

Intro to Probability

Learning Objectives

- Understand that a permutation is an ordered sequence of events
- Learn the formula to count the number of possible permutations, where events can be repeated

How many ways can you fill this with numbers between 0 and 9?

_ _

It's just all numbers between 0 and 99, which is 100 ways.

How many ways can you fill this with numbers between 0 and 9?

10 ways * 10 ways * 10 ways = **10,000 ways**.

10 ways * 10 ways * 10 ways = **10,000 ways**

In this case, we had N = 10 numbers to choose from, and we chose r = 4 of them.

Repetition is allowed and order matters.

Total Number of Permutations = N^r

Learning Objectives

- Learn what a **factorial** is and how to compute it
- Learn the formula to count the number of possible permutations, where events
 cannot be repeated

How many ways can you fill this with numbers between 0 and 9, without repetition?

_ _

It's just all numbers between 0 and 99, except 00, 11, 22, etc. This ends up being 100 - 10 = **90 ways**.

How many ways can you fill this with numbers between 1 and 4, without repetition?

_ _ _ _

4 ways * 3 ways * 2 ways * 1 ways = **24 ways**.

This expression is also known as a **factorial**:

How many ways can you fill this with numbers between 0 and 9, without repetition?

_ _ _ _

10 ways * 9 ways * 8 ways * 7 ways = **5,040 ways**.

10 ways * 9 ways * 8 ways * 7 ways = **5,040 ways**

In this case, we had N = 10 numbers to choose from, and we chose r = 4 of them.

Repetition is **not** allowed and order matters.

Total Number of Permutations =
$${}_{N}P_{r} = \frac{N!}{(N-r)!}$$

$$\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \dots}{6 \times 5 \times 4 \times \dots}$$

Learning Objectives

- Understand that a
 combination is a sequence in
 which order doesn't matter
 (unlike permutations)
- Learn the formula to count the number of possible combinations of events

How many ways can you fill this with numbers between 0 and 9, without repetition?

Order doesn't matter, so 1234, 2134, 4123, etc. are all the same.

_ _ _ _

In this case, we need to uncount the various orderings. How many ways can you order $\mathbf{r} = 4$ numbers? 4! = 24 ways or $\mathbf{r}!$ ways.

How many ways can you fill this with numbers between 0 and 9, without repetition?

Order doesn't matter, so 1234, 2134, 4123, etc. are all the same.

_ _ _ _

We had 5,040 numbers from before. Let's remove the 24 orderings.

5,040 / 24 = **210 ways**.

In this case, we had N = 10 numbers to choose from, and we chose r = 4 of them.

Repetition is **not** allowed and order **does not** matter.

Total Number of Combinations =
$${}_{N}C_{r} = \frac{N!}{(N-r)!r!}$$