Ch2: Robot Dynamics – Part 2

Amin Fakhari, Spring 2024

Inverse Dynamics

0000000000

Inverse Dynamics

Inverse Dynamic Equations in Closed Form

Inverse dynamic equations of an open-chain manipulator (finding au given heta, $\dot{ heta}$, $\ddot{ heta}$, $\mathcal{F}_{ ext{tip}}$) can be organized into a closed-form as

$$\tau = M(\theta)\ddot{\theta} + h(\theta,\dot{\theta}) + J^{T}(\theta)\mathcal{F}_{tip}$$

$$= M(\theta)\ddot{\theta} + c(\theta,\dot{\theta}) + g(\theta) + J^{T}(\theta)\mathcal{F}_{tip}$$

$$= M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta) + J^{T}(\theta)\mathcal{F}_{tip}$$

$$= M(\theta)\ddot{\theta} + \dot{\theta}^{T}\Gamma(\theta)\dot{\theta} + g(\theta) + J^{T}(\theta)\mathcal{F}_{tip}$$

$$= M(\theta)\ddot{\theta} + \dot{\theta}^{T}\Gamma(\theta)\dot{\theta} + g(\theta) + J^{T}(\theta)\mathcal{F}_{tip}$$

 $\boldsymbol{\theta} \in \mathbb{R}^n$: Joint Variables

 $\tau \in \mathbb{R}^n$: Joint Torques/Forces

 $M(\theta) \in \mathbb{R}^{n \times n}$: Mass Matrix

 $g(\theta) \in \mathbb{R}^n$: Gravitational Terms

 $h(\theta, \dot{\theta}) \in \mathbb{R}^n$: Coriolis and Centripetal, and Gravitational Terms

 $c(m{ heta},\dot{m{ heta}})\in\mathbb{R}^n$: Coriolis and Centripetal Terms (velocity-product term or quadratic velocity term)

 $C(\theta, \dot{\theta}) \in \mathbb{R}^{n \times n}$: Coriolis Matrix

 $\Gamma(\boldsymbol{\theta})$: $n \times n \times n$ matrix of Christoffel symbols of the first kind

 $m{J}(m{ heta}) \in \mathbb{R}^{n imes 6}$: Jacobian in the same frame as $m{\mathcal{F}}_{ ext{tip}}$

 $\mathcal{F}_{\text{tip}} \in \mathbb{R}^6$: Wrench applied to the environment by end-effector in the same frame as $J(\theta)$

Friction Torques/Forces at Joints

The Lagrangian and Newton–Euler dynamics do not account for friction at the joints. However, the friction torques/forces in gearheads and bearings may be significant.

Friction models often include a static friction term and a velocity-dependent viscous friction term.

Inverse Dynamic Equations in Closed Form

In the presence of the viscous and static friction torques/forces at the joints:

$$\begin{aligned} \boldsymbol{\tau} &= \boldsymbol{M}(\boldsymbol{\theta}) \ddot{\boldsymbol{\theta}} + \boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \dot{\boldsymbol{\theta}} + \boldsymbol{g}(\boldsymbol{\theta}) + \boldsymbol{f}_{v}(\dot{\boldsymbol{\theta}}) + \boldsymbol{f}_{s}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) + \boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{\mathcal{F}}_{\mathrm{tip}} \\ &= \boldsymbol{M}(\boldsymbol{\theta}) \ddot{\boldsymbol{\theta}} + \boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \dot{\boldsymbol{\theta}} + \boldsymbol{g}(\boldsymbol{\theta}) + \underbrace{\boldsymbol{F}_{v} \dot{\boldsymbol{\theta}} + \boldsymbol{F}_{s} \operatorname{sgn}(\dot{\boldsymbol{\theta}})}_{\text{simplified models}} + \boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{\mathcal{F}}_{\mathrm{tip}} \end{aligned}$$

 $F_v \in \mathbb{R}^{n \times n}$: Diagonal matrix of viscous friction coefficients

 $F_s \in \mathbb{R}^{n \times n}$: Diagonal matrix of Coulomb friction coefficients

 $\mathbf{sgn}(\dot{\theta}) \in \mathbb{R}^{n \times 1}$: A vector whose components are the sign functions of $\dot{\theta}_i$

We can also add a disturbance $au_{
m dist}$ to represent inaccurately modeled dynamics, etc.

$$\tau = M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta) + F_{v}\dot{\theta} + F_{s}\operatorname{sgn}(\dot{\theta}) + \tau_{\operatorname{dist}} + J^{\mathrm{T}}(\theta)\mathcal{F}_{\operatorname{tip}}$$

Understanding Centripetal and Coriolis Terms

Consider a planar 2R open chain whose links are modeled as point masses concentrated at the ends of each link:

Accelerations of \mathfrak{m}_2 when $\boldsymbol{\theta}=(0,\pi/2)$ and $\ddot{\boldsymbol{\theta}}=\mathbf{0}$:

$$\begin{bmatrix} \ddot{x}_2 \\ \ddot{y}_2 \end{bmatrix} = \underbrace{\begin{bmatrix} -L_1 \dot{\theta}_1^2 \\ -L_2 \dot{\theta}_1^2 - L_2 \dot{\theta}_2^2 \end{bmatrix}}_{\text{centripetal terms}} + \underbrace{\begin{bmatrix} 0 \\ -2L_2 \dot{\theta}_1 \dot{\theta}_2 \end{bmatrix}}_{\text{Coriolis terms}}$$

$$a_{\text{cent1}} = \left(-L_1 \dot{\theta}_1^2, -L_2 \dot{\theta}_1^2\right)$$
$$\dot{\theta}_1 > 0, \qquad \dot{\theta}_2 = 0$$

$$\mathbf{a}_{\text{cent2}} = (0, -L_2 \dot{\theta}_2^2)$$

$$\dot{\theta}_1 = 0, \qquad \dot{\theta}_2 > 0$$

$$\mathbf{a}_{cor} = (0, -2L_2\dot{\theta}_1\dot{\theta}_2)$$
$$\dot{\theta}_1, \dot{\theta}_2 > 0$$

Understanding Mass Matrix

The total kinetic energy $\mathcal K$ of a robot can be expressed as the sum of the kinetic energies of each link:

$$\mathcal{K} = \frac{1}{2} \sum_{i=1}^{n} \boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{g}_{i} \boldsymbol{v}_{i}$$

twist of link frame $\{i\}$ in $\{i\}$ spatial inertia matrix of link i in $\{i\}$

Let define $J_{ib}(\theta) \in \mathbb{R}^{6 \times n}$ as body Jacobian of link frame $\{i\}$ such that $\mathcal{V}_i = J_{ib}(\theta)\dot{\theta}$, i = 1, ..., n, thus:

$$\mathcal{K} = \frac{1}{2}\dot{\boldsymbol{\theta}}^{\mathrm{T}} \left(\sum_{i=1}^{n} \boldsymbol{J}_{ib}^{\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{G}_{i} \boldsymbol{J}_{ib}(\boldsymbol{\theta}) \right) \dot{\boldsymbol{\theta}}$$
This is the mass matrix
$$\boldsymbol{M}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \boldsymbol{J}_{ib}^{\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{G}_{i} \boldsymbol{J}_{ib}(\boldsymbol{\theta})$$

$$[\boldsymbol{\mathcal{V}}_i] = \boldsymbol{T}_{0i}^{-1} \dot{\boldsymbol{T}}_{0i}$$

kinetic energy of an open-chain robot

 \clubsuit Mass matrix $M(\theta)$ is always symmetric and positive-definite ($x^T M(\theta) x > 0$ for all $x \in \mathbb{R}^n$, $x \neq 0$), and depends only on θ . Moreover, $M^{-1}(\theta)$ always exist.

Understanding Mass Matrix (cont.)

A mass matrix $M(\theta)$ presents a different effective mass in different acceleration directions. For better understanding, let represent $M(\theta)$ as an effective (or apparent) mass of the endeffector as $M_{\mathcal{C}}(\theta)$, because it is possible to feel this mass directly by grabbing and moving the end-effector.

If $\mathcal{V} = I(\theta)\dot{\theta}$ is the end-effector twist and $I(\theta)$ is invertible,

$$\mathcal{K} = \frac{1}{2}\dot{\boldsymbol{\theta}}^{\mathrm{T}}\boldsymbol{M}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}} = \frac{1}{2}\boldsymbol{\mathcal{V}}^{\mathrm{T}}\boldsymbol{M}_{C}(\boldsymbol{\theta})\boldsymbol{\mathcal{V}} \qquad \text{Kinetic energy of the robot regardless of the coordinates.}$$

Kinetic energy of the the coordinates.

$$\dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} = \dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{M}_{C}(\boldsymbol{\theta}) \boldsymbol{J}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$$

$$M_C(\boldsymbol{\theta}) = \boldsymbol{J}^{-\mathrm{T}}(\boldsymbol{\theta}) M(\boldsymbol{\theta}) \boldsymbol{J}^{-1}(\boldsymbol{\theta})$$

A general expression that applies to both redundant and nonredundant manipulators:

$$M_{\mathcal{C}}(\boldsymbol{\theta}) = \left(\boldsymbol{J}(\boldsymbol{\theta}) \boldsymbol{M}(\boldsymbol{\theta})^{-1} \boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta}) \right)^{-1}$$

Understanding Mass Matrix (cont.)

Consider the 2R robot with $L_1 = L_2 = \mathfrak{m}_1 = \mathfrak{m}_2 = 1$. When the robot is at rest $(\dot{\boldsymbol{\theta}} = \boldsymbol{0})$ and g = 0, $\boldsymbol{M}_{\mathcal{C}}(\boldsymbol{\theta})$ maps the endpoint acceleration (\ddot{x}, \ddot{y}) to (f_x, f_y) , i.e., $(f_x, f_y) = \boldsymbol{M}_{\mathcal{C}}(\boldsymbol{\theta})(\ddot{x}, \ddot{y})$.

Force and acceleration are only parallel along principal axes.

(Principal-axis directions given by the eigenvectors of $M_{\mathcal{C}}(\theta)$ and principal s axis lengths given by its eigenvalues.)

An example where force and acceleration are not parallel.

Finding Dynamic Terms Using Lagrangian Formulation

$$\boldsymbol{\tau} = \frac{d}{dt} \left[\frac{\partial \mathcal{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})}{\partial \dot{\boldsymbol{\theta}}} \right] - \frac{\partial \mathcal{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}}, \qquad \mathcal{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \mathcal{K}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) - \mathcal{P}(\boldsymbol{\theta}), \qquad \mathcal{K}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{\theta}}} = \frac{\partial \mathcal{K}}{\partial \dot{\boldsymbol{\theta}}} = \boldsymbol{M}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}}, \qquad \frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{\theta}}} = \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \dot{\boldsymbol{M}}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}}, \qquad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \frac{1}{2}\frac{\partial}{\partial \boldsymbol{\theta}}\left(\dot{\boldsymbol{\theta}}^T\boldsymbol{M}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}}\right) - \frac{\partial \mathcal{P}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

$$\Rightarrow \quad \boldsymbol{\tau} = \boldsymbol{M}(\boldsymbol{\theta}) \ddot{\boldsymbol{\theta}} + \dot{\boldsymbol{M}}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} - \frac{1}{2} \frac{\partial}{\partial \boldsymbol{\theta}} \left[\dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} \right] + \frac{\partial \mathcal{P}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \quad \xrightarrow{\text{Comparing with}} \boldsymbol{\tau} = \boldsymbol{M}(\boldsymbol{\theta}) \ddot{\boldsymbol{\theta}} + \boldsymbol{c}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) + \boldsymbol{g}(\boldsymbol{\theta})$$

$$c(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \dot{\boldsymbol{M}}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} - \frac{1}{2} \frac{\partial}{\partial \boldsymbol{\theta}} [\dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}] = \dot{\boldsymbol{M}}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} - \frac{\partial \mathcal{K}}{\partial \boldsymbol{\theta}},$$

$$c(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \dot{\boldsymbol{M}}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} - \frac{\partial \mathcal{K}}{\partial \boldsymbol{\theta}},$$

$$g(\boldsymbol{\theta}) = \frac{\partial \mathcal{P}}{\partial \boldsymbol{\theta}}$$

Finding Dynamic Terms Using Lagrangian Formulation

(cont.)

Componentwise Analysis:

$$\tau_{k} = \frac{d}{dt} \frac{\partial \mathcal{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})}{\partial \dot{\theta}_{k}} - \frac{\partial \mathcal{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})}{\partial \theta_{k}} \qquad k = 1, \dots, n$$

$$k=1,\ldots,n$$

•
$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}_k} = \sum_{j=1}^n m_{kj}(\theta) \dot{\theta}_j$$

•
$$\frac{\partial \mathcal{L}}{\partial \theta_k} = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial m_{ij}}{\partial \theta_k} \dot{\theta}_j \dot{\theta}_i - \frac{\partial P}{\partial \theta_k}$$

•
$$\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{k}} = \sum_{j=1}^{n} \left(m_{kj}(\theta) \ddot{\theta}_{j} + \left[\frac{d}{dt} m_{kj}(\theta) \right] \dot{\theta}_{j} \right)$$

$$= \sum_{j=1}^{n} m_{kj} \ddot{\theta}_{j} + \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial m_{kj}}{\partial \theta_{i}} \dot{\theta}_{i} \dot{\theta}_{j}$$
(due to symmetry)

$$\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial m_{kj}}{\partial \theta_i} \dot{\theta}_i \dot{\theta}_j = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\frac{\partial m_{kj}}{\partial \theta_i} + \frac{\partial m_{ki}}{\partial \theta_j} \right] \dot{\theta}_j \dot{\theta}_i$$

$$\tau_k = \sum_{j=1}^n m_{kj} \ddot{\theta}_j + \sum_{i=1}^n \sum_{j=1}^n \underbrace{\frac{1}{2} \left[\frac{\partial m_{kj}}{\partial \theta_i} + \frac{\partial m_{ki}}{\partial \theta_j} - \frac{\partial m_{ij}}{\partial \theta_k} \right]}_{\Gamma_{ijk}(\boldsymbol{\theta})} \dot{\theta}_i \dot{\theta}_i + \frac{\partial P}{\partial \theta_k}, \qquad k = 1, \dots, n$$

$$\Gamma_{ijk}(\boldsymbol{\theta}) \text{ is a } n \times n \times n \text{ matrix known as Christoffel symbols of the first kind.}}$$

Finding Dynamic Terms Using Lagrangian Formulation

(cont.)

Thus, we can write the components of $c(\theta, \dot{\theta})$ as

$$c_k(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \sum_{i=1}^n \sum_{j=1}^n \Gamma_{ijk}(\boldsymbol{\theta}) \dot{\theta}_j \dot{\theta}_i$$

$$c(\theta, \dot{\theta}) = \underbrace{C(\theta, \dot{\theta})}_{i} \dot{\theta} = \underbrace{\dot{\theta}^{T} \Gamma(\theta) \dot{\theta}}_{i}$$

$$C_{kj}(\theta, \dot{\theta}) = \sum_{i=1}^{n} \Gamma_{ijk}(\theta) \dot{\theta}_{i}$$

$$\dot{\theta}^{T} \Gamma(\theta) \dot{\theta} \equiv \begin{bmatrix} \dot{\theta}^{T} \Gamma_{1}(\theta) \dot{\theta} \\ \dot{\theta}^{T} \Gamma_{2}(\theta) \dot{\theta} \\ \vdots \\ \dot{\theta}^{T} \Gamma_{n}(\theta) \dot{\theta} \end{bmatrix}$$

$$\Gamma_{i}(\theta) \in \mathbb{R}^{n \times n}, \Gamma_{i}(\theta) = \Gamma_{i}^{T}(\theta)$$

$$(j, k) \text{th element of } \Gamma_{ijk}(\theta)$$

$$= \sum_{i=1}^{n} \frac{1}{2} \left[\frac{\partial m_{kj}}{\partial \theta_{i}} + \frac{\partial m_{ki}}{\partial \theta_{j}} - \frac{\partial m_{ij}}{\partial \theta_{k}} \right] \dot{\theta}_{i}$$

Finding Dynamic Terms Using Newton–Euler Formulation (Method 1: Closed Form)

Using the closed form of dynamic equations, we can write

$$\begin{split} \boldsymbol{\mathcal{V}} &= \mathcal{L}(\boldsymbol{\theta}) \big(\mathcal{A} \dot{\boldsymbol{\theta}} + \boldsymbol{\mathcal{V}}_{\text{base}} \big) \\ \dot{\boldsymbol{\mathcal{V}}} &= \mathcal{L}(\boldsymbol{\theta}) \big(\mathcal{A} \ddot{\boldsymbol{\theta}} - \big[\text{ad}_{\mathcal{A} \dot{\boldsymbol{\theta}}} \big] (\boldsymbol{\mathcal{W}}(\boldsymbol{\theta}) \boldsymbol{\mathcal{V}} + \boldsymbol{\mathcal{V}}_{\text{base}}) + \dot{\boldsymbol{\mathcal{V}}}_{\text{base}} \big) \\ \boldsymbol{\mathcal{F}} &= \mathcal{L}^T(\boldsymbol{\theta}) \big(\boldsymbol{\mathcal{G}} \dot{\boldsymbol{\mathcal{V}}} - [\text{ad}_{\boldsymbol{\mathcal{V}}}]^T \boldsymbol{\mathcal{G}} \boldsymbol{\mathcal{V}} + \overline{\boldsymbol{\mathcal{F}}}_{\text{tip}} \big), \\ \boldsymbol{\tau} &= \mathcal{A}^T \boldsymbol{\mathcal{F}} \end{split}$$
$$\boldsymbol{\tau} &= \boldsymbol{\mathcal{M}}(\boldsymbol{\theta}) \ddot{\boldsymbol{\theta}} + \boldsymbol{c} \big(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}} \big) + \boldsymbol{g}(\boldsymbol{\theta}) + \boldsymbol{J}^T(\boldsymbol{\theta}) \boldsymbol{\mathcal{F}}_{\text{tip}} \\ \text{For a fixed based manipulator where } \boldsymbol{\mathcal{V}}_0 = \boldsymbol{0}. \end{split}$$

$$M(\theta) = \mathcal{A}^{T} \mathcal{L}^{T}(\theta) \mathcal{G} \mathcal{L}(\theta) \mathcal{A}$$

$$c(\theta, \dot{\theta}) = -\mathcal{A}^{T} \mathcal{L}^{T}(\theta) (\mathcal{G} \mathcal{L}(\theta) [ad_{\mathcal{A}\dot{\theta}}] \mathcal{W}(\theta) + [ad_{\mathcal{V}}]^{T} \mathcal{G}) \mathcal{L}(\theta) \mathcal{A}\dot{\theta}$$

$$g(\theta) = \mathcal{A}^{T} \mathcal{L}^{T}(\theta) \mathcal{G} \mathcal{L}(\theta) \dot{\mathcal{V}}_{base}$$

Note: \dot{M} can be written explicitly as

$$\dot{\mathbf{M}} = -\mathbf{A}^{\mathrm{T}}\mathbf{\mathcal{L}}^{\mathrm{T}}\mathbf{W}^{\mathrm{T}}\left[\mathrm{ad}_{\mathbf{A}\dot{\mathbf{\theta}}}\right]^{\mathrm{T}}\mathbf{\mathcal{L}}^{\mathrm{T}}\mathbf{\mathcal{GL}}\mathbf{A} - \mathbf{A}^{\mathrm{T}}\mathbf{\mathcal{L}}^{\mathrm{T}}\mathbf{\mathcal{GL}}\left[\mathrm{ad}_{\mathbf{A}\dot{\mathbf{\theta}}}\right]\mathbf{W}\mathbf{\mathcal{L}}\mathbf{A}$$

Inverse Dynamics

Finding Dynamic Terms Using Newton-Euler Formulation (Method 2)

We know that using the recursive Newton-Euler inverse dynamics algorithm we can find au. Thus,

- Term g(heta) is computed by finding $au|_{\dot{ heta}=\ddot{ heta}=0,\,\mathcal{F}_{ ext{tip}}=0}$
- Term $c(heta,\dot{ heta})$ is computed by finding $au|_{\ddot{ heta}=0,\,\mathcal{F}_{ ext{tin}}=0,\,\mathfrak{g}=0}$
- Term $J^{\mathrm{T}}(m{ heta})m{\mathcal{F}}_{\mathrm{tip}}$ is computed by finding $m{ au}|_{\dot{m{ heta}}=\ddot{m{ heta}}=m{0},\,m{q}=m{0}}$
- Term $M(\theta) = [M_1(\theta), ..., M_n(\theta)]$ is computed by $M_i(\theta) = \tau \Big|_{\dot{\theta}=0, \mathcal{F}_{tin}=0, \, g=0, \, \ddot{\theta}_i=1, \, \ddot{\theta}_j=0, \, \forall j \neq i}$

(Alternatively, we can use:
$$M(\theta) = \sum_{i=1}^{n} J_{ib}^{T}(\theta) \mathcal{G}_{i} J_{ib}(\theta)$$
)

- Term $m{b}ig(m{ heta},m{\dot{ heta}},m{\mathcal{F}}_{ ext{tip}}ig) = m{c}ig(m{ heta},\dot{m{ heta}}ig) + m{g}(m{ heta}) + m{J}^{ ext{T}}(m{ heta})m{\mathcal{F}}_{ ext{tip}}$ is computed by finding $m{ au}|_{\ddot{m{ heta}}=m{0}}$

Forward Dynamics

Inverse Dynamics

Forward Dynamics

Finding $\ddot{\boldsymbol{\theta}}$ given the $\boldsymbol{\theta}$, $\dot{\boldsymbol{\theta}}$, $\boldsymbol{\mathcal{F}}_{\text{tip}}$, $\boldsymbol{\tau}$:

$$\tau = M(\theta)\ddot{\theta} + c(\theta,\dot{\theta}) + g(\theta) + J^{T}(\theta)\mathcal{F}_{tip}$$

After computing $b(\theta, \dot{\theta}, \mathcal{F}_{\text{tip}}) = c(\theta, \dot{\theta}) + g(\theta) + J^{\text{T}}(\theta) \mathcal{F}_{\text{tip}}$ and $M(\theta)$, we can use <u>any</u> efficient algorithm to solve $M(\theta)\ddot{\theta} = \tau - b$ for $\ddot{\theta}$.

$$\ddot{\boldsymbol{\theta}} = \boldsymbol{M}^{-1}(\boldsymbol{\theta}) \left(\boldsymbol{\tau} - \boldsymbol{b} (\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \boldsymbol{\mathcal{F}}_{\text{tip}}) \right)$$

or
$$\ddot{m{ heta}} = m{M}(m{ heta}) ackslash ig(m{ au} - m{b}ig(m{ heta}, m{ heta}, m{\mathcal{F}}_{ ext{tip}}ig)ig)$$
 in MATLAB

Numerical Simulation of Robot Motion

Forward dynamics can be used to **simulate the motion of the robot** for $t \in [0, t_f]$ given $\tau(t)$, $\mathcal{F}_{\text{tip}}(t)$, and its initial state $\theta(0)$, $\dot{\theta}(0)$. These equations are coupled, non-linear ODEs, and they can be solved using numerical integration.

end

Inverse Dynamics

is based on an explicit Runge-Kutta (4,5) formula)

Inverse Dynamics

Properties of Dynamic Model

Properties of Robot Dynamic Equations

Fundamental properties of the dynamic model of n-DOF open-chain robots are of particular importance in the study of control systems for robot manipulators.

$$\tau = M(\theta)\ddot{\theta} + c(\theta,\dot{\theta}) + g(\theta)$$
$$= M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta)$$

 $\boldsymbol{\theta} \in \mathbb{R}^n$: Joint Variables

 $\tau \in \mathbb{R}^n$: Joint Torques/Forces

 $M(\theta) \in \mathbb{R}^{n \times n}$: Mass Matrix

 $g(\theta) \in \mathbb{R}^n$: Gravitational Terms

 $C(\theta, \dot{\theta}) \in \mathbb{R}^{n \times n}$: Coriolis Matrix

 $c(\theta,\dot{\theta})\in\mathbb{R}^n$: Coriolis and Centripetal Terms (velocity-product term or quadratic velocity term)

Properties of Mass or Inertia Matrix $M(\theta)$

- The total kinetic energy $\mathcal{K} \in \mathbb{R}_+$ of an open-chain robot: $\mathcal{K}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$
- $M(\theta)$ depends only on θ .
- $M(\theta)$ is always symmetric and positive-definite.
- $M^{-1}(\theta)$ always exist.

Inverse Dynamics

• $\pmb{M}(\pmb{\theta})$ is bounded above and below: $\mu_1 \pmb{I}_n \leq \pmb{M}(\pmb{\theta}) \leq \mu_2 \pmb{I}_n \quad \forall \pmb{\theta} \in \mathbb{R}^n, \mu_1, \mu_2 \in \mathbb{R}_{++}$ $I_n = \operatorname{diag}(1) \in \mathbb{R}^n$

$$\frac{1}{\mu_1} \boldsymbol{I}_n \geq \boldsymbol{M}^{-1}(\boldsymbol{\theta}) \geq \frac{1}{\mu_2} \boldsymbol{I}_n$$

- If the arm is revolute, μ_1 , μ_2 are constants, and if the arm has prismatic joints, μ_1 , μ_2 may depend on $\boldsymbol{\theta}$.
- This property can also be expressed as $m_1 \leq \|\boldsymbol{M}(\boldsymbol{\theta})\| \leq m_2$ $\forall \boldsymbol{\theta} \in \mathbb{R}^n$ $\|\cdot\|$ is any matrix norm, $m_1, m_2 \in \mathbb{R}_{++}$

Properties of Coriolis & Centripetal Terms

- $c(\theta, \dot{\theta}) = C(\theta, \dot{\theta})\dot{\theta} = \dot{\theta}^{\mathrm{T}}\Gamma(\theta)\dot{\theta}$ is quadratic in $\dot{\theta}$.
- $C(\theta, \dot{\theta})|_{\dot{\theta}=0}=0.$
- $c(\theta, \dot{\theta})$ can be bounded above by a quadratic function of $\dot{\theta}$: $\|c(\theta, \dot{\theta})\| \le c_b \|\dot{\theta}\|^2$

 $\|\cdot\|$ is any vector norm, $c_h \in \mathbb{R}_+$, $\forall \boldsymbol{\theta}, \dot{\boldsymbol{\theta}} \in \mathbb{R}^n$

- If the arm is revolute, c_h is constant, and if the arm has prismatic joints, c_h may depend on $\boldsymbol{\theta}$.
- If $\|\cdot\|$ is 2-norm: $c_b = n^2 \left(\max_{k \ i \ i \ \theta} \left| \Gamma_{k_{ij}}(\boldsymbol{\theta}) \right| \right)$
- Matrix $C(\theta, \dot{\theta})$ may be not unique, but the vector $C(\theta, \dot{\theta})\dot{\theta}$ is indeed unique.
 - In general, $\dot{\boldsymbol{\theta}}^T (\dot{\boldsymbol{M}} 2\boldsymbol{C}) \dot{\boldsymbol{\theta}} = \boldsymbol{0}$.
 - We can always find the standard $C(\theta, \dot{\theta})$ that $S(\theta, \dot{\theta}) = \dot{M} 2C \in \mathbb{R}^{n \times n}$ is skew symmetric, i.e., $x^T(\dot{M} - 2C)x = 0$, $\forall x \in \mathbb{R}^n$. (Passivity Property)
 - For a standard $C(\theta, \dot{\theta})$, $\dot{M} = C(\theta, \dot{\theta}) + C(\theta, \dot{\theta})^T$.

Properties of Coriolis & Centripetal Terms

• We can find the standard $C(\theta, \dot{\theta})$ as $C(\theta, \dot{\theta}) = 1/2(\dot{M} + U^T - U)$

$$\dot{\mathbf{M}}(\boldsymbol{\theta}) = (\dot{\boldsymbol{\theta}}^T \otimes \mathbf{I}_n) \frac{\partial \mathbf{M}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{n \times n}, \quad \mathbf{U}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = (\mathbf{I}_n \otimes \dot{\boldsymbol{\theta}}^T) \frac{\partial \mathbf{M}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{n \times n}, \quad \mathbf{I}_n = \text{diag}(1) \in \mathbb{R}^n$$

- We can find 2 other (non-standard) choices of $C(\theta, \dot{\theta})$ as $C(\theta, \dot{\theta}) = \dot{M} - 1/2U$ $\boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \boldsymbol{U}^T - 1/2\boldsymbol{U}$

Let define **Kronecker Product** of two metrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$ as

$$\mathbf{A} \otimes \mathbf{B} = [a_{ij}\mathbf{B}] \in \mathbb{R}^{mp \times nq}$$

For instance, for
$$\mathbf{A} \in \mathbb{R}^{3 \times 3}$$
: $\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & a_{13}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & a_{23}\mathbf{B} \\ a_{31}\mathbf{B} & a_{32}\mathbf{B} & a_{33}\mathbf{B} \end{bmatrix}$

For instance, for $\mathbf{A} \in \mathbb{R}^{3 \times 3}$: $\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & a_{13}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & a_{23}\mathbf{B} \\ a_{31}\mathbf{B} & a_{32}\mathbf{B} & a_{33}\mathbf{B} \end{bmatrix}$ $\stackrel{\frown}{=}$ the matrix derivative as $\frac{\partial \mathbf{A}}{\partial x} = \begin{bmatrix} \frac{\partial \mathbf{A}}{\partial x_1} \\ \vdots \\ \frac{\partial \mathbf{A}}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{mp \times n}$ Also, for $A(x) \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^p$, let define the matrix derivative as

Inverse Dynamics

Properties of Gravitational Terms g(q)

• Let $\mathcal{P} \in \mathbb{R}_+$ be the total gravitational potential energy of an open-chain robot. Then,

$$g(\theta) = \frac{\partial \mathcal{P}}{\partial \theta}$$

- $g(\theta)$ depends only on θ .
- $g(\theta)$ is bounded above: $||g(\theta)|| \le g_b$ $\forall \theta \in \mathbb{R}^n$

 $\|\cdot\|$ is any vector norm, $g_h \in \mathbb{R}_+$

- If the arm is revolute, g_h is constant, and if the arm has prismatic joints, g_h may depend on θ .

•
$$\int_0^{t_f} \mathbf{g}(\boldsymbol{\theta}(t))^T \dot{\boldsymbol{\theta}}(t) dt = \mathcal{P}(\boldsymbol{\theta}(t_f)) - \mathcal{P}(\boldsymbol{\theta}(0))$$

Example

Dynamic equations of a planar 2R open-chain in absence of friction terms:

$$c(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \begin{bmatrix} -\mathsf{m}_2 L_1 L_2 \sin \theta_2 \left(2\dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2 \right) \\ \mathsf{m}_2 L_1 L_2 \dot{\theta}_1^2 \sin \theta_2 \end{bmatrix} \qquad \boldsymbol{g}(\boldsymbol{\theta}) = \begin{bmatrix} (\mathsf{m}_1 + \mathsf{m}_2) L_1 g \cos \theta_1 + \mathsf{m}_2 g L_2 \cos(\theta_1 + \theta_2) \\ \mathsf{m}_2 g L_2 \cos(\theta_1 + \theta_2) \end{bmatrix}$$

Find the bounds on the $M(\theta)$, $c(\theta, \dot{\theta})$, $g(\theta)$. Suppose that the joint angles θ_1 and θ_2 are limited by $\pm \pi/2$.

Note: The selection of a suitable norm is not always straightforward. This choice often depends simply on which norm makes it possible to evaluate the bounds. Usually, 1-norm is an easy choice.

Example (cont.)

• The induced 1-norm for $M(\theta)$:

$$||\mathbf{M}(\boldsymbol{\theta})||_{1} = ||\mathbf{m}_{1}L_{1}^{2} + \mathbf{m}_{2}(L_{1}^{2} + 2L_{1}L_{2}\cos\theta_{2} + L_{2}^{2})| + ||\mathbf{m}_{2}(L_{1}L_{2}\cos\theta_{2} + L_{2}^{2})|$$

$$m_{1} \leq ||\mathbf{M}(\boldsymbol{\theta})||_{1} \leq m_{2}$$

$$m_{2} = (\mathbf{m}_{1} + \mathbf{m}_{2})L_{1}^{2} + 2\mathbf{m}_{2}L_{2}^{2} + 3\mathbf{m}_{2}L_{1}L_{2}$$

$$m_{1} = (\mathbf{m}_{1} + \mathbf{m}_{2})L_{1}^{2} + 2\mathbf{m}_{2}L_{2}^{2}$$

• The 1-norm of
$$c(\theta, \dot{\theta})$$
: $\|c(\theta, \dot{\theta})\|_1 = |m_2 L_1 L_2 \sin \theta_2 (2\dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2)| + |m_2 L_1 L_2 \dot{\theta}_1^2 \sin \theta_2|$

$$\leq m_2 L_1 L_2 (|\dot{\theta}_1| + |\dot{\theta}_2|)^2 \equiv c_b \|\dot{\theta}\|_1^2$$

$$\|c(\theta, \dot{\theta})\| \leq c_b \|\dot{\theta}\|^2$$

$$c_b = m_2 L_1 L_2$$

• The 1-norm of
$$g(\theta)$$
: $\|g(\theta)\|_1 = |(\mathfrak{m}_1 + \mathfrak{m}_2)L_1g\cos\theta_1 + \mathfrak{m}_2gL_2\cos(\theta_1 + \theta_2)| + |\mathfrak{m}_2gL_2\cos(\theta_1 + \theta_2)| \le (\mathfrak{m}_1 + \mathfrak{m}_2)gL_1 + 2\mathfrak{m}_2gL_2 \equiv g_b$

Example (cont.)

- We can find the standard $C(\theta,\dot{\theta})$ where $c(\theta,\dot{\theta})=C(\theta,\dot{\theta})\dot{\theta}$ as:

$$\boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = 1/2(\dot{\boldsymbol{M}} + \boldsymbol{U}^T - \boldsymbol{U}) = \begin{bmatrix} -\dot{\theta}_2 \mathbf{m}_2 L_1 L_2 \sin \theta_2 & -(\dot{\theta}_1 + \dot{\theta}_2) \mathbf{m}_2 L_1 L_2 \sin \theta_2 \\ \dot{\theta}_1 \mathbf{m}_2 L_1 L_2 \sin \theta_2 & 0 \end{bmatrix}$$

where
$$\mathbf{\textit{U}}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = (\mathbf{\textit{I}}_n \otimes \dot{\boldsymbol{\theta}}^T) \frac{\partial \mathbf{\textit{M}}}{\partial \boldsymbol{\theta}} = \begin{bmatrix} 0 & 0 \\ -(2\dot{\theta}_1 + \dot{\theta}_2) \mathbf{m}_2 L_1 L_2 \sin \theta_2 & -\dot{\theta}_1 \mathbf{m}_2 L_1 L_2 \sin \theta_2 \end{bmatrix}$$
.

- Two other choices of $oldsymbol{\mathcal{C}}(oldsymbol{ heta}, \dot{oldsymbol{ heta}})$ are

$$\boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \dot{\boldsymbol{M}} - 1/2\boldsymbol{U} = \begin{bmatrix} -2\dot{\theta}_2 m_2 L_1 L_2 \sin \theta_2 & -\dot{\theta}_2 m_2 L_1 L_2 \sin \theta_2 \\ (\dot{\theta}_1 - 1/2\dot{\theta}_2) m_2 L_1 L_2 \sin \theta_2 & 1/2\dot{\theta}_1 m_2 L_1 L_2 \sin \theta_2 \end{bmatrix}$$

$$C(\theta, \dot{\theta}) = U^{T} - 1/2U = \begin{bmatrix} 0 & -(2\dot{\theta}_{1} + \dot{\theta}_{2})m_{2}L_{1}L_{2}\sin\theta_{2} \\ (\dot{\theta}_{1} + 1/2\dot{\theta}_{2})m_{2}L_{1}L_{2}\sin\theta_{2} & 1/2\dot{\theta}_{1}m_{2}L_{1}L_{2}\sin\theta_{2} \end{bmatrix}$$

Inverse Dynamics

Example (cont.)

Matrix of Christoffel symbols of the first kind $\Gamma(\theta)$:

$$\Gamma(\boldsymbol{\theta}) = \begin{bmatrix} \Gamma_{1}(\boldsymbol{\theta}) \\ \Gamma_{2}(\boldsymbol{\theta}) \end{bmatrix} \qquad c(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \dot{\boldsymbol{\theta}}^{T} \Gamma(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} = \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}^{T} \underbrace{\begin{bmatrix} 0 & -m_{2}L_{1}L_{2}\sin\theta_{2} & -m_{2}L_{1}L_{2}\sin\theta_{2} \\ -m_{2}L_{1}L_{2}\sin\theta_{2} & -m_{2}L_{1}L_{2}\sin\theta_{2} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}}_{\Gamma_{2}(\boldsymbol{\theta})}$$

Using $\Gamma_1(\theta)$ and $\Gamma_2(\theta)$, we can find c_b in $\|c(\theta,\dot{\theta})\| \le c_b \|\dot{\theta}\|^2$ when $\|\cdot\|$ is 2-norm by

$$\begin{aligned} c_b &= n^2 \left(\max \left| \Gamma_{k_{ij}}(\boldsymbol{\theta}) \right| \right) &\quad \max_{\boldsymbol{\theta}} \left| \Gamma_{1_{11}}(\boldsymbol{\theta}) \right| = 0 \;, &\quad \max_{\boldsymbol{\theta}} \left| \Gamma_{2_{11}}(\boldsymbol{\theta}) \right| = \mathfrak{m}_2 L_1 L_2 \\ &\quad \max_{\boldsymbol{\theta}} \left| \Gamma_{1_{12}}(\boldsymbol{\theta}) \right| = \mathfrak{m}_2 L_1 L_2 \;, &\quad \max_{\boldsymbol{\theta}} \left| \Gamma_{2_{12}}(\boldsymbol{\theta}) \right| = 0 \\ &\quad \max_{\boldsymbol{\theta}} \left| \Gamma_{1_{21}}(\boldsymbol{\theta}) \right| = \mathfrak{m}_2 L_1 L_2 \;, &\quad \max_{\boldsymbol{\theta}} \left| \Gamma_{2_{21}}(\boldsymbol{\theta}) \right| = 0 \\ &\quad \max_{\boldsymbol{\theta}} \left| \Gamma_{1_{22}}(\boldsymbol{\theta}) \right| = \mathfrak{m}_2 L_1 L_2 \;, &\quad \max_{\boldsymbol{\theta}} \left| \Gamma_{2_{22}}(\boldsymbol{\theta}) \right| = 0 \\ &\quad \Rightarrow c_b = 4\mathfrak{m}_2 L_1 L_2 \end{aligned}$$

Linearity in Dynamic Parameters

An important property of the dynamic model of an open-chain manipulator is the linearity with respect to a <u>suitable</u> set of parameters $\pi \in \mathbb{R}^p$, including dynamic parameters (mass m_i , first moment of inertia $m_i l_{C_x,i}$, $m_i l_{C_y,i}$, $m_i l_{C_z,i}$, the six components of inertia matrix $I_{b,i}$) and friction parameters $(F_{v,i}, F_{s,i})$ as

$$\tau = M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta) + F_v\dot{\theta} + F_s \operatorname{sgn}(\dot{\theta}) = Y(\theta,\dot{\theta},\ddot{\theta})\pi$$
$$Y(\theta,\dot{\theta},\ddot{\theta}) \in \mathbb{R}^{n \times p} \text{ is called regressor.}$$

- This property is useful in **Adaptive Control**, where some or all the parameters maybe unknown.
- Note that $p \le 12n$, since not all the dynamic/friction parameters appear in dynamic equations or are unknown.

Example

Dynamic equations of a planar 2R open chain in presence of friction terms:

$$\begin{split} \tau_1 &= \left(\mathsf{m}_1 L_1^2 + \mathsf{m}_2 (L_1^2 + 2 L_1 L_2 \cos \theta_2 + L_2^2) \right) \ddot{\theta}_1 \\ &+ \mathsf{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \ddot{\theta}_2 - \mathsf{m}_2 L_1 L_2 \sin \theta_2 \left(2 \dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2 \right) \\ &+ (\mathsf{m}_1 + \mathsf{m}_2) L_1 g \cos \theta_1 + \mathsf{m}_2 g L_2 \cos (\theta_1 + \theta_2) + F_{v,1} \dot{\theta}_1 + F_{s,1} \operatorname{sgn} \dot{\theta}_1 \,, \end{split}$$

If the set of unknown parameters π is defined as $\pi = [m_1, m_2, F_{s.1}, F_{v.1}, F_{s.2}, F_{v.2}]^T$, find $Y(\theta, \dot{\theta}, \ddot{\theta})$ where $\tau = Y(\theta, \dot{\theta}, \ddot{\theta})\pi$.

Example

We can find $Y(\theta, \dot{\theta}, \ddot{\theta})$ as

Inverse Dynamics

$$Y(\theta, \dot{\theta}, \ddot{\theta}) = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & Y_{14} & 0 & 0 \\ 0 & Y_{22} & 0 & 0 & Y_{25} & Y_{26} \end{bmatrix}$$

$$\begin{split} Y_{11} &= L_1^2 \ddot{\theta}_1 + g L_1 \cos \theta_1 \\ Y_{12} &= \left[L_1^2 + L_2^2 + 2 L_1 L_2 \cos \theta_2 \right] \ddot{\theta}_1 + \left[L_2^2 + L_1 L_2 \cos \theta_2 \right] \ddot{\theta}_2 \\ &- L_1 L_2 \left(2 \dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2 \right) \sin \theta_2 + g L_1 \cos \theta_1 + g L_2 \cos (\theta_1 + \theta_2) \\ Y_{13} &= \mathrm{sgn} (\dot{\theta}_1) \\ Y_{14} &= \dot{\theta}_1 \\ Y_{22} &= \left[L_2^2 + L_1 L_2 \cos \theta_2 \right] \ddot{\theta}_1 + L_2^2 \ddot{\theta}_2 + L_1 L_2 \dot{\theta}_1^2 \sin \theta_2 + g L_2 \cos (\theta_1 + \theta_2) \\ Y_{25} &= \mathrm{sgn} (\dot{\theta}_2) \\ Y_{26} &= \dot{\theta}_2 \end{split}$$