

Lecture 3: Random Variable, Part I

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

MONTH DAY, 2021

1/1

Outline

- Random Variable: Discrete
- PMF (Probability Mass Function)
- Representative Discrete Random Variables
- Expectation and Variance
- Functions of Random Variables
- Conditioning and Independence for Random Variables

Random Variable: Idea

- In reality, many outcomes are numerical, e.g., stock price.
- Even if not, very convenient if we map numerical values to random outcomes, e.g., '0' for male and '1' for female.

3/1

Random Variable: More Formally

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- \circ Notation. Random variable X, numerical value x.
- \circ Different random variables X, Y,, etc can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(w) = x\}$
- Assume that values x are discrete¹ such as $1, 2, 3, \ldots$. For notational convenience,

$$p_X(x) \triangleq \mathbb{P}(X = x) \triangleq \mathbb{P}(\{\omega \in \Omega \mid X(w) = x\})$$

• For a discrete random variable X, we call $p_X(x)$ probability mass function (PMF).

¹Finite or countably infinite.

Roadmap

- Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- Functions of a single random variable, Functions of multiple random variables
- · Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

5/1

Roadmap

- Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- o Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

Bernoulli X with parameter $p \in [0, 1]$

Only binary values

$$X = \begin{cases} 0, & \text{w.p.}^2 \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an indicator rv of an event A. Define a rv 1_A as:

$$1_A = egin{cases} 1, & ext{if } A ext{ occurs}, \ 0, & ext{otherwise} \end{cases}$$

7/1

Uniform X with parameter a, b

- integers a, b, where $a \le b$
- Choose a number of $\Omega = \{a, a+1, \ldots, b\}$ uniformly at random.
- $p_X(i) = \frac{1}{b-a+1}, i \in \Omega.$

Models complete ignorance (I don't know anything about X)

²with probability

Binomial X with parameter n, p

- Models the number of successes in a given number of independent trials
- n independent trials, where one trial has the success probability p.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

9/1

Poisson X with parameter λ

- Binomial(n, p): Models the number of successes in a given number of independent trials with success probability p.
- Very large n and very small p, such that $np = \lambda$

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

Is this a legitimate PMF?

$$\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \left(1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} \dots \right) = e^{-\lambda} e^{\lambda} = 1$$

• Prove this:

$$\lim_{n\to\infty} p_X(k) = \binom{n}{k} (1/n)^k (1-1/n)^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

Geometric X with parameter p

- Experiment: infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.
- Models waiting times until something happens.

$$p_X(k) = (1-p)^{k-1}p$$

11 / 1

Roadmap

- Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- Functions of a single random variable, Functions of multiple random variables
- Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

Expectation/Mean

• Average.

Definition

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

- $p_X(x)$: relative frequency of value x (trials with x/total trials)
- Example 1: Bernoulli r.v. with p

$$\mathbb{E}[X] = 1 \times p + 0 \times (1 - p) = p_X(1)$$

13 / 1

Properties of Expectation

Not very surprising. Easy to prove using the definition.

- $\circ \ \text{ If } X \geq 0, \, \mathbb{E}[X] \geq 0.$
- $\circ \ \text{ If } a \leq X \leq b, \ a \leq \mathbb{E}[X] \leq b.$
- \circ For a constant c, $\mathbb{E}[c] = c$.

Expectation of a function of a RV

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$
- Compute $\mathbb{E}[Y]$ for the following:

$$4 \times (0.4 + 0.3) + 3 \times (0.1 + 0.2)$$

= 2.8 + 0.9 = 3.7

Linearity of Expectation

$$\mathbb{E}[aX+b]=a\mathbb{E}[X]+b$$

15 / 1

Variance

- Measures how much the spread of a PMF is.
- What about $\mathbb{E}[X \mu]$, where $\mu = \mathbb{E}[X]$? Then, what about $\mathbb{E}[(X \mu)^2]$?

Variance, Standard Deviation

$$var[X] = \mathbb{E}[(X - \mu)^2]$$

$$\sigma_X = \sqrt{var[X]}$$

Variance: Useful Property

•
$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

 $var[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$

$$egin{align} ext{var}[X] &= \mathbb{E}[X^2 - 2\mu X + \mu^2] \ &= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2 \ \end{aligned}$$

•
$$Y = X + b$$
, $var[Y] = var[X]$

$$var[Y] = \mathbb{E}[(X+b)^2] - (\mathbb{E}[X+b])^2$$

•
$$Y = aX$$
, $var[Y] = a^2 var[X]$

$$var[Y] = \mathbb{E}[a^2X^2] - (a\mathbb{E}[X])^2$$

Example: Variance of a Bernoulli rv(p)

$$\mathbb{E}[X] = 1 \times p + 0 \times (1 - p) = p$$

$$\mathbb{E}[X^2] = 1 \times p + 0 \times (1 - p) = p$$

$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mu^2 = p - p^2$$

$$= p(1-p)$$

17 / 1

Roadmap

- o Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- o Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- o Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

Joint PMF

• Joint PMF. For two random variables $\overline{X,Y,}$ consider two events $\{X=x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

- $\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$
- Marginal PMF.

$$p_X(x) = \sum_{y} p_{X,Y}(x,y),$$

$$p_Y(y) = \sum_x p_{X,Y}(x,y)$$

Example.

$$p_{X,Y}(1,3) = 2/20$$

$$p_{X,Y}(1,3) = 2/20$$

 $p_X(4) = 2/20 + 1/20 = 3/20$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 = 8/20$$

19/1

Functions of Multiple R.V.s

- Consider a rv Z = g(X, Y). (Ex) X + Y, $X^2 + Y^2$. Then, PMF of Z is: $p_{Z}(z) = \mathbb{P}(g(X,Y) = z) = \sum_{(x,y):g(x,y)=z} p_{X,Y}(x,y)$
- Similarly,

$$\mathbb{E}[Z] = \mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

Linearity of Expectation for multiple rvs

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

(easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z] = 2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Example. Mean of a binomial rv Y with (n, p)
- Y: number of successes in n Bernoulli trials with p
- $Y = X_1 + ... X_n$, where X_i is a Bernoulli rv.
- $\mathbb{E}[Y] = n\mathbb{E}[X_i] = n\mathbb{P}(X_i = 1) = np$

21 / 1

Roadmap

- o Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- o Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- o Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

Conditional PMF: Conditioning on an event

Remember two probability laws: $\mathbb{P}(\cdot)$ and $\mathbb{P}(\cdot|A)$, for an event A.

- $p_X(x) = \mathbb{P}(X = x)$
- $\mathbb{E}[X] = \sum_{x} x p_X(x)$
- $\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$
- $var[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$

- $p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$ $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$ $\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$ $\text{var}[X|A] \triangleq \mathbb{E}[X^{2}|A] (\mathbb{E}[X|A])^{2}$
 - Note. $p_{X|A}(x)$, $\mathbb{E}[X|A]$, $\mathbb{E}[g(X)|A]$, and var[X|A] are all just notations!

23 / 1

Example: Conditional PMF

KAIST EE

$$A = \{X \ge 2\}$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$\text{var}[X|A] = \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

$$= \frac{1}{3}(2^2+3^2+4^2) - 3^2 = 2/3$$

Conditional PMF: Conditioning on a RV

What do we mean by "conditioning on a rv"? Consider $A = \{Y = y\}$ for a rv Y.

- $p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$
- $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$
- $\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$
- $\operatorname{var}[X|A] \triangleq \mathbb{E}[X^2|A] (\mathbb{E}[X|A])^2$

- $\mathbb{E}[X|Y = y] \triangleq \sum_{x} x p_{X|Y}(x|y)$ $\mathbb{E}[g(X)|Y = y] \triangleq \sum_{x} g(x) p_{X|Y}(x|y)$

25 / 1

Conditional PMF

KAIST EE

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) =$ $p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

Remind: Total Probability Theorem (from Lecture 2)

- Partition of Ω into A_1, A_2, A_3
- Known: $\mathbb{P}(A_i)$ and $\mathbb{P}(B|A_i)$
- What is $\mathbb{P}(B)$? (probability of result)

Total Probability Theorem

$$\mathbb{P}(B) = \sum_{i} \mathbb{P}(A_{i}) \mathbb{P}(B|A_{i})$$

27 / 1

Total Probability Theorem: $B = \{X = x\}$

• Partition of Ω into A_1, A_2, A_3

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i) = \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem for $\{A_i\}$

• Partition of Ω into A_1, A_2, A_3

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i) = \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

29 / 1

Total Expectation Theorem for $\{Y = y\}$

• Partition of Ω into A_1, A_2, A_3

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{y} \mathbb{P}(Y = y) \mathbb{E}[X | Y = y] = \sum_{y} \rho_{Y}(y) \mathbb{E}[X | Y = y]$$

Example 1: Total Expectation Theorem

- $A_1 = \{X \in \{0, 1, 2\}\}, A_2 = \{X \in \{6, 7, 8\}\}$
- Using TET,

$$\mathbb{E}[X] = \sum_{i=1,2} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$
$$= 1/3 \cdot 1 + 2/3 \cdot 7 = 7$$

Without using TET,

$$\mathbb{E}[X] = \frac{1}{9}(0+1+2) + \frac{2}{9}(6+7+8)$$

31 / 1

Background: Memoryless Property of Geometric rv (1) KAIST EE

- Some random variable often does not have memory.
- Definition. A random variable X is called memoryless | if, for any $n, m \ge 0$,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

- Meaning. Conditioned on X > m, X m's distribution is the same as the original X.
- Remind. Geometric rv X with parameter p

$$\mathbb{P}(X=k)=(1-p)^{k-1}p$$

$$\mathbb{P}(X > k) = 1 - \sum_{k'=1}^{k} (1 - p)^{k'-1} p = (1 - p)^{k}$$

Background: Memoryless Property of Geometric rv (2)

Theorem. Any geometric random variable is memoryless.

$$\mathbb{P}(X > n + m | X > m) = \frac{\mathbb{P}(X > n + m \text{ and } X > m)}{\mathbb{P}(X > m)}$$

$$= \frac{\mathbb{P}(X > n + m)}{\mathbb{P}(X > m)}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^m} = (1 - p)^n = \mathbb{P}(X > n)$$

• Meaning. Conditioned on X > m, X - m is geometric with the same parameter.

33 / 1

Example 2: Mean and Variance of Geometric rv

KAIST EE

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of tries until the program works correctly.
- Q) mean and variance of X
- X is geometric
- Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

 Total expectation theorem and memorylessness nhelps a lot.

•
$$A_1 = \{X = 1\}$$
 (first try is success), $A_2 = \{X > 1\}$ (first try is failure).

$$\begin{split} \mathbb{E}[X] &= 1 + \mathbb{E}[X - 1] \\ &= 1 + \mathbb{P}(A_1)\mathbb{E}[X - 1|X = 1] \\ &+ \mathbb{P}(A_2)\mathbb{E}[X - 1|X > 1] \\ &= 1 + (1 - p)\mathbb{E}[X] \\ \mathbb{E}[X] &= 1 + (1 - p)\frac{1}{p} = 1/p. \end{split}$$

Roadmap

- Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- Functions of a single random variable, Functions of multiple random variables
- Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

35 / 1

Independence, Conditional Independence

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

A rv and an event

$$\mathbb{P}(\{X = x\} \cap B) = \mathbb{P}(X = x) \cdot \mathbb{P}(B), \text{ for all } x$$

$$\mathbb{P}(\{X = x\} \cap B | C) = \mathbb{P}(X = x | C) \cdot \mathbb{P}(B | C), \text{ for all } x$$

Two rvs

$$\mathbb{P}(\{X = x\} \cap \{Y = y\}) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y), \text{ for all } x, y$$
$$p_{X,Y}(x, y) = p_X(x) \cdot p_Y(y)$$

$$\mathbb{P}(\{X=x\} \cap \{Y=y\} | Z=z) = \mathbb{P}(X=x | Z=z) \cdot \mathbb{P}(Y=y | Z=z), \text{ for all } x, y$$
$$p_{X,Y|Z}(x,y) = p_{X|Z}(x) \cdot p_{Y|Z}(y)$$

Example

• $X \perp \!\!\!\perp Y$?

$$p_{X,Y}(1,1) = 0$$
, $p_X(1) = 3/20$
 $p_Y 1 = 1/20$.

• $X \perp \!\!\! \perp Y | \{X \le 2 \text{ and } Y \ge 3\}$? - Yes.

Y = 4 (1/3)	1/9	2/9
Y = 3 (2/3)	2/9	4/9
	X = 1 (1/3)	X = 2(2/3)

37 / 1

Expectation and Variance

- Always true. $\mathbb{E}[aX + b], \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

• Proof.

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

KAIST EE

- Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]
- Generally, $var[X + Y] \neq var[X] + var[Y]$
- However, if $X \perp \!\!\! \perp Y$, var[X + Y] = var[X] + var[Y]
- Practice.

$$\circ X = Y \Longrightarrow var[X + Y] = 4var[X]$$

$$X = -Y \Longrightarrow var[X + Y] = 0$$

$$\begin{array}{ccc} \circ & X \perp \!\!\! \perp & Y \Longrightarrow \\ & \operatorname{var}[X - 3Y] = \operatorname{var}[X] + \operatorname{9var}[Y] \end{array}$$

$var[X + Y] \neq var[X] + var[Y]$

• Why not generally true?

$$\begin{aligned} \text{var}[X + Y] &= \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 \\ &= \mathbb{E}[X^2 + Y^2 + 2XY] - ((\mathbb{E}[X])^2 + (\mathbb{E}[Y])^2 + 2\mathbb{E}[X]\mathbb{E}[Y]) \\ &= \text{var}[X] + \text{var}[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]) \end{aligned}$$

- \circ $X \perp \!\!\! \perp Y$ is a sufficient condition for $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Also, a necessary condition? we will see later, when we study covariance.

39 / 1

Example: The hat problem (1)

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- E[X]? var[X]?
- All permutations are equally likely as 1/n!. Thus, this equals to picking one hat at a time.
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise.

$$X = \sum_{i=1}^{n} X_i.$$

• $\{X_i\}, i = 1, 2, ..., n$: identically distributed (symmetry)

Example: The hat problem (2)

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 o X_2=1$, and $X_1=0 o X_2=0$. Thus, dependent.

$$\begin{aligned} \text{var}(X) &= \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \\ &= \mathbb{E}\Big[\sum_i X_i^2 + \sum_{i,j:i \neq j} X_i X_j\Big] - (\mathbb{E}[X])^2 \\ \mathbb{E}[X_i^2] &= 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n} \\ \mathbb{E}[X_i X_j] &= \mathbb{E}[X_1 X_2] = 1 \times \mathbb{P}(X_1 X_2 = 1) = \mathbb{P}(X_1 = 1)\mathbb{P}(X_2 = 1 | X_1 = 1), \quad (i \neq j) \end{aligned}$$

- $\mathbb{E}[X^2] = n\mathbb{E}[X_1^2] + n(n-1)\mathbb{E}[X_1X_2] = n\frac{1}{n} + n(n-1)\frac{1}{n(n-1)} = 2$
- var(X) = 2 1 = 1

41 / 1

KAIST EE

Questions?

Review Questions

- 1) What is Random Variable? Why is it useful?
- 2) What is PMF (Probability Mass Function)?
- 3) Explain Bernoulli, Binomial, Poisson, Geometric rvs, when they are used and what their PMFs are.
- 4) What are joint and marginal PMFS?
- 5) Describe and explain the total probability/expectation theorem for random variables?
- 6) When is it useful to use total probability/expectation theorem?
- 7) What is conditional independence?