Miscellaneous notes for D. Huybrechts's Complex Geometry

Taper

September 26, 2016

Abstract

Miscellaneous notes for D. Huybrechts's book $Introduction\ to\ Complex\ Geometry,$ include some homeworks done.

Contents

1	The	estructure of almost complex structures on \mathbb{R}^4 (exer-	
	cise	1.2.1)	1
	1.1	Understand $\frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$	3
		1.1.1 Why $M_n = \frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$	3
		1.1.2 Why $GL(n,\mathbb{C}) \hookrightarrow GL^+(2n,\mathbb{R})$	
		1.1.3 Determinants of Block Matrices	6
		1.1.4 Why $GL(n,\mathbb{C}) \hookrightarrow GL^+(2n,\mathbb{R})$ (continued)	8
	1.2	Math.SE answer in M_2 is two copies of S^2	8
	1.3	Fibration	10
2	Anchor		11
3	Lice	ense	12

1 The structure of almost complex structures on \mathbb{R}^4 (exercise 1.2.1)

In exercise 1.2.1, it says that the set of all compatible almost complex structures on a euclidean space of dimension 2n, is two copies of S^2 .

To show it, I tried first a straight calculation. Assuming the almost complex structure $I = (a_{ij})$. Then we have:

Exercises

1.2-1.

Q: Let
$$(\nabla, \langle \cdot, \rangle)$$
: euclidian space of din=4. Show: {all compatible almost complex structures } two copies of $S^2 = a two balls$.

Recap: compatible: $I: I^2=-1, \langle I(v), I(w) \rangle = \langle v, w \rangle$

Choose an orthogonal basis:
$$e_1 \cdots e_4$$

Let
$$I = (a_{ij})$$

$$\int I^2 = a_{ij}^i a_k^j = -\delta_k^i$$

also
$$\langle , \rangle \approx \delta_j^i$$
 &

$$\langle I(w), I(w) \rangle = (a^{i}_{j} v^{j}) \cdot \delta^{i}_{k} (a^{k}_{i} w^{k}) = v^{i} \delta^{i}_{k} w^{k}$$

$$(\forall \vec{v}, \vec{w})$$
Hence $a^{i}_{j} \delta^{i}_{k} a^{k}_{i} = \delta_{j} \ell$ or $\int \underline{a^{i}_{j}} a^{i}_{k} = \delta_{j} k$

For example:

$$\frac{\sum_{j} \alpha_{j}^{1} \alpha_{2}^{j}}{a_{1}^{j} \alpha_{2}^{j}} = 0 = \sum_{j} \alpha_{1}^{j} \alpha_{2}^{j} \Rightarrow \frac{4}{\sum_{j=2}^{4}} \alpha_{1}^{1} \alpha_{2}^{0} = \frac{4}{\sum_{j=2}^{4}} \alpha_{1}^{1} \alpha_{2}^{0}$$

This can be generalized:
$$\int_{j=1}^{j=2} \frac{1}{a_{k}^{j}} a_{k}^{j} = \frac{1}{a_{k}^{j}}$$

Figure 1: Draft

Then I discover this too hard to work, because too many equations are involed, and none of them could be eliminiated by other. Meanwhile, I found a post in Math.SE about this [2]. Here are several important concepts for understanding that post.

Understand $\frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$

1.1.1 Why
$$M_n = \frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$$

This is a note of my question on Math.SE [5], which explains that we can

identify the set of almost complex structures with $\frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$. First, I try to do it when n=1. I inject a complex number a+bi by identify it with $a\mathbb{I}+b\mathbb{J}$, where \mathbb{I} is the identify matrix and \mathbb{J} is $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. I take one set of basis of $GL(2,\mathbb{R})$ as:

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}0&-1\\1&0\end{array}\right),\left(\begin{array}{cc}0&0\\1&0\end{array}\right),\left(\begin{array}{cc}0&0\\0&1\end{array}\right)$$

(I think this is a basis because the following matrix is non-singular:

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right)$$

) Then the $\frac{\mathrm{GL}(2n,\mathbb{R})}{\mathrm{GL}(n,\mathbb{C})}$ becomes equivalent classes represented by

$$\left(\begin{array}{cc}0&0\\c&d\end{array}\right)$$

However, I don't know how to link this with an almost complex structure.

I have a feeling that I might have been in the wrong direction. It was pointed out that $GL(2n,\mathbb{R})$ is not even a vector space. So what I did is in fact nonsense.

Below is one correct answer I got:

An almost-complex structure is a matrix J such that $J^2 = -I$ is the negative identity. As you said, one example of such a matrix J is

$$\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

Interpreting $GL(n,\mathbb{C})$ as a subgroup of $GL(2n;\mathbb{R})$ depends on having fixed such an almost-complex structure. Once we have a matrix J, we can call a matrix $A \in GL(2n; \mathbb{R})$ complex-linear if it commutes with J, i.e. $AJA^{-1} = J$.

(The idea is that \mathbb{C} -linear maps T are just real linear maps with the additional property that T(iv) = iT(v) for all vectors v)

Given any matrix $A \in GL(2n;\mathbb{R})$, we get another almost-complex structure AJA^{-1} . This is the same almost-complex structure J if and only if $A \in GL(n; \mathbb{C})$. On the other hand, all almost-complex structures are similar (although it may take some work to be convincing that they are similar over \mathbb{R} and not only \mathbb{C}) since they are diagonalizable with the same eigenvalues $\pm i$. That gives you a bijection

$$GL(2n; \mathbb{R})/GL(n; \mathbb{C}) \longrightarrow \{\text{almost} - \text{complex structures}\}\$$

under which a class $A \cdot GL(n; \mathbb{C})$ corresponds to the almost-complex structure AJA^{-1} .

I questioned him:

- 1. Why AJA^{-1} is the same almost-complex structure J if and only if $A \in \mathrm{GL}(n;\mathbb{C}).$
- 2. Why all almost-complex structures are similar over \mathbb{R} .

He responsed that:

- 1. is the definition of $GL(n; \mathbb{C})$ as matrices A with $AJA^{-1} = J$.
- 2. comes from the fact that any real matrices that are similar over \mathbb{C} are already similar over \mathbb{R} . This isn't trivial but it has been asked and answered many times on this site: here is one reference [6].

Inside that reference, the following theorem is proved:

Theorem 1.1. Let E be a field, let F be a subfield, and let A and B be nxn matrices with coefficients in F. If A and B are similar over E, they are similar over F.

However, I still have doubts about the following question: For $A \in \mathrm{GL}(2n,\mathbb{R})$, if $AJA^{-1}=J$, can we conclude that A is inside $\mathrm{GL}(n,\mathbb{C})$? The following is my solution:

Lemma 1.1. There exists a injection ϕ of $GL(n, \mathbb{C}) \hookrightarrow GL(2n, \mathbb{R})$ such that:

$$\phi(iB) = \phi(i)\phi(B) \tag{1.1.1}$$

for any $B \in GL(n, \mathbb{C})$. Also, for any $A \in GL(2n, \mathbb{R})$ we have $AJA^{-1} = J$ if and only if $A \in Im(\phi)$, where $J \equiv \phi(i)$.

Proof. The ϕ is construct as follows. Let $J_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, define H(x+iy) for $x, y \in \mathbb{R}$ as

$$H(x+iy) = xI + yJ \tag{1.1.2}$$

Then:

$$\phi(A)_{ij} \equiv H(a_{ij}) \tag{1.1.3}$$

Then:

$$\phi(i) = \begin{pmatrix} J & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & J \end{pmatrix}$$
 (1.1.4)

By direct simple calculation (remember to use the technique of block multiplication), we have: $\phi(iB) = \phi(i)\phi(B)$. for any $B \in GL(n, \mathbb{C}$. This shows also $BJB^{-1} = J$, since iB = Bi.

To prove the converse, we see that the following matrices forms a basis of 2x2 real matrices:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

They are denoted, from left to right as I, J_0, K, L . Let any $A \in GL(2n, \mathbb{R})$, we can partition A into a matrix of 2x2 matrices (a_{ij}) . Each matrix can the be expressed as $a_{ij} = x_{ij}I + y_{ij}J_0 + z_{ij}K + t_{ij}L$. Then if $AJA^{-1} = J$, by direct calculation we find:

$$(z_{ij}K + t_{ij}L)J_0 = J_0(z_{ij}K + t_{ij}L)$$

then also by direct calculation, it can be easily found that $z_{ij} = t_{ij} = 0$. Hence $A \in \text{Im}(\phi)$.

1.1.2 Why $GL(n, \mathbb{C}) \hookrightarrow GL^+(2n, \mathbb{R})$

To understand that post [2], I also read this [3]. In it, it asks how to prove that

$$GL(n,\mathbb{C}) \hookrightarrow GL^+(2n,\mathbb{R})$$
 (1.1.5)

for any n. The questioner gives the intuition for this fact:

how about since as Lie groups, $GL(n,\mathbb{C}) \subset GL(2n,\mathbb{R})$ and $GL(n,\mathbb{C})$ is connected but $GL(2n,\mathbb{R})$ has two connected components, one for positive determinant and one for negative determinant? And the identity has positive determinant, so it must lie in that component.

Someone answered that question:

The claim is: If V is an n-dimensional complex vector space with underlying 2n-dimensional real vector space W, then the canonical group monomorphism $\operatorname{GL}(V) \to \operatorname{GL}(W)$ lands inside $\operatorname{GL}^+(W) = \{f \in \operatorname{GL}(W) : \det(f) > 0\}$. The purpose of this abstract reformulation is that we may use operations on vector spaces in order to simplify the problem: If V' is another finite-dimensional complex vector space with underlying real vector space W', the diagram

$$GL(V) \times GL(V') \rightarrow GL(W) \times GL(W')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad (1.1.6)$$

$$GL(V \oplus V') \rightarrow GL(W \oplus W')$$

commutes, and the image of $\operatorname{GL}^+(W) \times \operatorname{GL}^+(W')$ is contained in $\operatorname{GL}^+(W \oplus W')$. Therefore, if some element in $\operatorname{GL}(V \oplus V')$ lies in the image of $\operatorname{GL}(V) \times \operatorname{GL}(V')$, it suffices to consider the components. Combining this with the fact that $\operatorname{GL}(V)$ is

Fun fact: $[K, J_0] = \sigma_z$, $[L, J_0] = \sigma_x$, the pauli matrices!

generated by elementary matrices (after chosing a basis of V), we may reduce the whole problem to the following three types of matrices:

- the 1×1 -matrices (λ) ,
- the 2 × 2-matrices $\begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$,
- and the 2×2 -matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Write $\lambda = a + ib$ with $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. Then, the complex 1×1 -matrix (λ) becomes the real 2×2 -matrix $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, which

has determinant $a^2+b^2>0$. The complex 2×2 -matrix $\begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$

becomes the real 4 × 4-matrix $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a & -b & 1 & 0 \\ b & a & 0 & 1 \end{pmatrix}$, which has

determinant 1. Finally, the complex 2×2 -matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ be-

comes the real 4×4 -matrix $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, which has deter-

minant 1

However, this proof is not complete because, to build the proof from \mathbb{R}^2 to \mathbb{R}^{2n} , it requries, in his argument, that any element in $\mathrm{GL}(V \oplus V)$ is in the image of $\mathrm{GL}(V) \times \mathrm{GL}(V')$, which is not the case.

On the other hand, it seems that this property can be proved directly by calculation. The following will be a notes of a paper [4], which one comment mentions in the Math.SE post [3].

1.1.3 Determinants of Block Matrices

This paper tries to prove the theorem:

Theorem 1.2. Let R be a commutative subring of ${}^nF^n$, where F is a field (or a commutative ring), and let $M \in {}^mR^m$. Then

$$det_F \mathbf{M} = det_F (det_R \mathbf{M}) \tag{1.1.7}$$

In particular, we have:

$$\det_{F} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \det_{F} (AD - BC) \tag{1.1.8}$$

Note that, that the ring being is commutative excludes some ambiguity. For example, when the ring 4 is not commutative, then the quantity:

$$\det_F \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} \tag{1.1.9}$$

is not well-defined. It can be AD - BC, or DA - CB, etc.

Before the proof of the main theorem, it establishes several facts:

$$\det_{F} \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \det_{F} \mathbf{A} \det_{F} \mathbf{D}$$
 (1.1.10)

$$\det_{F} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{D} \end{pmatrix} = \det_{F} \mathbf{A} \det_{F} \mathbf{D}$$
 (1.1.11)

$$\det_{F} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{0} \end{pmatrix} = \det_{F} - \mathbf{C} \det_{F} \mathbf{B}$$
 (1.1.12)

$$\det_F \mathbf{A} \det_F \mathbf{D} = \det_F \mathbf{I}_n \det_F (\mathbf{A} \mathbf{D}) \tag{1.1.13}$$

He first builds up a seemingly simplified, but is actually different version of the main theorem:

Theorem 1.3. Let
$$\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \in {}^nF^n$$
. Let $\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$.

If
$$CD = DC$$
, then,

$$det_F \mathbf{M} = det_F (\mathbf{AD} - \mathbf{BC}) \tag{1.1.14}$$

and similar results:

if
$$\mathbf{AC} = \mathbf{CA}$$
then, $\det_F \mathbf{M} = \det_F (\mathbf{AD} - \mathbf{CB})$ (1.1.15)

if
$$\mathbf{BD} = \mathbf{DB}$$
then, $\det_F \mathbf{M} = \det_F (\mathbf{DA} - \mathbf{BC})$ (1.1.16)

if
$$AB = BA$$
then, $det_F M = det_F (DA - CB)$ (1.1.17)

These equalities can be proved easily by the following:

$$\begin{pmatrix} D & 0 \\ -C & i \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ CD - DC & D \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ 0 & D \end{pmatrix} \text{ when } C, D \text{ commutes}$$

$$\begin{pmatrix} D & -B \\ 0 & i \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} DA - BC & DB - BD \\ C & D \end{pmatrix} = \begin{pmatrix} DA - BC & 0 \\ C & D \end{pmatrix} \text{ when } D, B \text{ commutes.}$$

The author also gives an illuminative explanation for why

$$(\det_F \mathbf{M} - \det_F (\mathbf{AD} - \mathbf{BC})) \det_F \mathbf{D} = 0$$

necessarily implies:

$$\det_{F} \mathbf{M} = \det_{F} (\mathbf{AD} - \mathbf{BC})$$

However, I am dubious about this conclusion, since I think it needs in addition that the polynomial ring F[x] has not nonzero zero divisor.

Having demonstrated the above simple case, the author continues to prove the main theorem. He proves by induction. He first uses:

$$\begin{pmatrix} A & b \\ c & d \end{pmatrix} \begin{pmatrix} dI & 0 \\ -c & 1 \end{pmatrix} = \begin{pmatrix} A_0 & b \\ 0 & d \end{pmatrix}$$
 (1.1.18)

where $A, A_0 \in {}^{m-1}R^{m-1}, b \in {}^{m-1}R, c \in R^{m-1}, d \in R$. Therefore, (let $M = \begin{pmatrix} A & b \\ c & d \end{pmatrix}$) with similar reason mentioned before, he shows if:

$$\det_F \mathbf{A_0} = \det_F (\det_{\mathbf{R}} \mathbf{A_0}) \tag{1.1.19}$$

(which is true by induction) then:

$$\det_F \mathbf{M} = \det_F(\det_{\mathbf{R}} \mathbf{M}) \tag{1.1.20}$$

Proof completes.

He also mentions a corollary:

Corollary 1.1. Let $\mathbf{P} \in {}^{n}F^{n}$ and $\mathbf{Q} \in {}^{m}F^{m}$, then

$$det_F(\mathbf{P} \otimes \mathbf{Q}) = (det_F \mathbf{P})^m (det_F \mathbf{Q})^n$$
(1.1.21)

The proof is quite straightforward and is omitted.

1.1.4 Why $GL(n,\mathbb{C}) \hookrightarrow GL^+(2n,\mathbb{R})$ (continued)

With above theorem, the proof of equation 1.1.5 is straight forward. Since for $(a_{ij}) = A \in GL(n, \mathbb{C})$, it injects into $GL(2n, \mathbb{R})$ as matrices of the form:

$$\left(\begin{array}{cccc} \dots & \dots & \dots \\ \dots & Ha_{ij} & \dots \\ \dots & \dots & \dots \end{array}\right)$$

where:

$$H(z \equiv x + iy) = \left(\begin{array}{cc} x & -y \\ y & x \end{array}\right)$$

Since $H(a_{ij})$ commutes with each other (proved by calculation), we can use the theorem in previous part to show that:

$$\det_{\mathbb{R}}(A) = \det_{\mathbb{R}}(\det_{\mathbb{C}}(A)) = \det_{\mathbb{R}}(aI + bJ) = \det\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \ge 0$$

Notice that I have been sloopy in language, but the meaning should be clear.

1.2 Math.SE answer in M_2 is two copies of S^2

Following is an answer [7] in Math.SE about this question:

As you noted, M is *not* diffeomorphic to $S^2 \coprod S^2$ for dimension reasons

On the other hand, what is true is M is homotopy equivalent to $S^2 \coprod S^2$.

(The following argument is partly adapted from a [paper][1] of Montgomery)

To see this, it's enough to show that $Gl^+(4,\mathbb{R})/Gl(2,\mathbb{C})$ is homotopy equivalent to S^2 , where Gl^+ denotes those matrices of positive determinant.

Now, consider the subgroups $U(2) \subseteq Gl(2,\mathbb{C})$ and $SO(4) \subseteq Gl^+(4,\mathbb{R})$.

It's relatively well known that $Gl(2,\mathbb{C})$ is diffeomorphic to $U(2) \times \mathbb{R}^4$ and that $Gl^+(4,\mathbb{R})$ is diffeomorphic to $SO(4) \times \mathbb{R}^{10}$.

Further, in the usual inclusion $Gl(2,\mathbb{C}) \to Gl^+(4,\mathbb{R}), U(2)$ becomes a subgroup of SO(4).

Now, the chain of subgroups $U(2) \subseteq SO(4) \subseteq Gl^+(4,\mathbb{R})$ gives rise to a homogeneous fibration

$$SO(4)/U(2) \to Gl^+(4,\mathbb{R})/U(2) \to Gl^+(4,\mathbb{R})/SO(4).$$

In light of the above diffeomorphisms, $Gl^+(4,\mathbb{R})/SO(4)$ is diffeomorphic to \mathbb{R}^{10} . Since Euclidean spaces are contractible, it follows that the fibration is trivial, so $Gl^+(4,\mathbb{R})/U(2)$ is diffeomorphic to $SO(4)/U(2) \times \mathbb{R}^{10}$. In particular, SO(4)/U(2) is homotopy equivalent to $Gl^+(4,\mathbb{R})/U(2)$.

Now, consider the chain of subgroups $U(2) \subseteq Gl(2,\mathbb{C}) \subseteq Gl^+(4,\mathbb{R})$. This gives rise to a homogeneous fibration

$$Gl(2,\mathbb{C})/U(2) \to Gl^+(4,\mathbb{R})/U(2) \to Gl^+(4,\mathbb{R})/Gl(2,\mathbb{C}).$$

In this case, the fiber is diffeomorphic to \mathbb{R}^4 , which immediately implies that $Gl^+(4,\mathbb{R})/U(2)$ is homotopy equivalent to $Gl^+(4,\mathbb{R})/Gl(2,\mathbb{C})$.

(Paused reading here)

Putting the last two paragraphs together, we now know that SO(4)/U(2) is homotopy equivalent to $Gl^+(4,\mathbb{R})/Gl(2,\mathbb{C})$.

To finish off the argument, we need to show that SO(4)/U(2) is diffeomorphic to S^2 . To see this, first note that U(2) intersects the center $Z(SO(4)) = \{\pm I\}$ of SO(4). It follows that

$$SO(4)/U(2) \cong [SO(4)/Z(SO(4))/[U(2)/(Z(SO(4)) \cap U(2))].$$

But $SO(4)/Z(SO(4)) \cong SO(3) \times SO(3)$ and $U(2)/(Z(SO(4)) \cap U(2)) \cong SO(3) \times S^1$. So, $SO(4)/U(2) \cong (SO(3) \times SO(3))/(SO(3) \times S^1) \cong SO(3)/S^1$.

But the standard action of SO(3) on S^2 is transitive with stabilizer S^1 , so $SO(3)/S^1 \cong S^2$.

[1]: http://www.ams.org/journals/proc/1950-001-04/S0002-9939-1950-0037311-6/S0002-9939-1950-0037311-6.pdf

I honestly know almost nothing about the concepts this response mentioned. Therefore, I try to dismantle the response into several parts:

Facts he mentioned that I am not familiar

- 1. $Gl(2,\mathbb{C})$ is diffeomorphic to $U(2) \times \mathbb{R}^4$.
- 2. $Gl^+(4,\mathbb{R})$ is diffeomorphic to $SO(4) \times \mathbb{R}^10$
- 3. In the usual inclusion $Gl(2,\mathbb{C}) \to Gl^+(4,\mathbb{R}), \ U(2)$ becomes a subgroup of SO(4).

Concepts to be learnt:

1. fibration of above Lie groups

- 2. Hightlight area 1: can fibration kill a subgroup?
- 3. Hightlight area 2: contractible and fibration?
- 4. And the following sentence.
- 5. then the next sentence: diffeomorphism and homotopy?
- 6. How does a "chain of subgroups" gives rise to a fibration.

The following notes are aim at understanding the above sentences.

1.3 Fibration

Lift of morphisms

Definition 1.1 (Lift of morphisms). The *lift* of a morphism $f: Y \to B$ along an epimorphism $f: Y \to B$ is a morphism $f: Y \to X$ such that $f = p \circ \tilde{f}$.

Definition 1.2 (Lift property). We say that f has a **left lifting property** w.r.t g, or equivalently that g has a **right lifting property** w.r.t f, if and only if for every commutative diagram below:

$$\begin{array}{ccc}
a & \xrightarrow{u} & c \\
\downarrow^f & & \downarrow^g \\
b & \xrightarrow{v} & d
\end{array}$$

there is an arrow γ , s.t. both triangles in the following diagram commutes.

$$\begin{array}{ccc}
a & \xrightarrow{u} & c \\
\downarrow f & & \downarrow g \\
b & \xrightarrow{v} & d
\end{array}$$

Such an arrow γ is called a **lift** or a **solution** to the lifting problem (u, v). If such γ is unique, i.e. we have:

$$\begin{array}{ccc}
a & \xrightarrow{u} & c \\
\downarrow f & & \downarrow g \\
\downarrow f & & \downarrow g \\
b & \xrightarrow{v} & d
\end{array}$$

Then we say f is **orthogonal** to g, denoted $f \perp g$.

ref [8].

 $^{^{1}}$ Epimorphism is the category analogy of surjective functions in set theory

Definition 1.3 (Homotopy lifting property). Let C be a category with **products** and with **interval object** I. A morphism $E \to B$ has the homotopy lifting property if it has the right lifting property w.r.t all morphisms of the form $(Id, 0): Y \to Y \times I$.

$$\begin{array}{ccc}
Y & \xrightarrow{f} & E \\
\downarrow & \sigma & \downarrow r \\
Y \times I & \xrightarrow{F} & B
\end{array}$$

Note: the term **products** and **interval object** mentioned above are category analogy of cartisian products and unit interval [0, 1] in our daily mathematics. Since I will be concentrated in the case of a topological space, I will simply regard them just as topological products and the unit interval.

Fibrations

Definition 1.4 (Hurewicz fibration). A map p is called a Hurewicz fibration if it satisfies the homotopy lifting property w.r.t to all spaces X.

Definition 1.5 (Serre fibration). A map p is called a Serre fibration if it satisfies the homotopy lifting property w.r.t to all discs X.

Notes: by discs, I think he means closed discs, or closed balls, because he also mentioned "equivalently" closed cubes. Ref [9].

2 Anchor

References

- [1] D Huybrechts's Introduction to Complex Geometry.
- [2] set of almost complex structures on \mathbb{R}^4 as two disjoint spheres.
- [3] Does $GL(n,\mathbb{C})$ inject into $GL^+(2n,\mathbb{R})$ for all n?
- [4] John R. Silvester, Determinants of Block Matrices. Available in WebArchive link: https://web.archive.org/web/20140505161153/ http://www.mth.kcl.ac.uk/~jrs/gazette/blocks.pdf
- [5] Making sense of $\frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$
- [6] Similar matrices and field extensions
- [7] set of almost complex structures on \mathbb{R}^4 as two disjoint spheres
- [8] nLab Lift
- [9] nLab Homotopy lifting property, nLab Cartesian product, nLab Interval object.

3 License

The entire content of this work (including the source code for TeX files and the generated PDF documents) by Hongxiang Chen (nicknamed we.taper, or just Taper) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at mailto:we.taper[at]gmail[dot]com.