Digitaltechnik Wintersemester 2017/2018 1. Vorlesung

Inhalt

- 1. Organisation
- 2. Lernziele und Lerninhalte der Digitaltechnik
- 3. Grundlagen der Digitaltechnik
- 4. Komplexität, Abstraktion und Schichtenmodell
- 5. Bits und Bytes
- 6. Zusammenfassung und Ausblick

Organisation

0111001100101111011111000000011100101	100
000010101110100011001010000101010101	111
10000000100111101111111111001101000011	000
0011100000011011011011000000101011111	000
10101110101000011101111001011111101010	111
100111110011101100100101111001010101	110
100011011111011001100111000101001011	011
000001000111101000000110001110110110	111
1110100100100101111101110110110000101	111
101001011001001011101101111000100100	111
0000100101010001000111010000011100111	011
0001101011001111100001110101000010110	100
100001001101101001111001111011111110001	111
0111101011011010010011000101110100111	101
000110111010111101011100011100101110	000
0000111100101110011100100100100010	010

Dozent: Dr.-Ing. Andreas Engel

- Wissenschaftlicher Mitarbeiter
 Eingebettete Systeme und Ihre Anwendungen
- Arbeitsgebiete:
 Anwendungsspezifische Hardwarebeschleuniger
- ► Kontakt: engel@esa.cs.tu-darmstadt.de
- Raum: S2|02 E106
- ► Tel.: +49 6151/16 22430
- Sprechstunde: Mi 14:00 16:00 Uhr

Assistent: MSc. Raad Bahmani

- Wissenschaftlicher Mitarbeiter System Security Lab
- Arbeitsgebiete: Software Guard Extensions
- ► Kontakt: raad.bahmani@crisp-da.de
- Raum: S4|14 R4.1.05
- ► Tel.: +49 6151/16 25327

20 Tutoren

- Ozan Agtas
- Lukas Freiberger
- Timo Freitag
- Simon Haneke
- Timo Henz
- Tobias Huber
- Nils Jansen
- ▶ Thomas Kampa
- Aurel Kilian
- Stanislaw Kin

- Moritz Nottebaum
- Kevin Otto
- Roland Schurig
- Tobias Stensbeck
- Tobias Stöckert
- Michael Tilli
- Davide Toldo
- Davide Tolde
- Tamer Tosun
- Johannes Wirth
- Christian Zei

Vorlesung

- Wöchentlich
 - 09:50 11:30 Uhr (s.t.)
 - Raum S311/08 (und S311/0012, solange nötig)
- Beginn: KW 42 (18.10.2017)
- Weihnachtspause: KW 52 (25.12.2017) KW 01 (05.01.2018)
- Ende: KW 06 (07.02.2018) ⇒ Klausurvorbereitung
- Vorlesungen werden aufgezeichnet (unverbindlich)
- ▶ Unbedingt unter https://www.tucan.tu-darmstadt.de anmelden
- ► Material im Moodle: https://moodle.informatik.tu-darmstadt.de/course/view.php?id=274

Moodle: Material

KW42: 16.10. - 20.10. [VI]

KW43: 23.10. - 27.10. [V2, 01]

L

KW44: 30.10. - 03.11. [V3, 02, TI]

L

Te Sha t

KW45: 06.11. - 10.11. [V4, Ü3, T2]

KW46: 13.11. - 17.11. [V5, Ü4, T3]

KW47: 20.11. - 24.11. [V6, Ü5, T4]

Übungen

- 13 Übungsblätter ab KW 43
- Bearbeitung freiwillig, aber dringend empfohlen
- Lösungsvorschläge wird nach Bearbeitung bereit gestellt
- in Kleingruppen (max. 30 Personen)
- Anmeldung (im Moodle): KW 42 bis KW 44
- Kleingruppenanmeldung in TUCaN nicht maßgeblich

Moodle: Übungsgruppen

S103/102


```
G02
       Mo 15:20-17:00
                             $311/006
G03
       Mo 09:50-11:30
                             $102/331
G04
       Mo 09:50-11:30
                             $103/10
G05
       DI 11:40-13:20
                             S215/404K
G06
       Mo 16:15-17:55
                             $103/161
G07
       Mo 08:00-09:40
                             $202/0205
GOS
       DI 11:40-13:20
                             $103/121
GN9
       DI 13:30-15:10
                             $202/C110
G10
       MI 13:30-15:10
                             S103/126
G11
       MI 13:30-15:10
                             S103/11
G12
       Do 13:30-15:10
                             $103/313
G13
       Do 08:00-09:40
                             $102/330
G14
                             $103/100
       Do 09:50-11:30
G15
       Mo 11:40-13:20
                             $103/313
G16
       Do 13:30-15:10
                             S102/244
G17
       Do 08:00-09:40
                             $103/126
G18
       Fr 11:40-13:20
                             $202/C110
G19
       Fr 13:30-15:10
                             S103/10
G20
       Do 13:30-15:10
                             $115/138
G21
       Mo 13:30-15:10
                             $102/144
G22
       Mo 14:25-16:05
                             $108/111
G23
       Mo 14:25-16:05
                             $217/103
G24
       Fr 11:40-13:20
                             $102/34
G25
       Do 11:40-13:20
                             S103/25
```

Mo 08:00-09:40

Hier können Sie ihre Übungsgruppe auswählen und gruppenintern diskutieren. Nach der zweiten Übungswoche (KW44) ist ein Gruppenwechsel nur noch in begründeten Ausnahmefallen möglich. Wir behalten uns vor, einzelne Gruppen bei zu geringer Teilnahme zu schilleßen. Die Anmeldung zu den Kleingruppen in TUCaN ist gegenstandsios und führt nicht zum Anspruch auf eine bestimmte Gruppenzugehörigkeit.

G01

Studienleistung und Fachprüfung

- Digitaltechnik wird schriftlicher Fachprüfung ("Klausur") abgeschlossen:
 - 27.02.2018 11:00 13:30 Uhr
 - Räume werden rechtzeitig bekannt gegeben
 - Anmeldung in TUCaN bis 31.01.18 notwendig
- Weitere Fachprüfung ("Wiederholungsklausur") im Herbst 2017
- kein Notenbonus nach §25(2) APB
- Zulassung zur Fachprüfung durch Studienleistung:
 - ▶ Bis zu vier Testate können bei Tutor der Übungsgruppe abgelegt werden
 - ► Testate orientieren sich an Übungsaufgaben der Vorwoche
 - Nach bestandenen Testat mind. eine Woche aussetzen
 - Mindestens zwei bestandene Testate für Klausurzulassung notwendig
 - Tutoren bieten gegen Semesterende keine zusätzlichen Testate an

Moodle: Testate

Zu jeder Übung werden Testate durch die Tutoren angeboten. Thema eines Testates ist der Stoff der Übung der Vorwoche, jeder Student darf maximal vier Testate ablegen, wobei in der Woche nacht einem bestandenen Testat nicht direkt das andstets testat abgeleg werden darf. Ein Testat wird entweder abs bestanden oder wirte bestanden bewerte. Das Bestahen von mind. zwer IT estate ist Voraussetzung für die Tellnahme an der Klausur und damit für den Erwerb einer Studien- oder Prüfungsleistung, Der Tutor ihrer Übungsgruppe nimmt ihre Testate ab. Selbst wenn Sie nicht rezeinsaßig am Übungssetzune bei tellnehmen wollen. Ist daher das Anmelden bei einer Übungsgruppe nimmt ihre Testate ab. Selbst wenn Sie nicht rezeinsaßig am Übungssetzune der und restatschlich zu der Studien der Studien zu der Studien von der Studien zu der Studie

Im folgenden Terminplaner bletet ihr Tutor Testatsiots an. Die Termine werden nach dem Windhundprinzip vergeben. Über das gesamte Semester werden ausreichend Testatsiots angeboten, um jedem Studierenden die theoretischen wier Versuche einzuräumen. Es liegt aber an Ihnen, diese Angebote wahrzunehmen. Es wird kelnen verstärkten Testatsbetrieb gegen Ende des Semesters geben, auch wenn die Nachfrage das Angebote dann übersteigen sollte. Sie sollien daher kontinuerlich and er Kaluszurlaussung arbeiten.

Für die Klausurzulassung via TUCaN werden Sie aufgefordert, ihre Matriktelnummer bei der Buchung eines Testatslots anzugeben. Achten Sie dabei auf eine **korrekte Angabe der Matrikelnummer**, um spätere Komplikationen und Missverständnisse zu vermeiden. Nach Abschluss eines Testats können Sie das Ergebnis sowie weitere fachliche Anmerkungen dem Kommentar des gebuchten Siots entnehmen.

Moodle: Angebotene Zeitfenster für Testate

Verfügbare Zeitfenster

Die folgende Tabelle zeigt alle verfügbaren Zeitfenster für einen Termin. Treffen Sie ihre Wahl, indem Sie auf den entsprechenden Button "Zeitfenster buchen" klicken. Wenn Sie später eine Änderung vornehmen müssen, können Sie diese Seite erneut besuchen. Sie können 14 ernnin in diesem Blaner buchen.

Datum	Start	Ende	Ort	Kommentare	Tutor	Gruppen-Termin	
Freitag, 20. Oktober 2017	12:30	12:45	C-Pool	TI	Andreas Engel	NeIn	Zeitfenster buchen

Moodle: Zeitfenster buchen

Matrikelnummer angeben

Wählen Sie einen der folgenden Slots für ihr nächstes Testat. Achten Sie darauf, in der Woche nach einem bestandenen Testat keinen welteren Slot zu buchen. Bis max. 24h vor dem gebuchten bzw. geplanten Testatstermin können Sie ihre Buchung ändern. Danach wird das Testat als nicht bestanden gewertet, wenn Sie den Termin ohne ärztliches Attest nicht wahrnehmen.

Moodle: Zeitfenster gebucht

Absage bis 24 h vor Termin möglich

Aktuelle Zeitfenster

Datum	Tutor	Ort	Kommentare	Bewertung	
Freltag, 20. Oktober 2017 12:30 - 12:45	Andreas Engel	C-Pool	T1	Kelne Bewertung	Buchung bearbeiten
					Buchung abbrechen

Moodle: Testat bewertet

Wahrgenommene Zeitfenster

Lernziele und Lerninhalte der Digitaltechnik

100100101010111111111110000111100101111
0010100011111000110001001100001010000
00110101100001011000100001111011101100
01010110001111000010100101111001111101001
0100111000000101100001101000011000010101
011100100110000010011110000111000100011
0000110110111010100100110111100101011
11111101111101110100101111000111000001101
101110011001110001111100000110010000001
1101000001111111100010101011000101010101
101101100011110111000000000000000010010
010100000111011001101111100010000110110
100011101011011100100111101101111001001
110100110010110110101100111000011101101
1010010000011011100011100000001010000011
0101110011111111011010100111001001001101

Literatur

Randy H. Katz, *Contemporary Logic Design*, Addison-Wesley Longman, 1994

David Money Harris und Sarah L. Harris, Digital Design and Computer Architecture, Morgan Kaufmann, 2013

Lernziele und Lerninhalte: Digitaltechnik

- Digitale Abstraktion und ihre technische Umsetzung,
- Zahlensysteme,
- Logikgatter,
- ► MOSFET Transistoren und CMOS Gatter,
- Leistungsaufnahme

Lernziele und Lerninhalte: Kombinatorische Schaltungen

- ▶ Boole'sche Gleichungen und Algebra,
- Abbildung auf Gatter,
- mehrstufige Schaltungen,
- Vierwertige Logik (0,1,X,Z),
- Minimierung von Ausdrücken,
- Kombinatorische Grundelemente.
- Zeitverhalten

Lernziele und Lerninhalte: Sequentielle Schaltungen

- Latches,
- ► Flip-Flops,
- Entwurf synchroner Schaltungen,
- Endliche Automaten,
- Zeitverhalten,
- Parallelität

Lernziele und Lerninhalte: Hardware-Beschreibungssprachen

- Modellierung kombinatorischer und sequentieller Schaltungen,
- Strukturbeschreibungen,
- Modellierung endlicher Automaten,
- Datentypen,
- Parametrisierte Module,
- Testrahmen

Lernziele und Lerninhalte: Grundelemente digitaler Schaltungen

- ► Arithmetische Schaltungen,
- Fest-/Gleitkommadarstellung,
- Sequentielle Grundelemente,
- Speicherfelder,
- Logikfelder

Grundlagen der Digitaltechnik

10111010100001110000010110110110101000010
1010110111001100101001010000100001110111
0100110101010001000101111110001111110101
0001011100110010110001001101110100111110
01000001101110100000
00100000001001010101
1101011111110001111111100110010111101001101
00011111011101101000111111010100011001
0011110101100111011010001100110001011100
011111011110110000110101010111111111111
1000101101101100011101001111101111001111
100000001101000111000100101111000001110
01100001101110111000100010000110001111110
011010100110110110110010000101110001001
111100001111100000111111000111111101111001
100100010011110100010001000110000111010

Von 0 nach 1

- Geschichtlicher Hintergrund
- Beherrschen von Komplexität
- Die digitale Abstraktion
- Zahlensysteme
- Logikgatter
- Darstellung als elektrische Spannungen
- CMOS Transistoren
- Elektrische Leistungsaufnahme

Harris Kap. 1 Seite 3 - 48

Hintergrund

- Mikroprozessoren haben die Welt verändert
 - Handys, Internet, Medizintechnik, Unterhaltung, ...
- ▶ Umsatz der Halbleiterindustrie: \$21 Mrd in 1985 \rightarrow \$323 Mrd in 2015
- Als Informatiker/in werden Sie Computer von Grund auf verstehen!

Rückblick - was bisher geschah I

Wichtige Meilensteine der geschichtlichen Entwicklung digitaler Rechensysteme. Die lettze Spalte gibt an, wann die Geräte vorwiegend eingesetzt wurden.

Bezeichnung	Technik und Anwendung	Zeit
Abakus, Zahlenstäbchen	mechanische Hilfsmittel zum Rechnen	bis ca. 18. Jahrhundert
mechanische Rechenmaschinen	mechanische Apparate zum Rechnen	1623 - ca. 1960
elektronische Rechenanlagen	elektronische Rechenanlagen zum Lösen von numerischen Problemen	seit 1944
Datenverarbeitungs- anlage	Rechner kann Texte und Bilder bearbeiten	seit ca. 1955
Informations- verarbeitungssystem	Rechner lernt, Bilder und Sprache zu erkennen (KI)	seit 1968

Rückblick - was bisher geschah II

Wichtige Entwicklungsschritte

- ca. 600 v. Chr.: Als wahrscheinlich erstes Rechenhilfsmittel ist in China der Abakus entstanden.
- ► 1623: Der Tübinger Professor Wilhelm Schickard konstruiert die erste Rechenmaschine für sechsstellige Addition und Subtraktion mit automatischem Zehnerübertrag. Multiplikation und Division werden durch Anzeige der Teilprodukte erleichtert. In den Wirren des Dreißigjährigen Krieges geraten die Arbeiten Schickards schnell in Vergessenheit.
 - → Erste Rechenmaschine für Addition und Subtraktion.

Rückblick - was bisher geschah III

- 1642: Ohne Kenntnis von Schickards Entwicklung entwirft der französische Mathematiker Blaise Pascal eine Rechenmaschine für achtstellige Addition mit automatischem Zehnerübertrag. Die Subtraktion führt er auf die Addition mit dem Komplementwert des Subtrahenden zurück.
- 1673: Gottfried Wilhelm von Leibniz konstruiert für die vier Grundrechenarten eine Rechenmaschine mit Staffelwalzen (gestufte Zahnräder). Er entwickelt das duale Zahlensystem und befasst sich mit binärer Arithmetik.
 - → Entwicklung des Dualsystems.

Rückblick - was bisher geschah IV

- ▶ 1833: Der englische Mathematiker Charles Babbage konstruiert einen analytischen Rechenautomaten und wird dadurch zum geistigen Urheber der digitalen Rechenautomaten mit Programmsteuerung. Wegen fertigungstechnischer Probleme realisiert er nur einen kleinen Teil der Maschine.
 - → Idee eines Rechenautomaten mit Programmsteuerung.
- 1886: Der amerikanische Bergwerkingenieur Hermann Hollerith entwickelt eine elektromagnetische Sortier- und Zählmaschine zur Auswertung von Lochkarten. Bei der Volkszählung 1890 in den USA bewährt sich diese Maschine hervorragend.
 - → Lochkarte als Datenträger.

Rückblick - was bisher geschah V

- ▶ 1941: Konrad Zuse baut einen elektromagnetischen Dualcode-Rechner (Z3) mit Daten und Programm auf einem 8-Kanal-Lochstreifen.
 - → Erster funktionsfähiger programmgesteuerter Rechenautomat.
 - → 0. Generation: Erster Rechner der das Dualsystem verwendet.

Nachbau eines Zuse-Rechners im Technischen Museum in Berlin

► Weitere Infors bspw. unter http://www.zib.de

Das Big Picture - Einordnung der Digitaltechnik

- Digitaltechnik ist ein wichtiger Baustein zum Verständnis der Funktionsweise eines Computers
- Weitere Bausteine:
 - Rechnerorganisation
 - Compilerbau
 - Betriebssysteme
 - ٠.

Komplexität, Abstraktion und Schichtenmodell

01011000101010100010110111010111011011	10
0101110000100011111110011000001000010	11
1111000100011010000010101010101000011101	00
00010100010100101111	00
00100111101011000001000001110010100001	0 1
10010100011110111101101100011001001001	00
0100101010101010101111100100101000111010	10
100100111101011010010011110010011111001111001111001111100111100111100111110011110011111010111110101111101011111010111110101111101011111010111110101111101011111010111110101111101011111010111110101111101011111010111111010111111010111110101111110101111110101111110101111110101111110101111111011111111111111111111	11
10011000101001110001101001100011110010	11
0011001111000110101101011010101010101000	01
10011011000100100000001111100001111110	01
0111111110111111111111100000100010001100	00
11010010010010101111001011011011011010001	10
01001110010100100101	000
011110011100001100110001100010101000000	10
1001110011010011011110110101111001	01

Beherrschen von Komplexität

- Abstraktion
- Disziplin
- Wesentliche Techniken
 - Hierarchie (hierarchy)
 - ► Modularität (modularity)
 - Regularität (regularity)

Abstraktion

- Wichtiges und zentrales Konzept der Informatik
- Verstecken (für eine spezielle Aufgabe) "unnötiger" Details
- Verstehen der Abstraktionsebenen ist aber für alle Aufgaben hilfreich

Ein abstrakter Computer? Schichtenmodell eines Computers!

Sinn eines Schichtenmodells

Wesentliche Eigenschaften eines Schichtenmodells sind:

- Untere Schicht erbringt Dienstleistungen für die nächst höhere Schicht
- Obere Schicht nutzt nur die Dienste der nächst niedrigeren Schicht
- Eindeutige Schnittstellen zwischen den Schichten
- Vorteile einer sauberen Schichtenstruktur:
 - Austauschbarkeit einzelner Schichten, ohne benachbarte Schichten oder das gesamte System ändern zu müssen
 - Ein Benutzer braucht nur die von ihm zu bearbeitende Schicht zu kennen. Die darunterliegenden Schichten bilden eine fest definierte Funktionalität
 - Für manche Aufgaben ist dennoch eine genauere Kenntnis der unteren Schichten notwendig (bspw. Programmierung von Gerätetreibern)
- Nachteil ist eine ggf. geringere Leistungsfähigkeit des Systems

Disziplin

- Disziplin ist die wissentliche Beschränkung der Realisierungsmöglichkeiten
 - Erlaubt produktivere Arbeit auf höheren Entwurfsebenen
- Beispiel: Digitale Entwurfsdisziplin
 - Arbeite mit diskreten statt mit stetigen Spannungspegeln
 - Digitalschaltungen sind einfacher zu entwerfen als analoge
 Folge: Erlaubt den Entwurf komplexerer Schaltungen
 - Digitale Systeme ersetzen zunehmend analoge
 Digitalkamera, digitales Fernsehen, moderne Handys, CD, DVD, ...

Digitale Abstraktion

- Die meisten physikalischen Größen haben stetige Werte
 - Elektrische Spannung
 - Frequenz einer Schwingung
 - Position einer Masse
- Berücksichtigen unendlich viele Werte der Größe
- Digitale Abstraktion: Berücksichtigt nur endlich viele Werte
 - Untermenge aus einem stetigen Wertebereich

Wesentliche Techniken (die drei Y's)

- Hierarchie (Hierarchy)
 - Aufteilen eines Systems in Module und Untermodule
- Modularität (Modularity)
 - Wohldefinierte Schnittstellen und Funktionen
- Regularität (Regularity)
 - Bevorzuge einheitliche Lösungen für einfachere Wiederverwendbarkeit

Beispiel: Steinschlossgewehr

- Frühes Beispiel für Anwendungen der drei Y's
- Komplexer Gebrauchsgegenstand
- Entwicklung begann im 16. Jahrhundert
 - Aber noch sehr unzuverlässig
- Höhere Stückzahlen ab dem 17. Jahrhundert
 - Aber alles Einzelanfertigungen von Büchsenmachern
- Bis zum 19. Jahrhundert zunehmende Vereinheitlichung

Hierarchie: Zerlegung in Module

Hierarchie: Zerlegung in Untermodule

Feuerstein Batterie Untermodule des Schlosses Pfanne Hahn Batteriefeder Abzug

Modularität: Schaft und Lauf

- Funktion des Schafts
 - Schloss und Lauf stabil zusammenfügen
- Funktion des Laufes
 - Projektil während Beschleunigung zu führen und mit Drall zu versehen
- Im Idealfall sind Funktionen unabhängig und beeinflussen sich nicht
- Schnittstelle zwischen Schaft und Lauf
 - Gemeinsame Haltevorrichtung

Regularität: Austauschbare Teile

- Gleiche Schlösser in unterschiedlichen Schäften
 - Passender Ausschnitt in Schaft
- Unterschiedliche Läufe in gleichen Schäften
 - Passende Länge und Haltemechanismus
- Voraussetzung für industrielle Massenproduktion

Bits und Bytes

000001111111100100001110111011100000	1111
0110110011011110100010001111100100111	1000
100011101111101100111011101101001010	0010
110011000110000101111011100001010010	1000
010110110100001111110010000001010000	1100
010000011111101100001111100001000100	1000
10100110000110010100000110001100000	0000
10011110100001000101011111111100100	0110
110111000001000011110010110000011000	0010
0000101001011011010010001111110111010	1110
000000111100101110100110101101011000	0111
1110111110000111010100111111000001001	1111
0000100001000000011111101001001000010	0100
100100101000011000110111010100011010	1101
011101100111010110100100101101011100	0111
0111010100111111101110011010110100100	1101

Binärsystem als Digitale Disziplin

- Beschränkung auf nur zwei unterschiedliche Werte
- Können unterschiedlich heißen
 - 1, WAHR, TRUE, HIGH, ...
 - ▶ 0, FALSCH, FALSE, LOW, ...
- Können unterschiedlich repräsentiert werden
 - Elektronisch (Spannungspegel)
 - Mechanisch (Zahnradstellungen)
 - Hydraulisch (Flüssigkeitsstände)
 - aber auch Quantenzustände, ...

Bits

- ► Bit (Binary digit): Maßeinheit für Information (Unterscheidung zwischen zwei Zuständen)
- Antwort auf Entscheidungsfragen (bspw. "Ist die Erde eine Scheibe?") kann mit einem Bit codiert werden.
- ⇒ Bit ist kleinstmögliche Informationseinheit
 - Warum ist eine solche Kodierung notwendig bzw. sinnvoll?
 - Technische Realisierung über Schwellwerte ist einfacher, bspw.
 - elektrische Ladungen (0 = ungeladen, 1 geladen),
 - elektrische Spannungen (0 = 0 Volt, 1 = 5 Volt)
 - Magnetisierung (0 = unmagnetisiert, 1 = magnetisiert)

Bitfolgen

- ► Mehr als zwei Zustände / Antwortmöglichkeiten müssen mit mehr Bits repräsentiert werden
- Beispiel: Aus welcher Himmelsrichtung weht der Wind?
 - 0 0 = Süd
 - 0 1 = West
 - 1 0 = Nort
 - I U = NOIL
 - 1 1 = Ost
- ⇒ 2 bit für vier Zustände
 - Wieviele Bits notwendig für {S, SW, W, ..., O, SO}?

Zweiterpotenzen: das Einmaleins der Informatik

$$2^{0} =$$

$$2^{10} =$$

$$2^1 =$$

$$2^{11} =$$

$$2^2 =$$

$$2^{12} =$$

$$2^3 =$$

$$2^{13} =$$

$$2^{14} =$$

$$2^{8} =$$

$$2^{30} =$$

$$2^9 =$$

$$2^{40} =$$

Zweiterpotenzen: das Einmaleins der Informatik

2 ⁰ = 1	2 ¹⁰ =	1024	Kibi (≈ Tausend)
2 ¹ = 2	2 ¹¹ =	2048	
$2^2 = 4$	2 ¹² =	4096	
$2^3 = 8$	2 ¹³ =	8192	
$2^4 = 16$	2 ¹⁴ =	16384	
$2^5 = 32$	2 ¹⁵ =	32768	
$2^6 = 64$	2 ¹⁶ =	65536	
$2^7 = 128$	2 ²⁰ =	1048576	Mebi ($pprox$ Million)
2 ⁸ = 256	$2^{30} =$	1073741824	<mark>Gib</mark> i (≈ Milliarde)
2 ⁹ = 512	$2^{40} = 10$	99511627776	Tebi ($pprox$ Billion)

Größenfaktoren in der Informatik nach IEC

1 Ki = Kibi =
$$2^{10}$$
 = 1024
1 Mi = Mebi = 2^{20} = 1024 × 1024
1 Gi = Gibi = 2^{30} = 1024 × 1024 × 1024
1 Ti = Tebi = 2^{40} = 1024 × 1024 × 1024 × 1024
1 k = Kilo = 10^3 = 1000
1 M = Mega = 10^6 = 1000 × 1000
1 G = Giga = 10^9 = 1000 × 1000 × 1000
1 T = Tera = 10^{12} = 1000 × 1000 × 1000

- Achtung: Basis oft nicht eindeutig
- Bspw. bei Festplatten: Ein GB wird als 1 000 000 000 B ≈ 0.93 GiB verkauft.

1011 1100 0010 1010 0000 0111 0110 1111

Größe eines (Halb-)Worts hängt vom Kontext ab (meist Registerbreite)

1011 1100 0010 1010 0000 0111 0110 1111

Nibble Nibble Nibble Nibble Nibble Nibble Nibble Nibble

Größe eines (Halb-)Worts hängt vom Kontext ab (meist Registerbreite)

1011	1100	0010	1010	0000	0111	0110	1111
Nibble							
By	vte	Ву	vte	By	Byte		rte

► Größe eines (Halb-)Worts hängt vom Kontext ab (meist Registerbreite)

1011	1100	0010	1010	0000	0111	0110	1111
Nibble	Nibble	Nibble	Nibble	Nibble	Nibble	Nibble	Nibble
By	vte	Ву	rte	By	Byte Byte		rte
Halbwort Halbwort							
Wort							

Größe eines (Halb-)Worts hängt vom Kontext ab (meist Registerbreite)

Zusammenfassung und Ausblick

10100011110111111010010011111111101011011
11011101110111111100101110001011101110000
100101100001111010001000010010010010101
0001111100000101000101100000101101001000
0101110000010011101000111011111101100101
010100011010111010011100101011111111111
100100100000110101100101000011101010010
1100101011100101100110110110111011100000
011001010111001101011011111111100010010
1101101111011110010000101011110000101101
0001011000110000101100111011010010110010
0010000100010101100001011000110001000
00001111000111001101000011010011010111
000011111011101110010100011000000000000
110110100111001100010010010001111100011
1101101010101000110000011001101010101010

Zusammenfassung und Ausblick

- Die Grundlagen der Digitaltechnik
 - Hintergrund
 - Vorgehensweise
 - Beherrschen von Komplexität
 - Die digitale Abstraktion
- Nächste Vorlesung behandelt
 - Zahlensysteme

$$\frac{2^{16}}{2^{6}} = \frac{2^{6}}{2^{4}}, \frac{2^{10}}{2^{3}}$$

$$\frac{6^{4}}{2^{3}} = 7 \quad 2^{3} \cdot 2^{30}$$