Camera Coordinate System

The image plane (u,v) is perpendicular to the optical axis. Intersection of the image plane with the optical axis is the *image center* (u_o,v_o)

Projection in pixels

$$u = f \frac{X_c}{Z_c} + u_o$$
 $v = f \frac{Y_c}{Z_c} + v_o$.

Perspective projection in matrix form

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f & 0 & u_o \\ 0 & f & v_o \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{pmatrix}$$

From camera to world

$$\begin{pmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{pmatrix} = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix}$$

The 3x4 projection matrix P

$$\lambda \left(\begin{array}{c} u \\ v \\ 1 \end{array} \right) = \left(\begin{array}{ccc} f & 0 & u_o \\ 0 & f & v_o \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} R & t \end{array} \right) \left(\begin{array}{c} X_w \\ Y_w \\ Z_w \\ 1 \end{array} \right) = P \left(\begin{array}{c} X_w \\ Y_w \\ Z_w \\ 1 \end{array} \right)$$

The meaning of the projection equation: It is the equation of a ray in world coordinates going through the camera center

Rotations and Translations

Kostas Daniilidis

Transformation between camera and world coordinate systems

Red for X-Axis Green for Y-Axis Blue for Z-Axis Remember RGB is XYZ

$$^{c}P={^{c}R_{w}}^{w}P+{^{c}T_{w}}$$

Point *P* can be expressed with respect to "w" or "c" coordinate frames

$${}^cP = {}^cR_w \, {}^wP + {}^cT_w$$

What is the geometric meaning of the rotation ${}^{c}R_{w}$ and the translation ${}^{c}T_{w}$?

What is the geometric meaning of the translation cT_w ? This is easy to see if we set wP to zero.

Then, ${}^{c}P = {}^{c}R_{w} + {}^{c}T_{w}$ is the vector from camera origin to world origin:

What is the geometric meaning of the rotation ${}^{c}R_{w}$? Let the rotation matrix be written as 3 orthogonal column vectors:

Let us look at the simple example:

How does the rotation matrix read?

What about the translation:

We have to make sure that the 3x3 matrix is a rotation matrix, Which means $R^TR=1$ and det(R)=1.

Now imagine one more coordinate frame: a body frame with axes corresponding to roll (X_b) , pitch (Y_b) , yaw (Z_b) angles.

The easiest way to transform between coordinate systems is to use 4x4 matrices:

What about the inverse transformation?

$$^wM_c=\left(egin{array}{ccc} ^cR_w^T & -^cR_w^{T\,c}T_w \ 0 & 0 & 1 \end{array}
ight)$$

Alternative interpretation as a sequence of motions:

1. The camera frame first translates to the world

2. The camera frame rotates 90 degrees around x

A3. The camera frame rotates 180 degrees around z

How do we compose these motions? Golden rule: when we move coordinate frames and we refer to the most recent coordinate frame we always postmultiply!