Увод в програмирането

Лекция 8: Работа с текст (първа част)

Преговор

Мотивация

- Досега всички програми, които писахме, обработваха числа
- В реалния живот колко често използваме компютъра за математически цели? :)
- Следва да разгледаме обработката на текст
- Някои практични задачи, които ще можем да решим:
 - Търсене на дума в текст
 - Заместване на всички срещания на думата с друга дума
 - Анализ на текста брой думи и т.н.

Представяне на текст в компютрите

- Компютърът работи с числа
- Символите (букви, цифри, знаци...) в един текст се представят с цели числа
- На всеки символ съответства конкретно число

```
It's easier than you think.
```

```
49 74 27 73 20 65 61 73 69 65 72 0a 74 68 61 6e 20 79 6f 75 20 74 68 69 6e 6b 2e
```

(числата са показани в 16-ична бройна система за удобство)

ASCII таблица

- ASCII (American Standard Code for Information Interchange) таблица
- Указва на кой символ какво число съответства
- Не трябва да се учи наизуст :)

ASCII

- Кодове 0-127 (7 бита)
- За 128-255 има различни варианти Extended ASCII
 - Например за кирилица – Windows 1251
- Символите от 0 до 31 са по-специални
- Малките и главните английски букви имат различни кодове
- Кодовете на цифрите от 0 до 9 не са от 0 до 9
- Кодовете на съседни букви (цифри) също са съседни

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	į.	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	Н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	0A	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	_	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	р
17	11	Device control 1	49	31	1	81	51	Q	113	71	đ
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	ន	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	х
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	ı
29	1D	Group separator	61	3 D	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	٨	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F	_	127	7F	

Допълнителен материал

- Ако имаме текст на немски, ще използваме една кодова таблица, ако имаме на гръцки – друга
- Какво става, ако искаме да напишем немскогръцки разговорник?
- Очевидно 256 символа са крайно недостатъчни
- Най-доброто решение: Unicode
 - Един символ вече не е един байт няма как
- Варианти: UTF-8 (най-често), UTF-16 и др.

Допълнителен материал

- Маймуни защо виждаме "маймуни" в някои уеб страници, неизползващи латиница?
 - Примери: Äîáðå äîøëè, P"PsP±CЂРµ
 - Защото не е зададена правилна кодова таблица
 - Когато се пише ръчно HTML, най-горе се указва с META таг какъв да бъде енкодингът
 - Ако не е указан, трябва от меню на браузъра да изберем правилния енкодинг
- SMS-ите на кирилица трябва да са по-кратки

 – защо?

Типът char

- Стойностите са символи
- 8-битов
- Може да се използва и като числов тип unsigned char (0..255) и signed char(-128..127)
- Литерали символът се огражда с единични апострофи
 - Примери: 'a', '1', ' ', '\n'

Основни операции

- Дефиниране на променлива от тип char:
 char c = 'M';
- Отпечатване: cout << c; // отпечатва М без апострофите
- Въвеждане от клавиатурата:
 cin >> c; //чете символ, пропуска интервали,
 табулация и нов ред също като четенето на числа

Основни операции (2)

- Сравнение по познатия ни начин cout << "Do you want to continue? Y/N"; cin >> c; if (c == 'y' || c == 'Y') cout << "Let's go!" << endl;
- Можем да използваме и <, >, <= и >= (например при сортиране по азбучен ред)
 if (c >= 'a' && c <= 'z')
 cout << "Small letter";
- Аритметични операции все пак е число с = 'A'; с += 3; cout << c; // D
- Демонстрация вж. файла с програмен код

Примери

- Преобразуване на малка буква в главна и обратно
 - По много готин начин, без да знаем наизуст ASCII таблицата

- Материалът, който се преподава на информатичните и математическите специалности, е леко различен
- Затова има две версии на втората част на презентацията –
 - Едната е предназначена само за Инф. и ИС,
 - Другата само за математиците
- Естествено, за обща култура всеки може да види и слайдовете за другата специалност