Uygulama -1

Algoritmalar

- Lojistik Regresyon
- Karar Ağacı
- Random Forest
- Gradient Boosting Tree

Lojistik Resgresyon

- Binomial Logistic Regression
- Multinominal Logistic Regression
- Ordinal Logistic Regression

Lojistik Resgresyon

$$\frac{p}{1-p} = \exp\left(b_0 + b_1 x\right)$$

$$ln\left(\frac{p}{1-p}\right) = b_0 + b_1 x$$

$$o = \frac{1}{1 + e^{-(b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p)}}$$

Hiperparametre Optimizasyonu (Logistic Regression)

- penalty
- class_weight
- solver
- max_iter
- multi_class
- ...

Algoritmalar

- Lojistik Regresyon
- Karar Ağacı
- Random Forest
- Gradient Boosting Tree

Karar Ağacı

- Karar ağaçları veri sınıflandırma probleminin bir çözümüdür.
- Karar ağacının elemanlarını dallar ve yapraklar oluşturur.
- Ağacın en üst düğümü kök düğümdür.
- En altta kalan yapılar yaprak ve kök-yaprak arasında kalan yapılar dallardır.
- Dallanma kriterleri
 - Entropi
 - Sınıflandırma ve Regresyon (CART)
 - o Bellek Tabanlı

https://ai-pool.com/a/s/decision-trees

- Her bir karar düğümünden itibaren ağaç iki dala ayrılır.
- En bilinen algoritmaları
 - Twoing Algoritması
 - Gini Algoritması

Karar Ağacı (CART / Gini Algoritması)

Adım 1: Her nitelik değerleri ikili olacak şekilde gruplandırılır.

Adım 2: Her nitelik için Sol ve Sağ taraftaki bölünmelere ait Gini_{sol} ve Gini_{sağ} hesaplanır.

$$Gini_{sol} = 1 - \sum_{i=1}^{k} \left[\frac{L_i}{|T_{sol}|} \right]^2 \qquad Gini_{sa\S} = 1 - \sum_{i=1}^{k} \left[\frac{R_i}{|T_{sa\S}|} \right]^2$$

Adım 3: Her nitelik için Gini değeri hesaplanır.

$$Gini_{j} = \frac{1}{n}(|T_{sol}|Gini_{sol} + |T_{sa\S}|Gini_{sa\S})$$

Adım 4: En küçük Gini değerine sahip nitelik seçilir ve bölünme bu düğüm üzerinden gerçekleştirilir.

Adım 5: En baştaki adıma dönülerek yeniden dallanma gerçekleştirilir.

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease
NO	NO	NO	NO
YES	YES	YES	YES
YES	YES	NO	NO
YES	NO	YES	YES
etc.	etc.	etc.	etc.


```
Gini impurity = 1 - (probability of 'yes') ^2 - (probability of 'no') ^2 = 1 - (34/34+125)^2 - (125/34+125)^2
Gini impurity = 0.336
```

```
Gini impurity = 1 - (probability of 'yes') ^2 - (probability of 'no') ^2 = 1 - (105/105+39) ^2 - (39/105+39) ^2 Gini impurity = 0.395
```

```
Gini impurity = (144/144+159)*0.395 + (159/144+159)*0.336
= 0.364
```

```
Gini impurity for 'good blood circulation' = 0.360
Gini impurity for 'blocked arteries' = 0.381
```


Gini Impurity: 0.3

Gini Impurity: 0.29

Hiperparametre Optimizasyonu (Karar Ağacı)

- criterion
- splitter
- max_depth
- min_samples_split
- max_leaf_nodes
- class_weight
- ..

Algoritmalar

- Lojistik Regresyon
- Karar Ağacı
- Random Forest
- Gradient Boosting Tree

Random Forest

- Adım 1: Veri seti üzerinden n adet rastgele örnek kümesi seçilir.
- Adım 2: Her veri seti için karar ağacı oluşturulur.
- Adım 3: Belirli bir test kümesi için her ağaçtan tahmin sonucu elde edilir.
- Adım 4: Test kümesindeki her örnek için en çok oylanan tahmin sonucu nihai sonucu verir..

Random Forest

Hiperparametre Optimizasyonu (Random Forest)

- n estimators
- criterion
- max_depth
- min_samples_split
- max_leaf_nodes
- class_weight
- bootstrap
- **..**.

Algoritmalar

- Lojistik Regresyon
- Karar Ağacı
- Random Forest
- Gradient Boosting Tree (https://www.youtube.com/watch?v=jxuNLH5dXCs)

Algoritmalar

