Mingjun Zhong
Department of Computing Science
University of Aberdeen

Classification example: cat and dog classification

- Images are 28*28 pixels
- Represent input image as a vector $x \in \mathbb{R}^{784}$ (i.e., 28x28=784 pixels)
- The target is $y \in \{0, 1\}$. Cat: y=0, and Dog: y=1
- Learn a classifier f (x) such that,

$$f: X \to \{0, 1\}$$

• As the target is a discrete value, we assign a probability to each x, for example:

$$P(y = 0|x) = 0.9, P(y = 1|x) = 0.1$$

- And $\sum_{i=0}^{1} P(y=i|x) = 1.0$
- We want to find such map f.

P(y = 0|x) = 0.9When the input image is x (in this example, a cat image), the probability of y=0 is 0.9.

Classification

- Learn: f: X->Y
 - X features (images in image classification)
 - Y target classes
- Suppose you know P(Y|X) exactly, how should you classify?
 - Bayes classifier: $y^* = f(x) = \underset{y}{\operatorname{argmax}} P(Y = y | X = x)$
 - The notation 'argmax' means finding the 'argument' y which 'maximises' the function P(Y=y|X=x)
- For example:

$$P(y = 0|x) = 0.9, P(y = 1|x) = 0.1$$

then $y^* = 0$ (which means the classifier recognized x as a cat)

- We can see that the key is to know how to compute the probability P(Y|X)
- Two approaches to estimate P(Y|X): 1) Generative Classifier, and 2) Discriminative Classifier

Generative classifier

- Also called *Naïve Bayes*:
 - Target: to compute the probability P(Y|X)
 - Using Bayes rule:

$$P(Y|X) = \frac{p(X|Y)P(Y)}{P(X)}$$

- Assume some functional form for P(X|Y), P(Y)
- Estimate parameters of P(X|Y), P(Y) directly from training data
- Then calculate P(Y|X=x) using Bayes rule
- This is 'generative' model
 - Indirect computation of P(Y|X) through Bayes rule
 - It can generate a sample of the data using:

$$P(X) = \sum_{y} P(y)P(X \mid y)$$

Discriminative classifier

- Discriminative classifier, e.g., Logistic Regression:
 - Assume some functional form for P(Y|X)
 - Estimate parameters of P(Y|X) directly from training data
 - This is the 'discriminative' model
 - Directly learn P(Y|X)
 - But cannot sample data, because P(X) is not available
 - Neural networks (deep learning) are discriminative classifiers
 - Logistic regression is the simplest neural networks

- We do binary classification two classes
- Let X be the data instance, and Y be the class label: Learn P(Y|X) directly
 - Sigmoid function: $S(z) = \frac{1}{1+e^{-z}}$
 - Logistic regression:
 - Set Z = WX
 - Here $WX = w_1x_1 + w_2x_2 + \cdots + w_nx_n$ is a linear function
 - In the image example, n=784. Each pixel has a weight w_i
 - Then

$$P(Y = 1|X) = \frac{1}{1 + e^{-wx}}$$

$$P(Y = 0|X) = 1 - \frac{1}{1 + e^{-wx}} = \frac{e^{-wx}}{1 + e^{-wx}}$$

- We sum up the sigmoid functions of all the examples for the cat and the dog
- Before summing up, we apply the logarithmic function to the sigmoid function, only for easier computation
- The loss function is then

 W_{784}

- The loss function $loss(w) = \sum_{cat} log(\frac{e^{-wx_{cat}}}{1 + e^{-wx_{cat}}}) + \sum_{dog} log(\frac{1}{1 + e^{-wx_{dog}}})$
- We need to find the best w to maximize the loss function (why?)
- We can use gradient descent algorithm to find the best w.
- TensorFlow and PyTorch can be used to find w.
- After the optimal parameters are found, denote it as w*.
- For predicting the class of a new image X_{new} , we compute $P(Y = 1|X_{new}) = \frac{1}{1+e^{-w^*x_{new}}}$ and $P(Y = 0|X) = \frac{e^{-w^*x_{new}}}{1+e^{-w^*x_{new}}}$
- Then decide the class label of the new image

Regularization in Logistic Regression

 Overfitting the training data is a problem that can arise in Logistic Regression, especially when data has very high dimensions and is sparse.

 One approach to reducing overfitting is regularization, in which we create a modified "penalized loss function," which penalizes large values of w.

$$w^* = \underset{w}{\operatorname{argmax}} (loss(w) - \frac{\lambda}{2} ||w||^2)$$

 Again, the best w can be found using gradient descent algorithm

What you should know LR

- In general, NB and LR make different assumptions
 - NB: Features independent given class -> assumption on P(X|Y)
 - LR: Functional form of P(Y|X), no assumption on P(X|Y)
- LR is a linear classifier
 - decision rule is a hyperplane
- LR optimized by conditional likelihood
 - no closed-form solution
 - concave -> global optimum with gradient ascent

Summary of Logistic Regression

- Learns the Conditional Probability Distribution
 P(y|x)
- Local Search using gradient descent
 - Begins with initial weight vector.
 - Modifies it iteratively to maximize the loss function.
 - The loss function is the conditional log likelihood of the data so the algorithm seeks the probability distribution P(y|x) that is most likely given the data.