Chapter 7 Matrix Analysis

Section 7.1 From matrix to insight

From matrix to insight

- Any two-dimensional array of numbers may be interpreted as a matrix
- These may come from widely disparate tasks
- Examples:
 - Text/document search
 - Voting patterns
 - Preferences/ratings
 - o Graphs
 - Networks: social, political, co-authorship, casting in movies,...
 - Images

Examples of matrices

- A term-document matrix may be used for analyzing a body of documents (or corpus)
- Each column may be a document; each row a term
- E.g, your textbook may have words like "numerical," "discretization," "matrix," "integration" and "function"
- An analysis textbook may have words like "integration," "function," "continuous" and so forth
- The occurrence of "function" may be often in both books, but the other terms are likely to be much different in frequency
- Meaning could be inferred from this kind of approach: latent semantic analysis

Examples of matrices

• A term-document matrix example: matrix in green

Term	FNC by TAD+RJB	Analysis by Rudin	SM by Trefethen	NYT coffee table book
Numerical	251	2	179	0
Integration	37	275	33	18
Function	175	345	123	0
Matrix	151	11	87	0
Continuous	15	212	11	0
Spectral	15	0	124	0
Citizen	0	0	0	13

Graphs as matrices

- Could be social network, internet (or subset of it), the web, etc
- Consider graphs first
- A graph is a set of nodes V connected by set of edges E
- Sometimes the graph is denoted G(V,E)

Adjacency matrix

- We want adjacency matrix $A = \{a_{ij}\}$ that represents this graph
- Edges are unweighted and undirected
- If an edge between (v_i, v_j) , then a one is placed in both a_{ij} and a_{ji} (symmetric)
- No self-connections
- Corresponding matrix at right

Adjacency matrix: Buckyball

 Matlab has a built-in example of a graph representing the arrangements of carbon atoms in a C₆₀ molecule, a.k.a. the buckyball:

- The output has the adjacency matrix A and the vertex locations v
- Plotting the graph:

```
gplot(A,v), axis equal
```


Adjacency matrix: Buckyball

- We know there are 60 nodes; how many edges?
- There is more than one way to compute this
- For undirected, you could use the spy command:
 |A,v|=bucky;
 spy(A)
- Is nnz it? Not quite
- You could use the triu and sum commands; how?

Images

- Pictures and images are matrices in matlab
- Use imread and imshow to display them

```
A = imread('peppers.png');
size(A)
ans =
   384 512 3
```

- Three "layers" are RGB components
- To display: imshow (A)

Images

- We can convert to grayscale to get only a 2D matrix
- Use rgb2gray and double:

```
A = rgb2gray(A); % collapse from 3 dimensions to 2
A = double(A); % convert to floating point
[m,n] = size(A)
```

```
m =
384
n =
512
```

- To display: imshow (A, [0, 255])
- What if different range spec'd?

Section 7.2 Eigenvalue decomposition

The eigenvalue decomposition

- We can decompose a matrix **A**, under some assumptions, into a useful set of other matrices using its eigenvalues and eigenvectors.
- Recall that the eigenvalue problem is $Ax = \lambda x$, for the eigenvalues λ and eigenvectors x
- (Sometimes the eigenvectors are referred to as the eigenspaces.)
- We need to review some results and terminology from linear algebra before proceeding
- In particular we need to recall the complex-valued case

Complex vectors and matrices

- Recall complex numbers x = a + ib, where $i^2 = -1$ and a, b are real-valued.
- The complex conjugate is $\bar{x} = a ib$
- For a matrix A with complex-valued elements, the transpose needs to use complex conjugation at the same time: $A^* = (\overline{A})^T = \overline{A^T}$
- The *hermitian* will keep certain properties analogous with the real-valued case
- e.g., $(A^TA)^T = A^TA$ so that A^TA is symmetric. So is $(A^*A)^* = A^*A$
- Essentially, hermitian replaces transpose for complex-valued matrices and vectors

Complex vectors and matrices

- Essentially, hermitian replaces transpose for complex-valued matrices and vectors
- For inner products with complex u and v: $u^*v = \sum_{k=1}^n \overline{u}_k v_k$,
- This defines the two-norm for vectors, $||u||_2 = \sqrt{u^*u}$, and this will in turn define the two norm for matrices
- Definition of orthogonal
- And orthonormal set of vectors u_j , j=1,2,...,n: $u_i^*u_j=1$ if i=j, otherwise $u_i^*u_i=0$

Complex vectors and matrices

- A square real-valued matrix with orthonormal columns is an orthogonal matrix
- A square complex matrix with orthonormal columns is unitary
- An $n \times n$ unitary matrix U satisfies $U^{-1} = U^*$ and $||Ux||_2 = ||x||_2$ for any complex vector $x \in \mathbb{C}^n$

The eigenvalue problem

- The eigenvalue problem is $Ax = \lambda x$, for the eigenvalues λ and eigenvectors x
- It can also be written $0 = (\lambda I A)x$
- We find eigenvalues λ_k such that $\lambda_k I A$ is singular, and we find the corresponding eigenvectors x_k for k = 1, 2, ..., n
- When doing this by hand, one calculates the roots of the characteristic polynomial $\det(\lambda I A)$
- There are thus n eigenvalues for an $n \times n$ matrix, counting multiplicity
- Note: eigenvalues and eigenvectors not done that way in computer

The eigenvalue decomposition

- Suppose we know the eigenvalues λ_k and eigenvectors \boldsymbol{v}_k so that $A\boldsymbol{v}_k = \lambda_k \boldsymbol{v}_k$, for k = 1, 2, ..., n
- For each k, we have a column vector on each side of the equation
- We can assemble each of those n column vectors into a matrix:

The eigenvalue decomposition

• If we know that there is a complete set of linearly independent (LI) eigenvectors v_k , then V^{-1} exists, and we can postmultiply by it to get:

$$A = VDV^{-1}$$

- This is the eigenvalue decomposition, or EVD, of A
- If A is diagonalizable, it will have an EVD
- When does that happen?

Theorem 7.2.1

If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Computing EVD in Matlab

- We can use the eig command to compute the EVD
- The eigenvalues arrive as the diagonal elements of **D**
- ullet The eigenvectors are the columns of $oldsymbol{V}$
- A is singular, but has distinct eigenvalues, and because of that, it has a complete set of LI eigenvectors.
 Because of that, V is nonsingular

```
A = pi*ones(2,2);
lambda = eig(A)
lambda = 0
6.2832
```

6.2832

[V,D] = eig(A)

Computing EVD in Matlab

• We can easily check that the EVD is equivalent to A:

```
>> norm( A-V*D/V ) % /V is equivalent to *inv(V)

ans =

8.8818e-16

>>
```

What if A is not diagonalizable?

Computing EVD in Matlab

- If A is not diagonalizable, it will not have all eigenvalues distinct, and it will not have a full set of eigenvectors
- eig still works, but V^{-1} doesn't exist:
- *V* is only rank 1, indicating a single LI column
- You should get in the habit of critically evaluating output to check whether it is consistent with theory

```
[V,D] = eig([1 1;0 1])
rankV = rank(V)

V =
     1.0000    -1.0000
     0 0.0000

D =
     1     0
     0     1

rankV =
     1
```

The EVD and similarity

- There is an important relationship between A and D
- For any nonsingular matrix S, then $B = SAS^{-1}$ is said to be similar to A
- In many basic linear algebra texts, one can find a proof of this result:

```
Theorem 7.2.2 If X is an nonsingular matrix, then XAX^{-1} has the same eigenvalues as A.
```

• There is a really nice interpretation of the similarity transformation

Similarity transformations

• Consider the produce of a nonsingular matrix **X** with any vector:

$$y = Xz = z_1x_1 + \cdots + z_nx_n$$

- The x_i are the columns of X
- The columns of X are LI because it is invertible, so it is a basis for \mathbb{C}^n
- The z_i are the coordinates of y using the columns of X as a basis
- But, we could left multiply by X^{-1} and then $z = X^{-1}y$
- The elements of y are now coordinates for z using the columns of X^{-1} as a basis
- Thus: multiplication by the inverse of a matrix performs a **change of basis** into the coordinates associated with the matrix

Similarity transformations

- Now consider the EVD
- Let u = Ax, or

$$u = Ax = VDV^{-1}x$$

Premultiply by to get

$$V^{-1}u = D(V^{-1}x)$$

- This equation says that using the columns of $m{V}$ for a basis, that there is a diagonal relation between the two vectors $m{u}$ and $m{x}$
- Said another way, the EVD finds a basis for \mathbb{C}^n so that the map is diagonal:

$$x \mapsto Ax$$

In that case, each coordinate is just multiplied by its own scalar

Similarity transformations

- This can be really convenient for matrix powers; these will be an important operation for us
- Consider A^2 , and use the EVD:

$$A^{2} = (VDV^{-1})(VDV^{-1}) = VD(V^{-1}V)DV^{-1} = VD^{2}V^{-1},$$

- If we new the EVD, we could just square the diagonal elements of \boldsymbol{D} , then reconstruct \boldsymbol{A}^2
- Higher powers? Then

$$A^k = VD^kV^{-1}$$

• Raise each eigenvalue to the k-th power to get D^k !

Conditioning of EVD computation

- There are theorems around to tell us how much eigenvalues change in response to changes in the matrix
- One is the Bauer-Fike theorem:

```
Theorem 7.2.3 Let {\pmb A} \in {\mathbb C}^{n \times n} be diagonalizable, {\pmb A} = {\pmb V} {\pmb D} {\pmb V}^{-1}, with eigenvalues \lambda_1, \dots, \lambda_n. If \mu is an eigenvalue of {\pmb A} + {\pmb E} for a complex matrix {\pmb E}, then \min_{j=1,\dots,n} |\mu - \lambda_j| \le \kappa({\pmb V}) \|{\pmb E}\|, \tag{7.2.6} where \|\cdot\| and \kappa are in the 2-norm.
```

- This theorem says that small changes in the matrix can change the eigenvalues by as much as a factor of the condition number $\kappa(A)$
- If A is poorly conditioned, then this could be a significant change

Conditioning of EVD computation

- There are theorems around to tell us how much eigenvalues change in response to changes in the matrix
- One is the Bauer-Fike theorem:

```
Theorem 7.2.3 Let {\pmb A} \in {\mathbb C}^{n \times n} be diagonalizable, {\pmb A} = {\pmb V} {\pmb D} {\pmb V}^{-1}, with eigenvalues \lambda_1, \dots, \lambda_n. If \mu is an eigenvalue of {\pmb A} + {\pmb E} for a complex matrix {\pmb E}, then \min_{j=1,\dots,n} |\mu - \lambda_j| \le \kappa({\pmb V}) \|{\pmb E}\|, \tag{7.2.6} where \|\cdot\| and \kappa are in the 2-norm.
```

- Eigenvalues by as much as a factor of the condition number $\kappa(V)$
- If V is unitary, $\kappa(V) = 1$, A is normal, eigenvalue calculation robust
- If V nearly singular, $\kappa(V)\gg 1$, eigenvalues can change significantly

Conditioning of EVD computation

- Example: triangular matrix with n = 15
- The bound on the change in the condition number is around 1e7
- Test the theorem with 1e-7 size perturbations
- The max change in these few cases is about 25% to 50% of the possible change

```
lambda = (1:n)';
A = triu( ones(n,1)*lambda');
The Bauer-Fike theorem provides an upper bound
these eigenvalues.
[V,D] = eig(A);
kappa = cond(V)
kappa =
   7.1978e+07
for k = 1:3
    E = randn(n); E = 1e-7*E/norm(E);
    mu = eig(A+E):
   max_change = norm( sort(mu)-lambda, inf )
end
max_change =
    0.2407
max_change =
    0.4492
max_change =
    0.2737
```

Method of EVD computation

- The practical methods for computing the EVD are beyond the scope of this class (and book)
- It is worth pointing out that the methods often use the idea of matrix powers as part of the computation.
- ullet If the eigenvalues are distinct, then raising them to a power separates them for large powers k
- There is an easy and elegant way to accomplish this separation

Method of EVD computation

• Example: create a matrix with known eigenvalues:

```
D = diag([-6 -1 2 4 5]); matrix V all [V,R] = qr(randn(5)); triangular A = V*D*V'; % note that V' = inv(V)
```

Now do QR factorization and reverse it:

We have same eigenvalues!

The qr function takes a random 5 by 5 matrix, then returns orthogonal matrix V and upper triangular matrix R

A and D are similar

eig(A)

5.0000 4.0000

2.0000

Method of EVD computation

- It turns out that we can repeat this and not change the eigenvalues!
- This is *Francis QR iteration*

```
• For this example:
```

 Look at diagonal elements, and off diagonal elements are getting small

```
for k = 1:15
      [Q,R] = qr(A);
      A = R*Q;
end
A
```

```
-0.1336
-5.9984
                      0.0100
                                -0.0000
                                            0.0000
-0.1336
           4.9960
                     -0.0491
                                 0.0000
                                           -0.0000
0.0100
          -0.0491
                      4.0024
                                -0.0001
                                           -0.0000
-0.0000
           0.0000
                     -0.0001
                                 2.0000
                                           -0.0001
0.0000
          -0.0000
                     -0.0000
                                -0.0001
                                           -1.0000
```

Section 7.3 Singular value decomposition

Singular value decomposition

Here is another matrix factorization; it is widely used in many fields:

Theorem 7.3.1

Let $A \in \mathbb{C}^{m \times n}$. Then A can be written as

$$A = USV^*, (7.3.1)$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary and $S \in \mathbb{R}^{m \times n}$ is real and diagonal with nonnegative entries. If A is real, then so are U and V (which are then orthogonal matrices).

- This is the singular value decomposition, or SVD
- Cols of U: left singular vectors; cols of V: right singular vectors
- Diagonal elements of S are the singular values $\sigma_1, ..., \sigma_r, r = \min\{m, n\}$

Singular value decomposition

• The SVD is

$$A = USV^*$$

- $A \in \mathbb{C}^{m \times n}$ is $m \times n$, with complex entries
- Columns of (unitary) $U \in \mathbb{C}^{m \times m}$: left singular vectors
- Columns of (unitary) $V \in \mathbb{C}^{n \times n}$: right singular vectors
- Diagonal elements of $S \in \mathbb{R}^{m \times n}$ are the singular values

$$\sigma_1, \dots, \sigma_r, r = \min\{m, n\}$$

Usually the ordering of the singular values is

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r \ge 0$$

- σ_1 is the principal singular value
- u_1 and v_1 are the principal singular vectors

Singular value decomposition

- What about real-valued A?
- Consider the case with $A \in \mathbb{R}^{m \times n}$

$$A = USV^T$$

- Columns of orthogonal $U \in \mathbb{R}^{m \times m}$: left singular vectors
- Columns of unitary $V \in \mathbb{R}^{n \times n}$: right singular vectors
- Diagonal elements of $S \in \mathbb{R}^{m \times n}$ are the singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \geq 0$, $r = \min\{m, n\}$
- This is still an SVD because it satisfies the requirements:
 - o the first and last matrices are orthogonal,
 - o and the middle matrix is diagonal with non negative entries

Interpreting the SVD

• Let's rewrite the SVD

$$A = USV^*$$

• As follows (postmultiply by V):

$$AV = US$$

• Considering one column at a time, we have $Av_k = \sigma_k u_k$, k = 1, 2, ..., r, $r = \min\{m, n\}$

• This means that each right singular vector v_k is mapped by A to a scalar multiple (σ_k) of the corresponding left singular vector u_k

Interpreting the SVD: example

• Compute an SVD:

```
>> A = [2 1;3 4; 5 6]
A =
>> [U,S,V] = svd(A)
  -0.2164 0.9497 -0.2265
  -0.5258 -0.3088 -0.7926
  -0.8226 -0.0524 0.5661
S =
   9.4939 0
          0.9303
                0
V =
  -0.6450 0.7642
  -0.7642
         -0.6450
```

• Compare the first column of AV with the first column of U: this should be just σ_1

```
>> AV = A*V
AV =

-2.0541     0.8834

-4.9917     -0.2872

-7.8101     -0.0488

>> AV(:,1)./U(:,1)

ans =

9.4939

9.4939

9.4939

>> S(1,1)

ans =

9.4939
```

Interpreting the SVD: visualizing it

- The SVD can be visualized for 3x3 real-valued matrices
- Unit vectors in the directions of the columns of V (left) are distorted by multiplication by A (right) to

Contrasting the EVD and the SVD

Table 7.1. Differences between the EVD and the SVD.

EVD

most square matrices

 $Ax_k = \lambda_k x_k$

same basis for domain and range of A
may have poor conditioning

SVD

all rectangular and square matrices $Av_k = \sigma_k u_k$

two orthogonal bases perfectly conditioned

Connection between the SVD and 2-norm (Thrm 7.3.2)

- Let $A \in \mathbb{C}^{m \times n}$ have an SVD with $A = USV^*$ and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \geq 0, r = \min\{m, n\}$
- Then:
 - 1. The 2-norm satisfies $|A|_2 = \sigma_1$.
 - 2. The rank of A is the number of nonzero singular values.
 - 3. The condition number satisfies

$$\kappa(\mathbf{A}) = ||\mathbf{A}||_2 ||\mathbf{A}^+||_2 = \sigma_1/\sigma_r.$$

Division by zero here implies that A does not have full rank. Recall that $A^+ = (A^T A)^{-1} A^T$ is the pseudoinverse (chapter 3).

SVD example 7.3.2: try it

- ➤ A=vander(1:5); % Vandermonde matrix
- A = A(:,1:4) % 5 by 4 now
- \triangleright [U,S,V] = svd(A);
- ➤norm(U'*U-eye(5)) % check U is orthogonal
- ➤norm(V'*V-eye(4)) % check V is orthogonal
- ➤ sigma = diag(S)
- \triangleright [norm(A) sigma(1)] % Thrm 7.3.2, no. 1
- \triangleright [cond(A) sigma(1)/sigma(end)] % Thrm 7.3.2, no. 3

Connections between SVD and EVD

- Let $A = USV^*$
- Create the square hermitian matrix $B = A^*A$
- Then

$$B = (VS^*U^*)(USV^*) = VS^*SV^* = V(S^TS)V^{-1}.$$

- S^TS is a diagonal $n \times n$ matrix
- There are two cases:

$$S^{T}S = \begin{bmatrix} \sigma_{1}^{2} & & & \\ & \ddots & \\ & & \sigma_{n}^{2} \end{bmatrix}, \qquad S^{T}S = \begin{bmatrix} \sigma_{1}^{2} & & \\ & \ddots & \\ & & \sigma_{m}^{2} & \\ & & & 0 \end{bmatrix},$$

• The lower right zero is $n - m \times n - m$

Connections between SVD and EVD

• There are two cases:

$$\underline{m \geq n:} \qquad \underline{m < n:} \\ S^T S = \begin{bmatrix} \sigma_1^2 & & & \\ & \ddots & \\ & & \sigma_n^2 \end{bmatrix}, \qquad S^T S = \begin{bmatrix} \sigma_1^2 & & & \\ & \ddots & & \\ & & \sigma_m^2 & \\ & & & & 0 \end{bmatrix},$$

- The squares of the singular values of A are the eigenvalues of $B = A^*A!$
- Conversely, the EVD of ${\it B}$ yields the singular values of ${\it A}$ and the right singular vectors of ${\it A}$
- We could get the left singular vectors from AV = US by doing one column at a time

Connections between SVD and EVD

• We could also create

which is
$$m + n \times m + n$$

$$C = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix}.$$

for $A m \times n$

- If σ is a singular value of B, the σ and $-\sigma$ are eigenvalues of C
- ullet The associated eigenvector immediately gives a left and right singular vector of ${\it A}$
- This connection is implicitly exploited by software to compute the SVD

Thin form of the SVD

- Like the QR factorization, we can have both full and thin versions of the factorization
- Let $A = USV^*$ where A is $m \times n$ with m > n
- Use svd(A,0) to get this in Matlab

Section 7.4 Symmetry and definiteness

Symmetry and Definiteness

- When we had real matrices A, we found in chapter 2 that there could be specializations of the factorizations there: e.g., $A = LDL^T$, where D is diagonal and L is lower triangular
- We now study the analogous hermitian case for $A^* = A$
- Let $A = USV^*$ where A is $n \times n$
- Since S is real and square,

$$A^* = VS^*U^* = VSU^*$$

• In this case A is diagonalizable with

$$A = VDV^{-1} = VDV^*$$

- Here V is unitary, and D is diagonal and real
- This means that a hermitian matrix has a complete set of orthonormal eigenvectors (a unitary diagonalization), with real eigenvalues

Symmetry and Definiteness: example

Example 7.4.1

The following matrix is not hermitian.

$$A = [0 \ 2; -2 \ 0]$$

so it is normal.

```
ans = 2.2204e-16
```

The eigenvalues are pure imaginary.

```
lambda = diag(D)
```

```
lambda =
0.0000 + 2.0000i
0.0000 - 2.0000i
```

The singular values are

```
ans = 2 2
```

Symmetry and Definiteness

- Now we have a theorem that says that the condition number for the eigenvalues is bounded above by $\kappa(V)$
- Here V is the eigenvector matrix
- But, it is unitary (or orthogonal), which means that $\kappa = 1!$
- So, our last theorem implies that the condition number for a Hermitian or normal matrix is one, which is as good as it gets!
- In that case, that is for Hermitian or normal matrices, the eigenvalues can be changed by no more than the norm of the perturbation of the matrix!
- Can we verify this?

Symmetry and Definiteness: example

Example 7.4.2

We construct a real symmetric matrix with known eigenvalues by using the QR factorization to produce a random orthogonal set of eigenvectors.

```
n = 30;
lambda = (1:n)';
D = diag(lambda);
[V,R] = qr(randn(n));
                         % get a random orthogonal V
A = V*D*V':
```

The orthonormal columns of V become the associated eigenvectors for the eigenvalues in matrix D, which are the same for A. Why?

Eigenvalues are 1,2,...,30 and put on diagonal of matrix D

> The qr function takes a random 30 by 30 matrix here, then returns an orthogonal matrix V and upper triangular matrix R

Symmetry and Definiteness: example

Example 7.4.2

```
The condition number of these eigenvalues is one. Thus bounded by the norm of the perturbation to A.
```

```
for k = 1:3
    E = randn(n); E = 1e-4*E/norm(E);
    mu = sort(eig(A+E));
    max_change = norm(mu-lambda,inf)
end
```

Create perturbation matrix E that is random and has norm 1e-4

max_change = 2.5564e-05 max_change = 2.0501e-05 max_change =

2.3712e-05

Symmetry and Definiteness

- This is great, but it is not quite an SVD
- Why? The sign of the diagonal elements could be anything.
- Can we make it into an SVD? Yes!
- The trouble is with D; lets rewrite it as a product of two diagonal matrices: one is T with the sign (d_{ii}) on the diagonal; the other is |D|, which has $|d_{ii}|$ on the diagonal. We still have

$$D = T|D|$$

Substitute to get

$$A = VDV^* = VT|D|V^* = (VT)|D|(V^*)$$

• This is an SVD, because the diagonal matrix has nonnegative entries and the left and right matrices are unitary

Symmetry and definiteness

- Recall the quadratic form x^*Ax where A is $n \times n$ and x is $n \times 1$.
- For real entries, $x^T A x$ is the quadratic form of interest
- For n=2, we can easily write it out:

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = a_{11}x_1^2 + (a_{12} + a_{21})x_1x_2 + a_{22}x_2^2$$

- $oldsymbol{\cdot}$ For some matrices, this quantity remains positive for any nonzero vector $oldsymbol{x}$
- For example, if $a_{11}>0$, $a_{22}>0$, and $a_{21}=-a_{12}$, then the quadratic form reduces to $a_{11}x_1^2+a_{22}x_2^2>0$ for nonzero \boldsymbol{x}
- This matrix is called positive definite
- If the matrix were symmetric and this were true, then it is symmetric positive definite or SPD

Symmetry and definiteness

- The SPD matrix is important: it has all positive eigenvalues
- Complex case: a matrix is Hermitian positive definite (HPD) when

$$A = A^*$$
 and $x^*Ax > 0$

for any nonzero compatible x

• It turns out that we can prove some equivalent statements:

Theorem 7.4.3

If $A^* = A$, then the following statements are equivalent.

- 1. *A* is HPD.
- 2. The eigenvalues of A are positive numbers.
- 3. Any unitary EVD of A is also an SVD of A.
- This means, e.g., that all positive eigenvalues implies HPD (or SPD)

- In your linear algebra class, you may have discussed the Rayleigh quotient
- For A $n \times n$ and x $n \times 1$ with complex entries, the Rayleigh quotient is

$$R_A(x) = \frac{x^*Ax}{x^*x}$$

- In the special case that x is an eigenvector, say v, then $Av = \lambda v$, and substitution easily gives that $R_A(v) = \lambda$
- We can conclude that: the Rayleigh quotient maps an eigenvector into its associated eigenvalue

• Consider the Hermitian case $A = A^*$ and the Rayleigh quotient

$$R_A(x) = \frac{x^*Ax}{x^*x}$$

- Put in a vector that is close to an eigenvector: $\mathbf{x} = \mathbf{v} + \epsilon \mathbf{z}$ for $\epsilon \to 0$
- Using a multidimensional Taylor expansion gives that $R_A(\boldsymbol{v} + \epsilon \boldsymbol{z}) = R_A(\boldsymbol{v}) + 0 + O(\epsilon^2) = \lambda + O(\epsilon^2)$
- This happens because, for an eigenvector, $\nabla R_A(v) = \mathbf{0}$
- This means that if the input vector is within $O(\epsilon)$ of an eigenvector then the Rayleigh quotient is within $O(\epsilon^2)$ of the eigenvalue: R_A does a good job of approximating the eigenvalue! Let's explore this...

Example 7.4.3

```
We construct a symmetric matrix with a known EVD.
n = 20;
lambda = (1:n)'; D = diag(lambda);
[V,~] = qr(randn(n)); % get a random orthogonal V
A = V*D*V';
```

The Rayleigh quotient of an eigenvector is its eigenvalue.

```
R = @(x) (x'*A*x)/(x'*x);
format long, R(V(:,7))
```

```
ans = 7.000000000000001
```

Example 7.4.3

Now let's try different vectors that are closer and closer to an eigenvector

```
delta = 1./10.^(1:4)';
quotient = 0*delta;
for k = 1:4
    e = randn(n,1); e = delta(k)*e/norm(e);
    x = V(:,7)+e;
    quotient(k) = R(x);
end
table(delta, quotient)
```

ans =
delta quotient
----- 7.05738940427937
0.01 7.00066684894918
0.001 7.00000278235035
0.0001 7.00000005557751

Every time the input vector gets a factor of 10 closer to the eigenvector, there is a factor of 100 improvement in the eigenvalue approximation (another two zeros after the decimal point)

Section 7.5 Dimension reduction

- We now return to the SVD
- We want to use it to approximate the information in a matrix with much less storage, or many less numbers
- We will see a few examples of this
- Consider matrix $A \in \mathbb{R}^{m \times n}$ with m > n (for now)
- The thin SVD is then

• We truncated the n+1 to m columns of U and rows of S to get \widehat{U} , \widehat{S}

- Now let's rewrite the thin SVD carefully
- Note that $\widehat{m{U}}$ has orthonormal columns $m{u}_i$
- $m{V}$ has orthonormal rows $m{v}_i^T$

$$A = \widehat{U}\widehat{S}V^T = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & \vdots & \ddots & \\ & v_n^T \end{bmatrix}$$

$$m \times n \text{ here}$$

$$= \begin{bmatrix} \sigma_1 u_1 & \cdots & \sigma_n u_n \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_n^T \end{bmatrix}$$

$$= \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T = \sum_{i=1}^r \sigma_i u_i v_i^T,$$

$$u_i v_i^T \text{ is an outer product here, with each forming an } m \times n \text{ matrix}$$

• Each of those outer products is weighed with the singular value, then adding them *all* up recovers the original matrix

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T,$$

- But, it so happens that in many matrices, there are only a few singular values that are sizable, and the rest may be quite small.
- By convention we ordered the singular values:

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r \ge 0$$

- So, if the largest few singular values are say 1,2, ..., k, then maybe we need to keep only the first k terms to get a good approximation to the content of A!
- Let's make this more precise.

- We can think of the process of keeping more singular values as generating a sequence of matrices for increasing k, with $1 \le k \le r$
- ullet Then, we only do a partial sum using the first k terms:

$$A_k = \sum_{i=1}^n \sigma_i u_i v_i^T = U_k S_k V_k^T.$$

- \boldsymbol{U}_k and \boldsymbol{V}_k are the first k columns of \boldsymbol{U} and \boldsymbol{V}
- S_k is the upper left $k \times k$ submatrix of S
- Because each $u_iv_i^T$ is a matrix with unit norm, the overall size of each matrix added is given by the singular value
- Because of this, there are many cases where stopping at a small value of k relative to r will give a v

- ullet What do we know about the $oldsymbol{A}_k$?
- The rank of a sum of matrices is less than or equal to the sum of the ranks of each: thus, the rank of A_k is at most k
- And, it turns out that A_k is the best rank k approximation to A!

Theorem 7.5.1

Suppose A has rank r and let $A = USV^T$ be an SVD. Let A_k be as in (7.5.2) for $1 \le k < r$. Then $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T = U_k S_k V_k^T.$

1.
$$||A - A_k||_2 = \sigma_{k+1}, \qquad k = 1, \dots, r-1.$$

2. If the rank of B is k or less, then
$$||A - B||_2 \ge \sigma_{k+1}$$
.

- ullet For many matrices, k need not be very large to get a good approximation to the original matrix
- Example 7.5.1 gives an example with text
- Demo of that example and/or others...

```
tobj = text(0,0,'Hello world','fontsize',44);
saveas(gcf,'hello.png')
A = imread('hello.png');
A = double(rgb2gray(A));
imagesc(A), colormap gray
[m,n] = size(A)
```

```
m = 300
n = 675
```



```
[U,S,V] = svd(A);
sigma = diag(S);
semilogy(sigma,'.')
r = find(sigma/sigma(1) > 10*eps,1,'last')
```

```
r = 56
```


Example 7.5.1

rank = 6 rank = 8

Hello world Hello world

Look how few singular values are needed to get a decent looking image! Less than 5% of the original storage to get the rank 8 approximation!

- These low rank approximations can be used to get at the essence of data
- One measure of how much content is contained in each added rank is the fractional "energy" given by

$$\tau_k = \frac{\sum_{i=1}^k \sigma_i^2}{\sum_{i=1}^r \sigma_i^2}, \quad k = 1, \dots, r.$$

- Consider a different matrix of information now: Example 7.5.2
- Here we look at the voting pattern for the Senate in the 111th session of the US Congress

Example 7.5.2

If we visualize the votes (white is "yea," black is "nay," and gray is anything else), we can see great similarity between many rows, reflecting party unity.

```
imagesc(A)
colormap gray
```

Votes in 111th U.S. Senate


```
[U,S,V] = svd(A);
sigma = diag(S);
tau = cumsum(sigma.^2) / sum(sigma.^2);
plot(tau(1:16),'.')
```


- The first two singular values account for 75% of the energy
- The remaining ones each account for relatively little of the energy
- Maybe just those first two are enough to capture the essence of the data?

```
subplot(211), plot(U(:,1),'.')
subplot(212), plot(V(:,1),'.')
```


- Note the different sizes of the two vectors
- Most of the values in these vectors are at ± C: there is not much in the middle

- Projecting each senator's votes in first two V coordinates, the right singular vectors: (1) is partisanship; (2) is bipartisanship
- Those coordinates are then plotted against each other
- Red: Republican
- Blue: Democrat
- · Black: Independent
- The scatter plot suggests that there is a clear separation between parties!