

CHAPTER I JORDAN CANONICAL FORM

Second Year of Engineering Program
Department of Foundation Year

LIN Mongkolsery sery@itc.edu.kh

2021-2022

Contents

- Eigenvalues and Eigenvectors
- Diagonalization and Triangularization
- Cayley-Hamilton Theorem
- 4 Jordan Canonical Form

Notatoins.

Notatoins. In this whole chapter, we will use the following notations.

- \bullet $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

- $V^{\mathbb{K}}$ = the set of vector spaces over field \mathbb{K} .
- **1** $V_n^{\mathbb{K}}$ = the set of *n*-dimensional vector spaces over \mathbb{K} .
- I = identity matrix or identity mapping.
- lacksquare L:V o V is a map. $L_S=$ the restriction of L on $S\subseteq V$.
- **1** $\mathbb{K}[X]$ = the set of polynomials with coefficients in \mathbb{K} .
- $lacktriangledown M_n[X] = ext{the set of polynomials in } \mathbb{K}[X] ext{ with degree at most } n.$

Definition 1

Let $A \in \mathcal{M}_n(\mathbb{K})$.

- **1** A scalar $\lambda \in \mathbb{K}$ is said to be an **eigenvalue** of A if there exists a nonzero vector $x \in \mathbb{K}^n$ such that $Ax = \lambda x$. The nonzero vector x is said to be an **eigenvector** associated to λ .
- The set of all eigenvalues of A is called spectrum of A, we write spect(A).
- **1** The **eigenspace** corresponding to an eigenvalue λ is defined as

$$E_{\lambda} = \operatorname{Ker}(A - \lambda I_n) = \{ x \in \mathbb{K}^n : (A - \lambda I_n) x = 0 \}.$$

Definition 2

A subspace S of \mathbb{K}^n is called an A-invariant subspace of \mathbb{K}^n if $\{Ax : x \in S\} \subseteq S$.

Theorem 1

Let $\lambda \in \mathbb{K}$ be an eigenvalue of $A \in \mathcal{M}_n(\mathbb{K})$. Then the eigenspace E_{λ} is a subspace of \mathbb{K}^n and it is A-invariant. The dimension of this eigenspace is called **geometric multiplicity** of λ denoted $\operatorname{gm}(\lambda)$. That is,

$$\operatorname{gm}(\lambda) = \operatorname{dim}(E_{\lambda})$$

Theorem 2

Let $A \in \mathcal{M}_n(\mathbb{K})$ and $\lambda \in \mathbb{K}$. The following statements are equivalent.

- \bullet λ is an eigenvalue of A.
- ② $(A \lambda I)x = 0$ has a nontrivial solution.
- **3** The eigenspace $E_{\lambda} \neq \{0\}$.

Definition 3

Let $L \in \mathcal{L}(V)$.

- A scalar $\lambda \in \mathbb{K}$ is said to be an **eigenvalue** of L if there exists a nonzero vector $x \in V$ such that $L(x) = \lambda x$. The nonzero vector x is called an **eigenvector** corresponding to the eigenvalue λ . The pair (λ, x) is called an eigenpair for L.
- ② The set of all eigenvalues of L is called the **spectrum** of L.
- lacktriangle The **eigenspace** corresponding to an eigenvalue λ is defined as

$$E_{\lambda} = \operatorname{Ker}(L - \lambda I) = \{ v \in V : L(v) = \lambda v \}.$$

Definition 4

Let $V \in V^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, $A \in \mathcal{M}_n(\mathbb{K})$. A subspace S of V is called an L-invariant subspace of V if $L(S) \subseteq S$.

Theorem 3

Let $V \in V^{\mathbb{K}}$ and $\lambda \in \mathbb{K}$ be an eigenvalue of $L \in \mathcal{L}(V)$. Then the eigenspace E_{λ} is a subspace of V and it is L-invariant. If $V \in V_{n}^{\mathbb{K}}$, then the eigenspace E_{λ} is a finite dimensional subspace of V. The dimension of this eigenspace is called **geometric multiplicity** of λ denoted $\operatorname{gm}(\lambda)$.

Theorem 4

Let $L \in \mathcal{L}(V)$. If dim $V < \infty$ and B is an ordered basis for V. Then λ is an eigenvalue of L if and only if λ is an eigenvalue of $[L]_B$.

Theorem 5

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, B be a basis for V, $A = [L]_B$, and $\lambda \in \mathbb{K}$ be a scalar. The following statements are equivalent.

- \bullet λ is an eigenvalue of L.
- ② $(A \lambda I)[x]_B = 0$ has a nontrivial solution.
- **3** The eigenspace $E_{\lambda} \neq \{0\}$.

Definition 5

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, B be a basis for V, $A = [L]_B$, and $\lambda \in \mathbb{K}$. The polynomial $p_L(\lambda) = \det(L - \lambda I) = \det(A - \lambda I)$ does not depend on a basis for V. This polynomial is called **characteristic polynomial** of L (also of A) and $p_A(\lambda) = p_L(\lambda) = \det(A - \lambda I) = 0$ is called **characteristic equation** from L (also from A).

Theorem 6

Let $A, B \in \mathcal{M}_n(\mathbb{K})$. If $B \sim A$, then the two matrices have the same characteristic polynomial and consequently both have the same spectrum.

Theorem 7

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, B be a basis for V, and $A = [L]_B$. Then

$$p_A(\lambda) = p_L(\lambda) = (-1)^n (\lambda^n - S_1 \lambda^{n-1} + S_2 \lambda^{n-2} + \dots + (-1)^n S_n).$$

where S_i is the sum of the principal minors of order i of matrix A.

Theorem 8

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, $A \in \mathcal{M}_n(\mathbb{K})$ and p be a polynomial.

- **1** If λ is an eigenvalue of A then $p(\lambda)$ is an eigenvalue of p(A).
- ② If λ is an eigenvalue of L then $p(\lambda)$ is an eigenvalue of p(L).

Theorem 9

Let $V \in V_n^{\mathbb{K}}$ and $L \in \mathcal{L}(V)$. Let λ be an eigenvalue of L. Then

$$1 \leq \operatorname{gm}(\lambda) \leq \operatorname{am}(\lambda)$$
.

Definition 6

The minimal polynomial $m_A(\lambda)$ of an $n \times n$ matrix A over a field \mathbb{K} is the monic polynomial of least degree such that $m_A(A) = 0$.

Theorem 10

polynomial of A.

Let $p_A(\lambda)$ be the characteristic polynomial and $m_A(\lambda)$ be the minimal

- **①** The polynomial $m_A(\lambda)$ divides every polynomial that has A as a zero.
- ② The polynomials $p_A(\lambda)$ and $m_A(\lambda)$ have the same irreducible factors over \mathbb{K} . Consequently, $p_A(\lambda)$ and $m_A(\lambda)$ have the same zeros in \mathbb{K} .
- **③** If $p_A(\lambda) = (\lambda_1 \lambda)^{n_1} \cdots (\lambda_k \lambda)^{n_k}$ where $\lambda_1, \dots, \lambda_k$ are distinct, then there exist integers m_1, \dots, m_k such that $1 \le m_j \le n_j$, $j = 1, 2, \dots, k$ and

$$m_A(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_k)^{m_k}$$
.

Theorem 11

Let $A \in \mathcal{M}_n(\mathbb{K})$. Suppose that A is a block diagonal matrix with diagonal blocks A_1, \ldots, A_b . Then the minimal polynomial of A equals the least common multiple of the minimal polynomial of the diagonal blocks A_i .

Theorem 12

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, $A = [L]_B$ and $p_L(\lambda)$ be the characteristic polynomial of L. Suppose that $V = S_1 \oplus \cdots \oplus S_k$ where S_i is an L-invariant subspace of V for each $i = 1, 2, \ldots, k$ with bases B_1, \ldots, B_k , respectively and $A_i = [L_{S_i}]_{B_i}$, and $p_{L_{S_i}}(\lambda)$ is the characteristic polynomial for L_{S_i} ($i = 1, 2, \ldots, k$). Then

- **1** A is similar to the block diagonal matrix with diagonal blocks A_1, \ldots, A_k .
- $p_L(\lambda) = p_{L_{S_1}}(\lambda) \dots p_{L_{S_k}}(\lambda).$

Theorem 13

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$. If the minimal polynomial of L is

$$m(\lambda) = (p_1(\lambda))^{n_1} \dots (p_k(\lambda))^{n_k}$$

where $p_i(\lambda)$ are relatively prime, distinct monic irreducible polynomials, then V is the direct sum of the L-invariant subspaces S_1, \ldots, S_k where S_i is the kernel of $(P_i)(L)^{n_i}$. Moreover, $(p_i(L))^{n_i}$ is the minimal polynomial of L_{S_i} .

Theorem 14

Let $\lambda_1, \ldots, \lambda_k$ be k different eigenvalues of $L \in \mathcal{L}(V)$ (also of $A \in \mathcal{M}_n(\mathbb{K})$) and x_1, \ldots, x_k be eigenvectors, respectively. Then the vectors x_1, \ldots, x_k are linearly independent.

Theorem 15

Let $\lambda_1, \ldots, \lambda_k$ be k different eigenvalues of $L \in \mathcal{L}(V)$ (also of $A \in \mathcal{M}_n(\mathbb{K})$). Then

$$E_{\lambda_1} + \cdots + E_{\lambda_k} = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$$
.

Theorem 16

Let λ be an eigenvalue of $A \in \mathcal{M}(\mathbb{K})$ and k be the multiplicity of λ . Then

$$1 < \dim E_{\lambda} < k$$
.

Definition 7

Let $A \in \mathcal{M}_n(\mathbb{K})$.

- **①** *A* is said to be **diagonalizable** in \mathbb{K} if $A \sim D$, where *D* is a diagonal matrix.
- ② A is said to be **triangularizable** in \mathbb{K} if $A \sim T$, where T is a triangular matrix T.

Definition 8

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$.

- **1** L is said to be **diagonalizable** in \mathbb{K} if there is an ordered basis B such that $[L]_B$ is diagonal.
- ② L is said to be **triangularizable** in \mathbb{K} if there is an ordered basis B such that $[L]_B$ is a triangular matrix.

Theorem 17

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, B be an ordered basis for V, and $A = [L]_B$. Then

- lacktriangle L is diagonalisable over $\mathbb K$ if and only if A is diagonalisable over $\mathbb K$.
- $oldsymbol{Q}$ L is triangularizable over $\mathbb K$ if and only if A is triangularizable over $\mathbb K$.

Theorem 18

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, and $E_{\lambda_1}, \ldots, E_{\lambda_k}$ be eigenspaces of L. The following assertions are equivalent.

- **1** L is diagonalizable over \mathbb{K} .
- ② There exists a basis of V formed by the eigenvectors of L.

Theorem 19

Let $A \in \mathcal{M}_n(\mathbb{K})$ and $\lambda_1, \lambda_2, \dots, \lambda_k$ be k distinct eigenvalues of A. The following assertions are equivalent.

- lacktriangledown A is diagonalizable in \mathbb{K} .
- 2 There exists a basis of \mathbb{K}^n formed by the eigenvectors of A.

Theorem 20

 $A \in \mathcal{M}_n(\mathbb{K})$ is diagonalizable over \mathbb{K} if and only if

- **1** The characteristic polynomial $p_A(\lambda)$ splits over \mathbb{K} .
- ② Every eigenvalue λ of A, am $(\lambda) = \operatorname{gm}(\lambda)$.

Theorem 21

Let $V \in V_n^{\mathbb{K}}$. $L \in \mathcal{L}(V)$ is diagonalizable over \mathbb{K} if and only if

- **1** The characteristic polynomial $p_L(\lambda)$ splits over \mathbb{K} .
- ② Every eigenvalue λ of L, $am(\lambda) = gm(\lambda)$.

Theorem 22

Let $V \in V_n^{\mathbb{K}}$. $L \in \mathcal{L}(V)$ is diagonalisable over \mathbb{K} if and only if its minimal polynomial is a product of district linear polynomials.

Theorem 23

If $A \in \mathcal{M}_n(\mathbb{R})$ and A is symmetric, then there exists an orthogonal matrix P such that $P^{-1}AP$ is diagonal (i.e. A can be diagonalized by an orthogonal matrix).

Theorem 24

Let $A \in \mathcal{M}_n(\mathbb{K})$ with the characteristic polynomial $p_A(\lambda)$. The following assertions are equivalent.

- **1** A is triagularizable over \mathbb{K} .
- $oldsymbol{o}$ $p_A(\lambda)$ splits over \mathbb{K} .

Theorem 25

Let $V \in V_n^{\mathbb{K}}$ and $L \in \mathcal{L}(V)$ with the characteristic polynomial $p_L(\lambda)$. The following assertions are equivalent.

- **1** L is triagularizable over \mathbb{K} .
- $p_l(\lambda)$ splits over \mathbb{K} .

Cayley-Hamilton Theorem

Definition 9

Let $V \in V^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, $A \in \mathcal{M}_n(\mathbb{K})$, and k > 0 be an integer.

- **1** The subspace C_x spanned by $\{x, L(x), L^2(x), \ldots\}$ is called the *L*-cyclic subspace of *V* generated by $x \in V$.
- ② The subspace C_x spanned by $\{x, Ax, A^2x, ...\}$ is called the A-cyclic subspace of \mathbb{K}^n generated by $x \in \mathbb{K}^n$.

Theorem 26

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$ and S be an L-invariant subspace of V. Then the characteristic polynomial of L_S divides the characteristic polynomial $p_L(\lambda)$ of L.

Cayley-Hamilton Theorem

Theorem 27

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, and C_x be an L-cyclic subspace of V generated by a nonzero vector x with dim $C_x = k$. Then

- ② If $a_0x + a_1L(x) + \cdots + a_{k-1}L^{k-1}(x) + L^k(x) = 0$, then the characteristic polynomial of L_{C_x} is

$$p_{C_x}(\lambda) = (-1)^k \left(a_0 + a_1\lambda + \cdots + a_{k-1}\lambda^{k-1} + \lambda^k\right).$$

Cayley-Hamilton Theorem

Theorem 28 (Cayley-Hamilton)

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$. If $p_L(\lambda)$ is the polynomial characteristic of L then $p_L(L) = 0$.

Theorem 29 (Cayley-Hamilton)

Let $A \in \mathcal{M}_n(\mathbb{K})$. If $p_A(\lambda)$ is the polynomial characteristic of A then $p_A(A) = 0$.

21 / 40

Definition 10

Let $V \in V^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, $A \in \mathcal{M}_n(\mathbb{K})$, and k > 0 be an integer.

- The linear operator L is said to be **nilpotent** if $L^k = 0$ for some positive integer k.
- ② The linear operator L is said to be **nilpotent of index** k if $L^k = 0$ and $L^{k-1} \neq 0$.
- **3** The matrix A is said to be **nilpotent** if $A^k = 0$ for some positive integer k.
- **1** The matrix A is said to be **nilpotent of index** k if $A^k = 0$ and $A^{k-1} \neq 0$.

Definition 11

Let $V \in V_n^{\mathbb{K}}$ and λ be an eigenvalue of $L \in \mathcal{L}(V)$.

- The **index of** λ , denoted index (λ) , is the smallest positive integer k such that $\operatorname{rank}(L \lambda I)^k = \operatorname{rank}(L \lambda I)^{k+1}$
- ② A nonzero vector $x \in V$ is called a **generalized eigenvector of** L corresponding to the eigenvalue λ if $(L \lambda I)^p(x) = 0$ for some positive integer p.
- **1** The **generalized eigenspace of** L corresponding to λ is defined by

$$G_{\lambda}(L) = \{x \in V : (L - \lambda I)^{p}(x) = 0, \text{ for some } p \in \mathbb{N}\}.$$

Definition 12

Let λ be an eigenvalue of $A \in \mathcal{M}_n(\mathbb{K})$.

- **1** The **index of** λ , denoted index (λ) , is the smallest positive integer k such that $\operatorname{rank}(A \lambda I_n)^k = \operatorname{rank}(A \lambda I_n)^{k+1}$
- ② A nonzero vector $x \in \mathbb{K}^n$ is called a **generalized eigenvector of** A corresponding to the eigenvalue λ if $(A \lambda I_n)^p x = 0$ for some positive integer p.
- **1** The **generalized eigenspace of** A corresponding to λ is defined by

$$G_{\lambda}(A) = \{x \in \mathbb{K}^n : (A - \lambda I_n)^p x = 0, \text{ for some } p \in \mathbb{N}\}.$$

Theorem 30

Suppose the characteristic polynomial of $L \in \mathcal{L}(V)$ splits over \mathbb{K} and λ is an eigenvalue with algebraic multiplicity k. Then

- $\bullet \ \dim \left(G_{\lambda} \left(L \right) \right) \leq k.$

Theorem 31

Suppose the characteristic polynomial of $A \in \mathcal{M}_n(\mathbb{K})$ splits over \mathbb{K} and λ is an eigenvalue with algebraic multiplicity k. Then

- $\bullet \ \operatorname{dim} \left(G_{\lambda} \left(A \right) \right) \leq k.$
- $G_{\lambda}(A) = N\left((A \lambda I_n)^k \right).$

Theorem 32

Suppose the characteristic polynomial of $L \in \mathcal{L}(V)$ splits over \mathbb{K} , $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues with algebraic multiplicities k_1, \ldots, k_m , respectively. Then for every $x \in V \in V_n^{\mathbb{K}}$ there exist elements $x_i \in G_{\lambda_i}(L)$, $1 \leq i \leq m$ such that

$$x = x_1 + \cdots + x_m$$
.

Theorem 33

Suppose the characteristic polynomial of $A \in \mathcal{M}_n(\mathbb{K})$ splits over \mathbb{K} , $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues with algebraic multiplicities k_1, \ldots, k_m , respectively. Then for every $x \in \mathbb{K}^n$ there exist elements $x_i \in \mathcal{G}_{\lambda_i}(A)$, $1 \leq i \leq m$ such that

$$x = x_1 + \cdots + x_m$$
.

Theorem 34

Suppose the characteristic polynomial of $L \in \mathcal{L}(V)$ splits over \mathbb{K} , $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues with algebraic multiplicities k_1, \ldots, k_m , respectively, and B_i is an ordered basis for $G_{\lambda_i}(L)$ for $i=1,2,\ldots,m$. Then

- **3** dim $(G_{\lambda_i}(L)) = k_i$ for i = 1, 2, ..., m.

Theorem 35

Suppose the characteristic polynomial of $A \in \mathcal{M}_n(\mathbb{K})$ splits over \mathbb{K} , $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues with algebraic multiplicities k_1, \ldots, k_m , respectively, and B_i is an ordered basis for $G_{\lambda_i}(A)$ for $i=1,2,\ldots,m$. Then

- ② $B = B_1 \cup \cdots \cup B_m$ is an ordered basis for \mathbb{K}^n
- **3** dim $(G_{\lambda_i}(A)) = k_i$ for i = 1, 2, ..., m.

Definition 13

The matrix

is called **Jordan block of order** b corresponding to λ .

Definition 14

The matrix

$$J_{s}\left(\lambda
ight)=egin{pmatrix} J_{b_{1}}\left(\lambda
ight) & O & \cdots & O \ O & \ddots & \ddots & dots \ dots & \ddots & \ddots & O \ O & \cdots & O & J_{b_{k}}\left(\lambda
ight) \end{pmatrix} \in \mathcal{M}_{b_{1}+\cdots+b_{k}}\left(\mathbb{K}
ight)$$

is called **Jordan segment** corresponding to λ .

Definition 15

A matrix $J \in \mathcal{M}_n(\mathbb{K})$ is said to be in **Jordan canonical form** or a **Jordan matrix** if it is made of Jordan segment (along the diagonal). Namely,

$$J = \begin{pmatrix} J_{s_1} \left(\lambda_1 \right) & & \\ & \ddots & \\ & & J_{s_l} \left(\lambda_l \right) \end{pmatrix}$$

Definition 16

Let $V \in V_n^{\mathbb{K}}$ and $L \in \mathcal{L}(V)$. The linear operator L is said to be **jordanizable over** \mathbb{K} if there is a basis B for V such that $[L]_B = J$ is a matrix in Jordan canonical form. The basis B is called **Jordan canonical basis for** V. $[L]_B = J$ is a Jordan is called Jordan canonical form for the linear operator L.

Definition 17

A matrix $A \in \mathcal{M}_n(\mathbb{K})$ is said to be **jordanizable over** \mathbb{K} if it is similar to a matrix in Jordan canonical form, that is, there is a nonsingular matrix S such that $J = S^{-1}AS$ is a Jordan matrix.

Definition 18

Let $V \in V^{\mathbb{K}}$, $L \in \mathcal{L}(V)$, and $x \in G_{\lambda}(L)$ be a generalized eigenvector corresponding to the eigenvalue λ . Suppose that k is the smallest positive integer for which $(L - \lambda I)^k(x) = 0$. Then the ordered set

$$\left\{ \left(L-\lambda I\right)^{k-1}\left(x\right), \left(L-\lambda I\right)^{k-2}\left(x\right), \dots, \left(L-\lambda I\right)\left(x\right), x\right\}$$

is called a **cycle of generalized eigenvectors of** L corresponding to λ . The elements $(L - \lambda I)^{k-1}(x)$ and x are called the **initial vector** and **end vector** of the cycle, respectively. We say that the length of the cycle is k.

Definition 19

Let $A \in \mathcal{M}_n(\mathbb{K})$ and $x \in G_{\lambda}(A)$ be a generalized eigenvector corresponding to the eigenvalue λ . Suppose that k is the smallest positive integer for which $(A - \lambda I)^k x = 0$. Then the ordered set

$$\left\{ (A - \lambda I)^{k-1} x, (A - \lambda I)^{k-2} x, \dots, (A - \lambda I) x, x \right\}$$

is called a **cycle of generalized eigenvectors** of A corresponding to λ . The elements $(A - \lambda I)^{k-1}x$ and x are called the **initial vector** and **end vector** of the cycle, respectively. We say that the length of the cycle is k.

Theorem 36

Let $V \in V_n^{\mathbb{K}}$ and $L \in \mathcal{L}(V)$. Suppose that the characteristic polynomial $p_L(\lambda)$ splits over \mathbb{K} and B is a basis for V such that B is a disjoint union of cycles of generalized eigenvectors of L. Then

- For each cycle of generalized eigenvectors C contained in B, $S = \operatorname{span}(C)$ is L-invariant, and $[L_S]_C$ is a Jordan block.
- \bigcirc B is a Jordan canonical basis for V.

Theorem 37

Let $V \in V_n^{\mathbb{K}}$ and $L \in \mathcal{L}(V)$, and λ be an eigenvalue of L. Suppose that B_1, \ldots, B_k are cycles of generalized eigenvectors of L corresponding to λ such that the initial vectors of the B_i 's are distinct and form a linearly independent set. Then the B_i 's are disjoint and the union $B_1 \cup \cdots \cup B_k$ is linearly independent.

Theorem 38

Let $V \in V_n^{\mathbb{K}}$ and $L \in \mathcal{L}(V)$, and λ be an eigenvalue of L. Then the generalized eigenspace $G_{\lambda}(L)$ has an ordered basis consisting of a union of disjoint cycles of generalized eigenvectors corresponding to λ . Consequently, if the characteristic polynomial $p_L(\lambda)$ splits over \mathbb{K} then L is jordanizable over \mathbb{K} .

Theorem 39

Let $V \in V_n^{\mathbb{K}}$, $L \in \mathcal{L}(V)$ and $A = [L]_B$. Suppose the characteristics and minimal polynomials of L are, respectively $p_L(\lambda) = (\lambda_1 - \lambda)^{n_1} \cdots (\lambda_k - \lambda)^{n_k}$ and $m_L(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_k)^{m_k}$, where $\lambda_1, \ldots, \lambda_k$ are distinct. Then L is jordanizable whose Jordan canonical form J consists of k Jordan segments $J_s(\lambda)$ which have the following properties:

- **1** There is at least one $m_j \times m_j$ Jordan block which is the largest in $J_{s_j}(\lambda_j)$; the number of $i \times i$ Jordan blocks in $J_{s_j}(\lambda_j)$ is given by $\nu_i(\lambda_j) = r_{i-1}(\lambda_j) 2r_i(\lambda_j) + r_{i+1}(\lambda_j)$, where $r_i(\lambda_j) = \operatorname{rank}\left((A \lambda_j I)^i\right)$.
- ② The sum of all orders of the Jordan blocks in the Jordan segment $J_{s_i}(\lambda_j)$ equals n_j .
- **3** The number of Jordan blocks in Jordan segment $J_{s_j}(\lambda_j)$ equals the geometric multiplicity of λ_j .

Theorem 40

Let $V \in V_n^{\mathbb{C}}$, $L \in \mathcal{L}(V)$, $A = [L]_B$ with distinct eigenvalues $\lambda_1, \ldots, \lambda_I$. Then there is a Jordan canonical basis forming a nonsingular matrix P such that:

$$J = P^{-1}AP = \begin{pmatrix} J_{s_1}(\lambda_1) & & \\ & \ddots & \\ & & J_{s_l}(\lambda_l) \end{pmatrix}$$

- ② *J* has one Jordan segment $J_{s_j}(\lambda_j)$ for each eigenvalue $\lambda_i, j = 1, 2, ..., l$.
- **3** Each Jordan segment $J_{s_j}(\lambda_j)$ is made up of $\beta_j = \dim \mathbb{N}(A \lambda_j I)$ Jordan blocks $J_b(\lambda_i)$.
- **1** The largest Jordan block in $J_{s_j}(\lambda_j)$ is $k_j \times k_j$, where $k_j = \operatorname{index}(\lambda_j)$.

- (5) The number of $i \times i$ Jordan blocks in $J_{s_j}(\lambda_j)$ is given by $\nu_i(\lambda_j) = r_{i-1}(\lambda_j) 2r_i(\lambda_j) + r_{i+1}(\lambda_j)$ where $r_i(\lambda_j) = \operatorname{rank}\left((A \lambda_j I)^i\right)$.
- (6) The structure of *J* is unique in the sense that the number of Jordan segments as well as the number and the sizes of the Jordan blocks is uniquely determined by the entries in *A*.

Definition 20

A matrix $A \in \mathcal{M}_n(\mathbb{R})$ is said to be in **real Jordan canonical form** if it is made of Jordan blocks (along the diagonal) of the forms $J_b(\lambda)$, with $\lambda \in \mathbb{R}$, and $\hat{J}_{2s}(\mu)$, with $\mu = a + bi \in \mathbb{C}$ $(b \neq 0)$ where

$$D = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
, and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Theorem 41

If $A \in \mathcal{M}_n(\mathbb{R})$, then A is similar to a real Jordan canonical form.