

Fundamentos de Bioestadística

Camilo Yate Támara

camilo_yate@yahoo.fr

Tel: 3017662953

Introducción

Los avances tecnológicos en las ciencias de la computación han dado vuelco a la forma tradicional de hacer estadística. La tecnología ha permitido aplicar lo que se conoce como "estadística moderna" donde la importancia **no radica en la memorización** y el cálculo aritmético manual de las formulas sino en enfocarse en obtener resultados para tener sentido practico de los datos mediante análisis critico.

En la siguiente sección se definirán varios conceptos que van atados a definiciones y notación matemática. Sin embargo, no es la intención de este curso la memorización ni la realización exhaustiva de cálculos matemáticos. Solo se presentarán fórmulas matemáticas para dar la formalidad de la definición a cada concepto.

Los cálculos de los conceptos mostrados en esta sección serán desarrollados de manera práctica en un taller en clase en softwares diseñados para tal fin.

Cuando se trabajan con conjuntos de datos extensos es útil organizar y resumir la información mediante una tabla que liste todos los valores posibles junto con la frecuencia de ocurrencia de los mismos. Para esto se definen cuatro tipos de frecuencia

Frecuencia Absoluta: El conteo en cada valor posible de la variable (f)

Frecuencia Relativa: Es el porcentaje de participación de cada categoría en el total $\left(f_{\Delta} = \frac{f}{n}\right)$

Frecuencia Absoluta Acumulada: Es el resultado de ir sumando las frecuencias absolutas de los valores de una variable (F)

Frecuencia Relativa Acumulada: Es el cociente entre la frecuencia acumulada y el número total de datos $\left(F_{\Delta} = \frac{F}{n}\right)$

Las forma de construir una tabla de frecuencia se construyen según el tipo de variable (cualitativa o cuantitativa) a continuación se mostrará la forma de construcción de cada una de ellas

Variables Cuantitativas

Suponga que se cuenta con los datos de la presión arterial sistólica de 25 pacientes.

Individuo	Presion Arterial Sistolica (mm Hg)
1	111
2	136
3	133
4	105
5	157
6	80
7	154
8	96
9	114
10	126
11	106
12	146
13	128
14	112
15	137
16	91
17	94
18	102
19	133
20	132
21	119
22	91
23	121
24	137
25	125

- **1** Elegir el numero de grupos (clases: k). En nuestro ejemplo k=5
- Calcular el ancho de clase con la formula $w = \frac{dato\ maximo\ dato\ minimo}{k} = \frac{157 80}{5} = 15.4 \approx 16$
- Construir los intervalos a partir del dato menor y adicionando el valor de w sucesivamente

Clase	Presion Arterial Sistolica (mm Hg)		
1	80	96	
2	97	113	
3	114	130	
4	131	147	
5	148	164	
Total			

Definiciones Previas

Variables Cuantitativas

Suponga que se cuenta con los datos de la presión arterial sistólica de 25 pacientes.

Individuo	Presion Arterial
	Sistolica (mm Hg)
1	111
2	136
3	133
4	105
5	157
6	80
7	154
8	96
9	114
10	126
11	106
12	146
13	128
14	112
15	137
16	91
17	94
18	102
19	133
20	132
21	119
22	91
23	121
24	137
25	125

Datos Simulados

Calcular la frecuencia absoluta contando el numero de casos en cada intervalo

Clase	Presion Arterial Sistolica (mm Hg)		Frecuencia Absoluta
1	80	96	5
2	97	113	5
3	114	130	6
4	131	147	7
5	148	164	2
	Total		25

Calcular la frecuencia absoluta acumulada a partir de la frecuencia absoluta

Clase		Arterial (mm Hg)	Frecuencia Absoluta	Frecuencia Absoluta Acumulativa
1	80	96	5	5
2	97	113	5	10
3	114	130	6	16
4	131	147	7	23
5	148	164	2	25
	Total		25	

Definiciones Previas

Variables Cuantitativas

Suponga que se cuenta con los datos de la presión arterial sistólica de 25 pacientes.

Individuo	Presion Arterial Sistolica (mm Hg)
1	111
2	136
3	133
4	105
5	157
6	80
7	154
8	96
9	114
10	126
11	106
12	146
13	128
14	112
15	137
16	91
17	94
18	102
19	133
20	132
21	119
22	91
23	121
24	137
25	125

Datos Simulados

Calcular la frecuencia relativa dividiendo la frecuencia absoluta en el numero de datos

Clase	Presion A Sistolica		Frecuencia Absoluta	Frecuencia Absoluta Acumulativa	Frecuencia Relativa
1	80	96	5	5	20%
2	97	113	5	10	20%
3	114	130	6	16	24%
4	131	147	7	23	28%
5	148	164	2	25	8%
	Total		25		100%

Calcular la frecuencia relativa acumulada a partir de la frecuencia relativa

Clase	Presion A Sistolica (Frecuencia Absoluta	Frecuencia Absoluta Acumulativa	Frecuencia Relativa	Frecuencia Relativa Acumulativa
1	80	96	5	5	20%	20%
2	97	113	5	10	20%	40%
3	114	130	6	16	24%	64%
4	131	147	7	23	28%	92%
5	148	164	2	25	8%	100%
	Total		25	·	100%	

Variables Cualitativas

Suponga que se cuenta con una encuesta con el grupo sanguíneo de una población de 15 individuos.

Individuo	Grupo Sanguineo
1	AB
2	0
3	AB
4	AB
5	В
6	AB
7	0
8	Α
9	В
10	AB
11	0
12	В
13	В
14	Α
15	AB

_	
Datos	Simulados

1	Frecuencia Absoluta
A	2
В	4
0	3
AB	6
Total	15

3	Frecuencia Absoluta	Frecuencia Absoluta Acumulativa	Frecuencia Relativa	
A	2	2	13.33%	
В	4	6	26.67%	
0	3	9	20.00%	
AB	6	15	40.00%	
Total	15		100.00%	
		3		//

$$f\Delta = \frac{3}{15} = 0.2$$

2	Frecuencia Absoluta	Frecuencia Absoluta Acumulativa		
A	2	2 🛉		
В	4	← 6		
0	3	9		
AB	6	15		
Total	15	_		

4	Frecuencia Absoluta	Frecuencia Absoluta Acumulativa	Frecuencia Relativa	Frecuencia Relativa Acumulativa
Α	2	2	13.33%	13% 🛕
В	4	6	26.67%	— 40%
0	3	9	20.00%	60%
AB	6	15	40.00%	100%
Total	15	•	100.00%	

Media Aritmética

Es el promedio de los datos, se obtiene calculando el cociente entre la suma de todos los datos y el número de observaciones

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

Ejemplo

Se tienen mediciones de la calidad de aire en diferentes zonas de Bogotá medida en ppm

$$\bar{x} = \frac{\sum x}{n} = \frac{5.40 + 1.10 + 0.42 + 0.73 + 0.48 + 1.10}{6} = \frac{9.23}{6} = 1.538$$

Existen otras medias de utilidad como **Media ponderada** y **Media Armónica** estas serán definidas en el taller práctico

Mediana

Es el centro de los datos una vez que estos están ordenados. Para calcularla se siguen los siguientes pasos:

- 1. Ordenar los dato de manera ascendente
- 2. Si el número de observaciones es impar la mediana es el dato de la mitad
- 3. Si el número de observaciones es par la mediana es el promedio de los dos datos de la mitad

Ejemplo

Se tienen mediciones de la calidad de aire en diferentes zonas de Bogotá medida en ppm

Se ordenan los datos

Como el número de observaciones es par

$$\tilde{x} = \frac{0.73 + 1.10}{2} = \frac{1.83}{2} = 0.915$$

Definiciones Previas

8/21

Moda

Es el dato de mayor frecuencia, es decir el dato que mas se repite en la muestra

Cuando dos valores comparten la máxima ocurrencia en la muestra, se dice que esta es **bimodal**. Cuando varios valores comparten la máxima ocurrencia en la muestra, se dice que esta es **multimodal**. Cuando ningún valor se repite, se dice que no hay moda

Ejemplo

Suponga las siguientes muestras

Medidas de Localización

Medidas de Localización

Percentiles

Indica, una vez ordenados los datos de menor a mayor, el valor de la variable por debajo del cual se encuentra un porcentaje dado de observaciones en un grupo.

Ejemplo

Se cuentan con los datos del IMC de diez individuos seleccionados en una muestra

23.77 18.77 21.08 18.60 19.16 29.68 22.01 23.75 27.15 21.37

Posición	1	2	3	4	5	6	7	8	9	10
х	18.60	18.77	19.16	21.08	21.37	22.01	23.75	23.77	27.15	29.68
	P ₁₀									
		•			P ₅₀					
					30				Poo	

P ₁₀	18.61
P ₅₀	21.69
P ₉₀	29.43

Nótese que el Percentil 50 es equivalente a la mediana.

Los percentiles más usados son el 10 (o primer decil), 25 (primer cuartil), 50 (mediana o segundo cuartil), 75 (tercer cuartil) y 90 (noveno decil)

Rango

Es la diferencia entre el dato mayor y el dato menor

Ejemplo

$$rango = 5.4 - 0.42 = 4.98$$

Rango Intercuartil

Es la diferencia entre el percentil 75 y el percentil 25

$$RIQ = P_{75} - P_{25} = 2.175 - 0.465$$

Desviación Estándar

Es el promedio de las distancias de cada observación a la media muestral. Esta medida indica que tan alejados o cercanos están los datos de la muestra al promedio general.

$$s = \sqrt{\frac{\Sigma(x - \overline{x})^2}{n - 1}}$$
$$s = \sqrt{\frac{n\Sigma(x^2) - (\Sigma x)^2}{n(n - 1)}}$$

12/21

Desviación Estándar

El cálculo de la desviación estándar es de gran importancia ya que según reglas matemáticas se sabe que para muchos conjuntos de datos el 95% de la información se encuentra a dos desviaciones estándar de la media.

Adicionalmente, la inferencia estadística se basa en determinar los valores poblacionales de la desviación estándar y de la varianza (el cuadrado de la desviación, notada como σ^2)

Desviación Estándar

Aunque se utilizarán herramientas computacionales para el calculo de las medidas de dispersión, el siguiente es el procedimiento general para calcular la desviación estándar de forma manual

- Paso 1: Calcular la media.
- Paso 2: Restar a cada dato el valor de la media
- Paso 3: Elevar al cuadrado cada valor obtenido en el paso 2
- Paso 4: sumar los valores que resultaron del paso 3.
- Paso 5: dividir entre el número de datos menos 1.
- Paso 6: sacar la raíz cuadrada del paso 4.

Medidas de Simetría y Curtosis

Medidas de Simetría y Curtosis

Simetría

Curtosis

15/21

Tomado de: https://topcareer.id/read/2019/10/11/9390/sejarah-singkat-infografis-yang-kamu-mungkin-belum-tahu/

16/21

Uno de los objetivos de los métodos estadísticos es lograr analizar la información de manera grafica con el fin de que sea mucho mas fácil de interpretar y comunicar. En esta sección se mostrarán algunos ejemplos de visualización de datos las cuales dependen fundamentalmente del tipo de dato a analizar

Tomado de: https://thevizcorner.wordpress.com/2014/09/06/cataloguing-visualization/

Diagramas de Proporciones

Se usan mayormente para datos categoricos con el fin de representar la participacion de cada categoria en la muestra.

Diagrama de Pastel

Diagrama de Dona o Sunburst

Diagrama Treemap

Barras Apiladas

Histogramas y Densidades

Se usan únicamente para datos numéricos. Resume perfectamente la dispersión, simetría y la curtosis de la distribución, además muestra la existencia de modas y la localización de la media

Diagrama de Cajas y Bigotes

Se usan unicamente para datos numéricos. Resume la dispersión y simetría, además muestra localización de la mediana y la existencia de datos atípicos

Diagrama de Dispersión

Se usan únicamente para datos numéricos. Muestra la relación lineal que existen entre dos variables

Fundamentos de Bioestadística

Actividad

Se propone, con el fin de afianzar los conceptos descritos durante la sesión identificar la mayor cantidad de elementos en un articulo científico publicado, a saber:

- Tipos de Medida
- Escalas de medición
- Medidas tendencia central
- Medidas de localización
- Gráficos usados y su pertinencia según el tipo de dato

