

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 14/35, 38/16, C07H 16/12, 21/04, C12N 5/10, 15/63, C12Q 1/68, G01N 33/569		A1	(11) International Publication Number: WO 97/00067 (43) International Publication Date: 3 January 1997 (03.01.97)
(21) International Application Number: PCT/US96/10375		(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 14 June 1996 (14.06.96)		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(30) Priority Data: 60/000,254 15 June 1995 (15.06.95) US			
(71) Applicant (<i>for all designated States except US</i>): UNIVERSITY OF VICTORIA [CA/CA]; 3800 Finnerty Road, Victoria, British Columbia V8W 2Y2 (CA).			
(72) Inventor; and			
(75) Inventor/Applicant (<i>for US only</i>): NANO, Francis, E. [US/CA]; #4-245 Ontario Street, Victoria, British Columbia V8V 1N1 (CA).			
(74) Agent: POLLEY, Richard, J.; Klarquist Sparkman Campbell Leigh & Whinston, L.L.P., One World Trade Center, Suite 1600, 121 S.W. Salmon Street, Portland, OR 97204-2988 (US).			
(54) Title: MYCOBACTERIUM TUBERCULOSIS DNA SEQUENCES ENCODING IMMUNOSTIMULATORY PEPTIDES			
(57) Abstract			
<p>Nucleotide sequences isolated from <i>Mycobacterium tuberculosis</i> are disclosed. These sequences are shown to encode immunostimulatory peptides. The invention encompasses, among other things, vaccine preparations formulated using these peptides.</p>			

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Larvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

MYCOBACTERIUM TUBERCULOSIS DNA SEQUENCES ENCODING
IMMUNOSTIMULATORY PEPTIDES

CROSS REFERENCE TO RELATED CASES

5 This application claims the benefit of U.S. Provisional Application No. 60/000,254, filed June 15, 1995, which is incorporated herein by reference.

I. BACKGROUND

A. THE RISE OF TUBERCULOSIS

10 Over the past few years the editors of the Morbidity and Mortality Weekly Report have chronicled the unexpected rise in tuberculosis cases. It has been estimated that worldwide there are one billion people infected with *M. tuberculosis*, with 7.5 million active cases of tuberculosis. Even in the United States, tuberculosis continues to be a major problem especially among the homeless, Native Americans, African-Americans, immigrants, and the elderly. HIV-infected individuals represent the newest group to be affected by tuberculosis. Of the 88 million new cases of tuberculosis expected in this decade approximately 10% will be attributable to HIV infection.

15 The emergence of multi-drug resistant strains of *M. tuberculosis* has complicated matters further and even raises the possibility of a new tuberculosis epidemic. In the U.S. about 14% of *M. tuberculosis* isolates are resistant to at least one drug, and approximately 3% are resistant to at least two drugs. *M. tuberculosis* strains have even been isolated that are resistant to all seven drugs in the repertoire of drugs commonly used to combat tuberculosis. Resistant strains make treatment of tuberculosis extremely difficult: for example, infection with *M. tuberculosis* strains resistant to isoniazid and rifampin leads to mortality rates of approximately 90% among HIV-infected individuals. The mean time to death after diagnosis in this population is 4-16 weeks. One study reported that of nine immunocompetent health care workers and prison guards infected with drug resistant *M. tuberculosis*, five died. The expected mortality rate for infection with drug sensitive *M. tuberculosis* is 0%.

20 The unrelenting persistence of mycobacterial disease worldwide, the emergence of a new, highly susceptible population, and the recent appearance of drug resistant strains point to the need for new and better prophylactic and therapeutic treatments of mycobacterial diseases.

B. TUBERCULOSIS AND THE IMMUNE SYSTEM

25 Infection with *M. tuberculosis* can take on many manifestations. The growth in the body of *M. tuberculosis* and the pathology that it induces is largely dependent on the type and vigor of the immune response. From mouse genetic studies it is known that innate properties of the macrophage play a large role in containing disease (1). Initial control of *M. tuberculosis* may also be influenced by reactive $\gamma\delta$ T cells. However, the major immune response responsible for containment of *M. tuberculosis* is via helper T cells (Th1) and to a lesser extent cytotoxic T cells (2). Evidence suggests that there is very little role for the humoral response. The ratio of responding Th1 to Th2 cells has been proposed to be involved in the phenomenon of suppression.

30 Th1 cells are thought to convey protection by responding to *M. tuberculosis* T cell epitopes and secreting cytokines, particularly interferon- γ , which stimulate macrophages to kill *M. tuberculosis*. While such an immune response normally clears infections by many facultative intracellular pathogens, such as *Salmonella*, *Listeria* or *Francisella*, it is only able to contain the growth of other pathogens such as *M. tuberculosis* and *Toxoplasma*. Hence, it is likely that *M. tuberculosis* has the ability to suppress a clearing immune response, and mycobacterial components such as lipoarabinomannan are thought to be potential agents of this suppression. Dormant *M. tuberculosis* can remain in the body for long periods of time and can emerge to cause disease when the immune system wanes due to age or other effects such as infection with HIV-1.

Historically it has been thought that one needs replicating *Mycobacteria* in order to effect a protective immunization. An hypothesis explaining the molecular basis for the effectiveness of replicating mycobacteria in inducing protective immunity has been proposed by Orme and co-workers (3). These scientists suggest that antigens are pinocytosed from the mycobacterial-laden phagosome and used in antigen presentation. This 5 hypothesis also explains the basis for secreted proteins effecting a protective immune response.

Antigens that stimulate T cells from *M. tuberculosis* infected mice or from PPD-positive humans are found in both the whole mycobacterial cells and also in the culture supernatants (3, 4, 5-7, 34). Recently Pal and Horwitz (8) were able to induce partial protection in guinea pigs by vaccinating with *M. tuberculosis* supernatant fluids. Similar results were found by Andersen using a murine model of tuberculosis (9). Other studies include 10 reference nos. 34, 12. Although these works are far from definitive they do strengthen the notion that protective epitopes can be found among secreted proteins and that a non-living vaccine can protect against tuberculosis.

For the purposes of vaccine development one needs to find epitopes that confer protection but do not contribute to pathology. An ideal vaccine would contain a cocktail of T-cell epitopes that preferentially stimulate Th1 cells and are bound by different MHC haplotypes. Although such vaccines have never been made there is at 15 least one example of a synthetic T-cell epitope inducing protection against an intracellular pathogen (10). It is an object of this invention to provide *M. tuberculosis* DNA sequences that encode bacterial peptides having an immunostimulatory activity. Such immunostimulatory peptides will be useful in the treatment, diagnosis and prevention of tuberculosis.

II. SUMMARY OF THE INVENTION

20 The present invention provides DNA sequences isolated from *Mycobacterium tuberculosis*. Peptides encoded by these DNA sequences are shown to stimulate the production of the macrophage-stimulating cytokine, gamma interferon ("INF- γ "), in mice. Critically, the production of INF- γ by CD4 cells in mice has been shown to correlate with maximum expression of protective immunity against tuberculosis (11). Furthermore, in human patients with active "minimal" or "contained" tuberculosis, it appears that the containment of the disease may be 25 attributable, at least in part, to the production of CD4 Th-1-like lymphocytes that release INF- γ (12).

Hence, the DNA sequences provided by this invention encode peptides that are capable of stimulating T-cells to produce INF- γ . That is, these peptides act as epitopes for CD4 T-cells in the immune system. Studies have demonstrated that peptides isolated from an infectious agent and which are shown to be T-cell epitopes can 30 protect against the disease caused by that agent when administered as a vaccine (13, 10). For example, T-cell epitopes from the parasite *Leishmania major* have been shown to be effective when administered as a vaccine (10, 13-14). Therefore, the immunostimulatory peptides (T-cell epitopes) encoded by the disclosed DNA sequences may be used, in purified form, as a vaccine against tuberculosis.

As noted, the nucleotide sequences of the present invention encode immunostimulatory peptides. In a number of instances, these nucleotide sequences are only a part of a larger open reading frame (ORF) of an 35 *M. tuberculosis* operon. The present invention enables the cloning of the complete ORF using standard molecular biology techniques, based on the nucleotide sequences provided herein. Thus, the present invention encompasses both the nucleotide sequences disclosed herein and the complete *M. tuberculosis* ORFs to which they correspond. However, it is noted that since each of the nucleotide sequences disclosed herein encodes an immunostimulatory peptide, the use of larger peptides encoded by the complete ORFs is not necessary for the practice of the invention. 40 Indeed, it is anticipated that, in some instances, proteins encoded by the corresponding ORFs may be less immunostimulatory than the peptides encoded by the nucleotide sequences provided herein.

One aspect of the present invention is an immunostimulatory preparation comprising at least one peptide encoded by the DNA sequences presented herein. Such a preparation may include the purified peptide or peptides and one or more pharmaceutically acceptable adjuvants, diluents and/or excipients. Another aspect of the

invention is a vaccine comprising one or more peptides encoded by nucleotide sequences provided herein. This vaccine may also include one or more pharmaceutically acceptable excipients, adjuvants and/or diluents.

Another aspect of the present invention is an antibody specific for an immunostimulatory peptide encoded by a nucleotide sequence of the present invention. Such antibodies may be used to detect the presence of *M. tuberculosis* antigens in medical specimens, such as blood or sputum. Thus, these antigens may be used to diagnose tuberculosis infections.

The present invention also encompasses the diagnostic use of purified peptides encoded by the nucleotide sequences of the present invention. Thus, the peptides may be used in a diagnostic assay to detect the presence of antibodies in a medical specimen, which antibodies bind to the *M. tuberculosis* peptide and indicate that the subject from which the specimen was removed was previously exposed to *M. tuberculosis*.

The present invention also provides an improved method of performing the tuberculin skin test to diagnose exposure of an individual to *M. tuberculosis*. In this improved skin test, purified immunostimulatory peptides encoded by the nucleotide sequences of this invention are employed. Preferably, this skin test is performed with one set of the immunostimulatory peptides, while another set of the immunostimulatory peptides is used to formulate vaccine preparations. In this way, the tuberculin skin test will be useful in distinguishing between subjects infected with tuberculosis and subjects who have simply been vaccinated. In this manner, the present invention may overcome a serious limitation inherent in the present BCG vaccine/tuberculin skin test combination.

Other aspects of the present invention include the use of probes and primers derived from the nucleotide sequences disclosed herein to detect the presence of *M. tuberculosis* nucleic acids in medical specimens.

A further aspect of the present invention is the discovery that a significant proportion of the immunostimulatory peptides are homologous to proteins known to be located in bacterial cell surface membranes. This discovery suggests that membrane-bound peptides, particularly those from *M. tuberculosis*, may be a new source of antigens for use in vaccine preparations.

III. BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the deduced amino acid sequence of the full length MTB2-92 protein.

Fig. 2 shows an SDS polyacrylamide gel (12%) representing the different stages of the purification of MTB2-92. Lane 1:- Molecular weight markers (high range, GIBCO-BRL, Grand Island, NY, U.S.A.); Lane 2:- the IPTG induced crude bacterial lysate of *E. coli* JM109 containing pMAL-MTB2-92; Lane 3:- Uninduced crude bacterial lysate of *E. coli* JM109 containing pMAL-MTB2-92; Lane 4:- Eluate from the amylose-resin column containing the MBP-MTB2-92 fusion protein; Lane 5:- Eluate shown in previous lane after cutting with protease Factor Xa; Lane 6:- Eluate from the Ni-NTA column, containing MTB2-92.

IV. DESCRIPTION OF THE INVENTION

A. DEFINITIONS

Particular terms and phrases used herein have the meanings set forth below.

"Isolated". An "isolated" nucleic acid has been substantially separated or purified away from other nucleic acid sequences in the cell of the organism in which the nucleic acid naturally occurs, i.e., other chromosomal and extrachromosomal DNA and RNA. The term "isolated" thus encompasses nucleic acids purified by standard nucleic acid purification methods. The term also embraces nucleic acids prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids.

The nucleic acids of the present invention comprise at least a minimum length able to hybridize specifically with a target nucleic acid (or a sequence complementary thereto) under stringent conditions as defined below. The length of a nucleic acid of the present invention is preferably 15 nucleotides or greater in length, although a shorter nucleic acid may be employed as a probe or primer if it is shown to specifically hybridize under stringent conditions with a target nucleic acid by methods well known in the art.

"Probes" and "primers". Nucleic acid probes and primers may readily be prepared based on the nucleic acid sequences provided by this invention. A "probe" comprises an isolated nucleic acid attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. Methods for labeling and guidance in the choice of labels appropriate for various purposes are discussed, e.g., in reference nos. 15 and 16.

5 "Primers" are short nucleic acids, preferably DNA oligonucleotides 15 nucleotides or more in length, which are annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods known in the art.

10 As noted, probes and primers are preferably 15 nucleotides or more in length, but, to enhance specificity, probes and primers of 20 or more nucleotides may be preferred.

15 Methods for preparing and using probes and primers are described, for example, in reference nos. 15, 16 and 17. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, © 1991, Whitehead Institute for Biomedical Research, Cambridge, MA).

20 "Substantial similarity". A first nucleic acid is "substantially similar" to a second nucleic acid if, when optimally aligned (with appropriate nucleotide insertions or deletions) with the other nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 75%-90% of the nucleotide bases, and preferably greater than 90% of the nucleotide bases. ("Substantial sequence complementarity" requires a similar degree of sequence complementarity.) Sequence similarity can be determined by comparing the nucleotide sequences of two nucleic acids using sequence analysis software such as the Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, Madison, WI).

25 "Operably linked". A first nucleic acid sequence is "operably" linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame.

30 "Recombinant". A "recombinant" nucleic acid is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.

35 "Stringent Conditions" and "Specific". The nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence, e.g., to a full length *Mycobacterium tuberculosis* gene that encodes an immunostimulatory peptide.

40 The term "stringent conditions" is functionally defined with regard to the hybridization of a nucleic-acid probe to a target nucleic acid (i.e., to a particular nucleic acid sequence of interest) by the hybridization procedure discussed in Sambrook et al. (1989) (reference no. 15) at 9.52-9.55. See also, reference no. 15 at 9.47-9.52, 9.56-9.58; reference no. 18 and reference no. 19.

45 Nucleic-acid hybridization is affected by such conditions as salt concentration, temperature, or organic solvents, in addition to the base composition, length of the complementary strands, and the number of nucleotide-base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art.

In preferred embodiments of the present invention, stringent conditions are those under which DNA molecules with more than 25% sequence variation (also termed "mismatch") will not hybridize. Such conditions

are also referred to as conditions of 75% stringency (since hybridization will occur only between molecules with 75% sequence identity or greater). In more preferred embodiments, stringent conditions are those under which DNA molecules with more than 15% mismatch will not hybridize (conditions of 85% stringency). In most preferred embodiments, stringent conditions are those under which DNA molecules with more than 10% mismatch will not hybridize (i.e. conditions of 90% stringency).

When referring to a probe or primer, the term "specific for (a target sequence)" indicates that the probe or primer hybridizes under stringent conditions substantially only to the target sequence in a given sample comprising the target sequence.

"Purified" - a "purified" peptide is a peptide that has been extracted from the cellular environment and separated from substantially all other cellular peptides. As used herein, the term peptide includes peptides, polypeptides and proteins. In preferred embodiments, a "purified" peptide is a preparation in which the subject peptide comprises 80% or more of the protein content of the preparation. For certain uses, such as vaccine preparations, even greater purity may be necessary.

"Immunostimulatory" - the phrase "immunostimulatory peptide" as used herein refers to a peptide that is capable of stimulating INF- γ production in the assay described in section B 5 below. In preferred embodiments, an immunostimulatory peptide is one capable of inducing greater than twice the background level of this assay, determined using T-cells stimulated with no antigens or negative control antigens. Preferably, the immunostimulatory peptides are capable of inducing more than 0.01 ng/ml of INF- γ in this assay system. In more preferred embodiments, an immunostimulatory peptide is one capable of inducing greater than 10 ng/ml of INF- γ in this assay system.

B. MATERIALS AND METHODS

1. STANDARD METHODOLOGIES

The present invention utilizes standard laboratory practices for the cloning, manipulation and sequencing of nucleic acids, purification and analysis of proteins and other molecular biological and biochemical techniques, unless otherwise stipulated. Such techniques are explained in detail in standard laboratory manuals such as Sambrook et al. (15); and Ausubel et al. (16).

Methods for chemical synthesis of nucleic acids are discussed, for example, in reference nos. 20 and 21. Chemical synthesis of nucleic acids can be performed, for example, on commercial automated oligonucleotide synthesizers.

30 2. ISOLATION OF *MYCOBACTERIUM TUBERCULOSIS* DNA SEQUENCES ENCODING IMMUNOSTIMULATORY PROTEINS

Mycobacterium tuberculosis DNA was obtained by the method of Jacobs et al. (22). Samples of the isolated DNA were partially digested with one of the following restriction enzymes *Hin*PI, *Hpa*II, *Aci*I, *Taq*I, *Bsa*II, *Nar*I. Digested fragments of 0.2-5kb were purified from agarose gels and then ligated into the *Bsr*BI site in front of the truncated *phoA* gene in one or more of the three phagemid vectors pJDT1, pJDT2, and JDT3.

A schematic representation of the phagemid vector pJDT2 is provided in Mdluli et al. (1995) (reference no. 31). The pJDT vectors were specifically designed for cloning and selecting genes encoding cell wall-associated, cytoplasmic membrane associated, periplasmic or secreted proteins (and especially for cloning such genes from GC rich genomes, such as the *Mycobacterium tuberculosis* genome). The vectors have a *Bsr*BI cloning site in frame with the bacterial alkaline phosphatase gene (*phoA*) such that cloning of an in-frame sequence into the cloning site will result in the production of a fusion protein. The *phoA* gene encodes a version of the alkaline phosphatase that lacks a signal sequence; hence, only if the DNA cloned into the *Bsr*BI site includes a signal sequence or a transmembrane sequence can the fusion protein be secreted to the medium or inserted into cytoplasmic membrane, periplasm or cell wall. Those clones encoding such fusion proteins may be detected by

plating clones on agar plates containing the indicator 5-bromo-4-chloro-3-indolyl-phosphate. Alkaline phosphatase converts this indicator to a blue colored product. Hence, those clones containing secreted alkaline phosphatase fusion proteins will produce the blue color.

5 The three vectors in this series (pJDT1, 2 and 3) have the *Bst*BI restriction sites located in different reading frames with respect to the *phoA* gene. This increases the likelihood of cloning any particular gene in the correct orientation and reading frame for expression by a factor of 3. Reference no. 31 describes pJDT vectors in detail.

3. SELECTION OF SECRETED FUSION PROTEINS

10 The recombinant clones described above were transformed into *E. coli* and plated on agar plates containing the indicator 5-bromo-4-chloro-3-indolyl-phosphate. Production of blue pigmentation, produced as a result of the action of alkaline phosphatase on the indicator, indicated the presence of secreted cytoplasmic membrane periplasmic, cell wall associated or outer membrane fusion proteins (because the bacterial alkaline phosphatase gene in the vector lacks a signal sequence and could not otherwise escape the bacterial cell). A similar technique has been used to identify *M. tuberculosis* genes encoding exported proteins by Lim et al. (32).

15 Those clones producing blue pigmentation were picked and grown in liquid culture to facilitate the purification of the alkaline phosphatase fusion proteins. These recombinant clones were designated according to the restriction enzyme used to digest the *Mycobacterium tuberculosis* DNA (thus, clones designated A#2-1, A#2-2 etc were produced using *Mycobacterium tuberculosis* DNA digested with *Aci*I).

4. PURIFICATION OF SECRETED FUSION PROTEINS

20 PhoA fusion proteins were extracted from the selected *E. coli* clones by cell lysis and purified by SDS polyacrylamide gel electrophoresis. Essentially, individual *E. coli* clones are grown overnight at 30°C with shaking in 2 ml LB broth containing ampicillin, kanamycin and IPTG. The cells are precipitated by centrifugation and resuspended in 100 µL Tris -EDTA buffer. 100 µL lysis buffer (1% SDS, 1mMEDTA, 25mM DTT, 10% glycerol and 50 mM tris-HCl, pH 7.5) is added to this mixture and DNA released from the cells is sheared by passing the mixture through a small gauge syringe needle. The sample is then heated for 5 minutes at 100°C and loaded onto an SDS PAGE gel (12 cm x 14 cm x 1.5 mm, made with 4% (w/v) acrylamide in the stacking section and 10% (w/v) acrylamide in the separating section). Several samples from each clone are loaded onto each gel.

25 The samples are electrophoresed by application of 200 volts to the gel for 4 hours. Subsequently, the proteins are transferred to a nitrocellulose membrane by Western blotting. A strip of nitrocellulose is cut off to be processed with antibody, and the remainder of the nitrocellulose is set aside for eventual elution of the protein. 30 The strip is incubated with blocking buffer and then with anti-alkaline phosphatase primary antibody, followed by incubation with anti-mouse antibody conjugated with horse radish peroxidase. Finally, the strip is developed with the NEN DuPont Renaissance kit to generate a luminescent signal. The migratory position of the PhoA fusion protein, as indicated by the luminescent label, is measured with a ruler, and the corresponding region of the undeveloped nitrocellulose blot is excised.

35 This region of nitrocellulose, which contains the PhoA fusion protein, is then incubated in 1 ml 20% acetonitrile at 37°C for 3 hours. Subsequently, the mixture is centrifuged to remove the nitrocellulose and the liquid is transferred to a new test tube and lyophilized. The resulting protein pellet is dissolved in 100 µL of endotoxin-free, sterile water and precipitated with acetone at -20°C. After centrifugation the bulk of the acetone is removed and the residual acetone is allowed to evaporate. The protein pellet is re-dissolved in 100 µL of sterile phosphate buffered saline. This procedure can be scaled up by modification to include IPTG induction 2 hours prior to cell harvesting, washing nitrocellulose membranes with PBS prior to acetonitrile extraction and lyophilization of acetonitrile extracted and acetone precipitated protein samples.

5. DETERMINATION OF IMMUNOSTIMULATORY CAPACITY IN MICE

The purified alkaline phosphatase - *Mycobacterium tuberculosis* fusion peptides encoded by the recombinant clones were then tested for their ability to stimulate INF- γ production in mice. The test used to determine INF- γ stimulation is as essentially that described by Orme et al. (11).

5 Essentially, the assay method is as follows: The virulent strain *M. tuberculosis* Erdman is grown in Proskauer Beck medium to mid-log phase, then aliquoted and frozen at -70°C for use as an inoculant. Cultures of this bacterium are grown and harvested and mice are inoculated with 1 x 10⁵ viable bacteria suspended in 200 μ l sterile saline via a lateral tail vein on day one of the test.

10 Bone marrow-derived macrophages are used in the test to present the bacterial alkaline phosphatase-*Mycobacterium tuberculosis* fusion protein antigens. These macrophages are obtained by harvesting cells from mouse femurs and culturing the cells in Dulbecco's modified Eagle medium as described by Orme et al. (11). Eight to ten days later, up to ten μ g of the fusion peptide to be tested is added to the macrophages and the cells are incubated for 24 hours.

15 The CD4 cells are obtained by harvesting spleen cells from the infected mice and then pooling and enriching for CD4 cells by removal of adherent cells by incubation on plastic Petri dishes, followed by incubation for 60 minutes at 37°C with a mixture of J11d.2, Lyt-2.43, and GL4 monoclonal antibody (mAb) in the presence of rabbit complement to deplete B cells and immature T cells, CD8 cells, and $\gamma\delta$ cells, respectively. The macrophages are overlaid with 10⁶ of these CD4 cells and the medium is supplemented with 5 U IL-2 to promote continued T cell proliferation and cytokine secretion. After 72 hours, cell supernatants are harvested from sets of triplicate wells and assayed for cytokine content.

20 Cytokine levels in harvested supernatants are assayed by sandwich ELISA as described by Orme et al. (11).

6. DETERMINATION OF IMMUNOSTIMULATORY CAPACITY IN HUMANS

25 The purified alkaline phosphatase - *Mycobacterium tuberculosis* fusion peptides encoded by the recombinant clones or by synthetic peptides are tested for their ability to induce INF- γ production by human T cells in the following manner.

30 Blood from tuberculin positive people (producing a tuberculin positive skin test) is collected in EDTA coated tubes, to prevent clotting. Mononuclear cells are isolated using a modified version of the separation procedure provided with the NycoPrep™ 1.077 solution (Nycomed Pharma AS, Oslo, Norway). Briefly, the blood is diluted in an equal volume of a physiologic solution, such as Hanks Balanced Salt solution (HBSS), and then gently layered over top of the NycoPrep solution in a 2 to 1 ratio in 50 ml tubes. The tubes are centrifuged at 800 x g for 20 minutes and the mononuclear cells are then removed from the interface between the NycoPrep solution and the sample layer. The plasma is removed from the top of the tube and filtered through a 0.2 micron filter and is then added to the tissue culture media. The mononuclear cells are washed twice: the cells are diluted in a physiologic solution, such as HBSS or RPMI 1640, and centrifuged at 400 x g for 10 minutes. The mononuclear cells are then resuspended to the desired concentration in tissue culture media (RPMI 1640 containing 10% autologous serum, Hepes, non-essential amino acids, antibiotics and polymixin B). The mononuclear cells are then cultured in 96 well microtitre plates.

35 Peptides or PhoA fusion proteins are then added to individual wells in the 96 well plate, and cells are then placed in an incubator (37°C, 5% CO₂). Samples of the supernatants (tissue culture media from the wells containing the cells) are collected at various time points (from 3 to 8 days) after the addition of the peptides or PhoA fusion proteins. The immune responsiveness of T cells to the peptides and PhoA fusion proteins is assessed by measuring the production of cytokines (including gamma-interferon).

Cytokines are measured using an Enzyme Linked Immunosorbent Assay (ELISA), the details of which are described in the Cytokine ELISA Protocol in the PharMingen catalogue (PharMingen, San Diego, California). For measuring for the presence of human gamma-interferon, wells of a 96 well microtitre plate are coated with a capture antibody (anti-human gamma-interferon antibody). The sample supernatants are then added to individual wells. Any gamma-interferon present in the sample will bind to the capture antibody. The wells are then washed. A detection antibody (anti-human gamma-interferon antibody), conjugated to biotin, is added to each well, and will bind to any gamma-interferon that is bound to the capture antibody. Any unbound detection antibody is washed away. An avidin peroxidase enzyme is added to each well (avidin binds tightly to the biotin on the detection antibody). Any excess unbound enzyme is washed away. Finally, a chromogenic substrate for the enzyme is added and the intensity of the colour reaction that occurs is quantitated using an ELISA plate reader. The quantity of the gamma-interferon in the sample supernatants is determined by comparison with a standard curve using known quantities of human gamma-interferon.

Measurement of other cytokines, such as Interleukin-2 and Interleukin-4, can be determined using the same protocol, with the appropriate substitution of reagents (monoclonal antibodies and standards).

15 7. DNA SEQUENCING

The sequencing of the alkaline phosphatase fusion clones was undertaken using the AmpliCycle thermal sequencing kit (Perkin Elmer, Applied Biosystems Division, 850 Lincoln Centre Drive, Foster City, CA 94404, U.S.A.), using a primer designed to read out of the alkaline phosphatase gene into the *Mycobacterium tuberculosis* DNA insert, or primers specific to the cloned sequences.

20 C. RESULTS

1. IMMUNOSTIMULATORY CAPACITY

More than 300 fusion clones were tested for their ability to stimulate INF- γ production. Of these, 80 clones were initially designated to have some ability to stimulate INF- γ production. Tables 1 and 2 show the data obtained for these 80 clones. Clones placed in Table 1 showed the greatest ability to stimulate INF- γ production (greater than 10 ng/ml of INF- γ) while clones placed in Table 2 stimulated the production of between 2 ng/ml and 10 ng/ml of INF- γ . Background levels of INF- γ production (i.e., levels produced without any added *M. tuberculosis* antigen) were subtracted from the levels produced by the fusions to obtain the figures shown in these tables.

30

TABLE 1

Immunostimulatory AP-fusion clones

No.	Name	INF	Fus-MW	TBport	coding	Similarity (score)
35 1	AcI#1-152	>40,000	~65,000	~23.400	~633	<i>M. avium</i> acetolactate synthase (98+)
2	AcI#1-247	>40,000	~160,000	~118.400	~3,198	peptide synthetase (153)
3	AcI#1-264	>40,000	~72,500	~30.900	~833	nothing evident
4	AcI#1-435	>40,000	~80,000	~38,400	~1,038	<i>M. smegmatis</i> ethambutol resistance gene EmbA (624)

- 9 -

TABLE 1

Immunostimulatory AP-fusion clones

No.	Name	INF	Fus-MW	TBport	coding	Similarity (score)
5	5 HinP#1-27	>20,000	59,000	17,400	471	nothing evident
	6 HinP#2-92	>20,000	74,600	33,000	891	1. <i>M. tuberculosis</i> ORF MTCY190.11C (1794 ⁺) 2. Cytochrome C oxidase subunit II (141)
	7 HinP#2-145	>20,000	60,000	13,900	375	nothing evident
	8 HinP#2-150	>20,000	55,000	13,400	362	nothing evident
	9 HinP#1-200	>20,000	53,500	11,900	321	nothing evident
	10 HinP#3-30	>20,000	69,000	27,400	740	<i>M. leprae</i> chromosome sequence in B983 region (281 ⁺)
	11 Acil#2-2	>20,000	70,000	28,400	768	<i>M. leprae</i> chromosome sequence within region B1529 (139)
	12 Acil#2-23	>20,000	75,000	33,400	903	Region within sequence MD0009 of the <i>M. leprae</i> chromosome
	13 Acil#2-506	>20,000	60,000	18,400	498	nothing evident
	14 Acil#2-511	>20,000	~60,000	~18,400	~498	nothing evident
10	15 Acil#2-639	>20,000	~60,000	~18,400	~498	nothing evident
	16 Acil#2-822	>20,000	~45,000	~3,400	~93	<i>M. tuberculosis</i> sequence within region MD0074 (U27357) (551 ⁺)
	17 Acil#2-823	>20,000	~46,500	~4,900	~132	nothing evident
	18 Acil#2-825	>20,000	~150,000	~110,000	~2,970	<i>M. tuberculosis</i> sequence MTCY31.03c (431)
	19 Acil#2-827	>20,000	~48,000	~6,400	~174	cytochrome d oxidase
15	20 Acil#2-898	>20,000	~49,000	~7,400	~201	nothing evident

- 10 -

TABLE 1

Immunostimulatory AP-fusion clones

No.	Name	INF	Fus-MW	TBport	coding	Similarity (score)	
21	Acil#2-1084	>20,000	~73,000	~31,400	~849	Sequences within <i>M. tuberculosis</i> clone X68281 (96 ⁺) and <i>M. leprae</i> clone B983 (122 ⁺)	
22	Acil#3-47	>20,000	~55,000	~13,400	~363	nothing evident	
23	Acil#3-133	>20,000	~55,000	~13,400	~363	nothing evident	
24	Acil#3-166	>20,000	~48,000	~6,400	~174	nothing evident	
5	25	Acil#3-167	>20,000	~65,000	~23,400	~633	<i>M. leprae</i> DNA sequence within region B983 (588 ⁺)
	26	Acil#3-206	>20,000	~65,000	~23,400	~633	<i>M. leprae</i> DNA sequence within chromosome region MD0092 (91)
	27	HinP#1-31	14,638	~46,000	~4,400	~120	<i>M. tuberculosis</i> 19 kDa lipo-protein antigen precursor (218)
	28	HinP#1-144	13,546	~70,000	~23,900	~645	<i>M. leprae</i> DNA sequence within chromosome region B983 (78)
	29	HinP#1-3	11,550	~49,000	~7,400	~200	<i>M. leprae</i> DNA sequence within chromosome region B983 (100 ⁺)
10	30	Acil#1-486	11,416	~45,000	~3,400	~93	nothing known
	31	Acil#1-426	11,135	~47,500	~5,900	~160	Dipeptide transport protein (65)
	32	Acil#2-916	10,865	~75,000	~33,400	~903	nothing evident

Abbreviations: INF: pg/ml of INF- γ produced using fusion to stimulate immune T-cells. Fus. MW: Relative molecular weight of the fusion protein in Da. TB port.: Estimated amount of fusion attributable to the *M. tuberculosis* protein. Coding: Amount of DNA needed to encode TB portion of fusion proteins (in base pairs). Similarity: Amino acid sequence similarity seen by analysis of DNA via the BLASTX or TBLASTX programs. Scores for alignments are indicated in (). Due to the high G+C nature of M. TB DNA many false positives are evident. Only scores above 100 have good credibility.

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

5

10

20

15

25

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)
1	Acil#1-62	3,126	~43,000	~1,400	~39	<i>M. tuberculosis</i> MTCY 190.11C cytochrome C oxidase subunit II (198) <i>M. leprae</i> sequence in B1551 region (1087 ⁺)
2	Acil#2-14	6,907	~45,000	~3,400	~93	nothing evident
3	Acil#2-26	3,089	~72,000	~30,400	~822	nothing evident
4	Acil#2-35	3,907	~45,000	~3,400	~93	Possibly similar to <i>M. leprae</i> sequence in the B983 region (116 ⁺)
5	Acil#2-147	5,464				nothing evident
6	Acil#2-508	7,052	~70,000	~28,400	~768	Similar to sequence of the <i>M. leprae</i> ORF encoding gp U00018 (125) and similar to sequence in the B2168 c2-209 region of <i>M. leprae</i> genome (225 ⁺)
7	Acil#2-510	2,445	~69,000	~27,400	~741	nothing evident
8	Acil#2-523	2,479	~50,000	~8,400	~228	Similar to <i>M. tuberculosis</i> sequence z70692 from clone Y427 (96)
9	Acil#2-676	3,651	~70,000	~28,400	~768	Similar to Acil#2-639
10	Acil#2-834	5,942	~60,000	~13,900	~375	nothing evident
11	Acil#2-854	5,560	~44,000	~2,400	~66	nothing evident
12	Acil#2-872	2,361	~47,000	~5,400	~147	nothing evident
13	Acil#2-874	2,171	~45,000	~3,400	~93	nothing evident
14	Acil#2-8841	2,729	~85,000	~43,400	~1173	Isocitrate dehydrogenase (247)
15	Acil#2-894	3,396	~70,000	~28,400	~768	nothing evident
16	Acil#2-1014	6,302	~45,000	~3,400	~93	nothing evident
17	Acil#2-1018	4,642	~55,000	~13,400	~363	nothing evident
18	Acil#2-1025	3,582	~45,000	~3,400	~93	nothing evident
19	Acil#2-1034	2,736	~80,000	~38,400	~103	nothing evident

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)	
20	AciI#2-1035	3,454	~46,000	~4,400	~120	nothing evident	
21	AciI#2-1089	8,974	~65,000	~23,400	~633	Similar to <i>M. tuberculosis</i> sequence X75361 and sequence in <i>M. bovis</i> MD0057 and U34849 regions. Immunogenic proteins MPB64 and MPT64 are homologous.	
22	AciI#2-1090	7,449	~65,000	~23,400	~633	nothing evident	
23	AciI#2-1104	5,148	~68,000	~26,400	~714	Similar to <i>M. tuberculosis</i> sequence X80268 and to cds 1 (256) in <i>M. leprae</i> sequence region MD0045 (169+); secreted antigenic protein.	
5	24	AciI#3-9	3,160	~67,000	~25,400	~687	nothing evident
	25	AciI#3-12	3,891	~75,000	~33,400	~903	Penicillin binding protein; similar to <i>M. leprae</i> sequence within genomic clone B1529
	26	AciI#3-15	4,019	~65,000	~23,400	~633	nothing evident
	27	AciI#3-21	2,301	~69,000	~27,400	~741	nothing evident
	28	AciI#3-78	2,905	~65,000	~23,400	~633	Similar to sequence within <i>M. leprae</i> genomic clone B983
10	29	AciI#3-134	3,895	~45,000	~3,400	~93	nothing evident
	30	AciI#3-204	4,774	~60,000	~13,900	~375	nothing evident
	31	AciI#3-214	7,333	~50,000	8,400	~228	nothing evident
	32	AciI#3-243	2,857	~65,000	~23,400	~633	nothing evident
	33	AciI#3-281	2,943	~65,000	~23,400	~633	Similar to sequence within <i>M. leprae</i> genomic clone B983
15	34	Bsa HI#1-21	8,122	~90,000	~48,400	~1,209	nothing evident
	35	HinP#1-12	2,905	~66,000	~24,400	~660	possible tyrosine phosphatase

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)
5	36 HinP#2-23	2,339	~43,000	~1,400	-39	Similar to sequence in <i>M. leprae</i> genomic clone MD0009-0-(B13) (354)
	37 HinP#1-142	6,258	~69,000	~27,400	-741	nothing evident
	38 HinP#2-4	6,567	~66,000	~24,400	-660	nothing evident
	39 HinP#2-143	3,689	~65,000	~23,400	-633	Similar to sequence in <i>M. leprae</i> genomic clone B1529
	40 HinP#2-145A	2,314	~64,000	~22,400	-606	nothing evident
	41 HinP#2-147	7,021	65,000	23,400	-633	nothing evident
	42 HinP#3-28	2,980	70,000	28,400	-768	Similar to <i>M. leprae</i> sequence in genomic clones MD0085 and sequence for <i>M. leprae</i> gp U00013 cds 27 of B1496 region
	43 HinP#3-34	2,564	71,000	29,400	-795	Similar to sequence in <i>M. leprae</i> genomic clone B2168 (U00018 cds 9)
	44 HinP#3-41	3,296	48,000	6,400	-1,728	Similar to antigen 85 complex protein subunit
	45 HpaII#1-3	2,360	65,000	23,400	-633	Cytochrome C oxidase subunit II (156) Similar to <i>M. tuberculosis</i> sequence on clone MTCY 190.11c

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)
46	HpaII#1-8	2,048	110,000	68,400	~ 1,848	nothing evident
47	HpaII#1-10	4,178	55,000	13,400	~ 633	Similar to immunogenic proteins MPB64/MPT64
48	HpaII#1-13	3,714	43,000	1,400	~ 39	nothing evident

Abbreviations: INF: pg/ml of INF- γ produced using fusion to stimulate immune T-cells. Fus. MW: Relative molecular weight of the fusion protein. TB port.: Estimated amount of fusion attributable to the *M. tuberculosis* protein. Coding: Amount of DNA needed to encode TB portion of fusion proteins. Similarity: Amino acid sequence similarity seen by analysis of DNA via the BLASTX or TBLASTX⁺ programs. Scores for alignments are indicated in (). Due to the high G+C nature of M. TB DNA many false positives are evident. Only scores above 100 have good credibility.

5

10

15

20

2. DNA SEQUENCING AND DETERMINATION OF OPEN READING FRAMES

DNA sequence data for the sequences of the *Mycobacterium tuberculosis* DNA present in the clones shown in Tables 1 and 2 are shown in the accompanying Sequence Listing. The sequences are believed to represent the coding strand of the *Mycobacterium* DNA. In most instances, these sequences represent only partial sequences of the immunostimulatory peptides and, in turn, only partial sequences of *Mycobacterium tuberculosis* genes. However, each of the clones from which these sequences were derived encodes, by itself, at least one immunostimulatory T-cell epitope. As discussed in part V below, one of ordinary skill in the art will, given the information provided herein, readily be able to obtain the immunostimulatory peptides and corresponding full length *M. tuberculosis* genes using standard techniques. Accordingly, the nucleotide sequences of the present invention encompass not only those sequences presented in the sequence listings, but also the complete nucleotide sequence encoding the immunostimulatory peptides as well as the corresponding *M. tuberculosis* genes. The nucleotide abbreviations employed in the sequence listings are as follows in Table 3:

TABLE 3

	Symbol	Meaning
5	A.....	A; adenine
	C.....	C; cytosine
	G.....	G; guanine
	T.....	T; thymine
	U.....	U; uracil
	M.....	A or C
10	R.....	A or G
	W.....	A or T/U
	S.....	C or G
	Y.....	C or T/U
	K.....	G or T/U
	V.....	A or C or G; not T/U
15	H.....	A or C or T/U; not G
	D.....	A or G or T/U; not C
	B.....	C or G or T/U; not A
	N.....	(A or C or G or T/U) or (unknown or other or no base)
	indeterminate*

* indicates an unreadable sequence compression.

The DNA sequences obtained were then analyzed with respect to the G+C content as a function of codon position over a window of 120 codons using the 'FRAME' computer program (Bibb, M.J.; Findlay, P.R.; and Johnson, M.W.; Gene 30: 157-166 (1984)). This program uses the bias of these nucleotides for each of the codon positions to enable the correct reading frame to be identified.

3. IDENTIFICATION OF T CELL EPITOPES IN THE IMMUNOSTIMULATORY PEPTIDES

The T-Site program, by Feller, D.C. and de la Cruz, V.F., MedImmune Inc., 19 Firstfield Rd., Gaithersburg, M.D. 20878, U.S.A., was used to predict T-cell epitopes from the determined coding sequences. It uses a series of four predictive algorithms. In particular, peptides were designed against regions indicated by the algorithm "A" motif which predicted alpha-helical periodicity (Margalit, H.; Spouge, J.L.; Cornette, J.L.; Cease, K.B.; DeLisi, C.; and Berzofsky, J.A., *J. Immunol.*, 138:2213 (1987)) and amphipathicity and those indicated by the algorithm "R" motif which identifies segments which display similarity to motifs known to be recognized by MHC class I and class II molecules (Rothbard, J.B. and Taylor, W.R., *EMBO J.*, 7:93 (1988)). The other two algorithms identify classes of T-cell epitopes recognized in mice.

4. SYNTHESIS OF SYNTHETIC PEPTIDES CONTAINING T CELL EPITOPES IN IDENTIFIED IMMUNOSTIMULATORY PEPTIDES

A series of staggered peptides were designed to overlap regions indicated by the T-site analysis. These were synthesized by Chiron Mimotopes Pty. Ltd. (11055 Roselle St., San Diego, CA 92121, U.S.A.).

Peptides designed from sequences described in this application include:

Hin P#1-200 (6 peptides)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
5	VHLATGMAETVASFSPS	HPI1-200/2
	REVVHLATGMAETVASF	HPI1-200/3
	RDSREVVHLATGMAETV	HPI1-200/4
	DFNRDSREVVHLATGMA	HPI1-200/5
10	ISAAVVTGYLWRTPDR	HPI1-200/6
	AVVFLCAAAISAAVVTG	HPI1-200/7

AciI#2-827 (14 peptides)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
15	VTDNPAWYRLTKFFGKL	CD-2/1/96/1
	AWYRLTKFFGKLFLINF	CD-2/1/96/2
	KFFGKLFLINFAIGVAT	CD-2/1/96/3
	FLINFAIGVATGIVQEF	CD-2/1/96/4
	AIGVATGIVQEFQFGMN	CD-2/1/96/5
20	TGIVQEFEGMWNSEYS	CD-2/1/96/6
	EFQFGMWNSEYSRFGD	CD-2/1/96/7
	MNWSEYSRFGDVFVGAP	CD-2/1/96/8
	WSEYSRFGDVFVGAPLA	CD-2/1/96/9
	EYSRFVGDVFGAPLAME	CD-2/1/96/10
25	SRFVGDVFGAPLAMESL	CD-2/1/96/11
	WIFGWNRLPRLVHLACI	CD-2/1/96/12
	WNRLPRLVHLACIWIVA	CD-2/1/96/13
	GRAELSSIVVLLTNNTA	CD-2/1/96/14

HinP#1-3 (2 peptides)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
30	GKTYDAYFTDAGGITPG	HPI1-3/2
	YDAYFTDAGGITPGNSV	HPI1-3/3

HinP#1-3 / HinP#1-200 combined peptides

	<u>Peptide Sequences</u>	<u>Peptide Name</u>
40	WPQGKTYDAYFTDAGGI	(HinP#1-3)
	ATGMAETVASFSPSEG	(HinP#1-200)

AciI#2-823 (1 peptide)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
45	GWERRLRHAVSPKDPAQ	AI2-823/1

HinP#1-31 (4 peptides)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
50	TGSGETTAAGTTASPG	HPI1-31/1
	GAAILVAGLSGCSSNKS	HPI1-31/2
	AVAGAAILVAGLSGCSS	HPI1-31/3
	LTVAVAGAAILVAGLSG	HPI1-31/4

These synthetic peptides were resuspended in phosphate buffered saline to be tested to confirm their ability to function as T cell epitopes using the procedure described in part IV(B)(6) above.

5. CONFIRMATION OF IMMUNOSTIMULATORY CAPACITY USING T CELLS FROM TUBERCULOSIS PATIENTS

The synthetic peptides described above, along with a number of the PhoA fusion proteins shown to be immunostimulatory in mice were tested for their ability to stimulate gamma interferon production in T-cells from tuberculin positive people using the methods described in part IV(B)(6) above. For each assay, 5×10^5 mononuclear cells were stimulated with up to 1 $\mu\text{g/ml}$ *M. tuberculosis* peptide or up to 50 ng/ml Pho A fusion protein. *M. tuberculosis* filtrate proteins, Con A and PHA were employed as positive controls. An assay was run with media alone to determine background levels, and Pho A protein was employed as a negative control.

The results, shown in Table 4 below, indicate that all of the peptides tested stimulated gamma interferon production from T-cells of a particular subject.

TABLE 4

	Peptide or Pho A Fusion Protein Name	Concentration of Interferon-gamma (pg/ml)	Concentration of Interferon-gamma minus background (pg/ml)
5	CD-2/1/96/1	256.6	153.3
	CD-2/1/96/9	187.6	84.3
	CD-2/1/96/10	134.0	30.7
10	CD-2/1/96/11	141.6	38.3
	CD-2/1/96/14	310.2	206.9
	HPII-3/2	136.3	23.0
	HPII-3/3	264.2	160.9
	Acil 2-898	134.0	30.7
15	Acil 3-47	386.8	283.5
	<i>M. tuberculosis</i> filtrate proteins (10 µg/ml)	256.6	153.3
	<i>M. tuberculosis</i> filtrate proteins (5 µg/ml)	134.0	30.7
	Con A (10 µg/ml)	2 839	2 735.7
20	PHA (1%)	10 378	10 274.7
	Pho A control (10 µg/ml)	26.7	0
	Background	103.3	0

25 V. CLONING OF FULL LENGTH *MYCOBACTERIUM TUBERCULOSIS* T-CELL EPITOPE ORFS

Most the sequences presented represent only part of a larger *M. tuberculosis* ORF. If desired, the full length *M. tuberculosis* ORFs that include these provided nucleotide sequences can be readily obtained by one of ordinary skill in the art, based on the sequence data provided herein.

A. GENERAL METHODOLOGIES

30 Methods for obtaining full length genes based on partial sequence information are standard in the art and are particularly simple for prokaryotic genomes. By way of example, the full length ORFs corresponding to the DNA sequences presented herein may be obtained by creating a library of *Mycobacterium tuberculosis* DNA in a plasmid, bacteriophage or phagemid vector and screening this library with a hybridization probe using standard colony hybridization techniques. The hybridization probe consists of an oligonucleotide derived from a DNA sequence according to the present invention labelled with a suitable marker to enable detection of hybridizing clones. Suitable markers include radionuclides, such as P-32 and non-radioactive markers, such as biotin. Methods for constructing suitable libraries, production and labelling of oligonucleotide probes and colony hybridization are standard laboratory procedures and are described in standard laboratory manuals, such as in reference nos. 15 and 16.

40 Having identified a clone that hybridizes with the oligonucleotide, the clone is identified and sequenced using standard methods such as described in Chapter 13 of reference no. 15. Determination of the translation initiation point of the DNA sequence enables the ORF to be located.

An alternative approach to cloning the full length ORFs corresponding to the DNA sequences provided herein is the use of the polymerase chain reaction (PCR). In particular, the inverse polymerase chain reaction (IPCR) is useful to isolate DNA sequences flanking a known sequence. Methods for amplification of flanking sequences by IPCR are described in Chapter 27 of reference no. 17 and in reference no. 23.

5 Accordingly, one aspect of the present invention is small oligonucleotides encompassed by the DNA sequences presented in the Sequence Listing. These small oligonucleotides are useful as hybridization probes and PCR primers that can be employed to clone the corresponding full length *Mycobacterium tuberculosis* ORFs. In preferred embodiments, these oligonucleotides will comprise at least 15 contiguous nucleotides of a DNA sequence set forth in the Sequence Listing, and in more preferred embodiments, such oligonucleotides will comprise at least 10 20 contiguous nucleotides of a DNA sequence set forth in the Sequence Listing.

One skilled in the art will appreciate that hybridization probes and PCR primers are not required to exactly match the target gene sequence to which they anneal. Therefore, in another embodiment, the oligonucleotides will comprise a sequence of at least 15 nucleotides and preferably at least 20 nucleotides, the oligonucleotide sequence being substantially similar to a DNA sequence set forth in the Sequence Listing. Preferably, such oligonucleotides will share at least about 75%-90% sequence identity with a DNA sequence set forth in the Sequence Listing and more preferably the shared sequence identity will be greater than 90%.

B. EXAMPLE - CLONING OF THE FULL LENGTH ORF CORRESPONDING TO CLONE HinP #2-92

Using the techniques described below, the full length gene corresponding to the clone HinP #2-92 was obtained. This gene, herein termed *mub2-92* includes an open-reading frame of 1089 bp (identified based on the G+C content relating to codon position). The alternative 'GTG' start codon was used, and this was preceded (8 bps upstream) by a Shine-Dalgarno motif. The gene *mub2-92* encoded a protein (termed MTB2-92) containing 363 amino acid residues with a predicted molecular weight of 40,436.4 Da.

Sequence homology comparisons of the predicted amino acid sequence of MTB2-92 with known proteins in the database indicated similarity to the cytochrome c oxidase subunit II of many different organisms. This integral membrane protein is part of the electron transport chain, subunits I and II forming the functional core of the enzyme complex.

1. CLONING THE FULL LENGTH GENE CORRESPONDING TO HinP #2-92

The plasmid pHin2-92 was restricted with either *Bam*H1 or *Eco*R1 and then subcloned into the vector M13. 30 The insert DNA fragments were sequenced under the direction of M13 universal sequencing primers (Yanisch-Perron, C. et al., 1985) using the AmpliCycle thermal sequencing kit (Perkin Elmer, Applied Biosystems Division, 850 Lincoln Centre Drive, Foster City, CA 94404, U.S.A.). The 5'-partial MTB2-92 DNA sequence was aligned using a GeneWorks (Intelligenetics, Mountain View, CA, U.S.A.) program. Based on the sequence data obtained, two oligomers were synthesized. These oligonucleotides ('CCCAGCTTGATACAGGAGG' 35 'GGCCTCAGCGCGGCTCCGGAGG') represented sequences upstream and downstream, over an 0.8 kb distance, of the sequence encoding the partial MTB2-92 protein in the alkaline phosphatase fusion.

A *Mycobacterium tuberculosis* genomic cosmid DNA library was screened using PCR (Sambrook, J. et al., 1989) in order to obtain the full-length gene encoding the MTB2-92 protein. Two hundred and ninety-four bacterial colonies containing the cosmid library were pooled into 10 groups in 100 µl distilled water aliquots and 40 boiled for 5 min. The samples were spun in a microfuge at maximal speed for 5 min. The supernatants were decanted and stored on ice prior to PCR analysis.

The 100 µl-PCR reaction contained: 10 µl supernatant containing cosmid DNA, 10 µl of 10X PCR-buffer, 250 µM dNTP's, 300 nM downstream and upstream primers, 1 unit *Taq* DNA polymerase.

The reactions were heated at 95°C for 2 min and then 40 cycles of DNA synthesis were performed (95°C for 30 s, 65°C for 1 min, 72°C for 2 min). The PCR products were loaded into a 1% agarose gel in TAE buffer (Sambrook, J. et al., 1989) for analysis.

5 The supernatant, which produced 800 bp PCR products, was then further divided into 10 samples and the PCR reactions were performed again. The colony which had resulted in the correctly sized PCR product was then picked. The cosmid DNA from the positive clone (pG3) was prepared using the Wizard Mini-Prep Kit (Promega Corp, Madison, WI, U.S.A.). The cosmid DNA was further sequenced using specific oligonucleotide primers. The deduced amino acid sequence encoded by the MTB2-92 protein is shown in Fig. 1.

2. EXPRESSION OF THE FULL LENGTH GENE

10 To conveniently purify the recombinant protein, a histidine tag coding sequence was engineered immediately upstream of the start codon of *mtb2-92* using PCR. Two unique restriction enzyme sites for *Xba*I and *Hind*III were added to both ends of the PCR product for convenient subcloning. Two oligomers were used to direct the PCR reaction: (5' TCTAGACACCACCACCACTGACACCTCGCGGGCCAGGTC' and 5' AAGCTTCGCCATGCCGCCGGTAAGCGCC')

15 The 100 µl PCR reaction contained: 1 µg pG3 template DNA, 250 µM dNTP's, 300 nM of each primer, 10 µl of 10X PCR buffer, 1 unit *Taq* DNA polymerase. The PCR DNA synthesis cycle was performed as above.

The 1.4 kb PCR products were purified and ligated into the cloning vector pGEM-T (Promega). Inserts were removed by digestion using both the *Xba*I and *Hind*III and the 1.4 kb fragment was directionally subcloned into the *Xba*I and *Hind*III sites of pMAL-c2 vector (New England Bio-Labs Ltd., 3397 American Drive, Unit 12, 20 Mississauga, Ontario, L4V 1T8, Canada). The gene encoding MTB2-92 was fused, in frame, downstream of the maltose binding protein (MBP). This expression vector was named pMAL-MTB2-92.

3. PURIFICATION OF THE ENCODED PROTEIN

25 The plasmid pMAL-MTB2-92 was transformed into competent *E. coli* JM109 cells and a 1 litre culture was grown up in LB broth at 37°C to an OD₅₅₀ of 0.5 to 0.6. The expression of the gene was induced by the addition of IPTG (0.5 mM) to the culture medium, after which the culture was grown for another 3 hours at 37°C with vigorous shaking. Cultures were spun in the centrifuge at 10,000 g for 30 min and the cell pellet was harvested. This was re-suspended in 50 ml of 20 mM Tris-HCl, pH 7.2, 200 mM NaCl, 1 mM EDTA supplemented with 10 mM β mercaptoethanol and stored at -20°C.

30 The frozen bacterial suspension was thawed in cold water (0°C), placed in an ice bath, and sonicated. The resulting cell lysate was then centrifuged at 10,000 g and 4°C for 30 min, the supernatant retained, diluted with 5 volumes of buffer A and applied to an amylose-resin column (New England Bio-Labs Ltd., 3397 American Drive, Unit 12, Mississauga, Ontario, L4V 1T8, Canada) which had been pre-equilibrated with buffer A. The column was then washed with buffer A until the eluate reached an A₂₈₀ of 0.001 at which point, the bound MBP-MTB2-92 fusion protein was eluted with buffer A containing 10 mM maltose. The protein purified by the 35 amylose-resin affinity column was about 84 kDa which corresponded to the expected size of the fusion protein (MBP: 42 kDa, MTB2-92 plus the histidine tag: 42 kDa).

The eluted MBP-MTB2-92 fusion protein was then cleaved with factor Xa to remove the MBP from the MTB2-92 protein. One ml of fusion protein (1 mg/ml) was mixed with 100 µl of factor Xa (200 µg/ml) and kept at room temperature overnight. The mixture was diluted with 10 ml of buffer B (5 mM imidazole, 0.5 M NaCl, 40 20 mM Tris-HCl, pH 7.9, 6 M urea) and urea was added to the sample to a final concentration of 6 M urea. The sample was loaded onto the Ni-NTA column (QIAGEN, 9600 De Soto Ave., Chatsworth, CA 91311, U.S.A.) pre-equilibrated with buffer B. The column was washed with 10 volumes of buffer B and 6 volumes of buffer C (60 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9, 6 M urea). The bound protein was eluted with 6 volumes of buffer D (1 M imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9, 6 M urea).

At each stage of the protein purification, a sample was analysed by SDS polyacrylamide gel electrophoresis (Laemmli, U.S. (1970) *Nature (London)*, 227:680-685) (see Fig. 2).

C. CORRECTION OF SEQUENCE ERRORS

It is noted that some of the sequences presented in the Sequence Listing contain sequence ambiguities.

- 5 Naturally, in order to ensure that the immunostimulatory function is maintained, one would utilize a sequence without such ambiguities. For those sequences containing ambiguities, one would therefore utilize the sequence data provided in the Sequence Listing to design primers corresponding to each terminal of the provided sequence and, using these primers in conjunction with the polymerase chain reaction, synthesize the desired DNA molecule using *M. tuberculosis* genomic DNA as a template. Standard PCR methodologies, such as those described above,
- 10 may be used to accomplish this.

VI. EXPRESSION AND PURIFICATION OF THE CLONED PEPTIDES

- Having provided herein DNA sequences encoding *Mycobacterium tuberculosis* peptides having an immunostimulatory activity, as well as the corresponding full length *Mycobacterium tuberculosis* genes, one of skill in the art will be able to express and purify the peptides encoded by these sequences. Methods for expressing 15 proteins by recombinant means in compatible prokaryotic or eukaryotic host cells are well known in the art and are discussed, for example, in reference nos. 15 and 16. Peptides expressed by the nucleotide sequences disclosed herein are useful for preparing vaccines effective against *M. tuberculosis* infection, for use in diagnostic assays and for raising antibodies that specifically recognize *M. tuberculosis* proteins. One method of purifying the peptides is that presented in part V(B) above.

- 20 The most commonly used prokaryotic host cells for expressing prokaryotic peptides are strains of *Escherichia coli*, although other prokaryotes, such as *Bacillus subtilis* *Streptomyces* or *Pseudomonas* may also be used, as is well known in the art. Partial or full-length DNA sequences, encoding an immunostimulatory peptide according to the present invention, may be ligated into bacterial expression vectors. One aspect of the present invention is thus a recombinant DNA vector including a nucleic acid molecule provided by the present invention.
- 25 Another aspect is a transformed cell containing such a vector.

- Methods for expressing large amounts of protein from a cloned gene introduced into *Escherichia coli* (*E. coli*) may be utilized for the purification of the *Mycobacterium tuberculosis* peptides. Methods and plasmid vectors for producing fusion proteins and intact native proteins in bacteria are described in reference no. 15 (ch. 17). Such fusion proteins may be made in large amounts, are relatively simple to purify, and can be used to 30 produce antibodies. Native proteins can be produced in bacteria by placing a strong, regulated promoter and an efficient ribosome binding site upstream of the cloned gene. If low levels of protein are produced, additional steps may be taken to increase protein production; if high levels of protein are produced, purification is relatively easy.

- Often, proteins expressed at high levels are found in insoluble inclusion bodies. Methods for extracting proteins from these aggregates are described in ch. 17 of reference no. 15. Vector systems suitable for the 35 expression of *lacZ* fusion genes include the pUR series of vectors (24), pEX1-3 (25) and pMR100 (26). Vectors suitable for the production of intact native proteins include pKC30 (27), pKK177-3 (28) and pET-3 (29). Fusion proteins may be isolated from protein gels, lyophilized, ground into a powder and used as antigen preparations.

- Mammalian or other eukaryotic host cells, such as those of yeast, filamentous fungi, plant, insect, 40 amphibian or avian species, may also be used for protein expression, as is well known in the art. Examples of commonly used mammalian host cell lines are VERO and HeLa cells, Chinese hamster ovary (CHO) cells, and WI38, BHK, and COS cell lines, although it will be appreciated by the skilled practitioner that other prokaryotic and eukaryotic cells and cell lines may be appropriate for a variety of purposes, e.g., to provide higher expression, desirable glycosylation patterns, or other features.

VII. SEQUENCE VARIANTS

- It will be apparent to one skilled in the art that the immunostimulatory activity of the peptides encoded by the DNA sequences disclosed herein lies not in the precise nucleotide sequence of the DNA sequences, but rather in the epitopes inherent in the amino acid sequences encoded by the DNA sequences. It will therefore also be 5 apparent that it is possible to recreate the immunostimulatory activity of one of these peptides by recreating the epitope, without necessarily recreating the exact DNA sequence. This could be achieved either by directly synthesizing the peptide (thereby circumventing the need to use the DNA sequences) or, alternatively, by designing a nucleic acid sequence that encodes for the epitope, but which differs, by reason of the redundancy of the genetic code, from the sequences disclosed herein.
- 10 Accordingly, the degeneracy of the genetic code further widens the scope of the present invention as it enables major variations in the nucleotide sequence of a DNA molecule while maintaining the amino acid sequence of the encoded protein. The genetic code and variations in nucleotide codons for particular amino acids is presented in Tables 5 and 6. Based upon the degeneracy of the genetic code, variant DNA molecules may be derived from the DNA sequences disclosed herein using standard DNA mutagenesis techniques, or by synthesis of 15 DNA sequences.

TABLE 5
The Genetic Code

	First Position (5' end)	Second Position			Third Position (3' end)
10	T	T	C	A	G
		Phe	Ser	Tyr	Cys
	T	Phe	Ser	Tyr	Cys
		Leu	Ser	Stop (och)	Stop
15		Leu	Ser	Stop (amb)	Trp
	C	Leu	Pro	His	Arg
		Leu	Pro	His	Arg
		Leu	Pro	Gln	Arg
20		Leu	Pro	Gln	Arg
	A	Ile	Thr	Asn	Ser
		Ile	Thr	Asn	Ser
		Ile	Thr	Lys	Arg
25		Met	Thr	Lys	Arg
	G	Val	Ala	Asp	Gly
		Val	Ala	Asp	Gly
		Val	Ala	Glu	Gly
30		Val (Met)	Ala	Glu	Gly
	G	Val	Ala	Asp	Gly
		Val	Ala	Asp	Gly
		Val	Ala	Glu	Gly
35		Val (Met)	Ala	Glu	Gly

40 "Stop (och)" stands for the ocre termination triplet, and "Stop (amb)" for the amber. ATG is the most common initiator codon; GTG usually codes for valine, but it can also code for methionine to initiate an mRNA chain.

TABLE 6
The Degeneracy of the Genetic Code

5

	Number of Synonymous Codons	Amino Acid	Total Number of Codons
10	6	Leu, Ser, Arg	18
	4	Gly, Pro, Ala, Val, Thr	20
15	3	Ile	3
	2	Phe, Tyr, Cys, His, Gln, Glu, Asn, Asp, Lys	18
	1	Met, Trp	<u>2</u>
	Total number of codons for amino acids		61
20	Number of codons for termination		<u>3</u>
	Total number of codons in genetic code		64

25 Additionally, standard mutagenesis techniques may be used to produce peptides which vary in amino acid sequence from the peptides encoded by the DNA molecules disclosed herein. However, such peptides will retain the essential characteristic of the peptides encoded by the DNA molecules disclosed herein, i.e. the ability to stimulate INF- γ production. This characteristic can readily be determined by the assay technique described above. Such variant peptides include those with variations in amino acid sequence including minor deletions, additions and substitutions.

30 While the site for introducing an amino acid sequence variation is predetermined, the mutation *per se* need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed protein variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence as described above are well known.

35 In order to maintain the functional epitope, preferred peptide variants will differ by only a small number of amino acids from the peptides encoded by the DNA sequences disclosed herein. Preferably, such variants will be amino acid substitutions of single residues. Substitutional variants are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the following Table 7 when it is desired to finely modulate the characteristics of the protein. Table 7 shows amino acids which may be substituted for an original amino acid in a protein and which 40 are regarded as conservative substitutions. As noted, all such peptide variants are tested to confirm that they retain the ability to stimulate INF- γ production.

TABLE 7

	Original Residue	Conservative Substitutions
	Ala	ser
	Arg	lys
10	Asn	gln, his
	Asp	glu
	Cys	ser
	Gln	asn
	Glu	asp
15	Gly	pro
	His	asn; gln
	Ile	leu, val
	Leu	ile; val
	Lys	arg; gln; glu
20	Met	leu; ile
	Phe	met; leu; tyr
	Ser	thr
	Thr	ser
	Trp	tyr
25	Tyr	trp; phe
	Val	ile; leu

Substantial changes in immunological identity are made by selecting substitutions that are less conservative than those in Table 7, i.e., selecting residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., 30 leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histadyl, is substituted for (or by) an 35 electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine. However, such variants must retain the ability to stimulate INF- γ production.

40 VIII. USE OF CLONED *MYCOBACTERIUM* SEQUENCES TO PRODUCE VACCINES

The purified peptides encoded by the nucleotide sequences of the present invention may be used directly as 45 immunogens for vaccination. The conventional tuberculosis vaccine is the BCG (bacille Calmette-Guerin) vaccine, which is a live vaccine comprising attenuated *Mycobacterium bovis* bacteria. However, the use of this vaccine in a number of countries, including the U.S., has been limited because administration of the vaccine interferes with the use of the tuberculin skin test to detect infected individuals (see *Cecil Textbook of Medicine* (Ref. 33), pages 1733-1742 and section VIII (2) below).

The present invention provides a possible solution to the problems inherent in the use of the BCG vaccine in conjunction with the tuberculin skin test. The solution proposed is based upon the use of one or more of the 50 immunostimulatory *M. tuberculosis* peptides disclosed herein as a vaccine and one or more different immunostimulatory *M. tuberculosis* peptides disclosed herein in the tuberculosis skin test (see section IX (2) below). If the immune system is primed with such a vaccine, it will be able to resist an infection by *M.*

tuberculosis. However, exposure to the vaccine peptides alone will not induce an immune response to those peptides that are reserved for use in the tuberculin skin test. Thus, the present invention would allow the clinician to distinguish between a vaccinated individual and an infected individual.

Methods for using purified peptides as vaccines are well known in the art and are described in the following publications: Pal and Horwitz (1992) (reference no. 8) (describing immunization with extra-cellular proteins of *Mycobacterium tuberculosis*); Yang et al. (1991) (reference no. 30) (vaccination with synthetic peptides corresponding to the amino acid sequence of a surface glycoprotein from *Leishmania major*); Andersen (1994) (reference no. 9) (vaccination using short-term culture filtrate containing proteins secreted by *Mycobacterium tuberculosis*); and Jardim et al. (1990) (reference no. 10) (vaccination with synthetic T-cell epitopes derived from *Leishmania* parasite). Methods for preparing vaccines which contain immunogenic peptide sequences are also disclosed in U.S. Patent Nos. 4,608,251, 4,601,903, 4,599,231, 4,599,5230, 4,596,792 and 4,578,770. The formulation of peptide-based vaccines employing *M. tuberculosis* peptides is also discussed extensively in International Patent application WO 95/01441.

As is well known in the art, adjuvants such as Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA) may be used in formulations of purified peptides as vaccines. Accordingly, one embodiment of the present invention is a vaccine comprising one or more immunostimulatory *M. tuberculosis* peptides encoded by genes including a sequence shown in the attached sequence listing, together with a pharmaceutically acceptable adjuvant.

Additionally, the vaccines may be formulated using a peptide according to the present invention together with a pharmaceutically acceptable excipient such as water, saline, dextrose and glycerol. The vaccines may also include auxillary substances such as emulsifying agents and pH buffers.

It will be appreciated by one of skill in the art that vaccines formulated as described above may be administered in a number of ways including subcutaneous, intra-muscular and intra-venous injection. Doses of the vaccine administered will vary depending on the antigenicity of the particular peptide or peptide combination employed in the vaccine, and characteristics of the animal or human patient to be vaccinated. While the determination of individual doses will be within the skill of the administering physician, it is anticipated that doses of between 1 microgram and 1 milligram will be employed.

As with many vaccines, the vaccines of the present invention may routinely be administered several times over the course of a number of weeks to ensure that an effective immune response is triggered. As described in International Patent Application WO 95/01441, up to six doses of the vaccine may be administered over a course of several weeks, but more typically between one and four doses are administered. Where such multiple doses are administered, they will normally be administered at from two to twelve week intervals, more usually from three to five week intervals. Periodic boosters at intervals of 1-5 years, usually three years, will be desirable to maintain the desired levels of protective immunity.

As described in WO 95/01441, the course of the immunization may be followed by *in vitro* proliferation assays of PBL (peripheral blood lymphocytes) co-cultured with ESAT6 or ST-CF, and especially by measuring the levels of IFN- γ released from the primed lymphocytes. The assays are well known and are widely described in the literature, including in U.S. Patent Nos. 3,791,932; 4,174,384 and 3,949,064.

To ensure an effective immune response against tuberculosis infection, vaccines according to the present invention may be formulated with more than one immunostimulatory peptide encoded by the nucleotide sequences disclosed herein. In such cases, the amount of each purified peptide incorporated into the vaccine will be adjusted accordingly.

Alternatively, multiple immunostimulatory peptides may also be administered by expressing the nucleic acids encoding the peptides in a nonpathogenic microorganism, and using this transformed nonpathogenic

microorganism as a vaccine. As described in International Patent Application WO 95/01441, *Mycobacterium bovis* BCG may be employed for this purpose, although this approach would destroy the advantage outlined above to be gained from using separate classes of the peptides as vaccines and in the skin test. As disclosed in WO 95/01441, an immunostimulatory peptide of *M. tuberculosis* can be expressed in the BCG bacterium by transforming the BCG bacterium with a nucleotide sequence encoding the *M. tuberculosis* peptide. Thereafter, the BCG bacteria can be administered in the same manner as a conventional BCG vaccine. In particular embodiments, multiple copies of the *M. tuberculosis* sequence are transformed into the BCG bacteria to enhance the amount of *M. tuberculosis* peptide produced in the vaccine strain.

IX. USE OF CLONED MYCOBACTERIUMSEQUENCES IN DIAGNOSTIC ASSAYS

Another aspect of the present invention is a composition for diagnosing tuberculosis infection wherein the composition includes peptides encoded by the nucleotide sequences of the present invention. The invention also encompasses methods and compositions for detecting the presence of anti-tuberculosis antibodies, tuberculosis peptides and tuberculosis nucleic acid sequences in body samples. Three examples typify the various techniques that may be used to diagnose tuberculosis infection using the present invention: an in vitro ELISA assay, an in vivo skin test assay and a nucleic acid amplification assay.

A. IN VITRO ELISA ASSAY

One aspect of the invention is an ELISA that detects anti-tuberculosis mycobacterial antibodies in a medical specimen. An immunostimulatory peptide encoded by a nucleotide sequence of the present invention is employed as an antigen and is preferably bound to a solid matrix such as a crosslinked dextran such as SEPHADEX (Pharmacia, Piscataway, NJ), agarose, polystyrene, or the wells of a microtiter plate. The polypeptide is admixed with the specimen, such as human sputum, and the admixture is incubated for a sufficient time to allow antimycobacterial antibodies present in the sample to immunoreact with the polypeptide. The presence of the immunopositive immunoreaction is then determined using an ELISA assay.

In a preferred embodiment, the solid support to which the polypeptide is attached is the wall of a microtiter assay plate. After attachment of the polypeptide, any nonspecific binding sites on the microtiter well walls are blocked with a protein such as bovine serum albumin. Excess bovine serum albumin is removed by rinsing and the medical specimen is admixed with the polypeptide in the microtiter wells. After a sufficient incubation time, the microtiter wells are rinsed to remove excess sample and then a solution of a second antibody, capable of detecting human antibodies is added to the wells. This second antibody is typically linked to an enzyme such as peroxidase, alkaline phosphatase or glucose oxidase. For example, the second antibody may be a peroxidase-labeled goat anti-human antibody. After further incubation, excess amounts of the second antibody are removed by rinsing and a solution containing a substrate for the enzyme label (such as hydrogen peroxide for the peroxidase enzyme) and a color-forming dye precursor, such as o-phenylenediamine is added. The combination of mycobacterium peptide (bound to the wall of the well), the human antimycobacterial antibodies (from the specimen), the enzyme-conjugated anti-human antibody and the color substrate will produce a color than can be read using an instrument that determines optical density, such as a spectrophotometer. These readings can be compared to a control incubated with water in place of the human body sample, or, preferably, a human body sample known to be free of antimycobacterial antibodies. Positive readings indicate the presence of anti-mycobacterial antibodies in the specimen, which in turn indicate a prior exposure of the patient to tuberculosis.

B. SKIN TEST ASSAY

Alternatively, the presence of tuberculosis antibodies in a patient's body may be detected using an improved form of the tuberculin skin test, employing immunostimulatory peptides of the present invention. Conventionally, this test produces a positive result to one of the following conditions: the current presence of *M. tuberculosis* in the patient's body; past exposure of the patient to *M. tuberculosis*; and prior BCG vaccination. As

noted above, if one group of immunostimulatory peptides is reserved for use in vaccine preparations, and another group reserved for use in the improved skin test, then the skin test will not produce a positive response in individuals whose only exposure to tuberculosis antigens was via the vaccine. Accordingly, the improved skin test would be able to properly distinguish between infected individuals and vaccinated individuals.

5 The tuberculin skin test consists of an injection of proteins from *M. tuberculosis* that are injected intradermally. The test is described in detail in Cecil Textbook of Medicine (Ref. 33), pages 1733-1742. If the subject has reactive T-cells to the injected protein, the cells will migrate to the site of injection and cause a local inflammation. This inflammation, which is generally known as delayed type hypersensitivity (DTH) is indicative of *M. tuberculosis* antibodies in the patient's blood stream. Purified immunostimulatory peptides according to the
10 present invention may be employed in the tuberculin skin test using the methods described in reference 33.

C. NUCLEIC ACID AMPLIFICATION

One aspect of the invention includes nucleic acid primers and probes derived from the sequences set forth in the attached sequence listing, as well as primers and probes derived from the full length genes that can be obtained using these sequences. These primers and probes can be used to detect the presence of *M. tuberculosis*
15 nucleic acids in body samples and thus to diagnose infection. Methods for making primers and probes based on these sequences are well known and are described in section V above.

The detection of specific pathogen nucleic acid sequences in human body samples by polymerase chain reaction amplification (PCR) is discussed in detail in reference 17, in particular, part four of that reference. To detect *M. tuberculosis* sequences, primers based on the sequences disclosed herein would be synthesized, such that
20 PCR amplification of a sample containing *M. tuberculosis* DNA would result in an amplified fragment of a predicted size. If necessary, the presence of this fragment following amplification of the sample nucleic acid could be detected by dot blot analysis (see chapter 48 of reference 17). PCR amplification employing primers based on the sequences disclosed herein may also be employed to quantify the amounts of *M. tuberculosis* nucleic acid present in a particular sample (see chapters 8 and 9 of reference 17). Reverse-transcription PCR using these
25 primers may also be utilized to detect the presence of *M. tuberculosis* RNA, indicative of an active infection.

Alternatively, probes based on the nucleic acid sequences described herein may be labelled with suitable labels (such as P³² or biotin) and used in hybridization assays to detect the presence of *M. tuberculosis* nucleic acid in provided samples.

X. USE OF CLONED MYCOBACTERIUMSEQUENCES TO RAISE ANTIBODIES

30 Monoclonal antibodies may be produced to the purified *M. tuberculosis* peptides for diagnostic purposes. Substantially pure *M. tuberculosis* peptide suitable for use as an immunogen is isolated from the transfected or transformed cells as described above. The concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few milligrams per milliliter. Monoclonal antibody to the protein can then be prepared as follows:

A. MONOCLONAL ANTIBODY PRODUCTION BY HYBRIDOMA FUSION.

Monoclonal antibody to epitopes of the *M. tuberculosis* peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler and Milstein (1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected purified protein over a period of a few weeks. The mouse is then sacrificed, and the antibody-producing cells of the spleen
40 isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall (1980), and derivative

methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Harlow and Lane (1988).

B. ANTIBODIES RAISED AGAINST SYNTHETIC PEPTIDES.

An alternative approach to raising antibodies against the *M. tuberculosis* peptides is to use synthetic peptides synthesized on a commercially available peptide synthesizer based upon the amino acid sequence of the peptides predicted from nucleotide sequence data.

In a preferred embodiment of the present invention, monoclonal antibodies that recognize a specific *M. tuberculosis* peptide are produced. Optimally, monoclonal antibodies will be specific to each peptide, i.e. such antibodies recognize and bind one *M. tuberculosis* peptide and do not substantially recognize or bind to other proteins, including those found in healthy human cells.

The determination that an antibody specifically detects a particular *M. tuberculosis* peptide is made by any one of a number of standard immunoassay methods; for instance, the Western blotting technique (Sambrook et al., 1989). To determine that a given antibody preparation (such as one produced in a mouse) specifically detects one *M. tuberculosis* peptide by Western blotting, total cellular protein is extracted from a sample of human sputum from a healthy patient and from sputum from a patient suffering from tuberculosis. As a positive control, total cellular protein is also extracted from *M. tuberculosis* cells grown in vitro. These protein preparations are then electrophoresed on a sodium dodecyl sulfate-polyacrylamide gel. Thereafter, the proteins are transferred to a membrane (for example, nitrocellulose) by Western blotting, and the antibody preparation is incubated with the membrane. After washing the membrane to remove non-specifically bound antibodies, the presence of specifically bound antibodies is detected by the use of an anti-mouse antibody conjugated to an enzyme such as alkaline phosphatase; application of the substrate 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium results in the production of a dense blue compound by immuno-localized alkaline phosphatase. Antibodies which specifically detect the *M. tuberculosis* protein will, by this technique, be shown to bind to the *M. tuberculosis*-extracted sample at a particular protein band (which will be localized at a given position on the gel determined by its molecular weight) and to the proteins extracted from the sputum from the tuberculosis patient. No significant binding will be detected to proteins from the healthy patient sputum. Non-specific binding of the antibody to other proteins may occur and may be detectable as a weak signal on the Western blot. The non-specific nature of this binding will be recognized by one skilled in the art by the weak signal obtained on the Western blot relative to the strong primary signal arising from the specific antibody-tuberculosis protein binding. Preferably, no antibody would be found to bind to proteins extracted from healthy donor sputum.

Antibodies that specifically recognize a *M. tuberculosis* peptide encoded by the nucleotide sequences disclosed herein are useful in diagnosing the presence of tuberculosis antigens in patients.

All publications and published patent documents cited in this specification are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

XI. REFERENCES

1. Skamene, E. (1989). Genetic control of susceptibility to Mycobacterial infections. Ref. Infect. Dis. 11:S394-S399.
2. Kaufmann, S.H.E. (1991). Role of T-Cell Subsets in Bacterial Infections. Current Opinion in Immunology 3:465-470.
3. Orme, I.M., et al. (1992). T Lymphocytes Mediating Protection and Cellular Cytolysis During the Course of *Mycobacterium-Tuberculosis* Infection - Evidence for Different Kinetics and Recognition of a Wide Spectrum of Protein Antigens. Journal of Immunology 148:189-196.
4. Daugelat, S., et al. (1992). Secreted Antigens of *Mycobacterium tuberculosis*: characterization with T Lymphocytes from Patients and Contacts after Two-Dimensional Separation. J. Infect. Dis. 166:186-190.
5. Barnes et al. (1989). Characterization of T Cell Antigens Associated with the Cell Wall Protein-Peptidoglycan Complex of *Mycobacterium tuberculosis*. J. Immunol. 143:2656-2662.
6. Collins et al. (1988). Biological activity of protein antigens isolated from *Mycobacterium tuberculosis* culture filtrate. Infect. Immun. 56:1260-1266.
7. Lamb et al. (1989). Identification of Mycobacterial Antigens Recognized by T Lymphocytes. Rev. Infect. Dis. 11:S443-S447.
8. Pal, P.G., et al. (1992). Immunization with Extracellular Proteins of *Mycobacterium tuberculosis* Induces Cell-Mediated Immune Responses and Substantial Protective Immunity in a Guinea Pig Model of Pulmonary Tuberculosis. Infect. Immun. 60:4781-4792.
9. Andersen (1994). Infection & Immunity 62:2536.
10. Jardim et al. (1990). Immunoprotective *Leishmania major* Synthetic T Cell Epitopes. J. Exp. Med. 172:645-648.
11. Orme et al. (1993). Cytokine Secretion by CD4 T Lymphocytes Acquired in Response to *Mycobacterium tuberculosis* Infection. J. Immunology 151:518-525.
12. Boesen et al. (1995). Human T-Cell Responses to Secreted Antigen Fractions of *Mycobacterium tuberculosis*. Infection and Immunity 63:1491-1497.
13. Mougneau et al. (1995). Expression Cloning of a Protective *Leishmania* Antigen. Science 268:536-566.
14. Yang et al. (1990). Oral *Salmonella typhimurium* (AroA⁻) Vaccine Expressing a Major Leishmanial Surface Protein (gp63) Preferentially Induces T Helper 1 Cells and Protective Immunity Against Leishmaniasis. J. Immunology 145:2281-2285.
15. Sambrook et al. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
16. Ausubel et al., (1987). Current Protocols in Molecular Biology, ed. Greene Publishing and Wiley-Interscience: New York (with periodic updates).
17. Innis et al., (1990). PCR Protocols: A Guide to Methods and Applications, Academic Press: San Diego.
18. Kanehisa (1984). Nuc. Acids Res. 12:203-213. 1984.
19. Wermur et al. (1968). J. Mol. Biol. 31:349-370.
20. Beauchage et al. (1981) Tetra. Letts. 22:1859-1862.
21. Matteucci et al. (1981). J. Am. Chem. Soc. 103:3185.
22. Jacobs et al. (1991) METHODS IN ENZYMOLOGY 204:537-555.
23. Earp et al. (1990). Nucleic Acids Research 18:3721-3729.

24. Ruther et al. (1983). EMBO J. **2**:1791.
25. Stanley and Luzio (1984). EMBO J. **3**:1429.
26. Gray et al. (1982). Proc. Natl. Acad. Sci. USA **79**:6598.
27. Shimatake and Rosenberg (1981). Nature **292**:128.
- 5 28. Armann and Brosius (1985). Gene **40**:183.
29. Studiar and Moffatt (1986). J. Mol. Biol. **189**:113.
30. Yang et al. (1991). Identification and Characterization of Host-Protective T-Cell Epitopes of a Major Surface Glycoprotein (gp63) from *Leishmania major*. Immunology **72**:3-9.
- 10 31. Mdluli et al. (1995). New vectors for the in vitro generation of alkaline phosphatase fusions to proteins encoded by G+C-rich DNA. Gene **155**:133-134.
32. Lim et al. (1995). Identification of *Mycobacterium tuberculosis* DNA Sequences Encoding Exported Proteins by Using *phoA* Gene Fusions. J. Bact. **177**:59-65.
- 15 33. Cecil Textbook of Medicine, (1992, 19th edition). Wyngaarden et al, eds. W.B. Saunders, Philadelphia, PA.
34. Hubbard et al. (1992). Immunization of mice with mycobacterial culture filtrate culture proteins. Clin. exp. Immunol. **87**: 94-98.

SEQUENCE LISTING

(1) GENERAL INFORMATION

(i) APPLICANTS: UNIVERSITY OF VICTORIA

5 (ii) TITLE OF INVENTION: *MYCOBACTERIUM TUBERCULOSIS DNA SEQUENCES ENCODING IMMUNOSTIMULATORY PEPTIDES*

(iii) NUMBER OF SEQUENCES: 76

(iv) CORRESPONDENCE ADDRESS:

- 10 (A) ADDRESSEE: Klarquist Sparkman Campbell Leigh & Whinston, LLP
(B) STREET: One World Trade Center, Suite 1600,
121 S.W. Salmon Street
(C) CITY: Portland
(D) STATE: OR
15 (E) COUNTRY: USA
(F) ZIP: 97204-2988

(v) COMPUTER READABLE FORM:

- 20 (A) MEDIUM TYPE: Disk, 3.5-inch
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: MS DOS
(D) SOFTWARE: WordPerfect 5.1+

25 (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
(B) FILING DATE:
25 (C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: 06/000,254
(B) FILING DATE: 06/15/95

30 (viii) ATTORNEY/AGENT INFORMATION

- (A) NAME: Richard J. Polley
(B) REGISTRATION NUMBER: 28,107
(C) REFERENCE/DOCKET NUMBER: 2847-45176/RJP

35 (ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (503) 226-7391
(B) TELEFAX: (503) 228-9446

(2) INFORMATION FOR SEQ ID NO: 1

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 265

(B) TYPE: nucleic acid

5 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

10 (ix) FEATURE:

(D) OTHER INFORMATION: AcII#1-62

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 1

ACGGCGACCT CGAACGTTCAT CATCGAGTGA TACGTGCCAC ACATCTCGGC	50
GCAGTGGCCC ACGAATGCAN CCGGTCTTGG TGATTTCNTC GATCTGGAAG	100
15 ACGTTGACCG ARTTGTTTGC CACCGGGTTA GGCATCACGT CACGCTTGAA	150
CAAGAACTCC GGCACCCAGA ATGCGTGTGT CACATCGGCT GAGGCCATT	200
GGAATTCGAT ACGCTTGCCG GACGGCAGCA CCAGCACCGG AATTCTGGTG	250
CTGTGCAACG TCTCG	265

(2) INFORMATION FOR SEQ ID NO: 2

20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 484

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#1-152

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 2

CTGGTACGAC GCCGGCAAGG ACTACGGACG AGGTGGCACA GAATTCAATG	50
CGGCGCTCAT CGGAACCGAC GTGCCCGACG NCCTTGCTC GACGACGATG	100
GTGNTTCCAN TTCGCCTNAN CGGTGTNCTG ACTGCCNTTG ACGACCTGNT	150
CGGCCARGTT GGGNTGGACA CAACGGATTAA CGTCGATTGG CTGCTGGCCG	200
35 ACTATGAGTT CAACGGCCGC CATTACGCTG TGCCGTATGC TCGCTCGACG	250
CCGCTGTTCT ACTACAACAA GGCAGCGTGG CAACAGGCCG GCCTACCCGA	300
CCGCGGACCG CAATCCTGGT CAGAGTTCGA CGAGTGGGGT CCGGAGTTAC	350
AGCGCGTGGT CGNCGCCGGT CGATCGGCAC AACGGCTGCAC AACGCCGACC	400

- 33 -

TCATCTCGTG GACGTTCAAG GGACCGAACT GGGCATNCGG CGGTGCCTAC 450
 TCCGACAAGT GGACATTGAC ATTGACCGAG CCCG 484

(2) INFORMATION FOR SEQ ID NO: 3

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 513
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 10 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Mycobacterium tuberculosis*
 (ix) FEATURE:
 (D) OTHER INFORMATION: AciI#1-239
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 3
 15 GGCGGGCCAGA CGTCGGAACT CGCGGCCAAT TGGTGTGGTG GGAACCGCGA 50
 TCCTCGACGC AACCGCTTCG CCGTCTTGGC AGTGTTCGAT GCCAATCTGC 100
 CGGCCGGGAC GCTGCCGGAT GCGGCCCGTT CACCGAGGCT GGTGACAAGA 150
 CCTGGCGTTG TCGTTCCGGG CACTACTCCC NAGGTGGTC AAGGCACCGT 200
 CAAAGTGTTC AGGTATAACCG TCGAGATCGA GAACGGTCTT GATCCCACAA 250
 20 TGTACGGCGG TGACAANNNN ATTGCCAG ATGGTCGACC AGACGTTGAC 300
 CAATCCAAG GGCTGGACCC ACAATCCGCA ATTGGCGTT CGTGCAGTC 350
 GACAGCGGAA AACCCGACTT CCGGATTCG CTGGTGTGCGC CGACGACAGT 400
 GCGCGGGGGN TGTGGCTACG AATTCCGGCT CGAGACGTCC TGCTACAACC 450
 CGTCGTTCGG CGGCATGGAT CGCCAATCGC GGGTGTTCAT CAACGAGGCG 500
 25 CGCTGGGTAC GCG 513

(2) INFORMATION FOR SEQ ID NO: 4

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 510
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Mycobacterium tuberculosis*
 35 (ix) FEATURE:
 (D) OTHER INFORMATION: AciI#1-247
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 4

- 34 -

	GTGTGCAACC AGTGTGTGTN CGTGTGCGAA CCAGTGTGTA GTGGTAACCA	50
	GGACCACGTT GCAAACCAGT GTTGGAGTGC AGTGTGCGT GCNAGTGTG	100
	CNCGTTGCAG TGTTNGNCGA GCCGAGATTG GAAGTTNCCG ACATTACCGT	150
5	TGCCGACGTT GCCCTCGCCG ACGTTCGCCA AGCCCAGGTT GCGGACACGC	200
	CGGTGATTGT GCGTGGGCA ATGACGGGCT GCTGGCCCGG CCGAATTCCA	250
	AGGCCTCGAT CGGCACGGTG TTCCAGGACC GGGCCGCTCG CTACGGTGAC	300
	CGAGTCTTCC TGAAATTCGG CGATCAGCAG CTGACCTACC GCGACCGTAA	350
	CGCCACCGCC AACCGGTNNG CCGCGGTGTT GGCCNNNCGC GGCCTCGGCC	400
10	CCGGCGACGT CGTTGGCATC ATGTTGCGTA ACTCACCCAG CACAGTCTTG	450
	GCGATGCTGG CCACGGTCAA GTGCGGCGTA TCGCCGGCAT GCTCAACTAC	500
	CACCAGCGCG	510

(2) INFORMATION FOR SEQ ID NO: 5

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 456
- 15 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
- 20 (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
- (D) OTHER INFORMATION: AciI#1-426

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 5

	GCAACGGAGA GGTGGACTAT GCCGGACCGG CACCGCGAAG GGGTTGGTGC	50
25	CGGCCCGGGT GGTGACGGTG CACATTCTGC GCAATTGCT GAGTTCCGGT	100
	GGTGACCTTC CTGGGCGCGG AGTCTGGCG CGCTGATGGC GGAGCGAKTG	150
	TGACCGAAGG AANTCNGTTC AACATCCACG GCGTCGGGGG CGTGCTGTAT	200
	CAAGCGGTCA CCGTCAGGAG ACGCCGACGG TGGTGTGAT CGTGACGGTG	250
	CTGGTGCTGA TCTACCTGAT CACCAATCTG TTGGTGGATC TGCTGTATGC	300
30	GGCCCTGGAC GCCGNNGATN CGCTATGGCT GAGCACACGG GGTTCTGGCT	350
	CGATGCCTNG CGCGGGTTGC GCCGGCGTCC TAAANTCGTG ATCGCGCGGC	400
	GCTGAKCCTG CTGATTCTTG TCGTGGCGGC GTTCCGTG TTGTTTACCG	450
	CAGCCG	456

(2) INFORMATION FOR SEQ ID NO: 6

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 175
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

- 35 -

- (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Mycobacterium tuberculosis
5 (ix) FEATURE:
(D) OTHER INFORMATION: AciI#2-2
(xi) SEQUENCE DESCRIPTION: SEQ ID NO 6
TCNCTTANYC CTTCANCTGN CATCTNTCCC AANNACCGAA NTCTGGACCT 50
ATSACGNCCA NCTNAANATG NCCCNCGACN AAGGNCNTT GACGTTCNCT 100
10 GKACCACCAN CGGGTTGCAT SCCAAGCTAG NCGAACATCA NASGTTNCGC 150
GCNTACGAGC CGACCCGCCG CGGCG 175
(2) INFORMATION FOR SEQ ID NO: 7
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 231
15 (B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
20 (A) ORGANISM: Mycobacterium tuberculosis
(ix) FEATURE:
(D) OTHER INFORMATION: AciI#2-23
(xi) SEQUENCE DESCRIPTION: SEQ ID NO 7
CTTCTCGCGC CAGCCGTCCC GCTGTCCGGG ATGCGCTACC GGTCGTCAGC 50
25 GCCAAGACGG TGCAGCTCAA CGACGGCGGG TTGGTGCGCA CGGTGCACTT 100
GCCGGCCCCC AATGTSGCGG GGCTGCTGAG TGCGGCCGCG TGCCGCTGTT 150
GCAAANNGCG ACCACGTGGT GCCCGCCGCG ACGGCCCCGA TCGTCGAAGG 200
CATGCAGATC CAGGTGACCC GCAAATCGGA T 231
(2) INFORMATION FOR SEQ ID NO: 8
30 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 173
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
35 (ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Mycobacterium tuberculosis
(ix) FEATURE:

- 36 -

(D) OTHER INFORMATION: AcII#2-26

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 8

5	GTTCGNCGCG	CTCAAAAGGT	TGACGATGGT	CACGTCGCAC	GTGCTGGCCG	50
	AGACCCAAGGT	GGATTCGGT	GAAGACCTA	AAGANCTCTA	CTCGNATCGT	100
5	CAAGGCCCTC	AACGACGACC	GAAAGGATT	CGTCACCTCG	CTGCAGCTGT	150
	TGCTGACGTT	CCCATTCCCC	AAC			173

(2) INFORMATION FOR SEQ ID NO: 9

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 223

10 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

15 (A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 9

20	CCTGTTNCAA	CGGTNCNTTC	NCGGAACGGA	CGACTTCTGA	TNCGNNTCTG	50
	GNCGTTCCCT	CGCACCGGTC	GATGGTGATC	AAGGTCAAGG	TCTTCGCGGT	100
	GGTCATGCTG	CTGGTGGCCG	CCGGTCTGGT	GGTGGTATT	GGGGACTTCC	150
	GGTTTGGTCC	CACAACCGTC	TACCACGCCA	CCTTCACCGA	CNCGTNGCGG	200
	CTGAANGCAG	GCCAGAACGGT	TCG			223

(2) INFORMATION FOR SEQ ID NO: 10

25 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 120

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-272

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 10

	CAACGAGATC	GCACCCGTGA	TTAGGAGGTG	ACGGTGGCAG	CGCCGACCCC	50
	GTCGAATCGG	ATCGAAGTAA	CGCTCCGTAG	ACGCCAGCTC	GTCCGCGCCG	100
	ATGCCGACCT	GCCACCCGTG				120

(2) INFORMATION FOR SEQ ID NO: 11

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 160
- (B) TYPE: nucleic acid
- 5 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

10 (ix) FEATURE:

(D) OTHER INFORMATION: Acii#2-506

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 11

CNGGCNNCCA NCGGGTGC	GC CAWGCACGGC CGGTCCGTG	GAGATCGTC	50
CNAATGGCAN GCCGGCGCCC	AAKANANNNC CGGTACCGTG CCTTCGTNGW	100	
15 GCAWCCTNGC GACCAACCCC GAGATYGCYA CNCTACNGCC GGKACATGAC	150		
CGTGGTGC	GG	160	

(2) INFORMATION FOR SEQ ID NO: 12

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 133
- 20 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

25 (A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: Acii#2-508

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 12

GACTGGNCCC GAYGYTGTGN CCGGHNC	GGNCGHGCHG CANTCGAYCC	50
30 TGGCCGTTGC TTCGGTGCCG GGTTGTTCAT CGCCTTCGAC CAGTTGTGGC	100	
GCTGGAACAG CATAGTGGCG CTAGTGCTAT CGG	133	

(2) INFORMATION FOR SEQ ID NO: 13

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 421
- 35 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-511

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 13

GCGNACNCTG	CGCATNGCTG	CCNGTANCCC	GGCGCCNAGG	CATGAGNCNN	50
TAGGCCGAAA	TGCCTGGTKA	ANCTNGCGTG	TSGTGGTTGA	CCCGCNGCGT	100
SCNGGCNTAC	AKGTGCATGC	TGTNGATCGG	CAGTGGGAGA	GGTGAGCGGT	150
GCAGGCNTAA	GGTGCAGGAGG	TTNGASNTCT	GGCGGTGTCG	GCGTTNGGTG	200
10 GCTTTGTTCC	CGGCGGTGCG	GGGGTGCTCC	NGNATTCCGG	CGACNAACNA	250
AANNCCGGGN	AGSACGAYNC	CCGTCGACAC	CNGGCAAACG	CTGAGGGCCG	300
GCACGGACCC	TTCTTCCCAC	AATGTGGCGG	CGTCAGCGAT	CANGACGGTG	350
ACCGAGCTGW	ACAAGGGTGA	CCGGGCTGGT	CAACACCGCC	AAGAAGTCGG	400
TGGGCTNCCA	ATGGCNTGGC	G			421

15 (2) INFORMATION FOR SEQ ID NO: 14

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

20 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

25 (D) OTHER INFORMATION: AcII#2-523

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 14

CCAGNCCNCC	NAACNTGTYN	CGNTCTCAYY	TCGCCGTGCG	TGCCGGTNCG	50
TGTGTGCACC	ATCTGCACCG	ACCCGTGKAA	CYTCGATCAC	GANACTGGNA	100
GAGNTCAGGC	ATNAAAGCCG	GAGTGGCACA	GCAACGGTCG	CTACTGGAAT	150
30 TGGCGAAGCT	GGATGCTGAG	CTGAC			175

(2) INFORMATION FOR SEQ ID NO: 15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 263

(B) TYPE: nucleic acid

35 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-639

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 15

5 GGGCTGGATT CGAGGCTCGT GCATGNCGTA CGACTANGGG TAGGCCAG 50
CTGCTCAATA CCATCGGTTG GATAACAAAG GCTGAACATG AATGGCNTGA 100
TCTCNACAAG CGTGC GGCTC CCACCGACCC CGGCGCCCT CGAGCCTGGG 150
GSTGTCGCGA TCCTGATCGC GGCGACACTT TTCGCGACTG TCGTTGCGGG 200
GTGCGGGAAA AAACCGACCA CGGCGAGCTC CCGAGTCCC GGTCGCCGTC 250
10 GCCGGAAGCC CAC 263

(2) INFORMATION FOR SEQ ID NO: 16

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 168

(B) TYPE: nucleic acid

15 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

20 (ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-822

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 16

YGCCATGCGA AGCGCACCCC GGTCCGGAAG NCCTGCACAG TTCWNCCGTG 50
CTCGCCGCGA CGCTACTCCT CGNYTGC GGGC GGTCCCAYGC AGCCAYGCAG 100
25 CATCACCTTG ACCTTTATCC GCAACGYGYA ATYCCAGGCC AAYGCCGAYG 150
GGATCATCGA YACCKACA 168

(2) INFORMATION FOR SEQ ID NO: 17

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 181

30 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

35 (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-854

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 17

- 40 -

ACCNGTTCCC	GCCGGNCTNA	CNCNCGGTGC	CGTTGCACCG	GCCANCTGCA	50
GCCTGCCCG	ACGCCGAAGT	GGTGTTCGCGN	CCGC GGCCGC	TTCGAACCGC	100
CCGGGATTGG	CACGGTCGGC	AABGCATTG	TCAGCNNTGC	GCTCGAAGGT	150
CAACAAGAAT	GTCGGGGTCT	ACGCGGTGAA	A		181

5 (2) INFORMATION FOR SEQ ID NO: 18

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 95
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 10 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

15 (D) OTHER INFORMATION: AcII#2-872

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 18

AGGTKACGGT	GGCAGCGCCG	ACCCCGTCGA	ATCGGWTCGA	AGAAYGCTCC	50
GKACACGCCA	GCTGCGTCCG	YGCCGATGCC	GACCTGCCAC	CCGTG	95

(2) INFORMATION FOR SEQ ID NO: 19

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 65
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-884d

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 19

AKCGGTCACC	KACGGGCCGG	CCACCGATGC	GATTGTCAAC	GGATTCCAAG	50
TGGTTGYGCA	TGCGC				65

(2) INFORMATION FOR SEQ ID NO: 20

(i) SEQUENCE CHARACTERISTICS:

- 35 (A) LENGTH: 156
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

- 41 -

- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:

5 (D) OTHER INFORMATION: AcII#2-8841

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 20

TCTTCTACAA GGACGCCCTC GCCAAGCACC AGGAGCTGTT CGACCGACTTG 50
GNCGTCAACG TCAACAATGG CTTGTCCGAT CTGTACRAGC AAGWTCGAGT 100
CGCTGCCGNB CGCAACCGCGA CGAGATCATC GAGGACCTAC ACCGTTGCCA 150
10 CGAACCA 156

(2) INFORMATION FOR SEQ ID NO: 21

- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 123
- (B) TYPE: nucleic acid
- 15 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*

20 (ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-8941

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 21

ATNCCGTTCC ACTNCCGGG CAGCAGCTGG NTTTGCAC ACAGTGACCC 50
AGTGGCGNTT GGTGGGGCCT CGCTGACGGC GAGTNTGGNC GAGCGTCCTC 100
25 GGTCGGTGNC CTNTCNCCCC GCC 123

(2) INFORMATION FOR SEQ ID NO: 22

- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 636
- (B) TYPE: nucleic acid
- 30 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*

35 (ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-898

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 22

	CGGTCWHKCA	ANTTGATGBC	NGCGCGCAAG	GCCGNATGG	TNGAGATGCC	50
	AACCACACCA	CCGGCTGGNT	CCGCATGGAC	TTCTGTGNTTS	CCAGTCGCNG	100
	CCTGATTGGG	TGNCGCACCG	ACNNCCTNCA	CCGAGACCSG	TGGCTC-SGA	150
5	GGANCTCGAC	ATCAATKCAN	CCGGAGNAGN	ANGCTGACCN	AACATNCGCT	200
	CATCGACCGC	GGATGTCNAT	CGAGNACGST	GCCAAGSCGC	TGCAGCTGGA	250
	TNCTCGAGCG	CGCCATGGAG	TNATRTGCGS	CCGACGAATN	CGTCGAGGTG	300
	ACCCCGGAGA	NTCGTGCAGA	TSCGCRAAGT	CGAGCTGGCC	GGCCNGCCGC	350
	CCGGGCTNMG	CAGCCGGCG	CCGACCCNAAG	GCGCGTGGCN	TAGCANACTT	400
10	GGCGNGCTGG	CCGCGCGAGC	GTANACNGCC	ACTGCGAAAN	TCCANGCCCG	450
	GCTTTTCGCA	GCCGGTTNA	CGCTCGTGGG	GGTACTGGAT	AGCCTGATGG	500
	GCGTGCCCAG	NCCCANGTCC	GCCGCGTCTG	TGTGACGGTC	GGCGCGTTGG	550
	TCGCGCTGGC	GTGTATGGTG	TTGGCCGGGT	GCACGGTCAG	CCCGCCGCCG	600
	GCACCCCCAGA	GCASTGATAAC	GCCGCGCAGC	ACACCG		636

(2) INFORMATION FOR SEQ ID NO: 23

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 103
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-916

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 23

CTTCCGGCGG	GACAACAACA	GGTCTCACCG	GCGCCACACC	CTGACACCTG	50
ATCGCGTCTG	CCGATCCGG	TCGGAGCACC	CGGGTTCCAC	CGCTGTGCC	100
CCC					103

(2) INFORMATION FOR SEQ ID NO: 24

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 207
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-1014

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 24

GCCACCGGTT	CATCGCGTGG	TGCTGGTCAC	CGCCNGGAAN	GCCTCAGCGG	50
ATCCCCCTGCT	GCCACCGCCG	CCTATCCCTG	CCCCAGTCTC	GGCGCCGGCA	100
5	ACAGTCCCXY	CCGTGCAGAA	CCTCACGGCT	NCTHCCGGGC	150
	ACAGGTTCTC	ACCGGYGCCW	NGYACCCGCA	CCGATCGCGT	200
	GGTCGGA			CGCCGATTCC	
					207

(2) INFORMATION FOR SEQ ID NO: 25

(i) SEQUENCE CHARACTERISTICS:

10 (A) LENGTH: 204

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

15 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-1025

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 25

20 TTNCGCANN	GTTCATCCAG	GTCCACTGGT	GTGCGANCTC	TNNNTGATGC	50
ACCGGTTCCG	GATATATGTC	NACATCNCCS	TCSTCGTCCT	GGTGCTGGTA	100
CTNACGAACC	TGATCGCGCA	TTTCACCACA	CCGTGNGCGA	GCATGCCAC	150
CGTCCCGGCC	GCCYGC GGTC	GGACTGGTGA	TCTTGGTKCG	GAGTAGAGGC	200
CTGG					204

(2) INFORMATION FOR SEQ ID NO: 26

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 207

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

35 (D) OTHER INFORMATION: AcII#2-1035

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 26

ATACCNGTCA	TCCNGCACAT	NGTCAACCTN	GAGTCGGTNC	TCACCTACGA	50
GGCACGCCCG	AGATGCATCA	CTGGTGCTCG	RTCAGNCCTT	CACGGCTTGG	100

CCGCCTTCCG	GTA GGACCGT	HGCATGCCG	TCTTCGGCGC	CTCGGGTGTT	150
CGGT CCTGGC	TCTCGGGCTG	CTGGCCNCTG	CGCCCCACCC	CGCACCGGGC	200
CGGCTTC					207

(2) INFORMATION FOR SEQ ID NO: 27

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH:
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-1084

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 27

YCNAGNCKCG	TNATNGCSGN	CKCATNTNAC	NGGANCCNGG	ATTNCSTACG	50
CCACNGTGAT	CGCGCTGGTN	GCCGCGCTGG	TGGCGCGTGT	ACGTGCTCTC	100
GTCCACCGGN	AANTAAAGCGC	ACCATCGTGG	GCTACTTCAC	CTCTGCTGTC	150
GGGCTCTATC	CCGGTGACCA	GGTCCCGCGTC	CTGGGCGTCC	NGGTGGGTGA	200
20 GATCGACATG	ATCGAGCCGC	GGTCGTCCGA	CGTSAAGATC	ACTATGTCGG	250
TGTCCAAGGA	CGTCAAGGTG	CCCGTGSACG	NTGCAGGCC		289

(2) INFORMATION FOR SEQ ID NO: 28

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 198
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

30 (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-1089

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 28

TTGNACCANG	CCTATCGCAA	GCCAATCACCC	TATGACACGC	TGTGGCAGGC	50
35 TGACACCGAT	CCGCTGCCAG	TCGTCTTCCC	CATTGTGCAA	GGTGAACGTGA	100
GCAANGCAGA	CCGGACAACA	GGTATCGATA	GCGCCGAATG	CCGGCTTGGGA	150
CCCGGTGAAT	TATCAGAACT	TYGCAGTCAC	GAACGACGGG	GTGATT	198

(2) INFORMATION FOR SEQ ID NO: 29

- 45 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 149
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

10 (D) OTHER INFORMATION: AcII#2-1090

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 29

TCACGANGGT RYNACMGCAA CWCGACCAGCC ACGTCASGCC GCCGCGCACG	50
AAGATCACCG TGCCTGCNCG ATGGGTCGTG AACGGAATAG AAYGCAGCGG	100
TGAGGTCAAN YGCGAAGCCG GGAACCAAAT CCGGTGACCG CGTCGGCAT	149

15 (2) INFORMATION FOR SEQ ID NO: 30

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH:
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 20 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

25 (D) OTHER INFORMATION: AcII#2-1104

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 30

GGACCCGCCA AGCATCAGCC GGTCAACAGC CGCCGCCGGT GGCCAAAGTT	50
CGAGCAGCCG CCGGTATCGT GCTCGGCCCG GCTAGACCAA AAACTTTACG	100
CCAGCGCCCG AAGCCACCCG ACTCCAAGGC CTCGGCCCGG TTGGGTTCGC	150
30 ACATGGGTGA GTTCTATATG CCCTACCCGG GCACCCGGTT CAACCAGGAA	200
ACCGTCTCGC	210

(2) INFORMATION FOR SEQ ID NO: 31

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 255
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 35 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#3-9

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 31

CAGNCCGCTG NCCCCGAACT GTTCCAGCAG CTACAAGACC TTCGACAACG	50
TNGCGCGTCA ACCTGCANTC GAGCGCAACC TCTCGGTGGC GCTAACGAG	100
TGTTTCGCCGG CTTCAACCCG CTGGACCCGC GAAACCTCGA CGTGTCCCCG	150
CTGCCTTCGC TGGCCAAGCG CGCCGCCGAC ATCCTGCGCC AGGACGTGGG	200
10 CGGGCAGGTC GACATTTCG ATGTCAATGT GCCCACCATC CAGTACGACC	250
AGAGC	255

(2) INFORMATION FOR SEQ ID NO: 31

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 164

15 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

20 (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#3-12

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 31

AAYNCCNGGC CRTCGACGGT NCCGGTTNCN RCCACCGGTC TATATCCACC	50
25 CGGGTCNRCA TTMANANTGA NTMNCCGCCG GTGCGGCCGT CGAGCGTGAC	100
CTGGCATCCC CTGAGACGCT GCTGGGTTGC CCCGGGGAGN TCGAMANTCG	150
GGCATCGCAC CATC	164

(2) INFORMATION FOR SEQ ID NO: 32

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 237

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

35 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#3-15

- 47 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 32

ACGGACGGCA	ACGGGATGCG	ACCCGATCCC	ACCGGTCGCC	ACGAGGGACG	50
CTACTTCGTC	GCCGGGCAGC	CGANCCGACC	GTCNGTTTCNG	CGANGGCGAC	100
NGCCGAAGCC	GTTGACCCAC	NTTGGTCAGC	AGCAGCTGGA	TSAGTCAGGT	150
5	GCCGTTGGTG	TTTCGCGTC	AGCGGTGTCG	GGGTGGGTGC	GTTCTGGCA
	CCGTCGACTG	TGGTGGGCGC	TNGCGGGCGN	TGGTGGC	200
					237

(2) INFORMATION FOR SEQ ID NO: 33

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 374

10 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

15 (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#3-47

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 33

CNGATNGCTC	GGNCTNCGGT	ACCNAACTCG	NAACTCGCGC	CCWYGCGNAC	50
20	GCAGGNCCGC	GGTTGGCACCC	ACCAGCGACA	TCAATCANGC	AGGWKNCCCG
	CCACGTTGCA	AGACGGCGGC	AATCTTCGCC	TGTCGCTCAC	CGACTTTCCG
	CCCAACTTCA	ACATCTTGCA	CATCGACGGC	AACAACGCCG	AGGTCGCGGC
	GATGATGAAA	GCCACCTTGC	CGCGCGCGTT	CATCATCGGA	CCGGACGGCT
	CGNACGNACG	GTCGACACCA	ACTACTTCAC	CAGCATCGAG	CTGACCAGGA
25	CCGCCCCGCA	GGTGGTCACC	TACACCATCA	ATCCCGAGGC	GGTGTGGTCC
	GACGGGACCC	CGATCACCTG	GCCG		374

(2) INFORMATION FOR SEQ ID NO: 34

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 26

30 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

35 (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#3-78 (overlaps with AcII#3-167)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 34

GAGAACTCCG GGCGANTTT TGGACA

26

(2) INFORMATION FOR SEQ ID NO: 35

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 204

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

10 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#3-133

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 35

15	TGTGGGTNA RNGTCGCGT CCATGATTGC TCTTGCAACG CTGTTGACGC	50
	TTATCAAATCA AGTCGTCGGC ACTCCGTATA TTCCCGGTGG CGATTCTCCC	100
	GCCGGGACCG ACTGCTCGGA GCTGGCTTCG TGGGTATCGA ATGCCGGCGAC	150
	GGCCAGGCCG GTTTTCGGAG ATAGGTTCAA CACCGGCAAC GAGGAAGCGC	200
	CTTG	204

20 (2) INFORMATION FOR SEQ ID NO: 36

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 312

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

25 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

30 (D) OTHER INFORMATION: AcII#3-134

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 36

CANNTAGAC TGTCGTGACA TATCNCNNTN TACNCNTGGN ACGGCCATNA	50
TTGGATAATN CGTGATAANC ACCACAAGAA TNATTCTCAT GNATATTGTC	100
GGTACGTTCG CGNCCATGAT TNGCTCTTGC AACGCTGTTG ACGCTTATCA	150
35 ATCAAGTCGT CGNCACTCCG TATATTCCCG GTGNCGATTG TCCCGCCGGG	200
ACCGACTGCT CRGAGCTGGC TTCGTGGGT ACGAATGCAG CGACGSCCAG	250
GCCGGTTTTC GSAGATAGGT TCAACACCGG CAACGAGGAA GCGCCTTGGC	300
GGCTCGGGGC TN	312

- 49 -

(2) INFORMATION FOR SEQ ID NO: 37

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 676
- (B) TYPE: nucleic acid
- 5 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Mycobacterium tuberculosis

10 (ix) FEATURE:

- (D) OTHER INFORMATION: AcII#3-166

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 37

AGGCCAATCG	NTGATGCGAC	TCGAACGGGT	TGGCGCCGA	TGACTGTTTC	50
GCGAAGTTCA	TCAGCACCCCT	CGTTGGCGCG	AAGGGCACGA	CGGTGTACCG	100
15 GWWRYSAMKA	CRCYGCYATG	AGTYTCTGCS	TGTATTGCGG	TGCSGAGCTT	150
GCCGACCCGA	CCAGGTGCGG	KGC GTGN CGG	CSCAKACWAG	ATTGGTTCAA	200
CCTGGCNATC	GGACCNACGA	CGCCGACGGT	CGGCGCCGCG	ACGACGGCAN	250
ACGGNATNGC	GACCCGANTC	CNYACCNGGT	CGCCACGAGG	GACGNCTACT	300
TCGTCGCCNG	GCAGCCGACC	GANCTCGTTN	NNCGCGASGN	CGACGCCGAA	350
20 GCCGTTGACC	CACTTGGTCA	GCAGCAGCTG	GNNATCANGN	TCANGGTGCC	400
GTTNNNGGTGT	TTCGCCGTCA	GCGGTGTCGG	GGTGGGTGCG	TTCTGGGCAC	450
CGTCGACTGT	GGTGGGCCT	TGCGGGCGTG	GTGGCGTTTC	TCGGGCTGGT	500
GGGAGCCGGT	GTCGTGGGA	CGCTGTTCT	GAATCGAGAC	CGGGAGTCCA	550
TCGACGACAA	GTACCTCGCN	CCTTGAGGCG	GTCCGGACTC	ACCGGTGAGT	600
25 TCAACTCCGA	CGCGAACGCC	ATCGCCCCGS	GCAAGCAGGT	GTGCCGCCAG	650
TTGCANASAC	GGTGGCGAAC	AGCNSA			676

(2) INFORMATION FOR SEQ ID NO: 38

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 853
- 30 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Mycobacterium tuberculosis

35 (ix) FEATURE:

- (D) OTHER INFORMATION: AcII#3-167

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 38

- 50 -

	GTGNGCGCGC CNTCGAGCAN GTCTTGGCNG CGANCCGAB ACAANTGATT	50
	CCCGACATCC GGTACACACC GAACCCCNAA NCGATGCGCC NGGCGGCCCG	100
	CTGGTAGAAA GGGGAAATCG CCAGTGCTGA CTCGCKTCAT CCGACGCCAG	150
5	TTGAKCKTT TKGCGAKCGT CKCCGTAGTG GCAATCGTCG TATTGGGCTG	200
	GTACTACCTG CGAATTCCGA GTCTGGTGGG TNNTCGSGCA GTACACCTTG	250
	AAGGCCGACT TGCCCGNATC GGGTGGCCTG TATCCGACGG CCAATGTGAC	300
	CTACCGCGGT ATCACCATTG GCAAGGTTAC TGCCGTCGAG SCCACCGACC	350
	AGGGCNGCAC GANGTGACGA TGAGCATCGC CAGNCAACTA SAAAATCSAC	400
10	GTCGATGCCT NC GGCGAACG TGCAATTGGN GTCAGCGGTN GGCGAGCAGT	450
	ACATCGACCT NGTGTCCACC GGTGCTCCGG GTNAAATACT TCTCCTCCGG	500
	ACAGACCATC ACCAANGGCA CCGTTCCAG TGAGATCGGG CCGGGCGCTGG	550
	ACAANTCCSA ATCNGCGGGT TGGCCGCATT NGCCCACGGA GAAGATCGGC	600
	TTGCTGCTCG ACGAGACNGC GCAAGCGGTG GGTGGGCTGG GACCCGCGNN	650
	TTGCAACGGT TGGTCGATTC CACTCAAGCG ATCGTCGGTG ACTTCAAAC	700
15	CAACATTGGC GACGTCAACG ACATCATCGA GAACTCCGGG CCGATTTGG	750
	ACAGCCAGGT CAACACGGGT GATCAGATCG ACGCTGGCG CGCAAATTGA	800
	ACAATSTGGC CGCACAGACC GCNGACCAGG GAKCAGAACG TGCAGAACAT	850
	CCT	853

(2) INFORMATION FOR SEQ ID NO: 39

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 209
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

- (D) OTHER INFORMATION: AciI#3-204

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 39

	GCGGTTGGCA CCACCAGCGA -AATCAGCAG GNDCCCGCCA CGTTGCAAGA	50
	CGGGCGCAAT CTTCGCCTGT CGCTCACCGA CTTTCCGCCA AACTTCAACA	100
	TCTTGACAT CGACGGCAAB AABGCCGAGG TCGCGGCGAT GATGAAAGCC	150
	ACCTTGCCGC GCGCGTTCAT CATCGGACCG GACGGCTCGA CGACGGTCGA	200
35	CACCAACTA	209

(2) INFORMATION FOR SEQ ID NO: 40

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 166

- 51 -

- (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - 5 (ii) MOLECULE TYPE: genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
 - (ix) FEATURE:
 - (D) OTHER INFORMATION: AciI#3-206
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO 40
- 10 AGATCGTCAG TGAGCAGAAC CCCGCCAAC CGGCCGCCCG AGGTGTTGTT 50
 CSAGGGCTGA AGNCNCTGCT CGCGACGGTC GCTGCTGGCC GTCGTCGGGA 100
 TCGGGCTTGG CTCGCCTGT ACTTCACGCC. GGCGATGTCG NCCCGCGAGA 150
 TCGTGTATCA TCGGGT 166
- (2) INFORMATION FOR SEQ ID NO: 41
- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 221
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - 20 (ii) MOLECULE TYPE: genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
 - (ix) FEATURE:
 - (D) OTHER INFORMATION: AciI#3-214
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO 42
- 25 CCAGNTCCCTC NNATATCGAC ACCCTCNACN AAGACCGCTT CGCGAGATCA 50
 ACNCTCAGAT ATNCNNACTA TCNCCNNNTNC ACGCACACCT CAACATNANA 100
 NAATNGAACT ATNGNCTTCG CCTCACCAACC AAGGTTCAAGG TTANC GGCTG 150
 NCGTTKCTC TKCGCCGGCT CGAACACGCC ATCGTGCGCC GGKACACCCG 200
 30 GATGTTTGAC GACCCGCTGC A 221
- (2) INFORMATION FOR SEQ ID NO: 43
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - 35 (ii) MOLECULE TYPE: genomic DNA
 - (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#3-281

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 43

5 CGGYCCGNNC AAYYYGNCGC GCHNCGGYGY AGAGGTCGNY AAGGTCGCCA 50
 AGGTAACGCT GATCGAYGGG NACANGCAAG TATTGGTGNA CTTCACCGTG 100
 GHGTHGCTHGC TGTYAGC 117

(2) INFORMATION FOR SEQ ID NO: 44

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 385
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

15 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: BsAI#1-21

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 44

20 GAACCTCCTC GCCCGCGCTT GGCCTAGCAT TAATCGACTG GCACGACAGT 50
 TGCCCCACTG GGTACACGGC ATGGACGCAA CGCGAATGAA TGTGAGTTAG 100
 CTCACTCATT AGGCACCCCA GGC GTTGACA CTTTATGCTT CCGGCTCGTG 150
 TAGTTGTGTG GGAATTGTGG AGCGGATAAAC AATTCGACG ACGAGGAAAC 200
 AGCTGTAGAC ATGGATTGAC GAATTGAAAT ACGACTCACT ATAGGAATT 250
 25 GAGCTCGGTA CCCGGGGATC CTCTAGAGTC CTT CGCCGCG GGT CGCCACC 300
 ATCAGGGCCA GTGCGATCGC AAGCGGGGG TACCGGGCGC CATAGTCTTC 350
 AGCATCGGCG TGTGACCGC AGAGACCGGA CGGGG 385

(2) INFORMATION FOR SEQ ID NO: 45

(i) SEQUENCE CHARACTERISTICS:

- 30 (A) LENGTH: 285
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

35 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#1-12

- 53 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 45

CCCGCAGCAG TACCCGCAGN CCCACACCCG CTATNCGCAG CCCGAACAGT	50
TCGGTGCACA GCCCACCCNA GCTCGGCGTG CCCGGTCAGT ACGGCCAATA	100
CCAGCAGCCG GGCCAATATG NCCAGCCGGN ACAGTNACGN CCAGCCCGGC	150
5 CAGTACGCNA CCGCCCGGTC AGTACCCCCGG GCAATACGGC CCGTATGNCC	200
AGTCGGGTCA GGGGTCGAAG CGTTCGGTTG CGGTGATCGG CGGCGTGATC	250
GCCGTGATGG CCGTGCTGTT CATCGGCCGCG GTTCT	285

(2) INFORMATION FOR SEQ ID NO: 46

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 186
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- 15 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
 - (D) OTHER INFORMATION: HinPI#1-142

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 46

20 GCNCGTGNCC GTGCCGCCCG GTTGAACGTG AGCNGCTGNC NATNGCCCCA	50
GCCGAGACGA GAACGTCCCC GAGGAGTATG CAGACTGGGA AGACGCCGAA	100
GACTATGACG ACTATGACGA CTATGAGGCC GCAGACCAGG AGGCCGCACG	150
GTCGGCATCC TGGCGACGGC GGTTGCGGGT NCGGTT	186

(2) INFORMATION FOR SEQ ID NO: 47

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
 - (D) OTHER INFORMATION: HinPI#1-144

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 47

GTCGCTGAAT GTGTTGTCGG AGACCGTGAT CAGACCTATC CGCACTGAG	50
CGCCGCCTCC ACGGGTGGCT AAGTTCTCCG ACACCATCGG CAAGCGCGAC	100
GAGCAGACTC ANGCACCTAC TAGCCCAGGC CAACCAGGTG GCCAGCATCC	150

	TGGGTGATCG CAGTGAGCAG GTCGACCGCC TATTGGTCAA CGCTAAGACC	200
	CTGATCGCCG CGTTNCAACR GASNGCGCCG CGCGGTCGAC GCCCTGCTGG	250
	GGAACATCTC CGCTTTCTCG CCCAGGYGCA AACCTTCAT SAACGACAAN	300
5	CCGAACCTGA ACCATGTGCT CGAGCNGCGC ATCCTSACSA CCTGTTGGTS	350
	GACSGCAAGG AGGATTGGC TGAAANCTN ACGATSTTGG GCAGAKTCAG	400
	CG	402

(2) INFORMATION FOR SEQ ID NO: 48

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 468
- 10 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
- 15 (A) ORGANISM: Mycobacterium tuberculosis
- (ix) FEATURE:

(D) OTHER INFORMATION: HinPI#1-200

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 48

AGNCCGTGCA CTGGAANCTT CGGCTCAGWT GTCTCCGATG TGGACGGCAA	50
20 SGCTGATGAT CTCCC GGTTG GAAGTCGANT CGATKASAAA TGGCTTGGCG	100
GCTGGTGGTG TTCGATGCCT GGCACCR ACT GGCBACGATC NSCGCCTGGN	150
CGCGATCGGC GCTTAGCTCG GCTGGNNCCC TGTGGTGGGT TTGACGTGC	200
TCGGTGTGG TGCTGCTGGT GGTCGAAGGT GTGGCAATCA ACCTCTGGC	250
TGTTGCGTCG TGATT CGGT A ACCGTCGGTA CCGACGACGA TGC GCCC GGG	300
25 CTGCGACTGG CCGTT GTCTT CCTGTGC NNG CC GCGCGC AT CTC GCG GCN	350
GTGGTGACTG GGTACCTGCG CTGGACGACA CCGGACCGCG ACTTCAATCG	400
GGATTCCCGG GAAGTGGTGC ATCTTGCCAC GGGGATGGCC GAGACGGTCG	450
CGTCATTCTC CCCGAGCG	468

(2) INFORMATION FOR SEQ ID NO: 49

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 417
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (ix) FEATURE:

- 55 -

(D) OTHER INFORMATION: HinPI#2-23

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 49

	GTCCAAGGCC	GTAGCCCACC	TCCTGGAAGT	CGTACCAACGT	CGACTCGACC	50
	AGGACGGCTG	CAGTCAGCAC	TTCGTCAACC	CGCGATCATC	AACGTGCACC	100
5	TACGGCAGTG	TGACGCACCC	CGGACCATCG	CACTGGCCGG	GGTCACACG	150
	CCGAACACTG	CTGACCGCAC	TGGATCTGCT	GGTCGCATGC	ACCACTTCAA	200
	GGTGGTGTACG	TACCTCAAAA	TGGGTTTCCC	GTTGTCCACC	GAGGAAGTCC	250
	CGCTGATTCA	TGGGCAATAA	CGCTCCCTAT	CCGCAGTGTC	ACCAGTGGGT	300
10	GCAAGCGGCG	ATGGCCAAGT	TGGTCGCTGA	CCACCCCGAC	TACGTTTCA	350
	CAACCTCGAC	TCGACCGTGG	AACATCAAAC	CCGGCGATGT	GATGCCAGCA	400
	ACCTATGTCTG	GGATCTG				417

(2) INFORMATION FOR SEQ ID NO: 50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 279

15 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

20 (A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#2-143

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 50

	CGGTGAGGCC	GATGAACGTC	TGCAGTTCAC	CGCAACCACG	CTCAGCGGTG	50
25	CTCCCTTCGA	TGCGCAAGGCC	TGCAAGGCCAA	TGCCCGGGTG	TTGTGGTTCT	100
	GGACGCCGTG	GTGCCCGTTC	TGCAACTGTC	AGAAGCCCCC	AGCCGCAGCC	150
	AGGTAGCGGC	CGCTAATCCG	GCGGTCACCT	TCGTCGGAAT	CGCCACCCGC	200
	GCCGACGTCG	GGCGATGCA	GAGCTTGTC	TCGAAGTACA	ACCTGAATT	250
	CACCAACCTC	AATGACGCCG	ATGGTGTGA			279

30 (2) INFORMATION FOR SEQ ID NO: 51

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 324

35 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#2-145

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 51

CGGCCGGCG	GCGCCCTGGT	GAAGCTTGGA	GAATGGGTGA	GCGCAGCTGC	50
5 CCACCACACG	GGACCGGTGC	GGACGCGSTG	ACGCGCCTGG	TGGTCAGCAN	100
CNTGGCCGGT	CTGCTGTTGT	ATGCCAGCTT	CCCGCCGCGC	AACTGCTGGT	150
GGCGGCGGTG	GTTGGGCTNC	GCATTGCTGG	CCTGGGTGCT	GACCCACCGC	200
GCGACGACAC	CGGTGGGTGG	GCTGGGCTAC	GGCCTGCTAT	TCGGCCTGGT	250
GTTCTACGTC	TCGTTGTTGC	CGTGGATCGG	CGAGCTGGTG	CNCCGGGCC	300
10 TGGTGGCAC	TGNCGACGAC	GTGC			324

(2) INFORMATION FOR SEQ ID NO: 52

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 229

(B) TYPE: nucleic acid

15 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

20 (ix) FEATURE:

(D) OTHER INFORMATION: HinPI#2-150

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 52

CCAGGCTAGC	ACGTATGCTC	CGGCTCGTTG	TGTGTGGAAT	GTGAGCGGAT	50
GACANKNCAC	ACAGGADAYA	GCTATGACNA	TGATTACGCC	AAGCTATTAA	100
25 GGTGABACTA	TAGAATAYTC	AAGCTATGCA	TCCAAYGCGT	TGGGAGCTCT	150
YCCATATGGT	CGACCTGCAY	GC GGCCGCAC	TAGTGATTST	THGCGCCGGC	200
NYGCWCGGGC	NYAYGACCGC	YAAYACCAC			229

(2) INFORMATION FOR SEQ ID NO: 53

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 293

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

35 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#3-28

- 57 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 53

CCACACAACA	CAAATCTACG	TCGTAATGCA	GTCGTAAGTC	CATCCGACGT	50
CGATGGCAAG	GACAGCACCC	GACGGCCAAC	GGCATATACA	TCGTCGGCTC	100
GCCGGTCACA	AGCACATCAT	CATGGACTCG	TCCACTACGG	CGTACCCGTC	150
5 AACTCGCCA	ACGGATATCG	CACCGATGTC	GACTGGCCAC	CCAGATCTCC	200
TACAGCGGTG	TCTTCGTGCA	CTCAGGCCG	TGGTCGGTGG	GGGCTCAGGG	250
CCACACCAAC	ACCAGCCATG	GCTGCCTGAA	CGTCAGCCCC	AGC	293

(2) INFORMATION FOR SEQ ID NO: 54

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 816
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- 15 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
 (D) OTHER INFORMATION: HinPI#3-30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 54

20 CGNCGYCGSC	GNGCSCTAYC	GGTGCAGGAG	GGTACAYCCA	AGCANTCCGG	50
GACCAGGCCGT	CYCGCYGGGA	ACGCCGTGCT	CCTACAYACC	GGCGRCGGGC	100
GCGTTGCCAC	GSCCCGACAC	CCCACCTACCC	NGNCGCGGGC	GCCACCRRTG	150
GCCCGTTNMG	GTGGACCCGA	NCTTCCCGGC	ACCGCTCGAT	GTCCAGCCGT	200
CGCCGCCTAA	TCCCGATGGG	CCGCMGCCGA	CKCCGGGCAT	CCTAAGTGCT	250
25 GGGCGGCCGG	GCGAGCCGGN	TCCGGNTGTT	CCGGCATACC	GWTGCCSYTG	300
CCGNCGAAC-	TGCACGCACC	CAACCGCTTG	AGCCGTTTCC	TGACGGGACG	350
GGAGGTAGCA	ACCAATGAGC	ACCATCTTG	AYATCCGSAG	CCTGCKACTN	400
GYCGAWACTG	TCTNGCAAAG	GTAGTGGTCG	TCGGCGGGTT	GGTGGTGGTC	450
TTGGCGGTG	TRGCCGNCTG	NRGCGCGCG	CGCRGCTCTA	CCGGAAACTG	500
30 ACTANACTAC	CGTGGTCGCR	TATTTCTST	GAGGCGCTCG	CGCTGTACCC	550
AGGAGASAAA	GTCCAGATCA	TGGGTGTGCG	GGTCGGTTCT	ATCGACAAGA	600
TCGAGCCGGC	CGGCGACAAG	ATGCGAGTCA	CGTTGCACTA	NCAGCAASAA	650
ATACCAGGTG	CCGGCCACGC	TACCGNYGNW	CGMTCTCAA	CCCCAGCCTG	700
GTGGCCTCGC	GCACCATCCA	GCTGTCACCN	NCGTACACCG	GCGGCCCGGT	750
35 CTTGCAAGAC	GGCGCGGTGA	TSCCAATCGA	GCGCACCCAG	RTGCCCGTCG	800
AGTGGGATCA	GTTGCG				816

(2) INFORMATION FOR SEQ ID NO: 55

(i) SEQUENCE CHARACTERISTICS:

- 58 -

- (A) LENGTH: 117
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
- 5 (ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
(D) OTHER INFORMATION: HinPI#3-34
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 55
CAGCCACCTC GTTCGCCGCC GACATCGACT ATCAGCCGAC CCGGCCACTG 50
CTGACCTGAT CGCCAACAGC TGGAGGCCCT ACCGGCTGCA GTTCAATTCA 100
CCCGCTGCGG GTCGGCG 117
- (2) INFORMATION FOR SEQ ID NO: 56
- 15 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 242
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
(D) OTHER INFORMATION: HinPI#3-41
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 56
AGGTGTCGTG CTTCATGCCT GGCGCCCAAT CCAGTTCTA CACCGACTGG 50
TATCACCCCTT CGCAGACAAA CGGCCAGAAC TACACCTACA AGTGGGAGAC 100
CTTCCTTACC ACACAGATGC CCGCCTGGCT ACAGGCCAAC AAGGCGTGTC 150
CCCCACAGGC AACGCGGCGG TGGGTCTTTC GATCTCGGGC GGTTCCGCGC 200
30 TGACCCTGGC CGCGTACTAC CCGCAGCAGT TCCCGTACGC CG 242
- (2) INFORMATION FOR SEQ ID NO: 57
- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 340
(B) TYPE: nucleic acid
- 35 (C) STRANDEDNESS: double
(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:

- 59 -

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: HpaII#1-3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 57

5	TGCTGCAGAT AGCCAAGGAT CCAGTCGTGA TTGATATCAC GTCTTCCAG	50
	TGAATTGAAG TTTGGCTATC AAAGGGTGAA CTTSAAAGAC GGCACACTGA	100
	CCTATGATGG TGCCGATCCG GAGCGCAAGC GCGCCATGGT TTCCAAGCCA	150
	GAGGGCAAGN ACAAGTACGG CGAAGAGCTG GTCGGGCCGG TGCGCGGGCT	200
	CAACACCGAG GACCGGACCT ACCTGAATT CGACAAGGTC GAGACGTTGG	250
10	GCAGCAGCAC CGAAATTCCG GTGCTGGTGC TGCCGTCCGG CAAGCGTATC	300
	GAATTCCAAA TGGCCTCAGC CGATGTGATA CACGCATTCT	340

(2) INFORMATION FOR SEQ ID NO: 58

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:

15	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double
	(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

20	(A) ORGANISM: <i>Mycobacterium tuberculosis</i>
----	---

(ix) FEATURE:

(D) OTHER INFORMATION: HpaII#1-8

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 58

25	CNGACTCCAA CNAGTGCNT CAANCNGNTG TNCCNGACAA GAAGGTTCCCT	50
	ACATCCGCAA NTCGGTGNAA NGCCACTGTG GATGCCTACG ACGGAACGGT	100
	CACGCTGTAC CAACAGGACG NAAAAGGATC CGGTGCTCAA GGCCTGGATG	150
	CAGGTCTTCC CCGGCACGGT AAAGCCTAAG AGCGACATTG CGCCGGAGCT	200
	TGCCGAGCAN CTGCGGTATC CCGAGGACCT GTTCAAGGTG CAGCGCATGT	250
	TGTTGGCCAA AT	262

(30) (2) INFORMATION FOR SEQ ID NO: 59

(i) SEQUENCE CHARACTERISTICS:

35	(A) LENGTH: 241
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: HpaII#1-10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 59

CCACCANNNA ACRRCACAGC TCCGGCCRRC CGTNCGCAGG CCACCCGCAN	50
5 CGTAGTGCTC AAATTCTTCC AGGACCTCGG TGGGGYACAT CCGTCCACCT	100
GGTACAAGGC CTTCAACTAC AACCTCGCGA CCTCGCAGCC CATCACCTTC	150
GACACGTTGT TCGTGCCCCGG CACCACGCCA CTGGACAGCA TCTACCCCAT	200
CGTTCAGCGC GAGCTGGCAC GTCAGACCGG TTTCGGTGCC G	241

(2) INFORMATION FOR SEQ ID NO: 60

10 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 243

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: HpaII#1-13

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 60

CCGGCGGATC TGC GTGACGA NTGTATNCCA CGGNACTACC CGCGGTCTT	50
CCTCNANTNC CGCCGGNCCA GNCGCAGNCT NCNGATGTCC NGCTATAACC	100
TGCGCGATCG CCGCCGGCT GCCCGACAAAC ACGGTGNGCG CCGCCGCTGC	150
TTCCGCCAAT TCTGGGTGNC GGCATNCCGG CAGCGCCCGG CCCAGCACTG	200
25 AGAGGGGGAC GTTGATGC GG TGCCGACGG CGTGGCTGCT GGC	243

(2) INFORMATION FOR SEQ ID NO: 61

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2346

(B) TYPE: nucleic acid

30 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

35 (ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-825

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 61

	GCGCTGNCAT TCGNACTTCG GACNGCGTN GCGGTGGTGC TGATCATGAA	50
	NCTACGACGG CGCCACCAGGC AGCTTCCCGT CATGGGTGCT CTATCCCTGT	100
	GCGCTGGCCA TGATGGTGTT CTCGAATKCG TTCAGCGTNC TGCGCAGCGC	150
5	AGTGANACCG AGGGTGATGC CGCCAACCAT CGACTTGGTC CGGGTCAACT	200
	CACGGCTGAC CGTGTTCGGC CTGCTCGGCG GCACCATCGC TGGTGGCGCG	250
	ATTGCGGCCG GAGTCGAATT CGTCTGCACC CACCTGTTCC AGGTGCCGGG	300
	CGCGTTGTTG TCGTGTGTCG CGATCACCAT CNNTNNNGCT TCGTGTGTCGA	350
	TNCNCATTCC GCGCTGGTC GAGGTGACCA GCGGTGAGGT CCCGGCCACA	400
10	TTGAGCTACC ACCGGGATAG GGNAGACTA CGGCGACNGC TGGCCGGAGG	450
	AAGTCAAGAA CCTCGGCGGA ACACCTCCGAC AACCGTTGGG CCGAACATC	500
	ATTACCTCCC TGTGGGTAA CTGCACCATC AAGGTGATGG TCGGCTTTCT	550
	GTTCTTGTAT CGGCGTTTG TCGCCAAGGC GCACGAAGCC AACGGGTGGG	600
	TGCAATTGGG CATGCTGGGC CTGATCGGCG CGGGCGCCGC GGTCGGCAAC	650
	TTCGCCGGCA ATTCACCCAG CGCACGCCTG CAGCTAGGCA GGCCAGCTGT	700
	GCKGGTNGTG CGCTGCACCG TGCTAGTTAC CGTGTAGGCC ATCGCGGCCG	750
	CGGTGGCCGG CAGCCTGGCA GCGACAGCNA TTGCCACCCCT GATCACGGCA	800
	GGGTCCAGTG CCATTGCTAA AGCCTCGCTG GACGCCTCGT TGCAGCACGA	850
	CCTGCCGAG GAGTCGCGGG CATCGGGTT TGGCGTTCC GAGTCGACTC	900
	TTCAGCTGGC CTGGGTGCTG GGCGCGCGG TGGCGTGTGTT GGTGTACACC	950
	GAGCTGTGGG TGGGCTTCAC TGGCGTGAGC GCGCTGCTGA TCCTGGGTCT	1000
	GGCTCAGACC ATCGTCAGCT TCCGCGGCGA TTGCGCTGATC CCTGGCCTGG	1050
	GCGGTAATCG GCCCGTGATG GCCGAGCAAG AAACCACCCG TCGTGGTGCG	1100
	GCGGTGGCGC CGNAGTGAAG CGCGGTGTCG CAACGCTGCC GGTGATCCTG	1150
	GTGATTCTGC TCTCGGTGGC GGCGGGGGCC GGTGCATGGC TGCTAGTACG	1200
	CGGACACGGT CCGCAGCAAC CCGAGATCAG CGCTTACTCG CACGGGCACC	1250
	TGACCCCGT GGGGCCCTAT TTGTACTGCA ACGTGGTCGA CCTCGACGAC	1300
	TGTCAGACCC CGCANGCGCA GGGCGAATTG CCGGTAAGCG AACGCTATCC	1350
	CGTGCAGCTC TCGGTACCCG AAGTCATTTC CCGGGCGCCG TGGCGTTGC	1400
	TGCAGGTATA CCAGGACCCC GCCAACACCA CCAGCACCTT GTTCCGGCCG	1450
	GACACCCGGT TGGCGTCAC CATCCCCACT GTCGACCCGC AGCGCGGGCG	1500
	GCTGACCGGG ATTGTCGTGC AGTTGCTGAC GTTGGTGGTC GACCACTCGG	1550
	GTGAACCTACG CGACGTNCGC ACGCGGAATG GTCGGTGCGC CTTATCTTT	1600
	GACGAGGCCG CGGCTCGACG NC-CCTTAAG CGCGGTGCGGC GCCAACGGTC	1650
	CGAAGAGCCG CCGACACCCG GGGCACATCG GCGCATCATG GAACTGTGCG	1700
	GATCGGAGTC GGGTTTGCA CCACGCCGA CGCGCGGCAG GCCGCGGTGG	1750
	AGGCTCGGG CCAGGCGCGC GACGAGCTGG CGGGTGAGGC GCCGTCGCTG	1800
	GCGGTGTTGC TTGGATCGCG TGCACACACC GACCAGGCTG CCGACGTCC	1850
	GAGCGCGGTG CTGCAGATGA TCGACCCGCC CGCGCTTGTC GGTTGCATCG	1900

CCCAGGCCAT CGTCGCCGGC CGCCACGAGA TCGAGGACGA GCCCGCGGTG 1950
 GTGGTGTGGC TGGCGTCCGG CTTGGCCGCC GAGACATTCC AGCTGGACTT 2000
 TGTCTNGTACC GGCTCGGGTG CCCTGATCAC CGGTTATCGG TTCGACCGNA 2050
 CCGCCCAGGA TCTGCATCTG CTGCTGCCGG ACCCGTACAC ATTCCCCTCG 2100
 5 AACCTGCTCA TCGAGCACCC CAACACCGAC CTGCCGGGCA CCGCNGTCGT 2150
 GGGCGCGNT GGTGAGCGGC GGGCGCCGGC GGGGCGACAC CCGGSTGKTC 2200
 CGCGATCACG ACGTGCTCAC CTCCGGMGTC GTGGCGTGC GCCTGCSCGG 2250
 GATGCGCGGT GTMCCGGTCA TGTCGCAGGG TTGNCGGCCG ATCGGCTACC 2300
 CATAACATCGT CACCGGMGCG GACGGCATAAC TGRKCACCGA GCTCGG 2346

10 (2) INFORMATION FOR SEQ ID NO: 62

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 841
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

15 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

20 (D) OTHER INFORMATION: AcII#435

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 62

CGTTACCCGC TTTACACCAAC CGCCAAGGCC AACCTGACCG CGCTCAGCAC 50
 CGGGCTGTCC AGCTGTGCGA TGGCCGACGA CGTGCTGGNC NAGSCCNANS 100
 CCAATGNCGG MMTGCTGCAA NCGGNTNCNG GCCANGCGTT CGGACCGGAC 150
 25 GGACGCTGGN CGGTATCAGT CCNGTCGGCT TCAAANCCGA NGGCGTGGGC 200
 GAGGACCTCA AGTCCGRRCC CGGTGGTCTC NAAACCCSGG CTNGTCAACT 250
 CCGATNCGTC GCCCAACAAN CCCAACNGCC NGCCATCANC GACTCCKCNG 300
 GCACCGCCNG AGGGAAAGGGY CCGGNTCGGG ATTCAACGGG TTGGCRWCAGC 350
 GGCGCTGCCG TTCNGRATTG GAYCCGGCAN CGTACCCCCGG TGATGGGCAG 400
 30 CTNACGGGGA NGAACAACCY GSICCSSSACG GCCACCTCGG CCTGGTACCA 450
 GTTACCGCCC CGCAGCCCGG ACCGGCCNGC TGGTGGTGGT TTCCNGCGGC 500
 CGGCGCCATC TGGTCCTACA AGGAGGACGG CGATDTCATC TACGGCCANG 550
 TCCCNNTGAAA CTGCAGTGGG NCGTCACCAGG CCCGGACGGC CGCANTCCAG 600
 CCACTGGGGC AGGTATTTC GANTCGACAN TCGGACCNNGC AACNCCNGCG 650
 35 TGGCGCAATC TGCGGTNTNT CCGCTGGCCT GGGCGCCGCC GGNANGCNG 700
 ACGTGGCGCG CATTGTCGCC TATGACCCGA ACCTGAGCCC TGAGCAATGG 750
 TTCGCCTTCA CCCCGCCCCG GGTTCCGGTG CTGGAATCTC TGCA~~G~~CGGTT 800
 GAKCGGGTCA GCGACACCGG TGTTGATGGA CATCGCGACC G 841

(2) INFORMATION FOR SEQ ID NO: 63

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 471
- (B) TYPE: nucleic acid
- 5 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

10 (ix) FEATURE:

(D) OTHER INFORMATION: AciI#1-2/23/9

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 63

GCCAGCCGTG ATCGGCTGAC CGGCAGTGAT CACCAACCTC AACGTGGTGC	50
TGGGCCTCGC TGGCGCTCAC ACGATCGGTT GGACCAAGCCG GTGACGTCGC	100
15 TATCAGCGTT GATTCAACCGG CTCGCGCAAC GCAAGACCGA CATCTCCAAC	150
GCCGTGGCCT ACACCAAACGC GCCGCCGGCT CGGTCGCCGA TCTCTGTCGC	200
AGGCTCGCGC CGTTGGCGAA GGTGGTTCGC GAGACCGATC GGGTGGCCGG	250
CATCGCGGCC GCCGACCACG ACTACCTCGA CAATCTGCTC AACACGCTGC	300
CGGACAAATA CCAGGCGCTG GTCCGCCAGG GTATGTACGG CGACTTCTTC	350
20 GCCTTCTACC TGTGCGACGT CGTGCTCAAG GTCAACGGCA AGGGCGGCCA	400
GCCGGTGTAC ATCAAGCTGG CCGGTCAAGG CATGCGGCCGG TGCGCGCCGA	450
AATGAAATCC TTCGCCGAAC G	471

(2) INFORMATION FOR SEQ ID NO: 64

(i) SEQUENCE CHARACTERISTICS:

- 25 (A) LENGTH: 485
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

30 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#1-229/264

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 64

KGTCTCGCGN CCTTNACATC CGGTGCCNN RCGGTNATCT GCCTGTGGAT	50
GCCGTCCGGA NGTATNANCN AATGGCCANG AGTNCGTGAC NGCAGNTATG	100
35 GNCKCGGNTA TAGTTCCGTT TTGCCCNNGA CTNGGNGCGT GAGGTGGAAC	150
TAATGGCGGT GTCGGGTGAT ATTTCCGACG GCAAGNCGAC CATATAGGTG	200

GNATNCGACG GCAATAAAC A CAGCTCTGG CCACGTTCT TGGCGGGAA 250
 AGGGGTGATG CTATCGGAGC CAATGGTATC GCGACAACAC TTGCAGATGC 300
 CGCCAAGGCC GATCACGCTA ATGACGGATT CGGGGCCACA AACGTTCCCC 350
 GTTCTGGCGG TTTTCTCTGA CTACACCTCA GATCAAGGTG TGATTTGAT 400
 5 GGATCGCGCC AGTTATCGGG CCCATTGGCA GGATGATGAC GTGACGACCA 450
 TGTTTCTTTT TTTGGCNATN CGGGTGCAGA TAGCG 485

(2) INFORMATION FOR SEQ ID NO: 65

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 469
- 10 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
- 15 (A) ORGANISM: Mycobacterium tuberculosis
- (ix) FEATURE:

(D) OTHER INFORMATION: AcI#1-264A

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 65

GGCAGGGTCA GTGAAGCCGA GGAAGCGGAA AGGAGCGCCC AATACGGAAC 50
 20 CGCCTCTCCC CGCGCGTTGG CCGATTCAAA AAATGCAGCT GGCACGACAG 100
 GTTTCCGAC TGGAAAMGCGG GCAGTGAGCG CAASGCAATT AATGTGAGTT 150
 AGCTCACTCA TTAGGCACCC CAGGCTTTAC ACTTTATGCT TCCGGCTCGT 200
 ATGTTGTGTG GAATTGTGAG CGGATAACAA TTTCACACAG GAAACAGCTA 250
 TGACATGATT ACGAATTCAA TACGACTCAC TATAGGAAAT TCGAGCTCGG 300
 25 TACCCGGGGA TCCTCTAGAG TCGCTTCGGT TGGCGGCGAC CAGCAGTGG 350
 TCCACGGTGG CCGCCCGCGC GGCDTCATAC ACCGCCGCGG CCTCCTTGGC 400
 CTGTGCGGCC SGCTTAGCGC GCGTGTGCT GCCGTGCTTA GCCANCTGGC 450
 ATAGGGGGCT GCCGCGCGC 469

(2) INFORMATION FOR SEQ ID NO: 66

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 290
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (ix) FEATURE:

(D) OTHER INFORMATION: AciI#1-264C

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 66

CNGGTTCGAC	TGATCTAGCT	GGGGCCAGAC	CGGCACGAGG	CGACAGTTAC	50	
CAGTACCTGA	CAGACAGGCC	GATCGAGCCA	AACCGTAGTG	AGGACGCAGG	100	
5	AGGAACAGGC	AGATGCATCT	AATGATAACCC	GCGGAGTATA	TCTCCAACGT	150
GATATATGAA	GGTCGCGTG	CTGACTCATT	GTATGCCGCC	GAECAGCGAT	200	
TGCGACAATT	AGCTGACTCA	GTTAGAACGA	CTGCCGAGTC	GCTCAACACC	250	
ACGCTCGACG	AGCTGCACGA	GAACGGAAA	GGTAGTTCA		290	

(2) INFORMATION FOR SEQ ID NO: 67

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1306
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#2-92

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 67.

GTGATACAGG	AGGCGCCAAC	AGTGACACCT	CGCGGGCCAG	GTCGTTGCA	50	
ACGCTTGTG	CAGTGCAGGC	CTCAGCGCGG	CTCCGGAGGG	CCTGCCGTG	100	
GTCTTCGACA	GCTGGCGCTC	GCAGCAATGC	TGGGGGCATT	GGCCGTCACC	150	
GTCAGTGGAT	GCAGCTGGTC	GGAAGCCCTG	GGCATCGGTT	GGCCGGAGGG	200	
25	CATTACCCCG	GAGGCACACC	TCAATCGAGA	ACTGTGGATC	GGGGCGGTGA	250
TCGCCTCCCT	GGCGGTTGGG	GTAATCGTGT	GGGGTCTCAT	CTTCTGGTCC	300	
GCGGTATTTC	ACCGGAAGAA	GAACACCGAC	ACTGAGTTGC	CCCGCCAGTT	350	
CGGCTACAAC	ATGCCGCTAG	AGCTGGTTCT	CACCGTCATA	CCGTTCCCTCA	400	
TCATCTCGGT	GCTGTTTAT	TTCACCGTCG	TGGTGCAGGA	GAAGATGCTG	450	
30	CAGATAGCCA	AGGATCCCGA	GGTCGTGATT	GATATCACGT	CTTTCCAGTG	500
GAATTGGAAG	TTTGGCTATC	AAAGGGTGAA	CTTCAAAGAC	GGCACACTGA	550	
CCTATGATGG	TGCCGATCCG	GAGCGCAAGC	GCGCCATGGT	TTCCAAGCCA	600	
GAGGGCAAGG	ACAAGTACGG	CGAAGAGCTG	GTCGGGCCGG	TGCGCGGGCT	650	
CAACACCGAG	GACCGGACCT	ACCTGAATT	CGACAAGGTC	GAGACGTTGG	700	
35	GCACCCAGCAC	CGAAATTCCG	GTGCTGGTGC	TGCCGTCCGG	CAAGCGTATC	750
GAATTCCAAA	TGGCCTCAGC	CGATGTGATA	CACGCATTCT	GGGTGCCGGA	800	
GTTCTTGTTC	AAGCGTGACG	TGATGCCTAA	CCCGGTGGCA	AACAACTCGG	850	
TCAACGTCTT	CCAGATCGAA	GAAATCACCA	AGACCGGAGC	ATTCGTGGC	900	

CACTGCGCCG AGATGTGTGG CACGTATCAC TCGATGATGA ACTTCGAGGT 950
 CCGCGTCGTG ACCCCCCAACG ATTTCAAGGC CTACCTGCAG CAACGCATCG 1000
 ACGGAAAKAC AAACGCCGAG GCCCTGCAGG CGATCAACCA GCCGCCCTT 1050
 GCGGTGACCA CCCACCCGTT TGATACTCGC CGCGGTGAAT TGGCCCCGCA 1100
 5 GCCCGTAGGT TAGGACGCTC ATGCATATCG AAGCCCGACT GTTTGAGTTT 1150
 GTCGCCCGTG TCTTCGTGGT GACGGCGGTG CTGTACGGCG TGTTGACCTC 1200
 GATGTTGCC ACCGGTGGTG TCGAGTGGGC TGGCACCAC GCGCTGGCGC 1250
 TTACCGGCGG CATGGCGTTG ATCGTCGCCA CCTTCTTCCG GTTTGTGGCC 1300
 GCGGAT 1306

10 (2) INFORMATION FOR SEQ ID NO: 68

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 759
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

15 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

20 (D) OTHER INFORMATION: AciI#2-823

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 68

GGTGCCTGCC ATCGGTTCGC TGNGCCACNG CTGNCCNNATC TTTGGTSTGTT 50
 TAGAGGTNWW CCGCGCGGAT RGCNCANTCC TGTTGGNGGG GGTTRTCGCC 100
 ACGATTGCCG CCCCGCGCTGA ACCCGACGAC GCCGATGCC TGCCCACCAC 150
 25 GGATCGGCTG NNMMCANCAG AGCGAACCGT GCAGNATGCN TNTKGTTGAC 200
 GAGCCTGCTG GCGCCTTCGC NGGCNCTCGG CGACCATCGG TGCCATCGGA 250
 ACCGCCGTNC GCAACCCACG GCATCCACAN GSTCCANGCA TGGCGGTATC 300
 GCGNTTGGCC GNCGTCACCG GTGCGCTGCT GCTGCTAYGA GCACGTTCA 350
 CAGACACCAAG AAGGTCACTG NTGTTGCCA TCTGTNGGAA TCACCACCGT 400
 30 TGCAACGGMA NTTGTACCGT CGCCGCGGAT CGGGCTCTGG AACACGGGCC 450
 GTGGATTGSC GCGCTGACCG CCATGCTGGT CCNGCCGTGG CAANTGKKT 500
 TGGGCTTCGT NGCTCNCCGC GTTGTGCTC TCGCCCGTCA CGTACCGCAC 550
 CATCGAATTG CTGGAGTGTC TGGCGCTGAT CGCAATGGTT CCATTGACCG 600
 CTNTGGSTAT NNNNNCGCCT ANCAGSSSCS TTCGCCACCT CGACCTGACA 650
 35 TGGACATGAC CACNGTCCCG TNACCCCTGCC CCTGNCTNGG TGGTMTCA 700
 GNCNNNTCGY SACGCTGTCT GGSWTGGSRM RCGCNCGGTT GCGCCACGCG 750
 GTTTCGCCG 759

(2) INFORMATION FOR SEQ ID NO: 69

- 67 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1041
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

10 (D) OTHER INFORMATION: HinPI#1-31

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 69

GKTCNCGGTG	ATGTCGACNG	TCGGCACGRM	GNCGAAACCT	CANCGGTCGA	50
CAGTGTCTGC	CCGAGGCCGC	AGCCGACGTG	CCCCNNGAGA	CCGCGCGCCA	100
ANCACGGTGC	CGTACATGTA	GCCCGCACGG	CGCATCATCG	CCGAGCCGGC	150
15 GTAGATGTTT	TCCTGCACGG	CGTNCS CGGT	GAACCCTCCG	GCGCCAGCAC	200
CGSCACCWNT	TCCC CGGTCC	ACGTCGGCCT	GGGTGGTGAC	GCCGAGCACC	250
CCACCGAAAT	GATCGACATG	GCTGTGGGTG	TAGATGACCG	SCGACCACGG	300
GGCGGTCGGC	TCCGCGGTGG	GCGCGANTAC	AAGTCCAGCG	CGGCGGCGGC	350
CACCTCGGTG	GACANCCAAN	CGGGYNYGAT	GACGARWCWG	CCCAGTGTCA	400
20 CCNCWMMACG	AAGNCTGATA	TTGGAGATAT	CGAATCCGCG	GACCTGATAG	450
ATGCCCGGCA	CCACCTGGTA	GAGGCCCTGT	TTCGCGGTCA	GCTGGGATTG	500
CCGCCACAGG	CTGGGATGCA	CCGATGTCGG	CGCGGCACCG	TCGAGNAACG	550
AGTACCGCGTC	GTTGTCCCAC	ACCNACCGA	CCATCGGCAG	CCTTGATCAC	600
ACACGGGGAC	AGCGCGGCAA	TGAATCCGCG	ATCGGC GTCG	TCGAAATCCG	650
25 TTGTGT CATN	GCAACGGTNA	ACGAGTGTTC	ACCGTGTGCC	GCCTGGNATG	700
ACGGCAGTNG	GGAGGTTTGT	GTTCCATCGG	CACTACATTG	CCACTACTAC	750
GGTGCACGCC	GGTAGATGCC	GTTGGCGAAC	CACGCTACCG	ACCAGAAAGA	800
GAGAATTTTC	CGCCGCACCT	AGACCTCGGG	CCCTCTAACG	CGCATACTGC	850
CGAAGCGGTC	CTCAATGCCG	ATGGACCGCT	ACGACAGGCA	AAGGAGCACA	900
30 GGGTGAAGCG	TGGACTGACG	GNTCGCGGT A	GCCGGAGCCG	CCATTCTGGT	950
CGCAGGTCTT	TCCGGATGTT	CAAGCAACAA	GTCGACTACA	GGAAGCGGTG	1000
AGACCA CGNA	CCGCGNGCAG	GCACGACNGC	AAGCCCCGGC G		1041

(2) INFORMATION FOR SEQ ID NO: 70

(i) SEQUENCE CHARACTERISTICS:

- 35 (A) LENGTH: 799
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA
 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Mycobacterium tuberculosis*
 (ix) FEATURE:

5 (D) OTHER INFORMATION: HinPI#1-3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 70

AGATCNAYAC YANCANCANT GCNGTCATCG AGNTGCTGCA GGNCANGTG	50
GTCCGTTGGC GAACGTGCTN KGCCNAYACC GGTGCCTTCT CGGCGCNCTN	100
GGYGCAYNGC GACCAGCTGA TCGGCGNAKG TAATCACCAA CCTCAANNKC	150
10 GGTGCTNGCK ACCKTCGAYK GCAAAGAGYG YGCAATTGT CGGCCAGTGT	200
CGACCAGCTG CAGCAGCTGG TCAGCGGCCT GGCCAAGAAC CGGGATNCCG	250
ANTSGNGGC GCCATTCGC CGCTGGNGTC GACGACGACG GATCTWCAG	300
AACTGTTGCG GAATTSGCGC CGGCCGCTGC AAGGCAKCCT GGAAAACGCC	350
CGGCCGCTGG CTACCGAGCT GGACAAACCGA AAGGCCNANG GTCAASAACG	400
15 RRATCGAGCA NGCTCGGCGA GGACNATNCC TGCCGCTGTC CGCGCTGGC	450
AGTTACGGAG CANTTCGTT AACATCTAST TSTGCTCGGT GACGATSAAG	500
ATCAACGGAC CGGCCGGCAG CGACANTCCN TGCTGCCGAT CGGCAGGCCAG	550
CCGGANTCCC AGCAAGGGGA GGTGCGCCTT TGCNTAAATA GGAAGCCAAG	600
TANGCAAASA CGAASGCSAC CCGTCCGAC CGGNCATCTT CGGCCTGGT	650
20 CNTGGTGATC NTGNCGTCGT CCTGATSGNC ATTGGCTAC AGCGGGTTGC	700
CTKTCTGGCC ACAKKKCAAA ACCTACGACG CGTATTCAC CGACGCCGGT	750
GGGATCACCC CCGGTAACTC GGTTTATGTS TCGGGCCTCA AGGTGGCG	799

(2) INFORMATION FOR SEQ ID NO: 71

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 713

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

30 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-827 translation strand

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 71

35 CTAYCSGCAA NGCTKNGCAG ACGCTCGGCT GCACNGCAGA ANTGCAGGTG	50
CACCCACGAT TGCCAGTAGC GCGGGCCAC TCGTGCCTAC TACACTTCGT	100
CGTAGCCAAA TCANTCGGCC CCGTAGTATC TCCGGAGATG ACAGATGAAT	150
GTCGTCGACA TTTCNGNCGG TGGCAGTTCG GTATCACCAC CGTSTATCAC	200

- 69 -

	TTNCAWYTTTC GTNACSYGYT GACCWWCGGC CTGGCNCNCC TKSTKANYRC	250
	GGNTCNAYGC AAACTGCTGT GGTCGTCACC GATAANCCCG CCTGGTATCG	300
	CCTCACCAA ATTCTTCGGC AAATTGTTCC TGNATCNAAC NTTGCCATC	350
	GGCGTGGCGA CCGGAATCGT GCAGGNAATK TCAGTTCGGC ATGAACTGGA	400
5	GCGAGTACTC CCGATTGTC GGCGATGTCT TCGGCAGCCCC GCTGGCCATG	450
	GAGNSCTGGC GGCCTTNCTT CTTCGAATCC ACCTTCATCG GGTTGTGGAT	500
	CTTCGGCTGG AACAGGCTGC CCCGGCTGGT GCANTCTNGG CCTGCATCTG	550
	GNATCGTCGC AATNCGCNGG TNCAACGTGT CGCGCTTCTT CATCATCGCN	600
	GGCAAACCTCC TTCATGCAGC ATCCGGTCGG CGCGCACTAC AACCCGACCA	650
10	CCGGGCGTGC CGAGTTGAGC AGCATCGNTC NGTGNCNTGC TGACCAAACAA	700
	CACCGCACAG GCG	713

(2) INFORMATION FOR SEQ ID NO: 72

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 274	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
20	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#2-834 translation strand	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 72	
	CCGCAGCACC GAGGCAAGCA TCGCACCCGT CGATTCCCGC CATCCGGCG 50	
25	ACATGATGGT CATGTCCGAC ACCGACGCC GCACCTCGCT TCCCGAGTTG 100	
	ACCGCGCTGC GCGTGGACGC CGAACCGGAT GCGTCGGTTC ATTGATCCC 150	
	GGCTCGAAAT TGGCCATGGC GAACGCATCT TGCTGTGATG GTTCGGGCAG 200	
	TAGATCTCCA CTGCCGCACT GATAAACTCG GGTCATGGTC GTCGTGAGGC 250	
	GGACAGGGTA GAGGCGCATG ACCG	274

30 (2) INFORMATION FOR SEQ ID NO: 73

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 252	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	

- 70 -

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-874

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 73

GTGATGCCTT CCAGCATTGG ATTGGTCGTC GGTCGATGC TGTGGCGACA	50
5 GATAAACCGC CTGTTGGGG TCGCTGGCCT CTGCTGGCA GCGCACTGCT	100
CAACGCCGCT CTGCGCTGCT GTGCATGGTG GCCGAGTCGT GTGGGCAGTG	150
GGTCACGCC TGCGGTACT TCACGGCGTT CCTGCTGGCT ACGGTGGCCG	200
CTCAAACGGT GGTCGCCGCA TCGATATCGT GGATCAGCGT CCTCGCGCCC	250
GA	252

10 (2) INFORMATION FOR SEQ ID NO: 74

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 160

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

15 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

20 (D) OTHER INFORMATION: AciI#2-1018

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 74

GGCGCCGCCG TCGTGCTGGC CGCCCGGCCG GGTGGGGGTG CCGGCCAGCG	50
TGGTTCCGCC AGTGGCCGCG CGAACGTAT TGGCCGGCGT CCTCGAGCAC	100
GACAACGACG GGTCGGGGGC GGCGGTGCTG GCCGCGCTGG CCAAGCTGCC	150
25 ACCCGGTGGT	160

(2) INFORMATION FOR SEQ ID NO: 75

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 393

(B) TYPE: nucleic acid

30 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

35 (ix) FEATURE:

(D) OTHER INFORMATION: **HinPI#1-27

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 75

- 71 -

	ATCAGCCGCG	GGTCGACGCC	GCCGATGACC	TCGACGTCGT	CGTCGTCGCT	50
	GCCGGTACTC	AATCCAATCA	CCATCCTCTT	ACGCACCTTC	TAGGAGTGTG	100
	TTGCTGCGGC	AGTGCAGGC	ATTCTAGAT	TCGGGCCTCG	CCGTTGTCGT	150
	AGATCTTCGC	CCACGACCTC	GATGTCTCTA	ACGACACTAG	TCCGTCCGGC	200
5	ACGCAAACCC	CGCACCGTCG	GAGTGCTGGT	CAGGTATAGA	CGGTACAGGA	250
	GGACTTGGTA	GGCCTCGAGT	ACCGAGGTAC	GTCTCCCGTT	GCGGCATAGG	300
	CCAGAAAGATG	AACCAGGTGA	GACCGGGCCT	GTTGCGAGGG	TCGTAGTCGT	350
	AGGTCCCAGA	GGTGTGGAC	GCCCCAGGTTA	ATACACAGCG	TGC	393

(2) INFORMATION FOR SEQ ID NO: 76

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 248
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

- (D) OTHER INFORMATION: #2-147

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 76

	GCAGACCTCT	GGCCGCTGGT	GGTGCTGGGT	ACCTGCGCTG	GCGACACCGG	50
	ACCGCAGACC	GTCAATCGGG	ACTCCGGGA	ACGTGGTGCC	ATCTTGCCAC	100
	GGGGATGGCC	GACGCGGCTC	GTCATTCTCC	CCGAGCGCAC	CGGCCGCCGC	150
	TGTTGACCGG	GCCGCGGCCGA	CTGATGGTGC	CCGCACACGC	GGGCGGGTTC	200
25	AAGGAGCAAT	ACGCCAAGTC	CAGCGCCGCT	CTCGCACGGC	GCGGTGTT	248

I claim:

1. An isolated *Mycobacterium tuberculosis* nucleic acid sequence including a sequence selected from the group consisting of Seq. I.D. Nos. 1 - 76.
- 5 2. A purified immunostimulatory peptide encoded by a sequence according to claim 1.
3. An antibody that specifically binds to a peptide according to claim 2.
4. A vaccine preparation comprising at least one immunostimulatory peptide according to claim 2 and a pharmaceutically acceptable excipient.
- 10 5. A purified immunostimulatory peptide encoded by a nucleotide sequence selected from the group consisting of Seq. I.D. Nos. 1 - 76.
6. A vaccine preparation comprising at least one peptide according to claim 5 and a pharmaceutically acceptable excipient.
- 15 7. A purified immunostimulatory *Mycobacterium tuberculosis* peptide, the peptide including at least 5 contiguous amino acids encoded by a nucleic acid sequence selected from the group consisting of Seq. I.D. Nos. 1 - 76.
- 20 8. A vaccine preparation comprising at least one peptide according to claim 7 and a pharmaceutically acceptable excipient.
9. A peptide according to claim 7 wherein the peptide includes at least 10 contiguous amino acids encoded by a nucleic acid sequence selected from the group consisting of Seq. I.D. Nos. 1 - 76.
- 25 10. A vaccine preparation comprising at least one peptide according to claim 9 and a pharmaceutically acceptable excipient.
11. A method of making a vaccine comprising:
 providing at least one purified peptide encoded by a nucleotide sequence selected from the group consisting of Seq. ID. Nos 1 - 76;
 combining the peptide with a pharmaceutically acceptable excipient.
- 30 12. An isolated nucleic acid molecule having a nucleotide sequence selected from the group consisting of:
 (a) Seq. ID Nos. 1 - 76;
 (b) nucleotide sequences complementary to a sequence defined in (a); and
 (c) nucleic acid molecules of at least 15 nucleotides in length which hybridize under conditions of at least 75% stringency to a sequence defined in (a) or (b).
- 35 13. A recombinant DNA vector including a nucleic acid molecule according to claim 12.
- 40 14. A transformed cell containing a vector according to claim 13.

- 73 -

15. A nucleic acid probe comprising a nucleic acid molecule according to claim 12 and a diagnostic label.
16. A method of isolating a *Mycobacterium tuberculosis* gene which gene encodes an immunostimulatory peptide, the method comprising the steps of:
 - 5 providing nucleic acids of *Mycobacterium tuberculosis*;
 - contacting said nucleic acids with a probe or primer, the probe or primer comprising at least 15 contiguous nucleotides of a polynucleotide having a nucleotide sequence selected from the group consisting of Seq. ID Nos. 1 - 76 and sequences complementary thereto; and
 - isolating the *Mycobacterium tuberculosis* gene.
- 10 17. An isolated *Mycobacterium tuberculosis* gene produced by the method of claim 16.
18. An isolated *Mycobacterium tuberculosis* nucleic acid molecule, said molecule encoding an immunostimulatory peptide and hybridizing under conditions of at least 75% stringency to a nucleic acid probe comprising at least 20 contiguous bases of a sequence selected from Seq. ID Nos. 1 - 76.
- 15 19. A purified immunostimulatory peptide encoded by the nucleic acid molecule of claim 18.
20. An immunostimulatory preparation comprising:
 - 20 a purified peptide according to claim 19; and
 - a pharmaceutically acceptable excipient.
21. An improved tuberculin skin test, the improvement comprising the use of one or more immunostimulatory peptides according to claim 19.
- 25 22. A vaccine preparation comprising an immunostimulatory membrane peptide isolated from *Mycobacterium tuberculosis* and a suitable excipient.
23. A method of detecting the presence of *Mycobacterium tuberculosis* DNA in a sample comprising contacting the sample with a nucleic acid probe according to claim 15 and detecting hybridization products that include the nucleic acid probe.
- 30 24. A method of detecting the presence of *Mycobacterium tuberculosis* DNA in a sample comprising:
 - selecting two or more nucleic acid primer molecules from the nucleic acid molecules defined in claim 12, said molecules suitable for amplification of a *Mycobacterium tuberculosis* target sequence;
 - incubating the sample under conditions suitable to amplify the target sequence; and
 - detecting an amplified product.
- 35 25. A method of detecting the presence of a *Mycobacterium tuberculosis* peptide in a sample comprising contacting the sample with an antibody according to claim 3 and detecting the presence of an antibody-peptide complex.
- 40 26. A method of detecting the presence of an anti-*Mycobacterium tuberculosis* antibody in a sample comprising contacting the sample with a peptide according to claim 2 and detecting the presence of an antibody-peptide complex.

1 / 3

GTGATAACAGGAGGCGCCAACAGTGACACCTCGCGGCCAGGTGTTGCAACGCTTGTGGCAGTGCAGGC
 CACTATGTCTCCGGTTGTCACTGTGGAGCGCCGGTCCAGCAAACGTTGCAACAGCGTCACGTCCG
 M T P R G P G R L Q R L S Q C R 70

CTCAGCGCGGCTCCGGAGGGCTGCCCGTGGTCTTCGACAGCTGGCGCTCGCAGCAATGCTGGGGCATT
 GAGTCGCGCCGAGGCCTCCGGACGGCACCAAGCTGTCGACCAGCGAGCGTACGACCCCCGTAAG 140

P O R G S G G P A R G L R O L A L A A M L G A L

GGCGTCACCGTCAGTGGATGCAGCTGGTGGAAAGCCCTGGCATCGGTTGGCGAGGGCATTACCCG
 CGGCAGTGGCAGTCACCTACGTCGACCAGCCTCGGGACCCGTAGCCAACCGGCCCTCCGTAATGGGGC 210

A V T V S G C S W S E A L G I G W P E G I T P

GAGGCACACCTCAATCGAGAACTGTGGATCGGGCGGTGATCGCCTCCCTGGCGTTGGGTAATCGTGT
 CTCCGTGTGGAGTTAGCTTGTACACCTAGCCCCGCCACTAGCGGAGGGACCGCCAACCCCATTAGCACA 280

E A H L N R E L W I G A V I A S L A V G V I V

GGGGTCTCATCTTGTCCGGTATTCACCGGAAGAACACCGACACTGAGTTGCCCGCCAGTT
 CCCAGAGTAGAAGACCAAGGCAGGCCATAAAGTGGCCTTCTCTGTGGCTGTGACTCAACGGGGCGGTCAA 350

W G L I F W S A V F H R K K N T D T E L P R Q F

CGGCTACAACATGCCGCTAGAGCTGGTCTCACCGTCATACCGTTCTCATCATCTCGGTGCTGTTTAT
 GCCGATGTTGTACGGCGATCTGACCAAGAGTGGCACTATGCAAGGAGTAGTAGAGGCCACGACAAAATA 420

G Y N M P L E L V L T V I P F L I I S V L F Y

TTCACCGTCGTGGTGCAGGAGAAAGATGCTGAGATAGCCAAGGATCCGAGGTGATTGATATCACGT
 AAGTGGCAGCACCAACGTCTTCTACGACGTCTACGGTCCCTAGGGCTCCAGCACTAACTATAGTCA 490

F T V V V O E K M L Q I A K D P E V V I D I T

CTTTCCAGTGAATTGGAAGTTGGCTATCAAAGGGTGAACCTCAAAGACGGCACACTGACCTATGATGG
 GAAAGGTACCTTAACCTCAAACCGATAGTTCCCACTTGAAGTTCTGCCGTGTGACTGGATACTACC 560

S F Q W N W K F G Y O R V N F K D G T L T Y D G

TGCCGATCCGGAGCGCAAGCGGCCATGGTTCCAAGCCAGAGGGCAAGGACAAGTACGGCGAAGAGCTG
 ACGGCTAGGCTCGCGTTCGCGCGGTACCAAAGGTTGGTCTCCGTTCTGTCATGCCGCTCTCGAC 630

A D P E R K R A M V S K P E G K D K Y G E E L

FIG. 1
(Page 1 of 2)

2/3

GTCGGGCCGGTGC CGGGCTAACACCGAGGACGGACCTACCTGAATT CGACAAGGT CGAGACGTTGG
 CAGCCCGGCCACGCCCGAGTTGTGGCTCCTGGCCTGGATGGACTAAAGCTTCCAGCTCTGCAACC 700
 V G P V R G L N T E D R T Y L N F D K V E T L

 GCACCAGCACCGAAATTCCGGTGCTGGTGCTGCCGTCCGGCAAGCGTATCGAATTCAAATGGCCTCAGC
 CGTGGTCGTGGCTTAAGGCCACGACCAAGACGGCAGGCCGTTCGCATAGCTTAAGGTTACCGGAGTCG 770
 G T S T E I P V L V L P S G K R I E F Q M A S A

 CGATGTGATAACGCATTCTGGGTGCCGGAGTTCTGTTCAAGCGTGACGTGATGCC TAACCCGGTGGCA
 GCTACACTATGTGCGTAAGACCCACGCCCTCAAGAACAAAGTCGCACTGC ACTACGGATTGGGCCACCGT 840
 D V I H A F W V P E F L F K R D V M P N P V A

 AACAACTCGGTCAACGTCTTCAGATCGAAGAAATCACCAAGACCGGAGCATT CGTGGGCCACTGCGCCG
 TTGTTGAGCCAGTTGCAGAAGGTCTAGCTTCTTAGTGGTTCTGGCCTCGTAAGCACCCGGTGACGCGGC 910
 N N S V N V F O I E E I T K T G A F V G H C A

 AGATGTGTCGGCACGTATCACTCGATGATGAACTTCGAGGTCCCGCTCGTGACCCCAACGATTCAAGGC
 TCTACACACCGTGCATAGTGAGCTACTACTTGAAAGCTCCAGGGCGAGCACTGGGGTTGCTAAAGTTCCG 980
 E M C G T Y H S M M N F E V R V V T P N D F K A

 CTACCTGCAGCAACGCATCGACGGAAATAAACGCCGAGGCCCTGCGGGCGATCAACCAGCCGCCCTT
 GATGGACGTCGTTGCGTAGCTGCCCTATGTTGCGGCTCCGGACGCCGCTAGTTGGTCGGCGGGAA 1050
 Y L Q Q R I D G N T N A E A L R A I N Q P P L

 GCGGTGACCAACCCACCCGTTGATACTCGCCGCGGTGAATTGGCCCCGCAGCCCCTAGGTTAGGACGCTC
 CGCCACTGGTGGGTGGGCAAACATGAGCGGCCACTTAACCGGGCGTCGGGCATCCAATCCTGCGAG 1120
 A V T T H P F D T R R G E L A P Q P V G

FIG. 1
(Page 2 of 2)

3 / 3

FIG. 2

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/10375

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.

US CL :435/6, 7.1, 240.2, 320.1; 514/2; 530/300, 387.1; 536/23.7, 24.32

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6, 7.1, 240.2, 320.1; 514/2; 530/300, 387.1; 536/23.7, 24.32

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN: Medline, Biosis, CAPlus, WPIDS, JAPIO, PATOSEP, PATOSWO; APS

search terms: mycobacterium tuberculosis, peptide, polypeptide, protein, epitope, antigen, immunostimulat?, membrane, surface

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	TOMMASSEN et al. Use of the enterobacterial outer membrane protein PhoE in the development of new vaccines and DNA probes. Intl. J. Microbiol. Virol. Parasitol. Infect. Dis. 1993, VOL. 278, pages 396-406.	1-26
Y	JANSSEN et al. Immunogenicity of a mycobacterial T-cell epitope expressed in outer membrane protein PhoE of Escherichia coli. Vaccine. 1994, Vol.12, pages 406-409.	1-26
Y	Lim et al. Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J. Bacteriol. January 1995, Vol.177, pages 59-65.	1-26

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
A document defining the general state of the art which is not considered to be of particular relevance	*T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
E earlier document published on or after the international filing date	*X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	*Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O document referring to an oral disclosure, use, exhibition or other means	*&* document member of the same patent family
P document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search	Date of mailing of the international search report
09 OCTOBER 1996	28 OCT 1996

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer ROBERTA SCHWARTZMAN Telephone No. (703) 308-0106
--	---

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/10375

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (6):

A61K 14/35, 38/16; C07H 16/12, 21/04; C12N 5/10, 15/63; C12Q 1/68; G01N 33/569

**CORRECTED
VERSION***

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A1	(11) International Publication Number: WO 97/00067 (43) International Publication Date: 3 January 1997 (03.01.97)
A61K 14/35, 38/16, C07H 16/12, 21/04, C12N 5/10, 15/63, C12Q 1/68, G01N 33/569			
(21) International Application Number: PCT/US96/10375			(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 14 June 1996 (14.06.96)			
(30) Priority Data: 60/000,254 15 June 1995 (15.06.95) US			
(71) Applicant (for all designated States except US): UNIVERSITY OF VICTORIA (CA/CA); 3800 Finnerty Road, Victoria, British Columbia V8W 2Y2 (CA).			
(72) Inventor; and			Published
(75) Inventor/Applicant (for US only): NANO, Francis, E. (US/CA); #4-245 Ontario Street, Victoria, British Columbia V8V 1N1 (CA).			With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(74) Agent: POLLEY, Richard, J.; Klarquist Sparkman Campbell Leigh & Whinston, L.L.P., One World Trade Center, Suite 1600, 121 S.W. Salmon Street, Portland, OR 97204-2988 (US).			

(54) Title: MYCOBACTERIUM TUBERCULOSIS DNA SEQUENCES ENCODING IMMUNOSTIMULATORY PEPTIDES

(57) Abstract

Nucleotide sequences isolated from *Mycobacterium tuberculosis* are disclosed. These sequences are shown to encode immunostimulatory peptides. The invention encompasses, among other things, vaccine preparations formulated using these peptides.

Historically it has been thought that one needs replicating *Mycobacteria* in order to effect a protective immunization. An hypothesis explaining the molecular basis for the effectiveness of replicating mycobacteria in inducing protective immunity has been proposed by Orme and co-workers (3). These scientists suggest that antigens are pinocytosed from the mycobacterial-laden phagosome and used in antigen presentation. This 5 hypothesis also explains the basis for secreted proteins effecting a protective immune response.

Antigens that stimulate T cells from *M. tuberculosis* infected mice or from PPD-positive humans are found in both the whole mycobacterial cells and also in the culture supernatants (3, 4, 5-7, 34). Recently Pal and Horwitz (8) were able to induce partial protection in guinea pigs by vaccinating with *M. tuberculosis* supernatant fluids. Similar results were found by Andersen using a murine model of tuberculosis (9). Other studies include 10 reference nos. 34, 12. Although these works are far from definitive they do strengthen the notion that protective epitopes can be found among secreted proteins and that a non-living vaccine can protect against tuberculosis.

For the purposes of vaccine development one needs to find epitopes that confer protection but do not contribute to pathology. An ideal vaccine would contain a cocktail of T-cell epitopes that preferentially stimulate Th1 cells and are bound by different MHC haplotypes. Although such vaccines have never been made there is at 15 least one example of a synthetic T-cell epitope inducing protection against an intracellular pathogen (10). It is an object of this invention to provide *M. tuberculosis* DNA sequences that encode bacterial peptides having an immunostimulatory activity. Such immunostimulatory peptides will be useful in the treatment, diagnosis and prevention of tuberculosis.

II. SUMMARY OF THE INVENTION

The present invention provides DNA sequences isolated from *Mycobacterium tuberculosis*. Peptides encoded by these DNA sequences are shown to stimulate the production of the macrophage-stimulating cytokine, gamma interferon ("INF- γ "), in mice. Critically, the production of INF- γ by CD4 cells in mice has been shown to correlate with maximum expression of protective immunity against tuberculosis (11). Furthermore, in human patients with active "minimal" or "contained" tuberculosis, it appears that the containment of the disease may be attributable, at least in part, to the production of CD4 Th-1-like lymphocytes that release INF- γ (12).

Hence, the DNA sequences provided by this invention encode peptides that are capable of stimulating T-cells to produce INF- γ . That is, these peptides act as epitopes for CD4 T-cells in the immune system. Studies have demonstrated that peptides isolated from an infectious agent and which are shown to be T-cell epitopes can protect against the disease caused by that agent when administered as a vaccine (13, 10). For example, T-cell epitopes from the parasite *Leishmania major* have been shown to be effective when administered as a vaccine (10, 13-14). Therefore, the immunostimulatory peptides (T-cell epitopes) encoded by the disclosed DNA sequences may be used, in purified form, as a vaccine against tuberculosis.

As noted, the nucleotide sequences of the present invention encode immunostimulatory peptides. In a number of instances, these nucleotide sequences are only a part of a larger open reading frame (ORF) of an 35 *M. tuberculosis* operon. The present invention enables the cloning of the complete ORF using standard molecular biology techniques, based on the nucleotide sequences provided herein. Thus, the present invention encompasses both the nucleotide sequences disclosed herein and the complete *M. tuberculosis* ORFs to which they correspond. However, it is noted that since each of the nucleotide sequences disclosed herein encodes an immunostimulatory peptide, the use of larger peptides encoded by the complete ORFs is not necessary for the practice of the invention. 40 Indeed, it is anticipated that, in some instances, proteins encoded by the corresponding ORFs may be less immunostimulatory than the peptides encoded by the nucleotide sequences provided herein.

One aspect of the present invention is an immunostimulatory preparation comprising at least one peptide encoded by the DNA sequences presented herein. Such a preparation may include the purified peptide or peptides and one or more pharmaceutically acceptable adjuvants, diluents and/or excipients. Another aspect of the

MYCOBACTERIUM TUBERCULOSIS DNA SEQUENCES ENCODING
IMMUNOSTIMULATORY PEPTIDES

CROSS REFERENCE TO RELATED CASES

5 This application claims the benefit of U.S. Provisional Application No. 60/000,254, filed June 15, 1995, which is incorporated herein by reference.

I. BACKGROUND

A. THE RISE OF TUBERCULOSIS

10 Over the past few years the editors of the Morbidity and Mortality Weekly Report have chronicled the unexpected rise in tuberculosis cases. It has been estimated that worldwide there are one billion people infected with *M. tuberculosis*, with 7.5 million active cases of tuberculosis. Even in the United States, tuberculosis continues to be a major problem especially among the homeless, Native Americans, African-Americans, immigrants, and the elderly. HIV-infected individuals represent the newest group to be affected by tuberculosis. Of the 88 million new cases of tuberculosis expected in this decade approximately 10% will be attributable to HIV infection.

15 The emergence of multi-drug resistant strains of *M. tuberculosis* has complicated matters further and even raises the possibility of a new tuberculosis epidemic. In the U.S. about 14% of *M. tuberculosis* isolates are resistant to at least one drug, and approximately 3% are resistant to at least two drugs. *M. tuberculosis* strains have even been isolated that are resistant to all seven drugs in the repertoire of drugs commonly used to combat tuberculosis. Resistant strains make treatment of tuberculosis extremely difficult: for example, infection with *M. tuberculosis* strains resistant to isoniazid and rifampin leads to mortality rates of approximately 90% among HIV-infected individuals. The mean time to death after diagnosis in this population is 4-16 weeks. One study reported that of nine immunocompetent health care workers and prison guards infected with drug resistant *M. tuberculosis*, five died. The expected mortality rate for infection with drug sensitive *M. tuberculosis* is 0%.

20 The unrelenting persistence of mycobacterial disease worldwide, the emergence of a new, highly susceptible population, and the recent appearance of drug resistant strains point to the need for new and better prophylactic and therapeutic treatments of mycobacterial diseases.

B. TUBERCULOSIS AND THE IMMUNE SYSTEM

25 Infection with *M. tuberculosis* can take on many manifestations. The growth in the body of *M. tuberculosis* and the pathology that it induces is largely dependent on the type and vigor of the immune response. From mouse genetic studies it is known that innate properties of the macrophage play a large role in containing disease (1). Initial control of *M. tuberculosis* may also be influenced by reactive $\gamma\delta$ T cells. However, the major immune response responsible for containment of *M. tuberculosis* is via helper T cells (Th1) and to a lesser extent cytotoxic T cells (2). Evidence suggests that there is very little role for the humoral response. The ratio of responding Th1 to Th2 cells has been proposed to be involved in the phenomenon of suppression.

30 Th1 cells are thought to convey protection by responding to *M. tuberculosis* T cell epitopes and secreting cytokines, particularly interferon- γ , which stimulate macrophages to kill *M. tuberculosis*. While such an immune response normally clears infections by many facultative intracellular pathogens, such as *Salmonella*, *Listeria* or *Francisella*, it is only able to contain the growth of other pathogens such as *M. tuberculosis* and *Toxoplasma*.

35 Hence, it is likely that *M. tuberculosis* has the ability to suppress a clearing immune response, and mycobacterial components such as lipoarabinomannan are thought to be potential agents of this suppression. Dormant *M. tuberculosis* can remain in the body for long periods of time and can emerge to cause disease when the immune system wanes due to age or other effects such as infection with HIV-1.

"Probes" and "primers". Nucleic acid probes and primers may readily be prepared based on the nucleic acid sequences provided by this invention. A "probe" comprises an isolated nucleic acid attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. Methods for labeling and guidance in the choice of labels appropriate for various purposes are discussed, e.g., in reference nos. 15 and 16.

5 "Primers" are short nucleic acids, preferably DNA oligonucleotides 15 nucleotides or more in length, which are annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods known in the art.

10 As noted, probes and primers are preferably 15 nucleotides or more in length, but, to enhance specificity, probes and primers of 20 or more nucleotides may be preferred.

15 Methods for preparing and using probes and primers are described, for example, in reference nos. 15, 16 and 17. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, © 1991, Whitehead Institute for Biomedical Research, Cambridge, MA).

20 "Substantial similarity". A first nucleic acid is "substantially similar" to a second nucleic acid if, when optimally aligned (with appropriate nucleotide insertions or deletions) with the other nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 75%-90% of the nucleotide bases, and preferably greater than 90% of the nucleotide bases. ("Substantial sequence complementarity" requires a similar degree of sequence complementarity.) Sequence similarity can be determined by comparing the nucleotide sequences of two nucleic acids using sequence analysis software such as the Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, Madison, WI).

25 "Operably linked". A first nucleic acid sequence is "operably" linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame.

30 "Recombinant". A "recombinant" nucleic acid is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.

35 "Stringent Conditions" and "Specific". The nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence, e.g., to a full length *Mycobacterium tuberculosis* gene that encodes an immunostimulatory peptide.

40 The term "stringent conditions" is functionally defined with regard to the hybridization of a nucleic-acid probe to a target nucleic acid (i.e., to a particular nucleic acid sequence of interest) by the hybridization procedure discussed in Sambrook et al. (1989) (reference no. 15) at 9.52-9.55. See also, reference no. 15 at 9.47-9.52, 9.56-9.58; reference no. 18 and reference no. 19.

45 Nucleic-acid hybridization is affected by such conditions as salt concentration, temperature, or organic solvents, in addition to the base composition, length of the complementary strands, and the number of nucleotide-base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art.

In preferred embodiments of the present invention, stringent conditions are those under which DNA molecules with more than 25% sequence variation (also termed "mismatch") will not hybridize. Such conditions

invention is a vaccine comprising one or more peptides encoded by nucleotide sequences provided herein. This vaccine may also include one or more pharmaceutically acceptable excipients, adjuvants and/or diluents.

Another aspect of the present invention is an antibody specific for an immunostimulatory peptide encoded by a nucleotide sequence of the present invention. Such antibodies may be used to detect the present of *M. tuberculosis* antigens in medical specimens, such as blood or sputum. Thus, these antigens may be used to diagnose tuberculosis infections.

The present invention also encompasses the diagnostic use of purified peptides encoded by the nucleotide sequences of the present invention. Thus, the peptides may be used in a diagnostic assay to detect the presence of antibodies in a medical specimen, which antibodies bind to the *M. tuberculosis* peptide and indicate that the subject from which the specimen was removed was previously exposed to *M. tuberculosis*.

The present invention also provides an improved method of performing the tuberculin skin test to diagnose exposure of an individual to *M. tuberculosis*. In this improved skin test, purified immunostimulatory peptides encoded by the nucleotide sequences of this invention are employed. Preferably, this skin test is performed with one set of the immunostimulatory peptides, while another set of the immunostimulatory peptides is used to formulate vaccine preparations. In this way, the tuberculin skin test will be useful in distinguishing between subjects infected with tuberculosis and subjects who have simply been vaccinated. In this manner, the present invention may overcome a serious limitation inherent in the present BCG vaccine/tuberculin skin test combination.

Other aspects of the present invention include the use of probes and primers derived from the nucleotide sequences disclosed herein to detect the presence of *M. tuberculosis* nucleic acids in medical specimens.

A further aspect of the present invention is the discovery that a significant proportion of the immunostimulatory peptides are homologous to proteins known to be located in bacterial cell surface membranes. This discovery suggests that membrane-bound peptides, particularly those from *M. tuberculosis*, may be a new source of antigens for use in vaccine preparations.

III. BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the deduced amino acid sequence of the full length MTB2-92 protein.

Fig. 2 shows an SDS polyacrylamide gel (12%) representing the different stages of the purification of MTB2-92. Lane 1:- Molecular weight markers (high range, GIBCO-BRL, Grand Island, NY, U.S.A.); Lane 2:- the IPTG induced crude bacterial lysate of *E. coli* JM109 containing pMAL-MTB2-92; Lane 3:- Uninduced crude bacterial lysate of *E. coli* JM109 containing pMAL-MTB2-92; Lane 4:- Eluate from the amylose-resin column containing the MBP-MTB2-92 fusion protein; Lane 5:- Eluate shown in previous lane after cutting with protease Factor Xa; Lane 6:- Eluate from the Ni-NTA column, containing MTB2-92.

IV. DESCRIPTION OF THE INVENTION

A. DEFINITIONS

Particular terms and phrases used herein have the meanings set forth below.

"Isolated". An "isolated" nucleic acid has been substantially separated or purified away from other nucleic acid sequences in the cell of the organism in which the nucleic acid naturally occurs, i.e., other chromosomal and extrachromosomal DNA and RNA. The term "isolated" thus encompasses nucleic acids purified by standard nucleic acid purification methods. The term also embraces nucleic acids prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids.

The nucleic acids of the present invention comprise at least a minimum length able to hybridize specifically with a target nucleic acid (or a sequence complementary thereto) under stringent conditions as defined below. The length of a nucleic acid of the present invention is preferably 15 nucleotides or greater in length, although a shorter nucleic acid may be employed as a probe or primer if it is shown to specifically hybridize under stringent conditions with a target nucleic acid by methods well known in the art.

plating clones on agar plates containing the indicator 5-bromo-4-chloro-3-indolyl-phosphate. Alkaline phosphatase converts this indicator to a blue colored product. Hence, those clones containing secreted alkaline phosphatase fusion proteins will produce the blue color.

5 The three vectors in this series (pJDT1, 2 and 3) have the *Bst*BI restriction sites located in different reading frames with respect to the *phoA* gene. This increases the likelihood of cloning any particular gene in the correct orientation and reading frame for expression by a factor of 3. Reference no. 31 describes pJDT vectors in detail.

3. SELECTION OF SECRETED FUSION PROTEINS

10 The recombinant clones described above were transformed into *E. coli* and plated on agar plates containing the indicator 5-bromo-4-chloro-3-indolyl-phosphate. Production of blue pigmentation, produced as a result of the action of alkaline phosphatase on the indicator, indicated the presence of secreted cytoplasmic membrane periplasmic, cell wall associated or outer membrane fusion proteins (because the bacterial alkaline phosphatase gene in the vector lacks a signal sequence and could not otherwise escape the bacterial cell). A similar technique has been used to identify *M. tuberculosis* genes encoding exported proteins by Lim et al. (32).

15 Those clones producing blue pigmentation were picked and grown in liquid culture to facilitate the purification of the alkaline phosphatase fusion proteins. These recombinant clones were designated according to the restriction enzyme used to digest the *Mycobacterium tuberculosis* DNA (thus, clones designated A#2-1, A#2-2 etc were produced using *Mycobacterium tuberculosis* DNA digested with *Aci*I).

4. PURIFICATION OF SECRETED FUSION PROTEINS

20 PhoA fusion proteins were extracted from the selected *E. coli* clones by cell lysis and purified by SDS polyacrylamide gel electrophoresis. Essentially, individual *E. coli* clones are grown overnight at 30°C with shaking in 2 ml LB broth containing ampicillin, kanamycin and IPTG. The cells are precipitated by centrifugation and resuspended in 100 µL Tris -EDTA buffer. 100 µL lysis buffer (1% SDS, 1mMEDTA, 25mM DTT, 10% glycerol and 50 mM tris-HCl, pH 7.5) is added to this mixture and DNA released from the cells is sheared by passing the mixture through a small gauge syringe needle. The sample is then heated for 5 minutes at 100°C and loaded onto an SDS PAGE gel (12 cm x 14 cm x 1.5 mm, made with 4% (w/v) acrylamide in the stacking section and 10% (w/v) acrylamide in the separating section). Several samples from each clone are loaded onto each gel.

25 The samples are electrophoresed by application of 200 volts to the gel for 4 hours. Subsequently, the proteins are transferred to a nitrocellulose membrane by Western blotting. A strip of nitrocellulose is cut off to be processed with antibody, and the remainder of the nitrocellulose is set aside for eventual elution of the protein. 30 The strip is incubated with blocking buffer and then with anti-alkaline phosphatase primary antibody, followed by incubation with anti-mouse antibody conjugated with horse radish peroxidase. Finally, the strip is developed with the NEN DuPont Renaissance kit to generate a luminescent signal. The migratory position of the PhoA fusion protein, as indicated by the luminescent label, is measured with a ruler, and the corresponding region of the undeveloped nitrocellulose blot is excised.

35 This region of nitrocellulose, which contains the PhoA fusion protein, is then incubated in 1 ml 20% acetonitrile at 37°C for 3 hours. Subsequently, the mixture is centrifuged to remove the nitrocellulose and the liquid is transferred to a new test tube and lyophilized. The resulting protein pellet is dissolved in 100 µL of endotoxin-free, sterile water and precipitated with acetone at -20°C. After centrifugation the bulk of the acetone is removed and the residual acetone is allowed to evaporate. The protein pellet is re-dissolved in 100 µL of sterile phosphate buffered saline. This procedure can be scaled up by modification to include IPTG induction 2 hours prior to cell harvesting, washing nitrocellulose membranes with PBS prior to acetonitrile extraction and lyophilization of acetonitrile extracted and acetone precipitated protein samples.

are also referred to as conditions of 75% stringency (since hybridization will occur only between molecules with 75% sequence identity or greater). In more preferred embodiments, stringent conditions are those under which DNA molecules with more than 15% mismatch will not hybridize (conditions of 85% stringency). In most preferred embodiments, stringent conditions are those under which DNA molecules with more than 10% mismatch 5 will not hybridize (i.e. conditions of 90% stringency).

When referring to a probe or primer, the term "specific for (a target sequence)" indicates that the probe or primer hybridizes under stringent conditions substantially only to the target sequence in a given sample comprising the target sequence.

"Purified" - a "purified" peptide is a peptide that has been extracted from the cellular environment and 10 separated from substantially all other cellular peptides. As used herein, the term peptide includes peptides, polypeptides and proteins. In preferred embodiments, a "purified" peptide is a preparation in which the subject peptide comprises 80% or more of the protein content of the preparation. For certain uses, such as vaccine preparations, even greater purity may be necessary.

"Immunostimulatory" - the phrase "immunostimulatory peptide" as used herein refers to a peptide that is 15 capable of stimulating INF- γ production in the assay described in section B 5 below. In preferred embodiments, an immunostimulatory peptide is one capable of inducing greater than twice the background level of this assay determined using T-cells stimulated with no antigens or negative control antigens. Preferably, the immunostimulatory peptides are capable of inducing more than 0.01 ng/ml of INF- γ in this assay system. In more preferred embodiments, an immunostimulatory peptide is one capable of inducing greater than 10 ng/ml of 20 INF- γ in this assay system.

B. MATERIALS AND METHODS

1. STANDARD METHODOLOGIES

The present invention utilizes standard laboratory practices for the cloning, manipulation and sequencing of 25 nucleic acids, purification and analysis of proteins and other molecular biological and biochemical techniques, unless otherwise stipulated. Such techniques are explained in detail in standard laboratory manuals such as Sambrook et al. (15); and Ausubel et al. (16).

Methods for chemical synthesis of nucleic acids are discussed, for example, in reference nos. 20 and 21. Chemical synthesis of nucleic acids can be performed, for example, on commercial automated oligonucleotide synthesizers.

30 2. ISOLATION OF *MYCOBACTERIUM TUBERCULOSIS* DNA SEQUENCES ENCODING IMMUNOSTIMULATORY PROTEINS

Mycobacterium tuberculosis DNA was obtained by the method of Jacobs et al. (22). Samples of the isolated DNA were partially digested with one of the following restriction enzymes *Hin*PI, *Hpa*II, *Aci*I, *Taq*I, *Bsa*II, *Nar*I. Digested fragments of 0.2-5kb were purified from agarose gels and then ligated into the *Bst*BI site 35 in front of the truncated *phoA* gene in one or more of the three phagemid vectors pJDT1, pJDT2, and JDT3.

A schematic representation of the phagemid vector pJDT2 is provided in Mdluli et al. (1995) (reference no. 31). The pJDT vectors were specifically designed for cloning and selecting genes encoding cell wall-associated, cytoplasmic membrane associated, periplasmic or secreted proteins (and especially for cloning such genes from GC rich genomes, such as the *Mycobacterium tuberculosis* genome). The vectors have a *Bst*BI cloning 40 site in frame with the bacterial alkaline phosphatase gene (*phoA*) such that cloning of an in-frame sequence into the cloning site will result in the production of a fusion protein. The *phoA* gene encodes a version of the alkaline phosphatase that lacks a signal sequence; hence, only if the DNA cloned into the *Bst*BI site includes a signal sequence or a transmembrane sequence can the fusion protein be secreted to the medium or inserted into cytoplasmic membrane, periplasm or cell wall. Those clones encoding such fusion proteins may be detected by

Cytokines are measured using an Enzyme Linked Immunosorbent Assay (ELISA), the details of which are described in the Cytokine ELISA Protocol in the PharMingen catalogue (PharMingen, San Diego, California). For measuring for the presence of human gamma-interferon, wells of a 96 well microtitre plate are coated with a capture antibody (anti-human gamma-interferon antibody). The sample supernatants are then added to individual wells. Any gamma-interferon present in the sample will bind to the capture antibody. The wells are then washed. A detection antibody (anti-human gamma-interferon antibody), conjugated to biotin, is added to each well, and will bind to any gamma-interferon that is bound to the capture antibody. Any unbound detection antibody is washed away. An avidin peroxidase enzyme is added to each well (avidin binds tightly to the biotin on the detection antibody). Any excess unbound enzyme is washed away. Finally, a chromogenic substrate for the enzyme is added and the intensity of the colour reaction that occurs is quantitated using an ELISA plate reader. The quantity of the gamma-interferon in the sample supernatants is determined by comparison with a standard curve using known quantities of human gamma-interferon.

Measurement of other cytokines, such as Interleukin-2 and Interleukin-4, can be determined using the same protocol, with the appropriate substitution of reagents (monoclonal antibodies and standards).

15 7. DNA SEQUENCING

The sequencing of the alkaline phosphatase fusion clones was undertaken using the AmpliCycle thermal sequencing kit (Perkin Elmer, Applied Biosystems Division, 850 Lincoln Centre Drive, Foster City, CA 94404, U.S.A.), using a primer designed to read out of the alkaline phosphatase gene into the *Mycobacterium tuberculosis* DNA insert, or primers specific to the cloned sequences.

20 C. RESULTS

1. IMMUNOSTIMULATORY CAPACITY

More than 300 fusion clones were tested for their ability to stimulate INF- γ production. Of these, 80 clones were initially designated to have some ability to stimulate INF- γ production. Tables 1 and 2 show the data obtained for these 80 clones. Clones placed in Table 1 showed the greatest ability to stimulate INF- γ production (greater than 10 ng/ml of INF- γ) while clones placed in Table 2 stimulated the production of between 2 ng/ml and 10 ng/ml of INF- γ . Background levels of INF- γ production (i.e., levels produced without any added *M. tuberculosis* antigen) were subtracted from the levels produced by the fusions to obtain the figures shown in these tables.

30

TABLE 1

Immunostimulatory AP-fusion clones

No.	Name	INF	Fus-MW	TBport	coding	Similarity (score)
35 1	AciI#1-152	>40,000	~65,000	~23,400	~633	<i>M. avium</i> acetolactate synthase (98+)
2	AciI#1-247	>40,000	~160,000	~118,400	~3,198	peptide synthetase (153)
3	AciI#1-264	>40,000	~72,500	~30,900	~833	nothing evident
4	AciI#1-435	>40,000	~80,000	~38,400	~1,038	<i>M. smegmatis</i> ethambutol resistance gene EmbA (624)

5. DETERMINATION OF IMMUNOSTIMULATORY CAPACITY IN MICE

The purified alkaline phosphatase - *Mycobacterium tuberculosis* fusion peptides encoded by the recombinant clones were then tested for their ability to stimulate INF- γ production in mice. The test used to determine INF- γ stimulation is as essentially that described by Orme et al. (11).

5 Essentially, the assay method is as follows: The virulent strain *M. tuberculosis* Erdman is grown in Proskauer Beck medium to mid-log phase, then aliquoted and frozen at -70°C for use as an inoculant. Cultures of this bacterium are grown and harvested and mice are inoculated with 1×10^5 viable bacteria suspended in 200 μ l sterile saline via a lateral tail vein on day one of the test.

10 Bone marrow-derived macrophages are used in the test to present the bacterial alkaline phosphatase-*Mycobacterium tuberculosis* fusion protein antigens. These macrophages are obtained by harvesting cells from mouse femurs and culturing the cells in Dulbecco's modified Eagle medium as described by Orme et al. (11). Eight to ten days later, up to ten μ g of the fusion peptide to be tested is added to the macrophages and the cells are incubated for 24 hours.

15 The CD4 cells are obtained by harvesting spleen cells from the infected mice and then pooling and enriching for CD4 cells by removal of adherent cells by incubation on plastic Petri dishes, followed by incubation for 60 minutes at 37°C with a mixture of J11d.2, Lyt-2.43, and GL4 monoclonal antibody (mAb) in the presence of rabbit complement to deplete B cells and immature T cells, CD8 cells, and $\gamma\delta$ cells, respectively. The macrophages are overlaid with 10^6 of these CD4 cells and the medium is supplemented with 5 U IL-2 to promote continued T cell proliferation and cytokine secretion. After 72 hours, cell supernatants are harvested from sets of triplicate wells and assayed for cytokine content.

20 Cytokine levels in harvested supernatants are assayed by sandwich ELISA as described by Orme et al. (11).

6. DETERMINATION OF IMMUNOSTIMULATORY CAPACITY IN HUMANS

25 The purified alkaline phosphatase - *Mycobacterium tuberculosis* fusion peptides encoded by the recombinant clones or by synthetic peptides are tested for their ability to induce INF- γ production by human T cells in the following manner.

30 Blood from tuberculin positive people (producing a tuberculin positive skin test) is collected in EDTA coated tubes, to prevent clotting. Mononuclear cells are isolated using a modified version of the separation procedure provided with the NycoPrep™ 1.077 solution (Nycomed Pharma AS, Oslo, Norway). Briefly, the blood is diluted in an equal volume of a physiologic solution, such as Hanks Balanced Salt solution (HBSS), and then gently layered over top of the NycoPrep solution in a 2 to 1 ratio in 50 ml tubes. The tubes are centrifuged at 800 x g for 20 minutes and the mononuclear cells are then removed from the interface between the NycoPrep solution and the sample layer. The plasma is removed from the top of the tube and filtered through a 0.2 micron filter and is then added to the tissue culture media. The mononuclear cells are washed twice: the cells are diluted in a physiologic solution, such as HBSS or RPMI 1640, and centrifuged at 400 x g for 10 minutes. The mononuclear cells are then resuspended to the desired concentration in tissue culture media (RPMI 1640 containing 10% autologous serum, Hepes, non-essential amino acids, antibiotics and polymixin B). The mononuclear cells are then cultured in 96 well microtitre plates.

35 Peptides or PhoA fusion proteins are then added to individual wells in the 96 well plate, and cells are then placed in an incubator (37°C, 5% CO₂). Samples of the supernatants (tissue culture media from the wells containing the cells) are collected at various time points (from 3 to 8 days) after the addition of the peptides or PhoA fusion proteins. The immune responsiveness of T cells to the peptides and PhoA fusion proteins is assessed by measuring the production of cytokines (including gamma-interferon).

- 10 -

TABLE 1

Immunostimulatory AP-fusion clones

No.	Name	INF	Fus-MW	TBport	coding	Similarity (score)
5	21 Acil#2-1084	> 20,000	~ 73,000	~ 31,400	~ 849	Sequences within <i>M. tuberculosis</i> clone X68281 (96 ⁺) and <i>M. leprae</i> clone B983 (122 ⁺)
	22 Acil#3-47	> 20,000	~ 55,000	~ 13,400	~ 363	nothing evident
	23 Acil#3-133	> 20,000	~ 55,000	~ 13,400	~ 363	nothing evident
	24 Acil#3-166	> 20,000	~ 48,000	~ 6,400	~ 174	nothing evident
	25 Acil#3-167	> 20,000	~ 65,000	~ 23,400	~ 633	<i>M. leprae</i> DNA sequence within region B983 (588 ⁺)
	26 Acil#3-206	> 20,000	~ 65,000	~ 23,400	~ 633	<i>M. leprae</i> DNA sequence within chromosome region MD0092 (91)
	27 HinP#1-31	14,638	~ 46,000	~ 4,400	~ 120	<i>M. tuberculosis</i> 19 kDa lipo-protein antigen precursor (218)
	28 HinP#1-144	13,546	~ 70,000	~ 23,900	~ 645	<i>M. leprae</i> DNA sequence within chromosome region B983 (78)
	29 HinP#1-3	11,550	~ 49,000	~ 7,400	~ 200	<i>M. leprae</i> DNA sequence within chromosome region B983 (100 ⁺)
	30 Acil#1-486	11,416	~ 45,000	~ 3,400	~ 93	nothing known
10	31 Acil#1-426	11,135	~ 47,500	~ 5,900	~ 160	Dipeptide transport protein (65)
	32 Acil#2-916	10,865	~ 75,000	~ 33,400	~ 903	nothing evident
Abbreviations: INF: pg/ml of INF- γ produced using fusion to stimulate immune T-cells. Fus. MW: Relative molecular weight of the fusion protein in Da. TB port.: Estimated amount of fusion attributable to the <i>M. tuberculosis</i> protein. Coding: Amount of DNA needed to encode TB portion of fusion proteins (in base pairs). Similarity: Amino acid sequence similarity seen by analysis of DNA via the BLASTX or TBLASTX programs. Scores for alignments are indicated in (). Due to the high G+C nature of M. TB DNA many false positives are evident. Only scores above 100 have good credibility.						

TABLE 1

Immunostimulatory AP-fusion clones

No.	Name	INF	Fus-MW	TBport	coding	Similarity (score)
5	HinP#1-27	>20,000	59,000	17,400	471	nothing evident
6	HinP#2-92	>20,000	74,600	33,000	891	1. <i>M. tuberculosis</i> ORF MTCY190.11C (1794 ⁺) 2. Cytochrome C oxidase subunit II (141)
7	HinP#2-145	>20,000	60,000	13,900	375	nothing evident
8	HinP#2-150	>20,000	55,000	13,400	362	nothing evident
9	HinP#1-200	>20,000	53,500	11,900	321	nothing evident
10	HinP#3-30	>20,000	69,000	27,400	740	<i>M. leprae</i> chromosome sequence in B983 region (281 ⁺)
11	Acil#2-2	>20,000	70,000	28,400	768	<i>M. leprae</i> chromosome sequence within region B1529 (139)
12	Acil#2-23	>20,000	75,000	33,400	903	Region within sequence MD0009 of the <i>M. leprae</i> chromosome
13	Acil#2-506	>20,000	60,000	18,400	498	nothing evident
14	Acil#2-511	>20,000	~60,000	~18,400	~498	nothing evident
15	Acil#2-639	>20,000	~60,000	~18,400	~498	nothing evident
16	Acil#2-822	>20,000	~45,000	~3,400	~93	<i>M. tuberculosis</i> sequence within region MD0074 (U27357) (551 ⁺)
17	Acil#2-823	>20,000	~46,500	~4,900	~132	nothing evident
18	Acil#2-825	>20,000	~150,000	~110,000	~2,970	<i>M. tuberculosis</i> sequence MTCY31.03c (431)
19	Acil#2-827	>20,000	~48,000	~6,400	~174	cytochrome d oxidase
20	Acil#2-898	>20,000	~49,000	~7,400	~201	nothing evident

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)	
20	Acil#2-1035	3,454	~46,000	~4,400	~120	nothing evident	
21	Acil#2-1089	8,974	~65,000	~23,400	~633	Similar to <i>M. tuberculosis</i> sequence X75361 and sequence in <i>M. bovis</i> MD0057 and U34849 regions. Immunogenic proteins MPB64 and MPT64 are homologous.	
22	Acil#2-1090	7,449	~65,000	~23,400	~633	nothing evident	
23	Acil#2-1104	5,148	~68,000	~26,400	~714	Similar to <i>M. tuberculosis</i> sequence X80268 and to cds 1 (256) in <i>M. leprae</i> sequence region MD0045 (169+); secreted antigenic protein.	
5	24	Acil#3-9	3,160	~67,000	~25,400	~687	nothing evident
	25	Acil#3-12	3,891	~75,000	~33,400	~903	Penicillin binding protein; similar to <i>M. leprae</i> sequence within genomic clone B1529
	26	Acil#3-15	4,019	~65,000	~23,400	~633	nothing evident
	27	Acil#3-21	2,301	~69,000	~27,400	~741	nothing evident
	28	Acil#3-78	2,905	~65,000	~23,400	~633	Similar to sequence within <i>M. leprae</i> genomic clone B983
10	29	Acil#3-134	3,895	~45,000	~3,400	~93	nothing evident
	30	Acil#3-204	4,774	~60,000	~13,900	~375	nothing evident
	31	Acil#3-214	7,333	~50,000	8,400	~228	nothing evident
	32	Acil#3-243	2,857	~65,000	~23,400	~633	nothing evident
	33	Acil#3-281	2,943	~65,000	~23,400	~633	Similar to sequence within <i>M. leprae</i> genomic clone B983
15	34	Bsa HI#1-21	8,122	~90,000	~48,400	~1,209	nothing evident
	35	HinP#1-12	2,905	~66,000	~24,400	~660	possible tyrosine phosphatase

- 11 -

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

5

10

15

20

25

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)
1	Acil#1-62	3,126	-43,000	~1,400	-39	<i>M. tuberculosis</i> MTCY 190.11C cytochrome C oxidase subunit II (198) <i>M. leprae</i> sequence in B1551 region (1087+)
2	Acil#2-14	6,907	-45,000	-3,400	-93	nothing evident
3	Acil#2-26	3,089	-72,000	-30,400	-822	nothing evident
4	Acil#2-35	3,907	-45,000	-3,400	-93	Possibly similar to <i>M. leprae</i> sequence in the B983 region (116-)
5	Acil#2-147	5,464				nothing evident
6	Acil#2-508	7,052	-70,000	-28,400	-768	Similar to sequence of the <i>M. leprae</i> ORF encoding gp U00018 (125) and similar to sequence in the B2168 c2-209 region of <i>M. leprae</i> genome (225+)
7	Acil#2-510	2,445	-69,000	-27,400	-741	nothing evident
8	Acil#2-523	2,479	-50,000	-8,400	-228	Similar to <i>M. tuberculosis</i> sequence z70692 from clone Y427 (96)
9	Acil#2-676	3,651	-70,000	-28,400	-768	Similar to Acil#2-639
10	Acil#2-834	5,942	-60,000	~13,900	-375	nothing evident
11	Acil#2-854	5,560	-44,000	-2,400	-66	nothing evident
12	Acil#2-872	2,361	-47,000	-5,400	-147	nothing evident
13	Acil#2-874	2,171	-45,000	-3,400	-93	nothing evident
14	Acil#2-8841	2,729	-85,000	-43,400	-1173	Isocitrate dehydrogenase (247)
15	Acil#2-894	3,396	-70,000	-28,400	-768	nothing evident
16	Acil#2-1014	6,302	-45,000	-3,400	-93	nothing evident
17	Acil#2-1018	4,642	-55,000	-13,400	-363	nothing evident
18	Acil#2-1025	3,582	-45,000	-3,400	-93	nothing evident
19	Acil#2-1034	2,736	-80,000	-38,400	-103	nothing evident

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)
46	HpaII#1-8	2,048	110,000	68,400	~ 1,848	nothing evident
47	HpaII#1-10	4,178	55,000	13,400	~ 633	Similar to immunogenic proteins MPB64/MPT64
48	HpaII#1-13	3,714	43,000	1,400	~ 39	nothing evident

Abbreviations: INF: pg/ml of INF- γ produced using fusion to stimulate immune T-cells. Fus. MW: Relative molecular weight of the fusion protein. TB port.: Estimated amount of fusion attributable to the *M. tuberculosis* protein. Coding: Amount of DNA needed to encode TB portion of fusion proteins. Similarity: Amino acid sequence similarity seen by analysis of DNA via the BLASTX or TBLASTX programs. Scores for alignments are indicated in (). Due to the high G+C nature of *M. TB* DNA many false positives are evident. Only scores above 100 have good credibility.

10

5

2. DNA SEQUENCING AND DETERMINATION OF OPEN READING FRAMES

DNA sequence data for the sequences of the *Mycobacterium tuberculosis* DNA present in the clones shown in Tables 1 and 2 are shown in the accompanying Sequence Listing. The sequences are believed to represent the coding strand of the *Mycobacterium* DNA. In most instances, these sequences represent only partial sequences of the immunostimulatory peptides and, in turn, only partial sequences of *Mycobacterium tuberculosis* genes. However, each of the clones from which these sequences were derived encodes, by itself, at least one immunostimulatory T-cell epitope. As discussed in part V below, one of ordinary skill in the art will, given the information provided herein, readily be able to obtain the immunostimulatory peptides and corresponding full length *M. tuberculosis* genes using standard techniques. Accordingly, the nucleotide sequences of the present invention encompass not only those sequences presented in the sequence listings, but also the complete nucleotide sequence encoding the immunostimulatory peptides as well as the corresponding *M. tuberculosis* genes. The nucleotide abbreviations employed in the sequence listings are as follows in Table 3:

15

20

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)	
36	HinP#2-23	2,339	~43,000	~1,400	~39	Similar to sequence in <i>M. leprae</i> genomic clone MD0009-0-(B13) (354)	
37	HinP#1-142	6,258	~69,000	~27,400	~741	nothing evident	
38	HinP#2-4	6,567	~66,000	~24,400	~660	nothing evident	
39	HinP#2-143	3,689	~65,000	~23,400	~633	Similar to sequence in <i>M. leprae</i> genomic clone B1529	
5	40	HinP#2-145A	2,314	~64,000	~22,400	~606	nothing evident
	41	HinP#2-147	7,021	65,000	23,400	~633	nothing evident
10	42	HinP#3-28	2,980	70,000	28,400	~768	Similar to <i>M. leprae</i> sequence in genomic clones MD0085 and sequence for <i>M. leprae</i> gp U00013 cds 27 of B1496 region
	43	HinP#3-34	2,564	71,000	29,400	~795	Similar to sequence in <i>M. leprae</i> genomic clone B2168 (U00018 cds 9)
	44	HinP#3-41	3,296	48,000	6,400	~1,728	Similar to antigen 85 complex protein subunit
	45	HpaII#1-3	2,360	65,000	23,400	~633	Cytochrome C oxidase subunit II (156) Similar to <i>M. tuberculosis</i> sequence on clone MTCY 190.11c

Peptides designed from sequences described in this application include:

Hin P#1-200 (6 peptides)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
5	VHLATGMAETVASFSPS	HPI1-200/2
	REVVHLATGMAETVASF	HPI1-200/3
	RDSREVVHLATGMAETV	HPI1-200/4
	DFNRDREVVHLATGMA	HPI1-200/5
10	ISAAVVTGYLRWTTPDR	HPI1-200/6
	AVVFLCAAAISAAVTG	HPI1-200/7

AciI#2-827 (14 peptides)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
15	VTDNPAWYRLTKFFGKL	CD-2/1/96/1
	AWYRLTKFFGKLFLINF	CD-2/1/96/2
	KFFGKLFLINFAIGVAT	CD-2/1/96/3
	FLINFAIGVATGIVQEF	CD-2/1/96/4
	AIGVATGIVQEFQFCMN	CD-2/1/96/5
20	TGIVQEFEGFMNWSEYS	CD-2/1/96/6
	EFQFGMNMWSEYSRFVGD	CD-2/1/96/7
	MNWSEYSRFVGDVFVGAP	CD-2/1/96/8
	WSEYSRFVGDVFVGAPLA	CD-2/1/96/9
	EYSRFVGDVFVGAPLAME	CD-2/1/96/10
25	SRFVGDVFVGAPLAMESL	CD-2/1/96/11
	WIFGWNRLPRLVHLACI	CD-2/1/96/12
	WNRLPRLVHLACIWIVA	CD-2/1/96/13
	GRAELSSIVVLLTNNTA	CD-2/1/96/14

HinP#1-3 (2 peptides)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
30	GKTYDAYFTDAGGITPG	HPI1-3/2
	YDAYFTDAGGITPGNSV	HPI1-3/3

HinP#1-3 / HinP#1-200 combined peptides

	<u>Peptide Sequences</u>	<u>Peptide Name</u>
40	WPQGKTYDAYFTDAGGI	(HinP#1-3)
	ATGMAETVASFSPSEGS	(HinP#1-200)

AciI#2-823 (1 peptide)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
45	GWERRLRAVSPKDPAQ	AI2-823/1

HinP#1-31 (4 peptides)

	<u>Peptide Sequence</u>	<u>Peptide Name</u>
50	TGSGETTAAGTTASPQ	HPI1-31/1
	GAAILVAGLSGCSSLNKS	HPI1-31/2
	AVAGAAILVAGLSCSS	HPI1-31/3
	LTVAVAGAAILVAGLSG	HPI1-31/4

These synthetic peptides were resuspended in phosphate buffered saline to be tested to confirm their ability to function as T cell epitopes using the procedure described in part IV(B)(6) above.

5. CONFIRMATION OF IMMUNOSTIMULATORY CAPACITY USING T CELLS FROM TUBERCULOSIS PATIENTS

The synthetic peptides described above, along with a number of the PhoA fusion proteins shown to be immunostimulatory in mice were tested for their ability to stimulate gamma interferon production in T-cells from tuberculin positive people using the methods described in part IV(B)(6) above. For each assay, 5×10^5 mononuclear cells were stimulated with up to 1 $\mu\text{g}/\text{ml}$ *M. tuberculosis* peptide or up to 50 ng/ml Pho A fusion protein. *M. tuberculosis* filtrate proteins, Con A and PHA were employed as positive controls. An assay was run with media alone to determine background levels, and Pho A protein was employed as a negative control.

TABLE 3

	Symbol	Meaning
5	A.....	A; adenine
	C.....	C; cytosine
	G.....	G; guanine
	T.....	T; thymine
	U.....	U; uracil
10	M.....	A or C
	R.....	A or G
	W.....	A or T/U
	S.....	C or G
	Y.....	C or T/U
15	K.....	G or T/U
	V.....	A or C or G; not T/U
	H.....	A or C or T/U; not G
	D.....	A or G or T/U; not C
	B.....	C or G or T/U; not A
20	N.....	(A or C or G or T/U) or (unknown or other or no base)
	indeterminate*

* indicates an unreadable sequence compression.

The DNA sequences obtained were then analyzed with respect to the G+C content as a function of codon position over a window of 120 codons using the 'FRAME' computer program (Bibb, M.J.; Findlay, P.R.; and Johnson, M.W.; Gene 30: 157-166 (1984)). This program uses the bias of these nucleotides for each of the codon positions to enable the correct reading frame to be identified.

3. IDENTIFICATION OF T CELL EPITOPES IN THE IMMUNOSTIMULATORY PEPTIDES

The T-Site program, by Feller, D.C. and de la Cruz, V.F., MedImmune Inc., 19 Firstfield Rd., Gaithersburg, M.D. 20878, U.S.A., was used to predict T-cell epitopes from the determined coding sequences. It uses a series of four predictive algorithms. In particular, peptides were designed against regions indicated by the algorithm "A" motif which predicted alpha-helical periodicity (Margalit, H.; Spouge, J.L.; Cornette, J.L.; Cease, K.B.; DeLisi, C.; and Berzofsky, J.A., *J. Immunol.*, 138:2213 (1987)) and amphipathicity and those indicated by the algorithm "R" motif which identifies segments which display similarity to motifs known to be recognized by MHC class I and class II molecules (Rothbard, J.B. and Taylor, W.R., *EMBO J.*, 7:93 (1988)). The other two algorithms identify classes of T-cell epitopes recognized in mice.

4. SYNTHESIS OF SYNTHETIC PEPTIDES CONTAINING T CELL EPITOPES IN IDENTIFIED IMMUNOSTIMULATORY PEPTIDES

A series of staggered peptides were designed to overlap regions indicated by the T-site analysis. These were synthesized by Chiron Mimotopes Pty. Ltd. (11055 Roselle St., San Diego, CA 92121, U.S.A.).

An alternative approach to cloning the full length ORFs corresponding to the DNA sequences provided herein is the use of the polymerase chain reaction (PCR). In particular, the inverse polymerase chain reaction (IPCR) is useful to isolate DNA sequences flanking a known sequence. Methods for amplification of flanking sequences by IPCR are described in Chapter 27 of reference no. 17 and in reference no. 23.

5 Accordingly, one aspect of the present invention is small oligonucleotides encompassed by the DNA sequences presented in the Sequence Listing. These small oligonucleotides are useful as hybridization probes and PCR primers that can be employed to clone the corresponding full length *Mycobacterium tuberculosis* ORFs. In preferred embodiments, these oligonucleotides will comprise at least 15 contiguous nucleotides of a DNA sequence set forth in the Sequence Listing, and in more preferred embodiments, such oligonucleotides will comprise at least 10 20 contiguous nucleotides of a DNA sequence set forth in the Sequence Listing.

One skilled in the art will appreciate that hybridization probes and PCR primers are not required to exactly match the target gene sequence to which they anneal. Therefore, in another embodiment, the oligonucleotides will comprise a sequence of at least 15 nucleotides and preferably at least 20 nucleotides, the oligonucleotide sequence being substantially similar to a DNA sequence set forth in the Sequence Listing. Preferably, such oligonucleotides will share at least about 75%-90% sequence identity with a DNA sequence set forth in the Sequence Listing and more preferably the shared sequence identity will be greater than 90%.

B. EXAMPLE - CLONING OF THE FULL LENGTH ORF CORRESPONDING TO CLONE HinP #2-92

Using the techniques described below, the full length gene corresponding to the clone HinP #2-92 was obtained. This gene, herein termed *nub2-92* includes an open-reading frame of 1089 bp (identified based on the G+C content relating to codon position). The alternative 'GTG' start codon was used, and this was preceded (8 bps upstream) by a Shine-Dalgarno motif. The gene *nub2-92* encoded a protein (termed MTB2-92) containing 363 amino acid residues with a predicted molecular weight of 40,436.4 Da.

Sequence homology comparisons of the predicted amino acid sequence of MTB2-92 with known proteins in the database indicated similarity to the cytochrome c oxidase subunit II of many different organisms. This integral membrane protein is part of the electron transport chain, subunits I and II forming the functional core of the enzyme complex.

1. CLONING THE FULL LENGTH GENE CORRESPONDING TO HinP #2-92

The plasmid pHin2-92 was restricted with either *Bam*H1 or *Eco*RI and then subcloned into the vector M13. The insert DNA fragments were sequenced under the direction of M13 universal sequencing primers (Yanisch-Perron, C. et al., 1985) using the AmpliCycle thermal sequencing kit (Perkin Elmer, Applied Biosystems Division, 850 Lincoln Centre Drive, Foster City, CA 94404, U.S.A.). The 5'-partial MTB2-92 DNA sequence was aligned using a GeneWorks (Intelligenetics, Mountain View, CA, U.S.A.) program. Based on the sequence data obtained, two oligomers were synthesized. These oligonucleotides ('CCCAGCTTGTGATACAGGAGG' 35 'GGCCTCAGCGCGGCTCCGGAGG') represented sequences upstream and downstream, over an 0.8 kb distance, of the sequence encoding the partial MTB2-92 protein in the alkaline phosphatase fusion.

A *Mycobacterium tuberculosis* genomic cosmid DNA library was screened using PCR (Sambrook, J. et al., 1989) in order to obtain the full-length gene encoding the MTB2-92 protein. Two hundred and ninety-four bacterial colonies containing the cosmid library were pooled into 10 groups in 100 µl distilled water aliquots and boiled for 5 min. The samples were spun in a microfuge at maximal speed for 5 min. The supernatants were decanted and stored on ice prior to PCR analysis.

The 100 µl-PCR reaction contained: 10 µl supernatant containing cosmid DNA, 10 µl of 10X PCR buffer, 250 µM dNTP's, 300 nM downstream and upstream primers, 1 unit *Taq* DNA polymerase.

The results, shown in Table 4 below, indicate that all of the peptides tested stimulated gamma interferon production from T-cells of a particular subject.

TABLE 4

	Peptide or Pho A Fusion Protein Name	Concentration of Interferon-gamma (pg/ml)	Concentration of Interferon-gamma minus background (pg/ml)
5	CD-2/1/96/1	256.6	153.3
	CD-2/1/96/9	187.6	84.3
	CD-2/1/96/10	134.0	30.7
	CD-2/1/96/11	141.6	38.3
10	CD-2/1/96/14	310.2	206.9
	HPII-3/2	136.3	23.0
	HPII-3/3	264.2	160.9
	Acil 2-898	134.0	30.7
	Acil 3-47	386.8	283.5
15	<i>M. tuberculosis</i> filtrate proteins (10 µg/ml)	256.6	153.3
	<i>M. tuberculosis</i> filtrate proteins (5 µg/ml)	134.0	30.7
	Con A (10 µg/ml)	2 839	2 735.7
20	PHA (1%)	10 378	10 274.7
	Pho A control (10 µg/ml)	26.7	0
	Background	103.3	0

25 V. CLONING OF FULL LENGTH *MYCOBACTERIUM TUBERCULOSIS* T-CELL EPITOPE ORFS

Most the sequences presented represent only part of a larger *M. tuberculosis* ORF. If desired, the full length *M. tuberculosis* ORFs that include these provided nucleotide sequences can be readily obtained by one of ordinary skill in the art, based on the sequence data provided herein.

A. GENERAL METHODOLOGIES

30 Methods for obtaining full length genes based on partial sequence information are standard in the art and are particularly simple for prokaryotic genomes. By way of example, the full length ORFs corresponding to the DNA sequences presented herein may be obtained by creating a library of *Mycobacterium tuberculosis* DNA in a plasmid, bacteriophage or phagemid vector and screening this library with a hybridization probe using standard colony hybridization techniques. The hybridization probe consists of an oligonucleotide derived from a DNA sequence according to the present invention labelled with a suitable marker to enable detection of hybridizing clones. Suitable markers include radionuclides, such as P-32 and non-radioactive markers, such as biotin. Methods for constructing suitable libraries, production and labelling of oligonucleotide probes and colony hybridization are standard laboratory procedures and are described in standard laboratory manuals such as in reference nos. 15 and 16.

40 Having identified a clone that hybridizes with the oligonucleotide, the clone is identified and sequenced using standard methods such as described in Chapter 13 of reference no. 15. Determination of the translation initiation point of the DNA sequence enables the ORF to be located.

At each stage of the protein purification, a sample was analysed by SDS polyacrylamide gel electrophoresis (Laemmli, U.S. (1970) *Nature (London)*, 227:680-685) (see Fig. 2).

C. CORRECTION OF SEQUENCE ERRORS

It is noted that some of the sequences presented in the Sequence Listing contain sequence ambiguities.

- 5 Naturally, in order to ensure that the immunostimulatory function is maintained, one would utilize a sequence without such ambiguities. For those sequences containing ambiguities, one would therefore utilize the sequence data provided in the Sequence Listing to design primers corresponding to each terminal of the provided sequence and, using these primers in conjunction with the polymerase chain reaction, synthesize the desired DNA molecule using *M. tuberculosis* genomic DNA as a template. Standard PCR methodologies, such as those described above,
10 may be used to accomplish this.

VI. EXPRESSION AND PURIFICATION OF THE CLONED PEPTIDES

- Having provided herein DNA sequences encoding *Mycobacterium tuberculosis* peptides having an immunostimulatory activity, as well as the corresponding full length *Mycobacterium tuberculosis* genes, one of skill in the art will be able to express and purify the peptides encoded by these sequences. Methods for expressing
15 proteins by recombinant means in compatible prokaryotic or eukaryotic host cells are well known in the art and are discussed, for example, in reference nos. 15 and 16. Peptides expressed by the nucleotide sequences disclosed herein are useful for preparing vaccines effective against *M. tuberculosis* infection, for use in diagnostic assays and for raising antibodies that specifically recognize *M. tuberculosis* proteins. One method of purifying the peptides is that presented in part V(B) above.

- 20 The most commonly used prokaryotic host cells for expressing prokaryotic peptides are strains of *Escherichia coli*, although other prokaryotes, such as *Bacillus subtilis* *Streptomyces* or *Pseudomonas* may also be used, as is well known in the art. Partial or full-length DNA sequences, encoding an immunostimulatory peptide according to the present invention, may be ligated into bacterial expression vectors. One aspect of the present invention is thus a recombinant DNA vector including a nucleic acid molecule provided by the present invention.
25 Another aspect is a transformed cell containing such a vector.

- Methods for expressing large amounts of protein from a cloned gene introduced into *Escherichia coli* (*E. coli*) may be utilized for the purification of the *Mycobacterium tuberculosis* peptides. Methods and plasmid vectors for producing fusion proteins and intact native proteins in bacteria are described in reference no. 15 (ch. 17). Such fusion proteins may be made in large amounts, are relatively simple to purify, and can be used to
30 produce antibodies. Native proteins can be produced in bacteria by placing a strong, regulated promoter and an efficient ribosome binding site upstream of the cloned gene. If low levels of protein are produced, additional steps may be taken to increase protein production; if high levels of protein are produced, purification is relatively easy.

- Often, proteins expressed at high levels are found in insoluble inclusion bodies. Methods for extracting proteins from these aggregates are described in ch. 17 of reference no. 15. Vector systems suitable for the expression of *lacZ* fusion genes include the pUR series of vectors (24), pEX1-3 (25) and pMR100 (26). Vectors suitable for the production of intact native proteins include pKC30 (27), pKK177-3 (28) and pET-3 (29). Fusion proteins may be isolated from protein gels, lyophilized, ground into a powder and used as antigen preparations.

- 40 Mammalian or other eukaryotic host cells, such as those of yeast, filamentous fungi, plant, insect, amphibian or avian species, may also be used for protein expression, as is well known in the art. Examples of commonly used mammalian host cell lines are VERO and HeLa cells, Chinese hamster ovary (CHO) cells, and WI38, BHK, and COS cell lines, although it will be appreciated by the skilled practitioner that other prokaryotic and eukaryotic cells and cell lines may be appropriate for a variety of purposes, e.g., to provide higher expression, desirable glycosylation patterns, or other features.

- 19 -

The reactions were heated at 95°C for 2 min and then 40 cycles of DNA synthesis were performed (95°C for 30 s, 65°C for 1 min, 72°C for 2 min). The PCR products were loaded into a 1% agarose gel in TAE buffer (Sambrook, J. et al., 1989) for analysis.

5 The supernatant, which produced 800 bp PCR products, was then further divided into 10 samples and the PCR reactions were performed again. The colony which had resulted in the correctly sized PCR product was then picked. The cosmid DNA from the positive clone (pG3) was prepared using the Wizard Mini-Prep Kit (Promega Corp, Madison, WI, U.S.A.). The cosmid DNA was further sequenced using specific oligonucleotide primers. The deduced amino acid sequence encoded by the MTB2-92 protein is shown in Fig. 1.

2. EXPRESSION OF THE FULL LENGTH GENE

10 To conveniently purify the recombinant protein, a histidine tag coding sequence was engineered immediately upstream of the start codon of *mub2-92* using PCR. Two unique restriction enzyme sites for *Xba*I and *Hind*III were added to both ends of the PCR product for convenient subcloning. Two oligomers were used to direct the PCR reaction: ('TCTAGACACCACCACCAACCACGTGACACCTCGCGGCCAGGTC' and 'AAGCTTCGCCATGCCGCCGGTAAGCGCC')

15 The 100 µl PCR reaction contained: 1 µg pG3 template DNA, 250 µM dNTP's, 300 nM of each primer, 10 µl of 10X PCR buffer, 1 unit *Taq* DNA polymerase. The PCR DNA synthesis cycle was performed as above.

The 1.4 kb PCR products were purified and ligated into the cloning vector pGEM-T (Promega). Inserts were removed by digestion using both the *Xba*I and *Hind*III and the 1.4 kb fragment was directionally subcloned into the *Xba*I and *Hind*III sites of pMAL-c2 vector (New England Bio-Labs Ltd., 3397 American Drive, Unit 12, Mississauga, Ontario, L4V 1T8, Canada). The gene encoding MTB2-92 was fused, in frame, downstream of the maltose binding protein (MBP). This expression vector was named pMAL-MTB2-92.

3. PURIFICATION OF THE ENCODED PROTEIN

25 The plasmid pMAL-MTB2-92 was transformed into competent *E. coli* JM109 cells and a 1 litre culture was grown up in LB broth at 37°C to an OD₅₅₀ of 0.5 to 0.6. The expression of the gene was induced by the addition of IPTG (0.5 mM) to the culture medium, after which the culture was grown for another 3 hours at 37°C with vigorous shaking. Cultures were spun in the centrifuge at 10,000 g for 30 min and the cell pellet was harvested. This was re-suspended in 50 ml of 20 mM Tris-HCl, pH 7.2, 200 mM NaCl, 1 mM EDTA supplemented with 10 mM β mercaptoethanol and stored at -20°C.

30 The frozen bacterial suspension was thawed in cold water (0°C), placed in an ice bath, and sonicated. The resulting cell lysate was then centrifuged at 10,000 g and 4°C for 30 min, the supernatant retained, diluted with 5 volumes of buffer A and applied to an amylose-resin column (New England Bio-Labs Ltd., 3397 American Drive, Unit 12, Mississauga, Ontario, L4V 1T8, Canada) which had been pre-equilibrated with buffer A. The column was then washed with buffer A until the eluate reached an A₂₈₀ of 0.001 at which point, the bound MBP-MTB2-92 fusion protein was eluted with buffer A containing 10 mM maltose. The protein purified by the amylose-resin affinity column was about 84 kDa which corresponded to the expected size of the fusion protein (MBP: 42 kDa, MTB2-92 plus the histidine tag: 42 kDa).

35 The eluted MBP-MTB2-92 fusion protein was then cleaved with factor Xa to remove the MBP from the MTB2-92 protein. One ml of fusion protein (1 mg/ml) was mixed with 100 µl of factor Xa (200 µg/ml) and kept at room temperature overnight. The mixture was diluted with 10 ml of buffer B (5 mM imidazole, 0.5 M NaCl, 40 20 mM Tris-HCl, pH 7.9, 6 M urea) and urea was added to the sample to a final concentration of 6 M urea. The sample was loaded onto the Ni-NTA column (QIAGEN, 9600 De Soto Ave., Chatsworth, CA 91311, U.S.A.) pre-equilibrated with buffer B. The column was washed with 10 volumes of buffer B and 6 volumes of buffer C (60 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9, 6 M urea). The bound protein was eluted with 6 volumes of buffer D (1 M imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9, 6 M urea).

TABLE 5
The Genetic Code

	First Position (5' end)	Second Position			Third Position (3' end)
10	T	T	C	A	G
		Phe	Ser	Tyr	Cys
	T	Phe	Ser	Tyr	Cys
		Leu	Ser	Stop (och)	Stop
15		Leu	Ser	Stop (amb)	Trp
	C	Leu	Pro	His	Arg
		Leu	Pro	His	Arg
		Leu	Pro	Gln	Arg
20		Leu	Pro	Gln	Arg
	A	Ile	Thr	Asn	Ser
		Ile	Thr	Asn	Ser
		Ile	Thr	Lys	Arg
25		Met	Thr	Lys	Arg
	G	Val	Ala	Asp	Gly
		Val	Ala	Asp	Gly
		Val	Ala	Glu	Gly
30		Val (Met)	Ala	Glu	Gly
	G	Val	Ala	Asp	Gly
		Val	Ala	Asp	Gly
		Val	Ala	Glu	Gly
35		Val (Met)	Ala	Glu	Gly

40 "Stop (och)" stands for the ocre termination triplet, and "Stop (amb)" for the amber. ATG is the most common initiator codon; GTG usually codes for valine, but it can also code for methionine to initiate an mRNA chain.

VII. SEQUENCE VARIANTS

It will be apparent to one skilled in the art that the immunostimulatory activity of the peptides encoded by the DNA sequences disclosed herein lies not in the precise nucleotide sequence of the DNA sequences, but rather in the epitopes inherent in the amino acid sequences encoded by the DNA sequences. It will therefore also be 5 apparent that it is possible to recreate the immunostimulatory activity of one of these peptides by recreating the epitope, without necessarily recreating the exact DNA sequence. This could be achieved either by directly synthesizing the peptide (thereby circumventing the need to use the DNA sequences) or, alternatively, by designing a nucleic acid sequence that encodes for the epitope, but which differs, by reason of the redundancy of the genetic code, from the sequences disclosed herein.

10 Accordingly, the degeneracy of the genetic code further widens the scope of the present invention as it enables major variations in the nucleotide sequence of a DNA molecule while maintaining the amino acid sequence of the encoded protein. The genetic code and variations in nucleotide codons for particular amino acids is presented in Tables 5 and 6. Based upon the degeneracy of the genetic code, variant DNA molecules may be derived from the DNA sequences disclosed herein using standard DNA mutagenesis techniques, or by synthesis of 15 DNA sequences.

TABLE 7

	Original Residue	Conservative Substitutions
	Ala	ser
10	Arg	lys
	Asn	gln, his
	Asp	glu
	Cys	ser
	Gln	asn
	Glu	asp
15	Gly	pro
	His	asn; gln
	Ile	leu, val
	Leu	ile; val
	Lys	arg; gln; glu
20	Met	leu; ile
	Phe	met; leu; tyr
	Ser	thr
	Thr	ser
	Trp	tyr
25	Tyr	trp; phe
	Val	ile; leu

Substantial changes in immunological identity are made by selecting substitutions that are less conservative than those in Table 7, i.e., selecting residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histadyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine. However, such variants must retain the ability to stimulate INF- γ production.

40 VIII. USE OF CLONED *MYCOBACTERIUM* SEQUENCES TO PRODUCE VACCINES

The purified peptides encoded by the nucleotide sequences of the present invention may be used directly as immunogens for vaccination. The conventional tuberculosis vaccine is the BCG (bacille Calmette-Guerin) vaccine, which is a live vaccine comprising attenuated *Mycobacterium bovis* bacteria. However, the use of this vaccine in a number of countries, including the U.S., has been limited because administration of the vaccine interferes with the use of the tuberculin skin test to detect infected individuals (see *Cecil Textbook of Medicine* (Ref. 33), pages 1733-1742 and section VIII (2) below).

50 The present invention provides a possible solution to the problems inherent in the use of the BCG vaccine in conjunction with the tuberculin skin test. The solution proposed is based upon the use of one or more of the immunostimulatory *M. tuberculosis* peptides disclosed herein as a vaccine and one or more different immunostimulatory *M. tuberculosis* peptides disclosed herein in the tuberculosis skin test (see section IX (2) below). If the immune system is primed with such a vaccine, it will be able to resist an infection by *M.*

TABLE 6
The Degeneracy of the Genetic Code

5

	Number of Synonymous Codons	Amino Acid	Total Number of Codons
10	6	Leu, Ser, Arg	18
	4	Gly, Pro, Ala, Val, Thr	20
15	3	Ile	3
	2	Phe, Tyr, Cys, His, Gln, Glu, Asn, Asp, Lys	18
	1	Met, Trp	<u>2</u>
	Total number of codons for amino acids		61
20	Number of codons for termination		<u>3</u>
	Total number of codons in genetic code		64

Additionally, standard mutagenesis techniques may be used to produce peptides which vary in amino acid sequence from the peptides encoded by the DNA molecules disclosed herein. However, such peptides will retain the essential characteristic of the peptides encoded by the DNA molecules disclosed herein, i.e. the ability to stimulate INF- γ production. This characteristic can readily be determined by the assay technique described above. Such variant peptides include those with variations in amino acid sequence including minor deletions, additions and substitutions.

While the site for introducing an amino acid sequence variation is predetermined, the mutation *per se* need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed protein variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence as described above are well known.

In order to maintain the functional epitope, preferred peptide variants will differ by only a small number of amino acids from the peptides encoded by the DNA sequences disclosed herein. Preferably, such variants will be amino acid substitutions of single residues. Substitutional variants are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the following Table 7 when it is desired to finely modulate the characteristics of the protein. Table 7 shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative substitutions. As noted, all such peptide variants are tested to confirm that they retain the ability to stimulate INF- γ production.

microorganism as a vaccine. As described in International Patent Application WO 95/01441, *Mycobacterium bovis* BCG may be employed for this purpose, although this approach would destroy the advantage outlined above to be gained from using separate classes of the peptides as vaccines and in the skin test. As disclosed in WO 95/01441, an immunostimulatory peptide of *M. tuberculosis* can be expressed in the BCG bacterium by transforming the BCG bacterium with a nucleotide sequence encoding the *M. tuberculosis* peptide. Thereafter, the BCG bacteria can be administered in the same manner as a conventional BCG vaccine. In particular embodiments, multiple copies of the *M. tuberculosis* sequence are transformed into the BCG bacteria to enhance the amount of *M. tuberculosis* peptide produced in the vaccine strain.

IX. USE OF CLONED MYCOBACTERIUMSEQUENCES IN DIAGNOSTIC ASSAYS

Another aspect of the present invention is a composition for diagnosing tuberculosis infection wherein the composition includes peptides encoded by the nucleotide sequences of the present invention. The invention also encompasses methods and compositions for detecting the presence of anti-tuberculosis antibodies, tuberculosis peptides and tuberculosis nucleic acid sequences in body samples. Three examples typify the various techniques that may be used to diagnose tuberculosis infection using the present invention: an in vitro ELISA assay, an in vivo skin test assay and a nucleic acid amplification assay.

A. IN VITRO ELISA ASSAY

One aspect of the invention is an ELISA that detects anti-tuberculosis mycobacterial antibodies in a medical specimen. An immunostimulatory peptide encoded by a nucleotide sequence of the present invention is employed as an antigen and is preferably bound to a solid matrix such as a crosslinked dextran such as SEPHADEX (Pharmacia, Piscataway, NJ), agarose, polystyrene, or the wells of a microtiter plate. The polypeptide is admixed with the specimen, such as human sputum, and the admixture is incubated for a sufficient time to allow antimycobacterial antibodies present in the sample to immunoreact with the polypeptide. The presence of the immunopositive immunoreaction is then determined using an ELISA assay.

In a preferred embodiment, the solid support to which the polypeptide is attached is the wall of a microtiter assay plate. After attachment of the polypeptide, any non-specific binding sites on the microtiter well walls are blocked with a protein such as bovine serum albumin. Excess bovine serum albumin is removed by rinsing and the medical specimen is admixed with the polypeptide in the microtiter wells. After a sufficient incubation time, the microtiter wells are rinsed to remove excess sample and then a solution of a second antibody, capable of detecting human antibodies is added to the wells. This second antibody is typically linked to an enzyme such as peroxidase, alkaline phosphatase or glucose oxidase. For example, the second antibody may be a peroxidase-labeled goat anti-human antibody. After further incubation, excess amounts of the second antibody are removed by rinsing and a solution containing a substrate for the enzyme label (such as hydrogen peroxide for the peroxidase enzyme) and a color-forming dye precursor, such as o-phenylenediamine is added. The combination of mycobacterium peptide (bound to the wall of the well), the human antimycobacterial antibodies (from the specimen), the enzyme-conjugated anti-human antibody and the color substrate will produce a color than can be read using an instrument that determines optical density, such as a spectrophotometer. These readings can be compared to a control incubated with water in place of the human body sample, or, preferably, a human body sample known to be free of antimycobacterial antibodies. Positive readings indicate the presence of anti-mycobacterial antibodies in the specimen, which in turn indicate a prior exposure of the patient to tuberculosis.

B. SKIN TEST ASSAY

Alternatively, the presence of tuberculosis antibodies in a patient's body may be detected using an improved form of the tuberculin skin test, employing immunostimulatory peptides of the present invention. Conventionally, this test produces a positive result to one of the following conditions: the current presence of *M. tuberculosis* in the patient's body; past exposure of the patient to *M. tuberculosis*; and prior BCG vaccination. As

tuberculosis. However, exposure to the vaccine peptides alone will not induce an immune response to those peptides that are reserved for use in the tuberculin skin test. Thus, the present invention would allow the clinician to distinguish between a vaccinated individual and an infected individual.

Methods for using purified peptides as vaccines are well known in the art and are described in the following publications: Pal and Horwitz (1992) (reference no. 8) (describing immunization with extra-cellular proteins of *Mycobacterium tuberculosis*); Yang et al. (1991) (reference no. 30) (vaccination with synthetic peptides corresponding to the amino acid sequence of a surface glycoprotein from *Leishmania major*); Andersen (1994) (reference no. 9) (vaccination using short-term culture filtrate containing proteins secreted by *Mycobacterium tuberculosis*); and Jardim et al. (1990) (reference no. 10) (vaccination with synthetic T-cell epitopes derived from *Leishmania* parasite). Methods for preparing vaccines which contain immunogenic peptide sequences are also disclosed in U.S. Patent Nos. 4,608,251, 4,601,903, 4,599,231, 4,5995230, 4,596,792 and 4,578,770. The formulation of peptide-based vaccines employing *M. tuberculosis* peptides is also discussed extensively in International Patent application WO 95/01441.

As is well known in the art, adjuvants such as Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA) may be used in formulations of purified peptides as vaccines. Accordingly, one embodiment of the present invention is a vaccine comprising one or more immunostimulatory *M. tuberculosis* peptides encoded by genes including a sequence shown in the attached sequence listing, together with a pharmaceutically acceptable adjuvant.

Additionally, the vaccines may be formulated using a peptide according to the present invention together with a pharmaceutically acceptable excipient such as water, saline, dextrose and glycerol. The vaccines may also include auxillary substances such as emulsifying agents and pH buffers.

It will be appreciated by one of skill in the art that vaccines formulated as described above may be administered in a number of ways including subcutaneous, intra-muscular and intra-venous injection. Doses of the vaccine administered will vary depending on the antigenicity of the particular peptide or peptide combination employed in the vaccine, and characteristics of the animal or human patient to be vaccinated. While the determination of individual doses will be within the skill of the administering physician, it is anticipated that doses of between 1 microgram and 1 milligram will be employed.

As with many vaccines, the vaccines of the present invention may routinely be administered several times over the course of a number of weeks to ensure that an effective immune response is triggered. As described in International Patent Application WO 95/01441, up to six doses of the vaccine may be administered over a course of several weeks, but more typically between one and four doses are administered. Where such multiple doses are administered, they will normally be administered at from two to twelve week intervals, more usually from three to five week intervals. Periodic boosters at intervals of 1-5 years, usually three years, will be desirable to maintain the desired levels of protective immunity.

As described in WO 95/01441, the course of the immunization may be followed by *in vitro* proliferation assays of PBL (peripheral blood lymphocytes) co-cultured with ESAT6 or ST-CF, and especially by measuring the levels of IFN- γ released from the primed lymphocytes. The assays are well known and are widely described in the literature, including in U.S. Patent Nos. 3,791,932; 4,174,384 and 3,949,064.

To ensure an effective immune response against tuberculosis infection, vaccines according to the present invention may be formulated with more than one immunostimulatory peptide encoded by the nucleotide sequences disclosed herein. In such cases, the amount of each purified peptide incorporated into the vaccine will be adjusted accordingly.

Alternatively, multiple immunostimulatory peptides may also be administered by expressing the nucleic acids encoding the peptides in a nonpathogenic microorganism, and using this transformed nonpathogenic

methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Harlow and Lane (1988).

B. ANTIBODIES RAISED AGAINST SYNTHETIC PEPTIDES.

An alternative approach to raising antibodies against the *M. tuberculosis* peptides is to use synthetic peptides synthesized on a commercially available peptide synthesizer based upon the amino acid sequence of the peptides predicted from nucleotide sequence data.

In a preferred embodiment of the present invention, monoclonal antibodies that recognize a specific *M. tuberculosis* peptide are produced. Optimally, monoclonal antibodies will be specific to each peptide, i.e. such antibodies recognize and bind one *M. tuberculosis* peptide and do not substantially recognize or bind to other proteins, including those found in healthy human cells.

The determination that an antibody specifically detects a particular *M. tuberculosis* peptide is made by any one of a number of standard immunoassay methods; for instance, the Western blotting technique (Sambrook et al., 1989). To determine that a given antibody preparation (such as one produced in a mouse) specifically detects one *M. tuberculosis* peptide by Western blotting, total cellular protein is extracted from a sample of human sputum from a healthy patient and from sputum from a patient suffering from tuberculosis. As a positive control, total cellular protein is also extracted from *M. tuberculosis* cells grown in vitro. These protein preparations are then electrophoresed on a sodium dodecyl sulfate-polyacrylamide gel. Thereafter, the proteins are transferred to a membrane (for example, nitrocellulose) by Western blotting, and the antibody preparation is incubated with the membrane. After washing the membrane to remove non-specifically bound antibodies, the presence of specifically bound antibodies is detected by the use of an anti-mouse antibody conjugated to an enzyme such as alkaline phosphatase; application of the substrate 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium results in the production of a dense blue compound by immuno-localized alkaline phosphatase. Antibodies which specifically detect the *M. tuberculosis* protein will, by this technique, be shown to bind to the *M. tuberculosis*-extracted sample at a particular protein band (which will be localized at a given position on the gel determined by its molecular weight) and to the proteins extracted from the sputum from the tuberculosis patient. No significant binding will be detected to proteins from the healthy patient sputum. Non-specific binding of the antibody to other proteins may occur and may be detectable as a weak signal on the Western blot. The non-specific nature of this binding will be recognized by one skilled in the art by the weak signal obtained on the Western blot relative to the strong primary signal arising from the specific antibody-tuberculosis protein binding. Preferably, no antibody would be found to bind to proteins extracted from healthy donor sputum.

Antibodies that specifically recognize a *M. tuberculosis* peptide encoded by the nucleotide sequences disclosed herein are useful in diagnosing the presence of tuberculosis antigens in patients.

All publications and published patent documents cited in this specification are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

noted above, if one group of immunostimulatory peptides is reserved for use in vaccine preparations, and another group reserved for use in the improved skin test, then the skin test will not produce a positive response in individuals whose only exposure to tuberculosis antigens was via the vaccine. Accordingly, the improved skin test would be able to properly distinguish between infected individuals and vaccinated individuals.

5 The tuberculin skin test consists of an injection of proteins from *M. tuberculosis* that are injected intradermally. The test is described in detail in Cecil Textbook of Medicine (Ref. 33), pages 1733-1742. If the subject has reactive T-cells to the injected protein; the cells will migrate to the site of injection and cause a local inflammation. This inflammation, which is generally known as delayed type hypersensitivity (DTH) is indicative of *M. tuberculosis* antibodies in the patient's blood stream. Purified immunostimulatory peptides according to the
10 present invention may be employed in the tuberculin skin test using the methods described in reference 33.

C. NUCLEIC ACID AMPLIFICATION

One aspect of the invention includes nucleic acid primers and probes derived from the sequences set forth in the attached sequence listing, as well as primers and probes derived from the full length genes that can be obtained using these sequences. These primers and probes can be used to detect the presence of *M. tuberculosis* 15 nucleic acids in body samples and thus to diagnose infection. Methods for making primers and probes based on these sequences are well known and are described in section V above.

The detection of specific pathogen nucleic acid sequences in human body samples by polymerase chain reaction amplification (PCR) is discussed in detail in reference 17, in particular, part four of that reference. To detect *M. tuberculosis* sequences, primers based on the sequences disclosed herein would be synthesized, such that
20 PCR amplification of a sample containing *M. tuberculosis* DNA would result in an amplified fragment of a predicted size. If necessary, the presence of this fragment following amplification of the sample nucleic acid could be detected by dot blot analysis (see chapter 48 of reference 17). PCR amplification employing primers based on the sequences disclosed herein may also be employed to quantify the amounts of *M. tuberculosis* nucleic acid present in a particular sample (see chapters 8 and 9 of reference 17). Reverse-transcription PCR using these
25 primers may also be utilized to detect the presence of *M. tuberculosis* RNA, indicative of an active infection.

Alternatively, probes based on the nucleic acid sequences described herein may be labelled with suitable labels (such a P³² or biotin) and used in hybridization assays to detect the presence of *M. tuberculosis* nucleic acid in provided samples.

X. USE OF CLONED *MYCOBACTERIUM* SEQUENCES TO RAISE ANTIBODIES

30 Monoclonal antibodies may be produced to the purified *M. tuberculosis* peptides for diagnostic purposes. Substantially pure *M. tuberculosis* peptide suitable for use as an immunogen is isolated from the transfected or transformed cells as described above. The concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few milligrams per milliliter. Monoclonal antibody to the protein can then be prepared as follows:

A. MONOCLONAL ANTIBODY PRODUCTION BY HYBRIDOMA FUSION.

35 Monoclonal antibody to epitopes of the *M. tuberculosis* peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler and Milstein (1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected purified protein over a period of a few weeks. The mouse is then sacrificed, and the antibody-producing cells of the spleen
40 isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall (1980), and derivative

24. Ruther et al. (1983). EMBO J. 2:1791.
25. Stanley and Luzio (1984). EMBO J. 3:1429.
26. Gray et al. (1982). Proc. Natl. Acad. Sci. USA 79:6598.
27. Shimatake and Rosenberg (1981). Nature 292:128.
- 5 28. Amann and Brosius (1985). Gene 40:183.
29. Studiar and Moffatt (1986). J. Mol. Biol. 189:113.
30. Yang et al. (1991). Identification and Characterization of Host-Protective T-Cell Epitopes of a Major Surface Glycoprotein (gp63) from *Leishmania major*. Immunology 72:3-9.
- 10 31. Mdluli et al. (1995). New vectors for the in vitro generation of alkaline phosphatase fusions to proteins encoded by G+C-rich DNA. Gene 155:133-134.
32. Lim et al. (1995). Identification of *Mycobacterium tuberculosis* DNA Sequences Encoding Exported Proteins by Using *phoA* Gene Fusions. J. Bact. 177:59-65.
- 15 33. Cecil Textbook of Medicine. (1992, 19th edition). Wyngaarden et al, eds. W.B. Saunders, Philadelphia, PA.
34. Hubbard et al. (1992). Immunization of mice with mycobacterial culture filtrate culture proteins. Clin. exp. Immunol. 87: 94-98.

XI. REFERENCES

1. Skamene, E. (1989). Genetic control of susceptibility to Mycobacterial infections. Ref. Infect. Dis. 11:S394-S399.
- 5 2. Kaufmann, S.H.E. (1991). Role of T-Cell Subsets in Bacterial Infections. Current Opinion in Immunology 3:465-470.
3. Orme, I.M., et al. (1992). T Lymphocytes Mediating Protection and Cellular Cytolysis During the Course of *Mycobacterium-Tuberculosis* Infection - Evidence for Different Kinetics and Recognition of a Wide Spectrum of Protein Antigens. Journal of Immunology 148:189-196.
- 10 4. Daugelat, S., et al. (1992). Secreted Antigens of *Mycobacterium tuberculosis*: characterization with T Lymphocytes from Patients and Contacts after Two-Dimensional Separation. J. Infect. Dis. 166:186-190.
5. Barnes et al. (1989). Characterization of T Cell Antigens Associated with the Cell Wall Protein-Peptidoglycan Complex of *Mycobacterium tuberculosis*. J. Immunol. 143:2656-2662.
- 15 6. Collins et al. (1988). Biological activity of protein antigens isolated from *Mycobacterium tuberculosis* culture filtrate. Infect. Immun. 56:1260-1266.
7. Lamb et al. (1989). Identification of Mycobacterial Antigens Recognized by T Lymphocytes. Rev. Infect. Dis. 11:S443-S447.
- 18 8. Pal, P.G., et al. (1992). Immunization with Extracellular Proteins of *Mycobacterium tuberculosis* Induces Cell-Mediated Immune Responses and Substantial Protective Immunity in a Guinea Pig Model of Pulmonary Tuberculosis. Infect. Immun. 60:4781-4792.
9. Andersen (1994). Infection & Immunity 62:2536.
- 20 10. Jardim et al. (1990). Immunoprotective *Leishmania major* Synthetic T Cell Epitopes. J. Exp. Med. 172:645-648.
11. Orme et al. (1993). Cytokine Secretion by CD4 T Lymphocytes Acquired in Response to *Mycobacterium tuberculosis* Infection. J. Immunology 151:518-525.
- 25 12. Boesen et al. (1995). Human T-Cell Responses to Secreted Antigen Fractions of *Mycobacterium tuberculosis*. Infection and Immunity 63:1491-1497.
13. Mougneau et al. (1995). Expression Cloning of a Protective *Leishmania* Antigen. Science 268:536-566.
14. Yang et al. (1990). Oral *Salmonella typhimurium* (AroA⁻) Vaccine Expressing a Major Leishmanial Surface Protein (gp63) Preferentially Induces T Helper 1 Cells and Protective Immunity Against Leishmaniasis. J. Immunology 145:2281-2285.
- 30 15. Sambrook et al. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
16. Ausubel et al., (1987). Current Protocols in Molecular Biology, ed. Greene Publishing and Wiley-Interscience: New York (with periodic updates).
- 35 17. Innis et al., (1990). PCR Protocols: A Guide to Methods and Applications. Academic Press: San Diego.
18. Kanehisa (1984). Nuc. Acids Res. 12:203-213, 1984.
- 40 19. Wetmur et al. (1968). J. Mol. Biol. 31:349-370.
20. Beaucage et al. (1981) Tetra. Letts. 22:1859-1862.
21. Matteucci et al. (1981). J. Am. Chem. Soc. 103:3185.
22. Jacobs et al. (1991) METHODS IN ENZYMOLOGY 204:537-555.
23. Earp et al. (1990). Nucleic Acids Research 18:3721-3729.

- 32 -

- (A) LENGTH: 265
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

- 5 (ii) MOLECULE TYPE: genomic DNA
 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Mycobacterium tuberculosis*
 (ix) FEATURE:
 (D) OTHER INFORMATION: AciI#1-62

- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 1

ACGCGGACCT CGAACGTTCAT CATCGAGTGA TACGTGCCAC ACATCTCGGC	50
GCAGTGGCCC ACGAATGCAN CCGGTCTTGG TGATTTCTNC GATCTGGAAG	100
ACGTTGACCG ARTTGTTTC CACCGGGTTA GGCATCACGT CACGCTTGAA	150
CAAGAACTCC GGCACCCAGA ATGCGTGTGT CACATCGGCT GAGGCCATT	200
15 GGAATTCGAT ACGCTTGCCG GACGGCAGCA CCAGCACCGG AATTCGGTG	250
CTGTGCAACG TCTCG	265

 (2) INFORMATION FOR SEQ ID NO: 2

- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 484

- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 2
 (ii) MOLECULE TYPE: genomic DNA
 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Mycobacterium tuberculosis*
 (ix) FEATURE:

- (D) OTHER INFORMATION: AciI#1-152

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 2

CTGGTACGAC GCCGGCAAGG ACTACGGACG AGGTGGCACA GAATTCAATG	50
30 CGGCGCTCAT CGGAACCGAC GTGCCCGACG NCGTTTGCTC GACGACGATG	100
GTGNTTCCAN TTCCGCTNAN CGGTGTNCTG ACTGCCNTTG ACGACCTGNT	150
CGGCCARGTT GGGNTGGACA CAACGGATT A CGTCGATTCTG CTGCTGGCCG	200
ACTATGAGTT CAACGGCCGC CATTACGCTG TGCCGTATGC TCGCTCGACG	250
CCGCTGTTCT ACTACAACAA GGCGGCGTGG CAACAGGCCG GCCTACCCGA	300
35 CCCGGGACCG CAATCCTGGT CAGAGTTCGA CGAGTGGGGT CCGGAGTTAC	350
AGCGCGTGGT CGNCGCCGGT CGATCGGCACG ACGGCTGCGT AACGCGACCC	400
TCATCTCGTG GACGTTTCAG GGACCGAACT GGGCATNCGG CGGTGCCTAC	450
TCCGACAAGT GGACATTGAC ATTGACCGAG CCCG	484

- 31 -

SEQUENCE LISTING

(1) GENERAL INFORMATION

- (i) APPLICANTS: UNIVERSITY OF VICTORIA INNOVATION AND DEVELOPMENT CORPORATION
- (ii) TITLE OF INVENTION: MYCOBACTERIUM TUBERCULOSIS DNA SEQUENCES ENCODING IMMUNOSTIMULATORY PEPTIDES
- (iii) NUMBER OF SEQUENCES: 76
- (iv) CORRESPONDENCE ADDRESS:
- 10 (A) ADDRESSEE: Klarquist Sparkman Campbell Leigh & Whinston, LLP
- (B) STREET: One World Trade Center, Suite 1600, 121 S.W. Salmon Street
- (C) CITY: Portland
- 15 (D) STATE: OR
- (E) COUNTRY: USA
- (F) ZIP: 97204-2988
- (v) COMPUTER READABLE FORM:
- 20 (A) MEDIUM TYPE: Disk, 3.5-inch
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: MS DOS
- (D) SOFTWARE: WordPerfect 5.1+, ASCII
- (vi) CURRENT APPLICATION DATA:
- 25 (A) APPLICATION NUMBER: PCT/US96/10375
- (B) FILING DATE: June 14, 1996
- (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
- 30 (A) APPLICATION NUMBER: 06/000,254
- (B) FILING DATE: 06/15/95
- (viii) ATTORNEY/AGENT INFORMATION
- 35 (A) NAME: Richard J. Polley
- (B) REGISTRATION NUMBER: 28,107
- (C) REFERENCE/DOCKET NUMBER: 2847-45176/RJP
- (ix) TELECOMMUNICATION INFORMATION:
- 40 (A) TELEPHONE: (503) 226-7391
- (B) TELEFAX: (503) 228-9446
- (2) INFORMATION FOR SEQ ID NO: 1
- (i) SEQUENCE CHARACTERISTICS:

- 34 -

TGCCGACGTT	GCCCTGCCG	ACGTTGCCA	AGCCCAGGTT	GCGGACACGC	200
CGGTGATTGT	CGGTGGGGCA	ATGACGGGCT	GCTGGCCCGG	CCGAATTCCA	250
AGGCGTCGAT	CGGCACGGTG	TTCCAGGACC	GGGCCGCTCG	CTACGGTGAC	300
CGAGTCTTCC	TGAAATTCGG	CGATCAGCAG	CTGACCTACC	GCGACCGTAA	350
5 CGCCACCGCC	AACCGGTNNG	CCGCAGGTGTT	GGCCNNNCGC	GGCGTCGGCC	400
CGGGCGACGT	CGTTGGCATC	ATGTTGCGTA	ACTCACCCAG	CACAGTCTTG	450
GGGATGCTGG	CCACGGTCAA	GTGCGGCGTA	TCGCCGGCAT	GCTCAACTAC	500
CACCAAGCGCG					510

(2) INFORMATION FOR SEQ ID NO: 5

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 456
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

- (D) OTHER INFORMATION: AciI#1-426

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 5

GCAACGGAGA	GGTGGACTAT	GCCGGACCGG	CACCGCGAAG	GGGTTGGTGC	50
CGGCCCGGGT	GGTGACGGTG	CACATTCTGC	GCAATTGCGT	GAGTTCCGGT	100
GGTGACCTTC	CTGGGCGCGG	AGTCTGGCG	CGCTGATGGC	GGAGCGAKTG	150
TGACCGAAGG	AANTCNGTTC	AACATCCACG	GGTCGGGGG	CGTGCTGTAT	200
25 CAAGCGGTCA	CCGTCAAGGAG	ACGCCGACGG	TGGTGTGAT	CGTGACGGTG	250
CTGGTGCTGA	TCTACCTGAT	CACCAATCTG	TTGGTGGATC	TGCTGTATGC	300
GGCCCTGGAC	GCCGNNGATN	CGCTATGGCT	GAGCACACGG	GGTTCTGGCT	350
CGATGCCTNG	CGCGGGTTGC	GCCGGCGTCC	TAAANTCGTG	ATCGCGCGGC	400
30 GCTGAKCCTG	CTGATTCTTG	TCGTGGCGGC	GTTCCTCGTG	TTGTTTACCG	450
CAGCCG					456

(2) INFORMATION FOR SEQ ID NO: 6

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 175
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- 33 -

(2) INFORMATION FOR SEQ ID NO: 3

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 513

(B) TYPE: nucleic acid

5 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

10 (ix) FEATURE:

(D) OTHER INFORMATION: AciI#1-239

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 3

GGCGGCCAGA CGTCGGAAC	TGGTGTGGTG GGAACCGCGA	50
TCTCTGACGC AACCGCTTCG	CGGTCTTGGC AGTGTTCGAT	100
15 CGGCCGGGAC GCTGCCGGAT	GCGGCCCGTT CACCGAGGCT	150
CCTGGCGTTG TCGTTCCGGG	GGTGACAAGA	200
CAAAAGTGTTC AGGTATAACG	CAACTCCC NAGGTCGGTC	250
TGTACGGCGG TGACAANNNN	AAGGCACCGT	300
CAAATCCAAG GGCTGGACCC	GAACGGTCTT GATCCCACAA	350
20 GACAGCGGAA AACCCGACTT	AGACGTTGAC	400
CGCGGGGGGN TGTGGCTACG	CGACGACAGT	450
CGTCGTTCGG CGGCATGGAT	ATTCGCGTT CGTGCAGATC	500
CGCTGGGTAC GCG	CAACGAGGCG	513

(2) INFORMATION FOR SEQ ID NO: 4

25 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 510

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#1-247

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 4

GTGTGCAACC AGTGTGTGTN	CGTGTGCGAA CCAGTGTGTA	GTGGTAACCA	50
GGACCACGTT GCAAACCAAGT	GTTGGAGTGC AGTGTGCGT	GCNAGTGTG	100
CNCGTTGCAG TGTTNGNCGA	GCCGAGATTG GAAGTTNCCG	ACATTACCGT	150

- 36 -

GTTCGNCGCG	CTCAAAAGGT	TGACGATGGT	CACGTCGCAC	GTGCTGGCCG	50
AGACCAAGGT	GGATTCGGT	GAAGACCTCA	AAGANCTCTA	CTCGNATCGT	100
CAAGGCCCTC	AACGACGACC	GAAAGGATTT	CGTCACCTCG	CTGCAGCTGT	150
TGCTGACGTT	CCCATTTCCC	AAC			173

5 (2) INFORMATION FOR SEQ ID NO: 9

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 223
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
10 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
15 (D) OTHER INFORMATION: AciI#2-35
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 9

CCTGTTNCAA	CGGTNCNTTC	NCGGAACGGA	CGACTTCTGA	TNCGNNTCTCG	50
GNCGTTCCCT	CGCACCCGGTC	GATGGTGATC	AAGGTCAGCG	TCTTCGCGGGT	100
GGTCATGCTG	CTGGTGGCCG	CCGGTCTGGT	GGTGGTATTTC	GGGGACTTCC	150
CTGAANGCAG	GCCAGAAGGT	TCG			223

(2) INFORMATION FOR SEQ ID NO: 10

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 120
25 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
 - (ix) FEATURE:
30 (D) OTHER INFORMATION: AciI#2-272
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO 10
- | | | | | | |
|----------------------|------------|------------|------------|------------|-----|
| CAACGAGATC | GCACCCGTGA | TTAGGAGGTG | ACGGTGGCAG | CGCCGACCCC | 50 |
| 35 GTCGAATCGG | ATCGAAGTAA | CGCTCCGTAG | ACGCCAGCTC | GTCCGCGCCG | 100 |
| ATGCCGACCT | GCCACCCGTG | | | | 120 |

(2) INFORMATION FOR SEQ ID NO: 11
(i) SEQUENCE CHARACTERISTICS:

- 35 -

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-2

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 6

5 TCNCTTANYC CTTCANCTGN CATCTNTCCC AANNACCGAA NTCTGGACCT 50
ATSACGNCCA NCTNAANATG NCCCNCGACN AAGGNCNTTG NACGTTCNCT 100
GKACCACCAN CGGGTTGCAT SCCAAGCTAG NCGAACATCA NASGTTNCGC 150
GCNTACGAGC CGACCCGCCG CGGCG 175

(2) INFORMATION FOR SEQ ID NO: 7

10 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 231

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-23

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 7

CTTCTCGCGC CAGCCGTCCC GCTGTCCGGG ATGCGCTACC GGTCGTCAGC 50
GCCAAGACGG TGCAGCTCAA CGACGGCGGG TTGGTGCGCA CGGTGCACTT 100
GCCGGCCCCC AATGTSGCGG GGCTGCTGAG TGCGGCCGCG TGCCGCTGTT 150
GCAAANNGCG ACCACGTGGT GCCCGCCCG ACGGCCCCGA TCCTCGAAGG 200
25 CATGCAGATC CAGGTGACCC GCATAATCGGA T 231

(2) INFORMATION FOR SEQ ID NO: 8

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 173

(B) TYPE: nucleic acid

30 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

35 (ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-26

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 8

- 38 -

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-511

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 13

5	GGGNACNCTG CGCATNGCTG CCNGTANCCC GGCGCCNAGG CATGAGNCNN	50
	TAGGCCGAAA TGCCTGGTKA ANCTNGCGTG TSGTGGTTGA CCCGCNGCGT	100
	SCNGGCNTAC AKGTGCATGC TGTNGATCGG CAGTGGGAGA GGTGAGCGGT	150
	GCGGCCTNAA GGTGCGGAGG TTNGASNTCT GGCGGTGTCG GCGTTNGGTG	200
	GCTTTGTTCC CGGCGGTCGC GGGGTGCTCC NGNATTCCGG CGACNAACNA	250
	AANNCCGGGN AGSACGAYNC CCGTCGACAC CNNGCAAACG CTGAGGGCCG	300
10	GCACGGACCC TTCTTCCCAC AATGTGGCGG CGTCAGCGAT CANGACGGTG	350
	ACCGAGCTGW ACAAGGGTGA CCGGGCTGGT CAACACCGCC AAGAAGTCGG	400
	TGGGCTNCCA ATGGCCTGGC G	421

(2) INFORMATION FOR SEQ ID NO: 14

(i) SEQUENCE CHARACTERISTICS:

- 15 (A) LENGTH: 175
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

20 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-523

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 14

25	CCAGNCCNCC NAACNTGTYN CGNTCTCAYY TCGCCGTCGC TGCCGGTNCG	50
	TGTGTGCACC ATCTGCACCG ACCCGTGKAA CYTCGATCAC GANACTGGNA	100
	GAGNTCAGGC ATNAAAGCCG GAGTGGCACA GCAACGGTCG CTACTGGAAT	150
	TGGCGAAGCT GGATGCTGAG CTGAC	175

(2) INFORMATION FOR SEQ ID NO: 15

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 263
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

- 37 -

(A) LENGTH: 160
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:
(D) OTHER INFORMATION: AciI#2-506

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 11
CNGGCNNCCA NCGGGTGC^GCAWG^CCACGGC CGGTCCGTGC GAGATCGTCN 50
CNAATGGCAN GCCGGCGCCC AAKANANNNC CGGTACCGTG CCTTCGTNGW 100
GCAWCCTNGC GACCAACCCC GAGATYGCYA CNCTACNGCC GGKACATGAC 150
CGTGGTGC^GGG 160

15 (2) INFORMATION FOR SEQ ID NO: 12
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 133
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
20 (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:
(D) OTHER INFORMATION: AciI#2-508

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 12
GACTGGNCCC GAYGYTGTGN CCGGHNC^GT^GH GGNCGHGCHG CANTCGAYCC 50
TGGCCGTTGC TTCGGTGCCG GGTTGTTCAT CGCCTTCGAC CAGTTGTGGC 100
GCTGGAACAG CATA^GTGGCG CTAGTGCTAT CGG 133

30 (2) INFORMATION FOR SEQ ID NO: 13
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 421
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
35 (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Mycobacterium tuberculosis*

- 40 -

CCGGGATTGG CACGGTCGGC AABGCATTCG TCAGCNNTGC GCTCGAAGGT 150
CAACAAGAAC GTCGGGGTCT ACGCGGTGAA A 181

(2) INFORMATION FOR SEQ ID NO: 18

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 95
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

10 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

- (D) OTHER INFORMATION: AciI#2-872
(xi) SEQUENCE DESCRIPTION: SEQ ID NO 18

15 AGGTAKACGGT GGCAGCGCCG ACCCCGTCGA ATCGGWTGCA AGAAYGCTCC 50
GKACACGCCA GCTGCGTCCG YGCCGATGCC GACCTGCCAC CCGTG 95

(2) INFORMATION FOR SEQ ID NO: 19

(i) SEQUENCE CHARACTERISTICS:

- 20 (A) LENGTH: 65
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

25 (A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

- (D) OTHER INFORMATION: AciI#2-884d
(xi) SEQUENCE DESCRIPTION: SEQ ID NO 19

AKCGGTCAAC KACGGGCCGG CCACCGATGC GATTGTCAAC GGATTCCAAG 50

30 TGGTTGYGCA TGCGC 65

(2) INFORMATION FOR SEQ ID NO: 20

(i) SEQUENCE CHARACTERISTICS:

- 35 (A) LENGTH: 156
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- 39 -

(D) OTHER INFORMATION: AcII#2-639

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 15

GGGCTGGATT CGAGGCTCGT GCATGNCGTA CGACTANGGG TAGCGCCAG	50
CTGCTCAATA CCATCGGTTG GATAACAAAG GCTGAACATG AATGGCNTGA	100
5 TCTCNACAAG CGTGCAGCTC CCACCGACCC CGGCGCCCCCT CGAGCCTGGG	150
GSTGTCGCGA TCCTGATCGC GGCGACACTT TTGCGGACTG TCGTTGCCGG	200
GTGCGGGAAA AAACCGACCA CGGCGAGCTC CCGAGTCCC GGTCGCCGTC	250
GCCGGAAGCC CAC	263

(2) INFORMATION FOR SEQ ID NO: 16

10 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 168

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-822

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 16

YGCCATGCGA AGCGCACCCC GGTCCGGAAG NCCTGCACAG TTCWNCCGTG	50
CTCGCCCGA CGCTACTCCT CGNYTGCAGG GGTCCCAAYGC AGCCAYGCAG	100
CATCACCTTG ACCTTTATCC GCAACGYGYA ATYCCAGGCC AAYGCCGAYG	150
GGATCATCGA YACCKACA	168

25 (2) INFORMATION FOR SEQ ID NO: 17

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 181

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

35 (D) OTHER INFORMATION: AcII#2-854

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 17

ACCNGTTCCC GCCGGNCTNA CNCNCGGTGC CGTTGCACCG GCCANCTGCA	50
GCCTGCCCG ACGCCGAAGT GGTGTTCGCN CGCGGGCCGC TTGAAACCGC	100

- 42 -

	GGANCTCGAC ATCAATKCAN CCGGAGNAGN ANGCTGACCN AACATNCGCT	200
	CATCGACCGC GGATGTCNAT CGAGNACGST GCCAAGSCGC TGCAGCTGGA	250
	TNCTCGAGCG CGCCATGGAG TNATRTGCGS CCGACGAATN CGTCGAGGTG	300
	ACCCCGGAGA NTCGTGCGGA TSCGCRAAGT CGAGCTGGCC GGCCNGCCGC	350
5	CCGGGCTNMG CAGCCGGCG CGCACCNAAAG GCGCGTGGCN TAGCANACTT	400
	GGCGNGCTGG CCGCGCGAGC GTANACNGCC ACTGCGAAAN TCCANGCCCG	450
	GCTTTTCGCA GCCGGGTTNA CGCTCGTGGG GGTACTGGAT AGCCTGATGG	500
	GCGTGCCCAG NCCCANGTCC GCCGCGTCTG TGTGACGGTC GGCGCGTTGG	550
	TCGCGCTGGC GTGTATGGTG TTGGCCGGGT GCACGGTCAG CCCGCCGCCG	600
10	GCACCCCAGA GCASTGATAAC GCGCGCAGC ACACCG	636

(2) INFORMATION FOR SEQ ID NO: 23

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 103
- (B) TYPE: nucleic acid
- 15 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: *Mycobacterium tuberculosis*

20 (ix) FEATURE:

- (D) OTHER INFORMATION: AciI#2-916
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 23

CTTCCGGCGG GACAACAACA GGTCTCACCG GCGCCACACC CTGACACCTG	50
ATCGCGTCTG CCGATCCCGG TCGGAGCACC CGGGTTCCAC CGCTGTGCC	100
25 CCC	103

(2) INFORMATION FOR SEQ ID NO: 24

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 207
- (B) TYPE: nucleic acid
- 30 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: *Mycobacterium tuberculosis*

35 (ix) FEATURE:

- (D) OTHER INFORMATION: AciI#2-1014
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 24

- 41 -

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-8841

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 20

5 TCTTCTACAA GGACGCCCTTC GCCAACGACC AGGAGCTGTT CGACGACTTG 50
GNCGTCAACG TCAACAATGG CTTGTCCGAT CTGTACRAGC AAGWTCGAGT 100
CGCTGCCGNB CGCAAACGCGA CGAGATCATC GAGGACCTAC ACCGTTGCCA 150
CGAACCA 156

(2) INFORMATION FOR SEQ ID NO: 21

10 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 123

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-8941

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 21

ATNCCGTTCC ACTNCCGCGG CAGCAGCTGG NTTTGCACAC ACGGTGACCC 50
AGTGGCGNTT GGTGGGGCCT CGCTGACGGC GAGTNTGGNC GAGCGTCCTC 100
GGTCGGTGNC CTNTCNTCCC GCC 123

(2) INFORMATION FOR SEQ ID NO: 22

25 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 636

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-898

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 22

CGGTCWHKCA ANTTGATGBC NGCGCGCAAG GCCGNCATGG TNAGAGATGCC 50
AACCACACCA CCGGCTGGNT CCGCATGGAC TTCGTGNTTS CCAGTCGCNG 100
CCTGATTGGG TGNCGCACCG ACNNCCTNCA CCGAGACCSG TGGCTCNSGA 150

- 44 -

CGGTCCCTGGC TCTCGGGCTG CTGGCCNCTG CGCCCCACCC CGCACCGGGC 200
 CGGCTTC 207

(2) INFORMATION FOR SEQ ID NO: 27

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 289
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- 10 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
 - (D) OTHER INFORMATION: AciI#2-1084
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 27

15 YCNAGNCKCG TNATNGCSGN CKCATNTNAC NGGANCCNGG ATTNCSTACG 50
 CCACNGTGAT CGCGCTGGTN GCCGCGCTGG TGGCGCGTGT ACGTGCTCTC 100
 GTCCACCGGN AANTAAGCGC ACCATCGTGG GCTACTTCAC CTCTGCTGTC 150
 GGGCTCTATC CCGGTGACCA GGTCCCGCGTC CTGGGCGTCC NGGTGGGTGA 200
 GATCGACATG ATCGAGCCGC GGTCGTCCGA CGTSAAGATC ACTATGTCGG 250
 20 TGTCCAAGGA CGTCAAGGTG CCCGTGSACG NTGCAGGCC 289

(2) INFORMATION FOR SEQ ID NO: 28

(i) SEQUENCE CHARACTERISTICS:

- 25 (A) LENGTH: 198
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
- 30 (ix) FEATURE:
 - (D) OTHER INFORMATION: AciI#2-1089

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 28
 TTGNACCANG CCTATCGCAA GCCAATCACC TATGACACGC TGTTGGCAGGC 50
 TGACACCGAT CCGCTGCCAG TCGTCTTCCC CATTGTGCAA GGTGAACTGA 100
 35 GCAANGCAGA CCGGACAACA GGTATCGATA GCGCCGAATG CCGGCTTGGA 150
 CCCGGTGAAT TATCAGAACT TYGCAGTCAC GAACGACGGG GTGATTTT 198

(2) INFORMATION FOR SEQ ID NO: 29

(i) SEQUENCE CHARACTERISTICS:

- 43 -

GCCACCGGTT CATCGCGTGG TGCTGGTCAC CGCCNNGAAN GCCTCAGCGG 50
ATCCCCTGCT GCCACCGCCG CCTATCCCTG CCCCCAGTCTC GGCGCCGGCA 100
ACAGTCCCGY CCGTGCAGAA CCTCACGGCT NCTHCCGGGC GGGAGCAGCA 150
ACAGGTTCTC ACCGGYGCCW NGYACCCGCA CCGATCGCGT CGCCGATTCC 200
5 GGTGGGA 207

(2) INFORMATION FOR SEQ ID NO: 25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 204

(B) TYPE: nucleic acid

10 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

15 (ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-1025

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 25

TTNCGCANNC GTTCATCCAG GTCCACTGGT GTCGCANCTC TCNNNTGATGC 50

ACCGGTTCCG GATATATGTC NACATCNCCS TCSTCGTCCT GGTGCTGGTA 100

20 CTNACGAACC TGATCGCGCA TTTCACCACCA CCGTGNGCGA GCATCGCCAC 150
CGTCCCGGCC GCCYGC GGTC GGACTGGTGA TCTTGGTKCG GAGTAGAGGC 200
CTGG 204

(2) INFORMATION FOR SEQ ID NO: 26

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 207

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

30 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-1035

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 26

35 ATACCNGTCA TCCNGCACAT NGTCAACCTN GAGTCGGTNC TCACCTACGA 50
GGCACGCCCG AGATGCATCA CTGGTGCTCG RTCAGNCCTT CACGGCTTGG 100
CCGCCTTCCG GTAGGACCGT HGCATGCCCG TCTTCGGCGC CTGGGTGTT 150

- 46 -

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#3-9

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 31

5	CAGNCCGCTG NCCCCGAAC	T GTTCCAGCAG CTACAAGACG	TTCGACAAACG	50
	TNGCGCGTCA ACCTGCANTC	GAGCGCAACC TCTCGGTGGC	GCTCAACGAG	100
	TGTTCGCCGG CTTCAACCCG	CTGGACCCGC GAAACCTCGA	CGTGTCCCCG	150
	CTGCCTTCGC TGGCCAAGCG	CGCCGCCGAC ATCCTGCGCC	AGGACGTGGG	200
10	CGGGCAGGTC GACATTTCG	ATGTCAATGT GCCCACCATC	CA GTACGACC	250
	AGAGC			255

(2) INFORMATION FOR SEQ ID NO: 32

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 164

(B) TYPE: nucleic acid

15	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#3-12

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 32

AAYNCCNGGC CRTCGACGGT NCCGGTTCNC RCCACCGGTC TATATCCACC	50
CGGGTCNRCA TTMANANTGA NTMNCCGCCG GTGCGGCCGT CGAGCGTGAC	100
25 CTGGCATCCC CTGAGACGCT GCTGGGTTGC CCCGGGGAGN TCGAMANTCG	150
GGCATCGCAC CATC	164

(2) INFORMATION FOR SEQ ID NO: 33

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 237

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#3-15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 33

- 45 -

(A) LENGTH: 149

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-1090

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 29

TCACGANGGT RYNACMGCAA CWCGACCGCC ACGTCASGCC GCCGCGCACG 50

AAGATCACCG TGCCTGCNCG ATGGGTCGTG AACGGAATAG AAYGCAGCGG 100

TGAGGTCAAN YGCGAAGCCG GGAACCAAAT CCGGTGACCG CGTCGGCAT 149

(2) INFORMATION FOR SEQ ID NO: 30

15 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 210

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#2-1104

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 30

GGACCCGCCA AGCATCAGCC GGTCAACAGC CGCCGCCGGT GGCCAAAGTT 50

CGAGCAGCCG CCGGTATCGT GCTCGGCCCG GCTAGACCAA AAACTTTACG 100

CCAGCGCCCG AAGCCACCCG ACTCCAAGGC CTGGGCCGG TTGGGTTTCGC 150

ACATGGGTGA GTTCTATATG CCCTACCCGG GCACCCGGTT CAACCAGGAA 200

30 ACCGTCTCGC 210

(2) INFORMATION FOR SEQ ID NO: 31

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 255

(B) TYPE: nucleic acid

35 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- 48 -

GAGAACTCCG GGCGANTTT TGGACA

26

(2) INFORMATION FOR SEQ ID NO: 36

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 204

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(10) (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#3-133

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 36

TGTCGGGTNA	RNGTTCGCGT	CCATGATTGC	TCTTGCAACG	CTGTTGACGC	50
15 TTATCAATCA	AGTCGTCGGC	ACTCCGTATA	TTCCCGGTGG	CGATTCTCCC	100
GCCGGGACCG	ACTGCTCGGA	GCTGGCTTCG	TGGGTATCGA	ATGCCGGCGAC	150
GGCCAGGCCG	GTTCAGGAG	ATAGGTTCAA	CACCGGCAAC	GAGGAAGCGC	200
CTTG					204

(2) INFORMATION FOR SEQ ID NO: 37

(20) (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 312

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(25) (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AcII#3-134

(30) (xi) SEQUENCE DESCRIPTION: SEQ ID NO 37

CANNTTAGAC	TGTCGTGACA	TATCNCNNNT	TACNCNTGGN	ACGGCCATNA	50
TTGGATAATN	CGTGATAANC	ACCACAAGAA	TNATTCTTAT	GNATATTGTC	100
GGTACGTTCG	CGNCCATGAT	TNGCTCTTGC	AACGCTGTTG	ACGCTTATCA	150
ATCAAGTCGT	CGNCACTCCG	TATATTCCCG	GTGNCGATTG	TCCCGCCGGG	200
35 ACCGACTGCT	CRGAGCTGGC	TTCGTGGTA	TCGAATGCGS	CGACGSAGCAG	250
GCCGGTTTTC	GSAGATAGGT	TCAACACCGG	CAACGAGGAA	GCGCCTTGGC	300
GGCTCGGGGC	TN				312

(2) INFORMATION FOR SEQ ID NO: 38

- 47 -

	ACGGACGGCA ACGGGATGCG ACCCGATCCC ACCGGTCGCC ACGAGGGACG	50
	CTACTTCGTC GCCGGGCAGC CGANCCGACC GTCNGTTCNG CGANGGCAGC	100
	NGCCGAAGCC GTTGACCCAC NTTGGTCAGC AGCAGCTGGA TSAGTCAGGT	150
	GCCGTTGGTG TTTGCCGTC AGCGGTGTCG GGGTGGGTGC GTTCTGGGCA	200
5	CCGTCGACTG TGGTGGGCGC TNGCGGGCGN TGGTGGC	237

(2) INFORMATION FOR SEQ ID NO: 34

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 374

(B) TYPE: nucleic acid

10 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

15 (ix) FEATURE:

(D) OTHER INFORMATION: AciI#3-47

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 34

	CNGATNGCTC GGNCTNCGGT ACCNAACTCG NAACTCGCGC CCWYGCNAC	50
	GCAGGNCCGC GGTTGGCACC ACCAGCGACA TCAATCANGC AGGWKNCCCG	100
20	CCACGTTGCA AGACGGCGGC AATCTTCGCC TGTCGCTCAC CGACTTTCCG	150
	CCCAACTTCA ACATCTTGCA CATCGACGGC AACAACGCCG AGGTCGCGGC	200
	GATGATGAAA GCCACCTTGC CGCGCGCGTT CATCATCGGA CCGGACGGCT	250
	CGNACGNACG GTCGACACCA ACTACTTCAC CAGCATCGAG CTGACCAGGA	300
	CCGCCCCGCA GGTGGTCACC TACACCATCA ATCCCGAGGC GGTGTGGTCC	350
25	GACGGGACCC CGATCACCTG GCCG	374

(2) INFORMATION FOR SEQ ID NO: 35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 26

(B) TYPE: nucleic acid

30 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

35 (ix) FEATURE:

(D) OTHER INFORMATION: AciI#3-78 (overlaps with AciI#3-167)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 35

- 50 -

	GTGNGCGCGC CNTCGAGCAN GTCTTGGCNG CGANCCGAB ACAANTGATT	50
	CCCGACATCC GGTACACACC GAACCCNAA NCGATGCCGC NGGCGGCCCG	100
	CTGGTAGAAA GGGGAAATCG CCAGTGTGA CTCGCKTCAT CCGACGCCAG	150
	TTGAKCCKTT TKGCGAKCGT CKCCGTAGTG GCAATCGTCG TATTGGGCTG	200
5	GTACTACCTG CGAATTCCGA GTCTGGTGGG TNGTCGSGCA GTACACCTTG	250
	AAGGCCGACT TGCCCGNATC GGGTGGCCTG TATCCGACGG CCAATGTGAC	300
	CTACCGCGGT ATCACCATTG GCAAGGTTAC TGCCGTGAG SCCACCGACC	350
	AGGGCNGCAC GANGTGACGA TGAGCATCGC CAGNCACACTA SAAAATCSCC	400
	GTCGATGCCT NCGGCGAACG TGCATTGGN GTCAGCGGTN GGGGAGCAGT	450
10	ACATCGACCT NGTGTCCACC GGTGCTCCGG GTNAAATACT TCTCCTCCGG	500
	ACAGACCATC ACCAANGGA CCGTTCCCAG TGAGATCAGG CCGGCGCTGG	550
	ACAANTCCSA ATCNGCGGGT TGGCCGCATT NGCCCACGGGA GAAGATCGGC	600
	TTGCTGCTCG ACGAGACNGC GCAAGCGGTG GGTGGGCTGG GACCCGCGNN	650
	TTGCAACGGT TGGTCGATTC CACTCAAGCG ATCGTCGGTG ACTTCAAAAC	700
15	CAACATTGGC GACGTCAACG ACATCATCGA GAACTCCGGG CCGATTTGG	750
	ACAGCCAGGT CAACACGGGT GATCAGATCG ACGCTGGGCG CGCAAATTGA	800
	ACAATSTGGC CGCACAGACC GCNGACCAGG GAKCAGAACG TCGGAAGCAT	850
	CCT	853

(2) INFORMATION FOR SEQ ID NO: 40

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 209
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

- (D) OTHER INFORMATION: AciI#3-204

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 40,

	GCGGTTGGCA CCACCAAGCGA NAATCAGCAG GNDCCCGCCA CGTTGCAAGA	50
	CGGCAGCAAT CTTCGCCTGT CGCTCACCAGA CTTTCCGCCA AACTTCAACA	100
	TCTTGCACAT CGACGGCAAB AABGCCGAGG TCGCGGCGAT GATGAAAGCC	150
	ACCTTGCCGC GCGCGTTCAT CATCGGACCG GACGGCTCGA CGACGGTCGA	200
35	CACCAACTA	209

(2) INFORMATION FOR SEQ ID NO: 41

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 166

. 49 .

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 676
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

10 (D) OTHER INFORMATION: AciI#3-166

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 38

AGGCCAATCG	NTGATGCGAC	TCGAACGGGT	TCGGCGCCGA	TGACTGTTTC	50
GCGAAGTTCA	TCAGCACCCCT	CGTTGGCGCG	AAGGGCACGA	CGGTGTACCG	100
GWWRYSAMKA	CRCYGCYATG	AGTYTCTGCS	TGTATTGCGG	TGCSGAGCTT	150
15 GCCGACCCGA	CCAGGTGCGG	KCGGTGNCGG	CSCAKACWAG	ATTGGTTCAA	200
CCTGGCNATC	GGACCNACGA	CGCCGACGGT	CGGCGCCCG	ACGACGGCAN	250
ACGGNATNGC	GACCCGANTC	CNYACCNNGT	CGCCACGAGG	GACGNCTACT	300
TCGTCGCCNG	GCAGCCGACC	GANCTCGTTN	NNCGCGASGN	CGACGCCGAA	350
GCCGTTGACC	CACTTGGTCA	GCAGCAGCTG	GNNATCANGN	TCANGGTGCC	400
20 GTTNNGGTGT	TTCGCCGTCA	GCGGTGTCGG	GGTGGGTGCG	TTCTGGGCAC	450
CGTCGACTGT	GGTGGGCGCT	TGCGGGCGTG	GTGGCGTTTC	TCGGGCTGGT	500
GGGAGCCGGT	GTCGTCGGGA	CGCTGTTCC	GAATCGAGAC	CGGGAGTCCA	550
TCGACGACAA	GTACCTCGCN	CCTTGAGGCG	GTCCGGACTC	ACCGGTGAGT	600
TCAACTCCGA	CGCGAACGCC	ATCGCCCGCS	GCAAGCAGGT	GTGCCGCCAG	650
25 TTGCANASAC	GGTGGCGAAC	AGCNSA			676

(2) INFORMATION FOR SEQ ID NO: 39

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 853
- (B) TYPE: nucleic acid
- 30 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

35 (ix) FEATURE:

(D) OTHER INFORMATION: AciI#3-167

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 39

- 52 -

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: *AciI#3-281*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 43

5 CGGYCCGNNC AAYYYGNGC GCHNCGGYGY AGAGGTGNY AAGGTCGCCA 50
 AGGTAACGCT GATCGAYGGG NACANGCAAG TATTGGTGNA CTTCACCGTG 100
 GHGHTGCTHGC TGTYAGC 117

(2) INFORMATION FOR SEQ ID NO: 44

(i) SEQUENCE CHARACTERISTICS:

10 (A) LENGTH: 385
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

15 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: *BsaHI#1-21*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 44

20 GAACCTCCTC GCCCGCGCTT GGCCTAGCAT TAATCGACTG GCACGACAGT 50
 TGGCCGACTG GGTACACGGC ATGGACGCAA CGCGAATGAA TGTGAGTTAG 100
 CTCACTCATT AGGCACCCCA GGC GTT GACA CTTTATGCTT CCGGCTCGTG 150
 TAGTTGTGTG GGAATTGTGG AGCGGATAAC AATTCGACG ACGAGGAAAC 200
 AGCTGTAGAC ATGGATTGAC GAATTGAAAT ACGACTCACT ATAGGAATT 250
 25 GAGCTCGGTA CCCGGGGATC CTCTAGAGTC CTT CGCC CG GG TG GCC ACC 300
 ATCAGGGCCA GTGCCATCGC AAGCGGGGG TACCGGGCGC CATA GTCTTC 350
 AGCATCGGCG TG TTGACC CGC AGAGACCGGA CGGGG 385

(2) INFORMATION FOR SEQ ID NO: 45

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 285
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

35 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: *HinPI#1-12*

- 51 -

- (B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
5 (ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Mycobacterium tuberculosis*
(ix) FEATURE:
(D) OTHER INFORMATION: AciI#3-206
(xi) SEQUENCE DESCRIPTION: SEQ ID NO 41
10 AGATCGTCAG TGAGCAGAAC CCCGCCAAAC CGGCCGCCCC AGGTGTTGTT 50
CSAGGGCTGA AGNCNCTGCT CGCGACGGTC GCTGCTGGCC GTGCTCGGGA 100
TCGGGCTTGG CTGCGCTGT ACTTCACGCC GGCGATGTCG NCCCGCGAGA 150
TCGTGTATCA TCGGGT 166
(2) INFORMATION FOR SEQ ID NO: 42
15 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 221
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
20 (ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Mycobacterium tuberculosis*
(ix) FEATURE:
(D) OTHER INFORMATION: AciI#3-214
25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 42
CCAGNTCCTC NNATATCGAC ACCCTCNACN AAGACCGCTT CGCGAGATCA 50
ACNCTCAGAT ATNCNNACTA TCNCCNNTNC ACGCACACCT CAACATNANA 100
NAATNGAACT ATNGNCTTCG CCTCACCAAC AAGGTTCAAGG TTANCGGCTG 150
NCGTTTKCTC TKCGCCGGCT CGAACACGCC ATCGTGCAGCC GGKACACCCG 200
30 GATGTTTGAC GACCCGCTGC A 221
(2) INFORMATION FOR SEQ ID NO: 43
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 117
(B) TYPE: nucleic acid
35 (C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(vi) ORIGINAL SOURCE:

- 54 -

	TGGGTGATCG CAGTGAGCAG GTCGACCGCC TATTGGTCAA CGCTAAGACC	200
	CTGATGCCG CGTTNCAACR GASNGCGCCG CGCGGTCGAC GCCCTGCTGG	250
	GGAACATCTC CGCTTTCTCG CCCAGGYGCA AAACCTTCAT SAACGACAAN	300
5	CCGAACCTGA ACCATGTGCT CGAGCNGCGC ATCCTSACSA CCTGTTGGTS	350
	GACSGCAAGG AGGATTGGC TGAAANCCTN ACGATSTTGG GCAGAKTCAG	400
	CG	402

(2) INFORMATION FOR SEQ ID NO: 48

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 468
- 10 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
- 15 (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:

(D) OTHER INFORMATION: HinPI#1-200

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 48

20	AGNCCGTGCA CTGGAANCTT CGGCTCAGWT GTCTCCGATG TGGACGGCAA	50
	SGCTGATGAT CTCCCGGTTG GAAGTCGANT CGATKASAAA TGGCTTGGCG	100
	GCTGGTGGTG TTCACTGCCT GGCACCRACG GGCBACGATC NSCGCCTGGN	150
	CGCGATCGGC GCTTAGCTCG GCTGGNNCCC TGTGGTGGGT TTCGACGTGC	200
	TCGGTGTGCG TGCTGCTGGT GGTCGAAGGT GTGGCAATCA ACCTTCTGGC	250
	TGTTGCCTCG TGATTCGGTA ACCGTGGTA CCGACGACGA TGCGCCGGG	300
25	CTGCGACTGG CCGTTGTCTT CCTGTGCNNG CCGCCGCGAT CTCGGCGGN	350
	GTGGTGACTG GGTACCTGCG CTGGACGACA CCGGACCGCG ACTTCAATCG	400
	GGATTCCCGG GAAGTGGTGC ATCTTGCAC GGGGATGGCC GAGACGGTCG	450
	CGTCATTCTC CCCGAGCG	468

(2) INFORMATION FOR SEQ ID NO: 49

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 417
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:

- 53 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 45

CCCGCAGCAG TACCCGCAGN CCCACACCCG CTATNCGCAG CCCGAACAGT 50
TCGGTGCACA GCCCACCCNA GCTCGGCGTG CCCGGTCAGT ACGGCCAATA 100
CCAGCAGCCG GGCCAATATG NCCAGCCGGN ACAGTNACGN CCAGCCCAGC 150
5 CAGTACGCNA CCGCCCGGTC AGTACCCCGG GCAATACGGC CCGTATGNCC 200
AGTCGGGTCA GGGGTCGAAG CGTTCGGTTG CGGTGATCGG CGGCGTGATC 250
GCCGTGATGG CCGTGCTGTT CATCGGCGCG GTTCT 285

(2) INFORMATION FOR SEQ ID NO: 46

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 186
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

15 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#1-142

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 46

20 GCNCGTGNCC GTGCCGCCCG GTTGAACGTG AGCNGCTGNC NATNGCCCCA 50
GCCGAGACGA GAACGTCCCC GAGGAGTATG CAGACTGGGA AGACGCCGAA 100
GACTATGACG ACTATGACGA CTATGAGGCC GCAGACCAGG AGGCCGCACG 150
GTCGGCATCC TGGCGACGGC GGTTGCGGGT NCGGTT 186

(2) INFORMATION FOR SEQ ID NO: 47

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 402
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#1-144

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 47

GTCGCTGAAT GTGTTGTCGG AGACCGTGAT CAGACCTATC CGCACCTGAG 50
CGCCGCCTCC ACGGGTGGCT AAGTTCTCCG ACACCATCGG CAAGCGCGAC 100
GAGCAGACTC ANGCACCTAC TAGCCCAGGC CAACCAGGTG GCCAGCATCC 150

· 56 ·

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#2-145

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 51

CGGCCGGCG GCGCCCTGGT GAAGCTTGA GAATGGGTGA GCGCAGCTGC	50
5 CCACCACACG GGACCGGTGC GGACGCGSTG ACGCGCCTGG TGGTCAGCAN	100
CNTGGCCGGT CTGCTGTTGT ATGCCAGCTT CCCGCCGC GC AACTGCTGGT	150
GGCGGCGGTG GTTGGGCTNC GCATTGCTGG CCTGGGTGCT GACCCACCGC	200
GCGACGACAC CGGTGGGTGG GCTGGGCTAC GGCCTGCTAT TCGGCCTGGT	250
GTTCTACGTC TCGTTGTTGC CGTGGATCGG CGAGCTGGTG CNCCGGGCC	300
10 TGGTTGGCAC TGNCGACGAC GTGC	324

(2) INFORMATION FOR SEQ ID NO: 52

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 229

(B) TYPE: nucleic acid

15 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

20 (ix) FEATURE:

(D) OTHER INFORMATION: HinPI#2-150

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 52

CCAGGCTAGC ACGTATGCTC CGGCTCGTTG TGTGTGGAAT GTGAGCGGAT	50
GACANKCAC ACAGGADAYA GCTATGACNA TGATTACGCC AAGCTATTTA	100
25 GGTGABACTA TAGAATAYTC AAGCTATGCA TCCAAYGCGT TGGGAGCTCT	150
YCCATATGGT CGACCTGCAY GCGGCCGCAC TAGTGATTST THGCGCCGGC	200
NYGCWGCGGC NYAYGACCGC YAAYACCAC	229

(2) INFORMATION FOR SEQ ID NO: 53

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 293

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

35 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#3-28

- 55 -

(D) OTHER INFORMATION: HinPI#2-23

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 49

GTCCAAGGCC	GTAGCCCACC	TCCTGGAAGT	CGTACCACGT	CGACTCGACC	50
AGGACGGCTG	CAGTCAGCAC	TTCGTCAACC	CGCGATCATC	AACGTGCACC	100
5	TACGGCAGTG	TGACGCACCC	CGGACCATCG	CACTGGCCGG	150
CCGAACACTG	CTGACCGCAC	TGGATCTGCT	GGTCGCATGC	ACCACTTCAA	200
GGTGGTGACG	TACCTCAAAA	TGGGTTCCC	GTTGTCCACC	GAGGAAGTCC	250
CGCTGATTCA	TGGGCAATAA	CGCTCCCTAT	CCGCAGTGTG	ACCAGTGGGT	300
10	GCAAGCGGCG	ATGGCCAAGT	TGGTCGCTGA	CCACCCGAC	350
CAACCTCGAC	TCGACCGTGG	AACATCAAAC	CCGGCGATGT	GATGCCAGCA	400
ACCTATGTCG	GGATCTG				417

(2) INFORMATION FOR SEQ ID NO: 50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 279

15 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

20 (A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#2-143

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 50

CGGTCGAGGCC	GATGAACGTC	TGCAGTTCAC	CGCAACCACG	CTCAGCGGTG	50
25	CTCCCTTCGA	TGCGCAAGCC	TGCAAGGCAA	TGCCGCGGTG	100
GGACGCCGTG	GTGCCCGTTC	TGCAACTGTC	AGAAGCCCCC	AGCCGCAGCC	150
AGGTAGCGGC	CGCTAATCCG	GCGGTACACT	TCGTGGAAT	CGCCACCCGC	200
GCCGACGTG	GGCGATGCA	GAGCTTGTC	TCGAAGTACA	ACCTGAATT	250
CACCAACCTC	AATGACGCCG	ATGGTGTGA			279

30 (2) INFORMATION FOR SEQ ID NO: 51

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 324

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

35 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

- 58 -

- (A) LENGTH: 117
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- 5 (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
 - (D) OTHER INFORMATION: HinPI#3-34
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 55

CAGCCACCTC	GTTCGCCGCC	GACATCGACT	ATCAGCCGAC	CCGGCCACTG	50
CTGACCTGAT	CGCCAACAGC	TGGAGGCCCT	ACCGGCTGCA	GTTCAATTCA	100
CCCGCTGCGG	GTCGGCG				117
- (2) INFORMATION FOR SEQ ID NO: 56
- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 242
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*
- (ix) FEATURE:
 - (D) OTHER INFORMATION: HinPI#3-41
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 56

AGGTGTCGTG	CTTCATGCCT	GGCGCCCAAT	CCAGTTCTA	CACCGACTGG	50
TATCACCCCTT	CGCAGACAAA	CGGCCAGAAC	TACACCTACA	AGTGGGAGAC	100
CTTCCTTACC	ACACAGATGC	CCGCCTGGCT	ACAGGCCAAC	AAGGCGTGTC	150
CCCCACAGGC	AACGCGGCGG	TGGGTCTTTC	GATCTCGGGC	GGTCCCGCGC	200
30 TGACCCCTGGC	CGCGTACTAC	CCGCAGCAGT	TCCCGTACGC	CG	242
- (2) INFORMATION FOR SEQ ID NO: 57
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: genomic DNA
- (vi) ORIGINAL SOURCE:

- 57 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 53

CCACACAACA	CAAATCTACG	TCGTAATGCA	GTCGTAAGTC	CATCCGACGT	50
CGATGGCAAG	GACAGCACCC	GACGGCCAAC	GGCATATACA	TCGTCGGCTC	100
GCCGGTCACA	AGCACATCAT	CATGGACTCG	TCCACTACGG	CGTACCCGTC	150
5 AACTCGCCCA	ACGGATATCG	CACCGATGTC	GAUTGGCCAC	CCAGATCTCC	200
TACAGCGGTG	TCTTCGTGCA	CTCAGCGCCG	TGGTCGGTGG	GGGCTCAGGG	250
CCACACCAAC	ACCAGCCATG	GCTGCCTGAA	CGTCAGCCCC	AGC	293

(2) INFORMATION FOR SEQ ID NO: 54

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 816
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- 15 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

- (D) OTHER INFORMATION: HinPI#3-30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 54

20 CGNCGYCGSC	GNGCSCTAYC	GGTGCGGGAG	GGTACAYCCA	AGCANTCCGG	50
GACCGGCCGT	CYCGCYGGGA	ACGCCGTGCT	CCTACAYACC	GGCGRCGGGC	100
GCGTTGCCAC	GSCCCGACAC	CCCACATACCC	NGNCGCGGGC	GCCACCRRTTG	150
GCCC GTTNMG	GTGGACCCGA	NCTTCCCGGC	ACCGCTCGAT	GTCCAGCCGT	200
CGCCGCCTAA	TCCCAGATGGG	CCGCMGCCGA	CKCCGGGCAT	CCTAAGTGCT	250
25 GGGCGGCCGG	GCGAGCCGGN	TCCGGNTGTT	CCGGCATACC	GWTGCCSYTG	300
CCGNCGAACN	TGCACGCACC	CAACCGCTTG	AGCCGTTTCC	TGACGGGACG	350
GGAGGTAGCA	ACCAATGAGC	ACCATCTTCG	AYATCCGSAG	CCTGCKACTN	400
GYCGAWACTG	TCTNGCAAAG	GTAGTGGTCG	TCGGCGGGTT	GGTGGTGTC	450
TTGGCGGTCTG	TRGCCGNCTG	NCRGCCGGCG	CGCRGCTCTA	CCGGAAACTG	500
30 ACTANACTAC	CGTGGTCGCR	TATTTCTST	GAGGCCTCG	CGCTGTACCC	550
AGGAGASAAA	GTCCAGATCA	TGGGTGTGCG	GGTCGGTTCT	ATCGACAAGA	600
TCGAGCCGGC	CGGGACAAG	ATGCGAGTCA	CGTTGCACTA	NCAGCAASAA	650
ATACCAGGTG	CGGCCACGC	TACCGNYGNW	CGMTCCCAA	CCCCAGCCTG	700
GTGGCCTCGC	GCACCATCCA	GCTGTCACCN	NCGTACACCG	GGGGCCCGGT	750
35 CTTGCAAGAC	GGCGCGGTGA	TSCCAATCGA	GCGCACCCAG	RTGCCCGTCG	800
AGTGGGATCA	GTTGCG				816

(2) INFORMATION FOR SEQ ID NO: 55

(i) SEQUENCE CHARACTERISTICS:

- 60 -

(ix) FEATURE:

(D) OTHER INFORMATION: HpaII#1-10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 59.

CCACCAANNNA ACRRCACAGC TCCGGCCRRC CGTNCGCAGG CCACCCGCAN	50
5 CGTAGTGCTC AAATTCTTCC AGGACCTCGG TGGGGYACAT CCGTCCACCT	100
GGTACAAGGC CTTCAACTAC AACCTCGCGA CCTCGCAGCC CATCACCTTC	150
GACACGTTGT TCGTGCCCGG CACCACGCCA CTGGACAGCA TCTACCCCAT	200
CGTTCAGCGC GAGCTGGCAC GTCAGACCGG TTTCGGTGCC G	241

(2) INFORMATION FOR SEQ ID NO: 60

10 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 243

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: HpaII#1-13

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 60

CCGGCGGATC TGCGTGACGA NTGTATNCCA CGGNACTACC CGCGGTCTTT	50
CCTCNANTNC CGCCGGNCCA GNCGCAGNCT NCNGATGTCC NGCTATAACC	100
TGCGCGATCG CCGCCGGGCT GCCCGACAAC ACGGTGNGCG CCGCCGCTGC	150
TTCCGCAAAT TCTGGGTGNC GGCATNCCGG CAGCGCCCGG CCCAGCACTG	200
25 AGAGGGGGAC GTTGATGCGG TGGCCGACGG CGTGGCTGCT GGC	243

(2) INFORMATION FOR SEQ ID NO: 61

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2346

(B) TYPE: nucleic acid

30 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

35 (ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-825

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 61

- 59 -

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: HpaII#1-3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 57

5 TGCTGCAGAT AGCCAAGGAT CCAGTCGTGA TTGATATCAC GTCTTCCAG 50
TGAATTGAAG TTTGGCTATC AAAGGGTGAA CTTSAAAGAC GGCACACTGA 100
CCTATGATGG TGCCGATCCG GAGCGCAAGC GCGCCATGGT TTCCAAGCCA 150
GAGGGCAAGN ACAAGTACGG CGAAGAGCTG GTCGGGCCGG TGCGCGGGCT 200
CAACACCGAG GACCGGACCT ACCTGAATT CGACAAGGTC GAGACGTTGG 250
10 GCAGCAGCAC CGAAATTCCG GTGCTGGTGC TGCCGTCCGG CAAGCGTATC 300
GAATTCCAAA TGGCCTCAGC CGATGTGATA CACGCATTCT 340

(2) INFORMATION FOR SEQ ID NO: 58

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 262

15 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

20 (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: HpaII#1-8

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 58

CNGACTCCAA CNAGTGCNT CAANCNGNT TNCCNGACAA GAAGGTTCCCT 50
15 ACATCCGCAA NTCGGTGNA NGCCACTGTG GATGCCTACG ACGGAACGGT 100
CACGCTGTAC CAACAGGACG NAAAAGGATC CGGTGCTCAA GGCTGGATG 150
CAGGTCTTCC CGGGCACGGT AAAGCCTAAG AGCGACATTG CGCCGGAGCT 200
TGGCGAGCAN CTGCGGTATC CCGAGGACCT GTTCAAGGTG CAGCGCATGT 250
TGGTGGCCAA AT 262

30 (2) INFORMATION FOR SEQ ID NO: 59.

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 241

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

35 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

- 62 -

CCCAGGCCAT CGTCGCCGGC CGCCACGAGA TCGAGGACGA GCCCCGGGTG 1950
 GTGGTGTGGC TGGCGTCCGG CTTGGCCGCC GAGACATTCC AGCTGGACTT 2000
 TGTCNGTACC GGCTCGGGTG CCCTGATCAC CGGTTATCGG TTGACCGNA 2050
 CCGCCCGGGA TCTGCATCTG CTGCTGCCGG ACCCGTACAC ATTCCCCTCG 2100
 5 AACCTGCTCA TCGAGCACCC CAACACCGAC CTGCCGGCA CCGCNGTCGT 2150
 GGGCGCGNT GGTGAGCGGC GGGCGCCGGC GGGGCGACAC CCGGSTGK 2200
 CGCGATCACG ACGTGCTCAC CTCCGGMGTGTC GTCGGCGTGC GCCTGCSCGG 2250
 GATGCGCGGT GTMCCGGTCA TGTCGCAGGG TTGNCGGCCG ATCGGCTACC 2300
 CATACATCGT CACCGGMGCG GACGGCATAC TGRKCACCGA GCTCGG 2346

10 (2) INFORMATION FOR SEQ ID NO: 62

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 841
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

15 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

20 (D) OTHER INFORMATION: AciI#435

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 62

CGTTACCCGC TTTACACCAC CGCCAAGGCC AACCTGACCG CGCTCAGCAC 50
 CGGGCTGTCC AGCTGTGCGA TGGCCGACGA CGTGCTGGNC NAGSCCNANS 100
 CCAATGNCGG MMTGCTGCAA NCAGNTNCNG GCCANGCGTT CGGACCGGGAC 150
 25 GGACGCTGGN CGGTATCAGT CCNGTCGGCT TCAAANCCGA NGGCGTGGGC 200
 GAGGACCTCA AGTCCGRRCC CGGTGGTCTC NAAACCCSGG CTNGTCAACT 250
 CCGATNCGTC GCCCAACAAN CCCAACNGCC NGCCATCANC GACTCCKCNG 300
 GCACCGCCNG AGGGAAGGGY CCGGNTCGGG ATTCAACGGG TTGGCRWCAGC 350
 GGCGCTGCCG TTCNGRATTG GAYCCGGCAN CGTACCCGG TGATGGCAG 400
 30 CTNACGGGGA NGAACAACCY GSICCSSSACG GCCACCTCGG CCTGGTACCA 450
 GTTACCGCCC CGCAGCCCGG ACCGGCCNGC TGGTGGTGGT TTCCNGCGGC 500
 CGCGGCCATC TGGTCCTACA AGGAGGACGG CGATDTCATC TACGGCCANG 550
 TCCCNTGAAA CTGCAGTGGG NCAGTACCGG CCCGGACGGC CGCANTCCAG 600
 CCACTGGGGC AGGTATTTCC GANTCGACAN TCGGACCNNGC AACNCCNGCG 650
 35 TGGCGCAATC TGCGGTNTNT CCGCTGGCCT GGGCGCCGCC GGNANGCNC 700
 ACGTGGCGCG CATTGTCGCC TATGACCCGA ACCTGAGCCC TGAGCAATGG 750
 TTCGCCTTCA CCCCCCCCCG GGTTCCGGTG CTGGAATCTC TGAGCGGGTT 800
 GAKCGGGTCA GCGACACCGG TGTTGATGGA CATCGCGACC G 841

- 61 -

	GCGCTGNCAT TCGNACTTCG GACNGCGTTN GCGGTGGTGC TGATCATGAA	50
	NCTACGACGG CGCCACCAGC AGCTTCCCCT CATGGGTGCT CTATCCCTGT	100
	GCGCTGGCCA TGATGGTGTT CTCGAATKCG TTCAGCGTNC TGCGCAGCGC	150
	AGTGANACCG AGGGTGATGC CGCCAACCCT CGACTTGGTC CGGGTCAACT	200
5	CACGGCTGAC CGTGTTCGGC CTGCTCGCG GCACCATC3C TGGTGGCGCG	250
	ATTGCGGCCG GAGTCGAATT CGTCTGCACC CACCTGTTCC AGCTGCCGGG	300
	CGCGTTGTTG GTCGTCGTCG CGATCACCAT CNNTNNNGCT TCGCTGTCGA	350
	TNCNCATTCC GCGCTGGTC GAGGTGACCA GCGGTGAGGT CCCGGCCACA	400
	TTGAGCTACC ACCGGGATAG GGNCAGACTA CGCGGACNGC TGGCCGGAGG	450
10	AAGTCAAGAA CCTCGGCGGA ACACCTCGAC AACCGTTGGG CCGCAACATC	500
	ATTACCTCCC TGTGGGGTAA CTGCACCATC AAGGTGATGG TCGGCTTCT	550
	GTTCTTGTAT CCGCGTTTG TCGCCAAGGC GCACGAAGCC AACGGGTGGG	600
	TGCAATTGGG CATGCTGGGC CTGATCGCGC CGGCGGCCGC GGTCGGCAAC	650
	TTCGCCGGCA ATTTCACCAAG CGCACGCCCTG CAGCTAGGCA GGCCAGCTGT	700
15	GCKGGTNGTG CGCTGCACCG TGCTAGTTAC CGTGTAGGCC ATCGCGGCCG	750
	CGGTGGCCGG CAGCCTGGCA GCGACAGCNA TTGCCACCCCT GATCACGGCA	800
	GGGTCCAGTG CCATTGCTAA AGCCTCGCTG GACGCCCTCGT TGCAGCACGA	850
	CCTGCCCGAG GAGTCGCGGG CATCGGGGTT TGGCGTTCC GAGTCGACTC	900
	TTCACTGGC CTGGGTGCTG GGCGGCGCGG TGGCGTGTT GGTGTACACC	950
20	GAGCTGTGGG TGGGCTTCAC TCGGGTGAGC GCGCTGCTGA TCCTGGGTCT	1000
	GGCTCAGACC ATCGTCAGCT TCCGCGCGA TTGCTGATC CCTGGCCTGG	1050
	GCGGTAATCG GCCCCGTATG GCGAGCAAG AAACCACCCG TCGTGGTGCG	1100
	GCGGTGGCGC CGNAGTGAAG CGCGGTGTCG CAACGCTGCC GGTGATCCTG	1150
	GTGATTCTGC TCTCGGTGGC GGCGGGGGCC GGTGCATGGC TGCTAGTACG	1200
25	CGGACACGGT CCGCAGCAAC CCGAGATCAG CGCTTACTCG CACGGGCACC	1250
	TGACCCGCGT GGGGCCCTAT TTGTACTGCA ACGTGGTCGA CCTCGACGAC	1300
	TGTCAGACCC CGCANGCGCA GGGCGAATTG CCGGTAAGCG AACGCTATCC	1350
	CGTGCAGCTC TCGGTACCCG AAGTCATTTC CCGGGCGCCG TGGCGTTGC	1400
	TGCAGGTATA CCAGGACCCC GCCAACACCA CCAGCACCTT GTTCCGGCCG	1450
30	GACACCCGGT TGGCGGTACAC CATCCCCACT GTCGACCCGC AGCGCGGGCG	1500
	GCTGACCGGG ATTGTCGTGC AGTTGCTGAC GTTGGTGTC GACCACTCGG	1550
	GTGAACCTACG CGACGTNCGC ACGCGGAATG GTCGGTGCAG CTTATCTTT	1600
	GACGAGGCCG CGGCTCGACG NCNCCTTAAG CGCGGTGGC GCCAACGGTC	1650
	CGAAGAGCCG CCGACACCCG GGGCACATCG GCGCATCATG GAACTGTGCG	1700
35	GATCGGAGTC GGGGTTTGCA CCACGCCGA CGCGCGGCAG GCCGCGGTGG	1750
	AGGCTGCGGG CCAGGCGCGC GACGAGCTGG CGGGTGAGGC GCCTGCGCTG	1800
	GCGGTGTTGC TTGGATCGCG TGCACACACC GACCGGGCTG CCACGTCC	1850
	GAGCGCGGTG CTGCAGATGA TCGACCCGCC CGCGCTTGTC GTTGCATCG	1900

- 64 -

GNATNCGACG GCAATAAACCA CACGCTCTGG CCACGTTCT TGCGGGGAA	250
AGGGGTGATG CTATCGGAGC CAATGGTATC GCGACAACAC TTGCAGATGC	300
CGCCAAGGCC GATCACGCTA ATGACGGATT CGGGGCCACA AACGTTCCCC	350
GTTCTGGCGG TTTTCTCTGA CTACACCTCA GATCAAGGTG TGATTTGAT	400
5 GGATCGCGCC AGTTATCGGG CCCATTGGCA GGATGATGAC GTGACGACCA	450
TGTTTCTTTT TTTGGCNATN CGGGTGCAGAA TAGCG	485

(2) INFORMATION FOR SEQ ID NO: 65

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 469

10 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

15 (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#1-264A

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 65

GGCGAGGTCA GTGAAGCCGA GGAAGCGGAA AGGAGCGCCC AATACGGAAC	50
20 CGCCTCTCCC CGCGCGTTGG CCGATTCAATT AAATGCAGCT GGCACGACAG	100
GTTCGGCGAC TGGAAMGCAG GCAGTGAGCG CAASGCAATT AATGTGAGTT	150
AGCTCACTCA TTAGGCACCC CAGGCTTTAC ACTTTATGCT TCCGGCTCGT	200
ATGTTGTGTG GAATTGTGAG CGGATAACAA TTTCACACAG GAAACAGCTA	250
TGACATGATT ACGAATTAA TACGACTCAC TATAGGGAAT TCGAGCTCGG	300
25 TACCCGGGGA TCCTCTAGAG TCGCTTCGGT TGGCGGCGAC CAGCAGTGG	350
TCCACGGTGG CCGCCCGCGC GGCDTCATAC ACCGCCGGG CCTCCTTGGC	400
CTGTGCGGCC SGCTTAGCGC GCGTGTGCT GCCGTGCTTA GCCANCTGGC	450
ATAGGGGGCT GCCGCGCGC	469

(2) INFORMATION FOR SEQ ID NO: 66

30 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 290

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

- 63 -

(2) INFORMATION FOR SEQ ID NO: 63

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 471

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#1-2/23/9

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 63

GCCAGCCGTG ATCGGCTGAC CGGCAGTGAT CACCAACCTC AACGTGGTGC	50
TGGGCCTCGC TGGCGCTCAC ACGATCGGTT GGACCAGCCG GTGACGTCGC	100

TATCAGCGTT GATTACACCGG CTCGCGCAAC GCAAGACCGA CATCTCCAAC	150
---	-----

CCCGTGGCCT ACACCAACGC GCCGCCGGCT CGGTGCGCCGA TCTCTGTCGC	200
---	-----

AGGCTCGCGC CGTTGGCGAA GGTGGTTCGC GAGACCGATC GGGTGGCCGG	250
--	-----

CATCGCGGCC GCCGACCACG ACTACCTCGA CAATCTGCTC AACACGCTGC	300
--	-----

CGGACAAATA CCAGGGCGCTG GTCCGCCAGG GTATGTACGG CGACTTCTTC	350
---	-----

GCCTTCTACC TGTGCGACGT CGTGCTCAAG GTCAACGGCA AGGGCGGCCA	400
--	-----

GCCGGTGTAC ATCAAGCTGG CCGGTCAAGGA CATGCGCGGG TGCGCGCCGA	450
---	-----

AATGAAATCC TTGCGCGAAC G	471
-------------------------	-----

(2) INFORMATION FOR SEQ ID NO: 64

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 485

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#1-229/264

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 64

KGTCTCGCGN CCTTNACATC CGGTGCCNN RCGGTNATCT GCCTGTGGAT	50
---	----

GCCGTCCGGA NGTATNANCN AATGGCCANG AGTNCGTGAC NGCAGNTATG	100
--	-----

GNCKCGGNTA TAGTTCCGTT TTGCCNGGA CTNGGNGCGT GAGGTGGAAC	150
---	-----

TAATGGCGGT GTCGGGTGAT ATTTCCGACG GCAAGNCGAC CATATAGGTG	200
--	-----

- 66 -

CACTGCGCCG AGATGTGTGG CACGTATCAC TCGATGATGA ACTTCGAGGT 950
 CCGCGTCGTG ACCCCCCAACG ATTTCAAGGC CTACCTGCAG CAACGCATCG 1000
 ACGGGAAKAC AAACGCCGAG GCCCTGCGGG CGATCAACCA GCCGCCCCCTT 1050
 GCGGTGACCA CCCACCCGTT TGATACTCGC CGCGGTGAAT TGGCCCCGCA 1100
 5 GCCCGTAGGT TAGGACGCTC ATGCATATCG AAGCCCGACT GTTTGAGTTT 1150
 GTCGCCGCGT TCTTCGTGGT GACGGCGGTG CTGTACGGCG TGTTGACCTC 1200
 GATGTTCGCC ACCGGTGGTG TCGAGTGGGC TGGCACCACT GCGCTGGCGC 1250
 TTACCGGC GG CATGGCGTTG ATCGTCGCCA CCTTCTTCCG GTTTGTGGCC 1300
 GCGGAT 1306

10 (2) INFORMATION FOR SEQ ID NO: 68

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 759
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

15 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

20 (D) OTHER INFORMATION: AciI#2-823

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 68

GGTGCCTGCC ATCGGTTCGC TGNGCACNG CTGNCCNNATC TTTGGTSTGT 50
 TAGAGGTNWW CCGCGCGGAT RGCNCANTCC TGTTGGNGGG GGTRRTCGCC 100
 ACGATTGCCG CCCGCGCTGA ACCCGACGAC GCCGATGCC TGCCCACCAC 150

25 GGATCGGCTG NNMMCANCAG AGCGAACCGT GCAGNATGCN TNTKGTTGAC 200

GAGCCTGCTG GCGCCTTCGC NGGCNCTCGG CGACCATCGG TGCCATCGGA 250

ACCGCCGTNC GCAACCCACG GCATCCACAN GSTCCANGCA TGGCGGTATC 300

GCGNTTGGCC GNCGTCACCG GTGCGCTGCT GCTGCTAYGA GCACGTTCA 350

CAGACACCAG AAGGTCACTG NTGTTGCCA TCTGTNGGAA TCACCACCGT 400

30 TGCAAACGGMA NTTGTACCGT CGCCGCCGAT CGGGCTCTGG AACACGGCC 450

GTGGATTGSC GCGCTGACCG CCATGCTGGT CCNGCCGTGG CAANTGKTT 500

TGGGCTTCGT NGCTCNCCGC GTTGTGCTC TCGCCCCGTCA CGTACCGCAC 550

CATCGAATTG CTGGAGTGTC TGGCGCTGAT CGCAATGGTT CCATTGACCG 600

CTNTGGSTAT NNNNNCGCCT ANCAGSSSCS TTCGCCACCT CGACCTGACA 650

35 TGGACATGAC CACNGTCCCG TNACCCCTGCCG CCTGNCTNGG TGGTMTCA 700

GNCNNNTCGY SACGCTGTCT GGSWTGGSRM RCGCNCGGTT GCGCCACGCG 750

GTTTCGCCG 759

(2) INFORMATION FOR SEQ ID NO: 69

- 65 -

(D) OTHER INFORMATION: AciI#1-264C

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 66

CNGGTTCGAC	TGATCTAGCT	GGGGCCAGAC	CGGCACGAGG	CGACAGTTAC	50	
CAGTACCTGA	CAGACAGGCC	GATCGAGCCA	AACCGTAGTG	AGGACGCAGG	100	
5	AGGAACAGGC	AGATGCATCT	AATGATAACCC	GCGGAGTATA	TCTCCAACGT	150
GATATATGAA	GGTCCCGGTG	CTGACTCATT	GTATGCCGCC	GACCAGCGAT	200	
TGGCACAATT	AGCTGACTCA	GTAGAACGA	CTGCCGAGTC	GCTAACACACC	250	
ACGCTCGACG	AGCTGCACGA	GAACGGAAA	GGTAGTTCA		290	

(2) INFORMATION FOR SEQ ID NO: 67

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1306
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: HinPI#2-92

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 67

GTGATACAGG	AGGCGCCAAC	AGTGACACCT	CGCGGGCCAG	GTCGTTGCA	50
ACGCTTGTG	CAGTGCAGGC	CTCAGCGCG	CTCCGGAGGG	CCTGCCGTG	100
GTCTTCGACA	GCTGGCGCTC	GCAGCAATGC	TGGGGGCATT	GGCCGTCACC	150
GTCAGTGGAT	GCAGCTGGTC	GGAAAGCCCTG	GGCATCGGTT	GGCCGGAGGG	200
25 CATTACCCCG	GAGGCACACC	TCAATCGAGA	ACTGTGGATC	GGGGCGGTGA	250
TCGCCTCCCT	GGCGGTTGGG	GTAATCGTGT	GGGGTCTCAT	CTTCTGGTCC	300
GCGGTATTT	ACCGGAAGAA	GAACACCGAC	ACTGAGTTGC	CCCGCCAGTT	350
CGGCTACAAC	ATGCCGCTAG	AGCTGGTTCT	CACCGTCATA	CCGTTCCCTCA	400
TCATCTCGGT	GCTGTTTAT	TTCACCGTCG	TGGTGCAGGA	GAAGATGCTG	450
30 CAGATAGCCA	AGGATCCCGA	GGTCGTGATT	GATATCACGT	CTTTCCAGTG	500
GAATTGGAAG	TTTGGCTATC	AAAGGGTGA	CTTCAAAGAC	GGCACACTGA	550
CCTATGATGG	TGCCGATCCG	GAGCGCAAGC	GCGCCATGGT	TTCCAAGCCA	600
GAGGGCAAGG	ACAAGTACGG	CGAAGAGCTG	GTCGGGCCGG	TGCGCGGGCT	650
CAACACCGAG	GACCGGACCT	ACCTGAATT	CGACAAGGTC	GAGACGTTGG	700
35 GCACCAAGCAC	CGAAATTCCG	GTGCTGGTGC	TGCCGTCCGG	CAAGCGTATC	750
GAATTCCAAA	TGGCCTCAGC	CGATGTGATA	CACGCATTCT	GGGTGCCGGA	800
GTTCTTGTTC	AAGCGTGACG	TGATGCCTAA	CCCGGTGGCA	AACAACCTGG	850
TCAACGTCTT	CCAGATCGAA	GAAATCACCA	AGACCGGAGC	ATTCGTGGGC	900

- 68 -

(ii) MOLECULE TYPE: genomic DNA
 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

5 (D) OTHER INFORMATION: *HinPI#1-3*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 70

AGATCNAYAC YANCANCANT GCNGTCATCG AGNTGCTGCA GGNCAANGTG	50
GTCCGTTGGC GAACGTGCTN KGCCNAYACC GGTGCCTTCT CGGCGCNCTN	100
GGYGCAYNGC GACCAGCTGA TCGGCCNAKG TAATCACCAA CCTCAANNKC	150
10 GGTGCTNGCK ACCKTCGAYK GCAAAGAGYG YGCAATTGT CGGCCAGTGT	200
CGACCAGCTG CAGCAGCTGG TCAGCGGCCT GGCCAAGAAC CGGGATNCCG	250
ANTSGNNGGC GCCATTTCGC CGCTGGNGTC GACGACGACG GATCTTWCAG	300
AACTGTTGCG GAATTSGCGC CGGCCGCTGC AAGGCAKCCG GGAAAACGCC	350
CGGCCGCTGG CTACCGAGCT GGACAACCGA AAGGCCNANG GTCAASAACG	400
15 RRATCGAGCA NGCTCGGCGA GGACNATNCC TGCGCCTGTC CGCGCTGGGC	450
AGTTACGGAG CANTTCGTT AACATCTAST TSTGCTCGGT GACGATSAAG	500
ATCAACGGAC CGGCCGGCAG CGACANTCCN TGCTGCCGAT CGGCAGGCCAG	550
CCGGANTCCC AGCAAGGGGA GGTGCGCCTT TGCNTAAATA GGAAGCCAAG	600
TANGCAAASA CGAASGCSAC CCGTCCGCAC CGGNATCTT CGGCCTGGTG	650
20 CNTGGTGATC NTGNCGTCGT CCTGATSGNC ATTGGCTAC AGCGGGTTGC	700
CTKTCTGGCC ACAKKKCAAA ACCTACGACG CGTATTCAC CGACGCCGGT	750
GGGATCACCC CCGGTAACCTC GGTTATGTS TCGGGCCTCA AGGTGGGCG	799

(2) INFORMATION FOR SEQ ID NO: 71

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 713
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

30 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: *AciI#2-827 translation strand*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 71

35 CTAYCSGCAA NGCTKNGCAG ACGCTCGGCT GCACNGCAGA ANTGCAGTG	50
CACCCACGAT TGCCAGTAGC GCGGGCCCAC TCGTGCCTAC TACACTTCGT	100
CGTAGCCAAA TCANTCGGCC CCGTAGTATC TCCGGAGATG ACAGATGAAT	150
GTCGTCGACA TTTCNGNCAG TGGCAGTTCG GTATCACCAC CGTSTATCAC	200

- 67 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1041
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

10 (D) OTHER INFORMATION: HinPI#1-31

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 69

GKTCNCGGTG	ATGTCGACNG	TCGGCACGRM	GNCGAAACCT	CANC GGTCGA	50
CAGTGTCTGC	CCGAGGCCGC	AGCCGACGTG	CCCCN GGAGA	CCGCGCGCCA	100
ANCACGGTGC	CGTACATGTA	GCCCCGACGG	CGCATCATCG	CCGAGCCGGC	150
15 GTAGATGTTT	TCCTGCACGG	CGTN CSGGT	GAACCCTCCG	GCGCCAGCAC	200
CGSCACCWNT	TCCC GCGTCC	ACGTCGGCCT	GGGTGGTGAC	GCCGAGCACC	250
CCACCGAAAT	GATCGACATG	GCTGTGGGTG	TAGATGACCG	SCGACCACGG	300
GGCGGT CGGC	TCCGCGGTGG	GCGCGANTAC	AAGTCCAGCG	CGGCGGCGGC	350
CACCTCGGTG	GACANCCAAN	CGGGNYGAT	GACGARWCWG	CCCAGTGTCA	400
20 CCNCWMMACG	AAGNCTGATA	TTGGAGATAT	CGAATCCGCG	GACCTGATAG	450
ATGCCCGGCA	CCACCTGGTA	GAGGCCCTGT	TTCGCGGTCA	GCTGGGATTG	500
CCGCCACAGG	CTGGGATGCA	CCGATGTCGG	CGCGGCACCG	TCGAGNAACG	550
AGTACCGCGTC	GTTGTCCCAC	ACCNACGCGA	CCATCGGCAG	CCTTGATCAC	600
ACACGGGGAC	AGCGCGGCAA	TGAATCCGCG	ATCGGCGTCG	TCGAAATCCG	650
25 TTGTGTCA TN	GCAACGGTNA	ACGAGTGTTC	ACCGTGTGCC	GCCTGGNATG	700
ACGGCAGTNG	GGAGGTTTGT	GTTCCATCGG	CACTACATTG	CCACTACTAC	750
GGTGCACGCC	GGTAGATGCC	GTTGGCGAAC	CACGCTACCG	ACCAGAAAGA	800
GAGAATTTTC	CGCCGCACCT	AGACCTCGGG	CCCTCTAACG	CGCATACTGC	850
CGAAGCGGTC	CTCAATGCCG	ATGGACCGCT	ACGACAGGCA	AAGGAGCACA	900
30 GGGTGAAGCG	TGGACTGACG	GNTCGCGGT A	GCCGGAGCCG	CCATTCTGGT	950
CGCAGGTCTT	TCCGGATGTT	CAAGCAACAA	GTCGACTACA	GGAAGCGGTG	1000
AGACCACGNA	CCGCGNGCAG	GCACGACNGC	AAGCCCCGGC	G	1041

(2) INFORMATION FOR SEQ ID NO: 70

(i) SEQUENCE CHARACTERISTICS:

- 35 (A) LENGTH: 799
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

- 70 -

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-874

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 73

GTGATGCCTT CCAGCATTGG ATTGGTCGTC GGTCGATGC TGTGGCGACA	50
5 GATAAACCGC CTGTTGGGG TGCGTGGCCT CTGCTGGCA GCGCACTGCT	100
CAACGCCGCT CTGCGCTGCT GTGCATGGTG GCCGAGTCGT GTGGGCAGTG	150
GTTCACGCC TGGCGTACT TCACGGCGTT CCTGCTGGCT ACGGTGGCCG	200
CTCAAACGGT GGTCGCCGCA TCGATATCGT GGATCAGCGT CCTCGCGCCC	250
GA	252

10 (2) INFORMATION FOR SEQ ID NO: 74

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 160

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

15 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

20 (D) OTHER INFORMATION: AciI#2-1018 .

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 74

GGCGCCGCCG TCGTGCCTGGC CGCCCGGCC GGTGGGGGTG CCGGCCAGCG	50
TGGTTCCGCC AGTGGCCGCG CCGAACGTAT TGGCCGGCGT CCTCGAGCAC	100
GACAACGACG GGTCGGGGGC GGCGGTGCTG GCCGCGCTGG CCAAGCTGCC	150
25 ACCCGGTGGT	160

(2) INFORMATION FOR SEQ ID NO: 75

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 393

(B) TYPE: nucleic acid

30 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

35 (ix) FEATURE:

(D) OTHER INFORMATION: **HinPI#1-27

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 75

- 69 -

	TTNCAWYTTTC	GTNACSYGYT	GACCWWCGGC	CTGGCNCNCC	TKSTKANYRC	250
	GGNTCNAYGC	AAACTGCTGT	GGTCGTCAACC	GATAANCCCG	CCTGGTATCG	300
	CCTCACCNAA	ATTCTTCGGC	AAATTGTTCC	TGNATCNAAC	NTTTGCCATC	350
5	GGCGTGGCGA	CCGGAATCGT	GCAGGNAATK	TCAGTTCGGC	ATGAAC TGGA	400
	GCGAGTACTC	CCGATT CGTC	GGCGATGTCT	TCGGCGCCCC	GCTGGCCATG	450
	GAGNSCTGGC	GGCCTTNCTT	CTTCGAATCC	ACCTTCATCG	GGTTGTGGAT	500
	CTTCGGCTGG	AACAGGCTGC	CCC GGCTGGT	GCANTCTNGG	CCTGCATCTG	550
	GNATCGTCGC	AATNCGNNG	TNCAACGTGT	CCGCGTTCTT	CATCATCGCN	600
10	GGCAAAC TCC	TTCATGCAGC	ATCCGGTCGG	CGCGCACTAC	AACCCGACCA	650
	CCGGGCGTGC	CGAGTTGAGC	AGCATCGNTC	NGTGN CNTGC	TGACCAACAA	700
	CACCGCACAG	GCG				713

(2) INFORMATION FOR SEQ ID NO: 72

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 274

15 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

20 (A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(D) OTHER INFORMATION: AciI#2-834 translation strand

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 72

CCGCAGCACC GAGGCAAGCA TCGCACCCGT CGATTCCCGC CATCCGGCG 50

25 ACATGATGGT CATGTCCGAC ACCGACGCC GCACCTCGCT TCCCGAGTTG 100

ACCGCGCTGC CGGTGGACGC CGCAACGGAT CGCTCGGTT ATTGATCCC 150

GGCTCGAAAT TGGCCATGGC GAACGCATCT TGCTGTGATG GTTCGGGCAG 200

TAGATCTCCA CTGCCGCACT GATAAACTCG GGTCA TGGTC GTCGTGAGGC 250

GGACAGGGTA GAGGCGCATG ACCG 274

30 (2) INFORMATION FOR SEQ ID NO: 73

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 252

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

35 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

I claim:

1. An isolated *Mycobacterium tuberculosis* nucleic acid sequence including a sequence selected from the group consisting of Seq. I.D. Nos. 1 - 76.
- 5 2. A purified immunostimulatory peptide encoded by a sequence according to claim 1.
3. An antibody that specifically binds to a peptide according to claim 2.
- 10 4. A vaccine preparation comprising at least one immunostimulatory peptide according to claim 2 and a pharmaceutically acceptable excipient.
5. A purified immunostimulatory peptide encoded by a nucleotide sequence selected from the group consisting of Seq. I.D. Nos. 1 - 76.
- 15 6. A vaccine preparation comprising at least one peptide according to claim 5 and a pharmaceutically acceptable excipient.
7. A purified immunostimulatory *Mycobacterium tuberculosis* peptide, the peptide including at least 5 contiguous amino acids encoded by a nucleic acid sequence selected from the group consisting of Seq. I.D. Nos. 1 - 76.
- 20 8. A vaccine preparation comprising at least one peptide according to claim 7 and a pharmaceutically acceptable excipient.
9. A peptide according to claim 7 wherein the peptide includes at least 10 contiguous amino acids encoded by a nucleic acid sequence selected from the group consisting of Seq. I.D. Nos. 1 - 76.
- 25 10. A vaccine preparation comprising at least one peptide according to claim 9 and a pharmaceutically acceptable excipient.
- 30 11. A method of making a vaccine comprising:
 providing at least one purified peptide encoded by a nucleotide sequence selected from the group consisting of Seq. ID. Nos 1 - 76;
 combining the peptide with a pharmaceutically acceptable excipient.
- 35 12. An isolated nucleic acid molecule having a nucleotide sequence selected from the group consisting of:
 (a) Seq. ID Nos. 1 - 76;
 (b) nucleotide sequences complementary to a sequence defined in (a); and
 (c) nucleic acid molecules of at least 15 nucleotides in length which hybridize under conditions of at least 75% stringency to a sequence defined in (a) or (b).
- 40 13. A recombinant DNA vector including a nucleic acid molecule according to claim 12.
14. A transformed cell containing a vector according to claim 13.

- 71 -

ATCAGCCGCG GGTGACGCC GCCGATGACC TCGACGTCGT CGTCGTCGCT 50
GCCGGTACTC AATCCAATCA CCATCCTCTT ACGCACCTTC TAGGAGTGTG 100
TTGCTGCGGC AGTGCCGGCC ATTCGTAGAT TCGGGCCTCG CCGTTGTCGT 150
AGATCTTCGC CCACCGACCTC GATGTCTCTA ACGACACTAG TCCGTCCGGC 200
5 ACGCAAACCC CGCACCGTCG GAGTGCTGGT CAGGTATAGA EGGTACAGGA 250
GGACTTGGTA GGCGCTCGAGT ACCGAGGTAC GTCTCCCGTT GCGGCATAGG 300
CCAGAAGATG AACCGGTGTA GACCGGGCCT GTTGCAGGGG TCGTAGTCGT 350
AGGTCCCAGA GGTGTCGGAC GCCCAGGTAA ATACACAGCG TGC 393

(2) INFORMATION FOR SEQ ID NO: 76

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 246
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:

(D) OTHER INFORMATION: #2-147

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 76

GCAGACCTCT GGCGCTGGT GGTGCTGGT ACCTGCGCTG GCGACACCGG 50
ACCGCAGACC GTCAATCGGG ACTCCGGGA ACGTGGTGCC ATCTTGCCAC 100
GGGGATGGCC GACGCGGCTC GTCATTCTCC CCGAGCGCAC CGGCCGCCGC 150
TGTTGACCGG GCCGCGGCGA CTGATGGTGC CCGCACACGC GGGCGGGTTC 200
25 AAGGAGCAAT ACGCCAAGTC CAGCGCCGCT CTCGCACGGC GCGGTGTT 248

15. A nucleic acid probe comprising a nucleic acid molecule according to claim 12 and a diagnostic label.
16. A method of isolating a *Mycobacterium tuberculosis* gene which gene encodes an immunostimulatory peptide, the method comprising the steps of:
 - 5 providing nucleic acids of *Mycobacterium tuberculosis*;
 - contacting said nucleic acids with a probe or primer, the probe or primer comprising at least 15 contiguous nucleotides of a polynucleotide having a nucleotide sequence selected from the group consisting of Seq. ID Nos. 1 - 76 and sequences complementary thereto; and
 - isолating the *Mycobacterium tuberculosis* gene.
- 10 17. An isolated *Mycobacterium tuberculosis* gene produced by the method of claim 16.
18. An isolated *Mycobacterium tuberculosis* nucleic acid molecule, said molecule encoding an immunostimulatory peptide and hybridizing under conditions of at least 75% stringency to a nucleic acid probe
15 comprising at least 20 contiguous bases of a sequence selected from Seq. ID Nos. 1 - 76.
19. A purified immunostimulatory peptide encoded by the nucleic acid molecule of claim 18.
20. An immunostimulatory preparation comprising:
 - 20 a purified peptide according to claim 19; and
 - a pharmaceutically acceptable excipient.
21. An improved tuberculin skin test, the improvement comprising the use of one or more immunostimulatory peptides according to claim 19.
25
22. A vaccine preparation comprising an immunostimulatory membrane peptide isolated from *Mycobacterium tuberculosis* and a suitable excipient.
23. A method of detecting the presence of *Mycobacterium tuberculosis* DNA in a sample comprising contacting
30 the sample with a nucleic acid probe according to claim 15 and detecting hybridization products that include the nucleic acid probe.
24. A method of detecting the presence of *Mycobacterium tuberculosis* DNA in a sample comprising:
 - 35 selecting two or more nucleic acid primer molecules from the nucleic acid molecules defined in claim 12, said molecules suitable for amplification of a *Mycobacterium tuberculosis* target sequence;
 - incubating the sample under conditions suitable to amplify the target sequence; and
 - detecting an amplified product.
25. A method of detecting the presence of a *Mycobacterium tuberculosis* peptide in a sample comprising
40 contacting the sample with an antibody according to claim 3 and detecting the presence of an antibody-peptide complex.
26. A method of detecting the presence of an anti-*Mycobacterium tuberculosis* antibody in a sample comprising contacting the sample with a peptide according to claim 2 and detecting the presence of an antibody-peptide complex.

1/5

GTGATACAGGAGGCCAACAGTGACACACTCGGGGCCAGGTCTGGCAACGGCTTGTGCAGTGGAGGC
 CACTATGTCCTCGGGTTGTCACTGTGGAGCCGGCAGCAAACGTTGCCAACAGCGTCACGTC
 M T P R G P R L Q R L S Q C R
 CTCAGCGGGCTCGGAGGGCCTGCCCCGTGGTCAGCAGCTGGGCTCGCACAGCAATGCTGGGGCAT T 70
 GAGTCGGCGAGGGCTCCGGACGGGACCCAGAAGCTGTCGACCGCGAGCGCTCGTTACGACCCCCGTAA
 P O R G S G P A R G L R Q L A L A M L G A L
 GCCCGTCAACCGTCAGTGGATGCCAGCTGGTGGGAAGGCCATCGGTTGGCGAGGGCATTACCCCG
 CGGCAGTGGCAGTCACCTACGGCAGCCAGGCTCGACCCAGCAACGGCTCCCGTAATGGGC
 A V T V S G C S W S E A L G I G W P E G I T P
 GAGGCACACCTCAATCGAGAACTGTTGGATCGGGGGTCTCCCTGGCGGTAAATCGTGT
 CTCCGTGTGGAGTTAGCTCTGACACCTAGCCCCACTAGCGGAGGGACCCATTAGCACA
 E A H L N R E L W I G A V I A S L A V G V I V

FIG. 1
(Page 1 of 4)

2/5

GGGGTCTCATCTGGTCCGGTATTTCACCGGAAAGAACACCGACACTGAGTTGCCGGCAGTT 350
CCCCAGAGTAGAACGGCCATAAAGTGCCCTTCTTGTGGCTGTGACTCAACGGGGGTCAA
W G L I F W S A V F H R K K N T D T E L P R Q F

CGGCTACAACATGCCGGCTAGAGCTTACCGTCACTACCGTTCCTCATCTCGGTGCTGTTTAT 420
GCCGATGTTGTACGGCGATCTGCCAACAGAGTGGCAGATGGCAAGGAGTAGTAGGCCACGACAAATA
G Y N M P L E L V L T V I P F L I I S V L F Y

TTCACCGTGGTGCAGGAGAAGATGCCAAGGATAGCTGCAGATCCCAGGTGATTGATATCACGT 490
AAGTGGCAGCACACGTCCTTCTACGACGTCATCGGTTCCCTAGGGCTCCAGCACTAACTATAGTGCA
F T V V V Q E K M L Q I A K D P E V V I D I T

CTTCCAGTGGAAATTGGAAGTTGGCTATCAAGGGTGAACCTCAAAGAACGGCACACTGACCTATGAG 560
GAAAGGTCAACCTAACCTTCAAAACCGATAGTTCCACCTGAAGTTCTGCCGTGTGACTGGATACTACC
S F Q W N W K F G Y Q R V N F K D G T L T Y D G

FIG. 1
(Page 2 of 4)

3/5

TGCGGATCCGGAGGCCAAGCCCATGGTTCCAAGGCCAGAGGACAAGTACGGCGAAGAGGCTG
 ACGGCTAGGGCTCGCGGTACCAAGGGTCTCCGGTCTGGTTCATGCCGGCTTCATCGAC 630
 A D P E R K R A M V S K P E G K D K Y G E E E L

GTGGGGGGGTGCGGGGCTCAACACGGGACCGGACTAACCTGAATTTCGACAAGGTCGAGACGGTTGG
 CAGCCCCGCCACGGCCCGGAGTTGGCCTGGACTTAAGGCTGTTCCAGCTCTGCAACC 700
 V G P V R G L N T E D R T Y L N F D K V E T L

GCACCAAGCACCGAAATTCCGGTGGTGCTGGTGCCTGGCAAGGGTATCGAATTCCAAATGGCCTCAGC
 CGTGGCTGGCTTAAGGCCACGACCCACGACCACGACGGCAGGGCTCGCATAGCTTAAGGTTTACGGAGTCG 770
 G T S T E I P V L V L P S G K R I E F Q M A S A

CGATGTGATAACCGCATTCTGGGTGGGAGTTCTTGTCAAGCGTGTGATGCCTAACCCGGTGGCA
 CCTACACTATGGCTTAAGAACCCACGGCCTCAAGAACAGTTCGCACTACGGATTGGCCACCGT 840
 D V I H A F W V P E F L F K R D V M P N P V A

FIG. 1
(Page 3 of 4)

4/5

AACAAACTCGGTCAACGTCCTCCAGATCGAAGAAATCACCAAGACGGGAGGCATTCTGGGCCACTGGCCC
 TTGTTGAGCCAGTTGCAGAAGGTCTAGCCTCTTAGTGGTTCTGGCCTCGTAAGCACCCGGTGACGGGGC 910
 N N S V N V F Q I E E I T K T G A F V G H C A

 AGATGTGGCACCGTATCACTCGATGAACTTCGAGGTCCGGTCTGACCCCCAACGATTCAAGGC
 TCTACACACCCGTGCATAGTGAGCTACTACTTGAAAGCTCAGGGCAGCAGTGGGGTTGCTAAAGTTCCG 980
 E M C G T Y H S M M N F E V R V V T P N D F K A

 CTACCTGCAGCAACGGCATCGACCGGAATACAAACGCCGAGGGCCCTGCGGCGATCAACCAGCCGCCCT
 GATGGACGTCGTGGCTAGCTGCCCTATGTTGGCTCGGGACGCCCGCTAGTTGGTCGGGGAA 1050
 Y L Q Q R I D G N T N A E A L R A I N Q P P L

 GCGGTGACCCACCCGTTGATACTCGCCGGTGAATTGGCCCCGAGCCCGTAGGTTAGGACGCTC
 CGCCACTGGTGGCTGGGCAAACATGAGCGGGCCACTTAACCGGGCTCGGGCATCCAATCCTGCGAG 1120
 A . V T T H P F D T R G E L A P Q P V G

FIG. 1
(Page 4 of 4)

5/5

FIG. 2

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/10375

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.

US CL :435/6, 7.1, 240.2, 320.1; 514/2; 530/300, 387.1; 536/23.7, 24.32

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6, 7.1, 240.2, 320.1; 514/2; 530/300, 387.1; 536/23.7, 24.32

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN: Medline, Biosis, CAPLus, WPIDS, JAPIO, PATOSEP, PATOSWO; APS
search terms: mycobacterium tuberculosis, peptide, polypeptide, protein, epitope, antigen, immunostimulat?, membrane, surface**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	TOMMASSEN et al. Use of the enterobacterial outer membrane protein PhoE in the development of new vaccines and DNA probes. Intl. J. Microbiol. Virol. Parasitol. Infect. Dis. 1993, VOL. 278, pages 396-406.	1-26
Y	JANSSEN et al. Immunogenicity of a mycobacterial T-cell epitope expressed in outer membrane protein PhoE of Escherichia coli. Vaccine. 1994, Vol.12, pages 406-409.	1-26
Y	Lim et al. Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J. Bacteriol. January 1995, Vol.177, pages 59-65.	1-26

Further documents are listed in the continuation of Box C.

See patent family annex.

Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search	Date of mailing of the international search report
09 OCTOBER 1996	28 OCT 1996

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer ROBERT A. SCHWARTZMAN Telephone No. (703) 308-0106
---	---

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.