

EECE 5155
Wireless Sensor Networks
(and The Internet of Things)

Prof. Francesco Restuccia

WSNs Dependability Aspects

Coverage & deployment

- Is there a sufficient number of nodes such that an event can be detected at all?
- Can such data be accurately measured?
- How do they have to be deployed?

> Information accuracy

- Which of the measured data have to be transported where such that a desired accuracy is achieved?
- How do we deal with inaccurate measurements?

Dependable Data Transport

> Dependable data transport

- Once it is clear which data should arrive where, how to make sure that it actually arrives?
- How to deal with transmission errors and omission errors/congestion?

Transport Layer

- Transport layer handles
 - Dependable (reliable) data transport
 - Deals with end-to-end packet losses
 - Flow Control
 - Congestion Control
 - Regulates transmission rates at the source to avoid losses due to congestion
 - Network Abstraction
 - TCP Sockets in Internet
- Classical solutions (TCP/UDP) cannot be used in sensor networks, why?
 - Resource constraints!

Dependability: Terminology

- (Steady state) availability

- Probability that a system is operational at any given point in time
- Assumption: system can fail and will repair itself

- Reliability at time t

- Probability that system works correctly during the entire interval [0,t)
- Assumption: It worked correctly at system start t=0

Responsiveness

- Probability of meeting a deadline
- Even in presence of faults

Packet success probability

- Probability that a packet (correctly) reaches its destination
- Related: packet error rate, packet loss rate

Bit error rate

- Probability of an incorrect bit
- Channel model determines precise error patterns

Dependability Constraints

- Wireless sensor networks (WSN) have unique constraints for dependable data delivery
 - Transmission errors over a wireless channel
 - Limited computational resources in a WSN node
 - Limited memory
 - Limited time (deadlines)
 - Limited dependability of individual nodes
- Standard mechanism: Redundancy
 - Redundancy in nodes, transmission
 - Forward and backward error recovery
 - Combinations of both are necessary

Dependable Data Transport

- Items to be delivered
 - Single packet
 - Block of packets
 - Stream of packets
- Level of guarantee
 - Guaranteed delivery
 - Stochastic delivery
- Involved entities
 - Sensor(s) to sink
 - Sink to sensors
 - Sensors to sensors

We Also Have Constraints...

Energy

- Send as few packets as possible
- Send with low power -> high error rates
- Avoid retransmissions
- Balance energy consumption in network

Processing power

- Only simple FEC schemes
- No complicated algorithms (coding)

Memory

Store as little data as briefly as possible

Delivering Single Packets

- What are the intended receivers?
 - A single receiver (unicast)?
 - Multiple receivers (multicast)?
 - In close vicinity? Spread out?
 - Mobile?
- Which routing structures are available?
 - Unicast routing along a single path?
 - Routing with *multiple paths* between source/destination pairs?
 - No routing structure at all rely on flooding/gossiping?

Single Packet, Single Receiver, Single Path

Single, multi-hop path is given by routing protocol

- Issues: Which node
 - Detects losses (using which indicators)?
 - Requests retransmissions?
 - Carries out retransmissions?

Single Packet, Single Receiver, Single Path

- Detecting loss of a single packet: Acknowledgements (ACK)
- Which node sends ACKs?
 - At each intermediate node, at MAC/link level
 - Usually accompanied by link layer retransmissions
 - Usually, only a bounded number of attempts
 - At the destination node
 - Transport layer retransmissions
 - Problem: Timer selection

Retransmissions

> For link layer acknowledgements: Neighboring node

- For transport layer acknowledgements:
 - Source node -> end-to-end retransmissions

End-to-end vs. Link-layer Retransmission

- Scenario: Single packet, n hops from source to destination, BSC channel
- Transport-layer, end-to-end retransmission: Always
- Link-layer retransmissions: Vary number of maximum attempts
 - Drop packet if not successful within that limit
 - -> For good channels, use end-to-end scheme; else local retransmit

Example Schemes: HHR and HHRA

- Hop-by-hop reliability (HHR)
 - Idea: Locally improve probability of packet transmission, but do not use packet retransmission
 - Instead, simply repeat packet a few times a repetition code
 - Choose number of repetitions per node such that resulting end-to-end delivery probability matches requirements
- > Hop-by-hop reliability with Acknowledgements (HHRA)
 - Node sends a number of packets, but pauses after each packet to wait for acknowledgement
 - If received, abort further packet transmissions

Delivering Blocks of Packets

- Goal: Deliver large amounts of data
 - E.g., code update, large observations

- Split data into several packets (reduce packet error rate)
- Transfer this block of packets
- Main difference to single packet delivery: Gaps in sequence number can be detected and exploited
 - For example, by intermediate nodes sending NACKs

- To answer NACK locally, intermediate nodes must cache packets
- Which packets? For how long?

Pump Slowly Fetch Quickly (PSFQ)

Pump-slowly, fetch-quickly (PSFQ): a reliable transport protocol for sensor networks Wan, C.-Y. Campbell, A.T. Krishnamurthy, L. Journal of Selected Areas in Communications, April 2005

- Goal: Distribute block of packets from one sender to multiple receivers (sink to sensors)
 - E.g., code update -> losses are not tolerable, delay not critical
 - Routing structure is assumed to be known

Pump Slowly Fetch Quickly (PSFQ)

Basic operation

- Source *pumps* data into network
 - Using broadcast, large inter-packet gap time
- Intermediate nodes store packets, forward if in-sequence
- Out-of-sequence: buffer, request missing packet(s) fetch operation (a NACK)
 - Previous node resends missing packet -> local recovery
 - Assumption: packet is available <- no congestion, only channel errors
 - -> Pumping is slow, fetching is quick

PSFQ Protocol Details

- How big an inter-packet gap?
 - Big enough to accommodate at least one, better several fetch operations
 - Probability that next packet arrives when the previous one has not yet been repaired should be small
- Handle out-of-order packet?
 - Do not forward, fill the gap first by fetching -> avoid loss propagation

PSFQ protocol details (2)

- How to handle fetch requests (NACKs)?
 - Fetch request are broadcast, might arrive at multiple nodes
 - Nodes receiving NACK might themselves not have all requested packets
 - Use a slotted resend mechanism for requested packets each one corresponds to a time slot

PSFQ Performance

- Comparison case: Scalable Reliable Multicast (SRM)
 - Provides similar service
 - Main difference: in-sequence not enforced
- PSFQ works up to higher error rates

Congestion in WSNs

Streams of Packets

- When several sensors observe an event and try to periodically report it, congestion around event may occur
- When many sensors stream data to a sink, congestion around the sink may occur

Consequences of congestion

- Congestion can have surprising consequences
- More frequently reporting readings can reduce goodput and accuracy
 - Owing to increased packet loss
- Using more nodes can reduce network lifetime

Detecting Congestion

- > Locally detect congestion
 - Intuition: Node is congested if its buffer fills up
 - Rule: "Congested = buffer level above threshold" is overly simplistic
 - Need to take growth rate into account as well
 - Occupancy not a good indicator when packets can be lost in the channel
- Problematic: Interaction with MAC
 - CSMA-type MACs: high channel utilization = congestion; easy to detect
 - TDMA-type MACs: high channel utilization not problematic for throughput; congestion more difficult to detect

Congestion Handling

- Once congestion is (locally) detected, how to handle it?
- > Option 1: Drop packets
 - No alternative when buffers overflow
 - Better: drop semantically less important packet
- > Option 2: Control sending rate of individual node
 - Rate of locally generated packets
 - Rate of remote packets to be forwarded -> backpressure
- Option 3: Control how many nodes are sending
- > Option 4: Aggregation, in-network processing

Control How Many Nodes Are Sending

- Scenario: Nodes send at a given rate, cannot be controlled
- Option: Turn on or off nodes to avoid congestion, achieve desired target number of packets k* per round
 - If total number of nodes N known, easy: Simply send probability k*/N to all nodes; each node sends with this probability
- What to do if number of nodes N not known?

Gur Game

- N nodes, unaware of each other; 1 referee
- Referee, in each round:
 - Counts number k of packets (assumption: no packet loss)
 - Determines reward probability r(k), sends r(k) to all nodes
- Each player: rewards itself with probability r(k), penalizes with probability 1-r(k)
 - Rewards/penalties: Moves in finite state machine

Gur Game: How To Choose r(k)?

Intuition

 When received number of packets k is close to k*, the right number of nodes are sending

Thus, the right mixture of send/not send states is present

-> Nodes should stay on the side where they are

-> Rewards should be high

> Formally

- Reward function is maximal at k*
- Example: See figure
- What are the problems of the Gur Game?

Event-to-Sink Reliability

O. B. Akan and I. F. Akyildiz, "Event-to-Sink Reliability", IEEE/ACM Transactions on Networking, Oct. 2005 - Shorter version in Proc. of ACM MobiHoc'03, June 2003

- Sensor networks are usually event-driven
- Multiple correlated data flows from event to sink
- GOAL: To reliably detect/estimate event features based on the collective reports of several sensor nodes observing the event
 - → Event-to-Sink collective reliability notion
 - → EXPLORE SPATIAL CORRELATION !!!!

Event-to-Sink Reliability

- Sink decides about event features every i time units (decision intervals)
- DEFINITION 1: Observed Event Detection Reliability r_i is the number of data packets received in decision interval i at the sink

Event-to-Sink Reliability (2)

DEFINITION 2: Desired Event Detection Reliability
R is the number of packets required for reliable event detection → Application specific and is known a-priori at the sink!!

(If r_i > R, then the event is reliably detected. Else, appropriate actions must be taken to achieve R)

Event-to-Sink Reliability (3)

DEFINITION 3: Reporting Frequency Rate f is the number of packets sent out per unit time by that node

DEFINITION 4: TRANSPORT PROBLEM

To configure the reporting frequency rate, **f**, of source nodes so as to achieve the required event detection reliability, **R**, at the sink with minimum resource utilization.

ESRT: Protocol Overview

- Determine reporting frequency f to achieve desired reliability R with minimum resource utilization
- Source (Sensor Nodes):
 - Send data with reporting frequency f
 - Monitor buffer level and notify congestion to the sink

ESRT: Protocol Overview

Sink:

- Measures the observed event reliability r_i at the end of decision interval i
- − Normalized Reliability $\rightarrow \eta_i = r_i / R$
- Performs congestion decision based on feedback from sensor nodes (to determine f sensor nodes)
- Updates f based on η_i and f_i f_{max} (congestion) to achieve desired event reliability
- Broadcasts the new reporting rate to all sensor nodes

Network States

State	Description	Condition	
(NC,LR)	(No Congestion, Low reliability)	$f < f_{max}$ and $\eta < 1 - \varepsilon$	
(NC,HR)	(No Congestion, High reliability)	$f \leq f_{max}$ and $\eta > 1 + \varepsilon$	
(C,HR)	(Congestion, High reliability)	$f > f_{max}$ and $\eta > 1$	
(C,LR)	(Congestion, Low reliability)	$f > f_{max}$ and $\eta \le 1$	
OOR	Optimal Operating Region	$f < f_{max}$ and 1- $\varepsilon <= \eta <= 1+ \varepsilon$	

ESRT: Congestion Detection Mechanism

Use local buffer level monitoring in sensor nodes

 b_k : Buffer level at the end of reporting interval k

 Δb : Buffer length increment

B: Buffer size

f: Reporting frequency

ESRT: Congestion Detection Mechanism

Mark Congestion Notification (CN) field in packet if congested, i.e., $b_k + \Delta b > B$

E	Event	CN	Time			
	ID	(1 bit)	Desti- nation		Payload	FEC

ESRT: Frequency Update

State	Frequency Update	Comments
(NC,LR)	$f_{i+1} = f_i / \eta_i$	Multiplicative increase, achieve desired reliability asap
(NC,HR)	$f_{i+1} = f_i/2 (1 + 1/\eta_i)$	Conservative decrease, no compromise on reliability
(C,HR)	$f_{i+1} = f_i / \eta_i$	Aggressive decrease to state (NC,HR)
(C,LR)	$f_{i+1} = f_i^{(\eta_i/k)}$	Exponential decrease, relieve congestion asap
OOR	$f_{i+1} = f_i$	Unchanged

Performance Evaluation

- Starting from no congestion, high reliability and with linear reliability behavior when the network is not congested, the network state remains unchanged until ESRT converges
- Starting from no congestion, high reliability, and with linear reliability behavior when the network is congested, ESRT converges to optimum operating range
- ➤ With linear reliability behavior when the network is not congested, the network state transition from congestion, high reliability to no congestion, low reliability.

Starting with no congestion and low reliability:

Starting with no congestion and high reliability:

Starting with congestion and high reliability:

Starting with congestion and low reliability:

Conclusion

- Transport protocols have considerable impact on the service rendered by a wireless sensor networks
- Various facets no "one size fits all" solution in sight
- Still there are relatively unexplored areas
- Items not covered
 - Relation to coverage issues
 - TCP in WSN? Gateways?
 - Aggregation? In-network processing?

Conclusion

What are the pros and cons of ESRT?

Think-Share!

