Moment cinétique

Mécanique Quantique

Hossein Rahimzadeh 8/26/2008

Moment cinétique

En mécanique classique	En mécanique quantique
Moment cinétique	Moment cinétique orbital
$\mathbf{L} = \mathbf{r} \times \mathbf{P}$	$\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{P}}$
Pas d'équivalent	Moment cinétique intrinsèque (spin)
	$\hat{\mathbf{S}}$
Pas d'équivalent	Moment cinétique général
	$\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$

Représentation en fonction de des coordonnées spatiales

Moment cinétique orbital L	Moment cinétique intrinsèque (spin) Ŝ	Moment cinétique général Ĵ
Représentation dans (x, y, z)	Pas de représentation spatiale	Pas de représentation spatiale
Représentation dans (r, θ, ϕ)		

Représentation de moment cinétique orbital en fonction de des coordonnées cartésienne

$$\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{P}} = \begin{pmatrix} \hat{L}_{x} & \hat{L}_{y} & \hat{L}_{z} \\ \hat{x} & \hat{y} & \hat{z} \\ \hat{P}_{x} & \hat{P}_{y} & \hat{P}_{z} \end{pmatrix}$$

Alors:

Les composantes de l'opérateur $\hat{\mathbf{L}}$

$$\hat{L}_{x} = \hat{y}\hat{P}_{z} - \hat{z}\hat{P}_{y} = \hat{y}\frac{\hbar}{i}\frac{\partial}{\partial z} - \hat{z}\frac{\hbar}{i}\frac{\partial}{\partial y} = \frac{\hbar}{i}\left(\hat{y}\frac{\partial}{\partial z} - \hat{z}\frac{\partial}{\partial y}\right)$$

$$\hat{L}_{y} = \hat{z}\hat{P}_{x} - \hat{x}\hat{P}_{z} = \hat{z}\frac{\hbar}{i}\frac{\partial}{\partial x} - \hat{x}\frac{\hbar}{i}\frac{\partial}{\partial z} = \frac{\hbar}{i}\left(\hat{z}\frac{\partial}{\partial x} - \hat{x}\frac{\partial}{\partial z}\right)$$

$$\hat{L}_z = \hat{x}\hat{P}_y - \hat{y}\hat{P}_x = \hat{x}\frac{\hbar}{i}\frac{\partial}{\partial y} - \hat{y}\frac{\hbar}{i}\frac{\partial}{\partial x} = \frac{\hbar}{i}\left(\hat{x}\frac{\partial}{\partial y} - \hat{y}\frac{\partial}{\partial x}\right)$$

Opérateur \hat{L}^2 :

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$$

Les opérateurs de transitions \hat{L}_{+} et \hat{L}_{-} :

$$\hat{L}_{+} = \hat{L}_{x} + i\hat{L}_{y}$$

$$\hat{L}_{-} = \hat{L}_{x} - i\hat{L}_{y}$$

Donc,

$$\hat{L}_x = \frac{\hat{L}_+ + \hat{L}_-}{2}$$

$$\hat{L}_{y} = \frac{\hat{L}_{+} - \hat{L}_{-}}{2i}$$

Représentation de moment cinétique orbital en fonction des coordonnées sphérique

Sans calculs:

$$\hat{L}_{x} = \frac{\hbar}{i} \left(-\sin\phi \frac{\partial}{\partial \theta} - \cot\theta \cos\phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_{y} = \frac{\hbar}{i} \left(\cos \phi \frac{\partial}{\partial \theta} - \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi}$$

$$\hat{L}_2 = -\hbar^2 \left(\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$$

$$\hat{L}_{+} = \hbar e^{i\phi} \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) \hat{L}_{-} = \hbar e^{-i\phi} \left(-\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)$$

En résumé:

Opérateur	définition	En coordonnées cartésienne (x, y, z)	En coordonnées sphérique (r, θ, ϕ)
$\hat{L}_{_{x}}$	$\hat{y}\hat{P}_z - \hat{z}\hat{P}_y$	$\frac{\hbar}{i} \left(\hat{y} \frac{\partial}{\partial z} - \hat{z} \frac{\partial}{\partial y} \right)$	$\frac{\hbar}{i} \left(-\sin\phi \frac{\partial}{\partial \theta} - \cot\theta \cos\phi \frac{\partial}{\partial \phi} \right)$
$\hat{L}_{_{y}}$	$\hat{z}\hat{P}_x - \hat{x}\hat{P}_z$	$\frac{\hbar}{i} \left(\hat{z} \frac{\partial}{\partial x} - \hat{x} \frac{\partial}{\partial z} \right)$	$\frac{\hbar}{i} \left(\cos \phi \frac{\partial}{\partial \theta} - \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$
\hat{L}_{z}	$\hat{x}\hat{P}_{y}-\hat{y}\hat{P}$	$\frac{\hbar}{i} \left(\hat{x} \frac{\partial}{\partial y} - \hat{y} \frac{\partial}{\partial x} \right)$	$\frac{\hbar}{i}\frac{\partial}{\partial \phi}$
\hat{L}^2	$\hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$	Pas besoin	$-\hbar^2 \left(\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$
$\hat{L}_{\scriptscriptstyle{+}}$	$\hat{L}_x + i\hat{L}_y$	Pas besoin	$\hbar e^{i\phi} \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)$
\hat{L}_{-}	$\hat{L}_{x}-i\hat{L}_{y}$	Pas besoin	$\hbar e^{-i\phi} \left(-\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)$

Les composantes de $\hat{\mathbf{L}}$ ainsi que les composantes de $\hat{\mathbf{r}}$ et de $\hat{\mathbf{P}}$ sont Hermitiennes :

Par exemple :

$$\hat{L}_{x}^{\dagger} = \left(\hat{y}\hat{P}_{z} - \hat{z}\hat{P}_{y}\right)^{\dagger}$$

$$= \left(\hat{y}\hat{P}_z\right)^{\dagger} - \left(\hat{z}\hat{P}_y\right)^{\dagger}$$

$$=\hat{P}_{z}^{\dagger}\hat{y}^{\dagger}-\hat{P}_{v}^{\dagger}\hat{z}^{\dagger}$$

$$=\hat{P}_z\hat{y}-\hat{P}_y\hat{z}$$

$$=\hat{y}\hat{P}_z-\hat{z}\hat{P}_y$$

$$=\hat{L}_{r}$$

Ainsi:

$$\widehat{L}_x^{\ \dagger} = \widehat{L}_x \ , \ \widehat{L}_y^{\ \dagger} = \widehat{L}_y \ , \ \widehat{L}_z^{\ \dagger} = \widehat{L}_z$$

L'opérateur \hat{L}^2 est Hermitien :

$$\hat{L}^{2\dagger} = \hat{L}^2$$

Les opérateurs de transitions $\hat{L}_{\!\scriptscriptstyle +}$ et $\hat{L}_{\!\scriptscriptstyle -}$ ne sont pas Hermitiens mais :

$$\hat{L}_{\!\scriptscriptstyle{+}}^{\dagger} = \hat{L}_{\!\scriptscriptstyle{-}}^{} \; , \; \hat{L}_{\!\scriptscriptstyle{-}}^{\dagger} = \hat{L}_{\!\scriptscriptstyle{+}}^{}$$

Les relations de commutation :

Les relations de commutation entre les composantes de $\hat{\boldsymbol{r}}$ et $\hat{\boldsymbol{P}}$:

$$\begin{bmatrix} \hat{x}, \hat{p}_x \end{bmatrix} = i\hbar \qquad \begin{bmatrix} \hat{x}, \hat{p}_y \end{bmatrix} = 0 \qquad \begin{bmatrix} \hat{z}, \hat{p}_x \end{bmatrix} = 0$$
$$\begin{bmatrix} \hat{y}, \hat{p}_x \end{bmatrix} = 0 \qquad \begin{bmatrix} \hat{y}, \hat{p}_y \end{bmatrix} = i\hbar \qquad \begin{bmatrix} \hat{y}, \hat{p}_z \end{bmatrix} = 0$$
$$\begin{bmatrix} \hat{z}, \hat{p}_x \end{bmatrix} = 0 \qquad \begin{bmatrix} \hat{z}, \hat{p}_y \end{bmatrix} = 0 \qquad \begin{bmatrix} \hat{z}, \hat{p}_z \end{bmatrix} = i\hbar$$

Les relations de commutation entre les composantes de $\hat{\mathbf{L}}\,$:

$$\left[\hat{L}_{x},\hat{L}_{y}\right]=i\hbar\hat{L}_{z},\left[\hat{L}_{y},\hat{L}_{z}\right]=i\hbar\hat{L}_{x},\left[\hat{L}_{z},\hat{L}_{x}\right]=i\hbar\hat{L}_{y}$$

Les relations de commutation entre les composantes de $\hat{\mathbf{L}}$ et \hat{L}^2 :

$$\left[\hat{L}_x, \hat{L}^2\right] = 0$$
, $\left[\hat{L}_y, \hat{L}^2\right] = 0$, $\left[\hat{L}_z, \hat{L}^2\right] = 0$

Les relations de commutation entre $\hat{L}_{\!_{+}}$ et $\hat{L}_{\!_{-}}$:

$$\left[\hat{L}_{+},\hat{L}_{-}\right]=2\hbar\hat{L}_{z}$$

Les relations de commutation entre $\hat{L}_{\!_{+}}$ et $\hat{L}_{\!_{-}}$ et $\hat{L}^{\!_{2}}$:

$$\left[\hat{L}_{+},\hat{L}^{2}\right]=0, \left[\hat{L}_{-},\hat{L}^{2}\right]=0$$

Les relations de commutation entre $\hat{L}_{\!_{+}}$ et $\hat{L}_{\!_{-}}$ et $\hat{L}_{\!_{z}}$:

$$\left[\hat{L}_{z},\hat{L}_{-}\right] = -\hbar\hat{L}_{-} \quad , \quad \left[\hat{L}_{z},\hat{L}_{+}\right] = +\hbar\hat{L}_{+}$$

Les équations aux valeurs propres :

$$\hat{L}^2 | l \quad m \rangle = \hbar^2 l(l+1) | l \quad m \rangle$$

$$\hat{L}_{z}|l \quad m\rangle = \hbar m|l \quad m\rangle$$

$$\begin{split} \hat{L}_z & \big| l \quad m \big\rangle = \hbar m \big| l \quad m \big\rangle \\ \\ \hat{L}_+ & \big| l \quad m \big\rangle = \hbar \sqrt{l(l+1) - m(m+1)} \, \big| l \quad m+1 \big\rangle \\ \\ \hat{L}_- & \big| l \quad m \big\rangle = \hbar \sqrt{l(l+1) - m(m-1)} \, \big| l \quad m-1 \big\rangle \end{split}$$

$$\hat{L}_{-}|l \quad m\rangle = \hbar\sqrt{l(l+1) - m(m-1)}|l \quad m-1\rangle$$

Où l un nombre entier $0 \le l \le n+1$ et $m = \{-l, -l+1, \ldots 0, \ldots, l-1, l\}$ et n est le nombre quantique principale.

En général:

$$\hat{J}^2 | j \quad m \rangle = \hbar^2 j(j+1) | j \quad m \rangle$$

$$\hat{J}_z | j \quad m \rangle = \hbar m | j \quad m \rangle$$

$$\hat{J}_{+} | j \quad m \rangle = \hbar \sqrt{j(j+1) - m(m+1)} | j \quad m+1 \rangle$$

$$\begin{split} \hat{J}_z \, \big| \, j & \quad m \big\rangle = \hbar m \, \big| \, j \quad m \big\rangle \\ \\ \hat{J}_+ \, \big| \, j & \quad m \big\rangle = \hbar \sqrt{j(j+1) - m(m+1)} \, \big| \, j \quad m+1 \big\rangle \\ \\ \hat{J}_- \, \big| \, j & \quad m \big\rangle = \hbar \sqrt{j(j+1) - m(m-1)} \, \big| \, j \quad m-1 \big\rangle \end{split}$$

Où j un nombre entier $0 \le j \le n+1$ et $m = \{-j, -j+1, \dots 0, \dots, j-1, j\}$ et n est le nombre quantique principale.

Les éléments des sous-matrices des opérateurs de moment cinétique

$$\langle j \quad m' | \hat{J}^2 | j \quad m \rangle = \hbar^2 j(j+1) \delta_{mm'}$$

$$\langle j \quad m' | \hat{J}_z | j \quad m \rangle = \hbar m \delta_{mm'}$$

$$\left\langle j - m' \left| \hat{J}_{+} \right| j - m \right\rangle = \hbar \sqrt{j(j+1) - m(m+1)} \delta_{\scriptscriptstyle m+1,m'}$$

$$\langle j \quad m' | \hat{J}_{-} | j \quad m \rangle = \hbar \sqrt{j(j+1) - m(m-1)} \delta_{m-1,m'}$$

$$\hat{J}_{x} = \frac{\hat{J}_{+} + \hat{J}_{-}}{2}$$

$$\hat{J}_{y} = \frac{\hat{J}_{+} - \hat{J}_{-}}{2i}$$

Représentation matricielle des opérateurs du moment cinétique

Exemple 1 : pour j = 1 :

$$j=1 \Rightarrow m=-1,0,1$$

On trouve \hat{J}^2 :

$$\langle j \quad m' | \hat{J}^2 | j \quad m \rangle = \hbar^2 j(j+1) \delta_{mm'} = 2\hbar^2 \delta_{mm'}$$

$$\hat{J}^2 = \frac{2\hbar^2}{0} \quad 0 \quad m = -1$$

$$\hat{J}^2 = \frac{2\hbar^2}{0} \quad 0 \quad m' = 1$$

$$0 \quad 2\hbar^2 \quad 0 \quad m' = 0$$

$$0 \quad 0 \quad 2\hbar^2 \quad m' = -1$$

Alors:

$$\hat{J}^2 = 2\hbar^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

On trouve \hat{J}_z :

$$\langle j \quad m' | \hat{J}_z | j \quad m \rangle = \hbar m \delta_{mm'}$$

$$\hat{J}_z = \begin{pmatrix} m = 1 & m = 0 & m = -1 \\ \hbar & 0 & 0 & m' = 1 \\ 0 & 0 & 0 & m' = 0 \\ 0 & 0 & -\hbar & m' = -1 \end{pmatrix}$$

$$\hat{J}_z = \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

On trouve $\hat{J}_{\scriptscriptstyle +}$:

$$\left\langle j - m' \left| \hat{J}_{+} \right| j - m \right\rangle = \hbar \sqrt{j(j+1) - m(m+1)} \delta_{m+1,m'} = \hbar \sqrt{2 - m(m+1)} \delta_{m+1,m'}$$

$$\hat{J}_{+} = \begin{array}{cccc} m = 1 & m = 0 & m = -1 \\ & 0 & \sqrt{2}\hbar & 0 & m' = 1 \\ & 0 & 0 & \sqrt{2}\hbar & m' = 0 \\ & 0 & 0 & 0 & m' = -1 \end{array}$$

Alors:

$$\hat{J}_{+} = \sqrt{2}\hbar \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

On trouve \hat{J}_{-} :

$$\left\langle j \quad m' \left| \hat{J}_{-} \right| j \quad m \right\rangle = \hbar \sqrt{j(j+1) - m(m-1)} \delta_{m-1,m'} = \hbar \sqrt{2 - m(m-1)} \delta_{m-1,m'}$$

$$\hat{J}_{-} = \begin{cases} 0 & 0 & 0 & m' = 1 \\ \sqrt{2}\hbar & 0 & 0 & m' = 1 \\ 0 & \sqrt{2}\hbar & 0 & m' = -1 \end{cases}$$

$$\hat{J}_{-} = \sqrt{2}\hbar \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

On trouve \hat{J}_x :

$$\hat{J}_{x} = \frac{\hat{J}_{+} + \hat{J}_{-}}{2} = \frac{\begin{pmatrix} 0 & \sqrt{2}\hbar & 0 \\ 0 & 0 & \sqrt{2}\hbar \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2}\hbar & 0 & 0 \\ 0 & \sqrt{2}\hbar & 0 \end{pmatrix}}{2}$$

Alors:

$$\hat{J}_x = \frac{\sqrt{2}}{2} \hbar \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

On trouve \hat{J}_y :

$$\hat{J}_{y} = \frac{\hat{J}_{+} - \hat{J}_{-}}{2i} = \frac{\begin{pmatrix} 0 & \sqrt{2}\hbar & 0 \\ 0 & 0 & \sqrt{2}\hbar \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2}\hbar & 0 & 0 \\ 0 & \sqrt{2}\hbar & 0 \end{pmatrix}}{2i}$$

Alors:

$$\hat{J}_{y} = \frac{\sqrt{2}}{2i} \hbar \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Opérateur de moment cinétique intrinsèque (spin)

Exemple 2 : pour $j = \frac{1}{2}$:

$$j = \frac{1}{2} \Rightarrow m = -\frac{1}{2}, \frac{1}{2}$$

C'est un cas particulier, dans ce cas on désigne l'opérateur de moment cinétique intrinsèque (spin) comme \hat{S} :

Pour $j = \frac{1}{2}$ et $m = \frac{1}{2}$	Pour $j = \frac{1}{2}$ et $m = -\frac{1}{2}$
$\left \hat{S}^2 \left \frac{1}{2} \frac{1}{2} \right\rangle = \frac{3}{4} \hbar^2 \left \frac{1}{2} \frac{1}{2} \right\rangle$	$\left \hat{S}^2 \left \frac{1}{2} - \frac{1}{2} \right\rangle = \frac{3}{4} \hbar^2 \left \frac{1}{2} - \frac{1}{2} \right\rangle$
$\left \hat{S}_z \right \frac{1}{2} \frac{1}{2} \right\rangle = \frac{1}{2} \hbar \left \frac{1}{2} \frac{1}{2} \right\rangle$	$\left \hat{S}_z \left \frac{1}{2} - \frac{1}{2} \right\rangle = -\frac{1}{2} \hbar \left \frac{1}{2} - \frac{1}{2} \right\rangle$
$\left \hat{S}_{+} \right \left \frac{1}{2} \frac{1}{2} \right\rangle = 0$	$\left \hat{S}_{+} \right \frac{1}{2} - \frac{1}{2} \right\rangle = \hbar \left \frac{1}{2} - \frac{1}{2} \right\rangle$
$\left \hat{S}_{-} \right \frac{1}{2} \frac{1}{2} \right\rangle = \hbar \left \frac{1}{2} -\frac{1}{2} \right\rangle$	$\left \hat{S}_{-} \right \frac{1}{2} - \frac{1}{2} \right\rangle = 0$

Par convention :

Spin up :
$$\left|+\right\rangle \equiv \left|\frac{1}{2} \quad \frac{1}{2}\right\rangle$$

Spin down:
$$\left|-\right\rangle \equiv \left|\frac{1}{2} - \frac{1}{2}\right\rangle$$

Donc:

$\left \hat{S}^2 \right + \right\rangle = \frac{3}{4} \hbar^2 \left + \right\rangle$	$\left \hat{S}^2 \left - \right\rangle = \frac{3}{4} \hbar^2 \left - \right\rangle$
$\hat{S}_z \left + \right\rangle = \frac{1}{2} \hbar \left + \right\rangle$	$\left \hat{S}_z \left - \right\rangle = -\frac{1}{2} \hbar \left - \right\rangle$
$\hat{S}_{+} \left + \right\rangle = 0$	$\hat{S}_{+}\left -\right\rangle = \hbar\left +\right\rangle$
$\hat{S}_{-}\left +\right\rangle =\hbar\left -\right\rangle$	$\hat{S}_{-} \left - \right\rangle = 0$

Les éléments des sous-matrices des opérateurs de moment cinétique intrinsèque (Spin)

Pour $j = \frac{1}{2}$ et $m = \frac{1}{2}$	Pour $j = \frac{1}{2}$ et $m = -\frac{1}{2}$
$\left \left\langle \frac{1}{2} m' \middle \hat{S}^2 \middle \frac{1}{2} \frac{1}{2} \right\rangle = \frac{3}{4} \hbar^2 \delta_{\frac{1}{2},m'}$	$\left \left\langle \frac{1}{2} m' \middle \hat{S}^2 \middle \frac{1}{2} -\frac{1}{2} \right\rangle = \frac{3}{4} \hbar^2 \delta_{-\frac{1}{2},m'}$
$\left \left\langle \frac{1}{2} m' \middle \hat{S}_z \middle \frac{1}{2} \frac{1}{2} \right\rangle = \frac{1}{2} \hbar \delta_{\frac{1}{2}, m'}$	$\left \left\langle \frac{1}{2} m' \middle \hat{S}_z \middle \frac{1}{2} -\frac{1}{2} \right\rangle = -\frac{1}{2} \hbar \mathcal{S}_{-\frac{1}{2},m'}$
$\left \left\langle \frac{1}{2} m' \middle \hat{S}_{+} \middle \frac{1}{2} \frac{1}{2} \right\rangle = 0 \right $	$\left \begin{array}{cc} \left\langle \frac{1}{2} & m' \middle \hat{S}_{+} \middle \frac{1}{2} & -\frac{1}{2} \right\rangle = \hbar \delta_{-\frac{3}{2},m'} \end{array} \right $
$\left \left\langle \frac{1}{2} m' \middle \hat{S}_{-} \middle \frac{1}{2} \frac{1}{2} \right\rangle = \hbar \delta_{-\frac{1}{2},m'}$	$\left \left\langle \frac{1}{2} m' \middle \hat{S}_{-} \middle \frac{1}{2} -\frac{1}{2} \right\rangle = 0 \right $
$\hat{S}_x = \frac{\hat{S}_+ + \hat{S}}{2}$	$\hat{S}_x = \frac{\hat{S}_+ + \hat{S}}{2}$
$\hat{S}_{y} = \frac{\hat{S}_{+} - \hat{S}_{-}}{2i}$	$\hat{S}_{y} = \frac{\hat{S}_{+} - \hat{S}_{-}}{2i}$

Représentation matricielle des opérateurs du moment cinétique intrinsèque (Spin)

On trouve \hat{S}^2 :

Pour $j = \frac{1}{2}$ et $m = \frac{1}{2}$	Pour $j = \frac{1}{2}$ et $m = -\frac{1}{2}$
$\left \left\langle \frac{1}{2} m' \middle \hat{S}^2 \middle \frac{1}{2} \frac{1}{2} \right\rangle = \frac{3}{4} \hbar^2 \delta_{\frac{1}{2},m'}$	$\left \left\langle \frac{1}{2} m' \middle \hat{S}^2 \middle \frac{1}{2} -\frac{1}{2} \right\rangle = \frac{3}{4} \hbar^2 \delta_{\frac{1}{2},m'}$

$$m = \frac{1}{2} \quad m = -\frac{1}{2}$$

$$\hat{S}^2 = \frac{3}{4}\hbar \qquad 0 \qquad m' = \frac{1}{2}$$

$$0 \qquad \frac{3}{4}\hbar \qquad m' = -\frac{1}{2}$$

Alors:

$$\hat{S}^2 = \frac{3}{4}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

On trouve \hat{S}_z :

Pour $j = \frac{1}{2}$ et $m = \frac{1}{2}$	Pour $j = \frac{1}{2}$ et $m = -\frac{1}{2}$
$\left \left\langle \frac{1}{2} m' \middle \hat{S}_z \middle \frac{1}{2} \frac{1}{2} \right\rangle = \frac{1}{2} \hbar \mathcal{S}_{\frac{1}{2},m'}$	$\left \left\langle \frac{1}{2} m' \middle \hat{S}_z \middle \frac{1}{2} -\frac{1}{2} \right\rangle = -\frac{1}{2} \hbar \delta_{-\frac{1}{2},m'}$

13

$$m = \frac{1}{2} \quad m = -\frac{1}{2}$$

$$\hat{S}_z = \frac{1}{2}\hbar \qquad 0 \qquad m' = \frac{1}{2}$$

$$0 \qquad -\frac{1}{2}\hbar \qquad m' = -\frac{1}{2}$$

$$\hat{S}_z = \frac{1}{2}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

On trouve $\hat{S}_{\scriptscriptstyle +}$:

Pour $j = \frac{1}{2}$ et $m = \frac{1}{2}$	Pour $j = \frac{1}{2}$ et $m = -\frac{1}{2}$
$\left \left\langle \frac{1}{2} m' \middle \hat{S}_{+} \middle \frac{1}{2} \frac{1}{2} \right\rangle = 0 \right $	$\left \left\langle \frac{1}{2} m' \middle \hat{S}_{+} \middle \frac{1}{2} -\frac{1}{2} \right\rangle = \hbar \delta_{\frac{1}{2},m'}$

$$m = \frac{1}{2}$$
 $m = -\frac{1}{2}$

$$\hat{S}_{+} = 0 \qquad \hbar \qquad m' = \frac{1}{2}$$

$$0 \qquad 0 \qquad m' = -\frac{1}{2}$$

Alors:

$$\hat{S}_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

On trouve \hat{S}_{-} :

Pour $j = \frac{1}{2}$ et $m = \frac{1}{2}$	Pour $j = \frac{1}{2}$ et $m = -\frac{1}{2}$
$\left \left\langle \frac{1}{2} m' \middle \hat{S}_{-} \middle \frac{1}{2} \frac{1}{2} \right\rangle = \hbar \delta_{-\frac{1}{2},m'}$	$\left \left\langle \frac{1}{2} m' \middle \hat{S}_{-} \middle \frac{1}{2} -\frac{1}{2} \right\rangle = 0 \right $

$$m = \frac{1}{2} \quad m = -\frac{1}{2}$$

$$\hat{S}_{-} = \quad 0 \qquad 0 \qquad m' = \frac{1}{2}$$

$$\hbar \qquad 0 \qquad m' = -\frac{1}{2}$$

$$\hat{S}_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

On trouve \hat{S}_x :

$$\hat{S}_{x} = \frac{\hat{S}_{+} + \hat{S}_{-}}{2} = \frac{\hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}}{2}$$

Alors:

$$\hat{S}_x = \frac{1}{2}\hbar \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

On trouve \hat{S}_v :

$$\hat{S}_{y} = \frac{\hat{S}_{+} - \hat{S}_{-}}{2i} = \frac{\hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}}{2i}$$

Alors:

$$\hat{S}_{y} = \frac{1}{2} \hbar \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

En résumé:

$$\hat{S}^2 = \frac{3}{4}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\hat{S}_z = \frac{1}{2}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\hat{S}_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\hat{S}_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\hat{S}_x = \frac{1}{2} \hbar \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\hat{S}_{y} = \frac{1}{2} \hbar \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Les matrices de Pauli

Par définition :

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \qquad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Ils sont les matrices de Pauli. On peut écrire les opérateurs de moment cinétique intrinsèque (spin) comme :

$$\hat{S}_{x} = \frac{1}{2}\hbar\sigma_{x} \qquad \qquad \hat{S}_{z} = \frac{1}{2}\hbar\sigma_{z}$$

$$\hat{S}_{z} = \frac{1}{2}\hbar\sigma_{z}$$

Les relations de commutation :

C'est comme les relations de commutation du moment cinétique.

Les relations spécifiques :

$$\sigma_x^2 + \sigma_y^2 + \sigma_z^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \hat{I}$$
 et
$$\sigma_x \sigma_y + \sigma_y \sigma_x = \sigma_y \sigma_z + \sigma_z \sigma_y = \sigma_z \sigma_x + \sigma_x \sigma_z = 0$$