Lógica para Computação

COMPUTAÇÃO - UEPB - 2021.2 Prof. Me. Paulo César O. Brito

Conectivos proposicionais

Os conectivos lógicos são palavras ou expressões que se usam para formar novas proposições a partir de proposições conhecidas.

Conectivo	Símbolo	
Não	~7	Negação ou modificador
E	^	Conjunção
Ou	V	Disjunção
Se então	\rightarrow	Condicional
Se, e somente se	\leftrightarrow	Bicondicional

Conectivos proposicionais

p, q proposições.

A bicondicional de p e q	p ↔ q	p se, e somente se, q
A condicional de p e q	$p \rightarrow q$	Se p então q
A disjunção de p e q	$p \vee q$	p ou q
A conjunção de p e q	$p \wedge q$	p e q
A negação de <i>p</i>	~ p	Não p

A semântica da Lógica Proposicional

Semântica

Associação de cada objeto sintático a um significado.

Exemplo

- O símbolo P representa "Há um rapaz inteligente no curso de Ciência da Computação";
- O símbolo Q representa "Não há rapaz inteligente no curso de Ciência da Computação";
- O símbolo V significa "OU";
- O símbolo ∧ significa "E";

cont. Exemplo

- (P ∧ Q) é interpretada como falsa;
- (P V Q) é interpretada como verdadeira;
- Os símbolos sintáticos definem as fórmulas, que neste caso estão associados a significados semânticos.
- O mundo semântico é onde se define o significado dos símbolos e fórmulas do mundo sintático.

Interpretação

- Função I determinada Interpretação;
 - o representa o significado dos elementos sintáticos da linguagem da Lógica Proposicional;
 - associa a cada fórmula um valor de verdade, "verdadeiro"ou "falso", representados por "T"ou "F";
 - Lógica bivalente, admite apenas dois tipos de significado;

Definição de Interpretação

Uma interpretação I, na Lógica Proposicional, é uma função binária tal que:

- o domínio de I é constituídos das fórmulas da Lógica Proposicional;
- o contradomínio de I é o conjunto de {T, F};
- o valor da interpretação I, tendo como argumentos os símbolos de verdade é dado por I[true] = T e I[false] = F;
- dado um símbolo proposicional P, então I[P] pertence a {T,F}.

Definição: Dadas uma fórmula E e uma interpretação I, então o significado de E, indicado por I[E], é determinado pelas regras:

- Se E = P, onde P é um símbolo proposicional, então I[E] = I[P] e I[P] pertence a {T,F}
- Se E = true, então I[E] = I[true] = T.
- Se E = false, então I[E] = I[false] = F.

- Seja H uma proposição. Se E = ¬H, então
 - ∘ I[E] = I[¬H] = T se I[H] = F e
 - \circ I[E] = I[¬H] = F se I[H] = T
- Sejam H e G duas proposições. Se E = (H ∨ G), então
 - I[E] = I[H ∨ G] = T se I[H] = T e/ou I[G] = T e
 - \circ I[E] = I[H V G] = F se I[H] = F e I[G] = F

- Sejam H e G duas fórmulas. Se E = (H \wedge G), então
 - $I[E] = I[H \land G] = T \text{ se } I[H] = T \text{ e } I[G] = T \text{ e}$
 - $I[E] = I[H \land G] = F \text{ se } I[H] = F \text{ e/ou } I[G] = F$
- Sejam H e G duas fórmulas. Se E = (H \rightarrow G), então
 - $I[E] = I[H \rightarrow G] = T \text{ se } I[H] = F \text{ e/ou } I[G] = T \text{ e}$
 - $I[E] = I[H \rightarrow G] = F \text{ se } I[H] = T \text{ e } I[G] = F$

- Sejam H e G duas fórmulas. Se E = (H ↔ G), então
 - $I[E] = I[H \leftrightarrow G] = T \text{ se } I[H] = I[G]$
 - $I[E] = I[H \leftrightarrow G] = F \text{ se } I[H] \neq I[G]$

Tabela verdade

Н	G	¬Н	¬G	H V G	ΗΛG	$H \rightarrow G$	H ↔ G
Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	Т	F	F	F
F	Т	Т	F	Т	F	Т	F
F	F	Т	Т	F	F	Т	Т

Negação

Н	G	¬H	¬G
Т	Т	F	F
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

Disjunção

Н	G	H V G
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conjunção

Н	G	ΗΛG
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Condicional

Н	G	H → G
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Bicondicional

Н	G	H ↔ G
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Bibliografia

SOUZA, JOÃO NUNES DE. Lógica para Ciência da Computação: Uma introdução concisa. Rio de Janeiro: Elsevier, 2008.

FINGER, MELO E SILVA. Lógica para computação. São Paulo: Thomson Learning, 2006.

DAGHLIAN, Jacob. Lógica e Álgebra de Boole. São Paulo: Editora Atlas, 1990.

Sempre que estiver com dúvidas, entre em contato comigo através do e-mail.

Obrigado!

Contato:

paulocesar@servidor.uepb.edu.br

