-SINGLE CHOICE CORRECT

1.	If p, q, r are three of	distinct real numbers $p \neq 0$	$\neq 0$ such that $x^2 + qx$	+ pr = 0 and	
	$x^2 + rx + pq = 0 \text{ have a}$	common root, then the valu	the of $p+q+r$ is		
	(a) 0	(b) 1	(c) -1	(d) 2	
2.	The equation $x^2 + ax - a$	$a^2 - 1 = 0$ will have roots of	opposite signs if:		
	(a) $a \in (-\infty, \infty)$		(b) $a \in [-1, 1]$		
	(c) $a \in (-\infty, -1) \cup (1, \infty)$		(d) None of these		
3.	If 8, 2 are the roots of x	$c^2 + ax + \beta = 0$, and 3, 3 are	e the roots of $x^2 + \alpha x +$	b = 0 then the	
	roots of $x^2 + ax + b = 0$	are:			
	(a) $8, -1$	(b) -9 , 2	(c) $-8, -2$	(d) 9, 1	
4.	If α , β , γ are	the roots of x^3	-px-q=0, then	the value	
	$(2\alpha + \beta + \gamma)(2\beta + \gamma + \alpha)$	$(2\gamma + \alpha + \beta)$ is			
	(a) q	(b) − <i>q</i>	(c) <i>p</i>	(d) $-p$	
5.	The integral value of a f	for which $ax^2 + ax + a = 2x^2$	$^2 - 3x - 6$ has equal roo	ts is	
	(a) 3	(b) 2	(c) -3	(d) -2	
6.	If $x^2 + 3x + 5 = 0$ and	$ax^2 + bx + c = 0$ have a of	common root and a,	$b, c \in \mathbf{N}$ then	
	minimum value of $a + b$	+c is equal to:			
	(a) 3	(b) 9	(c) 6	(d) 12	
7.	The value of λ for whi	$ch 2x^2 - 2(2\lambda + 1)x + \lambda(\lambda$	+1)=0 may have one	root less than	
	λ and other root greater	• •	() 1 . 0	(1) 4 0	
	(a) $1 > \lambda > 0$ $\lambda < -1$	(b) $-1 < \lambda < 0$	(c) $\lambda \geq 0$	(d) $\lambda > 0$ or	
8.	Real roots of equation x	$ x ^2 + 3 x + 2 = 0$ are			
	(a) $-1, -4$	(b) 1, 4	(c) -4, 4	(d) None of	
	these				
9.	If $\alpha + \beta = 3$ and $\alpha^3 + \beta$	3 = 7, then α and β are the	ne roots of		
	(a) $3x^2 + 9x + 7 = 0$ these	(b) $9x^2 - 27x + 20 = 0$	(c) $2x^2 - 6x + 15 = 0$	(d) None of	
10.	If a, b, c are odd integers and $ax^2 + bx + c = 0$, has real roots then:				
	(a) Both roots are ration		(b) Both roots are irra		
	(c) Both roots are positi		(d) Roots are of oppo	•	
11.		h makes the roots of the eq			
	(a) 4	(b) 5	(c) 6	(d) 7	
12.	If the difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \ne b$, then				
	(a) $a+b+4=0$ a-b+4=0	(b) $a+b-4=0$	(c) $a-b-4=0$	(d)	

DPP-3 (EMERGE BATCH)

13.	If α , β are roots of $x^2 - 3x + a = 0$ and γ , δ be those of $x^2 - 12x + b = 0$ and num α , β , γ , δ (in order) from an increasing G. P. then				
	(a) $a = 3, b = 12$ a = 4, b = 16	(b) $a = 12, b = 3$	(c) $a = 2, b = 32$	(d)	
14.	1	$\alpha = r + r^2 + r^4, \ \beta = r^3 + r^4$	$r^5 + r^6$. Then α and β	are the roots	
	$x^2 + x - 2 = 0$	(b) $x^2 - x + 2 = 0$	(c) $x^2 + x + 2 = 0$	(d)	
15.	Solution of the equation	$x + \frac{x}{x-1} = 1 + \frac{x}{x-1}$ are			
	(a) 0, 1 these	(b) 0	(c) 1	(d) None of	
16.	Let α and β be the roots of the equation $x^2 + x + 1 = 0$. The equation whose roots are α^{19} , β^7 is				
	(a) $x^2 - x - 1 = 0$ $x^2 + x + 1 = 0$	(b) $x^2 - x + 1 = 0$	(c) $x^2 + x - 1 = 0$	(d)	
17.	If α , β are the roots of the equation $x^2 + 2x + 4 = 0$, then $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to				
	(a) $\frac{1}{4}$	(b) 4	(c) 32	(d) $\frac{1}{32}$	
18.	If the roots of the equation $x^3 - 12x^2 + 39x - 28 = 0$ are in A.P., then their commodifference is				
	(a) ±1	(b) ±2	(c) ±3	(d) ± 4	
19.	If the equation $x^2 + px$ Then	+q=0 has roots u and v	, where p, q are non-	zero constant.	
		roots $\frac{1}{u}$ and $\frac{1}{v}$	(b) $(x-p)(x+q) = 0$	has roots	
	u+v and uv				
	(c) $x^2 + p^2x + q^2 = 0$ has	roots u^2 and v^2	(d) $x^2 + qx + p = 0$ ha	as roots $\frac{u}{v}$ and	
	$\frac{v}{u}$				
20.	•	$c^2 + nr + 1 = 0$ and $v \in S$ be	those of $x^2 \pm ax \pm 1 = 0$	then the value	
20.		If α, β are the roots of $x^2 + px + 1 = 0$ and γ, δ be those of $x^2 + qx + 1 = 0$ then the value of $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta)$ is equal to			
	(a) $p^2 - q^2$	(b) $q^2 - p^2$	(c) p^2	(d) q^2	
21.	If 2 lies between the root	ts of quadratic equation x^2	-ax + a = 0, then:		
	(a) $0 < a < 4$	(b) $a < 4$	(c) $a > 4$	(d) None	
22.	The value of k for which the equation $x^3 + x^2 - 4x - k = 0$ and $x^2 + x - 2 = 0$ have a common root is				
	(a) 2	(b) 4	(c) -4	(d) 6	

DPP-3 (EMERGE BATCH)

23.	If the equation $x^3 + ax^2$ is	$+bx-4=0$ has two roots ϵ	equal to 2, then the orde	hen the ordered pair (a, b)	
	(a) $(-5, 8)$	(b) $(5,-8)$	(c) (1, 1)	(d) $(2, 2)$	

- 24. The number of roots of the equation $\log (-2x) = 2\log(x+1)$ is

 (a) 0 (b) One (c) Two (d) More than two
- 25. The value of 'a' for which the roots of the equation $x^2 + x + a = 0$ are real and exceed 'a' are:
 - (a) 0 < a < 1/4-2 < a < 0
- (b) a < 1/4
- (c) a < -2
- (d)

-SINGLE CHOICE CORRECT

1. (a)	2. (a)	3. (d)	4. (a)	5. (a)
6. (b)	7. (d)	8. (d)	9. (b)	10. (b)
11. (d)	12. (a)	13. (c)	14. (c)	15. (d)
16. (d)	17. (a)	18. (c)	19. (a)	20. (b)
21. (c)	22. (b)	23. (a)	24. (b)	25. (c)