Cours MOdélisation, Vérification et Expérimentations Exercices

Structures partiellement ordonnées, treillis complets, points-fixes (I) par Dominique Méry

7 mai 2025

Nous supposons que les opérations suivantes sont définies pour une collection $A_0, \ldots, A_i \ldots i \in \mathbb{N}$ de parties de l'ensemble E:

 $- \cup_{i \in \mathbb{N}} A_i = \{ e \in E | \exists i \in \mathbb{N} : e \in A_i \}$

 $- \cap_{i \in \mathbb{N}} A_i = \{ e \in E | \forall i \in \mathbb{N} : e \in A_i \}$

Ces deux définitions sont correctes et légales. Elles définissent en compréhension deux ensembles.

Exercice 1 Montrer que les structures suivantes sont des structures partiellement ordonnées inductives :

Question 1.1 $(\mathbb{P}(E),\subseteq)$ avec E un ensemble quelconque.

Question 1.2 (E^{\perp}, \sqsubseteq) tel que

- 1. $E^{\perp} = E \cup \perp (et \perp \notin E)$
- 2. $\sqsubseteq \subseteq E \times E : soit \ x \in E \ et \ y \in E \ x \sqsubseteq y \Leftrightarrow (x = \bot \lor x = y)$

Question 1.3 Soient A et B deux ensembles. Montrer que la structure $(A \leftrightarrow B, \sqsubseteq)$ est une structure partiellement ordonnée inductive.

Exercice 2 On rappelle qu'une fonction continue au sens de la topologie de Scott est monotone croissante. Indiquer et montrer si les fonctionnelles suivantes sont monotones et/ou continues).

- 1. $(F_1(f))(x) = \text{if } (\forall y \in \mathbb{Z}. f(y) = y) \text{ then } f(x) \text{ else } \bot$
- 2. $(F_2(f))(x) =$ if $x \notin dom(f)$ then 0 else \bot
- 3. $(F_3(f))(x) =$ if x = 0 then 1 else f(x+1)

 \perp est une expression qui signifie que cést une valeur indéfinie.

Question 2.1 $(F_1(f))(x) = \text{if } (\forall y \in \mathbb{Z}.f(y) = y) \text{ then } f(x) \text{ else } \bot$

Question 2.2 $(F_2(f))(x) = \text{if } x \notin dom(f) \text{ then } 0 \text{ else } \bot$

Question 2.3 $(F_3(f))(x) =$ if x = 0 then 1 else f(x+1)

Exercice 3 Déterminer les points-fixes des fonctionnelles suivantes et leur plus petit point-fixe, s'ils existent. On travaille dans \mathbb{Z} .

- 1. $F_1(f)(x) = 0$ then 1 else 0 et expliquer si le programme f1 a du sens et ce qu'il calcule :
- 2. $F_2(f)(x) =$ if f(x) = 0 then 0 else 1
- 3. $F_3(f)(x) \cong$ if x = 0 then 1 else f(x+1)

Exercice 4 Soit $E = \mathbb{N} \to \mathbb{N}$, soit la fonctionnelle $\tau \in E \to E$ définie par :

$$(\tau(F))(x) \stackrel{\triangle}{=} \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot F(x-1)$$

- 1. Calculer $\tau(\varnothing)$, $\tau^2(\varnothing) = \tau(\tau(\varnothing))$, $\tau^3(\varnothing)$. En déduire $\tau^i(\varnothing)$ et le démontrer par récurrence.
- 2. En déduire le plus petit point fixe.

Question 4.1 Calculer $\tau(\varnothing)$, $\tau^2(\varnothing) = \tau(\tau(\varnothing))$, $\tau^3(\varnothing)$. En déduire $\tau^i(\varnothing)$ et le démontrer par récurrence.

Question 4.2 En déduire le plus petit point fixe.

Exercice 5 Soit la fonctionnelle $\tau \in (\int + f) + (\int + f)$:

$$(F(f))(x) = \text{if } x > 100 \text{ then } x-10 \text{ else } f(f(x+11))$$

Question 5.1 *Montrez que* $\mu F \sqsubseteq g$ *avec*

$$g(x) \stackrel{\frown}{=} \text{ if } x > 100 \text{ then } x-10 \text{ else } 91$$

Question 5.2 Ecrire une fonction C calculant cette fonction et étudier sa correction.

Exercice 6 On considère une fonction f5 définie par le code C suivant :

Question 6.1 Traduire cette définition en une définition fonctionnelle qui précisera le domaine du problème.

Question 6.2 Soient les définitions suivantes où \mathcal{F} désigne la fonctionnelle définie dans la question précédente :

```
 \begin{split} & - \mathcal{F}^{2n} = \{(p,v_p) | 0 \leq p < n \wedge v_p = g(p)\} \cup \{(p,v_p) | 0 > p \geq -(n-1) \wedge v_p = g(p)\} \cup \{(n,g(n))\} \\ & - \mathcal{F}^{2n+1} = \{(p,v_p) | 0 \leq p < n \wedge v_p = g(p)\} \cup \{(p,v_p) | 0 > p \geq -(n-1) \wedge v_p = g(p)\} \cup \{(n,g(n)), (-n,g(-n))\} \\ & \textit{Montrer qu'elles sont correctes en utilisant une récurrence.} \end{split}
```

Question 6.3 *En déduire que* $\mu \mathcal{F} = \mathcal{F}^0 \cup \mathcal{F}^1 \cup \mathcal{F}^2 \cup \mathcal{F}^3 \cup \ldots \cup \mathcal{F}^{2n} \cup \mathcal{F}^{2n+1} \ldots$

Question 6.4 *Montrer que, pour tout* $p \in \mathbb{N}$, $p \in \mathcal{F}^{2p} \cup \mathcal{F}^{2p+1}$

Question 6.5 Montrer que $\mu \mathcal{F}$ vérifie la propriété $\mu \mathcal{F} \sqsubseteq g$ où g(x) = if odd(x) then 2 else 0 fi

Question 6.6 En déduire que $\mu \mathcal{F} = q$.

```
Exercice 7 Soit la fonction définie comme suit : F(f)(x) = \begin{cases} & \text{if } x = p \text{ then } p \\ & \text{else if } x = q \text{ then } q \\ & \text{else } f(x+p+q) \\ & \text{fi} \end{cases}
```

On suppose que p et q sont deux constantes non nulles entières positives distinctes et que F est une fonction partielle $(\in (\mathbb{Z} \to \mathbb{Z}) \longrightarrow (\mathbb{Z} \to \mathbb{Z}))$. On se place dans le cadre de la topologie de Scott sur léspace $(\mathbb{Z} \to \mathbb{Z}) \longrightarrow (\mathbb{Z} \to \mathbb{Z}), \sqsubseteq$) où $f \sqsubseteq g$ signifie que f est moins définie que g (ou $graph(f) \subseteq graph(g)$).

Question 7.1 Expliquez clairement pourquoi l'équation F(f) = f admet un plus petit point-fixe.

Question 7.2 *Ecrire une fonction C calculant le plus petit point-fixe* μF *de* F.

```
Question 7.3 1. Calculer \mu F(p), \mu F(q), \mu F(-p), \mu F(-q).
2. Calculer pour k entier naturel, \mu F(-(k+1) \cdot p - k \cdot q) et \mu F(-(k+1) \cdot q - k \cdot p)
```

Question 7.4 Donnez une expression simplifiée de la fonction μF . Pour cela, on pourra utiliser la caractérisation de μF par le théorème du point-fixe pour les fonctions continues au sens de Scott.

Exercice 8 (invariant inductif)

On rappelle les définitions suivantes. Un modèle relationnel MS pour un système S est une structure

$$(Th(s,c), x, VALS, INIT(x), \{r_0, \ldots, r_n\})$$

οù

- Th(s,c) est une théorie définissant les ensembles, les constantes et les propriétés statiques de ces éléments.
- x est une liste de variables flexibles.
- VALS est un ensemble de valeurs possibles pour x.
- $\{r_0, \ldots, r_n\}$ est un ensemble fini de relations reliant les valeurs avant x et les valeurs après x'.
- INIT(x) définit lénsemble des valeurs initiales de x.

On note NEXT $\stackrel{def}{=} r_0 \lor ... \lor r_n$. Une propriété S est une propriété de sûreté pour le système S, si $\forall y, x \in \text{VALS}.Init(y) \land \text{NEXT}^*(y,x) \Rightarrow x \in S$. On définit la fonction suivante F sur $\mathcal{P}(\text{VALS})$ à valeurs dans $\mathcal{P}(\text{VALS})$: $F(X) = Init \cup Next[X]$ où Next[X] est lénsemble des états accessibles à partir de X par Next. On rappelle aussi que x peut être une variable ou une liste de variables; X VALS est donc un ensemble de valeurs ou de tuples de valeures correspondant à X.

Question 8.1 *Montrer que* $(\mathcal{P}(VALS), \subseteq, \varnothing, \cup, \cap)$ *est un treillis complet.*

Question 8.2 Montrer que F est croissante monotone.

Question 8.3 *Montrer que* F *admet un plus petit point-fixe noté* μF .

Question 8.4 Montrer que μF est un invariant inductif de F et que cést le plus petit.

Question 8.5 *Montrer que, pour toute propriété de sûreté* S, $\mu F \subseteq S$.

Question 8.6 On suppose que VALS est finie. Montrer qu'il existe un algorithme pour vérifier qu'une propriété S est une propriété de sûreté pour un système donné défini comme ci-dessus.

Exercice 9 Question 9.1 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires z == exp1 ;
  ensures \result == exp2;
*/
int q2(int x,int y, int z){
  /*@ assert B(x,y,z) ; */
  x = y+1;
  /*@ assert A(x,y,z); */
```

```
y = x + z;
/*@ assert y == 3 + x ; */
return y;
}
```

En utilisant l'opérateur wp, proposer des assertions pour A(x, y, z) et B(x, y, z) et des valeurs pour les expressions expr1 et expr2, afin que le contrat soit correct.

Question 9.2 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires A(x,y,z) ;
  ensures \result == 6 ;
*/
int q2(int x,int y, int z){
    /* @ assert B(x,y,z) ; */
    x = y+1;
    /* @ assert C(x,y,z); */
    y = x + z;
    /* @ assert D(x,y,z); */
    return y;
}
```

En utilisant l'opérateur wp, proposer des assertions pour A(x,y,z), B(x,y,z), C(x,y,z) et D(x,y,z), afin que le contrat soit correct.

Question 9.3 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires A;
ensures \result == 0;
  assigns \nothing;
*/

int f(int c) {
  int x = 49;
  int z = 2*c;
  int y = (2*c+1)*(2*c+1);
    //@ assert B;
    y= x+z+1;
    //@ assert x == 49 && z == 2*c && y == (c+1)*(c+1);
    return(0);
}
```

En utilisant l'opérateur wp, proposer des assertions pour A et B, afin que le contrat soit correct.

Question 9.4 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires A(x,y,z);
ensures \result == 12;
*/

int q2(int x,int y, int z){

/* @ assert B(x,y,z); */
x = y+z;
/* @ assert C(x,y,z); */
y = x + 1;
/* @ assert D(x,y,z); */
```

```
return y;
}
```

En utilisant l'opérateur wp, proposer des assertions pour A(x,y,z), B(x,y,z), C(x,y,z) et D(x,y,z), afin que le contrat soit correct.

Question 9.5 Soit le petit programme suivant annoté mais incomplet.

```
33/*@ requires A;
ensures \result == 0;
  assigns \nothing;
*/

int f(int c) {
  int x = 49;
  int z = 2*c;
  int y = (2*c+1)*(2*c+1);
    //@ assert B;
    y= x+z+1;
    //@ assert x == 49 && z == 2*c && y == (c+1)*(c+1);
    return(0);
}
```

En utilisant l'opérateur wp, proposer des assertions pour A et B, afin que le contrat soit correct.