UNIVERSIDAD DEL VALLE DE GUATEMALA

Teoría de la computación Sección 20 Catedrático: Gabriel Brolo

Laboratorio 7

Teoría de la computación

Gonzalo Enrique Santizo Vega - 21504 Jose Daniel Gomez - 21249

GUATEMALA, 6 de septiembre de 2023

Ejercicio 1:

CFG 1:

a) Elimine las producciones- ε .

Eliminar ε-producciones:

$$C \rightarrow S \mid \varepsilon$$

Para eliminar las producciones ε , debemos eliminar cualquier referencia a ε en otras producciones y agregar producciones adicionales si es necesario. En este caso, podemos eliminar la producción $C \to \varepsilon$ y agregar las siguientes producciones para reemplazar las ocurrencias de C:

$$C \rightarrow S$$

$$S \rightarrow 0A0 \mid 1B1 \mid BB$$

$$A \rightarrow S$$

La gramática ahora es:

```
S \rightarrow 0A0 \mid 1B1 \mid BB

A \rightarrow S

B \rightarrow S \mid A

C \rightarrow S
```

b) Elimine cualquier producción unaria de la gramática resultante.

No hay producciones unarias en esta gramática, por lo que no se requiere ninguna eliminación en este paso.

c) Elimine cualquier símbolo inútil de la gramática resultante.

Los símbolos no generadores son aquellos que no pueden derivar ninguna cadena terminal. Para eliminarlos, vamos a marcar los símbolos no generadores en esta gramática:

A es generador porque $A \rightarrow S$ y S puede derivar cadenas terminales.

B es generador porque $B \rightarrow S$ y S puede derivar cadenas terminales.

C es generador porque $C \rightarrow S$ y S puede derivar cadenas terminales.

S es generador porque es la variable inicial y puede derivar cadenas terminales.

Ningún símbolo es no generador, por lo que no hay nada que eliminar en este paso.

d) Coloque la CFG resultante en la Forma Normal de Chomsky (CNF).

$$S \rightarrow 0A0 \mid 1B1 \mid BB$$

 $A \rightarrow S$
 $B \rightarrow S \mid A$

La gramática está lista en la Forma Normal de Chomsky (CNF) porque todas las producciones son de la forma $A \to BC$ o $A \to a$, donde A, B y C son variables y "a" es una cadena terminal.

CFG 2:

a) Elimine las producciones- ε .

$$C \rightarrow S \mid \varepsilon$$

$$C \rightarrow S$$

$$S \rightarrow 0A0 \mid 1B1 \mid BB$$

$$A \rightarrow S$$

La gramática ahora es:

$$S \rightarrow 0A0 \mid 1B1 \mid BB$$

 $A \rightarrow S$
 $B \rightarrow S \mid A$
 $C \rightarrow S$

b) Elimine cualquier producción unaria de la gramática resultante.

No hay producciones unarias en esta gramática, por lo que no se requiere ninguna eliminación en este paso

c) Elimine cualquier símbolo inútil de la gramática resultante.

A es generador porque $A \rightarrow S$ y S puede derivar cadenas terminales.

B es generador porque $B \rightarrow S$ y S puede derivar cadenas terminales.

C es generador porque $C \rightarrow S$ y S puede derivar cadenas terminales.

S es generador porque es la variable inicial y puede derivar cadenas terminales.

Ningún símbolo es no generador, por lo que no hay nada que eliminar en este paso.

d) Coloque la CFG resultante en la Forma Normal de Chomsky (CNF).

$$S \rightarrow 0A0 \mid 1B1 \mid BB$$

 $A \rightarrow S$
 $B \rightarrow S \mid A$

La gramática está lista en la Forma Normal de Chomsky (CNF) porque todas las producciones son de la forma $A \to BC$ o $A \to a$, donde A, B y C son variables y "a" es una cadena terminal.