HM50464 Series

65536-word x 4-bit Dynamic Random Access Memory

- **FEATURES**
- Page mode capability
- Single 5V (±10%)
- On chip substrate bias generator
- Low power: 350 mW active, 20 mW standby
- High speed: Access Time 120ns/150ns/200ns
- Output data controlled by CAS or OE
- TTL compatible
- 256 refresh cycles 4 ms
- 3 variations of refresh RAS only refresh

CAS before RAS refresh

Hidden refresh

■ ORDERING INFORMATION

Type No.	Access Time	Package		
HM50464P-12	120ns	300 mil 18 pin		
HM50464P-15	HM50464P-15 150ns			
HM50464P-20	200ns	Plastic DIP		
HM50464CP-12	120ns			
HM50464CP-15	150ns	18 pin PLCC		
HM50464CP-20	200ns			

PIN ARRANGEMENT

HM50464P Series

A A.	Address Inputs
CAS	Column Address Strobe
I/O1 - I/O4	Data In/Data Out
ŌĒ	Output Enable
RAS	Row Address Strobe
WE	Read/Write Input
v_{cc}	Power (+5V)
VSS	Ground
A ₀ - A ₁ (Row)	Refresh Address Inputs

■ BLOCK DIAGRAM

HM50464CP Series

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Voltage on any pin relative to V_{SS}	VT	-1 to +7	v
Supply Voltage relative to VSS	VCC	-1 to +7	v
Operating Temperature (Ambient)	Topr	0 to +70	° C
Storage Temperature (Ambient)	Tstg	-55 to +125	°C
Power Dissipation	P_T	1.0	W
Short Circuit Output Current	lout	50	mA

RECOMMENDED DC OPERATING CONDITION $(Ta = 0 \text{ to } +70^{\circ}\text{C})$

Parameter	Symbol	min.	typ.	max.	unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Input High Voltage	V _{IH}	2.4	_	6.5	v
Input Low Voltage	V_{IL}	-1.0	_	0.8	v

Note) All voltage referenced to VSS.

■ DC ELECTRICAL CHARACTERISTICS ($VCC = 5V \pm 10\%$, VSS = 0V, Ta = 0 to +70°C)

Parameter	Symbol	HM50464-12		HM50464-15		HM50464-20			T
		min.	max.	min.	max.	min.	max.	Unit	Note
Operating Current (t _{RC} = min.)	I _{CC1}	_	83	-	70	-	55	mA	1
Standby Current (RAS = V_{IH} , Dout = Disable)	I _{CC2}		4.5		4.5	-	4.5	mA	
Refresh Current (RAS only refresh, tRC = min.)	I _{CC3}	_	62		53	-	42	mA	t
Standby Current (RAS = V _{IH} , Dout = Enable)	ICCS	-	10	-	10	-	10	mA	1
Refresh Current (CAS before RAS refresh, $t_{RC} = min.$)	I _{CC6}	-	69	T -	58	-	45	mA	1
Operating Current (Page mode, tpC = min.)	ICCT	-	57		48		37	mA	1
Input Leakage Current (0 < Vin < 7V)	ILI	-10	10	-10	10	-10	10	μA	
Output Leakage Current (0 < Vout < 7V, Dout = Disable)	110	-10	10	-10	10	-10	10	μA	
Output High Voltage ($fout = -5 \text{ mA}$)	VOH	2,4	VCC	2.4	Vcc	2.4	VCC	v	<u> </u>
Output Low Voltage (fout = 4.2 mA)	VOL	0	0.4	0	0.4	0	0.4	l v	\vdash

Note) 1. I_{CC} depends on output loading condition when the device is selected, I_{CC} max. is specified at the output open condition.

■ CAPACITANCE ($V_{CC} = 5V \pm 10\%$, Ta = 25°C)

Para	meter	Symbol	typ.	max.	Unit	Note
Input Capacitance	Address	CI1	-	5	pF	1
RAS, CAS, W	RAS, CAS, WE, OE	CI2		10	pF	1
Output Capacitance	Data In/Data Out	CI/O	-	10	pF	1, 2

Notes) 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. $\overline{CAS} = V_{IH}$ to disable Dout.

■ ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS $(Vcc = 5V \pm 10\%, Vss = 0V, Ta = 0 \text{ to } +70^{\circ}\text{C})$

Parameter	Symbol	HM50464-12		HM50464-15		HM50464-20		T	Τ
T are the control of	37111001	min.	max.	min.	max.	min.	max.	Unit	Note
Access Time from RAS	IRAC	-	120	-	150	-	200	ns	2, 3
Access Time from CAS	1CAC	_	60		75		100	ns	3,4
Output Buffer Turn-off Delay referenced to CAS	10FF1		30	-	40	_	50	ns	5
Transition Time (Rise and Fall)	t _T	3	50	3	50	3	50	ns	6
Random Read or Write Cycle Time	†RC	220	-	260	-	330	-	ns	<u> </u>
RAS Precharge Time	tRP	90	-	100	† <u>-</u>	120		ns	
RAS Pulse Width	IRAS	120	10000	150	10000	200	10000	ns	+
CAS Pulse Width	CAS	60	10000	75	10000	100	10000	ns	
RAS to CAS Delay Time	†RCD	25	60	25	75	30	100	ns	7
RAS Hold Time	!RSH	60	-	75		100	-	ns	
CAS Hold Time	¹ CSH	120	-	150	-	200		ns	
CAS to RAS Precharge Time	†CRP	10	<u> </u>	10		10	 	ns	\vdash
Row Address Set-up Time	1ASR	0		0		0	 	ns	
Row Address Hold Time	[†] RAH	15	 	15	† <u>-</u>	20		ns	

(to be continued)

Parameter	Symbol	HM50	464-12	HM50464-15		HM50464-20		Ileit	Note
Parameter	Symbol	min.	max.	min.	max.	min.	max.	Unit	Note
Column Address Set-up Time	¹ ASC	0		0	-	0	-	ns	
Column Address Hold Time	1CAH	20	T -	25	-	30	T -	ns	
Column Address Hold Time referenced to RAS	IAR	80	-	100	-	130	-	ns	
Write Command Set-up Time	! WCS	0	T -	0		0	T -	ns	-8
Write Command Hold Time	1 WCH	40	-	45	-	55	-	ns	
Write Command Hold Time referenced to RAS	1 WCR	100	T -	120	-	155	-	ns	1
Write Command Pulse Width	1 WP	40	-	45	T -	55	-	ns	1
Write Command to RAS Lead Time	!RWL	40	-	45	T -	55	-	ns	
Write Command to CAS Lead Time	1CWL	40	T-	45	-	55	-	ns	
Data-in Set-up Time	t _D S	0	-	0	-	0	-	ns	9
Data-in Hold Time	¹DH	40	-	45	-	55	-	ns	9
Data-in Hold Time referenced to RAS	¹ DHR	100	 -	120	<u> </u>	155	-	ns	
Read Command Set-up Time	1RCS	0	T -	0	-	0	-	ns	
Read Command Hold Time referenced to CAS	¹ RCH	0	-	0	-	0	-	ns	
Read Command Hold Time referenced to RAS	trrh	10	-	10	-	10	-	ns	
Refresh Period	!REF	-	4	T -	4	_	4	ms	
Read-Write Cycle Time	!RWC	305	-	360	-	450	-	ns	
CAS to WE Delay Time	1CWD	100	-	125	-	160	-	ns	8
RAS to WE Delay Time	IRWD	160	-	200	-	260	-	ns	8
CAS Precharge Time	†CPN	50	1 -	60	-	80	-	ns	
CAS Set-up Time (CAS before RAS refresh)	1CSR	10	-	10	<u> </u>	10	-	ns	
CAS Hold Time (CAS before RAS refresh)	[†] CHR	120	1 -	150	-	200	-	ns	
RAS Precharge to CAS Hold Time	1RPC	0	1 -	0	-	0	-	ns	
Access Time from OE	IOAC	-	30	-	35	-	45	ns.	
Output Buffer Turn-off Delay referenced to OE	¹OFF2	-	30	T-	40	-	50	ns	
OE to Data-in Delay Time	topp	30	-	40	-	50	-	ns	
OE Hold Time referenced to WE	¹0EH	25	1 -	30	-	40	-	ns	
Page Mode Cycle Time	1PC	120	-	145	-	190	T -	ns	
CAS Precharge Time (for Page-mode Cycle Only)	†CP	50	-	60	-	80	-	ns	
CAS Read-modify-write Cycle Time (Page-mode)	¹PCM	205	-	245	1 -	310	T -	ns	

Notes)

- 1. AC measurements assume $t_T = 5$ ns.
- Assume that t_{RCD} ≤ t_{RCD} (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- shown in this table, t_{RAC} exceeds the value shown.

 3. Measured with a load circuit equivalent to 2TTL loads and 100pF.
- 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- t_{OFF} (max) is defined as the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL}.
- Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively be t_{CAC}.
- 8. t_{WCS}, t_{CWD} and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{CWD} \ge t_{CWD}$ (min) and $t_{RWD} \ge t_{RWD}$ (min), the cycle is a read/write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in delayed write or read-modify-write cycles.
- An initial pause of 100 µs is required after power-up followed by a minimum of 8 initialization of cycles.
- Minimum of 8 CAS before RAS refresh is required before using internal refresh counter.
- In delayed write or read-modify-write cycles, OE
 must disable output buffers prior to applying data to
 the device.

TIMING WAVEFORMS

• READ CYCLE

. EARLY WRITE CYCLE

. DELAYED WRITE CYCLE

. READ MODIFY WRITE CYCLE

• RAS ONLY REFRESH CYCLE

. HIDDEN REFRESH CYCLE

• CAS BEFORE RAS REFRESH CYCLE

COUNTER TEST

. PAGE MODE READ CYCLE

• PAGE MODE WRITE CYCLE

. PAGE MODE READ MODIFY WRITE CYCLE

