Examen del bloc 2 de SIN: Test (1,75 punts)

ETSINF, Universitat Politècnica de València, 18 de gener de 2021

Grup, cognoms i nom: 3X, 3,

Marca cada requadre amb una única opció. Puntuació: $máx(0, (encerts - errors / 3) \cdot 1, 75 / 9)$.

1 $\boxed{\mathrm{B}}$ La figura següent mostra una partició de 5 punts bidimensionals en dos clústers, ullet i \circ :

La transferència del punt $(4,1)^t$ del clúster \bullet al clúster \circ produeix una variació de la suma d'errors quadràtics, ΔJ , tal que: $\Delta J = 0.166667$

- A) $\Delta J < 0$, açò és, la transferència és profitosa.
- B) $0 \le \Delta J < 1$.
- C) $1 \le \Delta J < 2$.
- D) $\Delta J \geq 2$.
- 2 C Suposeu que tenim dues caixes amb 100 pomes cadascuna. La primera caixa conté 63 pomes Gala i 37 Fuji. La segona caixa conté 50 pomes de cada tipus. Ara suposeu que s'escull una caixa a l'atzar, i després una poma a l'atzar de la caixa escollida. Si la poma escollida és Gala, la probabilitat P de que procedisca de la primera caixa és: P=0.56
 - A) $0/4 \le P < 1/4$.
 - B) $1/4 \le P < 2/4$.
 - C) $2/4 \le P < 3/4$.
 - D) $3/4 \le P \le 4/4$.
- $3\ \overline{\mathrm{D}}\ \mathrm{Siga}\ M$ un model de Markov de representació gràfica:

 $\stackrel{.}{_{.}}$ Quantes cadenes distintes de llargària 3 pot generar M? 8

- A) Cap.
- B) Al menys una, però no més de 3.
- C) Més de 3, però no més de 6.
- D) Més de 6.

4 B Siga un problema de classificació en tres classes per a dades del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la taula. Indica en quin interval es troba l'error de Bayes, ε^* :

A)	$arepsilon^*$	<	0.40.

B)
$$0.40 \le \varepsilon^* < 0.45$$
.

C)
$$0.45 \le \varepsilon^* < 0.50$$
.

D)
$$0.50 \le \varepsilon^*$$
.

2	ĸ	$P(c \mid \mathbf{x})$			
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.2	0.7	0.1	0.4
0	1	0.1	0.5	0.4	0.1
1	0	0.2	0.3	0.5	0.5
1	1	0.1	0.6	0.3	0
$\varepsilon^* = 0.42$					

5 A Donat el conjunt de mostres de 2 classes (∘ i •) de la figura de la dreta, ¿quin dels següents arbres de classificació és coherent amb la partició representada?

 $6 \boxed{\mathrm{A}}$ Siga \mathbf{x} un objecte a classificar en una classe de C possibles. Indica quin dels següents classificadors no és (de risc) d'error mínim:

A)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \log p(\mathbf{x}|c)$$

B)
$$c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg\,max}} \frac{p(\mathbf{x},c)}{p(\mathbf{x})}$$

C)
$$c(\mathbf{x}) = \underset{c=1}{\operatorname{arg max}} p(c) p(\mathbf{x}|c)$$

D)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \log p(\mathbf{x}, c)$$

- Nuposeu que estem aplicant l'algorisme d'aprenentatge d'arbres de classificació per a un problema de quatre classes, c=1,2,3,4. L'algorisme ha arribat a un node t el qual inclou les següents dades: 4 de la classe 1, 4 de la 2, 2 de la 3 i 1024 de la 4. La impuresa de t, $\mathcal{I}(t)$, mesurada com l'entropia de la distribució empírica de les probabilitats a posteriori de les classes en t, és: I=0.09
 - A) $0.00 \le \mathcal{I}(t) < 0.50$.
 - B) $0.50 \le \mathcal{I}(t) < 1.00$.
 - C) $1.00 \le \mathcal{I}(t) < 1.50$.
 - D) $1.50 \le \mathcal{I}(t)$.
- 8 D La probabilitat d'error d'un classificador s'estima que és del 17%. Determina quin és el nombre mínim de mostres de test necessari, M, per aconseguir que l'interval de confiança al 95% del dit error no supere el $\pm 1\%$; açò es, I=[16%,18%]: M=5421
 - A) M < 2000.
 - B) $2000 \le M < 3500$.
 - C) $3500 \le M < 5000$.
 - D) $M \ge 5000$.
- 9 C Donat el classificador en dues classes definit per la seua frontera i regions de decisió de la figura de la dreta, ¿quin dels següents vectors de pesos (en notació homogènia) defineix un classificador equivalent al donat?

B)
$$\mathbf{w}_1 = (0.5, 0, 0)^t$$
 i $\mathbf{w}_2 = (0, 1, 0)^t$.

C)
$$\mathbf{w}_1 = (0, 1, 0)^t$$
 i $\mathbf{w}_2 = (0.5, 0, 0)^t$.

D) Tots els vectors de pesos anteriors defineixen classificadors equivalents.

Examen del bloc 2 de SIN: Problema (2 punts)

ETSINF, Universitat Politècnica de València, 18 de gener de 2021

Grup, cognoms i nom: 3X, 3,

Problema sobre Viterbi

Siga M un model de Markov de conjunt d'estats $Q=\{1,2,F\}$; alfabet $\Sigma=\{a,b\}$; probabilitats inicials $\pi_1=\frac{1}{2},\pi_2=\frac{1}{2}$; i probabilitats de transició entre estats i d'emissió de símbols:

A	1	2	F
1	<u>2</u> 5	$\frac{1}{5}$	<u>2</u> 5
2	2 5 2 8	5 3 8	$\frac{3}{8}$

B	a	b
1	$\frac{2}{3}$	$\frac{1}{3}$
2	$\frac{1}{3}$	$\frac{2}{3}$

Es demana:

- 1. (1 punt) Realitzeu una traça de l'algorisme de Viterbi per a obtindre la seqüència d'estats més probable amb la qual M genera la cadena baa.
- 2. (1 punt) A partir de les cadenes d'entrenament baa i bbab, reestimeu els paràmetres d'M mitjançant una iteració de l'algorisme de reestimació per Viterbi.

Solució:

1. Traça de Viterbi per a la cadena baa (els estats 1 i 2 es representen com 0 i 1, respectivament):

```
b a a a 0 0.166692 0.055573 0.014821 0.005929 1 0.333389 0.041680 0.005211 0.001954 Q: 1 0 0
```

2. Reestimació per Viterbi a partir de baa i bbab.

Per a la primera iteració, ja tenim el parell (baa, 211F) calculat en l'apartat anterior. Falta calcular el camí més probable per a la segona cadena d'entrenament:

```
b b a b

0 0.166692 0.027786 0.013896 0.001853 0.000741

1 0.333389 0.083361 0.010422 0.002606 0.000977

Q: 1 1 1 1
```

Així doncs, el segon parell és (bbab, 2222F). A partir d'ambdós parells, obtenim els paràmetres reestimats desitjats:

π	1	2
	$\frac{0}{2}$	$\frac{2}{2}$

A	1	2	F
1	$\frac{1}{2}$	$\frac{0}{2}$	$\frac{1}{2}$
2	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

B	a	b
1	$\frac{2}{2}$	$\frac{0}{2}$
2	$\frac{1}{5}$	$\frac{4}{5}$

Es pot comprovar, mitjançant una nova iteració de reestimació per Viterbi, que l'algorisme convergeix al modelo anterior.