Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.

Profesor: Román Contreras

- Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.
- Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

Pregunta	1	2	3	Total
Puntos	5	2	24	31
Puntaje				

Nombre:Eric Yaven Báez Reyes

En lo sucesivo, fijemos una base ortonormal $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$. Además, fijemos el volumen V que cumple que $V(\vec{w}_1, \vec{w}_2, \vec{w}_3) = 1$.

1. (5 Puntos) Sea T una transformación lineal. Sea $M = [T]_{\beta}$ la matríz de T en la base β . Demuestra que M satisface $M^T = M$ (es decir, es una matríz simétrica) si y solo si:

$$\langle v, T(w_1) \rangle = \langle T(v), w_1 \rangle$$
$$\langle v, T(w_2) \rangle = \langle T(v), w_2 \rangle$$
$$\langle v, T(w_3) \rangle = \langle T(v), w_3 \rangle$$

- 2. (2 Puntos) Exhibe una transformación lineal T tal que $T^3 = 0$ y tal que $T^2 \neq 0$. Calcula la matriz de T y su dilatación.
- 3. Considera la transformación lineal T tal que su matriz $[T]_{\beta}$ es la matriz:

$$\begin{bmatrix} \frac{9}{2} & 0 & -\frac{3}{2} \\ 0 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{9}{2} \end{bmatrix}$$

- (a) (2 Puntos) Encuentra un vector $\vec{v}_1 \neq 0$ tal que $T(\vec{v}_1) = 6\vec{v}_1$
- (b) (2 Puntos) Encuentra un vector $\vec{v}_2 \neq 0$ tal que $T(\vec{v}_2) = 0\vec{v}_2$
- (c) (2 Puntos) Encuentra un vector $\vec{v}_3 \neq 0$ tal que $T(\vec{v}_3) = 3\vec{v}_3$
- (d) (3 Puntos) Demuestra que los tres vectores anteriores son ortogonales
- (e) (2 Puntos) Encuentra una base ortonormal γ a partir de los vectores $\vec{v}_1, \vec{v}_2, \vec{v}_3$. Denotemos dicha base por $\gamma := \{\vec{z}_1, \vec{z}_2, \vec{z}_3\}$
- (f) (2 Puntos) Encuentra la matriz $[T]_{\gamma}$
- (g) (2 Puntos) Calcula la dilatación de T
- (h) (2 Puntos) Considera la transformación R tal que:

$$R(\vec{w}_1) = \vec{z}_1$$

$$R(\vec{w}_2) = \vec{z}_2$$

$$R(\vec{w}_3) = \vec{z}_3$$

Ecuentra la matriz de R en la base β .

- (i) (2 Puntos) Demuestra que R es una isometría
- (j) (3 Puntos) Encuentra la transformación inversa de R
- (k) (2 Puntos) Calcula $R^{-1} \circ T \circ R$