AGU 2013

IN22A-07:: The ES-DOC Software Process

Mission

Nurture a standards based ecosystem in support of earth system documentation creation, analysis & dissemination.

Sub-Domains

2013

Earth System Models Statistical Downscaling

2014

Obs4MIPs?

Strategic Relevance

EXA-Scale requires quality documentation

http://es-doc.org

#esdocumentation

Funders

IPSL (EU)
NOAA (US)
EX-ARCH (G8)
ISENES-2 (EU)

Pl's

Venkatramani Balaji (US - NOAA) Cecelia DeLuca (US - NOAA) Sébastien Denvil (EU - IPSL) Eric Guilyardi (EU - IPSL) Bryan Lawrence (EU - BADC) Karl Taylor (US - PCMDI)

Core Team

Sylvia Murphy (US - NOAA) Allyn Treshansky (US - NOAA) Mark Greenslade (EU - IPSL)

Tools

Create
Search
View
Compare
Visualize

API

 Doc Type :
 Doc Version :
 Project :
 Institute :
 Model :
 Experiment :

 Model
 \$
 Latest
 \$
 CMIP5
 \$
 IPSL
 \$
 *
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$

Model	Ť	Latest	Ť	CIMIPS	Ť	IPSL	Ť		Ť		Ť
Search returned	l 42 of 10	7 records in 0.13	35s							1 2	3
Institute	Short Na	ame	Long	Name							json
BCC	BCC-CS	M1.1	Beijin	g Climate Center Clir	mate Syst	em Model version 1.1	1				json
CMCC	CMCC-C	CESM	CMC	C Carbon Earth Syste	m Model						json
CMCC	CMCC-CM		CMC	CMCC Climate Model							json
CMCC	CMCC-C	CMS	CMC	C Climate Model with	a resolve	d Stratosphere					json
CNRM-CERFACS	CNRM-C	CM5	CNR	M-CM5							json
CSIRO-BOM	ACCESS	\$1.0	ACCE	SS1.0							json
CSIRO-BOM	ACCESS1.3 ACCESS1.3							json			
CSIRO-QCCCE	CSIRO-N	Mk3.6.0	CSIR	O Mark 3.6.0							json
EC-EARTH	EC-EAR	тн	EC-E/	ARTH							json
INM	INM-CM	4	inmon	n4							json
INPE	HadGEM	12-ES	Hadle	y Global Environmer	nt Model 2	- Earth System					json
IPSL	IPSL-CM	15A-LR	IPSL-	IPSL-CM5A-LR;atmosphere:LMDZ5A(95x96L39);ocean:NEMOv3.2 (OPA-LIM-PISCES,149x182L31)							json
IPSL	IPSL-CM	15A-MR	IPSL-	IPSL-CM5A-LR;atmos:LMDZ5A(144x143L39);ocean:NEMOv3.2(OPA-LIM-PISCES,149x182L31)							json
MIROC	MIROC4	h	MIRO	MIROC4h							json
MIROC	MIROC5		MIRO	MIROC5							json
монс	HadCM3 (2000) atmosphere: HadAM3 (N48L19); ocean: HadOM (lat: 1.25 lon: 1.25 L20); land-surface/vegetation: MOSES1;							json			
MOHC	HadGEM	12-A	Hadle	Hadley Global Environment Model 2 - Atmosphere							json
MOHC	HadGEM2-CC Hadley Global Environment Model 2 - Carbon Cycle							json			
MOHC	HadGEM	12-ES	Hadle	y Global Environmer	nt Model 2	- Earth System					json

Open

Reset

Next

Step 1 : Select Model Component Properties

1. Select Models	All 🗌
ACCESS1.0	view
ACCESS1.3	view
BCC-CSM1.1	view
CFSV2-2011	view
CMCC-CESM	view
СМСС-СМ	view
CMCC-CMS	view
CNRM-CM5	view
CSIRO-MK3.6.0	view
EC-EARTH	view
GFDL-CM2P1	view
GFDL-CM3	view
GFDL-ESM2G	view
GFDL-ESM2M	view
GFDL-HIRAM-C180	view
GFDL-HIRAM-C360	view
GISS-E2-H	view
GISS-E2-H-CC	view
GISS-E2-R	view
GISS-E2-R-CC	view
GISS-E2CS-H	view
GISS-E2CS-R	view
HADCM3	view
HADGEM2-A	view
HADGEMS.CC	view

2. Select Components	υN		
Aerosols			
Emission And Concentration			
Model	••		
Transport			
Atmosphere			
Convection Cloud Turbulence			
Cloud Scheme			
Cloud Simulator			
Dynamical Core			
Advection			
Orography And Waves			
Radiation			
Other			
Atmospheric Chemistry			
Emission And Conc			
Gas Phase Chemistry			
Heterogen Chemistry			
Stratospheric Heter Chem			
Tropospheric Heter Chem			
Photo Chemistry			
Transport			
Land Ice			
Glaciers			
Sheet			
Ice Sheet Dynamics			
Shelves			
Dynamice			

3. Select Properties	All 🗌
Aerosol Scheme	
Bin Framework	
Bin Species	
Bulk Species	
Framework	
Modal Framework	
Modal Species	
Scheme Characteritics	
Scheme Type	
Species	
Coupling With	
Gas Phase Precursors	
ocean biogeochemical coupling	
Processes	
Standard Properties	
Citations	
Location	
Title	
Description	
Long Name	
PI Email Address	
PI Name	
Short Name	
vegetation model coupling	

Help

API

Publish
Search
Compare
Visualize

API Clients

2013

Python

2014

C, Java

Demo

CMIP5 Comparator

Process

Social or Technical?

before software comes dialog

Requirements Capture

- scientist engagement
 - prioritization
 - scoping
 - politics

Self Organization

- roles
- responsibilities
- mutual respect

Transparency

- visibilty
- accountability
 - traceability

Ethos

- commitment to quality
 - determination
 - sense of humor!

Communication (internal)

- face to face
 - telcos
 - wiki
 - email

Communication (external)

- advocacy
- splash page (see branding)
 - social media

<u>Goals</u>

- achievable
- collectively decided
 - iterative

after dialog comes software

Information Architecture

- domain driven design
 - ontologies

Meta-programming

- Code generation
- Multi-language support
 - Supports quality

Map Reduce

- 700,00 lines of XML
 - 4D array

<u>User Experience</u>

- UI first
- Usability testing

Web Services

- HTTP
- REST vs RPC
- Encoding (JSON)
 - Security

Polygot Programming

- python
- javascript
 - bash

Testing

- Automated Testing
- Unit, Functional, Integration
 - Cl Server
 - Executed upon check in

<u>Deployment</u>

- Today: single click
- Tomorrow: fully automated

Conclusions

Conclusion - 1

Scripter Developer Engineer Architect

In the absence of systematic training, internships, & mentoring, scientists will not get beyond developer status

Conclusion - 2

Strong Repeatable Social Process

The social process is undervalued yet once learnt is transferable between projects

