Aufgaben zur Logik

Komplexe Zahlen

link

A1: Bringe die folgenden Ausdrücke in die Form a + bi mit $a, b \in \mathbb{R}$

a.
$$(2+3i)-(1-i)$$
 b. $(5-3i)\cdot(4-i)$ c. $(8+6i)^2$ d. $\frac{1}{i}$ e. $\frac{8+5i}{2-i}$ f. $\frac{1}{i}+\frac{3}{1+i}$ g. $\frac{\sqrt{2}}{\sqrt{2}-i}$ h. $(1+i)^{10}$ i. $(\frac{1+i}{1-i})^{201}$

A2: Gegeben seien die komplexen Zahlen $z=3-2i, w=\frac{10}{1+2i}$. Berechne und gib das Ergebnis in der Form a + ib an.

a.
$$z - w$$
 b. $\frac{z}{w}$ c. \overline{w} d. $|z|$

A3: Gegeben seien die komplexen Zahlen $z = 7 - 3i, w = \frac{1}{1+i}$. Berechne und gib das Ergebnis in der Form a + ib an.

a.
$$z + w$$
 b. $z \cdot w$ c. \overline{w} d. $|z|$

A4: Stelle *M* zeichnerisch in der gaußschen Zahlenebene dar.

$$\{z \in \mathbb{C} \mid \operatorname{Re}(z) \ge 2 \wedge \operatorname{Im}(z) < 1\}$$

A5: Bestimme Re(w) und Im(w) für $w = \frac{1}{z^2}(z \in \mathbb{C} \setminus \{0\})$.

A6: Untersuche auf Injektivität, Surjektivität, Bijektivität.

a.
$$r: \mathbb{C} \to \mathbb{C}, z \mapsto \overline{z}$$

b.
$$f: \mathbb{C} \to \mathbb{C}, z \mapsto |z|$$

c.
$$g: \mathbb{C} \to \mathbb{R}_0^+, z \mapsto |z|$$

A7: Beweise: Für alle $z, w \in \mathbb{C}$ $(z = a + bi \min a, b \in \mathbb{R})$ gilt:

a.
$$\overline{z+w} = \overline{z} + \overline{w}$$

b.
$$\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$$
 und $\operatorname{Im}(z) = \frac{1}{2}(z - \overline{z})$

b.
$$\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$$
 und $\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z})$
c. $z \cdot \overline{z} = a^2 + b^2$, d.h. $z \cdot \overline{z}$ ist reell und nicht negativ.

A8: Berechne: $50 \cdot \text{Im}(\overline{(2-4i)^{-1}}) + \text{Re}(|6+8i|)$.

A9: Beweise das sogenannte Parallelogrammgesetz und interpretiere es geometrisch: $|z + w|^2 + |z - w|^2 = 2|z|^2 + 2|w|^2$.

A10: Stelle folgende Punktmengen zeichnerisch in der gaußschen Zahlenebene dar und begründe deine Zeichnung.

a.
$$M_1 = \{z \in \mathbb{C} \mid |z| = 1\}$$
 bzw. $M_1' = \{z \in \mathbb{C} \mid |z| \le 1\}$

b.
$$M_2 = \{ z \in \mathbb{C} \mid |z - i| = 1 \}$$

c.
$$M_3 = \{z \in \mathbb{C} \mid \frac{1}{2} \le |z - i| < 1\}$$

d.
$$M_4 = \{z \in \mathbb{C} \mid |z-1| = |z+1|\}$$

e.
$$M_5 = \{z \in \mathbb{C} \mid |z^2| - 2(z + \overline{z}) = 0\}$$

A11: Skizziere die folgenden Mengen komplexer Zahlen in der gaußschen Zahlenebene

a.
$$\{z \in \mathbb{C} \mid |z| = 2\}$$

b.
$$\{z \in \mathbb{C} \mid 1 \le |z| \le 5\}$$

c.
$$\{z \in \mathbb{C} \mid \operatorname{Re}(z) = 3\}$$

A12: Berechne und schreibe das Ergebnis auch in der Form a + ib.

a.
$$\sqrt{-4}$$
 b. $\sqrt{-a} (a \in \mathbb{R})$ c. $\sqrt{16e^{3\pi i}}$ d. $\sqrt{5+12i}$ e. $\sqrt{3-4i}$.

A13: Belege durch ein Zahlenbeispiel, dass im Allgemeinen

$$\sqrt{z \cdot w} \neq \sqrt{z} \cdot \sqrt{w} \text{ und } \sqrt{\frac{z}{w}} \neq \frac{\sqrt{z}}{\sqrt{w}}$$

A14: Zeige, dass gilt:

a. \sqrt{z} ist genau dann reell (und nicht negativ), wenn $z \in \mathbb{R}_0^+$ ist.

b. \sqrt{z} ist genau dann rein imaginär, wenn $z \in \mathbb{R}^-$ ist.

A15: Löse die folgenden quadratischen Gleichungen über C.

a.
$$z^2 - 4z + 5 = 0$$
 b. $5z^2 - (5 + 10i)z - 5 + 5i = 0$

A16: Gib eine quadratische Gleichung mit der Lösungsmenge $L = \{1 - i, 4 + 3i\}$ an. Kontrolliere dein Ergebnis.

A17: Gib die fünften Einheitswurzeln an und zeichne sie.

A18: Finde alle Lösungen von $z^6 = -32 + 32\sqrt{3}i$ und zeichne sie.

A19: Stelle die folgenden komplexen Zahlen in Polarkoordinaten dar:

a.
$$z = \frac{5}{1-i}$$
 b. $w = (1 - \sqrt{3}i)^3$

A20: Stelle die folgenden komplexen Zahlen in Polarkoordinaten dar:

a.
$$z = \frac{2}{1+i}$$
 b. $w = (1 + \sqrt{5}i)^2$