```
1
     MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)
2
       IN
                                              communicator with Cartesian structure (handle)
                  comm
3
       IN
                  direction
                                              coordinate dimension of shift (integer)
5
                                              displacement (> 0: upwards shift, < 0: downwards
       IN
                  disp
6
                                             shift) (integer)
       OUT
                  rank_source
                                             rank of source process (integer)
8
       OUT
                  rank_dest
                                             rank of destination process (integer)
9
10
11
     int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
12
                    int *rank_source, int *rank_dest)
13
     MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)
14
          INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR
15
16
     void MPI::Cartcomm::Shift(int direction, int disp, int& rank_source,
17
                    int& rank_dest) const
18
```

The direction argument indicates the coordinate dimension to be traversed by the shift. The dimensions are numbered from 0 to ndims-1, where ndims is the number of dimensions.

Depending on the periodicity of the Cartesian group in the specified coordinate direction, MPI_CART_SHIFT provides the identifiers for a circular or an end-off shift. In the case of an end-off shift, the value MPI_PROC_NULL may be returned in rank_source or rank_dest, indicating that the source or the destination for the shift is out of range.

It is erroneous to call MPI_CART_SHIFT with a direction that is either negative or greater than or equal to the number of dimensions in the Cartesian communicator. This implies that it is erroneous to call MPI_CART_SHIFT with a comm that is associated with a zero-dimensional Cartesian topology.

Example 7.5 The communicator, comm, has a two-dimensional, periodic, Cartesian topology associated with it. A two-dimensional array of REALs is stored one element per process, in variable A. One wishes to skew this array, by shifting column i (vertically, i.e., along the column) by i steps.

```
C find process rank

CALL MPI_COMM_RANK(comm, rank, ierr))

C find Cartesian coordinates

CALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)

C compute shift source and destination

CALL MPI_CART_SHIFT(comm, 0, coords(2), source, dest, ierr)

C skew array

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, dest, 0, source, 0, comm, status, ierr)
```

Advice to users. In Fortran, the dimension indicated by DIRECTION = i has DIMS(i+1) nodes, where DIMS is the array that was used to create the grid. In C, the dimension indicated by direction = i is the dimension specified by dims[i]. (End of advice to users.)