

Circuiti aritmetici

Somme, sottrazioni e così via

1 Reti Logiche

Circuiti logici e aritmetici

I circuiti visti fino ad ora realizzano funzioni logiche

- Scelte, priorità, codifiche
- Gli operatori base sono operatori della logica, non dell'aritmetica

Numerazione binaria

- ▶ I valori logici di vero e falso vengono però spesso interpretati come cifre 1 e 0
- ▶ Lo abbiamo fatto fino ad ora più o meno consapevolmente
- Possiamo usare le cifre 1 e 0 per rappresentare numeri in base 2
- ▶ I teoremi dell'algebra Booleana ci assicurano che gli operatori logici siano sufficienti per realizzare qualunque funzione su questa base

Circuiti aritmetici

 Tramite la codifica è quindi possibile realizzare circuiti che calcolano funzioni di tipo aritmetico

Numerazione posizionale

- Numero rappresentato come somma di contributi a diversi ordini di grandezza secondo una convenzione posizionale
 - ▶ Non tutte le numerazioni sono posizionali (e.g., i numeri Romani)
 - Ogni cifra corrisponde ad un ordine di grandezza
 - ▶ In base 10, ogni cifra corrisponde a 10 unità della cifra immediatamente meno significativa
 - ▶ Le cifre hanno valori da 0 a 9
 - ▶ Per esempio, 1950.43 è dato da
 - ▶ 1*1,000 + 9*100 + 5*10 + 0*1 + 4*0.1 + 3*0.01

a ₅	a ₄	a ₃	a ₂	a ₁	a ₀	a ₋₁	a ₋₂	a ₋₃
10 ⁵	10 ⁴	10 ³	10 ²	10 ¹	10 ⁰	10-1	10 ⁻²	10-3
100,000	10,000	1,000	100	10	1	0.1	0.01	0.001

Numerazione binaria

In base 2 funziona uguale

- Ogni cifra corrisponde ad un ordine di grandezza (in questo caso una potenza di 2)
- Ogni cifra corrisponde a 2 unità della cifra immediatamente meno significativa
- Le cifre hanno valori da 0 a 1
- ▶ Per esempio, 45.625 è dato da

$$1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 1*1 + 1*0.5 + 0*0.25 + 1*.125$$

= 101101.101

a ₅	a ₄	a ₃	a ₂	a ₁	a ₀	a ₋₁	a ₋₂	a ₋₃
2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²	2 ⁻³
32	16	8	4	2	1	0.5	0.25	0.125

Realizzazione

Nulla di diverso da quanto fatto fin'ora

- Si definisce una codifica dei numeri, per esempio binaria pura
- Si scrive una funzione logica che trasforma la codifica di due numeri nella codifica, per esempio, della loro somma
- Si deriva un circuito semplificando la funzione logica

Difficoltà

- ▶ Il numero di cifre cresce con la dimensione dei numeri (anche se non troppo velocemente)
- ▶ Ben presto il numero di variabili di ingresso diventa ingestibile
- Occorre usare il metodo gerarchico

Soluzione

- Si lavora una cifra alla volta (metodo iterativo)
- Ogni cifra usa i risultati delle cifre vicine

Struttura iterativa generica

- Composta da un numero di celle pari alle cifre
 - Ogni cella esegue il conto per la cifra corrispondente
 - ▶ Il risultato finale è dato dai contributi di ogni cella

Somma

Partiamo dalla somma di due numeri a 1 bit ciascuno

$$0 + 0 = 0$$

$$\rightarrow$$
 0 + 1 = 1

$$1 + 0 = 1$$

$$1 + 1 = 10$$

- La somma di due numeri a 1 bit richiede 2 bit per la rappresentazione del risultato
 - Si possono interpretare come un bit per la somma ed un bit per il riporto (carry)
 - ▶ Il carry può essere usato dalla eventuale cella successiva

Mezzo sommatore (half adder)

а	b	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$s = a'b + ab'$$

 $c = ab$

a \ <i>b</i>	0	1
0	0	1
1	1	0

S

a \ <i>b</i>	0	1
0	0	0
1	0	1

C

Sommatore ripple carry

- Dobbiamo sommare ogni coppia di bit assieme al riporto dalla cella precedente
 - ▶ Ci occorre quindi un circuito più complesso, chiamato Full Adder
 - La prima cella può usare l'half adder, se non c'è bisogno di un riporto in ingresso
 - L'ultima cella fornisce un riporto finale

Full adder

Dobbiamo sommare 3 bit

- I due bit dei due numeri
- Il riporto proveniente dalla cella precedente

$$\rightarrow$$
 0 + 0 + 0 = 0

$$\rightarrow$$
 0 + 0 + 1 = 1

$$\rightarrow$$
 0 + 1 + 0 = 1

$$\rightarrow$$
 0 + 1 + 1 = 0 con il riporto di 1

$$1+0+0=1$$

▶
$$1 + 0 + 1 = 0$$
 con il riporto di 1

Due uscite sono sufficienti

Somma e riporto

С	а	b	C ₊₁	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Realizzazione del full adder

<i>c</i> \ a <i>b</i>	00	01	11	10
0	0	1	0	1

0	0	1	0	1
1	1	0	1	0

c \ ab	00	01	11	10
0	0	0	1	0
1	0	1	1	1

$$s = a'b'c + a'bc' + abc + ab'c'$$
$$= a \bigoplus b \bigoplus c$$
$$c_{+1} = ab + bc + ac$$

Sommatore ripple carry

E' come fare la somma in colonna

- Esempio
- $11_{10} + 3_{10} = 14_{10}$
- ightharpoonup 1011₂ + 0011₂ = 1110₂

Osservazioni

Progetto ad alto numero di variabili di ingresso

- 8 solo per gli ingressi di dato
- ▶ 9 se si include l'eventuale *carry in* per la prima cifra (512 caselle!!)
- ▶ Il progetto iterativo gerarchico ci consente comunque di arrivare ad una soluzione in modo semplice

Facile realizzare sommatori grandi

- ▶ Per fare somme a 8 bit, basta mettere assieme due sommatori a 4 bit
- Occorre collegare il carry out del primo al carry in del secondo

Overflow

- L'eventuale carry out finale a 1 indica una condizione di overflow
- ▶ I bit di risultato non sono sufficienti per rappresentare la somma

Esempio di overflow a 4 bit

▶ A 4 bit rappresentiamo numeri da 0 a 15

- $12_{10} + 7_{10} = 19_{10}$
- ightharpoonup 1100₂ + 0111₂ = 10011₂
- $ightharpoonup 1100_2 + 0111_2 = 0011_2$ con riporto 1
- ▶ Il risultato vale 3, il riporto vale 16 (2⁴)

Cella	3	2	1	0
Carry in	1	0	0	
Α	1	1	0	0
В	0	1	1	1
S	0	0	1	1
С	1	1	0	0

8	4	2	1	M
1	1	1	1	15
1	1	1	0	14
1	1	0	1	13
1	1	0	0	12
1	0	1	1	11
1	0	1	0	10
1	0	0	1	9
1	0	0	0	8
0	1	1	1	7
0	1	1	0	6
0	1	0	1	5
0	1	0	0	4
0	0	1	1	3
0	0	1	0	2 🚽
0	0	0	1	1
0	0	0	0	0)

Prestazioni

a₃ b₃ a₂ b₂ a₁ b₁ a₀ b₀ c₀ FA₃ FA₂ FA₁ FA₀ c s₃ s₂ s₁ s₀

Dimensioni

- ▶ Il sommatore ha dimensioni alquanto ridotte
- Se si aggiunge un bit ai numeri di ingresso, le dimensioni aumentano di un solo stadio
- La dimensione del sommatore ripple carry cresce linearmente con il numero di bit
- Si può dimostrare che una soluzione a due livelli crescerebbe in modo esponenziale con il numero di bit
 - Perché la mappa della somma esce fuori sempre a scacchiera, quindi gli implicanti sono minterm

Tempistiche

- La catena dei carry forma un cammino molto lungo, quindi il sommatore è lento
- ▶ E' tanto più lento quanto più alto è il numero di bit
- Ovviamente, i bit di uscita cambiano in istanti differenti a causa della propagazione del carry
- Alee impossibili da eliminare

Soluzioni alternative

Il sommatore è uno dei circuiti più diffusi

- ▶ Esistono letteralmente decine di diversi modi di realizzarlo
- Ogni soluzione è un diverso compromesso tra velocità, dimensioni e scalabilità
- Il sommatore a ripple carry è il più semplice, il più lento ed il più piccolo, con facile scalabilità

Rete di calcolo dei riporti

- Le soluzioni alternative normalmente agiscono sulla rete di calcolo del carry
- Si cerca di anticipare il calcolo, in modo da rendere il sommatore più veloce
- Questo porta ad un incremento delle dimensioni

Codifiche diverse

- Usando codifiche alternative (ridondanti) si può addirittura eliminare il riporto
- Utili in situazioni che possono fare uso di tali codifiche

Sommatore carry look-ahead

- Il ritardo sulla rete del ripple carry è di circa 2n + 2 porte logiche, per sommatori a n bit
 - Facilmente può diventare un ritardo significativo in un sistema
 - Per 16 bit sono circa 34 porte
- Conveniente quindi cercare di ottimizzare il calcolo del carry
 - La realizzazione sarà più complessa
 - Riduciamo a 2 livelli di logica il calcolo del carry su gruppi di bit
- Per vedere meglio, cerchiamo di separare la somma dal carry
 - La somma la lasceremo invariata

Realizzazione con due half adder

Manipolando l'espressione

- Abbiamo già il termine $(a \oplus b)$ nel circuito
- $c_{+1} = ab + ac + bc$
- = ab + ab'c + a'bc
- = ab + c(ab' + a'b)
- $= ab + c(a \oplus b)$

<i>c</i> \ a <i>b</i>	00	01	11	10		
0	0	1	0	1		
1	0	1	0	1		
(a ⊕ b)						

<i>c</i> \ a <i>b</i>	00	01	11	10
0	0	0	1	0
1	0	1	1	1

Generazione e propagazione del carry

Generazione e propagazione del carry

$$c_{+1} = ab + c(a \oplus b)$$

Ripple carry (di nuovo!)

 Possiamo ottimizzare la βropagazione ricalcolanho le ascite di ogni stadio e realizzandole a due livelli

Ultimo carry

Per l'ultimo carry, si può usare lo stesso metodo

- Le porte hanno però un fan-in sempre maggiore, aumentando i ritardi
- **E'** possibile definire per l'ultima cifra due uscite di generazione G_{0-3} e propagazione P_{0-3} del carry
 - Preserviamo la struttura del PFA
 - In questo modo si può usare il blocco sommatore a 4 bit come elemento base di sommatori gerarchici carry look-ahead

Propagazione

- \blacktriangleright Per propagare da C_0 a C_4 occorre avere tutte le propagazioni attive
- $P_{0-3} = P_3 P_2 P_1 P_0$

Generazione

- Un carry generato deve potersi propagare fino al fondo
- $G_{0-3} = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$

Sommatore carry look-ahead

Osservazioni

- Ritardo ridotto da 10 livelli a 6 livelli di logica
 - Includendo 2 livelli per generare l'ultimo carry o generare l'uscita
- Possiamo costruire sommatori più grossi
 - Per fare un sommatore a 16 bit usiamo 4 sommatori a 4 bit, combinati di nuovo con la rete di calcolo del carry
 - ▶ Il ritardo in questo caso scende da 34 a 10 livelli di logica

Sottrazione

Apparentemente come la somma

- Si può realizzare il sottrattore a 1 bit con prestito
- Si combinano poi con una rete di calcolo del prestito

Ma ora il risultato può essere negativo

- Occorre una rappresentazione
- Per esempio si può aggiungere un bit per indicare il segno (modulo e segno)

Pres	0	0	0	0	
22	1	0	1	1	0
18	1	0	0	1	0
4	0	0	1	0	0

Pres	0	0	1	1	
22	1	0	1	1	0
19	1	0	0	1	1
3	0	0	0	1	1

Pres							Pres	0	
19	1	0	0	1	1	1	30	1	
30	1	1	1	1	0	A	19	1	
			?				-11	0	

Codifica in complemento a 2

Numeri negativi codificati in complemento a 2

- Compl. a 2 di $M = 2^n M$
- Notare che il complemento a 2 del complemento a 2 di *M* è di nuovo *M*
- ▶ Un bit indica se il numero è positivo o negativo

Risultato della somma

- Se sommo due numeri positivi è come prima
- Se sommo un positivo con un negativo (quindi con il suo complemento a 2) ottengo la differenza!

$$M + (-N) = M + (2^n - N) = M - N + 2^n = M - N$$

- ▶ E se dovesse essere negativa la lascio in complemento a 2
- Se sommo due negativi ottengo di nuovo il risultato corretto (nella codifica in complemento a 2)

-8	4	2	1	M
0	1	1	1	7
0	1	1	0	6
0	1	0	1	5
0	1	0	0	4
0	0	1	1	3
0	0	1	0	2
0	0	0	1	1
0	0	0	0	0
1	1	1	1	-1
1	1	1	0	-2
1	1	0	1	-3
1	1	0	0	-4
1	0	1	1	-5
1	0	1	0	-6
1	0	0	1	-7
1	0	0	0	-8

Codifica in complemento a 2

Vantaggi

- C'è una sola rappresentazione per lo 0
- C'è comunque il bit di segno
- Per fare la sottrazione si può usare un sommatore con il complemento a 2 del sottraendo
- Non c'è quindi bisogno di un sottrattore dedicato

Overflow

- Quando la somma di due positivi è negativa
- Quando la somma di due negativi è positiva
- In pratica questo si verifica quando gli ultimi due riporti sono diversi
 - Non quando l'ultimo riporto è a 1

Range

- Per *n* bit si può rappresentare l'intervallo $[-2^{n-1}, 2^{n-1} 1]$
- $n = 4 \quad [-8, 7]$
- n = 5 [-16, 15]
- n = 8 [-128, 127]
- n = 32 [-2.147.483.648, 2.147.483.647]

-8	4	2	1	М
0	1	1	1	7
0	1	1	0	6
0	1	0	1	5
0	1	0	0	4
0	0	1	1	3
0	0	1	0	2
0	0	0	1	1
0	0	0	0	0
1	1	1	1	-1
1	1	1	0	-2
1	1	0	1	-3
1	1	0	0	-4
1	0	1	1	-5
1	0	1	0	-6
1	0	0	1	-7
1	0	0	0	-8

Calcolo del complemento a 2

Scomponiamo $(2^n - M)$ come

$$(2^n-1+1)-M$$

$$(2^n - 1 - M) + 1$$

$$2^5 = 100000$$

 $2^5 - 1 = 11111$

- ▶ Il termine $(2^n 1 M)$ si chiama complemento a 1 di M
 - Lo si ottiene facilmente
 - ▶ Osservate infatti che 2ⁿ 1 sono tutti 1
 - ▶ Quindi il complemento a 1 di M si ottiene semplicemente invertendo tutti i bit di M (1 0 = 1, 1 1 = 0)
 - Infine, per avere il complemento a 2, basta sommare 1

M	binario	2" - 1 - M	$2^n - 1 - M + 1$	compl. a 2
5	0101	1010	1011	-5
7	0111	1000	1001	-7
12	01100	10011	10100	-12

Sommatore / sottrattore

Moltiplicatori

Seguiamo la stessa logica e li facciamo in colonna

- $0 \times 0 = 0$
- $0 \times 1 = 0$
- $1 \times 0 = 0$
- $1 \times 1 = 1$
- ▶ Il moltiplicatore a 1 bit è una AND

Multi-bit

- Occorre traslare i risultati intermedi
- ▶ E quindi sommare tutti i contributi
- ▶ Con n bit, il risultato può avere 2n bit

11			1	0	1	1
5			0	1	0	1
			1	0	1	1
		0	0	0	0	
	1	0	1	1		
55	1	1	0	1	1	1

Moltiplicatore 4 x 3

Altre operazioni

Si possono realizzare molti altri operatori

- Divisione
- Radice quadrata
- Comparatori
- Rotazioni e traslazioni
- Funzioni trigonometriche

Numeri con la virgola

- Si possono trattare numeri con la virgola
- In virgola fissa, usando la codifica binaria
- ▶ In virgola mobile, distinguendo mantissa ed esponente
- Che vantaggi hanno le due rappresentazioni?

Comparatori

- Una uscita che indica se A è maggiore o uguale a B
 - Si può fare a due livelli
 - Oppure usare il metodo iterativo e fare confronti una cifra alla volta
 - ▶ Le cifre più significative trasferiscono una sorta di riporto a quelle meno significative
 - Da vedere a esercitazione

Take away

- Tramite una opportuna codifica dei numeri, i circuiti logici possono eseguire operazioni aritmetiche
 - Abbiamo visto appena una minima parte dei circuiti possibili
 - Si potrebbe fare un intero corso apposta
 - Molteplici soluzioni architetturali
- La codifica ha forte influenza sulla realizzazione
 - ▶ La codifica in complemento a 2 è oggi la più usata
 - Da valutare attentamente i compromessi tra virgola fissa e virgola mobile
 - Codifiche ridondanti possono portare vantaggi in prestazioni, a scapito alle volte delle dimensioni
 - ▶ Ha senso realizzare circuiti dedicati, visto l'enorme campo applicativo dei circuiti aritmetici