BCS integrabl

p-wave pairing o fermions

phase transition phase diagraand duality

and duality vortices

ntegrabl p-wave pairing model

topology o the exact wavefuncti

a word on vortices

perspective quenching

conclusio

# Integrable p-wave superconductivity in 2d

Miguel Ibáñez Berganza (UAM/CSIC, Spain)

School of Mathematics and Physics University of Queensland, August 26th, 2010



with

J. R. Links (UQ)

G. Sierra (UAM/CSIC, Spain)

S-Y. Zhao (UQ)





integrable BCS

pairing of fermions a topologic

phase diagra and duality

integrabl p-wave pairing model

topology of the exact wavefunctio

a perspective quenching

conclusion

1 reminder of s-wave BCS theory BCS integrable BCS

- 2 p-wave pairing of fermions a topological phase transition phase diagram and duality vortices
- **3** integrable *p*-wave pairing model topology of the exact wavefunction a word on vortices
- 4 a perspective: quenching
- 5 conclusions

2*M* electrons, *L* energetic levels,  $\epsilon_k$  an interaction between zero-momentum pairs of electrons in spin singlet (phonon interaction)

$$H_P = \sum_{\mathbf{k}lpha} \epsilon_{\mathbf{k}} c^{\dagger}_{\mathbf{k}lpha} c_{\mathbf{k}lpha} - \sum_{\dot{\mathbf{r}}} c^{\dagger}_{\dot{\mathbf{r}}} c_{\dot{\mathbf{r}}}$$

$$g \sum_{\mathbf{k}\mathbf{k}'} \, c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$$



the mean field BCS solution:  $\Delta = g \sum_{\mathbf{k}'} \langle c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} \rangle$ :

$$H_{BCS} = \sum_{\mathbf{k}\alpha} \xi_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} - \sum_{\mathbf{k}} \left\{ c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} \Delta + \text{h.c.} \right\}$$

can be diagonalized [Schrieffer 1957]:

quasi-particle spectrum: 
$$E_{\mathbf{k}}^2 = \xi_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2$$
  
 $\Delta$  satisfies the gap equation:  $\Delta = g \sum_{\mathbf{k}'} \frac{\Delta}{2E_{\mathbf{k}}}$ 

- $H_{BCS}$  is not particle-conserving  $[H_{BCS}, \hat{N}] \neq 0$ . it acts on a Hilbert sp.:  $\mathscr{H} = \bigoplus_N \mathscr{H}_N$
- grand-canonical ensemble: the average number of particles is fixed  $\langle \hat{N} \rangle = N_0$  ( $\xi_k = \epsilon_k \mu$ ,  $\mu$  Lagrange multiplier)
- the ground state:  $|\psi 
  angle = \exp \sum_{f k} g_{f k} c_{{f k} \uparrow}^\dagger c_{-{f k} \downarrow}^\dagger |0 
  angle$
- $g(\mathbf{k}) = v(\mathbf{k})/u(\mathbf{k})$ , with:

$$v_{\mathbf{k}}^2 = rac{1}{2}\left(1 - rac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}}
ight) \qquad u_{\mathbf{k}}^2 = rac{1}{2}\left(1 + rac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}}
ight)$$

# fluctuations in the particle number

superconductivity in nanograins  $\sim$  5nm [Ralph, Black, Tinkham 1997] new phenomena: need for a description of pairing in the canonical ensemble

Anderson's conjecture [Anderson 1959]: superconductivity desappears when  $\Delta < d$ , level spacing

theoretical attempts to solve  $H_P$  in finite-N:

- number-conserving BCS [Braun, von Delf 1998]
- perturbative R.G. [Berger Halperin 1998]
- Lanczos up to L=23 [Mastellone et al 1998]
- DMRG up to L = 400 [Sierra, Dukelsky 1999]

the exact solution of the Pairing Hamiltonian [Richardson 1963] was then saved from oblivion

Much more efficient than Lanczos and DMRG, it was applied to the study of superconducting small grains [Sierra et al 2000]

reminder of s-wave BCS theory

integrable BCS p-wave pairing of

transition
phase diagra

vortices

pairing model topology of

a word on

perspective quenching

conclusio

# Richardson exact solution of the Pairing Hamiltonian [Richardson 1963]

the pairing Hamiltonian:

$$H_P = \sum_{\mathbf{k},\alpha} \xi_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} - g \sum_{\mathbf{k},\mathbf{k}'} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$$

is exactly solvable. how? some preliminaries:

in terms of the hard-core boson operators:

$$\left\{ \begin{array}{l} b_{\mathbf{k}} = c_{-\mathbf{k}\downarrow}c_{\mathbf{k}\uparrow} \\ n_{\mathbf{k}} = b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} \\ [b_{\mathbf{k}},b_{\mathbf{k}'}] = \delta_{\mathbf{k},\mathbf{k}'} \ (1-2n_{\mathbf{k}}) \end{array} \right.$$

it is (no unpaired electrons):

$$H_P = \sum_{\mathbf{k}} 2\xi_{\mathbf{k}} n_{\mathbf{k}} + g \sum_{\mathbf{k}\mathbf{k}'} b_k^{\dagger} b_{k'}$$

a general (unnormalized) state of 2M particles is:  $b_{\mathbf{k}_1}^\dagger \dots b_{\mathbf{k}_M}^\dagger | \mathrm{vac} \rangle$ .

# Richardson exact solution of the Pairing Hamiltonian (II)

an ansatz for the  $H_P$  eigenstates is proposed:  $|\psi\rangle=B_1^\dagger\dots B_M^\dagger|{\rm vac}\rangle$  where:

$$B_j^{\dagger} = \sum_{\mathbf{k}} \frac{1}{2\epsilon_k - E_j} \ b_{\mathbf{k}}^{\dagger}$$

a superposition of a Cooper pair in all the L levels, with a "wavefunction",  $\frac{1}{2\epsilon_k-E}$ , inspired in the single-pair problem. (in the s-p.p., the E's were the pair energies. here they are chosen such that  $H_P|\psi\rangle=E|\psi\rangle$ )

### We have [Richardson 1963]:

•  $|\psi\rangle$  is an eigenstate of  $H_P$  if the E's satisfy the M Richardson equations (Bethe Ansatz eqns.):

$$\frac{1}{g} - \sum_{k}^{L} \frac{1}{2\epsilon_{k} - E_{m}} + \sum_{n \neq m} \frac{2}{E_{m} - E_{n}} = 0$$

• the eigenvalues of  $H_P$  are  $E(g) = \sum_m E_m(g)$ 

# Richardson exact solution of the Pairing Hamiltonian (II)

an ansatz for the  $H_P$  eigenstates is proposed:  $|\psi\rangle=B_1^\dagger\dots B_M^\dagger|{\rm vac}\rangle$  where:

$$B_j^{\dagger} = \sum_{\mathbf{k}} \frac{1}{2\epsilon_k - E_j} b_{\mathbf{k}}^{\dagger}$$

a superposition of a Cooper pair in all the L levels, with a "wavefunction",  $\frac{1}{2\epsilon_k-E_j}$ , inspired in the single-pair problem. (in the s-p.p., the E's were the pair energies. Here they are chosen such that  $H_P|\psi\rangle=E|\psi\rangle$ .)

compare  $|\psi\rangle$  with the (number-projected) BCS mean-field trial state:

$$= \left[\sum_{k} g_{k} b_{k}^{\dagger}\right]^{M} |\text{vac}\rangle$$

# Richardson exact solution of the Pairing Hamiltonian (III)

about the *rapidities*  $E_m$ :

• 
$$E = \sum_{m=0}^{M} E_m$$

- $E_m \to \epsilon_m$ , m in a subset of  $\{1, \ldots, L\}$ , when  $g \to 0$
- some of them become complex conjugated pairs for larger g



$$N = 20, L = 40, \epsilon_k = k$$

$$M = 15, L = 62, 2D \{k\}$$

• for large g,  $|E_j| >> \epsilon_k$ .  $\prod_j B_j^{\dagger} \sim \left[\sum_k b_k^{\dagger}\right]^M$ , a bosonic condensate

integrable BCS

fermions a topologic phase

phase diagram and duality vortices

p-wave pairing model

the exact wavefunction

a word on vortices

quenciini

# Richardson exact solution of the Pairing Hamiltonian (V)

# a comparison with mean field:



# Richardson exact solution: applications

in the context of superconducting grains, Richardson exact solution accounts for the following facts:

- the parity effect in superconducting nanograins: unpaired electrons decouple from the interaction: the energy increases in odd-N grains
- BCS predicts an abrupt superconducting/fluctuation-dominated transition at a given  $d/\Delta$ , even for random  $\epsilon_k$  [Ambegaokar 1996] the exact solution predicts a smooth crossover: pairing correlation survive  $\forall d/\Delta$  [Sierra *et al.* 2000]
- as a consequence, the condensation energy:  $E_{\text{GS}} \langle FS | H_P | FS \rangle$  is always finite (a vanishing at a critical  $d/\Delta$  is predicted by mean-field treatments)

generalising BCS: the potential scatters spin components (V, p-wave),

$$H_P = \sum_{\mathbf{k}\alpha} \epsilon_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\alpha} c_{\mathbf{k}\alpha} - \sum_{\mathbf{k}\mathbf{k}'} \sum_{\alpha\alpha'} V_{\mathbf{k},\mathbf{k}'} c^{\dagger}_{\mathbf{k}\alpha} c^{\dagger}_{-\mathbf{k}\alpha'} c_{-\mathbf{k}'\alpha'} c_{\mathbf{k}'\alpha}$$

with order parameter:  $\Delta_{\mathbf{k};\alpha,\alpha'} = -\sum_{\mathbf{k'}} V_{\mathbf{k},\mathbf{k'}} \langle c_{-\mathbf{k'}\alpha} c_{\mathbf{k'}\alpha'} \rangle$  the mean-field Hamiltonian can be diagonalized. The gap equations:

$$\hat{\Delta}_{\mathbf{k}} = -\sum_{\mathbf{k}'} \frac{\hat{\Delta}_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'}}{2 E_{\mathbf{k}'}}, \qquad \hat{\Delta} = \left( \begin{array}{cc} \Delta_{\uparrow \uparrow} & \Delta_{\uparrow \downarrow} \\ \Delta_{\downarrow \uparrow} & \Delta_{\downarrow \downarrow} \end{array} \right)$$

the order parameter can be parametrised:  $\hat{\Delta}_{\mathbf{k}} = i(\boldsymbol{\sigma}\sigma_2).\mathbf{d}(\mathbf{k}), \quad \boldsymbol{\sigma}$ , Pauli  $\mathbf{d}$ , general triplet pairing:  $|\mathrm{spin}\rangle = d_x|1,x\rangle + d_y|1,y\rangle + d_z|1,z\rangle$   $\mathbf{d}$  is such that:

- $E_{\mathbf{k}}^2 = \epsilon_{\mathbf{k}}^2 + \mathbf{dd}^* \pm |\mathbf{d} \times \mathbf{d}^*|$
- $\mathbf{d}(\hat{R}\mathbf{k})$  as  $\hat{R}\mathbf{k}$
- **d** is a S = 1 (triplet) irrep. of  $SO(3)_S$ :  $\hat{R}$ **d** as  $e^{i\hat{R}\sigma}|\text{spin}\rangle$

# spin triplet pairing (II)

many possible  $\mathbf{d}(\mathbf{k})$ . some (local minima of  $\langle H_{BCS} \rangle$ ) are shown [Volovik 2003]:

| $\mathbf{d}(\mathbf{k})$             | corresponding<br><sup>3</sup> He phase | $\hat{\Delta}$                                                                              | pairing                           |
|--------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|
| $\mathbf{z}(k_x \pm ik_y)$           | Α                                      | $ \begin{pmatrix} 0 & k_X \pm ik_y \\ k_X \pm ik_y & 0 \\ -k_X + ik_y & k_Z \end{pmatrix} $ | $ 1,0 angle\perp\mathbf{k}$       |
| k                                    | В                                      | $\begin{pmatrix} -k_X + ik_y & k_z \\ k_z & k_X + ik_y \end{pmatrix}$                       | isotropic $\perp \mathbf{k}$      |
| $(\mathbf{x}+i\mathbf{y})(k_x+ik_y)$ | A1                                     | $\left(\begin{array}{ccc} k_X + ik_Y & 0 \\ 0 & 0 \end{array}\right)$                       | $ \uparrow\uparrow\rangle\perp k$ |

for the 
$$\mathbf{d}(\mathbf{k}) = (\mathbf{x} + i\mathbf{y})(k_x + ik_y)$$
 case:

- (spinless fermions,  $\uparrow\uparrow$ )  $\Delta(\mathbf{k}) = \Delta_0(k_x + ik_y)$
- symmetries of the normal phase:  $SO(2)_L \times SO(3)_S \times U(1)_N$  phase
- and of the sym. breaking phase:  $U(1)_L \times U(1)_S \times Z_2$

# spin triplet pairing (III)

possible realizations of the  $\Delta(\mathbf{k}) = \Delta_0(k_x + ik_y)$  state

- Stronthium Ruthenate Sr<sub>2</sub>RuO<sub>4</sub> [Mackenzie et al 2003]
- <sup>3</sup>He-A<sub>1</sub> phase "external magnetic field immediatly below the transition from the normal state" [Volovik 2003]
- superfluids of cold atoms in optical traps [Gurarie et al 2005]

BCS integrable

p-wave pairing of fermions

transition
phase diagrar
and duality

integrable p-wave pairing

topology of the exact wavefunction

a word on vortices

quenching

conclusion

mean-field 2D-Hamiltonian: 2M spinless electrons in L levels

$$H_{mf} = \sum_{\mathbf{k}}^{L} \xi_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} - \frac{1}{4} \sum_{\mathbf{k}}^{L} \left\{ c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger} \Delta_{\mathbf{k}} + \mathrm{h.c.} \right\}$$

such that the order parameter is:

$$\Delta_{\mathbf{k}} = (k_x - ik_y)\Delta_0, \qquad \Delta_0 = G\sum_{\mathbf{k}} (k_x + ik_y)\langle c_{-\mathbf{k}}c_{\mathbf{k}}\rangle$$

# $2D p_x + ip_y$ pairing (II)

 $H_{mf}$  can be diagonalized (s-wave/p-wave comparison):

quasi-particle spectrum:

$$E_{\mathbf{k}}^{2} = (\mathbf{k}^{2} - \mu)^{2} + \mathbf{k}^{2} |\hat{\Delta}|^{2}$$



$$\frac{1}{G} = \sum_{|\mathbf{k}|} \frac{\mathbf{k}^2}{2E_{\mathbf{k}}}$$
 (gap eqn.)

$$rac{1}{G}=\sum_{|{f k}|}rac{{f k}^2}{2E_{f k}}$$
 (gap eqn.) 
$$2M-L+G^{-1}=\mu\sum_{|{f k}|}rac{1}{2E_{f k}}$$
 (chem. pot. eqn.)

### a phase transition...

$$\begin{split} E_{\mathbf{k}} &= \sqrt{(\mathbf{k}^2 - \mu)^2 + \mathbf{k}^2} \; |\Delta_0|^2 \\ &|\psi\rangle = \left[ \sum_{\mathbf{k} \mathbf{k} > 0} g(\mathbf{k}) c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger} \right]^M |\text{vac}\rangle, \qquad g(\mathbf{k}) = \frac{2(E_{\mathbf{k}} - \mathbf{k}^2 + \mu)}{(k_x + ik_y)\Delta_0^*} \end{split}$$

when 
$$|\mathbf{k}| \to 0$$
  $g(\mathbf{k}) \sim \begin{cases} k_x - ik_y, & \mu < 0 \\ 1/(k_x + ik_y), & \mu > 0 \end{cases}$ 

the different behaviour of g implies a topological (non-Landau) phase transition at  $\mu=0$  [Read, Green 2000]

$$\mu = 0 \Rightarrow 2M = L - 1/G$$
 or  $2x = 1 - 1/g$ : the *Read-Green line* of the phase diagram  $(x = M/L, g = GL)$ 

$$g(\mathbf{k}) = \frac{2(E_{\mathbf{k}} - \mathbf{k}^2 + \mu)}{(k_x + ik_y)\Delta_0^*}$$

 $g(\mathbf{k})$  can be viewd as a  $S^2 \to S^2$  map

the winding number  $w = \frac{1}{\pi} \int \int d\text{Re}[g] \ d\text{Im}[g] \frac{1}{(1+|g|^2)^2}$  defines the homotopy class  $\pi(S^2) = \mathbb{Z}$ 

it turns out that:

| wavefunction              | w |
|---------------------------|---|
| $g(\mathbf{k}),  \mu < 0$ | 0 |
| s-wave $g(\mathbf{k})$    | 0 |
| $g(\mathbf{k}), \mu > 0$  | 1 |

g cannot be deformed continuously from w=0 to w=1: a discontinuity must occur at  $\mu=0$ 

w[g] in the W. C.-BCS is 01

the whole p. d. is independent on  $\{\mathbf{k}\}, \epsilon_{\mathbf{k}}$ !!

# the ground state phase diagram [Ibáñez et al,

2009

for 
$$\mu > 0$$
 and  $|\mathbf{k}| \to 0$ ,  $|\psi\rangle$  approaches the Moore-Read state of the FQHE [Read, Green 2000]:  $|MR\rangle = \left[\sum_{|\mathbf{k}|>0} \frac{1}{k_x + ik_y} c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}\right]^M |0\rangle$ 

morover, 
$$|\psi\rangle=|MR\rangle$$
  $\forall$  **k** if  $\Delta_0^2=4\mu$   $\Delta_0^2=4\mu\Rightarrow x=1-1/g$ , the *Moore-Read line* of the phase diagram for this state  $\langle H_{mf}\rangle=0$ !



BCS integrable

p-wave pairing of fermions

a topologica phase transition

phase diagram and duality

integrable p-wave

model topology o

a word on vortices

perspectiv quenching

conclusion

consider two states with filling fractions  $x_S$ ,  $x_W$ , both at g, such that

$$x_W + x_S = 1 - 1/g$$

they satisfy:

$$\mu_S = -\mu_W$$
 $\langle H_{mf} \rangle_S = \langle H_{mf} \rangle_W$ 
 $\Delta_S^2 = \Delta_W^2 - 4\mu_W$ 

- the Moore-Read line is dual to the vaccum
- the Read-Green line is self-dual

a vortex is a solution of the BdG equation

$$\begin{pmatrix} -\mu(\mathbf{r}) & \frac{i}{2}\{\Delta(\mathbf{r}), \partial_x + i\partial_y\} \\ \frac{i}{2}\{\Delta^*(\mathbf{r}), \partial_x - i\partial_y\} & \mu(\mathbf{r}) \end{pmatrix} \begin{pmatrix} u(\mathbf{r}) \\ v(\mathbf{r}) \end{pmatrix} = E \begin{pmatrix} u(\mathbf{r}) \\ v(\mathbf{r}) \end{pmatrix}$$

such that  $\Delta(\mathbf{r})=ie^{i\ell\varphi}|\Delta(r)|,\,\Delta(r)$  vanishing at  $r\to 0$ 

a Bogolubov transformation:  $\gamma_n = \int d\mathbf{r}(u_n^*(\mathbf{r})c_n(\mathbf{r}) + \nu_n^*(\mathbf{r})c_n^{\dagger}(\mathbf{r})), H_{mf} = \sum_E \gamma_E^{\dagger} \gamma_E$  the symmetry of  $H_{mf} = -\sigma_1 H_{mf}^* \sigma_1$  is such that solutions are paired:  $\gamma_E^{\dagger} = \gamma_{-E}$ 

- there always exist one  $E=0,\,\Delta({\bf r})$  bounded solution if  $\mu>0,\,\ell$  odd [Read, Green 2000]
- it is  $\gamma = \gamma^{\dagger}$  (a Majorana fermion)
- since #(0-modes) changes  $\pm 2$ , a single, isolated, 0-mode is topologically protected
- if several vortices at  $\mathbf{r}_j$ ,  $r_{jk} >> m/\Delta$ , several 0-modes,  $\{\gamma_j, \gamma_k\} = \delta_{j,k}$  exist, localized at  $\mathbf{r}_j$

# anyons, roughly speaking

"[triplet pairing] is the most elementary way in which a non-Abelian state can emerge as the ground-state of a many-body system" [Nayak et al 2008]

### main ingredients for this:

- with 2n vortices, n fermions  $c_n = \gamma_{2n-1} + i\gamma_{2n}$  can be created (a  $2^n$  degenerated ground state)
- brading *j*-th vortex around *k*-th vortex is equivalent to a  $2\pi$  rotation of  $\Delta \to e^{i2\pi}\Delta$
- since  $\Delta \to e^{i\varphi}\Delta$  as  $c \to e^{i\varphi/2}c$  and  $c^{\dagger} \to e^{-i\varphi/2}c^{\dagger}$ , the exchanging of j by k is equivalent to the change of the sign of one of them:

$$\gamma_k \to \gamma_j$$
 $\gamma_i \to -\gamma_k$ 

this is realized in the  $2^n$ -dimensional g.s. space by an operator  $U_{jk}$  (non-Abelian representation of the braiding)

- → topologically protected: the realization of the braiding is possible whenever there are zero modes (symmetry of the Hamiltonian) and
- $\rightarrow$  when  $\gamma$  changes phase under a braiding ( $Z_2$  symmetry of **d**)

BCS integrable

p-wave pairing of fermions

phase transition phase diagram and duality

and duality vortices

integrable p-wave pairing model

wavefunction a word on

a perspectiv quenching

conclusion

$$H_P = \sum_{\mathbf{k}\alpha} \epsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} - \frac{G}{4} \sum_{\mathbf{k}\mathbf{k}'} (k_x - ik_y) (k_x' + ik_y') c_{\mathbf{k}\alpha}^{\dagger} c_{-\mathbf{k}\alpha'}^{\dagger} c_{-\mathbf{k}'\alpha'} c_{\mathbf{k}'\alpha}$$

the exact solution:

$$|\psi\rangle = \prod_{j=1}^{M} C(y_j)|0\rangle, \quad C(y) = \sum_{|\mathbf{k}|>0} \frac{k_x - ik_y}{\mathbf{k}^2 - y} c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}$$

where  $y_m$  satisfy Bethe ansatz equations (2q = 1/g - 1 + 2x - 1/2):

$$-\frac{1}{2}\sum_{k=1}^{L}\frac{1}{y_{m}-\epsilon_{k}^{2}}-\frac{q}{y_{m}}+\sum_{i\neq m}^{M}\frac{1}{y_{m}-y_{j}}=0, \qquad m=1,\ldots,M$$

and 
$$E = (1 + G) \sum_{m}^{M} y_{m}$$

BCS integrable

p-wave pairing of fermions

phase transition phase diagram and duality vortices

integrable p-wave pairing model

topology of the exact wavefunctio

a word o

perspective quenching

conclusio





 $L = 64, M = 16, 2D \{k\} (\rightarrow)$ 

continuous lines are Gaudin arcs  $\Gamma$  such that  $(L, M \to \infty, x < \infty)$ :

$$\int_{\Omega} d\varepsilon \frac{\rho(\varepsilon)}{\varepsilon - y} - \frac{q}{y} - P \int_{\Gamma} |dy'| \frac{r(y')}{y' - y} = 0, \ \forall y \in \Gamma$$

where  $2\int_{\Omega\subset\mathbb{R}}d\varepsilon\,\rho(\varepsilon)=L$  and  $\int_{\Gamma}|dy|\;r(y)=M$ 

BCS integrable

p-wave pairing of fermions

transition
phase diagran
and duality
vortices

integrable p-wave pairing model

the exact wavefuncti

a perspectiv

conclucio



in the Moore-Read line,  $y_m = 0 \ \forall m$ 

$$|\psi\rangle = |MR\rangle = \left[\sum_{|\mathbf{k}|>0} \frac{1}{k_x + ik_y} c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}\right]^M |\text{vac}\rangle$$

equivalence of mean-field finite-M and exact solution descriptions in the Moore-Read line

$$|\psi_{mf}\rangle = \left[\sum_{|\mathbf{k}|>0} g_{MR}(\mathbf{k}) c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}\right]^{M} |\text{vac}\rangle$$

#### integrable p-wave pairing model

the exact wavefunctio

a perspective quenching

conclusio

## duality revisited



for two states  $|S\rangle$ ,  $|W\rangle$  in the S.P. and W.P. rspctvly, such that:

$$M_W + M_S = L - 1/G$$
, or:  
 $x_W + x_S = 1 - 1/g$   
(the m.f. duality relation)

#### it is:

- $M_W M_S$  of the  $M_W$  roots of  $|W\rangle$  @ $(x_W, g)$  are zero (Moore-Read pairs)
- the remaining  $M_S$  satisfy the same B. A. equations of the  $M_S$  roots of  $|S\rangle$  @ $(x_S,g)$
- this means (dressing)  $|W\rangle=\left[\sum_{|\mathbf{k}|>0}g_{MR}(\mathbf{k})c_{\mathbf{k}}^{\dagger}c_{-\mathbf{k}}^{\dagger}\right]^{M_W-M_S}|S\rangle$
- $|S\rangle$  and  $|W\rangle$  have the same energy: the duality observed in mean-field approximation

perspective quenching

conclusio

the  $M_W - M_S$  pairs with zero energy are @ the *dressing points*  $(x_W, g)$  g rational!!

non well-defined continuum limit  $M, L \to \infty$ 



 $L=24, M=8, 2D \{k\}, S. P. \& W. P. phases$  see the animation!

# winding numbers revisited

the exact wavefunctions for 1 and M pairs:

$$g_1(\mathbf{k}, y) = \frac{k_x + ik_y}{y - E},$$

$$g_M(\mathbf{k}_1, \dots, \mathbf{k}_M; E_1, \dots, E_M) = \sum_{\pi} \prod_{j=1}^{M} g_1(\mathbf{k}_{\pi(j)}, E_j)$$

to construct an  $S^2 \to S^2$  map from  $g_1$  we define [Ibáñez *et al* 2009]:  $\psi_M(\mathbf{k}; E_1, \dots, E_M) = g_M(\mathbf{k} + \mathbf{c}_1, \dots, \mathbf{k} + \mathbf{c}_M; E_1, \dots, E_M)$ , where  $\mathbf{c}_i$  are constants

we observe that, for this  $S^2 \to S^2$  map:

$$w = P$$

P being the number of zero energies of the state

dressing points in the W. P. phase & the Moore-Read line are the only topologically non-trivial points in the phase diagram

p-wave pairing of fermions

phase transition phase diagraand duality vortices

p-wave pairing model

the exact wavefunction

a word on vortices

perspective quenching

conclusio

the Bogolubov-DeGennes equations ( $H_{mf}$  Hamiltonian) are solved for a vortex which vanishes inside a core r > 0. u(r) is plotted in the W. C.-BCS, W. P. phases [Ibáñez et al 2009]:



different qalitative behaviour in different phases the Moore-Read boundary line plays a role also in this context

## perspective: quenching

integrability approach to quantum dynamics after a quench [Faribault et al 2009]

#### Bethe Ansatz approach to quench dynamics in the Richardson model

Alexandre Faribault, Pasquale Calabrese, and Jean-Sébastien Caux

AISTRACT. By instantaneously changing a global parameter in an extended updated and parameter in an extended updated state with alterwards undergo a consequilibrium unitary evolution whose description is extremely changed be lenging. A non-perturbative method giving a controlled error in the long time and the lenging of the length of the lenging of the length of the l

• quench from  $g_0$  to g. evolution:  $|\psi(t)\rangle=e^{itH_g}|\psi^\mu_{g_0}\rangle$  hence:

$$\begin{aligned} |\psi(t)\rangle &= \sum_{\nu} e^{itE_g^{\nu}} \langle \psi_g^{\nu} | \psi_{g_0}^{\mu} \rangle |\psi_g^{\nu} \rangle \\ \text{hence: } \langle O(t)\rangle &= \sum_{n,n'} e^{it(\omega_{n'}-\omega_n)} \langle \psi_g^n | \psi_{g_0}^{\mu} \rangle \langle \psi_{g_0}^{\mu} | \psi_g^{n'} \rangle \langle \psi_g^{n'} | O | \psi_g^{n} \rangle \end{aligned}$$

- the Bethe Ansatz approach allows for the computation of scalar products [Slanov 1989]. expectations values of operators are computed through the QISM [Kitanine *et al* 1999], [Ibáñez *et al* 2009]
- effective Hilbert space truncations

# quenchig: a work in progress



x = 1/4,  $g_0$  in the W. C.-BCS phase, g in the S. P. phase

reminder of s-wave BCS

BCS integrable

p-wave pairing of fermions

transition
phase diagram
and duality

p-wave pairing model

topology of the exact wavefunction

a perspective: quenching

conclusion

phase transition phase diagraand duality vortices

integrable p-wave pairing model

topology of the exact wavefunction

a word on vortices

perspectiv quenching

conclusions

- novel phenomenology: the topologically non-trivial Moore-Read boundary line separates the W. P. from the topologically trivial W. C.-BCS phase
- the dressing points present in the W. P. phase are the only topologically non-trivial points in the phase diagram
- the different topological properties of both "phases" reflects in the different vortex behavior exhibited by each of them