MAC0329 - Álgebra booleana e aplicações

 DCC / $\operatorname{IME-USP}$ — Primeiro semestre de 2021

Lista de exercícios 3

Prazo para entrega: 13/julho/2021 (no moodle)

Entregar apenas dos exercícios marcados com *. Justifique as respostas. A lista deve ser resolvida individualmente.

Em caso de dúvidas, poste suas dúvidas no Fórum de discussões/dúvidas no moodle.

Álgebra booleana, expressões booleanas e funções booleanas

Nas questões deste bloco, suponha que a álgebra booleana considerada, caso não haja menção em contrário, é dada por $\langle A, +, \cdot, \bar{}, 0, 1 \rangle$, e que a relação de ordem parcial \leq sobre A é definida por $x \leq y \iff x+y=y, \forall x,y \in A$.

- 1. Prove ou mostre um contra-exemplo para a seguinte igualdade: $x + y + z = x(\overline{y+z})$
- 2. * Sejam $a, b, c \in A$. A seguinte implicação está correta? Explique.

$$a + b = a + c \Longrightarrow b = c$$

- 3. Prove que $x \overline{y} = 0$ se, e somente se, x y = x.
- 4. * (Teorema do consenso) Prove algebricamente que $\forall x, y, z \in A$

$$xy + yz + \overline{x}z = xy + \overline{x}z$$

- 5. * Prove que, $\forall x, y \in A$, $x \cdot y = x \iff x + y = y$.
- 6. Defina uma relação binária \leq da seguinte forma:

$$x \le y \iff x \cdot y = x, \ \forall x, y \in A$$

Prove que \leq é uma relação de ordem parcial em A.

- 7. Mostre que
 - $xy \le x \le x + y$, $\forall x, y \in A$
 - $0 \le x \le 1$, $\forall x \in A$

- 8. Seja a álgebra booleana B^3 . Escreva o elemento 110 como união de átomos.
- 9. * Escreva a expressão a seguir na forma soma de produtos (SOP) e soma canônica de produtos (SOP canônica), usando apenas manipulações algébricas das expressões.

$$(a+b\,\overline{c})\overline{(bc)}$$

- 10. Escreva a expressão do exercício anterior na forma produto de somas (POS) e produto canônico de somas (POS canônica). Também via manipulação de expressões algébricas.
- 11. Seja a tabela-verdade da função $f:B^3\to B$ dada conforme a seguir:

abc	f(a,b,c)
0 0 0	0
$0\ 0\ 1$	1
0 1 0	0
0 1 1	0
$1 \ 0 \ 0$	0
$1\ 0\ 1$	1
1 1 0	1
111	1

- (a) escreva f na forma SOP canônica
- (b) escreva f na forma POS canônica

Minimização de funções booleanas

- 8. Seja a notação compacta $f(a,b,c) = \sum m(1,5,6)$. Escreva a expressão algébrica de f na forma SOP canônica e desenhe o mapa de Karnaugh de f (com a nas linhas e bc nas columas do mapa).
- 9. Desenhe o mapa de Karnaugh de 4 variáveis a b c d (com ab nas linhas e cd nas colunas do mapa) e indique no mapa os produtos $\overline{a} c d$ e $\overline{b} \overline{d}$.
- 10. Sejam funções em 4 variáveis $a\,b\,c\,d$. A qual intervalo corresponde o produto $a\,\bar{b}$? A qual produto corresponde o intervalo X010?
- 11. * Usando o mapa de Karnaugh, minimize a expressão $f(a,b,c,d) = \sum m(0,1,4,5,6,9,11,13,15)$. Escreva explicitamente em forma algébrica a expressão minimal obtida.

Circuitos combinacionais/sequenciais

- 12. Explique o que é um multiplexador com n entradas. Quantas saídas há? Mostre o circuito que o implementa para o caso n=4.
- 13. Explique o que é um decodificador com n entradas. Quantas saída há? Mostre o circuito que o implementa para o caso n=2.
- 14. Escreva a tabela-verdade a expressão (minimizada na forma SOP) do próximo estado Q^* de um flip-flop SR, em função dos valores de suas entradas S e R e do valor do seu estado Q. Note que é suposto que a entrada S = R = 1 nunca ocorrerá.
- 15. Repita o exercício anterior, desta vez para o flip-flop JK. Note que no JK todas as combinações de valores para as entradas J e K são permitidas.
- 16. \star O estado de um *flip-flop* JK passou de 1 para 0. Quais valores nas entradas J e K podem ter provocado essa transição? Explique.
- 17. O que é um flip-flop D? Como ele pode ser implementado usando um flip-flop JK?
- 18. * Seja o circuito a seguir. Suponha que o estado inicial é $Q_2 = Q_1 = Q_0 = 0$ e que os flip-flops são disparados na subida do sinal de clock.

• Preencha o diagrama temporal com a simulação do circuito

