Esercitazione di Laboratorio: Amplificatori operazionali con retroazione

Coa Giulio Licastro Dario Montano Alessandra $2 \ {\rm gennaio} \ 2020$

1 Scopo dell'esperienza

Gli scopi di questa esercitazione sono:

- Analizzare il comportamento e misurare i parametri di amplificatori reazionati.
- Verificare alcune deviazioni rispetto al comportamento previsto con i modelli ideali.

2 Strumentazione utilizzata

La strumentazione usata durante l'esercitazione è:

Strumento	Marca e Modello	Caratteristiche
Oscilloscopio	Rigol DS1054Z	4 canali,
		$B = 50 \mathrm{MHz},$
		$f_{\rm c} = 1 {\rm G} \frac{{\rm Sa}}{{\rm s}},$
		$R_{\rm i} = 1 { m M} \Omega$
		$C_{\rm i}$ = 13 pF,
		12 Mbps di profondità di memoria
Generatore di segnali	Rigol DG1022	2 canali,
		$f_{\rm uscita} = 20 \mathrm{MHz},$
		$Z_{ m uscita}$ = 50Ω
Alimentatore in DC	Rigol DP832	3 canali
Scheda premontata	A3	
Cavi coassiali		Capacità dell'ordine dei $80 \div 100 \mathrm{p} \frac{\mathrm{F}}{\mathrm{m}}$
Connettori		- 111

3 Premesse teoriche

3.1 Incertezza sulla misura dell'oscilloscopio

La misura del valore di un segnale tramite l'oscilloscopio (sia esso l'ampiezza, la frequenza, il periodo, etc.) presenta un'incertezza che dipende, principalmente, da due fattori:

- l'incertezza strumentale introdotta dall'oscilloscopio (ricavabile dal manuale).
- l'incertezza di lettura dovuta all'errore del posizionamento dei cursori.

Quest'ultima incertezza deriva dal fatto che il segnale visualizzato non ha uno spessore nullo sullo schermo.

3.2 Amplificatore

Un amplificatore è un doppio bipolo unidirezionale caratterizzato dalla seguente relazione

$$y(t) = A \cdot x(t)$$

Dove A è detto guadagno dell'amplifiatore.

(b) Circuito equivalente ad un amplificatore.

In base al tipo di segnale in ingresso e in uscita, possiamo distinguere quattro tipi di amplifiatori:

- Amplificatore di Tensione.
- Amplificatore di Transconduttanza.
- Amplificatore di Transresistenza.
- Amplificatore di Corrente.

3.2.1 Amplificatore operazionale

L'amplificatore operazionale è un amplificatore differenziale, ovvero amplifica la differenza delle tensioni ai suoi capi, che presenta un'amplificazione $A_{\rm d}$ idealmente infinita.

$$A_{\rm d} = \frac{v_{\rm out}}{v_{\rm d}} =$$
$$= \frac{v_{\rm out}}{v^+ - v^-}$$

Figura 2: Amplificatore operazionale

3.2.2 Amplificatore differenziale

.

4 Esperienza in laboratorio

4.1 Amplificatore non invertente

Abbiamo connesso opportunamente i coccodrilli ai nodi d'ingresso ed uscita dell'amplificatore ed alla massa, abbiamo impostato i vari interruttori nel modo richiesto.

Abbiamo impostato $V_{\rm pp}=1\,{\rm V}$ e $f=2\,{\rm kHz},$ in seguito abbiamo misurato con l'oscilloscopio $V_{\rm i}$ e $V_{\rm o}.$

4.2 Amplificatore invertente

.

4.3 Amplificatore differenziale

.

4.4 Amplificatore AC/DC

•

- 5 Risultati
- 5.1 Amplificatore non invertente

.

5.2 Amplificatore invertente

.

5.3 Amplificatore differenziale

.

5.4 Amplificatore AC/DC

.