# UNIVERSIDAD AUTÓNOMA GABRIEL RENÉ MORENO

# FACULTAD DE INGENIERÍA Y CIENCIAS EN LA COMPUTACIÓN Y TELECOMUNICACIONES



# **PROYECTO 2**

# **WEKA I credit-g**

### **INTEGRANTES:**

- Mamani Rodriguez Kasandra
- Sejas Mamani Dennis
- Quispe Sabinas Brayan

**DOCENTE:** Ing. Peinado Pereira Miguel Jesus

ASIGNATURA: Soporte para la Toma de Decisiones

SANTA CRUZ – BOLIVIA

# **ÍNDICE GENERAL**

| 1.OBTENCIÓN DE DATOS?                                        | 3  |
|--------------------------------------------------------------|----|
| 1.1.Recopilación de datos                                    | 3  |
| 1.2.Procesamiento inicial de los datos                       | 4  |
| 1.3. Normalización y codificación                            | 4  |
| 1.4. Etiquetado manual o automático                          | 4  |
| 1.5. Validación y limpieza                                   | 5  |
| 2. ¿QUÉ SIGNIFICA CADA DATO?                                 | 5  |
| Status of existing checking account                          | 6  |
| 2. Duration in months                                        | 6  |
| 3. Credit history                                            | 6  |
| 4. Purpose                                                   | 6  |
| 5. Credit amount                                             | 7  |
| 6. Savings account/bonds                                     | 7  |
| 7. Present employment since                                  | 7  |
| 8. Installment rate in percentage of disposable income       | 8  |
| 9. Personal status and sex                                   | 8  |
| 10. Other debtors/guarantors                                 | 8  |
| 11. Present residence since                                  | 8  |
| 12. Property                                                 | 8  |
| 13. Age in years                                             | 9  |
| 14. Other installment plans                                  | 9  |
| 15. Housing                                                  | 9  |
| 16. Number of existing credits at this bank                  | 9  |
| 17. Job                                                      | 9  |
| 18. Number of people being liable to provide maintenance for | 10 |
| 19. Telephone                                                | 10 |
| 20. Foreign worker                                           | 10 |
| 3. ¿CUAL ES EL OBJETIVO DE ESOS DATOS?                       | 10 |

# 1.OBTENCIÓN DE DATOS?

Para entender cómo se obtuvieron los datos utilizados en el proyecto **Credit-G** del conjunto **German Credit Data**, es necesario analizar las características del dataset y el contexto en el que fue creado, a continuación se detalla el proceso general que puede haberse seguido para la generación de este tipo de dataset:

# 1.1. Recopilación de datos

Los datos del German Credit Dataset probablemente fueron recolectados por una institución financiera o un banco alemán. Este conjunto contiene información de clientes relacionada con su historial crediticio y datos demográficos, utilizados para evaluar la probabilidad de que un cliente cumpla con sus obligaciones de pago.

#### Fuentes de datos:

- Historial crediticio: Los datos fueron extraídos de los registros internos del banco,
  como:
  - o Préstamos anteriores.
  - Información de pagos atrasados o incumplidos.
  - Relación con otras instituciones crediticias.
- Información del cliente: Recopilada al momento de solicitar el crédito, incluyendo:
  - Edad, género, ocupación.
  - o Estado civil y número de dependientes.
  - o Ingresos y propiedades (p. ej., casa o automóvil).
- Comportamiento transaccional: Datos sobre el uso de servicios bancarios, como cuentas de ahorro o inversión.

#### 1.2.Procesamiento inicial de los datos

Los datos brutos se someten a un procesamiento previo para estructurarlos adecuadamente. Esto incluye:

- Conversión a formato tabular: Los datos se organizan en filas (individuos) y columnas (atributos).
- **Definición de la clase objetivo**: En este caso, los registros se etiquetan como:
  - o Good (Buen riesgo): Clientes que cumplen con los pagos.
  - o Bad (Mal riesgo): Clientes que incumplen.
- Eliminación de datos irrelevantes o confidenciales: Información personal sensible se excluye para proteger la privacidad.

# 1.3. Normalización y codificación

Dado que los datos provienen de diferentes fuentes, se asegura la uniformidad mediante:

- Normalización: Atributos como montos crediticios o duración de préstamos son escalados a valores estándar.
- Codificación de atributos categóricos: Variables como "historial crediticio" o "estado civil" se convierten en valores discretos o numéricos. Ejemplo:
  - Historial crediticio: [1 = excelente, 2 = bueno, 3 = malo].
  - Estado civil: [1 = soltero, 2 = casado, 3 = divorciado].

# 1.4. Etiquetado manual o automático

La clase objetivo (Good/Bad) pudo haberse determinado de dos maneras:

- Manual: Expertos financieros evalúan el riesgo basado en políticas del banco y asignan etiquetas.
- Automática: Uso de reglas predefinidas, como:
  - Si un cliente tiene más de tres pagos atrasados → Bad.
  - Si tiene un ingreso estable y sin historial de incumplimientos → Good.

# 1.5. Validación y limpieza

Los datos pasan por una fase de validación para garantizar consistencia y calidad:

- Eliminación de duplicados: Clientes con múltiples solicitudes.
- Manejo de valores faltantes: Relleno con promedio, mediana o eliminación de registros incompletos.
- Balanceo de clases: Ajuste del número de ejemplos de "Good" y "Bad" para evitar sesgo en el análisis.

# 2. ¿QUÉ SIGNIFICA CADA DATO?

Este conjunto de datos tiene 20 atributos que representan características financieras y demográficas de los solicitantes de crédito, así como la clase objetivo:

# Clase Objetivo

#### class:

- Good (buen riesgo): El solicitante tiene un bajo riesgo de incumplir con los pagos.
- o Bad (mal riesgo): El solicitante tiene un alto riesgo de incumplir con los pagos.

# Atributos del dataset

# 1. Status of existing checking account

- Estado de la cuenta corriente del solicitante:
  - o **A11**: Ninguna cuenta.
  - **A12**: Saldo < 0 DM (saldo negativo).
  - o **A13**: 0 ≤ Saldo < 200 DM.
  - o **A14**: Saldo ≥ 200 DM.

#### 2. Duration in months

• Duración del crédito solicitado (en meses).

# 3. Credit history

- Historial crediticio del solicitante:
  - A30: Sin créditos tomados o todos los créditos pagados a tiempo.
  - A31: Todos los créditos pagados a tiempo.
  - **A32**: Retrasos en los pagos previos.
  - **A33**: Problemas críticos en el historial crediticio.
  - o A34: Otros créditos en proceso.

# 4. Purpose

- Propósito del crédito:
  - o **A40**: Automóvil (nuevo).
  - o A41: Automóvil (usado).
  - A42: Muebles/electrodomésticos.
  - o **A43**: Radio/TV.

- o A44: Electrodomésticos.
- **A45**: Reparaciones.
- o A46: Educación.
- o **A47**: Vacaciones/recreación.
- A48: Créditos en proceso.
- o A49: Negocios.
- A410: Otros.

# 5. Credit amount

• Monto del crédito solicitado (en DM).

# 6. Savings account/bonds

- Ahorros o bonos del solicitante:
  - o **A61**: Ninguno.
  - **A62**: < 100 DM.
  - o **A63**: 100 ≤ Saldo < 500 DM.
  - A64: 500 ≤ Saldo < 1000 DM.</li>
  - o **A65**: ≥ 1000 DM o más.

# 7. Present employment since

- Tiempo de empleo actual:
  - o **A71**: Desempleado.
  - A72: < 1 año.</li>
  - A73: 1 ≤ Tiempo < 4 años.</li>
  - o **A74**: 4 ≤ Tiempo < 7 años.
  - A75: ≥ 7 años.

# 8. Installment rate in percentage of disposable income

• Porcentaje del ingreso disponible destinado a pagar el crédito (1-4).

#### 9. Personal status and sex

- Estado civil y género:
  - o **A91**: Hombre, soltero.
  - o **A92**: Hombre, casado o viudo.
  - o **A93**: Mujer, soltera.
  - o **A94**: Mujer, casada o viuda.
  - **A95**: Hombre, divorciado o separado.

# 10. Other debtors/guarantors

- Otros deudores o garantes:
  - o **A101**: Ninguno.
  - o A102: Codeudor.
  - o A103: Garante.

#### 11. Present residence since

• Tiempo de residencia actual (en años).

### 12. Property

- Tipo de propiedad del solicitante:
  - **A121**: Propiedad inmobiliaria.
  - **A122**: Ahorros en seguros.
  - o **A123**: Automóviles o bienes.

o A124: Ninguna propiedad.

# 13. Age in years

• Edad del solicitante (en años).

# 14. Other installment plans

- Planes de crédito adicionales:
  - o **A141**: Ninguno.
  - o A142: En el banco.
  - o A143: En las tiendas.

# 15. Housing

- Tipo de vivienda:
  - o A151: Rentada.
  - o **A152**: Propia.
  - o **A153**: Viviendo con los padres.

# 16. Number of existing credits at this bank

• Número de créditos existentes en este banco.

### 17. Job

- Categoría laboral del solicitante:
  - A171: Desempleado o sin empleo calificado.
  - **A172**: Empleo no calificado.
  - o A173: Empleo calificado o administrativo.
  - o **A174**: Empleo altamente calificado.

### 18. Number of people being liable to provide maintenance for

• Número de dependientes financieros del solicitante (1-2).

### 19. Telephone

• Disponibilidad de teléfono:

o A191: No tiene teléfono.

• **A192**: Tiene teléfono registrado.

### 20. Foreign worker

• Si el solicitante es un trabajador extranjero:

A201: Sí.

o **A202**: No.

# 3. ¿CUAL ES EL OBJETIVO DE ESOS DATOS?

El **objetivo** de los datos en el conjunto **German Credit Dataset** (credit-g.arff) es proporcionar un caso práctico para **evaluar el riesgo crediticio** de los clientes de una entidad financiera. Este dataset sirve como base para la construcción y validación de modelos de aprendizaje automático que clasifiquen a los solicitantes en dos categorías principales:

Las dos categorías principales en el conjunto de datos **German Credit Dataset** (credit-g.arff) son:

### 1. Good (Buen riesgo)

 Representa a los solicitantes que tienen un bajo riesgo de incumplimiento en sus pagos.  Estos solicitantes son considerados como confiables por la entidad financiera y tienen alta probabilidad de cumplir con las condiciones del crédito.

### 2. Bad (Mal riesgo)

- Representa a los solicitantes que tienen un alto riesgo de incumplimiento en sus pagos.
- Estos solicitantes son considerados como no confiables o de alto riesgo por la entidad financiera, lo que podría resultar en la negativa del crédito o en la aplicación de condiciones más estrictas (como tasas de interés más altas).

# Objetivo principal

Predecir si un solicitante de crédito es un **"buen riesgo"** o un **"mal riesgo"**, basándose en sus características financieras, demográficas y comportamentales.

# Contexto práctico

En la vida real, las instituciones financieras y bancos utilizan este tipo de modelos para tomar decisiones informadas sobre:

- 1. Aprobación o rechazo de créditos.
- 2. Condiciones del crédito (tasa de interés, monto permitido, plazo de pago).
- 3. **Gestión del portafolio de riesgo** para minimizar pérdidas y maximizar ganancias.

# Aplicaciones del dataset

#### 1. Entrenamiento de modelos de clasificación:

 Usar algoritmos de Machine Learning (como árboles de decisión, redes neuronales, SVM, etc.) para aprender patrones que distingan entre clientes buenos y malos.

### 2. Validación y comparación de algoritmos:

 Evaluar el rendimiento de diferentes técnicas para determinar cuál es más adecuada para este tipo de problema.

# 3. Análisis de características importantes:

 Identificar cuáles son los atributos más relevantes que influyen en el riesgo crediticio (por ejemplo, duración del crédito, historial crediticio o monto del préstamo).

# 4. Simulación y predicción:

 Simular escenarios de aprobación/rechazo basados en los datos de entrada de nuevos clientes.

### Beneficios del análisis

### 1. Minimizar riesgos financieros:

o Reducir las probabilidades de otorgar créditos a clientes que no puedan pagar.

#### 2. Optimizar recursos:

 Focalizar los esfuerzos de la institución financiera en clientes con mayor probabilidad de cumplir con sus obligaciones.

### 3. Toma de decisiones basadas en datos:

 Ofrecer un respaldo objetivo y cuantitativo a los analistas de riesgos y gerentes de crédito.