```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.linear_model import Ridge,Lasso
    from sklearn.linear_model import ElasticNet
    from sklearn import metrics
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn.tree import plot_tree
```

Out[2]:

	date	BEN	со	EBE	имнс	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2016- 11-01 01:00:00	NaN	0.7	NaN	NaN	153.0	77.0	NaN	NaN	NaN	7.0	NaN	NaN	2
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	2
2	2016- 11-01 01:00:00	5.9	NaN	7.5	NaN	297.0	139.0	NaN	NaN	NaN	NaN	NaN	26.0	2
3	2016- 11-01 01:00:00	NaN	1.0	NaN	NaN	154.0	113.0	2.0	NaN	NaN	NaN	NaN	NaN	2
4	2016- 11-01 01:00:00	NaN	NaN	NaN	NaN	275.0	127.0	2.0	NaN	NaN	18.0	NaN	NaN	2
209491	2016- 07-01 00:00:00	NaN	0.2	NaN	NaN	2.0	29.0	73.0	NaN	NaN	NaN	NaN	NaN	2
209492	2016- 07-01 00:00:00	NaN	0.3	NaN	NaN	1.0	29.0	NaN	36.0	NaN	5.0	NaN	NaN	2
209493	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	1.0	19.0	71.0	NaN	NaN	NaN	NaN	NaN	2
209494	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	6.0	17.0	85.0	NaN	NaN	NaN	NaN	NaN	2
209495	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	2.0	46.0	61.0	34.0	NaN	NaN	NaN	NaN	2

209496 rows × 14 columns

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209496 entries, 0 to 209495
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	date	209496 non-null	object
1	BEN	50755 non-null	float64
2	CO	85999 non-null	float64
3	EBE	50335 non-null	float64
4	NMHC	25970 non-null	float64
5	NO	208614 non-null	float64
6	NO_2	208614 non-null	float64
7	0_3	121197 non-null	float64
8	PM10	102892 non-null	float64
9	PM25	52165 non-null	float64
10	S0_2	86023 non-null	float64
11	TCH	25970 non-null	float64
12	TOL	50662 non-null	float64
13	station	209496 non-null	int64
_			

dtypes: float64(12), int64(1), object(1)

memory usage: 22.4+ MB

In [4]: df=df.dropna()
df

Out[4]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	28
6	2016- 11-01 01:00:00	0.7	0.8	0.4	0.13	57.0	66.0	3.0	23.0	15.0	4.0	1.35	5.0	28
25	2016- 11-01 02:00:00	2.7	1.0	2.1	0.40	139.0	114.0	4.0	37.0	21.0	14.0	2.30	15.0	28
30	2016- 11-01 02:00:00	0.7	0.7	0.4	0.13	48.0	59.0	3.0	23.0	15.0	3.0	1.35	5.0	28
49	2016- 11-01 03:00:00	1.7	8.0	1.4	0.25	53.0	90.0	4.0	31.0	19.0	10.0	1.95	10.7	28
209430	2016- 06-30 22:00:00	0.1	0.2	0.1	0.02	1.0	5.0	97.0	19.0	12.0	2.0	1.15	0.2	28
209449	2016- 06-30 23:00:00	0.6	0.4	0.3	0.15	14.0	63.0	54.0	29.0	13.0	16.0	1.48	1.9	28
209454	2016- 06-30 23:00:00	0.1	0.2	0.1	0.02	1.0	7.0	91.0	16.0	9.0	2.0	1.15	0.3	28
209473	2016- 07-01 00:00:00	0.6	0.4	0.3	0.16	11.0	68.0	45.0	24.0	14.0	16.0	1.50	1.9	28
209478	2016- 07-01 00:00:00	0.1	0.2	0.1	0.02	1.0	6.0	89.0	16.0	9.0	2.0	1.15	0.2	28

16932 rows × 14 columns

localhost:8888/notebooks/F16.ipynb

```
In [5]: df.isnull().sum()
Out[5]: date
                      0
         BEN
                      0
         CO
                      0
         EBE
                      0
         NMHC
                      0
         NO
                      0
         NO 2
                      0
         0_3
                      0
         PM10
                      0
         PM25
                      0
         SO_2
                      0
         TCH
                      0
         TOL
                      0
                      0
         station
         dtype: int64
In [6]: df.describe()
Out[6]:
                         BEN
                                       CO
                                                    EBE
                                                               NMHC
                                                                               NO
                                                                                           NO_2
          count 16932.000000
                              16932.000000
                                            16932.000000
                                                         16932.000000
                                                                      16932.000000
                                                                                    16932.000000
           mean
                     0.537970
                                  0.349941
                                                0.298955
                                                             0.099913
                                                                          20.815734
                                                                                       39.373376
                     0.599479
                                  0.203807
                                                0.450204
                                                             0.079850
                                                                          40.986063
                                                                                       31.170307
            std
```

```
169
min
          0.100000
                         0.100000
                                        0.100000
                                                       0.000000
                                                                     1.000000
                                                                                    1.000000
25%
          0.200000
                         0.200000
                                        0.100000
                                                       0.050000
                                                                     1.000000
                                                                                   14.000000
50%
          0.400000
                         0.300000
                                        0.200000
                                                       0.090000
                                                                     7.000000
                                                                                   34.000000
75%
          0.700000
                         0.400000
                                        0.300000
                                                       0.120000
                                                                    23.000000
                                                                                   58.000000
         12.300000
                         4.500000
                                       13.500000
                                                       2.210000
                                                                   829.000000
                                                                                  319.000000
                                                                                                 1
max
```

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x20f4d2c7220>

In [9]: sns.distplot(df['PM10'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='PM10', ylabel='Density'>

In [10]: sns.heatmap(df.corr())

Out[10]: <AxesSubplot:>

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self. setitem single column(loc, value, pi)

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self._setitem_single_column(loc, value, pi)
<ipython-input-11-e3d36a273982>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['TCH']=df['TCH'].astype(int)

Out[11]:

2016- 11-01 00:00 2016- 11-01 00:00 2016- 11-01 00:00 2016- 11-01 00:00 	2.7	1.1 0.8 1.0 0.7 0.8	2.0 0.4 2.1 0.4	0.13	260.0 57.0 139.0 48.0 53.0	144.0 66.0 114.0 59.0	4.0 3.0 4.0 3.0	46.0 23.0 37.0 23.0	24.0 15.0 21.0 15.0	18.0 4.0 14.0 3.0	0	5.0 15.0 5.0	28 28
11-01 00:00 2016- 11-01 00:00 2016- 11-01 00:00 2016- 11-01 00:00	2.7 0.7 1.7	1.0	2.1	0.40 0.13	139.0 48.0	114.0 59.0	4.0	37.0 23.0	21.0 15.0	14.0 3.0	1	15.0 5.0	28
11-01 00:00 2016- 11-01 00:00 2016- 11-01 00:00	0.7	0.7	0.4	0.13	48.0	59.0	3.0	23.0	15.0	3.0	0	5.0	
11-01 00:00 2016- 11-01 00:00	1.7												28
11 - 01 00:00		0.8	1.4	0.25	53.0	90.0	4 0						
							1.0	31.0	19.0	10.0	0	10.7	28
2016- 06-30 00:00	0.1	0.2	0.1	0.02	1.0	5.0	97.0	19.0	12.0	2.0	0	0.2	28
2016- 06-30 00:00	0.6	0.4	0.3	0.15	14.0	63.0	54.0	29.0	13.0	16.0	0	1.9	28
2016- 06-30 00:00	0.1	0.2	0.1	0.02	1.0	7.0	91.0	16.0	9.0	2.0	0	0.3	28
2016- 07-01 00:00	0.6	0.4	0.3	0.16	11.0	68.0	45.0	24.0	14.0	16.0	0	1.9	28
2016- 07 - 01 00:00	0.1	0.2	0.1	0.02	1.0	6.0	89.0	16.0	9.0	2.0	0	0.2	28
	06-30 00:00 2016- 06-30 00:00 2016- 07-01 00:00 2016- 07-01	06-30 0.6 00:00 0.1 0016- 06-30 0.1 00:00 0.6 07-01 0.6 00:00 0.1 0016- 07-01 0.1	06-30	0.6-30	06-30	06-30	0.6-30	06-30	06-30	06-30	06-30	06-30	06-30

LogisticRegression

Out[12]: LogisticRegression()

```
In [13]: |lgr.predict(x test)
Out[13]: array([0, 0, 0, ..., 0, 0, 0])
In [14]: |lgr.score(x_test,y_test)
Out[14]: 0.9702755905511811
In [15]: | fs=StandardScaler().fit_transform(x)
         logr=LogisticRegression()
         logr.fit(fs,y)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
           n iter i = check optimize result(
Out[15]: LogisticRegression()
In [16]: o=[[1,2,3,4,5,6,7,8,9,10,11,12]]
         prediction=logr.predict(o)
         print(prediction)
         [0]
In [17]: logr.classes
Out[17]: array([0, 1, 2])
In [18]: logr.predict_proba(o)[0][0]
Out[18]: 0.99999999999951
In [19]: logr.predict_proba(o)[0][1]
Out[19]: 4.962724005677087e-15
```

LinearRegression

```
In [20]: lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[20]: LinearRegression()

Out[22]:

	Co-efficient
BEN	-0.012937
СО	-0.099476
EBE	0.021893
NMHC	1.082968
NO	0.001672
NO_2	-0.001474
O_3	-0.000293
PM10	-0.000666
PM25	0.002112
SO_2	-0.003539
TOL	-0.000923
station	-0.001296

```
In [23]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[23]: <matplotlib.collections.PathCollection at 0x20f5df91370>


```
In [24]: print(lr.score(x_test,y_test))
```

0.31204558562684215

Ridge, Lasso

```
In [25]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[25]: Ridge(alpha=10)
In [26]: |rr.score(x_test,y_test)
Out[26]: 0.3113198549060787
In [27]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[27]: Lasso(alpha=10)
In [28]: |la.score(x_test,y_test)
Out[28]: -1.220663748746631e-06
         ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
```

```
In [29]:
Out[29]: ElasticNet()
In [30]:
         print(en.coef_)
          [ 0.
                        0.
                                    0.
                                                 0.
                                                             0.00183732 0.
                                    0.
                                                -0.
                                                                                    ]
           -0.
                        0.
                                                             0.
                                                                         -0.
In [31]:
         print(en.intercept_)
          -0.007178338493906651
In [32]: |print(en.predict(x_train))
          [ 0.01119485 -0.00534102 -0.00534102 ... 0.00935753 -0.00534102
           -0.00534102]
In [33]:
         print(en.score(x_train,y_train))
         0.24517361988217445
In [34]: print("Mean Absolytre Error:", metrics.mean_absolute_error(y_test, prediction))
         Mean Absolytre Error: 0.057938190734859646
```

RandomForest

```
In [37]: rfc=RandomForestClassifier()
         rfc.fit(x train,y train)
Out[37]: RandomForestClassifier()
In [38]:
         parameters={ 'max_depth':[1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                      'n_estimators':[10,20,30,40,50]}
In [39]: grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="acc
         grid search.fit(x train,y train)
Out[39]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [40]: grid_search.best_score_
Out[40]: 0.9785690178872763
In [41]: rfc_best=grid_search.best_estimator_
```

```
In [42]: plt.figure(figsize=(80,40))
    plot_tree(rfc_best.estimators_[5],class_names=['Yes','No','Yes','No'],filled=T
```

```
Out[42]: [Text(2426.086956521739, 1993.2, 'X[4] <= 166.5\ngini = 0.06\nsamples = 7540</pre>
                                           \nvalue = [11484, 347, 21]\nclass = Yes'),
                                               ples = 7429\nvalue = [11434, 200, 18]\nclass = Yes'),
                                               Text(776.3478260869565, 1268.4, X[10] <= 3.85  ngini = 0.011 \ nsamples = 5330
                                            \nvalue = [8311, 39, 7] \setminus class = Yes'),
                                               Text(388.17391304347825, 906.0, 'X[5] <= 34.5\ngini = 0.008\nsamples = 5072
                                            \nvalue = [7919, 24, 6]\nclass = Yes'),
                                               Text(194.08695652173913, 543.599999999999, 'X[11] <= 28079016.0 \cdot ngini = 0.0
                                            \nsamples = 3237\nvalue = [5051, 1, 0]\nclass = Yes'),
                                               Text(97.04347826086956, 181.1999999999982, 'gini = 0.002\nsamples = 797\nva
                                          lue = [1235, 1, 0]\nclass = Yes'),
                                               Text(291.1304347826087, 181.1999999999982, 'gini = 0.0\nsamples = 2440\nval
                                          ue = [3816, 0, 0]\nclass = Yes'),
                                               Text(582.2608695652174, 543.599999999999, 'X[8] <= 12.5 \setminus gini = 0.02 \setminus gini
                                           es = 1835\nvalue = [2868, 23, 6]\nclass = Yes'),
                                               Text(485.2173913043478, 181.1999999999992, 'gini = 0.016\nsamples = 1619\nv
                                           alue = [2535, 14, 6]\nclass = Yes'),
                                               Text(679.304347826087, 181.19999999999982, 'gini = 0.051\nsamples = 216\nval
                                          ue = [333, 9, 0] \setminus (1388 = Yes'),
                                               Text(1164.5217391304348, 906.0, 'X[0] <= 0.85 \setminus = 0.076 \setminus = 258 \setminus = 258 \setminus = 0.85 \setminus = 0.076 \setminus = 258 \setminus
                                           value = [392, 15, 1]\nclass = Yes'),
                                               Text(970.4347826086956, 543.5999999999999, 'X[6] <= 14.0 \setminus gini = 0.011 \setminus g
                                           les = 113\nvalue = [184, 1, 0]\nclass = Yes'),
                                               Text(873.391304347826, 181.199999999999, 'gini = 0.036\nsamples = 31\nvalu
                                          e = [53, 1, 0]\nclass = Yes'),
                                               Text(1067.4782608695652, 181.1999999999982, 'gini = 0.0\nsamples = 82\nvalu
                                          e = [131, 0, 0]\nclass = Yes'),
                                               Text(1358.608695652174, 543.5999999999999, 'X[9] <= 8.5 \ngini = 0.126 \nsampl
                                           es = 145\nvalue = [208, 14, 1]\nclass = Yes'),
                                               Text(1261.5652173913043, 181.199999999999, 'gini = 0.334\nsamples = 32\nva
                                           lue = [41, 11, 0] \setminus nclass = Yes'),
                                               Text(1455.6521739130435, 181.1999999999982, 'gini = 0.046\nsamples = 113\nv
                                           alue = [167, 3, 1]\nclass = Yes'),
                                               Text(2086.4347826086955, 1268.4, 'X[10] <= 6.45 \\ line = 0.099 \\ line = 209 \\ lin
                                           9\nvalue = [3123, 161, 11]\nclass = Yes'),
                                               Text(1843.8260869565217, 906.0, 'X[3] <= 0.545\ngini = 0.066\nsamples = 1844
                                           \nvalue = [2798, 93, 5]\nclass = Yes'),
                                               Text(1746.782608695652, 543.599999999999, 'X[6] <= 45.5\ngini = 0.057\nsamp
                                           les = 1836\nvalue = [2798, 83, 2]\nclass = Yes'),
                                               Text(1649.7391304347825, 181.19999999999982, 'gini = 0.097\nsamples = 977\nv
                                           alue = [1465, 77, 2]\nclass = Yes'),
                                               Text(1843.8260869565217, 181.199999999999, 'gini = 0.009\nsamples = 859\nv
                                          alue = [1333, 6, 0]\nclass = Yes'),
                                               Text(1940.8695652173913, 543.599999999999, 'gini = 0.355\nsamples = 8\nvalu
                                          e = [0, 10, 3] \setminus nclass = No'),
                                               Text(2329.0434782608695, 906.0, X[3] \le 0.235 = 0.307 = 255
                                           \nvalue = [325, 68, 6] \setminus class = Yes'),
                                               Text(2134.9565217391305, 543.599999999999, 'X[6] <= 4.5\ngini = 0.084\nsamp
                                          les = 138\nvalue = [219, 7, 3]\nclass = Yes'),
                                               Text(2037.9130434782608, 181.199999999999, 'gini = 0.314\nsamples = 22\nva
                                           lue = [27, 3, 3]\nclass = Yes'),
                                               Text(2232.0, 181.199999999999, 'gini = 0.04\nsamples = 116\nvalue = [192,
                                          4, 0]\nclass = Yes'),
                                               Text(2523.1304347826085, 543.5999999999999, 'X[8] <= 18.5 \cdot in = 0.482 \cdot in = 0.4
                                           ples = 117\nvalue = [106, 61, 3]\nclass = Yes'),
                                               Text(2426.086956521739, 181.1999999999982, 'gini = 0.262\nsamples = 37\nval
```

```
ue = [49, 9, 0] \setminus class = Yes'),
    Text(2620.173913043478, 181.199999999999, 'gini = 0.525\nsamples = 80\nval
ue = [57, 52, 3]\nclass = Yes'),
    Text(3420.782608695652, 1630.8000000000002, 'X[4] <= 181.5\ngini = 0.397\nsa
mples = 111\nvalue = [50, 147, 3]\nclass = No'),
    Text(3105.391304347826, 1268.4, 'X[8] <= 28.5\ngini = 0.516\nsamples = 27\nv
alue = [23, 18, 1] \setminus class = Yes'),
   Text(3008.3478260869565, 906.0, 'X[9] \le 16.5 \le 0.349 \le 20 \le 0.349 \le 
alue = [22, 5, 1]\nclass = Yes'),
    Text(2911.304347826087, 543.599999999999, X[5] <= 104.0 
ples = 12\nvalue = [12, 5, 1]\nclass = Yes'),
    Text(2814.2608695652175, 181.1999999999982, 'gini = 0.571\nsamples = 6\nval
ue = [2, 4, 1] \setminus nclass = No'),
    Text(3008.3478260869565, 181.1999999999982, 'gini = 0.165\nsamples = 6\nval
ue = [10, 1, 0]\nclass = Yes'),
    Text(3105.391304347826, 543.599999999999, 'gini = 0.0\nsamples = 8\nvalue =
[10, 0, 0]\nclass = Yes'),
   Text(3202.4347826086955, 906.0, 'gini = 0.133\nsamples = 7\nvalue = [1, 13,
01\nclass = No'),
    Text(3736.173913043478, 1268.4, X[3] <= 0.365 ngini = 0.304 nsamples = 84 ngini = 0.304 nsamples = 0.304 nsampl
value = [27, 129, 2]\nclass = No'),
    alue = [20, 25, 0] \setminus nclass = No'),
   Text(3299.478260869565, 543.599999999999, 'gini = 0.426\nsamples = 9\nvalue
= [9, 4, 0] \setminus class = Yes'),
    Text(3493.565217391304, 543.5999999999999, 'X[0] <= 2.55 \setminus gini = 0.451 \setminus g
les = 18\nvalue = [11, 21, 0]\nclass = No'),
    Text(3396.5217391304345, 181.19999999999982, 'gini = 0.0\nsamples = 10\nvalu
e = [0, 17, 0] \setminus nclass = No'),
    Text(3590.608695652174, 181.1999999999992, 'gini = 0.391\nsamples = 8\nvalu
e = [11, 4, 0]\nclass = Yes'),
   Text(4075.8260869565215, 906.0, 'X[7] \le 56.5 \setminus e = 0.149 \setminus e = 57 \setminus e
alue = [7, 104, 2] \setminus class = No'),
    Text(3881.7391304347825, 543.599999999999, 'X[0] <= 2.85 \neq 0.054 = 0.054
ples = 34\nvalue = [0, 70, 2]\nclass = No'),
   Text(3784.695652173913, 181.199999999999, 'gini = 0.0\nsamples = 16\nvalue
= [0, 39, 0]\nclass = No'),
   Text(3978.782608695652, 181.1999999999982, 'gini = 0.114\nsamples = 18\nval
ue = [0, 31, 2] \setminus nclass = No'),
    Text(4269.913043478261, 543.599999999999, 'X[5] <= 179.0\ngini = 0.283\nsam
ples = 23\nvalue = [7, 34, 0]\nclass = No'),
    Text(4172.869565217391, 181.1999999999982, 'gini = 0.465\nsamples = 8\nvalu
e = [7, 12, 0] \setminus nclass = No'),
   Text(4366.95652173913, 181.199999999999, 'gini = 0.0\nsamples = 15\nvalue
= [0, 22, 0]\nclass = No')]
```


Best model:LogisticRegression

ть Г 1.		
TII [].	•	