Prova scritta di Sistemi Dinamici

Dicembre 2023

Esercizio 1: risposta nel tempo

Dato il sistema lineare e tempo-invariante con funzione di trasferimento

$$G(s) = \frac{1}{s + 1/2} \tag{1}$$

e l'ingresso u(t) definito da

$$u(t) = \begin{cases} 0 & t \le 0\\ 2 & t \in [0, 1)\\ 5 & t \in (1, 3]\\ 5 - \frac{5}{3}(t - 3) & t \in [3, 6]\\ 0 & t \ge 6 \end{cases}$$
 (2)

determinare:

- 1. L'espressione di $u(t) = \sum_{i=1}^{n} u_i(t)$ con n opportuno in modo che ciascun segnale $u_i(t)$ abbia una trasformata di Laplace nota e tracciare gli andamenti di $u_i(t)$ per $i = 1, \ldots, n$.
- 2. Determinare la trasformata di Laplace $U_i(s)$ di ciascun segnale $u_i(t)$, per i = 1, ..., n.
- 3. Individuare gli opportuni segnali $\hat{u}_j(t)$, con $j=1,\ldots,m$, che consentono poi di calcolare in maniera semplice tutte le trasformate di Laplace delle uscite $y_i(t)$ ai segnali $u_i(t)$. Calcolare le trasformate di Laplace $\hat{Y}_j(t) = G(s)\hat{U}_j(s)$, per $j=1,\ldots,m$, utilizzando la scomposizione in fratti semplici.
- 4. Calcolare le anti-trasformate di Laplace $\hat{y}_j(t)$ per ciascuna $\hat{Y}_j(s)$, per $j=1,\ldots,m$. Per ciascun modo:
 - (a) individuare valore iniziale, valore finale, costante di tempo, tempo di assestamento e, se opportuno, tempo di salita, tempo di picco e massima sovraelongazione;
 - (b) tracciare l'andamento nel tempo.

- 5. Calcolare analiticamente l'uscita $y_i(t)$ a ciascun ingresso $u_i(t)$, per $i=1,\ldots,n$.
- 6. Calcolare l'uscita y(t) all'ingresso u(t) e fare eventuali considerazioni sull'andamento di y(t).

Esercizio 2: risposta in frequenza

Dato il sistema lineare e tempo-invariante con funzione di trasferimento

$$G(s) = 100 \frac{0.2s + 1}{s^2 + 21s + 20} \tag{3}$$

- 1. Esprimere G(s) nella forma standard per i diagrammo di Bode, determinare poli e zeri e rappresentarli sul piano complesso.
- 2. Determinare i punti di rottura dei diagrammi di Bode asintotici.
- 3. Scegliere l'intervallo di frequenze d'interesse.
- 4. Determinare gli andamenti iniziali e finali dei diagrammi di Bode asintotici.
- 5. Tracciare i diagrammi di Bode asintotici.
- 6. Dato il segnale d'ingresso

$$u(t) = 5\sin 10t\tag{4}$$

determinare l'espressione dell'uscita a regime $y_{ss}(t)$ e tracciare gli andamenti nel tempo dell'ingresso u(t) e dell'uscita $y_{ss}(t)$.

7. Effettuate eventuali considerazioni sui diagrammi di Bode: andamenti esatti, moduli di risonanza, banda passante, variazioni di guadagno, aggiunta di poli o zeri.