(B) BUNDESREPUBLIK

@ Gebrauchsmusterschrift ® Int. Cl.7: [®] DE 200 07 134 U 1

F 21 V 9/08 F 21 V 13/04 G 05 D 25/00 // F21Y 103:00, 101:02

DEUTSCHLAND

MARKENAMT

DEUTSCHES PATENT- UND (21) Aktenzeichen: ② Anmeldetag:

(ii) Eintragungstag:

(4) Bekanntmachung im Patentblatt:

200 07 134 3 18. 4.2000 17. 8. 2000

21. 9. 2000

DE 200 07 134 U

(3) Inhaber:

Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 81543 München, DE

(6) Leuchte mit einstellbarem Farbort

Leuchte mit einstellbarem Farbort, mit einem Gehäuse (2), in dem mindestens eine primäre und eine sekundäre Lichtquelle angeordnet ist, wobei der Farbort beider Lichtquellen unterschiedlich ist, dadurch gekennzeichnet, dass die primäre Lichtquelle (6) weißes Licht eines gegebenen Farbortes mit einer gegebenen Farbtemperatur und Lichtfarbe emittiert, während die sekundäre Lichtquelle (10) Licht eines anderen Farbortes, insbesondere mit einer anderen Lichtfarbe oder farbiges Licht, emittiert, und wobei die Intensität der sekundären Lichtquelle (10) stufenlos verstellbar ist, und wobei die primäre und die sekundäre Lichtquelle so zusammenwirken, dass der Farbort, insbesondere auch die Farbtemperatur und die Lichtfarbe, der von der Leuchte abgegebenen Strahlung sich von dem der primären Lichtquelle (6) unterscheiden kann.

Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH., München

Leuchte mit einstellbarem Farbort

15

Technisches Gehiet

Die Erfindung geht aus von einer Leuchte mit einstellbarem Farbort gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um Lichtquellen, die mindestens eine Leuchtstofflampe mit mindestens einer LED kombinieren. Insbesondere kann auch die Farbtemperatur der Leuchte und sogar ihre Lichtfarbe verändert werden.

Stand der Technik

Aus der EP 607 600 ist bereits eine Leuchte mit einstellbarem Farbort bekannt. Dabei wird die Farbtemperatur einer Natriumhochdrucklampe durch Änderung der Impulsleistung zwischen zwei Einstellungen variiert.

Die EP 915 363 beschreibt eine Methode zur Änderung der Farbtemperatur bei einer LCD-Anzeigevorrichtung. Dabei werden mehrere Lichtquellen unterschiedlicher
Farbtemperatur entweder einzeln oder zusammen betrieben, so dass ein breiter
Bereich von Farbtemperaturen zwischen 5000 und 10000 K abgedeckt werden
kann. Allerdings ist diese Lösung aufwendig, da mehrere gleichartige Lichtquellen
verwendet werden. Außerdem ist die Einstellung der Farbtemperatur nicht stufenlos
regelbar.

Darstellung der Erfindung

Es ist Aufgabe der vorliegenden Erfindung, eine Leuchte gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, bei der sich auf einfache Art und Weise der Farbort und insbesondere auch die Farbtemperatur individuell regeln lässt.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.

wand 5 besitzt eine zentrale Lichtaustrittsöffnung 7, die durch eine Diffusorplatte 8 abgeschlossen ist. Im Inneren des Gehäuses 2 ist eine langgestreckte Leuchtstofflampe 6 an einer Halterung 11 untergebracht, deren Licht vor dem direkten Austritt durch die Öffnung 7 durch einen im Querschnitt V-förmigen Reflektor 9 geschützt ist. Das weiße Licht der als primäre Lichtquelle dienenden Leuchtstofflampe wird über die Wände des Gehäuses zur Öffnung 7 gelenkt.

Außerdem sind, wie die Draufsicht von unten zeigt (Figur 2) an der Unterwand 5 jeweils drei LEDs 10 zu beiden Seiten der Leuchtstofflampe 6 angebracht. Je eine Reihe LEDs besteht aus einem Satz von drei Farben (rot, grün, blau). Die Intensitäten dieser LEDs lassen sich stufenlos regulieren. Dementsprechend lassen sich auch der Farbort und die Farbtemperatur der Leuchte stufenlos regulieren. Die Farbmischung ist hier besonders effektiv, da das direkt emittierte Licht mehrfach an den als Reflektoren wirkenden Wänden umgelenkt wird und dann durch die Diffusorplatte hindurchtritt. Nachteilig ist allerdings, dass bei jeder Reflexion Verluste 15 auftreten.

In einem weiteren Ausführungsbeispiel werden statt drei LEDs ein ganzes Band von LEDs verwendet (gestricheit dargestellt), die abwechselnd die drei Farben rot, grün, blau besitzen. Die einzelnen Farben lassen sich getrennt ansteuern.

Ein weiteres Ausführungsbeispiel zeigt Figur 3. Hier ist die gesamte Unterwand 15 als Lichtaustrittsöffnung konzipiert, die mit einer Diffusorplatte 18 abgeschlossen ist. Die LEDs 20 sind hier an der Oberwand 13 des Gehäuses 12 befestigt. Das Licht der primären und sekundären Lichtquellen wird hier lediglich durch den Diffusor 18 vermischt. Hier ist die primäre Lichtquelle eine lineare Leuchtstofflampe mit einer Farbtemperatur von 4500 K (Lichtfarbe neutralweiß). Die sekundäre Lichtquelle besteht aus zwei parallel zur Leuchtstofflampe angeordneten Lichtbändem mit jeweils 64 roten LEDs. Mit diesen kann die Farbtemperatur der Leuchte stufenlos auf bis zu 3800 K (Lichtfarbe neutralweiß) abgesenkt werden.

20

25

30

in einem anderen Ausführungsbeispiel hat die Leuchtstofflampe eine Farbtemperatur von 4100 K (Lichtfarbe neutralweiß) bei einem Farbort von 0,375/0,39. Sie kann durch zwei Lichtbänder von roten LEDs (Peakwellenlänge 615 nm) mit Farbort 0,655/0,34 auf eine Farbtemperatur bis zu ca. 3250 K (Lichtfarbe warmweiß) abgesenkt werden, entsprechend einem Farbort von 0,42/0,385.

- 5 -

Ansprüche

1. Leuchte mit einstellbarem Farbort, mit einem Gehäuse (2), in dem mindestens eine primäre und eine sekundäre Lichtquelle angeordnet ist, wobei der Farbort beider Lichtquellen unterschiedlich ist, dadurch gekennzeichnet, dass die primäre Lichtquelle (6) weißes Licht eines gegebenen Farbortes mit einer gegebenen Farbtemperatur und Lichtfarbe emittiert, während die sekundäre Lichtquelle (10) Licht eines anderen Farbortes, insbesondere mit einer anderen Lichtfarbe dorf farbiges Licht, emittlert, und wobei die Intensität der sekundären Lichtquelle (10) stufenlos verstellbar ist, und wobei die primäre und die sekundäre Lichtquelle so zusammenwirch, dass der Farbort, insbesondere auch die Farbtemperatur und die Lichtfarbe, der von der Leuchte abgegebenen Strahlung sich von dem der primären Lichtquelle (6) unterscheiden kann.

5

10

- Leuchte nach Anspruch 1, dadurch gekennzeichnet, dass die primäre Lichtquelle eine Entladungslampe, insbesondere eine Leuchtstofflampe (6) ist.
- Leuchte nach Anspruch 1, dadurch gekennzeichnet, dass die sekundäre Lichtquelle
 mindestens eine LED (10) ist, die farbig oder weiß ist.
 - Leuchte nach Anspruch 3, dadurch gekennzeichnet, dass die sekundäre Lichtquelle einen oder mehrere Sätze von LEDs mit unterschiedlichen Farben umfasst.
 - Leuchte nach Anspruch 1, dadurch gekennzeichnet, dass die direkt emittierte Strahlung der Lichtquellen ein Umlenkmittel (4;9) durchläuft.
- Leuchte nach Anspruch 1, dadurch gekennzeichnet, dass die direkt emittierte Strahlung der Lichtquellen ein Streumittel (8;18) durchläuft.

