## Customer Churn Analysis and Prediction



Presented By- Ishita Sharma

## Introduction



- **Problem Statement**: High customer churn results in revenue loss. Identifying potential churners helps businesses take proactive steps.
- **Solution**: Leverage data analytics and machine learning to predict churn, providing insights for strategic decision-making.
- **Objective**: Analyze customer churn patterns using data analytics and predict future churners with machine learning.
- Dataset Used: Telecom customer dataset with various features including demographic data, account info, geographic data, etc.

# Design and Architecture

#### **Project Workflow & Pipeline:**

- Data Collection: Sourced from a Kaggle dataset.
- Data Preprocessing: Cleaning, handling missing values, and feature engineering in Python.
- EDA: Identifying churn indicators using Matplotlib, Seaborn, and Power BI.
- ML Model: Churn prediction using Random Forest.
- Dashboard Visualization: Power BI dashboards for insights and predicted churners.

**Tools Used**: Python, Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn, Power BI.



## Hardware and Software Used



### Hardware Requirements

- Minimum: 8GB RAM, i3Processor, 256GBStorage
- Recommended: 16GB
  RAM, i7 Processor, 512GB
  SSD

### Software and libraries used

- **OS**: Windows 10/11 or Linux
- Development Tools:
  Jupyter Notebook,
  Power Bl
- Libraries: Pandas,
  NumPy, Matplotlib,
  Seaborn, Scikit-learn



## Execution of the Project



#### **Step 1: Data Acquisition and Preprocessing**

- Imported telecom customer dataset from Kaggle.
- Cleaned the dataset by handling null values and encoding categorical variables. And performed feature engineering.

#### **Step 2: Exploratory Data Analysis (EDA)**

- Used Python libraries and Power BI to explore data.
- Identified patterns and trends linked to churn (e.g., contract types, payment methods).

#### **Step 3: Machine Learning Model**

- Built a classification model using Random Forest algorithm.
- Split the data into training and testing sets to evaluate performance.
- Model predicted customer churn probabilities of the recently joined customers.

#### **Step 4: Dashboard Creation**

- Designed interactive summary and prediction dashboards in Power BI.
- Visualized key insights and highlighted predicted churners.

## Results

#### **Key Insights from EDA:**

- → Overall churn rate is 27%.
- → 64% of churned customers are female.
- Customers with month-to-month contracts churn the most.
- Competition is reported as the major reason for churn.
- Jammu and Kashmir has the highest churn rate with ~60% customers leaving.
- Senior citizens exhibit a slightly higher churn rate.





### Future Work



#### Point 01

Integrating real-time data for dynamic churn prediction. This will help in continuously monitoring customer behavior and taking timely action.

#### Point 02

Connecting with business intelligence tools for deeper insights across regions and demographics.

#### Point 03

**Developing retention strategies** based on churn likelihood (e.g., personalized offers, loyalty programs). The system can autotrigger tailored discounts and customer care interventions.



