Восстановление траектории движения руки по видео

Владимиров Эдуард Анатольевич

Московский физико-технический институт

Курс: Моя первая научная статья Эксперт: Р. В. Исаченко Консультанты: А. Д. Курдюкова

2022

Цель исследования

Задача

Обобщение методов канонического корреляционного анализа с помощью метода Сугихары.

Проблема

Получение траекторного пространства по временному ряду и выбор метрики для ССМ

Решение

Построение матрицы сдвигов по временному ряду и обучение представления фазового пространства.

Методы понижения размерности и метод Сугихары

$$\begin{array}{c}
X & \xrightarrow{f} & Y \\
A \left(\bigcap_{n \times d} P^T & Q^T \bigcap_{n \times K} \right) B \\
T & \xrightarrow{cov/corr} & U \\
N \times K & \xrightarrow{n \times K} & N \times K
\end{array}$$

$$T = XA, X = TP^T$$

 $U = YB, Y = UQ^T$

$$\varphi: \mathsf{x}_{t_0} \mapsto \widehat{\mathsf{y}_{t_0}} = \sum_{i=1}^k \mathsf{w}_i \mathsf{y}_{t_i}$$

Статьи по теме

- Edward De Brouwer, Adam Arany, Jaak Simm, and Yves Moreau. Latent convergent cross mapping. In International Conference on Learning Representations, 2020
- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. Advances in neural information processing systems, 31, 2018
- Farukh Yur'evich Yaushev, Roman Vladimirovich Isachenko, and Vadim Strijov. Concordant models for latent space projections in forecasting. Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 31(1):4–16, 2021.

Метод Сугихары

• Траекторная матрица

$$\mathbf{H}_{x} = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{n-N+1} \\ x_{2} & x_{3} & \dots & x_{n-N+2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N} & x_{N+1} & \dots & x_{n} \end{bmatrix}$$

• Определение отображения φ между траекторными пространствами

$$\varphi: \mathsf{x}_0 \mapsto \widehat{\mathsf{z}_0} = \sum_{i=1}^k w_i \mathsf{z}_{t_i}, \quad w_i = \frac{u_i}{\sum\limits_{j=1}^k u_j}, \quad u_i = \exp(-||\mathsf{x}_0 - \mathsf{x}_{t_i}||).$$

• Связанные временные ряды

$$\rho_{\mathbb{H}_z}(\phi(\mathsf{x}_i), \phi(\mathsf{x}_i)) \le C\rho_{\mathbb{H}_x}(\mathsf{x}_i, \mathsf{x}_i) \qquad \mathsf{x}_i, \mathsf{x}_i \in \mathbb{H}_x$$

• Метрика связанности временных рядов

$$Score_{X \to Z} = CCM_{full}(X, Z) - CCM_0(X, Z)$$

Предсказательная модель SMap

• Пусть задана обучающая выборка

$$\mathfrak{D} = \{(x_i, y_i) \mid i = 1, ..., d\} = (X, y).$$

• В одномерном случае:

$$x_i = [x_i, x_{i+1}, \dots, x_{i+N-1}]^T, \quad y_i = x_{i+N}.$$

• Каждому $x_i \in X \setminus \{x_{t_0}\}$ сопоставим:

$$\mathsf{w}_i = \exp\left(-\frac{\theta\cdot||\mathsf{x}_i - \mathsf{x}_{t_0}||}{\frac{1}{d-1}\sum\limits_{i=1, i\neq t_0}^d ||\mathsf{x}_j - \mathsf{x}_{t_0}||}\right).$$

• Для прогнозирования используется авторегрессионная модель порядка t_0-1 :

$$X_{t_0} = \mu + \psi_1 X_{t_0-1} + \ldots + \psi_{t_0-1} X_1 + u_{t_0}, \quad u_t \sim \mathcal{N}(0, \sigma^2), \quad \psi_\rho \neq 0.$$

Вычислительный эксперимент

Цель

Сравнение различных стратегий снижения размерности целевого пространства.

Рис.: Данные приборов

Рис.: Данные видео-кейпоинтов

Результаты

Таблица: Сравнение ошибки предсказательной модели в траекторном пространстве и в его подпространстве

	acc_z	acc_y	acc_x	gyr_z	gyr_y	gyr_x
space	1.053 ± 2.223	0.401 \pm 0.833	0.483 \pm 0.825	0.084 ± 0.537	0.090 ± 0.094	0.063 ± 0.295
subspace	0.315 ± 0.461	0.043 \pm 0.051	0.150 \pm 0.177	0.001 \pm 0.001	0.015 \pm 0.031	0.001 \pm 0.003

Таблица: Сравнение различных методов снижения размерности

	Метод				
		ССМ	PLS	CCA	Naive
Це.	левой признак				
cyclic	acc z	0.163	0.040	0.116	0.141
	acc y	0.009	0.007	0.011	0.008
	acc x	0.044	0.045	0.089	0.049
	gyr ⁻ z	0.000	0.001	0.001	0.001
	gyr y	0.002	0.004	0.005	0.003
	gyr x	0.009	0.004	0.004	0.003
chaotic	acc z	0.315	0.416	0.416	0.331
	acc y	0.043	0.045	0.429	0.055
	acc x	0.150	0.177	0.221	0.143
	gyr z	0.001	0.002	0.003	0.003
	gyr y	0.015	0.022	0.061	0.026
	gyr_x	0.001	0.013	0.015	0.008

Заключение

- Предложен метод обобщения PLS и CCA с помощью метода Сугихары
- Проведён вычислительный эксперимент на данных устройств и видеоряда
- Получено, что использование данных из видео повышает качество прогнозирования
- Показано, что прогностическая модель менее устойчива в случае, когда та применяется в траекторном пространстве