Machine Learning Report

Assignment 1 (Data set used: id:17--34-17)

(a)(i)

Figure 1 shows the original data and a plot of the logistic regression model predicting data that I don't know how to describe using the model

Figure 1 shows the training data overlaid with the predictions from the logistic regression classifier using the model $\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2$ where θ_0 =-2.266016, θ_1 =- 0.027809 and θ_2 = 4.060869 are the weights, x_1 and x_2 are the input features and \hat{y} is the output prediction. From the classification model, it shows that x_2 has the most influence on the classification because its weight θ_2 = 4.060869 has the largest magnitude. x_1 has the least influence on the model because its weight θ_1 =- 0.027809 has the smallest magnitude.

(a)(iii)

The decision boundary can be expressed as the linear equation y=mx+c where $m=\frac{-\theta_1}{\theta_2}$ and $c=\frac{-\theta_0}{\theta_2}$.