CLASSIFICAÇÃO PIXEL A PIXEL DE CULTIVOS CAFEEIROS EM IMAGEM DE SATÉLITE DE ALTA RESOLUÇÃO

RENNAN DE FREITAS BEZERRA MARUJO¹, TATIANA GROSSI CHQUILOFF VIEIRA², MARGARETE MARIN LORDELO VOLPATO³, HELENA MARIA RAMOS ALVES⁴ e MARIA BRUNA PEREIRA RIBEIRO⁵

rennanmarujo@gmail.com, tatiana@epamig.ufla.br, margarete@epamig.ufla.br, helena@embrapa.br, mariabruna9@yahoo.com.br

¹Bolsista de iniciação cientifica FAPEMIG/EPAMIG – Bacharelando em Ciência da Computação, Universidade Federal de Lavras

²Pesquisadora, M. Sc., EPAMIG, Lavras, MG, Bolsista BIPDT-FAPEMIG

³Pesquisadora, D. Sc., EPAMIG, Lavras, MG, Bolsista BIPDT-FAPEMIG

⁴Pesquisadora, Ph. D., EMBRAPA CAFÉ, Brasília, DF

⁵Bolsista EPAMIG – CBP&D/CAFÉ

Palavras chave: Classificação; pixel a pixel; café; rapideye; satélite

Introdução

Segundo a CONAB (Companhia Nacional de Abastecimento), o café consta como o segundo produto de maior exportação na pauta das exportações agrícolas. A segunda estimativa de produção do café (Arábica e Conilon) para a safra de 2012 indica que o país deverá colher mais de cinquenta milhões de sacas de sessenta quilos do produto beneficiado (CONAB, 2012).

Conhecer a distribuição espacial da atividade cafeeira é vital para prever e planejar sua distribuição em escala municipal, estadual e federal, vide seu valor socioeconômico (MOREIRA, 2008).

Concordante Venturieri (1996), o processamento digital de imagem constitui de poderosas ferramentas, capazes de retificar, classificar e realçar imagens orbitais, sendo estas de grande aplicação na área de recursos naturais.

Objetivos

O objetivo destapesquisa é avaliar a eficiência do método de classificação pixel a pixel em imagens de satélite de alta resolução, através de atributos espectrais, gerando o mapa de uso da terra mediante acurácia dos índices globais e kappa de uma região com ênfase em cultura cafeeira.

Fundamentação teórica

Segundo Novo (1992) o sensoriamento remoto consiste em monitorar e fotografar superfícies terrestres através de equipamentos como aeronaves e satélites.

O sensor registra a energia, transmite de maneira eletrônica para uma estação, onde esta é processada e transformada em imagem (Jong & Meer, 2006).

A classificação pixel a pixelutiliza atributos espectrais isolados de cada pixel componente da imagem de forma a atribuir cada um destes à classe mais provável segundo as verdades de campo(Bernardi, 2007).

A avaliaçãodo desempenho dos classificadores automáticos é realizada mediante comparação da imagem gerada com imagem verdade, assim obtendo os índices Globais e Kappa. Tais índices são baseados na construção de matrizes de erro. Uma matriz de erro constitui uma maneira de representar a acurácia de um conjunto de dados simulados ou estimados, em relação a um conjunto de dados de referência (Bernardes, 2006).

Metodologia

A área de estudo esta compreendida na região de Três Pontas (21º17'10,07" S a 21º27'57,41" S de latitude e 45º30'4,69" O a 45º45'3,33" O de longitude), numa área de 510 km² no estado de Minas Gerais. Na região prevalecem altitudes de 900 metros acima do nível do mar, clima tropical de altitude, temperatura média anual de 18,5 °C, precipitação média anual de 1434 mm,relevo predominantemente ondulado (60% da área do município) com algumas regiões montanhosas (20% da área do município), predomínio de latossolos. Graças a suas condições climáticas e geográficas, Três Pontas apresenta condições privilegiadas para cultura do café.

3ª JORNADA CIENTÍFICA DA GEOGRAFIA, 03 a 06 de Setembro de 2012 - Universidade Federal de Alfenas

Os dados multiespectrais foram adquiridos do sensor RE-4, acoplado aos satélites REIS (*RapidEyeimaging system*) para a região de Três Pontas e municípios vizinhos, com data de passagem 12 de Agosto de 2009. Essas imagens pertencem ao banco de dados geográficos do Governo do estado de Minas Gerais.

Foi utilizado o software *ENVI 4.7* para classificação pixel a pixel e validação das classificações, através dos índices globais e kappa, mediante comparação com o mesmo mapa interpretado visualmente.

Resultados

A figura 1 ilustra a área de estudo classificada através do algoritmo de verossimilhança (método pixel a pixel).

Figura 1 – Classificação pixel a pixel em imagem rapideye da área de estudo Três Pontas.

Após classificada esta imagem foi validada através da mesma imagem classificada visualmente e validada em campo. Os resultados podem ser observados nas tabelas 1, 2 e 3 a seguir:

Tabela 1. Matriz de confusão da classificação pixel a pixel.

	Unclassified	Agua	Café	Mata	Outros	Outros usos	TOTAL
Unclassified	0	0	0	0	0	0	0
Agua	0	1156621	1	1662	10839	0	1169123
Café	0	8814	3972743	1860782	1406229	15362	7263930
Mata	0	4234	658605	1104534	36827	1288	1805488
Outros	0	24595	487368	345208	9088399	671	9946241
Outros usos	0	0	6029	1047	27	9262	16365
TOTAL	0	1194264	5124746	3313233	10542321	26583	20201147

Tabela 2. Erros de comissão e omissão da classificação pixel a pixel.

Classe	Comissão (%)	Omissão (%)
Não classificado	0	0
Agua	1.07	3.15
Café	45.31	22.48
Mata	38.82	66.66
Outros	8.62	13.79
Outros Usos	43.40	65.16

Tabela 3. Acurácia da classificação pixel a pixel.

Classe	Acurácia produtor	Acurácia usuário
Não classificado	0.00	0.00
Agua	96.85	98.93
Café	77.52	54.69
Mata	33.34	61.18
Outros	86.21	91.38
Outros Usos	34.84	56.60

O índice Global e o índice Kappa obtiveram valores de 0,75894 e 0,61964 respectivamente, demonstrando assim que a classificação pixel a pixel apesar de

3ª JORNADA CIENTÍFICA DA GEOGRAFIA, 03 a 06 de Setembro de 2012 - Universidade Federal de Alfenas

apresentar ruídos, consta como método valido para classificação de culturas cafeeiras e aliada com a interpretação visual pós-classificação pode obter altos índices de acurácia, sendo uma metodologia vertiginosa, entretanto dependente de interpretação.

Referências

ADAMI, M. et al. Avaliação da exatidão do mapeamento da cultura do café no Estado de Minas Gerais. In: Simpósio Brasileiro de Sensoriamento Remoto (SBSR), 25-30., Abril., 2009, Natal.Anais. São José dos Campos: INPE, 2009.p. 1-8. Disponível em: http://www.dsr.inpe.br/laf/cafesat/artigos/AvaliacaoExatidaoMapeamentoCafe.pdf>. Acesso em: 12 JULHO. 2012.

BERNARDES, T. Caracterização do ambiente agrícola do complexo serra negra por meio de sensoriamento remoto e sistemas de informação geográfica. 2006. Trabalho de Dissertação (Mestrado em Ciência do solo) – Universidade Federal de Lavras, UFLA, Lavras, 2006.

BERNARDI, H. V. F., DZEDZEJ, M., CARVALHO L. M. T., ACERBI, F. W. Classificação digital do uso do solo comparando os métodos "pixel a pixel" e orientado ao objeto em imagem QuickBird. Universidade Federal de Lavras, UFLA. 2007. In: Simpósio Brasileiro de Sensoriamento Remoto (SBSR), 21-26 Abril. 2007, Florianópolis. **Anais.** São José dos Campos: INPE, p. 5595-5602. Disponível em: http://marte.dpi.inpe.br/col/dpi.inpe.br/sbsr@80/2006/11.16.02.01.41/doc/5595-5602.pdf>. Acesso em: 13 JULHO. 2012.

Companhia Nacional de Abastecimento (CONAB) **Acompanhamento da safra brasileira – Café** (segunda estimativa 2012). Disponível em:http://www.conab.gov.br. Acesso em: 16 JULHO. 2012.

JONG, S. M. & MEER, F. D. 2006. Remote Sensing Image Analysis: including the spatial domain, v.5, 359p.

MOREIRA, M. A.2008.Geotecnologias no mapeamento da cultura do café em escala municipal.2008. 10p. Disponível em: http://www.scielo.br/scielo.php?pid=S1982-45132008000100007%script=sci arttext>. Acesso em: 12 JULHO. 2012.

NOVO, E.M.L.M. Sensoriamento Remoto: Princípios e Aplicações. São

Paulo: Ed. Edgard Blucher, 2a edição, 1992. 308p.