5.3 1) (a) Soient
$$u_1$$
 et u_2 des éléments de $F + G$.

Il existe $v_1, v_2 \in \mathcal{F}$ et $w_1, w_2 \in \mathcal{G}$ tels que

$$u_1 = v_1 + w_1$$
 et $u_2 = v_2 + w_2$.

Alors
$$u_1 + u_2 = (v_1 + w_1) + (v_2 + w_2) = \underbrace{(v_1 + v_2)}_{\in F} + \underbrace{(w_1 + w_2)}_{\in G} \in F + G$$
.

(b) Soient
$$u \in F + G$$
 et $\alpha \in \mathbb{R}$.

Il existe $v \in F$ et $w \in G$ tels que u = v + w.

Alors
$$\alpha \cdot u = \alpha \cdot (v + w) = \underbrace{\alpha \cdot v}_{\in \mathcal{F}} + \underbrace{\alpha \cdot w}_{\in \mathcal{G}} \in \mathcal{F} + \mathcal{G}$$
.

2) Soit $v \in F$.

Comme $0 \in G$, on a $v = v + 0 \in F + G$.

Donc $F \subset F + G$.

Soit $w \in G$.

Puisque $0 \in F$, on a $w = 0 + w \in F + G$.

Ainsi $G \subset F + G$.

3) Soit H un sous-espace vectoriel contenant $F \cup G$.

Soit $u \in F + G$.

Il existe $v \in \mathcal{F}$ et $w \in \mathcal{G}$ tels que u = v + w.

Puisque $v \in \mathcal{F} \subset \mathcal{H}$ et $w \in \mathcal{G} \subset \mathcal{H}$, on obtient $u = \underbrace{v}_{\in \mathcal{H}} + \underbrace{w}_{\in \mathcal{H}} \in \mathcal{H}$.

On a ainsi montré que $F + G \subset H$.