Cpts575 Hw4

Mengxiao

Part 1

```
library(dplyr)
library(graphics)
Auto = read.csv("https://scads.eecs.wsu.edu/wp-content/uploads/2017/09/Auto.csv", na.string = '?')
Auto = na.omit(Auto)
#Auto = Auto[Auto$horsepower != '?',] #Moving out the missing data
```

a. Produce a scatterplot matrix

b. Compute the matrix of correlations.

```
-0.7784268 0.8429834
                                    0.8972570 1.0000000 0.8645377
## horsepower
## weight
              -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
           0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## year
              0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## origin
##
              acceleration
                                year
                                         origin
                0.4233285 0.5805410 0.5652088
## mpg
            -0.5046834 -0.3456474 -0.5689316
## cylinders
## displacement -0.5438005 -0.3698552 -0.6145351
## horsepower
                -0.6891955 -0.4163615 -0.4551715
## weight
                -0.4168392 -0.3091199 -0.5850054
## acceleration
               1.0000000 0.2903161 0.2127458
## year
                0.2903161 1.0000000 0.1815277
## origin
                0.2127458 0.1815277 1.0000000
```

c. Perform a multiple linear regression.

```
lr = lm(mpg^{-}., data = Auto2)
summary(lr)
##
## Call:
## lm(formula = mpg ~ ., data = Auto2)
## Residuals:
      Min
            1Q Median
                           3Q
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707 0.00024 ***
              ## cylinders
## displacement 0.019896 0.007515
                                  2.647 0.00844 **
## horsepower
              -0.016951 0.013787 -1.230 0.21963
## weight
              ## acceleration 0.080576 0.098845
                                  0.815 0.41548
               0.750773
## year
                         0.050973 14.729 < 2e-16 ***
                                 5.127 4.67e-07 ***
## origin
               1.426141 0.278136
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
```

- i. I think the 'displacement', 'weight', 'year' and 'origin' have the statistically significant relationship with the 'mpg', since their P-value are less than (0.05), they are significant.
- ii. Means when the value of displacement increase 1%, the mpg will increase 0.019896%.
- d. Produce diagnostic plots of the linear regression fit.

plot(lr)

The residual plots looks good, but still have some outliers.

Yes, it identifies some unusually outliers

e. Fit linear regression models with interaction effects.

```
lm_e = lm(mpg~cylinders*displacement + weight*displacement, data=Auto2)
summary(lm_e)
##
## Call:
## lm(formula = mpg ~ cylinders * displacement + weight * displacement,
##
       data = Auto2)
##
## Residuals:
       Min
                       Median
                                            Max
                  1Q
                                    3Q
  -13.2934
                      -0.3476
                                        17.7723
##
            -2.5184
                                1.8399
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           5.262e+01
                                      2.237e+00
                                                 23.519
                                                         < 2e-16 ***
                                                           0.322
## cylinders
                           7.606e-01
                                                  0.992
                                      7.669e-01
## displacement
                          -7.351e-02
                                     1.669e-02
                                                 -4.403 1.38e-05 ***
## weight
                          -9.888e-03
                                      1.329e-03
                                                 -7.438 6.69e-13 ***
## cylinders:displacement -2.986e-03
                                                 -0.872
                                      3.426e-03
                                                           0.384
## displacement:weight
                           2.128e-05
                                     5.002e-06
                                                  4.254 2.64e-05 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 4.103 on 386 degrees of freedom
## Multiple R-squared: 0.7272, Adjusted R-squared: 0.7237
## F-statistic: 205.8 on 5 and 386 DF, p-value: < 2.2e-16</pre>
```

We can see from the summay that displacement and weight have statistically significant relationship, but the relationship between cylinders and displacement is not significant.

f. Try transformations of the variables with X^3 and log(X).

plot(sqrt(Auto2\$displacement), Auto2\$mpg)

It looks like the distribution is more aggregated of X³.

Part 2

```
library(MASS)
head(Boston)
        crim zn indus chas
                                         age
                                                dis rad tax ptratio black
                             nox
                                     rm
                                                      1 296
## 1 0.00632 18
                 2.31
                         0 0.538 6.575 65.2 4.0900
                                                                15.3 396.90
## 2 0.02731
                         0 0.469 6.421 78.9 4.9671
                                                      2 242
                                                                17.8 396.90
             0
                 7.07
## 3 0.02729
              0
                 7.07
                         0 0.469 7.185 61.1 4.9671
                                                      2 242
                                                                17.8 392.83
                         0 0.458 6.998 45.8 6.0622
                                                      3 222
## 4 0.03237
              0
                 2.18
                                                                18.7 394.63
## 5 0.06905
                 2.18
                         0 0.458 7.147 54.2 6.0622
                                                      3 222
                                                                18.7 396.90
              0
## 6 0.02985
                         0 0.458 6.430 58.7 6.0622
                                                      3 222
             0
                 2.18
                                                                18.7 394.12
     1stat medv
##
## 1
     4.98 24.0
## 2
     9.14 21.6
## 3
     4.03 34.7
     2.94 33.4
     5.33 36.2
## 5
## 6 5.21 28.7
a.
lm_zn = lm(crim~zn, data=Boston)
lm_indus = lm(crim~indus, data=Boston)
lm_chas = lm(crim~chas, data=Boston)
lm_nox = lm(crim~nox, data=Boston)
lm_rm = lm(crim~rm, data=Boston)
```

```
lm_age = lm(crim~age, data=Boston)
lm_dis = lm(crim~dis, data=Boston)
lm_rad = lm(crim~rad, data=Boston)
lm_tax = lm(crim~tax, data=Boston)
lm_ptratio = lm(crim~ptratio, data=Boston)
lm_black = lm(crim~black, data=Boston)
lm_lstat = lm(crim~lstat, data=Boston)
lm_medv = lm(crim~medv, data=Boston)
```

I find that only 'chas' don't have statistically significant relationship with crim, all of other variables have significant relationship.

b.

```
lm_mul = lm(crim~., data=Boston)
summary(lm_mul)
##
## Call:
## lm(formula = crim ~ ., data = Boston)
##
## Residuals:
##
     Min
              1Q Median
                            3Q
## -9.924 -2.120 -0.353 1.019 75.051
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.033228
                           7.234903
                                       2.354 0.018949 *
## zn
                0.044855
                            0.018734
                                       2.394 0.017025 *
## indus
                -0.063855
                            0.083407
                                     -0.766 0.444294
## chas
                -0.749134
                            1.180147
                                     -0.635 0.525867
## nox
                            5.275536 -1.955 0.051152 .
              -10.313535
                0.430131
                            0.612830
                                      0.702 0.483089
## rm
## age
                0.001452
                            0.017925
                                       0.081 0.935488
## dis
                -0.987176
                            0.281817
                                      -3.503 0.000502 ***
## rad
                0.588209
                            0.088049
                                       6.680 6.46e-11 ***
                -0.003780
## tax
                            0.005156
                                     -0.733 0.463793
                -0.271081
                            0.186450
                                     -1.454 0.146611
## ptratio
## black
                -0.007538
                            0.003673 -2.052 0.040702 *
## lstat
                0.126211
                            0.075725
                                      1.667 0.096208 .
## medv
                -0.198887
                            0.060516 -3.287 0.001087 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.439 on 492 degrees of freedom
## Multiple R-squared: 0.454, Adjusted R-squared: 0.4396
## F-statistic: 31.47 on 13 and 492 DF, p-value: < 2.2e-16
```

In my opinion, we can reject the 'zn', 'dis', 'rad', 'black' and 'medv', since their P-value are all less than 0.05.

c. How do your results from (a) compare to your results from (b)?

efficients of simple is much higher than it of multiple, that the arrange of simple is 0 to 30 and for multiple is from -10 to 0. In my opinion, it is because simple predict only shows whether two variables have relationship and the rate of relation, but the multiple predict shows the rate of different variables' influence.

d. Is there evidence of non-linear association between any of the predictors and the response?

```
lm_zn2 = lm(crim~poly(zn, 3), data=Boston)
lm_indus2 = lm(crim~poly(indus, 3), data=Boston)
lm_nox2 = lm(crim~poly(nox, 3), data=Boston)
lm_rm2 = lm(crim~poly(rm, 3), data=Boston)
lm_age2 = lm(crim~poly(age, 3), data=Boston)
lm_dis2 = lm(crim~poly(dis, 3), data=Boston)
lm_rad2 = lm(crim~poly(rad, 3), data=Boston)
lm_tax2 = lm(crim~poly(tax, 3), data=Boston)
lm_ptratio2 = lm(crim~poly(ptratio, 3), data=Boston)
lm_black2 = lm(crim~poly(black, 3), data=Boston)
lm_lstat2 = lm(crim~poly(lstat, 3), data=Boston)
lm_medv2 = lm(crim~poly(medv, 3), data=Boston)
summary(lm_zn2)
```

```
summary(lm_indus2)
summary(lm_nox2)
summary(lm_rm2)
summary(lm_age2)
summary(lm_dis2)
summary(lm_rad2)
summary(lm_rad2)
summary(lm_btax2)
summary(lm_btax2)
summary(lm_btax2)
summary(lm_btax2)
summary(lm_btax2)
summary(lm_lstat2)
summary(lm_lstat2)
summary(lm_medv2)
```

I have found that only the 'black' don't have non-linear association, since the P-value of quandratic and cubic coefficients are all higher than 0.05. The other variables all have non-linear association, but some of them only have quandratic association and the other have cubic.

Part 3.