

Test

Data

1. Fundamental & Spurious Emission & Restrict band radiated emission

Horizontal

30-1000MHz

1000-3500MHz

Vertical

30-1000MHz

1000-3500MHz

2. Deactivating time

Pulse of "ON"

Date: 8.JUL.2013 11:37:17

Pulse of "OFF"

Date: 8.JUL.2013 11:54:41

3. Emission bandwidth

Date: 8.JUL.2013 12:21:11

Emission bandwidth = 24.60 kHz + 25.80 kHz = 50.40 kHz

1. Duty Cycle

Pulse Train of "ON"

Date: 8.JUL.2013 11:42:02

Long Pulse

Date: 8.JUL.2013 12:05:50

Short Pulse

Date: 8.JUL.2013 11:45:30

The coding have 8 long pulse and 24 short pulse.

Duty cycle= (8*0.720+24*0.260)/39.20=0.3061

As a result, the duty cycle of 0.3061 is taken into calculation.

Duty cycle correction factor =20 log (Ton/T)= 20 log 0.3061= -10.28dB

Pulse Train of "OFF"

Date: 8.JUL.2013 11:56:47

Long Pulse

Date: 8.JUL.2013 12:05:50

Short Pulse

Date: 8.JUL.2013 12:06:54

The coding have 8 long pulse and 24 short pulse.

Duty cycle= (8*0.720+24*0.260)/39.27=0.3056

As a result, the duty cycle of 0.3056 is taken into calculation.

Duty cycle correction factor =20 log (Ton/T)= 20 log 0.3056= -10.30dB