Řešiče

Pro binární CSP

Backtracking

Jednoduché DFS, v každém kroce zkontrolujeme podmínky, pokud jsem nějakou porušili, vrátíme se zpátky

AC-3

DEF Hrana z V_i do V_j konzistetní, pokud platí $\forall x \in D_i \exists y \in D_j : c(V_i = x, V_j = y)$ (c jakože correct, neporušuje žádnou podmínku) a zároveň V_j, V_i je konzistentní

O CSP řekneme, že je že hranově konzistentní, pokud je každá jeho hrana konzistentní.

- Snažím se jenom zredukovat domény jednotlivých hran
- 1. dokud fronta není prázdná $(V_i, V_j) = pop(\text{fronta})$
- 2. Odstraním všechny nekonzistence mezi (V_i, V_j)
- 3. Pokud se mi nějaké podařilo odstranit, přidám všechny $(V_i,*)$ do fronty
- Odstranňování nekonzistentních hran
- 1. pro všechna $x \in D_i$, pokud neexistuje proměnná $y \in D_j$, která by splňovala podmínky, x odstraním
- 2. return
- Vyberu libovolné proměnné

MAC

Maintaining Arc Consistenci: Backtrack + AC

Velká myšlenka: Když přiřadím proměnnou, kouknu se na všechny její podmínky a odstraním takové proměnné, abych zachoval hranovou konzistenci

Převod na nebinární CSP

vytvoříme bipartní graf, na jedné straně proměnné a na druhé jejich domény. Vytvoříme maximální párování. Z domén odstraníme ty přiřazení, které nejsou v maximálním párování.