

Theoretical Computer Science

Finite Automata

Technische Hochschule Rosenheim Sommer 2022 Prof. Dr. Jochen Schmidt

Overview

- Definition and representation of finite automata
- Recognized language of accepting automata
- Deterministic & nondeterministic automata
- Minimal automata

Automata

- Automaton in layman's terms:
 A machine that can control its behavior to a certain degree
 - e.g., a coffee dispenser (in German: Kaffeeautomat)
 - for applications in science and technology: a more mathematical, precise definition/abstraction is required
- Applications in computer science and related fields
 - analysis and formal representation of complex dependencies and processes
 - used for modelling in software engineering
 - define states (*Zustände*) and transitions between states
 - close connection to computability theory and formal languages
 - and therefore a part of the fundamentals of programming languages and compilers
 - electrical engineering: design of integrated circuits
 - minimization of number of states and logical gates
 - optimization of connections

Modelling Example: Pac-Man

- Model states and transitions using a deterministic finite automaton
- very useful & clear representation
 - which state transitions are allowed and when?
 - many algorithms available for finite automata
- Example: Ghosts in Pac-Man

Fakultät für Informatik TCS – Finite Automata 4

Deterministic Automaton

A deterministic automaton (*deterministischer Automat*) is defined by:

- A countable set (abzählbare Menge) of states (Zustände) $Q = \{q_1, q_2, ...\}$
- An Alphabet (i.e., a countable, ordered set) of input symbols $\Sigma = {\sigma_1, \sigma_2, ...}$
- A transition function (Zustandsübergangsfunktion), mapping state-input pairs to the next state $\delta\colon Q\times\Sigma\to Q$, where $Q\times\Sigma$ is the cartesian product of two sets, i.e., the set of all ordered pairs (q,σ) with $q\in Q$ and $\sigma\in\Sigma$
 - written as: $\delta(q_i, \sigma_j) = q_k$ or $q_i \sigma_j \to q_k$
 - successor state is unique (therefore: deterministic)
 - but not necessarily invertible
- A start state $q_s \in Q$
- If Q and Σ are finite sets: deterministic finite automaton (DFA)
 - other terms: finite-state machine or just state machine

State Diagrams & Transition Tables

- State diagrams are directed graphs:
 - vertices = states
 - edges = transitions
 - outdegree of each vertex = #symbols in input alphabet
 - start state is marked by an ingoing arrow

Transition tables

- in a DFA, the number of possible transitions is limited to: nz (n: #states, z: #symbols)
- we can use a finite table to define the transition function

σ_i	q_1	q_2	q_3
a	q_2	q_3	q_1
b	q_2	q_1	q_3

Exercise

Draw the state diagram of an automaton having the following transition table:

Alphabet = $\{x, y, +\}$

States = $\{s0, s1, s2, s3, s4\}$

Start state = s0

	s0	s1	s2	s3	s4
X	s0	s3	s4	s3	s3
у	s0	s4	s1	s4	s4
+	s1	s2	s3	s4	s1

Automata with Output: Mealy Machine

- Extend definition by
 - an additional alphabet of output symbols $Y = \{y_1, y_2, ...\}$
 - ullet an additional mapping g for generating the output
- Mealy machine use $g: Q \times \Sigma \to Y$
 - output symbol depends on input symbol and current state

		q_2	
a	q_2, y_1	$q_3, y_2 \\ q_1, y_1$	q_1, y_1
b	$ q_2, y_3 $	q_1, y_1	q_3, y_2

Automata with Output: Moore Machine

- Extend definition by
 - an additional alphabet of output symbols $Y = \{y_1, y_2, ...\}$
 - an additional mapping g for generating the output
- Moore machine use $g: Q \rightarrow Y$
 - output symbol depends only on current state

σ_i	q_1	q_2	q_3	q_4
a	q_2, y_1	$q_3, y_2 \\ q_1, y_1$	q_1, y_1	q_3, y_2
b	$ q_4, y_3 $	q_1, y_1	q_3, y_2	q_1, y_1

Automata with Output: Transducers

- Extend definition by
 - an additional alphabet of output symbols $Y = \{y_1, y_2, ...\}$
 - ullet an additional mapping g for generating the output
- Mealy machine use $g: Q \times \Sigma \to Y$
 - output symbol depends on input symbol and current state
- Moore machine use $g: Q \rightarrow Y$
 - output symbol depends only on current state
- For each input sequence an output sequence is generated
- The automaton translates input to output → transducer (Transduktor, übersetzender Automat)
- If Q, Σ, Y are finite sets: finite transduces (endlicher Übersetzer)
- Both definitions are equivalent they can perform the same tasks

Multiple Inputs

- Some problems require more than one input sequence
- By definition, an automaton can only process one input sequence
- Solution:
 - Redefine the combinations of symbols that appear simultaneously as new symbols of an extended alphabet
 - Construct an automaton that again processes only a single input sequence

Multiple Inputs – Example

Add two binary numbers

- original input alphabet: $\Sigma = \{0, 1\}$
- define new input alphabet $\Sigma' = \{a, b, c, d\}$ with a: 0 + 0 = 0, b: 0 + 1 = 1, c: 1 + 0 = 1,

d: 1 + 1 = 0 with carry 1

- output alphabet: $Y = \{0, 1\}$ (result of adding to digits)
- states: carry (c) or no carry (s)

Acceptors: Recognized Language of Finite Automata

Accept States/Acceptor

- Again, we consider automata without output and extend the definition by:
- the set of accept states E (or end states, akzeptierende Zustände bzw. Endzustände)
 - $E \subseteq Q$, marked by two concentric circles in the state diagram
- This is an acceptor (Akzeptor, erkennender Automat)
 - Start processing of input string (left to right) at start state
 - Follow transitions for each symbol
 - If the automaton is in an end state after all symbols have been processed: The input string ("word") is said to be accepted.

Recognized Language

• Set of all input words w accepted by an automaton A (i.e., it stops in an end state): recognized language L(A) (akzeptierte Sprache)

$$L(A) \coloneqq \{ w \in \Sigma^* \mid (q_s, w) \to \cdots \to q_e, q_s = \text{start state}, q_e \in E \}$$

- Cardinality (*Mächtigkeit*) of L: |L| = number of words of the language
- Two automata are said to be equivalent if they recognize the same language

Recognized language contains only a single word:

$$L = \{11\}, |L| = 1$$

Recognized Language – Examples

$$L = \{10^n 1 \mid n \in \mathbb{N}_0\}, |L| = \infty$$

Finite Automata & Regular Languages

- The languages recognized by finite automata are identical to the regular languages
- Regular language: The subset of the word semigroup (Σ^*, \circ) that can be generated by
 - string concatenation (o) = attach one string to another; symbol is usually omitted
 - set union (U)
 - Kleene closure (*)
- Kleene closure Σ^* of Σ (Kleenesche Hülle): $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$
 - contains all words that can be generated from the alphabet
 - including the empty string ε
- Kleene plus Σ^+ of Σ (positive Hülle): $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$
- ε is the neutral element of the semigroup
- Example: $\Sigma = \{a, b\}$
 - $\Sigma^* = \{\varepsilon, a, b, aa, bb, ab, ba, aaa, ...\}$
 - $ab \circ abb = ababb$, $(aa \circ bb) \circ aba = aa \circ (bb \circ aba) = aabbaba$

Trap States (Fangzustände)

Trap state: Once reached, the automaton can never escape again – the processed word will not be part of the language, no matter which symbols follow. A trap state is **never** an end state!

These states are typically omitted for reasons of clarity \rightarrow incomplete automaton.

Incomplete Automata

complete automaton

equivalent incomplete automaton

- Trap states are usually omitted for clarity
- Convention: All transitions that are not shown end in a trap state
- In a compiler, these can be used to display error messages

What is the recognized language of the following automaton?

$$L = \{ \varepsilon, \alpha c^n c, \alpha a^n b c \} |L| = \infty$$

The Word Problem (Wortproblem)

- Word Problem:
 Decide, whether an input string is part of the recognized language of an automaton.
- Application examples
 - Pattern matching: Finding a given string in a text
 - Lexical analysis in compilers
 - Decide, whether an input sequence (source code) adheres to the rules of a programming language
 - Split source code into elementary units (tokens), e.g., key words, identifiers, operators, ...

Word Problem – Example

Analysis of simple arithmetic expressions with parentheses:

- Check, whether terms of the form (x+x)*(x+x+x) are built correctly
- Input alphabet: $\Sigma = \{(,), +, *, x\}$

σ_i	$q_{ m s}$	q_1	q_2	q_3	$q_{ m e}$
	q_1	_	_	_	_
)			$q_{ m e}$		
+		_	q_3	_	_
*	_	_	_	_	$q_{ m s}$
\boldsymbol{x}	_	q_2	_	q_2	_

Nondeterministic Finite Automata (NFA)

- There is at least one state that has more than one transition with the same label
- Change the definition of the transition mapping from "function" to "relation"

- The automaton always chooses the correct successor state, without looking ahead (i.e., such that an end state will be reached, if it can be reached at all)
- Surprising: For any NFA we can construct an equivalent DFA
 - a deterministic version accepting the same language
 - nondeterminism does not result in more computational power (but may be faster)

What is the recognized language of the following automaton?

$$U = \{\varepsilon, \alpha^{2+n}, \alpha^{7+n}bc, ac\}$$
 $|U| = \infty$

Transformation NFA → DFA

- For any nondeterministic finite acceptor (NFA), an equivalent deterministic one (DFA) can be constructed that recognizes the same language
- In 1976, M. Rabin and D. Scott received the <u>Turing Award</u> for the proof
- Basic idea:
 - given: NFA with n states
 - Determine all transitions of subsets of the state set Q
 - Set of all subsets: powerset (*Potenzmenge*); contains 2ⁿ elements
 - the resulting DFA can thus have more states and transitions than the original NFA
 - in most cases, however, the number of states grows only slightly or even remains the same

Transformation NFA → DFA − Example

- given: NFA with $\Sigma = \{0, 1\}$, $Q = \{q_s, q_1, q_e\}$
- recognized language: $L = \{x10^n \mid x \in \Sigma^*, n \in \mathbb{N}\}$

σ_i	$q_{ m s}$	q_1	$q_{ m e}$
0	$q_{ m s}$	$q_{ m e}$	$q_{ m e}$
1	$q_{ m s},q_1$	_	

Transformation NFA → DFA − Example

(1) Start with all sets of successor states that can be reached directly from start state set $\{q_s\}$

$$\begin{array}{c|c}
\sigma_i & \{q_{\rm s}\} \\
\hline
0 & \{q_{\rm s}\} \\
1 & \{q_{\rm s}, q_1\}
\end{array}$$

(2) Add all newly listed subsets as new columns

$$\begin{array}{c|cc}
\sigma_i & \{q_{\rm s}\} & \{q_{\rm s}, q_1\} \\
\hline
0 & \{q_{\rm s}\} & \{q_{\rm s}, q_{\rm e}\} \\
1 & \{q_{\rm s}, q_1\} & \{q_{\rm s}, q_1\}
\end{array}$$

(3) Iterate until no new columns must be added any more

All subsets containing an end state of the NFA are end states of the DFA

Transformation NFA → DFA − Example

(4) Rename states (if desired)

Out of a total of 8 possible states of the power set only 3 are actually used. Power set:

$$\mathcal{P}(Q) = \left\{ \{ \}, \{q_s\}, \{q_1\}, \{q_e\}, \{q_s, q_1\}, \{q_s, q_e\}, \{q_1, q_e\}, \{q_s, q_1, q_e\} \right\}$$

Resulting state diagram of DFA:

State diagram of original NFA:

$$L = \{x10^n \mid x \in \Sigma^*, n \in \mathbb{N}\}$$

Transformation NFA → DFA – Algorithm Summary

- Given: incomplete NFA
- Write all the input symbols in the first column of a table.
- Write the subset that contains all the initial states of the NFA as a header in the second column of the table. This is the initial state of the DFA.
- In the rows of the second column, enter the subsets that are reached from the initial state when the appropriate input symbol is entered.
- Add the new subsets in this column as new column headers to the table.
- In the rows of these columns, enter the subsets that are reached from the subsets in the column headers with the respective input symbols.
- Iterate until no new subsets/columns occur.
- The subsets found correspond to the states of the DFA.
- The transitions of the DFA result directly from the table entries.
- All subsets containing an end state of the NFA are end states of the DFA.
- For clarity, the state subsets can be renamed.

In any case, this algorithm stops after a finite number of steps, namely after a maximum of 2ⁿ, since this corresponds to the cardinality of the power set.

 \rightarrow Time complexity O(2ⁿ)

ε-Moves

- DFA is deterministic: transition from the current state to the subsequent state is unambiguous
- DFA and NFA are also causal: a transition is determined by a specific input symbol
- Causality can be restricted: Allow spontaneous state transitions (not caused by input symbols)
- These are called ε -moves (or: λ -moves)
 - where ε is the empty string (of length 0)
 - ε is not an element of the input alphabet, but rather part of the transition function itself
- For any NFA with arepsilon-moves, an equivalent DFA can be constructed containing no such transitions
 - The contruction is the same as the Rabi-Scott algorithm for transforming NFA to DFA
 - with special treatment for ε -moves (use ε -closures, see textbooks for details)

ε -Moves – Example

Automaton recognizing integers, with an optional minus-sign

with ε -moves

without ε -moves

Minimal DFA

- The minimal DFA
 - is the one with the smallest number of states of all equivalent DFAs
 - is unique
 - can be constructed starting from any DFA (for NFA: convert to equivalent DFA first)
- Construction: Build equivalency classes (Äquivalenzklassen) by partitioning
 - Start with all states in a single partition
 - Separate end states from other states in a single partition
 - Split partitions until all states in a partition are equivalent

Minimal DFA – Example

Original transition table

σ_i	$q_{ m s}$	q_1	q_2	q_3	$q_{ m e}$
0	q_1	$q_{ m e}$	$q_3 \ q_2$	$q_{ m e}$	$q_{ m e}$
1	q_2	q_2	q_2	$q_{ m s}$	$q_{ m e}$

(1) Separate end states from other states

	P_1				P_2
σ_i	$q_{ m s}$	q_1	q_2	q_3	$q_{ m e}$
0	q_1, P_1	q_{e}, P_{2}	q_{3}, P_{1}	q_{e}, P_{2}	$q_{ m e}, P_2$
1	$ q_2, P_1 $	q_{e}, P_{2} q_{2}, P_{1}	q_2, P_1	q_{s}, P_{1}	$q_{ m e}, P_2$

(2) Split each partition until all states are equivalent

		P_{1a}		P_{1b}		P_2
	\bar{i}	$q_{ m s}$	q_2	q_1	q_3	$q_{ m e}$
()	q_1, P_{1b}	q_3, P_{1b}	$q_{ m e}, P_2$	$q_{ m e}, P_2$	$q_{ m e}, P_2$
]	1	q_2, P_{1a}	q_2, P_{1a}	q_2, P_{1a}	q_{s}, P_{1a}	$q_{ m e}, P_2$

Result:

- all states of an equivalence class can be combined
- we get a DFA with 3 states:

Summary

- Automata with output: Both types are equivalent
 - Mealy: output at transition
 - Moore: output in state
- Accepting finite automata
 - process an input string (a "word") from left to right
 - the word is accepted if the automata is in an end state after all symbols have been processed
 - the set of all accepted words is the recognized language
 - the recognized languages of finite automata are identical to the regular languages
 - incomplete automaton: trap states are omitted
- Deterministic (DFA) and nondeterministic (NFA) automata are equivalent
 - i.e., they have the same computational power (= they recognize regular languages)
 - an NFA may be faster though
 - ε -moves in NFAs allow for spontaneous transitions without cause
 - we can construct an equivalent DFA from any given NFA
 - we can construct an equivalent minimal DFA from any given DFA

Sources

- H. Ernst, J. Schmidt und G. Beneken: *Grundkurs Informatik*. Springer Vieweg, 7. Aufl., 2020.
- Schöning, U.: Theoretische Informatik kurz gefasst. Spektrum Akad. Verlag (2008)
- Sander P., Stucky W., Herschel, R.: *Automaten, Sprachen, Berechenbarkeit*, B.G. Teubner, 1992