

GENERATION AND TUNING OF DISCRETE EVENT SIMULATION MODELS FOR MANUFACTURING APPLICATIONS

Giovanni LUGARESI

Andrea MATTA

INDUSTRIAL RELEVANCE

CHALLENGES:

Pressure from market demand

Complexity increases failures impact

Pressures on cost reduction

OPPORTUNITIES:

Collecting information with high frequency

Understanding emerging behaviors

Evaluating alternative **scenarios**

Affordable data analytics

ONLINE SUPPORT TOOLS FOR PRODUCTION PLANNING AND CONTROL

PROBLEM INTRODUCTION

Manufacturing systems change frequently due to external drivers (e.g. demand, price uncertainty). Hence, <u>current simulation techniques are poor</u> as tools for <u>short-term decision making</u>.

PROBLEM INTRODUCTION

By exploiting the data produced by the parts and resources, it is possible to achieve higher reactivity in the simulation model building phase.

STATE OF THE ART

Applications of Process Mining in manufacturing:

Reference	Framework	Graph	Policies	Formal Model	Parameters
W.M.P. Van der Aalst., 2016	X	Χ			
A.K. Alves de Medeiros et al., 2006	X	Χ			
A.L. Wolf and J.E. Cook, 1995		Χ			
A. Rozinat et al., 2009	X				
Bergmann et al. 2015			X		
Farooqui et al. 2019				X	
Milde and Reinhart, 2019			X		X
Martin et al. 2015					X
Martin et al. 2016					Χ
Martin et al. 2017			X		X
Peter Denno et al. 2018		Χ			
Ferreira and Vasilyev 2015					Χ

Existing approaches of Model Tuning:

User is not free in the choice of aggregation level

Highly sensitive to rare or wrong sequences of events;

X No relationship with performance estimation from the obtained model

A. Rozinat, R.S. Mans, M. Song, W. Van der Aalst. "Discovering simulation models." Information systems 34.3 (2009): 305-327.

NOTICE: Specific contributions aimed at DES for manufacturing are missing in the literature.

SCOPUS: 0 results for the query: "process mining" AND "manufacturing" AND "discrete event simulation"

OVERVIEW

MODEL TUNING

MODEL GENERATION

MANUF. SYSTEM

MODEL GENERATION BASICS

MANUFACURING SYSTEM

EVENT LOG:

/			
′	Timestamp	Part-ID	Activity-ID
	2020-11-23T16:37:40Z	1	S1
	2020-11-23T16:37:44Z	1	S2
	2020-11-23T16:37:47Z	2	S1
	2020-11-23T16:37:51Z	2	S2
	2020-11-23T16:37:52Z	3	S1

TRACES: 1 {S1, S2} 2 {S1, S2} ...

ACTIVITY RELATIONSHIPS: "Station 2 follows Station 1", ...

PARAMETERS (SYSTEM PROPERTIES)

MODEL TUNING METHODOLOGY

OBJECTIVE: Tune the model toward a reasonable size.

IDEA: Find the model that maximizes a score (How well does it represent systems features?):

$$R = \frac{Close\ Events(\ Reduced\ Model)}{Close\ Events(\ Full\ Model)}$$

→ 5 SCORES BASED ON: FREQUENCY, CAPACITY, EVENTS CLOSE IN TIME, ROUTING, LOOPS

MODEL TUNING: SOLUTION METHOD

LOCAL SEARCH

Heuristic

Depth-first approach Ω_0 Ω_1 Ω_2 Ω_3 Z E

REDUCTION

AGGREGATION

ILLUSTRATIVE EXAMPLE: M/M/1/10 QUEUE

* further reduction may be applied

^{*}Schruben, Lee, and Enver Yucesan. "Transforming Petri nets into event graph models." Proceedings of Winter Simulation Conference. IEEE, 1994.

ILLUSTRATIVE EXAMPLE: FLOW LINE

MANUFACTURING SYSTEM:

OBTAINED MODELS:

ILLUSTRATIVE EXAMPLE :FLOW LINE

MANUFACTURING SYSTEM:

Inter arrivals: EXPO(1), Processing times: EXPO(1), Buffers: 10

OBTAINED MODELS:

Model Nodes									
Step	1	2	3	4	5	6	7	Score	
1	S1	S2	S3	S4	S 5	S6	SQ	0.400	
2	S1	S2	S3	S4	(S5, SQ)	S6		0.367	
3	S1	S2	S3	S4	(S5, SQ, S6)			0.333	
4	(S1,S2)	S3	S4	(S5, SQ, S	6)			0.300	
5	(S1,S2,S3)	S4	(S5, SQ, S6)					0.267	
6	(S1,S2,S3,S4) (S5, SQ, S	6)					0.233	

VALIDATION: SIMULATED FLOW LINE

Inter arrivals: EXPO(1), Processing times: EXPO(1), Buffers: 10

VALIDATION: REAL PRODUCTION LINE

14

LIMITATIONS AND FUTURE DEVELOPMENTS

LIMITATIONS

- Hypothesis of single Part-IDs (limited for assembly/disassemly operations)
- Limited information in the log translates in less descriptive models
- Log-preprocessing is still necessary (e.g., events with same timestamp are removed)

FUTURE DEVELOPMENTS

- Investigate the value of prior information
- Investigate Simulation-Optimization applications
- Investigation of smarter inheritance rules for nodes aggregation, improve local search
- Understand the behavior with very large logs

Q&A

Selected References

G. Lugaresi and A. Matta. *Real-time simulation in manufacturing systems: Challenges and research directions.* 2018 Winter Simulation Conference, pp. 3319–3330, IEEE.

Günther, Christian W., and Wil MP Van Der Aalst. "Fuzzy mining–adaptive process simplification based on multi-perspective metrics." International conference on business process management. Springer, Berlin, Heidelberg, 2007.

M. Prodel, Modelisation automatique et simulation de parcours de soins a partir de bases de donnees de sante. Ph.D. Thesis, 2017.

M. Mesabbah and S. McKeever. *Presenting a hybrid processing mining framework for automated simulation model generation.* Winter Simulation Conference, pp. 1370–1381, IEEE, 2018.

A. Rozinat, R.S. Mans, M. Song, W. Van der Aalst. "Discovering simulation models." Information systems 34.3 (2009): 305-327.

PHONE

+39 347 9604232

OTHER PUBLICATIONS

