AN 2 - COMPLÉMENTS SUR LES SÉRIES NUMÉRIQUES

Dans ce chapitre les suites considérées sont à valeurs dans $\mathbb R$ ou $\mathbb C$.

1 Séries absolument convergentes

Définition 1

On dit que la série $\sum u_n$ converge absolument si la série $\sum |u_n|$ converge.

Proposition 1

Une série $\sum u_n$ à valeurs complexes converge absolument si, et seulement si les deux séries $\sum \text{Re}(u_n)$ et $\sum \text{Im}(u_n)$ convergent absolument.

Théorème 1

Toute série absolument convergente est convergente, et on a la majoration :

$$\forall n \in \mathbb{N}, \qquad \left| \sum_{k=n}^{+\infty} u_k \right| \le \sum_{k=n}^{+\infty} |u_k|$$

2 Critères de convergence

2.1 Comparaison série-intégrale

Théorème 2

Soit f une fonction définie sur $[n_0, +\infty[$, $n_0 \in \mathbb{N}$, **positive**, localement intégrable et décroissante.

L'intégrale
$$\int_{n_0}^{+\infty} f(t) dt$$
 et la série $\sum_{n \geq n_0} f(n)$ sont de même nature.

Proposition 2

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ localement intégrable et décroissante sur \mathbb{R}^+ telle que $\sum f(n)$ soit convergente. Pour $p \in \mathbb{N}$, on note S_p (resp. R_p) la somme partielle (resp. le reste) d'ordre p de la série de terme général f(n). Alors :

•
$$\int_{p+1}^{+\infty} f(t) dt \le R_p \le \int_p^{+\infty} f(t) dt$$
.

• En notant $\sigma_n = S_n + \int_{n+1}^{+\infty} f(t) dt$, on a σ_n est une valeur approchée de la somme S de la série qui vérifie : $0 \le S - \sigma_n \le \int_n^{n+1} f(t) dt$.

2.2 Comparaison à une série positive

Proposition 3

Si v_n est le terme général **positif** d'une série convergente, et si $u_n = O(v_n)$, alors $\sum u_n$ converge absolument.

Remarque 1

Si v_n est le terme général positif d'une série convergente, on a également :

- $u_n = o(v_n) \Rightarrow \sum u_n$ absolument convergente;
- $|u_n| \sim v_n \Rightarrow \sum u_n$ absolument convergente.

2.3 Critère de d'Alembert

Proposition 4

Soit u_n le terme général d'une série à termes non nuls, tels que :

$$\lim_{n \to +\infty} \frac{|u_{n+1}|}{|u_n|} = L \in \mathbb{R}$$

Remarque 2

- Si la série est à termes positifs, le cas L>1 permet de conclure à sa divergence; dans le cas contraire, on ne peut pas conclure.
- le cas L=1 ne permet en aucun cas de conclure.

2.4Produit de Cauchy

Soient $\sum_{n=1}^{\infty} u_n$ et $\sum_{n=1}^{\infty} v_n$ deux séries numériques. Leur *produit de Cauchy* est la série $\sum_{n=1}^{\infty} w_n$ de terme général :

$$w_n = \sum_{k=0}^{n} u_k v_{n-k} = \sum_{p+q=n} u_p v_q$$

Proposition 5

Si les séries $\sum u_n$ et $\sum v_n$ convergent absolument, alors leur produit de Cauchy $\sum w_n$ converge absolument et on a :

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

3 Développement décimal d'un réel

Théorème-Définition 1

Pour tout $x \in \mathbb{R}^+$, il existe une unique suite d'entiers naturels (x_n) telle que :

$$\forall n \in \mathbb{N}, \qquad \sum_{k=0}^{n} x_k 10^{-k} \le x \le \sum_{k=0}^{n} x_k 10^{-k} + 10^{-n}$$

avec de plus, la suite (x_n) à valeurs dans [0, 9] pour $n \ge 1$, et qui ne stationne pas sur 9.

- \bullet La suite (x_n) est appelée développement décimal propre de x.
- Les valeurs $\sum_{k=0}^{n} x_k 10^{-k}$ et $\sum_{k=0}^{n} x_k 10^{-k} + 10^{-n}$ sont les approximations décimales à l'ordre n de xpar défaut et par excès

Proposition 6

Soit $x \in \mathbb{R}^+$ de développement décimal (x_n) . La série $\sum_{n\geq 0} x_n 10^{-n}$ converge vers x.

Sa limite se note $x = x_0, x_1x_2x_3...$ que l'on appelle écriture décimale illimitée de x.

Remarque 3

- $x_0 = E(x)$, et $\forall n \in \mathbb{N}^*, x_n = E(10^n x) 10.E(10^{n-1} x)$.
- Pour obtenir le développement décimal de $x \in \mathbb{R}^-$, on se ramène au développement de -x.
- La suite $(x_n)_{n\geq 1}$ s'appelle la suite des décimales de x.
- Il existe des développements décimaux impropres : ceux où l'on n'impose pas la condition de non stationnarité sur 9. Dans ce cas, il y a ambigüité sur la description par le développement décimal. Par exemple : 1 = 1,0000...=0,9999...

Définition 3

Les nombres décimaux sont les réels dont la suite des décimales stationne sur 0.

Proposition 7

Les nombres rationnels (définis comme les quotients d'entiers $\frac{p}{q}$ avec $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$) sont les nombres dont le développement décimal est périodique à partir d'un certain rang.