Внешний курс

Отчёт по разделу 3

Аскеров Александр Эдуардович

Содержание

1	Пункт 4.1	4
2	Пункт 4.2	7
3	Пункт 4.3	10
4	Пункт 4.4	12
5	Курс завершён	14

Список иллюстраций

1.1	Ключи в ассиметричных криптографических примитивах	4
1.2	Свойства криптографической хэш-функции	4
1.3	Алгоритмы цифровой подписи	5
1.4	Код аутентификации сообщения	5
1.5	Обмен ключами Диффи-Хэллмана	6
2.1	Протокол электронной цифровой подписи	7
2.2	Алгоритм верификации электронной цифровой подписи	8
2.3	Характеристики электронной цифровой подписи	8
2.4	Типы сертификата электронной цифровой подписи	9
2.5	Организации по выдаче квалифицированного сертификата ключа	
	проверки электронной подписи	9
3.1	Платёжные системы	10
3.2	Многофакторная аутентификация	10
3.3	Онлайн платежи	11
4.1	Криптографическая хэш-функция	12
4.2	Системы блокчейн	12
4.3	Секретные ключи	13
5.1	Результат завершённого курса	14

Укажем, какие ключи имеют стороны в ассиметричных криптографических примитивах.

Рис. 1.1: Ключи в ассиметричных криптографических примитивах

Выберем, свойства криптографической хэш-функции.

Рис. 1.2: Свойства криптографической хэш-функции

Выберем алгоритмы цифровой подписи.

Рис. 1.3: Алгоритмы цифровой подписи

Выберем, к чему относится код аутентификации сообщения.

Код аутентификации сообщения относится к

Выберите один вариант из списка

Рис. 1.4: Код аутентификации сообщения

Дадим определение обмену ключами Диффи-Хэллмана.

Выберите один вариант из списка

Рис. 1.5: Обмен ключами Диффи-Хэллмана

Выберем, к чему относится протокол электронной цифровой подписи.

Протокол электронной цифровой подписи относится к

Выберите один вариант из списка

Рис. 2.1: Протокол электронной цифровой подписи

Выберем, что требует на вход алгоритм верификации электронной цифровой подписи.

Алгоритм верификации электронной цифровой подписи требует на вход

Выберите один вариант из списка Прекрасный ответ. подпись, секретный ключ подпись, открытый ключ, сообщение подпись, секретный ключ, сообщение подпись, открытый ключ

Рис. 2.2: Алгоритм верификации электронной цифровой подписи

Укажем, что не обеспечивает электронная цифровая подпись.

Электронная цифровая подпись не обеспечивает

Рис. 2.3: Характеристики электронной цифровой подписи

Выберем тип сертификата электронной цифровой подписи для отправки налоговой отчётности в ФНС.

Рис. 2.4: Типы сертификата электронной цифровой подписи

Выберем, в какой организации можно получить квалифицированный сертификат ключа проверки электронной подписи.

Рис. 2.5: Организации по выдаче квалифицированного сертификата ключа проверки электронной подписи

Выберем все платёжные системы в списке.

Рис. 3.1: Платёжные системы

Выберем из списка примеры многофакторной аутентификации.

Рис. 3.2: Многофакторная аутентификация

Мы выбрали те варианты, в которых используются факторы разных категорий аутентификации.

Выберем, что используется при онлайн платежах.

При онлайн платежах сегодня используется

Выберите один вариант из списка

✓ Правильно, молодец!

многофакторная аутентификация покупателя перед банком-эмитентом
однофакторная аутентификация покупателя перед банком-эквайером
однофакторная аутентификация при помощи РІN-кода карты перед терминалом
многофакторная аутентификация покупателя перед банком-эквайером

Рис. 3.3: Онлайн платежи

Выберем, какое свойство криптографической хэш-функции используется в доказательстве работы.

Рис. 4.1: Криптографическая хэш-функция

Выберем, какими свойствами обладает консенсус в некоторых системах блокчейн.

Рис. 4.2: Системы блокчейн

Выберем, секретные ключи какого криптографического примитива хранят участники блокчейна.

Выберите один вариант из списка

✓ Хорошая работа.

обмен ключами
шифрование

цифровая подпись
хэш-функция

Рис. 4.3: Секретные ключи

5 Курс завершён

Курс завершён.

Рис. 5.1: Результат завершённого курса