Problemes d'Anàlisi Real FME Curs 2020/21

Tema 2: Teoremes d'Ascoli-Arzelà i de Stone-Weiesstrass

1. Demostreu que $C^n([a,b],\mathbb{R})$ amb la norma

$$||f|| = \sup\{|f(x)|\} + \sup\{|f'(x)|\} + \ldots + \sup\{|f^{(n)}(x)|\}$$

és un espai de Banach. Demostreu que per a n=0,1 la norma així definida satisfà la propietat multiplicativa.

2. Sigui E_n un espai de Banach i sigui $L(E_n)$ el conjunt dels seus endomorfismes continus. A $L(E_n)$ definim

$$||T|| = \sup_{||x|| < 1} ||Tx|| = \sup_{||x|| < 1} ||Tx||.$$

- (a) Comproveu que això és una norma.
- (b) Demostreu que amb aquesta norma $L(E_n)$ és complet.
- (c) Demostreu que amb la composició tenim una àlgebra.
- (d) Demostreu que aquesta àlgebra conté la unitat.
- 3. Es considera E l'espai vectorial de funcions contínues sobre \mathbb{R} , periòdiques de període 2π , amb la norma de la convergència uniforme. Demostreu que E és una àlgebra de Banach commutativa i associativa, amb el producte:

$$(f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)g(x-t) dt$$

- 4. Sigui $\mathcal{B} = \{ f \in \mathcal{C}([0,1], \mathbb{R}) \mid f(x) > 0 \}$. Demostreu que és un conjunt obert de $\mathcal{C}([0,1], \mathbb{R})$. Quina és la seva clausura?
- 5. Sigui $\mathcal{B} = \{ f \in \mathcal{C}_b(\mathbb{R}, \mathbb{R}) \mid f(x) > 0 \}$. És obert? Si no ho és, calculeu $\operatorname{int}(B)$.
- 6. Demostreu que $\mathcal{C}_b(\mathbb{R},\mathbb{R})$ és complet amb la norma del suprem.
- 7. Quines de les famílies següents és equicontínua en el conjunt que s'indica?
 - (a) les funcions contínues de Lipschitz a [0, 1].
 - (b) les funcions contínues $f:[a,b]\to\mathbb{R}$ que satisfan $||f||\leq 1$.
 - (c) el conjunt $\{\sin nx\}_{n\in\mathbb{N}}, x\in[0,\pi].$
- 8. Sigui $\{f_n\}$ una successió de funcions reals derivables a [0,1], tals que $\{f_n(x_0)\}$ convergeix per algun $x_0 \in [0,1]$. Demostreu que si $\{f'_n\}$ està uniformement fitada a [0,1], llavors $\{f_n\}$ conté una parcial convergent.
- 9. Sigui $I: \mathcal{C}([0,1],\mathbb{R}) \to \mathbb{R}$ donada per

$$I(f) = \int_0^1 f(x) \, \mathrm{d}x.$$

- (a) Demostreu que I és una aplicació contínua.
- (b) Sigui $\mathcal{B} \subset \mathcal{C}([0,1],\mathbb{R})$ un conjunt tancat, fitat i equicontinu. Demostreu que existeix $f_0 \in \mathcal{B}$ que maximitza I sobre \mathcal{B} .

10. Sigui E un espai mètric, F un espai normat, H un subconjunt fitat de $C_b(E, F)$. Per a qualsevol $x \in E$ es defineix

$$\begin{array}{ccc} \tilde{x}: H & \longrightarrow & F \\ u & \longmapsto & u(x) \end{array}$$

Demostreu que H, amb la norma de l'exercici 2, és puntualment equicontinu en x_0 si i només si l'aplicació $x \mapsto \tilde{x}$ és contínua en x_0 .

- 11. Sigui E un espai mètric, F un espai normat, (f_n) una successió equicontínua en $C_b(E, F)$. Demostreu que el conjunt de punts $x \in E$ tals que $(f_n(x))$ és una successió de Cauchy en F és tancat en E.
- 12. Sigui E un espai mètric, F un espai normat, (f_n) una successió de funcions que és equicontínua en un punt $a \in E$. Demostreu que si la successió $(f_n(a))$ és convergent vers $b \in F$ aleshores, per a cada successió (x_n) de E tal que $\lim_{n \to \infty} x_n = a$, la successió $(f_n(x_n))$ convergeix vers $b \in F$.
- 13. Sigui $\{f_n(x)\}$ una successió de funcions uniformement fitades i integrables Riemann a l'interval [a, b]. Es defineix la successió $\{F_n(x)\}$ com

$$F_n(x) = \int_a^x f_n(t) dt \quad \forall x \in [a, b].$$

Demostreu que la successió $\{F_n(x)\}$ té una parcial uniformement convergent.

14. Sigui $\mathcal F$ una família de funcions uniformement fitades i equicontínues de D en $\mathbb R$. Es defineix

$$f^*(x) = \sup_{f \in \mathcal{F}} \{ f(x) \}.$$

Proveu que f^* és contínua a D. Demostreu amb un contraexemple que el resultat és fals si es treu la hipòtesi d'equicontinuïtat.

15. (a) Dieu si les successions donades per

$$f_n(x) = x^n(1-x),$$

$$g_n(x) = x^n(1-x^n),$$

convergeixen uniformement en [0,1].

(b) Demostreu que la successió amb terme general

$$f_n(x) = ne^{\frac{x}{n}}, \ x \in [-1, 2],$$

és equicontínua peró no té cap parcial uniformement convergent. Contradiu això algun resultat teòric?

- 16. Sigui $f \in C([0,1])$ amb $||f||_{\sup} = \alpha < 1$. Proveu que la família de funcions $\{f^n\}_{n \in \mathbb{N}}$, on f^n denota la potència n-èssima de f, és equicontínua. Demostreu amb un contraexemple que la propietat anterior és falsa si $\alpha \ge 1$.
- 17. Sigui una família equicontínua de funcions F. Demostreu que

$$G = \{f : \exists (f_n) \subset F, (f_n(x)) \to f(x)\}$$

també és equicontínua.

18. Sigui f una funció real definida a l'interval [0, 1]. Es defineixen els moments de f per

$$\int_0^1 x^n f(x) dx \qquad n = 0, 1, \dots$$

Demostreu que dues funcions reals contínues definides a l'interval [0, 1] coincideixen si i només si tenen la mateixa successió de moments.

- 19. Sigui \mathcal{D} l'àlgebra dels polinomis parells.
 - (a) Demostreu que \mathcal{D} és una àlgebra i conté les funcions constants, peró no separa punts a [-1,1].
 - (b) Demostreu que \mathcal{D} no és densa a $\mathcal{C}([-1,1],\mathbb{R})$.
- 20. (a) Es considera l'espai $\mathcal{C}([0,1])$ amb la norma de la convergència uniforme.

Sigui $\mathcal{A} \subset \mathcal{C}([0,1])$ el subconjunt format per les funcions que són lineals a trossos. Proveu que \mathcal{A} és un reticle però no una subàlgebra de $\mathcal{C}([0,1])$.

Proveu que \mathcal{A} és dens a $\mathcal{C}([0,1])$.

Ajuda: $f:[0,1] \longrightarrow R$ és lineal a trossos si existeix una partició de [0,1], $P = \{0 = x_0 < x_1 < \ldots < x_n = 1\}$ de manera que a l'interval $[x_i, x_{i+1}]$ la funció f sigui lineal. Això és

$$f(x) = f(x_i) + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} (x - x_i) \quad x \in [x_i, x_{i+1}]$$

- (b) Proveu que la famÃlia $\mathcal{A} = \{1, \sin x, \cos x\}$ separa punts a l'interval $[0, \pi/4]$ i també és un reticle. Tanmateix la seva adherència no és $\mathcal{C}([0, \pi/4])$. Quina diferència hi ha respecte l'apartat anterior?
- 21. Sigui A el conjunt de les combinacions lineals de funcions exponencials amb exponent enter i més gran o igual que 1, és a dir,

$$A = \left\{ \sum_{k=1}^{m} c_k e^{kx}, m \in \mathbb{N}, m \ge 1 \text{ arbitrari}, c_k \in \mathbb{R} \right\}.$$

Sigui K un compacte de \mathbb{R} . Demostreu que A és dens a $\mathcal{C}(K,\mathbb{R})$.

22. Es consideren $f:[a,b] \longrightarrow \mathbb{R}$ i $\varepsilon > 0$ qualsevol. Proveu que si f és contínua, aleshores existeixen $p_1(x), p_2(x) \in R[x]$ de manera que $\forall x \in [a,b] \ p_1(x) \leq f(x) \leq p_2(x)$ i

$$\int_a^b p_2(x) \, \mathrm{d}x - \int_a^b p_1(x) \, \mathrm{d}x < \varepsilon$$

- 23. Donat un espai compacte X es considera l'àlgebra $\mathcal{C}(X,\mathbb{R})$ de les funcions reals contínues a X amb la norma de la convergència uniforme.
 - (a) Sigui $f_n \to f$ a $\mathcal{C}(X,\mathbb{R})$. Suposem que f(P) = 0 per a un cert P de X, proveu que $(f_n f_n(P)) \to f$ a $\mathcal{C}(X,\mathbb{R})$.
 - (b) Poseu un exemple d'un subconjunt $A \subset \mathcal{C}(X,\mathbb{R})$ tancat per a sumes i productes i pel producte per un escalar, que no contingui la funció unitat.
 - (c) Sigui $A \subset \mathcal{C}(X,\mathbb{R})$ satisfent les condicions de l'apartat b) i suposem que existeixi $P \in X$ de manera que f(P) = 0, per a qualsevol $f \in A$. Proveu que $B = \{f + \lambda | f \in A, \lambda \in \mathbb{R}\} \subset \mathcal{C}(X,\mathbb{R})$ és una subàlgebra (conté la unitat).

(d) Sigui A com a l'apartat anterior i suposem que A separa punts de X. Proveu que A és dens en el conjunt d'elements de $\mathcal{C}(X,\mathbb{R})$ que s'anul.len a P.

Ajuda: Proveu que si A separa punts, aleshores B és densa a $\mathcal{C}(X,\mathbb{R})$.

- 24. Sigui $C_0([1, +\infty))$ l'àlgebra de les funcions contínues $f: [1, +\infty) \to \mathbb{R}$ tals que $\lim_{x \to +\infty} f(x)$ existeix i és finit.
 - (a) Proveu que si $f \in C_0([1, +\infty))$ llavors f és fitada.
 - (b) Proveu que $C_0([1,+\infty))$ amb la norma del suprem és completa.
 - (c) Sigui C([0,1]) l'àlgebra de les funcions reals contínues a [0,1] amb la norma de la convergència uniforme. Definim $\varphi:(0,1]\to[1,+\infty)$ per $\varphi(x)=1/x$ i considerem l'aplicació $\Phi:C_0([1,+\infty))\to C([0,1])$ donada per

$$\Phi(g)(x) = \begin{cases} (g \circ \varphi)(x) & \text{si } x \neq 0, \\ \lim_{x \to +\infty} g(x) & \text{si } x = 0. \end{cases}$$

Proveu que Φ és lineal i que $\Phi(fg) = \Phi(f)\Phi(g)$. Demostreu que Φ és bijectiva i que la norma de $\Phi(f)$ és igual a la norma de f.

(d) Deduïu d'aquí que si $f \in C_0([1, +\infty))$, donat $\epsilon > 0$ existeix $p \in \mathbb{R}[x]$ tal que

$$\sup_{x \in [1, +\infty)} \left| f(x) - p\left(\frac{1}{x}\right) \right| < \epsilon$$

- 25. Siguin P_1 , P_2 dos punts diferents sobre S^1 no diametralment oposats. Siguin $f_i: S^1 \longrightarrow [0,\pi] \subset \mathbb{R}$, $i=1,\ 2$ les funcions que donen la mínima distància angular d'un punt de S^1 a P_1 i P_2 , respectivament.
 - (a) Proveu que les funcions f_i són contínues.
 - (b) Demostreu que $\mathbb{R}[f_1(x), f_2(x)]$ és dens a $C(S^1, \mathbb{R})$ dotada de la convergència uniforme.

Nota: les funcions sobre S^1 són les funcions f sobre $[0, 2\pi]$ que satisfan $f(0) = f(2\pi)$.

26. Sigui $f \in \mathcal{C}([0,1],\mathbb{R})$. Demostreu que, donat $\epsilon > 0$, existeix $p \in \mathbb{R}[x]$, amb p(x) > 0 $\forall x \in [0,1]$, tal que, amb la norma del suprem a [0,1],

$$||f - \log p|| < \epsilon.$$

Ajuda: Considereu $g = \exp f$.

- 27. Demostreu que tota funció contínua f(x) definida a l'interval $[0, \pi]$ es pot aproximar uniformement per polinomis en cosinus, $p(\cos x)$, $p \in \mathbb{R}[x]$. Què passa si l'interval és $[0, 2\pi]$?
- 28. (a) Demostreu que per a tot $n \in \mathbb{N}$,

$$\int_0^\pi x \sin^n x \, \mathrm{d}x = \frac{\pi}{2} \int_0^\pi \sin^n x \, \mathrm{d}x.$$

Indicació: Demostreu que la integral de la diferència és 0.

(b) Demostreu que

$$\int_0^{\pi} x \ p(\sin x) \ dx = \frac{\pi}{2} \int_0^{\pi} p(\sin x) \ dx$$

per a tot polinomi $p \in \mathbb{R}[x]$.

(c) Si $g \in C([-1,1])$, demostreu que

$$\int_0^{\pi} x \ g(\sin x) \ \mathrm{d}x = \frac{\pi}{2} \int_0^{\pi} g(\sin x) \ \mathrm{d}x.$$

(d) Calculeu

$$\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} \, \mathrm{d}x.$$

29. Sigui $\epsilon>0$ i $f\in C([a,b])$. Sigui g contínua i estrictament monòtona en [a,b]. Proveu que existeixen reals c_0,c_1,\ldots,c_n tals que

$$\sup_{x \in [a,b]} \left| f(x) - \sum_{k=0}^{n} c_k g^k(x) \right| < \epsilon,$$

on g^k és la potència k-èssima de g.