定义

溶解于水时释放出的阳离子全部是氢离子 (H^+) 的化合物。即:酸 \longrightarrow H^+ +酸根离子 $(\text{如SO}_4{}^{2-}, \text{PO}_4{}^{3-}, \text{Cl}^-$ 等)。

硫酸氢钠 (NaHSO4) 属于盐。

命名

- 含氧酸: 一般命名为某酸, 如硫酸 (H₂SO₄),磷酸 (H₃PO₄)等。
- 无氧酸: 命名为某酸, 如氢氟酸 (HF) ,氢溴酸 (HBr) 等。

强酸和弱酸

- 强酸:如高氯酸 (HClO₄),氢碘酸 (HI),氢溴酸 (HBr), 盐酸 (HCl), 硫酸 (H₂SO₄), 硝酸 (HNO₃)
 等。
- 弱酸: 如<mark>乙酸 ¹ (CH₃COOH) ,碳酸 (H₂CO₃) ,</mark>磷酸 (H₃PO₄) , 亚硫酸 (H₂SO₃) 等。

常见的酸

- 盐酸
 - 。 化学式: HCl
 - 颜色、状态: 无色透明液体,有强烈的刺鼻味
 - 。 性质: 浓盐酸具有<mark>挥发性,打开装有浓盐酸的试剂瓶瓶盖,可看到瓶口有白雾</mark> ²
 - 溶解性: 极易溶于水 (1:500)
 - 用途: <mark>金属表面除锈</mark>; 制造药物 (如盐酸麻黄素、氯化锌等) 。
- 硫酸 (化工之母)

汽车用铅酸蓄电池中含有硫酸。

- 化学式: H₂SO₄
- 颜色、状态: 无色、黏稠的油状液体
- 性质:
 - 脱水性(腐蚀性):浓硫酸有<mark>强烈的腐蚀性</mark>,能将纸张、木材、布料、皮肤³中的氢、氧元素<mark>按水的组成比(2:1)脱去</mark>
 - 。 吸水性: 实验室常用来做干燥剂,用来干燥<mark>非碱性气体</mark> (如 $O_2,H_2,CO_2,SO_2,CO,O_2,CH_4,N_2,HCl$ 等)
- 稀释:稀释浓硫酸时,应把浓硫酸沿器壁缓慢注入水中,并用玻璃棒不断搅拌⁴,这样可以利用水的高比热容,减低因高温沸腾使酸溅出的风险;

酸入水的原因:<mark>如果将水注入浓硫酸,由于水的密度较小,水会浮在浓硫酸表面,溶解时放出的热</mark> 能使水立刻沸腾,使硫酸液向四周飞溅。

用途: 生产化肥、农药、火药、燃料以及冶炼金属、精炼石油和金属除锈等

生活中其他常见的酸

硝酸(HNO_3),乙酸 5 (CH_3COOH ,食醋的主要成分,生活中可用于除水壶中的水垢),柠檬酸($C_6H_8O_7$,可在橙和柠檬等水果中找到),甲酸(HCOOH,蚁酸的主要成分),抗血环酸($C_6H_8O_6$,又称维生素 C,可在水果中找到),单宁酸($C_{76}H_{52}O_{46}$,又称鞣酸,可在茶中找到),酒石酸($C_4H_6O_6$,可在葡萄中找到),苯甲酸(C_6H_5COOH ,可在蚝油中找到)。

酸的化学性质 (酸五条)

- 与酸碱指示剂作用: 酸能使紫色石蕊溶液变成红色, 不能使无色酚酞溶液变色 6;

金属	现象	反应的化学方程式(稀盐酸)	反应的化学方程式(稀硫酸)	
镁	有气泡生成	$\mathrm{Mg} + 2\mathrm{HCl} = \mathrm{MgCl}_2 + \mathrm{H}_2\uparrow$	$\mathrm{Mg} + \mathrm{H_2SO_4} = \mathrm{MgSO_4} + \mathrm{H_2} \uparrow$	
铝	有气泡生成	名成 $2\mathrm{Al} + 6\mathrm{HCl} = 2\mathrm{AlCl}_3 + 3\mathrm{H}_2$ \uparrow $2\mathrm{Al} + 3\mathrm{H}_2\mathrm{SO}_4 = \mathrm{Al}_2(\mathrm{SO}_4)$		
锌	有气泡生成	$\mathrm{Zn} + 2\mathrm{HCl} = \mathrm{ZnCl}_2 + \mathrm{H}_2 \uparrow$	$Zn + H_2SO_4 = ZnSO_4 + H_2 \uparrow$	
铁	有气泡生 成,溶液从 无色变成浅 绿色	$\mathrm{Fe} + 2\mathrm{HCl} = \mathrm{FeCl_2} + \mathrm{H_2}\uparrow$	${ m Fe} + { m H_2SO_4} = { m FeSO_4} + { m H_2} \uparrow$	

与金属氧化物反应:酸+金属氧化物 → 盐+水(复分解反应)

金属 氧化 物	现象	反应的化学方程式(稀盐酸)	反应的化学方程式(稀硫酸)
氧化铜	黑色固体逐 渐消失,溶 液由无色变 成蓝色	$\mathrm{CuO} + 2\mathrm{HCl} = \mathrm{CuCl_2} + \mathrm{H_2O}$	$\mathrm{CuO} + \mathrm{H_2SO_4} = \mathrm{CuSO_4} + \mathrm{H_2O}$
氧化 铁 (铁 锈)	黑色固体 (铁锈)逐 渐消失,溶 液由无色变 成黄色	$\mathrm{Fe_2O_3} + 6\mathrm{HCl} = 2\mathrm{FeCl_3} + 3\mathrm{H_2O}$	${ m Fe_2O_3} + 3{ m H_2SO_4} = { m Fe_2(SO_4)_3} + 3{ m H_2O}$
氧化 铝	白色固体逐 渐消失	$\mathrm{Al_2O_3} + 6\mathrm{HCl} = 2\mathrm{AlCl_3} + 3\mathrm{H_2O}$	${ m Al_2O_3 + 3H_2SO_4 = Al_2(SO_4)_3 + 3H_2O}$

- 与 可溶性 碱发生反应:酸+碱 → 盐+水 (复分解反应)
 - \circ NaOH + HCl = NaCl + H₂O
 - $\circ 2 \text{NaOH} + \text{H}_2 \text{SO}_4 = \text{Na}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}_4$
 - \circ Ca(OH)₂ + 2 HCl = CaCl₂ + 2 H₂O
 - $\circ \ Ca(OH)_2 + H_2SO_4 = CaSO_4 + 2H_2O$
- 与某些盐发生反应:
 - 酸+盐→新酸+新盐(复分解反应)
 - $AgNO_3 + HCl = AgCl \downarrow + HNO_3$
 - $\blacksquare BaCl_2 + H_2SO_4 = BaSO_4 \downarrow + 2HCl$
 - 稀酸 + 碳酸盐 \longrightarrow 新盐 + $H_2O + CO_2 \uparrow$ (复分解反应)

- $\blacksquare \ \operatorname{Na_2CO_3} + 2\operatorname{HCl} = 2\operatorname{NaCl} + \operatorname{H_2O} + \operatorname{CO_2} \uparrow$
- $CaCO_3 + 2HCl = CaCl_2 + H_2O + CO_2 \uparrow$
- - $NaHCO_3 + HCl = NaCl + H_2O + CO_2 \uparrow$
- 特殊的方程式

酸	对反应方程式的描述	化学方程式	
醋酸	现代家庭中常用大理石制作厨房的灶台,若不慎将食醋(主要成分用HAc表示)滴在灶台上,台面会失去光泽,变得粗糙的原因 ⁷	$ ext{CaCO}_3 + 2 ext{HAc} = ext{Ca}(ext{Ac})_2 + ext{H}_2 ext{O} + ext{CO}_2 \uparrow$	
醋酸	醋酸除铁锈	$6\mathrm{CH_3COOH} + \mathrm{Fe_2O_3} = 2\mathrm{Fe}(\mathrm{CH_3COO})_3 + 3\mathrm{H_2O}$	
醋酸	醋酸和铁反应	$2\mathrm{CH_3COOH} + \mathrm{Fe} = \mathrm{Fe}(\mathrm{CH_3COO})_2 + \mathrm{H_2}\uparrow$	

碱

定义

在水溶液中可以电离出氢氧根离子(OH^-)并且不产生其它阴离子的化合物。即:碱 \longrightarrow 金属离子 (铵根离子) $+OH^-$

碱式碳酸铜 $(Cu_2(OH)_2CO_3)$ 属于盐, 氨水 $(NH_3 \cdot H_2O)$ 属于碱。

强碱和弱碱

- 强碱: 如氢氧化钾(KOH])、氢氧化钠(NaOH)、氢氧化钙[Ca(OH)2]、氢氧化钡[Ba(OH)2]等
- 弱碱: 如氢氧化铁[Fe (OH) 3]、氢氧化镁[Mg (OH) 2]、氨水 (NH3·H2O) 等

常见的碱

- 氢氧化钠 (烧碱、火碱、苛性钠)
 - 颜色、状态:白色、片状或颗粒固体
 - 性质:
 - 溶解性:<mark>易溶于水;溶于水</mark>时放出大量的<mark>热</mark>量;
 - 吸水性: 易吸收空气中的水分而潮解;
 - 腐蚀性: 具有极强的腐蚀性
 - 用途:广泛应用于制取肥皂,以及石油、造纸、纺织和印染等工业;生活中用来除油污;炉具清洁剂的主要成分;实验室用来作干燥剂;
 - 能干燥的气体: 非酸性气体 (如O₂,H₂,,CO,O₂,CH₄,N₂,NH₃)
- 氢氧化钙 (熟石灰、消石灰)
- 化学式: Ca(OH)₂
 - 颜色、状态:白色、粉末状物质
 - 性质:
 - 溶解性: 微溶于水;溶解度随温度的升高而减小;

■ 腐蚀性: 具有较强的腐蚀性

○ 用途: <mark>砌墙, 粉刷墙壁; 刷在树木上防止冻伤、防止害虫生卵; 与硫酸铜配置波尔多液; 改良</mark>

酸性土壤

碱的化学性质 (课本四条, 补两条)

使酸碱指示剂变色:碱(可溶性碱)使紫色石蕊试液变蓝,无色酚酞试液变红;

和酸发生中和反应:酸+碱 → 盐+水

强碱+强酸 → 盐 (水溶液呈中性) +水

 $\circ \text{NaOH} + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$

强碱+弱酸 → 盐 (水溶液呈碱性) +水

 \circ NaOH + H₂CO₃ = Na₂CO₃ + H₂O

弱碱+强酸 → 盐 (水溶液呈酸性) +水

 \circ NH₃·H₂O + HCl = NH₄Cl + H₂O

和盐发生复分解反应:碱(可溶) + 盐(可溶) → 新碱 + 新盐

$$\circ$$
 Ba(OH)₂ + K₂SO₄ = BaSO₄ \downarrow + 2 KOH

$$\circ 2 \operatorname{NaOH} + \operatorname{CuSO}_4 = \operatorname{Cu} (\operatorname{OH})_2 \downarrow + \operatorname{Na}_2 \operatorname{SO}_4$$

● 和非金属氧化物反应:碱(可溶) +某些非金属氧化物 → 盐+水

$$\circ \operatorname{Ca(OH)_2} + \operatorname{CO_2} = \operatorname{CaCO_3} \downarrow + \operatorname{H_2O}$$

$$\circ$$
 Ca(OH)₂ + SO₂ = CaSO₃ \downarrow + H₂O

$$\circ$$
 Ca(OH)₂ + SO₃ = CaSO₄ + H₂O

$$\circ$$
 2 NaOH + CO₂ = Na₂CO₃ + H₂O

$$\circ \ 2\operatorname{NaOH} + \operatorname{SO}_2 = \operatorname{Na}_2\operatorname{SO}_3 + \operatorname{H}_2\operatorname{O}$$

$$\circ \ 2\operatorname{NaOH} + \operatorname{SO}_3 = \operatorname{Na}_2\operatorname{SO}_4 + \operatorname{H}_2\operatorname{O}$$

•
$$4 \text{ NaOH} + C = \text{Na}_4 C + 2 \text{ H}_2 \uparrow + 2 \text{ O}_2 \uparrow$$

和铵盐反应:碱+铵盐 → NH₃ ↑ +新盐

$$\circ \text{ Ca(OH)}_2 + (\text{NH}_4)_2 \text{SO}_4 = \text{CaSO}_4 + 2 \text{NH}_3 \uparrow + 2 \text{H}_2 \text{O}_4$$

• $Ca(OH)_2 + 2NH_4Cl = CaCl + 2NH_3 \uparrow + 2H_2O$

中和反应

定义

酸与碱作用生成盐和水的反应,叫做中和反应。

中和反应属于复分解反应,但不属于四大基本反应;

中和反应放热;

中和反应一定生成盐和水;

微观实质

酸中的 H^+ 和碱中的 OH^- 结合生成<mark>水分子</mark>。

应用

- 改良土壤的酸碱性,如用熟石灰处理酸性土壤;
 - $\circ \ \mathrm{Ca(OH)_2} + \mathrm{H_2SO_4} = \mathrm{CaSO_4} + 2\,\mathrm{H_2O}$
- 处理废水, 如用熟石灰处理硫酸厂的污水, 用硫酸处理印染厂的废水;
 - $\circ \ \mathrm{Ca(OH)_2} + \mathrm{H_2SO_4} = \mathrm{CaSO_4} + 2\,\mathrm{H_2O}$
 - $\circ 2 \text{NaOH} + \text{H}_2 \text{SO}_4 = \text{Na}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}_4$
- 用于医药,如胃酸过多服用含有氢氧化铝(氢氧化镁、小苏打)的药物;
 - $\circ Al(OH)_3 + HCl = AlCl_3 + 3H_2O$
 - $\circ Mg(OH)_2 + 2HCl = MgCl_2 + 2H_2O$
 - $\circ \ \operatorname{NaHCO_3} + \operatorname{HCl} = \operatorname{NaCl} + \operatorname{H_2O} + \operatorname{CO_2} \uparrow$

溶液酸碱性、酸碱度

酸碱度的定义

溶液的酸碱性强弱程度叫做酸碱度,常用pH来表示。

酸碱度标尺

pH<7,溶液呈酸性, pH越小, 酸性越强;

pH=7,溶液呈中性;

pH>7,溶液呈碱性, pH越大, 碱性越强;

溶液pH测定

用玻璃板蘸取少量待测液滴在pH试纸上,将试纸呈现的颜色与标准比色卡对照,读出待测液的pH;

pH试纸不能直接进入待测液⁸;

pH试纸不能用水润湿再测量 ⁹ ;

pH试纸<mark>读出来的pH值为**整数**,**没有小数**;</mark>

半分钟内对照并读出pH值;

pH的应用

- 化工生产中, 许多反应反应都必须在一定pH的溶液里才能进行;
- 农业生产中,通过调节pH来改良土壤酸碱性;
- 通过检测雨水pH, 了解空气污染情况, 以便采取必要措施;

pH<5.6的雨[^10]称为酸雨。

• 通过测定人体体液的pH,帮助人们了解身体健康状况;

注释

рН	< 0	0-8.2	8.2-12.0	>12.0
条件	强酸性	酸性、近中性	碱性	强碱性
颜色	橙黄色	无色	桃红色	无色
图片				

- 1. 尽管乙酸是一种弱酸,但是它具有腐蚀性,其蒸汽对眼和鼻有刺激性作用,闻起来有一股刺鼻的酸臭味。 😢
- 2. 浓盐酸挥发出的HCl气体与空气中的水蒸气结合形成盐酸小液滴。 €
- 3. 三者都是由含碳、氢、氧等元素组成的化合物 ↩
- 4. 加快热量散失,防止液体暴沸。 ↔
- 5. 乙酸,也叫醋酸、冰醋酸,一般情况下称为"醋酸",但是纯正旦近乎无水的乙酸(含水量1%以下)称为"冰醋酸"。 👱
- 6. 酚酞是一种弱有机酸,在pH < 8.2的溶液里为无色的内酯式结构,当pH > 8.2时为粉红色的醌式结构,是一种常用的酸碱指示剂。酚酞的醌式或醌式酸盐,在碱性介质中很不稳定,它会慢慢地转化成无色羧酸盐式;遇到较浓的碱液,会立即转变成无色的羧酸盐式。所以,酚酞试剂滴入浓碱液时,酚酞开始变红,很快红色退去变成无色。酚酞在pH小于8.2到0时为无色,在强酸体中显示橙黄色。如最上面的图所示: 😅
- 7. 来源: 2018年广西北部湾经济区22题第 (3) 问 ↔
- 8. 会污染待测液。 ↩
- 9. 有误差. ←