MC358 - 2s2023 - Lista de exercícios 04

IC - Unicamp

2023

1. Seja n um inteiro maior que ou igual a 2. Considere a operação de soma sobre \mathbb{Z}_n definida como

$$[a]_n + [b]_n = [a+b]_n.$$

Prove que essa operação é bem definida (ou seja, prove que se $a \equiv x \pmod{n}$ e $b \equiv y \pmod{n}$, então $a+b \equiv x+y \pmod{n}$).

- 2. Usando operações modulares, prove as seguintes afirmações:
 - (a) Para todo $n \in \mathbb{N}$, $7^n 5^n$ é par.
 - (b) Para todo $n \in \mathbb{N}$, $6|(n^3 n)$.
- 3. Encontre o inverso multiplicativo de 17 módulo 72 no intervalo $\{0, 1, \dots, 71\}$. (**Dica:** Use o algoritmo de Euclides estendido.)
- 4. Prove que a equação $14x^2 + 15y^2 = 7^{2000}$ não possui solução (x, y) inteira.
- 5. Prove, usando congruências, que $11^{n+2} + 12^{2n+1}$ é divisível por 133, para qualquer número natural n.
- 6. Prove que se $f: X \to Y$ e $g: Y \to Z$ são funções injetoras, então $g \circ f$ também é injetora.
- 7. Considere a função f(x) = x/(3+x), onde $\mathsf{Dom}(f) = \mathbb{R}$.
 - (a) Determine Img(f) e diga se f é sobrejetora ou não.
 - (b) f é injetora?
- 8. A função piso associa a cada número real x o maior inteiro que é menor ou igual a x. Este inteiro é denotado por $\lfloor x \rfloor$. Observe que $\lfloor 1/3 \rfloor = \lfloor 2/3 \rfloor = 0$, $\lfloor -1/3 \rfloor = \lfloor -2/3 \rfloor = -1$ e $\lfloor 5 \rfloor = 5$.

A função teto associa a cada número real x o menor inteiro que é maior ou igual a x. Este inteiro é denotado por $\lceil x \rceil$. Observe que $\lceil 5/4 \rceil = \lceil 7/4 \rceil = 2$, $\lceil -1/4 \rceil = \lceil -3/4 \rceil = 0$ e $\lceil 4 \rceil = 4$.

Tanto o piso quanto o teto são funções do conjunto \mathbb{R} para o conjunto \mathbb{Z} . Para todo $x \in \mathbb{R}$ e $n \in \mathbb{Z}$, as seguintes propriedades valem:

- $\lfloor x \rfloor = n$ se, e somente se, $n \le x < n + 1$.
- |x| = n se, e somente se, $x 1 < n \le x$.
- $\lceil x \rceil = n$ se, e somente se, $n 1 < x \le n$.

- $\lceil x \rceil = n$ se, e somente se, $x \le n < x + 1$.
- $x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$.
- $\bullet \ \lfloor -x \rfloor = -\lceil x \rceil.$
- $\bullet \ \lceil -x \rceil = -|x|.$

Prove, ou dê um contra exemplo para as seguintes afirmações

(a)
$$\forall x, y \in \mathbb{R}, \lceil x + y \rceil = \lceil x \rceil + y \in \lfloor x + y \rfloor = \lfloor x \rfloor + y.$$

(b)
$$\forall (x,y) \in \mathbb{R} \times \mathbb{Z}, \lceil x+y \rceil = \lceil x \rceil + y \in \lfloor x+y \rfloor = \lfloor x \rfloor + y.$$

9. Seja ε um número real positivo. Considere a relação \mathcal{R}_ε sobre $\mathbb R$ tal que

$$(x,y) \in \mathcal{R}_{\varepsilon} \Leftrightarrow |x/\varepsilon| = |y/\varepsilon|$$

para quaisquer x e y em \mathbb{R} . Esta é uma relação de equivalência? Em caso afirmativo, descreva suas classes de equivalência.