Задачи по Эконометрике-2: Предельные значения

Н.В. Артамонов (МГИМО МИД России)

Содержание

	Предельные значения	1
	1.1 для probit	
	1.2 для logit	1
	1.3 Средние предельные значения	1
2	labour force equation	1
3	approve equation	3
4	swiss labour force equation	5

Предельные значения 1

1.1 для probit

Рассмотрим probit-модель $P(y=1)=\Phi(x'\beta)$, где $x'\beta=\beta_0+\beta_1x_1+\cdots+\beta_kx_k$ Предельные значения $\frac{\partial P(y=1)}{\partial x_j}=\phi(x'\beta)\beta_j$, где $\phi(z)=\frac{1}{\sqrt{2\pi}}exp\{-z^2/2\}$

1.2 для logit

Рассмотрим logit-модель $P(y=1)=\Lambda(x'\beta)$, где $x'\beta=\beta_0+\beta_1x_1+\cdots+\beta_kx_k$ Предельные значения $rac{\partial P(y=1)}{\partial x_i}=\lambda(x'\beta)\beta_j$, где $\lambda(z)=rac{exp(z)}{(1+exp(z))^2}$

1.3 Средние предельные значения

Обычно рассчитываются

- предельные значения для каждого регрессора в средней точке:
 - $\phi(\bar{x}'\beta)\beta_j$ для probit $\lambda(\bar{x}'\beta)\beta_j$ для logit
- среднее по всей выборке предельное значения для каждого регрессора:
 - $-\overline{\phi(x'\beta)\beta_j}$ для probit
 - $-\overline{\lambda(x'\beta)\beta_i}$ для logit

labour force equation 2

Для датасета TableF5-1 рассмотрим регрессию LFP на WA, log(FAMINC), WE, KL6, K618, CIT, UN трёх спецификаций:

• LPM

- logitprobit

Результаты подгонки

Зарисимая поромонная					
	Зависимая переменная				
	OLS (1)	LFP logistic (2)	probit (3)		
WA		-0.063*** (0.013)			
log(FAMINC)	0.075** (0.037)	0.341** (0.172)	0.205** (0.105)		
WE	0.038***	0.179*** (0.040)	0.108*** (0.024)		
KL6		-1.443*** (0.194)			
К618		-0.095 (0.067)	-0.057 (0.041)		
CIT	-0.048 (0.038)	-0.214 (0.176)	-0.126 (0.107)		
UN		-0.017 (0.026)			
Constant	0.079 (0.356)	-1.856 (1.679)	-1.108 (1.017)		
Observations R2 Adjusted R2	753 0.130 0.122	753	753		
Log Likelihood Akaike Inf. Crit. Residual Std. Error F Statistic		-462.420 940.840	-462.554 941.108		
Note:	*p<0.1;	**p<0.05;	***p<0.01		

Вычислите предельное значение для каждого регрессора в средней точке для logit модели. **Ответ округлите** до 3-х десятичных знаков.

	effect	error	t.value	p.value
(Intercept)	-0.454	0.411	-1.105	0.270
WA	-0.015	0.003	-5.006	0.000
log(FAMINC)	0.083	0.042	1.982	0.048
WE	0.044	0.010	4.450	0.000

```
KL6 -0.353 0.048 -7.395 0.000

K618 -0.023 0.016 -1.416 0.157

CIT -0.052 0.043 -1.219 0.223

UN -0.004 0.006 -0.675 0.500
```

Вычислите предельное значение для каждого регрессора в средней точке для probit модели. Ответ округлите до 3-х десятичных знаков.

	effect	error	t.value	p.value
(Intercept)	-0.434	0.399	-1.089	0.277
WA	-0.015	0.003	-5.066	0.000
log(FAMINC)	0.081	0.041	1.966	0.050
WE	0.042	0.009	4.504	0.000
KL6	-0.340	0.044	-7.663	0.000
K618	-0.022	0.016	-1.402	0.161
CIT	-0.049	0.042	-1.179	0.239
UN	-0.004	0.006	-0.669	0.504

Вычислите среднее по выборке предельное значение для каждого регрессора для logit модели. **Ответ округлите до 3-х десятичных знаков.**

	effect	error	t.value	p.value
(Intercept)	-0.395	0.358	-1.105	0.270
WA	-0.013	0.003	-5.006	0.000
log(FAMINC)	0.073	0.037	1.982	0.048
WE	0.038	0.009	4.450	0.000
KL6	-0.307	0.042	-7.395	0.000
K618	-0.020	0.014	-1.416	0.157
CIT	-0.052	0.043	-1.219	0.223
UN	-0.004	0.005	-0.675	0.500

Вычислите среднее по выборке предельное значение для каждого регрессора для probit модели. **Ответ округлите до 3-х десятичных знаков.**

```
effect error t.value p.value
(Intercept) -0.388 0.357 -1.089 0.277
           -0.013 0.003 -5.066
                                 0.000
                        1.966
log(FAMINC) 0.072 0.037
                                 0.050
            0.038 0.008 4.504
                                 0.000
KL6
           -0.304 0.040 -7.663
                                0.000
K618
           -0.020 0.014 -1.402
                                 0.161
           -0.049 0.042 -1.179
                                 0.239
CIT
UN
           -0.004 0.006 -0.669
                                 0.504
```

3 approve equation

Для датасета loanapp рассмотрим регрессию approve на appinc/100, mortno, unem, dep, male трёх спецификаций:

- LPM
- logit
- probit

Результаты подгонки

	OLS (1)	approve logistic (2)	probit (3)
I(appinc/100)	-0.014* (0.009)	-0.106 (0.067)	-0.056 (0.038)
mortno		0.817*** (0.170)	0.422*** (0.086)
unem	-0.008** (0.003)	-0.065** (0.029)	-0.036** (0.016)
dep	-0.012* (0.007)	-0.106* (0.061)	
male	0.019 (0.019)	0.173 (0.176)	0.093 (0.095)
Constant		2.032*** (0.193)	
Observations R2 Adjusted R2	1971 0.017 0.014	1971	1971
Log Likelihood Akaike Inf. Crit. Residual Std. Error F Statistic		-720.861 1453.721	-720.982 1453.965
Note:	*p<0.1;	**p<0.05;	***p<0.01

Вычислите предельное значение для каждого регрессора в средней точке для logit модели. **Ответ округлите** до 3-х десятичных знаков.

	effect	error	t.value	p.value
(Intercept)	0.210	0.019	10.915	0.000
I(appinc/100)	-0.011	0.007	-1.583	0.114
mortno	0.077	0.014	5.451	0.000
unem	-0.007	0.003	-2.260	0.024
dep	-0.011	0.006	-1.741	0.082
male	0.019	0.020	0.945	0.345

Вычислите предельное значение для каждого регрессора в средней точке для probit модели. **Ответ округлите** до 3-х десятичных знаков.

	effect	error	t.value	p.value
(Intercept)	0.237	0.020	12.009	0.000
I(appinc/100)	-0.011	0.008	-1.468	0.142
mortno	0.077	0.014	5.415	0.000
unem	-0.007	0.003	-2.272	0.023
dep	-0.011	0.007	-1.650	0.099
male	0.019	0.020	0.953	0.341

Вычислите среднее по выборке предельное значение для каждого регрессора для logit модели. **Ответ округлите до 3-х десятичных знаков.**

	effect	error	t.value	p.value
(Intercept)	0.217	0.020	10.915	0.000
I(appinc/100)	-0.011	0.007	-1.583	0.114
mortno	0.077	0.014	5.451	0.000
unem	-0.007	0.003	-2.260	0.024
dep	-0.011	0.006	-1.741	0.082
male	0.019	0.020	0.945	0.345

Вычислите среднее по выборке предельное значение для каждого регрессора для probit модели. **Ответ округлите до 3-х десятичных знаков.**

	effect	error	t.value	p.value
(Intercept)	0.239	0.020	12.009	0.000
I(appinc/100)	-0.011	0.008	-1.468	0.142
mortno	0.077	0.014	5.415	0.000
unem	-0.007	0.003	-2.272	0.023
dep	-0.011	0.007	-1.650	0.099
male	0.019	0.020	0.953	0.341

4 swiss labour force equation

Для датасета SwissLabour рассмотрим регрессию participation на income, age, age^2, youngkids, oldkids трёх спецификаций:

- LPM
- logit
- probit

Результаты подгонки

	Зависимая переменная					
	as.numeric(participation) - OLS logistic probi (1) (2) (3)					
income		-1.337*** (0.214)				
age	0.795*** (0.131)	3.907*** (0.670)	2.361*** (0.397)			
I(age2)	-0.112*** (0.016)	-0.550*** (0.083)	-0.332*** (0.049)			
youngkids	-0.228*** (0.032)	-1.069*** (0.166)	-0.640*** (0.098)			
oldkids	-0.053*** (0.017)	-0.252*** (0.083)				

```
2.082*** 8.431*** 5.055***
Constant
              (0.446) (2.330) (1.382)
_____
               872
                      872
Observations
R2
              0.155
Adjusted R2
              0.150
                     -527.064 -527.405
Log Likelihood
Akaike Inf. Crit.
                      1066.129 1066.810
Residual Std. Error 0.460
F Statistic 31.699***
______
                *p<0.1; **p<0.05; ***p<0.01
Note:
```

Вычислите предельное значение для каждого регрессора в средней точке для logit модели. **Ответ округлите** до **3-х** десятичных знаков.

```
effect error t.value p.value (Intercept) 2.083 0.576 3.617 0.000 income -0.330 0.053 -6.249 0.000 age 0.965 0.165 5.849 0.000 I(age^2) -0.136 0.020 -6.633 0.000 youngkids -0.264 0.041 -6.458 0.000 oldkids -0.062 0.020 -3.052 0.002
```

Вычислите предельное значение для каждого регрессора в средней точке для probit модели. **Ответ округлите** до 3-х десятичных знаков.

```
effect error t.value p.value (Intercept) 2.000 0.547 3.657 0.000 income -0.318 0.050 -6.419 0.000 age 0.934 0.157 5.961 0.000 I(age^2) -0.131 0.019 -6.794 0.000 youngkids -0.253 0.039 -6.567 0.000 oldkids -0.060 0.020 -3.048 0.002
```

Вычислите среднее по выборке предельное значение для каждого регрессора для logit модели. **Ответ округлите до 3-х десятичных знаков.**

```
effect error t.value p.value (Intercept) 1.762 0.487 3.617 0.000 income -0.279 0.045 -6.249 0.000 age 0.817 0.140 5.849 0.000 I(age^2) -0.115 0.017 -6.633 0.000 youngkids -0.224 0.035 -6.458 0.000 oldkids -0.053 0.017 -3.052 0.002
```

Вычислите среднее по выборке предельное значение для каждого регрессора для probit модели. **Ответ округлите до 3-х десятичных знаков.**

```
effect error t.value p.value (Intercept) 1.745 0.477 3.657 0.000 income -0.278 0.043 -6.419 0.000 age 0.815 0.137 5.961 0.000 I(age^2) -0.115 0.017 -6.794 0.000 youngkids -0.221 0.034 -6.567 0.000 oldkids -0.053 0.017 -3.048 0.002
```