De formules zijn geformuleerd voor \mathbb{R}^n . Op het tentamen zullen alleen n=2 en n=3 voorkomen. N.B. Dit blad mag NIET tijdens het tentamen gebruikt worden.

Transformatieformule voor integratie over gebieden in \mathbb{R}^n :

Laat $D \subset \mathbf{R}^n$ en $\Phi : \mathbf{R}^n \to \mathbf{R}^n$ een afbeelding zo, dat $\Phi(\Omega) = D$, Φ is differentieerbaar op (een omgeving van) Ω en $\Phi : \Omega \to D$ is injectief. Dan is voor iedere continue functie $f : D \to \mathbf{R}^n$:

$$\int_{D} f(x)dV(x) = \int_{\Phi(\Omega)} f(x)dV(x) = \int_{\Omega} f(\Phi(\omega))|\det D\Phi(\omega)|dV(\omega)$$

waarbij de integralen n-dimensionale integralen zijn in de gekozen coördinaatsystemen. In het bijzonder in \mathbb{R}^2 en \mathbb{R}^3 :

$$\iint_D f(x,y) dx dy = \iint_{\Omega} f(\Phi(u,v)) |\det D\Phi(u,v)| du dv$$

$$\iiint_D f(x,y) dx dy dz = \iiint_{\Omega} f(\Phi(u,v,w)) |\det D\Phi(u,v,w)| du dv dw$$

Voorbeelden:

Poolcoördinaten in \mathbb{R}^2 :

 $(x,y) = (r\cos\theta, r\sin\theta), \quad |\det D\Phi(r,\theta)| dr d\theta = r dr d\theta$

Cylindercoördinaten in \mathbb{R}^3 :

 $(x, y, z) = (r \cos \theta, r \sin \theta, z), \quad |\det D\Phi(r, \theta, z)| dr d\theta dz = r dr d\theta dz$

Bolcoördinaten in \mathbb{R}^3 :

 $(x, y, z) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi), \quad |\det D\Phi(\rho, \theta, \phi)| d\rho d\theta d\phi = \rho^2 \sin \phi d\rho d\theta d\phi$

Parametriseringen van deelverzamelingen

Om een k-dimensionale deelverzameling, $1 \le k \le n$, van \mathbf{R}^n te beschrijven zijn k parameters nodig. Integratie over een k-dimensionale deelverzameling betekent dus integratie over de k gekozen parameters/variabelen.

Lijnintegralen in \mathbb{R}^n

Laat $\mathbf{r}:[a,b]\to\mathbf{R}^n$ $(n\geq 2)$ een parametrisatie zijn van een gladde kromme \mathcal{C} , i.e., \mathbf{r} is differentieerbaar, \mathbf{r}' is continu en $\mathbf{r}'(t)\neq 0$ (de nulvector) voor iedere $t\in(a,b)$. Voor $f:\mathbf{R}^n\to\mathbf{R}$ gedefinieerd en continu op \mathcal{C} geldt:

$$\int_{\mathcal{C}} f \, ds = \int_{a}^{b} f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$

Deze integraal is richtingsonafhankelijk (denk aan lengte (f = 1) of massa, lading (f is dichtheidsfunctie)).

Gevolg: integralen van vectorvelden over krommen in \mathbb{R}^n

Laat $\mathbf{F}: \mathbf{R}^n \to \mathbf{R}^n$ een vectorveld zijn. De tangentiële component van F aan de kromme \mathcal{C} in $p \in \mathcal{C}$ is $\mathbf{F}(p) \cdot \hat{\mathbf{T}}(p)$, waarbij $\hat{\mathbf{T}}(p)$ de eenheidsraakvector is aan \mathcal{C} in p:

$$\hat{\mathbf{T}}(\mathbf{r}(t)) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

Hiermee is

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} \mathbf{F} \cdot \hat{\mathbf{T}} ds = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

Deze integraal is richtingsafhankelijk (denk aan arbeid).

Opmerking: De eis, dat \mathcal{C} glad moet zijn, kan in beide bovenstaande formules worden afgezwakt tot glad behalve in een eindig aantal punten (ofwel, tot stuksgewijs gladde \mathcal{C}). Dit leidt tot optelling van integralen over deelcurves.

Oppervlakte-integralen

Laat $D \subset \mathbf{R}^2$ een begrensd (2 dim) domein zijn en $\mathbf{r}: D \to \mathbf{R}^n$ ($n \geq 3$) met $\mathbf{r}: (u, v) \mapsto \mathbf{r}(u, v)$ een parametrisatie van een glad oppervlak \mathcal{S} (ofwel, \mathbf{r} is differentieerbaar met continue 1^e orde partiële afgeleiden en $\frac{\partial \mathbf{r}}{\partial u}(u, v) \times \frac{\partial \mathbf{r}}{\partial v}(u, v) \neq 0$ voor iedere $(u, v) \in D$). Voor een functie $f: \mathbf{R}^n \to \mathbf{R}$ gedefinieerd en continu op \mathcal{S} geldt:

$$\int_{\mathcal{S}} f dS = \int_{D} f(\mathbf{r}(u, v)) \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| (u, v) du dv.$$

Gevolg: flux van vectorveld door oppervlak

Laat S een glad *oriënteerbaar* oppervlak zijn met oriëntatie vastgelegd door de keuze van de eenheidsnormaal $\hat{\mathbf{N}}: S \to \mathbf{R}^n$. Gegeven een parametrisatie \mathbf{r} van S geldt:

$$\hat{\mathbf{N}}(\mathbf{r}(u,v)) = \pm \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right|} (u,v).$$

Als de oriëntatie van S gegeven is, moet de daarbij passende keuze \pm worden gemaakt, anders leg je zelf met de keuze de oriëntatie vast.

Met $\hat{\mathbf{N}}$ in termen van de parametrisatie uitgedrukt volgt voor een vectorveld $\mathbf{F}: \mathbf{R}^n \to \mathbf{R}^n$ gedefinieerd en continu op \mathcal{S} :

$$\int_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \int_{\mathcal{S}} \mathbf{F} \cdot \hat{\mathbf{N}} dS = \pm \int_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) (u, v) du dv.$$

Opmerking: De eis, dat S glad moet zijn, kan in beide bovenstaande formules worden afgezwakt tot glad behalve in een eindig aantal lager-dimensionale deelverzamelingen (ofwel, tot stuksgewijs gladde S). Dit leidt tot optelling van integralen over deeloppervlakken.

Integraalformules

Laat $D \subset \mathbf{R}^2$ een begrensd (2 dim) domein met rand ∂D die eindige vereniging is van stuksgewijs gladde krommen, voorzien van oriëntatie zodat D 'links ligt van ∂D '. Laat $\mathbf{F} = (F_1, F_2)$ een vectorveld op \mathbf{R}^2 zijn dat continu differentieerbaar is op een open omgeving van D. Dan geldt:

(Green)

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \int_{D} \left(\frac{\partial F_2}{dx} - \frac{\partial F_1}{dy} \right) dx dy.$$

Laat $\hat{\mathbf{N}}$ de naar buiten gerichte eenheidsnormaal op ∂D zijn. Dan geldt: (**Divergentiestelling/Gauss in R**²)

$$\oint_{\partial D} \mathbf{F} \cdot \hat{\mathbf{N}} ds = \int \operatorname{div} \mathbf{F} dx dy.$$

Laat S een begrends, oriënteerbaar, stuksgewijs glad oppervalk zijn in \mathbb{R}^3 met oriëntatie $\hat{\mathbf{N}}$. Laat ∂S zo georiënteerd zijn dat S 'links ligt van ∂S als je op de bovenkant van S loopt'. Laat \mathbf{F} een vecorveld op \mathbb{R}^3 zijn dat continu differentieerbaar is op een open omgeving van S. Dan geldt:

(Stokes)

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{S}} \operatorname{rot} \mathbf{F} \cdot d\mathbf{S} = \int_{\mathcal{S}} \operatorname{rot} \mathbf{F} \cdot \hat{\mathbf{N}} dS.$$

Laat $D \subset \mathbf{R}^3$ een begrensd (3 dim) domein met rand ∂D die een eindige vereniging is van gesloten, oriënteerbare, stuksgewijs gladde oppervlakken, voorzien van oriëntatie $\hat{\mathbf{N}} : \partial D \to \mathbf{R}^3$ zodat $\hat{\mathbf{N}}$ 'naar buiten wijst'. Laat \mathbf{F} een vecorveld op \mathbf{R}^3 zijn dat continu differentieerbaar is op een open omgeving van D. Dan geldt:

(Divergentiestelling/Gauss in \mathbb{R}^3)

$$\oint_{\partial D} \mathbf{F} \cdot \hat{\mathbf{N}} ds = \oint_{\partial D} \mathbf{F} \cdot d\mathbf{S} = \int \operatorname{div} \mathbf{F} dV.$$