DEFINITION 1. A binary operation on a set S is a rule for combining two elements of S to produce a third element of S. More formally, a binary operation is a mapping

$$S \times S \to S$$
.

If the binary operation is called, say *, we usually write $s_1 * s_2$ for the third element of S obtained by applying the operation to the pair of elements s_1, s_2 in S.

DEFINITION 2. Let * be a binary operation on a set S.

- (1) We say * is commutative on S if for all s_1 and s_2 in S we have $s_1 * s_2 = s_2 * s_1$.
- (2) We say * is associative on S if for all s_1 , s_2 and s_3 in S we have $(s_1 * s_2) * s_3 = s_1 * (s_2 * s_3)$.
- (3) We say * has an identity in S if there exists an element e in S such that r*e=e*r=r for all $r\in S$.
- (4) Suppose * has an identity e in S. We say r in S is invertible if there exists another element s in S such that r*s=s*r=e. The element s is called an inverse of r.

DEFINITION 3. A field is a non-empty set F with two binary operations, denoted "+" and "×," such that

- (1) + and \times are associative
- (2) + and \times are commutative
- (3) + has an identity, denote 0_F
- (4) Every element of F has an inverse for the operation + denoted by -r
- (5) \times has an identity, denoted 1_F , every $r \neq \{0_F\}$ of F has an inverse for the operation \times denoted by r^{-1}
- (6) The two operations are related by the distributive properties: $a \times (b+c) = a \times b + a \times c$ and $(a+b) \times c = a \times c + b \times c$ for all $a, b, c \in F$

DEFINITION 4. An F-vector space is a set V with two operations: a binary operation called addition, which assigns to each $\vec{v}, \vec{w} \in V$ an element $\vec{v} + \vec{w} \in V$, and a scalar multiplication, which assigns to each $\vec{v} \in V$ and each $c \in F$ an element $c\vec{v} \in V$. These operations must satisfy the following properties.

- A1 For all $\vec{u}, \vec{v}, \vec{w} \in V$, $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$. (addition is associative)
- A2 For all $\vec{u}, \vec{v} \in V$, $\vec{u} + \vec{v} = \vec{v} + \vec{u}$. (addition is commutative)
- A3 There exists an element $\vec{0}$ in V such that for all $\vec{v} \in V$, $\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$. (\exists an additive identity)
- A4 For each $\vec{u} \in V$ there is another element $(-\vec{v})$ such that $\vec{v} + (-\vec{v}) = 0$ (\exists additive inverses)
- S1 For all $c \in F$ and $\vec{u}, \vec{v} \in V$, $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$. (distributive property 1)
- S2 For all $c, d \in F$ and $\vec{v} \in V$, $(c+d)\vec{v} = c\vec{v} + d\vec{v}$. (distributive property 2)
- S3 For all $c, d \in F$ and $\vec{v} \in V$, $c(d\vec{v}) = (cd)\vec{v}$.
- S4 For all $\vec{v} \in V$, $1\vec{v} = \vec{v}$.

DEFINITION 5. A non-empty subset W of V is a subspace of V if W is itself a vector space with the vector addition and the scalar multiplication in V.

DEFINITION 6. A linear combination of vectors $v_1, \dots v_r$ in V is a vector in V of the form $c_1v_1 + \dots + c_rv_r$, for some c_1, \dots, c_r in \mathbb{R} . The scalars c_1, \dots, c_r are called scalar coefficients.

DEFINITION 7. Let $S \subseteq V$. The span of S is the set of all linear combinations of vectors in S.

$$Span(S) = Sp(S) = \{c_1v_1 + \dots + c_rv_r, | c_1, \dots, c_r \in \mathbb{R}, v_1, \dots, v_r \in S, r \in \mathbb{N}\}\$$

If $S = \{v_1, \dots v_r\}$ (that is if S is finite) we write $\operatorname{Span}(S) = \operatorname{Span}(v_1, \dots v_r)$. If $\operatorname{Span}(S) = W$ for a subspace W of V we say S spans W or S generates W or S is a spanning set for W. If W has a finite spanning set, we say W is finitely generated.

DEFINITION 8. Consider vectors v_1, \dots, v_k in $X \subset V$. A relation of the form

$$c_1v_1 + \cdots + c_kv_k = 0$$
, where $(c_1, \cdots, c_k) \neq (0, \cdots, 0)$

is called a dependency relation among v_i 's or on X.

DEFINITION 9. A subset X of V is called linearly dependent if there exists a dependency relation among vectors in X. We say X is linearly independent if it is not linearly dependent.

DEFINITION 10 (alternative). A set $X \subseteq V$ is linearly independent if for all v_1, \dots, v_k in $X, k \in \mathbb{N}$ and scalars c_1, c_2, \dots, c_k in \mathbb{R} ,

$$c_1v_1 + \cdots + c_kv_k = 0$$
 implies $c_1 = c_2 = \cdots = c_k = 0$.

A set $X \subset V$ is called linearly dependent if it is not linearly independent.

DEFINITION 11. Let $S \subseteq V$. The span of S is the set of all linear combinations of vectors in S.

$$Span(S) = Sp(S) = \{c_1v_1 + \dots + c_rv_r, | c_1, \dots, c_r \in \mathbb{R}, v_1, \dots, v_r \in S, r \in \mathbb{N}\}\$$

If $S = \{v_1, \dots v_r\}$ (that is if S is finite) we write $\operatorname{Span}(S) = \operatorname{Span}(v_1, \dots v_r)$. If $\operatorname{Span}(S) = W$ for a subspace W of V we say S spans W or S generates W or S is a spanning set for W. If W has a finite spanning set, we say W is finitely generated.

DEFINITION 12. A basis for a vector space V is a subset of V that

- (1) spans V.
- (2) is linearly independent.

DEFINITION 13. The number of vectors in a basis of V is called the dimension of V, denoted by dim V.

DEFINITION 14. A map $T: V \to W$ is a linear transformation if

- (1) For all $v_1, v_2 \in V T(v_1 + v_2) = T(v_1) + T(v_2)$
- (2) For all $v \in V$ and $r \in F$, T(rv) = rT(v)

Definition 15. Let $T: V \to W$ be a linear transformation

- (1) For every v in V, T(v) is called the image of v under T.
- (2) For every subset U of V, the image of U under T is

$$T(U) := \{ T(u) \mid u \in U \}.$$

(3) The image of T is defined to be the image of V under T, that is

$$img(T) = \{ T(v) \mid v \in V \}.$$

(4) For any $w \in W$, the preimage or inverse image of w under T is

$$T^{-1}(w) = \{ v \in V \mid T(v) = w \}.$$

The inverse image of 0_w is of a special importance and has its own name. It is called the Kernel of T.

(5) For any subset X of W, the preimage or inverse image of X under T is

$$T^{-1}(X) = \{ v \in V \mid T(v) \in X \}.$$

- (6) T is called one to one or injective if for all $v_1, v_2 \in V$ $T(v_1) = T(v_2)$ implies $v_1 = v_2$.
- (7) T is called onto or surjective if for all $w \in W$, there is some vector $v \in V$ such that T(v) = w.

DEFINITION 16. The map $id_V: V \to V$, defined by $id_V(v) = v$ is called the identity map.

DEFINITION 17. We say a linear transformation $T:V\to W$ is invertible of there exists a linear transformation $T^{-1}:W\to V$ such that

$$T \circ T^{-1} = id_W$$
 and $T^{-1} \circ T = id_V$

If such an T^{-1} exists we call it the inverse of T.

DEFINITION 18. Le $T_1: V \to W$ and $T_2: W \to Y$ be linear transformations. The composition of T_2 and T_1 is defined to be the map $T_2 \circ T_1: V \to Y$ defined by $T_2 \circ T_1(v) = T_2(T_1(v))$ for all $v \in V$.

DEFINITION 19. The map $id_V: V \to V$, defined by $id_V(v) = v$ is called the identity map.

DEFINITION 20. We say a linear transformation $T:V\to W$ is invertible of there exists a linear transformation $T^{-1}:W\to V$ such that

$$T \circ T^{-1} = id_W$$
 and $T^{-1} \circ T = id_V$

If such an T^{-1} exists we call it the inverse of T.

DEFINITION 21. An invertible linear map $T:V\to W$ is called an isomorphism between V and W. If such a map exists between V and W we say V and W are isomorphic and write $V\cong W$.

DEFINITION 22. Two square matrices A are and B are said to be similar if there exists an invertible matrix P such that $A = PBP^{-1}$.

DEFINITION 23. An inner product on V is a map

$$\begin{array}{ccc} V \times V & \to & F \\ (v,w) & \to & \langle v,w \rangle \end{array}$$

that satisfies the following properties

- (1) linear in the first factor: $\langle v + u, w \rangle = \langle v, w \rangle + \langle u, w \rangle$ and $\langle rv, w \rangle = r \langle v, w \rangle$ for all $v, u, w \in V$ and $r \in F$.
- (2) Positive definite: $\langle v, v \rangle \geq 0$ for all $v \in V$. The equality occurs only if v = 0.
- (3) Conjugate symmetric: $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for all $v, w \in V$.

A vector space V together with an inner product is called an inner product space.

DEFINITION 24. The magnitude or the norm of a vector v in V is then defined as

$$||v|| = \sqrt{\langle v, v \rangle}.$$

The distance between two vectors v, w in V is defined to be ||v - w||.

DEFINITION 25. We say $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.

DEFINITION 26. A set of vectors $\{v_1, \dots, v_k\}$ in V is called orthogonal if v_i 's are mutually orthogonal. That is if $\langle v_i, v_j \rangle = 0$ for $i \neq j$, $i, j \in \{1, \dots, k\}$. If an orthogonal set is a basis for a subspace, we call it an orthogonal basis.

DEFINITION 27. A set of vectors $\{v_1, \dots, v_k\}$ in V is called orthonormal if v_i 's are mutually orthogonal and $||v_i|| = 1$, for all $i \in \{1, \dots, k\}$. That is for $i, j \in \{1, \dots, k\}$

$$\langle v_i, v_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

If an orthonormal set is a basis for a subspace, we call it an orthonormal basis.

DEFINITION 28. For a subspace W of V the orthogonal complement of W, denoted by W^{\perp} , is

$$\{v \in V \mid \langle v, w \rangle = 0, \text{ for all } w \in W\}$$

Theorem 0.1. Every $v \in V$ can be uniquely expressed as $v = v_W + v_{W^{\perp}}$, where $v_W \in W$ and $v_{W^{\perp}} \in W^{\perp}$.

DEFINITION 29. The decomposition $v = v_W + v_{W^{\perp}}$ is Theorem 0.1 is called the orthogonal decomposition of v with respect to W.

DEFINITION 30. The vector v_W in Theorem 0.1 is called the orthogonal projection of v on W and is denoted by $\operatorname{Proj}_W(v)$.

DEFINITION 31. The linear transformation $T: V \to V$ is an isometry if it preserves the inner product of V. That is for all v and w,

$$\langle T(v), T(w) \rangle = \langle v, w \rangle$$

DEFINITION 32. A square matrix $A \in M_n(\mathbb{R})$ is orthogonal if $A^T A = I_n$.

DEFINITION 33. Let A be a complex matrix whose ij-th entry is $a_{ij} \in \mathbb{C}$

- (1) The conjugate of A is a matrix whose ij-th entry is \bar{a}_{ij} , and is denote by \bar{A} .
- (2) The conjugate transpose of A is a matrix whose ij-th entry is $\bar{a_{ij}}$, and is denote by A^* .

DEFINITION 34. A matrix A with complex entries is called Hermitian if $A = A^*$.

DEFINITION 35. A square matrix U with complex entries is called unitary if $U^*U = I_n$

DEFINITION 36. let V be an inner product space. A linear transformation $T:V\to V$ is self-adjoint if for all v and w,

$$\langle T(v), w \rangle = \langle v, T(w) \rangle$$

DEFINITION 37. A matrix A in $M_n(\mathbb{R})$ is orthogonally diagonalizable if there is an orthogonal $U \in M_n(\mathbb{R})$ and a diagonal $D \in M_n(\mathbb{R})$ such that $A = UDU^T$.

DEFINITION 38. A matrix A in $M_n(\mathbb{C})$ is unitarily diagonalizable if there exists a diagonal matrix $D \in M_n(\mathbb{C})$ and a unitary matrix $U \in M_n(\mathbb{C})$ such that $A = UDU^*$.

DEFINITION 39. let V be an inner product space. $T:V\to V$ is orthogonally (unitarily) diagonalizable if there exists an orthonormal basis \mathcal{U} of V such that $[T]_{\mathcal{U}}$ is diagonal.

DEFINITION 40. A matrix $A \in M_n(\mathbb{C})$ is normal if $AA^* = A^*A$.

¹Warning: the word orthogonal in linear algebra is used in different context and in each context it has a different meaning. this is the first of three different sense in which the word orthogonal is used.

Definition 41. We say A is unitarily equivalent to B if for some unitary matrix U we have $A=UBU^{-1}=UBU^*$. We denote this relation by $A\underset{U}{\sim}B$

DEFINITION 42. For $A \in M_n(\mathbb{C})$ we define the equivalence class of A to be

$$E_A = \{ B \in M_n(\mathbb{C}) \mid B \underset{U.E}{\sim} A \}.$$

Definition 43. A Jordan block of size k is a $k \times k$ matrix in the form

$$\begin{bmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & \\ & & \cdots & \ddots & \\ & & & \lambda & 1 \\ & & & & \lambda \end{bmatrix}$$

DEFINITION 44. An $n \times n$ matrix J is said to be in Jordan canonical form if it consists of Jordan blocks located corner to corner on the main diagonal, and zero everywhere else. That is

$$J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_l \end{bmatrix}$$

where J_i 's are Jordan blocks.