

6.2. Advanced Concepts of Graph Transformation

Juan de Lara, Elena Gomez, Esther Guerra

{Juan.deLara, MariaElena.Gomez, Esther.Guerra}@uam.es

Escuela Politécnica Superior Universidad Autónoma de Madrid

Index

- Formalizations
- Analysis
- Graph Constraints and Application Conditions.
- Triple Graph Grammars.
- Conclusions.

Formalizations

- Rules are not only nice pictures, they have a mathematical underpinning, which allows precise reasoning.
- The two main formalizations of GT are:
 - Double pushout.
 - Single pushout.
- Both formalizations use concepts from category theory. [https://en.wikipedia.org/wiki/Category_theory]

Formalizations.

Graph

- Graphs can be encoded using sets and functions.
- G = (V, E, src, tgt)
 - V = Set of nodes (vertices).
 - \bigcirc E = Set of edges.
 - \bigcirc src: E \rightarrow V (gives the source node of an edge).
 - \bigcirc tgt: E \rightarrow V (gives the target node of an edge).

$$\begin{array}{c|c}
G & e1 \\
\hline
 & n0 & e1
\end{array}$$

Graph morphisms

How to identify a smaller graph into a bigger one?

How to identify elements of the LHS and RHS of a

rule?

 f maps nodes to nodes and edges to edges.

- f=(f[∨], f^E):
 - \circ f V : $V_{G} \rightarrow V_{H}$
 - \bigcirc f^E: E_G \rightarrow E_H
- f has to preserve the structure of the graph, so for all edge e:
 - \bigcirc f $^{\lor}$ (src_G(e))=src_H(f E (e))
 - \bigcirc f $^{\lor}$ (tgt_G(e))=tgt_H(f E (e))

Graph Morphisms

Typing

Morphisms are also used to represent the typeinstance relation between models and metamodels.

Rules in DPO

- However in general, given a rule we cannot say that its LHS is bigger than its RHS or the other way round.
- How do we represent rules?

assemble

Rules in DPO

- In DPO, rules are divided in 3 graphs:
 - O L = LHS
 - \bigcirc R = RHS
 - \bigcirc K = LHS \bigcirc RHS
- and two graph morphisms: L ←K→R

The match is a morphism $m:L\rightarrow G$.

assemble

First step: deletion

Second step: creation

Steps based on glueing construction: Pushout.

SPO

- SPO uses partial functions.
- Matches should be total functions though.

Index

- Formalizations
- Analysis
 - Sequential and Parallel Independence.
 - Church-Rosser and Parallelism Theorems.
 - Concurrency Theorem.
 - Confluence, local confluence and critical pairs.
 - Functional behaviour and termination.
 - Other results.
 - Other analysis techniques: Model checking.
- Graph Constraints and Application Conditions.
- Triple Graph Grammars.
- Conclusions.

Parallelism

- Two ways of modelling parallelism:
 - Explicit: Two processors that can apply two or more rules at the same time. Parallel independence.
 - Interleavings: Parallelism is modelled through all possible interleaving sequences. Sequential independence.
 Church-Rosser Theorem
- Parallel independence: Two alternative derivations are independent if one does G not exclude the other.

 Sequential independence: Two consecutive derivations are independent if they do not have causal dependencies.

$$G \Longrightarrow^{r_1} H \Longrightarrow^{r_2} X$$

$$G \Longrightarrow^{r_2} H \Longrightarrow^{r_1} X_{15}$$

Parallel Independence (2) K R t1: Tile t1: Tile t1: Tile t2: Tile t2: Tile t2: Tile at at g: Ghost g: Ghost g: Ghost t1: Tile t2: Tile t1: Tile t2: Tile g: Ghost p: Pacman g: Ghost p: Pacman t1: Tile t2: Tile p: Pacman g: Ghost t2: Tile t2: Tile t1: Tile t1: Tile g: Ghost p: Pacman p: Pacman g: Ghost K R t2: Tile t2: Tile t2: Tile t1: Tile t1: Tile t1: Tile at at 17 p: Pacman p: Pacman p: Pacman

Parallel Independence

Parallelism Theorem

Synthesis: if G⇒H⇒H' is sequential independent, we can go in one step using the parallel rule.

- Trick: use of non-injective matches.
- Analysis: the converse decomposition of a parallel rule.

Concurrency Theorem

- Similar to the parallelism theorem, but here rules may have a dependency.
- Concurrent rule built through a dependency graph E.

Confluence

- Global determinism. Unique result of a graph transformation system.
- A transformation system is *confluent* if for each pair of derivations $G \Rightarrow^* H_1$ and $G \Rightarrow^* H_2$, there is a graph X and derivations $H_1 \Rightarrow^* X$, $H_2 \Rightarrow^* X$.

Local Confluence

- A transformation system is *locally confluent* if for each pair of **direct** derivations $G \Rightarrow H_1$ and $G \Rightarrow H_2$, there is a graph X and derivations $H_1 \Rightarrow^* X$, $H_2 \Rightarrow^* X$.
- A graph transformation system that is terminating and locally confluent is confluent.
- A transformation system is terminating if there is no infinite derivation.

- Used to study local confluence.
 - Take each pair of rules r₁ and r₂ and calculate all "small graphs" {S_i}.
 - 1. Both r_1 and r_2 can be applied in S_i .
 - 2. Every element in S_i is matched by some element of either L₁ or L₂ (*jointly surjective*).
 - Check if the pairs of derivations from each S_i are parallel independent.
 - 3. If all derivations, from all {S_i}, for all pairs of rules are independent, the system is locally confluent.

- Conflicts:
 - Delete-use.
 - Produceforbid (with NACs).

The AGG tool supports this analysis.

Functional Behaviour

- Termination+Local confluence.
- Termination of a transformation system is undecidable.
- There are sufficient criteria to ensure the termination of a transformation system with control layers.
 - Deletion layers.
 - Non-deletion layers: NACs ensuring finite application.

Other Results

- Embedding and Extension Theorem.
 - O Conditions under which a derivation starting in a graph G_0 can be embedded in a bigger graph G_0 .

Model Checking

- The execution of a graph transformation system on an initial graph spawns a computation tree:
 - The nodes are the reachable states.
 - The transitions are the rules that have been executed.

Model Checking

- We can use logics to formulate properties of execution paths (or sub-trees):
 - Linear Temporal Logic.
 - Computational Tree Logic.
- Efficient algorithms check if such property holds or not in all possible executions (i.e., in the execution tree).
- This is called model-checking.
- The GROOVE tool supports this kind of analysis.

Model Checking

- "In all reachable paths if the pacman and the ghost are in the same tile, then in the next step, there is no pacman or ghost."
- Expresses a correctness proper for all execution
 we implemented correctly the "gam paths

Index

- Formalizations
- Analysis
- Graph Constraints and Application Conditions.

- Triple Graph Grammars.
- Conclusions.

Graph Constraints

The GT way of expressing constraints over graphs (i.e., instead of OCL).

- Each tile should have another adjacent one (i.e., demands a connected model).
- This is called an atomic constraint.
- They can be combined using boolean connectives (and, or, not).

32

Graph Constraints

What do these constraints mean?

Application conditions.

- We have seen Negative Application Conditions (NACs).
- They are a special case of (left) Application Conditions.

"If the process is connected to another server (X) then such server should be broken (C)."

- A premise (X) and a set of consequences, one of them should be found if X is found.
- If the set of consequences is empty, we have a NAC.

Right Application Conditions

- They are assigned to the RHS.
- These are evaluated once the rule is applied.
- If they are not satisfied, the rule application is "undone".
- GT has techniques to advance right to left application conditions.
 - No need to undo the rule, we know in advance!

From constraints to application conditions

- Graph constraints express some properties of the graphs we manipulate.
- Given a grammar, do their rules break any such constraint?
- What we can do is convert each graph constraint into local application conditions for the rule, so that:
 - if the application condition is satisfied, the rule does not break the graph constraint.
 - if the application condition is not satisfied, the rule cannot be applied (as it would break the constraint).

Index

- Formalizations
- Analysis
- Graph Constraints and Application Conditions.
- Triple Graph Grammars.
- Conclusions.

- Useful to describe Model to Model transformations, in a declarative, bidirectional way.
- A unique grammar is able to generate operational transformations to go from source to target and target to source.
- Two levels:
 - specification by a declarative grammar and
 - operational (also by rules), to perform some scenario (i.e. forward or backwards transformation).
 - Automatic generation of operational rules.

- A TGG describes a language of triple graphs.
- Triple graph. Two models related through a mapping model.

Example: UML-RDBMS

Meta-Model Triple

Example: UML-RDBMS

Some declarative rules:

Class-Table

Attribute-Column

Derivation Example:

Operational Rules

- Choose the "job to be done" with the specification, e.g. source-totarget or target-to-source transformations.
- Generation of operational rules:

Index

- Formalizations
- Analysis
- Graph Constraints and Application Conditions.
- Triple Graph Grammars.
- Conclusions.

Conclusions

- The formalizations of GT allows analysis of the rules:
 - independence (parallelism).
 - confluence (unique result).
 - guides for termination.
- Graph constraints allow formulating conditions to be satisfied by graphs.
 - the grammars can be added application conditions so that the constraints are preserved.
- Triple Graph Grammars to perform M2M transformations.
 - A unique specification is useful to perform forward and backwards transformations.

Bibliography.

 Handbook of Graph Grammars and Computing by Graph Transformation. 3 Vols. 1997. World Scientific.

Ehrig, H., Ehrig, K., Prange, U., Taentzer,
 G. 2006. "Fundamentals of Algebraic
 Graph Transformation". Springer.