

VITA: VENTILAÇÃO INTENSIVA TECNOLOGICAMENTE ASSISTIDA

03 de junho de 2020

CONTROLE DOCUMENTAL

Identificação do Documento

Projeto	VITA: Ventilação Intensiva Tecnologicamente Assistida
Nome do Documento	
Nome do Arquivo	

Controlo Versões

Ediçã o	Revisã o	Data	Descrição	Revisto por
1	1	03/06/2020	Versão inicial	Mauro Rosa

Responsável pelo Documento

Nome	Contato

COPYRIGHT♥ INESC P&D BRASIL

Este documento e seu conteúdo são propriedade intelectual do INESC P&D Brasil, protegida nos termos da Lei Federal do Brasil nº 9.610, de 19 de fevereiro de 1998. A divulgação, transcrição ou reprodução deste documento não é permitida sem prévia autorização, por escrito, do INESC P&D Brasil.

Pág. 2 de 51 AS 0016/2017

ÍNDICE

1	RE	ESUMO	5
2	In	ntrodução	5
3	De	escrição do Sistema VITA	5
	3.1	Especificações e funcionalidades do sistema	6
	3.2	Circuito respiratório	8
	3.3	Estrutura mecânica	9
	3.4	Estrutura de acionamento e controle	10
	3.5	Software Embarcado	10
4	Pr	rodução em Rede de Manufatura Distribuída (FASTEN)	10
5	Fu	uncionalidades e Aspectos Clínicos	10
6	Es	strutura mecânica	10
7	Es	strutura de acionamento e controle	10
8	Sc	oftware Embarcado	10
9	Pr	rodução em Rede de Manufatura Distribuída (FASTEN)	10
3	A٧	valiação de Risco	10
4	Er	nsaios Realizados	10
5	Cr	ronograma de Etapas Futuras	11
RE	FERÍ	ÊNCIAS	12
10	Ar	nexos	13
	10.1	1 Lista de Materiais	13
	Р	Peças impressas em PLA	13
	Т	Frem de força	13
	Ε	Estrutura e montagem	14
	C	Componentes elétricos e eletrônicos	15
	C	Circuito respiratório e material para testes	16

Tes	tes de	compatibilidade eletromagnética	16
10.2	Dese	enhos Esquemáticos das Peças e Estruturas Mecânicas	17
Tre	m de 1	força	17
Tril	hos	22	
Car	caça	23	
Sup	ortes	e estruturas impressas	26
Visâ	io Ger	al	33
10.3	Diag	ramas dos Circuitos Eletrônicos	37
10.4	Mon	tagem	45
1.		Preparação da carcaça	45
2.		Montagem da eletrônica	46
3.		Montagem dos trilhos	47
4.		Montagem do trem de força	49
5.		Finalização da montagem	50

1 RESUMO

2 INTRODUÇÃO

Diante do desafio que a pandemia da COVID-19 tem apresentado ao mundo, diversos grupos têm se mobilizado no Brasil para a confecção de EPIs, sistemas para isolamento de pacientes infectados com a COVID 19, e uma grande variedade de respiradores/ventiladores mecânicos automatizados. A grande dificuldade dessas iniciativas é acompanhar a qualidade e a confiabilidade exigida por organismos governamentais de controle para a produção de equipamentos hospitalares

[necessidade de ventiladores]

[escassez de produtos no mercado nacional]

[proposta simples, de baixo custo e possível de ser produzida em escala]

[falar rapidamente sobre propostas similares, focando no PNEUMA]

3 DESCRIÇÃO DO SISTEMA VITA

O reanimador automatizado VITA possui um único modo de operação: Ventilação Controlada a Volume (VCV). A característica principal deste modo de operação é a possibilidade do operador definir o volume entregue ao paciente em cada ciclo respiratório (volume corrente). No sistema VITA, o operador define também a frequência respiratória desejada, com base na qual os ciclos de inspiração são iniciados.

O ciclo de inspiração termina quando o volume preestabelecido é entregue. Nesse instante, tem início o ciclo de expiração que dura até o início da próxima inspiração. No sistema VITA, o operador define ainda a razão I:E, que corresponde à relação entre os tempos de inspiração (T_i) e expiração (T_e) , sendo que o volume corrente deve ser entregue ao paciente dentro do T_i predefinido. Vale destacar que os tempos T_i e T_e são calculados com base no período do ciclo respiratório (inverso da frequência) e da razão I:E.

O VITA é um ventilador baseado no uso de AMBU (reanimador ou ressuscitador manual) e por isso não necessita de uma linha de gases (ar comprimido hospitalar e oxigênio) para operar. Além disso, essa decisão de projeto permite que todo o circuito respiratório seja montado usando produtos com certificação médica para uso em ventilação, garantindo que o ar fornecido ao paciente não entrará em contato materiais tóxicos ou de alguma forma prejudiciais a sua saúde. Na Figura 1, é mostrada uma imagem do sistema VITA ilustrando a estrutura geral e o circuito respiratório.

Figura 1 - Trocar figura por uma mais recente.

Além desses aspectos, o VITA ainda permite a manutenção de uma pressão positiva nas vias aéreas do paciente ao final da expiração (PEEP - Positive End Expiration Pressure), ou seja, a pressão não volta para zero (pressão atmosférica) ao final da expiração. Para tal, é utilizada uma válvula mecânica de PEEP, que é de fácil manuseio, robusta e conhecida pelos profissionais de saúde.

A fim de aumentar a segurança do paciente, o sistema VITA consta ainda com alarmes, como o de pressões altas nas vias aéreas e de vazamentos no circuito respiratório, bem como dispositivos mecânicos de proteção, como a válvula de pop-off do próprio AMBU.

O reanimador automatizado VITA é composto por três principais partes: mecânica, eletrônica e circuito respiratório. A integração desses módulos confere ao dispositivo funcionalidades de ajuste e de monitoramento para controle do ciclo de respiração. Nas seções a seguir, são apresentadas as especificações do sistema e são descritos os módulos que o compõe.

3.1 Especificações e funcionalidades do sistema

O reanimador automatizado VITA foi desenvolvido para aplicação na estabilização e manutenção de pacientes portadores de COVID-19 que apresentam quadro de síndrome de insuficiência respiratória. O paciente deverá estar entubado e completamente sedado, incapaz de gerar nenhum esforço respiratório¹. O reanimador é capaz de atender paciente com diferentes necessidades respiratórias, manter os níveis de saturação de oxigênio do paciente adequados. Para tal, o VITA permite ao usuário definir cinco parâmetros de operação, mostrados na Tabela 1 junto com seus respectivos intervalos.

Tabela 1 - Parâmetros ajustáveis do sistema VITA.

Parâmetro	Intervalo	
Volume corrente	250 a 600 mL	

¹O esforço de respiração pode ser entendido como a criação de uma diferença de pressão (em relação ao ar atmosférico), que geraria um fluxo de entrada de ar.

_

Frequência respiratória	10 a 30 rpm ²	
Razão I:E	1:1 a 1:3	
Pressão máxima	< 40 cmH ₂ O	
Pressão mínima	< 20 cmH ₂ O	

O volume corrente, frequência respiratória e razão I:E permitem ao operador configurar o aparelho de modo a atender demandas respiratórias específicas dos pacientes. Já o limiares de pressão máxima e mínima estão associadas ao disparo de alarmes associados às condições do paciente.

Em relação às variáveis monitoradas, o VITA exibe continuamente para o operador os valores reais ou estimados do volume corrente, frequência respiratória e razão I:E entregues ao paciente. Além destes, são exibidos também os valores da pressão de pico (PIP - do inglês *Peak Inspiration Pressure*) e da PEEP e do fluxo médio com que o volume corrente foi entregue.

Figura 2 - Tela principal do VITA.

Na Figura 2 é ilustrada a tela principal do VITA, onde são mostrados os valores desejados e medidos de volume corrente (VOL), frequência respiratória (RPM) e razão I:E (I-E). Também são mostrados o fluxo médio durante a inspiração e os valores de PIP e PEEP no ciclo atual.

_

²Respirações por minuto

Além dos sensores eletrônicos, o sistema utiliza ainda um manômetro de funcionamento mecânico para gerar um medição da pressão no circuito respiratório, criando uma redundância em relação à essa medida.

O sistema dispõe ainda de alarmes que detectam quatro situações que podem requerer atenção imediata por parte da equipe de profissionais cuidando do paciente, são eles: alarme de falha no acionamento do AMBU; vazamento ou desconexão no circuito respiratório; pressões elevadas nas vias aéreas do paciente; e PEEP abaixo de um limiar desejado. Todos os alarmes são indicados na tela (no local do texto OP NORMAL, mostrado na Figura 2) e por um sinal sonoro intermitente e não são auto-silenciáveis (precisam ser reconhecidos pelo operador). Informações detalhadas sobre as telas, alarmes e uso do VITA são apresentadas na seção 3.4.

3.2 Circuito respiratório

O sistema VITA foi desenvolvido de modo que todo o circuito respiratório é composto por itens com certificação médica para uso em ventilação. Especificamente, o sistema é baseado em um reanimador/ ressuscitador manual (AMBU). Esse dispositivo é amplamente utilizado e comercializado em todo o mundo por características como praticidade, custo, eficácia e portabilidade [1], fornecendo ventilação com pressão positiva a pacientes com necessidade de suporte ventilatório [2]. Após grande aprimoramento ao longo dos anos, os Ambus garantem a segurança ao paciente e praticidade ao profissional que o manipula [1].

No contexto da pandemia de Covid-19, diversos grupos vem desenvolvendo ventiladores simples baseados na automatização do processo de compressão do Ambu [3-8]. Nesses ventiladores, o Ambu é responsável por armazenar o ar que é "bombeado" pela pressão gerada no mesmo a partir do mecanismo automático de compresão. Além disso, o VITA foi idealizado de modo que, se houver quedas da rede de energia elétrica ou uma falha que comprometa o sistema (por exemplo por razão de uma queda ou avaria na estrutura mecânica), o balão pode ser retirado do dispositivo e utilizado manualmente (aplicação usual do Ambu), mantendo o suporte à vida do paciente até que o funcionamento normal seja reestabelecido ou providenciada a troca do equipamento.

[COLOCAR FOTO DO SISTEMA COM CIRCUITO RESPIRATÓRIO COMPLETO]

Para permitir conectar o paciente ao VITA, foi proposto o uso de tubos (traqueia) de PVC ou silicone, conectores e adaptadores, além do uso de filtros para aumentar a segurança do paciente e evitar a contaminação do ambiente pelos gases da expiração. Além disso, o sistema ainda utiliza uma válvula de PEEP para permitir que pressões positivas sejam mantidas nas vias aéreas do paciente.

Figura 3 - Esquema do circuito respiratório do ventilador VITA.

De maneira geral, o balão auto-inflável ($Ambu\ bag$) é responsável por armazenar o ar que será "bombeado" e a conexão de uma linha de O_2 ($oxygen\ line$) e de um reservatório ($oxygen\ reservoir\ bag$) permite mistura de O_2 puro ao ar fornecido ao paciente. Vale destacar que alguns modelos de reanimadores não necessitam de válvula de segurança ($safefy\ inlet\ valve$) para conectar o reservatório.

Uma traqueia é utilizada para conectar o balão à válvula unidirecional padrão do Ambu (Standard Ambu 3-way Valve). Essa válvula é comumente conectada diretamente ao balão, mas optou-se por essa forma de conexão a fim de reduzir o caminho por onde os gases da expiração vão passar. Esse esquema é similar ao utilizados por ventiladores desenvolvidos em outras iniciativas, como o AmboVent³.

A saída da válvula unidirecional é conectada ao circuito por onde passam os gases da inspiração (proveniente do balão auto-inflável) e da expiração. Um adaptador (quando necessário) é usado para conectar a válvula de PEEP à parte da válvula unidirecional por onde saem os gases da expiração. Além disso, entre a válvula unidirecional e o paciente, é inserido um filtro HME que age como uma barreira contra bactérias e vírus (evitando a contaminação do ambiente através dos gases da expiração) e que auxilia na manutenção da umidade e temperatura do ar fornecido ao paciente. Por último, uma linha proximal é utilizada para conectar um sensor de pressão ao circuito respiratório.

3.3 Estrutura mecânica

[materiais utilizados na fabricação]

[principais peças]

³https://members.smoove.io//view.ashx?message=h447000340122368750021965 40122299192&r=1009

[função da estrutura mecânica]

3.4 Estrutura de acionamento e controle

[Descrição geral da parte eletrônica]

[Principais componentes]

[Avaliação de questões como torque e corrente]

[Avaliação do sensor]

[outros]

3.5 Software Embarcado

[versão, especificação de requisitos do software, descrição do processo associado ao ciclo de vida do software]

- 4 PRODUÇÃO EM REDE DE MANUFATURA DISTRIBUÍDA (FASTEN)
- 5 FUNCIONALIDADES E ASPECTOS CLÍNICOS
- 6 **ESTRUTURA MECÂNICA**
- 7 ESTRUTURA DE ACIONAMENTO E CONTROLE
- 8 SOFTWARE EMBARCADO
- 9 PRODUÇÃO EM REDE DE MANUFATURA DISTRIBUÍDA (FASTEN)
- 3 AVALIAÇÃO DE RISCO
- 4 ENSAIOS REALIZADOS

5 CRONOGRAMA DE ETAPAS FUTURAS

REFERÊNCIAS

- [1] Oliveira, Pricila Mara N. de, et al. "Fatores que afetam a ventilação com o reanimador manual autoinflável: uma revisão sistemática." Revista Paulista de Pediatria 29.4 (2011): 645-655.
- [2] Mills, PETER J., et al. "Manual resuscitators and spontaneous ventilation--an evaluation." Critical care medicine 19.11 (1991): 1425-1431.
- [3] "Respirador mecânico baseado em ambu da sofien," 2020. [Online]. Available: https://www.inova.unicamp.br/solucoes-covid-19/respirador-mecanico-baseado-em-ambu-da-sofien
- [4] "Professores da ufla desenvolvem dispositivo capaz de automatizar equipamento deventilação manual (ambu)," 2020. [Online]. Available: https://ufla.br/noticias/pesquisa/13677-professores-da-ufla-desenvolvem-dispositivo-capaz-de-automatizar-equipamento-de-ventilacao-manual-ambu
- [5] "Professores da uema, com parceria, desenvolvem ventilador que auxilia na respiração tempo-rária de pacientes com covid-19," 2020. [Online]. Available: https://www.uema.br/2020/04/professores-da-uema-em-parceria-desenvolvem-ventilador-que-auxilia-na-respiracao-temporaria-de-pacientes-com-covid-19/
- [6] "Inspire ventilador pulmonar aberto de baixo custo," 2020. [Online]. Available: https://www.poli.usp.br/inspire
- [7] "Mit emergency ventilator (e-vent) project," 2020. [Online]. Available: https://e-vent.mit.edu/
- [8] "Oxygen project," 2020. [Online]. Available: https://www.oxygen.protofy.xyz/

10 ANEXOS

10.1 Lista de Materiais

Peças impressas em PLA

Filamento PLA 1,75mm 1kg	1
Conector de ar para Sensor de Pressão	2
Batente Fim de Curso	1
Suporte para chave de Fim de Curso (fixação à corrediça)	1
Suporte para chave de Fim de Curso (parte 2)	2
Suporte para chave de Fim de Curso (parte 1)	2
Bloco ("pad") para aperto do Ambu	2
Haste vertical ("braço") para aperto do Ambu	2
Suporte para placa Arduino Uno R3	1
Suporte para motor NEMA 23 e conjunto de engrenagens	1
Suporte para corrediça (fundos, esquerda)	1
Suporte para corrediça (fundos, direita)	1
Suporte para corrediça (frente)	2
Estrutura lateral de suporte	2
Suporte para válvula Ambu, diâmetro 66mm	1
Suporte para válvula Ambu, diâmetro 40mm	1

Trem de força

Motor de passo NEMA 23 de torque 19 Kg.cm	1
Cremalheira M2 20x20 L120mm	2
Engrenagem M2 Z12 (pinhão)	1
Engrenagem M2 Z10 (conjunto redução)	1
Engrenagem M2 Z24 (conjunto redução)	1
Parafuso M6 x 1.0 x 60 - cabeça sextavada (conjunto redução)	1
Porca sextavada M6 x 1.0 (conjunto redução)	3
Arruela lisa M6 (conjunto redução)	4

Estrutura e montagem

Carcaça em aço carbono galvanizado	1
Pé emborrachado	4
Corrediça telescópica 300mm	2
Parafuso M2.5 x 0.45 x 20mm - cabeça Philips panela ⁴	4
Parafuso M3 x 0.5 x 20mm - cabeça Philips panela ⁵	8
Parafuso M4 x 0.7 x 12mm - cabeça Philips panela ⁶	3
Parafuso M4 x 0.7 x 16mm - cabeça Philips panela ⁷	4
Parafuso M4 x 0.7 x 20mm - cabeça Philips panela ⁸	4
Parafuso M4 x 0.7 x 25mm - cabeça Philips panela ⁹	8
Parafuso M4 x 0.7 x 20mm - cabeça Philips chata ¹⁰	8
Parafuso M4 x 0.7 x 35mm - cabeça Philips panela ¹¹	4
Parafuso M5 x 0.8 x 25mm - cabeça Philips panela ¹²	4
Porca sextavada M2.5 x 0.45	8
Porca sextavada M3 x 0.5	10
Porca sextavada M4 x 0.7	53
Porca sextavada M5 x 0.8	4
Arruela lisa M2.5	8
Arruela de pressão M2.5	8
Arruela lisa M3	14
Arruela de pressão M3	14
Arruela lisa M4	53
Arruela de pressão M4	53
Arruela lisa M5	4
Arruela de pressão M5	4

⁴ Fixação Arduino
⁵ Fixação pés - carcaça e cremalheiras - corrediças
⁶ Suportes chaves de fim de curso
⁷ Suportes corrediças - tampa
⁸ Suporte válvula Ambu - tampa
⁹ Pads Ambu - braços Ambu
¹⁰ Suportes corrediças - corrediças
¹¹ Braços Ambu - cremalheiras
¹² Suporte motor - motor

Componentes elétricos e eletrônicos

Placa Arduino Uno R3	1
Fonte 12V - 1 A com conector P4	1
Cabo USB para Arduino	1
Driver para Motor de Passo 2DM556	1
Fonte de Alimentação Chaveada 24V - 4,16A - 100W	1
Cooler	1
Chave Gangorra 4 terminais à prova d'água com encaixe para painel	1
Tomada de Força Tripolar Macho com Porta Fusível 5x20mm e encaixe para painel	1
Fusível cerâmico 5x20mm 3A	2
Cabo de Força Tripolar 3m	1
Potenciômetro 10k	4
Knob estriado para potenciômetro 6mm	3
Buzzer 5V	1
Display gráfico iluminado LCD 128x64	1
Teclado matricial de membrana com 4 teclas	2
Chave de fim de curso	1
Kit jumpers 120 unidades	1
Cabo blindado 3 vias (0,5m)	2
Kit Conectores KK 6 vias (macho, fêmea e terminais crimp.)	10
Terminal forquilha tipo garfo 1,5 a 2,5mm	12
Terminal encaixe fêmea universal 6,3mm	7
Tubo de solda estanho fio 1mm 25g	1
Kit tubo termoretrátil	1
Fita isolante (rolo 20m)	1
Cabo flexível 0.5mm vermelho	2m
Cabo flexível 0.5mm preto	2m
Cabo flexível 0.5mm azul	2m
Cabo flexível 0.5mm verde	2m

Flat cable colorido 20 vias	0,5m
Cabo flexível 0.75mm preto	2m
Cabo flexível 0.75mm cinza	1.5m
Cabo flexível 0.75mm laranja	1.5m
Cabo 6 vias 22AWG	1m
Conector flat 5 vias	2
Terminal para conector flat	10
Terminal garfo para cabo 1mm	7
Conector universal 6,3mm	9

Circuito respiratório e material para testes

Reanimador Manual (Ambu) Adulto, com conexões e acessórios 1	
Sensor de Pressão MPX5050 1	
Tubo esgoto 100mm (1m)	1
Tudo sold 32mm (1m)	1
CAP esgoto 100mm	2
Flange 32x1 2	
Veda líquido 100g TEK	1

Testes de compatibilidade eletromagnética

Malha de Solda	2
Capacitor eletrolítico de 10mF - 16V (tensão mínima)	4
Capacitor cerâmico de 100nF - 16V (tensão mínima) (ou kit com x unidades)	1
DPS Plug & Use de 3 pinos	2
Diodo TVS Supressor Bidirecional 1.5KE15CA (tensão nominal 15V) 1	
Ferrite Supressor para Cabos	3

10.2 Desenhos Esquemáticos das Peças e Estruturas Mecânicas

Trem de força

Figura 4 - Trem de força da máquina - Vista isométrica.

Figura 5 - Trem de força da máquina - Vista superior.

Figura 6 - Trem de força da máquina - Vista frontal.

Tabela 2 - Itens indicados na Figura 6.

N° DO ITEM	DESCRIÇÃO	QTD
1	Suporte para motor NEMA 23 e conjunto de engrenagens	1
2	Motor NEMA 23 - eixo 6.30mm; altura 76mm	1
3	Engrenagem M2 Z12	1
4	Engrenagem M2 Z10	1
5	Engrenagem M2 Z24	1
6	Parafuso M6 x 1.0 x 60 - cabeça sextavada	1
7	Porca sextavada M6 x 1.0	3
8	Arruela lisa M6 estreita	4
9	Parafuso M4 x 0.7 x 4mm - cabeça Allen interna	2
10	Parafuso M4 x 0.7 x 6mm - cabeça Allen interna	1

11	Arruela lisa M5	2
12	Parafuso M5 x 0.8 x 25mm - cabeça Philips panela	4
13	Arruela de pressão M5	4
14	Porca sextavada M5 x 0.8	4

Figura 7 - Pinhão - Engrenagem M2 Z12 (dimensões dadas em milímetros) - Vistas superior e frontal.

Figura 8 - Conjunto de redução - Engrenagem M2 Z10 para encaixe axial (dimensões dadas em milímetros) - Vistas superior e frontal.

Figura 9 - Conjunto de redução - Engrenagem M2 Z24 para encaixe axial (dimensões dadas em milímetros) - Vistas superior e frontal.

Trilhos

Figura 10 - Cremalheira M2 20x20 L120 (dimensões dadas em milímetros) - Vistas superior e frontal.

Carcaça

Figura 11 - Carcaça em aço galvanizado (dimensões dadas em milímetros) - Vistas lateral esquerda, frontal e superior.

Figura 12 - Carcaça em aço galvanizado - Vista explodida. Tabela 3 - Itens indicados na Figura 12.

N° DO ITEM	DESCRIÇÃO	QTD ·
1	Base	1
2	Tampa	1

3	Painel	1
4	Acabamento tampa	1
5	Canto direito (alça)	1
6	Canto esquerdo (alça)	1
7	Estrutura tubo (alça)	1
8	Parafuso M4 x 0.7 x 10mm - cabeça Allen panela	24
9	Parafuso M5 x 0.8 x 20mm inox - cabeça Allen panela	2
10	Arruela lisa M3 inox	2
11	Porca sextavada M3 x 0.5 inox	2

Suportes e estruturas impressas

Figura 13 - Suporte para motor NEMA 23 e conjunto de redução - Vistas isométrica, superior, posterior e lateral esquerda.

Figura 14 - Suporte para placa Arduino Uno R3 - Vistas isométrica, superior, lateral direita e posterior.

Figura 15 - Suporte para corrediça (fundos, direita) - Vistas isométrica, superior, lateral esquerda e posterior.

Figura 16 - Suporte para corrediça (fundos, esquerda) - Vistas isométrica, superior, lateral esquerda e posterior.

Figura 17 - Suporte para corrediça (frente) - Vistas isométrica, superior, lateral esquerda e posterior.

Figura 18 - Estrutura lateral de suporte (uso opcional na estrutura, caso necessário maior estabilidade) - Vistas isométrica, superior, lateral esquerda e posterior.

Figura 19 - Bloco ("pad") para aperto do Ambu - Vistas isométrica, superior, lateral esquerda e posterior.

Figura 20 - Haste vertical ("braço") para aperto do Ambu - Vistas isométrica, superior, lateral esquerda e posterior.

Figura 21 - Suporte para válvula Ambu, diâmetro 40mm - Vistas isométrica, superior, lateral esquerda e posterior.

Figura 22 - Suporte para válvula Ambu, diâmetro 66mm - Vistas isométrica, superior, lateral esquerda e posterior.

Visão Geral

Figura 23 - Máquina com componentes (carcaça com transparência ativada) - Vista isométrica.

Figura 24 - Máquina com componentes (carcaça com transparência ativada) - Vista superior.

Figura 25 - Componentes para suporte e aperto do Ambu.

Figura 26 - Componentes estruturais e mecânicos (trem de força não indicado).

Figura 27 - Componentes elétricos/eletrônicos e acessórios para sensores.

10.3 Diagramas dos Circuitos Eletrônicos

Figura 28 - Diagrama de conexões elétricas e eletrônicas.

Tabela 4 - Identificação das conexões da Figura 28.

N°	Elemento "A"	Conector "A"	Elemento(s) "B"		Vias/cabos	Descrição
1	Tomada de força com fusível	5 x conector universal 6,3mm	Chave DPST (F/N); Terminal terra (PE) Fonte	universal 6,3mm;	F (azul 1mm); N (verde 1mm); PE (preto 1mm), 8cm cada	
2	Chave DPST (F/N)	4 x conector universal 6,3mm	Terminais fase/neutro (F/N) Fonte 24V	4 x terminal garfo	F (azul 1mm); N (verde 1mm), 20cm cada	Alimentação BT Fonte 24V
3	Terminais fase/neutro (F/N) Fonte 24V	2 x terminal garfo	Vias fase/neutro (F/N) fonte 5V	Solda ao cabo paralelo preto	F (vermelho 1mm - via (+) cabo paralelo preto); N (preto 1mm - via (-) cabo paralelo preto), 15cm cada	Alimentação BT Fonte 5V
4	Terminais +/- Vdc Fonte 24V	garfo	Entradas VDC/GND Driver	Terminal borne 6 vias (2 de 6 vias)	VDC (vermelho); GND (preto) 1mm, 50cm cada	Alimentação Driver (Cooler 24V em paralelo)
5	Saídas A+/- e B+/- Driver	Terminal borne 6 vias (4 de 6 vias)	Motor de passo	Cabos do motor (sem conector)	Azul, vermelho, verde e preto 0,75mm	Alimentação motor
6	Entradas PUL+/- e DIR+/- Driver	Terminal borne 4 vias	Screw Shield Arduino	Solda à Screw Shield	DIR-/PUL- (preto); DIR+ (laranja); PUL+ (cinza) - 0,75mm, 35cm cada	Controle Driver
7	Screw Shield Arduino	Conector KK 7 vias I	3 potenciômetros	Solda aos terminais dos potenciômetros	marrom, laranja e preto 0,75mm, 35cm cada	
8	Screw Shield Arduino	Conector KK 7 vias I	Sensor de pressão	Conector KK 7 vias (somente fêmea) I	Pino 1 (amarelo); 2 (preto) e 3 (laranja) MPX5100 - 0,75mm, 35cm cada	Alimentação e sinal sensor de pressão
9	Screw Shield Arduino	Solda à Screw Shield	Display gráfico LCD	Conector KK 7 vias (somente fêmea) II		Alimentação e sinais display
10	Screw Shield Arduino	Solda à Screw Shield	Buzzer com potenciômetro	terminais do	0,75mm, 5cm cada	Alimentação/ sinal buzzer (regulagem de volume)
11	Screw Shield Arduino	Conector KK 7 vias II	Chave de fim de curso (abertura/expira ção)	Solda aos terminais da chave	GND (preto); 5V (laranja); -9 (preto com amarelo) 0,75mm, 40cm cada	Chave de fim de curso
12	Screw Shield Arduino	Conector KK 7 vias II	Chave de fim de curso (fechamento/insp iração)	Solda aos terminais da chave	vermelho) 0,75mm, 40cm cada	Chave de fim de curso
13	Arduino	Solda à Screw Shield	Teclado matricial B (vertical)	Conector flat 5 vias	GND (preto); A5 (cinza); ~8 (roxo) - flat cable	Teclado matricial B
14	Screw Shield Arduino	Solda à Screw Shield	Teclado matricial A (horizontal)	Conector flat 5 vias	GND (preto); ~6 (branco); ~7	Teclado matricial A

		(cinza); ~4	
		(roxo); ~5 (azul) -	
		flat cable	

A preparação das conexões da eletrônica deverá ser feita na seguinte ordem:

- 1. Fazer jumpers entre os terminais do Display conforme diagrama e soldar um conector KK macho 7 vias conforme Figura 29
- 2. Soldar cabos com 50 cm de comprimento (cada) aos terminais das chaves de fim de curso, cobrindo-os com blindagem em malha e capa isolante
- 3. Fazer cabos e conectores dos potenciômetros e do sensor de pressão conforme Figura 34 e Figura 35
- 4. Soldar os "barramentos" de conexão para placa Arduino à Shield
- 5. Fazer jumpers entre ponto previsto para conectores KK macho e portas do Arduino conforme diagrama e Figura 30
- 6. Soldar dois conectores KK 7 vias macho à Shield conforme Figura 37 e Figura 38
- 7. Soldar flat cables e cabos avulsos à Shield conforme diagrama e Figura 36
- 8. Soldar potenciômetro (utilizado como resistor variável) e Buzzer à Shield, conforme diagrama e Figura 37

Todos cabos que recebem terminais de conectores de encaixe devem ter 8mm decapados em cada extremidade, estanhados e inseridos nos respectivos terminais, conforme Figura 31, Figura 32 e Figura 33.

Após crimpagem, deve-se soldar a ponta estanhada ao conector, tomando cuidado para não causar a retração da cobertura isolante com exposição prolongada ao calor. Quando aplicável, os tubos termoretráteis devem ser colocados nos cabos antes, a uma distância que não cause retração, do ponto de solda.

Figura 29 - Jumpers e conector KK 7 vias macho nos terminais do Display.

Figura 30 - Barramento de conexão para Arduino e jumpers na Shield.

Figura 31 - Vias estanhadas do cabo (flat cable), terminais para inserção e conector 5 vias - conexão 13 ou 14.

Figura 32 - Vias com terminais crimpados para inserção - conexão 13 ou 14.

Figura 33 - Conector flat 5 vias - conexão 13 ou 14.

- 1: Potenciômetros $10k\Omega$
- 2: Conector KK 7 vias (somente fêmea) I
- 3: Sinal potenciômetros $10k\Omega$ Azul=A1; Verde=A2; Marrom=A3
- 4: Derivação GND entre conexões 7 e 8
- 5: Derivação 5V entre conexões 7 e 8

Figura 35 - Conexão 7 (9 fios da esquerda) e conexão 8 (3 fios da direita) - Detalhe.

- 1: Derivação GND entre potenciômetros
- 2: Resistor $10k\Omega$ e derivação 5V' entre potenciômetros
- 3: Capacitor cerâmico 470pF entre sinal (amarelo) e GND (preto)
- 4: Capacitor eletrolítico $1\mu F$ entre GND (preto) e 5V (laranja)

Comprimento total de cada cabo (incluindo derivações, quando houver): 35cm.

Figura 36 - Screw shield com conexões 6, 9, 10, 13 e 14.

- 1: Flat cable display conexão 9
- 2: Flat cable teclado matricial A conexão 14
- 3: Conector KK 7 vias (macho) II conexões 11 e 12
- 4: Conector KK 7 vias (macho) I conexões 7 e 8
- 5: Flat cable teclado matricial B conexão 13
- 6: Controle driver conexão 6
- 7: Buzzer e potenciômetro $10k\Omega$ (somente 2 terminais utilizados) conexão 10

Comprimento total dos cabos (flat cable) das conexões 13 e 14: 20 cm (cada).

Comprimento total do cabo (flat cable) da conexão 9: 20 cm.

Comprimento total de cada cabo da conexão 6: 35 cm.

Comprimento de cada jumper sobre a screw shield: d_{shield} + 1 cm.

A screw shield tem trilhas centrais e laterais conectadas a GND e 5V.

Figura 37 - Detalhe da Shield com componentes e cabos soldados (vista superior).

Figura 38 - Detalhe da Shield com componentes e cabos soldados (vista inferior).

10.4 Montagem

A montagem da máquina está dividida em cinco macro etapas:

- 1. Preparação da carcaça
- 2. Montagem da eletrônica, a qual compreende também os componentes elétricos (e estruturas associadas) As conexões descritas no item 10.3, incluindo conectores e cabos, já devem estar preparadas
- 3. Montagem dos trilhos, os quais compreendem as corrediças e demais peças móveis (e estruturas associadas)
- 4. Montagem do trem de força, o qual compreende o motor e engrenagens (e estruturas associadas)
- 5. Finalização da montagem, incluindo o fechamento da carcaça

1. Preparação da carcaça

- 1. Retirar os 24 parafusos Allen M4 e soltar a tampa (necessário chave Allen 2,5)
- 2. Retirar os 2 parafusos Allen M5 do painel frontal e soltar a alça (necessário chave Allen 3 e chave de boca ou alicate de bico curvo para porcas)
- 3. Retirar as 2 porcas M3 da parte interna do painel frontal e soltar o painel frontal
- 4. Posicionar e fixar adesivo com serigrafia no painel frontal
- 5. Prender pés emborrachados com parafusos M3x16mm e arruelas lisas nos furos externos da parte inferior da base
- 6. Prender conectores de ar para sensor de pressão na lateral da tampa
- 7. Fixar suportes para válvula Ambu na tampa

2. Montagem da eletrônica

- 1. Passar conectores dos teclados de membrana conforme Figura 39 e fixar nas posições (colar)
- 2. Prender display nos 4 parafusos M2,5, com porcas e arruelas lisas, na parte frontal da base
- 3. Inserir potenciômetros na parte frontal da base (fixar temporariamente com fita)
- 4. Fixar painel frontal e alça à frente da base (porcas M3 e parafusos + porcas M5)
- 5. Fixar Knobs nos três potenciômetros no painel frontal
- 6. Posicionar e fixar Driver do motor e suporte da eletrônica (com placa Arduino e Shield já fixos)
- 7. Prender tomada de força e chave gangorra na parte traseira da base e fazer a conexão entre estas
- 8. Posicionar e fixar fonte 24V e fonte 5V

Figura 39 - Inserção dos teclados de membrana com painel frontal removido.

3. Montagem dos trilhos

- 1. Fixar suportes e batente para chave de fim de curso a uma das corrediças (a qual ficará no lado esquerdo da máquina) conforme Figura 40 e Figura 41
- 2. Fixar cremalheiras às corrediças (com corrediça totalmente estendida conforme Figura 42) com parafusos M4, caso cremalheiras de Nylon, ou M3, caso cremalheiras de Aço, e arruelas de pressão
- 3. Fixar corrediças (com trecho contendo cremalheira colapsado) aos suportes, encaixando temporariamente aos parafusos soldados no interior da base para alinhar os furos
- 4. Fixar braços Ambu às cremalheiras
- 5. Inserir porcas M4 nos vãos retangulares na parte superior dos suportes das corrediças (fixar com fita para evitar deslocamento durante finalização da montagem), conforme Figura 43.

Figura 40 - Suporte chave de fim de curso e batente de fim de curso.

Figura 41 - Suporte chave de fim de curso e fixação à corrediça.

Figura 42 - Fixação da cremalheira (em Nylon) à corrediça.

Figura 43 - Indicação dos vãos para inserção de porcas M4 (setas em verde).

4. Montagem do trem de força

- 1. Fixar pinhão ao eixo do motor com parafuso M4 Allen cabeça interna, alinhando com o chanfro do eixo
- 2. Montar eixo do conjunto de redução no suporte até terceira arruela (de baixo para cima) conforme Figura 6
- 3. Montar conjunto de redução no eixo e fixar conforme Figura 6
- 4. Encaixar motor no suporte, alinhando os dentes do pinhão com os dentes da parte inferior do conjunto de redução, e fixar em cada um dos 4 furos com parafuso M5x25mm, porca M5, arruela lisa (nos dois parafusos mais externos, como na Figura 44) e arruela de pressão

Figura 44 - Fixação do motor ao suporte (canto externo).

5. Finalização da montagem

- 1. Conectar Display, teclados matriciais e potenciômetros e sensor de pressão (conector KK 7 vias I) ao Shield e Shield ao Driver
- 2. Conectar fonte 24V à chave gangorra e ao terminal terra da tomada de força e fonte 5V aos terminais F e N da fonte 24V
- 3. Posicionar (mas não fixar) os trilhos na parte interna da carcaça, como na Figura 45
- 4. Posicionar o trem de força como na Figura 46 e alinhar os trilhos encostando as cremalheiras na parte superior do conjunto de redução, fixando os 4 suportes para corrediças e o suporte do motor e conjunto de redução uma vez alinhados
- 5. Conectar chaves de fim de curso ao Shield (conector KK 7 vias II), motor ao Driver e alimentação Fonte 24V ao Driver (conforme diagrama apresentado na Figura 28)
- 6. Conectar sensor de pressão com tubo flexível ao conector de ar na lateral da tampa
- 7. Inserir 4 parafusos M4 nos furos acima dos suportes das corrediças, conforme Figura 47.
- 8. Posicionar tampa e fixar com os 24 parafusos M4
- Inserir coifa ou chapas metálicas para vedação sobre os braços do ambu
- 10. Prender "Pads" aos braços do Ambu

Figura 45 - Posicionamento dos trilhos no interior da carcaça.

Figura 46 - Posicionamento dos trilhos e do trem de força no interior da carcaça.

Figura 47 - Indicação do posicionamento dos 4 parafusos M4 nos suportes das corrediças.