Алгоритм DES

Історична довідка

- 1974 рік NIST оголошує конкурс симетричних криптоалгоритмів на стандарт шифрування США;
- 1976 рік поданий на конкурс алгоритм Lucifer (розробка IBM, Хорст Фейтель) оголошено переможцем;
- 1977 рік модифікований алгоритм Lucifer прийнято на озброєння як стандарт шифрування США DES (Data Encryption Standard стандарт шифрування даних)

Порівняння DES-Lucifer

No	Параметр	Lucifer	DES
1.	Архітектура	Мережа Фейстеля	Мережа Фейстеля
2.	Довжина вхідного блоку	128 бітів	64 біти
3.	Довжина ключа	128 бітів	56+8 бітів
4.	Кількість раундів обробки	16	16

Зміни, які внесло АНБ до алгоритму Lucifer:

- Зменшено довжини блоку та ключа;
- Ключ: 56 секретних бітів + 8 бітів парності (кількість одиниць в кожному байті має бути непарною);
- Змінено принципи формування блоків заміни (і засекречено їх!).

Блоки заміни розсекречено лише в 90-х роках.

Мережа Фейстеля

Мережа Фейстеля: Ліворуч – процес зашифрування; Праворуч – процес розшифрування.

Математично:

$$L_{i} = R_{i-1}$$

 $R_{i} = L_{i-1} XOR F(R_{i-1}, K_{i}).$

Тоді розшифрування:

$$R_{i-1} = L_i$$

 $L_{i-1} = R_i \text{ XOR } F(L_i, K_i).$

Переваги і недоліки

- Переваги:
 - Висока швидкодія;
 - Можливість використовувати однакові модулі (процедури) при зашифруванні та розшифруванні.
 - Не треба обчислювати обернену функцію, отже єдина вимога раундова функція має бути незворотною.
- Недоліки:
 - За раунд шифрується лиш половина блоку.

Архітектура DES

Основні параметри алгоритму:

- 1. Вхідний блок 64 біти;
- 2. Ключ 56+8=64 біти;
- 3. Кількість раундів 16.
- 4. Початкова і кінцева перестановки ІР та ІР⁻¹ працюють з усім блоком.
- 5. Раундова функція незворотне перетворення з перестановок і замін та підмішування ключа.

Початкова і кінцева перестановки

Початкова перестановка ІР

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	40

Кінцева перестановка IP-1

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Структура одного раунда DES

Перестановка з розширенням

0	1	2	3
4	5	6	7
8	4	10	11
12	13	14	15
16	17	18	19
20	21	22	23
24	25	26	27
28	29	30	31

Вхід — 32 біти; Вихід — 48 бітів Результат перестановки додається за правилами XOR до 48бітового раундового підключа

Використання блоків заміни

Приклад:

Нехай перший блок В1 має вигляд: 110110.

Його буде спрямовано на перший S-бокс S1.

Перший та останній біти (1 та о - 10=2 $_{10}$) дають двійкове подання другого рядка таблиці.

Внутрішні 4 біти (1011=11₁₀) дають номер стовпчика таблиці заміни.

Використання блоків заміни

	O	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	_	12			4	-	1	7	_5	11			10	0	6	13
	Pe:	зулі	ьтат	зan	иіни	1: BX	кідн	ИЙ	бло	к: 1	101	10		710=	O11	1

Результат заміни піддається перестановці (Р-перестановка):

16	7	20	21	29	12	28	17	1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9	19	13	30	6	22	11	4	25

Операція розгортання ключа

Слабкі ключі DES

• Слабкими називаються ключі, які задовольняють рівність: $DES_{\mathbb{K}}(DES_{\mathbb{K}}(M)) = M$

Слабкі ключі DES (Hex)	C_{o}	D_{o}
0101-0101-0101	$[0]^{28}$	$[0]^{28}$
FEFE-FEFE-FEFE	$[1]^{28}$	$[1]^{28}$
1F1F-1F1F-0E0E-0E0E	$[0]^{28}$	$[1]^{28}$
EoEo-EoEo-F1F1-F1F1	$[1]^{28}$	$[0]^{28}$

Напівслабкі ключи DES

• Напівслабкими будемо називати такі пари ключів, для яких виконується рівність: $DES_{K_2}(DES_{K_2}(M))=M$

$C_{\mathbf{o}}$	D_{0}	Пари напівслабких ключів	$C_{ m o}$	$D_{ m o}$
[01] ¹⁴	[01] ¹⁴	01FE-01FE-01FE, FE01-FE01-FE01	[10] ¹⁴	[10] ¹⁴
[01] ¹⁴	[01] ¹⁴	1FE0-1FE0-1FE0, E0F1-E0F1-E0F1	[10] ¹⁴	[10] ¹⁴
[01] ¹⁴	[O] ²⁸	01E0-01E0-01F1-01F1, E001-E001-F101-F101	[10] ¹⁴	$[0]^{28}$
[01] ¹⁴	$[1]^{28}$	1FFE-1FFE-0EFE-0EFE, FE1F-FE1F-FE0E-FE0E	$[0]^{28}$	$[1]^{28}$
$[0]^{28}$	[01] ¹⁴	011F-011F-010E-010E, 1F01-1F01-0E01-0E01	$[0]^{28}$	[10] ¹⁴
[1] ²⁸	[01] ¹⁴	EOFE-EOFE-F1FE-F1FE, FEEO-FEEO-FEF1-FEF1	[1] ²⁸	[10] ¹⁴

Криптостійкість DES

Метод атаки	Відомі відкр. тексти	Обрані відкр. тексти	Об'єм пам'яті	Кількість операцій
Грубою силою	1	-	Незначний	2 ⁵⁵
Лінійний КА	2 ⁴³	-	Для тексту	2 ⁴³
Дифер. КА	-	2 ⁴⁷	Для тексту	2 ⁴⁷
Дифер. КА	2 55	-	Для тексту	2 55

Атаки на DES

- 1997 рік RSA S
 тис. доларів) п
 грубої сили за ~;
- 1997 рік Distril силою» на DES -
- 1998 рік 41 ден
- 1999 рік 2 дні і
- 1999 рік 22 год

Переваги і недоліки DES

• Переваги:

- Висока швидкодія;
- Можливість використання одних апаратних або програмних модулів для зашифрування і розшифрування.

• Недоліки:

- Мала довжина ключа;
- За один раунд шифрується лиш половина блоку;
- Наявність слабких ключів;
- Застаріла архітектура.