Session 4: Data Formats and Open-Source GIS

Randy Bucciarelli randobucci@gmail.com

Outline: Data Formats For GIS

- Introduction
- Tabular formats
- Vector formats
- Raster formats
- Open-Source GIS
- Demonstration
- Project

Class Schedule

Monday	Tuesday	Wednesday	Thursday	Friday
08/05/19	08/06/19	08/07/19	08/08/19	08/09/19
Introduction to Geographical Information Systems 10:45 am-12:15 am	Cartography and Spatial Data Display 8:30am – 11:00pm	Querying Data for Spatial & Attribute Selections 8:30am – 11:00pm	Data Formats and Open-Source GIS 8:30am – 11:00pm	Map Projections and Coordinate Systems 8:30am – 11:00pm
08/12/19	08/13/19	08/14/19	08/15/19	08/16/19
Spatial Analysis Tool 8:30am – 11:00pm	Raster and Terrain Analysis 8:30 am – 10:00 am Scripps Institution of Oceanography 1:00pm – 4:00pm	Image Analysis 8:30am – 11:00pm	Editing Spatial Data and Geocoding 8:30am – 11:00pm	Web Mapping/ Wrap up 8:30am – 11:30am

Introduction

- Data formats for GIS
 - Commercial formats
 - Standardized formats
- You will use many formats:
 - Tabular
 - Vector
 - Raster
 - o TIN
 - Network

Available data formats

- Commercial/Proprietary formats
 - ESRI
 - CAD
- Standardized/Open source formats
 - GEOJSON
 - KML
 - TIFF/JPEG (raster)
 - NetCDF

Tabular Data Formats or "Flat Files"

- Excel spreadsheets
- Ascii delimited text:
 - CSV or TSV
- XML Tag based
 - KML
 - GEOJSON
- Spaghetti Data Model

Flat File Example

Name	Group #	Occupation
Watts	1000	Model
Shelton	1000	Chef
Weber	1000	Chef
Tubbs	1001	Musician
Jones	1001	Musician
Carson	1001	Librarian

KML and KMZ Files

- Google Earth Format
- Keyhole Markup Language
- KML files can display:
 - Points, lines, polygons
 - Images
 - o 3-D models
- KMZ is zipped up KML file
 - Contains symbology, legend, etc


```
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.1">
(NetworkLink)
        <name>Real-time Earthquakes
        <open>1</open>
        (LookAt)
                <longitude>-104.1025</longitude>
                <latitude>50.4913</latitude>
                <altitude>O</altitude>
                <range>8384245</range>
                <tilt>0</tilt>
                <heading>-0.2564</heading>
        </LookAt>
        <flyToView>1</flyToView>
        (IIrl)
                <href>http://services.google.com/earth/kmz/r
ealtime earthquakes.kmz</href>
        </Ur1>
</NetworkLink>
</kml>
```

GeoJSON

- Extension of JSON (Javascript Object Notation)
- Used for sending, receiving, and storing data
- Wraps data in objects:
 - Name/Value pairs
 - Points, polygons, lines
- Example: <u>Plenario</u>

GEOJSON

GeoJSON is a format for encoding a variety of geographic data structures.

```
"type": "Feature",
"geometry": {
    "type": "Point",
    "coordinates": [125.6, 10.1]
},
"properties": {
    "name": "Dinagat Islands"
}
}
```

GeoJSON supports the following geometry types: Point, LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon. Geometric objects with additional properties are Feature objects. Sets of features are contained by FeatureCollection objects.

Spaghetti Data Model

Spaghetti Data Model

Vector Formats

- Esri Shapefiles
 - Most common and popular format
- Esri Geodatabases
 - Does all file management work for you
- US Census Bureau TIGER/Line
 - Topologically Integrated Geographic Encoding and Referencing system
- AutoCAD DXF
 - Drawing Exchange Format

ESRI Shapefile

- Stores geometry and attributes of vector layers
- Made up of several files
- Field names limited to 10 characters
- White paper released to public

Shapefile File Types

File Extension	Purpose	
SHP*	Feature geometry	
SHX*	Index format for the feature geometry	
DBF*	Feature attribute information in dBASE IV format	
PRJ	Projection information	
SBN and SBX	Spatial index of the features	
FBN and FBX	Read-only spatial index of the features	
AIN and AIH	Attribute information for active fields in the table	
IXS	Geocoding index for read-write shapefiles	
MXS	Geocoding index for read-write shapefiles with ODB format	
ATX	Attribute index used in ArcGIS 8 and later	
SHP.XML	Metadata in XML format	
CPG	Code page specifications for identifying character encoding	
	* Indicates mandatory files	

ESRI Geodatabase

- Hybrid file format:
 - Vector and Raster
- Collection of datasets within single database
- Native data structure for ArcGIS
- Seamlessly Manages different file formats

Raster File Formats

- Esri Grid
- Georeferenced Images:
 - JPEG, TIFF, and PNG
 - MrSID (Multiresolution Seamless Image Database)
 - DRG (Digital Raster Graphic)
- USGS DEM (Digital Elevation Model)
- GRIB
- NetCDF

Raster to Vector Conversion

Digital Elevation Models

- Raster representation of the earth surface
- Cells contain continuous elevation values
- Accuracy determined by raster resolution

Digital Elevation Models

- Digital Terrain Models (DTM)
 - Bare earth model
- Digital Surface Model (DSM)
 - Landscape features (e.g. buildings, trees)

DSM

DTM

Digital Surface Model

Digital Terrain Model

TIN - Triangulated Irregular Network

 Structure to represent surface elevations

- Non-overlapping triangles
- Derive elevation, slope, aspect, and surface area
- Advantages over rasters
 - Smaller file sizes
 - Delineate flood plains

Outline: Data Formats For GIS

- Introduction
- Tabular formats
- Vector formats
- Raster formats
- Open-Source GIS
- Demonstration
- Project

GDAL - Geospatial Data Abstraction Library

- Open source GIS tool
 - Library for reading and writing geospatial formats
 - "Swiss Army Knife" does it all: raster and vector
 - Check out <u>website</u> or <u>wiki</u>
 - Called from programming languages
 - Part of OSGeo

OSGeo - Open Source Geospatial Foundation

- Open Data
 - Free and open to geospatial data
- Open Education
 - Creation of teaching materials
- Open Science
 - Sharing data used for research
- Open Standards
 - Promote interoperability between applications, organizations, and research fields

OSGeo - <u>Desktop Mapping Solutions</u>

QGIS: The leading Free and Open Source Desktop GIS.

gvSIG Desktop: Powerful and user-friendly

Marble: Desktop globe; pan around

GRASS: Geographic Resource Analysis Support Software

OSGeo - Mobile Mapping Solutions

OpenLayers: Makes it easy to put a dynamic map on the web

GC2/Vidi: Platform for building spatial data and web GIS

Leaflet: Javascript library for mobile-friendly interactive maps

Geopaparazzi: Tool for very fast qualitative engineering GIS