CUDA C PROGRAMMING QUICK REFERENCE¹

called from host, executed on device
called from device, executed on device
called from host, executed on host
generates code for host and device
if possible, do not inline
force compiler to inline
ice)
variable on device (Global Memory)
variable in Constant Memory
variable in Shared Memory
restricted pointers, assert to the compiler that pointers are not aliased (cf. aliased pointer)
automatic variable, resides in Register or in Local Memory
in some cases (local arrays, register spilling)
ce)
dimensions of the current grid (gridDim.x,)
(composed of independent blocks)
dimensions of the current block (composed of threads)
(total number of threads should be a multiple of warp size)
block location in the grid (blockldx.x,)
thread location in the block (threadIdx.x,)
thread location in the block (threading,)
shared int a[128]
extern _shared_ float b[]
externsnared neat b[]
cudaMallocHost(&dptr, size)
(for higher bandwidth, may degrade system performance)
cudaMalloc(&devptr, size)
cudaFree(devptr)
cudaMemcpy(dst, src, size, cudaMemcpyKind kind)
kind = {cudaMemcpyHostToDevice,}
cudaMemcpyAsync(dst, src, size, kind[, stream])
(host memory must be page-locked)
cudaMemcpyToSymbol(symbol, src, size[, offset[, kind]])
kind=cudaMemcpy[HostToDevice DeviceToDevice]
kind—cudamenicpy[nost tobevice Device1obevice]
syncthreads() (device call)
cudaDeviceSynchronize() (host call, CUDA Runtime API)
cudabevice synchronize() (nost can, CODA Runtime API)

\mathbf{C}	U	$\mathbf{D}\mathbf{A}$	De	evic	e N	Managemen	t
-		•		/			

Init device (context) cudaSetDevice(devID)

Reset current device cudaDeviceReset() (for profiler and flushing)

CUDA Runtime API Error Handling

Last CUDA error produced by any cudaGetLastError()

of the runtime calls

OpenGL Interoperability

Init device cudaGLSetGLDevice(devID)

(within OpenGL context)(mutually exclusive to cudaSetDevice())Register buffer objectcudaGraphicsGLRegisterBuffer(&res, id, flags)

(must not be bound by OpenGL) res: cudaGraphicsResource pointer

id: OpenGL Buffer Id

flags: register flags (read/write access)

Register texture or render buffer cudaGraphicsGLRegisterImage(&res, id, target, flags)

Graphics Interoperability

Unregister graphics resource cudaGraphicsUnregisterResource(res)

Map graphics resources for access by cudaGraphicsMapResources(count, &res[, stream])

CUDA

Get device pointer (access a mapped

cudaGraphicsResourceGetMappedPointer(&dptr, size, res)

graphics resource)

(OpenGL: buffer object)

Get CUDA array of a mapped cudaGraphicsSubResourceGetMappedArray(&a, res, i, lvl)

graphics resource

(OpenGL: texture or renderbuffer)

Unmap graphics resource cudaGraphicsUnmapResources(count, &res[, stream])

CUDA Texture

Textures are read-only global memory, but cached on-chip, with texture interpolation

Declare texture (at file scope) texture < DataType,TexType,Mode > texRef Create channel descriptor cudaCreateChannelDesc < DataType > ()

Bind memory to texture cudaBindTexture(offset, texref, dptr, channelDesc, size)

Unbind texture cudaUnbindTexture(texRef)

Fetch Texel (texture pixel) tex1D(texRef, x)

tex2D(texRef, x, y) tex3D(texRef, x, y, z)

tex1DLayered(texRef, x, layer) tex2DLayered(texRef, x, y, layer)

CUDA Streams (Concurrency Management)

Stream = instruction sequence. Streams may execute their commands out of order.

Create CUDA Stream cudaStreamCreate(cudaStream_t &stream)

Destroy CUDA Stream

Synchronize Stream

Stream completed?

cudaStreamDestroy(stream)

cudaStreamSynchronize(stream)

cudaStreamQuery(stream)

¹November 12, 2019. Cf. Complete Reference: "NVIDIA CUDA C Programming Guide" – Note, that functions may have optional arguments not listed here

		TES	SLA		FEI	RMI		Kepler		MAXWELL	
Compute Capability	1.0	1.1	1.2	1.3	2.0	2.1	3.0	3.5	3.7	5.0	5.2
Max. dimensionality of grid		2	?						3		
Max. dimensionality of block							3				
Max. x-,y- or z-dimension of a grid			2^{16}	-1					$2^{32}-$	1	
Max. x- or y-dimension of a block		51	.2						1024		
Max. z-dimension of a block							64				
Max. threads per block		51	.2						1024		
Warp Size							32				
Max. resident blocks per SM			8	3				16	5	3	2
Max. resident warps per SM	2	4	3	2	4	8			64		
Max. resident threads per SM	70	58	10	24	15	36			2048	;	
Number of 32-bit registers per SM	8	K	16	K	32	K	64	K	$128\mathrm{K}$	64	K
Max. registers per thread		12	24			63			2	255	
Max. shared memory per SM (≥2.0: configurable L1 Cache)		161	KB			48	KB		112 KB	64 KB	96 KB
Number of shared memory banks		1	6						32		
Local memory per thread		16 I	KB					5	12 KB		
Constant memory size						(64 KB				
Cache working set per SM for constant					8 K	В				10	KB
Cache working set per SM for texture		6-8	KB			$12\mathrm{KB}$		12 K	B-48 KB	$24\mathrm{KB}$	$48\mathrm{KB}$
Max. instructions per kernel		2	millio	n					512 millior	ı	
Max. width for 1D texture (array)		81	92					ϵ	35 536		
Max. width 1D texture (linear)							2^{27}				
Max. width×layers for 1D texture		8192	×512					163	84×2048		
Max. textures bound to kernel			12	28					256		
Max. width×layers for 1D surface		N/	'A					655	36×2048		
Max. surfaces bound to kernel		N/	'A		8	3			16		
Architecture Specifications											
Number of cores (with FPU and ALU)		8	3		32	48		19:	2	15	28
Number of special function units		2	2		4	8			32		
Number of texture units		2	?		4	8		16	3	8	3
Number of warp schedulers		1			2	2			4		
Number of instructions issued by scheduler			1						2		
Compute Capability	1.0	1.1	1.2	1.3	2.0	2.1	3.0	3.5	3.7	5.0	5.2

CC	GPUs	Features					
		Fermi					
2.0	GF100, GF110	ECC, Better Caches (L1 and L2), dual warp scheduler, concurrent kernel execution, better atomics, int64 shared memory atomics, float32-atomicAdd, unified address space, ballot, threadfence, surface, FMA, int32 ALU					
2.1	GF104,	_					
	Keplei	R (Focus: perf/watt, doubles, HPC)					
3.0	GK104, GK106, GK107	Polymorph Engine 2.0, GPU Boost, TXAA, warp shuffle, bindless textures, h.264 encoder NVENC, adaptive VSync, PCIe 3.0					
3.5	GK110, GK208	Dynamic Parallelism, Hyper-Q, Grid Management Unit, GPUDirect (RDMA), funnel shift					
3.7	GK210 (K80)						
M	IAXWELL (Focus:	perf/watt, perf/area, single-precision, Gaming)					
5.0	GM107, GM108						
5.2	GM200, GM204, GM206	Polymorph Engine 3.0, VXGI (Global Illumination), $\rm H.265$ encoding					

GPU	GTX 580	GTX 680	GTX 780	GTX 980
Launch	Nov 2010	$\mathrm{Mar}\ 2012$	$\mathrm{May}\ 2013$	$\mathrm{Sep}\ 2014$
Model	GF110	GK104	GK110	GM204
Core Clock (MHz)	772	1006	863	1126
Shader Clock (Mhz)	1544	_	_	_
Boost Clock (MHz)	_	1058	900	1216
PCIe Bus Support	2.0	3.0	3.0	3.0
CUDA Cores	512	1536	2304	2048
Memory Bandwidth (GB/sec)	192.4	192.2	288.4	224
Memory Clock (Mhz)	4008	6008	6008	7010
Memory Interface Width (bit)	384	256	384	256
Standard Memory Config MiB	1536	2048	3072	4096
Texture Fill Rate (billion/sec)	49.4	128.8	160.5	144
Max Temp. °C	97	98	95	98
Max Power W	244	195	250	165
SM count	16	8	12	16
Transistors	3×10^9	3.5×10^{9}	7×10^9	5.2×10^9
GFLOPS/s (SP/DP)	1581 / 198	$3090 \ / \ 128$	3977 / 166	4612 / 144
Fab-Size nm	40	28	28	28
Die Size mm^2	520	294	561	398
L2 Cache Size KiB	768	512	1536	2048
ROPs	48	32	48	64
Texture Units	64	128	192	128

Memory	Location	Cached	Access	Scope	Lifetime
Register	On-chip	N/A	R/W	Thread	Thread
Local	Off-chip	Yes	R/W	Thread	Thread
Shared	On-chip	N/A	R/W	Block	Block
Global	Off-chip	Yes	R/W	Global	Application
Constant	Off-chip	Yes	\mathbf{R}	Global	Application
Texture	Off-chip	Yes	R	Global	Application
Surface	Off-chip	Yes	R/W	Global	Application