Measurement tidyverse

Anna Yorozuya

University of Tokyo

June 2022

Section 1

Measurement 1 (June 2)

Table of Contents

- Handling missing data
- Introduction to ggplot2
- Today's in-class assignment: gay-marriage-revisited

Section 2

Handling missing data

Handling missing data

arrange() for reordering data

- Description: reordering the rows from low to high
- Arguments: add desc() for reordering from high to low

drop_na() for listwise deletion

- Description: remove all observations(rows) with at least one missing value from a data frame
- Arguments: the name of data frame
- Corresponding base R function: na_omit()
- warning: check how many NAs are in the data frame before applying listwise deletion!

Example for arrange()

```
## Table for non-missing values of ISAF and Taliban
afghan %>%
  filter(!is.na(violent.exp.ISAF), !is.na(violent.exp.taliban)) %>%
  group_by(violent.exp.ISAF, violent.exp.taliban) %>%
  count() %>%
  ungroup() %>%
  mutate(prop = n / sum(n)) %>%
  arrange(prop) # compare to arrange(desc(prop))
```

Example for drop_na()

```
nrow(afghan) # original
## [1] 2754
afghan.sub.2 <- drop na(afghan)
nrow(afghan.sub.2) # NAs omitted
## [1] 2554
afghan %>%
  drop na(income) %>%
  nrow() # NAs in income omitted
## [1] 2600
```

Section 3

Introduction to ggplot2

Introduction to ggplot2

What is ggplot2?

- A package in tidyverse, which allows visualization of data in a more intuitive way.
- To make a plot, you assign the data and aesthetics (mapping) first, and add layers to tell the ggplot function what you want the figure to look like.
- The package name is ggplot2, while the function is ggplot().

The advantage of using ggplot2

- Intuitive: very simple grammar
- Flexibility: you can build everything with the grammar
- Very nice-looking graphs!

Basics of ggplot2

Basic syntax

```
ggplot(data = DATA) +
  GEOM_FUNCTION(mapping = aes(MAPPINGS)) +
  ADDITIONAL_FUNCTIONS
Add the components with +
```

Elements

- DATA: specify the dataset to use in the graph
- GEOM_FUNCTION: starting fromgeom_. specify the types of figures such as bar plot or histogram.
- MAPPINGS: defines how variables in your dataset are mapped to visual properties. commonly used arguments are x and y to specify which variables to map to each axis.
- ADDITIONAL_FUNCTIONS

ggplot2: GEOM_FUNCTION

Plots

- geom_point(): scatterplot
- geom_histogram(): histogram
- geom_bar(): bar plot
- geom_boxplot(): box plot
- geom_line(): line chart
- geom_smooth(): smooth line, mainly for regression

Line

- geom_abline(): intercept, slope
- geom_hline(): yintercept
- geom_vline(): xintercept

ggplot2: aes(MAPPINGS)

Aesthetics

- x = variable: value for x axis
- y = variable: value for y axis
- color = variable: assign unique color for each value of the variable
- fill = variable: assign the unique color to fill in for each value
- size = variable: assign unique size for each value of the variable
- alpha = variable: control the level of transparency for each value
- shape = variable: change the shape of points in geom_point
- position =: fill for stacking, dodge for avoiding overlapping, jitter for solving overplotting All of those above should be within aes() If it goes outside of aes(), the above arguments will be applied to all the variables, regardless of the value, unless specified.

ggplot2: ADDITIONAL_FUNCTIONS

Scales

```
Map the data values to visual values | scale_*_**, where | *: aesthetic to adjust (x, y, fill, etc.) | **: prepackaged scale to use - scale_x_discrete(): set the discrete values for visualization - scale_x_continuous(): set the continuous values for visualization - scale_fill_discrete(): fill the plot with discrete values
```

Labels

- labs(title = "", x = "", y = ""): label for x-axis, y-axis, and title
- ylab("label"): label for y-axis
- xlab("label"): label for x-axis
- 'ggtitle("title"): title

ggplot2: ADDITIONAL_FUNCTIONS

Limits

- xlim(): limits for x-axis
- ylim(): limits for y-axis

Themes

- theme_classic()
- theme_bw(): white background with grid lines
- theme_gray(): grey background (default)
- theme_void(): empty theme

ggplot2: ADDITIONAL_FUNCTIONS

Facets

- facet_wrap(~ a): facet by a single variable (a in the example)
- facet_grid(b ~ c): facet by two variables

Coordinate systems

- ocoord_flip(): switch x and y axis
- coord_quickmap(): set the aspect ratio correctly for maps
- coord_fixed(): fix the aspect ratio to square

Example: Scatterplot


```
    scale_color_manual(): specify which colors are used for which value
    scale_shape_manual(): specify which shape is used for which value
    scale_y_continuous()/ scale_x_continuous(): add title, change the limits
    coord_fixed(): squared aspect ratio
```

Example: Histogram (basic)

```
ggplot(afghan, aes(x = age)) + # the data and initial aes()
geom_histogram(aes(y = ..density..), # histogram, additional aes()
binwidth = 5, # how wide for each bin
boundary = 0) + # bin position
scale_x_continuous(breaks = seq(20, 80, by = 10)) +
labs(title = "Distribution of respondent's age",
y = "Density", x = "Age") +
theme_classic()
```


- aes(y = ..density..): y-axis shows the density, not the count
- aes(binwidth = 5): set the width of each bin
- aes(boundary = 0): the position of bins
- scale_x_continuous(): change the ticks of x-axis

Example: Histogram (advanced)

- geom_vline(): add a vertical line
 - annotate(): add text to the plot. specify the position and text

How to save/print graphs

ggsave

- ggsave(path, filename, extension)
- for example, if you want to wave the figure as a pdf in the result_fingures directory, ggsave("results_figures/education_by_province.pdf")

gridExtra

- save multiple plots into a single file
- first, load the package with library(gridExtra)
- use the grid_arrange()

Example: gridExtra

```
library(gridExtra)
## The age histogram
age_hist <- ggplot(afghan, aes(x = age)) +
geom_histogram(aes(y = ..density..), binwidth = 5, boundary = 0) +
scale_x_continuous(breaks = seq(20, 80, by = 10)) +
labs(title = "Distribution of \nrespondent's age", y = "Age", x = "Density")</pre>
```

```
## The education histogram
educ_hist <- ggplot(afghan, aes(x = educ.years, y = ..density..)) +
geom_histogram(binwidth = 1, center = 0) +
geom_vline(xintercept = median(afghan$educ.years)) +
annotate(geom = "text", x = median(afghan$educ.years), y = 0.4, label = "median", hjust = -0.1) +
labs(title = "Distribution of \nrespondent's education", x = "Years of education", y = "Density")</pre>
```

Put the plots side-by-side
grid.arrange(age_hist, educ_hist, ncol = 2)

memo (delete before publishing)

filter, summarize(corr, use), select ggplot, geom_point, geom_histogram(bins), xlab, ggtitle mutate(if_else, is.na, as.double) qqplot

Section 4

Measurement 2 (June 7)

Table of Contents

- Review of ggplot2
- tidymodels package
- Today's in-class assignment: political-efficacy

Review: ggplot2

Example: Bar plot (basic)

- aes(y = ..prop..): the y-axis shows the proportion, not the count
- aes(group = 1): plot the proportion of the total

Example: Bar plot (advanced)

```
ggplot(data = afghan_reshape,
       aes(x = as.factor(harm))) +
geom bar(aes(y = ..prop..,
           fill = harming group,
           group = harming group),
           position = "dodge") +
  scale x discrete(labels = c('No Harm', 'Harm', 'Nonresponse')
  scale fill discrete(name = "Harming Group", labels = c("ISA
  ylab("Proportion of Respondents") +
  xlab("Response Category") +
  ggtitle("Civilian Victimization")
```


Example: Boxplot (basic)

```
ggplot(afghan, aes(y = age)) +
  geom_boxplot() +
  labs(y = "Age", x = "", title = "Distribution of Age")
```


Example: Boxplot (advanced)

```
ggplot(afghan, aes(y = educ.years, x = province)) +
  geom_boxplot() +
  labs(y = "Year of Education", x = "Province", title = "District")
```


• aes(x = province): create boxplot for each value of province

tidymodels package

What is tidymodels?

- a collection of packages for modeling and machine learning using tidyverse principles
- the tidy() function here is contained in thebroom package as well

function tidy()

- description: convert the output of a model into a tibble
- argument: the output of an R model (such as kmeans())

memo (delete before publishing)

group_by, ungroup, summarize, mutate (\sim), filter, ggplot, geom_bar (position, stat), labs, geom_histogram, geom_vline, annotate, labs qqplot

Section 5

Reference

Reference

- R for data science
- R cheatsheet visualization