Wedge Impedance Analysis Program Documentation

Djamel Ouais and Hussain Alqahtani

November 26, 2024

Contents

1	Ove	erview	1
2	Key	Components	2
	2.1	Main Control Script (testscipt.m)	2
	2.2	Wave Field Components	2
			2
		2.2.2 Mathematical Support Functions	
3	Pro	gram Flow	3
	3.1	Initialization Phase	3
	3.2	Computation Phase	3
	3.3	Output Phase	3
4	Mat	thematical Foundation	4
	4.1	Wave Propagation	4
	4.2	Scattered Field	
	4.3	Impedance Boundary Conditions	
5	Usage Instructions		4
6	6 Conclusion		4

1 Overview

This documentation describes a MATLAB-based program designed for calculating acoustic impedance and wave fields around a wedge structure. The

program implements various mathematical functions to compute scattered and direct wave fields using complex acoustic calculations.

2 Key Components

2.1 Main Control Script (testscipt.m)

The main script initializes and controls the program execution with the following components:

- Global parameters initialization including:
 - Geometric parameters (r, ϕ, r', ϕ')
 - Wave parameters (θ_n, θ_0)
 - Physical constants (c = 340 m/s for speed of sound)
- Frequency range setup (20 Hz to 10 kHz)
- Wave field calculations and normalization
- Results visualization

2.2 Wave Field Components

The program consists of several specialized functions for different aspects of the wave field calculations:

2.2.1 Direct Field Calculations

- u_d.m: Direct wave field calculator
- u_ss.m: Source-source interaction computation
- u_sd.m: Source-diffraction interaction handler
- u_ds.m: Diffraction-source interaction computation
- u_dsw.m: Diffraction-source-wedge interaction calculator

2.2.2 Mathematical Support Functions

- A_n.m, M_n.m: Coefficient calculations
- P_1_m.m: Legendre polynomial implementations
- omega_n.m: Angular frequency calculations
- epsy_n.m, epsy_cap.m: Phase calculations
- g_small.m, h_small.m: Field calculation helper functions

3 Program Flow

The program follows a systematic approach to compute acoustic fields:

3.1 Initialization Phase

- 1. Global parameter setup
- 2. Geometric configuration definition
- 3. Material properties initialization

3.2 Computation Phase

- 1. Frequency range iteration (20 Hz 10 kHz)
- 2. Wave number calculation per frequency
- 3. Field computations:
 - Normal incidence field
 - Direct field
 - Scattered field components
 - Field combination

3.3 Output Phase

- 1. Results normalization
- 2. Frequency response plotting

4 Mathematical Foundation

The program implements complex acoustic theory including:

4.1 Wave Propagation

The wave equation in cylindrical coordinates:

$$\nabla^2 \Phi + k^2 \Phi = 0 \tag{1}$$

where k is the wave number and Φ is the velocity potential.

4.2 Scattered Field

The total field is composed of incident and scattered components:

$$\Phi_{\text{total}} = \Phi_{\text{incident}} + \Phi_{\text{scattered}} \tag{2}$$

4.3 Impedance Boundary Conditions

At the wedge surface:

$$\frac{\partial \Phi}{\partial n} + \beta \Phi = 0 \tag{3}$$

where β is the surface admittance and n is the normal direction.

5 Usage Instructions

To use the program:

- 1. Ensure all MATLAB files are in the same directory
- 2. Execute testscipt.m
- 3. Review the generated plots showing field ratio vs. frequency

6 Conclusion

This implementation provides a comprehensive solution for analyzing acoustic behavior around wedge-shaped structures. It combines theoretical acoustic models with numerical methods to provide accurate simulations of wave propagation and interaction phenomena.