Problem Statement: Image Classification Using Deep Learning

You are provided with a dataset organized into four subfolders, each representing a distinct class of images:

- Cloudy
- Desert
- Green Area
- Water

Each subfolder contains a set of images corresponding to its class. The goal is to perform image classification by developing and evaluating multiple deep learning models.

Task Requirements:

You are required to implement and compare the performance of the following models:

- 1. Use the ConvNeXt and Swin Transformer architectures for classification.
- **2.** Utilize the VGG19 architecture with pretrained weights. Implement transfer learning and fine-tuning to adapt the model for the 4-class classification task.
- **3.** Design a custom CNN consisting of:
 - o Three Convolutional Blocks, each comprising:
 - ✔ Convolutional Layer
 - ✔ Batch Normalization Layer
 - ✓ Activation Function (choose from ReLU, Sigmoid, Softmax)
 - ✓ Pooling Layer (choose from Max Pooling, Average Pooling, Global Pooling)
 - o One Classification Block, consisting of:
 - ✔ Flatten Layer
 - ✓ Two Dropout Layers
 - ✔ Two Fully Connected (Dense) Layers
 - ✓ Final Output Layer (choose an appropriate activation: ReLU, Sigmoid, or Softmax)

Training and Evaluation Configuration

• Data Splitting:

Partition the dataset into three subsets: training, validation, and testing to ensure effective model evaluation and generalization.

• Training Settings:

Train each model for 10 epochs using optimal hyper parameters and techniques suitable for multi-class classification.

Model Optimization:

Select an appropriate optimizer, loss function, and evaluation metrics (such as accuracy, precision, recall, and F1-score) based on the characteristics of the dataset.

• Data Handling Decisions:

Evaluate the need for data augmentation to enhance model robustness and reduce overfitting. Consider applying oversampling techniques if class imbalance is observed.

• Performance Visualization:

Plot training, validation, and testing accuracy and loss curves to analyze model learning behavior. Generate and present the confusion matrix along with key performance indicators:

- 1. Precision
- 2. Sensitivity (Recall)
- 3. Specificity