Identification of Candidate Be/X-Ray Binaries using Archival Swift SMC Survey Data

Thomas Gaudin

PSU Lunch Talk - 3/26/24

Co-Authors: Jamie Kennea, Malcolm Coe, Iumaleng Monageng, Lee Townsend, Andrzej Udalski, David Buckley, Phil Evans

Introducing Be/X-ray Binaries (BeXRBs)

- 2 main components:
 - · OBe Main Sequence Star
 - · Compact Object (typically a Neutron Star)
- Also contain:
 - · Circumstellar "decretion" disk
 - Moderately eccentric orbit (e ~ 0.3-0.5)
 - Orbital Periods of ~10-100s of days

BeXRBs as X-ray Transients

- Be/X-ray Binaries spend most of their time in a quiescent state
- Transient X-ray "Outbursts" can occur in 2 different ways:
 - Type I Outburst:
 - Occurs near periastron passage
 - $L_X \sim 10^{36} 10^{37} \text{ erg/s}$
 - Type II Outburst:
 - Lasts longer than single orbital period
 - $L_X \gtrsim 10^{37} \text{ erg/s}$

Image Credit: Walt Feimer, NASA/Goddard Space Flight Center

S-CUBED: The Swift SMC Survey

- Survey of the Small Magellanic Cloud using Swift Observatory
- Designed to discover and monitor BeXRBs:
 - Weekly observing cadence
 - 142 observed tiles
 - ~60s exposures
 - Utilizes both UVOT and XRT
- 1900+ X-ray sources detected to date
- Several new BeXRBs found

The Search for Quiescent BeXRBs

- New Be/X-ray binaries are still regularly discovered in the SMC (see: Maitra et al., 2023)
 - Evidence suggests that the known BeXRB population of the galaxy is incomplete
- BeXRBs are primarily identified via X-ray outbursts and emission line spectroscopy
 - Not feasible for the entire S-CUBED database

How do you identify BeXRBs that have never gone into outburst?

We need a new method!

Archival Analysis Method

Candidate Identification

- Sources were filtered based on their X-ray properties in the **S-CUBED Database**:
 - Remove all sources not flagged as "Good"
 - \sim Remove all sources with a soft photon index (Γ > 1.5)
 - Keep all sources with no spectral fit

Candidate Identification

- Sources were filtered based on their X-ray properties in the **S-CUBED Database**:
 - Remove all sources not flagged as "Good"
 - \circ Remove all sources with a soft photon index (Γ > 1.5)
 - Keep all sources with no spectral fit
- Removed sources with known X-ray emitters nearby using **SIMBAD**:
 - Known/Candidate HMXBs, Active Galactic Nuclei, Young Stellar Objects, Supernova remnants

Candidate Identification

- Sources were filtered based on their X-ray properties in the **S-CUBED Database**:
 - Remove all sources not flagged as "Good"
 - \circ Remove all sources with a soft photon index (Γ > 1.5)
 - Keep all sources with no spectral fit
- Removed sources with known X-ray emitters nearby using **SIMBAD**:
 - Known/Candidate HMXBs, Active Galactic Nuclei, Young Stellar Objects, Supernova remnants
- Searched for bright stars (11.0 < B < 16.5) nearby using VizieR

Determining Stellar Parameters: Identifying Stars

Determining Stellar Parameters: Curve Fitting

$$F(v,R,T) = \pi \left(\frac{R_*}{D}\right)^2 \left(\frac{2hv^3}{c^2}\right) \left(\frac{1}{e^{\frac{hv}{kT}} - 1}\right)^2$$

Ultraviolet Variability

Candidate Sources

Companion Stellar Parameters

Source ID	Temperature (K)	Radius (R_{\odot})
1SCUBEDX J005606.0-722749	31500 ± 5900	3.9 ± 0.67
1SCUBEDX J010203.7-715130	16000 ± 3300	4.5 ± 1.0
1SCUBEDX J011535.0-731931	50000 ± 5800	5.62 ± 0.55
1SCUBEDX J003802.8-734458	12100 ± 410	15.3 ± 0.6
1SCUBEDX J005708.8-724202	15600 ± 4000	4.99 ± 1.44
Swift J010902.6-723710	21400 ± 2000	6.6 ± 0.67

Companion Stellar Parameters

UV Light Curves

UV Light Curves

The Outburst of Swift J010902.6-723710

X-Ray Light Curve

Pulsar Spin Period: 182s Decay time: ~77 Days

Multi-Wavelength Variability

Orbital Period: 60.623 days Size of Eclipsing Body: 3.3 R_{\odot}

Implications

- The eclipsing object must be a persistent accretion disk that surround the Neutron Star
 - Lack of secondary eclipse rules out a main sequence star
 - Size rules out Neutron Star or Exoplanet
 - Present in 26 years of OGLE data

Implications

- The eclipsing object must be a persistent accretion disk that surround the Neutron Star
 - Lack of secondary eclipse rules out a main sequence star
 - Size rules out Neutron Star or Exoplanet
 - Present in 26 years of OGLE data
- Third known BeXRB to demonstrate eclipsing behavior
 - LXP 168.8 (Maggi et al. 2013)
 - SXP 5.05 (Coe et al. 2015)

Implications

- The eclipsing object must be a persistent accretion disk that surround the Neutron Star
 - Lack of secondary eclipse rules out a main sequence star
 - Size rules out Neutron Star or Exoplanet
 - Present in 26 years of OGLE data
- Third known BeXRB to demonstrate eclipsing behavior
 - LXP 168.8 (Maggi et al. 2013)
 - o SXP 5.05 (Coe et al. 2015)
- Serves as direct confirmation of the Archival Analysis Method

Conclusions

- We establish a new method for the detection of Be/X-ray Binaries using a combination of Swift SMC Survey data and Archival IR-UV data
 - Relies on UV variability and SED-fitting of blackbody curves to SMC stars
- We argue for the detection of 6 new candidate Be/X-ray Binaries using this new method
- We present the confirmation of one of these systems via X-ray outburst
 - SXP 182 becomes the 3rd confirmed eclipsing BeXRB

Paper on the newly discovered SXP 182 is now on ArXiv!

Questions?

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**

S-CUBED Data Products

X-Ray Light Curve

- Identify outbursts
- Flux monitoring
- Upper limits from non-detections

X-Ray Image

- Source Position
- Source Error region
- Detection Flag

X-Ray Spectrum

- Fit to absorbed power law
- Column Density
- Photon Index