In [1]: In [2]:	<pre>import warnings warnings.filterwarnings('ignore') import datetime as dt import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import scipy.cluster.hierarchy as sch from scipy.cluster.hierarchy import dendrogram, linkage from sklearn metrics import confusion matrix, classification report.</pre>
In [3]:	<pre>from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.mixture import GaussianMixture from sklearn.cluster import KMeans, AgglomerativeClustering, AffinityPropagation from sklearn.svm import SVR from yellowbrick.cluster import KElbowVisualizer</pre> Loading Data data = pd.read_csv('data.csv', encoding='latin-1') data.dropna()
Out[3]:	InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerID Country
In [4]:	<pre>data.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 541909 entries, 0 to 541908 Data columns (total 8 columns): # Column Non-Null Count Dtype</class></pre>
In [5]: In [56]:	<pre>dtypes: float64(2), int64(1), object(5) memory usage: 33.1+ MB data['Revenue'] = data.apply(lambda i: i['Quantity'] * i['UnitPrice'], axis=1) data['InvoiceDate'] = pd.to_datetime(data['InvoiceDate']) data['Month'] = data['InvoiceDate'].dt.month data['Year'] = data['InvoiceDate'].dt.year</pre> Exploring Data
In [7]:	To knew more about data, we need to answer the follwing questions: 1. What was the total revenue? 2. Which months had the higher sales? 3. What products are in the top 10 in sales and revenue? 4. Which products were returned more frequently? 5. What are the top 10 countries that purchased the most? 6. How much is the share of the revenue for each cluster? Total revenue total_revenue = data['Revenue'].sum()
Out[7]: In [8]: In [9]:	<pre>total_revenue 9747747.933999998 Months`sales total_per_month = data.groupby(['Year','Month'])['Revenue'].sum() total_per_month.plot(kind='bar', color='#63b3c0',figsize=(8,5)) <axessubplot:xlabel='year,month'></axessubplot:xlabel='year,month'></pre>
	1.4 1.2 1.0 0.8 0.6
In [10]:	O2 O0 O1 O2 O2 O2 O3 O4 O5 O5 O4 O5 O5 O5 O5 O5 O5
In [11]: Out[11]:	<pre>sns.barplot(x='Quantity', y='StockCode', data=most_popular_products.head(10), color='#63b3c0').set(title='Top [Text(0.5, 1.0, 'Top 10 products in sales')] Top 10 products in sales 22197 85099B 85123A</pre>
	84879 21212 23084 22492 22616 21977 0 10000 20000 30000 40000 50000 Quantity
<pre>In [12]: In [13]: Out[13]:</pre>	Top 10 products in revenue most_revenue = most_popular_products.sort_values(by='Revenue', ascending=False) sns.barplot(x='Revenue', y='StockCode', data=most_revenue.head(10), color='#63b3c0').set(title='Top 10 product [Text(0.5, 1.0, 'Top 10 products in revenue')] Top 10 products in revenue DOT 22423
	47566 85123A 9 85099B 23084 POST 22086 84879
In [14]: In [15]:	Products were returned more frequently most_returned_products = data[
	23843 23166 M
In [16]: In [17]:	AMAZONFEE 0 -10000 -20000 -30000 -40000 -50000 -60000 -70000 -80000 Quantity Most Consumed Country most_countries = data[['Country', 'Quantity', 'Revenue']].groupby(['Country'], as_index=False).sum().sort_values
Out[17]:	<pre>sns.barplot(y='Country', x='Revenue', data=most_countries.head(10), color='#63b3c0') <axessubplot:xlabel='revenue', ylabel="Country"> United Kingdom</axessubplot:xlabel='revenue',></pre>
In [18]:	Sweden Switzerland Spain Japan 0 1 2 3 4 5 6 7 8 Revenue 1e6 Revenue share for each cluster
In [19]: In [20]:	<pre>customers = pd.DataFrame(data.groupby('CustomerID')['Revenue'].sum()).sort_values('Revenue', ascending=False) revenues = customers['Revenue'] minn = revenues.min() maxx = revenues.max() n = (maxx - minn) // 5 g1 = customers[revenues < minn + n] g2 = customers[(revenues >= minn + n) & (revenues >= minn + 2*n)] g3 = customers[(revenues >= minn + 2*n) & (revenues >= minn + 3*n)] g4 = customers[(revenues >= minn + 3*n) & (revenues >= minn + 4*n)] g5 = customers[(revenues >= minn + 4*n)]</pre>
In [21]:	<pre>def custom_labels(b, inc, n): lst = [] prepare_num = lambda number: int((b + number * inc) / 1000) for i in range(1, n): num = prepare_num(i) if i == 1: lst.append(f'Bellow {num}k') elif i == n-1: lst.append(f'Above {num}k') else: lst.append(f'Within ({prepare_num(i-1)}k, {num}k)') return lst</pre>
In [22]:	<pre>labels = custom_labels(minn, n, 6) sns.set_palette(sns.color_palette(['#63b3c0','#66888f','#979095','#d9d9d9', '#006494'])) plt.figure(figsize = (10, 6)) pie_data = [i('Revenue'].sum() for i in (g1, g2, g3, g4, g5)] plt.pie(pie_data, labels = labels, autopct='%1.2f%%') plt.show()</pre> <pre>Bellow 52k</pre>
	5.58% Above 279k 5.58% 7.54% Within (165k, 222k) Within (52k, 109k) Within (52k, 109k)
	Correlation od data coulmns Preparing Data 1. Setup the data with required columns 2. Removing the outliers 3. Correlation bettween the selected featuers 4. Split data into train set & test set 5. Scaling using minmax scaler
<pre>In [23]: Out[23]:</pre>	<pre>customers = pd.DataFrame(data.groupby('CustomerID')['Revenue'].sum()).sort_values('Revenue', ascending=False) customers['Purchases'] = data.groupby('CustomerID')['InvoiceNo'].count() customers['Quantity'] = data.groupby('CustomerID')['Quantity'].sum() customers['RevenuePercentage'] = customers.apply(lambda i: i['Revenue'] / total_revenue, axis=1) subset = customers.copy() subset.reset_index(inplace=True) subset.head() CustomerID Revenue Purchases Quantity RevenuePercentage 0 14646.0 279489.02 2085 196719 0.028672 1 18102.0 256438.49 433 64122 0.026307</pre>
In [24]:	2 17450.0 187482.17 351 69029 0.019233 3 14911.0 132572.62 5903 77180 0.013600 4 12415.0 123725.45 778 77242 0.012693 plt.scatter(subset['Quantity'], subset['Revenue']) plt.show()
	200000 150000 50000
In [25]: In [26]:	Removing the outliers with Quartiles Q1 = np.percentile(subset['Quantity'], 25, interpolation = 'midpoint') Q3 = np.percentile(subset['Quantity'], 75, interpolation = 'midpoint') IQR = Q3 - Q1 upper = np.where(subset['Quantity'] >= (Q3 + 1.5*IQR)) lower = np.where(subset['Quantity'] <= (Q1 - 1.5*IQR))
In [27]:	<pre>subset.drop(upper[0], inplace = True) subset.drop(lower[0], inplace = True) plt.scatter(subset['Quantity'], subset['Revenue']) plt.show()</pre>
	4000 2000 -2000 -4000 0 500 1000 1500 2000
<pre>In [28]: Out[28]: In [29]:</pre>	<pre>Correlation bettween the selected featuers subset['Quantity'].corr(subset['Revenue']) 0.8664743082485633 sns.pairplot(subset[['Quantity', 'Revenue']]) plt.show()</pre>
	1500 500 0 8000 6000 4000
In [30]:	-2000 -4000 Ouantity Revenue Spliting Data x = subset[['Revenue', 'Quantity']] x_train, x_test = train_test_split(x, test_size=0.33, random_state=42)
In [31]:	<pre># Quantity revenue_scaler = MinMaxScaler() revenue_scaler.fit(x_train[['Revenue']]) x_train['RevenueScaled'] = revenue_scaler.transform(x_train[['Revenue']]) x_test['RevenueScaled'] = revenue_scaler.transform(x_test[['Revenue']]) # Revenue quantity_scaler = MinMaxScaler() quantity_scaler.fit(x_train[['Quantity']]) x_train['QuantityScaled'] = quantity_scaler.transform(x_train[['Quantity']]) x_test['QuantityScaled'] = quantity_scaler.transform(x_test[['Quantity']])</pre>
<pre>In [32]: Out[32]:</pre>	Revenue Quantity RevenueScaled QuantityScaled 2621 465.68 305 0.396142 0.245657 2061 702.79 898 0.415903 0.485253 797 2166.38 1401 0.537879 0.688485 4150 101.34 106 0.365778 0.165253 3153 316.68 185 0.383724 0.197172
<pre>In [33]: Out[33]:</pre>	Revenue Quantity RevenueScaled QuantityScaled 511 3102.42 1116 0.615888 0.573333 2173 653.13 261 0.411764 0.227879 4047 120.90 198 0.367408 0.202424 1119 1558.72 631 0.487236 0.377374 710 2398.86 1560 0.557253 0.752727
In [34]:	train_points = x_train[['RevenueScaled', 'QuantityScaled']].to_numpy() test_points = x_test[['RevenueScaled', 'QuantityScaled']].to_numpy() KMeans clustering 1. Determine optimal cluster number with Elbow method 2. Fiting KMeans Model 3. Plotting the Result Determine optimal cluster number with Elbow method Given inertia formula:
In [35]:	$\sum_{i=1}^{N} (x_i - C_k)^2$ $\sum_{i=1}^{N} (x_i - C_k)^2$ $\sum_{i=1}^{N} (x_i - C_k)^2$ for i in range(1, 11):
	<pre>model = KMeans(n_clusters = i,</pre>
	Elibow Method 120 80 60 40
In [36]:	visualizer = KElbowVisualizer(KMeans(), k=(2, 10), timings=False) visualizer.fit(train_points) visualizer.show()
	Distortion Score Elbow for KMeans Clustering elbow at k = 4, score = 12.084 25 25 15
Out[36]:	<pre> AxesSubplot:title={'center':'Distortion Score Elbow for KMeans Clustering'}, xlabel='k', ylabel='distortion score'> Fiting KMeans Model Given the formula number of clusters number of cases </pre>
	$\text{objective function} \leftarrow J = \sum_{j=1}^{k} \sum_{i=1}^{n} \left\ x_i^{(j)} - c_j \right\ ^2$
<pre>In [37]: Out[37]: In [38]:</pre>	<pre>K = 4 KMeansModel = KMeans(n_clusters=K, init='k-means++', random_state=0) KMeansModel.fit(train_points) v</pre>
<pre>In [39]: Out[39]: In [40]:</pre>	<pre>centers = KMeansModel.cluster_centers_ centers array([[0.38145145, 0.18101653], [0.59256913, 0.79888929], [0.42772828, 0.31293894], [0.49420702, 0.50918886]]) f, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(20, 6)) ax1.set_title('Train Data') ax1.scatter(train_points[:, 0], train_points[:, 1], c=KMeansModel.labels_, cmap='Set2') ax1.scatter(centers[:, 0], centers[:, 1], c='red')</pre>
	ax2.set_title('Test Data') ax2.scatter(test_points[:, 0], test_points[:, 1], c=kmeans_predicted, cmap='Set2') ax2.scatter(centers[:, 0], centers[:, 1], c='red') plt.xlabel('Total Qunatity') plt.ylabel('Total Revenue') plt.show() Train Data Test Data
Tn [41]:	0.6 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Total Qunatity
In [41]:	<pre>from scipy.spatial import Voronoi, voronoi_plot_2d vor = Voronoi(centers) voronoi_plot_2d(vor) plt.scatter(centers[:, 0], centers[:, 1], s=200, c='red') plt.scatter(train_points[:, 0], train_points[:, 1], c=KMeansModel.labels_, s=10, cmap='copper') plt.show()</pre>
	0.6 0.5 0.4 0.3 0.2 0.40 0.40 0.45 0.50 0.55 0.60
In [42]:	<pre>kmeans_points = pd.DataFrame(x_train['QuantityScaled'].append(x_test['QuantityScaled']), columns=['QuantityScaled',]) kmeans_points['RevenueyScaled'] = x_train['QuantityScaled'].append(x_test['QuantityScaled']) kmeans_points['KMeans'] = np.concatenate((KMeansModel.labels_, kmeans_predicted)) kmeans_points.groupby('KMeans')['KMeans'].count().plot.pie(labels=[f'Cluster {i}' for i in range(K)], autopct= plt.show()</pre> Cluster 0
	Cluster 0 49.07% 10.06% Cluster 1 25.37% Cluster 3
In [57]:	Agglomerative Clustering 1. Determine optimal cluster number with Elbow method 2. Fiting Agglomerative Model Model 3. Plotting the result visualizer = KElbowVisualizer (AgglomerativeClustering(), k=(2, 10), timings=False) visualizer fit (train points)
_0/]:	visualizer.fit(train_points) visualizer.show() Distortion Score Elbow for AgglomerativeClustering Clustering elbow at k = 3, score = 19.102
Out[57]:	AxesSubplot:title={'center':'Distortion Score Elbow for AgglomerativeClustering Clustering'}, xlabel='k', ylabel='distortion score'>
In [58]: Out[58]: In [59]:	<pre>K = 3 AggModel_train = AgglomerativeClustering(n_clusters=K, affinity = 'euclidean', linkage = 'ward', compute_dista AggModel_train.fit(train_points) v</pre>
	plt.xlabel('Total Qunatity') plt.ylabel('Total Revenue') plt.show() Train Data 1.0 0.8
	The following function is quoted form official site
In [60]:	<pre>def plot_dendrogram (model, **kwargs): # Create linkage matrix and then plot the dendrogram # create the counts of samples under each node counts = np.zeros (model.childrenshape[0]) n_samples = len (model.labels_) for i, merge in enumerate (model.children_): current_count = 0 for child_idx in merge: if child_idx < n_samples: current_count += 1 # leaf node else: current_count += counts[child_idx - n_samples]</pre>
In [61]:	<pre>current_count += counts[child_idx - n_samples] counts[i] = current_count linkage_matrix = np.column_stack([model.children_, model.distances_, counts]).astype(float) # Plot the corresponding dendrogram dendrogram(linkage_matrix, **kwargs) plt.show() plot_dendrogram(AggModel_train, truncate_mode="level", p=3)</pre>
	12
In [62]:	2 0 (165)(256) 522 (307) (51) (278)(314)(457) (99) (58) (180)(142) (71) (116) (21) (141)
	<pre>visualizer_test = KElbowVisualizer(AgglomerativeClustering(), k=(2, 10), timings=False) visualizer_test.fit(test_points) visualizer_test.show()</pre>

64]: plt.scar plt.tit. plt.xlal	Agglomer ativeClustering(comp tter(test_points[:, le('Train Data') pel('Total Qunatity pel('Total Revenue' w()	<pre>cativeClustering pute_distances=True, 0], test_points[:, ')</pre>			ge = 'ward', compute_d: t2')
0.0	0.3 0.4 0.5	0.6 0.7 0.8 Total Qunatity est, truncate_mode=	"level", p=4)		
from sking confliction for four four four four four four four	tingency_matrix, explkes_mallows_score, The Completeness score Random score is %0.2 The normalized Mutual leteness score is 0 core is 0.674134374 alized Mutual info learn.metrics.cluste on = contingency_mate tmap(kmean_con)	pected_mutual_informentropy, silhouette ore is %0.12f" % con 12f " % rand_score(; al info score is %0 .990829231077 350 score is 0.31747919 er import contingence	mation, homogeneity_ e_samples, silhouett mpleteness_score(x_t x_test['QuantityScal .12f" %normalized_mu 6890 cy_matrix eScaled'], kmeans_pr	completeness_v_mea e_score, calinski_ est['QuantityScale ed'], kmeans_predi itual_info_score(x	<pre>info_score, adjusted_ra sure, homogeneity_score harabasz_score, davies_ d'], kmeans_predicted); cted)) _test['QuantityScaled']</pre>
0 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720 765 810 855 990 945 1080 1125 1170 1215 1260 Refren link 1 link 2 link 3 link 4 link 5 link 5	o 1	2 3	4 3 2 1 0		