Used Vehicles Analysis and Price Prediction

- About the data set:
 - This data set is used vehicles data publically available on https://www.kaggle.com/datasets/austinreese/craigslist-carstrucks-data
- Description of data variables:
 - 'year': model year of a vehicle | int32
 - 'manufacturer': maker of a vehicle | categorical
 - 'cylinder': cylinder size of a vehicle | categorical
 - 'type': body type of a vehicle | categorical
 - 'paint_color': color of a vehicle | categorical
 - 'region': region where the vehicle was listed | categorical
 - 'state': state where the vehicle was listed | categorical
 - 'price': listing price on Craigslist.org | float
- In descriptic analysis, I explore which feature group(s) of vehicles have greater impact on listing prices, then followed with a correlation analysis of numerical variables(including converted categorical variable to numeric variable).
- In inferential analysis, I use the linear regression machine learning method to build five models, selecting the most accurate one to predict the price of used vehicles as desired.

Part 1: Import necessary libraries, load data, and check data types and structures

```
In [20]: # Import necessary libraries:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns
```

```
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.formula.api import ols

In [21]: # Load dataset:
    df = pd.read_csv('vehicles.csv', header=0)
        # remove white space from cell and header
        df = df.apply(lambda x: x.astype(str).str.strip() if x.dtype == "object" else x)
        df.columns=df.columns.str.strip()
In [22]: # check column names, data types, total observations:
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 426880 entries, 0 to 426879
Data columns (total 26 columns):

Ducu	CO = G	2 20 001411113/.	
#	Column	Non-Null Count	Dtype
0	id	426880 non-null	int64
1	url	426880 non-null	object
2	region	426880 non-null	object
3	region_url	426880 non-null	object
4	price	426880 non-null	int64
5	year	425675 non-null	float64
6	manufacturer	426880 non-null	object
7	model	426880 non-null	object
8	condition	426880 non-null	object
9	cylinders	426880 non-null	object
10	fuel	426880 non-null	object
11	odometer	422480 non-null	float64
12	title_status	426880 non-null	object
13	transmission	426880 non-null	object
14	VIN	426880 non-null	object
15	drive	426880 non-null	object
16	size	426880 non-null	object
17	type	426880 non-null	object
18	paint_color	426880 non-null	object
19	image_url	426880 non-null	object
20	description	426880 non-null	object
21	county	0 non-null	float64
22	state	426880 non-null	object
23	lat	420331 non-null	float64
24	long	420331 non-null	float64
25	posting_date	426880 non-null	object
		, int64(2), object	t(19)
memor	ry usage: 84.7-	+ MB	

```
Out[127...
          array([ nan, 2014., 2010., 2020., 2017., 2013., 2012., 2016., 2019.,
                  2011., 1992., 2018., 2004., 2015., 2001., 2006., 1968., 2003.,
                  2008., 2007., 2005., 1966., 2009., 1998., 2002., 1999., 2021.,
                  1997., 1976., 1969., 1995., 1978., 1954., 1979., 1970., 1974.,
                  1996., 1987., 2000., 1955., 1960., 1991., 1972., 1988., 1994.,
                  1929., 1984., 1986., 1989., 1973., 1946., 1933., 1958., 1937.,
                  1985., 1957., 1953., 1942., 1963., 1977., 1993., 1903., 1990.,
                  1965., 1982., 1948., 1983., 1936., 1932., 1951., 1931., 1980.,
                  1967., 1971., 1947., 1981., 1926., 1962., 1975., 1964., 1934.,
                  1952., 1940., 1959., 1950., 1930., 1956., 1922., 1928., 2022.,
                  1901., 1941., 1924., 1927., 1939., 1923., 1949., 1961., 1935.,
                  1918., 1900., 1938., 1913., 1916., 1943., 1925., 1921., 1915.,
                  1945., 1902., 1905., 1920., 1944., 1910., 1909.])
          # check null values:
In [129...
          df.isna().sum()
```

```
Out[129...
          id
          url
          region
          region_url
          price
          year
                            1205
          manufacturer
          model
          condition
          cylinders
                               0
          fuel
                               0
          odometer
                            4400
          title_status
          transmission
          VIN
          drive
          size
          type
          paint_color
          image_url
          description
          county
                          426880
          state
          lat
                            6549
          long
                            6549
          posting_date
                               0
          dtype: int64
```

Part 2: Preprocess the data

```
In [152... # Remove 'nan' strings in those cells:
    df=df[(df.year!='nan')&(df.price !='nan')&(df.manufacturer !='nan')&(df.cylinders !='nan')&(df.fuel !='nan')&(df.odor
    # Recheck total observations:
    df.shape

Out[152... (137469, 13)

In [154... # Change data type for year column:
    df.year=df.year.astype(int)
```

Part 3: Descriptive statistics analysis

df.isnull().sum()

```
# re-check data structure and data types:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        Index: 137469 entries, 31 to 426878
        Data columns (total 13 columns):
            Column
                          Non-Null Count
                                         Dtype
            region 137469 non-null object
            price
                         137469 non-null int64
         1
                         137469 non-null int32
            year
            manufacturer 137469 non-null object
         4 cylinders 137469 non-null object
                      137469 non-null object
         5 fuel
           odometer 137469 non-null float64
            drive
                         137469 non-null object
         8 type
                         137469 non-null object
            paint_color 137469 non-null object
         10 state
                         137469 non-null object
         11 lat
                         137469 non-null float64
                         137469 non-null float64
         12 long
        dtypes: float64(3), int32(1), int64(1), object(8)
        memory usage: 14.2+ MB
        # Re-check missing values:
In [159...
```

```
Out[159... region
          price
                         0
          year
          manufacturer
          cylinders
          fuel
          odometer
                         0
          drive
          type
          paint_color
          state
                         0
          lat
          long
          dtype: int64
```

In [161... # re-check statistical summary: df.describe()

Out[161...

	price	year	odometer	lat	long
count	137469.000000	137469.000000	137469.000000	137469.000000	137469.000000
mean	17773.750198	2011.044701	101588.451171	38.634585	-94.335534
std	13732.483014	7.051118	59477.895554	5.984344	18.450910
min	2000.000000	1970.000000	501.000000	-81.838232	-159.719900
25%	7400.000000	2008.000000	53000.000000	34.969253	-110.801411
50%	13800.000000	2013.000000	99095.000000	39.444084	-88.105874
75%	25590.000000	2016.000000	142000.000000	42.402459	-80.406800
max	289995.000000	2021.000000	299999.000000	82.252826	139.691700

```
In [163... # count by color group:
          plt.figure(figsize=(15,3))
          sns.countplot(data=df, x='paint_color', hue='paint_color')
          plt.title('Figure 1: Total Count of Listings by Color')
          plt.ylabel('Count by Color')
          plt.show()
```


paint color

```
In [274... # count by drive group:
    plt.figure(figsize=(3,3))
    sns.countplot(data=df, x='drive', hue='drive')
    plt.title('Figure 2: Total Count of Listings by Drive')
    plt.ylabel('Count by Drive')
    plt.show()
```

Figure 2: Total Count of Listings by Drive


```
In [167... # count by manufacturer group:
    plt.figure(figsize=(20,3))
```

```
sns.countplot(data=df, x='manufacturer', hue='manufacturer')
          plt.title('Figure 2: Total Count of Listings by Manufacturer')
          plt.ylabel('Count by Manufacturer')
          plt.xticks(rotation=45)
          plt.show()
                                                         Figure 2: Total Count of Listings by Manufacturer
          25000
          20000
          15000
         ₫ 10000
           5000
                                                                    manufacturer
         # count by year group:
In [173...
          plt.figure(figsize=(20,3))
          sns.countplot(data=df, x='year')
          plt.title('Figure 3: Total Count of Listings by Year')
          plt.ylabel('Count by Year')
          plt.xticks(rotation=45)
          plt.show()
                                                            Figure 3: Total Count of Listings by Year
          10000
           8000
         Count by Year
           6000
           4000
           2000
              In [175...
         # save the file to a csv file after cleaning for further visulization analysis using Tableau:
          df.to_csv('vehicles_clean.csv', index= False)
```

Part 3 conclusions:

• White color of vehicle has the most number of listings, 4wd - Four wheel drive is the most popular drive type, followed by fwd - front wheel drive)

Part 4: Correlation analysis

In order to find out whether there are correlations between price and other non-numerical variables such as drive, color, cylinders, we will need to replace categorical name to numurical numbers for the pupose of correlation analysis.

• To replace categorical names to numerical numbers, for example:

```
drive['rwd', '4wd','fwd'] -- replaced with -- drive_n [1, 3, 2]
```

```
In [180... dfn=pd.read_csv('vehicles_clean.csv', header=0)
In [182... dfn
```

\cap	14-	Γ1	0	2	
Uί	ЛL	ГΤ	0	۷	

	region	price	year	manufacturer	cylinders	fuel	odometer	drive	type	paint_color	state	lat	lon
0	auburn	15000	2013	ford	6 cylinders	gas	128000.0	rwd	truck	black	al	32.592000	-85.51890
1	auburn	27990	2012	gmc	8 cylinders	gas	68696.0	4wd	pickup	black	al	32.590000	-85.48000
2	auburn	34590	2016	chevrolet	6 cylinders	gas	29499.0	4wd	pickup	silver	al	32.590000	-85.48000
3	auburn	35000	2019	toyota	6 cylinders	gas	43000.0	4wd	truck	grey	al	32.601300	-85.44397
4	auburn	29990	2016	chevrolet	6 cylinders	gas	17302.0	4wd	pickup	red	al	32.590000	-85.48000
•••													
137464	wyoming	48590	2020	cadillac	6 cylinders	gas	7701.0	fwd	other	black	wy	33.779214	-84.41181
137465	wyoming	39990	2017	infiniti	8 cylinders	gas	41664.0	4wd	other	black	wy	33.779214	-84.41181
137466	wyoming	32990	2016	infiniti	8 cylinders	gas	55612.0	rwd	other	black	wy	33.779214	-84.41181
137467	wyoming	33590	2018	lexus	6 cylinders	gas	30814.0	rwd	sedan	white	wy	33.779214	-84.41181
137468	wyoming	28990	2018	lexus	6 cylinders	gas	30112.0	fwd	sedan	silver	wy	33.786500	-84.44540

137469 rows × 13 columns

In [184... dfn.dtypes

```
Out[184...
          region
                           object
          price
                            int64
          year
                            int64
          manufacturer
                           object
          cylinders
                           object
          fuel
                           object
          odometer
                          float64
          drive
                           object
          type
                           object
          paint_color
                           object
          state
                           object
                          float64
          lat
                          float64
          long
          dtype: object
```

In [186...

dfn.describe()

Out[186...

	price	year	odometer	lat	long
count	137469.000000	137469.000000	137469.000000	137469.000000	137469.000000
mean	17773.750198	2011.044701	101588.451171	38.634585	-94.335534
std	13732.483014	7.051118	59477.895554	5.984344	18.450910
min	2000.000000	1970.000000	501.000000	-81.838232	-159.719900
25%	7400.000000	2008.000000	53000.000000	34.969253	-110.801411
50%	13800.000000	2013.000000	99095.000000	39.444084	-88.105874
75%	25590.000000	2016.000000	142000.000000	42.402459	-80.406800
max	289995.000000	2021.000000	299999.000000	82.252826	139.691700

```
In [244... # Remove string from column cylinders:
          dfn['cylinders'] = dfn['cylinders'].astype(str)
          dfn['cylinders'] = dfn['cylinders'].str.replace(' cylinders', '', regex=False)
          dfn['cylinders'] = dfn['cylinders'].str.replace('other', '13', regex=False)
          dfn['cylinders'] = dfn['cylinders'].astype(int)
          dfn.cylinders.unique()
```

```
Out[244... array([6, 8, 4, 5, 10, 3, 13, 12])
In [256... # add a column age, calculate the age of the vehicle by substracting model year from current year when the data was d
          dfn['age'] = 2022 - dfn['year']
          dfn.age.unique()
Out[256... array([9, 10, 6, 3, 11, 5, 4, 18, 21, 8, 19, 14, 15, 2, 16, 17, 12,
                 13, 20, 27, 48, 26, 22, 23, 7, 25, 24, 50, 1, 28, 43, 38, 46, 31,
                 29, 32, 44, 40, 36, 34, 37, 33, 41, 30, 49, 47, 51, 35, 42, 45, 52,
                 39], dtype=int64)
In [258... # Ensure 'drive' is a string column:
          dfn['drive'] = dfn['drive'].astype(str)
          # Replace the values using a dictionary:
          dfn['drive'] = dfn['drive'].replace({'rwd': '1', '4wd': '3', 'fwd': '2'})
          # Convert 'drive' back to integer:
          dfn['drive'] = dfn['drive'].astype(int)
          # Check the unique values in the 'drive' column:
          print(dfn['drive'].unique())
         [1 3 2]
          dfn=dfn.dropna()
In [260...
In [262... dfn.to csv('clean.csv')
          EDA
In [264...
          dfn.head()
```

r	egion	price	year	manufacturer	cylinders	fuel	odometer	drive	type	paint_color	state	lat	long	age
0 a	uburn	15000	2013	ford	6	gas	128000.0	1	truck	black	al	32.5920	-85.518900	9
1 a	uburn	27990	2012	gmc	8	gas	68696.0	3	pickup	black	al	32.5900	-85.480000	10
2 a	uburn	34590	2016	chevrolet	6	gas	29499.0	3	pickup	silver	al	32.5900	-85.480000	6
3 a	uburn	35000	2019	toyota	6	gas	43000.0	3	truck	grey	al	32.6013	-85.443974	3
4 a	uburn	29990	2016	chevrolet	6	gas	17302.0	3	pickup	red	al	32.5900	-85.480000	6

```
In [270...
```

```
plt.figure(figsize=(3, 3))
sns.histplot(dfn['age'], kde=False, bins=20)
# Show the plot
plt.show()
```



```
In [272... plt.figure(figsize=(3, 3))
    sns.histplot(dfn['odometer'], kde=False, bins=20)
    plt.show()
```



```
In [240... sns.scatterplot(data=dfn, x='price',y='odometer')
    plt.show()
    plt.figure(figsize=(3,3))
```


Out[240... <Figure size 300x300 with 0 Axes>

```
In [242... sns.scatterplot(data=dfn, x='price',y='age')
    plt.show()
    plt.figure(figsize=(3,3))
```


Out[242... <Figure size 300x300 with 0 Axes>

```
In [209... sns.scatterplot(data=dfn, x='price',y='drive')
    plt.show()
    plt.figure(figsize=(3,3))
```


Out[209... <Figure size 300x300 with 0 Axes>

```
In [211...
sns.scatterplot(data=dfn, x='price',y='cylinders')
plt.show()
plt.figure(figsize=(3,3))
```


It seems like there is some negative relationship between price and odometer and age. let's use heatmap to show the strength of the relationship.

```
In [214...
          # Create a heatmap to visulize the correlations:
          corr = dfn[['price', 'age', 'cylinders', 'odometer', 'drive']]
          plt.figure(figsize=(12,3))
          sns.heatmap(corr.corr(), annot=True, cmap='Reds')
          #plt.title('Figure 4: Correlation Heatmap')
          plt.show()
```

<Figure size 300x300 with 0 Axes>

Part 4 Conclusion:

- Correlation analysis suggested:
 - a negative linear relationship between price(the dependent variable) and the explanatory variables: odometer, age.
 - a positive linear relationship between price and cylinders and drive.

Part 5: Inferential analysis

```
In [218... model1 = smf.ols("price ~ odometer", data=dfn).fit()
    print(model1.summary())
```

Dep. Variab	ole:	р	rice	R-squa	red:		0.312
Model:			OLS	Adj. R	R-squared:		0.312
Method:		Least Squ	ares	F-stat	istic:		6.237e+04
Date:		Sun, 23 Feb	2025	Prob (F-statistic):	0.00
Time:		10:1	4:53	Log-Li	.kelihood:		-1.4791e+06
No. Observa	ntions:	13	7469	AIC:			2.958e+06
Df Residual	.s:	13	7467	BIC:			2.958e+06
Df Model:			1				
Covariance	Type:	nonro	bust				
========	.======		=====	======	.=======	======	
	coe	f std err		t	P> t	[0.025	0.975]
Intercept	3.088e+04	4 60.800	507	.849	0.000	3.08e+04	3.1e+04
odometer	-0.129	0.001	-249	.738	0.000	-0.130	-0.128
Omnibus:	:======	 71798	.292	===== Durbir	======== -Watson:	=======	1.542
Prob(Omnibu	ıs):	0	.000	Jarque	e-Bera (JB):		1456878.838
Skew:		2	.067	Prob(J	IB):		0.00
Kurtosis:		18	.403	Cond.	No.		2.33e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.33e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [220... model2 = smf.ols("price ~ age", data=dfn).fit()
    print(model2.summary())
```

=======================================	===========		
Dep. Variable:	price	R-squared:	0.230
Model:	OLS	Adj. R-squared:	0.230
Method:	Least Squares	F-statistic:	4.103e+04
Date:	Sun, 23 Feb 2025	Prob (F-statistic): 0.00
Time:	10:14:54	Log-Likelihood:	-1.4868e+06
No. Observations:	137469	AIC:	2.974e+06
Df Residuals:	137467	BIC:	2.974e+06
Df Model:	1		
Covariance Type:	nonrobust		
=======================================	==========	=======================================	
coe		t P> t	[0.025 0.975]
Intercept 2.8e+0			2.79e+04 2.81e+04
age -933.717	6 4.610 -2	0.000	-942.753 -924.683
Omnibus:	 75568.150	 Durbin-Watson:	 1.525
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1425392.091
Skew:	2.246	. , ,	0.00
Kurtosis:	18.122	` '	24.2
=============	==========		===========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [222... model3 = smf.ols('price ~ age + odometer', data=dfn).fit()
    print(model3.summary())
```

=======	========	:======::		=====	========	=======	========
Dep. Varia	ble:	ı	orice	R-sq	uared:		0.374
Model:			OLS	Adj. R-squared:		0.374	
Method:		Least Sq	uares	F-st	atistic:		4.111e+04
Date:		Sun, 23 Feb	2025	Prob	(F-statistic):	0.00
Time:		10::	14:55	Log-	Likelihood:		-1.4726e+06
No. Observ	ations:	13	37469	AIC:			2.945e+06
Df Residua	ls:	13	37466	BIC:			2.945e+06
Df Model:			2				
Covariance	Type:	nonre	obust				
=======	=======	.=======		=====	========	======	
	coe				P> t	-	-
Intercept	3.383e+04				0.000		
age	-547.6108	4.687	-116	.842	0.000	-556.797	-538.425
odometer	-0.0996	0.001	-178	.103	0.000	-0.100	-0.098
Omnibus:	=======	 7942:	===== 2.138	===== Durb	======== in-Watson:	======	1.540
Prob(Omnib	us):	(0.000	Jarq	ue-Bera (JB):		2119328.570
Skew:	•	:	2.288	Prob	(JB):		0.00
Kurtosis:		2:	1.683		. No.		2.54e+05
========	========	.=======		=====		=======	=========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.54e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [224... model4 = smf.ols('price ~ age + odometer + cylinders', data=dfn).fit()
    print(model4.summary())
```

========			======	=====		=======	
Dep. Variab	ole:		price	R-sq	uared:		0.553
Model:			OLS	Adj.	R-squared:		0.553
Method:		Least	Squares	F-st	atistic:		5.673e+04
Date:		Sun, 23 F	eb 2025	Prob	(F-statistic	:):	0.00
Time:		1	0:14:56	Log-	Likelihood:	•	-1.4494e+06
No. Observa	ations:		137469	AIC:			2.899e+06
Df Residual	ls:		137465	BIC:			2.899e+06
Df Model:			3				
Covariance	Type:	no	nrobust				
========	=======				========	:=======	========
	coe	f std e	rr	t	P> t	[0.025	0.975]
Intercept	1.415e+04	1 99.4	28 1 4	2.363	0.000	1.4e+04	1.43e+04
age	-692.7432	L 4.0	08 -17	2.819	0.000	-700.600	-684.887
odometer	-0.096	0.0	00 -20	5.526	0.000	-0.097	-0.096
cylinders	3534.9838	3 15.0	67 23	84.611	0.000	3505.452	3564.516
Omnibus:	=======	 94	====== 577.747	===== Durb	======== in-Watson:	:======:	1.673
Prob(Omnibu	us):		0.000	Jarq	ue-Bera (JB):		5407315.890
Skew:	•		2.691		(JB):		0.00
Kurtosis:			33.250		. No.		4.77e+05
========			======	=====	========	=======	========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.77e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [226... model5 = smf.ols('price ~ age + odometer + drive + cylinders', data=dfn).fit()
print(model5.summary())
```

=======================================		=======		========	========
Dep. Variable:	pri	.ce R-so	quared:		0.568
Model:	0	LS Adj.	R-squared:		0.568
Method:	Least Squar	es F-st	catistic:		4.511e+04
Date:	Sun, 23 Feb 20	25 Prob	(F-statisti	lc):	0.00
Time:	10:14:	56 Log-	-Likelihood:		-1.4472e+06
No. Observations:	1374	69 AIC:	:		2.894e+06
Df Residuals:	1374	64 BIC:	:		2.894e+06
Df Model:		4			
Covariance Type:	nonrobu	ıst			
=======================================	=========		-=======	.=======	
coe-	f std err	t	P> t	[0.025	0.975]
Intercept 9361.414	5 120.706	77.556	0.000	9124.833	9597.996
age -632.4618	4.042	-156.462	0.000	-640.385	-624.539
odometer -0.101	0.000	-217.117	0.000	-0.103	-0.101
drive 2194.3320	32.381	67.767	0.000	2130.867	2257.798
cylinders 3494.237	5 14.834	235.555	0.000	3465.163	3523.312
	=========	:======	:========	:=======	========
Omnibus:	97120.9		oin-Watson:		1.680
Prob(Omnibus):	0.0		que-Bera (JB)):	6333982.669
Skew:	2.7	'63 Prob	o(JB):		0.00
Kurtosis:	35.7		d. No. 		5.93e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.93e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Part 5 Conclusions:

• r2 for 5 models:

model 1: 0.312

model 2: 0.230

model 3: 0.374

model 4: 0.553

- model 5: 0.568
- Model 5 has a highest R squared value (0.568), meaning it can explain the dependence variable better compared to other models.

Concluding Remarks:

- Descriptive data analysis shows pupular features or market trends inlude: white color, four wheel drive, followed by front wheel drive. Ford is the most pupular brand.
- Correlation analysis suggested a weak positive correlation between price(dependent variable) and drive type(independent variable), a negative correlation between price(dependent variable) and age and odometer(independent variables).
- Inferential analysis suggested Model 5 (odometer + age + cylinders + drive) is the best model, with a R squared of 0.568, meaning the combination of odometer + age + cylinders + drive can explain 56.8% variance in the listings.

In []:	
In []:	