- Vorbemerkungen
 - Leistungsfähigkeit von Rechnern
 - Problemklassen
- · Boolesche Algebra
 - Rechnen im \mathbf{F}_2
 - 1-Bit-Gatter
 - 2-Bit-Gatter
 - n-Bit-Gatter
- · Reversible Operationen
 - Definition: reversible Gatter
 - Landauer Prinzip
 - Shannon Entropie
 - 2-Niveau-Systeme und Bitverluste
- Konstruktion universeller und reversibler Gatter
 - 1-1-Gatter: Identität, NOT
 - 2-2-Gatter: linear, COPY, SWAP, CNOT
 - 3-3-Gatter: nichtlinear, Toffoli
- Quantentheorie
 - Hilbert-Raum
 - Operatoren
 - ONB, inneres Produkt, äußeres Produkt
 - Erwartungswert
 - orthogonaler Projektor
 - Normaloperator
 - unitärer Basiswechsel, biorthogonale Entwicklung
 - inneres Produkt nach Hilbert-Schmidt
 - Superoperator
 - Polarzerlegung, Spektral-Theorem
- Qubits
 - Realisierung
 - Definition
 - fundamentale Operatoren und Pauli-Matrizen
 - Spin-Hamilton-Operator
 - Interpretation von 1-Bit-Gattern
 - Hadamard-Operator und Quantenparallelismus
- · Systeme aus zwei Qubits
 - ohne Wechselwirkung
 - mit Wechselwirkung
 - Verschränkung
 - Maß der Verschränkung, Konkurrenz
 - Bell-Zustände
 - Dichteoperator und Eigenschaften
 - inkohärente Überlagerung
 - reiner Zustand
 - Reinheitsmaß
- Bloch-Kugel
 - allgemeiner Dichteoperator

- Eigenwert-Problem
- Bloch-Vektor auf Bloch-Sphäre
- Reinheitsgrad-Konkurrenz-Beziehung
- · No-cloning Theorem
 - formale Definition: Quantenkopierer
 - Widerspruchsbeweis
- · Quantengatter mit Einzel-Qubit
 - allgemeine Phase
 - $-\pi/8$ -Gatter
 - Verallgemeinerung von NOT
 - Quanten-Euler-Formel
 - Rotationsverhalten und allgemeinste Drehung
 - allgemeiner unitärer Operator
 - ABC-Operatoren
 - Polardarstellung mit Rotation
- · 2-Qubit-Systeme
 - Verschränkungsmaß und Bell-Zustände
 - partielle Spurbildung
 - Wurzel aus $\sigma_{\rm X}$
- · 2-Qubit-Gatter
 - CNOT
 - Verallgemeinerung: CU
 - Toffoli
- · Universeller Satz von Quantengattern
 - CNOT mit Verallgemeinerung
 - $\pi/8$ -Gatter, Hadamard-Gatter
 - Universalsätze
 - 3-Qubit-Systeme
 - Approximation von Einzel-Qubit-Gattern mit erster und zweiter Rotation
- · Quanten-Algorithmen
 - grundlegender Ablauf und Bedingungen
 - Deutsch-Algorithmus
 - Quanten-Fourier-Transformation mit Schaltung
 - Periodensuche und Anwendung QFT mit Euklid-Algorithmus
 - Primfaktorzerlegung durch Ordnungsbestimmung
 - Modulare Exponentiation
 - Shor-Algorithmus
 - Suchalgorithmus nach Grover
- Fehlertheorie
 - Klassische Fehlerkorrektur
 - Bit-Swap und Parität
 - Shor-Code
 - Steame-Code
 - optimierter Code
 - etwas mehr