Premières propriétés

Exercice 1: Maths financières 101

- 1. Combien d'argent avez-vous sur votre compte au bout d'un an? Au bout de deux ans? Après dix ans?
- 2. Modélisez cette suite. Reconnaissez-vous une suite connue?
- 3. Au bout de combien d'années aurez-vous 1000€ sur votre compte?

Exercice 2:

On définit une suite récurrente $(u_n)_{n\in\mathbb{N}}$ par la donnée de u_0 et la condition suivante :

$$\forall n \in \mathbb{N} \quad u_{n+1} = \frac{5u_n + 3}{u_n + 3}$$

- 1. On pose $v_n = \frac{u_n 3}{u_n + 1}$
 - (a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique; en préciser la raison.
 - (b) Calculer v_n en fonction de u_0 et de n
- 2. Etudier la suite $(u_n)_{n\in\mathbb{N}}$ dans les cas suivants :

(a)
$$u_0 = 4$$

(b)
$$u_0 = 3$$

(c)
$$u_0 = -1$$

Exercice 3:

On considère le programme python suivant :

Pour étudier le comportement de ce programme, et, en particulier savoir s'il ne boucle pas de manière infinie, on considère les suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ dans lesquelles, les nombres x_n et y_n représentent l'état (ou les valeurs) des variables x et y à l'itération n. Ainsi, nous avons :

$$\begin{cases} x_0 = 1 \text{ et } y_0 = 10\\ x_{n+1} = -2x_n\\ y_{n+1} = 2x_n + y_n \end{cases}$$

- 1. Calculer x_1, y_1, x_2, y_2
- 2. Démontrer que $x_n = (-2)^n$
- 3. Démontrer que $y_n = 10 + \frac{2}{3} (1 (-2)^n)$
- 4. Démontrer qu'il existe un rang n tel que

l'instruction

while (x+y>5) soit fausse.

5. Que conclure quant à la terminaison du programme ?

Testez ce programme en Python (chez vous).

Limites

Exercice 4:

On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\begin{cases} u_1 = \frac{1}{3} \\ u_{n+1} = \frac{n+1}{3n} u_n \end{cases}$$

- 1. Montrer que la suite de terme général $v_n = \frac{u_n}{n}$ est une suite géométrique
- 2. En déduire une formule explicite de u_n
- 3. Donner $\lim_{n\to+\infty} u_n$

Exercice 5 : Complexité

```
Data: n
for 1 \le i \le n do
\lfloor \text{algo1(i)} \rfloor
algo2(n)
```

- 1. Quelle est la complexité du programme si algo1 est en O(n) et algo2 est en $O(n^3)$?
- 2. Quelle est la complexité du programme si algo1 est en $O(n^2)$ et algo2 est en $O(n^3)$?
- 3. Quelle est la complexité du programme si algo1 est en $O(\ln n)$ et algo2 est en O(n)?

Exercice 6 : Complexité

Algorithm 1: Dichotomie

```
Function recherche (T,x,d,f):

if f < d then

| return -1

else

| m = \lfloor \frac{b+a}{2} \rfloor

if T[m] = x then

| return m

else if T[m] < x then

| return

| recherche (T,x,m+1,f)

else

| return

| recherche (T,x,m+1,x)
```

Algorithm 2: Stooge Sort

```
Function stoogesort (L, i = 0, j = len(L) - 1):

if L[i] > L[j] then

tmp = L[i]
L[i] = L[j]
L[j] = tmp
if j-i+1>2 then
t = floor((j - i + 1)/3)
stoogesort(L, i, j - t)
stoogesort(L, i, j - t)
stoogesort(L, i, j - t)
return L
```

- Que fait le premier algorithme? Donner sa complexité à l'aide du Master Theorem.
- 2. Donner la complexité du Stoogessort.

Exercice 7:

Soit $(u_n)_{n\geq 0}$ une suite de rééls strictement positifs telle que $\forall n>1, \frac{u_n}{u_{n-1}}\leq q<1$. Montrer que la suite converge et que $\lim_{n\to\infty}u_n=0$

Exercice 8:

On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par : $u_n = \frac{1}{2}\left(1 + \frac{1}{n}\right)^2$

- 1. Quelle est limite de cette suite?
- 2. Justifier l'existence d'un entier N_0 , tel que si $n > N_0$, alors $\frac{1}{2} \leqslant u_n \leqslant \frac{49}{72}$
- 3. Calculer l'entier N_0

Exercice 9 : * Somme des termes d'une suite

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r et telle que $u_0=a$.

Soit
$$n \in \mathbb{N}$$
, montrer $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n = \frac{(n+1)(u_0 + u_n)}{2} = \frac{(n+1)(2a + nr)}{2}$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q où q est différent de 1 $(q\neq 1)$

Montrer
$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n = \frac{u_0(1 - q^{n+1})}{1 - q}$$

Que dire dans le cas q = 1?