

Aula 05 – Linguagens Regulares

Equivalência de AFNDs AFDs

Prof. Rogério Aparecido Gonçalves¹ rogerioag@utfpr.edu.br

¹Universidade Tecnológica Federal do Paraná (UTFPR) Departamento de Computação (DACOM) Campo Mourão - Paraná - Brasil

Bacharelado em Ciência da Computação Ciência da Computação BCC34B - Linguagens Formais, Autômatos e Computabilidade

Agenda i

- 1. Equivalência de AFNDs AFDs
- 2. Transformação de AFND para AFD com setas ϵ ou λ
- 3. Transformação de AFND para AFD sem setas ϵ ou λ
- 4. Fecho sobre Operações Regulares
- 5. Próximas Aulas
- 6. Referências

Equivalência de AFNDs AFDs

Equivalência de AFNDs AFDs i

- Equivalência entre Autômato Finito Não Determinístico (AFND) e Autômato Finito Determinístico (AFD).
- · Autômatos são equivalentes, pois reconhecem a mesma linguagem.

Teorema

Se L é um conjunto/linguagem aceito por um Autômato Finito Não-Determinístico, então existe um Autômato Finito Determinístico que aceita L

· Seja $N=(Q,\Sigma,\delta,q_0,F)$ o AFND que reconhece alguma linguagem A. Construímos um AFD $M=(Q',\Sigma,\delta',q_0',F')$ que reconhece A. Antes de realizarmos a construção completa, consideremos primeiro o caso mais fácil no qual N não tem setas ϵ . Mais adiante levamos as setas ϵ em consideração.

Equivalência de AFNDs AFDs ii

- 1. $Q'=\mathcal{P}(Q)$ Todo estado de M é um conjunto de estados de N. Lembre-se que $\mathcal{P}(Q)$ é conjunto de subconjuntos de Q.
- 2. Para $R \in Q'$ e $a \in \Sigma$ seja $\delta'(R,a) = \{q \in Q \mid q \in \delta(r,a) \text{ para algum } r \in R\}$ Se R é um estado de M, é também um conjunto de estados de N. Quando M lê um símbolo a no estado R, ele mostra para onde a leva cada estado em R. Dado que cada estado pode ir para um conjunto de estados, tomamos a união de todos esses conjuntos. Outra maneira de escrever essa expressão é:

$$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$$

A notação significa a união dos conjuntos $\delta(r,a)$ para cada $r\in R$.

Equivalência de AFNDs AFDs iii

- 3. ${q_0}'=\{q_0\}\ M$ começa no estado correspondente à coleção contendo somente o estado inicial de N. O estado inicial continua o mesmo.
- 4. $F'=\{R\in Q'\mid R \text{ cont\'em um estado de aceitação de }N\}$. A máquina M aceita se um dos possíveis estados nos quais N poderia estar nesse ponto é um estado de aceitação.
 - \cdot Consideremos as setas ϵ . Para fazer isso fixamos um pouco mais a notação. Para qualquer estado R de M, definimos E(R) como a coleção de estados que podem ser atingidos a partir de R indo somente ao longo de setas ϵ , incluindo os próprios membros de R.

Equivalência de AFNDs AFDs iv

- · Formalmente, para $R\subseteq Q$ seja.
 - $E(R)=\{q\mid q \ {
 m pode\ ser\ atingido\ a\ partir\ de\ }R\ {
 m viajando-se\ ao\ longo\ de\ 0\ ou\ mais\ setas\ }\epsilon\}.$
- · Então modificamos a função de transição de M para colocar dedos adicionais (alcançarmos) sobre todos os estados que podem ser atingidos indo ao longo de setas ϵ após cada passo. Substituindo $\delta(r,a)$ por $E(\delta(r,a))$ temos esse efeito.
- Consequentemente, $\delta'(R,a) = \{q \in Q \mid q \in E(\delta(r,a)) \text{ para algum } r \in R\}$

Equivalência de AFNDs AFDs v

- · Adicionalmente precisamos modificar o estado inicial de M para mover dedos inicialmente para todos os estados possíveis que podem ser atingidos a partir do estado inicial de N ao longo de setas ϵ . Mudando ${q_0}'$ para $E(\{q_0\})$ dá esse efeito. Agora completamos a construção do AFD M que simula o AFND N.
- \cdot A construção de M obviamente funciona corretamente. Em todo passo na computação de M sobre uma entrada, ela claramente entra num estado que corresponde ao subconjunto de estados nos quais N poderia estar nesse ponto. Assim, nossa prova está completa.

AFD com setas ϵ ou λ

Transformação de AFND para

Exemplo de transformação de AFND para AFD i

· Autômatos com setas ϵ ou λ .

 \cdot Para construir um AFD D equivalente a N_4 :

Exemplo de transformação de AFND para AFD ii

1. Determinar os estados de D. N_4 tem três estados, $Q=\{1,2,3\}.$ Assim, construímos D com oito estados, um para cada subconjunto de estados de N_4 .

 $Q'=\mathcal{P}(Q)$ Rotulamos cada um dos estados de D com um subconjunto correspondente.

$$Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

- 2. Determinar os estados inicial e de aceitação de D. O **estado inicial** é $E(\{1\})$, "o conjunto de estados que são atingíveis a partir do estado 1 por setas ϵ , mais o próprio 1." Uma seta ϵ vai de 1 para 3; portanto $E(\{1\})=\{1,3\}$. Os novos **estados de aceitação** são aqueles contendo o estado de aceitação de N_4 . Assim, $F'=\{\{1\},\{1,2\},\{1,3\},\{1,2,3\},\}$.
- 3. Determinar a função de transição de ${\it D}$.

Exemplo de transformação de AFND para AFD iii

- 3.1 Cada um dos estados de D vai para um lugar dada a entrada a e um lugar quando a entrada é b.
- 3.2 Em D, o estado $\{2\}$ vai para $\{2,3\}$ na entrada a, porque em N_4 o estado 2 vai para ambos 2 e 3 na entrada a e não podemos ir mais longe a partir de 2 ou 3 ao longo de setas ϵ .
- 3.3 O estado $\{2\}$ vai para o estado $\{3\}$ na entrada b e não podemos ir mais longe a partir de 3 com setas ϵ .
- 3.4 O estado $\{1\}$ vai para \emptyset na entrada a, porque nenhuma seta a sai dele. Ele vai para $\{2\}$ na entrada b.
- 3.5 Note que o procedimento no **Teorema 1.39** especifica que seguimos as sets ϵ depois que cada símbolo de entrada é lido.
- 3.6 O estado $\{3\}$ vai para $\{1,3\}$ na entrada a, pois em N_4 o estado 3 vai para 1 na entrada a e 1, por sua vez, vai para 3 com uma seta ϵ .
- 3.7 O estado $\{3\}$ na entrada b vai para \emptyset .
- 3.8 O estado $\{1,2\}$ na entrada a vai para $\{2,3\}$, pois 1 não aponta para nenhum estado com seta a e 2 aponta para ambos 2 e 3 com seta a e nenhum aponta para lugar algum com seta ϵ .

Exemplo de transformação de AFND para AFD iv

- 3.9 O estado $\{1,2\}$ na entrada b vai para $\{2,3\}$.
- 3.10 Continuar até obter o diagrama de D.

Exemplo de transformação de AFND para AFD v

Exemplo de transformação de AFND para AFD vi

4. Simplificar o autômato obtido. Nenhuma seta aponta para os estados $\{1\}$ e $\{1,2\}$, logo eles podem ser removidos sem afetar o desempenho da Máquina.

R. A. GONÇALVES (UTFPR) BCC34B-BCC - - v.2022.01 13/3

Exemplo de transformação de AFND para AFD vii

Chegamos ao diagrama:

Transformação de AFND para

AFD sem setas ϵ ou λ

Exemplo de transformação de AFND para AFD i

· Autômatos sem setas ϵ ou λ , mas com não-determinismo.

Exemplo de transformação de AFND para AFD ii

Exemplo

AFND que aceita o conjunto de todas as sentenças que contém dois $0^\prime s$ ou dois $1^\prime s$ consecutivos.

Exemplo de transformação de AFND para AFD iii

Passo 1: Montar a tabela de transição do AFND.

	δ	0	1
\rightarrow	q_0	$\{q_0,q_3\}$	$\{q_0,q_1\}$
	q_1	_	$\{q_2\}$
\leftarrow	q_2	$\{q_2\}$	$\{q_2\}$
	q_3	$\{q_4\}$	_
\leftarrow	q_4	$\{q_4\}$	$\{q_4\}$

Exemplo de transformação de AFND para AFD iv

Notação:

 \rightarrow : marcar o estado inicial.

←: marca os estados finais de aceitação.

Passo 2: Construir a tabela de transição do AFD. Identificar o 1o. estado do AFND e criar novos estados etiquetando-os com a concatenação dos estados do AFND alcançáveis pelas mesmas transições. Iniciando por q_0 , olhamos para a tabela de transição do AFND e selecionamos a linha q_0 e coluna 0, o valor de $\delta(q_0,0)=\{q_0,q_3\}$, que nos devolve um conjunto dos estados \$alcançáveis com a entrada 0. Com os elementos do conjunto de estados, criamos um novo estado q_0q_3 com a concatenação dos elementos do conjunto. O mesmo ocorre com a entrada 1, um novo estado q_0q_1 é criado.

Exemplo de transformação de AFND para AFD v

Continuamos na construção da nova tabela de transição, seguindo a partir dos novos estados criados, até completarmos todos os estados.

δ	0	1
q_0	q_0q_3	q_0q_1
q_0q_3	$q_0q_3q_4$	q_0q_1
q_0q_1	q_0q_3	$q_0q_1q_2$
$q_0q_3q_4$	$q_0q_3q_4$	$q_0q_1q_4$
$q_0q_1q_2$	$q_0q_2q_3$	$q_0q_1q_2$
$q_0q_1q_4$	$q_0q_3q_4$	$q_0q_1q_2q_4$
$q_0q_2q_3$	$q_0q_2q_3q_4$	$q_0q_1q_2$
$q_0q_1q_2q_4$	$q_0q_2q_3q_4$	$q_0q_1q_2q_4$
$q_0q_2q_3q_4$	$q_0q_2q_3q_4$	$q_0q_1q_2q_4$

Exemplo de transformação de AFND para AFD vi

Passo 3: Para cada novo estado criado, para cada símbolo do alfabeto preencher a nova tabela de transições criando novos estados quando preciso.

Por exemplo: para o novo estado q_0q_3 , segunda linha da nova tabela de transição, selecionamos as linhas da tabela de transição original para q_0 e q_3 , os conjuntos $\{q_0,q_3\}$ e $\{q_4\}$ são obtidos para a entrada 0, resultando da união um novo conjunto $\{q_0,q_3,q_4\}$ que irá criar um novo estado $q_0q_3q_4$, $\delta'(q_0q_3,0)=\{q_0,q_3,q_4\}$.

Passo 4: Todos os estados que contenham os estados finais de aceitação do AFND original, neste exemplo q_2 e q_4 , serão estados de aceitação no novo AFD.

Exemplo de transformação de AFND para AFD vii

Fecho sobre Operações

Regulares

Fecho sobre Operações Regulares i

Teorema

A classe de Linguagens Regulares é fechada sob a operação de União.

- O fechamento quer dizer que o resultado da aplicação da operação resulta também em uma linguagem regular.
- \cdot Temos as linguagens regulares A_1 e A_2 e desejamos provar que $A_1 \cup A_2 \text{ \'e regular. A id\'eia \'e tornar os dois AFND, } N_1 \text{ e } N_2 \text{ para } A_1 \text{ e } A_2 \text{, e combin\'a-los em um novo AFND, } N.$

Fecho sobre Operações Regulares ii

Figura 1: Construção de N para reconhecer $A_1 \cup A_2$

Fecho sobre Operações Regulares iii

Prova: Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 e que $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ que reconheça A_2 .

Construa $N=(Q,\Sigma,\delta,q_0,F)$ para reconhecer $A_1\cup A_2.$

- 1. $Q=\{q_0\}\cup Q_1\cup Q_2$. Os estados de N são todos os estados de N_1 e N_2 , com a adição de um novo estado inicial q_0 .
- 2. O estado q_0 é o estado inicial de N.
- 3. Os estados de aceitação $F=F_1\cup F_2$. Os estados de aceitação de N são todos os estados de aceitação de N_1 e N_2 . Desta forma, N aceita se N_1 aceita ou N_2 aceita.
- 4. Defina δ de modo que para qualquer $q \in Q$ e qualquer $a \in \Sigma_{\epsilon}$,

Fecho sobre Operações Regulares iv

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \\ \delta_2(q,a) & q \in Q_2 \\ \{q_1,q_2\} & q = q_0 \land a = \epsilon \\ \emptyset & q = q_0 \land a \neq \epsilon \end{cases}$$

Fecho sobre Operações Regulares v

Teorema

A classe de Linguagens Regulares é fechada sob a operação de concatenação.

Figura 2: Construção de N para reconhecer $A_1 \circ A_2$

Fecho sobre Operações Regulares vi

Teorema

A classe de Linguagens Regulares é fechada sob a operação estrela.

Figura 3: Construção de N para reconhecer A^st

Próximas Aulas

Próximas Aulas

· Linguagens Regulares: Equivalência e Minimização de AFDs.

Livros Texto

MENEZES, P. B. Linguagens formais e autômatos. Porto Alegre: Bookman, 2011. ISBN 9788577807994.

SIPSER, M. Introdução à teoria da computação. [s. l.]: Thomson Learning, 2006. ISBN 9788522104994.

```
abstract
      Word
         covers
                            apresentado
                                  lang
search
            Cloud_ sipser
                         vitalbook v
aspx<sub>png</sub>
                    wordcloud
         de
                                                 pageid
                             site
                                                      Aula
          live
                             teoria
                                                formais
trueebscohost
                         books
 Autômatos width
                                                    AFND
                               direct
                                                Thomson
                                             Learning
```

Referências

Referências i

Menezes, Paulo Blauth. 2011. *Linguagens Formais e Autômatos*. Bookman. https://search.ebscohost.com/login.aspx?direct=true&db=edsmib&A N=edsmib.000000444&lang=pt-br&site=eds-live&scope=site.

Ramos, Marcus Vinícius Midena, Ítalo Santiago Vega, and João José Neto. 2009. Linguagens Formais: Teoria, Modelagem e Implementação.

Bookman. https://search.ebscohost.com/login.aspx?direct=true&db=cat07269a&AN=utfpr.254492&lang=pt-br&site=eds-live&scope=site.

Sipser, Michael. 2007. *Introdução à Teoria Da Computação*. Cengage
Learning. https://search.ebscohost.com/login.aspx?direct=true&db=ed
smib&AN=edsmib.000008725&lang=pt-br&site=eds-live&scope=site.