INFORMATIKAI ALAPOK

INFORMATIKAI ALAPOK

- Számrendszerek
- Boole algebra

SZÁMRENDSZEREK I.

- Az informatika története során a fejlesztők több számrendszer alapján is elindultak a fejlesztéssel, így például:
 - kettes számrendszer
 - hármas számrendszer
 - tízes számrendszer
- Természetesen a projektek nagy része sikertelen volt, így a kettes számrendszer lett a mai informatika alapja.

SZÁMRENDSZEREK II.

- A kettes (bináris) számrendszer a mai informatika alapja, de emellett használnak segédszámrendszereket is:
 - Tízes (decimális) számrendszer
 - a felhasználókkal való eredményközlésre, adatbevitelre
 - Tizenhatos (hexadecimális) számrendszer
 - minden olyan kettes számrendszerbeli számot, amelyet már túl hosszan lehetne leírni, ebben a számrendszerben írják fel

A TÍZES SZÁMRENDSZER I.

- A tízes (decimális) számrendszer az a számrendszer, amelyet mi magunk is a hétköznapokban alkalmazunk.
- Az informatikában mint segédszámrendszer jelenik meg, hiszen az embernek ezzel a számrendszerrel a legegyszerűbb dolgoznia.
- Az informatikában azok a szabályok, amelyeket a matematika felállított a tízes számrendszeren belül, ugyancsak érvényesek.
 - Műveleti prioritások, zárójelezések, nullával osztás tiltása, stb.

A TÍZES SZÁMRENDSZER II.

- A tízes számrendszerben a 0..9-ig terjedő számok szerepelnek.
- És ily módon, minden egyes hatványérték ezeket a számokat veheti fel:

9	5	3	5	4
10 ⁴	10 ³	10 ²	10¹	10 ⁰
9*10000	5*1000	3*100	5*10	4*1

• Így látható, hogy ha 10-et felvenné bármelyik szám, az pont a következő hatványérték lenne.

A TIZENHATOS SZÁMRENDSZER I.

- Más néven hexadecimális számrendszer.
- Ez a számrendszer is segédszámrendszerként szerepel az informatikában.
- Felhasználása nagy jelentőséggel bír a következő területeken:
 - Memóriacímek jelölésében
 - Az IPv6 címekben
 - Fizikai címekben (MAC address)
 - RGB színkód megadásában

A TIZENHATOS SZÁMRENDSZER II.

- A tizenhatos számrendszer felépítése: a számokat 0..9-ig, illetve a betűket A..F-ig tartalmazza.
 - Az A-F betűk sorrendben 10..15-ig jelölik a helyiértékeket,
 ezzel elkerülve, hogy egy-egy érték akár két helyiértéket is elfoglalhasson.
- A számrendszer azért is oly kedvelt segédszámrendszerként, mert a tizenhat egymást követő hatványai megegyeznek a kettő minden negyedik egymást követő hatványával.
 - Négy bináris számjegyet egyetlen hexadecimális számjeggyel helyettesíthetünk.

A TIZENHATOS SZÁMRENDSZER III.

 A tizenhatos számrendszerben tehát egy szám ábrázolása így néz ki:

f	3	a	2	b
16 ⁴	16 ³	16 ²	16¹	16 ⁰
15*65536	3*4096	10*256	2*16	11*1

• Mint látható, a tízes számrendszerhez hasonlóan a tizenhatos számrendszerben az egyes tagok a 16-nak 0-tól induló kitevőjű hatványait jelölik.

A KETTES SZÁMRENDSZER I.

- A kettes számrendszer más néven bináris számrendszer.
- A számrendszerben mindösszesen két szám található: 0 és 1.
- A számrendszer azért a legalkalmasabb elektronikai eszközökön való számítások végzésére és működtetésére, mivel az elektronikában könnyen és pontosan reprodukálható a számrendszer.

A KETTES SZÁMRENDSZER II.

- Hiszen a számrendszer elektronikai eszközökön a vezetékekben futó alacsony / magas feszültségszint váltakozásának segítségével felépíthető.
- A magas feszültségszint az I-es (igaz), az alacsony pedig a 0-s (hamis) értéket jelöli.
- A programozásban is nagy szerepet játszik a kettes számrendszer, hiszen a matematikai logika, amely erre a számrendszerre alapoz, a programozás alapja.

A KETTES SZÁMRENDSZER III.

• A kettes számrendszer felépítése tehát az alábbiak szerinti:

1	0	1	1	0
24	2 ³	2 ²	21	20
1*16	0*8	1*4	1*2	0*1

• A kettes számrendszer is ugyanazon elvek alapján épül fel, mint az előzőekben látott két számrendszer.

ÁTVÁLTÁS 10-ES SZÁMRENDSZERBŐL 2-ESBE

Átváltás menete:

- I. Készítsünk egy 2-oszlopos táblázatot
- 2. Írjuk fel a számot a bal felső sarokba
- 3. Osszuk el a számot 2-vel
 - a) Az osztás eredményét írjuk a szám alá
 - b) Az osztás maradékát írjuk a szám mellé
- 4. Az osztást ismételgessük, amíg a bal oldalon 0-t nem kapunk
- 5. A jobb oldali oszlop számjegyeit olvassuk össze lentről felfelé

Átváltás 10-es számrendszerből 2-esbe

ÁTVÁLTÁS 10-ES SZÁMRENDSZERBŐL 8-ASBA

Átváltás menete:

- I. Készítsünk egy 2-oszlopos táblázatot
- 2. Írjuk fel a számot a bal felső sarokba
- 3. Osszuk el a számot 8-cal
 - a) Az osztás eredményét írjuk a szám alá
 - b) Az osztás maradékát írjuk a szám mellé
- 4. Az osztást ismételgessük, amíg a bal oldalon 0-t nem kapunk
- 5. A jobb oldali oszlop számjegyeit olyassuk össze lentről felfelé

Átváltás 10-es számrendszerből 8-asba

ÁTVÁLTÁS 10-ES SZÁMRENDSZERBŐL 16-OSBA

Átváltás menete:

- 1. Készítsünk egy 2-oszlopos táblázatot
- 2. Írjuk fel a számot a bal felső sarokba
- 3. Osszuk el a számot 16-tal
 - a) Az osztás eredményét írjuk a szám alá
 - b) Az osztás maradékát írjuk a szám mellé
- 4. Az osztást ismételgessük, amíg a bal oldalon 0-t nem kapunk
- 5. A jobb oldali oszlop számjegyeit olvassuk össze lentről felfelé

Atváltás 10-es számrendszerből 16-osba

ÁTVÁLTÁS 2-ES SZÁMRENDSZERBŐL 10-ESBE

$$10000011_2 = 131$$

Átváltás menete:

- I. Írjuk fel az átváltandó számot
- Írjuk a számjegyek fölé 2 hatványait
- 3. Szorozzuk össze a számjegyeket a fölöttük lévő hatványokkal
- 4. Adjuk össze a szorzatokat
- 5. Az összeg lesz a végeredmény

Átváltás 2-es számrendszerből 10-esbe

ÁTVÁLTÁS 8-AS SZÁMRENDSZERBŐL 10-ESBE

$$203_8 = 131_6$$

Átváltás menete:

- I. Írjuk fel az átváltandó számot
- 2. Írjuk a számjegyek fölé 8 hatványait
- 3. Szorozzuk össze a számjegyeket a fölöttük lévő hatványokkal
- 4. Adjuk össze a szorzatokat
- 5. Az összeg lesz a végeredmény

Átváltás 8-as számrendszerből 10-esbe

ÁTVÁLTÁS 16-OS SZÁMRENDSZERBŐL 10-ESBE

Átváltás menete:

- I. Írjuk fel az átváltandó számot
- 2. Írjuk a számjegyek fölé 16 hatványait
- 3. Szorozzuk össze a számjegyeket a fölöttük lévő hatványokkal
- 4. Adjuk össze a szorzatokat
- 5. Az összeg lesz a végeredmény

Átváltás 16-os számrendszerből 10-esbe

KÜLÖNBSÉG AZ ÁTVÁLTÁSOKNÁL

10-esből X-esbe

Átváltás menete:

- Készítsünk egy 2-oszlopos táblázatot
- 2. Írjuk fel a számot a bal felső sarokba
- 3. Osszuk el a számot X-szel
 - a) Az osztás eredményét írjuk a szám alá
 - b) Az osztás maradékát írjuk a szám mellé
- 4. Az osztást ismételgessük, amíg a bal oldalon 0-t nem kapunk
- 5. A jobb oldali oszlop számjegyeit olvassuk össze lentről felfelé

X-esből 10-esbe

Átváltás menete:

- I. Írjuk fel az átváltandó számot
- 2. Írjuk a számjegyek fölé X hatványait
- 3. Szorozzuk össze a számjegyeket a fölöttük lévő hatványokkal
- 4. Adjuk össze a szorzatokat
- 5. Az összeg lesz a végeredmény

ÁTVÁLTÁS 2-ES SZÁMRENDSZERBŐL 16-OSBA

Átváltás menete:

- I. Írjuk fel az átváltandó számot
- 2. Hátulról indulva osszuk fel a számot 4 bites csoportokra (digitekre), ha kell, írjunk 0-kat a szám elé
- 3. A 4 bites csoportokat egyenként alakítsuk át (segédtábla segítségével)
- 4. Az átváltások eredményét balról jobbra kell összeolvasni
- 5. A lesz a végeredmény

Átváltás 2-es számrendszerből 16-osba

ÁTVÁLTÁS 2-ES SZÁMRENDSZERBŐL 8-ASBA

Átváltás menete:

- I. Írjuk fel az átváltandó számot
- 2. Hátulról indulva osszuk fel a számot3 bites csoportokra, ha kell, írjunk0-kat a szám elé
- 3. A 3 bites csoportokat egyenként alakítsuk át (segédtábla segítségével)
- 4. Az átváltások eredményét balról jobbra kell összeolvasni
- 5. A kapott szám lesz a végeredmény

Átváltás 2-es számrendszerből 8-asba

ÁTVÁLTÁS 8-AS SZÁMRENDSZERBŐL 2-ESBE

203₈=1000011

Átváltás menete:

- I. Írjuk fel az átváltandó számot
- 2. Minden számjegyet írjunk át 3 bites bináris számra (segédtáblával)
- 3. A 3 bites csoportokat balról jobbra olvassuk össze (elején lévő 0-kat nem)
- 4. A kapott szám lesz a végeredmény

Átváltás 8-as számrendszerből 2-esbe

ÁTVÁLTÁS 16-OS SZÁMRENDSZERBŐL 2-ESBE

83₁₆= **10000011**

Átváltás menete:

- I. Írjuk fel az átváltandó számot
- 2. Minden számjegyet írjunk át 4 bites bináris számra (segédtáblával)
- 3. A 4 bites csoportokat balról jobbra olvassuk össze (elején lévő 0-kat nem)
- 4. A kapott szám lesz a végeredmény

Átváltás 16-os számrendszerből 2-esbe

KÜLÖNBSÉG AZ ÁTVÁLTÁSOKNÁL

2-esből 8-asba vagy 16-osba

Átváltás menete:

- 1. Írjuk fel az átváltandó számot
- Hátulról indulva osszuk fel a számot
 vagy 4 bites csoportokra, ha kell, írjunk 0-kat a szám elé
- 3. A 3-4 bites csoportokat egyenként alakítsuk át (segédtábla segítségével)
- 4. Az átváltások eredményét balról jobbra kell összeolvasni
- 5. A kapott szám lesz a végeredmény

8-asból vagy 16-osból 2-esbe

Átváltás menete:

- 1. Írjuk fel az átváltandó számot
- 2. Minden számjegyet írjunk át 3 vagy 4 bites bináris számra (segédtáblával)
- 3. A 3-4 bites csoportokat balról jobbra olvassuk össze (elején lévő 0-kat nem)
- 4. A kapott szám lesz a végeredmény

FELADATOK

Végezze el az alábbi átalakításokat!

1.
$$2010_{10} = ?_8$$

2.
$$2010_{10} = ?_2$$

3.
$$2010_{10} = ?_{16}$$

4.
$$||1||0||00||_{\underline{2}} = ?_{\underline{10}}$$

5.
$$2010_8 = ?_{10}$$

6.
$$2010_{\underline{16}} = ?_{\underline{10}}$$

7.
$$||11010011_2|| = ||?_8||$$

8.
$$2010_8 = ?_2$$

9.
$$2010_{\underline{16}} = ?_{\underline{8}}$$

Végezze el az alábbi

átalakításokat!

1.
$$1011010011_2 = ?_{10}$$

2.
$$1011010011_2 = ?_8$$

3.
$$|0||0||0||_2 = ?_{16}$$

4.
$$E3A_{16} = ?_{10}$$

5.
$$E3A_{16} = ?_{8}$$

6.
$$E3A_{16} = ?_2$$

7.
$$732_8 = ?_{10}$$

8.
$$732_8 = ?_{16}$$

9.
$$732_8 = ?_2$$

LOGIKA ALAPJAI

George Boole megállapítása, Augustus De Morgan azonossága

LOGIKA ALAPJAI

- A programozás alapvetően a matematikai logikára épül,
 így az ott alkalmazott szabályok érvényesülnek a programozásban is.
- Az informatika és így a programozás egyik legfontosabb logikai alaptétele, amely megalapozza a mai elektronikai eszközök működési elvét, George Boole megállapítása volt.

GEORGE BOOLE MEGÁLLAPÍTÁSA

- Az 1800-as években leírt két munkája alapján minden komplex művelet levezethető igenek és nemek sorozatából.
- Ez alapján bármilyen matematikai művelet, komplexitásától függetlenül, levezethető kettes számrendszerben is.
- Az elmélet természetesen önmagában nem alkalmas a mai informatika problémáinak megoldására.
 - George Boole maga publikálta a Boole-algebrát, mely a műveleteket is definiálja az elméletéhez.
 - Ezek a műveletek már végrehajthatók a processzoron, ami a meglévő adatokból új információkat állít elő.

- A kettes számrendszer, ahogy azt már láthattuk, a matematikai logika alapjának is tekinthető, hiszen az I megfelel az igaz, a 0 pedig a hamis értéknek.
- Ezáltal a matematikai logika (kijelentéslogika és következtetéslogika, illetve Boole-algebra) alapvető megállapításokat, axiómákat értelmez rajta.
- Ezen megállapítások kihatnak a programozásra is, illetve különböző helyzetekben alkalmazhatók.

- A kettes számrendszerben, a logikai kapcsolatok az alábbiak szerint alakulnak:
 - ÉS kapcsolat (AND)
 - A végeredmény akkor igaz, ha minden érték igaz.
 - VAGY kapcsolat (OR)
 - A végeredmény akkor igaz, ha bármely érték igaz.
 - KIZÁRÓ VAGY kapcsolat (XOR)
 - A végeredmény akkor igaz, ha bármely érték igaz, azonban az összes érték egyszerre nem igaz. Az igazak száma páratlan.

• ÉS kapcsolat igazságtáblája:

Első érték	Második érték	Eredmény
0	0	0
0	I	0
I	0	0
I	I	I

VAGY kapcsolat igazságtáblája:

Első érték	Második érték	Eredmény
0	0	0
0	I	I
I	0	I
I	I	I

KIZÁRÓ VAGY kapcsolat igazságtáblája:

Első érték	Második érték	Eredmény
0	0	0
0	I	1
I	0	I
I	I	0

A programozásban is ezek a logikai műveletek érvényesek,
így a különböző logikai feltételeknél, amelyek befolyásolják majd a program
futását, ezeket igen sokszor fogjuk használni.

- Az előzőekben látott műveletek kivétel nélkül kétoperandusos műveletek voltak, tehát minden művelethez két operandusra van szükség.
 - Opl @ Op2 = Eredmény
- Azonban léteznek egyoperandusos műveletek is.
- Ilyen művelet például a NOT, mely negálja a mögötte álló operandus vagy művelet értékét.

A NOT művelet igazságtáblája:

Α	Nem A
I	0
0	I

- Az eddigiekben felsorolt műveleteket a programozásban a különböző feltételek megadásában fogjuk tudni jól alkalmazni.
- Hardverközeli programozásban a matematikai műveleteket ezen logikai műveletekkel lehet elvégeztetni.

- A logikában további fontos törvényszerűség a DeMorgan-azonosság:
 - NEM (A ÉS B) = (NEM A) VAGY (NEM B)
 - NEM (A VAGY B) = (NEM A) ÉS (NEM B)
- Így tehát a két oldal megegyezik, felhasználáskor az egyik átírható a másikba.
- Fontos lehet logikai feltételek egyszerűsítése során.

- Oldjuk meg a következő logikai formulákat:
 - (A VAGY B) ÉS (C VAGY D)
 - A = 0, B = 1, C = 0, D = 0
 - NEM (A VAGY B) VAGY C ÉS D
 - A = I, B = 0, C = I, D = I
 - Próbáljuk meg felírni a fenti formula első részét a DeMorgan-azonosság felhasználásával.
 - A VAGY B ÉS C VAGY D
 - A = I, B = I, C = 0, D = 0

ADATOK TÁROLÁSA

- Mivel a mai számítógépek a kettes számrendszert használják hardveres alapnak, így egyetlen kettes számrendszerbeli érték tárolását egy feltölthető cella végzi, amely vagy feltöltött vagy kiürített állapotban van.
 - Az egyetlen helyiértéket tartalmazó helyet hívjuk bitnek.
- A biteket oktális csoportokba szervezve kapjuk meg a byte-ot.
 - 8 bit = 1 byte
- Majd a byte-okat a különböző SI-prefixek alapján csoportosíthatjuk:
 - KB Kilobyte 1000 byte
 - MB Megabyte 1.000.000 byte
 - GB Gigabyte 1.000.000.000 byte
 - TB Terabyte 10¹² byte
 - PB Petabyte 10¹⁵ byte
 - EB Exabyte 10^{18} byte

ADATOK TÁROLÁSA

- Azonban az előző prefixumok az SI-prefixek alapján 10^x—t jelölik (decimális prefixumok), a számítástechnikában azonban a 2^x—nel (bináris prefixumokkal) célszerűbb jelölni, emiatt egy új jelölésrendszert vezettek be:
 - KiB Kibibyte 1024 byte (2¹⁰ byte)
 - MiB Mebibyte 1.048.576 byte (2²⁰ byte)
 - GiB Gibibyte 1.073.741.824 byte (2³⁰ byte)
 - TiB Tebibyte 2⁴⁰ byte
 - PiB Pebibyte 2⁵⁰ byte
 - EiB Exbibyte 2⁶⁰ byte

A NEUMANN-ELVŰ SZÁMÍTÓGÉP FELÉPÍTÉSE

EGY MAI SZÁMÍTÓGÉP FELÉPÍTÉSE

