

Обучение с подкреплением на распределениях

Осминин Константин 10 сентября 2019

Tinkoff.ru

Мотивация

- ✓ Более точная оценка вознаграждений
- ✓ Допускает мультимодальность вознаграждений
- ✓ Допускает управление риском
- ✓ Более стабильное обучение

Учим распределения, а не среднее

$$Q(x,a) = \mathbb{E}_{\pi} \sum_{i} \gamma^{i} R(x_{i}, a_{i})$$

$$\mathbb{E}_{\pi} \sum_{i} \gamma^{i} R(x_{i}, a_{i}) \sim Z(x, a)$$

$$Q(x, a) = \mathbb{E} R(x, a) + \gamma \mathbb{E} Q(X', A').$$

$$Z(x,a) \stackrel{D}{=} R(x,a) + \gamma Z(X',A').$$

по распределению

$$Q(x,a) = \mathbb{E} \ Z(x,a)$$

Как учить распределение

Учим N квантилей $\{\theta_i = F^{-1}(i/N)\}$

Квантильная регрессия

 $heta_{ au}$ есть au-квантиль выборки X =>

$$\theta_{\tau} = argmax L_{\theta} = argmax \mathbb{E}_{X}|X - \theta| \cdot |\tau - \delta_{X < \theta}|$$

$$\nabla_{\theta} L_{\theta} = \begin{cases} 1 - \tau, X < \theta \\ \tau, X \ge \theta \end{cases}$$

Как учить квантили

У Используем квантильную регресию, только для гладкости применяем Huber Loss

$$\mathcal{L}_{\kappa}(u) = egin{cases} rac{1}{2}u^2 & ext{if } |u| \leq \kappa \ \kappa(|u| - rac{1}{2}\kappa) & ext{otherwise} \end{cases}$$

 $leve{}$ Для квантили au

$$L_{\theta} = \mathbb{E}_{X} \mathcal{L}_{k} (X - \theta) \cdot |\tau - \delta_{X < \theta}|$$

У Для всех квантилей

$$L_{\theta} = \sum_{i=1}^{N} \mathbb{E}_{X} \mathcal{L}_{k} (X - \theta) \cdot |\tau_{i} - \delta_{X < \theta}|$$

Алгоритм QR-DQN

$$\checkmark s = s_0$$

Пока не сошлись:

$$\checkmark$$
 $a = argmax_{a'} {}^{1}/_{N} \sum_{j=1}^{N} \theta_{j}(s, a')$

- ullet Из состояния s делаем шаг a и наблюдаем s',r.
- У Обучение:

$$\checkmark a' = argmax_{a'} {}^{1}/_{N} \sum_{j=1}^{N} \theta_{j}(s, a')$$

$$\bullet \theta_j^* = r + \gamma \theta_j(s', a')$$

$$\angle L = \frac{1}{N^2} \sum_{i,j=1}^N \mathcal{L}_k(\theta_j^* - \theta(x,a)) \cdot |i/N - \delta_{X < \theta(x,a)}|$$

 \checkmark Шаг градиентного спуска по параметрам $\theta(x,a)$

$$\checkmark$$
 $s \leftarrow s'$

Результаты

Figure 4: Online evaluation results, in human-normalized scores, over 57 Atari 2600 games for 200m train samples.

	Mean	Median	>human	> DQN
DQN	228%	79%	24	0
DDQN	307%	118%	33	43
DUEL.	373%	151%	37	50
Prior.	434%	124%	39	48
PR. DUEL.	592%	172%	39	44
C51	701%	178%	40	50
QR-DQN-0	881%	199%	38	52
QR-DQN-1	915%	211%	41	54

Table 1: Mean and median of *best* scores across 57 Atari 2600 games, measured as percentages of human baseline (Nair et al. 2015).

Материалы

✓ Marc G Bellemare, Will Dabney, and R´emi Munos, A distributional perspective
on reinforcement learning, arXiv preprint arXiv:1707.06887 (2017).

Will Dabney, Mark Rowland, Marc G Bellemare, and R´emi Munos, Distributional reinforcement learning with quantile regression, arXiv preprint arXiv:1710.10044 (2017).

Семинар

https://github.com/bayesgroup/deepbayes-2018/blob/master/day3_qr-qnetwork/qr_dqn-local.ipynb

Метрика Вассерштайна

Let X and Y be two scalar random variables and F_X and F_Y their CDFs. Then, their pWasserstein distance is

$$\mathcal{W}_p(X,Y) = \left(\int_0^1 \left|F_X^{-1}(u) - F_Y^{-1}(u)
ight|^p du
ight)^{1/p}$$

Спасибо