Ad Jacency Matrix.

EXAMPLE

Use an adjacency matrix to represent the graph shown in Figure .

Solution: We order the vertices as a, b, c, d. The matrix representing this graph is

A simple graph.

A <u>-</u>	0	0	1	1	
, · · -	1	0	١	0	
			0	0	
	Li	0	0	0	

	a	Ь	c	d
a b	0	1		1
b	١	0		0
С	1	1	0	0
c d		0	O	0

EXAMPLE

Draw a graph with the adjacency matrix

with respect to the ordering of vertices a, b, c, d.

EXAMPLE

Use an adjacency matrix to represent the pseudograph shown.

Solution: The adjacency matrix using the ordering of vertices a, b, c, d is

$$\begin{bmatrix} 0 & 3 & 0 & 2 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 2 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 3 & 0 & 2 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 2 & 0 \end{bmatrix}$$

Note 1: Ad Jacency matrix is always a Square matrix

Incidence matrix

EXAMPLE Represent the graph shown in Figure with an incidence matrix.

Solution: The incidence matrix is

undirected graph.

	e	e_{λ}	e_3	Cy	e ₅	٥,
0		1	0	0	0	_ 0
v_2	0	٥		1	0	\
v ₃	0	0	0	0	1	1
Ny	١	0	Å	0	0	0
25	0	١	0	l	١	0
	1					

EXAMPLE Represent the pseudograph shown in Figure using an incidence matrix.

Solution: The incidence matrix for this graph is

$$\begin{array}{c|cccc}
v_1 & e_2 & v_2 & e_4 \\
e_1 & e_3 & e_6 & e_5 \\
v_4 & & & v_5
\end{array}$$

A pseudograph.

c.

D.

Quiz 3: Which of the following adjacency matrix represents

A.
$$\begin{pmatrix} \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} \mathbf{c} & \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{c}
\mathbf{C} & \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

B.
$$\begin{pmatrix} \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & 0 \\ 0 & \frac{1}{0} & 0 & 0 \\ 1 & \frac{1}{1} & 1 & 1 \end{pmatrix} \times \qquad \qquad \textbf{D.} \qquad \begin{pmatrix} \frac{0}{0} & \frac{1}{1} & \frac{0}{0} & 0 \\ 0 & \frac{1}{1} & 0 & 0 \\ 0 & \frac{1}{1} & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \times$$

$$\mathbf{D.} \quad \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \times$$

Shortest path problem.

DiJkastra's Algorithm.

(DI) Use Dijkastra's Algorithm for finding the Shortest path from a toz.

find the Shortest path bolo a toz in the following graph.