PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
A61K 38/00, 39/00, C07K 1/00, 14/00, 17/00, G01N 33/53, 33/567, 33/574

(11) International Publication Number:

WO 98/05347

(43) International Publication Date:

12 February 1998 (12.02.98)

(21) International Application Number:

PCT/US97/12677

A1

(22) International Filing Date:

18 July 1997 (18.07.97)

(30) Priority Data:

08/681,219

22 July 1996 (22.07.96)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/681,219 (CIP) 22 July 1996 (22.07.96)

(71) Applicant (for all designated States except US): THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK [US/US]; West 116th Street and Broadway, New York, NY 10027 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SATO, Taka-Aki [JP/US]; 1587 Ann Street, Fort Lee, NJ 07024 (US). YANAGI-SAWA, Junn [JP/JP]; Institute of Molecular and Cellular Bioscience, The University of Tokyo, 1-1-1, Yayoi, Bunkyoku, Tokyo 113 (JP). (74) Agent: WHITE, John, P.; Cooper & Dunham LLP, 1185 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AU, CA, JP, MX, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: COMPOUNDS THAT INHIBIT INTERACTION BETWEEN SIGNAL-TRANSDUCING PROTEINS AND THE GLGF (PDZ/DHR) DOMAIN AND USES THEREOF

(57) Abstract

This invention provides for a composition capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein. This invention also provides a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein. This invention also provides a method of inhibiting the proliferation of cancer cells. This invention also provides a method of treating cancer with a composition in an amount effective to result in an amount in apoptosis of the cells. This invention also provides a method of inhibiting the proliferation of virally infected cells. This invention also provides for a method of treating a virally-infected subject with a composition in an amount effective to result in apoptosis of the cells. This invention also provides for pharmaceutical compositions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŪ	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Tarkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	tE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zcaland		
СМ	Cameroon		Republic of Korea	PL.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SK	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

COMPOUNDS THAT INHIBIT INTERACTION BETWEEN SIGNAL-TRANSDUCING PROTEINS AND THE GLGF (PDZ/DHR) DOMAIN AND USES THEREOF

The invention disclosed herein was made with Government support under Grant No. R01GM55147-01 from the National Institutes of Health of the United States Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

BACKGROUND

Throughout this application, various publications are referenced by author and date. Full citations for these publications may be found listed alphabetically at the end of the specification immediately preceding Sequence Listing and the claims. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.

25

30

35

5

10

Fas (APO-1/CD95) and its ligand have been identified as important signal-mediators of apoptosis (Itoh, et al. 1991) The structural organization of Fas (APO-1/CD95) has suggested that it is a member of the tumor necrosis factor receptor superfamily, which also includes the p75 nerve growth factor receptor (NGFR) (Johnson, et al. 1986), the T-cell-activation marker CD27 (Camerini, et al. 1991), the Hodgkin-lymphoma-associated antigen CD30 (Smith, et al. (1993), the human B cell antigen CD40 (Stamenkovic, et al. 1989), and T cell antigen OX40 (Mallett, et al. 1990). Genetic mutations of both Fas and ligand have been associated with lymphoproliferative and autoimmune disorders in mice (Watanabe-Fukunaga, et al. 1992; Takahashi, et al. 1994).

Furthermore, alterations of Fas expression level have been thought to lead to the induction of apoptosis in T-cells infected with human immunodeficiency virus (HIV) (Westendorp, et al. 1995).

5

10

15

Several Fas-interacting signal transducing molecules, such as Fas-associated phosphatase-1 (FAP-1) (Figure 1) (Sato, et al. 1995) FADD/MORT1/CAP-1/CAP-2 (Chinnaiyan, et al. 1995; Boldin, et al. 1995; Kischkel, et al. 1995) and RIP (Stanger, et al. 1995), have been identified using yeast two-hybrid and biochemical approaches. All but FAP-1 associate with the functional cell death domain of Fas and overexpression of FADD/MORT1 or RIP induces apoptosis in cells transfected with these proteins. In contrast, FAP-1 is the only protein that associates with the negative regulatory domain (C-terminal 15 amino acids) (Ito, et al. 1993) of Fas and that inhibits Fas-induced apoptosis.

FAP-1 (PTPN13) has several alternatively-spliced forms 20 that are identical to PTP-BAS/hPTP1E/PTPL1, (Maekawa, et al. 1994; Banville, et al. 1994; Saras, et al. 1994) and contains a membrane-binding region similar to those found in the cytoskeleton-associated proteins, ezrin, (Gould et al. 1989) radixin (Funayama et al. 1991) moesin (Lankes, 25 et al. 1991), neurofibromatosis type II gene product (NFII) (Rouleau, et al. 1993), and protein 4.1 (Conboy, et al. 1991), as well as in the PTPases PTPH1 (Yang, et al. 1991), PTP-MEG (Gu, et al. 1991), and PTPD1 (Vogel, FAP-1 intriguingly contains six GLGF 30 et al. 1993). (PDZ/DHR) repeats that are thought to mediate intra-and inter-molecular interactions among protein domains. The third GLGF repeat of FAP-1 was first identified as a showing the specific interaction with C-terminus of Fas receptor (Sato, et al. 1995). This 35 suggests that the GLGF domain may play an important role in targeting proteins to the submembranous cytoskeleton

-3-

and/or in regulating biochemical activity. GLGF repeats have been previously found in guanylate kinases, as well as in the rat post-synaptic density protein (PSD-95) (Cho, et al. 1992), which is a homolog of the Drosophila tumor suppressor protein, lethal-(1)-disc-large-1 [dlg-1] (Woods, et al 1991; Kitamura, et al. 1994). These repeats may mediate homo- and hetero-dimerization, which could potentially influence PTPase activity, binding to Fas, and/or interactions of FAP-1 with other signal transduction proteins. Recently, it has also been reported that the different PDZ domains of proteins interact with the C-terminus of ion channels and other proteins (Figure 1) (TABLE 1) (Kornau, et al. 1995; Kim, et al. 1995; Matsumine, et al. 1996).

15

20

10

5

TABLE 1. Proteins that interact with PDZ domains.

Protein	C-terminal sequence	Associated protein	Reference
Fas (APO-1/CD95)	SLV	FAP-1	2
NMDA receptor NR2 subunit	SDV	PSD95	3
Shaker-type K+ channel	TDV	PSD95 & DLG	4
APC	TEV	DLG	5

10

15

20

SUMMARY OF THE INVENTION

invention provides a composition capable inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L) (Sequence I.D. No.: Further, the cytoplasmic protein may contain the acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$ (Sequence I.D. No.: 2), wherein X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids and n represents at least 2, but not more than 4. In a preferred embodiment, the amino acid sequence is SLGI (Sequence I.D. No.: 3). Further, the invention provides for a composition when the signal-transducing protein has at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L) (Sequence I.D. No.: 4), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids.

25 This invention also provides for a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L). Further this invention provides for a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/L/I) and a cytoplasmic protein.

This invention also provides for a method inhibiting the proliferation of cancer cells, specifically, where the cancer cells are derived from organs comprising the

-5-

colon, liver, breast, ovary, testis, lung, stomach, spleen, kidney, prostate, uterus, skin, head, thymus and neck, or the cells are derived from either T-cells or B-cells.

5

10

25

30

This invention also provides for a method of treating cancer in a subject in an amount of the composition of effective to result in apoptosis of the cells, specifically, where the cancer cells are derived from organs comprising the thymus, colon, liver, breast, ovary, testis, lung, stomach, spleen, kidney, prostate, uterus, skin, head and neck, or the cells are derived from either T-cells or B-cells.

This invention also provides for a method of inhibiting the proliferation of virally infected cells, specifically wherein the virally infected cells are infected with the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus, Adenovirus, Human T-cell lymphtropic virus, type 1 or HIV.

This invention also provides a pharmaceutical composition comprising compositions capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein.

This invention also provides a pharmaceutical composition comprising compounds identified to be capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein.

20

25

35

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. Diagram of Fas-associated phosphatase-1 protein, showing the six GLGF (PDZ/DHR) domain repeats; comparison of similar membrane binding sites with other proteins and proteins that contain GLGF (PDZ/DHR) repeats.

- Figures 2A, 2B, 2C and 2D. Mapping of the minimal region of the C-terminal of Fas required for the binding to FAP-1. Numbers at right show each independent clone (Figures 2C and 2D).
 - 2A. Strategy for screening of a random peptide library by the yeast two-hybrid system.
- 2B. Alignment of the C-terminal 15 amino acids of Fas between human (Sequence I.D. No.: 5), rat (Sequence I.D. No.: 6), and mouse (Sequence I.D. No.: 7).
 - 2C. The results of screening a semi-random peptide library. Top row indicates the amino acids which were fixed based on the homology between human and rat. Dash lines show unchanged amino acids.
 - 2D. The results of screening a random peptide library (Sequence I.D. No.: 8, Sequence I.D. No.: 9, Sequence I.D. No.: 10, Sequence I.D. No.: 11, Sequence I.D. No.: 12, Sequence I.D. No.: 13, Sequence I.D. No.: 14, Sequence I.D. No.: 15, Sequence I.D. No.: 16, Sequence I.D. No.: 17, respectively).
- 30 Figures 3A, 3B and 3C. Inhibition assay of Fas/FAP-1 binding in vitro.
 - 3A. Inhibition assay of Fas/FAP-1 binding using the C-terminal 15 amino acids of Fas. GST-Fas fusion protein (191-355) was used for in vitro binding assay (lane 1, 3-10). GST-Fas fusion protein (191-320) (lane 2) and 1 mM human PAMP (N-terminal 20 amino acids of proadrenomedullin, M.W. 2460.9)

PCT/US97/12677

- (lane 3) were used as negative controls. The concentrations of the C-terminal 15 amino acids added were 1 (lane 4), 3 (lane 5), 10 (lane 6), 30 (lane 7), 100 (lane 8), 300 (lane 9), and 1000 μ M (lane 10).
- 3B. Inhibition assay of Fas/FAP-1 binding using the truncated peptides corresponding to the C-terminal 15 amino acids of Fas. All synthetic peptides were acetylated for this inhibition assay (Sequence I.D. No.: 4, Sequence I.D. No.: 18, Sequence I.D. No.: 19. Sequence I.D. No.: 20, Sequence I.D. No.: 21,
- No.: 4, Sequence I.D. No.: 18, Sequence I.D. No.: 19, Sequence I.D. No.: 20, Sequence I.D. No.: 21, Sequence I.D. No.: 22, Sequence I.D. No.: 23, respectively).
- 3C. Inhibitory effect of Fas/FAP-1 binding using the scanned tripeptides.

Figures 4A, 4B, 4C and 4D.

- 4A. Interaction of the C-terminal 3 amino acids of Fas with FAP-1 in yeast.
- 20 4B. Interaction of the C-terminal 3 amino acids of Fas with FAP-1 in vitro.
 - 4C. Immuno-precipitation of native Fas with GST-FAP-1.
 - 4D. Inhibition of Fas/FAP-1 binding with Ac-SLV or Ac-SLY.

25

30

5

- Figures 5A, 5B, 5C, 5D, 5E and 5F. Microinjection of Ac-SLV into the DLD-1 cell line. Triangles identify the cells both that were could be microinjected with Ac-SLV and that showed condensed chromatin identified. On the other hand, only one cell of the area appeared apoptotic when microinjected with Ac-SLY.
- 5A. Representative examples of the cells microinjected with Ac-SLV in the presence of 500 ng/ml CH11 are shown in phase contrast.
- 35 5B. Representative examples of the cells microinjected with AC-SLY in the presence of 500 ng/ml CH11 are shown in phase contrast.

-8-

- 5C. Representative examples of the cells microinjected with Ac-SLV in the presence of 500 ng/ml CH11 are shown stained with FITC.
- 5D. Representative examples of the cells microinjected with AC-SLY in the presence of 500 ng/ml CH11 are shown stained with FITC.
 - 5E. Representative examples of the cells microinjected with Ac-SLV in the presence of 500 ng/ml CH11 are shown with fluorescent DNA staining with Hoechst 33342.
 - 5F. Representative examples of the cells microinjected with AC-SLY in the presence of 500 ng/ml CH11 are shown in fluorescent DNA staining with Hoechst 33342.

Figure 6. Quantitation of apoptosis in microinjected DLD-1 cells.

Figures 7A, 7B, 7C, 7D, 7E, 7F, 7G, and 7H.

10

15

- 20 7A. Amino acid sequence of human nerve growth factor receptor (Sequence I.D. No.: 24).
 - 7B. Amino acid sequence of human CD4 receptor (Sequence I.D. No. 25).
- 7C. The interaction of Fas-associated phosphatase-1 to 25 the C-terminal of nerve growth factor receptor (NGFR) (p75).
 - 7D. Amino acid sequence of human colorectal mutant cancer protein (Sequence I.D. No.: 26).
 - 7E. Amino acid sequence of protein kinase C, alpha type.
- 30 7F. Amino acid sequence of serotonin 2A receptor (Sequence I.D. No.: 27).
 - 7G. Amino acid sequence of serotonin 2B receptor (Sequence I.D. No.: 28).
- 7H. Amino acid sequence of adenomatosis polyposis coli 35 protein (Sequence I.D. No.: 29).

30

35

- Figure 8. Representation of the structural characteristics of p75 NGFR (low-affinity nerve growth factor receptor).
- Figure 9. Comparison of the C-terminal ends of Fas and p75 NGFR.
- Figure 10. In vitro interaction of ³⁵S-labeled FAP-1 with various receptors expressed as GST fusion proteins. The indicated GST fusion proteins immobilized on glutathione-Sepharose beads were incubated with in vitro translated, ³⁵S-labeled FAP-1 protein. After the beads were washed, retained FAP-1 protein was analyzed by SDS-PAGE and autoradiography.

Figures 11A and 11B. In vitro interaction ³⁵S-labeled FAP-1 with GST-p75 deletion mutants.

11A. Schematic representation of the GST fusion proteins containing the cytoplasmic domains of p75 and p75 deletion mutants. Binding of FAP-1 to the GST fusion proteins with various p75 deletion mutants is depicted at the right and is based on data from (11B).

Interaction of in vitro translated, ³⁵S-labeled FAP-1 protein with various GST fusion proteins immobilized on glutathione-Sepharose beads. After the beads were washed, retained FAP-1 protein was analyzed by SDS-PAGE and autoradiography.

Figure 12. The association between LexA-C-terminal cytoplasmic region of p75NGFR and VP16-FAP-1. The indicated yeast strains were constructed by transformation and the growth of colonies was tested. +/- indicates the growth of colonies on his plate.

35

DETAILED DESCRIPTION OF THE INVENTION

As used herein, amino acid residues are abbreviated as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.

- In order to facilitate an understanding of the material which follows, certain frequently occurring methods and/or terms are best described in Sambrook, et al., 1989.
- The present invention provides for a composition capable 15 inhibiting specific binding between a signaltransducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, 20 and each slash within such parentheses separating the alternative amino acids. Further, the cytoplasmic protein may contain the amino acid sequence $(K/R/Q)-X_n$ -(G/S/A/E)-L-G-(F/I/L), wherein X represents any amino acid which is selected from the group comprising the twenty 25 naturally occurring amino acids and n represents at least 2, but not more than 4. Specifically, in a preferred embodiment, the cytoplasmic protein contains the amino acid sequence SLGI.

The amino acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$ is also well-known in the art as "GLGF (PDZ/DHR) amino acid domain." As used herein, "GLGF (PDZ/DHR) amino acid domain" means the amino acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$.

In a preferred embodiment, the signal-transducing protein

20

25

30

35

has at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids.

The compositions of the subject invention may be, but not limited to, antibodies, inorganic compounds, organic compounds, peptides, peptidomimetic compounds, polypeptides or proteins, fragments or derivatives which share some or all properties, e.g. fusion proteins. The composition may be naturally occurring and obtained by purification, or may be non-naturally occurring and obtained by synthesis.

Specifically, the composition may be a peptide containing sequence (S/T) - X - (V/I/L) - COOH, wherein represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids. In preferred embodiments, the the following sequences: one of contains peptide DSENSNFRNEIQSLV, RNEIQSLV, NEIQSLV, EIQSLV, IQSLV, QSLV, SLV, IPPDSEDGNEEQSLV, DSEMYNFRSQLASVV, IDLASEFLFLSNSFL, PPTCSQANSGRISTL, SDSNMNMNELSEV, QNFRTYIVSFV, RETIESTV, RGFISSLV, TIQSVI, ESLV. A further preferred embodiment would be an organic compound which has the sequence Ac-SLV-COOH, wherein the Ac represents an acetyl and each represents a peptide bond.

An example of the subject invention is provided <u>infra</u>. Acetylated peptides may be automatically synthesized on

5

15

20

30

35

an Advanced ChemTech ACT357 using previously published procedures by analogy. Wang resin was used for each run and N°-Fmoc protection was used for all amino acids, and then 20% piperidine/DMF and coupling was completed using DIC/HOBt and subsequently HBTU/DIEA. After the last amino acid was coupled, the growing peptide on the resin was acetylated with Ac_2O/DMF . The acetylated peptide was purified by HPLC and characterized by FAB-MS and ^1H-NMR .

-12-

10 Further, one skilled in the art would know how to construct derivatives of the above-described synthetic peptides coupled to non-acetyl groups, such as amines.

This invention also provides for a composition capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein.

The compositions of the subject invention includes antibodies, inorganic compounds, organic compounds, peptides, peptidomimetic compounds, polypeptides or proteins, fragments or derivatives which share some or all properties, e.g. fusion proteins.

This invention also provides a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses

10

15

20

25

30

35

separating the alternative amino acids, which comprises (a) contacting the cytoplasmic protein bound to the signal-transducing protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the signal-transducing protein bound to the cytoplasmic protein and the bound cytoplasmic protein to form a complex; and (b) detecting the displaced signal-transducing protein or the complex formed in step (a) wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein.

The inhibition of the specific binding between the signal-transducing protein and the cytoplasmic protein may affect the transcription activity of a reporter gene.

Further, in step (b), the displaced cytoplasmic protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the signal-transducing protein is displaced.

As used herein, the "transcription activity of a reporter gene" means that the expression level of the reporter gene will be altered from the level observed when the signal-transducing protein and the cytoplasmic protein are bound. One can also identify the compound by detecting other biological functions dependent on the binding between the signal-transducing protein and the cytoplasmic protein. Examples of reporter genes are numerous and well-known in the art, including, but not limited to, histidine resistant genes, ampicillin resistant genes, β -galactosidase gene.

-14-

Further the cytoplasmic protein may be bound to a solid support. Also the compound may be bound to a solid support and comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

An example of the method is provided infra. One can identify a compound capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein using direct methods of detection such as immuno-precipitation of the cytoplasmic protein and the compound bound to a detectable marker. Further, one could use indirect methods of detection that would detect the increase or decrease in levels of gene As discussed infra, one could construct expression. synthetic peptides fused to a LexA DNA binding domain. These constructs would be transformed into the L40-strain with an appropriate cell line having an appropriate reporter gene. One could then detect whether inhibition had occurred by detecting the levels of expression of the reporter gene. In order to detect the expression levels of the reporter gene, one skilled in the art could employ a variety of well-known methods, e.g. two-hybrid systems in yeast, mammals or other cells.

25

30

35

5

10

15

20

Further, the contacting of step (a) may be <u>in vitro</u>, <u>in vivo</u>, and specifically in an appropriate cell, e.g. yeast cell or mammalian cell. Examples of mammalian cells include, but not limited to, the mouse fibroblast cell NIH 3T3, CHO cells, HeLa cells, Ltk cells, Cos cells, etc.

Other suitable cells include, but are not limited to, prokaryotic or eukaryotic cells, e.g. bacterial cells (including gram positive cells), fungal cells, insect cells, and other animals cells.

WO 98/05347 PCT/US97/12677 -15-

5

10

15

25

30

35

Further, the signal-transducing protein may be a cell surface receptor, signal transducer protein, or a tumor suppressor protein. Specifically, the cell surface protein is the Fas receptor and may be expressed in cells derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, lung, stomach, prostate, uterus, skin, head, and neck, or expressed in cells comprising T-cells and B-cells. In a preferred embodiment, the T-cells are Jurkat T-cells.

Further, the cell-surface receptor may be a CD4 receptor, p75 receptor, serotonin 2A receptor, or serotonin 2B receptor.

Further, the signal transducer protein may be Protein Kinase-C- α -type.

Further, the tumor suppressor protein may be a adenomatosis polyposis coli tumor suppressor protein or colorectal mutant cancer protein.

Further, the cytoplasmic protein contains the amino acid sequence SLGI, specifically Fas-associated phosphatase-1.

This invention also provides a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein which comprises (a) contacting the signal-transducing protein bound to the cytoplasmic protein with

a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the cytoplasmic protein bound to the signal-transducing protein and bound signal-transducing protein to form a complex; and (b) detecting the displaced cytoplasmic protein or the complex of step (a), wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein. The inhibition of the specific binding between the signal-transducing protein and the cytoplasmic protein affects the transcription activity of a reporter gene. Further, in step (b), the displaced signal-transducing protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the cytoplasmic protein is displaced.

-16-

Further, in step (b), the displaced cytoplasmic protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the signal-transducing protein is displaced.

30

35

5

10

15

20

25

As used herein, the "transcription activity of a reporter gene" means that the expression level of the reporter gene will be altered from the level observed when the signal-transducing protein and the cytoplasmic protein are bound. One can also identify the compound by detecting other biological functions dependent on the binding between the signal-transducing protein and the

cytoplasmic protein. Examples of reporter genes are numerous and well-known in the art, including, but not limited to, histidine resistant genes, ampicillin resistant genes, β -galactosidase gene.

-17-

5

10

15

20

25

Further, the cytoplasmic protein may be bound to a solid support or the compound may be bound to a solid support, comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

An example of the method is provided infra. One could identify a compound capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein using direct 'methods of detection such as immuno-precipitation of the cytoplasmic protein the compound bound with a detectable marker. Further, one could use indirect methods of detection that would detect the increase or decrease in levels of gene As discussed infra, one could construct synthetic peptides fused to a LexA DNA binding domain. These constructs would be transformed into L40-strain with an appropriate cell line having a reporter gene. One could then detect whether inhibition had occurred by detecting the levels of the reporter gene. methods are also well known in the art, such as employing a yeast two-hybrid system to detect the expression of a reporter gene.

Further the contacting of step (a) can be <u>in vitro</u> or <u>in vivo</u>, specifically in a yeast cell or a mammalian cell.

Examples of mammalian cells include, but not limited to, the mouse fibroblast cell NIH 3T3, CHO cells, HeLa cells, Ltk- cells, Cos cells, etc.

35

Other suitable cells include, but are not limited to, prokaryotic or eukaryotic cells, e.g. bacterial cells

-18-

PCT/US97/12677

(including gram positive cells), fungal cells, insect cells, and other animals cells.

Further, the signal-transducing protein is a cell surface 5 signal transducer protein, receptor, or a Specifically, the cell surface suppressor protein. protein is the Fas receptor and is expressed in cells derived from organs comprising thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or expressed in cells 10 comprising T-cells and B-cells. In a preferred embodiment, the T-cells are Jurkat T-cells.

Further, the cell-surface receptor may be a CD4 receptor, p75 receptor, serotonin 2A receptor, or serotonin 2B receptor.

Further, the signal transducer protein may be Protein Kinase- $C-\alpha$ -type.

20

30

35

WO 98/05347

Further, the tumor suppressor protein may be a adenomatosis polyposis coli tumor suppressor protein or colorectal mutant cancer protein.

25 Further, the cytoplasmic protein contains the amino acid sequence SLGI, specifically Fas-associated phosphatase1.

This invention also provides a method of inhibiting the proliferation of cancer cells comprising the above-described composition, specifically, wherein the cancer cells are derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or wherein the cancer cells are derived from cells comprising T-cells and B-cells.

-19-

WO 98/05347

5

30

This invention also provides a method of inhibiting the proliferation of cancer cells comprising the compound identified by the above-described method, wherein the cancer cells are derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or wherein the cancer cells are derived from cells comprising T-cells and B-cells.

PCT/US97/12677

- The invention also provides a method of treating cancer in a subject which comprises introducing to the subject's cancerous cells an amount of the above-described composition effective to result in apoptosis of the cells, wherein the cancer cells are derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- As used herein "apoptosis" means programmed cell death of the cell. The mechanisms and effects of programmed cell death differs from cell lysis. Some observable effects of apoptosis are: DNA fragmentation and disintegration into small membrane-bound fragments called apoptotic bodies.

Means of detecting whether the composition has been effective to result in apoptosis of the cells are well-known in the art. One means is by assessing the morphological change of chromatin using either phase contrast or fluorescence microscopy.

The invention also provides for a method of inhibiting the proliferation of virally infected cells comprising the above-described composition or the compound identified by the above-described, wherein the virally infected cells comprise Hepatitis B virus, Epstein-Barr

-20-

virus, influenza virus, Papilloma virus, Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

The invention also provides a method of treating a virally-infected subject which comprises introducing to the subject's virally- infected cells the above-described composition effective to result in apoptosis of the cells or the compound identified by the above-described method of claim 27 effective to result in apoptosis of the cells, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus, Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

Means of detecting whether the composition has been effective to result in apoptosis of the cells are well-known in the art. One means is by assessing the morphological change of chromatin using either phase contrast or fluorescence microscopy.

20

5

10

This invention also provides for a pharmaceutical composition comprising the above-described composition of in an effective amount and a pharmaceutically acceptable carrier.

25

This invention also provides for a pharmaceutical composition comprising the compound identified by the above-described method of in an effective amount and a pharmaceutically acceptable carrier.

30

35

This invention further provides a composition capable of specifically binding a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/L/I), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X

represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids. The composition may contain the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, and each slash within such parentheses separating the alternative amino acids. In a preferred embodiment, the composition contains the amino acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$, wherein X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids and n represents at least 2, but not more than 4. In another preferred embodiment, the composition contains the amino acid sequence SLGI.

15

20

25

30

35

10

5

This invention further provides a method for identifying compounds capable of binding to a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/L/I), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, which comprises (a) contacting the transducing protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to bind to the signaltransducing protein to form a complex; and (b) detecting the complex formed in step (a) so as to identify a compound capable of binding to the signal-transducing protein. Specifically, the identified compound contains the amino acid sequence (G/S/A/E)-L-G-(F/I/L). further preferred embodiment, the identified compound contains the amino acid sequence SLGI.

Further, in the above-described method, the signal-

5

10

15

20

25

30

35

-22-

transducing protein may be bound to a solid support. Also, the compound may be bound to a solid support, and may comprise an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

Further, the signal-transducing protein may be a cell-surface receptor or a signal transducer. Specifically, the signal-transducing protein may be the Fas receptor, CD4 receptor, p75 receptor, serotonin 2A receptor, serotonin 2B receptor, or protein kinase-C- α -type.

This invention also provides a method of restoring negative regulation of apoptosis in a cell comprising the above-described composition or a compound identified by the above-described method.

As used herein "restoring negative regulation of apoptosis" means enabling the cell from proceeding onto programmed cell death.

For example, cells that have functional Fas receptors and Fas-associated phosphatase 1 do not proceed onto programmed cell death or apoptosis due to the negative regulation of Fas by the phosphatase. However, if Fas-associated phosphatase 1 is unable to bind to the carboxyl terminus of the Fas receptor ((S/T)-X-(V/L/I) region), e.g. mutation or deletion of at least one of the amino acids in the amino acid sequence (G/S/A/E)-L-G-(F/I/L), the cell will proceed to apoptosis. By introducing a compound capable of binding to the carboxyl terminus of the Fas receptor, one could mimic the effects of a functional phosphatase and thus restore the negative regulation of apoptosis.

This invention also provides a method of preventing apoptosis in a cell comprising the above-described

5

-23-

composition or a compound identified by the abovedescribed method.

This invention also provides a means of treating pathogenic conditions caused by apoptosis of relevant cells comprising the above-described composition or the compound identified by the above-described method.

This invention is illustrated in the Experimental Details section which follows. These sections are set forth to aid in an understanding of the invention but are not intended to, and should not be construed to, limit in any way the invention as set forth in the claims which follow thereafter.

-24-

PCT/US97/12677

FIRST SERIES OF EXPERIMENTS

Experimental Details

5 Methods and Materials

1. Screening a semi-random and random peptide library.

To create numerous mutations in a restricted DNA 10 sequence, PCR mutagenesis with degenerate oligonucleotides was employed according to a protocol described elsewhere (Hill, et al. 1987). Based on the homology between human and rat, two palindromic sequences were designed for construction of semi-random library. t w o primers used 15 were 5'-CGGAATTCNNNNNNNNAACAGCNNNNNNNNNAATGAANNNCAAAGTCTGNN NTGAGGATCCTCA-3' I.D. (Seq. 5'-CGGAATTCGACTCAGAANNNNNAACTTCAGANNNNNNATCNNNNNNNNGT CTGAGGATCCTCA-3' (Seq. I.D. No.: 31). Briefly, the two primers (each 200 pmol), purified by HPLC, were annealed 20 at 70 °C for 5 minutes and cooled at 23 °C for 60 minutes. A Klenow fragment (5 U) was used for filling in with a dNTP mix (final concentration, 1 mM per each dNTP) at 23°C for 60 minutes. The reaction was stopped with 1 μ l of 0.5 M EDTA and the DNA was purified with ethanol 25 The resulting double-stranded DNA was precipitation. digested with EcoRI and BamHI and re-purified by electrophoresis on non-denaturing polyacrylamide gels. The double-strand oligonucleotides were then ligated into the EcoRI-BamHI sites of the pBTM116 plasmid. 30 ligation mixtures were electroporated into the E. coli XL1-Blue MRF' (Stratagene) for the plasmid library. The large scale transformation was carried out as previously reported. The plasmid library was transformed into L40-strain cells (MATa, trp1, leu2, his3, ade2, 35 LYS2: (lexAop) 4-HIS3, URA3:: (lexAop) -lacZ) carrying the plasmid pVP16-31 containing a FAP-1 cDNA (Sato, et al.

WO 98/05347 - 25 -

1995). Clones that formed on histidine-deficient medium (His') were transferred to plates containing 40 μ g/ml X-gal to test for a blue reaction product (ß-gal') in plate and filter assays. The clones selected by His' and ß-gal' assay were tested for further analysis. The palindromic oligonucleotide, 5'-CGGAATTC-(NNN)₄₋₁₅-TGAGGATCCTCA-3' (Seq. I.D. No. 32), was used for the construction of the random peptide library.

PCT/US97/12677

10

15

20

25

5

2. Synthesis of peptides

Peptides were automatically synthesized on an Advanced ChemTech ACT357 by analogy to published procedures (Schnorrenberg and Gerhardt, 1989). Wang resin (0.2-0.3 mmole scale) was used for each run and N°-Fmoc protection was employed for all amino acids. Deprotection was achieved by treatment with 20% piperidine/DMF and coupling was completed using DIC/HOBt and subsequent HBTU/DIEA. After the last amino acid was coupled, the growing peptide on the resin was acetylated with Ac₂O/DMF. The peptide was cleaved from the resin with concomitant removal of all protecting groups by treating with TFA. The acetylated peptide was purified by HPLC and characterized by FAB-MS and ¹H-NMR.

- 3. Inhibition asssay of Fas/FAP-1 binding using the C-terminal 15 amino acids of Fas.
- 30 HFAP-10 cDNA (Sato, et al. 1995) subcloned into the Bluescript vector pSK-II (Stratagene) was in vitro-translated from an internal methionine codon in the presence of 35S-L-methionine using a coupled in vitro transcription/translation system (Promega, TNT lysate) and T7 RNA polymerase. The resulting 35S-labeled protein 35 was incubated with GST-Fas fusion proteins that had been immobilized on GST-Sepharose 4B affinity beads

15

20

25

(Pharmacia) in a buffer containing 150 mM NaCl, 50 mM Tris [pH 8.0], 5 mM DTT, 2 mM EDTA, 0.1 % NP-40, 1 mM PMSF, 50 μ g/ml leupeptin, 1 mM Benzamidine, and 7 μ g/ml pepstatin for 16 hours at 4 °C. After washing vigorously 4 times in the same buffer, associated proteins were recovered with the glutathione-Sepharose beads by centrifugation, eluted into boiling Laemmli buffer, and analyzed by SDS-PAGE and fluorography.

10 4. Inhibition assay of terminal 15 amino acids of Fas and inhibitory effect of Fas/FAP-1 binding using diverse tripeptides.

In vitro-translated [35] HFAP-1 was purified with a NAP-5 column (Pharmacia) and incubated with 3 µM of GST-fusion proteins for 16 hours at 4°C. After washing 4 times in the binding buffer, radioactivity incorporation was determined in a b counter. The percentage of binding inhibition was calculated as follows: percent inhibition = [radioactivity incorporation using GST-Fas (191-335) with peptides - radioactivity incorporation using GST-Fas (191-320) with peptides] / [radioactivity incorporation using GST-Fas (191-335) without peptides - radioactivity incorporation using GST-Fas (191-320) without peptides]. n=3.

- 5. Interaction of the C-terminal 3 amino acids of Fas with FAP-1 in yeast and in vitro.
- The bait plasmids, pBTM116 (LexA)-SLV, -PLV, -SLY, and -SLA, were constructed and transformed into L40-strain with pVP16-FAP-1 or -ras. Six independent clones from each transformants were picked up for the analysis of growth on histidine-deficient medium. GST-Fas, -SLV, and PLV were purified with GST-Sepharose 4B affinity beads (Pharmacia). The methods for in vitro binding are described above.

-27-

6. Immuno-precipitation of native Fas with GST-FAP-1 and inhibition of Fas/FAP-1 binding with Ac-SLV.

GST-fusion proteins with or without FAP-1 were incubated with cell extracts from Jurkat T-cells expressing Fas. The bound Fas was detected by Western analysis using anti-Fas monoclonal antibody (F22120, Transduction Laboratories). The tripeptides, Ac-SLV and Ac-SLY were used for the inhibition assay of Fas/FAP-1 binding.

10

15

20

25

5

Microinjection of Ac-SLV into the DLD-1 cell line. 7. DLD-1 human colon cancer cells were cultured in RPMI 1640 medium containing 10% FCS. For microinjection, cells were plated on CELLocate (Eppendorf) at 1 X 105 cells/2 ml in a 35 mm plastic culture dish and grown for 1 day. Just before microinjection, Fas monoclonal antibodies CH11 (MBL International) was added at the concentration of 500 ng/ml. All microinjection experiments were performed using an automatic microinjection system (Eppendorf transjector 5246, micro-manipulator 5171 and Femtotips) et al. 1995). Synthetic tripeptides were suspended in 0.1% (w/v) FITC-Dextran (Sigma)/K-PBS at the concentration of 100 mM. The samples were microinjected into the cytoplasmic region of DLD-1 cells. Sixteen to 20 hours postinjection, the cells were washed with PBS and stained with 10 μ g/ml Hoechst 33342 in PBS. After incubation at 37°C for 30 minutes, the cells were photographed and the cells showing condensed chromatin were counted as apoptotic.

30

8. Quantitation of apoptosis in microinjected DLD-1 cells.

For each experiment, 25-100 cells were microinjected.

Apoptosis of microinjected cells was determined by assessing morphological changes of chromatin using phase contrast and fluorescence microscopy (Wang, et al., 1995;

WO 98/05347

McGahon, et al., 1995). The data are means +/- S.D. for two or three independent determinations.

-28-

PCT/US97/12677

Discussion

5

10

15

20

25

30

35

In order to identify the minimal peptide stretch in the C-terminal region of the Fas receptor necessary for FAP-1 binding, an in vitro inhibition assay of Fas/FAP-1 binding was used using a series of synthetic peptides as well as yeast two-hybrid system peptide libraries (Figure 2A). First, semi-random libraries (based on the homology between human and rat Fas) (Figures 2B and 2C) of 15 amino acids fused to a LexA DNA binding domain were constructed and co-transformed into yeast strain L40 with pVP16-31 (Sato, et al. 1995) that was originally isolated as FAP-1. After the selection of 200 His' colonies from an initial screen of 5.0 X 106 (Johnson, et al. 1986) transformants, 100 colonies that were β -galactosidase positive were picked for further analysis. Sequence analysis of the library plasmids encoding the C-terminal 15 amino acids revealed that all of the C-termini were either valine, leucine or isoleucine residues. a random library of 4-15 amino acids fused to a LexA DNA binding domain was constructed and screened according to this strategy (Figure 2D). Surprisingly, all of the third amino acid residues from the C-termini were serine, and the results of C-terminal amino acid analyses were identical to the screening of the semi-random cDNA libraries. No other significant amino acid sequences were found in these library screenings, suggesting that the motifs of the last three amino acids (tS-X-V/L/I) are very important for the association with the third PDZ FAP-1 а crucial domain and play protein-protein interaction as well as for the regulation of Fas-induced apoptosis. To further confirm whether the last three amino acids are necessary and sufficient for Fas/FAP-1 binding, plasmids of the LexA-SLV, -PLV, -PLY,

10

15

20

25

30

35

-SLY, and -SLA fusion proteins were constructed and co-transformed into yeast with pVP16-FAP-1. The results showed that only LexA-SLV associated with FAP-1, whereas LexA-PLV, -PLY, -SLY, and -SLA did not (Figure 4A). In vitro binding studies using various GST-tripeptide fusions and *in vitro*-translated FAP-1 were consistent with these results (Figure 4B).

In addition to yeast two-hybrid approaches, in vitro inhibition assay of Fas/FAP-1 binding was also used. First, a synthetic peptide of the C-terminal 15 amino acids was tested whether it could inhibit the binding of Fas and FAP-1 in vitro (Figure 3A). The binding of in vitro-translated FAP-1 to GST-Fas was dramatically reduced and dependent on the concentration of the synthetic 15 amino acids of Fas. In contrast with these results, human PAMP peptide (Kitamura, et al. 1994) as a . negative control had no effect on Fas/FAP-1 binding activity under the same biochemical conditions. Second, the effect of truncated C-terminal synthetic peptides of Fas on Fas/FAP-1 binding in vitro was examined. As shown in Figure 3B, only the three C-terminal amino acids (Ac-SLV) were sufficient to obtain the same level of inhibitory effect on the binding of FAP-1 to Fas as achieved with the 4-15 synthetic peptides. Furthermore, Fas/FAP-1 binding was extensively investigated using the scanned tripeptides to determine the critical amino acids residues required for inhibition (Figure 3C). results revealed that the third amino acids residues from the C-terminus, and the C-terminal amino acids having the strongest inhibitory effect were either serine or threonine; and either valine, leucine, or isoleucine, respectively. However, there were no differences among the second amino acid residues from the C-terminus with respect to their inhibitory effect on Fas/FAP-1 binding. These results were consistent with those of the yeast two-hybrid system (Figures 2C and 2D). Therefore, it was

25

30

35

WO 98/05347 PCT/US97/12677

concluded that the C-terminal three amino acids (SLV) are critical determinants of Fas binding to the third PDZ domain of FAP-1 protein.

To further substantiate that the PDZ domain interacts with tS/T-X-V/L/I under more native conditions, GST-fused FAP-1 proteins were tested for their ability to interact with Fas expressed in Jurkat T-cells. The results revealed that the tripeptide Ac-SLV, but not Ac-SLY, abolished in a dose-dependent manner the binding activity of FAP-1 to Fas proteins extracted from Jurkat T-cells (Figures 4C and 4D). This suggests that the C-terminal amino acids tSLV are the minimum binding site for FAP-1, and that the amino acids serine and valine are critical for this physical association.

To next examine the hypothesis that the physiological association between the C-terminal three amino acids of Fas and the third PDZ domain of FAP-1 is necessary for the in vivo function of FAP-1 as a negative regulator of Fas-mediated signal transduction, a microinjection experiment was employed with synthetic tripeptides in a colon cancer cell line, DLD-1, which expresses both Fas and FAP-1, and is resistant to Fas-induced apoptosis. The experiments involved the direct microinjection of the synthetic tripeptides into the cytoplasmic regions of single cells and the monitoring of the physiological response to Fas-induced apoptosis in vivo. The results showed that microinjection of Ac-SLV into DLD-1 cells dramatically induced apoptosis in the presence of Fas-monoclonal antibodies (CH11, 500 ng/ml) (Figures 5A, 5E and Figure 6), but that microinjection of Ac-SLY and PBS/K did not (Figures 5B, 5F and Figure 6). These results strongly support the hypothesis that the physical association of FAP-1 with the C-terminus of Fas is essential for protecting cells from Fas-induced apoptosis.

WO 98/05347

5

10

15

-31-

PCT/US97/12677

In summary, it was found that the C-terminal SLV of Fas is alone necessary and sufficient for binding to the third PDZ domain of FAP-1. Secondly, it is proposed that the new consensus motif of tS/T-X-V/L/I for such binding to the PDZ domain, instead of tS/T-X-V. It is therefore possible that FAP-1 plays important roles for the modulation of signal transduction pathways in addition to its physical interaction with Fas. Thirdly, demonstrated that the targeted induction of Fas-mediated apoptosis in colon cancer cells by direct microinjection tripeptide Ac-SLV. Further investigations including the identification of a substrate(s) of FAP-1 and structure-function analysis will provide insight to the potential therapeutic applications of Fas/FAP-1 interaction in cancer as well as provide a better understanding of the inhibitory effect of FAP-1 on Fas-mediated signal transduction.

SECOND SERIES OF EXPERIMENTS

5

10

15

20

25

30

FAP-1 was originally identified as a membrane-associated protein tyrosine phosphatase which binds to the Cterminus of Fas, and possesses six PDZ domains (also known as DHR domain or GLGF repeat). PDZ domain has recently been shown as a novel module for specific protein-protein interaction, and it appears to be important in the assembly of membrane proteins and also in linking signaling molecules in a multiprotein complex. In recent comprehensive studies, it was found that the third PDZ domain of FAP-1 specifically recognized the sequence motif t(S/T)-X-V and interacts with the Cterminal three amino acids SLV of Fas (Fig. 9). In order to investigate the possibility that FAP-1 also interacts with the C-terminal region of p75NGFR (Fig. 8), an in vitro binding assay, was performed as well as, a yeast two-hybrid analysis by using a series of deletion mutants The results revealed that the C-terminal of p75NGFR. cytoplasmic region of p75NGFR, which is highly conserved among all species, interacts with FAP-1 (Fig. 10). Furthermore, the C-terminal three amino acids SPV of p75NGFR were necessary and sufficient for the interaction with the third PDZ domain of FAP-1 (Fig. 11A and 11B). Since FAP-1 expression was found highest in fetal brain, these findings imply that interaction of FAP-1 with p75NGFR plays an important role for signal transduction pathway via p75NGFR in neuronal cells as well as in the formation of the initial signal-transducing complex for p75NGFR.

REFERENCES

1. Banville, D., et al. <u>J. Biol.Chem.</u> **269**: 22320-22327 (1994).

5

- 2. Boldin, M. P. et al. <u>J. Biol. Chem</u>. **270**: 7795-7798 (1995).
- 3. Camerini, D., et al. <u>J. Immunol</u>. **147**: 3165-3169 (1991).
 - 4. Chao, M.V. and B.L. Hempstead <u>TINS</u> 18: 321-326 (1995).
- 5. Chinnaiyan, A. M., et al. <u>Cell</u> 81: 505-512 (1995).
 - 6. Cho, K.-O., et al. <u>Neuron</u> 9: 929-942 (1992).
- 7. Conboy, J. G., et al. <u>J. Biol. Chem.</u> **266**: 8273-8280 (1991).
 - 8. Doyle, D.A., et al. Cell 85: 1067-1076 (1996).
- 9. Funayama, N., et al. <u>J. Cell Biol.</u> 115: 1039-1048 25 (1991).
 - 10. Gould, K. L., et al. EMBO J. 8: 4133-4142 (1989).
- 11. Gu, M. X., et ak. <u>Proc. Natl. Acad. Sci. U.S.A.</u> 88: 30 5867-5871 (1991).
 - 12. Hill, D. E., et al. <u>Meth. Enzymol</u>. **15**5, 558-568 (1987).
- 35 13. Ito, N., and Nagata, S. <u>J. Biol. Chem</u>. **268**: 10932-10937 (1993).

- 14. Itoh, N. et al. Cell 66: 233-243 (1991).
- 15. Johnson, D. et al. Cell 47: 545-554 (1986).
- 5 16. Kim, E., et al. <u>Nature</u> 378: 85-88 (1995).
 - 17. Kischkel, F. C. et al. EMBO J. 14: 5579-5588 (1995).
 - 18. Kitamura, K. et al. <u>FEBS Lett</u>. 351: 35-37 (1994).

10

- 19. Kornau, H.-C., et al. Science 269:1737-1740 (1995).
- 20. Lankes, W. T., and Furthmayr, H. <u>Proc. Natl. Acad.</u> Sci. U.S.A. 88: 8297-8301 (1991).

15

- 21. Maekawa, K., et al. <u>FEBS_Letters</u> **337**: 200-206 (1994).
 - 22. Mallett, S., et al. <u>EMBO J</u>. 9: 1063-1068 (1990).

20

- 23. Matsumine, A. et al. Science 272: 1020-1023 (1996).
- 24. McGahon, A. J. et al. Meth. Cell Biol. 46: 153-185 (1995).

25

- 25. Pantel, K. et al. <u>J. Natl. Cancer Inst</u>. 87: 1162-1168 (1995).
- 26. Rouleau, G. et al. Nature 363: 515-521 (1993).

30 27.

- 28. Sambrook, J., et al.(1989) <u>Molecular Cloning: a laboratory manual. Second Edition.</u> Cold Spring Harbor Laboratory Press.
- 35 29. Sato, T., et al. <u>Science</u> 268: 411-415 (1995).
 - 30. Schnorrenberg, G. and Gerhardt H. Tetrahedron 45:

WO 98/05347

-35-

7759-7764 (1989).

31. Saras, J., et al. <u>J. Biol. Chem.</u> **269**, 24082-24089 (1994).

PCT/US97/12677

5

- 32. Smith, C. A. et al. Cell 73: 1349-1360 (1993).
- 33. Stamenkovic, I., et al. <u>EMBO J.</u> 8: 1403-1410 (1989).

10

- 34. Stanger, B. Z., et al. Cell 81: 513-523 (1995).
- 35. Takahashi, T. et al. Cell 76: 969-976 (1994).
- 15 36. Vogel, W., et al. (1993). <u>Science</u> **259**: 1611-1614 (1993).
 - 37. Watanabe-Fukunaga, R., et al. <u>Nature</u> **356**: 314-317 (1992).

20

- 38. Wang, X. W., et al. <u>Cancer Res</u>. 55: 6012-6016 (1995).
 - 39. Westendorp, M. O. et al. <u>Nature</u> 375: 497-500 (1995).

25

- 40. Woods, D.F. and Bryant, P.J. <u>Cell</u> **66**: 451-464 (1991).
- 41. Yang, Q., and Tonks, N. K. <u>Proc. Natl. Acad. Sci.</u>
 30 <u>U.S.A.</u> 88: 5949-5953 (1991).

PCT/US97/12677

-36-

SEQUENCE LISTING

5	(1) GENERA	AL INFORMATION:
5	(i)	APPLICANT: Takaaki Sato and Junn Yanagisawa
10	(ii) '	TITLE OF INVENTION: COMPOUNDS THAT INHIBIT THE INTERACTION BETWEEN SIGNAL- TRANSDUCING PROTEINS AND THE GLGF (PDZ/DHR) DOMAIN AND USES THEREOF
	(iii) 1	NUMBER OF SEQUENCES: 33
15	(iv) (CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Cooper & Dunham LLP (B) STREET: 1185 Avenue of the Americas (C) CITY: New York
20		(D) STATE: New York (E) COUNTRY: U.S.A. (F) ZIP: 10036
25	(v) (COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
30	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: Not Yet Known (B) FILING DATE: 18-JUL-1997 (C) CLASSIFICATION:
35	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: White, John P (B) REGISTRATION NUMBER: 28,678 (C) REFERENCE/DOCKET NUMBER: 0575/48962-A-PCT/JPW/JKM:
40	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (212) 278-0400 (B) TELEFAX: (212) 391-0525
	(2) INFOR	MATION FOR SEQ ID NO:1:
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii)	MOLECULE TYPE: peptide
	(iii)	HYPOTHETICAL: NO
55	(iv)	ANTI-SENSE: NO
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:
60	Gly/ 1	Ser/Ala/Glu Leu Gly Phe/Ile/Leu
	(2) INFOR	MATION FOR SEQ ID NO:2:
65	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid

-37-

```
(C) STRANDEDNESS: single
                     (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: peptide
 5
             (iii) HYPOTHETICAL: NO
              (iv) ANTI-SENSE: NO
10
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
               Lys/Arg/Gln Xaa(n) Gly/Ser/Ala/Glu Leu Gly Phe/Ile/Leu
15
         (2) INFORMATION FOR SEQ ID NO:3:
               (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 4 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
20
                     (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: peptide
25
            (iii) HYPOTHETICAL: NO
              (iv) ANTI-SENSE: NO
30
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
              Ser Leu Gly Ile
35
         (2) INFORMATION FOR SEQ ID NO:4:
               (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 6 amino acids (B) TYPE: amino acid
40
                    (C) STRANDEDNESS: single
                    (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: peptide
45
            (iii) HYPOTHETICAL: NO
              (iv) ANTI-SENSE: NO
50
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
              Ser/Thr Xaa Val/Ile/Leu
              1
55
         (2) INFORMATION FOR SEQ ID NO:5:
               (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 15 amino acids
60
                    (B) TYPE: amino acid
                    (C) STRANDEDNESS: single (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: peptide
65
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
```

Asp Ser Glu Asn Ser Asn Phe Arg Asn Glu Ile Gln Ser Leu Val 10 5 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid
(C) STRANDEDNESS: single 10 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Ser Ile Ser Asn Ser Arg Asn Glu Asn Glu Gly Gln Ser Leu Glu 20 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: Ser Thr Pro Asp Thr Gly Asn Glu Asn Glu Gly Gln Cys Leu Glu 35 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids 40 (B) TYPE: amino acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Glu Ser Leu Val 50 1 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: 55 (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 60 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: Thr Ile Gln Ser Val Ile 65

-39-

	(Ż)	INFORMATION FOR SEQ ID NO:10:
5		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
15		Arg Gly Phe Ile Ser Ser Leu Val 1 5
	(2)	INFORMATION FOR SEQ ID NO:11:
20		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
25		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
30		Arg Glu Thr Ile Glu Ser Thr Val 1 5
	(2)	INFORMATION FOR SEQ ID NO:12:
35		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
40		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
45		Gln Asn Phe Arg Thr Tyr Ile Val Ser Phe Val 1 5 10
50	(2)	INFORMATION FOR SEQ ID NO:13:
		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single
55		(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
60		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: Ser Asp Ser Asn Met Asn Met Asn Glu Leu Ser Glu Val
		1 5 10
65	(2)	INFORMATION FOR SEQ ID NO:14:
		(i) SEQUENCE CHARACTERISTICS:

-40-

_		(A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
5		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
10		Pro Pro Thr Cys Ser Gln Ala Asn Ser Gly Arg Ile Ser Thr Leu 1 5 10 15
15	(2)	INFORMATION FOR SEQ ID NO:15:
		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single
20		(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
		Ile Asp Leu Ala Ser Glu Phe Leu Phe Leu Ser Asn Ser Phe Leu 1 5 10 15
30	(2)	INFORMATION FOR SEQ ID NO:16:
35		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
40		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
		Asp Ser Glu Met Tyr Asn Phe Arg Ser Gln Leu Ala Ser Val Val 1 5 10 15
45	(2)	INFORMATION FOR SEQ ID NO:17:
50		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
55		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
		Ile Pro Pro Asp Ser Glu Asp Gly Asn Glu Glu Gln Ser Leu Val
60	(2)	INFORMATION FOR SEQ ID NO:18:
	(2)	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids
65		(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
5		Gln Ser Leu Val 1
10	(2)	INFORMATION FOR SEQ ID NO:19:
		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 5 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
15		(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
		Ile Gln Ser Leu Val
25	(2)	INFORMATION FOR SEQ ID NO:20:
30		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 6 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
3.5		(ii) MOLECULE TYPE: peptide
35		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: Glu Ile Gln Ser Leu Val
		1 5
40	(2)	INFORMATION FOR SEQ ID NO:21:
45		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
50		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
		Asn Glu Ile Gln Ser Leu Val
55	(2)	INFORMATION FOR SEQ ID NO:22:
60		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
65		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

-42-

Arg Asn Glu Ile Gln Ser Leu Val

5	(2)	INFOR	TAM	ON E	FOR S	SEQ I	D NO):23:									
10		(i)	(B)	LEN TYI STF	E CHA NGTH: PE: & RANDE POLOG	: 15 mino EDNES	amir aci SS: s	no ac id singl	ids								
		(ii)	MOLE	CULE	TYP	E: I	pepti	ide									
15		(xi)	SEQU	JENCE	DES	CRIE	COIT	: SE	Q II	NO:	23:						
		Asp 1	Ser	Glu	Asn	Ser 5	Asn	Phe	Arg	Asn	Glu 10	Ile	Gln	Ser	Leu	Val 15	
20	(2)	INFOR	MATI	ON E	FOR S	SEO I	ID NO):24:									
25	•		SEQU (A) (B) (C)	JENCE LEN TYE STE		ARACT	TERIS 7 ami 5 aci 5S: s	TICS ino a id singl	i: icids	3							
30		(ii)	MOLE	CULE	TY	PE: p	pepti	ide									
30		(xi)	SEQ	JENCE	DES	CRI	OIT	1: SE	EQ II	ON C	24:						
35		Met G	Sly #	Ala C	Sly F	Ala 1	thr (Sly F	Arg A	Ala N	1et 1 10	Asp (Sly I	Pro 1	Arg I	Leu I 15	Leu
33		Leu	Leu	Leu	Leu 20	Leu	Gly	Val	Ser	Leu 25	Gly	Gly	Ala	Lys	Glu 30	Ala	Cys
40		Pro	Thr	Gly 35	Leu	Tyr	Thr	His	Ser 40	Gly	Glu	Cys	Cys	Lys 45	Ala	Cys	Asn
		Leu	Gly 50	Glu	Gly	Val	Ala	Gln 55	Pro	Cys	Gly	Ala	Asn 60	Gln	Thr	Val	Cys
45		Glu 65	Pro	Cys	Leu	Asp	Ser 70	Val	Thr	Phe	Ser	Asp 75	Val	Val	Ser	Ala	Thr 80
50		Glu	Pro	Сув	Lys	Pro 85	Cys	Thr	Glu	Cys	Val 90	Gly	Leu	Gln	Ser	Met 95	Ser
		Ala	Pro	Суѕ	Val 100	Glu	Ala	Asp	qaA	Ala 105	Val	Cys	Arg	Сув	Ala 110	Tyr	Gly
55		Tyr	Tyr	Gln 115	qaA	Glu	Thr	Thr	Gly 120	Arg	Cys	Glu	Ala	Cys 125	Arg	Val	Cys
		Glu	Ala 130	Gly	Ser	Gly	Leu	Val 135	Phe	Ser	Cys	Gln	Asp 140	Lys	Gln	Asn	Thr
60		Val 145	CAa	Glu	Glu	Сув	Pro 150	Asp	Gly	Thr	Tyr	Ser 155	Asp	Glu	Ala	Asn	His 160
65		Val	Asp	Pro	Сув	Leu 165	Pro	Cys	Thr	Val	Cys 170	Glu	Asp	Thr	Glu	Arg 175	Gln
05		Leu	Arg	Glu	Cys 180	Thr	Arg	Trp	Ala	Asp 185	Ala	Glu	Сув	Glu	Glu 190	Ile	Pro

-43-

	G:	ly	Arg	Trp 195	11	Thr	Arg	Ser	Thr 200	Pro	Pro	Glu	Gly	Ser 205	Asp	Ser	Thr
5	A.		Pro 210	Ser	Thr	Gln	Glu	Pro 215	Glu	Ala	Pro	Pro	Glu 220	Gln	Asp	Leu	Ile
		1a 25	Ser	Thr	Val	Ala	Gly 230	Val	Val	Thr	Thr	Val 235	Met	Gly	Ser	Ser	Gln 240
10	Pı	ro	Val	Val	Thr	Arg 245	Gly	Thr	Thr	Asp	Asn 250	Leu	Ile	Pro	Val	Tyr 255	Cys
1.5	Se	er	Ile	Leu	Ala 260	Ala	Val	Val	Val	Gly 265	Leu	Val	Ala	Tyr	Ile 270	Ala	Phe
15	Ly	ys	Arg	Trp 275	Asn	Ser	Cys	Lys	Gln 280	Asn	Lys	Gly	Gly	Ala 285	Asn	Ser	Arg
20	Pı		Val 290	Asn	Gln	Thr	Pro	Pro 295	Pro	Glu	Gly	Glu	Lys 300	Ile	His	Ser	Asp
		er 05	Gly	Ile	Ser	Val	Asp 310	Ser	Gln	Ser	Leu	His 315	Asp	Gln	Gln	Pro	His 320
25	Tì	nr	Gln	Thr	Ala	Ser 325	Gly	Gln	Ala	Leu	Lys 330	Gly	Asp	Gly	Gly	Leu 335	Tyr
30	Se	er	Ser	Leu	Pro 340	Pro	Ala	Lys	Arg	Glu 345	Glu	Val	Glu	Lys	Leu 350	Leu	Asn
30	G]	L y	Ser	Ala 355	Gly	Asp	Thr	Trp	Arg 360	His	Leu	Ala	Gly	Glu 365	Leu	Gly	Tyr
35	G)		Pro 370	Glu	His	Ile	Asp	Ser 375	Phe	Thr	His	Glu	Ala 380	Cys	Pro	Val	Arg
	A] 38		Leu	Leu	Ala	Ser	Trp 390	Ala	Thr	Gln	Asp	Ser 395	Ala	Thr	Leu	Asp	Ala 400
40	Le	eu i	Leu	Ala	Ala	Leu 405	Arg	Arg	Ile	Gln	Arg 410	Ala	Asp	Leu	Val	Glu 415	Ser
45	Le	eu	Cys	Ser	Glu 420	Ser	Thr	Ala	Thr	Ser 425	Pro	Val					
	(2) INE	FOR	MATI	ON E	OR S	SEQ 1	D NO):25:	:								
50	i)	L) :	(Ā) (B) (C)	LEN TYI STI	IGTH: PE: 8 LANDE	RACT 458 mino EDNES EY: J	ami aci SS: s	no a id singl	cids	3							
55	(ii	i) 1	MOLE	CULE	TYE	E: I	epti	de									
	(xi	L)	SEQU	BNCE	DES	CRIE	OIT	: SE	Q II	NO:	25:						
60	Me 1	et.	Asn	Arg	Gly	Val 5	Pro	Phe	Arg	His	Leu 10	Leu	Leu	Val	Leu	Gln 15	Leu
	[A	la :	Leu	Leu	Pro 20	Ala	Ala	Thr	Gln	Gly 25	Lys	Lys	Val	Val	Leu 30	Gly	Lys
65	Ly	/s	Gly	Asp 35	Thr	Val	Glu	Leu	Thr 40	Cys	Thr	Ala	Ser	Gln 45	Lys	Lys	Ser

-44-

	Ile	Gln 50	Phe	His	Trp	Lys	Asn 55	Ser	Asn	Gln	Ile	Lys 60	Ile	Leu	Gly	Asn
5	Gln 65	Gly	Ser	Phe	Leu	Thr 70	Lys	Gly	Pro	Ser	Lys 75	Leu	Asn	Asp	Arg	Ala 80
	Asp	Ser	Arg	Arg	Ser 85	Leu	Trp	Asp	Gln	Gly 90	Asn	Phe	Pro	Leu	Ile 95	Ile
10	Lys	Asn	Leu	Lys 100	Ile	Glu	Asp	Ser	Asp 105	Thr	Tyr	Ile	Сув	Glu 110	Val	Glu
1.5	Asp	Gln	Lys 115	Glu	Glu	Val	Gln	Leu 120	Leu	Val	Phe	Gly	Leu 125	Thr	Ala	Asn
15	Ser	Asp 130	Thr	His	Leu	Leu	Gln 135	Gly	Gln	Ser	Leu	Thr 140	Ile	Thr	Leu	Glu
20	Ser 145	Pro	Pro	Gly	Ser	Ser 150	Pro	Ser	Val	Gln	Cys 155	Arg	Ser	Pro	Arg	Gly 160
	Lys	Asn	Ile	Gln	Gly 165	Gly	Lys	Thr	Leu	Ser 170	Val	Ser	Gln	Leu	Glu 175	Leu
25	Gln	Asp	Ser	Gly 180	Thr	Trp	Thr	Cys	Thr 185	Val	Leu	Gln	Asn	Gln 190	Lys	Lys
30	Val	Glu	Phe 195	Lys	Ile	Asp	Ile	Val 200	Val	Leu	Ala	Phe	Gln 205	Lys	Ala	Ser
30	Ser	Ile 210	Val	Tyr	Lys	Lys	Glu 215	Gly	Glu	Gln	Val	Glu 220	Phe	Ser	Phe	Pro
35	Leu 225	Ala	Phe	Thr	Val	Glu 230	Lys	Leu	Thr	Gly	Ser 235	Gly	Glu	Leu	Trp	Trp 240
	Gln	Ala	Glu	Arg	Ala 245	Ser	Ser	Ser	Lys	Ser 250	Trp	Ile	Thr	Phe	Asp 255	Leu
40	Lys	Asn	Lys	Glu 260	Val	Ser	Val	Lys	Arg 265	Val	Thr	Gln	Asp	Pro 270	Lys	Leu
45	Gln	Met	Gly 275	Lys	Lys	Leu	Pro	Leu 280	His	Leu	Thr	Leu	Pro 285	Gln	Ala	Leu
13	Pro	Gln 290	Tyr	Ala	Gly	Ser	Gly 295	Asn	Leu	Thr	Leu	Ala 300	Leu	Glu	Ala	Lys
50	Thr 305	Gly	Lys	Leu	His	Gln 310	Glu	Asn	Val	Leu	Val 315	Val	Met	Arg	Ala	Thr 320
	Gln	Leu	Gln	Lys	Asn 325	Leu	Thr	Сув	Glu	Val 330	Trp	Gly	Pro	Thr	Ser 335	Pro
55	Lys	Leu	Met	Leu 340	Ser	Leu	Lys	Leu	Glu 345	Asn	Lys	Glu	Ala	Lys 350	Val	Ser
60	Lys	Arg	Glu 355	Lys	Ala	Val	Trp	Val 360	Leu	Asn	Pro	Glu	Ala 365	Gly	Met	Trp
O O	Gln	Cys 370	Leu	Leu	Ser	Asp	Ser 375	Gly	Gln	Val	Leu	Leu 380	Glu	Ser	Asn	Ile
65	Lys 385		Leu	Pro	Thr	Trp 390	Ser	Thr	Pro	Val	Gln 395	Pro	Met	Ala	Leu	Ile 400
	Val	Leu	Gly	Gly	Val	Ala	Gly	Leu	Leu	Leu	Phe	Ile	Gly	Leu	Gly	Ile

-45-

						405					410					415	
5		Phe	Phe	Cys	Val 420	Arg	Суз	Arg	His	Arg 425	Arg	Arg	Gln	Ala	Glu 430	Arg	Met
5		Ser	Gln	Ile 435	Lys	Arg	Leu	Leu	Ser 440	Glu	Lys	Lys	Glu	Cys 445	Gln	Cys	Pro
10		His	Arg 450	Phe	Gln	Lys	Thr	Cys 455	Ser	Pro	Ile						
	(2)	INFO	RMAT	ION I	FOR S	SEQ :	ID NO	D:26	:								
15		(i)	(A) (B) (C)	LEI TYI	NGTH PE: 8 RANDI	ARAC : 820 amino EDNES	8 am: 5 ac: 55: 4	ino a id sing:	acid	3							
20		(ii)															
		(xi)					_		EQ II	ONO:	:26:						
25		Met 1	Asn	Ser	Gly	Val 5	Ala	Met	Lys	Tyr	Gly 10	Asn	Asp	Ser	Ser	Ala 15	Glu
30		Leu	Ser	Glu	Leu 20	His	Ser	Ala	Ala	Leu 25	Ala	Ser	Leu	Lys	Gly 30	Asp	Ile
, ,		Val	Glu	Leu 35	Asn	Lys	Arg	Leu	Gln 40	Gln	Thr	Glu	Arg	Glu 45	Asp	Leu	Leu
35		Glu	Lys 50	Lys	Leu	Ala	Lys	Ala 55	Gln	Cys	Glu	Gln	Ser 60	His	Leu	Met	Arg
		Glu 65	His	Glu	Asp	Val	Gln 70	Glu	Arg	Thr	Thr	Leu 75	Arg	Tyr	Glu	Glu	Arg 80
10		Ile	Thr	Glu	Leu	His 85	Ser	Val	Ile	Ala	Glu 90	Leu	Asn	Lys	Lys	Ile 95	Asp
15		Arg	Leu	Gln	Gly 100	Thr	Thr	Ile	Arg	Glu 105	Glu	Asp	Glu	Tyr	Ser 110	Glu	Leu
		Arg	Ser	Glu 115	Leu	Ser	Gln	Ser	Gln 120	His	Glu	Val	Asn	Glu 125	Asp	Ser	Arg
50		Ser			Gln			Thr 135		Val	Ser		Pro 140	Glu	Asn	Gln	Ser
		Thr 145	Met	Val	Thr	Ala	Asp 150	Met	Asp	Asn	Суз	Ser 155	qaA	Ile	Asn	Ser	Glu 160
55		Leu	Gln	Arg	Val	Leu 165	Thr	Gly	Leu	Glu	Asn 170	Val	Val	Сув	Gly	Arg 175	Lys
50		Lys	Ser	Ser	Cys 180	Ser	Leu	Ser	Val	Ala 185	Glu	Val	Asp	Arg	His 190	Ile	Glu
		Gln	Leu	Thr 195	Thr	Ala	Ser	Glu	His 200	Cys	Asp	Leu	Ala	Ile 205	Lys	Thr	Val
55		Glu	Glu 210	Ile	Glu	Gly	Val	Leu 215	Gly	Arg	Asp	Leu	Tyr 220	Pro	Asn	Leu	Ala
		~1··	C1.,	N~~	Ca~	724	· mrn	G) II	Larg	G3 11	T.011	A1 -	Gl.	T 011	A ~~	~1	~1

-46-

	225					230					235					240
_	Asn	Glu	Ser	Leu	Thr 245	Ala	Met	Leu	Cys	Ser 250	Lys	Glu	Glu	Glu	Leu 255	Asn
5	Arg	Thr	Lys	Ala 260	Thr	Met	Asn	Ala	Ile 265	Arg	Glu	Glu	Arg	Asp 270	Arg	Leu
10	Arg	Arg	Arg 275	Val	Arg	Glu	Leu	Gln 280	Thr	Arg	Leu	Gln	Ser 285	Val	Gln	Ala
	Thr	Gly 290	Pro	Ser	Ser	Pro	Gly 295	Arg	Leu	Thr	Ser	Thr 300	Asn	Arg	Pro	Ile
15	Asn 305	Pro	Ser	Thr	Gly	Glu 310	Leu	Ser	Thr	Ser	Ser 315	Ser	Ser	Asn	Asp	Ile 320
20	Pro	Ile	Ala	Lys	Ile 325	Ala	Glu	Arg	Val	Lys 330	Leu	Ser	Lys	Thr	Arg 335	Ser
20	Glu	Ser	Ser	Ser 340	Ser	Asp	Arg	Pro	Val 345	Leu	Gly	Ser	Glu	Ile 350	Ser	Ser
25	Ile	Gly	Val 355	Ser	Ser	Ser	Val	Ala 360	Glu	His	Leu	Ala	His 365	Ser	Leu	Gln
	Asp	Cys 370	Ser	Asn	Ile	Gln	Glu 375	Ile	Phe	Gln	Thr	Leu 380	Tyr	Ser	His	Gly
30	Ser 385	Ala	Ile	Ser	Glu	Ser 390	Lys	Ile	Arg	Glu	Phe 395	Glu	Val	Glu	Thr	Glu 400
	Arg	Leu	Asn	Ser	Arg 405	Ile	Glu	His	Leu	Lys 410	Ser	Gln	Asn	Asp	Leu 415	Leu
35	Thr	Ile	Thr	Leu 420	Glu	Glu	Суз	Lys	Ser 425	Asn	Ala	Glu	Arg	Met 430	Ser	Met
40	Leu	Val	Gly 435	Lys	Tyr	Glu	Ser	Asn 440	Ala	Thr	Ala	Leu	Arg 445	Leu	Ala	Leu
	Gln	Tyr 450	Ser	Glu	Gln	Cys	Ile 455	Glu	Ala	Tyr	Glu	Leu 460	Leu	Leu	Ala	Leu
45	Ala 465	Glu	Ser	Glu	Gln	Ser 470	Leu	Ile	Leu	Gly	Gln 475	Phe	Arg	Ala	Ala	Gly 480
50	Val	Gly	Ser	Ser	Pro 485	Gly	Asp	Gln	Ser	Gly 490	Asp	Glu	Asn	Ile	Thr 495	Gln
50	Met	Leu	Lys	Arg 500	Ala	His	Asp	Cys	Arg 505	Lys	Thr	Ala	Glu	Asn 510	Ala	Ala
55	Lys	Ala	Leu 515		Met	Lys	Leu	Asp 520		Ser	Сув	Gly	Gly 525	Ala	Phe	Ala
	Val	Ala 530	_	Cys	Ser	Val	Gln 535		Trp	Glu	Ser	Leu 540		Ser	Asn	Ser
60	His 545	Thr	Ser	Thr	Thr	Ser 550		Thr	Ala	Ser	Ser 555		Asp	Thr	Glu	Phe 560
	Thr	Lys	Glu	Asp	Glu 565		Arg	Leu	Lys	Asp 570		Ile	Gln	Gln	Leu 575	
65	Asn	Asp	Arg	Ala 580		Val	Lys	Leu	Thr 585		Leu	Glu	Leu	Glu 590		Ile

-47-

		His	Ile	Asp 595	Pro	Leu	Ser	Tyr	Asp 600	Val	Lys	Pro	Arg	Gly 605	Asp	Ser	Gln
5		Arg	Leu 610	Asp	Leu	Glu	Asn	Ala 615	Val	Leu	Met	Gln	Glu 620	Leu	Met	Ala	Met
		Lys 625	Glu	Glu	Met	Ala	Glu 630	Leu	Lys	Ala	Gln	Leu 635	Tyr	Leu	Leu	Glu	Lys 640
10		Glu	Lys	Lys	Ala	Leu 645	Glu	Leu	Lys	Leu	Ser 650	Thr	Arg	Glu	Ala	Gln 655	Glu
15		Gln	Ala	Tyr	Leu 660	Val	His	Ile	Glu	His 665	Leu	Lys	Ser	Glu	Val 670	Glu	Glu
		Gln	Lys	Glu 675	Gln	Arg	Met	Arg	Ser 680	Leu	Ser	Ser	Thr	Ser 685	Ser	Gly	Ser
20		Lys	Asp 690	Lys	Pro	Gly	Lys	Glu 695	Cys	Ala	Asp	Ala	Ala 700	Ser	Pro	Ala	Leu
		Ser 705	Leu	Ala	Glu	Leu	Arg 710	Thr	Thr	Cys	Ser	Glu 715	Asn	Glu	Leu	Ala	Ala 720
25		Glu	Phe	Thr	Asn	Ala 725	Ile	Arg	Arg	Glu	Lys 730	Lys	Leu	Lys	Ala	Arg 735	Val
30		Gln	Glu	Leu	Val 740	Ser	Ala	Leu	Glu	Arg 745	Leu	Thr	Lys	Ser	Ser 750	Glu	Ile
-		Arg	His	Gln 755	Gln	Ser	Ala	Glu	Phe 760	Val	Asn	Asp	Leu	Lys 765	Arg	Ala	Asn
35		Ser	Asn 770	Leu	Val	Ala	Ala	Tyr 775	Glu	Lys	Ala	Lys	Lys 780	Lys	His	Gln	Asn
		Lys 785	Leu	Lys	Lys	Leu	Glu 790	Ser	Gln	Met	Met	Ala 795	Met	Val	Glu	Arg	His 800
40		Glu	Thr	Gln	Val	Arg 805	Met	Leu	Lys	Gln	Arg 810	Ile	Ala	Leu	Leu	Glu 815	Glu
45		Glu	Asn	Ser	Arg 820	Pro	His	Thr	Asn	Glu 825	Thr	Ser	Leu				
	(2)	INFOR	TAMS	ON I	FOR S	SEQ I	ED NO):27:	:								
50		(i)	(A) (B) (C)	JENCI LEI TYI STI TOI	NGTH: PE: 6 RANDE	672 amino EDNES	2 ami 3 aci 35: s	ino a id singl	cids	3							
55		(ii)	MOLI	CULI	TYI	PE: p	pepti	ide									
		(xi)	_									_,		_			
60		Met 1	Ala	Asp	Val	Phe 5	Pro	GIA	Asn	Asp	Ser 10	Thr	A1a	ser	GIn	Asp 15	val
		Ala	Asn	Arg	Phe 20	Ala	Arg	Lys	Gly	Ala 25	Leu	Arg	Gln	Lys	Asn 30	Val	His
65		Glu	Val	Lys 35	Asp	His	Lys	Phe	Ile 40	Ala	Arg	Phe	Phe	Lys 45	Gln	Pro	Thr

Phe Cys Ser His Cys Thr Asp Phe Ile Trp Gly Phe Gly Lys Gly Gly 50 55 Phe Gln Cys Gln Val Cys Cys Phe Val Val His Lys Arg Cys His Glu 65 70 75 80 5 Phe Val Thr Phe Ser Cys Pro Gly Ala Asp Lys Gly Pro Asp Thr Asp 10 Asp Pro Arg Ser Lys His Lys Phe Lys Ile His Thr Tyr Gly Ser Pro Thr Phe Cys Asp His Cys Gly Ser Leu Leu Tyr Gly Leu Ile His Gln 15 Gly Met Lys Cys Asp Thr Cys Asp Met Asn Val His Lys Gln Cys Val 135 Ile Asn Val Pro Ser Leu Cys Gly Met Asp His Thr Glu Lys Arg Gly 145 150 150 160 20 Arg Ile Tyr Leu Lys Ala Glu Val Ala Asp Glu Lys Leu His Val Thr 25 Val Arg Asp Ala Lys Asn Leu Ile Pro Met Asp Pro Asn Gly Leu Ser 185 Asp Pro Tyr Val Lys Leu Lys Leu Ile Pro Asp Pro Lys Asn Glu Ser 30 Lys Gln Lys Thr Lys Thr Ile Arg Ser Thr Leu Asn Pro Gln Trp Asn Glu Ser Phe Thr Phe Lys Leu Lys Pro Ser Asp Lys Asp Arg Arg Leu 35 Ser Val Glu Ile Trp Asp Trp Asp Arg Thr Thr Arg Asn Asp Phe Met 245 250 255Gly Ser Leu Ser Phe Gly Val Ser Glu Leu Met Lys Met Pro Ala Ser 40 265 Gly Trp Tyr Lys Leu Leu Asn Gln Glu Glu Glu Glu Tyr Tyr Asn Val 275 280 285 45 Pro Ile Pro Glu Gly Asp Glu Glu Gly Asn Met Glu Leu Arg Gln Lys Phe Glu Lys Ala Lys Leu Gly Pro Ala Gly Asn Lys Val Ile Ser Pro 50 Ser Glu Asp Arg Lys Gln Pro Ser Asn Asn Leu Asp Arg Val Lys Leu Thr Asp Phe Asn Phe Leu Met Val Leu Gly Lys Gly Ser Phe Gly Lys 55 Val Met Leu Ala Asp Arg Lys Gly Thr Glu Glu Leu Tyr Ala Ile Lys 60 Ile Leu Lys Lys Asp Val Val Ile Gln Asp Asp Val Glu Cys Thr Met Val Glu Lys Arg Val Leu Ala Leu Leu Asp Lys Pro Pro Phe Leu 65 Thr Gln Leu His Ser Cys Phe Gln Thr Val Asp Arg Leu Tyr Phe Val

-49-

						405					410					415	
_		Met	Glu	Tyr	Val 420	Asn	Gly	Gly	Asp	Leu 425	Met	Tyr	His	Ile	Gln 430	Gln	Val
5		Gly	ГÀЗ	Phe 435	Lys	Glu	Pro	Gln	Ala 440	Val	Phe	Tyr	Ala	Ala 445	Glu	Ile	Ser
10		Ile	Gly 450	Leu	Phe	Phe	Leu	His 455	Lys	Arg	Gly	Ile	Ile 460	Tyr	Arg	Asp	Leu
		Lys 465	Leu	Asp	Asn	Val	Met 470	Leu	Asp	Ser	Glu	Gly 475	His	Ile	Lys	Ile	Ala 480
15		Asp	Phe	Gly	Met	Cys 485	Lys	Glu	His	Met	Met 490	Asp	Gly	Val	Thr	Thr 495	Arg
		Thr	Phe	Cys	Gly 500	Thr	Pro	Asp	Tyr	Ile 505	Ala	Pro	Glu	Ile	Ile 510	Ala	Tyr
20		Gln	Pro	Tyr 515	Gly	Lys	Ser	Val	Asp 520	Trp	Trp	Ala	Tyr	Gly 525	Val	Leu	Leu
25		Tyr	Glu 530	Met	Leu	Ala	Gly	Gln 535	Pro	Pro	Phe	Asp	Gly 540	Glu	Asp	Glu	Asp
		Glu 545	Leu	Phe	Gln	Ser	Ile 550	Met	Glu	His	Asn	Val 555	Ser	Tyr	Pro	Lys	Ser 560
30		Leu	Ser	ГÀЗ	Glu	Ala 565	Val	Ser	Ile	Cys	Lys 570	Gly	Leu	Met	Thr	Lys 575	His
		Pro	Ala	Lys	Arg 580	Leu	Gly	Cys	Gly	Pro 585	Glu	Gly	Glu	Arg	Asp 590	Val	Arg
35		Glu	His	Ala 595	Phe	Phe	Arg	Arg	Ile 600	Asp	Trp	Glu	Lys	Leu 605	Glu	Asn	Arg
40		Glu	Ile 610		Pro	Pro	Phe	Lys 615	Pro	Lys	Val	Cys	Gly 620	Lys	Gly	Ala	Glu
		Asn 625	Phe	Asp	Lys	Phe	Phe 630		Arg	Gly	Gln	Pro 635	Val	Leu	Thr	Pro	Pro 640
45		Asp	Gln	Leu	Val	Ile 645	Ala	Asn	Ile	Asp	Gln 650	Ser	Asp	Phe	Glu	Gly 655	Phe
		Ser	Tyr	Val	Asn 660		Gln	Phe	Val	His 665		Ile	Leu	Gln	Ser 670	Ala	Val
50																	
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:28	:								
55		(i)	SEQ	UENC	E CH	ARAC	TERI	STIC	S:								
			(B	TY	PE: RAND	: 47 amin EDNE GY:	o ac	id sing		s							
60																	
						PE:			PO -	n 110							
											28:				ጥ ኤ ~	ጥ ኤ~	7 ~~
65		Met 1	Asp	Ile	Leu	Cys 5	Glu	ı Glu	AST	Thr	Ser 10	ren	SY	Ser	mr	15	ASI

-50-

	Ser	Leu	Met	Gln 20	Leu	Asn	Asp	Asp	Thr 25	Arg	, Leu	туг	Ser	Asr 30	Asp	Phe
5	Asn	Ser	Gly 35	Glu	Ala	Asn	Thr	Ser 40	Asp	Ala	Phe	Asn	Trp 45	Thr	· Val	Asp
	Ser	Glu 50	Asn	Arg	Thr	Asn	Leu 55	Ser	Cys	Glu	Gly	Cys 60	Leu	Ser	Pro	Ser
10	Cys 65	Leu	Ser	Leu	Leu	His 70	Leu	Gln	Glu	Lys	Asn 75	Trp	Ser	Ala	Let	Leu 80
15	Thr	Ala	Val	Val	Ile 85	Ile	Leu	Thr	Ile	Ala 90	Gly	Asn	Ile	Leu	Val 95	Ile
	Met	Ala	Val	Ser 100	Leu	Glu	Lys	Lys	Leu 105	Gln	Asn	Ala	Thr	Asn 110		Phe
20	Leu	Met	Ser 115	Leu	Ala	Ile	Ala	Asp 120	Met	Leu	Leu	Gly	Phe 125	Leu	Val	Met
	Pro	Val 130	Ser	Met	Leu	Thr	Ile 135	Leu	Tyr	Gly	Tyr	Arg 140	Trp	Pro	Leu	Pro
25	Ser 145	Lys	Leu	Сув	Ala	Val 150	Trp	Ile	Tyr	Leu	Asp 155	Val	Leu	Phe	Ser	Thr 160
30	Ala	Ser	Ile	Met	His 165	Leu	Cys	Ala	Ile	Ser 170	Leu	qaA	Arg	Tyr	Val 175	Ala
	Ile	Gln	Asn	Pro 180	Ile	His	His	Ser	Arg 185	Phe	Asn	Ser	Arg	Thr 190	Lys	Ala
35	Phe	Leu	Lys 195	Ile	Ile	Ala	Val	Trp 200	Thr	Ile	Ser	Val	Gly 205	Ile	Ser	Met
	Pro	Ile 210	Pro	Val	Phe	Gly	Leu 215	Gln	Asp	Asp	Ser	Lys 220	Val	Phe	Lys	Glu
40	Gly 225	Ser	Cys	Leu	Leu	Ala 230	Asp	qaA	Asn	Phe	Val 235	Leu	Ile	Gly	Ser	Phe 240
45	Val	Ser	Phe	Phe	Ile 245	Pro	Leu	Thr	Ile	Met 250	Val	Ile	Thr	Tyr	Phe 255	Leu
	Thr	Ile	Lys	Ser 260	Leu	Gln	Lys	Glu	Ala 265	Thr	Leu	Cys	Val	Ser 270	Asp	Leu
50	Gly	Thr	Arg 275	Ala	Lys	Leu		Ser 280	Phe	Ser	Phe	Leu	Pro 285	Gln	Ser	Ser
,	Leu	Ser 290	Ser	Glu	Lys	Leu	Phe 295	Gln	Arg	Ser	Ile	His 300	Arg	Glu	Pro	Gly
55	Ser 305	Tyr	Thr	Gly	Arg	Arg 310	Thr	Met	Gln	Ser	Ile 315	Ser	Asn	Glu	Gln	Lys 320
60	Ala	Cys	Lys	Val	Leu 325	Gly	Ile	Val	Phe	Phe 330	Leu	Phe	Val		Met 335	Trp
- 3	Суѕ	Pro	Phe	Phe 340	Ile	Thr	Asn	Ile	Met 345	Ala	Val	Ile		Lys 350	Glu	Ser
65	Cys	Asn	Glu . 355	Asp	Val	Ile		Ala 360	Leu	Leu	Asn		Phe 365	Val	Trp	Ile
	Gly	Tyr	Leu :	Ser	Ser .	Ala	Val .	Asn	Pro	Leu	Val	Tyr	Thr	Leu	Phe	Asn

-51-

									•	_							
			370					375					380				
_		Lys 385	Thr	Tyr	Arg	Ser	Ala 390	Phe	Ser	Arg	Tyr	Ile 395	Gln	Cys	Gln	Tyr	Lys 400
5		Glu	Asn	Lys	Lys	Pro 405	Leu	Gln	Leu	Ile	Leu 410	Val	Asn	Thr	Ile	Pro 415	Ala
10		Leu	Ala	Tyr	Lys 420	Ser	Ser	Gln	Leu	Gln 425	Met	Gly	Gln	Lys	Lys 430	Asn	Ser
		Lys	Gln	Asp 435	Ala	Lys	Thr	Thr	Asp 440	Asn	Asp	Cys	Ser	Met 445	Val	Ala	Leu
15		Gly	Lys 450	Gln	His	Ser	Glu	Glu 455	Ala	Ser	Lys	Asp	Asn 460	Ser	Asp	Gly	Val
		Asn 465	Glu	Lys	Val	Ser	Cys 470	Val									
20	(2)	INFO	RMAT!	ON I	FOR S	SEQ I	ID NO	0:29:	:								
25		(i)	(A) (B) (C)	LEN TYI	E CHA NGTH: PE: & RANDI POLOC	481 mino EDNES	lam: cac: SS: s	ino a id singl	cid	3							
30		(ii)	MOLI	ECULI	E TYI	PE: 1	pept:	ide									
		(xi)	SEQ	JENCI	E DES	SCRI	PTIO	1: SI	EQ II	ON C	:29:						
35		Met 1	Ala	Leu	Ser	Tyr 5	Arg	Val	Ser	Glu	Leu 10	Gln	Ser	Thr	Ile	Pro 15	Glu
		His	Ile	Leu	Gln 20	Ser	Thr	Phe	Val	His 25	Val	Ile	Ser	Ser	Asn 30	Trp	Ser
40		Gly	Leu	Gln 35	Thr	Glu	Ser	Ile	Pro 40	Glu	Glu	Met	Lys	Gln 45	Ile	Val	Glu
45		Glu	Gln 50	Gly	Asn	Lys	Leu	His 55	Trp	Ala	Ala	Leu	Leu 60	Ile	Leu	Met	Val
43		65					70					75		Leu			80
50						85					90			Leu		95	
		Ala	Val	Ala	Asp 100	Leu	Leu	Val	Gly	Leu 105	Phe	Val	Met	Pro	Ile 110	Ala	Leu
55		Leu	Thr	Ile 115		Phe	Glu	Ala	Met 120	Trp	Pro	Leu	Pro	Leu 125	Val	Leu	Cys
60		Pro	Ala 130		Leu	Phe	Leu	Asp 135		Leu	Phe	Ser	Thr 140	Ala	Ser	Ile	Met
		145					150					155					Pro. 160
65		Ile	Gln	Ala	Asn	Gln 165		Asn	Ser	Arg	Ala 170	Thr	Ala	Phe	Ile	Lys 175	Ile
		Thr	Val	Val	Trp	Leu	Ile	Ser	Ile	Gly	Ile	Ala	Ile	Pro	Val	Pro	Ile

-52-

					180					185					190		
5		Lys	Gly	Ile 195	Glu	Thr	Asp	Val	Asp 200	Asn	Pro	Asn	Asn	Ile 205	Thr	Cys	Val
J		Leu	Thr 210	Lys	Glu	Arg	Phe	Gly 215	Asp	Phe	Met	Leu	Phe 220	Gly	Ser	Leu	Ala
10		Ala 225	Phe	Phe	Thr	Pro	Leu 230	Ala	Ile	Met	Ile	Val 235	Thr	Tyr	Phe	Leu	Thr 240
		Ile	His	Ala	Leu	Gln 245	Lys	Lys	Ala	Tyr	Leu 250		Lys	Asn	Lys	Pro 255	Pro
15		Gln	Arg	Leu	Thr 260	Trp	Leu	Thr	Val	Ser 265	Thr	Val	Phe	Gln	Arg 270	Asp	Glu
20		Thr	Pro	Cys 275	Ser	Ser	Pro	Glu	Lys 280	Val	Ala	Met	Leu	Asp 285	Gly	Ser	Arg
		Lys	Asp 290	Lys	Ala	Leu	Pro	Asn 295	Ser	Gly	Asp	Glu	Thr 300	Leu	Met	Arg	Arg
25		Thr 305	Ser	Thr	Ile	Gly	Lys 310	Lys	Ser	Val	Gln	Thr 315	Ile	Ser	Asn	Glu	Gln 320
		Arg	Ala	Ser	Lys	Val 325	Leu	Gly	Ile	Val	Phe 330	Phe	Leu	Phe	Leu	Leu 335	Met
30		Trp	Cys	Pro	Phe 340	Phe	Ile	Thr	Asn	Ile 345	Thr	Leu	Val	Leu	Cys 350	Asp	Ser
35		Cys	Asn	Gln 355	Thr	Thr	Leu	Gln	Met 360	Leu	Leu	Glu	Ile	Phe 365	Val	Trp	Ile
			370					375					380			Phe	
40		385					390					395				Tyr	400
						405					410					Ile 415	
45					420					425				_	430	His	_
50				435					440					445		Arg	
			450					455					460		-	Thr	
55		Leu 465	Leu	Thr	Glu	Asn	Glu 470	Gly	Asp	Lys	Thr	Glu 475	Glu	Gln	Val	Ser	Val 480
		Val															
60	(2)	INFOR			FOR S	_											
65		-	(A) (B) (C)	LEN TYI STI	OLOG	284 mino EDNES	13 an Saci SS: s	nino id singl	ació	ls							

-53-

	(ii) 1	MOLE	CULI	E TY	PE: 1	pept	ide									
	(xi)	SEQU	ENCE	E DES	SCRI	PTIO	N: S	EQ I	D NO	:30:						
5	Met 1	Ala	Ala	Ala	Ser 5	Tyr	Asp	Gln	Leu	Leu 10	Lys	Gln	Val	Glu	Ala 15	Leu
10	Lys I	Met	Glu	Asn 20	Ser	Asn	Leu	Arg	Gln 25	Glu	Leu	Glu	Asp	Asn 30	Ser	Asn
10	His 1		Thr 35	Lys	Leu	Glu	Thr	Glu 40	Ala	Ser	Asn	Met	Lys 45	Glu	Val	Leu
15	Lys (Gln 50	Leu	Gln	Gly	Ser	Ile 55	Glu	Asp	Glu	Ala	Met 60	Ala	Ser	Ser	Gly
	Gln : 65	Ile .	Asp	Leu	Leu	Glu 70	Arg	Leu	Lys	Glu	Leu 75	Asn	Leu	Asp	Ser	Ser 80
20	Asn l	Phe :	Pro	Gly	Val 85	Lys	Leu	Arg	Ser	Lys 90	Met	Ser	Leu	Arg	Ser 95	Tyr
25	Gly S	Ser 2	Arg	Glu 100	Gly	Ser	Val	Ser	Ser 105	Arg	Ser	Gly	Glu	Cys 110	Ser	Pro
	Val I	;	115					120		-			125	-		
30	Glu s	Ser ' 130	Thr	Gly	Tyr	Leu	Glu 135	Glu	Leu	Glu	Lys	Glu 140	Arg	Ser	Leu	Leu
	Leu <i>l</i> 145					150					155					160
35	Gln I	Leu (Gln	Asn	Leu 165	Thr	Lys	Arg	Ile	Asp 170	Ser	Leu	Pro	Leu	Thr 175	Glu
40	Asn I	Phe :	Ser	Leu 180	Gln	Thr	Asp	Met	Thr 185	Arg	Arg	Gln	Leu	Glu 190	Tyr	Glu
	Ala A	:	195					200					205		-	
45		210		_	_		215	_	_			220				
	Glu I 225					230					235					240
50	Glu A				245					250					255	
55	Ala (260			_		265		•			270		
	Thr S	:	275					280			_		285			
60		290					295					300		_		
	Thr 5	Ser 1	His	Leu	Gly	Thr 310	Lys	Val	Glu	Met	Val 315	Tyr	Ser	Leu	Leu	Ser 320
65	Met I	Leu (Gly	Thr	His 325	Asp	Lys	Asp	Ąsp	Met 330	Ser	Arg	Thr	Leu	Leu 335	Ala

-54 -

	Met	Ser	Ser	Ser 340	Gln	Ąsp	Ser	Cys	Ile 345	Ser	Met	Arg	Gln	Ser 350	Gly	Cys
5	Leu	Pro	Leu 355		Ile	Gln	Leu	Leu 360		Gly	Asn	Asp	Lys 365		Ser	Val
J	Leu	Leu 370	Gly	Asn	Ser	Arg	Gly 375		Lys	Glu	Ala	Arg 380		Arg	Ala	Ser
10	Ala 385		Leu	His	Asn	Ile 390		His	Ser	Gln	Pro 395		Asp	Lys	Arg	Gly 400
		Arg	Glu	Ile	Arg 405		Leu	His	Leu	Leu 410		Gln	Ile	Arg	Ala 415	
15	Суз	Ser	Thr	Cys 420		Glu	Trp	Gln	Glu 425		His	Glu	Pro	Gly 430		Asp
20	Gln	Asp	Lys 435	Asn	Pro	Met	Pro	Ala 440	Pro	Val	Glu	His	Gln 445		Cys	Pro
	Ala	Val 450	Cys	Val	Leu	Met	Lys 455	Leu	Ser	Phe	Asp	Glu 460	Glu	His	Arg	His
25	Ala 465	Met	Asn	Glu	Leu	Gly 470	Gly	Leu	Gln	Ala	Ile 475	Ala	Glu	Leu	Leu	Gln 480
2.0	Val	Asp	Cys	Glu	Met 485	Tyr	Gly	Leu	Thr	Asn 490	Asp	His	Tyr	Ser	Ile 495	Thr
30	Leu	Arg	Arg	Tyr 500	Ala	Gly	Met	Ala	Leu 505	Thr	Asn	Leu	Thr	Phe 510	Gly	Asp
35	Val	Ala	Asn 515	Lys	Ala	Thr	Leu	Cys 520	Ser	Met	Lys	Gly	Cys 525	Met	Arg	Ala
	Leu	Val 530	Ala	Gln	Leu	Lys	Ser 535	Glu	Ser	Glu	Asp	Leu 540	Gln	Gln	Val	Ile
40	Ala 545	Ser	Val	Leu	Arg	Asn 550	Leu	Ser	Trp	Arg	Ala 555	Asp	Val	Asn	Ser	560
45	Lys	Thr	Leu	Arg	Glu 565	Val	Gly	Ser	Val	Lys 570	Ala	Leu	Met	Glu	Cys 575	Ala
13	Leu	Glu	Val	Lys 580	Lys	Glu	Ser	Thr	Leu 585	Lys	Ser	Val	Leu	Ser 590	Ala	Leu
50	Trp	Asn	Leu 595	Ser	Ala	His	Cys	Thr 600	Glu	Asn	Lys	Ala	Asp 605	Ile	Суз	Ala
	Val	Asp 610	Gly	Ala	Leu	Ala	Phe 615	Leu	Val	Gly	Thr	Leu 620	Thr	Tyr	Arg	Ser
55	Gln 625	Thr	Asn	Thr	Leu	Ala 630	Ile	Ile	Glu	Ser	Gly 635	Gly	Gly	Ile	Leu	Arg 640
60	Asn	Val	Ser	Ser	Leu 645	Ile	Ala	Thr	Asn	Glu 650	Asp	His	Arg	Gln	Ile 655	Leu
	Arg	Glu	Asn	Asn 660	Сув	Leu	Gln	Thr	Leu 665	Leu	Gln	His	Leu	Lys 670	Ser	His
65	Ser	Leu	Thr 675	Ile	Val	Ser	Asn	Ala 680	Cys	Gly	Thr	Leu	Trp 685	Asn	Leu	Ser
	Ala	Arg	Asn	Pro	Lys	Asp	Gln	Glu	Ala	Leu	Trp	Asp	Met	Gly	Ala	Val

-55-

		690					695					700				
5	Ser 705	Met	Leu	Lys	Asn	Leu 710	Ile	His	Ser	Lys	His 715	Lys	Met	Ile	Ala	Met 720
5	Gly	Ser	Ala	Ala	Ala 725	Leu	Arg	Asn	Leu	Met 730	Ala	Asn	Arg	Pro	Ala 735	Lys
10	Tyr	Lys	Asp	Ala 740	Asn	Ile	Met	Ser	Pro 745	Gly	Ser	Ser	Leu	Pro 750	Ser	Leu
	His	Val	Arg 755	ГÀа	Gln	Lys	Ala	Leu 760	Glu	Ala	Glu	Leu	Asp 765	Ala	Gln	His
15	Leu	Ser 770	Glu	Thr	Phe	Asp	Asn 775	Ile	Asp	Asn	Ile	Ser 780	Pro	Lys	Ala	Ser
20	His 785	Arg	Ser	Lys	Gln	Arg 790	His	Lys	Gln	Ser	Leu 795	Tyr	Gly	Asp	Tyr	Val 800
20	Phe	Asp	Thr	Asn	Arg 805	His	Asp	Asp	Asn	Arg 810	Ser	Asp	Asn	Phe	Asn 815	Thr
25	Gly	Asn	Met	Thr 820	Val	Leu	Ser	Pro	Tyr 825	Leu	Asn	Thr	Thr	Val 830	Leu	Pro
	Ser	Ser	Ser 835	Ser	Ser	Arg	Gly	Ser 840	Leu	Asp	Ser	Ser	Arg 845	Ser	Glu	Lys
30	Asp	Arg 850	Ser	Leu	Glu	Arg	Glu 855	Arg	Gly	Ile	Gly	Leu 860	Gly	Asn	Tyr	His
35	Pro 865	Ala	Thr	Glu	Asn	Pro 870	Gly	Thr	Ser	Ser	Lys 875	Arg	Gly	Leu	Gln	Ile 880
33	Ser	Thr	Thr	Ala	Ala 885	Gln	Ile	Ala	Lys	Val 890	Met	Glu	Glu	Val	Ser 895	Ala
40	Ile	His	Thr	Ser 900	Gln	Glu	Asp	Arg	Ser 905	Ser	Gly	Ser	Thr	Thr 910	Glu	Leu
	His	Cys	Val 915	Thr	Asp	Glu	Arg	Asn 920	Ala	Leu	Arg	Arg	Ser 925	Ser	Ala	Ala
45	His	Thr 930	His	Ser	Asn	Thr	Tyr 935	Asn	Phe	Thr	Lys	Ser 940	Glu	Asn	Ser	Asn
50	Arg 945	Thr	Cys	Ser	Met	Pro 950	Tyr	Ala	Lys	Leu	Glu 955	Tyr	Lys	Arg	Ser	Ser 960
	Asn	Asp	Ser	Leu	Asn 965	Ser	Val	Ser	Ser	Ser 970	Asp	Gly	Tyr	Gly	Lys 975	Arg
55	Gly	Gln	Met	Lys 980	Pro	Ser	Ile	Glu	Ser 985	Tyr	Ser	Glu	Asp	Asp 990	Glu	Ser
	Lys	Phe	Cys 995	Ser	Tyr	Gly	Gln	Tyr 1000		Ala	Asp	Leu	Ala 1005		Lys	Ile
60	His	Ser 1010		Asn	His	Met	Asp 1015		Asn	Asp	Gly	Glu 1020	Leu)	qzA	Thr	Pro
65	Ile 1025		Tyr	Ser	Leu	Lys 1030	-	Ser	Asp	Glu	Gln 1035		Asn	Ser	Gly	Arg 1040
	Gln	Ser	Pro	Ser	Gln 1045		Glu	Arg	Trp	Ala 1050		Pro	Lys	His	Ile 1055	

-56-

	Glu	Asp	Glu	Ile 1060	Lys	Gln	Ser	Glu	Gln 106		Gln	Ser	Arg	Asn 1070		Ser
5	Thr	Thr	Tyr 1075		Val	Tyr	Thr	Glu 1080		Thr	Asp	Asp	Lys 108		Leu	Lys
	Phe	Gln 1090		His	Phe	Gly	Gln 1099		Glu	Суѕ	Val	Ser		Tyr	Arg	Ser
10	Arg 110		Ala	Asn	Gly	Ser 1110		Thr	Asn	Arg	Val 1119		Ser	Asn	His	Gly 1120
15	Ile	Asn	Gln	Asn	Val 1125		Gln	Ser	Leu	Cys 1130		Glu	Asp	Asp	Tyr 1135	
13	Asp	Asp	Lys	Pro 1140	Thr	Asn	Tyr	Ser	Glu 1145		Tyr	Ser	Glu	Glu 1150		Gln
20	His	Glu	Glu 1155		Glu	Arg	Pro	Thr 1160		Tyr	Ser	Ile	Lys 116		Asn	Glu
	Glu	Lys 1170		His	Val	Asp	Gln 1175		Ile	Asp	Tyr	Ser 118		Leu	Lys	Ala
25	Thr 1185		Ile	Pro	Ser	Ser 1190		Lys	Gln	Ser	Phe 1195		Phe	Ser	Lys	Ser 1200
30	Ser	Ser	Gly	Gln	Ser 1205		Lys	Thr	Glu	His 121(Ser	Ser	Ser	Ser 1215	
	Asn	Thr	Ser	Thr 1220	Pro	Ser	Ser	Asn	Ala 1225		Arg	Gln	Asn	Gln 1230		His
35	Pro	Ser	Ser 1235		Gln	Ser	Arg	Ser 1240		Gln	Pro	Gln	Lys 1245		Ala	Thr
	Cys	Lys 1250		Ser	Ser	Ile	Asn 1255		Glu	Thr	Ile	Gln 1260		Tyr	Cys	Val
40	Glu 1265		Thr	Pro	Ile	Cys 127		Ser	Arg	Cys	Ser 1275		Leu	Ser	Ser	Leu 1280
45	Ser	Ser	Ala	Glu	Asp 1285		Ile	Gly	Cys	Asn 1290		Thr	Thr	Gln	Glu 1299	
	•			1300	_				1309	5		-		1310)	•
50	Thr	Arg	Ser 1319		Glu	Asp	Pro	Val 1320		Glu	Val	Pro	Ala 1325		Ser	Gln
	His	Pro 1330		Thr	Lys	Ser	Ser 133		Leu	Gln	Gly	Ser 134		Leu	Ser	Ser
55	Glu 134		Ala	Arg	His	Lys 135		Val	Glu	Phe	Ser 135		Gly	Ala	Lys	Ser 1360
60	Pro	Ser	Lys	Ser	Gly 136		Gln	Thr	Pro	Lys 1370		Pro	Pro	Glu	His 1379	•
	Val	Gln	Glu	Thr 138	Pro	Leu	Met	Phe	Ser 138	_	Сув	Thr	Ser	Val 1390		Ser
65	Leu	Asp	Ser 139		Glu	Ser	Arg	Ser 140		Ala	Ser	Ser	Val 140		Ser	Glu
	Pro	Cys	Ser	Gly	Met	Val	Ser	Gly	Ile	Ile	Ser	Pro	Ser	Asp	Leu	Pro

-57**-**

		1410)			,	141!	5				142	0			
5	Asp 142		Pro	Gly	Gln	Thr 1430		Pro	Pro	Ser	Arg 143		Lys	Thr	Pro	Pro 1440
3	Pro	Pro	Pro	Gln	Thr 144		Gln	Thr	Lys	Arg 1450		Val	Pro	Lys	Asn 1455	-
10	Ala	Pro	Thr	Ala 1460		Lys	Arg	Glu	Ser 1469		Pro	Lys	Gln	Ala 1470	Ala O	Val
	Asn	Ala	Ala 1475		Gln	Arg	Val	Gln 1480		Leu	Pro	Asp	Ala 1489	-	Thr	Leu
15	Leu	His 1490		Ala	Thr	Glu	Ser 1499		Pro	Asp	Gly	Phe 150		Cys	Ser	Ser
20	Ser 1505		Ser	Ala	Leu	Ser 1510		Asp	Glu	Pro	Phe 1515		Gln	Lys	Asp	Val 1520
	Glu	Leu	Arg	Ile	Met 1525		Pro	Val	Gln	Glu 1530		Asp	Asn	Gly	Asn 1535	
25	Thr	Glu	Ser	Glu 1540		Pro	Lys	Glu	Ser 1545		Glu	Asn	Gln	Glu 1550	Lys)	Glu
	Ala	Glu	Lys 1555		Ile	qaA	Ser	Glu 1560		Asp	Leu	Leu	Asp 1565		Ser	Asp
30	•	1570) -				1575	•				1580)		Met	
35	Thr 1585	-	Ser	Ser	Arg	Lys 1590		Lys	Lys	Pro	Ala 1599		Thr	Ala	Ser	Lys 1600
	Leu	Pro	Pro	Pro	Val 1605		Arg	Lys	Pro	Ser 1610		Leu	Pro	Val	Tyr 1615	-
40	Leu	Leu	Pro	Ser 1620		Asn	Arg	Leu	Gln 1625		Gln	Lys	His	Val 1630	Ser	Phe
			1635	5				1640)				1645	5	Thr	
45		1650)				1655	•				1660)		Glu	
50	1665	5				1670)				1675	5			Ala	1680
					1685	5				1690)				Arg 1695	i
55	Thr	Asp	Glu	Ala 1700		Gly	Gly	Lys	Thr 1705		Ser	Val	Thr	Ile 1710	Pro	Glu
	Leu	Asp	Asp 1715		Lys	Ala	Glu	Glu 1720	-	Asp	Ile	Leu	Ala 1725		Cys	Ile
60		1730)			-	1735	,				1740)		Val	•
65	Lys 1745		Met	Asp	Gln	Val 1750		Gln	Ala	Ser	Ala 1755		Ser	Ser	Ala	Pro 1760
	Asn	Lys	Asn	Gln	Leu 1765	-	Gly	Lys	Lys	Lys 1770	-	Pro	Thr	Ser	Pro 1775	

	Lys Pro	lle Pro	Gln As	n Thr	Glu	Tyr A	Arg Thr	Arg		Arg Ly 1790	s Asn
5	Ala Ası	Ser Lys 1795	Asn As	n Leu	Asn 1800		Glu Arg	Val	Phe 5	Ser As	p Asn
	Lys Ası 18	Ser Lys	Lys Gl	n Asn 181		Lys A	Asn Asn	Ser 1820		Asp Ph	e Asn
10	Asp Lys 1825	Leu Pro		n Glu 30	Asp	Arg V	/al Arg 183		Ser I	Phe Al	a Phe 1840
15	Asp Ser	Pro His	His Ty 1845	r Thr	Pro		Glu Gly 1850	Thr	Pro T		s Phe 55
	Ser Arg	Asn Asp 186		u Ser	Ser	Leu A 1865	Asp Phe	Asp	_	Asp As 1870	p Val
20	Asp Let	Ser Arg 1875	Glu Ly	s Ala	Glu 1880		Arg Lys		Lys 6 1885	Glu As	n Lys
·	189			189	5			1900)		
25	Gln Ser 1905	Ala Asn	Lys Th		Ala	Ile A	Ala Lys 191!		Pro I	lle As	n Arg 1920
30		Pro Lys	1925			1	L930			19	35
	_	Asp Ile 194	0	-		1945		•	1	1950	
35		Ala Ile 1955			1960)			1965		
	19'			197	5			1980		-	
40	1985	lle Lys	19	90			199	5	-		2000
45	-	Gln Ala	2005			2	2010			20	15
		Val Cys 202	0			2025			2	2030	
50		Glu Asp 2035			2040	ס			2045		
	20!			205	5	-		2060)	_	
55	2065	y Asn Met	20	70		•	207	5			2080
60	-	o Ile Glm	2085			2	2090			20	95
		Phe Asp 210	0			2105	_		2	2110	
65		Leu His 2115			2120	D			2125		
	Ser Se	Asp Ser	Asp Se	r Ile	Leu	Ser I	Leu Lys	Ser	Gly 1	lle Se	r Leu

-59-

		2130)				2135	5				214	0			
5	Gly 214		Pro	Phe	His	Leu 2150		Pro	Asp	Gln	Glu 215		Lys	Pro	Phe	Thr 2160
3	Ser	Asn	Lys	Gly	Pro 216		Ile	Leu	Lys	Pro 2170		Glu	Lys	Ser	Thr 2175	
10	Glu	Thr	Lys	Lys 2180		Glu	Ser	Glu	Ser 218		Gly	Ile	Lys	Gly 2190	Gly O	Lys
	Lys	Val	Tyr 2195		Ser	Leu	Ile	Thr 2200		Lys	Val	Arg	Ser 220		Ser	Glu
15	Ile	Ser 2210		Gln	Met	Lys	Gln 2215		Leu	Gln	Ala	Asn 2220		Pro	Ser	Ile
20	Ser 2225		Gly	Arg	Thr	Met 2230		His	Ile	Pro	Gly 2235		Arg	Asn	Ser	Ser 2240
	Ser	Ser	Thr	Ser	Pro 2245		Ser	Lys	Lys	Gly 2250		Pro	Leu	Lys	Thr 2255	
25	Ala	Ser	Lys	Ser 2260		Ser	Glu	Gly	Gln 2265		Ala	Thr	Thr	Ser 2270	Pro	Arg
	Gly	Ala	Lys 2275		Ser	Val	Lys	Ser 2280		Leu	Ser	Pro	Val 2285		Arg	Gln
30	Thr	Ser 2290		Ile	Gly	Gly	Ser 2295		Lys	Ala	Pro	Ser 2300		Ser	Gly	Ser
35	Arg 2305	-	Ser	Thr	Pro	Ser 2310	_	Pro	Ala	Gln	Gln 2315		Leu	Ser	Arg	Pro 2320
					2325	,				2330)	_	_		Gly 2335	
40				2340)				2345	5				2350		
	Thr	Ala	Ser 2355		Lys	Ser	Ser	Gly 2360		Gly	Lys	Met	Ser 2365		Thr	Ser
45		2370)				2375	i				2380)		Gly	
50	2385	5				2390)				2395	•				2400
					2405	5				2410)				Glu 2415	
55				2420)		_		2425	•				2430		
	Glu	Arg	Pro 2435		Leu	Val	Arg	Gln 2440		Thr	Phe	Ile	Lys 2445		Ala	Pro
60		2450)				2455	i				2460)		Glu	
65	2465	5				2470)				2475	;				2480
•	Thr	Pro	Val	Leu	Ser 2485		Ser	Leu	Pro	Asp 2490		Ser	Leu	Ser	Thr 2495	

-60-

	Ser Ser Val Gln 2500	Ala Gly Gly Trp	Arg Lys Leu Pro 2505	Pro Asn Leu Ser 2510
5	Pro Thr Ile Glu 2515	Tyr Asn Asp Gly 252	y Arg Pro Ala Lys 20	Arg His Asp Ile 2525
	Ala Arg Ser His 2530	Ser Glu Ser Pro 2535	Ser Arg Leu Pro 254	
10	Gly Thr Trp Lys 2545	Arg Glu His Ser 2550	r Lys His Ser Ser 2555	Ser Leu Pro Arg 2560
15	Val Ser Thr Trp	Arg Arg Thr Gly 2565	y Ser Ser Ser Ser 2570	Ile Leu Ser Ala 2575
13	Ser Ser Glu Ser 2580		a Lys Ser Glu Asp 2585	Glu Lys His Val 2590
20	Asn Ser Ile Ser 2595	Gly Thr Lys Glr 260	n Ser Lys Glu Asn 00	Gln Val Ser Ala 2605
	Lys Gly Thr Trp 2610	Arg Lys Ile Lys 2615	s Glu Asn Glu Phe 262	
25	Ser Thr Ser Gln 2625	Thr Val Ser Ser 2630	r Gly Ala Thr Asn 2635	Gly Ala Glu Ser 2640
30	Lys Thr Leu Ile	Tyr Gln Met Ala 2645	a Pro Ala Val Ser 2650	Lys Thr Glu Asp 2655
30	Val Trp Val Arg 2660		s Pro Ile Asn Asn 2665	Pro Arg Ser Gly 2670
35	Arg Ser Pro Thr 2675	Gly Asn Thr Pro	o Pro Val Ile Asp 80	Ser Val Ser Glu 2685
	Lys Ala Asn Pro 2690	Asn Ile Lys Asp 2695	p Ser Lys Asp Asn 270	
40	Asn Val Gly Asn 2705	Gly Ser Val Pro 2710	o Met Arg Thr Val 2715	Gly Leu Glu Asn 2720
A E	Arg Leu Asn Ser	Phe Ile Gln Val 2725	l Asp Ala Pro Asp 2730	Gln Lys Gly Thr 2735
45	Glu Ile Lys Pro 274		n Pro Val Pro Val 2745	Ser Glu Thr Asn 2750
50	Glu Ser Ser Ile 2755		r Pro Phe Ser Ser 60	
	Lys His Ser Ser 2770	Pro Ser Gly The 2775	r Val Ala Ala Arg 278	
55	Asn Tyr Asn Pro 2785	Ser Pro Arg Lys 2790	s Ser Ser Ala Asp 2795	Ser Thr Ser Ala 2800
60	Arg Pro Ser Gln	Ile Pro Thr Pro 2805	o Val Asn Asn Asn 2810	Thr Lys Lys Arg 2815
50	Asp Ser Lys Thr 282		u Ser Ser Gly Thr 2825	Gln Ser Pro Lys 2830
65	Arg His Ser Gly 2835		l Thr Ser Val 40	

	(2) INFORMATION FOR SEQ ID NO:31:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
1.0	(ii) MOLECULE TYPE: other nucleic acid	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
	CGGAATTCNN NNNNNNAAC AGCNNNNNNN NNAATGAANN NCAAAGTCTG NNNTGAGGAT	60
20	CCTCA	65
	(2) INFORMATION FOR SEQ ID NO:32:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: other nucleic acid	
	(iv) ANTI-SENSE: NO	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
33	CGGAATTCGA CTCAGAANNN NNNAACTTCA GANNNNNNAT CNNNNNNNN GTCTGAGGAT	60
	CCTCA	65
40	(2) INFORMATION FOR SEQ ID NO:33:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
50	(ii) MOLECULE TYPE: other nucleic acid	
J ((iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
55	CGGAATTCNN NNNNNNNN NNNNNNNNN NNNNNNNNN NNNTGAGGAT	60
	CCTCA	65

-62-

What is claimed is:

5

10

15

20

25

30

1. A composition capable of inhibiting specific binding between a signal-transducing protein cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, and each slash within such parentheses separating the alternative amino acids.

The composition of claim 1, wherein the cytoplasmic 2. protein contains the amino acid sequence $(K/R/Q)-X_n$ -(G/S/A/E)-L-G-(F/I/L), wherein X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids and n represents at least 2, but not more than 4.

The composition of claim 1, wherein the cytoplasmic 3. protein contains the amino acid sequence SLGI.

- 4. The composition of claim 1, wherein the signaltransducing protein has at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X represents any amino acid which is selected from the comprising the twenty naturally occurring amino acids.
- The composition of claim 1, wherein the composition 5. 35 comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic

-63-

compound, a polypeptide, or a protein.

- 6. The composition of claim 5, wherein the peptide comprises the sequence (S/T)-X-(V/I/L)-COOH, wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids.
 - 7. The composition of claim 6, wherein the peptide has the amino acid sequence DSENSNFRNEIQSLV.
 - The composition of claim 6, wherein the peptide has the amino acid sequence RNEIQSLV.

15

30

- 9. The composition of claim 6, wherein the peptide has the amino acid sequence NEIQSLV.
 - 10. The composition of claim 6, wherein the peptide has the amino acid sequence EIQSLV.
- 25 11. The composition of claim 6, wherein the peptide has the amino acid sequence IQSLV.
 - 12. The composition of claim 6, wherein the peptide has the amino acid sequence QSLV.
 - 13. The composition of claim 6, wherein the peptide has the amino acid sequence SLV.
- 14. The composition of claim 6, wherein the peptide has the amino acid sequence IPPDSEDGNEEQSLV.
 - 15. The composition of claim 6, wherein the peptide has

the amino acid sequence DSEMYNFRSQLASVV.

- 16. The composition of claim 6, wherein the peptide has the amino acid sequence IDLASEFLFLSNSFL.
- 17. The composition of claim 6, wherein the peptide has the amino acid sequence PPTCSQANSGRISTL.
- 18. The composition of claim 6, wherein the peptide has the amino acid sequence SDSNMNMNELSEV.

5

20

30

35

- 19. The composition of claim 6, wherein the peptide has the amino acid sequence QNFRTYIVSFV.
- 15 20. The composition of claim 6, wherein the peptide has the amino acid sequence RETIESTV.
 - 21. The composition of claim 6, wherein the peptide has the amino acid sequence RGFISSLV.
 - 22. The composition of claim 6, wherein the peptide has the amino acid sequence TIQSVI.
- The composition of claim 6, wherein the peptide has the amino acid sequence ESLV.
 - 24. The composition of claim 6, wherein the organic compound has the sequence Ac-SLV-COOH, wherein the Ac represents an acetyl, each represent a peptide bond.
 - 25. A composition capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such

-65-

parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein.

5

26. The composition of claim 25, wherein the composition comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

10

15

27. A method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, which comprises:

20

25

(a) contacting the cytoplasmic protein bound to the signal-transducing protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the signal-transducing protein bound to the cytoplasmic protein and the bound cytoplasmic protein to form a complex; and

30

(b) detecting the displaced signal-transducing protein or the complex formed in step (a), wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein.

35

28. The method of claim 27, wherein the inhibition of specific binding between the signal-transducing

protein and the cytoplasmic protein affects the transcription activity of a reporter gene.

- 29. The method of claim 28, where in step (b) the displaced signal-transducing protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the signal-transducing protein is displaced.
- 30. The method of claim 27, wherein the cytoplasmic protein is bound to a solid support.
 - 31. The method of claim 27, wherein the compound is bound to a solid support.
- 20 32. The method of claim 27, wherein the compound comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.
- 25 33. The method of claim 27, wherein the contacting of step (a) is <u>in vitro</u>.

30

- 34. The method of claim 27, wherein the contacting of step (a) is <u>in vivo</u>.
- 35. The method of claim 34, wherein the contacting of step (a) is in a yeast cell.
- 36. The method of claim 34, wherein the contacting or step (a) is in a mammalian cell.
 - 37. The method of claim 27, wherein the signal-

-67-

transducing protein is a cell surface receptor.

38. The method of claim 27, wherein the signal-transducing protein is a signal transducer protein.

5

- 39. The method of claim 27, wherein the signal-transducing protein is a tumor suppressor protein.
- 40. The method of claim 37, wherein the cell surface protein is the Fas receptor.
 - 41. The method of claim 40, wherein the Fas receptor is expressed in cells derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
 - 42. The method of claim 40, wherein the Fas receptor is expressed in cells comprising T-cells and B-cells.

20

15

- 43. The method of claim 37, wherein the cell-surface receptor is the CD4 receptor.
- 44. The method of claim 37, wherein the cell-surface receptor is the p75 receptor.
 - 45. The method of claim 37, wherein the cell-surface receptor is the serotonin 2A receptor.
- 30 46. The method of claim 37, wherein the cell-surface receptor is the serotonin 2B receptor.
 - 47. The method of claim 38, wherein the signal transducer protein is Protein Kinase-C- α -type.

35

48. The method of claim 39, wherein the tumor suppressor protein is adenomatosis polyposis coli tumor

WO 98/05347

-68~

suppressor protein.

5

10

20

25

30

49. The method of claim 39, wherein the tumor suppressor protein protein is the colorectal mutant cancer protein.

PCT/US97/12677

- 50. The method of claim 27, wherein the cytoplasmic protein contains the amino acid sequence SLGI, wherein each - represents a peptide bond, parenthesis encloses amino acids which alternatives to one other, and each slash within such parentheses separating the alternative amino acids.
- 15 51. The method of claim 40, wherein the cytoplasmic protein is Fas-associated phosphatase-1.
 - 52. A method of identifying a compound capable of inhibiting specific binding between a signaltransducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein, which comprises:
- the signal-transducing protein (a) contacting bound to the cytoplasmic protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the cytoplasmic protein bound to the 35 transducing protein and the bound signaltransducing protein to form a complex; and

WO 98/05347

5

15

20

25

-69-

(b) detecting the displaced cytoplasmic protein or the complex of step (a) wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein.

PCT/US97/12677

- 53. The method of claim 52, wherein the inhibition of specific binding between the signal-transducing protein and the cytoplasmic protein affects the transcription activity of a reporter gene.
 - 54. The method of claim 53, where in step (b) the displaced cytoplasmic protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the cytoplasmic protein is displaced.
 - 55. The method of claim 52, wherein the cytoplasmic protein is bound to a solid support.
 - 56. The method of claim 52, wherein the compound is bound to a solid support.
- 57. The method of claim 52, wherein the compound comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.
- 58. The method of claim 52, wherein the contacting of step (a) is <u>in vitro</u>.
 - 59. The method of claim 52, wherein the contacting of

step (a) is in vivo.

60. The method of claim 59, wherein the contacting of step (a) is in a yeast cell.

5

- 61. The method of claim 59, wherein the contacting or step (a) is in a mammalian cell.
- 62. The method of claim 52, wherein the signaltransducing protein is a cell surface receptor.
 - 63. The method of claim 52, wherein the signaltransducing protein is a signal transducer protein.
- 15 64. The method of claim 52, wherein the signaltransducing protein is a tumor suppressor protein.
 - 65. The method of claim 62, wherein the cell surface protein is the Fas receptor.

20

25

- 66. The method of claim 65, wherein the Fas receptor is expressed in cells derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
- 67. The method of claim 65, wherein the Fas receptor is expressed in cells comprising T-cells and B-cells.
- 30 68. The method of claim 62, wherein the cell-surface receptor is the CD4 receptor.
 - 69. The method of claim 62, wherein the cell-surface receptor is the p75 receptor.

35

70. The method of claim 62, wherein the cell-surface receptor is the serotonin 2A receptor.

-71-

WO 98/05347

10

25

1

PCT/US97/12677

71. The method of claim 62, wherein the cell-surface receptor is the serotonin 2B receptor.

- 72. The method of claim 63, wherein the signal transducer protein is Protein Kinase-C- α -type.
 - 73. The method of claim 64, wherein the tumor suppressor protein is adenomatosis polyposis coli tumor suppressor protein.
 - 74. The method of claim 64, wherein the tumor suppressor protein is the colorectal mutant cancer protein.
- 75. The method of claim 52, wherein the cytoplasmic protein contains the amino acid sequence SLGI, wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, and each slash within such parentheses separating the alternative amino acids.
 - 76. The method of claim 52, wherein the cytoplasmic protein is Fas-associated phosphatase-1.
 - 77. A method inhibiting the proliferation of cancer cells comprising the composition of claim 1.
- 78. The method of claim 77, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
- 79. The method of claim 77, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
 - 80. A method of inhibiting the proliferation of cancer

cells comprising the composition of claim 25.

-72-

81. The method of claim 80, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.

5

10

30

- 82. The method of claim 80, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- 83. A method of inhibiting the proliferation of cancer cells comprising the compound identified by the method of claim 27.
- 15 84. The method of claim 83, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
- 20 85. The method of claim 83, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- 86. A method of inhibiting the proliferation of cancer cells comprising the compound identified by the method of claim 52.
 - 87. The method of claim 86, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
 - 88. The method of claim 86, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- 35 89. A method of treating cancer in a subject which comprises introducing to the subject's cancerous cells an amount of the composition of claim 1

-73-

WO 98/05347

5

10

15

20

effective to result in apoptosis of the cells.

PCT/US97/12677

90. The method of claim 89, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.

91. The method of claim 89, wherein the cancer cells are derived from cells comprising T-cells and B-cells.

92. A method of treating cancer in a subject which comprises introducing to the subject's cancerous cells an amount of the composition of claim 25 effective to result in apoptosis of the cells.

- 93. The method of claim 92, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
 - 94. The method of claim 92, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- 95. A method of treating cancer in a subject which comprises introducing to the subject's cancerous cells an amount of the compound identified by the method of claim 27 effective to allow apoptosis of the cells.
- 30 96. The method of claim 95, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
- 35 97. The method of claim 95, wherein the cancer cells are derived from cells comprising T-cells and B-cells.

5

10

25

30

35

A method of treating cancer in a subject which 98. comprises introducing to the subject's cancerous cells an amount of the compound identified by the method of claim 52 effective to result in apoptosis of the cells.

-74-

- The method of claim 98, wherein the cancer cells are 99. derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
- 100. The method of claim 98, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- 101. A method of inhibiting the proliferation of virally 15 infected cells comprising the composition of claim 1.
- 102. A method of inhibiting the proliferation of virally infected cells comprising the composition of claim 20 25.
 - 103. A method of inhibiting the proliferation of virally infected cells comprising the compound identified by the method of claim 27.
 - 104. A method of inhibiting the proliferation of virally infected cells comprising the compound identified by the method of claim 52.
 - 105. The method of claim 101, wherein the virally infected cells comprise Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.
 - 106. The method of claim 102, wherein the virally

-75-

infected cells comprise Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

5

10

15

20

25

30

107. The method of claim 103, wherein the virally infected cells comprise Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

108. The method of claim 104, wherein the virally infected cells comprise Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

- 109. A method of treating a virally-infected subject which comprises introducing to the subject's virally-infected cells the composition of claim 1 effective to result in apoptosis of the cells.
 - 110. A method of treating a virally-infected subject which comprises introducing to the subject's virally infected cells the composition of claim 25 effective to result in apoptosis of the cells.
- 111. A method of treating a virally-infected subject which comprises introducing to the subject's virally-infected cells an amount of the compound identified by the method of claim 27 effective to result in apoptosis of the cells.
- 112. A method of treating a virally-infected subject
 35 which comprises introducing to the subject's virally- infected cells an amount of the compound identified by the method of claim 52 effective to

WO 98/05347

5

20

30

PCT/US97/12677

result in apoptosis of the cells.

113. The method of claim 109, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

-76-

- 114. The method of claim 110, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.
- 115. The method of claim 111, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.
- 116. The method of claim 112, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.
 - 117. A pharmaceutical composition comprising the composition of claim 1 in an effective amount and a pharmaceutically acceptable carrier.
 - 118. A pharmaceutical composition comprising the composition of claim 25 in an effective amount and a pharmaceutically acceptable carrier.
- 35 119. A pharmaceutical composition comprising the compound identified by the method of claim 27 in an effective amount and a pharmaceutically acceptable carrier.

-77-

120. A pharmaceutical composition comprising the compound identified by the method of claim 52 in an effective amount and a pharmaceutically acceptable carrier.

5

PCT/US97/12677

2/26

FIG. 2A

DNA sequences

6-3

TIQSV

18-1

ESLV

S O O G Ш z z Z Œ Ш E Z Z Z R U S S Z Ш S ٥ SO S S FIG. 2B Human Mouse Rat

ഗ Q Ш Z S z FIG. 2C

FIG. 2D

3/26

9-3

0-2

ST

14-1

57-5

72-1

IVSF

25-9

16-13

DLASEFLFLSNSF SEMYNFRSQLASV PPDSEDGNEEQSL SDSNMNMNELSE RGFISSL RETIEST TCSQANSGRI QNFRTY d d 13-0 20 6-2 20-0 9-5 18-1 14-5 22-1 ۵. O Z Z **D** 1 O S 5 ЬР EE FHS S V RPV M A D A O S A z N W G S ASR 4 ENA Œ E H A S Y S H S 5

Consensus: tS-X-V/L/I

4/26

FIG. 3A

12345678910

5/26

FIG. 3B

7/26

FIG. 4A

		7/3				
	VP	VP16				
	FAP-1	Ras	FAF)-1	R	as
LexA						
Fas		000			a d	W 100 3
SLV	0 6	000	. 6		根 数:	热 (5)
PLV		000	100	200	1	(4)
SLY		000	ii j	\$ E	F 1	3 C
SLA			3 to 6		434	利の
į					-	**************************************
	Hi	S +		Н	is -	

250 -148 -

← FAP-1

60 -

42 -

30 -

123

10/26

11/26

12/26

FIG. 7A

ceptor

K

NGF

egvagpcgan ygyyddettg edterglrec vvttvmgssq ngtpppegek adlveslcse 1ngsagdtwr gecckacnlg eaddavcrca vdpclpctvc qdliastvag nkggansrpv llaalrrigr pakreevekl afkrwnsckq acptglyths gldsmsapcv dgtysdeanh stdepeappe gdgglysslp atqdsatlda lgvslggake epckpctecv kgntvceecp ppegsdstap tqtasgqalk cpvrallasw avvvglvayi sqslhdqqph ipgrwitrst lipvycsila vtfsdvvsat gsglvfscqd ehidsfthea mgagatgram dgprllllll qtvcepclds pvvtrgttdn rceacrycea trwadaecee lhsdsgisvd hlagelgyqp statspv 241 361 121 181 301

FIG. 7B

CD4 Receptor

fhwknsnqik	vedgkeevgl	insd thillaggist itlesppgss psvacrsprg kniaggktis vsaleladsg	kltgsgelww	yagsgnltla	vskrekavwv	figlgiffcv	
mnrgvpfrhl llvlqlallp aatggkkvvl gkkgdtvelt ctasgkksig fhwknsngik	flt kgpsklndra dsrrslwdgg nfpliiknlk iedsdtyice vedgkeevgl	kniqggktls	fsfplaftve	hltlpgalpg	The evnlvvmrat glqknltcev wgptspklml slklenkeak vskrekavwv	wgc llsdsggvll esnikvlptw stpvgpmali vlggvaglll figlgiffcv	
gkkgdtvelt	nfpliiknlk	psvqcrsprg	vykkegegve	klqmgkklpl	wgptspklml	stpvqpmali	fqktc spi
aatggkkvvl	dsrrslwdqg	ltlesppgss	vlafqkassi	vsvkrvtgdp	qlqknltcev	esnikvlptw	ekktcdcphr
llvlqlallp	kgpsklndra	thllqgqslt	kkvefkidiv	witfdlknke	evnlvvmrat	llsdsgqvll	gae rmsgikrlls ekktcgcphr fgktcgpi
mnrgvpfrhl	ilgnggsflt		twtctvlqng	qaerasssks	leaktgklhg	lnpeagmwgc	hrrr
-	61	121	181	241	301	361	421

15/26

FIG. 7C

Species	C-terminal sequences of NGFR (p75)	Binding activity of FAP-1
Human	SESTATSPV-COOH	+
Rat	SESTATSPV-COOH	+
Chicken	SESTATSPV-COOH	+

FIG. 7D

kklakaqceq selrselsds nvvcgrkkss wekelagire gpsspgrits **issigvs**ssv ksqndllt1t slilgqfraa agesvqpwes esihidplsy streageday xtcsenela nlvaayekak qtererdlle elgrvitgle ssdrpvlgse 111alaeseg qtrlqsvqat dgscggafav fvndlkrans gttireedey ypnlaeersr erlneriehl kekkalelkl aspalelael aavkitmlei rphtnets. rialleens seirhqqsae klsktreess elkaqlylle skirefevet yseqcieaye dyiqq1badr dkpgkecada dadacsding divelnkrlq elnkkidrlg eiegvlgrdl drlrrrvrel naakallmkl hetgvzmlkg iplakiaerv lyshgsaise natalrlalq rahdczktae sisstssgsk vsaleritks hcdlaiktve atmaireer ftkedegr1k elmamkeema ritelhsvia pengetmyta hsaalasikg esgmeanver gdenitamlk ldlenavlmg hieglttase csniqeifqt msmlvgkyes veedkedrmr qerttlryee skeeelnrtk elstssssnd sstasscdte kk1karvqe1 ndssaelsel mdqdqtsvs1 aeftnairre lvhiehlkse mnsgvamkyg tnrpinpstg aehlahsigd leecksnaer Issnahtstt dvkprgdsgr kkhank1kk1 shlmrehedv ghevnedsra cslsvaevdr nesitamic gvgsspgdas 301 361 421 481 **541** 601 181 241 661

FIG. 7E

mlagqppfdg pegdeegnme drlyfvmeyv ldseghikia vrehaffrri sdfegfsyvn shctdfiwgf spefedhags eklhvtvrda 1kpsdkdrr1 gkvmladrkg pownesftfk talhecfatv yrdlkldnvm wwaygvllye lgcgpegerd dalvianida riylksevad flavlgkgsf eegeyynvp1 arffkoptfc khkfklhtyg ayapygksvd glmtkhpakr ktktirstin asgwykling trgapvitpp kgpdtddprs lallddppfl 1fflbkrgii camdittekrg ldrvkl tafn vhevkdhkf1 vfyaaeisig ipdplaneska fgveelmlamp sedzkapsnn vactimvekry lskeavsick kgaenfdkff kgcvinvpsl tpdyiapeii arkgalrdkn fvtfscpgad gpagnkvi sp kkdvvi qddd qvgkfkepqa mehnvsypks tradingsls cfwhkrche dgvttrtfcg appfkpkvcg kedtedmovh 1sdpyvk1k1 tasqdvanrf gkagfacave 11yglihagm knlipmapng d fgmckebren dadelfqsi pqtvhpilds teelyaikil pidamlbgga dweklenrei mady fpgnds sveiwdwdrt lrqkfekakl 541 661 361 421 481 241 181

nrtalscego

FIG. 7F

vntipalayk seklfqrsih yflmslaiad ldryvaignp ddnfvligef asimbleais vfikegsella sdgvnekv**go** fsflpqsele itrinavick dafnwtvdse lekklomatn dlgtraklas lfvvmopff fsrylgogyk ghseeaskdn gnilvimavs wlyldvlfst pvígladak dfnsgeants lqkeatlevs ackvlgivff ndesmvalgk tlfnktyrsa wplpsklcav tisveismpi Inddtrlysn tavviiltia lestrnslmg Igeknwsall nskqdakttd tmgs1snedk vityfltiks lssavnplvy smitilygyr kaflkijavw ispscislih milgflympv veffipleim repgaytarr linv frwigy ihhsrfnsrt mdilceents 181 181 184 196 196 197 197

FIG. 7G

gdkteegver kalpnøgdet reskiyfrnp tafikitww aimivtyflt alltimfeam dscnqttlgm gnklhwaall 1dt111tene atkovktlrk vamldgsrkd fitnitivic igangynera eemkgiveed llvglfvmpi gslaafftpl vdryjaikkp kerfgdfmlf fgryitonyr stiqsssii. waglqtestp yflmelavad **flfllmcpf** detpcsspek witvstvígr raskvlgiví tlínktírda mygspmrlrs stfvhvissn asimhleais npnnitev1t lekkloyatn qstipenilq vknkppqr1t kevqtieneg hgirnginpa gntlvilavs wlfldvlfst pikgietdvd vssgvnplvy wplplvlcpa lisigiaipv lleifvwigy maenskffkk Imrrestiak ilmvilptig ihalqkkayl malsyrvsel 12240844 820644 1240411

20/26

FIG. 7H

```
1 maaasydgl: kqvealkmen snlrqeledn snhltklete asnmkevlkq lqqsiedeam
  61 assgqidile rikelnidss nfpgvklrsk msirsygere gsvssrsged spvpmgsipr
121 rgfvngsres tgyleeleke rsliladidk eekekdwyya qiqmitkrid sipitenfsi
181 gidmirrqle yearqirvam eeqlgtoqdm ekraqrriar iqqiekdilr irqllqsqat
241 eaerssqukh eigsbdaerg negggvgein matsgngggs timdhetas vissssthsa
301 preltshigt kvemvyslis migthdkddm srtllamess qdscismrqs gclpliiqil
361 hgndkdsvll gnsrgskear arasaalhni ihsqpddkrg rreirvlhll eqiraycetc
421 wewqeahepg mdqdknpmpa pvehqicpav cvlmklside ehrhammelg glqaiaellq
481 vdcemygltn dhysitlrry agmaltnitf gdvankatlc smkgcmralv aqiksesedi
541 qqviasvlrn lswradvnsk ktlrevgsvk almecalevk kestiksvls alwnisahct
 601 emkadicavd galaflygtl tyrsqtntla iiesgggilr nyssliatne dhrqilrenn
 661 clqtllqhlk sheltivena cqtlwnlsar npkdqealwd mgavsmlknl ihekhkmiam
 721 gsaaairnim anrpakykda nimspgssip sihvrkqkal eaeldaqhis etfdnidnis
 781 pkashrskqr hkqslygdyv fdtnrhddnr sdnfntgmmt vlspylnttv lpsssssrqs
 841 ldssrsekdr slerergigl gnyhpatenp gtsskrglqi sttaaqiakv meevsaihts
 901 gedrssgstt elhevtdern alrrssaaht hantynftks enanrteamp yakleykras
961 ndalnavasa dgygkrgqmk psiesysedd eakfosygqy padlahkiha arbmddndge
1021 ldupinyalk yadeqlnagu qapaqmerwa rpkhiledei kqaequqarm qattypyyte
1081 stddkhlkfq phigqqecvs pyrsrgangs etnrvganbg inqnvsqslc qeddyeddkp
1141 tnyserysee eqheeeerpt nysikyneek rhydqpidys lkyatdipss qkqsisisks
1201 saggsakteh masssentst psanakrong lhpssagsrs gopokaatck vasingetig
1261 tycvedtpic feresslasi ssaedeigen qttqeadsan tiqiaeikek igtrsaedpv
1321 sevpavaghp rtkasrlqqs slssesarhk avefsagaks paksgaqtpk appehyvqet
1381 plmferctsv ssldsfesrs iassvesepc semvagiisp sellpdspeget mopsrektpp
1441 pppetagtkr evpkmkapta ekresepkea avnaaverve vlpdaetlih fatestpdef
1501 scssslsals ldepfickdv elrimppvce ndngmetese opkesnence keaektidse
1561 kalladadad dieileecii samptkaark akkpaqtask lpppvarkps qlpvykllps
1621 qurlqpqkhv sftpqddmpr vycvegtpin fstatsledl tiesppnela agegvrggaq
1681 sgefekráti ptegrstáea ggyktsevti peldánkaee gdilaecins ampkykshkp
1741 frykkimágy ggasasssap naglágkkk ketspykpip onteyrtryr knadskonin
1801 aeryfsánká skkonlkons káfnáklpon edrygsfaf ásphhytpie gtpycfsrná
1861 sissidfddd dydisrekae irkakenkes eakytshtel tanggsankt galakopinr
1921 gapkpilaka stipasski pargastak lanfaientp vofshnasis sisdidaenn
1981 nkenepiket eppdaggeps kpgasgyapk sfhvedtpvc fsrnsslssl sidseddlig
2041 ecissampkk kkpsrlkgdn ekhsprnmgg ilgedlildl kdigrpdseh glspdsenfd
2101 wkaigegans ivsslhgaaa aaclsrgass dsdsilslks gislgspfhl tpdgeekpft
2161 snkgprilkp gekstletkk ieseskgikg gkkvykslit gkvrsnseis gamkaplaan
2221 mpsisrgrum ihipgvrnss sstspvskkg pplktpasks psegatatts praskpsvks
2281 elepvarqts qiggsskaps regerdatps rpaqqplerp iqepgrasis pgragisppa
2341 klsqlprtss pstastkasg sgkmsytspg rqmsqqnltk qtglsknass iprsesaskg
2401 lnqmnngnga nkkvelsrms stkssgsesd rserpvlvrq stfikeapsp tlrrkleesa
2461 sfeslapssr pasptrsqaq tpvlspslpd mslsthssvq aggwrklppm lsptieyndg
2521 rpakrhdiar shaespsrlp inrsgtwkre hskhasslpr vatwrrtgss sailsasses
2581 sekakaedek hynsisgtkq skenqysakg twrkikenef spinstagtv sagaingaes
2541 ktliygmapa vsktedvwvr iedopinnpr sgrsptgntp pvidsvseka npnikdskdn
 2701 qakqnvgngs vpmrtvglen rlnsfiqvda pdqkgteikp gqnnpvpvse tnessivert
2761 pissasaskh aspsgivaar vipinynpap rkssadsisa rpsqipipvm nnikkrdakt
 2821 datessgtqs pkrhsqsylv ter
```

(Low-affinity nerve growth factor receptor) p75NGFR

22/26

C-terminal amino acid sedneuce STATSPV NEIQSLV FIG. 9 p75NGFR Fas

PDZ domain t (S/T)-X-V - COOH

interaction

FIG. 10

In vitro interaction of 35S-labeled FAP-1 with various receptors FAP-1 binds to the cytoplasmic region of p75NGFR.

FAP-1 binds to C-terminal three amino acids SPV of p75NGFR. FIG. 11A

FIG. 12

FAP-1 binds to p75NGFR C-terminal cytoplasmic region in yeast.

	VP16-FAP-1	VP16-cRaf	•
LexA-p75NGFR(338-396)	+	•	
LexA-p75NGFR(365-396)	+	1	
LexA-Fas	+	•	
LexA-Ras ^{V12}	,	+	
LexA-Lamin	,	ŧ	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12677

A. CLA	SSIFICATION OF SUBJECT MATTER			-
•	:Please See Extra Sheet. :424/198.1; 514/2; 530/351; 435/7.1, 7.23			
	in International Patent Classification (IPC) or to both a	ational classification s	and IPC	
L FIEL	DS SEARCHED			
	ocumentation scarched (classification system followed	by classification sym	bola)	
	424/198.1; 514/2; 530/351; 435/7.1, 7.23		•	
0.3	74W176.1, 314/4, 33W331, 733/7.1, 723			
Documenta	ion searched other than minimum documentation to the	extent that such docum	eents are included	in the fields searched
APS, DL	ata base consulted during the international search (na ALOG	me of data base and, w	where practicable	search terms used)
. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app	ropriate, of the relevan	nt passages	Relevant to claim No.
r	DOYLE. D.A. et al. "Crystal Struct Peptide-Free Membrane Protein-Binding Peptide Recognition by PDZ." Cell. 1067-1076, especially page 1067.	Domain: Molect	ular Basis of	1-120
•	MATSUMINE. A. et al. "Binding of A of the Drosophila Discs Large Tumor S May 1996. Vol. 272. No. 5264. pages 1020.	uppressor Proteir	n." Science.	1-120
•	KORNAU. HC. et al. "Domain In Receptor Subunits and the Postsynaptic Science. September 1995. Vol. 269. Nespecially page 1737.	Density Protein	n PSD-95."	1-120
	er documents are listed in the continuation of Box C.	'T' leter document p		metional filing data or priority
. do	report defining the general state of the art which is not considered		conflict with the appli theory underlying the	cation but cited to understand invention
	to of particular relevance tier document published on or after the interactional filing date			claimed investion cannot be
• do	nument which may throw doubts on priority claim(s) or which is		l or cannot be consider east in taken alone	ed to involve as inventive step
cita	d to matchish the authorizer date of another election or other	"Y" document of pe	rticular relevance; the	claimed invention cannot be step when the document is
	nument referring to an oral disclosure, use, exhibition or other	combined with o		documents, such combination
• do	and a control of agent and a control		or of the same patent	
		Date of mailing of the	international sea	rch report
09 OCTO	-			998
Commission Box PCT Washington	per of Patents and Trademarks D.C. 20231	Authorized offer	le 1	May
ecsimile N	o. (703) 305-3230	Diomono No. (70	3) 308-0196	
rm PCT/IS	A/210 (second sheet)(July 1992)*			U

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/12677

Category®	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Category	CIRROR Of GOCKERS, Wild indicators, while appropriate, or the locality persons	
Y,P	US 5,632,994 A (REED et al) 27 May 1997, col. 2, lines 12-56.	1-120
Y	WO 96/18641 A1 (YEDA RESEARCH AND DEVELOPMENT CO. LTD.) 20 June 1996. pages 1-57, especially page 6	1-120
Y	ZHANG. J. et al. "A Mouse Fas-Associated Protein with Homology to the Human MORT1/FADD Protein is Essential for Fas-Induced Apoptosis." Molecular and Cellular Biology. June 1996. Vol. 16. No. 6. pages 2756-2763, especially page 2756.	1-120
:		
	·	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12677

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):
A61K 38/00, 39/00; C07K 1/00, 14/00, 17/00; G01N 33/53, 33/567, 33/574
·

Form PCT/ISA/210 (extra sheet)(July 1992)*