Zirconium

From Wikipedia, the free encyclopedia

Zirconium is a chemical element with symbol **Zr** and atomic number 40. The name of zirconium is taken from the name of the mineral zircon, the most important source of zirconium. The word *zircon* comes from the Persian word *zargun* زرگون, meaning "gold-colored".^[5] It is a lustrous, grey-white, strong transition metal that resembles hafnium and, to a lesser extent, titanium. Zirconium is mainly used as a refractory and opacifier, although small amounts are used as an alloying agent for its strong resistance to corrosion. Zirconium forms a variety of inorganic and organometallic compounds such as zirconium dioxide and zirconocene dichloride, respectively. Five isotopes occur naturally, three of which are stable. Zirconium compounds have no known biological role.

Characteristics

Zirconium is a lustrous, greyish-white, soft, ductile and malleable metal that is solid at room temperature, though it is hard and brittle at lesser purities. [6][7] In powder form, zirconium is highly flammable, but the solid form is much less prone to ignition. Zirconium is highly resistant to corrosion by alkalis, acids, salt water and other agents. [8] However, it will dissolve in hydrochloric and sulfuric acid, especially when fluorine is present. [9] Alloys with zinc are magnetic at less than 35 K. [8]

The melting point of zirconium is 1855 °C (3371 °F), and the boiling point is 4371 °C (7900 °F). [8] Zirconium has an electronegativity of 1.33 on the Pauling scale. Of the elements within the d-block, zirconium has the fourth lowest electronegativity after yttrium, lanthanum (or lutetium), and hafnium. [10]

At room temperature zirconium exhibits a hexagonally close packed crystal structure, α -Zr, which changes to β -Zr a body-centered cubic crystal structure at 863 °C. Zirconium exists in the β -phase until the melting point. [11]

Isotopes

Zirconium, 40Zr

General properties

Name, symbol zirconium, Zr Appearance silvery white

Zirconium in the periodic table

Atomic number (Z) 40

Group, block group 4, d-block

Period period 5

Element category

| transition metal

Standard atomic $91.224(2)^{[1]}$ weight (\pm) (A_r)

Electron configuration

[Kr] 4d² 5s²

per shell 2, 8, 18, 10, 2

Physical properties

Phase solid

Melting point 2128 K (1855 °C,

3371 °F)

Boiling point 4650 K (4377 °C,

Naturally occurring zirconium is composed of five isotopes. 90 Zr, 91 Zr, 92 Zr and 94 Zr are stable, although 94 Zr is predicted to undergo double beta decay (not observed experimentally) with a half-life of more than 1.10×10^{17} years. 96 Zr has a half-life of 2.4×10^{19} years, and is the longest-lived radioisotope of zirconium. Of these natural isotopes, 90 Zr is the most common, making up 51.45% of all zirconium. 96 Zr is the least common, comprising only 2.80% of zirconium. $^{[12]}$

Twenty-eight artificial isotopes of zirconium have been synthesized, ranging in atomic mass from 78 to 110. 93 Zr is the longest-lived artificial isotope, with a half-life of 1.53×10^6 years. 110 Zr, the heaviest isotope of zirconium, is the most radioactive, with an estimated half-life of 30 milliseconds. Radioactive isotopes at or above mass number 93 decay by electron emission, whereas those at or below 89 decay by positron emission. The only exception is 88 Zr, which decays by electron capture. $^{[12]}$

Five isotopes of zirconium also exist as metastable isomers: ^{83m}Zr, ^{85m}Zr, ^{89m}Zr, ^{90m1}Zr, ^{90m2}Zr and ^{91m}Zr. Of these, ^{90m2}Zr has the shortest half-life at 131 nanoseconds. ^{89m}Zr is the longest lived with a half-life of 4.161 minutes. ^[12]

Occurrence

Zirconium has a concentration of about 130 mg/kg within the Earth's crust and about 0.026 µg/L in sea water. [13] It is not found in nature as a native metal, reflecting its intrinsic instability with respect to water. The principal commercial source of zirconium is zircon (ZrSiO₄), a silicate mineral, [6] which is found primarily in Australia, Brazil, India, Russia, South Africa and the United States, as well as in smaller deposits around the world. [7] As of 2013, two-thirds of zircon mining occurs in Australia and South Africa. [14] Zircon resources exceed 60 million tonnes worldwide [15] and annual worldwide zirconium production is approximately 900,000 tonnes. [13] Zirconium also occurs in more than 140 other minerals, including the commercially useful ores baddeleyite and kosnarite. [16]

	7911 °F)
Density near r.t.	6.52 g/cm ³
when liquid, at m.p.	5.8 g/cm ³
Heat of fusion	14 kJ/mol
Heat of vaporization	591 kJ/mol
Molar heat capacity	25.36 J/(mol·K)

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	2639	2891	3197	3575	4053	4678

Atomic properties

Oxidation states	4 , 3, 2, 1, $-2^{[2]}$ (an amphoteric oxide)
Electronegativity	Pauling scale: 1.33
Ionization energies	1st: 640.1 kJ/mol 2nd: 1270 kJ/mol 3rd: 2218 kJ/mol
Atomic radius	empirical: 160 pm
Covalent radius	175±7 pm
NA:-	a allama a

Miscellanea

Crystal structure	hexagonal close-packed (hcp)
Speed of sound thin rod	3800 m/s (at 20 °C)
Thermal	5.7 μm/(m·K) (at 25 °C)

expansion
Thermal 22.6 W/(m·K)
conductivity

Electrical 421 n Ω ·m (at 20 °C) resistivity

Zirconium is relatively abundant in S-type stars, and it has been detected in the sun and in meteorites. Lunar rock samples brought back from several Apollo missions to the moon have a high zirconium oxide content relative to terrestrial rocks.^[8]

External links

- Chemistry in its element podcast (http://www.rsc.org/chemistryworld/podcast/ element.asp) (MP3) from the Royal Society of Chemistry's Chemistry World: Zirconium (http://www.rsc.org/images/CIIE_zirconium_remix2_48k_tcm18-1173 40.mp3)
- Zirconium (http://www.periodicvideos.com/videos/040.htm) at The Periodic Table of Videos (University of Nottingham)

Magnetic ordering paramagnetic[3]

Young's modulus 88 GPa

Shear modulus 33 GPa

Bulk modulus 91.1 GPa

Poisson ratio 0.34

Mohs hardness 5.0

Vickers hardness 820–1800 MPa
Brinell hardness 638–1880 MPa

CAS Number 7440-67-7

History

Naming after zircon, zargun زرگون

meaning "gold-colored".

Discovery Martin Heinrich Klaproth

(1789)

First isolation Jöns Jakob Berzelius

(1824)

Most stable isotopes of zirconium

iso	NA	half-life	DM	DE (MeV)	DP	
⁸⁸ Zr	syn	83.4 d	ε	-	88Y	
ZI		05.4 0	γ	0.392D	-	
	89 Zr syn	78.4 h	ε	-	89Y	
⁸⁹ Zr			β+	0.902	89Y	
			γ	0.909D	_	
⁹⁰ Zr	51.45%	is stable with 50 neutror				
⁹¹ Zr	11.22%	is stable with 51 neutrons				
⁹² Zr	17.15%	% is stable with 52 neut			rons	
⁹³ Zr	trace	1.53×10 ⁶ y	β-	0.060	⁹³ Nb	
⁹⁴ Zr	17.38%	is stable with 54 neutrons				
⁹⁶ Zr	2.80%	2.0×10 ¹⁹ y ^[4]	$\beta^-\beta^-$	3.348	⁹⁶ Mo	