Mathematik für die Informatik B

Serie 1

Abgabe der Hausaufgaben: Sa, 22.04.2023, 23:59 Uhr im OLAT (strikt!!)

Beweise sind im Schema Vor/Beh/Bew und in ganzen Sätzen aufzuschreiben. Sie dürfen Vor/Beh auch in einem formulieren, so wie typischerweise in Skripten und Büchern.

Die Präsenzaufgaben werden in den Übungen am 13./14.04. bearbeitet.

Präsenzaufgabe 1: Positives Quadrat

Zeigen Sie ohne den Satz "Regeln in angeordneten Körpern" zu verwenden:

Es gilt $a^2 > 0$ für alle $a \in \mathbb{R}_{\neq 0}$.

Präsenzaufgabe 2: Nenner größer machen

Es gilt $\frac{a}{x} > \frac{a}{y}$ für alle a, x, y > 0 mit x < y.

Präsenzaufgabe 3: Randpunkte von Intervallen

Es sei $\emptyset \neq I \subseteq \mathbb{R}$ ein nach oben beschränktes Intervall und $b \in \overline{\mathbb{R}}$ ein rechter Randpunkt von I. Dann gilt sup(I) = b.

(Insbesondere sieht man daran die Eindeutigkeit der Randpunkte.)

Hausaufgabe 1: Archimedes-Ordnung (10 Punkte)

Es gilt:

 $\forall x, y > 0 \ \exists n \in \mathbb{N} : nx > y$

Hausaufgabe 2: Existenz irrationaler Zahlen (10 Punkte)

Es gilt:

 $\forall a, b \in \mathbb{R}, a < b \ \exists x \in \mathbb{R} \setminus \mathbb{Q} : a < x < b$

Lösung zu Präsenzaufgabe 1

Es gilt $a^2 > 0$ für alle $a \in \mathbb{R}_{\neq 0}$.

Beweis. Fall 1: a > 0. Nach (O2) gilt $a^2 \ge 0$. Nach dem Satz "Regeln in Körpern" in Kapitel 1 gilt $a^2 = 0 \iff a = 0 \lor a = 0 \iff a = 0$, also gilt $a^2 \ne 0$. Insgesamt folgt $a^2 > 0$.

Fall 2: a < 0. Es gilt $0 = a - a \le -a$ nach (O1). Wäre -a = 0, dann auch a = a + 0 = a + (-a) = 0, was a < 0 widerspricht. Es folgt 0 < -a, also $(-a)^2 > 0$ nach dem ersten Fall. Ferner $a^2 = (-a)^2$ nach dem Satz "Regeln in Körpern".

Lösung zu Präsenzaufgabe 2

Es gilt $\frac{a}{x} > \frac{a}{y}$ für alle a, x, y > 0 mit x < y.

Beweis. Nach dem Satz "Regeln in angeordneten Körpern" Punkt (20) gilt $y^{-1} < x^{-1}$. Nach demselben Satz Punkt (15) folgt $ay^{-1} < ax^{-1}$. Die Behauptung folgt aufgrund der vereinbarten Notation.

Lösung zu Präsenzaufgabe 3

Es sei $\emptyset \neq I \subseteq \mathbb{R}$ ein nach oben beschränktes Intervall und $b \in \overline{\mathbb{R}}$ ein rechter Randpunkt von I. Dann gilt $\sup(I) = b$.

Beweis. Wähle als $a \in \overline{\mathbb{R}}$ irgendeinen linken Randpunkt von I und als $v \in I$ irgendein Element von I, was es wegen $I \neq \emptyset$ gibt.

Ebenso da $I \neq \emptyset$ gilt, ist $b = -\infty$ ausgeschlossen. Angenommen $b = +\infty$. Ist dann $s \in I^{\triangle}$, so ist $a \le v \le s < s+1 < b$, also $s+1 \in I$, ein Widerspruch. Also gilt $b \in \mathbb{R}$. Nach Definition ist $b \in I^{\triangle}$.

Wir wenden schließlich die ε -Charakterisierung des Supremums an. Es sei $\varepsilon > 0$. Wenn $b - \varepsilon < v$ gilt, so sind wir fertig. Sonst definiere $x \coloneqq b - \frac{\varepsilon}{2}$. Dann gilt $a \le v \le b - \varepsilon < x < b$, also $b - \varepsilon < x$ und $x \in I$.