The use of calculators and notes is prohibited, as is seeking help from any other outside source during the exam. True/False questions require no justification. All other answers must be justified in order to receive credit. The maximum possible score is 200 points. Good luck!

- 1. (a) (10pt) Let $A = \begin{bmatrix} 3 & 2 & 0 & 30 \\ 17 & 234 & -3 & -23 \\ 1 & -1 & 0 & 42 \\ 0 & 0 & 0 & 10 \end{bmatrix}$. Calculate $\det(A)$. Show all steps.
 - (b) (8pt) Explain how the three elementary row operations change the determinant of a square matrix.
 - (c) (8pt) Let $A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 1 & 3 \\ 1 & 0 & 0 \end{bmatrix}$. Find A^{-1} , showing your work.
 - (d) (3pt) TRUE or FALSE: The set of all 2×2 matrices with determinant 1 is a vector subspace of the vector space of all real 2×2 matrices.
 - (e) (3pt) TRUE or FALSE: Every square matrix with a negative determinant is invertible.
- 2. Consider the linear transformation $S: \mathbb{R}^3 \to \mathbb{R}^3$ given by the formula $S \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_1 + x_2 + 2x_3 \\ -x_3 \\ 4x_1 + 4x_2 + 9x_3 \end{bmatrix}$.
 - (a) (4pt) What is the standard matrix for S?
 - (b) (6pt) What is the standard matrix for the transformation $S \circ S$ mapping \mathbf{x} to $S(S(\mathbf{x}))$?
 - (c) (6pt) Is S 1-1? Is S onto? Justify.
 - (d) (3pt) Give an example of a linear transformation that is onto but not 1-1.
 - (e) (3pt) Give an example of a linear transformation that is both 1-1 and onto.
 - (f) (3pt) TRUE or FALSE: An $m \times n$ matrix is invertible if and only if its columns are linearly independent.
 - (g) (3pt) TRUE or FALSE: If $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a spanning set for a vector space V and $T: V \to W$ is a linear transformation, then $\{T(\mathbf{b}_1), \dots, T(\mathbf{b}_n)\}$ is a spanning set for W.
- 3. Consider the matrices $A = \begin{bmatrix} 1 & -2 & -4 & -18 \\ -2 & 3 & 8 & 30 \\ 0 & -4 & -1 & -25 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & -4 \\ -2 & 3 & 8 \\ 0 & -4 & -1 \end{bmatrix}$. Let $\mathbf{b} = \begin{bmatrix} 7 \\ 15 \\ -2 \end{bmatrix}$.
 - (a) (14pt) Write the linear system associated to the equation $A\mathbf{x} = \mathbf{b}$ and express the solution \mathbf{x} in parametric vector form.
 - (b) (10pt) Are the columns of B linearly independent or linearly dependent? If they are linearly independent, explain why. If they are linearly dependent, find a relation of linear dependence between them.
 - (c) (3pt) Suppose C is an $m \times n$ matrix and let $\mathbf{y} \in \mathbb{R}^m$ be a nonzero vector. TRUE or FALSE: The solution set of $C\mathbf{x} = \mathbf{y}$ is a vector subspace of \mathbb{R}^n .
- 4. (a) (12pt) Let $A = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$. Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$ (you do not have to compute P^{-1}). Show your work.
 - (b) (3pt) TRUE or FALSE: If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation and $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^n$ are eigenvectors for T with distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3$ (i.e., $\lambda_i \neq \lambda_j$ for $i \neq j$) then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set in \mathbb{R}^n .

5. Given below is a matrix A and its reduced row echelon form:

$$A = \begin{bmatrix} 4 & 12 & -4 & 4 & 16 \\ -1 & -3 & 7 & 23 & -16 \\ 2 & 6 & 10 & 50 & -16 \\ 0 & 0 & 0 & 0 & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & 5 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) (4pt) Determine the rank of A.
- (b) Find a basis for each of the following subspaces, and state its dimension. No justification is necessary for this part.
 - i. (4pt) Nul A
- ii. (4pt) Col A
- iii. (4pt) Row A
- (c) (3pt) TRUE or FALSE: If X and Y are row-equivalent matrices, then they have the same (identical) null space.
- (d) (3pt) TRUE or FALSE: If X and Y are row-equivalent matrices, then they have the same (identical) column space.
- 6. (a) (10pt) Consider the set $S \subseteq \mathbb{R}^4$ consisting of the two vectors $S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 11 \\ 1 \end{bmatrix} \right\} \subseteq \mathbb{R}^4$. Find a

basis of \mathbb{R}^4 containing S. (Hint: there are many ways to do this, but one idea is to think about W^{\perp} , where $W = \operatorname{Span}(S)$.)

- (b) Consider the two bases $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -8 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ -6 \end{bmatrix} \right\}$ for \mathbb{R}^2 .
 - i. (4pt) Determine the \mathcal{B} -coordinates of the vector $\mathbf{x} = \begin{bmatrix} 10 & 10 \end{bmatrix}^T$.
 - ii. (4pt) Determine which vector $\mathbf{y} \in \mathbb{R}^2$ has \mathcal{C} -coordinates $[\mathbf{y}]_{\mathcal{C}} = \begin{bmatrix} -3 & 2 \end{bmatrix}^T$.
 - iii. (5pt) Compute the change-of-coordinates matrix P.
- (c) (3pt) TRUE or FALSE: Two square matrices with the same eigenvalues (with the same algebraic multiplicities) must be similar.
- (d) (3pt) TRUE or FALSE: Two square matrices that are similar must have the same eigenvalues (with the same algebraic multiplicities).
- 7. (a) (14pt) Let $W = \operatorname{Span} \left\{ \begin{bmatrix} 2\\0\\1\\5 \end{bmatrix}, \begin{bmatrix} 3\\1\\4\\10 \end{bmatrix}, \begin{bmatrix} -2\\6\\-1\\-17 \end{bmatrix} \right\}$. Find an orthonormal basis for W.
 - (b) (8pt) Find a least-squares solution of the inconsistent system $A\mathbf{x} = \mathbf{b}$, where $A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ 1 & 4 \\ 5 & 10 \end{bmatrix}$ and

 $\mathbf{b} = \begin{bmatrix} 15 & -39 & 0 & 0 \end{bmatrix}^T$. You may use your work from part (a), but you don't have to.

- (c) (3pt) TRUE or FALSE: Every real $m \times n$ matrix A having linearly independent columns has a QR decomposition A = QR, where Q has orthonormal columns and R is upper-triangular and invertible.
- (d) (3pt) TRUE or FALSE: For a subspace W of \mathbb{R}^n , the only vector \mathbf{v} such that $\mathbf{v} \in W$ and $\mathbf{v} \in W^{\perp}$ is the zero vector.
- (e) (3pt) TRUE or FALSE: Every symmetric real $n \times n$ matrix is orthogonally diagonalizable.
- 8. (16pt) Let $A = \begin{bmatrix} 6 & -5 \\ 5 & -2 \end{bmatrix}$. Find both eigenvalues of A and a corresponding eigenvector in \mathbb{C}^2 for each eigenvalue. Show your work.