Supplementary Methods

wucy

Tuesday, August 30, 2016

Contents

Fig.1 Effects of IL-17 on body weight during HFD feeding	1
Fig.2 IL-17 significantly influences HFD induced disorders	1
Fig.3 Metagenomic analysis of mice feces. Before HFD feeding feces were 827 harvester $(0\mathrm{w})$	d 1
Fig.4 Co-house of WT and Il-17a-/- mice corrects WT mice disorders induced by	15
Fig.5 The network of top 30 species	18
Fig.6 Upregulated or downregulated modules in HFD-14w vs 0w, 27w vs 14w and 874 27w vs 0w We use the other drawing software.**	w 19
Fig.1 Effects of IL-17 on body weight during HFD feeding	
We use the other drawing software.	
Fig.2 IL-17 significantly influences HFD induced disorders	
We use the other drawing software.	
Fig.3 Metagenomic analysis of mice feces. Before HFD feed feces were 827 harvested (0w)	ing
We use the other drawing software.	
This beginning workspace contains: *profiling_species_absolute: Species abundance *profiling_s Relative abundance on species * profile_phylum: Relative abundance on phylum * profile_grade Relative abundance on genus	-
<pre>###Load the necessary data. load("data/data.RData")</pre>	

###Row: the name of the species; Col: the name of the sample.

head(profiling_species_absolute)

```
## Achromobacter arsenitoxydans 0.000000e+00 0.000000e+00 7.167341e-08
## Achromobacter_piechaudii
                                0.000000e+00 0.000000e+00 0.000000e+00
## Achromobacter xylosoxidans
                                0.000000e+00 0.000000e+00 0.000000e+00
## Acidaminococcus sp D21
                                5.125971e-05 1.031691e-04 6.416895e-04
## Acidovorax ebreus
                                2.658876e-07 3.512217e-07 0.000000e+00
##
                                       KO HY
                                                    KO gut
                                                                NOR 14w
## Abiotrophia_defectiva
                                0.000000e+00 0.000000e+00 2.063792e-06
## Achromobacter_arsenitoxydans 0.000000e+00 2.552354e-09 0.000000e+00
## Achromobacter_piechaudii
                                0.000000e+00 0.000000e+00 2.727081e-08
## Achromobacter_xylosoxidans
                                1.228014e-06 0.000000e+00 0.000000e+00
## Acidaminococcus_sp_D21
                                2.865883e-04 7.860815e-04 8.967465e-05
                                3.390164e-07 0.000000e+00 0.000000e+00
## Acidovorax_ebreus
##
                                     NOR_27w
                                                    NOR_HY
## Abiotrophia_defectiva
                                7.756585e-06 0.000000e+00 6.653475e-07
## Achromobacter_arsenitoxydans 0.000000e+00 0.000000e+00 1.274304e-09
## Achromobacter piechaudii
                                0.000000e+00 1.469448e-07 0.000000e+00
## Achromobacter_xylosoxidans
                                0.000000e+00 3.122997e-07 0.000000e+00
## Acidaminococcus sp D21
                                3.089296e-04 1.399393e-04 1.060360e-04
## Acidovorax_ebreus
                                3.160995e-06 6.427599e-07 0.000000e+00
##
                                       WT Ow
                                                    WT 14w
## Abiotrophia_defectiva
                                0.000000e+00 0.000000e+00 0.0000000000
## Achromobacter arsenitoxydans 0.000000e+00 0.000000e+00 0.0000000000
## Achromobacter piechaudii
                                0.000000e+00 1.125050e-08 0.0000000000
## Achromobacter xylosoxidans
                                1.567190e-07 0.000000e+00 0.0000000000
## Acidaminococcus_sp_D21
                                9.035575e-05 1.490449e-04 0.0003578952
## Acidovorax_ebreus
                                1.317081e-07 0.000000e+00 0.0000000000
##
                                       WT_HY
                                                    WT_gut
## Abiotrophia_defectiva
                                1.044146e-07 3.129243e-07
## Achromobacter_arsenitoxydans 0.000000e+00 0.000000e+00
## Achromobacter_piechaudii
                                1.462565e-07 0.000000e+00
## Achromobacter_xylosoxidans
                                3.107462e-07 0.000000e+00
                                4.150418e-04 6.168979e-04
## Acidaminococcus_sp_D21
## Acidovorax ebreus
                                0.000000e+00 5.268325e-07
###Row: the name of the species; Col: the name of the sample.
head(profiling_species)
##
                                       KO Ow
                                                    KO 14w
                                                                 KO 27w
## Abiotrophia_defectiva
                                0.000000e+00 2.342851e-06 0.000000e+00
## Achromobacter_arsenitoxydans 0.000000e+00 0.000000e+00 9.832326e-07
## Achromobacter_piechaudii
                                0.000000e+00 0.000000e+00 0.000000e+00
## Achromobacter_xylosoxidans
                                0.000000e+00 0.000000e+00 0.000000e+00
## Acidaminococcus_sp_D21
                                1.770802e-04 5.998652e-04 8.802847e-03
## Acidovorax_ebreus
                                9.185273e-07 2.042140e-06 0.000000e+00
##
                                       KO_HY
                                                    KO_gut
                                                                NOR_14w
## Abiotrophia_defectiva
                                0.000000e+00 0.000000e+00 1.788330e-05
## Achromobacter arsenitoxydans 0.000000e+00 8.905524e-09 0.000000e+00
                                0.000000e+00 0.000000e+00 2.363087e-07
## Achromobacter_piechaudii
## Achromobacter xylosoxidans
                                1.447336e-05 0.000000e+00 0.000000e+00
## Acidaminococcus_sp_D21
                                3.377728e-03 2.742749e-03 7.770544e-04
## Acidovorax_ebreus
                                3.995646e-06 0.000000e+00 0.000000e+00
##
                                     NOR 27w
                                                    NOR HY
                                                                NOR gut
```

KO Ow

KO 14w

0.000000e+00 4.029400e-07 0.000000e+00

KO 27w

##

Abiotrophia defectiva

```
## Abiotrophia_defectiva
                                4.247967e-05 0.000000e+00 2.943623e-06
## Achromobacter_arsenitoxydans 0.000000e+00 0.000000e+00 5.637761e-09
## Achromobacter piechaudii
                                0.000000e+00 1.605245e-06 0.000000e+00
## Achromobacter_xylosoxidans
                                0.000000e+00 3.411604e-06 0.000000e+00
## Acidaminococcus sp D21
                                1.691882e-03 1.528716e-03 4.691235e-04
## Acidovorax ebreus
                                1.731149e-05 7.021596e-06 0.000000e+00
                                       WT Ow
                                                    WT 14w
                                                                WT 27w
## Abiotrophia_defectiva
                                0.000000e+00 0.000000e+00 0.000000000
## Achromobacter arsenitoxydans 0.000000e+00 0.000000e+00 0.000000000
## Achromobacter_piechaudii
                                0.000000e+00 5.117212e-08 0.000000000
## Achromobacter_xylosoxidans
                                2.098084e-06 0.000000e+00 0.000000000
## Acidaminococcus_sp_D21
                                1.209643e-03 6.779205e-04 0.001584588
## Acidovorax_ebreus
                                1.763250e-06 0.000000e+00 0.000000000
##
                                       WT_HY
                                                    WT_gut
## Abiotrophia_defectiva
                                2.066513e-06 1.080890e-06
## Achromobacter_arsenitoxydans 0.000000e+00 0.000000e+00
## Achromobacter_piechaudii
                                2.894624e-06 0.000000e+00
## Achromobacter_xylosoxidans
                                6.150109e-06 0.000000e+00
                                8.214267e-03 2.130862e-03
## Acidaminococcus_sp_D21
## Acidovorax ebreus
                                0.000000e+00 1.819762e-06
```

###Row: the name of the species; Col: the name of the sample.
head(profile phylum)

```
KO Ow
                                         KO_14w
                                                      KO_27w
##
                                                                     KO HY
                       2.850798e-04 0.003201004 9.263488e-03 3.306621e-03
## Actinobacteria
## Bacteroidetes
                       9.126590e-01 0.605842139 5.822601e-01 7.448578e-01
## Chlamydiae
                       2.214223e-02 0.026623401 1.895889e-03 1.235395e-02
## Cyanobacteria
                       0.000000e+00 0.000000000 0.000000e+00 1.060477e-08
## Deinococcus_Thermus 8.933201e-05 0.000000000 2.913088e-05 1.827371e-04
## Firmicutes
                       4.830481e-02 0.351750918 3.715614e-01 1.964305e-01
##
                             KO_gut
                                        NOR_14w
                                                     NOR_27w
                                                                    NOR HY
## Actinobacteria
                       2.137645e-03 0.002229545 1.512560e-03 0.0022502204
## Bacteroidetes
                       8.883311e-01 0.582888773 8.163706e-01 0.7723517779
## Chlamydiae
                       1.590616e-03 0.023969374 9.026272e-03 0.0188726290
## Cyanobacteria
                       0.000000e+00 0.000000000 8.188075e-07 0.0000000000
## Deinococcus Thermus 1.185479e-05 0.000000000 1.191368e-04 0.0002299175
## Firmicutes
                       9.007844e-02 0.305191799 1.579409e-01 0.1873139410
##
                            NOR gut
                                           WO TW
                                                       WT 14w
                                                                     WT 27w
## Actinobacteria
                       1.092190e-03 6.575788e-04 1.534936e-03 1.181421e-03
## Bacteroidetes
                       9.504896e-01 5.544755e-01 4.417242e-01 8.547427e-01
## Chlamydiae
                       3.455833e-03 7.463891e-05 9.528044e-06 2.136664e-02
## Cyanobacteria
                       0.000000e+00 2.214137e-04 0.000000e+00 0.000000e+00
## Deinococcus_Thermus 9.491869e-06 4.013971e-04 1.931732e-06 1.272076e-05
## Firmicutes
                       3.772108e-02 2.817809e-01 2.234119e-01 1.014096e-01
##
                              WT_HY
                                          WT_gut
## Actinobacteria
                       0.0059657994 2.438315e-03
## Bacteroidetes
                       0.5202565674 7.983211e-01
## Chlamydiae
                       0.0224731323 4.260305e-02
## Cyanobacteria
                       0.000000000 0.000000e+00
## Deinococcus_Thermus 0.0003151378 3.998072e-06
## Firmicutes
                       0.4114112973 1.010416e-01
```

###Row: the name of the species; Col: the name of the sample.

```
head(profile_genus)
```

```
KO_27w
##
                          KO Ow
                                      KO_14w
                                                                  KO HY
## Abiotrophia
                   0.000000e+00 2.342851e-06 0.000000e+00 0.000000e+00
## Achromobacter
                   0.000000e+00 0.000000e+00 9.832326e-07 1.447336e-05
## Acidaminococcus 1.770802e-04 5.998652e-04 8.802847e-03 3.377728e-03
                   1.672100e-06 2.676310e-06 6.675901e-06 1.354167e-05
## Acidovorax
                   7.195150e-05 9.248156e-05 7.570055e-03 2.686759e-02
## Acinetobacter
## Actinobacillus 5.868716e-06 0.000000e+00 5.239062e-04 1.043522e-06
                         KO_gut
                                     NOR_14w
                                                  NOR 27w
                   0.000000e+00 1.788330e-05 4.247967e-05 0.000000e+00
## Abiotrophia
## Achromobacter
                   8.905524e-09 2.363087e-07 0.000000e+00 5.016849e-06
## Acidaminococcus 2.742749e-03 7.770544e-04 1.691882e-03 1.528716e-03
## Acidovorax
                   3.805571e-06 0.000000e+00 1.731149e-05 1.048402e-05
## Acinetobacter
                   1.440618e-05 5.943539e-05 6.179381e-04 8.103789e-03
## Actinobacillus 0.000000e+00 0.000000e+00 1.409003e-06 5.545902e-06
##
                        NOR_gut
                                       WT_Ow
                                                   WT_14w
                                                                WT 27w
                   2.943623e-06 0.000000e+00 0.000000e+00 0.000000e+00
## Abiotrophia
## Achromobacter
                   5.637761e-09 2.098084e-06 5.117212e-08 0.000000e+00
## Acidaminococcus 4.691235e-04 1.209643e-03 6.779205e-04 1.584588e-03
                   1.930168e-06 5.920653e-06 0.000000e+00 5.794864e-06
## Acidovorax
## Acinetobacter
                   1.397949e-05 3.899986e-05 4.368385e-05 1.525598e-05
## Actinobacillus 0.000000e+00 0.000000e+00 0.000000e+00 1.336600e-06
##
                          WT_HY
                                      WT_gut
## Abiotrophia
                   2.066513e-06 1.080890e-06
## Achromobacter
                   9.044733e-06 0.000000e+00
## Acidaminococcus 8.214267e-03 2.130862e-03
## Acidovorax
                   0.000000e+00 1.819762e-06
## Acinetobacter
                   1.294002e-02 1.457907e-05
## Actinobacillus 0.000000e+00 0.000000e+00
###Load the necessary function.
source("data/functions.R")
#The total of 14 color template
palette <- c("red", "gray", "cornflowerblue", "chartreuse3", "yellow", "honeydew4",
            "indianred4", "khaki", "lightseagreen", "lightslateblue", "magenta",
            "orange2", "purple", "black")
###Obtain color
colfunc <- colorRampPalette(palette, interpolate = "spline", space = "Lab")</pre>
```

Fig3-A

- a: species number in the feces from WT or Il-17a-/- mice before HFD feeding.
- b: Shannon Index indicated the composition difference between these two groups.
- $\bullet\,$ c: Taxon-based analysis at genus level among the two groups

```
### species composition use data absolute
data <- profiling species absolute
data <- data[,c("KO_Ow", "WT_Ow")]</pre>
colnames(data) <- c("KO", "WT")</pre>
###Abundance of species filter
data[data \le 1e-6] <- 0
###Remove the sum of each row ==0
data <- data[which(rowSums(data) > 0),]
###Data were normalized
data <- apply(data, 2, uniform)</pre>
###Species counting
sumvect <- apply(data, 2, numberof)</pre>
barplot(sumvect,col=c("red", "green"), ylab = "Species number counting", xlim = c(-0.3, 3))
# shannon plot-----
###Calculate shannon value
numvect <- apply(data, 2, shannon)</pre>
barplot(numvect,col=c("red", "green"), ylab = "Shannon Wienner index", xlim = c(-0.3, 3))
# qenus composition plot------
### genus composition data
data <- profile_genus
data = data[,c("KO Ow", "WT Ow")]
colnames(data) = c("KO", "WT")
###Remove the sum of each row ==0
temp <- rm_sort(data)</pre>
data <- temp[[1]]
table <- temp[[2]]
top <- 12
###Statistics of the top and other value
tabletmp <- apply(table, 2, merge_low_abundance, vector_name = rownames(table))
rowsum <- apply(tabletmp, 1, sum)</pre>
tabletmp <- tabletmp[which(rowsum != 0),]</pre>
table2 <- table <- as.data.frame(tabletmp[1:(nrow(tabletmp) -1),])
###order table
table <- table[do.call(order, -table2),]</pre>
table <- as.matrix(rbind(table, others = tabletmp["others",]))</pre>
barplot(table, col = colfunc(nrow(table)), ylab = "Relative abundance", xlim = c(-0.3, 3))
plot(0, type = "n", xaxt = "n", yaxt = "n", bty = "n", xlab = "", ylab = "",
    xlim = c(-1, 1), ylim = c(-1, 1)
legend(-1.9, 1.1, pch = 15, col = rev(colfunc(nrow(table))), legend = rev(rownames(table)),
      bty = "n", pt.cex = 2, ncol = 1, xpd = NA)
```


Fig3-B

• a: Total OTU sequences taxonomically assigned to bacterial phyla from fecal metagenomes of WT or Il-17a-/- mice at weeks 0, 14 and 27. Each bar represents the mean of the microbiota composition from five to eight mice

```
par(opar)
###Set the layout
par(mfrow = c(1,2), xpd = NA)
### phylum level composition
data <- profile_phylum
data <- data[, c("WT_0w", "WT_14w", "WT_27w", "K0_0w", "K0_14w", "K0_27w")]
temp <- rm_sort(data)</pre>
data <- temp[[1]]
table <- temp[[2]]
spa <- 0.2
width <- 1
colornumber <- 20
top <- 12
blacked <- T
if(nrow(table) > top+1){
  merge low abundance <- function(x, vector name){
    others_ind <- order(-x)[-(1:top)]
    others <- sum(x[others_ind])</pre>
    x[others_ind] <- 0
    x \leftarrow c(x, others = others)
  }
  tabletmp <- apply(table, 2, merge_low_abundance, vector_name = rownames(table))
  rowsum <- apply(tabletmp, 1, sum)</pre>
  tabletmp <- tabletmp[which(rowsum != 0),]</pre>
  table2 <- table <- as.data.frame(tabletmp[1:(nrow(tabletmp) -1),])
  table <- table[do.call(order, -table2),]</pre>
  table <- as.matrix(rbind(table, others = tabletmp["others",]))
}else{
  blacked <- F
```


Fig3-C

• a: Venn diagram of WT and KO (Il-17-/-) mice in 0w, 14w and 27w after HFD feeding

```
library("grid")
library("VennDiagram")
### species composition use data absolute
```

```
data <- profiling_species</pre>
data <- apply(data, 2, uniform)</pre>
data <- as.data.frame(data)</pre>
###the sample list, KO_Ow VS WT_Ow, KO_14w Vs WT_14w, KO_27w vs WT_27w
samplelist <- c("KO_0w", "WT_0w", "KO_14w", "WT_14w", "KO_27w", "WT_27w")\\
for(i in 1:(length(samplelist)/2)*2-1){
  samples <- samplelist[i:(i+1)]</pre>
  numberlist <- as.list(data[, samples])</pre>
  rnames <- rownames(data)</pre>
  modifylist <-function(list){</pre>
    numberlistnames <- names(list)</pre>
    newlist <- list()</pre>
    for (i in numberlistnames){
      newlist[[i]] <- rnames[which(list[[i]] > 0)]
    }
    newlist
  newlist <- modifylist(numberlist)</pre>
  venn.diagram(newlist, imagetype="png",category.names = names(newlist), fill = c("red", "blue"),
                paste(c(samples[1], "_", samples[2], ".png"), collapse = ""), cat.dist = 0.08,
                margin = 0.2, cat.cex = 2, cex = 2, main.cex = 1.6, cat.pos = c(-60, 60),
                main = paste("\n", "\n", "\n", "\n", paste(samples, collapse = " vs "), sep = ""))
}
```

A. fig3-C

• b: (left) New appearing species in 14w compared with 0w

```
par(opar)
data <- profiling_species_absolute
###Abundance of species filter
data[data \le 1e-6] <- 0
###Data were normalized
data <- apply(data, 2, uniform)</pre>
data <- data[,c("WT_14w", "WT_0w", "K0_14w", "K0_0w")]</pre>
###set top
tops <- 30
###set drawing parameters
spa <- 1
width <- 1
###set layout
par(mar=c(15, 5, 5, 5), oma = c(1,1,1,1))
layout(rbind(c(1,2,1),c(1,2,1),c(1,1,1)), width = c(6.8, 9.2, 0.25), height = c(2, 2, 0.4))
###set times
times <-2
wtappear <- data[,"WT_14w"] > times * data[, "WT_0w"]
koappear <- data[,"KO_14w"] > times * data[, "KO_0w"]
appeartimes2 <- data[wtappear & koappear,]</pre>
rowsums <- rowSums(appeartimes2)</pre>
appeartimes2 <- appeartimes2[order(-rowsums),]</pre>
###drawing barplot
barplot(t(appeartimes2[1:tops,]), beside = T, main = paste(times, " times", sep = " "),
```

```
xaxt = "n", col = c("red", "pink", "orange", "yellow"))
text(seq(from = 4 * width,length = nrow(appeartimes2[1:tops,]), by=4 * spa + width),
    par("usr")[3] - 0.001,srt=45,adj=0,labels=rownames(appeartimes2[1:tops,]),
    xpd=T,font=1,cex=1.2, pos = 2)
legend("topright", legend = colnames(appeartimes2), pch = 15,
    col = c("red", "pink", "orange", "yellow"),
    bty = "n", y.intersp = 2, pt.cex = 3)
barplot(t(appeartimes2[16:tops,]), beside = T, xaxt = "n",
    col = c("red", "pink", "orange", "yellow"))
```


###end

Fig3-C

• b: (right) Increasing species in 27w compared with 14w

```
par(opar)
data <- profiling_species_absolute
###Abundance of species filter</pre>
```

```
data[data <= 1e-6] <- 0
###Data were normalized
data <- apply(data, 2, uniform)</pre>
data <- data[,c("WT_27w", "WT_14w", "KO_27w", "KO_14w")]
wt27 <- (data[,"WT_27w"] > 0)
wt14 <- (data[,"WT_14w"] > 0)
ko27 \leftarrow (data[,"KO 27w"] > 0)
ko14 \leftarrow (data[,"KO_14w"] > 0)
data <- data[wt27 & wt14 & ko27 & ko14, ]</pre>
###set top
tops <- 30
###set drawing parameters
spa <- 1
width <- 1
###set time
times <-2
wtappear <- data[,"WT_27w"] > times * data[, "WT_14w"]
koappear \leftarrow data[,"KO_27w"] > times * data[, "KO_14w"]
appeartimes2 <- data[wtappear & koappear,]</pre>
rowsums <- rowSums(appeartimes2)</pre>
appeartimes2 <- appeartimes2[order(-rowsums),]</pre>
###set layout
par(mar=c(15, 5, 5, 5), oma = c(1,1,1,1))
barplot(t(appeartimes2), beside = T, main = paste(times, " times", sep = " "),
        xaxt = "n", col = c("red", "pink", "orange", "yellow"))
text(seq(from = 4 * width,length = nrow(appeartimes2),
         by=4 * spa + width),par("usr")[3] - 0.001,srt=45,
     adj=0,labels=rownames(appeartimes2),xpd=T,font=1,cex=0.8, pos = 2)
legend("topright", legend = colnames(appeartimes2), pch = 15, col = c("red", "pink", "orange", "yellow"
       bty = "n", y.intersp = 2, pt.cex = 3)
```

2 times

Fig3-D

• right: Right: tendency of species proportion

```
par(opar)
data <- profiling_species_absolute
###Abundance of species filter
data[data <= 1e-6] <- 0
###Data were normalized
data <- apply(data, 2, uniform)
###Do filter conditions with max_data
max_data <- apply(data, 1, max)
data <- data[which(max_data >= 1e-3),]
###To obtain rownames
rnames <- rownames(data)
prefix <- "[KW].*_[0-9]*w"
###TO obtain samplenames
samplenames <- colnames(data)[grep(prefix, colnames(data))]
subtable <- data[,samplenames]</pre>
```

```
check_core_species <- function(vect, number){</pre>
  if(length(which(vect > 0)) >= number){
    Τ
  }else{
    F
  }
}
core_vect <- apply(subtable, 1, check_core_species, number = ncol(subtable))</pre>
kowt <- subtable[core_vect,]</pre>
subdata <- data[rownames(kowt),grep("_[0-9]+w", colnames(data))]</pre>
###Statistical correlation
cc <- cor(t(subdata), method = "spearman")</pre>
###merge species as long as they are correlated.
cc <- abs(cc)
rho <- 0.85
d <- 1-cc
d <- as.dist(d)
hc <- hclust(d, "complete")</pre>
###plot(hc);abline(rho,0, col="red")
tt <- cutree(hc,h=1-rho)
color_vect <- colfunc(nrow(table))</pre>
###putout 02.species.relation
write.table("representer\tspecies", "02_species.relation", quote = F, col.names = F, row.names = F)
relation <- list()
finalnames <- vector()</pre>
for (rownumber in range(tt)[1]:range(tt)[2]){
  row_names <- names(tt[which(tt == rownumber)])</pre>
  if(length(row_names) > 1){
    newmat <- subdata[row_names,]</pre>
    newmatsum <- apply(newmat, 1, sum)</pre>
    finalnames <- c(finalnames, row_names[which(newmatsum == max(newmatsum))])</pre>
    relation[[row_names[which(newmatsum == max(newmatsum))]]] <- row_names[-which(newmatsum == max(newmatsum))]]
    write.table(paste(row_names, collapse = "\t"), "02_species.relation", quote = F, col.names = F,
                 row.names = F, append = T)
  }else{
    finalnames <- c(finalnames, row_names)</pre>
    relation[[row_names]] <- NA</pre>
    write.table(row_names, "02_species.relation", quote = F, col.names = F, row.names = F, append = T)
  }
finalmat <- subdata[finalnames,]</pre>
prefix <- "[KW].*_[0-9]*w"</pre>
samplenames <- colnames(finalmat)[grep(prefix, colnames(finalmat))]</pre>
kowt <- finalmat[,samplenames]</pre>
###load data
ko_prefix <- "KO"
ko_names <- colnames(kowt)[grep(ko_prefix, colnames(kowt))]</pre>
ko <- kowt[, ko names]
```

```
wt prefix <- "WT"
wt_names <- colnames(kowt)[grep(wt_prefix, colnames(kowt))]</pre>
wt <- kowt[, wt names]</pre>
cutoff <- 3
check_variation <- function(vect, cutoff){</pre>
 max value <- max(vect)</pre>
 min value <- min(vect)</pre>
  if (\max \text{ value } < 0){
  }else if(min_value == 0){
  }else if(max_value / min_value >= cutoff) {
    Τ
  }else{
    F
 }
}
ko_names <- rownames(kowt)[apply(ko, 1, check_variation, cutoff = cutoff)]</pre>
wt_names <- rownames(kowt)[apply(wt, 1, check_variation, cutoff = cutoff)]
table <- kowt[unique(c(ko_names, wt_names)),]</pre>
test <- cor(t(table[,1:3]), t(table[,4:6]), method = "spearman")</pre>
diag_names <- names(diag(test)[which(diag(test) == -1)])</pre>
write.table("representer\tspecies", "02_species.relation", quote = F, col.names = F, row.names = F)
for (name in diag_names){
  if(is.na(relation[[name]][1])){
    write.table(name, "02_species.relation", quote = F, col.names = F, row.names = F, append = T)
  }else{
    write.table(paste(c(name, relation[[name]]), collapse = "\t"), "02_species.relation", quote = F,
                 col.names = F, row.names = F, append = T)
 }
}
table <- table[diag_names,]
###set layout
layout(rbind(c(1,2),c(3,4),c(5,5)), width = c(3, 3), height = c(3, 3, 2))
###draw plot a
plot(0, xlim = c(0, (ncol(table) + 2)), ylim = c(0, 0.05), bty = "n", type = "n", xlab = "",
     ylab = "", xaxt = "n",main = "a")
axis(1, at = 1:(ncol(table) + 2), labels = rep("", (ncol(table) + 2)))
text(seq(from = 0.9, length = (ncol(table) + 2), by = 1),par("usr")[3] - 0.008,srt=90,adj=0,
     labels=c(colnames(table), "NOR_14w", "NOR_27w"),xpd=T,font=1,cex=0.9, pos = 1)
abline(v = 1:(ncol(table) +2), col = "gray")
rownumber <- 0
speciesnames <- c()</pre>
colornames <- c()
for ( i in 1:nrow(table)){
  if(table[i,1] < table[i,2] && table[i,2] < table[i,3]){
    rownumber <- rownumber + 1</pre>
    speciesnames <- c(speciesnames, rownames(table)[i])</pre>
    colornames <- c(colornames, palette[rownumber])</pre>
```

```
lines(1:3, as.vector(table[i,1:3]) , col = palette[rownumber], lwd = 2)
      lines(4:6, as.vector(table[i,4:6]), col = palette[rownumber], lwd = 2)
       lines((ncol(table) + 1):(ncol(table) + 2), as.vector(data[rownames(table)[i], c("NOR_14w", "NOR_27w")
                  col = palette[rownumber], lwd = 2)
   }
}
###draw plot b
plot(0, xlim = c(0, (ncol(table) + 2)), ylim = c(0, 1), bty = "n", type = "n", xlab = "", ylab = "",
        xaxt = "n", main = "b")
axis(1, at = 1:(ncol(table) + 2), labels = rep("", (ncol(table) + 2)))
text(seq(from = 0.9, length = (ncol(table) + 2), by = 1),par("usr")[3] - 0.17,srt=90,adj=0,
        labels=c(colnames(table), "NOR_14w", "NOR_27w"),xpd=T,font=1,cex=0.9, pos = 1)
abline(v = 1:(ncol(table) +2), col = "gray")
for ( i in 1:nrow(table)){
   if(table[i,1] > table[i,2] && table[i,2] > table[i,3]){
       rownumber <- rownumber + 1</pre>
       speciesnames <- c(speciesnames, rownames(table)[i])</pre>
       colornames <- c(colornames, palette[rownumber])</pre>
      lines(1:3, as.vector(table[i,1:3]), col = palette[rownumber], lwd = 2)
      lines(4:6, as.vector(table[i,4:6]) , col = palette[rownumber], lwd = 2)
      lines((ncol(table) + 1):(ncol(table) + 2), as.vector(data[rownames(table)[i],c("NOR_14w", "NOR_27w"]
                 col = palette[rownumber], lwd = 2)
   }
}
###draw plot c
plot(0, xlim = c(0, (ncol(table) + 2)), ylim = c(0, 0.07), bty = "n", type = "n", xlab = "", ylab = "", ylab
        xaxt = "n", main = "c")
axis(1, at = 1:(ncol(table) + 2), labels = rep("", (ncol(table) + 2)))
text(seq(from = 0.9, length = (ncol(table) + 2), by = 1),par("usr")[3] - 0.011,srt=90,adj=0,
        labels=c(colnames(table),"NOR_14w", "NOR_27w"),xpd=T,font=1,cex=0.9, pos = 1)
abline(v = 1:(ncol(table) +2), col = "gray")
for ( i in 1:nrow(table)){
   if(table[i,1] > table[i,2] && table[i,2] < table[i,3]){</pre>
      rownumber <- rownumber + 1</pre>
       speciesnames <- c(speciesnames, rownames(table)[i])</pre>
       colornames <- c(colornames, palette[rownumber])</pre>
      lines(1:3, as.vector(table[i,1:3]), col = palette[rownumber], lwd = 2)
      lines(4:6, as.vector(table[i,4:6]) , col = palette[rownumber], lwd = 2)
      lines((ncol(table) + 1):(ncol(table) + 2), as.vector(data[rownames(table)[i], c("NOR 14w", "NOR 27w"
                 col = palette[rownumber], lwd = 2)
  }
}
###draw plot d
plot(0, xlim = c(0, (ncol(table) + 2)), ylim = c(0, 0.03), bty = "n", type = "n", xlab = "", ylab = "",
        xaxt = "n", main = "d")
axis(1, at = 1:(ncol(table) + 2), labels = rep("", (ncol(table) + 2)))
text(seq(from = 0.9, length = (ncol(table) + 2), by = 1),par("usr")[3] - 0.005,srt=90,adj=0,
        labels=c(colnames(table), "NOR_14w", "NOR_27w"),xpd=T,font=1,cex=0.9, pos = 1)
abline(v = 1:(ncol(table) +2), col = "gray")
for ( i in 1:nrow(table)){
   if(table[i,1] < table[i,2] && table[i,2] > table[i,3]){
```

```
rownumber <- rownumber + 1
    speciesnames <- c(speciesnames, rownames(table)[i])
    colornames <- c(colornames, palette[rownumber])
    lines(1:3, as.vector(table[i,1:3]), col = palette[rownumber], lwd = 2)
    lines(4:6, as.vector(table[i,4:6]), col = palette[rownumber], lwd = 2)
    lines((ncol(table) + 1):(ncol(table) + 2), as.vector(data[rownames(table)[i], c("NOR_14w", "NOR_27w col = palette[rownumber], lwd = 2)
    }
}
par(mar = c(0,0,0,0))
plot(0, xlim = c(0, (ncol(table) + 2)), ylim = c(0, 0.03), bty = "n", type = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n")
names(speciesnames) <- colornames
speciesnames <- sort(speciesnames)
legend("top", legend = speciesnames, col = names(speciesnames), lwd = 2, bty = "n", ncol = 2)</pre>
```

Fig.4 Co-house of WT and Il-17a-/- mice corrects WT mice disorders induced by

HFD through regulating gut microbiota

Fig 4-H

• Unweighted UniFrac-based PCoA plot based on all OTUs

```
par(opar)
library(cluster)
library(MASS)
library(clusterSim)
library(ade4)
data <- profiling_species</pre>
###Statistical Frac dist
data.dist <- dist.Frac(data)</pre>
###Statistical pam cluster
data.cluster <- pam.clustering(data.dist, k=3)</pre>
obs.silhouette <- mean(silhouette(data.cluster, data.dist)[,3])
###silhouette coefficient; The greater the value of classification, the better
cat(obs.silhouette) #0.1899451
## 0.1236197
###statistical pcoa
obs.pcoa <- dudi.pco(data.dist, scannf=F, nf=3)</pre>
###plot pcoa
s.class(obs.pcoa$li, fac=as.factor(data.cluster), grid=F,sub="Principal coordiante analysis",
        xlim = c(-0.4, 0.4), ylim = c(-0.4, 0.4), clabel = 0)
text(obs.pcoa$li[,1], obs.pcoa$li[,2], rownames(obs.pcoa$li))
```


Fig 4-I

• The PCoA analysis focus on grouping sampled fecal communities with respect to diet (NCD, HFD) and time of stool sampling (weeks 0, 14, 27, or HY) using principal components.

Fig-4J

• OTU sequences taxonomically assigned to bacterial genus from fecal metagenomes of WT or Il-17a-/-mice at week 27 and week-HY. "KO" means Il-17a-/- mice

```
par(opar)
###set layout
par(mfrow = c(1,2), xpd = NA)
profile <- profiling_species
profile <- profile[, c("WT_27w", "KO_27w", "WT_HY", "KO_HY")]
###remvoe the sum of each row ==0
profile <- profile[which(rowSums(profile) > 0),]
```

```
rowsums <- rowSums(profile)
table <- as.matrix(profile[order(-rowsums), ])</pre>
###Set drawing parameters
spa <- 0.2
width <- 1
colornumber <- 20
top <- 12
blacked <- T
if(nrow(table) > top+1){
  merge_low_abundance <- function(x, vector_name){</pre>
    others_ind <- order(-x)[-(1:top)]
    others <- sum(x[others_ind])</pre>
    x[others_ind] <- 0
    x \leftarrow c(x, others = others)
    Х
  tabletmp <- apply(table, 2, merge_low_abundance, vector_name = rownames(table))
  rowsum <- apply(tabletmp, 1, sum)</pre>
  tabletmp <- tabletmp[which(rowsum != 0),]</pre>
  table <- as.data.frame(tabletmp[1:(nrow(tabletmp) -1),])
  table2 <- as.data.frame(table)</pre>
  table <- table[do.call(order, -table2),]</pre>
  table <- as.matrix(rbind(table, others = tabletmp["others",]))
}else{
  blacked <- F
  table <- table[do.call(order, -as.data.frame(table)),]</pre>
  table <- as.matrix(table)</pre>
  top <- nrow(table)
}
###draw barplot
barplot(table, col = colfunc(nrow(table)), ylab = "Relative abundance", xaxt = "n", main = "Genus")
text(seq(from = 0.7,length = ncol(table), by=spa + width),par("usr")[3] - 0.01,
     labels=c("WT", "KO", "WT", "KO"),xpd=T,font=1,cex=0.8, pos = 1)
segments(0.4, -0.1, 2.2, -0.1)
segments(2.8, -0.1, 4.6, -0.1)
text(c(1.3, 3.7),par("usr")[3] - 0.1,labels=c("WT", "KO"),xpd=T,font=1,cex=1, pos = 1)
plot(0, type = "n", xaxt = "n", yaxt = "n", bty = "n", xlab = "", ylab = "",
     xlim = c(-1, 1), ylim = c(-1, 1))
legend(-1.9, 0.8, pch = 15, col = rev(colfunc(nrow(table))), legend = rev(rownames(table)),
       bty = "n", pt.cex = 2, ncol = 1, xpd = NA)
```

Fig.5 The network of top 30 species

Fig5-A

```
par(opar)
###Load data
data <- profiling_species_absolute
###Abundance of species filter
data[data <= 1e-6] <- 0
data <- apply(data, 2, uniform)</pre>
```

```
vect <- c("NOR 27w", "NOR HY", "KO 27w", "KO HY", "WT 27w", "WT HY")
tops <- 30
###set drawing parameters
width <- 1
spa <- 1
cols=c("blue", "red", "green", "violet", "gold", "pink")
data2 <- data[, vect]</pre>
sumvect <- apply(data2, 1, sum)</pre>
data3 <- data2[order(-sumvect),]</pre>
data3 <- data3[-1,]</pre>
###set layout
par(mar = c(14,5,2,2))
###draw barplot
barplot(t(data3[1:tops,]), beside = T, col = cols[1:length(vect)], xaxt = "n",
        ylab = "Relative abundance")
text(seq(from = (length(vect) + 1) * width, length = tops, by = spa + length(vect) * width),
     (par("usr")[3] - 0.01), srt=45, adj=1, labels=rownames(data3)[1:tops], xpd=T, font=1, cex=0.8, pos = 2)
legend("topright", legend = colnames(data3), pch = 15,
       col = cols[1:length(vect)], pt.cex = 2, bty = "n")
```


###end

Fig.6 Upregulated or downregulated modules in HFD-14w vs 0w, 27w vs 14w and 874 27w vs 0w We use the other drawing software.**