Royal Parade

[Time limit : 1s] [Memory limit : 64 MB]

บุหงาตันหยงนคร อันเป็นแคว้นศักดิ์สิทธิ์ที่เคยปรากฏในเนื้อเรื่องของโจทย์การแข่งขัน คอมพิวเตอร์โอลิมปิกระดับชาติครั้งที่ 11 (The Eleventh Thailand Olympiad in Informatics) ประกอบด้วยเมืองทั้งหมด N เมือง กำหนดเป็นเมืองหมายเลข 1, 2, 3, ..., N และมีถนนเชื่อมต่อ ระหว่างเมืองต่าง ๆ รวมทั้งสิ้น M สาย โดยถนนเส้นที่ i จะเชื่อมต่อระหว่างเมืองที่ u_i กับเมืองที่ v_i โดยมีระยะทาง w_i เมตร (เป็นการเชื่อมต่อแบบสองทิศทาง ดังนั้น จะเดินทางจากเมือง u_i มาเมือง v_i หรือจากเมือง v_i มาเมือง u_i ก็ได้)

เนื่องจากจะมีการผลัดเปลี่ยนรัชสมัยขององค์รายาแห่งบุหงาตันหยงนคร ทางมุขมนตรีจึง ต้องวางแผนจัดขบวนเทิดพระเกียรติจากเมือง A ซึ่งเป็นที่ตั้งของวัดตามความเชื่อในคัมภีร์บูกูกุโน ไปยังเมือง B ซึ่งเป็นที่ตั้งของราชวังที่องค์รายาอาศัยอยู่ เหล่ามุขมนตรีต้องการใช้งบประมาณ แผ่นดินอย่างประหยัดพอเพียง ดังนั้น เหล่ามุขมนตรีจะเลือกจัดขบวนเทิดพระเกียรติบน**เส้นทางที่** สั้นที่สุดจากเมือง A ไปเมือง B

คุณซึ่งเป็นนักท่องเที่ยวจากต่างแดนมีแผนจะเดินทางจากเมือง C ไปยังเมือง D ในวันที่มี ขบวนเทิดพระเกียรติพอดี และเนื่องจากคุณไม่ได้สนใจพิธีกรรมศักดิ์สิทธิ์ของบุหงาตันหยงนคร มากนัก คุณจึงต้องเขียนโปรแกรมเพื่อหาว่า**เส้นทางที่สั้นที่สุดจากเมือง C ไปยังเมือง D โดยเลี่ยง ทุกเมืองที่อาจจะมีขบวนเทิดพระเกียรติผ่าน**มีความยาวเท่าใด

ข้อมูลนำเข้า

ข้อมูลนำเข้ามีทั้งหมด M+3 บรรทัด บรรทัดแรก ประกอบด้วยจำนวนเต็ม N และ M แทนจำนวนเมืองและถนนที่มีอยู่ บรรทัดที่ 1+i ($1 \le i \le M$) ประกอบด้วยจำนวนเต็ม \mathbf{u}_i , \mathbf{v}_i , \mathbf{w}_i แทนข้อมูลของถนน บรรทัดที่ M+2 ประกอบด้วยจำนวนเต็ม \mathbf{A} , \mathbf{B} แทนจุดเริ่มต้นและจุดสิ้นสุดของขบวน เทิดพระเกียรติ

บรรทัดที่ M+3 ประกอบด้วยจำนวนเต็ม C, D แทนจุดเริ่มต้นและจุดสิ้นสุดของการ เดินทางของคุณ

ทั้งนี้ รับประกันว่าข้อมูลนำเข้าของแต่ละชุดทดสอบจะตรงตามเงื่อนไขดังต่อไปนี้

- $1 \le N, M \le 100,000$
- $1 \le u_i \le v_i \le N$, $1 \le w_i \le 10^9$ และ $u_i \ne v_i$
- ระหว่างเมืองสองเมืองใด ๆ จะมีถนนเชื่อมต่อกันโดยตรงไม่เกิน 1 เส้น
- 1 ≤ A, B, C, D ≤ N และ A ≠ B ≠ C ≠ D
- มีเส้นทางจากเมือง A ไป B อย่างน้อย 1 เส้นทางเสมอ

ข้อมูลส่งออก

หากไม่มีเส้นทางจากเมือง C ไป D ที่สามารถเลี่ยงทุกเมืองที่อาจจะมีขบวนเทิดพระเกียรติ ผ่าน ให้ตอบ -1

หากมีเส้นทางจากเมือง C ไป D ที่สามารถเลี่ยงทุกเมืองที่อาจจะมีขบวนเทิดพระเกียรติ ผ่าน ให้ตอบความยาวของเส้นทางที่สั้นที่สุดที่เป็นไปได้เป็นจำนวนเต็มบวก

ตัวอย่าง

Input	Output
8 13	12
1 2 1	
2 3 3	a e i a y e y i
2 6 2	(มีภาพตัวอย่างในหน้าถัดไป)
3 6 1	
3 4 4	
4 6 5	
4 5 1	
1 7 5	
7 5 6	
1 8 7	
5 8 8	
6 8 1	
7 3 1	
2 4	
7 8	
4 3	-1
1 2 1	
2 3 1	
3 4 1	
1 4	
2 3	

6	5	5
1	2 1	
1	3 3	
3	4 1	
3	5 2	
3	6 4	
1	2	
4	6	

คำอธิบายตัวอย่าง

ในตัวอย่างที่ 1 หากขบวนเทิดพระเกียรติมีจุดเริ่มต้นที่เมืองหมายเลข $\mathbf{A}=2$ และสิ้นสุดที่ เมืองหมายเลข $\mathbf{B}=4$ เส้นทางที่สั้นที่สุดจะมีความยาวเท่ากับ 7 โดยมีสามเส้นทาง คือ $2 \longrightarrow 3 \longrightarrow 4$, $2 \longrightarrow 6 \longrightarrow 3 \longrightarrow 4$ และ $2 \longrightarrow 6 \longrightarrow 4$ ตามลำดับ ดังนั้น เส้นทางสั้นสุดจากเมือง $\mathbf{C}=7$ ไป ยังเมือง $\mathbf{D}=8$ โดยเลี่ยงเมืองหมายเลข 2, 3, 4, 6 จะมีความยาวเท่ากับ 12 ($7 \longrightarrow 1 \longrightarrow 8$)

ในตัวอย่างที่ 2 ขบวนจำเป็นจะต้องผ่านเมือง 1, 2, 3, 4 ดังนั้น จึงเป็นไปไม่ได้ที่จะ เดินทางจากเมือง 2 ไปยัง 3

ในตัวอย่างที่ 3 ขบวนจำเป็นจะต้องผ่านเมือง 1, 2 ดังนั้น เส้นทางสั้นสุดจากเมือง 4 ไป เมือง 6 จะมีความยาวเท่ากับ 5 ($4 \rightarrow 3 \rightarrow 6$)

(ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบอยู่ในหน้าถัดไป)

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

ชุดทดสอบถุกแบ่งออกเป็น 6 กลุ่ม ดังนี้

กลุ่ม	คะแนน	ค่าของ N	ค่าของ M	เงื่อนไขเพิ่มเติม
1	20	≤ 1,000	≤ 1,000	มีถนนเชื่อมระหว่างเมือง A กับ B โดยตรง
				ความยาวของถนนเส้นนี้เท่ากับ 1 เมตร
2	20	≤ 1,000	≤ 1,000	มีเส้นทางสั้นสุดจากเมือง A ไปเมือง B
				เพียง 1 เส้นทางเท่านั้น
3	20	≤ 1,000	≤ 1,000	-
4	15	≤ 100,000	≤ 100,000	มีถนนเชื่อมระหว่างเมือง A กับ B โดยตรง
				ความยาวของถนนเส้นนี้เท่ากับ 1 เมตร
5	15	≤ 100,000	≤ 100,000	มีเส้นทางสั้นสุดจากเมือง A ไปเมือง B
				เพียง 1 เส้นทางเท่านั้น
6	10	≤ 100,000	≤ 100,000	-

ชุดทดสอบบางชุดอาจถูกจัดเป็นกลุ่ม โดยจะตรวจก็ต่อเมื่อได้คะแนนถูกต้องในชุดทดสอบ กลุ่มอื่น และจะได้คะแนนในกลุ่มก็ต่อเมื่อโปรแกรมให้ผลลัพธ์ถูกต้องทั้งหมดเท่านั้น