Lecture 4

Rithvik Reddy

February 4th 2020

1 Homework problem discussion

Find a complete metric space where a closed and bounded set is not compact. One common example that many gave is the discrete metric on \mathbb{N} . Beckner was surprised that nobody gave the example of a unit ball in an infinite-dimensional Hilbert space. This is how it proceeds. We use the **Riesz Lemma** which states that if X is a normed space and S is a closed proper subspace then for every $\epsilon \in (0,1)$, there exists some $x \in X$ with ||x|| = 1 such that $||x - s|| \ge \epsilon$ for all $s \in S$.

Let X be an infinite dimensional normed vector space. First choose some $x_1 \in X$ with norm 1, ||x|| = 1. Consider the subspace S_1 spanned by x_1 . Using the Riesz Lemma, there exists some x_2 such that $||x_2 - s_1||$ for all $s_1 \in S_1$. Proceed inductively to get a sequence $\{x_1, \dots\}$ where each x_i lies in the unit closed ball but clearly $||x_i - x_j|| \ge \epsilon$ for $i \ne j$. So, this sequence doesn't have a convergent subsequence in the closed unit ball.

2 Abstract Measure on ω and Lebesgue Outer Measure in \mathbb{R}^n

Consider a σ -algebra of sets S which are then called measurable sets.

Consider a measure $\mu: S \to [0, \infty]$ defined on S with there being at least one set of finite measure and also satisfying the σ -additive property(see Stein or Rudin for definition). This leads to the monotone convergence property.

A real valued function on the space ω given by $f:\omega\to\mathbb{R}$ is said to be measurable if $f^{-1}[(a,b)]\in S$, that is, if the pullback of intervals is measurable.

In \mathbb{R}^n , one must define what the Lebesgue measurable sets are-essentially using Lebesgue outer measure and "approximation" by open sets. Certainly, we want the family of Lebesgue meausrable sets to include the Borel σ -algebra (eg the σ -algebra generated by all open and closed sets).

Here we want to define when a set E is Lebesgue measurable. If it is, we define $m(E) = m^{\bullet}(E)$ where $m^{\bullet}(E) = \inf_{E \subset \bigcup B_k} \sum vol(B_k)$ where $\bigcup B_k$ is an open rectangle cover of E.

Structural point: For theorems that use the measure of sets, ask the question if the result still holds true when you replace the measure m(E) by $m^{\bullet}(E)$. $m^{\bullet}(E)$ is defined for all subsets of \mathbb{R}^n .

Theorem 1. $m^{\bullet}(E)$ is countable sub-additive, that is, $m^{\bullet}(\bigcup E_k) \leq \sum m^{\bullet}(E_k)$

Proof. We use the so-called $\frac{1}{2^n}$ trick. For every E_k , assume that $m^{\bullet}(E) < \infty$ else the result is trivial. Choose a rectangular cover $\bigcup_{i=1}^{\infty} T_{k,i}$ for each E_k such that

$$vol(T_{k,i}) \leq m^{\bullet}(E_k) + \frac{\epsilon}{2^k}$$

Not all subsets of \mathbb{R}^n are Lebesgue-measurable. This is a consequence of set theory properties of the rational numbers and the Axiom of Choice.

3 Construction Of Vitalli

Start with the unit interval [0, 1] and partition it into equivalence classes defined by the relation x y iff. $x - y \in \mathbb{Q}$. Obviously, one class contains all the rational numbers.

Using the Axiom of Choice, we can form a set V which has one element/representative from each equivalence class.

Theorem 2. V is not measurable

Proof. Check Stein, Shakarchi Chapter 1