Assignment-based Subjective Questions

Question 1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: <Your answer for Question 1 goes below this line> (Do not edit)

- The Categorical Variables Weekday, Day (Inferred from dteday) were not part of the final model since they had a high p-value
- The Categorical Variables Summer, Workingday, month (inferred from dteday) were not part of the final since they had high p-value and high VIF and were removed as part of RFE
- The remaining categorical variables holiday, Sprint(inferred from season), Light Snow, Mist (Inferred from weathersit) have a negative impact on the final rental bike count
- Winter (inferred from Season) seems to have a positive implact on the final rental bike count

Question 2. Why is it important to use **drop_first=True** during dummy variable creation? (Do not edit)

Total Marks: 2 marks (Do not edit)

Answer: <Your answer for Question 2 goes below this line> (Do not edit)

Drop First is important to use to reduce the total number of columns, since to represent n-categorical value only n-1 categorical values are required since the value 0,0,0..... 0 will also represent a value. Hence to simplify the amount of data that is fed to the model we use drop_first = True. If one variable is not dropped then it can lead to perfect collinearity hence it is required to drop one column when you have n-categorical values

Question 3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable? (Do not edit)

Total Marks: 1 mark (Do not edit)

Answer: <Your answer for Question 3 goes below this line> (Do not edit)

Temp and atemp both seem to have the highest correlation with the target variable

Question 4. How did you validate the assumptions of Linear Regression after building the model on the training set? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: <Your answer for Question 4 goes below this line> (Do not edit)

- Checking the Adjust R2 value whose value was 0.819 which is good
- Checking F-statistic value which was very small
- Checking the R2 score for the trained and the test data with model get a similar score of 0.78

Question 5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes? (Do not edit)

Total Marks: 2 marks (Do not edit)

Answer: <Your answer for Question 5 goes below this line> (Do not edit)

- Top 3 features contributing significantly towards explaining the demand
 - o Temperature, Year -> Positively impacts the demand
 - Light Snow -> Negatively impacts the demand

General Subjective Questions

Question 6. Explain the linear regression algorithm in detail. (Do not edit)

Total Marks: 4 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

Linear regression is a statistical method for modeling the relationship between one or more independent variables (predictors) and a dependent variable (outcome). The goal is to find the best-fitting straight line (in the case of one predictor) or hyperplane (for multiple predictors) that predicts the outcome as accurately as possible.

$$Y{=}\beta_0{+}\beta_1X_1{+}\beta_2X_2{+}\ldots{+}\beta_nX_n{+}\varepsilon$$

The way to find the optimal line is to start with a line which intercepts with Y-axis. Then gradually move the line to towards an optimal line where the sum of the squared errors is the minimum

Assumptions of Linear Regression:

- Linearity: The relationship between predictors and outcome is linear.
- Independence: Observations are independent of each other.
- Homoscedasticity: The variance of residuals is constant across all levels of XXX.
- Normality: Residuals are normally distributed.
- No Multicollinearity: Predictors are not highly correlated with each other.

Question 7. Explain the Anscombe's quartet in detail. (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

<Your answer for Question 7 goes here>

Question 8. What is Pearson's R? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

Pearson's R is a statistical measure that tells us about the linear relationship between 2 continuous variables. It ranges from -1 to 1, where r=1 means perfect positive relationship and r=-1 perfect negative relationship.

Formula for $r = Cov(X,Y) / \sigma X \cdot \sigma Y$

Where Cov(X,Y): Covariance between variables X and Y

 σX , σY : Standard deviation of X, Y

Question 9. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

Scaling is when you transform the values of your dataset to a certain limited range.

- In normalized scaling the range of all the values is between 0 and 1. It is also called min-max scaling since the the formula is x min / max.
- In standardized scaling has the mean as 0 and the standard deviation as 1.
- Normalized scaling is more sensitive to outliers since it uses min and max values whereas standardized scaling is less sensitive to outliers.

Question 10. You might have observed that sometimes the value of VIF is infinite. Why does this happen? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

Formula for VIF = 1/(1-R2)

In the use case where one variable can be perfectly predicted by all the other variables the R2 (Coefficienct of determination) will be equal to 1.

Hence the VIF = 1/(1-1) = 1/0 causes the denominator to be zero and hence the answer becomes infinite

Question 11. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression.

(Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

A Q-Q plot compares the quantiles of observed data to a theoretical distribution to check if the data follows that distribution. If the points form a straight diagonal line, the data is close to the theoretical distribution.

In Linear regression Q-Q plot can be used to check if the data (error terms) is following a normal distribution since it is one of the assumptions made.

This can help improve the model and help indicating any skewness, outliers or model misfit