Ramsey 4.2 Tangent and Normal Q.16

Nelakuditi Rahul Naga - Al20BTECH11029

August 28, 2021

Question

Ramsey 4.2 Tangent and Normal Q.16

Find the equations of the circles that touch the lines:

$$\begin{pmatrix} 0 & 1 \end{pmatrix} x = 0 \tag{1}$$

$$(0 \ 1) x = 4$$
 (2)

$$(2 1) \times = 2$$
 (3)

Solution

General Equation of a Circle

The general equation of a circle can be expressed as:

$$x^{\mathsf{T}}x + 2u^{\mathsf{T}}x + f = 0 \tag{4}$$

If *r* is radius and c is the centre of the circle we have:

$$f = \mathbf{u}^{\mathsf{T}}\mathbf{u} - r^2 \tag{5}$$

$$x = -u$$
 (6)

The standard basis vectors in 2D plane are given by:

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{7}$$

$$e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{8}$$

We note that the lines (1) and (2) are **parallel** with a common normal along e₂.

Thus the common normal passing through the centre of the circle is of the form:

$$\mathsf{e}_1^{\ \prime}\mathsf{x} = k \tag{9}$$

$$e_1^T x = k \tag{9}$$
$$(1 0) x = k \tag{10}$$

where k is a constant.

Let the circles of the form (4) touch the lines (1) and (2) at M and N. M is the point of intersection of the following lines:

$$(1 0) \times = k$$
 (11)
 $(0 1) \times = 0$ (12)

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = \mathbf{0} \tag{12}$$

The above equations can be expressed as the matrix equation:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \times = \begin{pmatrix} k \\ 0 \end{pmatrix} \tag{13}$$

The augmented matrix for the above equation is given by :

$$\begin{pmatrix} 1 & 0 & k \\ 0 & 1 & 0 \end{pmatrix} \tag{14}$$

As the left part is already a identity matrix, the intersection point M is given by:

$$M = \binom{k}{0} \tag{15}$$

N is the point of intersection of the following lines:

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \times = k \tag{16}$$

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \times = 4 \tag{17}$$

The above equations can be expressed as the matrix equation :

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \times = \begin{pmatrix} k \\ 4 \end{pmatrix} \tag{18}$$

The augmented matrix for the above equation is given by :

$$\begin{pmatrix} 1 & 0 & k \\ 0 & 1 & 4 \end{pmatrix} \tag{19}$$

As the left part is already a identity matrix ,the intersection point N is given by :

$$N = \binom{k}{4} \tag{20}$$

The centre c of the circle must be the mid-point of M and N as M and N are the touch points of parallel tangents to a circle. Therefore we have:

$$c = \frac{\binom{k}{0} + \binom{k}{4}}{2} \tag{21}$$

$$c = \binom{k}{2} \tag{22}$$

Also the radius r of the circles is given by:

$$r = \frac{\|\mathsf{M} - \mathsf{N}\|}{2} \tag{23}$$

$$r = \frac{\sqrt{(k-k)^2 + (0-4)^2}}{2} \tag{24}$$

$$r = 2 \tag{25}$$

We have :

$$c = \binom{k}{2} \tag{26}$$

$$\implies \mathsf{u} = -\mathsf{c} = \begin{pmatrix} -k \\ -2 \end{pmatrix} \tag{27}$$

From (5) we have:

$$f = \begin{pmatrix} -k & -2 \end{pmatrix} \begin{pmatrix} -k \\ -2 \end{pmatrix} - r^2 \tag{28}$$

$$f = k^2 + 2^2 - 2^2 (29)$$

$$f = k^2 (30)$$

The equation of the remaining line is

$$(2 1) x = 2$$
 (31)

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

General equation of a 2nd degree conic and point of contact of the tangent

The general equation of a second degree can be expressed as :

$$x^{\mathsf{T}}\mathsf{V}\mathsf{x} + 2\mathsf{u}^{\mathsf{T}}\mathsf{x} + f = 0 \tag{32}$$

The points of contact q, of a line with a normal vector n to the conics in (32) are given by:

$$q = V^{-1} (\kappa n - u)$$
 (33)

$$\kappa = \pm \sqrt{\frac{\mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{n}}} \tag{34}$$

We know that, for a circle,

$$V = I \tag{35}$$

and from the properties of an Identity matrix,

$$\mathsf{I}^{-1} = \mathsf{I} \tag{36}$$

$$IX = X \tag{37}$$

From (5), (31) and (35) we have:

$$\kappa = \pm \sqrt{\frac{r^2}{\begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}}} \tag{38}$$

$$=\pm\sqrt{\frac{4}{5}}\tag{39}$$

$$=\pm\frac{2}{\sqrt{5}}\tag{40}$$

ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ . ㅌ . 쒸٩@

Therefore from (33) we have:

$$q = \pm \left(\frac{\frac{4}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}\right) - \begin{pmatrix} -k\\ -2 \end{pmatrix} \tag{41}$$

$$= \begin{pmatrix} \frac{\pm 4}{\sqrt{5}} + k \\ \frac{\pm 2}{\sqrt{5}} + 2 \end{pmatrix} \tag{42}$$

Now q lies on the line (31) therefore,

$$(2 1) \left(\frac{\pm 4}{\sqrt{5}} + k \right) = 2$$
 (43)

$$\implies k = \pm \sqrt{5} \tag{44}$$

$$\implies f = k^2 = 5 \tag{45}$$

Hence the tangent circles are given by the equations:

$$x^{T}x + (2\sqrt{5} -4)x + 5 = 0$$
 (46)

$$x^{T}x + (-2\sqrt{5} -4)x + 5 = 0$$
 (47)

The illustration of the circles and the lines is shown below:

Figure: Circles touching given lines with centres C1,C2