

Primer examen parcial (28/09/2012)

Regularización

- 1. Las regiones A y B de la figura tienen en su interior campos eléctricos uniformes E_A y E_B , respectivamente, y tamaños H_A = 1 cm, L_B = 6 cm, H_B = 2 cm. Un electrón (q_e = -1,6 10⁻¹⁹ C, m_e = 9,11 10⁻³¹ kg) se libera desde el reposo en la placa vertical izquierda (punto P, zona A), pasa por la abertura Q de la placa vertical derecha, y finalmente impacta sobre la placa horizontal inferior (punto R, zona B). El origen del sistema de coordenadas se encuentra en el rincón inferior izquierdo de la zona B.
- 1.1. Indique la dirección y sentido de la fuerza que sufre el electrón en cada zona.
- 1.2. Calcule la velocidad del electrón al entrar a la abertura Q si $E_A = 3 \cdot 10^4 \text{ V/m}$.
- 1.3. Calcule E_B si el electrón impacta la placa inferior en $x = 3L_B/4$, y = 0.
- 2. En al zona B del ejercicio 1:
- 2.1. Calcule el potencial eléctrico V(y) si V = 0 en al placa inferior.
- 2.2. Realice un esquema mostrando las líneas equipotenciales.

- 3.1. Indique gráficamente todas las formas posibles de conectar simultáneamente las 3 resistencias a los bornes de la pila, y calcule la resistencia equivalente en cada caso.
- 3.2. Determine qué configuración es la que agotará más rápido la pila (justifique apropiadamente).
- **4.** Dado un alambre con corriente i = 10 A en la dirección normal (saliente) al plano del papel, en el vacío ($\mu_0 = 4\pi \ 10^{-7} \ \text{Tm/A}$), indique módulo, dirección y sentido de los siguientes vectores:
- 4.1. El campo magnético sobre el plano del papel, a 1,5 cm del alambre.
- 4.2. La fuerza que recibirá una partícula de carga q = 1 nC, que tiene una velocidad de 10^6 m/s en la dirección radial hacia el alambre, en el instante en que ésta se encuentra a 0,5 cm del mismo.
- 4.3. La fuerza por unidad de longitud que recibirá un alambre paralelo al anterior, ubicado a 0,75 cm, con una corriente de 5 A en el mismo sentido.

Promoción

1. Las cargas de la figura (q₁ = 15 μ C; q₂ = -5 μ C) están fijas en sus posiciones, separadas una distancia de 1 cm, en el vacío (ϵ_0 = 8,85 10^{-12} C²/Nm²). Indique el resultado de calcular **J***E.dS* sobre cada una de las superficies cerradas a, b, c, y d.

- 2. Considere el ejercicio 1 de Regularización.
- 2.1. Demuestre que la trayectoria que seguirá el electrón en la zona B es $y(x) = H_B/2 E_B x^2/(4E_AH_A)$.
- 2.2. Calcule el trabajo que realizan las fuerzas eléctricas en las zonas A y B.
- 2.3. Compruebe que el trabajo total coincide con la variación de la energía cinética del electrón entre los puntos P y R.
- 3. Considere que la región x > 0, y > 0, en el plano del papel posee un campo magnético B uniforme en la dirección z (normal al papel). Un haz de protones ($q_p = 1,6 \ 10^{-19} \ C$, $m_p = 1,67 \ 10^{-27} \ kg$) ingresa a esta región pasando por (x = 0, y = 0,5 m) con velocidad $\mathbf{v} = 10^6$ m/s \mathbf{i} , y sale por (x = 0, y = 0) con velocidad $\mathbf{v} = 10^6$ m/s $(-\mathbf{i})$.
- 3.1. Indique el módulo y sentido del campo magnético B, y realice un esquema claro indicando los vectores \mathbf{F}_{m} , \mathbf{v} y \mathbf{B} en las posiciones (0, 50 cm) y (0, 0).
- 3.2. Indique la trayectoria que seguiría un haz de electrones ($q_e = -1,6 \cdot 10^{-19} \text{ C}$, $m_e = 9,11 \cdot 10^{-31} \text{ kg}$) que ingresa por el mismo lugar, con la misma velocidad.
- 3.3. Explique a qué se deben las diferencias que muestra la trayectoria de los electrones en relación con la de los protones.
- 4. Considere dos alambres paralelos, horizontales, uno arriba del otro, separados 5 cm, por los que circula 1.3 A de corriente en el mismo sentido. El alambre superior está fijo, y el inferior está suspendido (levitando) por la acción de la fuerza magnética. Calcule la masa por unidad de longitud del alambre inferior.
- 5. Una barra conductora se mueve con $v=2,5\,$ m/s a lo largo de dos rieles conductores paralelos, separados una distancia $h=45\,$ cm, en una zona de campo magnético uniforme de módulo $B=2\,$ T, como muestra la figura.
- 5.1. Calcule la corriente inducida en el circuito si R = 0,5 M Ω , e indique el sentido de la misma justificando con la ley de Lenz.
- 5.2. Calcule la fuerza necesaria para mover la barrita a esa velocidad constante.

