In [1]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df=pd.read_csv("10_USA_Housing.csv")
df

Out[2]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
			Rooms				
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.642455	6.002900	6.730821	3.09	40173.072174 1.505891e+06		188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.067179	5.865890	8.512727	5.13	36882.159400 1.058988e+06		9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831 1.260617e+06		USS Barnett\nFPO AP 44820
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Williams\nFPO AP 30153-7653
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 9258, Box 8489\nAPO AA 42991- 3352
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Tracy Garden Suite 076\nJoshualand, VA 01
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace\nFPO AE 73316
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 George Ridges Apt. 509\nEast Holly, NV 2

5000 rows × 7 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [4]: | df.describe()

Out[4]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x1f2d5d1dd60>

In [6]: sns.displot(df['Price'])

Out[6]: <seaborn.axisgrid.FacetGrid at 0x1f2dbf8b760>

In [7]: df1=df.drop(['Address'],axis=1)
 df1

Out[7]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06

5000 rows × 6 columns

```
In [8]: sns.heatmap(df1.corr())
```

Out[8]: <AxesSubplot:>


```
In [9]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [10]: y=df['Price']
x=df1.drop(['Price'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [11]: model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_
```

Out[11]: -2657812.6571027627

In [12]: coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff

Coefficient

Out[12]:

	Coefficient
Avg. Area Income	21.540249
Avg. Area House Age	168198.049191
Avg. Area Number of Rooms	121591.585049
Avg. Area Number of Bedrooms	1573.129357
Area Population	15.229152

In [13]: prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

Out[13]: <matplotlib.collections.PathCollection at 0x1f2de399070>

In [14]: model.score(x_test,y_test)

Out[14]: 0.9169323598277197

```
In [56]: df2=pd.read_csv("9_bottle.csv")
df2
```

C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3165:
DtypeWarning: Columns (47,73) have mixed types.Specify dtype option on import or s
et low_memory=False.

has_raised = await self.run_ast_nodes(code_ast.body, cell_name,

Out[56]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	NaN	
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	NaN	
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	NaN	
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	NaN	
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	NaN	
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.74	
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.74	
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.46	
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.74	

```
Cst Cnt Btl Cnt Sta ID Depth ID Depthm T degC Salnty O2ml L
                                                                                          STheta O2Sat ...
                                                  20-
                                             1611SR-
                                     093.4
                                             MX-310-
           864862
                     34404 864863
                                                           15 17.533 33.3880
                                                                                  5.774 24.15297 105.66 ...
                                     026.4
                                                2239-
                                            09340264-
                                             0015A-3
           864863 rows × 74 columns
In [57]: df2.isna().sum()
Out[57]: Cst_Cnt
                                           0
          Btl_Cnt
                                           0
          Sta ID
                                           0
           Depth_ID
                                           0
           Depthm
                                           0
           TA1
                                     862779
           TA2
                                     864629
           pH2
                                     864853
           pH1
                                     864779
           DIC Quality Comment
                                     864808
           Length: 74, dtype: int64
In [58]: df2.columns
Out[58]: Index(['Cst_Cnt', 'Btl_Cnt', 'Sta_ID', 'Depth_ID', 'Depthm', 'T_degC',
                   'Salnty', 'O2ml_L', 'STheta', 'O2Sat', 'Oxy_µmol/Kg', 'BtlNum', 'RecInd', 'T_prec', 'T_qual', 'S_prec', 'S_qual', 'P_qual', 'O_qual', 'SThtaq', 'O2Satq', 'ChlorA', 'Chlqua', 'Phaeop', 'Phaqua', 'PO4uM',
                   'PO4q', 'SiO3uM', 'SiO3qu', 'NO2uM', 'NO2q', 'NO3uM', 'NO3q', 'NH3uM',
                   'NH3q', 'C14As1', 'C14A1p', 'C14A1q', 'C14As2', 'C14A2p', 'C14A2q',
                   'DarkAs', 'DarkAp', 'DarkAq', 'MeanAs', 'MeanAp', 'MeanAq', 'IncTim',
                   'LightP', 'R_Depth', 'R_TEMP', 'R_POTEMP', 'R_SALINITY', 'R_SIGMA',
                   'R_SVA', 'R_DYNHT', 'R_O2', 'R_O2Sat', 'R_SIO3', 'R_PO4', 'R_NO3',
                   'R_NO2', 'R_NH4', 'R_CHLA', 'R_PHAEO', 'R_PRES', 'R_SAMP', 'DIC1',
                   'DIC2', 'TA1', 'TA2', 'pH2', 'pH1', 'DIC Quality Comment'],
                  dtype='object')
In [59]: df3=df2.drop(['DIC2', 'TA1', 'TA2', 'pH2', 'pH1', 'DIC Quality Comment'],axis=1)
```

In []:

In []:

Modeling - Jupyter Notebook In [61]: df4.isna().sum()/len(df4)*100 Out[61]: Cst_Cnt 0.000000 Btl_Cnt 0.000000 Sta_ID 0.000000 Depth_ID 0.000000 Depthm 0.000000 T degC 1.267600 Salnty 5.475318 $02ml_L$ 19.501586 STheta 6.092179 02Sat 23.540029 Oxy_µmol/Kg 23.540723 RecInd 0.000000 T_prec 1.267600 S_prec 5.475318 P qual 22.096910 02Satq 74.817168 ChlorA 73.952869 Chlqua 26.096272 Phaeop 73.952984 Phaqua 26.095809 PO4uM 52.210119 P04q 47.762131 Si03uM 59.058140 Si03au 40.930991 NO2uM 60.967691 NO2q 38.779437 NO3uM 60.987694 NO3q 38.726365 NH3q 6.540227 C14A1q 1.879835 C14A2q 1.877754 DarkAq 2.823915 MeanAq 2.824031 R Depth 0.000000 R TEMP 1.267600 R POTEMP 5.324196 R SALINITY 5.475318 R_SIGMA 6.111488

dtype: float64

R_SVA

R_02

R DYNHT

R O2Sat

R SIO3

R P04

R_NO3

R NO2

R CHLA

R PRES

R PHAEO

6.101660

5.394727

19.501586

22.941784

59.057215

52.209194

60.986769

60.966766

73.952406

73.952522

0.000000

```
In [ ]:
```

In [62]: df4.describe()

Out[62]:

	Cst_Cnt	Btl_Cnt	Depthm	T_degC	Salnty	O2ml_L	
count	864863.000000	864863.000000	864863.000000	853900.000000	817509.000000	696201.000000	812
mean	17138.790958	432432.000000	226.831951	10.799677	33.840350	3.392468	
std	10240.949817	249664.587267	316.050259	4.243825	0.461843	2.073256	
min	1.000000	1.000000	0.000000	1.440000	28.431000	-0.010000	
25%	8269.000000	216216.500000	46.000000	7.680000	33.488000	1.360000	
50%	16848.000000	432432.000000	125.000000	10.060000	33.863000	3.440000	
75%	26557.000000	648647.500000	300.000000	13.880000	34.196900	5.500000	
max	34404.000000	864863.000000	5351.000000	31.140000	37.034000	11.130000	

8 rows × 47 columns

In [63]: df4.shape

Out[63]: (864863, 49)

In [64]: df5=df4.iloc[0:5000,0:]

df5.shape

Out[64]: (5000, 49)

```
In [65]: per=df5.isna().sum()/len(df5)*100
    per1=pd.DataFrame(per,df5.columns,)
    per1
```

Out[65]:

	0
Cst_Cnt	0.00
Btl_Cnt	0.00
Sta_ID	0.00
Depth_ID	0.00
Depthm	0.00
T_degC	0.40
Salnty	3.04
O2ml_L	43.80
STheta	3.34
O2Sat	45.74
Oxy_µmol/Kg	45.74
RecInd	0.00
T_prec	0.40
S_prec	3.04
P_qual	0.00
O2Satq	52.88
ChlorA	100.00
Chiqua	0.00
Phaeop	100.00
Phaqua	0.00
PO4uM	79.08
PO4q	20.92
SiO3uM	100.00
SiO3qu	0.00
NO2uM	100.00
NO2q	0.00
NO3uM	100.00
NO3q	0.00
NH3q	0.00
C14A1q	0.00
C14A2q	0.00
DarkAq	0.00
MeanAq	0.00
R_Depth	0.00
R_TEMP	0.40
R_POTEMP	4.50

```
0
R_SALINITY
              3.04
  R_SIGMA
              5.62
    R_SVA
             5.62
 R_DYNHT
             4.28
     R_O2
            43.80
  R_O2Sat
            46.20
    R_SIO3 100.00
    R_PO4
            79.08
    R_NO3 100.00
    R_NO2 100.00
   R_CHLA 100.00
 R_PHAEO 100.00
   R_PRES
             0.00
```

```
In [90]: df6=df5.drop(['ChlorA', 'Phaeop', 'PO4uM', 'SiO3uM', 'NO2uM', 'NO3uM', 'R_SIO3',
                 'R_PO4', 'R_NO3', 'R_NO2', 'R_CHLA', 'R_PHAEO'],axis=1)
         df6.isna().sum()/len(df5)*100
Out[90]: Cst Cnt
                          0.00
         Btl_Cnt
                          0.00
         Sta ID
                          0.00
         Depth_ID
                          0.00
         Depthm
                          0.00
                          0.40
         T_degC
         Salnty
                          3.04
         02ml_L
                         43.80
         STheta
                          3.34
         02Sat
                         45.74
         Oxy_μmol/Kg
                         45.74
         RecInd
                          0.00
         T_prec
                          0.40
         S_prec
                          3.04
         P qual
                          0.00
         02Satq
                         52.88
         Chlqua
                          0.00
         Phaqua
                          0.00
         P04q
                         20.92
         Si03qu
                          0.00
                          0.00
         NO2q
         NO3q
                          0.00
                          0.00
         NH3q
         C14A1q
                          0.00
         C14A2q
                          0.00
         DarkAq
                          0.00
                          0.00
         MeanAq
         R Depth
                          0.00
         R\_TEMP
                          0.40
         R_POTEMP
                          4.50
         R SALINITY
                          3.04
         R SIGMA
                          5.62
         R_SVA
                          5.62
         R DYNHT
                          4.28
         R_02
                         43.80
         R_02Sat
                         46.20
                          0.00
         R PRES
         dtype: float64
```

```
In [91]:
          nul_col = df6.columns[df6.isnull().any()].tolist()
         nul_col
Out[91]: ['T_degC',
           'Salnty',
           'O2ml_L',
           'STheta',
           '02Sat',
           'Oxy_{\mu}mol/Kg',
           'T_prec',
           'S_prec',
           '02Satq',
           'PO4q',
           'R_TEMP',
           'R_POTEMP',
           'R_SALINITY',
           'R_SIGMA',
           'R_SVA',
           'R DYNHT',
           'R_02',
           'R_02Sat']
In [88]: #for i in nul_col:
              #df6[i]= df6.fillna(df6[i].mean())
```

In [89]: #df6

Out[89]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_De
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	1	1	1	1	1	
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	1	1	1	1	1	
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	1	1	1	1	1	 1
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	1	1	1	1	1	 1
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	1	1	1	1	1	 2
4995	165	4996	092.0 098.0	19- 4904NS- HY-102- 1342- 09200980- 0099A-3	99	165	165	165	165	165	 ξ
4996	165	4997	092.0 098.0	19- 4904NS- HY-102- 1342- 09200980- 0100A-7	100	165	165	165	165	165	 1(
4997	165	4998	092.0 098.0	19- 4904NS- HY-102- 1342- 09200980- 0125A-7	125	165	165	165	165	165	 12
4998	165	4999	092.0 098.0	19- 4904NS- HY-102- 1342- 09200980- 0149A-3	149	165	165	165	165	165	 14

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_De
4999	165	5000	092.0 098.0	19- 4904NS- HY-102- 1342- 09200980- 0150A-7	150	165	165	165	165	165	 15

5000 rows × 37 columns

```
In [94]: df6.fillna(df6["T_degC"].mean())
         df6.fillna(df6["Salnty"].mean())
         df6.fillna(df6["O2ml_L"].mean())
         df6.fillna(df6["STheta"].mean())
         df6.fillna(df6["02Sat"].median())
         df6.fillna(df6["Oxy \u00e4mol/Kg"].mean())
         df6.fillna(df6["T_prec"].mean())
         df6.fillna(df6["S_prec"].mean())
         df6.fillna(df6["02Satq"].mean())
         df6.fillna(df6["PO4q"].mean())
         df6.fillna(df6["R_TEMP"].mean())
         df6.fillna(df6["R_POTEMP"].mean())
         df6.fillna(df6["R_SALINITY"].mean())
         df6.fillna(df6["R_SIGMA"].mean())
         df6.fillna(df6["R_SVA"].mean())
         df6.fillna(df6["R_DYNHT"].mean())
         df6.fillna(df6["R_O2"].mean())
         df6=df6.fillna(df6["R O2Sat"].mean())
```

In [05].	df6.isna().sum	
Out[95]:		0
	Btl_Cnt	0
	Sta_ID	0
	Depth_ID	0
	Depthm	0
	T_degC	0
	Salnty	0
	O2ml_L	0
	STheta	0
	02Sat	0
	Oxy_μmol/Kg	0
	RecInd	0
	T_prec	0
	S_prec	0
	P_qual	0
	02Satq	0
	Chlqua	0
	Phaqua	0
	P04q	0
	SiO3qu	0
	NO2q	0
	NO3q	0
	NH3q	0
	C14A1q	0
	C14A2q	0
	DarkAq	0
	MeanAq	0
	R_Depth	0
	R_TEMP	0
	R_POTEMP	0
	R_SALINITY	0
	R_SIGMA	0
	R_SVA	0
	R_DYNHT	0
	R_02	0
	R_02Sat	0
	R_PRES	0
	dtype: int64	

In [98]: df7=df6.iloc[:10,:10]
sns.pairplot(df7)

Out[98]: <seaborn.axisgrid.PairGrid at 0x1f287b2eac0>


```
In [97]: sns.heatmap(df7.corr())
```

Out[97]: <AxesSubplot:>


```
In [107]: df6=df6.drop(["Sta_ID","Depth_ID"],axis=1)
```

```
In [109]: x=df6.drop(["R_O2"],axis=1)
y=df6["R_O2"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
model1=LinearRegression()
model1.fit(x_train,y_train)
model1.intercept_
```

Out[109]: -4.618527782440651e-14

In [110]: coeff=pd.DataFrame(model1.coef_,x.columns,columns=["Coefficient"])
coeff

Out[110]:

	Coefficient
Cst_Cnt	-1.900857e-14
Btl_Cnt	5.568462e-16
Depthm	2.371912e-15
T_degC	7.851962e-16
Salnty	1.374703e-14
O2ml_L	1.000000e+00
STheta	-9.098279e-15
O2Sat	2.150917e-15
Oxy_µmol/Kg	7.801648e-16
RecInd	3.879562e-16
T_prec	3.818522e-15
S_prec	-3.387600e-15
P_qual	-1.942890e-16
O2Satq	-3.325655e-16
Chlqua	2.775558e-17
Phaqua	1.387779e-17
PO4q	1.632673e-16
SiO3qu	0.000000e+00
NO2q	-1.734723e-18
NO3q	0.000000e+00
NH3q	0.000000e+00
C14A1q	0.000000e+00
C14A2q	0.000000e+00
DarkAq	0.000000e+00
MeanAq	0.000000e+00
R_Depth	2.433526e-15
R_TEMP	1.450847e-16
R_POTEMP	9.528765e-16
R_SALINITY	1.280675e-14
R_SIGMA	-1.068890e-15
R_SVA	-2.690356e-15
R_DYNHT	1.852546e-16
R_O2Sat	1.030526e-16
R_PRES	-5.059402e-15

```
In [113]: pred=model1.predict(x_test)
plt.scatter(y_test,pred)
```

Out[113]: <matplotlib.collections.PathCollection at 0x1f28a3286d0>


```
In [116]: model1.score(x_test,y_test)
```

Out[116]: 1.0