PCT

field HD4 6UP (GB).

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 98/41643 (11) International Publication Number: A1 C12N 15/82, 15/56, A01H 5/00 (43) International Publication Date: 24 September 1998 (24.09.98) (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, PCT/GB98/00833 (21) International Application Number: BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, (22) International Filing Date: 19 March 1998 (19.03.98) LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO (30) Priority Data: patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian 9705694.9 19 March 1997 (19.03.97) GB patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, (71) Applicant (for all designated States except US): SCOTTISH CM, GA, GN, ML, MR, NE, SN, TD, TG). CROP RESEARCH INSTITUTE [GB/GB]; Invergowrie, Dundee DD2 5DA (GB). **Published** (72) Inventors; and (75) Inventors/Applicants (for US only): MACHRAY, Gordon, With international search report. Before the expiration of the time limit for amending the Cameron [GB/GB]; 2 Jedburgh Road, Dundee DD2 1BB (GB). HEDLEY, Peter [GB/GB]; "Morar", Church Lane, Errol PH2 7PX (GB). MEYER, Rhonda [DE/GB]; 41 claims and to be republished in the event of the receipt of amendments. Loons Road, Dundee DD3 6AB (GB). MADDISON, Anne

(74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).

[GB/GB]; Middle Ludmill Farm, Farmley Tyas, Hudders-

(54) Title: EXPRESSION CONTROL POLYNUCLEOTIDES

(57) Abstract

There is provided an expression control polynucleotide of an invertase gene, which may be operably limited to a heterologous polynucleotide. Optionally the expression control polynucleotide and heterologous polynucleotide construct is transfected into host cells or organisms. Preferably the construct is used to produce a transgenic plant and the expression control polynucleotide is pollen cell-specific. A suitable expression control polynucleotide is as set out in SEQ ID No 1, especially nucleotides 3430-5349 thereof. Desirably the protein expressed by the heterologous polynucleotide causes male sterility in the transgenic plants.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

1

"Expression Control Polynucleotides" 1 3 This invention relates to the fields of plant biotechnology and plant genetic engineering. In 4 particular it relates to transgenic plant production 5 and tissue-specific expression of introduced gene 6 7 sequences in pollen cells. A promoter is a non-coding nucleotide sequence which 9 10 controls the transcription of an adjacent nucleotide sequence. A number of promoters have been isolated 11 from a wide variety of sources, including plants. 12 certain applications it is desirable to genetically 13 14 engineer a construct which comprises a promoter operatively linked to a heterologous nucleotide 15 sequence such that the promoter controls expression of 16 the heterologous sequence in the host cell transformed 17 with that construct. Where the promoter is only active 18 in particular tissue types expression of the 19 heterologous sequence is restricted accordingly and 20 21 this may be especially desirable in some circumstances. 22 . 23 A number of plant-derived promoters have been isolated 24 which activate expression of their companion nucleotide 25 sequences only in pollen cells. Use of these pollen

cell-specific promoters to activate genes encoding 1 2 heterologous proteins has also been described [see CA 3 2021643] and may lead to the production of proteins not 4 normally present in pollen cells. Such an approach may 5 allow the expression of heterologous genes which encode for proteins able to render the plant male-sterile by 6 7 ablation of pollen cells (for example if the proteins 8 are toxic to the pollen cell) or to drive the 9 production of antisense RNAs which interfere with the 10 normal processes of pollen cell metabolism. 11 cell-specific promoters can further be used to drive 12 expression of proteins that are toxic to insects or 13 other pests which consume pollen. These promoters can 14 also be used to activate the expression of genes 15 encoding proteins which will enhance the nutritional 16 value of pollen.

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

However, the number of pollen cell-specific promoters which have been well characterised is limited and different promoters exhibit a range of activities which cannot be predicted a priori and are difficult to quantify. The activity of a promoter isolated from one species of plant may also differ when the promoter is utilised in an heterologous species - such differences may be both in the tissue specificity and strength of the promoter and are more likely to occur with greater taxonomic distance between plant species. In addition different promoters may be required to control expression of multiple genes since a gene silencing effect can occur if duplicate copies of the same promoter are used. The choice of promoter is therefore limited and has to be experimentally verified in the system under study.

33 34

According to the present invention there is provided an invertase gene expression control polynucleotide, a

PCT/GB98/00833 WO 98/41643

3

derivative, a functional equivalent, or a part thereof, 1 which is pollen cell-specific. 2 3 By "pollen cell-specific" we mean that the expression 4 control polynucleotide exhibits a distinct level of 5 activity (or lack of activity) in pollen cells (ie in 6 material ranging from developing pollen grain through 7 to material derived from pollen) compared to the other 8 tissue types of the transformed plant. 9 10 By "expression control polynucleotide" we mean any 11 polynucleotide which is capable of affecting the 12 expression of a gene. The term is intended to include 13 promoters, enhancers and suppressors. 14 15 By "functional equivalent" we mean any variation of the 16 expression control polynucleotide which exhibits 17 substantially the same functional properties of the 18 original polynucleotide. 19 20 By "derivative" we mean a modified version of the 21 expression control polynucleotide which exhibits 22 substantial sequence homology to the original 23 polynucleotide, for example which include nucleotide 24 substitutions which have no effect on biological 25 function. 26 27 By "part" we mean a deleted version of the expression 28 control polynucleotide, which comprises at least a 29 substantial portion of the original polynucleotide (for 30 example at least 50% of said polynucleotide). 31 32 The preferred type of expression control polynucleotide 33

is a promoter. 34

35

The invertase gene promoter is preferably derived from 36

4

1 a dicotyledon, such as potato. 2 3 The expression control polynucleotide of the invention 4 may comprise double- or single-stranded DNA or RNA. 5 6 The invention also provides the use of the expression 7 control polynucleotide described above to control 8 expression of heterologous sequences. Optionally the 9 expression control polynucleotide is used to drive 10 pollen cell-specific expression of protein-encoding 11 heterologous genes in plants eg monocotyledons or 12 dicotyledons. Use of the expression control 13 polynucleotide in this way in dicotyledons is 14 preferred. 15 16 The invention also provides a recombinant expression 17 control polynucleotide comprising at least a part of a 18 pollen cell-specific expression control polynucleotide 19 as described above. The recombinant expression control 20 polynucleotide of the invention is capable of specific 21 expression of a heterologous sequence in pollen cells. 22 The heterologous sequence expressed may encode a 23 protein. Alternatively RNA sequences which do not code 24 for protein (eg ribosomal RNA or anti-sense RNA) may 25 instead be transcribed from the heterologous sequence. 26 27 The invention also provides a polynucleotide having the 28 sequence set out in SEQ ID No 1, including derivatives, 29 functional equivalents or parts thereof. The preferred 30 polynucleotide is that shown in SEQ ID No 1 from 31 nucleotides 3144-5396 and more preferably from 32 nucleotides 3430-5349. The most preferred 33 polynucleotide is the promoter in the 3430-5349 bp 34 fragment. 35

36 A deposit of genetic material containing the

5

polynucleotide of SEQ ID No 1 was made at the National 1 Collection of Type Cultures on 7 February 1997 under No 2 3 NCTC 13013. The present invention also provides a recombinant 5 nucleotide construct comprising an expression control 6 polynucleotide according to the invention operably 7 linked to a heterologous (preferably protein-encoding) 8 polynucleotide. 9 10 Thus, activation of the expression control 11 polynucleotide may drive the expression of the 12 heterologous polynucleotide, enabling production of the 13 encoded protein. Since the expression control 14 polynucleotide is tissue-specific, production of the 15 protein will be limited to those tissues where the 16 expression control polynucleotide is active. 17 18 The present invention also provides a recombinant 19 vector containing an expression control polynucleotide 20 or a recombinant nucleotide construct as defined above. 21 22 According to the present invention there is also 23 provided a method of producing a recombinant vector, 24 said method comprising ligating an expression control 25 polynucleotide as described above into a suitable 26 A method of producing a transformed cell by 27 transfecting a host cell using said recombinant vector 28 forms another aspect of the invention. 29 vectors and genetic modifications thereof are well-30 known in the art. 31 32 The present invention also provides a transformed host 33 cell containing a recombinant nucleotide construct or 34 vector as defined above. 35

T	The present invention also provides a transgenic
2	organism (for example a transgenic plant) containing a
3	recombinant nucleotide construct or a vector as defined
4	above. The progeny (and seeds) of such transgenic
5	organisms forms a further part of the invention.
6	
7	The present invention also provides a method for
8	controlling the expression of a protein, said method
9	comprising operably linking a polynucleotide sequence
10	encoding said protein to an expression control
11	polynucleotide of the invention. The method is
12	especially useful for the expression of proteins in
13	pollen. Preferably the protein expressed leads to
14	sterility of the transformed plant.
15	
16	Thus the invention also provides a method of
17	controlling the expression of a heterologous
18	polynucleotide in pollen, said method comprising
19	operably linking said heterologous polynucleotide to an
20	expression control polynucleotide of the invention.
21	
22	In one embodiment the promoter for the invertase gene
23	of potato is expressed specifically in pollen to
24	activate expression of any DNA sequences in the pollen
25	of transgenic plants. Below we describe the isolation
26	and characterisation of this promoter and how it has
27	been used to express genes in pollen.
28	
29	The present invention will now be further described
30	with reference to the Example and accompanying Figures
31	in which:
32	
33	Figure Legends
34	
35	Figure 1. Map of sequences detailed in text with
36	restriction enzymes used in their cloning.

1	Figure 2. whole anther from transgenic potato plant
2	stained for GUS activity (GUS activity
3	indicated by the dark areas).
4	
5	Figure 3. cross-section of anther as in Figure. 2
6	showing staining in individual pollen grains
7	(pollen grains appear as dark spots).
8	
9	Figure 4. RT-PCR analysis showing a product of 374 bp
10	indicating expression from the promoter in
11	(a) floral and bud tissue, and (b) in excised
12	anthers but not in the remainder of the
13	floral tissue.
14	
15	Example
16	A potato ($Solanum$ $tuberosum$ $L.$) $cv.$ Saturna genomic
17	library, consisting of a partial Sau3AI digest of
18	genomic DNA cloned into λ EMBL3, was plated to yield 1 x
19	10 ⁵ pfu which were screened with a radiolabelled carrot
20	invertase cDNA fragment generated by reverse
21	transcription-polymerase chain reaction (RT-PCR) using
22	primers derived from a sequence of carrot cDNA (Sturm
23	and Chrispeels, 1990).
24	
25 -	The primers were:
26	Forward Primer: 5'-AACGATCCAAATGGACCA-3' (SEQ ID No 2)
27	Reverse Primer: 5'-GAAAAAATCAGGACATTCCCA-3' (SEQ ID
28	No 3).
29	
30	Hybridisation conditions of 5 x SSC at 65°C were
31	utilised with subsequent low stringency washing of
32	filters in 2 x SSC at 65°C. After three rounds of
33	screening two positive clones were obtained plaque
34	pure. DNA was purified from one positive clone, λGF5,
35	which was shown to contain an insert of approximately
36	23 kb of potato DNA. This cloned potato DNA was

8

digested with XbaI and SalI, and fragments cloned into

2 One subclone, named pGF521, contained 5.4 kb of 3 the potato DNA. A complete DNA sequence of this fragment is presented (SEQ ID No 1). 4 5 determined, by homology to known invertase gene 6 sequences, that the 5.4 kb of potato DNA (Figure 1) 7 carried sequence of two invertase genes with the 8 intergenic region constituting the promoter of the 9 downstream gene. A 2.25 kb HindIII-XbaI fragment (bp 10 3144-596; Figure 1) comprising the promoter, 3' end of 11 the upstream gene and 5' end of the downstream gene was 12 subcloned into pUC19 to yield plasmid pGF5211 (deposited as NCTC 13013). This fragment was also 13 14 cloned into pB1101.3 to give plasmid pRM11.2 which was 15 used as a vector for stable plant transformation. 16 pRM11.2 the fragment is fused to the uidA gene from 17 Escherichia coli and when the promoter is active in 18 plants would drive the transcription of this gene to 19 produce the bacteria enzyme β -glucuronidase (GUS). 20 internal AccI fragment of 1.9 kb (bp 3430-5349; Figure 21 1) derived from the 2.2 kb fragment was also cloned 22 into pBI101.3 to generate plasmid pRM12.3 which was 23 also used as a vector for stable plant transformation. 24 This fragment was also fused to the uidA gene to drive 25 β -glucuronidase synthesis when active. 26 27 A series of transgenic lines of potato (cv. Desiree) 28 plants were generated by Agrobacterium tumefaciens-29 mediated transformation using pRM12.3 and pRM11.2 as a 30 Plants derived from the use of pRM12.3 as a vector were passed through one cycle of tuberisation 31 32 then grown in a controlled environment until flowering 33 occurred. The floral tissues including anthers,

sepals, petals and ovules were separately analysed by a

5 to assay for endogenous enzyme activity (the control)

GUS histochemical assay performed at two pH values: pH

34

35

PCT/GB98/00833 WO 98/41643

and pH 7 to detect the activity derived from the uidA 1 ene activated by the invertase promoter. A strong blue 2 staining, detected only at pH 7 and thus indicative of 3 bacterial GUS derived from expression of uidA driven by 4 the invertase promoter, was observed only in pollen 5 cells (see dark areas of Figures 2 and 3) and in no 6 other tissues of the flower or elsewhere throughout the 7 plant, while in control untransformed plants only a 8 light background of blue staining was observed in 9 Prior to the GUS histochemical analysis pollen cells. 10 an analysis using RT-PCR to detect expression from the 11 native promoter driving its invertase gene had detected 12 expression only in floral and bud tissue with no 13 expression observed in source and sink leaf (Figure 14 4a), stem, root or tuber. A subsequent RT-PCR analysis 15 detected expression only in the pollen-containing 16 anthers and not elsewhere throughout the flower (Figure 17 4b). We conclude that the activity of this promoter is 18 restricted to pollen. 19 20 The recombinant DNA procedure utilised were as 21 described by Sambrook et al (1989). Plant tissue 22 culture and transformation protocols were as detailed 23 by Hedley (1995). Histochemical assay of GUS was 24 performed as indicated by Jefferson (1987). 25 26 The invention describes a promoter sequence 27 demonstrated to be active specifically in pollen of 28 Solarium tuberosum. This promoter is likely to be 29 active in pollen of other species of the Solanceae, and 30 may be active in pollen of other plant species 31 including those in which the production of male sterile 32 plants for hybrid production is important eg 33 Lycopersicon esculentum and the Brassicaceae. 34 unique sequence described with this activity in Solanum

tuberosum, and for other plants it provides an

35

WO 98/41643

1	alternative to the use of perviously isolated
2	promoters. It has the advantage of its own
3	characteristic activity profile and when used in
4	heterologous species may escape problems such as gene
5	silencing, which can compromise the use of homologous
6	promoters. It has potential use in the genetic
7	engineering of male sterile plants and lines for the
8	restoration of fertility, for the production of
9	proteins in pollen which are toxic to insect and other
10	pests, or for the production of protein of enhanced
11	nutritional value in pollen.
12	

11

1	References
2	Hedley (1995). PhD. Thesis, University of Dundee.
3	Jefferson (1987). Plant Molecular Biology Reporter 5,
4	387-405.
5	Sambrook et al. (1989). Molecular cloning A
6	Laboratory Manual. Second edition. Cold spring Harbon
7	Laboratory Press, Cold Spring Harbor, New York.
8	Sturn & Chrispeels (1990). The Plant Cell 2, 1107-
9	1119.
10	

BNSDOCID: <WO_-_9841643A1_I_>

12 SEQUENCE LISTING

(1) GENERAL INFORMATION:

,) A	DE	T	~ >	1111	

- (A) NAME: SCOTTISH CROP RESEARCH INSTITUTE
- (B) STREET: INVERGOWRIE
 (C) CITY: DUNDEE
- (E) COUNTRY: UK
- (F) POSTAL CODE (ZIP): DD2 5DA
- (G) TELEPHONE: 01382 562731
- (H) TELEFAX: 01382 562426
- (ii) TITLE OF INVENTION: EXPRESSION CONTROL POLYNUCLEOTIDES
- (iii) NUMBER OF SEQUENCES: 3
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EFO)

(2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10811 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Solanum tubersum
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AAGCCTAGTT CGACCTGCAG	TCAACGGATC	TTTATAGCTA	CATATATATA	AGATTGATCA	60
TTCTTGATAA GCTGGACGTC	AGTTGCCTAG	AAATATCGAT	GTATATATAT	TCTAACTAGT	120
AAGAACTATT TTCAAAATTA	TGTATACATA	CACACACATA	CATAATTATG	TGGTTCATTT	180
GTGTTAGTTA AAGTTTTAAT	ACATATGTAT	GTGTGTGTAT	GTATTAATAC	ACCAAGTAAA	240
CACAATCAAT TCTATTATTC	AGTAGTCAGT	ATTCATTTTT	GAAATGTAAT	TAATTTAAAT	300
TTGTGTCTAA AGATAATAAG	TCATCAGTCA	TAAGTAAAAA	CTTTACATTA	ATTAAATTTA	360
AACACAGATA ATATTCTATT	TTGGAGAACA	AAATCGCTCA	TGATCAACAA	TCGATGACTC	420
AATTTTTAAT TATAAGATAA	AACCTCTTGT	TTTAGCGAGT	ACTAGTTGTT	AGCTACTGAG	480
TTAAAAATTA ATTTAAATTC	GAAATTAGAT	TAATTATTAT	GGCAAGACAA	TTACAAGGCT	540
AAGGTTTTGT TAAATTTAAG	CTTTAATCTA	ATTAATAATA	CCGTTCTGTT	AATGTTCCGA	600
TTCCAAAACG ATAAGAATGT	GCAAAAGAGA	AAAAGAAACA	TGAAATATAT	GAAAAAGTTC	660
TTTTAACCTC TATTCTTACA	CGTTTTCTCT	TTTTCTTTGT	ACTTTATATA	CTTTTTCAAG	720
AAAATTGGAA AGATTTTGGC	CATGGAATTA	AGGTGAAAAT	TAATTTGTTG	GAGGCACCCT	780

TTATATTCCT	TCTAAAACCG	GTACCTTAAT	TCCACTTTTA	ATTAAACAAC	CTCCGTGGGA	840
AATATAAGGC	CTTGGCATTT	TCTTCTCCCT	TATATTTTT	CCTTCTAAAT	TATTATTATT	900
ATTTTTATTG	GAACCGTAAA	AGAAGAGGGA	АТАТАААААА	GGAAGATTTA	ATAATAATAA	960
ТАААААТААА	TTATTATTAT	TATTATTAAG	TGTTGAAATA	TAGTGACATT	TCATACATAC	1020
TCACATATTT	ААТААТААТА	ATAATAATTC	ACAACTTTAT	ATCACTGTAA	AGTATGTATG	1080
AGTGTATAAG	TGTACATTTA	ATATGTAGGT	CTTATATTAA	TTAAAACTTG	CCAAACATAT	1140
TGTCTCTTAC	ACATGTAAAT	TATACATCCA	GAATATAATT	AATTTTGAAC	GGTTTGTATA	1200
ACAGAGAATT	AAAGTTGGCT	CCCCCAACCC	CCAACCTCAC	CCCACCCTAA	AAAAATTAC	1260
TTCATCAATA	TTTCAACCGA	GGGGGTTGGG	GGTTGGAGTG	GGGTGGGATT	TTTTTTAATG	1320
AAGTAGTTAT	TCGTTTTTTC	ATGTGACACA	ATTTTCTTAT	TTAATTTGTT	ATCTAAAGAA	1380
TGACTATTTA	AGCAAAAAAG	TACACTGTGT	TAAAAGAATA	ААТТАААСАА	TAGATTTCTT	1440
ACTGATAAAT	АТАТАТТТАА	ACCTGTACTT	ATCATTCTAC	ATGATATATA	TATATATATA	1500
ТАТАТАТАТА	TATATAAATT	TGGACATGAA	TAGTAAGATG	TACTATATAT	АТАТАТАТАТ	1560
АТАТАТАТАА	TGTATATATA	TGTGTGTGTG	TGTTTTTATA	GTCACAATAA	ATCTCATGAT	1620
ATGTTTCAGT	ACATATATAT	ACACACACAC	ACAAAAATAT	CAGTGTTATT	TAGAGTACTA	1680
TACAAAGTCA	TCATAATTTT	CAAATATTTT	TTACTTTATT	TTTTAAATTA	CGTATTAAAT	1740
CAAATTACGT	AGTATTAAAA	GTTTATAAAA	AATGAAATAA	TAATTTAAA	GCATAATTTA	1800
GTTTAATGCC	CATATAAATT	AAAATGATTC	AACTAATTAG	TCATTTTTGT	ATTTCCTACA	1860
TTTCTGTGTG	GTATATTTAA	TTTTACTAAG	TTGATTAATC	AGTAAAAACA	TAAAGGATGT	1920
AAAGACACAT	CACCTTTGAT	TTGTTAATTA	TTATAGTATT	TGATTATTTC	TTAATCATTG	1980
ATTAATTATA	GTGGAAACTA	AACAATTAAT	AATATCATAA	ACTAATAAAG	AATTAGTAAC	2040
TAATTAATAG	TAATGCTTTC	TATTGTCTTC	ACTAATCATT	TCTTTTTTA	AAATTCTTTT	2100
GTTCTTATAC	ATTACGAAAG	ATAACAGAAG	TGATŢAGTAA	AGAAAAAAT	TTTNAGAAAA	2160
CAAGAATATT	GGTCTCTCTT	CATTGGATAC	CTTTCAAATA	TACAAAGACC	CTAATGGTGA	2220
GTTAGATTAA	CCAGAGAGAA	GTAACCTATG	GAAAGTTTAT	ATGTTTCTGG	GATTACCACT	2280
СААТСТААТА	TTTTTTTAT	TTATTCTTCC	TAAATAAACT	ATATATACAC	ACAACTTGTC	2340
AATAACTCAT	АТААААААА	AATAAGAAGG	ATTTATTTGA	TATATATGTG	TGTTGAACAG	2400
TTATTGAGTA	TTATATTATT	GACTATCATT	TTATTTTTCA	ACAGCACCAA	TGTATTATAA	2460
TGGAGTATAT	AATATAATAA	CTGATAGTAA	AATAAAAAGT	TGTCGTGGTT	ACATAATATT	2520
ACCTCATATT	CATTTATTCT	ATCAATACAA	TCCAAAAGGA	TCAGTATGGG	GCAATATTGT	2580
TTGGGCTCAA	GTAAATAAGA	TAGTTATGTT	AGGTTTTCCT	AGTCATACCC	CGTTATAACA	2640
AACCCGAGTI	TCAGTCTCAA	AAGACTTGAT	AAATTGGATC	CATTTAGAAC	CCGCAATTTA	2700
TCCATCTAAA	AGTCAGAGTT	TTCTGAACTA	TTTAACCTAG	GTAAATCTTG	GGCGTTAAAT	2760

AGGIAGAII	A AAAIIIGACA	AMINIGGIGC	, IIGGICCGGG	TCAGCAACTA	TTCTACCAAA	282
TAACAAGCC	T TTTAAACTG	TTATACCACG	AACCAGGCCC	AGTCGTTGAT	AAGATGGTTT	288
ATTGTTCGG	C GTTATCTTAT	T ACACCGGAGT	AGTAGATTCC	CATGATTCTC	AAGTTCAAAA	294
TTATGCAAT	G CAATAGAATA	A TGTGGCCTCA	TCATCTAAGG	GTACTAAGAG	TTCAAGTTTT	3000
AATACGTTA	C CCGGCTAACI	TGTCTGATCC	ATTTCTTCGT	AAATGGATCA	AACCTAATAA	3060
CAACCCGTT	G GGCCGATTGA	ACAGACTAGG	TAAAGAAGCA	TTTACCTAGT	TTGGATTATT	3120
GTTGGGCAA	G ATTGTACCT	ACAATAGCAT	CAACAAAACC	AAATTTCGTG	ATCCAACAAC	3180
CGCATGGAT	C TAACATGGAC	TGTTATCGTA	GTTGTTTTGG	TTTAAAGCAC	TAGGTTGTTG	3240
GCGTACCTA	G GGCCAAGATG	GGCTTTGGAG	AATTGTAATA	GGAAGTATGA	GAAAACATAG	3300
AGGGATGGC	C CCGGTTCTAC	CCGAAACCTC	TTAACATTAT	CCTTCATACT	CTTTTGTATC	3360
TCCCTACCG	A TTATTGTATA	GAAGTAGAGA	CTTCATTAAA	TGGGCCAAAG	CCCAACATCC	3420
ACTTCATTC	r aataacatat	CTTCATCTCT	GAAGTAATTT	ACCCGGTTTC	GGGTTGTAGG	3480
TGAAGTAAG	A TCTCCTCATA	CTGGAAATTG	GGAATGTCCT	GATTTTTTC	CTGTATCATT	3540
AAAAAATAC	r agaggagtat	GACCTTTAAC	CCTTACAGGA	CTAAAAAAAG	GACATAGTAA	3600
TTTTTTATG	A AATGGCTTAG	ATGCATCGTA	TCGCGGAAAA	AATGTCAAAT	ATGTCCTTAA	3660
GAATAGCCT.	TTACCGAATC	TACGTAGCAT	AGCGCCTTTT	TTACAGTTTA	TACAGGAATT	3720
CTTATCGGAT	r gatgttaata	GGTTTGAGTA	TTACACTATT	GGTATGTATG	ACACCAAAAA	3780
AGATAGGTA	A CTACAATTAT	CCAAACTCAT	AATGTGATAA	CCATACATAC	TGTGGTTTTT	3840
TCTATCCATO	ATTCCTGATA	ACAATTCTAT	CGATGGTTCG	AAGGGATTGA	GGCTTGACTA	3900
TGGGAATTT	TAAGGACTAT	TGTTAAGATA	GCTACCAAGC	TTCCCTAACT	CCGAACTGAT	3960
ACCCTTAAA	TATGCATCTA	AATCATTCTA	TGACCCTATG	AAGAATCGAA	GAATTGTATG	4020
GGGTTGGAC	ATACGTAGAT	TTAGTAAGAT	ACTGGGATAC	TTCTTAGCTT	CTTAACATAC	4080
CCCAACCTGA	AATGAATCAG	ATGTTTTACC	TGACGATGAA	ATTAAGAAAG	GATGGGCTGG	4140
AATTCAAGCI	TTACTTAGTC	TACAAAATGG	ACTGCTACTT	TAATTCTTTC	CTACCCGACC	4200
TTAAGTTCGT	ATTCCGCGTA	AAGTATGGCT	CGACCCTAGT	GGTAAACAAC	TGATTCAATG	4260
GCCTATTGA?	TAAGGCGCAT	TTCATACCGA	GCTGGGATCA	CCATTTGTTG	ACTAAGTTAC	4320
CGGATAACTA	GAATTAGAAA	CATTAAGAAA	GCAAAAGATT	ATTCAATTGA	ACAACAAGAA	4380
GTTGAGCAAT	CTTAATCTTT	GTAATTCTTT	CGTTTTCTAA	TAAGTTAACT	TGTTGTTCTT	4440
CAACTCGTTG	GGAGAAATGT	TTGAAGTTAA	AGGAATCTCA	GCATCACAGG	TTTTAACTTT	4500
TCCTTATTAC	CCTCTTTACA	AACTTCAATT	TCCTTAGAGT	CGTAGTGTCC	AAAATTGAAA	4560
AGGAATAATA	ACTATAGTCT	TTTAAATATC	АСААСААААА	GTAATTTTAA	TTAGTATACA	4620
ATGTATAATT	TGATATCAGA	AAATTTATAG	TGTTGTTTTT	CATTAAAATT	AATCATATGT	4680
TACATATTAC	AATGTATAAC	TATTATATCA	ATTGCATATG	ATAGGTCTAT	ATATAGTAGA	4740
TAATTATTG	TTACATATTG	ATAATATAGT	TAACGTATAC	TATCCAGATA	TATATCATCT	4800

AATTAATAAT	ATTCACTTGT	TATATGTATA	TCGGTGATAA	TTATAAATTG	TTGCAATTGA	4860
ACGAGTGAAA	TAAGTGAACA	ATATACATAT	AGCCACTATT	AATATTTAAC	AACGTTAACT	4920
TGCTCACTTA	TATTTTTGGT	TAGTCGGGAA	AAAAATTTGA	CTAGGGCTAG	GGCTAAATAA	4980
ACTTGTGCGT	АТАААААССА	ATCAGCCCTT	TTTTTAAACT	GATCCCGATC	CCGATTTATT	5040
TGAACACGCT	TAGCTTCTTC	TCATCTTACA	TTTCTTTGGT	TGCAGGCTGA	TATTGAAGTG	5100
TCGTTCTCTA	ATCGAAGAAG	AGTAGAATGT	AAAGAAACCA	ACGTCCGACT	ATAACTTCAC	5160
AGCAAGAGAT	TTTCAAGTTT	GAACAAGGCC	GAACAATTTG	ATCCTAAATG	GGCCGACCTT	5220
TATGCCCAAA	AAAGTTCAAA	CTTGTTCCGG	CTTGTTAAAC	TAGGATTTAC	CCGGCTGGAA	5280
ATACGGGTTG	ATGTTTGTGC	CATAAAGGGT	TCGACTATCC	AAGGTGGGCT	TGGACCATTT	5340
GGGCTTGTGC	TACAAACACG	GTATTTCCCA	AGCTGATAGG	TTCCACCCGA	ACCTGGTAAA	5400
CCCGAACACA	CATTAGCTTC	TAAAAACTTG	GAAGAATACA	CACCTGTTTT	CTTTCGAGTG	5460
TTTAAGGCTT	GTAATCGAAG	ATTTTTGAAC	CTTCTTATGT	GTGGACAAAA	GAAAGCTCAC	5520
AAATTCCGAC	AAAAGAATTA	TAAGGTTCTC	ATGTGCTCAG	ATGCTAGAAG	GTTTGTTTCT	5580
TCAATTGAAG	TTTTCTTAAT	ATTCCAAGAG	TACACGAGTC	TACGATCTTC	CAAACAAAGA	5640.
AGTTAACTTT	TAGTTGTAAT	GATCATAGTT	TACATAGTTA	ACTCAATATA	GGAGCACAAA	5700
ATTTGAGTAA	ATCAACATTA	CTAGTATCAA	ATGTATCAAT	TGAGTTATAT	CCTCGTGTTT	5760
TAAACTCATA	ATCAAGAATT	ATAATGACCC	GACTTTGATA	TCATGATAAG	AAATACATCT	5820
ACTTATCGAT	TAGTTCTTAA	TATTACTGGG	CTGAAACTAT	AGTACTATTC	TTTATGTAGA	5880
TGAATAGCTT	TGTTTATTAG	TGTCATTAAA	AAACTCTAAC	CTTGTTTAGT	TTCTTTATTA	5940
ATGAGCAGAA	АСАААТААТС	ACAGTAATTT	TTTGAGATTG	GAACAAATCA	AAGAAATAAT	6000
TACTCGTCTT	CTACCATGAG	ACAAAATGAA	GCAATGTACA	AGCCCTCATT	TGCTGGATAT	6060
GTAGATGTAA	GATGGTACTC	TGTTTTACTT	CGTTACATGT	TCGGGAGTAA	ACGACCTATA	6120
CATCTACATG	ATTTAGTAGA	CACGAAGAAG	TTATCTCTTA	GGAGTTTGGT	AAGTTTGCTT	6180
TCATCATTTC	TAAATCATCT	GTGCTTCTTC	AATAGAGAAT	CCTCAAACCA	TTCAAACGAA	6240
AGTAGTAAAT	TTTATTTTTT	TATAATTTAT	TTGATCAAGC	TTTTAAGATT	GCATTATTTT	6300
GAAGAGTAAA	АААТААААА	ATATTAAATA	AACTAGTTCG	AAAATTCTAA	CGTAATAAAA	6360
CTTCTCATTC	GATTTGTGTT	TGACTAATCA	GTTTGTATCA	TATGTATATT	TTTCAGATTG	6420
ATAACTCAGG	СТАААСАСАА	ACTGATTAGT	CAAAÇATAGT	ATACATATA	AAAGTCTAAC	6480
TÄTTGAGTCT	AGTGGAGAGT	тттсстсстс	GTGGAAAAAC	: ATGCATAACA	TCGAGGGTGT	6540
ATCCAACGTA	TCACCTCTCA	AAACCACGAC	CACCTTTTTG	TACGTATTGT	AGCTCCCACA	6600
TAGGTTGCAT	AGCGATTCAT	' AATAATGCAC	ATTTATTTGI	CTTCAATAAT	GGATCTGAGA	6660
CAATCACAAA	TCGCTAAGTA	TTATTACGT	тааатаааса	GAAGTTATTA	CCTAGACTCT	6720
GTTAGTGTTT	TGAGACTCTT	AATGCTTGGA	GCATGGATGI	ACCTAAGAT	CACTAAATAT	6780

መመመመመመመ አ አ	A CTCTC A C A A	mm » cc» » ccm	10	mcc., mmcm.) c	CMC 3 MMM 3 M3	6040
					GTGATTTATA	6840
	AAAGGAATTA					6900
	TTTCCTTAAT					6960
GTTTAAATTC	AGTAGATGAT	GTCCTCAAGA	ATCCTCTATA	ATTGTCTCTT	AATTTATTT	7020
GGTGAATTTG	TCATCTACTA	CAGGAGTTCT	TAGGAGATAT	TAACAGAGAA	TTAAATAAAA	7080
CCACTTAAAA	GAAGGCAAAG	AGTGTGTATA	TGGCTTGTCT	AGTACCATAT	ATATACTAAG	7140
AAAGAAATTT	CTTCCGTTTC	TCACACATAT	ACCGAACAGA	TCATGGTATA	TATATGATTC	7200
TTTCTTTAAT	GTTAGCTTTC	CTTTTTGTTT	TGTTACACAA	TCAAATGTGT	GGTCTTATGT	7260
AGAACTAATA	CAATCGAAAG	GAAAAACAAA	ACAATGTGTT	AGTTTACACA	CCAGAATACA	7320
TCTTGATTAA	TTTGGTAATA	TTAGGCAAGT	TGTTATGTGA	CTTATTTTAT	тсааататаа	7380
TAAGAAGTTT	AAACCATTAT	AATCCGTTCA	ACAATACACT	GAATAAAATA	AGTTTATATT	7440
ATTCTTCAAC	AAAGAGAAGA	GTACAAGTAA	GTAGAGGCGA	ATTCAGGATT	TGAAGAGTTT	7500
GGGTGCATCG	TTTCTCTTCT	CATGTTCATT	CATCTCCGCT	TAAGTCCTAA	ACTTCTCAAA	7560
CCCACGTAGA	ATATTATTTT	AATTTAAGCA	TTAGTAAAAA	TATTAATGAC	GGCTAACGAA	7620
TAATGTCATT	ТАТААТААА	TTAAATTCGT	AATCATTTTT	ATAATTACTG	CCGATTGCTT	7680
ATTACAGTAA	TTTAATAGCA	AATAAACTCT	TTAACTTGTA	ATAAAATGAG	TAAAAAATGG	7740
GTTGTTGGCT	AAATTATCGT	TTATTTGAGA	AATTGAACAT	TATTTTACTC	ATTTTTTACC	7800
CAACAACCGC	GAAATCGACT	CTAGGTCGTA	GGGGTGGACT	CCCTTACTTC	CAACAACGTA	7860
CTAGATCAAG	CTTTAGCTGA	GATCCAGCAT	CCCCACCTGA	GGGAATGAAG	GTTGTTGCAT	7920
GATCTAGTTT	GCCTTCTAAA	GGTGCACTCT	TTTTTATATT	CTCTATTTTT	ACTAGTTTCT	7980
CAAGATACTA	CGGAAGATTT	CCACGTGAGA	AAAAATATAA	GAGATAAAAA	TGATCAAAGA	8040
GTTCTATGAT	GTAGATCCGC	CTCTGCAAGT	AAGCGGAAGG	ACAAATTTTT	ACCTTACTAA	8100
CTCTATTGAA	CATCTAGGCG	GAGACGTTCA	TTCGCCTTCC	TGTTTAAAAA	TGGAATGATT	8160
GAGATAACTG	GCACCAAATC	CCTATTAACA	AGCATGAAAA	TATGAGAAGA	CGAAAGAACT	8220
AAGTAAGTTC	CGTGGTTTAG	GGATAATTGT	TCGTACTTTT	ATACTCTTCT	GCTTTCTTGA	8280
TTCATTCAAA	TAATTATTGT	ATAATTTATA	ACACACTCTA	GGATAATATT	ACAAATAAGA	8340
ATAGTGAATT	ATTAATAACA	TATTAAATAT	TGTGTGAGAT	ССТАТТАТАА	TGTTTATTCT	8400
TATCACTTAA	CTTAATTAAT	GACGAACTAT	AAAAGCAAAG	AAGGAAGAGG	AGTGATGAGC	8460
CTCGGAAAAT	GAATTAATTA	CTGCTTGATA	TTTTCGTTTC	TTCCTTCTCC	TCACTACTCG	8520
GAGCCTTTTA	AAAAATCACA	AATGAATAAA	GATGGCTAAA	ATAGAGTAAC	TTGATGAAGT	8580
TGATACTTCT	TTTTTAGTGT	TTACTTATTT	CTACCGATTT	TATCTCATTG	AACTACTTCA	8640
					TTTTAATTTT	
					AAAATTAAAA	8760
		•			AGGGATATAG	
= · = = + • •						5020

17

TATATATGAT	GTTATAGCAA	AGAATGATAA	GAAAATCCCG	AAAAGCGGGA	TCCCTATATC	8880
ATATATACTC	CAAATTTCAC	GCCATATATA	AATAATGTGG	AAAAAACTTA	TAATTTTCAA	8940
GGTAACAAGG	GTTTAAAGTG	CGGTATATAT	TTATTACACC	TTTTTTGAAT	ATTAAAAGTT	9000
CCATTGTTCA	AATCATATTT	TTGTTACGCC	TTCGTGGAGA	CTACTTCCTC	AATCGTAACA	9060
AAGAACAACT	TTAGTATAAA	AACAATGCGG	AAGCACCTCT	GATGAAGGAG	TTAGCATTGT	9120
TTCTTGTTGA	TTTCAAGTGG	CGACTCAAAA	AAGTCGCCAC	GACCGGTGAT	AACCTTTTGT	9180
GGCGATTATT	AAAGTTCACC	GCTGAGTTTT	TTCAGCGGTG	CTGGCCACTA	TTGGAAAACA	9240
CCGCTAATAA	TTTAGTCGCC	ACTAAACATT	ATTTGTGATC	ATATTTTCTT	TTCTTTTTCA	9300
TTTTTTATTT	AAATCAGCGG	TGATTTGTAA	TAAACACTAG	TATAAAAGAA	AAGAAAAAGT	9360
ТААТААДДА	AAGGTCAAAT	TTACCCCTTT	ATCTTATTTA	TGTAAATTGG	AAAATCCCAA	9420
ATTTTGCATA	TTCCAGTTTA	AATGGGGAAA	TAGAATAAAT	ACATTTAACC	TTTTAGGGTT	9480
TAAAACGTAT	ATTTTTCGAA	ттсстттттт	TTTAACACAC	TCAAAAGTCA	AAACATTAAA	9540
GAACGGAATA	TAAAAAGCTT	AAGGAAAAA	AAATTGTGTG	AGTTTTCAGT	TTTGTAATTT	9600
CTTGCCTTAA	GCAAATTAAA	TGGCAAAAGA	CTTGTTCTAA	САААААТТА	TTAGTAAAAC	9660
AGACTCATGT	CGTTTAATTT	ACCGTTTTCT	GAACAAGATT	GTTTTTTAAT	AATCATTTTG	9720
TCTGAGTACA	AATGTAACAA	TAACCAACAA	ATTATCCAAA	ATTTTAGATA	AATATTATCC	9780
AAACAAATAT	TTACATTGTT	ATTGGTTGTT	TAATAGGTTT	TAAAATCTAT	TTATAATAGG	9840
TTTGTTTATA	AAAATAATCA	TCCAATCCAT	TTAATTTATT	TTTAAAAAAA	ATCCTAAATT	9900
AACTCTCCAT	TTTTATTAGT	AGGTTAGGTA	AATTAAATAA	AAATTTTTT	TAGGATTTAA	9960
TTGAGAGGTT	CTTTCACTCA	AAAACAAACT	CTACCCATTT	TTTTCACTAT	AAATACTCTT	10020
CATAATTTTA	GAAAGTGAGT	TTTTGTTTGA	GATGGGTAAA	AAAAGTGATA	TTTATGAGAA	10080
GTATTAAAAC	ATTTATTCTT	CATTCCCAAG	TTTCTTTCTC	CCTATCCAAA	ААААТАААА	10140
AAAAATTATG	ТАЛАТААБАА	GTAAGGGTTC	AAAGAAAGAG	GGATAGGTTT	TTTTTATTTT	10200
TTTTTAATAT	TAGATTAATT	ACCACTATCT	GTCAAAGCCC	AATTATTGAA	ААААААААА	10260
CTATGGATTA	ATCTAATTAA	TGGTGATAGA	CAGTTTCGGG	TTAATAACTT	TTTTTTTT	10320
GATACCTAAA	TTCATCTAAT	TCTCGTTGGG	CTTTGCCAGT	TATCTTAGTT	TGCTTTTTTA	10380
TAGTTTTATT	AAGTAGATTA	AGAGCAACCC	GAAACGGTCA	ATAGAATCAA	ACGAAAAAAT	10440
атсалалтат	ATCCAATAAT	GTTGTTTTTG	CTTCTCACAA	AGTTTTTATT	CATTTGCAAT	10500
CTCAAAATGA	TAGGTTATTA	CAACAAAAAC	GAAGAGTGTT	ТСАААААТАА	GTAAACGTTA	10560
GAGTTTTACC	TGTAAATGTT	CAAACTGTTC	ATAGAACTGG	TTACCATTTT	CAGCCAGAAA	10620
AACATTGGAG	ACATTTACAA	GTTTGACAAG	TATCTTGACC	AATGGTAAAA	GTCGGTCTTT	10680
TTGTAACCTT	CAATGGTATG	TATACGCGCT	TTTTCGCGTT	TTTTCTTCTT	TATATATGTG	10740
TCAAAAAAA	GTTACCATAC	ATATGCGCGA	AAAAGCGCAA	AAAAGAAGAA	ATATATACAC	10800

<

GAAAAATCA GGACATTCCC A

21

18 10811 AGTTTTTTT A (2) INFORMATION FOR SEQ ID NO: 2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Forward primer" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: 18 AACGATCCAA ATGGACCA (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Reverse primer" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

1	Claims		
2			
3	1.	A pollen cell-specific expression control	
4		polynucleotide of an invertase gene, or a	
5		derivative, functional equivalent or part of said	
6		expression control polynucleotide.	
7			
8	2.	An expression control polynucleotide as claimed in	
9		Claim 1 which is a promoter.	
10			
11	3.	An expression control polynucleotide as claimed in	
12		either one of Claims 1 and 2 which comprises a	
13		sequence substantially as set out in SEQ ID No 1	
14		or as present in NCTC Deposit No 13013, or a	
15		functional equivalent or part thereof.	
16			
17	4.	An expression control polynucleotide as claimed in	
18		Claim 3 which comprises the sequence of	
19		nucleotides 3430-5349 of SEQ ID No 1.	
20			
21	5.	A recombinant expression control polynucleotide	
22		comprising at least a part of a polynucleotide as	
23		claimed in any one of Claims 1 to 4.	
24			
25	6.	A recombinant nucleotide construct which comprises	
26		an expression control polynucleotide as claimed in	
27		any one of Claims 1 to 5 operably linked to a	
28		heterologous polynucleotide.	
29			
30	7.	A construct as claimed in Claim 6 which is in the	
31		form of a vector.	
32		•	
33	8.	A construct as claimed in either one of Claims 6	
34		and 7 wherein said heterologous polynucleotide	
35		encodes a protein.	
36			

1	9.	A host cell transformed with a construct as
2		claimed in any one of Claims 6 to 8.
3		
4	10.	A transgenic organism transformed with a construct
5		as claimed in any one of Claims 6 to 8.
6		
7	11.	An organism as claimed in Claim 10 which is a
8		plant.
9		
10	12.	An organism as claimed in Claim 11 wherein said
11		expression control polynucleotide is pollen cell-
12		specific and the heterologous polynucleotide
13		operably linked thereto encodes for a protein
14		which causes male sterility of said plant.

1/4

pRM12.3 pGF521 AccI XbaI XbaI HindIII HindIII AccI AccI 1 kb SalI

-ia. 1

2/4

Fig. 2

3/4

Fig. 3

Fig. 4a

Fig. 4b

INTERNATIONAL SEARCH REPORT

itional Application No

PCT/GB 98/00833 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/82 C12N A01H5/00 C12N15/56 According to International Patent Classification(IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N A01H IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1,2,5-11 Υ "A similar dichotomy of sugar XU J ET AL: modulation and developmental expression affects both paths of sucrose metabolism: Evidence from a maize invertase gene family. PLANT CELL 8 (7). 1996. 1209-1220. ISSN: 1040-4651, XP002071291 see page 1213, left-hand column, line 11 line 19 1,2,5-11 MASCARENHAS, J.P.: "Gene activity during Υ pollen development" ANN. REV. PLANT PHYSIOL. PLANT MOL. BIOL, vol. 41, 1990, pages 317-338, XP002071292 see page 329, paragraph 3 - page 331 Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) " document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 27/07/1998 13 July 1998 Name and mailing address of the ISA Authorized officer

Form PCT/ISA/210 (second sheet) (July 1992)

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Maddox, A

INTERNATIONAL SEARCH REPORT

Int. ational Application No PCT/GB 98/00833

		PCT/GB 98/00833
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	MEYER R ET AL: "Promoter deletion analysis of potato invertase gene expression." ANNUAL MEETING OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY, SWANSEA, WALES, UK, APRIL 11-15, 1994. JOURNAL OF EXPERIMENTAL BOTANY 45 (SUPPL.). 1994. 6. ISSN: 0022-0957, XP002071293 see abstract P2.4	1-12
Α	HEDLEY, P.E., ET AL,: "cDNA cloning and expression of a potato (Solanum tuberosum) invertase" PLANT MOLECULAR BIOLOGY, vol. 22, 1993, pages 917-922, XP002071294 see the whole document	3,4
A	LORENZ, K., ET AL.: "Structural organization and differential expression of carrot beta-fructofuranosidase genes: identification of a gene coding for a flower bud-specific isozyme" PLANT MOLECULAR BIOLOGY, vol. 28, 1995, pages 189-194, XP002071295 see the whole document & LORENZ, K., ET AL.: "D.carota (Queen	3,4
	Anne's Lace) Inv*Dc2 gene 3432bp" EMBL SEQUENCE DATABASE, ACCESSION NO. X78424, 25 March 1994, see the whole document & STURM A.: "D.carota (Queen Anne's Lace) Inv*Dc1 gene" EMBL SEQUENCE DATABASE, ACCESSION NO. X69321, 23 November 1992, see the whole document	
A	HEDLEY, P.E., ET AL.: "Potato (Solanum tuberosum) invertase-encoding cDNAs and their differential expression" GENE, vol. 145, 1994, pages 211-214, XP002071296 see figure 1	3,4
	-/	

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

int. Ational Application No
PCT/GB 98/00833

		PCT/GB 98/00833
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category 3	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	ALLEN, R.L., ET AL.: "Molecular characterization of one of the maize polygalacturonase gene family members which are expressed during late pollen development" THE PLANT JOURNAL, vol. 3, no. 2, 1993, pages 261-271, XP002071297 see the whole document	10-12
4	WO 94 01572 A (PIONEER HI BRED INT) 20 January 1994 see page 31	12
A	RAMLOCH-LORENZ, K., E AL.: "Molecular characterization of the gene for carrot cell wall beta-fructosidase" THE PLANT JOURNAL, vol. 4, no. 3, 1993, pages 545-554, XP002071298 see the whole document	1-12

information on patent family members

Inte onal Application No PCT/GB 98/00833

Patent document cited in search report	Publication	Patent family	Publication
	date	member(s)	date
WO 9401572	20-01-1994	AT 147434 T AU 669384 B AU 4769693 A DE 69307320 D DE 69307320 T DK 651814 T EP 0651814 A ES 2099968 T JP 8501684 T MX 9304114 A NZ 255026 A US 5412085 A US 5545546 A	15-01-1997 06-06-1996 31-01-1994 20-02-1997 07-08-1997 30-06-1997 10-05-1995 01-06-1997 27-02-1996 31-05-1994 26-04-1996 02-05-1995 13-08-1996