SLAM-Verfahren Synchrone Lokalisierung und Kartenerstellung

- EKF-SLAM: Landmarkenbasiertes SLAM-Verfahren mit einem erweiterten Kalmanfilter
- Fast-Slam: Gitterbasiertes SLAM-Verfahren mit einem Partikelfilter

Problemstellung

- Roboter exploriert eine unbekannte, statische Umgebung mit Landmarken.
- Dabei wird Roboter mit Steuerdaten u bewegt und es werden Sensordaten z erfasst:

$$u_1, z_1, u_2, z_2, ..., u_t, z_t$$

 Gesucht ist Karte m mit n Landmarken

$$m = \ell_{1,x}, \ell_{1,y}, ..., \ell_{n,x}, \ell_{n,y}$$

und Weg des Roboters

$$X_1, X_2, ..., X_t$$

Warum ist SLAM ein schwieriges Problem?

 Sowohl Positionen der Landmarken als auch Roboterweg sind unbekannt.

Kartenfehler und Fehler im Roboterweg sind korreliert.

Warum ist SLAM ein schwieriges Problem?

- Die Zuordnung von Messdaten zu Landmarken sind in der Regel unbekannt.
- Roboter muss entscheiden, ob Messdaten zu einer bereits beobachteten Landmarke zugeordnet werden können oder zu einer noch nicht gesehenen Landmarke.
- Zuordnungsproblematik wird durch Fehler im Roboterweg verstärkt.

EKF-SLAM (1)

 Karte mit n Landmarken und Roboterposition wird durch 2n+3-stelligen Zustandsvektor und Kovarianzmatrix dargestellt.

$$\mathbf{X}_{k} = \begin{pmatrix} x \\ y \\ \theta \\ l_{1} \\ l_{2} \\ \vdots \\ l_{n} \end{pmatrix} \qquad \sum_{k} = \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} & \sigma_{xl_{1}} & \sigma_{xl_{2}} & \cdots & \sigma_{xl_{n}} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} & \sigma_{yl_{1}} & \sigma_{yl_{2}} & \cdots & \sigma_{yl_{n}} \\ \sigma_{x\theta} & \sigma_{y\theta} & \sigma_{\theta}^{2} & \sigma_{\theta l_{1}} & \sigma_{\theta l_{2}} & \cdots & \sigma_{\theta l_{n}} \\ \sigma_{xl_{1}} & \sigma_{yl_{1}} & \sigma_{\theta l_{1}} & \sigma_{l_{1}}^{2} & \sigma_{l_{1}l_{2}} & \cdots & \sigma_{l_{1}l_{n}} \\ \sigma_{xl_{2}} & \sigma_{yl_{2}} & \sigma_{\theta l_{2}} & \sigma_{l_{1}l_{2}} & \sigma_{l_{2}}^{2} & \cdots & \sigma_{l_{2}l_{n}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{xl_{n}} & \sigma_{yl_{n}} & \sigma_{\theta l_{n}} & \sigma_{l_{1}l_{n}} & \sigma_{l_{2}l_{n}} & \cdots & \sigma_{l_{n}}^{2} \end{pmatrix}$$

- Roboter-Position: (x,y,θ)
- n Landmarken-Positionen: $l_i = (x_i, y_i)$ für $1 \le i \le n$
- EKF-SLAM kann einige hundert Landmarken behandeln.

EKF-SLAM (2)

System- und Messgleichungen sind i.a. nicht linear.

$$\mathbf{x}_{k+1} = g(\mathbf{x}_k, \mathbf{u}_k)$$
$$\mathbf{z}_k = h(\mathbf{x}_k)$$

 Bei der Systemgleichung wird angenommen, dass sich die Landmarken nicht bewegen!

Beispiel mit 8 Landmarken

- Geschätzte Roboterpositionen sind grau dargestellt.
- Landmarken mit Positionsunsicherheiten sind rot dargestellt.
- In (d) sieht der
 Roboter die erste
 Landmarke erneut.
 Sämtliche Unsicherheiten werden
 erheblich kleiner.

SLAM-Kartierung eines Tennisplatzes (1)

[J. Leonhard, MIT]

SLAM-Kartierung eines Tennisplatzes (2)

Mit Koppelnavigation ermittelter Weg

Mit EKF-SLAM ermittelte Karte

SLAM-Verfahren Synchrone Lokalisierung und Kartenerstellung

- EKF-SLAM: Landmarkenbasiertes SLAM-Verfahren mit einem erweiterten Kalmanfilter
- Fast-Slam: Gitterbasiertes SLAM-Verfahren mit einem Partikelfilter

Problemstellung

- Roboter exploriert eine unbekannte, statische Umgebung z.B. mit Laser-Scanner.
- Dabei wird Roboter mit Steuerdaten u bewegt und es werden Sensordaten z erfasst:

$$U_1, Z_1, U_2, Z_2, ..., U_t, Z_t$$

 Gesucht ist Belegtheitsgitter m und Weg des Roboters

Gitterbasiertes SLAM-Verfahren als Partikel-Filter

Verwalte zu jedem Zeitpunkt t_k Partikelmenge χ_t:

x_{1:t}^[k] ist der im Partikel k gespeicherte Roboterweg.

Algorithmus

```
Algorithmus FastSLAM_OccupancyGrids(\chi_{t-1}, u_t, z_t):
     for k = 1 to M do
                                                                                      wie beim MCI -
            Integration des Steuerbefehls:
                                                                                      Algorithmus aus Kap. 4
            x_{t}^{[k]} = sampleMotionModel(u_{t}, x_{t-1}^{[k]});
            Gewicht für jeden Partikel brechnen:
            \mathbf{w}_{t}^{[k]} = \text{measurementModelMap}(\mathbf{z}_{t}, \mathbf{x}_{t}^{[k]}, \mathbf{m}_{t-1}^{[k]});
            Integration der Sensordaten:
            m_t^{[k]} = updateOccupancyGrid(m_{t-1}^{[k]}, x_t^{[k]}, z_t);
     endfor
     Resampling:
     \chi_t = \emptyset;
     for i = 1 to M do
            ziehe k zufällig mit Wahrscheinlichkeit w<sub>t</sub>[k];
           \chi_t = \chi_t \cup \{ \langle x_{1:t}^{[k]}, m_t^{[k]} \rangle \};
     endfor
     return \chi_{t};
```

Beispiel mit 3 Partikel

Beispiel mit mehreren Partikel (nur Roboterwege)

- (a) Aufgrund der langen Strecke steigt die Unsicherheit in der Position. Die Partikel spreizen stark.
- (b) Die Schleife wird geschlossen. Der Roboter gelangt in einem Kartenbereich, der mit größerer Genauigkeit zu Beginn aufgenommen wurde.
 - Viele unwahrscheinliche Partikel fallen beim Resampling weg.
 - Die Partikel spreizen jetzt weniger stark.

Wichtig: Anzahl der Partikel klein halten

Problem:

- bei der gitterbasierten Kartenerstellung kann ein Gitter sehr groß werden.
- Jeder Partikel enthält ein eigenes Belegtheitsgitter.
- Daher müssen die Anzahl der Partikel klein gehalten werden!

Lösungsansätze:

- Verbesserung der Odometrie mit Scan-Matching
- Verbesserung von sampleMotionModel: auf Sensordaten ausgerichtete Generierung von Positionen

Verbesserung der Odometrie durch Scanmatching

 verbessere die durch Odometrie ermittelte Position x_t, indem der aktuelle Laserscan z_t mit der bisherigen Karte m_{t-1} abgeglichen wird.

Scanmatching (1)

- Der Roboter bewegt sich in der grau dargestellten Umgebung.
- Er hat zum Zeitpunkt t bereits den hellblau dargestellten Bereich m_{t-1} kartiert.
- An der geschätzten (aber fehlerhaften)
 Position x_t wird der Scan z_t
 aufgenommen.
- Aufgrund der Umgebungskarte m_t und der Position x_t müsste sich aber der Scan z_m ergeben.
- Durch ein Scanmatching-Verfahren wird z_t möglichst gut auf z_m transformiert (verschoben und gedreht).
- Mit der berechneten Transformation lässt sich die Position zu x_{korr} korrigieren.

Scanmatching (2)

- IDC (Iterative Dual Correspondance)
 ist ein bekanntes Scanmatching-Verfahren, das
 iterativ solange arbeitet, bis entweder eine
 Grenze für die Anzahl der Iterationen oder aber
 eine bestimmte Überdeckungsgüte erreicht wird.
- Bei jeder Iteration werden aus den beiden Scans zunächst eine Menge von korrespondierenden Punktepaare (P_i, Q_i) bestimmt.
- Durch ein LMS-Ansatz (Least Mean Square) wird eine Transformation T so bestimmt, dass die transformierten Punkte T(Q_i) von P_i möglich gering entfernt sind.
- Bricht die Iteration ab und wurde die gewünschte Überdeckungsgüte nicht erreicht, dann werden die Scans als nicht matchbar eingestuft.
- Wurde die Überdeckungsgüte erreicht, wird die Transformation mit einer Kovarianz zurückgeliefert, die die Überdeckunsgüte angibt.

Illustrierung der Positionsverbesserung beim Scanmatching

Verbesserung von sampleMotionModel

 von Sensordaten (d.h. Umgebung) abhängige Generierung von Positionen

Intel-Lab mit Standard-FastSlam (1)

- Belegheitsgitter für den Partikel mit höchsten (akkumuliertem)
 Gewicht
- 500 Partikel
- Roboterpfad: 491m
- Umgebung: 28m * 28m
- Durchschnittsgeschwindigkeit: ca. 0.2 m/sec

Intel-Lab mit Standard-FastSlam (2)

 Darstellung der reinen Odometriedaten und des damit erzeugten Belegtheitsgitters

Intel-Lab mit FastSlam und Scanmatching

- 15 Partikel
- 5 cm Gitter-Auflösung während des Scanmatchings
- 1 cm Auflösung in der endgültigen Karte

Outdoor Campus Map

- 30 Partikel
- **250m x 250m**
- ca. 1,7 km (Odometrie)
- 20 cm Auflösung während des Scanmatchings
- 30 cm Auflösung in der endgültigen Karte

