Validating Ecological Inference Estimates from Cast Vote Records

Shiro Kuriwaki (Harvard University)

July 2019

Data: Cast Vote Records (CVRs)

CVRs are electronic copies of voted ballots, and measure ticket splitting rates exactly

- ✓ Individual-level
- Actual vote choice observed without error
- ✓ Down-ballot races observed

South Carolina's ES&S iVotronic (DRE)

RUN DATE:11/09/18 02:32 PM ELECTION ID: 10110618 PRECINCT 537 - St Andrews 37 Alan Wilson Attorney General Joe Cunninghan Lin Bennett Tom Hartnett Hal Hanvey Soil and Water District Commission Kate Darby CSB East Cooper CSB East Cooper Vivian Sheppard Pettigrev Paul H Padron Cullen Baney SCH0010 Con SB St Andrews District Daron Lee Calhoun 1 Christopher Mahon SCH0010 Con SB St Andrews District Statewide Constitutional Amendments Republican STRAIGHT PARTY Henry McMaster Secretary of State Mark Hammond Curtis Loftis State Treasurer Attorney General Alan Wilson

South Carolina Data from Kuriwaki (2019), "Party Loyalty on the Long Ballot: Is Ticket Splitting More Prevalent in State and Local Elections?" (https://doi.org/10.31235/osf.io/bvgz3)

Estimands

Goal: Using voteshares from $i \in 1, ..., N_p$ precincts, infer the unobserved **Column Proportions**.

	Presiden		
Down-ballot Vote	Republican (Trump / Romney)	Democrat (Clinton / Obama)	(Voteshare)
Republican Democrat	W _{straight} 1 – W _{straight}	W _{split} 1 – W _{split}	Y _R 1 – Y _R
(Voteshare)	X_{R}	1 – X _R	1 (= n; voters)

Final Estimand: total proportion of

Methods Compared

Homogeneous Precincts	Ecological Regression	Wakefield 2 × 2
• Use Y_R from precincts where $X_R \approx 0$ or $X_R \approx 1$ only	 Extrapolate from correlation of aggregate marginals Regress Y_R on X_R and 1 – X_R 	• Model counts n_{X_R,Y_R} • $n_{X_R,Y_R} \sim \text{Binom}(n_{X_R},\mu)$, • $\mu \sim \text{Normal}$
Imai, Lu, Strauss 2 × 2	Rosen, King, Jiang, Tanner 4×4	Greiner and Quinn 4 × 4
• Model proportions W • $\log it^{-1}(W) \sim Normal$ • $\mu \sim Normal; \Sigma \sim InvWish$	 Model proportions W Model 4 options: Republican, Democrat, Other, Abstain (W₁, W₂, W₃, W₄) ~ Dirichlet Prior: X ~ Multi(θ₁, θ₂, θ₃, θ₄) 	• Model counts n_{X_R,Y_R} • $(n_{X_1},n_{X_2},n_{X_3},n_{X_4}) \sim$ Multi • Also model 4×4 • $\mu \sim$ Normal; $\Sigma \sim$ InvWish

Do Ecological Inference Methods Recover the Ground Truth?

Most methods over-estimate straight ticket rates, and homogeneous precincts does about as well as El methods.

Voting on Candidates

Voting on Referendums

Deterministic Bounds are Uninformative

https://www.shirokuriwaki.com

Small Precincts Drive Error Rates

Possible Adjustments: Race as a Contextual Variable

