Used Car Price Prediction

Jialong Zhang
Zehao Liu
Instructor: Dr. Sukhjit Singh Sehra
July 19, 2022

Used Car Price Prediction	1
Abstract	3
1. Introduction	3
2. Project Description	3
3.Methodology	10
4.conclusion	11
5. Reference	11

Abstract

A lot of people buy used cars these days because the price of new cars is often too expensive. However, there are many risks associated with buying a used car. Using our model to predict a reasonable price before buying a used car can help buyers clarify their goals.

1. Introduction

A huge amount of people desired to own a car to make their life convenience and the price of car is big concern of those afraid to be cheated and a lot of people waste a plenty of money on not bargain deals on used car. To address the issue, project aims to design a two-stage machine learning engine to predict the price of car by inputting the core property of the car. The price is predominantly influenced by main 14 property in table 1.

Section 2 explains how a serial of property were processed to construct the dataset. Section 3 and Section 4 deal with how different classifiers and regressors were trained and analyzed on the dataset respectively. Finally, Section 5 details the random forest model to predict car's prices

2. Project Description

The dataset comes from https://www.kaggle.com/datasets/avikasliwal/used-cars-price-prediction. It contains test-data.csv and train-data.csv, our project is just using train-data. data contains 14 attributes from table 1, we will do data cleaning on these raw datasets to deal with the missing data and redundant attributes.

Table 1: Data Attributes

index	
Name	The brand and model of the car.
Location	The location in which the car is being sold or is available for purchase.
Year	The year or edition of the model.
Kilometers_Driven	The total kilometres driven in the car by the previous owner(s) in KM.
Fuel_Type	The type of fuel used by the car. (Petrol / Diesel / Electric / CNG / LPG)

Transmission	The type of transmission used by the car. (Automatic / Manual)
Owner_Type	Whether the ownership is Firsthand, Second hand or other.
Mileage	The standard mileage offered by the car company in kmpl or km/kg
Engine	The displacement volume of the engine in cc.
Power	The maximum power of the engine in bhp.
Seats	The number of seats in the car.
New_Price	The price of a new car of the same model.
Price	The price of the used car in INR Lakhs.

To processing the data, we first imported the necessary libraries (e.g. pandas, numpy, matplotlib and seaborn) and loaded the dataset.

```
# Importing necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
```

We used the ".head()" and ".tail()" functions from the pandas library to return the first and last 5 observations of the dataset allowing a closer look at the data.

Ur	nnamed: 0	Na	ame Locatio	n Year	Kilometers Driv	en Fuel Typ	e	. Mileage	Engine	Powe	r Seats	New Price	Price
0	0	Maruti Wagon R LXI (ING Mumba	i 2010		100 ČN	G	. 26.6 km/kg	998 CC	58.16 bh	p 5.0	_ NaN	1.75
1	1 H	yundai Creta 1.6 CRDi SX Opti	ion Pur	ne 2015	410	00 Diese	ι	. 19.67 kmpl	1582 CC	126.2 bh	p 5.0	NaN	12.50
2	2	Honda Jazz	z V Chenna	i 2011	460	00 Petro	ι	. 18.2 kmpl	. 1199 CC	88.7 bh	p 5.0	8.61 Lakh	4.50
3	3	Maruti Ertiga \											
4	4	Audi A4 New 2.0 TDI Multitror	nic Coimbato	e 2013	406	70 Diese	ι	. 15.2 kmpl	. 1968 CC	140.8 bh	p 5.0	NaN	17.74
	Unnamed: 0		Location \		.lometers_Driven	Fuel_Type		Mileage	Engine				Price
6014	6014	Maruti Swift VDI	Delhi 2	014	27365	Diesel		28.4 kmpl	1248 CC	74 bhp	5.0	7.88 Lakh	4.75
6015	6015	Hyundai Xcent 1.1 CRDi S	Jaipur 2	2015	100000	Diesel		24.4 kmpl	1120 CC	71 bhp	5.0	NaN	4.00
6016	6016	Mahindra Xylo D4 BSIV	Jaipur 2	012	55000	Diesel		14.0 kmpl	2498 CC	112 bhp	8.0	NaN	2.90
6017	6017	Maruti Wagon R VXI	Kolkata 2	2013	46000	Petrol		18.9 kmpl	998 CC	67.1 bhp	5.0	NaN	2.65
6018	6018	Chevrolet Beat Diesel	Hyderabad 2	2011	47000	Diesel		25.44 kmpl	936 CC	57.6 bhp	5.0	NaN	2.50

We use ".info()" to know the columns and their corresponding data types.

	Year	Kilometers_Driven	Seats	Price
count	6019.000000	6.019000e+03	5977.000000	6019.000000
mean	2013.358199	5.873838e+04	5.278735	9.479468
std	3.269742	9.126884e+04	0.808840	11.187917
min	1998.000000	1.710000e+02	0.000000	0.440000
25%	2011.000000	3.400000e+04	5.000000	3.500000
50%	2014.000000	5.300000e+04	5.000000	5.640000
75%	2016.000000	7.300000e+04	5.000000	9.950000
max	2019.000000	6.500000e+06	10.000000	160.000000

Use describe() function returns the count, average, standard deviation, minimum, maximum and quantity of the data.

Data	columns (total 14	columns):	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	6019 non-null	int64
1	Name	6019 non-null	object
2	Location	6019 non-null	object
3	Year	6019 non-null	int64
4	Kilometers_Driven	6019 non-null	int64
5	Fuel_Type	6019 non-null	object
6	Transmission	6019 non-null	object
7	Owner_Type	6019 non-null	object
8	Mileage	6017 non-null	object
9	Engine	5983 non-null	object
10	Power	5983 non-null	object
11	Seats	5977 non-null	float64
12	New_Price	824 non-null	object
13	Price	6019 non-null	float64
dtype	es: float64(2), int	t64(3), object(9)	

Now, we have a good basic understanding of the data. Then we perform data cleanup, Use ".isnull().sum()" to find the missing data, then use ".dropna()" to delete the records with NULL values, and finally use "reset_index" to reset the index.

```
Name
Location
Year
Kilometers_Driven
Fuel_Type
                          0
0
Transmission
Owner_Type
Mileage
Engine
Power
                         42
Seats
                       5195
New Price
Price
```

```
#delete the records with NULL values
print(train_data.isnull().sum())
train_data.drop(["New_Price"],axis=1,inplace=True)
train_data = train_data.dropna(how='any')
train_data = train_data.reset_index(drop=True)
```

We found some data with units, we need to remove the units from the data and change the data type.

```
# remove some units from the data
train_data['Mileage'] = train_data['Mileage'].str.replace(' kmpl','')
train_data['Mileage'] = train_data['Mileage'].str.replace(' km/kg','')
train_data['Engine'] = train_data['Engine'].str.replace(' CC','')
train_data['Power'] = train_data['Power'].str.replace('null bhp','112')
train_data['Power'] = train_data['Power'].str.replace(' bhp','')

train_data['Mileage'] = train_data['Mileage'].astype(float)
train_data['Engine'] = train_data['Engine'].astype(float)
train_data['Power'] = train_data['Power'].astype(float)
```

After pre-processing the data, we used the visualization library Seaborn to create various statistical plots for visual exploration analysis. We first performed the distribution of prices.

We observe that the distribution of prices shows a high positive skewness to the right, implying a large number of outliers in the data set. (left image). We use Log(Price) to transform the value of Price to visualize the distribution of prices more normally. (As shown in the figure on the right).

we use the ".corr()" function of pandas to find correlations and use the heat map in seaborn to visualize the correlation matrix.

```
#heatmap
plt.figure(figsize=(10,10))
sns.heatmap(data.corr(),annot=True,cmap='RdYlGn')
plt.show()
```


The heat map shows the relationship between each parameter. It is clear that price has a strong positive correlation with the 'power', the 'engine' and the 'year' of the car. Price has a strong negative correlation with the 'Mailage' of the car. Price has a little correlation with 'Kilometers_Driven' and 'Seats'. This indicates that people pay more attention to the powertrain of a car when buying a used car.

This box plot tells us that the newer the car, the more expensive it is. Automatic cars are always more expensive than manual cars, so we conclude that automatic cars cost more.

This box plot tells us that diesel cars are more expensive than Petrol cars.

We handled the categorical data with LabelEncoder before proceeding with the modeling.

```
#Handling Categorical parameters
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder().fit(data['Cars'])
data['Cars'] = label_encoder.transform(data['Cars'])

label_encoder = LabelEncoder().fit(data['Location'])
data['Location'] = label_encoder.transform(data['Location'])

label_encoder = LabelEncoder().fit(data['Fuel_Type'])
data['Fuel_Type'] = label_encoder.transform(data['Fuel_Type'])

label_encoder = LabelEncoder().fit(data['Transmission'])
data['Transmission'] = label_encoder.transform(data['Transmission'])

label_encoder = LabelEncoder().fit(data['Owner_Type'])
data['Owner_Type'] = label_encoder.transform(data['Owner_Type'])
```

3. Methodology

The project execute six difference model to fitting the data, including linear regression, Multilayer perceptron, KNeighbors classifier, decision tree classifier, decision tree regressor and random forest regressor in our example. Linear regression decision tree regressor and random forest regressor is successes to predict all the content, since their accuracy is over 0.8. Random forest have the highest accuracy that is around 0.94 so that it becomes our best choice of model.

Following is our graph:

	model	Root Mean Squared Error	Accuracy on Traing set	Accuracy on Testing set
3	KNeighborsClassifier	354.978130	0.210092	0.005578
5	Multilayer perceptron	331.878794	0.013490	0.006085
4	DecisionTreeClassifier	134.025082	0.997502	0.026369
2	LinearRegression	152.635554	0.847900	0.805983
0	DecisionTreeRegressor	116.530787	0.999993	0.886914
1	RandomForestRegressor	83.398528	0.991817	0.942078

Linear regression is one of the supervised Machine learning algorithms in Python that observes continuous features and predicts an outcome. It assigns optimal weights to variables to create a line ax+b to predict the output. [1]

Kneighbors is a supervised learning algorithm that considers different centroids and uses a usually Euclidean function to compare distance. Then, it analyzes the results and classifies each point to the group to optimize it to place with all closest points to it. It classifies new cases using a majority vote of k of its neighbours. The case it assigns to a class is the one most common among its K nearest neighbours. [2]

A decision tree falls under supervised Machine Learning Algorithms in Python and comes of use for both classification and regression. It takes an instance, traverses the tree, and compares important features with a determined conditional statement. [3]

A random forest is an ensemble of decision trees. In order to classify every new object based on its attributes, trees vote for class- each tree provides a classification. The classification with the most votes wins in the forest.[4]

A multilayer perceptron (MLP) is a fully connected class of feedforward artificial neural network (ANN). It can distinguish data that is not linearly separable. [5]

4.conclusion

This is a data analysis project for machine learning. We did clean the raw data by null vale. After data Preprocessing, six model are used to fitting our prediction. According to the analysis, random forest is best model in our prediction and this project is useful to predict the price of used car.

5. Reference

- [1] https://en.wikipedia.org/wiki/Linear regression
- [2] https://en.wikipedia.org/wiki/K-nearest neighbors algorithm
- [3] https://en.wikipedia.org/wiki/Decision_tree_learning
- [4] https://en.wikipedia.org/wiki/Random_forest
- [5] https://en.wikipedia.org/wiki/Multilayer perceptron