Chapitre 7 : Etude et réduction des endomorphismes

K désigne ici un corps commutatif quelconque.

I Eléments propres d'un endomorphisme ou d'une matrice carrée

A) Définition

Soit $u \in L_{\mathbb{K}}(E)$, E étant un \mathbb{K} -ev.

Equation aux éléments propres de u:

 $u(\vec{v}) = \lambda \vec{v} \text{ où } \lambda \in \mathbb{K}, \vec{v} \in E \setminus \{0\}.$

On appelle valeur propre (abréviation vp) tout $\lambda \in \mathbb{K}$ pour lequel il existe $\vec{v} \neq \vec{0}$ vérifiant $u(\vec{v}) = \lambda \vec{v}$. On appelle vecteur propre (abr. $\vec{v}p$) de u tout \vec{v} non nul tel qu'il existe $\lambda \in \mathbb{K}$ vérifiant $u(\vec{v}) = \lambda \vec{v}$.

Attention: $\vec{0}$ n'est pas vecteur propre.

Proposition:

Si \vec{v} est $\vec{v}p$, il existe un unique $\lambda \in \mathbb{K}$ tel que $u(\vec{v}) = \lambda \vec{v}$.

En effet, si $\lambda \vec{v} = \mu \vec{v}$, alors $\lambda = \mu$ car $\vec{v} \neq \vec{0}$.

Définition:

Si $\vec{v} \neq \vec{0}$ et $\lambda \in \mathbb{K}$ vérifient $u(\vec{v}) = \lambda \vec{v}$, on dira que :

- (i) λ est *la* valeur propre associée à \vec{v}
- (ii) \vec{v} est *un* vecteur propre associé à λ .

Proposition:

Soit $\lambda \in \mathbb{K}$. On a les équivalences :

- (i) λ est vp de u.
- (ii) $\ker(u \lambda \operatorname{Id}_E) \neq \{0\}$

Définition:

Si λ est vp de u, le sous-espace vectoriel $\ker(u - \lambda \operatorname{Id}_E)$ s'appelle sous-espace propre de u associé à la vp λ .

On a alors $\ker(u - \lambda \operatorname{Id}_E) = \{\vec{v}p \text{ associées à } u\} \cup \{0\}.$

Notation : $E(u) = \ker(u - \lambda Id_E)$.

B) Cas des matrices carrées

Soit $A \in M_n(\mathbb{K})$.

On appelle éléments propres (valeur propre, vecteur propre, sous-espace propre) de A les éléments propres de l'endomorphisme de $M_{n,1}(\mathbb{K})$ $u_A:M_{n,1}(\mathbb{K})\to M_{n,1}(\mathbb{K})$. $X\mapsto AX$

On parle aussi de vecteurs colonnes propres (vcp):

$$X \in M_{n,1}(\mathbb{K})$$
 est vcp de A associé à la vp $\lambda \in \mathbb{K}$ si $X \neq \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ et $AX = \lambda X$.

Théorème, définition (polynôme caractéristique d'une matrice carrée) :

Soit $A \in M_n(\mathbb{K})$.

La matrice $A-XI_n$ à coefficients dans l'anneau $\mathbb{K}[X]$ vérifie :

$$\det(A - XI_n) = (-1)^n (X^n + \alpha_{n-1} X^{n-1} + ... + \alpha_0) \in \mathbb{K}[X],$$

où
$$\alpha_0 = (-1)^n \det A$$
 et $\alpha_{n-1} = -\operatorname{Tr}(A)$.

Le polynôme $\det(A - XI_n)$ s'appelle polynôme caractéristique de A, noté χ_A (étude plus loin dans le chapitre)

Démonstration:

 $A - XI_n \in M_n(\mathbb{K}[X])$, ses coefficients sont $(A - XI_n)_{i,j} = A_{i,j} - X\delta_{i,j}$.

Donc
$$\det(A - XI_n) = \sum_{\sigma \in \mathfrak{D}_n} \mathcal{E}(\sigma) P_{\sigma}(X)$$
 où $P_{\sigma} = \prod_{i=1}^n (A - XI_n)_{i,\sigma(i)} = \prod_{i=1}^n A_{i,\sigma(i)} - X \delta_{i,\sigma(i)}$

Chaque P_{σ} est dans $\overline{\mathbb{K}}_n[X]$, donc $\det(A - XI_n) \in \overline{\mathbb{K}}_n[X]$.

On a de plus $\deg P_{\sigma} = n$ si et seulement si $\forall i \in [1, n], \sigma(i) = i$, c'est-à-dire $\sigma = \operatorname{Id}$.

(En effet, sinon
$$\prod_{i=1}^{n} (A_{i,\sigma(i)} - X\delta_{i,\sigma(i)})$$
 est de degré $\leq n-1$).

On a ainsi un seul P_{σ} de degré n, à savoir $P_{\mathrm{Id}} = \prod_{i=1}^{n} (A_{i,i} - X)$, et on voit alors que le terme dominant de $\det(A - XI_n)$ est $(-1)^n$.

De plus, on ne peut pas avoir $\deg P_{\sigma} = n-1$, car si $\sigma(i) = i$ pour n-1 valeurs de i entre 1 et n, alors c'est pareil pour la dernière, et $\sigma = \operatorname{Id}$.

Ainsi, le coefficient de X^{n-1} dans χ_A vient uniquement de celui de $P_{\rm Id}$, et $P_{\rm Id} = (-X)^n + (-X)^{n-1}(A_{1,1} + \ldots + A_{n,n}) + \ldots$

Pour la constante :

Lemme: pour tout $\lambda \in \mathbb{K}$, $\chi_A(\lambda) = \det(A - \lambda I_n)$.

En effet, développer $\det(A - \lambda I_n)$ ou développer $\det(A - XI_n)$ puis remplacer X par λ revient au même.

Ainsi, la constante de χ_A vaut $\chi_A(0) = \det(A)$.

Théorème (usage de χ_A)

Soient $A \in M_n(\mathbb{K})$, $\lambda \in \mathbb{K}$. Alors λ est valeur propre de A si et seulement si λ est racine de χ_A .

Démonstration:

Voir lemme dans la démonstration du théorème précédent : λ est vp de A si et seulement si $A - \lambda I_n \notin GL_n(\mathbb{K})$, c'est-à-dire si et seulement si $\chi_A(\lambda) = \det(A - \lambda I_n) = 0$.

Lien entre matrices et endomorphismes :

Soient *E* un \mathbb{K} -ev de dimension finie $n, u \in L_{\mathbb{K}}(E)$.

Soit $\mathfrak{B} = (e_1, ... e_n)$ une base de E et $A = \operatorname{mat}_{\mathfrak{B}}(u) \in M_n(\mathbb{K})$.

Théorème:

- (1) λ est valeur propre de u si et seulement si λ est valeur propre de A.
- (2) Pour tout $\vec{v} \in E \setminus \{0\}$, \vec{v} est vecteur propre de u si et seulement si $\max_{\mathfrak{B}}(\vec{v}) \in M_{n,1}(\mathbb{K}) \setminus \{0\}$ est vecteur propre de A.

Démonstration:

Soient $\vec{v} \in E$, $\lambda \in \mathbb{K}$. On note $A = \text{mat}_{\mathfrak{B}}(u)$, $X = \text{mat}_{\mathfrak{B}}(\vec{v})$.

On a alors l'équivalence :

$$\begin{cases} u(\vec{v}) = \lambda \vec{v} \\ \vec{v} \neq \vec{0} \end{cases} \Leftrightarrow \begin{cases} A \times X = \lambda X \\ X \neq 0 \end{cases}$$

C) Spectre et valeur spectrale

Soit $u \in L_{\mathbb{K}}(E)$.

On dit que $\lambda \in \mathbb{K}$ est valeur spectrale de u si $u - \lambda \operatorname{Id}_E$ n'est pas un automorphisme de E. Il y a deux types de valeurs spectrales :

- Les $\lambda \in \mathbb{K}$ tels que $u \lambda \operatorname{Id}_E$ n'est pas injectif (c'est-à-dire les vp de u)
- Les $\lambda \in \mathbb{K}$ tels que $u \lambda \operatorname{Id}_{E}$ n'est pas surjectif.

En dimension finie, toute valeur spectrale est valeur propre.

Mais c'est faux en dimension infinie :

Exemple:

On considère l'application $M: \mathbb{R}[X] \to \mathbb{R}[X]$.

Alors tout réel est valeur spectrale de M mais M n'a pas de valeur propre.

En effet, soit $\lambda \in \mathbb{R}$.

Alors $M - \lambda Id$ n'est pas surjective, donc λ est valeur spectrale : pour tout $P \in \mathbb{R}[X]$, $(M - \lambda Id)(P) = XP - \lambda P = (X - \lambda)P$. Ainsi, $1 \notin \text{Im}(M - \lambda Id)$ (par exemple)

Mais $M - \lambda Id$ est injectif, donc λ n'est pas valeur propre (en effet, si $(X - \lambda)P = 0$, alors P = 0)

On appelle spectre l'ensemble des valeurs spectrales d'une matrice ou d'un endomorphisme, noté sp(A) ou sp(u).

Dans l'exemple précédent, on a $sp(M) = \mathbb{R}$.

Note : en dimension finie, sp(u) est aussi l'ensemble des valeurs propres de u.

D) Indépendance de sous-espaces vectoriels propres

Théorème:

Soit $u \in L_{\kappa}(E)$:

- Toute famille de $\vec{v}p$ associés à des vp deux à deux distinctes est libre.

- Autrement dit, si $F_1,...F_p$ sont des sous-espaces propres deux à deux distincts, alors la somme $F_1+...+F_p$ est directe.

Démonstration:

(1) Soient $\vec{v}_1,...\vec{v}_p$ non nuls tels que $\forall i \in [1,n], u(\vec{v}_i) = \lambda_i \vec{v}_i$, les λ_i étant deux à deux distincts.

Supposons que $\sum_{j=1}^{p} x_j \vec{v}_j = \vec{0}$. Montrons par récurrence sur p que $\forall j \in [1, p]$ $x_j = 0$

- Si p = 1: si $x_1 \vec{v_1} = \vec{0}$, alors $x_1 = 0$ car $\vec{v_1} \neq \vec{0}$.
- Supposons la propriété vraie pour p-1 vecteurs propres $(p \in \mathbb{N}^*)$, et considérons le cas de p vecteurs propres :

Si on a
$$\sum_{j=1}^{p} x_j \vec{v}_j = \vec{0}$$
 (1), alors $\sum_{j=1}^{p} x_j u(\vec{v}_j) = \vec{0}$ (2).

Donc
$$(\lambda_p(1) - (2)) \sum_{j=1}^{p} x_j (\lambda_p - \lambda_j) \vec{v}_j = \sum_{j=1}^{p-1} x_j (\lambda_p - \lambda_j) \vec{v}_j = \vec{0}$$

D'où, par hypothèse de récurrence $\forall j \leq p-1, x_j \underbrace{(\lambda_p - \lambda_j)}_{\neq 0} = 0$.

Donc $\forall j \leq p-1, x_j = 0$, puis $x_p = 0$, ce qui achève la récurrence et montre le premier résultat.

(2) Soit Soient $\vec{X}_1,...\vec{X}_p$ tels que $\forall i \in [1, p], \vec{X}_i \in F_i$.

Supposons que $\vec{X}_1 + ... + \vec{X}_p = \vec{0}$.

Alors $\forall i \in [1, p], \vec{X}_i = \vec{0}$, car sinon les \vec{X}_i non nuls seraient des vecteurs propres associés à des valeurs propres deux à deux distinctes et formant une famille liée, ce qui est impossible d'après (1).

Exemple:

 $E = C^{\infty}(\mathbb{R}, \mathbb{C})$.

 $u = D : f \mapsto f'$. Alors $u \in L_{c}(E)$

Pour $\lambda \in \mathbb{C}$, $\varphi_{\lambda}: t \mapsto e^{\lambda t}$ est vecteur propre (non nul) de u associé à λ .

Donc $(\varphi_{\lambda})_{\lambda \in \mathbb{C}}$ est libre.

En dimension finie:

Corollaire:

Un endomorphisme u d'un \mathbb{K} -ev de dimension finie n a au plus n valeurs propres distinctes.

En effet, si $\lambda_1,...\lambda_p$ dont p valeurs propres distinctes de u, alors en prenant pour $i \in [1,p]$ \vec{v}_i un vecteur propre associé à λ_i , la famille $(\vec{v}_1,...\vec{v}_p)$ est libre, et donc $p \le n$.

Remarque:

Autre démonstration :

On prend \mathfrak{B} une base de E, $A = \text{mat}_{\mathfrak{B}}(u)$.

Alors l'ensemble des valeurs propres de u est aussi l'ensemble des valeurs propres de A, qui est l'ensemble des zéros de χ_A , et donc de cardinal $\leq n$ (car deg $\chi_A = n$)

E) Exemples

• Géométrique :

Les projecteurs :

Soit p un projecteur (on suppose $p \neq 0$ et $p \neq Id$)

Eléments propres : les valeurs propres de p sont 0 et 1, et les espaces propres sont $E_0(p) = \ker p$ et $E_1(p) = \ker (p - \operatorname{Id}) = \operatorname{Im} p$.

Démonstration:

Soit p un projecteur sur F parallèlement à G, avec $F \oplus G = E$. (et $F, G \neq \{0\}$)

On résout $p(\vec{v}) = \lambda \vec{v}$ pour $\vec{v} \neq \vec{0}$.

On a $\vec{v} = \vec{f} + \vec{g}$, où $\vec{f} \in F$, $\vec{g} \in G$.

Alors $p(\vec{v}) = \lambda \vec{v} \iff \vec{f} = \lambda (\vec{f} + \vec{g}) \iff \vec{f} = \lambda \vec{f} \text{ et } \lambda \vec{g} = \vec{0}$.

Discussion:

Si $\lambda = 0$, $p(\vec{v}) = \lambda \vec{v} \iff \vec{v} = \vec{g} \in G$. Donc 0 est vp d'espace propre associé G.

Si $\lambda = 1$, $p(\vec{v}) = \lambda \vec{v} \iff \vec{v} = \vec{f} \in F$. Donc 1 est vp d'espace propre associé F.

Sinon, $p(\vec{v}) = \lambda \vec{v} \iff \vec{f} = \vec{g} = \vec{0}$, et λ n'est pas valeur propre.

• Exemple matriciel:

Localisation des valeurs propres d'une matrice complexe :

Lemme (matrice à diagonale dominante) :

Soit
$$A \in M_n(\mathbb{C})$$
, on suppose que $\forall i \in [1, n], |A_{i,i}| > \sum_{\substack{j=1 \ i \neq i}}^n |A_{i,j}|$.

Alors A est inversible.

En effet:

Soit $X \in M_{n,1}(\mathbb{C})$, supposons que AX = 0.

Alors X=0. En effet, supposons que $X\neq 0$; soit alors $i_0\in [1,n]$ tel que $\left|X_{i_0}\right|$ soit maximal.

Alors
$$(AX)_{i_0} = \sum_{j=1}^n A_{i_0,j} X_j = 0$$
.

Donc
$$|A_{i_0,i_0}X_{i_0}| = \left|-\sum_{j\in[[1,n]\setminus\{i_0\}} A_{i_0,j}X_j\right| \le \sum_{j\in[[1,n]\setminus\{i_0\}} |A_{i_0,j}X_j| \le (\sum_{\substack{j=1\\j\neq i_0}}^n |A_{i_0,j}|)|X_{i_0}|.$$

Soit, en simplifiant par $\left|X_{i_0}\right| > 0$, on obtient une contradiction.

Donc X = 0, et A est inversible.

Théorème (de localisation):

Soit A une matrice complexe, et $(A_{i,j})_{\substack{i \le n \ i \le n}}$ ses coefficients.

Alors sp(A)
$$\subset \bigcup_{i=1}^{n} \overline{D}(A_{i,i}, \sum_{\substack{j=1\\j\neq i}}^{n} |A_{i,j}|) \cdot (\overline{D}(z,r) = \{x \in \mathbb{C}, |x-z| \le r\})$$

Démonstration

Soit $\lambda \in \mathbb{C}$, on pose $B = A - \lambda I_n$; on a ainsi $B_{i,j} = A_{i,j} - \lambda \delta_{i,j}$.

Donc si $\forall i \in [1, n]$ $\underbrace{|A_{i,i} - \lambda|}_{B_{i,j}} > \sum_{\substack{j=1 \ j \neq i}}^{n} \underbrace{|A_{i,j}|}_{B_{i,j}}$, alors B est inversible donc λ n'est pas

valeur propre de A.

Remarque : on a le même résultat avec tA : $\operatorname{sp}({}^tA) \subset \bigcup_{j=1}^n \overline{D}(A_{j,j},\sum_{j=1\atop i\neq j}^n \left|A_{j,i}\right|)$.

 $(\operatorname{sp}({}^{t}A) = \operatorname{sp}(A) \operatorname{car} A - \lambda I_{n} \operatorname{est inversible} \Leftrightarrow^{t} (A - \lambda I_{n}) = {}^{t}A - \lambda I_{n} \operatorname{est inversible})$

Matrice compagnon:

Soit
$$P = X^{n} - (a_{0} + ... + a_{n-1}X^{n-1}) \in \mathbb{K}_{n}[X]$$
, et $A_{p} = \begin{pmatrix} 0 & 1 & (0) \\ & \ddots & \ddots \\ & & & \ddots & 1 \\ a_{0} & \cdots & \cdots & a_{n-1} \end{pmatrix} \in M_{n}(\mathbb{K})$.

On cherche les valeurs propres de A_p . Equation aux éléments propres :

$$A_P V = \lambda V$$
, où $V = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. On a les équivalences:

$$A_{P}V = \lambda V \Leftrightarrow \begin{cases} x_{2} = \lambda x_{1} \\ x_{3} = \lambda x_{2} \\ \vdots \\ x_{n} = \lambda x_{n-1} \end{cases} \Leftrightarrow \begin{cases} x_{1} \underbrace{\left(a_{0} + a_{1}\lambda + \ldots + a_{n-1}\lambda^{n-1} - \lambda^{n}\right)}_{-P(\lambda)} = 0 \end{cases}$$

Si $P(\lambda) \neq 0$, l'équation $A_pV = \lambda V$ n'a que la solution nulle, et λ n'est donc pas valeur propre. Si $P(\lambda) = 0$, l'ensemble des solutions est $\overline{\mathbb{K}} \cdot \begin{pmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{pmatrix}$ de dimension 1.

Ainsi, l'ensemble des valeurs propres de A_P est l'ensemble des racines de P, et les espaces propres sont les droites $\mathbb{K} \cdot \begin{pmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{pmatrix}$ de dimension 1.

De plus,
$$\chi_{A_p} = \begin{vmatrix} -X & 1 & (0) \\ & \ddots & \ddots \\ (0) & & \ddots & 1 \\ a_0 & \cdots & \cdots & a_{n-1} - X \end{vmatrix}$$
.

En faisant la transformation $C_1 \leftarrow C_1 + XC_2 + ... + X^{n-1}C_n$, on obtient :

$$\chi_{A_P} = \begin{vmatrix} 0 & 1 & & & (0) \\ & -X & \ddots & & \\ (0) & & \ddots & 1 \\ \alpha & \cdots & \cdots & a_{n-1} - X \end{vmatrix}, \text{ où } \alpha = -P.$$

Ainsi, $\chi_{A_p} = (-1)^n P$ (En développant selon la première colonne).

Ceci montre que tout polynôme $(-X)^n + ...$ est polynôme caractéristique d'au moins une matrice.

Application:

On suppose $P = X^n - a_0 - ... - a_{n-1}X^{n-1}$. Alors pour toute racine z de P, on a :

Soit
$$|z| \le 1$$
, soit $|z - a_{n-1}| \le \sum_{k=0}^{n-2} |a_k|$.

Matrices stochastiques, bistochastiques:

On dit que $A \in M_n(\mathbb{R})$ est stochastique si ses coefficients sont positifs et si

$$\forall i \in [1, n], \sum_{j=1}^{n} a_{i,j} = 1.$$

A est dite bistochastique si A et ${}^{t}A$ sont stochastiques :

$$\forall i \in [1, n], \sum_{j=1}^{n} a_{i,j} = \sum_{j=1}^{n} a_{j,i} = 1$$

Proposition:

Soit
$$U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in M_{n,1}(\mathbb{R})$$
.

(1) Alors $A \in M_n(\mathbb{R})$ est stochastique si et seulement si A est à coefficients positifs et AU = U c'est-à-dire si et seulement si U est un vecteur propre associé à la valeur propre 1.

Soit A stochastique:

- (2) Alors $\operatorname{sp}(A) \subset \overline{D}(0,1)$, et $1 \in \operatorname{sp}(A)$.
- (3) Les ensembles des matrices stochastiques et bistochastiques sont compacts, convexes et stables par produit.

Démonstration :

(1):
$$AU = U \Leftrightarrow \forall i \in [1, n], \sum_{i=1}^{n} a_{i,j} = 1$$

(2): Soit $\lambda \in \operatorname{sp}(A)$. D'après le théorème de localisation, il existe $i \in [1, n]$ tel que

$$\left|\lambda - a_{i,i}\right| \le \sum_{\substack{j=1\\j\neq i}}^{n} \left|a_{i,j}\right|.$$

Alors
$$|\lambda| \le |a_{i,i}| + |\lambda - a_{i,i}| \le \sum_{j=1}^{n} |a_{i,j}| = 1$$
 (A est à coefficients positifs)

(3) : Soient A, B stochastiques.

Alors AB est à coefficients positifs, et (AB)U = A(BU) = AU = U.

Pour bistochastique, on applique ce qui précède à A, B, tA , tB .

D'où déjà la stabilité par produit.

- Si A et B sont stochastiques, alors pour $\lambda \in [0;1]$, $(1-\lambda)A + \lambda B$ est stochastique: $((1-\lambda)A + \lambda B)U = (1-\lambda)U + \lambda U = U$.
- Compacité :

On munit $M_n(\mathbb{R})$ de la norme $||A|| = \max_{i, j \in [1, n]} |a_{i,j}|$.

Alors pour toute matrice stochastique, $||A|| \le 1$. Donc l'ensemble des matrices stochastiques est borné.

Soient
$$L_{i,j}: M_n(\mathbb{R}) \to \mathbb{R}$$
 et $\lambda_i: M_n(\mathbb{R}) \to \mathbb{R}$, formes linéaires continues (car $A \mapsto \sum_{i=1}^n a_{i,j}$

en dimension finie)

Alors l'ensemble des matrices stochastiques est $\bigcap_{i,j\in[1,n]} L_{i,j}^{-1}([0,+\infty[)\cap\bigcap_{i\in[1,n]}\lambda_i^{-1}(\{1\}), \text{ qui})$

est une intersection finie de fermés donc un fermé.

Donc l'ensemble des matrices stochastiques est compact.

On fait pareil pour les matrices bistochastiques.

Exemples analytiques:

Opérateurs différentiels linéaires (dans le cadre de fonctions de classe C^{∞}).

Soit *I* un intervalle de \mathbb{R} , $E = C^{\infty}(I, \mathbb{C})$.

Pour $j \in [0, p-1]$, soient $a_i : I \to \mathbb{C} \in E$.

On pose $u = D^p + \sum_{i=0}^{p-1} a_i D^j$ l'endomorphisme de E défini par :

$$\forall f \in E, u(f) = f^{(p)} + \sum_{j=0}^{p-1} a_j f^{(j)}.$$

Tout complexe λ est valeur propre de u, et les sous-espaces propres sont tous de dimension p.

Ceci découle du théorème de Cauchy pour les équations différentielles linéaires (plus tard):

Soient $a_0, ..., a_{n-1}: I \to \mathbb{C}$, continues. Alors l'ensemble des $y: E \to \mathbb{C}$ tels que

 $\forall x \in I, y^{(p)}(x) = \sum_{j=0}^{p-1} a_j(x) y^{(j)}(x)$ est un \mathbb{C} -ev de dimension p.

En effet (pour le fait que ça en découle), on a l'équivalence :

$$u(f) = \lambda f \iff \forall x \in I, f^{(p)}(x) = -\sum_{j=0}^{p-1} a_j(x) f^{(j)}(x) + (\lambda - a_0) f(x)$$

Comme les $-a_i$ et $\lambda - a_0$ sont continues pour tout λ , l'ensemble des solutions est un \mathbb{C} -ev de dimension p.

Exemple:

Soit I un intervalle de \mathbb{R} .

Trouver les valeurs propres et les fonctions propres (c'est-à-dire les vecteurs propres de $C^{\infty}(I,\mathbb{C})$) de $D:C^{\infty}(I,\mathbb{C}) \to C^{\infty}(I,\mathbb{C})$ $f \mapsto g$ tel que $\forall x \in I, g(x) = xf'(x)$

Equation aux éléments propres :

Soient $\lambda \in \mathbb{C}$, $f \in C^{\infty}(I,\mathbb{C})$, supposons que $\forall x \in I, xf'(x) = \lambda f(x)$.

Si
$$0 \notin I$$
, on a $f'(x) = \frac{\lambda}{x} f(x)$, donc la solution générale est $f(x) = Ke^{\lambda \ln|x|} = K|x|^{\lambda}$

Ce sont toutes des fonctions de classe C^{∞} , donc l'ensemble des valeurs propres de D est \mathbb{C} , et E_{λ} est de dimension 1 (c'est $\operatorname{Vect}(x \mapsto |x|^{\lambda})$)

Si maintenant $0 \in I$:

Si $0 = \inf I$ (ou sup I de façon symétrique):

 $x \mapsto x^{\lambda}$ est elle de classe C^{∞} sur I?

Oui si et seulement si $\lambda \in \mathbb{N}$, et donc l'ensemble des valeurs propres est \mathbb{N} . Remarque :

Si $n < \lambda < n+1$ pour $n \in \mathbb{N}$, alors pour x > 0, $f^{(n+1)}(x) = (\lambda - n - 1)...(\lambda)x^{\lambda - n - 1}$.

Donc $\lim_{x\to 0^+} |f^{(n+1)}(x)| = +\infty$, et f n'est pas de classe C^{∞} .

Si
$$\lambda \in \mathbb{C}$$
, pour $n > \text{Re}(\lambda)$, $\lim_{x \to 0^+} \left| f^{(n)}(x) \right| = +\infty$.

Si maintenant $0 \in \mathring{I}$, on fait pareil.

Attention : il y a un problème de raccordement en 0 :

On coupe
$$I$$
 en deux :
$$\begin{cases} I_1 = I \cap \mathbb{R}_+^* \\ I_2 = I \cap \mathbb{R}_-^* \end{cases}$$

Si $D(f) = \lambda f$, on trouve deux constantes K_1 , K_2 telles que:

$$(*) \begin{cases} \forall x \in I_1, f(x) = K_1 x^{\lambda} \\ \forall x \in I_2, f(x) = K_2 |x|^{\lambda} \end{cases}$$

Comme $f_{I_1 \cup \{0\}}$ est de classe C^{∞} , $\lambda \in \mathbb{N}$.

Ainsi, tout entier est valeur propre car $x \mapsto x^{\lambda}$ est fonction propre associée.

Détermination de $\ker(D - \lambda Id)$ (pour $\lambda \in \mathbb{N}$)

f définie par (*) doit se raccorder de façon C^{∞} en 0.

C'est possible si et seulement si $K_1 = (-1)^{\lambda} K_2$

F) Diagonalisabilité et diagonalisation en dimension finie

On considère un \mathbb{K} -ev E de dimension n finie, $u \in L_{\mathbb{K}}(E)$, $A \in M_n(\mathbb{K})$.

1) Définition

Un endomorphisme $u \in L_{\mathbb{K}}(E)$ est dit diagonalisable lorsqu'il existe une base de E dans laquelle la matrice de u est diagonale.

2) Caractérisation

Théorème:

Soit $u \in L_{\mathbb{K}}(E)$, dim_{\mathbb{K}} $E = n < +\infty$.

Les assertions suivantes sont équivalentes :

- (1) u est diagonalisable
- (2) Il existe une base \mathfrak{B} de E constituée de vecteurs propres de u.
- (3) E est la somme (directe forcément) des sous-espaces propres de u.
- (4) La somme des dimensions des espaces propres de u est égale à n.

Démonstration:

(1) \Rightarrow (2) : Si la matrice de *u* dans $\mathfrak{B} = (v_1,...v_n)$ est

$$M_{\mathfrak{B}}(u) = \begin{pmatrix} \lambda_1 & (0) \\ & \ddots & \\ (0) & \lambda_n \end{pmatrix}, \text{ on a alors } \forall i \in [[1, n]], u(v_i) = \lambda_i v_i$$

 $(2) \Rightarrow (3)$: Soient $F_1,...F_p$ les sous-espaces propres de u.

Alors $\sum_{i=1}^p F_i$ est le sous-espace vectoriel $\operatorname{Vect}(\bigcup_{i=1}^p F_i)$. Comme $\bigcup_{i=1}^p F_i$ contient une base de E (d'après 2), on a bien $\sum_{i=1}^p F_i = E$.

(3) \Rightarrow (4) : Si $E = F_1 \oplus ... \oplus F_p$ où $F_1,...F_p$ sont les sous-espaces propres de u, alors $\dim_{\mathbb{R}} E = n = \sum_{i=1}^p F_i$.

 $(4) \Rightarrow (1) : \text{Si } \dim_{\mathbb{K}} E = \sum_{i=1}^p F_i \text{, comme les sous-espaces propres sont en}$ somme directe, on a $E = F_1 \oplus ... \oplus F_p$. Soit, pour $i \in [1, p]$, \mathfrak{B}_i une base de F_i .

Alors $\mathfrak{B} = \bigcup_{i=1}^{p} \mathfrak{B}_{i}$ est une base de E, et comme tout vecteur \vec{v} de \mathfrak{B} est dans l'un des F_{i} , $i \in [1, p]$, la matrice de u dans \mathfrak{B} est diagonale.

3) Projecteurs spectraux d'un endomorphisme diagonalisable

Définition:

Soit $u \in L_{\mathbb{K}}(E)$, diagonalisable de valeurs propres $\lambda_1,...\lambda_p$ deux à deux distinctes. On note $F_i = \ker(u - \lambda_i \operatorname{Id})$. On appelle *i*-ème projecteur spectral de u le projecteur sur F_i parallèlement à $G_i = \bigoplus_{j=1}^p F_j$.

Exemple:

Soit $u \in L_{\mathbb{R}}(E)$, projecteur sur F parallèlement à G où $F \oplus G = E$ et $F, G \neq \{0\}$.

On a:

$$sp(u) = \{0,1\}, ker(u - 0Id) = G, ker(u - Id) = F.$$

Donc *u* est diagonalisable car $E = F \oplus G$.

Les projecteurs spectraux de u sont :

u, projeté sur F parallèlement à G,

et Id - u, projeté sur G parallèlement à F.

Théorème:

Sous les hypothèses de la définition, on note π_i le projecteur sur F_i parallèlement à G_i .

Alors:

(1)
$$\pi_1 + ... + \pi_p = \text{Id}_E$$

(2)
$$\forall i \neq j, \pi_i \circ \pi_j = 0$$

(3)
$$u = \sum_{j=1}^{p} \lambda_j \pi_j$$
 (remarque : $F_j = \ker(u - \lambda_j \operatorname{Id}_E)$)

(4) Plus généralement :
$$\forall m \in \mathbb{N}, u^m = \sum_{j=1}^p \lambda_j^m \pi_j$$
,

Et pour tout $P = a_0 + ... + a_d X^d \in \mathbb{K}[X]$, on a :

$$a_0 \operatorname{Id}_E + ... + a_d u^d = \widetilde{P}(u) = \sum_{j=1}^p P(\lambda_j) \pi_j$$

Inversement, s'il existe des projecteurs π_i , i = 1...p vérifiant :

$$\sum_{j=1}^p \pi_j = \operatorname{Id}_E, \ \forall i \neq j, \pi_i \circ \pi_j = 0 \ \text{ et } \ u = \sum_{j=1}^p \lambda_j \pi_j \ \text{, alors } u \text{ est diagonalisable, et}$$
 ses valeurs propres sont les $\lambda_i, i \in [1, p]$.

Si de plus les λ_i sont deux à deux distincts, les projecteurs spectraux de u sont les $\pi_i, i \in [1, p]$.

Démonstration :

(2) On a pour
$$i, j \in [1, p]$$
 avec $i \neq j$: $\operatorname{Im} \pi_j = F_j \subset \ker \pi_i = \bigoplus_{k=1 \atop k \neq i}^p F_k$

Donc $\pi_i \circ \pi_j = 0$.

(1), (3): Pour tout
$$i \in [1, p]$$
 et $x \in F_i$, on a $\mathrm{Id}(x) = x$, et:

$$\pi_j(x) = \begin{cases} x & \text{si } j = i \\ 0 & \text{sinon} \end{cases}.$$

Donc
$$\sum_{j=1}^{p} \pi_{j}(x) = x = \text{Id}_{E}(x)$$
.

Et
$$\sum_{j=1}^{p} \lambda_j \pi_j(x) = \lambda_i x = u(x)$$
 (par définition de $F_i = \ker(u - \lambda_i \operatorname{Id})$)

D'où le résultat puisque $\sum_{j=1}^{p} \lambda_j \pi_j$ et u, $\sum_{j=1}^{p} \pi_j$ et Id_E , coïncident sur tous les

$$F_i$$
, donc sur $\bigoplus_{i=1}^p F_i = E$.

(4) Montrons par récurrence que
$$\forall k \in \mathbb{N}, u^k = \sum_{j=1}^p \lambda_j^k \pi_j$$

Pour k = 0,1, le résultat a déjà été montré.

Soit
$$k \in \mathbb{N}$$
, supposons que $u^k = \sum_{j=1}^p \lambda_j^k \pi_j$.

Alors
$$u^{k+1} = u \circ u^k = \left(\sum_{j=1}^p \lambda_j \pi_j\right) \circ \left(\sum_{j=1}^p \lambda_j^k \pi_j\right) = \sum_{i,j=1}^p \lambda_j \lambda_i^k \underbrace{\pi_j \circ \pi_i}_{\delta_i, \pi_i} = \sum_{j=1}^p \lambda_j^{k+1} \pi_j$$

Ce qui achève la récurrence; puis, par combinaison linéaire, on a $\forall P \in \mathbb{K}[X], \widetilde{P}(u) = \sum_{i=1}^p P(\lambda_j) \pi_j \; .$

Pour la réciproque :

Supposons que
$$\forall i, j \in [1, p]$$
 $\pi_i \circ \pi_j = \delta_{i,j} \pi_i$, $\sum_{i=1}^p \pi_j = \mathrm{Id}_E$ et $u = \sum_{i=1}^p \lambda_j \pi_j$.

Il faut montrer que u est diagonalisable et que si les λ_i sont deux à deux distincts, les projecteurs spectraux de u sont les π_i .

Posons pour $i \in [1, p]$, $F_i = \operatorname{Im} \pi_i$.

Comme π_i est un projecteur, on a $\forall x \in F_i, \pi_i(x) = x$

De plus, pour
$$i, j \in [1, p]$$
 avec $j \neq i$ et $x \in F_i$, $\pi_j(x) = \underbrace{\pi_j \circ \pi_i}_{=0}(x) = 0$.

Ainsi, pour $i \in [1, p]$: $\forall x \in F_i, u(x) = \lambda_i \pi_i(x) = \lambda_i x$.

Donc tout vecteur non nul de F_i est propre pour u.

Or, pour tout
$$y \in E$$
, $y = \sum_{i=1}^{p} \pi_i(y) \in \sum_{i=1}^{p} F_i$.

Ainsi, l'ensemble des vecteurs propres de u engendre E, donc u est diagonalisable.

On cherche maintenant les vecteurs propres et valeurs propres :

Equation aux éléments propres : $u(\vec{x}) = \lambda \vec{x}$ pour $\vec{x} \neq \vec{0}$.

On a
$$\vec{x} = \sum_{i=1}^{p} \pi_i(\vec{x})$$
 et $u(\vec{x}) = \sum_{i=1}^{p} \lambda_i \pi_i(\vec{x})$.

De plus, la somme $\sum_{i=1}^p F_i$ est directe. En effet, si $f_1 + ... + f_p = \vec{0}$ pour $(f_1,...f_p) \in F_1 \times ... \times F_p$, alors pour tout $k \in [1,p]$, $\vec{0} = \pi_k(f_1 + ... + f_p) = f_k$ car $\pi_k(f_i) = \vec{0}$ si $i \neq k$.

Donc $u(x) = \lambda x$ équivaut à $\sum_{i=1}^{p} \lambda_i \pi_i(\vec{x}) = \sum_{i=1}^{p} \lambda \pi_i(\vec{x})$, c'est-à-dire par unicité de la décomposition dans $\bigoplus_{i=1}^{p} F_i$, $\forall i \in [1, p], (\lambda_i - \lambda)\pi_i(x) = 0$ (*).

Discussion:

- Si $\forall i \in [1, p], \lambda \neq \lambda_i$, alors $\forall i \in [1, p], \pi_i(x) = 0$. Donc $u(x) = \lambda x$ équivaut à x = 0, donc $\lambda \notin \text{sp}(u)$.
- Si les λ_i sont distincts deux à deux, et si $\lambda = \lambda_{i_0}$ pour $i_0 \in [1, p]$, (*) équivaut à $\forall i \neq i_0, \pi_i(x) = 0$, c'est-à-dire à $x = \pi_{i_0}(x) \in F_{i_0}$.

Autrement dit, λ_{i_0} est valeur propre de u et le sous-espace propre associé est F_{i_0} . Ainsi, les π_i sont les projecteurs spectraux de u.

Remarque: si les λ_i ne sont pas tous distincts, u est diagonalisable, ses valeurs propres sont les λ_i mais les sous-espaces propres ne sont pas les F_i , mais les $E_{\lambda}(u) = \bigoplus_{\substack{i \text{ tel que} \\ \lambda_i = \lambda}} F_i$.

4) Cas des matrices

Définition:

 $A \in M_n(\mathbb{K})$ est dite diagonalisable lorsqu'elle est semblable à une matrice diagonale, c'est-à-dire qu'il existe $P \in GL_n(\mathbb{K})$ tel que D soit diagonale, où $D = P^{-1}AP$.

Théorème (lien entre matrices et endomorphismes):

- (1) $A \in M_n(\mathbb{K})$ est diagonalisable si et seulement si l'endomorphisme $u_A: M_{n,1}(\mathbb{K}) \to M_{n,1}(\mathbb{K})$ est diagonalisable. $X \mapsto A \times X$
- (2) Pour un \mathbb{K} -ev E de dimension n, $u \in L_{\mathbb{K}}(E)$, une base \mathfrak{B} de E, et en posant $A = \operatorname{mat}_{\mathfrak{B}}(u)$:
 - u est diagonalisable si et seulement si A est diagonalisable
 - $\operatorname{sp}(u) = \operatorname{sp}(A)$
- $\vec{v} \in E \setminus \{0\}$ est valeur propre de u associée à $\lambda \in \mathbb{K}$ si et seulement si $\max_{\mathfrak{B}}(\vec{v})$ est vecteur propre de A associé à λ .

Démonstration:

Déjà, il suffit d'établir (2) : avec $A = \text{mat}_{cano}(u)$, on a (2) \Rightarrow (1).

Montrons alors (2):

- Si *u* est diagonalisable, il existe \mathfrak{B}' telle que $\max_{\mathfrak{B}'}(u) = D$ est diagonale.

Mais alors $D = P^{-1}AP$, P étant la matrice de passage de \mathfrak{B} à \mathfrak{B} '.

Donc A est diagonalisable.

- Réciproquement, si A est diagonalisable, alors $A = PDP^{-1}$ où D est diagonale.

Soit \mathfrak{B} ' une base de E telle que la matrice de passage de \mathfrak{B} à \mathfrak{B} ' soit P.

Alors $mat_{sy}(u) = P^{-1}AP = D$. Donc *u* est diagonalisable.

5) Pratique de la diagonalisation

Définition:

Diagonaliser un endomorphisme, c'est trouver une base de vecteurs propres. Diagonaliser une matrice $A \in M_n(\mathbb{K})$, c'est trouver $P \in GL_n(\mathbb{K})$ et D diagonale telle que $A = PDP^{-1}$.

Problème:

Pour chaque valeur propre λ de u, on détermine une base \mathfrak{B}_{λ} de l'espace propre $E_{\lambda}(u)$. Alors $\bigcup_{\lambda \in \mathfrak{M}(u)} \mathfrak{B}_{\lambda}$ est libre.

Il y a alors deux cas:

Soit $\# \bigcup_{\lambda \in \operatorname{sp}(u)} \mathfrak{B}_{\lambda} = \dim E$, et u est donc diagonalisable, $\bigcup_{\lambda \in \operatorname{sp}(u)} \mathfrak{B}_{\lambda}$ étant une base

de vecteurs propres.

Soit $\# \bigcup_{\lambda \in \operatorname{sp}(u)} \mathfrak{B}_{\lambda} < \dim E$, et u n'est pas diagonalisable.

NB : pour $A \in M_n(\mathbb{K})$, considérer l'endomorphisme u_A de $M_{n,1}(\mathbb{K})$.

Remarque:

Parfois (surtout en dimensions petites 2, 3, 4), on a intérêt à commencer par calculer le polynôme caractéristique.

On verra plus tard aussi le théorème spectral :

Toute matrice symétrique réelle est (orthogonalement) diagonalisable.

6) Exemples

- Tout projecteur est diagonalisable
- Si K n'est pas de caractéristique 2, toute symétrie est diagonalisable.
- Exercice : soit $p \in \mathbb{N}$, $E = \mathbb{R}_p[X]$ et $n \in \mathbb{N}$.

On pose
$$u: E \to \mathbb{R}[X]$$

 $P \mapsto (X^2 - 1)P' + n(X - 1)P$

Pour quelles valeurs de p u est-il un endomorphisme de $\mathbb{R}_p[X]$?

Quelles sont alors ses valeurs propres, vecteurs propres; u est-il diagonalisable?

Déjà, u est linéaire

Soit
$$P \in \mathbb{R}_p[X]$$
.

Alors $deg(u(P)) \le p+1$, et le coefficient de X^{p+1} vaut $a_p(p-n)$

Ainsi, $u \in L(E)$ si et seulement si p = n.

Equation aux éléments propres :

$$u(P) = \lambda P \Leftrightarrow (X^2 - 1)P' = (nX - \lambda - n)P (e)$$

Résolution de l'équation différentielle :

On pose I =]-1;1[.

Sur
$$I$$
, $(e) \Leftrightarrow P'(x) = \frac{nx + \lambda - n}{x^2 - 1} P(x)$.

Calcul d'une primitive de $x \mapsto \frac{nx + \lambda - n}{x^2 - 1}$:

$$\frac{nx + \lambda - n}{x^2 - 1} = 0 + \frac{a}{x - 1} + \frac{b}{x + 1}.$$

On a
$$a = \frac{R(1)}{Q'(1)} = \frac{\lambda}{2}$$
 et $b = \frac{R(-1)}{Q'(-1)} = n - \frac{\lambda}{2}$ (où $R = nX - \lambda - n$, $Q = X^2 - 1$)

Ainsi, une primitive de
$$x \mapsto \frac{nx + \lambda - n}{x^2 - 1}$$
 est $x \mapsto \frac{\lambda}{2} \ln|x - 1| + (n - \frac{\lambda}{2}) \ln|x + 1|$.

La solution générale sur I de (e) est donc :

$$P = K|x-1|^{\lambda/2}|x+1|^{n-\lambda/2}$$
.

Comme $P \in \mathbb{R}_n[X]$,

- Si $\frac{\lambda}{2}$ et $n - \frac{\lambda}{2}$ sont entiers, alors λ s'écrit $\lambda = 2p, p \in [0, n]$.

Ainsi, la solution générale sur I de (e) est :

$$P = K(1-X)^{p}(X+1)^{n-p}$$
.

Inversement, si $P = K(1-X)^p (X+1)^{n-p}$, alors P vérifie (e) sur \mathbb{R} , puisqu'il le vérifie sur *I* qui est infini (et *P* est un polynôme)

- Si $\frac{\lambda}{2} \notin \mathbb{N}$ ou $n \frac{\lambda}{2} \notin \mathbb{N}$, alors $P = K|X-1|^{\lambda/2}|X+1|^{n-\lambda/2}$ est polynomial si et seulement si K = 0, et dans ce cas λ n'est pas valeur propre.
- Ainsi, $sp(u) \subset \{0,2,...2n\}$.

Réciproquement, si $\lambda = 2p, p \in [1, n]$, alors $L_n = (X-1)^p (X+1)^{n-p}$ vérifie bien $u(L_p) = \lambda L_p$.

Donc λ est valeur propre de u et $\operatorname{vect}(L_p) \subset E_{\lambda}(u)$.

Enfin, $E_{\lambda}(u)$ est de dimension 1 car dim $\mathbb{R}_{n}[X] = n+1$ et on a n+1 valeurs propres distinctes.

Comme
$$\bigoplus_{\lambda \in \operatorname{sp}(u)} E_{\lambda}(u) \subset \mathbb{R}_n[X]$$
, on a donc $n+1 \ge \sum_{\lambda \in \{0,\dots 2n\}} \underline{\dim E_{\lambda}(u)}$

$$\begin{split} \text{Et donc } n+1 &= \sum_{\lambda \in \{0,\dots 2n\}} \dim E_\lambda(u) \text{ , soit } \bigoplus_{\lambda \in \operatorname{sp}(u)} E_\lambda(u) = \mathbb{R}_n[X] \\ \text{Conclusion : les valeurs propres de } u \text{ sont } \{0,2,\dots 2n\}, \text{ et } E_\lambda(u) = \operatorname{Vect}(L_p) \text{ .} \end{split}$$

Donc u est diagonale dans la base $(L_p)_{p \in [|1,n|]}$.

• On considère la matrice :

$$A = \begin{pmatrix} 0 & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & & 1 & 0 \end{pmatrix} \in M_n(\mathbb{R}).$$

Alors A est orthogonalement diagonalisable car symétrique réelle. Equation aux éléments propres :

$$AX = \lambda X, \quad X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

$$\Leftrightarrow (S) : \begin{cases} x_2 = \lambda x_1 \\ x_1 + x_3 = \lambda x_2 \\ \vdots \\ x_{n-2} + x_n = \lambda x_{n-1} \\ x = \lambda x \end{cases}$$

Idée : utiliser les suites récurrentes linéaires :

On pose $x_0 = x_{n+1} = 0$

Ainsi,
$$AX = \lambda X \Leftrightarrow \forall i \in [2, n], x_{i-1} + x_i = \lambda x_{i-1}$$
 (*).

Equation caractéristique : $X^2 - \lambda X + 1 = 0$ (E)

$$\Delta = \lambda^2 - 4$$
.

Pour $|\lambda|$ < 2 (d'après le théorème de localisation, les valeurs propres sont de module ≤ 2)

On pose
$$\theta = \operatorname{Arccos}\left(\frac{\lambda}{2}\right) \in \left]0, \pi\right[.$$

Les racines de (E) sont $e^{i\theta}$, $e^{-i\theta}$.

Les suites vérifiant (*) sont donc de la forme $x_n = \alpha e^{in\theta} + \beta e^{-in\theta}$.

Or, $x_0 = \alpha + \beta = 0$, donc $\beta = -\alpha$, puis $x_{n+1} = \alpha (e^{i(n+1)\theta} - e^{-i(n+1)\theta}) = 0$, donc $2i\alpha \sin((n+1)\theta) = 0$.

Discussion:

- Si $\sin((n+1)\theta) \neq 0$, alors $\alpha = 0$, donc la seule solution du système est $X = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$. Donc λ n'est pas valeur propre.
- Sinon

$$\sin((n+1)\theta) = 0 \Leftrightarrow \theta = \frac{k\pi}{n+1}, k \in [1, n].$$

Donc $(S) \Leftrightarrow \exists \alpha \in \mathbb{C}, \forall j \in [1, n], x_j = 2i\alpha \sin j\theta$

Ainsi, $\lambda = 2\cos\frac{k\pi}{n+1}$ est valeur propre, et l'espace propre associé est

engendré par
$$\begin{pmatrix} \sin \theta \\ \sin 2\theta \\ \vdots \\ \sin n\theta \end{pmatrix}$$
 avec $\theta = \operatorname{Arccos}\left(\frac{\lambda}{2}\right)$.

On a donc trouvé n valeurs propres distinctes, et on n'a pas besoin d'étudier le cas $|\lambda| \ge 2$. Ainsi, $\operatorname{sp}(A) = \left\{ 2 \cos \frac{k\pi}{n+1}, k \in \left[|1, n| \right] \right\}$.

II Polynômes d'endomorphismes et de matrices carrées

A) Cas général d'une K-algèbre

1) Définition

Soit A une \mathbb{K} -algèbre unitaire. Pour $A_0 \in A$ et $P = \sum_{j=0}^d \alpha_j X^j \in \mathbb{K}[X]$, on pose $\widetilde{P}(A_0) = \sum_{j=0}^d \alpha_j A_0^j$, où $A_0^0 = 1_A$, neutre pour \times de A.

2) Morphisme d'évaluation

Proposition:

- (1) L'application $Ev_{A_0}: \mathbb{K}[X] \to A$ est un morphisme d'algèbres. $P \mapsto \widetilde{P}(A_0)$
- (2) Son image est la sous-algèbre de A engendrée par A_0 , notée $\mathbb{K}[A_0]$.

Démonstration:

(1) Ev_{A_0} est linéaire...

Pour
$$P = \sum_{j=0}^{d} \alpha_j X^j \in \mathbb{K}[X]$$
 et $n \in \mathbb{N}$,

$$Ev_{A_0}(P \times X^n) = Ev_{A_0}\left(\sum_{j=0}^d \alpha_j X^{j+n}\right) = \sum_{j=0}^d \alpha_j A_0^{j+n} = Ev_{A_0}(P) \times Ev_{A_0}(X^n)$$

D'où le résultat pour $P,Q \in \mathbb{K}[X]$ par linéarité. (2)...

Remarque:

En général, Ev_{A_0} n'est pas surjectif car $\mathbb{K}[A_0]$ est toujours commutative

(Si $\varphi: (A,+,\times,\cdot) \to (A',+,\times,\cdot)$ est un morphisme d'algèbres où A est commutatif, alors $\varphi(A)$ est commutative)

3) Noyau du morphisme d'évaluation, polynômes annulateurs, polynôme minimal

Théorème :

 $\ker Ev_{A_0}$ est un idéal de l'anneau $\mathbb{K}[X]$ (puisque Ev_{A_0} est en particulier un morphisme d'anneau).

On a en plus deux cas:

- (1) Si Ev_{A_0} est injectif, alors $\mathbb{K}[X] \to \mathbb{K}[A_0]$ est un isomorphisme de \mathbb{K} - $P \mapsto \widetilde{P}(A_0)$
 - algèbres. En particulier, $\{A_0^k, k \in \mathbb{N}\}$ est libre.
- (2) Il existe un polynôme unitaire μ_0 , appelé polynôme minimal de A_0 tel que $\ker Ev_{A_0} = \mu_0 \mathbb{K}[X]$. Si on note de plus $d = \deg \mu_0$, on a $d \ge 1$ et $\left\{1_4,...A_0^{d-1}\right\}$ est une base de $\mathbb{K}[A_0]$.

Dans le premier cas, A_0 est dit transcendant ; dans le deuxième, A_0 est dit algébrique.

Remarque:

- Dans le deuxième cas, Ev_{A_0} se factorise par l'idéal $\mu_0 \mathbb{K}[X]$ en un isomorphisme de \mathbb{K} -algèbres $\mathbb{K}[X]/\mu_0 \mathbb{K}[X] \to \mathbb{K}[A_0]$.
- Si $A_0, B_0 \in A$ ont le même polynôme minimal μ , alors $\mathbb{K}[A_0]$ et $\mathbb{K}[B_0]$ sont isomorphes.

Démonstration (du théorème):

 $\ker Ev_{A_0}$ est un idéal de $\mathbb{K}[X]$, donc de la forme $\mu\mathbb{K}[X]$.

Si $\mu = 0$, Ev_{A_0} est injectif et établit un isomorphisme de $\mathbb{K}[X]$ sur son image à savoir $\mathbb{K}[A_0]$.

Si $\mu \neq 0$: il existe un unique μ_0 unitaire tel que $\ker Ev_{A_0} = \mu_0 \mathbb{K}[X]$, à savoir $\mu_0 = \frac{1}{\text{t.dominant}} \mu$.

On peut supposer que $\mu = \mu_0$. On pose $d = \deg \mu$.

Si d=0, cela signifie que $\mu=1$, c'est-à-dire $Ev_{A_0}(1)=0$, ce qui est impossible car $Ev_{A_0}(1)=1$, $\neq 0$.

Montrons maintenant que $u = Ev_{A_0/\mathbb{R}_{d-1}[X]}$ est un isomorphisme de \mathbb{K} -ev.

Déjà, u est injectif:

 $\ker u = \ker Ev_{\scriptscriptstyle A_0} \cap \mathbb{K}_{\scriptscriptstyle d-1}[X] = \mu \mathbb{K}[X] \cap \mathbb{K}_{\scriptscriptstyle d-1}[X] = \{0\} \text{ car } \deg \mu = d \ .$

De plus, *u* est surjectif:

Soit $B = \widetilde{P}(A_0) \in \mathbb{K}[A_0]$, où $P \in \mathbb{K}[X]$.

La division euclidienne de P par μ donne :

 $B = R \times \mu + S$ où $\deg S \le d - 1$.

Donc $B = \widetilde{P}(A_0) = \widetilde{R}(A_0) \times \widetilde{\mu}(A_0) + \widetilde{S}(A_0) = \widetilde{S}(A_0)$.

Donc B = u(S).

Donc u est un isomorphisme, et dim $\mathbb{K}[A_0] = d$.

B) Cas des endomorphismes et des matrices carrées

• On prend pour A l'une des algèbres $A = (L_{\mathbb{K}}(E), +, \circ, \cdot)$, $1_A = \mathrm{Id}_E$ ou $A = (M_n(\mathbb{K}), +, \times, \cdot)$, $1_A = I_n$.

Soit
$$P = \sum_{j=0}^{d} \alpha_j X^j \in \mathbb{K}[X]$$

Pour $u \in L_{\mathbb{K}}(E)$, $A \in M_n(\mathbb{K})$, on a:

$$\widetilde{P}(u) = \alpha_0 \operatorname{Id}_E + \alpha_1 u + ... + \alpha_d u^d$$
, $\widetilde{P}(A) = \alpha_0 I_n + \alpha_1 A + ... + \alpha_d A^d$.

On appelle polynôme annulateur de u / de A tout polynôme $P \in \mathbb{K}[X]$ tel que $\widetilde{P}(u) = 0 \in L_{\mathbb{K}}(E)$ / $\widetilde{P}(A) = 0 \in M_n(\mathbb{K})$.

Le morphisme d'évaluation est ici le morphisme d'algèbres :

$$P \in \mathbb{K}[X] \mapsto \widetilde{P}(u) / \widetilde{P}(A) \in L_{\mathbb{K}}(E) / M_n(\mathbb{K})$$

• Propriétés particulières :

Proposition:

- En dimension $n \ge 2$, le morphisme n'est jamais surjectif.
- En dimension $n < +\infty$, il n'est jamais injectif.

Démonstration:

Si $\dim E \ge 2$, $(L_{\mathbb{K}}(E),+,\circ,\cdot)$ n'est pas commutative.

Si $\dim E = n < +\infty$, alors $Ev_u : P \in \mathbb{K}[X] \mapsto \widetilde{P}(u) \in L_{\mathbb{K}}(E)$ n'est pas injectif car $\{u^n = Ev_u(X^n)\}$ n'est pas libre, car infinie dans un espace de dimension finie.

Idem pour $M_n(\mathbb{K})$.

• Cas de la dimension finie :

Soit $u \in L_{\mathbb{K}}(E)$ avec $\dim_{\mathbb{K}} E = n < +\infty$ (ou $u \in M_n(\mathbb{K})$)

On sait que $Ev_u: P \mapsto \widetilde{P}(u)$ n'est pas injectif.

Donc ker Ev_n est un idéal, de la forme $\mu.\mathbb{K}[X]$, où μ est unitaire de degré ≥ 1 .

Alors μ est le polynôme minimal de u (noté min(u) ou min $_u$)

L'idéal μ . $\mathbb{K}[X] = \ker Ev_u$ est l'idéal annulateur, c'est l'ensemble des polynômes annulateurs de u.

Remarque:

min(u) est le polynôme unitaire annulateur de plus petit degré.

C) Exemple

• Projecteurs:

 $u \in L_{\mathbb{K}}(E)$ (E quelconque) est un projecteur si et seulement si $X^2 - X$ est annulateur de u.

En effet, u est un projecteur si et seulement si $u \circ u - u = 0$.

Polynôme minimal?

Déjà, c'est un polynôme unitaire divisant $X^2 - X$.

- Soit min(u) = X et u = 0,
- Soit min(u) = X 1 et $u = Id_E$
- Soit $min(u) = X^2 X$, et *u* n'est ni nul ni l'identité.
- Dérivation de $\mathbb{K}[X] : D: P \mapsto P'$ (en caractéristique 0)

Soit
$$P = \sum_{j=0}^{d} \alpha_{j} X^{j} \in \mathbb{K}[X]$$
; ainsi $\widetilde{P}(D) \in L_{\mathbb{K}}(\mathbb{K}[X])$.

Pour $M \in \mathbb{K}[X]$:

$$\widetilde{P}(D)(M) = \alpha_0 M + \alpha_1 M' + \dots + \alpha_d M^{(d)}$$

Si
$$P \neq 0_{\mathbb{K}[X]}$$
, alors $\widetilde{P}(D) \neq 0_{L_{\mathbb{K}}(E)}$.

En effet, pour $M = X^d$:

$$\widetilde{P}(D)(M) = \alpha_0 X^d + d\alpha_1 X^{d-1} + \dots + \alpha_d d!$$

Donc
$$\widetilde{P}(D)(M) = 0 \Leftrightarrow \forall j \in [0,d], d \times ... \times (d-j+1)\alpha_j = 0 \Leftrightarrow P = 0$$

(car on est en caractéristique 0)

• $u \in L_{\mathbb{R}}(E)$ est dit nilpotent s'il existe $p \in \mathbb{N}^*$ tel que $u^p = 0$, c'est-à-dire X^p est annulateur de u.

Propriété:

u est nilpotent si et seulement si il admet un polynôme minimal de la forme X^r ; r s'appelle alors l'indice de nilpotence de u.

Même définition et propriété pour les matrices carrées.

Exemples:

$$A = \begin{pmatrix} 0 & 1 & (0) \\ & \ddots & \ddots \\ & & \ddots & 1 \\ (0) & & 0 \end{pmatrix} \in M_n(\mathbb{R}) \text{ est nilpotente (matrice de Jordan)}$$

On a: $A^n = 0$, et $A^{n-1} \neq 0$. En effet, A est la matrice dans la base canonique de $u: \mathbb{K}^n \to \mathbb{K}^n$. Pour $j \in [1, n]$, A^j est la matrice dans la base canonique de $(x_1, ..., x_n) \mapsto (x_2, ..., x_{n-1}, 0)$

$$u^{j}: \mathbb{K}^{n} \to \mathbb{K}^{n} (x_{1},...x_{n}) \mapsto (x_{j+1},...x_{n-1},0,...0).$$

Comme $u^{n-1}(x_1,...x_n) = (x_n,0...,0)$, on a $u^{n-1} \neq 0$, et $u^n = 0$.

 $\Delta: \mathbb{K}[X] \to \mathbb{K}[X]$, \mathbb{K} étant de caractéristique p non nulle, est nilpotente.

En effet,
$$\Delta^{p}(X^{k}) = k \times (k-1)...(k-p+1)X^{k-p} = 0$$
:

Si
$$k \le p-1$$
, ok

Si $k \ge 1$, alors l'un des p entiers consécutifs $k, \dots, (k-p+1)$ est multiple de p.

D) Réduction de Jordan des nilpotents en dimension finie

Théorème:

Soit E un \mathbb{K} -ev de dimension finie n.

Soit $u \in L_{\mathbb{K}}(E)$, nilpotent.

Alors:

- (1) $u^n = 0$
- (2) Si r est l'indice de nilpotence, on a $\{0\}$ \subsetneq $\ker u \subsetneq$ $\ker u^2 \dots \subsetneq$ $\ker u^r = E$
- (3) $d_k = \dim \ker u^k$ est concave (et croissante): $\forall k \in \mathbb{N}^*, d_{k+1} d_k \le d_k d_{k-1}$

Démonstration :

(1) Soit *r* l'indice de nilpotence.

Alors $u^r = 0$, et $u^{r-1} \neq 0$. Soit $v \in E$ tel que $u^{r-1}(v) \neq 0$.

Alors $(v, u(v)...u^{r-1}(v))$ est libre.

En effet : soient $\lambda_0, ... \lambda_{r-1} \in \mathbb{K}$, supposons que $\sum_{i=0}^{r-1} \lambda_i u^i(v) = 0$.

Alors en appliquant u^{r-1} , il reste $\lambda_0 u^{r-1}(v) = 0$, donc $\lambda_0 = 0$, Donc... la famille est libre, et $r \le n$, d'où $u^n = 0$

Remarque : c'est une application du théorème de Cayley-Hamilton (plus tard)

(2) On a déjà $\forall i \in [0, r-1]$, $\ker u^i \subset \ker u^{i+1}$.

On a aussi $\ker u^r = E$ et $\ker u^{r-1} \neq E$.

On va montrer que si $\ker u^i = \ker u^{i+1}$ pour $i \in \mathbb{N}^*$, alors $\forall j \ge i, \ker u^j = \ker u^i$, ce qui établira le résultat voulu puisque cela signifie alors que $i \ge r$

Par récurrence :

Si
$$j = i$$
, ok; si $j = i + 1$, ok.

Supposons que pour $j \ge i$, $\ker u^j = \ker u^i$.

Soit alors $x \in \ker u^{j+1}$. Alors $u^{j+1}(x) = 0$. Donc $u(x) \in \ker u^{j}$. Donc $u(x) \in \ker u^{i}$. Donc $x \in \ker u^{i+1} = \ker u^{i}$.

Donc $\ker u^{j+1} \subset \ker u^i$, et on a l'égalité, l'autre inclusion étant vraie.

(3) Soit $k \in \mathbb{N}^*$, montrons que $d_{k+1} - d_k \le d_k - d_{k-1}$.

On a $d_{k+1} - d_k = \dim \ker u^{k+1} - \dim \ker u^k = \dim \ker \widetilde{u}_k$, où $\widetilde{u}_k = u_{/\operatorname{Im} u^k}$.

En effet:

 $\dim \operatorname{Im} u^k = \dim \ker \widetilde{u}_k + \dim \operatorname{Im} \widetilde{u}_k$ (on est en dimension finie).

Comme $\operatorname{Im} \widetilde{u}_k = \operatorname{Im} u^{k+1}$, on a $\dim \operatorname{Im} u^k = \dim \ker \widetilde{u}_k + \dim \operatorname{Im} u^{k+1}$,

soit dim $E - d_k = \dim \ker \widetilde{u}_k + \dim E - d_{k+1}$ ou $d_{k+1} - d_k = \dim \ker \widetilde{u}_k$

Et $d_k - d_{k-1} = \dim \ker \widetilde{u}_{k-1}$.

Montrons maintenant que $\ker \widetilde{u}_{\scriptscriptstyle k} \subset \ker \widetilde{u}_{\scriptscriptstyle k-1}$, ce qui montrera l'inégalité.

On a: $\operatorname{Im} u^{k-1} \supset \operatorname{Im} u^k$. Donc $\widetilde{u}_k = u_{/\operatorname{Im} u^k} = (u_{/\operatorname{Im} u^{k-1}})_{/\operatorname{Im} u^k} = \widetilde{u}_{k-1/\operatorname{Im} u^k}$

Soit $\ker \widetilde{u}_k = \ker \widetilde{u}_{k-1} \cap \operatorname{Im} u^k$, donc $\ker \widetilde{u}_k \subset \ker \widetilde{u}_{k-1}$.

Autre démonstration du (3) :

Il suffit de montrer qu'un supplémentaire S_k de $\ker u^k$ dans $\ker u^{k+1}$ est de dimension inférieure ou égale à celle d'un supplémentaire de $\ker u^{k-1}$ dans $\ker u^k$:

Soit S_k tel que $S_k \oplus \ker u^k = \ker u^{k+1}$.

Alors $u(S_k) \subset u(\ker u^{k+1}) \subset \ker u^k$,

Et $u(S_k) \cap \ker(u^{k-1}) = \{0\}$ (En effet, soit $x \in S_k$ tel que $u(x) \in \ker u^{k-1}$. Alors $x \in S_k \cap \ker u^k = \{0\}$, donc x = 0 et u(x) = 0)

Donc comme de plus $u(S_k) \subset \ker u^k$ (et $\ker u^{k-1} \subset \ker u^k$), on a :

 $u(S_k) \oplus \ker u^{k-1} \subset \ker u^k$, et donc d'après le théorème de Grassmann, $\dim(u(S_k)) \le d_k - d_{k-1}$.

Or, $\dim(u(S_k)) = \dim(\operatorname{Im} u_{S_k}) = \dim S_k - \dim \ker u_{S_k}$.

Donc comme dim $\ker u_{/S_k} = \dim(\ker u \cap S_k) \le \dim(\ker u^k \cap S_k) = 0$, on a :

 $\dim(u(S_k)) = \dim S_k = d_{k+1} - d_k$, d'où l'inégalité voulue.

Théorème de Jordan (Hors programme) :

Soit *E* de dimension finie.

Si $u \in L_{\mathbb{K}}(E)$ est nilpotent, alors il existe une base \mathfrak{B} de E telle que :

$$O\dot{\mathbf{u}} \ J_k = \begin{pmatrix} 0 & 1 & & & & \\ 0 & 1 & & & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & \ddots & 1 \\ (0) & & & 0 \end{pmatrix} \in M_k(\mathbb{K}) \ (\text{et } J_1 = (0))$$

Démonstration:

On note r l'indice de nilpotence de u.

Soit S_{r-1} tel que $\ker u^{r-1} \oplus S_{r-1} = E$.

Alors comme dans la fin de la démonstration précédente :

$$u(S_{r-1}) \subset \ker u^{r-1} \text{ et } u(S_{r-1}) \cap \ker u^{r-2} = \{0\}.$$

Soit alors S_{r-2} contenant $u(S_{r-1})$ et tel que $S_{r-2} \oplus \ker u^{r-2} = \ker u^{r-1}$.

(C'est possible : prendre par exemple un supplémentaire S de $\ker u^{r-2} \oplus u(S_{r-1})$ dans $\ker u^{r-1}$. En posant $S_{r-2} = u(S_{r-1}) + S = u(S_{r-1}) \oplus S$, on a $S_{r-2} + \ker u^{r-2} = \ker u^{r-1}$ et la somme est directe)

On construit ainsi une suite $S_{r-1}...S_0$ telle que $\forall k \leq r-1$, on ait :

$$\begin{cases} S_k \oplus \ker u^k = \ker u^{k+1} \\ u(S_k) \subset S_{k-1} \end{cases}$$

Si on prend maintenant une base \mathfrak{B}_{r-1} de S_{r-1} , alors $u(\mathfrak{B}_{r-1})$ est une famille libre de $S_{r-2} \subset \ker u^{r-1}$ (car $u_{S_{r-1}}$ est injectif: $\ker u_{S_{r-1}} = \ker u \cap S_{r-1} \subset \ker u^{r-1} \cap S_{r-1} = \{0\}$).

On peut ainsi compléter $u(\mathfrak{B}_{r-1})$ en \mathfrak{B}_{r-2} , base de S_{r-2} .

Plus généralement, si \mathfrak{B}_{k+1} , base de S_{k+1} , est construite, $u(\mathfrak{B}_{k+1})$ est une famille libre de $S_k \subset \ker u^{k+1}$; on la complète en une base \mathfrak{B}_k de S_k .

Comme on a
$$\underbrace{S_0 \oplus S_1 \oplus \ldots}_{\ker u^i} \oplus S_i \oplus \ldots \oplus S_{r-1} = E$$
 , $\bigcup_{k=0}^{r-1} \mathfrak{B}_k$ est une base de E .

Il faut ensuite ordonner la base pour obtenir la matrice voulue...

Exemple sur un cas particulier:

Si
$$n = 6$$
 et $r = 3$:

On a
$$\{0\} \subsetneq \ker u \subsetneq \ker u^2 \subsetneq \ker u^3 = E$$

On note \mathfrak{B}_2 une base d'un supplémentaire de $\ker u^2$ dans E.

 $\mathfrak{B}_1 \supset u(\mathfrak{B}_2)$ une base d'un supplémentaire de ker u dans ker u^2 .

 $\mathfrak{B}_0 \supset u(\mathfrak{B}_1)$ une base d'un supplémentaire de $\{0\}$ dans $\ker u$.

Si par exemple
$$d_3 - d_2 = 1$$
, $d_2 - d_1 = 2$, $d_1 - d_0 = 3$ (# $\mathfrak{B}_2 = 1$, # $\mathfrak{B}_1 = 2$, # $\mathfrak{B}_0 = 3$), $\mathfrak{B}_2 = \{e_1\}$, $\mathfrak{B}_1 = \{u(e_1), e_2\}$, $\mathfrak{B}_0 = \{u^2(e_1), u(e_2), e_3\}$.

E) Polynômes annulateurs, valeurs propres

Lemme:

Soit $\lambda \in \mathbb{K}$, valeur propre de $u \in L_{\mathbb{K}}(E)$, et \vec{v} un vecteur propre associé à λ .

Alors pour tout $P \in \mathbb{K}[X]$, $P(\lambda)$ est valeur propre de $\widetilde{P}(u)$ et \vec{v} est vecteur propre associé, c'est-à-dire : $\widetilde{P}(u)(\vec{v}) = P(\lambda).\vec{v}$.

Démonstration:

Si $u(\vec{v}) = \lambda \cdot \vec{v}$, alors pour tout $n \in \mathbb{N}$, $u^n(\lambda) = \lambda^n \vec{v}$ (par récurrence)

Donc par combinaison linéaire, pour $P = \sum_{j=0}^{d} a_j X^j \in \mathbb{K}[X]$, on a :

$$\widetilde{P}(u)(\vec{v}) = \sum_{j=0}^{d} a_j u^j(\vec{v}) = \sum_{j=0}^{d} a_j \lambda^j \vec{v} = P(\lambda) \cdot \vec{v}.$$

Théorème:

Si $P \in \mathbb{K}[X]$ est annulateur de u, toute valeur propre de u est racine de P.

Complément (Hors programme) : si u admet le polynôme minimal $\mu \in \mathbb{K}[X]$, λ est valeur propre de u si et seulement si λ est racine de μ .

Remarque:

Plus généralement, si P est un facteur de μ (c'est-à-dire que μ est multiple de P), alors $\widetilde{P}(u)$ n'est pas injectif.

Démonstration:

Si $\widetilde{P}(u) = 0 \in L_{\mathbb{K}}(E)$ et $u(\vec{v}) = \lambda \vec{v}$ pour $\lambda \in \mathbb{K}$ et $\vec{v} \neq \vec{0}$, alors d'après le lemme, $\vec{0} = \widetilde{P}(u)(\vec{v}) = P(\lambda).\vec{v}$. Donc comme $\vec{v} \neq \vec{0}$, on a $P(\lambda)$.

Pour la remarque :

Supposons que $\mu = P \times Q$ où $\mu = \min_{\mu}$ et deg $P \ge 1$.

Alors $\widetilde{\mu}(u) = 0 \in L_{\overline{K}}(E)$. Donc $\widetilde{P}(u) \circ \widetilde{Q}(u) = 0$ (Ev_u est un morphisme d'algèbre)

Si $\widetilde{P}(u)$ était injectif, on aurait $\widetilde{Q}(u) = 0$, donc Q serait un multiple de μ ce qui est faux.

Pour le complément :

Déjà, comme μ est annulateur de u, toute valeur propre de u est racine de μ d'après le théorème. Inversement, si α est racine de μ , alors $X - \alpha$ divise μ , donc $(X - \alpha)(u) = \widetilde{u} - \alpha \operatorname{Id}$ n'est pas injectif, et α est bien valeur propre de u.

Exemples:

(1) Soit u un projecteur; alors $X^2 - X$ est annulateur de u donc les seules valeurs propres possibles sont 0 et 1.

Mais la réciproque n'est pas toujours vraie, par exemple 1 n'est pas valeur propre du projecteur nul.

(2) Si u est nilpotent, la seule valeur propre possible de u est 0, car il a un polynôme annulateur de la forme X^r avec $r \ge 1$.

Remarque:

Si dim $E \ge 1$ et si u est nilpotent, alors 0 est valeur propre de u. En effet, son polynôme minimal est aussi de la forme X^r , $r \ge 1$, dont 0 est racine.

F) Théorème de décomposition des noyaux

Pour ce théorème, E peut être de dimension quelconque :

Théorème:

(1) Soit $u \in L_{\kappa}(E)$.

Soient $P_1, P_2 \in \mathbb{K}[X]$ premiers entre eux.

Alors $\ker((P_1 \times P_2)(u)) = \ker \widetilde{P_1}(u) \oplus \ker \widetilde{P_2}(u)$

(2) Plus généralement, si $P_1,...P_k \in \mathbb{K}[X]$ sont premiers entre eux deux à deux,

alors
$$\ker\left(\left(\prod_{i=1}^k P_i\right)(u)\right) = \bigoplus_{i=1}^k \ker \widetilde{P}_i(u)$$
.

- On a $\ker \widetilde{P}_1(u) \subset \ker(P_1 \times P_2)(u)$ et $\ker \widetilde{P}_2(u) \subset \ker(P_1 \times P_2)(u)$.

En effet, $(P_1 \times P_2)(u) = (P_2 \times P_1)(u) = \widetilde{P}_2(u) \circ \widetilde{P}_1(u)$

- De plus, $\ker \widetilde{P}_1(u) \cap \ker \widetilde{P}_2(u) = \{0\}.$

On applique le théorème de Bézout :

Il existe $A, B \in \mathbb{K}[X]$ tels que $AP_1 + BP_2 = 1$.

Donc
$$\operatorname{Id}_{E} = (AP_{1} + BP_{2})(u) = \widetilde{A}(u) \circ \widetilde{P}_{1}(u) + \widetilde{B}(u) \circ \widetilde{P}_{2}(u)$$

Donc si $x \in \ker \widetilde{P}_1(u) \cap \ker \widetilde{P}_2(u)$, on a:

$$x = \widetilde{A}(u) \circ \underbrace{\widetilde{P}_{1}(u)(x)}_{=\widetilde{0}} + \widetilde{B}(u) \circ \underbrace{\widetilde{P}_{2}(u)(x)}_{=\widetilde{0}}.$$

Enfin, $\ker(\widetilde{P_{1} \times P_{2}})(u) \subset \ker \widetilde{P}_{1}(u) + \ker \widetilde{P}_{2}(u)$:

Si $x \in \ker(P_1 \times P_2)(u)$, alors:

$$x = \underbrace{\widetilde{A}(u) \circ \widetilde{P}_{1}(u)(x)}_{\in \ker \widetilde{P}_{2}(u)} + \underbrace{\widetilde{B}(u) \circ \widetilde{P}_{2}(u)(x)}_{\in \ker \widetilde{P}_{1}(u)}.$$
En effet, $\widetilde{P}_{2}(u)(\widetilde{P}_{1}(u) \circ \widetilde{A}(u)(x)) = (\widetilde{A}(u) \circ P_{1} \times P_{2}(u))(x) = 0$

En effet,
$$\widetilde{P}_2(u)(\widetilde{P}_1(u) \circ \widetilde{A}(u)(x)) = (\widetilde{A}(u) \circ P_1 \times P_2(u))(x) = 0$$

Exemple:

Si $u^2 = u$, on a : $E = \ker u \oplus \ker(u - \operatorname{Id}_E)$

$$X^2 - X = X(X - 1)$$
 est annulateur, et $X \wedge (X - 1) = 1$.

Donc
$$E = \ker X(\widetilde{X} - 1)(u) = \ker \widetilde{X}(u) \oplus \ker (\widetilde{X} - 1)(u) = \ker u \oplus \ker (u - \operatorname{Id}_E)$$

G) Application au caractère diagonalisable

(On est de nouveau en dimension finie)

Théorème:

Soit $u \in L_{\mathbb{K}}(E)$, E étant de dimension finie. Les assertions suivantes sont équivalentes:

- (1) u est diagonalisable
- (2) u admet un polynôme annulateur non nul scindé à racines simples
- (3) Le polynôme minimal de u est scindé à racines simples.

On a le même énoncé pour les matrices.

Complément (Hors programme):

Si u est diagonalisable de valeurs propres $\lambda_1,...\lambda_n$ deux à deux distinctes, alors

$$\min_{u} = \prod_{i=1}^{p} X - \lambda_{i} .$$

Démonstration:

 $(1) \Rightarrow (3)$: On va montrer le complément, ce qui établira l'implication:

Déjà,
$$\prod_{i=1}^{p} X - \lambda_i$$
 est annulateur.

En effet, notons
$$\left(\prod_{i=1}^{p} X - \lambda_{i}\right)(u) = (u - \lambda_{1} \operatorname{Id}) \circ ... \circ (u - \lambda_{p} \operatorname{Id}) = v$$

Donc v est nulle sur chaque $E_{\lambda_k} = \ker(u - \lambda_k \operatorname{Id})$.

Donc v est nulle sur E.

On a
$$\prod_{i=1}^{p} X - \lambda_i \left| \min_{u} \text{ car toute valeur propre de } u \text{ est racine de } \min_{u} .$$

D'autre part,
$$\prod_{i=1}^{p} X - \lambda_i$$
 est annulateur, donc $\min_{u} \left| \prod_{i=1}^{p} X - \lambda_i \right|$.

D'où
$$\min_{u} = \prod_{i=1}^{p} X - \lambda_{i}$$

$$(3) \Rightarrow (2) : ok...$$

(2)
$$\Rightarrow$$
 (1) : Soit $P = \prod_{i=1}^{n} X - \alpha_i$, les α_i étant deux à deux distincts.

Supposons que P est annulateur de u. Alors, d'après le théorème de décomposition des noyaux, $\ker \widetilde{P}(u) = E = \bigoplus_{i=1}^{n} \ker(X - \alpha_i \operatorname{Id})$

Or, $ker(X - \alpha_i Id)$ est soit un sous-espace propre de u, soit $\{0\}$.

Donc E est engendré par des vecteurs propres de u, donc u est diagonalisable.

Exercice:

Soit $A \in M_n(\mathbb{K})$, donner une condition nécessaire et suffisante sur A pour que $M = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ soit diagonalisable. Montrer que A est diagonalisable si et seulement si $u \in L_{\mathbb{K}}(M_n(\mathbb{K}))$ définie par $\forall X \in M_n(\mathbb{K}), u(X) = A \times X$ est diagonalisable.

On a:
$$M^k = \begin{pmatrix} A^k & kA^k \\ 0 & A^k \end{pmatrix}$$
, d'où $\forall P \in \mathbb{K}[X], P(M) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix}$.

Analyse:

Si M est diagonalisable, M admet un polynôme annulateur scindé à racines simples

$$P_{M}$$
, et $P_{M}(M) = 0 = \begin{pmatrix} P_{M}(A) & AP_{M}'(A) \\ 0 & P_{M}(A) \end{pmatrix}$, donc $\begin{cases} P_{M}(A) = 0 \\ AP'_{M}(A) = 0(*) \end{cases}$.

On a : $P_M \wedge P'_M = 1$ (car P_M est scindé à racines simples)

D'après le théorème de Bézout, il existe $U, V \in \mathbb{K}[X]$ tels que $P_M U + P'_M V = 1$.

Donc
$$\underbrace{P_M(A)}_{=0}U(A) + P'_M(A)V(A) = I_n$$
, soit $P'_M(A)V(A) = I_n$.

Ainsi, $P'_{M}(A)$ est inversible, et (*) devient A = 0.

Réciproquement, si A = 0, M est bien diagonal(isabl)e!

Soit
$$A \in M_n(\mathbb{K})$$
, $G_A : M_n(\mathbb{K}) \to M_n(\mathbb{K})$.
 $X \mapsto AX$

Alors A est diagonalisable si et seulement si G_A est diagonalisable.

En effet, $G_A \circ G_A = G_{A^2}$, d'où $\forall k \in \mathbb{N}, G_A^k = G_{A^k}$, puis $\forall P \in \mathbb{K}[X], \widetilde{P}(G_A) = G_{\widetilde{P}(A)}$.

(En fait, $A \in M_n(\overline{\mathbb{K}}) \mapsto G_A \in L_{\overline{\mathbb{K}}}(M_n(\overline{\mathbb{K}}))$ est un morphisme d'algèbres)

Si A est diagonalisable, $P=\min_A$ est scindé à racines simples, et $\widetilde{P}(G_A)=G_{\widetilde{P}(A)}=G_0=0$. Donc comme P est scindé à racines simples, G_A est diagonalisable.

Inversement, si G_A est diagonalisable, il existe $P \in \mathbb{K}[X] \setminus \{0\}$ scindé à racines simples tel que $\widetilde{P}(G_A) = 0$. Alors $\forall M \in M_n(\mathbb{K}), \widetilde{P}(A) \times M = 0$, et en particulier avec $M = I_n$, $\widetilde{P}(A) = 0$ donc A est diagonalisable.

H) Calcul de $\widetilde{P}(u)$ pour u diagonalisable

Théorème:

Soit $u \in L_{\mathbb{R}}(E)$ diagonalisable de valeurs propres $\lambda_1,...\lambda_k$ deux à deux distinctes, et les projecteurs spectraux π_j sur $\ker(u-\lambda_j\mathrm{Id})$ parallèlement à $\bigoplus_{i=1 \atop i \neq j}^k \ker(u-\lambda_j\mathrm{Id})$.

Pour tout $P \in \mathbb{K}[X]$, on a alors $\widetilde{P}(u) = \sum_{j=1}^{k} P(\lambda_j) \pi_j$.

Démonstration : vu en I.

III Utilisation du polynôme caractéristique (en dimension finie)

A) Trace et déterminant d'un endomorphisme

1) Cas d'une matrice carrée

Propriétés du déterminant et de la trace connues...

En particulier, si $A \in M_{n,p}(\mathbb{K})$ $B \in M_{p,n}(\mathbb{K})$, alors:

$$Tr(AB) = Tr(BA) = \sum_{i=1}^{n} \sum_{j=1}^{p} A_{i,j} B_{j,i}$$

En particulier, deux matrices semblables ont même trace et même déterminant.

2) Cas d'un endomorphisme

Définition:

La trace, le déterminant de $u \in L_{\mathbb{K}}(E)$ sont ceux de la matrice de u dans une base quelconque de E.

Il sont indépendants du choix de la base puisque si $A = \operatorname{mat}_{\mathfrak{B}}(u)$ et $A' = \operatorname{mat}_{\mathfrak{B}'}(u)$, alors $A' = P^{-1}AP$ où $P = \operatorname{mat}_{\mathfrak{B}}(\mathfrak{B}')$.

3) Définition intrinsèque de la trace et du déterminant d'un endomorphisme

On note $\Lambda(E)$ le \mathbb{K} -ev des formes $\varphi: E^p \to \mathbb{K}$ p-linéaires alternées.

Théorème:

Si $p = \dim E$, $\Lambda(E)$ est de dimension 1; pour toute base \mathfrak{B} de E, $\Lambda(E) = \mathbb{K} \det_{\mathfrak{B}}$ (voir théorie du déterminant, vue en sup).

Proposition:

Pour tout $u \in L_{\mathbb{K}}(E)$ et tout $\varphi \in \Lambda(E)$ $(n = \dim E)$, on définit les applications $\varphi_1, \varphi_2 : E^n \to \mathbb{K}$ par :

$$\varphi_1(v_1,...v_n) = \varphi(u(v_1),...u(v_n))$$

$$\varphi_2(v_1,...v_n) = \varphi(u(v_1),v_2...v_n) + \varphi(v_1,u(v_2)...v_n) + ... + \varphi(v_1,v_2...u(v_n))$$

Alors les applications $\stackrel{n}{\Lambda}(E) \to \stackrel{n}{\Lambda}(E)$ et $\stackrel{n}{\Lambda}(E) \to \stackrel{n}{\Lambda}(E)$ sont linéaires. Ce sont les homothéties de rapports respectifs det u et Tr(u), c'est-à-dire :

$$\forall \varphi \in \stackrel{n}{\Lambda}(E), \varphi_1 = (\det u)\varphi \text{ et } \varphi_2 = (\operatorname{Tr}(u))\varphi$$

Démonstration :

On vérifie que pour u et φ donnés, φ_1 et φ_2 sont n-linéaires (ok) et alternées :

Pour φ_1 , ok. Pour φ_2 :

$$\varphi_2(v_1, \dots, \underbrace{v_i}_i, \dots, \underbrace{v_i}_i, \dots, \underbrace{v_i}_i) = \varphi(v_1, \dots, \underbrace{u(v_i)}_i, \dots, \underbrace{v_i}_i, \dots, \underbrace{v_i}_i, \dots, \underbrace{v_i}_i, \dots, \underbrace{u(v_i)}_i, \dots, \underbrace{v_i}_i) + \varphi(v_1, \dots, \underbrace{v_i}_i, \dots, \underbrace{u(v_i)}_i, \dots, \underbrace{v_i}_i, \dots, \underbrace{v$$

(Les autres termes de la somme sont nuls car on a deux fois v_i et φ est alternée)

Mais comme φ est antisymétrique,

$$\varphi(v_1, \dots \underbrace{u(v_i)}_i, \dots \underbrace{v_i}_j, \dots v_n) = -\varphi(v_1, \dots \underbrace{v_i}_i, \dots \underbrace{u(v_i)}_j, \dots v_n)$$

Donc $\varphi_2(v_1,...v_i,...v_i,...v_n) = 0$, et φ_2 est bien alternée.

Ensuite:

 $\varphi\mapsto \varphi_1$ et $\varphi\mapsto \varphi_2$ sont linéaires par rapport à φ , et $\varphi\mapsto \varphi_1, \varphi\mapsto \varphi_2$ sont des endomorphismes de $\overset{n}{\Lambda}(E)$ qui est de dimension 1. Ce sont donc des homothéties.

Pour les rapports :

Soit \mathfrak{B} une base de E et on prend $\varphi = \det_{\mathfrak{B}}$.

Alors $\varphi_1:(v_1,...v_n)\mapsto \det_{\mathfrak{B}}(u(v_1),...,u(v_n))$ est une forme *n*-linéaire alternée.

On a
$$\varphi_1(\mathfrak{B}) = \det_{\mathfrak{B}}(u(e_1),...u(e_n)) = \det(\max_{\mathfrak{B}}(u)) = \det u$$

Donc φ_1 est la forme n-linéaire alternée telle que $\varphi_1(\mathfrak{B}) = \det u$ donc $\varphi_1 = \det u \times \det_{\mathfrak{B}}$.

Ensuite, pour $\varphi \in \Lambda$ quelconque, on a $\varphi = \lambda . \det_{\mathfrak{B}} \text{ pour } \lambda \in \mathbb{K}$, et donc :

$$\varphi_1(\mathfrak{B}) = \lambda \det_{\mathfrak{R}}(u(e_1),...u(e_n)) = \det(\max_{\mathfrak{R}}(u)) = \lambda \det u$$

Soit $\varphi_1 = \lambda . \det u . \det_{\mathfrak{B}} = \det u . \varphi$

Pour φ_2 : C'est la même chose avec

$$\varphi_2(\mathfrak{B}) = \det_{\mathfrak{B}}(u(e_1), ... e_n) + ... + \det_{\mathfrak{B}}(e_1, ... u(e_n))$$

$$= \begin{vmatrix} a_{1,1} & & & \\ \vdots & 1 & & \\ \vdots & & \ddots & \\ a_{n,1} & & 1 \end{vmatrix} + \begin{vmatrix} 1 & a_{1,2} & & \\ & \vdots & & \\ & \vdots & \ddots & \\ & a_{n,2} & & 1 \end{vmatrix} + \dots = a_{1,1} + a_{2,2} + \dots = \operatorname{Tr}(A) = \operatorname{Tr}(u)$$

B) Polynômes caractéristiques

1) Pour une matrice (cf I)

Définition:

Pour $A \in M_n(\mathbb{K})$, on a $A - XI_n \in M_n(\mathbb{K}[X])$

On pose alors $\chi_A = \det(A - XI_n) \in \mathbb{K}[X]$

Théorème:

 χ_A est un polynôme de degré n de terme dominant $(-1)^n$, de la forme

$$\chi_A = (-1)^n (X^n - \text{Tr}(A)X^{n-1} + ... + (-1)^n \det A)$$

 $\lambda \in \mathbb{K}$ est valeur propre de A si et seulement si $\chi_A(\lambda) = 0$

Démonstration : vu en I.

Propriété:

Deux matrices semblables ont même polynôme caractéristique.

En effet, si $A' = P^{-1}AP$,

$$\chi_{A'} = \det(P^{-1}AP - XI_n) = \det(P^{-1}(A - XI_n)P) = \dots \det(A - XI_n) = \chi_A$$

Proposition:

Pour $A, B \in M_n(\mathbb{K})$, on a $\chi_{AB} = \chi_{BA}$.

En effet, il suffit de vérifier que :

$$\begin{pmatrix} I_n & 0 \\ -B & I_n \end{pmatrix} \begin{pmatrix} AB - XI_n & A \\ 0 & XI_n \end{pmatrix} \begin{pmatrix} I_n & 0 \\ -B & I_n \end{pmatrix} = \begin{pmatrix} -XI_n & A \\ 0 & XI_n - BA \end{pmatrix}$$

Et alors $\det(...) = 1 \times \chi_{AB} X^n \times 1$ d'une part

Et $\det(...) = (-X)^n \det(XI_n - BA) = X^n \det(BA - XI_n) = X^n \chi_{BA}$ d'autre part.

Donc $\chi_{AB} = \chi_{BA}$

2) cas particulier

Théorème:

Si $A \in M_n(\mathbb{K})$ est trigonale (supérieure ou inférieure), alors

$$\chi_{A} = \prod_{i=1}^{n} (a_{i,i} - X)$$
Si $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$, alors $\chi_{M} = \chi_{A} \times \chi_{C}$ (où $A \in M_{n}(\mathbb{K})$, $B \in M_{p}(\mathbb{K})$)

3) Polynôme caractéristique d'un endomorphisme

Définition:

On appelle polynôme caractéristique de $u \in L_{\mathbb{K}}(E)$ le polynôme caractéristique de la matrice A de u dans n'importe quelle base. Il est indépendant de la base choisie puisque si $A = \operatorname{mat}_{\mathfrak{B}}(u)$, $A' = \operatorname{mat}_{\mathfrak{B}'}(u)$, alors A et A' sont semblables donc ont même polynôme caractéristique.

Proposition:

Le spectre de $u \in L_{\mathbb{K}}(E)$ est l'ensemble des racines de χ_u , polynôme caractéristique de u.

Démonstration:

 λ est valeur propre de u si et seulement si λ est valeur propre de $A = \max_{\mathfrak{B}}(u)$ c'est-à-dire si et seulement si $\chi_A(\lambda) = 0 = \chi_u(\lambda)$

C) Multiplicité des valeurs propres

Soit $u \in L_{\mathbb{K}}(E)$, où dim $E = n \in \mathbb{N}$, ou $u \in M_n(\mathbb{K})$.

• Définition :

On appelle multiplicité de λ comme valeur propre de u la multiplicité de λ comme racine de χ_u

Définition (HP):

La multiplicité de λ comme racine de χ_u s'appelle multiplicité algébrique.

La dimension de $\ker(u - \lambda Id)$ s'appelle multiplicité géométrique de λ .

• Théorème :

Pour toute valeur propre λ de u, on a $1 \le m_{\text{g\'eo}}(\lambda) \le m_{\text{alg}}(\lambda)$

Démonstration:

Soit $p = m_{g\acute{e}o}(\lambda)$, et soit $(e_1,...e_n)$ une base de E où $(e_1,...e_n)$ est une base de

$$E_{\lambda}(u)$$
. Alors $\operatorname{mat}_{\mathfrak{B}}(u) = \left(\frac{\lambda I_p \mid A}{0 \mid B}\right)$, donc $\chi_u = (\lambda - X)^p \chi_B$, soit $(\lambda - X)^p | \chi_u$.

Donc $m_{\text{alg}} \ge p$.

• Si χ_u est scindé :

Théorème:

Si χ_u est scindé, $\chi_u = \prod_{i=1}^d (\lambda_i - X)^{m_i}$, λ_i valeurs propres distinctes, m_i leur

multiplicité (algébrique), alors
$$\operatorname{Tr}(u) = \sum_{i=1}^{d} \lambda_i m_i$$
 et $\det(u) = \prod_{i=1}^{d} \lambda_i^{m_i}$

Démonstration:

On a
$$\chi_u = \prod_{i=1}^d (\lambda_i - X)^{m_i} = (-1)^n (X^n - \text{Tr}(u)X^{n-1} + ... + (-1)^n \det u)$$

<u>D)</u> Lien entre polynôme caractéristique et polynôme minimal : théorème de Cayley–Hamilton

Théorème:

Pour tout endomorphisme u en dimension finie, ou toute matrice carrée u, $\min u$ divise χ_u .

Autrement dit, $\widetilde{\chi}_u(u) = 0$ (le polynôme χ_u est annulateur)

Démonstration:

- Cas simple où u est diagonalisable de valeurs propres $\lambda_1,...\lambda_p$ et de multiplicités respectives m_i :

Alors
$$\min_{u} = \prod_{i=1}^{p} (X - \lambda_i)$$

Et
$$\chi_u = \prod_{i=1}^p (X - \lambda_i)^{m_i}$$
. En effet, soit pour $j \in [1, p]$ \mathfrak{B}_j une matrice de $E_{\lambda_j}(u)$.

Alors
$$\mathfrak{B} = (\mathfrak{B}_1, ... \mathfrak{B}_p)$$
 est une base de E , et $\operatorname{mat}_{\mathfrak{B}}(u) = \begin{pmatrix} \lambda_1 I_{\delta_1} & & \\ & \ddots & \\ & & \lambda_p I_{\delta_p} \end{pmatrix}$ où

 $\delta_i = \dim E_{\lambda_i}(u)$. Donc $\chi_u = \prod_{i=1}^p (X - \lambda_i)^{\delta_i}$ et par définition des multiplicités, on a $\forall j \in [1, p], m_i = \delta_i$

- Cas général :

Soit
$$\chi_u = (-1)^n (X^n + a_{n-1} X^{n-1} + ... + a_0)$$

On veut montrer que $u^n + a_{n-1}u^{n-1} + ... + a_0$ Id est l'application nulle.

C'est-à-dire que $\forall \vec{v} \in E, u^n(\vec{v}) + a_{n-1}u^{n-1}(\vec{v})... + a_0\vec{v} = \vec{0}$

Soit
$$\vec{v} \in E \setminus \{0\}$$
. On considère $F = \text{Vect}(u^k(\vec{v}), k \in \mathbb{N}) = \{\widetilde{P}(u), P \in \mathbb{K}[X]\}$

Donc F est un sous-espace vectoriel de E, de dimension $d \le n$

Alors $(\vec{v}, u(\vec{v}), ... u^{d-1}(\vec{v}))$ est une base de F

En effet, soit i le plus petit indice tel que $u^i(\vec{v})$ soit combinaison linéaire de $\vec{v}, u(\vec{v}), ..., u^{i-1}(\vec{v})$ (i existe car dim $F \in \mathbb{N}$)

Alors
$$(\vec{v}, u(\vec{v}), ... u^{i-1}(\vec{v}))$$
 est libre, et $u^{i}(\vec{v}) = \sum_{k=0}^{i-1} \alpha_k u^k(\vec{v})$.

Donc par récurrence, $\forall k \in \mathbb{N}, u^k(\vec{v}) \in (\vec{v}, u(\vec{v}), ... u^{i-1}(\vec{v}))$

D'où $F = \text{Vect}(\vec{v}, u(\vec{v}), ... u^{i-1}(\vec{v}))$, et $(\vec{v}, u(\vec{v}), ... u^{i-1}(\vec{v}))$ est une base de F, soit d = i

Maintenant:

Comme $u^d(\vec{v}) \in F$, on peut écrire $u^d(\vec{v}) = \alpha_0 \vec{v} + ... + \alpha_{d-1} u^{d-1}(\vec{v})$

Considérons alors une base $(e_1,...e_n)$ de E où $\forall i \leq d, e_i = u^{i-1}(\vec{v})$.

Alors:

$$\operatorname{mat}_{\mathfrak{B}}(u) = \begin{pmatrix} 0 & & & \alpha_{0} & \\ 1 & 0 & & \vdots & \\ 0 & \ddots & \ddots & \vdots & A \\ \vdots & & \ddots & 0 & \\ 0 & & 1 & \alpha_{d-1} & \\ \hline & 0 & & B \end{pmatrix}$$

On a en effet $u(e_1) = e_2$, ... $u(e_i) = e_{i+1}$ pour $i \le d-1$

Et
$$u(e_d) = u^d(\vec{v}) = \sum_{k=0}^{d-1} \alpha_k u^k(\vec{v})$$

Donc $\chi_u = \chi_M \times \chi_B$ où M est la transposée d'une matrice compagnon :

$$\chi_M = (-1)^d (X^d - \alpha_{d-1} X^{d-1} - \alpha_0).$$

On a donc
$$\widetilde{\chi}_u(u) = \widetilde{\chi}_B(u) \circ \widetilde{\chi}_M(u) = (-1)^d \widetilde{\chi}_B(u) \circ (u^d - \alpha_{d-1}u^{d-1} - ...\alpha_0 \text{Id})$$

Donc
$$\widetilde{\chi}_u(u)(\vec{v}) = (-1)^d \widetilde{\chi}_B(u) \underbrace{(u^d(\vec{v}) - \alpha_{d-1} u^{d-1}(\vec{v}) - ...\alpha_0 \vec{v})}_{=\bar{0}}$$

Comme ceci est valable pour tout $\vec{v} \in E \setminus \{0\}$, et que $\widetilde{\chi}_u(u)(\vec{0}) = \vec{0}$, χ_u est bien annulateur de u.

E) Application du polynôme caractéristique au caractère diagonalisable

Théorème:

Soit $u \in L_{\mathbb{K}}(E)$, E étant de dimension finie.

Alors u est diagonalisable si et seulement si χ_u est scindé et pour toute valeur propre λ , la multiplicité algébrique et la multiplicité géométrique sont égale (c'est-à-dire $\dim E_{\lambda_i}(u) = m_i$)

Démonstration:

Supposons que u est diagonalisable, de valeurs propres $\lambda_1,...\lambda_p$.

Soient $d_1,...d_p$ les dimensions des espaces propres associés.

On note $\mathfrak{B} = \bigcup_{\lambda \in \operatorname{sp}(u)} \mathfrak{B}_{\lambda}$, où \mathfrak{B}_{λ} est une base de E_{λ} pour $\lambda \in \operatorname{sp}(u)$.

Ainsi, \mathfrak{B} est une base de E.

La matrice de
$$u$$
 dans $\mathfrak B$ est $\left(\begin{array}{c|c} \lambda_{_1}I_{d_1} \\ & \ddots \\ & & \overline{\lambda_{_p}I_{d_p}} \end{array}\right)$

Donc
$$\chi_u = \prod_{i=1}^p (\lambda_i - X)^{d_i}$$
. Donc χ_u est scindé, et $m_i = d_i$.

Inversement:

On appelle défaut de la valeur propre λ l'entier $m_{\lambda} - \dim E_{\lambda}(u) = d_{\lambda} \ge 0$

Comme
$$\chi_u$$
 est scindé, on a $\sum_{\lambda \in \text{sp}(u)} m_{\lambda} = \dim E$

Or, par hypothèse, $m_{\lambda} = \dim E_{\lambda}(u)$. Donc $\sum_{\lambda \in \operatorname{sp}(u)} \dim E_{\lambda}(u) = \dim E$, et u est diagonalisable.

Remarque pratique:

Si χ_u est scindé à racines simples, alors u est diagonalisable, mais la réciproque est fausse; par exemple l'identité est diagonalisable, mais son polynôme caractéristique est $\chi_{1d} = (1 - X)^n$, qui n'est pas à racines simples.

F) Caractère trigonalisable (en dimension finie)

1) Définition

Un endomorphisme u de E est dit trigonalisable s'il existe une base \mathfrak{B} de E telle que la matrice de u dans \mathfrak{B} soit trigonale supérieure.

Remarque:

Si
$$\max_{(e_1, \dots e_n)} (u) = (a_{i,j})_{\substack{i \in [[1,n]] \\ j \in [[1,n]]}} \in M_n(\mathbb{K})$$
, alors $\max_{(e_n, \dots e_1)} (u) = (a_{n+1-i, n+1-j})_{\substack{i \in [[1,n]] \\ j \in [[1,n]]}}$

En effet, en notant $e'_i = e_{n-i+1}$ pour $i \in [1, n]$, on a :

$$u(e'_j) = u(e_{n+1-j}) = \sum_{i=1}^n a_{i,n+1-j} e_i = \sum_{i=1}^n a_{i,n+1-j} e'_{n+1-i}$$

Conclusion:

On peut aussi bien travailler avec les matrices trigonales supérieures $(T_n^+(\mathbb{K}))$ que trigonales inférieures $(T_n^-(\mathbb{K}))$.

Une matrice $A \in M_n(\mathbb{K})$ est dite trigonalisable si elle est semblable à une matrice trigonale (supérieure)

Proposition:

 $u \in L_{\mathbb{K}}(E)$ est trigonalisable si et seulement si sa matrice dans une base quelconque l'est.

$$A \in M_n(\mathbb{K})$$
 est trigonalisable si et seulement si $M_{n,1}(\mathbb{K}) \to M_{n,1}(\mathbb{K})$ l'est. $X \mapsto AX$

Trigonaliser un endomorphisme u, c'est trouver une base de E dans laquelle la matrice de u est trigonale.

Trigonaliser une matrice A, c'est trouver $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ est trigonale

2) Caractérisation

Théorème:

Soit $u \in L_{\mathbb{K}}(E)$, E étant de dimension n finie, ou $u \in M_n(\mathbb{K})$.

Les assertions suivantes sont équivalentes :

- (1) u est trigonalisable
- (2) χ_u est scindé
- (3) u admet un polynôme annulateur scindé
- (4) min_u est scindé.

Corollaire:

Lorsque K est algébriquement clos, toute matrice carrée est trigonalisable.

Démonstration :

 $(1) \Rightarrow (2)$:

Si
$$\operatorname{mat}_{B}(u) = \begin{pmatrix} a_{1,1} & a_{i,j} \\ & \ddots & \\ & & a_{n,n} \end{pmatrix}$$
, alors $\chi_{u} = \prod_{i=1}^{n} (a_{i,i} - X)$ est scindé.

(2) ⇒ (3) : c'est le théorème de Cayley–Hamilton

 $(3) \Rightarrow (4)$: Si R est annulateur et scindé, min_u qui divise R est scindé.

 $(4) \Rightarrow (1)$:

Montrons par récurrence que $\forall n \in \mathbb{N}, P(n)$ où P(n) désigne « si $A \in M_n(\mathbb{K})$ est tel que \min_A est scindé, alors A est trigonalisable »

Pour n = 1: toutes les matrices sont diagonales donc trigonalisables.

Soit $n \ge 2$, supposons P(n-1).

Soit $A \in M_n(\mathbb{K})$, supposons que min₄ est scindé.

Soit λ une racine de \min_A . Alors λ est valeur propre de A.

(Sinon, $\min_A = (X - \lambda)Q$, et on aurait $0 = (A - \lambda I_n)\widetilde{Q}(A)$, soit $\widetilde{Q}(A) = 0$ et $\min_A |Q|$ ce qui est impossible)

Soit
$$X_{\lambda} \in M_{n,1}(\mathbb{K}) \setminus \{0\}$$
 un vecteur propre de $u_A : M_{n,1}(\mathbb{K}) \to M_{n,1}(\mathbb{K})$

$$X \mapsto AX$$

associé à λ .

On complète $v_1 = X_{\lambda}$ en une base $\mathfrak{B}' = (v_1, ... v_n)$ de $M_{n,1}(\mathbb{K})$.

Alors
$$\operatorname{mat}_{\mathfrak{B}'}(u_A) = \left(\frac{\lambda \mid l}{0 \mid A'}\right) = B$$

On a
$$\forall k \in \mathbb{N}, B^k = \left(\frac{\lambda^k \mid l(k)}{0 \mid A^{k}}\right)$$

Donc
$$\min_{A}(B) = \left(\frac{\min_{A}(\lambda) \mid \dots}{0 \mid \min_{A}(A')}\right)$$

Or, A et B sont semblables, donc $\min_{A}(B) = 0$, d'où $\min_{A}(A') = 0$

Donc $\min_{A'} | \min_{A}$ qui est scindé, donc $\min_{A'}$ est scindé.

Donc par hypothèse de récurrence, A' est trigonalisable, disons $A' = RT'R^{-1}$ où $R \in GL_n(\mathbb{K})$ et $T' \in T_n^+(\mathbb{K})$.

On a donc:

$$B = \begin{pmatrix} \lambda & l \\ 0 & RTR^{-1} \end{pmatrix}.$$

On cherche alors
$$l \in M_{1,n-1}(\mathbb{K})$$
 tel que $B = \begin{pmatrix} 1 & 0 \\ 0 & R \end{pmatrix} \begin{pmatrix} \lambda & l \\ 0 & T' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & R^{-1} \end{pmatrix}$

On a
$$\begin{pmatrix} 1 & 0 \\ 0 & R \end{pmatrix} \begin{pmatrix} \lambda & l \\ 0 & T' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & R^{-1} \end{pmatrix} = \begin{pmatrix} \lambda & l'R^{-1} \\ 0 & RTR^{-1} \end{pmatrix}$$
, on peut donc prendre $l' = lR$
Ainsi, $\begin{pmatrix} 1 & 0 \\ 0 & R^{-1} \end{pmatrix} B \begin{pmatrix} 1 & 0 \\ 0 & R \end{pmatrix} = \begin{pmatrix} \lambda & l' \\ 0 & T' \end{pmatrix}$

Donc B est semblable à une matrice trigonale, donc trigonalisable.

Donc comme A est semblable à B, elle est aussi trigonalisable.

G) Compléments (Hors programme) : sous-espaces caractéristiques et décomposition de Jordan–Dumford

Problème:

On suppose χ_u scindé, on veut trigonaliser u avec une forme réduite la plus simple possible.

On pose
$$\chi_u = \prod_{i=1}^p (\lambda_i - X)^{m_i}$$
, les λ_i étant deux à deux distincts, $m_i \ge 1$

D'après le théorème de Cayley-Hamilton,

$$(\lambda_{1}\mathrm{Id}-u)^{m_{1}}\circ(\lambda_{2}\mathrm{Id}-u)^{m_{2}}\circ...\circ(\lambda_{p}\mathrm{Id}-u)^{m_{p}}=0\in L_{\mathbb{K}}(E)$$

De plus, les $(\lambda_i - X)^{m_i}$ étant premiers entre eux deux à deux, le théorème de décomposition des noyaux donne :

$$E = \ker 0 = \bigoplus_{i=1}^{p} \ker((u - \lambda_{i} \operatorname{Id})^{m_{i}})$$

Définition:

Le sous-espace $C_i = \ker((u - \lambda_i \operatorname{Id})^{m_i})$ s'appelle sous-espace caractéristique associé à la valeur propre λ_i .

Proposition:

- Si χ_u est scindé, E est la somme directe des sous-espaces caractéristiques.
- Pour tout $i \in [1, p]$, dim $C_i = m_i$
- Pour tout $i \in [1, p]$, $\ker(u \lambda_i \operatorname{Id}) \subset C_i$, avec égalité si et seulement si $\dim E_{\lambda_i} = m_i$

Démonstration:

Le premier point est clair. Pour le deuxième :

Soit, pour
$$i \in [1, p]$$
, \mathfrak{B}_i une base de C_i et $\mathfrak{B} = (\mathfrak{B}_1, \mathfrak{B}_2 ... \mathfrak{B}_n)$.

Soit $i \in [1, p]$

Pour tout
$$x \in C_i$$
, $u(x) \in C_i$. En effet, $(u - \lambda_i \operatorname{Id})^{m_i}(u(x)) = u \circ (u - \lambda_i \operatorname{Id})^{m_i}(x) = 0$

Donc
$$u(x) \in \ker((u - \lambda_i \operatorname{Id})^{m_i}) = C_i$$

Donc si on prend un vecteur $e_k \in \mathfrak{B}_i$, $u(e_k) \in C_i$ se décompose uniquement sur \mathfrak{B}_i , et :

$$\operatorname{mat}_{\mathfrak{B}}(u) = \begin{pmatrix} M_1 & 0 \\ \hline & \ddots & \\ \hline 0 & M_p \end{pmatrix} \text{ avec } \forall j \in [1, p], M_j = \operatorname{mat}_{\mathfrak{B}_j}(u_{/C_j}).$$

Ainsi,
$$\chi_u = \prod_{j=1}^p \chi_{u_{jC_j}}$$

Soit $j \in [1, p]$

Si on pose $v_i = u_{iC_i} - \lambda_i \operatorname{Id}_{C_i} \in L(C_i)$, alors v_i est nilpotent, et $v_i^{m_i} = 0$

En effet, $x \in C_j$, on a $v_j^{m_j}(x) = (u - \lambda_j \operatorname{Id})^{m_j}(x) = 0$.

Que dire de χ_{u/C_i} ?

Déjà, χ_{u/C_i} divise χ_u donc est scindé.

De plus, $(X - \lambda_j)^{m_j}$ est annulateur de $u_{/C_j}$. Donc $u_{/C_j}$ a une seule valeur propre, à savoir λ_j .

Ainsi, χ_{u/C_j} est de la forme $(\lambda_j - X)^{\gamma_j}$ où $\gamma_j = \dim C_j$

On a done
$$\chi_u = \prod_{j=1}^p (\lambda_j - X)^{\gamma_j}$$
.

Or, on a d'autre part $\chi_u = \prod_{j=1}^p (\lambda_j - X)^{m_j}$

Donc $\forall j \in [1, p], \gamma_j = \dim C_j = m_j$

Pour le troisième point :

Pour tout $i \in [1, p]$, $\ker(u - \lambda_i \operatorname{Id})$ est un sous-espace vectoriel de $\ker((u - \lambda_i \operatorname{Id})^{m_i})$ car $m_i \ge 1$.

Donc il y a égalité si et seulement si dim $\ker(u - \lambda_i \operatorname{Id}) = \dim C_i = m_i$

Théorème : Décomposition de Jordan–Dumford (Hors programme)

Soit $u \in L_{\mathbb{K}}(E)$, on suppose χ_u scindé. Alors il existe $P, Q \in \mathbb{K}[X]$ tels que $d = \widetilde{P}(u)$ soit diagonalisable, $n = \widetilde{Q}(u)$ soit nilpotent et $\widetilde{P}(u) + \widetilde{Q}(u) = u$.

C'est-à-dire u = d + n avec $d \circ n = n \circ d$.

Démonstration:

Soit
$$\chi_u = \prod_{i=1}^p (\lambda_i - X)^{m_i}$$
, $C_i = \ker(u - \lambda_i \operatorname{Id})^{m_i}$.

On a alors $C_1 \oplus C_2 \oplus ... \oplus C_p = E$.

Considérons alors $d \in L(E)$ tel que $\forall i \in [1, p], d_{/C_i} = \lambda_i \operatorname{Id}_{C_i}$

Et n tel que $\forall i \in [1, p], n_{C_i} = u_{C_i} - \lambda_i \operatorname{Id}_{C_i}$

Alors:

d est diagonalisable car les C_i sont les sous-espaces propres de d et $\bigoplus_{i=1}^p C_i = E$

n est nilpotent :

Pour tout $i \in [1, p]$, $n(C_i) \subset C_i$ car $u(C_i) \subset C_i$.

Donc pour tout $x \in C_i$, $n^{m_i}(x) = (u - \lambda_i \operatorname{Id})^{m_i}(x) = 0$

Prenons alors $M = \max_{i \in [[1,p]]} (m_i)$. On a alors $\forall i \in [[1,p]], (n_{C_i})^M = 0$, et comme

$$\bigoplus_{i=1}^{p} C_i = E \text{, on a } n^M = 0.$$

On va chercher maintenant $P \in \mathbb{K}[X]$ tel que $\widetilde{P}(u) = d$, c'est-à-dire tel que $\forall j \in [1, p], \widetilde{P}(u)_{/C_j} = \lambda_j \mathrm{Id}_{C_j}$

D'après le théorème de Bezout, il existe $A_1,...A_p$ tels que $\sum_{i=1}^p A_i R_i = 1$, où

$$R_i = \prod_{\substack{j=1\\j\neq i}}^p (X - \lambda_j)^{m_j}$$

Prenons alors
$$P = \sum_{j=1}^{p} \lambda_j A_j R_j$$
. Alors $\widetilde{P}(u) = \sum_{j=1}^{p} \lambda_j \widetilde{A}_j(u) \circ \widetilde{R}_j(u)$.

Si
$$x \in C_k$$
 $(k \in [1, p]), (u - \lambda_k \operatorname{Id})^{m_k}(x) = 0$, donc pour $j \neq k$, $\widetilde{R}_j(u)(x) = 0$

Donc
$$\widetilde{P}(u)(x) = \lambda_k \widetilde{A}_k(u) \circ \widetilde{R}_k(u)(x)$$

Or, on a
$$\operatorname{Id}_E = \sum_{i=1}^p \widetilde{A}_i(u) \circ \widetilde{R}_i(u)$$
. Donc pour $x \in C_k$, $x = \widetilde{A}_k(u) \circ \widetilde{R}_k(u)(x)$.

Ce qui donne $\forall x \in C_k, \widetilde{P}(u)(x) = \lambda_k x$.

Ainsi, $\widetilde{P}(u)$ et d coïncident sur tous les $C_k, k \in [1, p]$. Donc $\widetilde{P}(u) = d$

Comme u = d + n par construction, on a $n = \widetilde{Q}(u)$ avec Q = X - P

Remarque:

Le théorème permet parfois de ramener l'étude générale des endomorphismes à d'une part celle des endomorphismes diagonalisables et d'autre part celle des endomorphismes nilpotents.

La décomposition est unique dans le sens suivant :

Si
$$u = d_1 + n_1 = d_2 + n_2$$
, avec
$$\begin{cases} d_1 \circ n_1 = n_1 \circ d_1 \\ d_2 \circ n_2 = n_2 \circ d_2 \end{cases}$$
, alors
$$\begin{cases} d_1 = d_2 \\ n_1 = n_2 \end{cases}$$

H) Applications topologiques : $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- Le déterminant est continu sur $M_n(\mathbb{K})$, car polynomial en les coefficients.

Conséquence : $GL_n(\mathbb{K}) = \det^{-1} \mathbb{K}^*$ est ouvert.

- La fonction $A \in M_n(\mathbb{K}) \mapsto \chi_A \in \mathbb{K}_n[X]$ est continue.

En effet:
$$\chi_A = (-1)^n (X^n - \alpha_{n-1}(A)X^{n-1} + ... + \alpha_0(A)(-1)^n)$$
, avec $\alpha_{n-1}(A) = \text{Tr}(A)$, $\alpha_0(A) = \det(A)$

Et $\alpha_i(A)$ est un polynôme en les coefficients de A.

Ainsi, $\forall j \in [0, n-1], A \mapsto \alpha_j(A)$ est continu.

Comme ce sont (à peu près) les coordonnées de χ_A dans la base canonique de $\mathbb{K}_n[X]$, $A \mapsto \chi_A$ est continu.

Cependant, $A \mapsto \min_{A}$ n'est pas continu, par exemple :

On pose, pour
$$n \in \mathbb{N}^*$$
, $A_n = \begin{pmatrix} 0 & 1/n \\ 0 & 0 \end{pmatrix}$.

Alors $\forall n \in \mathbb{N}^*, \min A_n = X^2$

Mais $\lim_{n\to+\infty} A_n = 0$, et $\min_0 = X$.

- Théorème (hors programme) :

 $GL_n(\mathbb{K})$ est dense dans $M_n(\mathbb{K})$.

En effet, soit
$$A \in M_n(\mathbb{K})$$
, posons $A_p = A - \frac{1}{p}I_n$.

On a alors $\lim_{p \to +\infty} A_p = A$

De plus,
$$A_p \notin GL_n(\mathbb{K}) \Leftrightarrow \frac{1}{p} \in \operatorname{sp}(A)$$

Comme sp(A) est fini, il existe N tel que $\forall p \ge N, \frac{1}{p} \notin \text{sp}(A)$

Donc
$$A = \lim_{\substack{p \to +\infty \\ p \ge N}} A_p \in \overline{GL_n(\mathbb{K})}$$

- Exemples

○ Exprimer com(AB) avec com(A) et com(B) pour $A, B \in M_n(\mathbb{C})$

Si $A, B \in GL_n(\mathbb{C})$, alors $AB \in GL_n(\mathbb{C})$. Donc :

$$com(AB) = \det(AB) \times^{t} ((AB)^{-1}) = \det A \times \det B \times^{t} (A^{-1}) \times^{t} (B^{-1})$$
$$= com(A) \times com(B)$$

Cas général:

Les deux membres de l'égalité précédente sont des fonctions continues (car polynomiales) de A et B, donc si $A_p \in GL_n(\mathbb{C})$ tend vers A et si $B_p \in GL_n(\mathbb{C})$ tend vers B, on a $A_pB_p \xrightarrow[p \to +\infty]{} AB$, et :

$$com(AB) = \lim_{p \to +\infty} com(A_p B_p) = \lim_{p \to +\infty} com(A_p) com(B_p) = com(A) com(B)$$

○ L'ensemble des matrices $A \in M_n(\mathbb{C})$ diagonalisables à valeurs propres simples est dense dans $M_n(\mathbb{C})$ (faux pour \mathbb{R})

Démonstration:

Soit $A \in M_n(\mathbb{C})$. Alors A est trigonalisable, disons $A = PTP^{-1}$ où $T \in T_n^+(\mathbb{C})$

On a
$$T = \begin{pmatrix} t_{1,1} & & t_{i,j} \\ & \ddots & \\ (0) & & t_{n,n} \end{pmatrix}$$

Posons
$$A(p) = P \begin{pmatrix} t_{1,1} + \frac{1}{p} & t_{i,j} \\ & \ddots & \\ & & t_{n,n} + \frac{n}{p} \end{pmatrix} P^{-1}$$

Alors les valeurs propres de A(p) sont les $t_{i,i} + \frac{i}{p}, i \in [1, n]$

Pour que A(p) ait une valeur propre au moins double, il faut qu'il existe ij avec $i \neq j$, tels que $t_{i,i} + \frac{i}{p} = t_{j,j} + \frac{j}{p}$, ce qui est impossible si $t_{i,i} = t_{j,j}$, et il y a au plus une valeur de p possible sinon.

Ainsi, l'ensemble des entiers p tels que A(p) a une valeur propre multiple est fini, donc il existe N tel que pour tout $p \ge N$, A(p) a n valeurs propres simples, donc A(p) est diagonalisable à valeurs propres simples à partir du rang N.

Comme de plus $\lim_{p\to +\infty} A_p = A$, A est dans l'adhérence de l'ensemble des matrices diagonalisables à valeurs propres simples.

L'adhérence de l'ensemble des matrices diagonalisables de $M_n(\mathbb{R})$ est l'ensemble des matrices réelles trigonalisables.

En effet:

La même démonstration que précédemment montre déjà que :

$$T_n^+(\mathbb{R}) \subset \{A \in M_n(\mathbb{R}), A \text{ est diagonalisable}\}$$

Montrons maintenant que $T_n^+(\mathbb{R})$ est fermé.

Lemme:

L'ensemble des polynômes unitaires de degré n réels scindé dans \mathbb{R} est fermé dans $\mathbb{R}_n[X]$.

Conséquence de lemme :

Pour une suite $(A_p)_{p\in\mathbb{N}}$ de $T_n^+(\mathbb{R})$ qui converge vers $B\in M_n(\mathbb{K})$, alors par continuité de $A\mapsto \chi_A$, $\chi_{A_p}\to \chi_B$. Donc χ_B est scindé d'après le lemme, et B est trigonalisable, donc $T_n^+(\mathbb{R})$ est fermé.

Démonstration du lemme :

Astuce : Un polynôme P unitaire de $\mathbb{R}_n[X]$ est scindé si et seulement si $\forall z \in \mathbb{C}, |P(z)| \ge |\mathrm{Im}(z)|^n$

En effet, soit
$$P = \prod_{i=1}^{n} (X - a_i) \in \mathbb{R}_n[X]$$

Pour
$$z \in \mathbb{C}$$
, on a $|P(z)| = \prod_{i=1}^{n} |z - a_i|$, et $|z - a_i| \ge |\text{Im}(z)|$, d'où $|P(z)| \ge |\text{Im}(z)|^n$:

$$\underbrace{\operatorname{Im}(z)}^{z} \xrightarrow{z} |z - a_{i}|$$

Si
$$\forall z \in \mathbb{C}, |P(z)| \ge |\operatorname{Im}(z)|^n$$
, alors $\forall z \in \mathbb{C}, P(z) = 0 \Rightarrow \operatorname{Im}(z) \Rightarrow z \in \mathbb{R}$

Donc P est scindé dans $\mathbb{R}[X]$

Soit maintenant une suite $(P_k)_{k\in\mathbb{N}}$ de polynômes scindés unitaires de $\mathbb{R}_n[X]$ qui converge vers Q. Alors $\forall z\in\mathbb{C}, P_k(z)\to Q(z)$

Donc
$$\forall z \in \mathbb{C}, |Q(z)| \ge |\operatorname{Im}(z)|^n$$
 et Q est scindé.

o Remarque : les méthodes topologiques permettent de prouver des identités matricielles valables sur tout anneau.

Exemple : Autre démonstration du théorème de Cayley Hamilton :

(1) Pour tout corps \mathbb{K} et toute matrice $A \in M_n(\mathbb{K})$ diagonalisable, $\widetilde{\chi}_A(A) = 0$

En effet,
$$A = PDP^{-1}$$
 avec $D = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$, alors $\chi_A = \prod_{i=1}^n (\lambda_i - X)$.

Or,
$$\forall R \in \mathbb{K}[X], \widetilde{R}(A) = P\widetilde{R}(D)P^{-1} = P\begin{pmatrix} R(\lambda_1) & (0) \\ & \ddots \\ & & (0) & R(\lambda_n) \end{pmatrix} P^{-1}$$

Donc avec $R = \chi_A$, on obtient $\widetilde{R}(A) = 0$

(2) Avec $\mathbb{K} = \mathbb{C}$: l'ensemble des matrices $A \in M_n(\mathbb{C})$ diagonalisables est dense dans $M_n(\mathbb{C})$.

On peut montrer sans le théorème de Cayley–Hamilton que si χ_A est scindé, alors A est trigonalisable.

Puis montrer que si A (réelle ou complexe) est trigonalisable, A est limite d'une suite (A_n) de matrices diagonalisables à valeurs propres deux à deux distinctes.

(3) On doit montrer que le théorème de Cayley-Hamilton est vrai dans $M_n(\mathbb{C})$,

C'est-à-dire que $\forall A \in M_n(\mathbb{C}), \widetilde{\chi}_A(A) = 0$

Or, la matrice $\widetilde{\chi}_A(A)$ est une matrice complexe dont les coefficients sont des fonctions continues (car polynomiales) des coefficients de A.

Soit alors A_p une suite de matrices diagonalisables qui converge vers A.

Alors, par continuité,
$$\widetilde{\chi}_A(A) = \lim_{p \to +\infty} \widetilde{\chi}_{A_p}(A_p) = \lim_{p \to +\infty} 0 = 0$$

(4) Prolongement des identités algébriques :

Si
$$P \in \mathbb{Z}[X_1,...X_n]$$
 est tel que $\forall (z_1,...z_n) \in \mathbb{C}^n, P(z_1,...z_n) = 0$, alors $P = 0$

(On peut mettre un corps K quelconque infini à la place de C)

En effet, montrons par récurrence que

$$\forall n \in \mathbb{N}^*, \forall P \in \mathbb{Z}[X_1, ...X_n], (\forall (z_1, ...z_n) \in \mathbb{C}^n, P(z_1, ...z_n) = 0) \Rightarrow P = 0$$

Pour n = 1 : ok; $P \in \mathbb{Z}[X]$

Soit $n \ge 2$, supposons la propriété vraie pour n-1.

Soit $P \in \mathbb{Z}[X_1,...X_n]$, supposons que $\forall (z_1,...z_n) \in \mathbb{K}^n, P(z_1,...z_n) = 0$

$$P$$
 s'écrit $P = \sum_{k=0}^{d} Q_k(X_1,...X_{n-1})X_n^k$

Pour
$$z_1,...z_{n-1} \in \mathbb{K}^{n-1}$$
 fixés, on a alors $\forall x_n \in \mathbb{K}, \sum_{k=0}^d Q_k(z_1,...z_{n-1})x_n^k = 0$

Donc le polynôme $\sum_{k=0}^d Q_k(z_1,...z_{n-1})X^k \in \mathbb{K}[X]$ a une infinité de racines, donc

$$\forall z_1,...z_{n-1} \in \mathbb{K}^{n-1}, \forall k \in [0,d], Q_k(z_1,...z_{n-1}) = 0$$

Donc par hypothèse de récurrence, $\forall k \in [0,d], Q_k = 0$, et donc P = 0 ce qui achève la récurrence.

(5) Preuve du théorème de Cayley–Hamilton pour $A \in M_n(\mathbb{K})$:

$$\text{Soit } A = (X_{i,j})_{\substack{i \in [[1,n]] \\ j \in [[1,n]]}} \in M_n(\mathbb{Z}[X_{i,j}]_{\substack{i \in [[1,n]] \\ j \in [[1,n]]}})$$

Soient $k, l \in [1, n]$.

On a
$$(\widetilde{\chi}_A(A))_{k,l} = P((X_{i,j})_{\substack{i \in [1,n] \\ j \in [1,n]}}) \in \mathbb{Z}[X_{i,j}]_{\substack{i \in [1,n] \\ j \in [1,n]}}$$

On sait que pour toute matrice $A \in M_n(\mathbb{C})$, $\widetilde{\chi}_A(A) = 0$

Donc
$$\forall (a_{i,j})_{\substack{i \in [[1,n]] \\ j \in [[1,n]]}} \in \mathbb{C}^{n^2}$$
, $P((a_{i,j})_{\substack{i \in [[1,n]] \\ j \in [[1,n]]}}) = 0$. Donc $P = 0$

Ceci étant vrai pour tous $k, l \in [1, n]$, on a $\widetilde{\chi}_A(A) = 0$.

Conséquence :

Soit \mathbb{K} un anneau commutatif, $A \in M_n(\mathbb{K})$, $A = (x_{i,j})_{\substack{i \in [[1,n]]\\j \in [1,n]}}$

 $\widetilde{\chi}_A(A)$ est obtenu en remplaçant les $X_{i,j}$ par $x_{i,j}$. Donc $\widetilde{\chi}_A(A) = 0$

o Cas d'une matrice nilpotente :

Théorème:

Soit $A \in M_n(\mathbb{K})$. Les assertions suivantes sont équivalentes :

- (1) A est nilpotente
- (2) $A^n = 0$
- (3) A est semblable à une matrice de la forme $\begin{pmatrix} 0 & (X) \\ & \ddots \\ (0) & 0 \end{pmatrix}$
- $(4) \ \chi_A = (-X)^n$
- (5) Si $\chi_{\mathbb{K}} = 0$, alors $\forall k \in [[1, n]], \operatorname{Tr}(A^k) = 0$

Démonstration:

 $(1) \Rightarrow (2)$: Soit p l'indice de nilpotence de A.

Soit
$$X \in M_{n,1}(\mathbb{K})$$
 tel que $A^{p-1}X \neq 0$

Alors $(X, AX, ...A^{p-1}X)$ est libre.

En effet : Soient $\lambda_0,...\lambda_{p-1} \in \mathbb{K}$, supposons que $\lambda_0 X + \lambda_1 AX + ...\lambda_{p-1} A^{p-1}X = 0$

Alors en multipliant par A^{p-1} , on obtient $\lambda_0 A^{p-1} X = 0$ et donc $\lambda_0 = 0$ etc.

Donc $p \le n$, et $A^n = 0$

 $(2) \Rightarrow (3)$:

 X^n est annulateur, scindé donc A est trigonalisable avec des valeurs propres qui

sont racines de X^n . Donc A est semblable à une matrice de la forme $\begin{pmatrix} 0 & X \\ & \ddots & \\ & & 0 \end{pmatrix}$

- $(3) \Rightarrow (4)$: clair
- $(4) \Rightarrow (1)$: c'est le théorème de Cayley–Hamilton.

On suppose maintenant $\chi_{\mathbb{K}} = 0$.

 $(1) \Rightarrow (5)$:

Soit A une matrice nilpotente.

Alors
$$A = P \begin{pmatrix} 0 & X \\ & \ddots & \\ & & 0 \end{pmatrix} P^{-1}$$
 où $P \in GL_n(\mathbb{K})$.

Donc
$$\forall k \in \mathbb{N}, A^k = P \begin{pmatrix} 0 & X \\ & \ddots & \\ & & 0 \end{pmatrix}^k P^{-1} \text{ et } \operatorname{Tr}(A^k) = 0$$

(On n'a pas utilisé le fait que $\chi_{\text{\tiny K}} = 0$)

 $(5) \Rightarrow (1)$:

Montrons le résultat par récurrence sur n:

Pour n = 1: clair (la seule matrice de trace nulle est (0))

Soit $n \ge 2$, supposons le résultat vrai pour n-1.

Montrons déjà que 0 est valeur propre de A:

On a
$$\chi_A = (-1)^n (X^n + a_{n-1} X^{n-1} + ... + a_0)$$

D'après le théorème de Cayley–Hamilton, $A^n + a_{n-1}A^{n-1} + ... + a_0I_n = 0$

Donc
$$Tr(A^n) + a_{n-1}Tr(A^{n-1}) + ... + a_0Tr(I_n) = 0$$

Donc $na_0 = 0$, soit $a_0 = 0$ (on est en caractéristique nulle)

Donc $\chi_A(0) = 0$, et 0 est valeur propre de A.

Soit \vec{v}_1 un vecteur propre associé à 0, qu'on complète en une base $(\vec{v}_1,...\vec{v}_n)$ de E.

Alors A est semblable à une matrice de la forme $\begin{pmatrix} 0 & l \\ \vdots & & \\ 0 & B \end{pmatrix}$ où $B \in M_{n-1}(\mathbb{K})$.

Donc $\forall k \ge 1, \operatorname{Tr}(A^k) = \operatorname{Tr}(B^k) = 0$.

Donc par hypothèse de récurrence, B est nilpotente et $\chi_B = (-X)^{n-1}$

Or, $\chi_A = (-X)(-X)^{n-1}$, donc $\chi_A = (-X)^n$ et A est nilpotente.

IV Sous-espaces stables et formes réduites

On considère un corps \mathbb{K} , E un \mathbb{K} -ev quelconque (de dimension finie à partir du \mathbb{C})

A) Sous-espaces stables, endomorphismes restreints

• Définition :

On dit qu'un sous-espace F de E est stable par $u \in L(E)$ si $u(F) \subset F$.

Dans ce cas, $u_{/F}$ induit un endomorphisme de F.

Remarque : pour tout sous-espace vectoriel F de E, $u_{/F}$ induit un endomorphisme de F si et seulement si $u(F) \subset F$.

- Propriétés :
- (1) Une intersection, une somme de sous-espaces stables est stable.
- (2) Tout sous-espace propre d'un endomorphisme est stable (réciproque fausse)
- (3) Une droite est stable si et seulement si elle est engendrée par un vecteur propre.

Démonstration :

- (1), (2): ok
- (3): Si $D = \mathbb{K}.\vec{v}$ est stable pour un certain $\vec{v} \neq \vec{0}$, alors $u(\vec{v}) \in D$, donc $u(\vec{v}) = \lambda \vec{v}$, et \vec{v} est vecteur propre.

Réciproquement, si $u(\vec{v}) = \lambda \vec{v}$, alors $\forall \vec{x} = \mu \vec{v} \in D, u(\vec{x}) = u(\mu \cdot \vec{v}) = \mu \cdot (\lambda \vec{v}) = \lambda \vec{x}$

• Eléments propres de la restriction d'un endomorphisme à un sous-espace stable

Théorème:

Soit $u \in L_{\mathbb{K}}(E)$, F stable par u. Alors:

- (1) $\forall \lambda \in \mathbb{K}, \ker(u_{/F} \lambda \mathrm{Id}_F) = \ker(u \lambda \mathrm{Id}) \cap F$
- (2) $\lambda \in \mathbb{K}$ est valeur propre de $u_{/F}$ si et seulement si λ est valeur propre de u et $\ker(u \lambda \operatorname{Id}) \cap F \neq \{0\}$
- (3) Pour λ valeur propre de $u_{/F}$, $E_{\lambda}(u_{/F}) = E_{\lambda}(u) \cap F$

Démonstration :...

• Polynômes en $u_{/F}$:

Théorème:

Soit $u \in L_{\mathbb{K}}(E)$, F stable par u. Alors pour tout $P \in \mathbb{K}[X]$, F est stable par $\widetilde{P}(u)$ et $\widetilde{P}(u)_{/F} = \widetilde{P}(u_{/F})$

Corollaire:

Tout polynôme annulateur de u est annulateur de $u_{/F}$.

Si u admet un polynôme minimal min_u, alors $u_{/F}$ en admet un, qui divise min_u.

Démonstration du théorème :

Pour tout
$$k \in \mathbb{N}$$
, on compare $(u_{/F})^k$ et $(u^k)_{/F}$

On montre par récurrence que
$$(u_{/F})^k = (u^k)_{/F}$$
 car F est stable par u .

Puis par linéarité, le résultat est valable pour tout polynôme.

Pour le corollaire :

$$\widetilde{P}(u) = 0$$
, alors $\widetilde{P}(u_{/F}) = \widetilde{P}(u)_{/F} = 0$

En particulier, si $P = \min_{u}$, on a $\widetilde{P}(u_{/F}) = 0$

Donc $\min_{u_{i,E}} | P = \min_{u}$

B) Exemples de sous-espaces stables

• Existence de sous-espaces stables non triviaux en dimension finie :

Théorème:

- (1) Si $\mathbb{K} = \mathbb{C}$ (ou algébriquement clos), tout endomorphisme en dimension $n \ge 1$ admet au moins une droite stable.
- (2) Si $\mathbb{K} = \mathbb{R}$, tout endomorphisme en dimension $n \ge 1$ admet au moins un sousespace stable de dimension 1 ou 2.

Intérêt du théorème : permet de démarrer les récurrences.

Démonstration:

Soit $u \in L_{\mathbb{K}}(E)$, E étant de dimension finie $n \ge 1$.

Alors u admet un polynôme minimal μ et deg $\mu \ge 1$.

- Si μ admet au moins une racine λ , alors λ est valeur propre de u.

Si on note \vec{v} un vecteur propre associé à λ , la droite $\mathbb{K}.\vec{v}$ est stable par u.

- Si $\mathbb{K} = \mathbb{R}$ et si μ n'a pas de racine réelle, soit $X^2 + aX + b$ un facteur irréductible de μ ($\Delta = a^2 - 4b < 0$). Alors $u^2 + au + b$ n'est pas injectif.

(En effet, si
$$\mu = R \times (X^2 + aX + b)$$
, alors $0 = (u^2 + au + bId) \circ \underbrace{\widetilde{R}(u)}_{\text{car } \mu \text{ est}}$)

Soit alors $\vec{v} \neq \vec{0}$ tel que $(u^2 + au + b\text{Id})(\vec{v}) = 0$

On pose $F = \text{Vect}(\vec{v}, u(\vec{v}))$

Alors F est un plan car $(\vec{v}, u(\vec{v}))$ est libre (sinon \vec{v} serait valeur propre et μ aurait une racine réelle)

Et F est stable par u car $u(\vec{v}) \in F$ et $u(u(\vec{v})) = -b\vec{v} - au(\vec{v}) \in F$.

• Hyperplans stables en dimension finie :

Lemme:

Soit $u \in L_{\mathbb{K}}(E)$, E étant de dimension n finie. Soit H un hyperplan de E.

On introduit $\varphi \in E * \setminus \{0\}$ tel que $H = \ker \varphi$.

Alors:

- (1) *H* est stable par *u* si et seulement si il existe λ tel que $\varphi \circ u = \lambda \varphi$.
- (2) Autrement dit, si $A = \operatorname{mat}_{\mathfrak{B}}(u) \in M_n(\mathbb{K})$ et $L = \operatorname{mat}_{\mathfrak{B}}(\varphi) \in M_{1,n}(\mathbb{K})$, H est stable par u si et seulement si il existe $\lambda \in \mathbb{K}$ tel que ${}^tA \times {}^tL = \lambda^tL$.

Démonstration:

(1) Si
$$\varphi \circ u = \lambda \varphi$$
 pour $\lambda \in \mathbb{K}$, alors $\forall x \in \ker \varphi, \varphi \circ u(x) = \lambda \varphi(x) = 0$.

Donc $u(x) \in H = \ker \varphi$

Inversement, supposons que $H = \ker \varphi$ est stable par u.

Considérons $G = \ker(\varphi \circ u)$.

- Si $\varphi \circ u = 0_{E^*}$, c'est-à-dire si G = E, alors $\varphi \circ u = \lambda \varphi$ avec $\lambda = 0$
- Si $\varphi \circ u = \psi \neq 0_{E^*}$, alors $G = \ker \psi$ donc G est un hyperplan de E.

De plus, G contient H. En effet, pour tout $x \in H$, on a $u(x) \in H$ car H est stable par u, et donc $\varphi(u(x)) = 0$, c'est-à-dire $\psi(x) = 0$, d'où $x \in G$.

Comme on est en dimension finie, on a ainsi G = H.

Donc $\varphi \circ u$ et φ sont proportionnelles, ce qui établit le résultat.

(2) Avec les notations de l'énoncé,

 $\varphi \circ u = \lambda \varphi$ équivaut à $L \times A = \lambda L$, c'est-à-dire aussi à ${}^t A \times {}^t L = \lambda^t L$.

Intérêt : permet de déterminer les hyperplans stables.

• Stabilité et commutation :

Théorème:

Soient u et v deux éléments de $L_{\mathbb{K}}(E)$ tels que $u \circ v = v \circ u$

Alors $\ker u$ et $\operatorname{Im} u$ sont stables par v.

Plu généralement, pour tout $P \in \mathbb{K}[X]$, $\ker(\widetilde{P}(u))$ et $\operatorname{Im}(\widetilde{P}(u))$ sont stables par u.

En particulier, les sous-espaces propres de u sont stables par v.

Démonstration:

Pour $x \in \ker u$, alors u(v(x)) = v(u(x)) = 0 donc $v(x) \in \ker u$

Pour $x \in \text{Im } u$, il existe $y \in E$ tel que x = u(y)

Alors $v(x) = v(u(y)) = u(v(y)) \in \text{Im } u$

Pour tout $P \in \mathbb{K}[X]$, on a $\widetilde{P}(u) \circ v = v \circ \widetilde{P}(u)$. En effet, c'est vrai pour $P = X^k, k \in \mathbb{N}$ par récurrence, puis par linéarité pour $P \in \mathbb{K}[X]$.

On peut ensuite appliquer le résultat précédent à $\widetilde{P}(u)$ et v.

On a $E_{\lambda}(u) = \ker(u - \lambda Id)$, stable par v: il suffit de prendre $P = X - \lambda$

- Autres exemples :
- $D: P \in \mathbb{R}[X] \to P' \in \mathbb{R}[X]$

 $\mathbb{R}[X]$ et $\mathbb{R}_n[X]$ sont stables, et ce sont les seuls :

Si P de degré d est élément de F, et si F est stable par D, alors $P, P', ... P^{(d)} \in F$.

Mais $(P,P',...P^{(d)})$ est une base de $\mathbb{R}_d[X]$. Donc $\mathbb{R}_d[X] \subset F$.

Donc F est de la forme $\mathbb{R}_d[X]$.

Parmi ces espaces stables, seul $\mathbb{R}_0[X]$ est propre.

- Rotation de \mathbb{R}^2 d'angle θ . $\{0\}$ et \mathbb{R}^2 ; si $\theta \notin \pi \mathbb{Z}$, c'est tout.

C) Cas de la dimension finie.

• Base adaptée à un sous-espace stable

Théorème:

(1) Soit $u \in L_{\mathbb{K}}(E)$, E étant de dimension finie n.

Soit F un sous-espace stable par u, de dimension p.

Soit $(e_1,...e_p)$ une base de F, qu'on complète en une base $(e_1,...e_n)$ de E.

Alors
$$\max_{(e_1, e_2, \dots e_n)} (u) = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}_{n-p}^{p} \text{ avec } A = \max_{(e_1, \dots e_p)} (u_{/F})$$

En particulier, $\chi_u = \chi_A \times \chi_C$, donc $\chi_{u/F} = \chi_A$ divise χ_u

(2) Inversement, si
$$\max_{(e_1, e_2, \dots e_n)} (u) = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}_{n-p}^{p}$$
, alors $F = \text{Vect}(e_1, \dots e_p)$ est

stable par u.

Démonstration:

Soit
$$A = (a_{i,j})_{\substack{i \in [1,p] \\ j \in [1,p]}} = \max_{(e_1,e_2,\dots e_n)} (u_{i,j})$$

On a, pour $j \le p$, $u(e_j) = (u_{i,F})(e_j) = \sum_{i=1}^p a_{i,j} e_i$. Donc la j-ième colonne de

$$\mathrm{mat}_{(e_1,e_2,\dots e_n)}(u) \qquad \text{est} \qquad \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{p,j} \\ 0 \\ \vdots \end{pmatrix}. \qquad \text{Inversement,} \qquad \text{pour} \qquad j \leq p \;, \qquad \text{on} \qquad \text{a}$$

$$u(e_j) = \sum_{i=1}^p a_{i,j} e_i \in \text{Vect}(e_1, ... e_p) = F$$
, donc F est stable par u .

• Diagonalisation par blocs:

Théorème:

On suppose que $E = F_1 \oplus ... \oplus F_p$ où les F_i sont stables par u.

Soit, pour $i \in [1, p]$, \mathfrak{B}_i une base de F_i , on note $\mathfrak{B} = (\mathfrak{B}_1, ... \mathfrak{B}_p)$

Alors
$$\operatorname{mat}_{\mathfrak{B}}(u) = \begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & A_p \end{pmatrix}$$
, où $A_j = \operatorname{mat}_{\mathfrak{B}_j}(u_{/F_j})$.

De plus,
$$\chi_u = \prod_{i=1}^p \chi_{u_{i}, F_i}$$
, et $\min u = \text{ppcm}((\min(u_{i}, F_i), i = 1...p))$.

Démonstration:

Le premier point est clair

Pour tout
$$P \in \mathbb{K}[X]$$
, on a $\operatorname{mat}_{\mathfrak{B}}(\widetilde{P}(u)) = \widetilde{P}(\operatorname{mat}_{\mathfrak{B}}(u)) = \begin{pmatrix} \widetilde{P}(A_1) & 0 \\ & \ddots & \\ 0 & \widetilde{P}(A_p) \end{pmatrix}$

Donc l'idéal annulateur de u est :

$$\left\{P \in \mathbb{K}[X], \forall j, \widetilde{P}(u_{/F_j}) = 0\right\} = \bigcap_{i=1}^{p} \left\{P \in \mathbb{K}[X], \widetilde{P}(u_{/F_j}) = 0\right\} = \bigcap_{i=1}^{p} \min(u_{/F_j}) \cdot \mathbb{K}[X]$$

C'est l'idéal engendré par le ppcm des $min(u_{F_i})$.

Restriction d'un endomorphisme diagonalisable.

Lemme:

Si u est diagonalisable, et si F est stable par u, alors $u_{/F}$ est diagonalisable.

Démonstration:

Soit P annulateur de u scindé à racines simples (il en existe car u est diagonalisable)

On a alors $\widetilde{P}(u_{/F}) = \widetilde{P}(u)_{/F} = 0$, donc P est annulateur de $u_{/F}$ et scindé à racines simples, donc $u_{/F}$ est diagonalisable.

• Sous-espaces stables par un endomorphisme diagonalisable.

Remarque:

Soit u diagonalisable, de valeurs propres $\lambda_1,...\lambda_p$ deux à deux distinctes, et pour j=1..p, $F_j=E_{\lambda_j}(u)$, sous-espace propre de u associé à λ_j .

Alors tout sous-espace G_j d'un sous-espace propre F_j est stable par u car $u_{jG_j} = \lambda_j \operatorname{Id}_{G_j}$

Si, pour tout $j \in [1, p]$, G_j est un sous-espace de F_j , alors $F = G_1 \oplus ... \oplus G_p$ est stable par u.

Réciproquement, tout sous-espace stable par u est du type ci-dessus :

Soit F un espace stable par u.

On pose $v = u_{/F}$. Ainsi, $v \in L(F)$

De plus, v est diagonalisable (vu au point précédent)

Ainsi,
$$F = \bigoplus_{\lambda \in \operatorname{sp}(v)} E_{\lambda}(v) = (\bigoplus_{\lambda \in \operatorname{sp}(u)} E_{\lambda}(u)) \cap F = \bigoplus_{\lambda \in \operatorname{sp}(v)} \underbrace{\left(E_{\lambda}(u) \cap F\right)}_{\text{sous-espace de } E_{\lambda}}$$

Cas particulier:

On suppose u diagonalisable en dimension n avec n valeurs propres distinctes.

Soient $D_1, D_2, ...D_n$ les droites propres.

Les sous-espaces de D_j sont exactement $\{0\}$ et D_j , donc u admet un nombre fini de sous-espaces stables, à savoir 2^n

Remarque:

Pour n = 2, et D_1 , D_2 deux droites distinctes de \mathbb{R}^2

Une condition nécessaire et suffisante pour qu'un sous-espace F de \mathbb{R}^2 vérifie $F (= F \cap (D_1 \oplus D_2)) = F \cap D_1 \oplus F \cap D_2$ est que F soit $\{0\}, D_1, D_2$ ou \mathbb{R}^2 .

• Diagonalisation simultanée (Hors programme)

Problème:

Etant donnée $(u_{\alpha})_{\alpha \in I}$ une famille de $L_{\mathbb{K}}(E)$ (E étant de dimension finie), existe-t-il une base \mathfrak{B} de E dans laquelle pour tout $\alpha \in I$, $\mathrm{mat}_{\mathfrak{B}}(u_{\alpha})$ est diagonale ?

Déjà:

Une condition nécessaire est que les u_{α} soient diagonalisables individuellement

Il faut aussi que $\forall \alpha, \beta \in I, u_{\alpha} \circ u_{\beta} = u_{\beta} \circ u_{\alpha}$. En effet, si $\operatorname{mat}_{\mathfrak{B}}(u_{\alpha}) = D_{\alpha}$ et $\operatorname{mat}_{\mathfrak{B}}(u_{\beta}) = D_{\beta}$ sont diagonales, alors $D_{\alpha}D_{\beta} = D_{\beta}D_{\alpha}$, donc $u_{\alpha} \circ u_{\beta} = u_{\beta} \circ u_{\alpha}$.

La réciproque est vraie.

En effet:

On suppose que $(u_{\alpha})_{\alpha \in I}$ vérifie :

Pour tout $\alpha \in I$, u_{α} est diagonalisable, et $\forall \alpha, \beta \in I, u_{\alpha} \circ u_{\beta} = u_{\beta} \circ u_{\alpha}$

Soient $u, v \in L(E)$ diagonalisables, supposons que $u \circ v = v \circ u$

Pour $E_{\lambda}(u)$ sous-espace propre de u, $E_{\lambda}(u)$ est stable par v.

On considère $v_{\lambda} = v_{/E_{\lambda}(u)}$, restriction de v diagonalisable donc diagonalisable.

Soit \mathfrak{B}_{λ} une base de $E_{\lambda}(v)$ constituée de vecteurs propres de v_{λ}

Chaque vecteur de \mathfrak{B}_{λ} est propre pour v_{λ} donc pour v, mais aussi pour u puisque $\mathfrak{B}_{\lambda} \subset E_{\lambda}(u)$.

Soit alors $\mathfrak{B} = \bigcup_{\lambda \in \operatorname{sp}(u)} \mathfrak{B}_{\lambda}$. Comme $E = \bigoplus_{\lambda \in \operatorname{sp}(v)} E_{\lambda}(v)$ et comme \mathfrak{B} est une base de

 $\bigoplus_{\lambda\in\operatorname{sp}(v)}E_\lambda(v)$, $\mathfrak B$ est une base de E, et donc $\mathfrak B$ est une base de diagonalisation simultanée de u et v.

Maintenant:

On suppose I de cardinal fini p; soit $(u_{\alpha})_{\alpha \in I}$ une famille de $L_{\mathbb{K}}(E)$ vérifiant les propriétés.

On peut supposer que I = [1, p].

On va montrer alors le résultat par récurrence sur p.

Pour p = 2, le résultat vient d'être montré.

Soit λ une valeur propre de u_p .

Alors $E_{\lambda} = E_{\lambda}(u_p)$ est stable par les $u_i, i = 1...p - 1$

De plus, les $u_{i_{F_1}}$ commutent deux à deux et sont diagonalisables.

Donc par hypothèse de récurrence, il existe une base \mathfrak{B}_{λ} de E_{λ} dans laquelle les $u_{i_{l_{E_{\lambda}}}}$, i=1...p-1 sont diagonaux (et $u_{p_{l_{E_{\lambda}}}}$ est diagonale)

Ainsi, $\bigcup_{\lambda \in \operatorname{sp}(u_p)} \mathfrak{B}_{\lambda}$ est une base de vecteurs propres communs à tous les $(u_i)_{i \in I}$ ce qui

achève la récurrence.

Si maintenant *I* est quelconque :

Comme on est en dimension finie, on peut prendre $(u_{\alpha 1},...u_{\alpha k})$ une base de $\mathrm{Vect}(u_{\alpha})_{\alpha \in I}$

On applique alors ce qui précède à cette base, et on conclut par combinaison linéaire.

D) Application à la trigonalisation

• Drapeaux de sous-espaces de E, où E est de dimension n finie : C'est une suite $F_0 = \{0\} \subsetneq F_1 \subsetneq \dots \subsetneq F_n = E$ de sous-espaces de E avec

 $\forall i \in [1, n], \dim F_i = i$

• Base adaptée à un drapeau $F_0 \subsetneq F_1 \subsetneq ... \subsetneq F_n = E$:

C'est une base $(e_1,...e_n)$ de E telle que pour tout $k \in [1,n]$, $(e_1,...e_k)$ est une base de F_k

On peut obtenir une telle base de la façon suivante :

On pose $e_1 \in F_1 \setminus F_0$, puis $e_2 \in F_2 \setminus F_1 \dots$

• Remarque sur les espaces euclidiens :

Proposition:

Soit E un \mathbb{R} -ev euclidien de dimension n, $F_0 = \{0\} \subsetneq F_1 \subsetneq \dots \subsetneq F_n = E$ un drapeau de E. Alors il existe une base orthonormée adaptée au drapeau.

En effet:

Voir le procédé d'orthonormalisation de Gramm-Schmidt :

On prend $e_1 \in F_1 \setminus F_0$ unitaire, puis $e_2 \in F_2 \setminus F_1$ orthogonal à F_1 et unitaire...

• Drapeaux et trigonalisation :

Théorème:

Un endomorphisme u est trigonalisable si et seulement si il existe un drapeau constitué de sous-espaces stables par u.

De plus, la matrice de u dans une base adaptée à un tel drapeau est trigonale supérieure.

Démonstration:

Si *u* est trigonalisable, il existe une base $\mathfrak{B} = (e_1, ... e_n)$ de *E* telle que :

$$\operatorname{mat}_{(e_1, \dots e_n)} u = \begin{pmatrix} t_{1,1} & (t_{i,j}) \\ & \ddots & \\ 0 & t_{n,n} \end{pmatrix}$$

Posons alors pour $j \in [1, n]$, $F_i = \text{Vect}(e_1, ..., e_j)$

Alors cette suite est un drapeau, et pour tout $j \in [1, n]$, $u(e_j) = \sum_{i=1}^{j} t_{i,j} e_i \in F_j$.

Donc F_i est stable par u.

Réciproquement, si $F_0 = \{0\} \subsetneq F_1 \subsetneq ... \subsetneq F_n = E$ est un drapeau de sousespaces stables et $(e_1,...e_n)$ une base adaptée à ce drapeau, alors :

$$e_1 \in F_1$$
, donc $u(e_1) \in F_1 = \mathbb{K}.e_1$

Donc e_1 est vecteur propre de u, $u(e_1) = t_{1,1}e_1$.

 $e_2 \in F_2$, et F_2 est stable par u, donc $u(e_2) = t_{1,2}e_1 + t_{2,2}e_2 \dots$

D'où ensuite
$$\max_{(e_1,\dots e_n)} u = \begin{pmatrix} t_{1,1} & (t_{i,j}) \\ & \ddots & \\ 0 & & t_{n,n} \end{pmatrix}$$

E) Réduction de Jordan d'un endomorphisme trigonalisable et autres remarques (hors programme)

Problème:

Comment écrire qu'un endomorphisme trigonalisable n'est pas diagonalisable? Soit u un endomorphisme trigonalisable.

Ainsi, χ_u est scindé, disons $\chi_u = \prod_{i=1}^r (\lambda_i - X)^{m_i}$ où les λ_i sont deux à deux distincts.

Et donc
$$E = \bigoplus_{i=1}^{p} C_i$$
 où $C_i = \ker((u - \lambda_i \operatorname{Id})^{m_i})$.

Les C_i sont stables par u (car $(u - \lambda_i \operatorname{Id})^{m_i} \circ u = u \circ (u - \lambda_i \operatorname{Id})^{m_i}$)

Ainsi, u est diagonalisable si et seulement si $\forall i \in [1, p] u_{C_i}$ est diagonalisable.

Donc u n'est pas diagonalisable si et seulement si il existe $i \in [1, p]$ tel que u_{C_i} n'est pas diagonalisable.

Or, $u_{/C_i} - \lambda_i \operatorname{Id}_{C_i}$ est nilpotent, puisque $(u - \lambda_i \operatorname{Id})_{/C_i}^{m_i} = 0$

Donc $v_i = (u - \lambda_i Id)_{/C_i}$ est nilpotent, non nul car $u_{/C_i} \neq \lambda_i Id_{C_i}$ (*u* n'est pas diagonalisable)

On a donc $\{0\} \subsetneq \ker v_i \subsetneq \ker(v_i^2)$

Soit alors $x \in \ker v_i^2 \setminus \ker v_i$

Ainsi, x vérifie $(u - \lambda_i \text{Id})^2(x) = 0$, c'est-à-dire $u^2(x) - 2\lambda_i u(x) + \lambda_i^2 x = 0$, et $u(x) \neq \lambda_i x$.

Intérêt : en posant $y = u(x) - \lambda_i x$, on a $y \in \ker(u - \lambda_i Id)$

Donc $u(y) = \lambda_i y$

Et par récurrence : $\forall n \ge 1, u^n(x) = n\lambda_i^{n-1}y + \lambda_i^n x$

Application:

Soit G un sous-groupe compact de $GL_n(\mathbb{C})$. Alors tout élément de G est diagonalisable.

On considère la norme triple $\| \| \|$ sur $M_n(\mathbb{C})$. Comme G est borné, il existe $M \in \mathbb{R}$ tel que $\forall h \in G, \| h \| \leq M$

Ainsi, pour tout $g \in G$ et tout $n \in \mathbb{Z}$, $\|g^n\| \le M$

Soit $\lambda \in \mathbb{C}$, valeur propre de $g \in G$ (il en existe car χ_g est scindé : on est dans \mathbb{C}) Et V de norme 1 associé à λ .

Alors
$$||g^n|| = \sup_{||X|| \le 1} ||g^n X|| \ge ||g^n V|| = |\lambda|^n$$

Ainsi, $\forall n \in \mathbb{Z}, |\lambda|^n \le M$, donc $|\lambda| \le 1$

Alors g est diagonalisable. En effet, sinon, comme χ_g est scindé, il existe une valeur propre λ et un vecteur v tels que $(g - \lambda \operatorname{Id})^2(v) = 0$ et $(g - \lambda \operatorname{Id})(v) \neq 0$.

Ainsi, en posant $w = (g - \lambda.Id)(v)$:

$$\forall n \in \mathbb{N}, g^n(v) = n\lambda^{n-1}w + \lambda^n v$$

Donc $\|g^n(v)\| \le \|nw + \lambda v\|_{\infty} n\|w\|$, ce qui est impossible car $\|g^n\|$ est bornée par M.

Réduction de Jordan :

Rappel : Si $u \in L_{\mathbb{R}}(E)$ est nilpotent, alors il existe une base \mathfrak{B} de E telle que :

$$\operatorname{mat}_{\mathfrak{B}}(u) = \begin{pmatrix} 0 & \varepsilon_{1} & & \\ & \ddots & \ddots & \\ & & \ddots & \varepsilon_{n-1} \\ & & & 0 \end{pmatrix} \text{ où } \varepsilon_{i} \in \{0;1\}$$

Théorème:

Si, pour une matrice A, χ_A est scindé, alors A est semblable à une matrice de la

$$\text{forme } A' = \begin{pmatrix} M_1 & & 0 \\ & \ddots & \\ 0 & & M_p \end{pmatrix} \text{ où } M_j = \begin{pmatrix} \lambda_j & \mathcal{E}_{j,1} & & \\ & \ddots & \ddots & \\ & & \ddots & \mathcal{E}_{j,m_j-1} \\ & & & \lambda_j \end{pmatrix}$$

Démonstration:

On part de la décomposition en sous-espaces caractéristiques :

$$\mathbb{K}^n = \bigoplus_{j=1}^p C_j \text{ où } C_j = \ker(A - \lambda_j I_n)^{m_j}$$

On applique ensuite le cas nilpotent à $u_j = u_{/C_j} - \lambda_j I_{C_j}$, qui est un endomorphisme nilpotent de C_j .

F) Réduction sur R ou réduction sur C?

En pratique:

Si $A \in M_n(\mathbb{R})$ et si χ_A n'est pas scindé (dans \mathbb{R}), on se place dans \mathbb{C} et on réduit dans \mathbb{C} .

Exemple important:

On suppose A diagonalisable dans \mathbb{C} et χ_A non scindé dans \mathbb{R} .

Comme χ_A est réel, on a $\forall \lambda \in \operatorname{sp}_{\mathbb{C}}(A), \overline{\lambda} \in \operatorname{sp}_{\mathbb{C}}(A)$, et $m_{\overline{\lambda}} = m_{\lambda}$.

On va diagonaliser A dans \mathbb{C} méthodiquement :

- (i) Pour chaque valeur propre réelle α , on prend \mathfrak{B}_{α} une base de vecteurs propres réels.
- (ii) Pour chaque valeur propre non réelle λ , on prend $\mathfrak{B}_{\lambda} = (v_0(\lambda),...v_m(\lambda))$ une base de vecteurs propres (complexe), et alors $\overline{\mathfrak{B}}_{\lambda} = (\overline{v}_0(\lambda),...\overline{v}_m(\lambda))$ est une base de $\ker(A \lambda I_n)$.

On prend alors comme base de vecteurs complexes :

$$\mathfrak{B} = \bigcup_{\alpha \in \operatorname{sp}_{\mathbb{R}}(A)} \mathfrak{B}_{\alpha} \cup \bigcup_{\substack{\lambda \in \operatorname{sp}_{\mathbb{C}}(A) \\ \operatorname{non-réal}}} (\mathfrak{B}_{\lambda} \cup \mathfrak{B}_{\overline{\lambda}})$$

Proposition:

Si deux matrices *réelles* A et B sont semblables dans \mathbb{C} , alors elles sont semblables dans \mathbb{R} . (la réciproque est évidente)

Démonstration:

Déjà, il existe $P \in GL_n(\mathbb{C})$ tel que $A = P^{-1}BP$

On peut écrire $P = P_1 + iP_2$ où $P_1, P_2 \in M_n(\mathbb{R})$.

On a alors PA = BP, c'est-à-dire $(P_1 + iP_2)A = B(P_1 + iP_2)$

Donc
$$\begin{cases} P_1 A = BP_1 \\ P_2 A = BP_2 \end{cases}$$

On a ainsi $\forall t \in \mathbb{R}, (P_1 + tP_2)A = B(P_1 + tP_2)$. On note, pour $t \in \mathbb{R}$, $S(t) = P_1 + tP_2$.

Alors il existe $t \in \mathbb{R}$ tel que $S(t) \in GL_n(\mathbb{R})$.

En effet, det(S(X)) est un polynôme à coefficients réels en X.

Et comme $det(S(i)) \neq 0$, ce polynôme n'est pas le polynôme nul.

Il existe donc un réel t tel que $\det(S(t)) \neq 0$, c'est-à-dire tel que $S(t) \in GL_n(\mathbb{R})$.

Et ainsi, S(t)A = BS(t), et donc A et B sont semblables dans \mathbb{R} .

V Application de la réduction

A) Suites récurrentes linéaires

Problème:

On cherche les suites u telles que :

$$\forall n \in \mathbb{N}, u_{n+p} = a_0 u_n + a_1 u_{n+1} + \dots + a_{p-1} u_{n+p-1} \qquad (*)$$

Où éventuellement $u_0,...u_p$ sont donnés.

On sait trouver u par les équations caractéristiques.

Autre méthode :

On pose
$$X_n = \begin{pmatrix} u_n \\ \vdots \\ u_{n+p-1} \end{pmatrix} \in M_{p,1}(\mathbb{K})$$

On a alors
$$\forall n \in \mathbb{N}, X_{n+1} = AX_n$$
 où $A = \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & 0 & 1 \\ a_0 & & & a_{p-1} \end{pmatrix}$

On reconnaît la matrice compagnon associée au polynôme

 $X^{p} - a_{1} - a_{1}X - ... - a_{p-1}X^{p-1}$, qui est aussi le polynôme caractéristique de (*)

Et on a alors $\forall n \in \mathbb{N}, X_n = A^n X_0$

Pour trouver les u_n , il suffit donc de calculer les $A^n, n \in \mathbb{N}$.

B) Calcul de A^n pour une matrice A réelle.

• Méthode générale :

On réduit $A = PRP^{-1}$ avec si possible R trigonale voire diagonale, et on a alors $\forall n \in \mathbb{N}, A^n = PR^nP^{-1}$

• Si A est diagonalisable :

On prend $(\vec{v}_1,...\vec{v}_p)$ une base de vecteurs propres, on note $\lambda_i \in \mathbb{R}$ tel que $A\vec{v}_i = \lambda_i \vec{v}_i$ Remarque:

Avec les projecteurs spectraux $\pi_1,...\pi_p$, on a $\forall n \in \mathbb{N}, A^n = \sum_{j=1}^n \lambda_j^n \pi_j$

D'où
$$\forall P \in \mathbb{R}[X], \widetilde{P}(A) = \sum_{j=1}^{n} P(\lambda_j) \pi_j$$

Calcul des π_i :

Si on note
$$P_{i_0} = \prod_{j \neq i_0} \frac{X - \lambda_{i_0}}{\lambda_j - \lambda_{i_0}}$$
, on a alors $\widetilde{P}_{i_0}(A) = \pi_{i_0}$

- Utilisation des polynômes annulateurs :
- Cas particulier:

Si $\chi_A = (\lambda_0 - X)^n$, alors d'après le théorème de Cayley-Hamilton, $A - \lambda_0 I_n$ est nilpotent.

Soit *p* tel que $(A - \lambda_0 I_n)^p = 0$

Pour tout $k \in \mathbb{N}$,

$$A^{k} = (A - \lambda_{0}I_{n} + \lambda_{0}I_{n})^{k} = \sum_{t=0}^{k} C_{k}^{t} \lambda_{0}^{k-t} (A - \lambda_{0}I_{n})^{t} = \sum_{t=0}^{p-1} C_{k}^{t} \lambda_{0}^{k-t} (A - \lambda_{0}I_{n})^{t}$$

$$(C_k^t = 0 \text{ si } t \ge k)$$

- En général:

Soit *M* un polynôme annulateur de *A*.

La division euclidienne de X^k par M donne $X^k = Q_k M + R_k$

Et on a alors $A^k = \widetilde{R}_k(A)$.

Comment obtenir R_k ?

Si $M = \prod_{i=1}^{p} (\lambda_i - X)$ où les λ_i sont deux à deux distincts (si A est diagonaliable),

on cherche R_k sous la forme $R_k = \sum_{i=0}^{p-1} a_i(k) X^i$

La relation
$$X^k = Q_k M + R_k$$
 donne $\forall i, \lambda_i^k = R_k(\lambda_i) = \sum_{i=0}^{p-1} a_j(k) \lambda_i^j$

On a ainsi un système de Vandermonde, qu'on résoud et on obtient les $a_i(k)$ puis R_k .

Dans le cas général, quittte à changer de corps, on peut supposer M scindé.

On écrit M sous la forme $M = \prod_{i=1}^{r} (X - \lambda_i)^{\gamma_i}$ où les λ_i sont deux à deux distincts.

On note alors $\deg M = d = \sum_{i=1}^{r} \gamma_i$.

Ainsi,
$$X^{k} = MQ_{k} + \sum_{i=0}^{d-1} a_{i}(k)X^{i}$$
 (*)

On a donc un système de r équations en les d inconnues $a_0(k),...a_d(k)$:

$$\forall i \in [1, r] \int_{j=0}^{d-1} a_j(k) \lambda_i^j = \lambda_i^k$$

Pour chaque $i \in [1, r]$, comme λ_i est racine de M de multiplicité γ_i , on a $M(\lambda_i) = ... = M^{(\gamma_i - 1)}(\lambda_i) = 0$

On dérive (*) γ_i –1 fois et on remplace X par λ_i :

Pour tout
$$t \in [0, \gamma_i - 1]$$
, on a $k \times (k-1) \dots \times (k-t+1) \lambda_i^{k-t} = \sum_{j=t}^{d-1} j \cdot (j-1) \dots (j-t+1) \lambda_i^{k-t}$

Pour chaque racine λ_i , on a donc γ_i équations en les inconnues $a_i(k)$

On a donc un système à d équations, d inconnues, dont on admet qu'il est de Cramer.

On obtient ainsi les $a_i(k)$ et donc R_k , puis $A^k = R_k(A)$.

C) Equations et systèmes différentiels linéaires à coefficients constants

• Equation scalaire (E): $y^{(d)}(t) = \sum_{j=0}^{d-1} a_j y^{(j)}(t) + f(t)$

Où $\forall j \in [1,d] | a_j \in \mathbb{R}, f: I \subset \mathbb{R} \to \mathbb{C}$ continue.

Si D est l'opérateur de dérivation,

$$(E) \Leftrightarrow P(D) = f \text{ où } P = X^d - \sum_{j=0}^{d-1} a_j X^j$$

Méthode 1 : équation caractéristique

Les solutions $t \mapsto e^{rt}$ de l'équation sans second membre sont caractérisées par P(r) = 0.

Méthode 2 : méthode matricielle

On pose
$$Z = \begin{pmatrix} y \\ y' \\ \vdots \\ y^{(d-1)} \end{pmatrix}$$
. Ainsi, $(E) \Leftrightarrow (S) : Z' = AZ + B(t)$

Où
$$A = \begin{pmatrix} 0 & 1 & & & & & \\ & \ddots & & & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ a_0 & \cdots & \cdots & a_{d-1} \end{pmatrix}$$
 et $B(t) = \begin{pmatrix} 0 \\ \vdots \\ f(t) \end{pmatrix}$

Il faut ensuite résoudre le système, qu'on va résoudre dans un cas plus général.

• Pour un système (S) : X'(t) = AX(t) + B(t)

où $A \in M_n(\mathbb{R}/\mathbb{C})$, et $B: t \in I \mapsto B(t) \in M_n(\mathbb{R}/\mathbb{C})$ continue.

On réduit d'abord $A = PRP^{-1}$ avec R diagonale ou trigonale supérieure réelle ou complexe.

Ainsi,
$$(S) \Leftrightarrow X'(t) = PRP^{-1}X(t) + B(t)$$

On fait un changement d'inconnues $Y(t) = P^{-1}X(t)$

Comme la matrice P est indépendante de t, X est de classe C^1 si et seulement si Y l'est, et dans ce cas $Y'(t) = P^{-1}X'(t)$

(1) Si R est trigonale supérieure,

$$(S_1): \begin{cases} y'_1(t) = \sum_{j=1}^d R_{1,j} y_j(t) + C_1(t) \\ y'_i(t) = \sum_{j=i}^d R_{i,j} y_j(t) + C_i(t) \\ y'_n(t) = R_{n,n} y_n(t) + C_n(t) \end{cases}$$

Ce sont des équations du premier ordre à coefficients constants et 2^{nd} membre.

On résoud $y'_n = R_{n,n}y_n + C_n$, puis on reporte dans l'équation précédente...

Si R est diagonale, on a un système découplé de n équations indépendantes :

$$y'_{i}(t) = R_{i,i}y_{i}(t) + C_{i}(t)$$

(2) Cas diagonalisable:

Théorème:

Soit $(\vec{v}_1,...\vec{v}_n)$ une base de vecteurs propres de \vec{A} où $\vec{A}\vec{v}_i = \lambda_i \vec{v}_i$.

La solution du problème de Cauchy (c'est-à-dire l'équation sans 2nd membre):

$$\begin{cases} X'(t) = A \times X(t) \\ X(t_0) = X_0 = \sum_{k=1}^n a_k \vec{v}_k \end{cases}$$

Est
$$X(t) = \sum_{k=1}^{n} a_k e^{\lambda_k (t-t_0)} \vec{v}_k$$

Remarque:

Pour une équation avec le second membre $B(t) = \sum_{k=1}^{n} \beta_k(t) \vec{v}_k$, on résoud l'équation sans second membre et on utilise la méthode de variation des constantes, en cherchant les solutions X(t) de X' = AX + B sous la forme $X(t) = \sum_{j=1}^{n} z_j(t) e^{\lambda_j t} \vec{v}_j$ où $z_j : I \to \mathbb{K}$ est de classe C^1 .

Alors
$$X'(t) = \sum_{j=1}^{n} (z'_{j}(t) + \lambda_{j} z_{j}(t)) e^{\lambda_{j} t} \vec{v}_{j}$$

Donc
$$X'(t) - AX(t) = \sum_{j=1}^{n} z_{j}'(t)e^{\lambda_{j}t} \vec{v}_{j}$$
 (A est diagonale)

Ainsi, X est solution de X' = AX + B si et seulement si $\forall j, z'_j(t) = e^{-\lambda_j t} \beta_j(t)$.

Démonstration du théorème :

On sait que le problème de Cauchy a une unique solution (cours sur les équations différentielles)

Il suffit de vérifier que $\varphi: t \mapsto \sum_{j=1}^n a_j e^{\lambda_j (t-t_0)} \vec{v}_j$ convient, ce qui est le cas.

En effet,
$$\varphi$$
 est de classe C^1 et $\varphi'(t) = \sum_{j=1}^n a_j \lambda_j e^{\lambda_j (t-t_0)} \vec{v}_j = A \varphi(t)$

De plus,
$$\varphi(t_0) = \sum_{j=1}^{n} a_j \vec{v}_j = X_0$$

(3) Utilisation des exponentielles de matrice : voir paragraphe suivant.

VI Suites et séries d'une algèbre normée

On travaille ici avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

A) Convergence

• Définitions (rappels) :

Espace normé, de Banach, algèbre de Banach...

Norme d'algèbre unitaire sur A:

C'est une norme pour l'espace vectoriel A avec en plus $\forall x, y \in A, ||xy|| \le ||x||||y||$ et $||1_A|| = 1$

En dimension finie, les normes sont équivalentes, donc on pourra changer de norme...

• Cas des séries :

La série de terme général $(u_n)_{n\geq 0}$ est dite convergente lorsque la suite des sommes

partielles
$$S_n^u = \sum_{k=0}^n u_k$$
 converge.

Elle est dite absolument convergente si la série de terme général $(\|u_n\|)_{n\geq 0}$ converge.

Théorème (déjà vu):

Si E est un espace de Banach, toute série absolument convergente est convergente. (La réciproque est vraie...)

B) Rayon spectral d'une matrice ou d'un endomorphisme en dimension finie

Pour $A \in M_n(\mathbb{K})$ ou $L_{\underline{c}}(E)$ avec dim E = n, on définit :

$$\rho(A) = \sup \{ \lambda | \lambda \in \operatorname{sp}_{\mathbb{C}}(A) \}$$
: rayon spectral de A .

Proposition:

Pour toute valeur propre λ de A, et toute norme d'algèbre N, on a $N(A) \ge |\lambda|$, et donc $N(A) \ge \rho(A)$.

Démonstration:

(1) Cas particulier où N est une norme triple, c'est-à-dire s'il existe une norme $|\sup_{|X|\leq 1} M_{n,1}(\mathbb{C})$ telle que $N(A) = \sup_{|X|\leq 1} |AX|$.

Si on prend X vecteur unitaire pour $| \ |$ et propre associé à une valeur propre λ ,

$$|AX| = |\lambda X| = |\lambda| \le N(A)$$

(2) Cas général où N est une norme d'algèbre quelconque :

Soit
$$\lambda \in \operatorname{sp}_{\mathbb{C}}(A)$$
, et $B \in M_n(\mathbb{C}) \setminus \{0\}$ tel que $(A - \lambda I_n)B = 0$

(Il en existe, prendre par exemple la matrice dont toutes les colonnes sont des vecteurs propres de A associés à λ).

On a alors
$$AB = \lambda B$$
, donc $|\lambda| ||B|| = ||AB|| \le ||A|| ||B||$

Comme ||B|| > 0, on a donc $|\lambda| \le ||A||$.

Théorème (hors programme):

Pour $A \in M_n(\mathbb{C})$, on a $\lim_{p \to +\infty} A^p = 0$ si et seulement si $\rho(A) < 1$

Corollaire

Pour toute norme sur $M_n(\mathbb{C})$, on a $\rho(A) = \lim_{p \to +\infty} ||A^p||^{1/p}$.

Démonstrations :

- Pour le théorème :

Supposons que $\lim_{p \to +\infty} A^p = 0$.

Soit $\lambda \in \mathbb{C}$ une valeur propre de A, et X un vecteur propre associé.

On a alors
$$\lim_{p \to +\infty} A^p = 0$$
, donc $\lim_{p \to +\infty} \underbrace{A^p X}_{\lambda^p X} = 0$, soit $|\lambda| < 1$

Ainsi, $\rho(A) < 1$ (on est en dimension finie, donc il y a un nombre fini de valeur propres)

Supposons maintenant que $\rho(A) < 1$.

Décomposition en sous-espaces caractéristiques :

$$\mathbb{C}^n = \bigoplus_{i=1}^p C_i \text{ où } C_i = \ker(A - \lambda_i I_n)^{m_i}, \text{ avec } \chi_A = \prod_{i=1}^p (\lambda_i - X)^{m_i}.$$

On a $\forall i, |\lambda_i| < 1$. Comme les C_i sont stables et engendrent \mathbb{C}^n , il suffit de montrer que $A^p_{IC_i} \to 0$

On a $A_{/C_i}^p=(A_{/C_i})^p$. Or, $A_{/C_i}-\lambda_i\mathrm{Id}_{C_i}=v_i$ est nilpotent par définition de C_i

Donc $v_i^{m_i} = 0$.

Ainsi,
$$(A_{/C_i})^p = (\lambda_i \operatorname{Id}_{C_i} + v_i)^p = \sum_{t=0}^{m_i - 1} C_p^t \lambda_i^{p-t} v_i^t$$

C'est une matrice dont les coefficients sont de la forme $\lambda_i^{p-m_i+1}$ fois un polynôme de degré $\leq m_i - 1$ en p, et tendent donc vers 0 par croissance comparée $(|\lambda_i| < 1)$

- Corollaire:

Si $\| \|$ est une norme triple sur $M_n(\mathbb{C})$ associée à une norme $\| \|$.

Comme $\operatorname{sp}(A^p) = \{\lambda^p, \lambda \in \operatorname{sp}_{\mathbb{C}}(A)\}$ (car A est trigonalisable dans \mathbb{C}), on a $\rho(A^p) = (\rho(A))^p$

Donc $\forall p \ge 1$, $\rho(A)^p \le ||A^p||$, et $\rho(A) \le ||A^p||^{1/p}$.

Soit $r > \rho(A)$. Alors $B = \frac{1}{r}A$ vérifie $\rho(B) < 1$.

D'après le théorème, on a $\lim_{p\to +\infty} B^p = 0$

Il existe donc M tel que $\forall p \ge M$, $\|B^p\| \le 1$, c'est-à-dire $\forall p \ge M$, $\|A^p\| \le r^p$

Pour tout $p \ge M$, on a donc $\rho(A) \le ||A^p||^{1/p} \le r$.

Ainsi : $\forall r > \rho(A), \exists M > 0, \forall p \ge M, \rho(A) \le \left\|A^p\right\|^{1/p} \le r$

Donc
$$\lim_{p \to +\infty} ||A^p||^{1/p} = \rho(A)$$

Pour une norme $\|\ \|_2$ quelconque, on peut considérer une norme triple et c_1,c_2 tels que $c_1\|\ \|\le \|\ \|_2 \le c_2\|\ \|$

Alors
$$\forall p \in \mathbb{N}^*, \underbrace{c_1^{1/p}}_{\to 1} \underbrace{\|A^p\|^{1/p}}_{\to \rho(A)} \le \|A^p\|_2^{1/p} \le \underbrace{c_2^{1/p}}_{\to 1} \underbrace{\|A^p\|^{1/p}}_{\to \rho(A)}$$

C) Séries géométriques

• Algèbre de Banach :

Théorème:

Soit $(A, \| \|)$ une algèbre de Banach, et $a \in A$ tel que $\|a\| < 1$. Alors :

- $1_A a$ est inversible
- La série de terme général a^n converge absolument et $\sum_{n=0}^{+\infty} a^n = (1-a)^{-1}$

Corollaire:

L'ensemble des éléments inversibles d'une algèbre de Banach est ouvert.

Démonstration :

- Déjà, on a convergence absolue car $\forall n \in \mathbb{N}, ||a^n|| \le ||a||^n = r^n$ qui est une série convergente car géométrique (réelle) de raison $r \in]-1;1[$
- On a, pour tout $n \in \mathbb{N}$, $\left(\sum_{k=0}^{n} a^{k}\right) \times (1-a) = 1-a^{n+1}$

Or,
$$\lim_{n \to +\infty} a^{n+1} = 0$$
.

Par continuité du produit dans A, on a $\left(\sum_{k=0}^{+\infty} a^k\right) \times (1-a) = 1$

De même,
$$(1-a) \times \left(\sum_{k=0}^{+\infty} a^k\right) = 1$$

D'où le résultat.

Pour le corollaire :

Soit $a_0 \in A^*$. On cherche une condition nécessaire sur h pour que $a_0 + h \in A^*$

On a
$$a_0 + h = a_0 (1 + a_0^{-1} h)$$

Donc si
$$||-a_0^{-1}h|| < 1$$
, alors $a_0 + h \in A^*$.

Mais
$$||-a_0^{-1}h|| \le ||a_0^{-1}|| ||h||$$

Donc il suffit que
$$||h|| < \frac{1}{||a_0^{-1}||}$$

Donc
$$B_0\left(a_0, \frac{1}{\left\|a_0^{-1}\right\|}\right) \subset A^*$$

• Cas particulier de la dimension finie :

Théorème (Hors programme):

Soit $A \in M_n(\mathbb{C})$. Alors la série de terme général A^n converge si et seulement si $\rho(A) < 1$

Démonstration:

Si la série de terme général converge, alors $A^n \to 0$, donc $\rho(A) < 1$

Réciproquement:

Si
$$\rho(A) < 1$$
, alors $I - A \in GL_n(\mathbb{C})$ (car $1 \notin \operatorname{sp}_{\mathbb{C}}(A)$).

Pour tout
$$p \in \mathbb{N}^*$$
, on a $(I + A + ... + A^p)(I - A) = I - A^{p+1}$

Donc
$$I + A + ... + A^p = (I - A^{p+1})(I - A)^{-1} \xrightarrow{p \to +\infty} (I - A)^{-1}$$

car $A^{p+1} \rightarrow 0$ (puisque $\rho(A) < 1$)

D) Exponentielle dans une algèbre de Banach (Hors programme en dimension infinie)

Théorème:

Soit $(A,+,\times,\cdot,\|\ \|)$ une algèbre de Banach. Alors :

• Pour tout $u \in A$, la série de terme général $\frac{u^n}{n!}$ est absolument convergente.

 $(\frac{u^0}{0!} = 1_A)$. On note $\exp(u)$ la somme de cette série.

• Si $u, v \in A$ commutent, on a $e^{u+v} = e^u \times e^v = e^v \times e^u$.

En particulier, pour tout $u \in A$, e^u est inversible et $(e^u)^{-1} = e^{-u}$

• Pour tout $u \in A$, l'application $\varphi_u : \mathbb{R} \to A$ est de classe C^{∞} et on a : $t \mapsto e^{t \cdot u}$

$$\forall t \in \mathbb{R}, \varphi'_{u}(t) = u \times e^{t.u} = e^{t.u} \times u.$$

Démonstration :

(1) Pour tout $p \in \mathbb{N}$, on a $\left\| \frac{u^p}{p!} \right\| \le \frac{\|u\|^p}{p!}$, terme général d'une série (réelle)

convergente. Donc la série de terme général $\frac{u^p}{n!}$ est absolument convergente donc convergente car A est complet.

(2) Soient $u, v \in A$ qui commutent.

Considérons
$$\Delta_n(u, v) = \sum_{k=0}^n \frac{(u+v)^k}{k!} - \left(\sum_{i=0}^n \frac{u^i}{i!}\right) \times \left(\sum_{j=0}^n \frac{v^j}{j!}\right)$$

On va montrer que $\Delta_n \to 0$. Pour tout $n \in \mathbb{N}$, on a:

$$\sum_{k=0}^{n} \frac{(u+v)^{k}}{k!} = \sum_{k=0}^{n} \frac{1}{k!} \sum_{i=0}^{k} C_{k}^{i} u^{i} v^{k-i} = \sum_{k=0}^{n} \sum_{i=0}^{k} \frac{u^{i}}{i!} \frac{v^{k-i}}{(k-i)!} = \sum_{(i,j)\in T_{n}} \frac{u^{i}}{i!} \frac{v^{j}}{j!}$$
Où $T_{n} = \{(i,j)\in \mathbb{N}^{2}, i+j \leq n\}$

Par ailleurs,
$$\sum_{i=0}^{n} \frac{u^{i}}{i!} \sum_{j=0}^{n} \frac{v^{j}}{j!} = \sum_{(i,j) \in C_{n}} \frac{u^{i}}{i!} \frac{v^{j}}{j!}$$
, où $C_{n} = [0,n]^{2}$.

Comme
$$T_n \subset C_n$$
, on a $\Delta_n(u,v) = -\sum_{(i,j)\in T_n\setminus C_n} \frac{u^i}{i!} \frac{v^j}{j!}$

Donc
$$\|\Delta_n(u,v)\| \le \sum_{(i,j) \in T_n \setminus C_n} \frac{\|u\|^i}{i!} \frac{\|v\|^j}{j!} \le -\Delta_n(\|u\|,\|v\|)$$

Or, le théorème sur les séries *réelles* produits au sens de Cauchy montre que $\forall \alpha, \beta \in \mathbb{R}, e^{\alpha+\beta} = e^{\alpha}e^{\beta}$

Donc
$$\lim_{n \to +\infty} -\Delta_n(\|u\|, \|v\|) = e^{\|u\| + \|v\|} - e^{\|u\|} e^{\|v\|} = 0$$
, d'où le résultat voulu.

Inversibilité : comme u et -u commutent, $e^u e^{-u} = e^{-u} e^u = e^0 = 1$

(3) Lemme:

Soit $u \in A$. Alors il existe M > 0 tel que $\forall t \in [-1,1], \|\varphi_u(t) - 1_A - tu\| \le Mt^2$

En effet :
$$\|\varphi_u(t) - 1_A - t \cdot u\| = \left\| \sum_{k=2}^{+\infty} \frac{t^k u^k}{k!} \right\| \le t^2 \sum_{k=2}^{+\infty} \frac{|t|^{k-2} \|u\|^k}{k!} = \le t^2 \sum_{k=2}^{+\infty} \frac{\|u\|^k}{k!} \le t^2 M$$

Soit maintenant $t_0 \in \mathbb{R}$.

Alors pour
$$h > 0$$
, $\varphi_u(t_0 + h) - \varphi_u(t_0) = e^{(t_0 + h).u} - e^{t_0.u} = e^{t_0.u}(e^{h.u} - 1)$.

Donc
$$\frac{\varphi_u(t_0 + h) - \varphi_u(t_0)}{h} - u \times e^{t_0 u} = e^{t_0 \cdot u} \left(\frac{e^{h \cdot u} - 1 - h \cdot u}{h} \right)$$

Ainsi, si
$$|h| < 1$$
, $\left\| \frac{\varphi_u(t_0 + h) - \varphi_u(t_0)}{h} - u \times e^{t_0 u} \right\| \le M |h| \|e^{t_0 u}\|$

Donc
$$\lim_{h\to 0} \frac{\varphi_u(t_0+h) - \varphi_u(t_0)}{h} = u \times e^{t_0.u} = e^{t_0.u} \times u \text{ car } u \text{ et } e^{t_0.u} \text{ commutent.}$$

E) Exponentielle et équations différentielles linéaires

• Ecriture rationnelle d'un système linéaire à coefficients constants à *p* inconnues :

(S):
$$\left\{ \forall i \in [1, p], x'_i(t) = \sum_{j=1}^p a_{i,j} x_j(t) + b_i(t) \right\}$$

Ou matriciellement : $X'(t) = A \times X(t) + B(t)$

$$\operatorname{O\grave{u}}\ A = (a_{i,j})_{\substack{i \in [[1,p]]\\j \in [[1,p]]}} \in M_n(\mathbb{K}) \,, \ X = \begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}, \ B = \begin{pmatrix} b_1\\ \vdots\\ b_n \end{pmatrix}.$$

Problème de Cauchy : il faut résoudre $\begin{cases} X' = AX + B \\ X(t_0) = X_0 \end{cases}$

• Utilisation de l'exponentielle :

Théorème:

Soit *E* un espace de Banach.

Ainsi, $(L_{c}(E), \| \|)$ est une algèbre de Banach. Alors :

- (1) Pour tout $a_0 \in L_{\mathbb{C}}(E)$, le problème de Cauchy $\begin{cases} x'(t) = a_0 \times x(t) \\ x(0) = \mathrm{Id}_E \end{cases}$ a une unique solution $x : \mathbb{R} \to L_{\mathbb{C}}(E)$ (t décrivant un *intervalle I*) $t \mapsto e^{t \cdot a_0}$
- (2) Pour tout $\vec{v} \in E$, le problème de Cauchy $\begin{cases} x'(t) = a_0(x(t)) \\ x(0) = \vec{v} \in E \end{cases}$ a pour unique solution $x : \mathbb{R} \to E$ $t \mapsto e^{t \cdot a_0}(\vec{v})$

Démonstration :

(1) On sait que $\varphi: t \mapsto e^{t.a_0}$ vérifie $\varphi(0) = \operatorname{Id}_E$ et $\forall t, \varphi'(t) = a_0 \times e^{t.a_0} = a_0 \times \varphi(t)$.

Donc φ est solution.

Soit *x* solution du problème de Cauchy.

Considérons $y(t) = e^{-t.a_0}x(t)$, c'est-à-dire $x(t) = e^{t.a_0} \times y(t)$.

Comme $t\mapsto x(t)$ et $t\mapsto e^{-a_0t}$ sont de classe C^1 et $L_{\mathbb{C}}(E)^2\to L_{\mathbb{C}}(E)$ est continue, $(a,b)\mapsto a\times b$

$$y$$
 est de classe C^1 et $\forall t \in \mathbb{R}, y'(t) = (-a_0 e^{-t.a_0}) \times x(t) + e^{-t.a_0} \times x'(t)$

$$= a_0 \times x(t)$$

Comme a_0 et $e^{-t.a_0}$ commutent pour tout t, on a $\forall t, y'(t) = 0$ donc $y = \text{cte} = y(0) = \text{Id}_E$

Donc $x(t) = e^{t.a_0} y(0) = e^{t.a_0}$

(2) On fait la même chose : $t \mapsto \varphi(t) = e^{t.a_0}(\vec{v})$ est de classe C^1 et de dérivée $\varphi'(t) = a_0 e^{t.a_0}(\vec{v}) = a_0 \varphi(t)$, et $\varphi(0) = \vec{v}$.

Réciproquement, si x est une solution, on pose à nouveau $y(t) = e^{-t.a_0}(x(t)) \dots$

F) Calcul en dimension finie

• La réduction :

Si $A = PRP^{-1}$, alors pour tout $t \in \mathbb{R}, e^{t.A} = Pe^{t.R}P^{-1}$

Ainsi, pour calculer e^{tA} , on diagonalise A si possible, sinon on trigonalise.

• Si A est diagonalisable (sur \mathbb{R} ou \mathbb{C}):

Avec les projecteurs spectraux, $A = \sum_{i=1}^{r} \lambda_i \pi_i$ où les λ_i sont les valeurs propres de A

deux à deux distinctes et π_i les projecteurs sur $E_{\lambda_i}(A)$ parallèlement à $\bigoplus_{\substack{j=1\\j\neq i}}^p E_{\lambda_j}(A)$.

On a alors $\forall t \in \mathbb{R}, e^{t.A} = \sum_{i=1}^{r} e^{t.\lambda_i} \pi_i$

• Si A a une seule valeur propre $\lambda_0 \in \mathbb{R} / \mathbb{C}$ (on a alors $\chi_A = (\lambda_0 - X)^n$) Alors $A = \lambda_0 I_n + N$ où N est nilpotent (théorème de Cayley–Hamilton)

Pour tout
$$t \in \mathbb{R}$$
, on a alors : $e^{t \cdot A} = e^{t \cdot \lambda_0 I_n + t \cdot N} = e^{t \cdot \lambda_0 I_n} e^{t \cdot N} = (e^{t \cdot \lambda_0} I_n) \left(\sum_{k=0}^{n-1} \frac{t^k}{k!} N^k \right)$

Donc
$$e^{t.A} = e^{\lambda_0 t} \cdot \sum_{k=0}^{n-1} \frac{t^k}{k!} (A - \lambda_0 I_n)^k$$

• Cas général (Hors programme) :

Décomposition de Jordan-Dumford :

A = D + N où D est diagonalisable, N nilpotente et DN = ND

Ainsi, $\forall t \in \mathbb{R}, e^{t.A} = e^{t.D}e^{t.N}$

• Méthode artisanale utilisant le calcul de A^n et la sommation des séries : voir méthodes de calcul de A^n (par exemple avec le polynôme annulateur...)

VII Compléments hors programme

A) Endomorphisme cyclique

Définition:

Un endomorphisme u de E en dimension finie est dit cyclique lorsqu'il existe $\vec{v} \in E$ tel que $\mathfrak{B} = (\vec{v}, u(\vec{v}), ... u^{n-1}(\vec{v}))$ est une base de E.

Dans ce cas,
$$mat_{\mathfrak{B}}(u) = \begin{pmatrix} 0 & (0) & a_n \\ 1 & \ddots & \vdots \\ & \ddots & 0 & \vdots \\ (0) & 1 & a_1 \end{pmatrix}$$

Proposition :

Si un endomorphisme u est cyclique, alors

$$com(u) = \mathbb{K}[u] = \{\alpha_0 Id_E + ... + \alpha_{n-1} u^{n-1}, (\alpha_0, ... \alpha_{n-1}) \in \mathbb{K}^n\}$$

Où com(u) est l'ensemble des endomorphismes qui commutent avec u.

Démonstration:

Déjà, les inclusions ⊃ sont évidentes.

Soit $v \in \text{com}(u)$, montrons que $v \in \{\alpha_0 Id_E + ... + \alpha_{n-1}u^{n-1}, (\alpha_0, ... \alpha_{n-1}) \in \mathbb{K}^n\}$

Prenons \vec{v}_0 tel que $(\vec{v}_0, u(\vec{v}_0), ... u^{n-1}(\vec{v}_0))$ est une base de E.

On peut alors écrire $v(\vec{v}_0) = \sum_{j=0}^{n-1} \alpha_j u^j(v_0)$. Alors $v = \sum_{j=0}^{n-1} \alpha_j u^j$.

En effet, pour tout k = 0..n - 1, on a :

$$v(u^{k}(\vec{v}_{0})) = u^{k}(v(\vec{v}_{0})) = \sum_{j=0}^{n-1} \alpha_{j} u^{k+j}(\vec{v}_{0}) = \left(\sum_{j=0}^{n-1} \alpha_{j} u^{j}\right) (u^{k}(\vec{v}_{0}))$$

Donc v et $\sum_{j=0}^{n-1} \alpha_j u^j$ coïncident sur une base donc sont égaux.

Application:

Soit u un endomorphisme de E avec $\dim_{\mathbb{C}}(E) = n \in \mathbb{N}$ ayant n valeurs propres simples. Alors u est cyclique.

En effet, soit $(e_1,...e_n)$ une base E, avec $\forall i \in [1,n], u(e_i) = \lambda_i e_i$

On prend $\vec{v} = e_1 + ... + e_n$.

Alors pour tout $k \in \mathbb{N}, u^k(\vec{v}) = \sum_{i=1}^n \lambda_i^k e_i$

Donc
$$\operatorname{mat}_{(e_1, \dots e_n)}(\vec{v}, \dots u^{n-1}(\vec{v})) = \begin{pmatrix} 1 & \lambda_1 & \dots & \lambda_1^n \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_n & \dots & \lambda_n^n \end{pmatrix} \in GL_n \text{ car les } \lambda_i \text{ sont deux à deux}$$

distincts. Donc $(\vec{v},...u^{n-1}(\vec{v}))$ est une base de E.

Proposition:

Si, pour $\lambda \in \mathbb{R}$, $u - \lambda I$ est nilpotent d'indice n, alors u est cyclique.

En effet, soit $v = u - \lambda I$, et \vec{v}_0 tel que $(u - \lambda I)^{n-1} (\vec{v}_0) \neq \vec{0}$.

Alors $(\vec{v}_0,...v^{n-1}(\vec{v}_0))$ est libre dans E donc c'est une base de E, puis $(\vec{v}_0,...u^{n-1}(\vec{v}_0))$ aussi avec des transformations élémentaires.

Propriété:

Si un endomorphisme u est cyclique, alors $\min u = \chi_u(-1)^n$

En effet :

Si $(\vec{v}_0,...u^{n-1}(\vec{v}_0))$ est une base de E, alors $(\mathrm{Id},u,...u^{n-1})$ est libre dans $L_{\overline{k}}(E)$

En effet, pour tout $(\lambda_1,...\lambda_n) \in \mathbb{K}^n$, on a les implications :

$$\sum_{i=1}^{n} \lambda_{i} u^{i} = 0 \Rightarrow \sum_{i=1}^{n} \lambda_{i} u^{i}(\vec{v}_{0}) = 0 \Rightarrow \forall j \in [1, n], \lambda_{j} = 0.$$

Donc si $P \in \mathbb{K}_{n-1}[X]$ et $\widetilde{P}(u) = 0$, alors P = 0 donc $\deg(\min u) \ge n$. Comme $\min u |_{\mathcal{X}_u}$, on a $\min u = \mathcal{X}_u \cdot (-1)^n$.

B) Produit tensoriel

Définition:

Soient $A \in M_n(\mathbb{K}), B \in M_n(\mathbb{K})$

On note $A \otimes B = (a_{i,j}B) \in M_{np}(\mathbb{K})$.

Propriétés:

$$(A \otimes B) \times (A' \otimes B') = AA' \otimes BB'$$

Si
$$A, B \in GL_n(\mathbb{K}), GL_n(\mathbb{K})$$
, alors $A \otimes B \in GL_{nn}(\mathbb{K})$ et $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$

Application:

Si A et B sont deux matrices diagonalisables, alors $A \otimes B$ est diagonalisable.

En effet:

Si
$$A = PDP^{-1}$$
, $B = QEQ^{-1}$, avec $P \in GL_n(\mathbb{K})$, $Q \in GL_p(\mathbb{K})$, D et E diagonales, alors $A \otimes B = (PDP^{-1}) \otimes (QEQ^{-1}) = (P \otimes Q) \times (D \otimes E) \times (P^{-1} \otimes Q^{-1})$

Soit
$$A \otimes B = (P \otimes Q) \times (D \otimes E) \times (P \otimes Q)^{-1}$$
 et $D \otimes E$ est diagonale.