RC_mid1

Yixuan Wang 2018/10/26

Before RC...

Checklist

- Definition on the slides
- Theorem on the slides, especially the condition of the theorem
- Some questions on the slides, especially those with blue words
- Assignment, especially the exercises with wrong answers
- Worksheet

Content

- Real Number and Sets
- The limit of a sequence

- Upper bound: $x \le M$ for every $x \in S$
- Lower bound: $x \ge M$ for every $x \in S$
- Bounded: both exist
- NOTE: upper bound and lower bound are numbers, but all of them consist of a set
- Supreme: $M \ge M^*$ for every upper bound M^*
- Infimum: $m \le m^*$ for every lower bound m^*

- δ -neighborhood of x: $(x \delta, x + \delta)$
- Neighborhood: $\exists \delta, s.t.(x \delta, x + \delta) \subseteq S$
- Open set: for every point in S, there exists δ -neighborhood
- Closed set: not the open set

	intersection	union
Closed set	Closed set	Inconclusive
Open set	Inconclusive	Open set

NOTE:

- some sets are **both** closed and open (\emptyset, \mathbb{R}) , some sets are **neither** closed nor open ([2,3))
- Compact: closed and bounded
- Interior point: $\exists \delta, s. t. (x \delta, x + \delta) \subseteq S$
- Boundary point: $\forall \delta, s. t. (x \delta, x + \delta)$ contains a point in S and a point not in S
- Limit point: $\forall \delta, s.t.(x \delta, x + \delta)$ contains a point in S other than itself
- Isolated point: $\exists \delta, s. t. (x \delta, x + \delta) \cap S = x$

The limit of a sequence

- Intuitive definition: arbitrarily close to a real value
- Rigorous definition: (if $\lim_{n\to N} a_n = L$)

$$\forall \varepsilon, \exists N, s.t. \ when \ n > N, |a_n - L| < \varepsilon$$

• Diverges to (negative) infinity: (if a_n diverges)

$$\forall M, \exists N_M, s.t. when n > N_M, a_n > M$$

The limit of a sequence

- Limit law: (if $\lim_{n \to \infty} a_n = L_a$ and $\lim_{n \to \infty} b_n = L_b$)
 - $\lim_{n\to\infty} a = a$
 - $\lim_{n \to \infty} (a_n \pm b_n) = L_a \pm L_b$
 - $\lim_{n\to\infty} a_n b_n = L_a L_b$
 - $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L_a}{L_b}$ if $L_b \neq 0$ and $b_n \neq 0$

The limit of a sequence

- Monotonic sequence theorem
 - >Condition: monotonic
 - ➤ bounded ⇔ convergent
 - \triangleright For normal sequence, convergent \Longrightarrow bounded
- Squeeze theorem
 - ightharpoonup Condition: $\lim_{n\to\infty}a_n$ / $b_n=L$; for n>N, $a_n\leq c_n\leq b_n$;
- Limit law → S.T. / M.S.T. → definition
- NOTE: we can find the relationship between function limit and sequence limit to solve problem

Exercise

• Please prove that $a_n = n^{(-1)^n}$ is unbounded, but it doesn't diverges to infinity when $n \to \infty$

• Solution:

When n = 2k, $a_n = 2k$

When
$$n = 2k - 1$$
, $a_n = \frac{1}{2k-1}$

Because when n=2k and $n\to\infty$, a_n approaches positive infinity, it is unbounded.

Because when n=2k-1 and $n\to\infty$, a_n approaches 0

Note that the limit should be unique, which many of you ignored in the assignment

Exercise

- Please prove $\lim_{n\to\infty} \frac{n}{2^n} = 0$
- Solution:

Because
$$2^n = (1+1)^n = 1 + n + \frac{n(n-1)}{2} + \dots + 1 > \frac{n(n-1)}{2}$$

Then use the Squeeze Theorem

Good Luck!