CTTTCCCAAT	TCATGATATA	ATAGGAGTAT	GATTACAATA	5160
СТТТТАТТАА	TCCTAGCCTA	TCTGCTGGGT	TCGATTCCAT	CTGGTCTCTG	GATTGGACAA	5220
GTATTCTTTC	AAATCAATCT	ACGCGAGCAT	GGTTCTGGTA	ACACTGGAAC	GACCAACACC	5280
TTCCGCATTT	TAGGTAAGAA	AGCTGGTATG	GCAACCTTTG	TGATTGACTT	TTTCAAAGGA	5340
ACCCTAGCAA	CGCTGCTTCC	GATTATTTT	CATCTACAAG	GCGTTTCTCC	TCTCATCTTT	5400
GGACTTTTGG	CTGTTATCGG	CCATACCTTC	CCTATCTTTG	CAGGATTTAA	AGGTGGTAAG	5460
GCTGTCGCAA	CCAGTGCTGG	AGTGATTTTC	GGATTTGCGC	CTATCTTCTG	TCTCTACCTT	5520
GCGATTATCT	TCTTTGGAGC	TCTCTATCTT	GGCAGTATGA	TTTCACTGTC	TAGTGTCACA	5580
GCATCGATTG	CGGCTGTTAT	CGGGGTTCTG	CTCTTTCCAC	TTTTTGGTTT	TATCCTGAGT	5640
AACTATGACT	CTCTCTTCAT	CGCTATTATC	TTAGCACTTG	CTAGTTTGAT	TATCATTCGT	5700
CATAAGGACA	ATATAGCTCG	татсааааат	AAAACTGAAA	ATTTGGTCCC	TTGGGGATTG	5760
AACCTAACCC	ATCAAGATCC	ТАААААТАА	AATGCCAGTT	CTGTACTGCC	CCCAAACAGT	5820
TAGACAAATA	АТТТАТССАА	Aggatttagt	TCTGTACTGC	ACAGGACTAA	GTCCTTTTAG	5880
TTTTACCTTA	ATTCGTTTGT	TGTTGTAGTA	ATCAATATAG	TCTATAATGG	CTTGTTCCAA	5940
ITGATTAAGT	GATTTAAATG	TTTTCTCATA	GCCATAAAAC	ATTTCGGATT	ттаааатссс	6000
AAAGAAAGAT	TCCATCCTAC	CGTTGTCTTG	GCTGTTGCCC	TTACGTGACA	TGGATGCTTG	6060
AATTCCCTTA	CTCTCTAGGA	ACCGATGATA	AGAATCGTGT	TGGTATTGCC	AGCCTTGGTC	6120

(2) INFORMATION FOR SEQ ID NO: 38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18475 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

ACTATGGAGA ATCGTATTCT CGTAGTGCTT CTCTGTGAAT GCCTGTTCCA A

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

	-		15 No.	5 0.		
TATTACAAAT	AAAAAAACGG	AGGAGTGCTT	TATGAAAGCC	татасттатс	TTAAACCAGC	60
ACTTGCTTCT	TTTGTTGATG	TAGACAAACC	AGTTATTCGC	AAGCCAACAG	ACGCTATTGT	120
GCGTATTGTA	AAAACCACTA	TTTGTGGAAC	AGACCTCCAT	° АТТАТСАААС	GGGATGTTCC	180
TACTTGCCAA	AGTGGTACCA	TTCTTGGCCA	CGAAGGGATT	GGGATTGTTG	AAGAAGTTGG	240
GGAAGGAGTT	TCCAACTTCA	AAAAAGGTGA	CAAGGTCTTG	ATTTCTTGCG	TCTGTGCCTG	300
TGGTAAATGC	TACTACTGTA	AAAAAGGAAT	TTATGCTCAC	TGTGAAGACG	AAGGGGGCTG	360
GATTTTCGGT (CACTTGATTG	ATGGTATGCA	GGCTGAATAT	CTACGTGTCC	CTCATGCAGA	420
TAATACTCTT	TACCATACTC	CAGAAGACTT	GTCAGATGAA	GCTTTGGTTA	TGCTGTCAGA	480
CATTCTGCCT A	ACTGGATATG	AAATTGGTGT	CTTAAAAGGG	AAAGTAGAAC	CTGGTTGCAG	540
CGTAGCCATT A	ATTGGTTCAG	GTCCAGTTGG	ATTGGCTGCT	CTTTTAACAG	CCCAATTCTA	600
TTCACCAGCT A	AAATTGATTA	TGGTAGACCT	AGACGATAAC	CGCTTGGAAA	CTGCCCTATC	660
ATTCGGTGCG A	ACTCATAAGG	ттааттсттс	AGACCCTGAA	AAAGCCATTA	AAGAAATTTA	720
TGATTTGACA (GATGGTCGTG	GTGTGGATGT	CGCTATCGAA	GCTGTTGGTA	TTCCTGCAAC	780
ATTTGATTTC 1	rgtcaaaaga	TTATCGGTGT	AGACGGAACG	GTTGCCAACT	GTGGTGTGCA	840
TGGTAAACCA G	STTGAATTCG	ATTTAGATAA	ACTTTGGATT	CGCAACATCA	ATGTAACAAC	900
TGGTTTGGTA I	СТАСАААТА	CGACTCCACA	ATTGTTGAAA	GCACTTGAAA	GTCATAAGAT	960
TGAACCGGAA A	AATTGGTAA	CTCACTATTT	CAAACTCAGT	GAAATTGAAA	AAGCCTACGA	1020
AGTCTTCAGT A	AGGCAGCAG	ACCACCATGC	CATTAAGGTC	ATTATCGAAA	ACGATATCTC	1080
AGAAGCCTAA G	TAGTAAAAA	TATTTTTGTA	CATAAGTAAA	TAGAAATTCA	GTCATCCATC	1140
AGATGGCTGG A	TTTTTTATC	Aaaaaattaa	GAAATGAGCA	TATTTCTTTC	CTTGTCTGGC	1200
GGAATTGGTT A	TAATATACG	GTACAAAGGA	ATGAATGAAT	ATGTATCGTG	TTATAGAAAT	1260
GTACGGAGAT T	TTGAACCGT	GGTGGTTCTT	AGAAGGTTGG	GAAGAAGATA	TTGTAGCAAG	1320
тадааааттт g	ACCAGTATT	ATGATGCTCT	САААТАСТАС	AAAACTTGCT	GGTTTAGATT	1380
GGAACAAGAA T	CGCCTCTTT /	ATAAAAGTAG	AAGCGACTTG	ATGACCATTT	TTTGGGACCC	1440
GGAAGACCAA C	GCTGGTGTG	ATGAATGTGA	TGAGTATTTA	СААСААТАСС	ATTCTTTGGC	1500
TCTTTTGCAG G	ATGAGCAGG '	PTATCCCAGA	ССВАЛЛАСТА	CGCTCAGGCT	ATGAAAAACA	1560
AACCAGTCAG G	AAAGGAATC (GTTCTTGCCG	TATGAAATTA	AAATAGAGAA	AAGTAACTTT	1620
TTTGGAGTTG C	TTTTTTAT 1	ГТТТСТААСТ	CTTTGCGAAT	AGTATAGGTG	AGGAGGTAAG	1680

			376			
TATGGTTCAA	GAAATTGCAC	AAGAAATCAT	TCGTTCAGCT	CGGAAAAAAG	GGACGCAGGA	1740
TATCTATTTT	GTCCCTAAGT	TAGACGCCTA	TGAGCTTCAT	ATGAGGGTAG	GAGACGAGCG	1800
CTGTAAAATT	GGTAGCTATG	ATTTTGAAAA	GTTTGCAGCC	GTTATCAGTC	ACTTTAAGTT	1860
TGTGGCGGGT	ATGAATGTGG	GAGAAAAAAG	ACGTAGTCAA	CTGGGTTCCT	GTGATTATGC	1920
CTATGACCAT	AAGATAGCGT	CTCTACGTTT	ATCTACTGTA	GGCGATTATC	GGGGCATGA	1980
GAGTTTGGTT	ATCCGTTTGT	TGCACGATGA	GGAGCAGGAC	CTGCATTTTT	GGTTTCAGGA	2040
TATTGAAGAA	TTAGGCAAGC	AGTACAGGCA	ACGGGGACTC	TATCTTTTTG	CTGGTCCGGT	2100
TGGGAGTGGT	AAGACGACCT	TGATGCATGA	ATTGTCCAAG	TCACTCTTTA	AAGGACAGCA	2160
AGTTATGTCC	ATCGAAGATC	CTGTCGAAAT	CAAGCAGGAC	GACATGCTTC	AGTTGCAGTT	2220
GAACGAAGCA	ATCGGCCTAA	CCTATGAAAA	TCTAATCAAA	CTTTCCTTGC	GTCATCGACC	2280
AGATCTCTTG	ATTATCGGAG	AAATTCGTGA	CAGCGAGACG	GCGCGTGCAG	TGGTCAGAGC	2340
TAGTTTGACA	GGTGCGACAG	TCTTTTCAAC	CATTCACGCC	AAGAGTATCC	GAGGTGTTTA	2400
TGAGCGTCTG	CTGGAGTTGG	GTGTGAGTGA	AGAAGAATTG	GCAGTTGTTC	TGCAAGGAGT	2460
CTGCTACCAG	AGATTAATCG	GGGGAGGAGG	AATCGTTGAC	TTTGCAAGCA	GAGATTATCA	2520
AGAACACCAA	GCAGCCAAGT	GGAATGAGCA	AATTGACCAG	CTTCTTAAAG	ATGGACATAT	2580
CACAAGTCTT	CAGGCTGAGA	CGGAAAAAAT	TAGCTACAGC	TAAGCAAAAA	AATATCATCA	2640
CCCTATTTAA	CAATCTCTTT	TCTAGCGGTT	TTCATCTGGT	GGAGACTATC	TCCTTTTTAG	2700
ATAGGAGTGC	TTTGTTGGAC	AAGCAGTGTG	TGACCCAGAT	GCGTGTGGGC	TTGTCTCAGG	2760
GGAAATCATT	CTCAGAAATG	ATGGAAAGTT	TGGGATGTTC	AAGTGCTATT	GTCACTCAGT	2820
TATCCCTAGC	TGAAGTTCAT	GGCAATCTCC	ACCTGAGTTT	GGGAAAGATA	GAAGAATATC	2880
TGGACAATCT	GGCTAAGGTC	AAGAAAAAT	TGATTGAAGT	AGCGACCTAT	CCCTTGATTT	2940
TGCTGGGTTT	TCTTCTCTTA	ATTATGCTGG	GGCTACGGAA	TTACCTGCTC	CCACAACTGG	3000
ATAGTAGCAA	TATTGCCACC	CAAATTATCG	GTAATCTGCC	CCAAATTTTT	CTAGGCATGG	3060
TAGGGCTTGT	TTCCGTGCTT	GCCCTTTTAG	CACTCACTTT	TTATAAAAGA	AGTTCTAAGA	3120
TGAGTGTCTT	ттстатстта	GCACGCCTTC	CCTTTATTGG	AATCTTTGTG	CAGACCTACT	3180
TGACAGCCTA	TTATGCACGT	GAATGGGGGA	ATATGATTTC	ACAGGGAATG	GAGTTGACGC	3240
AGATTTTTCA	AATGATGCAG	GAACAAGGTT	CCCAGCTCTT	TAAAGAAGTC	GGTCAAGATC	3300
TGGCTCAAAC	CCTGAAAAAT	GGCCGTGAAT	TTTCTCAGAC	GATAGGAACC	TATCCTTTCT	3360
TTAGGAAGGA	ATTGAGTCTC	ATCATAGAGT	ATGGGGAAGT	TAAGTCCAAG	CTGGGTAGTG	3420
AGTTGGAAAT	CTATGCTGAA	AAAACTTGGG	AAGCCTTTTT	TACCCGAGTC	AACCGCACCA	3480

TGAATTT	GGT	GCAGCCACTG	GTTTTTATCT	TTGTGGCACT	GATTATCGTT	TTACTTTATG	3540
CGGCAAT	GCT	CATGCCCATG	ТАТСААААТА	TGGAGGTAAA	ТТТТТААААТ	GAAAAAAATG	3600
ATGACAT'	rct	TGAAAAAAGC	TAAGGTTAAA	GCTTTTACAT	TGGTGGAGAT	GTTGGTGGTC	3660
PTGCTGAT	PTA	TCAGCGTGCT	TTTCTTGCTC	TTTGTACCTA	ATCTGACCAA	GCAAAAAGAA	3720
GCAGTCA	ATG	ACAAAGGAAA	AGCAGCTGTT	GTTAAGGTGG	TGGAAAGCCA	GGCAGAACTT	3780
PATAGCT1	rag	AAAAGAATGA	AGATGCTAGC	CTAAGAAAGT	TACAAGCAGA	TGGACGCATC	3840
ACGGAAGA	\AC	AGGCTAAAGC	TTATAAAGAA	TACAATGATA	AAAATGGAGG	AGCAAATCGT	3900
AAAGTCA	ATG	ATTAAGGCCT	TTACCATGCT	GGAAAGTCTC	TTGGTTTTGG	GACTTGTGAG	3960
PATCCTTC	CC	TTGGGCTTGT	CCGGCTCTGT	CCAGTCCACT	TTTTCAGCGG	TAGAGGAACA	4020
GATTTTCT	TT	ATGGAGTTTG	AAGAACTCTA	TCGGGAAACC	CAAAAACGCA	GTGTAGCCAG	4080
rcagcaa?	AAG	ACTAGTCTGA	ACTTAGATGG	GCAGACGCTT	AGCAATGGCA	GTCAAAAGTT	4140
CCAGTCC	CT	AAAGGAATTC	AGGCCCCATC	AGGCCAAAGT	ATTACATTTG	ACCGAGCTGG	4200
GGCAATT	'CG	TCCCTGGCTA	AGGTTGAATT	TCAGACCAGT	AAAGGAGCGA	TTCGCTATCA	4260
\TTATAT C	TA	GGAAATGGAA	AAATTAAACG	CATTAAGGAA	ACAAAAAATT	AGGGCAGTGA	4320
TTTACTO	GA	AGCAGTAGTC	GCTCTAGCTA	TCTTTGCCAG	CATTGCGACC	CTCCTTTTGG	4380
ACAAATI	CA	AAAAAATAGG	CAAGAGGAAG	CAAAAATCTT	GCAAAAGGAA	GAAGTCTTGA	4440
GGTAGCT	'AA	GATGGCCCTG	CAGACGGGGC	AAAATCAGGT	AAGCATCAAC	GGAGTTGAGA	4500
TCAGGTA	TT	TTCTAGTGAA	AAAGGATTGG	AGGTCTACCA	TGGTTCAGAA	CAGTTGTTGG	4560
AATCAAA	GA	GCCATAAGGT	CAAGGCTTTT	ACCTTGTTAG	AATCCCTGCT	TGCCCTCATT	4620
TCATCAG	TG	GGGGATTACT	CCTTTTTCAA	GCTATGAGTC	AGCTCCTCAT	TTCAGAAGTT	4680
GCTACCA	GC	AACAAAGCGA	GCAAAAGGAG	TGGCTCTTGT	TTGTGGACCA	ACTTGAGGTA	4740
AATTAGA	CC	GTTCGCAGTT	CGAAAAAGTA	GAAGGCAATC	GCCTATACAT	GAAGCAAGAT	4800
GCAAGGA	CA	TCGCCATCGG	TAAGTCAAAG	TCAGATGATT	TCCGTAAAAC	GAATGCTCGT	4860
GTCGAGG	TT	ATCAGCCTAT	GGTTTATGGA	CTCAAATCTG	TACGGATTAC	AGAGGACAAT	4920
AACTGGT	TC	GCTTTCATTT	CCAGTTCCAA	AAAGGCTTAG	AAAGGGAGTT	CATCTATCGT	4980
TGGAAAA	AG	AAAAAAGTTA	AGGCAGGTGT	TCTCCTCTAC	GCAGTCACCA	TAGCAGCCAT	5040
TTTAGTC	TT	TTGTTGCAAT	TTTATTTGAA	CCGACAAGTC	GCCCACTATC	AAGACTATGC	5100
TTGAATA	AA	Gaaaaattgg	TTGCTTTTGC	TATGGCTAAA	CGAACCAAAG	ATAAGGTTGA	5160
CAACAAA	СT	CCCCAACACT	መመመመጣል አመረጥ	ACCOCACCONA	እ <i>ርር</i> ጥ አጥር እ እ እ	3633633336	5220

			378			
TGGCTTAGTG	ACGAGGGTTC	GTACGGATAA	GAGCCAATAT	GAGTTTCTGT	TTCCTTCAGT	5280
СААААТСААА	GAAGAGAAAA	GAGATAAAAA	GGAAGAGGTA	GCGACCGATT	CAAGCGAAAA	5340
AGTGGAGAAG	AAAAAATCAG	AAGAGAAGCC	TGAAAAGAAA	GAGAATTCAT	AGTCAATTCA	5400
ACTATAATGC	GTTGAATCCA	GAATAGTCCA	CTGTAGTTTC	TAGAAAATTG	CTGGAAATGG	5460
ATGTTAAGCT	CCAATTCATT	TGTTTATATC	TTATTTCAGT	TTACTATACT	TTGTGCTAAA	5520
TTAAAGATAT	GAAACATGAT	TTTAACCACA	AAGCAGAAAC	TTTCGATTCC	ССТАААААТА	5580
TCTTCCTCGC	AAACTTGGTA	TGTCAAGCAG	CCGAGAAACA	GATTGATCTT	CTATCAGACA	5640
AAGAAATTTT	AGATTTCGGT	GGTGGCACGG	GTCTATTAGC	CTTGCCCCTA	ACCCCTAGCC	5700
AAGCAGGCTA	AGTCAGTCAC	TCTTGTAGAC	ATTTCTGAGA	AAATGTTGGA	GCAAGCTCGT	5760
TTGAAAGTGG	AGCAGCAAGC	AATCAAGAAT	ATCCAGTTTT	TGGAGCAAGA	TTTACCGAAA	5820
AATCCCTTGG	AGAAAGAGTT	TGATTGCCTT	GCTGTTAGTC	GGGTTCTTCA	TCATATGCCT	5880
GATTTGGATG	CGGCTCTCTC	ACTGTTTCAT	CAACATTTGA	AGGAAGATGG	GAAACTCATC	5940
ATTGCTGATT	TTACCAAGAC	AGAAGCTAAT	CATCATGGAT	TTGATTTAGC	TGAACTGGAA	6000
AACAAGCTAA	TTGAGCATGG	TTTTTCATCT	GTGCATAGTC	AGATTCTCTA	TAGTGCTGAA	6060
GACCTGTTTC	AAGGAAATCA	CTCAGAATTC	TTTTTAATAG	TAGCCCAAAA	ATCACTCGCC	6120
TAGTCAGGGA	GTGATTTTTC	TATAAGGATG	GAAAAAAGAA	GGGAAATTTG	GTAAGATAGG	6180
AATATGGATT	TTGAAAAAAT	TGAACAAGCT	TATACCTATT	TACTAGAGAA	TGTCCAAGTC	6240
ATCCAAAGTG	ATTTGGCGAC	CAACTTTTAT	GACGCCTTGG	TGGAGCAAAA	TAGCATCTAT	6300
CTGGATGGTG	AAACTGAGCT	AAACCAGGTC	AAGGAGAACA	ATCAAACCCT	TAAGCGTTTA	6360
GCACTACGCA	AAGAAGAATG	GCTCAAGACC	TACCAGTTTC	TCTTGATGAA	GGCTGGGCAA	6420
ACAGAACCCT	TGCAGGCCAA	TCACCAGTTT	ACACCGGATG	CTATTGCTTT	GCTTTTGGTG	6480
TTTATTGTGG	AAGAGTTGTT	TAAAGAGGAG	GAAATTACTA	TCCTCGAAAT	GGGTTCTGGG	6540
ATGGGAATTC	TAGGCGCTAT	TTTCTTGACC	TCGCTTACTA	AAAAGGTGGA	TTACTTGGGA	6600
ATGGAAGTGG	ATGATTTGCT	GATTGATCTG	GCAGCTAGCA	TGGCAGATGT	AATTGGTTTG	6660
CAGGCTGGCT	TTGTCCAAGG	AGATGCCGTT	CGCCCACAAA	TGCTCAAAGA	AAGCGATGTG	6720
GTCATCAGTG	ACTTGCCTGT	CGGCTATTAT	CCTGATGATG	CCGTTGCGTC	GCGCCATCAA	6780
GTTGCTTCTA	GCCAAGAACA	TACTTACGCC	CATCACTTGC	TCATGGAACA	AGGGCTTAAG	6840
TACCTCAAGT	CAGACGGATA	CGCTATTTTT	CTAGCTCCGA	GTGATTTGTT	GACCAGTCCT	6900
CAAAGTGATT	TGTTAAAAGA	ATGGCTGAAA	GAAGAGGCGA	GTCTGGTTGC	TATGATTAGT	6960
CTGCCTGAAA	ATCTCTTTGC	TAATGCCAAA	CAATCTAAGA	СТАТТТТАТ	CTTACAGAAG	7020

AAAAATGAAA	TAGCAGTAGA	GCCTTTTGTT	TATCCACTTG	CTAGCTTGCA	AGATGCAAGT	708
GTTTTAATGA	AATTTAAAGA	AAATTTTCAA	AAATGGACTC	AAGGTACTGA	ААТАТААААТ	7140
AGATTTTGTT	ATAATAGTTG	AAAACGCTTA	AAAAGGGGTA	TCATGTTATG	ACAAAAACAA	7200
TTGCAATCAA	TGCAGGAAGT	TCAAGTTTGA	AATGGCAATT	ATACTTAATG	CCAGAAGAAA	7260
AAGTATTGGC	GAAAGGTTTG	ATTGAACGTA	TCGGTTTGAA	AGATTCAATT	TCAACTGTAA	7320
AATTTGACGG	CCGTTCTGAA	CAACAAATTT	TGGATATTGA	AAATCATATA	CAAGCCGTTA	7380
AAATTTTATT	GGATGACTTG	ATTCGTTTCG	ATATTATCAA	GGCTTATGAC	GAGATTACAG	7440
GTGTTGGACA	TCGTGTTGTT	GCTGGTGGAG	AATATTTCAA	AGAATCAACA	GTTGTTGAGG	7500
GAGATGTTTT	agaaaaagtt	GAAGAGTTGA	GTTTGTTGGC	TCCTCTACAC	AACCCGGCCA	7560
ATGCAGCAGG	TGTTCGTGCC	TTCAAGGAAT	TGTTGCCAGA	CATTACCAGT	GTAGTTGTTT	7620
TTGATACTTC	CTTCCACACA	AGTATGCCAG	AGAAAGCTTA	TCGCTACCCT	CTACCAACAA	7680
AATATTACAC	AGAAAACAAG	GTTCGTAAAT	ACGGTGCTCA	TGGTACAAGT	CACCAGTTTG	7740
TAGCAGGAGA	AGCTGCAAAA	CTCTTGGGAC	GTCCATTAGA	AGACTTGAAG	ттааттасст	7800
GTCATATTGG	TAACGGAGGC	TCAATTACAG	CTGTGAAAGC	CGGCAAATCT	GTAGACACTT	7860
CTATGGGGTT	CACTCCTCTT	GGTGGTATTA	TGATGGGAAC	GCGTACAGGG	GATATTGATC	7920
CAGCTATCAT	TCCTTATTTA	ATGCAATATA	CAGAGGATTT	TAACACACCA	GAAGATATCA	7980
GTCGTGTTCT	TAACCGTGAA	TCAGGTCTTT	TGGGAGTTTC	TGCTAATTCT	AGCGATATGC	8040
GCGATATAGA	AGCAGCTGTA	GCAGAAGGGA	ATCACGAGGC	TAGCTTGGCT	TATGAAATGT	8100
ATGTTGACCG	TATCCAAAAA	CATATCGGTC	AGTACCTTGC	AGTGCTAAAT	GGAGCAGATG	8160
CCATTGTTTT	CACAGCAGGT	GTCGGTGAAA	ATGCAGAGAG	TTTCCGTCGT	GATGTAATCT	8220
CAGGGATTTC	GTGGTTTGGT	TGTGATGTTG	ATGATGAAAA	GAATGTCTTT	GGCGTTACAG	8280
GAGACATCTC	AACAGAGGCA	GCTAAAATCC	GTGTCTTGGT	TATTCCAACA	GATGAAGAAT	8340
TAGTCATTGC	CCGTGACGTT	GAACGCTTGA	AAAAATAAGT	GAAACTAAAA	AAATATTCAA	8400
TACAAGGAGT	TGGGAAAGTT	ATTTTTCCAG	CTTCTTTTTC	TGATGAAATT	GTCCAAAACC	8460
TTGCTATGAT	TGGCTTTTTT	GAAAAATATG	GTATAATAGT	AGTAATTTAA	TAGATGGAGT	8520
TGAGTTTTGA	AGAAAAACTT	TCGTGTAAAA	AGAGAGAAAG	ATTTTAAGGC	GATTTTCAAG	. 8580
GAGGGGACAA	GTTTTGCTAA	TCGCAAATTT	GTGGTCTACC	AATTAGAAAA	CCAGAAAAAC	8640
CGTTTTCGAG	TAGGTCTATC	AGTTAGCAAA	AAACTGGGGA	ATGCCGTCAC	TAGAAATCAA	8700
ATTAAGCGAC	GGATTCGGCA	TATTATCCAG	AATGCAAAAG	GGAGTCTGGT	AGAAGATGTC	8760

380 GACTTTGTTG TCATTGCTCG AAAAGGAGTC GAAACCTTGG GATACGCAGA GATGGAGAAA 8820 AATCTACTCC ATGTATTAAA ATTATCAAAG ATTTACCGGG AAGGAAATGG GAGTGAAAAA 8880 GAAACTAAAG TTGACTAGTT TGCTAGGACT GTCTCTGTTA ATCATGACAG CCTGTGCGAC 8940 TAATGGGGTA ACTAGCGATA TTACAGCCGA ATCGGCTGAT TTTTGGAGTA AATTGGTTTA 9000 CTTCTTTGCG GAAATCATTC GCTTTTATC GTTTGATATT AGTATCGGAG TGGGGATTAT 9060 TCTCTTTACG GTCTTGATTC GTACAGTCCT CTTGCCAGTC TTTCAGGTGC AAATGGTGGC 9120 TTCTAGGAAA ATGCAGGAAG CTCAGCCACG CATTAAGGCG CTTCGAGAAC AATATCCAGG 9180 TCGAGATATG GAAAGCAGAA CCAAACTAGA GCAGGAAATG CGTAAAGTAT TTAAAGAAAT 9240 GGGTGTCAGA CAGTCAGACT CTCTTTGGCC GATTTTGATT CAGATGCCGG TTATTTTGGC 9300 CCTGTTCCAA GCCCTATCAA GAGTTGACTT TTTAAAGACA GGTCATTTCT TATGGATTAA 9360 CCTTGGTAGT GTGGATACAA CCCTTGTTCT TCCGATTTTA GCAGCAGTAT TCACCTTTTT 9420 AAGTACTTGG TTGTCCAACA AAGCTTTGTC TGAGCGAAAT GGCGCTACGA CTGCGATGAT 9480 GTATGGGATT CCAGTCTTGA TTTTTATCTT TGCAGTTTAT GCGCCAGGTG GAGTCGCCCT 9540 ATACTGGACA GTGTCTAATG CTTATCAAGT CTTGCAAACC TATTTCTTGA ATAATCCATT 9600 CAAGATTATC GCAGAGCGCG AGGCCGTAGT ACAGGCACAA AAAGATTTGG AAAATAGAAA 9660 AAGAAAAGCC AAGAAAAAGG CTCAGAAAAC GAAATAAATA AGGAGGAATC TGGTAGTGGT 9720 AGTATTTACA GGTTCAACTG TTGAAGAAGC AATCCAGAAA GGATTGAAAG AATTAGATAT 9780 TCCAAGAATG AAGGCTCATA TCAAAGTCAT TTCTAGGGAG AAAAAAGGCT TTCTTGGTCT 9840 ATTTGGTAAA AAACCAGCCC AAGTGGATAT TGAAGCGATT AGTGAAACGA CTGTTGTCAA 9900 AGCAAATCAA CAGGTAGTAA AAGGCGTTCC GAAAAAAATC AATGATTTGA ACGAGCCTGT 9960 GAAGACGGTT AGTGAAGAAA CCGTTGACCT TGGTCATGTG GTTGATGCTA TTAAAAAAAT 10020 AGAGGAAGAA GGTCAAGGTA TTTCTGATGA AGTCAAGGCT GAAATCTTAA AACATGAAAG 10080 ACATGCCAGC ACTATCTTAG AAGAAACTGG TCACATTGAG ATTTTAAATG AACTTCAAAT 10140 CGAGGAAGCG ATGAGGGAAG AAGCAGGCGC TGATGACCTT GAAACTGAGC AAGACCAAGC 10200 TGAAAGTCAA GAACTAGAAG ACTTGGGCTT GAAAGTTGAA ACGAACTTTG ATATTGAACA 10260 AGTAGCTACG GAAGTAATGG CTTATGTTCA AACGATTATT GATGACATGG ATGTTGAGGC 10320 TACACTTTCA AATGATTATA ACCGTCGTAG CATCAATCTA CAAATTGACA CCAACGAACC 10380 AGGTCGTATT ATCGGCTACC ATGGTAAAGT CTTGAAGGCC TTGCAACTGT TGGCTCAAAA 10440 TTATCTTTAC AACCGCTATT CCAGAACCTT CTACGTTACA ATCAATGTCA ATGATTATGT 10500

CGAACACCGT GCAGAAGTCT TGCAGACCTA TGCGCAAAAA TTGGCGACTC GTGTTTTGGA

AGAAC	GGCGC	AGTCATAAAA	CAGATCCAAT	GTCAAATAGC	GAACGCAAGA	TTATCCATCG	10620
TATTA	ATTTCA	CGTATGGATG	GCGTGACTAG	TTACTCTGAA	GGTGATGAGC	CAAATCGCTA	10680
TGTTC	TTGTA	GATACAGAAT	AAGTAAAATC	AGGTTTATCC	TGATTTTTTG	CTAGTTAGAG	10740
GAGGT	TAAAC	TGATGTTGAA	TAAGATAAGA	GACTATTTAG	ACTTTGCTGG	TTTGCAGTAC	10800
CGTAA	TCCTG	ATAAAGCGGG	AGCAGAGCGA	GAGAAGATGC	TGGCATTCCG	CCACAAAGGA	10860
CAAGA	GCCC	GAAAGGTTTT	TACAGAACTG	GCCAAAGCCT	TTCAAGCAAG	CCATCCAGAA	10920
TGGCA	ACTCC	AACAGACTAG	CCAGTGGATG	AATCAGGCCC	AGCGTTTGAG	ACCACATTTT	10980
TGGGT	TTATC	TACAGAGAGA	CGGACAAGTG	ACAGAACCTA	TGATGGCCTT	ACGTTTGTAT	11040
GGGAC	ATCTA	CTGACTTTGG	AATTTCTTTG	GAAGTCAGTT	TCATCGAACG	TAAGAAGGAT	11100
GAGCA	AACAC	TGGGCAAGCA	GGCCAAAGTT	TTAGACATTC	CAACCGTTAA	AGGGATTTAT	11160
TATCT	AACCT	ACTCTAATGG	TCAAAGTCAA	CGGTGGGAGG	CGAATGAAGA	AAAGCGTCGT	11220
ACTTT	ACGCG	AGAAGGTGAG	AAGTCAAGAA	GTTCGAAAAG	TTTTAGTGAA	GGTAGATGTT	11280
CCTAT	GACAG	AAAATTCGTC	TGAAGAAGAA	ATCGTAGAAG	GCTTATTGAA	GTCTTATTCT	11340
TAAAA	ጥር ጥር	CCTATTATCT	AGCTACGAGA	AAATAAGATA	ATTTGTAAAA	САТСАТАААТ	11400
CATAC	AGTCC	AAGAGTGAAC	AGTCCGCTGT	GTAATTCTTG	GTCTTTTTGT	TTGCGCTTTC	11460
GCATT	ATATA	ATAAACTTAC	AAAAACAATT	CAAAAGGAGA	ACAATTATGG	AAGTCGTTTC	11520
AAGTG	TTCTA	AATTGGTTTT	CTAGCAATAT	TTTGCAGAAT	CCCGCATTTT	TCGTAGGTTT	11580
ATTGG	TGTTG	ATAGGATATG	CACTTTTGAA	AAAACCTGCC	CATGACGTTT	TTTCAGGGTT	11640
TGTTA	AAGCA	ACAGTAGGGT	ATATGTTGCT	TAACGTGGGT	GCTGGTGGTT	TGGTTACAAC	11700
CTTTC	GTCCA	ATCTTAGCAG	CTCTTAACTA	CAAATTCCAA	ATTGGTGCAG	CGGTTATCGA	11760
CCCTT	ACTTT	GGACTTGCTG	CAGCAAACAA	CAAAATTGTA	GCAGAGTTTC	CAGATTTTGT	11820
TGGAA	CTGCA	ACTACAGCTC	TATTGATTGG	TTTTGGAATA	AATATCTTGC	TCGTAGCTCT	11880
TCGAA	AGATT	ACGAAGGTAA	GAACCCTCTT	TATTACTGGT	CACATCATGG	TACAACAAGC	11940
TGCAA	CAGTA	TCTCTTATGG	TTCTATTCTT	AGTACCACAA	TTGCGCAATG	CTTACGGTAC	12000
AGCAG	CGATT	GGTATCATCT	GTGGACTTTA	CTGGGCAGTT	AGTTCAAATA	TGACTGTTGA	12060
GGCAA	CTCAA	CGCTTGACTG	GTGGTGGCGG	ATTTGCGATT	GGTCACCAAC	AGCAATTTGC	12120
AATCT	GGTTT	GTAGATAAAG	TAGCAGGACG	CTTTGGTAAG	AAAGAAGAAA	GTTTAGACAA	12180
TCTTA	AATTA	CCTAAGTTCC	TCTCAATCTT	CCACGATACA	GTTGTTGCAT	CTGCTACCTT	12240
GATGC'	TCGTA	TTCTTCGGAG	CCATTCTTTT	AATCTTGGGT	CCAGACATTA	TGTCTAATAA	12300

			382			
AGAAGTCATO	ACTTCAGGAA	CTCTATTCAA	TCCTGCTAAA	CAAGATTTCT	TTATGTACAT	12360
TATCCAAACA	GCCTTTACCT	ТСТСАСТТТА	CTTGTTCGTT	TTGATGCAAG	GTGTCCGAAT	12420
GTTCGTATCT	' GAGTTGACAA	ACGCCTTCCA	AGGTATTTCA	AACAAATTGT	TGCCAGGTTC	12480
ATTCCCAGCG	GTTGACGTTG	CAGCTTCTTA	TGGATTTGGT	TCTCCAAATG	CTGTCTTGTC	12540
AGGATTTACC	TTTGGTTTGA	TTGGTCAATT	GATTACAATT	GTTTTGCTCA	TCGTCTTTAA	12600
AAATCCGATT	СТТАТТАТТА	CAGGATTTGT	ACCAGTGTTC	TTTGACAATG	CAGCCATTGC	12660
GGTCTACGCT	GATAAACGCG	GCGGATGGAA	AGCGGCTGTT	ATCCTTTCCT	TTATATCAGG	12720
TGTCCTTCAA	GTTGCTCTAG	GAGCTCTTTG	TGTGGCCCTT	CTCGATTTGG	CATCTTATGG	12780
TGGCTACCAT	GGAAATATCG	ACTTTGAATT	CCCATGGCTT	GGATTTGGAT	ATATCTTCAA	12840
ATACCTTGGT	ATTGTTGGTT	ATGTACTTGT	GTGTCTCTTC	TTGCTTGTTA	TTCCTCAACT	12900
TCAATTTGCC	AAAGCAAAAG	ATAAAGAGAA	ATATTACAAC	GGTGAAGTTC	AAGAAGAAGC	12960
TTAGTATCTA	GAAAAGGAGA	AATAAAATGG	TTAAAGTATT	AGCAGCGTGC	GGAAATGGAA	13020
TGGGTTCATC	AATGGTTATC	AAGATGAAGG	TTGAAAATGC	TCTCCGTAAG	СТТААТСААА	13080
CAGATTTTAC	AGTCAATTCA	TGCAGTGTCG	GTGAAGCTAA	AGGTTTAGCA	GTAGGATATG	13140
ACATCGTAAT	CGCTTCTCTT	CATTTGATTC	AAGAATTGGA	AGGGCGAACT	AATGGGAAGT	13200
Paattgggct	TGATAACTTG	ATGGATGATA	AAGAAATCAC	CGAAAAACTC	AGTCAAGCAC	13260
PACAGTAAAA	GGTTGGAGGG	GGCTGGACAG	AAACTGAGAG	TTATCGTTTC	TGTCCTTCTC	13320
CCTCTTTAAA	TAAAGGAGGC	AGATATGAAT	TTAAAACAAG	CTTTAATTGA	CAATGACTCG	13380
ATCCGACTAG	GTTTAGAGGC	TAACAATTGG	AAAGAAGCAG	TCAAGGTAGC	AGTAGATCCC	13440
PTAATTGAAA	GTGGGGCAAT	TTTGCCAGAG	TATTACGATG	CTATCATTGA	ATCGACTGAA	13500
GAGTATGGGC	CTTACTATAT	CTTGATGCCA	GGTATGGCTA	TGCCCCACGC	TAGACCTGAA	13560
GCAGGTGTGC	AAAGTGATGC	CTTTTCATTG	ATTACCTTAC	AAAATCCTGT	TGTATTTTCA	13620
GATGGGAAAG	AGGTATCTGT	TTTGTTGGCA	CTAGCAGCAA	CAAGTTCAAA	AATTCACACA	13680
AGTGTAGCCA	TTCCACAAAT	TATTGCCCTA	TTTGAATTAG	AAGATTCTAT	TGCACGTTTA	13740
CAGGCTTGCC	AGACTAAAGA	AGATGTCTTG	GCTATGATTG	AAGAATCTAA	GGATAGCCCT	13800
PATCTCGAAG	GATTGGATTT	GGAAAGTTAG	AAAGAGGAAT	AAAGAAATGA	САААААСААТ	13860
CCTAATTTA	CAAGTTGCAT	TAGACCATTC	AGACTTGCAA	GGAGCGATTA	AAGCAGCTGT	13920
TCTGTTGGT	CAGGAAGTAG	ATATTATCGA	AGCTGGAACT	GTTTGCTTGC	TTCAAGTTGG	13980
AGTGAACTG	GCTGAAGTCT	TGCGTAGCCT	TTTCCCAGAT	AAGATTATTG	TGCCAGACAC	14040
AAATGTGCT	GATGCTGGTG	GAACAGTTGC	ТАААААТААТ	GCGGTTCGTG	GAGCAGACTG	14100

GATGACTTGT	ATCTGTTGTG	CAACCATCCC	TACTATGGAA	GCAGCTCTAA	AGGCTATCAA	14160
GACTGAACGA	GGAGAACGAG	GCGAAATCCA	GATCGAGCTT	TATGGCGATT	GGACTTTTGA	14220
ACAAGCTCAG	CTTTGGCTAG	ATGCAGGTAT	CTCACAAGCT	ATTTATCACC	AATCTCGTGA	14280
TGCTCTTCTT	GCTGGTGAAA	CTTGGGGTGA	AAAAGACCTT	AATAAGGTTA	AAAAACTCAT	14340
TGACATGGGC	TTCCGTGTAT	CTGTAACAGG	TGGTCTAGAT	GTAGATACTC	TCAAACTCTT	14400
TGAAGGTATT	GATGTCTTTA	CCTTTATCGC	AGGTCGTGGA	ATTACAGAGG	CTGTGGATCC	14460
AGCAGGAGCA	GCGCGTGCCT	TCAAGGATGA	AATCAAACGA	ATTTGGGGGT	AAATCATGGT	14520
ACGTCCAATT	GGAATTTATG	AAAAGGCAAC	CCCAACACAC	TGTACTTGGC	TAGAACGTTT	14580
AAATTTTGCC	aaggagttag	GCTTTGATTT	TGTCGAGATG	TCTATTGACG	AACGTGACGA	14640
GCGTTTAGCA	AGACTTGACT	GGAGTAAGGA	AGAACGCTTG	GAAGTTGTCA	AAGCAATCTA	14700
TGAAACTGGT	GTTCGTATTC	CTTCTATCTG	TTTTTCAGGC	CATCGTCGCT	ACCCATTGGG	14760
TTCAAAAGAT	CCAGTTCTAG	AGGAAAAATC	TCTAGAACTC	ATGAAAAAT	GTATCGAATT	14820
AGCTCAAGAC	TTGGGAGTTC	GTACGATTCA	ATTAGCTGGT	TACGATGTTT	ACTATGAGGA	14880
AAAGTCACCC	CAGACACGCC	AACGTTTTAT	CAAAAATTTG	AGAAAAGCCT	GTGACTGGGC	14940
TGAAGAAGCT	CAGGTGGTAC	TTGCTATTGA	AATTATGGAT	GATCCTTTCA	TCAGTAGCAT	15000
CGAAAAATAT	TTGGCTATAG	AAAAAGAGAT	TGACTCTCCC	TTCCTCTTTG	TATATCCAGA	15060
TATTGGTAAT	GTGTCTGCAT	GGCATAATGA	TATCTATAGT	GAGTTTTATC	TTGGTCATCA	15120
TGCCATCGCA	GCTCTCCATC	TCAAGGATAC	TTATGCAGTG	ACAGAAAGTT	CAAAGGGCCA	15180
GTTCCGAGAT	GTACCTTTCG	GGCAAGGTTG	TGTCAAATGG	GAAGAAGCTT	TCGATATTTT	15240
AAAGGAAACC	AATTATAATG	GACCTTTCCT	AATCGAAATG	TGGTCTGAAA	ATTGTGAAAC	15300
AGTAGAAGAA	ACACGCGCAG	CCATTCAAGA	GGCGCAAGCT	TTTCTCTATC	CACTCATTAA	15360
GAAAGCAGGT	TTGATGTAAG	ATGAATCAAG	TAATCAATGC	TATGCGTAAA	CGAGTCTGTG	15420
ATGCCAATCA	ATCATTGCCA	AAACATGGAC	TTGTCAAATT	TACCTGGGGG	AATGTATCTG	15480
AAGTTAATCG	CGAACTCGGT	GTCATTGTTA	TCAAACCATC	AGGCGTGGAT	TATGACGAAT	15540
TGACACCTGA	AAACATGGTA	GTGACTGATC	TAGATGGTAA	GATCCTAGAA	GGGGATTTAA	15600
GACCATCTTC	CGACCTCCCA	ACTCATGTGC	ААТТАТАТАА	GACTTGGTCA	GAAATTGGTA	15660
GTGTGGTTCA	CACCCATTCG	ACAGAAGCTG	TTGGTTGGGC	TCAGGCAGGT	CGTGATATTC	15720
CTTTCTACGG	AACAACCCAT	GCAGATTATT	TCTACGGTTC	AATCCCTTGC	GCCCGTAGTT	15780
TGACCAAGGA	CGAAGTAGAA	GTGGCCTATG	AAAAAGATAC	TGGCCTGGTT	ATCGTAGAAG	15840

				384			
A	GTTTGAACA	TCGCGGACTT	AACCCGGTTG	AAGTACCAGG	AATTGTTGTA	CGCAATCACG	15900
G	TCCATTCAC	CTGGGGCAAA	AATCCAGAGA	ATGCTGTTTA	TCACTCTGTC	GTACTAGAGG	15960
A	AGTATCAAA	GATGAATCGC	TTTACAGAAC	AAATCAATCC	AAGAGTTGGA	CCTGCTCCCC	16020
A	GTACATACT	AGAAAAACAC	TACCAACGTA	AACATGGACC	AAATGCTTAT	TATGGTCAAA	16080
A	GTAAGAACG	ATGAAGGAGG	AGAAAAAGAT	AAATTTAGCT	CCTCTTTTTA	CATTTGATTT	16140
T	TATTGAGAG	TAAAGTTGGA	GTTGAAGTAA	TTTTAAAAGA	TTTTTTAGAA	ATAGCGCTTG	16200
A	TATATATAT	GGTAAAATAA	AAAGAATTGC	TGTGATATCA	ATAGATTTGG	GGGATTTTTT	16260
A	ATATGGTAC	TGGATAAGGC	AAGTTGTGAT	TTGCTTCAAT	ATTTGATGGA	TCAAGAAACG	16320
T	CCAAAACGA	TTATGGCGAT	TTCGAAAGAT	TTGAAAGAGT	CAAGAAGGAA	AATTTATTAT	16380
C	ACATTGACA	AAATCAATGC	TGCTCTGGGT	GACGAGGCGC	TTCACATCAT	TAGTATTCCA	16440
C	GAATTGGTA	TTCACTTAAC	GGAAGAGCAG	AGAGATGCTT	GTTGTAAACT	ATTATCGGAA	16500
Gʻ	PAGATTCGT	ACGATTATAT	CATGAGTGCG	CATGAACGTA	TGATGATAAT	GTTACTATGG	16560
A'	PAGGTATTT	CTAAAGAACG	TATTACGATT	GAAAAATTGA	TAGAGTTAAC	AGAGGTATCT	16620
A	GGAATACTG	TTCTCAATGA	TTTGAATAGT	ATTCGTTATC	AACTAACTTT	GGAACAATAT	16680
CZ	AGGTGATCT	TGCAAGTGAG	CAAGTCACAG	GGATACAACC	TTCATGCCCA	CCCTCTTAAT	16740
A	\aattcagt	ATCTTCAATC	GCTTCTATAT	CATATTTTTA	TGGAAGAAAA	TGCCACTTTT	16800
G?	PATCTATTT	TAGAAGATAA	GATGAAAGAG	AGGTTAGATG	ATGAGTGTTT	GCTTTCTGTT	16860
G <i>I</i>	AAATGAACC	AATTTTTAA	GGAACAGGTT	CCTTTAGTTG	AACAAGATTT	AGGGAAGAAA	16920
ΑT	PAAACCATC	ATGAAATAAC	TTTTATGTTG	CAGGTTCTAC	CTTATTTGCT	GTTAAGCTGT	16980
C	ATAATGTTG	AACAGTATCA	AGAAAGACAT	CAGGATATAG	AGAAAGAATT	TTCTTTGATA	17040
ΑC	SAAAAAGAA	TAGAGTATCA	GGTGTCTAAG	AAATTAGGAG	AACGGTTGTT	TCAAAAGTTT	17100
G	AATTTCTT	TGTCAGGACT	TGAAGTTTCT	CTTGTAGCTG	TTCTCCTCCT	CTCCTATCGT	17160
ΑĮ	agatttgg.	ATATTCATGC	AGAAAGTGAT	GATTTTCGGC	AATTAAAACT	TGCTTTAGAA	17220
GΡ	ATTTATCT	GGTATTTTGA	ATCACAAATC	CGAATGGAGA	TTGAGAACAA	GGATGATTTG	17280
ТЛ	ACGAAATT	TGATGATCCA	CTGTAAAGCC	TTGTTATTTA	GAAAGACTTA	CGGTATTTTT	17340
тc	TAAAAATC	СТСТААСААА	ACAAATTCGA	TCCAAGTATG	GAGAATTATT	TTTAGTCACT	17400
AG	AAAATCTG	CGGAAATTTT	AGAAGGAGCA	TGGTTTATTC	GGCTAACAGA	CGATGATATT	17460
GC	СТАТТТСА	CGATTCATAT	TGGAGGATTT	ттаааатата	CACCATCATC	тсааааааат	17520
ΑΊ	GAAAAAG	TTTATCTCGT	TTGTGATGAA	GGTGTTGCGG	TTTCGAGACT	TTTGCTGAAA	17580
CA	ATGCAAAC	TTTATTTTCC	AAATGAGCAA	ATTGACACTG	TATTTACAAC	AGAACAATTT	17640

385

AAGAGTGTGG AAGATATTGC ACAAGTTGAT GTAGTGATTA CTACTAATGA TGATTTGGAT 17700 AGCAGATTTC CGATTTTAAG GGTTAATCCT ATCCTTGAAG CAGAAGATAT TTTGAAAATG 17760 CTAGACTATC TTAAACACAA TATATTTCGT AATAAGAGCA AAAGTTTCAG TGAAAATCTT 17820 TCTAGTCTTA TTTCGTCTTA TATTGTAGAC AGCAAGTTGG CTAGTAAGTT CCAAGAAGAG 17880 GTTCAAACAC TTATAAATCA AGAAATAGTA GTTCAAGCTT TTTTGGAAGT TATTTGAAGG 17940 ACAGTCCAAT GATGAACACA AACCTGTGTk TTTCsTGGTC TTTTtTAGTG TTTTGAAGGG 18000 TGGKATACTA ATCTCAAAGA TAACAATTAT ATCCAAAGGA GGCAACATAT GCCAAACGTC 18060 AAAGAAATTA CAAGAGAGTC ATGGATTTTA GCCACTTTCC CAGAGTGGGG AACATGGTTG 18120 AACGAAGAAA TCGAAGAAGA AGTCGTACCT GAAGGCAACT TTGCCATGTG GTGGCTAGGC 18180 AACTGTGGTA CTTGGATTAA GACACCAGCT GGTGCTAACG TTGTCATGGA CCTTTGGTCA 18240 AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT 18300 ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA 18360 TTTGCTATCA ACGAACTAGA CTATTACTTA GTTTCACACT TCCACAGTGA TCATATCGAC 18420 CCATACACAG CTGCAGCAAT TCTCAATAAT CCTAAGTTAG AGCATGTTAA GTTGG 18475

(2) INFORMATION FOR SEQ ID NO: 39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7186 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCAGGATTTG	GTACCGTTGC	AAGTGGTGTG	CCTTTCCTCC	TAAAGGAAAA	TGGAGGAAAA '	60
ATCAATCAAT	CAGCACATTC	AGATATCAAA	GTTGCTAAGG	TATTGGTCAA	GGATGAAGAT	120
GAAAAAAATC	GCTTGCTTGC	AGCAGGGAAT	GACTTTAACT	TTGTAACCAA	TGTGGATGAT	180
ATTTTATCAG	ACCAGGATAT	TACTATCGTA	GTGGAATTGA	TGGGGCGTAT	TGAGCCTGCT	240
AAAACCTTTA	TCACTCGTGC	CTTGGAAGCT	GGAAAACACG	TTGTTACTGC	TAACAAGGAC	300
CTTTTAGCTG	TCCATGGCGC	AGAATTGCTA	GAAATCGCTC	AAGCTAACAA	GGTAGCACTT	360
TACTACGAAG	CAGCAGTTGC	TGGTGGGATT	CCAATTCTTC	GTACTTTAGC	AAATTCCTTG	420
GCTTCTGATA	AAATTACGCG	CGTGCTTGGA	GTAGTCAACG	GAACTTCCAA	CTTCATGGTG	480
ACCAAGATGG	TGGAAGAAGG	CTGGTCTTAC	GATGATGCTC	TTGCGGAAGC	ACAACGTCTA	540

			386			
GGATTTGCAG	AAAGCGATCC	GACGAATGAC	GTAGATGGGA	TTGATGCAGC	CTACAAGATG	600
GTTATTTTGA	GCCAATTTGC	CTTTGGCATG	AAGATTGCCT	TTGATGATGT	AGCCCACAAG	660
GGAATCCGCA	ATATCACACC	AGAAGACGTA	GCTGTAGCTC	AAGAGCTTGG	TTACGTAGTG	720
AAATTGGTTG	GTTCTATTGA	GGAAACTTCT	TCAGGTATTG	CTGCAGAAGT	GACTCCAACC	780
ТТССТАССТА	AAGCGCACCC	ACTTGCTAGT	GTGAATGGCG	TAATGAACGC	TGTCTTTGTA	840
GAATCTATCG	GTATTGGTGA	GTCTATGTAC	TACGGACCAG	GTGCGGGTCA	AAAACCAACT	900
GCAACAAGTG	TTGTAGCTGA	TATTGTCCGT	ATCGTTCGTC	GTTTGAATGA	TGGTACTATT	960
GGCAAAGACT	TCAACGAATA	TAGCCGTGAC	TTGGTCTTGG	CAAATCCTGA	AGATGTCAAA	1020
GCAAACTACT	ATTTCTCAAT	CTTGGCTCTA	GACTCAAAAG	GTCAGGTCTT	GAAGTTGGCT	1080
GAAATCTTCA	ATGCTCAAGA	TATTTCCTTT	AAGCAAATCC	TTCAAGATGG	CAAAGAGGGT	1140
GACAAGGCGC	GTGTCGTTAT	CATCACACAC	AAGATTAATA	AAGCCCAGCT	TGAAAATGTC	1200
TCAGCTGAAT	TGAAGAAGGT	TTCAGAATTC	GACCTCTTGA	ATACCTTCAA	GGTGCTAGGA	1260
GAATAAGATG	AAGATTATTG	TACCTGCAAC	CAGTGCCAAT	ATCGGGCCAG	GTTTTGACTC	1320
GGTCGGTGTA	GCTGTAACCA	AGTATCTTCA	AATTGAGGTC	TGCGAAGAAC	GAGATGAGTG	1380
GCTGATTGAA	CACCAGATTG	GCAAATGGAT	TCCACATGAC	GAGCGTAATC	TCTTGCTCAA	1440
AATCGCTTTG	CAAATTGTAC	CAGACTTGCA	ACCAAGACGC	TTGAAAATGA	CCAGTGATGT	1500
CCCTTTGGCG	CGCGGTTTGG	GTTCTTCCAG	CTCGGTTATC	GTTGCTGGGA	TTGAACTAGC	1560
CAACCAACTG	GGTCAACTCA	ACTTATCAGA	CCATGAAAAA	TTGCAGTTAG	CGACCAAGAT	1620
TGAAGGGCAT	CCTGACAATG	TGGCTCCAGC	CATTTATGGT	AATCTCGTTA	TTGCAAGTTC	1680
TGTTGAAGGG	CAAGTCTCTG	CTATCGTAGC	AGACTTTCCA	GAGTGTGATT	TTCTAGCTTA	1740
CATTCCAAAC	TATGAATTAC	GTACTCGCGA	CAGCCGTAGT	GTCTTGCCTA	AAAAATTGTC	1800
TTATAAGGAA	GCTGTTGCTG	CAAGTTCTAT	CGCCAATGTA	GCGGTTGCTG	CCTTGTTGGC	1860
AGGAGACATG	GTGACCGCTG	GGCAAGCAAT	CGAGGGAGAC	CTCTTCCATG	AGCGCTATCG	1920
TCAGGACTTG	GTAAGAGAAT	TTGCGATGAT	TAAGCAAGTG	ACCAAAGAAA	ATGGGGCCTA	1980
TGCAACCTAC	CTTTCTGGTG	CTGGGCCGAC	AGTTATGGTT	CTGGCTTCTC	ATGACAAGAT	2040
GCCAACAATT	AAGGCAGAAT	TGGAAAAGCA	ACCTTTCAAA	GGAAAACTGC	ATGACTTGAG	2100
AGTTGATACC	CAAGGTGTCC	GTGTAGAAGC	AAAATAAAGA	ATAGAAGATA	GGATGGGGAA	2160
ACTCTTGACC	AGAGGGGTTC	ATATCCTTTT	TGTGAAAAGA	AGTTTATACT	CAATGAAAAT	2220
CAAAGAGCAA	ACTAGGAAGC	TAGCCGCAGG	CTGCTCAAAA	CAGTGTTTTG	AGGTTGCAGA	2280
TAGAACTGAC	GAAGTCAGCT	CAAGACACTG	TTTTGAGGTT	GCAGATAGAA	СТСАССААСТ	2340

CAGTAACCAT	ACTACGGTAA	GGTGACGCTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTAT	2400
ТАСТТААААА	CGTGATAAAG	GAGAAATAAA	GATGGCAGAA	ATTTATCTAG	CAGGTGGTTG	2460
TTTTTGGGGC	CTAGAGGAAT	ATTTTTCACG	CATTTCTGGA	GTGCTAGAAA	CCAGTGTTGG	2520
CTACGCTAAT	GGTCAAGTCG	AAACGACCAA	TTACCAGTTG	CTCAAGGAAA	CAGACCATGC	2580
AGAAACGGTC	CAAGTGATTT	ACGATGAGAA	GGAAGTGTCA	CTCAGAGAGA	TTTTACTTTA	2640
TTATTTCCGA	GTTATCGATC	CTCTATCTAT	CAATCAACAA	GGGAATGACC	GTGGTCGCCA	2700
ATATCGAACT	GGGATTTATT	ATCAGGATGA	AGCAGATTTG	CCAGCTATCT	ACACAGTGGT	2760
GCAGGAGCAG	GAACGCATGC	TGGGTCGAAA	GATTGCAGTA	GAAGTGGAGC	AATTACGCCA	2820
CTACATTCTG	GCTGAAGACT	ACCACCAAGA	CTATCTCAGG	AAGAATCCTT	CAGGTTACTG	2880
TCATATCGAT	GTGACCGATG	CTGATAAGCC	ATTGATTGAT	GCAGCAAACT	ATGAAAAGCC	2940
TAGTCAAGAG	GTGTTGAAGG	CCAGTCTATC	TGAAGAGTCT	TATCGTGTCA	CACAAGAAGC	3000
TGCTACAGAG	GCTCCATTTA	CCAATGCCTA	TGACCAAACC	TTTGAAGAGG	GGATTTATGT	3060
AGATATTACG	ACAGGTGAGC	CACTCTTTTT	TGCCAAGGAT	AAGTTTGCTT	CAGGTTGTGG	3120
TTGGCCAAGT	TTTAGCCGTC	CGATTTCCAA	AGAGTTGATT	CATTATTACA	AGGATCTGAG	3180
CCATGGAATG	GAGCGAATTG	AAGTTCGTTC	TCGTTCAGGC	AGTGCTCACT	TGGGTCATGT	3240
TTTCACAGAT	GGACCGCGGG	AGTTAGGCGG	CCTCCGTTAC	TGTATCAATT	CTGCTTCTTT	3300
ACGCTTTGTG	GCCAAGGATG	AGATGGAAAA	AGCAGGATAT	GGCTATCTAT	TGCCTTACTT	3360
АААСАААТАА	AACAGAGAGT	GGGGCTTCCC	ACTTTCTTCA	TTTCTAGAAT	ATGAATAGAA	3420
GGGATTTATG	AAACACCTAT	TATCTTACTT	CAAACCCTAC	ATCAAGGAAT	CAATTTTAGC	3480
CCCCTTGTTC	AAGCTGTTAG	AAGCTGTTTT	TGAGCTCTTG	GTTCCCATGG	TGATTGCTGG	3540
GATTGTTGAC	CAATCTTTAC	CTCAGGGAGA	TCAAGGTCAT	CTCTGGATGC	AGATTGGCCT	3600
GCTCCTTATC	TTTGCAGTAA	TTGGCGTTTT	AGTGGCCTTG	ATAGCTCAAT	TTTACTCAGC	3660
AAAGGCAGCA	GTAGGTTCTG	CTAAGGAATT	GACAAACGAT	CTTTATCGTC	ATATTCTTTC	3720
CTTGCCCAAG	GACAGCAGAG	ACCGTCTGAC	AACTTCTAGT	TTGGTCACTC	GCTTGACTTC	3780
GGATACCTAC	CAGATTCAGA	CTGGTATCAA	TCAATTCCTG	CGTCTCTTTT	TACGAGCGCC	3840
CATTATCGTT	TTTGGTGCCA	TTTTTATGGC	TTATCGAATC	TCAGCTGAGT	TGACTTTCTG	3900
GTTCTTAGTC	TTGGTTGCCA	TTTTGACCAT	TGTCATTGTA	GGGTTATCTC	GATTGGTCAA	3960
TCCTTTCTAC	AGTAGTCTCA	GAAAGAAAAC	GGACCAACTG	GTTCAGGAAA	CGCGCCAGCA	4020
ATTGCAAGGG	ATGCGGGTTA	TTCGTGCTTT	TGGTCAAGAA	AAACGAGAGT	TACAGATTTT	4080

			388			
					F GGTCTAGTTT	414
ATTAACACC	T CTGACCTATO	C TGATTGTCA	A TGGAACTCT	CTCGTTATT	A TCTGGCAAGG	4200
CTATATTTC	A ATTCAAGGAG	G GAGTGCTCA	G TCAAGGTGCT	CTCATTGCT	С ТТАТСААТТА	4260
CCTCTTACA	G ATTTTGGTG	AATTGGTCA	A GCTAGCCATO	TTGATCAAT	CCCTCAACCA	4320
GTCCTATAT	C TCAGTCAAGO	GAATCGAGG	A AGTCTTTGTT	GAGGCTCCAC	AGGATATCCA	4380
TTCAGAGTT	A GAACAAAAG	AAGCTACCAC	G AGATAAGGT1	TTACAAGTC	AAGAATTGAC	4440
CTTTACCTA	r cctgatgcgc	CCCAGCCTTC	TCTGAGATAC	ATTTCCTTTC	ATATGACTCA	4500
AGGACAAAT	F CTAGGTATCA	TCGGGGGAAC	TGGTTCTGGT	AAATCAAGCT	TGGTGCAACT	4560
CTTACTTGG	A CTTTATCCAC	TAGACAAGGG	GAACATTGAC	СТТТАТСАА	ATGGACGTAG	4620
TCCTCTTAA	r ttggagcagt	GGCGGTCTTG	GATTGCCTAT	GTACCTCAAA	AGGTCGAACT	4680
CTTTAAAGG	A ACCATTCGTI	CCAACTTGAC	TCTAGGTTTC	AATCAAGAAG	TATCTGACCA	4740
GGAACTCTG	G CAGGCCTTGG	AGATTGCGCA	AGCTAAGGAT	TTTGTCAGTG	AAAAGGAAGG	4800
ACTCTTGGAT	GCTCTAGTTG	AGGCAGGGG	GCGAAATTTC	TCAGGTGGAC	AAAAACAAAG	4860
ATTGTCTATO	GCCCGAGCAG	TCTTGCGCCA	GGCTCCGTTT	CTCATCCTAG	ATGATGCAAC	4920
CTCGGCACTG	GATACCATTA	CAGAGTCCAA	GCTCTTGAAA	GCTATTAGAG	AAAATTTTCC	4980
AAACACGAGG	TTAATTTTGA	TCTCTCAACG	AACCTCAACT	TTACAGATGG	CGGACCAGAT	5040
TCTCCTCTTC	GAAAAAGGTG	AGTTGCTAGC	TGTTGGCAAG	CACGATGACT	TGATGAAATC	5100
CAGCCAAGTC	TATTGTGAAA	TCAATGCATC	CCAACATGGA	AAGGAGGACT	AGAATGAAAC	5160
GACAAACTGT	AAACCAGACG	CTCAAACGTT	TAGCCGTAGA	TTTAGCAAGC	CATCCTTTCC	5220
TCCTTTTCCT	AGCCTTTCTA	GGAACTATTG	CCCAAGTTGG	CTTATCAATT	ТАССТАССТА	5280
TTCTGATTGG	GCAGGTCATT	GACCAAGTCC	TAGTGGCTGG	TTCATCACCA	GTTTTTTGGC	5340
AGATTTTTCT	CCAGATGCTC	TTGGTGGTAA	TAGGAAATAC	TCTGGTACAA	TGGGCCAATC	5400
CTCTCCTCTA	TAATCGTCTA	ATCTTCTCTT	ATACCAGAGA	TTTACGGGAG	CGAATCATCC	5460
ATAAGCTCCA	TCGTTTACCG	ATTGCCTTTG	TAGATAGGCA	AGGTAGTGGA	GAGATGGTTA	5520
GTCGTGTAAC	CACGGACATC	GAACAGTTĠG	CAGCTGGCTT	GACCATGATT	TTTAACCAAT	5580
TTTTCATTGG	TGTTTTGATG	ATTTTGGTCA	GTATTCTAGC	CATGCTCCAA	ATTCATCTCC	5640
TCATGACTCT	CTTAGTCTTG	CTGTTGACGC	CACTGTCCAT	GGTGATTTCA	CGCTTTATTG	5700
CCAAGAAATC	CTATCATCTC	TTCCAGAAGC	AAACAGAGAC	GAGGGGAATT	CAGACTCAGT	5760
TGATTGAAGA	ATCGCTTAGT	CAGCAGACTA	TAATCCAGTC	CTTCAATGCT	САААСАGAAT	5820
TTATCCAAAG	ATTGCGTGAG	GCTCATGACA	ACTACTCAGG	СТАПТСТСАС	ጥሮ ልር ር ር አ ጥር ጥ	5000

389

TTTATTCTTC	AACGGTCAAT	CCTTCGACTC	GCTTTGTAAA	TGCACTCATT	TATGCCCTTT	594
TAGCTGGAGT	AGGAGCTTAT	CGTATCATGA	TGGGTTCAGC	CTTGACCGTC	GGTCGTTTAG	6000
TGACTTTTT	GAACTATGTT	CAGCAATACA	CCAAGCCCTT	TAACGATATT	TCTTCAGTGC	6060
TAGCTGAGTT	GCAAAGTGCT	CTGGCTTGCG	TAGAGCGTAT	CTATGGAGTC	TTAGATAGCC	6120
CTGAAGTGGC	TGAAACAGGT	AAGGAAGTCT	TGACGACCAG	TGACCAAGTT	AAGGGAGCTA	6180
TTTCCTTTAA	ACATGTCTCT	TTTGGCTACC	ATCCTGAAAA	AATTTTGATT	AAGGACTTGT	6240
CTATCGATAT	TCCAGCTGGT	AGTAAGGTAG	CCATCGTTGG	TCCGACAGGT	GCTGGAAAAT	6300
CAACTCTTAT	CAATCTCCTT	ATGCGTTTTT	ATCCCATTAG	CTCGGGAGAT	ATCTTGCTGG	6360
ATGGGCAATC	CATTTATGAT	TATACACGAG	TATCATTGAG	ACAGCAGTTT	GGTATGGTGC	6420
TTCAAGAAAC	CTGGCTCACA	CAAGGGACCA	TTCATGATAA	TATTGCCTTT	GGCAATCCTG	6480
AAGCCAGTCG	AGAGCAAGTA	ATTGCTGCTG	CCAAAGCAGC	TAATGCAGAC	TTTTTCATCC	6540
AACAGTTGCC	ACAGGGATAC	GATACCAAGT	TGGAAAATGC	TGGAGAATCT	CTCTCTGTCG	6600
GCCAAGCTCA	GCTCTTGACC	ATAGCCCGAG	TCTTTCTGGC	TATTCCAAAG	ATTCTTATCT	6660
TAGACGAGGC	AACTTCTTCC	ATTGATACAC	GGACAGAAGT	GCTGGTACAG	GATGCCTTTG	6720
CAAAACTCAT	GAAGGCCCC	ACAAGTTTCA	TCATTGCTCA	CCGTTTGTCA	ACCATTCAGG	6780
ATGCGGATTT	AATTCTTGTC	TTAGTAGATG	GTGATATTGT	TGAATATGGT	AACCATCAAG	6840
AACTCATGGA	TAGAAAGGGT	AAGTATTACC	AAATGCAAAA	AGCTGCGGCT	TTTAGTTCTG	6900
AATAAGCCAT	TCTCTTTTGA	AAGTTTATGG	ACGAAAAAAG	TTGCCTTCGA	GTGACTTTTT	6960
TGTTACAATA	GCTAGAAAAA	TTGTTCACTG	TAATACTCAA	TGAAAATCAA	AGAGCAAACT	7020
AGGAAGCTAG	CCGTAGGTTG	CTCAAAGCAC	AGCTTTGAGG	TTGTAGATAA	GACTGACGAA	7080
GTCAGTTCAA	AACACTGTTT	TGAGGTTGCA	GATAGAACTG	ACGAAGTCAG	CTCAAAACAC	7140
TGTTTTGAGG	TTGCAGATAG	AACTGACGAA	GTCAGCTCAA	AACAGG		7186

(2) INFORMATION FOR SEQ ID NO: 40:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14273 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

CTGAAAATTC TAAAAAATTT ATAAGTAAGG AATTAATTAG TTATTTTGT GATAAAGTTT

390 ATGATGAAAT ATTTGTTGAA GAGGTAGTTC CGCACGTTTT TCTGCCATAT GAATCTGACT 120 TACTTCTTAT TTTACCAGCT ACGGCAAATG TGATTGGCAA AATTGCTAAT GGTATTGCTG 180 ATGATTTAGT TACAGCAACT GTTTTAAACT TTAATAAAA AATAATTTTT TGTCCCAATA 240 TGAACTCTAC TATGTGGGAC AATCACATAG TTCAAAGAAA TGTATCAATT CTAAAGGAGT 300 TGGGACATAT ATTTTATTT GAGTCTAAAA AAACATATGA GGTAGGATTG CGTAAAGCAA 360 TAGATTCAAC ATGTTCAATG TTACAACCAC AGTCGTTAGT AAAAGAACTT ATCAAATTAG AAAATATTGT CCTTGAAGAG GGACATTAAA AACTACTGAG AATATTAATG AGGGGAAAAA 480 ATGGAAAATT CATCAATCGA TGTAGATATG CTGTTGGAAG AATTGACACA AGAAGCAATG 540 GTCGTTGTTG CTGTTGATAA GGACTGTTAA TTTAAACTTA TGGCAATATA TGAAAGGTTA 600 CTGGATGTTT TAAATTATGC AGGCAGTAGC CTTTTATTAT ATACAAATGG ATAAAGTAAG 660 GATANTACAA TGATTANTAA AANAATACAA CAAGTTGTTT TGGAATCATT ACAGAATTTT 720 TTGAATGGGA ACTTCATTTC GCCTTGTGTA GTCTATGATT TTGGCTTGCT GGAAACTGTA 780 CTTGATGAAT TTAAAAATCA AATTCCTGTA ACATTCAATT ACCAACTTTT TTATGCCGTT 840 AAAGCAAATT CAAATGAGAA GATACTTGAA TTCTTAGTAG ATAAAATTGA TGGAGTTGAT 900 GTGGCGTCAT TATCTGAATT AGATGTGGCT AAAAAATTTT TCCCACCAAC TCAAATTTCT 960 GTTAATGGTC CCGCATTTTC TTATGAAACT TTATATAATC TGATTAAAAA ACAATATAAA 1020 GTTGATATTA ACTTTTTGGA ACATCTTCAA CAATTTTCCC CAAAAGAATC TGTTGGAATA 1080 AGAGTAACGG AGCCAGATGA ACTTAATAAT CGTATGAGTC GATTTGGAAT AAATATTTGC 1140 AGTGATAATT GGACTAGTAA TTTACAAAAT CCTTTAATTA CACGACTGCA TTTTCATTTT 1200 GGAGAAAAG ATGATAAATT TATTGTTAAG TTAGATAAAA TATTATTTAA GTTACAAGAA 1260 ATTAATAAAC TTAGAGAGGT TAGAGAAATA AATCTTGGAG GCGGTTTTAT GAAATTATTT 1320 ATGGAAAATC GTTTGAAAGA ATTTTTTCTA TCACTTATGG AAATCTATAA AAAGTACGAT 1380 ATTGATAGTA CTGTGACTAC AATAATAGAA CCAGGTAGTG CAATTACTTC ATTTTCTGCC 1440 TATATGATTA CTAGCCCAGT TAATGTTAGT GAGGTGAATG AGCAGCAGGT TATCACGTTA 1500 GACACATCAA TATACACCAA TACATTATGG TTTGTTCCGC ATATTATTAC AACGTTAAAT 1560 TCAAGTAGTA AAGAGCGTTA TAGTACTATT CTCTATGGTA ATACCTGTTA TGAACATGAC 1620 AAGTATAAAA TGAAAGTTTC GCTTCCAAGG TTAACTCAAA ATAGCAGTAT AGTGTTTTTTT 1680 CCTGTAGGAG CTTATATAAA AAGCAATCAT TCAAATTTAC ATCGTAATGA TTTTATGCGG 1740 GAGGTATATT TGTGGACAAA AAACTTGACA TATTAGATAA AGTTAAGGAA TATTTAGGAA 1800 ATAAAACTAC TCAAATTCTG GATAATCAAT ATAAAGAATT TTTGAAACTT AATGATATAA 1860

GGCGAGCGTT	TGGTATTTCA	GAAAAAGTAT	TAAACAATTC	TTTTAATTTT	ACGAGTAAAG	1920
AATTTAATGA	TAATTAATT	AACGAAAATT	ATTTATTCGA	ATATGCATGT	AGAATTAGAG	1980
AGGAATGGAG	AAAAAAATGC	TTTAATCATT	CTTATCGTTT	TCTATGCTCA	ССТАТААТТА	2040
CAGATGATTT	TCTTAACACG	AAGACATTGA	GAAGTAGCCA	AATTGAATAT	AAATATGAGC	2100
GATATTTATC	GAAAAGTTCG	ATAGGCGATA	GAGCGGTTGA	TGGCTTTGTT	TCCTTCAATA	2160
CTTTAACAGC	TAATGGTATG	TCTGCTATTA	AACTATGTCT	TGAGATATTA	AACTCTATTT	2220
TCTTCAAGAA	GAAGATTGAT	TTATTATATT	CAACCGGATA	TTATGAAACA	AGATTTTTAT	2280
TAAATAATCT	TGCTAAATCA	GGTATTAGTT	GCTATGAGGT	AAGTAATTGT	GAATTGGATA	2340
aagataaatt	TTATAATGTA	TTCATGATGG	AACCCAATCG	AGCCGATTTA	ACATTACAAA	2400
AAACTGATTT	CAAGATAGTA	GAATATTTTG	TTAAGTATAA	AAATAATTCA	ATAAAAGTCG	2460
TTATTTTAGA	TATTTCATAT	CAAGGTTCTA	TTAAATT	AGTAGAATTT	TTAGAGAAAT	2520
TTAAATTTGC	GAATGTAATT	ATTTTTGTGG	TACGATCTTT	GATAAAATTA	GATCAAATGG	2580
GATTAGAATT	GACAAATGGG	GGAATAATAG	AAGTGTTTAT	TCCTAATCAT	TTGAGAAAGT	2640
TGAAAAATTT	TATTGAAGAG	GAATTCAATA	AATTTAGAAA	TTCTCACGGA	GCTAATCTAA	2700
GCCTCTATGA	ATACTGTTTG	CTTGATAATT	CTTTAACTTT	AAAAAATGAT	TGGAACTATT	2760
CTGATTTAGT	TATGAAATTT	ACGAGTAATT	TTTATGCTGA	TATAAAAGAC	TTGTTCATGG	2820
AAAATTCTGA	TATTGAAATC	ATCCATGAAG	AGGGAGTACC	TTTTGTATTT	TTAGATTTAA	2880
TAGGTGAAGG	TAAAAAAGAA	TATGAAATGT	TTTTTCAATG	GTTAAACTTC	TTTTACAAAC	2940
AGCTTGGAAT	CACATTGTAT	GCTAGAAATA	GTTTTGGGTT	TCGGAATCTA	ACAGTAGAGT	3000
ATTTTGGAAT	TATTGGGACA	GAAAGATATA	TATTTAAGAT	TTGTCCAGGT	GTTTATAAAG	3060
GGTTAAGTTA	TTATTTGATG	AAATTTTTAT	TAAAATCTTT	TTCAAATGAA	TATTTAAAAA	3120
CTACTGATGA	GGTTAATAGA	TGAAAAATTT	GATAAAGTTG	СТААТААТТА	GATTGATTGT	3180
TAACTTAGCA	GACAGTGTAT	TTTATATAGT	AGCATTGTGG	CACGTTAGCA	ATAATTATTC	3240
TTCGAGCATG	TTCTTAGGAA	TATTTATTGC	AGTAAATTAT	CTACCGGATT	TGTTACTAAT	3300
CTTTTTTGGA	CCAGTTATTG	ACAGAGTAAA	TCCGCAAAAA	ATTCTTATAA	TATCAATTTT	3360
GGTTCAATTA	GCAGTGGCTG	TAATATTTT	ATTATTATTA	AACCAAATAT	CATTTTGGGT	3420
GATAATGAGT	CTAGTGTTTA	TTTCAGTAAT	GGCTAGCTCC	ATANGTTACG	TGATAGAAGA	3480
TGTGTTGATT	CCTCAAGTGG	TAGAATATGA	TAAGATTGTA	TTTGCAAATT	CTCTTTTTAG	3540
TATTTCGTAT	AAAGTATTAG	ATTCTATTTT	TAATTCATTC	GCATCATTTT	TACAGGTGGC	3600

392 AGTAGGATTT ATTTATTGG TTAAGATAGA TATAGGCATA TTTTTACTTG CTCTATTTAT 3660 ATTGTTGTTG TTAAAATTTA GAACTAGCAA TGCGAATATA GAAAACTTCT CTTTCAAATA 3720 TTACAAGAGA GAAGTGTTGC AAGGTACAAA GTTTATTTTA AATAATAAAT TATTATTTAA 3780 AACCAGTATT TCTTTAACGC TTATAAACTT TTTTTATTCA TTTCAGACAG TAGTTGTACC 3840 GATTTTTTCT ATTCGATATT TTGATGGTCC GATTTTTTAT GGTATTTTTT TAACTATTGC 3900 TGGTTTGGGT GGTATATTGG GAAATATGCT AGCGCCAATC GTAATAAAAT ATTTAAAATC 3960 GAATCAAATT GTTGGTGTAT TTCTTTTTTT GAACGGCTCA AGTTGGTTAG TAGCAATTGT 4020 TATAAAAGAC TATACTTTAT CACTTATTT ATTTTTCGTT TGTTTTATGT CTAAAGGAGT 4080 CTTCAATATT ATTTTAATT COTTGTACCA ACAAATACCT CCACATCAAC TTCTTGGTAG 4140 GGTAAATACT ACCATTGATT CTATTATTTC TTTTGGAATG CCAATTGGTA GTTTAGTTGC 4200 AGGAACGCTT ATTGATTTGA ATATTGAATT AGTGTTAATT GCTATTAGCA TACCTTATTT 4260 TTTGTTTTCT TATATTTTTT ATACGGATAA TGGATTGAAA GAATTTAGTA TATATTAGAA 4320 ATGTTTATGT TCATTCAAAA GCATAATGAC TATAACTGAA AAAGAAAAGT GATATCTTTA 4380 AGGTTGTTCT TCTTGGTGGT GAGATTCGTG AGACAACCCA AGCTTTTGTC GGAAAGATTA 4440 CCAATGCTTT GATGGATAGG ATGTACTTTA GCAAGATGTT TTTAGTGGTA ACGGTATCGT 4500 GGATGGACGT GTAATAACCT CTTCTTTCGA GGAGTATTTT ACTAAAAAAC TAGCCTTGGA 4560 GCGTTCCCCA GAAACGGACT TACTCATTGA CTCTTCAAAG ATTTGGGGAG AAGATTTTGC 4620 TTCATCTGTT CCTTGAAAAA AGTCACAGCA GTCATCACAG ACGATAGTAC TGAACAAAAC 4680 TATGAAGAT TAGAAATTTA TACGCAGGTG ATTGTATAAA GGATCTGGAA ATAGATAAGA 4740 AGTTGATTAG TATTGACCTA GGTGGTACAA ATATTAAGAT TACTGTTCTT TCAAATGACG 4800 GTGAGATTGA AACTTTGTGG AGTATTACAA CAGATACAAG TGAGAAAGGT TCTCAAATTA 4860 TATCGGACAT CATCAGTTCT ATTAAAAATA AATTGACCGA ACGGAATATT CCTGATAGCG 4920 ACCTTCTTGG AATCGGTATG GGAAGTTGCT CATCATACTT TCCTTGTAAA TCATAGGGGC 4980 TATAAACTCT CCGTCTACTT GTCCTGCAAC AATTGAAGTC TGCTCAAAAC GCCGTCCGCT 5040 AATCTTTCA TAGACTTTCT CCCTTTTAGG AGCCTAGCTT TCTAGTTTGT TCTTTGATTT 5100 TTATTGAGTA TACCACTATT TTACTCCCTC TGGCAAGGGA CTTTGTCTAT GTGGAGGGAT 5160 TGGGCTCCTA TGTGGTGGAG CTTTTCTGTT CTTTCTGAAA TATGGTATAA TAGCACTAAT 5220 CAATTICTAG GAAAATAGAT ACAGAAAGGG GCTGAAAGAT GTCTCATATT ATTGAATTGC 5280 CAGAGATGCT GGCAAACCAA ATCGCGGCTG GAGAGGTCAT TGAACGTCCT GCCAGTGTGG 5340 TCAAAGAGTT GGTAGAAAAT GCCATTGACG CGGGCTCTAG TCAGATTATC ATTGAGATTG 5400

AGGAAGCTGG	TCTCAAGAAG	GTTCAAATC	CGGATAACGC	TCATGGAATT	GCCCACGATG	546
					GCAGATCTCT	552
					TCTGTTAGTG	
						558
					GTCGCGCGTG	564
					GTTTGTGTGG	570
					CAAGCGGAGT	5760
					ATTTCTTTTA	5820
					TTGCGCCAAG	5880
CAATCGCAGG	GATTTACGGT	TTGGTCAGTG	CCAAGAAGAT	GATTGAAATT	GAGAACTCTG	5940
ACCTAGATTT	CGAAATTTCA	GGTTTTGTGT	CCTTGCCTGA	GTTGACTCGG	GCTAACCGCA	6000
ATTATATCAG	CCTCTTCATC	AATGGCCGTT	ATATTAAGAA	CTTCCTGCTC	AATCGTGCTA	6060
TTTTGGATGG	TTTTGGAAGC	AAGCTTATGG	TTGGACGTTT	TCCACTGGCT	GTCATTCACA	6120
TCCATATCGA	CCCTTATCTA	GCGGATGTCA	ATGTGCATCC	AACTAAGCAA	GAGGTGCGGA	6180
TTTCCAAGGA	AAAAGAACTG	ATGACTCTGG	TTTCAGAAGC	TATTGCAAAT	AGTCTCAAGG	6240
AACAAACCTT	GATTCCAGAT	GCCTTGGAAA	ATCTTGCCAA	ATCGACCGTG	CGCAATCGTG	6300
AGAAGGTGGA	GCAAACTATT	CTCCCACTCA	AAGAAAATAC	GCTCTACTAT	GAGAAAACTG	6360
AGCCGTCAAG	ACCTAGTCAA	ACTGAAGTAG	CTGATTATCA	GGTAGAATTG	ACTGATGAAG	6420
GGCAGGATTT	GACCCTGTTT	GCCAAGGAAA	CCTTGGACCG	ATTGACCAAG	CCAGCAAAAC	6480
TGCATTTTGC	AGAGAGAAAG	CCTGCTAACT	ACGACCAGCT	AGACCATCCA	GAGTTAGATC	6540
PTGCTAGCAT	CGATAAGGCT	TATGACAAAC	TGGAGCGAGA	AGAAGCATCC	AGCTTCCCAG	6600
AGTTGGAGTT	TTTCGGACAA	ATGCACGGGA	CTTATCTCTT	TGCCCAAGGG	CGAGATGGAC	6660
TTACATCAT	AGATCAGCAC	GCTGCTCAGG	AACGGGTCAA	GTACGAGGAG	TACCGTGAAA	6720
			AACTCCTAGT			6780
			GAATGCCTCT			6840
			TTCTACGTGA			6900
					ACCAAGGAAG .	
					•	
			CTATCATGAT			7020
			CTAGACAACT			7080
JUACAATCC	CTATAACTCT	CCTCACGGAC	Cd.Cal.Cdalabate	CCACC V Johnson	ACCAAGTCCC	2140

				394			
ATATGGA	AAA	GATGTTCCGA	CGTATTCAGG	AAAATCACAC	CAGTCTCCGT	GAGTTGGGGA	7200
AATATTA	AAA	GTATAAAAA	GTCTGGGAAA	AATTTTCAAA	АТСАААААА	CGCATAAAAT	7260
CAGGTGT	ГCA	AAAACCTTGA	TTTTATGCGT	TTTATCATGG	AAATAGTTAC	TTCATTTTT	7320
CCTAATTO	TT.	TTCGAAACTC	TTTTTAAACG	ACGTCAGTTT	TATCAGTAAT	CTCAAAACAG	7380
TGTTTTG	AGC	TAATTTTGCC	AGTTTTGTCT	GTAACATCGA	AGTTGTGTTT	TACCACTCTG	7440
CGACTGG	rrr	CCTAGTTTGC	TCTATGATTT	TCACAGAGCA	TTAAATTGCG	ATTTTGCCAA	7500
GTTTCTT	ГАТ	TCGTCTAAAA	GTAGAGTCTG	TTCTATGCGT	CTAATGTACG	AATCAGGTTG	7560
ACCATTT	CAA	TAGCTCCTTG	TGCACACTCA	GAACCCTTAT	TTCCTGCTTT	AGTACCAGCT	7620
CGTTCTAT	rgg	CTTGTTCAAT	TGTATCTGTC	GTTAGCACAC	CAAACATAAC	AGGAATTTCG	7680
CTATTTA	AAC	TGATTTGGGC	GATTCCCTTA	GATACCTCGC	TACATACATA	ATCATAATGA	7740
CTTGTATT	rcc	CTCTAATGAC	AGCTCCCAAG	CAGATAATTG	CATCATATTT	TTTACTTTTT	7800
GCCATTTT	TG	ATGCAATCAG	TGGTATTTCA	AAAGCTCCTG	GAACCCAGGC	TACCTCTATA	7860
TCTTTCTC	GT	TTACATTCTC	TCTTTTGAGA	TTATCTAGTG	CTCCAGATAA	TAATTTTGAA	7920
GTTATAAA	TT	CATTAAATCT	CGCTACAACA	ATACCTATTT	TAATATTGTT	TGCTACTAAA	7980
TTACCTTC	TA	AAGTGTTCAT	TTATTTTCC	TCCATATTTA	AAATGTGACC	CATTCGATTT	8040
TTCTTTGT	TT	CTAAATAAAA	ACTATCGTAA	GGATTGGCTT	CTATTTCGAT	TGATATTCTA	8100
CTGGAAAT	'GG	TAATTCCATA	ттттстаас	TGTTCAACCT	TGTCAGGATT	ATTTGTCAGT	8160
AAATGAAG	TG	ACTGAAGTCC	CAGATCTTTA	AGCATTTTTG	CTCCAATATG	ATATTCTCTT	8220
AAATCACC	TT.	CAAAGCCTAA	TGCAAGATTG	GCATCAAGCG	TATCCATGCC	TTGATCTTGT	8280
AAATGATA	.GG	CTTTTAATTT	ATTGATAAGT	CCAATTCCTC	GTCCCTCCTG	TCGCAAGTAA	8340
AGTAAGAC	AC	CCGAACCATT	CTCAACAATC	ATTTTCATAG	CCTTATCGAA	TTGCTGTCCA	8400
CAATCGCA	AC	GTAAAGAGCC	TAAAACATCT	CCTGTTAAAC	ATTCGGAGTG	GACCCGACAT	8460
AATACATT	GG	CTTCATCCTC	TATATTTCCC	ATAATAAGAG	CAAGATGATG	TTCCCCATTT	8520
AGTTTATC	TA	TATAGCTAAT	TGCTTTGAAA	TTACCGTATC	TAGTAGGCAT	ATTGACAGTT	8580
GAAACTCG	ТT	CTACCAGCTG	ATCATATACT	TTTCTATATT	CTTGTAATTC	TTTGATGGTA	8640
ATTAGTGG	AA	TGTTGTGTTT	TTTCGAGAAC	TGAATTAAAT	CATCTGTTCT	CATCATTTTG	8700
CCATCATG	AТ	TCATTATTTC	ACAACATAGG	CCACACTCTT	TTAGTCCAGC	ТААТТТТААТ	8760
AAATCAAC.	AG	TTGCTTCTGT	GTGTCCATTT	CTTTCTAGGA	CACCACCTTT	ТТТТССААТТ	8820
AAAGGAAA	CA	TGTGTCCTGG	CCTGCGAAAA	TCAGAGGGTG	TTATATCTTC	AGCTACACAC	8880
ATACGTGC	GG	TCAGTCCTCT	TTCCTCGGCA	GAAATACCTG	ምርርጥ ርር ጥ ኮጥር	ጥጥም እጥ እጥር እ	9940

ATTGAAACTG	TAAAAGCAGT	CTTATGATTA	TCTGTATTCT	TTTCAACCAT	AGGTGAAAGC	9000
ATTAATTGAT	TAGCTAAACT	TTCGCTCATA	GGCATACAAA	TTAATCCTTT	GGCATAAGTA	9060
GCCATAAAAT	TAACATTTTC	TGTTGTAGCT	GCTTGTGCAG	AACAAATTAA	GTCTCCTTCA	9120
TTTTCTCTAT	CCTTCTCGTC	TATAACAAGA	ACAAGTCGTC	CCTTCTGCAA	TGCTTCTAAT	9180
GCTTCTTGTA	TTTTTCGATA	TTCCATTGAC	TGATTATCCT	TTCTGCTAAA	ATCCATTTTG	9240
ATATAATAGT	TCCTTAGATA	TTTCTGATTT	TGGAGAGTTA	TCCATCAGTT	TTTGCACATA	9300
TTTACCTAAG	ATATCATTTT	CAAGATTTAC	TGTACTCCCG	ACTTGTTTAC	TCTTAAGAAT	9360
GGTTTGTTCC	AAGGTATGAG	GGATAACAGA	TACTGAAAAG	TTTACTTTGG	AGACTTTAGC	9420
GACAGTCAGA	CTAATGCCGT	CAATTGTAAT	AGATCCTTTT	тсаастатта	ААТСТААААТ	9480
TTCTTTTTGT	GTGTTGATTT	GATACCATAC	AGCATTATCA	TCTTTTTTA	TTGACGAGAT	9540
ттттсстста	CCATCAATGT	GTCCTGTAAC	GACGTGACCC	CCAAGTCGAC	CGTTGACAGA	9600
TAAGGCTCTT	TCTAGATTCA	CCTCACTTCC	ATGTTTTAAT	AGAGTAAGAG	CTGTTCGACT	9660
CCATGTTTCA	ТТСАТТАСАТ	CAACTGTAAA	GGATTGATGA	TTGAAATGAG	TAACTGTAAG	9720
ACAGATACCA	TTTACTGCTA	TACTATCGCC	TAAATGGATA	TCCGTTAATA	TTTTTGAGGC	9780
TTTAATTGAT	AGTTTACAAT	TACGAGAGTC	TTTCTGTATT	CTTTCAACTT	TTCCGATTTC	9840
ттсааттатт	CCTGTGAACA	TGGATAAATC	ACTTCACTTT	CTATGAGATA	GTCATTTCCT	9900
ATTTGAGAAA	ATGCATAAGG	TTTCAATCTA	ATAGCGTCAT	TTGGCAAAGA	AATACCTTCA	9960
CCTCCGACAG	GAAACTTGGC	ACTACCTCCA	AAAACTTTTG	GTGCAATATA	TATTTTCAGC	10020
TCATCAACAA	TTTGTTGTTC	CAAAGCACTC	CAATTCATTA	GACTGCCCCC	TTCTAGAACT	10080
AGGCTATCAA	TCTGCATGTT	TCCTAGATGT	TGCATTAAAC	TCGATAAGTC	TATATGATTG	10140
CCTTTTTCT	TTATGGAAAG	TATTTCACAG	CCATGATTTT	GATATAGCTT	CATTTTATTT	10200
TTGTCTTCAG	AGGAAGTGGC	AATGTAAGTT	ттаататсат	TTGCTGTTTT	TACGATTTTA	10260
GAGGTAAGAG	GAGTTCGTAA	ATGTGTATCG	CATATGATAC	GGATAGGATT	TTTCCCTTCC	10320
тссаатстас	ATGTCAGCAA	AGGATCGTCT	TGAATAACAG	TATTGACTCC	CACCATAATT	10380
GCACTAACAT	GGTGTCGTAA	CTGATGCACA	TGCTTTCTTG	CTTCTTCTTC	AGTAATCCAT	10440
TTGGATTGAT	TTGTTTTAGT	GGCTATTTT	CCATCCATTG	ACATTGCATA	ТТТСАТАААА -	10500
ACATAGGGTA	CATGCTGGGT	ААТАТАСТТТ	СТАЛААСТТТ	TTATTAAGTT	AAGACACTCA	10560
ТТТТСТАААА	TTCCAACAGT	AACTTGAAGA	ттаттттсст	CAAGTATCTT	TACTCCTTTT	10620
CCAGATACAA	TAGGATTACA	GTCTAGGCTT	CCAATGACTA	CTCTTGTAAT	ACCACTATCG	10680

			396			
ATTATAGCAT	' CTATACAGGG	AGGTGTTTTC	CCGAAGTGAC	AACAGGGTTC	AAGTGTTACA	10740
TAAAGCGTCG	CTCCGACAGG	GGATTCTCTA	CAGTTTTTAA	GAGCATTTCT	CTCAGCATGT	10800
GGGCCACCAA	AAAACTCATG	ATAACCTTGT	CCGATAATGT	GATTATCTTT	TACAATAACT	10860
GCGCCGACCA	TAGGATTGGG	ATTGACGTAA	CCAGCCCCTT	TTTGTGCCAG	TTTTATTGCT	10920
AATTTCATAT	ATTTTGAATC	GCTCATCTCG	СТАССТССАА	AAAAATATAC	CTTGAATAGG	10980
GGACTACTCA	AGGCATACAA	AAGAAAACTT	ATGCGATTAA	CAAAAATGCT	CTGAAATGAC	11040
AAGTAATCAT	TTCAGAGCAC	GCAAAAAGCA	САААТАТАСТ	TTTATCTTCT	TTCATCCAGA	11100
CTATACTGTC	GGCTTTGGAA	TTTCACCAAA	TCATGCCTTT	CGGCTCGTGG	GCTATACCAC	11160
CGGTAGGGAA	TTTCACCCTG	CCCTGAAGAT	AGTTATTCAA	TTACAGATGA	TTATAGTACT	11220
ТААТТТТСАА	TATGTCAACA	GATAAATACC	GATTGTTTTT	GATATACTGT	ATTTGTGATA	11280
ATCGATTCTC	GCTCCTCGGA	TAAAGAAAAT	ATGATATACT	AGATAAACGA	AATAAGAGAG	11340
AAGGAATACT	ATGTACGCAT	ATTTAAAAGG	AATCATTACC	AAAATTACTG	ССАААТАСАТ	11400
TGTTCTTGAA	ACCAATGGTA	TTGGTTATAT	CCTGCATGTG	GCCAATCCTT	ATGCCTATTC	11460
AGGTCAGGTT	AATCAGGAGG	CTCAGATTTA	TGTGCATCAG	GTTGTGCGTG	AGGACGCCCA	11520
TTTGCTTTAT	GGATTTCGCT	CAGAGGATGA	GAAAAAGCTC	TTTCTTAGTC	TGATTTCGGT	11580
CTCTGGGATT	GGTCCTGTAT	CAGCTCTTGC	TATTATCGCT	GCTGATGACA	ATGCTGGCTT	11640
GGTTCAAGCC	ATTGAAACCA	AGAACATCAC	CTACTTGACC	AAGTTCCCTA	AAATTGGCAA	11700
GAAAACAGCC	CAGCAGATGG	TGCTGGACTT	GGAAGGCAAG	GTAGTAGTTG	CAGGAGATGA	11760
CCTTCCTGCC	AAGGTCGCAG	TGCAAGCAAG	TGCTGAAAAC	CAAGAATTGG	AAGAAGCTAT	11820
GGAAGCCATG	TTGGCTCTGG	GCTACAAGGC	AACAGAGCTC	AAGAAAATCA	AGAAATTCTT	11880
TGAAGGAACG	ACAGATACAG	CTGAGAACTA	TATCAAGTCG	GCCCTTAAAA	TGTTGGTCAA	11940
ATAGGAGCAG	AGAATGACAA	AACGTTGTTC	GTGGGTCAAG	ATGACCAACC	CGCTCTACAT	12000
CGCCTATCAT	GATGAGGAGT	GGGGCCAGCC	CCTCCATGAT	GACCAAGTAT	TGTTTGAGTT	12060
GTTGTGTATG	GAAACCTATC	AGGCAGGCCT	GTCTTGGGAA	ACGGTACTCA	ACAAACGCCA	12120
AGCTTTCCGA	GAAGTCTTTC	ATAGCTATCA	AATTCACTCA	GTCGCAGAGA	TGACTGACAC	12180
TGAATTGGAA	GCCATGCTGG	AGAATCCAGC	TATCATTCGA	AATAGAGCCA	AGCTTTTTGC	12240
TACACGCGCT	AACGCCCAAG	CCTTTCTACA	GTTACAGGCA	GAGTACGGCT	CTTTTGATGC	12300
CTATCTTTGG	TCTTTTGTTG	AGGGGAAAAC	TGTCGTTAAC	GATGTTCCTG	ATTATCGCCA	12360
AGCGCCAGCT	AAAACACCCT	TATCTGAGAA	ATTAGCCAAA	GATCTCAAAA	AACGAGGCTT	12420
CAAGTTCACA	GGCCCAGTCG	CCGTATTGTC	TTTTCTACAG	GCTGCAGGGC	TAGTTGATGA	12480

CCACGAGAAT	GATTGTGAGT	GGAAAGGTCT	TAAATGATGT	СТААСААААА	TAAGGAAATT	12540
CTGATTTTTG	CGATTCTCTA	TACAGTCCTC	TTTATGTTTG	ATGGCGTTAA	ATTGCTGGCT	12600
TCTTTAATGC	CATCTGCCAT	TGCAAATTAT	CTTGTTTATG	TAGTTTTAGC	TCTATATGGC	12660
TCCTTCTTGT	TCAAGGATAG	ATTGATCCAA	CAATGGAAGG	AGATTAGAAA	GACTAAAAGA	12720
AAATTCTTCT	TTGGAGTCTT	AACAGGATGG	CTCTTTCTCA	TTCTGATGAC	TGTTGTCTTT	12780
GAATTTGTAT	CAGAGATGTT	GAAGCAGTTT	GTGGGACTAG	ATGGACAAGG	TCTAAATCAG	12840
TCTAATATTC	AAAGTACCTT	TCAAGAACAA	CCACTACTGA	TAGCTGTTTT	TGCTTGTGTC	12900
ATTGGACCTC	TGGTAGAAGA	ATTATTTTC	CGTCAGGTCT	TATTGCATTA	CTTGCAGGAA	12960
CGGTTGTCAG	GTTTACTAAG	CATTATTCTG	GTAGGACTTG	TTTTTGCTCT	GACTCATATG	13020
CACAGTTTGG	CTCTATCAGA	GTGGATTGGT	GCAGTTGGTT	ACTTAGGTGG	AGGCCTTGCC	13080
ттттстатта	TTTATGTGAA	AGAAAAAGAG	AATATCTACT	ATCCCCTACT	TGTTCACATG	13140
TTAAGCAACA	GCCTCTCCTT	AATCATTTTA	GCTATCAGTA	TAGTAAAATG	AAATGAGAAC	13200
AGGACAAATC	GATTTCTAAC	AATGTTTTAG	AAGTAGAGGT	GTACTATTCT	AGTTTCAATA	13260
TACTGTAATA	TGTGATGAAA	ATGCCAGTAA	TGATACCGAG	AAAAAAGCTG	AGAAACTTTT	13320
CCCAGCTTTA	TTTGTTATAG	TCAAAGAGAA	TGACTTGTTC	CTGTGCATCT	ACATGAGCAT	13380
GGACCCCAAA	GGGTACAATT	GCTCTTGGAG	TTGCGTGGCC	GACATTCAGA	TTATAGACAA	13440
TCGGGATATT	GCTGTCAATG	ATATCCAATA	GTGCCTCTTT	ATAGTCGTCA	TGGAAAGTTT	13500
CATCCATAGG	TTTTCCGACC	AAGAGTCCAT	TGATGACCGC	GAATATGCCA	GTGTCCTTTA	13560
AAGTTAGCAA	CATCTTTTTG	AAGTCTTCTG	GCTTAGGCTT	TTCTTCGCTT	GTTTCGAGCA	13620
AGAGGATTTT	CCCTTCCCAG	TCTGACAAGT	CAGGGAAAAG	TTTGTATTTT	TGGCAGAGTT	13680
CCGTGCTATC	TGCGTATCGA	GAGTTGTCAA	AGATATCGTA	GAGGGATTCG	AGGCAACCAC	13740
CGAGGATTTT	CCCCTCGAAC	TGGGCACTTC	CTTGCAACAA	GTCAAAACCT	GTATTTGTAT	13800
GACTGACACG	AGGTGTTCCC	AGGGCCGTGG	GACTAAAATC	AGTTCGTTCC	TCATACCAAA	13860
CGTCACTAGG	GCGGATTTCT	GAAATTCTTC	CCGTCTCAAT	CAATTCTTTA	AAGTAGTGAA	13920
GGCTATAGGC	TAGCATTTCT	TTGTCTAATT	CACAAATGTC	TGCTAAAAAG	GATTGACCAT	13980
AAAAAGTCTT	GATTCCTAAT	TTATGCAACA	TGAGGTGGTT	CATGGTTGTA	TCCGAGAAGC	14040
СААСАААААТ	TTTTTGCTTG	ATAACCTTTT	GGAGTTGGTC	ATTTTCAAAA	AGATAAGGTA	14100
GCAAGCGATA	GGTATCGTCT	CCACCGATGG	CACATAGGAT	CATGTCGATG	CTATCATCAG	14160
AAAAGGCATG	AATCAAATCC	TCTGCACGAG	CTTCAGGATG	GTCCTTGATA	AAGTCTAATC	14220

398 CTTTTAACGA ATGGGGCAAA AAGATGGGAT TGGTCCCAGA TCCTTGAGAC GTT

14273

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9828 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

GTGAAGTGCG GCAAAAGGTG CAAGTGATGA GCTCAGGTTC TTTAGCTCTT GACATTGCCC 60 TTGGCTCAGG TGGTTATCCT AAGGGACGTA TCATCGAAAT CTATGGCCCA GAGTCATCTG 120 GTAAGACAAC GGTTGCCCTT CATGCAGTTG CACAAGCGCA AAAAGAAGGT GGGATTGCTG 180 CCTTTATCGA TGCGGAACAT GCCCTTGATC CAGCTTATGC TGCGGCCCTT GGTGTCAATA 240 TTGACGAATT GCTCTTGTCT CAACCAGACT CAGGAGAGCA AGGTCTTGAG ATTGCGGGAA 300 AATTGATTGA CTCAGGTGCA GTTGATCTTG TCGTAGTCGA CTCAGTTGCT GCCCTTGTTC 360 CTCGTGCGGA AATTGATGGA GATATCGGAG ATAGCCATGT TGGTTTGCAG GCTCGTATGA 420 TGAGCCAGGC CATGCGTAAA CTTGGCGCCT CTATCAATAA AACCAAAACA ATTGCCATTT 480 TTATCAACCA ATTGCGTGAA AAAGTTGGAG TGATGTTTGG AAATCCAGAA ACAACACCGG 540 GCGGACGTGC TTTGAAATTC TATGCTTCAG TCCGCTTGGA TGTTCGTGGT AATACACAAA 600 TTAAGGGAAC TGGTGACCAA AAAGAAACCA ATGTCGGTAA AGAAACTAAG ATTAAGGTTG 660 TAAAAAATAA GGTAGCTCCA CCGTTTAAGG AAGCCGTAGT TGAAATTATG TACGGAGAAG 720 GAATTTCTAA GACTGGTGAG CTTTTGAAGA TTGCAAGCGA TTTGGATATT ATCAAAAAAG 780 CAGGGGCTTG GTATTCTTAC AAAGATGAAA AAATTGGGCA AGGTTCTGAG AATGCTAAGA 840 AATACTTGGC AGAGCACCCA GAAATCTTTG ATGAAATTGA TAAGCAAGTC CGTTCTAAAT 900 TTGGCTTGAT TGATGGAGAA GAAGTTTCAG AACAAGATAC TGAAAACAAA AAAGATGAGC 960 CAAAGAAAGA AGAAGCAGTG AATGAAGAAG TTCCGCTTGA CTTAGGCGAT GAACTTGAAA 1020 TCGAAATTGA AGAATAAGCT GTTAAAGCAG TGGAGAAATC CGCTACTTTT TCGATTTTTG 1080 ATTCAAGTTT TTAGATTATA TATAGTAGCT TGAAATAAGA TATGAACAAC TCTATTAGGA 1140 AAGTCAAATT AATTTCTAGA AATGTTTTAG CAGCTACAGC GTACTATTCC AAACTCAACC 1200 AACTATAATA GATCGAAACT AGAATAGTAC ATATCTACTT CTAAAACATT GTTAAAAATC 1260 GATTTGACTT TCCTTATTTC ATTCCGCTAT ATATAGTTTG CTGTTTCTTG TCGCTCCTCT 1320 GGAAAGCTGA TATAATAGCT TTATGAATAA AAAACGAACA GTGGACCTGA TACATGGTCC 1380

GATTCTTCCC	TCGCTCTTAA	GCTTCACCTT	TCCAATTTTG	СТАТСАААТА	TTTTTCAACA	1440
GCTCTATAAC	ACTGCTGATG	TCTTGATTGT	TGGACGATTT	CTTGGTCAAG	AATCCTTGGC	1500
TGCAGTAGGA	GCGACGACAG	CGATTTTTGA	CCTGATTGTA	GGTTTTACAC	TTGGTGTTGG	1560
CAATGGCATG	GGGATTGTCA	TTGCTCGTTA	TTATGGGGCT	CGGAATTTCA	СТААААТСАА	1620
GGAAGCAGTA	GCAGCCACCT	GGATTTTAGG	TGCTCTTTTG	AGCATTCTAG	TTATGTTGCT	1680
GGGCTTTCTT	GGCTTGTATC	CTCTCTTGCA	ATACTTAGAT	ACTCCTGCAG	AAATTCTTCC	1740
ТСААТСТТАТ	CAATATATTT	CTATGATTGT	GACCTGTGTA	GGTGTCAGCT	TTGCTTATAA	1800
TCTTTTTGCA	GGCTTGTTGC	GGTCTATTGG	TGACAGTCTA	GCAGCCCTGG	GATTTCTGAT	1860
TTTCTCTGCC	TTGGTTAATG	TGGTTCTGGA	TCTCTATTTT	ATTACGCAAT	TGCATCTGGG	1920
AGTTCAATCC	GCAGGACTTG	CTACCATTAT	TTCGCAAGGT	TTATCAGCGG	TTCTCTGCTT	1980
TTATTATATT	CGTAAAAGTG	TGCCAGAACT	CTTGCCACAG	TTTAAACATT	TCAAATGGGA	2040
CAAAAGCTTG	TACGCGGATC	TCTTGGAGCA	AGGTTTGGCT	ATGGGCTTGA	TGAGTTCAAT	2100
TGTATCTATC	GGCAGTGTGA	TTTTACAGTT	TTCTGTTAAT	ACATTTGGTG	CAGTGATTAT	2160
TAGTGCCCAG	ACGGCAGCTC	GACGCATTAT	GACCTTTGCC	CTTCTTCCTA	TGACCGCTAT	2220
TTCTGCATCA	ATGACGACCT	TTGCTTCTCA	GAATCTAGGA	GCTAAGCGAC	CTGACCGTAT	2280
TGTTCAAGGT	CTTCGAATCG	GCAGTCGTTT	AAGTATATCC	TGGGCAGTTT	TTGTTTGTAT	2340
PTTCCTCTTT	TTTGCCAGTC	CAGCTTTGGT	TTCCTTCTTG	GCTAGTTCGA	CAGATGGTTA	2400
CTTGATAGAA	AATGGAAGTC	TCTATCTGCA	AATCAGTTCA	ACCTTTTATC	CCATTTTGAG	2460
CCTCTTGTTG	ATTTATCGCA	ATTGCTTGCA	GGGCTTGGGG	CAAAAGATCC	TTCCTCTAGT	2520
PTCTAGCTTT	ATTGAACTAA	TCGGAAAAAT	CGTTTTTGTG	GTTTTGATTA	TTCCTTGGGC	2580
aggatataag	GGTGTTATCC	TTTGTGAACC	TCTTATCTGG	GTTGCCATGA	CAGTTCAACT	2640
GTACTTCTCA	TTATTCCGTC	ATCCCTTGAT	AAAAGAAGGC	AAGGCAATCT	TGGCAACCAA	2700
AGTGCAATCC	TAGTTGGATT	TACTGAATAA	AATCCATTTC	CTCTAGTGAA	AATCGAAAAA	2760
ACTTGTGTTC	TCTTCTTTAG	TTTGGTGTTG	AAAATAGTTT	AACAGACTTT	TGACTTCTTT	2820
PATATGATAT	AATAAAGTAT	AGTATTTATG	AAAAGGACAT	ATAGAGACTG	ТААААТАТА	2880
CTTTTGAAAA	TCTTTTTAGT	CTGGGGTGTT	attgtagata	GAATGCAGAC	CTTGTCAGTC	2940
CTATTTACAG	TGTCAAAATA	GTGCGTTTTG	AAGTTCTATC	TACAAGCCTA	ATCGTGACTA	3000
AGATTGTCTT	CTTTGTAAGG	TAGAAATAAA	GGAGTTTCTG	GTTCTGGATT	GTAAAAAATG	3060
Cutura annuma y	AMMCAMAACC	ACMACA AMAM	CCANAMMANM	CITIC A CITIA A SIM	T A C A A C A C A C A	3120

400 TTTGCCTCAA GTCGGCGTGC AACCATATAG GCAAGTACAC GCACACTCAA CTGGGAATCC 3180 GCATTCAACC GTACAGAATG AAGCGGATTA TCACTGGCGG AAAGACCCAG AATTAGGTTT 3240 TTTCTCGCAC ATTGTTGGGA ACGGTTGCAT CATGCAGGTA GGACCTGTTG ATAATGGTGC 3300 CTGGGACGTT GGGGGCGGTT GGAATGCTGA GACCTATGCA GCGGTTGAAC TGATTGAAAG 3360 CCATTCAACC AAAGAAGAGT TCATGACGGA CTACCGCCTT TATATCGAAC TCTTACGCAA 3420 TCTAGCAGAT GAAGCAGGTT TGCCGAAAAC GCTTGATACA GGGAGTTTAG CTGGAATTAA 3480 AACGCACGAG TATTGCACGA ATAACCAACC AAACAACCAC TCAGACCACG TTGACCCTTA 3540 TCCATATCTT GCTAAATGGG GCATTAGCCG TGAGCAGTTT AAGCATGATA TTGAGAACGG 3600 CTTGACGATT GAAACAGGCT GGCAGAAGAA TGACACTGGC TACTGGTACG TACATTCAGA 3660 CGGCTCTTAT CCAAAAGACA AGTTTGAGAA AATCAATGGC ACTTGGTACT ACTTTGACAG 3720 TTCAGGCTAT ATGCTTGCAG ACCGCTGGAG GAAGCACACA GACGGCAACT GGTACTGGTT 3780 CGACAACTCA GGCGAAATGG CTACAGGCTG GAAGAAAATC GCTGATAAGT GGTACTATTT 3840 CAACGAAGAA GGTGCCATGA AGACAGGCTG GGTCAAGTAC AAGGACACTT GGTACTACTT 3900 AGACGCTAAA GAAGGCGCCA TGGTATCAAA TGCCTTTATC CAGTCAGCGG ACGGAACAGG 3960 CTGGTACTAC CTCAAACCAG ACGGAACACT GGCAGACAAG CCAGAATTCA CAGTAGAGCC 4020 AGATGGCTTG ATTACAGTAA AATAATAATG GAATGTCTTT CAAATCAGAA CAGCGCATAT 4080 TATTAGGTCT TGAAAAAGCT TAATAGTATG CGTTTTCTTG TGGAGATATT TCCTTCAATT 4140 TTGCTACTAT ATTAAACAAA AATCAAAAAG CAAACTAGAA AGTTATGCTC AAATAAAATC 4200 TAAATTTGAC AATGTAAACC GAGTCGGATA GCTTTAAGTA CTGTTTTGAG GTTGAAGATA 4260 CGATTTTTGA TAGGAACTCA TCAATTTTAG ATTTTTAAGC AGCATCAATA AATTGCTTCC 4320 TTGTTTTGTC ATAATTTTT TATTTAAAAA ATTATGACMA GAGTGTGCTA TTCTTTTTAT 4380 GAGAGGTGTA TGAATATGAT AAATGTATGT GATAAATGTA TGTGATGTTG GAAAAAGAAT 4440 AAAAGAACTT AGAATATCTT CAAATCTTAC TCAAGATAAG ATTGCTGAGT ATTTGTCTTT 4500 GAATCAAAGC ATGATTGCCA AAATGGAAAA AGGTGAAAGG AATATCACGA ATGGATTTAA 4560 GTAATAAAGC TTCAAATCTT AGAAAAAAGT TGGGAGCTGA TGGTGAATCG CCGATAGATA 4620 TTTTTAAATT GGTACAAAAG ATAGAAAATT TGACGCTGGT ATTTTATGGA CTCGGAAAGA 4680 ATATTAGCGG AGTCTGTTAT AAAGGAACTC AGTTCAGTCT CATTGCAGTC AATTCAGACA 4740 TGCCATTAGG AAGGTAAAGA TTTTCTTTAG CACATGGACT GTATCATCTT TATTATGATG 4800 AGGTGAAGAA GAGTTCAGTC AGTCTTATCT TGATTGGTGA AGGAGATGAA ACTGAAAGAA 4860 AAGCGGATCA GTTTGCTTCT TATTTTTTAA TTTTCCCATC TTCACTGTAT AGGATGGTTG 4920

AGGAAATCAG	AGAAAATGCC	AATAGAACTC	ATCTTGAAGT	AGAAGATATT	ATAAAATTGG	4980
GTCAGTTTTA	TGGTATCAGT	CATAAAGCTA	TGTTATATAG	ATTGAGGAAT	GATGGATACC	5040
TTGATGCAGA	AGAAATTAAA	AATATGGATA	TTAGTGTTAT	AGAGACAGCT	TCAAGATTAG	5100
GCTATGATAC	AAGTTTATAT	CGTCCTTTGT	CAGAAAGTAA	AAAAGAAATG	GCATTAGGAT	5160
AATATATTAA	TTCAACTGAA	CAACTTTTAG	AAAATAACAG	AATTTCGCAA	GGGAAGTATG	5220
AGGAACTGTT	ACTAGATGCT	TTCAGATATG	ATATTGTATA	TGGGCTAGAT	GAAGAGGGGG	5280
GAGTTGTCGT	TTGACTAGTC	GTGTATTTAT	TGATGCAGAT	TGTATTTCAG	TATTTTTATG	5340
GGTTGGCACT	GAACATCTTT	TAGAAAAGCT	CTATTTGGGT	AAAATTGTTA	TTCCACAAGA	5400
GGTGTATGAT	GAAATCAATA	TACCTACAAT	TCCCCATTTA	AAATCTAGGA	TAGATCAGTT	5460
GGTAGCTAAG	GGTTCAGCTG	AGATTGTGAG	CATAGACATT	GGAACTGAAG	AATACGCATT	5520
ATATAGAGAT	TTAACAAGAA	ATCATGATAG	TAACAAGATT	ATTGGTAAGG	GAGAAGGGC	5580
ATCTATTTCC	TTAGCGAAAA	AGCATAATGG	GATATTAGGA	AGTAATAACC	TAAGAGATGT	5640
TAAATCATAT	GTAGAAGAAT	TTTCTTTAGA	ATATATGACA	ACAGGAGATA	TACTGATTGA	5700
AGCGTTTAAA	GCGTAATTTA	TTACTGAATA	AGAGGGCAAT	CATATCTGGA	ATAATATGCT	5760
TAAAAAGAGA	AGGAAAATTG	GTGCAAATTC	ATTTTCAGAC	TATCTTCGTG	GAAGTATTCA	5820
TCAAAATAGA	САААААТААА	TTTGGATAAA	TCGAACTCAC	TATTCAGGAG	GCATATGAGC	5880
AATTCGAAAA	AGAAAAGTGT	CAAATTGAGC	CTATAGGAGT	AGAAGTGAAA	TAGTAAGTCC	5940
TGCATAGTGG	ATGAGAGAAA	AGTTCTCCTT	GAAGTTTTCC	TGAACTATCA	GTCGCATGTC	6000
AAACGATATG	TAGGGTAATG	TGAGAGGGGA	TAGCGAGTAG	TTTTTGGTTA	TTTTATCAAA	6060
AAACTTATAT	TTTATTATAC	CGAATGATAA	AATATAATAA	AAATGATAGA	ATAAGGAAAA	6120
AACATGAATG	TCAAAAAGAT	AATGTCAATT	TTTCAATCCT	TTTATGTTGA	TGTCAGTATT	6180
GAGGAACTGA	CTTTGACTTT	ACCAATCAGT	TTTGTAAAAA	GGTTTGAGTA	TACTCAAATG	6240
ACTTTTCATA	AGGAATCATT	TTTATTGATT	AAAGAAAAGA	GAAGGGGGAG	TTTGAGTTCA	6300
TTTGTTACTC	AGGCTCGCAC	TATGGGTGAA	AAAGCCAATA	TGGATGTTGT	TTTGGTGTTT	6360
TCGAAGTTAT	CAGACAGTGA	AAAAAAGCAA	TTACTTCAAG	CTAGAGTTCC	GTTTGTAGAC	6420
TTTAAGGGAA	ACCTCTTCTT	CCCTCCATTG	GGACTAGTAC	TCAATGCGAA	TGATACTGAA .	6480
GTCCCTAAGG	AATTAACACC	TAGCGAACAA	TTAACGTGGA	TTGCCTTTTT	ATTGACAAAA	6540
GGTCAAAAAG	TAGTAGATGT	TGATTTGCTT	TCACAAGTCA	CTGGACTTCC	AAACTCAACA	6600
ATTTATAGGT	GTTTGAGGAC	TTTTAAAGCT	TTATATTGGT	TAAACAAGCA	AAATAAGCTT	6660

				402			
TAG	CACATATA	CGGTGTCAAA	GAAAGAATTA	ттстталаат	CCGTGTCATG	TTTATTTAAT	6720
CC	CATCAAAA	AACGGATTTT	ATTGCCAGAT	GGCGATATAA	AGCAGATAAA	ATCTGTTTCT	6780
AA	ССТТСТАТ	ATGGTGGTGC	TTATGCTTTG	TCGCATTCAA	CTTTTTTAGC	TGAAACGGAT	6840
GA	ATTATAA!	GCTATGTCAT	ATGGCAGAGA	AAATTCAATC	AGTTATCCTT	GCCACTTTCT	6900
CAC	CATGTTT	TAAAATGAAA	GATGCTAGAG	ATATGGAAAT	ATCGTCCTTT	TGTATCTGAG	6960
LTT	PTGGAATG	АТТТТААААА	TAATCATGAT	AAACAATTTG	TAGATCCGAT	TTCTCTTTAT	7020
ТТС	GACCTTAA	AAGATGATGA	TGACCCACGT	ATAGAGGAAG	AGAGTGAAGC	ACTAGAAAAT	7080
ATC	SATATTAC	AGTATCTGGG	AGAAGATGAT	GCCAGCTAAT	ACGAAAGTTA	TTTTTCAAGA	7140
AAT	GTTTGCG	GATTTTCAGA	ACTATTATGT	TCTGATTGGG	GGAACTGCTA	CCTCTATCGT	7200
LTA	*GGATTCG	CAAGGATTTA	AAAGTCGCAC	AACAAAAGAT	TATGATATGG	TCATCATTGA	7260
TGF	AGTAAAA	AATAAGGAAT	TTTATACTAC	CTTGAATCAT	TTTTTAGAAT	TGGGAGAGTA	7320
TCA	AGGAAGT	CAGAAAGATG	AGAAAGCGCA	GCTTTTTCGA	TTTACAACAA	CTAATCCTGA	7380
GTT	TCCTTCT	ATGATTGAAC	TATTTAGTAT	CTTACCAGAA	TATCCATTAA	AGAAGGACGG	7440
TCG	AGAAATT	CCCTTACATT	TTGACCAAGA	TGCTAGTTTA	TCAGCCTTAT	TATTGGATGA	7500
AGA	TATTAT	AATATATTGG	TGCATGAAAA	AGAAACCATT	CAGGGGTATT	CGGTATTGAG	7560
TAA	TTGTGGT	TTATACTCTT	CGAAAATCTC	TTCAAACCAC	GTCAGCTTCC	ATCTACAACC	7620
TCA	AAACAGT	GTTTTGAGCA	GCCTGCAGCT	AGCTTCCTAG	TTTGCTCTTT	GATTTTCATT	7680
GAG	TATTAAT	TATTTTTAAG	GCTAAAGCTT	GGCTGGATAT	GAGGGAGCGC	TCTGCCACAG	7740
GTG	CTCAAGG	ТТТААСТАА С	TCCATTAAAA	AGCATTTGAA	TGACCTTACC	CGTTTGACAG	7800
СТТ	CCTTGCT	AGGAGATGAA	AAGTTATCGG	CTATAACATC	AAGTAGTGCG	GTAAAAGCAG	7860
ACA	TGCACCG	CTTTGTGATA	GAATTAGAGC	CTGTGAAGTC	AACTATTCTT	CAAAATAATG	7920
ACA	TTTCATT	GGATCAAAAT	GAAATTTTTG	AAATTCTGAA	AAATTTTCTC	GATGGTTAAA	7980
ATA	ATTGTAG	CGAGATGGCT	ATATTGAATT	CGTCTATATC	TGGAAACTAG	AAAAAACTTC	8040
\AT	TTCAGGA	GAAAATGAAG	TCAATCTTCC	CACAATCAAA	CGTATAGTAT	CAAGGTTTTT	8100
CAA	GACCTGA	TATTATGCGT	TTTTTGCTTT	TCAAAACTTT	TTGCCCAGTC	TTCGTTTTTA	8160
rcc	TCTAGTC	ACTTGATTTG	TTTCAGGTGG	TTTTTTAGTA	TAGTAGAATG	AAACGAGAAC	8220
AGG.	ACAAATT	GATCAGGACA	GTCAAATCGA	тттстаасаа	TGTTTTAGAA	GCAGAAGTGT	8280
ACT.	ATTCTAG	тттсаатста	Статасттаа	ATCTGCGGTC	AAGTCTACTG	GTGAATCTAT	8340
AT'	TGTAATA	CTCTTCCAAA	АТСТСАТСАА	CCACGTCAGT	CTTGCCTTGC	AGTCTGTATC	8400
TA	CTGACCA	AGCTAGTGAT	ССАТТТАСА	ጥልርረጥር አጥጥጥ	CCACCCTCCT	አመመአርሮመአርር	0460

1	AAATGCTGCT	CATAGTCCTT	TGCTGAGGCT	AGGGTGTTTC	AACATTCAAC	ACTCAACTGG	8520
•	ГТGАТСТАСТ	TGATAGGAAG	GGAGTTACTA	таааатастс	AGGCTTCCAT	CATATTTTTT	8580
(GAAACGATTG	TGTAATCAAA	ATGTACCAAT	ATTGTAGTAT	TGGTACAGAA	GATGTTGTGA	8640
2	ATGGATAAAT	ATATCATAAC	TGCTATCTCA	AAAAGATTTC	ATATGTCTGT	GCATATATAA	8700
7	PAGACTTCCT	GCAAAACTAG	AATCCTAGTT	CATGATTGAT	AATACCAGCA	ATCAAATTCA	8760
7	PTCGTAATCC	AAAGCGTTTA	CGATGATTTC	GATAGGTTGT	TGAAAACATT	TTAAACGTTT	8820
C	CTACTTTGGC	AAAGATGTTC	TCAACCTTGC	TTCTCTCCTT	AGATAGCGCA	TGGTTATAGG	8880
C	TTTATCTTC	AGCTGTTAGC	GGCTTGAGTT	TGCTGGATTT	ACGTGGAGTT	TGTGCTTGAG	8940
C	ACATATCTT	CATGAGCCCT	TGATAACCAC	TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	9000
"	ATTTCTGCA	ACTCATTTTG	AACAACTTCA	TATCATGACA	ATAGTTCACA	GTGATATCCA	9060
P	AGAAACAAT	TCTCCCTTGA	CTTGTGACAA	TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	9120
1	TTTACCAGA	ATCATTCGCT	AATTCTTTTT	TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	9180
7	СААТСАТТА	CCGTGTCCTC	AGAACTAAGA	GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	9240
A	CAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	CGGATTAAGT	TGCTTTCGTG	AATACCAAAA	9300
1	CAGCCGCAA	TTTCTTCATA	AGTGCGGTAT	TCTAGGCTTA	ATTTAGGTTT	TCGTCCACCT	9360
T	TTGCGTGTT	TAAGTTGATA	AGCTGTTTTT	AATACAGCTA	ACATCTCTTT	AAAAGTCGTG	9420
C	GCTGAACAC	CAACAAGACG	CTTAAATCGT	GTATCAGTTA	ATTGTTTACT	TGCTTCATAA	9480
T	TTCGCAGGG	AGTCTATTGA	CTCTTTGGTA	GGTGTCAATG	ТТТТТТТСАТ	CTATCCCGAG	9540
A	ATTATTTTC	CCGCCATTTG	TATTTGCAAA	TGCTGAGTAG	GTTTCCCAGA	AAGACTCTGG	9600
A	AGATTGTTT	TTAGCTTTTT	TGTATTCTAA	ATCAACCCCT	TCAAATTTTA	AGTCCATATT	9660
Т	TTCCTTTAC	ATCTGTTTTT	TGTGGTTCTG	GTATTTGTTC	AAGTTGAGTG	ATAATATAGC	9720
G	AATTGAATT	TCGAGAGTTT	TTACTCAGTT	AATTTCTTTT	TTAACCCACT	TTAATTGCTT	9780
T	TTTAACACG	GGTTAAAAAA	GAAATTAAAG	TGGGTTAATT	TTTCTTGA		9828

(2) INFORMATION FOR SEQ ID NO: 42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3369 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

404 CCGCGAAAGA TATTTTTGAA CAAGAGTTTG GACGTGAGGT CCGTGGCTAT AATAAAGTAG 60 AAGTTGACGA GTTTTTAGAC GATGTCATCA AGGACTATGA AACCTATGCT GCCTTGGTCA 120 AGTCACTTCG TCAGGAAATT GCGGATTTGA AGGAAGAATT AACTCGTAAA CCGAAACCTT 180 CACCAGTTCA AGCAGAACCC CTTGAAGCGG CAATTACAAG TTCTATGACG AATTTTGATA 240 TTTTGAAACG CCTGAATAGA TTGGAAAAAG AAGTTTTTGG TAAACAAATT TTAGATAACT 300 CAGATTTTTA AGTAGTTATT TGAGATGTGC AATTTTTGGA TAATCGCGTG AGGAGAATTG 360 TTTCTCATGA GGAAAGTCCA TGCTAGCACA GGCTGTGATG CCTGTAGTGT TTGTGCTAGG 420 CGAAACCATA AGCCTAGGGA CGAGAAATCG TTACGGCAGT TGAAATGGCT AAGTCCTTGG 480 ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GTGACGGAGT CTTTCTGGAA ACAGAGAGA 540 TGGAACGCGG TAAACCCCTC AAGCTAGCAA CCCAAATTTT GGTCGGGGCA TGGAGTACGC 600 GGAAACGAAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGATGAT 660 TATCGAAGGA AGTGGTCCTA GTCACTTCTG GAACAAAACA TGGCTTATAG AAAATTGCAT 720 ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTA AAGTGGACAT ATAGAAAGGT 780 840 TGAGGCTGTC GTTGGTCGTG AAGTGCGAGA GTTGGGCTAC GATTGTCAGG TTGAAAATGG 900 ACGTGTTCGT TTTCAAGGAG ACGTGAGAGC TATTATCGAA ACCAACCTTT GGCTTCGGGC 960 AGCAGATCGT ATCAAAATTA TCGTAGGAAC GTTCCCAGCT AAGACTTTTG AAGAGCTATT 1020 TCAGGGAGTT TTCGCTTTGG ATTGGGAAAA TTATTTACCA CTTGGAGCTC GGTTCCCGAT 1080 TTCAAAAGCT AAATGTGTTA AGTCCAAACT TCACAATGAG CCCAGTGTTC AGGCTATTTC 1140 TAAGAAAGCT GTTGTCAAGA AATTGCAGAA ACACTATGCT CGCCCAGAAG GGGTTCCTCT 1200 GATGGAGAAT GGCCCAGAGT TTAAGATTGA GGTCTCTATT CTCAAAGATG TGGCAACTGT 1260 CATGATTGAT ACGACCGGGT CTAGCCTCTT TAAACGTGGT TATCGTACCG AAAAAGGTGG 1320 CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCAGA 1380 CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT 1440 TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT 1500 CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAGTAG ACCGTGAGCT 1560 TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA 1620 TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT 1680 ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC 1740 AGATGATGCA GGGGTGACCA AGCTCTATGC TGAGATGGGG CAAGTATTTG CACCGCTGAA 1800

AACTTG	GAGC	AAATTTATCC	TGACTAGTGA	TGAAGCTTTT	GAAAGCAAGT	ATGGTAGCCA	1860
AGCAGA!	PAAG	AAGCGTAAGT	TATACAACGG	AACCTTGAAA	GTGGATCTAT	ATCAATATTT	1920
TGGTCA	CCT	GTCAAACGGC	AAGAGGTAAA	ATAGAAAGGG	ATACTCATGA	GTAAAAAAAG	1980
ACGAAAT	rcgt	CATAAAAAAG	AAGGTCAAGA	ACCGCAATTT	GATTTTGATG	AAGCAAAAGA	2040
GCTAACA	AGTT	GGTCAAGCTA	TTCGTAAAAA	TGAAGAAGTG	GAATCAGGAG	TCTTGCCTGA	2100
GGATTC	CATT	TTGGACAAGT	ATGTTAAGCA	ACACAGAGAT	GAAATTGAGG	CGGATAAGTT	2160
TGCGACT	CGT	CAATACAAAA	AAGAGGAGTT	CGTTGAAACT	CAGAGTCTGG	ATGATTTAAT	2220
TCAAGAC	SATG	CGTGAGGCTG	TAGAGAAGTC	AGAAGCTTCT	TCGGAGGAAG	TTCCATCTTC	2280
TGAAGAC	CATC	TTACTACCCT	TGCCTCTGGA	CGATGAGGAG	CAAGGCTTGG	ATCCTCTATT	2340
GCTAGAT	'GAT	GAAAATCCAA	CAGAAATGAC	TGAAGAAGTG	GAAGAGGAGC	AAAACCTTTC	2400
TCGTCTC	GAT	CAAGAGGACT	CAGAAAAGAA	AAGTAAAAA	GGCTTTATTT	TGACCGTTTT	2460
GGCGCTT	GTA	TCAGTAATTA	TTTGTGTCAG	TGCTTATTAT	GTCTACCGTC	AAGTGGCTCG	2520
TTCGACT	PAAG	GAAATTGAAA	CTTCTCAATC	AACTACAGCC	AATCAATCGG	atgtggatga	2580
TTTTAA1	ACA	CTTTATGACG	CCTTTTACAC	AGATAGCAAT	AAAACGGCTT	TGAAAAATAG	2640
CCAGTTI	'GAT	AAACTGAGTC	AACTCAAGAC	TTTACTTGAT	AAGCTGGAAG	GTAGTCGTGA	2700
ACATACO	CTT	GCCAAATCTA	AATATGATAG	TCTAGCAACG	CAAATCAAGG	CTATTCAAGA	2760
TGTCAAT	GCT	CAATTTGAGA	AACCAGCTAT	TGTGGATGGT	GTGTTGGATA	CCAATGCCAA	2820
AGCCAAA	TCG	GATGCTAAAT	TTACGGATAT	TAAAACTGGA	AATACGGAGC '	TTGATAAAGT	2880
GCTAGAT	AAG	GCTATCAGTC	TTGGTAAGAG	CCAGCAAACA	AGTACTTCTA	GCTCAAGTTC	2940
AAGTCAA	ACT	AGCAGCTCAA	GTTCAAGTCA	AGCAAGTTCA	AATACGACTA	GTGAGCCAAA	3000
ACCAAGT	AGT	TCAAATGAGA	CTAGAAGTAG	TCGCAGTGAA	GTCAATATGG	GTCTCTCGAG	3060
TGCAGGG	GTT	GCTGTTCAAA	GAAGTGCCAG	TCGTGTTGCC	TATAATCAGT	CTGCTATTGA	3120
TGATAGT	AAT	AACTCTGCCT	GGGATTTTGC	GGATGGTGTC	TTGGAACAAA	TTCTAGCGAC	3180
TTCACGT	TCA	CGTGGCTATA	TCACTGGAGA	ССААТАТАТС	CTTGAACGTG	TCAATATCGT	3240
TAACGGC	TAA	GGTTATTACA	ACCTCTACAA	GCCAGATGGA	ACCTATCTCT	TTACCCTTAA	3300
CTGTAAG	ACA	GGCTACTTTG	TCGGAAATGG	CGCTGGTCAT	GCGGATGACT	TAGATTACTA	3360
AGCAGTC	GG						3369

(2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9713 base pairs

406

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

AAGTTTACAA TTTAAATGAA TTAACAATTT TCCCAACTAA AAGCACTCCA GTTACCGCAA 60 CGTTTGTACT GAATGTACTA AATCGCATTC CATCAACTTC ATCTGTTTCG TCAACTTGAA 120 CAGATACTAA TTGAAGATTT AATACTTCTG CTGCCATAGC TAGCTCCTCC TATTTAAATT 180 TTTGGGATTA AGTACTTTAT CCACCCTCAT ATACTCTCTC CACCAGTAAA ATGCAAGCAA 240 TGATACAAAA TAGATTTAAC TATTTTATAT AGCGAAAACT TACAAATTTT TAAGAAATAA 300 TTTTTGCATT CTTAAAGATA AAATAGGAAC TTTTAGTAAT AAATATTAAA ATAAATAAAA 360 TAATAGATAC TATAAAATTT GGAAGTATTA ACCCCAAAAG ATTCATATCA TCTATTAAAA 420 TATCCTCTAA AGAGTAGTAT ATTAAAGCCA TAATTTTAAT GTTAAGTAAA AATGCAATTA 480 ATGAAGTAAC AAATGTCAAA AATATAGCCT CACCAACTTT AATCTTAACC ATCTGGTAAT 540 TAGAAGTTCC TAAAATTTCA AATTGCTGAA TCTCAATCCT TTCTTGATGC GATGACAAAA 600 ATGCAATTGA AATAATATTT GCAAGTACTA TCAAAATTGG TGCTCCTACA TAGACAATAA 660 ATGCTACTTT TAGCTCTAAA TCACTGTCAT CTTGAAATTG AGATAGTATA TTCTGAGAAA 720 TCATTTGAAA ACTAGAAATT AGTAATATAG CTCCTGTAAT TGCAGCACTG ATAGATTTTA 780 TATAAGACTT ACAATATAGT AAATTCCACT TCGAAACAAT GAACATAAAA TTATTTCTAA 840 ATATAATTAT AGAAAGTAGT TTGATAAAAC ATGACTGTAT AAAAGGAGAT AATTGATAAA 900 TAATCACAAT ATCTAAGATT ACAATATTGA ATATTATCTG GGCCTTCGCT AAAATTGTGC 960 TATCTTGGAA AATTTGTTGC AAAGAAAGCA ACCAGATAAC ACTAAAACCA GCCAATAGCA 1020 GTATTCTTTT TACTATTGAA AGAACATGCC TTATTTTAGA ACTCTTCCTA TTTCTAATCT 1080 TCTTGAACGT ATAAAAGCAA CCACTTAGAA AGGCTAAAAA TGAAATCAAC ACTACTGTAA 1140 TGATACATCC AACAGCACTC GTTTGAAATT GGATATCAGG TAATATATTT TCCCCGAAAA 1200 AGTATTGTAA AAAATAATAA TAATTTGACG TAACAAATAT AGAGCATAGA TATGCAATAA 1260 AACTAATAAT CGAGGAAATG ATAAAAATCT GTCCCCCCAC AAGAAATGAT AGTTGAAGGC 1320 GACTTGCTCC CAACACCTCC AGAAGTTCGT AATCATCTCT AAAAATTTCA ACCAACATAT 1380 TTATTATGTT AGAGAGCACA AAGAATAATG TTACTCCTCC GAATACTATC GGAAACATAA 1440 AAATTGGTTT AGGATCTGGA AGTCCGACAA ATACTTGCGA ATTATTCTCA ACATTAATTA 1500 CCCCATTAAC AGCCAATCCC ATAACTAAAC TCGAAACAAA AATTACTGGT GAAACGCCTA 1560

ACCATTCTION COMPANIES	
ACCATTGTT CTTATTATGT AAAAATTGAT AGTAAACTAA TCTGAGCATC TCTATTCCTC	1620
CGTAGTTGAT TGTACCTCTA AGATTTTATA CAACTCTTCC CCGCTAGGTC TATGAAGTTC	1680
TTTGAAAATT TTTCCATCTT TCAATATTAA TGCACGATCA GTTTTCGAGG CCAATTCTAT	1740
ATCGTGCGTT ACCATAATTA CACACTTACC CGCCCCTACT AACTCTCTCA ATAATTCAAA	1800
AATTACTTCA CGAGAAACGC TGTCTAAAGC CCCAGTTGGC TCATCAGCAA ATATTATATC	1860
ACTATCAGCA ATAACCGCTC TAGCTATAGC AACCTTCTGT TGTTCTCCAC CAGACAGAGT	1920
TCCAACAAAA TCGTTTAAGC CAGCATTAAA CTTCATTCTT TTGAGTAAGT TTTCTACATT	1980
TTTAATAGTT AATTTTTTTT GTGATAATCG CAAAGGAAGT GCTATATTTT CTATTACCGG	
CAGGGAAGGT ATTAAATTGT ATGCTTGAAA TATAAAAGAT ACTTCGTTAC GTCTTATACT	2040
TGACAATTTT GCATTTCTGA TTTTATAGGG GTTGATTCCA TTTAAAATTA CTTCCCCACT	2100
TGTTGGTTCA AGCAAACTAG AAATACATTT TAATAAAGTT GACTTTCCAG AACCACTAAT	2160
TCCTAGAATA CTTATAAATT CTCCTCTCGA AGCAGAAAGA GAAACATTTT TCAGCACTTG	2220
CAACGTTTTA TTATTTCCTA GTAAAAATTG ATGATACAGC CCTTTCACTT TTAATATATA	2280
ATCTTTATCC ATATTCTTGC CTCCAATCAC TTAATTTTGA AAAGTGTTCC ATTTTCCAAT	2340
TTATATATAT CAGTGTATCT CTTGTCATTT AAGTCATAAT GATGTGAAAC TTCAATAAAT	2400
GAAATACCTA AATTGAACAG AATATCATCT ATGCATAAT GATGTGAAAC TTCAATAAAT	2460
GAAATACCTA AATTGAACAG AATATCATGT ATGGAATTTG AATTATCATT ATCTAAATTA	2520
GCTGATATTT CGTCAAATAA GTACACTTTA TTATTTCTAA TCAGAGCTCT AGCTAAAGCT	2580
ATTTTTTGTT TTTGACCTCC AGACAAATTA CTACCATTTT CACCACATTG ATAATTTAGT	2640
ATATCTATCT TTTCTAATTC TTCATATAGA TTTACCTTTT TTAACACCTC AATTATCTGA	2700
TCATCTGAAA AATATTCATT TTGAAATAAA GTTACGTTCT CACGAATAGT AGTGTCAAAA	2760
ATATATGGTG TCTGATCAAC TGTTGGTATT GAATCTGAAC TCTTTTTCCC ATGTGATAAC	2820
AAATTTACAT AACCTTTTG TGGCTTTAAA GAACCATTAA TTAAATTTAA AATCGTTGTT	2880
TTCCCACTAC CAGAAGTTCC TGTTAATAAT ACCCTAAATG GTGACTTAAA TGAGAAGTCA	2940
ATACTTAATT TATTTTCTGG TGTAATAGAA TATACAACAT CTTTCATGTG TATCTCATCT	3000
ATTGATGAAG TATACAGTCC GTTATTATCA TGTTCAGCGT CTATAAAATT CTTCTCCA	3060
CTTAAGTATT TTAAAAACGG TTTCCTTAAA TCTTTGGTTG TATTTATCTT ATTTAATGAA	3120
TAGGCAATTG ATTGTATCGG CCCTAAAACT TTATCGTTTG CTAAGAAAAT ACCTATCAGT	3180
TCACTAAAAG AAAGGCTTTT ATGATAAATT ACAAAATAAC ATCCTACAAC CAAGGGAACT	3240
AGAAAGCAAA AACCTGAAAT TAGTACTGCA ACCAATTTTG AAAGAACCTC TGATCGTTTC	3300

	аааттаааас	TAGAATCTTC	TAGTTTATCC	408 AACTTTTTAT	CCGACAAACT	AATTATTTCT	3360
	TTAGTAACAG	AATAAGATTT	TAATGTCTTA	AAACCATTAA	AAATTTCTTT	TATTATGTGA	3420
	GTATACTCTG	CATTGCTGTT	AGAGTACTCA	TTAGCTGAAT	TAGACAACAT	СТТСТТСАТА	3480
	AAGACAGGTA	CTATAATCGG	CAATGCTGAT	AATACAATAA	ATATTATTGA	nACTAGGAAG	3540
	АААТАААТТТ	GCATAAAACT	TAGAGAGACG	ATGAACAACA	ATATTGAAGA	AATTATTTCA	3600
	AAAATTTGTC	TAAAATAGTT	TTCTTCGATT	AATCTCAAAT	CATTTGACAA	AACTGAAATA	3660
	ATAGATGAGT	AATCTTTAAC	CATTTCAGAA	GAAAGATACT	GTTCTCTAAA	ATATCCTTGT	3720
	ተተልልጥጥጥ ተል	CATTTATATC	TTTAGTTATT	GATGCTTCCG	ТТАСТТСТАА	ATAGTAATTT	3780
	GATATATAGA	TTGCTGACCA	ACCCAGAATA	CTTATAGCAC	CAAATCTTAG	AACGTCAGAA	3840
	AATGAGGAAG	TCTGATTTAA	ACTACCTGCA	ТАТАСААТАА	TTCCTGAGAG	CAAGACACCA	3900
	TTAAACGAAG	ATAGAAATAT	TAAAATCCCC	ATTAATATAA	GTTTAGTCTT	ТТТТАТАААТ	3960
	ТТААТТА	TCATAAGTTA	TTCCTTCCCA	CTTCTTCAAA	GAAATAATTT	AAAGTATCAA	4020
	TCATTAAGAG	AACATCTGAT	GGAGTAAAAC	CTCCATGACC	AGCTGCTTTG	TTTAAATACA	4080
	ACAAACTTTT	AACTCCAATA	GAATTTAATT	TCTTTGACCA	CTCTATCACT	TCGTTATTAT	4140
	TAATATATGG	GTCTTTCTCA	CCCAAAATAT	TAACTATAAC	agtatttgag	TCTCGTGCCT	4200
	ТТТСААТАТТ	TTGCATAGGC	GAATATGACT	TTATATAAGC	CTTTACTTCA	GGGTCTCTAA	4260
	TATCTCCCCA	CTCTGCTATT	TCGGTCTTAG	AAAGAGGATC	ATTTGGATTC	TGAAGTGTAT	4320
	CATAAGGATT	TATAAATGGC	GAAAATAAGA	GAATGCTTTG	CAATAAATTT	TTTTCCTCGT	4380
	TCAACACCGC	ACCAGCAATT	ATTCCACCTG	CACTAGAAGT	TATTAAACCT	AATCGCTTAC	4440
	TGTCAATTAC	ATCATTTTCC	CTTAAATAAT	TTACTCCCTC	AATAAAATCT	CTGATAGAAT	4500
	TCCATTTGTT	TAACGCCTTT	CCTGAGCGAT	ACCATTCACC	ACCCAAATAG	CCTCCACCTC	4560
	TTACATGAAC	TATAGCATAA	ATAAAACCTG	CATCTATTAT	AGATAACATA	ATTTCATCTA	4620
	AATCAGAATT	ATCATTCTTA	CCATAAGCCC	CATAGACACT	TAGAATACAT	TTTTTTCTTC	4680
	TTGGGAGCTC	ATCCGTATCT	TCACTTTTCC	AAAATAAAGA	AATCGGTATG	CTTACATCAT	4740
	AACTGTCTTT	TTTAGTCCAA	ATCACCTTAG	ТТТАТААААА	AGTATTATTC	GATTTTATGA	4800
	TGGGTCTTTC	AAATTCAGTT	TTTAATGTAT	TTTCTATTAA	ATCAAAACTA	AGTATTTTTT	4860
	CGTAAAAAGT	TCTCCTCTCT	AAAAACAGAA	GAACACGATC	AGAAAATGAA	TTTTCATAAA	4920
,	GTGTTGTCTT	TTCATCAAAT	GTTATCTTAT	TAACACTCAA	CTCCCTCAAA	СТАТТАТТТТ	4980
•	TAAATGTAGC	AAGATAAAAG	ACGGAATTCG	CTGCGTTTGA	ACAGTCTAAA	AGGATATAAC	5040
	GTCCTATACA	GTGAACTCTT	CTAGCCCTAT	CTTGATATGG	TATAGTAATA	GAAACTCTGT	5100

CTC	CCGAAGA	AGTTTCCCTT	AGAATTAGTT	GATCTTTCTT	TTCTTCAGT	GAAGAGAGCC	5160
CAA	(GAAACTA	CTGTGCTTTT	TCTGTACTA	ATAGAGCGAT	ATCTCTAGG	GTTGGGGCTA	5220
CCG	TTTCTGT	GTAAGAGTGT	СТААСААААС	CCGTCCGGTC	GAAACTGTAT	AGAAAAATCC	5280
TGC	CTTTCTG	AAAGTCTACT	GACTITACAA	AACAATTATT	GCTATCAATO	TGGACTATTT	5340
TTA	ATCGAAA	AGAGCATTCG	TTTTCTTCAA	ACAGTTCCTC	TTCTGTAAAC	CTATCAAAAG	5400
ATT	TATAGAA	TAACTTACTT	GCCTCCCGT	ACTCTTTGGA	GCGAGTATAC	ATAACACCGA	5460
ATT	TACCCAA	ATAGAACGAA	CTTTCTACTG	AAATATCTTC	AATGATAAAT	AACTCTTCCA	5520
TAG	TATATTT	TTTTATTCCA	ATTAAATTAG	TCGTACGCAG	TGAGGATACA	ACCAAAACTA	5580
TAT	ААСТСТС	ATCAGATGAA	ATCCTAACAT	CCTGTAAGAT	ACTATCATCI	GGCAAAGTAT	5640
ATT	TTTCCAC	ATCAAAGACA	ATTTTAAGTG	AATTTGAATT	GTCTAAACTG	GAAGAACTAA	5700
CCT	TAGGAAT	CCAGTCATTA	TCTTCGACAT	ACCATTCCTT	TATTACACCA	GTATTGGGTA	5760
TAC	ТССААТТ	ATCAAATTGG	TACCAATATC	GCCCTCTCCT	AAATATCAAA	GAATTCCATT	5820
TTT	ттааттс	CTGAAATGAT	GAAGAGATAG	ACCTCTTATA	GTGTGTTTT	TCCTGTATTG	5880
TAT	AAAATT	TATTTCATTA	CTCTGATTCA	CAAGTATGAC	СССТТААТАА	TGGTATCTAA	5940
ATA'	TTATATT	TGAGGAAGAA	TCGTCAATTT	ATTATCCATT	ATTGATACCA	ATCCAATTGC	6000
AAC	ACCCGCA	AATCCCGAAG	CAATATCTGT	TGTTATCTTT	АААССАТТАТ	CTCCCGCAAT	6060
AAC	AAATCCT	ТСТТСААТТА	CACACAAATA	TCTATAAAGT	тсттсаатта	ATTTCTTTTG	6120
rcc:	TGAAAAG	TTATCATCGA	ТАТСАСТАТА	TATATTATTA	GCAACTTCAA	GACCACAAAA	6180
rcco	GTTAAAT	AAACCTGGTA	ATACACAAAA	AACTACATCA	GTTGCCCTCT	CTAAAGAAGT	6240
[AA]	ATATTTT	AAGTATTTGC	TTGACAAGAT	TTCTTTATTT	СТАТТААТАА	GTAAAAGCAG	6300
SCC2	AGCACTT	CCAGTTGCTA	GATATGGTAG	TAATCTATGA	CCTTGGCTGT	ACTGCAATGA	6360
\TT!	ATTACTA	TCTACTTTAT	AAGCAACTAA	TTCTTTATCT	ACAGCCAATT	CTAGACCATT	6420
TT	ATAGATA	CTTTCACCAG	TTAATTTATA	AGCTTCACCG	AAGAGCCAAG	CTACCCCTGC	6480
TG	ACCATAT	AGTAATCCAC	CAAAATTCTC	ATAAGGATCG	TTACTCTGAA	CATCACTAGC	6540
CCZ	ACTTTA	CAAAAAGTTT	CTGGATTTTC	ТАТАТААТТТ	AAAGTATATT	CTCTAAGCCT	6600
ATT	PAGTATT	TCTTCTCCTA	GTTTATTATC	AATTCCCCCT	TTACTAAGAA	AATACAGTCC	6660
ACC	CAGTAAA	ATTCCAGCCT	GCCCACTATA	ТАААТТТТТА	TTTTGTGAAT	TCTCAAATAT	6720
TCI	AAAATAT	TGAGTTGTAA	AAAGTTCAAC	TGCCCGATCT	ATCTCCCCAA	АТТСАТАААТ	6780
AGC	CAGATT	GTACCAATTT	TACCATCAAA	AAGACCAGAA	AGGGACGATT	ጥርጥ ፕልልልጥጥ	6840

ATTTACTGCC TCATTA	ATAA CCTGTGTTCG	AATCTCATAA	TAGTCATCAA	ACTTGAAATT	6900
TTTTACTTTC TTAGCT	AGTT GTTGATAACT	CCAAAGGATA	GCTAAATCTG	AAAACGCAAT	6960
TCCTTGATTA AAATTC	AGAC CATAATAATG	AACTGGGAAG	AATCTTGATT	GAAATTCTTT	7020
ACGCCACTGT CCATAA	GTTA GCGTAAACCC	TCTCAATAAT	ТТТАТААТАА	AATCTTGTAT	7080
ATCTTGCTCA CTCTCG	ATAG TTCTAATCTC	ATGCATGGGT	ТТТААААСТТ	TTTTCCTGGA	7140
AATATTCTCA ATCTGT	GGAC ATTTAGAATC	TAGATATGAC	AATAAACTTT	СТАСАТААТС	7200
TATATGTTCT CTTGTA	TAAC CCAAAGACTC	AAATAGTTTT	ТТТССТТСТА	TCCTGGTTTG	7260
ACTTACATAG TTGTAT	GTCA AATCCGATGT	AGTTACTAGT	GGCATGTATA	AATAATGAGC	7320
ТАТТТСТСТА АТАССА	TACC AATCTATCTC	ACTGGGAAGT	GTTTCTCGCC	ATGCTCTAAA	7380
ACCAGGGGCT GCAACT	TTAT GTACAACTTT	TTCATCATTT	GAAAAGACAG	CCTGTTCCCA	7440
GTCTATTATA CTAATC	TCAT CTTCATCCTT	AACCAAGATA	TTTCCTAAAT	GTAAATCTTG	7500
ATGATATACA TTTTCA	GAAT GAAACTTATT	CGTTAAATCG	ATGAGTTTTT	CTACTATCTT	7560
TGAAACTCTC AATAGA	PAAT CTTTGGTCTT	ATCAACAACT	TCATATAAAG	GAAAATTATT	7620
GGTAACCCAT CTATTT	AGTG GAACGCCCTT	CATATGTTCA	ATTCCTAAGA	AGGTGTGCTC	7680
CCAGATCTTA CCGTGC	CAGT ATATTTAGG	CGTCTCACTC	CATTCATTTA	GAATTTTTAG	7740
TGCTTTGCAC TCCGAAC	GCTA ATTTCTCTGA	AGAATAAGTA	CCATCAAATC	CTAGACCTGT	7800
ATACGGTCTA GCCTCT	TTTTATTAAA ATTT	TTTCCCATCT	TCTTTTAGCC	TAGCATTATA	7860
TATCCCACCA CTGTTTC	GAAA ATCTAATTGC	АТТАТСТАТА	ATAAAGGGAA	AGTCTCCCTG	7920
TTTTTTATCT TTCTTGT	CAA GCCATTTATT	CAAAAAGTCA	GGGGGCACTA	TACCTTTTGG	7980
AATTTTAAAT ACTGGT	AAC GTTCATCTTT	AACAACTTCA	TCGCCAACAA	TTAATTCATC	8040
AATAGCAACC TTCTTT	CAT CATCCCTTGA	CGGCCTAAAC	ACACCATACC	TCAGATATAT	8100
TGGTGCTTCA TCCCAAC	GTT TATCGCTTAA	AATATATGGC	CCATTATATT	GCTTTAAGGC	8160
ACTITCTAAC CTTTGCA	AAA CCGACTCTAA	TTCATTTTGA	TTTGGATAAC	ATGTAATAAA	8220
TTTACCAGAA AATCCTC	GAC TAACCAATTT	CCCGTTTCGC .	ATGATAAATT	TGTCTTCTGT	8280
ACTAAGATGT TTAAATG	GAA TTCGCATTTC	ATGGCAAATT	TTTGCTACAT	CTTGTAACAA	8340
TTCATGTGAA CTGTTAT	ACT CTGAACTAAT	GTGTATTTTC	CACCCTTGTC	TTTCAACAAA	8400
TTTTCCAATA GGGTATT	GAT AAACCCACTC	ATCATTATTC	ATTACTTCGT	GCCAATTAAA	8460
AGGCAGACTT ACTTGGT	ACT TTATGCTAGT	ATCTGTACTA	PAATCATTAT	TAGTGAAAAA	8520
GAAAGGATGC TCCAAAT	TGA AATTATAATC	CATAACAAAA 1	rctccaagaa .	ATTTATCAA	8580
ACTTAATATA TCTATAG	CTA GACAGACTTA	TTTAAATAAA	AAGGGAGAAT	ՐՐՊԿԻՐՀԵՆԾՊՊ	8640

CTCCCCATAT AACCACTAAC ATTACA	
CTCCCCATAT AAGCACTAAC ATTCCAACGT GCACATATTG GAACGACATC CATAACTCCA	8700
AAAGTTAAAATGA ATTAAATGA ATTAACAATT TTCCCAACTA AAAGTTAACAATT	-
AGTTACCGCA ACGATTTGTA CTGAATGTAC TAAATCGCAT TCCATCAACT TCATCTGTTT	8760
CGTCAACTTG AACAGATACT AATTGAAGAT TTAATACTTC TTCTGCCATA GCTAGCTCCT	8820
CCTATTTAAA TTTTTGGGAT TAATACTTC TTCTGCCATA GCTAGCTCCT	8880
CCTATTTAAA TTTTTGGGAT TAAGTACTTT ATCCACCCTC ATTATACTCT CTCCACCAGT	8940
CANTTATACA ATGTTGTCAC ATAGAAAATA ATGTTTCCCT ALCOH	
ATCTCTCTCC CAAAACTGGA AGTTAGTTTT AGAACTTACC TAACACTTACC	9000
GTCACCTATT TTAAAAAAGC AGCAAACTAT AAACTAGTAG GTTCCACACC AAATGTAGTC	9060
CCATACTGCC CCATAAGTCA CATTERNANCE CONTROLLED GTTCCACACC AAATGTAGTC	9120
CCATACTGCC CCATAAGTCA GATTTATAGC GCACCATACC TAAAAAACATC CCAAGTGAAA	9180
CATACAAACA CCAAGCTAGA ATGGTTCCTG TATGATGTGC TAAGGCAAAT AAAACACTTG	9240
TOTGATATOT AATTITOTGA CCAAATTCCA TAAAATTTCTA	
CATACTCGCA TTGATTAAGA ACAATAAAAA TGAAAAGGAA	9300
GTTGAAGGCC AATTAAGTTT GCTTGATTCG TGCTTCCTTG AGCATGAATC AGACTAAAAC	9360
ATAGACTTAT AATCAGTAGG CTARGALLE	9420
ATAGACTTAT AATCAGTAGG CTAACAAATT CAACACCAAG CCATTTCATC CTAGATTTCA	9480
TATTGACCTT ATGCGCTTGT TTGCGTTGGC CATACATCCA TAAAAAAGAA ATGAGTGACG	9540
AATCIGTAGT ATAGTTMACT CACCGATACA AAGAAATTTTC	_
GAGITACCAA TASGACATTT ACTTGTTGGA ATATATAAAC TGGAATTATT CTTTTCATAG	9600
TTACCTCCGA AATAAATCTT CATAATCTAA ATCTAATACC TGCACAATCC TTT	9660
(2) INFORMATION FOR SEQ ID NO: 44:	9713
10 NO: 44:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8657 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

AAAGAAATTG TCAGAGAGTG GCTAGATGAA GTAGCAGAGC GGGCTAAGGA CTATCCAGAG TGGGTGGATG TTTTCGAGCG TTGCTACACC GATACCTTGG ACAATACGGT TGAAATCTTA 60 GAAGATGGTT CAACTTTTGT CTTGACTGGG GATATTCCTG CCATGTGGCT TCGAGATTCG 120 ACAGCCCAAC TCAGACCCTA CCTTCATGTA GCTAAAAGAG ATGCCCTCCT GCGTCAGACC 180 ATTGCAGGTT TGGTCAAACG TCAGATGACC TTGGTACTCA AGGATCCCTA TGCTAACTCC 240 300

TVC 2 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C	
TTCAACATTG AGGAGAACTG GAAAGGGCAC CACGAGACTG ACCACACAGA CCTTAACGGC	360
TGGATCTGGG AGCGCAAGTA TGAGGTGGAT TCGCTTTGCT ATCCTTTGCA GTTGGCTTAT	420
CTCCTCTGGA AAGAGACTGG CGAGACTAGT CAGTTTGATG AGATTTTTGT CGCAGCGACT	480
AAGGAAATTC TCCATCTGTG GACGGTGGAA CAAGACCACA AGAACTCTCC TTATCGTTTT	540
GTCCGAGATA CGGACCGTAA GGAAGACACC TTGGTAAATG ATGGCTTTGG ACCTGACTTT	600
GCAGTGACAG GTATGACTTG GTCAGCTTTT CGTCCGAGTG ATGACTGTTG CCAGTATAGT	660
TACTTGATTC CGTCAAATAT GTTTGCTGTA GTAGTCTTGG GTTATGTGCA AGAAATCTTC	720
GCAGCATTAA ACCTAGCTGA TAGCCAGAGT GTTATTGCTG ATGCCAAGCG TCTTCAGGAT	780
GAAATCCAAG AAGGAATCAA AAACTACGCT TACACCACCA ACAGCAAGGG CGAAAAGATT	840
TACGCTTTTG AAGTGGATGG CCTAGGAAAT GCCAGCATCA TGGATGATCC AAATGTACCA	900
AGTCTACTAG CTGCGCCCTA TCTGGGCTAC TGTTCGGTCG ATGATGAAGT GTATCAAGCT	960
ACTCGTCGTA CCATTTTGAG CTCTGAAAAT CCATACTTCT ACCAAGGAGA ATACGCAAGC	1020
GGTCTCGGCA GTTCTCATAC CTTCTATCGC TATATCTGGC CAATCGCCCT TTCTATCCAA	1080
GGCTTGACAA CAAGAGATAA GGCAGAGAAA AAATTCTTGC TGGATCAGCT GGTTGCCTGC	1140
GATGGTGGTA CAGGTGTCAT GCACGAAAGC TTTCATGTAG ATGATCCGAC CCTCTACTCT	1200
CGTGAATGGT TCTCCTGGGC TAACATGATG TTCTGTGAGT TGGTCTTGGA TTACTTGGAT	1260
ATTCGCTAAG GGGCTCGCTT TAGCTCAACC GATTCTTATC AGAATCACAA GTTTACATTT	1320
AAAACGTTAA AATTTAAATT TAGAATGAGG TTTTACTTCA TGGAAAATGT TGTTGTACAT	1380
ATTATCTCAC ATAGTCACTG GGATCGTGAG TGGTACTTGC CTTTTGAAAG CCATCGTATG	1440
CAGTTGGTGG AATTGTTTGA CAATCTCTTT GATCTCTTTG AAAATGACCC TGAGTTCAAG	
AGTTTCCACT TGGATGGACA AACTATTGTC CTTGATGACT ACTTACAAAT TCGCCCTGAA	1500
AATCGCGACA AGGTCCAACG CTACATTGAC GAGGGCAAAC TTAAAATTGG TCCCTTTTAC	1560
ATCTTGCAGG ATGACTACTT GATCTCCAGT GAAGCCAATG TCCGCAATAC CTTGATTGGT	1620
CAACAAGAAG CTGCCAAATG GGGTAAATCA ACCCAGATTG GCTACTTTCC AGATACCTTT	1680
GGAAATATGG GACAAGCGCC TCAAATTCTT CAAAAATCAG GCATTCACGT GGCGGCCTTT	1740
GGTCGTGGTG TGAAGCCGAT TGGATTTGAC AACCAAGTCC TTGAAGATGA GCAGTTTACG	1800
TCTCAGTTTT CAGAAATGTA CTGGCAGGGT GTGGATGGTA GTCGTGTTTT AGGTATTCTC	1860
TTTGCCAACT GGTACAGTAA CGGGAATGAA ATTCCAGTTG ACAAAGATGA GGCCTTGACC	1920
TTCTGGAAAC AAAAATTGTC AGATGTCCGT CCCTTAGGGAAC AAAAATTGTC AGATGTCCGT CCCTTAGGGAAC	1980
TTCTGGAAAC AAAAATTGTC AGATGTGCGT GCCTACGCTT CGACCAACCA ATGGTTGATG	2040
ATGAACGGCT GTGACCACCA GCCTGTACAG AAAAATCTGA GCGAAGCCAT TCGTGTGGCA	2100

AATGAACTC	r TCCCGGATG1	r AATCTTTGT	r catagttett	TTGATGAAT!	A TGTTCAAGCT	216
GTAGAAGGT	CGCTTCCTG	ACACTTATC	A ACTGTTACAC	G GCGAGTTGAG	CAGTCAGGAA	2220
ACAGATGGC	r GGTACACAC	TGCCAACAC	TCTTCATCC	GCATTTACC	P AAAACAAGCC	2280
TTCCAAGAA	ATAGCAACCT	CCTAGAGCA	A GTGGTAGAAC	CCTTGACTA	TATCACTGGT	2340
GGACACAACO	ACAAGGACCA	GTTGACCTAT	r gcttggaaa	CACTTTTGC	GAATGCGCCA	2400
CATGATAGTA	TCTGTGGCTG	TAGCGTGGAC	GAAGTTCACC	GCGAGATGG	AACGCGTTTT	2460
GCCAAGGTCA	ACCAAGTAGG	AAACTTTGT1	T AAAAGTAACI	TGCTCAACG	GTGGAAGGGT	2520
AAAATTGCTA	CGGATAAGGC	TCAAAGTGAC	TATCTCTTTA	CTGTCATTA	CACAGGCTTG	2580
CATGATAAGG	TCGATACTGT	CAGCACAGTG	ATTGATGTGG	CGACTTGTGA	TTTCAAGGAA	2640
TTGCACCCAA	CAGAAGGCTA	CAAAAAGATG	GCTGCTCTTA	TCTTGCCAAG	TTACCGTGTG	2700
GAGGACTTGG	ATGGTCGTCC	TGTAGAGGCT	ACAATCGAAG	ACCTCGGAGC	TAATTTTGAG	2760
ТАТААТТТАС	CAAAAGACAA	GTTCCGCCAA	GCTCGTATTG	CTCGTCAAGT	GCGCGTGACC	2820
ATTCCAGTTC	ACCTAGCGCC	GCTTTCTTGG	ACAACCTTCC	AATTGCTGGA	AGGAAAACAA	2880
GAACACCGTG	AGGGTATTTA	CCAAAACGGA	GTGATTGATA	CACCATTCGT	AACGGTGAGT	2940
GTGGATGACA	ACATCACAGT	CTATGACAAG	ACAACTCACG	AAGCCTATGA	AGACTTTATC	3000
CGCTTTGAAG	ACCGTGGGGA	CATCGGAAAC	GAGTATATCT	ATTTCCAACC	AAAAGGAACA	'3060
GAGCCAATCT	TTGCAGAGCT	TAAGGGCCAC	GAGGTCTTGG	AAAACACAGC	TTGCTATGCT	3120
AAAATCTTGC	TCAAACATGA	ATTGACCGTG	CCTGTCAGTG	CGGATGAAAA	GCTAGAAGAA	3180
GAGCAACAAG	GTATCATCGA	GTTTATGAAG	CGTGAGGCTG	GACGGTCAGA	AGAATTGACA	3240
AACATTCCTC	TGGAAACTGA	GTTGACTGTC	TTCGTTGACA	ATCCACAAAT	CCGCTTCAAG	3300
ACTCGCTTTA	CTAACACTGC	CAAGGATCAC	CGTATCCGTC	TCTTGGTCAA	GACTCATAAC	3360
ACGCGTCCAA	GCAATGATTC	TGAAAGTATC	TATGAGGTGG	TGACACGACC	AAACAAACCA	3420
GCTGCTTCAT	GGGAAAACCC	TGAAAATCCT	CAACACCAAC	AAGCTTTTGT	CAGTCTGTAT	3480
GACGATGAAA	AAGGGGTGAC	TGTATCCAAC	AAGGGATTGA	ATGAATACGA	AATCCTTGGG	3540
GATAACACCA	TTGCCGTGAC	CATTTTGCGT	GCATCAGGTG	AGCTAGGTGA	CTGGGGCTAC	3600
TTCCCAACGC	CAGAAGCACA	ATGCTTGCGG	GAGTTTGAAG	TCGAGTTTGC	ACTTGAATGC	3660
CACCAAGCCC	AAGAACGCTT	CTCAGCCTAT	CGTCGTGCCA	AAGCCTTGCA	GACACCGTTT	3720
ACCAGCCTTC	AGCTTGCTAG	ACAGGAAGGA	AGCGTGGTTG	CGACTGGTAG	CCTCTTGAGC	3780
CATTCTGTTC	TCAGCATACC	GCAAGTTTGT	CCAACAGCCT	TTAAGGTAGC	TGAAAATGAA	3840

GAAGGCTATG TGCTTCGTTA CTACAATATG TGTAGTGAAA ATGTACGTGT GCCAGAAAGT	3900
CAACATCTCT TCCTTGACCT ACTTGAACGA CCATACCCAG TTCATTCAGG ACTATTGGCT	3960
CCACAAGAGA TTCGTACAGA ATTCATCAAA AAAGAAGAAA TTTAATTTCA AAAAGTAAAC	4020
ATCAAAAGAA AGGAGGGGCG AAAAAGTAAG AACTAACTGC TGATTCGCCC CTTTTATGGT	4080
AAAAACAATG ACCATTGCAA CGATTGATAT CGGAGGGACT GGGATTAAGT TTGCCAGTCT	4140
GACTCCTGAT GGGAAAATAC TGGATAAGAC AAGTATTTCA ACGCCTGAAA ACTTGGAGGA	4200
TTTACTAGCG TGGCTAGATC AACGCTTGTC AGAACAGGAT TACAGTGGGA TTGCTATGAG	4260
CGTTCCAGGT GCAGTCAATC AAGAGACAGG TGTGATTGAT GGCTTCAGTG CGGTGCCCTA	4320
CATCCATGGC TTTTCTTGGT ATGAGGCGCT TAGCTCTTAT CAGCTACCTG TCCATTTAGA	4380
AAATGATGCC AACTGCGTTG GACTCAGTGA ACTACTAGCT CATCCAGAGC TTGAAAATGC	4440
AGCCTGTGTC GTGATTGGGA CAGGGATTGG CGGAGCCATG ATTATCAATG GTAGACTTCA	4500
TCGAGGTCGC CACGGTCTGG GTGGAGAATT TGGCTACATG ACAACCCTTG CCCCTGCTGA	4560
AAAACTTAAT AACTGGTCGC AACTAGCATC AACTGGGAAT ATGGTACGAT ACGTGATTGA	4620
AAAATCTGGT CATACTGATT GGGACGGTCG CAAGATTTAC CAAGAGGCCG CAGCTGGTAA	4680
TATCCTTTGT CAAGAAGCCA TTGAGCGCAT GAACCGCAAT CTGGCGCAAG GCTTGCTCAA	4740
TATCCAGTAT CTGATCGATC CAGGTGTCAT CAGTCTGGGT GGCTCTATCA GTCAAAATCC	4800
AGATTTTATC CAAGGTGTCA AGAAGGCTGT TGAAGACTTT GTCGATGCCT ACGAAGAATA	4860
CACGGTCGCA CCAGTTATCC AGGCCTGCAC CTATCACGCA GATGCCAATC TCTACGGTGC	4920
TCTTGTCAAC TGGCTACAGG AGGAAAAGCA ATGGTAAGAT TTACAGGACT TAGTCTCAAA	4980
CAAACGCAAG CTATTGAGGT TTTAAAAGGT CACATTTCTC TACCAGATGT GGAAGTGGCT	5040
GTCACTCAGT CTGACCAAGC ATCTATCTCT ATCGAGGGTG AGGAAGGTCA CTATCAATTG	5100
ACCTACCGCA AACCTCACCA ACTTTATCGT GCCTTGTCCT TGTTGGTAAC AGTTCTAGCA	5160
GAAGCTGATA AAGTAGAGAT TGAGGAACAA GCAGCTTACG AAGATTTGGC TTACATGGTT	5220
GACTGTTCTC GAAATGCGGT GCTGAATGTG GCTTCTGCCA AGCAGATGAT TGAGATATTG	5280
GCTCTCATGG GCTACTCAAC CTTTGAGCTT TACATGGAAG ACACTTACCA GATTGAAGGG	5340
CAGCCTTACT TTGGCTATTT CCGTGGAGCT TATTCAGCAG AGGAGTTGCA GGAAATCGAA	5400
GCCTATGCCC AACAGTTTGA CGTGACCTTT GTACCATGCA TCCAGACCTT GGCCCACTTG	5460
TCGGCCTTTG TCAAATGGGG TGTCAAGGAA GTGCAGGAGC TCCGTGATGT AGAGGACATT	5520
CTTCTCATTG GCGAAGAAAA GGTTTATGAC TTGATTGATG GCATGTTTGC CACGTTGTCT	5580
AAACTGAAGA CTCGCAAGGT CAATATCGGG ATGGACGAAG CCCACTTGGT TGGTTTGGGA	5640

CCCPA CCPCA PROPERTY CO.	
CGCTACCTGA TTCTGAACGG TGTTGTGGAT CGTAGTCTCC TCATGTGCCA ACACTTGGAG	5700
CGCGTGCTGG ATATTGCTGA CAAATATGGT TTCCACTGCC AGATGTGGAG TGATATGTTC	5760
TTCAAACTCA TGTCAGCGGA TGGCCAGTAC GACCGTGATG TGGAAATTCC AGAGGAAACT	5820
CGTGTCTACC TAGACCGTCT CAAAGACCGT GTGACTCTGG TTTACTGGGA TTATTATCAG	5880
GATAGCGAGG AAAAATACAA CCGTAATTTC CGCAATCATC ACAAGATTAG CCATGACCTT	5940
GCATTTGCAG GGGGAGCTTG GAAGTGGATT GGCTTTACAC CTCACAACCA TTTTAGCCGT	6000
CTAGTGGCTA TCGAGGCTAA TAAAGCCTGC CGTGCCAATC AGATTAAAGA AGTCATCGTA	6060
ACGGGTTGGG GAGACAATGG TGGTGAAACT GCCCAGTTCT CTATCCTACC AAGCTTGCAA	6120
ATCTGGGCAG AACTCAGCTA TCGCAATGAC CTAGATGGTT TGTCTGCGCA CTTCAAGACC	6180
AATACTGGTC TAACGGTTGA GGATTTATG CAGATTGACC TTGCCAACCT CTTACCAGAC	6240
CTACCAGGCA ATCTCAGCGG TATCAATCCC AACCGCTATG TTTTTTATCA GGATATTCTT	
TGTCCGATTC TTGATCAACA CATGACACCT GAACAGGACA AACCGCACTT CGCTCAGGCT	6300
GCTGAGACGC TTGCTAACAT TAAAGAAAAA GCTGGAAACT ATGCCTATCT CTTTGAAACT	6360
CAGGCCCAGT TGAATGCTAT TTTAAGTAGC AAAGTAGATG TGGGACGACG CATTCGTCAG	6420
GCCTACCAAG CGGATGATAA AGAAAGTTTA CAACAAATCG CCAGACAAGA ATTACCAGAA	6480
CTTAGAAGCC AAATTGAAGA CTTCCATGCC CTCTTTAGCC ACCAATGGCT GAAAGAAAAC	6540
AAGGTCTTTG GTTTGGATAC AGTTGACATC CGTATGGGCG GACTCTTGCA ACGCATCAAA	6600
CGAGCAGAAA GCCGTATCGA GGTTTATCTG GCTGGTCAGC TTGACCGCAT CGACGAGCTG	6660
GAAGTTGAAA TCCTACCATT TACTGACTTC TACGCAGACA AGGATTTCGC AGCAACTACA	6720
GCCAACCAGT GGCATACCAT TOCCACAGGG TOTAL	6780
GCCAACCAGT GGCATACCAT TGCGACAGCG TCGACGATTT ATACGACTTA ATATTCTTCG	6840
AAAATCTCTT CAAACCACGT CAGCTTCCAT CTGCAACCTC AAAACAGTGT TTTGAGCAAC	6900
CTGCAGCTAG CTTCCTAGTT TGCTCTTTGA TTTTCATTGA GTATAAAAAC AAGAACACCT	6960
TGCTTGGCGC AGGGTGTTTC GCGTGAAACA GAAGAATTAT CTGGTTTCAA ATGCTACAGT	7020
TAGACAAACT TATGATAAAA TAGCAGAAAG TGAATGTTTC CTAAGAGCAA TTGGAGGTAT	7080
TATGCTACAC TTAAAATTAG TAAAACAAGA AATAGAAGCT GAAAAGCCAG CATCTGTAGA	7140
AGCTTGGATC ATTTCCGTCA AATTTAAAAA AGGTTGCTAC CGACATATAT AGATTCCAAA	7200
AACAAAAACG TTAGCGGAAC TAGCAGATGT GATTTTATGG AGTTTTGATT TTGCAAATGA	7260
PCATGCTCAC GCATTTTTCA TGGATAATGT TGAGTGGAGT CATGCAGATT CTTACTTTCG	7320
PAGCTTTGTT AGTGACGATG TTGAAGAACG TTACACAGAA AATGTCTATC TGGATAGCCT	7380

			416			
AAGTGTCAAA	САААААТТТА	AGTTTATTTT	CGACTTCGGT	GATGAATGGC	GTTTTGAATG	7440
CCAAGTGCTG	AGAGAAATCG	AGACAGAGGA	CGAAGAAGCT	TATCTCGTAC	GTTCGGTTGG	7500
AACGTCGCCA	GAACAATATC	CAGATTATGA	TGGTTTTGAC	TATGAAGAAT	GGTAAAATTG	7560
AAATCAGTCT	GTGTAGGCTT	AGTATTTCAA	TAGACTTCCT	GCAAAACTAG	AATCCTAGTT	7620
CATGATTGAT	AATACCAGCA	ATCAAATTCA	TTCGTAATCC	GAAGCGTTTA	CGATGATTTC	7680
GATAGGTTGT	TGAAAACATT	TTAAACGTTT	TTACTTTGGC	AAAGATGTTC	TCAACCTTGC	7740
TTCTCTCCTT	AGATAGCGCA	TGGTTATAGG	CTTTATCTTC	AGCTGTTAGT	GGCTTGAGTT	7800
TGCTGGATTT	ACGTGAAGTT	TGTGCTTGAG	GACATATCTT	CATGAGCCCT	TGATAACCAC	7860
TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	TATTTCTGCA	ACTCATTTTG	AACAACTTCA	7920
TATCATGACA	ATAGTTCACA	GTGATATCCA	AAGAAACAAT	TCTCCCTTGA	CTTGTGACAA	7980
TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	TTTTACCAGA	ATCATTCGCT	AATTCTTTTT	804,0
TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	TCAATCATTA	CCGTGTCCTC	AGAACTAAGA	8100
GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	ACAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	8160
CGGATTAAGT	TGCTTTCGTG	AATACCAAAA	TCAGCCGCAA	TTTCTTCATA	AGTGCGGTAT	8220
TCTAGGCTTA	ATTTAGGTTT	TCGTCCACCT	TTTGCGTGTT	TAAGTTGATA	AGCTGTTTTT	8280
AATACAGCTA	ACATCTCTTT	AAAAGTCGTG	CGCTGAACAC	CAACAAGACG	CTTAAATCGT	8340
GTATCAGTTA	ATTGTTTACT	TGCTTCATAA	TTTCGCAGGG	AGTCTATTGA	CTCTTTGGTA	8400
GGTGTCAATG	TTTTTTCAT	CTATCCCGAG	AATTATTTC	CCGCCATTTG	TATTTGCAAA	8460
TGCTGAGTAG	GTTTCCCAGA	AAGACTCTGG	AAGATTGTTT	TTAGCTTTTT	TGTATTCTAA	8520
ATCAACCCCT	TCAAATTTTA	AGTCCATATT	TTTCCTTTAC	ATCTGTTTTT	TGTGGTTCTG	8580
GTATTTGTTC	AAGTTGAGTG	ATAATATAGC	GAATTGAATT	TCGAGAGTTT	TTACTCAGTT	8640
AATTTCTTTT	TTAACCC					8657
(2) INFORMA	TION FOR SE	Q ID NO: 45	:			
(i) SEQUENCE CHARACTERISTICS:						

- (A) LENGTH: 11384 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

TCTATTTTGG	GTATAGACTT	ACCTATAAAG	AAAAATATCT	ATACACTGCC	TTACTAGCTA	60
TACTGAACGA	GTCAACAAAA	ACGATATATA	TTGATGATAT	AAATACAGCA	AGATTTTTTA	120

ACTTCTTTGG CAATGATATT COMMAND	
ACTTCTTTGG CAATGATATT CCTAATTCGT CTTTAAAAAA AATTGACTAT ATCGCACCTT	r 180
CAGAAATTGT TTCATTTAGT ACGTACGTTC GACAACGTTC TAAAGTAATT CCTAAAATTT	240
TGGAACATAT ATTAAAATCA AGTTTTTTAT TAGAGAATAT AGATGTTTCT GGTTACACTG	300
AGAAGATCAA TTAACAAAAC ATAGAACAAT CAAAATTAGT AAAAACTAA	-
TACCTAACAA AACCACGCGC CTTGCCTGCT CATCCALLOS	
AAGGTACAAA TACATGAATA TCAAAGAAAA AATCAAAAAG AATGGCCAAA GAGTTTATTA	420
TGCTAGTGTT TATCTAGGCG TTGACCAACT AACGGGCAAA AAAGCCCGTA CAACTGTTAC	480
AGCAACCACT AAAAAGGGCG TTAAAGTAAA AGCGCGTGAT GCGATCAATA CTTTTGCTGC	540
TAATGGCTAT ACAGTTAAAG ACAAGCCGAC AATTACAACA TATAATGAGC TTGTAAAAGT	600
TTGGTGGGAT AGTTACAAGA ATACACTTANA CONTRANT TATAATGAGC TTGTAAAAGT	660
TTGGTGGGAT AGTTACAAGA ATACAGTTAA GCCAAATACT CGCCAATCCA TGGAGGGATT GGTTAGAGTG CATTTATTCC CTGTAGTAGTAGTGTAGAGTAGAGTGTAGAGTGTAGAGTGTAGAGTGTAGAGTGAGAGTGA	720
GGTTAGAGTG CATTTATTGC CTGTATTTGG CGATTACAAG CTATCTAAAC TTACTACGCC	780
TATTCTTCAA CAGCAAGTAA ACAAATGGGC TGACAAGGCA AATAAAGGCG AAAAAGGGGC	840
ATTTGCTAAC TACTCTTTGC TCCATAACAT GAATAAGCGT ATTTTGAAAT ATGGCGTAGC	900
TATCCAGGTA ATACAATACA ACCCAGCTAA TGATGTCATC GTTCCACGCA AACAGCAAAA	960
TOTAL	1020
AGAIGCICIG GATCAATCAA ATTATGAGAA CTTATTTGAT GTTGTTCTCT AMARCACT	
ATTIGGCCACT GGTTGCCGTA TTAGTGAGGC TCTGGCTCTT GAATGGTCTC ATTATTCAGTC	1080
AGAAAGCGGT GTTATCAGCA TCAATAAGAC ACTAAACCGC TATCAGGAAA TAAACTCACC	1140
TAAATCAAGC GCTGGTTATC GTGATATACC AATAGACAAA GCCACATTAC TTTTACTGAA	1200
ACAATACAAA AACCGTCAAC AAATTCAGTC TTGGAAATTA GGCCGATCTG AAACAGTTGT	1260
ATTCTCTGTA TTTACGGAGA AATATGCTTA TGCTTGTAAC TTACGCAAAC GCCTAAATAA	1320
GCATTTTGAT GCTGCTGGAG TAACTTAACTTACGCAAAC GCCTAAATAA	1380
GCATTTTGAT GCTGCTGGAG TAACTAACGT ATCATTTCAT GGTTTCCGCC ATACACATAC TACTATGATG CTCTATCCTC ACCTTACCTC	1440
TACTATGATG CTCTATGCTC AGGTTAGCCC GAAAGATGTT CAGTATAGAT TAGGCCACTC	1500
TAATTTAATG ATCACTGAAA ATACTTACTG GCATACTAAC CAAGAGAATG CAAAAAAAGC	1560
CGTCTCAAAT TATGAAACAG CTATCAACAA TTTATAAAAA ATAAGGGTGA CCCATTTCCG	1620
SOCIACCCIC TTACTATACC AAAAATTAGT AGGGGTAGTA AAAAGGGTAT TAAAATTAGT	1680
TATTTCAAA GGGAAAGCGC CCCAAAGTGC TTATTTCAAA GGCTTTATAG CCTATTATTG	
CATAAAGAGA TTATTTTTTA AGGTTGTAGA ATGATTTCAA TCCACGATAT TCAGCTACTT	1740
CACCAAGTTG GTCTTCGATA CGAAGCAATT GGTTGTATTT AGCGATGCGG TCTGTACGTG	1800
AGCGATGCGG TCTGTACGTG	1060

AAAGTGAACC AGTCTTGATT TGTCCTGCGT TAGTTGCAAC TGCAATATCA GCGATTGTTG 1920 AATCTTCAGT TTCACCTGAA CGGTGTGATA CAACAGCAGT GTAACCAGCT TCTTTAGCCA 1980 TTTCGATAGC TTCAAAAGTT TCAGTAAGAG TACCGATTTG GTTAACTTTG ATAAGGATTG 2040 AGTTAGCAGC ACCTTCTTGG ATACCACGTG CAAGGTAGTC AGTGTTTGTT ACGAAGAAGT 2100 CGTCACCAAC AAGTTGTACT TTCTTACCAA GACGTTCAGT AAGAGCTTTC CAACCATCCC 2160 AGTCGTTTTC ATCCATACCA TCTTCAATAG TGATGATTGG GTATTTGTTA ACCAATTCTT 2220 CAAGGTAGTC GATTTGTTCT GCAGATGTAC GAACAGCAGC ACCTTCACCT TCAAATTTAG 2280 TGTAGTCGTA AACTTTACGT TCTTTATCGT AGAATTCTGA TGAAGCACAG TCAAATCCGA 2340 TAAATACGTC TTTACCTGGT ACATATCCAG CAGCTTCAAT CGCAGCAAGG ATAGTTTCAA 2400 CACCATCTTC AGTTCCTTCG AAACGAGGAG CGAATCCACC TTCGTCACCT ACGGCAGTTT 2460 CCAAACCACG TGATTTAAGG ATTTTCTTAA GAGCGTGGAA GATTTCAGCA CCGTAACGAA 2520 GGGCTTCTTT AAATGTTGGC GCACCAACTG GCAAGATCAT GAACTCTTGG AAAGCGATTG 2580 GAGCGTCAGA GTGAGAACCA CCGTTGATGA TGTTCATCAT TGGAGTTGGA AGAACTTTAG 2640 TGTTGAATCC ACCAAGATAG CTGTAAAGTG GGATTTCAAG GTAGTCAGCA GCAGCACGAG 2700 CTACAGCGAT AGACACCCG AGGATTGCAT TCGCACCCAA TTTACCTTTG TTAGGAGTAC 2760 CGTCAAGTGC GATCATAGCA CGGTCAATAG CTTGTTGATC ACGTACATCG TAGCCAATGA 2820 TAGCTTCAGC AATGATGTTG TTTACGTTGT CAACAGCTTT TTGTGTACCA AGACCACCGT 2880 AACGAGATTT GTCACCGTCG CGAAGTTCAA CTGCTTCGTG TTCACCAGTA GAAGCTCCTG 2940 ATGGAACCAT ACCACGTCCG AAAGCACCTG ATTCAGTGTA AACTTCTACT TCAAGTGTTG 3000 GGTTACCGCG TGAGTCTAGG ACTTCGCGAG CGTAAACATC AGTAATAATT GACATTTTTT 3060 ACTCTCCTTA TGAGTTAAAT TTTTTACACC TCTATAATAC CTTAAAACCC CTCCTTTTTC 3120 AAGAAAAAC GTTATCTTTG TGCAACTTTT CCTTAACTTT ATAAAGTAAT CGCTTTCTTT 3180 TGTCTGTTTT ATTCTAACTT TTATGATATA CTGTTTTCAT GACAGATTTA TCAAAACAAT 3240 TACTTGAAAA AGCTCATGGT GGGTTAAAAA TAAATCCGGA TGAGCAAAGA CGCTATCTTG 3300 GTACTTTTGA GGAAAGAGTT CTTGGATATG TAGATATTGA CACAGCAAAT AGCCCTCAGT 3360 TAGAAAAAGG CTTTTTATTT ATTTTAGAAA ACCTTCAGGA AAAAGCAGAG CCACTATTTG 3420 TGAAGATTTC ACCAACTATC GAATTTGATA AGCAAGTTTT CTACTTAAAA GAAGCAAAAG 3480 AAACTGATAG TCAAGCCACC ATAGTATCTG AAGAGCATAT TACTTCTCCT TTTGGCCTGG 3540 TTATTCATAG CAATGCACCA GTTCAAGTAG AAGAAAAAGA CCTTCGACTT GCTTTTCCAA 3600

AACTTTGGGA AGTTAAAAAG GAAGAACCAG CCAAAACATC CTTATGGAAG AAATGGTTTA

GCTAAATCTT GCACATATTT AATAAGTGCC CAATATTGGC AGCCGTGCGC TCCAGATAGA	
AACTGGCATT TTTCAAACTA TOTTTCTAAACTA TOTTTCTAAACTA TOTTTCTAAACTA TOTTTCTAAACTA TOTTTCTTAAACTA TOTTCTTAAACTA TOTTCTTAAACTAAAC	3720
AACTGGCATT TTTCAAACTA TCTTCTAAAG GTTCACTTTT CTCCAAAATA GAAAAGACAG	3780
CTTGGATATT TTCAAATGGT AGGGGAGGTA AATCTTCAGC AAGACTACCG CAAATAGCAA	3840
TAACAGGAAC TCCAACAGGG GTTCTTTTTG CAACACCTAT AGGCGCTTTC CCAGCAAAGC	
TITGACTATC AAGTCTTCCT TCTCCAACAA CAACCAAGTC AGCATCTGAA ACTTTCTTTATT	
CAAAGTTGAT TAAGTCCAAG CAGGTATCAA TTCCAGACAC GATACTTGCC TGAGCAAACC	
CACACAAACC ACCAGCAAGG CCTCCACCTG CTCCTGCTCC TTTAATTTCT AATGTTGCAG	_
GTGAGAATTT TTCATAAAAA TCTTGGATCG CCTGATCTAC GACTGCAAAC ATAGTCGGAT	4080
GTAGACCTTT TTGATTGCCA AAAGTGTAAG TCGCACCTTG ATGACCACAT AAGGGACTCA	4140
CGACATCTGC TAAAATATGA ATTTGAACAC CTTCAGGAAT TTTATAGCAA TTTTCTGTTG	4200
AAACAGAAGC TAAGTTTAAT AAGCATTGAG COCAAGAAT TTTATAGCAA TTTTCTGTTG	4260
AAACAGAAGC TAAGTTTAAT AAGGATTGAC CGGAAGCAGG CAAGACATTT CCATCCCTAT	4320
CATAAAATTG ATAACCTAAA CCAGCAGCAA TCCCCAGTCC TCCATCATTA CTGGCCGTGC	4380
CACCAACACC GATATAAATA TCTTTAATCC CTTTAGAGAT GAGATGAAGA ATCAACTCTC	4440
CAATACCACA AGTTTGGATT TGAAGTGGAT TTCGTTTCTC TAGCGGAATT TTTCCAAGAC	4500
CAACCAAGTC AGCTACTTCA AATAGTGCCA GTTCCCCTTT TTGAAAATAG CGCATGGCTT	4560
CTTTTTGTCC AAAAGGGTCT GTCACTTGGA TCCATTTTTC TTTTAGGTCA AGAGAATGTC	4620
GGATAGCATC TACAGTACCT TCTCCCCCAT CACCAACAGG GCAGAGGAGA CATTOTAGAT	4680
CIGCTATCGA TTGTTGGAAG CCTCTTTTTA TTGCTTCAGC TACCTGTTGA GCTCTCAACG	
TTTCCTTAAA CGAATCCGGT GCAATTACAA TCTTCATATT TTCCCTCATT CTAAACAGTC	4740
AATCAAAGGG AGAACTTCTA AAAAATCCCT CTTGTCAACA TGATGTGGTA TTTCTTTTTT	4800
GAGCACTTCT TTGGCACAAA AGGCGATTCC TAACTTCGCC GACTTCAACA TTAATAGATT	4860
ATTAACCCCA TCACCGATTG CCACCGTTCT TTCTTTAGAA AGTTTTAGTT TCTTTCTCCA	4920
TTTTTCCAGA GTCTCTTTT TGACCTGGGG ACTTATAATT TGTCCAACTA ATTTTCCTGT	4980
TAAAAGACCT TCTTTGACTT CAACCTACTT TOTCCAACTA ATTTTCCTGT	5040
TAAAAGACCT TCTTTGACTT CAAGCTAGTT GGCAGTGAAA TAGGCAATAC CAAGGGATTT	5100
TGCTAATCTC TCCAACTATT GGTGTAAATC CACCAGACAC CAGACCAACT AGGATGCCAT	5160
TCTTTTGGAG AATAGAGATG AACTCTGGGA CATTTAGCGA TAGATGAATT GAGTTGAAGA	5220
CGTTATCAAA GACCAAAATA GGAAGACCTT CCAACAAGGA CACTCTTTT CTTAAACTGC	5280
TITCAAAGAC CAACTCTCCT CGCATTGCTC GACTTGTAAT CTGCGAAATT TCCGCCTGAR	5340
GACCTGCCTC TCTCCCTAAA AGATCAATCA CTTCTTCTAG GATTAAGGTT CCATCTACAT	
CENTETACAT	5400

CCAAAACACA CAAGCCTTTT ACTTCACACA TOACTTCA	
CCAAAACACA CAAGCCTTTT ACTTGAGACA TCAGTTCTCC TCTCTAAACA GCCTAAAAAT	5460
CGTATGAAGT CATCATACGA TTTTATCTAT TAATTAACTA AACTATGGTA CAAGTCAAGG	5520
TATGACTTGC AGGCTGTATC CCATGAGAAG TCACTCTCCA TAGCTTGTTT TTGTAGGTTT	5580
CTCCAAATGT CTGGATGGTT TCTATACAAG TCCAATGCTG TTTGGAAAGT CCAATTTAAC	5640
CAATAAGGAG ATAGATTGTC AAAGCTAAAG CCAGTACCGC TTCCTTCGAT TGGATTGAAA	5700
GCGCGAACTG TATCTCGCAA GCCTCCAACT TCATGGACCA ATGGCAAGGT TCCATAACGC	5760
ATAGCCATCA TTTGAGACAA GCCACACGGT TCAAAACGAC TTGGCATGAG GAAGAGGTCA	5820
CAAGCAGCGT AGATTTCCTG AGCAAGTTTG ACATCAAAAG TGATATTTGT TGATAGCTTG	5880
TCTGGGTAAA TCTGAGCAAA CCATGAGAAA GCTCCTTCAA AGGCTGGATC GCCAGTTCCC	5940
AAAAGAACAA TCTGAACATC TTCTTGCAAG ATATGGTGAA GACTTTCGAC CACCACATCA	6000
AAACCTTTTT GACGTGTCAA ACGAGAAACA ATTCCCACCA GTGGAACGTC TGCTCTAACA	6060
GGCAAGCCAA CTCTTTCTTG CAATTTTGCC TTATTTTTGG CTTTCCCAGA CAAATCTTCC	6120
TGATTGAAAT GATAGTCTAA AAGAGCATCC GTCTGAGGAT TATAAAGATC AGCATCAATC	6180
CCATTCACGA TACCAGATAC TTTACCAGAC TCCATTTTAA GAATCTGATC CAAATTACAT	6240
CCAAACTGAC TAGTCATAAT TTCATGAGCA TAGCTAGGTG AAACGGTTGA AACACGGTTC	6300
GCATAGAGAA TACCTGCCTT CATCCAGTTC AGACAGTTGT TCCATCGAAG GGTGCCATCA	
GCGTAACGTT CAAAGCCAAC TCCAAACAAA TCACCCAACA TTCCTTCTGA AAATTGTCCT	6360
TGGAATTCTA AATTATGAAT GGTTAAAACT GTTTCAATGT CCTCATAGGC TTGAATCCAA	6420
CGGTATTTT CCTTCAACAA GAAAGGAATC ATAGCTGTAT GGTAGTCATG AACATGGAGA	6480 6540
AGATCAGGAA TAAAGTCAAT CCTTTCCATA GCCTCAATGG CAGCCAGTTG GAAAAAGGCA	6600
AAGCGTTCTC CGTCATCAAA ATCACCGTAA ACATGACCAC GGAAGAAATA ATATTGATTG	
TCAATAAAGT AGAAGGTTAC ACCATTTAAT ACTGTTTTCT TAATTCCACA ATACTGTCTG	6660
CGCCAACCAA CGCTCACCTC AAAATGAAGC ACATCTTCAA TCTGATTTCC AAATTTAGCC	6720
TCTACCATAT CATAGTAGGG TAAAATCACT GCAACTTCGT GCCCAGCTTT TACCAGTGAT	6780
TTTGGAAGAG CGCCAATGAC GTCTCCCAAA CCACCTGTTT TTGAAAAGGG TGCACCCTCT	6840
GCTGCTACAA ATAAAATTTT CATGAATGAA TATCCTCTGT TACTTTAGCA CCTTTCTTAA	6900
CCACAACTGG ATGTTCTGCA GTTCCTCGAA TCACAACACC ATGCTCAACT TCAACCCCTT	6960
TGTCCAAGAT AGCATATTCG ACCTGAGCCC CTTCTCCAAT AACAACACGA GGGAAGAGCA	7020
GGCTATCTTT AACCAAGCTA TCCTTATGGA CATGAATATT ACGTGATAGA ACAGAATTAG	7080
CTACTTGACC TTCAATAATA CTACCAGAGG CAAACTGAGA AGTGCTTACC TTAGATGTAT	7140
TAGATGTAT	7200

TAGO	CATAGTA	AGTTGGCTCT	TCGTTTTTGA	CCTTTGTATA	AATCTTTTGG	TTTGGTGAGA	726
AAAC	GAGAATA	GAATTTTTGT	GATTCAAGCA	TATCGATATT	CGCTTGATAA	TAAGATTTAA	732
CAGA	GTGAAT	ATTGGCTAGA	TAGCCCGTGT	ACTCGTAGGC	GAAAGCTCCC	TCTTTTACAG	738
CCAA	ATCCCG	TAAAACATAG	CGCAATTTCT	CTGGATGTTC	TTTTTTAGCT	TCTTCTTCCA	744
AGTG	ттсаат	CAACCAAGGT	GTATCAACGA	CAAAGATATC	TGTAGACATA	TTGAACGTTT	750
CAGO	TGTTGA	CTTGCTATCA	AAGAGTTTAT	GAGAAAGAAC	ATGGTCTGTT	TCATCTACAT	756
CCAA	GATTGC	ATTTACTTCT	GAAATATCTT	TCTTAGCTAG	TTTTTTATAA	ACTACAGTGA	762
TAGG	CTCTTT	TGTTGTACTA	TGTAGGTGGA	AAACTTGGTT	CAAATCAATG	TTAATAAGAA	7686
CATO	GCAGTT	GAGGGCAACC	GTTTGGTTTG	AGCCAGAACG	ТТТСАААТАА	GTAAGAAGCT	7740
GTTG	GTAGTA	TTCTTTTCCA	ACTGTACTAC	TTTCTACACG	GGTATTGTAA	ATTCCTAGAT	7800
AGTA	ATGGCT	AAGAAGGGTT	GATAAGCCCC	ACTCGCGTCC	TGAACGAATA	TGGTCAAATA	7860
CTGA	GCTGAT	ATTATCCTGC	TGGAAAATAC	CAAAGACACT	ACGAACACCT	GCATTAGCAA	7920
GGCT	TGAAAG	TGGGAAGTCA	ATCAAACGAT	ATTTCCCACC	AAATGGCAAA	CTTGCTACTG	7980
GACG	GTGGTC	CGTCAATGTC	GACATATTGT	GAAAACCAAC	TGTATTTCCT	AAAATGGCAG	8040
AATA	TTTATC	AATCTTCATC	TGTTGCTACC	CCCACTACTT	CATTATATCC	TACAACTTGT	8100
ACTT	CATCTG	TTCCATCAAT	TTCGACACCG	TCAGAAATAA	TCGCACCTTC	ACCAATAATG	8160
GCAC	GTTTAA	TCTTAGCTCC	TTGACCAATG	ATAGCTCCAC	TCATGATAAC	TGAATCAAGG	8220
ACTT	CCGCTC	CTTCGCGAAC	TTGCGCGCCT	GTTGAAAGGA	TAGAATGTTT	AACAGTTCCA	8280
TCAA	CGAAAC	ATCCGTCTAC	AACTAATGAG	TCTTCCACAT	GAGCATTTGC	CCCGAGGAAG	8340
TTTG	GTGGTG	AAATCAAGTT	TCTTGAGTAA	ATCTTCCATT	GACGGTTACG	ACTATCCAAG	8400
GCAT	TTTCTG	GAGAAATATA	CTCCATGTTC	GCTTCCCAAA	GTGACTCAAT	AGTACCAACA	8460
rctt	TCCAAT	AACCACTAAA	TTCGTAAGCA	TAAACACTTT	CACCTGACTC	AAGGTAATTT	8520
GGAA'	TGACAT	TTTTACCAAA	GTCTGACATG	CCAACCTTGC	TCTTTTCAGC	AGCGACTAAC	8580
TATA	TACGAA	GGCGTTGCCA	ATCAAAAATG	TAGATTCCCA	TAGAAGCTTT	TGTAGATTTA	8640
GTT	GAGCTG	GTTTTTCTTC	AAATTCAACA	ATACGATTGT	TAGCATCTGT	GTTCATGATA	8700
CCAA	AACGGC	TTGCTTCTTT	AAGAGGGACG	TCTAAAACTG	CTACTGTCAA	GCTGGCATTA	8760
TAT	ССТТАТ	GAGACTGGAG	CATATCATCA	TAGTCCATTT	TGTAGATGTG	ATCCCCAGAC	8820
AAAA'	TCAAGA	CATACTCAGG	ATTGACACTG	TCGATATAGT	CGATATTTTG	GTAAATAGCG	8880
rgac'	TAGTCC	CÇTCAAACCA	ACGATTTCCT	TCACTTGCAG	AATAAGGTTG	AAGAATAGAG	8940

ACACCTGAAT MARTINE 422	
ACACCTGAAT TAATACCGTC TAGTCCCCAG CTTGAACCAT TCCCAATATG GTTGTTGAG	A 9000
GCAAGTGGTT GATACTGTGT AACGACCCCA ACATTGTGAA TCCCTGAGTT GGCACAGTTT	9060
GATAGGGCAA AGTCAATGAT ACGGTAGCGC CCACCAAATT GCACAGCTGG TTTTGCGATG	9120
CTTTGAGTGA GTTTACCGAG ACGAGTTCCT TGCCCACCAG CAAGAATCAA AGCTAACATT	9180
TCATTTTCA TTTTCTACTC CTTTTTGGTT TTTATTTGTG ACGGTTTTAG TAGATTTCAA	9240
GCGACGTTTG ATTTTCCATA CACTTGCTCC CATAGCCGGT AGGGTAAAGG TTAAGGTCTG	9300
CTCATAATCT TTCCATAGTC CTTCTTGCGT TTGAACAGTT TGATTATGTT CTTTCCAAAC	9360
GCCTCCCCAC TCTTCCAACT CAGTATTCCA TACTTCTTCG TAAATTCCTG CAACGGGTAG	9420
TCCGATTGTA AAATCTTTCC GCTCAACAGG TACCATATTA AAGATACAGA CTAACATTTC	9480
TCCCTTTTTA CCCTTACGAA TAAAGGAAAG AACACTCTCG TCTCGATTAT CCGCATCAAT	9540
GATTTCAATA CCATCATAGC TGGTATCAAT TTCCCACAGA CAGCGATGAT CTTTGTAAAA	9600
CTGGTTTAGC TGAGAAGCGA AATACTTCAT CTTAGCATTC ATTGGGTCTT CTAGGTTAGA	9660
CCATTCCAAC TGTTCTTCAG ATTTCCATTC TAGGAATTGA CCGTATTCGC TACCCATGAA	9720
GAGCAATTTC TTACCAGGGT GACAAATTTG GTACGTATAG AGATTGCGCA AGCCTGCGAA	9780
TTGATTGTAA CGATCTCCCC ACATCTTATG CATCATACTC TTCTTGCCAT GAACCACTTC	9840
ATCGTGCGAG AATGGCAAGA GATAATTCTC CTTGAAAACA TACATAAAGC TGAAAGTCAC	9900
CAGGTTAAAG TCATATTTAC GATAGATCGG ATCTTCTTCG TAGAAACGGA GGATATCATT	9960
CATCCAGCCC ATGTTCCATT TGTAGTCAAA TCCTAGACCA CCAATCTCTT TCATTCCCGT	10020
AATCTTGATC GCAGACGAAC TTTCTTCTGC AATCATCATC ACATCTGGAT ATTCTAACTT	10080
AATAACCTCA TTCAAGCGCT GAAGGAAATA ATAACCTTCA TAGTTGAGAT TTCCGCCATC	10140
TTTATTAGGT GTCCATGGAG CATCATCATA GTCCAAATAG AGCATGTTGC TAACAGCATC	10200
CACACGAATA CCATCCAAAT GATAGACATC AATCCAATGC TTAATGCAAG AAATTAAGAA	10260
GGACTGGACT TCATTTTTC CAAGGTCAAA ATTAAGGGCA CCCCAACCAT GGTTATGAGC	10320
CTTATTATGG TCTTGGTATT CAAAAGTCGG TGTCCCATCA TAATAGGCTA AGGCATCATC	10380
GTTGATGGTA AAGTGACTGG TACCCAGTCC ACAATAACCC CAATATTATG GGTATGACAC	10440
TCCTCGACAA AATCTTGAAA CTCCTCTGGT CGGCCATAAG CATGCTCTAA AGCGAAGTAA	10500
CCCATAAGCT GATACCCCCA ACTCAAGCCC AAAGGATGGG ACATCAAGGG CATAAACTCA	10560
ATATGAGTAT AGTTCATTTC AACGAGATAA GGAATGAGTT CATCCTTGAG CTGGGCAAAA	10620
CTATAAGGAC TGCCATCAGA ATTTCTTTTC CATGATCCAG CGTGAACTTC ATAAATATTG	10680
ACAGGACGCT CTTCAAAGCC CCAACGTTTT CTTCGTGCCA GCCAAAGTCC ATCCTTCCAT	10740
· ·	

TTCTTCTCAG GAAGCTCTGT TACGATTGCC CCTGT	WICOMO ON COLOR
GCAAAAGGGT CAATCTTCAT CAGTTGATGA CCATT	
ATATGCCCTT CTTGAGCCAT ATTGGTAAAG ACTTC	CCAGA CCCCAAAATC ATTTCTTAGG 10000
ATTGGAATCT GATTTTCAAT CCAGTTGGTA AAATC	
TTAGGTGCCC AAACACGGAA GGTATAGCCA TGCTC	TCCAT TTAGTTCTTC CCTATGTGCT 11040
CCTAGATAAT GTTGGAGATA AAAATTTTCA CCCGT	
TTATCCATAT ACTCCCCTTC TCCTGTAAGC GTTTTC	
TAGAGAAGAT TCAAGTAAAT TACTATACTT CTTTAA	ATTAT TTTGAAAATC TACAACAACT
TCACTTACTC GTTCAATTGT AAATCAATAT TTTTTC	
TTTTCTACTA TAGTGAAATG AAATAAAACA TGCGCA	AATC GATTAAGGAA TTTAATCTAA 11340
TTTCTAACAA TGTCTTAGAA ATCAAAGTGT ACTATT	THE A CTICA
	11384
(2) INFORMATION FOR SEQ ID NO: 46:	

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 7577 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

					TTCTCCTTAG	60
TTTCCAACA	GTTTTCGCCA	TGTTTGGTGC	GACCATCTTG	GTACCATTGA	TTTTGGGAAT	120
					TGATTGCTAC	
						180
	GTTCCAGTTT					240
GGCTATGAAA	GAAATGGGGG	GGGATGTATC	TGCTGCCCAA	ACAGGGGTTA	TCTTGACTGG	300
						300
ini	GTCCTTGTTG	CPACCAGCAT	CCGATTTGTA	GGAACAAAAT	GGATTGATAA	360
	CCAATCATTA					300
						420
TTCAGCTGTT	ACCAATGCAG	GTCTTGTAGC	AGACGGAAAT	TCCA A A A A A A	CT CT	
						480
CGTTGTTACT	TTCCTAATTG	CTGCCTTTAT	CAATACAAAA	GGAAAAGGCT	ጥርር ጥል ርር እ አጠ	
						540
WILL CHILL	CTCTTTGCCA	TTATCGGTGG	TTACCTTTTC	GCACTAACTC	TTGGCTTGGT	600
						000
	CCAGTTCTTA	MAGCCAACTG	GTTCGAAATT	CCTGGTTTCT	ACTTGCCATT	660
TAGCACAGGT	GGTGCCTTTA	AAGAGTACAA	ጥርጥጥጥ አረማመው	C0m001.01.		
			TOTAL TACT TO	GGTCCAGAAG	CCATCGCTAT	720

CTTGCCAATC GCTATCGTAA CAATTTCTGA ACATATCGGA GACCATACTG TTTTGGGTCA	780
AATCTGTGGT CGTCAATTCT TAAAAGAACC AGGTCTTCAC CGTACTCTTC TTGGTGACGG	840
TATCGCAACT TCTGTTTCTG CCTTCCTTGG TGGACCAGCC AATACAACTT ACGGAGAAAA	900
TACAGGGGTT ATCGGTATGA CTCGTATCGC TTCTGTCTCA GTTATCCGTA ACGCTGCCTT	960
CATCGCGATT GCCCTCAGCT TCCTTGGTAA ATTCACTGCC TTGATTTCAA CTATTCCAAA	1020
CGCTGTACTT GGTGGTATGT CAATCCTTCT CTATGGGGTT ATCGCCAGCA ATGGTTTGAA	1080
AGTCTTGATT AAAGAACGTG TTGATTTCGC TCAAATGCGA AACCTCATCA TCGCAAGTGC	1140
TATGTTGGTT CTTGGACTTG GAGGAGCTAT CCTTAAACTT GGTCCAGTTA CACTTTCAGG	1200
TACTGCCCTT TCAGCCATGA CAGGAATCAT CTTGAACTTG ATCTTGCCAT ACGAAAATAA	1260
AGACTAAGAG TCTAAATACA CCTAATCCAC TCAGACAGCT GAGTGGATTT TTCGTATACC	1320
ATAATAAAAG TGTCTTAACA AAATTATTAA AATCAAAAAA CGTATAATAT CAGATATTCT	1380
AAAACCTTGA TACTGTACGT TTTATCATAG AAATTTTTAC TTTATTTTCT CATCAAATGA	1440
GATTTGCATC AATCTCTTGT CTTACTTGCG TTTCTTCTTC GCTTTCTTCA TTTTGTTAGC	1500
CATACGTTTC ATGGACTGTT TCATGGCAAA TTCACCAATT TTACCTTTCA AACCGCCACC	1560
AAACATCTGG CTCATATCTG GCATTCCTGC TCCTCCGAGA GCTGATAAGT CAGGCATACC	1620
GCCTTGTCCC ATCATTCCTT CAAGGGCAGA CATATCCATT CCTCCCATAT TTGGCATATT	1680
TTTAGGAAGG TTATTTGGAT TAATCCCCAT TTGCTTCATC ATTTTATTCA TATCCCCAGA	1740
CATAACACCC TGCATGAGCT GTTTAGCCTG GTTAAAGTCC TTGATGAATT TATTGACTTC	1800
GACGAATGTA TTTCCAGAAC CAGCAGCAAT ACGACGGCGA CGGCTTGGAT TTAACAAATC	1860
TGGGTTTTCA CGCTCTTCAG GTGTCATCGA AGACACAATG GCACGTTTAC GAGCAATCTG	1920
GCGTTCATCC ACCTTCATGT TTTGAAGGGC TGGATTGTTG GCCATACCTG GAATCATCTT	1980
GAGCAAGTCT TCCATCGGCC CCATATTTTG CACCTGATCT AATTGATCGA TGAAATCATT	2040
AAAATCAAAG GTGTTTTCGC GCATCTTCTC AGCCATTTCA AGGGCTTTTT GTTCATCG'IA	2100
TTCCTGAGAA GCTTTCTCAA TCAAAGTGAG CATATCCCCC ATACCAAGGA TACGGCTAGA	2160
CATGCGGTCT GGGTGGAAGG TTTCAATGTC CGTAATCTTT TCACCTGTAC CAGTGAACTT	2220
GATTGGTTTT CCAGTAATGT GACGAACAGA CAGAGCAGCA CCACCACGAG TATCGCCATC	2280
AATCTTGGTA AGGATGACCC CAGTCACTTC CAACTGAGCA TTAAACTCAC GCGCAACATT	2340
GGCTGCTTCC TGACCAATCA TAGCATCAAC GACAAGCAAG ATTTCATTTG GTTGAGCCAA	2400
TGCTTTCACA TCACGAAGCT CATTCATGAG GAGCTCATCA ATCTGCAAAC GACCCGCAGT	2460
ATCAATCAAG ACATAGTCGT TATGATTAGT TTGGGCTTGC TCCAAACCTT GACGTACAAT	2520

CTCAACAGCT	GGTACTTCTG	TTCCAAGTGC	AAAGACAGGC	ACATCAATCT	GTTGTCCCAA	2580
GGTCTTAAGC	TGGTCAATGG	CAGCTGGACG	ATAAATATCC	GCCGCAATCA	TCAAAGGACG	2640
AGCATTTTCT	TCTTTCTTGA	GTTTGTTGGC	CAATTTACCA	GCAAAGGTTG	TTTTACCAGC	2700
CCCTTGTAAA	CCAACCATCA	TGATGATGGT	TGGAATCTTA	GGTGACTTGA	TAATTTCTGC	2760
CGTATCAGAA	CCTAAAACGG	CTGTCAATTC	CTCATCAACG	ATTTTAATAA	TCTGTTGCGC	2820
AGGATTAAGT	GTATCAATGA	CCTCATGCCC	GACTGCACGC	TCACGAACTT	TCTTGATAAA	2880
GTCCTTTACA	ACAGGCAAGG	CAACGTCGGC	CTCGAGCAAG	GCCAAGCGAA	TTTCTTTGGT	2940
TGCCTCTTGG	ACATCAGATT	CAGAGATTTT	TCCTTTTTTA	CGTAGATTTT	TAAAGACGTT	3000
CTGCAAACGT	TCTGTTAAAC	TTTCAAATGC	CATTTTTCTT	CCTCTTATTC	тстаттатса	3060
ATGCTTGTTA	АААТТТСТАТ	CTGCTCCTGC	AGAAAGTCAT	CCTTGGGATA	GCGCTCCAAA	3120
ATCTGATCAA	AAATCTGACT	GCGGACAATA	TAGTCCGAGT	ACATGTGCAA	TTTCATCTCA	3180
TAATCTTCCA	GAATCTTTTC	TGTTCGCTTG	ATATTGTCAT	AGACAGCCTG	ACGACTGACA	3240
CCGAACTCCT	CGGCAATTTC	AGCAAGGCTG	TAATCATCAG	CGTAGTAGAG	CTCGATATAA	3300
TTCATTTGCT	TATCTGTCAA	AAGCGCCGCA	TAAAATTCAA	AGAGCGCATT	CATACGATTG	3360
GTTTTTTCGA	TTTCCATAAC	TTTTATTATA	CCAAAAATTA	GCCTAATCTA	CCACACTAGG	3420
AAGCCGATCC	AAGAAGATAG	ATAGCTAAAT	TTGAAAAAGA	CATGAGCCTA	GCCCCAAGTA	3480
ATTTCCAATT	GATAGCTGGC	AAAGGGATGT	CCCTCTTGAT	TTTGTAGTTG	ATAATCTAGT	3540
TCAATCTTTT	GCCTATCAAC	TTGATAATGG	CTCGTTTGGA	TGATAAACTC	CTGCATGCCC	3600
ATAGGTGTAG	GAATATAGGC	TAAACTATCG	СТАТССТТТА	GAAAGCGCAT	AATGGTCTTG	3660
GGATTAGAAA	ATCGGCTCAT	CACAAGTTCT	TGACCATGAA	ATTTAATCAC	TACTTTTTCC	3720
TTTTCCTCAT	TATAGAAAAG	CAGGTAGCTA	TAATCTCCTT	TTTCATGCAC	TTCCACATCA	3780
TAAAGCTGGT	CAATCACTTC	CAACTGCTCA	TCAAACTGAA	TCGTATTTCG	CATCCGAATC	3840
TTCACATCAG	GCCCTCTTTC	TTGTCTCTTG	TCCTACTATT	TTACCAAAAA	GAGCAGGATT	3900
ТТССТАТААТ	GGTCATATGA	ACGAAAAAGT	ATTCCGTGAC	CCTGTTCACA	ACTACATCCA	3960
TGTCAATAAT	CAAATCATCT	ATGACTTGAT	ТААТАСАААА	GAATTTCAGC	GTTTGCGCCG	4020
GATCAAACAA	CTGGGAACTT	CCAGTTATAC	CTTCCACGGT	GGAGAACACA	GTCGCTTCTC	4080
TCACTGTCTA	GGAGTCTATG	AAATTGCACG	ACGCATCACA	GAGATTTTCG	AAGAAAATA	4140
TCCTGAGGAA '	TGGAATCCTG	CCGAGTCTCT	CTTGACCATG	ACCGCTGCTC	TCCTACACGA	4200
CCTTGGGCAT (GGTGCCTACT	CCCATACTTT	TGAACATCTC	TTTGATACAG	ACCATGAAGC	4260

426	
CATTACTCAG GAGATTATTC AAAATCCTGA GACAGAGATT CACCAAGTCC TGCTACAAGT	4320
GGCACCTGAT TTCCCAGAAA AGGTGGCCAG TGTCATTGAC CATACCTATC CTAATAAGCA	4380
GGTCGTGCAG CTCATTTCTA GTCAGATTGA CGCAGATCGC ATGGACTATC TCTTGCGCGA	4440
CTCCTATTT ACAGGAGCAT CCTATGGGGA ATTTGACCTG ACTCGAATCC TCCGAGTCAT	4500
TCGTCCTATC GAAAATGGTA TCGCCTTTCA GCGCAATGGC ATGCACGCCA TCGAAGACTA	4560
CGTCCTCAGT CGCTACCAGA TGTACATGCA GGTTTATTTC CACCCCGCAA CACGCGCCAT	4620
GGAAGTTCTC CTACAGAATC TTCTCAAACG CGCCAAGGAA CTCTATCCTG AGGACAAGGA	4680
TITCTITGCC CGAACTICTC CACACCTCCT GCCTITCTTC GAAAAAAATG TGACCTTGAC	4740
TGACTATCTG GCTCTGGATG ATGGCGTGAT GAATACCTAC TTCCAGCTTT GGATGACCAG	4800
TCCTGACAAG ATTCTTGCAG ATTTATCGCA TCGCTTTGTC AACCGCAAGG TCTTTAAATC	4860
CATTACCTTT TCACAAGAGG ACCAAGATCA ACTTACTAGC ATGAGAAAAT TGGTTGAGGA	4920
TATCGGCTTT GATCCCGACT ACTACACTGC CATTCATAAG AACTTTGACC TCCCTTATGA	4980
TATCTATCGT CCCGAATCTG AAAACCCACG GACACAGATT GAGATTTTAC AAAAAAATGG	5040
AGAACTGGCC GAACTCTCTA GCCTGTCTCC TATCGTCCAA TCCCTTGCTG GCAGTCGCCA	5100
CGGAGATAAT CGCTTTTATT TTCCAAAAGA AATGTTGGAC CAAAACAGCA TCTTTGCAAG	5160
CATTACCCAG CAATTTTTAC ACTTGATTGA GAACGATCAT TTTACCCCAA ATAAAAACTA	5220
GAAGAGGAAA TTTATGAGTA TTAAACTAAT TGCCGTTGAT ATCGACGGAA CCCTTGTCAA	5280
CAGCCAAAAG GAAATCACTC CTGAAGTTTT TTCTGCCATC CAAGATGCCA AAGAAGCTGG	5340
TGTCAAAGTC GTGATTGCAA CTGGCCGCCC TATCGCAGGC GTTGCCAAAC TTCTAGACGA	5400
CTTGCAGTTG AGAGACGAGG GGGACTATGT GGTAACCTTC AACGGTGCCC TTGTCCAAGA	5460
AACTGCTACA GGACATGAGA TTATCAGCGA ATCCTTGACT TATGAGGATT ATCTAGATAT	5520
GGAATTCCTC AGTCGCAAGC TCGGTGTCCA CATGCATGCC ATTACCAAGG ACGGTATCTA	5580
TACTGCAAAT CGCAATATCG GAAAATACAC TGTACACGAA TCAACCCTCG TCAGCATGCC	5640
TATCTTCTAC CGTACCCCTG AAGAAATGGC TGGCAAAGAA ATTGTTAAAT GTATGTTAT	5700
CGATGAACCA GAAATTCTCG ATGCTGCGAT TGAAAAAATT CCAGCAGAAT TTTACGAGCG	5760
CTACTCCATC AACAAATCTG CTCCTTTCTA CCTCGAACTC CTTAAAAAGA ATGTAGACAA	5820
GGGTTCAGCC ATTACTCACT TGGCTGAAAA ACTCGGATTG ACCAAAGATG AAACCATGGC	5880
AATCGGTGAT GAAGAAAATG ACCGTGCCAT GCTGGAAGTC GTTGGAAACC CCGTTGTCAT	5940
GGAAAATGGA AATCCAGAAA TCAAAAAAAT CGCCAAATAC ATCACCAAAA CAAATGACGA	6000
ATCCGGCGTT GCCCATGCCA TCCGAACATG GGTACTGTAA AAGTATCATT TTTCAATAAG	6060

AATTGATTAG	CAATAAAATC	CAATGAATTT	TTTTAGCAAA	СТАТТТААТТ	ТААААСАААА	6120
TAATCATAAT	AGAGACACAA	ATTCTGATTG	TAACAATTTT	TACCTAAACG	AATTAGAATG	6180
TGGCCTTACT	CCTGGGCAAC	TCATACTCAT	AGATTGGACT	CAAAAAACAG	GGAGAAATTA	6240
TAATTTCCCA	AGATATTTTA	AATACTCTCT	TCAAATTGAC	CCTGAATCTA	CACACAATCA	6300
ATTATACAAA	TTAGGATACT	ТСАСТААААА	TAAGACTTTA	TCATATCTTA	CAGTAGTAGA	6360
ATTAAAAACT	АТАТТАТСТА	AACATAATTT	AGCTACTTCT	GGAAAAAAAG	CAGAATTAAT	6420
TACAAGAATA	ATTAATAATG	TTAACATTGA	CAATTTAGAT	ATTCCGTTCG	ААТТТАААСТ	6480
AACAAAAGAA	GCACAAAATC	TTATTATCGA	ACATAGTGAC	TATATCAAAG	CATACTATGA	6540
TAAAGACATA	ACTATGGAAG	ATTATTGTAA	AGAAAAAAAC	AATATCTCTT	TTAAAGCAAC	6600
TTTTGGTGAT	ATAAAATGGA	GTCTCTTAAA	TAAACAAGCT	CATAGGAATA	CTGTATCAGG	6660
AGATTTTGGA	TGCTTATCTA	ACACACGAAA	GGCTCAGGGA	AGACATTTGG	AACAAGAAGG	6720
ТААТАТТААА	CATGCTTTAA	TATATTACAT	AGAATCTTTG	АТААТТАСТА	TTTCAGGATT	6780
AGAAAACAAT	TTTTCAGCCA	CTGATTATCC	AGTATATTAT	CCCGATTCGA	TACCTGACTA	6840
CTCACTAAAA	CATATTCAAA	CATTAATGGA	ATCATTATCT	GATGACGATT	ATGATTTTGC	6900
TTTTGATGAA	GCATTATTTC	GCTTCTCAAT	TTTGAATGCA	AATCATTTT	TATCTAAGGA	6960
AGATATTGAC	TATTTAAGAG	TTAATTTACC	TCGTTCCACT	GCTGAAGAAA	TAAACAATTA	7020
CTTAAAGAAA	TATGAATGTT	ATAGTCCTTT	ааатааттта	GAACTTGACG	ATTTTGAATA	7080
AATTGACTAT	ACAAACATTT	ATATACTCGA	TATAGTCTCA	ATTTTATCTG	ATGATTGCCC	7140
AAATTTTTCA	ATAATAAAAC	GCATAATATT	ATGGAGACAA	TCCCCTATAT	TATGCGTTCT	7200
TTTAATATCA	AAGACTTTTT	GACAAACTTC	TTTGATATCT	AATTACATGC	CCCCTGCAGG	7260
AATCGAACCT	GCAACTACTC	CTTAGGAGGG	AGTTGTTATA	TCCATTGAAC	TAAGGGAGCT	7320
AGATAAAAAC	TCTGCTAAAT	GAGCAGAGTT	TTTTAGTCGA	ATTAACGACG	GATTTCTTTG	7380
ATACGAGCTG	CTTTACCTTG	AAGAGCACGC	AAGTAGTACA	ATTTCGCACG	ACGTACTTTA	7440
CCGTAACGAA	CAACTTCGAT	TTTTTCAACA	CGTGGAGTGT	GGATTGGGAA	GATACGCTCA	7500
ACACCTACAC	CGTTAGAGAT	TTTACGAACT	GTGTAGTTTT	CTGAGATTCC	AGCACCTTTA	7560
CGTGCGATAA	CAACACG					7577

- (2) INFORMATION FOR SEQ ID NO: 47:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4945 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

428

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

	CCTCGCTGAT	GATTGGTGCT	GTTTTATTTG	CTGGTCCAGC	CTTGGCTGAA	GAAACTGCAG	60
	TTCCTGAAAA	TAGCGGAnCT	AATACAGAGC	TTGTTTCAGG	AGAGAGTGAG	CATTCGACCA	120
	ATGAAGCTGA	TAAGCAGAAT	GAAGGGGAAC	ATGCTAGAGA	AAACAAGCTA	GAAAAGGCAG	180
•	AAGGAGTAGC	GATAGCATCT	GAAACTGCTT	CGCCAGCAAG	CAATGAAGCT	GCAACTACTG	240
	AAACTGCAGA	AGCAGCTAGC	GCAGCTAAAC	CAGAGGAAAA	AGCAAGTGAG	GTGGTTGCAG	300
	AAACACCATC	TGCAGAAGCA	AAACCTAAGT	CTGACAAGGA	AACAGAAGCA	AAGCCCGAAG	360
	CAACTAACCA	AGGGGATGAG	TCTAAACCAG	CAGCAGAAGC	TAATAAGACT	GAAAAAGAAG	420
	TCCAGCCAGA	TGTCCCTAAA	AATACAGAAA	AAACATTAAA	ACCAAAGGAA	ATCAAATTTA	480
	ATTCTTGGGA	AGAATTGTTA	AAATGGGAAC	CAGGTGCTCG	TGAAGATGAT	GCTATTAACC	540
	GCGGATCTGT	TGTCCTCGCT	TCACGTCGGA	CAGGTCATTT	AGTCAATGAA	AAAGCTAGCA	600
	AGGAAGCAAA	AGTTCAAGCC	TTATCAAACA	CCAATTCTAA	AGCAAAAGAC	CATGCTTCTG	660
	TTGGTGGAGA	AGAGTTCAAG	GCCTATGCTT	TTGACTATTG	GCAATATCTA	GATTCAATGG	720
	TCTTCTGGGA	AGGTCTCGTA	CCAACTCCTG	ACGTTATTGA	TGCAGGTCAC	CGTAACGGGG	780
	TTCCTGTATA	CGGTACACTC	TTCTTCAACT	GGTCTAATAG	TATTGCAGAT	CAAGAAAGAT	840
	TTGCTGAAGC	TTTGAAGCAA	GACGCAGATG	GTAGCTTCCC	AATTGCCCGT	AAATTGGTAG	900
	ACATGGCCAA	GTATTATGGC	TATGATGGCT	ATTTCATCAA	CCAAGAAACA	ACTGGAGATT	960
	TGGTTAAACC	TCTTGGAGAA	AAGATGCGCC	AGTTTATGCT	CTATAGCAAG	GAATATGCTG	1020
	CTAAGGTAAA	CCATCCAATC	AAGTATTCTT	GGTACGATGC	CATGACCTAT	AACTATGGAC	1080
	GTTATCATCA	AGATGGTTTG	GGAGAATACA	ACTACCAATT	CATGCAACCA	GAAGGAGATA	1140
	AGGTTCCGGC	AGATAACTTC	TTTGCTAACT	TTAACTGGGA	TAAGGCTAAA	AATGATTACA	1200
	CTATTGCAAC	TGCCAACTGG	ATTGGTCGTA	ATCCTTATGA	TGTATTTGCA	GGTTTGGAAT	1260
	TGCAACAGGG	TGGTTCCTAC	AAGACAAAGG	TTAAGTGGAA	TGACATTTTA	GACGAAAATG	1320
	GGAAATTGCG	CCTTTCTCTT	GGTTTATTT G	CCCCAGATAC	CATTACAAGT	TTAGGAAAAA	1380
	CTGGTGAAGA	TTATCATAAA	AATGAAGATA	TCTTCTTTAC	AGGTTATCAA	GGAGACCCTA	1440
	CTGGCCAAAA	ACCAGGTGAC	AAAGATTGGT	ATGGTATTGC	TAACCTAGTT	GCGGACCGTA	1500
	CGCCAGCGGT	AGGTAATACT	TTTACTACTT	CTTTTAATAC	AGGTCATGGT	AAAAAATGGT	1560
	TCGTAGATGG	TAAGGTTTCT	AAGGATTCTG	agtggaatta	TCGTTCAGTA	TCAGGTGTTC	1620

TTCCAACATG GCGCTGGTGG CAGACTTCAA CAGGGGAAAA ACTTCGTGCA GAATATGATT	168(
TTACAGATGC CTATAATGGC GGAAATTCCC TTAAATTCTC TGGTGATGTA GCCGGTAAGA	1740
CAGATCAGGA TGTGAGACTT TATTCTACTA AGTTAGAAGT AACTGAGAAG ACCAAACTTC	1800
GTGTTGCCCA CAAGGGAGGA AAAGGTTCTA AAGTTTATAT GGCATTCTCT ACAACTCCAG	1860
ACTACAAATT CGATGATGCA GATGCATGGA AAGAGCTAAC CCTTTCTGAC AACTGGACAA	1920
- ATGAAGAATT TGATCTTAGC TCACTAGCGG GTAAAACCAT CTATGCAGTC AAACTATTTT	1980
TCGAGCATGA AGGTGCTGTA AAAGATTATC AGTTTAACCT AGGACAATTA ACTATCTCGG	2040
ACAATCACCA AGAGCCACAA TCGCCGACAA GCTTTTCTGT AGTGAAACAA TCTCTTAAAA	
ATGCCCAAGA AGCGGAAGCA GTTGTGCAAT TTAAAGGCAA CAAGGATGCA GATTTCTATG	2100
AAGTTTATGA AAAAGATGGA GACAGCTGGA AATTACTAAC TGGCTCATCT TCTACAACTA	2160
TTTATCTACC AAAAGTTAGC CGCTCAGCAA GTGCTCAGGG TACAACTCAA GAACTGAAGG	2220
TTGTAGCAGT CGGTAAAAAT GGAGTTCGTT CAGAAGCTGC AACCACAACC TTTGATTGGG	2280
GTATGACTGT AAAAGATACC AGCCTACCAA AACCACTAGC TGAAAATATC GTTCCAGGTG	2340
CAACAGTTAT TGATAGTACT TTCCCTAAGA CTGAAGGTGG AGAAGGTATT GAAGGTATGT	2400
TGAACGGTAC CATTACTAGC TTGTCAGATA AATGGTCTTC AGCTCAGTTG AGTGGTAGTG	2460
TGGATATTCG TTTGACCAAC CCACCTACCT	2520
TGGATATTCG TTTGACCAAG CCACGTACCG TTGTTAGATG GGTCATGGAT CATGCACGAG	2580
CTGGTGGTGA GTCTGTTAAC GATGGCTTGA TGAACACTAA AGACTTTGAC CTTTATTATA	2640
AAGATGCAGA TGGTGAGTGG AAGCTAGCTA AGGAAGTCCG TGGTAACAAA GCACACGTGA	2700
CAGATATCAC TCTTGATAAA CCAATCACTG CTCAAGACTG GCGCTTGAAT GTTGTCACTT	2760
CTGACAATGG AACTCCATGG AAGGCTATTC GTATCTATAA CTGGAAAATG TATGAAAAGC	2820
TTGATACTGA GAGTGTCAAT ATTCCGATGG CCAAGGCTGC AGCCCGTTCT CTAGGCAATA	2880
ACAAGGTACA AGTTGGCTTT GCAGATGTAC CGGCTGGAGC AACTATTACC GTTTATGATA	2940
ATCCAAATTC TCAAACTCCG CTCGCAACCT TGAAGAGCGA AGTTGGAGGA GACCTAGCAA	3000
GTGCACCATT GGATTTGACA AATCAATCTG GTCTTCTTTA TTATCGTACC CAGTTGCCAG	3060
GCAAGGAAAT TAGTAATGTC CTAGCAGTTT CCGTTCCAAA AGATGACAGA AGAATCAAGT	3120
CAGTCAGCCT AGAAACAGGA CCTAAGAAAA CAAGCTACGC CGAAGGGGAG GATTTGGACC	3180
TTAGAGGTGG TGTTCTTCGA GTTCAGTATG AAGGAGGAAC TGAGGACGAA CTCATTCGCC	3240
FAACTCACGC AGGTGTATCA GTATCAGGTT TTGATACGCA TCATAAGGGA GAACAGAATC	
TACTCTCCA ATATTTGGGA CAACCGGTAA ATGCTAATTT GTCAGTGACT GTCACTGGCC	3300
Great Great	3360

430 AAGACGAAGC AAGTCCGAAA ACTATTTGG GAATTGAAGT AAGTCAGGAA CCGAAAAAAG 3420 ATTACCTAGT TGGTGATAGC TTAGACTTGT CTGAAGGACG CTTTGCAGTG GCTTATAGCA 3480 ATGACACCAT GGAAGAACAT TCCTTTACTG ATGAGGGAGT TGAAATTTCT GGTTACGATG 3540 CTCAAAAGAC TGGTCGTCAA ACCTTGACGC TTCATTACCA AGGCCATGAA GTTAGCTTTG 3600 ATGTTTTGGT ATCTCCAAAA GCAGCATTGA ACGATGAGTA CCTCAAACAA AAATTAGCAG 3660 AAGTTGAAGC TGCTAAGAAC AAGGTGGTCT ATAACTTTGC TTCATCAGAA GTAAAAGAAG 3720 CCTTCTTGAA AGCAATTGAA GCGGCCGAAC AAGTGTTGAA AGACCATGAA ACTAGCACCC 3780 AAGATCAAGT CAATGACCGA CTTAATAAAT TGACAGAAGC TCATAAAGCT CTGAATGGTC 3840 AAGAGAAATT TACGGAAGAA AAGACAGAGC TTGATCGCTT AACAGGTGAG GTTCAAGAAC 3900 TCTTGGCTGC CAAACCAAAC CATCCTTCAG GTTCTGCCCT AGCTCCGCTT CTTGAGAAAA 3960 ACAAGGCCTT GGTTGAAAAA GTAGATTTGA GTCCAGAAGA GCTTACAACA GCGAAACAGA 4020 GTCTAAAAGA TCTGGTTGCT TTATTGAAAG AAGACAAGCC AGCAGTCTTT TCTGATAGTA 4080 AAACAGGTGT TGAAGTACAC TTCTCAAATA AAGAGAAGAC TGTCATCAAG GGTTTGAAAG 4140 TAGAGCGTGT TCAAGCAAGT GCTGAAGAGA AGAAATACTT TGCTGGAGAA GATGCTCATG 4200 TCTTTGAAAT AGAAGGTTTG GATGAAAAAG GTCAAGATGT TGATCTCTCT TATGCTTCTA 4260 TTGTGAAAAT CCCAATTGAA AAAGATAAGA AAGTTAAGAA AGTATTTTTC TTACCTGAAG 4320 GCAAAGAGGC AGTAGAATTG GCTTTTGAAC AAACGGATAG TCATGTTATC TTTACAGCAC 4380 CTCACTTTAC TCATTATGCC TTTGTTTATG AATCTGCTGA AAAACCACAA CCTGCTAAAC 4440 CAGCACCACA AAACACAGTC CTTCCAAAAC CTACTTATCA ACCGACTTCT GATCAACAAA 4500 AGGCTCCTAA ATTGGAAGTT CAAGAGGAAA AGGTTGCCTT TCATCGTCAA GAGCATGAAA 4560 ATACTGAGAT GCTAGTTGGG GAACAACGAG TCATCATACA GGGACGAGAT GGACTGTTAA 4620 GACATGTCTT TGAAGTTGAT GAAAACGGTC AGCGTCGTCT TCGTTCAACA GAAGTCATCC 4680 AAGAAGCGAT TCCAGAAATT GTTGAAATTG GAACAAAAGT AAAAACAGTA CCAGCAGTAG 4740 TAGCTACACA GGAAAAACCA GCTCAAAATA CAGCAGTTAA ATCAGAAGAA GCAAGCAAAC 4800 AATTGCCAAA TACAGGAACA GCTGATGCTA ATGAAGCCCT AATAGCAGGC TTAGCCAGCC 4860 TTGGTCTTGC TAGTTTAGCC TTGACCTTGA GACGGAAAAG AGAAGATAAA GATTAAATAT 4920 CGAAAAATCT TGTGAAATCT TTCCG 4945

(2) INFORMATION FOR SEQ ID NO: 48:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 25002 base pairs

⁽B) TYPE: nucleic acid

PCT/US97/19588 WO 98/18931

431

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

GACAACTCAA	GTAGCTTTTT	CTTATTTTGA	AAAAGGAGAT	CAGAGTTTAA	CTATGTCAGA	60
AAAATCACAA	TGGGGGTCGA	AACTTGGTTT	TATTCTAGCA	TCTGCTGGCT	GGCCATCGGG	120
CTTGGTTCCG	TTTGGAAGTT	TCCCTACATG	ACTGCTGCTA	ATGGCGGTGG	AGGCTTTTTA	180
СТААТСТТТС	TCATTTCCAC	TATTTTAATC	GGTTTCCCTC	TCCTGCTGGC	TGAGTTTGCC	240
CTTGGCCGTA	GTGCTGGCGT	TTCCGCTATC	AAAACCTTTG	GAAAACTGGG	CAAGAATAAC	300
AAGTACAACT	TTATCGGTTG	GATTGGCGCC	TTTGCCCTCT	TTATCCTCTT	ATCTTTTTAC	360
AGTGTTATCG	GAGGATGGAT	TCTAGTCTAT	CTAGGTATTG	AGTTTGGGAA	ATTGTTCCAA	420
CTTGGTGGAA	CGGGTGATTA	TGCTCAGTTA	TTTACTTCAA	ТСАТТТСААА	TCCAGCCATT	480
GCCCTAGGAG	CTCAAGCGGC	CTTTATCCTA	TTGAATATCT	TCATTGTATC	ACGTGGGGTT	540
CAAAAAGGGA	TTGAAAGAGC	TTCGAAAGTC	ATGATGCCCC	TGCTCTTTAT	CGTCTTTGTT	600
TTTATCATCG	GTCGCTCTCT	CAGTTTGCCA	AATGCCATGG	AAGGGGTTCT	TTACTTCCTC	660
AAACCAGACT	TTTCAAAACT	GACTAGCACT	GGTCTCCTCT	ATGCTCTGGG	ACAATCTTTC	720
TTTGCCCTCT	CACTAGGGGT	TACAGTCATG	TTGACCTATG	CTTCTTACTT	AGACAAGAAA	780
ACCAATCTAG	TCCAGTCAGG	AATCTCCATC	GTAGCCATGA	ATATCTCGAT	ATCCATCATG	840
GCAGGTCTAG	CCATTTTCCA	AGCTCGATCC	CCCTTCAATA	TCCAGTCTGA	AGGGGGACCC	900
AGCCTGCTCT	TTATCGTCTT	GCCTCAACTC	TTTGACAAGA	TGCCTTTTGG	AACCATTTTC	960
TACGTCCTCT	TCCTCTTGCT	CTTCCTTTTT	GCGACAGTCA	CTTTTTCTGT	CGTGATGCTG	1020
GAAATCAATG	TAGACAATAT	CACCAACCAG	GATAACAGCA	AACGTGCCAA	ATGGAGTGTT	1080
ATTTTAGGAA	TTTTGACCTT	TGTCTTTGGC	ATTCCTTCAG	CCCTATCTTA	CGGTGTCATG	1140
GCGGATGTTC	ACATTTTTGG	TAAGACCTTC	TTTGACGCTA	TGGACTTCTT	GGTTTCCAAT	1200
CTCCTCATGO	CATTTGGAGC	TCTCTACCTT	TCACTTTTTA	CAGGCTATAT	CTTTAAAAAG	1260
GCTCTTGCA	TGGAGGAACT	CCATCTCGAT	GAAAGAGCAT	GGAAACAAGG	ACTGTTCCAA	1320
GTCTGGCTCT	TCCTTCTTCG	TTTCTTCGTT	TCGTCATTCC	AATCATCATC	ATTGTGGTCT	1380
TCATTGCCC	ATTTATGTAA	TCAAAAAGGA	CTTGAGTAGT	GAACTCAGGC	CCTTTCTTTT	1440
TATGGATGG	таасаатсаа	TTCCAAACCT	TGCCCTTCCA	GAGTCCAAGC	TTCAACATCA	1500
CTTGGTAGG	TAAAGTGGCT	GCCTTTTTGA	ATTGGATAAT	TTTTCCCGTC	AACAGTTAGC	1560

432 TGACCTTGAC CAGCCAAGAC ACTCAATAAG CTGTAGTCAG CTGTCTTTTC AAAGTCAACT 1620 TTTCCAGTAA TTTCCCACTT GTAAACTGCG AAGAAATCAT TAGATACAAG GAGAGTGGAA 1680 1740 CGCAAATCAT CTGCTTTAAC AGTTACAGGA CGGCTATTTG CTGGCTCACC AATGTTCAAG 1800 ACATCGATGG ATTTTCAAG ATGAAGTTCA CGCAAGTTGC CTTTGTCATC CTTGCGGTCA AAGTCATAGA CGCGATAGGT GGTATCGCTA GACTGCTGGG TTTCAAGGAT TAAGATACCC 1860 1920 GCCCCGATAG CGTGCATAGT CCCGCTTGGT ACATAGAAGA AATCTCCAGC CTTAACAGGG ACTITGGICA ACAAGICATC CCAGITCITG TCCTCGATTT GCTGGCGGAG TTCTTCTTTT 1980 GACTTGGCAT TGTGACCGTA GATAATCTCT GAACCTTCAT CCGCTGCGAT AATGTACCAG 2040 CATTCTGTTT TTCCGAGTTC GCCTTCATGC TCGAGTCCAT AAGCATCGTC TGGGTGAACT 2100 2160 TGGACACTGA GCCAGTCGTT GGCATCGAGG ATCTTGGTCA AAAGTGGAAA TACAGGTTCT GGACGATTGC CAAATAATTC ACGGTGTTCC GCATACAAAG TAGCAAGATC TGTTCCCTCG 2220 TAACGACCAT TGGCAACTTT AGAGACTCCA TTTGGATGGG CTGAGATGGC CCAATATTCT 2280 CCGATTTTT CACTTGGGAT GTCGTAGCCA AACTCATCAC GTAGCTTGGC TCCACCCCAG 2340 ATTTTTCTT GCATAACTGA TTGTAAAAAT AATGGTTCTG ACATGTCGAT CTCCTGTCTG 2400 ATTTTTCTCC CCTCATTATA GCAAAAAAAG AGTTCGAATT GAACTCTTTT TTACATCTTA 2460 TAAAGCAGGG AGAAGATTTT ATAAAAATAG TAAACAAATG TGCTCTACCC GATGCTTGCA 2520 CCATTGCTAT AAATGACATC CTTGTACCAA TAGAAGGACT TCTTCTTGCT ACGTTTGAGA 2580 GCTCCGTTTC CTACATTATC TCGATCTACA TAGATAAAGC CATAGCGCTT ATTCATTTCC 2640 CCTGTGCCAG CTGAAACCGG ATCGATACAG CCCCAAGTCG TATAACCAAG CAAGTCAACC 2700 2760 CCGTCTTGGT AAATGGCATC TCGCATGGCC TTGATGTGGG CCTCTAAGTA AGTAATCCGA TAGTCATCTG CTACATAACC ATTCTCATCC GGTGTATCCA TAGCACCGAG TCCATTTTCT 2820 ACGATAATAC TAAACTAAAA TCAAAAAGCA TTATATAATA GTGATATGAA ATCAACTAAA 2880 GAAGAAATCC AAACCATCAA AACACTTTTA AAAGACTCTC GTACAGCTAA ATATCATAAA 2940 CGCCTTCAAA TCGTTCTATA GTAAAATGAA ATAAGAACAG TACAAATCGA TCAGGACAGT 3000 CAAATCGATT TCTAACAATG TTTTAGAAGT AGGGGTGTAC TATTCTAGTT TCAATCTACT 3060 ATATTTCGTC TGATGGGCAA ATCTTATAAA GAGATTATAG AACTTTTATA GTAGTTTGAA 3120 ATAAGATGTG AACAACTCTA TCAGGAAAGT CAAATTAATT TATAGAAATA TTTTAGCAGC 3180 CAAGGTGTAC TGTTATAGAT TCAATACACT ATAGACTGTA ATCAAACAAC GATTTGGCGA 3240 AATGTAAAAA AATATGAGGA GTTCGGACTC GACTCTCTCC TTCAAGAAAC ACGTGGTGGT 3300 CGTAACCATG CATATATGAC AGTTGAGGAA GAGAAAGCCT TTCTTGCCCG CCATTTGAAG 3360

GCTACAGAGG (CAGGAGAATT	TGTTACAATT	GATGCCTTAT	TTCAGGCTTA	TAAAAAGGAG	3420
TTAGGTCGTT (CCTACACACG	TGATGCCTTC	TATCAACTGT	TGAAGCGCCA	TGGTTGGCGA	3480
AATATTACGC (CACGTCCAGA	ACATCCTAAG	AAAGCAGACG	CTCAAACCAT	TGTTGCGTCT	3540
алалаталада 1	PCTCAATCCA	AGAAGGCAAG	AAAGCGTTTT	AAATATAGTA	GACGTTTTCG	3600
TAAGGTTTGC 1	PTGATGTACC	AAGCTGAAGC	TGGTTTCGGT	AGAATCAGTA	AACTGGGATC	3660
TTGTTGGGCT (CCAATAGGAG	TAGGTCCACA	TATCCATAGT	САСТАТАТАС	GAGAATTTCG	3720
CTATTGTTAT (GGAGCTGTTG	ATGCCTATAC	AGGCGAATCA	TTTTTCTTAA	TAGCTGGTAG	3780
ATGTAATACT (GAGTGGATGA	ACGCCTTTTT	AGAAGAGCTT	TCACAAGCTT	ATCCTTTTAC	3840
TCGTTATGGA (CAATGCTATA	TGGCATAAAT	CAAGTACCTT	AAAGATTCCG	ACTAATATTG	3900
GTTTTGCATT T	PATTCCTCCA	TACACACCAG	AGATGAACCC	CATTGAACAA	GTGTGGAAAG	3960
AGATTCGTAA A	ACGTGGATTT	AAGAATAAAG	CCTTTCGAAT	TTTGGAAGAT	GTCATGAATC	4020
AACTCCAAGA T	rgtcatacaa	GGATTGGAGA	AGGAGGTGAT	AAAGTCCATC	GTTAATCGGA	4080
GATGGACTAG A	\ATGCTTTTT	GAAAGCAGAT	GAGTATTATA	TGCAATTTCT	TTATATAAAA	4140
AGACCGGATT G	SCTCCGATCT	TTCAATAGTT	CATATTCTCA	ATTTCTATTT	TAAAAATAGC	4200
TAAGGTTAAC G	STCAAATGAC	TACGCGACCT	ATTTCATACG	АТАААААТСА	AGCACTAGAC	4260
CAGCAGGTCC T	TGAACTAAT	AAGGACTCTG	TTCCCCAATC	GGTTACAGTT	GGTCCGTGTA	4320
AAACCTTTAT A	CCAAGCTCG	TTCAACCGTT	TGTAGTTCTG	GTCTACATCC	TCAACCTCGA	4380
TATGAATAAT G	ATTCCTGAC	TGAAAGTTTT	CCAAAGGAAC	CAAATGATTT	TGTGACAACA	4440
TAAGGCAGTG A	CTACCAATC	GTAAACTGAG	CAAAACCATC	ATTAGCATAA	TCTGCCTTTT	4500
TATCCAAGAT A	TGCTCCAAG	TCAGCACAGA	CTTGGGGAAC	ATTTGAAACG	АТААТАТСТА	4560
ATTGATTTAA A	TTCATTTAC	TCTCCTCCAT	AAAAAGACCG	GATTGCTCCG	ATCTTTTAAA	4620
GTTCTGCTCT A	TGAAAATCA	AAGAATAAAG	TCTACAAGTT	TCATATTTGA	TTTTCGGCGA	4680
GAGGAATTAT T	TAATTGCGC	GTGATTGCAA	TCCTTCTTCT	TCCAAGAAGA	GACGGAATGG	4740
TACGAGTTCT T	CTGCTTCGT	ATTTTTCCTT	GAAGGCTTTG	ATAGCTTCTT	CTGAGTGAAG	4800
TTTTGGATCC A	ATTCAAGTA	CTTCTACTGG	AAGTGGACGG	TGTTGAGTGA	TGCGAGCATC	4860
GATGACAACA G	TTTTACCTT	CTTTGTTCAA	TTTAACAGCT	TCTGCAACAA	CTGCATCGAT	4920
GTCTTCGATA C	GGTCAACTG	TGAATCCAAC	AGCTCCTTGA	GCTTCCGCAA	TTTTAGCGTA	4980
GTCAGCGTTT G	TGAAGTCTA	CACCAAACAA	CTCTTTCTTT	GTATCTTCGT	ATTTGTTCTT	5040
GATGAAGCCG T	ACTCAGCAT	ттсасаасас	አ አርርጥጥር አጥአ	ACTICA ACCT	CCD3mmC33C	E100

GTTTGTGATA ACGTCTGGGT AGCACATGTT GAATGCTCCG TCACCCATGA TGTTCCATAC 5160 TTGGCGATCT GGATTGTCTT TCTTAGCAGC GATACCACCA GGAAGGGCAA TACCCATTGT 5220 CGCAAAGAGT GGAGATGTAC GCCACATGTT CTTAGGTGTC ATGTGAAGGT GACGAGTAGA 5280 TGTTTGAGTA GTGTTACCTA CGTCGATTGA GTAGATAGCG TCTTGATCAG CATGTTTGTT 5340 5400 GATTGCATTG TAAACTTGAT ACAATTGCAA TTCACCCTCA GTTTTACCTT CGAGTTTGTT CATGTAATCA CGCCAGTTTT GGTTGTTCTT AACGTTTGCA CGCCACCATG GAGTTGATTC 5460 AACTGGGTTT ACTTTGTCAA GGATAGCTTT AGCTGCTTGA CCAGCATCAC CAAGGATTGA 5520 AGCGTCAAGG GCATGACGTT TACCAAGTTT GTAAGGGTCG ATATCGACTT GGATGAATTT 5580 TTCAGTGTTC TTGAATGCTT CGTAAACTTC AGCAAATGGG AAGTTTGAAC CAAGGAAAAG 5640 AACTGTGTCT GCTTCAAAGA CCACTTCGTT GGCTGGTTTC CAACCAACAC GGTAAGCAGA 5700 ACCTGTCAAA CCTTCATAGT TCCATTCGAA AGCTTCAAAG TTTTTACCAG TTGTGATGAT 5760 5820 TGGTGCTTTG ATTTTACGTG ACAATTCAGT AATCACTTCA CCAGCTTTAA CACCACCAAA TCCAGCATAG ATAACTGGGC GTTCAGCATT GTTCAAGATT TCAACAGCTT TGTCGATTTC 5880 AACTTCGTTC AAAGCAGGAG CGATGAATGA GCGTTCGTAT GAACCTGAAC CGTAGTATGA 5940 GTTTTCATCG ATTTCTTGGA AACCGAAGTT TACTGGAATT TCAACAACAG CTGGACCTTT 6000 TTTAGAAACT GCAGCACGGC AGGCTTCGTC AATTACTTTT GGCAATTGCT CAGCGTAAGC 6060 TACACGTTTG TTGTAAACAG CGATACCGTT GTACATTGGG TTTTGGTTAA GCTCTTGGAA 6120 AGCATCCATG TTCAATTCGT TAACTGGACG TGATCCAAGG ATCGCTAGGA ATGGAGTGTT 6180 ATCCATAGCT GCATCGTAAA CACCGTTAAT CAAGTGAGTC GCACCTGGAC CACCTGAACC 6240 AACTGCAACC CCGATTGAGC CGCCGAATTT AGCTTGCATA ACCGCTGCAA GAGCACCTGT 6300 CTCTTCGTGG CGAACTTGTA AGAAACGGAT ATCTTTGTCT TCAGCCAAAG CGTCCATCAA 6360 TGAGCTGAGT GTTCCTGATG GGATACCGTA GATTGTATCT ACGCCCCATG TTTTCAATAC 6420 GTTAAGCATT GCTGCAGATG CAGTAATTTT CCCTTGAGTC ATAATGATAA CTCTCCTTCA 6480 ATTTTTTTAA ACTTGGAGAA TACGATTACA TAGAATTGGA AACGTTCTCC AAATTTTTAC 6540 6600 TATTCCACTG TATCATATTT ATGCTGACTT TTCTAAAAAT CTGCTCAAAA CTCTCTATTC TCTATTCTAA TACAGTTTTG AAAGTTCTGT CATTTCTGTT TTATAACAAA GAAATCTAGT 6660 CATTACTTTT AGTCTATTTT ACTAAAATTT AACAGAAGGG AACTGGTCAG AACAGATACA 6720 GAACTAAAGG CCATGGCTAG ACCTGCCAAT TCTGGGTTGA GAGCCAGTCC AACACCTGAA 6780 AAGACTCCTG CTGCAATCGG AATTCCGACA ACATTGTAGA TAAAAGCCCA GAAAAGATTG 6840 AGTAGAATTC GATGAAAGGT TTTCTTACTC ATATCAAAGG CACGAACCAC TCCTAAAAGA 6900

TTATTGGTTC	TCAACACCAA	ATCTGCTGAC	TCGATGGCGA	TATCTGTTCC	AGCTCCCATA	6960
GCAATCCCCA	CATCTGCTAC	ACTAAGGGCA	GGAGCGTCAT	TGATACCGTC	CCCAACAAAG	7020
GCTACTTTCC	CTGACTGTTG	CAGTTTATGG	ATTTCATGGG	CTTTTTCTTC	TGGCAAGACG	7080
CCTGCAATGA	CCTCTTCAAT	TCCGATTTGA	TCTGCAATAG	CACGCGCCAC	ACCAGCATTG	7140
TCTCCTGTCA	GCATGACTGT	TCGGAGACCA	CGTTTTTTA	GCTGACTGAT	GGCTAGCTTA	7200
GCATTTTCCT	TAGGAATATC	TTGCAAAGCA	AGCAAGCCTT	TGATTTCATT	GTCAACAGCT	7260
AAGAACACAA	CTGTCTTAGC	TTCTTTTTCT	AGTTCTTCTA	GTTTATCTTG	ATAAGTATTA	7320
GAAATATCCA	TGCCATCCAG	CATTTTAGCA	TTTCCAAGTA	AAACTTGTTT	TCCATTGATT	7380
CGCCCTGAAA	CACCTTTCCC	GTGCAAGGAC	TGAAAATTTT	CAACAGTTTG	AAACTCAAGT	7440
CCAGCTTCAC	TCGCTCGCTT	AACGATAGCC	TCAGCCAGTG	GGTGTTGAGA	AGCATCTTCC	7500
AAGGAGGCTG	CCAACCCAAA	CACTTCTACT	TCGTCGCCGA	TGACATCTGT	TACCACAGGT	7560
TTCCCTTCCG	TCAAAGTCCC	GGTCTTATCA	AAGACAAGGG	TTTGAACTTT	CTGGATTTCC	7620
TGTAAGACAG	TTCCATTTTT	GAGGAGAACC	CCCATCTTGG	CACTACGTCC	TGTCCCCACC	7680
ATAAGGGCTG	TCGGTGTTGC	AAGTCCCAAG	GCACAAGGAC	AGGCGATAAT	CAAAACCGCC	7740
ACTCCGTAGA	GAAGAGAGGA	CACAAAGCTA	GCTCCAAGCA	CAACCACACT	ATCCCTGAGC	7800
AAGACGAACC	AAACCCAAAA	GGTCATGATT	CCTAAAATGA	CAACTACTGG	GACAAAAATC	7860
CCTGAAATCT	TATCCGTCAA	GTCCTGAATC	GGCGCACGAC	TTGTCTGAGC	TTTCTTCACA	7920
AAATCCACAA	TCTGAGCCAA	AACAGTCTCT	GAGCCAACTT	TTTCTGCTCT	AAAGACAAGC	7980
GTTCCACTAT	GATTGATGGT	TGAGCCAATG	ACAGTATCTC	CAACTGTCTT	GTCCACAGGC	8040
AGACTCTCAC	CTGTCACCAT	GGATTCGTCA	ATACTAGAGA	CACCTTCTAC	TACGACACCA	8100
TCAACAGCAA	TCTTTTCACC	GGGACGCACT	CGAATCAGGT	CGCCTACCTT	GACTTGTTCC	8160
AAAGGAACTT	GGACATAACT	ATCATCACTC	AAGACTTCTG	CGGTTTTAGC	TTGCAAGTCC	8220
AGTAATTTCT	CCACAGCTTG	GGACGTATTT	TTTCTCATTT	TTTCCTCAAA	AACTGCTCCC	8280
AAAAGAACGA	AAAAGAGGAT	AAATCCAGCA	CTTTCGAAGT	AAACAGGGAG	ACCAGCAAAG	8340
AGAGCAACTA	GGCTATAGAA	ATAAGCCACT	AGAGTTCCCA	GCGCAACCAA	GGTATCCATG	8400
TTGGCATTGT	GCTTTTTAAA	ACTGGCCCAA	GCACTCTGGA	TATATGGCTT	ACCTGCAACT	8460
AACATAATAG	GCGTTGTTGC	TAGAAAGGTT	CCCCAATGCA	TGACTTGATG	ACTAATGCTA	8520
CCTGTCAACA	TCCCAATCAT	GAGAATCACA	AGAGGCACAG	TAAAGATACT	AGTAATCCAA	8580
AAACGTTGCA	GGAGAGATAG	AGATTTTCGA	GTCTTCTCAA	CGACTGTATA	GCTTCCCTTT	8640

TGCATCTTCA	TGCCACAAGA	AAATTCATGT	436 CGCCCTAATT	CTTGAGGCGT	AAAACGAATG	8700
ACTTTCTCCT	CATCTACGCC	GATTGGTTCC	AAGATACCTT	CTTCTTCAAA	CAGAATTTCC	8760
TTATAACAGT	TTGAAGGAGT	AGCACGATGA	AAGGTAATCT	CAGCTGGAAT	TCCCTTTTGA	8820
AGCTGGATAT	GGGCTGGATG	ATAGCCTTTT	TCAGCTCGGA	TACGGATTTT	TTGAATGCCA	8880
TTTTCTAAGC	TTGCTTTCAC	AATTTCTGTC	ATAGTCTCCA	CCTACTCTAC	AATCATCTTG	8940
CCGTGCATCA	TGTTCATACC	ACAAGCAAAG	CCAAACTCTC	CAGCCTGTTC	AGGCGTGATT	9000
TCCACTACAT	ACTCTTCCCC	CATTGGCAGG	TTCGCATGTA	САССААААТС	TGGAAAAACA	9060
ATTTGATCCA	GACATGGTGA	AGGATCCTTG	CGCTCAAAGA	CAATGCGTGC	TGGCACTGAT	9120
TTCTTGAGGA	CAATCAACTC	AGGAGTATAG	CCTCCCATGA	CTTCCACTCG	AATCTCTTGG	9180
TATCCGTTTT	TTTGCTGGGC	TTTTTGTCCA	GATITTTCAG	GCTTTTTGAA	AAACCAAAAC	9240
AAGATAAACG	CGATAAGGGC	AATACAAATA	ATGGTTACAA	ТАСТАТТТАА	CATGACGTCT	9300
CCTTTACATA	CAATTACATC	TTACTTCTGT	TACAGCACTT	GATTTCTTCT	CTGAAATCAC	9360
AGCTTCCAAG	TCTTCCAAGT	CAGTCTGAGT	AAATTCACAT	TCTACAATCA	AGTCAGCCAA	9420
CAAATTCCTA	ATCCTACGGG	AACAAACCTT	GTCTTTGATA	TCTTGGACAA	GTAAATCCCG	9480
ACTTTGGTCT	AGAGTTAAAA	GGGCTGAATA	AACAAAGGAC	TTGCCTTCTT	TTTTCCGAGT	9540
CAAACACTCT	TTATCAACCA	GACGAGCCAA	AAGTGTCTGA	ACCGTGGACT	TGGACCAGTC	9600
AAACCGCTCT	GCCAAAACCC	TAATCAAATC	TGTACTGGTC	TGCTCCCCCT	GCATCCAAAT	9660
AATCTTCATG	ACCTGCCATT	CTGCATCTGA	AATCTGCATT	ACCATACCTC	CAAAATCTAC	9720
ATTTGTCAAT	TACACTCATC	AGTATACTCT	ТААААТСТАС	ATTTGTCAAT	TATAGAAATA	9780
ATATTTTCTT	CGAAAAATAG	AATTTTAATC	ATTTGAAAAA	CGATTTGCAG	тсааататта	9840
CTATATAAAC	ATAAAATA	TGCTATACTA	AAGAAAAAG	AAAACAACCA	CTAGGGGTGC	9900
GTAAAGCTGA	GATTAACGAC	TGTTAGATCC	CTCTGACTCA	ATCTAGGTAA	TGCTAGCTGA	9960
TGGAAGTGGA	AATGATAATG	GGGACTAGCA	GTCTTCTATT	GCCTTTCTAA	AACAGACTAG	10020
CTTGTTCTTA	AGAATACAAA	CTTCAGTTGG	TTGGGAGGTT	TTAGATGACT	TATTTACCCG	10080
TTGCTTTGAC	CATTGCAGGG	ACTGACCCTA	GTGGTGGTGC	TGGCATTATG	GCAGATTTAA	10140
AGTCATTCCA	AGCGAGAGAT	GTCTATGGAA	TGGCTGTTGT	AACCAGTCTT	GTCGCTCAAA	10200
ATACCAGAGG	TGTTCAGCTA	ATCGAGCACG	; TTTCTCCTCA	AATGTTGAAA	GCCCAATTGG	10260
AGAGTGTCTT	TTCTGATATT	CCACCTCAGG	CTGTAAAAAC	TGGAATGTTG	GCTACTACTG	10320
AAATCATGGA	AATCATCCAA	CCCTATCTTA	AAAAACTGGA	TTGTCCCTAT	GTCCTTGATC	10380
CTGTTATGGT	TGCTACAAGT	GGAGATGCCT	TGATTGACTC	AAATGCTAGA	GACTATCTCA	10440

АААСАААСТТ	ACTACCTCTA	GCAACTATTA	TTACGCCAAA	TCTTCCTGAA	GCAGAAGAGA	10500
т т сттссттт	TTCAATCCAT	GACCCCGAAG	ACATGCAGCG	TGCTGGTCGC	CTGATTTTAA	10560
AAGAATTTGG	TCCTCAGTCT	GTGGTTATCA	AAGGCGGACA	TCTCAAAGGT	GGTGCTAAAG	10620
АТТТССТСТТ	TACCAAGAAT	GAACAATTTG	TCTGGGAAAG	CCCACGAATT	CAAACCTGTC	10680
ACACCCATGG	TACTGGATGT	ACCTTTGCTG	CAGTGATTAC	TGCTGAACTA	GCCAAGGGCA	10740
AGAGTCTTTA	CCAGGCAGTT	GATAAGGCCA	AGGCCTTTAT	CACAAAAGCT	ATTCAAGATG	10800
CCCCTCAACT	CGGTCATGGT	TCTGGTCCAG	TCAACCATAC	AACTTTTAAA	GATTAAGAAA	10860
AAAAACTCTC	TAGTTCCCAC	TTTAAGGGAA	TTAGAGAGTT	TTTATACTCT	TCGAAAATCT	10920
сттсаласта	CGTCAGCTTC	CATCTGCAGC	CTCAAAACAC	TGTTTTGAGC	TGACTTCGTC	10980
AGTCTTATCT	AAAACCTCAA	GGCAGTACTT	TGAGCAACCT	GCGACTAGCT	TTCTAGTTTA	11040
CTCTTTGATT	TTCATTGAGT	ATTAATTAGG	AAAGAATGTT	ATGCAACTTT	TTTAAAAAGG	11100
CTTGCGTTTT	TGCCTCAATA	TCTTCTGCTT	GCATCAAATC	ACGTACAACA	GCTACACCAG	11160
CTATGCCAGT	GCCCATAAGC	TGATCAATAT	TCTCCGAAGT	CAAGCCTCCA	ATAGCAACTA	11220
CTGGAATGGC	AACCGTTTGG	CAAATTGTTT	TCAAGGTCGA	TATCAGAGTA	ATGGGCGCAT	11280
TTTCCTTGGT	GGTGGTTGGG	AAAATGGCTC	CTGTACCCAA	GTAATCTGCA	CCTGATTTCT	11340
CCGCTTCCAG	AGCTCTTTTA	ACCGTTTTAG	CGGTGACACC	GAGGATTTTT	TCAGGACCCA	11400
AGACTTTGCG	AGCTACCGAA	ACTGGTAATT	CATCATCTCC	GATATGCAGA	CCTGCTGCAT	11460
CAACCGCAAG	ACAAACATCC	AACCGATCAT	CGATTATCAA	GGGTACCTGA	TAAGCATCTG	11520
TTATTTCCTT	GACTTGTTTT	GCCAGTTGAT	AATATTGATT	GGTTGTGAGA	TTTTTTTCTC	11580
GCAATTGGAC	TATGGTAACC	CCTGAACGGC	AGGCCGTCTC	AACTTTTGCA	AGAAAGCTTT	11640
CCACGGAATC	TTGATAGCGA	TTGGTTACCA	GATATAGTCT	AAGTGCTTCT	СТАТТСАТАА	11700
ACCTCTCCTT	TGATGGTATC	TAGCCAATTT	TCATCTCTTC	TTAGGAGCGA	AAGCTGATTG	11760
AGTACTTGGT	AACGAAATTC	TTCCAATCCC	ATTCCTTGAA	CAACTATTTT	CTCAGCAGCG	11820
ATATTGAGAT	AAGAGACTGC	TAAGCAAGAA	GCTTCAAAAC	CAGTCTTTCC	TTGGCTGAGA	11880
AAAACAGCTG	TTAAGGCTCC	AACCAAGTCT	CCTGTCCCTG	TTATCCAGTC	TAATTCAGTA	11940
CAGCCATTTC	CCAGTACAGC	GACCTGATTT	TTCGAAACGA	CGAGGTCCTT	GGGACCTGTG .	12000
ACTAAGAAAG	ACATACCAGG	ATAGGTCTGA	CACCAGTCTT	TCAAGACTTG	AAGCAAATCC	12060
TCCGTTTCTT	GATCTTTAGC	ACTCGCATCG	ACCCCAACGC	CGTGGTGCTT	TAATCCAACA	12120
AGACTTCGAA	TTTCTGACAT	GTTTCCTTTA	AGGACCGTAG	GTCTATAGTC	TAAAAGGTCT	12180

			430			
					TACCATCGGG	12240
AGAGAAGAT	r GGTTTGCAT	CGAAGCTGC	C ATGCGGATTC	CTTTTTCCT	CTCAGCTGAC	12300
AAATGCCCC	A AATTGATGA	A GAGAGCCTG2	A CTTTGCTTAC	TAAAATCAA	AACTTCACGG	12360
GAATCATCTC	CCATGACAGO	TTTGCATCC	CAGAGCCAAAA	TCCCATTTG	CAGCATCTCA	12420
CAAGAAATCT	CATTGGTAA1	GCAGTGAAT	G AGGGAACTAG	AGCCTATAGO	AAAGGGATTT	12480
GTAAATTCCT	GCATCAGTCT	ATCCTTTCAC	ТАААБАААТА	TCCCTGCACT	TTTTTAAAGA	12540
ATTCCTGCTT	° GАТТАААААТ	CGAAAGGCAI	TAAAGGAAAT	CGCTGTACCA	ATCAAGGTTG	12600
CTCCGAAAA	TCGAGGCGTG	TAGATAAACC	AGCTAAGCTT	AGCAGCTGAT	CCTGTAAAGA	12660
GTACCATAAC	AGGATAGGAA	ACAATGGAAG	CAATAATACC	TGTTCCCAAA	ATCTCTCCTA	12720
GAGCAGAATA	GTGAAATTTT	CGACCGTACT	TATAAAAGAG	ACCTGCTAGA	AGGGCTCCAA	12780
AAGTCGCTCC	TGTGAGAGCT	AAAGGCGGAA	TCCCTTGAGT	CGTCATACGG	ATAAAGGCTG	12840
TGACTGTAGO	CATAGCCAAG	GCATAAACAG	GTCCCATCAT	GATTCCTGCT	AGAATATTGA	12900
CTACACTGGA	CATCGGTGCC	ATTCCCTCAA	TTCGAAAGAT	AGGTGTAAGG	ACTACATCAA	12960
GGGCAATCAT	CATAGATAAA	ATGGTTAATT	TGTGAACTTG	TAATTGGTGC	TTTCTCATGC	13020
TTCTATTCTT	CTCCTTTTTC	TAAAGACTGT	AAATCGCTCT	TCCATGTCTG	GTGTTGGTAG	13080
GCCATTTCCC	AAAACTTGGC	TTCCATATGA	ACACTGATGT	GGAAGGCATC	TAGCATTTTT	13140
TGCTTGTCTG	TCTCGTCACT	TTCTCGATAG	AGCTGATTGA	CCAGTGCTCC	CTCCTCTCTG	13200
ATCTGTTGCT	CTAACTCATC	CGTAATATAA	GTTTCAATCC	ATTGTTGATA	GAGAGGATTT	13260
GGTGATGGTT	TAAGATTAAG	TGATTTGCCT	ATATCATGGT	ATAACCAAGG	ACAAGGAAGC	13320
AAGCTTGCAA	AAGCGATGGC	TAAGTTCGGT	TCTGCAAATT	GCCTATAAAT	ATGAGAAATG	13380
TAATGATAAC	AGGTTGGAGC	GATTGGATGT	TGCTCCATTT	CCTGGTCGCT	GATTTCCAAT	13440
TCCTTGAAAA	ATTGTTGGCG	AATAAATAAC	TCACCCTCCA	CTAAACCCTG	AGCATTTTGT	13500
TTCAAGAGTC	TTTTCATCTC	TTGGTTTGAA	GTCTTATCAG	CCAAAAGATG	ATAGATTTCT	13560
GAGAAAGCCT	TCAGATAGTA	GGCATCCTGA	ATCAGGTAAT	AGCGGAAAAT	GGCAGGTTCT	13620
AAATTCCCCT	CTTGTAATTG	TAAAATAAAG	GGATGATGAA	AGGAAGCCTG	CCAAGCTTTC	13680
TTGGATAATT	CCATCGCAAT	ATCTGTAAAT	TCCATAATAA	CTCCTTTATA	AAAATAGACT	13740
GGTTTGAAGC	AATAAAAAGA	AAAGCAGGTA	GATTAATTTT	GTTTTTTAG	GAATATAAAA	13800
AGTCCGATAG	CTATTCTTCA	ACTGTGCATG	TTCGTCATAT	CCGTGAGCAG	ATAGAGCTCT	13860
CAGGTAAAGA	TGGCGCCACC	TAAAGACTGT	CATCAGAACC	ТТАСТСТААА	TCAAGGGCGA	13920
CCAAAAATGT	AGTTCTTGAC	CACGTAATAG	GCAAGCTTCT	TTGAGGGACT	TGATTTCTTG	13980

CTGA	ATGAGA	GGAAAAGAA1	TGAATACCA	C AATCAAGGC	TAGGACCAAG	AGCGTGATAG	1404
cccc	TTTTGA	GCCAAGTAC	AGAGAAGCT	C TTTTAGTGA	ACAGAGGAA/	CAAAGACAAG	1410
GCCG	ATACAA	ACTGTCACA	AGGCCCTCGT	TCCAAGCATC	ACTGCCTGTC	AAGCATCTCC	1416
GTGT.	AACTGA	ACTGCCCAGT	AGTTGGCAA	AGATGGTAAA	ATGGCAAGT/	TGATCATCCA	1422
AGCT.	AACATT	TTAAATCGAC	GGTAATAGAG	G CATAAAGAGA	ATACAAAATC	CGACTACCGA	1428
AAGA	GTCAGA	GCAATCGAAG	GAATGAAAGA	TGTTTCCAAG	GATAAAATCA	GCAAGAAGAG	1434
ACTG.	ATAATC	GGTGTCTGGG	TTGCTACTT	GACCATACTA	TCTCACCTCC	CCTTGGGTAT	1440
TGCT	ACTCTG	AGATGTAAGT	GGTTTGGTA	TGGTCACTTC	TTTCACATGO	CGAAGACCCT	14460
GACT	AGTCAT	CTCAATCCAA	TAATCAACCA	CAGAAATCAA	AGGGTCTAAA	CGATGACTAA	14520
TGAG	CAGAAA	ACTTCTTCCT	TGATTCCTCT	CCTCCACAAT	CCACTTGCAA	AAATAATGGC	14580
AGGC'	ICTATC	ATCCAAACCT	GCAAAAGGTT	CATCTAGCAA	GATCACGGAA	GCCTTACTGG	14640
TCAA	GATGGT	CAGGAGCTGA	AGAATTTTTT	GCTGACCACC	ACTTAATTGA	TAGGGACTCT	14700
TATC	SACTGC	CTGCTCCAAA	TCAAAATATC	GTAAAGCTTG	AAAAATCCGC	TGATTTCTTT	14760
CAGAZ	ATCAGG	TCCATCTAAT	TGAAGCTCCT	CTCGCAGACT	GACTCGGATA	AACTGCTTCT	14820
CAGCT	TCCTG	AACAACACCA	GTCAGATCAC	GATACAAACT	CTTTTTCTTT	TTCAGGACCG	14880
AACCC	TTCCA	AGTAATGCTC	CCCTTATACT	TTTGAAATTG	AAGAATAGAC	CGAAAGAGGG	14940
rtgat	TTCCC	GACACCATTG	TCACCCAGGA	TACAGGAAAT	CCCTTGATAG	AATGTGAAAT	15000
CAGCA	ATTGA	AAAGAGGGGG	CGATTACCAA	GCTCACCAGT	CACACGGTTC	ATATGGAATA	15060
TTCC	GGGCT	AGAAGCAACT	TCCTTTGAAG	CAACCTGTGT	CATCTCATAG	GAAGGGATTT	15120
AAAC	ACTTC	CCTTAGTTTT	CCGTCTCTTA	GCTCCACCAT	ATGGTCGATA	TAGGCTTTAT	15180
GTCA	GATAA	ATCATGGTCG	САСААААТАА	CTGTCTTCCC	ATCATAGACC	AACTCTTTTA	15240
AATC	TCCAA	TATCTCGATT	CTGCTCTTGC	GGTCAATGGA	AGCGAAGGGC	TCATCCAAGA	15300
ATAG	ACCCT	AGGATTCATG	GCAAAGAGGA	CAGCCAGCGC	TGCTTTTTGC	TTTTCCCCAC	15360
TGAT	AAGTG	ATGGATGAGA	CGGTGCAAGA	TGTCCTTGCA	ACGACATTGC	TGGACAACCT	15420
TGCT	TTTTA	AGAATCAATT	TCCTGAAGGT	GATAGCCGAT	ATTTTCCATG	GTAAAAACCA	15480
CTCC	TCAAA	CAAGCTCTCC	ATGGTAAATT	GATGATTAGG	ATTTTGCAAG	AGAATACCAA	15540
CGTC	TGGAC	ACGTTCGACG	ATAGAAAGCT	GACTGACCTC	GCTCCCATCT	ATCAGGACTT	15600
ACCG	CTATA	GGGAAGAGAA	CTAACTTGGG	CAATCATTTG	AAAGAGGCTG	GATTTTCCAG	15660
CCCA	CTACT	CCCAACTAAC	AAGGTAAAGG	CTTGCGCATG	AAAACTAAAA	тсадассест	15720

PCT/US97/19588 WO 98/18931

CAGAGAAGAT	TGGGGACTGA	ATCGCTCGTA	440 GTTCCAGACC	CATCTATGCT	TTTCCTCCAG	15780
TTGCAAACTG	ATGATAGAGT	TTGACAATGG	CACGAACCAA	GATGGTACAG	AAGAAATAAA	15840
CAGAAATAAA	ACGTACCACA	AGCAAGGAAA	GGACAAACGG	AAGGGAAAAG	GCGTAGTAAC	15900
СТААСТТААТ	GTATTCATAG	ACAAAGCTAA	CAAGCGTAAT	СССААТАСТА	TTAGCAGTTA	15960
GAGAGAGCCA	ACTTTCATAG	CGATTCTTAG	TTACGATAAA	ACCAAATTCA	CTTCCCAAAC	16020
CTTGAACAAA	GCCAGACAAA	AGAGCTCCTA	GACCAAATTG	GCTACCATAA	AGGACTTCAG	16080
CAAGCGCAGC	TAGCACTTCT	CCAATCGTTG	CACTTCCGAC	TCTCGGAACA	AAGATGGCAG	16140
CAATGGGCGC	AGCCATACAC	CAGAGACCGA	AGAGGATTTC	ATTGGCAAAG	GCCTGCAAAC	16200
CAAGAGGTGT	TAAGAGTAGA	CTGAGAATAT	TATACACATA	TCCTGAACCA	ACGAAAACCC	16260
САССАААААА	GATAGACAAG	AAAGCAAGCA	AGATAACATC	TTTTAACTGC	САТТТТТСА	16320
АСАТАААААА	CTCCTTTTTT	TAAAGAAAAG	TGAGGCACTC	AAGAAGACCG	ACCTAAATAC	16380
TTTGTATAGC	AGACTGAATT	TAGAACAGTA	CACAAGAACA	СТААААТАТТ	TCTAGAAATT	16440
AATTTGAATT	TTCTAATTGA	TTTGTTCGCA	TCTTATTTCA	ATCTACTATA	ТСАТСТТСАТ	16500
CCAGTTTCGT	AAAAGAAAAA	ACTCTAATTA	CAGATACAAA	TTAGAGTTCA	GCTTACAAGA	16560
TTAGACAGTT	CTTTTCGACA	TACGAAAAA	ACATTTCACA	TTTCCCTTCG	CCAGTCTTAA	16620
CTGTATCAGG	TTCAATGGGT	ATCATCTCAG	CCTAAAGCAC	CCCAAATGTC	TTTATTATTT	16680
AATTATGTGA	TTATTATAAC	ACACATTTTA	TACTAGTTCA	AGAAATTGAA	CTGGAAATAC	16740
AGCCTTGCAC	TCACAAAGAC	AGCAGATCTT	TCTTTTGCAA	AAAACAAATG	ACCTGTTTGA	16800
TGAATTAGCC	ATTCAAGCTG	AATCTGGACA	TAGCTTTTTA	AAAAAGGAAA	ATCCTACTTA	16860
CTTAGAATCC	AAGGATAGAT	ATCTATTGTT	CACTCATTTC	CCGAACAGTT	TTTTCTATAT	16920
TTTTTGCATA	CGATATTGCC	GAAATGATTG	AAACGCCATC	CATATTGGTC	TTTATAATGT	16980
CTTTAATATG	TTTCGTCTGT	ATCCCACCAA	TTGCAACTAA	AGGCATTTGT	GGCAATAGTT	17040
ттстсатсаа	TTCAAGACCT	TCATAACCTA	TAGTACCACC	AGCATCATCC	TTTGACTGGG	17100
TACCAAATAC	AGGCCCAACA	CCTACATAAT	CTACATATTC	AACTTTTGAT	TGTTGAAATT	17160
CTTCTTCGTT	TCTTATAGAA	AGACCAATTA	TTTTATCTGG	CATCAATTTT	CTAATTTCAT	17220
CAACACCAAT	ATCATCTTGA	CCTACATGTA	CGCCATCGGC	GTCAATTTCC	ATTGCTAAAT	17280
CTATATCGTC	ATTAACGATA	AATGGAACAT	TGTATTTTT	ACAAAGTTCT	TTAATTTGGA	17340
TAGCTAGCTC	AAGTTTTTCT	AAGCCTTCTA	AAGCACCCTC	ACCTTTTTCT	CGAAATTGAA	17400
ATAAGGTTAT	ACCACCTTTT	AAGGCTTCCT	CAACGACTGT	ATATAGATTT	TTTCCTTGGC	17460
AAGTAGTCGT	TCCACAAATA	AAATATAGTT	TTAGTAATTC	TTTATGAAAC	ATCTTACTTC	17520

ACTCTTTTGA	ATTCCTTTAC	ATCTTCATCT	GTAATCTCGT	ATAAGGCATT	татаааттса	17580
ACTTTAAATG	TCCCAGGAAG	ATGTCCATTT	GGACGTTTTT	CTGCTATTTC	TCCAGCGATA	17640
TTGTAAACCA	ACACTGCTGT	TTTTAATGAT	TTCAATTCTT	GACCTTTTTC	TAGTCCGATA	17700
AAGCTTGCTA	CTACAGCTCC	TAATAAGCAT	CCTGTCCCAA	TGACTTTCGG	CATCATAGCA	17760
CTACCATTAT	GAATCATTAC	CACTTCTCCA	TTAACAGCAA	TGGCATCCAC	TTCACCTGTT	17820
ACTACTATTG	GAATATTGAA	CTTCTCATTT	GCTGCTAGAG	CAATTTCGTC	AATATTATCT	17880
ACGCCCGCAC	TATCTACTCC	TTTAGATGCC	ACATCTATTC	CTACTAAAGA	GGCAATCTCG	17940
CCAGCATTTC	CTCTAATCGC	TGCTAGTTTA	TAATTGTTGA	TTAGATCATC	TGCTACTTTT	18000
тттстататт	CTCCTGCTCC	ACAGGCTACA	GGATCTAAAA	CTGCTGGGAC	ATTATATTTC	18060
TCTGCAATTT	TCAGAGCAGC	TTGGTATAAT	TTCCAATTTT	CATCTGTCAA	TGTTCCTATG	18120
ТТТАТТААТА	AACCACCAGC	ATACTTTAAC	АААТССТСТА	AATCTGCTGG	AAACTCACTC	18180
ATGGCTGGTG	AGGCGCCCAG	TGCTACTAAT	CCATTTGCTG	TGAAATTTTT	TACTACATCA	18240
TTGGTTATAC	AAATGACCAA	TGGTGCTTTT	TCTTTTAATA	ATTTTAAACT	TGTCATATTG	18300
AAATCCTTCC	TTTTCACTTT	АТАССАТСТА	CTAATTTCGA	TTTATCTTTA	GTTGAGAATT	18360
TTTTTCATTT	ACATTGAATG	ATTTATACTC	AATGAAAATC	AAAGAGCAAA	CTAGGAGGCT	18420
AACCGCAGGT	TGCTCAAAAC	ACTGTTTTGA	GGTTGTGGAT	AGAACTGACG	TGGTTTGAAG	18480
AGATTTTCGA	AGAGTCTTAC	CTCATCAAAT	TTGTAAATAT	CATGAGCCTT	CTCTAGACAT	18540
CGTAACCAAT	АТСАААААА	GCTAATTCTA	AAGCGACTGC	TTGATTCCAG	CGTTGCTGAA	18600
GTTCTGTCAA	ATCTTCTCGA	TTTTTACCGA	CACGATTGAG	TTCGTCAACC	AGAAATTGAA	18660
CCCACTCTGC	AAAGAAAGGA	CCTCTGTGGA	GATTGATCCA	TTCCGAATGA	ATATAGACTT	18720
CAGGTAAAGC	CAAATCTTTA	GAACCCCAGT	CTAAATAGAG	ACCTTCTGCA	ATGACCAGCA	18780
TGACCAAAAG	ATGGGCATAG	TCTGATGAAG	CCACCGCCGA	ATACATTAGA	TCCTGAAAGG	18840
CTTTTGTTAC	AGGGTGCAAA	GTCACTTCTA	GATAGTCATT	CTCTGCTACT	ТТТААСТСТТ	18900
TAAAAGCCTT	TTGGAAATAA	CCATCTTCAT	CTGCTTCAAG	AAAGCCTAGT	TGCTTGGCAA	18960
AACGAAGCTT	GGATTCAAGT	TTATCTGCGT	GACTACGCAG	GCACCCAGCA	TGGATAAGAA	19020
GGCATCAAAG	AAGTGATAAT	CTTGAATCAG	ATAGTCCTTT	AAGACCTTAT	TCTCAATTGT	19080
CCCCGCAAAA	AGTTCCTTAA	CAAAACGATG	ATTGATTGCA	GCCTGCCAAT	CCTTCTGACT	19140
GCTTTTTAAT	AATTCTCCAA	CAGTCAAACC	TGGCTGAAAT	GCATAGTCTT	GTGTTTCCAT	19200
ATTTACTTCT	CCTCTCTTA	CTTGTTAGTA	AAAATAATTA .	CACCAAGAAA	TATCAAGCAA	19260

AATCGTAATT CCACTTGATC CTTTTAAAGC ACATCGAGAG CATTTGCAGA GAGCTAACTA AACAAGCCTA TCCAGTTTAT ATAAACAAAA AACTCCAATT ACAATCAAGA ATTAGAGTTG

19320 19380

19440

19500

ACTTACAAGA TTAGACCGTT CATTTCACCA TACGAAAAAA CTGTTCACAT TTCCCTTCGC CAGTCTTAAC TGTATCAGGT TCAATGGGTA TTATCTCAGC CTAAAGCACC CCAAATGTCT

CTATTATTA ACTACTGAAC CAGTATAGCA AAAAATGAAA GCCCTAGCAA GATATTTGAC 19560

CGAAAAATAT CTTTATATAT AATATATTGA AACTAGAATA GTACACCTCT ACTTATAAAA 19620 CATTGTTAGA AATCGATTTG ACTGTCCTGA TTGATTTGTC CTATTCTTAT TTCATTTTAC 19680

19740 TATAGTTTTC GATAGCAATT TATTCTTCCA ATACACGAAG AAAAACCTCC ACATTCAGTG

GAGGCAATCT GTTTTATCAA TACAATTTTA AGTCACGAGG GTCAACTGGG AAGGTTGGGT 19800 TGTATGGATT GTGACGGAGC TTGAAGTGTT TGACATCTTC AATGGTCTGA GTTCCAGACA 19860

ATTGCATAAC TGTCTTCAAT TCCGCATTCA AGTGTTCAAA GACTTGACGC ACACCGACAC 19920

TACCACCGAG AGCCAAGCCA TAGATGACAG GGCGTCCAAT AGCAACCAAG TCTGCTCCTG 19980 20040

ATGCCAAGGC TTTAAAGACG TGTTGACCAC GACGAACACC AGAGTCAAAG ACAATCGGCA CACGTCTATC AACTGCTTCT GCCACTTCTT GAAGCGAGTC AAAGGCAGCT GGTCCACCGT 20100

CGATTTGACG ACCACCGTGG TTGGTTACCC AGATACCAGA AGCTCCTGCA GCAAGCGAAC 20160

20220 GTTCAACGTC CTCACGGCAT TGTGGTCCCT TGACATACAC AGGAAGACCA GAGTATTCAG

CGATAAATTC TACATCGCGT GGAGACAAGC GTTGTTTAGC TGATTTGTAA ACAAAGTCCA 20280 20340 TTGATTTACC AGCACCTTCT GGCAGGTATT CTTCAACAAT CGGCATGCCA ACTGGGAAGA

CAAAACCATT ACGCTTATCC ACTTCACGAT TCCCCCCTAC AGTAGCATCT GCCGTCAAGA 20400 20460 CAATCGCTTT ATAACCTTCA GCCTTCACAC GGTCCATGAT GTGGCGGTTG ATACCGTCAT

CCTTACTAAA GTAAAATTGA AACCAATGAG GTGTCCCTTG GAGGGCTTCA GAAATCTCTG 20520 20580

GAAGGTCAAC AGTAGAGTAA GAACTGGTTG TATAAAGAGA ACCAAACTCA TGCACACCAC 20640 GCGCAGTCGC CACTTCCCCC TGTTCATTG CCAATTTATG AGCCGCAACA GGTGCCATAA

TGATTGGAGA AGATAGTTTT TCACCTGCAA ATTCAATCTC TGTACTTGGA TTTTCTACAT 20700

TGCAAAGTGT ATGAGGAACG ATGAGCTTGT GGTTAAAGGC ACGGATATTC TCTCTTAAAG 20760 20820 TGAAAGTATC TTCCGCCCCA CTAGCGATAT AGCCAAATGC TGCTTTAGGA ATAACTTGTT

GCGCCATTGG CTCCAAATCA TAGGTATTGA TGAALTCTAC ATGACCTTCT GCATTGCTTG 20880

TTTTGTATGA CATAAAATGT CCTCCTTAAT AAGTAAGCGT TTACTTTGTG TATTACAAAA 20940

ATATCTTAAC TCTTTTCAA AACTTTTAAA ATATTTTGTT TGGAAATTTC AGAAATTTA 21000

TGTCTATGAT AAAAATCCTT ATAACGGCAA TAAAAAATAG ATATTATCCA AAGAAGATTT 21060

TAAGTGCTAC	ААТААСТСТА	ттатттстас	ATGGGAGGTT	CTATTTTGG	ATTGATCCAT	21120
TGTTGAACAA	TATCTACCAC	TATATCAAAA	GGCATTCTTT	CTGACCTTGC	ATATTGCAGT	21180
TTGGGGAATT	TTGGGATCCT	TTCTGCTCGG	TTTAATCGTT	AGTATCATCC	GACATTATCG	21240
AATCCTTGTT	TTGGCGCAAG	TAGCGACAGC	CTACATTGAA	TTGTCACGTA	ATACGCCCCT	21300
TTTGATTCAA	CTCTTCTTTC	TCTACTTCGG	TCTTCCCCGA	ATCGGGATTG	TCCTATCTTC	21360
AGAAGTCTGT	GCAACGCTTG	GGCTTGTCTT	TTTAGGAGGC	TCCTATATGG	CAGAATCTTT	21420
CCGAAGTGGG	CTGGAAGCCA	TCAGTCAAAC	CCAGCAGGAG	ATTGGCCTCG	CTATTGGTCT	21480
GACACCTCTA	CAGGTCTTTT	ACTATGTGGT	TCTTCCGCAA	GCAACAGCGG	TGGCACTCCC	21540
CTCCTTTAGT	GCCAATGTCA	TTTTCCTTAT	CAAGGAAACC	TCTGTTTTCT	CAGCAGTGGC	21600
TTTGGCCGAC	CTCATGTACG	TCGCCAAGGA	TTTGATTGGT	CTCTACTATG	AGACAGACAT	21660
TGCGCTAGCT	ATGTTGGTAG	TTGCTTATCT	AATCATGCTG	CTACCCATCT	CACTGGTCTT	21720
TAGCTGGATA	GAAAGGAGGC	TCCGCCATGC	AGGATTCGGG	AATCCAAGTA	CTCTTTCAAG	21780
GAAATAATCT	CCTGAGAATC	TTACAGGGAT	TGGGCGTTAC	GATTGGGATA	TCCATCCTGT	21840
CTGTCCTCTT	ATCCATGATG	TTCAGAACAG	TCATGGGAAT	CATCATGACC	TCCCATTCTA	21900
GAATCATACG	ATTTTTAACA	CGATTGTATC	TGGAATTTAT	CCGTATCATG	CCCCAGCTGG	21960
TGCTACTCTT	CATCGTTTAC	TTTGGCTTGG	CTCGAAACTT	TAATATCAAT	ATCTCAGGTG	22020
AGACTTCAGC	TATTATCGTT	TTTACCCTCT	GGGGAACAGC	TGAAATGGGA	GACTTGGTAC	22080
GTGGAGCTAT	CACTTCTCTC	CCTAAACATC	agtttgaaag	TGGACAGGCA	CTCGGCTTGA	22140
CTAATGTTCA	ACTITACTAC	CACATCATCA	TCCCACAAGT	CTTAAGAAGA	CTGCTACCGC	22200
AGGCTATCAA	TCTTGTCACT	CGGATGATTA	AAACCACTTC	ATTAGTTGTT	TTGATTGGGG	22260
TTGTGGAAGT	GACCAAAGTT	GGACAACAAA	TCATCGATAG	CAATCGCCTG	ACCATCCCAA	22320
CTGCTTCATT	TTGGATTTAT	GGAACCATTC	таатсттата	TTTCGCAGTT	TGCTACCCTA	22380
TTTCCAAACT	ATCCACTCAC	TTAGAAAAAC	ATTGGAGAAA	CTAAATGTCT	GAAACTATCT	22440
TAGAAATCAA	GGAACTAAAA	AAATCCTTCG	GAGACAATCC	CATCCTCCAA	GGACTTTCTC	22500
TAGAAATCAA	AAAAGGGGAA	GTTGTTGTCA	TCCTAGGGCC	ATCTGGTTGT	GGGAAAAGTA	22560
CCCTCCTTCG	TTGCCTCAAC	GGCTTAGAAA	GTATTCAAGG	TGGAGATATT	CTTCTGGATG	22620
GTCAGTCTAT	CGTTGAAAAT	AAAAAAGATT	TTCACCTAGT	TCGCCAAAAG	ATTGGCATGG	22680
TCTTTCAAAG	TTATGAACTC	TTTCCCCATC	TGGATGTCTT	ACAAAACCTC	ATCCTAGGCC	22740
CTATCAAAGC	TCAAGGAAGG	GACAAGAAAG	AAGTAACGGA	AGAAGCTTTG	CAATTACTAG	22800

AGCGTGTCGG	TTTGCTGGAT	AAACAACATA	GCTTTGCCCG	TCAATTATCT	GGTGGACAGA	22860
AGCAACGTGT	TGCAATTGTC	CGTGCCCTCC	TAATGCATCC	AGAAATCATC	CTTTTTGACG	22920
AGGTGACTGC	TTCGCTGGAT	CCAGAAATGG	TGCGTGAGGT	GCTGGAACTT	ATCAATGATT	22980
TGGCCCAAGA	AGGCCGTACC	ATGATTTTAG	TAACCCACGA	AATGCAGTTT	GCCCAAGCCA	23040
TTACTGACCG	GATTATCTTC	CTCGACCAAG	GGAAAATCGC	TGAAGAAGGA	ACAGCTCAAG	23100
CCTTCTTTAC	CAATCCGCAA	ACCAAACGAG	CCCAGGAATT	TTTAAACGTC	TTTGACTTTA	23160
GCCAATTCGG	СТСАТАТСТА	TAAAGGAGAT	TCTTATGAAA	CTATTCAAAC	CACTCTTAAC	23220
TGTTTTAGCA	CTTGCCTTTG	CCCTTATCTT	TATCACTGCT	TGTAGCTCAG	GTGGAAACGC	23280
TGGTTCATCC	TCTGGAAAAA	CAACTGCCAA	AGCTCGCACT	ATCGATGAAA	TCAAAAAAAG	23340
CGGTGAACTG	CGAATCGCCG	TGTTTGGAGA	TAAAAAACCG	TTTGGCTACG	TTGACAATGA	23400
TGGTTCTTAC	CAAGGCTACG	CTACGATATT	GAACTAGGGA	ACCAACTAGC	TCAAGACCTT	23460
GGTGTCAAGG	TTAAATACAT	TTCAGTCGAT	GCTGCCAACC	GTGCGGAATA	CTTGATTTCA	23520
AACAAGGTAG	ATATTACTCT	TGCTAACTTT	ACAGTAACTG	ACGAACGTAA	GAAACAAGTT	23580
GATTTTGCCC	TTCCATATAT	GAAAGTTTCT	CTGGGTGTCG	TATCACCTAA	GACTGGTCTC	23640
ATTACAGACG	TCAAACAACT	TGAAGGTAAA	ACCTTAATTG	TCACAAAAGG	AACGACTGCT	23700
GAGACTTATT	TTGAAAAGAA	TCATCCAGAA	ATCAAACTCC	AAAAATACGA	CCAATACAGT	23760
GACTCTTACC	AAGCTCTTCT	TGACGGACGT	GGAGATGCCT	TTTCAACTGA	CAATACGGAA	23820
GTTCTAGCTT	GGGCGCTTGA	AAATAAAGGA	TTTGAAGTAG	GAATTACTTC	CCTCGGTGAT	23880
CCCGATACCA	TTGCGGCAGC	AGTTCAAAAA	GGCAACCAAG	AATTGCTAGA	CTTCATCAAT	23940
AAAGATATTG	AAAAATTAGG	CAAGGAAAAC	TTCTTCCACA	AGGCCTATGA	AAAGACACTT	24000
CACCCAACCT	ACGGTGACGC	TGCTAAAGCA	GATGACCTGG	TTGTTGAAGG	TGGAAAAGTT	24060
GATTAGTCAT	ТААСТСТТАА	AAGGAACTGG	ATTTTAAGCT	CCAATCCCTT	TTTAAGATTT	24120
TACCTATAAC	ATCCTGAGTC	TATCTAAGAT	GTTCAATCTG	AACACAGTGT	ACATACTTTA	24180
TCTTCTATTG	САТАТАСТТТ	ATCACATAAG	ATACGAATAT	CCTCTTCACT	ATGACTAGCA	24240
ATCAAAATTG	TTGTCCCTTT	TTCACTAGAG	AGCTTTCTAA	ACAATGTTCT	CATATTTTCT	24300
ACACTTGATT	TATCCAAGGC	ATTCATAGGT	TCATCTAGTA	AAAGAATAGA	GGGATTCTCC	24360
ATAATTGCTT	GAGCAATCCC	TAGCTTTTTC	CTCATACCTA	GCGAATAAGT	TTTAACTTTC	24420
TGGTCTTTTT	GCTCATATAG	ACCAACTATT	TTCAGTGTAT	CATTGATTTC	CTGATTACCA	24480
ACTACTCCTC	GTATGCTTGC	CAAATATTGT	AAATTCTTAA	AGCCACTATA	АТААТТТАТА	24540
AAACCAGGTT	CTTCAATCAA	AGCTCCCAAA	TTAGCTGGAA	ттттстстс	AGGAACAATA	24600

TTTTCCCCAT TGATTAACAC TTCTCCATAA GACGACTAT ATAAACCAGC TATTAATTTA 24660

AACAATACAC TTTTCCCTGA GCCATTCGCA CCAGTAATTC CTATAATTTC CCCCTGTTTA 24720

CAACTAAAGT TAAGGTTTTG AAAAACACAT GTCTTTTTA ATTTCAACTC AATATTTTTT 24780

AATGTAATTA TTTCATTCAT TCTATAAACC TCCTCTTTTG ACGAGTGAAA TAGAAAATGC 24840

TTTGAAAAAG AAAGACTAAA AATAGCAACT GAAGAAATAA ATCTCGTCCT ATATCTCCAT 24900

TCCCTCGATT CAAAATATAA AATAGATAAT TAGTTCGATT TCCTACAAAT AGACCACCAA 24960

ACACAATCAT GAGTAAAAAG AAACTAACGC AAGCAAAGTT CC 25002

(2) INFORMATION FOR SEQ ID NO: 49:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11443 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

CAGGTACGGT GAGGCGCAAC TAAAATATAA TTTTCATCTT GATTAGGAAT TTTATCAGTA 60 TTATGATAGT GAGCATTGCC ATTGATGGAC CATAAGAGCA ATACAACTAA TCCACGCAAA 120 TAAGTATAAA ACATGCGATC TCCTTCGATT GTTTTCTTGT TATTATTATA CCTTATCAAA 180 GGAGGGCTGG CAAACTTTTC CCTTGACTAG ATACATATTT AGGATGAAAT TAGAATTCTG 240 TTAAAAAAA TGATATAATA GAATTTATGG ATAAAAATAA GATTATGGGA TTAACCCAAA 300 GAGAAGTCAA GGAAAGACAG GCTGAGGGTT TGGTCAATGA CTTTACCGCA TCAGCCAGTA 360 CCAGCACTTG GCAAATCGTT AAACGAAATG TCTTTACCCT TTTTAACGCT TTGAACTTTG 420 CCATTGCTTT GGCTCTTGCC TTTGTGCAGG CTTGGAGCAA TCTGGTCTTC TTTGCTGTTA 480 TCTGCTTTAA CGCTTTTTCT GGGATTGTGA CCGAGCTACG AGCCAAACAC ATGGTGGACA 540 AGCTCAATCT CATGACCAAG GAAAAGGTCA AAACCATCCG TGATGGTCAG GAAGTTGCTC 600 TTAATCCTGA AGAATTAGTG CTAGGAGATG TCATTCGTTT GTCTGCAGGA GAGCAGATTC 660 CTAGTGATGC CTTGGTTTTG GAAGGCTTTG CGGAAGTCAA TGAAGCCATG TTAACGGGAG 720 AAAGTGATTT GGTGCAAAAG GAAGTTGACG GCTTACTTTT GTCAGGAAGT TTCCTAGCCA 780 GTGGGTCAGT TTTATCTCAA GTTCACCATG TCGGTGCAGA CAACTATGCT GCCAAACTCA 840 TGCTTGAGGC TAAGACCGTT AAACCCATCA ACTCCCGTAT CATGAAATCG CTGGACAAGT 900 TGGCTGGTTT TACTGGGAAG ATTATCATTC CCTTTGGTCT GGCTCTCTTG CTGGAAGCCT

446	
TGCTTTTAAA AGGCCTGCCT CTCAAGTCAT CCGTTGTAAA CTCGTCGACA GCTCTTTTGG	1020
GAATGTTGCC TAAGGGAATT GCCCTTTTGA CCATTACTTC GCTCTTGACT GCAGTGATTA	1080
AGTTGGGCTT GAAAAAGGTC TTGGTGCAGG AGATGTACTC TGTTGAGACC TTGGCGCGCG	1140
TGGATATGCT CTGTCTGGAC AAGACGGGTA CCATCACCCA AGGAAAGATG CAGGTGGAGG	1200
CTGTTCTTCC GTTGACGGAA ACGTATGGTG AAGAGGCTAT TGCCAGCATC TTGACTAGCT	1260
ACATGGCCCA TAGTGAGGAT AAGAATCCAA CTGCCCAAGC CATTCGCCAG CGTTTTGTGG	1320
GAGATGTTGC TTATCCTATG ATTTCCAATC TTCCCTTCTC GAGCGACCGC AAGTGGGGGG	1380
CTATGGAGTT AGAAGGCTTG GGGACAGTTT TCTTAGGGGC ACCTGAGATG TTGCTTGATT	1440
CTGAAGTCCC AGAAGCTAGG GAGGCCTTGG AGAGAGGATC ACGTGTCTTG GTCTTAGCTC	1500
TCAGTCAGGA GAAATTAGAC CATCACAAAC CACAGAAACC ATCTGATATT CAGGCTCTAG	1560
CCTTGCTGGA AATCTTGGAC CCCATTCGAG AGGGAGCAGC AGAGACGCTG GACTATCTCC	1620
GTTCTCAGGA GGTGGGACTC AAGATTATCT CTGGTGACAA TCCAGTTACG GTGTCCAGCA	1680
TTGCCCAGAA GGCTGGTTTT GCGGACTATC ACAGCTATGT AGATTGCTCA AAAATCACCG	1740
ATGAGGAATT GATGGCCATG GCGGAGGAGA CAGCTATTTT CGGACGTGTT TCCCCTCATC	1800
AAAAGAAACT CATCATCCAA ACGTTGAAAA AAGCGGGACA TACAACGGCT ATGACAGGGG	1860
ACGGGGTTAA TGATATCTTG GCCCTTCGTG AGGCGGATTG TTCTATCGTG ATGGCGGAGG	1920
GGGATCCAGC AACCCGTCAG ATTGCCAATC TGGTTCTCTT GAACTCAGAC TTTAATGATG	1980
TTCCTGAGAT TCTCTTCGAG GGTCGTCGCG TGGTCAATAA CATTGCCCAC ATCGCCCCGA	2040
TTTTCTTGAT AAAGACCATC TATTCCTTCC TGTTAGCAGT CATCTGTATT GCCAGTGCTT	2100
TACTAGGTCG GTCAGAGTGG ATTTTGATTT TCCCCTTCAT TCCGATCCAG ATTACCATGA	2160
TTGACCAGTT TGTGGAAGGT TTCCCACCAT TCGTTCTGAC TTTTGAGCGA AATATCAAAC	2220
CTGTTGAGCA GAATTTCCTC AGAAAATCCA TGCTTCGTGC CCTACCAAGC GCTCTCATGG	2280
TCGTCTTCAG CGTCCTGTTT GTGAAAATGT TTGGCGCGAG TCAAGGTTGG TCTGAGTTAG	2340
AAATCTCAAC TCTACTCTAT TATCTCTTGG GGTCAATTGG TTTCTTATCC GTATTTAGAG	
CCTGCATGCC ATTTACCCTA TGGCGTGTCC TCTTGATTGT TTGGTCAGTA GGAGGTTTCC	2400
TAGCCACAGC TCTCTTCCCA AGAATTCAAA AACTGCTTGA AATTTCAACC TTAACAGAAC	2460
AAACGTTGCC TGTTTATGGT GTCATGATGT TGGTCTTTAC CGTGATTTTC ATCCTGACCA	2520
GTCGTTACCA AGCGAAAAA TAAATCAAAA CCACCAGTGT GAACTGGTGG TTTGTTCTGC	2580
GGCTATAAGC CGCTTCTACC GGCCAGGGCC AAAGGCCCAC CGAAATAGCT TCCTCGCGCA	2640
CCACTTTCCC GAGCAGGTGC TAAAGCACCT TAGTTACTTC CTCTTATTTA TTTCCCCACT	2700
TAAAGCACCT TAGTTACTTC CTCTTATTTA TTTCCCCACT	2760

A A A C C A MOOM A C MAN A C M	
AAACGGATCT ACTGACTCGA ATAACGTGAG CTGGTCTGCT ACTCTGTCTT CTTGTAATTG	2820
ATTCTGAATA TATTCAGCTA TCACTTTCTG ATTACGGCCT ACCGTATCTA CATAATAGCC	2880
TCTACACCAA AACTTGCGAT TGCCATATTT GTATTTTAAA TTCGCATGCT TATCAAAAAT	2940
CATCAAACTG CTCTTGCCCT TTAAATAGCC CATAAAGGAC GAAACACTAA GTTTCGGAGG	3000
AATACTGATA AGCATGTGAA TATGGTCTGA ACAAGCATTC GCTTCATGGA TTATTACACC	3060
CTTACGCTCA CATAAGTCAC GTATGATTCT TCCGATACTA GCTTTGTATC TGCCATAAAT	3120
GATTTGACGA CGATATTTGG GTGCAAAAAC AATATGATAT TTACAATTCC ATGTGGTATG	3180
TGATAAACTT TGATTATCCT CTCTCATGAG GTACCTCCTG TATGATATGT TGTAGTGGCG	3240
GAGAAACCAC TTCTATCTTA TCATTTTAGG AGGTTCTTTT TGTTACCACG CTAAAAGCTC	
TATGGAACCA CTAGCATAGC TAGTGGTTTT CGGGAGACAA CAAGAAAGAC TGCAATCTGT	3300
GGATTGCAGT TTTTTATACG ATGGATCTAT CGTAGATCTG ATGTGCAAGG CCTACGTGCC	3360
GATCATCTAT CGGTGAACCC AAGAGCGACC CTCAAGCCTG CTTGGATTGA GGTAATAGAT	3420
TCAAATATCT GTAGTTAGAC TATTTGAAGT TTGATGTAAG AAAGAGAAAG CGACAGATTG	3480
AAGTAATTTT AACTCTCTTC TATTGCTAGA ACAAATGGTC GGATAGGTTG GTAGTTTGAA	3540
AATGAAGATG CTATCTATTG TTAAATGGAA CATAGTGTTA TTTATTAGAA AATCGTTTGG	3600
TTTATTTCTT ATCAAATACG AAAAGCAACT TAAATATTTC AACTAAAATA GATGTTATGA	3660
AGAAAAGGTA AAATGATTTT GGCATAGTGA GGTTCTGTTC TATTTGATAT CATATTTTTG	3720
ATAAAAACAA AAATGTCCAT TGCAAAGGAC AAAATGCGAA GTATATTATT TTTTGAAAGC	3780
GATATAATGG ATTCATAAAG GACGTCTATG COORDERS COORDERS	3840
GATATAATGG ATTCATAAAG GAGGTGTATC GTGTCTAGAA AACAAGAACA AATGGAAACG	3900
TTGTTGCTCC TTTTGCGAGA TAGTAAGGAT TATATATCTG CTAAAGTATT GGGAGAAAAA	3960
TTAAATTGCT CTGATAAAAC GGTTTATCGC CTTGTCAAGG GAATCAACAA AGATTGTCCG	4020
GTAGAAGCAT TCATTTATC TGAAAAAGGC AGAGGTTTCA AATTAAATCC AAGAAGTTCC	4080
CTCGTGGACG TTGATGGGAA TTTTACAGAG GCTTTTGATC CTGAAGTAAG GCGTGAAAAA	4140
TTACTAGAAC GTCTCTTGTT GACTGCTCCT AAGCCACATT CTATTTATGA TTTAGGAGAG	4200
GAATTCTACG TAAGCGAGTC AGTAGTACTA AAAGATCGTC AGATATTACA AGAGAGTCTA	4260
GCAATTTATG GGTTAGATTT AAAAATGAGA CAACGAAAGC TTTTTATTGA TGGGGATGAG	4320
GCTCAAATTC GTTCAGCCAT TCTAAATCTA CTGCCAATGT TTAATCAGTT GGATTTAGAG	4380
CAAATTACAC AGAATAAGGT TCAGCCTCTT GACGGAGAAC TTGCTCACTT TTGTTTGGGA	4440
TTACTGATTA CACTTGAGAG AGAATTGGGG GTAAACATTC CCTATCCATA TAATATAAAT	4500

ATTTTCTCTC ACCTGTATAT	TTTTATCAGT	448 AGGAATCGTC	GTAGTACTAG	TATTCATGTT	4560
GTAGCACCTT CAAAACCTAC	TATTGTTGAT	GAGAAAATTT	ACAGTGTCTG	TCAAAAAATT	4620
ATTCAAGAAA TTGAACAATA	TTTTAGGATG	AAGGTTGATG	CAGTTGAGAT	TGACTATCTT	4680
TATCAATACG TTGTATCTTC	GAGATTGCAA	AAACCATTTT	CTTCCGGGAA	GCTTCCTTTT	4740
TCTCAGCGAG TTTTAGATGT	CACTCATTAC	TATTTTAGCC	GTATGTGTAT	GGACAATAGA	4800
GAGATTGAAA CGACAGATCC	TGACTTTGTT	GACTTGGCGA	GTCATATCAG	TCCCTTACTG	4860
AGGAGATTAG ATAATAGAGT	ACAGATTAAG	AATAGTCTTT	TATCACAAAT	TCTTTTAACC	4920
TATCCTAATC TGGTTAAAGA	GTTAACAACT	ATTTCTAAAG	AAGTGAGTCT	AGTATTTGGT	4980
TTTGCTTCCT TGAGTCTGGA	CGAGATTGGT	TTTCTAGTCT	TATATTTTGC	ACGGTTTCAA	5040
GAAAAGCGAG CACGTCCTCT	AAAAACAGTA	GTGATGTGTA	CATCAGGTGT	CGGAACTTCA	5100
GAGCTTTTAC GAGCACGATT	AGAAAAGCAA	TTTTCTGAAT	TGGATATTAT	TGATGTAGTT	5160
GCTTATCATC AATTAGATGA	GCTGATAAAT	CTATATCCAG	ATTTAGATTT	CATTGTGACG	5220
ACGGTAGCTT TGCAGGAACC	AGCAAGTGTC	CCGTTTGTCC	TAGTTAGTGT	TTTTCTAACC	5280
GAGGGTGATA AACAACGTCT	TCAAGCAAAA	ATTCAGGAGA	TAAACTATGA	ATAATCTTTC	5340
GCTTGTCCTT ATGGATATAT	CTGTTCAAAA	TCGTCAAGAA	GCCTACAAAG	AATTAGCAAA	5400
TCAAATCAGC CTTCTTGTTT	CTGAAGATAC	AGAAAAAATA	GAAGAGCTTC	TATATTACCG	5460
TGAGAGACAG GGAAGTATAG	AGGTTGCTAA	AGGTGTTCTT	CTACCACATT	GTGAAGGAAA	5520
CTTTCAACAT CATGTCTTAG	TGATTACTAG	ATTAAAATCA	CCTATCAGAG	AATGGTCGAA	5580
GGATATCCAG TGTGTTGACC	TTATTATCGG	TTTGGCCATT	GCAGTATCAC	AGGACAAGTC	5640
ATGTATTAAA ACATTGATGA	GAAGACTAGC	AGATGAATCA	TTCATAAATC	AATTAAAACA	5700
GTTAACAAAA GAAGAATTAC	GGGAGATAAT	ATATGGAAAT	CAAAGATATT	CTTAATGTGA	5760
GTCTGATCCA GACGGATTTA	CAGATGCAGA	GCAAAGAAGA	GGTTTTTGAG	GCATTAGCTC	5820
AACTATTGGT TGAGACGGGT	TATGTGTCTG	ATAGAGACCA	ATTTATCGAA	GGTCTTTATC	5880
AGAGAGAGGC AGAAGGACAG	ACCGGTATTG	GGAATTATAT	TGCTATTCCC	CATAGCAAGA	5940
GTTCTGCTGT GGAGAAGGCG	GGGGTAGTCA	TAGCTATAAA	TCACAATGAG	ATTCCTTGGG	6000
AGACCATTGA TGGGAAAGGG	GTCAAAGTAA	TTGTACTCTT	TGCAGTTGGT	GATGATACAG	6060
AAGCTGCTAG GGAGCATTTG	AAGACCTTAT	CACTCTTTGC	TCGAAAACTT	GGTAATGACG	6120
AAGTTGTTGC CAAATTAGTT	CGGGCTCAGA	CATCTGATGA	TGTGATTGCA	GCTTTTTGTT	6180
AATAAGAAAA AATTTTGGAG	GGTATCCGTA	TGAAAATTGT	TGGTGTTGCA	GCTTGTACTG	6240
TGGGAATTGC CCACACTTAT	ATTGCACAGG	AAAAATTAGA	GAATGCCGCA	AAGGTAGCTG	6300

					A TTGAGTCAAG	6360
					T TCTGGTATGG	6420
AACGCTTTC	GA GGGTAAAAA	G ATTATCAAG	G TTCCAACAG	A AGTGGCAGT	C AAATCTCCCA	6480
ATAAACTGA	T TGCTAAAGC	T GTTGAGATT	G TTACGAAATI	A ACTGAAAAT	TTTAAGGAGA	6540
AAATATATO	T TGAAACACT	т аласттала	A GGTCACTTAT	T TGACAGCCA	TTCCTATATG	6600
-ATTCCAATT	G TTTGTGGTG	C AGGATTCTT	A GTTGCCATTC	GTTTAGCAA	GGGGGGTGGT	6660
GTTCCTGAC	G CTCTTGTAG	C AGGAAAATT	C ACTATCTGGG	ATGCTTTAG	AACTATGGGT	6720
GGTAAAGCC	C TTGGTCTCT	T GCCAGTTGT	T ATTGCTACAG	GTTTGTCTT!	CTCGATTGCT	6780
GGTAAGCCA	G GGATTGCAC	C AGGTTTTGT	r gttggtctaa	TTGCCAATTC	TGTTGGTTCA	6840
GGGTTTATC	G GTGGTATCT	GGGAGGTTA	T ATAGCTGGTT	TCTTGGTTCA	AGCGATTATT	6900
AAAAAGGTC.	A AAGTACCAA	CTGGATTAA	GGTTTAATGC	CAACCTTGAT	TATTCCTTTT	6960
GTAGCCTCT	T TGGTAAGTA	TTTGATTATO	TTATATTA	TTGGAGCGCC	TATCGCAGCC	7020
TTTACCAAC	r ggttgacgac	CTTATTACA:	AGCTTGGGAA	GTGCTTCAAA	TGGTTTGATG	7080
GGGGCAGTT	A TTGGAATTCT	CAGTGCTGTT	GACTTTGGTG	GCCCACTTAA	TAAAACAGTC	7140
TATGCGTTTC	G TGTTGACTTI	ACAGGCTGAA	GGTGTGAAAG	AACCATTGAC	TGCTTTACAA	7200
TTGGTGAATA	CTGCTACACC	AGTTGGATTT	GGATTGGCCT	ATTTTATCGC	GAAATTACTC	7260
AAAAAAATA	TCTATACTCA	AGAGGAAATC	GAAACATTGA	AATCGGCTGT	TCCTATGGGG	7320
ATTGTCAATA	TTGTTGAAGG	TGTAATTCCG	ATTGTTATGA	ATAACTTGGT	TCCAGGTCTC	7380
ATTGCAACAG	GTATCGGTGG	TGCTGTTGGT	GGTGCTGTTT	CTTTGACAAT	GGGTGCTGAT	7440
TCTGCTGTGC	CATTTGGTGG	AGTGCTTATG	TTACCAACCA	TGACTCGTCC	AGTAGCTGGT	7500
ATTTGTGCCT	TGTTAGCTAA	CATTGTAGTC	ACAGGACTTG	TCTACGCGAT	TTTGAAAAA	7560
CCAATAAAAC	ATGCAGAACC	AGTTATGACT	GTTGAAGAAG	AGATTGATTT	GTCAGATATT	7620
GAAATTTTGT	AAGAGGGTAA	CGATGTCAAG	AATTGAATTT	TCACCATCTT	TGATGACCAT	7680
GGATTTGGAC	AAATTCAAAG	AGCAGATTAC	TTTTTTGAAT	GATAAAGTAG	CATCTTATCA	7740
TATCGATATT	ATGGATGGCC	ATTTTGTTCC	CAATATTACC	TTGTCTCCTT	GGTTCATTCA	7800
AGAAGTTCAA	AAAATTAGTG	ACACACCTTT	ATCAGTTCAT	CTGATGGTCA	CAGACCCAAC	7860
CTTTTGGGTA	GATCAAGTTC	TCGATTTACA	ATGTGAGTAT .	ATTTGTATTC	ATGCTGAAGT	7920
TCTGAATGGT	CTTGCTTTTC	GTTTGATTGA	TAAAATTCAT	GATGCAGGTC	TAAAGGCTGG	7980
TGTTGTCCTT	AATCCTGAAA	CACCTGTTTC	TACAATCTTT	CCCTACATTG	ልጥጥስ ርጥጥ ር አ	9040

450 CAAAGCAACT ATTATGACTG TAGATCCAGG TTTTGCAGGA CAACGCTTTT TGGAGTCTAC 8100 CTTGTATAAA ATCCAAGAAC TCCGTCAGCT TAGAGTTCAG AATGGTTATC ACTACATCAT 8160 TGAGATGGAT GGTTCTTCGA GTCGTAAGAC TTTCAAACAA ATTGATGTGG CAGGACCAGA 8220 TATTTATGTT ATAGGTCGCA GTGGATTATT TGGTTTGGAT GACGATATTG CCAAAGCCTG 8280 GGATATCTGT TCTAGAGATT ACGAAGAAAT GACCGGAAAA ACAATGCCAA TCAAATAATG 8340 GTTTGAGAAG AAATTTATTA GTTAGGAGGA ATATATGTCA CTACAATCAG TTAACGCCAT 8400 TCGTTTCTT GGCGTAGATG CTATTAACAA ATCTAATTCT GGTCACCCGG GAATTGTCAT 8460 GGGTGCTGCG CCAATGGCTT ATAGCCTATT TACAAAGCAC CTTAGAATTA CACCTGAGCA 8520 GCCAAACTGG ATTAACCGAG ATCGCTTTAT CTTGTCTGCG GGTCATGGAT CAATGCTACT 8580 GTATGCTCTC TTGCATTTAA CAGGGTATAA GGATGTATCC ATGGACGAGA TTAAAAATTT 8640 CCGGCAATGG GGATCTAAGA CACCTGGTCA TCCTGAAGTG ACGCATACGT CTGGTGTGGA 8700 TGCGACATCT GGTCCGCTTG GTCAGGGGAT TTCTACTGCC GTTGGTTTCG CCCAAGCAGA 8760 GCGTTTTTTA GCTGCTAAGT ACAACAAGA TGGTTTCCCT ATTTTTGACC ATTATACTTA 8820 TGTTATCGCT GGAGACGGTG ACTTCATGGA AGGAGTGTCT GCGGAGGCGG CTTCTTATGC 8880 AGGTCATCAA GCTTTAGATA AGCTTATCGT CCTCTACGAC TCCAACGACA TCTGCTTGGA 8940 TGGTGAGACC AAAGATACTT TCTCTGAAAA TGTTCGCGTC CGTTACGATG CTTATGGTTG 9000 GCATACAGTT CTGGTAGAAG ATGGAACAGA TTTAGCAGCA ATTTCTACAG CAATTGAGAC 9060 GGCCAAGTTT TCTGGTAAAC CGAGTTTGAT TGAAGTGAAA ACGGTAATTG GTTACGGCTC 9120 ACCCAATAAA AGTGGTACAA ATGCTGTTCA TGGTGCACCA CTAGGAGCAG AAGAAACAGG 9180 AGCAACTCGT AAGTTTTTGG GATGGGATTA CGATCCATTT GAAGTACCAG AGGAAGTATA 9240 TTCTGATTTC AAGACAAATG TAGCGGATCG TGGTCAGGAG GCATACGATG CTTGGGCTAG 9300 TTTGGTGTCT GATTACAAGG TTGCTTATCC CGAAGTTGCT AGTGAGATTG ACGCTATTGT 9360 AGCTGGAAAA TCCCCTGTAA CCATTACTGA AAAAGACTTC CCTGTCTATG AGAATGGCTT 9420 CTCTCAAGCA ACTCGTAATT CGTCCCAAGA TGCTATTAAT ACAGCAGCAG TTTTACCAAC 9480 CTTCTTAGGT GGATCGGCAG ACTTAGCTCA CTCTAACATG ACCTACATCA AGGCAGATGG 9540 CTTACAAGAT AAATATAATC CATTAAACCG CAATATTCAG TTTGGGGTAC GTGAATTTGC 9600 CATGGGAACA ATCCTCAATG GAATGGCTCT TCATGGTGGT TTACGAGTTT ATGGCGGAAC 9660 CTTCTTTGTT TTCTCTGACT ACGTCAAAGC TGCTATTCGG CTATCAGCCA TTCAGGAGTT 9720 GCCTGTAACT TATGTCTTTA CCCATGATTC AATTGCCGTT GGTGAAGATG GTCCAACTCA 9780 TGAACCAGTT GAACATTTGG CAGGTTTACG CTCAATGCCA AACTTGACTG TTATCCGTCC 9840

9900	CCACCACTCC	TTGACCAGTA	GCATCATGCC	AAGCGGCTTG	CGTGAAACTC	AGCGGATGCC
9960	ACTTTGGTAA	GAAGGGACAG	GGTAGTTGAA	GTCAAAACTT	GTCTTAACCC	AACTGTCATT
10020	TTATCATTGC	TTTGATACTA	TACCCCGGGA	TCGTGTATGA	GGAGCCTACG	GGTCGCTAAA
10080	TACAAGGTGG	GAATTGGTTT	AGCTGCTAAG	TAGCTATCAA	GAGGTCAATC	TACAGGATCT
10140	ATGCTACCTA	GATGCTCAAG	CGAACTATTT	TGCCCTCAAC	GTGGTATCTA	TAAAGTACGT
10200	TGGCAGCGAC	GCCATTGAAA	TCGTCGTGTG	CTAAGACTCG	ATTTTACCAT	- CAAGGAAGAC
10260	ACATCTTCGG	ATCGGTATTG	TGGCGCGGTC	TTGGTTTGGA	TACAAGTATG	CCAAAGTTGG
10320	AGAATATCGT	TTTACGGTAG	TAATTATGGA	CTGTGATTGA	CCAGCTCAGA	TGCGTCTGCC
10380	TGTCAGACTA	ATACAGCTGT	TACAATGAAG	AGAAACCAAT	AAGTCCCTAT	TGCTCAAGTT
10440	AATGAAAATG	TAAAAACTGT	ATTGGTTATT	TAATCAGATG	TGATAGACAC	GCAGATGTAG
10500	ACCCTGAAAC	AATAGAGTAT	TAGTATACAC	TTATAGTAGA	TCTACGAAAG	ТААТААТТТА
10560	ATCAATAAAC	AGTTTCTTTA	TGATCTAGAT	ACTTTGCTAC	TACGCTAATC	GGTTGCGAAG
10620	GAGAAGGTCT	GAAAGCTAGA	TAAGTTTTTT	TAGGATATTG	CAGATTGACT	ACAGCATCCA
10680	CCAAAAGTTA	GAACTGCACC	TTGAAATGAT	GTATAGGATG	AAAACGCATA	СТААААТТАА
10740	TGATGATAAA	AATTAACTTA	TTTATTATGA	TTGGGGTGTT	AATCTAACTT	GACAGAAAAA
10800	AAATAAATTT	AGAAGCTTTC	TATATCTTAG	AAAACAAGGA	ATGAACTTAG	GTTCAGTTCT
10860	CGGAATAGAG	TTGATCGTTA	ATTAAATTGA	TAGGTACATG	ATTCTAATCT	GGGATAAATA
10920	AATGATTCAT	TAAAACAAGA	TCTCCTGATT	TCGTTACTAT	AAGGGAAAAA	TTCGTCAAAA
10980	TCTCCCAAGT	TTGAATACGG	AGAGTTTCTC	GACTAAAGAT	ATGAAGGCTG	AAAGTCTGAC
11040	TATTGTTGAG	ACGGGTATAC	TACAGGAAAA	GCTAGCACAA	TTCTTAACTG	CGTACGATAC
11100	TAAGAGAACT	CTAAAAAAGT	GAATGCCATC	TGAGAGCGGA	GGAGAGTACC	AAAACAAAAG
11160	ATTAATGACT	TTGTTCAAGA	AAGACAGAAA	AGAAATAAGA	GAGGAAAAAG	CCGATTGAAG
11220	CTACTACTAT	CTCGTTGGAC	ATTAAACTAG	TCTAAAAGCC	TAGATCTTCT	GAGTTTTCGT
11280	AATTCAATCC	TTAAAGCTGA	GACCAAGAGC	ACCAGATAAG	AGCTAGATAA	CACTTGAAAC
11340	ACTAAGAAAT	TTCATTTAGA	TATCGCCGGG	AGATTATGCT	AACACAAGGG	ATCTTTATCG
11400	CAATTTACAA	TGAAAGTACT	CAAGGCTTGA	TAAAAGAGTT	TGGTAAATCA	CGTGCTTATC
11443		GAG	TCTCATAAAG	AAAATATTCT	GACAGnAACG	GCTAGAATGC

⁽²⁾ INFORMATION FOR SEQ ID NO: 50:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5338 base pairs

452

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

CCAATTACA	г тататтатса	AAATCGTCGA	AACTGGCTCC	ATGAATGAGG	CAGCCAAGCA	60
ACTCTTTATO	CACTCAGCCAA	GTCTCTCCAA	TGCAGTGCGA	GATTTGGAAA	ATGAAATGGG	120
CATTGAGAT	TTTATCCGCA	ATCCCAAGGG	AATCACCTTG	ACCCGTGATG	GCATGGAGTT	180
TCTCTCTTAT	GCCCGTCAGG	TTGTCGAGCA	GACCCAGCTT	CTGGAGGAAC	GCTATAAAA	240
TCCTGTCGCC	CACCGCGAAC	TCTTTAGCGT	TTCGTCTCAA	CACTATGCCT	TTGTGGTCAA	300
TGCCTTTGTC	TCTTTGCTCA	AGAAAAGCGA	TATGGAGAAA	TACGAACTCT	TCCTTCGTGA	360
AACTCGGACT	TGGGAGATTA	TCGACGACGT	CAAGAACTTC	CGCAGTGAGG	TCGGGGTCCT	420
CTTCTTAAAC	AGTTACAACC	GTGATGTTT	AACCAAGATG	CTGGATGACA	ATCACCTGCT	480
AGCCCACCAT	CTCTTCACAG	CGCAACCGCA	TATCTTTGTC	AGCAAGACCA	ACCCTCTGGC	540
AAAGAAAGAC	AAGGTGAAAC	TGTCTGATTT	GGAGAATTTC	CCTTACCTCA	GCTATGACCA	600
AGGGACGCAC	AACTCCTTCT	ACTTTTCAGA	AGAGATTCTT	TCTCAAGAAC	ACCACAAGAA	660
ATCCATTGTG	GTCAGTGACC	GTGCCACCCT	CTTTAATCTC	TTGATTGGTT	TGGATGGTTA	720
TACCATTGCG	ACAGGGATTT	TGAACAGCAA	CCTAAACGGA	GACAATATCG	TTTCTATCCC	780
ACTGGATATT	GATGACCCGA	TCGAGCTGGT	CTATATCCAG	CATGAGAAAA	CCAGCCTATC	840
TAAGATGGGC	GAACGCTTTA	TAGACTATCT	CCTAGAAGAA	GTTCAGTTTG	ATAGTTGAGA	900
AATGATAAGA	ACCAATATGT	AGGCTAGCAA	CAACCTGCAC	ATTGGTTCTT	ТТТАСТТАТА	960
ATTAAAAGTT	TCCCCTGCCA	ACTTATCAGC	TAGCTTGGGA	AAGAGAGTAT	AAAACTTATG	1020
GGCTAGGTTC	AACAAAATCG	GGAGATTGAG	TTCTCGTTTG	TTTTTTCCTA	TAATCTTGAC	1080
AATCTTTTTA	GCCACTGCAT	CTGGTTCTAG	CAGGAAGCGA	TCAACCGATT	TAAGATAAGT	1140
TCCATCTGGG	TCGGCTTGGT	CGAAAAATCC	TGTACGGATT	GGTCCTGGAT	TGACTGTTGT	1200
CACATAGACT	CCATAGGGCA	TAAGTTCGAG	TCGCAGAGCA	TTTGAAAAAC	CAATAGCCGC	1260
AAACTTGGTC	GCTGAGTAAA	GACTAGACTT	GCCAGTAGCT	ATTAGACCTG	CCATGCTGAC	1320
GATGTTGATG	ATATGCCCTT	TGCTGCTTTC	CTTCATACGA	GCCGCAAGGT	GACGAGACAG	1380
ATTCATCAGG	GCAAAGGTAT	TGACCTCAAA	CATCTGGTGA	ATATCTTTAT	CAGCAATCTG	1440
GTCAAATCCC	TCAAAAATCC	CGTAACCAGC	GTTGTTAATC	AAGACATCAA	тсттбссата	1500
GCGGAGATAA	AGATCAGTTA	CCAGAGCTTC	TAGGGCTGAA	TCGTCGGTAA	TATCAATTTC	1560

AATCAATTCT	GCATGGGAAT	AATTTCCGTA	GAGTTGGGCT	AATTTTCCT	ТАТТТСТАСС	1620
AAGCAAGATG	AGTTGGTCAT	TGGGCAGGAG	TTTGACCATT	TCTTGAGCTA	GACCACCGCT	1680
AGCTCCGGTA	ATGAGAATAG	TAGGCATACT	TATCCTTTCT	GTGACTGCTA	GATTTCCACT	1740
TCTTCCAAGT	CTTTGACCAC	ATGGACATTT	TCAAAAATTG	TGGCAGCGTC	TTTCTTGAGT	1800
TTGCTAATAT	CTTTTGAGAG	GAAACGGGCA	CTGATATGGT	TGAGTAGGAG	GCGTTTGGCA	1860
CCTGCTTCTA	CCGCTACTTG	TGCAGCTTGC	ATATTAGTTG	AGTGACCATG	GTTACGAGCA	1920
ATTTTTTCAT	CACCCTTGCC	ATAAGTGGAC	TCATGAACTA	GGACATCTGC	ATTGACAGCC	1980
AGACGCACAC	TGGCACCCGT	TTTTCGAGTG	тстсстаааа	TAGTGATAAT	CTTACCTGGA	2040
CGTGGCGCTG	AGATATAGTC	TGCTGCCTTG	ATTTCAGTTC	CGTCTTCCAA	AACAAGATCC	2100
TGGCCGTTTT	TGATTTTACC	AAAAAGCGGG	CCGAACGGAA	CACCAGCAGC	CTTGAGTTTT	2160
TCAGCATCCA	GCGTCCCTTC	TAGATCCTTT	TGCATGACAC	GATAGCCAAC	ACAGAAAATA	2220
GTGTGGTCCA	GCTCCTCTGC	ATACACAGTG	AATTTATCGG	TTTCAAGAAT	TTTACCCAGA	2280
GAATCTTGGT	CAAACTCATG	GAAATGAATG	CGGTAGGGCA	GACGAGAACC	TGACACACGA	2340
AGGCTGGTTA	AGACAAATGA	CTTGATTCCT	TGAGGTCCGT	AGATTTCCAA	ATCTGTCTGC	2400
PCTTCATTGG	CCTGAAAGGC	ACGGCTAGAA	AGGAAACCTG	GCAAACCAAA	AATGTGGTCT	2460
CCATGCAGAT	GGGTAATAAA	GATTTTGCTG	ACCTTACGTG	GTCGAATTGT	GGTTTCCAGA	2520
ATGCGATTTT	GCGTACCTTC	TCCACAGTCA	AAGAGCCAAA	CTTCGTTAAT	CTCATCCAAA	2580
AGTTTCAGGG	CGAGACTTGA	AACGTTGCGG	GCTTTAGAGG	GCTGACCAGC	CCCCGTTCCT	2640
AAAATTGAA	TATCCATTCG	ATACTTTCTA	ATTAATCAAT	ATATAACATG	GCTGTGCGGT	2700
TTCCGATCG	GAAATAGCGT	TTGCCAGAAA	AAGCAGCAGC	TTCTTGCAAT	AAATCCTCTT	2760
GCTGTAGCC	TTTGAGACGT	TTTCGACCAT	CAGCCAATCT	TTCCAAATCA	GTCAAAGCTG	2820
GAGACTTTC	TAGGCTGATA	ACTTCCTCGT	CCTCGACAGG	CTTCATGTAA	ATCTTACCAG	2880
CTCTTCAAA	GACTAATTGA	TGGGGGAAAA	TTTGCGCAAT	TTCAAAGAGC	AAGTCATCCG	2940
GATTTTCTC	CTCATTTTCA	AAGAAAATCC	GACCAAGGCC	GTCACTCTCA	TAACAAAAAC	3000
AAAGGATTT	ACCAGACAGA	TTAAGCCGAA	TAAAAGGCTT	ATTTTCTAGG	GTGAAACTTG	3060
CTCAGTATT	GTAAAGATTC	AGTTCCTGAC	TGAGTTCTGC	AAAATAATCC	GTCGCAGCCT	3120
AGGACTCTT	TTTCTGATAG	AGTTCTGCAA	AGTAGGCATT	AACAACACTT	GGCGGAGGTG	3180
AATAAGTGT	TAACTGCTCC	TGATCTGTTT	TACCAGCTAG	AAGCTGATCC	AGATAGACCT	3240
GTCCAGACT	TGTATAACCT	CCATACTTTA	GAGCCAAAGT	TTTAATATCA	таааата	3300

454 TCTTCTAACC TCCATTTATT TTTCTCGGAA ATGTAGCCTG TAATCACTTC GCCGTCTTCC 3360 TGATAATCAC GTTCTTCCAG AATTGCAACA CTCTCTAAAT CATGAATCTT GTAGGACTTT 3420 GAAAAAGGCA CTCGCAGGGT AAATGCTTCA AAAATTTCCT TAATCTTATC TAGCAATAAT 3480 GCTTGCAAGT TTTCACGACT GTCCTCAGAC TTGGCAGAAA TGAGGGTATA TGGCGTTTGG 3540 GTAGGCGTGA AATCCTCCAC CAAATCCGCT TTATTATAAA GCGTCAAGTG AGGAATATCT 3600 TCCATGTCCA GGTCTTTCAT GATGGAGAGA ACCGTTTTTT CATGCTCCTC GTGGTAAGGA 3660 TTGCTAGCAT CGATAACATG AACCAGAAGG TCCACATGCT TGCTTTCTTC CAAGGTTGAC 3720 TTGAAACTGG ACACCAACTC TGTCGGCAAA TCTTGGATAA AGCCAACGGT ATCTGTCAAA 3780 GTTACTTGGA GATTGCCTCC CAGATGAATA CTCTTGGTTG TCGCATCCAG AGTCGCAAAG 3840 AGCTCATCTG CTTCATACTG GGTCTTACTG GTCAAGATGT TCATGATAGT TGATTTCCCA 3900 GCATTAGTAT AACCAATCAA ACCAATCTTA AAAGTGCTAG ACTCCAAACG TTTTTCTCTG 3960 ACAGTCGCAC GATTTTCTC AACCACCTTG AGCTGGCGCT CGATATCCGT GATTTGATTG 4020 CGAACGCTAC GACGGTTCAG CTCCAGCTGG CTTTCACCAG GACCACGGGA ACCAATTCCC 4080 CCTgCCTGAC GGCTGAGCAT AATCCCCTGA CCAACCAAGC GAGGCAAAAG GTATTTGAGT 4140 TGGGCTAGGT GGACTTGGAG CTTCCCTTCA TGGCTTCGAG CCCGCATGGC AAAGATATCC 4200 AAAATCAACT GCATACGGTC AATGACCTTA ACACCGAGAA CTTCCTCTAG ATTGACATTC 4250 TGCCTTGGGG TCAGACGATT GTTGACGATG ACAGTAGTGA TTTCTTCTGC ATCCACCATA 4320 AGCGCAATCT CTTCCAACTT ACCAGAGCCG ACGAAGGTCT TGGAATCATA TTTTTCACGT 4380 TTTTGTCTGT AGCTATCTAC AACGACTGCC CCTGCCGTTT TCGCTAAACT AGCCAATTCT 4440 TCCATGGAGA GGTCAAAACT GTCCATACCC TGCAATTCCA CACCAATCAG CAGGACTCGC 4500 TCCTCTTTTT TCTCCGTTTC AATCATCTAA AAACTCCTCT ATCTGGCTTA AAATGCGGTC 4560 TTGTACACCA GATTCTCCAA TCTGATAAAA GGTGACCTGC ATGCGATTAC GGAACCAGGT 4620 CAGCTGACGC TTGGCAAAAC GACGAGTCGC CTGTTTAAGA CTCTCACTAG CTTCCTCCAA 4680 GGTCTGCTCT CCACGGAAAT AAGGAAAGAG TTCCTTATAG CCAATTCCTT TAGCAGCCTG 4740 TACATTAGGG GAATGGTCAA ACAGCCACTT GGCCTCATCC AAAAGCCCAG CCTCAAACAT 4800 CAAATCCACT CGGTGGTTGA TACGCTCATA AAGTTGACTA CGTTCATCAT CCAAGCAGAT 4860 AATCAGCGGT TCATACAAGG TCTCTTGATT TTCCAAATCC TGACCAAAAT GGGCAATTTC 4920 TAAGGCACGC ATAGCACGAC GACGATTAAA CTGGGGAATC TCAAGGCCTG CTTGATCCAC 4980 CAAATGGGCT AATTCCTCAT CTGAATATGG CTCCAAACTA GCTCGATAAG CTAAAATCTC 5040 CTCATGAGGA GTCTCCCCAC CTAGGTGGTA ACCTTCTAGC AAGCTCTGGA TATAAAGTCC 5100

455

AGCTCCCACCG GCGATAATGG CTAGCTTGCC ACGGTTGTGA ATACCCTCAA TAGTCATCTT 5160
AGCTTCTGAA ACAAAATCAA AAGCCGAGTA AGACTCGGTT ATCTCTCTAA CATCGATTAA 5220
ATGATGAGGA ACAGCTGCCT GCTCTTCTGG ACTAGCCTTG GCCGTCCCAA TATCAAGTCC 5280
TCGATAGACT TGCTGGCTAT CTCCACTAAC CACTTCGCCA TTAAAAACGCT TTGCGGGG 5338
(2) INFORMATION FOR SEO ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

CGGAAACCCA TCTAGTCTCC ATCGTTTGGG AGACCAAGCA ACACGAATCT TAGATGCTTC 60 TCGCCAACAG ATTGCAGATT TAATCGGTAA GAAAAGCGAT GAAATCTTCT TTACCTCGGG 120 TGGAACAGAA GGGGATAACT GGCTTATCAA GGGTGTGGCC TTTGAAAAAG CTCAGTTTGG 180 CAAGCACATC ATTGTTTCAG CCATTGAACA TCCAGCAGTC AAAGAGTCAG CCCTCTGGTT 240 GAAAAGTCAA GGATTTGAAG TGGATTTTGC TCCAGTTGAT AAGAAAGGCT TGGTCGATGT 300 TGAGGCGTTA CAGGTTTGAT ACGGCATGAT ACAATCCTCG TTTCCATCAT GGCTGTGAAC 360 AATGAAATCG GCTCTATCCA ACCTATTGAG GCTATTTCAG AATTCTTGGC AGACAAGCCG 420 ACTATTTCCT TCCACGTTGA TGCGGTTCAG GCGCTTGCCA AAATTCCGAC TGAAAAGTAT 480 CTGACAGAAC GGGTGGATTG CGCGACTTTC TCTAGTCACA AGTTCCACGG GGTTCGAGGT 540 GTTGGCTTTG TCTATATCAA ATCTGGCAAG AAGATTACAC CTCTTCTTAC AGGTGGTGGC 600 CAGGAGCGAG ATTATCGTTC GACAACTGAA AATGTGGCAG GGATTGCAGC GACAGCCAAG 660 GCCCTCCGTT TGTCTATGGA AAAGCTAGAT ATCTTTAGGA GCAAGACTGG GCAGATGAAG 720 GCAGTGATTC GCCAAGCTCT TCTGAACTAT CCGGATATTT TTGTCTTTTC AGATGAGGAA 780 AACTTTGCAC CTCATATTCT GACTTTTGGA ATCAAAGGTG TTCGAGGTGA AGTCATCGTT 840 CACGCCTTTG AAGACTATGA TATTTTCATC TCAACAACCT CAGCTTGTTC ATCTAAGGCA 900 GGAAAACCAG CCGGTACCTT GATTGCCATG GGAGTGGACA AAGATAAGGC CAAGTCAGCT 960 GTGCGTCTTA GCCTAGACTT GGAAAATGAT ATGAGTCAGG TCGAGCAGTT TTTGACCAAG 1020 TTAAAATTGA TTTACAATCA AACTAGAAAA GTAAGATAGG AGCATTCATG CAGTATTCAG 1080 AAATTATGAT TCGCTACGGA GAGTTGTCAA CCAAGGGTAA AAACCGTATG CGTTTCATCA 1140

456 ATAAACTTCG TAATAATATT TCGGACGTTT TGTCTATCTA TACCCAAGTT AAGGTAACAG 1200 CAGATCGCGA CCGTGCCCAC GCTTACCTCA ATGGAGCTGA TTACACAGCA GTTGCAGAAT 1260 CTCTCAAACA AGTTTTTGGA ATTCAAAACT TTTCTCCTGT TTATAAGGTT GAAAAATCTG 1320 TAGAAGTTTT GAAGTCTTCT GTCCAAGAGA TTATGCGGGA CATCTACAAG GAAGGTATGA 1380 CCTTTAAGAT TTCTAGCAAG CGTAGCGACC ACAACTTTGA ACTTGATAGT CGTGAACTCA 1440 ACCAAACACT TGGAGGGGCT GTATTCGAAG CCATTCCAAA TGTGCAAGTT CAAATGAAAA 1500 GTCCTGACAT CAATCTTCAG GTGGAGATTC GTGAAGAAGC AGCCTATCTT TCTTATGAAA 1560 CCATTCGTGG GGCTGGTGGT TTGCCAGTTG GAACTTCAGG TAAAGGGATG CTCATGTTGT 1620 CAGGAGGGAT TGACTCACCT GTAGCAGGTT ATCTTGCTCT TAAGCGTGGG GTGGATATCG 1680 AGGCAGTTCA CTTTGCTAGT CCACCATATA CTAGTCCTGG TGCCCTCAAG AAAGCGCAGG 1740 ACTTGACCCG TAAATTGACC AAGTTTGGCG GAAATATCCA GTTTATAGAG GTGCCTTTCA 1800 CAGAGATTCA AGAGGAAATC AAAGCCAAAG CGCCAGAAGC TTATTTGATG ACTCTAACTC 1860 GTCGCTTTAT GATGCGGATT ACTGACCGTA TTCGTGAGGT ACGAAATGGT TTGGTTATCA 1920 TCAATGGGGA AAGTCTAGGT CAAGTAGCCA GCCAAACCCT TGAAAGTATG AAGGCTATCA 1980 ATGCTGTTAC CAACACTCCC ATCATTCGTC CTGTGGTTAC CATGGACAAG TTGGAAATCA 2040 TTGACATCGC CCAGGAAATC GATACCTTTG ACATTTCAAT CCAACCGTTT GAAGACTGTT 2100 GTACCATTTT TGCACCAGAT CGTCCAAAAA CAAATCCTAA AATTAAGAAT GCGGAGCAGT 2160 ACGAAGCGCG TATGGATGTT GAAGGCTTGG TTGAGCGAGC AGTGGCTGGA ATCATGATTA 2220 CTGAAATCAC ACCTCAAGCC GAAAAAGATG AAGTTGATGA CTTGATTGAC AATCTGCTCT 2280 AATTCAGAAA ATCCAAAAGA ATAGCGAAAA TCAGTAAAAA AAGTTAGTTT TTTCTCTAAA 2340 AACAGGTAAA AAACTAACTT TTTTTATTTT TATGATATAA TGATATAAAA TTTTGAATAT 2400 AGAGAGTTTT CTGACAATGA ATCAATCCTA CTTTTATCTA AAAATGAAAG AACACAAACT 2460 CAAGGTTCCT TATACAGGTA AGGAGCGCCG TGTACGTATT CTTCTTCCTA AAGATTATGA 2520 GAAAGATACA GACCGTTCCT ATCCTGTTGT ATACTTTCAT GACGGGCAAA ATGTTTTTAA 2580 TAGCAAAGAG TCTTTCATTG GACATTCATG GAAGATTATC CCAGCTATCA AACGAAATCC 2640 GGATATCAGT CGCATGATTG TCGTTGCTAT TGACAATGAT GGTATGGGGC GGATGAATGA 2700 GTATGCGGCT TGGAAGTTCC AAGAATCTCC TATCCCAGGG CAGCAGTTTG GTGGTAAGGG 2760 TGTGGAGTAT GCTGAGTTTG TCATGGAGGT GGTCAAGCCT TTTATCGATG AGACCTATCG 2820 TACAAAAGCA GACTGCCAGC ATACGGCTAT GATTGGTTCC TCACTAGGAG GCAATATTAC 2880 CCAGTTTATC GGTTTGGAAT ACCAAGACCA AATTGGTTGC TTGGGCGTTT TTTCATCTGC 2940

AAACTGGCTC CACCAAGAAG CCTTTAACCG CTATTTCGAG TGCCAGAAAC TATCGCCTGA	3000
CCAGCGCATC TTCATCTATG TAGGAACAGA AGAAGCAGAT GATACAGACA AGACCTTGAT	3060
GGATGGCAAT ATCAAACAAG CCTATATCGA CTCGTCGCTT TGCTATTACC ATGATTTGAT	3120
AGCAGGGGA GTACATCTGG ATAATCTTGT GCTAAAAGTT CAGTCTGGTG CCATCCATAG	3180
TGAAATCCCT TGGTCAGAAA ATCTACCAGA TTGTCTGAGA TTTTTTGCAG AAAAATGGTA	3240
AGTTAAGAAA GGAAAAAACG AAATGCATAT TGAACATCTT AGCCACTGGA GTGGTCATCT	3300
TAACCGTGAA ATGTACCTTA ACCGTTATGG ACATGGTGGG ATTCCAGTTG TGGTCTTTGC	3360
TTCATCAGGT GGTAGTCACA ACGAATACTA TGATTTTGGC ATGATTGATG CCTGTGCTTC	3420
CTTTATCGAG GAAGGCCTTG TCCAGTTCTT TACCCTATCT AGTTTGGATA GTGAGAGCTG	3480
GTTGGCTACT TGGAAAAATG CTCATGACCA AGCGGAAATG CACCGTGCCT ACGAACGTTA	3540
TGTGATTGAG GAGGCCATTC TTTTATCAAG CACAAGACAG GTTGGTTTGA TGGCATGATG	3600
ACGACAGGTT GCTCTATGGG AGCCTATCAT GCACTCAATT TCTTCCTCCA GCATCCAGAT	3660
GTCTTTACCA AAGTGATTGC TCTCAGTGGT GTTTACGACG CACGTTTCTT TGTCGGTGAT	3720
TACTACAACG ATGATGCTAT TTACCAAAAC TCGCCAGTAG ATTATATTTG GAACCAAAAC	3780
GACGGCTGGT TTATTGACCG TTACCGTCAG GCAGAGATTG TGCTGTGTAC GGGGCTTGGA	3840
GCCTGGGAAC AAGATGGTTT GCCATCCTTT TACAAGCTCA AAGAAGCCTT TGACAAGAAA	3900
CAAATTCCAG CCTGGTTTGC TGAATGGGGA CATGATGTCG CCCATGACTG CGAATGGTGG	3960
CGTAAACAAA TGCCTTATTT CCTCGGTAAT CTCTATTTAT AAAAGGAGTT ACCTATGAAT	4020
TACCTTGTTA TTTCTCCCTA CTATCCACAA AACTTTCAAC AGTTTACCAT CGAACTAGCT	4080
AATAAAGGCA TCACAGTCTT GGGAATTGGT CAAGAGTCTT ACGAGCAATT GGATGAGCCC	4140
TTGCGCAATA GCTTGACCGA GTATTTTCGT GTTGATAATC TTGAGAACAT AGATGAAGTC	4200
AAACGTGCAG TTGCTTTTCT CTTTTATAAA CATGGTCCAA TTGGCCGCAT CGAGTCTCAC	4260
AATGAATACT GGCTTGAGCT AGACGCAACA CTCAGAGAAC AATTCAATGT TTTTGGTGCC	4320
AAACCAGAGG ATCTCAAAAA GACGAAATAT AAGTCTGAAA TGAAGAAACT TTTCAAAAAA	4380
GCAGGTGTTC CTGTGGTACC TGGAGCTGTT ATCAAGACGG AAGCAGATGT TGATCAAGCA	4440
GTGAAAGAAA TCGGTCTTCC AATGATTGCC AAACCTGATA ATGGAGTGGG AGCAGCCGCA	4500
ACCTTTAAAC TTGAGACAGA AGACGATATC AATCACTTCA AGCAAGAATG GGACCATTCA	4560
ACCCTTTATT TCTTTGAAAA ATTTGTCACT TCCAGCGAAA TCTGTACCTT TGACGGGCTC	4620
GTGGACAAGG ATGGAAAGAT TGTCTTCTCA ACAACCTTTG ACTACGCCTA TACACCGCTT	4680

458	
GACCTCATGA TTTATAAGAT GGACAATTCT TATTATGTGC TCAAGGATAT GGATCCTAAA	4740
CTGCGCAAGT ATGGGGAAGC AATTGTCAAA GAATTTGGTA TGAAAGAACG GTTTTTCCAT	4800
ATTGAGTTCT TCCGTGAGGG GGACGATTAT ATTACCATCG AGTACAATAA CCGCCCTGCA	4860
GGTGGTTTTA CCATTGATGT TTATAACTTT GCTCATTCCT TGGACCTTTA TCGTGGCTAT	4920
GCAGCTATTG TCGCAGGAGA GGAGTTCCCG GCGTCAGACT TTGAAACTCA GTATTGTTTG	4980
GCTACTTCTC GCCGTGCAAA TGCTCACTAT GTTTATTCAG AAGAGGATTT GCTTGCCAAA	5040
TATAGCCAGC AGTTCAAGGT TAAAAAAGTC ATGCCAGCTG CCTTCGCGGA ACTTCAAGGA	5100
GATTACCTGT ATATGCTGAC CACTCCGAGT CGACAAGAAA TGGAGCAGAT GATTGCAGAT	5160
TTCGGACAAC GTCAAGAATA AGAACTATCG GATTAAGGAA ATTAACTCCC TTAATCCTTT	5220
TGTTTTGTCT GATAAAAAT AAGAGCATCC CAACAAGGTA GCTATCATAA AACTTGTTCG	5280
ATAACTATTT GAAGCAGGAT TAGGTGGTCA GAAATTAAAT TTTAATATTT CAATTGAGTC	5340
ATAGTATTGT GTTTGCGTAT CCTTAAATCA GCTAAAAGGA TCCATGACGA CACCTATACG	5400
ATATAGTTTT CAAGATACCA AACAAGTCTA TTAATATTCA ATGAAAATCA AAGAGCAAAC	5460
TAGGAAGCTA GCCGCAGGTT TCTCAAAACA CTGTTTTGAG GTTGTGGATA GAACTGACAG	5520
AGTCAGTATC ATATACTACG GCAAGGTGAA GCTGACGTGG TTTGAAGAGA TTTTCGAAGA	5580
GTATAAAATA TTCAGGTGAC GCATAGATAT AGTTAATTGA AGCTTTGTTT GAAATCTGAT	5640
AAAATAATGA TATTACTAAG TTTTAAAAAC TAAAGAAAAG GGAAGATATG ATTACAGGCG	5700
AATTAAAAAA TAAAATCGAT CAGCTGTGGG AAATTCTTTG GACAGAAGGA AACGCAAATC	5760
CTTTAACAAA TATTGAACAG TTGACTTATC TCTTATTTAT GAAAGATTTG GATAGTGTCG	5820
AGCTTGGACG TGAAAGTGAT GCTGAATTTC TAGGGATTCC TTATGAGGGA GTTTTTCCAA	5880
AAGATAAACC TGAATACCGT TGGTCAACTT TTAAAAATAT AGGAGATGCT CAGGAAGTTT	5940
ATCGTTTAAT GACTCAGGAG ATTTTTCCGT TTATTAAAAA TCTCAAGGGG GATACAGATG	6000
ATACAGCCTT TTCACGATAT ATGCGAGAAG CTATTTTTCA AATAAATAAA CCTGCTACGC	6060
TTCAAAAGGC AATTTCTATC TTAGATGTTT TTCCAACTAG GGGATTAGAT GTAGATTTTG	6120
ATAATGACAA ACAAAGTATT ACTGATATCG GAGATATCTA TGAATATCTG TTATCAAAAT	6180
TGTCGACCGC AGGTAAAAAT GGACAGTTCC GTACACCTCG TCACATCATC GATATGATGG	6240
TTGAGTTGAT GCAACCGACT ATCAAAGATA TCATCTCAGA TCCCGCTATG GGTTCTGCTG	6300
GCTTCTTAGT ATCTGCTAGC CGTTACTTAA AGCGTAAGAA AGATGAATGG GAAACCAATA	6360
CAGATAATAT CAATCATTTT CATAATCAGA TGTTTCATGG AAATGATACG GATACGACTA	6420
TGTTGAGACT TGGGGCGATG AACATGATGC TACATGGAGT AGAAAATCCA CAAATCACTT	6400

ACCTTGACTC GCTCTCTCA CARACTER	
ACCTTGACTC GCTGTCTCAA GATAATGAAG AAGCCGATAA ATATACTTTG GTTTTAGCAA	6540
ATCCTCCTTT TAAGGGCTCA CTTGACTACA ATTCAACCTC TAATGACCTT CTTGCAACCG	6600
TAAAAACCAA AAAAACAGAA TTACTCTTTC TTTCTCTTTT CTTGCGAACT TTAAAACCAG	6660
GTGGACGAGC AGCAGTTATC GTACCTGATG GTGTCCTTTT TGGTTCGTCT AAAGCTCATA	6720
AAGGAATTCG TCAGGAAATT GTAGAGAATC ATAAGCTTGA TGCTGTAATC TCAATGCCTA	6780
GTGGTGTGTT CAAGCCTTAT GCTGGAGTTT CAACTGCCAT TCTCATCTTT ACAAAAACTG	6840
GTAATGGTGG TACTGACAAA GTCTGGTTTT ACGATATGAA AGCGGATGGT TTAAGTTTGG	_
ATGATAAGCG ACAACCGATT AGCGACAATG ATATTCCAGA TATTATCGAA CGCTTTCATC	6900
ATCTTGAAAA AGAAGCAGAA CGTCAGAGAA CGGATCAATC TTTCTTTGTT CCAGTTGCTG	6960
AGATAAAGGA AAATGATTAT GATTTGTCTA TCAATAAATA TAAAGAGATT GAGTATGAAA	7020
AAGTTGAGTA TGAACCAACA GAAGTCATAT TAAAGAAAAT CAATGATTTA GAAAAAGAAA	7080
TTCAAGCTGG CTTGGCTGAA TTGGAAAAAT TACTCAAGTA GGGAGGTGGC TGTATGAAAA	7140
AAGTGAAGTT GGGGGAAGTC TTATCTCTAA AAAAAGGCAA GAAAGCCACT GTACTTGCTG	7200
AACAAACAAC TCTAAGCCAA CCTTATTTTC AACAAACAAC TCTAAGCCAA CCTTATTTCTG	7260
AACAAACAAC TCTAAGCCAA CGTTATATTC AAATAGATGA TTTAAGAAAT AATAATAATT	7320
TAAAATTCAC TGAAAGTTTA AATATGACTG AAGCACTCCC AGATGATATT CTGATAGCAT	7380
GGGATGGAGC TAATGCAGGA ACAGTTGGTT ATGGATTATC GGGAGCTGTT GGTAGTACAA	7440
TTACGGTCTT AAAAAAGAAT GAGCGATACA AAGAAAAAAT TATATCAGAT TACTTGGGAG	7500
TCTTTTTGGA AAGTAAATCG CAGTATTTAC GAGATCATTC AACAGGTGCA ACAATTCCTC	7560
ATTTAAACAA GAATATATTA CTTGATTTAC AATTAGAATT GCTAGGTATC GAAGAACAAG	7620
AGAACATTAT CTGTATTCTT AATACGATTA AAAGGCTTAT TACTAAAAGA AAATTTCAGT	7680
TAGATGAACT AAACTTGCTC GTCAAATCCC GATTTAACGA GATGTTTGGG GAAAATAAAA	7740
TATTTGAAAG CATTGATAAC TTATTTGATA TTATAGATGG TGATAGGGGC AAAAATTATC	7800
CTAAATCAGA TGAGTTGTTT AGTGAGGAGT ACTGTTTATT TTTAAATACA AAGAATGTTA	7860
CTAAAAACGG ATTTTCATTC GATACAAAGC AATTTATCAC TAAAACAAAG GATAAATTAC	7920
TTCGAAAAGG CAAACTTGAG CGTTATGATA TAGTCTTGAC AACAAGAGGT ACTGTTGGAA	
ATGTAGCGTA CTACGATGAA TTAATAAAAT ATAAACATTT ACGTATAAAT TCAGGTATGG	7980
TAATATTACG TCCCAAGACA CCAAATCTAA ATCAGAAATT TATTATCCAT GTTTTAAGGA	8040
ATAATAATTA TAGTCGAGTG ATATCAGGAA GTGCTCAGCC TCAGTTACCA ATTACAAAAT	8100
PANANANA ACTICICCC CTCCCCCAC TAGCCCTCCA ANATGAGTTC GCAGACTTTG	8160
TAGCCCTCCA AAATGAGTTC GCAGACTTTG	8220

TAGTCCAGGT CGACAAATCA CAATTTGCTT GTGAGATAGC TATAAAAGTG TGGAGAAATA 8280 GCTTGAAATT TAGTATAATA TAGCTAAACT ATTTGTTTAA AGTGAGAAAA AAATGGGAAA 8340 TTTTAGCTTT CTTTTAAAAA ATGACGAATA TGAATCTTTT TCAAAACCTT GCATTGAAGC 8400 TGAGAATATG ATTGCTACAT CAACTGTGGC TACTGCCTTT ATGGCGCGTC GTGCTTTAGA 8460 GCAGGCTGTC CATTGGATAT ATAGTCACGA TTCATATTTA GAAGCTCCCT ATCGTGCTAC 8520 TCTATCTTCT TTAGTATGGG ATGATGATTT TAGGGATATC GTAGATTCTG AACTCCACAA 8580 GCAGATAGTT CTGTTGATTC GGTGGGGAAA CCATGCTGCT CATGGTGGTG AAATTAAGGA 8640 ACGAGAAGCG ATTTTAGCTT TGCATCATTT GTATCAGTTT GTTAATTTTA TCGATTATTG 8700 TTACAGCAAT GAGTTTGTGG AGCGTTATTT TGATGAGAAG TGCTTACCAC TTTCAGCAAA 8760 CATCAAATAC CGAGAAACTC CACAATCTAT GATAAAGTTA CAAGACAGTT TACCAGAACT 8820 GCCTGATTTT CATGAACAGA TGGCTGCTCA GTCCGTAGAA GTTCAAGAGA CTTATACTGA 8880 AAAACGTGAG ACTGCAGCGC AACGGCAAGA TGTGCCTTTC CATATTGATC AATTATCTGA 8940 GGCAGAGACA AGAAAGCTCT TTATTGATAT CGATCTCCGT TTAGCAGGAT GGATATTTGA 9000 AGAAAACTGT CGTGTTGAGA TAGCCGTTGA TGGTCTCAAG CACGGTTCAG GAATTGGTTA 9060 CTGTGACTAT GTACTTTATG GTAAAAATGG GAAAATTTTA GCGATTGTGG AGGCTAAAAA 9120 AGCCTCTGTC AATCCAGAAG TAGGGGAAGT ACAGGTCAAA GAATATGCTG AAGCTTTTGGA 9180 GAAACATATC GGCTATCAGC CAATTTGCTT TATTACAAAT GGGTTGAAGC ACTATATACT 9240 TGATGGTCCG AACCGCCGCC AGATTGCAGG CTTTTACTCT CAAGAAGAAT TGCAATTAGT 9300 GATGGATAGA CGTCATCTTC AAAAACCGCT TGAGGATATT TCTAGTAAAA TTAGGGACGA 9360 TATTTCCGGG CGTCACTACC AAAAACATGC CATTGCAAGC GTTTGTGAAG CTTTCTCTGA 9420 TCATCGTAGA CAGGCACTTT TGGTTATGGC AACTGGGGCG GGGAAAACTC GTACAGCAGT 9480 TTCTCTAGTT GATATCTTAT CACGTCATAA CTGGGTAAAA AACGTTCTCT TCTTAGCCGA 9540 TAGAACTTCC TTGGTTAAGC AAGCATATGA TTCGTTTAGA AAATTACTCC CAGATCTTTC 9600 CGTTTGTAAC TTCTTAGAAG ATAAAGAAGG AGCTCAATCA AGTCGCATGG TCTTTTCAAC 9660 TTATCCGACC ATGATTGGAG CGATTAGTGG TCAAGAAGAA GTAAATCAAC GCCCTTTCAC 9720 TGTTGGGCAT TTTGACCTTA TCATAATTGA CGAATCTCAC CGTTCTATTT ATCAGAAATA 9780 CAAGTCCATT TTTGATTATT TTGATGCAAG AATTGTAGGC TTAACAGCTA CTCCGCGTCA 9840 AGATTTAGAT AAAAACACCT ATGGATTCTT TAATTTGGAG AATGGGGTTC CAACATATGC 9900

ATATGATTIG GAAGAGGCTG TTAAAGACGG ATATTTAGTA GCCTATCATT CTATCGAAAC

CAAACTGAAA CTACCTACGG ATGGTCTACA TTATGATGAT TTGTCCGAAG AAGAAAAGGA

9960

ACATTTTG	T AGCAAATTT	G AAGACAATA	G CTGTGAAAA	A GATATTGAT	G GGAGTGTATT	10080
TAATTCCTT	т аттттсаат	A AAAGTACAG	T AGAAATTGT	T TTAAATGAA	C TCATGACAAG	10140
AGGAATTCA	G ACAGCCTCG	G GTGATGAAA	T TGGTAAAAC	T ATTATTTT	G СТАААААТСА	10200
TGATCATGO	G GAATATATC	A GAGGTATTT	T TAACAACCG	C TATCCTGAA	A AAGGGAGCGA	10260
CTATGCTCA	G GTGATTGAT	Т АТАСТАТТА	A GCATTATCA	ACCTTGATTO	ATGATTTTAA	10320
AATTAAGGA	G AAGTATCCT	C AAATTGCGA	T TTCTGTCGA	T ATGTTAGATA	CAGGTATTGA	10380
TGTACCAGA	G GTTGTTAAT	r tagtettet	T CAAGAAAGT	CGCTCTAAA	CTAAGTTTTG	10440
GCAGATGAT	T GGTCGAGGA	A CCCGTCTAT	G TAAAGATTT	TTTGGACCTG	AGCAGGATAA	10500
GGAAAACTT	C TTGGTATTY	ATTATGGGG.	A CAATTTTGAT	TATTTTCGTG	CAGATCCAAG	10560
AGATGGAGA	G GGTCGTCACA	TTGTTTCGC	r gactcagegi	TTATTTAATA	TCAAAGTGGA	10620
CTTGATTCG	A GAACTTCAGG	GACTCCAATA	A CCAAGAAGA1	CAGTTTGCGA	GAGCATACCG	10680
TCAGCAGCT	r gtctcggaac	TTCAAGGTC	G TATAGAGAGC	TTAAATGAGT	TGGACTTCAG	10740
GGTTCGTATC	G GTTTTAGATA	CAGTTTATAC	G CTATAGGAAA	TTGGAAAGTT	GGCAGAATCT	10800
AACTGCTGTT	P ACAAGTGAAA	CCATTCAAA	AAATCTCTCT	CCGCTTTTAT	TTGATGAAGA	10860
TAAAGAAGAT	GAGATGGCGA	GGAGATTTGA	TTTGTGGTTG	CTTCATATTC	AGTTGGGGCA	10920
ACTGACAGCT	AAATCTTCCA	CTGTTCATAT	TTCCCAAGTG	ATGAAGACGG	СТАСАССТСТ	10980
TTCTGCTATT	GGCAATATCC	CGCAGGTTTT	TGAGCAGGCT	GAAATTATCA	GGAAAGTACA	11040
GGAGCCTGAA	TTTTGGAAAG	AAGTTAACTT	GTCTGATTTG	GAAAAAATTC	GTCTTGCTAT	11100
TCGAGATTTA	TTACAGTTTT	TGGATAAAAC	AGACCGTAAA	CCCTACTATG	TTAACTTTGA	11160
AGATCGTATA	CTCTCCACTG	TTCACGAGAC	CACAGCATTT	TTGCAGGTCA	ACGATCTTCG	11220
GTCTTACAAT	GAAAAAGTTG	AGCATTATTT	GAAAACTCAT	CTGGATGAGG	AGTCCATTTC	11280
TAAGCTATAC	САТААТАААА	AGTTGACATC	TGATGATATG	CTTGCACTTG	AAAAATTGCT	11340
TTGGGAAAAA	TTAGGTAGTA	AAGCAGACTA	CCAAAGTCAT	TATGAAAATA	AGGCAATTCC	11400
GAGATTGGTT	CGTGAGATTA	TTGGCTTAGA	TAGAGAGTCT	GCCAATCGTA	ТТТТТТСТАА	11460
ATTTTTGTCG	GATGAGAATC	TTAATGCCAG	GCAGATTTCA	ТТТСТААААТ	TGATTGTAGA	11520
CTACATTGTA	GAAAATGGTT	TTTTAGAGAC	GAAAGTGTTA	ACGCAAGAGC	CGTTTAAATC	11580
TTATGGTTCT	GTTCAACTAC	TCTTCCAACA	CCAACTACCA	GTACTTCGTA	ATATTGTTCA	11640
AATCATTGAA	СТТАТСААТА	ATCGAGCTGG	AGAAGCGGCT	ТАААТТСТАА	AGTGATTGCC	11700
ATGCTGAGAC	TCATTTAAAA	TTAAAAAG AG	TAGAAATTTA	ТССТАТАТАТ	GAGAAGTTTT	11760

AMMAGGA - G - G - G - G - G - G - G - G - G	
ATTAGGAAGA ATGTCATCGT TTTCCTAGAA TACAGTATCA GTTGTTAAGT GGTTGATAAA	11820
TTTCAAAGTA GATACTTGTA CCACGATGTT TGTTGATCGA GTTATTAACA AAAGAGCTAC	11880
TTTGATTTTA AAGAAATAGA AAACAAAAAG CCGAGCAAGA ATTCAATTGC AGGAGAAAAT	11940
GAAATAATAC TCAATGAAAA TCAAAGAGCA AACTAGGAAA CTAGCTGCAG GCTGCTCAAA	12000
ACACTGTTTT GAGGTTGCAG ATGGAAGCTG ACGCGGATTG AAGAGATTTT CGAAGAGTAT	12060
AAATCTTCCT AGGATAAAGC AAAACGCATA GTATCAAGGG TTTTCAACAC TTGATACTAT	12120
GCGTTTTCTG ATGTTAAAGA CTTTCTACCA GGTTTTTTAA AAGCATAATT GTTAGTTGTA	12180
GTCATTTATT ATTCTTCAAA GAAAAATGGT GGGGCGAATT TTTTCAGTTC TTCAAAGCAC	12240
TTTTGAGCAG TATCTGCATC TTCACAGATG ATAAGACAGA CATCATTACC ACAAAGGGTA	12300
GCGATAGCGT CAGGGAAGCT CAAAGTATCA ATGATAGAAC CAAAGGATTG AGCCAGTCCA	12360
GGAAGGGTTT TTAGTAGGAC TTGGTGTTGA ACTGGGCGCA TCCAGACAAG GGCGTCTTCC	12420
ATGTAGAGTT CGAGACGTTT TTCCCATTTT GAGATGGAAC CATTGTTAAG AACATAATAA	12480
GCGCTATCTT CTTCGCGGAC TTTTGATAGG TTCATATTTT TGATGTCGCG TGAGAGGGTT	12540
GCCTGGGTTA CTTGAATGTC GTTCTCAGCA AGAAGGGCTT GCAACTCAGC CTGTGTATGA	12600
ATCTTGTTTT TTGTGATAAG AGCGCGTATA AGTTGGTGGC GGTGTTCTGA TTTATTCATA	12660
ATAATGTAAC TCCTTTTAGC AAGGTAAGGT AAGCATGGAC TGAGCGAGGT CGACAGTCAA	12720
GTGGTAGTCT GTATTGTCAC GGATGGTGAT TTCAAAGTCA GTAGTATAGA GGACTAAACG	12780
GAGAGTGTCT CCTTCTTTTA GCTTGTAAAT AGTTGGCTGC AGTTCAAATT GAACGTCCAT	12840
CCATTCATCT GCAGTAATAT CCTCTACTAA CAGTAAATCA TTTCTATTTT GTAAATTAAG	12900
GTAACCTTTT GTCACGACTC GTTGTGCCTC TGGTCTAAAT GGCAATTCAC AGAGATTTTC	12960
CAACATGTGA TAGCGACCGT TGTCAATGGT TCTAGCACTT AAAATAGCTG GATAAGGTTG	13020
TAGGTATTTC TTTTGCCCAA ATTCTAGCAG TTGGGCAGAT AAGAGCCCCT TGTTTGTACT	13080
GGATTTGATA CGAAGATTGA GCTGAGCGCG ACCGTTTAGG TGGAGATCTT TAGTCACAGG	13140
AAGGTTAATA GTAATCTGAT TGGCTTTCCC TTGATAGAGC TCTGTATTGA AGGTTTGGTA	13200
TGTCTTACCA TAGCGCTCAA AATCCTTATC TGGGTACTGG TTTTGAATAG CTTGCTCTTC	13260
TTGACCAAGT GAGAAGGTTT CACAGTTTTC TTGCCCACCG AAGTTATCAA GTGATAACCA	13320
AGTCTGTGGA GCTGTATTGT CCTGCCAGAT AACAGTAGGA AGTTGAAAGT CTGTTTCCTG	13380
TCCTAGTAAT TTCTTGGTCA ATAAGGCATT TATGGACTCA CGGAAGTCAA TTGATTGCCA	13440
ATTGTTCATG TAAACATGGG CACCATTATG GAAAAAGAGA TGCTTGTGTA TATGAGTAGG	13500
AAGAGCATGG AACATCTGGT AAACATGAAG TGGTTTGACA TTCCAATCCT GAGAACCATG	13560
	~2300

AGTAAAGACA ACCTCTGCCT TTACTTTATG GGCATTGAGC AGATAATTGC GGTCATGCCA	13620
AAACTGATTG TAGTCCCCAG TTTTTCGGTC TAGCTGAGCT TTCACTTTTT CTAAGTCAGC	13680
TTGGTGAGCT TCATTGCCAC GGATATAGTC GCCAGCTAAG AGATTACGAG AATAGGTTAA	13740
CTCAGCAAGG GAGTCAAAGT CCTCACCTGG ATAACCACCT GGGCTAGTCA CCAGACCGTT	13800
TTCACGGTAG TAGTTGTACC ATGATGAAAT TCCTGCCTCG GCAATGATAA CTTCTAAACC	13860
ATCGACTCCT GTAGTCGCAA GACCATTGGA CATGGTACCT AGATAGGAAA GTCCTGTTGT	13920
AGCAACTTTT CCGTTTGACC AATCAGCCTT GACTTGACGC TGGCGCGTGT GATCAGTAAA	13980
GGCACGGCAA CGACCGTTAA GCCAATCGAT GACATTTTTA TAAGCCTCGA TTTGCTGGTA	14040
GTCTCCATTA GTCATGAAAC CTGTCGAGTC TTTGGTACCA ACACCTGAGA CATAGAGATT	14100
GGCAAAGCCT CTCGGAAGGA AGTAGTCGTT TAGTGTATAG CTAGAGTTGA TGTGAGTTAG	14160
CTTTTCCTCA GCCTCTGCTA TAAGCTCAGC TTTACCTTGG GGTTGGACGA GATTTAGTTG	14220
AGGTTTCTCT AGCTCAATCT TGTGAGGAAG CTTAACCTCA AGCTCGCCCT CCATCTTGTA	14280
GAGAGCCTTG TCACTAGCCT TGTCATTGGT TCCCTGATGA TAAGGGCTGG CTGTCATGAT	14340
GGCAGGGATT TTTCCATCAA AACGAGGGCG AATAATGCTA ACCTTTACTA GGTCTGATAG	14400
CCCTTTTTGG TCAGTATCGA CACGAGACTC AACGTAAACG ACTTCACGAA TGACATCCTG	14460
GTTAGAAAAA GTAGCCAAAC TCTTGCCGTT AAAGTAGTGG TAGTCATTAT CCTCCGGAAT	14520
AAGACCATCA CTAACAAGTT GGTCGATAAG AGTATTTCCT TTTTTGGTGC GAGTATTGAG	14580
TAACTGATAG AGATTTTCAA TCAAGTCACC ATATATAATG GGAAATCCAG TTTCTTTACG	14640
AAAAACGTCA CTATCTTCGA AGTCAACCAA ATAAGAAAAG CCTAAAAGTT GAAAAGCAAC	14700
AGTATAAAAA ATATCTGCTG TCAGTTCATC TTCTGATTGA AAAAATGTCA GCAGGTCTGT	14760
TTTTTTATCA GCTGCTAGGA TAGAAAGTGG GTAGTTGGTG TCTTGATAAG TGAAAAAGAA	14820
ACGACGTAAA AAGGTTTCAA GTGAGTCTTT GTGATTGGCT GTATTTTGTA AATCAAAGCC	14880
ACATTTTTT AGTTCAGATA AGACATTTTC TTTTGGAAAA TTGATATAAC TATATTGATT	14940
AAAACGCATA GAACCTCCAT ATAGAATGAC AGTTAAGGTT ATTATATCAA AAAAAAAGCA	15000
GAAAGGGAAT TGTTAACTTC AAAAGGAAAT AATCCAATAA AAATGAATAA AGTACTAAAT	15060
TCAATATAGA GAACAGAGTA ACAATAAGAA TAAATAGATA GGGTATAAAA GTTCTAGGAG	15120
ATTTATATTA TATGCTTTCT ATTTTATAT ACAATATAGT ATAAATATAA AAATGATGAC	15180
AAAAATACAA ATGAATAGAA AATAAATTAG TAAGCTGATG AAATTTTTCT CAAGAGAAGC	15240
CATTTATAGG TGAAAATGGT ATAATATAGT GAGAAGGATA GAGGAGAAGT GTAAATTGAT	15300

		464			
CGCACAACTA GATACAAAAA	CAGTCTATAG		AGCGTCATTT	CGATCGAAAA	15360
GTATGTGAGA GCAGCTAAAG	AATACGGCTA	CACTCATTTG	GCTATGATGG	ATATTGACAA	15420
TCTTTATGGC GCTTTCGACT	TTCTAGAGAT	TACAAAAAA	TACGGCATTC	ATCCTTTGCT	15480
AGGGCTTGAA ATGACAGTGT	TTGTAGATGA	TCAGGGAGTG	AATTTGCGCT	TTTTAGCTCT	15540
ATCTAGTGTG GGCTATCAGC	AGTTGATGAA	GCTTTCGACA	GCCAAGATGC	AGGGGGAGAA	15600
AACTTGGTCA GTCCTGTCCC	AGTACCTGGA	GGATATCGCG	GTCATTGTGC	CTTATTTTGA	15660
TAGAGTTGAG TCGTTAGAAC	TAGGCTGTGA	ТТАСТАТАТА	GGGGTTTATC	CAGAAACACT	15720
AGCAAGCGAA TTTCATCATC	CTATCTTACC	TCTTTATCGG	GTCAACGCTT	TTGAAAGCAG	15780
GGATAGAGAA GTTCTTCAAG	TTTTAACAGC	GATTAAAGAA	AATCTACCGC	TCAGAGAAGT	15840
TCCCTTGCGT TCGAGACAAG	ATGTCTTTAT	ATCAGCAAGT	TCTTTAGAGA	AACTATTCCA	15900
AGAGCGTTTT CCGCAAGCTT	TGGACAATTT	AGAAAAGCTT	ATTTCAGGCA	TTTCTTACGA	15960
CTTGGATACT AGTCTGAMAC	TGCCTCGTTT	TAATCCAGCT	AGACCAGCAG	TAGAGGAGTT	16020
GAGAGAGCGT GCTGAACTGG	GGCTTGTTCA	GAAGGGGTTG	ACTAGTAAAG	AATATCAAGA	16080
TAGACTAGAC CAAGAATTGT	CTGTTATTCA	TGATATGGCC	TTTGATGATT	ATTTCTTGGT	16140
TGTTTGGGAT TTGTTGCGTT	TTGGACAATC	GAATGGCTAT	TATATGGGAA	TGGGAAGGGG	16200
TTCTGCAGTA GGCAGTTTGG	TTTCTTATGC	CTTAGACATC	ACGGGGATTG	ACCCAGTAGA	16260
GAAAAATCTG ATTTTTGAAC	GCTTTCTTAA	TCGTGAACGC	TATACCATGC	CTGATATTGA	16320
TATTGATATC CCAGATATTT	ATCGTCCAGA	TTTTATCAGA	TATGTTGGTA	ATAAATATGG	16380
TAGTAAACAT GCGGCACAAA	TCGTTACTTT	TTCAACCTTT	GGAGCCAAGC	AAGCTCTTCG	16440
AGATGTCTTG AAACGCTTTG	GTGTGCCAGA	GTATGAATTA	TCTGCAATTA	CTAAGAAAAT	16500
CAGTTTTCGT GACAATCTTA	AGTCGGCCTA	TGAGGGAAAT	CTCCAGTTTC	GTCAGCAAAT	16560
CAATAGTAAG TTAGAATACC	AAAAAGCTTT	TGAGATTGCT	TGCAAGATAG	AGGGCTATCC	16620
AAGGCAAACC TCTGTCCATG	CGGCTGGTGT	TGTAATTAGT	GACCAAGATT	TAACCAACTA	16680
CATTCCTCTA AAGTATGGTG	ATGAAATTCC	ACTGACTCAG	TATGATGCTC	ATGGAGTTGA	16740
GGCTAGCGGA CTTTTGAAGA	TGGACTTTCT	GGGACTACGA	AATTTGACCT	TTGTCCAGAA	16800
GATGCAAGAG TTGCTTGCTG	AAACAGAAGG	TATTCATCTG	AAAATTGAAG	AAATCGATTT	16860
AGAAGACAAA GAAACGTTAG	CTTTATTTGC	CTCTGGTAAT	ACAAAAGGTA	TCTTTCAATT	16920
TGAGCAACCA GGTGCCATTC	GTCTGCTTAA	GCGTGTGCAA	CCAGTCTGTT	TTGAAGATGT	16980
CGTCGCGACT ACTTCTCTAA	ATCGACCGGG	TGCTAGTGAC	ТАТАТСААТА	ATTTTGTGGC	17040
AAGAAAGCAT GGGCAGGAAG	AÄGTGACTGT	TCTGGATCCA	GTACTGGAGG	ATATTTTGGC	17100

TCCA A COMP OF THE STATE OF THE	
TCCAACCTAC GGCATAATGC TCTATCAGGA GCAGGTTATG CAGGTTGCCC AGCGACTTG	C 17160
CGGATTTAGT CTTGGGAAAG CCGATATTTT GCGTCGGGCT ATGGGGAAAA AGGATGCCTG	2 17220
TGCCATGCAT GAGATGAGGG CTTCCTTTAT TCAAGGTTCA TTAGAAGCTC GTCATACTG	T 17280
GGAAAAAGCA GAGCAGGTCT TTGATGTTAT GGAGAAGTTT GCAGGTTATG GTTTTAACAC	3 17340
GTCACACGCC TATGCCTACT CAGCCTTGGC CTTCCAGTTG GCTTATTTCA AAACGCATTA	17400
TECHGECATT TTTTATCAGG TCATGTTAAA TTCTTCCAAC AGTGATTACT TAATACATCC	1945-
ACTIGARGEA GGTTTTGARG TAGCCTCTCT ATCCATCARC ACCATTCCCT ATCACCATTA	
AATTGCCAAC AAGGCCATCT ATCTAGGTTT GAAATCCATT AAAGGAGTCA GTAATCAMM	10
AGCICICIGG ATTATTGAAA ATAGACCTTA TTCTAACATT GAAGATTTTA TAGCTAAARR	
ACCIGAGAAT TATCTGAAAC TTCCTCTGCT AGAACCTTTG GTAAAAGTTG GTCTTTTTCCA	17700
TICATTIGAA AAAAATCGTC AAAAAGTATT TAATAACTTA GCTAATCTAT TTGAATTTGG	17760
GAAAGAGTTG GGAAGTTTGT TTGGAGATGC TATTTATAGT TGGCAGGAAT CCGAAGATTG	17820
GACGGAACAA GAAAAATTTT ATATGGAACA AGAGCTTTTA GGGATAGGTG TCACCAAACA	17880
TCCACTACAA GCTATTGCAA GTAAGGCTAT TTACCCGATT ACCCCAATCG GAAATTTTCTC	17940
AGAAAATAGC TATGCTATTA TCTTGGTTGA AGTTCAGAAA ATAAAAGTGA TTCCTAGGAA	18000
AAAGGGTGAA AATATGGCCT TCTTACAGGC AGATGATAGT AAGAAAAAT TCCATCTCA	18060
TOTOTTTTCA GACTTATATC GTCAGGTTGG ACAGGAAATA AAAGAGGGAG CCTTCTACTACTA	18120
TOTALAGGA AAAATACAAT CACGTGATGG CCGTCTGCAA ATGATTGCAC AAGAARTAAG	18180
AGAAGUAGTT GCTGAACGCT TTTGGATACA GGTGAAAAAT CATGAATCGG ATCAACAAAA	18240
TICACGCATT TTAGAACAAT TTAAAAGGCCC AATCCCAGTC ATCATCCGGT ATGAAGACCA	18300
ACAGAAAACC ATCGTTTCTC CCCATCATTT TGTAGCTAAA TCCAATGAAT TAGACCACAA	18360
ATTGAATGAA ATCGTTATGA AAACGATTTA TCGCTAAAAA TACGGAAAAT AGAAGAATTT	18420
TCAACGTAAA TGTGGTATAA TCAGTAAGAA TGTTAAAAGA AAAAGGAGCA TAACCAAMAM	18480
GAAACGTATT GCTGTTTTGA CTAGTGGTGG AGACGCCCCT GGTATGAACG CTGCCATGCC	18540
IGCAGITGTT CGTCAAGCAA TTTCAGAAGG AATGGAAGTT TTTGGTATCT ATGACCCARD	18600
TGCTGGTATG GTTGCCGGTG AAATTCATCC CCTAGATGCA GCTTCAGTAG GCGACATGATG	18660
TTCTCGTGGT GGTACTTTCC TTCACTCAGC TCGTTACCCA GAGTTCGCTC AACTTCAACC	18720
GCAACTTAAA GGGATTGAGC AATTGAAAAA ACACGGAATT GAAGGTGTAG TTCTTATGCC	18780
TGGTGACGGA TCTTACCACG GCGCTATGCG TTTGACTGAA CATGGCTTCC CAGCTATTGG	
100	18840

466 TCTTCCAGGT ACAATCGATA ACGATATCGT TGGTACTGAC TTTACAATCG GTTTTGACAC 18900 AGCGGTTACT ACTGCCATGG ACGCTATCGA TAAGATTCGT GATACATCAT CAAGTCACCG 18960 TCGTACTTTT GTAATCGAAG TTATGGGACG TAACGCTGGT GATATCGCTC TTTGGGCTGG 19020 TATTGCAACT GGTGCTGATG AAATCATCAT CCCTGAAGCA GGCTTCAAGA TGGAAGATAT 19080 CGTAGCAAGC ATCAAAGCTG GTTATGAATG TGGTAAAAAA CACAATATTA TCGTCTTAGC 19140 TGAAGGTGTG ATGTCAGCGG CTGAATTTGG TCAAAAACTT AAAGAAGCTG GAGATACAAG 19200 CGACCTTCGT GTAACAGAAC TTGGACATAT TCAACGTGGT GGTTCTCCAA CTGCGCGTGA 19260 CCGTGTTTTG GCGTCACGTA TGGGTGCACA TGCTGTTAAA CTTCTTAAAG AAGGTATCGG 19320 TGGTGTTGCG GTTGGTATTC GTAACGAAAA AATGGTTGAA AATCCAATTC TTGGTACTGC 19380 AGAAGAAGGG GCATTGTTTA GCCTTACTGC AGAAGGTAAG ATTGTGGTTA ACAACCCAGC 19440 TACAAA 19446

(2) INFORMATION FOR SEQ ID NO: 52:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16593 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

TCGTAAATAT	GCTCTGTTTT	TGGATTTTGT	TTCTTAATCT	GTTTGGCAAG	TGCCTTCATC	60
ATAGAAATAG	GACCACACAT	ATAGACGGTT	GCATGTTCGG	GCACTTCTTT	TTGTTCAAAA	120
TTAAGATAGC	CGTCTTTCGT	ACTGTCGATT	AGATGGAGTT	CAAAATTAGG	ATTTTTCTGA	180
GCATAGTTAC	GGAGTAAATC	TAGGTAGACT	GCATTTTCAT	CTCCACGGAA	GCTATAGTAG	240
AAGTGAACCT	GTTTATCTAA	AATAGGATGT	TCACGGATGT	AAGAGATGAA	GGGGGTGATC	300
CCAATACCTC	CAGCAATCCA	AACCTGATTT	TCTCGTCCTT	CTTCTATGAT	CATGTGTCCG	360
TAAGCTCTGT	CTAGGGTTAC	TTTGCTGCCG	GCTTGAAGAT	TATCATAGAT	ATTCTTGGTA	420
TGGTCGCCTG	AAGTTTTAAC	AGTAAAGTAA	AGAGTTTGAC	CATGACCTCC	TGAGATAGAA	480
AAGGGATGCG	GAGCACTTTC	AAAGCCTTCT	TGGAAAATCT	TTAGAAAGGC	AAATTGTCCT	540
GATTGATAGT	TGAAAGGTCT	GCTAAGATGG	ATTTGAATTT	CTCTAGTATC	GTGATTTAAG	600
CGTTTGAGAT	GGGTAATTTT	CCCTAGATAG	GGGAAGGAAA	TCTTTTGATA	TAGAAAAATG	660
ATATAAAAAC	CAGCTAGTAA	GCCTAAAAGG	GCATAGCTAC	CAACAAGAAA	ACTTAGAAGA	720
TTAAATGTAA	GGAGACGATT	GCCCATTATC	ATGTAGATGT	GAAAGAGTCC	TAAAATATAG	780

GCTAGGTAAA	CCAGGCGGTG	AATCCATCGC	CAAGCTTCGT	ATTGGATGTA	TTTGCCTAAA	840
TAGGCGACAA	GGATGATGCT	GGCAAAGATA	TAGATGGCAA	GATTGCCAAA	CTGAGCAGCT	900
AAGCGAGAGC	CCCACAAACC	GCCCATACTA	AAGTTATGAA	AGATTAGTAG	GATGATTGAG	960
AGAAAGGCTG	TGAATTTGTG	GACGGTGTAG	ACCTTCTCCA	AACTGTGAAA	CCAGCTTTCT	1020
AGTAGTGGGA	GACGAGTGGC	тассатала	GTCAGAGATA	GGCTTGTTAA	AGCTAGTCCT	1080
GGAATCATGA	ATTGGGGAGA	AGTGTTCATC	CAAGTCAAAA	GAGTCAAGAT	AAAACTAGCT	1140
ATGATAAAGA	GTAGTCCTTT	GACTGATTTC	ATAGAAAATT	CCATTTCATT	TAGATTTCGA	1200
TTTGTTGTAA	ATAAATTTGT	TACATTTTAT	CATAGAAAAT	GTATGGTGTC	AAATTGAGGT	1260
СТАТАААТАТ	CTACTCTCAT	CAAAAAACTC	TCCAATTGAA	CTGGAGAGTG	GCTGTTTATA	1320
CTCAATGAAA	ATCAAAGAGC	AAACTAGGAA	GCTAGCCGCA	AGTTGCTCAA	AACACTGTTT	1380
TGAGGTTGCA	GATAGAGCTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTGT	TATTCTGCAG	1440
CTTGTTGCCA	ACGTTTGGCT	AGCATATGAG	ACAGGCTAGA	AATTGCTAGG	TTAAAGCTGA	1500
AGTAGATGAG	GGCAATCAGG	ATGTAAAGAC	TGAAGACCTG	CTCTGGTTCG	AAATAACGGC	1560
CCATGAGAAT	TTGGCTGGCT	CCAAAGAGTT	CTTGTAGGGC	GATAACAGAG	TAGAGGAGAC	1620
TGGTATCCTT	AATCACGGTA	ACAAACTGAG	AAATGATGGC	TGGTAGCATT	TTGCGGATGG	1680
CTTGTGGGAG	AATGATGTAG	TAGAGGATTT	GGGCTGAGGT	GAAGCCTTGT	GACATTCCTG	1740
CTTCGTACTG	TCCCTTGTCT	ACGGCATTGA	GACCGCCTCG	AATAATCTCA	GCCAAGGCTG	1800
CTGATGTAAA	GAGAGTAAAG	GCTGTAATAC	CTGCTGGTGT	GGATTTCATT	TTGAACACCA	1860
AAAAGATAGT	AAAAATCCAG	AGAAGGTTGG	GAACGTTGCG	CACAAACTCG	ATATAAATAC	1920
TGGAAATAAT	GCGTAAGACA	GGATTTTTGC	CATTTCTCGT	GACAGCTAGC	ACCGTACCGA	1980
TGATAGTAGA	GAGGATGATG	GCAATCAGAG	AAATATAGAG	GGTCAAGCCA	AATCCTTTAA	2040
AGATAAAGAC	TAGGTTATCT	GGGGTTAAAA	CTTCTAAAAT	AGATTCCATA	GTAACCTCCT	2100
AAAGTGAATA	GGCTTTTTTG	TTGGCTTGCT	CCATCTTGCG	ACCAAACTGG	GCAACAGGGA	2160
AGCATAGAGC	AAAGTAGAGA	AGAGCAGCAC	CTAAAAAGGC	TGGTATATAG	TTTCCGTTGA	2220
GAGCCGACCA	AGACTTAGTC	ACAAACATCA	AGTCTACTCC	AGAGATGATA	GCTACAGTAG	2280
AGGTGTTCTT	GATGAGGTTA	ACAATTTGGT	TGGTCAATGG	AGGGAGAATG	ATGCGGAAGG	2340
CCTGAGGCAA	GATAATCAAG	CGCATGGCAC	TGATATAGGT	AAAACCTTGC	GACAAGGCGG	2400
CCTCCATCTG	ACCACTAGGA	ATAGACTGAA	TCCCTGAACG	AATAACCTCA	GCGATATAAG	2460
CGCCGTGATA	GAGTCCCACG	CAGAGAACGG	CTGTCCAATA	AATTGGAATC	ATGATGATAT	2520

GGTCACTGAT AAGAGGTAGG CCATAAAAAA CAATAACAAA CTGCACCAAG AGGGGAGTAT

2580

468

TTTGGTAAAA TTCAACAAAG ATGCGAGCTA AAATGCGTAA AATTGGACGT TTACTGGTTG 2640 ACATGCCACC AAAGAAGATG CCCAAAACCA TAGCGAGGAT AAAGGAACCA ACCGCTAGGG 2700 CAAGGGTGAA GAGGAAACCA TTGAAAAATT GTCCAAAATC CTGAAAATAG GCTGTCCAAG 2760 ATGATAAATC TGTCATGGGG TGTCCTCCTT AATCTGCAGT ATGGCTAGAT GGTTTGAGCT 2820 TGTAACGGTC ATAAAGTTTC TGCAAACTAC CATCCTTGCT CCATTTAGTA ACCAAGTTAT 2880 CAAGATAGTC GTTGAGCTCT GTATTTGATT TCTTGGTAAC AATACCGTAG TCAGATGGCT 2940 TGAAACTATC ATCTAGTAGT GCTGTCCGTT TACTAGTGTA GCCAGATAGA ATAGAGCGGT 3000 CAACGGAAAA GGTATCGATA CGATGAGCGT GCAGGGAAGT AATCAATTCT GGGTAGGAAC 3060 CAAGTTCGAC GAATTTAAAC TTCAGACCTT TCTTTTTACC CAGTTCAGTA ATCAGGCGTT 3120 GGGTGATAGA ACCTTGGGCG ACTCCGATGG TTTTGCCGTT TAGGTCCTCA ATCTTTTTGA 3180 TTTTGGCAGA TTTATTGACC AAAAATCCAG AAGCGTCTGT GTAGTAGGGA CTGGTAAAGT 3240 TGTAGAGTTT TTTGCGTTCG TCCGTGATGG TAAAGGTCGC GATATCCATA TCGACCTGTT 3300 CATTGTCTAG AAGGGGGCCG CGGGTTTGTG CTGTAACCGG CACATAGCGA ATCTTGACCT 3360 TGAGTTCATC AGCTACCATC TTGGCCAAGT CGGTTTCGAT ACCAGAATAA GTACCGGTCT 3420 TGGGATCTTT GTAACCAAAA TTGGGAACGT CTTGTTTGAC ACCGACAACC AGTTCGCCTC 3480 TTTTTTGAAT GTCTGCGATA CTTGTATCAG CCTGGACTGG TTTGGCAGCA GCAAGGCCGA 3540 AAAGGCTAAT CAATAATGCT GATAAAAAGA ATTTTTTTC ATAGGCGCCT CCTTATTTGA 3600 CTTTGTCACT TTCGTGGTTG ATAATTTTGC TGAGGAATTG TTGGGCACGA GGTTCGCTTG 3660 GATTGTCAAA AAAGTTATCG ACATCTGTCG TATCTACTAA AACTTCTCCG TCGGCCATAA 3720 AGATAATGCG GTCCGCAACC TCTCGAGCAA AGCCCATTTC GTGGGTAACG ATGATCATGT 3780 TCATCCCATC ATGCGCCAGT TTCTGCATAA CTGCTAGAAC ATCTCCGATA GTCTCAGGAT 3840 CAAGAGCAGA TGTTGGTTCA TCAAAGAGGA GGAGTTCCGG ATGCATAGCA AGACCACGAG 3900 CGATGGCGAT CCGCTGTTTT TGTCCACCAG ATAGCATGGC GGGATAGGAA TCTTTCTTGT 3960 CCCACATATT TACAAATTCC AGATATTTTT GGGCGGTTTT TTCAGCTTCT TTTTTATCAA 4020 TTCCTAGAAC TTCAATGGGT GCAAGCGTTA CGTTTTCTAA CACAGCTTTG TGTGGATAAA 4080 GGTTAAAATG TTGAAAAACC ATGCCGACTT CCTTGCGAAG AGGTACCAAA TCTTTCTGGC 4140 TGGCACCAGC AACTTGGTGC CCATTGACTA GGAGACTTCC TTTGTCAACA GTCTCTAAAC 4200 CATTGATCGT ACGGATAAGA GTGGACTTCC CAGAGCCAGA AGGTCCAAGC AGGACAACAA 4260 CTTGTCCTTT TTCAAAACGG AGATTGATGT TGCGGAATGC GTGGTAGTCT CCGTAATATT 4320

TTTCGACGTT	ТТТАААТТСТ	ACTAAAGCCA	TGAGAGATCT	CTATTGTGTT	ATATTTTATA	4380
ACACGGTTCT	ACAATAAAAG	AATGTTCTTG	TCAAATCATA	TCTGAAAAAA	TTCACTATAG	4440
TGAAATAAGA	ACAGGAAAAA	TCGATCGGGA	CAGTCAAATC	GATTTCTAAC	AATATTTTAG	4500
AAGTAGAGGT	GTACTATTCT	AGTTTCAATA	тастаталал	TGTTATAAAA	AAGCAATCTG	4560
GATAGAGAAA	ACGTCTAAAT	CATGTTATAA	TGAAGCAATA	GAATTCTTAG	AAAGAGTGGA	4620
TGTCTTTTTG	ATAACACCTA	CTTATGAATG	GCAGTTTGCC	CTGCAGGTAG	AAGATGCGGA	4680
TTTTACAAAG	ATAGCCAAGA	AGGCTGGACT	GGGTCCTGAG	GTGGCTCGGT	TATTGTTTGA	4740
GAGAGGGATT	CAGAACCAAG	AAAGTCTGAA	GAAGTTTTTA	GAACCTTCCT	TGGAGGACTT	4800
ACATGATGCT	TATCTGCTCC	ATGATATGGA	CAAGGCAGTG	GAGCGGATTC	GTCAGGCTAT	4860
TGAAGAAGGG	GAAAATATTC	TTGTTTATGG	AGACTATGAT	GCGGATGGCA	TGACTTCGGC	4920
TTCTATTGTG	AAGGAAAGTT	TGGAACAACT	TGGTGCTGAG	TGCCGAGTTT	ACCTGCCAAA	4980
TCGTTTTACC	GATGGCTATG	GCCCTAATGC	TAGTGTTTAT	AAATACTTTA	TCGACCAAGA	5040
AGGGATTTCC	TTGATTGTGA	CGGTGGACAA	TGGGGTTGCT	GGTCATGAGG	CTATTGCATT	5100
GGCTCAGTCT	ATGGGAGTAG	ATGTCATTGT	GACAGACCAT	CATTCCATGC	CTGAAACCCT	5160
GCCAGATGCT	TATGCTATTG	TCCATCCTGA	ACATCCAGAT	GCGGATTATC	СТТТТАААТА	5220
TTTGGCTGGT	TGTGGAGTTG	CTTTCAAGTT	GGCTTGTGCC	CTGTTAGAAG	AAGTGCAAGT	5280
GGAATTGCTT	GATTTGGTCG	CTATTGGAAC	TATTGCAGAT	ATGGTGAGTC	TGACGGATGA	5340
AAATCGTATC	TTAGTTCAAT	ATGGTCTGGA	AATGTTGGGT	CATACCCAGC	GCATTGGTCT	5400
GCAAGAAATG	CTGGACATGG	CTGGGATTGC	TGCCAACGAA	GTAACAGAAG	AAACGGTTGG	5460
TTTCCAGATT	GCTCCTCGTT	TGAATGCCTT	GGGTCGCTTG	GATGATCCCA	ATCCTGCCAT	5520
TGATTTGTTG	ACTGGATTTG	ATGATGAGGA	AGCGCATGAG	ATTGCCCTTA	TGATTCACCA	5580
GAAAAACGAA	GAGCGCAAGG	AAATCGTTCA	GTCTATCTAT	GAAGAAGCCA	AGACCATCGT	5640
GGATCCTGAG	AAGAAGGTTC	AGGTCTTGGC	CAAGGAAGGC	TGGAATCCTG	GGGTTCTAGG	5700
AATCGTGGCT	GGTCGTTTAT	TGGAAGAATT	GGGACAGACA	GTCATTGTTC	TTAATATAGA	5760
AGACGGTCGT	GCCAAGGGCA	GTGCTCGTAG	TGTGGAAGCG	GTCGATATTT	TTGAAGCTCT	5820
GGATCCCCAT	CGAGACCTCT	TCATCGCCTT	TGGAGGTCAT	GCAGGTGCAG	CGGGTATGAC	5880
GCTGGAAGTT	GAGCAACTCT	CAGATTTATC	TCAGGTTTTG	GAAGATTATG	TTCGTGAAAA	5940
AGGTGCAGAT	GCTGGTGGCA	AGAATAAGTT	AAACCTAGAT	GAAGAGTTGG	ATTTGGAGGC	6000
ACTTAGCTTG	GAAACGGTCA	AAAGTTTTGA	ACGTTTAGCT	CCTTTTGGAA	TGGATAATCA	6060

470 GAAACCTATT TTTTATATCA AGAATTTTCA GGTCGAAAGT GCTCGTACTA TGGGGGCAGG 6120 TAATGCCCAT CTAAAGCTGA AAATTTCCAA GGGTGAGGCG AGTTTTGAAG TGGTAGCCTT 6180 TGGTCAAGGC AGATGGGCGA CAGAGTTTTC TCAAACCAAG AATCTAGAGT TAGCGGTTAA 6240 ATTGTCTGTC AACCAATGGA ATGGCCAAAC TGCCCTCCAG TTGATGATGG TGGATGCGCG 6300 AGTGGAAGGT GTTCAACTTT TTAACATTCG TCGAAAAAAT GCACTCTTGC CAGAAGCTCT 6360 TCCAGTCTTG GATTTTCCTG GAGAACTGCC AAATCTTGCG GCTAGTGAAG CTGTTGTCGT 6420 AAAAAACATT CCAGAGGATA TTACTCAGCT GAAGACCATT TTTCAGGAAC AGCATTTCTC 6480 TGCTGTCTAT TTCAAAAATG ATATTGACAA GGCTTATTAT CTGACAGGTT ATGGGACTAG 6540 AGATCAGTTT GCCAAATTGT ACAAGACTAT TTACCAGTTC CCAGAGTTTG ATATTCGCTA 6600 CAAGCTGAAA GATTTGGCTG CATATCTTAA TATTCAACAA ATCTTGCTGG TCAAGATGAT 6660 TCAAGTATTT GAAGAACTAG GCTTTGTGAC GATAAAAGAT GGTGTGATGA CAGTCAATAA 6720 AGAGGCGCCA AAGCGGGAGA TAGGAGAAAG TCAAATTTAC CAAAATCTCA AACAAACCGT 6780 TAAAGACCAA GAAATGATGG CGCTGGGTAC GGTGCAAGAA ATTTATGATT TTTTGATGGA 6840 AAAAGAGTAG AAGTTAGGAA AGAGTTGGGA AATCAACTCT TTTTTGAAAA CAGACCTTCA 6900 TTTTGAAAAT CATCAAAAAA ATGGTATAAT GGTAGGAAAA GATTCGGCTG AAAGTATCAG 6960 AACTTTTAGA ATAAGAGGGT AGAATTGCCC TATAATCAAG ATAAACTAAG ATTTTGGAGG 7020 AAAAATGAGT AATATCAGTT TAACAACACT TGGTGGTGTG CGTGAGAATG GAAAAAATAT 7080 GTACATTGCT GAAATTGGAG AGTCCATTTT TGTTTTGAAT GTAGGGTTAA AATATCCTGA 7140 AAATGAACAA TTAGGGGTCG ATGTGGTGAT TCCAAACATG GATTACCTTT TTGAAAATAG 7200 CGACCGTATT GCTGGGGTTT TCTTGACCCA CGGGCATGCG GATGCCATTG GTGCTCTACC 7260 GTATCTCTTG GCAGAGGCTA AAGTTCCTGT ATTTGGGTCT GAGTTGACCA TTGAGTTGGC 7320 AAAGCTCTTT GTCAAAGGAA ATGATGCCGT TAAGAAATTT AATGATTTCC ATGTCATTGA 7380 TGAGAATACG GAGATTGATT TTGGTGGGAC AGTGGTTTCC TTCTTCCCTA CGACTTACTC 7440 CGTTCCAGAG AGTCTGGGAA TTGTCTTGAA GACATCGGAA GGAAGCATCG TTTATACAGG 7500 TGACTTCAAA TTTGACCAAA CGGCTAGTGA ATCTTATGCA ACTGATTTTG CTCGTTTTGCC 7560 AGAGATTGGT CGTGACGGCG TCCTGGCTCT CCTCAGTGAT TCGGCCAATG CAGACAGCAA 7620 TATTCAGGTG GCTAGTGAAA GTGAAGTTAG GGATGAAATT ACCCAAACTA TTGCTGACTG 7680 GGAAGGTCGT ATCATCGTTG CAGCTGTTTC CAGTAATCTT TCTCGTATTC AGCAGATTTT 7740 TGACGCTGCG GATAAAACAG GTCGACGTAT CGTCTTGACA GGATTTGATA TTGAAAATAT 7800 CGTCCGCACA GCGATTCGTC TTAAGAAGTT GTCTTTAGCC AACGAAATTC TTTTGATTAA 7860

GCCTAAAGAT	ATGTCTCGCT	TTGAAGACCA	TGAGTTGATT	ATTCTTGAGA	CAGGTCGTAT	7920
GGGTGAGCCT	ATCAATGGAC	TTCGTAAGAT	GTCGATTGGT	CGCCATCGTT	ATGTAGAAAT	7980
CAAGGATGGG	GACCTAGTCT	ATATTGCTAC	GGCTCCGTCT	ATTGCTAAAG	AAGCCTTTGT	8040
TGCGCGTGTG	GAAAATATGA	TTTATCAGGC	AGGTGGGGTT	GTCAAATTGA	TTACCCAAAG	8100
TTTACATGTA	TCAGGGCACG	GAAATGTGCG	TGATTTGCAG	CTGATGATCA	ATCTTTTGCA	8160
ACCTAAGTAC	CTCTTCCCTG	TCCAAGGGGA	GTATCGTGAG	TTGGATGCTC	ACGCTAAGGC	8220
TGCCATGGCA	GTTGGGATGT	TGCCAGAACG	CATCTTCATT	CCTAAAAAGG	GGACGACCAT	8280
GGCTTACGAG	AATGGAGACT	TTGTTCCAGC	TGGATCGGTT	TCAGCAGGAG	ATATCTTGAT	8340
TGATGGGAAT	GCCATTGGTG	ATGTTGGAAA	TGTTGTTCTT	CGTGACCGTA	AGGTCTTGTC	8400
AGAGGATGGA	ATTTTCATCG	TGGCTATTAC	AGTCAACCGT	CGTGAGAAGA	AAATTGTGGC	8460
TAGGGCTCGT	GTTCACACGC	GTGGATTTGT	TTATCTCAAG	AAGAGTCGCG	ATATTCTCCG	8520
TGAAAGTTCA	GAATTGATTA	ACCAAACGGT	AGAAGAGTAT	CTTCAAGGAG	ATGACTTTGA	8580
CTGGGCAGAT	CTCAAAGGTA	AGGTTCGTGA	CAATCTGACC	AAGTACCTCT	TTGATCAAAC	8640
CAAGCGTCGC	CCAGCCATTT	TACCAGTAGT	CATGGAAGCA	AAATAATCGT	TGAAATAAAC	8700
AGAGAGAAAG	TCGAGTTTCG	GCTTTTTCTT	ATAGAAAAAT	AGAAGGAGAA	AATCATGGCA	8760
GTGATGAAAA	TCGAGTATTA	CTCACAAGTA	TTGGATATGG	AGTGGGGGGT	GAATGTCCTC	8820
TACCCTGATG	CCAATCGAGT	GGAAGAACCA	GAGTGTGAAG	ATATTCCCGT	CTTGTACCTT	8880
TTGCACGGGA	TGTCTGGAAA	TCATAATAGT	TGGCTTAAGC	GGACCAATGT	AGAACGCTTG	8940
CTTCGAGGAA	CTAATCTCAT	CGTTGTTATG	CCCAATACCA	GCAATGGTTG	GTACACCGAT	9000
ACCCAGTATG	GTTTTGACTA	CTACACGGCT	CTAGCAGAGG	AATTGCCACA	GGTTCTGAAA	9060
CGCTTCTTCC	CTAATATGAC	GAGCAAGCGT	GAAAAGACCT	TTATCGCTGG	TCTTTCTATG	9120
GGAGGCTACG	GCTGCTTCAA	ACTGGCTCTT	ACGACAAATC	GTTTTTCTCA	TGCAGCTAGT	9180
TTTTCAGGTG	CCCTCAGCTT	TCAAAACTTT	TCTCCTGAAA	GTCAAAATCT	GGGAAGTCCA	9240
GCCTACTGGA	GAGGTGTTTT	TGGAGAGATT	AGAGACTGGA	CAACTAGTCC	CTATTCTCTT	9300
GAAAGTCTGG	СТААААААТС	GGATAAAAAG	ACCAAACTTT	GGGCGTGGTG	TGGCGAACAG	9360
GATTTCTTGT	ACGAAGCCAA	TAATCTCGCA	GTGAAAAATC	TCAAAAAACT	AGGTTTTGAT	9420
GTGACCTATA	GCCATAGCGC	TGGAACTCAC	GAGTGGTACT	ACTGGGAAAA	ACAATTGGAA	9480
GTTTTTTTAA	CAACCCTACC	AATTGATTTC	AAATTAGAAG	AGAGACTGAC	TTAGTTTGAA	9540
CTTCAGCATA	GGGGGAGTAG	ААСТААААТА	AAATATGTTT	TCACTAGACT	TTTCAAACGm	9600

PCT/US97/19588 WO 98/18931

			472			
AAGTAGTAGA	ATAGTAATAA	AATACTGGAG	GAAAGAGAGT	AGGAAATGTA	CCGTTATCAA	9660
ATTGGCATTC	CCACATTAGA	ATATGATCAG	TTTGTCAAAG	AACATGAATT	AGCCAATGTA	9720
TTACAAAGTA	GTGCTTGGGA	GGAAGTTAAG	TCTAATTGGC	AACATGAGAA	GTTTGGTGTT	9780
TACAGGGAAG	AAAAATTACT	GGCGACAGCT	AGTATTTTGA	TTAGAACTCT	TCCGCTAGGC	9840
TATAAAATGT	TTTACATCCC	AAGAGGACCT	ATATTGGATT	ATGGGGATAA	AGAACTCTTG	9900
AATTTTGCCA	TTCAGTCTAT	TAAGTCCTAT	GCTCGCAGTA	AGAGAGCGGT	TTTTGTGACT	9960
TTTGACCCAA	GTATTTGCCT	ATCTCAAAGT	ТТААТСААТС	AGGAAAAGAC	AGAATTTCCT	10020
GAAAATCTGG	CTATTATTGA	TAGTTTGCAA	CAAATGGGAG	TAAGGTGGTC	AGGAAAAACG	10080
GAGGAAATGG	GAGACACCAT	TCAACCTCGT	ATTCAGGCGA	AAATATACAA	GGAAAATTTT	10140
GAAGAAGATA	AACTTTCCAA	GTCAACAAAA	CAGGCTATTC	GAACAGCACG	AAACAAAGGG	10200
CTTGAGATTC	AATATGGTGG	ACTGGAACTA	TTAGATTCAT	TTTCGGAGTT	GATGAAAAAA	10260
ACTGAGAAGC	GAAAAGAGAT	TCATTTGAGG	AATGAAGCCT	АТТАТАААА	ATTGTTAGAT	10320
AATTTTAAGG	ACAAGGCCTA	TATCACCTTG	GCCACCTTGG	ATGTTTCTAA	ACGTTCGCAA	10380
GAGTTAGAAG	AACAGTTAGC	GAAAAATAGA	GCCTTGGAAG	AGACCTTTAC	TGAGTCGACT	10440
CGAACTTCAA	AAGTAGAAGC	GCAGAAGAAG	GAAAAAGAAC	GTTTGTTAGA	GGAATTGACC	10500
TTCTTGCAGG	AATATATAGA	TGTAGGTCAA	GCGAGAGTTC	CTTTAGCGGC	TACTTTGAGT	10560
TTGGAATTTG	GTACTACCTC	тстсаатата	TATGCTGGTA	TGGATGATGA	TTTTAAACGT	10620
TACAATGCAC	CAATTTTAAC	TTGGTATGAA	ACGGCTCGCT	ATGCCTTTGA	ACGAGGTATG	10680
ATCTGGCAAA	ATTTAGGTGG	TGTTGAAAAC	TCTCTCAATG	GTGGACTTTA	TCATTTTAAG	10740
GAAAAATTTA	ATCCAACGAT	TGAAGAATAC	TTGGGTGAAT	TTACAATGCC	CACTCATCCT	10800
CTCTATCCTC	TGTTAAGACT	TGCTCTTGAT	TTCCGTAAAA	CATTAAGAAA	AAAACATAGA	10860
AAGTAAGTAT	ATGGCACTAA	CAACACTCAC	GAAAGAAGAG	TTTCAGACTT	ATTCTGATCA	10920
GGTTTCTTCT	CGTTCCTTTA	TGCAATCTGT	CCAGATGGGG	GATTTGCTAG	AAAAAAGAGG	10980
GGCTCGAATT	GTTTATCTTG	CTTTGAAACA	AGAAGGAGAA	ATTCAAGTTG	CAGCTCTGGT	11040
TTATAGCCTG	CCCATGCTGG	GTGGTCTGCA	TATGGAACTC	AATTCGGGGC	CGATTTATAC	11100
CCAACAAGAT	GCTCTTCCAG	TTTTTTATGC	AGAGTTAAAA	GAATATGCCA	AGCAAAATGG	11160
TGTATTAGAG	TTGCTTGTAA	AACCCTATGA	AACTTATCAA	ACTTTTGATA	GCCAAGGTAA	11220
TCCAATAGAT	GCTGAGAAAA	AAAGTATTAT	TCAAGATTTG	ACTGATTTAG	GTTATCAATT	11280
TGATGGCTTA	ACAACAGGTT	ACCCAGGTGG	AGAACCAGAT	TGGTTATACT	ATAAAGATTT	11340
AACTGAATTA	ACTGAAAAGA	GTTTGCTTAA	AAGTTTTAGC	AAAAAGGGTA	AACCCTTGGT	11400

473

GAAAAAGGCT GAAACCTTTG GCATTCGGTT GAAAAAGTTA AAACGTGAAG AACTATCGAT 11460 TTTTAAGAAT ATAACAAAAG AAACCTCTGA ACGTAGAGAA TATAGTGATA AAAGTTTAGA 11520 ATATTATGAG CATTTTATG ATACTTTGG AGAACAAGCG GAGTTTCTCA TAGCAAGCTT 11580 AAATTTTTCG GACTATATGA GCAAATTGCA AGGTGAACAA AGTAAACTAG AAGAAAACTT 11640 GGACAAGTTG CGACTTGATT TGAGTAAAAA TCCTCATTCT GAGAAAAAAC AAAATCAACT 11700 GAGAGAATAT TCTAGTCAAT TTGAAACGTT TGAAGTTCGA AAAGCAGAAG CGCGAGACTT 11760 GATTGAAAAA TATGGAGAAG AAGATATTGT TTTAGCTGGG AGTTTATTTG TTTATATGCC 11820 TCAGGAAACG ACTTATCTCT TTAGTGGTTC CTACACTGAG TTTAATAAGT TCTATGCCCC 11880 TGCACTGCTT CAAAAATATG TTATGTTGGA AAGCATAAAA CGTGGAATAC CTAAATACAA 11940 CTTCCTAGGC ATTCAAGGGA TTTTTGATGG AAGTGATGGT GTTTTGCGTT TTAAACAGAA 12000 TTTTAATGGC TATATTGTAC GCAAAGCAGG TACTTTCCGT TACCATCCAT CGCCTTTAAA 12060 ATACAAAGCT ATCCAGTTAC TCAAAAAAAT AGTAGGACGT TAAGATGAAA AAGTCAGTAT 12120 TTAGATTTCT TTTAGCTTCT TTTAGTAAAA TAATTCTTAT TTGCTAGAAA GGTGGAGAGA 12180 12240 GCGTCTGGTT TGGATAGTTG TGCTCTTATG TGTGCTTGCT TTCGGACTTC TCTGGTATCT 12300 GAACGGAGAT TTTCAAGGAG CGCTAAAGCA AGCAGAACGG TCAGTAAAAA TTGGTCAACA 12360 AAGTATTGAC CAATGGGAGA AAACAGGGCA ACTGCCTAAG TTAAGCCAGA CAGATAGTCA 12420 CCAGCATTCT GAAGGAAGGT GGGCACAGGC CTCTGCTCGT ATTTACCTGG ATCCGCAGAT 12480 GGATTCACGC TTTCAAGAGG CTTATTTAGA AGCAATCCAG AACTGGAATC AAACTGGTGC 12540 TTTTAACTTT GAACTCGTGA CTGAGTCTAG TAAGGCGGAT ATTACGGCTA CGGAGATGAA 12600 CGACGGAGGC ACTCCTGTGG CAGGAGAGGC GGAAAGTCAA ACTAATCTCT TAACAGGGCA 12660 ATTCTTGTCC GTAACGGTGC GGTTGAATCA TTATTATTTG TCCAATCCAT ACTATGGCTA 12720 CTCCTATGAA CGCCTTGTCC ATACGGCAGA ACATGAGTTA GGTCATGCGA TTGGCTTGGA 12780 CCATACAGAT GAGAAGTCTG TCATGCAACC AGCAGGTTCC TTTTATGGTA TCCAGGAAGA 12840 GGATGTTGCA AACCTCCGAA AAATATATGA GACTAGTGAG TAGGGTACTA TCTTTCCCTA 12900 CTTTTTTGC TATAATGGAA CTATGAACAA CTTGATTAAA TCAAAACTAG AGCTCTTGCC 12960 GACCAGCCCT GGTTGCTACA TTCATAAGGA TAAAAATGGC ACCATTATCT ATGTAGGAAA 13020 GGCTAAAAAT CTGCGTAATC GAGTACGGTC CTATTTTCGT GGAAGTCATG ATACCAAGAC 13080 AGAGGCTCTG GTGTCTGAAA TTGTGGATTT TGAATTTATT GTTACGGAGT CTAATATTGA 13140

474

GGCACTTCTC CTAGAAATCA ACCTGATCAA GGAAAACAAG CCCAAGTACA ATATCATGCT 13200 CAAGGATGAC AAGTCCTATC CTTTCATCAA AATCACCAAT GAGCGCTATC CACGCTTGAT 13260 TATCACTCGT CAGGTCAAAA AGGACGGAGG TCTTTATTTT GGACCCTATC CCGATGTGGG 13320 GGCAGCCAAT GAAATCAAGC GGTTGCTGGA TCGGATATTC CCTTTTCGTA AGTGTACCAA 13380 CCCGCCCTCT AAGGTCTGTT TTTATTACCA TATCGGCCAG TGTATGGCCC ACACCATCTG 13440 TAAGAAGGAT GAGGCTTATT TCAAGTCTAT GGCCCAGGAG GTGTCTGATT TTCTGAAAGG 13500 TCAGGATGAC AAAATCATCG ATGATCTCAA GAGTAAAATG GCAGTAGCAG CACAAAGTAT 13560 GGAGTTTGAA CCTGCGGCGG AATACCGTGA CCTGATTCAG GCTATTGGAA CGCTTCGAAC 13620 CAAGCAACGG GTCATGGCGA AAGATTTGCA AAATCGCGAT GTCTTTGGCT ACTATGTGGA 13680 TAAGGGCTGG ATGTGTGTGC AGGTTTTCTT TGTCCGTCAG GLAAGCTCAT CGAGCGCGAT 13740 GTCAATCTCT TCCCCTACTT CAATGATCCA GATGAGGATT TTTTGACCTA TGTAGGACAA 13800 TTCTATCAAG AAAAATCTCA TCTAGTTCCC AATGAGGTAC TGATTCCGCA GATATTGACG 13860 AAGAAGCTGT CAAGGCTTTG GTGGATTCCA AGATTCTTAA GCCTCAACGT GGAGAGAAAA 13920 AACAACTGGT CAATCTAGCC ATAAAAAATG CTCGTGTTAG TCTAGAGCAG AAGTTCAATC 13980 TGCTAGAAAA ATCTGTCGAA AAGACTCAAG GAGCTATTGA AAATCTAGGG CGTTTGCTCC 14040 AAATCCCGAC CCCAGTACGT ATCGAGTCCT TCGATAACTC TAATATCATG GGAACTAGCC 14100 CTGTTTCGGC TATGGTGGTC TTTGTCAACG GTAAACCGAG TAAGAAGGAT TACCGTAAGT 14160 ACAAGATAAA AACGGTTGTT GGACCAGACG ACTATGCCAG CATGAGAGAG GTCATTCGCA 14220 GACGCTATGG TCGAGTACAG CGTGAGGCTT TGACTCCTCC AGATTTGATT GTGATTGATG 14280 GGGGGCAAGG TCAAGTCAAT ATCGCTAAGC AGGTTATCCA AGAGGAACTG GGCTTGGATA 14340 TTCCAATTGC TGGGCTGCAA AAGAATGATA AGCACCAAAC CCATGAATTG CTCTTTGGAG 14400 ATCCGCTTGA GGTGGTGGAT TTGTCTCGCA ATTCTCAGGA ATTTTTCCTC CTCCAACGCA 14460 TCCAAGATGA GGTGCACCGC TTTGCTATCA CTTTCCACCG CCAACTGCGC TCCAAAAATT 14520 CTTTCTCATC TCAATTGGAT GGGATTGACG GTCTGGGACC TAAACGCAAG CAGAATCTTA 14580 TGAAGCATTT CAAGTCTTTG ACCAAAATCA AGGAAGCCAG TGTGGATGAG ATTGTCGAAG 14640 TTGGGGTACC TAGAGTCGTT GCAGAGGCTG TGCAAAGAAA GTTGAACCCG CAGGGAGAAG 14700 CCTTGCCTCA AGTAGCAGAA GAAAGAGTAG ATTACCAAAC GGAAGGAAAC CACAATGAAC 14760 CATAAAATCG CAATTTTATC AGATGTTCAT GGCAATGCGA CGGCGCTAGA AGCAGTGATT 14820 GCAGATGCTA AAAATCAAGG GGCCAGTGAA TATTGGCTTC TGGGAGATAT TTTTCTTCCT 14880 GGTCCAGGCG CAAATGACTT AGTCGCCCTG CTAAAGGACC TTCCTATCAC AGCAAGTGTT 14940

CGAGGCAAT	r gggatgatco	TGTCCTTGAG	GCTTTAGATG	GGCAATATGG	CTTAGAAGAC	15000
CCACAGGAA	TTCAGCTCTT	GCGTATGACA	CAGTATTTGA	TGGAGCGAAT	GGATCCTGCA	15060
ACGATTGTCT	r GGCTACGAAG	CTTGCCTTTG	CTGGAAAAGA	AAGAAATTGA	CGGATTGCGC	15120
TTTTCTATCT	СТСАТААТТТ	ACCTGACAAA	AACTATGGTG	GTGACTTGCT	AGTTGAGAAT	15180
GATACAGAGA	AATTTGACCA	ACTGCTAGAT	GCGGAAACGG	ACGTGGCAGT	TTATGGTCAT	15240
GTTCACAAGO	AGTTGCTTCG	TTATGGAAGT	CAAGGCCAAC	AAATCATCAA	TCCAGGGTCG	15300
ATTGGCATG	CCTATTTAA	TTGGGAGGCG	TTAAAAAATC	ACCGTTCCCA	GTATGCCGTG	15360
ATAGAAGTTO	AAGATGGGGA	ATTACTCAAT	ATCCAATTTC	GTAAAGTTGC	TTATGATTAC	15420
GAAGCTGAGT	TAGAATTGGC	CAAGTCCAAG	GGGCTTCCCT	TTATCGAAAT	GTATGAAGAA	15480
CTGCGTCGTG	ACGATAACTA	TCAGGGGCAC	AATCTGGAAT	TATTAGCCAG	CTTAATAGAA	15540
AAGCATGGGT	' ATGTAGAGGA	TGTGAAGAAT	TTTTTTGATT	TTTTGTAAGA	GTTTCCTAAA	15600
ATAGCCAATG	CAAACTAAAA	AAGCGATTTG	CTGGTCCAAT	CGCTTTTAGT	АТАТСТТАТА	15660
CTCAATGAAA	ATCAAAGAGC	AAACTAGGAA	GCTAGCCGTA	GGTTGCTCAA	AGCACAGCTT	15720
TGAGGTTGCA	GATAAAGCTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTGT	TATTGTAACT	15780
GAGATTGATC	TGGGAGGTAA	GAACCACCTA	GATAGGTATT	GCTGAGTTTT	TCAAGGGTTC	15840
CGTCTTGATA	GAGTTCTTTG	AGCGCTTTAT	CAAATTGCTC	TTTAAACTCT	TTTTGGTCGC	15900
TTGAGAAAAT	GATATAATTG	CTGGGGCTAT	CTGCAGAAGG	TAAATCAACG	ACTGAGAGGT	15960
CTAAACCACG	GTCCTTGATA	ATCTTTTGAA	CGGATACCTT	GTCAAAAACT	AGGAAATCAA	16020
ACTCTCCGTT	AGCAAGGTCT	AGGATTCGTT	TACCAATATC	CTCACCAGAA	AAATTAATTG	16080
TAGCGGGATT	ATCAGTGTGT	TTCTGATTCC	AGTTATTGAT	GAATTGAGCG	TTAGAAGTTC	16140
CGGTATCCTC	TTGTGTTGTT	TTACCAGCGA	TCTGGTCAAG	AGAAGTCAAA	GGATTTTTCT	16200
TGTTGCTGAC	AAGGACGAGG	GGATTGTTGG	AAATTGGAAG	CGAGTAAAGG	TATTTTTCAG	16260
CACGCTCTTT	TGTGTAACTC	AAGTTATTGG	CCGCAGCCTG	ATAGTGACCA	GAATCAAGTC	16320
CTGGGAAGAT	GCTCTCCCAG	GCGGTTCTTT	GGAATTGAAT	CTCGTAGTCG	CTGAGTTTTT	16380
CATCTACTGC	CTTTAAAACT	TCGATATCAA	AGCCTGTCAG	ATTGCCCTTG	TCTTCGTAGT	16440
CAAATGGTGG	CACGTCGCCA	GCTGTAGCAA	GGACGATTGT	CTTTTGAGCG	CTAGTCTCTT	16500
TGGGTGTAGC	TTGATTCTCA	CAGGCAACCA	AAAATGGTAG	GATAGCTAGT	AATAGGCTAA	16560
ATTTTTTCAT	ACTGTCTCCA	TTCAAATGTA	AAG			16593

⁽²⁾ INFORMATION FOR SEQ ID NO: 53:

476

- - --- - - --- --

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3510 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

GGGATATCCT TATATCCTTG TTCCTGGAAC CATTGTGGGA ATTGCTCAAC AGTTTTTTCA	60
CCTTGAATTC CTGGTGCAAT GACAGTAAGA ATTTCGAAAT CACGATCTGG TTTCGCCGCT	120
AGTTCCATCA ACTCTGGCAT ACTTTTCTTG CATGGACCAC ACCATGAAGC CCAAAACTTC	180
AAGTAAACCT TTTTACCCTT AAAATCAGAT AACTTAACTT	240
AATGTGAAGT CTGGAGCATC TTTTCCAACA GCAATTTGTT GTACAGTCGT TTGTTGTTTT	300
GGCTGTTGTG CTGCTTGAGT CTTTTTAGTT TCTTCCTCAC CACAGGCCAT CAATACAACT	360
AATGACAAGA GACTTAAGCC AGCAAACATT ACTTTTTTCA TTTGTCCTCC TTTATTCAAA	420
AATTCCAGCT AGAACATTTA CTTGTCCTAA TAGTAACAAA ATTCCCATTA AAACAATGAG	480
GAAACCACCA ATTTTCTTTA GTAGCATCAT ATGACGCTTG ATTTTACTAA AATATGGCAT	540
GACTAGACCT GAAGCTAGTG CCAATACCAA GAAAGGAAGG GCCATGCCAG AGTGTAAATG	600
AGAGTATAAA TCGCTCCTTG CCAAGCGCCA TTGCCTCCAG AAGCCGCAAG TGCTAAAACA	660
GAACTTAAAA CTGGACCAAT ACAAGGTGTC CAACCAAAGC TAAAGGTAAT ACCAAGTAAA	720
AAAGCTGACC AATAACGATT AGAATCTGAT TTTTTAAAGG TAAAACTTTT TTGAACTTCT	780
AATTTCTTCA AATGAAAAAT TTCCATCTGG TGAAGACCCA AAATGATAAT AATAGCTCCC	840
ATGCCATATC, GAAACCAATT TGCATAGAGA ATATGACCAA AGTAACCAGC ACCAAAGCCT	900
AGAATAAAGA AAATGAGAGA GATACCAGCG ATAAAGCAAA GTGTTCGAAT CAAGCCTGAC	960
CAGAGAACCT TTCTCCCAAA CAAAGAAAAG CTTTTTGCAC TTTCTTGATC ATCCAATAAA	1020
ATCCCAGCAT AGACTGGCAG AAGAGGAAAA ATACAAGGAG AAAAAAAGGA TAAAACACCT	1080
GCTAGAAAAA CAGAGATTAA AAATACTATC GTTTCCAATA AAGAACCAAC TTTCTTAATA	1140
ATTCTAATCC TATTTTACTA TATTCAATTT TATTTGTAAG CTTTCTGCTA CGCAAAATCG	1200
TATCGGGCAC TATTGGACCA ATCTTTCTT TTGCTAGTCA AGGCGGATCT TATCCCCCAA	1260
AATAGCCAAA AAGCAACGAC AAGGATTACT CATCGCTGCT TTTGTGAACG AAAATGTCTT	1320
TTAGGTCTGA CATTTCATAA ATCATGTTTT ACTTGAGTTT GTCAAGGATT GCTTTAAGCT	1380
CCTCTACTAG TTTAGTTTCT GTCTCTGCTG AGCCATTTTC TTCTTTCACG AAATCAAGGG	1440
TTTCTTGGAG AAGGTTTTGG GCTTTGGCAA GGACTTTTTT ATCCGCTTTT TCTGCATCTA	1500

GCTGTCCTAC A A COMMON WITH	
GCTGTCCTAG AACCTTGATC AATTCCGTGC TTAATTGCTG GATTTCTGAC TCTTTCTTAC	1560
GGCGAATCAG CCAGAAGGCA ATCACGCCTA GGAGGGCAAG TAGACTGACC ACAATCACTC	1620
CTGCCGGAAC TGAGTTTGTT TCAGTCATCT TATCTGAATC CTTACTATCT TCCGTTCCTT	1680
GTTTTGCATC CTTCTTGTCC TGTGCAGGCT TGCTGTCGCT AGCATTTGCT TTCACATCTT	1740
TGAGAGAGTC CAAGGCAGCC CAGCCTTCAC AGACTCTACT GCAGTATGCA GACCTTACTC	1800
TGTCAAGGCA CTATCTTCCG GAGCTTTTTG AGCATCTAGG AGGACAGCCT TGGTTGCATC	1860
GATTTTCGGA TCAGATACTG TTGCCAAAGC TTTCAAGCGT TGGTCTAACT CTTGACTCAA	
GGCACGAAGT TCAGACTTGT CAACTTGCTC TTGAGCTTGT GTGCTCGTTG AGCTAGCCGA	1920
AGCGCTTGCT ACCACTCTAG GATCTTGAGT CGGAGCTGAG CTTGGAGCTG GGACAGGGCT	1980
TGCAGGTTGA CTAGGAACAG TTATGGTATA TTGAAACTAG AATAGTACAT ATGGACTTCT	2040
AAAACATTGT TAGAATTCGA TTTTACTGTC CTGATCGATT TGTCCTATTC TTATTTCATT	2100
TTACTATAAT AACCGATGGT CTCCTTAATG TTACTATAAT AACCGATGGT CTCCTTTAATTAATAAT AACCGATGGT CTCCTTTAATG TTACTATAATAAT AACCGATGGT CTCCTTTAATG TTACTATAATAAT AACCGATGGT CTCCTTTAATG TTACTATAATAATAATAATAATAATAATAATAATAATAAT	2160
TTACTATAAT AACCGATGGT GTGGTTAATG TTGGTAAGAG AAACTTCTGA AACCAAGCTT	2220
CAAAAAAGTC GCTCGTCATC GTCTCTTCGT AAGTCATTGG AGCGATTAAT TCACCATTTG	2280
TTAGACCTGC AACCAAAGAA ATCCTCTGAT ATCTTCTTCC AGATACTTTG CCTCTTATTA	2340
ACTGACCTTT TAATGAGCGA CCATATTCTC GATAAAAATA AGTATCGAAT CCTGTTTCGT	2400
CAATCTAAAC AGGTGCTAGG TGCTTTAAAC TATTAAAATT CTTAAGAAAT AAGGCTACTT	2460
TTTCTGGGTC TTGTTCATAG TAGGTGTGGT TCTTTTTTC GAGTGTAGCC CATAGCTTTG	2520
AGCGCATAGT GGATGGTAGT TGGATGACAG CCAAAKTCAG AAGCTATTTC AGTCAAATAA	2580
GCXTCTGGAT TGTCAGTAAG ATAGTTTTTA AGTCTATCTC TATCAACTTT TCTTGGTTTT	2640
GTTCCTTTTA CTTGGTGGTT TAGCTCTCCT GTTTTCTCTT TTAGCTTTAA CCAGCCATAA	2700
ATGGTATTAC GTGAGATTTG GAAAACGTGT GATGCTTCTG TTATACTACC TATTCGCTCA	2760
CAATAAGAGA GAACTTTTTT ACGAAAATCT ATTGAATATG CCATAAGAAG ATTATACCAC	
ATTGTGTACT ATTTTTGGTT CATTTCACTA TAACACAAAA TAGATTATTA TTACATAACA	2820
AAAAAGAGGT CTAAACCTCT TAACTCAATT ACTCCGCCAG TAGGACTCGA ACCTACGACA	2880
TCATGATTAA CAGTCATGCG CTACTACCAA CTGAGCTATG GCGGATTAAA GCTAAGCGAC	2940
TTCCCTATCT CACAGGGGC AACCCCCAAC TACTTCCGGC GTTCTAGGGC TTAACTTCTG	3000
TGTTCGGCAT GGGTACAGGT GTATCTCCTA GGCTATCGTC ACTTAACTCT GAGTAATACC	3060
TACTCAAAAT TGAATATCTA TTCAATTTAA CTCTAACTCT GAGTAATACC	3120
TACTCAAAAT TGAATATCTA TTCAATTTAA GAAAACCGTT CGCTTTCATA TTCTCAGTTA	3180
CTTTGGATAA GTCCTCGAGC TATTAGTATT AGTCCGCTAC ATGTGTCGCC ACACTTCCAC	3240

478 TTCTAACCTA TCTACCTGAT CATCTCTCAG GGCTCTTACT GATATATAAT CA	TGGGAAAT 3300
CTCATCTTGA GGTGGKTtCA CACTTAGATG CTTTCAGCGT TTATCCCTTC CC	TACATAGC 3360
TACCCAGCGA TGCCTTTGGC AAGACAACTG GTACACCAGC GGTAAGTCCA CTG	CTGGTCCT 3420
CTCGTACTAG GAGCAGATCC TCTCAAATTT CCTACGCCCG CGACGGATAG GG	ACCGAACT 3480
GTCTCACGAC GTTCTGAACC CAGCTCGCGT	3510
(2) INFORMATION FOR SEQ ID NO: 54:	
/il CROUDIOD CHARACTER	

(i) SEQUENCE CHARACTERISTICS:

- - (A) LENGTH: 20986 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

CGGAGAAAAA CATGGCTAAG TCAAACTTTG AAAAAGTAGA ATCAGTTGTT GGCTGGGTTC 60 GTGATAAGAA AATCACAGGC TACCGTATCT CTAAAGAAAC GAATGCGCGT GAAATGTCTA 120 TCATTGCTCT GGCGCAGGGT CGTGCAAAAG TAAAAAATAT TTCATTTGAA ACAGCCCTAG 180 GCCTAATTGA TTTCTATGAA AAAAATTATG AAAAATTTGA AGATTAATCT TTGGATAACG 240 GCGGATTCTT GACCTTCAAG TAGTAGAGAT AGAGAATCTG CCTTTTCATT TTGAGGACAG 300 CAAAAAGACT GCACGGTTGA TGCAGCCTTT TCTTTTTATT TGAGATAGCG TTGAAGGAAC 360 TCTTTTGTTC GGTCTTCTTT AGGATTGGTG AAGAGGTCTT CTGGTTTACC TTCTTCAGCG 420 ATCACGCCCT TATCCATAAA GATAACACGG TGAGAGACAT CACGGGCAAA TTCCATTTCA 480 TGGGTTACGA CAATCATGGT CAAGCCTTCC TGAGCCAGGT CCTGCATGAT TTTGAGGACT 540 TCTCCAACCA TTTCTGGATC GAGAGCTGAT GTTGGTTCAT CAAAGAGAAT AGCGTCCGGA 600 TTCATGGAGA GGGCACGAGC GATGGCCACA CGTTGTTTTT GACCACCTGA GAGTTGTTTT 660 GGTTTGGCTT GCCAGTAGCG TTCTCCCATG CCGACCTTTT CCAGGTTTTC TTTGGCAATC 720 TTTTCAGCTT CTGTGCGTTC GCGTTTTAGG ACAGTTGTCT GAGCGACGAT TGTGTTTTCA 780 AGAACATTGA GATTTTCAAA GAGGTTAAAG GATTGGAAAA CCATCCCCAA CTTTTCACGG 840 TATTGCGTGA GGTCATAGCC TTTTTCGAGG ACGTTTTGTC CATGATAAAG GATTTGTCCA 900 TCAGTTGGTG TTTCAAGTAG GTTAATGGAG CGTAGGAAGG TCGATTTTCC GCTTCCAGAG 960 CTTCCGATGA TAGAGATGAC CTCTCCCTTG TGGACAGTGA GTGAAATGTC TTTTAGCACT 1020 TCGTTTTGTC CATAGGATTT TTTGAGGTGT TTAATTTCAA GGATTGCTTG TGTCATTATT 1080 TCAAATCCTC CGTTTGCATT TGGTTAGCAC CTGTAGTGTA GGTATCCATG TCCATTCTGC 1140

GCTCGATAAA GCCTACCATA COTTOTTA COT	
GCTCGATAAA GCGTAGGATA CGTGTTACGG TGAAGGTGAG GACAAAGTAA ATCACGGCGA	1200
TGATTGTAAA TGTCTGGAAG TATTGATAGG TTTGTGTTGC CACGGTATTT CCTGAGAAAT	1260
AAAGTTCGAC AACAGAGATA ACGTTCAATA CAGATGTATC TTTGATATTG ATGACAAATT	1320
CATTACCAGT TGCAGGTAGG ATGTTACGGA CTACCTGAGG TAGGACAATC TTACGCATGG	1380
TCTGGTTATG GGTCATACCA AGAGCAGTCG CAGCTTCAAA TTGTCCCTTG TCAACTGCTA	1440
GGATACCACC ACGGACGATT TCAGTCATGT AGGCACCGGT ATTGATTGAA ACGATGAAGA	1500
TAGCAGCCAG TGTACGGTCA AGGTTGATCC CGAAAGCTTG GGCAGTTCCA TAGTAGATAA	1560
CCATCGATTG AACAATCATT GGCGTACCAC GGAAAATTTC AATGTAGACA TTGAGAACCC	1620
AGCCGACTAG TTTTTGTAGG CCGTAAATGA CTTTGTTTTC AGAGAGAGGA GCAGTACGGA	1680
AGACACCAAT GGCAAGTCCA ATAATGAGAC CTATGATGGT TCCGACGATA GAGATTAAAA	1740
GAGTGATACC AGCACCACGC AAGAGTTGTT GCCAGTTTTC AGAAAGAATT TTAGCAACTT	1800
GGCTAAAGAA ACTACTGCTA GTCTCTTCAG TTGTTGTAGC TTCGGCAGGT TGTTCCTTGA	1860
TCATACGATC CATCAAGGCA ACTTGGTCAT CTTTTGAAAT GGTTTCAATG CTGGCATTGA	1920
TTTGGCTAAT ACGATTGTCA TTTTTACGAA GCCCGATAGC GATAGCTGTA TCTTCTTCCC	1980
CAGTTTTGAA ACCAGGTTCT ACTTGAATCA TCTTGAACTT AGAGTTCGCA GCTTCAGCAG	2040
TCAGTGCTTC TGGACGTTCA GAAACATAAG CATCAATGAC ACCAGCCTCA AGAGCTTGTC	2100
GCATTTGAGC GAAGTCTCCC ATGGCTGTTT CTTTTTTAGC ACCTGGGATT TGTGCAATCA	2160
AGTTATAAAG GTAGACCCCT TGTTGAGAAG TGATTTTTGC ACCGTTAAAG TCATCCAAAG	2220
ATTTAGCACT TGCGTAGGCA GAATCTTTTT TGACAAGCAA AACTGGTTCG CTAGTATAGT	2280
AACTGCTCGA AAAGGCAATT TCTTGTTTGC GTTCTGCAGT TGGACTCATA CCTGCGATAA	2340
TCATGTCAAT CTTACCAGAA GTAAGGGCAG GGACTAGACC TTCCCACTTG GTTTTAACAA	2400
CCAAAGGTTC TTTACCTAAG TCCTTAGCGA TTTTCTTGGC GATTTGAACA TCGTATCCGT	2460
TGGCATACTG ATTGGTCCCA TCGATTTTGA CAGCTCCGTT GCTATCATCA TCCTGGGTCC	2520
AGTTAAAGGG AGCATATGCT GCTTCCATAC CGATGCGTAA ATATTCATCG GCTTGAGCAA	2580
CATTGACAAG TCCTAGCATC AGCAAGAGAC TTGTGAAAAT AGATAAGTAY ATGTGGCTCA	2640
TGATTTCTCC TATTCTGATC TATTAAAAAA TAACTGTCTC CTATTTTATC GAAAAATGCG	2700
TAATTTTTCA ACATAAGTAA GTCTTTACTT ACGAAAAAAT GCTATAATGA TAAGAAAGAT	2760
AAAAAGGGGG CTTAGTTGAT GAAAAAACT TTTTTCTTAC TGGTGTTAGG CTTGTTTTGC	2820
CTTCTTCCAC TCTCTGTTTT TGCCATTGAT TTCAAGATAA ACTCTTATCA AGGGGATTTG	2020

480 TATATTCATG CAGACAATAC GGCAGAGTTT AGACAGAAGA TAGTTTACCA GTTTGAGGAG 2940 GACTTTAAGG GCCAAATCGT GGGACTTGGA CGTGCTGGTA AGATGCCTAG CGGGTTTGAC 3000 ATTGACCCTC ATCCAAAGAT TCAGGCCGCG AAAAACGGTG CAGAACTAGC AGATGTGACT 3060 AGCGAAGTAA CAGAAGAAGC GGATGGTTAT ACTGTGAGAG TCTATAATCC AGGTCAGGAG 3120 GGCGACATAG TTGAAGTTGA CCTCGTCTGG AACTTAAAAA ATTTACTTTT CCTTTATGAT 3180 GATATCGCTG AATTAAATTG GCAACCTCTG ACAGATAGTT CAGAGTCTAT TGAAAAGTTT 3240 GAATTTCATG TAAGGGGAGA CAAGGGGGCT GAAAAACTCT TTTTCCATAC AGGGAAACTT 3300 TTTAGAGAGG GAACGATTGA AAAGAGTAAC CTTGATTATA CTATCCGTTT AGACAATCTT 3360 CCGGCTAAGC GTGGAGTTGA GTTGCATGCC TATTGGCCTC GGACCGATTT TGCTAGCGCT 3420 AGGGATCAGG GATTGAAAGG GAATCGTTTA GAAGAGTTTA ATAAGATAGA AGACTCGATT 3480 GTTAGAGAAA AAGATCAGAG TAAACAACTC GTTACTTGGG TCCTCCCTTC GATCCTTTCC 3540 ATCTCCTTGT TATTGAGTGT CTGCTTCTAT TTTATTTATA GAAGAAAGAC CACTCCTTCA 3600 GTCAAATATG CCAAAAATCA TCGTCTCTAT GAACCACCAA TGGAATTAGA GCCTATGGTT 3660 TTATCAGAAG CAGTCTACTC GACCTCCTTG GAGGAAGTGA GTCCCTTGGT CAAGGGAGCT 3720 GGAAAATTCA CCTTTGATCA ACTTATTCAA GCTACCTTGC TAGATGTGAT AGACCGTGGG 3780 AATGTCTCTA TCATTCAGA AGGAGATGCA GTTGGTTTGA GGCTAGTAAA AGAAGATGGT 3840 TTGTCAAGCT TTGAGAAAGA CTGCCTAAAT CTAGCTTTTT CAGGTAAAAA AGAAGAAACT 3900 CTTTCCAATT TGTTTGCGGA TTACAAGGTA TCTGATAGTC TTTATCGTAG AGCCAAAGTT 3960 TCTGATGAAA AACGGATTCA AGCAAGAGG CTTCAACTCA AATCTTCTTT TGAAGAGGTA 4020 TTGAACCAGA TGCAAGAAGG AGTGAGAAAA CGAGTTTCCT TCTGGGGGCT CCCAGATTAT 4080 TATCGTCCTT TAACTGGTGG GGAAAAGGCC TTGCAAGTGG GTATGGGTGC CTTGACTATC 4140 CTGCCCCTAT TTATCGGATT TGGTTTGTTC TTGTACAGTT TAGACGTTCA TGGCTATCTT 4200 TACCTCCCTT TGCCAATACT TGGTTTTCTA GGGTTAGTTT TGTCTGTTTT CTATTATTGG 4260 AAGCTTCGAC TAGATAATCG TGATGGTGTT CTAAATGAAG CGGGAGCTGA GGTCTACTAT 4320 CTCTGGACCA GTTTTGAAAA TATGTTGCGT GAGATTGCAC GATTGGATCA GGCTGAACTG 4380 GAAAGTATTG TGGTCTGGAA TCGCCTCTTG GTCTATGCGA CCTTATTTGG CTATGCGGAC 4440 AAGGTTAGTC ATTTGATGAA GGTTCATCAG ATTCAAGTGG AAAATCCAGA TATCAATCTC 4500 TATGTAGCTT ATGGCTGGCA CAGTACGTTT TATCATTCAA CAGCACAAAT GAGCCATTAT 4560 GCTAGTGTCG CAAATACAGC AAGCACCTAC TCTGTATCTT CTGGAAGTGG AAGTTCTGGT 4620 GGTGGCTTCT CTGGAGGCGG AGGTGGCGGC AGTATCGGTG CCTTTTAAAG AGAGCTACCA 4680

TAGACTGAAA AACTATCATA TAATCCAAA	
TAGACTGAAA AAGTATGATA TAATGGAAGA TAGAAAAAAG ACAAACTATA AGAAAAGTCA	4740
ATACTTTAT CTAAACTATT TCTTATTTCA ATTTGATGAT TTGGCGATGA TTTTAGAGCA	4800
CGGCAAAAAG CCCTTGAAAA AGTCCATTTT TTCAAAGGTA ATCCTGTGTT AATTTCAGAA	4860
ATTACATCAC TTTTTGTTCG TCAAATGGCA GCTCTTTTTT AGGATATAAA ACAGGGTTCG	4920
GATAAGTTTT TTTGCAAGGT GGATGATGGC TACATTGTAA TGTTTTCCTT ATTCTAACTT	4980
- AGTCTTAAGA TAGGCCTTAG AAGCAGGTGA AAAGCGAGGG CATGCTTTGG CAGCTTGTAT	
GAGTGCCCAC CGCAGATGAG GGGAACCCCG TTTGACCATT CTTCCAGCTA AATCAATCTG	5040
ACCTGACTGA TAAATAGAAG AATCCAGTCC AGCGAAAGCT TGTAATTGAG CAGGATTATC	5100
AAAGGCATGA ATATTTCGAA TCTCGGCTAA AATGACCGCC CTAAACGATC CCCAATCCCA	5160
GTAACCGTCG TGATGACCGA GTTGAACTCA GCCATCGAGT CATTGATACA TGTTTCCGCC	5220
TTGTCAATGA GCCTCTTGTA ATGCTTGATG ATTTCGAATT CACGAGCAGG AGATGTTGTT	5280
CCGATAGAAC GAGGTGCGAC TCACACCATA COCCATAGAAC GAGGTGCGAC TCACACCATA	5340
CCGATAGAAC GAGGTGCGAC TGAGAGGGATA TCCTGAATTT TAGAAGCGGT CAATCGCTTA	5400
ATTTCTATCA GCTTATCAAA TCCTGCCTCA ATCCTTTTCT GAGGATTAGG GTAGCGTGTC	5460
AAGAGTTGGT AGGTATATTC TGAATGCTTT CCAACGATTT TATCCAACTC AGGAAAGATG	5520
ATATCAAGAC AACGAGTGTA TTGTACTTTC CAATCAGACT GTTTTTCTTG AGACGATGAA	5580
TATGTCTAGC CAGTATTTTT AGGTCTACTT GCCGATTATC GTGTTGAAAT TGTTCACGAT	5640
TGGGGTCAGA AAGAAGTTTA AGAGCGATGC CATGAGCGTC TTTCTTATCC GTTTTAGTCT	5700
TGCGAAGTGA TAATGATTTG GCAAATTCCT TGATGAGCAA AGGATTGTAG GTGTAAACTT	5760
TATATCCTTG TTCATGCAGG AAGTTCAGTA GATTAAAGGC ATAATGTCCA GTATCTTCAA	5820
GAGCGATGAG ACAGTCTTGG TTGATCTGTC GAATAGACAG ATCTAAGAGT TCAAAACCAG	5880
CTITATTATT TGAAAAAGTG AGTGGTTTAA GAACAGTTTT TCCTGGAACA TTCAAGGCTG	
TAACATCGTG TTTATTTTTA GCGATATCAA TGCCTACATA AAGCATGGGA GTACCTCCAG	5940
ATATAGTATT TCAAGTCTAC TTGGTTATCC ACGAATTTTT TGCCTTGTTA CCTTAGACGA	6000
GATCAAACGT CTATGCGTTA TCAAACTCAT TACCAATTGA AACAAAAGCT GTGGTTAGAG	6060
CCTTTCGGAA ATCGTCAAGC GATTGGAGGA AATGAACTAA TCCATAGTGG CTTATTCCAA	6120
GTATACCACT TGGGCTTTGG CAGTAGCTAA CTGCGCTAAA TATAATATAG GGAGTAATCT	6180
ATGTATCTTA TTGAAATTTT AAAATTTT AAAATTTTT AAAATTTTT AAAATTTT AAAATTTTT AAAATTTTTT	6240
ATGTATCTTA TTGAAATTTT AAAATCTATC TTCTTCGGAA TTGTTGAAGG AATTACGGAA	6300
PGGTTGCCGA TTTCCAGTAC AGGTCACTTG ATTTTAGCAG AGGAATTCAT CCAATACCAA	6360
ATCAAAATG AAGCCTTTAT GTCCATGTTT AATGTCGTGA TTCAGCTTGG TGCTATTTTA	6420

4.82	
GCAGTTATGG TGATTTATTT TAACAAGCTC AATCCTTTTA AACCGACCAA GGACAAACAG	6480
GAAGTTCGTA AGACTTGGAG ACTATGGTTG AAGGTCTTGA TTGCTACTTT ACCTTTACTT	6540
GGTGTCTTTA AATTTGATGA TTGGTTTGAT ACCCACTTCC ATAACATGGT TTCAGTTGCT	6600
CTCATGTTGA TTATCTACGG GGTTGCCTTC ATCTATTTGG AAAAGCGCAA TAAAGCGCGT	6660
GCTATCGAGC CAAGTGTAAC AGAGTTGGAC AAGCTTCCTT ATACGACCGC TTTCTATATC	6720
GGACTCTTCC AAGTTCTTGC TCTTTTACCA GGGACTAGCC GTTCAGGTGC AACGATTGTC	6780
GGTGGTTTGT TAAATGGAAC CAGTCGTTCA GTTGTGACAG AATTTACCTT CTATCTTGGG	6840
ATTCCTGTTA TGTTTGGAGC TAGTGCCTTA AAGATTTTCA AATTTGTGAA AGCCGGAGAA	6900
CTCTTGAGCT TTGGGCAATT GTTTTTGCTC TTGGTCGCGA TGGGAGTAGC TTTTGCGGTC	6960
AGCATGGTGG CTATTCGCTT CTTGACCAGC TATGTGAAAA AACACGACTT CACCCTTTTT	7020
GGTAAATACC GTATCGTGCT TGGTAGTGTT TTGCTACTTT ACAGTTTTGT CCGTTTATTT	7080
GTATAAGAAA AACCTTGAAG GGGCAACTCT TCAAGGTTTT ATACTCTTCG AAAATCTCTT	7140
CAAACCGCGT CAGCTTTATC TGCAACCTCA AAACAGTGTT TTGAGCAGCN CTGCGGCTAG	7200
CCTCCTAGTT TGCTCTTTGA TTTTCATTGA GCTTTAAAAT CCAGTCATGG TAATCCCCAA	7260
TAGGCGGACA CCTCTTTCTT TCTTGCTTAA TTCTTCATAG AGTTGCAGGG CTATTTGGCT	7320
TATCTGACTA GCATCTTGTG TTTTTTGAGC AAGACTTTTT CGTTTGGTAA GAGTTGAAAA	7380
GTCCTCGTAG CGGATTTTCA AAATGACAAT TTTTCCAGCT TTTTCTTGTT GATGTAGATT	7440
GAGAGCGACT TTTTCTGATA GAAGAGTCAG CTCTTTTTTG ATATCTTCCT CAGCAAGGAG	7500
AATCTTCCCG TAGGTTTTCT CCTTGCCGAT TGATTTACGG ATGCGATTGG ATTTGACTGG	7560
AGAGTTGTGA ATGCCACGAG CCTTTCGATA CAGATCATAG CCTAGTCTAC CAAAACGGTC	7620
TATTAGGGTT ACCTCAGGAA CTTCAAGTAA ATCAGCACCA GTAAAAACGC CCATTTGATG	7680
AAGACGTTCT ACTGTCTTTT TTCCTACTCC ATGAAATTTG GAAATATCCA TTTGTTTGAG	7740
AAAATCCTCA GCCTGTTCAG GTAGAATCAC TGTCAAACCA TGTGGTTTTT GATAATCACT	7800
CGCCATTTTA GCTAAGAATT TGTTGTAAGA AACGCCTGCG GAAGCAGTTA GATGGAGTTC	7860
TTGCCAGATA TCTTTTTGAA TGAGGCGAGC AATTTTGACC GCTGACTTGA TACCGAGTTT	7920
ATTTTCTGTC ACATCCAAAT AGGCTTCGTC AATGCTCATG GGTTCAATCA AATCTGTATA	7980
GCGCTTAAAA ATAGCTCGAA TCTGGAGTCC CACAGACTTG TATTTCTCAT AATTCCCTGA	8040
GATAAAGACA GCCTGGGGAC AACGTTCATA AGCTTCCTTG GAACTCATGG CAGAATGGAC	8100
ACCAAAAGCT CTTGCCTCAT AACTACAGGT AGAAACGACT CCCCGTCCAC CTGTTTGCCG	8160
AGGGTCGCTT CCAATAATGA CAGGTTTTCC TCTGAGTTTA GGATTATCCC TGATTTCCAC	8220

TGCAGCAAAA	AAGGCATCCA	TGTCAATATG	GATGATTTT	CTTGACAAAT	CATTTAACAA	8280
AGGAAAAATC	AACATGCCTA	GCACCTTTTT	ATACTCTTCG	AAAATCTCTT	CAAACCACGT	8340
CAGCTCTATm	TGCAACCTCA	AAACAGTGTT	TTGAGCAATC	TGCGGCTAGC	TTCCTAGTTT	8400
GCTTTTCGAT	TTCCATTGAG	TGTTACTGCT	TATTYTCTTT	TATTATACCC	TTTTTTCTGA	8460
AAAAAAGAAA	AAAGGACTTT	ATTTTTTCAA	AAATATAATA	CAGTTTGAAA	TAAAATATAG	8520
ACTGTTTTAG	AAAAGAAAGT	GTAAAAATAG	GGAATTTTCA	CTTGTTGAAA	TCGGTTACTA	8580
TATGGTATAC	TTGTCTTATG	AATGTAACAG	ATGACTGTTA	CTAGAAAAA	GAGGACATTA	8640
ATATGGTTGT	TAAGACAGTT	GTTGAAGCAC	AAGATATTT	TGACAAAGCT	TGGGAAGGCT	8700
TCAAAGGCGT	AGATTGGAAA	GAAAAAGCAA	GTGTATCACG	ATTTGTACAA	GCTAACTACA	8760
CACCTTATGA	TGGAGACGAA	AGCTTCCTTG	CAGGACCAAC	AGAGCGTTCA	CTTCACATCA	8820
AGAAAATTGT	AGAAGAAACT	AAAGCACACT	ACGAAGAAAC	TCGTTTCCCA	ATGGACACTC	8880
GTCCAACATC	TATCGCTGAT	ATCCCTGCTG	GATTTATCGA	CAAAGAAAAT	GAAGTTATCT	8940
TCGGTATCCA	AAACGATGAA	CTCTTCAAAT	TGAACTTCAT	GCCAAAAGGT	GGTATCCGTA	9000
TGGCTGAAAC	TACTTTGAAA	GAAAATGGAT	ACGAACCAGA	CCCAGCTGTT	CACGAAATCT	9060
ТСАСТАААТА	TGTAACAACA	GTTAACGACG	GTATTTTCCG	TGCCTACACT	TCAAATATTC	9120
GTCGCGCTCG	TCACGCACAC	ACTGTAACTG	GTCTTCCAGA	TGCATACTCA	CGCGGACGTA	9180
TCATCGGTGT	TTACGCACGT	CTTGCTCTTT	ACGGTGCAGA	CTACTTGATG	CAAGAAAAAG	9240
TAAATGACTG	GAATGCAATC	AAAGAAATCG	ATGAAGAAAC	AATCCGTCTT	CGTGAAGAAG	9300
TAAACCTTCA	ATACCAAGCA	TTGCAACAAG	TTGTTCGCCT	GGGTGACCTT	TACGGGGTTG	9360
ATGTTCGCAA	ACCAGCGATG	AACGTGAAAG	AAGCAATCCA	ATGGGTTAAC	ATTGCTTTCA	9420
TGGCTGTCTG	CCGTGTGATT	AACGGTGCTG	CTACATCTCT	AGGTCGTGTA	CCAATCGTAT	9480
TGGACATCTT	TGCAGAACGT	GACCTTGCTC	GTGGTACATT	TACTGAATCA	GAAATCCAAG	9540
AATTCGTTGA	TGATTTCGTT	ATGAAACTTC	GTACAGTTAA	ATTTGCTCGT	ACAAAAGCTT	9600
ATGACCAATT	GTACTCAGGT	GACCCAACCT	TTATCACAAC	TTCTATGGCT	GGTATGGGTA	9660
ACGACGGTCG	TCACCGTGTT	ACTAAGATGG	ACTACCGTTT	CTTGAACACT	CTTGACAACA	9720
TCGGTAACTC	ACCAGAACCA	AACTTGACAG	TTCTTTGGAC	TGACAAATTG	CCATACAACT	9780
TCCGTCGCTA	CTGTATGCAC	ATGAGCCACA	AACACTCTTC	TATCCAATAC	GAAGGTGTAA	9840
CAACAATGGC	TAAAGACGGA	TATGGTGAAA	TGAGCTGTAT	CTCATGCTGT	GTGTCTCCAC	9900
TTGATCCAGA	AAATGAAGAA	CAACGCCACA	ACATCCAGTA	CTTCGGTGCT	CGTGTAAACG	9960

			484			
					C AAAGACTACA	10020
AAGTATTTG	A TATCGAACC	A ATCCGTGAC	G AAGTTCTTG/	ATTTGAATCA	GTTAAAGCGA	10080
ACTTTGAAA	A ATCTCTTGAG	CTGGTTGACT	G ACACTTACG	F AGATGCCTTC	AACATCATCC	10140
ACTACATGA	C TGATAGGTA	C AACTACGAA	CTGTTCAAA1	GGCCTTCTTC	CCAACTAAAC	10200
AACGTGCCA	A CATGGGATT	GGTATCTGT	G GATTTGCTAA	CACTGTTGAT	ACATTGTCAG	10260
CTATCAAATI	A CGCTACAGTT	AAACCAATC	C GTGACGAAGA	TGGCTACATO	TACGATTACG	10320
AAACAATCG	G TGACTACCC	CGCTGGGGT	AAGATGACCC	ACGTTCAAAC	GAATTGGCAG	10380
AATGGTTGAT	CGAAGCTTAC	ACAACTCGT	TACGTAGCCA	САААСТЛТАС	AAAGACGCAG	10440
AAGCTACAGT	T ATCACTTTTC	ACAATCACA1	CTAACGTTGC	ттастстала	CAAACTGGTA	10500
ACTCACCAGT	TCACAAAGGT	GTATACCTC	ACGAAGATGG	TTCTGTGAAC	TTGTCTAAAC	10560
TTGAATTCTI	CTCACCAGGT	GCTAACCCAT	CTAACAAAGC	TAAAGGTGGT	TGGTTGCAAA	10620
ACTTGAACTC	ACTTTCTAGO	CTTGACTTTA	GTTATGCAGC	TGACGGTATC	TCATTGACTA	10680
CACAAGTATC	ACCTCGCGCT	CTTGGTAAGA	CTCGTGATGA	ACAAGTTGAT	AACTTGGTAA	10740
CAATTCTTGA	TGGTTACTTC	GAAAACGGTG	GACAACACGT	TAACTTGAAC	GTTATGGACT	10800
TGAACGATGT	TTACGAAAAA	ATCATGTCAG	GCGAAGACGT	TATCGTACGT	ATCTCTGGAT	10860
ACTGTGTAAA	CACTAAATAC	CTCACTCCAG	ААСААААААС	TGAATTGACA	CAACGTGTCT	10920
TCCACGAAGT	TCTTTCAATG	GATGACGCCT	TGGATGCATT	GAGCTAATCA	AGTTCTTGAA	10980
ТААТАААА	GAACCCTCGG	TCAAACGACT	GAGGGTTTTG	TGCTTGGGAT	AGTATGAGCA	11040
ATTCCTTCGG	CGCAATATGC	AATGTTTTTG	GGCTCTTTGT	CAACTGTAGT	GGGTTGAAAA	11100
AAAGCTAAGC	TTGAGAAAGG	ACAAATTTCG	TCCTTTCTTT	TTTGATGTTC	AGGGCGATAA	11160
AAATCCGTTT	TTTGAAGTTT	TCAAAGTTCC	GAAAACCAAA	GGCATTGCGC	TTGATGTCTT	11220
TGATGAGTTT	GTTAGTGGCC	TCAAGTTTAG	CGTTAGAATA	AGGCAATTCA	ATGGCGTTAG	11280
TGATGTAGTT	TTTATAGCAA	ATAAATGTGC	TCAAAGTGGT	TTTAAAGGTG	CGGTTGAGAT	11340
GAGGTAACGT	GTCTTGAATT	AAGCCCCAAA	ACTGGTCAGT	ATTCTTCTCT	TGTAGATGAA	11400
ATAGGAGTAG	TTGATACAGG	TCATAGTAAT	CTTTAAGTTC	AGGTACTAGA	GTAAAGATTT	11460
TCTTCAGACA	CTCCCTAGGA	GTTAAGGTCT	CTCTGAAAGT	TCTAGCATAG	AAAGGCTTAA	11520
GAGAGAGTTT	CCGACTATCT	TTTAGGATAA	ATTTCCAGTA	ATATTTAAGA	GCTCTGTATT	11580
CCAGAGATTT	ATCATCAAAT	TGCTTCATGA	TGTTGATTCT	AGTCTGATTA	AGAGCCCTGC	11640
CATGTGTTG	GACAATGTGG	AAACGATCGA	GAACAATTTT	AGCATTGGGA	AATAATTTCT	11700
PAATGAGAGG	GATATAACTT	CCAGACATAT	CAACAGTGAC	GACTTTAACT	TTTTTCTAG	11760

CTTCTTTCGA GTACTTGAAG AAA				11820
TGGTCATGAT TTTCTTAGTG TTG	AATCCT GAGCAATGA	A AGCCAATTTC	CCCTTCTGGT	11880
AGGAGAATTC ATCCCAGGAG AGGA	ATTTCAG GCAAAGTGG	т стаатсстст	TGGAAATGAA	11940
ATTGCTTGAG CTTACGATAG ACGO	TAGAGG TAGAGGTAG	A GGTAGAGATG	GCTAATTTAG	12000
AAGCGATATG TGTAAGAGCC TCTC	TGTTGA GTAGGAGTT	G GGCAATTTTC	TGTCTCACCA	12060
TTTCCGAGAT TTGGCAATTT TTCT	GAACGA GAGTTGTTT	C AGCTACAGTG	ACTTTCCGAC	12120
AGGACTTGCA TTGAAATCGT CTCT	TTTTCA AATGAATGA	G GCTAGGGAAA	CCACCAATCT	12180
CGATAAAAGG GATTTTAGAA GGCT	TTTGGA AGTCGTATT	r gatttgttt	CCTTTACAGT	12240
GTTTACATTT AGGTGGGTGA TAAT	CAAGTG TAGCGAAGA	C TTCGATATGG	GTATCGTGCT	12300
GAATGGCTTT ATTTAAGGTG ATGT	TTTTGT CTTTTATTC	C GATGAGTAAT	GTGGTATGAT	12360
TGATGTGTTC CATAAGATAC TTTC	TAATGA GTTGTTTAGG	G CGCTTTTCAT	ТАТААСТСТТ	12420
ATGGGACTTT TTTGATACTC AAAA	AGCCCT ATAATCTCC	CAGTGGGATT	TACCCACTAC	12480
AGAAATTATA GAGCCAGAAA AAAC	ACTTTT GTTCACTAGO	AGAAACTAGA	GAGCAGAAGT	12540
GTTTTTCTGT TCAGATTTAC CCAA	AACTGG GAAATATGGG	GATAAGAATA	GAGATGGCTT	12600
AGGAAGCCCC TTTTTGTGTG TAGA	CAGTAC GATGAACTTA	TAACAAATAG	TGAGCCTTTT	12660
TAGCAATCAT TGCGACCCGT TTGT	CAAAAG CCTCTTTTCG	GATATCTACA	ATTGTCTGAT	12720
AGATGAGACG CTGTTGGCTA ACATY	CAAAT CTAAGGCAAT	CGTCAAAAAG	TGATGTTTCC	12780
CTTTGGGATA CTGCTTTTTA ACGT	AGGCA GGTATTCTTT	CGTTGTAATA	ATAATCAATG	12840
GCTCTGTCAA ATGCTCCTCT GAAGC	AGGAG GACTAATTAG	AATATTGTAT	CCTGTAACAG	12900
AGGCAACTTT GTCAGTAAAA TTCCC	TAAAA TAATGGACTT	TATTAAGTTT	ACATCTGCTT	12960
GATTATTTAA AATGATAAAA ATCGC	GATAG CAGGTAGTGA	GGAAAAGATG	GTTTCTGTCA	13020
AGTAGAGTGA GAAAAGGTAC AGCCC	ATGCT GGTCGATAAC	TCCTTCAATC	TTCTGCTCAG	13080
TCATCCACTC TTGAACAATT GCTTT	CGAAA TATGATACAG	TGGCTTGTCG	CTTTCAATCC	13140
CATAATGTTC GTAATAATTA TAATA	GGGAA CTAGATTTTG	TAAACCAAAC	AAAAACGTTC	13200
TTGTTAAGAA AGTCAGTGCT GTTAA	AAAAG AAAGAGAATT	CGAAATGTCA '	PTTCCTAAGA	13260
TATTCTTGAA CTTGGATAGT AGATG	CTTTC CTCTTGTATG	CTGAAGAATC A	AGTTGAATAG	13320
TATGAGTCTT TTTTTCTTGA TTCCA	TTTGT CCTTGGAAAA	CGAAGAATTA (GCAGAACAAT	13380
AAACCAAAAA GATATAATCC AGTTC	TTCCT GAGTAAAAGT	CATGTTGGCA 1	GTGGCTCTA	13440
AGTAAGTTTG GCAATGTTCC ATCAA	AATCG GATACATAAA	GAGGTTTTTT A	ATTTTTCAA	13500

PCT/US97/19588 WO 98/18931

486

ACTCTTTGGA CTCAGGGAAC TCAAGTGGAA ATTCCCGACG TTTCCAAGTG AGTGCCACTA 13560 GTATGCTAAA ATGAACATAC TCGTCAGGTG TGATTTCTAA CAGTTCATGA CTGAGTTGAG 13620 AATTAGACTG CACAATCATA TGTGTGACCC AATCCATACT TCCATCATTC AAATCATAAA 13680 TCTCAATACC AAAATGAAAC TGGAGGAGTG CAATTAAAAA ACGAATGCGA TATTCAGGAC 13740 CAACTACTTG ATTTTCACA AGGTCCAAAC CTACTGAACG TAGTAACAAG CCACACTTTT 13800 GTCGTACGCG GTAGCCTGTT GCGATGGAAA TATACTCTTT TTGTGTAAAT TCGTTAAAGC 13860 TTTGATTACC TTGTAGTAGA AAGAAGCGGA GTATTTTTAA AATAGTTGAT TGGTTATAAA 13920 GCTGATGGAA GTAATAATTC GTTTGATGAG AATGGTGTTC GATTAATTGA ACTTGTTGCG 13980 TATCTAAATT AAATGTCAAC TCTTCCTCGA ATGTTTCTTG TAATTCCTGC AAAATGCTTA 14040 GGAGACTTTT AGATTGTAAT GAAGTTAAAG TAGACAGTTC ATCTAGTTCA ATAGACCGAA 14100 TATCCAATAA TATATTTAAA ATGGTAATTT TATCTGTAAT TCTTTTTCA ATGTATTTGT 14160 TTAGCATAGT TACCGAATCT TAGTTGCATA TAGATAATTT TAATTATTAT AATACAAAAG 14220 AAACTAATTG TCTTGTCAAA AAGGTTGTGG AATTTCCGAC TTTATTGATA AAACAGCATG 14280 TAATAAAGG CATTTTAAAG ATAGTAATGA GTATTGGTGG AGTTTTATGG CTTATTTTTT 14340 TTATTAGAAA ATATTTTTT ATCAAATATT GTCGTTCTAT AAAAAAATAT GTGATAAAAA 14400 TATCTATTGT GATGGAAGTT GTTTTAATTT ATACTAGGAT AGTTAATAGT AATACTATAC 14460 TATACTATAT TGTATACAAG TGTGTCATTG CCAGGTTGAG AAGATAGCTA TAACGCACTT 14520 TTATACGCTT TTGCTACGTT TGTTAGTGAA CGGATTAACT CAGTGAGATA AATTTTATCA 14580 GAACATAAGT AATCCGTTTC TTCGTGTATA CAGATTGAAA GTACCTATGA ATCATAGAAG 14640 14700 GATTAACTTG TTCTATGAAT AATGCTTAAC AGGGAGACAC ACATGAAAAA AGTAAGAAAG ATATTTCAGA AGGCAGTTGC AGGACTGTGC TGTATATCTC AGTTGACAGC TTTTTCTTCG 14760 ATAGTTGCTT TAGCAGAAAC GCCTGAAACC AGTCCAGCGA TAGGAAAAGT AGTGATTAAC 14820 GAGACAGGCG AAGGAGGAGC GCTTCTAGGA GATGCCGTCT TTGAGTTGAA AAACAATACG 14880 GATGGCACAA CTGTTTCGCA AAGGACAGAG GCGCAAACAG GAGAAGCGAT ATTTTCAAAC 14940 ATAAAACCTG GGACATACAC CTTGACAGAA GCCCAACCTC CAGTTGGTTA TAAACCCTCT 15000 ACTAAACAAT GGACTGTTGA AGTTGAGAAG AATGGTCGGA CGACTGTCCA AGGTGAACAG 15060 GTAGAAAATC GAGAAGAGGC TCTATCTGAC CAGTATCCAC AAACAGGGAC TTATCCAGAT 15120 GTTCAAACAC CTTATCAGAT TATTAAGGTA GATGGTTCGG AAAAAAACGG ACAGCACAAG 15180 GCGTTGAATC CGAATCCATA TGAACGTGTG ATTCCAGAAG GTACACTTTC AAAGAGAATT 15240 TATCAAGTGA ATAATTTGGA TGATAACCAA TATGGAATCG AATTGACGGT TAGTGGGAAA 15300

ACAGTGTATG AACAAAAAG	A TAAGTCTGT	CCGCTGGATC	TCGTTATCTT	GCTCGATAAC	15360
TCAAATAGTA TGAGTAACA	T TCGAAACAA	AATGCTCGAC	GTGCGGAAAG	AGCTGGTGAG	15420
GCGACACGTT CTCTTATTG	A TAAAATTAC	TCTGATTCAG	AAAATAGGGT	AGCGCTTGTG	15480
ACTTATGCTT CCACTATCT	TGATGGGAC	GAGTTTACAG	TAGAAAAAGG	GGTAGCAGAT	15540
AAAAACGGAA AGCGATTGA	TGATTCTCTT	TTTTGGAATT	ATGATCAGAC	GAGTTTTACA	15600
ACCAATACCA AAGATTATAG	TTATTTAAAG	CTGACTAATG	ATAAGAATGA	CATTGTAGAA	15660
TTAAAAAATA AGGTACCTAG	CGAGGCAGAA	GACCATGATG	GAAATAGATT	GATGTACCAA	15720
TTCGGTGCCA CTTTTACTC	GAAAGCTTTC	ATGAAGGCAG	ATGAGATTTT	GACACAACAA	15780
GCGAGACAAA ATAGTCAAAA	AGTCATTTTC	CATATTACGG	ATGGTGTCCC	AACTATGTCG	15840
TATCCGATTA ATTTTAATC	TGCTACGTTT	GCTCCATCAT	АТСААААТСА	ACTAAATGCA	15900
TTTTTTAGTA AATCTCCTA	TAAAGATGGA	АТАСТАТТАА	GTGATTTTAT	TACGCAAGCA	15960
ACTAGTGGAG AACATACAAT	TGTACGCGGA	GATGGGCAAA	GTTACCAGAT	GTTTACAGAT	16020
AAGACAGTTT ATGAAAAAGC	TGCTCCTGCA	GCTTTCCCAG	TTAAACCTGA	ААААТАТТСТ	16080
GAAATGAAGG CGGCTGGTTA	TGCAGTTATA	GGCGATCCAA	TTAATGGTGG	ATATATTTGG	16140
CTTAATTGGA GAGAGAGTAT	TCTGGCTTAT	CCGTTTAATT	CTAATACTGC	TAAAATTACC	16200
AATCATGGTG ACCCTACAAG	ATGGTACTAT	AACGGGAATA	TTGCTCCTGA	TGGGTATGAT	16260
GTCTTTACGG TAGGTATTGG	TATTAACGGA	GATCCTGGTA	CGGATGAAGC	AACGGCTACT	16320
AGTTTTATGC AAAGTATTTC	TAGTAAACCT	GAAAACTATA	CCAATGTTAC	TGACACGACA	16380
AAAATATTGG AACAGTTGAA	TCGTTATTTC	CACACCATCG	TAACTGAAAA	GAAATCAATT	16440
GAGAATGGTA CGATTACAGA	TCCGATGGGT	GAGTTAATTG	ATTTGCAATT	GGGCACAGAT	16500
GGAAGATTTG ATCCAGCAGA	TTACACTTTA	ACTGCAAACG	ATGGTAGTCG	CTTGGAGAAT	16560
GGACAAGCTG TAGGTGGTCC	ACAAAATGAT	GGTGGTTTGT	TAAAAAATGC	AAAAGTGCTC	16620
TATGATACGA CTGAGAAAAG	GATTCGTGTA	ACAGGTCTGT	ACCTTGGAAC	GGATGAAAAA	16680
GTTACGTTGA CCTACAATGT	TCGTTTGAAT	GATGAGTTTG	TAAGCAATAA	ATTTTATGAT	16740
ACCAATGGTC GAACAACCTT	ACATCCTAAG	GAAGTAGAAC	AGAACACAGT	GCGCGACTTC	16800
CCGATTCCTA AGATTCGTGA	TGTGCGGAAG	TATCCAGAAA	TCACAATTTC	AAAAGAGAAA .	16860
AAACTTGGTG ACATTGAGTT	TATTAAGGTC	AATAAAAATG	ATAAAAAACC	ACTGAGAGGT	16920
GCGGTCTTTA GTCTTCAAAA	ACAACATCCG	GATTATCCAG	ATATTTATGG	AGCTATTGAT	16980
CAAAATGGCA CTTATCAAAA	TGTGAGAACA	GGTGAAGATG	GTAAGTTGAC	СТТТАААААТ	17040

488 CTGTCAGATG GGAAATATCG ATTATTTGAA AATTCTGAAC CAGCTGGTTA TAAACCCGTT 17100 CAAAATAAGC CTATCGTTGC CTTCCAAATA GTAAATGGAG AAGTCAGAGA TGTGACTTCA 17160 ATCGTTCCAC AAGATATACC AGCGGGTTAC GAGTTTACGA ATGATAAGCA CTATATTACC 17220 AATGAACCTA TTCCTCCAAA GAGAGAATAT CCTCGAACTG GTGGTATCGG AATGTTGCCA 17280 TTCTATCTGA TAGGTTGCAT GATGATGGGA GGAGTTCTAT TATACACACG GAAACATCCG 17340 17400 TAAAGTGTAG AAATGATAAT ATCTATGTTC TGAACGATAC TTTTAAGAAG TAGCACTCAA GAAGAGATTT AAGTTTACTT GGTGAAACCT GTTTTATTCG TAAGTAAACT ATCATTGAAA 17460 GGGGAGATGT TTTCGAAAAC TTGCACAGAA AAAGGATTAT TATTGTCATG TGTAATTCAT 17520 TACATTGCTC ACAGTTGATT TTAAGAGATA TGAATAAGGA GAAATCATGA AATCAATCAA 17580 CAAATTTTTA ACAATGCTTG CTGCCTTATT ACTGACAGCG AGTAGCCTGT TTTCAGCTGC 17640 AACAGTTTTT GCGGCTGGGA CGACAACAAC ATCTGTTACC GTTCATAAAC TATTGGCAAC 17700 AGATGGGGAT ATGGATAAAA TTGCAAATGA GTTAGAAACA GGTAACTATG CTGGTAATAA 17760 AGTGGGTGTT CTACCTGCAA ATGCAAAAGA AATTGCCGGT GTTATGTTCG TTTGGACAAA 17820 TACTAATAAT GAAATTATTG ATGAAAATGG CCAAACTCTA GGAGTGAATA TTGATCCACA 17880 17940 AACATTTAAA CTCTCAGGGG CAATGCCGGC AACTGCAATG AAAAAATTAA CAGAAGCTGA AGGAGCTAAA TTTAACACGG CAAATTTACC AGCTGCTAAG TATAAAATTT ATGAAATTCA 18000 CAGTTTATCA ACTTATGTCG GTGAAGATGG AGCAACCTTA ACAGGTTCTA AAGCAGTTCC 18060 AATTGAAATT GAATTACCAT TGAACGATGT TGTGGATGCG CATGTGTATC CAAAAAATAC 18120 AGAAGCAAAG CCAAAAATTG ATAAAGATTT CAAAGGTAAA GCAAATCCAG ATACACCACG 18180 TGTAGATAAA GATACACCTG TGAACCACCA AGTTGGAGAT GTTGTAGAGT ACGAAATTGT 18240 TACAAAAATT CCAGCACTTG CTAATTATGC AACAGCAAAC TGGAGCGATA GAATGACTGA 18300 AGGTTTGGCA TTCAACAAAG GTACAGTGAA AGTAACTGTT GATGATGTTG CACTTGAAGC 18360 AGGTGATTAT GCTCTAACAG AAGTAGCAAC TGGTTTTGAT TTGAAATTAA CAGATGCTGG 18420 18480 TTTAGCTAAA GTGAATGACC AAAACGCTGA AAAAACTGTG AAAATCACTT ATTCGGCAAC ATTGAATGAC AAAGCAATTG TAGAAGTACC AGAATCTAAT GATGTAACAT TTAACTATGG 18540 TAATAATCCA GATCACGGGA ATACTCCAAA GCCGAATAAG CCAAATGAAA ACGGCGATTT 18600 GACATTGACC AAGACATGGG TTGATGCTAC AGGTGCACCA ATTCCGGCTG GAGCTGAAGC 18660 AACGTTCGAT TTGGTTAATG CTCAGACTGG TAAAGTTGTA CAAACTGTAA CTTTGACAAC 18720 AGACAAAAAT ACAGTTACTG TTAACGGATT GGATAAAAAT ACAGAATATA AATTCGTTGA 18780 ACGTAGTATA AAAGGGTATT CAGCAGATTA TCAAGAAATC ACTACAGCTG GAGAAATTGC 18840

489	
TGTCAAGAAC TGGAAAGACG AAAATCCAAA ACCACTTGAT CCAACAGAGC CAAAAGTTC	
AAAAAGIIIIG TCAAAGTTAA TGATAAAGAT AATCCTTTAA	-
ATTTGTAATT GCAAATGCTG ATAATGCTGG TCAATATTTA GCACGTAAAG CAGATAAAG	A 18960
GAGTCAAGAA GAGAAGCAGT TGGTTGTTAC AACAAAGGAT GCTTTAGATA GAGCAGTTG	T 19020
TGCTTATAAC GCTCTTACTG CACAACAACA AACTCAGCAA GAAAAAGAGA AAGTTGACA	C 19080
AGCTCAAGCT GCTTATAATG CTGCTGTGAT TGCTGCCAAC AATGCATTTG AATGGGTGGG	A 19140
AGATAAGGAC AATGAAAATG TTGTGAAATT AGTTTCTGAT GCACAAGGTC GCTTTGAAAT	19200
TACAGGCCTT CTTGCAGGTA CATATTACTT AGAAGAAACA AAACAGCCTG CTGGTTATGC	19260
ATTACTAACT AGCCGTCAGA AATTTGAAGT CACTGCAACT TCTTATTCAG CGACTGGACA	19320
AGGCATTGAG TATACTGCTG GTTCAGGTAA AGATGACGCT ACAAAAGTAG TCAACAAAAA	19380
AATCACTATC CCACAAACGG GTGGTATTGG TAGAAAGTAG TCAACAAAAA	19440
AATCACTATC CCACAAACGG GTGGTATTGG TACAATTATC TTTGCTGTAG CGGGGGCTGC GATTATGGGT ATTGCAGTGT ACCCADAGGG TACAATTATC TTTGCTGTAG CGGGGGCTGC	19500
GATTATGGGT ATTGCAGTGT ACGCATATGT TAAAAACAAC AAAGATGAGG ATCAACTTGC	19560
TTAAGTAAGA GAGAAAGGAG CCATTGATGA CAATGCAGAA AATGCAGAAA ATGATTAGTC	19620
GTATCTTCTT TGTTATGGCT CTGTGTTTTT CTCTTGTATG GGGTGCACAT GCAGTCCAAG CGCAAGAAGA TCACACGTTG GTCTTTCCAAR	19680
CGCAAGAAGA TCACACGTTG GTCTTGCAAT TGGAGAACTA TCAGGAGGTG GTTAGTCAAT TGCCATCTCG TGATGGTCAT CCCTTTGCAAT	19740
TGCCATCTCG TGATGGTCAT CGGTTGCAAG TATGGAAGTT GGATGATTCG TATTCCTATG	19800
ATGATCGGGT GCAAATTGTA AGAGACTTGC ATTCGTGGGA TGAGAATAAA CTTTCTTCTT TCAAAAAGAC TTCGTTTGAG ATGACCTTGG	19860
TCAAAAAGAC TTCGTTTGAG ATGACCTTCC TTGAGAATCA GATTGAAGTA TCTCATATTC	19920
CAAATGGTCT TTACTATGTT CGCTCTATTA TCCAGACGGA TGCGGTTTCT TATCCAGCTG	19980
AATTTCTTTT TGAAATGACA GATCAAACGG TAGAGCCTTT GGTCATTGTA GCGAAAAAAA	20040
CAGATACAAT GACAACAAAG GTGAAGCTGA TAAAGGTGGA TCAAGACCAC AATCGCTTGG	20100
AGGGTGTCGG CTTTAAATTG GTATCAGTAG CAAGAGATGT TTCTGAAAAA GAGGTTCCCT	20160
TGATTGGAGA ATACCGTTAC AGTTCTTCTG GTCAAGTAGG GAGAACTCTC TATACTGATA	20220 ·
AAAATGGAGA GATTTTTGTG ACAAATCTTC CTCTTGGGAA CTATCGTTTC AAGGAGGTGG	20280
AGCCACTGGC AGGCTATGCT GTTACGACGC TGGATACGGA TGTCCAGCTG GTAGATCATC	20340
AGCTGGTGAC GATTACGGTT GTCAATCAGA AATTACCACG TGGCAATGTT GACTTTATGA	20400
AGGTGGATGG TCGGACCAAT ACCTCTCTTC AAGGGGCAAT GTTCAAAGTC ATGAAAGAAG	20460
AAAGCCGACA CTATACTCCT GTTCTTCAAA ATGGTAAGGA AGTAGTTGTA ACATCAGGGA	20520
AAGATGGTCG TTTCCGAGTG GAAGGTCTAG AGTATGGGAC ATACTATTTA TGGGAGCTCC	20580

AAGCTCCAAC TGGTTATGTT CAATTAACAT CGCCTGTTTC CTTTACAATC GGGAAAGATA 20640
CTCGTAAGGA ACTGGTAACA GTGGTTAAAA ATAACAAGCG ACCACGGATT GATGTGCCAG 20700
ATACAGGGGA AGAACCCTT GTATATCTTG ATGCTTGTTG CCATTTTGTT GTTTGGTAGT 20760
GGTTATTGTC TTACGAAAAA ACCAAATAAC TGATATTCAA TGTACATCAT TATGAATAGG 20820
ATAGCAGGCT GAAGGGAAGA CCAGAGTACT CTGAGGTGAT GTTAATCAG AATCATGGTG 20880
ATGTGGCATG AATCATCAAT AACGGATATG AGGCTGGCA GATTGTGCCA GCCTCATTGT 20940
GGGTTATTGT TTGTAAAACG ATAGGACTGG TCTGGTAATC ATTTTA 20986

(2) INFORMATION FOR SEQ ID NO: 55:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21040 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

CCCAGCAAAA AGCCATCCGA AGATGACTTT TTTGCTATTT AATTTCTGTA TAAGTTACTT 60 CCAAGCCACG CTTAACAGCT GGACGATTGG CAATTTTTC TGCCCATTTT ACTAGATTTT 120 GATAACTTGA GGCATCCAAG AATTTTGCAG AACCTTGGTA AAGATTTCCT TGAACTAACT 180 GTCCATACCA AGACCAGATA GCAATATCTG CAATCGTATA GTCATTGCCT GCAATATAAG 240 GTTTCTGAGC CAATTCCTTA TCCAATAAAT CCAACTGGCG TTTCACTTCC ATCGTAAAAC 300 GGTTAATAGG ATATTCCAAT TTTTCAGGAG CATAATTGAA GAAATGTCCA AATCCCCCAC 360 CTAGAAAAGG TGCTGCACCT GCTTGCCAGA ATAGCCAATT CAAAACTTCT ACCTTTTCCA 420 CAGGATTACT TGGTAAAAAG GCTCCAAATT TCTCAGCAAG GTAAAGAAGA ATATGAGCAG 480 ACTCAAAGAC TCTTACGTTT TCAGTACCTG ACTGGTCCAA TAAGGCTGGA ATCTTGGAAT 540 TTGGATTGAG CTTCACAAAG TCTGATCCGA ATTGATCCCC ATCCATGATA GCAATCTTAT 600 ACAAGTCGTA AGCCGCTTCC TTAAAACCAG CTTCTAGTAA TTCTTCCAAT AAGATAGTAA 660 CCTTCACACC ATTTGGTGTT CCCAGTGAAT AAAGCTGAAA AGCTTGTTCT CCTTTTGGCA 720 AGTTTTGTTC GAAACGGGCA CCTGCTGTTG GTCTGTTTAG CCCCGTAAAA GCTCCTTGAT 780 TACTAGCTTC ATCCTGCCAT ACGGTCGGTA ATTGATATGC TGACATCCGA AACCTCCCTT 840 AAATCGCATT CTTGTCAAAA CCGAGTTTGC GTTGAATAAA CTTAACGATT TCGACGATGA 900 TAATCATTGA GAAGCTTCCA GCCATAACAA TTCCCCATTG TGACAAGTCT AGTTTGGTTA 960 1020 CGTGGAAGAT TCCTTCAAGC GGTTCTACAA CGATTGTTGC CATGAGAAGG ATAAAGGATA

CCAAGATGGA	CCAGTTAAAG	GTCTTAGACT	TGAATGGGCC	AACTGTCAAG	ATGGATTGGT	1080
AGACAGACTT	GACATTGTAG	GCATGGAAGA	GCTGAATCAA	ACCAAGGGTT	GCAAAGGCCA	1140
TCGTTAGGGC	ATCTGCATGA	ATAGCATGAT	TGTCACCCAC	ATGAACTGGG	TANGCAATCG	1200
CAAGGCCATA	AACACTCATA	ACAAGAGCTG	CTTGGAGTAC	ACCTTGATAA	ATGATAGAAC	1260
TCAAAACACC	ACCTGAGAAG	AAGCTTGCCT	TGCGTCCACG	TGGTTTATGA	TTCATGACAC	1320
CAGGTTCCGC	AGGTTCAACA	CCAAGAGCGA	TAGCTGGGAA	GGTATCCGTT	ACCAAGTTGA	1380
TCCACAAAAG	ATGAACCGGC	TGTAAGACAT	CCCAACCAAA	CAAGGTTGAT	AGGAAGATGG	1440
TTAATACTTC	AGCAGTATTA	GCAGAAAGTA	GGTACTGAAT	AGTCTTTTGA	ATGTTTGAGA	1500
AGACCTTACG	TCCTTCTTCC	ACTGCGACGA	TAATAGTCGC	AAAGTTATCA	TCTGCAAGAA	1560
TCATATCAGA	AGCCCCCTTA	GAAACCTCTG	TACCAGTGAT	TCCCATACCG	ATACCGATAT	1620
CGGCTGTTTT	CAGAGCTGGC	GCGTCATTGA	CACCGTCACC	TGTCATGGCA	ACGACTTTAC	1680
CTTGTTTTTG	CCAAGCCTTG	ACGATACGAA	CCTTGTGTTC	TGGAGACACA	CGGGCATAAA	1740
CAGAGTATTG	ACCAACGACT	TTTTCAAATT	CTTCATCTGA	CAGTTCATTG	AGTTCAGCAC	1800
CAGTTAAAAC	GTGACCTTCT	GTATCGTTTG	CGTCAATGAT	TCCCAAACGT	TTGGCAATGG	1860
CTTCCGCTGT	GTCTTGGTGG	TCACCTGTAA	TCATAATTGG	ACGGATTCCC	GCTTCCTTAG	1920
CCACACGAAC	AGCCTCAGCG	GCTTCAGGAC	GTTCAGGGTC	AATCATCCCA	ATCAAACCAG	1980
ТАААААТТАА	ATCATTTTCA	AGCTCTTCAG	AAGTGAGATT	TTCTGGAATA	CTATCGATAA	2040
TCTTATAAGC	ACCTGCAAGG	ACACGCAAGG	CTTGATGAGC	CATTTCAGAA	TTGTTTGTAC	2100
GAATGAGATT	TGTAACCTTC	TCATCAATCG	GAGCAATATC	CCCAGCCTTA	TCACGAAGAA	2160
GACAACGTTT	TAAGAGTTGG	TCTGGCGCAC	CCTTGACTGC	TACAAGGAAA	CGACCATCTG	2220
GCAATGGGTG	AACTGTTGAC	ATGAGCTTAC	GGTCAGAGTC	AAATGGCAAT	TCAGCTACAC	2280
GAGGATATTT	CTCTAAGAAA	CCTTTGACAT	CATAGCCCTT	GTCCAAGGCA	TATTGGATAA	2340
AGGCTGTTTC	GGTTGGGTCA	CCAATCAAGT	TACCTTCCAC	ATCGATTTTC	GTATCATTGG	2400
CCAAGACAAC	TGAACGAAGT	AGTGGCATTT	CAAGACCTAG	TTCAATATCA	TCAGCTGAGT	2460
CATGTAGAAC	CGCATCGTAG	AAGACTTTTT	CGACTGTCAT	CTTGTTCATA	GTCAGCGTAC	2520
CAGTCTTATC	AGAAGCGATG	ATTTCAGTTG	AACCAAGTGT	TTCAACTGCT	GGCAACTTAC	2580
GAACGATGGA	ATGTCGTTTG	GCCAAAACTT	GAGTACCAAG	AGAAAGAACG	ATGGTAACGA	2640
TAGCAGGAAG	TCCTTCTGGA	ATGGCTGCAA	CGGCAAGGGC	AACAGAAGTC	AACAACTCAC	2700
CAAGTGGATT	TTTCCCTTGA	ATGAAGACAC	CCACTACAAA	AGTAACAAGG	GCAATGACCA	2760

492 AGATAGCATA GGTCAAGACC TTAGAAAGGT TGTTCAAATT TTGTTTGAGT GGTGTATCAG 2820 TCTCATCCGC ATCTTGAAGC ATACCAGCAA TATGACCAAC TTCAGTGTAC ATACCTGTAT 2880 TGACAACAAC ACCCATCCCA CGACCATAGG TTACGTTTGA GTTTTGGAAG GCCATGTTGA 2940 CACGGTCACC AATACCAGCA TCTGTCGCAA GCTCGACTGA CAAGTCTTTT TCGACTGGTA 3000 CAGATTCACC TGTCAAGGCT GCTTCTTCAA TTTTAAGAGA GTTGGCTTCT ATCAAACGTA 3060 GGTCCGCTGG TACCACGTCA CCTGCTTCAA GGGCAACGAT ATCGCCTGGT ACCAATTCTT 3120 TAGAGTCAAT CTCTGCCATG TGTCCATCAC GAAGAACGCG GGCAACTGGA CTAGACATGG 3180 ATTTGAGGGC TTCAATAGCT TCTTCAGCTT TTCCTTCTTG GTAAACACCA AAGGCAGCGT 3240 TGATGATAAC CACAGCTAGG ATGATAATGG CATCTGCGAT ATCTTCCCCA CCAGAAGTCA 3300 CGACTGACAA GATTGCtGCC GCAACTAGGA TGATAATCAT CAAATCCTTA AATTGCTCGA 3360 TGAATTTGAC CAAGATTGAT CGTTTCTCGC CTTCTTCGAG TTCATTGTGC CCAAATTCGG 3420 CAAGGCGCTT TTCCGCCTCA CTTGATGACA AACCTTGCTC GGTCGCATCC ACAGCCTGCA 3480 AGACCTCTTC AGGGCTCTGA GTATAAAACG CTTGGCGTTT TTGTTCTTTT GACATGTGTC 3540 TCCTCCTTGA CATTGTGTGC AAAACAGACT CTCTTTCTGT CATAGCTTTT CACGACAAAC 3600 AAAAAGAAAC CTGTTAATCA TAACAAGTCT CGCTGTTTAA GATAGGGCCG GAAAGCATAC 3660 TTTTCAGCAT AAAATTCGGA ATGACGACAC TATCACAGGT TTCTGCCAGC TACTCCCTTG 3720 AGTAGTACCA TTATACCAAA TTTTGGGGAG TTTTCAAAGA GTAAAAACTG CCTTATTTGA 3780 ATTTTTCCTT GAAAACCAGT ATAATGGTAG AATGCTATGT GACTAGAAAG GAAGTTGAAT 3840 GAAGCAATCT ATCTCAAATC TCAAGTTAGC TGAGCGTGGA GCCATTATCA GTATTTCGAC 3900 CTATTTGATC TTGTCTGCAG CCAAATTAGC AGCTGGTCAT CTCCLTCATT CATCCAGTTT 3960 GGTGGCCGAT GGTTTTAATA ACGTATCGGA CATCATTGGA AATGTGGCCC TCTTAATCGG 4020 GATTCGGATG GCGCGCCACC TGCAGACCGT GACCACCGTT TTGGTCATTG GAAGATTGAA 4080 GATTTGGCAA GCTTGATCAC TTCTATCATC ATGTTCTATG TCGGTTTCGA TGTTCTAAGA 4140 GATACCATTC AAAAGATTCT CAGTCGGGAA GAAACGGTCA TTGATCCTCT TGGTGCAACT 4200 CTAGGAATCA TTTCTGCAGC GATTATGTTT GTGGTCTATC TCTACAATAC TCGCCTCAGT 4260 AAGAAATCCA ACTCCAATGC GCTGAAGGCA GCTGCTAAGG ACAATCTTTC TGACGCTGTT 4320 ACCTCACTTG GAACCGCCAT TGCCATCCTA GCTAGTAGTT TCAATTATCC GATTGTGGAT 4380 AAACTGGTTG CTATCATCAT CACTTTCTTT ATCTTGAAGA CTGCCTATGA TATCTTCATC 4440 GAGTCTTCCT TTAGTCTTTC AGATGGCTTT GACGACCGCC TGCTCGAGGA CTACCAAAAG 4500 GCTATCATGG AAATTCCCAA AATCAGCAAG GTCAAATCGC AAAGAGGTCG CACCTACGGT 4560

AGCAACATCT	ACCTGGATAT	TACACTAGAG	ATGAATCCTG	ACTTGTCTGT	TTTTGAAAGC	4620
CATGAAATCG	CGGATCAGGT	CGAGTCTATG	CTGGAGGAGC	GTTTTGGCGT	CTTTGATACC	4680
GATGTCCATA	TCGAACCAGC	ACCTATCCCT	GAGGATGAAA	TTTTAGACAA	TGTCTATAAA	4740
AAATTGCTTA	TGCGTGAACA	ATTGATTGAC	CAAGGAAACC	AACTAGAAGA	ACTCTTGACT	4800
GATGATTTTG	TCTATATTCG	CCAAGATGGA	GAGCAGATGG	ATAAAGAGGC	TTATAAGACC	4860
AAAAAAGAGT	TAAATTCTGC	TATCAAGGAC	ATTCAAATTA	CTTCCATCAG	TCAAAAAACC	4920
AAACTCATCT	GCTATGAGTT	AGATGGTATC	ATCCATACCA	GTATCTGGCG	TCGCCACGAA	4980
ACCTGGCAAA	ATATCTTTCA	TCAAGAAACC	AAAAAAGAAT	AGAGAAATCC	TTTCATGAGA	5040
CGGGATTTT	CTATTCTTTT	ATACTCAATA	AAAATCAAAG	TGCAAATTAG	GAAGCCGGTC	5100
ACAGGCTGTA	CTTGAGTCGG	CAATGTGAAG	CCGACATAGT	TTGCACTTTG	ATTTTCGAAT	5160
AGTCTTAACT	ATCAAATTCA	CTGAGATACT	CATAGCGTTC	GTATTTTTCA	AGGAGTGCTT	5220
CATTTTTCTC	ATCCAATTCT	TTTTGGAGAG	TAGCCAGCTT	ACCAAAGTCA	GAGCCGTTAG	5280
CCTGCATTTC	CTCTTCAATA	GCAGCGATAC	GTTTTTCCAA	GGTTTCAATA	TCACCTTCAA	5340
TACTTGCCCA	CTCCTGCTTT	TCTTGGTAGG	TCATGCGTTT	CTTGTCTTCT	CGAACCTTGA	5400
CCACTTTTTC	CTTTTCGGCC	TTTTGCACTT	GATTGGCCAT	ATCTGTTTCA	AAAGCTTTTT	5460
CATCAAGATA	GTCGGTGTAA	TGACCAAAGA	AAGGACGAAT	CTTGCCATCC	TCAAAAGCGA	5520
GAATCTTGGT	CGCTACCTTA	TCCAAGAAAT	AGCGGTCGTG	ACTGACTGTT	AAAACGGGAC	5580
CTGCAAAACC	TTGCAAGAAA	TTCTCTAAGA	CTGTCAAAGT	TGCAATATCT	AGGTCATTGG	5640
TTGGCTCGTC	TAAAAGAAGA	ACATTTGGTT	TTTCCAAAAG	CAGTTTGAGG	AGATAAAGAC	5700
GTTTTTTCTC	ACCCCCTGAC	AATTTCTCAA	TCAAAGTCCC	ATGCGTCGAA	CGTGGGAAGA	5760
GGAATTGCTC	CAGCAACTCA	GCGATGGAAG	TCGTAGAACC	ACCACTGGTC	TTGACCTCCT	5820
CTGCCACTTC	CTGCAGGTAA	TTGATCACAC	GCTTGCTTTC	ATCCAAACCC	TCAATTTGTT	5880
GAGAGAAATA	GGCGATGCGA	ACAGTTTCCC	CAATCACAAC	TTGTCCTGCT	GTCGGCTCAA	5940
GACTTCCTGC	AATCAGGTTA	AGTAGGGTTG	ATTTTCCAAC	ACCATTGTCC	CCAACAATTC	6000
CAATACGGTC	TTTAGCCTGA	ACTAAGAGAT	TAAAATTTTG	CAAAATGGGC	TTATTTTCAT	6060
AGGCAAAGGA	AACATCCTGA	AACTCGATGA	CTTTCTTCCC	AATCCGACTG	GTTTCAAAGT	6120
TCATAGTCAA	GTCTGTCTCA	GCACTACTGC	CTGAAACTTC	CTTTTTCAGA	TCATGGAAAC	6180
GATTGATACG	AGCTTGTTGC	TTGGTCGCAC	GCGCCTGCGG	TTGTCTGCGC	ATCCAGGCCA	6240
ATTCTTGTTT	GTAGAGTTGT	TCTTTTTGT	GAAGAAGAGC	CGCGTCGCGC	TCATCCTGTT	6300

CCGCCTTTAG	GCGAACATAG	TCCTGGTAAT	TTCCCTGGTA	CTCGGTCAAG	CCTGCACGAT	6360
CCAACTCGAA	AATCCGTGTT	GACAAAGCGT	CTAAGAAATA	ACGATCGTGA	GTGATAAAAA	6420
GGACGGTCTT	CTTAGAATTT	TTCAAAAAGA	GGGTCAGCCA	СТСААТААТС	GCAATATCCA	6480
GATGGTTGGT	CGGCTCATCC	AAAAGCAAGA	GGTCGTGGTT	GCCAAGTAAG	ACTTGTGCCA	6540
ACTGTACCCG	TCTTCTCAGA	CCACCTGACA	ATTCCCCAAC	AGGAGTAGAT	AAGTCTTGAA	6600
TGCCCAATTT	GCTAAGAACG	GTCTTGACCT	GACTTTCGAT	TTCCCAAGCT	TGGAGAGAGT	6660
CCATCTCTGC	CATGACACGT	TCCAAACGCG	CCTCCTTCTC	CTCACTATAG	TCGAGCATAA	6720
TCAATTCATA	CTCACGAATG	AGCTGGATTT	CCTTGAGTTC	ACTAGATAGA	ACCGTATCCA	6780
AAACTGTCTT	TCTATCATCA	AAATCAGGAT	CCTGAGTCAA	GTAACCAATC	TGGTAATCAT	6840
TTTTAGCTGA	AAAAGGACTG	ACATCCCCAT	CAAATCCAGA	AACACCAGAA	AGGACGTCCA	6900
AAAGGGTGGT	CTTGCCAGTC	CCATTGACAC	CGATTAAACC	AATTCTGTCT	AAGTCATGGA	6960
TAATAAAGGA	AATATCCCTA	AAAACGGTCT	TGTCACCAAC	GGATTTACTT	AGTTTTTCAA	7020
CGATAAAATC	ACTCATTTT	TCTCCCTCAG	GTAAGCATGG	ATGGCTTCAC	GATTATTCTC	7080
CAATTCTCCA	TCGACAATGG	CAAACTCAAT	CTCTGTTAAA	ATCTCTCCCA	AGTCTGGGCC	7140
TGGCTGATAG	CCATATTCCT	TGATCAAAAT	ACCGCCATTA	ATCTGAATCT	CTTTCTTGTC	7200
ATGGATAGTC	AAGCTTTGGT	ATTTTTCTGT	GATGGCTTGT	GGGTTGACTT	CTTTTCCTTG	7260
AGCTTGACGA	AGATTTTCAG	CCTGTAAAAG	CAAATCTATG	TCAAAGCGAT	AACAATCTCG	7320
CTTGCTCAAT	TCTCCATTTT	CACGCAGAGC	CAAAATAATC	AGCAAATCCT	GAACTTGCTT	7380
GGCAAACTGG	CGTGAGGTCT	TCCAAGATTT	CAAAAATGAC	TGCGCATTTT	CAATCTCCAA	7440
AGCCCATAGT	AAAGCCGCCC	AGGCTTGTTC	AGAGGATTCA	AAAGTAAAAT	CAGTCTCCAA	7500
ATCAAACAGT	CTGTTGAGCT	TGTCCTGGCT	AGATGCCATA	TCAGGGAGAT	AGTCATAAGC	7560
TTGACTCTCA	ATCATGGAAG	CCAAGCCCCT	TCTCCAAAAT	GGAGCCAGCA	AGAGTTTATC	7620
AAACTCGACG	AAGGTACGCT	CTACAGAAAT	TTTCTCCAAA	AGCGGCGTCA	AGGTCTTCAT	7680
AGCTTTAAAT	GTTTCTGGCT	CAAGTGCAAA	ACCAAGACTA	GCCTGAAAAC	GGAAACCACG	7740
CATAATCCGT	AAAGCATCTT	CGTTGAAACG	CTCACTAGCC	ACTCCAACTG	CTCGCAAGAC	7800
TTGCTTTTCC	AAATCTTCTA	AACCATGGAA	CAAGTCAACG	ATTTCTCCTG	TCTCATCCAA	7860
GGCAAAGGCG	TTGACTGTGA	AATCACGGCG	TTTGAGGTCT	TCTTCTAGCG	ATCGTACAAA	7920
GGAAACCGCA	CTGGGTCTGC	GATAGTCCAC	ATAGACATCC	TCTGTCCGAA	AGGTTGTTAC	7980
CTCATACTCC	TCATCCCCAT	CTAAGACCAA	GACGGTTCCA	TGCTCGATTC	CGATATCGGC	8040
TGTTCGCGGA	AAAATCTGCT	TGGTCTCTTC	TGGATAAGAA	GACGTCGCAA	TATCCACATC	8100

GTGGATAGGG	CTATGGAGAA	GGGCATCTCG	AACAGAGCCC	CCAACAAAAT	AAGCCTCAAA	8160
GCCTGCTTCT	TTAATTTTT	CTAATACTGG	TAAAGCCTTC	TGAAATTCAG	AAGGCATTTG	8220
CGTTAATCTC	ATAATAAGTG	TTCTAATCCA	TAGACAAGCT	CATGACGCTT	GACAACTTCT	8280
ттааттссса	AATTGACTCC	TGTCATGAAG	GAGATGCGAT	CATAGGAGTC	ATGACGGAGG	8340
GTCAACCCTT	CTCCCTGATT	GCCAAAGATG	ACTTCCTGAT	GAGCTACCAA	GCCTGGCAAA	8400
CGAACTGAGT	GGATGCGCAT	ACCATCAAAG	TCAGCACCAC	GAGCACCAGC	AATCAGCTCT	8460
TCCTCATCTG	CTGCACCTTG	CTGAATTGAC	TCTCGAACCT	CTGCCATCAA	CTCAGCTGTT	8520
TTAATGGCTG	TTCCACTCGG	AGCATCCTTT	TTCTTGTCAT	GATGGAGCTC	AATAATCTCC	8580
ACATTTGGGA	AATATTTGGC	AGCCTGCGTC	GCAAATTGCA	TGAGTAAGAC	AGCACCCAAG	8640
GCAAAGTTAG	GGGCAATCAG	GCCACCCAAG	TCTTGGGCAC	GAGAAAATTC	TTTTAGCTCT	8700
GCAATTTCTT	CACTCGTGAA	ACCAGTCGTT	CCAACTACTG	GAGCAAAGCC	ATTTTCAAGA	8760
GCAAAACGTG	TATTTTCGTA	GGCAACAGCT	GGAGTAGTAA	AATCTACCCA	GACATCCGCT	8820
TCAAAACCAG	CTAAATCAGC	CTTATCCTTG	AAAACAGGAA	TACCCTGCCA	TTCTGACTCA	8880
GACTCAAAAG	GATCCAAAAC	TGCCACCAAG	TCCAAGTCTG	GATCAGTCAA	TACCATCTGA	8940
CAAGCAGCCT	GGCCCATCTT	TCCCTTAAAA	CCGGCAATAA	TTACTCGAAT	ACTCATCTCT	9000
ACTCCTGTCT	AAGATACAAA	GTCCGTAAGA	ACACAAAGTG	AAAATAGGAA	TTCCAATCAA	9060
GAAGTGTCTA	CTTCTTGGAA	GAACTATCTT	TTTCACACAG	GGTTCCAGGC	GTGTTCAATT	9120
ATCAAGATAC	: AAAGGACCTI	AGCTGCCTCT	GAAAAATAGG	GAATGGCACT	GACTTTCCAC	9180
GAAAGGCAAG	ACAGGCATCT	TTTTTCAAGA	GGCAGGTAGT	CCGTGTTCAA	TTTCTAAGAT	9240
ACAAGGCATC	TTAACTAGCC	TAGAAGCGCC	AACTAAATCA	CTGGAATATA	ACCCAGAGCA	9300
ATACTTCCTC	CTCCTAGGTG	CGTTCCAATG	ACACTACCAA	ATGTAGCAAG	TGAAACATCC	9360
GAACCCAAGC	CAAAATCAAG	CAAGTGCTGA	CGCAATTCTT	CAGCCTTTTC	AGGAGCATTC	9420
CCATGAATGA	A CAATGACCCC	GTATTGACCT	GAAGCCGTTG	TTTCCTTGAT	AATTTCAATT	9480
AAGCGCTTG	G TGGCCTTCTT	TTCAGTACG	ACTITITCG	T AAACTTCAAT	CACACCTTGA	9540
TCGTTAAAA	r aaaggattgo	CTTAATGCT	AGCAAATTG	CCAAAATGG	AGCCCCATTT	9600
GAAAGGCGT	CACCTTTTAC	CAAATGATC	AAGTCATCT	A CCATGATAA	A GGCTGACGTA	9660
CGGCTGATT	r gaatggcta	CTTATCCTG	A ATGCTGGCA	A AATCATCGC	C CTGATCACGC	9720
CAATTAAAG	A CGCTTTCAA	CATGATGCC	r AGGGGAGCA	TTGTAATCA	A AGTGTCTGGG	9780
AAAGCAATG	G TTAAGCCCT	C ATAGTCATC	S ACCATATAC	r ggatatttt	G GTAAAAACCT	9840

496 GAAATTCCAG AAGATAGGAA AAGCCCCAAG GCATGTGTAT AGCCTTGTTC TTTGAGCGAA 9900 GTTAAGATCT CATCTAACTT GGCAATACTT GGTTGACTGG TCTTAGGCAA TTCAGAAGCC 9960 TGAGCCATTT TTTGGTAAAA TTCCTCAGCA GACAGAITGA TGCCTTCGAC ATATTCCTCA 10020 CCATCAATAT TGACAGGAAT ATCCAAGACA AACAAGTCTT CTCTTTGCAA GATCTCTGCA 10080 CTGAGATAAG CAGAGGAATC TGTGAAAACA GCTAATTCA TATTAGAACT CCAAATTAAT 10140 TCCTGGTAAG TCTAATGCAA TTTCAGTCAC TTCGTAAGTC AAACGATTGA GCATGTTCAA 10200 ACATGGACGA GCCAAGGTTT CCACCTCTTC TTGGTTCAAT TCACTTGGTT CATTGACAAT 10260 ACGGCCATCG ATATGGTTTA CTTGTGAGAT TGTTCCACTA ATGACAAACT TATCAAATAC 10320 AATCATAAAG CTCAAGATGA CAATCAAGGA AGTCACTTGA TTTTCTTGGT CATGTTGGAG 10380 CAATTGGAAA TTCACATCCA CCTTGGTTTC AGGAGCTCCA TTTTCATTTT CCCATTCAAA 10440 ATTACGCGCA TCAAAATGAT ACTGACTAAC AAATTCTTGT TCACGTTTAA GATTCATGTC 10500 TTTCATCATC CCCTACAATA TTATAACCTA TTCTACCATA ATTTTTTATT TTCATCTACT 10560 TTTCTAGGAT TTAGTCAATC CCAATTCAG CACGAACTAC ATCTGTGATG GTATCAACAT 10620 AGTAGTTTAC TTCTTCTGTT GTAGGCGCTT CTGCCATAAC ACGCAAGAGG GGTTCTGTTC 10680 CACTTGGACG AACAAGGATA CGGCCGTTCC CCGCCATTTC TTCTCCATC TTCTCGATGA 10740 TGGCCTTGAT AGCTGGCACT TCCATGGCCT TTTCCTTCAT GACGTTTTCC ACTCGGATAT 10800 TAACTAATTT TTGTGGATAA ATCGTTACTT CTGCCGCCAA CTCTGATAAG CTCTTACCAG 10860 TTTCCTTCAT GATTTTAGTC AATTGAACTG CTGATAATTG ACCATCACCT GTGGTATTGT 10920 AATCCATCAA GATAACGTGA CCAGACTGTT CACCACCAAG GTTGTAGCCT GATTTCTCA 10980 TTTCTTCAAC AACGTAGCGG TCACCAACTG CAGTAACTGC CTTGTTAATA CCTTCGCGAT 11040 TCAAGGCCTT GTGGAAACCA AGGTTAGACA TAACAGTTGT CACAATTGTA TTTTGAGCCA 11100 ATTGTCCTTT TTCAGAAAGG TATTTTCCGA TGATGTACAT AATCTTGTCA CCATCAACGA 11160 TGTCACCATT CTCATCAACA GCAATCAAGC GGTCACTGTC TCCATCAAAG GCCAAACCAA 11220 TAGCTGACCC ACTITCTITG ACCACTICTI GAAGGGCTIC TGGATGTGIT GAACCAACAT 11280 TAAGGTTGAT GTTAAGACCG TCTGGTGTTT CCCCGATAAC CGTCAATTGG GCACCAAGGT 11340 CTGCAAAGAT TTGACGGGCA CTGGTAGAAG CTGCTCCATT AGCTGTATCC AAGGCAACCT 11400 TCATTCCATC AAGAGGAGTT CCAGTTGAAA CAAGGTATCC TTCATACTTA CGCAYGCLTC 11460 TGGATAATCT ACCAAAATTC CTAAGCCTTC TGCACTTGGA CGAGGAAGAG TGTCTTCCTC 11520 AGCATCTAGC AAGGCTTCAA TTTCTGCTTC TTTTTCATCA TCTAGTTTGA AGCCATCACC 11580 GCCAAAGAAC TTGATTCCGT TATCAAGGGC TGGGTTGTGG CTAGCAGAAA TCATGACACC 11640

GGCACTTGCT	CCTTCAGTTT	CAACCAAGTA	AGCTACTGCT	GCTGTTGCAA	GGACACCAAG	11700
TTTGTATACG	TGAATCCCTA	CTGAAAgGAG	ACCTGCCACC	AAGGCCGATT	CCAACATTTC	11760
CCCTGAAATA	CGTGTGTCAC	GTCCTACAAA	GACTTTCGGC	GCTTCCGTTT	CATGTTGACT	11820
AAGAACATAG	ССТССААААС	GTCCTAGTTT	AAAGGĊTAAT	TCTGGTGTTA	GTTCTAGGTT	11880
AGCTTCTCCA	CGGACTCCAT	CAGTCCCAAA	ATATTTACCC	ATTGTTATAA	AATCCTTTTC	11940
ТАТТТТТААТ	TCGTTTTTGA	ACTAGTTGCT	TTCGTTGACG	AAGATGTCTC	CGATGAACTG	12000
CTTGTACTTG	AATTTGATGT	GCTTGAACTT	GGTGCTACTG	GTTTTGTAGT	CACCTTCATT	12060
ATTGTATCAA	ACGGAGTGAT	AACTGCCGGT	AAGACAACAC	CATTGCGGTC	GATTGCCTGC	12120
AAAGGTACTG	AACCACTGTA	ATTACCTGTT	ATACGTTCGC	TAGTTGGCAA	AACAGCGATA	12180
ATCTTATCAA	TTCTATCCAA	TGTCTCTTGG	TCACTCGTAA	TAGACACTTC	TTTATCTGAC	12240
ACCATGACAT	TTTCAATTTG	TACCCGACTA	TCAATTTGAC	TAGGGTCAAT	CTCTGGTACA	12300
ATCTTTACCT	TATCCTTCTG	AGCCTTCTTA	CCAATCTTGA	CTGTAATTTT	TTGCGGAGTC	12360
GCCACAGCGG	TCAGCCCATT	GGGTAAATCT	TCAATGCTCA	AAGGAACTTC	AATCGTTCCA	12420
ACACCGGCAT	CTGTTAGGTC	AGCAGTAACC	TTGAATTTAC	GTGTACTTTC	TTGCATTTCA	12480
CTAGCTAGCG	ATAGGCGATT	TGCACCAGTC	AAGACCACTG	ATACTTCTGA	AGCAAAACCG	12540
СТААТААААТ	ACTTATCACT	ATTATAGCGT	ATGTCAATAG	GGACATTTGT	TACTGTATTA	12600
GTATAGGTTT	CCGTTTTTAC	CTGCCTAGCA	CTGGTACTGT	TTTGAAAATT	CGTCGCCGTA	12660
GCATAGACAA	ATAAGACACA	AGCAAAAAAG	AGTGAGGATA	TGATATATAA	ACTATTTTTT	12720
TTCATGTTTC	CATCCTCCTA	GCAATCGTTC	TTTAAAACTA	AGACCCACTT	CCTCTTTTGG	12780
AAGTAAGATT	TCACGTAATT	CTGTTTCAAA	TTCATCAAGT	GTTAGGTTGT	GCTTAAACCT	12840
TCCATTATAG	GTTATCGAAA	TTCCTCCCGT	TTCCTCTGAT	ACGACAAAAG	TCAAGGCATC	12900
TGAGACTTCT	GATAAACCGA	TAGCCGCCCG	GTGTCTGGTC	CCAAATTCCT	TGGAAATCCC	12960
TGTGTTTTTT	GTCAAGGGCA	GATAGGCAGA	CGTCACAGCG	ATACGTTCTT	CTTTGATAAT	13020
CACCGCACCA	TCATGTAGGG	GAGTGTTGGG	AATAAAAATG	TTAATGAGAA	GTTCTGCAGA	13080
AATCTTAGCA	TCCAAGGGAA	TTCCTGTCGA	AATATACTCC	TGCAAGGTAC	GTACACGCTG	13140
AATAGCAACC	AAGGCCCCGA	TTTTACGAGG	ACTCATGTAT	TCAACAGACT	TAACAAAGGC	13200
ACGAATCATC	TGTTCCTCAG	CACTAATAGG	GGCATTGGAA	AAGAAATCTG	TCGCTCTTCC	13260
CAAACGTTCC	AAACCAGTCC	GAATCTCTGG	AGAGAAGATA	ACAACCGCCG	CAATAACCCC	13320
ATAAGTAATA	ATTTGATTGA	TTAACCAAGA	AATCGTAGTC	AAACCAATCA	TATTTGCAAG	13380

498 GATTTGAGCT AAAATAAACA CCAAAACTCC ACGTACCAAA ATCATAATCT TGGTTCCTGC 13440 AATAGCTTTT GTAAAATGGT ATAAAATATA AGCAACAATC AAAATATCAA TCAGATTGAT 13500 AGCTATCGTC CATGGACTTG CAAACAAACT GGTCCAATAT TGCAGATTGG ATAATTGTTG 13560 AAAATTCATC CCTGATATCC TCCCTATCAA AACACTTTCG TCCTATTATA CCATTTTCTG 13620 GCATTTTTTT CCCTATCCTA GTCCATTTTA CATTGAACAA AAATATGATA AAATAAACTG 13680 ACTAAAAAAA ACAAAGGAGA AACTATGTCT CAACTCTATG ATATTACCAT TGTGGGTGGT 13740 13800 ATCGACTCTC TTCCCCAGCT AGGTGGACAA CCTGCTATTC TCTACCCTGA AAAGGAAATC 13860 CTAGACGTAC CAGGCTTCCC AAACCTGACT GGAGAAGAGT TGACTAACCG CTTGATTGAA 13920 CAGCTAAATG GATTTGATAC CCCTATTCAT CTCAATGAAA CGGTTCTTGA GATTGACAAA 13980 CAAGAAGAAT TTGCCATCAC AACTTCTAAA GGAAGTCACC TGACTAAAAC AGTTATCATC 14040 GCTATGGGTG GCGGTGCCTT CAAACCACGT CCGCTGGAAC TTGAAGGGGT TGAGGGCTAT 14100 GAAAATATCC ACTACCACGT TTCTAACATT CAGCAATACG CTGGTAAGAA AGTGACGATT 14160 CTTGGTGGGG GAGACTCGGC TGTGGATTGG GCTTTGGCTT TTGAAAAAAT CGCACCAACT 14220 ACCCTTGTTC ACCGCAGAGA TAATTTCCGT GCCTTGGAAC ACAGTGTTCA AGCCTTGCAA 14280 GAATCATCTG TAACCATCAA GACACCATTC GCCCCTAGCC AACTCCTTGG AAATGGAAAA 14340 ACACTTGATA AACTTGAAAT CACAAAAGTC AAATCTGATG AAACTGAAAC CATTGACCTA 14400 GACCACCTCT TTGTCAACTA TGGTTTCAAA TCTTCTGTCG GTAACCTTAA AAACTGGGGG 14460 CTCGACCTCA ACCGTCACAA GATTATCGTC AACAGCAAAC AGGAATCCAG CCAAGCAGGT 14520 ATCTATGCTA TCGGTGACTG CTGCTACTAT GACGGAAAAA TTGATCTGAT TGCGACAGGC 14580 CTCGGAGAAG CTCCAACTGC TGTCAACAAC GCTATCAACT ACATTGACCC TGAACAAAAA 14640 GTACAACCAA AACACTCTAC TAGTTTATAA AAAAGAACCA CGAGTCACAT AGGATTCGTG 14700 GTTTTATAAT TCATCCGCTA TCTTATTGAT TTTTCTGAGT CTGTGATTGA CACCACTTTT 14760 GGTCAGAGGG GTGCTGAGAC TATCTGCTAA CTGCTGGATA GAGTAGTCTG GGTGCTGAAT 14820 CCTCAGTTGC GCCACTTCCT GCAAATCTAC TGGCAAATTT TCTAAGCCCA TGATATCTTT 14880 GATTTTACTG ATATTGTTAA TGGTCTTCAT GCTGGCAGAA ACTGTCCGAG CGATATTAGC 14940 TGTCTCGGCA TTATTAGCCC GATTGAGGTC GTTACGGGTT TCTCGCAAAA TCTTAACCCG 15000 15060 CTCAAAATCA TCACGTGCCT GCATGGCTCC TATTACTATC AAGAAGTCCA TAATGTCTTC TGCTCGCTGG AGATAGGTCA CAGCCCCCTT CTTGCGCTCA AGCACCTTGG CATCCAGTAA 15120

AAACTGTTGG AGAAGGGAGG CAATTCCTTG CGCGTGGTCC AGATAAACAG AACTGATTTC

CAACTGGTAC TTGCCTGACT CAGGGTCACG AATGCTCCCA TTTGCCAAGA AAGCGCCACA	15240
GAGATAGGCA CGACCTGCTT CCTCATCCGA TAAAATCGCC TCATCAATAC CTGTTTCCAG	15300
GCCAAAGAAA GAGTCTGCCA AGTGCAAATC ACTTAACAAA TCCTGCACCT TTTCATCTGT	15360
AAAAACGGTA TAGACGCGAT TCTTGCGAAG ATTGCTCCGT TGGTGGTGAC GAATTTCAGA	15420
TTTGATTTCA TAGAGATGGA GAAAGGACTC ATAGAGGTGA CGGGCCAGTT TGGCATTTTC	15480
TGTCACAACT GACAAAGTCA AGCCCGAAGT CGAGAGACCG ATGCTACCAG ACATTTTGAT	15540
AATGGCAGAT AATTCATGCC AGCTCAGATG GTGTTGGCCC AGGATTTCTT CTTTTACTGC	15600
TACTGTGAAA CTCATTTTT CACCTGTATA ATGCGCATCA ACTCGTCCAC AATCAAATCT	15660
CCATCGTGGA AGGCACCGCC ATTTTCCAGA CGAAGGAAGT TAGATGAAAT CACGCGCGAA	15720
ACTTGCTTAC AAAGACCTAC AAAATCGTGT TCCACTTGCA CTAAGTATTC ATCAAAACGG	15780
TTGGAATTCA TGTATTCCTG AGGCACTTTT TCAATATTCA CCAAGACAGT GTCGATAAAA	15840
GGGCGACCAA GGTGACGATG CAAGACTTCC ACGTGGTCGC TATCTGTAAA GTGTTCCGTC	15900
TCCCCACGTT GGGTCATGAT ATTGCAGACA TAGGCAATTT CTGCCTTGGT TTCCAAAAGA	15960
GCCCGCCCAA TTTCCTTAAT CACGATATTG GGCAAAATAG AGGTAAAGAG GGAACCTGGC	16020
CCTAGGACAA TCATGTCACT TTCAAGGATG GTCTGCACTA CTCGACGGCT GGCCAGAGGC	16080
GTATCATCGT TTAGGGCATT GGTCACATAG ACATTGTCAA TTATGCCTCG ATGGTCTACA	16140
ATATGACTCT CTCCAGCCAC TTCTGTCCCA TCCTGAAAGA CTGCATGAAG GGTCAAAGGA	16200
TGGTCACTGG AAGGATAAAT TTTCCCTGTT GTATGGAAAA ATTTGCTCAA TAACTGCATG	16260
GCATTATAGG TTGAACCCTG CATTTCTGAC AAGCCAGCAA TGATGAGATT TCCCAATGGA	16320
TGGCCAGCAA AGGCTCCGGC ATCCTCAGAG AACCGATACT GAAAGACCTT CTCATAAAAC	16380
TTAGGCATAT CCGACATGGC CACAAGGACA TTACGAAGAT CACCTGGCGG TGTCAACTGT	16440
TGCATATTTT TTCGGAGTTC ACCTGAAGAA CCACCATCAT CTGCCACCGT CACGATAGCT	16500
GCGATTTCCA CATCTTTTC CCGCAGACTT TTTAGAATGA CGGGACTTCC AGTCCCTCCA	16560
CCAATCACCG TTATCTTTGG TTTTCTCATG AACGGTTTAC CGTTTCCTTT CTGCGGTCTT	16620
TGTCGCGATG CCCTTCATTA ACAGACCAAT TCTTGGATAA GTCCTGCGCC AAGCGTTTAG	16680
CAAATGCCAC ACTACGGTGT TGTCCACCCG TACATCCCAT GGCAATGGTC AAAACGGACT	16740
TACCTTCCTT TTGGTAACTT GGCAGAATCG GCTCAATCAA GGCCAATAAA TGTTGATAAA	16800
AGTCTTCTGA CTCAGGATGG TTCATGACAT AATCATAAAC AGGTTCATCC ACACCCGTTT	16860
GGTTTCTCAG TTCTGGTAAA TAATAGGGAT TTGGCAAGAA ACGGACATCA AAGACCAAGT	16920

500 CCGCATCAAT CGGGATTCCA TACTTAAATC CGAAAGACAT GACTTCGATA CGGAAAGACT 16980 GGGCTTGTTC TTGGTCTGAA AACTGCTCTG CAAGGGTTTT GCGCAGCTCA CGTGGAGTGA 17040 GTTCAGTCGT ATCCACCACA TTTTGGCTCA TATTTTTCAA AGGTGCCAAG AGTTCACGTT 17100 CCAACTTGAT TCCATCTAAA ATACGACCGT CTGCTGCTAG TGGGTGACTC CGTCTGGTTT 17160 CCTTGTAACG AGCGACCAAT TCCTTATCAG CCGCATCCAA AAAGAGGATT TTGAAATCCA 17220 AACCATCTTG ATTTTCCAAC TCATCCAAAA CAGCTTGAAT CTCTGAAAAG AAAGAACGGC 17280 TACGCATATC CACTACCAAG GCCAACTTAG GATTGTCTTC CTTAATTTCA ACCAGCTGCA 17340 AAAACTTAGG CAAGAGAGCT GGCGGCATAT TATCAATGGT GAAATAACCT AGATCCTCGA 17400 AGGACTGAAT GGCTACAGTT TTCCCTGCGC CACTCATCCC TGTCACAATC ACCAAGTGAA 17460 GTTGTTTCTT TGTCATCTTT TTCTCCTTAT ATCAAAAGAA GTTTGGCAAC ACCAAACTTC 17520 AACTAGCTTA TCCAATCTCT GCGATGACTT CAATTTCGAC TTTTACATCA CGAGGAAGAC 17580 GAGCTACCTC CACAGCTGAA CGAGCTGGGA ATTCCTCTTT GAAGGCCGTT TGGTAAACCT 17640 CATTAAAAGG AACAAAGTCG TTCATATCGC TCAAGAAGCA AGTTGTTTTG ACAACATGGT 17700 CAAAGTCTGT TCCTGCTTCT GCCAAAATAG CACCGATGTT TTTCAAGACT TGCTCTGTCT 17760 GTTCTTGGAT ATTCTCTCT ACAATTTCCC CAGTTTCAGG GGATAGGGGA ACTTGACCGC 17820 TAGCAAACAA AAGGTTGCCA ACGATTTTTC CTTGAACATA GGGTCCGATA GCCTTTGGGG 17880 CCTTATCTGT ATGAATTGTT TTTGCCATTT TCTTTTCCTC ACAATTTTTC TAAGATTGCA 17940 TCCCAAGCCT CATCCATCCC TGCCTTACTG ACAGATGAAA AGAGGATGAA ATCGTCACTC 18000 GGGTCAAAGT TTAATTTCTT TTTGATTGCT GATTCATGCT TGTTCCATTT ACCACGAGGA 18060 ATCTTGTCCG CCTTGGTCGC CACAATGATG ACTGGAATCT CATAATACTT GAGAAATTCG 18120 TACATCTGCA CATCATCTGC TGACGGGTCA TGACGAAGGT CAACTAGACT GACAACCGCA 18180 CGGAGATTTT CCCGAGTCGT TAAGTACTCC TCAATCATGC ACCCCCACTT TTCACGTTCC 18240 TTTTTAGAAA CACGAGCATA GCCATAACCA GGCACATCCA CAAAGCGCAT CTTGTCATCA 18300 ATGTTAAAAA AGTTCAGGAG CTGGGTTTTA CCAGGTTTTC CTGATGTACG GGCGAGATTC 18360 TTACGGTTCA ACATAGTGTT GATAAAGCTG GATTTACCAA CATTTGAACG CCCTGCTAGG 18420 GCAATCTCTG GCAGTTCATC CTGCGGATAG TGGGACTTAT TAGCTGCACT GAGCAAGATT 18480 TCAGCATTGT GTGTATTAAG TTCCATAGTC ACCTCTAGGC TGTTTCTAGG ATCGGTTTAT 18540 CCGTTCCATC TACAGTTTCT TTAGTGATGC GAACCAATTT CACATTTTCC TGACTCGGCA 18600 CCTCAAACAT GACATCTAGC ATGGTTTCTT CGATGATGGA GCGAAGTCCA CGCGCCCCTG 18660 TCTTCCGTTC GATTGCTTTA TTAGCAATCT CTTGAAGGGC TTCGTCGTCA AATTCCAACT 18720

CAACATCATC	ATAAGAAAGC	AAGGTTTGGT	ATTGTTTCAC	CAAGGCATTT	CTTGGCTCTT	18780
TCAAGATGCG	AACCAAGTCA	TCAACGGTCA	ATTGCTCAAG	AGCCGCAAAA	ACAGGCAAGC	18840
GTCCAATCAA	CTCAGGGATA	АТАССАААТТ	TTTGAATGTC	TTCAGCGATG	ATTTCTTGCA	18900
TGTATGAGCT	GTTTTCGTCA	ATCGCCTTAT	TATTTTGACC	AAATCCGATG	ACTTTTTCAC	18960
CCAGACGTTG	TTTGACAATT	TCTTCAATAC	CATCAAAAGC	ACCACCCACG	ATGAAGAGGA	19020
TATTTTTGT	ATCCACTTGA	ATCATCTCTT	GTTGTGGATG	TTTGCGTCCA	CCTTGAGGCG	19080
GTACGCTAGC	AACAGTTCCC	ТСААТААТСТ	TGAGAAGGC	TTGTTGCACC	CCTTCACCAG	19140
AAACATCACG	TGTGATAGAC	ACATTCTCAC	TCTTCTTGGC	AATCTTGTCA	ATTTCATCCA	19200
CATAGATAAT	GCCACGCTCT	GCACGTTCGA	TGTTAAAGTC	AGCAACCTGC	AAGAGTTTGA	19260
GGAGGATATT	TTCCACATCC	TCACCCACAT	AACCAGCCTC	CGTCAGAGCT	GTCGCATCCG	19320
CAATAGCAAA	AGGTACATTC	AAGCTCTTAG	CCAAGGTCTG	GGCAAGGAAA	GTTTTCCCTG	19380
AACCAGTTGG	GCCAATCATC	AAAATGTTTG	ACTTCTGCAA	ATCCACATCT	TCTGACTCTT	19440
CGCGTGTATC	GTGGAAATTG	ATGCGTTTGT	AGTGGTTATA	AACCGCCACT	GCCAAGGCAC	19500
GCTTGGCACG	ATCTTGACCA	ATTACATAGT	GGTTCAAGAT	ATGGAGGAGT	TCAATTGGTT	19560
TTGGCACCTC	AGACAAGTCT	GCCAAGACTT	CCTCAACCAA	TTCTTCTCGA	ATGATTTCCT	19620
GAGCTAACTC	CACGCATTCA	TTACAAATAA	AAGCATTGTT	GCCAGCAATT	ATTTTTTGTA	19680
CTTCTTCTTG	GTTTTTGCCA	CAAAATGAGC	AATAAACCAT	CATATCATTT	TTTCTATTTG	19740
TAGACATGAT	TTCCTTCCAT	TCTATACTGT	CATTCTATCT	AAAATAAGGT	CATGTAAAAA	19800
GCATGAATAC	TATTGACCAG	ATTGGTAAAG	GCATTTAACC	AAAGGAGGAT	AGAAAGCCCG	19860
TAACGCTTTT	TACGAAAAGC	TTGTGCTCCT	GCCAGAAAGC	AGATGAAACA	CAGAAAAGCC	19920
GTGAATAGAC	CAAATAAACT	CCGTTCCATT	AGACTTCCTT	TCTCTTGCGG	TATTGGATGG	19980
TAAAATCATA	AGGATTCTTC	TCATCTTTGG	CGTAAAATTT	GCTTGAAACT	GTCTCAAAAA	20040
GAGACAAGTC	AAGTTCTTCA	GGGAAATAGG	TATCTCCTTC	CACCCGAGCA	TGAATGTGAG	20100
TGACAATCAC	TTCATCAAGG	TAAGGTTCAA	AAGCCTGAAA	AATTTGCTTC	CCACCGATAA	20160
TGTAGAGATT	CTTTTCTTGA	GCCTGATACC	AGTCAAGAAC	AGACTGGACG	TCCTGAAAAG	20220
TAGCAACCCC	ATCTATCTTT	TCTTCCGGAT	TACGCGTCAA	AATCAAGGTT	TCCCGTTTTG	20280
GAAGCAAGCG	ACGCCCCATC	CCATCAAAGG	TCACACGCCC	CATCAAGATA	GCATGATTCA	20340
GAGTTGTTTC	TTTAAAGTGC	TGCAATTCTG	CTGGCAAATG	CCAAGGCAGA	CGATTTTCCT	20400
TACCAATCAC	ACCCTCTTCA	TCCTGGGCCC	AAATAGCTAC	GATTTTCTTA	GTCATGCTTC	20460

502 CATCCTTTTC ACTGATAGTA CTATTTTATC AAAAAACTCA AAAAAAGACT GGTTTGGAAT 20520 AGCTTACAAA ATAGAAAAAA TCTGTAAGAA ATTTCCTACA GATTTATCTA TGTTTCCTTA 20580 TTTCTTACAA ACCAGGTGCT TGTCCAAGTT CGGCTGCAAG CATCCAAATT GTTTTATCTG 20640 TTTCAGTTTT AGCGCCTGCA AAGATACCGT TTGTCACATC GTCACCTTCT TCATCAGTGA 20700 CATCCAAACC TTTTTGGAAA AGTTCTGACA AGTAACGGTA GATAACAAGA ACACGTTCCA 20760 AGCTTTCTTC AACATTACGG TATTCACCAG CTTCTTCTTC GATTTCACTA TTTTGAAGGA 20820 ACTCTGTCAA TGTAGAGAAT GGGCTTCCAC CGAGTGTAAT CAAGCGTTCA CTGATTTCAT 20880 CCAATTGACC GTCAAGAGCT TCCATGTACT CATCCATTTT TGGATGCCAT ACAAGGAAAC 20940 CACGACCATG CATATACCAG TGCACTTGGT GCAAAGCAAC GTGAGCTACA TACAAATCAG 21000 CAACAGCTTG GTTCAAGACT TCCTTTGTTT TTGCCAATGC 21040

(2) INFORMATION FOR SEQ ID NO: 56:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2387 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

ATTCTTAATA CGATTAAAAG GCTTATTACT AAAAGAAAAT TTCAGTTAGA TGAACTAAAC 60 TTGCTCGTCA AATCCCGATT TAACGAGATG TTTGGGGAAA ATAAAATATT TGAAAGCATT 120 GATAACTTAT TTGATATTAT AGATGGTGAT AGGGGCAAAA ATTATCCTAA ATCAGATGAG 180 TTGTTTAGTG AGGAGTACTG TTTATTTTTA AATACAAAGA ATGTTACTAA AAACGGATTT 240 TCATTCGATA CAAAGCAATT TATCACTAAA ACAAAGGATA AATTACTTCG AAAAGGCAAA 300 CTTGAGCGTT ATGATATAGT CTTGACAACA AGAGGTACTG TTGGAAATGT AGCGTACTAC 360 GATGAATTAA TAAAATATAA ACATTTACGT ATAAATTCAG GTATGGTAAT ATTACGTCCC 420 AAGACACCAA ATCTAAATCA GAAATTTATT ATCCATGTTT TAAGGAATAA TAATTATAGT 480 CGACTGATAT CAGGAAGTGC TCAGCCTCAG TTACCAATTA CAAAATTAAA AAAAATACTT 540 CTCCCCCTCC CCCCACTAGC CCTCCAAAAT GAGTTCGCAG ACTTTGTAGT CCAGGTCGAC 600 AAATCACAAT TGGCAATCCA AAAATCTCTG GAAGAACTTG AAACTTTGAA GAAATCTCTG 660 ATGCAGGAGT ATTTTGGCTG ATATTCTGCC ATTGTAATTA CGGTAATGAT TTGTTATAAT 720 ACTTCAAAGG AGGAAATCAG ATGGTAGTAA AAACAAGAAA ACAAGGAAAT TCAATCACCA 780 TTACGATTCC AAGTGAATTT AATATTCCAA GTGGTGTTAA ATACGAAGCG AAATTGTTAC 840

•	
CAAGTGGTGA GATTATCTTT ACTCCTGAAG AATTGGGGCA GCAGGTTTCT TATGTATCT	G 900
ATGATGCCTT TGACTTAAAT TTAGATAAAA TATTTGACGA ATACGACGAT GTTTTCAAA	G 960
CTTTGGTGGA AAAATGACAA TCTATTTGAC AGAAAAGCAA ATTGAAAAAA TAAATGCTT	r 1020
AGCAATTCAA CGGTATTCTC CAAATGAGAA AATTCAAACA GTTAGTCCTT CTGCCTTAA	A 1080
TATGATTGTG AACTTACCAG AACAATTTGT CTTTGGGAAG CCTCTTTATC CAACAATTT	r 1140
TGATAAAGCA ACGATACTAT TTGTCCAATT GATAAAGAAG CATGTTTTTG CTAATGCTA	A 1200
TAAAAGAACT GCTTTCTTCG TTTTGGTCAA ATTTTTACAA TTAAACGGCT ATCGTTTTTC	1260
TGTAACGGTA GAAGAAGCAG TAAAAATGTG TGTAACCATC GCAGTAGAAG CTTTAACTG	1320
TGAAAAATG ACAAGCTACT CCAAATGGAT TTCTGAACAT TCTGTTAGAG AAAAGGTCAA	1380
AAAGTAACCT AGTATGCTGG ATTTGAATGA GCACAAGAAA ATAAATGAAC AGACAATATT	1440
AGAATTCTGT AATGCAGAAA CTGATATTGT CTCTTTTTAT TGATGAATAA GAAAGTGAGA	1500
AATTATGGAA TCAAAAGTTA CAATTATCAT GCAAGAAATG TTACCTCTTT TAAATAATGA	1560
ACAATTACTA GCGTTGAGAG AGAGTTTAGA ACATCATCTA GTAGACGGAA AAAAGCAGCA	1620
GAAGTATTCG AATAATAACC TGTTGCAACT ATTTATTACC GCCAAGCAGG TAGAGGGCTG	1680
TAGCTCAAAA ACAATTCGTT ATTATCAGAG GACGATTGAA AACTTGTTTA ATGCTATTAA	1740
AGAGTCTGTG ACACAACTCA CAACAGATGA TTTAAGGAGT TATTTAGCAA ATTACCAGTC	1800
TGAAAAGGAT TGTAGTAAGG CAAATTTAGA CAATATTAGG CGTATATTGT CTTCTTTTT	1860
TGCTTGGCTT GAGCAAGAGG ATATATCATT AAAATTCCCA TTCGACGGAT ACAGAAAATT	1920
AAGACTGAGC AAAATGTGAA GGAAACTTAT ACTGATGAAC ATTTGGAAAT TATGCGTGAT	1980
AACTGTGAAA ATTTGAGAGA TTTGGCAATA ATAGACCTAC TAGCATCGAC AGGTATGCGT	2040
GTAGGGGAGC TTGTACAGTT GAATCGTTCA GATATTGATT TTGAAAACAG AGAGTGTGTT	2100
GTCTTTGGTA AAGGAAAGAA GGAGAGACCA GTATATTTTG ACGCTCGTAC GAAAATTCAT	2160
TTAAGAAATT ATCTTAACGA CAGAAAAGAT AGTCACCCTG CTCTTTTTGT AACGCTAGTT	2220
GGAAAAGTCC AGAGGCTTGG AATTGCTGGT GTAGAGATTC GCTTAAGAAA GTTAGGAGAC	2280
AAACTCGGCA TACAAAAGGT TCACCCACAT AAGTTCAGAA GAACTTTAGC GACTAAGGCA	
ATTGATAAAG GTATGCCTAT CGAACAAGTC CAAAAACTGC TAGGTCA	2200
•	,

(2) INFORMATION FOR SEQ ID NO: 57:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 10669 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

504

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57: ATATTAAAGC GACTTTCTGT GCGCTAGGGA AAAATGTTCC TGGGAATGAG GACTTGGTGA 60 AGAGGATAAA ATCTGAAGGT CATGTTGTTG GAAACCATAG CTGGAGCCAT CCGATTCTCT 120 CGCAACTCTC TCTTGATGAA GCTAAAAAGC AGATTACTGA TACTGAGGAT GTGCTAACTA 180 AAGTGCTGGG TTCTAGTTCT AAACTCATGC GTCCACCTTA TGGTGCTATT ACAGATGATA 240 TTCGCAATAG CTTGGATTTG AGCTTTATCA TGTGGGATGT GGATAGTCTG GACTGGAAGA 300 GTAAAAATGA AGCATCTATT TTGACAGAAA TTCAGTATCA AGTAGCTAAT GGCTCTATCG 360 TTTTGATGCA TGATATTCAC AGTCCGACAG TCAATGCCTT GCCAAGGGTC ATTGAGTATT 420 TGAAAAATCA AGGTTATACC TTTGTGACCA TACCAGAGAT GCTCAATACT CGCCTAAAAG 480 CTCATGAGCT GTACTATAGT CGTGATGAAT AAGCAAGAAA AAATAGGTCT GTTAGATATT 540 TGACAGACTT ATTTTTACA GAATATAGTA CTACTTAAAA AATGTTTTAT GCTATAATTG 600 ATGAATAAA TAGAAGGAGA AGCATATGAA TACCTATCAA TTAAATAATG GAGTAGAAAT 660 TCCAGTATTG GGATTTGGAA CTTTTAAGGC TAAGGATGGA GAAGAAGCCT ATCGTGCAGT 720 GTTAGAAGCC TTGAAGGCTG GTTATCGTCA TATTGATACG GCGGCGATTT ATCAGAATGA 780 AGAAAGTGTT GGTCAAGCAA TCAAAGATAG CGGAGTTCCA CGTGAAGAAA TGTTCGTAAC 840 TACCAAGCTT TGGAATAGTC AGCAAACCTA TGAGCAAACT CGTCAAGCTT TGGAAAAATC 900 TATAGAAAAA CTGGGCTTGG ATTATTTGGA TTTGTATTTG ATTCATTGGC CGAACCCAAA 960 ACCGCTCAGA GAAAATGACG CATGGAAAAC TCGCAATGCG GAAGTTTGGA GAGCGATGGA 1020 AGACCTCTAT CAAGAAGGGA AAATCCGTGC TATCGGCGTT AGCAATTTTC TTCCCCATCA 1080 TTTGGATGCC TTGCTTGAAA CTGCAACTAT CGTTCCTGCG GTCAATCAAG TTCGCTTGGC 1140 GCCAGGTGTG TATCAAGATC AAGTCGTAGC TTACTGTCGT GAAAAGGGAA TTTTATTGGA 1200 AGCTTGGGGG CCTTTTGGAC AAGGAGAACT GTTTGATAGC AAGCAAGTCC AAGAAATAGC 1260 AGCAAATCAC GGAAAATCGG TTGCTCAGAT AGCCTTGGCC TGGAGCTTGG CAGAAGGATT 1320 TTTACCACTT CCAAAATCTG TCACAACCTC TCGTATTCAA GCTAATCTTG ATTGCTTTGG 1380 AATTGAACTG AGTCATGAGG AGAGAGAAAC CTTAAAAACG ATTGCTGTTC AATCGGGTGC 1440 TCCACGAGTT GATGATGTGG ATTTCTAGAA AATCATAAAA AGAATTGTAC ATTATTCTAA 1500 TTTTTGATAT AATAGTCAGC AGGAAAGAAA GTCTTATGGC GTTCTTCAAG CGAGCTTGGG 1560 ATAGTGGGAG CCAAGTAGGG CAAAATAAAG GGCTGGCGCT TTCTGTAGTA TTTTCAAAAA

CAATGAAGTA	ATAAATTAGG	GTGGAACCGC	GTTTCTGACG	CCCCTAGGTT	AAATCAACCT	1680
AGGATTGTCA	GATGTGGTTC	TTTTGCTTAT	TCAGTCTATT	GTGTGAAAGA	AAGGAGAGCC	1740
GTGGACAACC	TTTATCTTGT	AAAAGACGAT	AGTCAACTAG	CTACATTTCG	TGATTTTGTA	1800
GTAAGAAATA	CTGAAAAGTT	GAAAGATTAT	СААТСТТТТТ	TAAAGAATGA	ACTTGCAGTC	1860
TGTGATTTAC	CGCAAGCTGT	TATTTGGTCA	GATTTTAATG	CTGCTACACA	GATTATTAGG	1920
GAAAGTGCTG	TTCCAACCTA	TACAAATAAT	AGACGAGTGG	TTATGACGCC	TGATTTAGCT	1980
GTTTGGAAAG	AATTGTATTT	GTATCAGTTG	ATGGACTACG	AGTGTTCTGA	GCAAACTCAA	2040
GCAATAGAAA	GTCACTATCA	TTCTTTATCT	GAAAATTTCC	TCTTACAGAT	TGTAGGACAT	2100
GAGTTAGCTC	ATTGGTCGGA	CATTTTTAG	ATGATTTTGA	TGGTTATGAC	TCTTATATCT	2160
GGTTCGAAGA	GGGGATGGTT	GAATATATTA	GTCGCAAGTA	TTTCTTGACA	GAAGAGGAAT	2220
TTCAAGCGGA	AAAAATTTGT	AATCAATCTC	TCGTAGAACT	TTTTCAGAAG	AAGTATAGTT	2280
GGCATTCATT	GAATGATTTT	GGTTCTTCGA	CTTATGATAA	GAACTATGCA	AGTATTTTT	2340
ATGAATACTG	GCGCAGCTTT	TTGACAGTAG	ATAAGTTGGT	AGAAAATTTA	GGTAGTGTAC	2400
AAGCGGTCTT	AGATTCTTAT	CATTTATGGG	CAAATACAGA	AAAAACTTTT	CCCTTGTTAG	2460
ATTGGTTTGT	TCAGCAGAAA	TTAATTGAAA	AAGAAATATA	AAAACTAAAG	GAGTAAACAA	2520
TGTCTAAGAA	ATTAACATTT	CACTGCATCA	GTGGCAGAGA	CCTCCTTACA	GTCGGGCTGC	2580
TCCACGCTCA	GCACTAGAGT	GCCTGAGCTA	GACGCAGTAC	TAACTCGTCT	TGCCTCGTAT	2640
GATCGACGAG	GCAGACTCGT	GTCGCAAGTA	ATTATTTTTT	ATTAAGGAGT	ATTCAATGTC	2700
TAAGAAATTA,	ACATTTCACT	GCGTCAGTGG	CAGAAACCTC	CTTACAGTCG	GACTGCCCTA	2760
CGCTCAGCAC	TAGAGTGCCT	GAGCTAGACG	CAGTACTAAC	TCGTCTTGCC	TCGTATAATC	2820
GACGAGGCAG	ACTCGTGTCG	CAAGAAATTA	TTTTTTATTA	AGGAGTATTC	AATGTCTAAG	2880
АААТТААСАТ	TTCAAGAAAT	TATTTTGACT	TTGCAACAAT	TTTGGAATGA	CCAAGATTGT	2940
ATGCTTATGC	AGGCTTATGA	TAATGAAAAA	GGTGCGGGGA	CAATGAGTCC	TTACACTTTC	3000
CTTCGTGCTA	TCGGACCTGA	GCCATGGAAT	GCAGCTTATG	TAGAGCCATC	ACGTCGTCCT	3060
GCTGACGGTC	GTTATGGGGA	AAACCCTAAC	CGTCTCTACC	AACACCACCA	ATTCCAGGTG	3120
GTCATGAAGC	CTTCTCCATC	AAATATCCAA	GAACTTTACC	TTGAGTCTTT	GGAAAAATTG	3180
GGAATCAATC	CTTTGGAGCA	CGATATTCGT	TTTGTTGAGG	ACAACTGGGA	AAACCCATCA	3240
ACTGGTTCAG	CTGGTCTTGG	TTGGGAAGTT	TGGCTTGACG	GAATGGAAAT	CACTCAGTTC	3300
ACTTATTTCC	AACAAGTCGG	TGGATTGGCA	ACTGGCCCTG	TGACTGCGGA	AGTTACCTAT	3360

GC	GTTTGGAG	GCTTGGCTTC	TTACATTCA	GAAGTAGACT	CTGTCTATGA	TATCGAGTGG	3420
GC	TGATGGTC	TAAAATACGG	AGAAATCTTT	ATCCAGCCTG	AGTATGAGCA	СТСААААТАТ	3480
TC	CATTTGAAA	TTTCGGACCA	AGAAATGTTG	CTTGAAAACT	TTGATAAGTT	TGAAAAAGAA	3540
GC	TGGTCGTC	CATTAGAAGA	AGGCTTGGTA	CACCCTGCCT	ATGACTATGT	TCTCAAATGT	3600
TC	ACATACCI	TTAATCTGCT	TGACGCGCGT	GGTGCCGTAT	CTGTAACAGA	GCGTGCAGGC	3660
TA	TATCGCTC	GTATCCGTAA	CTTGGCCCGT	GTCGTAGCCA	AAACCTTTGT	CGCAGAACGC	3720
A.A	ACGCCTAG	GCTACCCACT	TTTGGATGAA	GAAACAAGAG	СТАААСТССТ	AGCAGAAGAC	3780
GC	AGAATAAA	GAGAGTGACA	AATTACGAAA	ATGGGCGAAC	AGAGTGAGCC	CTGAGCCAGT	3840
ТG	CCGCAGTG	ATGAAGGTAT	CCTTAGTGAA	ACTAAGGATA	CTAGGCAAAA	TTGGAGACTT	3900
тт	GGCTCCAA	TTTTAGCAAT	GAAACAACGA	AGTTGGTTGC	TTGCGTGCCA	ATCACATAAG	3960
GC	AAACTGGA	AAATAAAAAG	ATACTTTTCG	GAGAAAAAAC	АТСАСЛАЛЛА	ACTTATTAGT	4020
AG	AACTCGGT	CTTGAAGAAT	TACCAGCCTA	TGTTGTTACG	CCAAGTGAAA	AACAACTAGG	4080
CG	аааааатс	GCAGCCTTCC	TCAAGGGAAA	ACGCCTGTCT	TTTGAAGCCA	TTCAAACTTT	4140
CT	CAACACCA	CGTCGTTTGG	CTGTTCGTGT	AACTGGTCTT	GCAGACAAAC	AGTCTGATTT	4200
AA	CAGAAGAT	TTCAAGGGTC	CAGCAAAGAA	AATTGCCTTA	GATAGTGATG	GAAACTTCAC	4260
CA	AAGCAGCT	CAAGGATTTG	TCCGTGGGAA	AGGTTTGACT	GTTGAAGATA	TCGAATTCCG	4320
TG	AAATCAAG	GGTGAAGAAT	ATGTCTATGT	CACTAAGGAA	GAAATTGGTC	AAGCAGTTGA	4380
AG	CCATTGTT	CCAGGCATTG	TGGATGTCTT	GAAGTCACTG	ACTTTCCCTG	TCAGCATGCA	4440
CTO	GGCGGGA	AATAGCTTTG	AATACATCCG	CCCTGTTCAC	ACTTTAACTG	TTCTCTTGGA	4500
TG	AGCAAGAG	TTTGACTTGG	ATTTCCTTGA	TATCAAGGGA	AGTCGTGTGA	GTCGTGGCCA	4560
rcc	GTT TTT TG	GGACAAGAAA	CCAAGATTCA	GTCAGCATTG	AGCTATGAAG	AAGACCTTCG	4620
ΓAZ	AGCAGTTT	GTAATCGCAG	ATCCATGTGA	ACGTGAGCAA	ATGATTGTTG	ACCAAATCAA	4680

GGAAATTGAG GCAAAACATG GTGTACGTAT CGAAATTGAT GCGGATTTGC TGAATGAAGT

CTTGAATTTG GTTGAATACC CAACTGCCTT CATGGGAAGT TTTGATGCTA AATACCTTGA

AGTTCCAGAA GAAGTCTTGG TGACTTCTAT GAAGGAACAC CAGCGTTACT TTGTTGTTCG

TGATCAAGAT GGAAAACTCT TGCCAAACTT CATTTCTGTT CGTAACGGAA ACGCAGAGCG

TTTGAAAAAT GTCATCAAAG GAAATGAAAA AGTCTTGGTA GCCCGCTTGG AAGACGGAGA

ATTCTTCTGG CGTGAAGACC AAAAATTGGT GATTTCAGAT CTTGTTGAAA AATTAAACAA

TGTCACCTTC CATGAGAAGA TTGGTTCTCT TCGTGAACAC ATGATTCGTA CGGGTCAAAT

CACTGTACTT TTGGCAGAAA AAGCTAGTTT GTCAGTGGAT GAAACAGTTG ACCTTGCTCG

4740

4800

4860

4920

4980

5040

5100

TGCAGCAGCC ATTTACAAGT TTGACTTGTT GACAGGTATG GTTGGTGAAT TTGACGAACT	5220
CCAAGGAATT ATGGGTGAAA AATACACCCT TCTTGCTGGT GAAACTCCAG CGGTGGCAGC	
TGCTATTCGT GAACACTACA TGCCTACATC AGCTGAAGGA GAACTTCCAG AGAGCAAGGT	5280
	5340
CGGCGCAGTT CTAGCCATTG CAGACAAATT GGATACGATT TTGAGTTTCT TCTCAGTAGG	5400
ATTGATTCCA TCAGGTTCTA ATGACCCTTA TGCCCTTCGT CGTGCAACTC AAGGTGTGGT	5460
TCGTATCTTG GATGCCTTTG GTTGGCACAT TGCTATGGAT GAGCTGATTG ATAGCCTTTA	5520
TGCATTGAAA TTTGACAGTT TGACTTATGA AAATAAAGCA GAGGTTATGG ACTTTATCAA	5580
GGCTCGTGTT GATAAGATGA TGGGCTCTAC TCCAAAAGAT ATCAAGGAAG CAGTTCTTGC	5640
AGGTTCAAAC TTTGTTGTGG CAGATATGTT GGAAGCAGCA AGTGCTCTCG TAGAAGTAAG	5700
CAAGGAAGAA GATTTTAAAC CATCTGTTGA ATCACTTTCT CGTGCCTTTA ACCTGGCCGA	5760
GAAGGCAGAA GGGGTTGCTA CGGTTGATTC AGCACTATTT GAGAATGACC AAGAAAAAGC	5820
TTTGGCAGAA GCAGTAGAAA CACTCATTTT ATCAGGACCT GCAAGTCAGC AATTGAAACA	5880
ACTITITGCG CTTAGCCCAG TCATTGATGC TTTCTTTGAA AATACTATGG TAATGGCTGA	5940
AGATCAGGCT GTCCGTCAAA ATCGTTTGGC AATCTTGTCA CAACTAACCA AGAAAGCAGC	6000
TAAGTTTGCT TGTTTTAACC AAATTAACAC TAAATAAAAT TTGATAAACG GACTTTATCT	6060
TATTACAAAG GAGAAGAAAT GGATCCGAAA AAAATTGCTC GTATCAATGA GCTTGCTAAA	6120
AAGAAAAAAA CAGAAGGCTT AACACCAGAA GAAAAAGTGG AACAAGCCAA ACTACGTGAG	6180
GAGTACATCG AAGGTTATCG CCGCGCTGTT CGTCACCACA TTGAAGGAAT CAAAATTGTG	6240
GACGAAGAAG GAAACGATGT TACACCAGAA AAACTACGCC AAGTACAACG TGAAAAAAGGA	-
TTACATGGCC GTAGTCTTGA TGATCCAAAT TCATAATAAT ACTCTTCGAA AATCAAATTC	6300
AAACCACGTC AGCTTCACCT TGCCGTACTT AAGTACAGCC TGCGGCTAGC TTCCTAGTTT	6360
	6420
GCTCTTTGAT TTTCATTGAG TATATGTATT CTTTCTTTTA ACAAAGATAG ATGAAACGAT	6480
AACAAAGAGA CTAGCAGTTT GTGTTTGCTA GTCTTTTTTC GCTAAAAAAG GAACCATAAT	6540
GGTTCCTAAA AACTATCATT AGTAACTTGC ACCGGCTGTA GCGTCTGCGT CACCACCGTG	6600
GCCTCCAGCA TCCCCTGAAT CAGAAGCGCC AGAAGTAGCA TCGGCGTCTC CATGACCTCC	6660
GCAGCAGGA GCAAATGGTC CGCTACCACC CACCAAACGT TGACCAGTCT CTTTTAGGTA	6720
CAGTCAAGC CATGGTTGGA AGTTAAAGAC GATTTCATTG ATACCAGCGT ATGATCCATC	6780
GGATAGTAC ATTGCTTGGT AGTTGTGAGT GTTGATAACA CCTGCAGGAG AACCTGGAAC	6840
SATCGTACGG ACGTATTCTT GGTTTCCGTT GCGAAGTGTT CCGATAACCC ACTCTACGTT	6900

508 CTTCATACGT GCTGGTGGAA GAGAACCATG AACAGTCGAC ATACGGCTAC CTGATTGAGG 6960 TGGTACACGT TTAGCGAACA TAGTGTCTGG ATCTTGGTGA GCGTTGTTGT AGTAGAGGAA 7020 TTGGTTGTTG TCGTCAGCGT ATGTCAATTC AAATGGCATA GCTTTCAAGA ACATATCAAT 7080 TTGGTTAACT GTTAGGATAC CGTGGTCCAA TTTGACATAG GTATCACCAG AAACAGCACC 7140 AGTGAATGCT GCAACTTTTT CTACCCATTC TGGATCGTCA GGGTCAACTT CTGTGATGGT 7200 TGTAGCGATT GGTTTTCCAC AATCCAAGTC TTCTGATTCG ATTGGTTTTG GTTTTTTCAA 7260 TTTCGAAACG ACTCCTACGT ATTTAACAAA GTTATCTAAG CAAGTTTCAA GGAATTTAAC 7320 AGTGCCTTCG TTGGTGATAT TTCCGTTGTT ATCAAAAGCT TCCTTAGCTT TACCAAGAAG 7380 GAATTCGTTA CCTGGAAGCG TGTAGGCATT AACACCTGGA GCATCAAGGA TTTTACGAAG 7440 GTGAACTTGA GCACGTGATG TTCCTTGGTC ATAGTATGAT GCACCCACAA TCATAACAGG 7500 CTTGTTTCA AATGGATGAA CTTCGTATGA AAGCCATTCA AGTACAGATT TGAGTGAAGC 7560 TGAGATAGTG TGGTTATGCT CAGGAGTAGC AATGATAACA CCATCTGCAC GAGTAATTTT 7620 GTTATATAAA TAACGTAATT GGAAACTTTC ATCCCATTTT TCATCTTGGT TAAACATTGG 7680 AACTTCGTCA ATTTCAAGAA CTTCTAATTC AAATTTGAGT TTGAAGTAGC GACGGATAAA 7740 TTCCAAGAGC TTACGGTTAT ATGATTGATC GTAGTTTGAT CCAACAAGTC CAACAAATTT 7800 CATTCTTTT GGTCTCCTAT CTTACAAATT TTCCCAGTCA AAGTCTTCAG CATCTTTGCG 7860 AAGTAATTCT TGTGCATTAC GTAATTTTC TGTGATTTTT ACAAAGATAC GGAAGTCATC 7920 AAAGATGGCA TCCAATTTCT TGATAACATC AAGGTCAACC AAGTCGCCAC TTGGGTTAAA 7980 TGCTTGAAGA GAGTGTGAGA GCAAGAATTC ATCTGGAAGA ACATTTGCCT TGATTTCAGG 8040 AGCATTCAAG ATTTGACGAA GTTGCAATTG GGCACGAGAT GAACCAAGCG TACCGTAAGA 8100 AGCACCTGTA ATCATGATTG GTTTGTTCAA AAGTGGGTAA ATACCATAAG ACAACCAAGC 8160 AAGAGCGCTC ATCAAAACAG CTGGAATAGA GTGATCATAC TCAGGAGTAC CGATAATAAC 8220 GCCATCTGCC TCTTCGATTT TAGCAGCAAT TTCCAATATT TCAGCAGGTA CTTGCTTGTC 8280 AGCTGGTTTG TTGAAGACAG GAATGGCCTT GATTTCAACA AGTTCAATTT CAGCTTTGTC 8340 AGTAAAGTGT TTTTGCATGT ATTGAAGCAA TTGACGGTTT GTAGAACGTT TTGAATTTGT 8400 TCCAACAATA GCAATAAGTT TTAACATGAG ATTTCCTTTC TCTTTTTACA TAATACAATT 8460 TTAAAATTCC ATTGAAACAG TTGTCTCTAT AGAGTAGGAA TTCCTGAAGA ACAGCTTAGG 8520 TGGCCTTCTT TATCGATGAG GATGACTTCG ATGCCCTCCA AACTTTCGAC TTGCCAGAGG 8580 ATAGAAGCAG GTCTTTCTCC AAAGAGTCGA GTCGTCCAGA TTTCGCCATC GACTGATTTA 8640 TCAGAGATGA TTGTTAGACT CGCTAGTTCC GTTTCAACAG GATATCCTGT TTGACTGTCA 8700

AAAATGTGAT GGTAATCTT	G TCCATCGACG	GTCAGGTGAC	GTTCATAAAT	GCCTGAAGTC	8760
ACGACAGATT TATTGACAAG	AGGGATGGTC	ATTAAATGAT	TTCCCCTAGG	ATTGGCTGGG	8820
TCTTGAATCC CGATTTGCC	A TGGGTTATCC	CCTCTTGCCT	GATTTTTCC	AATGGTCAGG	8880
ATATTCCCTC CCAGATTGAT	CAAGGCAGAA	GTCACCCCCT	CTTTCCTAAG	AAATTGGGCA	8940
ACCTTATCCG CACTGTATCC	TTTGGCTAAA	CAACCTAGAT	CGATCTTCAT	TCCTTTCTGT	9000
TTTAAAAACA CAGTAGAAGT	AGAAGAATCT	AACTCGATAC	CATGAGGATT	GATTAGAGGC	9060
AGCACCGATT CAATTTCTTC	AGGCTGGGCG	ACCTTGGCAT	CTGAAAAACC	GATACGCCAG	9120
GTTTGAATTA AGGGACCAAT	GCTGATATTG	AGGTGGCTAG	AGAGCGCTAG	GCTATGCTCT	9180
AACCCAAGTG AAATCAGCTC	AAACAGGTCT	GGATGAACCG	TGACGGGGGC	TATTCCTGCT	9240
TGATAATTGA TTTCCATCA	CTCAGATTCT	TGACTATTGG	CGTTGAAGCG	GTATTCAAGT	9300
TCTTTGAGCA AGTCAAAGGA	. TTTTTGGAGA	AAGATATCGG	CTTGCTCATC	САСТААТСАА	9360
ATAGTGATAG TAGTCCCCAT	TAGCCGTTCA	GAATGTGAAC	GAAGAGTCAA	GCTACCAACT	9420
CCTTTCTCTT ATAGAAAATA	AGTTGTAATA	TCAAATAATC	ATCTAAATTG	AAGCCCTTAC	9480
ATTTCATTTT CATGTTATTA	ТААТАССАТА	AAGTTAGAAT	TTTCACAAAC	AAAATTTGGA	9540
AAAAGTCAAG AAATATGCTC	АТААААТТСА	TCAGGCTTGA	AAACAGGATA	AATGGGGAAT	9600
TATTTTGAT AAAAAATGCT	GAAATAATAG	TACCCCCCTT	GTAAACGCTA	ACGGTAAATG	9660
GTATACTAGT AAGGTAAATT	TAGAATGAAG	GCAGGAAATT	TTTATGAGTA	AAATCGTTGT	9720
AGTCGGTGCT AACCACGCTG	GTACAGCATG	TATCAATACC	ATGTTGGATA	ATTTTGGAAA	9780
TGAGAACGAA ATTGTTGTAT	TTGACCAAAA	CTCTAACATC	TCTTTCCTAG	GATGTGGAAT	9840
GGCTCTTTGG ATTGGTGAAC	AAATTGACGG	TGCTGAAGGC	TTGTTCTATT	CTGATAAAGA	9900
AAAATTGGAA GCTAAAGGTG	CTAAAGTTTA	CATGAACTCA	CCTGTTCTTT	CAATCGACTA	9960
TGATAACAAA GTAGTTACAG	CGGAAGTTGA	AGGAAAAGAG	CACAAAGAAT	CATACGAAAA	10020
ATTGATTTTC GCTACAGGCT	CTACACCAAT	CTTGCCACCA	ATCGAAGGTG	TTGAAATTGT	1.0080
TAAAGGAAAC CGCGAATTTA	AAGCAACTCT	TGAAAACGTA	CAATTCGTGA	AATTGTACCA	10140
AAATGCTGAA GAAGTTATCA	ATAAACTTTC	TGACAAGAGC	CAACACCTCG	ACCGTATCGC	10200
CGTTGTTGGT GGTGGTTACA	TCGGTGTTGA	ACTTGCTGAA	GCCTTTGAAC	GTCTTGGAAA	10260
AGAAGTTGTC CTTGTTGATA	TCGTTGATAC	TGTCTTGAAC	GGTTACTATG	ACAAAGACTT	10320
CACACAAATG ATGGCGAAGA	ACTTGGAAGA	TCACAACATC	CGCTTGGCTC	TAGGTCAAAC	10380
TGTTAAAGCA ATCGAAGGTG	ACGGTAAAGT	TGAACGCTTG	ATTACTGACA	AAGAAAGCTT	10440

510 TGACGTGGAT ATGGTTATCC TTGCAGTTGG TTTCCGTCCA AACACAGCCC TTGCAGGTGG	10500
TAAGATCGAA CTCTTCCGCA ACGGTGCCTT CCTTGTAGAC AAGAAACAAG AAACATCTAT	10560
CCCAGACGTT TACGCTGTTG GTGACTGTGC GACTGTTTAT GACAATGCTC GTAAAGATAC	10620
AAGCTATATC GCTCTTGCTT CAAATGCTGT GCGCACTGGT AACGTTGGT	10669

(2) INFORMATION FOR SEQ ID NO: 58:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7542 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

60	GAGGAAACAT	TGACAAGTAA	AGAACAAGAT	GATAGAATAA	GATACTTTAT	CGCGCTAATA
120	ACGGTCAACA	CTGCCCCACG	TGAATGGTAT	TGCAATACTT	CAAACACTCA	TATGCAAAAT
180	GTCACGTCTG	CTGGGGATCA	CCTAGCTCAT	ATGCTCCACA	CTGGCTGAAA	CTGGACGCGT
240	TCTATGACTT	GGCTATGGGG	AAAAGATGTC	CAACCAACGA	GCCTTCAAGG	GATGCCACCA
300	GTTTCAAAGA	ACCAAGTATG	GACTGTCCGC	ACCAAAAAGG	GGAGAGTTCA	ATTTGACTTA
360	TGGCCGATGT	ATTCAACCTA	AGCACAGGGA	AAGCCCTTAA	CAAGCCATTC	AGACTATCTT
420	TCGAAGTTGA	TTTCAGGTTA	CAGGGAAGCC	CTGCCGATCA	CACAAGGCTG	AGTTCTCAAC
480	GGACTAGTTT	ATCAATGGCT	ACCCTTCACC	AACTTGGAGA	CGTACAGTTG	TCCTGTAGAC
540	ACCACTTCAC	TGGCATTGGT	TGGCTTCCAC	ATACCTATAA	GGTCGCCAAG	TACCTTCGAT
600	AAGGGGACAA	TATCTGATCC	ATCTGGGATT	AACGCAGTAA	TACGATGCCA	CGGTACAGAC
660	ACTACCTCAT	GGAAACTACG	TAACGAAAAC	AATTGGTCGA	GCCAACGAGG	CAAGGGCTGG
720	ACTGGGCTGA	AACATCTATG	AGTCATCCAA	AACATCCTGA	CTAGACTTTA	GTATGCCGAC
780	AGCATATTGA	GATGCCGTTA	TTTCCGTTTG	GTGTAGCTGG	GAAACGACTG	TTGGTTCATG
840	ACGATTTCTA	AAATACGGTG	TATGAAGGAA	TCATCCGCGA	ATGCGCAACT	CTCTTTCTTT
900	TCGAAAAAAC	CTGGACTATC	GGAAGCCAAT	ACCCAGACAA	GAATTTTGGA	TGTTTTTGGT
960	AAGCCAGTCA	AATCTCTTTG	TCTCCACCAG	TCGATGTTCG	TTTGACCTTG	GGAAGAACAC
1020	AACTCAAGCC	AGCCTGGTTG	TTTCACAGAT	TTCGTGGCAT	AACTATGACC	AGCTGGCGCA
1080	CCCTTGAGTC	CGAGGACAAG	CGATACCCAA	TCGACAACCA	GTGACTTTTG	TGACAAGGCT
1140	GCCAAGACGG	ATTTTGTTAC	CTATGCCCTC	AGCCAGCAGC	GAATGGTTCA	TACCGTTGAA
1200	CTCAAGAAGA	GGGCAGTATG	TGGGATTTCA	GAGACTACTA	GTCTTTTACG	CCTTCCATGT

TTTC	AAAGAA	ATCCTTGACC	GCCTCCTAGC	CATCCGAAAA	GATTTGGCCT	ATGGAGAACA	1260
AAAT	GACTAC	TTTGACCATG	CTAACTGTAT	CGGTTGGGTA	CGTTCAGGTG	СТGААААТСА	1320
ATCC	CCAATC	GCAGTCCTTA	TCTCAAATGA	CCAAGAAAAC	AGCAAGTCAA	TGTTTGTCGG	1380
TCAA	GAATGG	ACTAATCAAA	CCTTTGTAGA	TTTACTTGGT	AACCACCAAG	GTCAAGTTAC	1440
AATT	GATGAG	GAAGGTTATG	GACAATTCCC	TGTCTCAGCT	AGATCCGTAA	CTCTCTGGGC	1500
AGTC.	AATACC	ATCTAATAGC	TCATAATAAC	CAAGCTAGGT	CCAAGCGGAT	TTGGCTTTTT	1560
TGTA	TTCACA	AAAAGACCTA	CCCAAATGGA	TAGATCTTTA	CTTGATTACA	ATTTACCTGC	1620
TACT	GCATCC	AACAATTCTT	GGATCTTAGG	TTGGTTGCTT	CCTCCTGCCA	TGGCCATATC	1680
TGGT	TTACCA	CCACCACGTC	CATCGATGAT	TGGTGCTAAT	TCTTTGACAA	GGTTTCCTGC	1740
ATGA	AGGTCT	TTTGTCTTGC	TTGCTACAAG	GACATTGACT	TTGTCACCGA	TAGCGGCAAC	1800
TAGG	ACAAGA	AGATCAGAGT	AGTCTTTTTG	TTTCCAGTTA	TCTGCAAAAG	TACGAAGGC	1860
ACCG	GCATCG	GATACAGACA	CTTGACTAGC	AATGTAACGA	TGACCGTTGA	CTTCCTTAAC	1920
ATCT"	ITGAAG	ATATCGCCTG	CGGCTGCAGC	TGCGGCTTTT	TCTTTCAACT	CAGCATTTTC	1980
TTTT	IGAAGT	TGACGAAGTT	GTTCTTGAAG	TCCTTCTACC	TTGTGAGGTA	CTTCCTTGAC	2040
TTGAG	GGTGCT	TTCAAGGTTG	CTGCGATAGC	TTTAAGAGCA	TCCTCTTGTT	CACGATAGGC	2100
TTCA	AAGGCT	TCCTTACCAG	TCACTGCCAA	GATACGGCGA	GTTCCTGAAC	CGATTCCTTC	2160
TTCT	PTGACA	ATTTTGAAGA	GACCAATCTC	AGAAGTGTTG	TCAACATGAG	TACCACCACA	2220
AAGT	ГСААТА	GAGTAGTCAC	CGATAGTCAC	GACACGAACT	TCCTTGCCGT	ATTTCTCACC	2280
AAAG	AGGGCC	ATAGCTCCCA	TTTCTTTAGC	AGTGTCAATA	TCCGTTTCAA	CTGTCTTCAC	2340
TTCA	AGTGCT	TCCCAAATTT	TCTCGTTAAC	TTGCTGTTCA	ATCGCACGAA	GTTCCTCAGC	2400
AGTT	ACTGCT	TGGAAGTGGG	TAAAGTCAAA	GCGAAGGAAT	TCAACTTCGT	TAAGAGATCC	2460
TGCC	rgtgtt	GCGTGGTTTC	CAAGGATATT	GTGAAGGGCA	GCGTGAAGCA	AATGAGTCGC	2520
AGTG	rggttt	TTCATGACAC	GGTGACGGCG	ATTGCTATCA	ATTGCCAAGG	TATATTCTTG	2580
GTTC	AAGGCA	AGCGGTGCAA	GGACTTCAAC	TGTATGAAGG	GCTTGACCAT	TTGGGGCTTT	2640
CTGA	ACATTG	GTCACAGTAG	CCACAACCTT	ACCTGACTCA	TCCAAGATTT	GTCCGTAGTC	2700
AGCTA	ACCTGT	CCACCCATTT	CAGCATAAAA	TGACGTTTCC	GCAAAGATAA	GAGAGGCAGT	2760
TCCTT	CTGAA	ACAGCTCCTA	CTTCTGCATT	GTCAGCAACG	ATAGCTACCA	ATTTAGAAGA	2820
СААТТ	rggcta	GCATTGTAGT	TGAAGACACT	TTCTACAGTG	ATGTTTTGAA	GAGTTTCATT	2880
TTGC	TACCC	ATTGAGCCAC	CCTTGACAGC	TGACGCACGC	GCGCGTTCTT	GCTGTTCTTT	2940

CAMCGOMGOM, money co.	
CATGGCTGCT TCAAAACCTT CACGGTCTAC AGTCATACCA GCTTCTTCAG CGATTTCTTC	3000
AGTCAATTCA ACTGGGAACC CATAAGTATC ATAGAGTTTG AAGACATCTG AACCAGCGAT	3060
AACAGATTGA CCTTTTTCTT TCAAGTCTGC TACAATGCCT TGGGCAAAGT GTTGACCTGA	3120
GTGAAGGGTA CGGGCAAATG ATTCTTCTTC GCTCTTAACG ATTTTCTCAA TAAAGTCACG	3180
TTTCTCAAGC ACTTCTGGGT AGTAGCTTTC CATGATTTTT CCAACAGTTG GAACCAATTT	3240
GTAAAGGAAA GGCTCGTTGA TACCCAATTT TTGACCATGC ATAGAAGCAC GACGGAGAAG	3300
ACGACGAAGA ACATAACCAC GACCTTCATT TCCTGGAAGG GCACCATCAC CGATAGCAAA	3360
TGAAAGAGAA CGAATGTGGT CTGCGATAAC CTTGAAGCTC ATGTTGTCGC CATCTTGGTC	3420
ATAAACCTTA CCAGACAATT TCTCGACTTC ACGGATAATC GGCATGAAGA GGTCCGTTTC	3480
AAAGTTGGTC TTAGCCCCTT GGATAACGGC CACCAAACGC TCCAAACCAG CGCCCGTATC	3540
AATGTTCTTA TGTGGCAATT CCTTGTATTC GCTACGAGGA ACAGCAGGGT CTGCGTTAAA	3600
TTGTGACAAA ACGATGTTCC AGATTTCAAT ATAACGGTCG TTTTCAATAT CTTCTGCAAG	3660
CAGGCGAAGA CCGATATTTT CTGGGTCAAA GGCTTCCCCA CGGTCAAAGA AGATTTCTGT	3720
ATCTGGTCCA GAAGGTCCCG CACCGATTTC CCAGAAGTTG TCCTCAATTG GAATCAAGTG	3780
ACTTGGATCC ACTCCCACTT CAATCCAGCG GTTGTAAGAA TCTTTATCGT CTGGATAGTA	3840
GGTCATGTAA AGTTTTTCAG CAGGGAAATC AAACCATTCA GGGCTTGTCA AAAGCTCATA	3900
AGCCCAAGTG ATAGCTTCGT CACGGAAGTA ATCCCCGATA GAGAAGTTCC CCAGCATTTC	3960
AAACATGGTA TGGTGACGCG CGGTCTTCCC TACGTTTTCG ATGTCGTTGG TACGGATAGC	
CTTTTGGGCA TTGGTAATAC GTGGATTTTC AGGGATAATG GTCCCGTCAA AGTATTTCTT	4020
AAGGGTTGCT ACCCCAGAGT TGATCCACAA AAGAGTTGGG TCATTTACAG GAACCAAACT	4080
TACTGATGGT TCTACTGAGT GACCTTTGGT CGCCCAGAAA TCAAGCCACA TTTGGCGTAC	4140
TTGTGCACTA GATAGTTGTT TCATATTGTC TCCTTATTCA CTTGTTTAAT GTGATTGGCT	4200
TTCCAGCATT TCCACATAGT CAATCGCGAC ACAGAGGGAA ATGACTAGGT CTGCATAAGC	4260
GTCTTCAAGA ACCGTTACGG TATAGGTAGA AGTCAGATGG AAGAGTTCCT TCTTAATTTC	4320
CGCAATCAAC TGATCGCGAT CATCCAGCAA TTTGAAATTC AAATCCCAGA TATTGCCCTC	4380
GATACGAAGA CCTAGATTAT CAAACTCATA CTTATCTCGC CAGAAGGTCA ACTTCTTACG	4440
	4500
AATGACAAAA CTCGAGCCAT CCCGAAGCTG AATTTCAAAA CGAGGAAGCA AGGTCAAGAT TTCTTTACTA ATCTCACTGA CTTCTTCAGG AGGTCAAGAT	4560
TTCTTTACTA ATCTCACTGA CTTGTTCACC AGCCGCATCA TAGATGGTAA AGGTTTTAGG	4620
AATCTTAAAA AATGATCCCT CCACCTGATA GGCAATTTCT CCCCTGTCAT CCTTGATAGC	4690

GAAGCGTTCG CCTCCAAGAC GAAACTTTTG TTTGACAAGA AATGTTTTCA TCAACACCTC 4740

011111	
CAAAAATCAA AAGACAAGCT CATATCACGA AGGGCGAAAA ACCGCGGTAC CACCTTCATT	480
CAATGAACTT GTCATTCTCT TGTTCTTATG CAATTGTATG ATTGAGTAGC ATGACTTCCT	486
AGCTTAGATG GCTCGCAGCA CCGCCATTTC TCTGGACTAA GACAAGTGAA AATCAATTCT	492
CAACTTTCTT ATTATAACGT TTTTTTAAGC TTGCGTCAAC TGGAAATGAT CTCCGTTGAA	498
TTAGACCAAT TCCCTACATC TCTGATTACT TTTTCAGGAT ATATTTTTTC TTACTGCCAT	504
TTTTCTTTT ATCCCAAATT TTCATATTAC TAAACACAGC TACTAGAATA TTTCCAAATA	5100
TAAAGGTGCC TATCACCCAA TATATGGACT CAGTTGTTAG GTATTGTCGA TCCAAGCCAT	5160
CCTTTAAATG GAATAGTATA GCAGTTTGGT TAACAATCAT AAAGGTTGGC CAGAAACTTT	5220
TTTTGAAAAA AGTAGACATT TTCATTATTT GTTGCCGCTT TCTGTAAGGT TAATACTCAA	5280
TAAAAATCAA AAAGCAAACT AGGAAGCTAG CCTCAAGCTG TACTTGAGTA CGGCAAGGCA	5340
ACGCTGACGT GGTTTGAAGA GTATAGGCTT AGTATACTAC TAGGCAAGCA AATAAACAAA	5400
TAAACAACTA GAATAGAAAA AGATAGGGCT CTAAAAACTG ACTTCTATTC CTTAAAAACG	5460
AACCAGCTTG ACTGATTCGT CTTCTTACGT TTATCTCCTA CTTCCGATAC ATTTTAAACT	5520
GTAGGAAGAG GTCGCTATAT TTCCCTGTCC ATTTATGGTC AAATTTCTCA TAAACTTCTA	5580
GGTGTTTCAT GGTTTCAACA TCGGGATAGA AGGCCTTATC TTCCTTTGTT TCCTCTGGGA	5640
GCAATTCCTT CGCTGGTAGG TTTGGTGTTG AATAGCCGAC ATACTCCGCA TTTTGGAGAG	5700
CATTTTCAGG TTTCAACATA AAGTTGATAA AGGCATAGGC TGAGTTTTGG TTTTTAACTG	5760
TTTTGGGAAT GACCATATTG TCAAACCAAA GATTGCTGGC CTCTGTCGGT ACCACATAAC	5820
GTAGATTTTC ATTTTTTCT AACATTTGGC TGGCTTCACC AGAGAAGGTC ACGCCGATTG	5880
CAACATTATT CTGAATCATA TAGCCCTTCA TCTCGTCCGC AACGATAGCC TTGATATTTG	5940
GAGTCAGTTT GTAGAGCTTA TCCACTGTCT CTTCCAACTG CTGCAGATCC TTGGAGTTGA	6000
GGCTGTAGCC GAGGGAATTG AGTCCTAGTC CCAGCACCTC ACGCGCCCCA TCAAAGAGCA	6060
TGATAGAATT CTTATACTCC GGCTTCCAAA GGTCATCCCA ATGCTCAGGC GCTTCATCTA	6120
CCATGGTTTC GTTGTAGACA ATTCCTAAGG TTCCCCAGAA GTAAGGGATG GAGAATTTAT	6180
TACCTGGGTC AAAGGACTGG TTGAGAAACT CTGGTCCGAT ATTTTCGATT CCTTCAATTT	6240
TTGAATAATC AAGCGGAACC AAGAGGTCTT CGTCCTTCAT CTTGTTAATC ATGTATTCAC	
TTGGAATGGC AATATCGTAG GTCGTTCCAC CCTGCTTTAT CTTAGTGTAC ATGGCTTCGT	6300
TGGAGTCAAA AGTCTCGTAC TGAACTTGAA TTCCTGTTTC TTCTGTAAAC TGAGTCAAGA	6360
GTTCAGGATC GATATAGTCT CCCCAGTTAT AGATAACCAA TTTTTGACTA TCTCGACTAT	6420
TOTAL	6480

E1.4	
514 TGATTTTACT ATCTAAATGA GTCGCAATTC CCCACAAGAC AAGGATAATC GCTGCAATTC	6540
CTGCTAAAAA TGAATAGATT TTTTTCATGC TTGCTCCTCC TTCTCACGAG AGATAAAGTA	6600
ATAACCTACA ACTAGGATAA TACTAAAGAG AAAGACTAGA GCAGACAGGG CATTGATTTC	6660
TAAGGAAATC CCCTTGCGAG CACGAGAGTA AATCTCGACT GATAGGGTTG AAAAGCCATT	6720
TCCTGTTACA AAGAAGGTCA CGGCAAAGTC ATCTAACGAA TAGGTGAAGG CCATGAAATA	6780
ACCAGTAATG ATAGACGGAG TCAGGTAAGG AAGCATGATT TCCTTGAACA TCTGAAATTG	6840
ACTAGCTCCC AAGTCATAGG CCGCATGAAT CATGTCGCCA TTCATTTCCT TGAGTCGAGG	6900
CAAGACCATC AAGACCACGA TAGGAATGGA GAAGGCCACG TGACTAGATA GAACGGTCAA	6960
AAAGCCAAGT GAAAACTTGA GTTGGGTAAA GAGAATCAAG AAGCTAGCAC CAATCATAAC	7020
GTCAGGCGCA ACCATGAGGA TATTATTGAG TGATAGAAAG GCTTCTTGGT ATTTCTTACG	7080
AGACTGGTAG ATGTAAATGG CACCAAAAGT CCCGATAATG GTCGCTATCA AGGCTGATAG	7140
GAAGGCCAAG AAAAATGTCT GAGCCAAAAT CAGCATGAGT CTCCCATCTC CAAACATGGT	7200
TTCAAAGTGA GTCCAGCTAA AACCTGTAAA GCTATTCATA TCATCACCAG CATTAAAGGC	7260
ATAGCCAATC AAGTAAAAGA TAGGCAGGTA GAGGACCAGA AAGACCAGTC CCAGATAAAG	7320
FTTGGCAAAT TTTTTCATCG TTCTCTCCTT TCCTTAGTCA CCCACATGGT GATGAACATG	7380
FTCAGGATGA GAATCACACC GATGGTTGAA CCCATACCAT AGTTGTCATT GGTTAGAAAA	7440
TCTGCTCAA TAGCCGTCCC CAAGGTGATA ACGCGTTCCC ACCAATCAAA CGGGTCAGCA	7500
GAAGAGACT CAAACTTGGG ATAAAGACCG ACTGAACCCC GG	7542
2) INFORMATION FOR SEQ ID NO: 59:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9223 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

(D) TOPOLOGY: linear

AAAACCAAAT TCCGGTATTT TAACCTATGC TGTAAATACC ATGAAGTCTG TCATGACAGA 60
TCAGGTCTAT AACATTAAGG TTGAGACAGA AAATGGAAAT TATGTTGGTG AAGCTAGCCA 120
TGTTTTGGTC CTTTTGACAA ATTACTTCGC TGATAAGAAA ATCTTTGAAG AAAACAAGGA 180
CGGCTATGCC AACATTTGA TTCTGAAAGA TGCCTCTATA TTCTCCAAAT TATCCGTCAT 240
TCCTGATTTA TTAAAAGGGG ATGTTGTCGC AAATGATAAT ATCGAGTATA TCAAAGCGCG 300
TAATATTAAA ATCTCTCAG ATAGTGAATT GGAGTCAGAT GTTGACGGG ATAAATCAGA 360

TAACCTACCT GTAGAAATCA AAGTCCTAGC TCAGCGAGTA GAAGTATTTT CAAAACCGAA	420
AGAGGATTAG TATATAGAGA AAGCCTTTTT TAAGGCTTTT TGTATACTTT AAAAGATAGT	480
TCCTTTAACA ACGGACATTC CTTGCAAATA GTTTTACAAA AATAGTATAC TGGATTCATT	540
GAGTTTGAAA ACGTTTGCGT AAAATTTGAA TGAATACTTT AGGAGACAAA TTGATGGAAT	600
TGAGTGCTAT TTACCATAGG CCTGAGTCGG AGTATGACTA TCTTTATAAG GATAAGAAAC	660
-TCCATATTCG AATTCGAACT AAGAAAGGGG ACATTGAAAG CATCAACTTG CACTATGGGG	720
ACCCTTTTAT CTTTATGGAG GAGTTTTATC AGGATACAAA AGAAATGGTC AAGATAACTT	780
CTGGTACCTT ATTTGACCAT TGGCAGGTTG AAGTGTCAGT TGACTTTGCA CGTATCCAGT	840
ATCTCTTTGA GCTCAGAGAT ACAGAAGGTC AAAATATTTT GTATGGCGAT AAAGGGTGTG	900
TGGAAAATTC TCTAGAAAAT CTTCATGCAA TTGGGAATGG ATTTAAGTTG CCTTAGCTTC	
ATGAGATTGA TGCCTGCAAG GTTCCTGACT GGGTTTCAAA TACGGTATGG TATCAGATAT	960
TTCCTGAAAG ATTTGCCAAT GGCAATGCTC TATTAAACCC AGAAGGGACT TTAGACTGGG	1020
ATTCATCTGT CACACCTAAG AGCGATGATT TCTTTGGTGG TGATTTACAG GGGATTATTG	1080
ATCATATGAA TTACTTGCAA GACTTGGGTA TTACTGGACT ATATCTTTGT CCCATCTTTG	1140
AATCTACAAG CAATCACAAG TACAATACGA CAGATTACTT TGAAATTGAC CGTCATTTTG	1200
GAGACAAGGA GACCTTTCGG GAACTGGTGG ATCAAGCGCA TCATCGTGGC ATGAAAGTCA	1260
TGCTGGATGC GGTATTTAAT CATATTGGTT CGCAATCTCT TCAATGGAAA AATGTCGTCA	1320
	1380
AAAATGGTGA ACAGTCTGCT TATAAGGATT GGTTCCATAT TCAACAATTC CCAGTGACAA	1440
CTGAAAAGCT AGTTAATAAG AGAGACTTAC CCTATCATGT TTTTGGTTTC GAGGACTATA	1500
TGCCTAAGCT AAATACAGCC AATCCAGAGG TCAAGAATTA TCTTTTAAAG GTTGCGACTT	1560
ATTGGATTGA AGAGTTTAAT ATCGATGCTT GGCGTTTGGA TGTGGCTAAT GAGATTGACC	1620
ATCAGTTCTG GAAGGATTTT CGTAAGGCAG TTTTAGCTAA AAATCCTGAT CTTTATATCC	1680
TAGGAGAAGT CTGGCATACA TCTCAGCCTT GGCTAAATGG AGATGAGTTC CATGCCGTCA	1740
TGAATTATCC TTTATCTGAT AGTATCAAGG ACTATTTCTT ACGAGGAATT AAGAAGACAG	1800
ACCAGTTCAT CGATGAAATC AATGGAGAGT CTATGTATTA CAAGCAGCAG ATTTCAGAGG	1860
PCATGTTTAA TCTCTTGGAT TCACATGATA CAGAGCGAAT CCTGTGGACG GCCAATGAAG	1920
ATGTTCAACT GGTTAAATCA GCCTTAGCCT TTCTCTTTTT ACAAAAAGGA ACACCGTGCA	1980
TTTATTACGG AACCGAGCTA GCCTTGACTG GAGGACCAGA TCCAGATTGT CGTCGTTGTA	2040
GCCTTGGGA ACGTGTATCA AGTGACAATG ATATGCTGAA CTTTATGAAG AGGCTGATTA	2100

			516			
AAATTCGGAA	ATACGCGTCA	GTAATCATTT	CGCATGGCAA	GTATAGCCTT	CAAGAAATCA	2160
ACTCTGATCT	AGTAGCTCTG	GAATGGAAAT	ACGAAGGACG	GATCCTCAAA	GCAATATTCA	2220
ACCAATCAAC	AGAAGATTAT	CTTTTAGAGA	AAGAAGCAGT	AGCACTAGCA	AGCAATTGCC	2280
AAGAATTGGA	TAATCAGCTT	GTCATCTCTC	CAGATGGATT	TATGATTTTC	TAAAAACTAG	2340
TTGATGAAGA	TTATGGTACA	TTTCATACCT	TATATAGTAT	AATAAGGCTA	GTTACTAAAC	2400
TTGTAAAGGA	GAACTTAAAT	GAATTGTAGA	GGACATGAAA	CAAGACAAAG	AATTGTTAGA	2460
GATTTTGAAG	TTCAGCCTAA	AGCACATATT	AAGCTGTTAG	CAAATCAACA	AAAACATAGT	2520
GATGCAGGAG	CAACTATTGA	AGATGAATAT	TATGTATTTA	TCGCTGAGAG	ТААААТТСАТ	2580
GGCAAGAAGG	AAGTTATTCA	GTGTTGCATG	GGTGCGGCAA	GGGATTTTTT	AGAACTAATT	2640
AATCACAAAG	GGCTACCTCT	TTTTAATCCG	CTTGTAGGTG	ATTCTCATGT	AAATAATAGA	2700
CAAGAATATG	ACAATACAGG	GAGTGGAAAT	TTATAACCTG	AAAAGTGGAA	TGAAACTGCA	2760
AAGCAGCTTT	ATAATGCTAT	AATGTGGTTG	ATTATTTTAT	GGAATGCTAA	GCCGGATACA	2820
ССТТТАТТТА	ATTTTAAAGA	CGAAGTAATT	AAGTATAAAA	CATATGAGCC	TTTTGAAAGC	2880
АСТАТААААА	GAGTAAATAC	TACTATAAAG	AATGGTAGTA	AAGGGAAAAC	TCTGACTGAG	2940
ATGATTAATG	GCTACAGAGC	GGATAACGAT	ATTAGAGATG	AAATTTGTAA	СТТТААТАТТ	3000
CTGAAAAATA	AAATTCGTGA	TATGAAAAAC	CAACAAGGAA	ATACAATGGA	ATCTTACTTT	3060
TAGTTATTGT	TGAATTTTGG	GTATTCTATA	AAATATCCTA	ATTGAGATTT	AAATAGTAGA	3120
СТАТАСААТА	TAGTTAAAAT	ATCAGTAAAA	ACAACACTTT	ATTGAGGTAT	TGGATACGCT	3180
TTGCTAATAG	CCTAATAATC	ACATGTGGAG	TGTTGCTACA	ACGAAAAAGG	TGATAATCCT	3240
TGATTTCAAG	СТАТТТТАТА	AGCATTTTGT	CTTTGTAGAT	AAAGGCAATT	TTGACAATAA	3300
AAATCCTAAA	AGGTGAATCG	TTATAGATGT	ATTTGTAGAT	ATCGTTTGCG	CATCGAAAAA	3360
АТТААТАСАА	GAATAAATAT	TTATAGCTCT	TTAGGTGACT	TTTATAGAAG	TAAAGTTTAG	3420
GATAGAAAAA	CAAGAAATAA	CGCACCATTT	TTGGTGCGTT	ATGCTTTTTT	ATGCTATAAT	3480
GGATTTATAA	AAATAAAGGA	GTTTGCTATG	ATTGGAAAGA	ACATAAAATC	CTTGCGTAAA	3540
ACACATGACT	TAACACAACT	CGAATTTGCA	CGGATTGTAG	GTATTTCACG	AAATAGTCTG	3600
AGTCGTTATG	AAAATGGAAC	GAGTTCAGTC	TCTACCGAAT	TAATAGACAT	CATTTGTCAG	3660
AAGTTTAATG	TATCTTATGT	CGATATTGTA	GGAGAAGATA	AAATGCTCAA	TCCTGTTGAA	3720
GATTATGAAT	TGACTTTAAA	AATTGAAATT	GTGAAAGAAA	GAGGTGCTAA	TCTATTATCT	3780
CGACTCTATC	GTTATCAAGA	TAGTCAGGGA	ATTAGCATTG	ATGATGAGTC	TAATCCTTGG	3840
ATTTTAATGA	GTGATGATCT	ATCTGATTTG	ATTCATACGA	ATATCTATCT	АСТАСАААСТ	3900

TTGATGAAA	TAGAGAGATA	TAGTGGCTAT	TTGGATGGAA	TTGAACGTAT	GTTAGAGATA	3960
CTGAAAAAC	GGATGGTGGC	CTAATGGAAA	TCCAAGATTA	TACTGATAGT	GAATTCAAAC	4020
TGCTTTAGC	AAGGAATCTT	CGTTCACTGA	CAAGAGGAAA	AAAGTCCAGT	AAGCAACCTA	4080
PAGCGATTTT	GCTTGGAGGG	CAAAGTGGTG	CCGGTAAGAC	TACAATTCAT	CGTATTAAAC	4140
AGAAAGAATT	TCAAGGAAAT	ATTGTTATCA	TAGATGGTGA	TAGTTTTCGT	TCTCAGCATC	4200
CACACTATTT	AGAACTGCAG	CAAGAATATG	GCAAAGACAG	TGTAGAATAT	ACCANAGATT	4260
TTGCAGGAAA	AATGGTAGAG	TCTTTAGTAA	CAAAATTGAG	TAGTTTGAGA	TACAATCTTT	4320
PGATAGAGGG	AACTTTACGA	ACAGTTGATG	TTCCAAAGAA	AACAGCACAA	CTCTTGAAAA	4380
TAAGGGATA	TGAAGTACAA	TTGGCCTTAA	TTGCGACAAA	GCCTGAATTG	TCGTATCTAA	4440
STACTCTTAT	CCGTTATGAA	GAACTGTACA	TTATCAATCC	AAATCAAGCA	CGCGCAACTC	4500
CAAAAGAACA	TCATGATTTC	ATTGTAAATC	ATCTAGTTGA	TAACACACGA	AAATTGGAAG	4560
ACTAGCTAT	CTTTGAAAGA	ATTCAAATTT	ACCAACGAGA	TAGAAGTTGT	GTATATGATT	4620
CAAAAGAAAA	TACAACTTCA	GCAGCAGATG	TTCTTCAAGA	GTTACTCTTT	GGGGAGTGGA	4680
STCAGGTAGA	GAAGGAGATG	TTGCAGGTGG	GGGAAAAGAG	ACTTAATGAA	TTACTTGAAA	4740
ATAAACAAT	TGATATTTT	AGGAGAATAG	AAATGAGAGG	GTTTAATAAC	AAGATAAAGT	4800
TGTTTATCA	AGAACTAACA	AATTCCAAAG	AGAAATTCGG	TAGCTTTCAC	AAGACTTTAA	4860
TCATTTGCA	TACACCTGTT	TCTTATGATT	ACAAGCTATT	TTCTAATTGG	ACTGCAACGA	4920
ATATAGAAA	AATTACTGAA	GATGAACTAT	ATGATATATT	TTTTGAAAAT	AAGAAAATAA	4980
AGTTGATAA	GACAATTTTT	TTTAGTAATT	TTGATAAGGT	TGTTTTTCT	AGTTCAAAAG	5040
ATATATTAG	TTTTCTTATG	TTAGCAGAGG	СААТСАТААА	<i>AAATGGAATA</i>	GAAATAGTTG	5100
PAGTAACTGA	TCATAATACT	ACCAAAGGTA	TTAAAAAGTT	ACAAATGGCA	GTCTCAATCA	5160
'AATGAAAAA	TTATCCGATT	TATGATATAC	ATCCTCATAT	TTTACATGGA	GTAGAAATTA	5220
STGCAGCAGA	TAAATTGCAT	ATTGTATGTA	TATATGATTA	TGAACAAGAA	TCATGGGTTA	5280
TCAATGGTT	AAGTGAAAAT	ATTATAAGTG	AGAAAGATGG	AAGTTATCAA	CATTCACTGA	5340
TATAATGAA	GGATTTCAAT	AATCAAAAAA	TAGTTAACTA	TATTGCTCAT	TTCAATAGTT	5400
ATGACATTTT	GAAAAAAGGT	TCTCACTTAT	CAGGTGCATA	TAAACGAAAA	АТТТТТСТА	5460
AGAAAATAC	ACGATTTTGG	AGTTTAATAT	TAACTCGAAA	GAATCTTCGC	AACAACTTGA	5520
PATTCTCTAT	AAAGAAGTTG	GTGTATTAAG	TTTGGGACAA	AAAGTTGTAG	CCATGCTTGA	5580
A GAD & GREENAND	COMMANACIO	ammammore a	A C A CMMC A C A	CCAMMCAMMA	mmexmex cee	ECAN

TGAAGACAA	T CTAGACAAT	C GTTATATTT	A CAGGCATTT	A GTTCAGCAG	T TTAGAGATGT	570
GAAAGCTCA	A CGTCAAATT	A TTTTAGCAA	C ACATAATGCT	r acaattgta	А САААТТСТАТ	576
GACAGATCA	A GTTGTTATT	A TGGAGTCAG	A TGGAGTTAAC	GGATGGATT	G AATCACAGGG	582
Atatgttag	T GAAAAATAT	. ТААААААТС <i>і</i>	A TATCATCAAT	CAATTAGAG	G GAGGAAAAGA	588
ТТССТТСАА	G CATAAAATG1	CTATATATG	A GACGGCTTTA	TCAGAGTAG	GTCAGAAAAA	594
GTAGGTTAG.	A AATTTAGCCT	ACTTTTTTCI	TTGTCCGACA	GGCATAGTG	P ACATCTGAGG	600
TCCAAGTCC	T CTGTGGATAT	TTGCTGCAGA	чт таалассаат	AGCGACTCC	AAGCCTGAAT	6066
ATCGTGAGG	T AGGGGGGATA	GGAAGGAATT	AGCGAAATCA	AGGTTCTAC	AACAGAATCG	6120
TGACTTGAA	G CCATATATAG	CGGATGAGGA	ACTCTAAAAT	CCAAATAGGT	GTCGTAACCT	6180
ATATACGTA	A ATTACGAGAG	TAAACTAGGA	AAGATGTACG	GCTTATTCCC	TGAGCGTTTA	6240
GGACGTAGT	A CAACGAATCA	TGGGAGTCAG	CTGAACACAT	AGTATTGAAG	AAATTTCTGT	6300
AATGGAAAT	GAGCGAAGAA	GTGAACAATT	AAATGAATAC	СТСТСТААТТ	AAATTTGTCA	6360
ATTCTAATT	CTGGTATGAA	AAGACAGTGA	CCTGAAAATG	TAAACGATGG	GAGCTGATCA	6420
FAAATATA G(ACGGTACATG	CAGTGGTGTT	AGAGATTAGT	CCTTACTTGA	TTTGTGATAA	6480
CTTCCCCAA	TTTCTTCTGC	TATACTTTTC	TCAACTTTTA	AAAATCCAAC	TAAGAATTTT	6540
ACCTGGGGG1	TTGGGGGCGG	AGCACTAAGT	TATCTTATCG	TTAGCTGTCA	AAACTGGTAG	6600
GTTTTGATAC	GCTGGCGATA	TGATTTTTGG	GATATTGTGG	ACACAATATC	TGAGCTCGCA	5660
AGCCTTACA	AGAATGAAAA	TCAGTTGTTG	GAAAAGTGTA	CTGACATTGT	ATGGTAGCTC	6720
CATTGTCAG	TACAAGTATT	TTGGAAAGGA	AGTAGCAGTA	TGAAACGAGA	TGTGCGTGAT	6780
ATTCGGAAAC	AATTTCGTTT	AACAGAAGCA	GAAGAAAAGC	AAATTCTAGC	TTTGATGAGA	6840
GAGCGGGGAG	AGACTAATTT	CTCTGATTTT	CTTCGTAAAA	GTTTACTTTC	CTCTGATTTA	6900
AAAAACAGA	TGGAGACATG	GTTTGCCCTC	TGGCAATCCC	AAAAACTAGA	ACAAATCAGT	6960
GTGACGTTC	ATGAAGTTTT	AATCTTGGCA	CAGTCAGAAC	GTCAAGTCAC	CCAAGAGCAT	7020
TATCTATTC	TCTTAACGTG	CGTGCAGGAA	TTGATTCAAG	AGGTTGCAAA	CACCATACCC	7080
TCAGTAAAG	AATTTCGTGA	GAAGTACATG	AGGTAAGCAC	ATGGAACATC	GTTACCGAAC	7140
AATCTCAAG	AAAGTGTTTT	TGTCTGATAG	TGAGTTGAAC	СААСТАААТА	TAAATATCGA	7200
CAAAGTGGT	TGTAAATCCT	TTTCTGAATA	TGCGAGACGA	ACTCTACTCG	ATCCTGGTAT	7260
AATTTTATC	ACGATTGACA	CAAACGGTTA	CCAAGATTTA	GTGTTTGAGT	TAAAGAGGAT	7320
GGCAATAAT	ATCAACCAGA	TTGCTCGAAG	TGTTAATCAA	TCTCAGTTAA	TTTCTGGTGA	7380
GAATTGCAG	GAGTTGAAAA	AAGGAATTGG	ጥር ል ውጥር ልጥል	A	3.00 3.00 3.00m	7440

TAATCTCCAA	
TAATCTGCAA GCGCAGAAGC TAAAGGAGTT CCATGGTCAT CACTAAACAC TTTGCCATTC	7500
ACGGAAAGAG TTACCGCAGA AAGCTTATCA AGTACATTCT CAATCCTGAG AAAACGAATT	
ATCTIGUCIT GGTGTCGGAC TATGGCATGA AGAATTTTCT GGACTTTCCT ACCULTOR	
AAATGGTGCA GATGTATCAT GAAAATTTCA TCAGCAACGA TACGCTTTAC GATTITUGGGG	_
ACGACAGGAT GGAAGAAAAT CAACGAAAAA TACACGCTCA CCACATCATT CACTOTTOR	
COCCAGAGGA TCATATCACT CCTGAACAAA TCAATCGGAT AGGTTATGAG ACTGTGAACAAA	
THACTEG TEGCAAATTT CETTTTATCE TTECGACCCA TETTEATAAA CACCACCTTOC	_
ACAATCACAT CATTATCAAT TCAGTAGATA GCAATTCTGA CAAAAAGCTC AAGTGGGACT	
ACAAGGTGGA GCGAAATCTT CGCATGATTT CTGACCGTTT TTCTAAAATC GCAGGTGCTA	7920
AAATCATTGA GAACCGCTAT TCTCACCAGC GGTATGAAGT CTATCGTAAG ACTAATCACA	7980
AGTATGAACT CAAGCAGCGA CTCTATTTT TGATGGAACA TTCTAGGGAC TTTGAGGATT	8040
TCAAAAAGAA TGCTCCGCTA CTACATGTGG AGATGGATTT CCGTCACAAG CATGCCACCT	8100
TTTTTATTAC GGACTCAACT ATGAAACAGG TGGTGCGTGG CAAGCAACTC AATCGCAAGC	8160
AGCCTTACAC AGAAGAATTT TTTAAGAACT ACTTTGCCAA AAGAGAAATA GAAAGTCTCA	8220
TGGAATTTT ATTGCTGAAA GTTGAGAATA TGGATGATTT ACTTCAGAAA GCAAAACTTT	8280
TTGGACTAAC TATCAATCCT AAACAAAAGC ATGTTTCTTT TCAATTTGCA GGAGTGGAGG	8340
TANAGGAGAC AGAGCTAGAC CAGAAAAATC TTTATGATGT AGAGTTTTC CAAGATTATT	8400
TTAAAAATAG AAAAGATTGG CAAGCTCCAG AAAATATT	8460
TTAAAAATAG AAAAGATTGG CAAGCTCCAG AAACTGAGGA TTTCGTTCAA CTTTATCAAG	8520
AAGAAAAGTT ATCCAAAGAA AAAGAACTTC CAAGCGATGA GAAGTTCTGG GAGTCCTATC	8580
AAGAGTTCAA GAGTAACAGA GATGCCGTTC ATGAATTTGA GGTGGAGTTG TCACTCAATC	8640
AAATTGAAAA AGTAGTGGAT GATGGAATTT ACGTCAAGGT CAAGTTTGGT ATTCGTCAGG	8700
AGGGACTTAT CTTTGTGCCG AACATGCAGC TTGATATGGA AGAGGATAAG GTGAAGGTTT TCATCAGGGA AACCACGTGG TTGATATGGA AGAGGATAAG GTGAAGGTTT	8760
TCATCAGGGA AACCAGCTCC TACTATGTCT ACCACAAAGA CGCTGCCGAG AAAAATTGTT	8820
ATATGAAAGG TCGAACCTTA ATTAGACAGT TCAGCTATGA AAATCAAACC ATTCCATTAC	8880
GCAGAAAAGC GACAGTCGAT ATGATTAAAG AGAAGATTGC GGAAGTGGAT GCTTTGATTG	8940
AACTGGAAGT AGAAAATCAA TCTTATGTCA CGATTAAAGA TGAGTTAGTG CATGAACTAG	9000
CAGCGICIGA ATTGAGAATC AATGAGTTGC AAGAACGAAT GTCAACCTTG AATGAAGTAG	9060
CAGARTATUT ACTGGCTTCA GTTGAAAGTA AGCAAGAAAT GAAATTAAAT CTTTGAAAG	9120
TGAATATAAC TGAGAATATC AGTGCTAATA TTGTTGAGAA AAAATTGAAG AGCCTGGGGA	9180

520 ATCAACTGGA ATTGGAAAGG GGCAGGTATG AAAAGATGGT AGT

9223

(2) INFORMATION FOR SEQ ID NO: 60:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6827 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

TCTGCTGGCT ACCATCATCT GACTTGGGCA AGACCAAAGT CTTAGTTACA ACTGTATTCT 60 TCTCAGCATT TTCAATAACT GGCAATGCCG ACTGAAGCGT ATCTTTTCT GTTTTTGTAG 120 CTGGTCCAGT TTCTTTTTC TGTCCGCAAC CAACCAGGAC AAAAAGGAAA GCTAGACTAA 180 CAAGAACTAT TTTTTTCATT TCTTTCTTCT TTCTTTTTGA AATTAAAATA GAATAAGACT 240 GGGAAGTGCT CCCAGCCTTG ATGTTTATAG AGCTGCACGC AAACGTGCTT CTGCATTTTC 300 TACATTACGG ACAGAGCGTG GTAGGAAGGC ACGAATATCG TCTTCCTTGT AGCCAACTTG 360 CAGGCGTTTT TCATCTACAA GGATTGGGCT CTTTAAAATT CTCGGTGTTT CCATAATCAG 420 ATTGAGAACT TCATTGACAC TCAAATCTTC AATATCCACT CCAAGGGCTT TGGCATAGCG 480 ATTTTTAGAC GAAACGATGC TGGCTATTCC GTTATCTGTT TTGGTTAGAA TATCCAGTAA 540 TTCTTCTCTC GTAATTCCTT CTTTACCAAG GTTTTGTTCT TTATAACTTA ACTGGTGGGC 600 ATTGAGCCAG GTTTTTGCTT TTTTACAGCT AGTACAACTT GAGACTGTAT AAATTTTAAT 660 CATGTACCTA CCCCTTTCGC TACATGTTAC TATCAGTTTA GTCTATTATA CCATAAAAA 720 CATCCGACTT GCGACCTATT TTTAATTTTT TTTGACTTTT TTCGTCATTT TCGTACTTTT 780 TTCTTGACAA ACAACTAAAT GACTATCAAC TCTTTTGGAG CTAGGGTCAA TAATTCACAA 840 CCTGTCTCTG TAATCAGGAT ATCATCCTCG ATACGAACGC CATATTTGCC TTCGATATAG 900 ATACCTGGTT CATCGGTCAA GGCCATACCT GTCTTAATAG TTTCTGTAGA AGTCTGACTA 960 AAGTAGGGTT CCTCATGGAT ATCCAGACCA ATACCGTGGC CAATGCCGTG AGTAAAGTAG 1020 TCACCATAAC CTGCCTCAAT GATAATATCA CGAGGGATTT TGTCAAAGTC ACGGAAACCT 1080 AAGCCTGCCT TAGCTTGGTC AATCAAGGCT TGGTTAGCTT TTAGAACCGT ATTGTAAATC 1140 TCTGCCTGCT CATCGCTAAC ATGCCCTAGA TAGATAGTCC GGGTCATATC ACTGACATAG 1200 TGGTCATAGA GACAGCCGAA GTCCATGGTG ATGGCTTCTC CCAACTCCAC TGGTTTGTGC 1260 ATTGGATGGG CATGGGGTTT AGAAGAATTG ATACCGCTAG CTAGGATCGT ATCAAAAGAT 1320 AAGCCAGATG CTCCCAACTC ACGCATGCGG AAATCAAGGA AGTTGGCAAT CTCAATTTCA 1380

COMPAND COMPAN	
GTTTTTCCTG GTTTGATAAA GTCAAGCGCA TCGCGGAAAG CTTGGTCTGA GATAGAACAA	1440
GCCTTGCGAA TCGCTGCAAT CTCTGCCTCA TCCTTAATCA TACGAAGACC TTCCACAAAC	1500
TGAGTTTGTG GAAGCAAGTT CAAACCTGCA AAAGCTGCCT GCATACGGTG GTAATAAGAC	1560
ACTGARATCT CATCTTCARA ACCGATACGA GTCARGCCCA TGTCCTTARC AATTCCTGCA	1620
ATGACAGCCA ATTCATCACG ATCAGCCACA ATCTCAAAAC CACTGGTTTC TTGCTTAGCT	1680
GCGATGATAT AGCGAGAGTC TGTCACTAAG ACCTGACGGT CACGACTGAT AAAGACTGTT	1740
CCGTTTGAGC CCCAAAAACC AGTCAAATAA TAGACGTTTT TAAGATTGTT GATGATGATA	1800
CCATCTAGTT CTTTTCTTG CATTTTAGCT AGAAATGCTT GTACGCGTTT ATTCATGATG	1860
TAACTTTCCT TTCAAATAGT GTCCTGTATA GCTGGCTTCG TTGGCAGCTA CTTCTTCTGG	1920
AGTTCCTGTT ACGATGATGG TTCCACCACC GACACCGCCC TCAGGTCCCA AGTCAATGAT	1980
ATGGTCTGCC GTCTTGATAA CATCCAGATT GTGCTCGATG ACGAGGACTG TATTGCCATC	2040
GTCTACAAAG CGAGCTAAAA CCTTGAGCAG GCGAGCAATG TCCTCTGTAT GAAGCCCTGT	2100
CGTCGGCTCA TCCAGAATGT AGAAAGATTT TCCTGTCGAT CGTTTGTGGA GTTCGCTAGC	2160
TAACTTCATA CGTTGGGCTT CTCCCCCAGA AAGGGTGGTA GCTGGCTGTC CCAAGGTCAC	2220
ATAGCCTAGC CCTACATCCT TGATGGTCTG GAGTTTGCGT TGAATTTTCG GAATGTGTTG	2280
GAAAAATTCT ACCGCATCGT TGACCGTCAT ATCCAAGACC TGCGAAATAT TCTTTTCCTT	2340
GTAGTGAACT TCTAGGGTTT CACTGTTATA GCGGGTTCCG TGGCAAACTT CACAAGCCAC	2400
ATAAACATCT GGCAAGAAGT GCATCTCAAT CTTGATAATC CCGTCACCTG AGCAAGCTTC	2460
ACAGCGACCT CCCTTGACGT TGAAACTGAA GCGCCCCTTC TTGTAGCCTC GAATCTTGGC	2520
TTCATTTGTC TGAGCAAAAA GGTCACGTAT ATCGTCAAAA ACTCCTGTAT AGGTAGCTGG	2580
GTTAGACCTC GGCGTCCGTC CGATAGGGCT CTGGTCAATA TCAATCAAAC GGTCGACATG	2640
CTCAATCCCT GTAATAGTCT TAAACTTACC AGGTTTGTCT GAATTACGGT TGAGCTTCTG	2700
GGCAATGGCT TTTTTGAGAA TGCTGTTGAT TAGAGTCGAT TTCCCTGAAC CCGACACACC	2760
TGTCACTGCG ATAAATTTTC CTAGTGGAAA GCGAGCCGTG ACATTTTGCA AGTTGTTCTC	2820
ACGCGCTCCT ATCACTTCAA TAAAACGACC ATTTCCGACA CGGCGCTCTT CTGGTACTGG	2880
GATGACACGT TTGCCTGACA AGTACTGACC TGTGATAGAC TTGCTGTTGC GAGCCACTTG	2940
CTTAGGTGTA CCTGCTGCAA CAATCTCACC ACCAAAAACA CCGGCACCAG GACCAACGTC	
AATCAGATAA TCAGCCTCAC GCATGGTATC TTCGTCGTGT TCCACCACGA TAAGAGTATT	3000
SCCCAAGTCA CGCATCTTTT TCAGACTGGC AATCAGGCGA TCATTGTCCC TCTGGTGAAG	3060
TOTAL	1170

ACCGATTGAC GCCTCCTCTA COLORS	
ACCGATTGAC GGCTCGTCTA GGATATAGAG GACACCTGAT AGGTTGGAAC CAATCTGGGT	3180
TGCCAAACGA ATGCGCTGAC TTTCCCCCACC TGAAAGGGTT CCTGCTGAAC GTGACAGGGT	3240
TAGATAGTTA AGACCCACAT TATTAAGGAA GGTCAAACGA TCCTTGATTT CCTTGAGAAT	3300
GGGACGAGCA ATGA: GGCTT CATTTTCAGA CAAAGTTAAC TGGCTCACCA AGTCCAAGTG	3360
GTCAGCGATA GACAGGTCTG AGATTTCTCC AATATGTGGC CCTTGCTGGC CGCCCACACG	3420
GACAGACAAG GCCTGGTCAT TGAGACGATA GCCTTGACAG GTTCCGCAGG TCAGCTCATT	3480
CATGTAGAGA CGCATCTGAG TGCGAGTGTA ATCGCTATTG GTTTCATGGT AACGACGTTT	3540
GATATTATTG ATAACTCCCT CAAACGGAAT GTCGATATCG CGCACGCCAC CAAATTCATT	3600
CTCATAGTGG AAATGGAATT CCTTACCATC TGACCCATAG AGAATCAAGT TCTTATCTTC	
TTCTGACAGG TCCTCAAAAG GCTTATCCAT AGCCACTCCA AAGACTTTCA TGGCCTGCTC	3660
TAACATGTTT GGATAGTAGT TGGATGAGAT AGGATTCCAA GGTGCTAGCG CTCCCTCACG	3720
TAAGGTTTTG CTAGCATCTG GCACTACCAA ATCAGTATCC ACCTCCAGCT TGATGCCCAA	3780
GCCGTCACAC TCACTACAAG AGCCAAAAGG AGCATTGAAA GAAAAGAGAC GAGGCTCTAA	3840
CTCTGGGACA GTAAAACCAC AAACTGGACA GGCATAATGC TCAGAGAACA ACAACTCCGA	3900
GTCGTCCATG GTGTCGATAA TGACATAACC TTCTGCAATA CGAAGGGCAG CCTCAATGGA	3960
ATCAAAGAGA CGACTACGAA TGCCCTCCTT GATAACAATA CGGTCAACCA CGACATCGAT	4020
ATTGTGTTGC TTGCTCTTAG ACAACTCTGG CACTTCGGTC ACATCATAGA CTTCCCCATC	4080
CACACGGACA CGAACATACC CCTCTTTTCTC ANGERT ACATCATAGA CTTCCCCATC	4140
CACACGGACA CGAACATACC CGTCTTTCTG AACCTTCTCG ATAACACTCT TATGTTGGCC	4200
TTTTTTCTTG CGGATGACAG GAGCCAAGAT CTGCAAGCGC TGGCGTTCAG GTAACTCCAA	4260
AACCTTATCA ACGATTTGCT CCACAGAAGA AGCATTGATA GCTCCATGTC CGTTGATACA	4320
GTAAGGCGTC CCCACACGTG CGTAGAGGAG ACGCAGATAG TCATTGATTT CAGTCGTCGT	4380
TCCCACCGTC GAGCGAGGAT TTTTACTAGT CGTTTTCTGG TCGATGGAAA TAGCTGGGCT	4440
GAGACCATCA ATGGCATCTA CATCTGGTTT TTCCATATTT CCCAAGAACT GACGAGCGTA	4500
GGCGGACAAA CTCTCTACAT AGCGACGTTG TCCCTCCGCA TAGAGAGTAT CAAAAGCCAG	4560
ACTGGACTTC CCTGAACCTG ACAAGCCAGT CACGACAACC AACTTGTCTC GCGGAATCTC	4620
CACATCAATA TTTTTTAAAT TATGGGCACG CGCCCCATGA ATGACAATTT TATCTTGCAT	4680
CTTTGTTCTT TCTAGTCCAT TATTGCTTAC CATTATACCA AAAAAAGTGA GATTCTATTA	4740
CCCAAAAGGC CGATTTTGTA GTATAATAGT ACAGTGTGAA AAAATCTGAA AAATGAGAAA	4800
GGATAAGGGA TATGAAACAA GTTTTTCTCT CTACAACAAC TGAATTTAAA GAGATCGATA	4860
CGCTTGAACC GGGTACTTGG ATCAATCTCG TCAATCCGAC TCAAAATGAA TCACTCGAAA	4920
	-J2U

TCGCCAACAC COMMOCAMA	
TCGCCAACAC CTTCGATATT GATATTGCTG ACCTTCGAGC ACCGCTCGAT GCGGAAGAAA	4980
TGTCTCGTAT TACCATTGAA GACGAGTATA CCCTGATTAT CGTAGACGTG CCGGTCACGG	5040
AGGAAAGAAA TAACCGCACC TACTACGTAA CCATCCCGCT TGGTATTATC ATCACTGAGG	5100
AAACCATTAT CACTACGTGT TTGGAACCAC TACCTGTCCT TGATGTCTTT ATCAACCGTC	5160
GATTGCGTAA TTTCTATACC TTCATGCGTT CACGTTTTAT CTTTCAAATT CTTTATCGCA	5220
ATGCAGAGCT TTACCTAACA GCCCTTCGTT CAATCGACCG CAAGAGTGAA CAAATCGAAA	5280
GTCAACTGCA TCAATCAACT CGTAATGAAG AATTGATTGA GCTCATGGAA TTGGAAAAAA	
CTATCGTCTA TTTCAAGGCC TCCCTCAAAA CAAATGAGCG CGTGATTAAG AAATTGACCA	5340
GTTCAACCAG CAATATCAAG AAATACCTTG AGGACGAAGA CCTGCTTGAA GACACCCTGA	5400
TTGAAACCCA ACAGGCCATC GAGATGGCAG ATATTTATGG AAACGTCTTG CATTCTATGA	5460
CAGAGACCTT TGCCTCTATC ATTTCTAACA ACCAGAACAA CATCATGAAA ACCTTGGCCC	5520
TTGTGACCAT CGTCATGTCC ATCCCAACCA TGGTCTTTTC TGCCTACGGG ATGAACTTTA	5580
AGGATAATGA AATCCCCCTA AACGGAGAGC CAAATGCCTT CTGGTTAATC GTCTTTATCG	5640
CCTTTGCTAT GAGTGTCTCG CTCACTCTCT ATCTCATCCA TAAAAAATGG TTCTAAGAGG	5700
AGTTCCTATG TCTCAAATTG ATCTACAAAA ATCACAAAAAAATGG TTCTAAGAGG	5760
AGTTCCTATG TCTCAAATTG ATCTACAAAA ATLAACTAAG AAAAACCAAG AGTTTGTCCA	5820
CATTGCTACC CAACAATTCA TCAAAGATGG GAAAACAGAC GCTGAAATCC AGACTATTTT TGAGGAAGTC ATTCCCCAAA TCCCCAAA	5880
TGAGGAAGTC ATTCCCCAAA TCCTTGAGGA GCAATCTAAA GGTACAACTG CCCGTTCCCT	5940
ATACGGCGCA CCAACTCATT GGGCTCATAG CTTCACTGTC AAAGAGCAGT ACGAAAAAGA	6000
GCATCCAAAA GAAAATGATG ACCCAAAACT GATGATTATG GACTCAGCTC TTTTCATCAC	6060
TAGCCTCTTT GCCCTTGTCA GCGCCCTCAC AACCTTCTTT GCGGCAGACC AAGCTTTCGG	6120
CTATGGATTG ATTACTCTTC TATTAGTTGG ACTGGTTGGT GGATTTGCCT TCTACTTGAT	6180
GTACTACTTT GTTTACCAAT ACTATGGACC AGATATGGAT CGCAGTCAAC GTCCACCTTT	6240
CTGGAAATCT GTACTAGTTA TCCTAGCTTC TATGTTCCTT TGGTTGCTTG TCTTCTTTGC	6300
AACAAGCTTC CTACCAGCTA GCCTTAACCC AGTACTGGAT CCATTGCCAC TAGCTATTAT	6360
TGGAGCAGCC CTCCTAGCCC TTCGCTTCTA TCTCAAGAAA CGCTTGAATA TCCGTAGTGC	6420
AAGTGCAGGA CCAACACGCT ATCAAGAATA AGAAAACGAT AAAAGCAACT GCAGGTGCGG	6480
PTGCTTTTTC ACTTACTTTT TTGAGTTATA TTCAATGAAA ATCAAAGAGC AAACTAGGAA	
GCTAGCTGCA GGTTGCTCAA AGCACAGCTT TGAGGTTGCA GATAAAACTG ACGTGGTTTG	6540
AGAGATTTT CGAAGAGTAT TAAAAGTATT CTTCTGAAAT CCCACATAGC TTTCTCTTAT	6600
	6660

ATTTTGTGAT AAAATAGGCT CAATCTATTT CTAGGAGGAT GAGATATGGT TTCTACTATT GGTATTGTTA GTTTATCTAG TGGCATTATC GGAGAGGATT TTGTCAAACA CGAAGTGGAC TTGGGTATCC AAGGAGGAT	6720 6780
TTGGGTATCC AACGTCTCAA GGATCTGGGA CTCAATCCCA TCTTTTT (2) INFORMATION FOR SEQ ID NO: 61:	6827

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11864 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

CTGGCTAGTT GCATAGAGCA AAGTTGCTTC TTCATCAACA AAACCGTTCA TTTCAAAATA GGAAAGCAGC TCATCAGGAC TCTCCAAACG AATCCCTTTG TAATCCAGCT CAACTGCCAC 60 CTCTTTCAAG GCTGCAAGAA GAAGTGTTCC CAGGCCCTGT CTCTGATGGT CAAACTCGAT 120 GACTAAAGAA TGTACTTTTA GACATTGCGG ATTGTCTGAC TGGGGACTTG ATAAAATATA 180 GCCTAAAAGT TGATTTCAT CCCTAGCTAG AAGAAAGGTA TCCGCACACT TACGGATACT 240 TTCTTCTAAA ATATGGGAAA GTTGCTGCTT TTCAGCTGGA AAAGACGAGG TCTGAAGTGC 300 CCCTATCTCA GGCAAATCAG ACTTGCTTGC CTGAATGATC TTAATTGGAA TTTCCATGGG 360 AACATCCTAT TGAACATTGC TTGTCAAGTT AGACAAGAGA CGCTCAAATG AGTATTCATA 420 GGTTTGGATG TCTCCTGCTC CCATAAAGAC GTAAACAGCA TTGTCATGGT CTAGGAGTGG 480 AGAAACATTT TCAACAGTAA TCACTTGGTG TTTTTTGTTG ATTTTGTTGG CTAGGTCTTC 540 TACCTTAACG TCACCATGAT CTACTTCACG AGCCGAGCCA TAAATTTGCG CTAGATAAAC 600 AGCATCTGCT TGGTTTAAAG CATGGGCAAA GTCGTCCAAC AAGGCAATGG TTCTTGTAAA 660 GGTATGCGGT TGAAAGACTG CTACAATTTC CTTGCTTGGG TATTTCTGAC GAGCCGCATC 720 CAAGGTCGCA ATAATTTCTG TTGGATGGTG GGCAAAGTCA TCGATAATCA CTGTATCATT 780 GACAATTTC TCAGTGAAAC GACGTTTAAC ACCGGCAAAT GTTTTCAAGT GCTCACGCAC 840 CAAGTTCAAA TCAAATCCTG CTGTGTAAAG AAGACCAATA ACGGCTGTCG CATTCATGAT 900 ATTGTGACGA CCAAAGGTTG GAATGTGGAA TTGCCCCAAG TTTTGTCCAC GGAAATGAAC 960 GGTGAAGGTT GAACCAGTTA TTGAACGAAG AAGATCACTA GCTACAAAGT CATTGCCTTC 1020 AGCTTCAAAA CCATAATAAT AAATTGGTGC ATCAGACGTA ATCTTACGCA ATTCAGCATC 1080 TTCACCATAG ACAAAAAGAC CCTTGGTGAT TTGTTTGGCA TAGTCGTTAA AGGCATTAAA 1140 AACATCCTCG AGACTTGTGA AATAATCTGG ATGGTCAAAG TCAATGTTGG TGATAATAGA 1200 1260

GTATTCTGGG	TGGTAAGGCA	TGAAGTGACG	CTCATATTCG	TCAGATTCAA	AGACAAAATA	1320
TTTGGCATTG	GCCGAACCAC	GACCTGTCCC	ATCTCCAATC	AAGAAGCTGG	TATCTGTAAT	1380
GTGAGACAAG	ACATGAGACA	ACATACCTGT	CGTTGAAGTT	TTTCCATGTG	CTCCTGCTAC	1440
TCCCATGCTA	ACAAAGTCAC	GCATAAAGCT	ACCTAGAAAC	TCATGGTAAC	GTTTGTAGCT	1500
GATACCATTT	TGGTCCGCAT	AGGCAATTTC	GACGTTGTTA	TCTGGACGAA	AGGCATTTCC	1560
AGCGATAATT	TCCATATCAC	CGTCTAGATT	TTTTTCATCA	AAAGGAAGAA	TGGTAATTCC	1620
TGCCTGCTCA	AGACCGCGTT	GGGTAAAGTA	GTACTTTTCA	ACATCTGATC	CCTGAACCTT	1680
GTGCCCCATC	TGGTGCAACA	TCAAGGCCAA	GGCACTCATC	CCTGATCCCT	TAATTCCGAT	1740
AAAATGATAT	GTCTTTGACA	TGTTTTCTCC	CCTATTCTGT	CATTCTGGTC	AGATTCAACT	1800
CTTGGGCAAC	CCGACGTTCT	TGTTCTGTTT	GTTTACTTTT	TTTATTGTAG	ATTTGGCTCT	1860
TCTTTAGAAA	ATCATAATTG	TTTTTCTTTG	GAGCAGGTGC	TGACACTTCT	TCATTCTTGG	1920
TAGGGATAGA	ATGAACTTCT	TCCGCCAAGA	TATAATGAGA	CTGGGTCAAT	TTTTGGCTAT	1980
ATTTGACAAA	TTCACCAGGA	TTTTCCTTTT	GGAAAGGAGC	TGTCGGTTGA	TTGCCCTGTC	2040
TAACTAGACT	GGGCTGAGAA	TGACGTCTCG	CAAGGCTGAA	ATCCTGAGTT	AGGTAGTTAG	2100
CAGAGCGTTT	CTTTTTCAAG	TCCGCACGCG	CTTCTTCACG	CGCCACCTCC	GCATAGCTCT	2160
TTCCTTCTTT	TTTAACCCCT	AAAGGAGCCT	TTTTAGGTTT	TTCGACTTGC	TTTTCAATCG	2220
GTTTTACTGG	TTTTTCTTCA	GCAATAGGAG	CCCATTCTAA	ATAATTTTTA	TCTCGATACT	2280
CACCCTTGAT	ATTACTGATC	AGATCAGACT	CATCATAGAG	ATTCATGACT	GCCATTTCAG	2340
TCAACATGAC	CTCGTCATCT	GACACCAATG	GAAATCGTTC	TTGTTTCATT	TTCTATTTCC	2400
TTTCAACACT	TCATTATAGC	GTATTGTCTT	GATTTTTCAA	GTGCTGGCTT	CAGAAATTCC	2460
CAAAATTTCT	CTAATTTCTG	CTAGGGTCAG	ACTACCACGT	GACTCTGTGC	CGTCCAATAC	2520
TTGTGACACC	AGATGTTTCT	TTTGTTCTTG	GAGTTCCTGA	ATTTTTTCTT	CAATGGTTCC	2580
CTTGGTCACC	AAGCGATAGA	CCTCAACCGT	TTCTTCCTGA	CCCATCCGAT	GGGCACGGCC	2640
AATGGCTTGC	GCTTCCACCG	CAGGATTCCA	CCAAAGGTCA	ACCAAGATCA	CTGTATCTGC	2700
ACCTGTCAGG	TTCAGACCGA	CCCCACCAGC	CTTGAGGGAA	ATCAGAAAGG	CATCTCTTTC	2760
TCCTTGGTTA	AAGGCCTTGG	TCATGTCTTG	TCTTTCCTTG	GCTGGGGTTG	AACCCGTAAT	2820
TTTAAAGGAA	GTCAGGCCCA	AGTCTGGCAG	TTCTTGTTCA	ATTTTTTCCA	ACATTCCCTT	2880
GAACTGAGAG	AAAATCAAGA	CACGGTGTCC	GCCGTCTGCC	ACCTGTACCA	GTAGGTCTCG	2940
GAGACTATCT	AGTTTGCCGC	TGGCTCCCTG	ATAATCTTCC	ATAAACAGGG	CAGGAGTGTC	3000

526	
ACATATTTGA CGCAAGCGCA TCAAACCAGA TAAAATTTCC ACACGACTTC GCTGAAATTC	3060
CTGTTCTGAC ACTTGAGCCA GATGGTCTCG CATCTGTTGT AACTGGGCAA GGTAAATAGC	3120
CTTTTGCTGG TCTTCCAGTT CATTTTTATA AACCACCTCA ATCAAGTCTG GCAATTCAGT	3180
CAGAACTTCT TCTTTCTTGC GTCGCATCAC GAAAGGCTTG ATAAACTGAG CCACTCGCTC	3240
TGCTGGCAAT TTCATAAATT CTTTCTTGCT TGGCAAAAGT CCAGGCATGA CGATTTGGAA	3300
AATAGACCAC AACTCACCCA GATGGTTTTC AATCGGAGTT CCTGACAAGG CAAAGACCGA	3360
CGGCACCACA AATTGTCTCA AGGTCTGGGC AATCTTGGTC TGGGCATTTT TCATGACCTG	3420
AGCCTCATCT AAGAAAAGGA AGTCAAAGGC CATCCCTTGA TAAAACTCAC TGTCCTGACG	3480
GAAGGTGGCA TAGCTAGTCA CATAGATTTG ATGGCTCTCG GCAAGAATCT CCTCACGACT	3540
TGCTTTCAAA CCATGAACAA CAGTCACATC CAACTGTGGA GCAAATTTCT GAAACTCATC	3600
TGCCCAGTTG TAAATCAAAC CCGACGGAGC GAGAATCAAA ACCCGACTTT CTTTTGTCAC	3660
TTGACTAGTC AAAAAAGCAA TGGTCTGAAG GGTTTTCCCA AGTCCCATAT CATCAGCCAA	3720
AATCCCACCA AAACCATAAT GATGGAGCAT CTGCAACCAG CCAATTCCCT TTTCCTGATA	3780
ATCTCGCAAG TCAGCCTTGA CCTGAGTTGC TTGCAAAGGA AAGTCCTCTG GATGCGTCAA	3840
ATCCTGGGCC AGATTCTGGA ATTCTTGTGA AAAAGAAACA CGGTCTCGCC CTTCAAAGAG	3900
ATGAGCTAAA CTGTAGGCCA AGGATTTCCG AGCCTGCAAG GTCCCATCTT TTAATTCAAA	3960
TTGCCCCAGT TCCTGTAGAT TTTGGCGAAT TTTCTTGGTT TCTTCATCGA AAAAGTAAAC	4020
TTGATTAGAC GAATCAATAT AAAAATCCTG ATTGGCAACC AAGGCCTGCA TGGCTTGGTC	4080
GATTTCCTCC TGGACAATAT TTTGAAAATC AAACTGGATT TCCAAGAGAC CTCCCTTGGA	4140
GGCAATCTGC ACCTGAGGAC TCGCTAGGCT ATAAAGCTCT TCTAGTTTAT CTGATAGGTC	4200
AACATGCCCG AGTTTTTCAA AGACTGGAAT GATATCATGA AAAAAATGAT AGACAGACTC	4260
CGCTTTTAAG GCCTGACGCC AAGATTGAAA ATCGGCCTCA AAGCCCGCAG CCAAACAGAC	4320
TTGGAAAATT CTTTCTTCTA AGTCTGCGTC ACTTGAAAAG GGTAATTCTT CTAGCTCTTG	4380
TCGGCTAGAT ACCTGTCTAT TTCCATAATC AAACTGAATT TCTAAACGAA TCCGATTATC	4440
TTCTTCCCTG TCAAAGTAAA AAGAGGGCGC AAAAGTTTTG ATTTGTAGAC GTTCTGGAGC	4500
TGAAACGGTG CCCATCTGGA TAAAAAGAGT CAGACAGGAG GCCAATTTGT CTCGATCACT	4560
GCTATCAAAT TGCAGGTATT TCTTTCCTTG TTGACCCACA GGTAACGCTT TAATTTCCTT	4620
GAGAAGACGC ATCTGCTGGT CTGTTAAAAA ATAAACCTGA CCTTTATGGA AAAGTACTGC	4680
TCCCTGATAA AAGACATTGA CCCTAGGACT CTCACTGATT TCCATTTCAA AATAATCCGA	4740
GTATTCTGTT ACTGTAAAGG CAAATAGATT GGCATCAGCA TGCATATCCT GAAAAAGCAG	4800

GG'I"	TTGGTAG	CTATCCACTT	GATGGTCAAA	TTGAAAATGG	GGCAAGGCCA	TCAGTAAATT	4860
CAC	ACCCTGC	TCAAAAAAGG	TCAGAGGGAA	AAAGAGGTGC	CGACCTTGGT	TTTGGAAAAA	4920
GAG	GTCTGGA	ACCAGCCCTT	CCTCCGTTAG	TCCGTGCAAG	AAAGTCAAAA	GTTCTTGGCT	4980
GGC	АТСАТСА	AAGGCTTCCC	AAGAAAGAGA	CTCCTCATAA	ATCTTGCCAA	TCATATACGA	5040
CTT	PCTCTGC	TCGACAATCC	TTAAAAAAAG	TGGAATATCC	CGAATGACAT	AGTATTTTTG	5100
GCT	ATTGATT	TGGCCGATTC	TCAGAGTCCA	CAAGATATGA	TTGGTTCCTG	CTTCCACCTG	5160
ACC	CACAGCT	GATAACTCAT	AGGCGCATTC	TGATTTTGGA	GATAAAATTC	GATCCAAAAA	5220
CTT	GCCACCC	AAGGTCACCT	TGGTTTCAAC	AGCCTCTTTT	TCTTCATGAC	CTTCTTCCAG	5280
ACT	CCACAAG	ATTTCCTGAC	CACGCTCATC	ATTTTTCAGA	AAATGCTCTA	GCGCTGCCAA	5340
ATG	CACACAG	TAGCCCCTCT	TTTGAAAAAA	ATCACAGGCA	СААААААССА	AATCATCCTC	5400
TAA	ACTATAG	CGCAGTTCTT	CTTCTGCAAC	GCGAGCGTAG	AGCCGATTGT	TCTTTTCCTT	5460
GAT	GATATCA	ACCTTACCAG	TTTCATAAAG	GGCAACACCT	TCGATACGAA	TTTTCCCCGG	5520
AATO	CAATTTA	GCCATATTTT	CACCTTTACC	TTATCTTTTT	ATTATACCAT	ATTTTCGCCT	5580
ATG/	AAAATAG	CCTTCTAGGA	AGACTTTTCT	CCTAGAAGGC	TGGATTTTTA	ACGTTTGGCA	5640
AAA	GTAGCCA	CAATCCGCTG	ACAGACTTCT	TGCAACAGAG	ATTTGGGCAT	AGCTATATTG	5700
ATG	CGGGCAT	GGAGACTTCC	TTCCTCTCCA	AAATCCAAAC	CACGGTTGAG	GATAACCTTG	5760
GCTT	CATTTC	TCAACAACTC	TTGCAATGTT	TCATCAGTCA	GGTCATAAGC	TGAAAAGTCA	5820
AGCC	CAAATCA	AGTAGGTACC	TTGCGGTTTC	ATGACCTTGA	TTTTAGTCTC	TTTTCCAAAT	5880
AGAT	CCATCA	CATAATTGAT	GTGGTCTTCA	AAGACTTGCT	TGAGTTCCTC	TAGCCAATCT	5940
TTAC	CCGTATC	GATAGGCAGC	TTCTGTCGCC	AAATAACCCA	AGCCTGAAAT	TTCATGCTGA	6000
TTAT	TGGCCA	ACAGGCGTTT	CTGGAAAGCC	AGTCTCAACT	TAGGATTTTC	AATGACTGCA	6060
TAGO	SAATTTT	TTGTTCCAGC	ТАААТТАТАА	GTTTTAGTGG	CACTGCTCAA	GACGATAGCA	6120
RAAT	PTTTTGA	AGGCAGGATT	GATGGTATTG	AAAGACTGGT	GTTTGTGACC	AAAGAGGGTC	6180
RAAI	CTTGGT	GAATCTCATC	CGAAACTAAC	AAAACACCGT	GTTTTTGGCA	GAGTTGGCCA	6240
ATCT	TCTCCA	ACACTTCTTT	TTCCCAAACA	CGTCCACCAG	GATTGTGAGG	GTTGCAAAGA	6300
ACAT	PAGAGTT	TAACCTCCTC	TTCCACCAAA	TCCTTTTCAA	GTTGGTCAAA	GTCAATCTCA	6360
AACA	GACTAT	CCTTTTCCAC	TAAGGAATTA	GTAATCAATC	TACGATTATT	CAACTTGACA	6420
CTGC	GAGCAA	AGGGTGGGTA	GACAGGCGTG	ттааттаааа	CCGCCTCGCC	TTCTTTTGTA	6480
AAGO	аарттт	ФАССТОТТСА	GATICCCTCCT	ACCACACCCT	CCDTDDDCDC	AAGAGCCTCTT	6540

528 TTGTCAAAGT TGTAACCGTA TTGTGTAGCT TCCCACTTTT GAACTTCCTT AATTAAGTCT 6600 TCACTGGCAT AGGTATAACC ATAAACCAGT TGGTCTGCGT AAGTTTGCAC GGCTTGGCGG 6660 ATTTCAGGCA AGACCACAAA GTCCATATCC GCTATCCAAG CTGGTAGAAC TTCACTATCC 6720 GTTTCTGTTT CTTTCCATTT ATAGGTATGG TGCCCTAAAC GGTTGGGCAG GCTTGTAAAA 6780 TCATATTTTC CCATCTTTGT CTTATCCTTC TATGGCTTGG CGCAAATCTG CAATCAAATC 6840 TCTAGCATCC TCAATCCCAA TAGACAAACG CAAGAGGTCA TCTGTCAAAC CATAAGAATG 6900 GCGTACCTCT GCTGGAATAT CAGCATGAGT TTGAGTCGTT GGATAAGTAA TAAGACTTTC 6960 CACTCCACCC AAACTTTCCG CAAAAGAGAA GACCTTGAGA CTGTTCAAAA TATGAGGAAT 7020 GCGTGTTTCA TCGGCTACTT TAAAGGAAAT CATGCCTCCA CGACCAGTGT AGAGAACTTC 7080 CTTAACTGCT GGAGAATCCT TCAAAAAGGC AACCACTTCT TGGGCGTTAG CTGTTGAGCG 7140 CTCCATACGA AGAGACAAGG TCTTGAGACC ACGAAGCAAC TGGTAGCTGT CAAATGGAGA 7200 CAAGACTGCC CCTGTTGTAT TAAGATTGTA AAAAAGCTTC TCGTATAGTT CTAAACTATT 7260 GGTCACAACC ACTCCAGCCA AGACATCATT GTGGCCTGCT AGATACTTGG TTGCTGAATG 7320 GAGAACGATA TCTGCTCCAT CTTCAATCGG ACGTTGGTAG ATAGGGCTAT AGAAGGTATT 7380 GTCCACCACC ACTTTGGCAC CCTTAGCATG AGCCAATTTT GCTAGTTTTT CGATATCAAA 7440 TTCCAACATC AAGGGATTGG TTGGGGTTTC GATATAGAGA ACATCCACAT CCTTTTCTAA 7500 CTCGGCAATC AACTCTTCTT CTGTATTGGC ATAGGTAAAA TGGAAATGAC CTTCCTGCTC 7560 CACTTGGTTA AACCAGCGAA AAGAACCACC GTAAAGATCA CGCACTGCCA AGACCTTACT 7620 TCCTACTGGA AAGACGCTAA AGGCCAGTAC AATAGCTGAC ATCCCTGAGC TAGTCGCTAG 7680 GGCATAGTCT GCTGACTCAA TAGCCGCCAA GACTTCCTCA GCCTTACTAC GAGTTGGATT 7740 TTTAGTGCGC GTATAGTCAA ACCCAGTAGA TCGACCAAAC TCTGGATGCT GATAGGTCGT 7800 TGAAAAATGA AGTGGTGTCA CCAAAGCACC TGTTGCCTCA TCAGACTTGA TCCCTGCTTG 7860 TGCTAAAATT GTGTTAATGT GTAATTCCTT GCTCATACAA TTCCTCCAAA TCTATAGTAA 7920 CTATTGTACC ACTTATTTTG TATCCTTCGT TTTCTTGTTT TCAAGAGCTA GTTATAGTTT 7980 CAAACTATAT AAAAAGGGAG TTTTTCCTGC TCCCTTTAAT AGACTATAAA ATGGTGAATC 8040 TCAAAAGACA CCTTCACTCT ATCATTTGCT CCTGCACAAA ACGAGCATAA CGCTCATGAT 8100 TTTCCAGTAG TTCCTTATGA GTTCCTGAGC CAGTGATTTT CCCCTCCTCT AAGAAGAAAA 8160 TACAATCCAC ATCTTTTACC GTTGACAAAC GATGCGCTAT AATCACAACC GTCTTCTCCT 8220 TTAGTACAGA ATAGAGGCTA CTGATAATCG CATACTCAGA ATCCGCATCA AGATTAGCAG 8280 TGGCTTCATC AAATATAAGA ATTTCAGCAT CTTTTAAGTA GGCTCTAGCT ATTTGAAGTC 8340

TTTCGTTCG	C CCCCTGAC	AGAGTCGTCC	GCGTTCACC	ACTTCAGTAT	CTAGTCCCTC	8400
TTTCATGGA	G CGAATCTCAT	CACCTAGTGA	TACTAAGTCT	AGCACTTTC	TCAATTCATC	8460
ATCAGTTAC	r aagegattea	AACCGAGACA	AAGATTGTCA	CGAATACTGC	CAGATAAGAC	8520
TGCATTATT	r TGTGAAACCC	AAGCGATTTT	ACTTCTCCAT	TCTTTTAAGT	ТААААТСАТА	8580
TATACTTGA:	г тостссатта	GAATATCTCC	TGAAAGCGGT	ттаталаласс	GCTCTAACAA	8640
ACGCACAATO	C GTTGATTTTC	CTGATCCAGA	TGGTCCAACA	AAAGCAATTT	TTTGCCCCTT	8700
GAAAATTGA	A CAAGTAATAT	CCTTTAAGAC	AGGTCGATTT	TCATCATAAC	CAAAATAGAC	8760
ATGGTTAAA	TTCAACCCTC	GTCCTGATAC	CGATTTTCCT	CCCTCAAATT	TTTCTTTAGG	8820
AACTGCAAG	AAGTTCTCCA	GTGCAACTGA	AGATCCCTTG	CTCCTAGAAT	AAACAGTTAC	8880
AAAATTAGCT	AATTACTAA	TAGGATTAAG	TAATTGAAAG	AGGTAAATCA	AAAACGAAAC	8940
CAAGGTTCCC	ACAGATATAT	ATCCTGCGCT	GACCCGATAA	CCCCCATAGG	TTAGCATCAC	9000
AGCTATAGTO	GCAAAGATAA	ATAAGAGAGC	AAACGGGGTC	TCAAAAGAAG	TAACCCTATC	9060
TGATTTCAGT	GAATTGTTTT	GTACCCTTTC	ААТАСААТТА	тссааласат	CCTGTACACT	9120
TTTCTCTGCT	TGGTTAGTCT	TAATTAATTC	ATGTTCTTGA	ATCTTTTCAG	TCAATTGCCC	9180
TGTTAAATTT	CCTCCTGTAA	ACGACGACTA	TACTTTTCAC	TGATATTGGA	AAGGGGCAAG	9240
АТААТАААСА	TCATACAAGG	AAGAGTGATG	AATAAAAGTA	GAGAAAGATT	CCAATCAAGA	9300
CTAAATAAGA	CTACAATGGA	ACCAAGTACC	АТААСТААЛС	TCAGAATAAT	ATTTGGGAAA	9360
GTCGTAATTA	AAAACTCACG	AATGACACTC	GTGTCATTGA	CAATGGCAGA	AGTCAACTCC	9420
CCACTTTGGC	TCTTATCAAA	GAAGGATTTC	TCTACATAAA	TCAACCCCTC	TATCACTTTT	9480
TTCCTGATTT	TTGCTATCTT	TTTTTCACCC	GATTGACTAA	ACAGATAGTA	ACCAATAGAA	9540
GAAAACAAGG	CTTGACCAAT	AAAAATCAAA	AACGATTGAA	ATACTTTGGA	GCCTATATTT	9600
TCAATAGAAC	TCCCATCTAT	TAAATCCTTT	AAGATAAGGG	GAAGCAACAA	AGCAAGTAGA	9660
CTAGACAGAA	CAAGTAAGAA	ACTCCCCATA	ATCACCTTAG	TATCTACTCT	TAATAATTTT	9720
AATTTCATAA	ATACTCCTTA	ТААТАТТТСА	ACGGATAAAG	TCGGGAATAA	CTCAATTTGA	9780
GGATAAAATC	TAATAAATCT	тсстатааса	AAACGCATAA	CATCTAGGAT	TTTATATACC	9840
	CGTTTTTAAG					9900
TATTTGACAT	GTTTTGCCAA	TTCTTCTTGG	GCTTTTTTAT	TGGATTCTTC	TTTTTCTTTC	9960
AACCATTTTT	CTCTGGCTTT	TGCATATTCG	TCTGTTGTGA	CAATCTTATC	TTGTACTTTG	10020
AGGTATTTAT	ATGATTCAAC	CCCTTTTGTA	CCGGTTAAAC	CATAGGCAGC	AGCAAATGGT	10080

530

10140

ACGGTTCTTC TCAATGATGG TGTTCCCCCA CGCGAAACAC TTGGAAGAAC TAAAGAACTA

TCAATCAACC AAGCTTGAAT ATCAGCATAT TTCTCATAAC GTTTGGCCGG ATCTTGCTCT 10200 TTATTAGCTT CTTCCAACAT TTGAGTATAG ACATCCAGTC CAACTGCCTT AGCCTTGTCA 10260 TTGGCCTCAC CAGGCTCTAG TCCAAGATTT TGCAGAAATC CTCCACTATT AGTATTAAAA 10320 ATATCGAGAT AGGTTGACGG GTCTTGATAA TCAGGTCCCC AACCGCCATG ATATAAATCA 10380 TAATCTTTCT GAGCAGCTGT TTGAGCAAAG TAGCCTGAAC TGTCAAACTC ATCTGATGTT 10440 AATTGCTGAA TGTCAATCAC TACATTATCA GAACCTAAAA CAGATTCAAT TGATTGTTTG 10500 ATAGAACTAA CTCCTTGTAT GCCTACTTTA TCTGTTACTT CCACAGTCTT ATCCAAGTGG 10560 ATTGGGAATT GAACACCCTT TGCTTCGAGT TCTTTCTTAG CTTCCGCAAA CTTAGCCTTG 10620 GCTTTCTCAG GATTGTAGTA AGGGTCTTGA CCATCCGCAA AGTTGATACC TTGCCATTCC 10680 TTACCATAGT TGACCATCTT AGAGGCTACA ACTTCACCAA AGTCTTTTCC CTTGATACTG 10740 ACAAAGTTTG GAGGAACCAC TAGGTTACGC AAAATCTTTG TTGCACCTTC TTTCCCTTCA 10800 GACTGAGCCC CATAAGATGT TCTGTCAAAA GCAAAATTGA TAGCCTGACG GAAGTTTTTA 10860 TTGAGAACTG CTTCCTGAGT CGATTTCTTT TCAATGTCAC TTGTTTTAGA AGTATAATTG 10920 TAAGACTTCC TATCTAGGTT AAAATTAAAG AAATATGAAG TTGAATTTTG CATACTATAG 10980 ATGATATTGT TTTTGTATTT TTCTTTAATC CCTTCATAGC TGGAGCTGTT AGGAAAAAGA 11040 CGAGCCGTAG TATAAGCACC AGCTGTAAAA TTACGTTCCA GTGATTCTTG GTCGCTACCA 11100 TCATAGTAGG TCAATTTCAC ATCGTCTACA AAGACATTCT TAGCATCCCA GTAATTAGGG 11160 TTTTTCTTAT ATTCAATAGC AGATTTTGAG ACAAGTGCTT TCATCAAGAA AGGTCCATTG 11220 TACAAAATAC TAGATGGATC CGCCTTCCCA AAATCATCCC CTTTTGATTT CAGGAAATCT 11280 GCATTAACAG GAAAAAGTAT CGTTGCAAGT GTTTTTGAAT TCCAGTAAAG TTCTGGTTTA 11340 ACCAAAGTAT ATTGAACCGT TTGGTCATCA AGTGCCTTGA CACCGACAGT TGAAAAGTCG 11400 CTTGTTTTAC CAGTGATATA GTCATCCAAA CCAGCAACAG AGTCCTGCAC TAGATACAAG 11460 GCTTCTGATT TTTTATCAGC TGCATATTGC AAACCTGTCA CAAAATCCTG GGCAGTTACA 11520 GGCGCATATT CTTCTCCCTC AGAAGTAAAC CACTTGGCAT CCTTACGAAG TTTGTAGGTA 11580 TAGGTCAAAC CGTCCTGAGA AACAGTCCAA TCCTCTGCTA ATGATGGAAT AATATTCCCA 11640 TATTGGTCAT TTTCTAATAA CCCGTCTACC AAATTTGCAA CAATATCGGA TGTTGCTGCG 11700 CGGTTTTCTG CTAGATAGTT CAAGCTAGAT GGATCACTTG AATAAACATA GTTGTAGGTT 11760 TTTGACGCCG TGCTAGAATT TCCACACGCG CTCAATAAAA CTCCTGTACC CAGGACAAGA 11820 CCTGCCAAGG TTAGATATTT GCTCTTAGAC TTTTTCATTT CCGG 11864

531

(2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2412 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

TAACTGCACT AAACATAATA TAAGGAGAGA AAATGTCTGC AATAGAACGT ATTACAAAAG 60 CTGCTCACTT AATTGATATG AACGATATTA TCCGTGAAGG GAATCCTACT CTACGCGCGA 120 TTGCTGAGGA AGTCACTTTC CCCCTATCTG ACCAGGAAAT CATCCTAGGC GAAAAGATGA 180 TGCAATTCCT TAAACATTCC CAAGATCCTG TCATGGCTGA AAAAATGGGA CTCCGCGGTG 240 GTGTTGGACT GGCTGCTCCC CAGTTAGATA TCTCAAAACG CATTATCGCT GTTTTGGTAC 300 CTAATATIGT TGAAGAAGGC GAAACTCCAC AGGAAGCCTA CGATTTGGAA GCCATTATGT 360 ACAATCCAAA AATCGTCTCT CACTCTGTTC AAGATGCTGC TCTTGGCGAA GGAGAAGGTT 420 GCCTGTCTGT TGACCGTAAC GTGCCTGGCT ATGTTGTTCG CCATGCCCGC GTTACTGTTG 480 ACTACTTTGA CAAAGATGGA GAAAAACACC GTATCAAACT CAAAGGCTAC AACTCCATTG 540 TTGTTCAGCA TGAAATTGAC CACATTAACG GTATCATGTT TTACGATCGC ATCAATGAAA 600 AAGACCCATT TGCAGTTAAA GATGGTTTAC TGATTCTTGA ATAAAGAAAA TCCCGTTGCA 660 AGACGGGGTT TTGTGTTATA ATAGAGGCAT GAAAACAAAT GATATTGTCT ATGGTGTCCA 720 CGCCGTTACC GAAGCCCTCC TTGCAAATAC AGGAAACAAA CTCTACCTCC AAGAAGATCT 780 CCGACGTAAG AATGTTGAGA AAGTCAAGGA ACTAGCTACA GAAAAGAAGG TGTCCATTTC 840 TTGGACATCA AAAAAATCTC TCTCTGAGAT TACTGAAGGT GCTGTTCATC AAGGTTTTGT 900 TCTACGAGTG TCTGAATTTG CCTATAGCGA GCTAGATTAC ATCCTTGCAA AAACACGCCA 960 AGAAGAAAAT CCACTTCTAT TGATTCTAGA TGGTCTAACC GATCCCCATA ATCTGGGTTC 1020 TATCTTGCGA ACAGCCGATG CGACCAATGT TTCAGGTGTC ATCATTCCCA AGCACCGTAC 1080 TGTCGGAGTA ACTCCTGTCG TTGCCAAAAC AGCCACAGGT GCTATTGAAC ACGTtCCAAT 1140 TGCCCGAGTG ACCAACCTCA GTCAAACCTT AGGATAAACT TAAGGATGAA GGTTTCTGGA 1200 CCTTTGGAAC GGATATGAAC GGTACTCCTT GCCACAAGTG GAATACAAAA GGGAAAATCG 1260 CCCTCATCAT TGGAAATGAA GGAAAAGGTA TCTCTAGCAA CATCAAAAAA CAGGTCGATG 1320 AAATGATTAC CATTCCGATG AATGGACATG TTCAAAGCCT TAATGCCAGT GTTGCTGCGG 1380

532	
CCATTCTCAT GTACGAAGTT TTCCGAAATA GACTATAAAA AAGTTTCCAG TCATCTGATT	1440
GGAAACTITT TTATGATTAA CTATGTTCTG TAATGAATTT ATAGGCTTCT TGACCAGCGA	1500
TAGCTCCATC TCCAACCGCT GTTGTTACTT GGCGAAGGTC TTTCAAGCGA ACATCTCCAA	1560
CTGCAAAGAT ACCGTCGACT GCAGTTTTCA TGTGGTTATC TGTCACAATC CATCCTGCCT	1620
GATCTTGGAT ATTCAATTCT TTAACAAAAT CGCTAAGAGG GTCCAAACCA ACATAGATAA	1680
AGACACCACC GAAGGCTTGT TCTGTCACTT GACCTGTTTT CACATTTTCA AATACGACTG	1740
ATTCTACTCG GTTTTCACCC TTGATTTCCC TTACTACAGA ATCCCAGATA AAGCTGATTT	1800
TTTCATTCGC AAAGGCGCGA TCTTGTAAAA CCTTTTGGGC ACGAAGTTGG TCACGACGGT	1860
GAACAATGGT AACAGTCTTA GCAAAACGAG TCAAGAAGAG GGCTTCTTCA ACAGCTGAAT	1920
CTCCACCACC AACTACCAAT AAATCTTGGT CACGGAAGAA AGCACCATCA CACACAGCAC	1980
AGTAAGAAAC ACCACGACTG TTCAGTTCTT CTTCTCCAGG CACTCCCAAA GGACGGTGTT	2040
TAGAACCAGT TGCTACGATA ACTGTACGTG TTTCATATGT TTGGTCATCA GTCATCACTT	2100
TCTTAAAATC ACCATGGCTT CGACATTTTC AACATAACCA TAAATGTGCT CAACACCAAG	2160
ATTTTCAAGT GGTTCAAACA TCTTTTCAGC CAATTCAGGT CCACTAATAT TAGCGTATCC	2220
GGGTAATTT TCGATATCAG ATGTATTATT CATCTGACCA CCTGGCAGAC CACCTTCAAT	2280
CAAAGCTACT TTTAGATTGC TTCGAGCAGC ATACAAGGCC GCAGTCATCC CTGCAGGTCC	2340
AGCACCGATA ATAATAGTAT CGTACATATA GATTCCTTCT TTCTTGGTGT AACTATCTTT	2400
TTCTAACTC TG	2412
2) INFORMATION FOR SEQ ID NO: 63:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7760 base pairs (B) TYPE: nucleic acid	

- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

CCGATTTGGT	GGAATTTTTG	TCTCATCATT	TAGAAGGTGT	TGCAAGAGCA	GAGTTTACCT	60
TGGTGCTTCA	TACCAAATTG	GGAGAAGCCT	CTGTTTTGGC	AAATATTGTA	GATGTAAACA	120
AGGATGAATG	GATTTTAGGA	ACAGTTGCTG	GTGCCAATAC	CTTATTGGTT	ATTTGTCGAG	180
	TGCCAAACTC					240
	TTGCTCTCAA					300
	CCCGGCATGC					360

TTTC	SCTCTTT	CGGATGGGTG	ATTTTTATGA	ATTATTTAT	GAGGATGCGG	TCAATGCTGC	420
GCAC	SATTCTG	GAAATTTCCT	TAACGAGTCG	CAACAAGAAT	GCCGACAATC	CGATCCCTAT	480
GGCC	GGTGTT	CCCTATCATT	CTGCCCAACA	GTATATCGAT	GTCTTGATTG	AGCAGGGTTA	540
TAAC	GTGGCT	ATCGCAGAGC	AGATGGAAGA	тссталасла	GCAGTTGGGG	TTGTTAAACG	600
AGAC	GTTGTT	CAGGTCATTA	CGCCAGGGAC	AGTGGTCGAT	AGCAGTAAGC	CGGACAGTCA	660
GAAT	TTTTTAAT	TTGGTTTCCA	TAGACCGCGA	AGGCAATCAA	TTTGGCCTAG	CTTATATGGA	720
TTTC	GTGACG	GGTGACTTTT	ATGTGACAGG	TCTTTTGGAT	TTCACGCTGG	TTTGTGGGGA	780
AATO	CGTAAC	CTCAAGGCTC	GAGAAGTGGT	GTTGGGTTAT	GACTTGTCTG	AGGAAGAAGA	840
ACAA	LATCCT C	AGCCGCCAGA	TGAATCTGGT	ACTCTCTTAT	GAAAAAGAAA	GCTTTGAAGA	900
CCTI	CATTTA	TTGGATTTGC	GATTGGCAAC	GGTGGAGCAA	ACGGCATCTA	GTAAGCTGCT	960
CCAG	TATGTT	CATCGGACTC	AGATGAGGGA	ATTGAACCAC	CTCAAACCTG	ттатсссста	1020
CGAA	ATTAAG	GATTTCTTGC	AGATGGATTA	TGCGACCAAG	GCTAGTCTGG	ATTTGGTTGA	1080
GAAT	GCTCGC	TCAGGTAAGA	AACAAGGCAG	TCTTTTCTGG	CTTTTGGATG	AAACCAAAAC	1140
GGCT	'ATGGGG	ATGCGTCTCT	TGCGTTCTTG	GATTCATCGC	CCCTTGATTG	ATAAGGAACG	1200
AATC	GTCCAA	CGTCAAGAAG	TAGTGCAGGT	CTTTCTCGAC	CATTTCTTTG	AGCGTAGTGA	1260
CTTG	ACAGAC	AGTCTCAAGG	GTGTTTATGA	CATTGAGCGC	TTGGCTAGTC	GTGTTTCTTT	1320
TGGC	AAAACC	AATCCAAAGG	ATCTCTTGCA	GTTGGCGACT	ACCTTGTCTA	GTGTGCCACG	1380
GATT	CGTGCG	ATTTTAGAAG	GGATGGAGCA	ACCTACTCTA	GCCTATCTCA	TCGCACAACT	1440
GGAT	GCAATC	CCTGAGTTGG	AGAGTTTGAT	TAGCGCAGCG	ATTGCTCCTG	AAGCTCCTCA	1500
TGTG	ATTACA	GATGGGGGAA	TTATCCGGAC	TGGATTTGAT	GAGACTTTAG	ACAAGTATCG	1560
TTGC	GTTCTC	AGAGAAGGGA	CTAGCTGGAT	TGCTGAGATT	GAGGCTAAGG	AGCGAGAAAA	1620
CTCT	GGTATC	AGCACGCTCA	AGATTGACTA	CAATAAAAAG	GATGGCTACT	ATTTTCATGT	1680
GACC	AATTCG	CAACTAGGAA	ATGTGCCAGC	TCACTTTTTC	CGCAAGGCGA	CGCTGAAAAA	1740
CTCA	GAACGC	TTTGGAACCG	AAGAATTAGC	CCGTATCGAG	GGAGATATGC	TTGAGGCGCG	1800
TGAG.	AAGTCA	GCCAACCTCG	AATACGAAAT	ATTTATGCGC	ATTCGTGAAG	AGGTCGGCAA	1860
GTAC.	ATCCAG	CGTTTACAAG	CTCTAGCCCA	AGGAATTGCG	ACGGTTGATG	TCTTACAGAG	1920
TCTG	GCGGTT	GTGGCTGAAA	CCCAGCATTT	GATTCGACCT	GAGTTTGGTG	ACGATTCACA	1980
AATT	GATATC	CGGAAAGGGC	GCCATGCTGT	CGTTGAAAAG	GTTATGGGGG	CTCAGACCTA	2040
TATT	ССАААТ	ACGATTCAGA	TGGCAGAAGA	TACCAGTATT	CAACTGGTTA	CAGGGCCAAA	2100

CATGAGTGGG AAGTCTACCT ATATGCGTCA GTTAGCCATG ACGGCGGTTA TGGCCCAGCT 2160 GGGTTCCTAT GTTCCTGCTG AAAGCGCCCA TTTACCGATT TTTGATGCGA TTTTTACCCG 2220 TATCGGAGCA GCAGATGACT TGGTTTCGGG TCAGTCAACC TTTATGGTGG AGATGATGGA 2280 GGCCAATAAT GCCATTTCGC ATGCGACCAA GAACTCTCTC ATTCTCTTTG ATGAATTGGG 2340 ACGTGGAACT GCAACTTATG ACGGGATGGC TCTTGCTCAG TCCATCATCG AATATATCCA 2400 TGAGCACATC GGAGCTAAGA CCCTCTTTGC GACCCACTAC CATGAGTTGA CTAGTCTGGA 2460 GTCTAGTTTA CAACACTTGG TCAATGTCCA CGTGGCAACT TTGGAGCAGG ATGGGCAGGT 2520 CACCTTCCTT CACAAGATTG AACCGGGACC AGCTGATAAA TCLACGGTAT CCATGTTGCC 2580 AAGATTGCTG GCTTGCCAGC AGACCTTTTA GCAAGGGCGG ATAAGATTTT GACTCAGCTA 2640 GAGAATCAAG GAACAGAGAG TCCTCCTCCC ATGAGACAAA CTAGTGCTGT CACTGAACAG 2700 ATTTCACTCT TTGATAGGGC AGAAGAGCAT CCTATCCTAG CAGAATTAGC TAAACTGGAT 2760 GTGTATAATA TGACACCTAT GCAGGTTATG AATGTCTTAG TAGAGTTAAA ACAGAAACTA 2820 TAAAACCAAG ACTCACTAGT TAATCTAGCT GTATCAAGGA GACTTCTTTG ACAATTCTCC 2880 ACTITITIGC TAGAATAACA TCACACAAAC AGAATGAAAA GGAGCTGACG CATTGTCGCT 2940 CCCTTTTGTC TATTTTTAA GGAGAAAGTA TGCTGATTCA GAAAATAAAA ACCTACAAGT 3000 GGCAGGCCCT GGCTTCGCTC CTGATGACAG GCTTGATGGT TGCTAGTTCA CTTCTGCAAC 3060 CGCGTTATCT GCAGGAAGTC TTAGGCGCCC TCCTTACTGG GAAATATGAA GCTATTTATA 3120 GTATCGGGGC TTGGTTGATT GGTGTGGCCG TAGTCGGTCT AGTTGCTGGT GGACTCAATG 3180 TTGTCCTCGC AGCCTATATT GCCCAAGGAG TTTCATCCGA CCTTCGGGAG GATGCCTTCC 3240 GTAAAATTCA AACCTTTTCT TATGCTGATA TTGAACAATT TAATGCGGGA AATCTAGTCG 3300 TTCGAATGAC AAATGATATC AACCAGATTC AGAACGTTGT CATGATGACC TTCCAAATTC 3360 3420 CTCTGTGGTG GGTGATTGTT CTCATGGTAG TCTTGATTTT TGGTTTGACT GCTGTCATGA 3480 TGGGAATGAT GGGGCCTCGT TTTGCCAAGT TTCAAACCCT TCTTGAGCGC ATCAATGCCA 3540 TTGCCAAGGA AAATTTACGT GGCGTTCGTG TGGTCAAGTC CTTTGTCCAA GAAAAAGAGC 3600 AATTTGCTAA GTTTACAGAG GTCTCAGACG AGCTTCTTGG TCAAAACCTT TACATTGGTT 3660 ATGCCTTTC AGTAGTGGAA CCCTTTATGA TGTTGGTTGG TTACGGGGCG GTCTTCCTCT 3720 CTATTTGGCT GGTCGCGGGA ATGGTTCAGT CGGATCCGTC TGTTGTTGGT TCCATCGCTT 3780 CTTTTGTTAA TTACCTAAGC CAGATTATCT TTACCATTGT TATGGTTGGA TTTTTGGGAA 3840 ATTCTGTCAG CCGTGCCATG ATTTCCATGC GTCGTATTCG AGAAATTCTT GACGCAGAGC 3900

CAGCTATGA	CTTCAAGGAT	ATCCCAGATO	AAGAGTTGGT	TGGAAGTCTT	AGCTTTGAAA	3960
ATGTGACCT	TACCTATCC#	ATGGACAAGG	AACCGATGCT	GAAAGATGTG	AGCTTTACTA	4020
TTGAACCTG	TCAAATGGTT	GGTGTAGTTC	GAGCGACTGG	TGCAGGAAAG	TCAACCTTGG	4080
CTCAATTGAT	TCCACGTCTC	TTTGATCCAC	AGGACGGGGC	CATTAAAATC	GGTGGCAAGG	4140
ATATTCGAGA	A AGTGAGTGAA	GGAACCCTGC	GTAAAACAGT	TTCCATCGTT	CTCCAACGTG	4200
CCATTCTTTT	TAGTGGAACG	ATTGCAGATA	ACTTGAGACA	GGGGAAGGGG	AATGCTACTC	4260
TATTTGAAAT	GGAGCGCGCA	GCCAATATTC	CCCAGGCTAG	TGAATTCATT	CATCGTATGG	4320
AGAAAACCTT	TGAAAGTCCA	GTTGAAGAAC	GGGGAACCAA	TTTCTCTGGT	GGACAAAAAC	4380
AAAGGATGTC	GATTGCGCGT	GGGATTGTCA	GCAATCCACG	TATTCTGATT	TTTGATGATT	4440
CGACCTCAGC	CTTGGATGCC	AAATCAGAGC	GCTTGGTGCA	AGAAGCTTTG	AATAAGGACT	4500
TGAAGGGGAC	GACAACCATT	ATTATTGCTC	AAAAAATTAG	CTCGGTTGTC	CATGCAGACA	4560
AGATCTTGGT	тсталатсаа	GGACGATTGA	TTGGTCAAGG	TACGCATGCA	GACTTGGTTG	4620
CCAACAATGC	CGTTTACCGT	GAAATCTATG	AAACACAGAA	ATGAAAGACA	AACTATAAGA	4680
AAAGTCAATA	GTTTTATCTA	AACTATTTCT	TATTTCAATT	TGATGATTTG	GCGATGATTT	4740
TAGAGCACGG	CAAAAAGCCC	TTGAAAAAGT	CCATTTTTC	AAAGGTAATC	CTGTGTTAAT	4800
TTCAGAAATT	ACATCACTTT	TTGTTCGTCA	AATGGCAGCT	CTTTTTTTAG	GATATAAAAC	4860
AGGGTTCGGA	TAAGTTTTT	TGCAAGGTGG	ATGATGGCTA	CATTGTAATG	TTTTCCTTGT	4920
TCTAATTTAG	TCTTAAGATA	GGCCTTAAAA	GCAGGCGAAA	AGCGAGGGCA	TGCTTTGGCA	4980
GCTTGTATGA	GTACCTACCG	CAGATGAGGG	GAACTCCGTT	TGACCATTCT	TCCTGCTAAA	5040
TCAATCTGAT	CTGACTGATA	AATAGAAGAA	TCCAGTCCAG	CGAAAGCTTG	TAATTGAGCA	5100
GGATTATCAA	AGGCATGAAT	ATTTCGAATC	TCAGCTAAAA	TGACCGCCCC	TAAACGATCC	5160
CCAATCCCAG	TAACCGTCGT	GATGACCGAG	TTGAACTCAG	CCATCAAGTC	ATTGACACAT	5220
GTTTCCGCCT	TGTCAATGAG	CCTCTTGTAA	TGTTTGATGT	TTTCATTACA	CGAGATAAAA	5280
CGTCTATGCG	TTATCAAACT	CATTACCAAT	TAAAACAAAA	AGCTGTGGTT	AGATCCTTTC	5340
GGAAATTGTC	AAGCGATTGG	AGGAAATGAA	CTAATCCACA	GCGGCTTATT	CCAAGTATAC	5400
CACTTGGGCT	TTGGCAGTAG	CTAACTGCGC	TAAATATAAT	ATAAGGAGGA	GTAAAATGAA	5460
GACAGTTCAA	TTTTTTTGGC	AATTATTTAA	GGTCTACAAG	TTCTCATTTG	TAGTTGTCAT	5520
CCTGATGATT	GTTCTGGCGA	CTTTTGCCCA	AGCCCTCTTT	CCAGTCTTTT	CTGGACAAGC	5580
GGTGACGCAG	CTAGCCAATT	TAGTTCAAGC	ТТАТСААААТ	GGCAATCCAG	AACTTGTATG	5640

(GCAAAGCCTA	TCAGGAATCA	TGGTCAATCT	TGGCCTGCTG	GTTTTGGTTC	TATTTATCTC	5700
•	гастстаата	TACATGTGTC	TCATGACGCG	CGTGATTGCA	GAATCGACCA	ACGAGATGCG	5760
•	CAAAGGCCTC	TTTGGTAAGC	TTGCTCAGTT	GACGGTTTCT	TTCTTTGACC	GTCGACAAGA	5820
•	rggcgatatc	CTGTCTCATT	TTACCAGTGA	TTTGGATAA'I	ATCCTCCAAG	CCTTTAACGA	5880
1	AGCTTGATT	CAGGTCATGA	GCAATATTGT	TTTATACATT	GGTCTGATTC	TTGTCATGTT	5940
. 5	TTCGAGAAAT	GTGACGCTGG	CTCTCATCAC	CATTGCCAGC	ACCCCATTGG	CTTTCCTTAT	6000
(CTGATTTTC	ATCGTGAAAA	TGGCACGCAA	ATACACCAAC	CTCCAGCAGA	AAGAGGTAGG	6060
(GAAGCTCAAC	GCCTATATGG	ATGAGAGCAT	CTCAGGCCAA	AAAGCCGTGA	TTGTGCAAGG	6120
1	ATTCAAGAG	GATATGATGG	CAGGATTTCT	TGAACAAAAT	GAGCGCGTGC	GCAAGGCAAC	6180
(TTTAAAGGA	AGAATGTTCT	CAGGAATTCT	TTTCCCTGTC	ATGAATGGGA	TGAGCCTGAT	6240
7	PAATACAGCC	ATCGTCATCT	TTGCTGGTTC	GGCTGTACTT	TTGAATGATA	AGTCTATTGA	6300
2	ACAA GTACA	GCCCTAGGTT	TGATTGTTAT	GTTTGCACAA	TTTTCACAGC	AGTACTACCA	6360
(SCCTATTATC	CAAGTTGCAG	CGAGTTGGGG	AAGCCTTCAG	TTGGCCTTTA	CTGGAGCTGA	6420
2	CGAATTCAG	GAAATGTTTG	ATGCAGAGGA	GGAAATCCGA	CCTGAAAAGG	CTCCAACCTT	6480
(CACTAAGTTG	CAAGAAAGTG	TTGAAATCAG	TCATATCGTT	TTTTCATACT	TGCCTGATAA	6540
7	CCTATTTTG	AAAGATGTCA	GCATTTCTGC	CCCTAAAGGC	CAGATGACAG	CAGTTGTTGG	6600
C	CCGACAGGT	TCAGGAAAAA	CGACTATTAT	GAACCTCATC	AATCGCTTTT	ATGATGTTGA	6660
7	GCTGGTGGT	ATTTATTTTG	ATGGTAAAGA	CATTCGTGGC	TATGACTTAG	ATAGTCTTAG	6720
P	AGCAAGGTG	GGAATTGTAT	TGCAAGATTC	GGTCTTGTTT	AGCGGAACGA	TTAGAGACAA	6780
1	ATCCGATTT	GGTGTGCCAG	ATGCTAGTCA	GGAAATGGTT	GAGGTAGCAG	CAAAAGCAAC	6840
C	CACATTCAC	GACTATATCG	AAAGTTTGCC	TGATAAGTAC	GATACTCTTA	TTGATGATGA	6900
c	CAGAGCATC	TTTTCAACAG	GGCAGAAGCA	ATTGATTTCA	ATCGCTCGAA	CCCTGATGAC	6960
A	GATCCAGAA	GTTCTCATTC	TCGATGAAGC	AACTTCAAAC	GTAGATACGG	TGACAGAAAG	7020
c	AAGATTCAG	CATGCCATGG	AGGTGGTTGT	AGCAGGTAGA	ACTAGTTTCG	TCATTGCCCA	7080
C	CGCTTGAAA	ACCATTCTCA	ATGCAGATCA	GATTATTGTC	CTTAAAGATG	GAGAAGTCAT	7140
1	GAACGTGGT	AACCACCATG	AACTTTTGAA	GCTAGGTGGC	TTTTATTCAG	AACTCTATCA	7200
C	AATCAATTT	GTTTTCGAAT	AAGAAAGAAG	TTGTCCTATG	TGGGCAGCTT	TTTCTTGTCC	7260
A	TAAAAAATG	TTTATCACAG	ССТТАЛАЛАЛ	AACATATTAG	ACGAAAGTCA	TTTTGAGTGA	7320
1	ATGATAGGA	CTATCGTTAG	CATTCGAAAG	GAGAGGCATC	ATGGCTAGAA	CGGTTGTAGG	7380
A	GTTGCTGCA	AATCTATGTC	CCGTAGACGC	AGAAGGCAAA	ATCATTCATT	CATCTGTATC	7440

537

TTGTAGATTC	GCAGAGATCA	TTCGTCAAGT	CGGTGGTCTC	CCTTTAGTCA	TTCCTGTTGG	7500
TGATGAGTCA	GTTGTACGTG	ATTATGTGGA	AATGATTGAC	AAACTCATTT	TGACAGGAGG	7560
CCAAAATGTT	CATCCTCAGT	TTTATGGAGA	GAAAAAGACC	GTCGAGAGCG	ATGATTACAA	7620
TCTGGTCCGT	GACGAATTTG	AATTGGCACT	CTTGAAGGAA	GCGCTTCGTC	AGAATAAACC	7680
AATTATGGCA	ATCTGTCGCG	GTGTCCAACT	TGTCAATGTT	GCCTTTGGTG	GAACCCTCAA	7740
TCAAGAAATC	GAAGGTCAGG					7760

(2) INFORMATION FOR SEQ ID NO: 64:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2723 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

GAGGTTTTAA TTCACTTACC TCTsCCGTAT CTTTATTTAA AATGAATTCT TTTACGGTTG 60 120 TAATATCATT AAATGATGTA TATTCTTTTC CATTTATATA AATATGTTGT TCTTGAATCT 180 CACCATCGAA TCCATTATTT CTTTTATCAT TGATGTTAAA GACTACAGAT TTTCCATCAG 240 CATATTCGAT ACTAGTATTT CCCTTAGGAT CAATGTTTAC TTCGGGTTTA ACATTATCAT 300 ATAAAAACTG ATAGTGGACT CCAACTGCTT TAGCATTCAA ATCGCTATAG CCAGTTTGAA 360 GATAAACATT TCCATCCATA TCTGTTACCT TATCTGGAAA TCCGTTTGCT TTATAGTCTT 420 TCATTCCCCA GTCCATGATG TCACCGTCTT TAACATTCAG CTTAATATTA AAATCTCTAG TGTTATCAAT GTGTAAATCT CCGTAGATTA AATAATTATC TACAACCGAT TCATTAACTC 540 TCAATTCCCA GTTAAAACCA CCCTTATCAG AAATCTTACC TCTTAAATAA AATTCTGGAT 600 TTCGTACATA AATTTTATTA GATTTAGATG GATTAAAGTA GTTCTTATCC ATTGAAAGGT 660 TTACTGGTTT GGTATCAATA AATAACATGG AGCCATCTTC TTTTATAGCT TCTACATTGA 720 ACTTATCCTC TCCAGTGTAT TCTTTATCAT CCTTACCAAA TAATACAAGT TTAGAAGAAT 780 CTGTCACAAG ATTTCCGTCT TTATCGATAG CTTCCCCTTT ATCGTTCATT TTAAATGTAA 840 ACACTTGATA CCTTATAATG TTAAAGCCGT CCAAAGCCGA CATTAATACA GATTGGGTAC 900 TTCTTCCATC TTCAACATTT CTACTATCAG CATAAATTGT TGTTTCTGAA AGGGCTCTTA 960 GATTAGGATT GGCCTTTTGT ATTTTTGCTA TATCTTCCTT GCTATAGACT CCATTTCCTT 1020

			538			
СТААСАТАТС	CGTTTTTCCA	GGATTATAGG		TAGTGCATAG	CCTTTTCTTA	1080
GAATGATATT	ATCCTTTAAC	AGATATTGTT	GTTTTTCTGA	ATCAGAATAG	ATTTTACCAG	1140
ATTCCATTTT	AGTTAAATTG	TCTGGTTTGT	TTTTTGAAAG	ATCTCCTTCC	CCTAATTC'!'A	1200
TGACATTCCC	ATAACTTGAT	ACATAGGGAT	ATTCTGATTT	AGTTTCCTTA	ATTTTTTCAG	1260
GCATTCTAAT	TTTAATTTCA	GCTTTTTTCT	GATCATTATC	TTTAACAAAT	AATCTCATAT	1320
CTCCTGCAAA	AGCTAATCCA	TCCACAATAT	САТТААТАТТ	AGCGTATAGA	тсалатстса	1380
TCGTTTTTGA	GTGGAAATCA	TACTTGGTCG	CTTTGATTTC	TATAGATTTA	TAGTTATTCC	1440
САТААТАТАС	CTTGGCATTT	TTAGAAACAT	TACTTATCTT	TCCAAGAATT	TCAAAGTGTC	1500
CATCTTTAGA	CGGACTTAGA	ACACCATAAA	TTTTTGATTT	GATTTCGTCA	AGTTTCTCAG	1560
ТТТСАТАТТС	TAGATCAGTC	CCATCATCGT	AGGCTATTAT	АТТТССТТТА	TCATCGTATT	1620
TATAATCGTA	TTCCTCCATT	CTCTTACCAG	TTTCACTTGT	AAAATCATCA	ACTTCTCTAA	1680
ATTTCTTTT	AATGAGTTTC	TTTAAGTCTT	TATTTTCAAA	GTCTCTAATT	GTTGAAATAT	1740
ТТСТАТСААТ	AGTAAAACTA	GATTTTTCTT	TAATAGACTC	TTCATTTTCT	TGATGATGAT	1800
GTTCTACCCC	AGTTGTATCT	TTTTTTAGAC	TACCCTCTTT	TCCATTTCCT	AAATTTTTAA	1860
ATTTAGATTC	TGCAATCTCG	CCAAGCTTTT	GATATTTAGA	TGAATCTTGA	TCAGGATCTA	1920
CTAGATAATA	GGAAATCATC	CCCTTTTCAT	CAGCCTGATT	AGCAAATTTA	ATTCTATGAA	1980
TCTTTGTGAA	ATTGCTAGAA	CCATCTAATG	CAATGACTTC	AATGATTTTT	CCCCTTAAAT	2040
CTCCCGCACC	TTTAATTTCA	TAAATGGTAT	TTCCGTCTTT	ATCAAGTTTT	CTATTTCTTC	2100
CTTGACCCTC	ACCTGCGTAA	GTTACTTCAA	GATTTTTTC	AACCTCTCCA	ТСТТСАТТАА	2160
CAAGAGCGGC	GCCAGCATAC	CAAACTTCGT	TCGCAATCTC	GTCAAATTTT	TCAGGATGTT	2220
CTTTTTGATC	TCTCGCAAAT	AGCGTTTCAT	TCTTATACTG	ATCTTTTACC	TTATGATAAG	2280
PATCCTTTGT	AATCAACTTA	ATTTTTTCAG	GATTTGAAAA	ATCAACCGAA	ACAATCTTAG	2340
GGCGGTGTT	ATCAATTTTT	ACAGGAATAT	AGGAAACCTG	CCATGGGTAA	TCTTTAGTTA	2400
АТСТАТАТТТ	AAATTTATAG	AAATATTGAC	CTTCCGCAAT	CGGTTCAAAT	TGACCTCTTA	2460
PCTTAGTAGC	AGGATCTTGA	TTATCCTTAC	TTTCTGGTGC	ATTTTCTTCT	CTACCTCTAG	2520
SATTATAGAT	GAGTCCATCC	CACTTCAAGT	CACCCCAAAC	TTTTAGTTTA	GATGATTTGA	2580
TTCCCTTTGC	ATCATTGCTT	TTAGAATTTA	AAATTCCTCT	AATAAAGTGT	TCTCTCGAAA	2640
GACTTTTAA	GTCTCTTTGA	TTTTCTCCCT	CTTTATTTGT	ATTTACTATT	GAAATCAATC	2700
CTTCTTCTGC	ACTTCTTAAT	ACA	•			2723

⁽²⁾ INFORMATION FOR SEQ ID NO: 65:

539

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11831 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

AAAAAAGTGG GAATGACTCA AATCTTCACT GAAGCTGGCG AATTGATCCC TGTAACAGTT 60 ATTGAAGCAA CTCCAAACGT TGTTCTTCAA GTTAAAACTG TTGAAACAGA CGGATACAAC 120 GCTATCCAAG TTGGTTTCGA TGACAAACGC GAAGTATTGA GCAACAAACC TGCTAAAGGA 180 CATGTAGCGA AAGCTAACAC GGCTCCTAAG CGCTTCATTC GTGAATTCAA AAACGTTGAA 240 GGCTTGGAAG TTGGTGCTGA AATTACAGTT GAAACATTCG CAGCTGGAGA CGTTGTTGAC 300 GTAACGGGTA CTTCTAAAGG TAAAGGTTTC CAAGGTGTTA TCAAACGCCA CGGACAATCA 360 CGTGGACCAA TGGCTCACGG TTCTCGTTAC CACCGTCGTC CAGGTTCTAT GGGGCCTGTT 420 GCACCTAACC GCGTATTCAA AGGTAAAAAC CTTGCAGGAC GTATGGGTGG CGACCGCGTA 480 ACAATTCAAA ACCTTGAAGT TGTACAAGTT GTTCCAGAAA AGAACGTTAT CCTTATCAAA 540 GGTAACGTAC CAGGTGCTAA GAAATCTCTT ATCACTATCA AATCAGCAGT TAAAGCTGGT 600 AAATAATAAA GAAAGGGGAA ATCAGTCACA ATGGCAAACG TAACATTATT TGACCAAACT 660 GGTAAAGAAG CTGGCCAAGT TGTTCTTAGC GATGCAGTAT TTGGTATCGA ACCAAATGAA 720 TCAGTTGTGT TTGATGTAAT CATCAGCCAA CGCGCAAGCC TTCGTCAAGG AACACACGCT 780 GTTAAAAACC GCTCTGCAGT ATCAGGTGGT GGACGCAAAC CATGGCGTCA AAAAGGAACT 840 GGACGTGCTC GTCAAGGTTC TATCCGCTCA CCACAATGGC GTGGTGGTGG TGTTGTCTTC 900 GGACCAACTC CACGTTCATA CGGCTACAAA CTTCCACAAA AAGTTCGTCG CCTAGCTCTT 960 AAATCAGTTT ACTCTGAAAA AGTTGCTGAA AACAAATTCG TAGCTGTAGA CGCTCTTTCA 1020 TTTACAGCTC CAAAAACTGC TGAATTTGCA AAAGTTCTTG CAGCATTGAG CATCGATTCT 1080 AAAGTTCTTG TTATCCTTGA AGAAGGAAAT GAATTCGCAG CTCTTTCAGC TCGTAACCTT 1140 CCAAACGTGA AAGTTGCAAC TGCTACAACT GCAAGTGTTC TTGACATCGC AAATAGCGAC 1200 AAACTTCTTG TCACACAAGC AGCTATCTCT AAAATCGAGG AGGTTCTTGC ATAATGAATT 1260 TGTATGATGT TATCAAAAAA CCTGTCATCA CTGAAAGCTC AATGGCTCAA CTTGAAGCAG 1320 GAAAATATGT ATTTGAAGTT GACACTCGTG CACACAAACT TTTGATCAAG CAAGCTGTTG 1380 AAGCTGCTTT CGAAGGTGTT AAAGTTGCCA ATGTTAACAC AATCAACGTA AAACCAAAAG 1440

B

			540			
CTAAACGTGI	TGGACGTTAC	ACTGGTTTTA	СТААСАААА	TAAAAAAGCT	ATCATCACAC	1500
TTACAGCTGA	TTCTAAAGCA	ATCGAGTTGT	TTGCTGCTGA	AGCTGAATAA	TCTAAGGAGG	1560
AAATATCGTG	GGAATTCGTG	TTTATAAACC	AACAACAAAC	GGTCGCCGTA	ATATGACTTC	1620
TTTGGATTTC	GCTGAAATCA	CAACAAGCAC	TCCTGAAAAA	TCATTGCTTG	TTGCATTGAA	1680
GAGCAAGGCT	GGTCGTAACA	ACAACGGTCG	TATCACAGTT	CGTCACCAAG	GTGGTGGACA	1740
CAAACGTTTC	TACCGTTTGG	TTGACTTCAA	ACGTAATAAA	GACAACGTTG	AAGCAGTTGT	1800
TAAAACAATC	GAGTACGATC	CAAACCGTTC	TGCAAACATC	GCTCTTGTAC	ACTACACTGA	1860
CGGTGTGAAA	GCATACATCA	TCGCTCCAAA	AGGTCTTGAA	GTAGGTCAAC	GTATCGTTTC	1920
AGGTCCAGAA	GCAGATATCA	AAGTCGGAAA	CGCTCTTCCA	CTTGCTAACA	TCCCAGTTGG	1980
TACTTTGATT	CACAACATCG	AGTTGAAACC	AGGTCGTGGT	GGTGAATTGG	TACGTGCTGC	2040
TGGTGCATCT	GCTCAAGTAT	TGGGTTCTGA	AGGTAAATAT	GTTCTTGTTC	GTCTTCAATC	2100
AGGTGAAGTT	CGTATGATTC	TTGGAACTTG	CCGTGCTACA	GTTGGTGTTG	TCGGAAACGA	2160
ACAACATGGA	CTTGTAAACC	TTGGTAAAGC	AGGACGTAGC	CGTTGGAAAG	GTATCCGCCC	2220
AACAGTTCGT	GGTTCTGTAA	TGAACCCTAA	CGATCACCCA	CACGGTGGTG	GTGAAGGTAA	2280
AGCACCAGTT	GGTCGTAAAG	CACCATCTAC	TCCATGGGGC	AAACCTGCTC	TTGGTCTTAA	2340
AACTCGTAAC	AAGAAAGCGA	AATCTGACAA	ACTTATCGTT	CGTCGTCGCA	ACGAGAAATA	2400
ATATTAAACT	AGTCGCTTAA	GCAACTAGTA	AATCCGCCAG	CTCGGTAGCG	CTCCATAGGA	2460
GTGCAAGCCG	CTGTGGTACA	ACATTTAAAG	GAGAAAATAT	AAAAATGGGA	CGCAGTCTTA	2520
AAAAAGGACC	TTTCGTCGAT	GAGCATTTGA	TGAAAAAAGT	TGAAGCTCAA	GCTAACGACG	2580
AAAAGAAAA	AGTTATTAAA	ACTTGGTCAC	GTCGTTCAAC	GATCTTCCCA	AGTTTCATTG	2640
GTTACACTAT	TGCAGTTTAT	GACGGACGTA	AACACGTACC	TGTTTACATC	CAAGAAGACA	2700
rggtaggcca	CAAACTTGGT	GAATTTGCAC	CAACTCGTAC	TTACAAAGGT	CACGCTGCAG	2760
ACGACAAGAA	AACACGTAGA	AAATAAGGAG	AACATAAATG	GCAGAAATTA	CTTCAGCTAA	2820
AGCAATGGCT	CGTACAGTAC	GTGTTTCACC	TCGTAAATCA	CGTCTTGTTC	ТТСАТААСАТ	2880
CGTGGTAAA	AGCGTAGCCG	ATGCAATCGC	AATCTTGACA	TTCACTCCAA	ACAAAGCTGC	2940
GAAATCATC	TTGAAAGTTT	TGAACTCAGC	TGTAGCTAAC	GCTGAAAACA	ACTTTGGTTT	3000
GATAAAGCT	AACTTGGTAG	TATCTGAAGC	ATTCGCAAAC	GAAGGACCAA	CTATGAAACG	3060
TTCCGTCCA	CGTGCGAAAG	GTTCAGCTTC	ACCAATCAAC	AAACGTACAG	CTCACATCAC	3120
GTAGCTGTT	GCAGAAAAAT	AAGGAGGTAA	AATCGTGGGT	CAAAAAGTAC	ATCCAATTGG	3180
ATGCGTGTC	GGCATCATCC	GTGATTGGGA	TGCCAAATGG	TATGCTGAAA	AAGAATACGC .	3240

GGATTACCT	CATGAAGAT	C TTGCAATCC	G TAAATTCGT	CAAAAAGAA	C TTGCTGACGC	330
AGCAGTTTC	ACTATTGAA	A TCGAACGCG	C AGTAAACAA	GTTAACGTT	r CACTTCACAC	3360
TGCTAAACC	GGTATGGTT	A TCGGTAAAG	G TGGTGCTAAC	GTTGATGCa	C TCCGTGCAAA	3420
ACTTAACAA	TTGACTGGA	AACAAGTAC	A CATCAACATO	ATCGAAATC	A AACAACCTGA	3480
TTTGGATGCT	CACCTTGTAC	GTGAAGGAA	TGCTCGTCA	TTGGAGCAA	GTGTTGCTTT	3540
CCGTCGTGCA	CAAAAACAAC	CAATCCAAC	G TGCAATGCGT	GCTGGAGCT	AAGGAATCAA	3600
AACTCAAGTA	TCAGGTCGT	TGAACGGTG	AGATATCGCC	CGTGCTGAAC	GATACTCTGA	3660
AGGAACTGTT	CCGCTTCAC	CACTTCGTG	AGATATCGAT	TACGCTTGG	AAGAAGCAGA	3720
TACTACATAC	GGTAAACTTG	GTGTTAAAG1	ATGGATCTAC	CGTGGTGAAC	TTCTTCCAGC	3780
TCGTAAAAAC	ACTAAAGGAG	GTAAATAACC	AATGTTAGTA	CCTAAACGTC	TTAAACACCG	3840
TCGTGAGTTC	CGTGGAAAAA	TGCGCGGTGA	AGCAAAAGGT	GGAAAAGAAG	TAGCATTCGG	3900
TGAATACGGT	CTTCAAGCTA	CAACTAGCCA	CTGGATCACT	AACCGCCAAA	TCGAAGCTGC	3960
TCGTATCGCC	ATGACTCGTT	ACATGAAACG	TGGTGGTAAA	GTTTGGATTA	AAATCTTCCC	4020
ACACAAATCA	TACACTGCTA	AAGCTATCGG	TGTGCGTATG	GGATCTGGTA	AAGGGGCACC	4080
TGAAGGTTGG	GTAGCACCAG	TTAAACGTGG	TAAAGTGATG	TTCGAAATCG	CTGGTGTATC	4140
TGAAGAGATT	GCACGTGAAG	CGCTTCGACT	TGCTAGCCAC	AAATTGCCAG	тталатстал	4200
ATTCGTAAAA	CGTGAAGCAG	AATAAGGAGA	AGGCATGAAA	CTTAATGAAG	ТААААСААТТ	4260
TGTTAAAGAA	CTTCGTGGTC	TTTCTCAAGA	AGAACTCGCG	AAGCGCGAAA	ACGAATTGAA	4320
Aaaagaattg	TTTGAACTTC	GTTTCCAAGC	TGCTACTGGT	CAATTGGAAC	AAACAGCTCG	4380
CTTGAAAGAA	GTTAAAAAAC	AAATCGCTCG	CATCAAAACA	GTTCAATCTG	AAGCGAAATA	4440
ATAGACTAGG	GAAGGAGAAA	TTTCAATGGA	ACGCAATAAT	CGTAAAGTTC	TTGTTGGACG	4500
TGTTGTATCT	GACAAAATGG	ACAAGACAAT	CACAGTTGTA	GTTGAAACAA	AACGTAACCA	4560
CCCAGTCTAT	GGTAAACGTA	TTAACTACTC	TAAAAAATAC	AAAGCTCATG	ATGAAAACAA	4620
TGTTGCCAAA	GAAGGCGATA	TCGTACGTAT	CATGGAAACT	CGCCCGCTTT	CAGCTACAAA	4680
ACGTTTCCGT	CTTGTAGAAG	TTGTTGAAGA	AGCGGTCATC	ATCTAATCAA	ACCTGAAAGG	4740
AGAAAACTGA	AATGATTCAA	ACAGAAACTC	GTTTGAAAGT	CGCAGACAAC	AGCGGTGCTC	4800
GCGAAATCTT	GACTATCAAA	GTTCTTGGTG	GTTCAGGACG	TAAATTTGCA	AACATCGGTG	4860
ATGTTATCGT	GGCATCTGTA	AAACAAGCTA	CTCCTGGTGG	TGCGGTTAAA	AAAGGTGACG	4920
TTGTTAAAGC	AGTTATCGTT	CGTACTAAAT	CAGGTGCTCG	ТССТССТСА Т	CCTTCATACA	4690

TCAAATTTGA CGAAAACGCA GCACTTATGA TOO	
TCAAATTTGA CGAAAACGCA GCAGTTATCA TCCGTGAAGA CAAAACTCCT CGCGGAACAC	5040
GTATCTTTGG CCCAGTTGCA CGTGAATTGC GTGAAGGTGG CTTCATGAAG ATCGTGTCAC	5100
TTGCTCCAGA AGTACTTTAA TTTTTAGGAA CAAACTAGTC CCCTAGCTTC AAGCTAGGGT	5160
GCCCTTATGG GCGTAAGAAA AATCAAGGAG AAACCTAATG TTTGTAAAAA AAGGCGACAA	5220
AGTTCGCGTA ATCGCTGGTA AAGATAAGGG AACAGAAGCT GTTGTCCTTA CTGCCCTTCC	5280
AAAAGTAAAC AAAGTTATCG TTGAAGGTGT TAACATTGTT AAGAAACACC AACGTCCAAC	5340
TAACGAGCTT CCTCAAGGTG GTATCATCGA GAAAGAAGCA GCTATCCACG TATCAAACCT	5400
TCAAGTTTTG GACAAAAATG GTGTAGCTGG TCGTGTTGGA TACAAATTTG TAGACGCTAA	_
AAAAGTTCGC TACAACAAAA AATCAGGCGA AGTGCTTGAT TAATCACGAA GGAAAGGAGA	5460
AGTATAATGG CAAATCGTTT AAAAGAAAAA TATCTTAATG AAGTAGTTCC TGCTTTGACA	5520
GAACAATTCA ACTACTCATC AGTGATGGCT GTGCCTAAAG TAGATAAGAT TGTTTTGAAC	5580
ATGGGTGTTG GTGAAGCTGT ATCAAACGCT AAAAGCCTTG AAAAAGCTGC TGAAGAATTG	5640
GCACTTATCT CAGGTCAAAA ACCACTTATC ACTAAAGCTA AAAAATCAAT CGCCGGCTTC	5700
CGTCTTCGTG AAGGTGTTGC GATCGGTGCA AAAGTTACCC TTCGTGGTGA ACGTATGTAC	5760
GAATTCTTGG ATAAATTGGT ATCACTTTCA	5820
GAATTCTTGG ATAAATTGGT ATCAGTTTCA CTTCCACGTG TACGTGACTT CCACGGTGTC	5880
CCAACAAAAT CATTTGATGG ACGCGGGAAC TACACACTTG GTGTGAAAGA ACAATTAATC	5940
TTCCCAGAAA TCAACTTCGA TGACGTTGAC AAAACTCGTG GTCTTGACAT CGTTATCGTA	6000
ACAACTGCTA ACACTGACGA AGAGTCACGT GCATTGCTTA CAGGCCTTGG AATGCCTTTT	6060
GCAAAATAAT ATAGGAGGTA AATCTAATGG CTAAAAAATC AATGGTAGCT AGAGAGGCTA	6120
AACGCCAAAA AATTGTTGAC CGTTATGCTG AAAAACGTGC TGCATTAAAG GCGGCAGGGG	6180
ACTACGAAGG TTTATCTAAA TTACCTCGCA ACGCCTCACC GACTCGTTTA CATAATCGTT	6240
GTAGGGTTAC GGGGCCCCA CATTCAGTTT ACCGCAAATT TGGTCTGAGT CGTATCGCTT	6300
TTCGCGAACT TGCGCATAAA GGTCAAATTC CTGGTGTAAC AAAAGCATCT TGGTAATTTA	6360
AGATATCAAG AGCGTCAAAA CTCCAAGTAA AAATAGGAAA CTTGACGAAG AAACTAAACT	6420
TTCTAGGAAA GTTTATCTTT TTCACACAGA GTTTAGCCCG GGTTCAATTG GGCTTGCCAA	•
TIGAACACG AGCTACAGCT TTGGCAAAAA AGACCAATTT GCTTTGGAGC ATTGCTTCTC	6480
CATTAAATTG TCTATTTTTG CTCGTGCTGT TACGCTCTTT GTATCATGTA TTAACTAGCA	6540
AGTGCAACTT GCAAACTACT AGTAAGAGGA GAAAAACAAA ATGGTTATGA CTGACCCAAT	6600
CGCAGACTTC CTAACTCGTA TTCGTAATGC TAACCAAGCT AAACACGAAG TACTTGAAGT	6660
ACCTGCATCA AACATCAAAA AAGGGATTGC TGAAATCCTT AAACGCGAAG GTTTTGTAAA	6720
TOWARTCCTT AAACGCGAAG GTTTTGTAAA	6780

1 ~

AAACGTTGAA	ATCATTGAAG	ATGACAAACA	AGGCGTCATC	CGTGTATTTC	TTAAATACGG	684
ACCAAATGGT	GAGAAAGTTA	TCACTAACTT	GAAACGTGTT	TCTAAACCAC	GACTTCGTGT	690
СТАСААААА	CGTGAAGACC	TTCCAAAAGT	TCTTAACGGA	CTTGGAATTC	CCATCCTTTC	696
AACTTCTGAA	GGTTTGCTTA	CTGATAAAGA	AGCACGCCAA	AAGAATGTTC	GTGGTGAGGT	702
TATCGCTTAC	GTTTGGTAAA	ATCAAGATAC	AAAGCTCGTA	AAGAACAAAG	CAAAATTAGG	708
AAGTTGGAGA	AGTTTGTTTA	CAAACAAGCC	AACTTATCTA	TTTTGCACAG	TTCTTAGAGC	7140
GTGTTCAGTT	CAGCTCTTGA	ACTAAATAAG	TATCTGAACC	CCGTGAAAAC	TGGCCGTTCT	7200
GGCCTGACAA	TTTAACAGGA	GAAAATAAAC	ATGTCACGTA	TTGGTAATAA	AGTTATCGTG	7260
TTGCCTGCTG	GTGTTGAACT	CGCTAACAAT	GACAACGTTG	TAACTGTAAA	AGGATCTAAA	7320
GGAGAACTTA	CTCGTGAGTT	CTCAAAAGAT	ATTGAAATCC	GTGTGGAAGG	TACTGAAATA	7380
ACTCTTCACC	GTCCAAACGA	TTCAAAAGAA	ATGAAAACTA	TCCACGGAAC	TACTCGTGCC	7440
CTTTTGAACA	ACATGGTTGT	TGGTGTATCA	GAAGGATTCA	AGAAAGAACT	TGAAATGCGT	7500
GGGGTTGGTT	ACCGTGCACA	GCTTCAAGGA	TCTAAACTTG	TTTTGGCTGT	TGGTAAATCT	7560
CATCCAGACG	AAGTTGAAGC	TCCAGAAGGA	ATTACTTTTG	AACTTCCAAA	CCCAACAACA	7620
ATCGTTGTTA	GCGGAATTTC	AAAAGAAGTA	GTTGGTCAAA	CAGCTGCTTA	CGTACGTAGC	7680
CTTCGTTCAC	CAGAACCATA	TAAAGGTAAA	GGTATCCGTT	ACGTTGGTGA	ATTCGTTCGC	7740
CGTAAAGAAG	GTAAAACAGG	TAAATAATGT	TGAGTGGTTG	ATCATCAACC	ACCAACCTAT	7800
ттосаастт	TGTGCATAGC	ACACGATTTA	AAACTAAAGA	GGTGAAAACT	GTGATTTCAA	7860
ACCAGATAA	AAACAAACTC	CGCCAAAAAC	GCCACCGTCG	CGTTCGCGGA	AAACTCTCTG	7920
GAACTGCTGA	TCGCCCACGT	TTGAACGTAT	TCCGTTCTAA	TACAGGCATC	TACGCTCAAG	7980
GATTGATGA	CGTAGCGGGT	GTAACGCTCG	CAAGTGCTTC	AACTCTTGAT	AAAGAAGTTT	8040
CAAAAGGAAC	TAAAACTGAA	CAAGCCGTTG	CTGTCGGTAA	ACTCGTTGCA	GAACGTGCAA	8100
CGCTAAAGG	TATTTCAGAA	GTGGTGTTCG	ACCGCGGTGG	ATATCTATAT	CACGGACGTG	8160
GAAAGCTTT	GGCTGATGCA	GCTCGTGAAA	ACGGATTGAA	ATTCTAATAG	GAGGACACTA	8220
AAAATGGCA	TTTAAAGACA	ATGCAGTTGA	ATTAGAAGAA	CGCGTAGTTG	CTGTCAACCG	8280
GTTACAAAA	GTTGTTAAAG	GTGGACGTCG	TCTTCGTTTC	GCAGCTCTTG	TTGTTGTTGG	8340
GACCACAAT	GGTCGCGTAG	GATTTGGTAC	TGGTAAAGCT	CAAGAAGTTC	CAGAAGCAAT	8400
CGTAAAGCA	GTAGATGATG	CTAAGAAAAA	CTTGATCGAA	GTTCCTATGG	TTGGAACAAC	8460
ATCCCACAC	GAAGTTCTTT	CAGAATTCGG	ТССАССТААА	CU VALLA LA	አ አ ሮሮ ጥር ርጥር ጥ	0520

			544			
AGAAGGTTCT	r ggagttgccc	CTGGTGGTG	AGTTCGTGCC	GTTGTGGAAT	TGGCAGGTGT	858
GGCAGATATT	г асатстааат	CACTTGGTT	TAACACTCC	ATCAACATTO	TTCGTGCAAC	864
TGTTGAAGGT	TTGAAACAAT	TGAAACGCGG	TGAAGAAATI	GCTGCCCTTC	GTGGTATTTC	870
AGTTTCTGAT	TTGGCATAAG	AAAGGGGATA	A AAATGGCTCA	AATTAAAATI	ACTTTGACTA	876
AGTCTCCAAT	CGGACGCATT	CCATCACAAC	GTAAAACTGT	TGTAGCACTT	GGACTTGGCA	882
AATTGAACAG	СТСТСТТАТТ	AAAGAAGATA	ACGCTGCTAT	CCGTGGTATC	ATCACAGCAG	888
ТАТСТСАСТТ	AGTAACAGTT	GAAGAAGTAA	ACTAATGAaG	TTTTAGGGGA	TGTGCACTGT	894
ACCATCCCCT	AAAACTAGAT	ATAGTCATCT	ATGATGACAT	CGTATAGGCG	AGTTGATGGG	9000
GGAGACAACC	TTTTCTCCCT	TATCGGCGCT	AGCATTTTAC	· AAAAGAGGAG	ААААТАААА	9060
TGAAACTTCA	TGAATTGAAA	CCTGCAGAAG	GTTCTCGTAA	AGTACGTAAC	CGCGTTGGTC	9120
GTGGTACTTC	ATCAGGTAAC	GGTAAAACAT	CTGGTCGTGG	TCAAAAAGGT	CAAAAAGCTC	9180
GTAGCGGTGG	CGGAGTTCGC	CTTGGTTTTG	AAGGTGGACA	AACTCCATTG	TTCCGTCGTC	9240
PTCCAAAACG	TGGATTCACT	AACATCAACG	CTAAAGAATA	CGCAATTGTG	AACCTTGACC	9300
AATTGAACGT	CTTTGAAGAT	GGTGCTGAAG	TAACTCCAGT	TGTTCTTATC	GAAGCAGGAA	9360
TTGTTAAAGC	TGAAAAGTCA	GGTATTAAAA	TTCTTGGTAA	CGGTGAGTTG	ACTAAGAAAT	9420
rgactgtga a	AGCAGCTAAA	TTCTCTAAAT	CAGCTGAAGA	AGCTATCACT	GCTAAAGGTG	9480
STTCAGTAGA	AGTCATCTAA	GAGAGGTGAC	CTATGTTTTT	TAAATTATTA	AGAGAAGCTC	9540
TTAAAGTCAA	GCAGGTTCGA	TCAAAAATTT	TATTTACAAT	TTTTATCGTT	TTGGTCTTTC	9600
TATCGGAAC	TAGCATTACA	GTTCCTGGTG	TGAATGCCAA	TAGCTTGAAT	GCTTTAAGTG	9660
SATTATCCTT	CTTAAACATG	TTGAGCTTGG	TGTCGGGGAA	TGCCCTAAAA	AACTTTTCGA	9720
TTTTGCCCT	AGGAGTTAGT	CCCTATATCA	CCGCTTCTAT	TGTTGTCCAA	CTCTTGCAAA	9780
GGATATTTT	ACCCAAGTTT	GTAGAGTGGG	GTAAACAAGG	GGAAGTAGGT	CGAAGAAAAT	9840
GAATCAAGC	TACTCGTTAT	ATTGCTCTAG	TTCTCGCTTT	TGTGCAATCT	ATCGGGATTA	9900
AGCTGGTTT	TAATACCTTG	GCTGGAGCTC	AATTGATTAA	AACTGCTTTA	ACTCCACAAG	9960
TTTTCTGAC	GATTGGTATC	ATCTTAACAG	CTGGTAGTAT	GATTGTCACT	TGGTTGGGTG	10020
GCAAATTAC	AGATAAGGGA	TACGGAAACG	GTGTTTCCAT	GATTATCTTT	GCCGGGATTG	10080
TTCCTCAAT	TCCAGAGATG	ATTCAGGGCA	TCTATGTGGA	CTACTTTGTG	AACGTCCCAA	10140
TAGCCGTAT	CACTTCATCT	ATCATTTTCG	TAATCATTTT	GATTATTACT	GTATTGTTGA	10200
TATTTACTT	TACAACTTAT	GTTCAACAAG	CAGAATACAA	AATTCCAATC	СААТАТАСТА	10260
GGTTGCACA	AGGTGCTCCA	TCTAGCTCTT	ACCTTCCGTT	AAAAGTAAAC	ССТССТССАС	10320

TTATCCCTGT	TATCTTTGCC	AGTTCGATTA	CTGCAGCcTG	CGGCTATTCT	TCAGTTTTTG	10380
AGTGCCACAC	GTCATGATTG	GGCTTGGGTA	AGGGTAGCAC	AAGAGATGTT	GGCAACTACT	10440
TCTCCAACTC	GTATTGCCAT	GTATGCTTTG	TTGATTATTC	TCTTTACATT	CTTCTATACG	10500
TTTGTACAGA	TTAATCCTGA	AAAAGCAGCA	GAGARCCTAC	AAAAGAGTGG	TGCCTATATC	10560
CATGGAGTTC	GTCCTGGTAA	AGGTACAGAA	GAATATATGT	СТАААСТТСТ	TCGTCGTCTT	10620
GCAACTGTTG	GTTCCCTCTT	CCTTGGTGTG	ATTTCCATTT	TACCGATTGC	AGCTAAAGAT	10680
GTATTTGGTC	TTTCTGATGT	TGTTGCCTTT	GGTGGAACAA	GTCTCTTGAT	CATTATCTCT	10740
ACAGGTATCG	AAGGAATCAA	GCAATTGGAA	GGTTACCTAT	TGAAACGTAA	GTATGTTGGT	10800
TTCATGGACA	GAACAGAATA	AAAGTATTTA	CTGAATCAGT	AAATACTGAG	GGAGTGGAGG	10860
TTTAAACTCT	GACATTTGTA	AGAGTTGGAT	CTCCCCTCTT	CTATTTTGTT	TTTAAATCGG	10920
GGTGAAAAGA	CTTTTTGCTT	СТАТТТАААА	ATAAAATAAG	GAGATCAAAT	CATGAATCTT	10980
TTGATTATGG	GCTTACCTGG	TGCAGGTAAG	GGAACTCAAG	CAGCAAAAAT	CGTAGAACAA	11040
TTCCATGTTG	CACATATCTC	AACAGGTGAT	ATGTTCCGCG	CTGCAATGGC	АААТСАААСТ	11100
GAAATGGGTG	TTCTTGCTAA	GTCATATATT	GACAAGGGTG	AATTGGTTCC	TGACGAAGTT	11160
ACAAATGGAA	TCGTAAAAGA	ACGCCTTTCA	CAAGATGATA	TTAAAGAAAC	AGGATTCTTA	11220
TTGGATGGTT	ACCCACGTAC	AATTGAACAA	GCTCATGCCT	TGGACAAAAC	ATTGGCTGAA	11280
CTTGGCATTG	AACTAGAAGG	TGTTATCAAT	ATTGAAGTGA	ACCCTGACAG	CCTTTTGGAA	11340
CGTTTGAGTG	GGCGTATCAT	CCACCGCGTA	ACTGGAGAAA	CTTTCCACAA	GGTCTTTAAC	11400
CCACCAGTTG	ACTATAAAGA	AGAAGATTAC	TACCAACGTG	AAGATGATAA	GCCTGAGACA	11460
GTAAAACGTC	GTTTGGATGT	TAATATTGCT	CAAGGAGAAC	CAATCATTGC	TCACTACCGT	11520
GCCAAAGGTT	TGGTTCATGA	CATCGAAGGT	AATCAAGATA	TCAATGATGT	CTTCTCAGAT	11580
ATTGAAAAAG	TATTGACAAA	TTTGAAATAA	AGCGTTTTTC	ACACTTGCAA	AAATCCGCTA	11640
CAAATGTTAT	ACTGAGATAG	TCTGACTTAT	AATTGTTGTC	TCTGTGTCTA	GAGGCATCGA	11700
ATCGAAATTT	ATGGAGGTGC	TTTTGCGTGG	CAAAAGACGA	TGTGATTGAA	GTTGAAGGCA	11760
AAGTAGTTGA	TACAATGCCG	AATGCAATGT	TTACGGTTGA	ACTTGAAAAT	GGACATCAGA	11820
TTTTAGCAGG	G				. •	11831

(2) INFORMATION FOR SEQ ID NO: 66:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 10726 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

CCCGGCATTT	GAAAGCTATT	CGTGAAGGAT	TTATGATGGC	AATGCCTTTG	ATTTTAGTCG	60
GCTCTTTATT	TCTTATTCTA	ATCAGTTGGC	CTCAAGAGGC	TTTTACAAAT	TGGCTGAATA	120
GTGTTGGATT	GCTAAGTATC	TTGACAACTA	TGAATCAGTC	AACAGTAGCG	ATTATCTCCT	180
TGGTCGCTTG	TTTCGGTATT	GCCTACAGGT	TGTCGGAAGG	ATATGGTACA	GATGGTCCGT	240
CGGCAGGGAT	CATAGCCTTA	TCCAGTTTTG	TATTGATGGC	ACCTCGTTTT	TCGAGTATGG	300
TTTATGATAA	AAATGGGGAG	CAGGTCAAGC	AGTTATTTGG	CGGCGCAATA	CCATTTTCTA	360
GCCTGAATGC	ATCTTCTTTG	TTTATGGCGA	TTACTATTGG	ATTGGTTACA	GCAGAGATTT	420
ATCGTATGTT	TATCCAGCGC	GGAATTACGA	TAAAAATGCC	AAGTGGTGTC	CCAGATGTAG	480
TAAGTAAATC	ATTTTCAGCT	CTTTTATCTG	GTTTTACTAC	TTTTGTTTTG	TGGGCTTTGG	540
TCTTAAAAGG	TCTTGAAGCG	GCAGGAGTTG	CAGGAGGTCT	CAACGGACTC	CTAGGTGCAA	600
TTGTTGGAAC	ACCGCTTAAG	TTAATTGCAG	GAACGCTTCC	AGGTATGATT	CTATGTGTTA	660
TTGTAAACTC	ATTCTTTTGG	TTCTGTGGAG	TTAATGGGGG	ACAAGTTTTA	AATGCTTTTG	720
TAGACCCAGT	TTGGTTACAA	TTTACTACAG	AAAACCAAGA	AGCTGTGGCT	GCAGGACAAA	780
CACTCCAACA	CATTATTACA	TTACCGTTTA	AAGATTTATT	TGTATTTATT	GGTGGCGGTG	840
GAGCGACTAT	TGGTCTTGCG	ATTTGTCTCT	TCCTATTTAG	TAAGAGTCGT	GCGAATAAAA	900
CATTAGGTAA	GCTAGCTATT	ATACCGTCTA	ТТТТТААТАТ	CAATACAGCT	АТТСТАТТТА	960
CGTTTCCAAC	AGTTTTAAAT	CCGATTATGC	TGATTCCGTT	TATTGCTACT	CCTACAATCA	1020
ATGCCTTGAT	TACCTATGTA	TCAATGGCTG	TAGGATTAGT	ACCCTATACA	ACAGGTGTAA	1080
TCCTTCCGTG	GACAATGCCA	CCGATTATAG	GAGGCTTCCT	TGCAACAGGG	GCTAGTTGGC	1140
GAGGAGCTCT	ATTACAAGTT	GTTTTGATTT	TGGTTTCTGT	AGCAATTTAT	TATCCATTCT	1200
TCAAAATTGC	AGATAAACGC	AATCTTGAAA	AAGAAAAAGC	TACTGTTGGA	GGGAAATAAG	1260
ATGGTTATCA	GAGTATTTGA	TCAACAGAAA	AATACTTATT	CTAGCTTTGC	CTTAGAGGAA	1320
TTAAGTTACT	ATATGAATCG	GGTCTTTAAG	ACTAACATAG	AGCTTGTCGA	GGAGAAGGAA	1380
GCGGATATTT	TTGTAGGATT	AGTCAATAAA	GAGGACAGAA	AAGACCATGT	TCTTATCTCA	1440
TTAGACAAGG	GTAAGGGGAG	AATTGAGTCT	AATACAATTG	TAGGTTTACT	TATTGGAATT	1500
TACCGAATGT	ТТСАТGААТТ	TGGGGTTGTG	TATACTAGAC	CAGGGCGCAG	ACATGACTTT	1560
GTTCCAGAGT	TACGATTTGA	AGATTTTTTA	GATAAACAGC	TATCTATAGA	TGAAACAGCC	1620

AGTTACTATC	ATAGGGGAGT	ATGTATAGAG	GGAGCGGATT	CATTTGAAAA	TATACTAGAT	1680
TTCATTGATT	GGCTACCTAA	GATTGGGATG	AACAGTTTTT	TCATCCAGTT	TGAAAATCCT	1740
TACTCTTTTT	TGAAACGTTG	GTATGAACAT	GAATTTAATC	САТАТСТААА	TAAAGAACAA	1800
TTTTCAAATG	AATTAGTACA	AGAATTGAGT	GATAGGTTGG	ATAAAGAATT	GCAAAAAAGA	1860
GGTCTTATTC	ATCATCGTGT	TGGTCATGGA	TGGACAGGTG	AAGTTTTAGG	TTACTCTTCA	1920
AAATTTGGCT	GGGAATCAGG	TCTTAGTATT	TCAGAGGAGA	AGAAACCCTA	TGTCGCTGAA	1980
ATAAACGGGA	AACGAGAATT	GTTTAATACG	GCTCCGATTT	TAACCAGCCT	GGATTTTTCA	2040
AATCCAGATG	TAGCTGATAA	GATGGTAGAA	ATTATCAAGG	ATTATGCCAA	GAAAAGACCT	2100
GATGTTAACT	ACTTACATGT	ATGGTTGTCG	GATGCTCGTA	ATAATATTTG	TGAATGCGAA	2160
AACTGTAGAC	AAGAATTGGT	TTCGGATCAG	TATATTCGTA	TTCTCAATCA	ATTGGATAGG	2220
GCTTTAACGA	GTGAGGGATT	AGATACAAAG	ATTTGTTTTC	TGCTTTATCA	TGAGTTGTTA	2280
TGGGCACCTC	AGAAAGAAAA	ATTAGATAAT	CCTGAACGCT	TTACCATGAT	GTTTGCACCG	2340
ATTACAAGAA	CATTTGAAAT	GAGTTATGCA	GATGTAGATT	TTGACAATTC	CATACCTACG	2400
CCTAAACCTT	ATATGCGTAA	TAAAATTATA	CTTCCGAATT	CTCTTGAGGA	AAATTTATCT	2460
TATCTTTTTG	AGTGGCAAAA	AGCATTTAAA	GGAGATAGTT	TCGTATATGA	CTATCCTTTA	2520
GGGCGTGCTC	ATTATGGCGA	TTTAGGCTAT	ATGAAAATTA	GTCAAACTAT	TTACAGAGAT	2580
GTATCTTATC	TTTCCAACCT	ACATTTGAAC	GGGTACATTT	CGTGTCAAGA	ATTACGTGCC	2640
GGATTCCCTC	ATAATTTTCC	TAATTATGTC	ATGGGGGAAA	TGCTCTGGAA	GAAGACAAGA	2700
AGTTATGAAG	AATTGATTGA	AGAATACTTT	TCTGCTTTGT	ATGGGGAAAA	TTGGCAGTCT	2760
GTTGTTGAAT	ATTTAGAAAA	ATTATCCATT	TATTCCTCTT	GTGATTATTT	TAATGCAATT	2820
GGCAGCCGTC	AAAGTGATGT	TTTAGCGAAT	CATTATTATA	TAGCTTACAA	TCTAGCTGAT	2880
AATTTTTTAC	CAATTATTGA	GGAAAATATT	TCTAAGTTAT	TAAATAGTCA	AAAGGATGAA	2940
TGGAAACAGC	TCAGTTATCA	TCGTGAATAT	GTTGTTAAGA	TGGCGAAGGC	TTTATATCTT	3000
CAAGCAACTG	GAAAAACAAG	GCAAGCTCAA	GATGAATGGA	GAAATGTGTT	GAATTATATC	3060
CGTGGGCACG	AATTGCTATT	TCAATCTAAT	TTGGATGTTT	ATCGTGTAAT	TGAAGTAGCA	3120
AAAAATTACG	CTGGTTTCCA	CTTATAAATC	ATAAGTATAG	AAAATGAACT	AAGGTATTCA	3180
GAGAAGATTG	ATCCTAAATA	TTATGAAATT	TAAGGATTTT	TAAGATATTT	AGGGTCAACT	3240
TTCTATTTAT	ATCGTAGCGA	AGTCATTTTA	ATAATGATGT	GTAAAAGATG	GATCAAGATT	3300
GAGGAGGAAG	AAAGATGAAA	TCAAAAGAAG	AAATAAATAT	GCTTGGTTTT	ACAATTGTCG	3360

			548			
CTTACGCAGG	AGATGCAAGG	TCAGATTTGA	TGGATGCTTT	GGCGTTTGCG	AGAGATGGAT	3420
ATTTTGAACA	GGCAAGAGAA	TTGGTTGAGT	CTGCAAACGA	CTCAATAGTG	TCTGCCCATC	3480
GAGAACAGAC	TAATTTATTA	GCGGAGGAGG	CATATGGAGA	TAATTTTGAA	GTGAGCTTTA	3540
TTATGATTCA	TGGTCAAGAT	ACTTTGATGA	CAACGATGCT	ATTGTATGAT	CAGGTAAAGT	3600
TTTTTATTGA	ТСААТАТСАА	CGAATTCGAA	AGATTGAAGA	ACATATTGGT	TTGCAATGAG	3660
GATTAGTCAT	GGAAAATTTA	CAGGTTAAAG	CCTTACCGAA	GGAGTTTTTA	TTAGGAACTG	3720
CTACCGCTGC	TTATCAAGTA	GAGGGTGCAA	CTAGGGTAGA	TGGCAAAGGA	ATAAATATGT	3780
GGGATGTTTA	TTTGCAAGAA	AATAGTCCGT	TCTTACCAGA	TCCAGCTAGT	GATTTTTATT	3840
ATCGTTACGA	AGAGGATATA	GCTTTGGCGG	CAGAACATGG	TTTGCAGGCT	TTGCGTTTAT	3900
CTATTTCTTG	GGTTCGTATA	TTTCCTGATA	TAGATGGGGA	TGCTAATGTA	TTAGCTGTTC	3960
ATTATTACCA	TAGAGTTTTT	CAGTCTTGCT	TAAAACATAA	TGTGATTCCG	TTTGTTTCTT	4020
TACATCATTT	TGATTCGCCT	CAGAAAATGT	TAGAAACAGG	GGATTGGTTG	AACAGAGAGA	4080
ATATTGATCG	TTTCATACGA	TATGCTCGCT	TTTGTTTCCA	AGAATTTACA	GAAGTCAAGC	4140
ATTGGTTTAC	AATCAATGAA	CTGATGTCTC	TTGCTGCAGG	TCAATATATA	GGAGGTCAGT	4200
TTCCTCCAAA	TCATCATTTT	CAATTATCTG	AAGCAATTCA	AGCGAATCAT	AATATGTTGT	4260
TGGCGCATGC	TCTTGCAGTC	CTCGAATTTC	ATCAATTAGG	GATTGAGGGA	AAGGTAGGTT	4320
GTATTCATGC	TTTAAAGCCA	GGCTATCCTA	TTGATGGGCA	AAAAGAAAAT	ATTTTGGCAG	4380
CTAAACGGTA	TGATGTTTAT	ААТААТАААТ	TTCTATTAGA	TGGAACTTTT	TTGGGCTACT	4440
ACAGTGAGGA	CACGCTTTTT	CACTTGAATC	AAATATTGGA	AGCTAATAAT	TCTAGCTTTA	4500
TTATTGAAGA	TGGTGATTTA	GAAATTATGA	AGAGAGCTGC	ACCTCTTAAT	ACGATGTTTG	4560
GGATGAATTA	TTATCGTTCA	GAATTTATTC	GTGAATACAA	AGGTGAAAAT	AGACAAGAAT	4620
TTAATTCAAC	AGGAATAAAA	GGACAGTCTT	CTTTTAAATT	AAATGCTCTA	GGTGAATTTG	4680
TAAAAAAACC	TGGTATTCCG	ACAACAGATT	GGGATTGGAA	TATTTATCCT	CAAGGGTTAT	4740
TTGATATGTT	GCTTCGTATC	AAAGAAGAAT	ATCCTCAACA	TCCGGTCATT	TATTTAACTG	4800
AAAATGGTAC	AGCCCTTAAA	GAAGTTAAGC	CAGAGGGCGA	GAATGATATT	ATTGATGACA	4860
GTAAGAGAAT	CCGTTATATT	GAGCAACATT	TACACAAAGT	TTTAGAGGCT	CGAGATAGAG	4920
GAGTCAATAT	TCAAGGCTAT	TTTATATGGT	CTTTGCAAGA	TCAATTTTCT	TGGGCGAATG	4980
GCTACAATAA	GCGATATGGT	CTTTTCTTTG	TTGATTATGA	AACACAGAAG	AGATATATTA	5040
AGAAAAGTGC	TCTTTGGGTA	AAAGGGCTAA	AACGGAATTA	AGGTTAGCGA	TTTGACTGAT	5100
GTTTAATATG	TTTTAAATAT	GAGGTTGAAT	TTTTTATAGG	AGGAGTTTTA	TGGATAAGCT	5160

AGT	CGCTGCC	ATTGAAAAGC	AACAAGGGAA	ATTTGAAAAA	ATTTCTACTA	АТААСТАТАТ	5220
GAT	GGCTATT	AAAGATGGAT	TCATTGCTAC	TATGCCTTTA	ATTATGTTTT	CAAGCTTTTT	5280
GAT	GATTATT	ATTATGATTC	СТАААААТТТ	CGGAGTAGAG	TTACCGAGTC	CAGCTATTGT	5340
CTG	GATGAGA	AAAGTGTATA	TGTTAACCAT	GGGAGTTTTG	GGTATTATTG	TTTCAGGGAC	5400
TGT	TGGAAAG	TCATTAGTTG	Gaaatgttaa	CAGAAAAATG	CCTCACGGAA	AGGTAATAAA	5460
TGA	ТАТТТСТ	GCAATGTTGG	CAGCCATATG	TAGTTATCTG	GTATTAACTG	TAACGCTTGT	5520
AGT	TGATGAG	AAGACGGGAT	CTACAAGTTT	GTCGACAAAC	TATTTAGGAT	CTCAAGGATT	5580
GAT	AACTTCG	TTTGTCAGTG	CCTTTATTAC	TGTAAATGTT	TACCGATTCT	GTATTAAGCG	5640
AGA	САТТАСТ	ATTCATTTAC	CTAAGGAAGT	TCCTGGGGCT	ATATCACAAG	CTTTTAGAGA	5700
TAT	TTTCCCT	TTTTCTTTTG	TTTTACTTAT	TAGTGGTTTG	TTAGATATTG	TATCTCGGTT	5760
TAG	TTTAGAT	GTTCCTTTTG	CCCAAGTATT	TCAACAACTA	TTGACTCCTA	TTTTTAAGGG	5820
GGC.	AGAATCA	TATCCTGCTA	TGATGTTGAT	TTGGTTTATG	TGTGCTTTGC	TTTGGTTTGT	5880
TGG	AATTCAT	GGACCATCTA	TTGTCTTACC	TGCTGTTACA	GCTTTGCAAC	TGAGCAATAT	5940
GGA	AGAGAAT	GCTCAACTTC	TTGCAAATGG	GCAGTTCCCT	TATCATTCTT	TAACACCTAA	6000
TTT	CGGGAAT	TATATCGCTG	CTATTGGAGG	AACGGGGGCT	ACCTTTGTTG	TACCATTTAT	6060
TTT	GATTTTC	TTTATGCGGT	СТАААСААТТ	AAAATCGGTA	GGTAAAGCTA	CAATTACTCC	6120
TGT'	PTTATTT	GCGGTAAATG	AACCTCTTCT	ATTTGGTATG	CCTGTTATTT	TGAATCCCTA	6180
TCT:	PTTTGTC	CCTTTTTTGA	TGACTCCACC	AGTGAATGTA	TTTCTAGGAA	AGGTCTTTAT	6240
TGA?	PTTCTTT	GGAATGAATG	GATTTTATAT	CCAGTTACCT	TGGACCTTTC	CTGGTCCCTT	6300
GGGZ	ATTGTTA	ATTGGAACGA	ATTTTCAACT	TATCTCCTTT	GTATTTTTAT	CTTTGATTTT	6360
AGT"	FGTCGAC	ATATTGATTT	ATTTGCCATT	CTGTAGAGCG	TATGATAGAC	AGTTACTGGT	6420
GAA.	AGAAGAT	ATTGCAAGCT	CAAATGATAT	TATTTTAGAG	GAGGATACAA	GTGAAATAAT	6480
TCCT	rggtgag	ATAGATGAAA	TAAAAAGTAA	GGAGTTGAAA	GTACTGGTTC	TTTGTGCAGG	6540
GTC	rggaaca	AGTGCGCAAT	TAGCCAATGC	AATTAACGAG	GGGGCTAACT	TAACAGAGGT	6600
TAG	AGTGATT	GCGAATTCAG	GAGCGTACGG	AGCTCATTAT	GATATTATGG	GTGTTTATGA	6660
TTT	\ATTATT	CTGGCCCCAC	AAGTTCGGAG	TTATTATAGA	GÄGATGAAGG	TGGATGCAGA	6720
AAG?	TTAGGT	ATTCAGATAG	TTGCTACCAG	AGGAATGGAA	ТАТАТТСАТТ	TAACAAAGAG	6780
TCC#	AGTAAA	GCCTTACAAT	TTGTATTGGA	GCATTACCAA	GCTGTGTAGT	AAGTTTTTCC	6840
ATCI	TTTATT	TGAGTAAAGA	TTTTGTTTAC	AGATAGGCTT	GGATTTAAAA	ACGTTCCCCC	6900

TTTTTTAATA	TAAGAATCCC	TCTTTCACAA	TTGTAAAAAG	AGGGATTTTG	TATTTTATCT	6960
CTTAGACCAA	GTTCTCTTCA	TAAAGAGAAG	GAGGATTGGG	TAAATCTCCA	AGCGCCCTGC	7020
AATCATTGCA	AAGGATAGGA	GAATTTTTGA	GATGGGACTA	AAGATTGAGA	AACTAGAAGT	7080
GGTTCCTAGA	ATAGGCCCGA	TATTATTGAA	ACAGCTAAAG	ACAGCGCTGG	TCACGACCAG	7140
AAAATCATTG	CTATCTAGGC	TGACAATAAA	GATAAGCGCT	AGCAAAATCA	TAGCATAGAT	7200
GACAAAGTAC	TTGAGAATCT	TATGCTGGGT	ATCTTTGTCA	ATCACCGTTT	TATTAACATG	7260
GAGGGTCAAA	ACACGGTGGG	GCGATAGGAT	TGACAAAATT	TGGTTTTTGG	CAATTTTTGA	7320
AAGGATGAGG	CCTCGAATAA	TCTTGAGTCC	ACCTGCAGTT	GATCCAGCAG	AGCCACCGAT	7380
TGCCATGAGG	AAAAGGAGGA	TAAACTGGGA	GAAGAGGGC	CAGTTGGTAA	TATCTCCATA	7440
TCCAAAACCA	GTTGTTGTAA	TGATGTTGGA	AACCTGGAAG	AAGGTCATTT	CAAAGCTCTT	7500
TGAAAACCCT	GGGTAGAGGT	AGAGGGTGTT	GAGGCTAATC	AAGCCTGTAG	AAACCAGTAC	7560
AATGACCAAG	TAAGCCCTAA	GCTCTTCATC	TCCAAAGAAG	GCCTTGATGC	GACGGAGCAT	7620
GAGGTAGTAG	TAGAGGTTGA	AATTTACTCC	AAAAACCAGA	ACTCCGATAC	TGACCAGATA	7680
GGTAATCAGT	GAGCTGCCAT	AGTGGGCAAT	TCCGTCGTTA	TAGACGGTAA	AGCCTCCAGT	7740
TCCCGCTGTC	CCCATAGCAA	TAACAAAACT	ATCGTAGAGA	GGCATACCGG	СТАСАТААТА	7800
GATGATGACA	AAGAGGGAGA	AGAGAGCTAG	ATAAAGGAGA	TAGAGAATCT	GGGCAGTGTT	7860
TTTTAGTTTG	GATACAACCT	TGCCAAAAAC	AGGACCTGGA	ACCTCAGCCT	TCATCACCTC	7920
TAGGTGGCTA	TTTTTGGCAT	TGTCCATAAT	AGCAAGTGCA	AAAACAAGCA	CTCCCATCCC	7980
TCCAATCAAG	TGGGTAAAAC	TTCGCCAGAA	GAGGAGGGAA	CGGCTGAGAA	CCGAAACGTC	8040
GTTCAAAATA	CTTGCTCCAG	TAGTTGTAAA	TCCAGAACTA	ATTTCAAAAA	AGGCATCAAT	8100
AAGGCTGGGG	ATTTGCCCAG	AAAAGACAAA	GGGGAGACCA	CCAAAGAAAG	ACCAAAGGAT	8160
CCAACAGAGG	GCAACGATCA	AGACTCCCTC	CTTGGCATAA	ATCCGTTGAT	TTTTTGGCTT	8220
CTGTAAACTC	CCTGAACCGC	CTAACAATAC	GAGAATCCCT	ATGGTCGAAA	AGAGGCTGT	8280
AAAGACTTGG	CTCGATTCAC	GGTAATAGAC	AGCAATCGCA	ACAGGAACCA	AAAGAAGAAC	8340
AGCTTCAATC	AAAAGTAATT	TTGAAAGGAG	GTAACGAATC	ATACTTTTAT	TCATTTCTTA	8400
CCTCGCGATC	AAGTCATAAA	TCTTGGTGAT	GTTTGGCAAC	AAGGTTGTTA	CTAGGAGCTT	8460
STCTCCAACT	TCCAACATAT	CCTCCCCAGT	TGGGAAAATA	GTCTTGCCCT	TTCGAATAAT	8520
GCTGCAATA	AGAACCCCTT	TTTTCAATTT	CAGTTGAGAA	AGAGGTTTGG	CAGTCATTTT	8580
ATTGGCTTCC	TTGATATGGA	ATTGCAGGGT	TTCGATTTGG	CCATTGGCTA	GATGGTGCAT	8640
GCTTGAAGG	TCTGAATACT	GGGCATTAAC	TCGACCACGA	ATAAAGTGCA	TAATCGTATC	8700

TACAGCGATG	CTTTTAGGTG	TGATGATACT	TGAAAAATCA	GGCGCATTGA	TAATCTCGAG	8760
GAGACTGGTA	CGATTGACCT	TAGTAATATT	TTTCTGTACA	CCTACCCTGT	CAAGGAACAT	8820
AGATGTAATC	AGATTTTCCT	CATCGACTCC	TGTTAGAGTC	GCAACGGCAT	CATAGTGTTG	8880
AGCACTTTCT	TCCAGCAGGA	TATCTTTTGC	GGTTCCATCT	CCTTGAACGA	TGTAGAGATT	8940
TGGGAATTTC	TCGCTAAAGA	AGCTGGCGAT	TTCAGGATTG	ATTTCAATGA	CTTTTGTATC	9000
GATACGACTA	TCTTTGAGAA	TACCAAGTAG	ATAATAGGCA	ATTCTACCTG	CCCCAACGAT	9060
GAGAAGGCTC	TTCACGGCGC	GTGATTTAAA	ATAATTATGG	AAGAGTATCA	TATCGACACG	9120
GTTACCAGTG	ACAAAGATTC	TATCTTTATC	CTGTACAGTC	ATGTCACCGC	TTGGAATGAT	9180
AATTTGATGA	TCCCTCTCTA	TCGCACAGAC	AATGACATTA	CCAAATTTTT	TACGAAAATC	9240
AGAAATGGGC	ATTTGGCAAA	GACCGCTGGT	GGACTTGACG	ACAAATTCCA	TGAGGCTAAC	9300
GCGTCCACCA	GCAAAGCGTT	CGACAGACAG	GGCGTTGGGG	AAGTCAATGA	TATTCGCGAT	9360
AGCGCGGGCA	GCCAAGAGCT	CAGGATTAAC	GATAAGAGAA	AAACCGAGAA	TATTCTTTTC	9420
CTTGAAATAA	GAGTTAGAAT	ATTCAGGGTT	CCGCACCCGA	ACGATAGTTT	CTTTAGCTCC	9480
CATTTTCTTG	GCTAGAACTG	CTGCAATCAT	GTTGACTTCA	TCGTGCTCAG	TCAGGGCGAT	9540
AAAGATATCA	CAATCTTGGA	CGCTGGCTTG	CTCAAGAATG	GCAAAATCGG	CCCCGTTACC	9600
AAGGATACCA	ATGATATCAA	AGCGACTGAC	AATATGATTG	AGAACAGCTT	CGTCTTGCTC	9660
AATCAGCAAA	ACATCATGCT	TTTCTGCAAC	CAAGGAGCGA	CAGAGGGCAA	AACCAACTTT	9720
TCCCCCTCCG	ACAAGGATAA	TTTTCATAAT	AAAACCTACT	TTTTCATGAT	GTAACTATCA	9780
TACCCTTTTT	CAAGAAAAA	TGCACCTACT	AGCTAATAAC	AAGAGTTTTT	AGTGAAAATT	9840
CGCTATAAGG	талалстата	CCCTAACCAA	TTGAAATAGC	TATTAGCGAC	TTTCTCTGAA	9900
ATATGGTATG	ATAAAGGATA	TACAAGGAGA	TAAAATGAAT	AATAATTTAC	TGGTATTACA	9960
ATCAGACTTT	GGTCTGGTTG	ATGGTGCGGT	ATCGGCTATG	ATTGGAGTGG	CTTTAGAAGA	10020
GTCTCCAACC	ттааааатас	ATCACTTGAC	GCACGATATC	ACGCCTTATA	ATATTTTTGA	10080
GGGGAGCTAT	CGTCTCTTTC	AGACGGTGGA	TTACTGGCCT	GAGGGAACGA	CGTTTGTATC	10140
GGTTGTCGAT	CCAGGTGTCG	GTTCGAAACG	TAAGAGTGTA	GTTGCCAAGA	CTGCAAAAAA	10200
TCAATACATT	GTCACGCCAG	ATAATGGGAC	GCTTTCCTTT	ATCAAGAAAC	ACGTTGGCAT	10260
TGTAGCCATT	CGTGAGATTT	CTGAGGTGGC	CAATAGGCGT	CAAAACACAG	AGCATTCTTA	10320
TACCTTCCAC	GGTCGTGATG	TCTATGCCTA	TACTGGTGCT	AAACTGGCCA	GTGGTCACAT	10380
TACTTTTGAG	GAAGTAGGGC	CAGAGCTCAG	TGTGGAACAG	ATTGTAGAGC	TTCCAGTCGT	10440

AGCGACCATC ATAGAAGATC ATCTGGTGAA GGGAGCCATT GATATTCTGG ATGTGCGTTT 10500
CGGTTCGCTT TGGACCTCTA TCACACGGGA AGAATTTTAC AAGCTGGAAC CAGAATTTGG 10560
TGATCGTTTT GAAGTGACCA TCTATCATGC TGATATGCTG GTCTATCAAA ATCAGGTTGT 10620
CTATGGCAAA TCATTTGCAG ATGTGAGAAT TGGGCAACCS ATCTTTACTC TCAGCATCTL 10680
CGATTAGCTG GGCAATTCGT TCTAGTTGGA TTTCGTCAAT CAAGGT 10726
(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7163 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

TTATCTTTAA CGATATCAAT CAAGATCTGG TCAATAAAGG GATTGGGGCT TATCGTGAAG 60 TTGGCATCCA AGCCCATGGA TATGTCTGTG ACGTGACAGA CGAGGACGGT ATCCAAGCCA 120 TGGTCAAGCA AATCGAACAA GAGGTTGGTG TCATTGACAT CCTCGTTAAT AACGCTGGTA 180 TTATCCGCCG AGTTCCAATG TGCGAAATGA GCGCCGCTGA TTTCCGTAAG GTCATCGATA 240 TTGACTTAAA CGCACCATTT ATCGTTTCAA AGGCAGTTAT TCCTTCTATG ATAAAGAAAG 300 GGCATGGAAA GATTATCAAT ATTTGTTCGA TGATGAGCGA ACTGGGACGT GAAACAGTTA 360 GCGCTTATGC TGCTGCTAAA GGGGGCTTGA AAATGTTGAC CCGCAACATT GCGTCTGAAT 420 ACGGTGGAGC CAATATCCAA TGTAACGGAA TTGGACCGGG TTATATTGCC ACTCCTCAAA 480 CAGCACCTCT TCGTGAATTG CAAGAAGATG GTTCTCGCCA CCCATTTGAC CAGTTCATCA 540 TTGCAAAAAC ACCTGCTGCA CGTTGGGGAA ATACTGAAGA TTTGATGGGC CCTGCTGTCT 600 TTCTCGCTAG TGATGCCAGC AATTTTGTCA ATGGCCACAT CCTATATGTA GATGGCGGTA 660 TCTTAGCCTA CATCGGAAAA CAACCTGAGT AAAAATAGAA AGAAGATCTT ATGAAAATCG 720 CATTAATCAA TGAAAATAGT CAAGCTAGCA AGAATCACAT TATTTACGAT AGTCTAAAAG 780 AAGCGACAGA TAAAAAAGGC TACCAATTAT TTAACTATGG TATGCGTGGA GAAGAAGGAG 840 AAAGTCAATT AACTTATGTG CAGAACGGAC TAATGGCTGC CATCCTTTTA AATACAAAGG 900 CAGTTGACTT TGTTGTTACC GGCTGTGGTA CGGGTGTAGG GGCTATGCTT GCTTTAAACA 960 GCTTCCCTGG TGTTGTCTGT GGTCTAGCAG TGGACCCAAC TGACGCTTAC CTTTATTCTC 1020 AAATCAATGG TGGTAACGCC TTGTCTATCC CTTATGCCAA AGGATTTGGC TGGGGGGCAG 1080 AACTGACCCT CAAATTGATG TTTGAACGCT TATTTGCTGA AGAAATGGGC GGTGGCTACC 1140

CAAGAGAACG	TGTAATCCCT	GAACAACGCA	ACGCTCGTAT	CTTAAACGAG	GTGAAACAAA	1200
TCACCCACAA	TGATTTGATG	ACCATCCTTA	AAATAATCGA	CCAAGACTTC	CTCAAAGACA	1260
CCATCTCTGG	CAAATACTTC	CAAGAATACT	TCTTTGAAAA	CTGCCAAGAT	GATGAAGTTG	1320
CTGCTTATTT	GAAAGAAGTA	TTAGCCAAGT	AAAGCTATTC	TAAACCAGAA	AGGAACTAAT	1380
GGATGACGAA	AATATTACTG	TTTGGCGAAC	CATTAATTCG	AATTTCACCA	TTAGATGCCA	1440
CCAGTATCGG	CGATCATGTT	GCCAGTTCGA	CTTATTTTGG	CGGATCAGAA	ATTAACATCG	1500
CTTGTAATTT	GCAAGCCCTG	GGTATCTCAA	CGAAAGTTTT	TACCGCACTC	CCTGCCAACG	1560
AGATTGGAGA	TCGTTTTCTC	ACATTCTTGA	AACAGCACCA	AATCGATACC	AGTTCAATCT	1620
GTCGGCTTGG	CGATCGAATC	GGCCTCTACT	ATTTGGAGAA	CGGCTTTGGT	TGTCGTCAAA	1680
GTGAAGTTTT	CTACGATCGT	AAGCATACGA	GTATCAGCCA	GATTCGGCCA	AACATGCTAG	1740
ATATGGATTC	TCTCTTTCAG	GGGATTAGCC	ATTTTCATTT	TAGTGGAATC	ACCGTAGCTA	1800
PCGGTCAAGA	GGTCCGTGCG	ATCCTTCTCC	TACTCTTGGA	AGAAGCCAAG	CGCCGAGGAA	1860
PTGTCGTTTC	AATGGATCTC	AATCTGAGAA	CAAAGATGAT	TTCAGTCCTA	GAAGCCAAGT	1920
ATGAATTTTC	TAAGTTTGCA	CGTTTTACTG	ACTATTGCTT	CGGTATTGAT	CCTCTCATGA	1980
PTGATGACCA	AAATCTAGAG	ATGTTTCCAA	GAGACAGTGC	TAGCCTAGAA	GAGGTGGAAA	2040
ATCGCATGCG	ACTTTTAAAA	GAAGCCTATG	GTTTCAAGGC	CATTTTCCAT	ACCCTCCGCT	2100
CTAGTGATGA	GCAAGACAAA	AATGTCTATC	AAGCCTATGC	TCTAGAAGAA	CTATTTGAAG	2160
AGTCTGTCCA	ACTAAAAACT	GCAGTCTATC	AACGAATTGG	TAGCGGGGAT	GCCTTTATAT	2220
TGGTGCCCT	TTACCAACTA	CTCCATCATT	CCTCCCTAAA	AACTACCATT	GACTTTGCAG	2280
TGCGAGCGC	AACTCTCAAA	TGCACTCTTC	CAGGAGACCA	TCTCTCCACT	тсстсааста	2340
TATTGAAAA	TTTACTGGCA	AATGCACAAG	ATATCATTCG	TTAGGAGAAT	TACATGACCA	2400
ATCAGATAC	GATTATTGAA	СТАААААААС	AAAAAATTGT	CGCTGTTATT	CGAGGAAATA	2460
AAAGGAAGA	AGGACTACAA	GCCTCGATTG	CTTGTATCAA	GGGCGGTATC	AAAGCTATTG	2520
AATCGCCTA	TACCAATCAG	TATGCAGGAC	AAATCATCAA	GGAACTTGTA	GACTTGTATC	2580
GGACGATCA	GAGTGTTTGT	ATCGGTGCAG	GTACTGTGCT	TGATGCCGTA	ACTGCTAGAG	2640
TGCCATTCT	AGCTGGAGCA	AATTACGTTG	TTTCTCCATC	TTTCCATGCT	GAAACTGCGA	2700
AATGTGCAA	TCTCTACAGC	ACACCGTACA	TTCCAGGCTG	TATTACCCTC	ACAGAGATCA	2760
GACTGCACT	TGAAGCCGGT	AGTGAAATCA	TCAAACTCTT	CCCAGGTAGT	ACTCTCAGTC	2820
AGCATATAT	CTCTGCAGTC .	AAGGCACCGA	TCCCACAAGT	TTCCGTAATG	GTAACCGGAG	2880

			554			
GAGTCGGCCT	AAACAACATC	CCTCAATGGT	TCGCTGCTGG	TGCAGATGCC	GTTGGAATTG	2940
GTGGCGAACT	CAATAAACTC	GCTTCCCAAG	GCAACTTTGA	CCGCATCAGC	GAGATTGCCC	3000
AACAGTATAT	TACACTCAGA	таааатсата	ACTACCCGTC	TAACGGGTGG	TTTATCTCAG	3060
AGCTATAAGC	CCAAATCATC	AGCCAGCGCC	TAAAGACGCT	GGCTTTCACG	TTGTTCAAGC	3120
CTTATTGCTC	TTGACTCGTC	ACTTGCCTCT	TTAAGAGACT	TTGGTATTAC	TTACCACTAT	3180
CCCTAAAGGG	ATCCTCATAT	TCTTTTACAC	TCAATTTATC	TAGTGCTATA	GTAGATTGAA	3240
ACTGGAATAG	TACACCTCTG	CTTCTAAAAC	ATTGTTAAAA	ATCGATTTGA	CTGTCCTGAT	3300
CGATTTTGTC	CTGTTCTTAT	TTCATTTTAC	TATATATCAT	ACTTTACTCG	ТТСТСАААТТ	3360
TTCATACTCA	TGAAGAAATC	ATCCACTCGA	ТААТТТСТТТ	AATCTTGACT	АТАТТТСТТА	3420
ATTGTGGCTT	CATTAAGCCC	TACTGGACTT	ACATAATAAC	CTTCCTCCCA	GAAATGCCGA	3480
TTCCCAAACT	TGTACTTGAG	ATTGGCGTGT	TTGTCAAACA	TCATGAGTGC	ACTTTTGCCT	3540
TTTAAATACC	CCATAAAACT	TGAAACACTT	AGCCTCGACG	GAATACTGAC	TAACATGTGT	3600
ACATGGTCTG	GCATTAAGTG	ACCCTCGATC	ATTTCAACAC	CTTTATAACT	ACACAAGCGA	3660
TGAAATATTT	CGTCTAAACT	ACTTCTATAT	TGATTATAGA	TGACTTTTCG	тстатастта	3720
GGGGTGAACA	CAATATGATA	GAACACCTCC	ACTTTGTGTA	TGATAAACTA	TGAGTCTTTT	3780
GTGCCATATT	TTTTCTCCTT	TCGCTTTACA	ATTGGATTGA	ACACCTTTAT	TGTATCGCGT	3840
TTGGAGTTTT	TTTGGTATAA	CCTTCGACGC	GCACCCGTAT	AGCGGGTGGT	TGTTTTGTCT	3900
CGCACCTCAC	GGAGCGAGAC	GGACTAATAT	AGTGGAGTGA	AATAGGATAC	GAACAAATTG	3960
ATTAGGAAAA	TCAAATGAAT	TTATAGAAAT	CTTTTAGCAG	TTATAACGTT	CTATTCTAGT	4020
TTCAAAACGC	TATAGTCACA	TAATAATGAA	GTAAAAAAGG	ATAAGTATCA	ACTTATCCTT	4080
TTTTAAAAGA	AAAATCCGAA	GATATTTGGC	CTTCTTCGGA	TTTTTTCTAT	TTTCCACAGT	4140
TTCATGTAAT	TCATCTAGAT	GATGAACAAA	TTAGTTGTTC	TTTCCTCTAC	GGAATAGATA	4200
AAATGCCCCA	AGTAGCAAGA,	ACCCTAGACT	TGCCAAGATT	GACTGACCTT	CTCCTGTCTG	4260
AGGGAGATTC	TTTTGATCCG	AATGGTTCTT	TTCCTCTTCA	GATTTTTCCT	TTTCTTTTGA	4320
ATTCTGTACT	TGTGGCTGAG	CTGCTTGCTC	TAGCTTTTTA	AAGACTTCCT	GATCTGGAGC	4380
TGATTCCTGG	GTTTCAGGAT	TATAGTAGGC	ААТСТТАТАТ	TCATCCCCTT	CTTTTCGAAT	4440
GGTATAGACT	CCACGTTTCA	AAACTTGGAA	TTGGTTGGAA	ATAGTAGAGA	CAGAATCATC	4500
ATATTTCACA	ATGCCCCAAA	CTCCTTGTTT	AGCATCATAA	ACAGACTGAA	GGGTTTCGTT	4560
ATTTTCGATG	AGGCTACTTT	CTAACTCTTT	TATCATTTGA	TTGAAGGTGG	CACGATCCAC	4620
GTTAGGAATG	AGCATATAGC	CATAAGAATC	TCTATTTTGC	TTATGAGCCT	GACTAATCGT	4680

AAG	AAATTCA	TTTTCAACTT	CCTTGTCTGA	CTGTCCTTCA	TTGATATCCT	TCCAGGCTCC	474
CTT	TTGCAAA	GCCTTACTCA	TACTGATTGA	ACTCTTCTTA	AAGAAAAAG1	AACCAATATT	480
CTT	TTTCGAA	TCGAACGATT	CTAAAAAGAC	ACTTTGGGTT	TCAGGATAAT	CCTTTTCTTG	486
TTC	TGTAAGG	GAGGCTTCTT	TATCATTGAC	ATAGACTTTA	TATGGATTAC	CTGATTCCAG	4920
TTT	TCTCTGG	TCAATTGTAG	TTGCAGCAGT	` ATCTGTTGAA	GTGTTTTGGA	TATTGCTTCC	4980
TAA	AAAGGCG	ATCTTATCCT	TTAGCATAAA	CCAGCTCTTA	TGAGCAGTCA	ATGTTTGATT	5040
CCA	GTTGGTG	AAATCCATGG	TTGCTGTCGC	ATTGGCATCA	TCTAGTTTGC	TCGTTCCAAC	5100
GAA	AGCAGAC	GGTAAAACTT	TACCTGTATC	GCTATCCGCT	CTCTTAGCAT	CCGTCTCTGT	5160
TGT	ACCAGGC	ATCTTATATG	GATTAACTGT	TGGCCAGTAG	CCATCGCTAT	AGTGACTCAA	5220
ATC	GCCATTG	TAAAGATAGA	ACATCCCATC	ACTCGTATAC	CAACCACGTT	TATTTTCCTT	5280
GTT	CATGTGT	TCGTAATTCA	AGGTACGACT	GGAAAAGAGT	GACAAGCCAA	ATCCAAACCC	5340
TTT	CTCTGCA	TTGTACATGG	CTGTTTTATC	CATCTTGTTA	AAGGCAGATA	GGTAACTTGG	5400
TCT	TGGAACA	CTTGCGACTC	CTGCATCACT	TAACAAGGAT	TGCATCAAAC	TGATATCCTT	5460
ATA	AGTCTTC	AAATTCTTAA	AGACATCATA	ATAACTATCC	GATTGAACAA	TGGTCTTCAC	5520
AAG	ACTCTGC	AAACATTGTT	TGGTTTCTCC	TTCAGACATA	TCCGCTATTC	GGTGAATCCC	5580
TCT	TAGTACT	TCTACTGCGG	CCACGTGCCC	CTCGCTATTT	GCACGACTGA	TCGAGCGTCC	5640
ACG	ACTCATA	TCCATCAACT	CTCCATTCAC	CAGCAAAGGA	GCAAACGATT	ТАТСААТССА	5700
GTG	GTACATG	GTTTGCATTT	TATCTTTATC	GATTGGATTC	TTGGTCTTTT	GAATGACTGG	5760
CAA	CAGTTGA	GACAGGCCAT	CAATCAAAAC	ATTCCCATAA	GCACCCGTAT	AGGCAACATT	5820
GGT	STGGTCG	ATATAGGATC	CATCTTGATA	AAAACCTTCA	CCTTGGTCTA	CCAACTTGAA	5880
CACT	TGCTCA	ATCGAGCGAA	TGGTAGAAGA	AATTTCTTGA	TCATCCTTAC	GCAGTAAACC	5940
AGC	TATTACT	TTTACCCTTC	CCATATCAAC	TAAGTTTCCA	CCTAGAGCCT	TGAATGGGTT	6000
ATC	AGTCGTC	TTTCGGAAAT	GTTCGGGATC	TGGTACAAAT	ТТТТСААТСА	CATCTGTATA	6060
TTT	TTAATT	TCCTCATCAG	AGAAGTATTC	TTTCATCAGA	GACAAGGTAT	TGTTGATGGC	6120
ACG <i>P</i>	AGGTGTA	CCGATTTCAT	AATCCCACCA	GTTCCCAACA	ATGCTCTTTT	CACTATTGTA	6180
GACA	ATGTTTA	TGCATCCATT	CCATGGAATC	CCTGACTGTT	CGAACGACAG	TTTCATCTTG-	6240
ATA	TAACGA	GAAGAAGGAT	TGGTCACTTG	CTTGGCCATC	TCCTCCAATT	TCCGATAAGT	6300
GGCA	GTCAGA	TTTGCAGACG	TTTTATAATT	TGAAAATTTT	TCCCACAAAT	AGGTGCGGTC	6360
CGCC	TGACTT	САААТАСТСС	АТАСССТАТС	አርርጥአርርጥ መ፣	CCጥጥCC 3 3 ጥጥ	CCMCCmmm x x	6420

TTTGGCCATC	TGTTCATTTT	TAGAATCATA	556 GTATTGATTC	CCAGCGATGA	TGCCATTCCA	6480
GTCATCCAAA	CGGTCTGTGT	ATGCATCCTT	AACAGAGGCC	AGAATCTTCA	AAGGAATCTT	6540
TTTCACTTCC	TTGCCATCTT	TACTGACAAT	GACATTGGTT	GTCCCTTCCT	TAAGAGGTTC	6600
TAAAATTCCA	TTTTTGACTG	AAGCAACGTC	AGGATTTTCT	ACCTTATAAG	TATAGTCCGC	6660
AAGAGAAAA	ACATGTTTTT	TTCCAATTGG	TAAATCAATC	ТТТТССТСАА	GCTGTTTATC	6720
TGTTTGAGAA	TCCTCAGAAA	GCTGGTCTGC	TACCTCTACC	AGCTCAATAT	CCTTAAAGGA	6780
AACAGTCCCA	GTTCCTGTTT	CATAGAATAA	CTCCAGCTTG	ATTTTATCAA	CATCTAAAGT	6840
CGGGCTATAG	TCTGCTTCAA	TGGTCTGCCA	GTCCTTTGTT	CCTGACGTCG	TTGCAGAATT	6900
CCACAATCGC	TTGTCCTTAC	CACTTTCCTC	AATGATACGA	ACTTTGGCAA	TCCCGATTTT	6960
ATTATCTGTT	TTAATCTTGA	AACGCAGTTT	ATACTTTTTC	TTAGCTTCAA	TAGGAACCAT	7020
ACGGTGAAGC	GCTGCCCTTA	ATTTCTCATG	GCTTGAGATA	GTGATAGCCC	CATCCTTAGC	7080
CTCAATGACT	CGAGTTGAGG	CATCTGCACT	ATTCTTCTGG	TCTACCCAAG	CTGACCACCC	7140
CCTGAGCTTT	GCTTCCTGTC	CGG				7163
(2) INFORMA	TION FOR SE	Q ID NO: 68):			
	QUENCE CHAR					

- (A) LENGTH: 9244 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

CGTTATAACA	TACATGTAAG	CGGTACCCAA	AATGGTGCCA	AGTCAAAATT	TTTAAGGAGG	60
AAAATACATG	TCTTCACATC	CAATTCAGGT	CTTCTCAGAA	ATTGGGAAAC	TGAAAAAGT	120
TATGTTGCAC	CGTCCAGGCA	AGGAGTTAGA	AAACTTGTTG	CCGGACTATC	TTGAAAGGCT	180
TCTTTTTGAT	GATATTCCTT	TCTTGGAAGA	TGCTCAAAAA	GAACATGATG	CATTTGCCCA	240
AGCTCTTCGC	GATGAAGGAA	TTGAGGTTCT	CTACCTAGAA	CAACTCGCTG	CTGAATCATT	300
GACCTCTCCA	GAAATCCGCG	ATCAATTTAT	CGAGGAATAC	TTAGACGAAG	CCAACATCCG	360
TGATCGTCAA	ACCAAGGTTG	CTATTCGTGA	ATTGCTTCAC	GGCATCAAGG	ACAACCAAGA	420
ATTGGTTGAA	AAAACAATGG	CTGGGATTCA	aaaagttgaa	TTGCCAGAAA	TTCCTGACGA	480
AGCTAAAGAT	CTAACTGACT	TAGTTGAATC	AGAGTATCCA	TTTGCAATTG	ACCCGATGCC	540
AAACCTCTAT	TTCACTCGCG	ACCCATTTGC	AACAATTGGA	AACGCCGTAT	CGCTTAACCA	600
CATGTTTGCA	GACACTCGTA	ACCGTGAAAC	ACTCTACGGT	AAGTATATCT	тсалатасса	660

CCCAATO	TAT	GGCGGAAAAG	TGGATTTGGT	CTACAACCGT	GAAGAAGATA	CGCGTATCGA	720
AGGTGG <i>i</i>	AGAC	GAGTTAGTTC	TTTCTAAAGA	CGTCCTTGCA	GTAGGTATCT	CTCAACGTAC	780
AGACGC#	AGCT	TCTATCGAAA	AACTTTTGGT	СААСАТСТТС	AAGAAAAATG	TTGGCTTCAA	840
GAAAGTT	PTTG	GCCTTTGAAT	TTGCTAACAA	CCGTAAATTC	ATGCACTTGG	ATACTGTCTT	900
CACTATO	GTA	GACTATGACA	AGTTCACTAT	TCACCCAGAA	ATCGAAGGCG	ACCTTCACGT	960
TTACTC#	AGTT	ACTTACGAAA	ACGAAAAACT	TAAAATCGTT	GAAGAGAAAG	GTGACTTAGC	1020
rgaact1	гстт	GCTCAAAACC	TTGGTGTAGA	AAAAGTTCAT	TTGATTCGTT	GCGGTGGTGG	1080
СААТАТО	GTA	GCAGCTGCGC	GTGAACAATG	GAACGACGGT	TCTAACACTT	TGACCATCGC	1140
ACCTGGT	rgtg	GTAGTTGTTT	ATGACCGCAA	TACCGTGACC	AATAAGATTT	TGGAAGAATA	1200
CGGGCTI	rcgc	TTGATTAAGA	TTCGCGGAAG	TGAATTGGTT	CGGGGCCGTG	GTGGACCTCG	1260
PTGTATO	STCT	ATGCCATTTG	AACGTGAAGA	AGTGTAATCG	CTGTTCGATA	TTCGTCAATA	1320
GAAAATO	STAA	AAAATAGAAA	GAGGAAATAA	TAAAATGACA	AATTCAGTAT	TCCAAGGACG	1380
CAGCTTC	TTA	GCAGAAAAAG	ACTTTACCCG	TGCAGAGTTA	GAATACCTTA	TTGGTCTTTC	1440
AGCTCAC	TTG	AAAGATTTGA	AAAAACGCAA	TATTCAACAC	CACTACCTTG	CTGGCAAGAA	1500
PATCGCT	CTC	CTATTTGAAA	AAACATCTAC	TCGTACTCGT	GCAGCCTTTA	CAACTGCGGC	1560
ratcgac	CTT	GGTGCTCACC	CAGAATACCT	CGGAGCAAAT	GATATTCAGT	TGGGTAAAAA	1620
AGAATCI	PACT	GAAGATACTG	CTAAAGTATT	GGGACGTATG	TTTGACGGGA	TTGAATTCCG	1680
CGGATTC	CAGC	CAACGTATGG	TTGAAGAATT	GGCAGAATTC	TCAGGCGTTC	CAGTATGGAA	1740
CGGTCTA	ACT	GACGAATGGC	ACCCAACTCA	AATGCTCGCT	GACTACTTGA	CTGTTCAAGA	1800
AAACTTC	CGGT	CGCTTGGAAG	GCTTGACATT	GGTATACTGT	GGTGATGGAC	GTAACAACGT	1860
rgccaac	CAGC	TTGCTCGTAA	CAGGTGCTAT	CCTTGGTGTC	AATGTTCACA	TCTTCTCACC	1920
AAAAGAA	CTC	TTCCCAGAAA	AAGAAATCGT	TGAATTGGCA	GAAGGATTTG	CTAAAGAAAG	1980
rggcgca	CAT	GTTCTCATCA	CTGAAGATGC	TGATGAAGCA	GTTAAAGATG	CAGACGTTCT	2040
TACACA	GAC	GTTTGGGTAT	CAATGGGTGA	AGAAGACAAA	TTCGCAGAAC	GTGTAGCTCT	2100
CTTAAA	CCT	TACCAAGTCA	ATATGGACTT	AGTTAAAAAA	GCAGGCAATG	AAAACTTGAT	2160
CTTCCTA	CAC	TGCTTGCCAG	CATTCCACGA	TACTCACACT	GTTTATGGTA	AAGACGTTGC	2220
rgaaaa?	TTT	GGTGTAGAAG	AAATGGAAGT	AACAGACGAA	GTCTTCCGCA	GCAAGTACGC	2280
rcgccac	TTC	GATCAAGCAG	AAAACCGTAT	GCACACTATC	AAAGCTGTTA	TGGCTGCTAC	2340
ACTTGGT	AAC	СТТТАТАТТС	CTAAAGTATA	ATTTTAGATA	ATAAACCGTC	TACCAACAGC	2400

558 TATGAGGGCT GCGACTAATA GCTTTAGTCC GGTCCTCTTT TATGTAATGG TAATCTATTA 2460 TTTCTTATAA AATATGTGAA AAATCATTAA ATTGAAATCT AAACGCATTC TATTGAGTGT 2520 GATAAAGGAG AATTTATGGC AAATCGTAAA ATTGTAGTAG CTTTGGGAGG AAATGCGATT 2580 CTTTCTTCTG ACCCATCAGC AAAGGCTCAA CAAGAAGCTT TAGTTGAAAC AGCTAAGCAT 2640 CTTGTAAAAT TGATTAAAAA TGGAGATGAT CTGATTATCA CTCACGGTAA TGGACCTCAA 2700 GTTGGGAATC TCTTGCTCCA ACATTTGGCA TCAGACTCTG AAAAGAACCC TGCCTTCCCA 2760 CTCGACTCAC TTGTCGCTAT GACAGAAGGT AGCATCGGTT TCTGGTTGAA AAATGCTTTG 2820 CAAAATGCTC TCTTGGATGA AGGCATCGAA AAAAATGTTG CCTCTGTTGT AACGCAAGTT 2880 GTCGTAGATA AAAATGATCC AGCTTTTGTT AACTTGAGTA AACCAATCGG TCCTTTCTAT 2940 TCAGAAGAAG AAGCAAAAGC AGAAGCCGAA AAAAGCGGAG CGACTTTCAA GGAAGATGCT 3000 GGCCGTGGCT GGCGTAAGGT CGTTGCCTCA CCAAAACCTG TTGACATCAA AGAAATTGAA 3060 ACCATCCGTA CTCTTTAAA TAATGGTCAA GTCGTCGTAG CTGCAGGTGG TGGCGGTATT 3120 CCCGTCGTCA AAGAAAACAA TGGACATTTG ACTGGTGTCG AAGCGGTTAT TGATAAAGAC 3180 TTCGCTTCCC AACGTTTGGC AGAATTGGTT GATGCAGACC TCTTCATCGT TTTGACAGGT 3240 GTAGATTATG TATTTGTTAA CTACAACAAG CCAAACCAGG AAAAATTGGA ACATGTGAAT 3300 GTTGCCCAGC TGGAAGAATA TATCAAACAA GATCAGTTTG CACCAGGTAG CATGCTTCCA 3360 AAAGTAGAAG CAGCTATCGC TTTTGTCAAT GGTCGTCCAG AAGGAAAAGC AGTTATTACT 3420 TCCCTTGAAA ATCTAGGCGC CTTGATTGAA TCTGAAAGCG GAACAATTAT TGAAAAAGGA 3480 TAAGTTGTTT TACTAATAAG ATGTATTCTA TTTCTAGTAT CTTTATATCA AATTAGAAAT 3540 TATTCTTGAA AACATGTACA ATATTTCAAA AGATACTAGT TTTAGACTTT AATATGGTAA 3600 AACAAATATA AATAGAAAGC GTTTTCTTGA ATGTTTATTT AAGAAAGTAG TTGGTTTTTT 3660 ACACTTTGTT AGACATCAGG AGGAAAAACA AATGAGTGAA AAAGCTAAAA AAGGGTTTAA 3720 GATGCCTTCA TCTTACACCG TATTATTGAT AATCATTGCT ATTATGGCAG TGCTAACTTG 3780 GTTTATCCCT GCGGGGCCT TTATAGAAGG TATTTACGAG ACTCAGCCTC AAAATCCACA 3840 AGGGATTTGG GATGTCCTCA TGGCACCGAT TCGGGCTATG CTAGGTACTC ATCCAGAGGA 3900 AGGTTCGCTC ATTAAAGAAA CGAGCGCAGC GATTGATGTA GCCTTCTTCA TCCTTATGGT 3960 TGGTGGTTTC CTTGGCATTG TCAACAAAAC TGGTGCTCTT GACGTAGGGA TTGCCTCTAT 4020 CGTGAAGAAG TATAAGGGCC GCGAAAAAAT GTTAATTTTG GTACTGATGC CTTTGTTTGC

CCTCGGTGGT ACAACTTATG GTATGGGTGA AGAAACAATG GCCTTCTATC CACTCCTTGT

GCCAGTTATG ATGGCCGTTG GTTTTGATAG CCTGACTGGT GTTGCAATTA TTTTGCTCGG

4080

4140

TTCTCAAATC	GGCTGTTTGG	CATCTACTCT	GAATCCATTT	GCGACAGGTA	TTGCTTCAGC	4260
GACTGCGGGA	GTTGGTACAG	GGGACGGTAT	CGTACTTCGT	CTGATCTTCT	GGGTTACCTT	4320
GACTGCTCTT	AGTACTTGGT	TTGTTTACCG	TTATGCGGAT	AAGATTCAAA	AAGATCCGAC	4380
TAAGTCACTG	GTTTATAGTA	CTCGCAAAGA	AGATTTGAAA	CACTTTAACG	TAGAAGAATC	4440
TTCATCTGTA	GAATCTACAC	TTAGCAGCAA	ACAAAAATCA	GTTCTCTTCT	TATTTGTGTT	4500
GACATTCATC	TTGATGGTAT	TGAGCTTCAT	TCCATGGACA	GACCTTGGCG	TTACCATTTT	4560
TGATGACTTT	AATACTTGGT	TGACTGGTCT	TCCAGTTATT	GGTAATATTG	TCGGTTCATC	4620
TACTTCTGCA	CTAGGTACTT	GGTACTTCCC	AGAAGGCGCA	ATGCTCTTTG	CCTTTATGGG	4680
TATCCTGATT	GGTGTTATTT	ATGGTCTTAA	AGAAGATAAG	ATTATCTCTT	CCTTCATGAA	4740
TGGTGCTGCT	GACTTGCTCA	GTGTTGCCTT	GATCGTAGCG	ATTGCTCGTG	GTATTCAAGT	4800
TATCATGAAC	GACGGTATGA	TTACCGATAC	AATCCTCAAC	TGGGGTAAAG	AAGGCTTGAG	4860
CGGTCTATCT	TCACAAGTCT	TTATCGTTGT	AACTTATATC	TTCTATCTAC	CTATGTCATT	4920
CTTGATCCCA	TCTTCATCTG	GTCTTGCCAG	CGCAACTATG	GGTATCATGG	CTCCACTTGG	4980
AGAATTTGTA	AATGTCCGTC	CTAGCTTGAT	TATCACTGCT	TACCAATCTG	CTTCAGGTGT	5040
CTTGAACTTG	ATTGCACCAA	CATCTGGTAT	TGTGATGGGA	GCTCTTGCAC	TTGGACGTAT	5100
CAACATTGGT	ACTTGGTGGA	AATTCATGGG	CAAACTCGTA	GTCGCTATTA	TTGTAGTGAC	5160
CATCGCCCTT	CTTCTCCTTG	GAACCTTCCT	TCCATTCCTA	TAAAATAGTG	AGTGAGGTGA	5220
TTCCATGAAA	ATAGATATAA	CAAATCAAGT	TAAAGATGAA	TTTCTTATAT	CATTAAAAAC	5280
CTTGATTTCC	TATCCTTCAG	TACTCAATGA	AGGAGAAAAT	GGAACACCTT	TTGGACAAGC	5340
AATCCAAGAT	GTCCTAGAAA	AAACTTTAGA	GATTTGTCGA	GACATAGGTT	TCACTACCTA	5400
TCTTGACCCT	AAAGGTTATT	ACGGATATGC	AGAAATCGGT	CAGGGAGCAG	AGCTTCTGGC	5460
CATTCTCTGT	CATTTGGATG	TTGTTCCATC	AGGTGATGAA	GCAGATTGGC	AGACACCGCC	5520
ATTTGAAGCA	ACTATCAAAG	ACGGCTGGGT	ATTCGGACGT	GGTGTCCAAG	ATGATAAAGG	5580
CCCTTCGCTC	GCAGCTCTCT	ATGCAGTAAA	AAGCTTGCTG	GACCAAGGTA	TTCAGTTCAA	5640
AAAGCGCGTA	CGCTTTATCT	TTGGTACCGA	TGAGGAAACC	CTCTGGCGCT	GCATGGCACG	5700
CTACAATACC	ATCGAAGAAC	AGGCCAGTAT	GGGCTTTGCA	CCTGACTCAT	CTTTTCCTCT	- 5760
GACCTATGCT	GAAAAAGGGC	TTCTACAGGT	CAAACTTCAT	GGCCCTGGAT	CGGATCAACT	5820
AGAGCTTGAA	GTAGGAGGCG	CCTTTAACGT	TGTACCAGAC	AAGGCCAACT	ACCAAGGTCT	5880
CCTCTATGAA	CAGGTTTGTA	ACGGTCTCAA	AGAAGCTGGT	TATGATTACC	AAACCACTGA	5940

ACAAACCGTA ACGGTTCTCG GAGTGCCAAA GCATGCTAAG GATGCTAGTC AAGGTATCAA TGCTGTCATC CGACTAGCTA CCATTCTTGC TCCTCTCCAA GAACACCCTG CTCTCAGTTT 6000 TCTTGCAACA CAAGCAGGTC AAGACGGCAC AGGAAGACAA ATCTTTGGTG ATATAGCAGA 6060 TGAACCTTCT GGTCACCTAT CCTTTAATGT CGCAGGTCTC ATGATCAATC ATGAACGTTC 6120 TGAAATCCGT ATTGACATTC GGACTCCTGT CTTAGCTGAC AAGGAAGAAC TAGTAGAGTT 6180 GCTTACAAGA TGTGCACAAA ACTACCAACT CCGCTACGAA GAGTTTGACT ATCTAGCGCC 6240 TCTATACGTC GCAGAAGACA GTAAACTCGT TAGCACACTG ATGCAAATCT ACCAAGAAAA 6300 GACTGGCGAT AACAGTCCTG CTATTTCATC CGGTGGTGCC ACTTTTGCTC GCACCATGCC 6360 AAATTGTGTA GCCTTCGGCG CCTTATTCCC AGGAGCGAAG CAGACAGAAC ATCAGGCAAA 6420 TGAATGTGCC GTTCTAGAAG ATTTGTACCG TGCTATGGAT ATTTATGCCG AAGCCGTCTA 6480 TCGACTTGCA ACTTAATCAG GCAACTGTTT CTACCAAAAA AAATCGACCG ATTAATGAAC 6540 TGCACCCCAA AAGTTAGACA GAATAAATCT AACTTTTGGG GTGTTTTATT ATGAAATTGA 6600 GTTATGAAGA TAAAGTTCAG ATCTATGAAC TAAGAAAGCA AGGACAAAGC TTCAAACAGC 6660 TTTCAAAAAG ATTTGGTGTG GATGTTTCTG GTCTAAAGTC ATCTGAATCT TTGAGATGAG 6720 CTTTATAAAT CGCTTTTTTC AGTTTTTGCA CTGGTGTTTC GATAAACTCA AACTTTTTAG 6780 CCGTGGTATT GCCTGATTTT ATAGTATATT GAAACTAGAA TAGTACACCT CTCCTTCTAA 6840 AACATTTTTA GAAATCGATT TGACTGTCCT GATCGATTTG TCCTGTTCTT ATTTCATTTT 6900 ACTATATTG AGCCACTTCG TCTTTAACGG CTTTATTCAT AAGCTCTTGT AATTTTTCTT 6960 TACTATCAAT TACTTCTGAT TTTCCGTTGT AATTTATTGT AATAGGTTTT AACTTACCTA 7020 ATTTCTCGAC ACGCTCATTA ATTTGATCTT TTTTGAAGGC TGCTTATGTT TTTCCTAAGA 7080 TTTTTCAAA AATATATTA TCAGATAGCG GTTTGTCTTC TTCTTCAGCT TGGTTTTTGT 7140 ATTAATTTGA AACATAAGGA ACAAATCCTT CATAGTAACC TAATGCTCCC ATAAGTTCAA 7200 AAGCTTGTTT TCTAATTCAA ACCATTGCAA CTCAGATTTC AGCTTTTCAG ATAAATCCTG 7260 CTCATCCAAA TAATGACTTG AAATTAGTGC TGAACTCGTT TCTGTATCCT GTACAGGCTG 7320 AGCACCCATA CCAGCAAAAA ATAAACTCGT TCCTAGCAAG ACCGAACAAG CTCCTATTGC 7380 ATATGGCCTC AAAGAAAAAC GCTGCTTTCT CTCAAATTGA AATTCTTTCA TCCCATCTCC 7440 CATCATTCAT TATTACTGTA TATTTTGTAT ATCAGAAATA GTTTGTATTC ACAAATCTTT 7500 CTAGTTATTC CCTTATCATT CCTAATTAAG GGAGATAACA TACAATAATT TTTAGTTAAA 7560 TGTATATCGA TGTTTTTGT TTTTCTTAAT AAACGCAATA CAAAAAGAGC CTGTTACCAA 7620 GCTCTTTGTA CTCAATGAAA ATCAAAGAGC AAATTAGGAA ACTAGCCACA GGTTGCTCAA 7680 7740

AACACCGTTT	TGAGGTTGCA	GATAGAACTG	ACGAAgTCAG	CTCAAAACAC	TGTTTTGAGG	7800
TTGCAGATAG	AACTGACGAA	GTCAGTAACA	TCTATACGGC	AAGGCGACGC	TGACGTGGTT	7860
TGAAGAGATT	TTCGAAGAGT	ATTAGTCTAT	ТАТТТСТТСТ	CAGCGCGAAG	GGCTGACAAG	7920
ATTTGTGTTC	GGATATCATC	CACACCATTT	GGAGTATTTG	GTAAAAAGAT	AGTTTGATTT	7980
CCTTTAGAGG	CAAAGGTATT	CAAGGTATCC	AAATACTGGT	TGGTCAAGAG	GATAGACATG	8040
ATTTGTTCTT	CTGTCATGCC	AACATTGGCT	TCCTTGAGTT	CGGTGATAGA	CTCTGCCAAT	8100
CCATCCACAA	TCGCCTTACG	TTGTTGGGCA	ATCCCCACAC	CATGAAGGCG	GTCTTTTTCT	8160
GCTTCTGCTT	CAGCTGCAGT	GACAATTTTA	ATCTTGTCAG	CTTCCGCCAA	TTCTTGTGCT	8220
GCGACCCGCT	TACGTTGCGC	CGCATTGATT	TCATTCATGG	ATTGCTTAAC	TTCTGCATCT	8280
GGTTCGACCT	TGGTAATCAA	GGTTTTCACG	ATAATGTAGC	CGTAAGTGGT	CATTTCTTCT	8340
GCTACTTGGT	GTTGAACTTC	AAGGGCAATC	TCATCTTTTT	TCTCAAACAA	TTCATCCAAG	8400
GTTAATTTTG	GAACAGAAGA	GCGAAGAGCA	TCTTCGATAT	AAGATTTAAT	CTGAGATTCT	8460
GGACGTATGA	GTTTATAGTA	AGCATCTGTC	ACGCTCTGCT	CGTTGACACG	GTACTGAGTC	8520
GCTACATTCA	TCATAACGAA	CACATTGTCC	TTGGTCTTAG	TCTCAACCAC	AATATCACTT	8580
TGCAACAAGC	GCAACTGAAT	CCGTGCTGCA	ATCGAGTCAA	TCCCAAAAGG	CAAGCGAATA	8640
TGAATACCGC	TATTAGCAAC	CTTTTGGTAT	TTCCCAAAGC	GTTCAATAAT	CGCCACCGAC	8700
TGCTGACGAA	CCACATAAAC	TGTACTCAGT	GTGACTATCA	CCAATAGGAG	CACACAAACA	8760
ATCAGAAAAA	TCATGAAAAA	TATTGCCATA	ATGGAACCTC	CACAAGTATT	TTTCTAGTAT	8820
TATAGCACAT	TTAAAGAAGG	CTGTGCCGTT	TTTACTGCGA	TTTTTCCTGA	AATGTCAATA	8880
ATTAGAGGTG	AATTGTCCTA	TTGTCGTCCA	ATCTCTTGCT	ААААТААСТС	TTTATAAAAG	8940
GCAATCGTTT	CTTCTAAGGT	TGGCATAAAT	GGATTTCCTG	GTGCGCAGGC	ATCAATCAAG	9000
GCATTCTTAG	AAAGGTATTC	AAAGTCGAAA	TCTTTTTCTT	CAATACCAAG	TTCAGTCAGT	9060
TTCTTAGGAA	TACCTACTGT	CTCAGAAAGC	TTCTCAATCT	CAGCAATCGC	ATAATCGGCA	9120
CATTCTTGAT	CTGATTTACC	TTCTACATGA	AGTCCCAAGG	CTTTGGCAAC	ATTGCGGAAA	9180
GCTTCTGGTA	CACGTTTAGC	ATTTTCACGT	TCTATAACTG	GTAGCAACAT	GGCACAGCAC	9240
ACGG						9244

(2) INFORMATION FOR SEQ ID NO: 69:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 8898 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

562

(D) TOPOLOGY: linear

GATCTGAACT TTATCATCAT AACTTAATTT CATAATAAAA ACACCCCAAA AGTTAGATTT

(xi) SEQUENCE DESCRIPTION: SEO ID NO: 69:

60 TTTCTGTCTA ACTTTTGGGG TGTAGTTCAG TCATTGGACT GACGTTTTTT TGTATGCTTA 120 TTTTGATTTG ATGTAGTTGA TACCATCTGC TTTTGGTGCG ACTGCTTTTC CAAAGAAGGC 180 TGCTAAGACA AGAATTGTCA AAACATAAGG TGCAATTTGA AGATAAACCG CTGGCACTCC 240 TTGTAGGAAC GGCAATTGAG AACCGATAAC AGCCAAACTT TGTGAAAGTC CAAAGAAGAG 300 ACTAGAAAGC ATAGCACCGA TTGGATTCCA TTTCCCAAAG ATCATCGCAG CAAGGGCGAT 360 AAATCCAGGT CCAACAATAG TTGTCACTGA GAAGTTAACT GAGATTGATT GCGCATAAAT 420 CGCTCCGCCA ATTCCACCTA GAAAACCTGA AATAATAACC CCTAAATATC TCATCTTGTA 480 GACGTTGATT CCCAAGGTAT CCGCTGCTTG AGGATGTTCA CCGACAGAGC GGAGACGAAG 540 ACCAAATTGA GTCTTAAAGA GAATAAACCA AGCAAGGAAT GAGAAGGCAA TCGCCAGATA 600 ACCAAGTAGA CTAGTTGACT TGAAGAAGAT ATCACCAATC ACTGGGATAT TTGCCAAGAC 660 TGGGAAATCA AAGCGTCCAA AAGTTTGACT TAGGTTGTCG GTTTGTCCTT TGTTATAAAG 720 AACTTTAACT AAGAAAACAG CCAAGGCAGG CGCCATCAAG TTCAATACCG TACCGCTGAC 780 AACATGGTCT GCACGGAAAT GAACCGTCGC TGCTGCGTGG ATGATAGAGA AAACACTACC 840 AACCAATCCT GCTACAAGCA AGGATAGCCA TGGAGTTGCT GCTCCAAATT GTTCTGCAAA 900 TTCAAGGTTA AAGACAACTC CAGAAAAGGC ACCCATAACC ATAATTCCTT CAAGGCCAAC 960 GTTTACCACA CCACCACGTT CAGAGAAAAC ACCACCGATA CTTGTAAAGA TGAGAGGTGC 1020 TGAGTAAATC AGCATAGAAG ACACCAAGAG GGGGAGCAAG GTTATAATAG ACATCTTTAC 1080 TTACCTCCTT TAACTTGTTT TTTCGGTTTG ACAAAGCGTT CGATAAGGTA ATGAACACTG 1140 ACAAAGAAGA TAATAGACGC TGTTACAATG CTGACAAGCT CAGATGGTAC CTGCGCCGCA 1200 TTCATACCAG GAGCCCCAAC TTGGAGAACG CCAAATAGGA AGGCTGCAAA GAGTATACCA 1260 ATTGGTGAGT TGGCCGCAAG CAAACTAACC GCCATTCCGT TAAATCCGAT AGCTAATGAC 1320 GAACCTTGAA CATAGACGTT CTGGAAGGTT CCCAAACCTT CAACAGCTCC ACCAAGACCT 1380 GCCAAGGCAC CTGAAATAAT CATAGATAGG ATAATAGTCC GCTTGGCAGA AATACCAGCA 1440 TATTCTGAAG CATGTGGATT AAGACCAACT GCACGGATTT CAAAACCAAG AGTTGTTTTC 1500 TTGAGCATGA ACCAAATAAC TGCAACGGCA ATGATGGCAA AGAAAATACC AATATTCATC 1560 CGTGAGTTAC CAGTCAACTC AGCCAACCAA GGTGTCTGAT AGGTTGCATT AGCCCCAACA 1620

TAGGECCTAA GAATACCTGG AATCGETCCG ACAATCCCAC CAGCAATCAA GGCAATCACG ATGGTTGCTA GAATCATCAA GGGACGGGC ATATCTGGAT GCGACAGGC AAACCAACCA 1 CTGAGAATCC AACCTGCCAA AGCCTGACCA GGAAGTCCGA CGTTAAAGAA ACCAGCTCGA 1 CTGGCAACGG CAAAACCAAG ACCAATCAAG ACCAGAGGAC CCATAGCAC GAAATTTCT 1 CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA 2 CTATAACCGA AGATCCACAT GACAATGGCT CCGAGTAAAA TTCCTAGGAA TACAGAAATC 2 CAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA 2 CAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA 2 CAATCCCACG AAATTTGTTG TAATTTTTA GACATCACTC TTCTCCTTTC CCAAGTTTCC 2 CACCAGCCATC AAGACACCAA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG 2 CACCAGCCACC AAGGACACA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG 2 CAACCGCACC AAGGACCAA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG 2 CAACCCACCAC CCAACCCACA GTTCTTGTTT ATCAGCCTCT TCAATCAAGC GTTTGTGGAT 2 CAACCCACCA CCAACCCACA GTTCGCCATT ACCAGCTCT TCAATCAAGC GTTTGTGGAT 2 CACCGGCGAAC ACCAGGACAG CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG 2 CTGCAGGAACT AATTCACGGG CAATAATTCC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC 2 CTGCAGGAACT AATTCACTGG CAACCCACG ATCAAACTCT TCCATCAGCT TTTTAGCATA 2 CAGAGTAATA TTTGAATAAT TCAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT 2 CTGCAGGAAC ATATTTTCAG ATATCATCAT TTCCAAAACTCT TCCATCAGCT TTTTAGCATA 2 CTGCAGGAAC ATATTTTCAG ATATCATCAT TTCCAAAATCC AGCCATCAC GGTGACGGTC 2 CTCCTCTTTT AGCCCAACAC TTAGTTCTG AACCTACCA ACACCTGTAA TGGCTTGAAT 2 CAGTTCCAAGGA AGATTTTTAA CACCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT 2 CAGTTCCAAGGAC AGATTTTTAA CACCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT 2 CAGTTCCAAGGAC AGACTTTTC TTGGTTTAGA ACCATCAC ACAATCTCT CACCAGAAC 3 CATCCAAGGAC AGATTTTTAA CACCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT 3 CACTCCACACA TTAGTTCC CACAATCACC ATGGTACCA ACAATCTCTC CACCAGAAC 3 CTTCCTTGTTTAAAATTTC CACAGTTACA ACCACTGTTT CAACGGTTTC 3 CACTCCACCACA TACATTTCC CACAATCACC ATTGGTACCA ACAATCTCTC AACCGTTTC 3 CACTCCACCACA TAAAGTGTT TTAAAATTCC TTCTTTGACA ACATTTTCA TAATAGCCAT 3 CACCCCCCCA TAAAGGGTT TTAAAATTCC TTCTTTTGACA ACATTTTCA TAATAGCCAT	CGAATGGTC	G AATCTGTACT	TTGCATGAAG	TCTTTAGGGA	AAGCATGGAT	AAAGGCATTC	1680
ATGGTTGCTA GAATCATCAA GGGACGGGC ATATCTGGAT GCGACAGGGC AAACCAACCA CTGAGAATCC AACCTGCCAA AGCCTGACCA GGAAGTCCGA CGTTAAAGAA ACCAGCTCGA CTGGCAACGG CAAAACCAAG ACCAATCAAG ACCAGAGGAC CCATAGCACG GAAGATTTCT CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCA TACAGAAATC CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTGTGC CCAAGTTTCC ACCAGCCATC AAGACACCAA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG AATCTTACCA TCGTGGATAA CGGCAATACG GTCTGAGACG TTTAAAATCT CATCCAATTC AAAGCTGACA ACAAGGACAG CCTTGCCATT ATCACGCTCT TCAATCAAGC GTTTGTGGAT ATACTCCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG ATCTCGATCA ATTTCACGAG CAATAATTCC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT CTGAGGGACA ATATTTCAG ATATCACATT TCCCAAAACTCT TCCATCAGCT TTTTAGCATA ACCACCCACG ACACC TTAGTTCTGT AATCTGACG GGTGCAGC CTACCAATTGA ATCCCATGGACG TGCCCAACAC TTAGTTCTGT AATCTGACG GGGTGCAGC CTACCAATTGA ATCCCATGGAC AGACTTTTCA CACCAGATTC AACCTTACGA TGGCTGTAAT TGGCTTGAAT CAGTTCCAAGGAC AGATTTTTAA CACCAGATCC ACCACGTTT TCATTGACCA CCAAATCTTT CAGTTCCAAGGAC AGATTTTTAA CACCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT CAGTTCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT CAACTCCAACA ACCACTTCTT TTGGTTTAGA ACCGTTGTT TCATTGACCA CCAAATCTTT AATTGATTTC CCACGACGA TAACTGTAAC ACCACGGTTT TCATTGACCA CCAAATCTTT AATTGATTTC CCACGACGA TAACTGTAAC ACCACGGTTT TCATTGACA ACAATCTTTC AACCGGTTTC AATTGATTTC CACAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT TTTTTTTGTGGGTA ATCAAGATTAT TTAAAATTTC TCTCTTTTTTTTTT	CCTACATAC	A AGACAATGTA	GTTCATCATG	ATGGTTACAA	TAACCTCTGA	CGTCCCTAGA	1740
CTGGCAACGG CAAAACCAAG ACCATCACA AGCCTGACCA GGAAGTCCGA CGTTAAAGAA ACCAGCTCGA CTGGCAACGG CAAAACCAAG ACCAATCAAG ACCAGAGGAC CCATAGCACG GAAGATTTCT 1 CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA 2 TCATAACCGA AGATCCACAT GACAATGGCT CCGAGTAAAA TTCCTAGGAA TACAGAAATC 2 AAGGGAACCG AAATTTGTTG TAATTTTTTA GACATCACTC TTCTCCTTTC CCAAGTTTCC 2 ACCAGCCATC AAGACACCAA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG 2 AATCTTACCA TCGTGGATAA CGGCAATACG GTCTGAGACG TTTAAAATCT CATCCAATTC 2 AAAGCTGACA ACAAGGACAC CCTTGCCATT ATCACGCTCT TCAATCAAGC GTTTGTGGAT ATACTCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTTTTAG TTTCCTCCTG AGAGTGCAGC TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT TTGAAGGGCA ATATTTCAG ATATCATCAT TTCCAAAATC AGGCCATCAC GGTGACGGTC 2 TTCTGGAACG TGCCCAACAC TTAGTTCTTT AATCTGACTT GGGTTCAATTCA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTTC CATCAATCCC CGCAATACCA ACAATCTCT CAGCAGACA ATCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT CAGTTCAGAC AGCCTTCTT TTGGTTTAGA GGCTTGCTT TCTTTTAAA AGGAAACAGA ACCACCTACC ATCATTCC CAAATCCC CGCAATACCA ACAATCTCTC CAGCACGAAC ATCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT CAGTCCAACA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACCGCCCCCA ATCAATTCC CCAAATCACC ATCATTCAC ACCACTCTTT TAATAGCCAT AATTGATTTC CCACGACGGA TAACTGTAAC ACCACGGTTT TCATTGACA CCAAATCTTT CAACTCAACA ATCATTTCCG CCAAATCACC ATCATTTCC TCTGTTTTAA AGGAAACAGA ACCTCCACCA ATCATTCCG CCAAATCACC ATCATTTCC TCTGTTTTAA AGGAACAGA ACCTCCACCA ATCATTCTCG CCAAATCACC ATCATTTCC TCTGTTTTAA AGGATATC AACTCCAACACA ATCATTTCTC TTAGATTTCC TTCTTTGACA AGATTTTCC TAATAGCCAT TTTTTTGGGGTA ATCAAGATAA TTGATTTTCC TTCTTTTGACA AGATTTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCTTGTT TCGTCAAAGA TAAGGATATC CAACTCATCA TAAAGTGTTT TTAAAATTTC TACACGTTGT TCGTCAAAGA CCTGAGATATC CAACTCATCA TAAAGTGTTT TTAAAATTTC TACA	TAGGCCCTA	A GAATACCTGG	AATCGCTCCG	ACAATCCCAC	CAGCAATCAA	GGCAATCACG	1800
CTGGCAACGG CAAAACCAAG ACCAATCAAG ACCAGAGGAC CCATAGCACG GAAGATTCT CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA TCATAACCGA AGATCCACAT GACAATGGCT CCGAGTAAAA TTCCTAGGAA TACAGAAATC AAGGGAACCG AAATTTGTTG TAATTTTTTA GACATCACTC TTCTCCTTTC CCAAGTTTCC ACCAGCCATC AAGACACCAA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG AATCTTACCA TCGTGGATAA CGGCAATACG GTCTGAGACG TTTAAAATCT CATCCAATTC AAAGCTGACA ACAAGGACAG CCTTGCCATT ATCACGCTCT TCAATCAAGC GTTTGTGGAT ATACTCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC AGCAGGAACT AATTCACTGG CAGCCCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGGAGTAATA TTTGAATAAT TCAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT TTGGAAGGGCA ATATTTCAG ATATCATCAT TTCCAAAATC AAGCCATCAC GGTGACGGTC ATCTCCTTTT AGCCCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT ATCTCCATGAC TGACCAATTC CATCAATCCC CGCAATACCA ACAATCTCT CAGCACGAAC ATCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT CAGTTCAGACA AACCACTTCT TTGGTTTAGA GGCTTGCTC TCTGTTTTAA AGGAAACAGA ACCTCCTACC ATCATTTCC CCAAATCACC ACCACGGTTT TCATTGACCA CCAAATCTTT CAATAGACAAA ACCACTTCTT TTGGTTTAGA ACCACGGTTT TCATTGACCA CCAAATCTTT CAACTCCTACC ATCATTTCC CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACCGTCGTA TTCATTTAA AGGAAACAGA ACCTCCTACC ATCATTTCC CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGGTGGTA ATCAAGATAA TTGATTTTCC TTCTTTTGACA AGATTTTCA TAATAGCCAT TTTTTTTTGGGTA ATCATGATAA TTGATTTTCC TTCTTTTGACA AGATTTTTCA TAATAGCCAT AACTCCAACA ATTTCTGATG GAGTCAAAAC ACCGTTGTT TCTTTTAAAATTTC ATAATAGCCAT TTTTTTTTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTTGACA AGATTTTTCA TAATAGCCAT AACTCCACCGA TAAAGTGTTT TTAAAATTTC TTCTTTTGACA AGATTTTTCA TAATAGCCAT TTTTTTTTGGGTA ATTTCTTTTTAAATTTC TTCTTTTGACA AGATTTTTCA TAATAGCCAT TTTTTTTTTTTTTTTTTTTTTTTTTTTT	ATGGTTGCT	A GAATCATCAA	GGGACGGGC	ATATCTGGAT	GCGACAGGGC	AAACCAACCA	1860
CCAATCCCAC GCAGACTGCC AAAGGCTGTA TAGAACAATT CTTCGTAGCC CCAAATAGCA TCATAACCGA AGATCCACAT GACAATGGCT CGAGATAAAA TTCCTAGGAA TACAGAAATC AAGGGAACCG AAATTTGTTG TAATTTTTTA GACATCACTC TTCTCCTTTC CCAAGTTTCC ACCAGCCATC AAGACACCAA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG AATCCTACCA TCGTGGATAA CGGCAATACG GTCTGAGACG TTTAAAATCT CATCCAATTC AAAGCTGACA ACAAGGACAG CCTTGCCATT ATCACGCTCT TCAATCAAGC GTTTGTGGAT ATACTCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTACTA TGTGGTTCTT TATAGTAGGT TTTGGAAGGGCA ATATTTTCAG ATATCATCAT TTCCAAAATC AAGCCATCAC GGTGACGGTC TTCTGGAACG TGCCCAACAC TTAGTTCTGT AATCTACGA AGACCTGTAA TGGCTTGAAT AACCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGACA AGACCATTTC CATCAATCCC CGCAATACCA ACAATCTCT CAGCACGAAC ATCCCATGAA ACCACTTCT TTGGTTTAGA GGCTTGCTT TCATTGACCA CCAAATCTT CAGTTCAGACA AGACCTTCTT TTGGTTTAGA GCCTTGCAAT TCCTTTTTAA AGGAAACAGA ACCTCCAACA ACCACTTCTT TTGGTTTAGA GCCTTGCAAT CAACGGTTTC AATTGAATTC CCACGACGA TAACTGTAC ACCACGGTTT TCATTGACCA CCAAATCTTT CAACGACCA ACCACTTCTT TTGGTTTAGA GCCTTGCAAT CAACGGTTTC AATTGATTCC CCACAACAG TAACTGTAAC ACCACGGTTT TCATTGACCA CCAAATCTTC AATTGATTCC CCACAACAG TAACTGTAAC ACCACGGTTT CATCTGACA TTTCATCCAA ACCTCCTACC ATCATTTCCG CCAAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTTGCT TCTGTTTTAA AGGAAACAGA ACCTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTTGT TCTGTTTTAA AGGAAACAGA ACCTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTTGT TCGTCTAAAG TAAGGCATT CAACTCATCA ATTTCTGATG GAGTCAAAAC ACCCCTTGTT TCGTCTAAAG TAAGGATATC AACTCATCA ATTTCTGATG GAGTCAAAAC ACCCTTGTT TCGGCTCCAA CTGAGATATC AGCCCCCCGA TAAAGTGTT TTAAAATTTC TACACGTTGT TCAGGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATTACCT TCAGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCC	CTGAGAATC	C AACCTGCCAA	AGCCTGACCA	GGAAGTCCGA	CGTTAAAGAA	ACCAGCTCGA	1920
TCATAACCGA AGATCCACAT GACAATGGCT CCGAGTAAAA TTCCTAGGAA TACAGAAATC AAGGGAACCG AAATTTGTTG TAATTTTTTA GACATCACTC TTCTCCTTTC CCAAGTTTCC ACCAGCCATC AAGACACCAA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG AATCTTACCA TCGTGGATAA CGGCAATACG GTCTGAGACG TTTAAAATCT CATCCAATTC AAAGCTGACA ACAAGGACAG CCTTGCCATT ATCACGCTCT TCAATCAAGC GTTTGTGGAT ATACTCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC AGGAGGAACT AATTCACGAG CAACAATTCC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGGAGGAACA AATTCACTGG CAGCCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAAATTCC ATTTTACTA TGTGGTTCTT TATAGTAGGT TTCTGGAACG TGCCCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT CAGCTCCAACAC TGGCTGAACA ACCACGGTTT TCATTGACCA CCAAATCTTT CAGCTCCAACAC AGCATTTC CATCAATCCC CGCAATACCA ACAATCTCTC CAGCACGAAC ATCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT CAGCTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATT CAACGGTTTC AATTGATTTC CCACGACGA TAACTGTAAC ACCACGGTTT TCTTTTTAA AGGAAACAGA ACCGTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCGAA ACTGCTCGAA TTTCATCCAA TTTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTTGACA AGATTTTCA TAATAGCCAT TTTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTTGACA AGATTTTCA TAATAGCCAT TTTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTTGACA AGATTTTCA TAATAGCCAT ACCCCCCCGA TAAAGTGTTT TTAAAAATTC TACACGTTGT TCGCTCCAAA CTGAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAAATTC TACACGTTGT TCGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATTACCT TCAGGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATTACCT TCAGGAAAGA CTGAGGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATTACCT TCAGCATTCT TCAGGAAAGAG CCTTGATTTC 3:	CTGGCAACG	G CAAAACCAAG	ACCAATCAAG	ACCAGAGGAC	CCATAGCACG	GAAGATTTCT	1980
AAGGGAACCG AAATTTGTTG TAATTTTTA GACATCACTC TTCTCCTTTC CCAAGTTTCC ACCAGCCATC AAGACACCAA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG AATCTTACCA TCGTGGATAA CGGCAATACG GTCTGAGACG TTTAAAATCT CATCCAATTC AAAGCTGACA ACAAGGACAG CCTTGCCATT ATCACGCTCT TCAATCAAGC GTTTGTGGAT ATACTCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT TTCTGGAACG AGATTTTCAG ATATCACTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTC CATCAATCC CGCAATACCA ACAATCTCT CAGCACGAAC ATCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTT TCTTTTAAA AGGAAACAGA ACGTCCTACC ATCATTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTTGTT TCTTTTTAA AGGAAACAGA ACGTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTTGT TCTTTTTAA AGGAAACAGA TTTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT TTTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT TTTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TCGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATTAACGT TCAGGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATTAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATTAACGT TCAGGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATTAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAACGT TCAGAAAGGT TCAGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAAC	CCAATCCCA	C GCAGACTGCC	AAAGGCTGTA	TAGAACAATT	CTTCGTAGCC	CCAAATAGCA	2040
ACCAGCCATC AAGACACCAA GTTCTTGTTT ATTGGTTGTT TCTGGTGATA CAATACCTTG AATCTTACCA TCGTGGATAA CGGCAATACG GTCTGAGACG TTTAAAATCT CATCCAATTC AAAGCTGACA ACAAGGACAG CCTTGCCATT ATCACGCTCT TCAATCAAGC GTTTGTGGAT ATACTCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTACTA TGTGGTTCTT TATAGTAGGT TTCTGGAACG ATATTTTCAG ATATCACTGT TTCCAAAATC AGCCATCAC GGTGACGGTC ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT ATCCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACCGTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT TTTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT ACCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TCGGCTCCAA CTGAGATATC TGCTACCTTCG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGGAAAGAG CCTTGATTTC TGCTACCTTCG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTCG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGGAAAGAG CCTTGATTTC TGCTACCTTCG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGGAAAGAG CCTTGATTTC TGCTACCTTCG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGGAAAGAG CCTTGATTTC TGCTACCTTCG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTCG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTCG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTCG GCAGAAGGGT CAACAGCTAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTCG TTTTTTTTTTT	TCATAACCG	A AGATCCACAT	GACAATGGCT	CCGAGTAAAA	TTCCTAGGAA	TACAGAAATC	2100
AATCTTACCA TCGTGGATAA CGGCAATACG GTCTGAGACG TTTAAAATCT CATCCAATTC AAAGCTGACA ACAAGGACAG CCTTGCCATT ATCACGCTCT TCAATCAAGC GTTTGTGGAT ATACTCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTACTA TGTGGTTCTT TATAGTAGGT TTCTGGAACG TGCCCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTTC CATCAATCCC CGCAATACCA ACAATCTCTC CAGCACGAAC ATCCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTCC CCACGACGGA TAACTGTAAC ACCGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCGTTGGT TCGTCAAAGA TAACGGATATC CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC	AAGGGAACC	G AAATTTGTTG	TAATTTTTAA	GACATCACTC	TTCTCCTTTC	CCAAGTTTCC	2160
AAAGCTGACA ACAAGGACAG CCTTGCCATT ATCACGCTCT TCAATCAAGC GTTTGTGGAT ATACTCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT TTCTGGAACG ATATTTCAG ATATCATCAT TTCCAAAATC AAGCCATCAC GGTGACGGTC ATCTCGTTTT AGCTCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTC CATCAATCCC CGCAATACCA ACAATCTCT CAGCACGAAC ATCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA ACTTCTCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGGCTCCAA CTGAGATATC 3: CAACTCCTCG TAAAAGTGTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC	ACCAGCCAT	C AAGACACCAA	GTTCTTGTTT	ATTGGTTGTT	TCTGGTGATA	CAATACCTTG	2220
ATACTCAATG GCACCGACAT CCAACCCACG AGTTGGCTGG CTAACGATAA GGAGATCAGG 2 ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC 2 TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA 2 AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT 2 TTCTGGAACG TGCCCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA 2 ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT 2 ATCCCAAGAC TGACCATTC CATCAATCCC CGCAATACCA ACAATCTCT CAGCACGAAC 2 ATCCAAGGAC AGATTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT 2 GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTC TCTGTTTTAA AGGAAACAGA 2 ACGTCCTACC ATCATTCCG CCAAATCAC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTC CCACGACGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA 3 ACGTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA 3 CCAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGT TCGTCAAAGA TAAGGATATC 3 AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC 3 TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3	AATCTTACC	A TCGTGGATAA	CGGCAATACG	GTCTGAGACG	TTTAAAATCT	CATCCAATTC	2280
ATCTCGATCA ATTTCACGAG CAATAATTGC TTTTTGTTGA TTTCCTCCTG AGAGTGCAGC TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT TTGAAGGGCA ATATTTCAG ATATCATCAT TTCCAAAATC AAGCCATCAC GGTGACGGTC ATCTCGGAACG TGCCCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTC CATCAATCCC CGCAATACCA ACAATCTCTC CAGCACGAAC ATCCAAGGAC AGATTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTACA ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	AAAGCTGAC	A ACAAGGACAG	CCTTGCCATT	ATCACGCTCT	TCAATCAAGC	GTTTGTGGAT	2340
TGCAGGAACT AATTCACTGG CAGCGCGAAC ATCAAACTCT TCCATCAGCT TTTTAGCATA AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT TTGAAGGGCA ATATTTCAG ATATCATCAT TTCCAAAATC AAGCCATCAC GGTGACGGTC TTCTGGAACG TGCCCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTTC CATCAATCCC CGCAATACCA ACAATCTCTC CAGCACGAAC ATCCAAGGAC AGATTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGTA ATCAAGATAA TTGATTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGT TCGTCCAAAGA TAAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	ATACTCAAT	G GCACCGACAT	CCAACCCACG	AGTTGGCTGG	CTAACGATAA	GGAGATCAGG	2400
AGAAGTAATA TTTGAATAAT TCAAAATTCC ATTTTTACTA TGTGGTTCTT TATAGTAGGT TTGAAGGGCA ATATTTCAG ATATCATCAT TTCCAAAATC AAGCCATCAC GGTGACGGTC TTCTGGAACG TGCCCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTC CATCAATCCC CGCAATACCA ACAATCTCC CAGCACGAAC ATCCAAGGAC AGATTTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGT TCGTCAAAGA TAAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	ATCTCGATC	A ATTTCACGAG	CAATAATTGC	TTTTTGTTGA	TTTCCTCCTG	AGAGTGCAGC	2460
TTGAAGGGCA ATATTTCAG ATATCATCAT TTCCAAAATC AAGCCATCAC GGTGACGGTC TTCTGGAACG TGCCCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTC CATCAATCCC CGCAATACCA ACAATCTCT CAGCACGAAC ATCCAAGGAC AGATTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	TGCAGGAAC	F AATTCACTGG	CAGCGCGAAC	ATCAAACTCT	TCCATCAGCT	TTTTAGCATA	2520
TTCTGGAACG TGCCCAACAC TTAGTTCTGT AATCTGACGT GGGTGCAAGC CTACAATTGA ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTC CATCAATCCC CGCAATACCA ACAATCTCC CAGCACGAAC ATCCAAGGAC AGATTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGT TCGTCAAAGA TAAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	AGAAGTAAT	A TTTGAATAAT	TCAAAATTCC	ATTTTTACTA	TGTGGTTCTT	TATAGTAGGT	2580
ATCTCCTTTT AGCTCAATGC TACCAGATTC AACCTTACGA AGACCTGTAA TGGCTTGAAT CAGTTCAGAC TGACCATTTC CATCAATCCC CGCAATACCA ACAATCTCTC CAGCACGAAC ATCCAAGGAC AGATTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC AGCCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	TTGAAGGGC	A ATATTTTCAG	ATATCATCAT	TTCCAAAATC	AAGCCATCAC	GGTGACGGTC	2640
CAGTTCAGAC TGACCATTC CATCAATCCC CGCAATACCA ACAATCTCC CAGCACGAAC ATCCAAGGAC AGATTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AAATTGATTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGGTA ATCAAGATAA TTGATTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	TTCTGGAAC	TGCCCAACAC	TTAGTTCTGT	AATCTGACGT	GGGTGCAAGC	CTACAATTGA	2700
ATCCAAGGAC AGATTTTAA CAGCTGGAAC ACCACGGTTT TCATTGACCA CCAAATCTTT GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA ACGTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	ATCTCCTTT	PAGCTCAATGC	TACCAGATTC	AACCTTACGA	AGACCTGTAA	TGGCTTGAAT	2760
GATAGACAAA ACCACTTCTT TTGGTTTAGA GGCTTGCTTC TCTGTTTTAA AGGAAACAGA 2: ACGTCCTACC ATCATTTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC 3: AATTGATTTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA 3: TTTGTGGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTTCA TAATAGCCAT 3: CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC 3: AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC 3: TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	CAGTTCAGA	TGACCATTTC	CATCAATCCC	CGCAATACCA	ACAATCTCTC	CAGCACGAAC	2820
ACGTCCTACC ATCATTCCG CCAAATCAGC ATTGGTAGCC CCTGCAATTT CAACGGTTTC AATTGATTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA TTTGTGGGTA ATCAAGATAA TTGATTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	ATCCAAGGA	C AGATTTTTAA	CAGCTGGAAC	ACCACGGTTT	TCATTGACCA	CCAAATCTTT	2880
AATTGATTC CCACGACGGA TAACTGTAAC ACGGTCAGAA ACTGCTCGAA TTTCATCCAA 31 TTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 32	GATAGACAA	A ACCACTTCTT	TTGGTTTAGA	GGCTTGCTTC	TCTGTTTTAA	AGGAAACAGA	2940
TTTGTGGGTA ATCAAGATAA TTGATTTTCC TTCTTTGACA AGATTTTTCA TAATAGCCAT CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC. AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	ACGTCCTAC	ATCATTTCCG	CCAAATCAGC	ATTGGTAGCC	CCTGCAATTT	CAACGGTTTC	3000
CAACTCATCA ATTTCTGATG GAGTCAAAAC AGCCGTTGGT TCGTCAAAGA TAAGGATATC. 3: AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	AATTGATTT	CCACGACGGA	TAACTGTAAC	ACGGTCAGAA	ACTGCTCGAA	TTTCATCCAA	3060
AGCCCCCCGA TAAAGTGTTT TTAAAATTTC TACACGTTGT TGGGCTCCAA CTGAGATATC TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	TTTGTGGGT	ATCAAGATAA	TTGATTTTCC	TTCTTTGACA	AGATTTTTCA	TAATAGCCAT	3120
TGCTACCTTG GCAGAAGGGT CAACAGCTAA GCCATAACGT TCAGAAAGAG CCTTGATTTC 3:	CAACTCATCA	ATTTCTGATG	GAGTCAAAAC	AGCCGTTGGT	TCGTCAAAGA	TAAGGATATC.	3180
	AGCCCCCG	TAAAGTGTTT	TTAAAATTTC	TACACGTTGT	TGGGCTCCAA	CTGAGATATC	3240
TTTGCTAGCT CCAGCGATAT CTAGCACACC ATTTTTAGTC AATTCACTAC CTAAAATGAT 3:	TGCTACCTTC	GCAGAAGGGT	CAACAGCTAA	GCCATAACGT	TCAGAAAGAG	CCTTGATTTC	3300
	TTTGCTAGCT	CCAGCGATAT	CTAGCACACC	ATTTTTAGTC	AATTCACTAC	CTAAAATGAT	3360

GTTTTCAGCC ACTGTGAAGG CTTCAACCAA CATAAAGTGC TGGTGAACCA TCCCGATTCC	
CAAGCTAGCT GCTTAGATG CCCACTTONA	3420
CAAGCTAGCT GCTTTAGATG GGGAGTCGAG ATTGACAACT TGACCGTTGA CCGCGATTTC	3480
ACCACTAGTT GGTTCAAGAA GGCCTGCTAA CATGTTCATT AGCGTGGACT TACCAGCCCC	3540
ATTTTCTCCT AAAAGTGCAT GAATTTCACC TTTTCGTAGG TGCAAGTTGA TTTTGTCGTT	3600
GGCAACAAAT CCACCAAACA CCTTGGTAAT ATCACGCATC TCAATGACAT TTTCGTGTGC	3660
CATGLECTCT TCCTTTCAGA GTCTTATTTT ATTTCAATAA AACTTGCTAG TTTCTCTCTAGT	3720
AGCAAGCTTT ACTTAGACAA AATGACTTTG TCTCAACTCT TAAAAAAAGCG GCCCTTTCGGG	3780
GCITCCTAAG AAATGACTTC CATCCATTAT TTTTCAGGAA CTTTTACGCT TCCATCAACA	3840
ALLITAGETT TTGCATCTTC GACAGETTTT TTACCTTCTT CTGAAAGGTT TETTACTCCC	
AAGTCAACCC CTTTATCCTT CAATGAGTAA ACGATCACTT GACCGCCAGG GAATTCTCCT	3900
CTTTCTGCCT TGTTAGAAAT ATCTTTTACA GTTGTACCAA CTTGTTTCAA AGTAGATACA	3960
AGAACAAAGT TTGATTCTTT GCCATCTTTA GAAGTGTATT TACCTTCTGC TTCTTGGTCA	4020
CGATCAACAC CGATAACCCA AACTTTTCA TTTTCAGGAC GGCTTTCGTT GAGAGATTTT	4080
GCCTCTGCAA AGACACCTGC ACCTGTACCA CCAGCTACTT GGTAAACAAT ATCTGCACCG	4140
GCTGCGTATT GTGCGGCTGC AATTGTTTTA CCTTTAGCCG CATCACCAAA TGAACCAGCG	4200
TAGTCAACTT GGACTTTGAT AGATCCCTCT ACTIVATION OF THE TAGTCACCAAA TGAACCAGCG	4260
TAGTCAACTT GGACTTTGAT AGATGGGTCT ACTGACGCAA CACCAGCCTT GAATCCTGCT	4320
TCAAAACGAG AGATAACTTC AGATTCGATA CCACCTACAA AACCAACTTG TTTTGTCTTA	4380
GTTGTTTTTG CTGCAGCCAC ACCTGCAAGG TAACCTGACT CATTATCAGC GAAAGTTACG	4440
CTCGCAACAT TCTTTTGGTC TTTAATCACA TCATCAATCA AGACATAGTT CAAGTCAGTG	4500
TGTTCTTTTG CTGCATCTTT AACTGCATTA TTAAGGGCAA AACCAACACC GAAGATTAGG	4560
TTGTAACTTC CAGCCGCTTG TTGCAAGTTG TTAGCGTAGT CAGCTTCACT TGTTGATTGG	4620
AAGTAAGTGA AACCGTTATC TTTTGAAAGA TTGTGTTCTT TACCCCAAGC CTGCAAACCT	4680
TOCCAAGCIG ATTGGTTGAA TGATTTGTCA TCAACACCAC CAGTATCAGT GACCATTACCT	4740
GCTTTTGTCT TCACATCAGA AGATGAAGCT GCGTTACGAG AAGAGCGGTT ACCACATGGA	4800
GCAAGTCCAA CTGCTGCCAC TGCAACTAGG CCAAGACCTA GCCATTGTTT CTTGTTCATT	
ACTGARCCTC CTAAATAAGA TGTGCAACGA TGTTGCAAGT ATGGATTGGT TGGCCACAAG	4860
GACCGTGCCA CTCAGAGAGC GACTCAGACT AGTTTAAGTC TGTAAAAGAG TATGGAAGTA	4920
ATTCCCCGAC CGTCATCTCG ACCGTCGATT TATCTTTTGC GACTAAGGTC ACTTTTAGAT	4980
CTTGTTCAAA AAATTCAGCC ATCACTTGGC GACAAGCACC ACATGGCGAG ATCGGTTTTT	5040
CAGTTTGACC ATAGACAATC AATTCTGAAA ATTCTCTTTG GCCTTCAGAT ATAGCCTTAA	5100
ATTOTOTHE GCCTTCAGAT ATAGCCTTAA	5160

AAATAGCTCT TCTCTCACCC CAATTAGATA	
AAATAGCTGT TCTCTCACCG CAATTGGTCA AAGGATAGCT AGCATTTTCA ATATTCACTC	5220
CCGTGTAAAC ACTTCCGTCT TTAGCTACTA AAACTGCTCC GATAGGAAAG TGAGAATAGG	5280
GGACATAGGC ATGTTTGCTG GTTTCAATTG CCAGTTCAAT CAACTCAGTA GTCGCCATCT	5340
GCCAATTCTC CTTTTAAAAT AGCTACCCCA GCTGACGTTC CGATACGGGT CGCACCTGCT	5400
TCGACAAAGG CAAGAGCATC TGCATAAGAA CGAGCTCCAC CGGCGGCCTT GACACCCATA	
TCAGATCCAA CTGTTTCACG CATTAATGTA ACATCTGCTA TCGTAGCACC ACCAGTTGAA	5460
AAGCCAGTAG ATGTTTTGAC AAAGTCAGCC CCAGCTTTTT GGGCCAATTG GCAAACAACA	5520
ACTITITCTT GGTCTGTCAG AAGGCAAGCT TCAATAATGA CTTTCACTAA CTTATCACCA	5580
CTTGCTTCCA CTACTGCGCG AATATCTGAC TCAACCAAGG CTAAATTACC TGATTTGAGA	5640
GCTCCAACAT TGATCACCAT ATCAATCTCA TCTGCACCAT TTTGGATAGC TTCTTTTGTC	5700
TCAAATGCTT TCACGCCTCA ACTICCTCA CONTROL OF TOTACCTC	5760
TCAAATGCTT TCACGGCTGA AGTTGTTGCT CCCAAAGGGA AACCTACTAC TGTGCAAACC	5820
TTAACATCTG TGCCTTCAAG TCCTTTTTTA GCATGTTCAA CCCAGGTCGG ATTAACGCAA	5880
ACACTGGCAA AGTCATACTC TCTAGCCTCA GACAACAAAC TATCAATTTG TTTTTTTTTT	5940
GCATCTTGTT TTAAAAGCGT ATGATCTATA TATTTATTTA ATTTCATTTC	6000
CCATTTAGGA GATGATTTCT ACAATTTCAC GGATTTTTTT CACTTCATCA CTTATTTTAA	6060
CACATTTTTG GAAATCTGTA ACTAGTTGAG GTGGAATTTT TTCATTTGTG TATACTTTTG	6120
CAACAATTTC ACCCTTTTGA ACGGAGTCTC CAATCTTCTT TTCAAAAACA ATTCCTGTTT	6180
CATAGTCCAA GGCATCAGAC TTAACTGCAC GACCAGCACC CAGCCTCATG GCATAAAGAC	6240
CAAAGTCCAT AGCTGGAAGA GCTGAAATGA CACCCGTTTC CTGAGCAGGG ATTTCCACCA	
CATGAGCTAC ATTTACAGGA CGATAGAGGT CTTCCAAGTC TCCACCTTGG GCTTGCACCA	6300
TTTCCTCAAA CTTAGCCAGT GCTTGACCAT TCTCAAGATG TTGGTGAACT TCTTCAACAG	6360
TTTTGTTAAC ATTTGCCAAA CCAAGCATAA TTTGAGCCAA TTCACAAATA AAGTGGGTAA	6420
TATCCTGACG TCCTTGACCT TGCAAAATCT CCAATGCTTC AAGGATTTCC AGACGATTTC	6480
CAATCGCTCG TCCCAAAGGC TCCCTCARAM GCCTLARAM GCC	6540
CAATCGCTCG TCCCAAAGGC TGGCTCATAT CCGTAATCAC TGCTACTGTC TTCCGTCCAA	6600
CAACCTTACC AAGATCTACC ATAGTTTGAG CCAACTCACG CGCCTCATCA ACCGTCTTCA	6660
TGAAGGCACC CTCACCGACA GTCACGTCTA GCAAAATAGC ATCCGCCCCT GCCGCAATTT	6720
TCTTGCTCAT CACCGAACTC GCAATCAAAG GAATCGTGTC GACAGTTGCG GTCACATCAC	6780
GAAGGGCATA GAGAAGCTTA TCTGCTTTGA CCAGCTGGTC TGATTGCCCA ATGACAGATA	6840
CTCCAATATC CTGAACCTGA CGAATAAAAT CCTCTTGACT ACGTTCTACT TGATAGCCCT	6900

PCT/US97/19588

8700

TAATGGACTC CAATTTATCA ATTGTTCCGC CTGTATGGCC AAGACCACGA CCACTCATTT 6960 TTGCTACAGG CACACCGAAG CTAGCAACAA GAGGAGCTAA AATCAAGGTT ACCTTATCGC 7020 CGACACCACC AGTAGAATGC TTGTCAACTT TCACACCATC AATGGCTGAC AGGTCAAACT 7080 CTTGCCCAGT CTTAACCATA TTCATCGTTA AATCAGAGAT TTCTCGAGTC GTCATTCCTT 7140 TAAAATAAAC AGCCATAGCA AAGGCAGACA TCTGATAATC AGGAACAGTT CCTGATACAT 7200 AGCCTTCTAT CAGCCATTCA ATTTCACTTG AAGTCAGTTC TTGACCGTCT CGTTTTTTTTT 7260 GGATTAAATC AACTGCTCTC ATTCTTTCAC ACTTCTAAGG ATATAGTATC CCTTGTCTTT 7320 TTTAAGGATT TCACAATTGC CAAACACATC TTCCATCTTA GACTTGGCAC TTGGAGCTCC 7380 TTGTTTTTC TGGATGACGA TGGTCAAATC TCCACCAATT TCCAAGAAAT CTTTACTTTT 7440 CTCGATGATT TCATGAACGA CTTGCTTGCC CGCACGGATA GGAGGATTGG AAATGACATG 7500 GTCAAATCGC CCTTGAACTC TTGCATAAAT ATTAGATTGA AATATCGTCG CTTTTGCATT 7560 ATTTTTTCA GCATTTCTCT GAGCTAAATC CAGGGCACGA GTGTTAATAT CAACCATGGT 7620 CGCCTGAACT CCGTAAACCT TGACCAAGGA CAAACCTAAT GGACCATAAC CACAGCCTAC 7680 ATCTAGGACT GTCTCCCTT GGTTGACATC CAGACACTTG AGCAAGAGTT GACTTCCAAA 7740 GTCAACCATT TTCTTGCTAA AAACACCCGC ATCTGTCAAA AAAGTCATTT TTTCTCCCAA 7800 CAAGTCCACT CTCAACTCAT GAATGTCGTG AGCAGCGTCA GGATTTTCTG CATAGTACAT 7860 TTTACTCATG ACACTATTTT ACCATAATTT GACTCAAATT GTAAATCGTT TACAAATTGA 7920 TAATAAAACG AAAAAGACCG AAGAAAGCAA GTCACGAAGC CATTTTCTTC AATCTCTTTC 7980 AACACTTATA AATAATAAAC CATTTAGAAC TATAAATATC ACAGTCCAGA TAAAAACAAA 8040 AAGTTTATCA TCTATAATCA GGCAGATTAT TATTTCTATT GCTTAACCTT AAAATACTTT 8100 ATTATCAACA AAATTCCTAA CAAAATGTTT AGATAAAAGC CCAACTGATA CGTTTATGTC 8160 AGGATTTCCA AACTTGTCCA AAGTCGTATC AAATCTTCTA GTGACATGTG GAAGAAATAA 8220 CCCTCTGTCG CAATCCGTAG GACTAAAAAG CAATAACTAC CCGCAGCAAT CCATTTCGTC 8280 CATCGTTTT TAGTAAGAAA GCAATTAAGA ACGAACAAAT AAAGACAGCT GTTACAATAG 8340 CATGTTCCAT CAAAAAAGTA AAACCGTAAT AGGTTTCCAC AAAGCATCTA CCATTATCTG 8400 CATTGGTTCC TTTTATAAAA GGTAAAGCAA AACTTAAAAT AAAACAGAGT TCCAATATGT 8460 AACGTTTTAA GATTTTCATA GTACACCTCC TATAAGTTGT GAACTAAAAA GCCCCCTTTA 8520 TAAGCTTATA AATCAGTAGA ATCTATCTCC TATTTCATCA ATAAATTGAT CACTTATACT 8580 ATATACCATT GACTTACCAC ATTCAAGAAA CCGCTTTATT TTTTTAGCTT TTTATGGTAT 8640

GATAGACAAA ATATCTAGGG GAAAACAAAT GACCAACGAA TTTTTACATT TTGAAAAAAT

567

CAGCCGCCAG ACTTGGCAAT CTTTACATCG AAAGACAACA CCTCCTTTGA CAGAAGAAGA 8760
ATTGGAATCT ATCAAGAGTT TTAATGACCA AATCAGTCTC CAAGACGTTA CAGATATCTA 8820
TCTCCCCTTG GCTCATTTGA TTCAGATTTA CAAGCGAACT AAGGAAGATT TAGCCTTTTC 8880
AAAAGGAATT TTCCTCCA 8898

(2) INFORMATION FOR SEQ ID NO: 70:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13188 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

TATCTTAACG AGGATTGGGT TTATCGTCAG TCTTATTGCC CTAATTGTGG GAACAATCCC 60 TTAAATCATT TTGAAAATAA TCGGCCTGTA GCAGATTTTT ACTGTAATCA TTGTAGTGAG 120 GAGTTTGAAC TAAAGAGCAA AAAAGGAAAT TTTTCATCAA CAATCAATGA TGGTGCTTAT 180 GCAACGATGA TGAAGCGTGT GCAGGCAGAT AATAATCCTA ATTTCTTTTT TTTAACTTAC 240 ACAAAAAATT TTGAGGTAAA TAACTTTCTT GTCCTTCCGA AGCAATTTGT TACACCGAAA 300 TCGATTATTC AAAGAAAACC ACTTGCACCA ACTGCTAGAC GAGCAGGTTG GATTGGTTGT 360 AACATTGATT TATCACAAGT ACCTTCTAAA GGAAGGATAT TTCTTGTGCA AGATGGACAA 420 GTTAGAGATC CAGAAAAAGT TACAAAAGAA TTTAAGCAAG GTTTATTTTT AAGGAAGAGC 480 TCTCTGTCAT CAAGAGGTTG GACAATAGAA ATTCTAAATT GTATAGATAA GATAGAGGGT 540 TCAGAATTTA CCCTTGAAGA TATGTATCGT TTTGAAAGTG ACCTAAAAAA TATCTTTGTT 600 AAGAACAATC ATATCAAAGA AAAGATTAGG CAACAGCTTC AAATATTAAG AGACAAAGAA 660 ATAATAGAAT TTAAAGGTAG AGGAAAGTAT CGGAAATTAT GAAAACGAAA CAACTTGTTG 720 CATCAGAAGA GGTGTATGAT TTCTTAAAAG TCATCTGGCC TGATTATGAA ACTGAAAGCC 780 GTTACGATAA CCTAAGTTTA ATCGTCTGTA CCTTATCAGA TCCCGATTGT GTGAGATGGT 840 TATCTGAAAA TATGAAATTT GGTGACGAAA AACAACTAGC TTTGATGAAG GAAAAATATG 900 GGTGGGAAGT AGGAGATAAA TTGCCAGAGT GGCTACATAG CTCCTATCAT AGATTATTGT. 960 TAATAGGTGA ATTATTGGAA AGCAATCTAA AACTGAAAAA GTATACAGTA GAAATTACAG 1020 AAACTTTATC ACGTTTAGTA AGTATAGAGG CTGAAAATCC AGATGAAGCC GAACGACTTG 1080 TAAGAGAAAA GTATAAGAGT TGTGAAATTG TTCTTGATGC AGATGATTTT CAGGACTATG 1140

568 ACACTAGCAT ATATGAATAG GTAGATGTTT TTATTTTGTC AACAAAAAAG AGGCTCGCAC 1200 CTCTTTTCT TATTCTTTT TATGATTTAA TACGGCATTG AGGACAATAG CGAGTAGGCT 1260 GGCTACGACG ATTCCGTTTG AGAAGAACAT TTGGAAGGCT GTCGGCATGC TGACAAAGAG 1320 ATTACTGTTG TTGAGACCGA CACCTGCAGC GATTGAAACA GCTGCGATAA GGAAGTTGTG 1380 TTCATTGTTA GCAAAGTCAA CACGGGCGAG GATTTGCATC CCTTGAATTG ATACAAAACC 1440 AAACATTACC AGCATGGCAC CACCGAGGAC GGAGCTTGGA ATGATTTGGG CAAGGGCGCC 1500 AAACTTAGGA AGCAGTCCAA GGAGAACCAG GAAACCAGCT GCGTAGTAGA TTGGCAGGCG 1560 TTTTTGATG CCTGACAATT TAACCAAACC AACGTTTTGT GAAAATCCGG TGTAAGGGAA 1620 GGTGTTAAAG ATTCCTCCGA GAAGTACGGC CAAACCTTCT GCGCGGTATC CGTTGCGAAG 1680 GCGCGTGCTG TCGATTGGAT CCTTTGTGAT ATCAGACAAG GCCAGATAAA CACCAGTTGA 1740 CTCAACCATA GACACCGTTG CGATGATACA CATCATGACA ATAGATGAGA TTTCAAAGGT 1800 TGGCATCCCA AAGTAGAGTG GAGTTGGGAC ATGGACAAGT GGAGCTACCG CAACAGGAGA 1860 GAAGTCCACC AAGCCCATAG TAGCAGCAAT GGCAGTTCCA ACAACCAGAC CAATCAAAAT 1920 AGAGATAGAC TTGATAAATC CTTTGGTAAA GATGTTGATC AAGAGGATAA TCAGAACAGT 1980 AATAGCTGCA AGCAAGAGAC TTTGACCAGT TGGCTCTGGA ACGTTATTTC CCATATTTCC 2040 AATAGCGACA GGGATCAAGG TTAAACCAAT CGTGGTAATA ACAGATCCTG TTACGATAGA 2100 TGGGAAGAG TTGGCTACTT TTGAGAAGAT GCCTGAAACA AGAACCACGT AAATCCCAGA 2160 TGCGATAAGG GCACCAAACA TAGCGCCACT ACCATGGCTT TGCCCAATCA TAATCAAGGG 2220 AGCGACCGAC TGGAATGCAA CTCCAAGAAC GACTGGGAGT CCAATCCCAA AGTATTTGTT 2280 GAGTTGGAGT TGGAGGAAGG TTGCCACCCC ACACATGAAG ATATCTGTAG AAATCAGGTA 2340 GGTCAACTGC TCAGCTGAAT AGCCAAGGGC TGTCGCAATC ATGATGGGAA CCAGGATAGA 2400 TCCTGAGTAC ATGGCTAGTA AGTGCTGCAA GCCAAGAACG GCTGCTTGCG AGTGTTTTTC 2460 TTGAGTTTGC ATTAGAGATC TGCCTCCTTA AATACGACTT GACCATTTTC AAAACAATCC 2520 AAACGAGCAA GTGATAGGAC AGGGTAGCCT GCTTTTTCAA GCAAATCACG ACCATCTTGG 2580 AAGGATTTCT CAATCACGAT ACCGATAGCT TGGACTGTGG CACCGGCCTG TTCGATGATT 2640 TGAATCAAGC CTTTAGCAGC TTGGCCATTA GCAAGGAAAT CGTCGATAAT CAAAACCTTG 2700 TCCTCTGGTG AGAGGAATTT TTCAGCGATA GAAACGGTGC TGGTCACCTG CTTGGTAAAG 2760 GAGTAGACTT GAGCAGTTAA GATGCCTTCG TTCATGGTGA TGTTCTTAGC TTTTTTGGCG 2820 AAAATCATGG GAACGTTTAA GGCTTCAGCT GTAAAAACGG CTGGGGCAAT ACCCGACGCT 2880 TCAATGGTTA CGACCTTGGT AATGCCAGTA GTAGCAAATT TTTCCGCAAA AACCTTACCA 2940

ATCTCTCGCA	TCAAGCTAAA	GTCAACTTGG	TGGGTTAAAA	AGGAATCTAC	CTTGAGGATG	300
TTATCACCCA	AGATATGCCC	ATCCTTGAGG	ATGCGCTCTT	СТААТААТТ	CATAAGACCT	306
CCTAAAGTCT	AAAAGTTAAT	TTACTTGTTG	TTAAATAT	TCTATAGTGA	TCCCTTTTGC	312
ТААТАСТАТА	ТАТТТСАТАА	AACTATTACG	AGCGAAGCGA	GTCTTATCAA	ATATTTCCCG	318
TTGTAGTGGT	ATCATAGACA	ATAATCTTGT	TATTGTCTAT	GACGGGATTT	TTGAGAGTAA	324
AATAGTTCGG	GGAACTATTT	TAGCCTAAGC	CTAGAAATGA	AAGAGCTAGG	GGCTCAAAAA	330
TTAGGGATGA	AATTCCCTGG	ATTCCTGAAA	TTATTCACAG	GATAATTTCA	CCTCCCGTCC	336
GCACTAATTA	AGGGAAATAT	TAAAAAAAGA	ССТАСТТААТ	CTCTAAGTAA	GTCCCCTAAA	342
TAGACATGGC	AAAAACGGCC	ATATCTCACT	GCTGACTTAC	TTATTGTTAG	GTGTTCCGGC	348
ACCTTGTAGA	AACGTCGTGC	CAATTCACGA	CATAAACAAG	TAAAACGATA	TTCAATTTTA	354
AATAGGCTTG	AGCCAATGTT	TTTATTTTAC	ACTAAATAAC	TTTAGAAATC	AACTATTTTG	360
TTAGTGTTTT	GGTTTAAAAA	ACGAACAAAA	AGAAGAGAGG	GTGAACAAAA	ACTCCATTGT	3660
AAGCTAACAG	ТТАТАСТААА	TGAAAATCAA	AGAGCAAACT	AGGAAGCTAT	CCACAACCTC	3720
AAAACACTGT	TTTGAGGTTG	TGGATAGAAT	TGACAGAGCC	AGTATCATAT	ACCTACGGTA	3780
AGGCGACGTT	GACGTGGCTT	GAAGAGATTT	TCGAAGAGTA	TTAGAAGATT	TTTCCATCAT	3840
AAAAGGCATA	CTATCAAGCT	TTTAGACACC	TGACAATATG	ССТТТТТСТА	ACTTTAAAGA	3900
CTTTTCCCAA	TTTTTATTAT	TCTACTCGCT	AAATCTTAAA	AAATAGCCAT	CTGGATCCAA	3960
AACTGCAAAT	TTATGAGGAT	AGATATAGGG	ATCACTGACA	CGAAACTTTC	TTTTGGTCAA	4020
GGGACGATAA	ATAGGATAGT	TTGCCTTCAT	CACTCTTTAA	TAGAGTTTTG	AAACATCCTT	4080
TATGCCAAAG	GAGAGATTGA	CTCCACGACC	AAAGGGATAG	GTCAGTTCAG	CTAGTTGATC	4140
CTTTGTTCCC	TCCTCTAACA	TTAGTTGACA	CTCTTCAAGA	GAAAGAGAAA	GTTTTCTTCT	4200
GGACGTTGGT	ATTCAATCCT	AAAACCCAGT	AAACCACAGT	AGAAGGACCG	GGACTGTTCG	4260
ATATTCGATA	CAAGCAACTC	GGGAATGACC	GCATTGTAGT	CCATATAGAA	AATCCTTACA	4320
AGTCAATTTC	CAAGACAATC	GGTGTATGGT	CTTGGCGAGC	ACCTGAGTCA	ATCATATCAG	4380
ATTTAGTGAC	CTTGTCAGCG	ATACGGTTAC	TTGTGAGCCA	GTAGTCGATT	CTCCAGCCTG	4440
PATTGTTGAT	TTTAGAAGTT	TTGCTGCGTT	GTGCCCACCA	AGTGTAGCGT	TCAGGAACAT-	4500
CGCCATGAAC	ATGGCGGAAG	GTGTCTGTAA	ATCCAGTTGC	CAAAAGGTTG	GTAAATCCAG	4560
CACGTTCCTC	GTCAGTAAAT	CCAGGTGAAC	GGCGGTTGCT	AGCAGGATTT	GCAAGGTCGA	4620
TTCATTGTG	GGCTACGTTG	TAGTCACCGG	TCGCAAGGAC	TGGTTTTTCT	TTGTCTAGTT	4680

			570			
CAGCCAAATA	CTCAGCATAT	TTGGCATCCC	AGACTTGGCG	TTCTTCCAAG	CGTTTGAGAC	474
CGTCACCAGC	GTTTGGAGTG	TAAACTTGGG	TTACGAAAAA	TGCATCAAAT	TCTAGAGTGA	480
TGATACGACC	TTCCAAGTCC	ATGGTAGAAG	GGGCACCGAT	TTCTGGGAAG	CTGATAGTAG	486
GTGTAAGTTC	TTTCTTATAA	AGGAACATGG	TTCCAGCATA	GCCTTTACGG	GCAGGCTCTT	492
GGGAAGAGCG	CCACGTGTTT	TCGTAGCCTG	GGAAGAGTTC	TTCTAAAATT	TCCACGTGTT	498
TCTTTGTAGG	TCCTTTGGCA	GAAAGCTTGG	TTTCTTGGAT	AGCAATGATA	TCAGCATTTT	504
CAGCGACCAA	GGTTTGTAGG	ACTTCTTGGG	ACAATTTGGC	ACGAGCTGAG	TCACTAGTTA	510
GGCAGCGTT	TAGGGAATCA	ATATTCCATG	AGATAAGTTT	CATAAAGTTA	ССТТТТТСАТ	516
TCAGATTATA	GATTTTATTA	ТАССААААА	AGATCTATTT	CCCCAACGTA	TGGTTTGAAA	522
AATTACTCTC	TTTCGTTTAT	AATTAAGAAT	GATTTTATGA	AAGGGAGTGA	AAATACATGA	528
AATTCTACTC	TTATGACTAT	GTACTCAGCC	AAATCGGTCA	GCAAAATGGT	ATCATGGTTG	534
GCTTTGGGAT	TGTTCTATTA	GCTGTGACAG	TTTTTTTTGC	TTTCAAGGCA	ТАССАТААТА	540
AAAAGGGAAG	CGAATTTCGT	GAGTTGGTCA	TGATTTCAGA	TCTGGCCTTA	TTTAGCTCTG	546
CTTTTGGTCA	GCATCACGAC	TTATCAAAAC	AATCAAGTTT	СТААСААТАА	ATTTCAAACT	552
PCACTTCATT	TCATCGAGGT	TGTTTCCAAA	GATTTGTGAG	TAGACAAGTC	AGAAGTCTAT	558
ЭТТААТАСТТ	CCACAAACAC	AGATGGCGCA	CTTATCAAGG	TGGGAGATCG	CTATTATCGT	564
GCCCTAAATG	GAAGTGAGCC	AGACAAGTAC	CTGTTAGAGA	AAGTCGAATT	GTATAAGACA	570
GACGCAATTG	AACTGGTGGA	TGTGAACAAA	TGACACTTAA	TTATATCGAA	ATTTTAATCA	5760
ACTGGTCTT	GACTCTCAAA	TAGCTCAACA	ACAATGTTCA	CTTTGTGAAA	CGTTTGATTG	5820
ATGGTAAGCC	AACTCTCCTT	ATCAAAAATG	GGAATATTGA	CCCAGAAGCC	TGTCGTTCAG	5880
TGGTTTGTC	TGCATCGGAT	GTATCCCTCA	AACTTCGTAG	CCAAGGGATT	TTCCAGATGA	5940
AGCAAGTCAA	ACGAGCTGTG	CAAGAGCAAA	ATGGGCAACT	CATCGTTGTG	CAAATGGGAG	6000
ATGAAAATCC	TAAGTATCCA	GTTGTGACTG	ACGGTGTGAT	TCAAGTAGAT	GTCTTGGAAT	6060
GATTGGTCG	TAGCGAAGAG	TGGTTGCTTG	ATAACCTCAG	TAAACAAGGG	CATGACAATG	6120
PAGCCAATAT	CTTTATTGCT	GAATATGACA	AGGGTGCTGT	TACAGTCGTA	ACTTATGAAT	6180
AGAAAAACC	TGGGGTCTTG	TACTCTTCGA	AAATCTCTTC	AAACCGCGTC	AACGTCGCCT	6240
GCCGTATGT	AGGTTACTGA	CTTCGTCAGT	TCTATCTACA	ACCTCAAAGC	AGTGCTTTGA	6300
CAGCCTGCG	GCTAGTTTCC	TAGTTTGCTC	TTTGATTTTC	ATTGAGTATT	GGCCTCAGGT	6360
TCCATTTGC	AATCAGAAAG	GGATTTTATG	TCCATTATTC	AAAAACTTTG	GTGGTTTTTC	6420
AGTTAGAAA	AACGCCGTTA	TCTAGTCGGA	ATTGTGGCCC	TGATCTTGGT	TTCCGTCCTC	6480