ALGEBRA ASSIGNMENT 5- (Quadratic 3- Medium Level)

TEGEDIA ABBIGINIENT 5- (Quadratic 5- Medium Ecter)
 P(x) is a third degree polynomial and the coefficients of P(x) are rational. If the graph of P(x) touches the x-axis, then how many rational roots does P(x) = 0 have (a) 0 (b) 1 (c) 2 (d) 3 (e) none
 2) If a, b, c, d and e are the five positive roots of x⁵ - 5x⁴ + kx³ + mx² + nx - 1 = 0, what the product of k, m and n? a) More than 77 b) Less than -457 c) 0 d) Multiple of 7 e) Cannot be determined
3) If $f(x) = x^5 - x^4 - x^2 - x$, and a, b, c are the roots of the cubic equation $x^3 - x^2 - 1 = 0$,

4) If $2a + t$, b, $2c + t$ are in geometric progression	on	and the	e eq	uati	ion a	$x^2 +$	bx +	c = 0	has
repeated roots. How many values 't' can take?									

e)-3

(a) 0 (b) 1 (c) 2 (d) 3

then what is the sum of f(a), f(b) and f(c)?

c) 1

b) 3

is

a) 0

- 5)If 'a' and 'b' are the roots of the equation $mx^2 + nx + p = 0$, and 'a³' and 'b³' are the roots of the equation $1000x^2 133x + 1 = 0$, then find the roots of the equation $px^2 + nx + m = 0$ options are :
 - a) 2 and 3 b) 2 and 5 c) 3 and 5 d) 4 and 5 e) None of these

d)-1

- **6**) Find the real roots of the equation (x+5)(x+6)(x+7)(x+8) = 960
- 7)which of the following statements is true about roots of the equation $(x-41)^{49}+(x-49)^{41}+(x-2009)^{2009}=0$?
- a) all are necessarily imaginary b) there is atleast one positive root
- c) there is atleast one negative root. d)none of these
- 8) The value of a for which the sum of the squares of the roots of the equation x^2 (a 2) x a 1 = 0 assume the least value is
 - (a)1 (b)0 (c)3 (d)2
- 9) If the roots of the equation x^2 b x + c = 0 be two consecutive integers, then b² 4 c equals **a**) 2 (**b**) 3 (**c**) 2 (**d**) 1
- **10**)50 persons are seated in a row, each assigned a number from 1 to 50 corresponding to his seating position. Every time, a count is made on the seats, and any person sitting on a seat corresponding to a prime number is removed and the seat numbers are rearranged beginning with one. This procedure is repeated until only 3 persons are left. What is the original seat number corresponding to the 3rd person

ELITE'S GRID Page 1

- 11) What relation should be there between p and q so that the equation $x^4 + px^2 + q = 0$ have four real solutions forming an arithmetic progression
- **12)**F (x) = $x^2 + bx + c$ The equation f(x) = 0 has two distinct roots which are from the set $\{-3, -2, -1, 0, 1, 2, 3\}$. How many different expressions of f(x) are possible such that f(0) is non-negative?
 - (a) 3 (b) 6
- (c) 12
- (d) Infinite
- **13**) Let r be a root of $x^2 + 5x + 7 = 0$. Compute (r-1)(r+2)(r+6)(r+3)
 - a) 0
- **b**) 6
- c) -6
- d)13
- e) -13
- 14) x^4 $40x^2$ + q = 0 is a equation having four real solutions which forms arithmetic progression. How many different values 'q' can take
- 15) The total ordered pair of positive integers (p, q) such that the roots of $x^2 px + p + q 3 = 0$ and $x^2 qx + p + q 3 = 0$ are also positive integers are
- **16)** If the minimum possible value of (1 + p) (1 + q) (1 + r) (1 + s) is $[1 + k(p.q.r.s)^m]$, where, 'k' and 'm' are constants, and p, q, r and s are positive real numbers, what is the value of product of k and m?
- 17) For positive real numbers a,b,c. find the minimum integer value possible of the following equation: $6a^3 + 9b^3 + 32c^3 + 1/(4abc)$
- **18)** if x, y, $z \in R$, x+y+z=4 and $x^2+y^2+z^2=6$, den find the sum of maximum and minimum possible value of z
- **19)** If x and y are positive real numbers such that 6xy+10x+15y=39. Find the min value of 2x+3y?
- **20**) Which is smaller 51¹⁰¹ or 101!

ELITE'S GRID Page 2

ANSWER KEYS

	<u>, </u>
1	d
2	b
3	d
4	c
5	b
6	2
7	d
8	a
9	d
10	$q=(9p^2)/100$
11	$q=(9p^2)/100$
12	c
13	d
14	1
15	4
16	8
17	6
18	8/3
19	6
20	101!

ELITE'S GRID Page 3