Midterm Review Sheet

Monday, March 2, 2020 1:13 PM

HAC Clustering:

- Distance between two clusters c1, c2, is determined by pairwise comparison Of all points in c1 vs all points in c2
 - Single-Link Distance: the <u>minimum</u> distance between some point in c1 and some point in c2
 - Complete-Link Distance: the <u>maximum</u> distance between some point in c1 and some point in c2
 - Mean-Link Distance: computes an artificial "center" point for each cluster and returns the <u>distance</u> <u>between both artificial centers</u>
- Algorithm:
 - While # of clusters is above desired threshold or clusters are within some distance threshold of each other:
 - S1. Make every point its own cluster (n points = n clusters)
 - S2. Find the two closest clusters using the chosen measure of distance given above
 - S3. Merge the two closest clusters found in S2
- Algo-Efficiency
 - There are n-1 rounds because only one cluster is eliminated at each round [O(n)]
 - For each round, there are an average of n comparisons to be made when determining distances [O(n)]
 - For each comparison, we maintain the 'min' with priority queue [O(logn)]
 - [O(n^2 logn)]

Streaming:

- Approximates the frequency of elements in the stream when the size of the stream prohibits loading the data into memory to get exact counts
- Algorithm(s):
 - O Misra-Greis (Given k and some stream E):
 - Initialize k-1 labels as null/none and k-1 counters as 0
 - For each element e in stream E:
 - □ If e matches a label in L
 - ◆ Increment the label's count
 - □ Else if e doesn't match any label
 - Decrement the count of all labels
 - ☐ If any label has a count <= 0
 - Replace that label with e
 - Set that labels counter to 1
 - Return all labels L and all counts C
 - Count-Min Sketch (Given k, j, and some stream E):
 - Insert Step (builds count-matrix data structure)
 - □ Initialize a (j)x(k) 0-matrix named CM
 - ☐ For each element e in stream E:
 - For each hash function (j of them):
 - ♦ Let k_index = hash(e) mod k
 - Increment the count at CM[j][k_index]
 - Query Step
 - Checks each count that e hashes to (j
 possibilities, one for each hash function),
 and returns the minimum observed count

AB Clustering:

- Finds a set of k centers which minimize one of the chosen distance measures below:
 - K-means minimizes the <u>sum of squared distances</u> between some point and its assigned center.
 - K-center minimizes the <u>maximum distance from some</u> point to its assigned center
 - K-median minimizes the sum of distances from some point to its assigned center
 - K-mediod is like k-median except the centers must be actual points in X.
- Algorithm(s):
 - Gonzales Algorithm (k-center):
 - \$1. Choose some random first center c1 arbitrarily
 - S2. Assign all points to their closest center
 - S3. Find the point farthest from its assigned center
 - S4. Make this point the next center
 S5. Repeat S2-S4 until k centers are chosen
 - o Loyd's Algorithm (k-means):
 - S1. choose K points (usually from another algo, but can be randomly chosen).
 - S2. Map each point to its closest center c
 - S3. For each c, calculate an artificial "mean" point across all points assigned to c
 - S4. Re-assign each center to its artificial "mean"
 - S5. Repeat S2-S5 until the clusters remain unchanged for newly calculated centers.