MAD Assignment 3

Ask Jensen

13. december 2021

Indhold

1	Problem 1	1
	1.1 (a)	1
	1.2 (b)	1
2	Problem 2	2
3	Problem 3	3
	3.1 (a)	3
4	Problem 4 4.1 (a)	3
	4.1 (a)	3
	4.2 (b)	2

Assignment 3 Ask Jensen

1 Problem 1

1.1 (a)

Figur 1: Values for the first 10 proportions of variance, and the corrosponding graph

1.2 (b)

Side 1 of 3

Ask Jensen Assignment 3

Figur 2: Plotted diatom

Problem 2

assesses the given claim $E[(X - \mu)^4] \ge \sigma^4$

X has the mean μ and the variance σ^4 which can be rewritten as $\sigma^4 = (Var(X))^2$ $E[(X - \mu)^4]$ kan be rewritten as E(g(x)) where $g(x) = (x - \mu)^4$

It is possible to Jensen's inequality if $g''(x) \ge 0$

$$g(x) = (x - \mu)^4$$

$$g(x) = 4(x - \mu)^3$$

$$g(x) = 12(x - \mu)^2$$

g(x) is convex, since the second derivative of the function is quadratic. Hence it will always be greater than zero. Which means that it its possible to make use of Jensen's inequality.

$$E(cX - \mu)^4 \ge (E(X - \mu))^4$$

 $(E(X - \mu))^4$

$$(E(X-\mu))^4$$

$$((E(X - \mu))^2)^2 = (Var(X))^2$$

thus the claim is true, and shown by Jensen's inequality

$$E[(X-\mu)^4] \ge \sigma^4$$

Assignment 3 Ask Jensen

3 Problem 3

3.1 (a)

4 Problem 4

4.1 (a)

In this exercise I'm asked to choose the null hypothesis.

My Null hypothesis is:, H_0 : $\mu_0 = 0$ My alternative hypothesis is, H_A : $\mu \neq \mu_0$

Which menas, that I assume that there is no difference in flowering time, since the value for $X_3 - Y_3 = -0.5$ showing that the scientists claim does not hold for all of the samples. With the specified alternative hypothesis, I would have to perform af two-sided t-test

 $\mu_0=0$ since the assumption is, that there is no difference between the two types of flowers

4.2 (b)

Performing the corrosponding t-test (Assuming that I have to perform the corrosponding thest to my claim in (a)). Following the "six steps" from the lecture. I will be starting from step 3 since both step one and two are defined in question (a). The dataset is $X_i - Y_i$, which gives me

|--|

Calculating the observed mean = $\frac{1+0.5-0.5+1.5+0.5}{5}$ = 0.6

Calculating the standard deviation for my sample

$$S = \sqrt{Var(Z)}$$

$$Var(Z) = \sum_{i=1}^{5} \frac{(x_i - \overline{x})^2}{n-1}$$

$$Var(Z) = \frac{(1-0.6)^2 + (0.5-0.6)^2 + (-0.5-0.6)^2 + (1.5-0.6)^2 + (0.5-0.6)^2}{4} = \frac{2.2}{4} = 0.55$$

$$S = \sqrt{0.55} = 0.7416$$

$$t = \frac{\overline{x} - \mu_0}{S\sqrt{n}} = \frac{0.6 - 0}{0.7416\sqrt{5}} = \frac{0.6}{0.3317} \approx 1.81$$

I've calculated c_1 and c_2 using the following small code.