Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher.

Maximilian Blesch

December 19, 2018

Table of Content

Introduction

Model Framework

Introduction

Introduction

 The author exploits the bus engine replacements decisions made by Harold Zurcher, superintendent of maintance at Madison Metropolitan Bus Company.

Introduction

- The author exploits the bus engine replacements decisions made by Harold Zurcher, superintendent of maintance at Madison Metropolitan Bus Company.
- Zurcher provides monthly odometer data from 1974 to 1985.
- Plus odometer data on bus engine replacement.

- The author exploits the bus engine replacements decisions made by Harold Zurcher, superintendent of maintance at Madison Metropolitan Bus Company.
- Zurcher provides monthly odometer data from 1974 to 1985.
- Plus odometer data on bus engine replacement.
- Rust discretises the odometer data into 90 states of 5000 miles length.

- The author exploits the bus engine replacements decisions made by Harold Zurcher, superintendent of maintance at Madison Metropolitan Bus Company.
- Zurcher provides monthly odometer data from 1974 to 1985.
- Plus odometer data on bus engine replacement.
- Rust discretises the odometer data into 90 states of 5000 miles length.
- If a bus engine is replaced, the odometer state is set to 0.

Maximilian Blesch 4 / 10

• In each month t Harold Zurcher has two options for a bus in state x_t :

- In each month t Harold Zurcher has two options for a bus in state x_t :
 - ullet Either to replace a bus engine, $i_t=1$.

- In each month t Harold Zurcher has two options for a bus in state x_t :
 - Either to replace a bus engine, $i_t = 1$.
 - Or to maintain the vehicle, $i_t = 0$.

- In each month t Harold Zurcher has two options for a bus in state x_t :
 - Either to replace a bus engine, $i_t = 1$.
 - Or to maintain the vehicle, $i_t = 0$.
- Therefore each period's utility depends on the state and the decision:

$$u(x_t, i_t, \theta) = \begin{cases} -c(x_t, \theta_1) & \text{if } i_t = 0 \end{cases}$$

Maximilian Blesch 6 / 10

- In each month t Harold Zurcher has two options for a bus in state x_t :
 - Either to replace a bus engine, $i_t = 1$.
 - Or to maintain the vehicle, $i_t = 0$.
- Therefore each period's utility depends on the state and the decision:

$$u(x_t, i_t, \theta) = \begin{cases} -c(x_t, \theta_1) & \text{if} \quad i_t = 0 \\ -\left[RC + c(0, \theta_1)\right] & \text{if} \quad i_t = 1 \end{cases}$$

where θ_1 is the parameter determining the cost function.

In each period Harold Zurcher chooses his optimal action according to:

$$V_{\theta}(x_t) = \max_{i_t \in \{0,1\}} [u(x_t, i_t, \theta) + \epsilon_t(i_t) + \beta EV_{\theta}(x_t, i_t)]$$

where β is the discount factor, θ contains all parameters to be estimated, ϵ_t is unobserved information and $EV_{\theta}(x_t, i_t)$ is the expected value.

Maximilian Blesch 7 / 10

In each period Harold Zurcher chooses his optimal action according to:

$$V_{\theta}(x_t) = \max_{i_t \in \{0,1\}} [u(x_t, i_t, \theta) + \epsilon_t(i_t) + \beta EV_{\theta}(x_t, i_t)]$$

where β is the discount factor, θ contains all parameters to be estimated, ϵ_t is unobserved information and $EV_{\theta}(x_t, i_t)$ is the expected value.

As by replacement the state is set to 0:

$$EV_{\theta}(x_t, 1) = EV_{\theta}(0, 0) =: EV_{\theta}(0)$$

 $EV_{\theta}(x_t, 0) =: EV_{\theta}(x_t)$

for all x_t .

Rust showed that $EV_{\theta}(x_t)$ is a fixed point for every x_t and can be computed by:

Rust showed that $EV_{\theta}(x_t)$ is a fixed point for every x_t and can be computed by:

$$EV_{\theta}(x_t) = \sum_{j \in \{1,2,3\}} p_j * \ln\{\sum_{i_t \in \{0,1\}} \exp[u(x_t, i_t, \theta_1, RC) + \beta EV_{\theta}(i_t * (x_t + j))]\}$$

With p_j being the transition probabilities for a state increase by $j \in \{1, 2, 3\}$ and the choice probabilities therefore by:

Rust showed that $EV_{\theta}(x_t)$ is a fixed point for every x_t and can be computed by:

$$EV_{\theta}(x_t) = \sum_{j \in \{1,2,3\}} p_j * \ln\{\sum_{i_t \in \{0,1\}} \exp[u(x_t, i_t, \theta_1, RC) + \beta EV_{\theta}(i_t * (x_t + j))]\}$$

With p_j being the transition probabilities for a state increase by $j \in \{1, 2, 3\}$ and the choice probabilities therefore by:

$$P(i_t|x_t, \theta) = \frac{\exp[u(x_t, i_t, \theta_1, RC) + \beta EV_{\theta}(i_t * x_t)]}{\sum_{j \in \{0,1\}} \exp[u(x_t, j, \theta_1, RC) + \beta EV_{\theta}(j * x_t)]}$$

The likelihood for the estimation of θ can be split up into two separate functions:

$$I^{1}(x_{1},....,x_{T},i_{1},....,i_{T}|x_{0},i_{0},\theta)=\prod_{t=1}^{I}p(x_{t}|x_{t-1},i_{t-1},\theta_{3})$$

for the transition probabilities θ_3 and

The likelihood for the estimation of θ can be split up into two separate functions:

$$I^{1}(x_{1},....,x_{T},i_{1},....,i_{T}|x_{0},i_{0},\theta)=\prod_{t=1}^{T}p(x_{t}|x_{t-1},i_{t-1},\theta_{3})$$

for the transition probabilities θ_3 and

$$I^{2}(x_{1},....,x_{T},i_{1},....,i_{T}|\theta) = \prod_{t=1}^{T} P(i_{t}|x_{t},\theta_{1},RC,\theta_{3})$$

for the cost parameters RC and θ_1 .

Rust's achievement

• With this result he implements the Nested Fixed Point Algorithm (NFXP).

Rust's achievement

- With this result he implements the Nested Fixed Point Algorithm (NFXP).
- The first time a single agent decision problem could be estimated by a bottom-up approach.