Statistical Analysis Using Structural Equation Models

EPsy 8266

Christopher David Desjardins

Research Methodology Consulting Center

3/5/19

Factor fallacies

- ▶ Naming fallacy just cause you call it "intelligence" doesn't make it intelligence.
- ▶ **Reification** belief that the factor must be a real thing.
- ▶ Jingle-jangle fallacy Two things with the same name don't necessarily mean the same thing (jingle) and having two separate names doesn't make them distinct (jangle)

Problems in CFA

Many problems can arise with CFAs such as Heywood cases (standardized loading > 1 & negative error variance) and nonconvergence.

Also able to have nonpositive definite factor covariance and error covariance matrices.

Especially likely when the number of observation is small.

Some causes/fixes

- Model overparameterized/fix parameters
- Non-normal distributions & outliers/initial data analysis & transformations
- Empirical underidentification/bring in additional indicators
- Misspecified measurement model/look at residuals & modification indices

Assessing empirical underidentification with lavaan

```
# Checking empirical underidentification
library(lavaan)
HS.model \leftarrow 'visual = x1 + x2 + x3
              textual = x4 + x5 + x6
              speed = x7 + x8 + x9
# default lavaainstall.packages("BiocManager")n starting values
fit.raw <- cfa(HS.model, data = HolzingerSwineford1939)
fit.altstart <- cfa(HS.model, data = HolzingerSwineford1939, start = "simple")
inspect(fit.raw, "start")
inspect(fit.altstart, "start")
# extract model-implied covariance-matrix
covMat <- inspect(fit, "implied")$cov[.]
fit.cov <- cfa(HS.model, sample.cov = covMat, sample.nobs = nrow(HolzingerSwineford1939))
# obtain parameter estimates
raw.params <- parameterEstimates(fit.raw)[, "est"]
altstart.params <- parameterEstimates(fit.altstart)[,"est"]
cov.params <- parameterEstimates(fit.cov)[,"est"]
data.frame(params = do.call(paste, parameterEstimates(fit.cov)[,1:3]),
           raw = raw.params.
           alt = altstart.params.
           cov = cov.params)
```

Types of indicators

Indicators may be of certain types ...

- ▶ **Congeneric** Measure the same construct but not equally.
- ► **Tau-equivalent** Congeneric and have equal true score variance (fix pattern coefficients to 1.0 for the two indicators).
- ▶ Parallel Add equal error variance constraint (constrain error variances to be equal).

Can test with chi-square test of difference.

Equivalent CFA models

Equivalent CFA models - 2

(a) Original model with effect indicators

(b) Equivalent model with a causal indicator

Hierarchical & bifactor models

Hierarchical & bifactor models

Hierarchical

- A second order factor causes the relationship between the first order factors.
- Measured indirectly through the first order factors (i.e., no direct indicators).

Bifactor

- Indicators directly load onto the general factor and orthogonal to specific factors
- General factor unrelated to specific factors.
- Predictive validity of specific factors, partialling out a general factor, can be examined.

Ordinal indicators

- ► So far, we've assumed our indicators are ratio/interval scale (i.e., continuous)
- ► This means we can use full information maximum likelihood (more about this soon!)
- ▶ With ordinal data, requires new parameters, new intermediate, latent variables, and a new estimator.

Latent response variables

Figure 1. Latent response distribution for a single dichotomous item representing the latent distribution of interest. τ_{11} marks the latent cut-point between observed responses.

Latent response variables

Let X^* be the latent response variable.

If we let $X^* \sim \mathit{N}(0,1)$ then the threshold (au_1) correspond to z-scores and

$$X = \begin{cases} 0 & \text{if } X^* \le \tau_1 \\ 1 & \text{if } X^* > \tau_1 \end{cases}$$

So, if a respondents score on the latent response variable is $leq\tau_1$ they will not endorse the item.

Latent response variables have nonlinear relationships with the indicators BUT have linear relationships with the factors.

Fit an ordinal variable in lavaan

```
library(psych)
library(lavaan)
lsat6 <- data.frame(lsat6)
lsat.mod <- '
    lsat = Q1 + Q2 + Q3 + Q4 + Q5
'
lsat.fit <- cfa(lsat.mod, lsat6, ordered = paste0("Q", 1:5))</pre>
```

How are thresholds calculated?

```
lsat.params <- parameterEstimates(lsat.fit)</pre>
calc_cumprob <- function(x){</pre>
 cumsum(prop.table(table(x)))
cum_probs <- apply(lsat6, 2, calc_cumprob); cum_probs</pre>
## 01 02 03 04 05
## 0 0.076 0.291 0.447 0.237 0.13
## 1 1.000 1.000 1.000 1.000 1.00
qnorm(cum_probs[1, ])
          Q1 Q2 Q3
##
## -1.4325027 -0.5504657 -0.1332445 -0.7159860
          Ω5
##
## -1.1263911
subset(lsat.params, rhs == "t1", select = est, drop = TRUE)
## [1] -1.4325027 -0.5504657 -0.1332445 -0.7159860
## [5] -1.1263911
```

Parameterizations

There are two ways to scale latent response variables.

Delta scaling

- ▶ Total variance of latent response variable fixed to 1.
- For the standardized solution, pattern coefficients represent for a 1 SD increase in the factor, expect an XX SD change for the latent response variable.
- ► For the standardized solution, threshold correspond to normal deviates based corresponding to cumulative probabilities

Theta scaling

- Residual variance of each latent response variable fixed to 1 (like probit regression scaling).
- For the unstandardized solution, pattern coefficients represent for a 1 unit increase in the factor, expect an XX probit (normal deviates) change for the latent response variable,
- For the unstandardized solution, threshold correspond to normal deviates for the lowest response category.
- Standardized solution identical between the two

Ordinal model in lavaan

```
summary(lsat.fit, standardized = TRUE)
## lavaan 0.6-3 ended normally after 29 iterations
##
##
     Optimization method
                                                   NLMINB
    Number of free parameters
                                                       10
     Number of observations
                                                     1000
    Estimator
                                                     DWLS
                                                                Robust
    Model Fit Test Statistic
                                                     4.051
                                                                 4.740
    Degrees of freedom
                                                        5
                                                                     5
    P-value (Chi-square)
                                                     0.542
                                                                 0 448
    Scaling correction factor
                                                                 0.867
##
    Shift parameter
                                                                 0.070
##
       for simple second-order correction (Mplus variant)
## Parameter Estimates:
##
##
     Information
                                                 Expected
     Information saturated (h1) model
                                             Unstructured
    Standard Errors
                                               Robust.sem
##
## Latent Variables:
                      Estimate Std.Err z-value P(>|z|)
                                                             Std.lv Std.all
     lsat =~
##
##
      01
                         1.000
                                                               0.389
                                                                        0.389
                                                                       0.397
                         1.020
                                  0.358
                                           2.846
                                                     0.004
                                                               0.397
      0.3
                         1.210
                                  0.447
                                           2.709
                                                     0.007
                                                                       0.471
##
                                                               0.471
##
      04
                         0.968
                                  0.352
                                           2.751
                                                     0.006
                                                               0.377
                                                                        0.377
##
       05
                         0.879
                                  0.352
                                           2.499
                                                     0.012
                                                               0.342
                                                                        0.342
##
## Intercepts:
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv Std.all
##
                         0.000
                                                              0.000
                                                                       0.000
##
      .Q1
                                                                       0.000
     .Q2
                                                              0.000
##
      . Q3
                         0.000
                                                              0.000
                                                                       0.000
     . Q4
                                                                       0.000
##
                                                              0.000
##
      . 05
                                                              0.000
                                                                       0.000
       lsat
                         0.000
                                                              0.000
                                                                       0.000
```

Ordinal model in lavaan

```
summary(lsat.fit, standardized = TRUE)
## Thresholds:
##
                      Estimate
                                 Std.Err z-value
                                                     P(>|z|)
                                                               Std.lv Std.all
       01|t1
                                          -24.431
                                                               -1.433
##
                         -1.433
                                   0.059
                                                       0.000
                                                                        -1.433
       02|t1
                                                                        -0.550
##
                         -0.550
                                   0.042
                                         -13.133
                                                       0.000
                                                               -0.550
       Q3|t1
                         -0.133
                                   0.040
                                          -3.349
                                                       0.001
                                                               -0.133
                                                                        -0.133
##
##
       Q4|t1
                         -0.716
                                   0.044
                                         -16.430
                                                       0.000
                                                               -0.716
                                                                        -0.716
##
       Q5|t1
                         -1.126
                                   0.050 -22.395
                                                       0.000
                                                               -1.126
                                                                        -1.126
##
## Variances:
                                Std.Err z-value
                                                     P(>|z|)
                                                               Std.lv Std.all
##
                      Estimate
      .Q1
                         0.848
                                                                0.848
                                                                         0.848
##
##
      .Q2
                         0.842
                                                                0.842
                                                                         0.842
      . Q3
                         0.778
                                                                0.778
                                                                         0.778
##
##
      .Q4
                         0.858
                                                                0.858
                                                                         0.858
##
      .Q5
                         0.883
                                                                0.883
                                                                         0.883
       lsat
                         0.152
                                   0.087
                                            1.743
                                                       0.081
                                                                1.000
                                                                         1.000
##
##
## Scales y*:
                      Estimate Std.Err z-value
                                                               Std.lv Std.all
##
                                                     P(>|z|)
       Q1
                         1.000
                                                                1.000
                                                                         1.000
##
       Q2
                         1.000
                                                                1.000
                                                                         1.000
##
##
       Q3
                         1.000
                                                                1.000
                                                                         1.000
       Q4
                         1.000
                                                                1.000
                                                                         1.000
##
##
       Q5
                          1,000
                                                                1,000
                                                                         1.000
```

Estimating ordinal data

There are two types of robust estimator: Mean-adjust WLS (WLSM) and mean- and variance-adjusted WLS (WLSMV)

Makes different adjustments to the chi-square statistic to better approximate a chi-square distribution

WLSMV is the more favored approach (and is label Robust in lavaan)

Other estimators available and will talk more about this later.