EPITA / InfoS3	Janvier 2021
NOM : Prénom :	Groupe :

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Redresseur (6 points)

Soit le montage ci-contre :

both is montage of control.
Les 2 sources v sont absolument identiques, on prend $v(t) = V \cdot \sqrt{2} \cdot \sin(\omega t)$
On utilise le modèle idéal pour les diodes. $v = v$
a) Durant l'alternance positive, quelle diode est conductrice ? Justifiez votre réponse. D
b) Quelle est alors l'expression de u ?
c) Durant l'alternance négative, quelle diode est conductrice ? Justifiez votre réponse.
d) Quelle est alors l'expression de u ?

e) Tracer alors u(t).

f) On remplace désormais les diodes par leur modèle à seuil. Tracer l'allure de u(t), en justifiant votre réponse. On notera V_0 la tension de seuil de chacune des diodes et on supposera que $V_0 = \frac{V.\sqrt{2}}{2}$.

EPITA / InfoS3 Janvier 2021

Exercice 2. Diode Zéner (5 points)

On considère le schéma suivant. V est une tension pouvant prendre n'importe quelle valeur réelle. On veut tracer l'allure de la caractéristique de transfert c'est-à-dire U=f(V) en substituant la diode par son modèle réel. On V notera V_0 la tension de seuil en direct, V_D , la résistance interne de la diode en direct, V_Z ($V_Z>0$) , la tension de seuil Zéner et V_Z , la résistance interne de la diode en inverse.

on dans ce ca	s ?				
) Quelle est l'	expression de $\it U$ q	uand la diode Z	Zéner est pass	ante en direct ?	
) Quelle est l'	expression de $\it U$ qu	uand la diode Z	Zéner est passa	ante en inverse ?)

d) Tracez l'allure de la caractéristique de transfert U = f(V).

Exercice 3. Polarisation du transistor (4,5 points)

On considère le montage ci-contre, où :

• $R_C = 50 \,\Omega$, $V_{CC} = 15V$

<u>Caractéristiques du transistor</u> : $\beta=200$, $V_{BE}=0.7V$ quand la jonction Base-Emetteur est passante.

1. On désire avoir un courant de $100\ mA$ dans la résistance R_C . Quelle valeur de résistance R_B faut-il choisir ?

EPITA / InfoS3 Janvier 2021

2.	Quelle est la valeur maximale possible du courant de collecteur $I_{\mathcal{C}_{Sat}}$ quand $R_{\mathcal{B}}$ varie ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?
3.	Quelle est la valeur minimale de R_B pour saturer le transistor ?

EPITA / InfoS3 Janvier 2021

Exercice 4. QCM (4,5 points – Pas de point négatif)

- 1. Soit le circuit ci-contre, dans lequel on considère la diode idéale : Choisir l'affirmation correcte si $E_1=10V$, $R_1=100\Omega$, et $R_2=50\Omega$:
 - a- La diode est bloquée et la tension à ses bornes est égale à $\left(-\frac{20}{3}\right)$ V.
 - b- La diode est passante et le courant qui la traverse vaut 100mA
 - c- La diode est passante et le courant qui la traverse vaut -5A.
 - d- La diode est passante et le courant qui la traverse est égal à 200mA.

2. Soit le circuit ci-contre.

Quel type de porte logique réalise ce montage ?

- a- FT
- c- NON ET
- b- OU
- d- NON OU

- 3. Lorsqu'un transistor bipolaire NPN est bloqué (1 ou plusieurs réponses sont possibles)
 - a- Le transistor se comporte comme un interrupteur fermé entre le collecteur de l'émetteur.
 - b- Aucun courant ne passe
 - c- Le transistor se comporte comme un interrupteur ouvert entre le collecteur de l'émetteur.
 - d- Le courant de collecteur atteint la valeur maximale fixée par le circuit (c'est-à-dire par l'alimentation, les résistances...)
- 4. Lorsqu'un transistor bipolaire NPN est saturé (1 ou plusieurs réponses sont possibles)
 - a- Le transistor se comporte comme un interrupteur fermé entre le collecteur de l'émetteur.
 - b- Aucun courant ne passe
 - c- Le transistor se comporte comme un interrupteur ouvert entre le collecteur de l'émetteur.
 - d- Le courant de collecteur atteint la valeur maximale fixée par le circuit (c'est-à-dire par l'alimentation, les résistances...)

EPITA / InfoS3 Janvier 2021

Soit le circuit ci-dessous :

Le point de polarisation est caractérisé par les potentiels d'émetteur $V_E=2V$ et de collecteur $V_C=5V$, et un courant de base $I_{B}=100\mu A.$

On donne On donne : $\bar{V_{CC}} = 15~V~{
m et}~eta = 200$

- 5. Dans ce cas, le transistor est :
 - a- Bloqué
 - b- En mode normal (linéaire)
 - c- Saturé
- 6. Quelle doit-être la valeur de R_C pour obtenir ce point de polarisation ?

a-
$$R_C = 500\Omega$$

b-
$$R_C = 900\Omega$$

c-
$$R_C = 250\Omega$$

c-
$$R_C=250\Omega$$
 d- $R_C=50k\Omega$

