

PREPARING INPUTS

natural capital

SPATIAL CAVEATS

- Ensure all data have same projected coordinate system
- Verify the units
- Select an appropriate resolution for your goals
 - Overall detail needed
 - Interaction between layers
 - Speed/memory

Stream buffers

← or
threat distance

DATA SOURCES

- The best data is as local as you can get, as detailed as you need
- National, local governments and agencies, NGOs...
- Literature search LULC coefficients, carbon values, etc.
- Global sources:
 - Land cover: MODIS, GlobCover
 - DEM: NASA, USGS, WWF HydroSheds
 - Soils: FAO Harmonized World Soil Database

Choose an appropriate number/types of land cover classes

Choose an appropriate number/types of land cover classes

TOPOGRAPHY/HYDROLOGY

natural capital

- Preparing the DEM: Mosaic, fill holes, fill sinks, burn streams
- Verify watersheds and/or create with ArcHydro/ArcSWAT/AGWA/BASINS...
- Determine threshold flow accumulation

Threshold = 10,000

Threshold = 100

CLIMATE DATA SOURCES

- WorldClim: Monthly precipitation
- CGIAR: Monthly precipitation, potential and actual evapotranspiration
- NCAR: Climate change scenarios (precip. only)
- Erosivity: Can be derived from annual precipitation
- AET: From InVEST Water Yield model, or CGIAR

CLIMATE

- Precipitation from weather stations, gridded local or global data, climate change scenarios
- Average over 10+ years
- If weather stations:
 - Best to have full coverage
 - Test out interpolation methods
 - Adjust for elevation?
- Derive PET, AET, erosivity from same precip

BUDGET DATA SOURCES

- The best data is as local as you can get, as detailed as you need
- National, local governments and agencies, NGOs...
- Literature search LULC coefficients, carbon values, etc.
- Global sources:
 - Land cover: MODIS, GlobCover
 - DEM: NASA, USGS, WWF HydroSheds
 - Soils: FAO Harmonized World Soil Database, SOTER

TERRESTRIAL HELPER TOOLS

- C:\InVEST_3_0_0_x86\invest_helper_utils\
- Prepare the DEM
- Create servicesheds
- Calculate change between scenarios*
- Multi-service landscape ranking*

PREPARE THE DEM

natural capital

- Fills holes (missing data)
- Burns streams
- Fills sinks

Inputs:

- DEM
- Streams / depth

Output:

Processed DEM

CREATE SERVICESHEDS

natural capital

Uses Arc Hydro to create watersheds/servicesheds

Inputs:

- DEM
- Outlets
- Stream threshold

Outputs:

- Stream raster/shapefile
- Servicesheds shapefile

