Exercises 2

- ¹ Here we only discuss the underlying topological space of the spectrum. And the maximal spectrum is the subspace of maximal ideals.
- 1. (a) Show that the maximal spectrum of Spec $\mathbb{C}[x]$ is the complex plane \mathbb{C} with cofinite topology.
 - (b) Show that the maximal spectrum of Spec $\mathbb{R}[x]$ is \mathbb{C} quotiented by a $\mathbb{Z}/2\mathbb{Z}$ action with cofinite topology.
 - (c) Show that the maximal spectrum of Spec $\mathbb{C}[x,y]/(x^2+y^2+1)$ is

$$\{(s,t) \in \mathbb{C}^2 | s^2 + t^2 + 1 = 0\}$$

with cofinite topology. Then show that there is an isomorphism $i: \operatorname{Spec} \mathbb{C}[x,x^{-1}] \to \operatorname{Spec} \mathbb{C}[x,y]/(x^2+y^2+1)$

(d) * Show that the maximal spectrum of Spec $\mathbb{R}[x,y]/(x^2+y^2-1)$ consists of

 $\{(s,t)\in\mathbb{R}^2|s^2+t^2=1\}$ and $\{l\in lines(\mathbb{R}^2)|l$ not intersect with $s^2+t^2=1\}$ with cofinite topology.

2. Let ring $A := \mathbb{Z}[x_{11}, \dots, x_{1n}, \dots, x_{nn}, \iota]/(\iota \det(x) - 1)$ where $\det(x)$ is the polynomial of determinant and let GL_n be Spec A. Show that for ring R

 $GL_n(R) := Hom_{Ring}(A, R) \cong \{ invertible matrices with coefficient R \}$

- 3. Let k be a field, find out what are the prime spectra of the following rings, and the open(or closed) sets of Zariski topology.
 - (a) Spec $k[x]/(x^2)$
 - (b) Spec k[[x]] (where $k[[x]] := \lim_n k[x]/(x^n)$ is the formal polynomial ring)
 - (c) Spec $k[x]_{(x)}$
 - (d) Spec $\mathbb{Z}/m\mathbb{Z}$
 - (e) * Spec $\mathbb{Z}[x]$

¹find also the exercises on https://github.com/iamcxds/AG-exercise, you can skip the question with * if it is difficult.