Szimulált robot raj vezérlése Sapientia

Erdélyi Magyar Tudományegyetem, Marosvásárhely

Patka Zsolt-András

2020

Kivonat

Abstract

Extras

Tartalomjegyzék

1.	Bevezető	1
2.	A dolgozat célja	2
3.	Szakirodalmi háttér bemutatása	3
4.	Felhasznált Szoftverkeretrendszerek	4
5.	Gyakorlati megvalósítás 5.1. Célkövetés és akadálykerülés a push-pull erők használatával	5 5 5
6.	A rendszer tesztelése	6
7.	Következtetések	7

Bevezető

A dolgozat célja

Szakirodalmi háttér bemutatása

Felhasznált Szoftverkeretrendszerek

Gyakorlati megvalósítás

5.1. Célkövetés és akadálykerülés a push-pull erők használatával

A push-pull erők elv követésével felírhatóak azok az erők amik a cél fele mutatnak, mint húzó erők, és azok amik az akadály felé mutatnak, mint taszító erők.

5.2. Célkövetés és akadálykerülés QLearning használatával

5.1. táblázat. Állapot-Cselekedet matrix, Akkadálykerülő és célkövető agensnek

Állapot	STOP	$TURN_LEFT$	$TURN_RIGHT$	FORWARD
FOLLOW	-1	0	0	1
UTURN	-1	0	0	0
OBST_LEFT	-1	0	0.1	0
OBST_RIGHT	-1	0.1	0	0
OBST_FORWARD	-1	0.1	0	0
WANDER	-1	0	0	0.1
IDLE	-1	0	0	1

5.2.1.

A rendszer tesztelése

Következtetések

Irodalomjegyzék