BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE – PILANI, GOA INSTRUCTION DIVISION FIRST SEMESTER 2019-2020

Course Handout (Part II)

Course No.: PHY F311

Course Title: QUANTUM MECHANICS - II Date: August 2 2018

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Instructor-in-charge: RADHIKA VATHSAN

1. Description and Objective: This course builds on the introduction to Quantum Physics provided in the course PHY F242, and provides a thorough grounding in the subject as required for MSc students. The course content basically covers Angular momentum and spin; Perturbation Theory; Symmetry; Scattering Theory and ends with the Dirac Equation of relativistic quantum mechanics.

2. Text Books

[T] Text: "Introduction to Quantum Mechanics", David Griffiths, Ed. 2, Pearson Education, 2005.

[R1] Reference: "Modern Quantum Mechanics" J. J. Sakurai, Pearson Education, 1994.

[R2] Reference: "Principles of Quantum Mechanics", R Shankar (Ed. 2), Springer, 1994.

[R3] Reference: The Feynman lectures on Physics, Vol 3, Addison Wesley 1965

3. Learning Outcomes Upon completing this course, students will be able to:

- 1. demonstrate knowledge of the fundamental principles of Quantum Mechanics
- 2. recognize symmetries of a quantum system and relate them to conservation laws and selection rules
- 3. demonstrate knowledge of angular momentum algebra and operations and construct composite states
- 4. apply the methods of perturbation theory to solve problems in atomic physics
- 5. apply techniques of quantum scattering theory
- 6. be aware of the relativistic quantum equation of Dirac

4. Course Plan:

Week	Learning Objective	Topics	Ref.	
1	Introduction and Recap	States, observables, measurement, representation, expectation values, wave functions	T Ch 1-3, class notes	
2 -3	Angular momentum	Rotations and angular momentum operators: commutation relations, eigenvalues and eigen- states, Orbital Angular momentum, Spin, Ad- dition of angular momentum	T 4.3, 4.4 , R1 3.1,3.2, 3.5, 3.6, 3.7	

4	Symmetries and their Consequences	Symmetry, conservation laws and degeneracies: translational and time-translational invariance, Discrete symmetries, parity, time reversal symmetry	R1 Ch4
5–6	Perturbation Theory	Time-independent perturbation theory, degenerate case, Stark effect, fine structure, Zeeman effect	T Ch6, R1 5.1–5.3
7–8	Time-dependent potentials	Time dependent perturbation theory, harmonic perturbation, stimulated emission	T Ch9, R1 5.5–5.7
9	Identical particles	permutation symmetry, Bosons and Fermions, Exclusion principle, Helium atom.	T Ch5, R1 Ch 6
10–11	Scattering theory	Introduction, scattering cross-section, Born approximation, Partial Wave analysis	T Ch11 R1 7.5–7.7, R2 Ch 19
12	Adiabatic Approximation	Adiabatic theorem and Berry phase	T1 ch10
13	Special topics	Feynman Path integral OR Relativistic quantum mechanics & the Dirac Equation	Class notes

5. Workload in hours per week:

Lecture/Class:	2
Tutorial:	2
Home assignments etc:	
Preparatory work	3
Total:	10

6. Evaluation Scheme:

Comp No.	Component	Duration	Weightage	Date, time	Remarks
1.	Class participation	all classes	5 %	in class	
2.	Midsem	90 min	20%	TBA	Cheat sheet allowed
4.	Assignments	weekly	20%		in-class/take home
5.	Seminar/term paper		20%	term end	take home
6.	Comprehensive Exam	3 hrs	35%	TBA	cheat sheet allowed

7. Notices: on the course moodle site.

8. Make-up Policy: Make-up will be given only for Midsem or Compre, and only in genuine cases, that is, serious illness leading to hospitalization or going out of station with prior permission.

 $\begin{array}{c} \textbf{Instructor-in-charge} \\ \textbf{PHY F} 311 \end{array}$