МАТЕМАТИЧЕСКИЕ МОДЕЛИ СОЦИАЛЬНЫХ **CUCTEM**

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

МАТЕМАТИЧЕСКИЕ МОДЕЛИ СОЦИАЛЬНЫХ СИСТЕМ

Издание ОмГУ Омск 2000

Математические модели социальных систем: Учебное пособие. — Омск: Омск. гос. ун-т, 2000. — $256\ {\rm c.}$

Авторский коллектив

А.К. Гуц, В.В. Коробицын, А.А. Лаптев, Л.А. Паутова, Ю.В. Фролова

Учебное пособие посвящено проблемам математического моделирования социальных процессов и представляет собой конспекты лекций, которые читались студентам Омского государственного университета по гранту Course Development Competition Центрально-Европейского университета (г.Будапешт, Венгрия).

Для студентов и аспирантов математических и социологических факультетов.

Пособие издано на средства гранта Course Development Competition Центрально-Европейского университета (г.Будапешт, Венгрия).

Художник В.В. Коробицын

© Омский госуниверситет, 2000

$\begin{array}{c} \text{OMSK STATE UNIVERSITY} \\ \text{CHAIR OF MATHEMATICAL MODELING} \end{array}$

MATHEMATICAL MODELS OF SOCIAL SYSTEMS

OmSU Press Omsk 2000

Mathematical Models of Social Systems: Textbook. – Omsk: Omsk State University, 2000. – 256 p.

Authors

A.K. Guts, V.V. Korobitsin, A.A. Laptev, L.A. Pautova, J.V. Frolova

Text-book is dedicated to problems of mathematical modelling and computer simulation of social processes and presents itself synopsises of lectures, which were read to students of Omsk State University under support of grant Course Development Competition of the Central-European university (Budapest, Hungary).

For students of mathematical and sociological departments.

Text-book is published under support of grant Course Development Competition of the Central-European university (Budapest, Hungary).

Artist V.V. Korobitsin

© Omsk State University, 2000

B	мест	о предисловия	10	
0.	Вве	дение (Л.А. Паутова)	11	
	0.1.	Имитация реальности	13	
		Наука как И-Г-Р-А	14	
	0.3.		16	
	0.4.	Западня «Computer Simulation»	17	
1	Социальные системы и их модели (А.К. Гуц)			
	1.1.	Социальные системы	20	
	1.2.	Психоисторическая система	22	
	1.3.	Модель динамической системы	25	
	1.4.	Полевая модель	27	
	1.5.	Статистическая модель	30	
	1.6.	Стохастическая модель	31	
		1.6.1. Уравнение Ланжевена	32	
		1.6.2. Уравнение Фоккера-Планка	33	
	1.7.	Модель общественного мнения	36	
	1.8.	Модель системы распределения власти	40	
2	Индикаторы и измерение в социологии $(\mathcal{A}.A.\ \Pi aymosa$)			
	2.1.	От абстрактного к конкретному	45	
	2.2.	Операционализация понятия и ее стадии	46	
	2.3.	Модели индикаторов	53	
	2.4.	Измерение в социологии	56	

	2.5.	Операционализация и измерение в социологии и в естествознании	58
3	Соп	иально-психические системы (А.К. Гуц)	62
	3.1.	Учение В.М. Бехтерева о коллективных рефлексах	63
		3.1.1. Рефлексология	63
		3.1.2. Бихевиоризм	64
		3.1.3. Коллективная рефлексология	65
	3.2.	Два пути формализации социальной психики .	66
		3.2.1. Модель коллективных рефлексов	67
		3.2.2. Статистическая модель	71
		3.2.3. Компьютерное моделирование коллек-	
		тивных рефлексов	72
	3.3.	Стохастическая модель коллективных рефлексов	73
4		иность. Моделирование социализации индиа (Ю.В. Фролова, В.В. Коробицын)	82
		- , ,	
	4.1.	Теория социализации индивида	83
		4.1.1. Описание структуры индивида и процес-	0.0
		са становления личности	83
	4.0	4.1.2. Статусно-ролевая концепция личности	85
	4.2.	Модель социализации индивида	87
		4.2.1. Формализация процесса социализации	87
		4.2.2. Результаты компьютерного моделирования	92
5	Генд	церные системы (<i>Ю.В. Фролова</i> ,	
	B.B.	Коробицын, А.А. Лаптев, А.К. Гуц)	98
	5.1.	Идеи формализации гендера	98
		5.1.1. Понятие гендера и гендерных отношений	98
		5.1.2. Теория систем отношений	100
	5.2.	Формализация гендерных отношений	102
		5.2.1. Гендер как система фундаментальных	
			102
		5.2.2. Об однополых и трехполых гендерах	103
		5.2.3. Классификация бинарных гендеров	104

		5.2.4.	Эталоны системы фундаментальных			
			отношений	107		
	5.3.	Индек	кс различий Дункана	108		
	5.4.	Транс	формация гендерных отношений	109		
	5.5.	Модел	ть гендерных отношений	111		
		5.5.1.	Формализация гендера	111		
		5.5.2.	Реализация модели	113		
		5.5.3.	Компьютерный эксперимент	114		
		5.5.4.	Система фундаментальных отношений в			
			основе модели гендерных отношений	120		
	5.6.	Гендеј	рные отношения в искусственном обществе	121		
6	Межличностные взаимодействия					
	(<i>H</i>).	$B. \Phi po$	лова, А.К. Гуц)	128		
	6.1.	Форма	ализация межличностных отношений	128		
		6.1.1.	Теория систем отношений	128		
		6.1.2.	Межличностные взаимодействия как			
			система фундаментальных отношений	129		
		6.1.3.	Классификация межличностных взаимо-			
			действий ранга $r, 3 \leq r \leq 5$	131		
	6.2.	Проек	сция на социометрию	137		
		6.2.1.	Индексы социометрии	137		
		6.2.2.	Индекс положения ребенка в группе	144		
		6.2.3.	Степень адекватности ролевой перцепции			
			руководителя	146		
	6.3.	Модел	ть общения по Берну	148		
7	Mo,	делиро	ование семьи (Ю.В. Фролова)	. 146 . 148 160		
	7.1.	Предп	юсылки к созданию модели семьи	160		
	7.2.	. Модель адаптивного поведения семьи				
		7.2.1.	Формализация семьи	162		
		7.2.2.	Реализация модели	164		
		7.2.3.	Компьютерный эксперимент			

8	Этнические системы Гумилёва (В.В. Коробицын)				
	8.1.	_		176 176	
	8.2.	•		177	
	0.2.	8.2.1.	Построение функции напряжения этни-	111	
		0.2.1.	ческого поля	177	
		8.2.2.	Связь напряжения и энергии этнического	111	
		0.2.2.	поля	178	
	8.3.	Повтр		180	
	0.0.	8.3.1.	оение модели этнического поля	100	
		0.3.1.	Балансовое уравнение и описание потоков пассионарной энергии	180	
		8.3.2.		184	
		8.3.3.	Вывод уравнения этнического поля Функция переноса пассионарной энергии	188	
		8.3.4.		189	
		8.3.5.	Функция пассионаропроводимости	109	
		0.3.3.	Функции интенсивности индукции и утраты	191	
		8.3.6.	<u> </u>	$191 \\ 192$	
		8.3.7.	Коэффициент соперничества	$\frac{192}{193}$	
	0.4		Модель этнического поля		
	8.4.	-	ьтаты моделирования	194	
		8.4.1.	Исходные данные эксперимента	195	
		8.4.2.	Ход эксперимента	197	
		8.4.3.	Статистический результат	200	
9	Социальные системы Парсонса (А.А. Лаптев) 20				
	9.1.	Математическая модель социогенеза 2			
		9.1.1.	Описание переменных системы	205	
		9.1.2.	Уравнение, описывающее политическую		
			систему	210	
		9.1.3.	Уравнение, описывающее экономическую		
			систему	214	
		9.1.4.	Уравнение, описывающее социетальное		
			сообщество	216	
		9.1.5.	Уравнение, описывающее систему под-		
			держания институционализированных		
			этнических образцов	218	
	9.2.	Модел	ь «политика-экономика»	220	

(9.3. Качественное исследование модели «политика-			
		эконом	ика»	221
			Исследование состояний равновесия	
		9.3.2.	Исследование бесконечно удаленных точек	227
		9.3.3.	Фазовые портреты и исследование систе-	
			мы на наличие бифуркаций	229
		9.3.4.	Интерпретация результатов качественно-	
			го исследования и компьютерного моде-	
			лирования	233
10	Сис	гемы і	власти (A.A. Лаптев)	24 0
]	10.1.	Структ	гура политической власти империи	240
		- 0	ние модели развития империи	
Ли	тера	атура		248
Авторский коллектив 254			254	

Вместо предисловия

Математика говорит о мире (то есть старается говорить) больше, чем можно о нем сказать, и это в настоящее время приносит науке много беспокойств, которые, безусловно, будут в конце концов преодолены

Модель и оригинал были бы тождественны, если бы процессы, происходящие в них, совпадали. Этого не происходит. Результаты развития модели отличаются от действительного развития. На это различие могут влиять три фактора: упрощенность модели по сравнению с оригиналом, свойства модели, чуждые оригиналу, и, наконец, неопределенность самого оригинала.

Имитология, как мы знаем, не должна быть "полным подражательством", разве что кто-нибудь от нее этого потребует. Мы знаем, что количество переменных, которыми имитология снабдит "прокручиваемую" модель, будет изменяться в зависимости от цели, которой должна служить вся эта модельная продукция.

Наисовершеннейшей моделью яблока будет другое яблоко, а Космоса – другой Космос.

Станислав Лем. «Сумма технологии», 1967.

Введение

Компьютеризация всех сторон общественной деятельности и повседневной жизни — самый впечатляющий феномен последней трети XX века.

Д.В. Иванов

Во все большей степени люди осознают, что вокруг нас формируется новая культура. И дело не только в компьютерах... Это новые установки по отношению к труду, полу, нации, досугу, авторитетам и так далее.

А. Тоффлер

1968 г.

Иллюстрацией и подтверждением исследований, содержащихся в этой книге, может служить статья известного американского социолога Роберт Макгинниса "Новое в методах исследования". Статья вышла в 1968 году в известном сборнике "American Sociology: Perspectives, Problems, Methods" под редакцией Т. Парсонса. Макгиннис предупреждал о надвигающейся революции в социологии; грядущих радикальных событиях, которые скоро принесут как большие достижения, так и серьезные потери.

Он писал: "Несмотря на отсутствие математики — можно даже сказать отвращении к ней — в традиционных аспирантских программах, некоторые социологи начинают открывать ее для себя как потенциальный язык теории. Их привлекает надежда, возможно, даже обещание, которое сулит математика относительно улучшения социологической теории..." [48, с.152].

Свидетельством революции в методах является по Р. Макгиннису не только обращение к языку математики, но и ис-

12 введение

пользование компьютеров. Автор (как и многие его современники) пишет, что компьютер в социологии — это не только сверхскоростной арифмометр. "Компьютер - это также и генератор данных, и логическая машина" [48, с.159]..

2001 г.

Развитие технологий превратило компьютер из простого вычислительного средства в универсальную машину, создающую параллельный виртуальный мир. Всеобщая компьютеризация и виртуализация ¹ повседневной жизни приводит к тому, что в наше время симулируются базовые компоненты социальных отношений:

- виртуальные деньги (пластиковые карточки, виртуальные покупки в интернет-магазинах);
 - виртуальный заработок (работа с banner'ми);
 - виртуальные корпорации;
- виртуальные клубы и общение (chat, email, ICQ, сайты знакомств);
 - виртуальные музеи;
 - виртуальные политические акции в Интернет;
 - виртуальные научные сообщества;
 - виртуальное казино;
- виртуальная исповедь и виртуальное отпущение грехов в виртуальном приходе;
 - виртуальный взлом виртуального банка;
 - виртуальные игры (Doom, Quake и др.) и др.

В классической работе Жана-Франсуа Лиотара "Состояние постмодерна" информатизация общества связывается с возникновением особого постмодернистского видения мира. Французский философ отмечает, что "при таком всеобщем изменении природа знания не может оставаться неизменной". Распространение информационных технологий неминуемо изменяет статус и характер научного знания. В чем же выражается это изменение?

¹ Виртуализация – замещение реальности ее имитацией/образами.

0.1. Имитация реальности

Для современной науки характерным является то, что материальный эксперимент все чаще заменяется экспериментом на моделях. "Если раньше теории могли строиться только на основе открытия некоего порядка, присущего вещам, то теперь вполне допустимо моделирование без выхода к какимлибо реальным референтам², например, компьютерные симуляции³ природных, технологических и социальных процессов" [37, с.54].

Современный исследователь погружается в виртуальную реальность симуляций, строя *искусственное общество* искусственных людей. Заимствуя схему определения универсальных свойств виртуальной реальности [37, с.18-19], рассмотрим замысел компьютерного моделирования (табл. 1):

Таблина 1

Таблица І	
Виртуальная реальность	Компьютерная модель
Нематериальность воздействия	Модель описывает реальный
(изображаемое производит эф-	объект и реальные процессы,
фекты, характерные для веще-	агенты "подражают" реальным
ственного)	людям и ситуациям
Условность параметров (объек-	Условность параметров (объек-
ты искусственны и изменяемы)	ты искусственны и изменяемы);
	Нестандартные ситуации;
	Перебор, изменение параметров
Эфемерность (свобода входа/вы-	Возможность многократного
хода) обеспечивает прерывание	воспроизводства моделируемых
и возобновление существования.	процессов
Условный и упрощенный образ	
реального объекта	

Несомненно, компьютерное моделирование является вариантом **киберпротезирования** реального общества. От реального общества автор модели переходит к его протезу — "искусственному обществу". При этом исследователю приходится ограничивать разнообразие вариантов, отбрасывая некоторые признаки и упрощая другие.

 $^{^2}$ $Pe\phi$ ерент — обозначаемый предмет, объект внеязыковой действительности, который имеет в виду говорящий, произнося данный речевой отрезок.

³ Simulation (англ.) – 1) притворство; 2) моделирование.

14 введение

Наиболее ярко рассуждения о современных тенденциях такого развеществления общества представлены в концепции Ж. Бодрияйра. Философ вводит понятие "симулякр", означающее, во-первых, продукт/продукты симуляции и, вовторых, образ реальности, замещающий саму реальность; знак, замкнутый сам на себя.

А. Гараджа пишет о концепции Бодрияйра: "Современный мир состоит из моделей и симулякров, не обладающих никакими референтами, не основанных ни на какой "реальности", кроме их собственной, которая представляет собой мир самореферентных знаков. Симуляция, выдавая отсутствие за присутствие, одновременно смешивает всякое различие реального и воображаемого... Признавая симуляцию бессмысленной, Бодрияйр в то же время утверждает, что в этой бессмыслице есть и "очарованная" форма: "соблазн", или "совращение". Совращение проходит три исторические фазы: ритуальную (церемония), эстетическую (совращение как стратегия соблазнителя) и политическую. Согласно Бодрияйру, совращение присуще всякому дискурсу и всему миру" [18, с.44-45].

Несмотря на то что можно проследить некоторое сходство симулякра и компьютерной симуляции, все же присутствует четкое различие. Компьютерная модель, как правило, связана с референтом (реальным объектом). Она уже не является отражением реальности (1-я фаза связи знака и реальности по Ж. Бодрияйру), однако и не утрачивает связи с ней (3 и 4 фаза). Пожалуй, модель является переходом от 1 к 3 и 4 стадии – маскирует и упрощает реальность.

0.2. Наука как И-Г-Р-А

Пусть художник будет весел, а наука весела Φ . Ницше

Классическая наука исходила из принципов истины, легитимации 4 и верификации знания. Однако в современном мире,

⁴ Легитимация [< лат. legitimus законный] – признание или подтверждение законности каких-либо прав, полномочий, организаций [63].

15

где все традиционное кардинально меняется и даже имитируется, эта "святая святых" науки также подвергается пересмотру.

Философы науки констатируют, что современное научное знание все больше использует *игру* как специфическую форму деятельности. По мнению Лиотара, именно свобода "языковых игр" является основой постмодернистского сознания. Соответственно, "наука сейчас — это не предприятие по поиску истины, а род языковых игр, состязаний в манипулировании моделями научного дискурса" [37, с.54]. Что же такое языковая игра в данном случае?

Языковая игра — языковой акт, основанный на **состязании** (agon); акт, заключающийся в совокупности описывающих игру **правил**. Если быть более точным, дать определение понятию "языковая игра" сложно (поскольку это последнее уже представляет собой языковую игру). Согласно Ж-Ф. Лиотару, языковая игра имеет следующие характеристики:

- правила не содержат в самих себе свою легитимацию, но составляют предмет соглашения – явного или неявного – между игроками (что однако не означает, что эти последние выдумывают правила):
 - если нет правил, то нет и игры;
 - игра показывают общее противоборство (агонистику);
- наблюдаемая социальная связь основана на речевых "приемах" [47, с.32-34].

Технологии постиндустриального общества позволяют расширить вхождение игрового начала в деятельность человека. Характерно то, что "первый персональный компьютер, собранный в 1976 году инженерами Джобсом и Возняком, был создан именно для игры, т.е. для того чтобы удовлетворить потребность "быть", потребность в самовыражении и творчестве" (В.А. Красильщиков, [30, с.167]).

Игровой принцип в научном знании может применяться поразному (например, игра с текстом Ж. Дерриды). Используемый в данной книге метод компьютерного моделирования – является одним из вариантов игрового начала в постсовременном мире.

16 введение

В таблице 2 мы постарались привести результаты сопоставления признаков игры и правил компьютерного моделирования.

Таблица 2

Игра	Компьютерная модель
Участники	Искусственные агенты
Правила игры	Правила действия агентов
Противоборство	Противоборство
Повторяемость	Повторяемость, возможность возобновления
Свобода духа	Большая роль воображения, фантазии, парадоксальности. Множественность интерпрета- ций
Ставка на случайность	Свойства агентов задается случайным образом
Риск	?
Театральность	Могут присутствовать элементы "зрелищности" в эстетике и ри- туальности модели
Тайна результата	Непредсказуемость
Элемент забавы, веселья	Присутствуют в разных формах на разных стадиях моделирования

В многозначном игровом пространстве модели исследователь получает право на риск, выбирая свою версию из числа возможных интерпретаций. Киберпротез реального общества позволяет провоцировать социологическое мышление. Такая игра является по сути "интригой познания" [74, с.10], задающей вопросы и предлагающей выбрать свой вариант из результатов многократных компьютерных экспериментов.

0.3. Фальсификация

Одним из симптомов виртуализации общества считается изменение требований научности. Постпозитивисткая и постмодернисткая философия науки переосмысливают каноны классического рационализма.

Основоположник критического рационализма Карл Поппер исходит из следующей предпосылки: законы науки не выражаются аналитическими суждениями и в то же время не сводимы к наблюдениям. Это означает, что законы науки не верифицируемы⁵. На смену принципу верификации гипотез приходит процесс фальсификации. Смысл его в следующем: если найдены условия, при которых базисные "атомарные условия" (теории, гипотезы) ложны, то данная теория, гипотеза опровержима. Когда же опытное опровержение отсутствует, данная теория, гипотеза может считаться истинной.

Критерий фальсификации означает установку на изобретение альтернативных теорий. Соответственно в науке конца XX века популярным становится лозунг "Можно все!" (апуthing goes). Опираясь на разработанные К. Поппером и И. Лакатосом положения, американский философ Пол Фейеранбенд [68] выдвигает методологический принцип пролиферации (размножения) теорий, согласно которому наука должна стремиться создавать теории, несовместимые с уже существующими и признанными.

Иными словами, как пишет известный социолог-постмодернист Зигмунд Бауман, "для наших дней наиболее характерна внезапная популярность множественного числа... Сегодня мы живем проектами, а не Проектом" [9].

0.4. Западня «Computer Simulation»

Компьютерное моделирование (Computer Simulation) – типичная область знания, обладающая специфической "постмодернистской чувственностью" – особым, плюралистичным отношением к миру, избегающим излишнего обобщения и диктата тоталитаризирующих истин. Порожденное посмодернистским информационным обществом, оно также предполагает отсутствие инвариантных базисных истин для объектов различных

 $^{^5} Bepu \phi u \kappa a u u s$ — проверка истинности теоретических положений путем сопоставления с чувственными данными.

18 введение

классов. Данный вид моделирования "открыт" самым разнообразным социологическим теориям. Используя плюралистичные теоретические схемы и модели, исследователь погружается в плодотворную и захватывающую работу.

В то же время, моделируя общество, компьютеры являются уникальным инструментом порождения теории. Известно, что компьютерные эксперименты весьма перспективны для разработки социологических теорий, благодаря которым можно обобщить крупные массивы имеющихся данных и с большей целенаправленностью организовать процесс эмпирического исследования [48, с.161].

Однако, как у любого метода, у компьютерного моделирования достаточно спорных идей и иллюзий. Мы не будем подробно обсуждать здесь доводы, приводимые противниками количественных методов в социологии. Отметим одно. Суть западни, в которую попадают социологи, использующие компьютерное моделирование, заключается в природе математического языка. Как писал известный Роберт Макгиннис: "Математика – это язык, который богат, но не двусмыслен, скуп, но не догматичен. Современный разговорный язык, даже обильно сдобренный социологическим жаргоном, страдает в этом отношении (то есть как орудие теории) серьезными недостатками" [48, с.150].

Несомненно, что язык математики лишен двусмысленности и более точен, чем естественный язык; он "позволяет исследовать скрытый смысл тончайших различий в формулировках, которые плохо доступны исследованию посредством естественного языка" [49, с.472]. Однако, стремясь к ограничению и точности, исследователи иногда забывают, что "структуры" общества не проявляются вне конкретных ситуаций, вне индивидуального, вне субъективного. Впрочем, все эти нюансы являются темой отдельного разговора о количественной и качественной стратегии в социологическом исследовании.

Глава первая

Социальные системы

N

иж модели

Глава 1

Социальные системы и их модели

1.1. Социальные системы

Социальная система — это способ организации жизни коллектива людей, который возникает в результате взаимодействия (социальных) действий индивидов на базе диктуемых социальных ролей. Система возникает как объединение в упорядоченное и самосохраняющееся целое с помощью норм и ценностей, обеспечивающих и взаимозависимость частей системы и последующую интеграцию целого [38, с.165].

Приведенное определение принадлежит социологу. При создании математических моделей социальных процессов необходимо иметь математическое определение социальной системы. Однако, как выясняется [33, 52], не существует определения системы¹, которое охватило бы все случаи, когда нам кажется, что мы имеем дело с системой. К интуитивным определениям следует отнести определения системы Людвига фон Берталанфи²:

 $^{^1}$ Cucmeма $\,$ – греч. systema – целое, составленное из частей, соединение.

²Людвиг фон Берталанфи считается основоположником теории си-

Система — это совокупность элементов, находящихся в определенных отношениях друг с другом и со средой.

Другое "интуитивное" определение системы принадлежит А. Холлу [52, с.10]: система — множество предметов вместе со связями между ними и их признаками.

Под элементом системы понимается простейшая неделимая часть системы. Однако чаще при описании системы перечисляют не составляющие ее элементы, а более заметные и крупные компоненты — nodcucmeмы, которые при пристальном и внимательном рассмотрении являются объединением определенного числа взаимосвязанных элементов системы. Очевидно, что связи между элементами порождают связи между подсистемами.

Обозначая подсистемы символами $\Sigma_1,...,\Sigma_l$ будем представлять систему Σ , компонентами которой они являются, как кортеж $\Sigma = <\Sigma_1,...,\Sigma_l>$. Иначе говоря, мы задаем систему, указывая ее подсистемы. Существующие связи между подсистемами при такой записи не даются, но неявно подразумеваются.

Наиболее общим и абстрактно-математическим определением системы является следующее определение.

Пусть $\Sigma_1,....,\Sigma_l$ некоторые множества, которые представляют чacmu (подсистемы) системы.

Система – это подмножество

$$\Sigma \subset \Sigma_1 \times \Sigma_2 \times ... \times \Sigma_l$$
.

В данном случае система Σ есть то, что математики называют отношением на множестве $\Sigma_1 \times \Sigma_2 \times ... \times \Sigma_l$. Это определение системы подчеркивает связи между частями (подсистемами). Кроме того, данное определение системы представляет, по существу, частный случай математической структуры в смысле Бурбаки:

$$<\mathcal{N}_1\times\mathcal{N}_2\times\ldots\times\mathcal{N}_l,P_1,\ldots,P_k>,$$

стем. Его работа вышла в 1940 г. Однако в 1920-х годах в России была опубликована книга А.А. Богданова "Тектология" [15], в которой, по существу, излагалась теория систем.

где

$$P_i \subset \mathcal{N}_1 \times \mathcal{N}_2 \times ... \times \mathcal{N}_l, \ (i = 1, ..., k).$$

В этой книге слово "система" будет пониматься в смысле одного из приведенных выше определений системы. Говоря "социальная система", мы имеем в виду систему, которая, как нам кажется, адекватно³ отражает и описывает интересующую нас сферу коллективной жизни людей. Следовательно, мы трактуем понятие социальной системы более широко, чем в определении, которое было приведено в самом начале этого параграфа. То определение больше пригодно для описания социальных систем Парсонса, которым посвящена гл.9.

1.2. Психоисторическая система

В.И. Вернадский был одним из первых, кто обратил внимание на то, что человеческое общество становится глобальным биосферным⁴ явлением, определяющим будущее планеты. В силу этого уже на современном этапе действия отдельных элитарных групп в лидирующих государствах могут оказать катастрофическое воздействие на биосферу Земли. Это означает, что модель социальных процессов не может рассматриваться изолированно от соответствующей модели эволюции земной биосферы. Понятие "социальный процесс" требует анализа, в результате которого необходимо выделить "этнические процессы", "собственно социальные процессы" (развитие политической структуры и экономики), "социально-психические процессы", и процессы, связанные с функционированием человеческих ценностей. Чтобы как-то отличить общий "социальный процесс" от упомянутого "собственно социального процесса",

 $^{^3}A$ deкватный [< гр. adaequatus приравненный] – равный, тождественный, вполне соответствующий [63].

 $^{^4}$ $Euoc\phi epa$ — область распространения жизни на Земле, состав, структура и энергетика которой определяются главным образом прошлой или современной деятельностью живых организмов; включает населенную организмами верхнюю часть $numoc\phi epu$, воды рек, озер, морей, океанов $(zudpoc\phi epy)$ и нижнюю часть атмосферы $(mponoc\phi epy)$ [63].

последний будем называть социальным, а первый, быть может не совсем удачно, психоисторическим. Название это связано с идеей создания науки "психоистория", изложенной в фантастическом романе А. Азимова "Основание".

Предположим, что "психоисторическое движение" или "психоисторическая энергия" общества — это некоторая вещественная функция времени H(t), которая допускает разложение в "ряд Фурье" вида 5

$$H(t) = \sum_{n=-\infty}^{+\infty} H_n(t)e^{i\omega nt} =$$
 (1.1)

$$=\sum_{n=-\infty}^{n_0,n_0\geq 0} H_n^{(0)}(t)e^{i\omega nt} + \sum_{n=n_0+1}^{n_1} B_n(t)e^{i\omega nt} + \sum_{n=n_1+1}^{n_2} E_n(t)e^{i\omega nt} + \sum_{n=n_2+1}^{n_2} E_n(t)e^{i\omega nt} + \sum_{n=n_2+1}^{n_2}$$

$$+\sum_{n=n_2+1}^{n_3}S_n(t)e^{i\omega nt}+\sum_{n=n_3+1}^{n_4}R_n(t)e^{i\omega nt}+\sum_{n=n_4+1}^{n_5}P_n(t)e^{i\omega nt}+$$

$$+\sum_{n=n_5+1}^{\infty}H_n^{(1)}n(t)e^{i\omega nt}.$$

Здесь "коэффициенты" $B_n(t)$ характеризуют динамику земной биосферы. Длина биологической "волны" $1/\omega n$ (точнее говоря, характерное время протекания процесса до момента его повторения) соответствующей гармоники $\exp(i\omega nt)$ имеет порядок миллиона лет. "Коэффициенты" $E_n(t), S_n(t), R_n(t), P_n(t)$ соответственно связаны с этносферой, социосферой, социальной психосферой и антропосферой (человеческие ценности). Длины их "волн" имеют тенденцию к уменьшению; для этнических процессов она порядка 1000 лет, для социальных – 100 лет, социально-психических – 10 лет (что может означать и 5 лет). Человеческие ценности в данной модели могут сменяться в считанные месяцы, и это не случайно, потому что "вечные ценности" для любого народа рождаются

 $^{^{5}}$ Считаем, что $H_{n} = H_{-n}$.

вместе с ним как этнической целостностью. Например, в форме религии, как, в частности, для русского народа такие ценности содержатся в его историческом православии [20, с.147], [25].

Таким образом, каждая очередная "высшая" формы движения живой материи — всего лишь серия "морщинок" на гребне "менее высокой" формы. Однако, как известно из естествознания, высшие гармоники при определенных условиях могут внести существенную смуту в общий процесс и определять основные характерные черты "психоисторического движения" H(t).

Отметим, что смысл "коэффициентов" $H_n^{(0)}$ и $H_n^{(1)}$ нам неизвестен. Вероятно, первые связаны с неживой природой (геологическая форма движения материи и другие, более "ранние" формы), а вторые — с явлениями, которые выходят за рамки современных знаний о психике человека.

По существу, разложение "психоистории" H(t) в ряд гармоник реализует известную идею о цикличности процессов в природе и обществе. Вместе с тем постулируемая временная зависимость коэффициентов $H_n(t)$ означает модулирование циклического процесса, что позволяет сочетать идеи повторяемости и изменяемости.

Функции $H_n(t)$ должны удовлетворять дифференциальным уравнениям, характеризующим динамику соответствующей подсистемы "психоистории", каковыми являются биосфера, этносфера, социосфера, социальная психосфера и антропосфера. Чтобы найти эти уравнения, предположим, что имеет место закон сохранения психоисторической энергии

$$\frac{dH}{dt} = 0. (1.2)$$

Пусть коэффициенты

$$H_n(t) = h_n(t) - \int_0^t g_{h_n}(\tau) d\tau.$$
 (1.3)

Подставляя (1.3) в ряд (1.1) и дифференцируя его почленно, получим в силу (1.2) и благодаря независимости гармоник $\exp(i\omega nt)$, что

$$\frac{dh_n}{dt} - g_{h_n}(t) = 0,$$

$$i\omega[h_n - \int_0^t g_{h_n}(\tau)d\tau] = 0.$$

Последние два уравнения получаются одно из другого. Поэтому, оставляя первое, имеем систему уравнений, являющуюся следствием закона сохранения психоисторической энергии (1.2)

$$\frac{dh_n}{dt} = g_{h_n}(t) \ (n = ..., -1, 0, 1, ...).$$

Функции $g_{h_n}(t)$ совершенно "произвольны"; их можно брать так, чтобы они зависили от времени t и от функций $h_{n_1}, ..., h_{n_m}$, которые в свою очередь зависят от t, т.е.

$$g_{h_n}(t) = f_n(t, h_{n_1}(t), ..., h_{n_m}(t)).$$

В книге [22] приведены возможные уравнения для биосферных (экологических), этнических и социальных процессов. Попытаемся понять какими могут быть дифференциальные уравнения, описывающие динамику психоисторических систем.

1.3. Модель динамической системы

Динамика глобальной психоисторической системы может определяться системой дифференциальных уравнений

$$\frac{d\mathbf{B}}{dt} = \mathbf{f_B}(t, \mathbf{B}, \mathbf{R}), \tag{1.4}$$

$$\frac{d\mathbf{B}}{dt} = \mathbf{f}_{\mathbf{B}}(t, \mathbf{B}, \mathbf{R}), \qquad (1.4)$$

$$\frac{d\mathbf{E}}{dt} = \mathbf{f}_{\mathbf{E}}(t, \mathbf{B}, \mathbf{E}), \qquad (1.5)$$

$$\frac{d\mathbf{S}}{dt} = \mathbf{f}_{\mathbf{S}}(t, \mathbf{B}, \mathbf{E}, \mathbf{S}, \mathbf{R}), \qquad (1.6)$$

$$\frac{d\mathbf{S}}{dt} = \mathbf{f}_{\mathbf{S}}(t, \mathbf{B}, \mathbf{E}, \mathbf{S}, \mathbf{R}), \tag{1.6}$$

$$\frac{d\mathbf{R}}{dt} = \mathbf{f}_{\mathbf{R}}(t, \mathbf{B}, \mathbf{E}, \mathbf{S}, \mathbf{R}), \tag{1.7}$$

$$\frac{d\mathbf{P}}{dt} = \mathbf{f}_{\mathbf{P}}(t, \mathbf{E}, \mathbf{S}, \mathbf{P}), \tag{1.8}$$

где $\mathbf{B}=(B_{n_0+1},...,B_{n_1}), \mathbf{E}=(E_{n_1+1},...,E_{n_2}), \mathbf{S}=(S_{n_2+1},...,S_{n_3}), \mathbf{R}=(R_{n_3+1},...,R_{n_4}), \mathbf{P}=(P_{n_4+1},...,P_{n_5}).$ Полный вид первых трех уравнений без учета социальной психологии приведен в [22]. Смысл компонент функций $\mathbf{B},\mathbf{E},\mathbf{S}$ устанавливается на основе теорий В.И. Вернадского, Л.Н. Гумилева и Т. Парсонса (см. [22] или [54]). Ниже в 3.2.1 выясняется смысл компонент функции \mathbf{R} .

Система (1.4)-(1.8) – яркий пример моделирования с помощью теории динамических систем. Интересующие нас характеристики представляются в виде функций, меняющихся со временем и удовлетворяющих дифференциальным уравнениям. Для решения системы (1.4)-(1.8) необходимо дополнительно задать начальные данные

$$\mathbf{B}|_{t=0} = \mathbf{B}_0, \ \mathbf{E}|_{t=0} = \mathbf{E}_0, \ \mathbf{S}|_{t=0} = \mathbf{S}_0, \ \mathbf{R}|_{t=0} = \mathbf{R}_0, \mathbf{P}|_{t=0} = \mathbf{P}_0.$$

В общем случае изучения некоторой конкретной социальной системы $\Sigma = (\Sigma_1,...,\Sigma_l)$, где Σ_i (i=1,...,l) – ее подсистемы, динамическая модель строится на основе предположения, что каждая подсистема Σ_i описывается вещественной функцией $\Sigma_i(t)$, зависящей от времени $t,\ t\geq 0$, и которая удовлетворяет системе дифференциальных уравнений

$$\frac{d\Sigma_i}{dt} = \mathbf{f}_{\Sigma}(t, \Sigma_1, ..., \Sigma_l), \tag{1.9}$$

$$\Sigma_i|_{t=0} = \Sigma_{i0} \ (i=1,...,l)$$

или

$$\frac{d\Sigma}{dt} = \mathbf{f}_{\Sigma}(t, \Sigma_1, ..., \Sigma_l),$$

$$\Sigma|_{t=0} = \Sigma_0.$$
(1.9')

1.4. Полевая модель

"В тот момент, когда человек выражает любым очень общим образом различные потенциальные возможности поведения, зависящие от одновременного состояния одной или более переменных, он имеет сущность того, что ... называется теорией поля" (Кларк Халл, [45, с.64-65]).

Теорию поля применительно к социальным наукам развивал психолог Курт Левин. Он писал: "Основной инструмент для анализа групповой жизни – представление группы и ее ситуации как "социального поля". Это означает, что социальное событие рассматривается как происходящее в (и являющееся результатом совокупности) сосуществующих социальных объектов, таких, как группы, подгруппы, члены, барьеры, каналы коммуникаций и т.п. Одна из фундаментальных характеристик этого поля – относительная позиция объектов, которые являются частями поля. Эта относительная позиция представляет структуру группы и ее экологическую бостановку. Она также отражает основные возможности передвижения внутри поля" [45, с.226]).

Для более краткой характеристики понятия поля Левин использовал следующее определения поля, принадлежащее Эйнштейну [45, с.265].

Совокупность сосуществующих фактов⁷, которые понимаются как взаимозависимые, называется **полем**).

Если сравнить данное определение *поля* с определением *системы*, принадлежащее фон Берталанфи, то нетрудно увидеть их схожесть. Действительно, поле может возникать в системе, и обратно система может порождать поле. Но вместе с этим

⁶ Экология [гр. оіков дом, родина $+ \dots$ логия] - 1) наука, изучающая взаимоотношения животных, растений, микроорганизмов между собой и с окружающей средой; 2) э. человека, социальная э. – наука, рассматривающая проблемы взаимоотношений человеческого общества и окружающей среды [63].

 $^{^{7}}$ $\Phi a m m - 1$) действительное, невымышленное происшествие, событие, явление; 2) действительность, реальность, то, что объективно существует [63].

понятие поле отлично от понятия системы. Для того, чтобы убедиться в этом прокомментируем абстрактное определение поля, данное Эйнштейном⁸, перефразируя другое его утверждение [77, с.231-232]: все эти факты, взятые вместе, создают в окружающем жизненном пространстве группы определенное состояние, которое, в свою очередь, производит характерное воздействие на определенные объекты, появляющееся в данном жизненном пространстве. Это состояние пространства и есть социальное поле.

Каковы упомянутые объекты, на которые воздействует социальное поле? Это зависит от типа соответствующей социальной системы, для описания свойств которой и привлекается теория поля или полевые модели. К примеру, этническое поле обнаруживается по поведению определенного типа индивидов, называемых в теории этнических систем Гумилёва пассионариями (см. гл.8). В случае гендерной системы, описывающей процесс образование семьи, поле, названное "запахом денег", сказывается на поведении женщин (см. 5.4). Другими словами, женщины являются теми "пробными зарядами", которые обнаруживают данное поле.

"Полевая теория, как правило, считает полезным начинать с характеристики ситуации в целом... Такой метод предполагает, что существует нечто вроде свойств поля в целом... Некоторые из этих общих свойств – например, величина "пространства свободного движения" или "атмосфера дружелюбия" – характеризуются терминами, которые, возможно звучат очень ненаучно для уха человека, привыкшего думать на языке физики. Однако если этот человек на мгновение задумается о фундаментальном значении, которое имеет поле силы тяжести, электрическое поле или величина давления для физических событий, он будет меньше удивлен, обнаружив похожую значимость проблем атмосферы в психологии. К тому же можно вполне точно определить и измерить психологические ат-

⁸Einstein A. *On the Method of Theoretical Physics*, New York: Oxford University Press, 1933. В русском издании этой работы Эйнштейна [77, с.181-186] приведенное определение отсутствует.

мосферы... Каждый ребенок чувствителен даже к небольшим изменениям в социальной атмосфере, как, например, степени дружелюбия или безопасности. Учитель знает, что успех преподавания французского языка или любого предмета в значительной мере зависит от атмосферы, которую он может создать" [45, с.84].

Поле в социологии (и психологии) – это то, что обеспечивает взаимосвязь различных частей жизненного пространства изучаемой группы (соотв.: индивида). Жизненное пространство определяется так, чтобы в любой данный момент оно включало все факты, которые обладают существованием, и исключало те, которые не обладают существованием для данной группы индивидов. При этом существование приписывается всему, что оказывает демонстрируемое воздействие [45, с.12-13].

Другое аналитическое средство разрешения социальных проблем — это понятие $\phi asoboe$ пространство. Оно является аналитическим средством, предназначенным для решения проблем социальной жизни в рамках теории поля.

Фазовое пространство – это система координат, каждая из которых соответствует разным величинам интенсивности одной "характеристики". Фазовое пространство не предназначено для того, чтобы представить план поля, состоящего из групп, индивидов и из экологической обстановки, оно концентрируется на одном или нескольких факторах. Оно представляет, посредством графиков или уравнений, количественную зависимость между этими несколькими характеристиками, переменными или аспектами поля или событиями в нем [45, с.226]). Очевидно, что упоминаемое выше жизненное пространство превращается при формализации в фазовое пространство.

Математически поле задается некоторой функцией $S:\mathcal{F} \to \mathbb{R}^k$, заданной на фазовом пространстве \mathcal{F} и удовлетворяющей уравнению поля

$$\hat{A}(S) = f,$$

где \hat{A} – некоторый оператор.

В случае использования теории поля при построении модели конкретной социальной системы основной задачей является нахождение уравнения поля, а затем его решение при различных граничных условиях.

1.5. Статистическая модель

Рассмотрим теперь группу индивидов как статистический ансамбль в пространстве и во времени с координатами $(\bar{x},t), \bar{x}=(x_1,x_2)$. Мы ограничимся плоским пространством, т.е. двумерной величиной \bar{x} , поскольку речь идет о поверхности Земли.

Каждый индивид, составляющий рассматриваемую группу людей, помимо координат \bar{x} его местонахождения на поверхности Земли и момента времени t, описывается парой $(q,p)\in \mathbb{R}^l\times \mathbb{R}^l$. Смысл пары (q,p) определяется решаемой задачей. Если мы исследуем социальную систему $\Sigma=(\Sigma_1,...,\Sigma_l)$, где Σ_i (i=1,...,l) – ее подсистемы, то вектор q характеризует степень "привязки" состояния индивида к конкретной подсистеме, а вектор p демонстрирует степень проявления в индивиде типичных свойств, являющихся основными для изучаемой социальной системы.

Плотность распределения членов группы в абстрактном фазовом пространстве \mathbb{R}^{2l+3} переменных (q,p,\bar{x},t) , обозначим через $w(q,p,\bar{x},t)$, а через $H(q,p,\bar{x},t)$ – Σ -энергию, определяющую социальное поле в системе Σ . Пусть $P(q,p,\bar{x},t)$ характеризует появление, исчезновение, перемещение, взаимодействие членов группы в пространстве.

Математическое описание поведения группы сводится к заданию трех функций $H(q,p,\bar{x},t),w(q,p,\bar{x},t),P(q,p,\bar{x},t)$. Они не являются независимыми, а связаны уравнением "движения" вида [2]:

$$P * w = \sum_{k=1}^{l} \left(\frac{\partial w}{\partial p_k} * \frac{\partial H}{\partial q_k} - \frac{\partial w}{\partial q_k} * \frac{\partial H}{\partial p_k} \right), \qquad (1.10)$$

где * означает свертку по переменной (\bar{x},t) , а рассматривае-

мые в (1.10) функции могут быть, вообще говоря, обобщенными и зависящими от w, так что, например,

$$P * w = \int_{\mathbb{R}^3} P(q, p, \bar{x} - \bar{y}, t - \tau) w(q, p, \bar{y}, \tau) d\bar{y} d\tau$$

может быть дифференциальным или дифференциальноразностным уравнением, в частности, таким

$$P * w = \frac{\partial w}{\partial t} - \mathcal{D}(q, p) \sum_{k=1}^{2} \frac{\partial^{2} w}{\partial x_{k}^{2}}.$$

Существует связь между данной моделью (1.10) и динамической моделью (1.9). Она заключается в требовании, чтобы функции

$$\Sigma_i(t) = \langle q_i \rangle(t) = \int_{\mathbb{R}^2} d\bar{x} \int_{\mathbb{R}^{2l}} w(q, p, \bar{x}, t) q_i dq dp$$

удовлетворяли уравнениям (1.9). Очевидно, что такое требование позволит уточнить вид уравнения "движения" (1.10), и обратно, конкретный выбор уравнения "движения" (1.10) предопределяет вид дифференциальных уравнений (1.9).

1.6. Стохастическая модель

Социальные процессы характерны тем, что они не являются строго заданными, детерминированными. Они всегда подвержены неожиданным случайным малым изменениям даже в обстоятельствах, когда, как говорится, всё взято под контроль. Можно сказать, если прибегать к аналогии, что социальный процесс подобен броуновской частице, т.е. частице, двигающейся на первый взгляд по вполне определенной траектории, но которая при близком рассмотрении оказывается сильно извилистой с массой мелких изломов. Эти мелкие отклонения —

флуктуации⁹ – от казалось бы гладкой линии появляются в силу того, что на частицу воздействуют многочисленные хаотически перемещающиеся молекулы окружающей среды. В случае социальных систем флуктуации следует трактовать как свободу воли участников социального процесса [85, с.3].

На языке математики описание социального процесса, подверженного флуктуациям, осуществляется с помощью понятия *стохастического процесса*. Приведем ниже теорию уравнения Ланжевена, которое использовалось для исследования броуновского движения.

1.6.1. Уравнение Ланжевена

Пусть $s(t) = (s_1(t), ..., s_n(t))$ – векторное поле, описывающее социальный процесс. Уравнение Ланжевена для s имеет вид

$$\frac{ds}{dt} = -ks + \zeta,\tag{1.11}$$

где $\zeta(t)$ – случайная сила, действующая на социальную систему. Считаем, что среднее ее значение

$$<\zeta>(t)\equiv \mathbf{M}\zeta(t)=\int\limits_{E_{\zeta(t)}}[\zeta(t)](\omega)d\mathbf{P}_{\zeta(t)}(\omega)=0$$

И

$$<\zeta(t)\zeta(t')>=\delta(t-t'),$$

где $< E_{\zeta(t)}, \mathbf{P}_{\zeta(t)}>$ — вероятностное пространство случайной величины $\zeta(t), \ \omega \in E_{\zeta(t)}$ — элементарное событие.

Из (1.11) следует

$$s(t) = s_0 e^{-kt} + \int_0^t e^{-k(t-t')} \zeta(t') dt'.$$
 (1.12)

 $^{^9}$ Φ луктуация — случайное отклонение величины, характеризующей систему из большого числа частиц, от среднего значения [63].

Можно считать, что начальное данное s_0 является случайной величиной с вероятностным пространством $\langle E_0, \mathbf{P}_0 \rangle$. В таком случае $s(t) = [s(t)](\omega, \nu)$ — случайная величина с вероятностным пространством $\langle E_{\zeta(t)} \times E_0, \mathbf{P}_{\zeta(t)} \times \mathbf{P}_0 \rangle$, где $\nu \in E_0$. Усредняя (1.12), получаем

$$\langle s \rangle(t) = \int_{E_{\zeta(t)} \times E_{0}} [s(t)](\omega, \nu) d\mathbf{P}_{\zeta(t)}(\omega) \times \mathbf{P}_{0}(\nu) =$$

$$= \int_{E_{0}} s_{0}(\nu) e^{-kt} d\mathbf{P}_{0}(\nu) + \int_{0}^{t} e^{-k(t-t')} \left(\int_{E_{\zeta(t')}} [\zeta(t')](\omega) d\mathbf{P}_{\zeta(t')}(\omega) \right) dt' =$$

$$= \langle s_{0} \rangle e^{-kt} + \int_{0}^{t} e^{-k(t-t')} \langle \zeta \rangle(t') dt' = \langle s_{0} \rangle e^{-kt},$$

т.е.

$$\langle s \rangle (t) = \langle s_0 \rangle e^{-kt}.$$
 (1.13)

Это означает, что стохастический процесс s(t) при $t \to +\infty$ становится квазистационарным, близким к равновесию s=0.

Мы рассмотрели простейшую форму уравнения Ланжевена. В более общем случае оно может быть записано в виде

$$\frac{ds}{dt} = -ks + F(t) + \zeta,$$

где внешняя сила F(t) может быть и потенциальной, т.е. $F=\nabla V$, где V=V(x,t) – некоторое поле. Как видим, в данном случае s=s(x,t). Следовательно, социальный процесс s зависит от дополнительных параметров, входящих в фазовое пространство.

1.6.2. Уравнение Фоккера-Планка

Используемое обозначение s(t) для стохастического процесса означает, что в момент времени t случайная величина s принимает некоторое значение $[s(t)](\omega)$. Будем далее вместо $[s(t)](\omega)$

писать (s,t), а вместо $[s(t')](\omega')$ пишем (s',t'). Пусть w(s,t) – плотность распределения величины s(t), а $w_2(s,t|s',t')$ – условная плотность распределения.

Вводя коэффициенты дрейфа

$$A_{i}(s,t) = \lim_{t' \to t} \frac{1}{t'-t} \int_{-\infty}^{+\infty} (s'_{i} - s_{i}) w_{2}(s,t|s',t') ds',$$

и коэффициенты диффузии

$$B_{ij}(s,t) = \lim_{t' \to t} \frac{1}{t'-t} \int_{-\infty}^{+\infty} (s_i' - s_i)(s_j' - s_j) w_2(s,t|s',t') ds' > 0,$$

можно получить [6, с.68] уравнение Фоккера-Планка

$$\frac{\partial w}{\partial t} = \sum_{i=1}^{n} \frac{\partial}{\partial s_i} \left[-A_i(s,t)w \right] + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2}{\partial s_i \partial s_j} \left[B_{ij}(s,t)w \right]. \quad (1.14)$$

Уравнение Фоккера-Планка (1.14) эквивалентно стохастическому уравнению Ланжевена [85]

$$\frac{ds_i}{dt} = F_i(s,t) + \sum_{i=1}^{n} G_{ij}(s,t)\zeta_j(t)$$
 (1.15)

 \mathbf{c}

$$A_i(s,t) = F_i(s,t) + \frac{1}{2} \sum_{i,k=1}^{n} \left[\frac{\partial G_{ij}(s,t)}{\partial s_k} \right] G_{jk}(s,t)$$

И

$$B_{ij}(s,t) = \sum_{k=1}^{n} G_{ik}(s,t)G_{kj}(s,t).$$

Выражение

$$\zeta_i(s,t) = \sum_{i=1}^n G_{ij}(s,t)\zeta_j(t)$$

описывает изменения в процессе s, обусловленные флуктуациями, которые предполагаются δ -коррелированными и гауссовыми.

Так как коэффициенты диффузии $B_{ij}(s,t)$ и коэффициенты $G_{ij}(s,t)$ обычно являются малыми по величине, то $F_i(s,t)\approx A_i(s,t)$ и уравнение (1.15) принимает вид

$$\frac{ds}{dt} \approx A(s,t) + fluctuations.$$

При условии

$$\frac{\partial}{\partial s_j} A_k(s,t) = \frac{\partial}{\partial s_k} A_j(s,t)$$

существует потенциал

$$V(s,t) = -\int_{s}^{s} A(s',t) \cdot ds' \equiv -\sum_{i=1}^{n} \int_{s}^{s} A_{i}(s',t)ds'$$

такой, что

$$A(s,t) = -\nabla V(s,t) \quad \lor \quad A_i(s,t) = -\frac{\partial V(s,t)}{\partial s_i}.$$

Потенциал V(s,t) можно понимать как социальное поле [85]. Рассмотрим случай, когда n=1 и предположим, что

$$A(s,t) = 0$$
, $B(s,t) = 2D = const$.

Тогда уравнение (1.14) принимает вид уравнения диффузии

$$\frac{\partial w}{\partial t} = D \frac{\partial^2 w}{\partial s^2}.$$

Решением этого уравнения является распределение Гаусса

$$w(s,t) = w_2(s_0, t_0 | s, t) = \frac{1}{\sqrt{4\pi D(t - t_0)}} \exp\left\{-\frac{(s - s_0)^2}{4D(t - t_0)}\right\},\,$$

дисперсия которого

$$\mathbf{D}s = 4D \cdot (t - t_0) \longrightarrow_{t \to +\infty} \infty.$$

1.7. Модель общественного мнения

В качестве примера рассмотрим модель формирования общественного мнения [88, 89, 92], сочетающую элементы полевой и стохастической моделей.

Предполагается, что общественное мнение σ может выражать точку зрения $\sigma=+1$, либо допускать противоположное воззрение $\sigma=-1$. Формирование общественного мнения можно представить как аналог броуновского движения, в котором участвуют индивиды, взаимодействующие посредством *поля коммуникации* $h_{\sigma}(x,t), \ x \in S \subset \mathbb{R}^2$ – область, $\sigma=-1,+1$. Это поле учитывает пространственное распределение мнений индивидов, имеет определенное *время жизни*, отражающее эффект коллективной памяти, и распространяется в обществе, моделируя перенос информации.

Пространственно-временное изменение поля коммуникации учитывается с помощью уравнения

$$\frac{\partial}{\partial t} h_{\sigma}(x,t) = \sum_{i=1}^{N} \alpha_{i} \delta_{\sigma,\sigma_{i}} \delta(x - x_{i}) - \frac{-\gamma h_{\sigma}(x,t) + D_{h} \Delta h_{\sigma}(x,t)}{(1.16)}$$

Здесь δ_{σ,σ_i} символ Кронекера, $\delta(x-x_i)$ – дираковская δ -функция, N – число индивидов, D_h – коэффициент диффузии, характеризующий распространение поля коммуникации. Каждый индивид, находящийся в точке x_i , непрерывно вносит свой вклад в поле $h_{\sigma}(x,t)$ в соответствии со своим мнением σ_i и свойственной ему силой воплощения α_i своего мнения в жизнь. Информация порождается индивидами и имеет среднее "время жизни" $1/\gamma$.

Поле $h_{\sigma}(x,t)$ осуществляет социальное влияние общественного мнения на индивида i следующим образом. Находясь в точке x_i , индивид подпадает под воздействие двух информационных полей: $h_{\sigma=+1}(x,t)$ и $h_{\sigma=-1}(x,t)$. В зависимости от полученной информации он реагирует двумя способами: 1) меняет свое мнение, 2) перемещается в направление той области

пространства, где распространено мнение, которого он придерживается в настоящий момент.

Пусть $p_i(\sigma_i,t)$ – вероятность того, что в момент t индивид i имеет мнение σ_i . Изменение этой вероятности описываем с помощью уравнения

$$\frac{d}{dt}p_i(\sigma_i, t) = \sum_{\sigma'_i} v(\sigma_i | \sigma'_i) p_i(\sigma'_i, t) - p_i(\sigma_i, t) \sum_{\sigma'_i} v(\sigma'_i | \sigma_i),$$

где $v(\sigma_i'|\sigma_i)$ – условные вероятности переходов в единицу времени, вычисляемые по формуле

$$v(\sigma_i'|\sigma_i) = \begin{cases} \eta \exp\{[h_{\sigma_i'}(x_i, t) - h_{\sigma_i}(x_i, t)]/T\} & \text{if } \sigma_i \neq \sigma_i' \\ 0 & \text{if } \sigma_i = \sigma_i', \end{cases}$$

где T — couuальная mемпература, характеризующая степень свободы в поведении индивидов.

Движение индивидов в пространстве описывается уравнением Ланжевена

$$\frac{dx_i}{dt} = k_i \nabla_x h_e(x, t)|_{x_i} + \sqrt{2D_n} \zeta_i(t), \qquad (1.17)$$

где D_n – пространственный коэффициент диффузии индивидов, $h_e(x,t)$ – эффективное поле коммуникации, являющееся некоторой функцией полей $h_{\sigma=-1}(x,t), h_{\sigma=+1}(x,t)$. Коэффициенты k_i – это индивидуальные параметры, характеризующие отклик индивидов на воздействие поля коммуникации. Далее считается, что $k_i=k$ и $h_e=h_\sigma$.

Случайные воздействия на движение моделируются стохастической силой $\zeta_i(t)$ такой, что ζ_i – белый шум с $<\zeta_i(t)\zeta_j(t')>=\delta_{ij}\delta(t-t')$.

Полная динамика общества может быть выражена в терминах N-индивидуальной функции распределения

$$P(\underline{\sigma}, \underline{x}, t) = P(\sigma_1, x_1, ..., \sigma_N, x_N, t),$$

$$\underline{\sigma} = (\sigma_1, ..., \sigma_N), \quad \underline{x} = (x_1, ..., x_N),$$

которая дает вероятность обнаружения N индивидов с мнениями $\sigma_1,...,\sigma_N$ соответственно в местах $x_1,...,x_N$ в момент времени t в изучаемой области S. Эта функция находится из уравнения

$$\frac{\partial}{\partial t}P(\underline{\sigma},\underline{x},t) = \sum_{\underline{\sigma}'\neq\underline{\sigma}} [v(\underline{\sigma}|\underline{\sigma}')P(\underline{\sigma}',\underline{x},t) - v(\underline{\sigma}'|\underline{\sigma})P(\underline{\sigma},\underline{x},t)] -$$

$$-\sum_{i=1}^{N} \left[\nabla_{i} (k \nabla_{i} h_{\sigma}(x,t) \ P(\underline{\sigma},\underline{x},t)) - D_{n} \triangle_{i} P(\underline{\sigma},\underline{x},t) \right],$$

где $v(\underline{\sigma}|\underline{\sigma}')$ означает любой возможный переход к мнению $\underline{\sigma}'$ при условии, что имело место мнение $\underline{\sigma}'$.

Вводя пространственно-временную плотность индивидов с мнением σ

$$n_{\sigma}(x,t) = \int \sum_{i=1}^{N} \delta_{\sigma,\sigma_{i}} \delta(x - x_{i}) P(\underline{\sigma}, \underline{x}, t) d\underline{x},$$

получают уравнение

$$\frac{\partial}{\partial t} n_{\sigma}(x,t) = -\nabla[n_{\sigma}(x,t)k\nabla h_{\sigma}(x,t)] + D_{n}\triangle n_{\sigma}(x,t) - \sum_{\underline{\sigma}'\neq\underline{\sigma}} \left[v(\sigma'|\sigma)n_{\sigma}(x,t) + v(\sigma|\sigma')n_{\sigma'}(x,t)\right]. \tag{1.18}$$

Уравнения (1.16) и (1.18) с $\sigma = \{-1, +1\}$ дают четыре уравнения, полностью описывающие рассматриваемую социальную систему формирования общественного времени.

Рассмотрим случай коммуникационного поля, которое релаксирует быстрее, чем распределение индивидов к квазистационарному равновесию. Поле $h_{\sigma}(x,t)$ сохраняет зависимость от x и t, но благодаря быстрой релаксации оно пропорци-

¹⁰ Релаксация [< лат. relaxatio уменьшение напряжения, ослабление] – процесс постепенного возвращения в состояние равновесия какой-либо системы, выведенной из такого состояния, после прекращения действия факторов, выведших ее их состояния равновесия [63].

онально пространственно-временному распределению индивидов $n_{\sigma}(x,t)$. Пренебрегая диффузией информации, и, используя $\partial h_{\sigma}(x,t)/\partial t=0,$ $\alpha_i=\alpha$ и $D_h=0,$ получаем

$$h_{\sigma}(x,t) = \frac{\alpha}{\gamma} n_{\sigma}(x,t). \tag{1.19}$$

Подставляя (1.19) в (1.18), мы сводим четыре уравнения (1.16), (1.18) для модели общественного мнения к двум.

Однородное решение для $n_{\sigma}(x,t)$ дается его средним значениям

$$\langle n_{\sigma}(x,t) \rangle = \frac{\bar{n}}{2}, \quad \bar{n} = \frac{N}{S}.$$

При определенных условиях однородное состояние становится неустойчивым и возникает пространственная дифференциация в общественном мнении. Для нахождения этих условий рассматриваются флуктуации однородного состояния $< n_{\sigma}(x,t)>$:

$$n_{\sigma}(x,t) = \langle n_{\sigma} \rangle + \delta n_{\sigma}, \quad \left| \frac{\delta n_{\sigma}}{\langle n_{\sigma} \rangle} \right| \ll 1$$
 (1.20).

Подставляя (1.20) в (1.18) и линеаризируя, получаем

$$\frac{\partial \delta n_{\sigma}}{\partial t} = \left[D_n - \frac{k\alpha \bar{n}}{2\gamma} \right] \Delta \delta n_{\sigma} + \eta \left[\frac{\alpha \bar{n}}{\gamma T} - 1 \right] (\delta n_{\sigma} - \delta n_{-\sigma}). \quad (1.21)$$

В предположении, что

$$\delta n_{\sigma} \sim \exp(\lambda t + i \ m \cdot x)$$

из (1.21) находим следующие два решения для λ :

$$\lambda_1(m) = -|m|^2 C + 2B; \quad \lambda_2(m) = -|m|^2 C,$$

$$B = \eta \left(\frac{\alpha \bar{n}}{\gamma T} - 1\right), \quad C = D_n - \frac{k \alpha \bar{n}}{2\gamma}.$$

Условия устойчивостии однородного состояния имеют вид

$$\lambda_1(m) \leq 0, \quad \lambda_2(m) \leq 0.$$

Отсюда видно, что однородное состояние $n_{\sigma}(r,t)=\bar{n}/2$ устойчиво, если

$$T > T_{crit} = \frac{\alpha \bar{n}}{\gamma}, \quad D_n > D_{crit} = \frac{k \alpha \bar{n}}{2\gamma}.$$

Другими словами, пространственные подобласти с определенным мнением в изучаемой области S (сепаратизм 11) возникают либо при понижении couuanbhou температуры T ниже критического уровня T_{crit} , либо при малом значении диффузии индивидов D_n .

С другой стороны, политический плюрализм¹² требует для своего осуществления достаточно высокой социальной температуры $(T>T_{crit})$ и свободного перемещения членов общества $D_n>D_{crit}$.

1.8. Модель системы распределения власти

Пусть дана система иерархической власти 13 . Другими словами существует "одномерное фазовое пространство" [0,1] инстанций власти, в котором каждая инстанция имеет свою "координату" $x \in [0,1]$. Властные инстанции образуют иерархию власти, в которой власть может передаваться от инстанции с большей текущей властью к инстанциям с меньшей текущей властью (при этом скорость передачи власти тем больше, чем меньше разница между значениями текущей власти в инстанциях).

Уровень власти в инстанции x в момент времени t задается неотрицательной функцией p(x,t). Если x_1 более высокая

¹¹ Сепаратизм [< лат. separatus отдельный] – стремление к отделению, обособлению.

 $^{^{12}}$ Плюрализм [< лат. pluralis множественный] – 1) один из принципов устройства правового общества, утверждающий необходимость многообразия субъектов экономической, политической и культурной жизни общества; 2) множественность, многообразие чего-либо, например, мнений, взглядов, форм собственности [63].

¹³При написании параграфа использована книга [61].

инстанция, чем x_2 , то полагаем, что $x_1 < x_2$. Для выполнения своих распоряжений более низкими инстанциями высокая инстанция может временно передавать часть своих властных полномочий. Причем возможно два способа передачи полномочий:

1) $\mathit{Близкодействиe}$. Объем W(x,t) властных полномочий передается по команде, т.е. начальник отдает распоряжение своим непосредственным подчиненным

$$W(x,t) = -\kappa \left(p, \frac{\partial p}{\partial x}, x, t\right) \frac{\partial p}{\partial x}.$$

2) Дальнодействие. Команда и часть властных полномочий V(x,t) отдается "через голову", т.е. минуя ряд ближайших инстанций

$$V(x,t) = \int_{0}^{1} \chi(p(x',t), p(x,t), x', x) [p(x',t) - p(x,t)] dx'.$$

Действия властей либо поддерживаются обществом, либо отвергаются. Эта реакция общества характеризуется функцией $F(p,p_1,p_2,x,t)$. Если $sgnF(p,p_1,p_2,x,t)=+1$ — действия данного звена власти поддерживается обществом, а при $sgnF(p,p_1,p_2,x,t)=-1$ — общество отрицательно реагирует на действия властей. Здесь $p_1(x,t)$ — минимальный уровень полномочий власти, а $p_2(x,t)$ — максимальный уровень.

Уравнение, которому должна подчинятся функция p(x,t), имеет вид

$$\frac{\partial p}{\partial t} = \frac{\partial}{\partial x} \left[-W(x, t) \right] + V(x, t) + F(p, p_1, p_2, x, t)$$
$$0 < x < 1, \quad t > 0,$$

с граничными условиями

$$W(0,t) = -\left(\kappa \left. \frac{\partial p}{\partial x} \right) \right|_{x=0} = 0, \quad W(1,t) = -\left. \left(\kappa \left. \frac{\partial p}{\partial x} \right) \right|_{x=1} = 0, \quad t \ge 0$$

и начальными условиями

$$p(x,0) = p_0(x) \ge 0, \quad 0 \le x \le 1,$$

причем $\kappa > 0, \ \chi \geq 0,$ а положительные функции p_1, p_2 монотонно убывают по $x, \ p_1 < p_2.$

В каких единицах измеряется власть p? В данной модели власть (властные полномочия) "означает возможный уровень (степень, силу) влияния властного института на поведение других инстанций и на жизнь гражданского общества... При этом нет необходимости вводить какие-либо абсолютные единицы измерения власти; достаточно принять властные полномочия высшей инстанции за единицу (или за 100%), тогда полномочия любой другой инстанции будут выражаться в долях (или в процентах) по отношению к высшему институту [61, с.182].

Богданов Александр Александрович (1873-1928). Закончил медицинский факультет Харьковского университета (1899). Революционер, философ, экономист, писатель, врач. Член ЦК РСДРП (1905-1910). Основной философский труд "Эмпириомонизм"в 3-х книгах. Романы "Красная звезда", "Инженер Мэнни". Автор "Курса политической экономии" в 2-х томах. Создатель теории систем, названной им "Всеобщая организационная наука (тектология) (Ч.1, 1913) [15]. Немецкий перевод "Тектологии" был издан в Берлине в 1926 г. (Т.1) и 1928 г. (Т.2) [82]. Один из идеологов Пролеткульта (пролетарской культуры). Скончался в результате научных экспериментов на самом себе.

Глава вторая

Глава 2

Индикаторы и измерение в социологии

Уточняйте понятия, и вы избавите мир от заблуждений

Р. Декарт

Социологическое исследование как особый способ получения ответов на вопросы о социальной реальности — сложная и кропотливая работа. Общество таит в себе множество загадок, и любые повседневные и социологические решения, конечно же, не могут быть окончательными. Однако если обычный человек, осмысляя мир, пользуется приблизительными и интуитивными способами познания, социолог стремится к точности, конкретности и логичности.

Осваивая принципы математического моделирования социальных процессов, мы должны знать некоторые правила исследования, которые применяет социолог в своей работе. Основной вопрос, ответ на который дается в данной главе, – как изучать сложное и запутанное общество? Как измерить неизмеримое? Определить рост растения можно с помощью линейки в *сантиметрах*, давление — с помощью манометра в *паскалях*, вес — с помощью весов в *килограммах*. А как можно измерить уровень демократии, устойчивость брака, напряженность конфликта, количество насилия на экране?

2.1. От абстрактного к конкретному

Для объяснения принципов социологического мышления можно использовать множество иллюстраций. Приведем, однако, пример, который принадлежит американскому социологу и автору известного учебника по социологии Нейлу Смелзеру [64].

Оценка уровня беспокойства. "Предположим, что нас интересует, усиливает ли сообщения об авиационных катастрофах страх людей перед данным видом транспорта. Один способ найти ответ – воспользоваться простым опросом, выбрав наугад одну группу пассажиров в Чикагском аэропорту после воздушной катастрофы и другую группу в период, когда не происходило никаких других катастроф, можно сравнить уровни беспокойства опрошенных каждой группы на основе их собственных слов. Однако обращение к пассажирам с прямыми вопросами относительно испытываемого ими страха, вероятно, не даст надежных результатов. Люди часто не желают рассказывать о таких чувствах, не хотят выглядеть слабыми. Они также не всегда могут объяснить собственные чувства, в том числе и чувство беспокойства.

В связи с этим психологи и социологи разработали ряд методов оценки опасения людей, вызванных сообщениями о катастрофах, основанных на наблюдении за их поведением, а не на анализе их ответов на вопросы о том, что они чувствуют. Один аспирант хотел проверить гипотезу, согласно которой этот страх отражается на продаже алкогольных напитков в аэропортах Чикаго. Однако ему не удалось провести этот эксперимент, поскольку бары были переполнены и главным образом потому, что их площадь не соответствовала увеличению численности пассажиров, наблюдавшемуся в последнее время в аэропортах. В такой ситуации можно лишь констатировать, что лучшим показателем желания людей купить спиртное является их готовность ждать нерасторопного бармена. Наш несгибаемый аспирант решил установить влияние сообщений

о воздушных катастрофах на снижение продажи авиационных билетов. Он сравнил данные о количестве путешествий в различные сезоны в двух главных аэропортах Чикаго и выяснил, что, по видимости, известия об авиакатастрофах лишь на короткое время вызывают уменьшение числа пассажиров. Впоследствии социологи Юджин Уэбб и Дональд Кэмбелл изучали влияние воздушных катастроф на увеличение количества и стоимости страховых полисов, купленных в аэропортах. Снова, таким образом, осуществлялась оценка уровня беспокойства путем анализа поведения, а не опроса пассажиров о том, что они испытывали. Возможно, если бы вместимость баров соответствовала численности пассажиров, можно было бы составить индекс страха на основе сразу трех показателей: изменений в продаже алкогольных напитков, страховых полисов и билетов" [64, с.31].

Этот простой пример поясняет, как работает социолог, а именно, как он переходит от абстрактного понятия "уровень беспокойства" к конкретным наблюдениям. Это решающий этап исследования, поскольку лишь в том случае, если он выполнен правильно, собранная социологом информация позволяет получить надежные ответы на задаваемые вопросы. Проследим подробно все стадии работы социолога, связанные с необходимостью производить измерение в проводимых им исследованиях¹.

2.2. Операционализация понятия и ее стадии

Решающую роль в проверке теории и во всем процессе социологического изучения играет процедура операционализации понятий. Именно она позволяет увидеть все "подводные кам-

¹Мы опускаем некоторые очень важные стадии социологического исследования: постановку и анализ социальной проблемы, определение целей и задач исследования, системный анализ объекта, выдвижение рабочих гипотез, составление плана исследования, анализ выборки, сбор и анализ данных (см. [80]).

ни" исследования и установить, какие социологические данные следует собирать.

Операционализация понятий – специфическая научная процедура установления связи концептуального аппарата исследования с его методологическим инструментарием. Иными словами, операционализация — это процесс связывания теоретического понятия с эмпирическими наблюдениями, где последние выступают индикаторами² каких-то свойств, относящихся к данному понятию [27, с.90].

Операционализация включает следующие стадии:

1. Перевод исходного понятия в показатели.

Показатель — в широком смысле слова, передатчик социальной информации. В узком смысле показатели — такие характеристики изучаемого или управляемого явления, которые опосредствуют связь между ненаблюдаемыми и наблюдаемыми характеристиками объекта, а в конечном счете — между объектом и субъектом познания или управления.

2. Перевод показателей в переменные.

Переменной называется понятие, которое может принимать различные значения. Возраст является переменной. У нее целый ряд значений: 6 месяцев, 18 лет, 47 лет и т.д. Большинство социологических исследований стремится выявить и измерить вариации, характерные для одного специфического явления, а затем объяснить эти вариации воздействием другого явления. Первое явление называют зависимой переменной. Второе, объясняющее или служащее причиной первого, называют независимой переменной.

В ходе первой и второй стадии прежде всего выявляются ключевые понятия и уточняется их содержание.

 $^{^2}$ Индикатор [< лат. indicator указатель] – прибор, устройство, элемент, отображающий ход процесса или состояние объекта наблюдений, его качественные либо количественные характеристики [63].

Теоретические переменные, в отличие от платоновских идей, не существуют "сами по себе", ожидая, когда мы наткнемся на них. Они не имеют какого-то абсолютного, раз и навсегда определенного значения. Их значение определяется контекстом употребления, концептуальной схемой, которую мы используем. Например, если мы используем "религиозность" как понятие, характеризующие роль некоей конфессии в политическом укладе национального государства, наибольший интерес для нашего исследования могут представлять агрегированные (т.е. относящиеся к надындивидуальному уровню) переменные, показывающие роль церкви в поддержании нормативной системы общества, в принятии политических решений [27, с.87-88].

Описанная процедура называется концептуализацией (или эмпирической интерпретацией).

Концептуализация понятия — последовательная конкретизация содержания понятия, дающая возможность выйти на такие проявления изучаемых явлений, непосредственно недоступных восприятию, но которые поддаются фиксации и измерению. Главная задача — уточнить понятие, сведя его к эмпирическим признакам (показателям).

Например, понятие "отношение к труду" можно разложить на ряд характеристик: производительность труда, трудовую инициативу, трудовую дисциплину и т.д.

Большую сложность, как это ни странно, представляет уточнение понятия "пол". "Если мы, к примеру, собираемся проверить гипотезу о влиянии половой идентичности на социальные достижения, то нам недостаточно просто разбить наших респондентов на "муж." и "жен.": внутригрупповой разброс показателей успешности наверняка окажется очень велик, и вся наша объяснительная схема "поплывет". В действительности нам лучше интерпретировать "половую идентичность" как некий континуум, плавный переход от жесткого полоролевого стандарта к другому, от крайне "маскулин-

ности"³ к "феминности"⁴. Используя соответствующие показатели и шкалы, мы скорее всего обнаружим, что большего социального успеха добиваются люди, не следующие жестким предписаниям традиционной половой роли" [27, с.87].

Найти значимую переменную и выявить затем индикаторы ее измерения — задача очень сложная. В философии и социологии часто рассуждают об "умном видении" эмпирической реальности — способности исследователя видеть головой, а не глазами, найти главное в загроможденном подробностями мире.

Г.С. Батыгин описывает процедуру поиска релевантной переменной на интересном примере. "Представим себе немыслимой сложности задачу - найти настоящую принцессу. Для социолога социальный статус принцессы устанавливается просто: импортное платье с драгоценностями, настойчивые уверения людей из свиты, в конце концов – паспортные данные. Но что делать, если принцессто хоть отбавляй, да вот настоящие ли они? Сказочный андерсоновский принц объездил весь свет, да так и вернулся домой ни с чем и загоревал - уж очень хотелось ему достать настоящую принцессу. Проблема была решена в феноменологическом ключе: стоящая у ворот под дождем принцесса оказалась самой что ни на есть настоящей - она была настолько деликатна, что почувствовала горошину через сорок тюфяков и пуховиков" [10, с.]. Здесь описывается принцип идеальной типизации - чтобы понять природу реальных связей, надо сконструировать "нереальные". Г.С. Батыгин заключает: "Социологические данные – лишь материал, который организуется таким образом, чтобы они заговорили".

³ *Маскулинность* (лат. masculinus - мужской) – комплекс характерологических особенностей, традиционно приписываемых мужчинам. Это – сила, жестокость и пр.

⁴ Феминность (от лат. femina - женщина, самка) - комплекс психологических особенностей, традиционно приписываемых женщине. Это - характерологические черты мягкости, готовности помочь и пр.

 $^{^5}$ Релевантность – смысловое соответствие между информационным запросом и полученным сообщением.

3. Перевод переменных в индикаторы.

Индикатор — факт, используемый для социологического измерения. Индикатор выступает как фрагмент действительности, наделенный экспериментальными функциями приборов-измерителей и представляющий изучаемый объект в исследовательской ситуации.

Дж. Б. Маннгейм и Р.К. Рич приводят следующий пример простейшей операционализации.

Допустим, мы хотим проверить гипотезу о том, что минеральное удобрение, внесенное на одном поле, в большей степени стимулирует рост растения, чем естественные питательные вещества, обнаруженные на другом поле. Рост – абстрактное понятие. Мы не можем увидеть его непосредственно, необходимо перевести рост в эмпирически наблюдаемую переменную, так чтобы мы могли определить, когда одно растение характеризуется им в большей степени, чем другие. Можно представить понятие роста с помощью переменной достигаемая высота, поскольку высота эмпирически наблюдаема <...> Можно допустить, чтобы высота была представлена таким показателем, как длина в дюймах, и измерить растения с помощью мерной ленты. Тогда данные, считываемые с мерной ленты, становятся значениями, которые приписываем растениям по переменной высота... Итак, мы перешли от абстрактного понятия рост к переменной высота и далее к показателю длина в дюймах [49, с.76].

Как же придумываются индикаторы? Американский социолог Поль Лазарсфельд следующим образом рассказывает об индикаторах: "В своей работе "Значение истины"Уильям Джеймс писал: "Положим, мы говорим, что такой-то человек осторожен. Конкретнее это означает, что он страхуется, "ставит на двух лошадей сразу", "семь раз отмерит, один раз отрежет" и т.д. Чтобы подчеркнуть его постоянное свойство, не перечисляя все подобные типы поведения и абстрагируясь от них, его называют "осторожным". От образа Джеймс переходит к ряду индикаторов, подсказываемых здравым смыслом. В действительности никто не думает, что "осторожный" человек всегда будет "отмерять семь раз" или будет страховаться от

всех возможных опасностей. Вместо этого мы говорим о вероятности того, что этот человек поступит так-то и так-то в отличие от менее осторожного человека. Кроме того мы знаем, что индикаторы осторожности могут отличаться в зависимости от социального окружения индивида" [43, с.139].

Социальная реальность и социологические понятия многомерны, поэтому найти точные индикаторы сложно. Они должны отражать эту многомерность, тем более что любая операционализация приводит к некоторому упрощению и потере смысла. Приведем некоторые примеры из области социальных наук.

⇒ Операционализация понятия "экономическое сознание" осуществляется посредством следующей таблицы [38, с.403]:

Показатели	Переменные	Индикаторы
Отношение к труду	Развитие субъектив- ных побудителей и практических усилий, направленных на са- мореализацию в тру-	Мотивы, установ- ки, стереотипы, удовлетворенность, инициативность, качество работы, дис-
	де	циплинированность, заработок
Отношение к собственности	Субъективное восприятие Реальное совпаде- ние	Мое, наше, чужое
Отношение к производ- ству	Субъективное вос- приятие как источни- ка благ, потребления. Фактическое трудо- вое поведение	Понимание, оценки, установки, события
Отношения между работниками	Состояние груп- повой солидарно- сти, социально- психологического микроклимата, состя- зательности	Общение, сопереживание, симпатии, общие ценностные ориентации, интересы, типы поведения

 $[\]Longrightarrow$ В качестве индикаторов *политических ориентаций индивида* используют сложную схему [57, с.13], которую приводим в виде таблицы:

Ориентация	Операциональное определение	
	Нация граждан; политические образования	
Политическая	и группы, относительно которых индивид	
идентификация	настроен позитивно или негативно; полити-	
	ческие образования и группы, в которые ин-	
	дивид вовлечен наиболее глубоко	
	Готовность сотрудничать с различными	
Политическая	группами в различных социальных акци-	
вера	ях; членство в группах; оценка деятельно-	
	сти групп с точки зрения того, заслуживает	
	ли она доверия, каковы ее мотивы	
	Частота голосований и других типов поли-	
Политическая	тической активности; знания о политиче-	
компетентность	ских событиях и их влиянии на человека;	
	интерес к политике	
И др.	И др.	

- ⇒ В известном эксперименте Ю. Уилкокс и Дж. Митчела индикатором уровня самооценки служила величина росписи. У "исключенных" из группы испытуемых снижалась самооценка, что выражалось в уменьшении размера росписи.
- ⇒ При вопросе "Как часто нарушаются нормы?" возможен индикатор "уровень преступности". При вопросе "С какой легкостью люди исполняют свои гражданские обязанности?" возможным индикатором является участие в благотворительности.
- ⇒ В качестве индикаторов *научно-технического уровня про- изводства* можно выбрать число инженеров и ученых или число действующих в стране ЭВМ или запущенных спутников [79, с.223].
- \Longrightarrow При уже упоминаемом выше исследовании религиозности как понятия характеризующего роль некоей конфессии в политическом укладе национального государства, могут быть использованы следующие индикаторы: количество церковных приходов, наличие обязательных уроков закона божьего в государственных школах, участие церковных иерархов в работе законодательной власти и т.п.
- ⇒ Операционализация понятия "успешность адаптации". 6 Могут быть выделены следующие переменные: 1) картина предстоящего жизненного пути; 2) субъективная (внутренняя)

⁶ Адаптация – процесс активного приспособления.

адаптированность, варьирующая по степени и области проявления. Первая переменная получила инструментальную операционализацию в шкалах окончательности профессионального выбора, трудовой, статусной и территориальной мобильности, притязаний на производственную независимость, а вторая переменная — в шкалах удовлетворенности различными сторонами жизни, оценок своего развития в ближайшем прошлом и будущем [28].

 \implies выявление 7 индикаторов "политического риска":

	Экономическая	Политическая
	сфера	сфера
	Основные показате-	Основные показате-
Внутренние	$\it {\it nu}$: индекс цен, уро-	<i>ли</i> : Забастовочная
факторы	вень заработной пла-	активность, воору-
	ты, процентные став-	женные выступления
	ки, денежное предло-	и террористические
	жение	акты, количество и
		условия содержа-
		ния политических
		заключенных, уро-
		вень официальной
		коррупции
	Основные показа-	Основные показате-
Внешние	тели: валютный	$\it nu$: соблюдение прав
факторы	курс (официальный	человека, оппозиция
	и неофициальный),	за пределами стра-
	изменение между-	ны, причастность к
	народных условий	террористическим ак-
	заимствования	там в третьих стра-
		нах, дипломатические
		и торговые конфлик-
		ты

2.3. Модели индикаторов

В социологии часто используются следующие модели определения индикаторов и измерения переменной (И.Ф. Девятко [27, с.90-91]).

⁷По материалам статьи И.А. Подгозина [58, с.31].

1. Модель измерения латентной переменной несколькими эффект-индикаторами.

Поскольку измерение в социологии носит непрямой характер, обычно социолог использует несколько индикаторов для каждой переменной. Для первой модели характерным является то, что все индикаторы являются *следствиями*, результатами действия латентной⁸ переменной (рис.2.1).

Рис. 2.1: X – латентная переменная; X1, X2, X3, X4 – индикаторы, которые являются следствием действия переменной X; e1, e2, e3, e4 – ошибки измерения индикаторов.

Пример: участие в выборах и ежедневное чтение политических новостей в газете — это индикаторы латентной переменной "политической активности" или "вовлеченности в политику".

2. Модель измерения латентной переменной причинными индикаторами.

Такая модель используется в следующем случае. Например, мы можем использовать такие индикаторы, как потеря работы, развод, болезнь для измерения латентной переменной "жизненный стресс". В этом случае мы не предполагаем, что

⁸ Латентный – скрытый, внешне не проявляющийся.

латентная переменная является причиной своих индикаторов, скорее травмирующие жизненные обстоятельства могут быть причиной стресса 9 (рис.2.2).

Рис. 2.2: Y – это латентная переменная; Y1, Y2, Y3, Y4 – причинные индикаторы

В заключение укажем свойства индикаторов:

- Вероятностный характер отношений индикатора и теоретического свойства.
- Неоднозначность индикаторов. Один и тот же индикатор может указывать на разные теоретические свойства.
- Множественность индикатора. Необходимость формирования совокупности индикаторов для фиксирования теоретического свойства.
- Контекстуальность индикатора. Индикатор указывает на развитость теоретического свойства только в определенном контексте¹⁰.

 $^{^9\,}Cmpecc~[<$ англ. stress напряжение]— состояние напряжения, возникающее у человека или животного под влиянием сильных воздействий [63].

^[63]. 10 Контекст [< лат. contextus тесная связь, соединение] – законченный в смысловом отношении отрывок письменной или устной речи, необходимый для определения смысла отдельного входящего в него слова или фразы [63].

2.4. Измерение в социологии

Операционализация позволяет социологу перейти к стадии измерения. Известный американский социолог Поль Лазарсфельд, анализируя процедуру измерения, пишет:

"Испытываем ли мы какие-то чувства или принимаем какие-то решения, мы используем при этом (часто сами этого не подозревая) определенные измерения. Мы говорим, что сегодня у нас настроение лучше, чем вчера. Мы нанимаем прислугу только после того, как решим, что эта женщина подходит нам больше, чем другая. Те из нас, у кого есть дети, должны вести себя с ними так, если бы мы знали, какое соотношение между свободой и дисциплиной является для них наилучшим <...> Члены комиссии по отбору абитуриентов в колледж должны разработать тщательные критерии выбора среди кандидатов; экономический успех завода может в значительной степени зависеть от знаний директора о наиболее эффективных формах руководства рабочими бригадами. Коль скоро мы социологи. Одной из наших задач является выяснение природы измерения и квантификации в различных областях, затрагивающих социальные отношения" [43, с.134].

Измерением в социологии называют процедуру, с помощью которой объекты измерения, рассматриваемые как носители определенных отношений, отображаются в некоторую математическую систему с соответствующими отношениями между элементами этой системы.

При измерении каждому объекту приписывается определенный элемент используемой математической системы (обычно действительные числа). Это означает, что мы можем с большей точностью говорить о том, в какой степени данный объект наблюдения (индивид, группы, город, организация, социальная система) проявляет свойство, которое представлено измеряемой переменной. Таким образом, процедура измерения предполагает использование определенной шкали¹¹ изме-

¹¹ Шкала [< лат. scala лестница] − 1) последовательность чисел, служащая для количественной оценки каких-либо величин; 2) линейка (или</p>

рения.

Шкала — это инструмент измерения, который представляет собой числовую систему, где свойства эмпирических объектов выражены в виде свойств числового ряда. Различают следующие типы шкал:

- Номинальные шкалы используются только для качественной классификации. Это означает, что данные переменные могут быть измерены только в терминах принадлежности к некоторым, существенно различным классам; при этом вы не сможете определить количество или упорядочить эти классы. Например, вы сможете сказать, что два индивидуума различимы в терминах переменной А (например, индивидуумы принадлежат к разным национальностям). Типичные примеры номинальных переменных пол, национальность, цвет, город и т.д.
- Порядковые шкалы позволяют ранжировать (упорядочить) объекты, указав, какие из них в большей или меньшей степени обладают качеством, выраженным данной переменной. Однако они не позволяют сказать "на сколько больше" или "на сколько меньше". Типичный пример порядковой переменной это социоэкономический статус семьи. Мы понимаем, что верхний средний уровень выше среднего уровня, однако сказать, что разница между ними равна, скажем, 18% мы не сможем. Само расположение шкал в следующем порядке: номинальная, порядковая, интервальная является хорошим примером порядковой шкалы. Так же данная шкала измеряет уровень согласия с утверждением, степень удовлетворенности.
- Интервальные шкалы позволяют не только упорядочивать объекты измерения, но и численно выразить и сравнить различия между ними. Данная шкала измеряет в интервальных значениях возраст, доход и пр.

циферблат) с делениями в различных измерительных приборах [63].

2.5. Операционализация и измерение в социологии и в естествознании

Операционализация и измерение в естественных и социальных науках имеют много общего. Прежде всего, это касается предполагаемой возможности перехода от абстрактного к конкретному. Однако существуют и различия, которые обусловлены фундаментальными причинами. Во-первых, разной природой знания гуманитарного и естественнонаучного. Во-вторых, разной природой языка точных наук и языка гуманитарного.

Например, казалось бы допустимо следующее заявление: "Результаты оценивания респондентами престижности университетов показывают высокий или низкий престиж данного учебного заведения приблизительно так же, как показания манометра показывают давление". Однако эта аналогия весьма условна.

Измерение в социологии обычно носит непрямой характер: отдельный показатель может отражать влияние более чем одной переменной, а каждая переменная может иметь множество индикаторов, т.е. операциональные определения теоретических понятий в социологии отличаются от таковых, скажем, в физике [27, с.90].

Обратим внимание на особенности измерения в точных науках. "Физика использует в основном числовые переменные, значения которых измеряются с помощью приборов в ходе экспериментов. В законах природы, изучаемых физикой, большую роль играет статистический детерминизм. Связи между характеристиками имеют заведомо функциональный характер. Это позволяет при проведении опытов часто ограничиваться выборками малого объема (иногда в несколько единиц). По этим причинам в среднем размеры матриц данных в физике значительно меньше, чем в социологии, и содержат числа, а не тексты или произвольные образы...

Физические закономерности редко описываются функциями с большим числом аргументов, скажем больше десятка. Физические измерения, как правило, требуют специальной техники и заметных затрат. В физических экспериментах одновременно редко измеряют более десяти переменных. Чаще всего дело ограничивается двумятремя, в то время как остальные принимают постоянные значения и играют роль параметров. При проведении опытов в физике (в отличие от социологии) велика роль теории, которая позволяет заранее оценить предполагаемый характер экспериментальных кривых. По этой причине словари переменных в физике включают, как правило, до десятка переменных, хотя бывают и исключения...

В основе физических измерений лежит сопоставление измеряемой величины с другой величиной, принятой за единицу. Выбор единиц измерения для основных переменных произволен, но определенен. Постоянство и совершенствование эталонов, по которым формируются единицы измерения, поддерживается специальными международными институтами и законодательным путем. Единица измерения гарантирует числовой характер данных. Благодаря единице любой результат измерения можно выразить в целых числах. Наличие единиц дает возможность физикам в теоретических построениях пользоваться всеми свойствами чисел, вытекающими из свойств натурального ряда. В начале 20 века были сделаны попытки построить единую теорию измерений в физике и в гуманитарных дисциплинах, положив в качестве определяющего признака измерения число и объявив при этом, что наличие единицы измерения не обязательно для получения числового результата. Эта теория, известная как "психологическая теория измерений", благополучно превратилась в теорию числового кодирования, так и не сделавшись теорией, объясняющей связь между измерениями, используемыми в физике с измерениями, используемыми в социологии." [70].

Из приведенной цитаты вытекает заключение: в социологии даже в том случае, когда встречается функциональная зависимость, число переменных — аргументов функции очень большое, если не сказать, что огромное:

"В медицине используются тысячи числовых и еще большее количество текстовых переменных. Общее число переменных, используемых в медицине, по порядку величины промежуточное между физикой и социологией и насчитывает десятки тысяч переменных" [70].

Откуда берется в социологии такое число переменных?

"Названия переменных в социологии конструируются из реплик, которые служат вопросами и ответами при опросах. Тексты вопросов и ответов суть реплики в диалоге. Социологические переменные либо сводятся к репликам на естественном языке, либо конструируются из них. Количество различных вопросов, которые социологи могут включить в свои анкеты, по порядку величины сопоставимо с количеством слов и выражений в словаре естественного языка. Оно исчисляется сотнями тысяч единиц"[70].

Такие заявления могут вывести из равновесия любого исследователя, пожелавшего применить свои навыки, приобретенные в работе с физическим явлениями, к изучению социальных систем. Но полезно вспомнить, что в математике функции, зависящие от бесконечного числа переменных, называются функционалами, а методы оперирования с ними являются сожержанием специально разрабтанного функционального анализа. Более того, в так называемой квантовой теория поля физики имеют дело с объектами, имеющими бесконечное число степеней свободы, и успехи этой теории являются яркими и впечатляющими. Следовательно, можно надеяться, что и в социологии ситуация в плане ее математизации не является столь безнадежной, как кажется на первый взгляд.

Глава третья

Системы

Глава 3

Социальнопсихические системы

В этой главе обсуждаются возможные подходы к математическому моделированию социально-психических процессов. Речь идет о создании модели развития психических процессов в больших социальных группах, в результате которых принимаются кардинальные решения в судьбе как конкретного общества, так и всей земной цивилизации. В некотором смысле предпринимается попытка создания математической социальной психологии. Под последней часто понимается набор математических методов, используемых в традиционных психологических исследованиях. Такое понимание сущности математической психологии эквивалентно тому, как если бы под математической кулинарией понималось обучение поваров солить суп в соответствии с усредненным вкусом посетителей ресторана, выявленного при проведении опроса. Под математической социальной психологией мы имеем в виду принципиально новую науку, которая придет на смену современной социальной психологии и со временем утратит прилагательное "математическая", подобно тому как современная физика, унаследовав свое название от физики времен Аристотеля, не может существовать в какой либо иной форме, чем в форме математических структур.

3.1. Учение В.М. Бехтерева о коллективных рефлексах

Для построения математической модели социальнопсихических процессов воспользуемся идеями В.М. Бехтерева (1857-1927), который объяснял поведение больших групп индивидов существованием коллективных согласованных реакций, действий людей на внешние воздействия. Эти реакции он называл коллективными рефлексами¹. Теория В.М. Бехтерева основывается на физиологии высшей нервной деятельности, существенный вклад в развитие которой внесли русские физиологи И.М. Сеченов и И.П. Павлов [26].

3.1.1. Рефлексология

И.М. Сеченов в своих замечательных работах "Рефлексы головного мозга" и "Кому и как разрабатывать психологию?" [62] достаточно аргументированно объяснил, что психические процессы следует рассматривать как нервные. Другими словами, психические процессы мы должны описывать как цепи последовательных $pe\phi$ лексов, т.е. откликов организма на внешние воздействия.

По существу, И.М.Сеченов сводит психологию к физиологии, и это не следует рассматривать как недостаток. Напротив, вместо того, чтобы воздвигать препятствия на пути математизации и, следовательно, придания психологии характера точ-

¹ Рефлекс [< лат. reflexus отражение] – ответная реакция организма на те или иные воздействия, осуществляющаяся через нервную систему; различают безусловные рефлексы (врожденные) и условные рефлексы (приобретаемые организмом в течение индивидуальной жизни) [63].

 $^{^2}$ Psyché (гр.) – душа.

ной науки, И.М.Сеченов сделал первый шаг в этом направлении, заявив о необходимости основываться в построении научной психологии на естествознании, и, в частности, на физиологии. Против такого подхода, как правило, используется аргумент о невозможности сведения всего богатства человеческой психики к физиологическим и биологическим процессам. Почти такие же возражения используются против теории этногенеза Л.Н. Гумилёва. В сущности, здесь имеет место, увы, традиционное противоборство "физиков" и "лириков", т.е. противоборство точных методов, присущих представителям естествознания, и интуитивных, присущих представителям гуманитарных наук. Опыт человечества показывает, что первые, как правило, расширяют область приложения своих методов, а вторые, уступают свои позиции. Однако если человечество обречено на бесконечное познание, то следует признать, что владения первых всегда будут конечными, а вторых - бесконечно обширными. На фоне успехов в изучении природы точные исследования в сфере общества явно пробуксовывали, но связано это было с тем, что не было инструмента анализа сложных систем. Думается, что ошеломляющий прогресс в области компьютерной техники и возможности компьютерного моделирования (simulation) позволят добиться существенного продвижения в изучении общества.

Развивая идеи И.М. Сеченова В.М. Бехтерев создал рефлексологию и, что особенно ценно для наших целей, коллективную рефлексологию [13].

3.1.2. Бихевиоризм

Прежде, чем дать сведения о коллективной рефлексологии, уместно рассказать о бихевиоризме³ — естественно-научном направлении в психологии, возникшем в Америке в начале XX века и созвучном с идеями объективной психологии, развивавшимися в России [14]. Основатель бихевиоризма американец Джон Уотсон "утверждал, что предметом психологии могут

 $^{^3\,}Behaviour\,\,(a$ нгл.) — поведение.

быть лишь прямо наблюдаемые явления, такие как различные реакции человека и животных" [67, с.6]. "Психология как наука о поведении занимается предсказанием и управлением действиями человека, а не анализом его "сознания" [67, с.127].

Кроме понятия "реакция" бихевиористы вводят понятие "стимул". Cmumyn — это группа факторов, являющихся причиной той или иной peakuuu.

Рис. 3.1: Концепция "стимул - реакция"

Бихевиоризм рассматривает в качестве основного механизма общественной жизни механизм условных рефлексов. Поведение индивида является реализацией однозначной жесткой последовательности "стимул-реакция" $(S \to R)$ (рис. 3.1). Согласно бихевиоризму, при рождении у индивида имеется некоторое количество врожденных "схем поведения", над которыми в процессе научения настраиваются более сложные навыки, вплоть до образования сложнейших "репертуаров поведения". Теоретическая схема $(S \to R)$ стала классической, и отчетливо либо скрытно присутствует в значительном числе научных исследований различных областей психики [67, с.680].

3.1.3. Коллективная рефлексология

Коллективная рефлексология⁴ В.М. Бехтерева представляет собой систему взглядов на поведение больших групп людей, основанную на достижениях физиологии высшей нервной деятельности.

Предмет коллективной рефлексологии — это "...изучение возникновения, развития и деятельности собраний и сборищ...

 $^{^4}$ Термин "коллективная рефлексология" не нашел распространения и уступил место термину "социальная психология".

проявляющих свою соборную соотносительную деятельность как целое, благодаря взаимному общению друг с другом входящих в них индивидов" [13, с.100].

Для объяснения социальных связей Бехтерев привлекал законы неорганического мира, такие, как тяготение, сохранение энергии и др. Иначе говоря, коллективная рефлексология была творением человека, привыкшего опираться на естественные науки.

Социально-психическую деятельность В.М. Бехтерев сводит к комбинациям коллективных рефлексов. Он выделяет следующие их группы:

- наследственно-органические рефлексы (инстинкты);
- коллективное настроение;
- коллективные мимико-соматические рефлексы;
- коллективное сосредоточение;
- коллективное наблюдение;
- коллективное творчество;
- согласованные коллективные действия.

Коллективный рефлекс — это ответная простая синхронная реакция группы людей на внешний стимул. Поведение группы представляет собой цепь последовательных коллективных рефлексов.

3.2. Два пути формализации социальной психики

Рассмотрим возможные подходы к математическому и компьютерному моделированию социально-психических процессов. Речь идет о создании модели развития психических процессов в больших социальных группах. Возможны два пути построения модели коллективных психических действий людей.

Первый основывается на констатации первичности коллективных действий. Социально-психическое коллективное действие рассматривается как система, составляющими которой являются такие подсистемы коллективных рефлексов, как наследственно-органические рефлексы (инстинкты), коллективное настроение и коллективные мимико-соматические рефлексы, коллективное сосредоточение и коллективное наблюдение, коллективное творчество и, наконец, согласованные коллективные действия.

Второй путь моделирования коллективных психических действий людей предполагает, что коллективные действия должны сложиться из психических действий отдельных индивидов. Если иметь в виду компьютерное моделирование, то этот путь тесно связан с идеями "искусственной жизни" и мульти-агентного моделирования [24]. Но если предварительно, до компьютерных экспериментов, ставить целью создание содержательной математической модели социальнопсихических процессов, то имеется возможность применить статистические методы. Предлагается рассматривать группу людей как статистический ансамбль в пространстве и во времени. Каждый индивид, составляющий рассматриваемую группу людей, описывается совокупностью рефлексов и величиной, характеризующей тип психики индивида. Основные характеристики социальных действий в данном случае описываются посредством специальной функции, называемой плотностью распределения членов группы, заданной в абстрактном фазовом пространстве.

3.2.1. Модель коллективных рефлексов

Группы людей или общество в целом совершают те или иные коллективные действия в ответ на изменения, происходящие во внешнем мире. Эти действия называются коллективными рефлексами. Следуя В.М. Бехтереву, перечислим коллективные рефлексы: наследственно-органические рефлексы I (ин-

стинкты), коллективное настроение n и коллективные мимикосоматические рефлексы m, коллективное сосредоточение c и коллективное наблюдение N, коллективное творчество T и, наконец, согласованные коллективные действия Δ .

Таким образом, $R_{n_3+1}=I, R_{n_3+2}=n, R_{n_3+3}=m, R_{n_3+4}=c, R_{n_3+5}=N, R_{n_3+6}=T, R_{n_3+7}=R_{n_4}=\Delta$ (см. 1.2), а уравнение (1.7) по аналогии с видом уравнений, принятых в [22], – это система дифференциальных уравнений

$$\frac{dI}{dt} = k_{II}I + k_{In}n + k_{Im}m + k_{Ic}c + \\
+k_{IN}N + k_{IT}T + k_{I\Delta}\Delta$$

$$\frac{dn}{dt} = k_{nI}I + k_{nn}n + k_{nm}m + k_{nc}c + k_{nN}N + \\
+k_{nT}T + k_{n\Delta}\Delta$$

$$\frac{dm}{dt} = k_{mI}I + k_{mn}n + k_{mm}m + k_{mc}c + \\
+k_{mN}N + k_{mT}T + k_{m\Delta}\Delta$$

$$\frac{dc}{dt} = k_{cI}I + k_{cn}n + k_{cm}m + k_{cc}c + k_{cN}N + \\
+k_{cT}T + k_{c\Delta}\Delta$$

$$\frac{dN}{dt} = k_{NI}I + k_{Nn}n + k_{Nm}m + k_{Nc}c + \\
+k_{NN}N + k_{NT}T + k_{N\Delta}\Delta$$

$$\frac{dT}{dt} = k_{TI}I + k_{Tn}n + k_{Tm}m + k_{Tc}c + \\
+k_{TN}N + k_{TT}T + k_{T\Delta}\Delta$$

$$\frac{d\Delta}{dt} = k_{\Delta I}I + k_{\Delta n}n + k_{mm}m + k_{\Delta c}c + \\
+k_{\Delta N}N + k_{\Delta T}T + k_{\Delta\Delta}\Delta$$

Коэффициенты $k_{\cdot\cdot\cdot} = k_{\cdot\cdot\cdot}(\mathbf{B},\mathbf{E},\mathbf{S},I,n,m,N,T,c,\Delta)$ определяют зависимость рефлекторной деятельности коллективов от 1) внешней природной среды \mathbf{B} (например, от наличия пищи или природной стихии в виде, скажем, засухи); 2) культурноэтнического окружения \mathbf{E} (падение пассионарного напряжения естественным образом отражается на поведении людей,

входящих в этнос); 3) изменений политико-экономической ситуации **S** в обществе. Однако, учитывая значительную величину биологических и этнических "длин волн", следует брать во внимание только нетипичные (быстро протекающие) явления в поведении биосферы и этносферы.

Очевидно, что зависимость (или независимость) конкретного коэффициента k.. от того или иного коллективного рефлекса — отвечает возможности одного рефлекса породить другой, т.е. рефлекс как реакция, социальное действие, становится раздражителем и приводит в движение другой коллективный рефлекс. Например, коллективное сосредоточение, имевшее место у толпы при заслушивании оратора на митинге становится причиной рефлекса согласованных коллективных действий, выразившихся в "бурных и продолжительных аплодисментах" или в участии в уличных беспорядках. Точный вид всех коэффициентов k.. еще предстоит выяснить.

Как решается вопрос о моделировании принятия элитой решения, кардинально меняющего ситуацию внутри данного общества или отношения между государствами (например, вступление в войну)? В первом приближении следует принять, что элита состоит из пассионариев в которые на момент принятия кардинального решения оставляют в стороне внутренние разногласия (при моделировании гражданской войны пассионариев, как и гармоничных людей, надо разделить на две группы (у субпассионариев деление вряд ли целесообразно)). В таком случае для кардинального решения необходимо наличие однополярных согласованных коллективных действий

⁵ Элита [(фр.) élite] – наиболее видные представители какой-либо части общества, группировки и т п. [63].

⁶ Пассионарий – индивид, у которого подавлен инстинкт самосохранения. Подробности в книге Л.Н. Гумилёва [19].

⁷ Гармоничный индивид – представитель основной массы членов этноса. Этнос – естественно сложившийся коллектив людей, выделяющийся среди других коллективов оригинальным стереотипом поведения и противопоставляющий себя всем другим таким же коллективам, исходя из ощущения "свой – чужой" [19, с.499].

 $^{^8}$ Субпассионарий — индивид, поведение которого определяется инстинктом самосохранения.

у пассионариев, гармоничных людей и даже субпассионариев. Таким образом, если $\Delta_P, \Delta_M, \Delta_S$ — уровень согласованных коллективных действий соответственно пассионариев (элиты), гармоничных людей (народных масс) и субпассионариев (бродяги, бомжи и пр.), то условие принятия кардинального решения в момент времени t имеет, например, следующий вид

$$\operatorname{sgn}\!\left(\frac{d\Delta_P}{dt}\right) \cdot \operatorname{sgn}\!\left(\frac{d\Delta_M}{dt}\right) \cdot \operatorname{sgn}\!\left(\frac{d\Delta_S}{dt}\right) > 0.$$

Сущность данного совместного коллективного рефлекса согласованных коллективных действий, именуемого выше принятием кардинального решения, в том, что порождается некоторое социальное действие, направленное во имя торжества "добра"или "зла". Что же конкретно восторжествует? В рамках коллективной рефлексологии, т.е. "коллективной физиологии", на такой вопрос ответить нельзя. Нужны нравственные критерии. Но последние относятся уже к "высшей сфере" психоистории – антропосфере, которая в данной книге не рассматривается. Но думается, что "добро" и "зло" должны моделироваться в математической антропологии временными функциями A(t) и 3(t), сравнение численных значений которых в момент времени t и определяет нравственный характер совместного коллективного рефлекса согласованных коллективных действий, имевших место в данный момент истории данного народа. При этом для уточнения, какое из них "добро", какое "зло", полезно иметь в виду, что на социальном уровне, в социосфре, описываемой в духе Т. Парсонса [22], выделена функция D(t) (см. гл.9). Эта функция характеризует уровень социальной интеграции или механической солидарности по Дюркгейму и поставлена в соответствие системе поддержания институционализированных этнических образцов, которые у каждого народа задают нормы общественного поведения (по крайней мере, на этапе зарождения и подъема этноса). Очевидно, что "добро" A(t) и функция A(t) должны коррелировать, как-то согласовываться на раннем этапе развития этноса. Естественно считать, что представление о "добре" – это общечеловеческое достижение и на ранних этапах развития любого этноса оно одно и то же – одно для всех.

3.2.2. Статистическая модель

Рассмотрим теперь группу людей как статистический ансамбль в пространстве и во времени с координатами $(\bar{x},t), \bar{x}=(x_1,x_2)$. Мы ограничимся плоским пространством, т.е. двумерной величиной \bar{x} , поскольку речь идет о поверхности Земли.

Каждый индивид, составляющий рассматриваемую группу людей, помимо координат его местонахождения на поверхности \bar{x} Земли и момента времени t, описывается величиной $r \in \mathbb{R}^l$ — совокупностью рефлексов и величиной $p \in \mathbb{R}^l$ — нервным импульсом, характеризующим тип психики индивида [46, с.128].

Плотность распределения членов группы в фазовом пространстве \mathbb{R}^{2l+3} переменных (r,p,\bar{x},t) обозначим через $w(r,p,\bar{x},t)$, а через $H(r,p,\bar{x},t)$ – коллективную психическую энергию, определяющую ментальное поле. Пусть $P(r,p,\bar{x},t)$ характеризует появление, исчезновение и перемещение членов группы.

Математическое описание социально-психических действий группы сводится к заданию трех функций $H(r,p,\bar{x},t),w(x,p,\bar{x},t),P(r,p,\bar{x},t).$ Они не являются независимыми, а связаны уравнением "движения" вида [2, 3]:

$$P * w = \sum_{k=1}^{l} \left(\frac{\partial w}{\partial p_k} * \frac{\partial H}{\partial r_k} - \frac{\partial w}{\partial r_k} * \frac{\partial H}{\partial p_k} \right), \tag{3.2}$$

где * означает свертку по переменной (\bar{x}, t) ,

$$P * w = \int_{\mathbb{R}^3} P(r, p, \bar{x} - \bar{q}, t - \tau) w(r, p, \bar{q}, \tau) d\bar{q} d\tau.$$

Вполне возможно, что, например,

$$P * w = \frac{\partial w}{\partial t} - \mathcal{D}(r, p) \sum_{k=1}^{2} \frac{\partial^{2} w}{\partial x_{k}^{2}}.$$

⁹ Mental (англ.) - мысленный, психический.

Коллективный рефлекс $R_i(t)$, (i=1,...,7) любой из семи подсистем системы коллективных действий определим как

$$R_i(t) = \int_{\mathbb{R}^{2i+2}} w(r, p, \bar{x}, t) r_i dr dp d\bar{x}, \quad (i = 1, ..., 7).$$
 (3.3)

Связь между данной моделью и моделью из 3.2.1 заключается в требовании, чтобы функции (3.3) удовлетворяли уравнениям (3.1). Очевидно, что такое требование позволит уточнить вид уравнения "движения" (3.2) и обратно, конкретный выбор уравнения "движения" (3.2) предопределяет вид дифференциальных уравнений (3.1).

3.2.3. Компьютерное моделирование коллективных рефлексов

Если бы нам была известна функция распределения $w(x,p,\bar{x},t)$, то можно было бы предсказывать коллективные рефлексы групп людей, т.е. их совместные психические действия. Можно пытаться найти уравнение "движения" (3.2). Это обычно удавалось в задачах естествознания, т.е. при описании "мертвой" природы. Мечта многих исследователей общества часто и состояла в том, что будут найдены уравнения, с помощью которых эволюция общества будет описываться так же, как движение планет, жидкостей или газов. Но уже в двадцатом веке такие идеи стали считаться наивными, механистическими. Слишком уж сложными предстают перед нами социальные системы.

Однако можно пытаться не искать как саму функцию распределения $w(x, p, \bar{x}, t)$, так и уравнения (3.2) на традиционном классическом пути математических построений. Современные компьютеры открыли перед исследователями иные возможности. Функция распределения может быть выявлена в ходе компьютерных экспериментов. Такие эксперименты основываются на идее моделирования мульти-агентных систем [24, 84]. Каждый член коллектива — это *агент*, наделенный набором простейших инстинктов. Агенты действуют, сообразуя свои

действия в соответствии с меняющейся средой. При реализации компьютерного моделирования проводится параллель между человеческим коллективом, состоящим из undueudoe, "искусственным обществом", состоящим из arenmoe, и средой объектно-ориентированного программирования, в которой выделяется понятие ofoekma. Эксперименты проводятся с помощью специально разработанных пакетов программ. Действия индивидов-агентов складываются с течением времени в некоторую картину коллективных действий. По существу, эта динамически меняющаяся картина представляет собой функцию распределения $w(r, p, \bar{x}, t)$.

3.3. Стохастическая модель коллективных рефлексов

Рассмотрим индивида, в поведении которого нас интересует рефлекс r. Поскольку рефлекс — это реакция, развертывающаяся во времени t на некоторое воздействие (стимул), то ничто не мешает нам записать, что динамика величины r описывается уравнением Ланжевена

$$\frac{dr}{dt} = -kr + \zeta(t), \quad t \ge 0, \tag{3.4}$$

где ζ случайная сила.

С помощью случайной силы ζ будем учитывать: во-первых, уникальные, не поддающиеся полному описанию черты психики рассматриваемого индивида; во-вторых, особые условия, в которых оказался конкретный индивид, входящий в изучаемую группу, и которые всегда следует учитывать, даже в том случае, когда индивид находится в плотном окружении других членов группы.

Выбор уравнения Ланжевена в качестве модели рефлекса индивида означает, что рефлекторное движение рассматривается нами как механизм возвращения организма к равновесному состоянию после того, как внешняя причина (среда) вывела его из этого состояния 10.

Стимул, вызвавший реакцию индивида, рассматриваем как мгновенное воздействие на индивида в момент t=0. Следовательно, вместо уравнения (3.4) имеем уравнение

$$\frac{dr}{dt} = -kr + \zeta(t) + r_0 \delta(t), \tag{3.5}$$

где $\delta(t)$ – это δ -функция Дирака, которую физики любят определять следующим образом

$$\delta(t - t_0) = \begin{cases} \infty, & t = t_0, \\ 0, & t \neq t_0, \end{cases}$$
$$\int_{-\infty}^{+\infty} \delta(t - t_0) dt = 1.$$

Вместо уравнения (3.5), решение которого ищется среди обобщенных функций, можно рассмотреть эквивалентную классическую задачу Коши [17, с.204-205]

$$\begin{cases} \frac{dr}{dt} = -kr + \zeta, \\ r|_{t=0} = r_0. \end{cases}$$

Пусть на отрезке времени [0,1] присутствуют только индифферентные 11 раздражители, т.е. стимулы, не вызывающие интересующий нас рефлекс. Затем в момент t=1 производится раздражение, вызывающее характерное рефлекторное движение. Математически описанная ситуация соответствует следующим двум задачам Коши для уравнения Ланжевена: до раздражения —

$$\begin{cases} \frac{dr}{dt} = -kr + \zeta, & t \in [0, 1), \\ r|_{t=0} = 0; \end{cases}$$
 (3.6)

¹⁰Такой взгляд на рефлекс критиковался А.А. Ухтомским [26, с.33].

 $^{^{11}}$ Индифферентный [лат. indifferens] – безразличный, безучастный, равнодушный.

после раздражения -

$$\begin{cases} \frac{dr}{dt} = -kr + \zeta, & t \in [1, +\infty), \\ r|_{t=1} = r_0, & r_0 > 0. \end{cases}$$
 (3.7)

Численное интегрирование 12 уравнений (3.6), (3.7) в виде графиков приведено на рис.3.2. Решение находилось для 500 индивидов, для каждого из которых слегка менялось начальное значение r_0 . Коллективный рефлекс определялся усреднением индивидуальных рефлексов по всей группе из 500 индивидов (рис.3.3). Случайный процесс $\zeta(t)$ имел гауссово распределение (белый гауссовый шум).

Насколько наша модель отвечает реальным рефлекторным движениям? Для того чтобы провести сравнение с действительными рефлексами, необходимо помнить, что прежде всего многое зависит от регистрирующей аппаратуры. Это означает, что получаемые кривые могут иметь различную форму. Однако для нас при сравнении важными являются следующие два момента: во-первых, рефлекс — это резкое изменение в характере поведения кривой и, во-вторых, индифферентные раздражители должны присутствовать в виде небольших по амплитуде отклонений кривой от некоторой воображаемой гладкой кривой.

Наконец, нужно помнить, что приводимая модель является скорее учебной, демонстрирующей возможности предлагаемой математической модели индивидуальных и коллективных рефлексов.

Итак, полезно сравнить модельные кривые, приведенные на рис.3.2 с изображениями реальных рефлексов, данных на рис.3.4 и 3.5.

 $^{^{12}}$ Интегрирование проведено студенткой М.С. Шаповаловой (физфак, ОмГУ).

Рис. 3.2: Модель рефлекторных движений двух индивидов в ответ на раздражение, произведенное в момент t=1

Рис. 3.3: Модель коллективного рефлекса, полученная усреднением рефлексов 500 индивидов.

Каждый всплеск кривых на рис. 3.4 и 3.5 – это отклики конкретного живого организма. Трудно предположить, что они являются отражением некоторого случайного процесса. А ведь именно случайность характерна для отклонений от среднего значения, изображенных на рис.3.2. Можно ли считать, что это означает непригодность предлагаемой модели коллективного рефлекса? Думается, торопиться с заключением не стоит. Во-первых, полезно вспомнить об исходной задаче. Мы пытались смоделировать простейший, можно сказать безусловный коллективный рефлекс группы людей, а это означает, что нас интересует только коллективная реакция на конкретный стимул. С точки зрения стороннего наблюдателя, фиксирующего только общие, синхронные действия группы, все остальные реакции индивидов являются индифферентными, т.е. ничего не значащими. Следовательно, им не придается никакого смысла и вполне допустимо воспринимать их как случайные.

Рис. 3.4: Спинально-стволовый полисинаптический рефлекс. Рефлекторные ответы мышц плечевого пояса при раздражении локтевого нерва на одноименной стороне. M- моторный ответ мышцы, F-"антидромный" разряд, ССПР-рефлекторный ответ [37].

Во-вторых, флуктуации, смоделированные нами и изображенные на рис. 3.2, следует трактовать с точки зрения ассоциативной психологии. "Классическая теория ассоциации 13 ... основана на следующей теореме. Если два переживания (или действия) a и b происходят вместе или в непосредственной близости, между ними устанавливается ассоциация. Эта ассоциация операционально определяется как вероятность (курсив мой — А.Г.) появления b, если имеет место одно a. Сила ассоциации есть функция количества повторений" [45, с.87]. Другими словами, после реакции a на раздражение (стимул X) в момент t=1 наблюдается пиковая реакция индивида (резкий всплеск кривой при t=1). Затем выведенный из равновесия организм индивида возвращается к нему по экспоненциально-

¹³ Ассоциация [< лат. associatio соединение] – в психологии – связь, образующаяся при определенных условиях между двумя и более психическими образованиями (ощущениями, восприятиями, представлениями, идеями и т.п.) [63].</p>

Рис. 3.5: Мигательный рефлекс. Рефлекторный ответ состоит из трех изолированных компонентов: R1 - ранний ипсилатеральный олигосинаптический ответ с латентностью 10-14 мс; R2 - поздний билатеральный полисинаптический ответ с латентностью 25-40 мс; R3 - поздний билатеральный полисинаптический ответ с латентностью 70-100 мс [81].

му закону, т.е. очень быстро — время релаксации 14 $\tau \sim 1/k$. Рассматриваемый стимул X привел в действие целый pnd ассоциаций b_1,\ldots,b_n,\ldots , которые в достаточной мере случайны в соответствии с приведенной теоремой ассоциативной психологии. Именно эти случайные всплески-флуктуации-ассоциации и наблюдаем на кривых, данных на рис.3.2 при t>1. Повторение стимула X не гарантирует точного повторения ассоциативного ряда b_1,\ldots,b_n,\ldots опять-таки в силу упомянутой теоремы. Именно поэтому ассоциативный ряд на нижней кривой рис.3.2, — индивид I' — не обязан повторять ассоциативный ряд на верхней кривой — индивид I. Более того, даже для одного и того же индивида не следует ожидать корреляций по времени и высоте всплеска, поскольку, как говорилось, сила

¹⁴ Релаксация [< лат. relaxatio уменьшение напряжения, ослабление] – процесс постепенного возвращения в состояние равновесия какой-либо системы, выведенной из такого состояния, после прекращения действия факторов, выведших ее из состояния равновесия [63].</p>

ассоциации есть функция количества повторений. Иначе говоря, если какой-то рефлекс не был поддержан длительными повторениями, то нет гарантии, что он появится в результате соответствующего стимула. Таким образом, использование стохастической модели при формализации теории рефлексов вполне оправдано.

Вехтерев Владимир Михайлович (1857-1927) — русский невропатолог, психиатр, физиолог, психолог. Создал в 1885 г. первую в России лабораторию экспериментальной психологии при клинике Казанского университета; основал в 1908 г. Психоневрологический институт в Санкт-Петербурге. Начиная с 10-х гг. XX в. приступил к построению собственной общепсихологической теории, названной им рефлексологией (http://psycho.lgg.ru/st/131000.htm).

Глава четвертая

Личность. Моделирование социализации индивида

Глава 4

Личность. Моделирование социализации индивида

В данной главе рассматривается построение имитационной модели социализации индивида, в ходе которой формируется личность [24, гл.2]. При проектировании модели и проведении компьютерного эксперимента применяется мульти-агентный подход.

При построении имитационной модели социализации индивида возникает необходимость описания процесса формирования личности в виде определенного алгоритма, в основу которого закладывается конкретно выбранная социологическая теория.

В учебном пособии [24] излагается ряд социологических теорий личности, которые могут использоваться в компьютерных моделях. Из всех теорий мы выбираем статусно-ролевую концепцию личности Т.Парсонса и на ее основе строим имитационную модель социализации индивида.

¹Модель создана Ю.В. Фроловой и В.В. Коробицыным

При моделировании мы заменяем реальное общество, состоящее из индивидов (личностей), на формальное " $uc\kappa yc-cmbehoe$ общество", в котором "живут" агенты. Поведение агентов описывается некоторым набором правил. Таким образом, имеем мульти-агентную модель реального общества. На ее основе с помощью специальной мульти-агентной системы моделирования SWARM строится компьютерная модель социализации индивида [24].

4.1. Теория социализации индивида

4.1.1. Описание структуры индивида и процесса становления личности

В понятии личности отражены деиндивидуализированные социальные качества человека. *Индивидуальность* — это неповторимое сочетания природных и социальных свойств индивида (человека).

Для социологии и социальной психологии очень важно выявить все внутренние компоненты структуры индивида. В социальных науках существует много подходов к исселедованию структуры индивида. Отметим лишь самые распространенные.

Структура индивида может быть представлена в виде следующего ряда взаимосвязанных подструктур (от самой общей к более специфической — личностно обусловленной подструктуре):

- 1. Биологически обусловленная подструктура (темперамент, половые, возрастные, иногда патологические особенности психики).
- 2. Психологическая подструктура, включающая индивидуальные свойства отдельных психических процессов (память, эмоции, ощущения, мышление, восприятие, чувства, воля и т.д.).

Рис. 4.1: Процесс становления личности

- 3. Подструктура социального опыта (куда входят приобретенные человеком знания, навыки, умения и привычки).
- 4. Подструктура направленности индивида (влечения, интересы, склонности, идеалы, индивидуальная картина мира, убеждения).

Третья и четвертая подструктуры характеризуют процесс формирования личности из индивида.

Личность — это индивид, приобретший свойства, элементы социальной системы (социальной группы) [65]. Процесс формирования личности посредством усвоения статусов, ролей, правил, ценностей и норм называется *социализацией*. Образно его можно представить в виде схемы (рис.4.1).

Чтобы понять личность, необходимо определить, что движет ею, что ее направляет, какие у нее цели, как формируется ее отношение к обществу, к другим индивидам. Все это тесно связано с понятием *социальное действие*. Личность в социоло-

гии всегда рассматривается неотрывно от ее социального действия.

Социальное действие — это некий исходный элемент социальной реальности. Выявляя элементы социального действия, мы сталкиваемся с тем, что существует множество теорий, рассматривающих различные аспекты социального действия. Мы рассмотрим теорию Парсонса, в которой процесс становления личности реализуется в ситуациях, отражающих социальную значимость человека.

4.1.2. Статусно-ролевая концепция личности

Социальное действие есть поведение, направляемое смыслами, которые *акторы* (действующие лица) придают предметам и людям. *Смысл* — это внутреннее содержание, значение действия, цель действия, постигаемые разумом. Акторы имеют цели и выбирают соответствующие средства для их достижения. При этом социальное действие ориентировано на других участников действия.

Структура социального действия по Т. Парсонсу:

- Актор (действующее лицо).
- Ситуация (условия и средства действия).
- Ориентация индивида на ситуацию (мотивационная и ценностная). Цель действия.

По Т. Парсонсу, социальное поведение обусловлено социальным статусом и набором социальных ролей.

Социальный статус² – это позиция в многомерном социальном пространстве. Человек занимает определенное место в обществе в соответствии с правилами и обязанностями, т.е.

 $^{^{2}\,}Cmamyc$ [< лат. status состояние, положение] — правовое положение, состояние [63].

Рис. 4.2: Детерминант социального поведения

имеет статус. Каждой статусной позиции соответствует образец поведения, нормативно одобренный и ожидаемый от каждого, кто занимает эту позицию. Такой образец поведения называется социальной ролью.

Социальная роль — ожидаемое поведение, обусловленное статусом человека. Это хранящийся в сознании человека набор представлений о том, как он должен вести себя в определенных обстоятельствах. Роли³ различны по своей значимости и масштабу: одни обусловлены государственными интересами, другие — требованиями профессиональных групп, третьи — правилами межличностного общения.

Многообразие статусов человека, а также многообразие действий, связанных с каждым статусом, ведет к многообразию ролевого набора, определяя детерминант социального поведения, т.е то, что обуславливает социальное поведение человека, и то, что на него влияет (рис. 4.2).

Таким образом, социальный индивид в данной концепции имеет различные статусы и роли:

• Роли и статусы усваиваются в ходе социализации.

 $^{^3}$ Ролевая идентификация – усвоение образцов поведения (кодов), связанных с той или иной статусной позицией. Чем выше статусная позиция, тем выше предписания относительно допустимых действий и т.д.

- Роли и статусы регламентируются обществом. Иными словами, действие индивида вписано в общую схему функционирования общества и подчинено его законам.
- Действие направляется смыслами.
- Индивид имеет определенную автономию и имеет возможность производить выбор определенных ролей и статусов. Именно выбор (хотя и ограниченный обществом) является реализацией индивидуальности человека.

4.2. Модель социализации индивида

4.2.1. Формализация процесса социализации

При формализации приходится ограничивать разнообразие вариантов действия личности, отбрасывая некоторые их них и упрощая другие. Следовательно, нам приходится расстаться с реальной ситуацией, заменяя ее на упрощенную, искусственную. От реального общества в процессе моделирования переходят к "искусственному обществу". Социальный индивид превращается в агента "искусственного общества". Само "искусственное общество" состоит из множества агентов, наделенных определенными характеристиками и взаимодействующих друг с другом, т.е. ведущих "искусственную жизнь". Данный метод моделирования социальных групп и общества получил название мульти-агентного моделирования (multi-agent simulation).

Пусть N — количество агентов, L — общее число возможных ситуаций, I — максимальное количество возможных статусов. Опишем внутреннее состояние агента переменной $a^i \in \mathbb{R}$, где i=1,2,...,N. Положительные значения a^i означают комфортное состояние агента, отрицательные — дискомфортное. Для каждого агента определим вектор $S^i \in \mathcal{D}^{\{1,...,I\}}$ элементы $s^i_n, n=1,...,I$ которого принимают значения на мно-

⁴ *Автономия* (гр.) – самоуправление.

жестве $\mathcal{D} = \{0, 1\}$, состоящем из двух элементов 0 и 1,

$$S^i = (0, 0, 1, 0, ..., 1, 0)^{tr}$$
.

Этот вектор определяет набор статусов i-го агента. Единица на n-ом месте означает наличие n-го статуса, а 0 — его отсутствие (n=1,2,...,I). Каждому социальному статусу в данной модели соответствует одна возможная социальная роль агента, согласно которой он может произвести одно конкретное социальное действие. Таким образом, осуществляется однозначное соответствие между социальным статусом агента и социальным действием, которое он может произвести согласно этому статусу.

Индивид производит социальное действие как ответную реакцию на ситуацию, в которую он попадает. В любой ситуации индивид может выбрать свое действие из числа возможных, т.е. из тех, которые он может произвести и которые доступны. Попав в определенную ситуацию агент совершает социальное действие, в результате которого улучшается или ухудшается его внутреннее состояние (увеличивается или уменьшается параметр a^i). Информация о степени изменения состояния фиксируется агентом в его памяти и используется в схожих ситуациях, возникающих впоследствии. Память i-го агента представим в виде матрицы M^i размера $I \times L$, где элемент $m^i_{nl} \in \mathbb{R}$ является оценкой степени изменения состояния i-го агента при действии в рамках n-го статуса в l-ой ситуации (l=1,2,...,L).

$$M^{i} = \begin{pmatrix} m_{11}^{i} & m_{12}^{i} & \dots & m_{1L}^{i} \\ m_{21}^{i} & m_{22}^{i} & \dots & m_{2L}^{i} \\ \dots & \dots & \dots & \dots \\ m_{I1}^{i} & m_{I2}^{i} & \dots & m_{IL}^{i} \end{pmatrix}$$

Накопленный опыт i-го агента будем обозначать матрицей E^i размера $I \times L$, где элементы $e^i_{nl} \in \mathcal{D}$,

$$E^{i} = \left(\begin{array}{ccccc} 0 & 1 & 1 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 1 & 0 & \dots & 1 \end{array}\right)$$

Значение 1 элемент e^i_{nl} принимает в том случае, если агент, находясь в ситуации l, совершил действие на основе статуса n и получил результат m^i_{nl} . Другими словами, агент обрел опыт действия в данной ситуации. Соответственно, если $e^i_{nl}=0$, то это означает, что такого опыта у него нет, т.е. он не совершал действия в ситуации l на основе n-го статуса и не знает, какой последует результат.

Для каждой ситуации l имеется оценка результата, получающегося в следствие определенного действия агента на основе n-го статуса. Эти оценки определяются априорно и считаются неизменными. Их можно представить в виде матрицы R размера $I \times L$, где элемент $r_{nl} \in \mathbb{R}$ определяет степень изменения состояния агента в случае совершения им действия на основе n-го статуса в l-ой ситуации

$$R = \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1L} \\ r_{21} & r_{22} & \dots & r_{2L} \\ \dots & \dots & \dots & \dots \\ r_{I1} & r_{I2} & \dots & r_{IL} \end{pmatrix}$$

Итак, до начала эксперимента исследователем задается матрица R. Все матрицы E^i и M^i (i=1,2,...,I) заполняются нулями. Это означает, что все агенты до начала эксперимента не имеют никакого опыта и их память не заполнена информацией («новорожденные» агенты). Причем каждому агенту i присваивается набор статусов, которыми он обладает, т.е. задается вектор S^i , а также начальное внутреннее состояние агента a_i^i .

Эксперимент строится следующим образом. В каждый дискретный момент времени $t\ (t=1,2,...,T)$ все агенты попадают в некоторую ситуацию l, которая генерируется компьютером случайным образом, т.е. компьютер выбирает произвольное число от 1 до L. Каждый i-ый агент на основе своего опыта E^i и памяти M^i выбирает определенное действие, соответствующее n-ому статусу. Результат действия изменяет его внутреннее состояние

$$a_t^i = a_{t-1}^i + r_{nl}. (4.1)$$

Если до этого e^i_{nl} было нулевым, то оно меняется на едини-

цу (получен опыт), а результат действия заносится в память агента $m^i_{nl}=r_{nl}.$ Таким образом, заполняются матрицы E^i и M^i

Процесс выбора статуса, на основе которого совершается действие, опишем функцией выбора $f(a^i,M^i,E^i,l)$. Эта функция принимает значение номера статуса, на основе которого будет осуществляться действие. Для описания функции f построим дополнительную функцию $q(a,u,p):\mathbb{R}^3 \to \mathbb{R}$, описывающую степень риска агента при выборе статуса в данной ситуации при неизвестном окончательном результате. Аргументы функции: a — внутреннее состояние агента, u — степень неизвестности ситуации, p — наибольшая величина результата действия из известных агенту. Для конкретного i-го агента $a=a^i$.

Степень неизвестности вычисляется по формуле

$$u = u^i \equiv \frac{I^i - I_1^i}{I^i},\tag{4.2}$$

где I^i — количество статусов, которыми обладает агент, I^i_1 — количество статусов, результаты действия которых известны агенту в данной ситуации. Параметр I^i вычисляется как количество единиц в векторе S^i , а I^i_1 — количество единиц в столбце l (номер ситуации) матрицы E^i .

Наибольшая величина результата p вычисляется по формуле

$$p = p^i \equiv \max_n(m_{nl}^i). \tag{4.3}$$

 Φ ункцию q(a,u,p) определим следующим образом

$$q(a, u, p) = q_1(a) \cdot q_2(u) \cdot q_3(p),$$

где

$$q_1(a) = k_1 a^2, q_2(u) = k_2 u,$$

$$q_3(p) = \begin{cases} -k_3 \cdot p + p_1 & \text{при } k_3 \cdot p < p_1, \\ 0 & \text{при } k_3 \cdot p \ge p_1. \end{cases}$$

Здесь k_1 , k_2 , k_3 , p_0 , p_1 — некоторые постоянные коэффициенты.

Рис. 4.3: Графики функций $q_1(a),\ q_2(u)$ и $q_3(p)$

Наконец, функция $f(a^i, M^i, E^i, l)$ определяется следующим образом

$$f(a^i, M^i, E^i, l) = \left\{ \begin{array}{ll} n_r & \text{если} & q(a^i, u^i, p^i) > q_0 \text{и } I^i - I_1^i > 0, \\ n_m & \text{иначе}, \end{array} \right.$$

здесь n_r — номер случайно выбираемого статуса из доступных для i-го агента, относительно которого у агента нет опыта действия, n_m — номер статуса при котором достигается максимум p^i из (4.3), q_0 — параметр, характеризующий предельную степень риска. Для выбора номера n_r необходимо выделить все номера доступных статусов, результаты которых неизвестны агенту, то есть те номера n при которых $s_n^i = 1$ и $e_{nl}^i = 0$.

агенту, то есть те номера n при которых $s_n^i=1$ и $e_{nl}^i=0$. На основе выбранного статуса $n=f(a^i,M^i,E^i,l)$ агент совершает социальные действия и получает результат r_{nl} . Меняется его внутреннее состояние, которое вычисляется по формуле (4.1). Запоминаются результат $m_{nl}^i=r_{nl}$ и полученный опыт $e_{nl}^i=1$.

Далее компьютер генерирует новую ситуацию l и для каждого агента вычисляется номер статуса n. Каждая итерация описывает процесс выбора агентом того статуса, на основе которого он выполняет социальное действие.

Агента с номером i можно считать прошедшим процесс социализации, если в каждой ситуации l он находит тот статус n, который обеспечивает ему положительный результат, т.е.

$$\forall l \exists n: r_{nl} > 0.$$

Рис. 4.4: Агенты искусственного общества, I=100

4.2.2. Результаты компьютерного моделирования

Для проектирования модели и проведения компьютерного эксперимента используется мульти-агентная система моделирования SWARM, дающая возможность визуально наблюдать за ходом эксперимента. На экран выводится анимационная картинка, отображающая искусственную жизнь агентов, графики различных усредненных функций, например внутреннего состояния агентов и степень неизвестности ситуации.

Исследовательская компьютерная модель представляет собой модель социального действия агентов (индивидов) при сменяющихся различных ситуациях в среде (обществе). Глав-

ным фактором социального поведения агентов является случайно возникающая ситуация, требующая ответного действия от агента. В результате моделирования получается определенная картина, демонстрирующая следствия правильного выбора того или иного действия при данных обстоятельствах. Считаем, что агент успешно прошел процесс социализации, если при возникновении уже известных ему ситуаций он действует таким образом, что результаты его действий оказывают на него благоприятное воздействие.

При запуске компьютерной программы определяется количество агентов, общее число возможных ситуаций, граница риска, а также максимальное количество возможных статусов. Для каждого агента случайным образом задается набор статусов, которые будут обуславливать его социальное положение. Устанавливаются внутренние состояния агентов из заданного диапазона различных состояний. Характер изменения внутреннего состояния агентов можно наблюдать по меняющейся цветовой гамме. Чем ярче окраска агента, тем более комфортным является его состояние (рис. 4.4).

Первоначально агенты создаются с незаполненной памятью. Постепенно она заполняется необходимой информацией о степени влияния на внутреннее состояние агента следствий его действий в той или иной ситуации. Агенты функционируют, сообразуя свои действия в соответствии с быстро меняющимися событиями в среде. В результате с течением времени происходит процесс накопления агентами опыта и социальных установок, соответствующих их социальным ролям, т.е. процесс социализации индивида.

Моделирование велось при различном распределении начальных данных. Менялось общее число возможных ситуаций, максимальное количество возможных статусов и правила изменения внутреннего состояния агентов в той или иной ситуации. На рисунках приведены результаты таких компьютерных экспериментов в виде графиков усредненных функций внутреннего состояния агента и степени неизвестности ситуации.

Рис. 4.5, 4.6 соответствуют компьютерному эксперименту с

Рис. 4.5: Внутреннее состояние агента, $N=100,\,I=3,\,L=12$

Рис. 4.6: Степень неизвестности ситуации, $N=100,\ I=3,\ L=12$

Рис. 4.7: Внутреннее состояние агента, $N=100,\ I=5,\ L=5$

Pис. 4.8: Степень неизвестности ситуации, $N=100,\ I=5,\ L=5$

начальными данными $N=100,\ I=3,\ L=12.$ Здесь количество возможных статусов мало по сравнению с числом возможных ситуаций. Мы можем наблюдать резкие всплески степени неизвестности, характеризующие возникновение малознакомой ситуации. Таким образом, в условиях быстрых социальных изменений образцы поведения могут заменяться новыми, соответствующими изменившимся обстоятельствам. При данных условиях время социализации достигает значения t=90.

Рис. 4.7, 4.8 соответствуют компьютерному эксперименту с начальными данными $N=100,\ I=5,\ L=5.$ Задано некоторое равновесие между числом ситуаций в среде и количе-

```
Рис. 4.9: Внутреннее состояние агента, N=100,\ I=12,\ L=4
```

Рис. 4.10: Степень неизвестности ситуации, $N=100,\ I=12,\ L=4$

ством возможных статусов. Это влияет на развитие внутренней структуры агента, на его действия в зависимости от опыта и следствий его предыдущих социальных действий. Здесь время социализации достато чно мало, t=35.

Рис. 4.9, 4.10 соответствуют компьютерному эксперименту с начальными данными $N=100,\ I=12,\ L=4.$ Здесь агент сталкивается с необходимостью выполнения большого количества различных социальных ролей. Мы видим, что график степени неизвестности ситуации изменяется со временем по нисходящей. Можно говорить о значимости социального действия при освоении ролей. Время социализации t=50 больше времени в первом эксперименте, но меньше, чем во втором. Это можно объяснить тем, что создавая и изменяя установки агентов, среда играет решающую роль в переходе от одной стадии развития индивида к другой, но выбор действия для агента осложнен огромным набором социальных ролей в связи с большим числом социальных статусов.

Полученные результаты компьютерных экспериментов показывают влияние соотношения между количеством возможных статусов и числом ситуаций на время процесса социализации. Достижение равновесия между данными величинами обеспечивает минимальное время социализации. Результаты компьютерного моделирования позволяют сделать вывод, что время социализации индивида зависит не только от количества статусов и ролевого набора, но и от степени знакомства индивида с возникающими ситуациями в обществе. При этом социальная роль, определяя поведение индивида, показывает, как в данной ситуации следует вести себя и как строить свое собственное поведение в соответствии с ожиданием окружающих. Кроме того, чем выше социальный статус имеет индивид и чем больше набор ролей, адекватных социальному статусу, тем выше его социальная значимость и многообразнее процесс его социализации.

Владимиров Юрий Сергеевич, доктор физико-математических наук, профессор, ведущий научный сотрудник Московского государственного университета имени М.В. Ломоносова. Автор ряда монографий по общей теории относительности, многомерным геометрическим теориям физических взаимодействий. Развивая идеи Ю.И. Кулакова, заложил основы новой физической теории, названной бинарной геометрофизикой.

Глава пятая

Глава 5

Гендерные системы

5.1. Идеи формализации гендера

5.1.1. Понятие гендера и гендерных отношений

До сих пор, говоря об обществе, мы подразумевали коллектив людей, различия между которыми не принимались во внимание. Люди были для нас собранием индивидов с одинаковыми поведением, желаниями, проблемами и возможностями. Но люди делятся на мужчин и женщин (о других различиях пока не говорим). Учет этого обстоятельства при изучении социальных систем и общества, в частности, осуществляется в социологии с помощью понятия zendep.

Гендер (от англ. gender – пол) – это система социальных отношений между мужчинами и женщинами, не только характеризующая их межличностное общение или взаимодействие в семье, но и определяющая их социальные отношения в основных институтах общества, например в социальных классах, в иерархиях крупных организаций и при формировании структуры занятости [76].

Понятие гендер является репрезентацией¹. Речь идет о репрезентации некоторого отношения, которое служит основой для отношений индивида и общества и строится на сконструированной и устоявшейся оппозиции двух биологических полов [76].

Как видно из определения гендера, оно предполагает прежде всего существование вполне определенных отношений между мужчинами и женщинами. Причем эти отношения не сводятся только к сексуальным отношениям и семейным делам, но и дают представление о том, как организовано само общество. Такие отношения будем называть гендерными.

"Конструктивисты считают, что гендер — это система межличностного взаимодействия, посредством которого создается, утверждается, подтверждается и воспроизводится представление о мужском и женском как базовых категориях социального порядка" [35].

Для социолога "гендер — это повседневный мир взаимодействия мужского и женского, воплощенный в "практиках", представлениях, нравах; это системная характеристика социального порядка, от которой невозможно отказаться, — она постоянно воспроизводится и в структурах сознания, и в структурах действия. Задача исследователя — выяснить, каким образом создается мужское и женское в социальном взаимодействии, в каких сферах и каким образом оно поддерживается и воспроизводится" [35].

Напротив, для математика важно описать гендерные отношения посредством математических понятий и формул, классифицировать по возможности типы гендерных отношений и выяснить, как каждый тип гендерных отношений сказывается на структуре и организации общества.

Гендер — это социальный пол. Поэтому мужское и женское — продукты социальной системы, и в силу этого мужчина как существо, имеющее мужской биологический пол, может обладать чертами женского социального пола, и наоборот. Данное обстоятельство вполне уместно будет вспомнить при форма-

¹ Репрезентация [фр. représentation] – представительство.

лизации гендера, когда нам придется дать числовые "координаты" мужчинам и женщинам. Более того, эти координаты будут подлежать *трансформациям*, т.е. преобразованиям, "перепутывающим" мужское и женское.

5.1.2. Теория систем отношений

Для формализации гендера воспользуемся идеями, разработанными Ю.И. Кулаковым в 60-е годы. Он создал теорию, которую называл теорией физических структур [41] и в основе которой лежит предположение о существовании некоторых достаточно простых алгебраических соотношений для отношений элементов, принадлежащих некоторым множествам, возникающим при изучении природных явлений.

В теории Ю.И. Кулакова постулируется наличие одного или нескольких множеств $\mathcal{M}, \mathcal{N}, \dots$ элементов, между которыми определены отношения, обладающие двумя свойствами. Во-первых, некоторый набор этих отношений, выраженных в виде чисел, должен удовлетворять специальному уравнению, именуемому законом и, во-вторых, в данном законе можно одни элементы заменять на другие по правилу, называемому фундаментальной симметрией.

В простейшем случае отношение — это вещественное число, сопоставляемое паре, тройке, четверке и т.д. элементов [42]. В качестве элементов могут выступать объекты любой природы: физические тела, индивиды социальной группы, элементарные частицы и т.д., а в качестве отношений между элементами могут рассматриваться расстояния между телами (точками), родственные связи, взаимодействия между частицами. Если ограничиваются одним множеством, то теория, которая строится, называется унарной системой фундаментальных отношений. В случае двух множеств соответствующая теория носит название бинарная система фундаментальных отношений.

Каждая система отношений отличается от любой другой парой натуральных чисел (r,s), называемой рангом. Ю.И. Кулаков [42] и его ученик Г.Г. Михайличенко [51] показали, что

существует классификация систем отношений, и нашли соответствующие алгебраические формулы для всех рангов (r,s).

Ю.И.Кулаков, Ю.С.Владимиров и их ученики, ограничивая свои исследования рамками физики, продемонстрировали, что каждая система бинарных отношений, описываемая очень простыми алгебраическими формулами, приводит после некоторых преобразований и выкладок к строго определенному физическому закону, например ко второму закону Ньютона, закону Ома или к той или иной геометрии (геометрии Евклида, геометрии Лобачевского и т.д.).

Успех теории систем отношений в физике заставляет подумать о возможности применения этой теории в социологии. Это имеет смысл сделать несмотря на то, что в XX веке существует предубеждение против перенесения методов естествознания на науки об обществе. Такое предубеждение удерживается, как правило, среди исследователей, которых называют узкими специалистами. Те же, кто более склонен к философским обобщениям, чаще пытаются увидеть за достижением в конкретной области знаний пути к получению новых результатов в других областях науки.

На особую роль придуманой для задач физики "теории физических структур" обратил внимание нобелевский лауреат И.Е. Тамм. В 1970 году в рецензии на работу Ю.И. Кулакова "Методологическое введение в теорию физических структур" И.Е. Тамм писал: "С точки зрения теории физических структур более перспективно искать не исходную "первоматерию", а исходные "первоструктуры", - такая переформулировка проблемы единства мира представляется нам несравненно более преимущественной и в логическом, и в естественно-научном отношении... Установки теории физических структур требуют отказа от наглядных представлений... Проблема отказа от "наглядности" вставала перед человеческим интеллектом и раньше. Так уже пифагорейская традиция осознавала необходимость перехода от пластического Эйдоса к чистому Логосу, однако "телесно-чувственная" природа греческой цивилизации помешала реализации этой программы, - европейская наука в каком-то смысле унаследовала это бремя "наглядности", в несении которого есть своя прелесть" [42].

Благодаря этим словам И.Е. Тамма, становится очевидным и замечание физика Ю.С. Владимирова о неудачном названии теории Ю.И. Кулакова. На его взгляд, более правильным было бы название "теория систем фундаментальных отношений" [42]. Ниже мы применяем теорию систем фундаментальных отношений к гендерной социологии.

5.2. Формализация гендерных отношений

5.2.1. Гендер как система фундаментальных отношений

Общество состоит из индивидов, членов общества. Обозначим совокупность индивидов общества через \mathcal{P} . $\mathit{Гендер}$ есть не что иное, как постулат о наличии в обществе двух типов индивидов: мужчин и женщин. $\mathit{Гендерное}$ отношение—это отношение между множеством мужчин \mathcal{M} и множеством женщин \mathcal{F} . Будем обозначать мужчин малыми латинскими буквами i, k, j, ..., а женщин малыми греческими— $\alpha, \beta, \gamma, ...^2$. В таком случае, поставим в соответствие гендерному отношению отображение $\phi: \mathcal{M} \times \mathcal{F} \to \mathbb{R}$. Если $i \in \mathcal{M}$ и $\alpha \in \mathcal{F}$, то значения гендерного отношения между мужчиной i и женщиной α представляется в виде формулы

$$a_{i\alpha} = \phi(i, \alpha). \tag{5.1}$$

Другими словами, гендерное отношение между любым мужчиной i и любой женщиной α характеризуется вещественным числом $a_{i\alpha}$.

Будем предполагать, что гендерное отношение ϕ является универсальным в том смысле, что для данного гендера существуют два натуральных числа r и s, такие, что найдется ото-

 $^{^2\}mbox{Более}$ правильно говорить не о мужчинах и женщинах, а о мужских и женских признаках.

бражение $\Phi: \mathbb{R}^{rs} \to \mathbb{R}$, обладающее следующим свойством: для любого произвольного набора из r мужчин $i_1,...,i_r$ и любого набора из s женщин $\alpha_1,...,\alpha_s$ справедливо равенство

$$\Phi \begin{pmatrix} a_{i_1\alpha_1} & \dots & a_{i_1\alpha_s} \\ \vdots & \dots & \vdots \\ a_{i_r\alpha_1} & \dots & a_{i_r\alpha_s} \end{pmatrix} = 0.$$
(5.2)

Пара чисел (r,s) называется рангом рассматриваемого гендера. В данном определении отчетлива видна постулируемая симметрия данного гендера: любая женщина может быть заменена на любую из множества \mathcal{F} , так же как и мужчина из множества \mathcal{M} . Но при этом мужчин берут в количестве r, а женщин -s.

Рис. 5.1: Бинарная система отношений

Формально гендер – это структура в смысле Бурбаки

$$\mathcal{G} = \langle \mathcal{M} \times \mathcal{F}, \phi, (r, s), \Phi \rangle$$
.

5.2.2. Об однополых и трехполых гендерах

Закономерен вопрос: можно ли рассматривать гендер как унарную систему отношений, что соответствует обществу с ин-

дивидами одного пола, или — тернарную, построенную на трех множествах $\mathcal{M}, \mathcal{F}, \mathcal{S}$ (три пола), а также тетрадную (четыре пола) и т.д.?

Как показано группой Ю.И. Кулакова, однополый гендер ранга r возможен, но соответствующие отношения вида (5.1), которые в данном случае надо писать как a_{ik} , выражаются в виде более сложных математических формул, чем бинарные отношения для "двуполых" гендеров. А вот "трехполые" гендеры и другие экзотические многополые гендеры не приводят к содержательной теории, по крайней мере, для случая вещественных отношений [16].

5.2.3. Классификация бинарных гендеров

Для того чтобы найти классификацию гендеров, необходимо представить соотношение (5.1) в форме вещественной функции от двух вещественных переменных x_i и y_α . С точки зрения математики это означает, что \mathcal{M}, \mathcal{F} рассматриваются как (гладкие) многообразия размерности соответственно m и n и на них вводятся локальные координаты

$$\begin{cases} i \to x_i = (x_i^1, \dots, x_i^m) \\ \alpha \to y_\alpha = (y_\alpha^1, \dots, y_\alpha^n) \end{cases}$$

В этих координатах формула (5.1) принимает вид

$$a_{i\alpha} = \phi(x_i^1, ..., x_i^m, y_{\alpha}^1, ..., y_{\alpha}^n).$$
 (5.3)

Выражение (5.3) подставляется в (5.2) и после достаточно кропотливых выкладок находится вид функций ϕ и Φ . Приведем итог этих исследований.

Классификация бинарных гендеров. Если m размерность многообразия \mathcal{M} , а n размерность многообразия \mathcal{F} , то ранг (r,s) связан с ними соотношениями: r=n+1, s=m+1.

• Не существует гендера ранга (1, 1).

- Существуют гендеры только ранга $(r,r), r \geq 2,$ (r-1,r), r > 3 и (r+1,r), r > 2.
- Существуют гендеры ранга (2,4),(4,2).
- Все диагональные системы отношений с рангом (r,r) могут быть двух типов. Их ранги обозначают как (r,r) и (r,r;a). Для системы отношений ранга (r,r) закон в некоторых координатах записывается в виде

$$\Phi = \begin{vmatrix} a_{i_1\alpha_1} & \dots & a_{i_1\alpha_r} \\ \vdots & \dots & \vdots \\ a_{i_r\alpha_1} & \dots & a_{i_r\alpha_r} \end{vmatrix} = 0, \tag{5.4}$$

где отношения между элементами гендеров \mathcal{M}, \mathcal{F}

$$a_{i\alpha} = \sum_{l=1}^{r-1} x_i^l y_{\alpha}^l, \quad r \ge 2.$$
 (5.5)

Системы отношений ранга (r,r;a) характеризуются законом

$$\Phi = \begin{vmatrix}
0 & 1 & \dots & 1 \\
1 & a_{i_{1}\alpha_{1}} & \dots & a_{i_{1}\alpha_{r}} \\
\vdots & \dots & \dots & \vdots \\
1 & a_{i_{r}\alpha_{1}} & \dots & a_{i_{r}\alpha_{r}}
\end{vmatrix} = 0,$$
(5.6)

где отношения между элементами гендеров \mathcal{M}, \mathcal{F}

$$a_{i\alpha} = x_i^0 + y_{\alpha}^0, \quad r = 2;$$

$$a_{i\alpha} = x_i^0 + y_\alpha^0 + \sum_{l=1}^{r-2} x_i^l y_\alpha^l, \quad r > 2.$$
 (5.7)

• Для систем отношений ранга $(r+1,r), r \ge 2,$ имеем

$$\Phi = \begin{vmatrix} 1 & a_{i_{1}\alpha_{1}} & \dots & a_{i_{1}\alpha_{r}} \\ 1 & a_{i_{2}\alpha_{1}} & \dots & a_{i_{2}\alpha_{r}} \\ \dots & \dots & \dots & \dots \\ 1 & a_{i_{r+1}\alpha_{1}} & \dots & a_{i_{r+1}\alpha_{r}} \end{vmatrix} = 0$$
 (5.8)

с отношением

$$a_{i\alpha} = y_{\alpha}^{0} + \sum_{l=1}^{r-1} x_{i}^{l} y_{\alpha}^{l}, \quad r \ge 2;$$
 (5.9).

для систем ранга $(r-1,r), r \ge 3,$

$$\Phi = \begin{vmatrix} 1 & 1 & \dots & 1 \\ a_{i_{1}\alpha_{1}} & a_{i_{1}\alpha_{2}} & \dots & a_{i_{1}\alpha_{r}} \\ \vdots & \dots & \ddots & \vdots \\ a_{i_{r-1}\alpha_{1}} & a_{i_{r-1}\alpha_{2}} & \dots & a_{i_{r-1}\alpha_{r}} \end{vmatrix} = 0$$
 (5.10)

с отношением

$$a_{i\alpha} = x_i^0 + \sum_{l=1}^{r-2} x_i^l y_\alpha^l, \quad r \ge 3.$$
 (5.11)

ullet Для системы (4,2) закон и отношения могут быть записаны в виде

$$\Phi = \begin{vmatrix}
1 & a_{i_{1}\alpha_{1}} & a_{i_{1}\alpha_{2}} & (a_{i_{1}\alpha_{1}}a_{i_{1}\alpha_{2}}) \\
1 & a_{i_{2}\alpha_{1}} & a_{i_{2}\alpha_{2}} & (a_{i_{2}\alpha_{1}}a_{i_{2}\alpha_{2}}) \\
1 & a_{i_{3}\alpha_{1}} & a_{i_{3}\alpha_{2}} & (a_{i_{3}\alpha_{1}}a_{i_{3}\alpha_{2}}) \\
1 & a_{i_{4}\alpha_{1}} & a_{i_{4}\alpha_{2}} & (a_{i_{4}\alpha_{1}}a_{i_{4}\alpha_{2}})
\end{vmatrix} = 0,$$
(5.12)

И

$$a_{i\alpha} = \frac{x_i^1 y_{\alpha}^1 + y_{\alpha}^2}{x_i^1 + y_{\alpha}^3},\tag{5.13}$$

а для системы (2,4) –

а для системы
$$(2,4)$$
 —
$$\Phi = \begin{vmatrix}
1 & 1 & 1 & 1 \\
a_{i_1\alpha_1} & a_{i_1\alpha_2} & a_{i_1\alpha_3} & a_{i_1\alpha_4} \\
a_{i_2\alpha_1} & a_{i_2\alpha_2} & a_{i_2\alpha_3} & a_{i_2\alpha_4} \\
(a_{i_1\alpha_1}a_{i_2\alpha_1}) (a_{i_1\alpha_2}a_{i_2\alpha_2}) (a_{i_1\alpha_3}a_{i_2\alpha_3}) (a_{i_1\alpha_4}a_{i_2\alpha_4})
\end{vmatrix} = 0, (5.14)$$

И

$$a_{i\alpha} = \frac{x_i^1 y_{\alpha}^1 + x_i^2}{x_i^3 + y_{\alpha}^1}.$$
 (5.15)

5.2.4. Эталоны системы фундаментальных отношений

Запишем закон Φ для системы отношений ранга (r,s) в виде

$$\Phi(a_{i\alpha}, a_{k\beta}, \dots, a_{j\gamma}) = 0. \tag{5.18}$$

Потребуем, чтобы уравнение (5.18) было разрешимо относительно любого из rs аргументов, т.е. чтобы его можно было всегда записать в виде

$$a_{i\alpha} = f_{i\alpha}(a_{i\beta}, ..., a_{k\alpha}, a_{k\beta}, ...). \tag{5.19}$$

Выберем в множествах \mathcal{M}, \mathcal{F} соответственно по r-1 и s-1 элементов и назовем их *эталонными* или образующими базис системы фундаментальных отношений. Пусть это элементы k,j,... из множества \mathcal{M} и $\beta,\gamma,...$ из множества \mathcal{F} . Тогда для неэталонных элементов i и α формулу (5.19) можно переписать в виде

$$a_{i\alpha} = f_{i\alpha}(a_{i\beta}, a_{i\gamma}...; a_{k\alpha}, a_{j\alpha}, ...; a_{k\beta}, a_{k\gamma}..., a_{j\beta}, a_{j\gamma}, ...), \quad (5.20)$$

где в первой группе аргументов находятся бинарные отношения элемента i со всеми s-1 эталонными элементами множества \mathcal{F} , во второй группе выделены бинарные отношения элемента α со всеми r-1 эталонными элементами множества \mathcal{M} . Наконец, в третьей группе сосредоточены бинарные отношения эталонных элементов друг с другом. Введем обозначения

$$x_i^1 = a_{i\beta}, x_i^2 = a_{i\gamma}, ..., x_i^{s-1} = \cdot$$

$$y_{\alpha}^{1} = a_{k\alpha}, y_{\alpha}^{2} = a_{j\alpha}, ..., y_{\alpha}^{r-1} = ...$$

Другими словами, мы вводим *координаты* для неэталонных элементов i, α относительно зафиксированного базиса эталонных элементов в множестве $\mathcal{M} \times \mathcal{F}$. Считая отношения между эталонными постоянными (известными) для данного базиса, перепишем формулу (5.20) в виде

$$a_{i\alpha} = f_{i\alpha}(x_i^1, ..., x_i^{s-1}, y_{\alpha}^1, ..., y_{\alpha}^{r-1}).$$
 (5.21)

Таким образом, бинарное отношение между любыми элементами i, α является функцией, определенной в некоторой области D координатного пространства \mathbb{R}^{r+s-2} . Числа m=s-1 и n=r-1 — это размерности³ соответственно "многообразий" \mathcal{M} и \mathcal{F} .

В этих рассуждениях для нас особое значение имеет то обстоятельство, что выражения для координат элементов множества \mathcal{M} определяются через эталоны множества \mathcal{F} и наоборот. На языке гендерной социологии это означает, что маскулинность 4 становится явно выраженной лишь при фиксации эталонов феминности 5 , а феминность видна только на фоне зафиксированных эталонов маскулинности.

5.3. Индекс различий Дункана

Для того чтобы убедиться в том, что формализация гендера на основе теории систем фундаментальных отношений эффективна, необходимо:

- 1) показать, что известные числовые характеристики гендерных отношений являются гендером некоторого ранга;
- 2) продемонстрировать, что найденные в 5.2.3 законы и соответствующие отношения являются характеристиками вполне определенных гендерных отношений.

К сожалению, в отличие от физики, гендерная социология от силы насчитывает 30 лет с момента своего появления, более того, является гуманитарной наукой и в силу этого предпочитает качественые описания количественным. Другими словами, в учебниках и монографиях по социологии гендера прак-

³Обратите внимание на то, что размерность "многообразия" мужчин $\mathcal M$ определется "женским" числом s, а размерность женского "многообразия" $\mathcal F$ – "мужским" числом r.

⁴ *Маскулинность* [< лат. masculinus мужской] – комплекс характерологических особенностей, традиционно приписываемых мужчинам. Это – сила, жестокость и пр.

 $^{^5}$ Феминность [< лат. femina женщина, самка] – комплекс психологических особенностей, традиционно приписываемых женщине. Это – характерологические черты мягкости, готовности помочь и пр.

тически нет формул, поэтому трудно реализовывать намеченную программу по проверке адекватности предложенной формализации.

Тем не менее в научной литературе можно найти формулы, имеющее отношение к гендерным отношениям. Одной из таких формул является *индекс различий Дункана* [76]

$$I = 100 \sum_{l=1}^{p} \frac{\left| \frac{m_l}{m} - \frac{f_l}{f} \right|}{2}.$$
 (5.16)

Здесь p число сфер производственной деятельности, или сфер занятости населения в обществе; m_l , f_l — число мужчин и соответственно женщин, занятых в сфере с номером l; m, f — общее число трудоспособных мужчин и женщин. Индекс изменяется от 0 (совершенная интеграция) до 100 (совершенная сегрегация). Чем ближе индекс I к нулю, тем больше в обществе справедливости при получении работы для женщин.

Формула (5.16) легко приводится к виду (5.5) для гендера ранга $(r,r),\ r=p+1.$ Достаточно ввести новые кoopdunamu для маскулинности и феминности

$$\begin{cases} x_i^l = \left| \sqrt{\frac{50m_l}{m}} - \sqrt{\frac{50f_l}{f}} \right| \\ y_\alpha^l = \left| \sqrt{\frac{50m_l}{m}} + \sqrt{\frac{50f_l}{f}} \right| \end{cases}$$
 (5.17)

Таким образом, индекс различий Дункана — это гендерное отношение ранга $(r,r),\ r\geq 2.$

5.4. Трансформация гендерных отношений

При формализации гендера естественно возникает вопрос о возможности трансформации, т.е. преобразования гендерных отношений.

Пусть дано гендерное отношение ранга (r,s) между мужчиной i из множества \mathcal{M} , обладающим некоторым набором параметров $(x_i^1,...,x_i^m)$, и женщиной α из множества \mathcal{F} , также имеющей совокупность параметров $(y_{\alpha}^1,...,y_{\alpha}^n)$, определенных для данного отношения $a_{i\alpha}=\phi(x_i^1,...,x_i^m,y_{\alpha}^1,...,y_{\alpha}^n)$ с законом $\Phi(a)=0$. Требуется узнать, подлежит ли трансформации данное отношение в отношение ранга (\bar{r},\bar{s}) вида $b_{i\alpha}=\psi(\bar{x}_i^1,...,\bar{x}_i^p,\bar{y}_{\alpha}^1,...,\bar{y}_{\alpha}^q)$ с законом $\bar{\Phi}(b)=0$ при добавлении ряда мужских и/или женских параметров.

Если трансформация возможна, то существует отображение $g: \mathcal{M}^m \times \mathcal{F}^n \to \mathcal{M}^p \times \mathcal{F}^q$ такое, что

$$\bar{x}_i^l = g_x(x_i^1, ..., x_i^m), \ l = \overline{1, p};$$

$$\bar{y}_{\alpha}^k = g_y(y_{\alpha}^1, ..., y_{\alpha}^n), \ k = \overline{1, q},$$

при котором, из $\Phi(a) = 0 \Rightarrow \bar{\Phi}(b) = 0$.

В результате проведенных исследований было выявлено, что некоторые гендерные отношения определенного ранга могут трансформироваться в гендер более высокого ранга, т.е. $p \ge m, q \ge n$. Приведем итог этих исследований (рис. 5.2):

- гендерные отношения ранга (r,r) могут трансформироваться в гендер ранга (r+1,r), (r,r+1), (r+1,r+1);
- гендерные отношения ранга (r-1,r) в гендер ранга (r,r;a) либо (r,r+1);
- гендерные отношения ранга (r, r-1) в ранг (r, r; a) либо (r+1, r);
- гендерные отношения ранга (r+1,r) в (r+1,r+1;a);
- гендерные отношения ранга (r, r + 1) в (r + 1, r + 1; a);
- гендерные отношения ранга (2,2) в (2,4) либо (4,2);
- гендерные отношения ранга (2,3) в (2,4);
- гендерные отношения ранга (3,2) в (4,2).

 $^{^6}$ Transformation (англ.) – преобразование.

Рис. 5.2: Трансформация гендерных отношений

5.5. Модель гендерных отношений

5.5.1. Формализация гендера

В качестве примера моделирования гендерных отношений рассмотрим модель влияния ресурсообеспеченности мужчин на поведение женщин и образование семьи [73].

Данная модель представляет собой модель взаимодействия мужчин и женщин (агентов) в среде, характеризующейся распределением некоторого ресурса ("запах денег"), который способствует созданию семьи.

Каждый агент-мужчина является источником ресурса, меняющегося во времени. Случайным образом задаются положение агентов-мужчин, их первоначальный запас ресурса и коэффициент естественного расхода наличного ресурса. С учетом величины капитала агентов-мужчин происходит распределение ресурса в окружающем их пространстве, подобно теплу, исходящего от живого мужчины. Начальное положение агентов-женщин в среде задается также случайным образом. С течением времени координаты агентов-мужчин не изменяются, а агенты-женщины двигаются по определенному правилу.

Главным фактором поведения агентов-женщин является поле ресурса, образованное за счет капитала (дохода) агентовмужчин. Агенты-женщины передвигаются, ориентируясь по вектору, указывающему на "запасы" ресурса, и направляясь к агенту-мужчине с целью потребления ресурса, имеющегося у этого агента-мужчины. В результате моделирования мы имеем дело с вполне определенной картиной, демонстрирующей последствия локального взаимодействия агентов. Агентженщина не покидает агента-мужчину, если запас его ресурса постоянно подпитывает "голод" агента-женщины. Считаем, что образовалась семья, если агент-мужчина и агент-женщина находятся в соседних клетках и с течением времени их позиции в среде не изменяются.

Предполагается, что в рамках данной модели агенты женского пола стремятся продвинуться в направлении скопления ресурса, который жестко связан с положением агентовмужчин. При этом локальный максимум капитала приходится на клетку, занятую агентом-мужчиной. В силу данного обстоятельства агенты-женщины должны останавливаться в близкой окрестности агентов-мужчин. Так как первоначальное распределение ресурса среди агентов-мужчин различно, то агентыженщины должны стремиться к самым богатым, ориентируясь на мощное поле ресурсов вокруг агентов-мужчин. Если клетка, в которой располагается агент-женщина, лучше в отношении ресурсообеспечения по сравнению с соседними, то агентженщина не изменяет своего положения.

С течением времени величина капитала изменяется под влиянием поведения агентов. Если в клетке находится агентмужчина, то в ней происходит естественный рост и расход ресурса (мы можем влиять на соотношение роста и спада капитала). Агент-женщина поглощает определенное количество ресурса в клетке, где она находится. Одновременно происходит дальнейшее распределение ("расплывание") ресурса. Вследствие регулярного изменения поля ресурса, окружающего агентов-мужчин, агенты-женщины находятся в постоянном движении. Итогом моделирования является эволюция образования семей.

5.5.2. Реализация модели

Поле ресурса описываем функцией $u(x,y,t):U\times\mathbb{R}^+\to\mathbb{R}^+,$ где $U\subset\mathbb{R}^2$ — область моделирования. Пусть $U=[0,1]\times[0,1]$. Динамику изменения функции u(x,y,t) опишем краевой задачей:

$$\frac{\partial u}{\partial t} = \varepsilon \Delta u + \beta u - \gamma u^2 + f, \quad (x, y) \in U \setminus \partial U, \ t > 0, \tag{5.18}$$

$$u(x,y,0) = u_0(x,y), \ u(x,0,t) = u(x,1,t), \ u(0,y,t) = u(1,y,t)$$

Дифференциальное уравнение параболического типа (5.18) описывает процесс распространения ресурса в U. Тип уравнения выбирается по аналогии с распространением энергии, тепла и вещества в уравнениях математической физики [66].

Начальные данные задаются ненулевыми в окрестностях нахождения агентов-мужчин

$$u_0(x,y) = \left\{ \begin{array}{ll} u_i(x,y), & \text{ если } (x,y) \text{ находится в окрестности} \\ & O_i(x,y) \text{ агента-мужчины } i, \\ 0, & \text{ иначе.} \end{array} \right.$$

Краевые условия в данной задаче замыкают пространство решений на двухмерном торе.

Константа $\varepsilon > 0$ — скорость распространения ресурсов.

Функции, входящие в уравнение:

- рост и потребление ресурсов агентами

$$\beta(x,y) = \left\{ \begin{array}{ll} \beta_0 + \beta_1, & \text{если в } (x,y) \text{ находится агент-мужчина,} \\ \beta_0 - \beta_2, & \text{если в } (x,y) \text{ находится агент-женщина,} \\ \beta_0, & \text{иначе;} \end{array} \right.$$

— потребление ресурсов, связанное с перенасыщением i-го агента-мужчины,

$$\gamma(x,y)=\left\{ egin{array}{ll} \gamma_i, & \mbox{ если в }(x,y) \mbox{ находится i-й агент-мужчина,} \\ \gamma_0, & \mbox{ иначе;} \end{array}
ight.$$

- источник дополнительных ресурсов агентов-мужчин

$$f(x,y) = \left\{ \begin{array}{ll} f_0, & \text{ если в } (x,y) \text{ находится агент-мужчина,} \\ 0, & \text{ иначе.} \end{array} \right.$$

Направление перемещения агентов-женщин опишем функцией $m=(m_x,m_y),\ m:U\to B^2,$ где B^2 -шар в ${\rm I\!R}^2$

$$m_x = \frac{\nabla u(x,y)}{|\nabla u(x,y)|} \cdot h_x, \quad m_y = \frac{\nabla u(x,y)}{|\nabla u(x,y)|} \cdot h_y,$$

 h_x, h_y — векторы, направленные вдоль осей Ox, Oy соответственно, и длиной, равной шагу перемещения.

5.5.3. Компьютерный эксперимент

Построенная модель реализована на языке Objective-C в мульти-агентной системе моделирования SWARM. Возможности встроенного графического интерфейса пользователя в данном пакете позволяют визуально наблюдать за ходом развития процесса. С помощью специального инструментария, содержащегося в основных библиотеках, мы выводим на экран анимационную картину. Выводится среда исследования (сеточная область), на которой располагаются и перемещаются агенты, а также отображается величина ресурса в каждой ячейке. Клетки, содержащие агентов-мужчин и агентов-женщин, окрашены в разные цвета. Степень распределения

ресурса в среде различается по цветовой гамме: чем больше капитал ресурса, тем ярче цвет. Таким образом, мы можем выявить агентов-мужчин с большим ресурсом по окружающему его "ореолу". Имитацию процесса можно наблюдать как в непрерывном, так и в пошаговом режиме. В любой момент времени можно узнать величину наличного ресурса агентамужчины, расположение агентов, вызвав вспомогательное графическое окно для каждого агента. Изменяя в данном окне значение параметров, мы имеем возможность переместить любого агента, поменять его характеристики.

При первоначальном запуске программы-модели появляется пользовательская панель управления, позволяющая переключать режимы работы (остановка, непрерывное и пошаговое развитие, сохранение любого этапа исследования), панель начальных данных модели, где отображаются коэффициенты и начальные значения параметров, которые исследователь может установить.

Для описанной выше модели проведены компьютерные эксперименты и подобраны коэффициенты, при которых поведение агентов согласуется с предложенным в 5.5.1 формальным социальным процессом. Рассматривалось поведение агентов при образовании семьи. Определялись параметры, которые влияют на количество созданных семей, продолжительность существования семьи, конечное распределение ресурса, тип поведения агентов.

Экспериментально выявлены mpu типа поведения агентов и соответствующие им формы брака: моногамная, парная и полигамная семьи. Они образуются в зависимости от потребностей женщин в ресурсах и от возможностей мужчин обеспечить их этими ресурсами.

Первый тип появляется, когда возможность мужчин в обеспечении ресурсами примерно равна среднему уровню потребности женщин; в этом случае образуются стабильные семьи, состоящие из двух агентов разного пола, например моногамные семьи.

На рис. 5.3 представлены три стадии развития социума с

Рис. 5.3: Стадии развития моногамных семей

Рис. 5.4: Стадии развития «парных семей»

Рис. 5.5: Стадии развития полигамных семей

первым типом поведения: начальная, промежуточная и финальная. В начальной стадии агенты располагаются случайным образом. Светлые точки — агенты-мужчины, темные — агенты-женщины. Вокруг агентов-мужчин образован темный "ореол", характеризующий наличие ресурсов. Через некоторый промежуток времени (на промежуточной стадии) видим: уменьшение ресурса у одних агентов-мужчин и увеличение у других, перемещение агентов-женщин ближе к ресурсообеспеченным агентам-мужчинам, образование нескольких семей. В этих семьях устанавливается баланс роста и потребления ресурса. В финальной стадии практически все агенты образовали моногамные семьи.

Второй тип поведения наблюдается в случае, когда потребности женщин существенно превышают средний уровень обеспечения ресурсами мужчин. При этом даже если семьи и образуются, то они существуют непродолжительное время, а в большинстве случаев вообще не возникают. Такой тип поведения можно охарактеризовать термином "парная семья". "Парная семья — известное соединение отдельных пар на более или менее продолжительный срок ... Парная семья, сама по себе слишком слабая и слишком неустойчива" [78].

В финальной стадии (рис. 5.4) видно отсутствие стабильных семей. При непрерывном наблюдении за процессом развития социума заметно образование и распад кратковременных семей.

Третий тип возникает тогда, когда возможность мужчин в обеспечении ресурсами превышает средний уровень потребности женщин, в этом случае образуются семьи, прототипом которых являются, например, *полигамные семьи* (полигиния), в которой один мужчина может обеспечить своими ресурсами существование нескольких жен.

На рисунке 5.5 в финальной стадии изображены полигамные семьи. Вокруг агентов-мужчин скапливаются несколько агентов-женщин.

Найденные формы брака согласуются с формами брака, описанными в работе Ф. Энгельса [78]. Это дает основание полагать, что данная модель хорошо описывает влияние общего ресурса, которым обладают мужчины, на интерес к ним женщин, а также на формы брака в возникающих семьях.

5.5.4. Система фундаментальных отношений в основе модели гендерных отношений

Продемонстрируем, как найденные в 5.2.3 законы и соответствующие отношения являются характеристиками гендерных отношений, рассмотренных в данной модели, например гендерных отношений ранга (2,2).

Согласно системе фундаментальных отношений рассматриваются два множества: множество мужчин $\mathcal{M}=\{i,k,\ldots\}$ и множество женщин $\mathcal{F}=\{\alpha,\beta,\ldots\}$. Каждый элемент i из множества \mathcal{M} характеризуется каким-либо одним (m=1) параметром x_i , а элемент α из множества \mathcal{F} – каким-либо одним (n=1) параметром y_{α} . В соответствии с формулой (5.5) парное отношение ранга (2,2) имеет вид: $a_{i\alpha}=x_iy_{\alpha}$.

Пусть $x_i=\beta_1^i$, где β_1^i — производство ресурса агентоммужчиной i в рассмотренной модели гендерных отношений, и $y_\alpha=1/\beta_2^\alpha$, где β_2^α — потребление ресурса агентом-женщиной α . Тогда $a_{i\alpha}=\beta_1^i/\beta_2^\alpha$ — величина отношения между производством ресурса агентом-мужчиной i и потреблением агентом-женщиной α , характеризующая тип поведения агентов и форму образования семьи в процессе моделирования.

Если $a_{i\alpha} < 1$, то образуются "парные" семьи; $a_{i\alpha} \sim 1$ - моногамные; $a_{i\alpha} > 1$ - полигамные.

Таким образом, для образования устойчивых (моногамных) семей величина отношения $a_{i\alpha}$ между производством ресурса агентом-мужчиной и потреблением агентомженщиной должна быть близкой к единице.

Подводя итог, можно сказать следующее: рассмотренная модель влияния ресурсообеспеченности мужчин на поведение женщин и образование семьи представляет систему фундаментальных отношений ранга (2,2).

5.6. Гендерные отношения в искусственном обществе

Построим модель взаимодействий между агентамиженщинами и агентами-мужчинами, "живущими" в пределах некоторого пространства, называемого полем, используя найденные в 5.2.3 гендерные отношения и соответствующие законы. Агент-женщина α вступает в отношения с агентамимужчинами лишь в том случае, когда они попадают в ее зону видимости. Зону видимости будем определять, используя гендерные отношения $a_{i\alpha}$ в качестве метрики, т.е способа измерения "расстояния" до агента-мужчины i. Считаем, что зона видимости $Z(\alpha,d)$ агента-женщины α включает всех агентов-мужчин i, для которых отношение $a_{i\alpha}$ не превосходит числа d, т.е.

$$i \in Z(\alpha, d) \iff \{(x_i^1, \dots, x_i^m) \in \mathcal{M} : a_{i\alpha} < d\}.$$

В случае гендерного взаимодействия $a_{i\alpha}$ рангов (3,3),(3,3;a) зона $Z(\alpha,d)\subset \mathbb{R}^2$ представляет собой полуплоскость (рис. 5.6).

Для ранга (3,4) $\dim \mathcal{M}=3, \dim \mathcal{F}=2, a_{i\alpha}=i^0+i^1\alpha^1+i^2\alpha^2, \alpha=(\alpha^1,\alpha^2)\equiv(a,b), i=(i^0,i^1,i^2)\equiv(z,x,y).$ Граница зоны $\partial Z(\alpha,d)$ – плоскость z+ax+by=d в \mathbb{R}^3 . При моделировании в \mathcal{SWARM} полупространство $Z(\alpha,d)$ проецируем на плоскость (x,y), где размещается поле $0\leq x\leq \bar{x}, 0\leq y\leq \bar{y}$, на котором взаимодействуют агенты (рис. 5.10). Числа \bar{x},\bar{y} задаются при моделировании (рис.5.7, слева).

Для ранга (4,3) $\dim \mathcal{M} = 2, \dim \mathcal{F} = 3, a_{i\alpha} = \alpha^0 + i^1\alpha^1 + i^2\alpha^2, i = (i^1, i^2) \equiv (x, y), \alpha = (\alpha^0, \alpha^1, \alpha^2) \equiv (a, a, b)$. Граница зоны $\partial Z(\alpha, d)$ – плоскость c + ax + by = d в \mathbb{R}^3 , но мы берем c = a. При моделировании в \mathcal{SWARM} полупространство $Z(\alpha, d)$ проецируем на плоскость (x, y), где размещается поле $0 \le x \le \bar{x}, 0 \le y \le \bar{y}$, на котором взаимодействуют агенты (рис.5.7, справа).

Следует ожидать, что разные зоны видимости скажутся, например, на интенсивности взаимодействия агентов-женщин

Рис. 5.6: Зоны видимости агента-женщины, находящейся в т.(a,b), в случае гендерных отношений $a_{i\alpha}$ ранга (3,3) и (3,3;a) соответственно

Рис. 5.7: Зоны видимости агента-женщины, находящейся в т.(a,b), в случае гендерных отношений $a_{i\alpha}$ ранга (3,4) и (4,3) соответственно в проекции на плоскость (x,y)

и агентов-мужчин.

Это и показывает компьютерное моделирование. Реализация данной идеи осуществляется в мульти-агентной системе моделирования \mathcal{SWARM} .

Агенты (мужчины и женщины) взаимодействуют согласно заданному закону гендерных отношений определенного ранга с теми агентами противоположного пола, которые попадают в их зону видимости. Искусственная жизнь агентов протекает в *поле*, являющимся математически двумерным тором⁷. Слу-

 $^{^7{}m Top}$ получается из квадрата, изображающего поле в компьютерной модели, склеиванием противоположных сторон.

Рис. 5.8: Количество взаимодействий агентов в случае гендерных отношений $a_{i\alpha}$ ранга (3,3) и (3,3;a) соответственно

Рис. 5.9: Количество взаимодействий агентов в случае гендерных отношений $a_{i\alpha}$ ранга (3,4) и (4,3) соответственно

чайно блуждая e *поле*, агенты находятся в состоянии поиска потенциальных партнеров для брака. С течением времени можно наблюдать динамику интенсивности взаимодействия агентов в поле. Расстояние d в приведенных результатах компьютерного эксперимента положительно, но ничто не мешает брать его и отрицательным.

В зависимости от ранга заданного гендерного отношения изменяется и общее количество взаимодействий агентов в среде. На рис. 5.8-5.9 представлены графики зависимости количества взаимодействий агентов от времени при разных законах гендерных отношений, задающих ту или иную зону видимости согласно рис. 5.6-5.7.

Рис. 5.10: Взаимодействие агентов в искусственном обществе

На рис. 5.10 представлен искусственный мир гендерных отношений ранга (3,3) в поле взаимодействия. Светлыми точками обозначены агенты-мужчины, а темными — агентыженщины, линиями отображается процесс взаимодействия между ними. Зоны видимости агентов связаны с системой координат искусственной среды. Направление координатных осей указаны на рис. 5.10.

В результате моделирования мы убеждаемся в том, что для каждого типа гендерных отношений $a_{i\alpha}$ устанавливается вполне определенный и неповторимый тип отбора потенциальных брачных партнеров. Конечно, наша трактовка отношения $a_{i\alpha}$ не является единственно возможной и предлагаемая модель может отражать и другие стороны гендерных взаимодействий реальных мужчин и женщин.

Зоны видимости у мужчин и женщин при гендерных отношениях рангов (r,r) и (r,r;a) геометрически ничем не отличаются друг от друга. Однако можно предположить, что это не

Рис. 5.11: Зоны видимости соответственно агентов-женщин и агентов-мужчин при гендерных отношениях ранга (4,2) (при некотором выборе чисел a,b,c,d).

является общим законом. К примеру, если взять систему отношений ранга (4,2), то легко строится модель искусственного общества, для которого зоны видимости у мужчин и женщин являются разными. Действительно, поле в данном случае — это 3-х-мерный куб. Граница зоны видимости $\partial Z(\alpha,d)$ агентаженщины $\alpha=(\alpha^1,\alpha^2,\alpha^3)\equiv(a,b,c)$ задается уравнением

$$a_{i\alpha} \equiv \frac{ax+b}{x+c} = d,$$

где $i=x\equiv (x,\cdot,\cdot)$ (рис. 5.11, слева). А граница зоны видимости $\partial Z(i,d)$ агента-мужчины $i=a\equiv (a,\cdot,\cdot)$ будет задаваться уже уравнением

$$a_{i\alpha} \equiv \frac{ax+y}{a+z} = d,$$

где $\alpha=(\alpha^1,\alpha^2,\alpha^3)\equiv(x,y,z)$ (рис. 5.11, справа). Здесь для всех мужчин в плоскости x=a зона видимости $\partial Z(i,d)$ одна и та же.

Как видим, использование теории систем фундаментальных отношений Ю.И. Кулакова дает интересный результат и в приложении к социологии гендерных отношений, причем, число предлагаемых теорией систем отношений способов гендерных взаимодействий $a_{i\alpha}$ бесконечно, точнее счетно, и это обстоятельство как нельзя лучше способно служить ответом

на возражения противников математических моделей в гендерной социологии, заключающихся, как правило, в высказывании: "Мир действительных гендерных отношений столь многообразен, что не может быть сведен к примитивным математическим формулам".

Кулаков Юрий Иванович родился 12 марта 1927 г. Кандидат физико-математических наук, доцент Новосибирского университета, профессор Горно-Алтайского университета, академик Болонской академии наук. Ученик Нобелевского лауреата советского физика Игоря Евгеньевича Тамма. Создатель теории физических структур, автор нескольких монографий по фундаментальной теоретической физике.