Emergent Spacetime Quantum-Entanglement Theory (ESQET)

Marco A. Rocha

October 30, 2025

${\bf Abstract}$

ESQET reinterprets gravity as emergent from quantum coherence in the Spacetime Information Field S, bridged to $g_{\mu\nu}=e^{2S}$.

Contents

1	Introduction	2
	1.1 Motivation and Context	2
	1.2 ESQET Core Proposal	4
	1.3 Objectives and Contributions	2
2	Mathematical Framework	
	2.1 ESQET Field Equations	9
	2.1.1 Quantum Coherence Function $(\mathcal{F}QC)$:

1 Introduction

1.1 Motivation and Context

 ${\rm GR}$ and ${\rm QM}$ incompatible; dark sectors unresolved. ESQET derives spacetime from coherence, observer as co-creator.

1.2 ESQET Core Proposal

Gravity from \mathcal{S} , modulated by $\mathcal{F}_{\mathrm{QC}}$. FCU $(\varphi \pi \delta)$ scales quantum-classical.

1.3 Objectives and Contributions

Metric linkage; observer entropy grounding; thermodynamic V; clock shift 3.25×10^{-18} .

2 Mathematical Framework

2.1 ESQET Field Equations

MEFE: $G_{\mu\nu} = 8\pi G_0 [T_{\mu\nu} \mathcal{F}QC + T\mu\nu^{\text{obs}}], g_{\mu\nu} = e^{2\mathcal{S}} \eta_{\mu\nu}$. Action: $S = \int [\frac{\mathcal{S}}{16\pi G_0} R + \frac{1}{2} (\partial \mathcal{S})^2 - V(\mathcal{S}) + \mathcal{L}_m] \sqrt{-g}, d^4x, V(\mathcal{S})$. Wave: $\Box \mathcal{S} = 8\pi G_0 T \mathcal{F}QC + \kappa \mathcal{D}\text{obs} I_0/l_p^2, T_{\mu\nu}^{\text{obs}} = \kappa \mathcal{D}_{\text{obs}} I_0/l_p^2$.

2.1.1 Quantum Coherence Function $(\mathcal{F}QC)$

$$\mathcal{F}\mathrm{QC} = (1 + \varphi \pi \delta \frac{(\mathcal{D}\mathrm{ent} + \mathcal{D}\mathrm{obs})I_0}{k_B T_\mathrm{vac}})(1 + \alpha_\mathrm{QC}).$$