Example 4: fixing the expected degree sequence and the expected total energy

$$\bar{F}_l = \sum_{j=1}^{N} a_{lj} = k_l \quad (l = 1, \dots, N)$$

$$\bar{F}_{N+1} = \sum_{i=1}^{N} \sum_{j=i+1}^{N} \varepsilon_{ij} a_{ij} = \sum_{i=1}^{N} \sum_{j=i+1}^{N} f(x_{ij}) a_{ij} = E$$

yields the heterogeneous random geometric graph ensemble

$$P(\mathbb{A}) = \prod_{i=1}^{N} \prod_{j=i+1}^{N} p_{ij}^{a_{ij}} (1 - p_{ij})^{1 - a_{ij}} \quad \text{with} \quad p_{ij} = \frac{1}{e^{\beta \varepsilon_{ij} - \alpha_i - \alpha_j} + 1} .$$

The graphs will be sparse, highly clustered, small-world and devoid of non-structural degre-degre correlation iif $f(x_{ij}) = \ln x_{ij}$ and $\beta \in [D, D+2]^a$. Redefining $\alpha_l = -(\beta/D) \ln(\sqrt{\mu}\kappa_l)$ yields

$$p_{ij} = \frac{1}{e^{\beta(\varepsilon_{ij}-\mu)}+1}$$
 with $\varepsilon_{ij} = \ln\left(\frac{x_{ij}}{(\kappa_i\kappa_j)^{\frac{1}{D}}}\right)$.

^a No upper bound if expected degree sequence is scale-free.

Phys. Rev. Research 2, 023040 (2020)

Phys. Rev. E 80, 035101 (2009)

Phys. Rev. E 82, 036106 (2010)

hyperboloid in $\mathbb{R}^{2,1}$

Maximally random geometric graph ensembles

Courtesy of M. Boguñá

When the geometry is a D-dimensional sphere, \mathbb{S}^D the model can be mapped to a purely geometric model in hyperbolic space \mathbb{H}^{D+1} .

hyperboloid in $\mathbb{R}^{2,1}$

hyperboloid in $\mathbb{R}^{2,1}$

Maximally random geometric graph ensembles

When the geometry is a D-dimensional sphere, \mathbb{S}^D the model can be mapped to a purely geometric model in hyperbolic space \mathbb{H}^{D+1} .

Phys. Rev. E 80, 035101 (2009)

Phys. Rev. E 82, 036106 (2010) Phys. Rev. Research 2, 023040 (2020) 17

A powerful and versatile framework

- → Amenable to many analytical calculations [1,2]
- ▶ Generalizable to weighted [5], bipartite [6,7,8], multiplex [9,10], directed [4] and growing [11] networks
- ▶ Geometrical interpretation of preferential attachment [11]
- ▶ Parsimonious explanation of self-similarity [3]
- □ Generalizable to networks with community structure [12,13,14]
- ▶ Mapping of real complex networks unto hyperbolic space [15,16]
 - Reproduction of additionnal properties than the ones used to fit the parameters [4,15].
 - Identification of biochemical pathways in E. Coli [8]
 - Efficient Internet routing protocols [17]
 - Organization of the human connectome [18,20]
 - Self-similar architecture [19]
 - Evolution of hierarchy in international trade [21]

> . . .

[6] Phys. Rev. E 84, 026114 (2011)

[16] Nat. Commun. 8, 1615 (2017)

[17] Nat. Commun. 1, 62 (2010)

[18] PNAS 117, 20244 (2020)

[19] Nat. Phys. 14, 583 (2018)

^[2] Phys. Rev. E 82, 036106 (2010)

^[3] Phys. Rev. Lett. 100, 078701 (2008)

^[4] Nat. Phys. 20, 150 (2024)

^[5] Nat. Commun. 8. 14103 (2017)

^[9] Nat. Phys. 12, 1076 (2016)

^[10] Phys. Rev. Lett. 118, 218301 (2017)

^[11] Nature 489, 537 (2012) [12] Sci. Rep. 5, 9421 (2015)

^[13] J. Stat. Phys. 173, 775 (2018) [14] New J. Phys. 20, 052002 (2018) [15] New J. Phys. 21, 123033 (2019)

^[20] PLOS Comput. Biol. 16, e1007584 (2020)