Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>Р3219</u>	К работе допущен	
Студент Ануфриев Андрей Сергеевич	Работа выполнена 07.10.	<u>25</u>
Преполаватель Коробков Максим Петрович	Отчет принят	

Отчет по лабораторной работе № 1.01

Исследование распределения случайной величины

1. Цель работы:

Исследовать распределение случайной величины, характеризующей время вычисления 10!, на основе многократных измерений данного временного интервала.

2. Задачи, решаемые при выполнении работы:

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования:

Случайная величина — результат измерения промежутка времени между началом выделения памяти для переменной и записи результата в память.

4. Метод экспериментального исследования:

Многократное косвенное вычисление определенного интервала времени с помощью вызова системного времени и нахождения разницы начала и окончания.

Экспериментальная установка: ноутбук "ASUS Vivobook", программа РуСharm, язык программирования Руthon. Точность системного времени 1 наносекунда, но в данных результат $*10^6$ т.е. значения от 0 до 999.

5. Рабочие формулы и исходные данные.

- $\langle t \rangle_N = \frac{1}{N} \left(t_1 + t_2 + \ldots + t_N \right) = \frac{1}{N} \sum_{i=1}^N t_i$ среднее арифметическое всех результатов измерений.
- $\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^N (t_i \langle t \rangle_N)^2}$ выборочное среднеквадратичное отклонение.
- $\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$ максимальное значение плотности распределения.
- $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2}$ среднеквадратичное отклонение среднего значения.
- $\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right)$ нормальное распределение, описываемое функцией Гаусса.
- $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$ доверительный интервал.

Исходные данные: $N=10^4$, высокий режим энергопотребления, отсутствие сторонних процессов, подключённая зарядка.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	5-41	10-9

7. Схема установки (перечень схем, которые составляют Приложение 1)

```
P program ~
                          ⁰ master ∨
                                random_test.py
                                                     sqreq (1).py

    ≡ words.txt

                                                                                      task_1.py

≡ performance_log

                  main.pv
                                                                                                      🗬 qw.py 🗡
ያክ
铝
                if n \ge 3: return f(n-1)*n
          v def data(iterations, filename="timing_log.txt"): 1usage
                    for i in range(iterations):
                        start_time = time.time()
                        end_time = time.time()
                         execution_time = (end_time - start_time)*10000000
                         file.write(f"{execution_time:2.0f}\n")
```

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Результаты прямых измерений приведены в таблице 1.

Вот получившиеся результаты:

•
$$\langle t \rangle_{N} = \frac{1}{10000} \sum_{i=1}^{10000} t_i N_i = 13,0158 \text{ c}$$

$$\bullet \quad \sum_{i=1}^{N} (t_i - \langle \mathbf{t} \rangle N_i) = 0$$

•
$$\sigma_N = \sqrt{\frac{1}{9999} \sum_{i=1}^{10000} (t_i - 13,0158)^2} = 3,37883^2 c$$

•
$$\rho_{\text{max}} = \frac{1}{3.378*\sqrt{2\pi}} = 0.118071132 \ c^{-1}$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

•
$$\langle t \rangle_{N=\frac{1}{10000}} \sum_{i=1}^{10000} t_i N_i = 13,0158 * 10^{-2} c$$

•
$$\sigma_N = \sqrt{\frac{1}{9999} \sum_{i=1}^{10000} (t_i - 13,0158)^2} = 3,37883 c$$

•
$$\rho_{\text{max}} = \frac{1}{3.378*\sqrt{2\pi}} = 0.118071132 \ c^{-1}$$

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{10000*9999} \sum_{i=1}^{10000} (t_i - 13,0158)^2} = 0,033788*10^{-2} c$$

• $t_{min}=5~c$, $t_{max}=41~c$, $\sqrt{N}\approx7$ — тогда для построения гистограммы возьмем 7 интервалов $\Delta t=5,142857143*10^{-2}~c$

Таблица 2. Данные для построения гистограммы.

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, C^{-1}	t, c	ρ, c^{-1}
5	2206	0,044839	7,571429	0,032237
10,14286	2306			

10,14286				
15,28571	5523	0,107392	12,71429	0,117602
15,28571	2049	0.000000	17.05714	0.040000
20,42857	2048	0,039822	17,85714	0,042299
20,42857	107	0,002081	23	0,0015
25,57143	207	0,002001	20	0,0010
25,57143	5	0.725.05	28,14286	5,24E-06
30,71429	3	9,72E-05	20,14200	5,24E-06
30,71429	6	0,000117	22 20571	1 015 00
35,85714	0	0,000117	33,28571	1,81E-09
35,85714	5	0.705.05	20 42057	6 155 14
41	3	9,72E-05	38,42857	6,15E-14

Опытное значение плотности вероятности (третий интервал): $\frac{\Delta N}{N \Delta t} = \frac{14}{10000 \cdot 5,142857143} = 2,72222222146605e - 4$

Нормальное распределение, описываемое функцией Гаусса: $\rho(13,0158) = \frac{1}{3,37883\sqrt{6,28}} exp(-\frac{(13,0158-15,28571)^2}{2*5,142857143^2}) = 1.0714 c^{-l}$

Стандартные доверительные интервалы представлены в таблице 3.

	ΔΝ	ΔΝ/Ν	Р
t+-a	16,39463	6611	0,6611
t+-2a	19,77346	9829	0,9829
t+-3a	23,15229	9974	0,9974

10. Расчет погрешностей измерений (для прямых и косвенных измерений):

$$\Delta_{ux}=1~\mathrm{c;}~\overline{\Delta \mathrm{x}}=t_{\alpha,\mathrm{N}}\cdot\sigma_{\langle t\rangle}\approx2,01\cdot0.0337883=0,067914483;~t_{\alpha,\mathrm{N}}~\approx2,01;$$

Абсолютная погрешность с учетом погрешности прибора: $\Delta x = \sqrt{(\overline{\Delta x})^2 + (\frac{2}{3}\Delta_{ux})^2} \approx 0,06352~c$ Относительная погрешность измерения: $\varepsilon_x = \frac{\Delta x}{\bar{x}} \cdot 100\% = 5,29\%$

11. Графики:

График 1 – Гистограмма и функция Гаусса

Зависимость р от t

12. Окончательные результаты.

- Среднеквадратичное отклонение среднего значения $\sigma_{(t)} = 3,37883 \ c$
- Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.95$: $t_{\alpha,N}=2.01$
- Доверительный интервал $\Delta t = 5,1428c$
- Среднее арифметическое всех результатов измерений $\langle t \rangle_N = 13,0158c$
- Выборочное среднеквадратичное отклонение: $\sigma_N = 3,3497 \ c$
- Максимальное значение плотности распределения $\rho_{max} = 0.1180 \ c^{-1}$

13. Выводы и анализ результатов работы.

Было исследовано распределение случайной величины на примере многократных замеров временного отрезка, получена выборка из 10000 измерений, на основе которых построена гистограмма, стандартные доверительные интервалы были занесены в соответствующие таблицы. После заполнения таблиц была построена гистограмма и функция Гаусса.

При сравнении гистограммы с графиком функции Гаусса - распределения случайной величины (при таких же начальных параметрах) — было отмечено сходство поведения построенной опытным путём функции с теоретико-статистической сущностью.

В ходе работы я ознакомиться с законом распределения случайной величины и подробно его изучить.

Приложения

Таблица 1 (первые строки) вся таблица по ссылке.

		/
$t_{ m i}$, c	$t_i - \langle t \rangle N_i$, c	$(t_i - \langle \mathbf{t} \rangle N_i)^2$, c^2
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305

	_	
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
5	-8,0158	64,25305
6	-7,0158	49,22145
6	-7,0158	49,22145
6	-7,0158	49,22145
7	-6,0158	36,18985
7	-6,0158	36,18985
7	-6,0158	36,18985
7	-6,0158	36,18985
7	-6,0158	36,18985
7	-6,0158	36,18985
7	-6,0158	36,18985
7	-6,0158	36,18985
I	•	•