

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関  
国際事務局



(43) 国際公開日  
2002年2月28日 (28.02.2002)

PCT

(10) 国際公開番号  
WO 02/16607 A1

(51) 国際特許分類<sup>7</sup>: C12N 15/11, C07K 14/47, C12N 5/10, C07K 14/705, G01N 33/50, 33/15, C12P 21/02, A61K 38/17, A61P 1/00 (74) 代理人: 小林純子, 外(KOBAYASHI, Sumiko et al.); 〒104-0028 東京都中央区八重洲2丁目8番7号 福岡ビル9階 Tokyo (JP).

(21) 国際出願番号: PCT/JP01/07209

(22) 国際出願日: 2001年8月23日 (23.08.2001)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:  
特願2000-253862 2000年8月24日 (24.08.2000) JP

(71) 出願人(米国を除く全ての指定国について): 武田薬品工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒541-0045 大阪府大阪市中央区道修町四丁目1番1号 Osaka (JP).

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) 発明者: および

(75) 発明者/出願人(米国についてのみ): 寺尾寧子 (TERAO, Yasuko) [JP/JP]; 〒305-0034 茨城県つくば市大字小野崎985番地 ROYAL ZOA 中山307号 Ibaraki (JP). 新谷 靖 (SHINTANI, Yasushi) [JP/JP]; 〒532-0033 大阪府大阪市淀川区新高6丁目14番8-A606号 Osaka (JP).

添付公開書類:  
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF

(54) 発明の名称: 新規G蛋白質共役型レセプター蛋白質およびそのDNA

(57) Abstract: It is intended to provide a novel protein which is useful in screening an agonist/an antagonist, etc. More particularly, a rat-origin protein or its salt; a DNA encoding this protein; a method of determining a ligand to the protein; a method/a kit for screening a compound changing the binding properties of the ligand to the protein; compounds obtained by the screening or salts thereof; etc.

(57) 要約:

本発明は、アゴニスト／アンタゴニストのスクリーニング等に有用な新規蛋白質の提供を目的とする。

具体的には、ラット由来の蛋白質またはその塩、該蛋白質をコードするDNA、該蛋白質に対するリガンドの決定方法、リガンドと該蛋白質との結合性を変化させる化合物のスクリーニング方法／スクリーニング用キット、該スクリーニングで得られる化合物またはその塩などを提供する。

WO 02/16607 A1

## 明細書

## 新規G蛋白質共役型レセプター蛋白質およびそのDNA

## 技術分野

5 本発明は、ヒト脳由来の新規蛋白質（G蛋白質共役型レセプター蛋白質）またはその塩およびそれをコードするDNA、これらに対するリガンド決定方法、当該リガンドとの結合性を変化させる化合物またはその塩などに関する。

## 背景技術

10 多くのホルモンや神経伝達物質は、細胞膜に存在する特異的なレセプター蛋白質を通じて生体の機能を調節している。これらのレセプター蛋白質の多くは共役しているguanine nucleotide-binding protein（以下、G蛋白質と略称する場合がある）の活性化を通じて細胞内のシグナル伝達を行ない、また7個の膜貫通領域を有する共通した構造をもっていることから、G蛋白質共役型レセプター蛋白質あるいは7  
15 回膜貫通型レセプター蛋白質と総称される。

G蛋白質共役型レセプター蛋白質は生体の細胞や臓器の各機能細胞表面に存在し、それら生体の細胞や臓器の機能を調節する分子、例えばホルモン、神経伝達物質および生理活性物質等の標的として非常に重要な役割を担っている。

各種生体の細胞や臓器の内の複雑な機能を調節する物質と、その特異的レセプタ  
20 ー蛋白質、特にG蛋白質共役型レセプター蛋白質との関係を明らかにすることは、各種生体の細胞や臓器の機能を解明し、それら機能と密接に関連した医薬品開発に非常に重要な手段を提供することとなる。

例えば、脳などの中枢神経系の器官では、多くのホルモン、ホルモン様物質、神  
25 経伝達物質あるいは生理活性物質などによる調節のもとで脳の生理的な機能の調節が行なわれている。特に、神経伝達物質は脳内の様々な部位に存在し、それぞれに対応するレセプター蛋白質を通してその生理機能の調節を行っている。脳内には未知の神経伝達物質も多く、そのレセプター蛋白質をコードするcDNAの構造に關しても、これまで報告されていないものも多いと考えられる。さらに、既知のレセプター蛋白質のサブタイプが存在するかどうかについても分かっていなかった。

脳における複雑な機能を調節する物質と、その特異的レセプター蛋白質との関係を明らかにすることは、医薬品開発に非常に重要な手段である。また、レセプター蛋白質に対するアゴニスト、アンタゴニストを効率よくスクリーニングし、医薬品を開発するためには、脳内で発現しているレセプター蛋白質の遺伝子の機能を解明し、それらを適当な発現系で発現させることが必要であった。

近年、生体内で発現している遺伝子を解析する手段として、cDNAの配列をランダムに解析する研究が活発に行なわれており、このようにして得られたcDNAの断片配列がExpressed Sequence Tag (EST) としてデータベースに登録され、公開されている。しかし、多くのESTは配列情報のみであり、その機能を推定することは困難である。

本発明は、ラット脳由来の新規蛋白質（G蛋白質共役型レセプター蛋白質）、その部分ペプチドまたはそれらの塩、該蛋白質またはその部分ペプチドをコードするDNAを含有するDNA、該DNAを含有する組換えベクター、該組換えベクターで形質転換された形質転換体、該蛋白質またはその塩の製造法、該蛋白質、その部分ペプチドまたはそれらの塩に対する抗体、該蛋白質（G蛋白質共役型レセプター蛋白質）に対するリガンドの決定方法、リガンドと該蛋白質（G蛋白質共役型レセプター蛋白質）との結合性を変化させる化合物またはその塩のスクリーニング方法、該スクリーニング用キット、該スクリーニング方法もしくはスクリーニングキットを用いて得られるリガンドと該蛋白質（G蛋白質共役型レセプター蛋白質）との結合性を変化させる化合物またはその塩、およびリガンドと該蛋白質（G蛋白質共役型レセプター蛋白質）との結合性を変化させる化合物またはその塩を含有してなる医薬などを提供する。

## 25 発明の開示

本発明者らは、ヒト脳由来のG蛋白質共役型レセプター蛋白質ZAQをコードするcDNAを単離するとともに、該蛋白質ZAQがMamba Intestinal Toxin 1 (MIT 1と略称することがある; Toxicon, 28巻、847-856頁、1990年、FEBS Letters 461, 183-188 (1999)) またはその哺乳動物のホモログと結合することを見出した (WO

01/16309)。

本発明者らは、銳意研究を重ねた結果、ラット脳由来の新規な蛋白質（G蛋白質共役型レセプター蛋白質）をコードするcDNAを単離し、全塩基配列を解析することに成功した。そして、この塩基配列をアミノ酸配列に翻訳したところ、第1～  
5 第7膜貫通領域が疎水性プロット上で確認され、これらのcDNAにコードされる蛋白質が7回膜貫通型のG蛋白質共役型レセプター蛋白質であることを確認し（図7、図8）、さらに研究を重ねた結果、本発明を完成するに至った。

すなわち、本発明は、

- (1) 配列番号：4または配列番号：11で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする蛋白質またはその塩、
- 10 (2) 配列番号：4で表わされるアミノ酸配列を含有する上記(1)記載の蛋白質またはその塩、
- (3) 配列番号：11で表わされるアミノ酸配列を含有する上記(1)記載の蛋白質またはその塩、
- 15 (4) 上記(1)記載の蛋白質の部分ペプチドまたはその塩、
- (5) 上記(1)記載の蛋白質をコードするポリヌクレオチドを含有するポリヌクレオチド、
- (6) DNAである上記(5)記載のポリヌクレオチド、
- (7) 配列番号：3または配列番号：10で表される塩基配列を含有する上記(6)  
20 記載のDNA、
- (8) 上記(5)記載のポリヌクレオチドを含有する組換えベクター、
- (9) 上記(8)記載の組換えベクターで形質転換された形質転換体、
- (10) 上記(9)記載の形質転換体を培養し、上記(1)記載の蛋白質を生成・蓄積せしめることを特徴とする上記(1)記載の蛋白質またはその塩の製造法、
- 25 (11) 上記(1)記載の蛋白質もしくは上記(4)記載の部分ペプチドまたはその塩に対する抗体、
- (12) 上記(1)記載の蛋白質もしくは上記(4)記載の部分ペプチドまたはその塩を用いることを特徴とする上記(1)記載の蛋白質またはその塩に対するリガンドの決定方法、

- (13) 上記(1)記載の蛋白質もしくは上記(4)記載の部分ペプチドまたはその塩を用いることを特徴とするリガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、
- (14) 上記(1)記載の蛋白質もしくは上記(4)記載の部分ペプチドまたはその塩を含有することを特徴とするリガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット、
- (15) 上記(13)記載のスクリーニング方法または上記(14)記載のスクリーニング用キットを用いて得られうる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩、
- (16) 上記(13)記載のスクリーニング方法または上記(14)記載のスクリーニング用キットを用いて得られうる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩を含有してなる医薬、
- (17) 消化器疾患の予防剤、または治療剤である上記(16)記載の医薬、
- (18) 上記(6)記載のDNAとハイストリンジェントな条件下でハイブリダイズするDNA、
- (19) 哺乳動物に対して、上記(13)記載のスクリーニング方法または上記(14)記載のスクリーニング用キットを用いて得られうる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩の有効量を投与することを特徴とする消化器疾患の予防、または治療方法、
- (20) 消化器疾患の予防剤、または治療剤を製造するための上記(13)記載のスクリーニング方法または上記(14)記載のスクリーニング用キットを用いて得られうる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩の使用、などを提供する。
- より具体的には、
- (21) 蛋白質が、①配列番号：4または配列番号：11で表わされるアミノ酸配列中の1または2個以上(好ましくは、1～30個程度、より好ましくは1～9個程度、さらに好ましくは数個(1または2個))のアミノ酸が欠失したアミノ酸配列、②配列番号：4または配列番号：11で表わされるアミノ酸配列に1または2個以上(好ましくは、1～30個程度、より好ましくは1～10個程度、さらに好

ましくは数個（1または2個）のアミノ酸が付加したアミノ酸配列、③配列番号：4または配列番号：11で表わされるアミノ酸配列中の1または2個以上（好ましくは、1～30個程度、より好ましくは1～10個程度、さらに好ましくは数個（1または2個）のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または④それらを組み合わせたアミノ酸配列を含有する蛋白質である上記（1）記載の蛋白質またはその塩、

- （22）上記（1）記載の蛋白質もしくはその塩または上記（4）記載の部分ペプチドもしくはその塩と、試験化合物とを接触させることを特徴とする上記（12）記載のリガンドの決定方法、
- （23）リガンドがアンギオテンシン、ポンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP（バソアクティブ インテスティナル アンド リレイテッド ポリペプチド）、ソマトスタチン、ドーパミン、モチリン、アミリン、プラジキニン、CGRP（カルシトニンジーンリレーティッドペプチド）、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、 $\alpha$ および $\beta$ -ケモカイン（chemokine）（例えば、IL-8、GRO $\alpha$ 、GRO $\beta$ 、GRO $\gamma$ 、NAP-2、ENA-78、PF4、IP10、GCP-2、MCP-1、HC14、MCP-3、I-309、MIP1 $\alpha$ 、MIP-1 $\beta$ 、RANTESなど）、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイド、ガラニン、MIT1またはその哺乳動物のホモログである上記（12）記載のリガンドの決定方法、
- （24）（i）上記（1）記載の蛋白質もしくはその塩または上記（4）記載の部分ペプチドもしくはその塩と、リガンドとを接触させた場合と、（ii）上記（1）記載の蛋白質もしくはその塩または上記（4）記載の部分ペプチドもしくはその塩と、リガンドおよび試験化合物とを接触させた場合との比較を行なうことを特徴とする上記（13）記載のスクリーニング方法、
- （25）（i）標識したリガンドを上記（1）記載の蛋白質もしくはその塩または

上記（4）記載の部分ペプチドもしくはその塩に接触させた場合と、(ii) 標識したりガンドおよび試験化合物を上記（1）記載の蛋白質もしくはその塩または上記（4）記載の部分ペプチドまたはその塩に接触させた場合における、標識したりガンドの上記（1）記載の蛋白質もしくはその塩または上記（4）記載の部分ペプチドもしくはその塩に対する結合量を測定し、比較することを特徴とするリガンドと上記（1）記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

（26）(i) 標識したりガンドを上記（1）記載の蛋白質を含有する細胞に接触させた場合と、(ii) 標識したりガンドおよび試験化合物を上記（1）記載の蛋白質を含有する細胞に接触させた場合における、標識したりガンドの該細胞に対する結合量を測定し、比較することを特徴とするリガンドと上記（1）記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

（27）(i) 標識したりガンドを上記（1）記載の蛋白質を含有する細胞の膜画分に接触させた場合と、(ii) 標識したりガンドおよび試験化合物を上記（1）記載の蛋白質を含有する細胞の膜画分に接触させた場合における、標識したりガンドの該細胞の膜画分に対する結合量を測定し、比較することを特徴とするリガンドと上記（1）記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

（28）(i) 標識したりガンドを上記（9）記載の形質転換体を培養することによって該形質転換体の細胞膜に発現した蛋白質に接触させた場合と、(ii) 標識したりガンドおよび試験化合物を上記（9）記載の形質転換体を培養することによって該形質転換体の細胞膜に発現した蛋白質に接触させた場合における、標識したりガンドの該蛋白質に対する結合量を測定し、比較することを特徴とするリガンドと上記（1）記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

（29）(i) 上記（1）記載の蛋白質またはその塩を活性化する化合物を上記（1）記載の蛋白質を含有する細胞に接触させた場合と、(ii) 上記（1）記載の蛋白質またはその塩を活性化する化合物および試験化合物を上記（1）記載の蛋白質を含有する細胞に接触させた場合における、蛋白質を介した細胞刺激活性を測定し、

比較することを特徴とするリガンドと上記（1）記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

（30）上記（1）記載の蛋白質またはその塩を活性化する化合物を上記（9）記

載の形質転換体を培養することによって該形質転換体の細胞膜に発現した蛋白質

5 に接触させた場合と、上記（1）記載の蛋白質またはその塩を活性化する化合物および試験化合物を上記（9）記載の形質転換体を培養することによって該形質転換体の細胞膜に発現した蛋白質に接触させた場合における、該蛋白質を介する細胞刺激活性を測定し、比較することを特徴とするリガンドと上記（1）記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

10 （31）上記（1）記載の蛋白質を活性化する化合物が、アンギオテンシン、ポンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP（バソアクティブ

15 インテスティナル アンド リレイテッド ポリペプチド）、ソマトスタチン、ドーパミン、モチリン、アミリン、プラジキニン、CGRP（カルシトニンジーンリレーティッドペプチド）、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、 $\alpha$  および  $\beta$ -ケモカイン（chemokine）（例えば、IL-8、GRO $\alpha$ 、GRO $\beta$ 、GRO $\gamma$ 、NAP-2、

20 ENA-78、PF4、IP10、GCP-2、MCP-1、HC14、MCP-3、I-309、MIP1 $\alpha$ 、MIP-1 $\beta$ 、RANTESなど）、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイド、ガラニン、MIT1 またはその哺乳動物のホモログである上記（29）または上記（30）記載のスクリーニング方法、

25 （32）上記（24）～（31）記載のスクリーニング方法で得られる、リガンドと上記（1）記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩、

（33）上記（24）～（31）項記載のスクリーニング方法で得られる、リガンドと上記（1）記載の蛋白質またはその塩との結合性を変化させるの化合物また

はその塩を含有することを特徴とする医薬、

(34) 上記(1)記載の蛋白質を含有する細胞を含有することを特徴とする上記

(14) 記載のスクリーニング用キット、

(35) 上記(1)記載の蛋白質を含有する細胞の膜画分を含有することを特徴と

5 する上記(14)記載のスクリーニング用キット、

(36) 上記(9)記載の形質転換体を培養することによって該形質転換体の細胞  
膜に発現した蛋白質を含有することを特徴とする上記(14)記載のスクリーニン  
グ用キット、

10 (37) 上記(34)～(36)記載のスクリーニング用キットを用いて得られう  
る、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合  
物またはその塩、

(38) 上記(34)～(36)記載のスクリーニング用キットを用いて得られう  
る、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合  
物またはその塩を含有することを特徴とする医薬、

15 (39) 上記(11)記載の抗体と、上記(1)記載の蛋白質もしくは上記(4)  
記載の部分ペプチドまたはその塩とを接触させることを特徴とする上記(1)記載  
の蛋白質もしくは上記(4)記載の部分ペプチドまたはその塩の定量法、

(40) 上記(11)記載の抗体と、被検液および標識化された上記(1)記載の  
蛋白質もしくは上記(4)記載の部分ペプチドまたはその塩とを競合的に反応させ、  
20 該抗体に結合した標識化された上記(1)記載の蛋白質もしくは上記(4)記載の  
部分ペプチドまたはその塩の割合を測定することを特徴とする被検液中の上記  
(1)記載の蛋白質もしくは上記(4)記載の部分ペプチドまたはその塩の定量法、  
および

25 (41) 被検液と担体上に不溶化した上記(11)記載の抗体および標識化された  
上記(11)項記載の抗体とを同時あるいは連続的に反応させたのち、不溶化担体  
上の標識剤の活性を測定することを特徴とする被検液中の上記(1)記載の蛋白質  
もしくは上記(4)記載の部分ペプチドまたはその塩の定量法などを提供する。

図1は、実施例1で得られた本発明のラット脳由来蛋白質(rZAQ1)をコードするDNAの塩基配列、およびそれから推定されるアミノ酸配列を示す(図2に続く)。

図2は、実施例1で得られた本発明のラット脳由来蛋白質(rZAQ1)をコードするDNAの塩基配列、およびそれから推定されるアミノ酸配列を示す(図1の続き、  
5 図3に続く)。

図3は、実施例1で得られた本発明のラット脳由来蛋白質(rZAQ1)をコードするDNAの塩基配列、およびそれから推定されるアミノ酸配列を示す(図2の続き)。

図4は、実施例2で得られた本発明のラット脳由来蛋白質(rZAQ2)をコードするDNAの塩基配列、およびそれから推定されるアミノ酸配列を示す(図5に続く)。

10 図5は、実施例2で得られた本発明のラット脳由来蛋白質(rZAQ2)をコードするDNAの塩基配列、およびそれから推定されるアミノ酸配列を示す(図4の続き、  
図6に続く)。

図6は、実施例2で得られた本発明のラット脳由来蛋白質(rZAQ2)をコードするDNAの塩基配列、およびそれから推定されるアミノ酸配列を示す(図5の続き)。

15 図7は、rZAQ1の疎水性プロットを示す。

図8は、rZAQ2の疎水性プロットを示す。

図9は、rZAQ1の発現分布解析の結果を示す。

図10は、rZAQ2の発現分布解析の結果を示す。

## 20 発明を実施するための最良の形態

本発明の蛋白質(G蛋白質共役型レセプター蛋白質)は、配列番号:4で表わされるアミノ酸配列(図1～図3中のアミノ酸配列)または配列番号:11で表わされるアミノ酸配列(図4～図6中のアミノ酸配列)と同一もしくは実質的に同一のアミノ酸配列を含有するレセプター蛋白質である(以下、本発明の蛋白質(G蛋白質共役型レセプター蛋白質)またはその塩を本発明の蛋白質と略記する場合がある)。

本発明の蛋白質(G蛋白質共役型レセプター蛋白質)は、例えば、ヒトやその他の哺乳動物(例えば、モルモット、ラット、マウス、ウサギ、ブタ、ヒツジ、ウシ、サルなど)のあらゆる細胞(例えば、脾細胞、神経細胞、グリア細胞、臍臓β細胞、

骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、纖維芽細胞、纖維細胞、筋細胞、脂肪細胞、免疫細胞（例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球）、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、  
5 肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞など）や血球系の細胞（例えば、MEL, M1, CTL L-2, HT-2, WEH I-3, HL-60, JOSK-1, K562, ML-1, MOLT-3, MOLT-4, MOLT-10, CCRF-CEM, TALL-1, Jurkat, CC RT-HSB-2, KE-37, SKW-3, HUT-78, HUT-102, H  
10 9, U937, THP-1, HEL, JK-1, CMK, KO-812, MEG-01など）、またはそれらの細胞が存在するあらゆる組織、例えば、脳、脳の各部位（例、嗅球、扁頭核、大脳基底球、海馬、視床、視床下部、視床下核、大脳皮質、延髄、小脳、後頭葉、前頭葉、側頭葉、被殼、尾状核、脳染、黒質）、脊髄、下垂体、胃、脾臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、  
15 肺、消化管（例、大腸、小腸）、血管、心臓、胸腺、脾臓、顎下腺、末梢血、末梢血球、前立腺、睾丸、精巣、卵巣、胎盤、子宮、骨、関節、骨格筋など（特に、脳や脳の各部位）に由来する蛋白質であってもよく、また合成蛋白質であってもよい。

配列番号：4で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、配列番号：4で表わされるアミノ酸配列と約97%以上、好ましくは約9  
20 8%以上、より好ましくは約99%以上、最も好ましくは約99.5%以上の相同性を有するアミノ酸配列などが挙げられる。

配列番号：4で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有する蛋白質としては、例えば、配列番号：4で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、配列番号：4で表わされるアミノ酸配列を有する蛋白質と  
25 実質的に同質の性質を有する蛋白質などが好ましい。

本発明の配列番号：4で表わされるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有する蛋白質としては、例えば、配列番号：4で表わされるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有し、配列番号：4で表わされるアミノ酸配列と実質的に同質の活性を有する蛋白質などが好ましい。

配列番号：1 1 で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、配列番号：1 1 で表わされるアミノ酸配列と約 95 %以上、好ましくは約 96 %以上、より好ましくは約 97 %以上、最も好ましくは約 98 %以上の相同性を有するアミノ酸配列などが挙げられる。

- 5 配列番号：1 1 で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有する蛋白質としては、例えば、配列番号：1 1 で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、配列番号：1 1 で表わされるアミノ酸配列を有する蛋白質と実質的に同質の性質を有する蛋白質などが好ましい。

- 本発明の配列番号：1 1 で表わされるアミノ酸配列と同一または実質的に同一の  
10 アミノ酸配列を含有する蛋白質としては、例えば、配列番号：1 1 で表わされるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有し、配列番号：1 1 で表わされるアミノ酸配列と実質的に同質の活性を有する蛋白質などが好ましい。

- 実質的に同質の活性としては、例えば、リガンド結合活性、シグナル情報伝達作用などが挙げられる。実質的に同質とは、それらの活性が性質的に同質であることを示す。したがって、リガンド結合活性やシグナル情報伝達作用などの活性が同等（例、約 0.5 ~ 2 倍）であることが好ましいが、これらの活性の程度や蛋白質の分子量などの量的要素は異なっていてもよい。

- リガンド結合活性やシグナル情報伝達作用などの活性の測定は、公知の方法に準じて行なうことができるが、例えば、リガンド決定方法やスクリーニング方法に従って測定することができる。

- また、本発明の蛋白質としては、①配列番号：4 または配列番号：1 1 で表わされるアミノ酸配列中の 1 または 2 個以上（好ましくは、1 ~ 30 個程度、より好ましくは 1 ~ 10 個程度、さらに好ましくは数個（1 または 2 個））のアミノ酸が欠失したアミノ酸配列、②配列番号：4 または配列番号：1 1 で表わされるアミノ酸配列に 1 または 2 個以上（好ましくは、1 ~ 30 個程度、より好ましくは 1 ~ 10 個程度、さらに好ましくは数個（1 または 2 個））のアミノ酸が付加したアミノ酸配列、③配列番号：4 または配列番号：1 1 で表わされるアミノ酸配列中の 1 または 2 個以上（好ましくは、1 ~ 30 個程度、より好ましくは 1 ~ 10 個程度、さらに好ましくは数個（1 または 2 個））のアミノ酸が他のアミノ酸で置換されたアミ

ノ酸配列、または④それらを組み合わせたアミノ酸配列を含有する蛋白質なども用いられる。

本明細書における蛋白質は、ペプチド標記の慣例に従って左端がN末端（アミノ末端）、右端がC末端（カルボキシル末端）である。配列番号：4 または配列番号：

- 5 11で表わされるアミノ酸配列を含有する蛋白質をはじめとする本発明の蛋白質は、C末端が通常カルボキシル基（-COOH）またはカルボキシレート（-COO<sup>-</sup>）であるが、C末端がアミド（-CONH<sub>2</sub>）またはエステル（-COOR）であってもよい。

- ここでエステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、  
10 イソプロピルもしくはn-ブチルなどのC<sub>1-6</sub>アルキル基、例えば、シクロペンチル、シクロヘキシルなどのC<sub>3-8</sub>シクロアルキル基、例えば、フェニル、α-ナフチルなどのC<sub>6-12</sub>アリール基、例えば、ベンジル、フェネチルなどのフェニル-C<sub>1-2</sub>アルキル基もしくはα-ナフチルメチルなどのα-ナフチル-C<sub>1-2</sub>アルキル基などのC<sub>7-14</sub>アラルキル基のほか、経口用エステルとして汎用されるピバロ  
15 イルオキシメチル基などが用いられる。

本発明の蛋白質がC末端以外にカルボキシル基（またはカルボキシレート）を有している場合、カルボキシル基がアミド化またはエステル化されているものも本発明の蛋白質に含まれる。この場合のエステルとしては、例えば上記したC末端のエステルなどが用いられる。

- 20 さらに、本発明の蛋白質には、上記した蛋白質において、N末端のメチオニン残基のアミノ基が保護基（例えば、ホルミル基、アセチル基などのC<sub>2-6</sub>アルカノイル基などのC<sub>1-6</sub>アシル基など）で保護されているもの、N端側が生体内で切断され生成したグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基（例えば、-OH、-SH、アミノ基、イミダゾール基、インドール基、  
25 グアニジノ基など）が適当な保護基（例えば、ホルミル基、アセチル基などのC<sub>2-6</sub>アルカノイル基などのC<sub>1-6</sub>アシル基など）で保護されているもの、あるいは糖鎖が結合したいわゆる糖蛋白質などの複合蛋白質なども含まれる。

本発明の蛋白質の具体例としては、例えば、配列番号：4 または配列番号：11で表わされるアミノ酸配列を含有するラット由来（より好ましくはラット脳由来）

の蛋白質などがあげられる。

本発明の蛋白質の部分ペプチド（以下、本発明の部分ペプチド、または単に部分ペプチドと略記する場合がある）としては、前記した本発明の蛋白質の部分ペプチドであれば何れのものであってもよいが、例えば、本発明の蛋白質分子のうち、細胞膜の外に露出している部位であって、レセプター結合活性を有するものなどが用いられる。

具体的には、配列番号：4 または配列番号：11 で表わされるアミノ酸配列を有する蛋白質の部分ペプチドとしては、図7 または図8 で示される疎水性プロット解析において細胞外領域（親水性（Hydrophilic）部位）であると分析された部分を含むペプチドである。また、疎水性（Hydrophobic）部位を一部に含むペプチドも同様に用いることができる。個々のドメインを個別に含むペプチドも用い得るが、複数のドメインを同時に含む部分のペプチドでも良い。

本発明の部分ペプチドのアミノ酸の数は、前記した本発明の蛋白質の構成アミノ酸配列のうち少なくとも20個以上、好ましくは50個以上、より好ましくは100個以上のアミノ酸配列を有するペプチドなどが好ましい。

実質的に同一のアミノ酸配列とは、これらアミノ酸配列と約50%以上、好ましくは約70%以上、より好ましくは約80%以上、さらに好ましくは約90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列を示す。

ここで、「実質的に同質の活性」とは、前記と同意義を示す。「実質的に同質の活性」の測定は前記と同様に行なうことができる。

また、本発明の部分ペプチドは、上記アミノ酸配列中の1または2個以上（好ましくは、1～10個程度、さらに好ましくは数個（1または2個））のアミノ酸が欠失し、または、そのアミノ酸配列に1または2個以上（好ましくは、1～20個程度、より好ましくは1～10個程度、さらに好ましくは数個（1または2個））のアミノ酸が付加し、または、そのアミノ酸配列中の1または2個以上（好ましくは、1～10個程度、より好ましくは1～5個程度、さらに好ましくは数個（1または2個））のアミノ酸が他のアミノ酸で置換されていてもよい。

また、本発明の部分ペプチドはC末端が通常カルボキシル基（-COOH）またはカルボキシレート（-COO<sup>-</sup>）であるが、前記した本発明の蛋白質のごとく、

C末端がアミド ( $-CONH_2$ ) またはエステル ( $-COOR$ ) であってもよい。

さらに、本発明の部分ペプチドには、前記した本発明の蛋白質と同様に、N末端のメチオニン残基のアミノ基が保護基で保護されているもの、N端側が生体内で切断され生成したGlnがピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基が適当な保護基で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。

また、本発明の部分ペプチドはC末端が通常カルボキシル基 ( $-COOH$ ) またはカルボキシレート ( $-COO^-$ ) であるが、前記した本発明の蛋白質のごとく、C末端がアミド ( $-CONH_2$ ) またはエステル ( $-COOR$ ) であってもよい。

10 本発明の蛋白質またはその部分ペプチドの塩としては、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば無機酸（例えば、塩酸、リン酸、臭化水素酸、硫酸）との塩、あるいは有機酸（例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蔥酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸）との塩などが用いられる。

15 本発明の蛋白質またはその塩は、前述したヒトやその他の哺乳動物の細胞または組織から公知の蛋白質の精製方法によって製造することもできるし、後述する本発明の蛋白質をコードするDNAを含有する形質転換体を培養することによっても製造することができる。また、後述の蛋白質合成法またはこれに準じて製造することもできる。

20 ヒトやその他の哺乳動物の組織または細胞から製造する場合、ヒトやその他の哺乳動物の組織または細胞をホモジナイスした後、酸などで抽出を行ない、該抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィーなどのクロマトグラフィーを組み合わせることにより精製単離することができる。

本発明の蛋白質、その部分ペプチドもしくはそれらの塩またはそれらのアミド体の合成には、通常市販の蛋白質合成用樹脂を用いることができる。そのような樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル樹脂、4-ベンジルオキシベンジルアルコール樹脂、4-メチルベンズヒドリルアミン樹脂、PAM樹脂、4-ヒドロキシメチルフェニルアセトアミドメチル樹脂、ポリアクリラミド樹脂、4-(2',4'-ジメトキシフ

エニルーヒドロキシメチル) フェノキシ樹脂、4-(2',4'-ジメトキシフェニル-Fmocアミノエチル) フェノキシ樹脂などを挙げることができる。このような樹脂を用い、 $\alpha$ -アミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とする蛋白質の配列通りに、公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂から蛋白質を切り出すと同時に各種保護基を除去し、さらに高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的の蛋白質またはそれらのアミド体を取得する。

上記した保護アミノ酸の縮合に関しては、蛋白質合成に使用できる各種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類としては、DCC、N,N'-ジイソプロピルカルボジイミド、N-エチル-N'-(3-ジメチルアミノプロリル) カルボジイミドなどが用いられる。これらによる活性化にはラセミ化抑制添加剤（例えば、HOBr, HOOBr）とともに保護アミノ酸を直接樹脂に添加するかまたは、対称酸無水物またはHOBrエステルあるいはHOOBrエステルとしてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加することができる。

保護アミノ酸の活性化や樹脂との縮合に用いられる溶媒としては、蛋白質縮合反応に使用しうることが知られている溶媒から適宜選択されうる。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどの酸アミド類、塩化メチレン、クロロホルムなどのハロゲン化炭化水素類、トリフルオロエタノールなどのアルコール類、ジメチルスルホキシドなどのスルホキシド類、ピリジン、ジオキサン、テトラヒドロフランなどのエーテル類、アセトニトリル、プロピオニトリルなどのニトリル類、酢酸メチル、酢酸エチルなどのエステル類あるいはこれらの適宜の混合物などが用いられる。反応温度は蛋白質結合形成反応に使用され得ることが知られている範囲から適宜選択され、通常約-20℃～50℃の範囲から適宜選択される。活性化されたアミノ酸誘導体は通常1.5～4倍過剰で用いられる。ニンヒドリン反応を用いたテストの結果、縮合が不十分な場合には保護基の脱離を行うことなく縮合反応を繰り返すことにより十分な縮合を行なうことができる。反応を繰り返しても十分な縮合が得られないときには、無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸をアセチル化することができる。

原料のアミノ基の保護基としては、例えば、Z、Boc、ターシャリーペンチルオキシカルボニル、イソポルニルオキシカルボニル、4-メトキシベンジルオキシカルボニル、Cl-Z、Br-Z、アダマンチルオキシカルボニル、トリフルオロアセチル、フタロイル、ホルミル、2-ニトロフェニルスルフェニル、ジフェニルホスフィノチオイル、Fmocなどが用いられる。

カルボキシル基は、例えば、アルキルエステル化（例えば、メチル、エチル、プロピル、ブチル、ターシャリーブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、2-アダマンチルなどの直鎖状、分枝状もしくは環状アルキルエステル化）、アラルキルエステル化（例えば、ベンジルエステル、4-ニトロベンジルエステル、4-メトキシベンジルエステル、4-クロロベンジルエステル、ベンズヒドリルエステル化）、フェナシルエステル化、ベンジルオキシカルボニルヒドラジド化、ターシャリーブトキシカルボニルヒドラジド化、トリチルヒドラジド化などによって保護することができる。

セリンの水酸基は、例えば、エステル化またはエーテル化によって保護することができる。このエステル化に適する基としては、例えば、アセチル基などの低級アルカノイル基、ベンゾイル基などのアロイル基、ベンジルオキシカルボニル基、エトキシカルボニル基などの炭酸から誘導される基などが用いられる。また、エーテル化に適する基としては、例えば、ベンジル基、テトラヒドロピラニル基、t-ブチル基などである。

チロシンのフェノール性水酸基の保護基としては、例えば、Bzl、Cl<sub>2</sub>-Bzl、2-ニトロベンジル、Br-Z、ターシャリーブチルなどが用いられる。

ヒスチジンのイミダゾールの保護基としては、例えば、Tos、4-メトキシ-2,3,6-トリメチルベンゼンスルホニル、DNP、ベンジルオキシメチル、Bum、Boc、Trt、Fmocなどが用いられる。

原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水物、アジド、活性エステル〔アルコール（例えば、ペンタクロロフェノール、2,4,5-トリクロロフェノール、2,4-ジニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HOBt、N-ヒドロキシスクシミド、N-ヒドロキシタルイミド、HOBt）とのエステル〕などが用いられる。原料のアミノ基の活性化されたものとし

ては、例えば、対応するリン酸アミドが用いられる。

- 保護基の除去（脱離）方法としては、例えば、Pd-黒あるいはPd-炭素などの触媒の存在下での水素気流中での接触還元や、また、無水フッ化水素、メタヌスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいはこれらの混合液などによる酸処理や、ジイソプロピルエチルアミン、トリエチルアミン、ピペリジン、ピペラジンなどによる塩基処理、また液体アンモニア中ナトリウムによる還元なども用いられる。上記酸処理による脱離反応は、一般に約-20℃～40℃の温度で行なわれるが、酸処理においては、例えば、アニソール、フェノール、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、1,4-ブタジチオール、1,2-エタンジチオールなどのようなカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2,4-ジニトロフェニル基はチオフェノール処理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1,2-エタンジチオール、1,4-ブタンジチオールなどの存在下の酸処理による脱保護以外に、希水酸化ナトリウム溶液、希アンモニアなどによるアルカリ処理によっても除去される。

原料の反応に関与すべきでない官能基の保護ならびに保護基、およびその保護基の脱離、反応に関する官能基の活性化などは公知の基または公知の手段から適宜選択しうる。

- 蛋白質のアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸の $\alpha$ -カルボキシル基をアミド化して保護した後、アミノ基側にペプチド鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端の $\alpha$ -アミノ基の保護基のみを除いた蛋白質とC末端のカルボキシル基の保護基のみを除去した蛋白質とを製造し、この両蛋白質を上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護蛋白質を精製した後、上記方法によりすべての保護基を除去し、所望の粗蛋白質を得ることができる。この粗蛋白質は既知の各種精製手段を駆使して精製し、主要画分を凍結乾燥することで所望の蛋白質のアミド体を得ることができる。

蛋白質のエステル体を得るには、例えば、カルボキシ末端アミノ酸の $\alpha$ -カルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、蛋白質のアミ

ド体と同様にして、所望の蛋白質のエステル体を得ることができる。

本発明の蛋白質の部分ペプチドまたはその塩は、公知のペプチドの合成法に従つて、あるいは本発明の蛋白質を適当なペプチダーゼで切断することによって製造することができる。ペプチドの合成法としては、例えば、固相合成法、液相合成法の  
5 いづれによっても良い。すなわち、本発明の蛋白質を構成し得る部分ペプチドもししくはアミノ酸と残余部分とを縮合させ、生成物が保護基を有する場合は保護基を脱離することにより目的のペプチドを製造することができる。公知の縮合方法や保護基の脱離としては、例えば、以下の①～⑤に記載された方法が挙げられる。

- ①M. Bodanszky および M.A. Ondetti、ペプチド・シンセシス (Peptide Synthesis),  
10 Interscience Publishers, New York (1966年)
- ②Schroeder および Luebke、ザ・ペプチド (The Peptide), Academic Press, New York  
(1965年)
- ③泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)
- ④矢島治明 および 榊原俊平、生化学実験講座 1、蛋白質の化学IV、205、(1977  
15 年)
- ⑤矢島治明監修、統医薬品の開発 第14巻 ペプチド合成 広川書店

また、反応後は通常の精製法、たとえば、溶媒抽出・蒸留・カラムクロマトグラフィー・液体クロマトグラフィー・再結晶などを組み合わせて本発明の部分ペプチドを精製単離することができる。上記方法で得られる部分ペプチドが遊離体である  
20 場合は、公知の方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法によって遊離体に変換することができる。

本発明の蛋白質をコードするDNAとしては、前述した本発明の蛋白質をコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNA、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいづれでもよい。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいづれであってもよい。また、前記した細胞・組織よりtotal RNA またはmRNA画分を調製したものを用いて直接Reverse Transcriptase Polymerase Chain Reaction (以下、RT-PCR法と略称する) によって増幅する

こともできる。

具体的には、本発明の蛋白質をコードするDNAとしては、例えば、配列番号：3または配列番号：10で表わされる塩基配列を含有するDNA、または配列番号：3または配列番号：10で表わされる塩基配列を有するDNAとハイストリンジェントな条件下でハイブリダイズするDNAを有し、本発明の蛋白質と実質的に同質の活性（例、リガンド結合活性、シグナル情報伝達作用など）を有する蛋白質をコードするDNAであれば何れのものでもよい。

配列番号：3で表わされる塩基配列を有するDNAとハイストリンジェントな条件下でハイブリダイズするDNAとしては、例えば、配列番号：3で表わされる塩基配列と約97%以上、好ましくは約98%以上、より好ましくは約99%以上、最も好ましくは約99.5%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

配列番号：10で表わされる塩基配列を有するDNAとハイストリンジェントな条件下でハイブリダイズするDNAとしては、例えば、配列番号：10で表わされる塩基配列と約95%以上、好ましくは約96%以上、より好ましくは約97%以上、最も好ましくは約98%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

ハイブリダイゼーションは、公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング (Molecular Cloning) 2nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。より好ましくは、ハイストリンジェントな条件に従って行なうことができる。

ハイストリンジェントな条件とは、例えば、ナトリウム濃度が約19～40mM、好ましくは約19～20mMで、温度が約50～70℃、好ましくは約60～65℃の条件を示す。特に、ナトリウム濃度が約19mMで温度が約65℃の場合が最も好ましい。

より具体的には、配列番号：4で表わされるアミノ酸配列を有する蛋白質をコードするDNAとしては、配列番号：3で表わされる塩基配列を有するDNAがあげ

られ、配列番号：11で表わされるアミノ酸配列を有する蛋白質をコードするDNAとしては、配列番号：10で表わされる塩基配列を有するDNAがあげられる。

本発明の蛋白質をコードする塩基配列を含有する、または該塩基配列と相補的な塩基配列の一部を含有してなるヌクレオチド（オリゴヌクレオチド）とは、本発明  
5 の蛋白質またはその部分ペプチドをコードするDNAを包含するだけではなく、RNAをも包含する意味で用いられる。

本発明に従えば、本発明の蛋白質遺伝子の複製又は発現を阻害することのできるアンチセンス・（オリゴ）ヌクレオチド（核酸）を、クローニングしたあるいは決定された蛋白質をコードする塩基配列の塩基配列情報に基づき設計し、合成しうる。  
10 そうした（オリゴ）ヌクレオチド（核酸）は、G蛋白質共役型蛋白質遺伝子のRNAとハイブリダイズすることができ、該RNAの合成又は機能を阻害することができるか、あるいはG蛋白質共役型蛋白質関連RNAとの相互作用を介してG蛋白質共役型蛋白質遺伝子の発現を調節・制御することができる。G蛋白質共役型蛋白質関連RNAの選択された配列に相補的な（オリゴ）ヌクレオチド、及びG蛋白質共役型蛋白質関連RNAと特異的にハイブリダイズすることができる（オリゴ）ヌクレオチドは、生体内及び生体外でG蛋白質共役型蛋白質遺伝子の発現を調節・制御するのに有用であり、また病気などの治療又は診断に有用である。  
15

用語「対応する」とは、遺伝子を含めたヌクレオチド、塩基配列又は核酸の特定の配列に相同性を有するあるいは相補的であることを意味する。ヌクレオチド、塩基配列又は核酸とペプチド（蛋白質）との間で「対応する」とは、ヌクレオチド（核酸）の配列又はその相補体から誘導される指令にあるペプチド（蛋白質）のアミノ酸を通常指している。G蛋白質共役型蛋白質遺伝子の5'端ヘアピンループ、5'端6-ベースペア・リピート、5'端非翻訳領域、ポリペプチド翻訳開始コドン、蛋白質コード領域、ORF翻訳開始コドン、3'端非翻訳領域、3'端パリンドローム領域、及び3'端ヘアピンループは好ましい対象領域として選択しうるが、G蛋白質共役型蛋白質遺伝子内の如何なる領域も対象として選択しうる。  
20  
25

目的核酸と、対象領域の少なくとも一部に相補的な（オリゴ）ヌクレオチドとの関係は、対象物とハイブリダイズすることができる（オリゴ）ヌクレオチドとの関係は、「アンチセンス」であるということができる。アンチセンス・（オリゴ）ヌ

クレオチドは、2-デオキシ-D-リボースを含有しているポリデオキシヌクレオチド、D-リボースを含有しているポリヌクレオチド、プリン又はピリミジン塩基のN-グリコシドであるその他のタイプのポリヌクレオチド、あるいは非ヌクレオチド骨格を有するその他のポリマー（例えば、市販の蛋白質核酸及び合成配列特異的な核酸ポリマー）又は特殊な結合を含有するその他のポリマー（但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する）などが挙げられる。それらは、2本鎖DNA、1本鎖DNA、2本鎖RNA、1本鎖RNA、さらにDNA:RNAハイブリッドであることができ、さらに非修飾ポリヌクレオチド又は非修飾オリゴヌクレオチド、さらには公知の修飾の付加されたもの、例えば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合（例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメートなど）を持つもの、電荷を有する結合又は硫黄含有結合（例えば、ホスホロチオエート、ホスホロジチオエートなど）を持つもの、例えば蛋白質（ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド、ポリ-L-リジンなど）や糖（例えば、モノサッカライドなど）などの側鎖基を有しているもの、インターラント化合物（例えば、アクリジン、プソラレンなど）を持つもの、キレート化合物（例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など）を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの（例えば、 $\alpha$ アノマー型の核酸など）であってもよい。ここで「ヌクレオシド」、「ヌクレオチド」及び「核酸」とは、プリン及びピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。こうした修飾物は、メチル化されたプリン及びピリミジン、アシル化されたプリン及びピリミジン、あるいはその他の複素環を含むものであってよい。修飾されたヌクレオチド及び修飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたり、あるいはエーテル、アミンなどの官能基に変換されていてよい。

本発明のアンチセンス核酸は、RNA、DNA、あるいは修飾された核酸である。

修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。本発明のアンチセンス核酸は次のような方針で好ましく設計されうる。すなわち、細胞内でのアンチセンス核酸を  
5 より安定なものにする、アンチセンス核酸の細胞透過性をより高める、目標とするセンス鎖に対する親和性をより大きなものにする、そしてもし毒性があるならアンチセンス核酸の毒性をより小さなものにする。

こうして修飾は当該分野で数多く知られており、例えば J. Kawakami et al., Pharm Tech Japan, Vol. 8, pp. 247, 1992; Vol. 8, pp. 395, 1992; S. T. Crooke  
10 et al. ed., Antisense Research and Applications, CRC Press, 1993 などに開示がある。

本発明のアンチセンス核酸は、変化せしめられたり、修飾された糖、塩基、結合を含有していて良く、リポゾーム、マイクロスフェアのような特殊な形態で供与されたり、遺伝子治療により適用されたり、付加された形態で与えられることができう  
15 る。こうして付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質（例えば、ホスホリピッド、コレステロールなど）といった粗水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体（例えば、コレステリルクロロホルムエーテル、コール酸  
20 など）が挙げられる。こうしたものは、核酸の3'端あるいは5'端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3'端あるいは5'端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を  
25 阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。

アンチセンス核酸の阻害活性は、本発明の形質転換体、本発明の生体内や生体外の遺伝子発現系、あるいは蛋白質の生体内や生体外の翻訳系を用いて調べができる。該核酸は、公知の各種の方法で細胞に適用できる。

本発明の部分ペプチドをコードするDNAとしては、前述した本発明の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNA、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、前記した細胞・組織よりmRNA画分を調製したものを用いて直接RT-PCR法によって増幅することもできる。

具体的には、本発明の部分ペプチドをコードするDNAとしては、例えば、配列番号：3または配列番号：10で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または②配列番号：3または配列番号：10で表わされる塩基配列を有するDNAとハイストリンジェントな条件下でハイブリダイズするDNAを有し、本発明の蛋白質ペプチドと実質的に同質の活性（例、リガンド結合活性、シグナル情報伝達作用など）を有する蛋白質をコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号：3で表わされる塩基配列を有するDNAとハイストリンジェントな条件下でハイブリダイズするDNAとしては、例えば、配列番号：3で表わされる塩基配列と約97%以上、好ましくは約98%以上、より好ましくは約99%以上、最も好ましくは約99.5%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

配列番号：10で表わされる塩基配列を有するDNAとハイストリンジェントな条件下でハイブリダイズするDNAとしては、例えば、配列番号：10で表わされる塩基配列と約95%以上、好ましくは約96%以上、より好ましくは約97%以上、最も好ましくは約98%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

本発明の蛋白質またはその部分ペプチド（以下、本発明の蛋白質と略記することもある）を完全にコードするDNAのクローニングの手段としては、本発明の蛋白質をコードするDNAの塩基配列の部分塩基配列を有する合成DNAプライマーを用いてPCR法によって増幅するか、または適当なベクターに組み込んだDNA

を本発明の蛋白質の一部あるいは全領域をコードするDNA断片もしくは合成DNAを用いて標識したものとのハイブリダイゼーションによって選別することができる。ハイブリダイゼーションの方法は、例えば、モレキュラー・クローニング(Molecular Cloning) 2nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989)に記載の方法などに従って行なうことができる。また、市販のライプラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。

DNAの塩基配列の変換は、PCRや公知のキット、例えば、Mutan<sup>TM</sup>-super Express Km (宝酒造(株))、Mutan<sup>TM</sup>-K (宝酒造(株))等を用いて、ODA-LA PCR法やGapped duplex法やKunkel法等の公知の方法あるいはそれらに準じる方法に従って行なうことができる。

クローン化された蛋白質をコードするDNAは目的によりそのまま、または所望により制限酵素で消化したり、リンカーを付加したりして使用することができる。該DNAはその5'末端側に翻訳開始コドンとしてのATGを有し、また3'末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することもできる。

本発明の蛋白質の発現ベクターは、例えば、(イ) 本発明の蛋白質をコードするDNAから目的とするDNA断片を切り出し、(ロ) 該DNA断片を適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。

ベクターとしては、大腸菌由来のプラスミド(例、pBR322, pBR325, pUC12, pUC13)、枯草菌由来のプラスミド(例、pUB110, pTP5, pC194)、酵母由来プラスミド(例、pSH19, pSH15)、λファージなどのバクテリオファージ、レトロウイルス、ワクシニアウイルス、バキュロウイルスなどの動物ウイルスなどの他、pA1-11, pXT1, pRc/CMV, pRc/RSV, pcDNA1/Neo, pcDNA3.1, pRc/CMV2, pRc/RSV(Invitrogen社)などが用いられる。

本発明で用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。例えば、動物細胞を宿主として用いる場合は、SRαプロモーター、SV40プロモーター、HIV-LTR

プロモーター、CMVプロモーター、HSV-TKプロモーターなどが挙げられる。

これらのうち、CMVプロモーター、SR $\alpha$ プロモーターなどを用いるのが好ましい。宿主がエシェリヒア属菌である場合は、trpプロモーター、lacプロモーター、recAプロモーター、 $\lambda P_L$ プロモーター、lppプロモーターなどが、

- 5 宿主がバチルス属菌である場合は、SPO1プロモーター、SPO2プロモーター、penPプロモーターなど、宿主が酵母である場合は、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーターなどが好ましい。宿主が昆虫細胞である場合は、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。

- 10 発現ベクターには、以上その他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジン（以下、SV40oriと略称する場合がある）などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素（以下、dhfrと略称する場合がある）遺伝子〔メソトレキセート（MTX）耐性〕、アンピシリン耐性遺传子（以下、Amp $r$ と略称する場合がある）、ネオマイシン耐性遺伝子（以下、Neo $r$ と略称する場合がある、G418耐性）等が挙げられる。特に、dhfr遺伝子欠損チャイニーズハムスター細胞CHO（以下、CHO(dhfr $-$ )細胞と略記）を用いてdhfr遺伝子を選択マーカーとして使用する場合、目的遺伝子をチミジンを含まない培地によっても選択できる。

- 20 また、必要に応じて、宿主に合ったシグナル配列を、本発明の蛋白質のN末端側に付加する。宿主がエシェリヒア属菌である場合は、PhoA・シグナル配列、OmpA・シグナル配列などが、宿主がバチルス属菌である場合は、 $\alpha$ -アミラーゼ・シグナル配列、サブチリシン・シグナル配列などが、宿主が酵母である場合は、MFA・シグナル配列、SUC2・シグナル配列など、宿主が動物細胞である場合には、25 インシュリン・シグナル配列、 $\alpha$ -インターフェロン・シグナル配列、抗体分子・シグナル配列などがそれぞれ利用できる。

このようにして構築された本発明の蛋白質をコードするDNAを含有するベクターを用いて、形質転換体を製造することができる。

宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆

虫、動物細胞などが用いられる。

エシェリヒア属菌の具体例としては、エシェリヒア・コリ (*Escherichia coli*) K12・DH1 [プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA) , 5 60巻, 160 (1968)] , JM103 [ヌクイレック・アシックス・リサーチ, (*Nucleic Acids Research*) , 9巻, 309 (1981)] , JA221 [ジャーナル・オブ・モレキュラー・バイオロジー (*Journal of Molecular Biology*) , 12 0巻, 517 (1978)] , HB101 [ジャーナル・オブ・モレキュラー・バイオロジー, 41巻, 459 (1969)] , C600 [ジェネティックス (*Genetics*) , 10 39巻, 440 (1954)] などが用いられる。

バチルス属菌としては、例えば、バチルス・サチルス (*Bacillus subtilis*) M I114 [ジーン, 24巻, 255 (1983)] , 207-21 [ジャーナル・オブ・バイオケミストリー (*Journal of Biochemistry*) , 95巻, 87 (1984)] などが用いられる。

15 酵母としては、例えば、サッカロマイセス セレビシエ (*Saccharomyces cerevisiae*) AH22, AH22R<sup>-</sup>, NA87-11A, DKD-5D, 20B-12、シゾサッカロマイセス ポンベ (*Schizosaccharomyces pombe*) NCYC 1913, NCYC 2036、ピキア パストリス (*Pichia pastoris*) などが用いられる。

20 昆虫細胞としては、例えば、ウイルスがAcNPVの場合は、夜盜蛾の幼虫由来株化細胞 (*Spodoptera frugiperda* cell ; Sf細胞) 、*Trichoplusia ni*の中腸由来のMG1細胞、*Trichoplusia ni*の卵由来のHigh Five<sup>TM</sup>細胞、*Mamestra brassicae*由来の細胞または*Estigmene acrea*由来の細胞などが用いられる。ウイルスがBm NPVの場合は、蚕由来株化細胞 (*Bombyx mori* N ; BmN細胞) などが用いられる。該Sf細胞としては、例えば、Sf9細胞 (ATCC CRL1711) 、Sf21細胞 (以上、Vaughn, J. L. ら、イン・ヴィボ (In Vivo) , 13, 213-217, (1977)) などが用いられる。

昆虫としては、例えば、カイコの幼虫などが用いられる [前田ら、ネイチャー (Nature) , 315巻, 592 (1985)] 。

動物細胞としては、例えば、サル細胞COS-7, Vero, チャイニーズハムスター細胞CHO(以下、CHO細胞と略記), CHO(dhfr<sup>-</sup>), マウスL細胞, マウスATT-20, マウスミエローマ細胞, ラットGH3, ヒトFL細胞などが用いられる。

- 5 エシェリヒア属菌を形質転換するには、例えば、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA), 69巻, 2110(1972)やジーン(Gene), 17巻, 107(1982)などに記載の方法に従って行なうことができる。バチルス属菌を形質転換するには、例えば、モレキュラー・アンド・ジェネラル・ジェネティックス(Molecular & General Genetics), 168巻, 111(1979)などに記載の方法に従って行なうことができる。

- 10 酵母を形質転換するには、例えば、メッソズ・イン・エンザイモロジー(Methods in Enzymology), 194巻, 182-187(1991)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA), 75巻, 1929(1978)などに記載の方法に従って行なうことができる。

昆虫細胞または昆虫を形質転換するには、例えば、バイオ/テクノロジー(Bio/Technology), 6, 47-55(1988)などに記載の方法に従って行なうことができる。

- 15 動物細胞を形質転換するには、例えば、細胞工学別冊8 新 細胞工学実験プロトコール, 263-267(1995)(秀潤社発行)、ヴィロロジー(Virology), 52巻, 456(1973)に記載の方法に従って行なうことができる。

20 このようにして、G蛋白質共役型蛋白質をコードするDNAを含有する発現ベクターで形質転換された形質転換体が得られる。

- 25 宿主がエシェリヒア属菌、バチルス属菌である形質転換体を培養する際、培養に使用される培地としては液体培地が適当であり、その中には該形質転換体の生育に必要な炭素源、窒素源、無機物その他が含有せしめられる。炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖など、窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、

肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質、無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどが挙げられる。また、酵母エキス、ビタミン類、生長促進因子などを添加してもよい。培地のpHは約5～8が望ましい。

- 5 エシェリヒア属菌を培養する際の培地としては、例えば、グルコース、カザミノ酸を含むM9培地〔ミラー (Miller), ジャーナル・オブ・エクスペリメンツ・イン・モレキュラー・ジェネティックス (Journal of Experiments in Molecular Genetics), 431-433, Cold Spring Harbor Laboratory, New York 1972〕が好ましい。ここに必要によりプロモーターを効率よく働かせるために、例えば、 $3\beta$ -インドリル アクリル酸のような薬剤を加えることができる。宿主がエシェリヒア属菌の場合、培養は通常約15～43℃で約3～24時間行ない、必要により、通気や攪拌を加えることもできる。

宿主がバチルス属菌の場合、培養は通常約30～40℃で約6～24時間行ない、必要により通気や攪拌を加えることもできる。

- 15 宿主が酵母である形質転換体を培養する際、培地としては、例えば、バークホールダー (Burkholder) 最小培地 [Bostian, K. L. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユースエー (Proc. Natl. Acad. Sci. U.S.A.), 77巻, 4505 (1980)] や0.5%カザミノ酸を含有するSD培地 [Bitter, G. A. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユースエー (Proc. Natl. Acad. Sci. U.S.A.), 81巻, 5330 (1984)] が挙げられる。培地のpHは約5～8に調整するのが好ましい。培養は通常約20℃～35℃で約24～72時間行ない、必要に応じて通気や攪拌を加える。

- 宿主が昆虫細胞または昆虫である形質転換体を培養する際、培地としては、25 Grace's Insect Medium (Grace, T. C. C., ネイチャー (Nature), 195, 788 (1962)) に非動化した10%ウシ血清等の添加物を適宜加えたものなどが用いられる。培地のpHは約6.2～6.4に調整するのが好ましい。培養は通常約27℃で約3～5日間行ない、必要に応じて通気や攪拌を加える。

宿主が動物細胞である形質転換体を培養する際、培地としては、例えば、約5～

20 %の胎児牛血清を含むMEM培地〔サイエンス(Science), 122巻, 501(1952)〕, DMEM培地〔ヴィロロジー(Virology), 8巻, 396(1959)〕, RPMI 1640培地〔ジャーナル・オブ・ザ・アメリカン・メディカル・アソシエーション(The Journal of the American Medical Association) 1599巻, 519(1967)〕, 199培地〔プロシージング・オブ・ザ・ソサイエティ・フォー・ザ・バイオロジカル・メディシン(Proceeding of the Society for the Biological Medicine), 73巻, 1(1950)〕などが用いられる。pHは約6~8であるのが好ましい。培養は通常約30℃~40℃で約15~60時間行ない、必要に応じて通気や攪拌を加える。

10 以上のようにして、形質転換体の細胞内、細胞膜または細胞外に本発明の蛋白質を生成せしめることができる。

上記培養物から本発明の蛋白質を分離精製するには、例えば、下記の方法により行なうことができる。

15 本発明の蛋白質を培養菌体あるいは細胞から抽出するに際しては、培養後、公知の方法で菌体あるいは細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって菌体あるいは細胞を破壊したのち、遠心分離やろ過により蛋白質の粗抽出液を得る方法などが適宜用いられる。緩衝液の中に尿素や塩酸グアニジンなどの蛋白質変性剤や、トリトンX-100<sup>TM</sup>などの界面活性剤が含まれていてもよい。培養液中に蛋白質が分泌される場合には、培養終了後、公知の方法で菌体あるいは細胞と上清とを分離し、上清を集める。

20 このようにして得られた培養上清、あるいは抽出液中に含まれる蛋白質の精製は、公知の分離・精製法を適切に組み合わせて行なうことができる。これらの公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSDS-ポリアクリラミドゲル電気泳動法などの主として分子量の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用する方法、アフィニティーコロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動法などの等電点の差を利用する方法などが用いられる。

25 このようにして得られる蛋白質が遊離体で得られた場合には、公知の方法あるい

はそれに準じる方法によって塩に変換することができ、逆に塩で得られた場合には公知の方法あるいはそれに準じる方法により、遊離体または他の塩に変換することができる。

なお、組換え体が産生する蛋白質を、精製前または精製後に適当な蛋白修飾酵素5 を作用させることにより、任意に修飾を加えたり、ポリペプチドを部分的に除去することもできる。蛋白修飾酵素としては、例えば、トリプシン、キモトリプシン、アルギニルエンドペプチダーゼ、プロテインキナーゼ、グリコシダーゼなどが用いられる。

10 このようにして生成する本発明の蛋白質またはその塩の活性は、標識したリガンドとの結合実験および特異抗体を用いたエンザイムイムノアッセイなどにより測定することができる。

本発明の蛋白質、その部分ペプチドまたはそれらの塩に対する抗体は、本発明の蛋白質、その部分ペプチドまたはそれらの塩を認識し得る抗体であれば、ポリクローナル抗体、モノクローナル抗体の何れであってもよい。

15 本発明の蛋白質、その部分ペプチドまたはそれらの塩（以下、本発明の蛋白質等と略記することもある）に対する抗体は、本発明の蛋白質等を抗原として用い、公知の抗体または抗血清の製造法に従って製造することができる。

#### [モノクローナル抗体の作製]

20 (a) モノクローナル抗体産生細胞の作製

本発明の蛋白質等は、哺乳動物に対して投与により抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロントアジュvantや不完全フロントアジュvantを投与してもよい。投与は通常2～6週毎に1回ずつ、計2～10回程度行なわれる。用いられる哺乳動物としては、例えば、サル、ウサギ、イヌ、モルモット、マウス、ラット、ヒツジ、ヤギが挙げられるが、マウスおよびラットが好ましく用いられる。

モノクローナル抗体産生細胞の作製に際しては、抗原を免疫された温血動物、例えば、マウスから抗体価の認められた個体を選択し最終免疫の2～5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を骨髄腫細胞と融合させる

ことにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗血清中の抗体価の測定は、例えば、後記の標識化した本発明の蛋白質等と抗血清とを反応させたのち、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーとミルスタインの方法〔ネイチャ―(Nature)、256巻、495頁(1975年)〕に従い実施することができる。融合促進剤としては、例えば、ポリエチレングリコール(PEG)やセンダイウィルスなどが挙げられるが、好ましくはPEGが用いられる。

骨髄腫細胞としては、例えば、NS-1、P3U1、SP2/0などが挙げられるが、P3U1が好ましく用いられる。用いられる抗体産生細胞(脾臓細胞)数と骨髄腫細胞数との好ましい比率は1:1~20:1程度であり、PEG(好ましくは、PEG1000~PEG6000)が10~80%程度の濃度で添加され、約20~40℃、好ましくは約30~37℃で約1~10分間インキュベートすることにより効率よく細胞融合を実施できる。

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、本発明の蛋白質等抗原を直接あるいは担体とともに吸着させた固相(例、マイクロプレート)にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体(細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる)またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識した本発明の蛋白質等を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、公知あるいはそれに準じる方法に従って行なうことができるが、通常はHAT(ヒポキサンチン、アミノプテリン、チミジン)を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1~20%、好ましくは10~20%の牛胎児血清を含むRPMI 1640培地、1~10%の牛胎児血清を含むGIT培地(和光純薬工業(株))またはハイブリドーマ培養用無血清培地(SFM-101、日本製薬(株))などを用いることが

できる。培養温度は、通常20～40℃、好ましくは約37℃である。培養時間は、通常5日～3週間、好ましくは1週間～2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

5

(b) モノクローナル抗体の精製

モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法〔例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体（例、DEAE）による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法〕に従って行なうことができる。

〔ポリクローナル抗体の作製〕

15 本発明のポリクローナル抗体は、公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原（本発明の蛋白質等の抗原）とキャリアー蛋白質との複合体をつくり、上記のモノクローナル抗体の製造法と同様に哺乳動物に免疫を行ない、該免疫動物から本発明の蛋白質等に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。

20 哺乳動物を免疫するために用いられる免疫抗原とキャリアー蛋白質との複合体に関し、キャリアー蛋白質の種類およびキャリアーとハプテンとの混合比は、キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミン、ウシサイログロブリン、キーホール・リンペット・ヘモシアニン等を重量比でハプテン1に対し、約0.1～2.0、好ましくは約1～5の割合でカプセルする方法が用いられる。

また、ハプテンとキャリアーのカプリングには、種々の縮合剤を用いることができるが、グルタルアルデヒドやカルボジイミド、マレイミド活性エステル、チオール基、ジチオビリジル基を含有する活性エステル試薬等が用いられる。

縮合生成物は、温血動物に対して、抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロントアジュvantや不完全フロントアジュvantを投与してもよい。投与は、通常約2～6週毎に1回ずつ、計約3～10回程度行なうことができる。

- 5 ポリクローナル抗体は、上記の方法で免疫された哺乳動物の血液、腹水など、好ましくは血液から採取することができる。

抗血清中のポリクローナル抗体価の測定は、上記の血清中の抗体価の測定と同様にして測定できる。ポリクローナル抗体の分離精製は、上記のモノクローナル抗体の分離精製と同様の免疫グロブリンの分離精製法に従って行なうことができる。

- 10 本発明の蛋白質、その部分ペプチドまたはそれらの塩、およびそれらをコードするDNAは、①本発明の蛋白質に対するリガンドの決定方法、②抗体および抗血清の入手、③組換え型蛋白質の発現系の構築、④同発現系を用いたレセプター結合アッセイ系の開発と医薬品候補化合物のスクリーニング、⑤構造的に類似したリガンド・レセプターとの比較にもとづいたドラッグデザインの実施、⑥遺伝子診断におけるプローブやPCRプライマーを作成するための試薬、⑦トランスジェニック動物の作製または⑧遺伝子予防・治療剤等の医薬などとして用いることができる。

特に、本発明の組換え型蛋白質の発現系を用いたレセプター結合アッセイ系を用いることによって、ヒトやその他の哺乳動物に特異的なG蛋白質共役型レセプターに対するリガンドの結合性を変化させる化合物（例、アゴニスト、アンタゴニストなど）をスクリーニングすることができ、該アゴニストまたはアンタゴニストを各種疾病の予防・治療剤などとして使用することができる。

本発明の蛋白質、部分ペプチドまたはそれらの塩（以下、本発明の蛋白質等と略記する場合がある）、本発明の蛋白質またはその部分ペプチドをコードするDNA（以下、本発明のDNAと略記する場合がある）および本発明の蛋白質等に対する抗体（以下、本発明の抗体と略記する場合がある）の用途について、以下に具体的に記載する。

（1）本発明の蛋白質に対するリガンド（アゴニスト・アンタゴニスト）の決定方法

本発明の蛋白質もしくはその塩または本発明の部分ペプチドもしくはその塩は、本発明の蛋白質またはその塩に対するリガンド（アゴニスト・アンタゴニスト）を探索し、または決定するための試薬として有用である。

すなわち、本発明は、本発明の蛋白質もしくはその塩または本発明の部分ペプチドもしくはその塩と、試験化合物とを接触させることを特徴とする本発明の蛋白質に対するリガンドの決定方法を提供する。

試験化合物としては、公知のリガンド（例えば、アンギオテンシン、ボンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、10 セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP（バソアクティブ インテスティナル アンド リレイテッド ポリペプチド）、ソマトスタチン、ドーパミン、モチリン、アミリン、プラジキニン、CGRP（カルシトニンジーンリレーティッドペプチド）、ロイコトリエン、パンクレアスタチン、プロスタグラジン、15 トロンボキサン、アデノシン、アドレナリン、 $\alpha$ および $\beta$ -ケモカイン（chemokine）（例えば、IL-8、GRO $\alpha$ 、GRO $\beta$ 、GRO $\gamma$ 、NAP-2、ENA-78、PF4、IP10、GCP-2、MCP-1、HC14、MCP-3、I-309、MIP1 $\alpha$ 、MIP-1 $\beta$ 、RANTESなど）、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイド、ガラニン、MIT1またはその哺乳動物のホモログなど）があげられ、またその他に、例えば、ヒトまたは哺乳動物（例えば、マウス、ラット、ブタ、ウシ、ヒツジ、サルなど）の組織抽出物、細胞培養上清などが、さらには、配列番号：49、配列番号：51、配列番号：53または配列番号：71で表わされるアミノ酸配列を含有するペプチドなどが用いられる。例えば、該組織抽出物、細胞培養上清などを本発明の蛋白質に添加し、細胞刺激活性などを測定しながら分画し、最終的に単一のリガンドを得ることができる。

リガンドがペプチド性リガンドである場合、該リガンドをリガンドペプチドと称することがある。また、リガンドペプチドが前駆体として発現し、シグナルペプチドが除去されて成熟体となる場合、それぞれをリガンド前駆体ペプチドおよびリガ

ンド成熟体ペプチドと称することがあるが、両者を総称して単にリガンドペプチドと称することもある。

- 具体的には、本発明のリガンド決定方法は、本発明の蛋白質、その部分ペプチドもしくはそれらの塩を用いるか、または組換え型蛋白質の発現系を構築し、該発現
- 5 系を用いたレセプター結合アッセイ系を用いることによって、本発明の蛋白質に結合して細胞刺激活性（例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内 C<sup>a 2+</sup>遊離、細胞内 cAMP 生成、細胞内 cGMP 生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fos 活性化、pH の低下などを促進する活性または抑制する活性）を有する化合物（例えば、ペプチド、蛋白質、
- 10 非ペプチド性化合物、合成化合物、発酵生産物など）またはその塩を決定する方法である。

- 本発明のリガンド決定方法においては、本発明の蛋白質またはその部分ペプチドと試験化合物とを接触させた場合の、例えば、該蛋白質または該部分ペプチドに対する試験化合物の結合量や、細胞刺激活性などを測定することを特徴とする。
- 15 より具体的には、本発明は、①標識した試験化合物を、本発明の蛋白質もしくはその塩または本発明の部分ペプチドもしくはその塩に接触させた場合における、標識した試験化合物の該蛋白質もしくはその塩、または該部分ペプチドもしくはその塩に対する結合量を測定することを特徴とする本発明の蛋白質またはその塩に対するリガンドの決定方法、
- 20 ②標識した試験化合物を、本発明の蛋白質を含有する細胞または該細胞の膜画分に接触させた場合における、標識した試験化合物の該細胞または該膜画分に対する結合量を測定することを特徴とする本発明の蛋白質またはその塩に対するリガンドの決定方法、
- 25 ③標識した試験化合物を、本発明の蛋白質をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現した蛋白質に接触させた場合における、標識した試験化合物の該蛋白質またはその塩に対する結合量を測定することを特徴とする本発明の蛋白質に対するリガンドの決定方法、
- ④試験化合物を、本発明の蛋白質を含有する細胞に接触させた場合における、蛋白質を介した細胞刺激活性（例えば、アラキドン酸遊離、アセチルコリン遊離、細胞

内Ca<sup>2+</sup>遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定することを特徴とする本発明の蛋白質またはその塩に対するリガンドの決定方法、および

- 5 ⑤試験化合物を、本発明の蛋白質をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現した蛋白質に接触させた場合における、蛋白質を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca<sup>2+</sup>遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定することを特徴とする本発明の蛋白質またはその塩に対するリガンドの決定方法を提供する。

特に、上記①～③の試験を行ない、試験化合物が本発明の蛋白質に結合することを確認した後に、上記④～⑤の試験を行なうことが好ましい。

まず、リガンド決定方法に用いる蛋白質としては、前記した本発明の蛋白質または本発明の部分ペプチドを含有するものであれば何れのものであってもよいが、動物細胞を用いて大量発現させた蛋白質が適している。

本発明の蛋白質を製造するには、前述の発現方法が用いられるが、該蛋白質をコードするDNAを哺乳動物細胞や昆虫細胞で発現することにより行なうことが好ましい。目的とする蛋白質部分をコードするDNA断片には、通常、相補DNAが用いられるが、必ずしもこれに制約されるものではない。例えば、遺伝子断片や合成DNAを用いてもよい。本発明の蛋白質をコードするDNA断片を宿主動物細胞に導入し、それらを効率よく発現させるためには、該DNA断片を昆虫を宿主とするバキュロウイルスに属する核多角体病ウイルス(nuclear polyhedrosis virus; NPV)のポリヘドリンプロモーター、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒトヒートショックプロモーター、サイトメガロウイルスプロモーター、SR $\alpha$ プロモーターなどの下流に組み込むのが好ましい。発現したレセプターの量と質の検査は公知の方法で行なうことができる。例えば、文献[Nambi, P. ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(J. Biol. Chem.), 267巻, 19555～19559頁, 1992年]に記載の方法に

従って行うことができる。

したがって、本発明のリガンド決定方法において、本発明の蛋白質、その部分ペプチドまたはそれらの塩を含有するものとしては、公知の方法に従って精製した蛋白質、その部分ペプチドまたはそれらの塩であってもよいし、該蛋白質を含有する  
5 細胞またはその細胞膜画分を用いてもよい。

本発明のリガンド決定方法において、本発明の蛋白質を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法は公知の方法に従って行なうことができる。

本発明の蛋白質を含有する細胞としては、本発明の蛋白質を発現した宿主細胞を  
10 いうが、該宿主細胞としては、大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが用いられる。

細胞膜画分としては、細胞を破碎した後、公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破碎方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン（Kinematica社製）による破碎、超音波による破碎、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破碎などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破碎液を低速（500 rpm～3000 rpm）で短時間（通常、約1分～10分）遠心し、上清をさらに高速（15000 rpm～30000 rpm）で通常30分～2時間遠心し、得られる沈殿を膜画分とする。該膜画分中には、発現した蛋白質と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

該蛋白質を含有する細胞やその膜画分中の蛋白質の量は、1細胞当たり $10^3$ ～ $10^8$ 分子であるのが好ましく、 $10^5$ ～ $10^7$ 分子であるのが好適である。なお、  
25 発現量が多いほど膜画分当たりのリガンド結合活性（比活性）が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

本発明の蛋白質またはその塩に対するリガンドを決定する前記の①～③の方法を実施するためには、適当な蛋白質画分と、標識した試験化合物が必要である。

蛋白質画分としては、天然型のレセプター蛋白質画分か、またはそれと同等の活性を有する組換え型レセプター画分などが望ましい。ここで、同等の活性とは、同等のリガンド結合活性、シグナル情報伝達作用などを示す。

標識した試験化合物としては、 $[^3\text{H}]$ 、 $[^{125}\text{I}]$ 、 $[^{14}\text{C}]$ 、 $[^{35}\text{S}]$ など  
 5 で標識したアンギオテンシン、ポンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GR  
 10 P、PTH、VIP(バソアクティブ インテスティナル アンド リイテッド ポリペプチド)、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP(カルシトニンジーンリレーティッドペプチド)、ロイコトリエン、パンクレアスタチン、プロスタグラニン、トロンボキサン、アデノシン、アドレナリン、 $\alpha$ および $\beta$ -ケモカイン(chemokine)(例えば、IL-8、GRO $\alpha$ 、GRO $\beta$ 、GRO $\gamma$ 、NAP-2、ENA-78、PF4、IP10、GCP-2、M  
 15 CP-1、HC14、MCP-3、I-309、MIP1 $\alpha$ 、MIP-1 $\beta$ 、RANTESなど)、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイド、ガラニン、MIT1またはその哺乳動物のホモログなどが好適であり、配列番号：49、配列番号：51、配列番号：53または配列番号：71で表わされるアミノ酸配列を含有するペプチドなども用いられる。  
 20

具体的には、本発明の蛋白質またはその塩に対するリガンドの決定方法を行なうには、まず本発明の蛋白質を含有する細胞または細胞の膜画分を、決定方法に適したバッファーに懸濁することによりレセプター標品を調製する。バッファーには、pH4～10(望ましくはpH6～8)のリン酸バッファー、トリス-塩酸バッファーなどのリガンドと本発明の蛋白質との結合を阻害しないバッファーであればいずれでもよい。また、非特異的結合を低減させる目的で、CHAPS、Tween-80<sup>TM</sup>(花王-アトラス社)、ジギトニン、デオキシコレートなどの界面活性剤やウシ血清アルブミンやゼラチンなどの各種蛋白質をバッファーに加えることもできる。さらに、プロテアーゼによるリセプターやリガンドの分解を抑える目的

でPMSF、ロイペプチド、E-64(ペプチド研究所製)、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。0.01ml~10mlの該レセプター溶液に、一定量(5000cpm~500000cpm)の[<sup>3</sup>H]、[<sup>125</sup>I]、[<sup>14</sup>C]、[<sup>35</sup>S]などで標識した試験化合物を共存させる。非特異的結合量(NSB)を知るために大過剰の未標識の試験化合物を加えた反応チューブも用意する。反応は約0℃から50℃、望ましくは約4℃から37℃で、約20分から24時間、望ましくは約30分から3時間行なう。反応後、ガラス纖維濾紙等で濾過し、適量の同バッファーで洗浄した後、ガラス纖維濾紙に残存する放射活性を液体シンチレーションカウンターあるいはγカウンターで計測する。全結合量(B)から非特異的結合量(NSB)を引いたカウント(B-NSB)が0cpmを越える試験化合物を本発明の蛋白質またはその塩に対するリガンド(アゴニスト)として選択することができる。

本発明の蛋白質またはその塩に対するリガンドを決定する前記の④~⑤の方法を実施するためには、該蛋白質を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca<sup>2+</sup>遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を公知の方法または市販の測定用キットを用いて測定することができる。具体的には、まず、本発明の蛋白質を含有する細胞をマルチウェルプレート等に培養する。リガンド決定を行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標とする物質(例えば、アラキドン酸など)の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。また、cAMP産生抑制などの活性については、フォルスコリンなどで細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出することができる。

本発明の蛋白質またはその塩に結合するリガンド決定用キットは、本発明の蛋白質もしくはその塩、本発明の部分ペプチドもしくはその塩、本発明の蛋白質を含有

する細胞、または本発明の蛋白質を含有する細胞の膜画分などを含有するものである。

本発明のリガンド決定用キットの例としては、次のものが挙げられる。

## 1. リガンド決定用試薬

### 5 ①測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution (ギブコ社製) に、0.05%のウシ血清アルブミン (シグマ社製) を加えたもの。

孔径0.45 μmのフィルターで濾過滅菌し、4°Cで保存するか、あるいは用時調製しても良い。

### 10 ②G蛋白質共役型レセプター蛋白質標品

本発明の蛋白質を発現させたCHO細胞を、12穴プレートに $5 \times 10^5$ 個/穴で継代し、37°C、5%CO<sub>2</sub>、95%airで2日間培養したもの。

### ③標識試験化合物

市販の[<sup>3</sup>H]、[<sup>125</sup>I]、[<sup>14</sup>C]、[<sup>35</sup>S]などで標識した化合物、または15 適当な方法で標識化したもの

水溶液の状態のものを4°Cあるいは-20°Cにて保存し、用時に測定用緩衝液にて1 μMに希釈する。水に難溶性を示す試験化合物については、ジメチルホルムアミド、DMSO、メタノール等に溶解する。

### ④非標識試験化合物

20 標識化合物と同じものを100~1000倍濃い濃度に調製する。

## 2. 測定法

①12穴組織培養用プレートにて培養した本発明の蛋白質発現CHO細胞を、測定用緩衝液1mlで2回洗浄した後、490 μlの測定用緩衝液を各穴に加える。

25 ②標識試験化合物を5 μl加え、室温にて1時間反応させる。非特異的結合量を知るために非標識試験化合物を5 μl加えておく。

③反応液を除去し、1mlの洗浄用緩衝液で3回洗浄する。細胞に結合した標識試験化合物を0.2N NaOH-1%SDSで溶解し、4mlの液体シンチレーター-A (和光純薬製) と混合する。

④液体シンチレーションカウンター（ベックマン社製）を用いて放射活性を測定する。

本発明の蛋白質またはその塩に結合することができるリガンドとしては、例えば、脳、下垂体、胰臓などに特異的に存在する物質などが挙げられ、具体的には、アンギオテンシン、ポンペシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP (バソアクティブ インテスティナル アンド リレイテッド ポリペプチド)、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP (カルシトニンジーンリレーティッドペプチド)、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、 $\alpha$  および  $\beta$ -ケモカイン (chemokine) (例えば、IL-8、GRO $\alpha$ 、GRO $\beta$ 、GRO $\gamma$ 、NAP-2、ENA-78、PF4、IP10、GCP-2、MCP-1、HC14、MCP-3、I-309、MIP1 $\alpha$ 、MIP-1 $\beta$ 、RANTESなど)、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイド、ガラニン、MIT1 またはその哺乳動物のホモログなどが用いられる。

## 20 (2) 本発明の蛋白質欠乏症の予防および／または治療剤

上記(1)の方法において、本発明の蛋白質に対するリガンドが明らかになれば、該リガンドが有する作用に応じて、①本発明の蛋白質または②該蛋白質をコードするDNAを、本発明の蛋白質の機能不全に関連する疾患の予防および／または治療剤などの医薬として使用することができる。

25 例えば、生体内において本発明の蛋白質が減少しているためにリガンドの生理作用が期待できない (該蛋白質の欠乏症) 患者がいる場合に、①本発明の蛋白質を該患者に投与し該蛋白質の量を補充したり、② (イ) 本発明の蛋白質をコードするDNAを該患者に投与し発現させることによって、あるいは (ロ) 対象となる細胞に本発明の蛋白質をコードするDNAを挿入し発現させた後に、該細胞を該患者に移

植することなどによって、患者の体内における蛋白質の量を増加させ、リガンドの作用を充分に発揮させることができる。したがって、本発明の蛋白質をコードするDNAは、安全で低毒性な本発明のレセプター蛋白質の機能不全に関連する疾患の予防および／または治療剤などの医薬として有用である。

- 5 本発明の蛋白質または該蛋白質をコードするDNAは中枢疾患(例えばアルツハイマー病・痴呆・摂食障害(拒食症)・てんかんなど)、ホルモン系の疾患(例えば、微弱陣痛、弛緩出血、胎盤娩出前後、子宮復古不全、帝王切開術、人工妊娠中絶、乳汁うつ滞など)、肝/胆/脾/内分泌疾患(例えば糖尿病・摂食障害など)、炎症性疾患(アレルギー・喘息・リュウマチなど)、循環器疾患(例えば高血圧症・心肥大・狭心症・動脈硬化等)、呼吸器系疾患(例えば、肺炎、喘息、気管支炎、呼吸器感染症、慢性閉塞性肺疾患等)、感染症(例えば、敗血症、MRSA、呼吸器感染症、尿路感染症、胆道感染症、感染性腸炎、中耳炎、前立腺炎等)の予防および／または治療に有用である。
- 10 15 また、本発明の蛋白質または該蛋白質をコードするDNAは消化器疾患(例えば腸炎、下痢、便秘、吸収不良性症候群など)の予防および／または治療に特に有用である。

本発明の蛋白質を上記予防・治療剤として使用する場合は、常套手段に従って製剤化することができる。

- 一方、本発明の蛋白質をコードするDNA(以下、本発明のDNAと略記する場合がある)を上記予防・治療剤として使用する場合は、本発明のDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。本発明のDNAは、そのままで、あるいは摂取促進のための補助剤とともに、遺伝子錠やハイドロゲルカテーテルのようなカテーテルによって投与できる。

例えば、①本発明の蛋白質または②該蛋白質をコードするDNAは、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、①本発明の蛋

白質または②該蛋白質をコードするDNAを生理学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な用量が得られるよう

5 にするものである。

錠剤、カプセル剤などに混和することができる添加剤としては、例えばゼラチン、コーンスター、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスター、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。

10 調剤単位形態がカプセルである場合には、前記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液（例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど）などが用いられ、適当な溶解補助剤、例えば、アルコール（例、エタノール）、ポリアルコール（例、プロピレングリコール、ポリエチレングリコール）、非イオン性界面活性剤（例、ポリソルベート80<sup>TM</sup>、HCO-50）などと併用してもよい。油性液としては、

15 例えば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

また、上記予防・治療剤は、例えば、緩衝剤（例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液）、無痛化剤（例えば、塩化ベンザルコニウム、塩酸プロカインなど）、安定剤（例えば、ヒト血清アルブミン、ポリエチレングリコールなど）、保存剤（例えば、ベンジルアルコール、フェノールなど）、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトやその他の哺乳動物（例えば、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど）に対して投与することができる。

本発明の蛋白質またはDNAの投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に成人（60kgとして）の消化器疾患患者においては、一日につき約0.1mg～100mg、好ましくは約1.0～50mg、より好ましくは約1.0～20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常成人（60kgとして）の消化器疾患患者においては、一日につき約0.01～30mg程度、好ましくは約0.1～20mg程度、より好ましくは約0.1～10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

10

### （3）遺伝子診断剤

本発明のDNAは、プローブとして使用することにより、ヒトまたはその他の哺乳動物（例えば、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど）における本発明の蛋白質またはその部分ペプチドをコードするDNAまたはmRNAの異常（遺伝子異常）を検出することができるので、例えば、該DNAまたはmRNAの損傷、突然変異あるいは発現低下や、該DNAまたはmRNAの増加あるいは発現過多などの遺伝子診断剤として有用である。

本発明のDNAを用いる上記の遺伝子診断は、例えば、公知のノーザンハイブリダイゼーションやPCR-SSCP法（ゲノミックス（Genomics），第5巻，874～879頁（1989年）、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ユースエー（Proceedings of the National Academy of Sciences of the United States of America），第86巻，2766～2770頁（1989年））などにより実施することができる。

25 （4）本発明の蛋白質に対するリガンドの定量法

本発明の蛋白質等は、リガンドに対して結合性を有しているので、生体内におけるリガンド濃度を感度良く定量することができる。

本発明の定量法は、例えば、競合法と組み合わせることによって用いることができる。すなわち、被検体を本発明の蛋白質等と接触させることによって被検体中の

リガンド濃度を測定することができる。具体的には、例えば、以下の①または②などに記載の方法あるいはそれに準じる方法に従って用いることができる。

①入江寛編「ラジオイムノアッセイ」（講談社、昭和49年発行）

②入江寛編「続ラジオイムノアッセイ」（講談社、昭和54年発行）

5

（5）本発明の蛋白質とリガンドとの結合性を変化させる化合物のスクリーニング方法

本発明の蛋白質等を用いるか、または組換え型蛋白質等の発現系を構築し、該発現系を用いたレセプター結合アッセイ系を用いることによって、リガンドと本発明の蛋白質等との結合性を変化させる化合物（例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など）またはその塩を効率よくスクリーニングすることができる。

このような化合物には、（イ）G蛋白質共役型レセプターを介して細胞刺激活性（例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca<sup>2+</sup>遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など）を有する化合物（いわゆる、本発明の蛋白質に対するアゴニスト）、（ロ）該細胞刺激活性を有しない化合物（いわゆる、本発明の蛋白質に対するアンタゴニスト）、（ハ）リガンドと本発明の蛋白質との結合力を増強する化合物、あるいは（ニ）リガンドと本発明の蛋白質との結合力を減少させる化合物などが含まれる（なお、上記（イ）の化合物は、前記したリガンド決定方法によってスクリーニングすることが好ましい）。

すなわち、本発明は、（i）本発明の蛋白質、その部分ペプチドまたはそれらの塩と、リガンドとを接触させた場合と（ii）本発明の蛋白質、その部分ペプチドまたはそれらの塩と、リガンドおよび試験化合物とを接触させた場合との比較を行なうことを特徴とするリガンドと本発明の蛋白質、その部分ペプチドまたはそれらの塩との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。

本発明のスクリーニング方法においては、（i）と（ii）の場合における、例えば、該蛋白質等に対するリガンドの結合量、細胞刺激活性などを測定して、比較す

ることを特徴とする。

より具体的には、本発明は、

- ①標識したリガンドを、本発明の蛋白質等に接触させた場合と、標識したリガンドおよび試験化合物を本発明の蛋白質等に接触させた場合における、標識したリガンドの該蛋白質等に対する結合量を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法、  
5
- ②標識したリガンドを、本発明の蛋白質等を含有する細胞または該細胞の膜画分に接触させた場合と、標識したリガンドおよび試験化合物を本発明の蛋白質等を含有する細胞または該細胞の膜画分に接触させた場合における、標識したリガンドの該細胞または該膜画分に対する結合量を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法、  
10
- ③標識したリガンドを、本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した蛋白質等に接触させた場合と、標識したリガンドおよび試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の蛋白質等に接触させた場合における、標識したリガンドの該蛋白質等に対する結合量を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法、  
15
- ④本発明の蛋白質等を活性化する化合物（例えば、本発明の蛋白質等に対するリガンドなど）を本発明の蛋白質等を含有する細胞に接触させた場合と、本発明の蛋白質等を活性化する化合物および試験化合物を本発明の蛋白質等を含有する細胞に接触させた場合における、レセプターを介した細胞刺激活性（例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca<sup>2+</sup>遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など）を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法、および  
20
- ⑤本発明の蛋白質等を活性化する化合物（例えば、本発明の蛋白質等に対するリガ

ンドなど)を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の蛋白質等に接触させた場合と、本発明の蛋白質等を活性化する化合物および試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の蛋白質等に接触させた場合における、レセプターを介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca<sup>2+</sup>遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。

本発明の蛋白質等が得られる以前は、G蛋白質共役型レセプターアゴニストまたはアンタゴニストをスクリーニングする場合、まずラットなどのG蛋白質共役型レセプター蛋白質を含む細胞、組織またはその細胞膜画分を用いて候補化合物を得て(一次スクリーニング)、その後に該候補化合物が実際にヒトのG蛋白質共役型レセプター蛋白質とリガンドとの結合を阻害するか否かを確認する試験(二次スクリーニング)が必要であった。細胞、組織または細胞膜画分をそのまま用いれば他のレセプター蛋白質も混在するために、目的とするレセプター蛋白質に対するアゴニストまたはアンタゴニストを実際にスクリーニングすることは困難であった。

しかしながら、例えば、本発明のラット由来蛋白質を用いることによって、一次スクリーニングの必要がなくなり、リガンドとG蛋白質共役型レセプター蛋白質との結合を阻害する化合物を効率良くスクリーニングすることができる。さらに、スクリーニングされた化合物がアゴニストかアンタゴニストかを簡便に評価することができる。

本発明のスクリーニング方法の具体的な説明を以下にする。

まず、本発明のスクリーニング方法に用いる本発明の蛋白質等としては、前記した本発明の蛋白質等を含有するものであれば何れのものであってもよいが、本発明の蛋白質等を含有する哺乳動物の臓器の細胞膜画分が好適である。しかし、特にヒト由来の臓器は入手が極めて困難なことから、スクリーニングに用いられるものとしては、組換え体を用いて大量発現させたラット由来のレセプター蛋白質等などが

適している。

- 本発明の蛋白質等を製造するには、前述の方法が用いられるが、本発明のDNAを哺乳細胞や昆虫細胞で発現することにより行なうことが好ましい。目的とする蛋白質部分をコードするDNA断片には相補DNAが用いられるが、必ずしもこれに制約されるものではない。例えば、遺伝子断片や合成DNAを用いてもよい。本発明の蛋白質をコードするDNA断片を宿主動物細胞に導入し、それらを効率よく発現させるためには、該DNA断片を昆虫を宿主とするバキュロウイルスに属する核多角体病ウイルス (nuclear polyhedrosis virus; NPV) のポリヘドリンプロモーター、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒトヒートショックプロモーター、サイトメガロウイルスプロモーター、SR $\alpha$ プロモーターなどの下流に組み込むのが好ましい。発現したレセプターの量と質の検査は公知の方法で行なうことができる。例えば、文献 [Nambi, P. ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (J. Biol. Chem.), 267巻, 19555~19559頁, 1992年] に記載の方法に従って行なうことができる。
- したがって、本発明のスクリーニング方法において、本発明の蛋白質等を含有するものとしては、公知の方法に従って精製した蛋白質等であってもよいし、該蛋白質等を含有する細胞を用いてもよく、また該蛋白質等を含有する細胞の膜画分を用いてもよい。

- 本発明のスクリーニング方法において、本発明の蛋白質等を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法は公知の方法に従って行なうことができる。

- 本発明の蛋白質等を含有する細胞としては、該蛋白質等を発現した宿主細胞をいうが、該宿主細胞としては、大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが好ましい。

- 細胞膜画分としては、細胞を破碎した後、公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破碎方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン (Kinematica社製) のによる破碎、超音波による破碎、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破碎などが挙げられる。細胞膜の分画には、

分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破碎液を低速(500 rpm~3000 rpm)で短時間(通常、約1分~10分)遠心し、上清をさらに高速(15000 rpm~30000 rpm)で通常30分~2時間遠心し、得られる沈殿を膜画分とする。該膜画分中には、発現した蛋白質等と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

該蛋白質等を含有する細胞や膜画分中の該蛋白質の量は、1細胞当たり $10^3$ ~ $10^8$ 分子であるのが好ましく、 $10^5$ ~ $10^7$ 分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性(比活性)が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

リガンドと本発明の蛋白質等との結合性を変化させる化合物をスクリーニングする前記の①~③を実施するためには、例えば、適当な蛋白質画分と、標識したりガンドが必要である。

蛋白質画分としては、天然型のレセプター蛋白質画分か、またはそれと同等の活性を有する組換え型レセプター蛋白質画分などが望ましい。ここで、同等の活性とは、同等のリガンド結合活性、シグナル情報伝達作用などを示す。

標識したりガンドとしては、標識したりガンド、標識したりガンドアナログ化合物などが用いられる。例えば [ $^3\text{H}$ ] 、 [ $^{125}\text{I}$ ] 、 [ $^{14}\text{C}$ ] 、 [ $^{35}\text{S}$ ] などで標識されたリガンドなどが用いられる。

具体的には、リガンドと本発明の蛋白質等との結合性を変化させる化合物のスクリーニングを行なうには、まず本発明の蛋白質等を含有する細胞または細胞の膜画分を、スクリーニングに適したバッファーに懸濁することにより蛋白質標品を調製する。バッファーには、pH 4~10(望ましくはpH 6~8)のリン酸バッファー、トリス-塩酸バッファーなどのリガンドと蛋白質との結合を阻害しないバッファーであればいずれでもよい。また、非特異的結合を低減させる目的で、CHAPS、Tween-80<sup>TM</sup>(花王-アトラス社)、ジギトニン、デオキシコレートなどの界面活性剤をバッファーに加えることもできる。さらに、プロテアーゼによるレセプターやリガンドの分解を抑える目的でPMSF、ロイペプチノ、E-64(ペ

プチド研究所製)、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。0.01ml～10mlの該レセプター溶液に、一定量(5000cpm～500000cpm)の標識したリガンドを添加し、同時に $10^{-4}M$ ～ $10^{-10}M$ の試験化合物を共存させる。非特異的結合量(NSB)を知るために大過剰の未標識のリガンドを加えた反応チューブも用意する。反応は約0℃から50℃、望ましくは約4℃から37℃で、約20分から24時間、望ましくは約30分から3時間行う。反応後、ガラス纖維濾紙等で濾過し、適量の同バッファーで洗浄した後、ガラス纖維濾紙に残存する放射活性を液体シンチレーションカウンターまたは $\gamma$ -カウンターで計測する。拮抗する物質がない場合のカウント( $B_0$ )から非特異的結合量(NSB)を引いたカウント( $B_0 - NSB$ )を100%とした時、特異的結合量( $B - NSB$ )が、例えば、50%以下になる試験化合物を拮抗阻害能力のある候補物質として選択することができる。

リガンドと本発明の蛋白質等との結合性を変化させる化合物をスクリーニングする前記の④～⑤の方法を実施するためには、例えば、蛋白質を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca<sup>2+</sup>遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を公知の方法または市販の測定用キットを用いて測定することができる。

具体的には、まず、本発明の蛋白質等を含有する細胞をマルチウェルプレート等に培養する。スクリーニングを行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標とする物質(例えば、アラキドン酸など)の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってよい。また、cAMP産生抑制などの活性については、フォルスコリンなどで細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出することができる。

細胞刺激活性を測定してスクリーニングを行なうには、適当な蛋白質を発現した

細胞が必要である。本発明の蛋白質等を発現した細胞としては、天然型の本発明の蛋白質等を有する細胞株、前述の組換え型蛋白質等を発現した細胞株などが望ましい。

試験化合物としては、例えば、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが用いられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

リガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング用キットは、本発明の蛋白質等、本発明の蛋白質等を含有する細胞、または本発明の蛋白質等を含有する細胞の膜画分を含有するものなどである。

10 本発明のスクリーニング用キットの例としては、次のものが挙げられる。

#### 1. スクリーニング用試薬

##### ①測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution (ギブコ社製) に、0.05%のウシ血清アルブミン (シグマ社製) を加えたもの。

15 孔径0.45 μmのフィルターで濾過滅菌し、4℃で保存するか、あるいは用時調製しても良い。

##### ②G蛋白質共役型レセプター標品

本発明の蛋白質を発現させたCHO細胞を、12穴プレートに $5 \times 10^5$ 個/穴で継代し、37℃、5%CO<sub>2</sub>、95%airで2日間培養したもの。

20 ③標識リガンド

市販の [<sup>3</sup>H]、[<sup>125</sup>I]、[<sup>14</sup>C]、[<sup>35</sup>S] などで標識したリガンド

水溶液の状態のものを4℃あるいは-20℃にて保存し、用時に測定用緩衝液にて1 μMに希釀する。

##### ④リガンド標準液

25 リガンドを0.1%ウシ血清アルブミン (シグマ社製) を含むPBSで1mMとなるように溶解し、-20℃で保存する。

#### 2. 測定法

##### ①12穴組織培養用プレートにて培養した本発明の蛋白質発現CHO細胞を、測定

用緩衝液 1 ml で 2 回洗浄した後、490 μl の測定用緩衝液を各穴に加える。

②  $10^{-3}$ ~ $10^{-10}$ M の試験化合物溶液を 5 μl 加えた後、標識リガンドを 5 μl 加え、室温にて 1 時間反応させる。非特異的結合量を知るために試験化合物の代わりに  $10^{-3}$ M のリガンドを 5 μl 加えておく。

- 5 ③ 反応液を除去し、1 ml の洗浄用緩衝液で 3 回洗浄する。細胞に結合した標識リガンドを 0.2 N NaOH-1% SDS で溶解し、4 ml の液体シンチレーター A (和光純薬製) と混合する。  
 ④ 液体シンチレーションカウンター (ベックマン社製) を用いて放射活性を測定し、Percent Maximum Binding (PMB) を次式で求める。

10  $PMB = [(B - NSB) / (B_0 - NSB)] \times 100$

PMB : Percent Maximum Binding

B : 検体を加えた時の値

NSB : Non-specific Binding (非特異的結合量)

- 15  $B_0$  : 最大結合量  
 本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、リガンドと本発明の蛋白質等との結合性を変化させる作用を有する化合物であり、具体的には、(イ) G 蛋白質共役型レセプターを介して細胞刺激活性 (例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内  $Ca^{2+}$  遊離、  
 20 細胞内 cAMP 生成、細胞内 cGMP 生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fos の活性化、pH の低下などを促進する活性または抑制する活性など) を有する化合物 (いわゆる、本発明の蛋白質に対するアゴニスト) 、(ロ) 該細胞刺激活性を有しない化合物 (いわゆる、本発明の蛋白質に対するアンタゴニスト) 、(ハ) リガンドと本発明の G 蛋白質共役型蛋白質との結合力を増強する化合物、あるいは(二) リガンドと本発明の G 蛋白質共役型蛋白質との結合力を減少させる化合物である。

該化合物としては、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

本発明の蛋白質等に対するアゴニストは、本発明の蛋白質等に対するリガンドが有する生理活性と同様の作用を有しているので、該リガンド活性に応じて安全で低毒性な医薬 [例えば、中枢疾患 (例えばアルツハイマー病・痴呆・摂食障害 (拒食症)・てんかんなど)、ホルモン系の疾患 (例えば、微弱陣痛、弛緩出血、胎盤娩出前後、子宮復古不全、帝王切開術、人工妊娠中絶、乳汁うっ滯など)、肝/胆/脾/内分泌疾患 (例えば糖尿病・摂食障害など)、炎症性疾患 (アレルギー・喘息・リュウマチなど)、循環器疾患 (例えば高血圧症・心肥大・狭心症・動脈硬化等)、呼吸器系疾患 (例えば、肺炎、喘息、気管支炎、呼吸器感染症、慢性閉塞性肺疾患等)、感染症 (例えば、敗血症、MRSA、呼吸器感染症、尿路感染症、胆道感染症、感染性腸炎、中耳炎、前立腺炎等) の予防および／または治療剤など] として有用である。

また、本発明の蛋白質等に対するアゴニストは、本発明の蛋白質等に対するリガンドが有する生理活性と同様の作用を有しているので、該リガンド活性に応じて安全で低毒性な消化器疾患 (例えば腸炎、下痢、便秘、吸収不良性症候群など) の予防および／または治療剤として特に有用である。

本発明の蛋白質等に対するアンタゴニストは、本発明の蛋白質等に対するリガンドが有する生理活性を抑制することができるので、該リガンド活性を抑制する安全で低毒性な医薬 [例えば、ホルモン分泌調節薬、本発明の蛋白質等に対するリガンドの過剰な産生によって惹起される中枢疾患、ホルモン系の疾患、肝／胆／脾／内分泌疾患 (例えば抗肥満薬・摂食過剰など)、炎症性疾患、循環器疾患、呼吸器系疾患)、感染症の予防および／または治療薬など] として有用である。

本発明の蛋白質等に対するアンタゴニストは、本発明の蛋白質等に対するリガンドが有する生理活性を抑制することができるので、該リガンド活性を抑制する安全で低毒性な消化器疾患 (例えば腸炎、下痢、便秘、吸収不良性症候群など) の予防および／または治療剤として特に有用である。

リガンドと本発明の蛋白質との結合力を減少させる化合物は、本発明の蛋白質等に対するリガンドが有する生理活性を減少させるための安全で低毒性な医薬 [例えば、ホルモン分泌調節薬、本発明の蛋白質等に対するリガンドの過剰な産生によって惹起される中枢疾患、ホルモン系の疾患、肝／胆／脾／内分泌疾患 (例えば抗肥

満葉・摂食過剰など)、炎症性疾患、循環器疾患、呼吸器系疾患、感染症の予防および／または治療薬など]として有用である。

リガンドと本発明の蛋白質との結合力を減少させる化合物は、本発明の蛋白質等に対するリガンドが有する生理活性を減少させることができるので、安全で低毒性  
5 な消化器疾患(例えば腸炎、下痢、便秘、吸收不良性症候群など)の予防および／または治療剤として特に有用である。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩を上述の医薬組成物として使用する場合、常套手段に従って実施することができる。例えば、前記した本発明の蛋白質を含有する医薬と同様にして、錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤、無菌性溶液、懸濁液剤などとすることができます。  
10

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトまたはその他の哺乳動物(例えば、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。

15 該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に成人(60 kgとして)においては、一日につき約0.1～100 mg、好ましくは約1.0～50 mg、より好ましくは約1.0～20 mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常成人(60 kgとして)の消化器疾患患者においては、一日につき約0.0  
20 1～30 mg程度、好ましくは約0.1～20 mg程度、より好ましくは約0.1～10 mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60 kg当たりに換算した量を投与することができる。

25 (6) 本発明の蛋白質、その部分ペプチドまたはそれらの塩の定量

本発明の抗体は、本発明の蛋白質等を特異的に認識することができるので、被検液中の本発明の蛋白質等の定量、特にサンドイッチ免疫測定法による定量などに使用することができる。すなわち、本発明は、例えば、(i) 本発明の抗体と、被検液および標識化蛋白質等とを競合的に反応させ、該抗体に結合した標識化蛋白質等

の割合を測定することを特徴とする被検液中の本発明の蛋白質等の定量法、

(ii) 被検液と担体上に不溶化した本発明の抗体および標識化された本発明の抗体とを同時あるいは連続的に反応させたのち、不溶化担体上の標識剤の活性を測定することを特徴とする被検液中の本発明の蛋白質等の定量法を提供する。

5 上記(ii)においては、一方の抗体が本発明の蛋白質等のN端部を認識する抗体で、他方の抗体が本発明の蛋白質等のC端部に反応する抗体であることが好ましい。

本発明の蛋白質等に対するモノクローナル抗体（以下、本発明のモノクローナル抗体と称する場合がある）を用いて本発明の蛋白質等の測定を行なえるほか、組織染色等による検出を行なうこともできる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子の $F(ab')_2$ 、 $Fab'$ 、あるいは $Fab$ 画分を用いてもよい。本発明の蛋白質等に対する抗体を用いる測定法は、特に制限されるべきものではなく、被測定液中の抗原量（例えば、蛋白質量）に対応した抗体、抗原もしくは抗体-抗原複合体の量を化学的または物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、  
10 15 いざれの測定法を用いてもよい。例えば、ネフロメトリー、競合法、イムノメトリック法およびサンドイッチ法が好適に用いられるが、感度、特異性の点で、後述するサンドイッチ法を用いるのが特に好ましい。

標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えば、  
20  $[^{125}I]$ 、 $[^{131}I]$ 、 $[^3H]$ 、 $[^{14}C]$ などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、 $\beta$ -ガラクトシダーゼ、 $\beta$ -グルコシダーゼ、アルカリリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネートなどが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチン-アビジン系を用いることができる。  
25

抗原あるいは抗体の不溶化に当っては、物理吸着を用いてもよく、また通常、蛋白質あるいは酵素等を不溶化、固定化するのに用いられる化学結合を用いる方法で

もよい。担体としては、例えば、アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂、あるいはガラス等が用いられる。

- サンドイッチ法においては不溶化した本発明のモノクローナル抗体に被検液を
- 5 反応させ（1次反応）、さらに標識化した本発明のモノクローナル抗体を反応させ（2次反応）たのち、不溶化担体上の標識剤の活性を測定することにより被検液中の本発明の蛋白質量を定量することができる。1次反応と2次反応は逆の順序に行なっても、また、同時に行なってもよいし時間をずらして行なってもよい。標識化剤および不溶化の方法は前記のそれらに準じることができる。
- 10 また、サンドイッチ法による免疫測定法において、固相用抗体あるいは標識用抗体に用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させる等の目的で2種類以上の抗体の混合物を用いてもよい。

- 本発明のサンドイッチ法による本発明の蛋白質等の測定法においては、1次反応と2次反応に用いられる本発明のモノクローナル抗体は本発明の蛋白質等の結合
- 15 する部位が相異なる抗体が好ましく用いられる。即ち、1次反応および2次反応に用いられる抗体は、例えば、2次反応で用いられる抗体が、本発明の蛋白質のC端部を認識する場合、1次反応で用いられる抗体は、好ましくはC端部以外、例えばN端部を認識する抗体が用いられる。

- 本発明のモノクローナル抗体をサンドイッチ法以外の測定システム、例えば、競合法、イムノメトリック法あるいはネフロメトリーなどに用いることができる。競合法では、被検液中の抗原と標識抗原とを抗体に対して競合的に反応させたのち、未反応の標識抗原と（F）と抗体と結合した標識抗原（B）とを分離し（B／F分離）、B、Fいずれかの標識量を測定し、被検液中の抗原量を定量する。本反応法には、抗体として可溶性抗体を用い、B／F分離をポリエチレングリコール、前記
- 25 抗体に対する第2抗体などを用いる液相法、および、第1抗体として固相化抗体を用いるか、あるいは、第1抗体は可溶性のものを用い第2抗体として固相化抗体を用いる固相化法とが用いられる。

イムノメトリック法では、被検液中の抗原と固相化抗原とを一定量の標識化抗体に対して競合反応させた後固相と液相を分離するか、あるいは、被検液中の抗原と

過剰量の標識化抗体とを反応させ、次に固相化抗原を加え未反応の標識化抗体を固相に結合させたのち、固相と液相を分離する。次に、いずれかの相の標識量を測定し被検液中の抗原量を定量する。

また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果、生じた不溶性の沈降物の量を測定する。被検液中の抗原量が僅かであり、少量の沈降物しか得られない場合にもレーザーの散乱を利用するレーザーネフロメトリーなどが好適に用いられる。

これら個々の免疫学的測定法を本発明の測定方法に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えて本発明の蛋白質またはその塩の測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書などを参考することができる〔例えば、入江 寛編「ラジオイムノアッセイ」（講談社、昭和49年発行）、入江 寛編「続ラジオイムノアッセイ」（講談社、昭和54年発行）、石川栄治ら編「酵素免疫測定法」（医学書院、昭和53年発行）、石川栄治ら編「酵素免疫測定法」（第2版）（医学書院、昭和57年発行）、石川栄治ら編「酵素免疫測定法」（第3版）（医学書院、昭和62年発行）、「メソッズ・イン・エンジモノジー（Methods in ENZYMOLOGY）」Vol. 70 (Immunochemical Techniques (Part A))、同書 Vol. 73 (Immunochemical Techniques (Part B))、同書 Vol. 74 (Immunochemical Techniques (Part C))、同書 Vol. 84 (Immunochemical Techniques (Part D: Selected Immunoassays))、同書 Vol. 92 (Immunochemical Techniques (Part E: Monoclonal Antibodies and General Immunoassay Methods))、同書 Vol. 121 (Immunochemical Techniques (Part I: Hybridoma Technology and Monoclonal Antibodies))（以上、アカデミックプレス社発行）など参照〕。

以上のように、本発明の抗体を用いることによって、本発明の蛋白質またはその塩を感度良く定量することができる。さらに、本発明の抗体を用いて本発明の蛋白質またはその塩を定量することによって、各種疾病的診断をすることができる。

また、本発明の抗体は、体液や組織などの被検体中に存在する本発明の蛋白質等を検出するために使用することができる。また、本発明の蛋白質等を精製するためには、使用する抗体カラムの作製、精製時の各分画中の本発明の蛋白質等の検出、被検

細胞内における本発明の蛋白質の挙動の分析などのために使用することができる。

(7) 本発明のG蛋白質共役型蛋白質をコードするDNAを有する非ヒトトランスジェニック動物の作出

5 本発明のDNAを用いて、本発明の蛋白質等を発現する非ヒトトランスジェニック動物を作出することができる。非ヒト動物としては、哺乳動物(例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)など(以下、動物と略記する)が挙げられるが、特に、マウス、ウサギなどが好適である。

本発明のDNAを対象動物に転移させるにあたっては、該DNAを動物細胞で発現させうるプロモーターの下流に結合した遺伝子コンストラクトとして用いるのが一般に有利である。例えば、ウサギ由来の本発明のDNAを転移させる場合、これと相同性が高い動物由来の本発明のDNAを動物細胞で発現させうる各種プロモーターの下流に結合した遺伝子コンストラクトを、例えば、ウサギ受精卵へマイクロインジェクションすることによって本発明の蛋白質等を高産生するDNA転移動物を作出できる。このプロモーターとしては、例えば、ウイルス由来プロモーター、メタロチオネイン等のユビキアスな発現プロモーターも使用しうるが、好ましくは脳で特異的に発現するNGF遺伝子プロモーターやエノラーゼ遺伝子プロモーターなどが用いられる。

受精卵細胞段階における本発明のDNAの転移は、対象動物の胚芽細胞および体細胞の全てに存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の蛋白質等が存在することは、作出動物の子孫が全てその胚芽細胞及び体細胞の全てに本発明の蛋白質等を有することを意味する。遺伝子を受け継いだこの種の動物の子孫はその胚芽細胞および体細胞の全てに本発明の蛋白質等を有する。

25 本発明のDNA転移動物は、交配により遺伝子を安定に保持することを確認して、該DNA保有動物として通常の飼育環境で飼育継代を行うことができる。さらに、目的DNAを保有する雌雄の動物を交配することにより、導入遺伝子を相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動物を交配することによりすべての子孫が該DNAを有するように繁殖継代することができる。

本発明のDNAが転移された動物は、本発明の蛋白質等が高発現させられているので、本発明の蛋白質等に対するアゴニストまたはアンタゴニストのスクリーニング用の動物などとして有用である。

本発明のDNA転移動物を、組織培養のための細胞源として使用することもできる。例えば、本発明のDNA転移マウスの組織中のDNAもしくはRNAを直接分析するか、あるいは遺伝子により発現された本発明の蛋白質が存在する組織を分析することにより、本発明の蛋白質等について分析することができる。本発明の蛋白質等を有する組織の細胞を標準組織培養技術により培養し、これらを使用して、例えば、脳や末梢組織由来のような一般に培養困難な組織からの細胞の機能を研究することができる。また、その細胞を用いることにより、例えば、各種組織の機能を高めるような医薬の選択も可能である。また、高発現細胞株があれば、そこから、本発明の蛋白質等を単離精製することも可能である。

本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

|          |                 |
|----------|-----------------|
| DNA      | : デオキシリボ核酸      |
| c DNA    | : 相補的デオキシリボ核酸   |
| A        | : アデニン          |
| 20 T     | : チミン           |
| G        | : グアニン          |
| C        | : シトシン          |
| RNA      | : リボ核酸          |
| mRNA     | : メッセンジャー リボ核酸  |
| d ATP    | : デオキシアデノシン三リン酸 |
| d TTP    | : デオキシチミジン三リン酸  |
| d GTP    | : デオキシグアノシン三リン酸 |
| d CTP    | : デオキシシチジン三リン酸  |
| Gly またはG | : グリシン          |

|    |                        |                     |
|----|------------------------|---------------------|
|    | A l a または A            | : アラニン              |
|    | V a l または V            | : バリン               |
|    | L e u または L            | : ロイシン              |
|    | I l e または I            | : イソロイシン            |
| 5  | S e r または S            | : セリン               |
|    | T h r または T            | : スレオニン             |
|    | C y s または C            | : システイン             |
|    | M e t または M            | : メチオニン             |
|    | G l u または E            | : グルタミン酸            |
| 10 | A s p または D            | : アスパラギン酸           |
|    | L y s または K            | : リジン               |
|    | A r g または R            | : アルギニン             |
|    | H i s または H            | : ヒスチジン             |
|    | P h e または F            | : フェニルアラニン          |
| 15 | T y r または Y            | : チロシン              |
|    | T r p または W            | : トリプトファン           |
|    | P r o または P            | : プロリン              |
|    | A s n または N            | : アスパラギン            |
|    | G l n または Q            | : グルタミン             |
| 20 | p G l u                | : ピログルタミン酸          |
|    | X a a                  | : 未同定アミノ酸残基         |
|    | T o s                  | : p-トルエンスルフォニル      |
|    | B z l                  | : ベンジル              |
|    | C l <sub>2</sub> B z l | : 2, 6-ジクロロベンジル     |
| 25 | B o m                  | : ベンジルオキシメチル        |
|    | Z                      | : ベンジルオキシカルボニル      |
|    | C l - Z                | : 2-クロロベンジルオキシカルボニル |
|    | B r - Z                | : 2-ブロモベンジルオキシカルボニル |
|    | B o c                  | : t-ブトキシカルボニル       |

|           |                                                       |
|-----------|-------------------------------------------------------|
| DNP       | : ジニトロフェノール                                           |
| T r t     | : トリチル                                                |
| B u m     | : t -ブトキシメチル                                          |
| F m o c   | : N - 9 -フルオレニルメトキシカルボニル                              |
| 5 H O B t | : 1 -ヒドロキシベンズトリアゾール                                   |
| H O O B t | : 3, 4 -ジヒドロ -3 -ヒドロキシ -4 -オキソ -<br>1, 2, 3 -ベンゾトリアジン |
| H O N B   | : 1 -ヒドロキシ -5 -ノルポルネン -2, 3 -ジカルボキシミド                 |
| D C C     | : N、N' -ジシクロヘキシルカルボジイミド                               |
| 10 A T P  | : アデノシン三リン酸                                           |
| E D T A   | : エチレンジアミン四酢酸                                         |
| S D S     | : ドデシル硫酸ナトリウム                                         |

本明細書の配列表の配列番号は、以下の配列を示す。

15 [配列番号： 1 ]

後述の実施例 1 で用いられたプライマーの塩基配列を示す。

[配列番号： 2 ]

後述の実施例 1 で用いられたプライマーの塩基配列を示す。

[配列番号： 3 ]

20 本発明の新規G蛋白質共役型レセプター蛋白質 (rZAQ1) をコードするcDNAの塩基配列を示す。

[配列番号： 4 ]

本発明の新規G蛋白質共役型レセプター蛋白質 (rZAQ1) のアミノ酸配列を示す。

[配列番号： 5 ]

25 後述の実施例 2 で用いられたプローブの塩基配列を示す。

[配列番号： 6 ]

後述の実施例 2 で用いられたプローブの塩基配列を示す。

[配列番号： 7 ]

後述の実施例 2 で用いられたプライマーの塩基配列を示す。

[配列番号：8]

後述の実施例2で用いられたプライマーの塩基配列を示す。

[配列番号：9]

後述の実施例2で用いられたプライマーの塩基配列を示す。

5 [配列番号：10]

本発明の新規G蛋白質共役型レセプター蛋白質(rZAQ2)をコードするcDNAの塩基配列を示す。

[配列番号：11]

本発明の新規G蛋白質共役型レセプター蛋白質(rZAQ2)のアミノ酸配列を示す。

10 [配列番号：12]

ヒト脳由来のG蛋白質共役型レセプター蛋白質(ZAQ)のアミノ酸配列を示す。

[配列番号：13]

後述の実施例3で用いられたプライマー1の塩基配列を示す。

[配列番号：14]

15 後述の実施例3で用いられたプライマー2の塩基配列を示す。

[配列番号：15]

後述の実施例3で用いられたrZAQ1プローブの塩基配列を示す。

[配列番号：16]

後述の実施例3で用いられたプライマー3の塩基配列を示す。

20 [配列番号：17]

後述の実施例3で用いられたプライマー4の塩基配列を示す。

[配列番号：18]

後述の実施例3で用いられたrZAQ2プローブの塩基配列を示す。

[配列番号：19]

25 後述の実施例3で用いられたプライマー rZAQ1Salの塩基配列を示す。

[配列番号：20]

後述の実施例3で用いられたプライマー rZAQ1Speの塩基配列を示す。

[配列番号：21]

後述の実施例3で用いられたプライマー rZAQ2Salの塩基配列を示す。

〔配列番号：22〕

後述の実施例3で用いられたプライマーrZAQ2Speの塩基配列を示す。

〔配列番号：23〕

後述の実施例4で用いられたプライマーの塩基配列を示す。

5 〔配列番号：24〕

後述の実施例4で用いられたプライマーの塩基配列を示す。

〔配列番号：25〕

後述の実施例4で用いられたプライマーの塩基配列を示す。

〔配列番号：26〕

10 後述の実施例4で用いられたプライマーの塩基配列を示す。

〔配列番号：27〕

後述の実施例4で得られたDNA断片の塩基配列を示す。

〔配列番号：28〕

後述の実施例4で得られたDNA断片の塩基配列を示す。

15 〔配列番号：29〕

後述の実施例4で用いられたプライマーの塩基配列を示す。

〔配列番号：30〕

後述の実施例4で用いられたプライマーの塩基配列を示す。

〔配列番号：31〕

20 後述の実施例4で用いられたプライマーの塩基配列を示す。

〔配列番号：32〕

後述の実施例4で得られたラット型ZAQリガンドペプチドをコードするDNAの5'端塩基配列を示す。

〔配列番号：33〕

25 後述の実施例4で用いられたプライマーの塩基配列を示す。

〔配列番号：34〕

後述の実施例4で用いられたプライマーの塩基配列を示す。

〔配列番号：35〕

後述の実施例4で得られたラット型ZAQリガンドペプチドをコードするDN

Aの5'端塩基配列を示す。

[配列番号：36]

後述の実施例4で用いられたプライマーの塩基配列を示す。

[配列番号：37]

5 後述の実施例4で用いられたプライマーの塩基配列を示す。

[配列番号：38]

後述の実施例4で用いられたプライマーの塩基配列を示す。

[配列番号：39]

後述の実施例4で用いられたプライマーの塩基配列を示す。

10 [配列番号：40]

後述の実施例4で得られたDNA断片の塩基配列を示す（ノーマルタイプ）。

[配列番号：41]

後述の実施例4で得られたDNA断片の塩基配列を示す（Yタイプ）。

[配列番号：42]

15 後述の実施例4で得られたDNA断片の塩基配列を示す（Qタイプ）。

[配列番号：43]

ラット型ZAQリガンド前駆体ペプチド（ノーマルタイプ）のアミノ酸配列を示す。

[配列番号：44]

20 ラット型ZAQリガンド前駆体ペプチド（ノーマルタイプ）をコードするDNAの塩基配列を示す。

[配列番号：45]

ラット型ZAQリガンド前駆体ペプチド（Yタイプ）のアミノ酸配列を示す。

[配列番号：46]

25 ラット型ZAQリガンド前駆体ペプチド（Yタイプ）をコードするDNAの塩基配列を示す。

[配列番号：47]

ラット型ZAQリガンド前駆体ペプチド（Qタイプ）のアミノ酸配列を示す。

[配列番号：48]

ラット型Z A Qリガンド前駆体ペプチド（Qタイプ）をコードするDNAの塩基配列を示す。

〔配列番号：49〕

ラット型Z A Qリガンド成熟体ペプチド（ノーマルタイプ）のアミノ酸配列を示す。  
5

〔配列番号：50〕

ラット型Z A Qリガンド成熟体ペプチド（ノーマルタイプ）をコードするDNAの塩基配列を示す。

〔配列番号：51〕

10 ラット型Z A Qリガンド成熟体ペプチド（Yタイプ）のアミノ酸配列を示す。

〔配列番号：52〕

ラット型Z A Qリガンド成熟体ペプチド（Yタイプ）をコードするDNAの塩基配列を示す。

〔配列番号：53〕

15 ラット型Z A Qリガンド成熟体ペプチド（Qタイプ）のアミノ酸配列を示す。

〔配列番号：54〕

ラット型Z A Qリガンド成熟体ペプチド（Qタイプ）をコードするDNAの塩基配列を示す。

〔配列番号：55〕

20 後述の実施例5で用いられたプライマーB F 2の塩基配列を示す。

〔配列番号：56〕

後述の実施例5で用いられたプライマーB R 1の塩基配列を示す。

〔配列番号：57〕

後述の実施例5で得られたDNA断片の塩基配列を示す。

25 〔配列番号：58〕

後述の実施例5で用いられたプライマーR B 5-1の塩基配列を示す。

〔配列番号：59〕

後述の実施例5で用いられたプライマーR B 5-3の塩基配列を示す。

〔配列番号：60〕

後述の実施例5で得られたラット型Bv8をコードするDNAの5'端塩基配列を示す。

[配列番号：61]

後述の実施例5で用いられたプライマーRB3-1の塩基配列を示す。

5 [配列番号：62]

後述の実施例5で用いられたプライマーRB3-2の塩基配列を示す。

[配列番号：63]

後述の実施例5で得られたラット型Bv8をコードするDNAの3'端塩基配列を示す。

10 [配列番号：64]

後述の実施例5で用いられたプライマーRBv8-WF1の塩基配列を示す。

[配列番号：65]

後述の実施例5で用いられたプライマーRBv8-WF2の塩基配列を示す。

[配列番号：66]

15 後述の実施例5で用いられたプライマーRBv8-WR1の塩基配列を示す。

[配列番号：67]

後述の実施例5で用いられたプライマーRBv8-WR2の塩基配列を示す。

[配列番号：68]

後述の実施例5で得られたDNA断片の塩基配列を示す。

20 [配列番号：69]

ラット型Bv8前駆体ペプチドのアミノ酸配列を示す。

[配列番号：70]

ラット型Bv8前駆体ペプチドをコードするDNAの塩基配列を示す。

[配列番号：71]

25 ラット型Bv8成熟体ペプチドおよびマウス型Bv8成熟体ペプチドのアミノ酸配列を示す。

[配列番号：72]

ラット型Bv8成熟体ペプチドをコードするDNAの塩基配列を示す。

後述の実施例 1 で得られた形質転換体エシェリヒア コリ (*Escherichia coli*) DH5 $\alpha$  / pCR2.1 - rZAQ1は、平成12年8月21日から、日本国茨城県つくば市東東1丁目1番地1 中央第6 独立行政法人産業技術総合研究所 特許生物寄託センター（旧：通商産業省工業技術院生命工学工業技術研究所（N I B H））に寄託番号 F E R M B P - 7 2 7 5 として、平成12年8月1日から、日本国大阪府大阪市淀川区十三本町2-17-85 財団法人・発酵研究所（I F O）に寄託番号 I F O 1 6 4 5 9 として寄託されている。

後述の実施例 2 で得られた形質転換体エシェリヒア コリ (*Escherichia coli*) DH10B /pCMV-rZAQ2は、平成12年8月21日から、日本国茨城県つくば市東東1丁目1番地1 中央第6 独立行政法人産業技術総合研究所 特許生物寄託センター（旧：通商産業省工業技術院生命工学工業技術研究所（N I B H））に寄託番号 F E R M B P - 7 2 7 6 として、平成12年8月1日から財団法人・発酵研究所（I F O）に寄託番号 I F O 1 6 4 6 0 として寄託されている。

後述の実施例 4 で得られた形質転換体エシェリヒア コリ (*Escherichia coli*) TOP10/pRM1Tは、平成13（2001）年1月11日から、日本国茨城県つくば市東東1丁目1番地1 中央第6 経済産業省産業技術総合研究所生命工学工業技術研究所（（旧：通商産業省工業技術院生命工学工業技術研究所（N I B H）））に寄託番号 F E R M B P - 7 4 2 6 として、2000年12月22日から、財団法人・発酵研究所（I F O）に寄託番号 I F O 1 6 5 2 1 として寄託されている。

後述の実施例 5 で得られた形質転換体エシェリヒア コリ (*Escherichia coli*) TOP10/pRBvは、2001（平成13）年1月11日から、日本国茨城県つくば市東東1丁目1番地1 中央第6 独立行政法人産業技術総合研究所 特許生物寄託センター（旧：経済産業省産業技術総合研究所生命工学工業技術研究所（N I B H））に寄託番号 F E R M B P - 7 4 2 7 として、2000年12月22日から財団法人・発酵研究所（I F O）に寄託番号 I F O 1 6 5 2 2 として寄託されている。

## 実施例

以下に実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。なお、大腸菌を用いての遺伝子操作法は、モレキュラー・クローニング (Molecular cloning) に記載されている方法に従った。

5 実施例 1 ラット脳cDNA由来 新規G蛋白質共役型レセプター蛋白質 (rZAQ1) をコードするcDNAのクローニングと塩基配列の決定

ラット全脳cDNAライブラリー (CLONTECH社) を鋳型とし、2種類のプライマー (配列番号：1 および配列番号：2) を用いてPCR反応を行った。該反応における反応液の組成は上記cDNAを10分の1量鋳型として使用し、Advantage-2 cDNAPolymerase Mix (CLONTECH社) 1/50量、プライマー各0.2 μM、dNTPs 200 μM、および酵素に添付のバッファーを加え、25 μlの液量とした。PCR反応は、①94°C・2分の後、②94°C・20秒、72°C・1分30秒のサイクルを3回、③94°C・20秒、68°C・1分30秒のサイクルを3回、④94°C・20秒、62°C・20秒、68°C 1分のサイクルを36回繰り返し、最後に68°C・7分の伸長反応を行った。該PCR反応後の反応産物をTOP0-TAクローニングキット (Invitrogen社) の処方に従いプラスミドベクター pCR2.1-TOP0 (Invitrogen社) へサブクローニングした。これを大腸菌DH5 $\alpha$ に導入し、cDNAを持つクローンを、アンピシリンを含むLB寒天培地で選択した。個々のクローンの配列を解析した結果、新規G蛋白質共役型レセプター蛋白質をコードするcDNA (配列番号：3)を得た。該cDNAの塩基配列から導き出されるアミノ酸配列 (配列番号：4)には、ヒト脳由来のG蛋白質共役型レセプター蛋白質であるZAQ (WO 01/16309) のアミノ酸配列 (配列番号：12) と83.7%の相同性がみられた。このアミノ酸配列を含有する新規G蛋白質共役型レセプター蛋白質をrZAQ1と命名した。また配列番号：3で表わされる塩基配列を有するDNAを含有する形質転換体 (大腸菌) については、エシェリヒア・コリ (Escherichia coli) DH5 $\alpha$  / pCR2.1-rZAQ1と命名した。

実施例 2 ラット脳cDNA由来 新規G蛋白質共役型レセプター蛋白質 (rZAQ2) をコードするcDNAのクローニングと塩基配列の決定

rZAQ2をコードするクローンは、gene trapper法で取得した。すなわち、プロ-

ブ（配列番号：5および配列番号：6）をピオチン化したのち、一本鎖にしたラット全脳cDNAライブラリー（GIBCO-BRL社）とハイブリダイゼーションし、得られた一本鎖遺伝子をプライマー（配列番号：7および配列番号：8）を用いて二本鎖に修復した。この遺伝子を大腸菌DH10Bにエレクトロポーレーションし、アンピシリ  
5 ナン耐性を指標として形質転換体を得た。さらに、プローブ（配列番号：5）とプラ  
イマー（配列番号：9）を用いたコロニーPCRで、目的とする塩基配列をコードす  
るクローンを選択した。このクローンの塩基配列から予測されるORF（open  
reading frame）の塩基配列（配列番号：10）より導き出されるアミノ酸配列（配  
列番号：11）は、rZAQ1と80.6%の相同性がみられた。このアミノ酸配列を有する  
10 新規G蛋白質共役型レセプター蛋白質をrZAQ2と命名した。また、このgene trapper  
法で取得した形質転換体（大腸菌）を、エシェリヒア・コリ（Escherichia  
coli）DH10B/pCMV-rZAQ2と命名した。

### 実施例3 Taqman PCRによるrZAQ1およびrZAQ2の発現分布解析

15 Taqman PCRに用いるプライマー及びプローブは、Primer Express ver. 1.0（PE  
バイオシステムスジャパン）を用いて検索した。rZAQ1の塩基配列よりプライマー  
1（配列番号：13）、プライマー2（配列番号：14）およびrZAQ1プローブ（配  
列番号：15）を、rZAQ2の塩基配列より、プライマー3（配列番号：16）、プ  
ライマー4（配列番号：17）およびrZAQ2プローブ（配列番号：18）を選択し  
20 た。プローブのレポーター色素としてFAM（6-carboxyfluorescein）を付加した。  
スタンダードDNAとして、以下の2種類を調製した。すなわち、rZAQ1は、pCR2.1-  
rZAQ1（実施例1）を鋳型に、プライマーrZAQ1Sal（配列番号：19）およびrZAQ1Spe  
（配列番号：20）を用いてPCRにて増幅し、rZAQ2は、pCMV-rZAQ2（実施例2）を  
鋳型に、プライマーrZAQ2Sal（配列番号：21）およびrZAQ2Spe（配列番号：2  
25 2）を用いて増幅し、各々の断片を用意した。CHROMA SPIN200〔CLONTECH  
Laboratories, Inc. (CA, USA)〕を用いて精製し、10<sup>0</sup>–10<sup>6</sup>コピー/μlに調製  
して使用した。各組織のcDNAソースとして、ウィスターラット（雄性または雌性、  
7.5週齢、日本チャールズリバー）から21種類（大脳、小脳、下垂体、脊髄、胸腺、  
心臓、肺、肝臓、ヒ臓、腎臓、副腎、胃、精巣、卵巣、子宮、小腸、結腸、盲腸、

脾臓、骨格筋、脂肪の全21種類、卵巣、子宮については雌性ラットから採取) の組織を0.5 g - 1.0 gずつ採集した後、該組織からTRIZOL reagent (Gibco BRL社) を用い、添付されたマニュアルに記載された方法に従ってtotal RNAを抽出した。次いでオリゴdTセルロースカラム (MessageMaker reagent assembly, Gibco BRL社、  
5 または卵巣、子宮については相当品のmRNA purification kit, Pharmacia社) を用い、添付されたマニュアルに記載された方法に従って上記のtotal RNAからpoly (A)  
+RNAを調製した。さらに、SuperScript Preamplification System for First Strand  
cDNA Synthesis (Gibco BRL社) を用い、添付されたマニュアルに記載された方法  
に従って、上記Poly (A) + RNA 500 ngから反応温度42℃、反応容量20 μlにてOligo  
10 (dT) プライマーを用いてfirst strand cDNA を合成した。プライマー、プローブ、  
鋳型に、Taqman Universal PCR Master Mix (PEバイオシステムズジャパン) を添  
付書類記載の規定量加え、ABI PRISM 7700 Sequence Detection System (PEバイオ  
システムズジャパン) でPCR反応および解析をおこなった。結果をcDNA合成開始時  
に使用したpoly (A) +RNA 1ngあたりのコピー数に換算し、図9および図10に示し  
15 た。

rZAQ1は脾臓、脂肪細胞等で高い発現がみられた。rZAQ2は精巣、卵巣および中枢  
で高い発現がみられた。

#### 実施例4 ラット型Z A Qリガンドペプチドc DNAのクローニング

20 ラット脳QUICK-clone cDNA (CLONTECH社) を鋳型として、degenerateプライマー  
MF1 (配列番号：23)、MR1 (配列番号：24)、MF2 (配列番号：25) およびMR2  
(配列番号：26)を作成し、以下に記したPCR反応を実施した。

MF1: 5'-TCACCYCAAGTGAYCATGAGAGG-3' (配列番号：23)

MR1: 5'-CTAAAARTTGRYRTTCTTCAAGTCC-3' (配列番号：24)

25 MF2: 5'-ATCACAGGGGCCTGTGARCG-3' (配列番号：25)

MR2: 5'-AGCAGCGGTACCTGCCGTCC-3' (配列番号：26)

PCR反応液は50X Advantage 2 Polymerase Mix (CLONTECH社) を0.6 μl、添付の  
10x Advantage 2 PCR buffer (400 mM Tricine-KOH, 150 mM KOAc, 35 mM Mg(OAc)<sub>2</sub>,  
37.5 μg/ml BSA, 0.05% Tween-20, 0.05% Nonidet-P40) を3 μl、dNTP mixture (2.5

$\mu\text{M}$  each, 宝酒造) を $2.4 \mu\text{l}$ 、 $10 \mu\text{M}$ プライマーMF1およびMR1を $0.6 \mu\text{l}$ 、鑄型cDNAを $1 \mu\text{l}$ 、および蒸留水を $20.6 \mu\text{l}$ を混合して作製した。反応条件は $95^\circ\text{C}\cdot1\text{分}$ の初期変性後、 $95^\circ\text{C}\cdot30\text{秒}-55^\circ\text{C}\cdot1\text{分}-68^\circ\text{C}\cdot1\text{分}$ のサイクル反応を35回、および $68^\circ\text{C}\cdot5\text{分}$ の最終伸長反応とした。

5 続いて、該PCR反応の反応液を蒸留水で15倍希釈したものを鑄型としてnested PCRを実施した。反応液は50X Advantage 2 Polymerase Mix (CLONTECH社) を $0.6 \mu\text{l}$ 、添付の10x Advantage 2 PCR buffer (400 mM Tricine-KOH, 150 mM KOAc, 35 mM Mg(OAc)<sub>2</sub>, 37.5  $\mu\text{g/ml}$  BSA, 0.05%Tween-20, 0.05% Nonidet-P40) を $3 \mu\text{l}$ 、dNTP mixture (2.5 mM each, 宝酒造) を $2.4 \mu\text{l}$ 、 $10 \mu\text{M}$ プライマーMF1およびMR1を $0.6 \mu\text{l}$ 、鑄型cDNAを $1 \mu\text{l}$ 、および蒸留水を $20.6 \mu\text{l}$ を混合して作製した。反応条件は $95^\circ\text{C}\cdot1\text{分}$ の初期変性後、 $95^\circ\text{C}\cdot30\text{秒}-55^\circ\text{C}\cdot1\text{分}-68^\circ\text{C}\cdot1\text{分}$ のサイクル反応を35回、および $68^\circ\text{C}\cdot5\text{分}$ の最終伸長反応とした。

10 得られたDNA断片をZaro Blunt TOPO PCR Cloning Kit (Invitrogen社) を用いて添付のマニュアルに記載された方法に従ってクローニングした。クローニングされたDNA配列をABI377DNA sequencerを用いて解読し、配列番号：27（Tタイプ）および配列番号：28（Cタイプ）で表される部分配列を得た。

15 上記配列の情報よりプライマー RM3-1（配列番号：29）、RM3-2（配列番号：30）およびRM3-3（配列番号：31）を作成し、以下に記した5'RACE実験を実施した。

20 RM3-1: 5'-GTGGCACTCCTCTCCTTCCCCGCCAGA-3' (配列番号：29)  
 RM3-2: 5'-CAGGCCCGCAGCCACAGGGCTGATAGCA-3' (配列番号：30)  
 RM3-3: 5'-AGCAGGTGCCAGCCCCACACTGGACATC-3' (配列番号：31)

25 5'RACEのPCR反応液は50X Advantage-GC 2 Polymerase Mix (CLONTECH社) を $0.6 \mu\text{l}$ 、添付の5x Advantage-GC 2 PCR buffer (200 mM Tricine-KOH, 75 mM KOAc, 17.5 mM Mg(OAc)<sub>2</sub>, 25% Dimethyl Sulfoxide, 18.75  $\mu\text{g/ml}$  BSA, 0.025%Tween-20, 0.025% Nonidet-P40) を $6 \mu\text{l}$ 、dNTP mixture (2.5 mM each, 宝酒造) を $2.4 \mu\text{l}$ 、 $10 \mu\text{M}$ プライマーRM3-1を $0.6 \mu\text{l}$ 、 $10 \mu\text{M}$ プライマーAP1（プライマーAP1はCLONTECH社のMarathon-Ready cDNA Kitに添付のもの）を $0.6 \mu\text{l}$ 、鑄型cDNA (CLONTECH社、ラット脳Marathon-Ready cDNA) を $3 \mu\text{l}$ 、および蒸留水を $16.8 \mu\text{l}$ を混合して作製し

た。反応条件は94℃・30秒の初期変性後、94℃・5秒-72℃・3分のサイクル反応を5回、94℃・5秒-70℃・3分のサイクル反応を5回、94℃・5秒-68℃・3分のサイクル反応を25回行った。

続いて、該PCR反応の反応液を鑄型としてnested PCRを実施した。反応液は50X  
5 Advantage-GC 2 Polymerase Mix (CLONTECH社) を0.6 μl、添付の5x Advantage-GC  
2 PCR buffer (200 mM Tricine-KOH, 75 mM KOAc, 17.5 mM Mg (OAc)<sub>2</sub>, 25% Dimethyl  
Sulfoxide, 18.75 μg/ml BSA, 0.025%Tween-20, 0.025% Nonidet-P40) を6 μl、dNTP  
mixture (2.5 mM each, 宝酒造) を2.4 μl、10 μMプライマーRM3-2またはRM3-3  
を0.6 μl、10 μMプライマーAP2 (プライマーAP2はCLONTECH社のMarathon-Ready  
10 cDNA Kitに添付のもの) を0.6 μl、鑄型DNA (該PCR反応液50倍希釈液) を3 μl、  
および蒸留水を16.8 μlを混合して作製した。反応条件は94℃・30秒の初期変性後、  
94℃・5秒-68℃・3分のサイクル反応を30回行った。

得られたDNA断片をTOPO TA Cloning Kit (Invitrogen社) を用いて添付のマニュアルに記載された方法に従ってクローニングした。クローニングされたDNA配列を  
15 ABI377DNA sequencerを用いて解読し、5'端の配列 (配列番号：32)を得た。

配列番号：27および配列番号：28の情報よりプライマー RM5-1 (配列番号：  
33)とRM5-4 (配列番号：34)を作成し、以下に記した3'RACE実験を実施した。

RM5-1: 5'-GGAAGGAGAGGAGTGCCACCCCTGGAAG-3' (配列番号：33)

RM5-4: 5'-ACCATACTGTCCCTGTTCACCCAGCCT-3' (配列番号：34)

20 3'RACEのPCR反応液は50X Advantage-GC 2 Polymerase Mix (CLONTECH社) を0.6 μl、添付の5x Advantage-GC 2 PCR buffer (200 mM Tricine-KOH, 75 mM KOAc, 17.5 mM Mg (OAc)<sub>2</sub>, 25% Dimethyl Sulfoxide, 18.75 μg/ml BSA, 0.025%Tween-20, 0.025% Nonidet-P40) を6 μl、dNTP mixture (2.5 mM each, 宝酒造) を2.4 μl、10 μM プライマーRM5-1を0.6 μl、10 μMプライマーAP1 (プライマーAP1はCLONTECH社のMarathon-Ready cDNA Kitに添付のもの) を0.6 μl、鑄型cDNA (CLONTECH社、ラット脳Marathon-Ready cDNA) を3 μl、および蒸留水を16.8 μlを混合して作製した。反応条件は94℃・1分の初期変性後、94℃・30秒-72℃・3分のサイクル反応を5回、94℃・30秒-70℃・3分のサイクル反応を5回、94℃・30秒-68℃・3分のサイクル反応を25回、および68℃・3分の最終伸長反応とした。

続いて、該PCR反応の反応液を鑄型としてnested PCRを実施した。反応液は50X Advantage-GC 2 Polymerase Mix (CLONTECH社) を0.6  $\mu$ l、添付の5x Advantage-GC 2 PCR buffer (200 mM Tricine-KOH, 75 mM KOAc, 17.5 mM Mg (OAc)<sub>2</sub>, 25% Dimethyl Sulfoxide, 18.75  $\mu$ g/ml BSA, 0.025% Tween-20, 0.025% Nonidet-P40) を6  $\mu$ l、dNTP mixture (2.5 mM each, 宝酒造) を2.4  $\mu$ l、10  $\mu$ Mプライマー-RM5-4またはRM3-3 5 を0.6  $\mu$ l、10  $\mu$ Mプライマー-AP2 (プライマー-AP2はCLONTECH社のMarathon-Ready cDNA Kitに添付のもの) を0.6  $\mu$ l、鑄型DNA (該PCR反応液50倍希釈液) を3  $\mu$ l、および蒸留水を16.8  $\mu$ lを混合して作製した。反応条件は94°C・1分の初期変性後、94°C・30秒-68°C・3分のサイクル反応を35回、および68°C・3分の最終伸長反応とした。

10 得られたDNA断片をTOPO TA Cloning Kit (Invitrogen社) を用いて添付のマニュアルに記載された方法に従ってクローニングした。クローニングされたDNA配列を ABI377DNA sequencerを用いて解読し、3'端の配列 (配列番号：35)を得た。

ラット脳QUICK-clone cDNA (CLONTECH社) またはラット脳cDNA (Wistar rat) を鑄型として5'RACEおよび3'RACEの情報よりプライマー-RBv8-WF1 (配列番号：36)、  
15 RBv8-WF2 (配列番号：37)、RBv8-WR1 (配列番号：38) およびRBv8-WR2 (配列番号：39)を作成し、以下に記したPCR反応を実施した。

|              |                                     |           |
|--------------|-------------------------------------|-----------|
| RMIT-WF1:    | 5'-ATTCCAGAGTGGACAGTGTTGCCTTCACC-3' | (配列番号：36) |
| RMIT-WF2:    | 5'-GATCATGAGAGGTGCTGTCAAGTCTTC-3'   | (配列番号：37) |
| RMIT-WR1:    | 5'-CTCTCTGCACCGCTGCTGGACTGTTCC-3'   | (配列番号：38) |
| 20 RMIT-WR2: | 5'-CAGATGTAACACAAGAGGTACCCAGTAGG-3' | (配列番号：39) |

PCR反応液はPfuTurbo DNA polymerase (Stratagene社) を0.6  $\mu$ l、添付の10x PCR bufferを3  $\mu$ l、2.5 mM dNTP mixtureを2.4  $\mu$ l、10  $\mu$ Mプライマー-RMIT-WF1およびRMIT-WR1を各1.5  $\mu$ l、鑄型DNAを1  $\mu$ l、および蒸留水を20  $\mu$ lを混合して作製した。反応条件は95°C・1分の初期変性後、95°C・30秒-55°C・30秒-72°C・1分のサイクル反応を35回、および72°C・5分の最終伸長反応とした。

25 続いて、該PCR反応の反応液を蒸留水で50倍に希釈したものを鑄型としてnested PCRを行った。PCR反応液はPfuTurbo DNA polymerase (Stratagene社) を0.6  $\mu$ l、添付の10x PCR bufferを3  $\mu$ l、2.5 mM dNTP mixtureを2.4  $\mu$ l、10  $\mu$ Mプライマー-RMIT-WF2およびRMIT-WR2を各1.5  $\mu$ l、鑄型DNAを3  $\mu$ l、および蒸留水を18  $\mu$

1を混合して作製した。反応条件は95℃・1分の初期変性後、95℃・30秒-55℃・30秒-72℃・1分のサイクル反応を35回、および72℃・5分の最終伸長反応とした。

得られたDNA断片をZaro Blunt TOPO PCR Cloning Kit (Invitrogen社)を用いて添付のマニュアルに記載された方法に従ってクローニングした。クローニングされたDNA配列をABI377DNA sequencerを用いて解読し、ラットZAQリガンド全長ペプチドをコードする3種の375bpのDNA断片（配列番号：40、配列番号：41および配列番号：42；塩基置換が起こっているそれぞれをノーマルタイプ、Yタイプ、Qタイプとする）を有するプラスミドを、pRMIT、pRMITYおよびpHMITQとそれぞれ命名した。該プラスミドにより大腸菌（Escherichia coli）TOP10をトランスフォームさせ、大腸菌TOP10/pRMIT、大腸菌TOP10/pRMITYおよび大腸菌TOP10/pHMITQとそれぞれ命名した。

これらのDNA断片の塩基配列を解析した結果、配列番号：40で表わされるDNA断片は、配列番号：43で表わされるラット型Z AQリガンド前駆体ペプチド(105アミノ酸残基)をコードするDNA（配列番号：44）を含んでいることが、配列番号：41で表わされるDNA断片は、配列番号：45で表わされるラット型Z AQリガンド前駆体ペプチド(105アミノ酸残基)をコードするDNA（配列番号：46）を含んでいることが、配列番号：42で表わされるDNA断片は、配列番号：47で表わされるラット型Z AQリガンド前駆体ペプチド(105アミノ酸残基)をコードするDNA（配列番号：48）を含んでいることが明らかとなった。

また、配列番号：43、配列番号：45または配列番号：47で表わされる塩基配列は典型的なシグナル配列を有しており、配列番号：43で表わされる塩基配列を有するDNAは、配列番号：49で表わされるラット型Z AQリガンド成熟体ペプチド(86アミノ酸残基)をコードする258塩基対からなるDNA（配列番号：50）を含んでいることが、配列番号：45で表わされる塩基配列を有するDNAは、配列番号：51で表わされるラット型Z AQリガンド成熟体ペプチド(86アミノ酸残基)をコードする258塩基対からなるDNA（配列番号：52）を含んでいることが、配列番号：47で表わされる塩基配列を有するDNAは、配列番号：53で表わされるラット型Z AQリガンド成熟体ペプチド(86アミノ酸残基)をコードする258塩基対からなるDNA（配列番号：54）を含んでいることが明らかとなった。

配列番号：49のアミノ酸配列において、配列番号：51では46番目のH i sがT y rに、配列番号：53では36番目のA r gがG l nにそれぞれ置換されている。

##### 5 実施例5 ラット型B v 8ペプチド cDNAのクローニング

ラット精巣Marathon-Ready cDNA (CLONTECH社)を鑄型として、degenerateプライマー BF2 (配列番号：55)とプライマー BR1 (配列番号：56)を作成し、以下に記したPCR反応を実施した。

BF2: 5'-GCTTGYGACAAGGACTCYCA-3' (配列番号：55)

BR1: 5'-GTTYCTACTYCAGAGYGAT-3' (配列番号：56)

PCR反応液は50X Advantage 2 Polymerase Mix (CLONTECH社)を0.4 μl、添付の10x Advantage 2 PCR buffer (400 mM Tricine-KOH, 150 mM KOAc, 35 mM Mg (OAc)<sub>2</sub>, 37.5 μg/ml BSA, 0.05% Tween-20, 0.05% Nonidet-P40)を2 μl、dNTP mixture (2.5 mM each, 宝酒造)を1.6 μl、10 μM プライマーBF2及びBR1を0.4 μl、鑄型cDNAを2 μl、及び蒸留水を13.2 μlを混合して作製した。反応条件は95°C・1分の初期変性後、95°C・30秒-55°C・1分-68°C・1分のサイクル反応を40回、および68°C・5分の最終伸長反応とした。

得られたDNA断片をTOPO TA Cloning Kit (Invitrogen社)を用いて添付のマニュアルに記載された方法に従ってクローニングした。クローニングされたDNAの塩基配列をABI377DNA sequencerを用いて解読し、配列番号：57で表される部分配列を得た。

この配列情報よりプライマー RB5-1 (配列番号：58)とプライマー RB5-3 (配列番号：59)を作成し、以下に記した5'RACE実験を実施した。

RB5-1: 5'-GTGCATCCTCCGCCCGAAATGGAA-3' (配列番号：58)

RB5-3: 5'-GACAGCGCAGCACATTCCCTCCACAC-3' (配列番号：59)

5'RACEのPCR反応液は50X Advantage 2 Polymerase Mix (CLONTECH社)を1 μl、添付の10x Advantage 2 PCR buffer (400 mM Tricine-KOH, 150 mM KOAc, 35 mM Mg (OAc)<sub>2</sub>, 37.5 μg/ml BSA, 0.05% Tween-20, 0.05% Nonidet-P40)を5 μl、dNTP mixture (2.5 mM each, 宝酒造)を4 μl、10 μM プライマーRB5-1を1 μl、10 μM プライマーAP1

(プライマーAP1はCLONTECH社のMarathon-Ready cDNA Kitに添付のもの)を1  $\mu$ l、  
鑄型cDNA (CLONTECH社、ラット精巣Marathon-Ready cDNA)を5  $\mu$ l、及び蒸留水を  
33  $\mu$ lを混合して作製した。反応条件は94°C・1分の初期変性後、94°C・30秒-72°C・  
3分のサイクル反応を5回、94°C・30秒-70°C・3分のサイクル反応を5回、94°C・30秒  
5 -68°C・3分のサイクル反応を25回行った。

続いて、該PCR反応の反応液を鑄型としてnested PCRを実施した。反応液は50X  
Advantage 2 Polymerase Mix (CLONTECH社)を1  $\mu$ l、添付の10x Advantage 2 PCR  
buffer (400 mM Tricine-KOH, 150 mM KOAc, 35 mM Mg(OAc)<sub>2</sub>, 37.5  $\mu$ g/ml BSA,  
0.05%Tween-20, 0.05% Nonidet-P40)を5  $\mu$ l、dNTP mixture (2.5 mM each, 宝酒  
10 造)を4  $\mu$ l、10  $\mu$ MプライマーRB5-3を1  $\mu$ l、10  $\mu$ MプライマーAP2 (プライマー  
AP2はCLONTECH社のMarathon-Ready cDNA Kitに添付のもの)を1  $\mu$ l、鑄型cDNA (該  
PCR反応液50倍希釈液)を5  $\mu$ l、及び蒸留水を33  $\mu$ lを混合して作製した。反応条件は94°C・1分の初期変性後、94°C・30秒-68°C・3分のサイクル反応を35回行った。

得られたDNA断片をTOPO TA Cloning Kit (Invitrogen社)を用いて添付のマニュ  
15 アルに記載された方法に従ってクローニングした。クローニングされたDNAの塩基  
配列をABI377DNA sequencerを用いて解読し、5'端の配列 (配列番号：60)を得  
た。

配列番号：57の情報より、プライマー RB3-1 (配列番号：61)とプライマー  
RB3-2 (配列番号：62)を作成し、以下に記した3' RACE実験を実施した。

20 RB3-1: 5'-GAGACAGCTGCCACCCCTGACTCGGAA-3' (配列番号：61)

RB3-2: 5'-GGCGGAGGATGCACCACACTTGTCCCTG-3' (配列番号：62)

3' RACEのPCR反応液は50X Advantage 2 Polymerase Mix (CLONTECH社)を1  $\mu$ l、  
添付の10x Advantage 2 PCR buffer (400 mM Tricine-KOH, 150 mM KOAc, 35 mM  
Mg(OAc)<sub>2</sub>, 37.5  $\mu$ g/ml BSA, 0.05%Tween-20, 0.05% Nonidet-P40)を5  $\mu$ l、dNTP  
25 mixture (2.5 mM each, 宝酒造)を4  $\mu$ l、10  $\mu$ MプライマーRB3-1を1  $\mu$ l、10  $\mu$   
MプライマーAP1 (プライマーAP1はCLONTECH社のMarathon-Ready cDNA Kitに添付の  
もの)を1  $\mu$ l、鑄型cDNA (CLONTECH社、ラット精巣Marathon-Ready cDNA)を5  $\mu$   
l、及び蒸留水を33  $\mu$ lを混合して作製した。反応条件は94°C・1分の初期変性後、  
94°C・30秒-72°C・3分のサイクル反応を5回、94°C・30秒-70°C・3分のサイクル反応を5

回、94°C・30秒-68°C・3分のサイクル反応を25回行った。

続いて、該PCR反応の反応液を鑄型としてnested PCRを実施した。反応液は50X Advantage 2 Polymerase Mix (CLONTECH社)を1μl、添付の10x Advantage 2 PCR buffer (400 mM Tricine-KOH, 150 mM KOAc, 35 mM Mg (OAc)<sub>2</sub>, 37.5 μg/ml BSA,

- 5 0.05%Tween-20, 0.05% Nonidet-P40)を5 μl、dNTP mixture (2.5 mM each, 宝酒造)を4 μl、10 μMプライマーRB3-2を1 μl、10 μMプライマーAP2 (プライマーAP2はCLONTECH社のMarathon-Ready cDNA Kitに添付のもの)を1 μl、鑄型cDNA (該PCR反応液50倍希釈液)を5 μl、及び蒸留水を33 μlを混合して作製した。反応条件は94°C・1分の初期変性後、94°C・30秒-68°C・3分のサイクル反応を35回行った。

- 10 得られたDNA断片をTOPO TA Cloning Kit (Invitrogen社)を用いて添付のマニュアルに記載された方法に従ってクローニングした。クローニングされたDNAの塩基配列をABI377DNA sequencerを用いて解読し、3'端の配列 (配列番号：63)を得た。

- 15 ラット脳Marathon-Ready cDNA (CLONTECH社)を鑄型として、上記5'RACE及び3'RACEの情報より、プライマーRBv8-WF1 (配列番号：64)、プライマー RBv8-WF2 (配列番号：65)、プライマー RBv8-WR1 (配列番号：66) およびプライマー RBv8-WR2 (配列番号：67) を作成し、以下に記したPCR反応を実施した。

RBv8-WF1: 5'-TAACCGCCACCGCCTCCT-3' (配列番号：64)

RBv8-WF2: 5'-GGGACGCCATGGAGGAC-3' (配列番号：65)

20 RBv8-WR1: 5'-CGAGACTTGACAGACATTGTTAGTG-3' (配列番号：66)

RBv8-WR2: 5'-TTTCCAGCTCTGCTTCAGA-3' (配列番号：67)

PCR反応液はPfuTurbo DNA polymerase (Stratagene社)を0.6 μl、添付の10x PCR bufferを3 μl、2.5 mM dNTP mixtureを2.4 μl、10 μMプライマーRBv8-WF1及びRBv8-WR1を各1.5 μl、鑄型DNAを3 μl、及び蒸留水を18 μlを混合して作製した。

- 25 反応条件は95°C・1分の初期変性後、95°C・30秒-55°C・30秒-72°C・1分のサイクル反応を35回、および72°C・5分の最終伸長反応とした。

続いて、該PCR反応の反応液を蒸留水で50倍に希釈したものを鑄型としてnested PCRを行った。PCR反応液はPfuTurbo DNA polymerase (Stratagene社)を0.6 μl、添付の10x PCR bufferを3 μl、2.5 mM dNTP mixtureを2.4 μl、10 μMプラ

イマーRBv8-WF2及びRBv8-WR2を各1.5 μl、鋳型DNAを3 μl、及び蒸留水を18 μlを混合して作製した。反応条件は95°C・1分の初期変性後、95°C・30秒-55°C・30秒-72°C・1分のサイクル反応を35回、および72°C・5分の最終伸長反応とした。

得られたDNA断片をZero Blunt TOPO PCR Cloning Kit (Invitrogen社)を用いて  
5 添付のマニュアルに記載された方法に従ってクローニングした。クローニングされたDNAの塩基配列をABI377DNA sequencerを用いて解読し、配列番号：6 8で表される356bpの塩基配列を有していることが明らかとなった。配列番号：6 8で表わされる塩基配列を有するDNA断片を有するプラスミドをpRBvと命名した。プラスミドpRBvにより大腸菌 (*Escherichia coli*) をトランスフォームさせ、エシェリヒア コ  
10 リ (*Escherichia coli*) TOP10/ pRBvと命名した。

このDNA断片の塩基配列を解析した結果、配列番号：6 8で表わされるDNA断片は、配列番号：6 9で表わされるラット型B v 8前駆体ペプチド(107アミノ酸残基)をコードするDNA(配列番号：7 0)を含んでいることが明らかとなった。

また、配列番号：7 0で表わされる塩基配列は典型的なシグナル配列を有しており、配列番号：7 0で表わされる塩基配列を有するDNAは、配列番号：7 1で表わされるラット型B v 8成熟体ペプチド(81アミノ酸残基)をコードする243塩基対からなるDNA(配列番号：7 2)を含んでいることが明らかとなった。

### 産業上の利用可能性

20 本発明の蛋白質、その部分ペプチドまたはそれらの塩、およびそれらをコードするDNAは、①リガンド(アゴニスト)の決定、②抗体および抗血清の入手、③組み替え型蛋白質の発現系の構築、④同発現系を用いたレセプター結合アッセイ系の開発と医薬品候補化合物のスクリーニング、⑤構造的に類似したリガンド・レセプターとの比較にもとづいたドラッグデザインの実施、⑥遺伝子診断におけるプローブやPCRプライマーの作成のための試薬、⑦トランジジェニック動物の作製または⑧遺伝子予防・治療剤等の医薬等として用いることができる。

## 請求の範囲

1. 配列番号：4 または配列番号：11 で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする蛋白質またはその塩。
- 5 2. 配列番号：4 で表わされるアミノ酸配列を含有する請求項1記載の蛋白質またはその塩。
3. 配列番号：11 で表わされるアミノ酸配列を含有する請求項1記載の蛋白質またはその塩。
4. 請求項1記載の蛋白質の部分ペプチドまたはその塩。
- 10 5. 請求項1記載の蛋白質をコードするポリヌクレオチドを含有するポリヌクレオチド。
6. DNAである請求項5記載のポリヌクレオチド。
7. 配列番号：3 または配列番号：10 で表される塩基配列を含有する請求項6記載のDNA。
- 15 8. 請求項5記載のポリヌクレオチドを含有する組換えベクター。
9. 請求項8記載の組換えベクターで形質転換された形質転換体。
10. 請求項9記載の形質転換体を培養し、請求項1記載の蛋白質を生成・蓄積せしめることを特徴とする請求項1記載の蛋白質またはその塩の製造法。
11. 請求項1記載の蛋白質もしくは請求項4記載の部分ペプチドまたはその塩に対する抗体。
- 20 12. 請求項1記載の蛋白質もしくは請求項4記載の部分ペプチドまたはその塩を用いることを特徴とする請求項1記載の蛋白質またはその塩に対するリガンドの決定方法。
13. 請求項1記載の蛋白質もしくは請求項4記載の部分ペプチドまたはその塩を用いることを特徴とするリガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法。
- 25 14. 請求項1記載の蛋白質もしくは請求項4記載の部分ペプチドまたはその塩を含有することを特徴とするリガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット。

15. 請求項13記載のスクリーニング方法または請求項14記載のスクリーニング用キットを用いて得られうる、リガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩。
16. 請求項13記載のスクリーニング方法または請求項14記載のスクリーニング用キットを用いて得られうる、リガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩を含有してなる医薬。  
5
17. 消化器疾患の予防剤、または治療剤である請求項16記載の医薬。
18. 請求項6記載のDNAとハイストリンジェントな条件下でハイブリダイズするDNA。  
10
19. 哺乳動物に対して、請求項13記載のスクリーニング方法または請求項14記載のスクリーニング用キットを用いて得られうる、リガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩の有効量を投与することを特徴とする消化器疾患の予防、または治療方法。
20. 消化器疾患の予防剤、または治療剤を製造するための請求項13記載のスクリーニング方法または請求項14記載のスクリーニング用キットを用いて得られうる、リガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩の使用。  
15

1 / 10

☒ 1

10            20            30            40            50            60  
ATGGAGACCACTGTGGGACCCCTGGCGAGAATACCACAAACACTTCACCGACTTCTTT  
M E T T V G T L G E N T T N T F T D F F

70            80            90            100          110          120  
TCTGCACGTGATGCCAGTGGAGCCGAAACCTCCCCCTGCCATTCACTTCAGCTATGGT  
S A R D G S G A E T S P L P F T F S Y G

130          140          150          160          170          180  
GACTATGACATGCCCTCGGATGAAGAGGAGATGTGACCAACTCTGGACTTTCTTGCT  
D Y D M P S D E E E D V T N S R T F F A

190          200          210          220          230          240  
GCCAAGATTGTCATTGGCATGGCTTGGTGGCATCATGCTGGTGTGGCATCGGCAAC  
A K I V I G M A L V G I M L V C G I G N

250          260          270          280          290          300  
TTCATCTTCACTCGCCTGGCCATGGACTTCCCTGGTAGCCATCGTGTGCTGCCCTTGAGATG  
F I F I T A L A R Y K K L R N L T N L L

310          320          330          340          350          360  
ATGCCAACCTGCCATTTCGGACTTCCCTGGTAGCCATCGTGTGCTGCCCTTGAGATG  
I A N L A I S D F L V A I V C C C P F E M

370          380          390          400          410          420  
GACTACTATGTGGTACGCCAGCTCTGGAGCACGGCATGTCCCTGTGCCCTCCGTC  
D Y Y V V R Q L S W E H G H V L C A S V

2 / 10

## 图 2

430      440      450      460      470      480  
AACTACTTGCACCGTCTCCCTACGTGTCACGCCCCACTGGCCATTGCCATT  
N Y L R T V S L Y V S T N A L L A I A I

490      500      510      520      530      540  
GACAGGTATCTGCCATTGTGCACCCGCTGAGACCGCGGATGAAGTGTCAACGGCTGCA  
D R Y L A I V H P L R P R M K C Q T A A

550      560      570      580      590      600  
GGCCTGATCTCCTGGTGTGGCTGTGTCATCCTCATGCCATCCCAGCCGCTACTTC  
G L I F L V W S V S I L I A I P A A Y F

610      620      630      640      650      660  
ACCACTGAGACGGTGTGGTCATCGTGGAAAGCCAGGAGAAGATCTTCTGCAGATC  
T T E T V L V I V E S Q E K I F C G Q I

670      680      690      700      710      720  
TGGCCGGTGGATCAGCAGTTCTACTACAGGT CCTATTTCTGGTCTTCGGCCTCGAG  
W P V D Q Q F Y Y R S Y F L L V F G L E

730      740      750      760      770      780  
TTCTGGGTCTGTAATGCCATGACCCCTGTGCTATGCCAGGGTGTCCCAGAGCTCTGG  
F V G P V I A M T L C Y A R V S R E L W

790      800      810      820      830      840  
TTCAAGGGCGTGGCCGGCTTCCAGACAGAGCAGATCCGCCGGAGGCTGGCTGTCGCCGA  
F K A V P G F Q T E Q I R R R L R C R R

3 / 10

## 图 3

850        860        870        880        890        900  
CGGACGGTACTGGGGCTCGTGTCCGTCTTCGGCTATGTGCTGTGCTGGCTCCCTC  
R T V L G L V C V L S A Y V L C W A P F

910        920        930        940        950        960  
TATGGCTTCACCATCGTGCCTGACTTCTTCCCCTCCGTGTTGTGAAAGAGAACACTAC  
Y G F T I V R D F F P S V F V K E K H Y

970        980        990        1000        1010        1020  
CTCACCGCCTTTATGTGGTGGAGTGCATGCCATGAGCAACAGTATGATCAATACGCTG  
L T A F Y V V E C I A M S N S M I N T L

1030        1040        1050        1060        1070        1080  
TGCTTTGTGACTGTCAGGAATAACACCACTAAGTACCTCAAGAGGATCCTGGCTCCAG  
C F V T V R N N T S K Y L K R I L R L Q

1090        1100        1110        1120        1130        1140  
TGGAGGGCCTCTCTAGCGGGAGCAAGGCCAGCGCTGACCTCGACCTCAGGACCACGGGG  
W R A S P S G S K A S A D L D L R T T G

1150        1160        1170        1180        1190  
ATTCCCTGCCACGGAGGGAGTGGACTGCATCCGACTGAAATAA  
I P A T E E V D C I R L K \*

4 / 10

■ 4

|                                                                |     |     |     |     |     |
|----------------------------------------------------------------|-----|-----|-----|-----|-----|
| 10                                                             | 20  | 30  | 40  | 50  | 60  |
| ATCGTATCAGTTCTGTCCAACAGGGACCTCACACACTGGCCCCAGCTGAAGTGCTGAAC    |     |     |     |     |     |
| M V S V L S N R D L H T L A P A E V L N                        |     |     |     |     |     |
| 70                                                             | 80  | 90  | 100 | 110 | 120 |
| TCCACGTGGGCCTATCTCCCTGACACATACCCAGGCCACTGCCACATCATCAACATGGGA   |     |     |     |     |     |
| S T W A Y L P D T Y Q P T C H I I N M G                        |     |     |     |     |     |
| 130                                                            | 140 | 150 | 160 | 170 | 180 |
| GACCAGAACCGAAACACAAGCTTGACCAAGACTTGAACCCACCCCAAGAACACCACGTCTCC |     |     |     |     |     |
| D Q N G N T S F A P D L N P P Q D H V S                        |     |     |     |     |     |
| 190                                                            | 200 | 210 | 220 | 230 | 240 |
| TTGCTCCCTTAAACTACAGTTATGGAGATTATGACATCCCCCTGGATGACGATGAGGAT    |     |     |     |     |     |
| L L P L N Y S Y G D Y D I P L D D D E D                        |     |     |     |     |     |
| 250                                                            | 260 | 270 | 280 | 290 | 300 |
| GTGACCAAGACACAGACCTTCTTGAGCCAAATCGTCATTGGCTAGCCCTGGCAGGC       |     |     |     |     |     |
| V T K T Q T F F A A K I V I G V A L A G                        |     |     |     |     |     |
| 310                                                            | 320 | 330 | 340 | 350 | 360 |
| ATCATGCTAGTCTGGCGCTTGGCAACTTGTCTTCATTGCTGCCCTGCCCCCTACAAG      |     |     |     |     |     |
| I M L V C G V G N F V F I A A L A R Y K                        |     |     |     |     |     |
| 370                                                            | 380 | 390 | 400 | 410 | 420 |
| AAGCTGCCAACCTTACCAACCTCCTCATCGCTAACCTGGCCATCTCTGACTTCTGGTG     |     |     |     |     |     |
| K L R N L T N L L I A N L A I S D F L V                        |     |     |     |     |     |
| 430                                                            | 440 | 450 | 460 | 470 | 480 |
| GCGATCGCTGCTGCCCTTGAGATGGACTACTACGTAGTACGTCAAGCTTCTGGAG        |     |     |     |     |     |
| A I V C C P F E M D Y Y V V R Q L S W E                        |     |     |     |     |     |

5 / 10

## 图 5

490        500        510        520        530        540  
CATGGTCACGTGCTTGCGCTCCGTCAACTACCTCGTACAGTCTCCGTACGTCTCC  
H G H V L C A S V N Y L R T V S L Y V S

550        560        570        580        590        600  
ACCAATGCTCTGCTGGCCATCGCTATTGACAGATATCTCGCTATTGTCCACCCCTTAAAA  
T N A L L A I A I D R Y L A I V H P L K

610        620        630        640        650        660  
CGGATGAATTACCAGACCGCCTCCTCCTGATCGCTTGGTCTGGATGGTCTCCATCCTC  
R M N Y Q T A S F L I A L V W M M V S I L

670        680        690        700        710        720  
ATCGCCATCCCCTGCCTACTTCACCACAGAAACCATCCTTGTATCGTCAAGAACATCAG  
I A I P S A Y F T T E T I L V I V K N Q

730        740        750        760        770        780  
GAAAAGCTTCTGTGGTCAGATCTGGCCCGTGGACCAGCAGCTACTACAAATCCTAC  
E K L F C G Q I W P V D Q Q L Y Y K S Y

6 / 10

☒ 6

970        980        990        1000        1010        1020  
TACGTGCTGTGCTGGCGCCTTCTATGGCTTACCATAGTCGAGACTTCTCCCCACG  
Y V L C W A P F Y G F T I V R D F F P T

1030        1040        1050        1060        1070        1080  
CTGGTTGTGAAGGAGAACGACTACCTCACCGCCTCTATGTCGTCGAGTGCATGCCATG  
L V V K E K H Y L T A F Y V V E C I A M

1090        1100        1110        1120        1130        1140  
ACCAACACCATGATCAATACTATATGCTTCGTGACGGTCAAGAACAAACACCATGAAATAC  
S N S M I N T I C F V T V K N N T M K Y

1150        1160        1170        1180        1190        1200  
TTCAAGAAGATGCTGCTGCACTGGCGCCCTCTCACTACGGGAGTAAGTCCAGCG  
F K K M L L L H W R P S H Y G S K S S A

1210        1220        1230        1240        1250        1260  
GACCTCGACCTCAAAACCACTGGGTTCTGCCACCGAAGAGGTGGACTGTATCAGGCTA  
D L D L K T S G V P A T E E V D C I R L

1270

AAGTAG

K \*

7/10

図 7



8/10

図 8



9 / 10

## 図 9

rZAQ1の組織分布図



10 / 10

図 10



## SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> Novel G Protein Coupled Receptor Protein and Its Use

<130> P2001-193PCT

<150> JP 2000-253862

<151> 2000-8-24

<160> 72

<210> 1

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 1

gtcgacatgg agaccactgt ggggaccctg 30

<210> 2

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 2

actagtttat ttcagtcgga tgcagtccac 30

<210> 3

<211> 1182

<212> DNA

<213> Rat

<400> 3

atggagacca ctgtggggac cctggcgag aataccacaa acactttcac cgacttctt 60  
tctgcacgtg atggcagtgg agccgaaacc tcccccttgc cattcacttt cagctatgg 120  
gactatgaca tgccctcgga tgaagaggag gatgtgacca actctcgac tttcttgct 180  
gc当地  
ccaagattg tcattggcat ggctttggtg ggcacatcatgc tgggtgtgg catcgcaac 240  
ttcatcttca tcactgcgt ggcccgctac aaaaagcttc gcaacccac caacctgctt 300  
atcgccaaacc tggccatttc ggacttcctg gttagccatcg tgtgtgtccc ctttgagatg 360  
gactactatg tggtaacgcca gctctccctgg gagcacggcc atgtccctgtg cgcctccgtc 420  
aactacttgc gcaccgtctc cctctacgtg tccactaacg ccctactggc cattgccatt 480  
gacaggtatc tggccattgt gcacccgctg agaccgcgga tgaagtgtca aacggctgca 540  
ggccctgatct tcctgggttg gtctgtgtcc atcctcatcg ccatcccagc cgcctacttc 600  
accactgaga cggtgttgtt catcggtggaa agccaggaga agatcttctg cggccagatc 660  
tggccgggtgg atcagcagg tctactacagg tcctatttcc ttttggtctt cggccctcgag 720  
ttcgtgggtc ctgtaatcgc catgaccctg tgctatgccg ggggtgtcccg agagctctgg 780  
ttcaaggcgg tgcccggttt ccagacagag cagatccgccc ggaggctgctg ctgtcgccga 840  
cggacggtaac tggggctctgt gtgcgtccctt tccgcctatg tgctgtgtgg ggctcccttc 900  
tatggcttca ccatcggtcg tgcatttttc ccctccgtgt ttgtgaaaga gaagcactac 960  
ctcaccgcct tttatgttgtt ggagtgcattt gccatgagca acagttatgtatcaatacgctg 1020

tgctttgtga ctgtcaggaa taacaccagt aagtacctca agaggatcct gcggctccag 1080  
tggagggcct ctcctagcgg gagcaaggcc agcgctgacc tcgacccatc gaccacgggg 1140  
attcctgcca cggaggaggt ggactgcata cgactgaaat aa 1182

<210> 4

<211> 393

<212> PRT

<213> Rat

<400> 4

Met Glu Thr Thr Val Gly Thr Leu Gly Glu Asn Thr Thr Asn Thr Phe  
5 10 15

Thr Asp Phe Phe Ser Ala Arg Asp Gly Ser Gly Ala Glu Thr Ser Pro  
20 25 30

Leu Pro Phe Thr Phe Ser Tyr Gly Asp Tyr Asp Met Pro Ser Asp Glu  
35 40 45

Glu Glu Asp Val Thr Asn Ser Arg Thr Phe Phe Ala Ala Lys Ile Val  
50 55 60

Ile Gly Met Ala Leu Val Gly Ile Met Leu Val Cys Gly Ile Gly Asn  
65 70 75 80

Phe Ile Phe Ile Thr Ala Leu Ala Arg Tyr Lys Leu Arg Asn Leu  
85 90 95

Thr Asn Leu Leu Ile Ala Asn Leu Ala Ile Ser Asp Phe Leu Val Ala  
100 105 110

Ile Val Cys Cys Pro Phe Glu Met Asp Tyr Tyr Val Val Arg Gln Leu  
115 120 125

Ser Trp Glu His Gly His Val Leu Cys Ala Ser Val Asn Tyr Leu Arg  
130 135 140

Thr Val Ser Leu Tyr Val Ser Thr Asn Ala Leu Ala Ile Ala Ile

145                150                155                160  
Asp Arg Tyr Leu Ala Ile Val His Pro Leu Arg Pro Arg Met Lys Cys  
165                170                175  
Gln Thr Ala Ala Gly Leu Ile Phe Leu Val Trp Ser Val Ser Ile Leu  
180                185                190  
Ile Ala Ile Pro Ala Ala Tyr Phe Thr Thr Glu Thr Val Leu Val Ile  
195                200                205  
Val Glu Ser Gln Glu Lys Ile Phe Cys Gly Gln Ile Trp Pro Val Asp  
210                215                220  
Gln Gln Phe Tyr Tyr Arg Ser Tyr Phe Leu Leu Val Phe Gly Leu Glu  
225                230                235                240  
Phe Val Gly Pro Val Ile Ala Met Thr Leu Cys Tyr Ala Arg Val Ser  
245                250                255  
Arg Glu Leu Trp Phe Lys Ala Val Pro Gly Phe Gln Thr Glu Gln Ile  
260                265                270  
Arg Arg Arg Leu Arg Cys Arg Arg Arg Thr Val Leu Gly Leu Val Cys  
275                280                285  
Val Leu Ser Ala Tyr Val Leu Cys Trp Ala Pro Phe Tyr Gly Phe Thr  
290                295                300  
Ile Val Arg Asp Phe Phe Pro Ser Val Phe Val Lys Glu Lys His Tyr  
305                310                315                320  
Leu Thr Ala Phe Tyr Val Val Glu Cys Ile Ala Met Ser Asn Ser Met  
325                330                335  
Ile Asn Thr Leu Cys Phe Val Thr Val Arg Asn Asn Thr Ser Lys Tyr  
340                345                350  
Leu Lys Arg Ile Leu Arg Leu Gln Trp Arg Ala Ser Pro Ser Gly Ser  
355                360                365  
Lys Ala Ser Ala Asp Leu Asp Leu Arg Thr Thr Gly Ile Pro Ala Thr  
370                375                380

Glu Glu Val Asp Cys Ile Arg Leu Lys

385                   390

<210> 5

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 5

cctcaccaay ctgctyatyg ccaacctggc c 31

<210> 6

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 6

gtggtrcgsc agctctccctg ggagca 26

<210> 7

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 7

tcccgggagc tctggttcaa ggc 23

<210> 8

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 8

gagtgcatcg ccatgagcaa cagcatg 27

<210> 9

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 9

ggcttgaacc agagctcccg gga 23

<210> 10

<211> 1266

<212> DNA

<213> Rat

<400> 10

atggtatcag ttctgtccaa cagggacctc cacacactgg ccccagctga agtgctgaac 60  
tccacgtggg cctatctccc tgacacatac cagcctaccc gccacatcat caacatggga 120  
gaccagaacg gaaacacaag ctgtcacca gacttgaacc cacccaaga ccacgtctcc 180  
ttgtccccct taaaactacag ttatggagat tatgacatcc ccctggatga cgatgaggat 240  
gtgaccaaga cacagaccctt ctgtcagcc aaaatcgta ttggcgtgc cctggcaggc 300  
atcatgctag tctgcggcgt tggcaacttt gtcttcattt ctgccctcgc ccgttacaag 360  
aagctgcgca accttaccaa ctcctcatc gctaacctgg ccatcttga ctccctggtg 420  
gcgatcgct gctgcccctt tgagatggac tactacgttag tacgtcagct ttccctggag 480  
catggtcacg tgctttgtgc ctccgtcaac taccttcgtt cagtctccct gtacgtctcc 540  
accaatgctc tgctggccat cgctatttgc agatatttcg ctattgtcca ccccttaaaa 600  
cggtatgaatt accagaccgc ctcccttcgtt atcgctttgg tctggatggt ctccatcctc 660  
atcgccatcc catctgccta cttcaccaca gaaaccatcc ttgttatcgt caagaatcag 720  
gaaaagctct tctgtggtca gatctggccc gtggaccaggc agctctacta caaatcctac 780  
ttcccttcgt tttcgggct tgagttcgtt ggtccctgtgg tcactatgac cctgtgttat 840  
gccaggatct cccaggagct ctggttcaag gctgtacctg gtttccagac ggaggcagatc 900  
cgcaagcgac tgcgctgccc ccgaaagaca gtgttatttcg tcatgggtat cctcacagcc 960  
tacgtgtgt gctgggcgcc tttctatggc tttaccatag tgcgagactt ctccccacg 1020  
ctggttgtga aggagaagca ctaccatcacc gccttctatg tcgtcgagtg catgcccatt 1080  
agcaacagca tgatcaatac tatatgtttc gtgacggtca agaacaacac catgaaatac 1140  
ttcaagaaga tgctgctgt gcactggcgg ccctctact acgggagtaa gtccagcgcg 1200  
gacctcgacc tcaaaaccag tgggttccct gccaccgaag aggtggactg tatcaggctt 1260  
aagtag 1266

<210> 11

<211> 421

<212> PRT

<213> Rat

<400> 11

Met Val Ser Val Leu Ser Asn Arg Asp Leu His Thr Leu Ala Pro Ala  
5 10 15  
Glu Val Leu Asn Ser Thr Trp Ala Tyr Leu Pro Asp Thr Tyr Gln Pro  
20 25 30  
Thr Cys His Ile Ile Asn Met Gly Asp Gln Asn Gly Asn Thr Ser Phe  
35 40 45  
Ala Pro Asp Leu Asn Pro Pro Gln Asp His Val Ser Leu Leu Pro Leu  
50 55 60  
Asn Tyr Ser Tyr Gly Asp Tyr Asp Ile Pro Leu Asp Asp Glu Asp  
65 70 75 80  
Val Thr Lys Thr Gln Thr Phe Phe Ala Ala Lys Ile Val Ile Gly Val  
85 90 95  
Ala Leu Ala Gly Ile Met Leu Val Cys Gly Val Gly Asn Phe Val Phe  
100 105 110  
Ile Ala Ala Leu Ala Arg Tyr Lys Lys Leu Arg Asn Leu Thr Asn Leu  
115 120 125  
Leu Ile Ala Asn Leu Ala Ile Ser Asp Phe Leu Val Ala Ile Val Cys  
130 135 140  
Cys Pro Phe Glu Met Asp Tyr Tyr Val Val Arg Gln Leu Ser Trp Glu  
145 150 155 160  
His Gly His Val Leu Cys Ala Ser Val Asn Tyr Leu Arg Thr Val Ser  
165 170 175  
Leu Tyr Val Ser Thr Asn Ala Leu Leu Ala Ile Ala Ile Asp Arg Tyr

180                    185                    190  
Leu Ala Ile Val His Pro Leu Lys Arg Met Asn Tyr Gln Thr Ala Ser  
195                    200                    205  
Phe Leu Ile Ala Leu Val Trp Met Val Ser Ile Leu Ile Ala Ile Pro  
210                    215                    220  
Ser Ala Tyr Phe Thr Thr Glu Thr Ile Leu Val Ile Val Lys Asn Gln  
225                    230                    235                    240  
Glu Lys Leu Phe Cys Gly Gln Ile Trp Pro Val Asp Gln Gln Leu Tyr  
245                    250                    255  
Tyr Lys Ser Tyr Phe Leu Phe Val Phe Gly Leu Glu Phe Val Gly Pro  
260                    265                    270  
Val Val Thr Met Thr Leu Cys Tyr Ala Arg Ile Ser Gln Glu Leu Trp  
275                    280                    285  
Phe Lys Ala Val Pro Gly Phe Gln Thr Glu Gln Ile Arg Lys Arg Leu  
290                    295                    300  
Arg Cys Arg Arg Lys Thr Val Leu Leu Met Gly Ile Leu Thr Ala  
305                    310                    315                    320  
Tyr Val Leu Cys Trp Ala Pro Phe Tyr Gly Phe Thr Ile Val Arg Asp  
325                    330                    335  
Phe Phe Pro Thr Leu Val Val Lys Glu Lys His Tyr Leu Thr Ala Phe  
340                    345                    350  
Tyr Val Val Glu Cys Ile Ala Met Ser Asn Ser Met Ile Asn Thr Ile  
355                    360                    365  
Cys Phe Val Thr Val Lys Asn Asn Thr Met Lys Tyr Phe Lys Lys Met  
370                    375                    380  
Leu Leu Leu His Trp Arg Pro Ser His Tyr Gly Ser Lys Ser Ser Ala  
385                    390                    395                    400  
Asp Leu Asp Leu Lys Thr Ser Gly Val Pro Ala Thr Glu Glu Val Asp  
405                    410                    415

Cys Ile Arg Leu Lys

420

<210> 12

<211> 393

<212> PRT

<213> Human

<400> 12

Met Glu Thr Thr Met Gly Phe Met Asp Asp Asn Ala Thr Asn Thr Ser

5

10

15

Thr Ser Phe Leu Ser Val Leu Asn Pro His Gly Ala His Ala Thr Ser

20

25

30

Phe Pro Phe Asn Phe Ser Tyr Ser Asp Tyr Asp Met Pro Leu Asp Glu

35

40

45

Asp Glu Asp Val Thr Asn Ser Arg Thr Phe Phe Ala Ala Lys Ile Val

50

55

60

Ile Gly Met Ala Leu Val Gly Ile Met Leu Val Cys Gly Ile Gly Asn

65

70

75

80

Phe Ile Phe Ile Ala Ala Leu Val Arg Tyr Lys Lys Leu Arg Asn Leu

85

90

95

Thr Asn Leu Leu Ile Ala Asn Leu Ala Ile Ser Asp Phe Leu Val Ala

100

105

110

Ile Val Cys Cys Pro Phe Glu Met Asp Tyr Tyr Val Val Arg Gln Leu

115

120

125

Ser Trp Glu His Gly His Val Leu Cys Thr Ser Val Asn Tyr Leu Arg

130

135

140

Thr Val Ser Leu Tyr Val Ser Thr Asn Ala Leu Leu Ala Ile Ala Ile

145

150

155

160

Asp Arg Tyr Leu Ala Ile Val His Pro Leu Arg Pro Arg Met Lys Cys  
165 170 175  
Gln Thr Ala Thr Gly Leu Ile Ala Leu Val Trp Thr Val Ser Ile Leu  
180 185 190  
Ile Ala Ile Pro Ser Ala Tyr Phe Thr Thr Glu Thr Val Leu Val Ile  
195 200 205  
Val Lys Ser Gln Glu Lys Ile Phe Cys Gly Gln Ile Trp Pro Val Asp  
210 215 220  
Gln Gln Leu Tyr Tyr Lys Ser Tyr Phe Leu Phe Ile Phe Gly Ile Glu  
225 230 235 240  
Phe Val Gly Pro Val Val Thr Met Thr Leu Cys Tyr Ala Arg Ile Ser  
245 250 255  
Arg Glu Leu Trp Phe Lys Ala Val Pro Gly Phe Gln Thr Glu Gln Ile  
260 265 270  
Arg Lys Arg Leu Arg Cys Arg Arg Lys Thr Val Leu Val Leu Met Cys  
275 280 285  
Ile Leu Thr Ala Tyr Val Leu Cys Trp Ala Pro Phe Tyr Gly Phe Thr  
290 295 300  
Ile Val Arg Asp Phe Phe Pro Thr Val Phe Val Lys Glu Lys His Tyr  
305 310 315 320  
Leu Thr Ala Phe Tyr Ile Val Glu Cys Ile Ala Met Ser Asn Ser Met  
325 330 335  
Ile Asn Thr Leu Cys Phe Val Thr Val Lys Asn Asp Thr Val Lys Tyr  
340 345 350  
Phe Lys Lys Ile Met Leu Leu His Trp Lys Ala Ser Tyr Asn Gly Gly  
355 360 365  
Lys Ser Ser Ala Asp Leu Asp Leu Lys Thr Ile Gly Met Pro Ala Thr  
370 375 380  
Glu Glu Val Asp Cys Ile Arg Leu Lys

385                    390

<210> 13

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 13

atgcgtgggt gtggcatcg                    19

<210> 14

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 14

ttgcgaagct ttttgttagcg                    20

<210> 15

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 15

caacttcatc ttcatcactg cgctggc 27

<210> 16

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 16

cacagacctt ctttgagcc a 21

<210> 17

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 17

cagactagca ttaggcc 17

<210> 18

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 18

aatcgtaatt ggcgttagccc tggc 24

<210> 19

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 19

gtcgacatgg agaccactgt ggggaccctg 30

<210> 20

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 20

actagtttat ttcatcgga tgcagtccac 30

<210> 21

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 21

gtcgacatgg tatcagttct gtccaaacag 29

<210> 22

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 22

actagtctac tttagcctga tacagtcac 30

<210> 23

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 23

t c a c c y c a a g t g a y c a t g a g agg 23

<210> 24

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 24

c t a a a a r i t g r y r i t c t t c a a g t c c 25

<210> 25

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 25

a t c a c a g g g g c c t g t g a r c g 20

<210> 26

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 26

agcagcggtta cctgccgtcc 20

<210> 27

<211> 186

<212> DNA

<213> Rat

<400> 27

agatgtccag tggggcgtg gcaccgtgtg tgctatcagc ctgtggctgc gggcctgag 60  
gctgtgtacc cctctggggc gggaggaga ggagtgccac cctggaagcc acaagatccc 120  
tttcctttagg aaacgccaac accatacctg tccctgttca cccagcctgc tgtgctccag 180  
gttccc 186

<210> 28

<211> 186

<212> DNA

<213> Rat

<400> 28

agatgtccag tggggcgtg gcaccgtgtg tgctatcagc ctgtggctgc gggcctgag 60

gcttgtgcacc cctctggggc ggaaaggaga ggagtgccac ccttggaaagcc acaagatccc 120  
tttctttagg aaacgcacaac accataacctg tccctgttca cccagcctgc tgtgctccag 180  
gttccc 186

<210> 29

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 29

gtggcactcc tctccttccc gccccaga 28

<210> 30

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 30

caggccccgc agccacaggc tgatagca 28

<210> 31

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 31

agcaggtgcc agccccacac tggacatc 28

<210> 32

<211> 244

<212> DNA

<213> Rat

<400> 32

agagagatga ggcatttaga ggcagccctg gatccgacta tataaatctg aaggaggtaa 60  
ggtaggacag ctggccttc tttagcttgtc tagtgcaagg cagtgcagaa ggaagtgagg 120  
gattccagag tggacagtgt ttgccttcac cccaaatgtat catgagaggt gctgtgcaag 180  
tcttcatcat gtccttcta gcaactgtct ctgactgtgc ggtgatcaca ggggcctgtg 240  
aacg 244

<210> 33

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 33

ggaaggagag gagtgccacc ctggaag 27

<210> 34

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 34

accataacctg tccctgttca cccagcct 28

<210> 35

<211> 464

<212> DNA

<213> Rat

<400> 35

ctgttcaccc agcctgctgt gctccaggtt cccagatggc aggtaccgct gctcccagga 60  
cttgaagaat gtcaactttt agtttatctg gactctgtct gggtccctac tgggtgacct 120  
cttgcgttac atctgtgtga cttagttccg tgcaacttct ccactccccca ccctgtccgt 180  
gtgtgtgcag acaagcatat cttccactac ggaacagtcc agcagcgtgc agagaggagt 240  
ttgcagccctt gagaagtggg ccagccgtgc cttccctggcc agaccgcctg aagttgtgac 300  
actgggacct cctcaattgt ctgccttcc tgcatgtgcc cttctcccta aaccacacct 360  
cccaggccct ggcctgtggg tgcgtcacta agtcacgggg tctatgggg gaagatcaac 420  
atttccttca ttttcttca ttggctagct cttgtttta ggag 464

<210> 36

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 36

attccagagt ggacagtggtt tgccttcacc 30

<210> 37

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 37

gatcatgaga ggtgcgtgtgc aagtcttc 28

<210> 38

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 38

ctctctgcac gctgctggac tgttcc 26

<210> 39

<211> 30

<212> DNA<213> Artificial Sequence

<220>

<223>

<400> 39

cagatgtAAC acaagaggTC acccAGTAGG 30

<210> 40

<211> 375

<212> DNA

<213> Rat

<400> 40

gatcatgaga ggtgctgtgc aagtcttcAT catgctccTT ctagcaactg tctctgactg 60  
tgcggtgatC acaggGGGcCT gtgaacgaga tgcgcAGTGT ggggcTggca ccTGcTGTgc 120  
tatcagccTG tggctgcGGG gcctgaggCT gtgtACCCCT ctggggcGGG aaggagAGGA 180  
gtGCCACCCt ggaAGCCACA agatCCCTtT ctTTAGGAAA cgCCAAACACC atACCTGTCC 240  
ctgttCACCC agCCTGCTGT gctccAGGTT CCCAGATGGC aggtaccGCT gctcccAGGA 300  
cttGAAGAAT gtCAACTTTT agtttatCTG gACTCTGTCT gggtccCTAC tgggtgACCT 360  
cttGtGTTAC atCTG 375

<210> 41

<211> 375

<212> DNA

<213> Rat

<400> 41

gatcatgaga ggtgctgtgc aagtcttcat catgctccctt ctagcaactg tctctgactg 60  
tgcggtgatc acaggggcct gtgaacgaga tgtccagtgt ggggctggca cctgctgtgc 120  
tatcagcctg tggctgcggg gcctgaggct gtgtacccct ctggggcggg aaggagagga 180  
gtgccaccct ggaagctaca agatcccttt cttaggaaa cgccaaacacc atacctgtcc 240  
ctgttcaccc agcctgctgt gctccaggtt cccagatggc aggtaccgct gctcccagga 300  
cttgaagaat gtcaactttt agtttatctg gactctgtct gggtccctac tgggtgacct 360  
cttgtgttac atctg 375

<210> 42

<211> 375

<212> DNA

<213> Rat

<400> 42

gatcatgaga ggtgctgtgc aagtcttcat catgctccctt ctagcaactg tctctgactg 60  
tgcggtgatc acaggggcct gtgaacgaga tgtccagtgt ggggctggca cctgctgtgc 120  
tatcagcctg tggctgcggg gcctgaggct gtgtacccct ctggggcagg aaggagagga 180  
gtgccaccct ggaagccaca agatcccttt cttaggaaa cgccaaacacc atacctgtcc 240  
ctgttcaccc agcctgctgt gctccaggtt cccagatggc aggtaccgct gctcccagga 300  
cttgaagaat gtcaactttt agtttatctg gactctgtct gggtccctac tgggtgacct 360  
cttgtgttac atctg 375

<210> 43

<211> 105

<212> PRT

<213> Rat

<400> 43

Met Arg Gly Ala Val Gln Val Phe Ile Met Leu Leu Leu Ala Thr Val

5

10

15

Ser Asp Cys Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val Gln Cys

20

25

30

Gly Ala Gly Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg Gly Leu Arg

35

40

45

Leu Cys Thr Pro Leu Gly Arg Glu Gly Glu Glu Cys His Pro Gly Ser

50

55

60

His Lys Ile Pro Phe Phe Arg Lys Arg Gln His His Thr Cys Pro Cys

65

70

75

80

Ser Pro Ser Leu Leu Cys Ser Arg Phe Pro Asp Gly Arg Tyr Arg Cys

85

90

95

Ser Gln Asp Leu Lys Asn Val Asn Phe

100

105

<210> 44

<211> 315

<212> DNA

<213> Rat

<400> 44

atgagaggtg ctgtcaagt cttcatcatg ctcccttctag caactgtctc tgactgtgcg 60  
gtgatcacag gggcctgtga acgagatgtc cagtgtgggg ctggcacctg ctgtgtatc 120  
agcctgtggc tgcggggcct gaggctgtgt accccctctgg ggccggaaagg agaggagtgc 180  
accctggaa gccacaagat ccctttcttt aggaaacgcc aacaccatac ctgtccctgt 240  
tcacccagcc tgctgtgctc caggttccca gatggcaggt accgctgctc ccaggacttg 300

aagaatgtca acttt

315

&lt;210&gt; 45

&lt;211&gt; 105

&lt;212&gt; PRT

&lt;213&gt; Rat

&lt;400&gt; 45

Met Arg Gly Ala Val Gln Val Phe Ile Met Leu Leu Leu Ala Thr Val  
5 10 15

Ser Asp Cys Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val Gln Cys  
20 25 30

Gly Ala Gly Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg Gly Leu Arg  
35 40 45

Leu Cys Thr Pro Leu Gly Arg Glu Gly Glu Cys His Pro Gly Ser  
50 55 60

Tyr Lys Ile Pro Phe Phe Arg Lys Arg Gln His His Thr Cys Pro Cys  
65 70 75 80

Ser Pro Ser Leu Leu Cys Ser Arg Phe Pro Asp Gly Arg Tyr Arg Cys  
85 90 95

Ser Gln Asp Leu Lys Asn Val Asn Phe  
100 105

&lt;210&gt; 46

&lt;211&gt; 315

&lt;212&gt; DNA

&lt;213&gt; Rat

&lt;400&gt; 46

atgagaggcg ctggcaagt cttcatcatg ctccctctag caactgtctc tgactgtgcg 60  
gtgatcacag gggctgtga acgagatgtc cagtgtgggg ctggcacctg ctgtgctatc 120  
agcctgtggc tgcgggccc gaggtgtgt accccctctgg ggccggaaagg agaggagtg 180  
caccctggaa gctacaagat cccttcttt aggaaacgcc aacaccatac ctgtccctgt 240  
tcacccagcc tgctgtgtc caggttccca gatggcaggt accgctgtc ccaggactt 300  
aagaatgtca acttt 315

<210> 47

<211> 105

<212> PRT

<213> Rat

<400> 47

Met Arg Gly Ala Val Gln Val Phe Ile Met Leu Leu Leu Ala Thr Val  
5 10 15

Ser Asp Cys Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val Gln Cys  
20 25 30

Gly Ala Gly Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg Gly Leu Arg  
35 40 45

Leu Cys Thr Pro Leu Gly Gln Glu Gly Glu Cys His Pro Gly Ser  
50 55 60

His Lys Ile Pro Phe Phe Arg Lys Arg Gln His His Thr Cys Pro Cys  
65 70 75 80

Ser Pro Ser Leu Leu Cys Ser Arg Phe Pro Asp Gly Arg Tyr Arg Cys  
85 90 95

Ser Gln Asp Leu Lys Asn Val Asn Phe  
100 105

<210> 48

<211> 315

<212> DNA

<213> Rat

<400> 48

atgagaggtg ctgtgcaagt cttcatcatg ctccttctag caactgtctc tgactgtgcg 60  
gtgatcacag gggcctgtga acgagatgtc cagtgtgggg ctggcacctg ctgtgctatc 120  
agccctgtggc tgcggggcct gaggctgtgt accccctctgg ggcaggaagg agaggagtgc 180  
cacccctggaa gccacaagat ccctttcttt aggaaacgcc aacaccatac ctgtccctgt 240  
tcacccagcc tgctgtgctc caggttccca gatggcaggt accgctgctc ccaggacttg 300  
aagaatgtca acttt 315

<210> 49

<211> 86

<212> PRT

<213> Rat

<400> 49

Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val Gln Cys Gly Ala Gly  
1 5 10 15  
Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg Gly Leu Arg Leu Cys Thr  
20 25 30  
Pro Leu Gly Arg Glu Gly Glu Glu Cys His Pro Gly Ser His Lys Ile  
35 40 45  
Pro Phe Phe Arg Lys Arg Gln His His Thr Cys Pro Cys Ser Pro Ser  
50 55 60  
Leu Leu Cys Ser Arg Phe Pro Asp Gly Arg Tyr Arg Cys Ser Gln Asp  
65 70 75 80  
Leu Lys Asn Val Asn Phe

85

&lt;210&gt; 50

&lt;211&gt; 258

&lt;212&gt; DNA

&lt;213&gt; Rat

&lt;400&gt; 50

gcggtagatca cagggccctg tgaacgagat gtccagtgtg gggctggcac ctgctgtgct 60  
atcagcctgt ggctgcgggg cctgaggctg tgtacccctc tggggcggga aggagaggag 120  
tgccaccctg gaagccacaa gatcccttc tttaggaaac gccaacacca tacctgtccc 180  
tgttaccca gcctgctgtg ctccaggttc ccagatggca ggtaccgctg ctcccaggac 240  
ttgaagaatg tcaacttt 258

&lt;210&gt; 51

&lt;211&gt; 86

&lt;212&gt; PRT

&lt;213&gt; Rat

&lt;400&gt; 51

Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val Gln Cys Gly Ala Gly

1

5

10

15

Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg Gly Leu Arg Leu Cys Thr

20

25

30

Pro Leu Gly Arg Glu Gly Glu Glu Cys His Pro Gly Ser Tyr Lys Ile

35

40

45

Pro Phe Phe Arg Lys Arg Gln His His Thr Cys Pro Cys Ser Pro Ser

50

55

60

Leu Leu Cys Ser Arg Phe Pro Asp Gly Arg Tyr Arg Cys Ser Gln Asp

65                    70                    75                    80

Leu Lys Asp Val Asn Phe

85

<210> 52

<211> 258

<212> DNA

<213> Rat

<400> 52

gcgggtatca cagggccctg tgaacgagat gtccagtgtg gggctggcac ctgctgtgct 60  
atcagcctgt ggctgcgggg cctgaggctg tgtaccctc tggggcggga aggagaggag 120  
tgccaccctg gaagccacaa gatccctttc tttaggaaac gccaacacca tacctgtccc 180  
tgttacccca gcctgtgtg ctccagggttc ccagatggca ggtaccgctg ctcccaggac 240  
ttgaagaatg tcaacttt 258

<210> 53

〈211〉 86

<212> PRT

213 Rat

<400> 53

Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val Gln Cys Gly Ala Gly

1                    5                    .                    10                    15

Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg Gly Leu Arg Leu Cys Thr

20

25

30

Pro Leu Gly Gln Glu Gly Glu Glu Cys His Pro Gly Ser His Lys Ile

35

40

45

Pro Phe Phe Arg Lys Arg Gln His His Thr Cys Pro Cys Ser Pro Ser

50

55

60

Leu Leu Cys Ser Arg Phe Pro Asp Gly Arg Tyr Arg Cys Ser Gln Asp

65

70

75

80

Leu Lys Asn Val Asn Phe

85

&lt;210&gt; 54

&lt;211&gt; 258

&lt;212&gt; DNA

&lt;213&gt; Rat

&lt;400&gt; 54

gcgggtatca cagggccctg tgaacgagat gtccagtgtg gggctggcac ctgctgtgct 60  
atcagcctgt ggctgcgggg cctgaggctg tgtacccctc tggggcagga aggagaggag 120  
tgccaccctg gaagccacaa gatccctttc tttaggaaac gccaacacca tacctgtccc 180  
tgttcaccca gcctgctgtg ctccaggttc ccagatggca ggtaccgctg ctcccaggac 240  
ttgaagaatg tcaacttt 258

&lt;210&gt; 55

&lt;211&gt; 20

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt;

&lt;400&gt; 55

gcttgygaca aggactcyca 20

<210> 56

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 56

gtt yct tacty cagagyga t 19

<210> 57

<211> 210

<212> DNA

<213> Rat

<400> 57

gtgtggagga ggaatgtgct gcgcgtgtcag tatctgggtt aagagcataa ggatctgcac 60  
acctatgggc caagtgggag acagctgcc a cccctgact cgaaaaggtc cattttgggg 120  
gcggaggatg caccacactt gtccctgcct gccaggtttg gcatgttaa ggacttcttt 180  
caaccgtttt atttgtttgg cccggaagtg 210

<210> 58

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 58

gtgcacccctc cgcccccaaa atggaa 26

<210> 59

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 59

gacagcgccag cacattccctc ctccacac 28

<210> 60

<211> 148

<212> DNA

<213> Human

<400> 60

cgcgtcccta accgccaccg cctccctggg acgccatggg ggaccgcgc tgtgccccgc 60  
tactgctact ttggctgcta ccgctgctgc tcacacccggcc cgccggggat gcccgggtca 120  
tcaccggggc ttgcgacaag gactctca 148

<210> 61

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 61

gagacagctg ccacccctg actcgaa 28

<210> 62

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 62

ggcggaggat gcaccacact tgtccctg 28

<210> 63

<211> 150

<212> DNA

<213> Rat

<400> 63

cctgcctgcc aggtttggca tgtttaagga ctctttcaa ccgttttatt tgtttggccc 60  
ggaagtgtatc actctgaagc aggagctgga aatgtgaacc tctactcaact gaacaatgtc 120  
tgtcaagtct cgcttgata tgggtcaag 150

<210> 64

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 64

taaccggccac cgccctcct 18

<210> 65

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 65

gggacgccccat ggaggac 17

<210> 66

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 66

cgagacttga cagacatgt tcagtg 26

<210> 67

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 67

tttccagctc ctgcttcaga 20

<210> 68

<211> 356

<212> DNA

<213> Rat

<400> 68

gggacgccat ggaggacccg cgctgtgccc cgctactgct acttttgctg ctaccgctgc 60  
tgctcacacc gccccccggg gatgccgcgg tcatcaccgg ggcttgcgac aaggactctc 120  
agtgtggagg aggaatgtgc tgccgtgtca gtatctgggt taagagcata aggatctgca 180  
cacctatggg ccaagtggga gacagctgcc acccccctgac tcggaaagtt ccattttggg 240  
ggcggaggat gcaccacact tgtccctgcc tgccaggttt ggcatgtta aggactctt 300  
tcaaccgttt tatttgtttg gccccggaaagt gatcactctg aagcaggagc tggaaa 356

<210> 69

<211> 107

<212> PRT

<213> Rat

<400> 69

Met Glu Asp Pro Arg Cys Ala Pro Leu Leu Leu Leu Leu Pro

5 10 15

Leu Leu Leu Thr Pro Pro Ala Gly Asp Ala Ala Val Ile Thr Gly Ala

20 25 30

Cys Asp Lys Asp Ser Gln Cys Gly Gly Gly Met Cys Cys Ala Val Ser

35 40 45

Ile Trp Val Lys Ser Ile Arg Ile Cys Thr Pro Met Gly Gln Val Gly

50 55 60

Asp Ser Cys His Pro Leu Thr Arg Lys Val Pro Phe Trp Gly Arg Arg

65 70 75 80

Met His His Thr Cys Pro Cys Leu Pro Gly Leu Ala Cys Leu Arg Thr

85 90 95

Ser Phe Asn Arg Phe Ile Cys Leu Ala Arg Lys

100 105

<210> 70

<211> 321

<212> DNA

<213> Rat

<400> 70

atggaggacc cgcgctgtgc cccgctactg ctactttgc tgctaccgct gctgctcaca 60

ccgccccccg gggatgccgc ggtcatcacc ggggcitgcg acaaggactc tcagtgtgga 120

ggaggaatgt gctgcgctgt cagtatctgg gttaagagca taaggatctg cacacctatg 180

ggccaagtgg gagacagctg ccacccctg actcgaaag ttccatttg gggcgagg 240

atgcaccaca ctgtccctg cctgccaggt ttggcatgtt taaggacttc ttcaaccgt 300  
tttatttgtt tggcccgaa g 321

<210> 71

<211> 81

<212> PRT

<213> Rat

<400> 71

Ala Val Ile Thr Gly Ala Cys Asp Lys Asp Ser Gln Cys Gly Gly

5 10 15

Met Cys Cys Ala Val Ser Ile Trp Val Lys Ser Ile Arg Ile Cys Thr

20 25 30

Pro Met Gly Gln Val Gly Asp Ser Cys His Pro Leu Thr Arg Lys Val

35 40 45

Pro Phe Trp Gly Arg Arg Met His His Thr Cys Pro Cys Leu Pro Gly

50 55 60

Leu Ala Cys Leu Arg Thr Ser Phe Asn Arg Phe Ile Cys Leu Ala Arg

65 70 75 80

Lys

<210> 72

<211> 243

<212> DNA

<213> Rat

<400> 72

gcggtcatca ccggggcttg cgacaaggac tctcagtgtg gaggaggaat gtgctgcgct 60  
gtcagtatct gggtaagag cataaggatc tgcacaccta tggccaagt gggagacagc 120

tgccaccccc tgactcgaa agttccattt tgggggcgga ggatgcacca cacttgtccc 180  
tgcctgtccag gtttggcatg tttaaggact tcittcaacc gttttatttg tttggcccg 240  
aag 243

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/07209

## A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl<sup>7</sup> C12N15/11, C07K14/47, C12N5/10, C07K14/705, G01N33/50, G01N33/15,  
C12P21/02, A61K38/17, A61P1/00

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl<sup>7</sup> C12N15/11, C07K14/47, C12N5/10, C07K14/705, G01N33/50, G01N33/15,  
C12P21/02, A61K38/17, A61P1/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

JICST FILE (JOIS), WPI (DIALOG), BIOSIS (DIALOG), MEDLINE (STN),  
EMBL/DDBJ/Genebank/PIR/Swissprot/Geneseq

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                   | Relevant to claim No. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | WO 98/46620 A1 (Millennium Pharmaceuticals Inc.),<br>22 October, 1998 (22.10.98),<br>& AU 9869736 A & US 5891720 A<br>& EP 1007536 A1<br>(Claims; Figs. 1, 2)        | 1-14, 18              |
| X         | WO 00/34334 A1 (Synaptic Pharmaceutical Corporation),<br>15 June, 2000 (15.06.00),<br>& AU 200021723 A<br>(Claims; Sequence list, Sequence Nos. 1, 2; Figs. 1, 2)    | 1-14, 18              |
| PX        | WO 01/16309 A1 (Takeda Chemical Industries, Ltd.<br>Corporation),<br>08 March, 2001 (08.03.01),<br>& AU 200067280 A<br>(Claims; Sequence list, Sequence Nos. 1 to 3) | 1-14, 18              |
| PX        | WO 01/36471 A2 (Arena Pharmaceuticals, Inc.),<br>25 May, 2001 (25.05.01),<br>& AU 200117496 A<br>(Claims 1 to 4; Sequence list, Sequence Nos. 1 to 2)                | 1-14, 18              |

Further documents are listed in the continuation of Box C.  See patent family annex.

|                                          |                                                                                                                                                                                                                                              |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents: |                                                                                                                                                                                                                                              |
| "A"                                      | document defining the general state of the art which is not considered to be of particular relevance                                                                                                                                         |
| "E"                                      | earlier document but published on or after the international filing date                                                                                                                                                                     |
| "L"                                      | document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)                                                                          |
| "O"                                      | document referring to an oral disclosure, use, exhibition or other means                                                                                                                                                                     |
| "P"                                      | document published prior to the international filing date but later than the priority date claimed                                                                                                                                           |
| "T"                                      | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "X"                                      | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "Y"                                      | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "&"                                      | document member of the same patent family                                                                                                                                                                                                    |

|                                                                                          |                                                                                   |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Date of the actual completion of the international search<br>09 October, 2001 (09.10.01) | Date of mailing of the international search report<br>23 October, 2001 (23.10.01) |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|

|                                                                |                    |
|----------------------------------------------------------------|--------------------|
| Name and mailing address of the ISA/<br>Japanese Patent Office | Authorized officer |
| Facsimile No.                                                  | Telephone No.      |

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/07209

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                            | Relevant to claim No. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| PX        | WO 01/36473 A2 (PHARMACIA & UPJOHN COMPANY),<br>25 May, 2001 (25.05.01),<br>& AU 200116178 A<br>(Claims; Sequence list, Sequence Nos. 33, 34) | 1-14, 18              |

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/JP01/07209

**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: 19

because they relate to subject matter not required to be searched by this Authority, namely:

The invention as set forth in claim 19 pertains to methods for prevention and/or treatment for diseases in association with appetite and thus relates to a subject matter which this International Searching Authority is not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.

2.  Claims Nos.: 15-17,19,20

because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

Concerning the "compounds or salts thereof" obtained by the "screening method" as set forth in claim 13 and the "screening kit" as set forth in claim 14, it is completely unknown what particular compounds are involved in the scope thereof and what are not. Thus, these claims are extremely unclear. Such being the case, no meaningful comment can be made on the novelty, inventive step and industrial applicability of the inventions as set forth in the above claims.

3.  Claims Nos.:

**Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

## Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

## 国際調査報告

国際出願番号 PCT/JP01/07209

## A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl' C12N15/11, C07K14/47, C12N5/10, C07K14/705,  
G01N33/50, G01N33/15, C12P21/02, A61K38/17, A61P1/00

## B. 調査を行った分野

## 調査を行った最小限資料(国際特許分類(IPC))

Int.Cl' C12N15/11, C07K14/47, C12N5/10, C07K14/705,  
G01N33/50, G01N33/15, C12P21/02, A61K38/17, A61P1/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

JICSTファイル(JOIS), WPI(DIALOG), BIOSIS(DIALOG),  
MEDLINE(STN),  
EMBL/DDBJ/Genebank/PIR/Swissprot/Geneseq

## C. 関連すると認められる文献

| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                                                               | 関連する<br>請求の範囲の番号 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| X               | WO 98/46620 A1 (MILLENNIUM PHARMACEUTICALS INC.) 22. 10月. 1998 (22. 10. 98)<br>&AU 9869736 A &US 5891720 A<br>&EP 1007536 A1<br>(特許請求の範囲、第1、2図) | 1-14, 18         |
| X               | WO 00/34334 A1 (SYNAPTIC PHARMACEUTICAL CORP.) 15. 6月. 2000 (15. 06. 00)<br>&AU 200021723 A<br>(特許請求の範囲、配列表配列番号1, 2、第1, 2図)                     | 1-14, 18         |

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

## \* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

|                                                                         |                                                      |
|-------------------------------------------------------------------------|------------------------------------------------------|
| 国際調査を完了した日<br>09. 10. 01                                                | 国際調査報告の発送日<br>23.10.01                               |
| 国際調査機関の名称及びあて先<br>日本国特許庁 (ISA/JP)<br>郵便番号 100-8915<br>東京都千代田区霞が関三丁目4番3号 | 特許庁審査官(権限のある職員)<br>上條 肇<br>電話番号 03-3581-1101 内線 3448 |

| C (続き) 関連すると認められる文献 |                                                                                                                                |                  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------|
| 引用文献の<br>カテゴリー*     | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                                              | 関連する<br>請求の範囲の番号 |
| PX                  | WO 01/16309 A1 (TAKEDA CHEMICAL INDUSTRIES,<br>LTD. CORP.) 8. 3月. 2001 (08. 03. 01)<br>&AU 200067280 A<br>(特許請求の範囲、配列表配列番号1~3) | 1-14, 18         |
| PX                  | WO 01/36471 A2 (ARENA PHARMACEUTICALS, INC.)<br>25. 5月. 2001 (25. 05. 01)<br>&AU 200117496 A<br>(特許請求の範囲1~4、配列表配列番号1~2)        | 1-14, 18         |
| PX                  | WO 01/36473 A2 (PHARMACIA & UPJOHN COMPANY)<br>25. 5月. 2001 (25. 05. 01)<br>&AU 200116178 A<br>(特許請求の範囲、配列表配列番号33, 34)         | 1-14, 18         |

## 第I欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT第17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1.  請求の範囲 19 は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、  
請求の範囲19に係る発明は食欲に関する疾患の予防・治療方法に該当するから、特許協力条約第17条(2)(a)(i)及び特許協力条約に基づく規則39.1(iv)の規定によりこの国際調査機関が調査をすることを要しない対象に係るものである。
2.  請求の範囲 15-17, 19, 20 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、  
請求の範囲第13項に記載の「スクリーニング方法」及び同第14項に記載の「スクリーニングキット」によって得られた「化合物またはその塩」については、化合物として具体的にどのような化合物が包含され、どのような化合物が包含されないのかが全く不明であって、前記請求項の範囲の記載は著しく不明確である。したがって、前記請求項に記載された発明に係る新規性、進歩性、産業上の利用可能性についての有意義な見解を示すことができない。
3.  請求の範囲 \_\_\_\_\_ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

## 第II欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

1.  出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2.  追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.  出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4.  出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

## 追加調査手数料の異議の申立てに関する注意

- 追加調査手数料の納付と共に出願人から異議申立てがあった。
- 追加調査手数料の納付と共に出願人から異議申立てがなかった。