A Bayesian approach to decision making in early development clinical trials: An R solution

Audrey Yeo

user!2024, Salzburg, AT

This presentation has ALT text and as much as possible, uses colour-blind

Early oncology trials and why phase1b?

History and how to install:

- 2015 : Started as a need in Roche's early development group, package development led by Daniel Sabanés Bové in 2015.
- 2023 : Refactoring, Renaming, adding Unit and Integration tests as current State-of-Art Software Engineering practice.
- 100% written in R and Open Source.
- website: genentech.github.io/phase1b/

```
library(devtools)
devtools::install_github("https://github.com/Genentech/phase1b")
library(phase1b)
```


Use case:

A single arm novel therapeutic with an assumed control response rate is at most 60%

Example	Interim	Final
Responders	16	23
n	23	40
Response rate	69.57 %	57.5 %
Posterior probability*	ask phase1b	ask phase1b
Predictive posterior probability*	ask phase1b	-
Decision to develop molecule further : Go/Stop/Grey Zone	ask phase1b	ask phase1b

^{*} Posterior Probability : $P(\pi > 60\% | \alpha + n, \beta + n - x)$

^{*} Predictive Posterior Probability: P(success or failure at final)

Updating the Posterior and making a decision

- Conjugate Prior is $f(\pi)$, where $\pi \sim Beta(\alpha, \beta)$, same family of distribution of Posterior (see below)
- We know the mean response rate (RR) is:

$$\pi = \frac{\alpha}{\alpha + \beta}$$

- Likelihood is $f(x|\pi)$, where $x \sim Binomial(x, n)$
- The updated Posterior will have the parameters $\alpha + x$ and $\beta + n x$.

• With the prior of Beta(0.6, 0.4) and the result of our interim results our Posterior has these parameters: Beta(16.6, 7.4)

Predictive Posterior Probability

32 of 40 responders needed to achieve a Go decision

Future successful reponders

1. Go if $P(\pi > 0.6|$ interim data) > 60%

Rules and Operating characteristics. A use case for ocPostprob():

- Look for Efficacy: Go if $P(\pi > 60\% | data) > 90\%$
- Look for Futility: Stop if $P(\pi < 60\% | data) > 60\%$
- Prior of treatment arm Beta(0.6, 0.4).

```
1 set.seed(2025)
2 res <- ocPostprob(
3    nnE = c(23, 40), truep = 0.60, p0 = 0.60, p1 = 0.60, tL = 0.60, tU = 0.90, parE = c(0.6, 0.4),
4    sim = 500, wiggle = TRUE, nnF = c(23, 40)
5 )
6 res$oc</pre>
```

ExpectedN PrStopEarly PrEarlyEff PrEarlyFut PrEfficacy PrFutility PrGrayZone 31.878 0.486 0.088 0.398 0.11 0.51 0.38

Expanded features

.... and wiggle room!

	SOC uncertainty	single-arm	two-arm	simulation	plotting	boundaries
postprob		√				
postprobDist	V	V				
predprob		√				
predprobDist	V	V				
ocPostprob		V		√		
ocPostprobDist	V	√		√		
ocPredprob		V		√		
ocPredprobDist	V	√		√		
ocRctPostprobDist	V	V	V	√		
ocRctPredprobDist	V	√	√	√		
plotBeta				√	√	
plotDecision					√	
plotOc					√	
plotBounds					√	
boundsPostprob						√
boundsPredprob						V

Concluding remarks

- Big thank you to Daniel Sabanés Bové for mentorship. Data Science Acceleration colleagues who collaborated and supported.
- Extension to other disease areas that use response rate as endpoint if beta priors are appropriate
- Contact me to collaborate. Open issues here

References

- Thall P F, Simon R (1994), Practical Guidelines for Phase IIB Clinical Trials, Biometrics, 50, 337-349
- Lee J J, Liu D D (2008), A Predictive probability design for phase II cancer clinical trials, 5(2), 93-106, Clinical Trials
- Yeo, A T, Sabanés Bové D, Elze M, Pourmohamad T, Zhu J, Lymp J, Teterina A (2024). Phase1b: Calculations for decisions on Phase 1b clinical trials. R package version 1.0.0, https://genentech.github.io/phase1b
- Code for this presentation