

Kurztest 2 NAME und Klasse: Thomas Brown 1715a_ZH

HS 2016 PHIT

Schreiben Sie Ihren vollen Namen auf jedes Blatt!

Sie können maximal 3 Punkte erzielen. Es reicht also, wenn Sie drei der vier Aufgaben lösen. Sie dürfen aber alle Aufgaben lösen, die Punkte werden einfach zusammengezählt, mit einem Cut bei 3 P.

Multiple Choice Spielregeln:

MC Typ 1:

Nur eine Antwort ist richtig. Das Ankreuzen der richtigen Antwort gibt einen Punkt. Keine oder mehrere Ankreuzung(en) ergeben null Punkte.

MC Typ 2:

- 1. Pro richtige Antwort 0.2 P.
- 2. Pro falsche Antwort 0.2 P Abzug.
- 3. Keine Antwort: Kein Abzug, aber auch keine Punkte.
- 4. Sie können im Gesamten nicht weniger als null Punkte machen.

Aufgabe 1

(MC-Typ 1) Gegeben seien zwei Teilchen mit Massen $m_1=3kg$ und $m_2=2kg$. Die beiden Teilchen haben die Geschwindigkeiten \vec{v}_1 und \vec{v}_2 :

$$\vec{V}_1 = \begin{pmatrix} 2\frac{m}{s} \\ 3\frac{m}{s} \\ -1\frac{m}{s} \end{pmatrix}, \vec{V}_2 = \begin{pmatrix} -1\frac{m}{s} \\ 4\frac{m}{s} \\ -2\frac{m}{s} \end{pmatrix}$$

Wie gross ist der Gesamtimpuls des Systems?

$$\vec{p} = m\vec{v}$$
 $\vec{p}_1 = 3 \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ 9 \\ -3 \end{pmatrix}$
 $\vec{p}_2 = 2 \cdot \begin{pmatrix} -1 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ 8 \\ -4 \end{pmatrix}$
 $\vec{p}_1 + \vec{p}_2 = \begin{pmatrix} 1 \\ 17 \\ -4 \end{pmatrix}$

Richtig?		X		
Gesamtimpuls	14 kgms ⁻¹	$ \begin{pmatrix} 4 \frac{kgm}{s} \\ 17 \frac{kgm}{s} \\ -7 \frac{kgm}{s} \end{pmatrix} $	72 kgms ⁻¹	$ \begin{pmatrix} -12\frac{kgm}{s} \\ 72\frac{kgm}{s} \\ 12\frac{kgm}{s} \end{pmatrix} $

Aufgabe 2

(MC-Typ 1) Ein Schwall Wasser fällt senkrecht nach unten. Während 0.2 Sekunden treffen 100 Liter mit einer Geschwindigkeit von 5m/s auf den Boden auf. Wie gross ist die Kraft **auf** den Boden? $\overrightarrow{F} = m \cdot \overrightarrow{a}$

Richtig?		X	10, route.	
Kraft ·	(0)	(0)	(0)	(0)
	0	0	0	0
	(-2500N)	2500N	(25N)	-25N

1000 5 m/s: 5 = 100 100.5.0.2

5 m/s diff für 0.2 s => 25 m 100 = 2500

Aufgabe 3

(MC-Typ 2)

Aussage	Richtig	Falsch
Der Impuls und die kinetische Energie sind in abgeschlossenen Systemen immer erhalten.	× -	-0
Eine Verdoppelung der Geschwindigkeit führt zu einer Vervierfachung der kinetischen Energie.	X	V
Um eine Feder wird um 3 cm zusammengedrückt. Dazu braucht es 20 J Energie. Um die Feder um 12 cm zusammenzudrücken, braucht es 80 J.		X
Ein schweres Objekt mit Schnelligkeit 40km/h prallt auf ein ruhendes, viel leichteres Objekt. Der Stoss (Kollision) ist elastisch. Nach der Kollision hat das leichte Objekt ungefähr die	X	1

Schnelligkeit 80 km/h.	X	
Der Impuls und die Energie sind in abgeschlossenen Systemen immer erhalten.	×/	
	V	

Aufgabe 4

(MC-Typ 1) Ein ruhendes Objekt der Masse 17.876 kg wird auf einer Höhe von 5 m losgelassen. Setzen Sie die Erdbeschleunigung gleich 10 m/s^2 . Mit welcher Geschwindigkeit wird das Objekt auf dem Boden (h = 0m) aufprallen?

Richtig?		×		
	10.0 m/s	178.76 m/s	50 m/s	17.876 m/s
Aufprallgeschwindigkeit	10.0 m/s	1/0./0111/3	30 111/3	

ZeiA: 10m/s²; 5m = 2s²

Y

10 m/32 : 232 = 5 10

2-10-17.876 = 20-17,876 = 350,52