Q1. | ABRACADABRA | = ? Q6. Un automate fini est un Q11. Pour compléter un AFD **A**: quadruplet qui n'est pas complet A:13**B**: 11 **A**: on ajoute au moins deux **B**: quintuplet C:7**C**: sextuplet états finaux **D**: septuplet **D**:5 **B** : aucune de ces réponses C: on ajoute au moins un état **D**: on n'ajoute pas d'état final 52% 100% 91% Q7. Un automate déterministe Q2. ABRA est un ... de Q12. Un langage rationnel **ABRACADABRA** A : ne peut pas toujours être peut avoir A : préfixe et non suffixe **A**: plus d'un état initial reconnu par un automate fini **B** : suffixe et non préfixe **B**: aucun état initial **B**: peut toujours être reconnu C : exactement un état initial C: préfixe et suffixe par un automate fini **D** : aucune de ces réponses C: ne peut jamais être reconnu

D : aucune de ces réponses

Q3. On compare u = RAT avec w = BARATINER, dans l'ordre doit avoir préfixe <_p

 $\mathbf{A}: \mathbf{u} <_{\mathbf{p}} \mathbf{w}$ $\mathbf{B}: \mathbf{u} >_{\mathbf{p}} \mathbf{w}$ $\mathbf{C}: \mathbf{u} =_{\mathbf{p}} \mathbf{w}$

100%

D: u et w ne sont pas comparables

Q8. Un automate déterministe

A : au moins un état final **B**: au plus un état final C: exactement un état final

D : aucune de ces réponses

Q13. Dans l'AFD obtenu lors de la déterminisation l'état initial

A: l'ancien état initial

par un automate fini

D : aucune de ces réponses

B: la ε-clôture de l'ancien état initial

C: l'ensemble des anciens états d'acceptation

D: aucune de ces réponses

91%

Q4. On compare u = COURSavec w = INUTILE, dans l'ordre lexicographique < lex

 $\mathbf{A}: \mathbf{u} <_{\text{lex}} \mathbf{w}$ $\mathbf{B}: \mathbf{u} >_{\text{lex}} \mathbf{w}$ $\mathbf{C}: \mathbf{u} =_{\text{lex}} \mathbf{w}$

D: u et w ne sont pas comparables

29%

O9. Un AFD doit avoir dans un

A: des ε -transitions

B: au plus une transition pour chaque étiquette

C: au moins une transition pour chaque étiquette

D: exactement une transition pour chaque étiquette

46%

Q14. Dans l'AFD obtenu lors de la déterminisation un état est terminal s'il contient

A: l'ancien état initial **B**: au moins un état

d'acceptation

C : que des états d'acceptation **D**: aucune de ces réponses

81%

Q5. Soit $L_1 = \{ \epsilon, a, ab \}$ et $L_2 =$ {ε, ab, b}. La concaténation L₁L₂ est un langage contenant

A : 5 mots **B**: 7 mots **C**: 9 mots

D: une infinité de mots

Q10. Un AFD admet pour chaque mot w de Σ^*

A: éventuellement plusieurs chemins étiquetés w

B: au plus un chemin étiqueté w

C: toujours exactement un chemin étiqueté w

D : aucune de ces réponses

Q15. Si l'état initial est terminal, alors le langage L reconnu est tel que

 $\mathbf{A}: \boldsymbol{\varepsilon} \in \mathbf{L}$ $\mathbf{B}: \mathbf{L} = \{\epsilon\}$ $\mathbf{C}: \mathbf{L} = \emptyset$

D : aucune de ces réponses

46% 77%

76%