

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • October 16, 2020

Lecture Agenda Summary

- 2. Lecture 04 Recap
- 3. Linear Independence
- 4. Bases (Hamel)
- 5. Dimensions
- 6. Direct Sum of Subspaces
- 7. Study Material Comments
- 8. Tuesday Fireside Chat Comments

Refined Foundation Module

Rings and Fields 101 #1

Matrix Algebra #1

Quantum Matrix Operators #2

Group Theory 101 #1

Linear Operators 101 #2

Complex Hilbert Spaces #2

Naive Set Theory Overview #1

Complex Vector spaces 101 #2

Matrix Groups: GL(n, C) & U(n) #2

Completed | ____

Ongoing | #n is the number of live lectures

Proposition (Lecture 04 homework)

A subset $L \subseteq V$ is a linear subspace of V if only if the following conditions hold:

- 1. $\psi_1 + \psi_2 \in L$ for all $\psi_1, \psi_2 \in L$ i.e. addition is closed in L.
- 2. $\alpha\psi\in L$ for all $\psi\in L$ and $\alpha\in\mathbb{C}$ i.e. scalar multiplication in L is also closed.

Proposition (Lecture 04 homework)

If L and W are linear subspaces of V then $L \cap W$ is also a subspace of V.

Proof: By the proposition above, you only needed to prove that:

- 1. If $\psi_1, \psi_2 \in L \cap W$ then $\psi_1 + \psi_2 \in L \cap W$
- 2. If $\psi \in L \cap W$ then $\alpha \psi \in L \cap W \ \forall \alpha \in \mathbb{C}$
- We can actually generalise to an arbitrary number of subspaces i.e. if L_1, L_2, \ldots, L_n are linear subspaces, then $L_1 \cap L_2 \cap \ldots \cap L_n$ is also a subspace.

Linear Combinations

Definition (Lecture 04)

Let $\psi_1, \psi_2, \ldots, \psi_n \in V$. Their linear combination is defined as the sum $\sum_{i=1}^n \alpha_i \psi_i = \alpha_1 \psi_1 + \alpha_2 \psi_2 + \ldots + \alpha_n \psi_n$ where $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$.

Let $V=\mathbb{C}^2$ and consider the example of the two famous vectors $\psi_1=\begin{pmatrix}1\\0\end{pmatrix}$ and $\psi_2=\begin{pmatrix}0\\1\end{pmatrix}$. If we make $\alpha_1=\frac{1}{\sqrt{2}}$ and $\alpha_2=\frac{i}{\sqrt{2}}$, then we can create the following linear combination:

$$\frac{1}{\sqrt{2}}\psi_1 + \frac{i}{\sqrt{2}}\psi_2 = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\0\end{pmatrix} + \frac{i}{\sqrt{2}}\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}\frac{1}{\sqrt{2}}\\\frac{i}{\sqrt{2}}\end{pmatrix}$$

➤ At some point you'll figure it out that what physicists and quantum computing people call 'superposition' is just a special type of linear combination! ©

Definition (Lecture 04)

Let $\psi_1, \psi_2, \dots, \psi_n \in V$. Their linear span is defined as

$$\mathsf{Span}(\psi_1, \psi_2, \dots, \psi_n) = \left\{ \sum_{i=1}^n \alpha_i \psi_i \mid \alpha_i \in \mathbb{C} \right\} \text{ i.e. } \mathsf{Span}(\psi_1, \dots, \psi_n)$$

is the set of all possible linear combinations of the vectors $\psi_1, \psi_2, \dots, \psi_n$.

- So a vector $\psi \in \text{Span}(\psi_1, \psi_2,, \psi_n)$ if there exist some $\alpha_1, \alpha_2,, \alpha_n \in \mathbb{C}$ such that $\psi = \sum_{i=1}^n \alpha_i \psi_i$.
- ▶ Does $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$ ∈ Span($\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$)? The answer is yes because $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$ = $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ + $\frac{i}{\sqrt{2}}\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Proposition (Lecture 04)

Span $(\psi_1, \psi_2,, \psi_n)$ is a linear subspace of V.

You only needed to prove the following two things:

- 1. + is closed in Span($\psi_1, \psi_2, \ldots, \psi_n$).
- 2. The scalar product is closed in Span($\psi_1, \psi_2,, \psi_n$).

Dirac Notation (Ket)

- ▶ Given a vector space V over \mathbb{C} . We'll write $|\psi\rangle$ to denote an element of V instead ψ i.e. we'll put the elements of V inside these strange objects $|\rangle$ called kets!
- As such linear combinations will now look like $|\psi\rangle = \sum_{i=1}^{n} \alpha_i |\psi_i\rangle = \alpha_1 |\psi_1\rangle + \alpha_2 |\psi_2\rangle + \alpha_n |\psi_n\rangle$.
- In quantum computing there is a special convention of denoting the vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ as follows:

$$|0\rangle=inom{1}{0}$$
 and $|1\rangle=inom{0}{1}$. Always be alert to not mistake $|0\rangle$ with the zero vector $inom{0}{0}$ in $\mathbb{C}^2!$

Later we'll see that for each $|\psi\rangle \in V$ we can construct a strange object $\langle \psi |$ called bra!

Definition (1.0)

We say that vectors $|\psi_1\rangle, |\psi_2\rangle,, |\psi_n\rangle \in V$ are linearly independent if $\sum_{i=1}^n \alpha_i |\psi_i\rangle = \alpha_1 |\psi_1\rangle + \alpha_2 |\psi_2\rangle + \alpha_n |\psi_n\rangle = 0$ if only if $\alpha_i = 0$ $\forall i \in \{1,, n\}$ i.e. $\alpha_1 = \alpha_2 = = \alpha_n = 0$.

 $lackbox{$lackbox{}|0
angle} = egin{pmatrix} 1 \ 0 \end{pmatrix}$ and $|1
angle = egin{pmatrix} 0 \ 1 \end{pmatrix}$ are of course linearly independent i.e. $lpha_1|0
angle + lpha_2|1
angle = egin{pmatrix} 0 \ 0 \end{pmatrix}$ if only if $lpha_1 = lpha_2 = 0$.

Definition (1.1)

A subset $B = \{|e_1\rangle, |e_2\rangle, |e_n\rangle\}$ of V forms a basis (Hamel) in V if:

- 1. $|e_1\rangle, |e_2\rangle, ..., |e_n\rangle$ are linearly independent i.e. $\sum_{i=1}^n \alpha_i |e_i\rangle = 0$ if only if $\alpha_i = 0 \ \forall i \in \{1, ..., n\}$.
- 2. Span $(e_1,, e_n) = V$ i.e. any $|\psi\rangle \in V$ can be written (uniquely) as linear combination of $|e_1\rangle, |e_2\rangle,, |e_n\rangle$.
- Let $V = \mathbb{C}^2$ and $B = \{|0\rangle, |1\rangle\}$. It's clear that B forms a basis in \mathbb{C}^2 right?
- ightharpoonup Are there more bases in \mathbb{C}^2 other than B?

Bases Home Challenge

From the list of the following vectors in \mathbb{C}^2 , are there any pairs that form a basis in \mathbb{C}^2 ?

$$e_1 = \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}, e_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, e_3 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}, e_4 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}, e_5 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \end{pmatrix}, e_6 = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{-1}{2} \end{pmatrix}.$$

- ► Consider the vector space \mathbb{C}^4 . Can you think of a trick to construct bases for \mathbb{C}^4 based on bases of \mathbb{C}^2 ?
- A natural question that one may ask is, how do quantum physicists determine which basis to work with when dealing with a particular system e.g. spin 1/2 system?

Definition (1.2)

If $B = \{|e_1\rangle, |e_2\rangle, ..., |e_n\rangle\}$ forms a basis in V then its cardinality is called the dimension of V and denoted $\dim(V)$ or just $\dim V$.

- ► It can be proved that all bases of V have the same cardinality (homework?). Hence, the dimension of V does not depend on the choice of basis.
- lt's obvious that $\dim(\mathbb{C}^2)=2$ because the cardinality of $B=\left\{|0\rangle,|1\rangle\right\}$ is 2.
- As you might have noticed, in general, $\dim(\mathbb{C}^n) = n$.
- Later we'll see that if V_1 and V_2 are two vector spaces over \mathbb{C} . Then, $dim(V_1) = dim(V_2)$ iff $V_1 \simeq V_2$ vise versa. This will be important when we talk about tensor products e.g. $\mathbb{C}^2 \otimes \mathbb{C}^2 \simeq \mathbb{C}^4$.

Direct Sum of Subspaces

Definition (1.3)

Let L_1, L_2, \ldots, L_n be linear subspaces of V. Their sum is defined as $L_1 + L_2 + \ldots + L_n = \{|\psi_1\rangle + |\psi_2\rangle + \ldots + |\psi_n\rangle \mid |\psi_i\rangle \in L_i\}.$

 $ightharpoonup L_1 + L_2 + \dots + L_n$ is of course a linear subspace of V.

Definition (1.4)

If each $|\psi\rangle \in L_1 + L_2 + \dots + L_n$ can be uniquely written as $|\psi\rangle = \sum_{i=1}^n |\psi_i\rangle$ where $|\psi_i\rangle \in L_i$, we write $L_1 \oplus L_2 \oplus \dots \oplus L_n$ and call it an internal direct sum or just direct sum when it's understood from the context.

- ▶ It can be proved that $\dim(L_1 \oplus L_2 \oplus \oplus L_n) = \sum_{i=1}^n \dim(L_i)$.
- ▶ Suppose that $B_1, B_2, ..., B_n$ are bases of the respective subspaces. What could be a basis for $L_1 \oplus L_2 \oplus \oplus L_n$?

Where should you focus?

Vector spaces (Pages 20 - 50)

Prof. Sheldon Axler

• GitHub (Curated study materials): github.com/quantumformalism

• YouTube: Search Zaiku Group

• Twitter: @ZaikuGroup

• Gitter: gitter.im/quantumformalism/community

Tuesday Fireside Chat

