(a)
$$\frac{E}{0} = \frac{G}{0} = \frac{F'}{0}$$

This is an RS flip-flop with inverted inputs

 $E = \overline{R}$
 $G = \overline{S}$
 $F = Q$

(b)
$$\frac{H}{0} \frac{J}{K} = \frac{K'}{0} = \frac{H}{0} \frac{J}{K} = \frac{K'}{0} = \frac{$$

(d) Avalysis: label internal rods of first
$$\overline{RS}$$
 flip-flop VLV ($Vom tp$)

When $Q = 0 \Rightarrow VLV$ are removised, $S = V$, $T = W$
 $Q = 1 \Rightarrow SLT$ are removised, $V = P.T$, $W = R.S$

so wights PLR infunce the output on the falling edge of Q
 $Q = clock$

if $S = QLT = \overline{Q}$

then $P = T$
 $Q = K$

This is a

 $Q = K$

This is a

 $Q = K$

The flip-flow

 $Q = K$
 $Q = K$

This is a

 $Q = K$
 $Q = K$

This is a

 $Q = K$
 $Q = K$

This is a

 $Q = K$
 $Q = K$
 $Q = K$

This is a

 $Q = K$
 $Q = K$

The flip-flow

 $Q = K$
 $Q = K$