Análisis de algoritmos de "Graph

coloring" y Análisis de Flujo máximo

Alan Patricio González Bernal - A01067546 Alan Rodrigo Castillo Sánchez - A01708668

1.- Utilizando el algoritmo voraz, encuentra el número cromático del siguiente grafo e indica el color de cada vértice

V ért ic e	A	В	С	D	Е	F	G	Н	I	J
C ol or	C 1	C 2	C 2	C 1	C 1	C 2	C 2	C 1	C 1	C 2

Número cromático: 2

2.- Utilizando el Algoritmo Welsh-Powell, encuentra el número cromático del siguiente grafo e indica el grado y el color de cada vértice

Grado:

4

Número Cromático:

4

3.- Utilizando el Algoritmo Welsh-Powell, encuentra el número cromático del siguiente grafo e indica el grado y el color de cada vértice

Grado:

2

Número Cromático:

3

4.- Genera un grafo de flujo máximo (indicando el flujo/capacidad de cada arista) e indica el valor del flujo para la siguiente red (señala las trayectorias que te proporcionan ese flujo)

5.- Genera un grafo de flujo máximo (indicando el flujo/capacidad de cada arista) e indica el valor del flujo para la siguiente red (señala las trayectorias que te

proporcionan ese flujo)

