ADL Homework 1 Report

b05902002 資工三 李栢淵

Q1: Data processing (1%)

- 1. How do you tokenize the data.
 - Lower all the word
 - replace character which is not 「a-z」「A-Z」「!」「?」「'」「,」「.」with " "
 - Use nltk package to tokenize.
- 2. Number of negative samples used to train your model.
 - 4 for each data.
- 3. Truncation length of the utterances and the options.

utterances: 200, options: 150

4. The pre-trained embedding you used.

Fasttext: crawl-300d-2M.vec

Q2: Describe your RNN w/o attention model. (1%)

Model Structure:

After word embedding, I use a two layers bidirectional lstm on embed_utterence and embed_options. Then do the max pooling and mean pooling on each lstm output. For each, concat last output, max pooling output and mean pooling output, get two vector a and b. Finally, calculate the score with a^TWb , which W is a trainable weight.

Performance:

• recall@10 (on validation set): 0.6504

public leaderboard: 9.56666private leaderboard: 9.64571

Loss Function:

BCEWithLogitsLoss

Optimization:

Adam

• learning rate: 1e-3

• batch size: 100

Q3: Describe your RNN w/ attention model. (1%)

Model Structure -- Cross attention:

After word embedding, I use a one layer bidirectional lstm1 on embed_utterence and embed_options and get the output \mathbf{r} _utt and \mathbf{r} _opt. and I get the attention map by $r_{utt}r_{opt}^T$ and names as att_utt2opt, adding a softmax on its dimension 2. Using this attension on r_opt and get the \mathbf{a} _utt (attention of utterences).

Meanwhile, transpose the att_utt2opt and get att_opt2utt, adding a softmax on its dimension 2.Using this attension on r_utt and get the **a_opt** (attention of options). This can be a kind of **cross attention**.

I concatenate two matrix (r and a) of utterences and options by [r; a; r*a; r-a] and get the att_cat_utterences and att_cat_options. And I used another one layer bidirectional lstm2 on them, getting 2 lstm2 output.

Then do the max pooling and mean pooling on each lstm2 output. For each, concat last output, max pooling output and mean pooling output, get two vector a and b. Finally, calculate the score with a^TWb , which W is a trainable weight.

Performance:

• recall@10 (on validation set): unknown

public leaderboard: 9.33333private leaderboard: 9.39714

Loss Function:

BCEWithLogitsLoss

Optimization:

Adam

• learning rate: 1e-3

• batch size: 100

Q4: Describe your best model. (2%)

1. Describe (1%)

I ensemble 11attention models above. The ensemble method is voting by 11 models and each model has 10 tickets. and output the top10 result.

Performance:

recall@10 (on validation set): 0.7698

public leaderboard: 9.32666private leaderboard: 9.35428

Loss Function and Optimization:

- o as same as the attention model above
- 1. Describe the reason you think why your best model is better than your RNN w/ and w/o attention model. (1%)
 - 1. The advantage of ensemble

Due to the instability of the only one attention model. I have trained two results, and one get the 9.34666 on publice board and another get 9.40.

So the easiest way is using their output to vote and thier is a large improvent in private score.

2. Cross attention vs Self attention

I have trained a poor attention rnn model, which the different is that its attention weight is $r_{utt}\,r_{utt}^T$ and $r_{opt}\,r_{opt}^T$ and attent on itself.

But the better way is $r_{utt}r_{opt}^T$, which attent on the other one and it will **get the more imformation**. Utterence can access more imformation of options, and so do options.

3. w/ attention vs w/o attention

I find that self attention's result is little better than the rnn w/o attention's. I think that the reason is self attention model can not get more imformation and **just increase the model's complexity**.

Compared with self attention, corss attention get more imformation as I mentioned above. So it can have a great improvement from rnn w/o attention.

Q5: Compare GRU and LSTM (1%)

	LSTM	GRU
recall@10 (on validation set)	0.7698	0.7544
public leaderboard / recall@10	9.33333	9.39333
private leaderboard / recall@10	9.39714	9.40857
required GPU memory	about 2.6G	about 2G
training speed (sec per epoch)	about 780s	about 720s
testing speed	47s	45s

Q6: Visualize the attention weights (2%).

- 1. Take one example in the validation set and visualize the attention weights (after softmax)
 - --> Notice that each row's sum is 1

0.4

0.3

0.2

0.1

0.5

0.2

0.1

0.30

0.25

0.20

0.15

0.10

0.05

2. Describe your findings. (1%)

I found that my attention not have some obviously feature. It might catch some similar vectors to mix a new states. Maybe it generate something meanful sequence and this really works!

The another interesting dicoveries is that this attention could help handling the padding sequence, giving the pad> word lower attention. Let the attented sequence has more useful imformation.

Q7: Compare different settings. (1% + bonus)

- Compare training with different settings:
 - o different reasonable loss functions (1%).

	BCEwithLogit	BCE	MSE
recall@10 (on validation set)	0.7698	0.767	0.7674
public leaderboard / recall@10	9.33333	9.37333	9.40000
private leaderboard / recall@10	9.39714	9.39714	9.40857

• different number of negative samples (1%).

	3	4	9
recall@10 (on validation set)	0.7686	0.7698	0.7596
public leaderboard / recall@10	9.37333	9.33333	9.38666
private leaderboard / recall@10	9.37428	9.39714	9.40571

o different number of utterances in a dialog (1%).

	100	200	300	400
recall@10 (on validation set)	0.7684	0.7698	0.7698	0.7738
public leaderboard / recall@10	9.37333	9.33333	9.38666	9.40000
private leaderboard / recall@10	9.40000	9.39714	9.37428	9.39428

o different pre-trained word embeddings (1%).

	fasttext	gensim
Known Words Num	57294	33951
recall@10 (on validation set)	0.7698	0.6908
public leaderboard / recall@10	9.38666	9.60000
private leaderboard / recall@10	9.37428	9.60571