Statistical and Computational Security

Statistical Security

Let \mathcal{X} and \mathcal{Y} be two distributions over $\{0,1\}^m$. The statistical distance between \mathcal{X} and \mathcal{Y} , denoted $\Delta(\mathcal{X},\mathcal{Y})$ is

$$\max_{T\subseteq\{0,1\}^m} |\Pr[\mathcal{X}\in T] - \Pr[\mathcal{Y}\in T]|$$

A symmetric encryption scheme is said to be ε-statistically secure, if for any two plaintexts P_1, P_2 distributions $E_k(P_1), E_k(P_2)$ are ε-equivalent

Algorithms

- Algorithm performs a sequence of `elementary steps' that can be:
 - arithmetic operations
 - bit operations
 - Turing machine moves
 - (but not quantum computing!!)
- We allow probabilistic algorithms, that is flipping coins is permitted

Complexity

- The time complexity of algorithm A is function f(n) that is equal to the number of elementary steps required to process the most difficult input of length n
- We do not distinguish algorithms of complexity 2n² and 100000n²
- A computational problem has time complexity at most f(n) if there is an algorithm that solves the problem and has complexity O(f(n))
 - problem solvable in linear time: there is an algorithm that on input of length n performs at most Cn steps
 - problem solvable in quadratic time: there is an algorithm that on input of length n performs at most Cn² steps
- Polynomial time solvable problems: O(polynomial); P, BPP

Complexity (cntd)

- Polynomial time solvable problems:
 - There is a polynomial p(n) such that the problem is solvable in time O(p(n)
- P class of problems solvable in poly time by a deterministic algorithm
- BPP class of problems solvable in poly time by a probabilistic algorithm
- An algorithm is superpolynomial if its time complexity f(n) is not in O(p(n)) for any polynomial p(n)
- A function $\varepsilon: \mathbb{N} \to [0,1]$ is polynomially bounded if $\varepsilon(n) \ge \frac{1}{p(n)}$ for some polynomial p(n)

Computational Security

Let (K,E,D) be a SES that uses n-bit keys to encrypt m(n)-bit messages. It is computationally secure if for any polynomial time algorithm Eve: $\{0,1\}^* \rightarrow \{0,1\}$, any polynomially bounded ϵ : $\{0,1\}^* \rightarrow [0,1]$, n, and $P_1,P_2 \in \{0,1\}^{m(n)}$

$$|\Pr[\mathsf{Eve}(E_{U_n}(P_1)) = 1] - \Pr[\mathsf{Eve}(E_{U_n}(P_2)) = 1]| < \varepsilon(n)$$

Conjecture.

A computationally secure SES exists for $m(n) = n^{100}$ (may be even for $m(n) = 2^{0.9n}$)

Computational Indistinguishability: Difficulties

- It is useful to define computational security in a similar way as statistical one: define distance or equivalence of distributions and then say that $E_{U_n}(P_1)$ and $E_{U_n}(P_1)$ are 'equivalent'. However, there are problems
- For computational definitions we need algorithms, not events Solution: Instead of saying $X \in S$ we use the characteristic function f of S. So we say f(X) = 1 instead.

Distance between distributions can then be defined as

$$\max_{f} |\Pr[f(X) = 1] - \Pr[f(Y) = 1]|$$
 over all 'easily' computable functions f

Computational complexity does not make sense for fixed distributions.

Solution: Use collections or sequences of random variables

Computational Indistinguishability: Definition

Let T(n) and $\varepsilon(n)$ be functions on natural numbers. Collections of random variables $\{X_n\}$ and $\{Y_n\}$ such that $X_n, Y_n \in \{0,1\}^n$ are said to be computationally (T,ε) -indistinguishable, if for any probabilistic algorithm. Alg with time complexity at most T(n)

$$|\Pr[\mathsf{Alg}(X_n) = 1] - \Pr[\mathsf{Alg}(Y_n) = 1]| \leq \mathcal{E}(n)$$

 Denoted $\{X_n\} \approx_{T,\mathcal{E}} \{Y_n\}$

For example:

Let (K,E,D) be a SES that uses n-bit keys to encript m(n)-bit messages. It is computationally secure if for any $P_1,P_2\in\{0,1\}^{m(n)}$ distributions $E_{U_n}(P_1)$ and $E_{U_n}(P_1)$ are (T,ϵ) -indistinguishable for any polynomial T and any polynomially bounded ϵ

Pseudo Random Generators

Pseudorandom Generators

- Let $\mathsf{T}(\mathsf{n}), \, \varepsilon(\mathsf{n})$ be functions. A collection $\{X_n\}$ of random variables with $X_n \in \{0,1\}^n$ is called (T,ε) -pseudorandom if $\{X_n\} \approx_{T,\varepsilon} \{U_n\}$
- A collection of functions $g_n : \{0,1\}^n \to \{0,1\}^{m(n)}$ is called a (T,ε) -pseudorandom generator if $\{g_n(U_n)\}$ is (T,ε) -pseudorandom

Good Pseudorandom Generators

- m(n) > n Otherwise it is trivial and uselessm(n) n is the stretch of a PRG
- A functions T is called superpolynomial if for any polynomial p(n),
 p ∈ o(T)
- A pair of functions (T,ε) is superpolynomial if T is superpolynomial and $\varepsilon(n) = \frac{1}{f(n)}$ where f is superpolynomial
- A PRG should be (T,ε) -pseudorandom for some superpolynomial pair (T,ε)
- \circ g_n must be efficiently computable
- PRG Axiom: A good PRG exists
- (see Goldreich) There is a $(2^{\frac{n}{8}}, 2^{-\frac{n}{8}})$ -pseudorandom generator

PRGs and Statistical Security

Lemma.

If m(n) > n then for any collection of functions $\{g_n\}$ we have $\Delta(g_n(U_n), U_m) \ge \frac{1}{2}$

Proof.

Let S_n be the image of $g_n(\{0,1\}^n)$. Clearly $|S_n| \le 2^n \le 2^{m(n)-1}$ Thus $\Pr[g_n(U_n) \in S_n] = 1$ while $\Pr[U_{m(n)} \in S_n] \le \frac{1}{2}$

Candidate PRGs: Blum - Blum - Shub

- This is a PRG that given an input of length 2n produces a string of bits of length m, where m is as big as we want
- Input: an n-bit integer N and integer X, 1 ≤ X ≤ N

```
num_outputted = 0;
while num_outputted < m:
    X := X*X mod N
    num_outputted := num_outputted + 1
    output (least-significant-bit(X))
endwhile</pre>
```

Blum - Blum - Shub is Good

Theorem.

The BBS PRG is (T,ε) -pseudorandom for some superpolynomial pair (T,ε) if the assumption below is true

Assumption.

There is a superpolynomial pair (T,ϵ) such that for any probabilistic algorithm Alg with time complexity less than T(n) the following holds

Pr[Alg finds factorization of a random n-bit integer] $< \varepsilon(n)$

Candidate PRGs: RC4

- RC4 stands for Ron's Cipher no. 4
- Widely used: SSL (and then TSL), SSH, WEP, WPA (IEEE 802.11), BitTorrent protocol encryption, Microsoft Point-to-Point Encryption,
- A byte is a number from {0,...,255}
- Input: a permutation S: $\{0,...,255\} \rightarrow \{0,...,255\}$

```
i := 0 \ j := 0
```

while num_outputted < m :</pre>

$$i := (i + 1) \mod 256 \ j := (j + S[i]) \mod 256$$

 $swap(S[i],S[j])$

output $(S[(S[i] + S[j]) \mod 256])$

endwhile

Candidate PRGs: RC4 (cntd)

- RC4 given an input of length 2048 produces an output of length m, which is as big as we want
- If 2048 is too much, there is another algorithm KSE, the Key Scheduling Algorithm – that uses an input of length 40 ≤ n ≤ 128 to generate S

```
Input: a key k of length n, 40 ≤ n ≤ 128
for i from 0 to 255 S[i] := i endfor
j := 0
for i from 0 to 255
j := (j + S[i] + k[i mod n]) mod 256
swap(S[i],S[j])
endfor
```