Schema Refinement and Normal Forms

courtesy of Joe Hellerstein for some slides

Jianlin Feng
School of Software
SUN YAT-SEN UNIVERSITY

Review: Database Design

- Requirements Analysis
 - user needs; what must database do?
- Conceptual Design
 - high level description (often done with ER model)
- Logical Design
 - translate ER into DBMS data model
- Schema Refinement
 - consistency, normalization
- Physical Design indexes, disk layout
- Security Design who accesses what

The Evils of Redundancy 73

- Redundancy is at the root of several problems associated with relational schemas:
 - redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements.
- Main refinement technique: <u>decomposition</u>
 - replacing ABCD with, say, AB and BCD, or ACD and ABD.
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Functional Dependencies (FDs)

A <u>functional dependency</u> X → Y holds over relation schema R if, for every <u>allowable instance</u> r of R:

$$\frac{t1 \in r, \ t2 \in r, \ \pi_X(t1) = \pi_X(t2)}{\text{implies} \ \pi_Y(t1) = \pi_Y(t2)}$$

(where t1 and t2 are tuples;X and Y are sets of attributes)

- In other words: X → Y means
 - Given any two tuples in *r*, if the X values are the same, then the Y values must also be the same. (but not vice versa)
- Can read "→" as "determines"

Functional Dependencies (Contd.)

- An FD is a statement about all allowable relations.
 - Must be identified based on semantics of application.
 - Given some instance r1 of R, we can check if r1 violates some FD f, but we cannot determine if f holds over R.
- Question: How related to keys?
 - if "K → all attributes of R" then K is a superkey for R (does not require K to be minimal.)
- FDs are a generalization of keys.

Example: Constraints on Entity Set

Consider relation obtained from Hourly_Emps:

```
Hourly_Emps (<u>ssn</u>, name, lot, rating, wage_per_hr, hrs_per_wk)
```

- We sometimes denote a relation schema by listing the attributes: e.g., SNLRWH
- Sometimes, we refer to the set of all attributes of a relation by using the relation name. e.g., "Hourly_Emps" for SNLRWH

```
What are some FDs on Hourly_Emps?
```

```
ssn is the key: S \rightarrow SNLRWH

rating determines wage_per_hr: R \rightarrow W

lot determines lot: L \rightarrow L ("trivial" dependency)
```

Problems Due to $R \rightarrow W$

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Hourly_Emps

- Update anomaly: Can we modify W in only the 1st tuple of SNLRWH?
- Insertion anomaly: What if we want to insert an employee and don't know the hourly wage for his or her rating? (or we get it wrong?)
- Deletion anomaly: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Detecting Redundancy

S	N	L	R	W	Н	
123-22-3666	Attishoo	48	8	10	40	
231-31-5368	Smiley	22	8	10	30	Hourly_Emp
131-24-3650	Smethurst	35	5	7	30	
434-26-3751	Guldu	35	5	7	32	
612-67-4134	Madayan	35	8	10	40	

Q: Why was $R \rightarrow W$ problematic, but $S \rightarrow W$ not?

Decomposing a Relation 编译系

- Redundancy can be removed by "chopping" the relation into pieces. 消釋元業
- FD's are used to drive this process.

R → W is causing the problems, so decompose SNLRWH into what relations?

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W
8	10
5	7

Wages

Refining an ER Diagram by FD: Attributes Can Easily Be Associated with the "Wrong" Entitity Set in ER Design.

- 1st diagram becomes: Workers(S,N,L,D,Si) Departments(D,M,B)
 - Lots associated with workers.
- Suppose all workers in a dept are assigned the same lot: D → L
- Redundancy; fixed by decomposition: Workers2(S,N,D,Si) Dept_Lots(D,L) Departments(D,M,B)
- Can fine-tune this:
 Workers2(S,N,D,Si)
 Departments(D,M,B,L)

Reasoning About FDs

Given some FDs, we can usually infer additional FDs: title → studio, star implies title → studio and title → star

 $title \rightarrow studio$ and $title \rightarrow star$ implies $title \rightarrow studio$, star

 $title \rightarrow studio$, $studio \rightarrow star$ implies $title \rightarrow star$

But, *title*, *star* → *studio* does NOT necessarily imply that *title* → *studio* or that *star* → *studio*

- An FD f is <u>implied by</u> a set of FDs F if f holds whenever all FDs in F hold.
- $F^+ = \underline{closure\ of\ F}$ is the set of all FDs that are implied by F. (includes "trivial dependencies")

Rules of Inference

- Armstrong's Axioms (X, Y, Z are <u>sets</u> of attributes):
 - \square Reflexivity: If $X \supseteq Y$, then $X \to Y$
 - \square <u>Augmentation</u>: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - \square <u>Transitivity</u>: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- These are sound and complete inference rules for FDs!
 - i.e., using AA you can compute all the FDs in F+ and only these FDs.
- Some additional rules (that follow from AA):
 - □ *Union*: If $X \to Y$ and $X \to Z$, then $X \to YZ$
 - \square Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$

Example

- Contracts(<u>cid</u>,sid,jid,did,pid,qty,value), and:
 - \square C is the key: C \rightarrow CSJDPQV
 - \neg P(roject) purchases a given part using a single contract: JP \rightarrow C
 - \Box D(ept) purchases at most 1 part from a supplier: SD \rightarrow P
- Problem: Prove that SDJ is a key for Contracts
 - JP → C, C → CSJDPQV imply JP → CSJDPQV (by transitivity) (shows that JP is a key)
 - □ SD \rightarrow P implies SDJ \rightarrow JP (by augmentation)
 - □ SDJ \rightarrow JP, JP \rightarrow CSJDPQV imply SDJ \rightarrow CSJDPQV (by transitivity) thus SDJ is a key.

Attribute Closure

- Typically, we just want to check if a given FD X → Y is in the closure of a set of FDs F. An efficient check:
 - □ Compute <u>attribute closure</u> of X (denoted X+) w.r.t. F. X^+ = Set of all attributes A such that $X \to A$ is in F^+
 - X+ := X
 - Repeat until no change: if there is an FD U → V in F such that U is in X+, then add V to X+
 - Check if Y is in X+
- The approach can also be used to find the keys of a relation.
 - If all attributes of R are in the closure of X, then X is a superkey for R.

Attribute Closure (example)

- $R = \{A, B, C, D, E\}$
- $\blacksquare F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \}$
- Is B \rightarrow E in F⁺ ?

$$B^+ = B$$

$$B^+ = BCD$$

$$B^+ = BCDA$$

Is D a key for R?

$$D^+ = D$$

$$D^+ = DE$$

$$D^+ = DEC$$

... Nope!

Is AD a key for R?

$$AD^+ = AD$$

 $AD^+ = ABD$ and B is a key, so Yes!

Is AD a candidate key for R?

$$A^+ = A$$

A not a key, nor is D so Yes!

Is ADE a candidate key for R?

No! AD is a key, so ADE is a superkey, but not a candidate key.

Normal Forms

- How to do schema refinement?
 - We use normal forms as guidance.
- If a relation is in a normal form (BCNF, 3NF etc.):
 - we know that certain problems are avoided/minimized.
 - helps decide whether decomposing a relation is useful.

Normal Forms vs. Functional Dependencies

- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No (non-trivial) FDs hold: There is no redundancy here.
 - Given A → B: If A is not a key, then several tuples could have the same A value, and if so, they'll all have the same B value!
- The normal forms based on FDs are:
 - First Normal Form (1NF), 2NF, 3NF, and Boyce-Codd Normal Form (BCNF)
 - These forms have increasingly restrictive requirements:
 - 1^{NF} ⊃ 2NF (of historical interest) ⊃ 3NF ⊃ BCNF

1st Normal Form

- 1st Normal Form all attributes are atomic
 - Given a relation R in 1NF, for a tuple t of R, t's every attribute can contain only atomic values,
 - i. e., attribute values are not lists or sets.

- We can imagine there exists FDs in the following manner:
 - □ Attribute A → some unique value in A's domain.

Boyce-Codd Normal Form (BCNF)

- Relation R with FDs F is in BCNF if for all X \rightarrow A in F⁺
 - \square A \in X (called a *trivial* FD), or
 - X is a superkey for R.
- Intuitively, R is in BCNF if the only non-trivial FDs over R are key constraints.

Boyce-Codd Normal Form (Contd.)

- If R in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.
 - \square Say we know FD X \rightarrow A holds for this example relation:

X	Y	A
X	y1	a
X	y 2	?

- Can you guess the value of the missing attribute?
- Yes, so relation is not in BCNF

Decomposition of a Relation Scheme

If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.

- Suppose that relation R contains attributes A1 ... An. A <u>decomposition</u> of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R,
 - and every attribute of R appears as an attribute of at least one of the new relations.

Example (same as before)

y_Emps
•

- SNLRWH has FDs S → SNLRWH and R → W
- Q: Is this relation in BCNF?

No, The second FD causes a violation; W values repeatedly associated with R values.

Decomposing a Relation

Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W
8	10
5	7

Wages

Hourly_Emps2

- •Q: Are both of these relations are now in BCNF?
- Decompositions should be used only when needed.
 - –Q: potential problems of decomposition?

Problems with Decompositions

- There are three potential problems to consider:
 - May be impossible to reconstruct the original relation! (Lossiness)
 - Fortunately, not in the SNLRWH example.
 - 2) Dependency checking may require JOINs.
 - Fortunately, not in the SNLRWH example.
 - 3) Some queries become more expensive.
 - e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy.

Lossless Decomposition (example)

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W
8	10
5	7

S	N	L	R	W	H
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Lossy Decomposition (example)

A	В	C
1	2	3
4	5	6
7	2	8

A	В
1	2
4	5
7	2

В	C
2	3
5	6
2	8

$$A \rightarrow B$$
; $C \rightarrow B$

A	В
1	2
4	5
7	2

В	\mathbf{C}
2	3
5	6
2	8

A	В	C
1		3
$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$	2 5	6
7	2	8
1	2	6 8 8 3
7	2	3

Lossless Join Decompositions

无损獬

Decomposition of R into X and Y is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F:

$$\pi_{X}(r) \bowtie \pi_{Y}(r) = r$$

- It is always true that $r \subseteq \pi_{X}$ $(r) \bowtie \pi_{Y}$ (r)
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem #1)

Simple Test on Lossless Decomposition

The decomposition of R into X and Y is lossless w. r. t. F iff the closure of F contains:

$$X \cap Y \to X$$
, or $X \cap Y \to Y$

- In the example: decomposing ABC into AB and BC is lossy, because intersection (i.e., "B") is not a key of either resulting relation.
- Useful result: If W → Z holds over R and W ∩ Z is empty, then decomposition of R into R-Z and WZ is loss-less.

Lossless Decomposition (example)

A	В	C
1	2	3
4	5	6
7	2	8

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

$$A \rightarrow B$$
; $C \rightarrow B$

A	C	
1	3	
4	6	
7	8	

В	C
2	3
5	6
2	8

But, now we can't check $A \rightarrow B$ without doing a join!

Dependency Preserving Decomposition

- Intuitively, a dependency preserving decomposition allows us to enforce all FDs by examining a single relation instance on each insertion or modification of a tuple.
 - (Avoids Problem #2 on our list.)
- Projection of set of FDs F:
 - If R is decomposed into X and Y,
 - the projection of F on X (denoted F_X) is the set of FDs U → V in F⁺ such that all of the attributes U, V are in X. (same holds for Y of course)

Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is <u>dependency</u> <u>preserving</u> if $(F_X \cup F_Y)^+ = F^+$.
- Important to consider F + in this definition:
 - □ ABC, A → B, B → C, C → A, decomposed into AB and BC.
 - \square Is this dependency preserving? Is $C \to A$ preserved?
 - note: F + contains $F \cup \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}$, so...
- F_{AB} contains $A \rightarrow B$ and $B \rightarrow A$; F_{BC} contains $B \rightarrow C$ and $C \rightarrow B$.So, $(F_{AB} \cup F_{BC})^+$ contains $C \rightarrow A$

Decomposition into BCNF

- Consider relation R with FDs F. If X → Y violates BCNF, decompose R into R - Y and XY (guaranteed to be loss-less).
 - Repeated application of this idea will give us a collection of relations that are in BCNF;
 - lossless join decomposition, and guaranteed to terminate.
 - \square e.g., CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
 - {contractid, supplierid, projectid, deptid, partid, qty, value}
 - □ To deal with SD → P, decompose into SDP, CSJDQV.
 - \supset To deal with J \rightarrow S, decompose CSJDQV into JS and CJDQV
 - So we end up with: SDP, JS, and CJDQV

Decomposition of CSJDPQV into SDP, JS, and CJDQV

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - decomposition of CSJDPQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).
 - i.e., the dependency JP → C can not be enforced without a join. However, it is a lossless join decomposition.
- In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - but JPC tuples are stored only for checking the FD. (Redundancy!)

Third Normal Form (3NF)

- Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+
 - \Box A \in X (called a *trivial* FD), or
 - X is a superkey of R, or
 - A is part of some candidate key (not superkey!) for R.
- Minimality of a key is crucial in third condition above!
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when no "good" decomposition for BCNF, or for performance considerations.
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

3NF Violated by $X \rightarrow A$: Case 1

- X is a proper subset of some key K
 - □ Such X→A is sometimes called a partial dependency.
 - We store (X, A) pairs redundantly.

E.g., Reserves has attributes SBDC, (C is for credit card number), the only key is SBD, and we have the FD $S \rightarrow C$.

Then we store the credit card number for a sailor as many times as there are reservations for that sailor.

3NF Violated by X→A: Case 2

- X is not a proper subset of any key.
 - \square Such X \rightarrow A is sometimes called a transitive dependency.
 - \square Because it means there is a chain of FDs K o X o A.

The problem: we cannot associate an X value with a K value, unless we also associate an A value with an X value.

Example: SNLRWH has FDs S \rightarrow SNLRWH and R \rightarrow W

Redundancy in 3NF

- The problems associated with partial and transitive dependences can persist in 3NF if
 - \Box There is a non-trivial FD X \rightarrow A,
 - and X is not a superkey,
 - but A is part of a key.

Why 3NF?

- The motivation for 3NF is rather technical.
 - Lossless-join, dependency preserving decomposition does not always exist for BCNF.
 - We can ensure every relation schema can be decomposed into a collection of 3NF relations
 - using only lossless-join, dependency preserving decompositions.

Decomposition into 3NF

- The algorithm for lossless join decomposition into BCNF can be used to obtain a lossless join decomposition into 3NF
 - but does not ensure dependency preservation.
- To ensure dependency preservation, one idea:
 - \square If X \rightarrow Y is not preserved, add relation XY.
 - Problem is that XY may violate 3NF!
 - e.g., consider the addition of JPC to `preserve' JP \rightarrow C. What if we also have J \rightarrow C?
- Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

- Minimal cover G for a set of FDs F:
 - □ F⁺ is equal to G⁺.
 - □ Each FD in G is of the form X→A, where A is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and ``as small as possible' in order to get the same closure as F.

A General Algorithm for Calculating Minimal Cover

- 1. Put the FDs in a standard form: Obtain a collection G of equivalent FDs with a single attribute on the right side (using the decomposition axiom).
- 2. Minimize the left side of each FD: For each FD in G, check each attribute in the left side to see if it can be deleted while preserving equivalence to F^+ .
- 3. Delete redundant FDs: Check each remaining FD in G to see if it can be deleted while preserving equivalence to F^+ .
 - E. g., Assume $F = \{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG\}$, its minimal cover is:
 - \square A \rightarrow B, ACD \rightarrow E, EF \rightarrow G and EF \rightarrow H

Dependency-Preserving Decomposition into 3NF

- Let R be a relation with a set of F of FDs that is a minimal cover, and let R₁, R₂, ..., R_n be a losslessjoin decomposition of R.
- Suppose that each R_i is in 3NF, and let F_i denote the projection of F onto the attributes of R_i.
- Do the following:
 - Indentify the set N of FDs in F that are not preserved.
 - □ For each FD X→A in N, create a relation schema XA and add it to the decomposition of R.
 - Each XA is in 3NF.

Proof: XA is in 3NF

- Since X→A is in the minimal cover F,
 - \square For any proper subset Y of X, Y \rightarrow A does not hold.
 - □ Therefore, X is a key for XA.
- For any other FD P→Q that holds over XA
 - Q must belong to X.

Summary of Schema Refinement

- BCNF: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.
- Not in BCNF? Try decomposing into BCNF relations.
 - Must consider whether all FDs are preserved!
- Lossless-join, dependency preserving decomposition into BCNF impossible? Consider 3NF.
 - Same if BCNF decomp is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.