东南大学考试卷 (A卷)

课程名称 _ 高等数学B(下) 考试学期 _ 12-13-3 得分 ______

适用专业_选学高数B的各类专业_考试形式_闭卷_考试时间长度_150 分钟

题号	-	=	Ξ	四	£	六
得分						
评阅人						

- 一、填空题(本题共9小题,每小题4分,共36分)
- 1. 曲面 $x^2y + \ln(1+z) \cos z = 1$ 在点 (1,2,0) 处的切平面方程为______
- 3. 将二次积分 $\int_0^1 \mathrm{d}x \int_{1-x}^{\sqrt{1-x^2}} f(x,y) \mathrm{d}y$ 转化为极坐标系下的二次积分
- 4. 设 L 为由原点 O(0,0,0) 到点 A(-2,-3,6) 的直线段,则曲线积分

$$\int_{\Gamma} (x+y+z)^3 \mathrm{d}s \, \mathrm{之值为} \underline{\hspace{1cm}};$$

- 5. 设圆周 $C: x^2 + y^2 = 1$, 取逆时针方向,则曲线积分 $\oint_C -y dx + \frac{1}{3}x^3 dy = ____;$
- 6. 已知 $(axe^{x^2}\cos y + y^3)dx + (bxy^2 e^{x^2}\sin y)dy$ 为某函数 u(x,y) 的全微分,

- 7. 向量场 $\mathbf{A}=xy\mathbf{i}+\cos(xy)\mathbf{j}+\cos(xz)\mathbf{k}$ 在点 $M(\frac{\pi}{2},1,1)$ 处的散度 $\mathrm{div}\mathbf{A}|_{M}=$ ____:
- 8. 函数 $u=x^2yz$ 在点 $M_0(1,1,1)$ 处沿方向 $1=\{2,-2,1\}$ 的方向导数 $\frac{\partial u}{\partial 1}|_{M_0}=$ _____;
- 9. 过点 (0,1,2) 且与直线 $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z}{2}$ 垂直相交的直线方程是_______

- 二、 计算下列各题(本题共5小题,每小题7分,满分35分)
- 1. 设方程 $z=\int_{\cos z^2}^{yz}f(t)\mathrm{d}t$ 确定了隐函数 z=z(x,y),其中 f 为连续函数,求 z=z(x,y) 的全微分.

2. 设 $z=\sin(xy)+\varphi(x,\frac{x}{y})$, 其中 $\varphi(u,v)$ 有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

3. 计算二重积分
$$\iint_D \mathrm{e}^{x+y}\mathrm{d}x\mathrm{d}y$$
,其中 $D=\{(x,y)|\ |x|+|y|\leq 1\}.$

5. 计算积分
$$\int_0^3 \mathrm{d}y \int_0^{\sqrt{9-y^2}} \mathrm{d}x \int_{\sqrt{z^2+y^2}}^{\sqrt{18-z^2-y^2}} (x^2+y^2+z^2) \mathrm{d}z.$$

4. 计算三重积分 $\iint\limits_{\Omega}z\mathrm{d}x\mathrm{d}y\mathrm{d}z$,其中 Ω 是由曲面 $z=x^2+y^2$ 与 z=2x 所图成 的区域.

$$I = \iint\limits_{\Sigma} x^3 \mathrm{d}y \wedge \mathrm{d}z + 2xz^2 \mathrm{d}z \wedge \mathrm{d}x + 3y^2(z-1) \mathrm{d}x \wedge \mathrm{d}y$$

其中
$$\Sigma$$
; $z = 4 - x^2 - y^2 (0 \le z \le 4)$, 取下侧.

四、(本题满分7分) 计算第二型曲线积分

$$I = \oint_L (y-z) \mathrm{d}x + (z-x) \mathrm{d}y + (x-y) \mathrm{d}z,$$

其中 L 是柱面 $x^2+y^2=a^2$ 与平面 $\frac{x}{a}+\frac{z}{b}=1(a>0,b>0)$ 的交线,若从 z 轴

的正向看去,L取逆时针方向.

五、(本題满分8分) 求原点到曲线
$$\begin{cases} z=x^2+y^2 & \text{的最长距离和最短距离.} \\ x+2y+z=1 \end{cases}$$

六、(本題满分6分) 设 $\lim_{n\to\infty}\frac{v_n}{u_n}=1$,如果级数 $\sum_{n=1}^\infty u_n$ 收敛,问级数 $\sum_{n=1}^\infty v_n$ 是否一定收敛?若判断 $\sum_{n=1}^\infty v_n$ 一定收敛,请证明. 若判断 $\sum_{n=1}^\infty v_n$ 不一定收敛,请举例说明.