Claims

5

15

20

25

- 1. A process for increasing the molecular weight and/or for the modification of a polycondensate, which process comprises adding to the polycondensate
 - a) at least one bis-acyllactam;
 - b1) at least one phosphite, phosphinate or phosphonate; or
 - b2) at least one benzofuran-2-one type compound or
 - b3) at least one phosphite, phosphinate or phosphonate and one benzofuran-2-one type compound
- and processing the mixture in the melt. 10
 - 2. A process according to claim 1 wherein the polycondensate is an aliphatic or aromatic polyester, an aliphatic or aromatic polyamide or polycarbonate, or a blend or copolymer thereof.
 - 3. A process according to claim 1 wherein the polycondensate is polyethylene therephthalate (PET), polybutylene therephthalate (PBT), polyethylenenaphthenate (PEN), a copolyester, PA 6, PA 6,6, a polycarbonate containing bisphenol A, bisphenol Z or bisphenol F linked via carbonate groups.
 - 4. A process according to claim 1 wherein the polycondensate is PET or PBT or a copolymer of PET or PBT.
 - 5. A process according to claim 1 wherein the bis-acyllactam is of formula la or lb

$$(CH_2)n$$
 (Ia) , $(CH_2)n$ (Ib)

wherein A is C1-C18alkylen, C2-C18alkylene interrupted by at least one oxygen atom, C1-C₁₈alkenylene, phenylene, phenylene-C₁-C₁₈alkylene, C₁-C₁₈alkylene-phenylene, or C₁-C₁₈alkylene-phenylene-C₁-C₁₈alkylene;

30 m is 0 or 1 and n is a number from 3 to 12.

6. A process according to claim 1 wherein the phosphonate is of formula II

(II), wherein

 R_{103} is H, C_1 - C_{20} alkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl or naphthyl,

 R_{104} is hydrogen, C_1 - C_{20} alkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl or naphthyl; or M^{r+}/r ,

M^{r+} is an r-valent metal cation or the ammonium ion,

n is 0, 1, 2, 3, 4, 5 or 6, and

r is 1, 2, 3 or 4;

10 Q is hydrogen, -X-C(O)-OR₁₀₇, or a radical

$$R_{101}$$
 OR_{106} ,

 R_{101} is isopropyl, tert-butyl, cyclohexyl, or cyclohexyl which is substituted by 1-3 C_1 - C_4 alkyl groups,

R₁₀₂ is hydrogen, C₁-C₄alkyl, cyclohexyl, or cyclohexyl which is substituted by 1-3 C₁-C₄alkyl groups,

 R_{105} is H, C_1 - C_{18} alkyl, OH, halogen or C_3 - C_7 cycloalkyl;

R₁₀₆ is H, methyl, trimethylsilyl, benzyl, phenyl, sulfonyl or C₁-C₁₈alkyl;

 R_{107} is H, $C_1\hbox{-}C_{10}alkyl$ or $C_3\hbox{-}C_7cycloalkyl; and$

X is phenylene, C_1 - C_4 alkyl group-substituted phenylene or cyclohexylene.

20

15

7. A process according to claim 6 wherein the phosphonate is of formula IIa

$$R_{101}$$
 $(CH_2)_n$
 P
 OR_{104} (IIa)

wherein

5

10

15

R₁₀₁ is H, isopropyl, tert-butyl, cyclohexyl, or cyclohexyl which is substituted by 1-3 C₁-C₄alkyl groups,

 R_{102} is hydrogen, C_1 - C_4 alkyl, cyclohexyl, or cyclohexyl which is substituted by 1-3 C_1 - C_4 alkyl groups,

R₁₀₃ is C₁-C₂₀alkyl, unsubstituted or C₁-C₄alkyl-substituted phenyl or naphthyl,

 R_{104} is hydrogen, C_1 - C_{20} alkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl or naphthyl; or M^{r+} / r:

 M^{r} is an r-valent metal cation, r is 1, 2, 3 or 4; and n is 1, 2, 3, 4, 5 or 6.

8. A process according to claim 1 wherein the phosphonate is of formula III, IV, V, VI or VII

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_2
 H_2
 H_3C
 CH_3
 CH

$$OR_{101}$$
 (VI), OR_{101} (VII),

wherein the R_{101} are each independently of one another hydrogen or $M^{\mbox{\tiny PL}}$ / r.;

5

9. A process according to claim 1 wherein the phosphinates are of the formula XX

wherein

10

 R_{201} is hydrogen, C_1 - C_{20} alkyl, phenyl or C_1 - C_4 alkyl substituted phenyl; biphenyl, naphthyl, -CH₂-O- C_1 - C_{20} alkyl or -CH₂-S- C_1 - C_{20} alkyl,

 R_{202} is C_1 - C_{20} alkyl, phenyl or C_1 - C_4 alkyl substituted phenyl; biphenyl, naphthyl, -CH₂-O- C_1 - C_{20} alkyl or -CH₂-S- C_1 - C_{20} alkyl, or R_1 and R_2 together are a radical of the formula XXI

15

$$R_{\overline{203}}CH-O-CH-O-CH-R_{205}$$
 (XXI)

wherein

5

10

15

20

 R_{203} , R_{204} and R_{205} independently of each other are C_1 - C_{20} alkyl, phenyl or C_1 - C_4 alkyl substituted phenyl;

 R_{206} is hydrogen, C_1 - C_{18} alkyl or the ion of an alkali metal or the ammonium ion or R_{206} is a direct bond, which forms together with R_{202} an aliphatic or aromatic cyclic ester.

10. A process according to claim 1 wherein the benzofuran-2-one type compound is of formula X

$$\begin{bmatrix} R_2 & R_6 \\ R_3 & R_4 \end{bmatrix}$$
 (X)

wherein, if n = 1,

R₁ is naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, each of which is unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, hydroxy, halogen, amino, C₁-C₄alkylamino, phenylamino or di(C₁-C₄-alkyl)amino, or R₁ is a radical of formula XI

$$R_7$$
 R_8
 R_{10}
 R_{11}
 R_{11}

and,

10

15

if n = 2,

5 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or $-R_{12}$ -X- R_{13} -,

 R_2 , R_3 , R_4 and R_5 are each independently of one another hydrogen, chloro, hydroxy, C_1 - C_{25} -alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 -alkyl)amino, C_1 - C_2 5alkanoyloxy, C_1 - C_2 5alkanoyloxy; C_3 - C_2 5alkanoyloxy;

 C_3 - C_{25} alkanoyloxy which is interrupted by oxygen, sulfur or $N - R_{14}$; C_6 - C_9 cycloalkylcar-

bonyloxy, benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; or R_2 and R_3 , or R_3 and R_4 , or R_4 and R_5 , together with the linking carbon atoms, form a benzene ring, R_4 is additionally -(CH_2)_p- COR_{15} or -(CH_2)_qOH or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of formula XII

$$R_{2}$$

$$R_{16}$$

$$R_{16}$$

$$R_{17}$$

$$R_{17}$$

$$R_{18}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{11}$$

$$R_{11}$$

$$R_{12}$$

$$R_{13}$$

$$R_{14}$$

20 wherein R_1 is as defined above for n = 1, R_6 is hydrogen or a radical of formula XIII

5

10

15

$$R_2$$
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5

wherein R_4 is not a radical of formula XII, and R_1 is as defined above for n = 1, R₇, R₈, R₉, R₁₀ and R₁₁ are each independently of one another hydrogen, halogen, hydroxy, C₁-C₂₅alkyl; C₂-C₂₅alkyl which is interrupted by oxygen, sulfur or N-R₁₄; C₁-C₂₅alkoxy; C₂-C₂₅alkoxy which is interrupted by oxygen, sulfur or N-R₁₄; C₁-C₂₅alkylthio, C₃-C₂₅alkenyl, C₃-C₂₅alkenyloxy, C₃-C₂₅alkynyl, C₃-C₂₅alkynyloxy, C₇-C₉phenylalkyl, C₇-C₉phenylalkoxy, unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl-substituted phenoxy; unsubstituted or C₁-C₄alkyl-substituted C₅-C₀cycloalkyl; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkoxy; C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C_1 - C_{25} alkanoyl; C_3 - C_{25} alkanoyl which is interrupted by oxygen, sulfur or $N - R_{14}$; C_{1} - C_{25} alkanoyloxy; C_{3} - C_{25} alkanoyloxy which is interrupted by oxygen, sulfur or $N - R_{14}$; C₁-C₂₅alkanoylamino, C₃-C₂₅alkenoyl; C₃-C₂₅alkenoyl which is interrupted by oxygen, sulfur or N-R₁₄; C₃-C₂₅alkenoyloxy; C₃-C₂₅alkenoyloxy which is interrupted by oxygen, sulfur $N-R_{14}$; C_6-C_9 cycloalkylcarbonyl, C_6-C_9 cycloalkylcarbonyloxy, benzoyl or C₁-C₁₂alkyl-substituted benzoyl; benzoyloxy or C₁-C₁₂alkyl-substituted benzoyloxy;

R₁₁, together with the linking carbon atoms, form a benzene ring,

 R_{12} and R_{13} are each independently of the other unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene,

R₁₄ is hydrogen or C₁-C₈alkyl,

$$R_{15}$$
 is hydroxy, $\left[--0^{-1} \frac{1}{r} M^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{25} ,

- R₁₆ and R₁₇ are each independently of the other hydrogen, CF₃, C₁-C₁₂alkyl or phenyl, or R₁₆ and R₁₇, together with the linking carbon atom, are a C₅-C₈cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C₁-C₄alkyl;
 - R_{18} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl or phenyl, R_{20} is hydrogen or C_1 - C_4 alkyl,
- 10 R₂₁ is hydrogen, unsubstituted or C₁-C₄alkyl-substituted phenyl; C₁-C₂₅alkyl; C₂-C₂₅alkyl which is interrupted by oxygen, sulfur or $N-R_{14}$; C₇-C₉phenylalkyl which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is interrupted by oxygen, sulfur or $N-R_{14}$ and which is unsubstituted or substituted at the
- phenyl moiety by 1 to 3 C₁-C₄alkyl, or R₂₀ and R₂₁, together with the linking carbon atoms, form a C₅-C₁₂cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C₁-C₄alkyl; R₂₂ is hydrogen or C₁-C₄alkyl,

 R_{23} is hydrogen, C_1 - C_{25} alkanoyl, C_3 - C_{25} alkanoyl; C_3 - C_{25} alkanoyl which is interrupted by oxygen, sulfur or $N-R_{14}$; C_2 - C_{25} alkanoyl which is substituted by a di(C_1 - C_6 alkyl)phosphonate group; C_6 - C_9 cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C_1 - C_{12} alkyl-substituted

20 benzoyl;
$$C = C_sH_{2s}$$
 $C = C_sH_{2s}$ $C = C_sH_{2s}$

 R_{24} and R_{25} are each independently of the other hydrogen or $C_{1}\text{-}C_{18}\text{alkyl}\text{,}$

R₂₆ is hydrogen or C₁-C₈alkyl,

R₂₇ is a direct bond, C₁-C₁₈alkylene; C₂-C₁₈alkylene which is interrupted by oxygen, sulfur or

5 N-R₁₄; C₂-C₁₈alkenylene, C₂-C₂₀alkylidene, C₇-C₂₀phenylalkylidene, C₅-C₈cyclo-

alkylene, C₇-C₈bicycloalkylene, unsubstituted or C₁-C₄alkyl-substituted phenylene,

$$R_{28}$$
 is hydroxy, $\left[-0^{-\frac{1}{r}M}^{r+}\right]$, C_{1} - C_{18} alkoxy or $-N$
 R_{26} ,

$$R_{29}$$
 is oxygen, -NH- or $\begin{array}{c} O \\ II \\ N-C-NH-R_{30} \end{array}$,

10 R₃₀ is C₁-C₁₈alkyl or phenyl, R₃₁ is hydrogen or C₁-C₁₈alkyl, M is an r-valent metal cation.

X is a direct bond, oxygen, sulfur or -NR₃₁-,

n is 1 or 2,

15 p is 0, 1 or 2,

q is 1, 2, 3, 4, 5 or 6,

r is 1, 2 or 3, and

s is 0, 1 or 2.

20 11. A process according to claim 10 wherein the benzofuran-2-one type compound is of formula XIV

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{6}$$

$$R_{10}$$

$$R_{11}$$

$$R_{11}$$

$$R_{11}$$

wherein

R₂ is hydrogen or C₁-C₆alkyl,

5 R₃ is hydrogen,

R₄ is hydrogen or C₁-C₆alkyl,

R₅ is hydrogen,

R₇, R₈, R₉, R₁₀ and R₁₁ are each independently of one another hydrogen, C₁-C₄alkyl, C₁-C₄-

10 R₁₁ are hydrogen,

R₂₀, R₂₁ and R₂₃ are hydrogen, and

R₂₃ is C₂-C₄alkanoyl.

12. A process according to claim 11 wherein the benzofuran-2-one type compound is of formula XIVa or XIVb

or a mixture or blend of the two compounds of formulae XIVa and XIVb.

13. A process according to claim 1 wherein the benzofuran-2-one type compound is of formula XV

$$R_{301}$$
 R_{302} R_{303} R_{304} R_{304} R_{304}

5 wherein

15

25

 R_{301} and R_{302} are each independently of one another hydrogen or C_1 - C_8 alkyl, R_{303} and R_{304} are each independently of one another C_1 - C_{12} alkyl, and R_{305} is C_1 - C_7 alkyl.

- 10 14. A process according to claim 1 wherein the bis-acyllactam is used in an amount of 0.01 to 5 % by weight based on the weight of the polycondensate.
 - 15. A process according to claim 1 wherein the phosphite, phosphinate or phosphonate is used in an amount of 0.01 to 5 % by weight based on the weight of the polycondensate.
 - 16. A process according to claim 1 wherein the benzofuran-2-one type compound is used in an amount of 0.01 to 5 % by weight based on the weight of the polycondensate.
- 17. A process according to claim 1 wherein the ratio of the bis-acyllactam to the phosphite, phosphinate, phosphonate or to the benzofuran-2-one type compound or the sum of all is from 1:10 to 5:1.
 - 18. A process according to claim 1 wherein the maximum mass-temperature of the melt is from 170° to 320° C.
 - 19. A process according to claim 1 wherein an oxazoline compound is additionally present.
 - 20. A composition comprising
 - a) a polycondensate;
- 30 b) at least one bis-acyllactam;

WO 2005/030834 PCT/EP2004/052171

- 63 -

- c1) at least one phosphite, phosphinate or phosphonate; or
- c2) at least one benzofuran-2-one type compound or
- c3) at least one phosphite, phosphinate or phosphonate and one benzofuran-2-one type compound.

5

10

- 21. A polycondensate obtainable by a process according to clam 1.
- 22. Use of a mixture of
 - a) at least one bis-acyllactam;
 - b1) at least one phosphite, phosphinate or phosphonate; or
 - b2) at least one benzofuran-2-one type compound or
 - b3) at least one phosphite, phosphinate or phosphonate and one benzofuran-2-one type compound

for increasing the molecular weight, for the modification and/or for reducing yellowing of a polycondensate.