Appendix A

Liquid Targets for Run91

A.1 Density determination

A.1.1 Chemical composition

Different orientations of the two nuclear spins in the diatomic molecules of D_2 and H_2 give rise to the molecular modifications designated by the prefixes ortho and para. The equilibrium composition is temperature dependent. Close to the boiling point of liquid hydrogen (20.4 deg K) the concentrations are: ortho ~ 0.21 % and para ~ 99.79 % (equilibrium H_2). At 20.4 deg K the deuterium composition is ~ 98 % ortho (equilibrium D_2). Most of the physical properties like vapor pressure, density of the liquid, etc. are mildly dependent upon the composition. The boiling point temperature in deg K for equilibrium H_2 is 20.27, for equilibrium D_2 is 23.52 and for hydrogen deuteride (HD) is 22.13 (at atmospheric pressure) from [121].

A.1.2 Measuring the E665 Liquid Target Densities

The target densities are derived indirectly from the measurement of the saturated vapor pressure in the cryogenic liquid reservoir (a description of the target setup and

geometry can be found in [60]). The vapor pressure was measured by a pressure to voltage transducer. The raw pressure has to be adjusted according to the pressure transducer calibration data [123]. The raw pressure values were recorded on the E665 raw data tapes from the EPICURE data logger. This datum is part of the 91 Spill Database record [69]. The information from each tape and for each spill is merged to create an n-tuple and it is checked for readout failures [94]. The data integrated over all Run blocks and after the transducer calibration correction are shown in figures A.1 and A.2, for D_2 and H_2 respectively.

Figure A.1: D₂ Pressure

Figure A.2: H₂ Pressure

The Run dependence of the pressure values is shown in figure A.3 and figure A.4. The big fluctuations shown for some run blocks correspond to periods that either one

of the targets had problems. This was verified from the information found in the logbook of the experiment (Table A.1).

Figure A.3: D₂ Pressure vs Run

Figure A.4: H₂ Pressure vs Run

The target pressures are converted to temperatures using the parametrization for D_2 in equilibrium (from reference [121]) and the temperatures to density using the parametrizations from [124] as described in references [94] and [123]. The parametrizations for D_2 are:

$$\log_{10} P = a_0 + a_{-1}/T + a_1 \times T \tag{A.1}$$

where P and T are the pressure and temperature (mm Hg, deg Kelvin), $a_0 = 4.7367$,

 $a_{-1} = -58.4440$, and $a_1 = 0.02670$.

$$\rho = (b_0 - T)/b_1 \tag{A.2}$$

where ρ and T are the density and temperature (gr/cm³, Kelvin) and $b_0 = 86.981$ and $b_1 = 389.97$. For H_2 the parametrizations used are:

$$P = c_a^{c_0 + c_i/(T + c_b) + c_1 \times T} \tag{A.3}$$

where P and T are the pressure and temperature (atm, Kelvin) and $c_a = 10., c_0 = 2.00062, c_i = -50.09708, c_b = 1.0044$ and $c_1 = 0.01748495$.

$$\rho = \rho_c + a_1 \times \delta^{0.38} + a_2 \times \delta + a_3 \times \delta^{1.33333} + a_4 \times \delta^{1.6666667} + a_5 \times \delta^2 \tag{A.4}$$

where ρ is in mol/cm³, $\delta = T_c - T$, T_c is 32.976 degrees Kelvin and T is in Kelvin, ρ_c =0.01559 mol/cm³, $a_1 = 7.3234603 \times 10^{-3}$, $a_2 = -4.407426 \times 10^{-4}$, $a_3 = 6.6207946 \times 10^{-4}$, $a_4 = -2.9226363 \times 10^{-4}$ and $a_5 = 4.00844907 \times 10^{-5}$.

The conversion factors for pressure units are: 1 mm Hg \rightarrow 1 atm 1.3157895 \times 10⁻³ and atm \rightarrow psi 14.6960. It is worth emphasizing the fact that the densities are insensitive to small pressure changes. The slope for H_2 is 0.00025 gm/cm³/psi and for D_2 is 0.00055 gm/cm³/psi. The measured densities are shown in figure A.5 and figure A.6. The Run dependence is shown in figures A.7 and A.8. The arrows correspond to the bad Run Blocks listed in Table A.1 for either H_2 or D_2 .

A.1.3 Results

After the Run blocks listed in Table A.1 are removed, the density distributions for the two targets are fitted to a gaussian shape. The result of the fit for the H_2 density is:

$$ho = 70.598 \pm 0.79164 \times 10^{-3} \text{ with } \sigma_{\rho} = 0.0160 \pm 0.40909 \times 10^{-4} \text{ (in g/cm}^3).$$

The result of the fit for the D_2 density is:

Figure A.5: D_2 Density

Figure A.6: H₂ Density

Figure A.7: D_2 Density vs Run

Figure A.8: H2 Density vs Run

 $\rho = 162.27 \pm 0.17169 \times 10^{-3} \text{ with } \sigma_\rho = 0.023666 \pm 0.52230 \times 10^{-4} \text{ . The values}$ are in g/cm³.

The measured mean values of the pressures are $P=15.409\pm0.00024$ for H_2 (in psi) and $P=15.522\pm0.00021$ for D_2 (psi). The number of points entering these fits is ~ 670000 , since the Spill Database contains one pressure measurement per spill.

A.1.4 Systematic Errors

- Pressure to Density conversion. The resulting uncertainty of the conversion due to the different parametrizations is of the order of 0.3 % for D_2 and 0.04 % for H_2 ([124]).
- Pressure Transducer. The accuracy is quoted to be 0.11 % of the full reading (50 psi) ([123]). This gives a relative error in the density measurement ~ 0.01 % for H_2 and D_2 .

A.2 Measuring the Target Composition - Effects on the D_2 rate

A.2.1 Temperature determination

The chemical contents of the targets were analyzed using a boil-off test. Hydrogen deuteride (HD) in the D_2 target is the only impurity causing concern. The results for the D_2 composition from the Argonne Chemistry Lab are tabulated in Table A.2. The big difference between the last two measurements and the first one (and also the value for the 1990 Run Period) can be blamed on the D_2 target failure of the 6th of September 1991. For the 1991 Run Period the procedure used for the D_2 target was to collect the liquid in a tank and then reuse it to fill the target. The explanation for the large HD contamination after the 6th of September is that this tank was contaminated when the target liquid was collected after the target failed.

Since the D_2 is not pure the D_2 density computed from the measured vapor pressure is not correct since the pressure really corresponds to the D_2 and \overrightarrow{HD} equilibrium mixture. The following procedure determines the correct D_2 density:

- A temperature T_i is obtained from the measured vapor pressure P_{meas} , using the D_2 P to T relation (equation A.1).
- This temperature is used with the parametrization (for HD)

$$\log_{10}P_{HD} = 5.04964 - \frac{55.2495}{T} + 0.01479 \times T \tag{A.5}$$

from [121] to find the vapor pressure P_{HD} (in mm Hg). Note that NMC [111] is using the same parametrization from [125].

• The actual D_2 vapor pressure is computed from $nP_{meas} = n_{HD}P_{HD} + n_{D_2}P_{D_2}$, $(n = n_{HD} + n_{D_2} \text{ with n, } n_{HD} \text{ and } n_{D_2} \text{ being the number of moles})$. The HD molar volume is given by

$$U_{HD} = 24.886 - 0.30911T + 0.01717T^2 \tag{A.6}$$

in $cm^3/mole$ from [125] and n_{D_2} is from equation A.2 converted to $moles/cm^3$. Note that the number of moles in the determination of the number n are converted to molar densities (dividing with the constant target volume V).

• From P_{D_2} a new T is found from equation A.1 and the procedure is repeated, until HD and D_2 are found to have the same T.

The first T measurement (T_i) was 23.718 deg K with $P_{meas} = 15.522$ psi. After a few iterations, for the first period (HD contamination of 4.2 %) the temperature is evaluated to be 23.602 deg K with $P_{D_2} = 15.061$ psi. The molar density from that value is 0.040346 moles/ cm^3 and the mass density is 0.16225 gm/ cm^3 . For HD the molar density at 23.602 deg K is 0.039644 moles/ cm^3 .

The values for the second period (averaging the HD from the second and third measurements of Table A.2) starting with values T=23.718 deg K and $P_{meas}=15.522$ psi are: T=23.38163 deg K, $P_{D_2}=14.049$ psi and molar density 0.040487 moles/ cm^3 and the mass density 0.16309 gm/ cm^3 for the target D_2 . For HD the molar density is 0.039788 moles/ cm^3 . The error from averaging measurements 2 and 3 of Table A.2 is ~ 0.53 %. The results for the two periods (after the iterative procedure) are presented in Table A.3.

A.2.2 neutron scattering rate from the D_2 target

Two terms (α and β in the following formula), which are related to the deuterium target composition are required in order to obtain the relation between the scattering rate (R_{D_2}) from the target, as well as σ_p and σ_n , the proton and neutron cross sections (see [126]). The molar densities of electrons, protons and neutrons in the target are:

$$n_e = n_p = 2(1 - f)n_{D_2} + 2fn_{HD}$$
 (A.7)

$$n_n = 2(1-f)n_{D_2} + 1fn_{HD} (A.8)$$

where n_{D_2} and n_{HD} are the molar densities of D_2 and HD respectively and f is the HD fraction per volume in the target. These are evaluated from equation A.2 converting to $moles/cm^3$ and equation A.6, using $n_{HD}=1/U_{HD}$.

Assuming that σ from the actual D_2 target is the sum of σ_p and σ_n (weighted with the molar densities for p and n in the target), the scattering rate is:

$$R = LN_A N_{flux}(n_p \sigma_p + n_n \sigma_n) = LN_A N_{flux} n_0 (\alpha \sigma_n + \beta \sigma_p)$$
 (A.9)

where $n_0 = 2n_{D_2}$.

The results for the two different periods (the first period and the average of the second and the third periods as defined in Table A.2) are given in Table A.3.

A.2.3 Systematic error from the target composition determination

The total systematic error due to the target quantities in the cross-section measurement has a contribution from the pressure to density conversion (calibration, conversion parametrizations - section 1 of this appendix) and a contribution from the HD contamination correction (measurement of f - section 2). This last error affects both the determination of n_{D_2} and n_p , n_n from equation A.9. The fractional errors on each quantity are given below.

- \bullet $\delta_{n_{H_2}}/n_{H_2}=0.05\%.$ This is the error of the H_2 molar densisty.
- $\delta_{n_{D_2}}/n_{D_2} = \sqrt{0.31\% + 0.53\%} = 0.58\%$. This is the error of the D_2 molar densisty. The second number is the effect of the HD contamination correction (see section 2 of this appendix). The 2 errors are independent, so they add in quadrature.
- $\delta_f/f = 6.0\%$. This is the error assigned to the evaluation of the HD per volume fraction. The assumption is that there are 2 periods in the D_2 target composition, before and after the target problems. There are 2 measurements of the

target composition for period 2 (the 2 last 1991 values from Table A.2). The mean value is used as the f value for period 2 and the error on the mean as the error in f due to the chemical analysis method ($\delta_f = 0.006$).

From equations A.7 and A.8, the error in the number of neutrons and number of protons in the D_2 target depends on the error in f and the error in n_{D_2} . The errors are correlated since the value of n_{D_2} depends on f.

$$\delta_{n_i} = \sqrt{\left(\frac{\partial n_i}{\partial f}\delta_f\right)^2 + \left(\frac{\partial n_i}{\partial n_{D_2}}\delta_{n_{D_2}}\right)^2 + 2\frac{\partial n_i}{\partial f}\frac{\partial n_i}{\partial n_{D_2}}\delta_f\delta_{n_{D_2}}}$$
(A.10)

with i=p or n, $\frac{\partial n_p}{\partial n_{D_2}} = \frac{\partial n_n}{\partial n_{D_2}} = 2(1-f)$, $\frac{\partial n_p}{\partial f} = -2n_{D_2} + 2n_{HD}$ and $\frac{\partial n_n}{\partial f} = -2n_{D_2} + n_{HD}$. Substituting these expressions in equation A.10, results in:

$$\delta_{n_p} = \sqrt{((-2n_{D_2} + 2n_{HD})\delta_f)^2 + (2(1-f)\delta_{n_D})^2 + 8(1-f)(-n_{D_2} + n_{HD})\delta_f\delta_{n_D}}$$

$$\delta_{n_n} = \sqrt{((-2n_{D_2} + n_{HD})\delta_f)^2 + (2(1-f)\delta_{n_D})^2 + 4(1-f)(-2n_{D_2} + n_{HD})\delta_f\delta_{n_D}}$$
The result is $\delta_{n_D} = 0.0004027$. (A.12)

The result is $\delta_{n_p} = 0.0004275 moles/cm^3$ and $\delta_{n_n} = 0.00019 moles/cm^3$. These errors correspond to $\delta_{\alpha} = 0.24$ % and δ_{β} 0.53 %. In order to find the normalization error from equation A.9 we need to know σ_p and σ_n . For the σ_n/σ_p ratio, with N_H and N_D the number of events from each target, N_f^H and N_f^D the number of beams, and given the equal lengths of the 2 targets we have $(n_H = 2n_{H_2})$:

$$\sigma_n/\sigma_p = \frac{1}{\alpha} \left(\frac{N_D n_H N_f^H}{N_H n_0 N_f^D} \right) - \frac{\beta}{\alpha}$$
 (A.13)

Calling $A \equiv \frac{1}{\alpha} \left(\frac{N_D n_H N_f^H}{N_H n_0 N_f^D} \right)$ and $r \equiv \sigma_n / \sigma_p$, the error due to the determination of the target composition is given by:

$$\delta_{r} = \sqrt{\left(\frac{\partial r}{\partial \alpha}\delta_{\alpha}\right)^{2} + \left(\frac{\partial r}{\partial \beta}\delta_{\beta}\right)^{2} + \left(\frac{\partial r}{\partial n_{H}}\delta_{n_{H}}\right)^{2} + 2\left(\frac{\partial r}{\partial \alpha}\frac{\partial r}{\partial \beta}\delta_{\alpha}\delta_{\beta}\right)}$$
(A.14)

Note that the n_0 that appears in equation A.13 is a scale factor. The effect of the error in the n_0 measurement has been taken into account in the α and β error calculation.

The derivatives are : $\frac{\partial r}{\partial \alpha} = -\frac{(A - \frac{\beta}{\alpha})}{\alpha}$, $\frac{\partial r}{\partial \beta} = -1/\alpha$ and $\frac{\partial r}{\partial n_H} = \frac{(A + \frac{\beta}{\alpha})}{n_H}$. Substituting these expressions to equation A.14 we get:

$$\delta_r = \sqrt{((A - \frac{\beta}{\alpha})\frac{\delta_{\alpha}}{\alpha})^2 + (\frac{\beta}{\alpha}\frac{\delta_{\beta}}{\beta})^2 + ((A + \frac{\beta}{\alpha})\frac{\delta_{n_H}}{n_H})^2 + 2(A - \frac{\beta}{\alpha})\frac{\beta}{\alpha}\frac{\delta_{\alpha}}{\alpha}\frac{\delta_{\beta}}{\beta}}$$
(A.15)

which for $A\sim 2$ and $\frac{\beta}{\alpha}\sim 1$, gives $\delta_{\sigma_n/\sigma_p}\sim .85\%$.

Table A.1: Run 91 Liquid Target Performance vs Run Block

Run Blocks	Time	H_2 status	D_2 status	
20935-21304	07jul91-12aug91	OK	OK	
21305-21382	12aug91-20aug91	no	no	
21383-21428	20aug91-24aug91	no	OK	
21429-21449	24aug91-25aug91	OK	OK	
21450-21463	25aug91-27aug91	по	OK .	
21464-21600	27aug91-06sep91	OK	OK	
21601-21642	06sep91-15sep91	OK	no	
21643-21990	15sep91-21oct91	OK	OK	
21991-22009	21oct91-25oct91	no	OK	
22015-22726	25oct91-08jan92	OK	OK	
	15oct91 move	targets	2cm east	
	18nov91 swap	targets	_	

Table A.2: Run 91 D_2 Target Composition

Date	H_2	HD (f)	D_2	
06sep91	0.0042	0.032	0.963	
15nov91	0.0080	0.088	0.906	
08jan92	0.0021	0.100	0.898	
run 90	0.0006	0.044	0.955	

Table A.3: Density and Scattering rate

Period	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		α	β	
	$moles/cm^3$	$moles/cm^3$	moles/cm ³		
I	0.035022	0.040346	0.039644	0.98372	0.99944
II	0.035022	0.040487	0.039788	0.95219	0.99838