Имеются следующие базовые объекты:

- учителя $T = \{t_1, \ldots, t_n\}$
- учебные группы $G = \{g_1, \dots, g_m\}$
- временные слоты на период составления расписания $S = \{s_1, \dots, s_p\}$

Множество слотов S при этом состоит из d отрезков, каждый размером в p_d , соответствующих дням, т.е. $p = d \cdot p_d$ $(d, p_d \in \mathbb{N})$. Несмотря на то, что d в общем случае произвольное, будем иногда называть период составления расписания $nedene\check{u}$.

Для множества X будем через X_{\perp} обозначать множество $X \cup \{\bot\}$, где \bot - некоторое специальное значение, не входящее ни в одно из рассматриваемых нами множеств.

Нужно составить расписание $A \in G_{\perp}^{n \times p}$, где $a_{i,k}$ означает группу, которой во время s_k должен преподавать учитель t_i , либо, если $a_{i,k} = \perp$, что этот учитель в это время свободен. Расписание должно удовлетворять следующим эсёстким требованиям (используется нотация Айверсона):

- Так как мы составляем расписание с точки зрения учителей, то автоматически выполняется, что каждый учитель в каждый слот преподаёт только одной группе. Аналогичное же правило для групп нужно потребовать дополнительно: $\forall i_1 = \overline{1, n}, i_2 = \overline{i_1} + 1, n, j = \overline{1, m}, k = \overline{1, p} \ [a_{i_1,k} = g_j \land a_{i_2,k} = g_j] = 0 \ (hard_1(A))$
- Задана матрица $R \in \mathbb{Z}_{\geq 0}^{n \times m}$. Учитель t_i должен провести у группы g_j ровно $r_{i,j}$ занятий за неделю, то есть $\forall i = \overline{1,n}, j = \overline{1,m}$ $\sum_{k=1}^p [a_{i,k} = g_j] = r_{i,j} \; (hard_2(A))$
- Задана матрица $F \in \{0,1\}^{n \times p}$, где $f_{i,k}$ задаёт доступность учителя t_i во время s_k . Нужно, чтобы выполнялось $\forall i = \overline{1,n}, k = \overline{1,p} \ [a_{i,k} \neq \bot] \leq f_{i,k} \ (hard_3(A))$

Введём вспомогательную функцию k, определённую для $x \in \{1, \ldots, d\}$ и $y \in \{1, \ldots, p_d\}$ как $k(x,y) = (x-1)p_d + y$, то есть сопоставляющую номеру дня и номеру слота внутри дня глобальный номер этого слота.

Жёсткие требования определяют множество *допустимых* решений, на котором мы уже будем стремиться как можно лучше в некотором смысле удовлетворить *мягким требованиям*. Введём некоторые функции.

- Учителям удобнее разместить свои занятия по возможности компактнее, то есть минимизировать количество $\partial upo\kappa$ пустых слотов, по обе стороны от которых в этот день у этого преподавателя есть занятия. Таким образом, $\forall i=\overline{1,n}$ и для расписания A определим функцию $holes_i(A) = \sum_{x=1}^d \sum_{y=1}^{p_d} \left([a_{i,k(x,y)} = \bot] \cdot \left[\sum_{y=1}^{y-1} \sum_{y=y+1}^{p_d} [a_{i,k(x,y_1)} \neq \bot \wedge a_{i,k(x,y_2)} \neq \bot] > 0 \right] \right)$
- Даже если учитель может провести занятие в какое-то время, оно может быть для него неудобным, то есть имеется мягкая версия требования $hard_3$. Эти $y \partial o b c m b a$ будут задаваться с помощью аналогичной по формату матрицы $C \in \{0,1\}^{n \times p}$, где $c_{i,k} = 1$, если учителю t_i $y \partial o b a$ провести занятие во время s_k . Таким образом, $\forall i = \overline{1,n}$ и для расписания A определим функцию inconvenient $a \in [0,1]$ $a_i \in [0$

Назначим первой разновидности мягких требований некоторый вес w_1 , а второй некоторый вес w_2 . Например, можно положить $w_1=1, w_2=3$, но для общей постановки константы несущественны. В итоге получаем следующую задачу:

$$\min_{A \in G_{\perp}^{n \times p}} L(A) = \sum_{i=1}^{n} (w_1 \cdot \text{holes}_i(A) + w_2 \cdot \text{inconvenient}_i(A))$$

$$s.t. \ \text{hard}_1(A) \wedge \text{hard}_2(A) \wedge \text{hard}_3(A)$$