lecture 5

- projective transformation
- normalized view volume
- GL_PROJECTION matrix
- clip coordinates
- normalized device coordinates
- planes and normals in projective space
- Assignment 1 (python and pyopengl)

Recall last lecture: view volume (view frustum)

gluPerspective(θy , $\theta x / \theta y$, near, far) glFrustrum(left, right, bottom, top, near, far)

Recall last lecture: projection

You might think.....

But that is <u>not</u> what glFrustrum and gluPerspective do.

Why not? What do they do?

The problem with projection:

If we discard the z information, then we don't know which objects are in front of which.

Projective Transformation

Projective Transformation

Objects that are further away look smaller.

How to define a projective transformation that does this

Previously, we considered projection:

$$\begin{bmatrix} f \\ f \\ f \\ f \\ f \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \chi \\ \chi \\ 0 & 0 & 1 \end{bmatrix}$$

But a projection matrix is <u>not</u> invertible (3rd and 4th rows are linearly dependent)

Projective Transformation

We choose α and β to satisfy desired map illustrated on previous slide.

$$\begin{bmatrix}
f \times \\
f y \\
f z
\end{bmatrix} = \begin{bmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & f & 0
\end{bmatrix}$$

$$\begin{cases}
f \times \\
f z \\
z
\end{cases}$$
where
$$\beta \neq 0$$

In Appendix to lecture notes, I derive (easy):

$$f_0 = -near \qquad f_1 = -f$$

$$f_0 = 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$f_0 = -f_0 \quad 0 \quad 0$$

$$f_0 = -f_0 \quad 0$$

$$f_0 = -f_0 \quad 0$$

$$=\begin{bmatrix} f_{0} \times \\ f_{0} \\ f_{0} \end{bmatrix} = \begin{bmatrix} \chi \\ f_{0} \\ f_{0} \end{bmatrix}$$

Thus,
$$z = f_0$$

maps to

 $z = f_0$.

+ = - tar

$$f_{0} = -near$$

$$f_{0} = -far$$

Where do various regions map to?

Curious! The JKL flipping is analogous to a Mobius strip.

Why is the above detail important?

We decide whether or not points lie in the view volume using projective space representation.

To make these decisions correctly, we need to be careful about inequalities and signs.

More about this later...

Another (surprisingly) important detail:

OpenGL uses the 2nd matrix above, not the first. Why?

$$f_{0} = -\text{near} \qquad f_{1} = -\text{far}$$

$$\begin{pmatrix} -f_{0} & 0 & 0 & 0 \\ 0 & -f_{0} & 0 & 0 \\ 0 & 0 & -(f_{0}+f_{1}) & f_{0}f_{1} \end{pmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

Soon we will see why this is desirable.

"Normalized view volume"

Map to normalized view volume

- 1) translate (left, bottom, -near) to (0,0,0)
- 2.) rescale x, y, z so volume is 2 x 2 x 2 and flip z axis (into left handed coordinates!)
- 3.) translate so volume is centered at origin

$$\mathbf{M}_{normalize} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{right-left} & 0 & 0 & 0 \\ 0 & \frac{2}{top-bottom} & 0 & 0 \\ 0 & 0 & \frac{-2}{far-near} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -left \\ 0 & 1 & 0 & -bottom \\ 0 & 0 & 1 & near \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•

(w x, w y, w z, w)

is in the

normalized view volume if:

w > 0 (Recall a few slides ago)

$$- W \le W Y \le W$$

Putting in all together ...

last few lectures

Meye = world world = object

this lecture.

M normalize M projective

Mormalize projective eye = world world = obj glu Lookat gl Translate gl Rotate gl Scale or Sqlu Perspective or gl Frustum

M GL_PROJECTION GL-MODEL VIEW

Object Coordinates

"Clip Coordinates"

$$\begin{bmatrix} \chi' \\ \zeta' \\ \vdots \\ \chi' \\ \end{bmatrix}$$

$$\begin{bmatrix} \omega \chi \\ \omega \zeta \\ \omega \zeta \\ \end{bmatrix}$$

Object Coordinates

"Clip Coordinates"

"Normalized Device Coordinates"

$$\begin{bmatrix} \chi' \\ 5' \\ 2' \\ \end{bmatrix} \longrightarrow \begin{bmatrix} \omega \chi \\ \omega \chi \\ \omega \chi \\ \end{bmatrix}$$

In OpenGL, this happens after clipping (next lecture)

"Perspective Division"

F) few final details:

projective transform of a plane?

projective transform of surface normal

$$ax + by + cz + d = 0$$

$$(a, b, c, d) \cdot (x, y, z, i) = 0$$

$$M^{-1}M$$
for any invertible $4x4M$.

(a,b,c,d) M^{-1} M $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$ (a,b',c',d') (wx',wy,wz',w) = 0gives equation of plane in (x', y', z') space.

The surface normal of a plane (triangle) does not necessarily get mapped to the surface normal of the mapped plane (triangle).

Why not? (Space is deformed, and so right angles are not preserved.)

Let \vec{p} , be two points a plane. Let To be normal to the plane.

Proposition of the plane.

Proposition of the plane. Po Po • $(e_x e_y e_z) = 0$ (N_x, N_y, N_z)

and E Write n vectors. direction Then, $[n_x, n_y, n_z, o][e_x, e_y, e_z, o] = 0$ nsert

4x4 1 × 4 transformed Sur face direction rector normal of lies in transformed transformed plane plane

Surface normal of transformed plane

$$(\vec{n} M')^T = (M')^T \vec{n}^T$$

except in special situations

transformed Surface normal of plane

Announcements

Today is ADD/DROP deadline http://www.mcgill.ca/importantdates/key-dates

For the Assignments, we will use PyOpenGL (Python). It is already installed on the lab computers.

Fahim (T.A.) has posted instructions for you to install it on your computer:

http://cim.mcgill.ca/~fmannan/comp557/Python%20and% 20PyOpenGL%20Installation.html

If you need help with the installation, see him (or help each other -- please use the discussion board).

We will try to get the assignment out Thursday as originally planned.