1. Create flexible data aggregations using pivot tables and Represent data visually using pivot charts

[15] df=pd.read_csv('titanic.csv')

(5) df.head(5)

\rightarrow	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
(1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

[17] table = pd.pivot_table(df,index=['Sex','Pclass'],aggfunc={'Survived':np.sum})
table

[17] table = pd.pivot_table(df,index=['Sex','Pclass'],aggfunc={'Survived':np.sum})

[17] table = pd.pivot_table(df,index=['Sex','Pclass'],aggfunc={'Survived':np.sum})

[17] table = pd.pivot_table(df,index=['Sex','Pclass'],aggfunc={'Survived':np.sum})

[17] table = pd.pivot_table(df,index=['Sex','Pclass'],aggfunc={'Survived':np.sum})

[18] table(df,index=['Sex','Pclass'],aggfunc={'Survived':np.sum})

[18] table(df,index=['Sex','Pclass'],aggfunc={'Survived':np.sum})

[18] table(df,index=['Sex','Pclass'],aggfunc={'Survived':np.sum})

[18] table(df,index=['Sex','Pclass'],aggfunc={'Survived':np.sum})

[1

			Survived	=
	Sex	Pclass		11.
	female	1	0.968085	
		2	0.921053	
		3	0.500000	
	male	1	0.368852	
		2	0.157407	
		3	0.135447	

[22] #display null values

table = pd.pivot_table(df,index=['Sex','Survived','Pclass'],columns=['Embarked'],values=['Age'],aggfunc=np.mean)

			Age		
		Embarked	c	Q	s
Sex	Survived	Pclass			
female	0	1	50.000000	NaN	13.500000
		2	NaN	NaN	36.000000
		3	20.700000	28.100000	23.688889
	1	1	35.675676	33.000000	33.619048
		2	19.142857	30.000000	29.091667
		3	11.045455	17.600000	22.548387
male	0	1	43.050000	44.000000	45.362500
		2	29.500000	57.000000	33.414474
		3	27.555556	28.076923	27.168478
	1	1	36.437500	NaN	36.121667
		2	1.000000	NaN	17.095000
		3	18.488571	29.000000	22.933333

#handling null values

table = pd.pivot_table(df,index=['Sex','Survived','Pclass'],columns=['Embarked'],values=['Age'],aggfunc=np.mean,fill_value=np.mean(df['Age'])) table

Δ	σ		
~	5	-	

Embarked C S

Sex	Survived	Pclass			
female	0	1	50.000000	29.699118	13.500000
		2	29.699118	29.699118	36.000000
		3	20.700000	28.100000	23.688889
	1	1	35.675676	33.000000	33.619048
		2	19.142857	30.000000	29.091667
		3	11.045455	17.600000	22.548387
male	0	1	43.050000	44.000000	45.362500
		2	29.500000	57.000000	33.414474
		3	27.555556	28.076923	27.168478
	1	1	36.437500	29.699118	36.121667
		2	1.000000	29.699118	17.095000
		3	18.488571	29.000000	22.933333

import pandas as pd
import numpy as np
df = pd.read_csv("tem.csv")
df

	city	temperature
0	Mumbai	34
1	Chennai	38
2	Hyderabad	43
3	Banagalore	30
4	Pune	-4
5	Kochi	33
6	Goa	50

df.shape

(7, 2)

df.dtypes

city object temperature int64 dtype: object

df.head()

city temperature 0 Mumbai 34 1 Chennai 38 2 Hyderabad 43 3 Banagalore 30 4 Pune -4

df.tail(3)

	city	temperature
4	Pune	-4
5	Kochi	33
6	Goa	50

df.isnull()

	city	temperature
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False

```
0
     city
     temperature
                   0
     dtype: int64
df.count()
     city
     temperature
     dtype: int64
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 7 entries, 0 to 6
     Data columns (total 2 columns):
     # Column
                      Non-Null Count Dtype
     --- -----
     0 city
                      7 non-null
                                      object
     1 temperature 7 non-null
                                      int64
     dtypes: int64(1), object(1)
     memory usage: 240.0+ bytes
gk = df.groupby('city')
gk=gk.get_group('Mumbai')
gk
           city temperature
     0 Mumbai
                         34
```

Downlod Following CSV files and do all operations iris.csv

- 1. titanic.csv
- 2. car.csv
- 3. Iris.csv Solve the following 1)Download csv from google 2)upload in juypter notebook 3)load/read csv file 4)display count of rows and Columns 5) Display data type of each column 6)Displat first 3 record 7)Display last 3 record 8) Display count of null values 9)Display info of file 10 Diplay the data of one category

```
import pandas as pd
df = pd.read_csv("titanic.csv")
df
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.28
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.92
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.10
4 (•

df.shape

(891, 12)

df.dtypes

```
PassengerId
                int64
Survived
                int64
Pclass
                int64
Name
                object
Sex
               object
Age
               float64
SibSp
                 int64
                int64
Parch
Ticket
                object
Fare
               float64
Cabin
                object
Embarked
                object
dtype: object
```

df.head(3)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
4				Cuminas						•

df.tail(3)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	С
888	889	0	3	Johnston, Miss. Catherine Helen	female	NaN	1	2	W./C. 6607	23.45	
4 ()		Þ

df.isnull().sum()

PassengerId Survived 0 Pclass 0 Name 0 Sex 177 Age ${\tt SibSp}$ 0 Parch 0 Ticket 0 0 Fare Cabin 687 Embarked 2 dtype: int64

df.count()

PassengerId 891 Survived 891 Pclass 891 Name 891 891 Sex Age 714 SibSp 891 Parch 891 Ticket 891 891 Fare 204 Cabin Embarked 889 dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64

3	Name	891	non-null	object
4	Sex	891	non-null	object
5	Age	714	non-null	float64
6	SibSp	891	non-null	int64
7	Parch	891	non-null	int64
8	Ticket	891	non-null	object
9	Fare	891	non-null	float64
10	Cabin	204	non-null	object
11	Embarked	889	non-null	object
			/ - >	

dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB

gk = df.groupby('Pclass')

gk=gk.get_group(3)

gk

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
882	883	0	3	Dahlberg, Miss. Gerda Ulrika	female	22.0	0	0	7552	10.5167	NaN	S
884	885	0	3	Sutehall, Mr. Henry Jr	male	25.0	0	0	SOTON/OQ 392076	7.0500	NaN	S
885	886	0	3	Rice, Mrs. William (Margaret Norton)	female	39.0	0	5	382652	29.1250	NaN	Q
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S

df = pd.read_csv("Iris.csv") df

\supseteq		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
						•••	
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

df.shape

(150, 6)

df.dtypes

Id	int64
SepalLengthCm	float64
SepalWidthCm	float64
PetalLengthCm	float64
PetalWidthCm	float64

df.head(3)

	Id	${\tt SepalLengthCm}$	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa

df.tail(3)

	Id	${\tt SepalLengthCm}$	SepalWidthCm	${\tt PetalLengthCm}$	PetalWidthCm	Species
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

df.isnull().sum()

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

df.count()

Id 150
SepalLengthCm 150
SepalWidthCm 150
PetalLengthCm 150
PetalWidthCm 150
Species 150
dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149

Data columns (total 6 columns): # Column Non-Null Count Dtype 0 Id 150 non-null int64 SepalLengthCm 150 non-null float64 1 2 SepalWidthCm 150 non-null float64 3 PetalLengthCm 150 non-null 4 PetalWidthCm 150 non-null float64 float64 5 Species 150 non-null object dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

gk = df.groupby('Species')
gk=gk.get_group('Iris-setosa')
gk

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa
10	11	5.4	3.7	1.5	0.2	Iris-setosa
11	12	4.8	3.4	1.6	0.2	Iris-setosa
12	13	4.8	3.0	1.4	0.1	Iris-setosa
13	14	4.3	3.0	1.1	0.1	Iris-setosa
14	15	5.8	4.0	1.2	0.2	Iris-setosa
15	16	5.7	4.4	1.5	0.4	Iris-setosa
16	17	5.4	3.9	1.3	0.4	Iris-setosa
17	18	5.1	3.5	1.4	0.3	Iris-setosa
18	19	5.7	3.8	1.7	0.3	Iris-setosa
19	20	5.1	3.8	1.5	0.3	Iris-setosa
20	21	5.4	3.4	1.7	0.2	Iris-setosa
21	22	5.1	3.7	1.5	0.4	Iris-setosa
22	23	4.6	3.6	1.0	0.2	Iris-setosa
23	24	5.1	3.3	1.7	0.5	Iris-setosa
24	25	4.8	3.4	1.9	0.2	Iris-setosa
25	26	5.0	3.0	1.6	0.2	Iris-setosa
26	27	5.0	3.4	1.6	0.4	Iris-setosa
27	28	5.2	3.5	1.5	0.2	Iris-setosa
28	29	5.2	3.4	1.4	0.2	Iris-setosa
29	30	4.7	3.2	1.6	0.2	Iris-setosa
30	31	4.8	3.1	1.6	0.2	Iris-setosa
31	32	5.4	3.4	1.5	0.4	Iris-setosa
32	33	5.2	4.1	1.5	0.1	Iris-setosa
33	34	5.5	4.2	1.4	0.2	Iris-setosa
34	35	4.9	3.1	1.5	0.1	Iris-setosa
35	36	5.0	3.2	1.2	0.2	Iris-setosa
36	37	5.5	3.5	1.3	0.2	Iris-setosa
37	38	4.9	3.1	1.5	0.1	Iris-setosa
38	39	4.4	3.0	1.3	0.2	Iris-setosa
39	40	5.1	3.4	1.5	0.2	Iris-setosa
40	41	5.0	3.5	1.3	0.3	Iris-setosa
41	42	4.5	2.3	1.3	0.3	Iris-setosa
42	43	4.4	3.2	1.3	0.2	Iris-setosa
43	44	5.0	3.5	1.6	0.6	Iris-setosa
44	45	5.1	3.8	1.9	0.4	Iris-setosa
45	46	4.8	3.0	1.4	0.3	Iris-setosa

```
import pandas as pd
import numpy as np
df = pd.read_csv("Book1.csv")
df
            city temperature humidity
     0 new york
                           65
                                    56
                          65
                                    66
      1 new york
      2 new york
                           66
                                    60
                          75
         mumbai
                                    80
         mumbai
                           68
                                    80
import statistics
statistics.stdev(df['humidity'])
     11.171392035015153
Finding Frequency
count = df['city'].value_counts()
print(count)
     new york
                 3
     mumbai
                 2
     Name: city, dtype: int64
count = df.groupby(['city']).count()
print(count)
               temperature humidity
     city
                                   2
     mumbai
     new york
Double-click (or enter) to edit
df.mean()
     <ipython-input-32-c61f0c8f89b5>:1: FutureWarning: The default value of numeric_only in DataFrame.mean is deprecated. In a future version
     temperature
                    67.8
     humidity
                    68.4
     dtype: float64
df.median()
     <ipython-input-33-6d467abf240d>:1: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In a future versi
       df.median()
     temperature
                    66.0
     humidity
                    66.0
     dtype: float64
df.mode(numeric_only=True)
         temperature humidity
```

0

65

80

```
df.describe()
```

		•	,			
С	ount	5.000000	5.000000			
n	nean	67.800000	68.400000			
	std	4.207137	11.171392			
	min	65.000000	56.000000			
2	25%	65.000000	60.000000			
ŧ	50%	66.000000	66.000000			
7	75%	68.000000	80.000000			
r	max	75.000000	80.000000			
<pre>print(temperature_variance) 17.7</pre>						
		enter) to e	dit			
	`	•				
humidit	y_varia	nce = df['h	numidity'].var	()		
print(h	umidity_	_variance)				
12	4.799999	99999998				
tempera	ture_sto	ddev = df['	temperature']	.std		
<pre>print(temperature_stddev)</pre>						
4.	20713679	93592526				
humidit	y_stdde	v = df['hum	nidity'].std()			
print(h	umidity_	_stddev)				
11	.1713920	035015153				

temperature humidity

b. Apply the basis of Data cleanup operation on the given *dataset

Data Cleaning Data cleaning means fixing bad data in your data set.

Bad data could be:

Wrong data- Duplicates- Empty cells- Data in wrong format

Double-click (or enter) to edit

```
import pandas as pd
import numpy as np
df = pd.read_csv("calori.csv")
df
```

D-		Time	Date	Pulse	Calories
	0	60	2020/12/01	110.0	409
	1	600	2020/12/02	120.0	479
	2	60	2020/12/03	NaN	340
	3	45	2020/12/05	102.0	287
	4	45	2020/12/05	102.0	287
	5	60	20201206	2.0	300
	6	60	NaN	104.0	374
	7	450	2020/12/08	102.0	253

Double-click (or enter) to edit

df.dtypes

Time int64
Date object
Pulse float64
Calories int64
dtype: object

Double-click (or enter) to edit

The data set contains some empty cells (row 2, and row 6).

The data set contains wrong format ("Date" in row 5).

The data set contains wrong data ("Duration" in row 1).

The data set contains duplicates (row 3 and 4).

df.shape (8, 4)

Discovering Duplicates

Duplicate rows are rows that have been registered more than one time.

df.duplicated()

```
0 False
1 False
2 False
```

3 False 4 True

5 False

```
6 False
7 False
dtype: bool
```

To remove duplicates, use the drop_duplicates() m

dif

	Time	Date	Pulse	Calories
0	60	2020/12/01	110.0	409
4	600	2020/12/02	120.0	479
2	60	2020/12/03	NaN	340
38	45	2020/12/05	102.0	287
55	60	20201206	2.0	300
6	60	NaN	104.0	374
7	450	2020/12/08	102.0	253

Wrong Data

Replacing Values

```
for x in df.index:
    if df.loc[x, "Time"] >= 120:
        df.loc[x, "Time"] = 60

for x in df.index:
    if df.loc[x, "Pulse"] <100:
        df.loc[x, "Pulse"] = 110</pre>
```

diff.

	Time	Date	Pulse	Calories
	60	2020/12/01	110.0	409
1	60	2020/12/02	120.0	479
2	60	2020/12/03	NaN	340
3	45	2020/12/05	102.0	287
5	60	20201206	110.0	300
6	60	NaN	104.0	374
7	50	2020/12/08	102.0	253

```
df['Date'] - pd.to_datetime(df['Date'])
```

	Time	Date	Pulse	Calories
	60	2020-12-01	110.0	409
1	60	2020-12-02	120.0	479
-	-		16.1	20.400

df.dtypes

Time Dartie datetime64[ns] Pulse float64 Calories 1mt 64

dtype: object

	Time	Date	Pulse	Calories
0	60	2020-12-01	110.0	409
1	60	2020-12-02	120.0	479
2	60	2020-12-03	NaN	340
3	45	2020-12-05	102.0	287
5	60	2020-12-06	110.0	300
6	60	NaT	104.0	374
7	60	2020-12-08	102.0	253

df['Pulse'].median()

107.0

d2-df.copy(deep-True)

	Time	Date	Pulse	Calories
0	60	2020-12-01	110.0	409
1	60	2020-12-02	120.0	479
2	60	2020-12-03	NaN	340
3	45	2020-12-05	102.0	287
5	60	2020-12-06	110.0	300
6	60	NaT	104.0	374
7	60	2020-12-08	102.0	253

d2['Pulse'].median()

187.8

Pulse column has wrong value We replace it by mean /median/mode

Default title text

```
# @title Default title text
d2['Pulse'] - (d2['Pulse'].fillna(d2['Pulse'].median()))
d2
```

	Time	Date	Pulse	Calories
0	60	2020-12-01	110.0	409
1	60	2020-12-02	120.0	479
-	-	0000 40 00	407.0	20.40

d3-df.copy(deep-True)

dB.

	Time	Date	Pulse	Calories
0	60	2020-12-01	110.0	409
1	60	2020-12-02	120.0	479
2	60	2020-12-03	NaN	340
3	45	2020-12-05	102.0	287
5	60	2020-12-06	110.0	300
8	60	NaT	104.0	374
7	60	2020-12-08	102.0	253

d3['Pulse'].mode()

0 102.0 1 110.0

Name: Pulse, dtype: float64

d3.fillna(d3.mode().iloc[0])

ane

d3.fillna(d3.mode().iloc[1])

	Time	Date	Pulse	Calories
0	60	2020-12-01	110.0	409
1	60	2020-12-02	120.0	479
2	60	2020-12-03	110.0	340
3	45	2020-12-05	102.0	287
5	60	2020-12-06	110.0	300
6	60	2020-12-02	104.0	374
7	60	2020-12-08	102.0	253

4. Use any standard data set and perform the following

a. Find the data distributions using box and scatter plot.
 b. Find the outliers using plot.
 c. Plot the histogram, bar chart and pie chart on sample data.

Double-click (or enter) to edit

#a. Find the data distributions using box

```
import pandas as pd
import numpy as np
df = pd.read_csv("tem.csv")
df
```

D		city	temperature
	0	Mumbai	34
	1	Chennai	38
	2	Hyderabad	43
	3	Banagalore	30
	4	Pune	1
	5	Kochi	33
	6	Goa	50

df.median()

from scipy import stats import numpy as np

df['temperature'].plot(kind-'box', title-'Temperature')

<Axes: title={'center': 'Temperature'}>

b.Find the data distributions using scatter plot

df.plot.scatter(x = 'city', y = 'temperature');

import matplotlib.pyplot as plt
df.plot(x="city", y="temperature", kind="bar")

df.plot(kind-'pie',x-'city',labels-df['city'], y-'temperature')

```
df.plot(kind='pie',x='city',labels=df['city'], y='temperature')

Chennai

Hyderabad

Mumbai

Banagalore
```

Hyderabad Banagalore

Pune Kochi

Goa

Pune

Kochi


```
df.hist(column='temperature', color='purple')
```

array([[<Axes: title={'center': 'temperature'}>]], dtype=object)

5. Import any CSV file to Pandas DataFrame and perform the following: a. Visualize the first and last 10 records b. Do required statistical operations on the given columns. c. Find the count and uniqueness of the given categorical values.

[] import pandas as pd import numpy as np import seaborn as sns

[] df = pd.read_csv("titanic_dataset.csv")

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

a. Visualize the first and last 10 records

df.head(10)

⋺	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1 2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
:	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
;	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4 5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	5 6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
(6 7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
	7 8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
1	8 9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
!	9 10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

[] df.tail(10)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
881	882	0	3	Markun, Mr. Johann	male	33.0	0	0	349257	7.8958	NaN	S
882	883	0	3	Dahlberg, Miss. Gerda Ulrika	female	22.0	0	0	7552	10.5167	NaN	S
883	884	0	2	Banfield, Mr. Frederick James	male	28.0	0	0	C.A./SOTON 34068	10.5000	NaN	S
884	885	0	3	Sutehall. Mr. Henry Jr	male	25.0	0	0	SOTON/OQ 392076	7.0500	NaN	S

[]	df.des	cribe()						
		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200
[]								

▼ Statistical operations on the given columns

```
[ ] df['Fare'].mean()
     32.204207968574636
[ ] df['Fare'].median()
     14.4542
[ ] df['Fare'].mode()
          8.05
     Name: Fare, dtype: float64
[ ] df['Fare'].std()
     49.6934285971809
[ ] df['Fare'].var()
     2469.436845743116
c. Find the count and uniqueness of the given categorical values.
[ ] df['Sex'].value_counts()
     male
               577
     female
               314
     Name: Sex, dtype: int64
```

```
df['Sex'].value_counts(ascending=True)
     female
               314
    male
               577
    Name: Sex, dtype: int64
[ ]
[ ] df['Fare'].value_counts().max
    <bound method NDFrame._add_numeric_operations.<locals>.max of 8.0500
                                                                                43
    13.0000
    7.8958
                38
    7.7500
                34
    26.0000
                31
    35.0000
                1
    28.5000
                 1
    6.2375
                 1
    14.0000
                 1
    10.5167
                 1
    Name: Fare, Length: 248, dtype: int64>
```

▼ We can see most people paid under 73.19 for their ticket.

```
df['Cabin'].value_counts()
    B96 B98
                     4
    G6
                     4
    C23 C25 C27
                     4
    C22 C26
                     3
    F33
                     3
    E34
                     1
    C7
                     1
    C54
                     1
    E36
                     1
    C148
    Name: Cabin, Length: 147, dtype: int64
[ ] df['Embarked'].value_counts()
    S
          644
    C
          168
    Q
           77
    Name: Embarked, dtype: int64
```

- → 6. Import any CSV file to Pandas DataFrame and perform the following:
 - a. Handle missing data by detecting and dropping/filling missing values.
 - b. Transform data using map() method.
 - c. Detect and filter outliers.
 - d. Visualize data using Line chart, Bar chart, Histograms, Density chart and Scatter chart.

▼ a. Handle missing data by detecting and dropping/ filling missing values.**

```
name 0
age 2
Score 4
Income 2
dtype: int64
```

```
df.isnull()
          name age Score Income
       0 False False False
       1 False False False
                            False
       2 False False False
                            False
       3 False False True
                            False
       4 False False False
                            False
       5 False False False
                            False
       6 False False
                     True
                            False
                             True
       7 False True
                     True
       8 False True True
                             True
  [ ] df.dropna(inplace=True)
  [] df
           name age Score
                               Income
       0 James 30.0
                       2.0 1299999999.0
            Jane 40.0
                      67.0
                               34000.0
       2 Melissa 32.0
                      80.0
                               56000.0
            Neil 43.0
                      89.0
                               40000.0
                               58000.0
            Jaya 34.0 34.0

    Transform data using map() method.

  [] genders = {'James': 'Male', 'Jane': 'Female', 'Melissa': 'Female', 'Ed': 'Male', 'Neil': 'Male', 'Jaya': 'Female', 'Rita': 'Female'}
  [ ] df['gender'] = df['name'].map(genders)
      print(df)
           name age Score Income gender
      0 James 30.0 2.0 129999999.0 Male
          Jane 40.0 67.0 34000.0 Female
      2 Melissa 32.0 80.0 56000.0 Female
      4 Neil 43.0 89.0 40000.0 Male
      5
         Jaya 34.0 34.0 58000.0 Female
 last_names = pd.Series(['Doe', 'Miller', 'Edwards', 'Nelson', 'Raul'], index=df['name'])
      df['Last Name'] = df['name'].map(last_names)
     df
 0
  ⊡
            name age Score
                                 Income Last Name
          James 30.0
                       2.0 129999999.0
                                              Doe
            Jane 40.0
                       67.0
                                34000.0
                                             Miller
       2 Melissa 32.0
                       80.0
                                56000.0
                                          Edwards
                                 40000.0
            Neil 43.0
                       89.0
                                            Nelson
                                 58000.0
            Jaya 34.0
                       34.0
                                             Raul
```

▼ 6 c. Detect and filter outliers.

Double-click (or enter) to edit

Outlier detection using ZScore

Double-click (or enter) to edit

```
[15] from scipy import stats
data['z']=stats.zscore(data.score,ddof=1)
data
```

```
score
   1 -0.479227
0
       1 -0.479227
      1 -0.479227
       1 -0.479227
      1 -0.479227
       2 -0.191691
       2 -0.191691
       2 -0.191691
       2 -0.191691
8
       2 -0.191691
9
10
      2 -0.191691
       2 -0.191691
11
      3 0.095845
12
13
       3 0.095845
     15 3.546282
```

▼ Filtering outliers.

11

12

13

2 -0.191691

3 0.095845

3 0.095845

```
os [16] nooutliersdata = data[(data.z>-3) & (data.z<3)]
        nooutliersdata
                               ==
            score
         0
                1 -0.479227
                 1 -0.479227
         1
                 1 -0.479227
         2
         3
                 1 -0.479227
         4
                 1 -0.479227
                 2 -0.191691
         5
         6
                2 -0.191691
         7
                 2 -0.191691
         8
                 2 -0.191691
         9
                 2 -0.191691
         10
                 2 -0.191691
```

v d. Visualize data using Line chart, Bar chart, Histograms, Density chart and Scatter chart

Double-click (or enter) to edit

[] data.plot(kind="density")

7. Develop the python script to import excel data into a Pandas data frame and proexcel data b. Fill in the missing values. c. Perform univariate analysis

```
import pandas as pd
   df1 = pd.read_excel('lab7.xlsx')
[3] print(df1)
                     Stream Percentage
         Name Age
    0
        Ankit 18
                     Math
        Rahul 19 Science
                                   85
    1
    2 Shaurya 20 Commerce
                                   85
    3
                                   80
        Raghu 18 Math
        Priya 19 Science
                                   75
    4
```

- a. Get the data types of the given excel data

```
[4] df1.dtypes
                   object
    Name
     Age
                   int64
                   object
     Stream
                    int64
    Percentage
     dtype: object
c. Perform univariate analysis
[5] df1['Percentage'].mean()
      84.0
 [6] df1['Percentage'].median()
      85.0
     df1['Percentage'].mode()
     Name: Percentage, dtype: int64
 [8] df1['Percentage'].var()
     55.0
 [9] df1['Percentage'].std()
     7.416198487095663
```

```
df1.describe()
⊡
                                   ==
                 Age Percentage
      count
              5.00000
                         5.000000
                                    d.
      mean 18.80000
                        84.000000
       std
              0.83666
                         7.416198
       min
             18.00000
                        75.000000
       25%
             18.00000
                        80.000000
       50%
             19.00000
                        85.000000
             19.00000
                        85.000000
       75%
            20.00000
                        95.000000
      max
```

▼ b. Fill in the missing values.

```
[11] df2 = pd.read_excel('lab7.xlsx', sheet_name = 1)
( [12] print(df2)
          Name marks
       0 akhil 80.0
       1 banu 76.0
       2 ravi
               NaN
       3 pooja 45.0
  [13] df2.dtypes
              object
       Name
       marks
             float64
       dtype: object
  [14] require_cols = [0, 2]
  [15] required_df = pd.read_excel('lab7.xlsx', usecols = require_cols)
value [23] print(required_df)
            Name Stream
       0
         Ankit
                   Math
          Rahul Science
       1
       2 Shaurya Commerce
       3 Raghu Math
       4 Priya Science
```

```
[28] df = pd.read_excel('lab7.xlsx',sheet_name = 1)
( [29] print(df)
          Name marks
       0 akhil 80.0
       1 banu 76.0
       2 ravi NaN
       3 pooja 45.0
[31] df['marks'].fillna(method='ffill')
   ⊝ 0
           80.0
          76.0
       1
           76.0
       2
           45.0
       Name: marks, dtype: float64
```

8. Develop the python script to import excel data into a Pandas data frame and process the following: a. Check duplicates and missing data b. Eliminate Mismatches c. Cleans line breaks, spaces, and special characters

- a) Check duplicates and missing data

a. Check duplicates and missing data

▼ b. Eliminate Mismatches

→ c)Clean link text line breaks, spaces, and special characters

```
[ ] df= df.apply(lambda x: x.str.replace(r'[\\n]', ' ', regex=True).str.strip())
    df

[ ] df = df.apply(lambda x: x.str.replace(r'[^a-zA-Z0-9\s]', '', regex=True))
    df
```

```
# import the libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

[] data = pd.read_csv("daily-total-female-births.csv")
 data

	Date	Births
0	1959-01-01	35
1	1959-01-02	32
2	1959-01-03	30
3	1959-01-04	31
4	1959-01-05	44
360	1959-12-27	37
361	1959-12-28	52
362	1959-12-29	48
363	1959-12-30	55
364	1959-12-31	50

365 rows × 2 columns

([<matplotlib.axis.XTick at 0x7efee274a3b0>,

We can notice that it is very difficult to gain knowledge from the above plot as the data fluctuates a lot. So, let us plot it again but using the Rolling Average concept this time.

computing a 7 day rolling average
data['7day_rolling_avg'] = data.Births.rolling(8).mean().shift(-4)

viewing the dataset
data.head(10)

	Date	Births	7day_rolling_avg
0	1959-01-01	35	NaN
1	1959-01-02	32	NaN
2	1959-01-03	30	NaN
3	1959-01-04	31	36.125
4	1959-01-05	44	36.500
5	1959-01-06	29	35.875
6	1959-01-07	45	36.875
7	1959-01-08	43	37.125
8	1959-01-09	38	38.500
9	1959-01-10	27	40.750

```
sns.lineplot( x = 'Date',
             y = 'Births',
             data = data,
             label = 'DailyBirths')
# plot using rolling average
sns.lineplot( x = 'Date',
             y = '7day_rolling_avg',
             data = data,
             label = 'Rollingavg')
plt.xlabel('Months of the year 1959')
# setting customized ticklabels for x axis
pos = [ '1959-01-01', '1959-02-01', '1959-03-01', '1959-04-01',
       '1959-05-01', '1959-06-01', '1959-07-01', '1959-08-01',
       '1959-09-01', '1959-10-01', '1959-11-01', '1959-12-01']
lab = [ 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'June',
       'July', 'Aug', 'Sept', 'Oct', 'Nov', 'Dec']
plt.xticks( pos, lab)
plt.ylabel('Female Births')
```


We can clearly see through the above graph that the rolling average has smoothened the number of female births, and we can notice the peak more evidently.

▼ 10. Perform correlation analysis of all variables in python

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
```

[3] df = pd.read_csv('lab10.csv')
 df.head(5)

	Inches	Ram	Memory	Weight	Price	
0	13.3	8	128	1.37	71378.6832	11.
1	13.3	8	128	1.34	47895.5232	
2	15.6	8	256	1.86	30636.0000	
3	15.4	16	512	1.83	135195.3360	
4	13.3	8	256	1.37	96095.8080	

⋺		Inches	Ram	Memory	Weight	Price	Ħ
	Inches	1.000000	0.161631	0.442950	0.911092	0.024203	1
	Ram	0.161631	1.000000	0.197623	0.037932	0.888951	Ш
	Memory	0.442950	0.197623	1.000000	0.174460	0.195272	
	Weight	0.911092	0.037932	0.174460	1.000000	-0.077049	
	Price	0.024203	0.888951	0.195272	-0.077049	1.000000	

Solve
Download heart-disease.csv
Perform all above operation
and Write About +Ve and -Ve correlation

▼ 11. Perform regression analysis in python.

```
[1]
       import pandas as pd
       import numpy as np
       from sklearn import linear_model
       import matplotlib.pyplot as plt
  [2] df = pd.read_csv('lab11.csv')
            area
                   price
        0 2600
                  550000
        1 3000
                  565000
        2 3200 610000
        3 3600
                  680000
        4 4000 725000
  [3] x = df.drop('price',axis='columns')
       x=x.values
       array([[2600],
               [3000],
               [3200],
               [3600],
                [4000]])
    price = df.price
    price
        550000
       565000
    1
        610000
        680000
        725000
    Name: price, dtype: int64
[5] reg = linear_model.LinearRegression()
    reg.fit(x,price)
     ▼ LinearRegression
    LinearRegression()
[6] reg.predict([[3000]])
    array([587979.45205479])
[7] reg.coef_
    array([135.78767123])
[8] reg.intercept_
    180616.43835616432
```

	Area	Price		
	X Value	Y Value	X*Y	X*X
1	2600	550000	1430000000	6760000
2	3000	565000	1695000000	9000000
3	3200	610000	1952000000	10240000
4	3600	680000	2448000000	12960000
5	4000	725000	2900000000	16000000
Sum	16400	3130000	10425000000	54960000

coeff/Slope(m)=
$$(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$$
 135.7876712
Intercept(b) = $(\Sigma Y - m(\Sigma X)) / N$
180616.4384
 $y=mx+b$ 135.7876*(4000)+180616.4384= **587979.452**

Solve

crteate a CSV file and perform regression analysis and calculations with following data

X Value	Y Value
60	3.1
61	3.6
62	3.8
63	4
65	4.1

▼ 12. Perform data analysis on titanic dataset

```
#loading data
titanic = pd.read_csv('titanic.csv')
titanic.head(5)
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

- 1. PassengerId: Unique Id of a passenger
- 2. Survived: If the passenger survived(0-No, 1-Yes)
- 3. Pclass: Passenger Class $(1 = 1^{st}, 2 = 2^{nd}, 3 = 3^{nd})$
- 4. Name: Name of the passenger
- 5. Sex: Male/Female
- 6. Age: Passenger age in years
- 7. SibSp: No of siblings/spouses aboard
- 8. Parch: No of parents/children aboard
- 9. Ticket: Ticket Number
- 10. Fare: Passenger Fare
- 11. Cabin: Cabin number
- 12. Embarked: Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

```
[ ] titanic.isnull().sum()
    PassengerId
    Survived
    Pclass
    Sex
                  177
    Age
    SibSp
    Parch
                    0
    Ticket
    Fare
    Cabin
                  687
    Embarked
    dtype: int64
```

Features: The titanic dataset has roughly the following types of features:

 Categorical/Nominal: Variables that can be divided into multiple categories but having no order or priority.

Eg. Embarked (C = Cherbourg; Q = Queenstown; S = Southampton)

 Binary: A subtype of categorical features, where the variable has only two categories.

Eg: Sex (Male/Female)

 Ordinal: They are similar to categorical features but they have an order(i.e can be sorted).

Eg. Pclass (1, 2, 3)

 Continuous: They can take up any value between the minimum and maximum values in a column.

Eg. Age, Fare

• Count: They represent the count of a variable.

Eg. SibSp, Parch

Useless: They don't contribute

Here.

PassengerId, Name, Cabin and Ticket might fall into this category.

```
import seaborn as sns
import matplotlib.pyplot as plt

# Countplot
sns.catplot(x ="Sex", hue ="Survived",
kind ="count", data = titanic)
```

<seaborn.axisgrid.FacetGrid at 0x7ea0714254b0>

Just by observing the graph, it can be approximated that the survival rate of men is around 20% and that of women

▼ is around 75%. Therefore, whether a passenger is a male or a female plays an important role in determining if one is going to survive.

```
# Group the dataset by Pclass and Survived and then unstack them
group = titanic.groupby(['Pclass', 'Survived'])
pclass_survived = group.size().unstack()

# Heatmap - Color encoded 2D representation of data.
sns.heatmap(pclass_survived, annot = True, fmt = "d")
```


▼ It helps in determining if higher-class passengers had more survival rate than the lower class ones or vice versa.
Class 1 passengers have a higher survival chance compared to classes 2 and 3. It implies that Pclass contributes a lot to a passenger's survival rate.

. . . .

[] sns.catplot(x ='Embarked', hue ='Survived', kind ='count', col ='Pclass', data = titanic)

Q

Embarked

Embarked

Survived 0

 $\ \ {\bf \ \ \ }$ Majority of the passengers boarded from S.

150 8

100

50

S looks lucky for class 1 and 2 passengers compared to class 3.

Embarked

Q

```
[] # Divide Fare into 4 bins
    titanic['Fare_Range'] = pd.qcut(titanic['Fare'], 4)

# Barplot - Shows approximate values based
# on the height of bars.
sns.barplot(x = 'Fare_Range', y = 'Survived',
data = titanic)
```

<Axes: xlabel='Fare_Range', ylabel='Survived'>

Fare denotes the fare paid by a passenger. As the values in this column are continuous, they need to be put in separate bins(as done for Age feature) to get a clear idea. It can be concluded that if a passenger paid a higher fare, the survival rate is more.

```
# Violinplot Displays distribution of data
# across all levels of a category.
sns.violinplot(x ="Sex", y ="Age", hue ="Survived",
data = titanic, split = True)
```


This graph gives a summary of the age range of men, women and children who were saved. The survival rate is – Good for children.

High for women in the age range 20-50.

Less for men as the age increases.

*Conclusion: *

The columns that can be dropped are:

Passengerld, Name, Ticket, Cabin: They are strings, cannot be categorized and don't contribute much to the outcome.

Age, Fare: Instead, the respective range columns are retained.

Lab 13-Perform data analysis on iris dataset.

•	₫f		pandas as pd od.read_csv("Ir: d()	is.csv")			
		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa

Getting Information about the Dataset

[10] df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
# Column
                  Non-Null Count Dtype
0 Id
                   150 non-null
                                    int64
 1 SepalLengthCm 150 non-null
                                   float64
   SepalWidthCm 150 non-null
PetalLengthCm 150 non-null
                                   float64
                                   float64
 4
   PetalWidthCm 150 non-null
                                   float64
                    150 non-null
    Species
                                    object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
```

- 1 All columns are not having any Null Entries
- 2 Four columns are numerical type
- 3 Only Single column categorical type

▼ Statistical Insight

We can see the count of each column along with their mean value, standard deviation, minimum and maximum values.

▼ Checking Missing Values

```
Id 0
SepalLengthCm 0
SepallwidthCm 0
PetallwidthCm 0
PetallwidthCm 0
Species 0
dtype: int64
```

We can see that no column as any missing value.

▼ Checking the balance

We can see that there are only three unique species. Let's see if the dataset is balanced or not i.e. all the species contain equal amounts of rows or not

```
Species
Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
```

We can see that all the species contain an equal amount of rows

→ Data Visualization*

dtype: int64

Visualizing the target column

Our target column will be the Species column because at the end we will need the result according to the species only.

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.countplot(x='Species', data=df, )
plt.show()
```


- Comparing Sepal Length and Sepal Width

From the above plot, we can infer that -

Species Setosa has smaller sepal lengths but larger sepal widths. Versicolor Species lies in the middle of the other two species in terms of sepal length and width Species Virginica has larger sepal lengths but smaller sepal widths.

▼ Comparing Petal Length and Petal Width

*From the above plot, we can infer that - *

Species Setosa has smaller petal lengths and widths.

Versicolor Species lies in the middle of the other two species in terms of petal length and width Species Virginica has the largest of petal lengths and widths.

Histograms

Histograms allow seeing the distribution of data for various columns. It can be used for uni as well as bi-variate analysis.

```
# importing packages
import seaborn as sns
import matplotlib.pyplot as plt

fig, axes = plt.subplots(2, 2, figsize=(10,10))

axes[0,0].set_title("Sepal Length")
axes[0,0].hist(df['SepalLengthCm'], bins=7)

axes[0,1].set_title("Sepal Width")
axes[0,1].hist(df['SepalWidthCm'], bins=5);

axes[0,1].nist(df['Petal Length")
axes[1,0].set_title("Petal Length")
axes[1,0].hist(df['PetalWidthCm'], bins=6);

axes[1,1].set_title("Petal Width")
axes[1,1].hist(df['PetalWidthCm'], bins=6);
```


From the above plot, we can see that

The highest frequency of the sepal length is between 30 and 35 which is between 5.5 and 6

The highest frequency of the sepal Width is around 70 which is between 3.0 and 3.5

The highest frequency of the petal length is around 50 which is between 1 and 2.

The highest frequency of the petal width is between 40 and 50 which is between 0.0 and 0.5

Handling Correlation


```
sns.heatmap(df.corr(),annot = True);
plt.show()
```

ipython-input-24-c0f1bc477367>:1: FutureWarning: The default value of numeric_only in DataFrame.cc sns.heatmap(df.corr(),annot = True);

From the above graph, we can see that -

Petal width and petal length have high correlations.

Petal length and sepal width have good correlations.

Petal Width and Sepal length have good correlations.