(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年10月9日(09.10.2003)

(10) 国際公開番号 WO 03/082994 A1

(51) 国際特許分類7: C09D 11/00, B41M 5/00, B41J 2/01

(21) 国際出願番号:

PCT/JP03/03740

(TAGUCHI, Toshiki) [JP/JP]; 〒418-8666 静岡県 富士 宮市 大中里200番地 富士写真フイルム株式会社 内 Shizuoka (JP).

(22) 国際出願日:

2003年3月26日(26.03.2003)

(74) 代理人: 小栗昌平, 外(OGURI,Shohei et al.); 〒107-6028 東京都港区 赤坂一丁目12番32号 アーク森 ビル28階 栄光特許事務所 Tokyo (JP).

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY,

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(81) 指定国 (国内): CN, JP, US.

(30) 優先権データ:

特願2002-91759 2002年3月28日(28.03.2002) 特願2002-92321

2002年3月28日(28.03.2002)

CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

(71) 出願人 (米国を除く全ての指定国について): 富士写 真フイルム株式会社 (FUJI PHOTO FILM CO., LTD.) [JP/JP]; 〒250-0123 神奈川県 南足柄市 中沼 2 1 0 番 地 Kanagawa (JP).

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ): 田口 敏樹 のガイダンスノート」を参照。

添付公開書類: 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語

(54) Title: INK SET FOR INK-JET RECORDING AND INK-JET RECORDING METHOD

(54) 発明の名称: インクジェット記録用インクセット及びインクジェット記録方法

(57) Abstract: An ink set for ink jet for creating a recorded image of high pictorial quality and of excellent image preservability, and an ink-jet recording method are disclosed. An ink set composed of inks for ink jet both having a maximum absorption wavelength in an aqueous medium in a wavelength region of 500 to 580 nm or in a wavelength region of 580 to 680 nm and having different absorbances is characterized in that to the absorbance of the dye (or a combination of dyes) of an ink having a maximum dye concentration out of the inks for ink jet, the ratios of the absorbances of the dyes in the other inks are 1/20 to 1/2.

(57) 要約: 本発明の目的は、記録画像の品質(pictorial quality)が高く、しかも得られた画像の保存性が優れたインク ジェット用インクセットならびにインクジェット記録方法を提供することである。本発明の上記目的は、水性媒体 中における最大吸収波長がともに500~580nm又は580~680nmのいずれか一方の波長領域にあり、かつ吸光度が異な る複数のインクジェット用インクから構成されるインクセットにおいて、該複数のインクジェット用インク中の最 高色素濃度のインクにおける色素(又は色素の組合せ)の吸光度に対して、他のインク中の色素(又は色素の組合せ) の吸光度が1/20以上1/2以下であることを特徴とするインクセットによって達成される。

明細書

インクジェット記録用インクセット及びインクジェット記録方法

技術分野

本発明は、インクジェット記録用インク及びそれを用いる記録方法に関するものであり、とくに記録画像の品質が高く、しかも得られた画像の保存性が優れたインクジェット用インクセットならびにインクジェット記録方法に関する。

背景技術

近年、コンピューターの普及に伴いインクジェットプリンターがオフィスだけ でなく家庭で紙、フィルム、布等に印字・描画するために広く利用されている。

インクジェット記録方法には、ピエゾ素子により圧力を加えて液滴を吐出させる方式、熱によりインク中に気泡を発生させて液滴を吐出させる方式、超音波を用いた方式、あるいは静電力により液滴を吸引吐出させる方式がある。これらのインクジェット記録用インクとしては、水性インク、油性インク、あるいは固体(溶融型)インクが用いられる。

これらのインクのうち、水性インクは、製造・取り扱い性・臭気・安全性等の 点を鼎立させ得る可能性の点では油性インクや固体(溶融型)インクよりは比較 的優っているので、現用インクジェット記録用インクの主流となっている。

これらのインクジェット記録用インクに用いられる色材に対しては、溶剤(インク媒体)に対する溶解性が高いこと、高濃度記録が可能であること、色相が良好であること、光、熱、空気、水や薬品に対する堅牢性に優れていること、受像材料に対して定着性が良く滲みにくいこと、インクとしての保存性に優れていること、毒性がないこと、純度が高いこと、さらには、安価に入手できることが要求されている。しかしながら、既にインクジェット用として様々な染料や顔料が提案され、実際に使用されているにも係らず、未だに上記した全ての要求を満足する色材は、発見されていないのが現状である。

例えば、カラーインデックス (C.I.) 番号が付与されている色材など、従来から良く知られている染料や顔料では、インクジェット記録用インクに要求される上記諸要件を鼎立させることは難しい。

堅牢性を向上させる染料として下記の特許文献1に記載の芳香族アミンと5員 複素環アミンから誘導されるアゾ染料が提案されている。しかし、これらの染料 はイエローおよびシアンの領域に好ましくない色相を有しているために、色再現 性を悪化させる問題を有していた。また、特許文献2および特許文献3には、光

堅牢性の向上を目的としたインクジェット記録用インクが開示されている。しかし、これらの公報で用いている色材を水溶性インクとして用いる場合には、水への溶解性が不十分であり、結果として十分な画質と階調が得られない。また水溶性が大きい場合には、しばしばインクの湿熱堅牢性にも問題が生じる。

これらの問題を解決する手段として、特許文献 4 に記載の化合物およびインク組成物が提案されている。また、ピラゾリルアゾアニリン色素をインクジェット記録用インクとして用いることによって色相と光堅牢性が改良されることが特許文献 5 に記載されている。しかしながらこれらのインクジェット記録用インクでは、出力画像の画質と堅牢性の両立にはなお十分ではない。

近年のインクジェットプリントの普及に伴って、インクジェット画像の高精細化と画像保存性の両立が特に強く求められている。具体的には、前者はとりわけ画像品質 (pictorial quality) の向上であり、後者はとりわけ熱、光及び酸化的雰囲気に対する耐性が改善を要する課題となっている。

画像品質の向上には、描画濃度が異なるインクを濃淡 2 種以上併用して記録を行うインクジェット記録方法が提案され、実用されている。染料の種類や濃度の異なる複数インクを用いると描画される画像の中間調の階調が豊かとなり、階調域も拡大されるので、その点では画質は向上するが、多くの場合高濃度域及び低濃度域、すなわちシャドウ部とハイライト部では、階調が再現されず、かつ色相も変化しがちであり、その点でむしろ画像品質が劣化してしまう。この画像品質の劣化は、インクジェットブリンターの画像調整用ソフトウエアでは補正しきれないレベルであり、インク設計の面で解決が必要であることがわかった。

上記したように、インクジェット記録用インクに求められる諸特性の中でも、 光、熱及び高湿度に対する画像保存性が優れていることと描画された画像の画質 が優れていることとの両立が十分に満たされてなく、その実現を市場から求めら れている。

[背景技術の特許文献の一覧表]

上記の背景技術文献は、次ぎの通りである。

[特許文献1]

特開昭55-161856号公報

[特許文献2]

特開昭61-36362号公報

[特許文献 3]

特開平2-212566号公報

[特許文献4]

特表平11-504958号公報 [特許文献5] 特願2000-80733公報

本発明の目的は、前記従来技術の項で述べたインクジェット記録用インクが抱えている問題点を解決することであり、具体的には、記録画像の品質 (pictorial quality) が高く、しかも得られた画像の保存性が優れたインクジェット用インクセットならびにインクジェット記録方法を提供することである。

発明の開示

本発明の課題は、下記(1)~(9)に記載のインクジェット記録用インクセットによって達成された。これらのインクジェット記録用インクセットは、下記(10)~(14)の方法でインクジェット記録が行われるが、なかでも画像記録が下記(13)又は(14)に記載した画像記録材料の受像層に行なわれるときに発明の効果が顕著に発揮される。

- (1) 水性媒体中における最大吸収波長がともに500~580nm又は580~680nmのいずれか一方の波長領域にあり、かつ吸光度が異なる複数のインクジェット用インクから構成されるインクセットにおいて、該複数のインクジェット用インク中の最高色素濃度のインクにおける色素(又は色素の組合せ)の吸光度に対して、他のインク中の色素(又は色素の組合せ)の吸光度が1/20以上1/2以下であることを特徴とするインクセット
- (2) 水性媒体中における最大吸収波長がともに500~580nmの波長領域 にある複数のインクジェット用インクから構成されることを特徴とする上記
 - (1) に記載のインクジェット記録用インクセット。
- (3) インクセットを構成する複数のインクジェット用インク中の最高染料濃度のインクが含有する色素中の最大吸光度を有する色素が、一般式 [(複素環A) N = N (複素環B)]で表される発色団を有するアゾ染料であることを特徴とする上記(2)に記載のインクジェット記録用インクセット。

ただし、上記一般式中の複素環Aと複素環Bは同一の構造であってもよい。

- (4)前記一般式 [(複素環A) -N=N-(複素環B)]で表される発色団を有するアゾ染料が0.7V(vsSCE)よりも貴の酸化電位を有する色材であることを特徴とする上記(3)に記載のインクジェット記録用インクセット。
- (5)前記アゾ染料が、下記一般式(1)で表される染料であることを特徴とする上記(2)~(4)のいずれかに記載のインクジェット記録用インクセット。

一般式(1)

$$A-N=N-N$$

$$G$$

$$B^{2}=B^{1}$$

$$N$$

$$R^{5}$$

$$R^{6}$$

一般式(1)において、Aは5員複素環基を表す。

B¹およびB²は各々=CR¹ー、ーCR³=を表すか、あるいはいずれか一方が窒素原子、他方が=CR¹ーまたはーCR²=を表す。R⁵およびR⁶は各々独立に水素原子または置換基を表し、該置換基は脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、またはスルファモイル基を表し、該各置換基の水素原子は置換されていても良い。

G、R¹およびR²は各々独立して、水素原子または置換基を示し、該置換基は、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、複素環オキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アリールオーション・ボニルアミノ基、アリールオーション・ボニルアミノ基、アリールスルホニルアミノ基、アリールスルホニルアミノ基、アリールスルホニルアミノ基、アリールスルホニルを表し、アルキルスルホニル基、アリールスルホニル基、アリールスルホニル基、複素環スルホニル基、アルキルスルホニル基、アリールスルホニル基、複素環スルカイニル基、アルキルスルフィニル基、アリールスルカフィニル基、複素環スルフィニル基、スルファモイル基、またはスルホ基を表し、該各置換基の水素原子は置換されていても良い。

 R^{1} と R^{5} 、あるいは R^{5} と R^{6} が結合して $5\sim6$ 員環を形成しても良い。

- (6) 水性媒体中における最大吸収波長がともに580~680nmの波長領域にある複数のインクジェット用インクから構成されることを特徴とする上記
- (1) に記載のインクジェット記録用インクセット。
- (7) インクセットを構成する複数のインクジェット用インク中の最高染料濃度のインクが含有する色素中の最大吸光度を有する色素が、下記一般式 (I) で表される染料であることを特徴とする上記 (6) に記載のインクジェット記録用インクセット。

一般式(I)

$$(X_3)b_3$$

$$(X_3)a_3$$

$$(Y_2)b_2$$

$$(X_2)a_2$$

上記一般式(I)中;

 X_1 、 X_2 、 X_3 および X_4 は、それぞれ独立に、-SO-Z、 $-SO_2-Z$ 、 $-SO_2NR_1R_2$ 、スルホ基、 $-CONR_1R_2$ 、または $-CO_2R_1$ を表す。

上記 Z は、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。上記 R₁、R₂は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。なお、Zが複数個存在する場合、それらは同一でも異なっていてもよい。

 Y_1 、 Y_2 、 Y_3 および Y_4 は、それぞれ独立に、一価の置換基を表す。

なお、 $X_1 \sim X_4$ および $Y_1 \sim Y_4$ のいずれかが複数個存在するとき、それらは、同一でも異なっていてもよい。

 $a_1 \sim a_4$ および $b_1 \sim b_4$ は、それぞれ $X_1 \sim X_4$ および $Y_1 \sim Y_4$ の置換基数を表し、 $a_1 \sim a_4$ は、それぞれ独立に、0又は $1 \sim 4$ の整数であり、全てが同時に

0になることはなく、 $b_1 \sim b_4$ は、それぞれ独立に、0又は $1 \sim 4$ の整数である。

Mは、水素原子、金属原子またはその酸化物、水酸化物もしくはハロゲン化物である。

(8) 一般式 (I) で表される染料が、下記一般式 (II) で表される染料であることを特徴とする上記 (7) に記載のインクジェット記録用インクセット。 一般式 (II)

$$(X_{13})a_{13}$$
 Y_{15}
 Y_{14}
 Y_{15}
 Y_{14}
 Y_{15}
 Y_{15}
 Y_{14}
 Y_{15}
 Y_{15}
 Y_{14}
 Y_{15}
 $Y_$

上記一般式(II)中;

 $X_{11} \sim X_{14}$ 、 $Y_{11} \sim Y_{18}$ 、Mは、それぞれ一般式(I)の中の $X_1 \sim X_4$ 、 $Y_1 \sim Y_4$ 、Mと同義である。

 $a_{11} \sim a_{14}$ は、それぞれ独立に、1または2の整数である。

- (9) 一般式(I) で表される染料が0.7V (vsSCE) よりも貴の酸化電位を有する色材であることを特徴とする上記(7) 又は(8) に記載のインクジェット記録用インクセット。
- (10)上記(1)~(9)のいずれかに記載のインクセットを使用することを特徴とするインクジェット記録方法。
- (11)上記(2) \sim (5)のいずれかに記載のインクセットを使用することを特徴とするインクジェット記録方法。

(12)上記(6)~(9)のいずれかに記載のインクセットを使用することを特徴とするインクジェット記録方法。

- (13)支持体上に白色無機顔料粒子を含有する受像層を有する受像材料にイン ク滴を記録信号に応じて吐出させて画像を記録することを特徴とする上記 (1 0)~(12)に記載のインクジェット記録方法。
- (14) 受像層が、白色無機顔料粒子と、ポリビニルアルコール、シラノール変性ポリビニルアルコール、でんぷん、カチオン化でんぷん、ゼラチン、カルボキシアルキルセルロース、カゼイン及びポリビニルピロリドンから選ばれる少なくとも1種の水性バインダーとを含有する受像層であることを特徴とする上記(13)に記載のインクジェット記録方法。

すなわち、上記の本発明は、水性媒体のインクからなるインクセットであって、主吸収領域が500~580nmのインク、すなわちマゼンタインクからなるインクセット又は主吸収領域が580~680nmのインク、すなわちシアンインクからなるインクセットであり、いずれにおいてもインクセットを構成する複数のインク中の最高色素濃度のインクにおける色素(又は色素の組合せ)の吸光度に対して、他の構成インク中の色素(又は色素の組合せ)の吸光度が1/20以上1/2以下であるように調整されていることを特徴としており、そのようなインクセットの設計によって、高濃度部(シャドウ部)と低濃度部(ハイライト部)の階調の乱れ及び色相の変化が抑止され、記録画像の品質(pictorial quality)が高く維持され、しかも得られた画像の保存性も優れて発明の目的を達することができる。なお、この場合の吸光度は、平均昼光近似タイプC標準光源にそれぞれステータスA級又は青フィルターを組み合わせた測定光に対する吸光度である。

発明の効果をとくに発揮させるためには、マゼンタインクセット用の色素としては、一般式(1)に示すアゾ染料を高濃度側のインクの主染料として使用し、シアンインクセット用の色素としては、一般式(I)、中でも一般式(II)に示すフタロシアニン染料を高濃度側のインクの主染料として使用するのが効果的である。

また、優れた画像保存性を発揮するためには、上記一般式 [(複素環A) -N =N- (複素環B)] で示されるアゾ染料及び一般式 (I) で示されるシアン染料は、酸化電位が0.7V (vsSCE) よりも貴であることが望ましい。このような高酸化電位を有する主染料の存在によって同じ主吸収領域の別の色材と組合されて得られる画像の堅牢化がもたらされて画像保存性が向上する。

併用する2種の色材の一つ以上が、水性のインク媒体に不溶であって、乳化分散されて組成物中に加えられる顔料や難溶性染料であってもよい。

発明を実施するための最良の形態

以下、本発明の具体的実施形態について詳細に説明する。

本明細書の記述において、「色材」は、染料及び顔料をまとめて指す場合に使用する。

< 500~580nmの主収領域を共有している色材>

インクジェット記録用インクが耐候性に優れ、色相が確保されて画質面でも優れているという本発明の目的としている特性を具備するには、マゼンタインクとしては上記の(1)~(6)に記載の特徴を持つインクによって画像記録が行なわれる。したがって、該インクが含有するマゼンタ染料の特性について説明する。

本発明のインクジェット記録用インクに用いるマゼンタインクは、水性媒体中において $500\sim580$ nmの分光領域に吸収極大を有する色材を含有しており、とくに水性媒体中にアゾ染料から選択されるマゼンタ染料を溶解または分散されたインクであることが好ましく、さらに該アゾ染料は、0.7V(vsSCE)よりも貴の酸化電位を有する染料であることが基本的に好ましい。

このアゾ染料の好ましい染料の構造上の特徴の第一は、一般式(複素環A)ーN=N-(複素環B)で表される発色団を有する染料であることである。この場合、複素環Aと複素環Bは同一の構造であってもよい。複素環A及び複素環Bは、具体的には5員環、または6員環の複素環で、ピラゾール、イミダゾール、トリアゾール、オキサゾール、チアゾール、セレナゾール、ピリドン、ピラジン、ピリミジン、ピリジンから選ばれた複素環である。具体的には特願2000-15853、特願2001-15614、特開平2002-309116号公報,特願2001-195014などに記載されている。

さらに、前記アソ染料の好ましい構造上の特徴の第2は、アソ基が少なくとも その一方に芳香族含窒素6員複素環をカップリング成分として直結させたアゾ染 料であることで、その具体例は特願2001-110457に記載されている。

構造上の好ましい特徴の第三は、助色団が芳香族環アミノ基または複素環アミノ基の構造を有することであり、具体的にはアニリノ基、ヘテリルアミノ基である。

好ましい構造上の特徴の第四は立体構造を有することである。具体的には特願 2002-12015に記載されている。

上記したアゾ染料の好ましい構造上の特徴の中でも、本発明の目的を達する上で最も好ましいのは、下記一般式(1)で表される染料である。

一般式(1)

$$A-N=N-N$$

$$A-N=N-N$$

$$R^{5}$$

$$R^{6}$$

一般式 (1) において、Aは5員複素環基を表す。

B¹およびB²は各々=CR¹ー、−CR²=を表すか、あるいはいずれか一方が窒素原子、他方が=CR¹ーまたは−CR²=を表す。R⁵およびR⁶は各々独立に水素原子または置換基を表し、該置換基は脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、またはスルファモイル基を表し、該各置換基の水素原子は置換されていても良い。

G、R¹およびR²は各々独立して、水素原子または置換基を示し、該置換基は、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、複素環オキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールスルホニルアミノ基、アリールスルホニルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、複素環スルホニル基、アリールスルフィニル基、複素環スルカーに、表を置換表の水素原子は置換されていても良い。

 R^1 と R^5 、あるいは R^5 と R^6 が結合して $5\sim6$ 員環を形成しても良い。

一般式(1)の染料について更に詳細に説明する。

一般式 (1) において、Aは5 員複素環基を表すが、複素環のヘテロ原子の例には、N、O、およびSを挙げることができる。好ましくは含窒素5 員複素環であり、複素環に脂肪族環、芳香族環または他の複素環が縮合していてもよい。Aの好ましい複素環の例には、ピラソール環、イミダゾール環、チアゾール環、イソチアゾール環、チアジアゾール環、ベンゾチアゾール環、ベンソオキサゾール環、ベンソイソチアゾール環を挙げる事ができる。各複素環基は更に置換基を有していても良い。中でも下記一般式(a)から(f)で表されるピラゾール環、イミ

ダゾール環、イソチアゾール環、チアジアゾール環、ベンゾチアゾール環が好ま しい。

上記一般式 (a) から (f) において、 R^7 から R^2 0は一般式 (1) における G、 R^1 、 R^2 と同じ置換基を表す。

一般式(a) から(f) のうち、好ましいのは一般式(a)、(b) で表されるピラゾール環、イソチアゾール環であり、最も好ましいのは一般式(a) で表 かされるピラゾール環である。

一般式(1)において、 B^1 および B^2 は各々= CR^1 ーおよび $-CR^2$ =を表すか、あるいはいずれか一方が窒素原子、他方が= CR^1 ーまたは $-CR^2$ =を表すが、各々= CR^1 ー、 $-CR^2$ =を表すものがより好ましい。

R⁵およびR⁶は各々独立に水素原子または置換基を表し、該置換基は脂肪族 基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシ カルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、 またはスルファモイル基を表し、該各置換基の水素原子は置換されていても良い。

R⁵、R⁶は好ましくは、水素原子、脂肪族基、芳香族基、複素環基、アシル 基、アルキルまたはアリールスルホニル基を挙げる事ができる。さらに好ましく は水素原子、芳香族基、複素環基、アシル基、アルキルまたはアリールスルホニ ル基である。最も好ましくは、水素原子、アリール基、複素環基である。該各間

換基の水素原子は置換されていても良い。ただし、 R^5 および R^6 が同時に水素原子であることはない。

G、R¹およびR²は各々独立して、水素原子または置換基を示し、該置換基は、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、複素環オキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールスルホニルアミノ基、アリールスルホニルアミノ基、アリールスルホニルアミノ基、アリールスルホニルアミノ基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、複素環スルホニル基、アリールスルフィニル基、複素環スルホニル基、アリールスルフィニル基、複素環スルカィニル基、アリールスルカフィニル基、複素環スルカィニル基、アリールスルカフィニル基、複素環スルカィニル基、アルキルスルカイニル基、アリールスルカイニル基、複素環スルフィニル基、スルファモイル基、またはスルホ基を表し、該各置換基の水素原子は置換されていても良い。

Gとしては水素原子、ハロゲン原子、脂肪族基、芳香族基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、複素環オキシ基、アミノ基、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキル及びアリールチオ基、または複素環チオ基が好ましく、更に好ましくは水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、アミノ基またはアシルアミノ基であり、中でも水素原子、アミノ基(好ましくは、アニリノ基)、アシルアミノ基が最も好ましい。該各置換基の水素原子は置換されていても良い。

R¹、R²として好ましいものは、水素原子、アルキル基、ハロゲン原子、アルコキシカルボニル基、カルボキシル基、カルバモイル基、ヒドロキシ基、アルコキシ基、シアノ基を挙げる事ができる。該各置換基の水素原子は置換されていても良い。

 R^{-1} と R^{5} 、あるいは R^{5} と R^{6} が結合して $5\sim6$ 員環を形成しても良い。

Aが置換基を有する場合、または R^1 、 R^2 、 R^6 、 R^6 またはGの置換基が更に置換基を有する場合の置換基としては、上記G、 R^1 、 R^2 で挙げた置換基を挙げる事ができる。

本発明の染料が水溶性染料である場合には、A、R¹、R²、R⁵、R⁶、G上のいずれかの位置に置換基としてさらにイオン性親水性基を有することが好ましい。置換基としてのイオン性親水性基には、スルホ基、カルボキシル基、ホスホ

· Print.

ノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウム)が含まれる。

本明細書において使用される用語(置換基)について説明する。これら用語は一般式(1)及び後述の一般式(1a)における異なる符号間であっても共通である。

ハロゲン原子としては、フッ素原子、塩素原子および臭素原子が挙げられる。 脂肪族基はアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、 アルキニル基、置換アルキニル基、アラルキル基および置換アラルキル基を意味 する。本明細書で、「置換アルキル基」等に用いる「置換」とは、「アルキル 基」等に存在する水素原子が上記G、R¹、R²で挙げた置換基等で置換されて いることを示す。

脂肪族基は分岐を有していてもよく、また環を形成していてもよい。脂肪族基の炭素原子数は1~20であることが好ましく、1~16であることがさらに好ましい。アラルキル基および置換アラルキル基のアリール部分はフェニル基またはナフチル基であることが好ましく、フェニル基が特に好ましい。脂肪族基の例には、メチル基、エチル基、ブチル基、イソプロピル基、セーブチル基、ヒドロキシエチル基、メトキシエチル基、シアノエチル基、トリフルオロメチル基、3-スルホプロピル基、4-スルホブチル基、シクロヘキシル基、ベンジル基、2-フェネチル基、ビニル基、およびアリル基を挙げることができる。

芳香族基はアリール基および置換アリール基を意味する。アリール基は、フェニル基またはナフチル基であることが好ましく、フェニル基が特に好ましい。芳香族基の炭素原子数は $6\sim2$ 0であることが好ましく、6から16がさらに好ましい。

芳香族基の例には、フェニル基、p-トリル基、p-メトキシフェニル基、o-クロロフェニル基およびm-(3-スルホプロピルアミノ)フェニル基が含まれる。

スルファモイル基、カルバモイル基、イオン性親水性基などが含まれる。前記複 素環基の例には、2-ピリジル基、2-チエニル基、2-チアゾリル基、2-ベ ンゾチアゾリル基、2-ベンゾオキサゾリル基および2-フリル基が含まれる。

カルバモイル基には、置換カルバモイル基が含まれる。前記置換基の例には、 アルキル基が含まれる。前記カルバモイル基の例には、メチルカルバモイル基お よびジメチルカルバモイル基が含まれる。

アルコキシカルボニル基には、置換アルコキシカルボニル基が含まれる。前記 アルコキシカルボニル基としては、炭素原子数が2~20のアルコキシカルボニ ル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アル コキシカルボニル基の例には、メトキシカルボニル基およびエトキシカルボニル 基が含まれる。

アリールオキシカルボニル基には、置換アリールオキシカルボニル基が含まれる。前記アリールオキシカルボニル基としては、炭素原子数が7~20のアリールオキシカルボニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アリールオキシカルボニル基の例には、フェノキシカルボニル基が含まれる。

複素環オキシカルボニル基には、置換複素環オキシカルボニル基が含まれる。 複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環オキシ カルボニル基としては、炭素原子数が2~20の複素環オキシカルボニル基が好 ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環オキシ カルボニル基の例には、2-ピリジルオキシカルボニル基が含まれる。

アシル基には、置換アシル基が含まれる。前記アシル基としては、炭素原子数が1~20のアシル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシル基の例には、アセチル基およびベンゾイル基が含まれる。

アルコキシ基には、置換アルコキシ基が含まれる。前記アルコキシ基としては、 炭素原子数が1~20のアルコキシ基が好ましい。前記置換基の例には、アルコ キシ基、ヒドロキシル基、およびイオン性親水性基が含まれる。前記アルコキシ 基の例には、メトキシ基、エトキシ基、イソプロポキシ基、メトキシエトキシ基、 ヒドロキシエトキシ基および3-カルボキシプロポキシ基が含まれる。

アリールオキシ基には、置換アリールオキシ基が含まれる。前記アリールオキシ基としては、炭素原子数が6~20のアリールオキシ基が好ましい。前記置換基の例には、アルコキシ基、およびイオン性親水性基が含まれる。前記アリールオキシ基の例には、フェノキシ基、pーメトキシフェノキシ基およびoーメトキシフェノキシ基が含まれる。

複素環オキシ基には、置換複素環オキシ基が含まれる。複素環としては、前記

複素環基で記載の複素環が挙げられる。前記複素環オキシ基としては、炭素原子数が2~20の複素環オキシ基が好ましい。前記置換基の例には、アルキル基、アルコキシ基、およびイオン性親水性基が含まれる。前記複素環オキシ基の例には、3~ピリジルオキシ基、3~チエニルオキシ基が含まれる。

シリルオキシ基としては、炭素原子数が1~20の脂肪族基、芳香族基が置換 したシリルオキシ基が好ましい。前記シリルオキシ基の例には、トリメチルシリ ルオキシ、ジフェニルメチルシリルオキシが含まれる。

アシルオキシ基には、置換アシルオキシ基が含まれる。前記アシルオキシ基としては、炭素原子数 1~20のアシルオキシ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシルオキシ基の例には、アセトキシ基およびペンゾイルオキシ基が含まれる。

カルバモイルオキシ基には、置換カルバモイルオキシ基が含まれる。前記置換基の例には、アルキル基が含まれる。前記カルバモイルオキシ基の例には、Nーメチルカルバモイルオキシ基が含まれる。

アルコキシカルボニルオキシ基には、置換アルコキシカルボニルオキシ基が含まれる。前記アルコキシカルボニルオキシ基としては、炭素原子数が2~20のアルコキシカルボニルオキシ基が好ましい。前記アルコキシカルボニルオキシ基の例には、メトキシカルボニルオキシ基、イソプロポキシカルボニルオキシ基が含まれる。

アリールオキシカルボニルオキシ基には、置換アリールオキシカルボニルオキシ基が含まれる。前記アリールオキシカルボニルオキシ基としては、炭素原子数が7~20のアリールオキシカルボニルオキシ基が好ましい。前記アリールオキシカルボニルオキシ基の例には、フェノキシカルボニルオキシ基が含まれる。

アミノ基には、置換アミノ基が含まれる。該置換基としてはアルキル基、アリール基または複素環基が含まれ、アルキル基、アリール基および複素環基はさらに置換基を有していてもよい。アルキルアミノ基には、置換アルキルアミノ基が含まれる。アルキルアミノ基としては、炭素原子数1~20のアルキルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルキルアミノ基の例には、メチルアミノ基およびジエチルアミノ基が含まれる。

アリールアミノ基には、置換アリールアミノ基が含まれる。前記アリールアミノ基としては、炭素原子数が6~20のアリールアミノ基が好ましい。前記置換基の例としては、ハロゲン原子、およびイオン性親水性基が含まれる。前記アリールアミノ基の例としては、フェニルアミノ基および2ークロロフェニルアミノ基が含まれる。

複素環アミノ基には、置換複素環アミノ基が含まれる。複素環としては、前記

複素環基で記載の複素環が挙げられる。前記複素環アミノ基としては、炭素数2~20個の複素環アミノ基が好ましい。前記置換基の例としては、アルキル基、 ハロゲン原子、およびイオン性親水性基が含まれる。

アシルアミノ基には、置換アシルアミノ基が含まれる。前記アシルアミノ基としては、炭素原子数が2~20のアシルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシルアミノ基の例には、アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ基、Nーフェニルアセチルアミノおよび3,5-ジスルホベンゾイルアミノ基が含まれる。

ウレイド基には、置換ウレイド基が含まれる。前記ウレイド基としては、炭素原子数が1~20のウレイド基が好ましい。前記置換基の例には、アルキル基およびアリール基が含まれる。前記ウレイド基の例には、3-メチルウレイド基、3,3-ジメチルウレイド基および3-フェニルウレイド基が含まれる。

スルファモイルアミノ基には、置換スルファモイルアミノ基が含まれる。前記 置換基の例には、アルキル基が含まれる。前記スルファモイルアミノ基の例には、 N,N-ジプロピルスルファモイルアミノ基が含まれる。

アルコキシカルボニルアミノ基には、置換アルコキシカルボニルアミノ基が含まれる。前記アルコキシカルボニルアミノ基としては、炭素原子数が2~20のアルコキシカルボニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルコキシカルボニルアミノ基の例には、エトキシカルボニルアミノ基が含まれる。

アリールオキシカルボニルアミノ基には、置換アリールオキシカルボニルアミノ基が含まれる。前記アリールオキシカルボニルアミノ基としては、炭素原子数が7~20のアリールオキシカルボニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アリールオキシカルボニルアミノ基の例には、フェノキシカルボニルアミノ基が含まれる。

アルキルスルホニルアミノ基及びアリールスルホニルアミノ基には、置換アルキルスルホニルアミノ基及び置換アリールスルホニルアミノ基が含まれる。前記アルキルスルホニルアミノ基及びアリールスルホニルアミノ基としては、炭素原子数が1~20のアルキルスルホニルアミノ基及びアリールスルホニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルキルスルホニルアミノ基及びアリールスルホニルアミノ基の例には、メチルスルホニルアミノ基、N-フェニルーメチルスルホニルアミノ基、フェニルスルホニルアミノ基、および3-カルボキシフェニルスルホニルアミノ基が含まれる。

複素環スルホニルアミノ基には、置換複素環スルホニルアミノ基が含まれる。 複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環スルホ

ニルアミノ基としては、炭素原子数が1~12の複素環スルホニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環スルホニルアミノ基の例には、2-チエニルスルホニルアミノ基、3-ピリジルスルホニルアミノ基が含まれる。

アルキルチオ基、アリールチオ基及び複素環チオ基には、置換アルキルチオ基、 置換アリールチオ基及び置換複素環チオ基が含まれる。複素環としては、前記複 素環基で記載の複素環が挙げられる。前記アルキルチオ基、アリールチオ基及び 複素環チオ基としては、炭素原子数が1から20のものが好ましい。前記置換基 の例には、イオン性親水性基が含まれる。前記アルキルチオ基、アリールチオ基 及び複素環チオ基の例には、メチルチオ基、フェニルチオ基、2ーピリジルチオ 基が含まれる。

アルキルスルホニル基およびアリールスルホニル基には、置換アルキルスルホニル基および置換アリールスルホニル基が含まれる。アルキルスルホニル基およびアリールスルホニル基の例としては、それぞれメチルスルホニル基およびフェニルスルホニル基をあげる事ができる。

複素環スルホニル基には、置換複素環スルホニル基が含まれる。複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環スルホニル基としては、炭素原子数が1~20の複素環スルホニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環スルホニル基の例には、2-チェニルスルホニル基、3-ピリジルスルホニル基が含まれる。

アルキルスルフィニル基およびアリールスルフィニル基には、置換アルキルスルフィニル基および置換アリールスルフィニル基が含まれる。アルキルスルフィニル基およびアリールスルフィニル基の例としては、それぞれメチルスルフィニル基およびフェニルスルフィニル基をあげる事ができる。

複素環スルフィニル基には、置換複素環スルフィニル基が含まれる。複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環スルフィニル基としては、炭素原子数が1~20の複素環スルフィニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環スルフィニル基の例には、4-ピリジルスルフィニル基が含まれる。

スルファモイル基には、置換スルファモイル基が含まれる。前記置換基の例には、アルキル基が含まれる。前記スルファモイル基の例には、ジメチルスルファモイル基およびジー(2-ヒドロキシエチル)スルファモイル基が含まれる。

一般式(1)の中でも、特に好ましい構造は、下記一般式(1 a)で表されるものである。

一般式(1a)

式中、R¹、R²、R⁵及びR⁶は一般式(1)と同義である。

R⁶およびR⁴は各々独立に水素原子または置換基を表し、該置換基は脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、またはスルファモイル基を表す。中でも水素原子、芳香族基、複素環基、アシル基、アルキルスルホニル基もしくはアリールスルホニル基が好ましく、水素原子、芳香族基、複素環基が特に好ましい。

 Z^1 はハメットの置換基定数 σ p値が 0 . 2 0 以上の電子吸引性基を表す。 Z^1 は σ p 値が 0 . 3 0 以上の電子吸引性基であるのが好ましく、 0 . 4 5 以上の電子吸引性基が更に好ましく、 0 . 6 0 以上の電子吸引性基が特に好ましいが、 1 . 0 を超えないことが望ましい。好ましい具体的な置換基については後述する電子吸引性置換基を挙げることができるが、中でも、炭素数 $2\sim2$ 0 のアシル基、炭素数 $2\sim2$ 0 のアルキルオキシカルボニル基、ニトロ基、シアノ基、炭素数 $1\sim2$ 0 のアルキルスルホニル基、炭素数 $1\sim2$ 0 のアルキルスルホニル基、炭素数 $1\sim2$ 0 のカルバモイル基及び炭素数 $1\sim2$ 0 のアルキルスルホニル基、炭素数 $1\sim2$ 0 のアルキルスルホニル基、炭素数 $1\sim2$ 0 のアルキルスルホニル基、炭素数 $1\sim2$ 0 のアルキルスルホニル基、炭素数 $1\sim2$ 0 のアリールスルホニル基、炭素数 $1\sim2$ 0 のアリールスルホニル基、炭素数 $1\sim2$ 0 のアリールスルホニル基、炭素数 $1\sim2$ 1 のアリールスルホニル基、炭素数 $1\sim2$ 1 のアリールスルホニル基、炭素数 $1\sim2$ 1 のアリールスルホニル基、炭素数 $1\sim2$ 1 のアリールスルホニル基であり、最も好ましいものはシアノ基である。

 Z^2 は水素原子または置換基を表し、該置換基は脂肪族基、芳香族基もしくは複素環基を表す。 Z^2 は好ましくは脂肪族基であり、更に好ましくは炭素数 $1\sim6$ のアルキル基である。

Qは水素原子または置換基を表し、該置換基は脂肪族基、芳香族基もしくは複素環基を表す。中でもQは5~8員環を形成するのに必要な非金属原子群からなる基が好ましい。前記5~8員環は置換されていてもよいし、飽和環であっても不飽和結合を有していてもよい。その中でも特に芳香族基、複素環基が好ましい。好ましい非金属原子としては、窒素原子、酸素原子、イオウ原子または炭素原子が挙げられる。そのような環構造の具体例としては、例えばベンゼン環、シクロベンタン環、シクロベナクン環、シクロベブタン環、シクロオクタン環、シクロ

ヘキセン環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、オキサゾール環、ベンゾオキサゾール環、チアゾール環、ベンゾチアゾール環、オキサン環、スルホラン環およびチアン環等が挙げられる。

一般式(1a)で説明した各置換基の水素原子は置換されていても良い。該置換基としては、一般式(1)で説明した置換基、G、R¹、R²で例示した基やイオン性親水性基が挙げられる。

ここで、本明細書中で用いられるハメットの置換基定数 op値について説明す る。ハメット則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量 的に論ずるために1935年にL.P.Hammettにより提唱された経験則 であるが、これは今日広く妥当性が認められている。ハメット則に求められた置 換基定数にはσρ値とσm値があり、これらの値は多くの一般的な成書に見出す ことができるが、例えば、J. A. Dean編、「Lange's Handb ook of Chemistry」第12版、1979年(Mc Graw-Hill) や「化学の領域」増刊、122号、96~103頁、1979年(南 光堂) に詳しい。尚、本発明において各置換基をハメットの置換基定数 σρによ り限定したり、説明したりするが、これは上記の成魯で見出せる、文献既知の値 がある置換基にのみ限定されるという意味ではなく、その値が文献未知であって もハメット則に基づいて測定した場合にその範囲内に包まれるであろう置換基を も含むことはいうまでもない。また、本発明の一般式(1a)の中には、ベンゼ ン誘導体ではない物も含まれるが、置換基の電子効果を示す尺度として、置換位 置に関係なくのり値を使用する。本発明において、のり値をこのような意味で使 用する。

ハメット置換基定数 σ p 値が 0.60以上の電子吸引性基としては、シアノ基、 ニトロ基、アルキルスルホニル基 (例えばメチルスルホニル基、アリールスルホ ニル基 (例えばフェニルスルホニル基) を例として挙げることができる。

ハメット置換基定数 σ p値が0.30以上の電子吸引性基としては、上記に加え、アシルオキシ基(例えば、アセトキシ)、カルバモイル基(例えば、N-x

チルカルバモイル、N, N-ジプチルカルバモイル)、ハロゲン化アルコキシ基 (例えば、トリフロロメチルオキシ)、ハロゲン化アリールオキシ基 (例えば、ペンタフロロフェニルオキシ)、スルホニルオキシ基 (例えばメチルスルホニルオキシ基)、ハロゲン化アルキルチオ基 (例えば、ジフロロメチルチオ)、2つ以上の σ p値が0. 15以上の電子吸引性基で置換されたアリール基 (例えば、2, 4-ジニトロフェニル、ペンタクロロフェニル)、およびヘテロ環 (例えば、<math>2-ペンゾオキサゾリル、<math>2-ペンゾチアゾリル、1-フェニルー2-ペンゾイミダゾリル)を挙げることができる。

σρ値が0.20以上の電子吸引性基の具体例としては、上記に加え、ハロゲン原子などが挙げられる。

前記一般式(1)で表されるアゾ染料として特に好ましい置換基の組み合わせは、R⁵およびR⁶として好ましくは、水素原子、アルキル基、アリール基、複素環基、スルホニル基、アシル基であり、さらに好ましくは水素原子、アリール基、複素環基、スルホニル基であり、最も好ましくは、水素原子、アリール基、複素環基である。ただし、R⁵およびR⁶が共に水素原子であることは無い。

Gとして好ましくは、水素原子、ハロゲン原子、アルキル基、ヒドロキシル基、アミノ基、アシルアミノ基であり、さらに好ましくは水素原子、ハロゲン原子、アミノ基、アシルアミノ基であり、もっとも好ましくは水素原子、アミノ基、アシルアミノ基である。

Aのうち、好ましくはピラゾール環、イミダゾール環、イソチアゾール環、チアジアゾール環、ベンゾチアゾール環であり、さらにはピラゾール環、イソチアゾール環であり、最も好ましくはピラゾール環である。

 B^1 および B^2 がそれぞれ= CR^1 -、 $-CR^2$ =であり、 R^1 、 R^2 は各々好ましくは水素原子、アルキル基、ハロゲン原子、シアノ基、カルバモイル基、カルボキシル基、ヒドロキシル基、アルコキシ基、アルコキシカルボニル基であり、さらに好ましくは水素原子、アルキル基、カルボキシル基、シアノ基、カルバモイル基である。

尚、前記一般式(1)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

前記一般式 (1) で表されるアゾ染料の具体例を以下の化合物例 $a-1\sim a-46$ 、 $b-1\sim b-8$ 、 $c-1\sim c-5$ 、 $d-1\sim d-5$ 、 $e-1\sim e-5$ 及び f-1と f-2 に示すが、本発明に用いられるアゾ染料は、下記の例に限定されるものではない。

$$\begin{array}{c|c}
 & CN \\
 & H_3C \\
 & CN \\
 & N=N \\
 & N=N \\
 & R_3
\end{array}$$

$$\begin{array}{c|c}
 & R_3 \\
 & R_2
\end{array}$$

 染料	R ₁	R ₂	R ₃
a-1	$\stackrel{s}{\prec}$	-C ₈ H ₁₇	- C ₈ H ₁₇
a-2	S CI	-C ₈ H ₁₇	CH ₃ CH ₃
a−3	→ S CI	CH_3 CH_3 CH_3	C ₈ H ₁₇
a-4	$\stackrel{s}{\sim}$	OC ₈ H ₁₇	-C ₈ H ₁₇
a5	S N NO ₂	CH₃ ————————————————————————————————————	CH ₃ —CH ₃

$$\begin{array}{c|c}
 & CN \\
 & H_3C \\
 & N \\
 &$$

	П2		
 染料	R ₁	R ₂	. R ₃ .
a-6	-S SO ₂ NH-(CH ₂)30	—С ъснь	-С
a-7	SO ₂ NH-(CH ₂) ₃ -OCH ₂ CH C ₆ H ₁₃	CH ₃	.—С>-сн _з
a-8	NHCOCH-O	—Сън ₁₇	-C _B H ₁₇
a−9	(n)C ₈ H ₁₇ O NHSO ₂ —C ₈ H ₁₇ (t)	CH ₃	C _e H ₁₇ (t)
a-10	→ S CI	OC ₁₂ H ₂₅	OC ₁₂ H ₂₅

染料	R _i	R _z	. R ₃	R ₄
a-11	+	SO ₂ Na	-{СН₃	{So₃Na
a-12	—	→ S COOH	{}so₃k .	СООН
a-13	CI	S n so, K	-√_>-so₃k	СООН .
a-14	+	SO ₃ Na	CH ₃ SO ₃ Na CH ₃	CH ₃ SO ₃ N ₂ -CH ₃
a−15	+	S SO ₃ K	CH ₆ SO ₃ K CH ₆	CH ₈ SO ₃ K CH ₈
a−16	+	-S-CI	CH ₃ CH ₂ CH ₃ N(CH ₂ CO ₂ H)	CH ₉ CH ₂ CH ₂ I V(CH ₂ CO ₂ H ₎₂
a-17	+	S SO Na	CH ₃ SO ₃ Na CH ₃	CH ₃ SO ₃ Na CH ₃

染料	R ₁	R ₂	R ₃	R ₄
a-18	-s N	-s N	CH ₃ CH ₃	. — СН ₃ — СН ₃
a-19	~SCI.	-SO ₂ CH ₃	CH ₃ CH ₃	_ —С——сн.
a-20	\prec^s_{N}	-COCH₃	C ₈ H ₁₇ (t)	C ₈ H ₁₇ (t)
a-21	-STOCI	-SO ₂ CH ₃	нассна	C ₈ H ₁₇ (t)
a-22	-S	. н	сн,	CH ₃
a-23	$-\stackrel{s}{\smile}$	Н	-CH3	CH₃
a-24	-s N	Н	CH ₈	CH ₃
a-25	-	$ \stackrel{\circ}{\sim}$ $\stackrel{\circ}{\sim}$	CH ₃	сн _з

	R, R.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	45 - 45 - 45 - 45 - 45 - 45 - 45 - 45 -	64. 04. 04. 04. 04. 04.	€\$ \$ €
SE N N N N N N N N N N N N N N N N N N N		S. S.O.A.	HOOD HN ² OS	COOK SO ₂ NH (5,6-mtx) COOK	HOOD (5,6-mix)
Z Z Z	ď	Y	HOOD HOOD	-\$0 ₂ NH\$	S. B-mix)
	松	a-32	s-33	a-34	a-35

	R.	Sos et de		or solution		CH, SO ₃ K
	R,	CH. SO ₃ Na	**************************************	49 Source	OH, CH, COOH)2	ch, so, k
N N N N N N N N N N N N N N N N N N N	R ₂	elve os N	م م	n°os N	and so	X SOS
	R ₁	SOS Z	S SO ₂ NH COOK	Deos N	SOS SOS	مر کے ا
•	茶茶	a-36	в-37	a~38	-38 -a	a-40

	ď	ŧ₽	сосн	 	so,ch,	S.H.	S. H. C. H.
	ж,	# Q	G,H ₁₇ (t)	\$ -	ŧ₽ ŧ	*	r of the state of
	g,	so ₂ cH ₃			© Z Z	19 0=0	
	R,	CONH	I	I	, T	CONH	I
R N N N N N N N N N N N N N N N N N N N	Z.	ж	000Et	CONH	I	I	<u>'</u> ਲੌ
z-a°	ď	z \	Z Y	LANGE AND	Z Z Z		
	œ.	8	Ŗ	SO ₂ CH ₃	NO	ъ́в	O
	œ	₹ Q	+	z	+	+	a-46
	茶	a-41	a-42	9–4 3	8-44	a-45	a_46

		•	•			
	R _e	. C ₀ H ₁₇	₹ \ ₹ \ †;		100 H	SO ₃ NB
g	Rs	C ₆ H ₁₇	* \	C ₆ H ₁₇	CH ₂ SO ₂ U	SO ₃ Na
R N I N I N I N I N I N I N I N I N I N	Z,	I	I	±	I	Ŧ
NO N	ñ	N N	C	CONH	x	S
	8	ъ́в	P.	ť	ťo	I
	ĸ.	ťo	c H	ъ́в	ษ์	ъ́в
	茶菜	7	6-2	р-3	b4	b-5

	జి	CH ₃ CH ₃ CH ₃ CH ₄ CH ₅	Co.H17	av _s os-
E / E	ď	CH ₃	* * *	SO ₃ Na
NO N	R,	w Yz		SO ₂ OH ₃
E Z	ፚ	Ι	I	Ι
	R,	ř ř	° OH	x
	R,	, HO	ъ	ਸ਼ੌਂ O
:	茶茶	p-9	6-7	. 8

	ď	C ₀ H ₁ ,	×°os-	×°os-	. C.H.7	C ₈ H ₁₇ (t)
N=N N=N N=N N=N N=N	ď	O ₈ H ₁₇ (t)	y so k	N _c os-	£ \$ 5	45 45 45 45
	, œ	Ι	I	Yeos X	H-C08	NHSO ₈ OCC ₈ H ₁₇ (n)
E Z	ď	NO	CONH	x	Ι	Ŧ
	S.	чо	I	Ϋ́.	Чо	I
:	Α,	, SOH	°-2	c-3 -8~80°K	. 6 0 1	
	菜	7	o-2	- - -	4-0	ις

	8	- sox	**************************************	Ho - of to the	-C ₆ H ₁₇	F. C. F. F. C. F. C. F.
	R	Aços-	**************************************	* * * * * * * * * * * * * * * * * * *	CaH17	OC,H ₆ (n)
N=N H-N H-N H-N H-N	R.	Ŧ	I		I	
χ. χ	R³	ON	Z O	±	CONH	Ξ
	R ₂	СН°	ť	r .	cH ₃	ъ́т
	染料 R,	Me	d-2 Мв	We	ď	£
	京茶	d-1	g-2	6- 5-	4-b	م ا

本発明によるインクジェット記録用マゼンタインクは、主吸収領域が500~ 580nmにあるが、前記アゾ染料の少なくとも1種を、水性媒体中に溶解また

は分散してなることが好ましく、その場合には該アゾ染料を好ましくは、0.2~20質量%含有し、より好ましくは、0.5~15質量%含有する。また、その20%における水への溶解度(又は安定状態での分散度)は、5質量%以上が好ましく、より好ましくは10質量%以上である。

本発明によるマゼンタインクの構成色材の特に好ましい色材である上記一般式 (1)の染料は実質的に水溶性又は水分散性のものである。具体的には20℃に おける色材の水への溶解度が2質量%以上が好ましく、より好ましくは5質量% 以上である。

また、主吸収領域を共有する二種以上のインクのセットを作製する際に、一方を薄いライト系のインク、一方を濃いインクとすることが一般的であるが、その場合のライトインクと濃いインクとの吸光度の関係は、前記した関係にある。

各構成インク中に含まれる染料は、単独であっても混合物であってもよいが、いずれの場合でも、少なくとも一つのインクには一般式(1)で表される染料の少なくとも1種を、水性媒体中に溶解または分散していることが好ましく、その濃度は、0.2~20質量%、より好ましくは、0.5~15質量%である。

一般式 (1) で表される染料を単独で用いてもよいが、他の色材と組合せて用いる場合、組合される色材は、染料、顔料のいずれでもよく、水性媒体に溶解された形態でも、また水性媒体に不溶な顔料が分散されて存在する形態であってもよい。顔料の場合、その水への溶解度(25℃)は、多くは0.1g/100g以下であって、該成分が分散したインク組成物としては、例えば、乳化分散物、ポリマー染料、ポリマー担持もしくは分散染料、顔料などを挙げることができる。中でも顔料が好ましい。

また、染料インクに、水に不溶な顔料が分散されて含有されていてもよいし、 顔料インクに水溶性染料が含有されていてもよい。

一つのインク組成物中に一般式 (1) で表される染料と別の染料又は顔料とが組合されて存在する場合、その合計の濃度は、 $0.2 \sim 20$ 質量%、より好ましくは、 $0.5 \sim 15$ 質量%である。

本発明に用いられる上記アゾ基を有するマゼンタ染料は、染料の酸化電位がインクの水性媒体において0.7 V v s S C E より貴、好ましくは0.8 V v s S C E より貴、特に好ましくは1.0 V より貴である。電位を高める手段としては、前記した好ましい構造要件からの選択、すなわち、複素環A) - N = N - (複素環B)で表される発色団を有する型の染料構造の選択、アゾ基が、少なくともその一方に芳香族含窒素6 員複素環をカップリング成分として直結させたアゾ染料の選択、芳香族環アミノ基または複素環アミノ基含有構造を助色団として有するアゾ染料の選択、さらにはアゾ染料のα水素除去することである。とくに上記一

般式 (1) の染料が費の電位を発現する。具体的には特願2001-254878に記載されている。

上記の酸化電位の値(Eox)は当業者が容易に測定することができる。この方法に関しては、例えばP. Delahay著"New Instrument al Methods in Electrochemistry" (1954年 Interscience Publishers社刊)、A. J. Bard他著"Electrochemical Methods" (1980年 JohnWiley & Sons社刊)、藤嶋昭他著"電気化学測定法" (1984年 技報堂出版社刊)などに記載されている。

具体的な酸化電位の測定法としては、染料を溶解した水溶液もしくは水混合溶媒系において参照電極としてSCE(飽和カロメル電極)を基準とする測定法で、作用極としてグラファイト電極、対極として白金電極を使用した直流ポーラログラフィー、満下水銀電極によるポーラログラフィー、サイクリックボルタンメトリー法(CV)、回転リングディスク電極法、櫛形電極法等、種々の測定法が利用可能である。酸化電位は、過塩素酸ナトリウムや過塩素酸テトラプロピルアンモニウムといった支持電解質を含むジメチルホルムアミドやアセトニトリルのような溶媒中に、被験試料を1×10⁻⁴~1×10⁻⁸mo1・dm⁻³溶解し、上記測定法を用いてSCE(飽和カロメル電極)に対する値として測定する。また用いる支持電解質や溶媒は、被験試料の酸化電位や溶解性により適当なものを選ぶことができる。用いることができる支持電解質や溶媒については藤嶋昭他著"電気化学測定法"(1984年 技報堂出版社刊)101~118ページに記載がある。

酸化電位の値は、液間電位差や試料溶液の液抵抗などの影響で、数10ミルボルト程度偏位することがあるが、標準試料 (例えばハイドロキノン) を用いて校正することにより、測定された電位の値の再現性を保証することができ、かつ上記いずれの電位測定手段でも同じ測定値を得ることができる。

< 580~600nmの主収領域を共有している色材>

フルカラー画像を形成するために、上記マゼンタインクセットと組合される堅牢かつ画像品質が優れたシアンインクセットの色材について説明する。本発明のインクジェット記録用シアンインクセットに含有される色材は、580~600 nmの主収領域を共有している色材であり、好ましくは構成色材の少なくともつは、一般式 (I) で表されるフタロシアニン染料である。

フタロシアニン染料は、堅牢な染料として知られていたが、インクジェット用 記録染料として使用した場合、オゾンガスに対する堅牢性に劣ることが知られて いる。しかし、一般式(I)で表されるフタロシアニン染料は、この欠点を化学

構造の上から解決したものである。

一般式(I)で表されるフタロシアニン染料は、求電子剤であるオゾンとの反応性を下げるために、フタロシアニン骨格に電子求引性基を導入したもので、その酸化電位は多くの場合に0.7V(vs SCE)よりも貴となっている。酸化電位は貴であるほど好ましく、酸化電位が1.0V(vs SCE)よりも貴であるものがより好ましく、1.2V(vs SCE)より貴であるものが最も好ましい。

酸化電位(Eox とも記す)の値は電極から試料への電子の移りやすさを表わし、その値が大きい(酸化電位が費である)ほど試料から電極へ電子移行が起こりにくい、言い換えれば、酸化されにくいことを表す。化合物の構造との関連では、電子求引性基を導入することにより酸化電位はより費となり、電子供与性基を導入することにより酸化電位はより卑となる。本発明では、求電子剤であるオゾンとの反応性を下げるために、フタロシアニン骨格に電子求引性基を導入して酸化電位をより費とすることが望ましい。従って、置換基の電子求引性や電子供与性の尺度であるハメットの置換基定数 σp値を用いれば、スルフィニル基、スルホニル基、スルファモイル基のように σp値が大きい置換基を導入することにより酸化電位をより費とすることができると言える。

このような電位調節をする理由からも、上記一般式 (I) で表されるフタロシアニン染料を用いることは好ましい。

フタロシアニン染料の酸化電位の測定方法は、マゼンタ用インクセットの項で 述べた一般的な方法を用いて行われる。

一般式(I)において、 X_1 、 X_2 、 X_3 および X_4 は、それぞれ独立に、-S O-Z、 $-SO_2-Z$ 、 $-SO_2NR_1R_2$ 、スルホ基、 $-CONR_1R_2$ 、または $-CO_2R_1$ を表す。これらの置換基の中でも、-SO-Z、 $-SO_2-Z$ 、 $-SO_2$ $-SO_2$

上記 Z は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは 無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは

無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基を表す。好ましくは、置換もしくは無置換のアルキル基、置換もしくは無置換の複素環基であり、その中でも置換アルキル基、置換アリール基、置換複素環基が最も好ましい。

上記 R_1 、 R_2 は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。なかでも、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルキル基、置換もしくは無置換の複素環基が好ましく、その中でも水素原子、置換アルキル基、置換アリール基、および置換複素環基がさらに好ましい。但し、 R_1 、 R_2 がいずれも水素原子であることは好ましくない。

 R_1 、 R_2 およびZが表す置換もしくは無置換のアルキル基としては、炭素原子数が $1\sim30$ のアルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のアルキル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述のZ、 R_1 、 R_2 、 Y_1 、 Y_2 、 Y_3 および Y_4 が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。中でも水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していてもよい。なお、アルキル基の炭素原子数は置換基の炭素原子を含まず、他の基についても同様である。

 R_1 、 R_2 およびZが表す置換もしくは無置換のシクロアルキル基としては、 炭素原子数が $5\sim3$ 0のシクロアルキル基が好ましい。特に染料の溶解性やイン ク安定性を高めるという理由から、不斉炭素を有する場合(ラセミ体での使用) が特に好ましい。置換基の例としては、後述のZ、 R_1 、 R_2 、 Y_1 、 Y_2 、 Y_3 お よび Y_4 が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。 なかでも、水酸基、エーテル基、エステル基、シアノ基、アミド基、およびスル ホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この 他、ハロゲン原子やイオン性親水性基を有していても良い。

 R_1 、 R_2 およびZが表す置換もしくは無置換のアルケニル基としては、炭素原子数が $Z \sim 3$ 0のアルケニル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のアルケニル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述のZ、 R_1 、 R_2 、 Y_1 、 Y_2 、 Y_3 および Y_4 が更に置換基を持つことが可能な場合の置換

基と同じものが挙げられる。なかでも、水酸基、エーテル基、エステル基、シア ノ基、アミド基、スルホンアミド基が染料の会合性を高め堅牢性を向上させるの で特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していてもよい。

 R_1 、 R_1 およびZが表す置換もしくは無置換のPりール基としては、炭素原子数が $6\sim30$ のPりール基が好ましい。置換基の例としては、後述のZ、 R_1 、 R_2 、 Y_1 、 Y_2 、 Y_1 および Y_4 が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、染料の酸化電位を費とし堅牢性を向上させるので電子吸引性基が特に好ましい。電子吸引性基としては、ハメットの置換基定数 σ P 値が正のものを挙げられる。なかでも、ハロゲン原子、複素環基、シアノ基、カルボキシル基、アシルアミノ基、スルホンアミド基、スルファモイル基、カルバモイル基、スルホニル基、イミド基、アシル基、スルホ基、4級アンモニウム基が好ましく、シアノ基、カルボキシル基、スルカアモイル基、カルバモイル基、スルホニル基、イミド基、アシル基、スルホ基、4級アンモニウム基が更に好ましい。

 R_1 、 R_2 およびZが表す複素環基としては、5 員または6 員環のものが好ましく、それらは更に縮環していてもよい。また、芳香族複素環であっても非芳香族複素環であっても良い。以下に R_1 、 R_2 およびZで表される複素環基を、置換位置を省略して複素環の形で例示するが、置換位置は限定されるものではなく、例えばピリジンであれば、2 位、3 位、4 位で置換することが可能である。ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、イソキノリン、キナゾリン、シンノリン、フタラジン、キノキサリン、ピロール、インドール、フラン、ベンゾフラン、チオフェン、ベンゾチオフェン、ピラゾール、イミダゾール、ベンズイミダゾール、トリアゾール、オキサゾール、ベンズオキサゾール、デアゾール、ベンゾチアゾール、イソチアゾール、ベンズイソチアゾール、チアジアゾール、イソオキサゾール、ベンズイソオキサゾール、ピロリジン、ピペラジン、イミダゾリジン、チアゾリンなどが挙げられる。なかでも、芳香族複素環基が好ましく、その好ましい例を先と同様に例示すると、ピリ

ジン、ピラジン、ピリミジン、ピリダジン、トリアジン、ピラゾール、イミダゾール、ベンズイミダゾール、トリアゾール、チアゾール、ベンゾチアゾール、イソチアゾール、ボンズイソチアゾール、チアジアゾールが挙げられる。それらは置換基を有していても良く、置換基の例としては、後述のZ、 R_1 、 R_2 、 Y_1 、 Y_2 、 Y_1 および Y_4 が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。好ましい置換基は前記アリール基の置換基と、更に好ましい置換基は、前記アリール基の更に好ましい置換基とそれぞれ同じである。

Y₁、Y₂、Y₃ およびY₄は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アラルキル基、アリール基、複素環基、シアノ基、ヒドロキシル基、ニトロ基、アミノ基、アルキルアミノ基、アルコキシ基、アリールオキシ基、アシルアミノ基、アリールアミノ基、ウレイド基、スルファモイルアミノ基、アルキルチオ基、アリールチオ基、アルコキシカルボニルアミノ基、スルホンアミド基、カルバモイル基、スルファモイル基、スルホニル基、アルコキシカルボニル基、複素環オキシ基、アゾ基、アシルオキシ基、カルバモイルオキシ基、シリルオキシ基、アリールオキシカルボニル基、アリールオキシカルボニルと、アリールオキシカルボニルアミノ基、イミド基、複素環チオ基、ホスホリル基、アシル基、カルボキシル基、またはスルホ基を挙げる事ができ、各々はさらに置換基を有していてもよい。

なかでも、水素原子、ハロゲン原子、アルキル基、アリール基、シアノ基、アルコキシ基、アミド基、ウレイド基、スルホンアミド基、カルバモイル基、スルファモイル基、アルコキシカルボニル基、カルボキシル基、およびスルホ基が好ましく、特に水素原子、ハロゲン原子、シアノ基、カルボキシル基およびスルホ基が好ましく、水素原子が最も好ましい。

Z、 R_1 、 R_2 、 Y_1 、 Y_2 、 Y_3 および Y_4 が更に置換基を有することが可能な基であるときは、以下に挙げる置換基を更に有してもよい。

炭素数1~12の直鎖または分岐鎖アルキル基、炭素数7~18の直鎖または分岐鎖アラルキル基、炭素数2~12の直鎖または分岐鎖アルケニル基、炭素数3~12の直鎖または分岐鎖アルキニル基、炭素数3~12の直鎖または分岐鎖シクロアルケニル基(以上の各基は分岐鎖を有するものが染料の溶解性およびインクの安定性を向上させる理由から好ましく、不斉炭素を有するものが特に好ましい。以上の各基の具体例:例えばメチル、エチル、プロピル、イソプロピル、sec-ブチル、tーブチル、2~エチルヘキシル、2~メチルスルホニルエチル、3~フェノキシプロピル、トリフルオロメチル、シクロペンチル)、ハロゲン原子(例えば、塩素原子、臭素原子)、アリール基(例えば、フェニル、4~t~ブチルフェニル、2、4

ージーtーアミルフェニル)、複素環基(例えば、イミダゾリル、ピラゾリル、トリアゾリル、2ーフリル、2ーチエニル、2ーピリミジニル、2ーペンゾチアゾリル)、

シアノ基、ヒドロキシル基、ニトロ基、カルボキシ基、アミノ基、アルキルオキ シ基(例えば、メトキシ、エトキシ、2-メトキシエトキシ、2-メタンスルホ ニルエトキシ)、アリールオキシ基(例えば、フェノキシ、2ーメチルフェノキ シ、4-t-プチルフェノキシ、3-ニトロフェノキシ、3-t-プチルオキシ カルパモイルフェノキシ、3-メトキシカルバモイル)、アシルアミノ基 (例え ば、アセトアミド、ベンズアミド、4-(3-t-ブチル-4-ヒドロキシフェ ノキシ)プタンアミド)、アルキルアミノ基(例えば、メチルアミノ、ブチルア ミノ、ジエチルアミノ、メチルプチルアミノ)、アニリノ基(例えば、フェニル アミノ、2-クロロアニリノ、ウレイド基(例えば、フェニルウレイド、メチル ウレイド、N, N-ジブチルウレイド)、スルファモイルアミノ基 (例えば、N, N-ジプロピルスルファモイルアミノ)、アルキルチオ基(例えば、メチルチオ、 オクチルチオ、2-フェノキシエチルチオ)、アリールチオ基 (例えば、フェニ ルチオ、2-ブトキシ-5-t-オクチルフェニルチオ、2-カルボキシフェニ ルチオ)、アルキルオキシカルボニルアミノ基(例えば、メトキシカルボニルア ミノ)、スルホンアミド基(例えば、メタンスルホンアミド、ベンゼンスルホン アミド、p-トルエンスルホンアミド)、

カルバモイル基(例えば、N-xチルカルバモイル、N, N-yブチルカルバモイル)、スルファモイル基(例えば、N-xチルスルファモイル、N, N-yプロピルスルファモイル、N-y のえば、N-x のんだモイルオキシ (例えば、N-x のんだエイルオキシ (Mx のんだエイル (Mx のんだ (Mx のん

シリルオキシ基(例えば、トリメチルシリルオキシ、ジプチルメチルシリルオキシ)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボニルアミノ)、イミド基(例えば、N-スクシンイミド、N-フタルイミド)、複素環チオ基(例えば、2-ベンゾチアゾリルチオ、2, 4-ジーフェノキシ-1, 3, 5-トリアゾール-6-チオ、2-ピリジルチオ)、スルフィニル基(例えば、

3-フェノキシプロピルスルフィニル)、ホスホニル基(例えば、フェノキシホスホニル、オクチルオキシホスホニル、フェニルホスホニル)、アリールオキシカルボニル基(例えば、アセチル、3-フェニルプロパノイル、ベンソイル)、イオン性親水性基(例えば、カルボキシル基、スルホ基、ホスホノ基および4級アンモニウム基)が挙げられる。

前記一般式(I)で表されるフタロシアニン染料が水溶性である場合には、イオン性親水性基を有することが好ましい。イオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジニウムイオン、テトラメチルホスホニウム)が含まれる。対イオンのなかでも、アルカリ金属塩が好ましく、特にリチウム塩は染料の溶解性を高めインク安定性を向上させるため特に好ましい。

イオン性親水性基の数としては、フタロシアニン系染料1分子中少なくとも2個有することが好ましく、スルホ基および/またはカルボキシル基を少なくとも2個有することが特に好ましい。

 $a_1 \sim a_4$ および $b_1 \sim b_4$ は、それぞれ $X_1 \sim X_4$ および $Y_1 \sim Y_4$ の置換基数を表す。 $a_1 \sim a_4$ は、それぞれ独立に、 $0 \sim 4$ の整数を表すが、全てが同時に0になることはない。 $b_1 \sim b_4$ は、それぞれ独立に、 $0 \sim 4$ の整数を表す。なお、 $a_1 \sim a_4$ および $b_1 \sim b_4$ のいずれかが2以上の整数であるときは、 $X_1 \sim X_4$ および $Y_1 \sim Y_4$ のいずれかは複数個存在することになり、それらは同一でも異なっていてもよい。

 $a_1 \, b_1 \, d$ 、 $a_1 + b_1 = 4$ の関係を満たす。特に好ましいのは、 $a_1 \, b_1 \, d$ 1または 2 を表し、 $b_1 \, b_2 \, d$ 3 または 2 を表す組み合わせであり、そのなかでも、 $a_1 \, b_2 \, d$ 1 を表し、 $b_1 \, b_2 \, d$ 3 を表す組み合わせが最も好ましい。

 \mathbf{a}_1 と \mathbf{b}_1 、 \mathbf{a}_1 と \mathbf{b}_1 、 \mathbf{a}_1 と \mathbf{b}_1 の各組み合わせにおいても、 \mathbf{a}_1 と \mathbf{b}_1 の組み合わせと同様の関係であり、好ましい組み合わせも同様である。

Mは、水素原子、金属元素またはその酸化物、水酸化物もしくはハロゲン化物を表す。

Mとして好ましいものは、水素原子の他に、金属元素として、Li、Na、K、Mg、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Hg、

A1、Ga、In、Si、Ge、Sn、Pb、Sb、Bi等が挙げられる。酸化物としては、VO、GeO等が好ましく挙げられる。

また、水酸化物としては、 $Si(OH)_2$ 、 $Cr(OH)_2$ 、 $Sn(OH)_2$ 等が好ましく挙げられる。さらに、ハロゲン化物としては、AlCl、 $SiCl_2$ 、VCl、 VCl_2 、VOCl、FeCl、GaCl、ZrCl等が挙げられる。なかでも、Cu、Ni、Zn、Al等が好ましく、Cuが最も好ましい。

また、L (2 価の連結基)を介してPc (フタロシアニン環)が2 量体(例えば、Pc-M-L-M-Pc) または3 量体を形成してもよく、その時のMはそれぞれ同一であっても異なるものであってもよい。

Lで表される 2 価の連結基は、オキシ基-0-、チオ基-S-、カルボニル基-C0-、スルホニル基 $-S0_2$ -、イミノ基-NH-、メチレン基 $-CH_2$ -、およびこれらを組み合わせて形成される基が好ましい。

前記一般式(I)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

前記一般式(I)で表されるフタロシアニン染料のなかでも、前記一般式(II)で表される構造のフタロシアニン染料が更に好ましい。以下に本発明の一般式(II)で表されるフタロシアニン染料について詳しく述べる。

前記一般式 (II) において、 $X_{11} \sim X_{14}$ 、 $Y_{11} \sim Y_{18}$ は一般式 (I) の中の $X_{1} \sim X_{4}$ 、 $Y_{1} \sim Y_{4}$ とそれぞれ同義であり、好ましい例も同じである。また、Mは一般式 (I) 中のMと同義であり、好ましい例も同様である。

一般式 (II) 中、 a_{11} ~ a_{14} は、それぞれ独立に、1または2の整数であり、好ましくは $4 \le a_{11}$ + a_{12} + a_{13} + a_{14} ≤ 6 を満たし、特に好ましくは a_{11} = a_{12} = a_{13} = a_{14} =1のときである。

 X_{11} 、 X_{12} 、 X_{13} および X_{14} は、それぞれ全く同じ置換基であってもよく、あるいは例えば X_1 、 X_2 、 X_3 および X_4 が全て $-SO_1$ -Zであり、かつ各Zは異なるものを含む場合のように、同じ種類の置換基であるが部分的に互いに異なる置換基であってもよく、あるいは互いに異なる置換基を、例えば $-SO_2$ -Zと $-SO_2$ N R_1 R $_2$ を含んでいてもよい。

一般式 (II) で表されるフタロシアニン染料のなかでも、特に好ましい置換 基の組み合わせは、以下の通りである。

 $X_{11} \sim X_{14}$ としては、それぞれ独立に、-SO-Z、 $-SO_2-Z$ 、 $-SO_2$ N R_1R_2 または $-CONR_1R_2$ が好ましく、特に $-SO_2-Z$ または $-SO_2NR_1R_2$ が好ましく、 $-SO_2-Z$ が最も好ましい。

Zは、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基が好ましく、そのなかでも、置換アルキル基、置換アリール基、置換複素環基が最も好ましい。特に染料の溶解性やインク安定性を高めるという理由から、置換基中に不斉炭素を有する場合(ラセミ体での使用)が好ましい。また、会合性を高め堅牢性を向上させるという理由から、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が置換基中に有する場合が好ましい。

 R_1 、 R_2 は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基が好ましく、そのなかでも、水素原子、置換アルキル基、置換アリール基、置換複素環基がより好ましい。ただし R_1 , R_2 が共に水素原子であることは好ましくない。特に染料の溶解性やインク安定性を高めるという理由から、置換基中に不斉炭素を有する場合(ラセミ体での使用)が好ましい。また、会合性を高め堅牢性を向上させるという理由から、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が置換基中に有する場合が好ましい。

Y₁₁~Y₁₈は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アリール基、シアノ基、アルコキシ基、アミド基、ウレイド基、スルホンアミド基、カルバモイル基、スルファモイル基、アルコキシカルボニル基、カルボキシル基、およびスルホ基が好ましく、特に水素原子、ハロゲン原子、シアノ基、カルボキシル基、またはスルホ基であることが好ましく、水素原子であることが最も好ましい。

 $a_{11} \sim a_{14}$ は、それぞれ独立に、1または2であることが好ましく、全てが1であることが特に好ましい。

Mは、水素原子、金属元素またはその酸化物、水酸化物もしくはハロゲン化物を表し、特にCu、Ni、Zn、Alが好ましく、なかでも特に特にCuが最も好ましい。

前記一般式 (II) で表されるフタロシアニン染料が水溶性である場合には、イオン性親水性基を有することが好ましい。イオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン (例、リチウムイオン、ナトリウムイオン、カリウムイオン) および有機カチオン (例、テトラメチルアンモニウムイオン、テトラメチルグアニジニウムイオン、テトラメチルホスホニウム) が含まれる。

対イオンのなかでも、アルカリ金属塩が好ましく、特にリチウム塩は染料の溶解 件を高めインク安定性を向上させるため特に好ましい。

イオン性親水性基の数としては、フタロシアニン系染料1分子中に少なくとも 2個有することが好ましく、スルホ基および/またはカルボキシル基を少なくと も2個有することが特に好ましい。

前記一般式 (II) で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

本発明のフタロシアニン染料の化学構造としては、スルフィニル基、スルホニル基、スルファモイル基のような電子吸引性基を、フタロシアニンの4つの各ペンゼン環に少なくとも一つずつ、フタロシアニン骨格全体の置換基の σp値の合計で1.6以上となるように導入することが好ましい。

ハメットの置換基定数 σ p値について若干説明する。ハメット則は、ベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年L. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則に求められた置換基定数には σ p値と σ m値があり、これらの値は多くの一般的な成書に見出すことができるが、例えば、J. A. Dean編、「Lange's Handbook of Chemistry」第12版、1979年(Mc Graw-Hill)や「化学の領域」増刊、122号、96~103頁、1979年(南光堂)に詳しい。

前記一般式(I)で表されるフタロシアニン誘導体は、その合成法によって不可避的に置換基Xn(n=1~4)およびYm(m=1~4)の導入位置および導入個数が異なる類縁体混合物である場合が一般的であり、従って一般式はこれら類縁体混合物を統計的に平均化して表している場合が多い。本発明では、これらの類縁体混合物を以下に示す三種類に分類すると、特定の混合物が特に好ましいことを見出したものである。すなわち前記一般式(I)および(II)で表されるフタロシアニン系染料類縁体混合物を置換位置に基づいて以下の三種類に分類して定義する。

- (1) β -位置換型: 2およびまたは 3位、6およびまたは 7位、10およびまたは 11位、14およびまたは 15位に特定の置換基を有するフタロシアニン染料。
- (2) α -位置換型: 1およびまたは4位、5およびまたは8位、9およびまたは1 2位、1 3およびまたは1 6位に特定の置換基を有するフタロシアニン染料
- (3) α、β-位混合置換型:1~16位に規則性なく、特定の置換基を有する

フタロシアニン染料

本明細書中において、構造が異なる (特に、置換位置が異なる) フタロシアニン染料の誘導体を説明する場合、上記 β -位置換型、 α -位置換型、 α , β -位混合置換型を使用する。

本発明に用いられるフタロシアニン誘導体は、例えば白井-小林共著、(株) アイピーシー発行「フタロシアニンー化学と機能-」(P. 1~62)、C. C. Leznoff-A. B. P. Lever共著、VCH発行 'Phthaloc yanines-Properties and Applications' (P. 1~54) 等に記載、引用もしくはこれらに類似の方法を組み合わせて合成することができる。

本発明において、一般式(I)で表されるフタロシアニン化合物は、世界特許 0 0 / 1 7 2 7 5 号、同 0 0 / 0 8 1 0 3 号、同 0 0 / 0 8 1 0 1 号、同 9 8 / 4 1 8 5 3 号、特開平 1 0 - 3 6 4 7 1 号などに記載されているように、例えば 無置換のフタロシアニン化合物のスルホン化、スルホニルクロライド化、アミド 化反応を経て合成することができる。この場合、スルホン化がフタロシアニン核 のどの位置でも起こり得る土にスルホン化される個数も制御が困難である。従って、このような反応条件でスルホ基を導入した場合には、生成物に導入されたスルホ基の位置と個数は特定できず、必ず置換基の個数や置換位置の異なる混合物を与える。従ってそれを原料として本発明の化合物を合成する時には、複素環置 換スルファモイル基の個数や置換位置は特定できないので、本発明の化合物としては置換基の個数や置換位置の異なる化合物が何種類か含まれる α,β-位混合置換型混合物として得られる。

前述したように、例えばスルファモイル基のような電子求引性基を数多くフタロシアニン核に導入すると酸化電位がより貴となり、オゾン耐性が高まる。上記の合成法に従うと、電子求引性基が導入されている個数が少ない、即ち酸化電位がより卑であるフタロシアニン染料が混入してくることが避けられない。従って、オゾン耐性を向上させるためには、酸化電位がより卑である化合物の生成を抑えるような合成法を用いることがより好ましい。

本発明において一般式(II)で表されるフタロシアニン化合物は、例えば下記式で表されるフタロニトリル誘導体(化合物 P)および/またはジイミノイソインドリン誘導体(化合物 Q)を一般式(III)で表される金属誘導体と反応させるか、或いは下記式で表される4-スルホフタロニトリル誘導体(化合物 R)と一般式(III)で表される金属誘導体を反応させて得られるテトラスルホフタロシアニン化合物から誘導することができる。

上記各式中、 X_{p} は上記一般式 (II) における X_{11} 、 X_{12} 、 X_{13} または X_{14} に相当する。また、 Y_{q} 、 Y_{q} は、それぞれ上記一般式 (II) における Y_{11} 、 Y_{12} 、 Y_{13} 、 Y_{14} 、 Y_{16} 、 Y_{16} 、 Y_{17} または Y_{18} に相当する。化合物Rにおいて、M はカチオンを表す。

M'が表わすカチオンとしては、Li、Na、Kなどのアルカリ金属イオン、またはトリエチルアンモニウムイオン、ピリジニウムイオンなどの有機カチオンなどが挙げられる。

一般式(III):M-(Y)。

一般式 (III) 中、Mは前記一般式 (I) および (II) のMと同義であり、Y はハロゲン原子、酢酸陰イオン、アセチルアセトネート、酸素などの1価または 2 価の配位子を示し、dは $1 \sim 4$ の整数である。

即ち、上記の合成法に従えば、望みの置換基を特定の数だけ導入することができる。特に本発明のように酸化電位を費とするために電子求引性基を数多く導入したい場合には、上記の合成法は、一般式(I)のフタロシアニン化合物を合成するための既に述べた方法と比較して極めて優れたものである。

かくして得られる前記一般式 (II) で表されるフタロシアニン化合物は、通常、Xpの各置換位置における異性体である下記一般式 $(a)-1\sim(a)-4$ で表される化合物の混合物、すなわち β -位置換型となっている。

$$X_{14}$$
 Y_{q}
 Y_{q}
 Y_{q}
 Y_{q}
 Y_{q}
 X_{11}
 X_{13}
 Y_{q}
 X_{14}
 X_{11}
 X_{13}
 X_{q}
 X_{q}
 X_{q}
 X_{q}
 X_{q}
 X_{q}
 X_{q}
 X_{q}

一般式(a)-1

PCT/JP03/03740

WO 03/082994

-般式 (a) -2

48

$$X_{14}$$
 Y_q
 Y_q

$$X_{14}$$
 Y_q
 Y_q
 Y_q
 Y_q
 X_{14}
 Y_q
 X_{11}
 X_{13}
 Y_q
 X_{14}
 X

一般式 (a) - 4

上記合成法において、Xpとして全て同一のものを使用すればX₁₁、X₁₂、X₁₃およびX₁₄が全く同じ置換基である β - 位置換型フタロシアニン染料を得ることができる。一方、Xpとして異なるものを組み合わせて使用すれば、同じ種類の置換基であるが部分的に互いに異なる置換基をもつ染料や、あるいは、互いに異なる種類の置換基をもつ染料を合成することができる。一般式(II)の染料のなかでも、互いに異なる電子吸引性置換基を持つこれらの染料は、染料の溶解性、会合性、インクの経時安定性などを調整できるので、特に好ましい。

本発明では、いずれの置換型においても酸化電位が0.7V(vs SCE)、とりわけ1.0V(vs SCE)、さらには1.2V(vs SCE)よりも 貴であることが堅牢性の向上に非常に重要であることが見出され、その効果の大きさは前記先行技術から全く予想することができないものであった。また、機構

の詳細は不明であるが、 α , β -位混合置換型よりは β -位置換型の方が色相、 光堅牢性、オゾンガス耐性等において明らかに優れている傾向にあった。

前記一般式 (I) および (II) で表されるフタロシアニン染料の具体例 (例 示化合物 I $-1 \sim I - 1$ 2 および 1 0 $1 \sim 1$ 9 0) を下記に示すが、本発明に好ましく用いられるフタロシアニン染料は、下記の例に限定されるものではない。

例示化合物

$$KO_{3}S - NO_{2}S - NO_{$$

SO₃Na

(I-10)

$$\begin{array}{c} SO_2NH \\ SO_3Na \\ N \\ SO_2NH \\ SO_3Na \\$$

$$\begin{array}{c} \text{SO}_2\text{NH} \\ \text{SO}_2\text{NH} \\ \text{N} \\ \text{SO}_2\text{NH} \\ \text{SO}_3\text{K} \\ \text{SO}_2\text{NH} \\ \text{SO}_3\text{K} \\ \end{array}$$

							_		_	-	
	Y15, Y16	Ŧ	+ ö	7	Ŧ	H-,10,-	Ŧ. Ŧ	+ +	푸. 푸	Ŧ	Ŧ Ŧ
ಕ್ಕ ಭ ಸ	Y11, Y12 Y13, Y14	Ŧ	두	Ŧ	Ŧ	Ŧ jo	ŦŦ	Ŧ	チギ	구. 구	Ŧ, Ŧ
河河河	Y11, Y12	Ŧ	-CI, -H	Ŧ Ŧ	H, H	H- '10-	ŦŦ	+ +	Ŧ Ŧ	푸. 푸	Ŧ.Ŧ
た た た 選	XS	Ŧ	푸	干	푸	Ŧ	Ş	Ŧ	Ŧ	Ŧ	Ŧ
Xi X	1X	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₃ Li	- 802-NH-CH2-CH-CO-NH-CH2CH2-805NB	-SO ₂ -NH-CH ₂ -CH ₂ -CH ₂ -SO ₂ NH-CH ₂ CH-SO ₃ U	- so²-ин—Сн²сн²-го²п	-205-NH-CH2-CO-4H2-HN-CO-4H2-HN-CO-H	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -COONa	CH2-CH4-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2	-so ₂ -ch ₂ -ch ₂ -ch ₂ -so ₃ Li	-so ₂ -ch ₂ -ch ₂ -ch ₂ -so ₃ K	-so₂(cH₂)₅co₂K
2). (Y11	Σ	Cu	Cu	Cu	3	Ë	ತ	Cu	D.C.	Cu	Cu ,
· · · · · · · · · · · · · · · · · · ·	化合物 No.	101	102	. 103	104	105	106	107	108	109	110

Ŧ

푸 푸 Ŧ.Ŧ

년 구 -H, -H

X X X X X X X X X X X X X X X X X X X	X	
	ă ×	

表中 (X1、X2)、(Y11	, X2), (Y	11、Y12)、(Y13、Y14)、(Y15、Y16)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。	れたれ独	立に順不同	ರ ಹಿಕ್ಕ		
化合物 No.	M	X	X2	Y11, Y12	Y11, Y12 Y13, Y14 Y15, Y18 Y17, Y1	Y15, Y16	Y17, Y1
111	D.	UH-CHCHCHCHCHCHCHCHSO3	Ŧ	Ŧ Ŧ	Ŧ Ŧ	Ŧ . Ŧ	Ŧ
112	2 C	OH - -	IJ°os	Ŧ Ŧ	Ŧ Ŧ	Ŧ Ŧ	∓ ∓
113	õ	-SO ₂ -CH ₂ -CH-CH ₂ SO ₃ K OH	Ŧ	Ŧ Ŧ	Ŧ Ŧ	¥ ¥	Ŧ
114	n _O	ОН -802СН2-СН-СН8	⊓•os–	# #	+ +	Ŧ Ŧ	푸 푸
115	Ö	CH3 SO2-WH(CH3,8 N(CH2,0H3,0 CH3,	Ŧ	Ŧ Ŧ	H 'H	· 干 干	Ŧ Ŧ
116	Cu	HO HO HO HO HO HO HO HO HO HO HO HO HO H	Ŧ	Ŧ	푸 루·	Ŧ	Ŧ Ŧ
117	ਠ	. I POS HO HO - HO - HN - OO -	Ŧ	Ŧ	Ŧ.Ħ	Ŧ	Ŧ

Cu -SO ₂ NHC ₆ H ₁ ,(t) -H, -H -H, -H -H, -H -H, -H -H, -H -H, -H	X X X X X X X X X X X X X X X X X X X	81	7.5. 7.6 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	2	1	4 2 エ キ キ キ キ キ キ キ キ キ キ キ キ キ キ キ キ キ キ	X1 X12), (Y13, Y14), (Y15, Y16), (Y17, Y18)の各組の具体例 X2 X1 X1 X1 X1 X1 X1 X1	2
	X2) (Y11, Y12) (Y13, Y14) (Y15, Y16) (Y17, Y18)の各組の具体例はそれぞれ独立に顕不同である。	Ŧ	¥ ¥	Ŧ	푸 푸	Ŧ		3
	X2) (Y11, Y12), (Y13, Y14), (Y15, Y16), (Y17, Y18)の各組の具体例はそれぞれ独立に順不同である。	Ŧ	H. H.	H, H	푸 푸	Ŧ	ריספ⊸לאט~HO−Kh²-Cos²+ט*Hס²-OO− ר חייספ⊸לט~HO−Kh²-Cos²+ס°דו	ខី
H- H	2)、(Y13、Y14)、(Y15、Y16)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。	Ŧ Ŧ	푸 푸	푸 푸	Ŧ Ŧ	干	SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ CHCH ₂ SO ₃ U OH	ਠੋ
SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ - CH - CH ₂ - SO ₃ U - H - H - H - H - H - H - H - H - H -	X2) (Y11, Y12), (Y13, Y14), (Y15, Y16), (Y17, Y18)の各組の具体例はそれぞれ独立に順不同である。	Ŧ	-HH	Ŧ	¥, 1 ,	푸	so_−cң_−сн_−соо⊓ 1 1	Cr
-SO ₂ -CH ₂ -CH ₂ -CH-COOL -SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ -CH-COOL -SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ -CH-CH ₂ -SO ₃ LI -HHHHHHHHHH.	X2) (Y11, Y12), (Y13, Y14), (Y15, Y16), (Y17, Y18)の各組の具体例はそれぞれ独立に順不同である。	Ŧ Ŧ	H, -H	Ŧ	Ŧ. Ŧ	푸	OH -SO ₂ -CH ₂ -CH-CH ₂ -SO ₃ Na	Cu
-SO ₂ -CH ₂ -CH ₂ -CH-CH ₂ -SO ₃ Na -SO ₂ -CH ₂ -CH-CH ₂ -SO ₃ Na -SO ₂ -CH ₂ -CH-CH ₂ -SO ₃ Na -SO ₂ -CH ₂ -CH-CH ₂ -CH-CH ₂ -SO ₃ U -SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ -CH-CH ₂ -SO ₃ U -SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ -CH-CH ₂ -SO ₃ U -HHHHHHHHHH.	x2)、(Y11、Y12)、(Y13、Y14)、(Y15、Y16)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。	Ŧ Ŧ	Ŧ	Ŧ Ŧ	¥. ¥	. Ŧ	n°os_ +o*to*to*os- +o*	S
-SO_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_	X3	Y17, Y18	Y15, Y16		Y11, Y12	X2	. X	Σ
Cu -So ₂ CH	Z Z Z Z S Z S Z S Z S Z S Z S Z S Z S Z			ሮ	立に順不同・	れぞれ強	************************************	X2), (Y1
X2 X11, Y12), (Y13, Y14), (Y15, Y16), (Y17, Y19)の各組の具体例はそれぞれ独立に順不同である。							Z Z Z S S S S S S S S S S S S S S S S S	

			Y17, Y18	-H, -H	-нн	H, H	-H, -H	H- 10-	н- 'н-	- 푸 푸
			Y15, Y16	-H, -H	-н, -н	-H, +H	н- "н-	H- '10-	H- 'H-	Ŧ Ŧ
		t \$5.	Y13, Y14	-H, -H	મ· 'મ	-H, -H	H- 'H-	H- '10-	H- 'H-	Ŧ Ŧ
		立に順不問.	Y11, Y12	H- 'H-	H, H	Н- Н-	H-,H-	-CI, -H	-H, -H	Ŧ Ŧ
		さかた 首	X2	+	Ŧ	+	-CN	Ŧ	#	Ŧ
X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	12), (Y13, Y14), (Y15, Y16), (Y17, Y18)	. IX ,	CH2CH2CH2SO2-NH-CH2-CH2-CH2-CH3	-so ₂ -сң-сң-сқ-сод-сң-о-сң	CH3 -SO2GH2CH2SO2NHGH2CH3CH3O-CH -SO2GH2CH2SO2NHGH2CH3CH3O-CH	ัหว-o-หว-หว-หว-ซอ- คอ-o	%	CH ₂ CH-CH ₂ -O-C ₄ H ₂ (I)	0.008 - CH2-CH2-CH2-CH3-COS CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-
		X2), (Y	×	ρΩ	. 93	ਠੋ	uZ	ટ	Cu	Ö
		表中 (X1、X2)、(Y11、Y	化合物 No.	125	126	127	128	129	130	131

	Y17, Y18	-H, -H	-HH	H'H-	H- H-	Ŧ
	Y15, Y16	H- 'H-	-HH	-н, -н	H- 'H-	Ŧ
ር ት እ	Y13, Y14	HH	-н, -н	-н, -н	н- 'н-	+
立に順不同・回	Y11, Y12	-H, -H	-H, -H	H- 'H-	-H, -H	+, +,
· · · · ·	XZ	H-	-H	Ŧ	Ŧ	Ŧ
X2 X1 X2)、(Y11、Y12)、(Y13、Y14)、(Y15、Y16)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。	×	(n)e,H-13(D) CO ₂ C ₉ H13(n) CO ₂ C ₉ H13(n)	-SO ₂ NH-CH ₂ CH ₃ C ₂ H ₅ SO ₂ NHCH ₂ CH ₆	°HO-°HO-°HO-HO-°HO-HN-°OS- °HO-°HO-HO-°HO-HN-°OS- °HO-°HO-°HO-°HO-HN-°HO-°HO-°HO-°HO-°HO-°HO-°HO-°HO-°HO-°HO	$-so_2$ $<$ $> co_2Na$	C2Hg(n)
x);ک	≥	ος.	Ö	3	3	8
母 中 (X1、	化合物 No.	132	133	134	135	136

	Y17, Y18	Ŧ, Ţ	H, H	Ŧ Ŧ	Ĥ H
	Y15, Y16	H. H	H, H	' H'	# #
である。 	Y13, Y14	-H, -H	H- 'H-	-H, -H	Ŧ Ť
立に順不同。	Y11, Y12 Y13, Y14	. H. H	-4, -4	H H	Ŧ Ŧ
れぞれ強	X2	+	#	ठ	Ŧ
X2 X1 X2 X13 X14 X X15 X18 X X18 X X17 X13 X14 X X15 X18 X X X X	ïX	. Π ^s os S - cos -	Soul A Soul	11200-(-HN-E(GH2)208-	NH-CH2-CH-SO3U NHC NHC NHC NHC NHC NHC NHC NHC NHC NH
X2), (Y	≨	no	Ö	ვ.	ਠੌ
费 中 (X.1、	介合物 No.	137	138	139	140

	Y11, Y12 Y13, Y14 Y15, Y18 Y17, Y18	Ŧ Ŧ	· ¥	Ŧ Ŧ	H- H-	Ť Ť
	Y15, Y10	H- 'H-	. H- 'H-	Ŧ	H- 'H-	H- 'H-
ૡ૾	Y13, Y14	H- 'H-	-Н, -Н	H- 'H-	-H, -H	. H- 'H-
順不同であ	Y11, Y12	Ŧ Ŧ	# ' H	H, H	н- н-	H- 'H-
油立に	XZ	+	Ŧ	Ŧ	-H	Ŧ
X3 X2 X1 8 X1 X2 X1 X1 X2 X1 X1 X2 X1	١X	COON8 	IJ°OS I HN²OS—	У [©] OS− ² HO [−] CH−CO−NH−CH [−] CH ² −CO−NH−CH ² −CH ² CH ³ −CH ² −CH ² CH ³ −CH ² CH ³ −CH ² CH ³ −CH ³ CH ³ −CH ³	- SO2-CH2CH2CH2-NH-CO-(П°05°Н2°Н2°Н2°Н2°Н2°Н2°П2°П2°П2°П2°П2°П2°П2°П2°П2°П2°П2°П2°П2
X2), (Y	×	Cu	no	73	S	no
· 表中 (X1、X2)、(Y11、Y12)	化合物 No.	141	142	143	144	145

M-Pc(Xp1)m(Xp2)m 表中(Xp1)、(Xp2)の各置換基のβ位置換基型内で導入位置の 腑序は顕不同である。

		順序は順不同である。	_	
化合物 No.	М	Xp1(上段)/Xp2(下段)	m	n
146	Cu	CH ₃ -SO ₂ -NH-CH ₂ -CH-SO ₃ Li OH -SO ₂ -NH-CH ₂ -CH-CH ₃	3	1
147	Cu	-SO ₂ -NH-CH ₂ -CH ₂ SO ₃ Li OH -SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃	3	1
148	Cu	CH ₃ -SO ₂ -NH-CH ₂ -CH-SO ₃ Li -SO ₂ NH-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH	3	1
149	Cu	CH ₃ -SO ₂ -NH-CH ₂ -CH-SO ₃ Li -SO ₂ -NH-CH ₂ -CH ₂	2	2
150	Cu	$-SO_2$ -NH-CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ CH ₂ -COONa CH ₃ -SO ₂ NH-CH-CH ₂ OH	3	1
151	Съ	$-SO_2-NH-CH_2-CH_2-CH_2-CH_2-OH$ $-SO_2NH-CH_2-CH_2-O-CH_2-CH_2-OH$	3	1

M-Pc(Xp1)m(Xp2)n 表中(Xp1)、(Xp2)の各置換基の β 位置換基型内で導入位置の 顕序は顕不同である。

		順序は順个同じめる。		
化合物 No.	м	Xp1(上段)/Xp2(下段)	m	n
152	Cu	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH-SO ₃ LI -SO ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -OH	2.5	1.5
153	Cu	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH-SO ₃ Na -SO ₂ -CH ₂ -CH ₂ -CH ₂ -CO-N-(CH ₂ -CH ₂ -OH) ₂	2	2
154	Cu	-SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₃ Li OH -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃	3	1
155	Cu	-SO ₂ -CH ₂ -CH ₂ -CH ₂ -COOK OH -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₂ -COOK	2	2
156	Cu	−SO₂−CH₂−CH₂−CH₂−SO₃Li OH −SO₂−CH₂−CH−CH₂−SO₃Li	3	1
157	Cu	SO ₂ CH ₂ CH ₂ OCH ₂ CH ₂ SO ₃ Li OHSO ₂ -CH ₂ -CH ₂ -CH ₂ -CO ₂ -CH ₂ -CHCH ₂ -COOK	2	2

M-Pc(Xp1)m(Xp2)m 表中(Xp1)、(Xp2)の各置換基の β 位置換基型内で導入位置の 順序は順不同である。

		順序は順不同である。		
化合物 No.	М	Xp1(上段)/Xp2(下段)	m	n
158	Cu	OH -SO ₂ -CH ₂ -CH ₂ -CH ₂ SO ₃ Li OH -SO ₂ -CH ₂ -SO ₂ NH-CH ₂ -CH-CH ₂ -OH	3	1
159	Cu	$-SO_2NHCH_2CH_2-SO_3Li\\ OH\\ -SO_2-CH_2-CH_2-CH_2-SO_2-NH-CH_2-CH-CH_3$	3	1
160	Си	$-SO_2-CH_2-CH_2-O-CH_2-CH_2-O-CH_2-CH_2-SO_3Na$ $-CH_2-CH_2-COONa$ $-SO_2-CH_2-CH_2-CH_2-CO-N-CH_2-COONa$	3	1
161	Cu	—SO₂CH₂CH₂CH₂CH₂CH₂CH₂CH-CH₂SO₃Li OH	3	1
162	Cu	—so₂cн₂cн₂cн₂so₃ц —so₂cн₃cн₂ocн₂cн₂ocн₂cн₂oн	2	2
163	Cu	-SO₂CH₂CH₂CH₂SO₃K CH₃ -SO₂CH₂CH₂CH₂SO₂NH-CH-CH₂-OH	3	1

M-Pc(Xp1)m(Xp2)m 表中(Xp1)、(Xp2)の各置換基の β 位置換基型内で導入位置の 順序は順不同である。

		順序は順不同である。		
化 合 物 No.	М	Xp1(上段)/Xp2(下段)	m	n
164	Си	−SO₂CH₂CH₂CO₃Li	2	2
104	Cu	—so₂ch₂ch₂ch₂so₂n(ch₂ch₂oh)₂		
165	Cu	-co-nh-ch₂-ch₂-so₃K		1
103	Cu	-CO-NH-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -OH	3	
166	C	-CO-NH-CH₂-CH₂-SO₂-NH-CH₂-CH₂-COONa	3	1
160	OH 			
167	Cu	OH I —SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ —CH—CH ₂ CO ₂ Li	2.5	1.5
	00	-co-nh-ch ₂ -ch ₂ -ch ₂ -co-n (ch ₂ -ch ₂ -oh) ₂		
168	Cu	CH ₃ -CO ₂ -CH ₂ -CH ₂ -CH-SO ₃ Na	2	2
		-co-сң-сң-сң-со-»(сң ₂ -сң ₂ -он) _г		
169	Cu	-CO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₃ Li	3	1
		OH -CO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃		
170	Cu	−CO₂−CH₂−CH₂−CH₂COÓK	2	2
1,0	Ou	OH I -CO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₂ -COOK		

M-Pc(Xp1)m(Xp2)n 表中(Xp1)、(Xp2)の各置換基のβ位置換基型内で導入位置の 順序は順不同である。

		順序は順不同である。		
化合物 No.	М	X _p 1(上段)/X _p 2(下段)	m	n
171	Cu	$-CO_2-CH_2-CH_2-O-CH_2-CH_2-O-CH_2-CH_2-SO_3Na$ OH $-SO_2-CH_2-CH_2-CH_2-CH-CH_2-OH$	з	1
172	Cu	-SO₂CH₂CH₂OCH₂CH₂O-CH₂CH₂SO₃K OH -CO₂-CH₂-CH₂-CH₂-CO₂-CH₂-CH₂-CH-CH₂-COOK	2	2
173	Cu	-SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ CHCH ₂ OH OH -CO ₂ -CH ₂ -CH-CH ₂ -SO ₈ LI	2	2
174	Cu	-SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ -CH-CH ₂ SO ₃ K OH OH -CO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃	3	1
175	Cu	-SO ₂ (CH ₂) ₈ SO ₂ NH(CH ₂) ₃ N(CH ₂ CH ₂ OH) ₂ CH ₂ -CH ₂ -COOLI -CO ₂ -CH ₂ -CH ₂ -CH ₂ -CO-N-CH ₂ -COOLI	2	2
176	Cu	OH -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃ CH ₂ CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₂ CH ₂ -CH ₂ CH ₃	· 3	1

		頭序は頭不同である。		
化合物 No.	М	Xp1(上段)/Xp2(下段)	m	n
177	Си	-SO ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -O-CH ₃	2	1
		OH -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃		
178	Cu	-SO ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -OH	3	1
1/8	Cu	CH ₂ CH ₃ SO ₂ CH ₃		
170	Cu	CH2CH3 -SO2-CH2-CH-CH2CH2-CH2CH3	2	2
179		O—CH ₃ —SO ₂ —CH ₂ —CH ₂ —CH ₂ —SO ₂ —NH—CH ₂ —CH—CH ₃		
	Cu	O-CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃	3	1
180	Cu	-SO ₂ NH-CH ₂ -CH ₂ -SO ₂ NH-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -OH		
101	Cu	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -CO ₂ -NH-CH-CH ₂ -CH ₃	3	1
181		$-SO_2-CH_2-CH_2-CH_2-SO_2-NH-CH+CH_2)_2$		·
100	Cu	OH I -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ NH-CH ₂ -CH-CH ₃	2.5	1.5
182		CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -CO ₂ -NH-CH-CH ₂ -CH ₃		

M-Pc(Xp1)m(Xp2)n 表中(Xp1)、(Xp2)の各置換基の *β* 位置換基型内で導入位置の 顕序は顕不同である。

		順序は順不同である。		
化合物No	М	Xp1(上段)/Xp2(下段)	m	n
183	Си	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -CO ₂ -NH-CH-CH ₂ -CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-(CH ₂) ₃ -CH ₂ -O-CH ₂ CH ₂ -OH	2	2
184	Cu	OH -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃ -SO ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -O-CH ₃	3	1
185	Cu	OH -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃ -SO ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -O-CH ₃	3	1
186	Cu	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -CO ₂ -NH-CH-CH ₂ -CH ₃ -SO ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -O-CH ₂ -OH	3	1
187	Cu	-SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH-(CH ₃) ₂ CH ₂ CH ₃ -CO ₂ -CH ₂ -CH-CH ₂ -CH ₂ -CH ₂ CH ₃	3	1
188	Cυ	CH ₃ -CO ₂ -CH ₂ -CH ₂ -CH ₂ -CO ₂ -NH-CH-CH ₂ -CH ₃	3	1
		-CO ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -O-CH ₃	 	

M-Pc(Xp1)m(Xp2)n 表中(Xp1)、(Xp2)の各置換基のβ位置換基型内で導入位置の 頭序は順不同である。

		ART FIGURE 1 1 5 COS COS		
化合物 No.	М	Xp1(上段)/Xp2(下段)	m	n
	Cu	-CO-NH-CH2-CH2-CH2-SO2-NH-CH+CH3)2	3	1
189		Cu	CH2CH3 -SO2-NH-CH2-CH-CH2-CH2-CH2-CH3	
		CH2CH3 -CO-NH-CH2-CH-CH2-CH2-CH2CH3	3	1
190	Cu	-CO-NH-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -CH ₃		

なお、化合物 $146\sim190$ を示す表中の $M-Pc(Xp_1)$ m(Xp_2) n で示されるフタロシアニン化合物の構造は下記の通りである

$$Y_q$$
 Y_q $Y_$

前記一般式(I)で表されるフタロシアニン染料は、前述した特許に従って 合成することが可能である。また、一般式(II)で表されるフタロシアニン

染料は、前記した合成方法の他に、特開2001-226275号、同2001-96610号、同2001-47013号、同2001-193638号の各公報に記載の方法により合成することができる。また、出発物質、染料中間体および合成ルートについてはこれらに限定されるものでない。

本発明に用いるインクジェット記録用シアン用インクセットは、少なくとも一つの構成インクに前記フタロシアニン染料の少なくとも1種を、水性媒体中に溶解または分散して含有していることが好ましく、その場合にはフタロシアニン染料を好ましくは、0.2~20質量%含有し、より好ましくは、0.5~15質量%含有する。

マゼンタインク用インクセットの項でも述べたように、主吸収領域を共有する二種以上のインクのセットでは、一方を薄いライト系のインク、一方を濃いインクとすることが一般的であるが、その場合のライトインクと濃いインクとの吸光度の関係は、前記した関係にある。

各構成インクは、一般式 (I) で表される染料を単独で用いてもよいが、他の色材と組合せて用いる場合、組合される色材は、染料、顔料のいずれでもよく、水性媒体に溶解された形態でも、また水性媒体に不溶な顔料が分散されて存在する形態であってもよい。顔料の場合、その水への溶解度 (25℃) は、多くは0.1g/100g以下であって、該成分が分散したインク組成物としては、例えば、乳化分散物、ポリマー染料、ポリマー担持もしくは分散染料、顔料などを挙げることができる。中でも顔料が好ましい。

また、染料インクに、水に不溶な顔料が分散されて含有されていてもよいし、 顔料インクに水溶性染料が含有されていてもよい。

一つのインク組成物中に一般式 (I) で表される染料と別の染料又は顔料とが 組合されて存在する場合、その合計の濃度は、 $0.2 \sim 20$ 質量%、より好まし くは、 $0.5 \sim 15$ 質量%である。

本発明の主分光吸収波長域がそれぞれ $500\sim580$ nm及び $580\sim680$ nmにある上記のマゼンタインク用及びシアンインク用のインクセットには、上記した本発明に係る一般式(1)又は一般式(I)の特定の好ましい染料のほかに、色調を整えるため等の目的で他の染料を添加することもできる。一般式

(1) 又は一般式(I) で表される染料以外に併用してもよい染料としては、トリアリールメタン染料、アントラキノン染料、アントラピリドン染料、アゾメチン染料、アゾ染料、シアニン染料、メロシアニン染料、オキソノール染料等当該分野で公知の染料を単独または組み合わせて使用することが可能である。

また、フルカラー用インクセットを構成するために、本発明のマゼンタ又はシアンインクセットとともにイエローインク、ブラックインクなどの他のインク又

はインクセットを合わせて用いることもできるが、それらもイエロー、ブラックなどのそれぞれの色素が用いられる。

これら同一主吸収域のインクセット中のインク中又は該インクセットと組み合 わせる異なる主吸収域のインク又はインクセットに用いることが出来る色素の例 としては以下を挙げることが出来る。

イエロー染料としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類、ピラゾロン類、ピリドン類、開鎖型活性メチレン化合物類を有するアリールもしくはヘテリルアゾ染料;例えばカップリング成分として開鎖型活性メチレン化合物類を有するアゾメチン染料;例えばベンジリデン染料やモノメチンオキソノール染料等のようなメチン染料;例えばナフトキノン染料、アントラキノン染料等のようなキノン系染料などがあり、これ以外の染料種としてはキノフタロン染料、ニトロ・ニトロソ染料、アクリジン染料、アクリジノン染料等を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてイエローを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

マゼンタ染料としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアソ染料;例えばカップリング成分としてピラゾロン類、ピラゾロトリアゾール類を有するアゾメチン染料;例えばアリーリデン染料、スチリル染料、メロシアニン染料、オキソノール染料のようなメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料、例えばナフトキノン、アントラピリドンなどのようなキノン系染料、例えばジオキサジン染料等のような縮合多環系染料等を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてマゼンタを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

シアン染料としては、例えばインドアニリン染料、インドフェノール染料のようなアゾメチン染料;シアニン染料、オキソノール染料、メロシアニン染料のようなポリメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料;フタロシアニン染料;アントラキノン染料;例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアゾ染料、インジゴ・チオインジゴ染料を挙げ

ることができる。これらの染料は、クロモフォアの一部が解離して初めてシアンを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

また、ポリアゾ染料などのブラック染料も使用することができる。

水溶性染料としては、直接染料、酸性染料、食用染料、塩基性染料、反応性染料等が挙げられる。好ましいものとしては、

- C.I. ダイレクトレッド 2、4、9、23、26、31、39、62、63、72、75、76、79、80、81、83、84、89、92、95、111、173、184、207、211、212、214、218、21、223、224、225、226、227、232、233、240、241、242、243、247
- C.I. ダイレクトバイオレット 7、9、47、48、51、66、90、93、94、95、98、100、101
- C.I. ダイレクトイエロー8、9、11、12、27、28、29、33、35、39、41、44、50、53、58、59、68、86、87、93、95、96、98、100、106、108、109、110、130、132、142、144、161、163
- C.I. ダイレクトプルー1、10、15、22、25、55、67、68、71、76、77、78、80、84、86、87、90、98、106、108、109、151、156、158、159、160、168、189、192、193、194、199、200、201、202、203、207、211、213、214、218、225、229、236、237、244、248、249、251、252、264、270、280、288、289、291
- C.I. ダイレクトプラック 9、17、19、22、32、51、56、62、69、77、80、91、94、97、108、112、113、114、117、118、121、122、125、132、146、154、166、168、173、199
- C.I. アシッドレッド 35、42、52、57、62、80、82、111、114、118、119、
- 127、128、131、143、151、154、158、249、254、257、261、263、266、
- 289, 299, 301, 305, 336, 337, 361, 396, 397
- C.I. アシッドバイオレット 5、34、43、47、48、90、103、126
- C.I. アシッドイエロー17、19、23、25、39、40、42、44、49、50、61、64、76、79、110、127、135、143、151、159、169、174、190、195、196、197、199、218、219、222、227
- C.I. アシッドブルー9、25、40、41、62、72、76、78、80、82、92、106、
- 112, 113, 120, 127: 1, 129, 138, 143, 175, 181, 205, 207, 220, 221,
- 230, 232, 247, 258, 260, 264, 271, 277, 278, 279, 280, 288, 290,

326

- C.I. アシッドブラック 7、24、29、48、52:1、172
- C.I. リアクティブレッド 3、13、17、19、21、22、23、24、29、35、37、40、41、43、45、49、55
- C.I. リアクティブバイオレット 1、3、4、5、6、7、8、9、16、17、22、23、24、26、27、33、34
- C.I. リアクティブイエロー2、3、13、14、15、17、18、23、24、25、26、27、29、35、37、41、42
- C.I. リアクティブブルー2、3、5、8、10、13、14、15、17、18、19、21、25、26、27、28、29、38
- C.I. リアクティブブラック 4、5、8、14、21、23、26、31、32、34
- C.I. ベーシックレッド 12、13、14、15、18、22、23、24、25、27、29、35、36、38、39、45、46
- C.I. ベーシックバイオレット 1、2、3、7、10、15、16、20、21、25、27、28、35、37、39、40、48
- C.I. ペーシックイエロー1、2、4、11、13、14、15、19、21、23、24、25、28、29、32、36、39、40
- C.I. ペーシックブルー1、3、5、7、9、22、26、41、45、46、47、54、57、60、62、65、66、69、71
- C.I. ベーシックブラック 8、

等が挙げられる。

また、本発明のインク組成物には、前記染料とともに、フルカラーの画像を得るための色調を整えるために、他の色材を併用してもよい。併用することができる他の色材の例としては、以下の顔料を挙げることができる。

本発明に用いられる顔料としては、市販のものの他、各種文献に記載されている公知のものが利用できる。文献に関してはカラーインデックス(The Society of Dyers and Colourists編)、「改訂新版顔料便覧」日本顔料技術協会編(1989年刊)、「最新顔料応用技術」CMC 出版(1986年刊)、「印刷インキ技術」CMC 出版(1984年刊)、W. Herbst, K. Hunger 共著による Industrial Organic Pigments (VCH Verlagsgesellschaft、1993年刊)等がある。具体的には、有機顔料ではアゾ顔料(アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、キレートアゾ顔料)、多環式顔料(フタロシアニン系顔料、アントラキノン系顔料、ペリレン及びペリノン系顔料、インジゴ系顔料、キナクリドン系顔料、ジオキサジン系顔料、イソインドリノン系顔料、キノフタロン系顔料、ジケトピロロピロール系顔料等)、染付けレーキ顔料(酸性または塩基性染料のレーキ顔料)、アジン顔料等があり、無機顔料では、黄色顔料の C. I. Pigment

in Brighting

Yellow 34, 37, 42, 53 など、赤系顔料の C. I. Pigment Red 101, 108 など、青系顔料の C. I. Pigment Blue 27, 29,17:1 など、黒系顔料の C. I. Pigment Black 7,マグネタイトなど、白系顔料の C.I. Pigment White 4.6.18.21 などを挙げることができる。

画像形成用に好ましい色調を持つ顔料としては、青ないしシアン顔料ではフタロシアニン顔料、アントラキノン系のインダントロン顔料(たとえば C.~I. Pignent Blue 60 など)、染め付けレーキ顔料系のトリアリールカルボニウム顔料が好ましく、特にフタロシアニン顔料(好ましい例としては、C.~I. Pignent Blue 15:1、同 15:2、同 15:3、同 15:4、同 15:6 などの銅フタロシアニン、モノクロロないし低塩素化銅フタロシアニン、アルニウムフタロシアニンでは欧州特許 860475 号に記載の顔料、C.~I. Pignent Blue 16 である無金属フタロシアニン、中心金属が Zn、Ni、Ti であるフタロシアニンなど、中でも好ましいものは C.~I. Pignent Blue 15:3、同 15:4、アルミニウムフタロシアニン)が最も好ましい。

赤ないし紫色の顔料では、アゾ顔料(好ましい例としては、C. I. Pigment Red 3、同5、同11、同22、同38、同48:1、同48:2、同48:3、同48:4、同49:1、同52:1、同53:1、同57:1、同63:2、同144、同146、同184)など、中でも好ましいものは C. I. Pigment Red 57:1、同146、同184)、キナクリドン系顔料(好ましい例としては C. I. Pigment Red 122、同192、同202、同207、同209、C. I. Pigment Violet 19、同42、なかでも好ましいものは C. I. Pigment Red 122)、染め付けレーキ顔料系のトリアリールカルボニウム顔料(好ましい例としてはキサンテン系の C. I. Pigment Red 81:1、C. I. Pigment Violet 1、同2、同3、同27、同39)、ジオキサジン系顔料(例えば C. I. Pigment Violet 23、同37)、ジケトピロロピロール系顔料(例えば C. I. Pigment Red 254)、ペリレン顔料(例えば C. I. Pigment Violet 5:1、同31、同33)、チオインジゴ系(例えば C. I. Pigment Red 38、同88)が好ましく用いられる。

黄色顔料としては、アゾ顔料(好ましい例としてはモノアゾ顔料系の C. I. Pigment Yellow 1, 3, 74, 98、ジスアゾ顔料系の C. I. Pigment Yellow 12, 13, 14, 16, 17, 83、総合アゾ系の C. I. Pigment Yellow 93, 94, 95, 128, 155、ベンズイミダゾロン系の C. I. Pigment Yellow 120, 151, 154, 156, 180 など、なかでも好ましいものはベンジジン系化合物を原料に使用しなもの)、イソインドリン・イソインドリノン系顔料(好ましい例としては C. I. Pigment Yellow 109, 110, 137, 139 など)、キノフタロン顔料

(好ましい例としては C. I. Pigment Yellow 138 など)、フラパントロン顔料 (例えば C. I. Pigment Yellow 24 など)が好ましく用いられる。

黒顔料としては、無機顔料 (好ましくは例としてはカーボンブラック、マグネタイト) やアニリンブラックを好ましいものとして挙げることができる。

この他、オレンジ顔料 (C. I. Pigment Orange 13, 16 など) や緑顔料 (C. I. Pigment Green 7 など) を使用してもよい。

本技術に使用できる顔料は、上述の裸の顔料であっても良いし、表面処理を施された顔料でも良い。表面処理の方法には、樹脂やワックスを表面コートする方法、界面活性剤を付着させる方法、反応性物質(例えば、シランカップリング剤やエポキシ化合物、ポリイソシアネート、ジアゾニウム塩から生じるラジカルなど)を顔料表面に結合させる方法などが考えられ、次の文献や特許に記載されている。

- ① 金属石鹸の性質と応用(幸書房)
- ② 印刷インキ印刷 (CMC 出版 1984)
- ③ 最新顔料応用技術 (CMC 出版 1986)
- ④ 米国特許 5,554,739 号、同 5,571,311 号
- ⑤ 特開平 9-151342 号、同 10-140065 号、同 10-292143 号、同 11-166145 号

特に、上記④の米国特許に記載されたジアゾニウム塩をカーボンブラックに作用させて調製された自己分散性顔料や、上記⑤の日本特許に記載された方法で調製されたカプセル化顔料は、インク中に余分な分散剤を使用することなく分散安定性が得られるため特に有効である。

本発明においては、顔料はさらに分散剤を用いて分散されていてもよい。分散剤は、用いる顔料に合わせて公知の種々のもの、例えば界面活性剤型の低分子分散剤や高分子型分散剤を用いることが出来る。分散剤の例としては特開平 3-69949 号、欧州特許 549486 号等に記載のものを挙げることができる。また、分散剤を使用する際に分散剤の顔料への吸着を促進するためにシナジストと呼ばれる顔料誘導体を添加してもよい。

本技術に使用できる顔料の粒径は、分散後で $0.01\sim10\mu$ の範囲であることが好ましく、 $0.05\sim1\mu$ であることが更に好ましい。

顔料を分散する方法としては、インク製造やトナー製造時に用いられる公知の 分散技術が使用できる。分散機としては、縦型あるいは横型のアジテーターミル、 アトライター、コロイドミル、ボールミル、3本ロールミル、パールミル、スー パーミル、インペラー、デスパーサー、KDミル、ダイナトロン、加圧ニーダー 等が挙げられる。詳細は「最新顔料応用技術」(CMC 出版、1986)に記載があ

る。

次に、本発明のインクジェット記録用インクセットの各構成インクに含有され 得る他の成分について説明する。

各構成インクは、界面活性剤を含有することができ、これにより、インクの液物性を調整することで、インクの吐出安定性を向上させ、画像の耐水性の向上や 印字したインクの滲みの防止などに優れた効果を持たせることができる。

界面活性剤としては、例えばドデシル硫酸ナトリウム、ドデシルオキシスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム等のアニオン性界面活性剤、セチルピリジニウムクロライド、トリメチルセチルアンモイニウムクロライド、テロラブチルアンモニウムクロライド等のカチオン性界面活性剤や、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のノニオン性界面活性剤などが挙げられる。中でも特にノニオン系界面活性剤が好ましく使用される。

界面活性剤の含有量はインクに対して 0.001~15 質量%、好ましくは 0.05~10 質量%、更に好ましくは 0.01~5 質量%である。

各構成インクは、水性媒体中に前記のフタロシアニン染料と界面活性剤を溶解および/または分散させることによって作製することができる。本発明における「水性媒体」とは、水又は水と少量の水混和性有機溶剤との混合物に、必要に応じて湿潤剤、安定剤、防腐剤等の添加剤を添加したものを意味する。

本発明において用いることができる水湿和性有機溶剤の例には、アルコール (例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノ ール、イソプタノール、sec-ブタノール、t-ブタノール、ペンタノール、 ヘキサノール、シクロヘキサノール、ベンジルアルコール)、多価アルコール類 (例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコー ル、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、 ポリプロピレングリコール、プチレングリコール、ヘキサンジオール、ペンタン ジオール、グリセリン、ヘキサントリオール、チオジグリコール)、グリコール 誘導体(例えば、エチレングリコールモノメチルエーテル、エチレングリコール モノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングル コールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピ レングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、 ジプロピレングリコールモノメチルエーテル、トリエチレングルコールモノメチ ルエーテル、エチレングリコールジアセテート、エチレングルコールモノメチル エーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレ ングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル)、

アミン (例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、Nーメチルジエタノールアミン、Nーエチルジエタノールアミン、モルホリン、Nーエチルモルホリン、エチレンジアミンン、ジエチレントリアミン、トリエチレンテトラミン、ポリエチレンイミン、テトラメチルプロピレンジアミン)およびその他の極性溶媒 (例えば、ホルムアミド、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、ジメチルスルホキシド、スルホラン、2ーピロリドン、Nーメチルー2ーピロリドン、Nーピニルー2ーピロリドン、2ーオキサゾリドン、1,3ージメチルー2ーイミダゾリジノン、アセトニトリル、アセトン)が挙げられる。尚、前記水混和性有機溶剤は、2種類以上を併用してもよい。

前記フタロシアニン染料やその他の本発明に用いることができる染料が油溶性 染料の場合は、該油溶性染料を高沸点有機溶媒中に溶解させ、水性媒体中に乳化 分散させることによって調製することができる。

本発明に用いられる高沸点有機溶媒の沸点は150℃以上であるが、好ましくは170℃以上である。

例えば、フタール酸エステル類(例えば、ジブチルフタレート、ジオクチルフ - タレート、ジシクロヘキシルフタレート、ジー2-エチルヘキシルフタレート、 デシルフタレート、ピス (2,4-ジーtert-アミルフェニル) イソフタレ ート、ピス(1,1-ジエチルプロピル)フタレート)、リン酸又はホスホンの エステル類(例えば、ジフェニルホスフェート、トリフェニルホスフェート、ト リクレジルホスフェート、2-エチルヘキシルジフェニルホスフェート、ジオク チルプチルホスフェート、トリシクロヘキシルホスフェート、トリー2ーエチル ヘキシルホスフェート、トリドデシルホスフェート、ジー2-エチルヘキシルフ ェニルホスフェート)、安息香酸エステル酸(例えば、2-エチルヘキシルベン ゾエート、2,4-ジクロロベンゾエート、ドデシルベンゾエート、2-エチル ヘキシル-p-ヒドロキシベンゾエート)、アミド類(例えば、N, N-ジエチ ルドデカンアミド、N, N-ジエチルラウリルアミド)、アルコール類またはフ ェノール類(イソステアリルアルコール、2,4-ジーtert-アミルフェノ ールなど)、脂肪族エステル類(例えば、コハク酸ジブトキシエチル、コハク酸 ジー2-エチルヘキシル、テトラデカン酸2-ヘキシルデシル、クエン酸トリブ チル、ジエチルアゼレート、イソステアリルラクテート、トリオクチルシトレー ト)、アニリン誘導体(N, N-ジプチル-2-プトキシ-5-tert-オク チルアニリンなど)、塩素化パラフィン類(塩素含有量10%~80%のパラフ ィン類)、トリメシン酸エステル類(例えば、トリメシン酸トリプチル)、ドデ シルベンゼン、ジイソプロピルナフタレン、フェノール類(例えば、2,4-ジ

ーtertーアミルフェノール、4ードデシルオキシフェノール、4ードデシルオキシカルボニルフェノール、4ー(4ードデシルオキシフェニルスルホニル)フェノール)、カルボン酸類(例えば、2ー(2,4ージーtertーアミルフェノキシ酪酸、2ーエトキシオクタンデカン酸)、アルキルリン酸類(例えば、ジー2(エチルヘキシル)リン酸、ジフェニルリン酸)などが挙げられる。高沸点有機溶媒は油溶性染料に対して質量比で0.01~3倍量、好ましくは0.01~1.0倍量で使用できる。

. これらの高沸点有機溶媒は単独で使用しても、数種の混合〔例えばトリクレジルホスフェートとジプチルフタレート、トリオクチルホスフェートとジ(2-エチルヘキシル)セパケート、ジプチルフタレートとポリ(N-t-プチルアクリルアミド)〕で使用してもよい。

本発明において用いられる高沸点有機溶媒の前記以外の化合物例及び/または これら高沸点有機溶媒の合成方法は例えば米国特許第2,322,027号、同第 2,533,514 号、同第 2,772,163 号、同第 2,835,579 号、同第 3,594,171 号、 同第3,676,137号、同第3,689,271号、同第3,700,454号、同第3,748,141 号、同第3,764,336号、同第3,765,897号、同第3,912,515号、同第 3,936,303 号、同第 4,004,928 号、同第 4,080,209 号、同第 4,127,413 号、 同第4,193,802 号、同第4,207,393 号、同第4,220,711 号、同第4,239,851 号、同第 4,278,757 号、同第 4,353,979 号、同第 4,363,873 号、同第 4,430,421 号、同第 4,430,422 号、同第 4,464,464 号、同第 4,483,918 号、 同第4,540,657号、同第4,684,606号、同第4,728,599号、同第4,745,049 号、同第4,935,321 号、同第5,013,639 号、欧州特許第276,319A 号、同第 286,253A 号、同第 289,820A 号、同第 309,158A 号、同第 309,159A 号、同第 309,160A 号、 同第 509,311A 号、 同第 510,576A 号、 東独特許第 147,009 号、 同第 157、147 号、同第 159、573 号、同第 225、240A 号、英国特許第 2,091,124A 号、特開昭 48-47335 号、同 50-26530 号、同 51-25133 号、同 51-26036 号、同 51-27921 号、同 51-27922 号、同 51-149028 号、同 52-46816 号、同 53-1520 号、同 53-1521 号、同 53-15127 号、同 53-146622 号、 同 54-91325 号、同 54-106228 号、同 54-118246 号、同 55-59464 号、同 56-64333号、同 56-81836号、同 59-204041号、同 61-84641号、同 62-118345 号、同 62-247364 号、同 63-167357 号、同 63-214744 号、同 63-301941号、同64-9452号、同64-9454号、同64-68745号、特開平1-101543 号、同 1-102454 号、同 2-792 号、同 2-4239 号、同 2-43541 号、同 4-29237 号、同 4-30165 号、同 4-232946 号、同 4-346338 号等に記載されて いる。

上記高沸点有機溶媒は、油溶性染料に対し、質量比で0.01~3.0倍量、好ましくは0.01~1.0倍量で使用する。

本発明では油溶性性染料や高沸点有機溶媒は、水性媒体中に乳化分散して用いられる。乳化分散の際、乳化性の観点から場合によっては低沸点有機溶媒を用いることができる。低沸点有機溶媒としては、常圧で沸点約30℃以上150℃以下の有機溶媒である。例えばエステル類(例えばエチルアセテート、ブチルアセテート、エチルプロピオネート、β-エトキシエチルアセテート、メチルセロソルブアセテート)、アルコール類(例えばイソプロピルアルコール、n-ブチルアルコール、セカンダリーブチルアルコール)、ケトン類(例えばメチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン)、アミド類(例えばジメチルホルムアミド、N-メチルピロリドン)、エーテル類(例えばテトラヒドロフラン、ジオキサン)等が好ましく用いられるが、これに限定されるものではない。

乳化分散は、高沸点有機溶媒と場合によっては低沸点有機溶媒の混合溶媒に染料を溶かした油相を、水を主体とした水相中に分散し、油相の微小油滴を作るために行われる。この際、水相、油相のいずれか又は両方に、後述する界面活性剤、湿潤剤、染料安定化剤、乳化安定剤、防腐剤、防黴剤等の添加剤を必要に応じて添加することができる。

乳化法としては水相中に油相を添加する方法が一般的であるが、油相中に水相を滴下して行く、いわゆる転相乳化法も好ましく用いることができる。

本発明の乳化分散する際には、種々の界面活性剤を用いることができる。例えば脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルアル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー等のノニオン系界面活性剤が好ましい。また、アセチレン系ポリオキシエチレンオキシド界面活性剤であるSURFYNOLS(AirProducts&Сhemicals社)も好ましく用いられる。また、N,NージメチルーNーアルキルアミンオキシドのようなアミンオキシド型の両性界面活性剤等も好ましい。更に、特開昭59-157,636号の第(37)~(38)頁、リサーチ・ディスクロージャーNo.308119(1989年)記載の界面活性剤として挙げたものも使うことができる。

また、乳化直後の安定化を図る目的で、上記界面活性剤と併用して水溶性ポリマーを添加することもできる。水溶性ポリマーとしては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリルアミドやこれらの共重合体が好ましく用いられる。また多糖類、カゼイン、ゼラチン等の天然水溶性ポリマーを用いるのも好ましい。さらに染料分散物の安定化のためには実質的に水性媒体中に溶解しないアクリル酸エステル類、メタクリルアミド類、メタクリルアミド類、オレフィン類、スチレン類、ビニルエーテル類、アクリロニトリル類の重合により得られるポリビニルやポリウレタン、ポリエステル、ポリアミド、ポリウレア、ポリカーボネート等も併用することができる。これらのポリマーは一S〇¹・、一C〇〇¹を含有していること好ましい。これらの実質的に水性媒体中に溶解しないポリマーを併用する場合、高沸点有機溶媒の20質量%以下用いられることが好ましく、10質量%以下で用いられることがより好ましい。

乳化分散により油溶性性染料や高沸点有機溶媒を分散させて水性インクとする場合、特に重要なのはその粒子サイズのコントーロールである。インクジェットにより画像を形成した際の、色純度や濃度を高めるには平均粒子サイズを小さくすることが必須である。体積平均粒子サイズで好ましくは1μm以下、より好ましくは5~100nmである。

前記分散粒子の体積平均粒径および粒度分布の測定方法には静的光散乱法、動 的光散乱法、遠心沈降法のほか、実験化学講座第4版の417~418ページに 記載されている方法を用いるなど、公知の方法で容易に測定することができる。 例えば、インク中の粒子濃度が0.1~1質量%になるように蒸留水で希釈して、 市販の体積平均粒子サイズ測定機(例えば、マイクロトラックUPA(日機装 (株)製))で容易に測定できる。更に、レーザードップラー効果を利用した動 的光散乱法は、小サイズまで粒径測定が可能であり特に好ましい。

体積平均粒径とは粒子体積で重み付けした平均粒径であり、粒子の集合において、個々の粒子の直径にその粒子の体積を乗じたものの総和を粒子の総体積で割ったものである。体積平均粒径については「高分子ラテックスの化学」(室井宗一著 高分子刊行会)」119ページに記載がある。

また、粗大粒子の存在も印刷性能に非常に大きな役割を示すことが明らかになった。即ち、粗大粒子がヘッドのノズルを詰まらせる、あるいは詰まらないまでも汚れを形成することによってインクの不吐出や吐出のヨレを生じ、印刷性能に重大な影響を与えることが分かった。これを防止するためには、インクにした時にインク $1 \mu 1$ 中で $5 \mu m$ 以上の粒子を 1 0 m 個以下、 $1 \mu m$ 以上の粒子を 1 0 00 個以下に抑えることが重要である。

これらの粗大粒子を除去する方法としては、公知の遠心分離法、精密濾過法等 を用いることができる。これらの分離手段は乳化分散直後に行ってもよいし、乳 化分散物に湿潤剤や界面活性剤等の各種添加剤を加えた後、インクカートリッジ に充填する直前でもよい。

平均粒子サイズを小さくし、且つ粗大粒子を無くす有効な手段として、機械的 な乳化装置を用いることができる。

乳化装置としては、簡単なスターラーやインペラー撹拌方式、インライン撹拌 方式、コロイドミル等のミル方式、超音波方式など公知の装置を用いることがで きるが、高圧ホモジナイザーの使用は特に好ましいものである。

高圧ホモジナイザーは、US-4533254号、特開平6-47264号等 に詳細な機構が記載されているが、市販の装置としては、ゴーリンホモジナイザ ー(A.P.V GAULIN INC.)、マイクロフルイダイザー(MIC ROFLUIDEX INC.)、アルティマイザー(株式会社スギノマシン) 等がある。

また、近年になってUS-5720551号に記載されているような、超高圧 ジェット流内で微粒子化する機構を備えた高圧ホモジナイザーは本発明の乳化分 散に特に有効である。この超高圧ジェット流を用いた乳化装置の例として、De BEE2000 (BEE INTERNATIONAL LTD.) があげられる。

高圧乳化分散装置で乳化する際の圧力は50MPa以上であり、好ましくは60MPa以上、更に好ましくは180MPa以上である。

例えば、撹拌乳化機で乳化した後、高圧ホモジナイザーを通す等の方法で2種以上の乳化装置を併用するのは特に好ましい方法である。また、一度これらの乳化装置で乳化分散した後、湿潤剤や界面活性剤等の添加剤を添加した後、カートリッジにインクを充填する間に再度高圧ホモジナイザーを通過させる方法も好ましい方法である。

高沸点有機溶媒に加えて低沸点有機溶媒を含む場合、乳化物の安定性及び安全衛生上の観点から低沸点溶媒を除去するのが好ましい。低沸点溶媒を除去する方法は溶媒の種類に応じて各種の公知の方法を用いることができる。即ち、蒸発法、真空蒸発法、限外濾過法等である。この低沸点有機溶剤の除去工程は乳化直後、できるだけ速やかに行うのが好ましい。

本発明で得られたインクジェット記録用インクセット及びその構成インクには、インクの噴射口での乾燥による目詰まりを防止するための乾燥防止剤、インクを 紙によりよく浸透させるための浸透促進剤、紫外線吸収剤、酸化防止剤、粘度調 整剤、表面張力調整剤、分散剤、分散安定剤、防黴剤、防錆剤、pH調整剤、消

泡剤、キレート剤等の添加剤を適宜選択して適量使用することができる。

本発明に使用される乾燥防止剤としては水より蒸気圧の低い水溶性有機溶剤が好ましい。具体的な例としてはエチレングリコール、プロピレングリコール、ジェチレングリコール、ポリエチレングリコール、チオジグリコール、ジチオジグリコール、2-メチルー1,3-プロパンジオール、1,2,6-ヘキサントリオール、アセチレングリコール誘導体、グリセリン、トリメチロールプロパン等に代表される多価アルコール類、エチレングリコールモノメチル(又はエチル)エーテル、ジエチレングリコールモノメチル(又はエチル)エーテル、シエチレングリコールモノメチル(又はエチル)エーテル、トリエチレングリコールモノエチル(又はブチル)エーテル等の多価アルコールの低級アルキルエーテル類、2ーピロリドン、Nーメチルー2ーピロリドン、1,3-ジメチルー2ーイミダゾリジノン、Nーエチルモルホリン等の複素環類、スルホラン、ジメチルスルホキシド、3ースルホレン等の含硫黄化合物、ジアセトンアルコール、ジエタノールアミン等の多官能化合物、尿素誘導体が挙げられる。これらのうちグリセリン、ジエチレングリコール等の多価アルコールがより好ましい。また上記の乾燥防止剤は単独で用いてもよいし2種以上併用してもよい。これらの乾燥防止剤はインク中に10~50質量%含有することが好ましい。

本発明に使用される浸透促進剤としてはエタノール、イソプロパノール、ブタノール、ジ(トリ)エチレングリコールモノブチルエーテル、1,2-ヘキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界面活性剤等を用いることができる。これらはインク中に10~30質量%含有すれば充分な効果があり、甲字の滲み、紙抜け(プリントスルー)を起こさない添加量の範囲で使用するのが好ましい。

本発明で画像の保存性を向上させるために使用される紫外線吸収剤としては特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤も用いることができる。

本発明では、画像の保存性を向上させるために使用される酸化防止剤としては、

各種の有機系及び金属錯体系の褪色防止剤を使用することができる。有機の褪色防止剤としてはハイドロキノン類、アルコキシフェノール類、クロマン類、アニリン類、アミン類、インダン類、クロマン類、アルコキシアニリン類、ヘテロ環類などがあり、金属錯体としてはニッケル錯体、亜鉛錯体などがある。より具体的にはリサーチディスクロージャーNo.17643の第 VII の I ないし J 項、同No.15162、同No.18716の650頁左欄、同No.36544の527頁、同No.307105の872頁、同No.15162に引用された特許に記載された化合物や特開昭62-215272号公報の127頁~137頁に記載された代表的化合物の一般式及び化合物例に含まれる化合物を使用することができる。

本発明に使用される防衛剤としてはデヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオンー1ーオキシド、pーヒドロキシ安息香酸エチルエステル、1,2ーベンズイソチアゾリンー3ーオンおよびその塩等が挙げられる。これらはインク中に0.02~5.00質量%使用するのが好ましい。

尚、これらの詳細については「防菌防黴剤事典」(日本防菌防黴学会事典編集 委員会編)等に記載されている。

また、防錆剤としては、例えば、酸性亜硫酸塩、チオ硫酸ナトリウム、チオグリコール酸アンモン、ジイソプロピルアンモニウムニトライト、四硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムニトライト、ベンゾトリアゾール等が挙げられる。これらは、インク中に 0.02~5.00 質量%使用するのが好ましい。

本発明に使用されるpH調整剤は、pH調節、分散安定性付与などの点で好適に使用する事ができ、25℃でのインクのpHが4~11に調整されていることが好ましい。pHが4未満である場合は染料の溶解性が低下してノズルが詰まりやすく、11を超えると耐水性が劣化する傾向がある。pH調整剤としては、塩基性のものとして有機塩基、無機アルカリ等が、酸性のものとして有機酸、無機酸等が挙げられる。

前記有機塩基としては、トリエタノールアミン、ジエタノールアミン、Nーメチルジエタノールアミン、ジメチルエタノールアミン等が挙げられる。前記無機アルカリとしては、アルカリ金属の水酸化物(例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等)、炭酸塩(例えば、炭酸ナトリウム、炭酸水素ナトリウム等)、アンモニウム等が挙げられる。また、前記有機酸としては、酢酸、プロピオン酸、トリフルオロ酢酸、アルキルスルホン酸等が挙げられる。前記無機酸としては、塩酸、硫酸、リン酸等が挙げられる。

本発明では前記した界面活性剤とは別に表面張力調整剤として、ノニオン、カ

チオンあるいはアニオン界面活性剤が挙げられる。例えばアニオン系界面活性剤 としては脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、 アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン 酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンア ルキル硫酸エステル塩等を挙げることができ、ノニオン系界面活性剤としては、 ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエー テル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオ キシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、 グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンプロックコポリマ 一等を挙げることができる。アセチレン系ポリオキシエチレンオキシド界面活性 剤であるSURFYNOLS (AirProducts&Chemicals 社) も好ましく用いられる。また、N,NージメチルーNーアルキルアミンオキ シドのようなアミンオキシド型の両性界面活性剤等も好ましい。更に、特開昭5 9-157, 636号の第(37)~(38)頁、リサーチ・ディスクロージャーNo. 308119(1989年)記載の界面活性剤として挙げたものも使うことがで きる。

本発明のインクの表面張力は、これらを使用してあるいは使用しないで20~60mN/mが好ましい。さらに25~45mN/mが好ましい。

本発明に用いられるインクの粘度は30mPa・s以下が好ましい。更に20mPa・s以下に調整することがより好ましいので、粘度を調製する目的で、粘度調整剤が使用されることがある。粘度調整剤としては、例えば、セルロース類、ポリビニルアルコールなどの水溶性ポリマーやノニオン系界面活性剤等が挙げられる。更に詳しくは、「粘度調製技術」(技術情報協会、1999年)第9章、及び「インクジェットプリンタ用ケミカルズ(98増補)-材料の開発動向・展望調査-」(シーエムシー、1997年)162~174頁に記載されている。

また本発明では分散剤、分散安定剤として上述のカチオン、アニオン、ノニオン系の各種界面活性剤、消泡剤としてフッソ系、シリコーン系化合物やEDTAに代表されるれるキレート剤等も必要に応じて使用することができる。

本発明のインク液を調液する際には、水溶性インクの場合、まず水に溶解する ことが好ましい。そのあと、各種溶剤や添加物を添加し、溶解、混合して均一な インク液とする。

このときの溶解方法としては、攪拌による溶解、超音波照射による溶解、振と うによる溶解等種々の方法が使用可能である。中でも特に攪拌法が好ましく使用 される。攪拌を行う場合、当該分野では公知の流動攪拌や反転アジターやディゾ ルバを利用した剪断力を利用した攪拌など、種々の方式が利用可能である。一方

では、磁気攪拌子のように、容器底面との剪断力を利用した攪拌法も好ましく利 用できる。

本発明の画像記録方法に用いられる記録紙及び記録フィルムについて説明する。記録紙及び記録フィルムおける支持体はLBKP、NBKP等の化学パルプ、GP、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等をからなり、必要に応じて従来の公知の顔料、パインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等の添加剤を混合し、長網抄紙機、円網抄紙機等の各種装置で製造されたもの等が使用可能である。これらの支持体の他に合成紙、プラスチックフィルムシートのいずれであってもよく、支持体の厚み10~250μm、坪量は10~250g/m¹が望ましい。

支持体にそのまま受像層及びバックコート層を設けて受像材料としてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後、受像層及びバックコート層を設けて受像材料としてもよい。さらに支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。

本発明では支持体としては、両面をポリオレフィン (例、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリブテンおよびそれらのコポリマー) でラミネートした紙およびブラスチックフイルムがより好ましく用いられる。ポリオレフィンポリオレフィン中に、白色顔料 (例、酸化チタン、酸化亜鉛) または色味付け染料 (例、コバルトブルー、群青、酸化ネオジウム) を添加することが好ましい。

支持体上に設けられる受像層には、多孔質材料や水性パインダーが含有される。また、受像層には顔料を含むのが好ましく、顔料としては、白色顔料が好ましい。白色顔料としては、炭酸カルシウム、カオリン、タルク、クレー、珪藻土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸パリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の無機白色顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。特に好ましくは、多孔性の白色無機顔料がよく、特に細孔面積が大きい合成非晶質シリカ等が好適である。合成非晶質シリカは、乾式製造法によって得られる無水珪酸及び湿式製造法によって得られる含水珪酸のいずれも使用可能であるが、特に含水珪酸を使用することが望ましい。これらの顔料は2種以上を併用してもよい。

受像層に含有される水性パインダーとしては、ポリピニルアルコール、シラノ ール変性ポリピニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼ

ラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリピニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは単独または2種以上併用して用いることができる。本発明においては、これらの中でも特にポリピニルアルコール、シラノール変性ポリビニルアルコールが顔料に対する付着性、インク受容層の耐剥離性の点で好適である。

受像層は、顔料及び水性パインダーの他に媒染剤、耐水化剤、耐光性向上剤、 界面活性剤、硬膜剤その他の添加剤を含有することができる。

受像層中に添加する媒染剤は、不動化されていることが好ましい。そのために は、ポリマー媒染剤が好ましく用いられる。

ポリマー媒染剤については、特開昭48-28325号、同54-74430号、同54-124726号、同55-22766号、同55-142339号、同60-23850号、同60-23851号、同60-23852号、同60-23853号、同60-57836号、同60-23852号、同60-1188334号、同60-122940号、同60-122941号、同60-122942号、同60-235134号、特開平1-161236号の各公報、米国特許2484430号、同2548564号、同3148061号、同3309690号、同4115124号、同4124386号、同4193800号、同4273853号、同4282305号、同4450224号の各明細書に記載がある。特開平1-161236号公報の212~215頁に記載のポリマー媒染剤を含有する受像材料が特に好ましい。同公報記載のポリマー媒染剤を用いると、優れた画質の画像が得られ、かつ画像の耐光性が改善される

耐水化剤は、画像の耐水化に有効であり、これらの耐水化剤としては、特にカチオン樹脂が望ましい。このようなカチオン樹脂としては、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられ、これらのカチオン樹脂の中で特にポリアミドポリアミンエピクロルヒドリンが好適である。これらのカチオン樹脂の含有量は、インク受容層の全固形分に対して1~15質量%が好ましく、特に3~10質量%であることが好ましい。

耐光性向上剤としては、硫酸亜鉛、酸化亜鉛、ヒンダーアミン系酸化防止剤、ベンゾフェノン等のベンゾトリアゾール系の紫外線吸収剤等が挙げられる。これらの中で特に硫酸亜鉛が好適である。

界面活性剤は、塗布助剤、剥離性改良剤、スペリ性改良剤あるいは帯電防止剤

として機能する。界面活性剤については、特開昭 6 2 - 1 7 3 4 6 3 号、同 6 2 - 1 8 3 4 5 7 号の各公報に記載がある。

界面活性剤の代わりに有機フルオロ化合物を用いてもよい。有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物の例には、フッ素系界面活性剤、オイル状フッ素系化合物(例、フッ素油)および固体状フッ素化合物樹脂(例、四フッ化エチレン樹脂)が含まれる。有機フルオロ化合物については、特公昭57-9053号(第8~17欄)、特開昭61-20994号、同62-135826号の各公報に記載がある。

硬膜剤としては特開平1-161236号公報の222頁に記載されている材料等を用いることが出来る。

その他の受像層に添加される添加剤としては、類料分散剤、増粘剤、消泡剤、 染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられる。尚、 インク受容層は1層でも2層でもよい。

記録紙及び記録フィルムには、バックコート層を設けることもでき、この層に 添加可能な成分としては、白色顔料、水性パインダー、その他の成分が挙げられる。

パックコート層に含有される白色顔料としては、例えば、軽質炭酸カルシウム、 重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸パリウム、二酸 化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、 珪藻土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシ リカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リ トポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウ ム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチ ックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等 の有機顔料等が挙げられる。

バックコート層に含有される水性パインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリピニルアルコール、シラノール変性ポリピニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。バックコート層に含有されるその他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられる。

インクジェット記録紙及び記録フィルムの構成層 (バック層を含む) には、ポリマー微粒子分散物を添加してもよい。ポリマー微粒子分散物は、寸度安定化、

カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。ポリマー微粒子分散物については、特開昭 6 2 − 2 4 5 2 5 8 号、同 6 2 − 1 3 1 6 6 4 8 号、同 6 2 − 1 1 0 0 6 6 号の各公報に記載がある。ガラス転移温度が低い(4 0 ℃以下の)ポリマー微粒子分散物を媒染剤を含む層に添加すると、層のひび割れやカールを防止することができる。また、ガラス転移温度が高いポリマー微粒子分散物をバック層に添加しても、カールを防止できる。

本発明では、インクジェットの記録方式に制限はなく、公知の方式例えば静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式 (圧力パルス方式)、電気信号を音響ピームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(パブルジェット)方式等に用いられる。

インクジェット記録方式には、フォトインクと称する濃度の低いインクを小さ い体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用 いて画質を改良する方式や無色透明のインクを用いる方式が含まれる。

本発明のインクジェット記録用インクは、インクジェット記録以外の用途に使用することもできる。例えば、ディスプレイ画像用材料、室内装飾材料の画像形成材料などに使用が可能である。

ディスプレイ画像用材料としては、ポスター、壁紙、装飾小物(置物や人形など)、商業宣伝用チラシ、包装紙、ラッピング材料、紙袋、ビニール袋、パッケージ材料、看板、交通機関(自動車、バス、電車など)の側面に描画や添付した画像、ロゴ入りの洋服、等各種の物を指す。本発明の染料をディスプレイ画像の形成材料とする場合、その画像とは狭義の画像の他、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

室内装飾材料としては、壁紙、装飾小物(置物や人形など)、照明器具の部材、 家具の部材、床や天井のデザイン部材等各種の物を指す。本発明の染料を画像形 成材料とする場合、その画像とは狭義の画像の他、抽象的なデザイン、文字、幾 何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

屋外装飾材料としては、壁材、ルーフィング材、看板、ガーデニング材料屋外装飾小物 (置物や人形など)、屋外照明器具の部材等各種の物を指す。本発明の染料を画像形成材料とする場合、その画像とは狭義の画像ののみならず、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

以上のような用途において、パターンが形成されるメディアとしては、紙、繊維、布(不織布も含む)、プラスチック、金属、セラミックス等種々の物を挙げ

ることができる。染色形態としては、媒染、捺染、もしくは反応性基を導入した 反応性染料の形で色材を固定化することもできる。この中で、好ましくは媒染形 態で染色されることが好ましい。

[実施例]

以下、本発明を実施例によって説明するが、本発明はこれに限定されるものではない。

(実施例1)

<インクセット試料の作製>

本発明のマゼンタ色素	(例示化合物 a - 3 6)	24g/l
ジエチレングリコール	•	150g/l
尿素		37g/l
グリセリン		130g/l
トリエチレンク゛リコールモノフ゛チルエ	ーテル	130g/l
トリエタノールアミン	:	6.9g/l
ベンゾトリアゾール		0.08g/l
PROXBL XL2	•	3.5g/l
サーフィノールSTG	*	10g/l

さらに上記処方でマゼンタ色素 (a-36) の量を変更して吸光度を表1に示すように変化させて表1のインク試料102~108に記載のライトマゼンタインク7種を作製した。吸光度は、インク試料をインク溶媒を用いて1万倍に希釈して測定した。

さらに参考試料として、エプソン社PM-950Cのインクセットのマゼンタ、ライトマゼンタインクをそのまま使用した(試料101)。

表 1

インクNo.	ライトマゼンタインク (濃度)	マゼンタインク
101 (参考例)	PM-950Cのインクを使用	同左
102 (比較例)	M-101/25	M-1
103 (比較例)	M-102/3	M-1
104 (本発明)	M-101/12	M-1
105 (本発明)	M-101/6	M-1
106 (本発明)	M-101/4	M-1
107 (本発明)	M-101/3	M-1
108 (本発明)	M-102/5	M-1

次にこれらのインクセット試料101~108をインクジェットプリンターPM950C(EPSON社製)のカートリッジのマゼンタ・ライトマゼンタ部に詰め、同機にて富士写真フイルム(株)製インクジェットペーパーフォト光沢紙EXに画像を印刷し、画像品質および堅牢性の評価を行った。濃度の異なるインクを使用しているため、ソフトウエア上でマゼンタ濃度を調節し、印字させた。
<評価>

画像品質

画像品質については、グレーの連続階調パターン(反射濃度 $0.10\sim2.0$)をC,M,Yのカラーインクで作成し、その階調再現性を目視で評価し、A,B,Cの評価を行った。

画像保存性

画像保存性については、マゼンタのベタ画像 (濃度がほぼ一様で分布がない 色画面) 状の印字サンプルを作成し、以下の評価を行った。

①光堅牢性は印字直後の画像濃度CiをK-rite 310にて測定した後、アトラス 社製ウェザーメーター (Weather-O-meter, Atlas Blectrinic Devices, Inc., USA) を用い、画像にキセノン光(8万5 ギルックス)を10日照射し た後、再び画像濃度Cfを測定し染料残存率Cf/Ci*100を求め評価を行った。染 料残像率について反射濃度が1,1.5,2の3点にて評価し、いずれの濃度で も染料残存率が70%以上の場合をA、2点が70%未満の場合をB、全ての濃度で70%未満の場合をCとした。

②熱堅牢性については、80%70%RHの条件下に10日間、試料を保存する前後での濃度を、X-rite 310にて測定し染料残存率を求め評価した。染料残像率について反射濃度が1, 1. 5, 203点にて評価し、いずれの濃度でも染料残存率が90%以上の場合をA、2点が90%未満の場合をB、全ての濃度で90%未満の場合をC、変色などが認められた場合をDとした。

③耐オゾン性については、前記画像を形成したフォト光沢紙を、オゾンガス濃度が 0.5 ppmに設定されたボックス内に7日間放置し、オゾンガス雰囲気に放

置の前後の画像濃度を反射濃度計 (X-Rite310TR) を用いて測定し、・色素残存率として評価した。尚、前記反射濃度は、1、1.5及び2.0の3点で測定した。ボックス内のオゾンガス濃度は、APPLICS社製オゾンガスモニター (モデル:OZG-EM-01) を用いて設定した。

何れの濃度でも色素残存率が80%以上の場合をA、1又は2点が80%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

得られた結果を表2に示す。

	(32 4)			
インクNo.	階調再現性	光堅牢性	熱堅牢性	オゾン耐久性
101 (参考例)	Α	В	В	C
102 (比較例)	С	Α	Α	A
103 (比較例)	С	Α	Α	Α
104 (本発明)	В	Α	Α	Α
105 (本発明)	Α	Α	Α	Α
106 (本発明)	Α	Α	Α	Α
107 (本発明)	Α	Α	A	A
108 (本発明)	Α	Α	A	A

(表2)

表 2 から、本発明のインクセットは、階調再現性、耐候性 (光、熱、およびオゾン堅牢性) のいずれにも優れていて、画像品質と堅牢性とをともに満たしていることがわかる。

(実施例2)

<インクセット試料の作製>

下記の成分に脱イオン水を加え 1 リッターとした後、 3 0 \sim 4 0 ∞ で加熱しながら 1 時間撹拌した。その後 1 mol/1 の塩酸もしくは水酸化カリウムを用いて pH を 6 . 0 に調整し、平均孔径 0.25 μ mol/1 μ mol/1 μ mol/2 μ mo

本発明のシアン染料 (例示化合物154)	68g/l
ジエチレングリコール	150g/l
尿素	37g/l
グリセリン	130g/l
トリエチレンク~リコールモノフ~チルエーテル	130g/l
トリエタノールアミン	6.9g/l
ベンゾトリアゾール	0.08g/l
PROXEL XL2	3.5g/l
サーフィノールSTG	10g/l

さらに上記処方でシアン染料の量を変更して吸光度を変化させて表3に示すライトシアンインクを7種(試料102~108)を作製した。吸光度は、インク 試料をインク溶媒を用いて1万倍に希釈して測定した。

さらに参考用比較試料として、エブソン社PM-950Cのインクセットのシアン、 ライトシアンインクをそのまま使用した(表3参照)。

	200	
インクNo.	ライトシアンインク (吸光度)	シアンインク
101 (参考例)	PM-950Cのインクを使用	同左
102 (比較例)	C-1Ø1/25	C-1
103 (比較例)	C-102/3	C-1
104 (本発明)	C-101/12	C-1
105 (本発明)	C-1Ø1/6	C-1
106 (本発明)	C-1Ø1/4	C-1
107 (本発明)	C-1Ø1/3	C-1
108 (本発明)	C-102/5	C-1
108 (本発明)	C-102/5	C-1

表 3

次にこれらのインク101~108をインクジェットプリンターPM950C (EPSON社製)のカートリッジのシアン・ライトシアン部に詰め、同機にて富士写真フイルム (株)製インクジェットペーパーフォト光沢紙EXに画像を印刷し、画像品質および堅牢性の評価を行った。濃度の異なるインクを使用しているため、ソフトウエア上でシアン濃度を調節し、印字させた。

<試料の評価>

実施例1で述べた方法で、階調再現性に着目した画像品質の目視評価と、光堅 牢性、熱堅牢性及び耐オゾン性の面からの画像保存性のいずれもA,B,Cの三 段階評価を行った。

得られた結果を表4に示す。

表 4

インクNo.	階調再現 性	光堅牢性	熱堅牢性	オゾン耐久性
101 (参考例)	Α	В	A	C
102 (比較例)	С	A	Α	Α
103 (比較例)	С	A	A	A
104 (本発明)	В	Α	Α	Α
105 (本発明)	Α	Α	Α	Α
106 (本発明)	Α	Α	Α	A
107 (本発明)	Α	A	A	Α
108 (本発明)	Α	Α	A	A

表4から、本発明のインクセットは、階調再現性、耐候性(光、熱、およびオ ゾン堅牢性)のいずれにも優れていて、画像品質と画像堅牢性がともに満たされ ていることがわかる。

産業上の利用可能性

以上本明細書に詳記した構成インク中の最高色素濃度のインクにおける色素(又は色素の組合せ)の吸光度に対して、他のインク中の色素(又は色素の組合せ)の吸光度が1/20以上1/2以下であることを特徴とする吸光波長域が500~580nm又は580~680nmのインクセットによって、記録画像の品質が高く、しかも得られた画像の保存性が優れたインクジェット記録画像が得られる。

このインクセットは、高画質のインクジェットカラープリンターに使用することができる。

請求の範囲

1. 水性媒体中における最大吸収波長がともに500~580nm又は580~680nmのいずれか一方の波長領域にあり、かつ吸光度が異なる複数のインクジェット用インクから構成されるインクセットにおいて、該複数のインクジェット用インク中の最高色素濃度のインクにおける色素(又は色素の組合せ)の吸光度に対して、他のインク中の色素(又は色素の組合せ)の吸光度が1/20以上1/2以下であることを特徴とするインクセット。

2. 水性媒体中における最大吸収波長がともに 5 0 0 ~ 5 8 0 nmの波長領域に ある複数のインクから構成されることを特徴とする請求の範囲第1項に記載のインクジェット記録用インクセット。

3. インクセットを構成する複数のインクジェット用インク中の最高染料濃度のインクが含有する色素中の最大吸光度を有する色素が、一般式 [(複素環A)ーN=N-(複素環B)]で表される発色団を有するアゾ染料であることを特徴とする請求の範囲第2項に記載のインクジェット記録用インクセット。

ただし、上記一般式中の複素環Aと複素環Bは同一の構造であってもよい。 4. 前記一般式 [(複素環A) - N = N - (複素環B)] で表される発色団を有するアソ染料が 0. 7 V (vsSCE) よりも貴の酸化電位を有する色材であることを特徴とする請求の範囲第 3 項に記載のインクジェット記録用インクセット。 5. 前記アゾ染料が、下記一般式 (1) で表される染料であることを特徴とする請求の範囲第 2 ~ 4 項のいずれかに記載のインクジェット記録用インクセット。

一般式(1)

$$A - N = N - \begin{pmatrix} B^2 = B^1 & R^5 \\ N & R^6 \end{pmatrix}$$

一般式(1)において、Aは5員複素環基を表す。

B¹およびB²は各々=CR¹ー、-CR²=を表すか、あるいはいずれか一方が窒素原子、他方が=CR¹ーまたはーCR²=を表す。R⁵およびR⁶は各々独立に水素原子または置換基を表し、該置換基は脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、またはスルファモイル基を表し、該各置換基の水素原子は置換されていても良い。

G、R¹およびR²は各々独立して、水素原子または置換基を示し、該置換基は、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、カルボキシル基、

カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環オキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、複素環オキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオーシカルボニルアミノ基、アリールオールアミノ基、複素環スルホニルアミノ基、ニトロ基、アルキルチオ基、アリールチオ基、複素環チオ基、アルキルスルホニル基、アリールスルホニル基、複素環スルホニル基、アリールスルカニル基、複素環スルホニル基、アリールスルカーによ、複素環スルホニル基、アルキルスルカイニル基、アリールスルフィニル基、複素環スルカーによ、アルキルスルフィニル基、アリールスルフィニル基、複素環スルフィニル基、スルファモイル基、またはスルホ基を表し、該各置換基の水素原子は置換されていても良い。

 R^1 と R^5 、あるいは R^5 と R^6 が結合して $5\sim6$ 員環を形成しても良い。

6. 水性媒体中における最大吸収波長がともに580~680 nmの波長領域に ある複数のインクから構成されていることを特徴とする請求の範囲第1項に記載 のインクジェット記録用インクセット。

7. インクセットを構成する複数のインクジェット用インク中の最高染料濃度のインクが含有する色素中の最大吸光度を有する色素が、下記一般式(I)で表される染料であることを特徴とする請求の範囲第6項に記載のインクジェット記録用インクセット。

一般式(I)

$$(X_3)b_3$$

$$(X_3)a_3$$

$$(Y_2)b_2$$

$$(X_2)a_2$$

上記一般式(I)中;

 X_1 、 X_2 、 X_3 および X_4 は、それぞれ独立に、-SO-Z、 $-SO_2-Z$ 、 $-SO_2NR_1R_2$ 、スルホ基、 $-CONR_1R_2$ 、または $-CO_2R_1$ を表す。

上記 Z は、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。上記 R₁、R₂は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、または置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。なお、Zが複数個存在する場合、それらは同一でも異なっていてもよい。

 Y_1 、 Y_2 、 Y_3 および Y_4 は、それぞれ独立に、一価の置換基を表す。

なお、 $X_1 \sim X_4$ および $Y_1 \sim Y_4$ のいずれかが複数個存在するとき、それらは、同一でも異なっていてもよい。

 $a_1 \sim a_4$ および $b_1 \sim b_4$ は、それぞれ $X_1 \sim X_4$ および $Y_1 \sim Y_4$ の置換基数を表し、 $a_1 \sim a_4$ は、それぞれ独立に、0又は $1 \sim 4$ の整数であり、全てが同時

に0になることはなく、 $b_1 \sim b_4$ は、それぞれ独立に、0又は $1 \sim 4$ の整数である。

Mは、水素原子、金属原子またはその酸化物、水酸化物もしくはハロゲン化物である。

8. 一般式(I)で表される染料が、下記一般式(II)で表される染料であることを特徴とする請求の範囲第7項に記載のインクジェット記録用インクセット。 一般式(II)

$$(X_{13})a_{13}$$
 Y_{15}
 Y_{16}
 Y_{17}
 Y_{18}
 Y_{18}
 Y_{18}
 Y_{11}
 Y_{12}
 Y_{13}
 Y_{12}
 Y_{13}
 Y_{14}
 Y_{15}
 Y_{14}
 Y_{15}
 Y_{14}
 Y_{15}
 $Y_$

上記一般式(II)中;

 $X_{11} \sim X_{14}$ 、 $Y_{11} \sim Y_{18}$ 、Mは、それぞれ一般式(I)の中の $X_1 \sim X_4$ 、 $Y_1 \sim Y_4$ 、Mと同義である。

a11~a14は、それぞれ独立に、1または2の整数である。

- 9. 一般式(I)で表される染料が0.7V(vsSCE)よりも貴の酸化電位を有する色材であることを特徴とする請求の範囲第7又は8項に記載のインクジェット記録用インクセット。
- 10. 請求の範囲第1~9項のいずれかに記載のインクセットを使用することを特徴とするインクジェット記録方法。
- 11. 請求の範囲第2~5項のいずれかに記載のインクセットを使用することを 特徴とする請求の範囲第10項に記載のインクジェット記録方法。

12. 請求の範囲第6~9項のいずれかに記載のインクセットを使用することを特徴とする請求の範囲第10項に記載のインクジェット記録方法。

- 13. 支持体上に白色無機顔料粒子を含有する受像層を有する受像材料にインク 滴を記録信号に応じて吐出させて画像を記録することを特徴とする請求の範囲第 10~12項に記載のインクジェット記録方法。
- 14. 受像層が、白色無機顔料粒子と、ポリビニルアルコール、シラノール変性ポリビニルアルコール、でんぷん、カチオン化でんぷん、ゼラチン、カルボキシアルキルセルロース、カゼイン及びポリビニルピロリドンから選ばれる少なくとも1種の水性パインダーとを含有する受像層であることを特徴とする請求の範囲第13項に記載のインクジェット記録方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/03740

	SIFICATION OF SUBJECT MATTER .C1 ⁷ C09D11/00, B41M5/00, B41J2	2/01			
-					
According t	According to International Patent Classification (IPC) or to both national classification and IPC				
	S SEARCHED				
	locumentation searched (classification system followed C1 C09D11/00-11/20, B41M5/00,				
Jits	tion searched other than minimum documentation to the uyo Shinan Koho 1922-1996 i Jitsuyo Shinan Koho 1971-2003	Toroku Jitsuyo Shinan Koho	o 1994–2003		
	lata base consulted during the international search (nam STN), REGISTRY (STN), WPI (DIALOG		rch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap		Relevant to claim No.		
X	JP 2001-106950 A (Fuji Xerox 17 April, 2001 (17.04.01), Claims; examples (Family: none)	Co., Ltd.),	1,2,6,10-14		
A	EP 20161 A2 (EASTMAN KODAK C 10 December, 1980 (10.12.80), Claims; examples & JP 55-161856 A		1-14		
Α	WO 96/34916 A2 (ZENECA LTD.) 07 November, 1996 (07.11.96), Claims; examples & JP 11-504958 A		1-14		
X Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
* Special "A" docume conside "E" earlier date "L" docume cited to special docume means "P" documentan the	Il categories of cited documents: nent defining the general state of the art which is not ered to be of particular relevance document but published on or after the international filing ment which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other Il reason (as specified) ment referring to an oral disclosure, use, exhibition or other	"T" later document published after the interpriority date and not in conflict with the understand the principle or theory understand document of particular relevance; the considered to involve an inventive step combined with one or more other such combination being obvious to a person document member of the same patent to the principle of mailing of the international search of the same patent of the sa	ne application but cited to enlying the invention cannot be red to involve an inventive claimed invention cannot be red to involve an inventive claimed invention cannot be p when the document is documents, such a skilled in the art family		
	nailing address of the ISA/ nnese Patent Office	Authorized officer			
Facsimile N	lo.	Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/03740

e relevant passages	1-14 1-14
Inc.),	1-14
Inc.),	
Inc.),	1-14
·	
	•

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/03740

[Concerning the subject of search of claims 1-14]

Out of an infinite number of combinations of inks (ink sets) using dyes having maximum absorption wavelengths in the range from 500 to 580 nm or in the range from 580 to 680 nm and different absorbances, only ink sets of azo dyes expressed by general formula (1) wherein A is a benzothiazole, t-butyl, or pyrazole ring to which a cyano group is bonded, and G is an amino group and ink sets of dyes expressed by general formula (1) wherein a specific sulfo group is bonded at the β -position are specifically supported by the description.

The theoretical relationship between the maximum absorption wavelength and the gradation reproducibility and so forth are unclear, and the image preservability including the gradation reproducibility, light fastness, heat fastness, and ozone resistance is considered to be influenced by the contents and structures of the dyes. Consequently, the ink sets other than the above-mentioned ink sets are not supported.

The preparations of ink sets using dyes both having an oxidation potential nobler than 0.7 V(vsSCE) require excessive experiments and trial-and-errors, and such ink sets are not supported by the description.

Therefore, the ink sets using dyes other than those specifically disclosed are not fully supported by the description, and no meaningful international search cannot be carried out.

The subject of the international search is only ink sets of azo dyes expressed by general formula (1) wherein A is a benzothiazole, t-butyl, or pyrazole ring to which a cyano group is bonded, and G is an amino group and ink sets of dyes expressed by general formula (I) wherein a specific sulfo group or the like (a group wherein a carbon or nitrogen atom is bonded to a sulfo group and alkylene or a carbon ring is bonded to the atom) is bonded at the β -position.

While searching the subject, the X document disclosing ink sets where maximum absorption wavelengths both range from 500 to 580 nm or in the range from 580 to 680 nm, and to the absorbance of the dye of an ink having a maximum dye concentration, the ratio of the absorbances of the dyes in the other inks are 1/20 to 1/2 has been found and listed in this international search report.

国際調査報告

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl' C09D11/00, B41M5/00, B41J2/01

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C09D11/00-11/20, B41M5/00, B41J2/01-2/21

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2003年

日本国登録実用新案公報

1994-2003年

日本国実用新案登録公報

1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA (STN)

REGISTRY (STN)

WPI (DIALOG)

\sim	田字子	Z	ᇈᄦᆘ	~ ~	Jn Z	-}- ::::b
C.	関連す	ପ (C 666 0	ノロ	460	NAI X

C. DE	o c pulso o a vio x inx	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Х	JP 2001-106950 A (富士ゼロックス株式会社) 2 001.04.17, 【特許請求の範囲】, 【実施例】(ファミリ 一無し)	1, 2, 6, 10-14
Ą	EP 20161 A2 (EASTMAN KODAK COMP ANY) 1980. 12. 10, Claims, Examples & JP 55-161856 A	1-14

|X|| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調查報告

C (続き).	関連すると認められる文献	
引用文献の		関連する
<u>カテゴリー*</u> A	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 WO96/34916 A2 (ZENECA LIMITED) 1 996.11.07, Claims, Examples & JP 11-504958 A	請求の範囲の番号 1-14
Α	US 3287470 A (J. R. Geigy) 1966. 1 1. 22, Claims, Examples & GB 9894 59 A	1-14
A	US 5704969 A (SEIKO EPSON CO.) 1 998. 01. 06, Claims, Examples & WO 95/29208 A1	1-14
A	JP 2000-239584 A (三井化学株式会社) 200 0.09.05, 【特許請求の範囲】, 【実施例】 (ファミリーな し)	1-1:4
	·	
	_	,

【請求の範囲1-14の調査対象について】

無数に存在する最大吸収波長が $500\sim580$ nm又は $580\sim680$ nmの波長領域にあり、かつ吸光度が異なる色素を用いたインクの組合せ(インクセット)として、明細書で具体的に裏付けられているのは、Aがベンゾチアゾール、t-ブチル、シアノ基が結合したピラゾール環であり、Gがアミノ基である一般式(1)のアゾ染料のインクセットと β 位に特定のスルホン基が結合している一般式(I)の染料のインクセットのみである。

そして、最大吸収波長と階調再現性の理論的な関係等が不明であり、さらに階調再現性の みならず、光堅牢性、熱堅牢性、耐オゾン性等の画像保存性は、染料の含有量・構造等の影響を受けると考えられることからすると、上記インクセット以外のインクセットについて は、何ら事付けされているものとは認められない。

また、0.7V(vsSCE)よりも貴の酸化電位を有する色素を用いたインクセットについても、その取得に過度の実験・試行錯誤を要し、明細書で裏付けされているものとは認められない。

したがって、具体的に開示されている色素以外を用いたインクセットについては、明細書により十分な裏付けがされていると認めることはできず、有意義な国際調査をすることができない。

よって、上記請求の範囲のうち、Aがベンゾチアゾール、tーブチル、シアノ基が結合したピラゾール環であり、Gがアミノ基である一般式(1)のアゾ染料を用いたインクセットと、又はβ位に特定のスルホン基等(スルホン基に炭素又は窒素原子が結合し、その原子にアルキレン又は炭素環が結合している基)が結合している一般式(I)の染料を用いたインクセットのみを調査対象とした。

なお、上記の対象を調査している際に、最大吸収波長がともに $500\sim580$ nm又は $580\sim680$ nmにあり、最高色素濃度のインクにおける色素の吸光度に対して、他のインクの色素の吸光度が1/20以上1/2以下であるインクセットが記載されているX文献を発見したので、国際調査報告に掲げた。