

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Студент	Никифорова Ирина Андреевна			
Группа	РК6-71б			
Тип задания	лабораторная работа			
Тема работы	метод конечных элементов			
Вариант	15			
Студент	подпись, дата	Никифорова И. А. фамилия, и.о.		
Преподаватель		Трудоношин В. А.		
	подпись, дата	фамилия, и.о.		
Оценка				

Оглавление

Задание на лабораторную работу	
Аналитическое решение ДУ	3
Теоретическое решение	4
1. Получение линейной функции формы	4
2. Нахождение уравнения для линейной функции формы	4
3. Анасамблирование и решение СЛАУ	7
4. Получение квадратичной функции формы	7
5. Нахождение уравнения для квадратичной функции формы	8
Текст программы	11
Результаты работы программы	16

Задание на лабораторную работу

15. Методом конечных элементов решить уравнение:

$$2\frac{d^2u}{dx^2} - 5\frac{du}{dx} + u = 0\tag{1}$$

при следующих граничных условиях: u(1)=10, du/dx(x=0)=-6

Количество конечных элементов для

первого расчёта - 20

второго расчёта - 40

Сравнить результат с аналитическим решением, оценить максимальную погрешность.

Аналитическое решение ДУ

ДУ (1) является однородным ДУ второго порядка с постоянными коэффициентами. Для его решения было составлено характеристическое уравнение и найдено его решение:

$$2\lambda^2 - 5\lambda + 1 = 0$$
, $\lambda_1 = \frac{5 + \sqrt{17}}{4}$, $\lambda_2 = \frac{5 - \sqrt{17}}{4}$.

Характеристическое уравнение имеет 2 действительных решения, поэтому общим решением ДУ является следующее выражение:

$$u = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}.$$

Первая производная решения будет иметь вид:

$$\label{eq:dudt} \frac{du}{dt} \; = \; e^{\lambda_1 x} \; + \lambda_1 C_1 e^{\lambda_1 x} + \; e^{\lambda_2 x} \; + \lambda_2 C_2 e^{\lambda_2 x} \; .$$

Из заданных граничных условий u(1)=10, du/dx(x=0)=-6 с помощью метода Гаусса можно найти константы C_1 и C_2 . Матричное уравнение будет иметь вид:

Рис. 1. График функции u(x)

Была сделана подстановка $\lambda_I = \frac{5+\sqrt{17}}{4}$, $\lambda_2 = \frac{5-\sqrt{17}}{4}$, в результате чего, после использования метода Гаусса было получено решение: $C_1 = -13.9$, $C_2 = 117$.

Данная процедура была реализована с помощью кода в файле *analytics.cpp*. Далее был получен график аналитической функции (рис. 1) с помощью утилиты *gnuplot* и написанного для нее скрипта *analytics.gnu*.

Теоретическое решение

Исходный участок оси Ox [0;1] разбивается на N (= 20 для первого и = 40 для второго расчетов) конечных элементов. В каждом из узлов имеются значения функции, обозначаемые соответственно номеру узла: U_0 , U_1 ... U_{N-1} .

Задается функция формы КЭ. Сначала была реализована линейная функция формы КЭ.

1. Получение линейной функции формы

Рис. 2. Конечный элемент с линейной функцией формы.

$$u = a_0 + a_1 x$$

Необходимо найти коэффициенты a_0 и a_1 :

$$a_{0} = u_{i},$$

$$u_{j} = a_{0} + a_{1}L, \ a_{1} = \frac{u_{j} - u_{i}}{L}$$

$$u = u_{i} + \frac{u_{j} - u_{i}}{L}x = \left[1 - \frac{x}{L}, \frac{x}{L}\right]$$

$$u_{i} = u_{i} + \frac{u_{j} - u_{i}}{L}x = \left[1 - \frac{x}{L}, \frac{x}{L}\right]$$

Отсюда линейная функция формы получается равна:

$$N_l = \left[1 - \frac{x}{L}, \, \frac{x}{L}\right] \tag{3}$$

2. Нахождение уравнения для линейной функции формы

Чтобы получить решение необходимо рассмотреть следующее уравнение:

$$\int_{0}^{L} N_{l}^{T} (2\frac{d^{2}u}{dx^{2}} - 5\frac{du}{dx} + u) dx = 0$$
(4)

Разделим интеграл из уравнения (4) на слагаемые и найдем каждое из них отдельно:

$$\int_{0}^{L} N_{l}^{T} (2 \frac{d^{2}u}{dx^{2}} - 5 \frac{du}{dx} + u) dx =$$

$$= 2 \int_{0}^{L} N_{l}^{T} \frac{d^{2}u}{dx^{2}} dx -$$
 (5)

$$-5\int_{0}^{L} N_{l}^{T} \frac{du}{dx} dx + \tag{6}$$

$$+\int_{0}^{L} N_{l}^{T} u \, dx \tag{7}$$

Рассмотрим слагаемое (5). Для его решения воспользуемся формулой интегрирования по частям для матриц в определенном интеграле:

$$\int_{x_0}^{x_1} F(x)G`(x)dx = F(x_1)G(x_1) - F(x_0)G(x_0) - \int_{x_0}^{x_1} F`(x)G(x)dx$$
 (8)
 Здесь $x_0 = 0, x_1 = L, \ F(x) = N_l^T, \ G`(x) = \frac{d^2u}{dx^2} \Longrightarrow G(x) = \frac{du}{dx}$ из формулы (2):

$$u = \begin{bmatrix} 1 - \frac{x}{L}, \frac{x}{L} \end{bmatrix}$$
 $\begin{bmatrix} u_i \\ u_j \end{bmatrix}$, поэтому $\frac{du}{dx} = \begin{bmatrix} -\frac{1}{L}, \frac{1}{L} \end{bmatrix}$ $\begin{bmatrix} u_i \\ u_j \end{bmatrix}$.

Найдем также F(x)G(x):

$$F(x)G(x) = \begin{bmatrix} 1 - \frac{x}{L} \\ \frac{x}{L} \end{bmatrix} \begin{bmatrix} -\frac{1}{L}, \frac{1}{L} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} + \frac{x}{L^2} & \frac{1}{L} - \frac{x}{L^2} \\ -\frac{x}{L^2} & \frac{x}{L^2} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix}$$

Тогда

$$F(x_1)G(x_1) = \begin{bmatrix} 0 & 0 \\ -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{du}{dx} |_L \end{bmatrix}$$

Аналогично:

$$F(x_0)G(x_0) = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} \frac{du}{dx}|_0 \\ 0 \end{bmatrix}$$

$$F(x) = N_l^T =$$

$$\frac{1 - \frac{x}{L}}{\frac{x}{L}}$$
, значит $F'(x) = \frac{-\frac{1}{L}}{\frac{1}{L}}$

Отсюда

$$\int_{x_0}^{x_1} F(x)G(x)dx = \int_{0}^{L} \left[-\frac{1}{L}, \frac{1}{L}\right] \quad \begin{bmatrix} u_i \\ u_j \end{bmatrix} \quad dx$$

Аналогично были получены выражения для других слагаемых (6) и (7), в результате итоговое выражение для уравнения (4) приняло вид:

$$2 \frac{\left| \frac{du}{dx} \right|_{i}}{\left| \frac{du}{dx} \right|_{j}} + \frac{\left| -\frac{2}{L} + \frac{5}{2} + \frac{L}{3} \right|}{\left| \frac{2}{L} + \frac{5}{2} + \frac{L}{6} \right|} \frac{\left| \frac{2}{L} - \frac{5}{2} + \frac{L}{6} \right|}{\left| \frac{2}{L} + \frac{5}{2} + \frac{L}{6} \right|} \frac{\left| u_{i} \right|}{\left| u_{j} \right|} = 0$$

$$(9)$$

3. Анасамблирование и решение СЛАУ

Далее необходимо составить СЛАУ, матрица коэффициентов в которой анасамблируется из выражения (9).

В вектор неизвестных входят значения функции в каждом из узлов, а также ее производные на концах отрезка. Размерность вектора неизвестных, как и вектора правых частей, будет равна (N+3). Анасамблируемая матрица коэффициентов будет иметь размерность (N+3)*(N+3).

Например, для 4х конечных элементов СЛАУ будет иметь вид:

-3.4	3.6			-2		u_0		0
8.6	-11.8	3.6				u_{I}		0
	8.6	-11.8	3.6			u_2	_	0
		8.6	-8.4		2	u_3	=	0
				1		$\frac{du}{dx}\Big _{x=0}$		-6
			1			$\frac{du}{dx} _{x=1}$		10

4. Получение квадратичной функции формы

Рис. 3. Конечный элемент с квадратичной функцией формы.

$$u = a_0 + a_1 x + a_2 x^2$$

Найдем коэффициенты из следующих уравнений:

$$\begin{split} u_j &= a_0 \,, \\ u_i &= a_0 + a_1 \frac{L}{2} + a_2 \frac{L^2}{4} \,, \\ u_k &= a_0 + a_1 L + a_2 L^2 \,, \end{split}$$

Получим:

$$u = \begin{bmatrix} 1 - \frac{3x}{L} + \frac{2x^2}{L^2}, -\frac{x}{L} + \frac{2x^2}{L^2}, & \frac{4x}{L} - \frac{4x^2}{L^2} \end{bmatrix}$$

$$u_k$$

$$u_i$$
(10)

Отсюда квадратичная функция формы выражается как:

$$N_l = \left[1 - \frac{3x}{L} + \frac{2x^2}{L^2}, -\frac{x}{L} + \frac{2x^2}{L^2}, \frac{4x}{L} - \frac{4x^2}{L^2}\right] \tag{11}$$

5. Нахождение уравнения для квадратичной функции формы

Разделим интеграл из уравнения (4) на слагаемые (5), (6) и (7) и найдем каждое из них отдельно.

Используя (8), (11) и аналогично линейной функции формы, получим для (5):

$$2\int_{0}^{L} N_{l}^{T} \frac{d^{2}u}{dx^{2}} dx = 2N_{l}^{T} \frac{du}{dx} \Big|_{0}^{L} - 2\int_{0}^{L} N_{l}^{T} \frac{du}{dx} dx =$$

Для (6) получим:

$$-5\int\limits_0^L N_l^T \frac{du}{dx} \ dx =$$

$$= -5 \int_{0}^{L} \frac{1 - \frac{3x}{L} + \frac{2x^{2}}{L^{2}}}{-\frac{x}{L} + \frac{2x^{2}}{L^{2}}} \left[-\frac{3}{L} + \frac{4x}{L^{2}}, -\frac{1}{L} + \frac{4x}{L^{2}}, \frac{4}{L} - \frac{8x}{L^{2}} \right] \qquad \qquad u_{i} \qquad dx = \frac{4x}{L} - \frac{4x^{2}}{L^{2}}$$

Для (7) получим:

$$\int_{0}^{L} N_{l}^{T} u \ dx =$$

$$= \int_{0}^{L} \frac{1 - \frac{3x}{L} + \frac{2x^{2}}{L^{2}}}{-\frac{x}{L} + \frac{2x^{2}}{L^{2}}} = \begin{bmatrix} 1 - \frac{3x}{L} + \frac{2x^{2}}{L^{2}}, -\frac{x}{L} + \frac{2x^{2}}{L^{2}}, \frac{4x}{L} - \frac{4x^{2}}{L^{2}} \end{bmatrix} \qquad \begin{bmatrix} u_{j} \\ u_{k} \end{bmatrix} dx = \underbrace{\begin{bmatrix} u_{j} \\ u_{k} \end{bmatrix}}_{i} dx = \underbrace{\begin{bmatrix} u_{j} \\ u_{k} \end{bmatrix}}_{i} dx$$

$$= (14)$$

<u>2L</u> 15	$-\frac{L}{30}$	<u>L</u> 15	u_{j}
$-\frac{L}{30}$	<u>2L</u> 15	<u>L</u> 15	u_k
<u>L</u> 15	<u>L</u> 15	<u>8L</u> 15	u_i

Объединив (12), (13) и (14), получим:

$$\int_{0}^{L} N_{l}^{T} (2 \frac{d^{2} u}{dx^{2}} - 5 \frac{du}{dx} + u) dx =$$

$$= 2 \begin{vmatrix} -\frac{du}{dx}|_{j} \\ \frac{du}{dx}|_{k} \end{vmatrix} + \begin{vmatrix} -\frac{14}{3L} + \frac{5}{2} + \frac{2L}{15} & -\frac{2}{3L} + \frac{5}{6} - \frac{L}{30} & \frac{16}{3L} - \frac{10}{3} + \frac{L}{15} \\ -\frac{2}{3L} - \frac{5}{6} - \frac{L}{30} & -\frac{14}{3L} - \frac{5}{2} + \frac{2L}{15} & \frac{16}{3L} + \frac{10}{3} + \frac{L}{15} \\ \frac{16}{3L} + \frac{10}{3} + \frac{L}{15} & \frac{16}{3L} - \frac{10}{3} + \frac{L}{15} & -\frac{32}{3L} + \frac{8L}{15} \end{vmatrix} = 0$$

Внутренний узел необходимо исключить из уравнения. Для этого, с помощью прямого хода метода Гаусса нужно обнулить значения в третьем столбце у первых двух строк, а последнюю строку - убрать совсем.

Добавим к первой строке третью, умноженную на такой коэффициент K_I , что будет верно выражение:

$$\frac{16}{3L} - \frac{10}{3} + \frac{L}{15} + K_I \left(-\frac{32}{3L} + \frac{8L}{15} \right) = 0, K_I = \frac{-80 + 50L + L^2}{-160 + 8L^2}$$

Аналогично, ко второй строке добавим третью, умноженную на коэффициент K_2 :

$$\frac{16}{3L} + \frac{10}{3} + \frac{L}{15} + K_2(-\frac{32}{3L} + \frac{8L}{15}) = 0, K_2 = \frac{-80 - 50L + L^2}{-160 + 8L^2}$$

Текст программы

```
#include <iostream>
#include <cmath>
#include "matrix.hpp"
#include "csv parser.hpp"
\#define ABS(a) (((a) < 0) ? -(a) : (a))
double analytics(double x) {
   double 1 1 = (5 + sqrt(17)) / 4;
   double 1 2 = (5 - sqrt(17)) / 4;
   double c_1 = -13.9;
   double c_2 = 117;
  return c_1 * \exp(l_1 * x) + c_2 * \exp(l_2 * x);
}
Matrix<double> lin experiment(map<string, double>& C, double N) {
  // получение матрицы и коэффициента
   // для анасамблирования
   double l = 1.0 / N;
   double a[2][2];
   a[0][0] = -2/1 + 2.5 + 1/3;
   a[0][1] = 2/1 - 2.5 + 1/6;
   a[1][0] = 2/1 + 2.5 + 1/6;
   a[1][1] = -2/1 - 2.5 + 1/3;
   double coef = 2;
   // анасамблирование всех матриц
   // создание
   Matrix<double> A(N + 3, N + 3);
   Matrix<double> R(N + 3, 1);
   // наложение граничных условий
   R.set(N + 1, 0, C["dU 0"]);
   R.set(N + 2, 0, C["U 1"]);
   A.set (N + 1, N + 1, 1);
   A.set (N + 2, N, 1);
   // учет границ
   A.set(0, N + 1, -coef);
   A.set(N, N + 2, coef);
   // добавление КЭ-матрицы по диагонали
   for (int i = 0; i \le N - 1; i++) {
      A.set(i, i, A.get(i, i) + a[0][0]);
       A.set(i, i + 1, A.get(i, i + 1) + a[0][1]);
      A.set(i + 1, i, A.get(i + 1, i) + a[1][0]);
      A.set(i + 1, i + 1, A.get(i + 1, i + 1) + a[1][1]);
   }
   // решение методом Гаусса
```

```
A.Gauss (&R);
   return R;
}
Matrix<double> quadr experiment (map<string, double>& C, double N) {
   // получение матрицы и коэффициента
   // для анасамблирования
   double l = 1.0 / N;
   double a[3][3];
   // заполняем третью строку сначала, чтобы ее можно было вычитать
   a[2][0] = 16.0/(3.0 * 1) + 10.0/3.0 + 1/15.0;
   a[2][1] = 16.0/(3.0 * 1) - 10.0/3.0 + 1/15.0;
   a[2][2] = -32.0/(3.0 * 1) + (8.0 * 1)/15.0;
   // заполнение первой и второй строки начальными значениями
   a[0][0] = -14.0/(3.0 * 1) + 2.5 + (2.0 * 1)/15.0;
   a[0][1] = -2.0/(3.0 * 1) + 5.0/6.0 - 1/30.0;
   a[0][2] = 16.0/(3.0 * 1) - 10.0/3.0 + 1/15.0;
   a[1][0] = -2.0/(3.0 * 1) - 5.0/6.0 - 1/30.0;
   a[1][1] = -14.0/(3.0 * 1) - 2.5 + (2.0 * 1)/15.0;
   a[1][2] = 16.0/(3.0 * 1) + 10.0/3.0 + 1/15.0;
   // расчет коэффициентов и прямой ход метода Гаусса
   //double k_1 = (-80 + 50 * 1 + 1 * 1)/(-160 + 8 * 1 * 1);
   double k1 = -a[0][2]/a[2][2];
   for (int i = 0; i < 3; i++) {
      a[0][i] += a[2][i] * k1;
   }
   //double k_2 = (-80 - 50 * 1 + 1 * 1)/(-160 + 8 * 1 * 1);
   double k2 = -a[1][2]/a[2][2];
   for (int i = 0; i < 3; i++) {
      a[1][i] += a[2][i] * k2;
   }
   double coef = 2;
   // анасамблирование всех матриц
   // создание
   Matrix<double> A(N + 3, N + 3);
  Matrix<double> R(N + 3, 1);
   // наложение граничных условий
   R.set(N + 1, 0, C["dU 0"]);
   R.set(N + 2, 0, C["U 1"]);
```

```
A.set (N + 1, N + 1, 1);
   A.set (N + 2, N, 1);
   // учет границ
   A.set(0, N + 1, -coef);
   A.set(N, N + 2, coef);
   // добавление КЭ-матрицы по диагонали
   for (int i = 0; i \le N - 1; i++) {
       A.set(i, i, A.get(i, i) + a[0][0]);
       A.set(i, i + 1, A.get(i, i + 1) + a[0][1]);
      A.set(i + 1, i, A.get(i + 1, i) + a[1][0]);
      A.set(i + 1, i + 1, A.get(i + 1, i + 1) + a[1][1]);
   }
   // решение методом Гаусса
   A.Gauss(&R);
  return R;
}
Matrix<double> additional experiment(map<string, double>& C, double N) {
   // получение матрицы и коэффициента
   // для анасамблирования
   double l = 1 / N;
   double a[2][2];
   a[0][0] = -2/1 + 2.5 + 1/3;
   a[0][1] = 2/1 - 2.5 + 1/6;
   a[1][0] = 2/1 + 2.5 + 1/6;
   a[1][1] = -2/1 - 2.5 + 1/3;
   double coef = 2;
   // анасамблирование всех матриц
   // создание
   Matrix<double> A(N + 3, N + 3);
   Matrix<double> R(N + 3, 1);
   // наложение граничных условий
   R.set (N + 1, 0, C["dU 0"]);
   R.set(N + 2, 0, 0);
   A.set (N + 1, N + 1, 1);
   A.set (N + 2, N, -1);
   A.set (N + 2, N + 2, 1);
   // учет границ
   A.set(0, N + 1, -coef);
   A.set(N, N + 2, coef);
   // добавление КЭ-матрицы по диагонали
   for (int i = 0; i \le N - 1; i++) {
       A.set(i, i, A.get(i, i) + a[0][0]);
      A.set(i, i + 1, A.get(i, i + 1) + a[0][1]);
       A.set(i + 1, i, A.get(i + 1, i) + a[1][0]);
```

```
A.set(i + 1, i + 1, A.get(i + 1, i + 1) + a[1][1]);
   }
   // решение методом Гаусса
   A.Gauss (&R);
   return R;
}
void accuracy(Matrix<double>& R, string filename) {
   std::ofstream result file;
   result file.open(filename);
   if (!result file) {
       cout << "ОШИБКА: Невозможно открыть файл для записи погрешностей: "
<< filename << endl;
      return;
   }
   double N = R.get rows() - 2;
   double l = 1 / N;
   double max acc = 0;
   for (int i = 0; i < N; i++) {
       double time = i * 1;
       result file << time << "\t" << ABS(R.get(i, 0) - analytics(time)) <<
endl;
       if (ABS(R.get(i, 0) - analytics(time)) > max acc) {
          max acc = ABS(R.get(i, 0) - analytics(time));
       }
   }
   result file.close();
   cout << filename << ":" << endl;</pre>
   cout << max acc << endl << endl;</pre>
void graph (Matrix<double>& R, string filename) {
   std::ofstream result_file;
   result file.open(filename);
   if (!result file) {
       cout << "ОШИБКА: Невозможно открыть файл для записи результатов: " <<
filename << endl;
      return;
   }
   double N = R.get rows() - 2;
   double l = 1 / N;
   for (int i = 0; i < N; i++) {
       result file << i * 1 << "\t" << R.get(i, 0) << endl;
   }
   result file.close();
}
int main() {
   map<string, double> C = create map from file("constants.dat");
   Matrix<double> R1 = lin experiment(C, C["N 1"]);
```

```
graph(R1, "res/lin_result_N1.dat");
accuracy(R1, "res/lin_accuracy_N1.dat");

Matrix<double> R2 = lin_experiment(C, C["N_2"]);
graph(R2, "res/lin_result_N2.dat");
accuracy(R2, "res/lin_accuracy_N2.dat");

/*Matrix<double> R3 = additional_experiment(C, C["N_2"]);
graph(R3, "res/additional_N2.dat");*/

Matrix<double> R4 = quadr_experiment(C, C["N_1"]);
graph(R4, "res/quadr_result_N1.dat");
accuracy(R4, "res/quadr_accuracy_N1.dat");

Matrix<double> R5 = quadr_experiment(C, C["N_2"]);
graph(R5, "res/quadr_result_N2.dat");
accuracy(R5, "res/quadr_accuracy_N2.dat");
return 0;
}
```

Результаты работы программы

В результате работы программы для линейной функции формы были получены следующие графики:

Рис. 4. Результаты работы программы для линейной функции формы. Здесь: синий - при 20 КЭ, оранжевый - при 40 КЭ, зеленый - аналитическое решение.

Рис. 5. Результаты работы программы для квадратичной функции формы. Здесь: синий - при 20 КЭ, оранжевый - при 40 КЭ, зеленый - аналитическое решение.

Рис. 6. Сравнение аналитического решения (зеленый), решения МКЭ с линейной функцией формы (синий) и с квадратичной функцией формы (оранжевый) при N=20.

Рис. 7. Сравнение аналитического решения (зеленый), решения МКЭ с линейной функцией формы (синий) и с квадратичной функцией формы (оранжевый) при N=40.