

[C2-001] 기초수학

Lecture 06: Eigenvalue & Eigenvector

Hak Gu Kim

hakgukim@cau.ac.kr

Immersive Reality & Intelligent Systems Lab (IRIS LAB)

Graduate School of Advanced Imaging Science, Multimedia & Film (GSAIM)

Chung-Ang University (CAU)

Topics

Eigenvalue and eigenvectors

Application of eigenvalues

Topics

Eigenvalue and eigenvectors

Application of eigenvalues

Eigenvalue, Eigenvector, Eigenspace

Eigenvector

• If we have an $n \times n$ matrix \mathbf{A} , then a nonzero vector \mathbf{x} is called an *eigenvector* if there is some scalar value λ such that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

Eigenvalue

• The scalar value λ is the *eigenvalue* associated with that eigenvector.

Eigenspace

• The collection of eigenvectors associated with each λ for the linear transformation applied to the eigenvector.

$$\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$$
, $\mathcal{T}(\mathbf{v}) = \lambda \mathbf{v}$

Characteristic Equation

- Characteristic Equation of Matrix A
- $-\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \to \mathbf{A}\mathbf{x} = \lambda\mathbf{I}\mathbf{x} \text{ for } nonzero \ \mathbf{x}$ $\lambda\mathbf{I}\mathbf{x} \mathbf{A}\mathbf{x} = \mathbf{0} \to (\lambda\mathbf{I} \mathbf{A})\mathbf{x} = \mathbf{0} : \text{It means that } \mathbf{x} \in N(\lambda\mathbf{I} \mathbf{A}).$ $\mathbf{B}\mathbf{x} = \mathbf{0}, \ N(\mathbf{B}) = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{B}\mathbf{x} = \mathbf{0}\}$

- The column vectors of matrix **A** are linearly independent $\Leftrightarrow N(\mathbf{A}) = \{\mathbf{0}\}\$
 - \Rightarrow The column vectors of $\lambda \mathbf{I} \mathbf{A}$ must be *linearly dependent*.
 - \Rightarrow Non-invertible
 - $\Rightarrow det(\lambda \mathbf{I} \mathbf{A}) = 0$: Characteristic equation of \mathbf{A}

Example of Eigenvalue of 2×2 Matrix

- λ is eigenvalue of **A** iff $det(\lambda \mathbf{I} \mathbf{A}) = 0$
- Find the eigenvalue of a given matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

Example of Eigenvector & Eigenspace of 2×2 Matrix

- Eigenspace, $E_{\lambda} = N(\lambda \mathbf{I} \mathbf{A})$
- Find the eigenvector and Eigenspace of a given matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$

$$\Rightarrow \begin{cases}
\lambda = 5, & E_{\lambda=5} = N \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} - \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} = N \begin{pmatrix} 4 & -2 \\ -4 & 2 \end{pmatrix} \\
\lambda = -1, & E_{\lambda=-1} = N \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} - \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} = N \begin{pmatrix} -2 & -2 \\ -4 & -4 \end{pmatrix} \\
\Rightarrow \begin{cases}
\begin{bmatrix} 4 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0} \Rightarrow \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow x_1 - \frac{1}{2}x_2 = 0 \\
\begin{bmatrix} -2 & -2 \\ -4 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0} \Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow x_1 + x_2 = 0
\end{cases}$$

Example of Eigenvector & Eigenspace of 2×2 Matrix

- Eigenspace, $E_{\lambda} = N(\lambda \mathbf{I} \mathbf{A})$
- Find the eigenvector and Eigenspace of a given matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

$$E_{\lambda=5} = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = t \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} \mid t \in \mathbb{R} \right\} = Span\left(\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} \right)$$

$$E_{\lambda=-1} = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = t \begin{bmatrix} -1 \\ 1 \end{bmatrix} \mid t \in \mathbb{R} \right\} = Span\left(\begin{bmatrix} -1 \\ 1 \end{bmatrix} \right)$$

Example of **Eigenvalue of** 3×3 **Matrix**

Find the eigenvalue of a given matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & -1 \end{bmatrix}$

Example of **Eigenvalue of** 3×3 **Matrix**

Find the eigenvalue of a given matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & -1 \end{bmatrix}$

Example of **Eigenvalue of** 3×3 **Matrix**

Find the eigenvalue of a given matrix $\mathbf{A} = \begin{bmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{bmatrix}$

$$\therefore E_{\lambda=-3} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \mid t \in \mathbb{R} \right\} = Span \left(\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right)$$

Topics

Eigenvalue and eigenvectors

Application of eigenvalues

Applications of Features

Object recognition

Localization in robots

Applications of Features

Image matching

Characteristics of Good Features

Locality

Features are local, robust to occlusion and clutter

— Accurate

Precise localization

Robustness

• Noise, blur, compression, etc. do not have a big impact on the feature

Distinctiveness

Individual features can be easily matched

Efficiency

Close to real-time performance

Corner

Key Property:

- In the region around a corner, image gradient has two or more dominant directions
- Corners are robust and distinctive

C. Harris and M. Stephens, A combined Corner and Edge Detector, Alvey Vision Conference, 1988

Corner Detection

Edge detectors perform poorly at corners

Observations:

- The gradient is ill-defined exactly at a corner
- Near a corner, the gradient has two or more distinct values

How to Find a Corner

- Easily recognized by looking through a small window
- Shifting the window should give large change in intensity

Harris Corner Detection

1 Compute image gradient over small region

2 Compute the covariance matrix

3 Compute eigenvectors and eigenvalues

4 Use threshold on eigenvalues to detect corners

Harris Corner Detection: 1 Image Gradient

- Compute image gradient over small region
- Gradient in x direction:

$$I_{y} = \frac{\partial I}{\partial y}$$

— Gradient in y direction:

$$I_{x} = \frac{\partial I}{\partial x}$$

Harris Corner Detection: 1 Image Gradient

Distribution reveals edge orientation and magnitude

Compute the covariance matrix

$$\mathbf{M} = \begin{bmatrix} \sum_{p \in P} I_{\chi} I_{\chi} & \sum_{p \in P} I_{\chi} I_{y} \\ \sum_{p \in P} I_{y} I_{\chi} & \sum_{p \in P} I_{y} I_{y} \end{bmatrix}$$

Compute the **covariance matrix**

Sum over local window region around corner

Gradient with respect to each direction (x or y)

$$\mathbf{M} = \begin{bmatrix} \sum_{p \in P} I_{x}I_{x} & \sum_{p \in P} I_{x}I_{y} \\ \sum_{p \in P} I_{y}I_{x} & \sum_{p \in P} I_{y}I_{y} \end{bmatrix}$$

• Change of intensity for the shift value [u, v], error function:

$$E(u,v) = \sum_{(x,y)\in P} w(x,y)[I(x+u,y+v) - I(x,y)]^2$$

• Change of intensity for the shift value [u, v], error function:

$$E(u,v) = \sum_{(x,y)\in P} w(x,y)[I(x+u,y+v) - I(x,y)]^2$$
Center pixel

I(x,y)

• Change of intensity for the shift value [u, v], error function:

$$E(u,v) = \sum_{(x,y)\in P} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$
Neighboring pixels Center pixel

I(x,y)

Change of intensity for the shift value [u, v], error function:

$$E(u,v) = \sum_{(x,y)\in P} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$
Neighboring pixels Center pixel

Change of intensity for the shift value [u, v], error function:

$$E(u,v) = \sum_{\substack{(x,y) \in P \text{ Window function}}} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$

Change of intensity for the shift value [u, v], error function:

$$E(u,v) = \sum_{(x,y)\in P} w(x,y)[I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum_{(x,y)\in P} w(x,y) \left[\left(\frac{\partial I}{\partial x} u \right)^{2} + \left(\frac{\partial I}{\partial y} v \right)^{2} + 2 \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} uv \right]$$

Change of intensity for the shift value [u, v], error function:

$$E(u,v) = \sum_{(x,y)\in P} w(x,y)[I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum_{(x,y)\in P} w(x,y) \left[\left(\frac{\partial I}{\partial x} u \right)^{2} + \left(\frac{\partial I}{\partial y} v \right)^{2} + 2 \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} uv \right]$$

$$= [u \quad v] \left[\sum_{p \in P} \left(\frac{\partial I}{\partial x} \right)^{2} \sum_{p \in P} \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \sum_{p \in P} \left(\frac{\partial I}{\partial y} \right)^{2} \right] \begin{bmatrix} u \\ v \end{bmatrix}$$
where $w(x,y) = 1$

Change of intensity for the shift value [u, v], error function:

$$E(u,v) = \sum_{(x,y)\in P} w(x,y)[I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum_{(x,y)\in P} w(x,y) \left[\left(\frac{\partial I}{\partial x} u \right)^{2} + \left(\frac{\partial I}{\partial y} v \right)^{2} + 2 \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} uv \right]$$

$$= [u \quad v] \left[\sum_{p \in P} \left(\frac{\partial I}{\partial x} \right)^{2} \sum_{p \in P} \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \right] \begin{bmatrix} u \\ v \end{bmatrix}$$
Covariance matrix
$$\begin{bmatrix} \sum_{p \in P} \left(\frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \right) & \sum_{p \in P} \left(\frac{\partial I}{\partial y} \right)^{2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
where $w(x, y)$

• Visualization of a quadratic error surface, E(u, v)

Harris Corner Detection: (3) Eigenvalues & Eigenvectors

- Compute eigenvalues and eigenvectors
- Given a square matrix **A**, a scalar λ is called an eigenvalue of **A** if there exists a non-zero vector v that satisfies:

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

- The vector **v** is called an eigenvector for **A** corresponding to the eigenvalue λ
- The eigenvalues of **A** can be obtained by solving

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = 0 \longrightarrow \det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Harris Corner Detection: (3) Eigenvalues & Eigenvectors

Visualization as an Ellipse

$$\mathbf{M} = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}^{-1}$$

Harris Corner Detection: 3 Eigenvalues & Eigenvectors

- Visualization as an Ellipse
- Eigenvectors determines the orientation of the ellipse

$$\mathbf{M} = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}^{-1}$$
Eigenvectors

Harris Corner Detection: 3 Eigenvalues & Eigenvectors

- Visualization as an Ellipse
- Eigenvectors determines the orientation of the ellipse
- Eigenvalues determines the axis lengths of the ellipse
 - $\frac{1}{\sqrt{\lambda_{max}}}$: The direction of the fastest change
 - $\frac{1}{\sqrt{\lambda_{min}}}$: The direction of the slowest change

$$\mathbf{M} = \begin{bmatrix} \sum_{p \in P} I_{x}I_{x} & \sum_{p \in P} I_{x}I_{y} \\ \sum_{p \in P} I_{y}I_{x} & \sum_{p \in P} I_{y}I_{y} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} \end{bmatrix}^{-1}$$
Eigenvectors Eigenvalues

Harris Corner Detection: (3) Eigenvalues & Eigenvectors

Classification of Image Points using Eigenvalues of C

Harris Corner Detection: (3) Eigenvalues & Eigenvectors

Classification of Image Points using Eigenvalues of C

Harris Corner Detection: 4 Eigenvalue Thresholding

Use threshold on eigenvalues to detect corners

Cornerness:

$$C = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$
$$= \det(\mathbf{M}) - \alpha \cdot \operatorname{tr}(\mathbf{M})^2$$

 $0.04 \le \alpha \le 0.06$

— Flat region: $|C| \leq \epsilon$

- Edge: C < 0

— Corner: C > 0

Example: Harris Corner Detection

Example: Harris Corner Detection

[C2-001] 기초수학 Hak Gu Kim

Example: Harris Corner Detection

Corner response map

Corner detection result ($\sigma = 1$)

Wish You All The Best!

