15. Existenz- und Eindeutigkeitssätze für Dgl.Systeme 1. Ordnung

Stets in diesem Paragraphen: $D \subseteq \mathbb{R}^{m+1}, (x_0, y_0) \in D$ und $x_0 \in \mathbb{R}, y_0 \in \mathbb{R}^m$ und $f = (f_1, ..., f_m) : D \to \mathbb{R}^m$ eine Funktion.

Ein System von Dgl. 1. Ordnung hat die Form:

$$\begin{cases} y_1' = f_1(x, y_1, ..., y_m) \\ y_2' = f_2(x, y_1, ..., y_m) \\ \vdots \\ y_m' = f_m(x, y_1, ..., y_m) \end{cases}$$

Setzt man $y = (y_1, ..., y_m)$, so schreibt sich das System in der Form y' = f(x, y). Wir betrachten auch noch das AWP (A) $\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$

Wir übertragen die Sätze aus den Paragraphen 12 und 13 auf Systeme. Die Beweise dort lassen sich fast wörtlich für Systeme wiederholen. (beachte 14.2) ($\|\cdot\|$ anstatt $|\cdot|$).

Satz 15.1 (Peano)

- (1) Sei $D = I \times \mathbb{R}^m$ und $I = [a, b] \subseteq \mathbb{R}$, $x_0 \in I$, $y_0 \in \mathbb{R}^m$ und $f \in C(D, \mathbb{R}^m)$ sei beschränkt. Dann hat das AWP (A) eine Lösung auf I.
- (2) Es sei $I = [a, b] \subseteq \mathbb{R}, x_0 \in I, y_0 \in \mathbb{R}^m, s > 0$ und $D := \{(x, y) \in \mathbb{R}^{m+1} | ||y y_0|| < s\}$. Es sei $f \in C(D, \mathbb{R}^m), M := \max\{||f(x, y)|| : (x, y) \in D\}$ und $J := I \cap [x_0 - \frac{s}{M}, x_0 + \frac{s}{M}]$. Dann hat das AWP (A) eine Lösung auf J.
- (3) Sei D offen, $(x_0, y_0) \in D$ und $f \in C(D, \mathbb{R}^m)$. Dann ex. eine Lösung $y : K \to \mathbb{R}^m$ von (A) mit $x_0 \in K$ und $K \subseteq \mathbb{R}$ ein Intervall.

Definition

- (1) f genügt auf D einer Lipschitzbedingung (LB) bzgl. y: \iff $\exists \gamma \geq 0 : ||f(x,y) f(x,\overline{y})|| \leq \gamma ||y \overline{y}|| \ \forall (x,y), (x,\overline{y}) \in D$ (*)
- (2) Sei D offen. f genügt auf D einer lokalen LB bzgl. $y : \iff \forall (x_0, y_0) \in D \exists$ Umgebung U von (x_0, y_0) mit: $U \subseteq D$ und f genügt auf U einer LB bzgl. y.

Satz 15.2 (Picard-Lindelöf)

(1) I, x_0, y_0, D seien wie in 15.1(1) und $f \in C(D, \mathbb{R}^m)$ genüge auf D einer LB bzgl. y. Dann hat das AWP (A) auf I genau eine Lösung. Ist $y^{[0]} \in C(I, \mathbb{R}^m)$ beliebig und setzt man $y^{[n+1]}(x):=y_0+\int_{x_0}^x f(t,y^{[n]}(t))dt$ $(x\in I,n\in\mathbb{N})$. Dann konvergiert $(y^{[n]})$ auf I glm. gegen die Lösung von (A).

- (2) I, x_0, y_0, D, s, M und J seien wie in 15.1(2) und $f \in C(D, \mathbb{R}^m)$ genüge auf D eine LB bzgl. y. Dann hat (A) auf J genau eine Lsg.
- (3) Es sei D offen, f genüge auf D einer lokalen LB bzgl. y. Dann ist das AWP (A) eindeutig lösbar.