

DS-UA 111 Data Science for Everyone

Week 12: Lecture 1

Resampling

Could sampling from a sample teach us anything about a population?

DS-UA 111 Data Science for Everyone

Week 12: Lecture 1

Resampling

Announcements

- ► Please check Week 12 agenda on NYU Classes
 - ► Homework 3/4
 - ► Lab 7
 - ► Project Milestone
- Refer to the Calendar linked to NYU Classes

- ► Permutation Testing
 - Does the distribution of some feature match between two groups?
- DesigningExperiments

References

- ► Comparing Samples:
 - ► Chapter 12.3

- Researchers perform studies on a target population
- ► The sampling frame is the subset of the population eligible for inclusion in the sample
- The sample contains randomly or deterministically selected participants or observations from the sampling frame

Randomized Controlled Trial

- Researchers randomly split the participants between two groups receiving either treatment A or treatment B
- Here neither the researchers nor the participants should know the division into groups

Cross-Over Design

- Researchers repeat the experiment switching the participants between the groups.
- Between the two rounds, each patient has both treatment A and treatment B

Steps for Permutation Testing

- 1. Fix a null hypothesis and alternative hypothesis
- 2. Determine a test statistic
- 3. Calculate the observed test statistic for the sample
- 4. Simulate test statistics under the null hypothesis with many trials
- 5. Calculate p-value for the observed test statistic with the empirical distribution

permutation	value of T	probability
(1,9,3)	2	1/6
(9,1,3)	2	1/6
(1,3,9)	7	1/6
(3,1,9)	7	1/6
(3,9,1)	5	1/6
(9,3,1)	5	1/6

Agenda

- Understanding Quantiles
 - **▶**Percentiles
 - ▶Box-Plot
- ▶ Resampling
 - ► Bootstrap Method

References

- **▶**Estimation
 - ▶ Chapters 13.1, 13.2

Percentiles

- Remember that quantiles are cutpoints that split a dataset consisting of numbers into subsets of equal size
- ► Percentiles split the dataset into subsets of size 1%.

- Assume that we arrange the data in increasing order
- The pth percentile of the data is the smallest number in the dataset that is at least as large as p% of all the values.

Percentiles

Steps for Computing Percentiles

- Arrange the data in increasing order.
- ► Calculate (p/100)×n where n is the size of the dataset. Call this number k.
- ▶ If k is an integer, then take the kth number in the dataset.
- ▶ If k is not an integer, then round k up to the next integer and take that number in the dataset.

Box-Plots

Box-Plots

Estimation

- We want to study populations. We call unknown quantities related to the population parameters
- Hypothesis testing allowed us to compare
 - sample and population
 - ►two samples

Estimation

- If we have a census containing all data about a population, then we do not need hypothesis testing
- ▶ If we lack a census or the census is too large for calculation, then we need samples

- 1. Take a sample at random from the population
- 2. Compute a statistic to estimate the parameter
- Repeat to understand variability in the estimate

Resampling

- ► One sample yields one estimate of the parameter. So another estimate means another samples at random from the population.
- However, we may not be able to conduct another observational study or experiment

- If we can make some assumptions about the population, then we could try to simulate samples.
- ► However, if we lack enough information about the population to make assumptions, then we have to resample.

Bootstrap

- ► Bootstrap Method
 - ▶ Draw at random with replacement from the sample
 - ► The size of the resample should equal the size of the sample

Bootstrap

▶ Bootstrap Method

0.04

0.03

0.02

0.01

0.00

Repeat resampling over many replications

Population

Bootstrap

- ► Bootstrap Method
 - ▶ Use the resamples to make inferences about the population

Summary

- Understanding Quantiles
 - **▶**Percentiles
 - ▶Box-Plot
- ► Resampling
 - ► Bootstrap Method

Goals

- Understand the calculation of percentiles
- ► Visualize different percentiles through a boxplot
- Resample data to assess differences between estimates

