Konvergenz

Eine Funktion $f: U \to \mathbb{R}^m$ heißt stetig in $a \in U$, wenn für alle folgen $x_n \in U$ mit $x_n \to a$ die Folge $f(x_n)$ gegen f(a) konvergiert. Dies ist gleichbedeutend damit, dass für jedes $\epsilon > 0$ ein $\delta > 0$ existiert, so dass $d(f(x), L_a) < \epsilon$ gilt für jedes x mit $d(x, a) < \delta$.

Stetigkeit

Eine Funktion $f: U \to \mathbb{R}^m$ heißt stetig, wenn sie für alle $a \in U$ stetig ist.

Figure: Quelle: Wikipedia:

 $https://commons.wikimedia.org/wiki/File:Upper_semi.svg$

Landau Notation

Für eine Funktion $g:U\subset\mathbb{R}^n\to\mathbb{R}$ bezeichnen wir die Wachstumsklasse

$$o(g) := \{ f : U \to \mathbb{R} \mid \lim_{x \to a} \frac{|f(x)|}{|g(x)|} = 0 \ \forall a \in U \}$$
$$O(g) := \{ f : U \to \mathbb{R} \mid \lim_{x \to a} \frac{|f(x)|}{|g(x)|} < \infty \ \forall a \in U \}$$

$$O(g) := \{ f: U \to \mathbb{R} \mid \lim_{x \to a} \frac{|f(x)|}{|g(x)|} < \infty \ \forall a \in U \}$$

Angewandte Mathematik Lokale Linearisierung

Lokale Linearisierung

Eine Funktion $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ heisst differenzierbar in $a\in U$ falls es eine lineare Funktion $df(a):\mathbb{R}^n\to\mathbb{R}^m$ gibt mit

$$f(a+h) = f(a) + df(a)h + o(||h||)$$
 (1)

$$\Leftrightarrow \lim_{h\to 0} \frac{f(a+h)-f(a)-df(a)h}{||h||}=0$$
 (2)

für alle $h \in \mathbb{R}^n$

Bedeutung

Eine differenzierbare Funktion kann auf hinreichend kleinen Umgebungen beliebig genau durch eine lineare Funktion approximiert werden.

Eindeutigkeit

Die lineare Abbildung df(a) ist eindeutig bestimmt.

Beweis

Ist df'(a) eine weiter Abbildung mit Eigenschaft (1), so gilt für jeden Basisvektor e_i

$$\lim_{t \to 0} \frac{f(a + te_i) - f(a) - df(a)t \ e_i}{||te_i||} = 0 \tag{3}$$

$$\lim_{t \to 0} \frac{f(a + te_i) - f(a) - df'(a)t \ e_i}{||te_i||} = 0 \tag{4}$$

$$\Rightarrow (df(a) - df'(a))(e_i) = \lim_{t \to 0} \frac{(df'(a) - df(a))(te_i)}{||te_i||} = 0 \quad (5)$$

Beispiel

 $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$

$$f(x) := A \cdot x + b \tag{6}$$

$$df(a) := A \tag{7}$$

$$\lim_{h\to 0}\frac{A(x+h)-A\cdot x-A\cdot h}{||h||}=\tag{8}$$

$$\lim_{h \to 0} \frac{A \cdot x + A \cdot h - A \cdot x - A \cdot h}{||h||} = 0 \tag{9}$$

Ab Jetzt

Der Fall m=1. Wir betrachten also Funktionen $f:U\subset\mathbb{R}^n\to\mathbb{R}$

Ableitung

Ist f differenzierter in U, so gilt wegen der Linearität

$$df(a)h = \sum_{i=1}^{n} (df(a)e_i) \cdot h_i$$
 (10)

wobei (e_1, \cdots, e_n) die Standardbasis des \mathbb{R}^n ist. Die einzeilige Matrix

$$f'(a) := (df(a)e_1, \cdots, df(a)e_n) \tag{11}$$

heißt Ableitung von f in a.

Richtungsableitung

Sei $f: U \to \mathbb{R}$ eine Funktion. Für einen Vektor $h \in \mathbb{R}^n$ und einen Punkt $a \in U$ heißt der Grenzwert (falls er existiert)

$$\partial_h f(a) := \lim_{t \to 0} \frac{f(a+th) - f(a)}{t}$$

Richtungsableitung von f am Punkt a in Richtung h. Sie misst die Änderung der Funktion in Richtung h.

Speziell nennen wir für die Standard Basisvektoren ei

$$\frac{\partial f(a)}{\partial x_i} := \partial_{e_i} f(a) := \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t}$$

die partielle Ableitung von f in a nach x_i .

Partielle Differenzierbarkeit

Eine Funktion $f:U\to\mathbb{R}$ heißt partiell differenzierbar im Punkt $a\in U$, falls alle partiellen Ableitungen

$$\frac{\partial f(a)}{\partial x_1}, \cdots, \frac{\partial f(a)}{\partial x_n}$$

existieren.

Mehrdimensionale Differentialrechnung Differenzierbarkeit

Beispiel

Beispiel

Ist eine Funktion f in a differenzierbar, so ist sie dort partiell differenzierbar und es gilt

$$df(a)h = f'(a)h = \sum_{i=1}^{n} \partial_{i}f(a) \cdot h_{i}$$
$$f'(a) = (\partial_{1}f(a), \dots, \partial_{n}f(a))$$

Beweis

Ist f differenzierter, so gilt für $t \in \mathbb{R}$ und $h \in \mathbb{R}^n$

$$f(a+th) = f(a) + df(a)th + R(||th||)$$

$$\lim_{th\to 0} \frac{||R(th)||}{||th||} = 0$$

$$\Rightarrow \lim_{t\to 0} \frac{||R(th)||}{||th||} = 0 \Rightarrow \lim_{t\to 0} \frac{||R(th)||}{|t|} = 0$$

$$\Rightarrow df(a)h = \lim_{t\to 0} \frac{f(a+th) - f(a)}{|t|} = \partial_h f(a)$$

$$\Rightarrow df(a)e_i = \partial_i f(a)$$

Differenzierbarkeis Kriterium

Eine Funktion $f:U\to\mathbb{R}$ ist differenzierbar im Punkt $a\in U$, falls alle partiellen Ableitungen

$$\frac{\partial f(a)}{\partial x_1}, \cdots, \frac{\partial f(a)}{\partial x_n}$$

existieren und stetig sind.

Vorwissen über eindimensionale Funktionen

Mittelwertsatz einer Veränderlichen

Sei $f:[a,b] \to \mathbb{R}$ stetig und differenzierbar für alle $x \in (a,b)$.

Dann gibt es $\xi \in (a, b)$ mit $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

Figure: Quelle: Wikipedia:

https://commons.wikimedia.org/wiki/File:Mittelwertsatz3.svg

Angewandte Mathematik Lokale Linearisierung

Beweis

Figure: Kantenzug mit achesenparallelen Kanten

$$a_0 := a$$

$$a_i := a_{i-1} + h_i e_i; i = 1, \dots, n$$

Angewandte Mathematik

Lokale Linearisierung

•
$$f(a+h)-f(a) = \sum_{i=1}^{n} (f(a_i)-f(a_{i-1}))$$

Lokale Linearisierung

- $f(a+h)-f(a) = \sum_{i=1}^{n} (f(a_i)-f(a_{i-1}))$
- Mit $\varphi_i(t) := f(a_i + te_i)$ gilt $f(a_i) f(a_{i-1}) = \varphi_i(h_i) \varphi_i(0)$

- $f(a+h)-f(a) = \sum_{i=1}^{n} (f(a_i)-f(a_{i-1}))$
- Mit $\varphi_i(t) := f(a_i + te_i)$ gilt $f(a_i) f(a_{i-1}) = \varphi_i(h_i) \varphi_i(0)$
- Mittelwertsatz einer Veränderlichen: Es gibt τ_i mit

$$\varphi_i(h_i) - \varphi_i(0) = h_i \varphi'(\tau_i)$$
.

Lokale Linearisierung

Beweis

- $f(a+h) f(a) = \sum_{i=1}^{n} (f(a_i) f(a_{i-1}))$
- Mit $\varphi_i(t) := f(a_i + te_i)$ gilt $f(a_i) f(a_{i-1}) = \varphi_i(h_i) \varphi_i(0)$
- Mittelwertsatz einer Veränderlichen: Es gibt τ_i mit

$$\varphi_i(h_i) - \varphi_i(0) = h_i \varphi'(\tau_i)$$
.

•

$$f(a+h)-f(a)-df(a)\cdot h=\sum_{i=1}^n\left(\frac{\partial f(\xi)}{\partial x_i}-\frac{\partial f(a)}{\partial x_i}\right)h_i$$

Da
$$arphi_i'(t) = rac{\partial f(a_{i-1} + te_i)}{\partial x_i}$$
 und mit $\xi_i := a_i + au_i e_i$

Beweis

$$|f(a+h)-f(a)-df(a)\cdot h|\leq ||h||_{\infty}\sum_{i=1}^{n}\left|\frac{\partial f(\xi)}{\partial x_{i}}-\frac{\partial f(a)}{\partial x_{i}}\right|.$$

Für $h \to 0$ gilt $\xi_i \to a$ und da die partiellen Ableitung stetig sind nach Voraussetzung und alle Normen äquivalent sind folgt

$$\lim_{h\to 0}\frac{f(a+h)-f(a)-df(a)\cdot h}{||h||}=0$$

Angewandte Mathematik Differential

Eigenschaften des Differentials

Für das Differential einer differenzierbaren Funktion $f:U\to\mathbb{R}$ gilt für alle $a\in U$:

- $df(a) \cdot h = \partial_h f(a)$.
- $d(f \cdot g)(a) = gdf(a) + f(a)dg$
- d(f+g)(a) = df(a) + dg(a)

Angewandte Mathematik Differential

- Für die Basisvektoren ist per Definition $df(a) \cdot e_i = \partial_{e_i} f(a)$. Da jeder Vektor h eine Linearkombination der Basisvektoren ist und df linear ist, folgt die Behauptung.
- Folgt direkt aus der entsprechenden Eigenschaft reeller Funktionen.
- Folgt direkt aus der entsprechenden Eigenschaft reeller Funktionen.

Differenzierbarkeit

Gradient

Der Vektor

$$\nabla f(a) := \begin{pmatrix} \frac{\partial f(a)}{\partial x_1} \\ \vdots \\ \frac{\partial f(a)}{\partial x_n} \end{pmatrix}$$

wird als Gradient bezeichnet. Es ist $df(a) \cdot h = \langle \nabla f(a), h \rangle$.

Gradient

Sei $f: U \to \mathbb{R}$ differenzierbare Funktion, $a \in U$ und $v:=\operatorname{argmax}_{||h||=1}\{\partial_h f(a)\}$. Dann gilt

$$||\nabla f(a)||v = \nabla f(a)$$
.

Gradient

Der Gradient zeigt in die Richtung des steilsten Anstiegs.

Mehrdimensionale Differentialrechnung Differenzierbarkeit

Beweis

Für beliebiges h gilt

$$\partial_h f(a) = df(a)h = \langle \nabla f(a), h \rangle = ||\nabla f(a)|| \cdot ||h|| \cdot \cos(\varphi)$$

wobei φ den Innenwinkel zwischen $\nabla f(a)$ und h bezeichnet. Für ||h||=1 wird somit $\partial_h f(a)$ maximal, wenn $\varphi=0$ und somit $h=\frac{\nabla f(a)}{||\nabla f(a)||}$ ist.