STAT 3690 Lecture 06

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Feb 4nd, 2022

Multivariate normal (MVN) distribution

• Standard normal random vector

$$-\mathbf{Z} = [Z_1, \dots, Z_p]^{\top} \sim MVN_p(\mathbf{0}, \mathbf{I}) \Leftrightarrow Z_1, \dots, Z_p \stackrel{\text{iid}}{\sim} N(0, 1) \Leftrightarrow$$

$$\phi_{\mathbf{Z}}(\mathbf{z}) = (2\pi)^{-p/2} \exp(-\mathbf{z}^{\top} \mathbf{z}/2), \quad \mathbf{z} = [z_1, \dots, z_p]^{\top} \in \mathbb{R}^p$$

- (General) normal random vector
 - Def. The distribution of **X** is MVN iff there exists $q \in \mathbb{Z}^+$, $\boldsymbol{\mu} \in \mathbb{R}^q$, $\mathbf{A} \in \mathbb{R}^{q \times p}$ and $\mathbf{Z} \sim MVN_p(\mathbf{0}, \mathbf{I})$ such that $\mathbf{X} = \mathbf{AZ} + \boldsymbol{\mu}$
 - * Limit the discussion to non-degenerate cases, i.e., $rk(\mathbf{A}) = q$
 - * $\mathbf{X} \sim MVN_a(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, i.e.,

$$f_{\mathbf{X}}(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^q \text{det}(\boldsymbol{\Sigma})}} \exp\{-(\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})/2\}, \quad \boldsymbol{x} \in \mathbb{R}^q$$

$$\cdot \quad \boldsymbol{\Sigma} = \text{var}(\mathbf{X}) = \mathbf{A} \mathbf{A}^\top > 0$$

- Exercise:
 - 1. $\Sigma = \mathbf{A}\mathbf{A}^{\top} > 0 \Leftrightarrow \operatorname{rk}(\mathbf{A}) = q \text{ (Hint: SVD of } \mathbf{A});$
 - 2. $\Sigma > 0 \Rightarrow$ there exists a $p \times p$ positive definite matrix, say $\Sigma^{1/2}$, such that $\Sigma = \Sigma^{1/2}\Sigma^{1/2}$ and $\Sigma^{-1} = \Sigma^{-1/2}\Sigma^{-1/2}$ (Hint: spectral decomposition of Σ).

1.
$$A = B \wedge C^{T}$$
, where $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \end{bmatrix}$ (SND of A)

$$\Rightarrow A A^{T} = B \wedge C^{T} C \wedge A^{T} B^{T}$$

$$= B \wedge A \wedge A^{T} + B \wedge C^{T} C \wedge A^{T} B^{T}$$
where $A \wedge A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$

$$\Rightarrow A A^{T} > 0 \iff A \wedge A^{T} > 0 \iff A \wedge A^{T} > 0 \iff A^{T} > 0 \iff A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$
 (eigen-/spectral decomposition of I)

$$\Rightarrow A \wedge A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A \wedge A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

$$\Rightarrow A^{T$$

- Useful properties of MVN
 - $-\mathbf{X} \sim MVN_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow \mathbf{Z} = \boldsymbol{\Sigma}^{-1/2}(\mathbf{X} \boldsymbol{\mu}) \sim MVN_p(\mathbf{0}, \mathbf{I})$. So, we have a stochastic representation of arbitrary $\mathbf{X} \sim MVN_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$: $\mathbf{X} = \boldsymbol{\Sigma}^{1/2}\mathbf{Z} + \boldsymbol{\mu}$, where $\mathbf{Z} \sim MVN_p(\mathbf{0}, \mathbf{I})$.
 - $-\mathbf{X} \sim MVN$ iff, for all $a \in \mathbb{R}^p$, $a^{\top}\mathbf{X}$ has a (univariate) normal distribution.
 - If $\mathbf{X} \sim MVN_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{A}\mathbf{X} + \boldsymbol{b} \sim MVN_q(\mathbf{A}\boldsymbol{\mu} + \boldsymbol{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})$ for $\mathbf{A} \in \mathbb{R}^{q \times p}$ and $\mathrm{rk}(\mathbf{A}) = q$.
- Exercise: Generate six iid samples following bivariate normal $MVN_2(\mu, \Sigma)$ with

$$\boldsymbol{\mu} = [3, 6]^{\top}, \quad \boldsymbol{\Sigma} = \left[\begin{array}{cc} 10 & 2 \\ 2 & 5 \end{array} \right].$$

- Exercise:

 - 1. Prove that $(\mathbf{X} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu}) \sim \chi^2(p)$ if $\mathbf{X} \sim MVN_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. 2. Suppose $X_1 \sim N(0,1)$ and $\mathbf{X} = [X_1, X_2]^{\top}$. Does \mathbf{X} follow an MVN in the following two cases? a. $X_2 = -X_1$;
 - b. $X_2 = (2Y 1)X_1$, where $Y \sim Ber(p)$ is independent of **X**.

Joint, marginal and conditional MVN

• If $\mathbf{X} \sim MVN_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight], \quad oldsymbol{\mu} = \left[egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight] \quad ext{and} \quad oldsymbol{\Sigma} = \left[egin{array}{c} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight]$$

with $\Sigma_{11} > 0$ and $\Sigma_{22} > 0$, then

- $-\mathbf{X}_{i} \sim MVN_{p_{i}}(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{ii})$, i.e., marginals of MVN are MVN. $-\mathbf{X}_{i} \mid \mathbf{X}_{j} = \boldsymbol{x}_{j} \sim MVN_{p_{i}}(\boldsymbol{\mu}_{i|j}, \boldsymbol{\Sigma}_{i|j})$, i.e., conditionals of MVN ar MVN.
- $-oldsymbol{\mu}_{i|j} = oldsymbol{\mu}_i + oldsymbol{\Sigma}_{ij} oldsymbol{\Sigma}_{jj}^{-1} (oldsymbol{x}_j oldsymbol{\mu}_j)$
- $\Sigma_{i|j} = \Sigma_{ii} \Sigma_{ij} \Sigma_{jj}^{-1} \Sigma_{ji}$ $\mathbf{X}_i \perp \mathbf{X}_j \Leftrightarrow \Sigma_{ij} = 0$