SOLAR POWER GENERATION

TEAM 5 FINAL PRESENTATION APRIL 9, 2021

Team Members

César Montilla

Connor Mattinson

Eric Liu

Peter Friedrich

Shiva Eslami

Agenda

- Business Objectives
- Context & Data Acquisition
- Data Processing & EDA
- ML Modelling
- Conclusions & Recommendations

Challenges with Solar Power

Cyclical & Intermittent Nature:

- Peak solar potential does not always correlate with peak power demand.
 - This lack of correlation between production outputs and consumer demands can result in wasted power surpluses or unfulfilled power demands.
- Changing weather conditions can greatly impact outputs.
 - The somewhat chaotic nature of weather can impact producers capacity to make firm generation commitments and therefore create uncertainty in appropriate power augmentation for distributors.
- Equipment sensitivity can result in unexploited potential.
 - Importance of understanding whether performance shortfalls are a result of faulty equipment, physical obstruction, etc. This issue is not unique to solar, however losses can not be recovered.

Problem Exploration

Can we generate a model to produce accurate solar potential forecasting?

Opportunistic Energy Storage: By predicting future output and comparing historical demand trends, can generators transform surplus power for additional revenue?

Powering an Electrolyzer for Hydrogen Extraction (Gandikotta , GNSS Irrigation Canal)

Appropriate Maintenance Scheduling: Is

it Opportunistic to Deploy Maintenance Efforts During Generating Hours?

Will Maintenance Downtime Result in Greater Losses than Reduced Overall Production Due to Failing or Faulty Equipment?

Power Commitments & Power Trading:

Can the Model Accurately Predict AC Output Such that Generation Commitments can be made and Appropriate Pricing Set?

If Accurate Predictions Are Demonstrated Can Price Volatility be Reduced?

Business Evaluation

Outcome:

Improve Plant Power Management with Accurate Power Output Forecasting.

Action:

Opportunistic Energy Storage, Predictive Power Pricing, Accurate Power Scheduling, Informed Maintenance Scheduling.

Judgement:

Can the Models Accuracy be Trusted to Make Critical Business Decisions?

Cost of Prediction					
Accurate Predictions Inaccurate Prediction					
Reduce Potential for Wasted Power.	Potential for Revenue Loss.				
Fulfill Power Commitments to Stakeholders	Over Commitment of Available Power.				
Predictive Power Pricing.	Pricing of Supplied Power.				
Informed Maintenance Scheduling	Production Losses Due to Untimely Maintenance.				

Performance Measurements

By Accurately Predicting AC Outputs:

Power Surplus Prediction & Exploitation:

Excess power is typically wasted as the cost of terminalling to other grids is costly and in some cases logistically impossible. Understanding whether the plant is a strong candidate for energy storage infrastructure and the optimal times to engage such infrastructure would positively impact the producer and could assist in fulfilling future power demands if forecasted outputs fall short of commitments.

Power Commitments Forecasting and Fulfillment:

If power commitments can be forecasted to include longer periods, power suppliers can collaborate to set daily production caps and production times to mitigate instances of over producing. Pricing volatility can be avoided so long as production volatility is controlled and demand follows a standard pattern.

By comparing historical outputs with actual vs. predicted outputs, producers would have meaningful insights as to whether sensors are performing optimally during producing hours. Deploying maintenance efforts on an adhoc basis could significantly improve outputs.

Solar Radiation

Map data (min-max range)			Per day
Specific photovoltaic power output	PVOUT	3.39 — 5.24 kWh	/kWp
Direct normal irradiation	DNI	2.51 - 5.81 kWh	/m² ▼
Global horizontal irradiation	GHI	3.77 — 5.64 kWh	/m² ▼
Diffuse horizontal irradiation	DIF	1.52 — 2.65 kWh	/m² ▼
Global tilted irradiation	GTI	4.13 — 6.26 kWh	/m² ▼
Optimum tilt of PV modules	ОРТА	10 – 35 °	
Air temperature	TEMP	-14.3 - 29.1 °C *	
Terrain elevation	ELE	-2 - 8586 m *	

Data Limitations & Assumptions

Limitations:

Data is collected at two plants between the month of May and June.

No information on physical setup and choice of solar module or inverter

Weather info collected by a single sensor. Solar irradiation info can be misleading.

Very little weather information besides temperature and irradiance.

Assumptions:

Data are accurate and timely collected

Inverters are of the same model

Series circuit wiring of solar array is identical for all inverters

The cumulative daily yield and total yield was accumulated correctly

Data Understanding - Features

Plant data

- 1				
	DATE_TIME	PLANT_ID	SOURCE_KEY	DC_POWER
0	15-05-2020 00:00	4135001	1BY6WEcLGh8j5v7	0.0
1	15-05-2020 00:00	4135001	1IF53ai7Xc0U56Y	0.0
2	15-05-2020 00:00	4135001	3PZuoBAID5Wc2HD	0.0
3	15-05-2020 00:00	4135001	7JYdWkrLSPkdwr4	0.0
4	15-05-2020 00:00	4135001	McdE0feGgRqW7Ca	0.0

TOTAL_YIELD	DAILY_YIELD	AC_POWER	DC_POWER
6259559.0	0.0	0.0	0.0
6183645.0	0.0	0.0	0.0
6987759.0	0.0	0.0	0.0
7602960.0	0.0	0.0	0.0
7158964.0	0.0	0.0	0.0

Sensor data

	DATE_TIME	PLANT_ID	SOURCE_KEY	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE	IRRADIATION
0	2020-05-15 00:00:00	4135001	HmiyD2TTLFNqkNe	25.184316	22.857507	0.0
1	2020-05-15 00:15:00	4135001	HmiyD2TTLFNqkNe	25.084589	22.761668	0.0
2	2020-05-15 00:30:00	4135001	HmiyD2TTLFNqkNe	24.935753	22.592306	0.0
3	2020-05-15 00:45:00	4135001	HmiyD2TTLFNqkNe	24.846130	22.360852	0.0
4	2020-05-15 01:00:00	4135001	HmiyD2TTLFNqkNe	24.621525	22.165423	0.0

Data cleaning & preprocessing

13

Exploratory Data Analysis - Introduction

01	Problems with the dataset
02	Data ready to use
03	Answer your QuAM question

EDA - Bivariate analysis

DC ∝ AC

Irradiation ∝ DC

EDA - Boxplots for DC power

EDA - Daily Yield

Avg. Daily yield ≈ 3300 kWh

Enough to power 164 homes in Alberta*

EDA - Basic time series analysis

18

ML Modelling & Evaluation

Feature Scaling/ Outliners

Plant 1

Feature Scaling/ Outliners

Plant 2

Extreme Values

AC_POWER	4.421105
AC_POWER_norm	4.421105
AC_POWER_std	4.421105
DAILY_YIELD	0.000000
DAILY_YIELD_norm	0.000000
DAILY_YIELD_std	0.000000
DATE_TIME	0.000000
DC_POWER	4.548140
DC_POWER_norm	4.548140
DC_POWER_std	4.548140
PLANT_ID	0.000000
SOURCE_KEY	0.000000
TOTAL_YIELD	0.000000
TOTAL_YIELD_norm	0.000000
TOTAL_YIELD_std	0.000000
dtvpe: float64	

Train test-split

Tried two recommended types:

- Random Split, 80% train, 20% test randomly
- Time Series Split, first 80% train, last 20% test
 - → Chose the second one, felt it was more robust

K-NN modelling

Target → DAILY_YIELD

```
pandas.qcut()
label_categories=["very low", "low", "high", "very_high"]
very_low = (target <= y_mean - y_std)
low = (target > y_mean - y_std) & (target < y_mean)
high = (target < y_mean + y_std) & (target > y_mean)
very_high = (target >= y_mean + y_std)
```

K-NN modelling

Using the 'distance' weights parameter increases the kNN model accuracy for the training dataset.

For the test dataset there is a slight decrease on accuracy.

	Uniform Train Accuracy		Distance	
			Train Accuracy	Test Accuracy
kNN Neighbors number	0.4808	0.3901	0.6707	0.3775
5				
kNN Neighbors number	0.4559	0.4017	0.6707	0.3833
11				
kNN Neighbors number	0.4492	0.4083	0.6707	0.3858
15				

Decision Tree Modelling

Which feature was used for the first split?

print(tree_rules[:250])

Results on tr	aining data:			
	precision	recall	f1-score	support
high	0.93	0.86	0.90	26967
low	0.98	0.94	0.96	26916
very high	0.82	0.93	0.87	26974
very_low	0.93	0.93	0.93	27099
7-				
accuracy			0.91	107956
macro avg	0.92	0.91	0.91	107956
weighted avg	0.92	0.91	0.91	107956
			0.02	20,000
Results on te	st data:			
Results on te		recall	f1-score	sunnort
Results on te	st data: precision	recall	f1-score	support
	precision			
high	precision 0.83	0.78	0.80	6757
high low	precision 0.83 0.92	0.78 0.88	0.80 0.90	6757 6832
high low very_high	precision 0.83 0.92 0.75	0.78 0.88 0.84	0.80 0.90 0.79	6757 6832 6763
high low	precision 0.83 0.92	0.78 0.88	0.80 0.90	6757 6832
high low very_high very_low	precision 0.83 0.92 0.75	0.78 0.88 0.84	0.80 0.90 0.79 0.92	6757 6832 6763 6638
high low very_high very_low accuracy	precision 0.83 0.92 0.75 0.92	0.78 0.88 0.84 0.91	0.80 0.90 0.79 0.92	6757 6832 6763 6638
high low very_high very_low	precision 0.83 0.92 0.75	0.78 0.88 0.84	0.80 0.90 0.79 0.92	6757 6832 6763 6638

Decision Tree Modelling

	Train Accuracy	Test Accuracy	
kNN Neighbors number (5/ distance)	0.603	0.501	
kNN Neighbors number (11/ distance)	0.573	0.511	
kNN Neighbors number(15/ distance)	0.564	0.515	
DT / gini	0.914	0.85	
DT/ Entrophy	0.914	0.85	
DT/ splitter= best	0.914	0.85	
DT / splitter= random	0.914	0.848	
DT/ min_samples_leaf=1	0.914	0.85	
DT/ min_samples_leaf=2	0.897	0.846	27

Switching to Regression

 Regression is directly predicting a continuous number instead a category i.e tomorrow's AC_POWER at noon.

Previous: Power = High

Now: Power= 240.4 Watts

- This requires either new types of models, or reformulations of our previous models
- Split into train, test, choose baseline, then fit models and tune hyperparameters

Linear Regression Modelling

- Fit a linear function to your data that displays the overall linear trend
- A plane in 3D, a hyperplane in higher dimensions

Linear Regression Model Fitting

 Location and slope of line or plane is controlled by weights in a linear function e.g

$$\hat{y} = m * x + b$$

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n + \epsilon$$

- Use gradient descent to find optimal weights that cause it to fit the data.
- we experiment with the **regularizer** to control function complexity, help the model generalize

Model evaluation - Metrics

- Baseline

Baseline Accuracy, Just Predict the Median

Mean Absolute Error: 243.035 Mean Squared Error: 164669.211

Root Mean Squared Error: 405.795

Coefficient of determination: %.2f -0.484

- Check Error against test set

	MAE	MSE	RMSE	R2_Score
Linear Regression	109.911	32994.00	181.6425	0.7026
Ridge	109.907	32995.44	181.6465	0.7026
Lasso	109.555	33523.24	183.0935	0.6979

 Even after tuning hyperparameters, determining best model is difficult

More Regressors: KNN, DT, Random forest

- KNN Regressor: take some average of neighbours
- Decision Tree Regressor: the previous algorithms reconfigured for regression
- Random Forest: Ensemble, or group of multiple DT
 Regressors, their average or mean prediction is taken
- Each tree is built using different parts of the dataset,
 so that the error in each tree is relatively uncorrelated

Model evaluation - Metrics

- KNN (Distance, n=5)
- DTree and RF (Depth=23)

		MAE	MSE	RMSE	R2_Score
	KNN	281.637	186489.15	431.8439	-0.6808
	DTree	129.384	56211.30	237.0892	0.4934
Randor	mForest	108.795	31439.26	177.3112	0.7166
	Ridge	109.907	32995.44	181.6465	0.7026

Random forest has lowest error across all

MLPL: Delivery and Acceptance

Regression is most natural formulation

- QuAm to predict plant AC_Power output 24 hours from prediction.
- Final QuAm is a Random Forest Regressor, lowest error

Could possibly choose DAILY_YIELD in 24 hours, but predicting the sum of the full distribution(I.E **nominal daily yield**)

Keep possible actions in mind:

Release/Store Power, Sell/Buy Power, perform maintenance

MLPL: Limitations -> Future Work?

- Green is average for each hour, each day. Baseline average prediction seems unusually accurate
- Distribution is noisy, but similar most days
- Reformulating as **Anomaly prediction** may also be useful, depending on client application.

MLPL: Future Work

Additional Data Examples:

- This data is limited to 34 days in May and June,
 more data, to justify rest of the year, do more time series analysis
- Public Solar Angle Data, and Air pollution data
 found, but not implemented due to time, practical?
- Would like more site specific data gathered, more weather (humidity?)

MLPL: Future Work

Following up on MLPL:

- Would like to follow up with stakeholder power plant operators, specific actions taken to focus target (I.E energy trading, predict for storage, panel maintenance scheduling etc.)
- How workers will use the model, evaluate model drift, retraining (Climate Change?)
- Ultimately would like to work with client to go farther (Next Cycle of MLPL).

Thanks for Listening Everyone!

Acknowledgements:

Thanks to everyone that helped us, our instructors Blanca, Mohammad, and Omid, our classmates, and Amii.

Additional Slides

Extra: Data Coherence Check

Manually checked offset data is intact

	DATE_TIME	SOURCE_KEY	AC_POWER	PLANT_ID	AC_ONE_DAY	Label is copy of
20	2020-05-15 07:00:00	1BY6WEcLGh8j5v7	170.014286	4135001	142.285714	future feature.
	DATE_TIME	SOURCE_KEY	AC_POWER	PLANT_ID	AC_ONE_DAY	
105	2020-05-16 07:00:00	1BY6WEcLGh8j5v7	142.285714	4135001	125.071429	40

Validation Split: Time series, Data Leakage

- Don't understand possible do
- Decided against a random split for final regressor.
- Afraid validation data needs to be unrelated to the training data (Experimentation seemed to confirm).
- We need Data Points that are fully separated, so that we don't have Targets in the training data, that show up as Labels in the Validation data.

Feature Distribution Comparison

Irradiation tracks AC_POWER closely, Is average
 AC_POWER day, that accurate? Baseline

Training Split options.

- randomly split, regardless
- time split across all keys, Train on first 80%, test on next 20%
- we could have done a triple split, first random validation, then test set for final

Grab the model predictions and graph them

Time series plot comparing predicted distributions

MLPL: Future Work

Go back to stakeholder with scope questions:

- Is this QuAm fine, or do they want more?
- Enough to want these new questions answered, get more data, do site specific studies, time series analysis etc.?

Extra Conclusions (Limitations)

- Target Choices
- Daily Yield is the sum of all energy generated up to that point, so basically predicts the likely distribution for the day, more difficult
- AC_POWER basically predicts what the performance would be at that moment, given possible state of the plant

Extra Limitations

- Can't make predictions after maintenance
- Predicting 5 days out will simply mean the model gives you the average solar day as an answer
- Distribution per day seems quite stable whole year,
 would like to study irregularities

Frameworks

- Business Framework
- Machine Learning Framework
- MLPL

Four Pillars to Move up the Spectrum

Extra Future Work

- Follow the MLPL Framework
- refine binning/classification formulation of prediction task
- Use/Obtain more data. Sun Angles, and Air Pollution datasets were both found, but no time to integrate
- Experiment with feature sensitivity, see how accurate weather forecasts have to be to help
- Examine feature importance for all these features together

Recommendations and Future Work

- Refine business proposal
- Work on practical use, retraining of model, and continual evaluation
- further examine dataset inconsistencies, panels going down for maintenance,

Feature and Target justification

- Features: Taking in all the features from the day before could tell you something about the state of the plant.
- Target justification: We chose AC_POWER over Daily
 Yield
- Daily Yield tries to predict the distribution for the whole day, and so is more brittle

Data Problems

- Copied AC_POWER, TEMPERATURE, and shifted it to the next day
- Is this feature engineering, or am i causing a massive data leak, or a bit of both (or is this harmless)?
- Decided to run the models with every reasonable variation (but not messing with hyperparameters much) and compare

EDA - Inverter operation

AC_POWER AC

VS

NO

(TIME SET SPLIT)

	MAE	MSE	RMSE	R2_Score
Linear Regression	109.911	32994.00	181.6425	0.7026
Ridge	109.907	32995.44	181.6465	0.7026
Lasso	109.555	33523.24	183.0935	0.6979

	MAE	MSE	RMSE	R2_Score
Linear Regression	142.571	41467.16	203.6349	0.6263
Ridge	142.568	41468.30	203.6377	0.6262
Lasso	142.378	41996.25	204.9299	0.6215

	MAE	MSE	RMSE	R2_Score
KNN	281.637	186489.15	431.8439	-0.6808
DTree	129.384	56211.30	237.0892	0.4934
RandomForest	108.795	31439.26	177.3112	0.7166

	IVIAE	IVISE	KIVISE	KZ_SCOTE
KNN	281.638	186489.24	431.8440	-0.6808
DTree	160.098	65863.66	256.6392	0.4064
RandomForest	138.810	40103.28	200.2580	0.6385

KNN model is quite robust, similar to baseline algorithm. It doesn't change much after pulling data.

AC_POWER AC

VS

NO

(RANDOM SPLIT)

	MAE	MSE	RMSE	R2_Score
Linear Regression	132.091	47102.37	217.0308	0.6727
Ridge	132.091	47102.47	217.0310	0.6727
Lasso	132.624	47376.91	217.6624	0.6708

	MAE	MSE	RMSE	R2_Score
Linear Regression	170.736	61491.61	247.9750	0.5727
Ridge	170.737	61491.75	247.9753	0.5727
Lasso	171.267	61722.94	248.4410	0.5711

	MAE	MSE	RMSE	R2_Score
KNN	58.852	15244.94	123.4704	0.8941
DTree	35.699	17172.36	131.0434	0.8807
RandomForest	31.764	8873.79	94.2008	0.9383

	MAE	MSE	RMSE	R2_Score
KNN	58.852	15244.94	123.4704	0.8941
DTree	34.369	15478.22	124.4115	0.8924
RandomForest	30.675	8343.10	91.3406	0.9420

Using All, Time-Split, Linear VS RF Regression Fl

Using All, Random-Split, Linear VS RF Regression Fl

Using No AC Time-Split, Linear VS RF Regression FI

Using No AC Random-Split, Linear VS RF Regression Fl Linear Regression Pseudo-FI

