

#### Pushdown Automata

### Hanging Out with the Wrong Crowd









Sipser: Section 2.2 pages 111 - 116

J - 1

#### Balanced Brackets

The grammar  $G = (V, \Sigma, R, S)$ , where

$$\Sigma = \{[, ]\},$$

$$R = \{ S \rightarrow \varepsilon \mid SS \mid [S] \}$$

generates all strings of balanced brackets.

Is the language L(G) regular? Why / Why not?



### Recognizing Context-Free Languages

Grammars are *language generators*. It is not immediately clear how they might be used as language recognizers.

The language L(G) of balanced brackets is not regular. It cannot be recognized by a finite state automaton.

However, it is very similar to the BEGIN/END blocks of recognized by some compiler or interpreter.

many procedural languages and, therefore, must be

J - 4

J - 2



# Auxiliary Store

We could recognize the language L(G) of balanced brackets by reading left to right, if we could remember left brackets along the way.



J - 5



#### Pushdown Automaton

The last left bracket seen matches the first right bracket. This suggests a stack storage mechanism.



J - 6



# Describing a Pushdown Machine





### Pushdown Automata

A **pushdown automaton** is a sextuple  $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ , where

Q is a finite set of states,

 $\Sigma$  is a finite alphabet (the *input symbols*),

 $\Gamma$  is a finite alphabet (the stack symbols),

δ:  $(Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}) \rightarrow P(Q \times \Gamma_{\varepsilon})$  is the transition function,

 $q_0 \in Q$  is the *initial state*, and

 $F \subseteq Q$  is the set of accept states.



#### Balanced Brackets

Let  $M=(Q, \Sigma, \Gamma, \delta, q_0, F)$ , where  $Q=\{q_1, q_2, q_3\},$   $\Sigma=\{[, ]\},$   $\Gamma=\{[, \$],$   $q_0=q_1,$   $F=\{q_1, q_3\}, \text{ and }$   $\delta$  is given by the transition diagram:  $\begin{cases} \epsilon, \epsilon \to \$ \\ \epsilon, \$ \to \epsilon \end{cases}$ 

 $-\underbrace{\left(\begin{array}{c} 1 \\ 0 \\ \end{array}\right)}_{0}\underbrace{\left(\begin{array}{c} 1 \\ 0 \\ \end{array}\right)}_{1}$ 

# Finite Automata and Pushdown Automata



J - 10



# Regular Languages $\Rightarrow$ Pushdown Accept

**Proposition**. Every finite automaton can be viewed as a

 $pushdown \ automaton \ that \ never \ operates \ on$ 

its stack.

**Proof.** Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a finite automaton. Define  $M' = (Q, \Sigma, \Gamma, \delta', q_0, F)$ , where ...



# Pushdown Automata are Nondeterministic

Build a machine to recognize

$$L(G) = \{ ww^{R} \mid w \in \{0,1\}^{*} \}$$



J - 11

J - 9



# Pushdown Automata are Nondeterministic

Build a machine to recognize  $L(\mathcal{G}) = \{ \ a^i b^j c^k \mid i, j, \ k \ge 0 \ \text{and} \ i = j \ \text{or} \ i = k \}$