***	King Saud University		College of Computer and Information Sciences				
	King Saud Oniver	Sity	Department of Computer Science				
	Data Structures CSC 212 Date: 24/04/2018		Quiz 5 - Spring 2018 Duration: 20 minutes				
Student ID:			Name:				
Studen	t ID:		Name:				
Section	•		Name: Instructor:				
	•	2					
Section	•	2	Instructor:				

Use the hash function H(key) = key%7 to store the sequence of keys 16, 14, 21, 15, 8, 24, 3 in a hash table. Use the following collision resolution strategies:

1. External chaining. Fill in the following table:

Key	16	14	21	15	8	24	3
List position							

2. Linear rehashing (c=1). Fill in the following table:

Key	16	14	21	15	8	24	3
Position							
Number of probes							

3. [Extra:+10] Coalesced chaining with cellar size 2 (do not change the hash function). Fill in the following table (put -1 if there is no next element):

Key	16	14	21	15	8	24	3
Position							
Next							

Question 2.....

- (a) Consider the following heap represented as an array: 2, 6, 8, 12, 7, 10. Choose the correct answer for every operation (all operations are done on the above heap).
 - 1. Heap after inserting 4:
 - (A) 2,6,8,12,7,10,4
- (B) 2,6,4,12,7,10,8
- \bigcirc 2,6,8,12,7,4,10 \bigcirc 0 4,6,2,12,7,10,8
- (E) None

- 2. Heap after inserting 9:
 - \bigcirc (A) 2,6,9,12,7,10,8 \bigcirc (B) 2,6,8,12,7,9,10 \bigcirc (C) 2,6,8,9,7,10,12 \bigcirc (D) 2,6,8,12,7,10,9

- (E) None

3. Heap after deleting one key:

(A) 6,12,8,10,7 (B) 8,6,10,12,7

 \bigcirc 6,7,8,12,10

 \bigcirc 6,8,7,10,12

(E) None

4. Heap after deleting two keys:

(A) 6,12,8,10 (B) 7,10,8,12

© 6,7,8,12

(D) 12,8,7,10

(E) None

(b) What is the result of a bottom-up min-heap construction of the following array: 1,3,5,2,4,0?

(A) 0,1,2,4,3,5

 \bigcirc 0,2,1,3,4,5

 \bigcirc 1,0,2,3,4,5 \bigcirc 0,2,1,4,5,3

None.