Package bvpSolve, solving boundary value problems in R

Karline Soetaert

Centre for Estuarine and Marine Ecology Netherlands Institute of Ecology The Netherlands

Abstract

R package **bvpSolve** (Soetaert 2009a) is designed for the numerical solution of boundary value problems (BVP) for ordinary differential equations (ODE).

It comprizes:

- function bypshoot which implements the shooting method. This method makes use of the initial value problem solvers from packages deSolve (Soetaert, Petzoldt, and Setzer 2009) and the root-finding solver from package rootSolve (Soetaert 2009b).
- function bvptwp, the mono-implicit Runge-Kutta (MIRK) method with deferred corrections, code TWPBVP (Cash and Wright 1991), for solving two-point boundary value problems

The R functions have an interface which is similar to the interface of the solvers in package **deSolve**

Keywords: ordinary differential equations, boundary value problems, shooting method, monoimplicit Runge-Kutta, R.

1. Introduction

bvpSolve numerically solves boundary value problems (BVP) of ordinary differential equations (ODE), which for one (second-order) ODE can be written as:

$$\frac{d^2y}{dx^2} = f(x, y, \frac{dy}{dx})$$
$$a \le x \le b$$
$$g_1(y)|_a = 0$$
$$g_2(y)|_b = 0$$

where y is the dependent, x the independent variable, function f is the differential equation, and g_a and g_b the boundary conditions at the end points a and b.

In the current implementation, the boundary conditions must be defined at the end of the interval over which the ODE is specified (i.e. at a and/or b).

bvpSolve can only solve sets of first-order ODEs. Thus, higher-order ODEs need to be rewritten as a set of first-order systems.

For instance:

$$\frac{d^2y}{dx^2} = f(x, y, \frac{dy}{dx})$$

can be rewritten as:

$$\frac{dy}{dx} = z$$

$$\frac{dz}{dx} = f(x, y, z)$$

where y and z are now the two dependent variables.

Two BVP solvers are included in **bvpSolve** :

- bvpshoot, implementing the shooting method. This method combines solutions of initial value problems (IVP) with solutions of nonlinear algebraic equations; it makes use of solvers from packages deSolve , and rootSolve .
- bvptwp, the mono-implicit Runge-Kutta (MIRK) method with deferred corrections, based on the FORTRAN code TWPBVP (Cash and Wright 1991).

An S3 method for plotting is included. This will plot all variables in separate figures

The bvptwp function is much more efficient if analytical partial derivatives of the differential equations and of boundary conditions are given. However, input is much simpler if these are approximated by *finite differences* by the solver. Then, the user need not be concerned with supplying functions that estimate these analytical partial derivatives.

Therefore, by default **bvpSolve** function **bvptwp** numerically approximates the jacobians, and requires a simple input of the boundary conditions. This makes the definition of the problem very simple; only one function, estimating the derivatives needs to be specified.

However, in order to speed-up the simulations, it is possible to provide analytical functions.

Even more simulation time will be gained if the problem is specified in compiled code (FORTRAN, C). In this case, R is used to trigger the solver bvptwp, and for post-processing (graphics), while solving the BVP itself entirely takes place in compiled code.

In this package vignette it is shown how to formulate and solve BVPs. We use well-known test cases as examples.

- We start with a simple example, comprising a second-order ODE (test problem 7 from the website of Jeff Cash (http://www.ma.ic.ac.uk/~jcash/BVP_software/readme. php)
- This is followed by a more complex example, which consists of 6 first-order ODEs, the "swirling flow III" problem (Ascher, Mattheij, and Russell 1995). This example is used to demonstrate how to continuate a solution, i.e. use the solution for one problem as initial guess for solving another, more complex problem.
- How to implement more complex initial conditions is then exemplified by means of problem "musn" (Ascher et al. 1995).

- Next, solving for the fourth eigenvalue of "Mathieu's equation" (Shampine, Kierzenka, and Reichelt 2000), illustrates how to solve a BVP including an unknown parameter.
- The "nerve impulse" model (R. 1988), is an example including periodic boundary conditions.
- The "elastica" problem (Jeff Cash's website) is used to demonstrate how to specify the analytic jacobians, and how to implement problems in FORTRAN or C.
- Finally, a standard linear testcase (Shampine *et al.* 2000) which has a steep boundary layer is implemented in FORTRAN, and run with several values of a model parameter.

More examples of boundary value problems can be found in the packages **examples** subdirectory.

The dynload subdirectory includes models specified in compiled code.

See also document "bvpSolve: a set of 35 test Problems", which can be accessed as vignette("bvpTests") or is available from the package's site on CRAN: http://cran.r-project.org/package=bvpSolve/

2. A simple BVP example

Here is a simple BVP ODE (which is problem 7 from the test problems available from http://www.ma.ic.ac.uk/~jcash/BVP_software/readme.php):

$$\xi y'' + xy' - y = -(1 + \xi \pi^2) \cos(\pi x) - \pi x \sin(\pi x)$$

y(-1) = -1
y(1) = 1

The second-order ODE is expanded as two first-order ODEs as:

$$y'_1 = y_2$$

 $y'_2 = 1/\xi \cdot (-xy_2 + y_1 - (1 + \xi \pi^2)\cos(\pi x) - \pi x\sin(\pi x))$

with boundary conditions

$$y_1(-1) = -1$$

 $y_1(1) = 1$

This is implemented as:

```
> fun<- function(x,y,pars)</pre>
+ {
+ list(c(y[2],
     1/ks*(-x*y[2]+y[1]-(1+ks*pi*pi)*cos(pi*x)-pi*x*sin(pi*x)))
+ }
and solved, using the two methods, as <sup>1</sup>:
> ks <- 0.1
> x < - seq(-1,1,by=0.01)
> print(system.time(
+ sol1 <- bvpshoot(yini=c(-1,NA),yend=c(1,NA),x=x,func=fun,guess=0)
+ ))
   user
        system elapsed
   0.05
           0.00
                    0.04
> print(system.time(
+ sol2 <- bvptwp(yini=c(-1,NA),yend=c(1,NA),x=x,func=fun, guess=0)
+ ))
   user
         system elapsed
                    0.15
   0.14
           0.00
```

¹the system time, in seconds is printed

Figure 1: Solution of the simple BVP, for ksi=0.1 - see text for R -code

Note how the boundary conditions at the start (yini) and at the end yend of the integration interval are specified, where NA is used for boundary conditions that are not known.

A reasonable guess of the unknown initial condition is also inputted.

As is often the case, the shooting method is faster than the other method. However, there are particular problems where bvpshoot does not lead to a solution, whereas the MIRK method does (see below).

The plot shows that the two methods give the same solution:

For very small values of the parameter ξ , bvpshoot cannot solve the problem anymore, due to the presence of a zone of rapid change near x=0.

However, it can still easily be solved with the MIRK method:

Here we produce the output with the S3 plot method, which depicts both dependent variables:

```
> plot(sol2,type="1", lwd=2)
```


Figure 2: Solution of the simple BVP, for ksi=0.0001 - see text for R -code. Note that this problem cannot be solved with bvpshoot

3. A more complex BVP example

Here the test problem referred to as "swirling flow III" is solved (Ascher *et al.* 1995). The original problem definition is:

$$g'' = (gf' - fg')/\xi$$

 $f'''' = (-ff''' - gg')/\xi$

on the interval [0,1] and subject to boundary conditions:

$$g(0) = -1, f(0) = 0, f'(0) = 0$$

 $g(1) = 1, f(1) = 0, f'(1) = 0$

This is rewritten as a set of 1st order ODEs as follows:

$$y'_{1} = y_{2}$$

$$y'_{2} = (y_{1} * y_{4} - y_{3} * y_{2})/\xi$$

$$y'_{3} = y_{4}$$

$$y'_{4} = y_{5}$$

$$y'_{5} = y_{6}$$

$$y'_{6} = (-y_{3}y_{6} - y_{1}y_{2})/\xi$$

Its implementation in R is:

This model cannot be solved with the shooting method. However, it can be solved using byptwp:

Figure 3: pairs plot of the swirling flow III problem - see text for R -code. Note that this problem cannot be solved with bvpshoot

where the reported system time is in seconds

A pairs plot produces a pretty picture.

```
> pairs(Soltwp, main="swirling flow III, eps=0.01", col="blue")
```

Using the same input as above, the problem cannot be solved with too small values of eps (but see next section):

```
> eps <- 1e-9

> Soltwp2 <- NA

> Soltwp2 <- try(bvptwp(x=x,func=fsub,guess= c(2,0,0),

+ yini=c(y1=-1,y2=NA,y3=0,y4=0,y5=NA,y6=NA),

+ yend=c(1,NA,0,0,NA,NA)),

+ silent = TRUE)

> cat(Soltwp2)

Error in bvptwp(x = x, func = fsub, guess = c(2,0,0), yini = c(y1 = -1, :
```

The Expected No. Of Subintervals Exceeds Storage Specifications.

4. Solving a boundary value problem using continuation

The previous -swirl- problem can be solved for small values of eps if the previous solution (Soltwp) with eps = 0.001, is used as an initial guess for smaller value of eps, e.g. 0.0001:

We use the S3 plot method to plot all dependent variables at once: These plots are to be compared with the first column of the "pairs" plot (figure 3).

Figure 4: Solution of the swirling flow III problem with small eps, using continuation - see text for ${\sf R}$ -code.

5. More complex initial or end conditions

Problem musn was described in (Ascher et al. 1995).

The problem is:

$$u' = 0.5u(w - u)/v$$

$$v' = -0.5(w - u)$$

$$w' = (0.9 - 1000(w - y) - 0.5w(w - u))/z$$

$$z' = 0.5(w - u)$$

$$y' = -100(y - w)$$

on the interval [0,1] and subject to boundary conditions:

$$u(0) = v(0) = w(0) = 1$$

 $z(0) = -10$
 $w(1) = y(1)$

Note the last boundary condition which expresses \boldsymbol{w} as a function of \boldsymbol{y} . Implementation of the ODE function is simple:

```
> musn <- function(x,Y,pars)
+ {
+    with (as.list(Y),
+    {
+        du=0.5*u*(w-u)/v
+        dv=-0.5*(w-u)
+        dw=(0.9-1000*(w-y)-0.5*w*(w-u))/z
+        dz=0.5*(w-u)
+        dy=-100*(y-w)
+        return(list(c(du,dv,dw,dz,dy)))
+     })
+ }</pre>
```

This model is solved differently whether bypshoot or byptwp is used.

5.1. solving musn with bypshoot

It is easiest to solve the musn model with bvpshoot:

There are 4 boundary values specified at the start of the interval; a value for y is lacking (and set to NA):

```
> init <- c(u=1, v=1, w=1, z=-10, y=NA)
```

The boundary condition at the end of the integration interval (1) specifies the value of w as a function of y.

Because of that, yend cannot be simply inputted as a vector. It is rather implemented as a function that has as input the values at the end of the integration interval (Y), the values at the start (yini) and the parameters, and that returns the residual function (w-y):

Figure 5: Solution of the musn model, using bvpshoot - see text for R -code.

```
> yend <- function (Y,yini,pars) with (as.list(Y), w-y)
```

Note that the specification of the boundaries for bvptwp are rather different (next section). The solution, using bvpshoot is obtained by: ²

5.2. solving musn with byptwp

Here the boundary function bound must be specified:

²Note that there are at least two solutions to this problem, the second solution can simply be found by setting guess equal to 0.9.

```
> bound <- function(i,y,pars) {
+    with (as.list(y), {
+        if (i ==1) return (u-1)
+        if (i ==2) return (v-1)
+        if (i ==3) return (w-1)
+        if (i ==4) return (z+10)
+        if (i ==5) return (w-y)
+    })
+ }</pre>
```

Moreover, this problem can only be solved easily if good initial conditions are given:

```
> xguess <- seq(0,1,len=5)
> yguess <- matrix(nc=5,(rep(c(1,1,1,-10,0.91),5)))
> rownames(yguess) <- c("u","v","w","z","y")</pre>
```

Note that the rows of yguess have been given a name, such that this name can be used in the derivative and boundary function.

We specify that there are 4 left boundary conditions (leftbc).

6. a BVP problem including an unknown parameter

In the next BVP problem (Shampine *et al.* 2000), the fourth eigenvalue of the Mathieus equation (parameter λ) is computed. The equation:

$$\frac{d^2y}{dt^2} + (\lambda - 10\cos(2t)) \cdot y = 0$$

on $[0,\pi]$ with boundary conditions $\frac{dy}{dt}(0) = 0$ and $\frac{dy}{dt}(\pi) = 0$ and y(0) = 1

Here all the initial values (at t=0) are prescribed, in addition to one condition at the end of the interval. If λ would be known the problem would be overdetermined.

The 2^{nd} order differential equation is first rewritten as two 1^{st} -order equations:

$$\begin{array}{rcl} \frac{dy}{dt} & = & y2 \\ \frac{dy2}{dt} & = & -(\lambda - 10\cos(2t)) \cdot y \end{array}$$

and the function that estimates these derivatives is written (derivs).

```
> mathieu <- function(x,y,lambda)
+ list(c(y[2],
+ -(lambda-10*cos(2*x))*y[1]))</pre>
```

6.1. Solving for an unknown parameter using bypshoot

This problem is most easily solved using bvpshoot; an initial guess of the extra parameter to be solved is simply passed via argument extra.

6.2. Solving for an unknown parameter using byptwp

To use bvptwp, we treat the unknown parameter as an extra variable, whose derivative = 0 (it is a parameter, and by definition does not change over the integration interval).

Thus the model definition becomes:

Figure 6: Solution of the BVP ODE problem including an unknown parameter, see text for R-code

```
> mathieu2 <- function(x,y,p)
+ list(c(y[2],
+ -(y[3]-10*cos(2*x))*y[1],
+ 0) )</pre>
```

Note the third derivative, and the parameter lambda from previous chapter which is now y[3].

The initial condition, yini and final condition, yend now also provides a value, NA, for the parameter (y3) that is unknown. We also provide initial guesses for the x- and y-values (xguess, yguess).

```
> Sol <- bvptwp (yini= c(y=1,dy=0,lam=NA), yend = c(NA,0,NA),
+ x=seq(0,pi,by=0.01), func=mathieu2, xguess = c(0,1,2*pi),
+ yguess = matrix(nr=3,rep(15,9)))
```

The y-value, its derivative, and lambda, are plotted

```
> plot(Sol, type = "l", lwd=2)
> mtext(outer=TRUE, side=3, line=-1.5, cex=1.5, "mathieu - solved using bvptwp")
```

 $^{^3}$ This problem is not correctly solved if the initial guess for the y-values is 0; yet any value different from 0 works

Figure 7: Solution of the BVP ODE problem including an unknown parameter, and using method byptwp - see text for R-code

7. A boundary value problem with periodic boundary conditions

A byp with cyclic boundary conditions is the nerve impulse model, a problem described in (R. 1988).

$$y_1' = 3T(y_1 + y_2 - 1/3y_1^3 - 1.3)$$

$$y_2' = -T(y_1 - 0.7 + 0.8y_2)/3$$

on the interval [0,1] subject to boundary conditions:

$$y_1(0) = y_1(1)$$
$$y_2(0) = y_2(1)$$
$$1 = -T(y_1(0) - 0.7 + 0.8 * y_2(0))/3$$

7.1. Cyclic boundary conditions solved using bypshoot

The problem is first solved using bypshoot:

The derivative function (where T is the parameter) is:

```
> nerve <- function (t,y,T)
+ list(c( 3*T*(y[1] + y[2] - 1/3*(y[1]^3) - 1.3),
+ (-1/3)*T*(y[1] - 0.7 + 0.8*y[2]) ))</pre>
```

and the residual function, at the end of the interval is:

```
> res<- function (Y,yini,T)
+ c(Y[1]-yini[1],
+ Y[2]-yini[2],
+ T*(-1/3)*(yini[1] - 0.7 + 0.8*yini[2]) - 1)</pre>
```

There are no initial conditions (yini); to solve this model, a reasonable guess of the missing initial conditions is necessary; the initial guess for the unknown parameter is set to 2π (extra):

```
> yini <- c(y1=NA,y2=NA)
> sol <- bvpshoot(yini=yini, x=seq(0,1,by=0.01),
+ func=nerve, guess=c(0.5,0.5), yend=res, extra=2*pi)</pre>
```

T is estimated to be 10.710809; the root has been found in 11 iterations:

> attributes(sol)\$root

```
root f.root iter
1 -1.183453 -3.315126e-13 11
2 2.004203 -1.469935e-13 11
3 10.710809 -5.329071e-15 11
```

7.2. Cyclic boundary conditions solved using byptwp

Function byptwp accepts only problems with separated boundary conditions, however, it is possible to use it also for solving boundary value problems with periodic boundary conditions.

This is done by assuming the boundary conditions as "parameters", and using the strategy of defining extra variables, similar as in previous section.

Given here without derivation, the augmented derivative function is (variable 3 is the unknown parameter T, variables 4 and 5 the initial conditions of y_1, and y_2 respectively):

The required boundary function, with the first 3 boundary conditions at the left boundary is:

```
> bound <- function(i,y,p) {
+    if (i ==1) return(y[3]*(-1/3)*(y[1] - 0.7 + 0.8*y[2]) - 1)
+    if (i ==2) return(y[1]-y[4])
+    if (i ==3) return(y[2]-y[5])
+    if (i ==4) return(y[1]-y[4])
+    if (i ==5) return(y[2]-y[5])
+ }</pre>
```

boundary condition 2 sets the left boundary of y_1 equal to parameter y_4. Solving this also requires good initial conditions to find a solution:

Figure 8: Solution of the nerve impulse problem, comprising two state variables and 3 parameters - see text for R-code

8. Specifying the analytic jacobians

By default, the Jacobians of the derivative function and of the boundary conditions, are estimated numerically. It is however possible - and faster - to provide the analytical solution of the jacobian.

As an example, the elastica problem is implemented (http://www.ma.ic.ac.uk/~jcash/BVP_software).

First implementation uses the default specification:

```
> Elastica <- function (x, y, pars) {
+
+ list(c(cos(y[3]),
+ sin(y[3]),
+ y[4],
+ y[5]*cos(y[3]),
- 0))
+ }
> Sol <- bvptwp(func=Elastica,
+ yini = c(x=0, y=0, p=NA, k=0, F=NA),
+ yend = c(x=NA,y=0, p=-pi/2,k=NA,F=NA),
+ x = seq(0,0.5,len=16),
+ guess=c(0,0) )</pre>
```

Now several extra functions are defined, specifying

- 1. the analytic Jacobian for the derivative function (jacfunc)
- 2. the boundary function (bound). Here i is the boundary condition "number". The conditions at the left are enumerated first, then the ones at the right. For instance, i = 1 specifies the boundary for y(0) = 0, or BC(1) = y[1]-0; the fifth boundary condition is y[3] = -pi/2 or BC = y[3] + pi/2
- 3. the analytic Jacobian for the boundary function (jacbound)

This is done in the R -code below:

```
> jacfunc <- function (x, y, pars) {
+          Jac <- matrix(nr=5,nc=5,0)
+          Jac[3,4]=1.0
+          Jac[4,4]=1.0
+          Jac[1,3]=-sin(y[3])
+          Jac[2,3]=cos(y[3])
+          Jac[4,3]=-y[5]*sin(y[3])
+          Jac[4,5]=Jac[2,3]
+          Jac
+ }</pre>
```


Figure 9: Solution of the elastica problem - see text for R-code

```
> bound <- function (i, y, pars) {
+     if (i <=2) return(y[i])
+     else if (i == 3) return(y[4])
+     else if (i == 4) return(y[2])
+     else if (i == 5) return(y[3]+pi/2)
+ }

> jacbound <- function(i, y, pars) {
+     JJ <- rep(0,5)
+         if (i <=2) JJ[i] =1.0
+     else if (i ==3) JJ[4] =1.0
+     else if (i ==4) JJ[2] =1.0
+     else if (i ==5) JJ[3] =1.0
+     JJ
+ JJ
+ }</pre>
```

If this input is used, the number of left boundary conditions leftbc needs to be specified.

```
> Sol4 <- bvptwp(leftbc = 3,
+ func=Elastica, jacfunc = jacfunc,
+ bound = bound, jacbound = jacbound,
+ x = seq(0,0.5,len=16),
+ guess=c(0,0))</pre>
```

Solving the model this way is about 3 times faster than the default.

9. implementing a BVP problem in compiled code

Even more computing time is saved by specifying the problem in lower-level languages such as FORTRAN or C, or C++, which are compiled into a dynamically linked library (DLL) and loaded into R.

This is similar as the differential equations from package **deSolve** (Soetaert et al. 2009).

Its vignette ("compiledCode") can be consulted for more information. (http://cran.r-project.org/package=deSolve/)

In order to create compiled models (.DLL = dynamic link libraries on Windows or .so = shared objects on other systems) you must have a recent version of the GNU compiler suite installed, which is quite standard for Linux.

Windows users find all the required tools on http://www.murdoch-sutherland.com/Rtools/. Getting DLLs produced by other compilers to communicate with R is much more complicated and therefore not recommended. More details can be found on http://cran.r-project.org/doc/manuals/R-admin.html.

The call to the derivative, boundary and Jacobian functions is more complex for compiled code compared to R -code, because it has to comply with the interface needed by the integrator source codes.

9.1. The elastica problem in FORTRAN

Below is an implementation of the elastica model in FORTRAN: (slightly modified from http://www.ma.ic.ac.uk/~jcash/BVP_software):

```
c The differential system:
      SUBROUTINE fsub(NCOMP, X, Z, F, RPAR, IPAR)
      IMPLICIT NONE
      INTEGER NCOMP, IPAR , I
      DOUBLE PRECISION F, Z, RPAR, X
      DIMENSION Z(*),F(*)
      DIMENSION RPAR(*), IPAR(*)
      F(1)=cos(Z(3))
      F(2)=\sin(Z(3))
      F(3)=Z(4)
      F(4)=Z(5)*cos(Z(3))
      F(5) = 0
      RETURN
      END
c The analytic Jacobian for the F-function:
      SUBROUTINE dfsub(NCOMP,X,Z,DF,RPAR,IPAR)
      IMPLICIT NONE
      INTEGER NCOMP, IPAR, I, J
      DOUBLE PRECISION X, Z, DF, RPAR
```

```
DIMENSION Z(*),DF(NCOMP,*)
      DIMENSION RPAR(*), IPAR(*)
      CHARACTER (len=50) str
     DO I=1,5
         DO J=1,5
            DF(I,J)=0.D0
         END DO
      END DO
      DF(1,3) = -\sin(Z(3))
      DF(2,3) = cos(Z(3))
     DF(3,4)=1.0D0
     DF(4,3)=-Z(5)*sin(Z(3))
     DF(4,4)=1.0D0
     DF(4,5) = cos(Z(3))
      RETURN
      END
c The boundary conditions:
      SUBROUTINE gsub(I,NCOMP,Z,G,RPAR,IPAR)
      IMPLICIT NONE
      INTEGER I, NCOMP, IPAR
      DOUBLE PRECISION Z, RPAR, G
      DIMENSION Z(*)
     DIMENSION RPAR(*), IPAR(*)
      IF (I.EQ.1) G=Z(1)
      IF (I.EQ.2) G=Z(2)
      IF (I.EQ.3) G=Z(4)
      IF (I.EQ.4) G=Z(2)
      IF (I.EQ.5) G=Z(3)+1.5707963267948966192313216916397514D0
      RETURN
      END
c The analytic Jacobian for the boundaries:
      SUBROUTINE dgsub(I,NCOMP,Z,DG,RPAR,IPAR)
      IMPLICIT NONE
      INTEGER I, NCOMP, IPAR
     DOUBLE PRECISION Z, DG, RPAR
      DIMENSION Z(*),DG(*)
     DIMENSION RPAR(*), IPAR(*)
     DG(1)=0.D0
```

```
DG(2) = 0.D0
      DG(3) = 0.D0
      DG(4) = 0.D0
      DG(5) = 0.D0
С
      dG1/dZ1
      IF (I.EQ.1) DG(1)=1.D0
С
      dG2/dZ2
      IF (I.EQ.2) DG(2)=1.D0
С
      dG3/dZ4
      IF (I.EQ.3) DG(4)=1.D0
С
      dG4/dZ2
      IF (I.EQ.4) DG(2)=1.D0
С
      dG5/dZ3
      IF (I.EQ.5) DG(3)=1.D0
      RETURN
      END
```

9.2. The elastica problem in C

```
The same model, implemented in C is:
```

```
#include <math.h>
// The differential system:
  void fsub(int *n, double *x, double *z, double *f,
        double * RPAR, int * IPAR) {
      f[0] = cos(z[2]);
      f[1]=\sin(z[2]);
      f[2]=z[3]
      f[3]=z[4]*cos(z[2]);
      f[4]=0;
  }
// The analytic Jacobian for the F-function:
  void dfsub(int * n, double *x, double *z, double * df,
      double *RPAR, int *IPAR) {
      int j;
      for (j = 0; j < *n * *n; j++) df[j] = 0;
      df[*n *2] = -sin(z[2]);
```

```
df[*n *2 +1] = cos(z[2]);
      df[*n *3 +2] = 1.0;
      df[*n *2 +3] = -z[4]*sin(z[2]);
      df[*n *3 +3] = 1.0;
      df[*n *4 +3] = cos(z[2]);
  }
// The boundary conditions:
  void gsub(int *i, int *n, double *z, double *g,
      double *RPAR, int *IPAR) {
      if (*i==1) *g=z[0];
      else if (*i==2) *g=z[1];
      else if (*i==3) *g=z[3];
      else if (*i==4) *g=z[1];
      else if (*i==5) *g=z[2]+1.5707963267948966192313216916397514;
  }
// The analytic Jacobian for the G-function:
  void dgsub(int *i, int *n, double *z, double *dg,
      double *RPAR, int *IPAR) {
      int j;
      for (j = 0; j < *n; j++) dg[j] = 0;
      if (*i == 1) dg[0] = 1.;
      else if (*i == 2) dg[1] = 1.;
      else if (*i == 3) dg[3] = 1.;
      else if (*i == 4) dg[1] = 1.;
      else if (*i == 5) dg[2] = 1.;
  }
```

9.3. Solving the elastica problem specified in compiled code

In what follows, it is assumed that the codes are saved in a file called elastica.f, and elastica.c and that these files are in the working directory of R . (if not, use setwd()) Before the functions can be executed, the FORTRAN or C- code has to be compiled This can simply be done in R:

```
system("R CMD SHLIB elastica.f")
system("R CMD SHLIB elasticaC.c")
```

```
system("gfortran -shared -o elastica.dll elastica.f")
system("gcc -shared -o elasticaC.dll elasticaC.c")
```

This will create a file called elastica.dll and elasticaC.dll respectively (on windows).

After loading the DLL, the model can be run, after which the dll is unloaded. For the FORTRAN version, this is done as follows (the C code is similar, except for the name of the DLL):

Note that the number of components (equations) needs to be explicitly inputted (ncomp).

This model is about 8-10 times faster than the pure R implementation from previous section.

The solver recognizes that the model is specified as a DLL due to the fact that arguments func, jacfunc, bound and jacbound are not regular R -functions but character strings.

Thus, the solver will check whether these functions are loaded in the DLL with name "elastica.dll". Note that the name of the DLL should be specified without extension.

This DLL should contain all the compiled function or subroutine definitions needed.

Also, if func is specified in compiled code, then jacfunc, bound and jacbound should also be specified in a compiled language. It is not allowed to mix R-functions and compiled functions.

10. Passing parameters and external data to compiled code

When using compiled code, it is possible to

- pass parameters from R to the compiled functions
- pass forcing functions from R to compiled functions. These are then updated to the correct value of the independent variable (x) at each step.

The implementation of this is similar as in package **deSolve**. How to do it has been extensively explained in deSolve's vignette, which can be consulted for details.

See http://cran.r-project.org/package=deSolve.

Here we implement a simple linear boundary value problem, which is a standard test problem for BVP code (??). The model has a boundary layer at x=0.

The differential equation depends on a parameter **a** and **p**:

$$y'' + \frac{-apy}{(p+x^2)^2} = 0$$

and is solved on [-0.1, +0.1] with boundary conditions:

$$y(-0.1) = -0.1\sqrt{p + 0.01}$$
$$y(+0.1) = 0.1\sqrt{p + 0.01}$$

where a = 3 and p is taken small.

This differential equation is written as a system of two first-order ODEs.

The implementation in pure R is given first:

```
> fun <- function(t,y,pars)
+ list(c( y[2],
+ - a*p*y[1]/(p+t*t)^2
+ ))</pre>
```

with parameter values:

```
> p <- 1e-5
> a <- 3
```

It is solved using bvptwp; note that the initial condition (yini) gives names to the variables; these names are used by the solver to label the output:

Figure 10: Solution of the linear boundary problem - see text for R-code

Next the FORTRAN implementation is given, which requires writing the boundary and jacobian functions (bound, jacfunc and jacbound)

The two parameters are initialised in a function called initbnd; its name is passed to function byptwp via argument initfunc.

```
c FORTRAN implementation of the boundary problem
c Initialiser for parameter common block
      SUBROUTINE initbnd(bvpparms)
      EXTERNAL bypparms
      DOUBLE PRECISION parms(2)
      COMMON / pars / parms
      CALL bypparms(2, parms)
      END
c derivative function
      SUBROUTINE funbnd(NCOMP,X,Y,F,RPAR,IPAR)
      IMPLICIT NONE
      INTEGER NCOMP, IPAR(*), I
      DOUBLE PRECISION F(2), Y(2), RPAR(*), X
      DOUBLE PRECISION a, p
      COMMON / pars / a, p
        F(1) = Y(2)
        F(2) = -a * p *Y(1)/(p+ x*x)**2
      END
c The analytic Jacobian for the derivative-function:
      SUBROUTINE dfbnd(NCOMP,X,Y,DF,RPAR,IPAR)
```

```
IMPLICIT NONE
      INTEGER NCOMP, IPAR(*), I, J
      DOUBLE PRECISION X, Y(2), DF(2,2), RPAR(*)
      DOUBLE PRECISION a, p
      COMMON / pars / a, p
        DF(1,1)=0.D0
        DF(1,2)=1.D0
        DF(2,1) = -a *p /(p+x*x)**2
        DF(2,2)=0.D0
      END
c The boundary conditions:
      SUBROUTINE gbnd(I,NCOMP,Y,G,RPAR,IPAR)
      IMPLICIT NONE
      INTEGER I, NCOMP, IPAR(*)
      DOUBLE PRECISION Y(2), RPAR(*), G
      DOUBLE PRECISION a, p
      COMMON / pars / a, p
        IF (I.EQ.1) THEN
          G=Y(1) + 0.1 / sqrt(p+0.01)
        ELSE IF (I.EQ.2) THEN
          G=Y(1) - 0.1 / sqrt(p+0.01)
        ENDIF
      END
c The analytic Jacobian for the boundaries:
      SUBROUTINE dgbnd(I,NCOMP,Y,DG,RPAR,IPAR)
      IMPLICIT NONE
      INTEGER I, NCOMP, IPAR(*)
      DOUBLE PRECISION Y(2), DG(2), RPAR(*)
        DG(1)=1.D0
        DG(2)=0.D0
      END
```

Before running the model, the parameters are defined:

```
> parms <- c(a=3, p=1e-7)
```

and the DLL created and loaded; This model has been made part of package **bvpSolve** , so it is available in DLL bvpSolve.

Assuming that this was not the case, and the code is in a file called "boundary_for.f", this is how to compile this code and load the DLL (on windows):

```
system("R CMD SHLIB boundary_for.f")
dyn.load("boundary_for.dll")
```

We execute the model several times, for different values of parameter p; we create a sequence of parameter values (pseq), over which the model then iterates (for (pp in pseq)); the resulting y-values (2^{nd}) column) of each iteration are added to matrix Out.

```
> Out <- NULL
       <- seq(-0.1,0.1,by=0.001)
> x
> pseq <- 10^-seq(0,6,0.5)
> for (pp in pseq) {
    parms[2] <- pp
    outFor <- bvptwp(ncomp=2,</pre>
                  x = x, leftbc = 1, initfunc="initbnd", parms=parms, guess=1,
                  func="funbnd", jacfunc="dfbnd", bound="gbnd", jacbound="dgbnd",
                  allpoints=FALSE,dllname="bvpSolve")
    Out <- cbind(Out, outFor[,2])</pre>
+ }
It takes less than 0.06 seconds to do this.
Results are plotted, using R -function matplot:
> matplot(x,Out,type="1")
> legend("topleft", legend=log10(pseq), title="logp",
    col=1:length(pseq), lty=1:length(pseq), cex=0.6)
```


Figure 11: Multiple solutions of the linear problem - see text for R-code

References

- Ascher U, Mattheij R, Russell R (1995). Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Philadelphia, PA.
- Cash J, Wright M (1991). "A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation." SIAM J. Sci. Stat. Comput., 12, 971–989.
- R S (1988). From equilibrium to Chaos. Elsevier, New York.
- Shampine L, Kierzenka J, Reichelt M (2000). solving boundary value problems for ordinary differential equations in MATLAB with bvp4c.
- Soetaert K (2009a). bvpSolve: solvers for boundary value problems of ordinary differential equations. R package version 1.0.
- Soetaert K (2009b). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations. R package version 1.4.
- Soetaert K, Petzoldt T, Setzer RW (2009). deSolve: General solvers for initial value problems of ordinary differential equations (ODE), partial differential equations (PDE) and differential algebraic equations (DAE). R package version 1.3.

Affiliation:

Karline Soetaert

Centre for Estuarine and Marine Ecology (CEME)

Netherlands Institute of Ecology (NIOO)

4401 NT Yerseke, Netherlands E-mail: k.soetaert@nioo.knaw.nl

URL: http://www.nioo.knaw.nl/users/ksoetaert