PREDICT FRAUDS WITH MACHINE LEARNING MODELS

Introduction

Project Overview

In this project, we will build various predictive models to see how accurate they are in detecting whether a transaction is a normal payment or a fraud. As described in the data set, the features are scaled and the names of the features are not shown due to privacy reasons. The models we build are important because credit card companies will be able to recognize fraudulent credit card transactions through the models, and customers will not be charged for items that they did not purchase.

▼ Data Description

We'll train our model with a data set which has 26 variables and 10,800 transactions record. The feature 'Y' is response variable and it takes value 1 in case of fraud and 0 otherwise. The other 25 variables are numerical predictors, to attempt to predict fraudulent credit card transactions. Throughput analysis, the feature 'Y' in training data set has 1062 frauds record out of 10,800 transactions, which is somehow unbalanced. The positive class (frauds) account for 9.83% of all transactions. Most of our variables have Na values, and the distribution of Na values is pretty balanced. Except Var22-25 don't have any NA values, every other feature have about 2300 NA values.

- Starter Code

▼ Loading Package

General from sklearn. model selection import cross val score from sklearn.impute import SimpleImputer, KNNImputer import numpy as np import pandas as pd from google.colab import drive import matplotlib.pyplot as plt import seaborn as sns #Data Processing from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures, StandardScaler from sklearn. pipeline import make pipeline from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler from sklearn import metrics from sklearn.metrics import confusion matrix from sklearn.metrics import classification report, plot confusion matrix from sklearn.metrics import roc auc score from imblearn.over sampling import SMOTE #Data Modeling from sklearn.model selection import train test split from sklearn.neighbors import KNeighborsClassifier from sklearn.linear model import LogisticRegression, LogisticRegressionCV from sklearn.metrics import accuracy score, confusion matrix, classification report from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, HistGradientBoostingClassifier from xgboost import XGBClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.model selection import StratifiedShuffleSplit from sklearn. model selection import GridSearchCV

→ Loading Data

```
train = pd.read_csv('/content/fraud_train.csv')
test = pd.read_csv('/content/fraud_test.csv')
```

Data Pre-processing

▼ Data Analysis

train.head()

	Y	Var1	Var2	Var3	Var4	Var5	Var6	Var7	Var8	Var9		Var16	Var17	Var18	Var19	V
0	0	11.9967	0.6640	9.4284	NaN	9.5841	-8.8909	6.8590	20.6198	-1.6497	•••	14.6973	NaN	-3.3983	7.7124	4.
1	1	7.3841	-5.8628	13.4809	4.0597	9.3176	NaN	NaN	NaN	-3.5666		14.8458	NaN	NaN	31.4884	21.
2	0	7.1921	-1.0867	9.2162	6.6952	12.1916	5.3659	5.2984	17.2626	-2.4231		NaN	9.3673	-5.1032	NaN	
3	0	4.9825	NaN	NaN	7.1418	10.3485	-2.2850	NaN	NaN	NaN		NaN	10.3258	3.7540	15.4096	-1.
4	0	14.0560	NaN	8.8360	NaN	9.0164	-12.6593	4.5088	13.4253	NaN		15.4690	10.7742	-11.3350	9.6330	23.

4

test.head()

		ID	Var1	Var2	Var3	Var4	Var5	Var6	Var7	Var8	Var9	 Var16	Var17	Var18	Var19	Va
	0	1	8.2781	-2.4840	NaN	7.7391	8.4642	6.2852	7.2324	18.1359	NaN	 14.1446	11.0192	-16.1145	NaN	8.2
	1	3	10.3614	-4.2579	16.7134	5.6450	NaN	NaN	6.6844	NaN	NaN	 14.1765	4.9560	-7.9790	23.5552	1
	2	4	10 9930	NaN	12 3683	8 3846	12 4445	-7 1959	NaN	NaN	NaN	NaN	NaN	1 9167	17 4225	5 2
train	. des	crib	e()													

	Y	Var1	Var2	Var3	Var4	Var5	Var6	Var7	Var8	
count	10800.000000	8431.000000	8429.000000	8424.000000	8372.000000	8438.000000	8357.000000	8401.000000	8416.000000	}
mean	0.098333	10.692028	-1.539602	10.700727	6.819757	11.072874	-4.985175	5.405046	16.501264	
std	0.297779	3.025084	4.025577	2.608815	2.070841	1.617926	7.878781	0.869471	3.427696	
min	0.000000	0.893500	-13.006000	3.343500	1.243900	6.154700	-27.687900	2.963200	5.749400	
25%	0.000000	8.493150	-4.622800	8.737525	5.252425	9.879150	-11.082500	4.766200	13.870875	
50%	0.000000	10.525200	-1.482300	10.583200	6.822050	11.131200	-4.539400	5.389200	16.378200	
75%	0.000000	12.766500	1.400900	12.490425	8.366050	12.229175	1.004200	6.008900	19.028450	
max	1.000000	20.315000	8.803000	18.405500	12.870000	15.558900	16.128700	7.986200	26.928200	

8 rows × 26 columns

train['Y'].value_counts()

0 9738 1 1062

Name: Y, dtype: int64

```
Index(['Y', 'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6', 'Var7', 'Var8',
            'Var9', 'Var10', 'Var11', 'Var12', 'Var13', 'Var14', 'Var15', 'Var16',
            'Var17', 'Var18', 'Var19', 'Var20', 'Var21', 'Var22', 'Var23', 'Var24',
            'Var25'],
           dtype='object')
##Check if there is null values
train.isna().sum()
     Y
              0
     Var1
              2369
     Var2
              2371
     Var3
              2376
     Var4
              2428
     Var5
              2362
     Var6
              2443
     Var7
              2399
     Var8
              2384
     Var9
              2353
     Var10
              2419
     Var11
              2406
     Var12
              2421
     Var13
              2340
     Var14
              2376
              2398
     Var15
     Var16
              2395
     Var17
              2351
     Var18
              2371
     Var19
              2435
     Var20
              2401
     Var21
              2377
     Var22
                 0
     Var23
                 0
     Var24
                 0
     Var25
     dtype: int64
X = \text{train.drop}("Y", axis = 1)
```

```
y = train["Y"]
print(X. shape)
print(y. shape)

(10800, 25)
(10800,)
```

There are 25 vairables and 10800 observations in the train dataset. In each 21 columns of the 25 variables, there are 2300-2500 observations with null values and the data is unbalanced, the positive class ('Y'=1) account for 10% of all transactions

→ Visualizing Data

▼ Observe the Data Balance

```
sns.countplot(x = y)
plt.title("Bar Graph of 0 and 1 in Fraud Class")
```

Bar Graph of 0 and 1 in Fraud Class

▼ Visualizing Correlation Matrix of features

As we can see, there is very less correlation between main features (Var1 to Var25)

Scale the data

There are many missing values in the data, which could cause problems with the training of our model later on. The features are all numeric data and the dataset is medium, as we observed before, therefore, we choose to replace missing values with columns' median.

```
num cols = ['Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6', 'Var7', 'Var8',
             'Var9', 'Var10', 'Var11', 'Var12', 'Var13', 'Var14', 'Var15', 'Var16',
             'Var17', 'Var18', 'Var19', 'Var20', 'Var21', 'Var22', 'Var23', 'Var24',
             'Var25']
num si step = ('si', SimpleImputer(strategy='median'))
num ss step = ('ss', StandardScaler())
num steps = [num si step, num ss step]
num pipe = Pipeline(num steps)
num transformers = [('num', num pipe, num cols)]
ct = ColumnTransformer(transformers=num transformers)
X num transformed = ct.fit transform(train)
X num transformed. shape
     (10800, 25)
labels = train['Y'].values
labels. shape
     (10800,)
```

▼ Feature Selection

Feature importance scores can be used for feature selection. We calculate the feature importance score using the Extreme Gradient Boosting Classifier, a new method to us. We try it because it can handle the NA values and we want the feature selection can be independent from missing values imputation. The plot shows that the fscores of the variables are relatively even. Based on the feature importance score and correlation matrix, we decide using all the features to train the model.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From v. FutureWarning

▼ Train-Test Split

```
X_train, X_test, y_train, y_test = train_test_split(X_num_transformed, labels, test_size=.1, random_state=0)
print(X_train.shape)
print(y_test.shape)
print(y_train.shape)

(9720, 25)
(1080,)
(1080, 25)
(9720,)
```

- Baseline Models

This part examines five classification models including Logistic Regression, KNeighborsClassifier, Random Forest, GradientBoostingClassifier, and HistGradientBoostingClassifier with their default parameters. We chose HistGradientBoostingClassifier because there are NA values in the raw data, and the model can be trained with missing values, so we will train it with raw data. Next, we'll select one model to tune parameters. Accuracy is mainly measured by ROC-AUC, but accuracy score and classification report will also be considered.

▼ Logistic Regression

```
1r = LogisticRegression()
1r.fit(X train, y train)
pred lr = lr.predict(X test)
pred proba lr = lr.predict proba(X test)[:,1]
pred proba lr
     array([0.27977383, 0.10491382, 0.1340248, ..., 0.09007307, 0.12578598,
            0.1390702 ])
print(accuracy score(y test, pred lr))
roc auc score(y test, lr.decision function(X test))
     0.9
     0.6054907788446883
fpr, tpr, threshold = metrics.roc curve(y test, pred proba lr)
roc auc = metrics.auc(fpr, tpr)
plt. figure (figsize=(6,6))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.3f' % roc auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
```

```
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


print(classification_report(y_test, pred_lr))

	precision	recal1	f1-score	support
0	0.90	1.00	0.95	972
1	0.00	0.00	0.00	108
accuracy			0.90	1080
macro avg	0.45	0.50	0.47	1080

```
weighted avg 0.81 0.90 0.85 1080
```

```
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-definedment of the content of the con
```


▼ KNN

```
knn=KNeighborsClassifier()
knn.fit(X train, y train)
pred knn = knn.predict(X test)
pred proba k = \text{knn.predict proba}(X \text{ test})[:,1]
pred proba k
     arrav([0.2, 0., 0.2, ..., 0.2, 0., 0.])
print(accuracy score(y test, pred knn))
roc auc score(y test, pred proba k)
     0.89444444444445
     0. 5346841182746533
fpr, tpr, threshold = metrics.roc curve(y test, pred proba k)
roc_auc = metrics.auc(fpr, tpr)
plt. figure (figsize=(6, 6))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.3f' % roc auc)
plt.legend(loc = 'lower right')
```

```
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


print(classification_report(y_test, pred_knn))

	precision	recal1	f1-score	support
0	0.90	0.99	0.94	972
1	0.20	0.02	0.03	108

accuracy			0.89	1080
macro avg	0.55	0.51	0.49	1080
weighted avg	0.83	0.89	0.85	1080

▼ Random Forest

```
rf = RandomForestClassifier()
rf.fit(X train, y train)
pred rf = rf.predict(X test)
pred_proba_rf = rf.predict_proba(X test)[:,1]
pred proba rf
     array([0.23, 0.1, 0.11, ..., 0.08, 0.07, 0.07])
print(accuracy score(y test, pred rf))
roc auc score(y test, pred proba rf)
     0.899074074074074
     0.6200988797439414
fpr, tpr, threshold = metrics.roc curve(y test, pred proba rf)
roc auc = metrics.auc(fpr, tpr)
plt.figure(figsize=(6,6))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.3f' % roc auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
```

plt.show()

print(classification_report(y_test, pred_rf))

	precision	recal1	f1-score	support
0	0.90	1.00	0.95	972
1	0.00	0.00	0.00	108
accuracy			0.90	1080
macro avg	0.45	0.50	0.47	1080
weighted avg	0.81	0.90	0.85	1080

→ Gradient Boosting Classifier

```
GBC = GradientBoostingClassifier()
GBC. fit (X train, y train)
pred GBC = GBC.predict(X test)
pred proba GBC = GBC.predict proba(X test)[:,1]
pred proba GBC
     array([0.26328101, 0.07258158, 0.09365214, ..., 0.08291227, 0.10063384,
            0.09623653])
print(accuracy score(y test, pred GBC))
roc auc score(y test, pred proba GBC)
     0.8981481481481481
     0.6203894223441548
fpr, tpr, threshold = metrics.roc curve(y test, pred proba GBC)
roc auc = metrics.auc(fpr, tpr)
plt.figure(figsize=(6,6))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.3f' % roc auc)
plt.legend(loc = 'lower right')
plt. plot ([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


→ HistGradientBoostingClassifier

X_train1, X_test1, y_train1, y_test1 = train_test_split(X, y, test_size=.1)

pd.DataFrame(X_train1)

	Var1	Var2	Var3	Var4	Var5	Var6	Var7	Var8	Var9	Var10	 Var16	Var17	Var18	
7404	6.3020	-6.2594	9.8574	6.9316	8.6801	0.5442	6.2204	NaN	-1.0223	6.9150	 13.7930	11.5912	-0.3673	
7823	16.2131	NaN	14.6117	5.1260	NaN	NaN	5.7025	NaN	-1.4550	8.1899	 14.4793	4.0788	-13.4581	1
504	10.8382	0.4223	7.7905	8.4910	9.1841	-7.2718	NaN	15.2296	5.2442	9.8734	 NaN	9.8767	NaN	
9512	12.3717	-0.7374	8.9582	4.9482	10.3156	-6.4860	NaN	20.2737	NaN	8.8533	 14.7275	NaN	-12.4020	
7421	15.1114	0.9359	15.4063	5.8997	11.0361	-17.9907	NaN	14.0604	-3.0555	6.1340	 14.0641	6.6566	-10.8661	1
•••	•••					•••		•••			 			
368	6.0463	NaN	12.6329	6.6294	9.2953	4.0116	5.4612	12.5536	NaN	8.2288	 NaN	7.3113	NaN	2
1183	12.7043	NaN	10.8366	12.1264	8.8449	3.7087	5.3716	21.5695	NaN	NaN	 NaN	5.8715	-8.6373	1
10512	9.0427	NaN	9.5443	NaN	NaN	-0.7791	NaN	17.5419	-3.9030	7.8986	 13.6471	6.9440	-6.5668	3
4117	14.8195	5.8222	10.5616	NaN	9.7147	NaN	5.3787	22.2014	6.3506	7.8949	 13.9347	14.1338	NaN	1
8004	NaN	-3.3968	6.8010	NaN	13.5134	11.9066	4.5143	NaN	4.7773	8.5789	 14.2688	11.2083	-16.1990	3

9720 rows × 25 columns

HGB = HistGradientBoostingClassifier()
HGB.fit(X_train1, y_train1)
pred_HGB = HGB.predict(X_test1)

```
pred_proba_HGB = HGB.predict_proba(X_test1)[:,1]
pred_proba_HGB
```

```
array([0.05571966, 0.12678995, 0.08010094, ..., 0.07326192, 0.0717292,
           0.14123194])
print(accuracy score(y test1, pred HGB))
roc auc score(y test1, pred proba HGB)
     0.9064814814814814
     0.6294545866411311
fpr, tpr, threshold = metrics.roc curve(y test1, pred proba HGB)
roc auc = metrics.auc(fpr, tpr)
plt.figure(figsize=(6,6))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.3f' % roc auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


	precision	recall	f1-score	support
0	0.91	1.00	0.95	981
1	0.00	0.00	0.00	99
accuracy			0.91	1080
macro avg	0.45	0.50	0.48	1080
weighted avg	0. 82	0. 91	0. 86	1080

Talaa Daaitiya Data

▼ Model Selection

Based on the many experiments we tried, we chose Logistic Regression for further training, which is our best performing model in the competition.

```
keys = ['LR','KNN','RF','GBC','HGB']
values=[roc_auc_score(y_test, pred_proba_lr),roc_auc_score(y_test, pred_proba_k),roc_auc_score(y_test, pred_proba_rf),roc_auc_score(y_test, pred_proba_rf),roc_auc_score(y_test, pred_proba_rf)
plt. title('Comparsion of Different Models')
```

Text (0.5, 1.0, 'Comparsion of Different Models')

Further Training of Selected Model

▼ Balancing Data with SMOTE

▼ Hyperparameters tuning with GridSearchCV

```
C \text{ vals} = [1e-05, 1e-06, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
class weight = ['balanced', {0: 0.6, 1: 0.4}, 'None']
cv = StratifiedShuffleSplit(n splits=10, test size= .25, random state=0)
param = {'C':C vals, 'class weight':class weight}
1r=LogisticRegression()
grid = GridSearchCV(
        estimator=LogisticRegression(),
        param grid = param,
        scoring = 'roc auc',
       n jobs= -1,
        cv=cv,
        error score='raise'
grid.fit(X train s, y train s)
     GridSearchCV(cv=StratifiedShuffleSplit(n splits=10, random state=0, test size=0.25,
                  train size=None),
                  error score='raise', estimator=LogisticRegression(), n jobs=-1,
                  param grid={'C': [1e-05, 1e-06, 1e-05, 0.0001, 0.001, 0.01, 0.1, 1,
                                    10, 100],
                              'class weight': ['balanced', {0: 0.6, 1: 0.4},
                                               'None']},
                  scoring='roc auc')
print(grid.best score )
print(grid.best params )
print(grid.best estimator )
     0.6627872359386608
     {'C': 0.001, 'class weight': {0: 0.6, 1: 0.4}}
     LogisticRegression (C=0.001, class weight=\{0: 0.6, 1: 0.4\})
```

To get a better model, we must deal with the unbalance of data. Due to the size of our dataset, we chose oversampling rather than undersampling since undersampling could result in the loss of important information.

▼ Model Performance with Balanced Data and Best Hyperparameters

```
1r = LogisticRegression(C=0.001, class weight=\{0: 0.6, 1: 0.4\})
lr.fit(X train s, y train s)
pred lr = lr.predict(X test)
pred proba lr = lr.predict proba(X test)[:,1]
pred proba lr
     array([0.6028086, 0.41010858, 0.44072951, ..., 0.39691499, 0.45397674,
            0.46611845])
print(accuracy_score(y_test, pred lr))
roc auc score(y test, lr.decision function(X test))
     0.830555555555556
     0.6006992074378905
fpr, tpr, threshold = metrics.roc curve(y test, pred proba lr)
roc auc = metrics.auc(fpr, tpr)
plt. figure (figsize=(6,6))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.3f' % roc auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
```

plt.show()

print(classification_report(y_test, pred_lr))
cm=confusion_matrix(y_test, pred_lr)

	precision	recal1	f1-score	support
0	0.91	0.90	0.90	972
1	0.21	0.25	0.23	108
accuracy			0.83	1080
macro avg	0.56	0.57	0.57	1080
weighted avg	0.84	0.83	0.84	1080

```
plot confusion matrix(lr , X test , y test)
```

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function warnings.warn(msg, category=FutureWarning)

<sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x7fee2dabb350>

Conclusion

Findings

- The good and stable perfermance of Logsitic Regression can be the reason why it is one of the most popular methods to classification cases in the real world.
- Algorithms could be fancy and powerful, but making the dataset informative and clean is essential to feed into our models and get a better performance. In this project, we did't show all the experiments we tried, but changing the way how we fill in NA value or the

- methods we balance the data lead a bigger change than tuning the parameters. Both Gradient Boosting Classifier and Hist Gradient Boosting Classifier get a much better performance after we balanced the data with SMOTE.
- In the process of this project, we became more familiar with data pre-processing and the training of different models. Also, in order to improve the performance of our models and get better results in the competition, we learned a lot of models and data pre-processing methods that we did not know before, which was very exciting and greatly stimulated our interest in machine learning.

Output Prediction of Test Data

Although we tuning the best hyperparameters, but the best performance of our all the submissions is the one with default hyperparameters. It does not mean what we done before is not useful, but the model with default parameters perform better in this test dataset.

Colab 付费产品 - 在此处取消合同

✓ 0秒 完成时间: 13:32