Lista 2: Geometria Analítica

A. Ramos *

24 de março de 2017

Resumo

Lista em constante atualização.

- 1. Produto escalar, projeção ortogonal e combinações lineares
- 2. Produto Vetorial, volume e produto misto

1 Produto escalar, projeção ortogonal e combinações lineares

O produto escalar de U e V, denotado por U.V é o número definido como $U.V = v_1u_1 + v_2u_2 + \cdots + v_nu_n$, onde $U = (u_1, \ldots, u_n)$ e $V = (v_1, \ldots, v_n)$ em \mathbb{R}^n . Com o produto interno podemos calcular o comprimento dum vetor usando $||V||^2 = V.V$ e também o ângulo θ entre dos vetores, através da formula

$$U.V = ||U|||V||\cos(\theta).$$

Usamos o produto interno para "projetar" o vetor V sobre o vetor W. A projeção ortogonal de V sobre W denotado por $\operatorname{proj}_W(V)$ é o único vetor paralelo a W tal que $V - \operatorname{proj}_W(V)$ é ortogonal a W, i.e. $\operatorname{proj}_W(V)//W$ e $(V - \operatorname{proj}_W(V)) \perp W$. Existe uma formula para calcular $\operatorname{proj}_W(V)$ dada por

$$\operatorname{proj}_W(V) = \frac{W.V}{\|W\|^2} W, \text{ se } W \neq \overrightarrow{0}.$$

Proceda a responder as seguintes questões

- 1. Considere os vetores U e V, com $U = \alpha V$. Então,
 - Se $V \neq \bar{0}$, temos que $|\alpha| = ||U||/||V||$.
 - Calcule $\operatorname{proj}_{V}U$.
- 2. Determine o valor de $\alpha \in \mathbb{R}$, de forma que $A = (4, \alpha, 4)$, $B = (10, \alpha, -2)$ e C = (2, 0, -4) seja os vértices de um triângulo equilátero. $Rpta \ \alpha = 2, -2$.
- 3. Calcule ||U V||, se ||U|| = 13, ||V|| = 19 e ||U + V|| = 24. Rpta 22
- 4. Sabemos que se U.V = U.W não necessariamente V = W (Apresente algum exemplo). Mas, mostre que se U.V = U.W vale para todo vetor U, então V = W.
- 5. Considere os vetores U e V. Se $\angle(U, V) = 60^{\circ}$, ||U|| = 5, ||V|| = 8. Encontre ||U + V|| e ||U V||. Rpta $||U + V|| = \sqrt{129}$, ||U V|| = 7.
- 6. Se $\angle(U,V)=45^{\circ}$ e ||U||=3. Ache a norma de V tal que U-V seja perpendicular a U. $Rpta ||V||=3\sqrt{2}$.
- 7. * Qual a distância que percorreu uma pessoa que primeiramente percorreu 5 m na direção sudoeste, 10 m da direção norte e finalmente 8 m na direção leste 30° norte. *Dica:* Faça o esboço do percorrido, use $\cos 15^\circ = (\sqrt{2} + \sqrt{6})/4$. $Rpta \sqrt{269 70\sqrt{2} 20\sqrt{6}}$.

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

- 8. Se os lados de um triângulo equilátero ABC têm medida 2. Calcule $\overrightarrow{AB}.\overrightarrow{BC} + \overrightarrow{BC}.\overrightarrow{CA} + \overrightarrow{CA}.\overrightarrow{AB}$. Rpta:
- 9. Considere três pontos A, B e C, tais que $\angle(BA,BC) = 60^{\circ}$, o segmento AB tem tamanho 6, e o segmento BC tem tamanho 8. Encontre o valor de $\overrightarrow{AB}.\overrightarrow{CB}$. Dica Faça o esboço. Rpta -24.
- 10. Encontre um vetor U com norma $\sqrt{2}$, $\angle(U,(1,-1,0))=45^{\circ}$ e $U\perp(1,1,0)$. $Rpta\ (\sqrt{2}/2,-\sqrt{2}/2,1)$ ou $(\sqrt{2}/2,-\sqrt{2}/2,-1)$
- 11. Se U e V são vetores não nulos. Então

$$\operatorname{proj}_{V}(\operatorname{proj}_{U}V) = \frac{(U \cdot V)^{2}}{\|U\| \|V\|} V.$$

Interprete geometricamente.

- 12. Seja $U=(u_1,u_2,u_3)\in\mathbb{R}^3$. Mostre que $U=\operatorname{proj}_{\overrightarrow{i}}U+\operatorname{proj}_{\overrightarrow{j}}U+\operatorname{proj}_{\overrightarrow{k}}U$. Verifique também que $\operatorname{proj}_V U=\operatorname{proj}_{\alpha V}U$ para qualquer $\alpha\neq 0$.
- 13. Considere três pontos, A, B e C em \mathbb{R}^3 e defina os vetores $U = \overrightarrow{BA}$ e $V = \overrightarrow{BC}$. Mostre que o vetor $W = U/\|U\| + V/\|V\|$ é bissetriz do ângulo $\angle(AB,BC)$.
- 14. Encontre um vetor U com norma $\sqrt{5}$, ortogonal a (2,1,-1) tal que $\{U,(1,1,1),(0,1,-1)\}$ seja linearmente dependente. Rpta: (1,0,2) ou (-1,0,-2).
- 15. Considere uma circunferência \mathcal{C} no plano, cujo uns dos diâmetros é o segmento AB (A=(-3,-1), B=(5,3)) e considere uma reta que passa por (13,0) e (0,13/2) que é tangente à circunferência \mathcal{C} . Encontre as coordenadas da interseção da circunferência com a reta. Rpta(3,5)
- 16. Considere o triângulo com vértices A = (1,1,0), B = (5/3,1/3,2/3) e C = (0,0,1) e H ponto médio do segmento AB. Ache o ponto M dentro do triângulo tal que MH é ortogonal a AB e a distância de H a M é a metade do comprimento do segmento HC. $Rpta\ M = (2/3,1/2,1/3)$.

Considere vetores U_1, U_2, \dots, U_m em \mathbb{R}^n . Dito conjunto de vetores é linearmente independente (l.i) se o único jeito de que

$$\alpha_1 U_1 + \alpha_2 U_2 + \alpha_3 U_3 + \dots + \alpha_m U_m = \overrightarrow{0}$$

é que $\alpha_1 = 0, \alpha_2 = 0, \dots, \alpha_n = 0$. Caso contrário, dizemos que os vetores são linearmente dependente (l.d).

Assim, para determinar se certo conjunto de vetores U_1, U_2, \dots, U_m são linearmente dependente ou não, devemos montar o sistema

$$\alpha_1 U_1 + \alpha_2 U_2 + \alpha_3 U_3 + \dots + \alpha_m U_m = \overrightarrow{0}$$

com incógnitas $\alpha_1, \alpha_2, \dots \alpha_m$ e resolver dito sistema. Se a única solução é a solução nula (i.e. todos os α 's iguais a zero) os vetores são l.i, caso exista solução com algum α_i diferente de zero, os vetores são necessariamente l.d.

1. Verifique se os vetores dados são l.i ou l.d.

(a)
$$U = (0, 1, 0), V = (2, 0, 2)$$
 (b) $U = (1, 2, 3), V = (0, 4, 1), W = (2, 0, 7)$ (c) $U = (\cos \theta, \sin \theta), V = (\cos \theta, -\sin \theta)$

- 2. Considere vetores $U = \overrightarrow{PA}, V = \overrightarrow{PB}$ e $W = \overrightarrow{PC}$. Mostre que:
 - P, A, B e C estão no mesmo plano (i.e. são coplanares) se e somente se U, V e W são l.d
 - P, A e B estão na mesma reta (i.e. são colineares) se, e somente se U e V são l.d.
- 3. Mostre que
 - Se $\{U, V\}$ é l.d, então $\{U, V, W\}$ também é l.d
 - Se $\{U, V, W\}$ é l.i, então $\{U, V\}$ também é l.i. O que vc pode dizer acerca de $\{U, W\}$?

4. Se U é ortogonal a V (com U e V diferentes de $\overrightarrow{0}$). Então, U e V são linearmente independente. Interprete geometricamente.

Dica Monte o sistema $\alpha U + \beta V = \overrightarrow{0}$ e faça o produto interno com U e depois com V. Note que como U é diferente de $\overrightarrow{0}$, $||U||^2 = U.U \neq 0$, similarmente para V.

2 Produto vetorial, volume e produto misto

No espaço \mathbb{R}^3 , podemos definir o produto vetorial. O produto vetorial $V \times W$ é um vetor em \mathbb{R}^3 cujo componentes são

$$V \times W = \left(\det \begin{pmatrix} v_2 & v_3 \\ w_2 & w_3 \end{pmatrix}, -\det \begin{pmatrix} v_1 & v_3 \\ w_1 & w_3 \end{pmatrix}, \det \begin{pmatrix} v_1 & v_2 \\ w_1 & w_2 \end{pmatrix}\right),$$

onde $V = (v_1, v_2, v_3)$ e $W = (w_1, w_2, w_3)$.

O vetor $V \times W$ tem as seguintes características:

 \bullet O comprimento (norma) de $V \times W$ é

$$||V \times W|| = ||V|| ||W|| \sin \theta$$
, onde θ é o ângulo entre $V \in W$.

Note que $||V \times W||$ coincide com a área do paralelogramo determinado por V e W.

- O vetor $V \times W$ é perpendicular a V e W. Como consequência, $V \times W$ é perpendicular ao "plano" definido por V e W.
- O sentido de $V \times W$ é dada pela regra da mão direita. Assim, $V \times W = -W \times V$.
- ullet O produto $(V \times W).U$ é chamado de produto misto de U, V e W. O produto misto é um número e

 $|(V \times W).U|$ coincide com o volume do paralelepípedo determinado por U, V e W.

Existe uma formula rápida para calcular $(V \times W).U$ dada pela seguinte expressão.

$$(V \times W).U = \det \begin{pmatrix} v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \end{pmatrix}.$$

• $V \times W = 0$, se e somente se V e W são paralelos

Observação Não existe produto vetorial para vetores no plano.

Com essas informações responda os seguintes exercícios.

- 1. Considere os vetores U = (2, -3, 1), V = (2, 2, 0) e W = (1, -3, 4). Calcule:
 - $U \times V \in V \times U$
 - $(U \times V) \times W$, $U \times (V \times W)$
 - $(U \times V) \times (U \times W)$
 - $(U \times V).W, V.(V \times W)$
 - $(U+V)\times(U+W)$

Dica Calcule com cuidado e pode usar propriedades geométricas.

2. Mostre que

$$||V \times U||^2 = ||V||^2 ||W||^2 - (V.W)^2.$$

Observação Essa formula pode ser muito útil para calcular rapidamente o norma de $V \times U$.

- 3. Qual é a área do triângulo com vértices A = (1, 2, 1), B = (3, 0, 4) e C = (5, 1, 3). Rpta $\sqrt{101}/2$.
- 4. Encontre $U \in \mathbb{R}^3$ tal que $U \times (\overrightarrow{i} + \overrightarrow{k}) = 2(\overrightarrow{i} + \overrightarrow{j} \overrightarrow{k})$ e $||V||^2 = 6$. Rpta U = (-1, 2, 1).
- 5. Considere um vetor U ortogonal a $\overrightarrow{i} + \overrightarrow{j}$ e a $-\overrightarrow{i} + \overrightarrow{k}$, com norma $\sqrt{3}$ e cujo ângulo θ entre U e \overrightarrow{j} satisfaz $\cos \theta > 0$. Com essas informações, ache U. Dica Escreva U como $u_1 \overrightarrow{i} + u_2 \overrightarrow{j} + u_3 \overrightarrow{k}$. Rpta $U = -\overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}$.
- 6. Se $V \times U = W \times U$ com $U \neq \overrightarrow{0}$. Então, W = V.?
- 7. Prove a fórmula para o produto vetorial duplo

$$U \times (V \times W) = (U.W)V - (U.V)W$$

- 8. Considere um plano \mathcal{P} que contêm trés pontos A = (1,0,0), B = (0,1,-1) e C = (1,1,-1). Encontre o centro de uma esfera de radio $3\sqrt{2}$ que é tangente ao plano \mathcal{P} e passa por C. $Rpta\ (-1,-2,2)$ ou (-1,4,-4).
- 9. Considere uma pirâmide regular com base ABCD onde $A=(1,0,0),\ B=(0,0,1),\ C=(0,\sqrt{2},1)$ e $D=(1,\sqrt{2},0).$ Encontre o vértice P da pirâmide se a pirâmide tem volume igual $\sqrt{2}.$ Dica: O volume da pirâmide é 1/3 da área da base pela altura. $Rpta\ P=(2,\sqrt{2}/2,2)$ ou $P=(-1,\sqrt{2}/2,-1).$
- 10. Resolva os seguintes sistemas:

(a)
$$U \times (\overrightarrow{i} + \overrightarrow{j}) = -\overrightarrow{i} + \overrightarrow{j}$$
 e $U.(\overrightarrow{i} + \overrightarrow{j}) = 2$. Rpta $U = (1, 1, 1)$

(b)
$$U \times (\overrightarrow{i} - \overrightarrow{k}) = \overrightarrow{j}$$
, $U + V = \overrightarrow{i} + \overrightarrow{j}$ e $||U|| = 1$.

Rpta
$$U = (0,0,1), V = (1,1,-1)$$
 ou $U = (1,0,0), V = (0,1,-1)$

(c)
$$(U + \overrightarrow{i} - 2\overrightarrow{k}) \times (\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}) = -\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} e U.(\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}) = 10. Rpta U = (3/2, 4, 1/2)$$

- 11. Se h é a altura de um triângulo ABC relativa a AB. Mostre que $h \|\overrightarrow{AB}\| = \|\overrightarrow{AB} \times \overrightarrow{AC}\|$.
- 12. Se ||U|| = 3, ||V|| = 4, $\angle(U, V) = 120^{\circ}$. Calcule o volume do paralelepípedo determinado por os vetores $U \times V$, U e V.
- 13. Considere três vetores no espaço. Mostre que $U \times V$, $U \in V$ são linearmente independente, se $||U \times V|| \neq 0$.
- 14. Se U = (1, 2, -1), V = (0, 3, -4), $W = (1, 0, \sqrt{3})$ e Z = (0, 0, 2). Calcule o volume do tetraedro ABCD, se $\overrightarrow{AB} = \operatorname{proj}_{V}U$, \overrightarrow{AC} é o vetor oposto a W e $\overrightarrow{BD} = \operatorname{proj}_{Z}(\overrightarrow{AB} \times \overrightarrow{AC})$.