EDRP: Discrete Random Processes Problem set 6

- 6.1 Find the pgf of a random variable X taking values $\{0, 1, 2, 5\}$ with $\mathbb{P}(X = 0) = \mathbb{P}(X = 1) = \mathbb{P}(X = 2)$ and $\mathbb{P}(X = 5) = 5/8$.
- 6.2 Let G be the pgf of X from the previous exercise. Compute $G^{(j)}(0)/j!$ for $j=0,1,2,\ldots$
- 6.3 Find the distribution of a random variable X if its pgf is $G_X(s) = 1 p + ps$ and p is a parameter from (0,1).
- 6.4 Find the probability generating function of a Poisson random variable with parameter λ . Use the pgf to find the mean and variance of the Poisson distribution.
- 6.5 Suppose X_1 and X_2 are independent random variables uniformly distributed on $\{0, 1, 2\}$. Find the distribution of $X_1 + X_2$. Compute the pgfs of X_1 , X_2 , and $X_1 + X_2$.
- 6.6 Let $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$. Assume that X and Y are independent. Use pgfs to find the distribution of X + Y.
- 6.7 Consider a branching process with offspring distribution $\mathbf{a} = (a, b, c)$, where $a, b, c \ge 0$, and a + b + c = 1. Let **P** be the Markov transition matrix. Exhibit the first three rows of **P**.
- 6.8 Give the probability generating function for an offspring distribution in which an individual either dies, with probability 1-p, or gives birth to three children, with probability p. Find the mean and variance of the number of children in the fourth generation.
- 6.9 A branching process has offspring distribution with $a_0 = p$, $a_1 = 1 p q$, and $a_2 = q$. For what values of p and q is the process supercritical? In the supercritical case, find the extinction probability.
- 6.10 Consider a branching process with binomial (with parameters 2 and 1 p, where 0) offspring distribution. Find the extinction probability.
- 6.11 Assume that the offspring distribution is uniform on $\{0, 1, 2, 3, 4\}$. Find the extinction probability.
- 6.12 Consider the offspring distribution defined by $a_k = (1/2)^{k+1}$, for $k \ge 0$. Find the extinction probability.

Answers

6.1
$$G(s) = \frac{1}{8} + \frac{1}{8}s + \frac{1}{8}s^2 + \frac{5}{8}s^5$$

6.2

$$\frac{G^{(j)}(0)}{j!} = \begin{cases} \frac{1}{8}, & j = 0, 1, 2\\ \frac{5}{8}, & j = 5, \\ 0, & j \notin \{0, 1, 2, 5\} \end{cases}$$

6.3
$$\mathbb{P}(X=0) = 1 - p$$
, $\mathbb{P}(X=1) = p$

6.4
$$G_X(s) = \exp[-\lambda(1-s)], \mathbb{E}X = G_X'(1) = \lambda, \operatorname{Var}X = G_X''(1) + G_X'(1) - (G_X'(1))^2 = \lambda$$

6.5 •
$$\mathbb{P}(X_1 + X_2 = 0) = \mathbb{P}(X_1 + X_2 = 4) = 1/9, \mathbb{P}(X_1 + X_2 = 1) = \mathbb{P}(X_1 + X_2 = 3) = 2/9, \mathbb{P}(X_1 + X_2 = 2) = 3/9,$$

•
$$G_{X_1}(s) = G_{X_2}(s) = \frac{1}{3} + \frac{1}{3}s + \frac{1}{3}s^2$$

•
$$G_{X_1+X_2}(s) = G_{X_1}(s)G_{X_2}(s) = \frac{1}{9}(1+2s+3s^2+2s^3+s^4)$$

6.6
$$G_{X+Y}(s) = \exp\left[-(\lambda_1 + \lambda_2)(1-s)\right] \Rightarrow X + Y \sim \operatorname{Poiss}(\lambda_1 + \lambda_2)$$

6.7 • 1st row:
$$1, 0, 0, \dots$$

• 2nd row:
$$a, b, c, 0, ...,$$

• 3rd row:
$$a^2$$
, $2ab$, $2ac + b^2$, $2bc$, c^2 , 0 , 0 , ...

6.8 •
$$G(s) = 1 - p + ps^3$$
,

•
$$\mathbb{E}Z_4 = 81p^4$$
,

•

$$\operatorname{Var} Z_4 = \begin{cases} 8 & , p = \frac{1}{3} \\ 9p(1-p)(3p)^3 \frac{(3p)^4 - 1}{3p - 1} & , p \neq \frac{1}{3} \end{cases}$$

6.9 supercritical if q > p, extinction probability p/q

6.10
$$\left(\frac{1-p}{p}\right)^2$$

6.11 0.275682 (obtained numerically)

6.12 1