Significato nomi dei metodi:

```
pmf (probability mass function): densità di probabilità discreta
    P(X = x)
pdf (probability density function): densità di probabilità continua
    P(X = x)
cdf (cumulative distribution function): funzione di ripartizione cumulativa
    P(X <= x)</li>
sf (survival function): funzione sopravvivenza
    P(X > x)
ppf (percentile point function): inverso di cdf, quantile
```

Distribuzioni discrete

1 Distribuzione binomiale

restituisce t tale che P(X < t) = q

Densità: binom.pmf(k, n, p)Funzione di ripartizione: binom.cdf(k, n, p)Funzione di sopravvivenza: binom.sf(k, n, p)Parametri:

- \bullet k: numero di successi
- \bullet n: numero di prove
- p: probabilità di successo

Media: $n \cdot p$ Varianza: $n \cdot p \cdot (1-p)$

2 Distribuzione ipergeometrica

Densità: hypergeom.pmf(k, b+r, b, n)Funzione di ripartizione: hypergeom.cdf(k, b+r, b, n)Funzione di sopravvivenza: hypergeom.sf(k, b+r, b, n)Parametri:

- $\bullet \ k$: numero di successi
- ullet b: cardinalità dell'insieme da cui scegliere per avere successi

- \bullet r: cardinalità dell'insieme da cui scegliere per avere insuccessi
- n: numero di prove

Media: $n \cdot \frac{b}{b+r}$ Varianza: $n \cdot \frac{b \cdot r}{(b \cdot r)^2} \cdot \frac{b+r-n}{b+r-1}$

Distribuzione geometrica 3

Densità: geom.pmf(T, p)

Funzione di ripartizione: geom.cdf(T, p)Funzione di sopravvivenza: geom.sf(T, p)

Parametri:

- \bullet T: tempo di primo successo
- ullet p: probabilità di successo

Media: $\frac{1-p}{p}$ Varianza: $\frac{1-p}{p^2}$

Distribuzione di Poisson 4

Densità: poisson.pmf (k, λ)

Funzione di ripartizione: poisson.cdf (k, λ) Funzione di sopravvivenza: poisson.sf (k, λ)

Parametri:

- \bullet k: numero di successi
- \bullet λ : numero medio di successi attesi

Media: λ

Varianza: λ

Distribuzione multinomiale 5

Densità: multinomial.pmf(k, n, p)

Parametri:

- k: lista di esiti
- n: numero di prove
- $\bullet \;\; p$: lista delle probabilità di successo

Distribuzioni continue

6 Distribuzione uniforme

Densità: uniform.pdf(x, a, b - a)

Funzione di ripartizione: uniform.cdf(x, a, b - a)Funzione di sopravvivenza: uniform.sf(x, a, b - a)

Quantile: uniform.ppf(q, a, b - a)

Parametri:

- \bullet x: variabile casuale
- a: limite inferiore
- b: limite superiore
- \bullet q: ordine del quantile

Media: $\frac{a+b}{2}$ Varianza: $\frac{(b-a)^2}{12}$

7 Distribuzione normale

Densità: norm.pdf (x, μ, σ)

Funzione di ripartizione: norm.cdf (x, μ, σ)

Quantile: norm.ppf (q, μ, σ)

Funzione di sopravvivenza: norm.sf(x, $\mu, \sigma)$

Parametri:

- x: variabile casuale
- μ : media
- σ : deviazione standard
- \bullet q: ordine del quantile

Media: μ Varianza: σ^2

8 Distribuzione esponenziale

Densità: expon.pdf $(x, \text{scale} = 1/\lambda)$

Funzione di ripartizione: expon.cdf $(x, scale = 1/\lambda)$

Quantile: expon.ppf $(q, \text{scale} = 1/\lambda)$

Funzione di sopravvivenza: expon.sf $(x, scale = 1/\lambda)$

Parametri:

- x: variabile casuale
- scale: scala della distribuzione, inverso del tasso λ (ovvero $1/\lambda$)
- \bullet q: ordine del quantile

Media: $1/\lambda$ (o scale) Varianza: $1/\lambda^2$ (o scale²)

9 Distribuzione di Student

Densità: t.pdf(x, df)

Funzione di ripartizione: t.cdf(x, df)Funzione di sopravvivenza: t.sf(x, df)

Quantile: t.ppf(q, df)

Parametri:

- x: variabile casuale
- df: gradi di libertà
- q: ordine del quantile

Media: 0 se df > 1, altrimenti non è definita Varianza: $\frac{df}{df-2}$ se df > 2, altrimenti non è definita

10 Distribuzione Chi-Quadro

Densità: chi2.pdf(x, df)

Funzione di ripartizione: chi2.cdf(x, df)

Quantile: chi2.ppf(x, df)

Funzione di sopravvivenza: chi2.sf(x, df)

Parametri:

- x: variabile casuale
- df: gradi di libertà

Media: df Varianza: $2 \cdot df$

11 Distribuzione Normale Multivariata

Densità: multivariate_normal.pdf(x, mean = None, cov = 1)Funzione di ripartizione: multivariate_normal.cdf(x, mean = None, cov = 1)Parametri:

- x: variabile casuale
- mean: media (se non specificata, assume il valore di default None)
- cov: matrice di covarianza (se non specificata, assume il valore di default 1)

Media: (μ_1, μ_2) Matrice di covarianza: $\begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$

12 Teorema del limite centrale

Sia Xn una successione di v.a indipendenti e tutte con la stessa legge di media μ e varianza $\sigma^2 > 0$ finiti. Allora la variabile normale standardizzata

$$S^* = \frac{X_{\mathbf{n}} - \mu}{\sigma} \cdot \sqrt{n}$$

con $\bar{X_n}$ che tende in legge ad una variabile $S \sim N(0,1)$

OSS Nella pratica, per $n \gg 1$, si approssima S_n^* con S di legge N(0,1). Un criterio per tale approssimazione è che $n \geq 30$.

OSS Nel caso particolare della legge B(n,p) un criterio empirico è $n \cdot p >= 5$ e $n \cdot (1-p) >= 5$.