Logika (MSc)

Rezolúciós elv I.

Tartalom

Bevezetés

Az ítéletlogika strukturális tulajdonságairó

Rezolúciós elv- rezolúciós kalkulus

Bevezetés

A logika bizonyításelméleti tárgyalásához definiáltunk a bizonyításelméleti levezetés fogalmának bevezetésével egy szintaktikus következményfogalmat, a levezethetőséget. Majd a levezetés vagy a bizonyítás előállításával körvonalaztuk az eldöntésprobléma megoldására a helyes és teljes kalkulust.

A továbbiakban a **szemantikus eldötésprobléma** szintaktikai eszközökkel való megoldásával foglalkozunk.

Kalkulus

Döntési "algoritmus", levezető eljárás egy olyan algoritmus/lépéssorozat, amely adott input adatokkal dolgozik, azokat a megfelelő szabályok szerint használja fel, a levezetési szabály szerint alakítja át, és akkor áll meg, amikor a kitűzött célt (az eljárás megállási feltétele) elérte. A megállással egy kétesélyes döntés egyik kimenetét igazolja. Azonban, ha az algoritmus nem éri el a kitűzött célt, az nem feltétlenül jelenti azt, hogy meghozta a másik eshetőségre a döntést. Egy ilyen eljárást kalkulusnak hívunk.

Mivel ilyen döntési eljárást csak speciális alakú formulákra lehet megadni, a kutatások az 1930-as években a formulák logikailag ekvivalens átalakításaira – az eldönthető formulaosztályok keresésére irányultak.

Tartalom

Bevezetés

Az ítéletlogika strukturális tulajdonságairól

Rezolúciós elv- rezolúciós kalkulus

Logikai műveletekre érvényes azonosságok

Ekvivalens átalakítások:

(1)
$$X \wedge (Y \vee Z) = (X \wedge Y) \vee (X \wedge Z)$$

$$(2) \quad X \vee (Y \wedge Z) = (X \vee Y) \wedge (X \vee Z)$$

(3)
$$X \wedge \neg X = h$$

$$(4) X \vee \neg X = i$$

DeMorgan szabályok (Biz.: Tk.91.o.)

(1)
$$\neg (X \land Y) = \neg X \lor \neg Y$$
 (2) $\neg (X \lor Y) = \neg X \land \neg Y$

Egyszerűsítési szabályok (biz.: Tk.98.o.)

(1)
$$(X \lor d) \land (\neg X \lor d) = d$$
 (2) $(X \land k) \lor (\neg X \land k) = k$

ahol d elemi diszjunkció és k elemi konjukció

Funkcionális teljesség, KKNF, KNF

Egy művelethalmaz **funkcionálisan teljes**, ha tetszőleges $\{i,h\}^n \to \{i,h\}$ leképezést leíró formula megadható csak a művelethalmaz elemeit és ítéletváltozókat tartalmazó formulával.

Algoritmusok egy adott leképezést leíró KKNF és KDNF konstrukciójára (Tk.95.o.).

Ítéletlogika KKNF, KNF

Tetszőleges $\{i,h\}^n \to \{i,h\}$ leképezéshez előállítható az azt leíró KKNF vagy KDNF, ami azt is jelenti, egyszerűsítési szabályok alapján, hogy tetszőleges n-változós formula átírható KNF vagy DNF alakba, vagyis, hogy a $\{\neg,\wedge,\vee\}$ funkcionálisan teljes művelethalmaz.

Előkészítő definíciók: literál, azonos alapú literál, különböző literál, elemi konjunkció, -diszjunkció, teljes elemi konjunkció, -diszjunkció, konjunktív és diszjunktív normálforma (KNF, DNF), kitüntetett konjunktív és diszjunktív normálforma (KKNF, KDNF felírásának algoritmusa) (Tk. 93-96 és 99-100 o.).

A $(\neg(Z \supset \neg X) \lor Y$ formula igazságtáblája:

X	Y	Z	
i	i	i	$i (X \wedge Y \wedge Z)$
i	i	h	$i (X \wedge Y \wedge \neg Z)$
i	h	i	$i (X \land \neg Y \land Z)$
i	h	h	$h (\neg X \lor Y \lor Z)$
h	i	i	$i (\neg X \wedge Y \wedge Z)$
h	i	h	$i (\neg X \wedge Y \wedge \neg Z)$
h	h	i	$h (X \vee Y \vee \neg Z)$
h	h	h	$h (X \lor Y \lor Z)$

KKNF:
$$(\neg X \lor Y \lor Z) \land (X \lor Y \lor \neg Z) \land (X \lor Y \lor Z)$$

KDNF:

$$(X \land Y \land Z) \lor (X \land Y \land \neg Z) \lor (X \land \neg Y \land Z) \lor (\neg X \land Y \land Z) \lor (\neg X \land Y \land \neg Z)$$

KNF: ($Y \lor Z$) \land ($X \lor Y$) — egyszerűsítés után klózok/elemi diszjunkciók konjunkciója.

Igazhalmaz, hamishalmaz

Egy n-változós formula az igazságtáblájával megadott $\{i,h\}^n \to \{i,h\}$ leképezést ír le.

Egy formula **igazhalmaz**a azon $\mathcal I$ interpretációk halmaz amelyekre a formula helyettesítési értéke igaz.

Egy formula hamishalmaza azon $\mathcal I$ interpretációk halmaza amelyekre a formula helyettesítési értéke hamis.

Tartalom

Bevezetés

Az ítéletlogika strukturális tulajdonságairó

Rezolúciós elv- rezolúciós kalkulus

Kielégíthetetlen formula igazhalmaza üres így KKNF alakjában minden teljes elemi konjunkció szerepel, ha szisztematikusan egyszerűsítünk a klózok literálszáma addig csökken míg 0 nem lesz (üres klóz). Egy KNF alakú formuláról egyszerűsítéssel eldönthető hogy kielégíthetetlen-e.

Egy KNF alakú formula kielégíthetetlenségének vizsgálata a KNF-ben szereplő klózok S halmaza kielégíthetetlenségének vizsgálatával ekvivalens. Hogyan lehet eldönteni, hogy egy Sklózhalmaz kielégíthetetlen? Meg kell mutatni, hogy az Stetszőleges interpretációjában legalább egy $C \in S$ hamis. Egy Cklóz hamis egy interpretációban, ha minden literálja hamis. Ha az összes interpretációt az S összes ítéletváltozóinak rögzített sorrendje/bázis alapján előálló szemantikus fával adjuk meg, akkor egy C ítéletlogikai klóz abban az interpretációban hamis, amelyikben a klóz literáljai ellenkező negáltságúak. Az $X \vee Z$ klóz hamis az $\neg XY \neg Z$ és az $\neg X \neg Y \neg Z$ interpretációkban, az interpretáció kiválasztását a klóz szemantikus fára illesztésének hívjuk.

Klózok illesztése szemantikus fára

Példa:

$$S = \{ Y \vee \neg Z, \ X \vee Z, \ \neg X \vee \neg Y, \ \neg X \vee Z, \ \neg Z \}$$

kielégíthetlen.

Fogalmak: klózok illesztése szemantikus fára; fa ágának lezárása; cáfoló csúcs (•), levezető csúcs (o) (Tk.225-227 o.)

Zárt szemantikus fa:

Tétel

Ha egy S véges klózhalmaz szemantikus fája zárt, akkor S kielégíthetetlen.

A klózhalmaz kielégíthetetlenségének eldöntésére nem a szemantikus fát használjuk, de fontos háttéreszköz marad az új kalkulus, a **rezolúciós kalkulus** tulajdonságainak vizsgálatában.

Elnevezések:

n-változós klóz n-argumentumos klóz

1-változós klóz egységklóz

0-változós klóz üres klóz □

Rezolúciós kalkulus az ítéletlogikában

Egyszerűsítési szabály: ha X ítéletváltozó és C egy X-et nem tartalmazó klóz, akkor $(X \vee C) \wedge (\neg X \vee C) \sim_0 C$

Az $(X) \wedge (\neg X) \sim_0 \square$ – azonosan hamis.

Rezolúciós levezetés

Rezolvens

Legyenek C_1, C_2 olyan klózok, amelyek pontosan egy komplemens literálpárt tartalmaznak: $C_1 = C_1' \vee L_1$ és $C_2 = C_2' \vee L_2$ és $L_1 = \neg L_2$, ekkor létezik a rezolvensük: a $res(C_1, C_2) = C$ klóz, ami $C = C_1' \vee C_2'$.

Tétel (Tk.227-228.o.)

 $\{C_1,C_2\}\models_0 C$ A rezolvensképzés a rezolúciós kalkulus levezetési szabálya (helyes következtetésforma).

Rezolúciós levezetés (Tk.229.o.)

Egy S klózhalmazból való **rezolúciós levezetés** egy olyan véges k_1,k_2,\ldots,k_m ($m\geq 1$) klózsorozat, ahol minden $j=1,2,\ldots,m$ -re

- 1 vagy $k_j \in S$,
- 2 vagy van olyan $1 \le s, t < j$, hogy k_j a (k_s, k_t) klózpár rezolvense.

A levezetés célja az üres klóz levezetése / megállási feltétel.

Példa rezolúciós levezetésre

Próbáljuk meg az üres klózt levezetni az

$$S = \{ \neg A \lor B, \neg A \lor C, A \lor C, \neg B \lor \neg C, \neg C \} \text{ klózhalmazból}.$$

- 1. $\neg C$ $[\in S]$
- $2. \quad A \vee C \qquad [\in S]$
- 3. A = [res(1,2)]
- $4. \quad \neg A \lor C \quad [\in S]$
- 5. C [res(3,4)]
- 6. \Box [res(1, 5)]

S klózhalmazból való rezolúciós levezetés döntési eljárás.

Eldöntésproblémája: levezethető-e egy S klózhalmazból az üres klóz? Rezolúciós cáfolatnak nevezzük azt a tényt, hogy S-ből levezethető az üres klóz.

Rezolúciós kalkulus helyessége, teljessége

A rezolúciós kalkulus helyes (Tk.230.o.)

(6.3.12) Lemma: Legyen S tetszőleges klózhalmaz és $k_1,k_2\ldots,k_n$ klózsorozat rezolúciós levezetés S-ből. Ekkor minden $k_j,j=1,2\ldots,n$ -re szemantikus következménye S-nek.

(6.3.13) Tétel: Legyen S tetszőleges klózhalmaz. Ha S-ből levezethető az üres klóz, akkor S kielégíthetetlen.

Bizonyítások indukcióval.

A rezolúciós kalkulus teljes (Tk.230.o.)

(6.3.14). Tétel: Ha az S véges klózhalmaz kielégíthetetlen, akkor S-ből levezethető az üres klóz.

Bizonyítás: tetszőleges zárt szemantikus fa esetén előállítunk egy rezolúciós cáfolatot. (Tk.231-233.o.)

A teljesség bizonyításának algoritmusa

- **1** j := 0, $S_j := S$, $LIST := \emptyset$.
- ② Állítsuk elő S_j szemantikus fáját. $n_j :=$ a szemantikus fa szintjeinek száma. Ha $n_j = 0$, akkor levezettük az üres klózt, a levezetés LIST-ből kiolvasható.
- ③ Egyébként válasszuk ki a fa egy levezető csúcsát. A levezető csúcsot tartalmazó két ágra illesztett klózok legyenek k_j' és k_j'' , rezolvensük pedig k_j . Tegyük a LIST végére a k_j' , k_j'' , k_j klózokat.
- $\mathbf{4}$ $S_{j+1}:=S_j\cup\{k_j\}$, j:=j+1. Folytassuk a 2. lépéssel.

Példa

$$S = \{X \vee \neg Z, \ \neg X \vee Y, \ \neg X \vee Z, \ X \vee Z, \ \neg Y \vee \neg Z\}, \ \mathsf{bázis:} \ Z, X, Y.$$

Levezetési fa

Levezetési fa Tk.235-236.o.

Egy rezolúciós levezetés szerkezetét mutatja. Olyan gráf, amelynek csúcsaiban klózok vannak. Két csúcsból akkor vezet él egy harmadik csúcsba, ha abban a két csúcsban lévő klózok rezolvense található.

Példa - adott rezolúciós levezetés levezetési fája

- 1. $X \vee Z$ $[\in S_1]$
- $2. \quad \neg X \lor Z \qquad [\in S_1]$
- [1, 2 rezolvense]
- 4. $X \vee \neg Z$ [$\in S_1$]
- 5. $\neg X \lor \neg Z \quad [\in S_1]$
- 6. $\neg Z$ [4, 5 rezolvense]
- 7. \square [3, 6 rezolvense]

$$S_1 = \{X \vee \neg Z, \ \neg X \vee Z, \ X \vee Z, \ \neg X \vee \neg Z\}$$

Levezetési stratégiák I.

Lineáris rezolúciós levezetés

Egy S klózhalmazból egy olyan $k_1, l_1, k_2, l_2, \ldots, k_{m-1}, l_{m-1}, k_m$ klózsorozat, ahol $k_1, l_1 \in S$ a $k_i (i=2,3,\ldots,m)$ esetben a k_i a k_{i-1}, l_{i-1} rezolvense, ahol $l_{i-1} \in S$, vagy egy korábban megkapott centrális klóz (rezolvense valamely $k_s, l_s (s < i)$ -nek).

Levezetési stratégiák II.

Lineáris inputrezolúciós levezetés

S klózhalmazból egy olyan $k_1, l_1, k_2, l_2, \ldots, k_{m-1}, l_{m-1}, k_m$ klózsorozat, ahol $k_1, l_1 \in S$, az $l_i (i=2,3,\ldots,m-1)$ esetben $l_i \in S$ és a k_i pedig a k_{i-1}, l_{i-1} rezolvense.

Egységrezolúciós stratégia

Rezolvens csak akkor képezhető, ha legalább az egyik klóz egységklóz.

Reuzolúciós stratégiák: lineáris rezolúció (helyes és teljes), lineáris input-, egység rezolúció (helyes de nem teljes) - Tk.236-238.o.

Az előadásban nem szereplő további rezolúciós stratégiák: Tk.281-300.o.

Horn klózok, Horn logika

Definíció

Egy klózt **Horn klóz**nak nevezünk, ha legfeljebb egy literálja nem negált.

Definíció

Horn logika az összes, csak Horn klózokat tartalmazó KNF alakú formulák halmaza.

Példa

$$S = \{B \vee \neg C, A \vee \neg C, \neg A \vee \neg B, \neg A \vee C, C\} \text{ Horn klózok halmaza}.$$

Tétel

A lineáris input és az egységrezolúciós stratégia teljes a Horn logikában.

Horn klózok, Horn logika II.

$$S = \{B \lor \neg C, A \lor \neg C, \neg A \lor \neg B, \neg A \lor C, C\}$$

$$1. \quad B \lor \neg C \qquad \in S \qquad | 1. \quad B \lor \neg C \qquad \in S$$

$$2. \quad \neg A \lor \neg B \qquad \in S \qquad | 2. \quad C \qquad \in S$$

$$3. \quad \neg A \lor \neg C \qquad rez(1,2) \qquad | 3. \quad B \qquad rez(1,2)$$

$$4. \quad A \lor \neg C \qquad \in S \qquad | 4. \quad \neg A \lor \neg B \qquad \in S$$

$$5. \quad \neg C \qquad rez(3,4) \qquad | 5. \quad \neg A \qquad rez(3,4)$$

$$6. \quad C \qquad \in S \qquad | 6. \quad A \lor \neg C \qquad \in S$$

$$7. \quad \Box \qquad rez(5,6) \qquad | 7. \quad \neg C \qquad rez(5,6)$$

$$8. \quad \Box \qquad rez(2,7)$$

$$\text{lineáris input rez.}$$

Tétel

Ha az \square levezethető lineáris input rezolúcióval egy K klózhalmazból, akkor K-ban van legalább egy egységklóz.

Biz.: Az □-t mint rezolvenst egy centrális egységklózból és egy klózhalmazbeli klózból kapjuk. Ez utóbbi csak egységklóz lehet.

Tétel

Kielégíthetetlen Horn klózhalmazban van legalább egy egységklóz.

Teljes levezetési fa

Teljes levezetési fa adott klózzal kezdődő összes lineáris levezetés megadására.

 $\mathsf{Legyen}\ S = \{X \vee Z,\ \neg X \vee Z,\ \neg Y \vee \neg Z,\ \neg X \vee Y,\ \neg Z\}.$

