Problema 35. (a) Calculeu les classes de conjugació del grup S_3 .

(b) Calculeu les classes de conjugació del grup S_4 .

Observació 1. Per fer aquest problema utilitzem:

- (1) **Definició.** Una partició de n és una successió decreixent de nombres enters no negatius que sumen n.
- (2) **Definició.** El tipus d'una permutació de S_n és la partició de n que resulta de considerar les longituds dels cicles que apareixen en la seva factorització, incloent els punts fixos com a cicles de longitud 1.

Exemple: Sigui n = 8 i $\sigma = (1283)(57) = (1283)(57)(4)(6)$. Aleshores σ és de tipus $(4211) = [1^2 2^1 4^1]$.

- (3) **Observació.** En el grup simètric S_n , les classes de conjugació queden descrites per les particions de n.
- (4) **Teorema.** Dues permutacions estan en la mateixa classe de conjugació si, i només si, són del mateix tipus. A més, la classe de conjugació de tipus $[1^{r_1}2^{r_2}...n^{r_n}]$ té $\frac{n!}{1^{r_1}r_1!2^{r_2}r_2!...n^{r_n}r_n!}$ elements.

Solució. (a) Les particions de n = 3 són: $(3) = [3^1]$, $(2,1) = [1^12^1]$, $(1,1,1) = [1^3]$. Així doncs,

TIPUS	CLASSE DE CONJUGACIÓ	NOMBRE D'ELEMENTS
$[3^1]$	{(123), (132)}	$\frac{3!}{3^1 1!} = 2$
$[1^12^1]$	{(12), (13), (23)}	$\frac{3!}{1^1 1! 2^1 1!} = 3$
$[1^3]$	{1}	$\frac{3!}{1^3 3!} = 1$

(b) Les particions de n=4 són: $(4)=[4^1]$, $(3,1)=[1^13^1]$, $(2,2)=[2^2]$, $(2,1,1)=[1^22^1]$, $(1,1,1,1)=[1^4]$.

Així doncs,

TIPUS	CLASSE DE CONJUGACIÓ	NOMBRE D'ELEMENTS
$[4^1]$	$\{(1234), (1243), (1324), (1342), (1423), (1432)\}$	$\frac{4!}{4^1 1!} = 6$
$[1^13^1]$	$\{(123), (132), (124), (142), (134), (143), (234), (243)\}$	$\frac{4!}{1^1 1! 3^1 1!} = 8$
$[2^2]$	$\{(12)(34), (13)(24), (14)(23)\}$	$\frac{4!}{2^2 2!} = 3$
$[1^22^1]$	$\{(12), (13), (14), (23), (24), (34)\}$	$\frac{4!}{1^2 2! 2^1 1!} = 6$
$[1^4]$	{1}	$\frac{4!}{1^4 4!} = 1$