Solutions of Exercises for Module I

Exercise 1 a) Assume
$$4|n^2 + 1|$$
 for some n.

If
$$n = 2k$$
 then $4|4k^2 + 1$ and $4|4^k \Rightarrow 4|(4k^2 + 1) - (4k^2)$ i.e. $4|1 \times$

If n = 2k + 1 then $4 | 4k^2 + 4k + 1$ and the argument proceeds as above *

Exercise 1 c) a | b means $\exists \alpha$ such that $b = \alpha$ a. Likewise $\exists \beta$ such that $d = \beta c$... $b d = (a c)(\alpha \beta)$ and ac|bd.

Exercise 1 e) First we prove
$$\forall n \ge 0(6|(n)(n+1)(n+2))$$

Base case n = 0 : 6 | 0 - 0k!

Induction hypothesis : 6|(n)(n+1)(n+2)

Induction step:

$$(n+1)(n+2)(n+3) - (n)(n+1)(n+2) = 3(n+1)(n+2)$$

But either n + 1 or n + 2 is even so 2 | (n + 1)(n + 2)

and therefore 6 | 3(n+1)(n+2). Hence

$$6|(n)(n+1)(n+2) + 3(n+1)(n+2) = (n+1)(n+2)(n+3)$$

If n = -1, -2 then (n)(n+1)(n+2) = 0 and so

$$6(n)(n+1)(n+2)$$

Consider $n \le -3$. Then

$$(-n)(-n-1)(-n-2) = (m)(m+1)(m+2)$$

where $m = -n - 2 \ge 1$. Thus

$$6|(m)(m+1)(m+2) = (-n)(-n-1)(-n-2)$$

Finally 6
$$\left| - \left[(-n)(-n - 1)(-n - 2) \right] = (n)(n + 1)(n + 2)$$

for $n \le -3$.

Exercise 1 f) The argument is really the same as for e) with

$$(n+1)(n+2)(n+3)(n+4) - (n)(n+1)(n+2)(n+3)$$

= 4 (n+1)(n+2)(n+3)

and from e) we know that $6 \left((n+1)(n+2)(n+3) \right)$

Exercise 3 a) Induction on n: The base case n = 2 is trivial.

Induction Hypothesis: $\ell cm(a_1, a_2, ..., a_m)$ exists and equals ℓ_n where $\ell_2 = \ell cm(a_1, a_2)$, $\ell_3 = \ell cm(\ell_2, a_3), ..., \ell_n = \ell cm(\ell_{n-1}, a_n)$ Induction Step: Consider $a_1, a_2, ..., a_n$, $a_{n+1} \in Z^+$ and realize that $\ell cm(a_1, a_2, ..., a_n)$ exists and equals $\ell_n = \ell cm(\ell_{n-1}, a_n)$ by the induction hypothesis. Now ℓ_n is a common multiple of each $a_1, ..., a_n$ so $\ell cm(\ell_n, a_{n+1})$ is a common multiple of $a_1, a_2, ..., a_n$, a_{n+1} . Suppose m is a common multiple of $a_1, a_2, ..., a_{n+1}$; it follows that $\ell_n = \ell cm(a_1, ..., a_n) | m$. Hence $\ell cm(\ell_n, a_{n+1}) | m$ as well and so $\ell_{n+1} = \ell cm(\ell_n, a_{n+1})$ is the least common multiple of $a_1, a_2, ..., a_{n+1}$.

It is NOT the case that

$$gcd(a_1,..., a_m) \ell cm(a_1,..., a_m) = \prod_{i=1}^m a_i$$

for all $m \ge 2$. Consider
 $gcd(5, 10, 15) = 5, \ell cm(5, 10, 15) = 30$
and $(5)(10)(15) = 750 \ne 150$.

Exercise 3 c) Suppose $\exists x, y \in Z$ such that x + y = s and gcd(x, y) = gOf course g|s.

Conversely, suppose g|s. Set x = g and y = s - x = s - gSince g|s it follows that gcd(x, y) = g

Exercise 3 f) Suppose
$$g = \gcd(a, b)$$
, $a' = a'g$ and $b = b'g$

Now $b c = \delta a$
 $\Leftrightarrow b'g c = \delta a'g$

or $b'c = \delta a'$. Hence $\gcd(a', b') = 1 \Rightarrow a'|c$

i.e. $[a/\gcd(a, b)]|c$

Conversely, $a'|c \Rightarrow a = a'g|g c$. But $gc|bc$

so $a|bc$

Exercise 5 b) Write $d = \alpha k$. Since $\exists x, y \in Z$ such that x d = a, y d = b we get $x \alpha k = a$ and $y \alpha k = b$.

Thus
$$\frac{d}{k} = \alpha \left| \frac{a}{k}, \frac{b}{k} \right|$$
 which, in turn, implies $\frac{d}{k} \left| \gcd\left(\frac{a}{k}, \frac{b}{k}\right)\right|$.

Now
$$gcd\left(\frac{a}{k}, \frac{b}{k}\right) \left| \frac{a}{k}, \frac{b}{k} \right|$$
 implies $k gcd\left(\frac{a}{k}, \frac{b}{k}\right) | a, b.$

Thus $k \gcd\left(\frac{a}{k}, \frac{b}{k}\right) \mid d = \gcd(a, b)$. It follows by cancellation that

$$gcd\left(\frac{a}{k}, \frac{b}{k}\right) \left| \frac{d}{k} \right|$$
 and the proof is complete.

Exercise 6 c) Observe that
$$gcd(6, 10) = 2$$
 and $6(-3) + 10(2) = 2$
Also $g(2, 15) = 1$ and $2(-7) + (1)(15) = 1$

Thus

$$[6(-3) + 10(2)] (-7) + (1) (15) = 1$$

or, equivalently

$$6(21) + 10(-14) + (15)(1) = 1$$

Exercise 6 d) i) First we find gcd (482, 1687):

$$1687 = 3 (482) + 241$$
$$482 = 2 (241) + 0$$

so
$$gcd (482, 1687) = 241$$
. Thus

$$\ell$$
cm(482, 1687) = $\frac{(482)(1687)}{\text{gcd}(482, 1687)} = \frac{(482)(1687)}{241} = 3374$

ii)
$$gcd(60, 61) = 1 \implies \ell cm(60, 61) = (60)(61) = 3660$$

Solutions of Submitted Exercises From Module I

Exercise 1 b) x = 2 k + 1 and $y = 2 \ell + 1 \Rightarrow x^2 + y^2 = 4k^2 + 4\ell^2 + 4k + 4\ell + 2$ so $2 | x^2 + y^2$. However the assumption that $4 | x^2 + y^2$ leads to the contradiction 4|2

Exercise 1 d)
$$n = 2k + 1 \implies n^2 = 4(k^2 + k) + 1$$
 and so $n^2 - 1 = 4(k^2 + k)$. But $k^2 + k = (k + 1)(k)$ is even so $8|n^2 - 1|$

Exercise 2 a) Induction on n

n = 2: already known from notes

<u>Hypothesis</u>: $d_n = \gcd(d_{n-1}, a_n)$ is a comon divisor of $a_1, a_2, ..., a_n$ and if $f | a_1, ..., a_n$ then $f | d_n$.

Induction step: Consider $a_1, ..., a_n$, a_{n+1} and $d_{n+1} = \gcd(d_n, a_{n+1})$. Now $d_{n+1} \mid d_n$, a_{n+1} so by the hypothesis $d_{n+1} \mid a_1, ..., a_n$, a_{n+1} . Suppose $f \mid a_1, ..., a_n$, a_{n+1} . Then $f \mid a_1, ..., a_n$ and $f \mid a_{n+1}$. Hence, by the hypothesis, $f \mid d_n$ and so $f \mid d_{n+1} = \gcd(d_n, a_{n+1})$. Also $d_{n+1} \mid d_n$ and $d_{n+1} \mid a_{n+1}$. The hypothesis yields $d_{n+1} \mid a_1, ..., a_n$.

In summary, d_{n+1} is a common divisor of $a_1,...,a_{n+1}$ and any other common divisor divides d_{n+1} i.e. $d_{n+1} = \gcd(a_1,...,a_n, a_{n+1})$

As for the ideal statement

$$I = \left\{ \sum_{i=1}^{n} a_{i} x_{i} \mid x_{i} \in Z, i = 1,..., n \right\}.$$

is an ideal and is therefore equal to (d) for some d > 0. Now $d \mid a_i$ for each i by setting $x_i = 1$ and $x_j = 0$, $j \neq i$. Hence $d \mid d_n$ - the gcd of $a_1,..., a_n$. Finally $d \in I$ implies that $\exists y_1,..., y_n \in Z$ such that $d = \sum_{i=1}^n a_i y_i$ so $d_n \mid d$

Exercise 2 b) $2 = \gcd(a, 4) = \gcd(b, 4) \implies a = 2(2k + 1) \text{ and } b = 2(2\ell + 1)$. Thus $a + b = 4(k + \ell) + 4$ so $4 \mid a + b$ and finally $\gcd(a + b, 4) = 4$.

Exercise 3 b) $\exists \alpha, \beta, u, v \text{ such that }$

$$\alpha$$
 a + u m = 1

$$\beta$$
b + v m = 1

Therefore

$$(\alpha\beta)$$
(ab) + β u b m + α v a m + u v m² = 1

Thus $d \mid ab \text{ and } d \mid m \Rightarrow d \mid 1$.

Exercise 4) Base case: k = 2. See exercise 3b.

Induction hypothesis: if $gcd(a_i, b) = 1$ for i = 1,..., k then

$$gcd(\prod_{i=1}^{k} a_i, b) = 1.$$

Induction step: Suppose $gcd(a_i, b) = 1$ for i = 1,..., k, k + 1.

Then the hypothesis yields $gcd(\prod_{i=1}^{k} a_i, b) = 1$ and therefore

 $gcd(\prod_{i=1}^{k+1} a_i, b) = 1$ follows by the result for k = 2.

Some Exercises

· Prove ∀a,bGZt ∀n≥2 and n≥2 s.t

 $(a^n - b^n) y = a^n + b^n$

Wlog assume a>b (realize a 7b).

Let d= gcd(a,b) so that

a=a'd, b=b'd

and ...

 $4^{k}((a')^{n}-(b')^{k}) = 4^{k}((a')^{n}+(b')^{k})$

Claim gcd (a'1", (b')") = 1

Pf of claim: Realize gcd (a', b')=1. If
gcd((a')n, (b')n)≥2 tron Japrime p

5 6

p / (a')", (b')"

But then pla', b' -X

West realize that

(2-1) (a')" = (2+1) (b')"

But gcd((a')",(b')")=1==)

(a')" | 8+1

and (b') ~ \ r-1

Claim b sa

Pfgclam: If
$$b \ge a + 1$$
 then
$$2^{b} - 1 \ge 2^{a + 1}$$

But
$$2^{a+1} - (2^a+1) = 2 - 2 > 0$$
 (81 nue a 2 2)
So $2^b - 1 > 2^a + 1 \longrightarrow$

Hest consider $2^{a+1} = 2^{a-b}(2^{b}-1) + 2^{a-b} + 1$ Then, if $2^{b}-1 \mid 2^{a+1}$ it follows that $2^{b}-1 \mid 2^{a-b}+1$

From an intuitive prospective if we continue this we arrive at $2^{b}-i \mid 2^{\alpha}+i$ when a < b. A very next industrie approach is as follows: If $\exists a \ge b > 0$ sit $a > b - i \mid 2^{\alpha}+i$ then $\exists a > b > 0$ sit a > b > 0 s