NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET

INSTITUTT FOR KJEMI

TKJ4160 FYSIKALSK KJEMI GK, VÅREN 2009

Fredag 5. juni 2009 Tid: 9.00 – 13.00

Faglig kontakt under eksamen: Førsteamanuensis Morten Helbæk, tlf. 926 54 567

Hjelpemidler: Typegodkjent lommekalkulator med tomt minne

Aylward og Findlay: SI Chemical Data

Rothman

Alle de 12 delspørsmålene veies likt.

Oppgave 1

Destillert vann har konduktivitet $\kappa = 5.8 \cdot 10^{-6} \,\Omega^{-1} \,\mathrm{m}^{-1}$, tetthet 1,00 g cm⁻³ og molvekt $M_{\rm H_2O} = 18,016 \,\mathrm{g mol}^{-1}$.

a) Beregn molar ledningsevne (konduktivitet) for destillert vann.

Følgende molare ledningsevner oppgis ved uendelig fortynning:

$$\lambda_{H^{+}} = 3,498 \cdot 10^{-2} \text{ m}^{2} \Omega^{-1} \text{ mol}^{-1} \qquad \lambda_{OH^{-}} = 1,980 \cdot 10^{-2} \text{ m}^{2} \Omega^{-1} \text{ mol}^{-1}$$

- b) Anta at Arrhenius' formel for dissosiasjon av svake elektrolytter gjelder og beregn vannets ioneprodukt.
- c) Hvilke(n) systematisk(e) feil kan påvirke resultatet når K_W bestemmes på denne måten?

Oppgave 2

Benzen (komponent 1) og toluen (komponent 2) danner en tilnærmet ideell væskeblanding. Ved 90 °C er damptrykk for ren benzen og toluen:

$$P_1^* = 1,361 \text{ bar}$$
 $P_2^* = 0,543 \text{ bar}$

a) Vis at boblepunktslinjen og duggpunktslinjen i et damptrykksdiagram for denne blandingen ved 90 °C beskrives ved ligningene

$$P = (0,543 + 0,818 x_1) \text{ bar}$$
 $P = \left(\frac{0,739}{1,361 - 0,818 y_1}\right) \text{ bar}$

 $der x_1 og y_1 er variabler langs den horisontale aksen i diagrammet.$

Metanol (komponent A) og benzen (komponent B) danner en ikke ideell væskeblanding. Ved 45 °C er damptrykk over følgende blandinger gitt:

$x_{\rm A}$	УА	P/kPa	$x_{\rm A}$	УА	P/kPa
0	0	29,894	0,3217	0,5450	59,402
0,0207	0,2794	40,962	0,5420	0,5783	60,416
0,0314	0,3391	44,231	0,7259	0,6216	59,868
0,0431	0,3794	46,832	0,8171	0,6681	58,321
0,0613	0,4306	50,488	0,9033	0,7525	54,692
0,0854	0,4642	53,224	1	1	44,608
0,1811	0,5171	57,454			

- b) Beregn partialtrykkene for A og B (P_A og P_B), og illustrer resultatene i et P-x diagram med x_A langs den horisontale aksen. Viser systemet et positivt eller negativt avvik fra Raoults lov? Kan du gi en mulig forklaring (på molekylært nivå) på dette avviket?
- c) Beregn aktivitetskoeffisienter for benzen (γ_B) ved de ulike sammensetningene. Hvilken verdi får γ_B når $x_A \rightarrow 0$? Hva forteller denne observasjonen?
- d) Finn Henrys konstant for metanol i denne blandingen (dvs. k i Henrys lov: $P_A = k x_A$) ved å bruke en grafisk metode.

Oppgave 3

Vi skal betrakte en harmonisk oscillator som er beskrevet av en bølgefunksjon som **ikke** er en egentilstand for systemets Hamiltonoperator. Denne tilstanden kalles også en superposisjonstilstand. Bølgefunksjonen er gitt ved uttrykket:

$$\psi(x) = N \exp\left(-\frac{ax^2}{2\alpha^2} - \frac{b 2\alpha^2}{x^2}\right)$$

Hvor a > 0, $b \ge 0$ og N er normeringskonstanten. Konstanten $\alpha = \sqrt{\frac{\hbar}{m\omega}}$, hvor m er partikkelens

masse og ω er frekvensen. Samtlige integraler som skal anvendes i denne oppgaven, kan beregnes fra følgende integral når man velger passende verdier for konstantene c og d.

$$\int_{0}^{\infty} \exp(-cx^{2} - d\frac{1}{x^{2}})dx = \frac{1}{2}\sqrt{\frac{\pi}{c}}\exp(-2\sqrt{cd})$$

a) Generelt kan en superposisjonstilstand skrives som en lineær kombinasjon av de stasjonære tilstandene for den harmoniske oscillatoren:

$$\psi(x) = c_0 \psi_0(x) + c_1 \psi_1(x) + ...$$

Hva er den fysiske fortolkningen av koeffisientene $c_0, c_1, ..., c_n$? Vis at koeffisientene kan beregnes fra uttrykket:

$$c_n = \int_{-\infty}^{\infty} \psi_n^*(x) \, \psi(x) dx$$

- b) Finn maksimum og minimum for bølgefunksjonen $\psi(x)$ og skisser en graf med bølgefunksjonen som funksjon av x. Hvorfor er ikke a=0 en tillatt bølgefunksjon? Sammenlign denne bølgefunksjonen med bølgefunksjonen for grunntilstanden for den harmoniske oscillatoren og beskriv forskjeller og likheter.
- c) Bestem normeringskontanten N uttrykt ved konstantene a og b.

I resten av oppgaven setter vi a = 1. Bølgefunksjonen i grunntilstanden for den harmoniske oscillatoren er gitt ved:

$$\psi_0(x) = N_0 \exp(-\frac{x^2}{2\alpha^2})$$

Her er $N_0 = \left(\frac{1}{\pi \alpha^2}\right)^{1/4}$ den tilhørende normeringskonstanten.

d) Finn et uttrykk for sannsynligheten for at man ved målinger finner systemet i grunntilstanden $\psi_0(x)$ når systemet er beskrevet ved $\psi(x)$. Bestem konstanten b slik at denne sannsynligheten blir 50 %. Dersom du ikke har funnet normeringskonstanten i c), kan du benytte uttrykket:

$$N = \left(\frac{1}{\pi \alpha^2}\right)^{1/4} \exp\left(2\sqrt{b}\right)$$

e) Forventningsverdien til Hamiltonoperatoren for tilstanden $\psi(x)$ kan uttrykkes med egenverdiene for den harmoniske oscillatoren og koeffisientene $c_0, c_1, ..., c_n$ fra a). Vil denne energien være større eller mindre enn energien i grunntilstanden for den harmoniske oscillatoren?