UCBL – L1 PCSI – UE Math 2

Fonctions de plusieures variables et champs de vecteurs

Alessandra Frabetti

Institut Camille Jordan, Département de Mathématiques Université Claude Bernard Lyon 1

http://math.univ-lyon1.fr/~frabetti/Math2/

But du cours:

Champs scalaires (lignes de niveau)

Champs de vecteurs (ici, sur la sphère)

Lignes de champ (dipole magnétique)

et aussi potentiels, circulation, flux...

Programme et plan des cours

Partie I : Fonctions de plusieures variables

- **CM** 1 Coordonnées, ensembles compacts
- **CM 2** Fonctions, graphes, opérations
- **CM 3** Dérivées partielles, gradient, différentielle
- **CM 4** Jacobienne, règle de la chaîne
- CM 5 Dérivées secondes, Hessienne, Laplacien, Taylor, extrema
- **CM 6** Intégrales simples et doubles
- CM 7 Intégrales triples. Aire, volume, centre de masse

Partie II : Champs de vecteurs

- **CM 8** Champs scalaires et champs de vecteurs
- **CM 9** Champs conservatifs
- **CM 10** Champs incompressibles
- **CM 11** Courbes et circulation
- CM 12 Surfaces et flux

Prérequis

- 1. Espaces vectoriels et vecteurs de \mathbb{R}^2 et \mathbb{R}^3 (produits scalaire, vectoriel et mixte).
- Applications linéaires et matrices (produit, détérminant, matrice inverse).
- 3. **Géométrie cartesienne du plan et de l'espace** (droites, coniques, plans, quadriques).
- Dérivées et intégrales des fonctions d'une variable (graphes, dérivées, points critiques, extrema, Taylor, primitives).
- 5. Équations différentielles du 1er ordre.

Math2 – Chapitre 1 Fonctions de plusieures variables

Dans ce chapitre:

- 1.1 Coordonnées cartesiennes, polaires, cylindriques et sphériques
- 1.2 Ensembles ouverts, fermés, bornés et compacts
- 1.3 Fonctions de deux ou trois variables
- 1.4 Graphes et lignes de niveau
- 1.5 Opérations, composition et changements de coordonnées

1.1 – Coordonnées polaires, cylindriques, sphériques

Dans cette section:

- Coordonnées cartesiennes et polaires du plan
- Coordonnées cartesiennes, cylindriques et sphériques de l'espace

Coordonnées cartesiennes du plan

On note
$$(O, \vec{\imath}, \vec{j})$$
 un repère $O \longrightarrow \vec{i}$ du plan.

Définition – Soit *P* un point du plan.

• Le coordonnées cartesiennes de P sont le couple $(x, y) \in \mathbb{R}^2$ tel que $\vec{v} = \overrightarrow{OP} = x\vec{i} + y\vec{j} \equiv \begin{pmatrix} x \\ y \end{pmatrix}$.

Autrement dit,

$$x = \|\overrightarrow{OP'}\|$$
 et $y = \|\overrightarrow{OP''}\|$

sont les longueurs des projections orthogonales de \vec{v} dans les directions \vec{i} et \vec{j} .

Coordonnées polaires

• Les coordonnées polaires de $P \neq O$ sont le couple $(\rho, \varphi) \in \mathbb{R}^+ \times [0, 2\pi[$ tel que $\left\{ \begin{array}{l} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{array} \right.$

On a donc

$$\begin{cases} \rho = \|\overrightarrow{OP}\| = \sqrt{x^2 + y^2} \\ \varphi \quad \text{t.q.} \ \tan \varphi = \frac{y}{x} \ \text{si} \ x \neq 0 \ \text{ou} \ \cot \varphi = \frac{x}{y} \ \text{si} \ y \neq 0 \\ \left(\text{par ex.} \quad \varphi = \arctan \frac{y}{x} \quad \text{si} \ x, y > 0 \right) \end{cases}$$

Exercice: coord. polaires ---- cartesiennes

Énoncé – Pour les points suivants du plan, dont on connait les coordonnés polaires, trouver les coordonnées cartesiennes :

$$A \left\{ \begin{array}{l} \rho = 3 \\ \varphi = 5\pi/4 \end{array} \right. \qquad B \left\{ \begin{array}{l} \rho = \sqrt{2} \\ \varphi = 3\pi/4 \end{array} \right. \qquad C \left\{ \begin{array}{l} \rho = 0 \\ \varphi = 3\pi/2 \end{array} \right.$$

Réponse – On dessine chaque point sur un plan, ensuite on calcule les coordonnées cartésiennes avec les formules:

•
$$A$$

$$\begin{cases} x = 3\cos(5\pi/4) = -\frac{3\sqrt{2}}{2} \\ y = 3\sin(5\pi/4) = -\frac{3\sqrt{2}}{2} \end{cases}$$

$$A\left(-\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$$

• B
$$\begin{cases} x = \sqrt{2}\cos(3\pi/4) = \frac{-\sqrt{2}^2}{2} \\ y = \sqrt{2}\sin(3\pi/4) = \frac{\sqrt{2}^2}{2} \end{cases} B(-1,1)$$

•
$$C$$

$$\begin{cases} x = 0 \cos(3\pi/2) = 0 \\ y = 0 \sin(3\pi/2) = 0 \end{cases}$$
 $C(0,0)$

Exercice: coord. cartesiennes ---- polaires

Énoncé – Pour les points suivants du plan en coordonnés cartesiennes, trouver les coordonnées polaires :

$$A(2,3)$$
 $B(2,0)$ $C(0,3)$

Réponse – On dessine chaque point sur un plan, ensuite on calcule les coordonnées cartesiennes avec les formules:

$$\bullet \ A \quad \left\{ \begin{array}{l} \rho = \sqrt{4+9} = \sqrt{13} \\ \cos \varphi = 2/\sqrt{13} \\ \sin \varphi = 3/\sqrt{13} \end{array} \right. \quad \left\{ \begin{array}{l} \rho = \sqrt{13} \\ \varphi = \arctan\left(\frac{3}{2}\right) \end{array} \right.$$

$$\bullet \ B \quad \left\{ \begin{array}{l} \rho = \sqrt{4+0} = 2 \\ \cos \varphi = 2/2 = 1 \\ \sin \varphi = 0/2 = 0 \end{array} \right. \quad \left\{ \begin{array}{l} \rho = 2 \\ \varphi = \arctan 0 = 0 \end{array} \right.$$

• C
$$\begin{cases} \rho = \sqrt{0+9} = 3\\ \cos \varphi = \frac{0}{3} = 0\\ \sin \varphi = \frac{3}{3} = 1 \end{cases} \qquad \begin{cases} \rho = 3\\ \varphi = \pi/2 \end{cases}$$

Coordonnées cartesiennes de l'espace

On note $(O, \vec{\imath}, \vec{j}, \vec{k})$ un repère \vec{k} \overrightarrow{j} de l'espace.

Définition – Soit *P* un point de l'espace.

• Les coordonnées cartesiennes de P sont le triplet $(x, y, z) \in \mathbb{R}^3$

tel que
$$\vec{v} = \overrightarrow{OP} = x\vec{i} + y\vec{j} + z\vec{k} \equiv \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Autrement dit,

$$x = \|\overrightarrow{OP}'\|, \quad y = \|\overrightarrow{OP}''\| \quad \text{et} \quad z = \|\overrightarrow{OP}'''\|$$

sont les longueurs des projections orthogonales de \vec{v} dans les directions $\vec{\tau}$, \vec{j} et \vec{k} .

Coordonnées cylindriques

• Les coordonnées cylindriques de $P \neq O$ sont le triplet $(\rho, \varphi, z) \in \mathbb{R}^+ \times [0, 2\pi[\times \mathbb{R} \quad \text{tel que}]$

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \\ z = z \end{cases}$$

Si $(x, y, z) \neq (0, 0, 0)$ on a donc

$$\begin{cases} \rho = \|\overrightarrow{OQ}\| = \sqrt{x^2 + y^2} \\ \varphi \quad \text{tel que} \quad \begin{cases} \cos \varphi = \frac{x}{\rho} \\ \sin \varphi = \frac{y}{\rho} \end{cases} \\ z = z \end{cases}$$

Coordonnées sphériques

• Les coordonnées sphériques de $P \neq O$ sont le triplet $(r, \varphi, \theta) \in \mathbb{R}^+ \times [0, 2\pi[\times]0, \pi[$ tel que

$$\begin{cases} x = r \cos \varphi \sin \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \theta \end{cases}$$

Si $(x, y, z) \neq (0, 0, 0)$ on a donc

$$\begin{cases} r = \|\overrightarrow{OP}\| = \sqrt{x^2 + y^2 + z^2} \\ \varphi \quad \text{tel que} \quad \begin{cases} \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} \\ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}} \end{cases} \\ \theta = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} \end{cases}$$

Coordonnées de l'espace

Exercice: coord. cylindriques ----- cartesiennes

Énoncé – Pour les points suivants, dont on connait les coordonnés cylindriques, trouver les coordonnées cartesiennes :

$$A \left\{ \begin{array}{l} \rho = 3 \\ \varphi = \pi/3 \\ z = 2 \end{array} \right. \qquad B \left\{ \begin{array}{l} \rho = \sqrt{2} \\ \varphi = \pi/4 \\ z = -3 \end{array} \right.$$

Réponse – On dessine chaque point sur un plan, ensuite on calcule les coordonnées cartesiennes avec les formules:

•
$$A$$

$$\begin{cases} x = 3\cos(\pi/3) = \frac{3}{2} \\ y = 3\sin(\pi/3) = \frac{3\sqrt{3}}{2} \end{cases} A(\frac{3}{2}, \frac{3\sqrt{2}}{2}, 2)$$

$$z = 2$$

• B
$$\begin{cases} x = \sqrt{2}\cos(\pi/4) = \frac{\sqrt{2}^2}{2} = 1\\ y = \sqrt{2}\sin(\pi/4) = \frac{\sqrt{2}^2}{2} = 1\\ z = -3 \end{cases} B(1, 1, -3)$$

Énoncé – Pour les points suivants, dont on connait les coordonnées sphériques, trouver les coordonnées cartesiennes :

$$C \left\{ \begin{array}{l} r = \sqrt{2} \\ \varphi = \pi/2 \\ \theta = 3\pi/4 \end{array} \right. \quad D \left\{ \begin{array}{l} r = 1 \\ \varphi = \pi/3 \\ \theta = \pi/6 \end{array} \right.$$

Réponse – On dessine chaque point sur un plan, ensuite on applique les formules:

$$\bullet \ \, C \qquad \left\{ \begin{array}{l} x = \sqrt{2} \ \, \cos(\pi/2) \ \, \sin(3\pi/4) = 0 \\ y = \sqrt{2} \ \, \sin(\pi/2) \ \, \sin(3\pi/4) = 1 \\ z = \sqrt{2} \ \, \cos(3\pi/4) = -1 \end{array} \right. \qquad C \left(0, 1, -1 \right)$$

•
$$D$$

$$\begin{cases} x = \cos(\pi/3) & \sin(\pi/6) = \frac{1}{4} \\ y = \sin(\pi/3) & \sin(\pi/6) = \frac{\sqrt{3}}{4} \end{cases} D(\frac{1}{4}, \frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2}) \\ z = \cos(\pi/6) = \frac{\sqrt{3}}{2} \end{cases}$$

Exo: cartesiennes \rightarrow cylindriques et sphériques

Enoncé – Pour les points suivants en coordonnées cartesiennes, trouver les coordonnées cylindriques et sphériques:

$$A = (-1, 1, 1)$$
 $B(3, 0, 0)$ $C(0, 1, 1)$

Réponse -

Reponse –
$$A \begin{cases} \rho = \sqrt{1+1} = \sqrt{2} \\ \tan \varphi = -1 \\ r = \sqrt{1+1+1} = \sqrt{3} \\ \cos \theta = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \end{cases} \begin{cases} \rho = \sqrt{2} \\ \varphi = 3\pi/4 \\ z = 1 \end{cases} \begin{cases} r = \sqrt{3} \\ \varphi = 3\pi/4 \\ \theta = \arccos \frac{\sqrt{3}}{3} \end{cases}$$

• B
$$\begin{cases} \rho = \sqrt{9+0} = 3 \\ \tan \varphi = \frac{0}{3} = 0 \\ r = \sqrt{9+0+0} = 3 \\ \cos \theta = \frac{0}{3} = 0 \end{cases} \qquad \begin{cases} \rho = 3 \\ \varphi = 0 \\ z = 0 \end{cases} \qquad \begin{cases} r = 3 \\ \varphi = 0 \\ \theta = \pi/2 \end{cases}$$

$$\bullet \ C \quad \begin{cases} \rho = \sqrt{0+1} = 1 \\ \cos \varphi = 0 \\ \sin \varphi = 1 \\ r = \sqrt{0+1+1} = \sqrt{2} \\ \cos \theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \end{cases} \quad \begin{cases} \rho = 1 \\ \varphi = \pi/2 \\ z = 1 \end{cases} \quad \begin{cases} r = \sqrt{2} \\ \varphi = \pi/2 \\ \theta = \pi/4 \end{cases}$$

Notations des points

Conclusion -

- Un point géométrique du plan ou de l'espace est noté P.
- Un point <u>en coordonnées</u> dans \mathbb{R}^2 ou \mathbb{R}^3 est noté \vec{x} .

Cela signifie donc (x,y), (ρ,φ) , (x,y,z), (ρ,φ,z) ou (r,φ,θ) selon le contexte.

Dans la suite \mathbb{R}^n est l'un des trois espaces \mathbb{R} , \mathbb{R}^2 ou \mathbb{R}^3 .

1.2 – Ensembles ouverts, fermés, bornés, compacts

Dans cette section:

- Intervalles, disques, boules
- Bord d'un ensemble
- Ensembles ouverts et fermés
- Ensembles bornés et compacts

Intervalles

Définitions -

ullet Dans $\mathbb R$, on appelle

intervalle ouvert
$$I_a(r) =]a - r, a + r[$$

intervalle fermé
$$\bar{I}_a(r) = [a-r, a+r]$$

bord de l'intervalle $\partial I_a(r) = \{a-r, a+r\}$

Disques

• Dans \mathbb{R}^2 , on appelle

disque ouvert

$$D_{(a,b)}(r) = \{(x,y) \mid (x-a)^2 + (y-b)^2 < r^2\}$$

disque fermé

$$\overline{D}_{(a,b)}(r) = \{(x,y) \mid (x-a)^2 + (y-b)^2 \leqslant r^2\}$$

$$\partial D_{(a,b)}(r) = \{(x,y) \mid (x-a)^2 + (y-b)^2 = r^2\}$$

Boules

• Dans \mathbb{R}^3 , on appelle

boule ouverte

$$B_{(a,b,c)}(r) = \left\{ (x,y,z) \mid (x-a)^2 + (y-b)^2 + (z-c)^2 < r^2 \right\}$$

boule fermée

$$\overline{B}_{(a,b,c)}(r) = \{(x,y,z) \mid (x-a)^2 + (y-b)^2 + (z-c)^2 \leqslant r^2\}$$

bord de la boule
$$(= \text{sphère})$$
 $\partial B_{(a,b,c)}(r) = \{(x,y,z) \mid (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2\}$

Bord d'un ensemble

Définition – Soit $D \subset \mathbb{R}^n$ un sous-ensemble.

- Un point P est un **point intérieur** à D, s'il existe une boule ouverte B_P contenue dans D.
- Un point P est un **point extérieur** à D il existe une boule ouverte B_P qui n'intersecte pas D.
- Un point $P \in \mathbb{R}^n$ est un **point du bord** de D si <u>toute</u> boule ouverte B_P centrée en P contient à la fois des points de D et de son complémentaire $\mathbb{R}^n \backslash D$.
- Le **bord** de D est l'ensemble des points du bord, noté ∂D .

ATTENTION – Un point de ∂D peut être dans D ou non!

Ensembles ouverts et fermés

Définition – Soit $D \subset \mathbb{R}^n$ un sous-ensemble.

- D est **ouvert** s'il ne contient <u>aucun</u> de ses points de bord.
- *D* est **fermé** s'il contient <u>tous</u> ses points de bord.

Propriété – Le complémentaire d'un ouvert est fermé, le complémentaire d'un fermé est ouvert.

• Par convention, l'**ensemble vide** \emptyset et \mathbb{R}^n sont à la fois ouverts et fermés dans \mathbb{R}^n .

ATTENTION – Il existe des ensembles qui ne sont ni ouverts ni fermés!

Ensembles bornés et compacts

Définition – Soit $D \subset \mathbb{R}^n$ un sous-ensemble.

- *D* est **borné** s'il existe un disque ouvert *B* qui le contient.
- *D* est **compact** s'il est fermé et borné.

Exemples: non bornés fermés et ouverts

Exemples -

• Droites, demi-droites, plans et demi-plans sont non bornés. Les droites et les plans sont fermés. Les demi-droites et les demi-plans sont fermés s'ils contiennent leurs point ou droite extreme.

• Les quadrants $\mathbb{R}_+ \times \mathbb{R}_+$ et $\mathbb{R}_+^* \times \mathbb{R}_+^*$ sont non bornés. Le premier est aussi fermé. Le deuxième est ouvert dans \mathbb{R}^2 mais ne l'est pas dans \mathbb{R}^3 (car tout le quadrant est son propre bord dans \mathbb{R}^3).

Exemples: bornés ouverts et fermés

• Disques, boules, carrés et cubes pleins sont bornés. Ils sont fermés (et donc compacts) s'ils contiennent leur bord (cercle, sphère ou carré et cube).

• Les couronnes circulaires sont bornées. Dans le plan, elles sont fermées (donc compactes) ou ouvertes selon qu'elles contiennent les circles ou non.

Exercice

Énoncé – Dessiner les sous-ensembles suivants de \mathbb{R}^2 et dire s'ils sont ouverts, fermés, bornés ou compacts :

$$A = \{(x, y) \in \mathbb{R}^2 \mid 0 < x < 5\}$$

$$B = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 5, \ 0 \le y \le x^2 + 3\}$$

$$C = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x < 5, \ 0 \le y < x^2 + 3\}$$

$$C = \{(x,y) \in \mathbb{R} \mid 0 \le x < 5, \ 0 \le y < 5\}$$

Réponse -

1.3 - Fonctions de deux ou trois variables

Dans cette section:

- Fonctions réelles et vectorielles de plusieurs variables
- Domaine et image

Fonctions réelles et vectorielles

Définition - Une fonction de plusieurs variables est une loi

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \quad \vec{x} \mapsto f(\vec{x})$$

qui associe à un point $\vec{x} \in \mathbb{R}^n$ au plus une valeur $f(\vec{x}) \in \mathbb{R}^m$.

- Pour ce cours, n = 2 ou 3 et m = 1, 2 ou 3.
- Si m = 1, la fonction $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ est dite **réelle**.
- Si m > 1, la fonction f est dite **vectorielle**.

Exemples de fonctions de plusieures variables

Fonctions réelles

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (x, y) \mapsto f(x, y) = x^3 + \sin(xy) + 1$$

Pression = f(Volume, Temperature)

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}, \ (x, y, z) \mapsto f(x, y, z) = x^3z + xyz + \ln(z^2 + 1)$$

Fonctions vectorielles

$$f:\mathbb{R}^2 \longrightarrow \mathbb{R}^3, \ (x,y) \mapsto f(x,y) = (x^2,x+y,y^3)$$

$$g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, \ (x, y, z) \mapsto g(x, y, z) = (x^2 + z, xz + y)$$

$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \ (\rho, \varphi) \mapsto h(\rho, \varphi) = (\rho \cos \varphi, \rho \sin \varphi)$$

Attention aux fonctions vectorielles et linéaires!

 $\begin{array}{ll} {\rm ATTENTION} - & {\rm Une} \ {\rm fonction} \ {\rm vectorielle} \ {\rm n'est} \ {\rm pas} \ {\rm lin\'eaire} \ {\rm en} \\ {\rm g\'en\'eral} \ ! & & & & & & & & \\ \end{array}$

Une fonction $f:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ est <u>linéaire</u> si et seulement si, en coordonnée cartesiennes, ses composantes sont des polynômes de degré 1 sans termes constants.

Par exemple:

- f(x, y, z) = (2z x, 0, 3y + 5x z) est linéaire
- $g(x, y, z) = (xz + 5, 3, \sin(y))$ n'est pas linéaire, car contient un polynôme de degré 2(xz), deux termes constants non nuls (5 et 3) et une fonction non-polynomiale $(\sin(y))$.

Domaine et image

Définition – Soit $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ une fonction.

• Le **domaine (de définition)** de f est l'ensemble des points de \mathbb{R}^n pour lesquels f est bien définie:

$$D_f = \left\{ \vec{x} \in \mathbb{R}^n \mid \text{il existe } f(\vec{x}) \in \mathbb{R}^m \right\}$$

• L'**image** de *f* est l'ensemble des valeurs de f :

$$I_f = f(D_f) = \left\{ \vec{y} \in \mathbb{R}^m \mid \text{il existe } \vec{x} \in \mathbb{R}^n \text{ tel que } \vec{y} = f(\vec{x}) \right\}$$

Exemples: domaine et image

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x,y) \mapsto f(x,y) = \sqrt{x^2 + y^2 - 1}$

$$D_f = \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \geqslant 1 \right\}$$

= complémentaire du disque $D_O(1)$
(fermé non borné)

$$I_f = [0, +\infty[=\mathbb{R}_+$$

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x, y) \mapsto f(x, y) = \sqrt{1 - x^2 - y^2}$

$$D_f = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant 1 \right\}$$

= disque fermé $\overline{D}_O(1)$ (compact)

$$\longrightarrow^{\times}$$

$$I_f=[0,1]$$

car
$$x^2 + y^2 \ge 0 \Longleftrightarrow 0 \le 1 - x^2 - y^2 \le 1$$

 $\Longleftrightarrow 0 \le \sqrt{1 - x^2 - y^2} = f(x, y) \le 1$

Exemples: domaine et image

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x, y) \mapsto f(x, y) = \ln(x^2 + y^2 - 1)$

$$D_f = \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 > 1 \right\}$$

= complémentaire du disque $\overline{D}_O(1)$
(ouvert non borné)

$$I_f = \mathbb{R}$$

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x, y) \mapsto f(x, y) = \ln(1 - x^2 - y^2)$

$$egin{aligned} D_f &= \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1
ight\} \ &= ext{disque ouvert } D_O(1) \ & ext{(ouvert born\'e)} \end{aligned}$$

$$I_f = [n][0,1] =]-\infty,0] = \mathbb{R}^-$$

Exemples: domaine et image

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x,y) \mapsto f(x,y) = \left(\frac{1}{x^2}, -\frac{1}{y^2}\right)$

$$D_f = \{(x, y) \in \mathbb{R}^2 \mid x \neq 0, y \neq 0\}$$

= plan privé des deux axes de coordonnées
(ouvert non borné)

$$I_f = \mathbb{R}_0^+ imes \mathbb{R}_0^- = 4^{eme}$$
 quadrant privé de son bord

•
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}$$
,
 $(x, y, z) \mapsto f(x, y, z) = \left(\sqrt{x^2 - z^2}, -\sqrt{y^2 + z^2}\right)$

$$D_f = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - z^2 \geqslant 0\}$$

= cône délimité par les deux plans $z = \pm x$
(fermé non borné)

$$I_f = \mathbb{R}^+ imes \mathbb{R}^- = 4^{eme}$$
 quadrant

Exercices

Énoncé – Dessiner le domaine de définition et l'image des fonctions suivantes et déterminer la nature du domaine (ouvert, fermé, borné, compact).

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x,y) \mapsto f(x,y) = \frac{\ln(x^2 + y^2 + 1)}{x^2 + y^2}$.
Réponse : $D_f = \{(x,y) \in \mathbb{R}^3 \mid x^2 + y^2 + 1 > 0, \ x^2 + y^2 \neq 0\}$
 $= \mathbb{R}^2 \setminus \{(0,0)\} = \text{plan moins l'origine}$ (ouvert non borné)

La condition $x^2+y^2+1>0$ est vérifiée pour tout $(x,y)\in\mathbb{R}^2$ et la condition $x^2+y^2\neq 0$ est vérifiée si $(x,y)\neq (0,0)$.

$$I_f = \mathbb{R}_+^* =]0, +\infty[$$
 (ouvert non borné)

car $x^2+y^2>0$ implique $x^2+y^2+1>1$ et par conséquent $\ln(x^2+y^2+1)>0$, et le quotient de deux nombres positifs est positif.

Exercices

•
$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $(x,y) \mapsto g(x,y) = \left(\frac{\ln(x^2+1)}{y^2}, \frac{\ln(y^2+1)}{x^2}\right)$

Réponse :

$$\begin{split} D_g &= \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + 1 > 0, \ y \neq 0, \ y^2 + 1 > 0, \ x \neq 0 \right\} \\ &= \mathbb{R}^* \times \mathbb{R}^* = \text{plan priv\'e des deux axes de coordonn\'ees} \\ & \text{(ouvert non born\'e)}. \end{split}$$

En effet, les conditions $x^2+1>0$ et $y^2+1>0$ sont vérifiées pour tout $(x,y)\in\mathbb{R}^2$

$$I_g = \mathbb{R}_+^* imes \mathbb{R}_+^* = 1^{er}$$
 quadrant privé de son bord (ouvert non borné)

Les conditions $x \neq 0$ et $y \neq 0$ impliquent $x^2 > 0$ et $y^2 > 0$, et par conséquent $\ln(x^2 + 1) > 0$ et $\ln(y^2 + 1) > 0$.

1.4 – Graphes et lignes de niveau

Dans cette section:

- Graphe des fonctions d'une variable (rappel)
- Graphe des fonctions de plusieures variables
- Lignes de niveau

Graphe des fonctions d'une variable

Rappel – Le **graphe** de $f : \mathbb{R} \longrightarrow \mathbb{R}$ est l'ensemble

$$\Gamma_f = \left\{ (x,y) \in \mathbb{R}^2 \mid x \in D_f, \ y = f(x) \ \right\} \subset \mathbb{R}^2.$$

Le graphe des fonctions usuelles d'une variable est à connaître par cœur.

Graphes à connaître ! f(x) = x

D'autres graphes à connaître!

D'autres encore... ouf!

Graphe des fonctions de plusieures variables

Définition – Le graphe de $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ est l'ensemble

$$\Gamma_f = \left\{ (\vec{x}, \vec{y}) \in \mathbb{R}^{n+m} \mid \vec{x} \in D_f, \ \vec{y} = f(\vec{x}) \ \right\} \subset \mathbb{R}^{n+m}.$$

PROBLÈME – Ce graphe est difficile à dessiner si n + m > 3!

Regardons n = 2 et m = 1.

Graphe des fonctions réelle de deux variables

Le **graphe de** $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ est l'ensemble

$$\Gamma_f = \left\{ (x,y,z) \in \mathbb{R}^3 \ | \ (x,y) \in D_f, \ z = f(x,y) \ \right\} \subset \mathbb{R}^3.$$

Exemple: graphe d'une fonction de deux variables

Exemple -

•
$$f(x,y) = \sqrt{1-x^2-y^2} = z$$

 $\implies D_f = \overline{D}_0(1)$ et $I_f = [0,1]$

Notons que

$$z^2 = 1 - x^2 - y^2$$
, c.-à-d. $x^2 + y^2 + z^2 = 1$, et $z \ge 0$.

Ainsi Γ_f = demi-sphère

Lignes de niveau

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de domaine $D_f \subset \mathbb{R}^2$ et d'image $I_f \subset \mathbb{R}$.

Définition – Pour tout $a \in \mathbb{R}$, la **ligne de niveau** a est la projection sur D_f de $\Gamma_f \cap \{z = a\}$, c'est-à-dire

$$L_a(f) = \{(x, y) \in D_f \mid f(x, y) = a\}.$$

À noter que $L_a(f) = \emptyset$ si $a \notin I_f$.

Exemple: lignes de niveau

Exemple -

•
$$f(x,y) = \sqrt{1-x^2-y^2} = z$$
, $D_f = \overline{D}_0(1)$, $I_f = [0,1]$

Pour tout $a \in [0,1] = I_f$ on a

$$L_{a}(f) = \left\{ (x, y) \in \overline{B}_{O}(1) \mid \sqrt{1 - x^{2} - y^{2}} = a \right\}$$

$$= \text{cercle centr\'e en } (0, 0) \text{ de rayon } \sqrt{1 - a^{2}}$$

Exercice

Énoncé – Trouver le domaine, l'image et la nature des lignes de niveau de la fonction

$$f(x,y) = \frac{x-y}{x+y}.$$

Dessiner les lignes de niveau pour les valeurs a = -2, -1, 0, 1, 2. En déduire le graphe de f.

Réponse -

$$D_f = \{(x,y) \in \mathbb{R}^2 \mid y \neq -x\} = \mathbb{R}^2 \setminus \text{la bissectrice}$$

du 2^{eme} quadrant

 $I_f=\mathbb{R}$, alors pour tout $a\in\mathbb{R}$ on a

$$L_a(f) = \left\{ (x, y) \in D_f \mid \frac{x - y}{x + y} = a \right\}$$
= droite d'équation $(a - 1)x + (a + 1)y = 0$

Exercice

$$\begin{split} L_a(f) &= \text{droite d'équation} \quad (a-1)x + (a+1)y = 0 \\ a &= 0 \quad \Longrightarrow \quad y = x \\ a &= 1 \quad \Longrightarrow \quad y = 0 \qquad \qquad a = -1 \quad \Longrightarrow \quad x = 0 \\ a &= 2 \quad \Longrightarrow \quad y = -\frac{1}{3}x \qquad \qquad a = -2 \quad \Longrightarrow \quad y = -3x \\ \Gamma_f &= \left\{ (x,y,z) \in \mathbb{R}^3 \mid y \neq x, \ z = \frac{x-y}{x+y} \right\} \\ &= \text{union de droites tournantes (sans l'axe } Oz) \end{split}$$

1.5 – Opérations, composition et changement de coordonnées

Dans cette section:

- Somme et produit de fonctions
- Composition de fonctions
- Changement de coordonnées

Somme et produit de fonctions

Définition – Soient $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ deux fonctions et $\lambda \in \mathbb{R}$. On définit les fonctions suivantes:

somme:
$$(f+g)(\vec{x}) = f(\vec{x}) + g(\vec{x}), \quad D_{f+g} = D_f \cap D_g;$$

zéro: $0(\vec{x}) = (0,...,0), \quad D_0 = \mathbb{R}^n;$
opposée de f : $(-f)(\vec{x}) = -f(\vec{x}), \quad D_{-f} = D_f;$
produit de f par λ : $(\lambda f)(\vec{x}) = \lambda f(\vec{x}), \quad D_{\lambda f} = D_f.$

Si f et g sont des fonctions <u>réelles</u> (m = 1):

produit:
$$(fg): (\vec{x}) = f(\vec{x})g(\vec{x}), \quad D_{fg} = D_f \cap D_g;$$

un:
$$1(\vec{x}) = 1$$
, $D_1 = \mathbb{R}^n$;

$$\text{inverse de } f\colon \quad \Big(\frac{1}{f}\Big)(\vec{x}) = \frac{1}{f(\vec{x})}, \quad \ D_{1/f} = \Big\{\vec{x} \in D_f \ | \ f(\vec{x}) \neq 0\Big\}.$$

Exemples: somme et produit de fonctions

Exemple -

Si
$$f(x,y)=x^2-y^2$$
, $g(x,y)=x^2+y^2$ et $\lambda=3$, on a :

$$\begin{cases} (f+g)(x,y) = 2x^2 \\ (3f)(x,y) = 3f(x,y) \\ (fg)(x,y) = x^4 - y^4 \\ \frac{1}{f}(x,y) = \frac{1}{x^2 - y^2} & \text{si } x \neq \pm y. \end{cases}$$

Propriétés des opérations

Proposition – Les opérations d'addition, produit par scalaire et multiplication entre fonctions à plusieurs variables ont les mêmes proprietés que leurs analogues entre fonctions à une variable (elles sont commutatives, associatives et distributives).

En particulier, l'ensemble des fonctions à plusieurs variables $\mathcal{F}(\mathbb{R}^n,\mathbb{R}^m)$ muni de l'addition et du produit <u>par</u> scalaire est un espace vectoriel sur \mathbb{R} de dimension infinie.

Composition de fonctions

Définition – Données deux fonctions

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 et $g: \mathbb{R}^m \longrightarrow \mathbb{R}^p$

on définit la composée de f et g comme la fonction

$$g \circ f : \mathbb{R}^n \longrightarrow \mathbb{R}^p$$

obtenue en calculant g sur les valeurs obtenues par f:

$$\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m} \xrightarrow{g} \mathbb{R}^{p}$$

$$\vec{x} \mapsto f(\vec{x}) \mapsto (g \circ f)(\vec{x}) = g(f(\vec{x}))$$

Le domaine de $g \circ f$ est l'ensemble

$$D_{g\circ f} = \left\{ \vec{x} \in D_f \mid f(\vec{x}) \in D_g \right\}.$$

Exemples: cas usuels de fonctions composées

Fixons $f: \mathbb{R}^2 \to \mathbb{R}, \ (x, y) \mapsto f(x, y) = x^2 - y.$

• Si
$$g: \mathbb{R} \to \mathbb{R}, \ z \mapsto g(z) = \exp z$$

alors $g \circ f: \mathbb{R}^2 \to \mathbb{R}$ se trouve en posant $z = f(x, y)$:

$$g \circ f : \mathbb{R}^- \to \mathbb{R}$$
 se trouve en posant $z = f(x, y)$:

$$(g \circ f)(x, y) = g(f(x, y)) = g(x^2 - y) = \exp(x^2 - y)$$

• Si
$$h: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(u, v) \mapsto h(u, v) = (h_1(u, v), h_2(u, v))$
= $(2u, u + v)$

alors
$$f \circ h : \mathbb{R}^2 \to \mathbb{R}$$
 se trouve en posant
$$\begin{cases} x = h_1(u, v) \\ y = h_2(u, v) \end{cases} :$$

$$(f \circ h)(u, v) = f(h(u, v)) = f(2u, u + v) = 4u^2 - (u + v)$$

• Si
$$\gamma: \mathbb{R} \to \mathbb{R}^2, \ t \mapsto (\gamma_1(t), \gamma_2(t)) = (\cos t, \sin t)$$

alors $f \circ \gamma: \mathbb{R} \to \mathbb{R}$ se trouve en posant $\begin{cases} x = \gamma_1(t) \\ y = \gamma_2(t) \end{cases}$:
 $(f \circ \gamma)(t) = f(\gamma(t)) = f(\cos t, \sin t) = \cos^2 t - \sin t$

Changement de variables

Un changement de variable s'écrit comme une composée !

Proposition – Si $\vec{y} = f(\vec{x})$ est une fonction des variables $\vec{x} = (x_1, ..., x_n)$, son expression comme <u>fonction de nouvelles</u> <u>variables</u> $\vec{u} = (u_1, ..., u_n)$ est donnée par la fonction composée

$$\tilde{f}=f\circ h,$$

ou

$$h: \mathbb{R}^n \longrightarrow \mathbb{R}^n, \ \vec{u} \mapsto h(\vec{u}) = (\vec{x})$$

est l'application qui décrit le changement de variables des $(x_1,...,x_n)$ vers les $(u_1,...,u_n)$.

Autrement dit, on a

$$\vec{y} = f(\vec{x}) = f(h(\vec{u})) = \tilde{f}(\vec{u}).$$

Changements en polaires, cylindriques, sphériques

• Changement en coordonnées polaires:

$$f(x, y) = f(h(\rho, \varphi)) = \tilde{f}(\rho, \varphi)$$

avec
$$h: [0, \infty[\times [0, 2\pi[\longrightarrow \mathbb{R}^2, h(\rho, \varphi) = (\rho \cos \varphi, \rho \sin \varphi)]]$$

• Changement en coordonnées cylindriques:

$$f(x, y, z) = f(h(\rho, \varphi, z)) = \tilde{f}(\rho, \varphi, z)$$

avec
$$h: [0, \infty[\times [0, 2\pi[\times \mathbb{R} \longrightarrow \mathbb{R}^3] h(\rho, \varphi, z) = (\rho \cos \varphi, \rho \sin \varphi, z)]$$

• Changement en coordonnées sphériques:

$$f(x, y, z) = f(h(r, \varphi, \theta)) = \tilde{f}(r, \varphi, \theta)$$

avec
$$h: [0, \infty[\times [0, 2\pi[\times [0, \pi] \longrightarrow \mathbb{R}^3] + h(r, \varphi, \theta) = (r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta)]$$

Exemple: passage en coordonnées polaire

Exemple – On veut exprimer la fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (x,y) \longmapsto f(x,y) = x^2 + y^2 + 2x$$

en coordonnées polaires.

Pour cela il suffit de faire la composée $f \circ h$ où

$$\mathit{h}(\rho,\varphi) = (\rho\cos\varphi,\rho\sin\varphi)$$

c'est-à-dire à remplacer x et y dans f par $\rho\cos\varphi$ et $\rho\sin\varphi$.

On obtient

$$\begin{split} \tilde{f}(\rho,\varphi) &= f(\rho\cos\varphi,\rho\sin\varphi) \\ &= (\rho\cos\varphi)^2 + (\rho\sin\varphi)^2 + 2\rho\cos\varphi \\ &= \rho^2 + 2\rho\cos\varphi. \end{split}$$

Exercice

Énoncé – Exprimer la fonction

$$f(x,y,z) = \left(\sqrt{x^2 + y^2}, z^2\right)$$

en coordonnées cylindriques et sphériques.

Réponse - En coordonnées cylindriques :

$$\tilde{f}(\rho, \varphi, z) = f(\rho \cos \varphi, \rho \sin \varphi, z) = (\rho, z^2)$$

En coordonnées sphériques :

$$\tilde{\tilde{f}}(r,\varphi,\theta) = f(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta)
= (r\sin\theta, r^2\cos^2\theta)$$