Discussion 12

Mengxiang Jiang CSEN 5303 Foundations of Computer Science

November 7, 2022

Problem statement. Feel free to answer one of the following questions:

- 1. Discuss the direct proof method. Give an illustrative example.
- 2. Discuss the indirect proof (or proof by contraposition) method. Give an illustrative example.

Problem 2. An indirect proof can take two forms, a proof by contraposition or a proof by contradiction. A proof by contraposition rearranges the original implication into its contrapositive form. Namely $P \to Q$ becomes $\neg Q \to \neg P$. Since the contrapositive is logically equivalent to the original, one can then proceed with a direct proof of the contrapositive and thereby prove the original.

Example: For any integer n , if n^2 is odd, then n is odd
Contrapositive: For any integer n , if n is even, then n^2 is even
Since n is even, let $n=2k$ for some integer k, then $n^2=(2k)^2=4k^2=2(2k^2)$, so n^2 must
be even. \square

A proof by contradiction starts assuming the original premise implies the negation of the original conclusion. Then from the negated conclusion, derive an inconsistency with the original premise, thereby arriving at a contradiction and proving the original. Namely if the original was $P \to Q$, then assume $P \to \neg Q$, and from $\neg Q$ derive $\neg P$.

Example: For any integer n , if n^2 is odd, then n is odd
Assume for contradiction: For any integer n , if n^2 is odd, then n is even.
Since n is even, let $n=2k$ for some integer k, then $n^2=(2k)^2=4k^2=2(2k^2)$, so n^2
must be even. But we assumed n^2 is odd, and n^2 cannot be both odd and even, therefore
contradiction. \square