morfismos

conceitos básicos

Definição. Sejam G_1 , G_2 grupos. Uma aplicação $\psi:G_1\longrightarrow G_2$ diz-se um morfismo ou homomorfismo se

$$(\forall x, y \in G_1)$$
 $\psi(xy) = \psi(x)\psi(y)$.

Um morfismo diz-se um *epimorfismo* se for uma aplicação sobrejetiva. Um morfismo diz-se um *monomorfismo* se for uma aplicação injetiva. Um morfismo diz-se um *isomorfismo* se for uma aplicação bijetiva. Neste caso, escreve-se $G_1\cong G_2$ e diz-se que os dois grupos são *isomorfos*. Um morfismo de um grupo nele mesmo diz-se um *endomorfismo*. Um endomorfismo diz-se um *automorfismo* se for uma aplicação bijetiva.

Exemplo 29. Sejam G_1 e G_2 grupos e $\varphi: G_1 \to G_2$ definida por $\varphi(x) = 1_{G_2}$, para todo $x \in G_1$. Então, φ é um morfismo de grupos (conhecido por *morfismo nulo*).

De facto, dados $x, y \in G_1$, temos que $\varphi(xy) = 1_G = 1_G 1_G = \varphi(x)\varphi(y)$.

Exemplo 30. A aplicação $\varphi: \mathbb{R} \to \mathbb{R} \setminus \{0\}$, definida por $\varphi(x) = e^x$ para todo $x \in \mathbb{R}$, é um morfismo do grupo $(\mathbb{R}, +)$ no grupo $(\mathbb{R} \setminus \{0\}, \times)$.

A conclusão é imediata tendo em conta que, para todos os reais x e y, $e^{x+y}=e^xe^y$ e que $e^x\neq 0$.

Exemplo 31. A aplicação $\varphi: \mathbb{Z}_4 \to \mathbb{Z}_2$, definida por

$$\varphi([0]_4) = \varphi([2]_4) = [0]_2$$
 $\varphi([1]_4) = \varphi([3]_4) = [1]_2$

é um morfismo de grupos.

Para provar esta afirmação, temos de verificar os 10 casos distintos possíveis (temos 16 somas possíveis, mas os dois grupos são comutativos):

$$\begin{split} &\varphi([0]_4 \oplus [0]_4) = \varphi([0]_4) = [0]_2 = [0]_2 \oplus [0]_2 = \varphi([0]_4) \oplus \varphi([0]_4) \\ &\varphi([0]_4 \oplus [1]_4) = \varphi([1]_4) = [1]_2 = [0]_2 \oplus [1]_2 = \varphi([0]_4) \oplus \varphi([1]_4) \\ &\varphi([0]_4 \oplus [2]_4) = \varphi([2]_4) = [0]_2 \oplus [0]_2 = \varphi([0]_4) \oplus \varphi([2]_4) \\ &\varphi([0]_4 \oplus [3]_4) = \varphi([3]_4) = [1]_2 = [0]_2 \oplus [1]_2 = \varphi([0]_4) \oplus \varphi([3]_4) \\ &\varphi([1]_4 \oplus [1]_4) = \varphi([2]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([1]_4) \oplus \varphi([1]_4) \\ &\varphi([1]_4 \oplus [2]_4) = \varphi([3]_4) = [1]_2 = [1]_2 \oplus [0]_2 = \varphi([1]_4) \oplus \varphi([2]_4) \\ &\varphi([2]_4 \oplus [2]_4) = \varphi([0]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([1]_4) \oplus \varphi([3]_4) \\ &\varphi([2]_4 \oplus [2]_4) = \varphi([0]_4) = [0]_2 = [0]_2 \oplus [0]_2 = \varphi([2]_4) \oplus \varphi([2]_4) \\ &\varphi([3]_4 \oplus [3]_4) = \varphi([2]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([3]_4) \oplus \varphi([3]_4) \\ &\varphi([3]_4 \oplus [3]_4) = \varphi([2]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([3]_4) \oplus \varphi([3]_4) \end{split}$$

Este morfismo pode ser definido por $\varphi([x]_4) = [x]_2$, para todo $[x]_4 \in \mathbb{Z}_4$. Será que, dados $n, m \in \mathbb{N}$, a correspondência de \mathbb{Z}_n para \mathbb{Z}_m , definida por $\varphi([x]_n) = [x]_m$ é um morfismo de grupos?

A resposta à pergunta do slide anterior é NÃO.

Se n < m, a correspondência nem sequer é uma aplicação, uma vez que $[m]_n = [m-n]_n$ e $\varphi([m]_n) = [0]_m \neq [-n]_m = \varphi([m-n]_n)$.

Se $n \geq m$, a correspondência é uma aplicação, mas não necessariamente um morfismo de grupos. Como contraexemplo, podemos considerar a aplicação $\varphi: \mathbb{Z}_5 \to \mathbb{Z}_6$, definida por $\varphi([x]_5) = [x]_6$. Temos

$$\varphi([2]_5 \oplus [4]_5) = \varphi([1]_5) = [1]_6 \neq [0]_6 = [2]_6 \oplus [4]_6 = \varphi([2]_5) \oplus \varphi([4]_5).$$

Prova-se que $\varphi: Z_n \to Z_m$, definida por $\varphi([x]_n) = [x]_m$ é um morfismo de grupos se e só se $m \mid n$.

Proposição. Sejam G_1 e G_2 dois grupos. Se $\psi:G_1\longrightarrow G_2$ é um morfismo então $\psi\left(1_{G_1}\right)=1_{G_2}$.

Demonstração. Temos que

$$1_{G_1}1_{G_1}=1_{G_1},$$

pelo que

$$\psi\left(1_{\mathcal{G}_{1}}\right)\psi\left(1_{\mathcal{G}_{1}}\right)=\psi\left(1_{\mathcal{G}_{1}}1_{\mathcal{G}_{1}}\right)=\psi\left(1_{\mathcal{G}_{1}}\right).$$

Por outro lado, como $\psi\left(1_{\mathcal{G}_1}\right)\in\mathcal{G}_2$, temos que

$$\psi\left(1_{G_1}\right)1_{G_2} = \psi\left(1_{G_1}\right).$$

Logo,

$$\psi\left(1_{\mathit{G}_{1}}\right)\psi\left(1_{\mathit{G}_{1}}\right)=\psi\left(1_{\mathit{G}_{1}}\right)1_{\mathit{G}_{2}},$$

pelo que, pela lei do corte,

$$\psi\left(1_{G_1}\right)=1_{G_2}.$$

Proposição. Sejam G_1 e G_2 dois grupos e $\psi: G_1 \longrightarrow G_2$ um morfismo. Então $[\psi(x)]^{-1} = \psi(x^{-1})$.

Demonstração. Seja $x \in G_1$. Então,

$$\psi\left(\mathbf{x}\right)\psi\left(\mathbf{x}^{-1}\right)=\psi\left(\mathbf{x}\mathbf{x}^{-1}\right)=\psi\left(\mathbf{1}_{G_{1}}\right)=\mathbf{1}_{G_{2}}$$

е

$$\psi\left(x^{-1}\right)\psi\left(x\right)=\psi\left(x^{-1}x\right)=\psi\left(1_{G_1}\right)=1_{G_2}.$$

Logo, pela própria definição de inverso, $[\psi(x)]^{-1} = \psi(x^{-1})$.

Proposição. Sejam G_1 e G_2 dois grupos, $H\subseteq G_1$ e $\psi:G_1\to G_2$ um morfismo. Então,

$$H < G_1 \Rightarrow \psi(H) < G_2$$
.

Demonstração. Seja $H < G_1$. Então:

1. $\psi(H) \neq \emptyset$, pois

$$1_{G_1} \in H \Rightarrow \psi(1_{G_1}) \in \psi(H);$$

2. Sejam $a, b \in \psi(H)$. Então,

$$(\exists x, y \in H)$$
 $a = \psi(x)$ e $b = \psi(y)$.

Assim,

$$(\exists x, y \in H)$$
 $ab = \psi(x)\psi(y) = \psi(xy),$

pelo que $z = xy \in H$ é tal que $ab = \psi(z)$. Logo, $ab \in \psi(H)$;

3. Seja $a \in \psi(H)$. Então, existe $x \in H$ tal que $a = \psi(x)$. Como

$$a = \psi(x) \Rightarrow a^{-1} = [\psi(x)]^{-1} = \psi(x^{-1})$$

e $x^{-1} \in H$, temos que $a^{-1} \in \psi(H)$.

Concluímos, assim, que $\psi(H) < G$.

Corolário. Seja $\psi: G_1 \longrightarrow G_2$ um morfismo de grupos. Se ψ é um monomorfismo então $G_1 \cong \psi(G_1)$.

Observação. Dois grupos finitos isomorfos têm a mesma ordem. Mas, dois grupos com a mesma ordem, não são necessariamente isomorfos. Como contraexemplo, basta pensar no grupo 4-Klein e no \mathbb{Z}_4 .

De facto, se o grupo 4-Klein $G=\{e,a,b,c\}$ fosse isomorfo ao grupo aditivo $\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ e $f:G\to\mathbb{Z}_4$ fosse um isomorfismo de grupos, teríamos

$$\overline{0} = f(e) = f(xx) = f(x) \oplus f(x),$$

para todo $x \in G$. Sendo f bijetiva, concluíamos que todos os elementos de \mathbb{Z}_4 eram simétricos de si próprios, o que é uma contradição, pois, em \mathbb{Z}_4 , apenas as classes $\overline{0}$ e $\overline{2}$ são inversas de si próprias.

Proposição. Sejam G_1 e G_2 dois grupos, $H \subseteq G_1$ e $\psi: G_1 \to G_2$ um epimorfismo. Então,

$$H \triangleleft G_1 \Rightarrow \psi(H) \triangleleft G_2$$
.

Demonstração. Considerando a proposição anterior, como $H < G_1$, temos que $\psi(H) < \triangleleft G_2$. Assim, falta apenas provar que, para $g \in G_2$ e $a \in \psi(H)$, temos que $gag^{-1} \in \psi(H)$. De facto,

$$\begin{split} g \in G_2, a \in \psi\left(H\right) & \Rightarrow (\exists x \in G_1, h \in H) \ g = \psi\left(x\right), \quad a = \psi\left(h\right) \\ & \Rightarrow (\exists x \in G_1, h \in H) \ gag^{-1} = \psi\left(x\right)\psi\left(h\right)[\psi\left(x\right)]^{-1} \\ & \Rightarrow gag^{-1} = \psi\left(xhx^{-1}\right) \ com \ xhx^{-1} \in H \\ & \rightarrow gag^{-1} \in \psi\left(H\right), \end{split}$$

pelo que $\psi(H) \lhd G_2$.

núcleo de um morfismo

Definição. Seja $\psi: G_1 \longrightarrow G_2$ um morfimo de grupos. Chama-se *núcleo* (ou *kernel*) de ψ , e representa-se por $\operatorname{Nuc}\psi$ ou $\ker\psi$, ao subconjunto de G_1

$$\mathrm{Nuc}\psi = \left\{ x \in \mathit{G}_{1} \mid \psi\left(x\right) = 1_{\mathit{G}_{2}} \right\}.$$

Exemplo 32. Se $\varphi: \mathbb{Z}_4 \to \mathbb{Z}_2$ é o morfismo definido no Exemplo 31., temos que

$$\mathrm{Nuc}\varphi=\{[0]_4\,,[2]_4\}.$$

Exemplo 33. Sejam G_1 e G_2 grupos e $\varphi:G_1\to G_2$ o morfismo nulo. Então, ${\rm Nuc}\varphi=G_1.$

Proposição. Seja $\psi: G_1 \longrightarrow G_2$ um morfismo de grupos. Então, $\mathrm{Nu} c\psi \lhd G_1$.

Demonstração. Começamos por provar que $\mathrm{Nuc}\psi$ é subgrupo de $\mathit{G}_{1}.$

- 1. Observemos, primeiro, que $1_{G_1} \in \mathrm{Nuc}\psi$. De facto, $1_{G_1} \in G_1$ e $\psi\left(1_{G_1}\right) = 1_{G_2}$;
- 2. Sejam $a, b \in G_1$. Como $a^{-1}b \in G_1$ e

$$\begin{split} a,b \in \mathrm{Nuc}\psi & \Rightarrow \psi\left(a\right) = \psi\left(b\right) = 1_{G_{2}} \\ & \Rightarrow \psi\left(a^{-1}\right) = [\psi\left(a\right)]^{-1} = 1_{G_{2}}^{-1} = 1_{G_{2}} = \psi\left(b\right) \\ & \Rightarrow \psi\left(a^{-1}b\right) = \psi\left(a^{-1}\right)\psi\left(b\right) = 1_{G_{2}}1_{G_{2}} = 1_{G_{2}} \end{split}$$

temos que

$$a, b \in \text{Nuc}\psi \Rightarrow a^{-1}b \in \text{Nuc}\psi.$$

Assim, concluímos que este subconjunto de G_1 é, de facto, um seu subgrupo. Sejam $g \in G_1$ e $b \in \mathrm{Nuc}\psi$. Então,

$$gbg^{-1} \in G_1$$

е

$$\begin{array}{ll} \psi \left(\mathsf{g} \mathsf{b} \mathsf{g}^{-1} \right) & = & \psi \left(\mathsf{g} \right) \psi \left(\mathsf{b} \right) \psi \left(\mathsf{g}^{-1} \right) \\ & = & \psi \left(\mathsf{g} \right) \mathbf{1}_{G_2} \left[\psi \left(\mathsf{g} \right) \right]^{-1} \\ & = & \mathbf{1}_{G_2}, \end{array}$$

pelo que $gbg^{-1} \in \text{Nuc}\psi$. Logo, $\text{Nuc}\psi \triangleleft G_1$.

O núcleo de um morfismo de grupos $\psi:G_1\to G_2$ define uma relação de congruência, a saber

$$\begin{aligned} x &\equiv y \pmod{\operatorname{Nuc}\psi} &\Leftrightarrow xy^{-1} \in \operatorname{Nuc}\psi \\ &\Leftrightarrow \psi \left(xy^{-1} \right) = \mathbf{1}_{G_2} \\ &\Leftrightarrow \psi \left(x \right) \left[\psi \left(y \right) \right]^{-1} = \mathbf{1}_{G_2} \\ &\Leftrightarrow \psi \left(x \right) = \psi \left(y \right). \end{aligned}$$

Pelo que acabámos de ver, a demonstração da proposição seguinte é trivial.

Proposição. Seja $\psi: G_1 \to G_2$ um morfismo de grupos. Então, ψ é um monomorfismo se e só se $\mathrm{Nuc}\psi = \{1_{G_1}\}.$

Proposição. Sejam G um grupo e $H \triangleleft G$. Então,

$$\pi: G \longrightarrow G/H$$
$$x \longmapsto xH$$

é um epimorfismo (ao qual se chama epimorfismo canónico) tal que $\mathrm{Nuc}\pi=H.$

Demonstração. Sejam G um grupo e $H \triangleleft G$.

Então, para $x, y \in G$,

$$\psi(xy) = (xy) H = xHyH = \psi(x) \psi(y)$$
,

pelo que π é um morfismo. Além disso, ψ é obviamente sobrejetiva (cada classe é imagem por π do seu representante). Por fim,

$$x \in \text{Nuc}\pi \quad \Leftrightarrow \pi(x) = H$$

 $\Leftrightarrow xH = H \Leftrightarrow x \in H.$

teorema fundamental do homomorfismo

Os resultados que estudámos no final da secção anterior dizem-nos que:

- (i) Dado um morfismo qualquer entre dois grupos, o seu núcleo é um subgrupo normal do domínio;
- (ii) Dado um subgrupo normal de um grupo, existe um morfismo cujo núcleo é aquele subgrupo.

Considerando as duas situações em simultâneo, temos que: se $\psi: G \to G'$ é um morfismo de grupos, então, por (i),

$$\text{Nuc}\psi \triangleleft G$$
.

Logo, por (ii), $\pi: {\it G}
ightarrow {\it G}/_{{
m Nuc}\psi}$ é um epimorfismo tal que

$$Nuc\pi = Nuc\psi$$
.

Teorema Fundamental do Homomorfismo. Seja $\theta: G \longrightarrow G'$ um morfismo de grupos. Então,

$$\operatorname{Im} \theta \cong G/_{\operatorname{Nuc}\theta}$$
.

Demonstração. Sejam $K = \operatorname{Nuc} \theta$ e $\phi: G/_K \longrightarrow G'$ tal que $\phi(xK) = \theta(x), \quad \forall x \in G.$

Estará a função ϕ bem definida, i.e., se xK = yK será que $\theta(x) = \theta(y)$? SIM. De facto,

$$xK = yK \Leftrightarrow x^{-1}y \in K (= \text{Nuc}\,\theta)$$

 $\Leftrightarrow \theta (x^{-1}y) = 1_{G'}$
 $\Leftrightarrow \theta (x) = \theta (y).$

Além disso, demonstrámos ainda que $\theta(x) = \theta(y) \Rightarrow xK = yK$, i.e., que

$$\phi(xK) = \phi(yK) \Rightarrow xK = yK,$$

pelo que ϕ é injectiva.

Mais ainda,

$$\operatorname{Im} \phi = \{\phi(xK) \mid x \in G\}$$
$$= \{\theta(x) \mid x \in G\}$$
$$= \operatorname{Im} \theta.$$

Observamos, por último, que ϕ é um morfismo, já que

$$\phi(xKyK) = \phi(xyK) = \theta(xy) = \theta(x)\theta(y) = \phi(xK)\phi(yK).$$

Concluímos, então, que ϕ é um monomorfismo cujo conjunto imagem (que é isomorfo ao seu domínio) é igual a ${\rm Im}\theta$.

Logo,

$$\operatorname{Im} \theta \cong G/_{K} = G/_{\operatorname{Nuc} \theta}.$$

78