Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

9. ARIMA models

9.1 Unit root tests
OTexts.org/fpp3/

Unit root tests

Statistical tests to determine the required order of differencing.

- Augmented Dickey Fuller test: null hypothesis is that the data are non-stationary and non-seasonal.
- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary and non-seasonal.
- Other tests available for seasonal data.

Unit root tests

Statistical tests to determine the required order of differencing.

- Augmented Dickey Fuller test: null hypothesis is that the data are non-stationary and non-seasonal. H₀: non-stationary
- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary and non-seasonal. H_0 : stationary
- Other tests available for seasonal data.

Example: Google stock price

```
google_2018 |>
  autoplot(Close) +
  labs(y = "Closing stock price ($USD)")
```


Example: Google stock price

```
google_2018 |>
  autoplot(difference(Close)) +
  labs(y = "Change in Google closing stock price ($USD)")
```


KPSS test

```
google_2018 %>%
  features(Close, unitroot_kpss)
```

KPSS test

```
google_2018 %>%
   features(Close, unitroot_kpss)
## # A tibble: 1 x 3
    Symbol kpss_stat kpss_pvalue
##
    <chr> <dbl> <dbl>
##
## 1 GOOG 0.573 0.0252
google_2018 %>%
  features(Close, unitroot_ndiffs)
## # A tibble: 1 x 2
##
    Symbol ndiffs
##
   <chr> <int>
## 1 GOOG
```

```
h02 |> autoplot(
Cost
)
```



```
h02 |> autoplot(
  log(Cost)
)
```



```
h02 |> autoplot(
  log(Cost) |> difference(12)
)
```



```
h02 |> autoplot(
  log(Cost) |> difference(12) |> difference(1)
)
```


Automatically selecting differences

```
STL decomposition: y_t = T_t + S_t + R_t
Seasonal strength F_s = \max\left(0, 1 - \frac{\operatorname{Var}(R_t)}{\operatorname{Var}(S_t + R_t)}\right)
If F_s > 0.64, do one seasonal difference.
```

```
h02 %>% mutate(log_sales = log(Cost)) %>%
features(log_sales, feat_stl)
```

10

Automatically selecting differences

```
h02 %>% mutate(log_sales = log(Cost)) %>%
 features(log_sales, unitroot_nsdiffs)
## # A tibble: 1 x 1
## nsdiffs
## <int>
## 1
h02 %>% mutate(d log sales = difference(log(Cost), 12)) %>%
 features(d_log_sales, unitroot_ndiffs)
## # A tibble: 1 x 1
## ndiffs
## <int>
## 1
```