FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN ANÁLISIS DE LENGUAJES DE PROGRAMACIÓN

Práctica 2 - Semántica Operacional

■ El lenguaje B tiene los siguientes términos

 $t ::= true \mid false \mid if t then t else t$

■ El lenguaje NB tiene los siguientes términos

t ::=true | false | if t then t else $t \mid 0$ | succ t | pred t | iszero t

La semántica operacional de estos lenguajes es la vista en clase.

- 1. En \mathbb{B} , encontrar un valor v tal que $t \downarrow v$, justificar adecuadamente:
 - $1. \ s = if \ true \ then \ false \ else \ true,$

t = if s then s else false.

2. s = if false then false else false,

r = if s then false else true,

t = if r then s else s.

- 2. En \mathbb{B} , justificar con un árbol de derivación que $t \to u$ en cada caso:
 - 1. s = if true then false else true,

t = if s then false else true,

u = if false then false else true.

- 2. s = if true then true else true,
 - r = if s then true else true,
 - $t = \mbox{if } r \mbox{ then false else false},$
 - u = if s then false else false.
- 3. En \mathbb{B} , encontrar un término u correspondiente tal que $t \to u$, justificar adecuadamente:
 - 1. s = if true then false else true,

 $t=\mbox{if } s$ then s else false.

- 2. s = if false then false else false,
 - r = if s then false else true,

 $t= {\tt if} \ r \ {\tt then} \ s \ {\tt else} \ s.$

- 4. En \mathbb{B} , modificar la relación de evaluación dada para que al evaluar if t then t' else t'', primero evalue t', luego t'', y finalmente t.
- 5. En \mathbb{B} , demostrar que si $t \to t'$ y $t \to t''$, entonces t' = t''.
- 6. En \mathbb{B} , demostrar que si t está en formal normal, entonces t es un valor.
- 7. La clausura reflexo-transitiva de una relación \rightarrow se puede definir como:

$$\frac{x \to y}{x \Rightarrow y} \qquad \frac{x \to y}{x \Rightarrow z} \qquad \frac{x \to y}{x \Rightarrow z} \qquad \frac{x \to x}{x \Rightarrow x}$$

- 1. Probar que si $x \Rightarrow y$, y $y \Rightarrow z$, entonces $x \Rightarrow z$.
- 2. Probar la equivalencia entre esta forma de clausura reflexo-transitiva y la vista en la teoría. Es decir, probar que:

$$t \to^* u \quad \text{sii} \quad t \Rightarrow u$$

8. En \mathbb{B} , al agregar la regla

$$\frac{t_2 \rightarrow t_2'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \rightarrow \text{if } t_1 \text{ then } t_2' \text{ else } t_3} \tag{E-Funny2}$$

se pierde la propiedad vista en el ejercicio anterior. Sin embargo, se puede probar que si tenemos $r \to s$ y $r \to t$, con $s \neq t$, entonces hay un término u tal que $s \to^* u$ y $t \to^* u$.

Probar este lema, que se lo suele conocer como propiedad diamante.

- 9. Considere la semántica big-step para B. Probar los siguientes teoremas:
 - 1. Determinismo de semántica de paso grande: Si $t \Downarrow v \ y \ t \Downarrow v'$ entonces v = v'.
 - 2. Terminación: Para todo término t, existe v tale que $t \downarrow v$.
- 10. Se desea probar la equivalencia de semánticas de paso chico y paso grande para B. Para esto, probar:
 - 1. Si $t \to^* t'$ entonces if t then s else $u \to^*$ if t' then s else u.
 - 2. Si $t \to t'$ y $t' \Downarrow v$, entonces $t \Downarrow v$.
 - 3. Equivalencia de semánticas: $t \Downarrow v$ sii $t \to^* v$. Ayuda: Puede ser conveniente usar la forma de clausura reflexo-transitiva del ejercicio .
- 11. En NB, agregar una nueva construcción assertzero de manera que assertzero t evalue a 0 si t evalua a 0, y evalue a false en caso contrario. De manera intuitiva, ¿le parece "correcto" el comportamiento de esta construcción? ¿Por qué?
- 12. En \mathbb{NB} , probar que todo valor es una forma normal.
- 13. En NB, demostrar que si $t \to t'$ y $t \to t''$, entonces t' = t''.
- **14.** En NB, demostrar que si $t \to^* u$ y $t \to^* u'$, con u y u' formas normales, entonces u = u'. Ayuda: puede pensar $t \to^* u$ como la aplicación de n pasos de \to , demostrar previamente esta equivalencia.
- 15. Dar una semántica operacional de paso-grande para NB.