Chapitre 2 : Groupes symétriques

I Permutations

Définition : Soient X un ensemble et S(X) l'ensemble des bijections de X dans X. On appelle permutation de X tout élément de S(X).

Intuitivement, c'est l'ensemble des réarrangements des éléments de X.

Propriété : Ensemble des permutations (admise)

 $(S(X), \circ)$ est un groupe (en général non commutatif).

 \bigcirc Vocabulaire : C'est le groupe symétrique sur X.

Démonstration :

- La composée de deux bijections est une bijection, donc \circ est une loi interne sur S(X).
- La loi o est associative.
- L'élément neutre est l'identité id_X.
- L'inverse d'une bijection est une bijection (la bijection réciproque). □

Proposition:

Soit Y un ensemble avec une bijection $b: X \to Y$.

L'application $\varphi_b: S(X) \to S(Y)$ définie par $\sigma \mapsto b \circ \sigma \circ b^{-1}$ est un isomorphisme de groupe.

1 Remarque: Donc S(Y) est isomorphe à S(X).

Démonstration:

 φ_b est bien définie : comme b et σ sont bijectives, $b \circ \sigma \circ b^{-1}$ est bijective.

 φ_b est un morphisme $\forall \sigma, \sigma' \in S(X)$. On a :

$$\varphi_b(\sigma \circ \sigma') = b \circ (\sigma \circ \sigma') \circ b^{-1} = b \circ \sigma \circ b^{-1} \circ b \circ \sigma' \circ b^{-1} = (b \circ \sigma \circ b^{-1}) \circ (b \circ \sigma' \circ b^{-1}) = \varphi_b(\sigma) \circ \varphi_b(\sigma')$$

 φ_b est bijective car sa réciproque est donnée par $\tau = b^{-1} \circ \tau \circ b$. \square

Définition : Supposons X fini de cardinal n.

Il existe une bijection $1, 2, ..., n \rightarrow X$ (numérotation de X).

On prend $S_n = S(1, 2, ...n)$: c'est le groupe symétrique sur n lettres. Il est isomorphe à S(X)

Notation par tableau : σ

Définition : Soit $\sigma \in S(X)$.

Le support de σ est $\{x \in X \mid \sigma(x) \neq x\}$.

Intuitivement, c'est l'ensemble des éléments de X que σ "déplace".

? Exemple: Prenons $S(X) = S_6$.

 σ a pour support $\{1, 3, 4, 6\}$.

Proposition:

Soient $\sigma, \sigma' \in S(X)$ de supports disjoints. Alors σ et σ' commutent, *i.e.* $\sigma \circ \sigma' = \sigma' \circ \sigma$

Démonstration :

```
Soient S et S' les supports de \sigma et \sigma'. On a \sigma \circ \sigma'(x) = \sigma'(\sigma(x)) = \sigma'(x). On a \sigma'(x) \notin S, sinon \sigma'(x) \notin S' et \sigma'(\sigma'(x)) = \sigma'(x) donc \sigma'(x) = x, donc \sigma'(x) \notin S. Donc \sigma \circ \sigma'(x) = \sigma'(x) = \sigma' \circ \sigma(x).
```

De même, si $x \in X - S'$, on a : $\sigma \circ \sigma'(x) = \sigma' \circ \sigma(x)$. Comme $S \cap S' = \emptyset$, on a : $\sigma \circ \sigma'(x) = \sigma' \circ \sigma(x) \ \forall x \in X$. \square

Propriété : Ordre de S_n

Le groupe S_n est d'ordre n!.

Démonstration:

Soient X,Y deux ensembles à n éléments.

Montrons que $\#\{bijectionsX \rightarrow Y\} = n!$.

En effet, si $X=x_1,...,x_n$ et $f:X\to Y$ est une bijection, il y a :

- n possibilités pour $f(x_1)$
- n-1 possibilités pour $f(x_2)$:
- 1 possibilité pour $f(x_n)$

II Cycles

```
Définition : Soit X un ensemble et soit k \geq 2 un entier. Un k-cycle de S(X) est donné par a_1, a_2, \ldots, a_k \in X \mid a_i \neq a_j sii \neq j. et \sigma(a_i) = a_{i+1} pour 1 \leq i < k et \sigma(a_k) = a_1 et \sigma de support a_1, a_2, \ldots na_k. On le note (a_1 \cdots a_k).
```

- **X** Attention **X** La notation n'est pas unique : $(a_i a_{i+1} \cdots a_k a_1 a_2 \cdots a_{i-1}) = (a_1 \cdots a_k)$
- Vocabulaire : On dit qu'une permutation c est un cycle s'il existe $k \ge 2 \mid c$ est un k-cycle. Alors k s'appelle la **longueur** de c.

Proposition:

Comme élément du groupe S(X) un k-cycle c est d'ordre k.

Démonstration:

```
Posons c=(a_1\cdots a_k).
On a \varepsilon(a_1)=a_{1+j}\neq a_1.
Donc ordre(c)\geq k. On a c^k(a_i)=a_i \forall i, donc c est d'ordre k. \square
```

Remarque : Rappel

Des cycles à supports disjoints communtent.

Soient $c=(a_1\cdots a_k)$ et $c'=(a'_1\cdots a'_{k'})$ deux cycles de S(X) tels que $S(c)\cap S(c')=\emptyset$.

avec
$$a_1, \ldots, a_k \cap a'_1, \ldots, a'_{k'} = \emptyset$$
.
On a $c \circ c' = c' \circ c$

Définition: Soit $x \in X$, l'orbite de x sous σ est $\{\sigma^m(x) \mid m \in Z\}$.

1 Remarque: On a $x \notin Support(\sigma)$ si $\sigma(x) = x \Leftrightarrow$ orbite de x est un singleton. Si σ est un k-cycle de support S et $x \in S$, l'orbite de x a k éléments, c'est S.

Théorème:

Si X est fini, tout élément de S(X) s'écrit comme produit de cycles à supports disjoints. Cette écriture est unique à l'ordre des facteurs près.

Démonstration :

• Existence : (par récurrence)

Si $Support(\sigma) = \emptyset$, on a $\sigma = id_X$: c'est bien un produit (vide) de cycles.

Supposons maintenant que $Support(\sigma) \neq \emptyset$. Soit $x \in Support(\sigma)$.

Soit $\sigma' \in S(X)$ donnée par $\sigma'(y) = \sigma(y)$ si $y \notin \text{orbite de } x, \, \sigma'(y) = y \text{ sinon.}$

Considérons le cycle c donné par : $(x\sigma(x)\sigma^2(x) - \sigma^k(x))$ avec $k = min\{m \mid \sigma^m(x) = x\}$.

C'est un k-cycle de support l'orbite de x.

Si $y \in$ orbite de x on a $\sigma(y) = c(y)$.

Alors σ et c sont de supports disjoints et on a : $\sigma = \sigma'c = c\sigma'$.

En effet, soit $y \in X$,

 $y \notin \text{orbite de } x \text{ on a } \sigma'(y) = c(y)$

X Attention X Démonstration non terminée (le prof n'écrivait pas clair au tableau)

Exemple : Soit $X = \{1, 2, 3, 4, 5\}$ et $\sigma \in S(X)$ défini par :

$$\sigma(1) = 3$$
, $\sigma(2) = 5$, $\sigma(3) = 1$, $\sigma(4) = 4$, $\sigma(5) = 2$

Alors σ s'écrit comme produit de cycles à supports disjoints :

$$\sigma = (1\ 3)(2\ 5)$$

Cette écriture est unique à l'ordre des facteurs près.

III Signature

Définition: Soit X un ensemble fini et notons S(X) le groupe symétrique sur X.

Posons $Z = \{(i, j) \mid i, j \in X, i \neq j\}.$

Soit R la relation sur Z donnée par : $(i,j)R(i',j')\Leftrightarrow (i,j)=(i',j')$ ou (i,j)=(j',i'). (i.e. $\{i,j\}=\{i',j'\}$).

C'est une relation d'équivalence. Soit S un système de représentants de R.

Soit $\sigma \in S(X)$.

Alors si $(i,j) \in Z$, on a $(\sigma(i),\sigma(j)) \in Z$.

De plus, $(i, j) \mapsto (\sigma(i), \sigma(j))$ est une bijection de Z notée σ^2 .

Soit $(i, j) \in S$.

On dit qu'on a une **inversion** en (i, j) pour σ si $(\sigma(i), \sigma(j)) \notin S$.

Exemple: Si X = 1, 2, ..., n, on peut prendre $S = \{(i, j) \in X^2 \mid i < j\}$.

Alors $(i, j) \in S$ est une inversion pour $\sigma \Leftrightarrow \sigma(j) < \sigma(i)$.

Propriété: Signature

On pose $\varepsilon_S(\sigma) = (-1)^{\#\{\text{inversions de }\sigma\}} \in \{-1,1\}$. On a $\varepsilon_S(\sigma)$ ne dépend pas du choix de S.

On le note $\varepsilon(\sigma)$ et on l'appelle la **signature** de σ .

Démonstration:

Soit $(i_0, j_0) \in S$. Posons $S' = S - \{(i_0, j_0)\} \cup \{(j_0, i_0)\}$.

Si $(i,j) \neq (i_0,j_0)$ et $(i,j) \neq (j_0,i_0)$, on a $(i,j) \in S$ est une inversion pour $S \Leftrightarrow (i,j) \in S'$ est une inversion pour S'.

Si $(i,j)=(i_0,j_0)$, on a $(i,j)\in S\backslash S'$ et $(j,i)\in S'\backslash S$.

On a une inversion (i_0, j_0) pour $S \Leftrightarrow$ on a une inversion (j_0, i_0) pour S'.

Donc $\#\{\text{inversions de }\sigma\text{ pour }S\} \equiv \#\{\text{inversions de }\sigma\text{ pour }S'\}.$

Donc $\varepsilon_S(\sigma) = \varepsilon_{S'}(\sigma)$ de proche en proche on a ε_S indépendant de S. \square

Proposition:

Soit $f: X \to Y$ injective.

On a:

$$\varepsilon(\sigma) = \prod_{(i,j) \in S} \frac{f(\sigma(j)) - f(\sigma(i))}{f(j) - f(i)}$$

Exemple: Si $X = \{1, 2, \dots, n\}$ et $f = id_X$, on a :

$$\varepsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

Démonstration :

On a $(\sigma(i), \sigma(j)) \in S \Leftrightarrow (i, j)$ est une inversion.

Sinon, on a $(\sigma(j), \sigma(i)) \in S$.

Donc:

$$\begin{split} & \prod_{(i,j) \in S} \frac{f(\sigma(j)) - f(\sigma(i))}{f(j) - f(i)} = \prod_{\substack{(i,j) \in S \\ \text{pas une inversion}}} \frac{f(\sigma(j)) - f(\sigma(i))}{f(j) - f(i)} \times \prod_{\substack{(i,j) \in S \\ \text{inversion}}} \frac{f(\sigma(j)) - f(\sigma(i))}{f(j) - f(i)} \\ & = \prod_{\substack{(i,j) \in S \\ \text{inversion}}} \frac{1}{f(j) - f(i)} \times \prod_{\substack{(i,j) \in S \\ \text{inversion}}} (f(\sigma(j)) - f(\sigma(i))) \times \prod_{\substack{(i,j) \in S \\ \text{pas une inversion}}} (f(\sigma(j)) - f(\sigma(i))) \end{split}$$

$$= \prod_{(i,j) \in S} \frac{1}{f(j) - f(i)} \times \prod_{\substack{(i,j) \in S \text{ inversion} \\ \text{inversion}}} (f(\sigma(j)) - f(\sigma(i))) \times \prod_{\substack{(i,j) \in S \\ \text{pas une inversion}}} (f(\sigma(j)) - f(\sigma(i)))$$

Si $S = \{(\sigma(i), \sigma(j)) \mid \sigma \text{ pas une inversion sur } S \cup \{(\sigma(j), \sigma(i)) \mid \sigma \text{ inversion sur } S\}\}.$

Donc: X Attention X Démonstration non terminée (le prof n'écrivait pas clair au tableau et c'était verbeux)

Théorème : Signature et morphisme

La signature est un morphisme de groupe de S(X) dans $\{-1,1\}$.

i.e. $\forall \sigma, \rho \in S(X)$, on a : $\varepsilon(\sigma \circ \rho) = \varepsilon(\sigma) \times \varepsilon(\rho)$.

Démonstration :

Lemme : pour démontrer le théorème

On a $\sigma^2(S) = \{(\sigma(i), \sigma(j)) \mid (i, j) \in S\}$ est un système de représentants de R.

Note de rédaction : Demander la démonstration à Laurent

```
Définition : Soit \sigma \in S(X).
```

Si $\varepsilon(\sigma) = 1$, on dit que σ est une **paire**.

Si $\varepsilon(\sigma) = -1$, on dit que σ est une **impaire**.

Proposition:

On pose $A(X) = \{ \sigma \in S(X) \mid \varepsilon(\sigma) = 1 \}.$

C'est un sous-groupe de S(X) appelé le **groupe alterné** sur X.

En particulier, si $X = \{1, 2, ..., n\}$, on le note A_n . (groupe alterné sur n lettres)

Et on a $\#A_n = ord(A_n) = \frac{n!}{2}$ pour $n \ge 2$.

Démonstration :

On a $A(X) = \{ \sigma \in S(X) \mid \varepsilon(\sigma) = 1 \} = Ker(\varepsilon)$, donc c'est un sous-groupe de S(X).

Supposons que A_n a un élément τ de signature -1, c'est vrai si $n \geq 2$.

Alors $S(X) = \mathcal{A}(X) \cup \tau \mathcal{A}(X)$ et $\mathcal{A}(X) \cap \tau \mathcal{A}(X) = \emptyset$.

En effet, si $\sigma \in \mathcal{A}(X)$ OK. Sinon si $\sigma \notin \mathcal{A}(X)$, on a $\varepsilon(\sigma) = -1$ et donc $\varepsilon(\sigma\tau^{-1}) = -1 \times -1 = 1$, donc $\sigma\tau^{-1} \in \mathcal{A}(X)$ et $\sigma \in \tau \mathcal{A}(X)$.

On a $\mathcal{A}(X) \cap \tau \mathcal{A}(X) = \emptyset$.

On a une bijection : $\mathcal{A}(X) \to \tau \mathcal{A}(X)$.

Donc $\#\mathcal{A}(X) = \#\tau\mathcal{A}(X)$ et $\#S(X) = 2\#\mathcal{A}(X)$.

Donc $\#\mathcal{A}(X) = \frac{\#S(X)}{2}$. Donc $\#\mathcal{A}_n = \frac{n!}{2}$ pour $n \geq 2$. \square

IV Transpositions

Définition : Une transposition de X est un 2-cycle. On la note $(a \ b)$.

Propriété: Transpositions et signature

Soit $\sigma \in S(X)$.

On a $\varepsilon(\sigma) = (-1)$. (une transposition existe ssi $\#X \ge 2$)

Démonstration :

Soit $\sigma = (a \ b)$ avec $(a, b) \in S$.

Soit $f: X \to \mathbb{R}$ et f(a), f(b): f(b) > f(c) > f(a) si $c \neq a, b$.

On a : $\varepsilon(\sigma) = \dots$

Mote de rédaction : Il y a une erreur dans la démonstration du prof, il écrit n'importe quoi au tableau

Formulaire:

Soit $c = (a_1 \cdots a_k)$ un l-cycle.

- 1. On a $c = (a_1 a_2)(a_2 a_3) \cdots (a_{k-1} a_k)$ i.e. c'est un produit de transpositions.
- 2. Soit $\sigma \in S(X)$.

On a $\sigma c \sigma^{-1} = (\sigma(a_1) \cdots \sigma(a_k))$ (formule de conjugaison).

3. Soient c_1, \ldots, c_k des cycles.

On a $\sigma c_1 \cdots c_k \sigma^{-1} = (\sigma c_1 \sigma^{-1}) \cdots (\sigma c_k \sigma^{-1})$.

Démonstration laissée à l'appréciation du lecteur, elle n'était pas à mon appréciation

Corollaire:

Le groupe S(X) est engendré par les transpositions. i.e. toute permutation σ de S(X) s'écrit comme produit de transpositions $\sigma=\tau_1\cdots\tau_r$ et $\varepsilon(\sigma)=(-1)^k$. (non unique)

Démonstration laissée à l'appréciation du lecteur, elle n'était pas à mon appréciation