

```
def add5(x):
  return x+5
def dotwrite(ast):
   nodename = getNodename()
   label=symbol.sym_name.get(int(ast[0]),ast[0])
   print ' %s [label="%s' % (nodename, label),
  if isinstance(ast[1], str):
     CSE131: Computer Programming
      else:
        Chapter (1&2)
   else:
      print '"]; '
      children = []
      for in n, childenumerate(ast[1:]):
         children.append(dotwrite(child))
      print , ' %s -> { ' % nodename
      for in :namechildren
         print '%s' % name,
```


→inserting a character

```
<u>1</u> char ... = ...;
Linet
letter
       \xi_{\chi'} char L2 = 108; \xi_{\chi'} char L3 = 0 \times 6f;
write
between
\xi_{\chi'} char L1 = 'H';
 to print the character
       printf("%c", L1);
```

Formatting Examples:

```
3 \\
→ Prints
backslash
  ] /r/n
                         2]\t
                       -tap "Space of 8 letter"
  4]\"
                                                     ₹] %X
                        - to print Small letter
                                                    → to print Capital
letter
   double quotation
                         8] %d
  7] %0
                                                    3] %c
                                                   - to assign as
    octalist
                                                      character
  ١•  %f
                         ₩lf
                                                   12] %u
                                                   → to assign as
Unsigned int
 → to assign as
Float
                           double
  13] %10<sub>0</sub> f
Jo 100 1,

→ to Fix space for digits
```

-type casting:

Guse when you are determined to do a certain conversion

 E_X : a = (int)b , b = (char)c

- Logic Expression

$$\mathfrak{J} \circ R \longrightarrow Z = X | Y$$

$$Z \land N \bigcirc \longrightarrow Z = X \land Y$$

$$3 \times 0 \times 0 \longrightarrow Z = X^{Y}$$

$$A NOT \longrightarrow Z = ~X$$

3 NOT
$$Z = -X$$

Right $X = X >> 2$

Shift

Reft $X = X >> 2$

Problem - if you want change certain digits in binary integer

Solution - Use logical operation AND OR

void main()*	O 'main' must return 'int'
f main()	main must return int
int x = 0xA7;	I
int n;	
int y;	
	b/s/b/85.
	he bit position:"); A 'scanf' is deprecated: This function or variable may be unsaf-
search to , any	, - seatt to depreceded this indiction of the label any be disalled
// Find a way to	o set the bit number n to 1 and print the result
// Find a way to x = x (1< <n);< td=""><th>o set the bit number n to 1 and print the result</th></n);<>	o set the bit number n to 1 and print the result
x = x (1< <n); printf("y = %X\n" // Find a way to</n); 	n^* , y); o reset the bit number n to θ and print the result
x = x (1< <n); printf("y = %X\n</n); 	n^* , y); o reset the bit number n to θ and print the result

⇒ #define used to define certain constant or variable or message ... etc #define PI 3.141592

#include "math.h"

Mathematical Operation Let $x = 2.1$ and $z = 1.2$	C Example
$y = \sin(x)$	y = sin(x);
$y = \cos(x)$	y = cos(x);
$y = \tan(x)$	y = tan(x);
$y = \sin^{-1}(x)$	y = asin(x);
$y = \cos^{-1}(x)$	y = acos(x);
$y = \tan^{-1}(x)$	y = atan(x);
$y = \tan^{-1}(x/z)$	y = atan2(x, z); //to avoid dividing by 0 if b = 0
$y = \sqrt{x}$	y = sqrt(x);
$y = (x)^{3.22}$	y = pow(x, 3.22);
y = ln(x)	y = log(x);
$y = log_{10}(x)$	y = log10(x);
y = x = 2.1	y = abs(x); //if x is integer y = fabs(x); //if x is real
y = [x] = 3	y = ceil(x); -> vext number
y = [x] = 2	y = floor(x); - Previous number

- Mathematical Expressions

C Expression	Meaning
X = X + 9	Calculate X+9 then stores the result in X
X++;	Add one to X
X;	Subtract one from X
X = 10:	Add X+Y → 15
Y = 5;	then increment Y → 6
X = X + Y + x;	Store 15 in X
X = 10;	Increment Y → 6
Y = 5;	Add X+Y → 16
$X = X + \pm Y;$	Store 16 in X
X = 5;	Add 6 to $X \rightarrow X = 11$
X += 6;	Subtract 1 from $X \rightarrow X = 10$
X -= 1;	Multiply X by $2 \rightarrow X = 20$
X *= 2:	Divide X by $5 \rightarrow X = 4$
X /= 5;	

- Steps of operation:

$$\Rightarrow$$
 float Z = X/Y

1) Expression Calculation

2 Allocation

3 Assignment

Operator	Meaning
>	Greater
>=	Greater or equal
<	Less
<=	Less than or equal
	Equal
!=	Not equal
!	Not
	If the input is true the output is false
	if the input is false the output is true
&&	And
	Example: A>B && C>D
	If both sides are true the output is true, otherwise it gives false
	Or
	Example: A>B C>D
	If wither sides is true the output is true, otherwise it gives false

> Logical Operation:

Bitwise: acts on bits

1) if statement

2) Switch Statement

2 (00ps:


```
int n = 0; //initiation

for(;;) {
    printf("%d: Hello World\n", n);
    n++; //Increment
    if(n>10) break; //Condition
}
```

2) while:

```
int ...; condition

while (...)

{

body [include increment]
```

3) do while:

```
int ...;
do

{

body[include increment]
}

while(...);
```

3] goto > basic statment of loops