Chapter 4 Trees

South China University of Technology

College of Software Engineering

Huang Min

Chapter 4 Tree- part2

B-Tree

Beyond Binary Search Trees: Multi-Way Trees

 Example: B-tree of order 3 has 2 or 3 children per node

Search for 8

B-Trees

B-Trees are multi-way search trees commonly used in database systems or other applications where data is stored externally on disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:

- 1. The root is either a leaf or has between 2 and M children.
- 2. All nonleaf nodes (except the root) have between M/2 and M children.
- 3. All leaves are at the same depth.

All data records are stored at the leaves.
Internal nodes have "keys" guiding to the leaves.
Leaves store between \[\L/2 \] and \L data records,
where L can be equal to M (default) or can be different.

B-Tree Details

Each (non-leaf) internal node of a B-tree has:

- > Between M/2 and M children.
- \rightarrow up to M-1 keys $k_1 < k_2 < ... < k_{M-1}$

Keys are ordered so that:

$$k_1 < k_2 < ... < k_{M-1}$$

Properties of B-Trees

Children of each internal node are "between" the items in that node.

Suppose subtree T_i is the *i*th child of the node:

all keys in T_i must be between keys k_{i-1} and k_i

i.e.
$$k_{i-1} \le T_i < k_i$$

k_{i-1} is the smallest key in T_i

All keys in first subtree $T_1 < k_1$

All keys in last subtree $T_M \ge k_{M-1}$

B-Tree Nonleaf Node

- The Ks are keys
- The Ps are pointers to subtrees.

Detailed Leaf Node Structure (**B+ Tree**)

- The Ks are keys (assume unique).
- The Rs are pointers to records with those keys.
- The Next link points to the next leaf in key order (B+-tree).

Searching in B-trees

B-tree of order 3: also known as 2-3 tree (2 to 3)

- Examples: Search for 9, 14, 12
- Note: If leaf nodes are connected as a Linked List, Btree is called a B+ tree – Allows sorted list to be accessed easily

Inserting into B-Trees

- Insert X: Do a Find on X and find appropriate leaf node
 - If leaf node is not full, fill in empty slot with X
 - E.g. Insert 5
 - If leaf node is full, split leaf node and adjust parents up to root node

Deleting From B-Trees

- Delete X : Do a find and remove from leaf
 - > Leaf underflows borrow from a neighbor
 - E.g. 11
 - Leaf underflows and can't borrow merge nodes, delete parent

Example of Insertions into a B+ tree with M=3, L=2

Insertion Sequence: 9, 5, 1, 7, 3,12

5 | 9

B+-Tree Deletion

Example of a B⁺ -tree of order four.

Deletion from the B⁺ -tree via borrowing from a sibling.

B+-Tree Deletion

Example of a B⁺ -tree of order four.

Deleting the record with key value 33 from the B⁺ -tree via collapsing siblings.

AVL Trees

Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is d = [log₂N] for a binary tree with N nodes
 - > What is the best case tree?
 - > What is the worst case tree?
- So, best case running time of BST operations is O(log N)

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - > Problem: Lack of "balance":
 - compare depths of left and right subtree
 - > Unbalanced degenerate tree

Balanced and unbalanced BST

Approaches to balancing trees

- Don't balance
 - May end up with some nodes very deep
- Perfectly balance
 - > The tree must always be balanced perfectly
- Pretty good balance
 - > Only allow a little out of balance
- Adjust on access
 - Self-adjusting

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
 - > tree is full except possibly in the lower right
- This is expensive
 - > For example, insert 2 in the tree on the left and then rebuild as a complete tree

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 - > height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - > Store current heights in each node

Height of an AVL Tree

- N(h) = minimum number of nodes in an AVL tree of height h.
- Basis

$$N(0) = 1, N(1) = 2$$

Induction

$$\rightarrow$$
 N(h) = N(h-1) + N(h-2) + 1

Solution (recall Fibonacci analysis)

$$\rightarrow$$
 N(h) \geq ϕ^h ($\phi \approx 1.62$)

Height of an AVL Tree

- $N(h) \ge \phi^h \quad (\phi \approx 1.62)$
- Suppose we have n nodes in an AVL tree of height h.
 - \rightarrow N(h) (because N(h) was the minimum)
 - > $n \ge \phi^h$ hence $\log_{\phi} n \ge h$ (relatively well balanced tree!!)
 - \rightarrow h \leq 1.44 log₂n (i.e., Find takes O(logn))

Node Heights

Tree A (AVL)

Tree B (AVL)

height of node = hbalance factor = h_{left} - h_{right} empty height = -1

Node Heights after Insert 7

empty height = -1

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}h_{right}) is 2 or –2, adjust tree by rotation around the node

Single Rotation in an AVL Tree

Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of α .
- 2. Insertion into right subtree of right child of α .

Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

The rebalancing is performed through four separate rotation algorithms.

AVL Insertion: Outside Case

AVL Insertion: Outside Case

AVL Insertion: Outside Case

Single right rotation

Outside Case Completed

AVL property has been restored!

AVL Insertion: Inside Case

Double rotation: first rotation

Double rotation: second rotation

Double rotation: second rotation

right rotation complete

Implementation

No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

Single Rotation

```
RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
```

You also need to modify the heights or balance factors of n and p

Double Rotation

Implement Double Rotation in two lines.

```
DoubleRotateFromRight(n : reference node pointer)
{
????
}
```

Insertion in AVL Trees

- Insert at the leaf (as for all BST)
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}h_{right}) is 2 or –2, adjust tree by rotation around the node

Insert in BST

Insert in AVL trees

```
Insert(T : reference tree pointer, x : element) : {
if T = null then
  {T := new tree; T.data := x; height := 0; return;}
case
  T.data = x : return ; //Duplicate do nothing
  T.data > x : Insert(T.left, x);
               if ((height(T.left) - height(T.right)) = 2) {
                  if (T.left.data > x) then //outside case
                          T = RotatefromLeft (T);
                  else
                                              //inside case
                          T = DoubleRotatefromLeft (T);}
  T.data < x : Insert(T.right, x);</pre>
                code similar to the left case
Endcase
  T.height := max(height(T.left),height(T.right)) +1;
  return;
                                                       50
```

Example of Insertions in an AVL Tree

Example of Insertions in an AVL Tree

Single rotation (outside case)

Double rotation (inside case)

AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.

Splay Trees

Self adjusting Trees

- Ordinary binary search trees have no balance conditions
 - > what you get from insertion order is it
- Balanced trees like AVL trees enforce a balance condition when nodes change
 - tree is always balanced after an insert or delete
- Self-adjusting trees get reorganized over time as nodes are accessed
 - > Tree adjusts after insert, delete, or find

Splay Trees

- Splay trees are tree structures that:
 - Are not perfectly balanced all the time
 - Data most recently accessed is near the root.
 (principle of locality; 80-20 "rule")
- The procedure:
 - After node X is accessed, perform "splaying" operations to bring X to the root of the tree.
 - Do this in a way that leaves the tree more balanced as a whole

Splay Tree Terminology

- Let X be a non-root node with ≥ 2 ancestors.
 - P is its parent node.
 - G is its grandparent node.

Zig-Zig and Zig-Zag

Parent and grandparent in same direction.

zig-zig

P

5

Parent and grandparent in different directions.

Splay Tree Operations

1. Helpful if nodes contain a parent pointer.

- 2. When X is accessed, apply one of six rotation routines.
 - Single Rotations (X has a P (the root) but no G)
 ZigFromLeft, ZigFromRight
 - Double Rotations (X has both a P and a G)
 ZigZigFromLeft, ZigZigFromRight
 ZigZagFromLeft, ZigZagFromRight

Zig at depth 1 (root)

"Zig" is just a single rotation, as in an AVL tree

Let R be the node that was accessed (e.g. using

 ZigFromLeft moves R to the top →faster access next time

62

Zig at depth 1

Suppose Q is now accessed using Find

ZigFromRight moves Q back to the top

Zig-Zag operation

 "Zig-Zag" consists of two rotations of the opposite direction (assume R is the node that was accessed)

Zig-Zig operation

 "Zig-Zig" consists of two single rotations of the same direction (R is the node that was accessed)

Decreasing depth - "autobalance"

Splay Tree Insert and Delete

Insert x

> Insert x as normal then splay x to root.

Delete x

- Splay x to root and remove it. (note: the node does not have to be a leaf or single child node like in BST delete.) Two trees remain, right subtree and left subtree.
- Splay the max in the left subtree to the root
- Attach the right subtree to the new root of the left subtree.

Example Insert

- Inserting in order 1,2,3,...,8
- Without self-adjustment

With Self-Adjustment

With Self-Adjustment

Each Insert takes O(1) time therefore O(n) time for n Insert!!

Example Deletion

Analysis of Splay Trees

- Splay trees tend to be balanced
 - M operations takes time O(M log N) for M ≥ N operations on N items. (proof is difficult)
 - Amortized O(log n) time.
- Splay trees have good "locality" properties
 - Recently accessed items are near the root of the tree.
 - Items near an accessed one are pulled toward the root.

Summary of Search Trees

- Problem with Binary Search Trees: Must keep tree balanced to allow fast access to stored items
- AVL trees: Insert/Delete operations keep tree balanced
- Splay trees: Repeated Find operations produce balanced trees
- Multi-way search trees (e.g. B-Trees):
 - More than two children per node allows shallow trees; all leaves are at the same depth.
 - > Keeping tree balanced at all times.
 - Excellent for indexes in database systems.

Summary

1. 二叉树的定义

定义: 是n (n≥0) 个结点的有限集合,由一个根结点以及两棵互不相交的、 分别称为左子树和右子树的二叉树组成。

逻辑结构: 一对二(1:2)

基本特征:

- ① 每个结点最多只有两棵子树(不存在度大于2的结点);
- ② 左子树和右子树次序不能颠倒(有序树)。

基本形态:

具有3个结点的二叉树可能有几种不同形态?

具有n个结点的二叉树可能有几种不同形态?

答:设具有n个结点的所有不同形态的二叉树有b[n]种,则 b[n]=C(2n,n)/(n + 1) (n=1,2,3,...)

证明如下:

考虑n个结点。除去根,剩下n-1个结点.对左子树有b[k]种方式。 对右子树有b[n-1-k]种方式,由乘法原理,则 b[n]=sum[k=0...n-1](b[k]*b[n-1-k]) 由于b[1]=1 而这正好是Catalan数。

Catalan数 (卡特兰数):

令h(0)=1,h(1)=1,catalan数满足递归式:

h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2)

该递推关系的解为:

$$h(n)=C(2n,n)/(n+1)$$
 (n=1,2,3,...)

2. 二叉树的性质

性质1: 在二叉树的第i层上至多有2ⁱ个结点(i>=0)。

性质2:高度为k的二叉树至多有2k-1个结点(k>0)。

性质3: 具有k个节点的完全二叉树的高度为「log₂(k+1) (k>=0) 。

问: 高度为9的二叉树中至少有_____个结点。

A) 2^{9}

B) 28

C) 9

D) $2^{9}-1$

答案: C

问: 顺序存储后能否复原成唯一对应的二叉树形状?

答: 若是完全二叉树则可以做到唯一复原。

而且有规律:下标值为i的双亲,其左孩子的下标值必为2i+1,其右孩子的下标值必为2i+2(即性质5)例如,对应[2]的两个孩子必为[5]和[6],即C的左孩子必是F,右孩子必为G。

不是完全二叉树怎么办?

答:一律转为完全二叉树!

将各层空缺处统统补上"虚结点",其内容为空。

二、链式存储结构 用二叉链表即可方便表示。

一般从根结点开始存储。 (相应地,访问树中结点时也只能从根开始)

注:如果需要倒查某结点的双亲,可以再增加一个双亲域(直接前趋)指针,将二叉链表变成三叉链表。

4、遍历二叉树(Traversing Binary Tree)

遍历定义——指按某条搜索路线遍访每个结点且不重复(又称周游)。

遍历用途——它是树结构插入、删除、修改、查找和排序运算的前提,

是二叉树一切运算的基础和核心。

遍历规则

- ❖ 二叉树由根、左子树、右子树构成,定义为D、 L、R
- ❖ D、L、R的组合定义了六种可能的遍历方案: LDR, LRD, DLR, DRL, RDL, RLD
- ☆ 若限定先左后右,则有三种实现方案:

DLR 先(根)序遍历中(根)序遍历后(根)序遍历

LDR

LRD

例1:

先序遍历的结果是: ABDEC

中序遍历的结果是: DBEAC

后序遍历的结果是: DEBCA

遍历的算法实现: 用递归形式

5. 二叉查找树

特点: "左小右大",按中序遍历得到由小到大的排列

主要操作

检索(find)——

折半查找

插入(insert)——

通过折半查找找到插入的位置(插入某个叶结点或在待插入方向上 没有子结点的分支结点)

删除最小值结点(deletemin)——

删除整个树中最左边的结点,若该结点有右子树,则将其父结点中 原来指向被删结点的指针改为指向其右子树。

删除给定值结点(remove)——若被删除节点的左右子结点非空,则用其右子树中的最小节点取代被删除结点。

优点: 提高检索、插入、删除等操作的效率,平均情况下 $\theta(\log n)$. 82