自动控制原理实验报告

时间: 2020 年 6 月 21 日 地点: 航空楼 A110

1 实验名称

典型环节的模拟与仿真。

2 实验目的

- ▶ 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
- 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3 实验内容

- ➤ 观察和分析比例、惯性、积分、比例-积分(PI)、比例-微分(PD)、比例-积分-微分(PID)等环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
- ▶ 改变被测环节的各项电路参数,画出模拟电路图以及阶跃响应曲线,观测实验结果,填入实验报告。

3.1 比例环节的电路建模

典型比例环节模拟电路如图 3.1 所示。

图 3.1 典型比例环节模拟电路

电路建模过程如下,由上图典型比例环节模拟电路可得

$$i = \frac{U_i}{R_0} = -\frac{U_{o1}}{R_1}$$
, $R_0 = -\frac{R_1}{U_i} = -\frac{R_1}{R_0}$

$$U_o = -U_{o1}$$
 , $\mathbb{E} \frac{U_o}{U_i} = \frac{R_1}{R_0} = K$

故典型比例环节的传递函数为

$$G(s) = \frac{U_o(s)}{U_i(s)} = K$$

其中
$$K = \frac{R_1}{R_0}$$
。

故阶跃输入情况下,典型比例环节响应满足

$$u_o(t) = K$$
.

3.2 惯性环节的电路建模

典型惯性环节模拟电路如图 3.2 所示。

图 3.2 典型惯性环节模拟电路

电路建模过程如下,由上图典型惯性环节模拟电路可得

$$i = \frac{U_i}{R_0} = -\frac{U_{o1}}{R_1} - C\frac{dU_{o1}}{dt} = -\frac{U_{o1}}{R_1} \left(1 + R_1 C\frac{d}{dt}\right)$$

即有

$$\frac{U_{o1}}{U_i} = -\frac{R_1}{R_0} \frac{1}{1 + R_1 Cs}$$

又由

$$U_o = -U_{o1}$$

可得

$$\frac{U_o}{U_i} = \frac{R_1}{R_0} \frac{1}{1 + R_1 Cs} = K \frac{1}{1 + Ts}$$

故典型惯性环节的传递函数为

$$G(s) = \frac{U_o(s)}{U_i(s)} = K \frac{1}{1 + Ts}$$

其中
$$K = \frac{R_1}{R_0}$$
,时间常数 $T = R_1 C$ 。

故阶跃输入情况下,典型惯性环节响应满足

$$u_o(t) = K \left(1 - e^{-\frac{t}{T}}\right).$$

3.3 积分环节的电路建模

典型积分环节模拟电路如图 3.3 所示。

图 3.3 典型积分环节模拟电路

电路建模过程如下,由上图典型积分环节模拟电路可得

$$i = \frac{U_i}{R_0} = -C \frac{dU_{o1}}{dt}$$

即有

$$\frac{U_{o1}}{U_i} = -\frac{1}{R_0} \cdot \frac{1}{Cs}$$

又由

$$U_o = -U_{o1}$$

可得

$$\frac{U_o}{U_i} = \frac{1}{R_0 C s} = \frac{1}{T_i s}$$

故典型积分环节的传递函数为

$$G(s) = \frac{U_o(s)}{U_i(s)} = \frac{1}{T_i s}$$

其中时间常数 $T_i = R_0 C$ 。

故阶跃输入情况下, 典型积分环节响应满足

$$u_o(t) = \frac{t}{T_i}.$$

3.4 比例-积分环节的电路建模

典型比例-积分环节模拟电路如图 3.4 所示。

图 3.4 典型比例-积分环节模拟电路

电路建模过程如下,由上图典型比例-积分环节模拟电路可得

$$i = \frac{U_i}{R_0}, \quad -U_{o1} = i \cdot R_1 + \frac{1}{C} \int i dt = \frac{U_i}{R_0} R_i + \frac{1}{CR_0} \int U_i dt$$

即有

$$\frac{U_{o1}}{U_{i}} = -\left(\frac{R_{1}}{R_{0}} + \frac{1}{CR_{0}s}\right) = -\frac{R_{1}}{R_{0}}\left(1 + \frac{1}{CR_{1}s}\right)$$

又由

$$U_o = -U_{o1}$$

可得

$$\frac{U_o}{U_i} = \frac{R_1}{R_0} \left(1 + \frac{1}{CR_1 s} \right) = K \left(1 + \frac{1}{T_i s} \right)$$

故典型比例-积分环节的传递函数为

$$G(s) = \frac{U_o(s)}{U_i(s)} = K\left(1 + \frac{1}{T_i s}\right)$$

其中
$$K = \frac{R_1}{R_0}$$
,时间常数 $T_i = R_1 C$ 。

故阶跃输入情况下,典型比例-积分环节响应满足

$$u_o(t) = K\left(1 + \frac{t}{T_i}\right).$$

3.5 比例-微分环节的电路建模

典型比例-微分环节模拟电路如图 3.5 所示。为便于观察比例微分的阶跃响应曲线,本实验增加了一个小惯性环节,以防止接地电容 C 因支路电流过大而损坏。

图 3.5 典型比例-微分环节模拟电路

电路建模过程如下,由上图典型比例-微分环节模拟电路可得

$$i = \frac{U_i}{R_0}, \quad -U_{o2} = i_1 R_1, \quad -U_{o2} = i_2 R_3 + \frac{1}{C} \int i_2 dt, \quad U_{o1} = U_{o2} - (i_1 + i_2) R_2$$

即有

$$-U_{o2} = i_2 \left(R_3 + \frac{1}{Cs} \right) = i_1 R_1 = \frac{R_1}{R_0} U_i$$

故有

$$i_2 = \frac{R_1}{R_0} \frac{1}{R_3 + \frac{1}{Cs}} U_i = \frac{R_1}{R_0} \frac{Cs}{R_3 Cs + 1} U_i$$

则得到 U_a 的表达式为

$$U_{o1} = U_{o2} - (i_1 + i_2)R_2 = -\frac{R_1}{R_0}U_i - \left(\frac{U_i}{R_0} + \frac{R_1}{R_0}\frac{Cs}{R_3Cs + 1}U_i\right)R_2$$

整理有

$$-U_{o1} = \left[\frac{R_1}{R_0} + \left(\frac{R_2}{R_0} + \frac{R_1 R_2}{R_0} \cdot \frac{Cs}{R_3 Cs + 1}\right)\right] U_i$$

又由

$$U_{o} = -U_{o1}$$

可得

$$\frac{U_o}{U_i} = \left(\frac{R_1}{R_0} + \frac{R_2}{R_0}\right) + \frac{R_1 R_2}{R_0} \frac{Cs}{R_3 Cs + 1} = \frac{R_1 + R_2}{R_0} + \frac{R_1 R_2}{R_0} \frac{Cs}{R_3 Cs + 1}$$

进一步整理有

$$\frac{U_o}{U_i} = \frac{\left(R_1 + R_2\right)\left(R_3Cs + 1\right) + R_1R_2Cs}{R_0\left(R_3Cs + 1\right)} = \frac{R_1 + R_2}{R_0} \left(\frac{R_3Cs + \left(R_1R_2 / \left(R_1 + R_2\right)\right)Cs + 1}{R_3Cs + 1}\right)$$

故典型比例-微分环节的传递函数为

$$G(s) = \frac{U_o(s)}{U_i(s)} = \frac{R_1 + R_2}{R_0} \left(\frac{1 + (R_3 + R_1 R_2 / (R_1 + R_2))Cs}{R_3 Cs + 1} \right) = K \frac{1 + T_D s}{1 + \tau s}$$

其中
$$K = \frac{R_1 + R_2}{R_0}$$
, 惯性时间常数 $\tau = R_3 C$, $K_D = \frac{\left(\frac{R_1 R_2}{R_1 + R_2}\right) + R_3}{R_3} = \frac{\left(R_1 / / R_2\right) + R_3}{R_3}$,

微分时间常数
$$T_D = \left(\frac{R_1 R_2}{R_1 + R_2} + R_3\right) C = K_D \cdot \tau$$
。

故阶跃输入情况下,典型比例-微分环节响应满足

$$u_o(t) = KT\delta(t) + K.$$

3.6 比例-积分-微分(PID)环节的电路建模

典型比例-积分-微分(PID)模拟电路如图 3.6 所示。与典型比例-微分电路建模方式类似,为了便于观察比例微分的阶跃响应曲线,PID 环节电路建模过程中亦增加了一个小惯性环节,以防止接地电容 C_2 因支路电流过大而损坏。

图 3.6 典型 PID 环节模拟电路

电路建模过程如下,由上图典型 PID 环节模拟电路可得

$$i = \frac{U_i}{R_0}, \quad -U_{o2} = i_1 R_1 + \frac{1}{C_1} \int i_1 dt, \quad -U_{o2} = i_2 R_3 + \frac{1}{C_2} \int i_2 dt, \quad U_{o1} = U_{o2} - (i_1 + i_2) R_2$$

则有

$$-U_{o2} = i_2 \left(R_3 + \frac{1}{C_2 s} \right) = i_1 \left(R_1 + \frac{1}{C_1 s} \right) = \frac{R_1}{R_0} \left(1 + \frac{1}{R_1 C_1 s} \right) U_i$$

故得

$$i_{2} = \frac{R_{1}}{R_{0}} \frac{1 + \frac{1}{R_{1}C_{1}s}}{R_{3} + \frac{1}{C_{2}s}} U_{i} = \frac{R_{1}}{R_{0}} \cdot \frac{C_{2}(R_{1}C_{1}s + 1)}{R_{1}C_{1}(R_{3}C_{2}s + 1)} U_{i}$$

则 U_{o1} 可表达为

$$U_{o1} = U_{o2} - (i_1 + i_2)R_2 = -\frac{R_1}{R_0} \left(1 + \frac{1}{R_1 C_1 s} \right) U_i - \left(\frac{U_i}{R_0} + \frac{R_1}{R_0} \cdot \frac{C_2 (R_1 C_1 s + 1)}{R_1 C_1 (R_3 C_2 s + 1)} U_i \right) R_2$$

故有

$$-U_{o1} = \left(\frac{R_1}{R_0} + \frac{R_1}{R_0} \frac{1}{R_1 C_1 s} + \frac{R_2}{R_0} + \frac{R_2}{R_0} \cdot \frac{C_2 (R_1 C_1 s + 1)}{C_1 (R_3 C_2 s + 1)}\right) U_i$$

又有

$$U_{a} = -U_{a1}$$

则得

$$\begin{split} \frac{U_o}{U_i} &= \left(\frac{R_1}{R_0} + \frac{R_2}{R_0}\right) + \frac{1}{R_0} \cdot \frac{1}{C_1 s} + \frac{R_2}{R_0} \cdot \frac{C_2 \left(R_1 C_1 s + 1\right)}{C_1 \left(R_3 C_2 s + 1\right)} = \frac{R_1 + R_2}{R_0} + \frac{1}{R_0 C_1} \cdot \frac{1}{s} + \frac{R_2}{R_0} + \frac{R_2}{R_0} \cdot \frac{\left(R_1 C_1 - R_3 C_2\right) s}{R_3 C_2 s + 1} \\ &= L_P + \frac{1}{L_s s} + L_D \frac{s}{\tau s + 1}. \end{split}$$

故典型 PID 环节的传递函数为

$$G(s) = \frac{U_o(s)}{U_i(s)} = K_P + \frac{K_P}{T_i S} + K_P T_D S$$

其中,微分环节时间常数为 $T_D = \left(\frac{R_1 R_2}{R_1 + R_2} + R_3\right) C_2$;

积分环节时间常数为 $T_i = (R_1 + R_2)C_1$;

比例放大系数为
$$K_P = \frac{R_1 + R_2}{R_0}$$
,微分环节系数 $K_D = \frac{\left(R_1 / / R_2\right) + R_3}{R_3}$ 。

惯性时间常数为 $\tau=R_3C_2$,微分时间常数满足 $T_D=K_D\cdot \tau$ 。

故阶跃输入情况下,典型 PID 环节响应满足

$$u_o(t) = K_P T_D \delta(t) + K_P + \frac{K_P}{T} t.$$

4 实验步骤

4.1 实验操作

4.1.1 比例环节实验步骤

(1) 构造比例环节模拟电路

按图 3.1 安置短路套及插孔连线,列写如表 4.1 所示。

表 4.1	比例环节安置短路套及插孔连线情况
1C T.1	[MATTER] [1] [MATTER] [MATTER] [1] [MATTER] [

	模块号	跨接座号	1	信号输入(U_i)	$B1 (OUT1) \rightarrow A5 (H1)$
			2	运放级联	$A5 (OUT) \rightarrow A9 (H1)$
1	A5	S4, S7	3	示波器联接	A9 (OUT) \rightarrow B2 (CH2)

(a) 安装短路套情况

(b) 插孔连线情况

(2)运行、观察、记录

选择线性系统时域分析/典型环节/比例环节,确认信号参数默认值后,点击《下载》、《开始》键后,实验运行。阶跃响应曲线示意图如图 4.1 所示。

图 4.1 比例环节阶跃响应曲线示意图

首先测量输入阶跃电压值,再测量输出电压值。按表格要求改变电路图 3.1 所示的实验环节参数,观测结果。以屏幕截图的方式,将示波器显示曲线保存在自备 U 盘内,将数据填写完整。

本实验环节结束后,断电,移除短路套与短接线,进入下一实验环节连线。

4.1.2 惯性环节实验步骤

(1) 构造惯性环节模拟电路

按图 3.2 安置短路套及插孔连线,列写如表 4.2 所示。

表 4.2 惯性环节安置短路套及插孔连线情况

	模块号	跨接座号
1	A5	S4, S9,
1		S11

1	信号输入(U_i)	B1 (OUT1) \rightarrow A5 (H1)
2	运放级联	$A5 (OUT) \rightarrow A9 (H1)$
3	示波器联接	$A9 (OUT) \rightarrow B2 (CH2)$

(a) 安装短路套情况

(b) 插孔连线情况

(2)运行、观察、记录

选择线性系统时域分析/典型环节/惯性环节,确认信号参数默认值后,点击《下载》、《开始》键后,实验运行。阶跃响应曲线示意图如图 4.2 所示。

图 4.2 惯性环节阶跃响应曲线示意图

首先测量输入阶跃电压值。接着,移动虚拟示波器横游标到输出稳态值 ×0.632 处,得到与输出曲线的交点,再移动虚拟示波器中的两根纵游标,分别移至阶跃开始位置与上述交点,测量得惯性环节模拟电路的时间常数 *T*。

按表格要求改变电路图 3.2 所示的实验环节参数,观测结果。以屏幕截图的方式,将示波器显示曲线保存在自备 U 盘内,将数据填写完整。

本实验环节结束后,断电,移除短路套与短接线,进入下一实验环节连线。

4.1.3 积分环节实验步骤

(1) 构造积分环节模拟电路

按图 3.3 安置短路套及插孔连线,列写如表 4.3 所示。

表 4.3 积分环节安置短路套及插孔连线情况

	模块号	跨接座号
1	A5	S5, S11,
1		S12

_	1	信号输入(U_i)	B1 (OUT1) \rightarrow A5 (H1)
	2	运放级联	$A5 (OUT) \rightarrow A9 (H1)$
	3	示波器联接	B1 (OUT1) \rightarrow B2 (CH1)
	4	小仮命妖ケ	A9 (OUT) \rightarrow B2 (CH2)

(a) 安装短路套情况

(b) 插孔连线情况

(2)运行、观察、记录

选择线性系统时域分析/典型环节/积分环节。

本实验用手控阶跃信号代替矩形波作为信号输入,实验前应把"手控阶跃开关"拨下,确认手控阶跃信号幅度默认值后,点击《下载》、《开始》键后,实验运行,把"手控阶跃开关"多次拨上、拨下,观察相应实验现象,阶跃响应曲线示意图如图 4.3 所示。积分环节输入如为 0 时,输出为平线,输入如不为 0 时,输出为斜线,斜率等于积分环节时间常数 T,的倒数。

图 4.3 积分环节阶跃响应曲线示意图

首先测量输入阶跃电压值。

积分环节模拟电路时间常数 T_i 的测量方法如下:移动虚拟示波器两根横游标至输出倾斜直线段(可适当加宽),得到与输出曲线的两个交点,再移动虚拟示波器两根纵游标到该两个交点,测量并计算该积分环节模拟电路的时间常数 T_i 。

按表格要求改变电路图 3.3 所示的实验环节参数,观测结果。以屏幕截图的方式,将示波器显示曲线保存在自备 U 盘内,将数据填写完整。

本实验环节结束后,断电,移除短路套与短接线,进入下一实验环节连线。

4.1.4 比例-积分环节实验步骤

(1) 构造比例-积分环节模拟电路

按图 3.4 安置短路套及插孔连线,列写如表 4.4 所示。

表 4.4 比例-积分环节安置短路套及插孔连线情况

	模块号	跨接座号
1	A5	S5, S6, S7

1	信号输入(U_i)	B1 (OUT1) → A5 (H1)
2	运放级联	$A5 (OUT) \rightarrow A9 (H1)$
3	二体帮助持	B1 (OUT1) \rightarrow B2 (CH1)
4	示波器联接	$A9 (OUT) \rightarrow B2 (CH2)$

(a) 安装短路套情况

(b) 插孔连线情况

(2)运行、观察、记录

选择线性系统时域分析/典型环节/比例积分环节。

本实验用手控阶跃信号代替矩形波作为信号输入,实验前应把"手控阶跃开关"拨下,确认手控阶跃信号幅度默认值后,点击《下载》;点击《开始》键后,实验运行,把"手控阶跃开关"多次拨上、拨下,观察相应实验现象,阶跃响应曲线示意图如图 4.4 所示。积分环节输入如为 0 时,输出为平线,输入如不为 0 时,输出为斜线,斜率等于积分环节时间常数 T_i 的倒数。

图 4.4 比例-积分环节阶跃响应曲线示意图

首先测量输入阶跃电压值。比例-积分环节模拟电路时间常数 T_i 的测量方法同积分环节。

按表格要求改变电路图 3.4 所示的实验环节参数,观测结果。以屏幕截图的方式,将示波器显示曲线保存在自备 U 盘内,将数据填写完整。

本实验环节结束后,断电,移除短路套与短接线,进入下一实验环节连线。

4.1.5 比例-微分环节实验步骤

(1) 构造比例-微分环节模拟电路

按图 3.5 安置短路套及插孔连线,列写如表 4.5 所示。

表 4.5 比例-微分环节安置短路套及插孔连线情况

	模块号	跨接座号
1	A4	S4, S6, S7

(a)	安装短路套情况

(b) 插孔连线情况

(2)运行、观察、记录

选择线性系统时域分析/典型环节/比例微分环节。确认信号参数默认值后,点击《下载》、《开始》键后,实验运行。阶跃响应曲线示意图如图 4.5 所示。

图 4.5 比例-微分环节阶跃响应曲线示意图

首先测量输入阶跃电压值。各主要环节的特性参数测量步骤叙述如下。

① 用虚拟示波器测量得到输出端(U_o)的最高端电压为 U_{omax} ,减去稳态

输出电压 U_{os} ,然后计算得到 $\Delta U = 0.632 \times (U_{o \max} - U_{os})$;

- ② 移动虚拟示波器的两根横游标,从输出端(U_o)的最高端电压 U_{omax} 开始向下到 ΔU 处为止,得到与微分环节的指数曲线的交点,再移动虚拟示波器的两根纵游标,分别移至阶跃开始位置与上述交点,测量得到惯性时间常数 τ ;
- ③ 由计算已知的 K_D 值,可进一步计算得到比例-微分环节模拟电路微分时间常数为 $T_D = K_D \cdot \tau$,并与理论值进行比较。

本实验环节结束后,断电,移除短路套与短接线,进入下一实验环节连线。

4.1.6 比例-积分-微分(PID)环节实验步骤

(1)构造比例-积分-微分(PID)环节模拟电路 按图 3.6 安置短路套及插孔连线,列写如表 4.6 所示。

表 4.6 PID 环节安置短路套及插孔连线情况

	模块号	跨接座号	
1	A4	S4, S6	

1	信号输入(U_i)	B1 (OUT1) \rightarrow A4 (H1)
2	运放级联	$A4 (OUT) \rightarrow A8 (H1)$
3	示波器联接	A8 (OUT) \rightarrow B2 (CH2)

(a) 安装短路套情况

(b) 插孔连线情况

(2)运行、观察、记录

选择线性系统时域分析/典型环节/比例积分微分环节。确认信号参数默认值后,点击《下载》、《开始》键后,实验运行。阶跃响应曲线示意如图 4.6 所示。

图 4.6 PID 环节阶跃响应曲线示意图

首先测量输入阶跃电压值与输出尖峰电压值。各主要环节的特性参数测量步骤叙述如下。

- ① 积分环节特性参数*T_i*: 在输出曲线后段的斜直线上,移动虚拟示波器的两根横游标与两根纵坐标,分别找到直线上的两个点,即可计算直线斜率,可进一步计算得到积分环节时间常数。
- ② 比例环节特性参数 K_p : 关闭电源,将 A4 单元的 S7 短路套套上,开启电源,再点击《下载》、《开始》键后重新运行实验(目的是将积分环节电容短路),

观察实验输出曲线,可测量输出平直段电压值,则可计算比例环节特性参数 K_p 。

③ 微分环节特性参数 T_D : 首先用虚拟示波器测量得到输出端(U_o)的最高端电压为 U_{omax} ,减去稳态输出电压 U_{os} ,然后计算得到 $\Delta U = 0.632 \times (U_{omax} - U_{os})$;移动虚拟示波器的两根横游标,从输出端(U_o)的最高端电压 U_{omax} 开始向下到 ΔU 处为止,得到与微分环节的指数曲线的交点,再移动虚拟示波器的两根纵游标,分别移至阶跃开始位置与上述交点,测量得到惯性时间常数 τ ,故 $T_D = K_D \cdot \tau$ 。本实验环节结束后,断电,移除短路套与短接线,进入下一实验连线。

4.2 实验现象

下面对各典型环节的阶跃响应曲线趋势进行实验现象描述。 当输入阶跃电压信号时(包括计算机自动输入与手工开关输入),

- **典型比例环节**输出产生一条与阶跃输入信号同区间的平直直线,即作用为将输入的阶跃信号以一特定比例进行缩放($R_0 < R_1$ 时放大, $R_0 > R_1$ 时缩小)。
- ▶ 典型惯性环节输出电压从阶跃信号产生位置先迅速增长,再逐渐趋近于一稳定电压值,表现出滞后特性。
- ▶ 典型积分环节的输出描述如下: 当无阶跃信号输入时,输出为水平直线,保持输出电压值恒定; 当有阶跃信号输入时,输出为一条倾斜直线,以一定恒值斜率向上增长,表现出累积电压的特性。
- ▶ 典型比例-积分环节的输出描述如下:与典型积分环节部分类似,当有阶跃信号输入时,输出首先在阶跃信号输入开始位置有一上升跳跃,后保持一条倾斜直线,以一定恒值斜率向上增长,表现出比例环节缩放输入电压与积分环节累积输入电压的双重特性,可用叠加原理进行分析;当无阶跃信号输入时,由于比例环节的效应消除,故输出曲线首先突降一段,后为水平直线保持输出电压值恒定。
- 典型比例-微分环节的输出描述如下:输出电压在阶跃信号输入开始位置形成一个较大的电压尖峰,后逐渐衰减至一稳态恒定值,表现出比例环节缩放输入电压与微分环节"感知电压未来变化"的双重特性,可用叠加原理分析。

▶ 典型比例-积分-微分(PID)环节的输出描述如下:综合了比例、积分、微分三种典型环节的响应特性,由于微分环节存在,在阶跃信号输入开始位置形成一个较大的电压尖峰;然后由于比例环节影响,逐渐衰减至一非零值附近,后受到相对滞后的积分环节影响,对输入电压进行累积;最后在阶跃输入消失时输出电压值降为零。

4.3 实验结果及其分析

下面对实验一"典型环节的模拟与仿真"的各环节各电路参数的阶跃输入响应图线与计算结果进行说明。

4.3.1 典型比例环节的输出结果(共三组)

典型比例环节的三组参数设定下阶跃输入响应图线如图 4.7 所示。

(a) 情况一: $R_0 = 200K, R_1 = 100K, U_i = 4V$

(c) 情况三: $R_0 = 50K, R_1 = 100K, U_i = 2V$

图 4.7 典型比例环节的阶跃输入响应图线(共三组参数)

三种情况下特性参数计算结果如表 4.7 所示。

表 4.7 典型比例环节的特性参数计算结果 (共三组参数)

R_0	P	U _i 理论值	U_i 实测值	U_{o} 实测值	比例系数 K	
	K_1			0。天侧恒	理论值	实测值
200 K	100 K	4 V	4.009 V	1.982 V	0.5	0.4944
	200 K	2 V	4.009 V	4.009 V	1.0	1.0000

50 K 100 K 1V 2.004 V 3.965 V 2.0 1.97	785
--	-----

由上表数据,可见比例系数 K 实测值与理论值吻合很好。比例环节的作用即将输入阶跃电压信号进行缩放(放大或缩小)。

4.3.2 典型惯性环节的输出结果(共三组)

典型惯性环节的三组参数设定下阶跃输入响应图线如图 4.8 所示。

(a) 情况一:
$$R_0 = 200K, R_1 = 200K,$$

 $C = 4\mu, U_i = 4V$

(b) 情况二: $R_0 = 200K, R_1 = 200K,$ $C = 2\mu, U_i = 4V$

(c) 情况三: $R_0 = 200K, R_1 = 200K,$ $C = 4\mu, U_i = 4V$

图 4.8 典型惯性环节的阶跃输入响应图线(共三组参数)

三种情况下特性参数计算结果如表 4.8 所示。

表 4.8 典型惯性环节的特性参数计算结果(共三组参数)

D	$R_{_1}$	C	<i>U</i> , 理论值	比例系数 K		惯性常数 T	
R_0 R_1	C	U _i 生化阻	理论值	计算值	理论值	实测值	
200 K 200 K	200 K	1 μ	4 V	1.0	0.9945	0.2	0.213
	200 K	2μ	2 V	1.0	0.9890	0.4	0.406
50 K	100 K	1 μ	1 V	2.0	1.9801	0.1	0.104

由上表数据,可见比例系数 K 和惯性常数 T 实测值与理论值吻合很好,且可观察到,当 R_1 不变时,惯性常数 T 与惯性环节的电容值成正比;当 C 不变时,惯性常数 T 与 R_1 值成正比。

4.3.3 典型积分环节的输出结果(共两组)

典型积分环节的两组参数设定下阶跃输入响应图线如图 4.9 所示。

(a) 情况一: $R_0 = 500K, C = 2\mu, U_i = 1V$ (b) 情况二: $R_0 = 500K, C = 1\mu, U_i = 1V$

图 4.9 典型积分环节的阶跃输入响应图线(共两组参数)

两种情况下特性参数计算结果如表 4.9 所示。

表 4.9 典型积分环节的特性参数计算结果(共两组参数)

R_0			华 丽声占 A II	选取两点Δt	积分常数 T_i	
	C	U _i 生化阻	选取两点 ΔU	远联网点ΔΙ	理论值	实测值
500 V	2 μ	1 V	2.577	2.726	1.0	1.0578
500 K	1 μ	1 V	3.568	1.829	0.5	0.5126

由上表数据,可见积分常数T实测值与理论值吻合很好。且可观察到,当R。 不变时,积分常数T与积分环节的电容值C成正比。

4.3.4 典型比例-积分环节的输出结果(共两组)

典型比例-积分环节的两组参数设定下阶跃输入响应图线如图 4.10 所示。

(a) 情况一: $R_0 = 200K$, $R_1 = 100K$, $U_i = 4V$ (b) 情况二: $R_0 = 200K$, $R_1 = 200K$, $U_i = 4V$ 图 4.10 典型比例-积分环节的阶跃输入响应图线(共两组参数)

两种情况下特性参数计算结果如表 4.10 所示。

表 4.10 典型比例-积分环节的特性参数计算结果(共两组参数)

P	C	U, 理论值	选取两点 ΔU	选取两点 Δt	积分常	常数T _i
R_0	C	O _i 生化且	延取网点Δ0	远 取网点 Δ <i>t</i>	理论值	实测值

500 K	2μ	1 V	2.577	2.726	1.0	1.0578
	1 μ		3.568	1.829	0.5	0.5126

由上表数据,可见积分常数T实测值与理论值吻合很好。且可观察到,当 R_0 不变时,积分常数T与积分环节的电容值C成正比。

4.3.5 典型比例-微分环节的输出结果(共一组)

典型比例-微分环节的一组参数设定下阶跃输入响应图线如图 4.11 所示。

图 4.11 典型比例-微分环节的阶跃输入响应图线(共一组参数)

该情况对应 $R_0 = 200K$, $R_1 = 100K$, $R_2 = 100K$, $R_3 = 10K$, $C = 1\mu$, $U_i = 0.5V$,则可

计算得到 $\left(R_1//R_2\right)=50K$ 。比例环节常数 K 理论值为 $K=\frac{R_1+R_2}{R_0}=1.0$,实测

K = 0.9482。其他特性参数计算结果如表 4.11 所示。

表 4.11 典型比例-微分环节的特性参数计算结果(共一组参数)

U _i 峰值电		稳态输出	微分时间常数 <i>K_D</i>		惯性时间常数τ		微分时间常数 <i>T</i> _D	
实测 $\mathbb{E}U_{o \max}$	$L \cup U_{o \max}$	$=$ 电压 U_{os}	理论值	实测值	理论值	实测值	理论值	实测值
0.502 V	2.881 V	0.476 V	6.0	5.7390	0.01	0.0110	0.06	0.06313

综合上表数据,可见比例环节系数 K、微分时间常数 K_D 、惯性时间常数 τ 以及微分时间常数 T_D 的实测值均与理论值吻合较好,系统建模理论得到验证。

分析电路中的串联电阻 R_3 的作用如下。理论上,纯微分环节的阶跃输入响应的峰值应趋向于无穷大,而实际物理世界中这种情况较为少见,也容易导致测量电路中的微分单元接地电容因电流过大而损坏,因此本实验装置为微分单元的电容串联一个较大电阻,实际上即串联了一个惯性环节,这样的系统一方面阶跃响应的脉冲幅值不会太高,另一方面提供了一种间接的方式来测量微分环节时间常

数,比较适合实验操作与分析。

4.3.6 典型比例-积分-微分(PID)环节的输出结果(共两组)

典型比例-积分-微分(PID)环节的两组参数设定下原系统阶跃输入响应图线如图 4.12 所示。

(a) 情况一:
$$R_0 = 200K$$
, $R_1 = 100K$, $R_2 = 100K$, $R_3 = 10K$, $R_1 = 100K$, $R_2 = 100K$, $R_3 = 10K$, $R_4 = 100K$, $R_5 = 10K$, $R_6 = 500K$, $R_1 = 100K$, $R_2 = 100K$, $R_3 = 10K$, $R_4 = 10K$, $R_5 = 10K$, $R_6 = 10K$, $R_7 = 100K$, $R_8 = 10K$

图 4.12 典型 PID 环节原系统的阶跃输入响应图线(共两组参数)

两组参数设定下短接(去除)积分环节后的阶跃输入响应图线如图 4.13 所示。可观察到输出电压出现稳态平直电压段,体现比例环节特性,可计算常数 K_p 。

(a) 情况一:
$$R_0 = 100K, R_1 = 100K, R_2 = 100K,$$

 $R_3 = 10K, C_1 = C_2 = 1\mu, U_i = 0.3V$
 (b) 情况二: $R_0 = 200K, R_1 = 100K, R_2 = 100K,$
 $R_3 = 10K, C_1 = C_2 = 1\mu, U_i = 0.3V$

图 4.13 典型 PID 环节短接(去除)积分环节后的阶跃输入响应图线(共两组参数)

情况一中,输入电压实测值 $U_o=0.300V$,峰值电压 $U_{omax}=3.480V$,在斜直线段选取两点电压之差 $\Delta u=1.313V$,时间之差 $\Delta t=0.470s$,短接(去除)积分环 节后的输出稳态电压 $U_{os}=0.590V$,峰值电压与稳态电压之差 $(U_{omax}-U_{os})=2.106V$,目标电压下降为 $\Delta U=0.632\times (U_{omax}-U_{os})=1.3310V$,从阶跃开始至目标交点处 $\tau=\Delta t=0.011s$ 。

情况二中,输入电压实测值 $U_o=0.295V$,峰值电压 $U_{omax}=1.705V$,在斜直线段选取两点电压之差 $\Delta u=0.656V$,时间之差 $\Delta t=0.466s$,短接(去除)积分环 节后的输出稳态电压 $U_{os}=0.273V$,峰值电压与稳态电压之差 $(U_{omax}-U_{os})=1.432V$,目标电压下降为 $\Delta U=0.632\times (U_{omax}-U_{os})=0.9050V$,从阶跃开始至目标交点处 $\tau=\Delta t=0.009s$ 。

两组设定参数情况下的特性参数计算结果如表 4.12 所示。

表 4.12 典型比例-积分-微分(PID)环节的特性参数计算结果(共两组参数)

情形	比例系数 K_p		积分时间常数 T_i		微分时间常数T _D	
编号	理论值	实测值	理论值	实测值	理论值	实测值
1	2.0	1.9667	0.2	0.3580	0.06	0.011
2	1.0	0.9254	0.2	0.7104	0.06	0.009

综合上表数据,可见比例环节系数 K_P 的实测值均与理论值吻合较好,而积分时间常数 T_i 以及微分时间常数 T_D 的实测值与理论值有较大偏差,分析主要原因有以下两方面: ① 一方面,由于屏幕分辨率不够精细,可能导致在移动横纵游标的过程产生较大误差,进而造成积分时间常数 T_i 出现较大偏差; ② 另一方面,由于实验设备老化,电容、电阻、导线等元件的参数可能已经发生较大变化,导致实验各主要环节的特性参数测量出现较大误差。

分析电路中的串联电阻 R_3 的作用同比例-微分环节叙述。本实验装置为微分单元的电容串联一个较大电阻,实际上即串联了一个惯性环节,这样的系统一方面阶跃响应的脉冲幅值不会太高,另一方面提供了一种间接的方式来测量微分环节时间常数,比较适合实验操作与分析。

对实验进一步思考:本实验中,采用短接(去除)积分环节以得到稳态输出电压的方式来测量比例环节系数 K_p ,实际上还可以在不短接(去除)积分环节的情况下,将原 PID 控制输出的斜线电压部分进行线性反向延长,得到与初始时刻垂涎的交点,该点的电压值即为: $K_p \times U_i$,据此可计算得到 K_p 值。但是,由于较第一种方法多串联了积分环节,同时又有屏幕测量分辨率和元件老化的影

响,因此这种方法可能带来的误差会更大,需要进一步实验验证。

实验一总结:本部分实验对比例、惯性、积分、比例-积分(PI)、比例-微分(PD)、比例-积分-微分(PID)等环节的阶跃响应曲线进行了理论建模与实验分析,加深了对各项电路参数及其对典型环节动态特性影响的定性、定量认识。

实验设备名称	LabACTn 自控 / 计控原理实验机	实验设备编号	
同组实验人(签名)	冯铮浩	实验报告人(签名)	冯铮浩
实验结果确认及设备等	金 收(签名)		
实验报告完成时间		2020年6月21日	