Multiscale Techniques Applied to Material Irradiation Damage Analysis

Bruce Berry MEEG 591V

Outline

- Motivations
- Mechanisms
- Review of methods
- Application

Motivations

 Understand mechanicsms by which radiation interacts with materials

- Produce materials and procedures that better take account of this behavior
- Multiple length and time scales important!
- Radiation Sources and effects. http://www.radiation-scott.org/radsource/3-0.htm. Retrieved 12/2/15.
- https://en.wikipedia.org/wiki/Reactor_pressure_vessel#/media/File:Shippingport_LOC_135430pu.jpg

Mechanisms of Interactions in Metals

- Primary Knock-On Atoms (PKA's)
- E_k dependent on radiation type/energy
 - Neutrons high E_{k}
 - electrons low E_k

Austentite (FCC) → Martensite (BCT)

Defects and Interstitials

- PKA's result in displacement of secondary atoms
- "Cascade" of displacements

[2]

Property changes

- Defects (Dislocations)
 build up and result in property changes
 - Work hardening
 - Embrittlement
 - Loss of ductility

Methods

- In reactor steels, engineering decisions are often made using empirical relations.
 - Extrapolation is dangerous!
 - Performing experiments to model a new system can be difficult
- Experiments do not show events at the atomic scale

- MD simulations
 provides a window to
 atomic interaction
 events
- Dislocation Dynamics
 Simulations predict
 changes in material
 properties

Some Results

Fig. 11. Stress (units Gb/L) vs. \bar{D}/b for an edge dislocation to pass a row of voids in an atomic model of Fe at T=0 K. The D and L values are indicated. The dashed and full lines are those for the Orowan stress and for voids with $\gamma_s=3$, respectively, taken from Fig. 9 for the continuum simulation of [68] with r_0 set equal to b.

 Matches theoretical models in some cases, not in others

An application

 Understand the mechanisms that drive microstructure change due to irradiation in metallic Uranium fuels

Figure 1: Cross-section of U-Pu-Zr alloy fuel illustrating the radial distribution of porosity, which reaches values as high 40% in the center of the fuel pellet. Burn-up is 2 at. %.

Literature References

- [1] M. Smaga, AG Eifler, FB MV, TU Kaiserslauter.
- [2] Wirth, B., Odette, G., Marian, J., Ventelon, L., Young-Vandersall, J., & Zepeda-Ruiz, L. (n.d.). Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. Journal of Nuclear Materials, 103-111.
- [3] Bacon, D., & Osetsky, Y. (n.d.). Multiscale modelling of radiation damage in metals: From defect generation to material properties. Materials Science and Engineering: A, 46-56.
- Free-energy calculation for many-body iron potentials. http://merapi.physik.uni-kl.de/~finished/engin/. Retrieved 12/2/15.
- Elliott, J. (n.d.). Novel approaches to multiscale modelling in materials science. International Materials Reviews, 207-225.
- Flewitt, P. (n.d.). The use of multiscale materials modelling within the UK nuclear industry. Materials Science and Engineering: A, 257-266.
- Gao, F., Bacon, D., Flewitt, P., & Lewis, T. (n.d.). A molecular dynamics study of temperature effects on defect production by displacement cascades in α-iron. Journal of Nuclear Materials, 77-86.
- Moseler, M., Mrovec, M., Elsasser, C., & Gumbsch, P. A multiscale model for fracture and radiation damage in tungsten. DOE workshop on advanced computational materials science: application to fusion... Fraounhofer Institute for mechanics of materials.
- Surdutovich, E., & Solov'yov, A. (n.d.). Multiscale physics of ion-induced radiation damage. Applied Radiation and Isotopes, 100-104.
- Kwon, J., Kwon, S.C., & Hong, J. Multiscale Modeling of Radiation Damage: Radiation Hardening of Pressure Vessel Steel. Journal of the Korean Nuclear Society.
- Stoller, R.E. Atomic-scale Simulation of Radiation Damage in Structural Materials. NESLS Summer Seminar Series. Materials Science and Technology Division Oak Ridge National Laboratory.