Лекция 13: Алгоритмично неразрешими проблеми

4.2.5 Ефективно изброяване (номериране) на полуразрешимите множества

Да напомним две означения, които въведохме по-рано: при фиксирани $n\geq 1$ и $a\in\mathbb{N},$ с $W_a^{(n)}$ ще означаваме дефиниционната област на функцията $\varphi_a^{(n)},$ а с $E_a^{(n)}-$ множеството от нейните стойности:

$$\begin{array}{cccc} \underline{W_a^{(n)}} &=& Dom(\varphi_a^{(n)}) \stackrel{\text{\tiny \rm de}}{=} & \{ \ \bar{x} \mid !\varphi_a^{(n)}(\bar{x}) \ \} \\ \\ \underline{E_a^{(n)}} &=& Range(\varphi_a^{(n)}) \stackrel{\text{\tiny \rm de}}{=} & \{ \ y \mid \exists \bar{x} \in \mathbb{N}^n \colon \ \varphi_a^{(n)}(\bar{x}) \simeq y \ \}. \end{array}$$

От първото НДУ за полуразрешимост (Tвърдение 4.8) знаем, че едно множество $A \subseteq \mathbb{N}^n$ е полуразрешимо тогава и само тогава, когато съществува изчислима функция f, такава че A = Dom(f). Оттук:

$$A \subseteq \mathbb{N}^n$$
 е полуразрешимо $\iff \exists a \ A = Dom(\varphi_a^{(n)}) \iff \exists a \ A = W_a^{(n)}$.

Тогава е ясно, че редицата

$$W_0^{(n)}, W_1^{(n)}, \dots, W_a^{(n)}, \dots$$

се състои от всички полуразрешими подмножества на \mathbb{N}^n . Ще я наричаме ефективно изброяване (номериране) на полуразрешимите множества.

Ако $A = W_a^{(n)}$, то числото a ще наричаме <u>индекс</u> (или номер) на A. Понеже всяка изчислима функция има безброй много индекси, то и всяко полуразрешимо множество ще има безброй много индекси. (Всъщност дори изчислимите функции да имаха само по един индекс, полуразрешимите множества пак щяха да имат безброй много индекси, защото е ясно, че безброй много изчислими функции имат един и същи домейн).

При n=1 ще пишем за по-кратко

$$W_a = Dom(\varphi_a)$$
 и $E_a = Range(\varphi_a)$.

Множеството $K \stackrel{\text{деф}}{=} \{x \mid !\varphi_x(x)\}$ можем да препишем чрез W_a по следния начин:

$$K = \{ x \mid x \in W_x \}.$$

Тогава $\overline{K}=\{x\mid x\notin W_x\}$ и сега вече и без теоремата на Пост се вижда защо \overline{K} не може да е полуразрешимо — защото по дефиниция

$$x \in \overline{K} \iff x \notin W_x,$$

и значи \overline{K} и W_x се различават в точката x. С други думи, $\overline{K} \neq W_x$ за всяко x, следователно \overline{K} не е полуразрешимо.

От T върдение 4.12 знаем, че обединението на две, а оттук и на краен брой полуразрешими множества, е полуразрешимо. Когато имаме безкраен брой такива множества, обединението им вече може и да не е такова. Най-простият контрапример е да вземем някакво "сложно" множество $D = \{x_0, x_1, \dots\}$ и да разгледаме едноелементните множества $A_n = \{x_n\}$ за $n = 0, 1, \dots$ Всяко такова A_n е крайно, и значи — полуразрешимо, докато обединението на тези множества, което е точно D, вече не е полуразрешимо.

Проблемът в горния пример е, че съвкупността от индексите на множествата A_n е много сложна. Когато, обаче, обединяваме множества, чийто индекси са от някое полуразрешимо множество, това обединение със сигурност ще е полуразрешимо. Да се убедим:

Задача 4.28. Нека $A \subseteq \mathbb{N}$ е полуразрешимо. Докажете, че е полуразрешимо и множеството

$$B = \bigcup_{a \in A} W_a.$$

Решение. По определение

$$x \in B \iff \exists a \ (a \in A \& x \in W_a) \iff \exists a (a \in A \& !\Phi_1(a, x))$$

 $\iff \exists a \ (a \in A \& (a, x) \in Dom(\Phi_1))$
 $\iff \exists a \ (a, x) \in (A \times \mathbb{N}) \cap Dom(\Phi_1).$

Тъй като множеството $(A \times \mathbb{N}) \cap Dom(\Phi_1)$ е полуразрешимо, то ще е полуразрешимо и множеството B, съгласно теоремата за проекцията.

Знаем, че всяко полуразрешимо $A\subseteq\mathbb{N}$ има индекс, т.е. можем да си го мислим във вида $A=W_b$ за някое b. Това ни дава възможност да обобщим горната задача по следния начин:

Задача 4.29. Докажете, че е полуразрешимо множеството

$$B^* = \{ (b, x) \mid x \in \bigcup_{a \in W_b} W_a \}.$$

Решение. По определение

$$(b,x) \in B^* \iff \exists a(a \in W_b \& x \in W_a) \iff \exists a(!\varphi_b(a) \& !\varphi_a(x))$$

$$\iff \exists a ! (\varphi_b(a) + \varphi_a(x)) \iff \exists a ! (\underbrace{\Phi_1(b,a) + \Phi_1(a,x)}_{f(a,b,x)}).$$

Понеже f е изчислима, то множеството C = Dom(f) ще е полуразрешимо. Оттук по теоремата за проекцията ще е полуразрешимо и B^* .

Всички твърдения за полуразрешими множества, които доказахме в предишния раздел, имат и своите "равномерни" версии. Доказателствата им се основават на S_n^m -теоремата.

Да разгледаме, например, равномерната версия на твърдението, че обединение и сечение на полуразрешими множества е полуразрешимо (Tesp- $denue\ 4.12$). Тя ще изглежда така:

Задача 4.30. Докажете, че съществуват рекурсивни функции cut и uni, такива че за всяко a и b:

$$W_{cut(a,b)} \ = \ W_a \cap W_b \quad \text{if} \quad W_{uni(a,b)} \ = \ W_a \cup W_b.$$

Решение. Първо да решим задачата за сечението. Искаме да конструираме изчислима функция f(a,b,x), която е такава, че след прилагане на S_n^m -теоремата към нея и намиране на функция cut(a,b), такава че $\varphi_{cut(a,b)}(x) \simeq f(a,b,x)$, да се окаже, че cut(a,b) търсената, т.е. за нея е изпълнено $W_{cut(a,b)} = W_a \cap W_b$.

За целта можем да вземем следната функция f:

$$f(a,b,x) \simeq \varphi_a(x) + \varphi_b(x)$$
.

Тя е изчислима, защото можем да я препишем чрез универсалната функция като $f(a,b,x) \simeq \Phi_1(a,x) + \Phi_1(b,x)$. Прилагаме към нея S_n^m -теоремата и получаваме, че за някоя (примитивно) рекурсивна функция cut(a,b) ще е изпълнено $\varphi_{cut(a,b)}(x) \simeq f(a,b,x)$, или все едно:

$$\varphi_{cut(a,b)}(x) \simeq \varphi_a(x) + \varphi_b(x).$$

Оттук получаваме, че за произволни a, b и x:

$$x \in W_{cut(a,b)} \iff !\varphi_{cut(a,b)}(x) \iff !\varphi_{a}(x) \& !\varphi_{b}(x) \iff x \in W_{a} \cap W_{b},$$
 и следователно $W_{cut(a,b)} = W_{a} \cap W_{b}.$

При обединението на W_a и W_b нещата са по-сложни (знаем го още от "неравномерната" версия на това твърдение). Затова тръгваме отдалече — с полуразрешимото множество $U = Dom(\Phi_1)$. За него съществува рекурсивна функция ρ , такава че за всяко a и x:

$$(a, x) \in U \iff \exists t \ \rho(a, x, t) = 0.$$

Тогава

$$\begin{aligned} x \in W_a \cup W_b &\iff x \in W_a \ \lor \ x \in W_b \iff (a,x) \in U \ \lor \ (b,x) \in U \\ &\iff \exists t \ \rho(a,x,t) = 0 \ \lor \ \exists t \ \rho(b,x,t) = 0 \\ &\iff \exists t \ \rho(a,x,t).\rho(b,x,t) = 0 \iff !\underbrace{\mu t[\rho(a,x,t).\rho(b,x,t) = 0]}_{f(a,b,x)}. \end{aligned}$$

Към изчислимата функция $f(a,b,x) \simeq \mu t[\rho(a,x,t).\rho(b,x,t)=0]$ прилагаме S_n^m -теоремата и получаваме, че съществува (отново примитивно) рекурсивна функция uni(a,b), такава че

$$\varphi_{uni(a,b)}(x) \simeq f(a,b,x).$$

Тогава за всяко a, b и x ще е изпълнено:

$$x \in W_a \cup W_b \iff !f(a,b,x) \iff !\varphi_{uni(a,b)}(x) \iff x \in W_{uni(a,b)},$$

което означава, че функцията *uni* има исканото свойство.

Да докажем и равномерната версия на *Твърдение* 4.15, което казваше, че образът и първообразът на полуразрешимо множество чрез изчислима функция също е полуразрешимо множество.

Задача 4.31. Докажете, че съществуват рекурсивни функции im и preim, такива че за всяко a и b е изпълнено:

- 1) $W_{preim(a,b)} = \varphi_a^{-1}(W_b);$
- $2) W_{im(a,b)} = \varphi_a(W_b).$

Решение. 1) За първообраза на W_b чрез φ_a имаме:

$$x \in \varphi_a^{-1}(W_b) \iff !\varphi_a(x) \& \varphi_a(x) \in W_b \iff !\varphi_b(\varphi_a(x)) \iff !\underbrace{\Phi_1(b,\Phi_1(a,x))}_{f(a,b,x)}$$

за всяко a, b и x. Функцията f е изчислима и по S_n^m -теоремата ще съществува примитивно рекурсивна функция preim(a, b), такава че

$$\varphi_{preim(a,b)}(x) \simeq f(a,b,x).$$

Тогава за всяко a, b и x ще е изпълнено:

$$x \in \varphi_a^{-1}(W_b) \iff !f(a,b,x) \iff !\varphi_{preim(a,b)}(x) \iff x \in W_{preim(a,b)},$$

и значи функцията *preim* е търсената.

2) За образа $\varphi_a(W_b)$ разсъждаваме така:

$$y \in \varphi_a(W_b) \iff \exists x (x \in W_b \& \varphi_a(x) \simeq y)$$

$$\iff \exists x (\mathcal{O}(\Phi_1(b, x)) \simeq 0 \& |(\Phi_1(a, x) - y| \simeq 0)$$

$$\iff \exists x (\underbrace{\mathcal{O}(\Phi_1(b, x)) + |(\Phi_1(a, x) - y| \simeq 0)}_{\{(a, b, y, x) \mid (a, b, x, y) \in A\}}.$$

Функцията $\mathcal{O}(\Phi_1(b,x)) + |(\Phi_1(a,x) - y|)$ е изчислима и следователно множеството A, което сме дефинирали по-горе, ще е полуразрешимо. Сега

по теоремата за проекцията ще е полуразрешимо и множеството $A^* = \exists x A = \{(a,b,y) \mid \exists x(a,b,x,y) \in A \}$. Тогава ще е изчислима полухарактеристичната функция C_{A^*} на това множество и значи по S_n^m -теоремата ще съществува примитивно рекурсивна функция im(a,b), такава че

$$\varphi_{im(a,b)}(y) \simeq C_{A^*}(a,b,y).$$

Така ще имаме, че за всяко a, b и y:

$$y \in \varphi_a(W_b) \iff \exists x \ (a,b,y,x) \in A \iff (a,b,y) \in A^*$$
$$\iff !C_{A^*}(a,b,y) \iff !\varphi_{im(a,b)}(y) \iff y \in W_{im(a,b)}$$

и следователно $\varphi_a(W_b) = W_{im(a,b)}$.

В Задача 4.25 показахме, че теоремата на Пост не може да се обобщи за безкраен брой непресичащи се полуразрешими подмножества на \mathbb{N}^n . При определени условия, обаче, че тя продължава да е вярна за безкраен брой множества A_0, A_1, \ldots Това, което е необходимо, е редицата от тези множества да е $e \phi \epsilon \kappa m u \epsilon n a$. Какво означава това?

Нека A_0, A_1, \ldots е редица от полуразрешими подмножества на \mathbb{N}^k . Казваме, че тази редица е <u>ефективна</u>, ако съществува рекурсивна функция h, такава че за всяко n:

$$A_n = W_{h(n)}^{(k)}.$$

 Φ ункцията h ще наричаме *индексна функция* за тази редица.

Задача 4.32. Нека A_0, A_1, \ldots е ефективна редица от непресичащи се полуразрешими подмножества на \mathbb{N}^k , такива че $A_0 \cup A_1 \cup \cdots = \mathbb{N}^k$. Докажете, че всяко от тези множества е разрешимо.

Решение. За произволно n ще покажем, че допълнението $\overline{A_n}$ на множеството A_n е полуразрешимо. И тъй като и A_n е полуразрешимо, по теоремата на Пост ще следва, че A_n е разрешимо.

Нека h е индексната функция на дадената редица. Тогава за произволно $\bar{x} \in \mathbb{N}^k$ ще е изпълнено:

$$\bar{x} \in \overline{A_n} \iff \exists m(m \neq n \& \bar{x} \in A_m) \iff \exists m(m \neq n \& \bar{x} \in W_{h(m)}^{(k)})$$

$$\iff \exists m(\chi_{\neq}(m,n) = 0 \& \mathcal{O}(\varphi_{h(m)}^{(k)}(\bar{x})) \simeq 0)$$

$$\iff \exists m(\chi_{\neq}(m,n) + \mathcal{O}(\Phi_k(h(m),\bar{x})) \simeq 0).$$

Функцията f е изчислима, следователно множеството $A = \{(m,n,\bar{x}) \mid f(m,n,\bar{x}) \simeq 0\}$ ще е полуразрешимо, откъдето по теоремата за проекцията и $\overline{A_n}$ ще е полуразрешимо.

Задача 4.33. Докажете, че една редица A_0, A_1, \ldots от полуразрешими подмножества на \mathbb{N}^k е ефективна тогава и само тогава, когато множеството

$$U = \{(n, \bar{x}) \mid \bar{x} \in A_n\}$$

е полуразрешимо.

Забележка. Множеството U се явява *универсално множество* за множествата от редицата $\{A_n\}_n$.

Решение. В правата посока: нека h е рекурсивна функция, такава че за всяко n: $A_n = W_{h(n)}^{(k)}$. Тогава

$$(n,\bar{x}) \in U \stackrel{\text{peop}}{\Longleftrightarrow} \bar{x} \in A_n \iff \bar{x} \in W_{h(n)}^{(k)} \iff !\varphi_{h(n)}^{(k)}(\bar{x}) \iff !\Phi_k(h(n),\bar{x}).$$

Понеже функцията $\lambda n, \bar{x}.\Phi_k(h(n), \bar{x})$ е изчислима, то множеството U е полуразрешимо.

Обратно, ако горното множество U е полуразрешимо, то полухарактеристичната му функция $C_U(n, \bar{x})$ е изчислима. Прилагаме към нея S_n^m -теоремата и получаваме, че за някоя рекурсивна функция h ще е изпълнено:

$$\varphi_{h(n)}^{(k)}(\bar{x}) \simeq C_U(n,\bar{x}).$$

Тогава за всяко n и $\bar{x} \in \mathbb{N}^k$ ще имаме:

$$\bar{x} \in A_n \iff (n, \bar{x}) \in U \iff !C_U(n, \bar{x}) \iff !\varphi_{h(n)}^{(k)}(\bar{x}) \iff \bar{x} \in W_{h(n)}^{(k)},$$

и следователно редицата A_0, A_1, \dots е ефективна.

От $3a\partial a$ ча 4.17 знаем, че едно множество $A\subseteq\mathbb{N}$ е полуразрешимо тогава и само тогава, когато A=Range(f) за някоя едноместна изчислима функция f, откъдето:

$$A \subseteq \mathbb{N}$$
 е полуразрешимо $\iff \exists a \ A = E_a$.

С други думи, множеството $A \subseteq \mathbb{N}$ е полуразрешимо точно когато е от вида E_a за някое a. Така получаваме друг начин за индексиране на полуразрешимите множества от естествени числа. Да видим, че между двете системи за индексиране има равномерен преход:

Задача 4.34. Докажете, че съществуват примитивно рекурсивни функции α и β , такива че за всяко a:

- a) $W_{\alpha(a)} = E_a$
- б) $E_{\beta(a)} = W_a$.

Решение. а) Ще ни трябва изчислима функция f(a,x), такава че $Dom(\lambda x. f(a,x))$ да е точно E_a . Да вземем например

$$f(a,x)\simeq egin{cases} 0, & ext{ако }x\in E_a \ \neg!, & ext{иначе.} \end{cases}$$

Всъщност f е полухарактеристична функция на множеството $A = \{(a,x) \mid x \in E_a\}$. Да се убедим, че A е полуразрешимо. Имаме

$$(a,x) \in A \iff \exists y \ \varphi_a(y) \simeq x \iff \exists y \ \underbrace{|\Phi_1(a,y) - x| \simeq 0}_{g(a,x,y)}.$$

Функцията g е изчислима, значи множеството $B = \{(a, x, y) | g(a, x, y) \simeq 0\}$ ще е е полуразрешимо, откъдето по теоремата за проекцията и A ще е полуразрешимо. Тогава $f = C_A$ е изчислима. По S_n^m -теоремата ще съществува примитивно рекурсивна функция α , такава че

$$\varphi_{\alpha(a)}(x) \simeq f(a,x),$$

откъдето получаваме, че за всяко a и x:

$$x \in W_{\alpha(a)} \iff !\varphi_{\alpha(a)}(x) \iff$$

 $x \in W_{\alpha(a)} \iff !f(a,x) \iff x \in E_a.$

Следователно $W_{\alpha(a)} = E_a$ за всяко a.

б) Ще ни е нужна изчислима функция f(a,x), която този път трябва да е такава, че $Range(\lambda x. f(a,x))$ да е W_a . Един начин да изберем f е следният:

$$f(a,x)\simeq egin{cases} x, & ext{ako }x\in W_a \ \neg!, & ext{иначе}. \end{cases}$$

Условието $x \in W_a$ от нейната дефиниция е еквивалентно на $(a,x) \in Dom(\Phi_1)$, което е полуразрешимо, и значи съгласно $Cnedcmeue\ 4.5$, функцията f е изчислима. Сега отново от S_n^m -теоремата ще имаме, че за някоя примитивно рекурсивна функция β ще е изпълнено:

$$\varphi_{\beta(a)}(x) \simeq g(a,x).$$

Оттук за всяко a и y ще имаме

$$y \in E_{\beta(a)} \iff \exists x \ \varphi_{\beta(a)}(x) \simeq y \iff \exists x \ g(a,x) \simeq y$$

$$\iff \exists x \ (y = x \ \& \ x \in W_a) \iff y \in W_a,$$

и значи $E_{\beta(a)} = W_a$ за всяко a.

Задача 4.35. (Задача за ЕК) Нека $A \subseteq \mathbb{N}$ и $R \subseteq \mathbb{N}^2$ са полуразрешими множества. С индукция по n дефинираме следната редица от подмножества на \mathbb{N} :

$$A_0 = A$$
, $A_{n+1} = \{ x \mid \exists y ((x, y) \in R \& y \in A_n \}.$

Докажете, че:

- а) всяко от множествата A_n е полуразрешимо;
- б) редицата A_0, A_1, \ldots е ефективна.

4.3 Алгоритмично неразрешими проблеми

4.3.1 m-сводимост

За да можем да сравняваме алгоритмичната сложност на масови проблеми, които ще представяме с множества от естествени числа, въвеждаме следната релация между две числови множества A и B:

Определение 4.5. Нека $A\subseteq \mathbb{N}$ и $B\subseteq \mathbb{N}$. Ще казваме, че A е m-сводимо към B (и ще пишем $A\leqslant_m B$), ако съществува рекурсивна функция f, такава че за всяко $x\in \mathbb{N}$ е в сила еквивалентността:

$$x \in A \iff f(x) \in B.$$

Забележка. Терминът е m-сводимост, защото функцията f в общия случай е "many-to-one" (т.е. неинективна), откъдето идва и името на сводимостта. Когато f е "one-to-one" (инективна), говорим за 1-сводимост, която се означава с \leq_1 . Тъй като за нашите цели ще ни е нужна само m-сводимостта, ще я наричаме просто csodumocm и съответно ще пишем $A \leq B$ вместо $A \leq_m B$.

Когато искаме да означим, че f е тази функция, която свежда A към B, ще пишем

$$A \leqslant B$$
.

Ясно е, че ако $A\leqslant B$, то и $\bar{A}\leqslant \bar{B}$. Да споменем също, че ако $A\leqslant B$, то всъщност $A=f^{-1}(B)$, т.е. A е първообразът на B чрез f.

Ако $A \leqslant B$, то очевидно

$$\chi_A = \chi_B \circ f$$
 и $C_A = C_B \circ f$.

Оттук следва, че ако B е разрешимо (полуразрешимо), то и A ще е разрешимо (полуразрешимо). С други думи, ако имаме разрешаваща (полуразрешаваща) процедура за B, то ще имаме подобна процедура и за A. В този смисъл, ако $A \leq B$, то множеството A е алгоритмично no-npocmo от множеството B, което обяснява и означението \leq .

Една от типичните задачи в този раздел ще бъде да показваме, че дадено множество *не* е разрешимо или полуразрешимо. За тази цел ще използваме горното наблюдението, взето в контрапозиция. Понеже ще го цитираме често, да го формулираме като отделно твърдение:

Твърдение 4.18. Нека $A \leq B$. Тогава ако A не е разрешимо (полуразрешимо), то и B не е разрешимо (полуразрешимо).

От T върдение 4.7 и 3 адача 4.23 знаем, че множеството $K=\{x\mid !\varphi_x(x)\}$ не е разрешимо, а допълнението му \overline{K} не е полуразрешимо. K и \overline{K} ще бъдат еталонни множества за нас. Ако за някое множество A успеем да покажем, че $K\leqslant A$, това ще означава, че A не е разрешимо, а ако стигнем до неравенството $\overline{K}\leqslant A$, то A няма да е полуразрешимо.

Твърдение 4.19. Релацията ≤ е рефлексивна и транзитивна.

Доказателство. Рефлексивност: ясно е, че A се свежда към себе си чрез функцията $\lambda x.x$.

Транзитивност: нека $A \leqslant B$ и $B \leqslant C$. Тогава за всяко $x \in \mathbb{N}$:

$$x \in A \iff f(x) \in B \iff g(f(x)) \in C.$$

Така получаваме, че A се свежда към C чрез функцията $g \circ f$.

Да отбележим, че релацията \leq не е антисиметрична. По-надолу ще имаме много примери на *различни* множества A и B, такива че $A \leq B$ и $B \leq A$. Ако искате да имате контрапример още сега, вземете например множествата \mathbb{N} и \mathbb{N}^+ . За всяко x ще са в сила еквивалентностите

$$x \in \mathbb{N} \iff \mathcal{S}(x) \in \mathbb{N}^+ \quad \text{и} \quad x \in \mathbb{N}^+ \iff x - 1 \in \mathbb{N},$$

които ни дават $\mathbb{N} \leq \mathbb{N}^+$ и $\mathbb{N}^+ \leq \mathbb{N}$. В същото време $\mathbb{N} \neq \mathbb{N}^+$.

Определението за сводимост се обобщава по един съвсем естествен начин и за подмножества на npouseonhu декартови степени на \mathbb{N} :

Определение 4.6. Нека $A \subseteq \mathbb{N}^n$ и $B \subseteq \mathbb{N}^k$. Ще казваме, че A е cso- dumo към B (и отново ще пишем $A \leqslant B$), ако съществуват рекурсивни функции f_1, \ldots, f_k , такива че за всяко $\bar{x} \in \mathbb{N}^n$ е изпълнено:

$$\bar{x} \in A \iff (f_1(\bar{x}), \dots, f_k(\bar{x})) \in B.$$

От тази еквивалентност веднага получаваме, че за всяко \bar{x} :

$$\chi_A(\bar x)=\chi_B(f_1(\bar x),\dots,f_k(\bar x))$$
 и $C_A(\bar x)\simeq C_B(f_1(\bar x),\dots,f_k(\bar x)),$ откъдето

$$\chi_A = \chi_B(f_1, \dots, f_k)$$
 и $C_A = C_B(f_1, \dots, f_k)$.

Следователно Твърдение~4.18 остава вярно и за случая на произволни множества A и B. Tвърдение~4.19 също продължава да е вярно (убедете се сами).

Да напомним дефиницията и на множеството U, което въведохме порано:

$$U = \{(a, x) \mid x \in W_a\} = \{(a, x) \mid !\Phi_1(a, x)\}.$$

Множеството U е дефиниционна област на най-сложната изчислима функция — универсалната функция Φ_1 , поради което очакваме да е най-сложното полуразрешимо множество. Да се убедим:

Твърдение 4.20. Всяко полуразрешимо множество $A \subseteq \mathbb{N}$ е сводимо към U.

Решение. Щом $A\subseteq\mathbb{N}$ е полуразрешимо, то $A=W_a$ за някое a. Но тогава за всяко $x\in\mathbb{N}$ ще имаме, че

$$x \in W_a \iff (\underbrace{a}_{f_1(x)}, \underbrace{x}_{f_2(x)}) \in U.$$

Следователно A е сводимо към U чрез функциите $f_1 = \lambda x.a$ и $f_2 = \lambda x.x$, които очевидно са рекурсивни.

Множеството U се явява *универсално* множество за всички полуразрешими подмножества на \mathbb{N} .

От горното твърдение следва, в частност, че и $K \leq U$, защото $K \subseteq \mathbb{N}$ е полуразрешимо. Оказва се, че е вярно и обратното неравенство $U \leq K$. Ще го получим като следствие от твърдението по-долу, според което и K е най-сложното сред полуразрешимите подмножества на \mathbb{N} .

Твърдение 4.21. Всяко полуразрешимо $A \subseteq \mathbb{N}$ се свежда към K.

Доказателство. Да дефинираме функцията f като

$$f(a,x) \simeq \begin{cases} 0, & \text{ако } a \in A \\ \neg !, & \text{иначе.} \end{cases}$$

Тя е изчислима, защото A е полуразрешимо $(f(a,x) \simeq C_A(a))$. Тогава по S_n^m -теоремата ще съществува рекурсивна функция h, такава че за всяко a и x: $\varphi_{h(a)}(x) \simeq f(a,x)$, с други думи, за всяко $a,x \in \mathbb{N}$:

$$\varphi_{h(a)}(x) \simeq \begin{cases} 0, & \text{ако } a \in A \\ \neg!, & \text{иначе.} \end{cases}$$

 $\varphi_{h(a)}$ можем да препишем и така:

$$\varphi_{h(a)} = \begin{cases} \mathcal{O}, & \text{ако } a \in A \\ \emptyset^{(1)}, & \text{иначе.} \end{cases}$$

Твърдим, че A се свежда към K чрез функцията h. Наистина, за всяко $a \in \mathbb{N}$ имаме:

$$a \in A \iff \varphi_{h(a)} = \mathcal{O} \iff !\varphi_{h(a)}(h(a)) \iff h(a) \in K.$$

От релацията \leq стандартно въвеждаме $e\kappa вивалентност$ на две множества A и B:

$$A \equiv B \iff A \leqslant B \& B \leqslant A.$$

Ясно е, че тази релация е релация на еквивалентност (тя очевидно е симетрична, а от $Те ilde{\sigma} p denue$ 4.19 се вижда, че е и рефлексивна и транзитивна).

Задача 4.36. (Задача за EK) Разглеждаме релацията \equiv върху множеството \mathcal{R} на всички разрешими подмножества на \mathbb{N} . Опишете получените класове на еквивалентност.

По-горе лесно съобразихме, че $\mathbb{N} \equiv \mathbb{N}^+$. Ето и първият ни не толкова очевиден пример за двойка еквивалентни множества — множеството K и универсалното множество U.

Задача 4.37. Докажете, че $U \equiv K$.

Решение. Като следствие от T върдение 4.20 получихме, че $K \leq U$. За да съобразим обратното, да разгледаме следното множество \hat{U} , което има същата сложност като U, но вече е подмножество на \mathbb{N} :

$$\hat{U} \stackrel{\text{деф}}{=} \{ \Pi(a, x) \mid (a, x) \in U \}.$$

Ясно е, че U е полуразрешимо и следователно $\hat{U}\leqslant K$, съгласно Teop-denue~4.21. Освен това имаме, че $U\leqslant \hat{U}$, което се вижда от еквивалентността:

$$(a, x) \in U \iff \Pi(a, x) \in \hat{U}.$$

Сега вече от $U\leqslant \hat{U}$ и $\hat{U}\leqslant K$ по транзитивност достигаме до неравенството $U\leqslant K$, което заедно с обратното $K\leqslant U$ ни дава $U\equiv K$.

4.3.2 Неразрешимост на стоп-проблема за МНР

За едно множество $A\subseteq \mathbb{N}^n$ ще казваме, че е nepaspemumo, ако то не е разрешимо.

При фиксирано $n \ge 1$ да положим:

$$HP_n \stackrel{\text{деф}}{=} \{(a,x_1,\ldots,x_n) \mid P_a$$
 спира върху $(x_1,\ldots,x_n)\}.$

Теорема 4.2. (Стоп-проблемът за МНР е неразрешим) Нека $n \ge 1$. Множеството $HP_n = \{ (a, x_1, \dots, x_n) \mid P_a$ спира върху $(x_1, \dots, x_n) \}$ не е разрешимо.

Доказателство. Най-напред ще се спрем на случая n=1. В този случай HP_1 е всъщност множеството, което по-горе означихме с U, и за което видяхме ($3a\partial a$ ча 4.23), че $K \leq U$. И понеже K не е разрешимо, то и U не може да е разрешимо, съгласно Tespdenue 4.18.

Нека сега $n \ge 1$ е произволно. Ще покажем, че $HP_1 \leqslant HP_n$, откъдето ще следва, че и общият стоп-проблем не е неразрешим.

Да разгледаме функцията

$$f(a, x_1, \dots, x_n) \stackrel{\text{деф}}{\simeq} \varphi_a(x_1).$$

Тя е изчислима и следователно за някоя рекурсивна функция h, съгласно S_n^m -теоремата, ще е изпълнено

$$\varphi_{h(a)}^{(n)}(x_1,\ldots,x_n) \simeq f(a,x_1,\ldots,x_n), \text{ T.e. } \varphi_{h(a)}^{(n)}(x_1,\ldots,x_n) \simeq \varphi_a(x_1)$$

за всяко $a\in\mathbb{N}, \bar{x}\in\mathbb{N}^n$. При $x_1=\cdots=x_n=x$ ще имаме

$$\varphi_{h(a)}^{(n)}(\underbrace{x,\ldots,x}_{n,\text{ where}})\simeq\varphi_a(x),$$

откъдето в частност

$$!\varphi_a(x) \iff !\varphi_{h(a)}^{(n)}(\underbrace{x,\ldots,x}_{n \text{ if bt } H}).$$

Преписана чрез HP_1 и HP_n , горната еквивалентност изглежда така:

$$(a,x) \in HP_1 \iff (h(a),\underbrace{x,\ldots,x}_{n \text{ II-TH}}) \in HP_n.$$

Тя е в сила за всяко a и x, и значи $HP_1 \leqslant HP_n$.

Да отбележим, че множеството HP_n все пак е полуразрешимо, защото

$$HP_n = \{(a, \bar{x}) \mid P_a \text{ спира върху } \bar{x}\} = \{(a, \bar{x}) \mid !\Phi_n(a, \bar{x})\}.$$

Това означава, че стоп-проблемът за МНР е полуразрешим.

Да означим с RHP_n (от restricted halting problem) следното множество:

$$\underline{RHP_n}\stackrel{\mathrm{def}}{=}\{(a,\bar{x},t)\mid P_a$$
 спира върху \bar{x} за $\leq t$ стъпки $\}.$

Твърдение 4.22. (Ограниченият стоп-проблем за МНР е разрешим) За всяко $n \ge 1$ множеството RHP_n е разрешимо.

Доказателство. Най-напред да си припомним, че съгласно определението за код на програма, ако $P_a: I_0, \ldots, I_k$, то номерът k на последния оператор на $P_a \in lh(a)$.

Разполагаме и с примитивно рекурсивна функция $Q_n(a, \bar{x}, t)$, която дава кода на конфигурацията на стъпка t от работата на P_a върху \bar{x} . Тогава очевидно

$$P_a$$
 спира върху \bar{x} за $\leq t$ стъпки $\iff (Q_n(a,\bar{x},t))_0 > lh(a),$

или все едно

$$(a, \bar{x}, t) \in RHP_n \iff (Q_n(a, \bar{x}, t))_0 > lh(a).$$

Следователно множеството RHP_n е разрешимо.

4.3.3 Теорема на Райс-Успенски

Оттук нататък основната ни задача ще бъде да изследваме семантич- nume свойства на програмите от нашия изчислителен модел и да ги класифицираме в зависимост от тяхната сложност — разрешими, полуразрешими, неразрешими, неполуразрешими и пр. Ще разглеждаме само програми с една входна променлива, тъй като всички резултати, които са или не са в сила за тези програми, съответно ще са или няма да са в сила и за програмите с n входни променливи.

Ще ни интересуват т.нар. *масови* проблеми, т.е. задачи, отнасящи се до *безкрайни* съвкупности от обекти — функции, множества, програми. Разбира се, това, че даден проблем е алгоритмично неразрешим, съвсем не означава, че в някои *частни случаи* той не може да бъде разрешен. Алгоритмичната неразрешимост означава, че няма *общ метод*, който да работи за *всички* случаи.

Например, ако се интересуваме от проблема дали произволна програма P_a спира за всеки вход x, в някои конкретни случаи бихме могли да си отговаряме на този въпрос — например, ако в програмата няма цикли,

е ясно, че тя ще завършва винаги. Това, което ни интересува, е дали съществува алгоритъм, който работи при всеки конкретен случай.

Да напомним, че с C_1 означаваме съвкупността от всички едноместни изчислими функции, т.е.

$$\mathcal{C}_1 = \{\varphi_0, \varphi_1, \dots\}.$$

Да разглеждаме някакво семантично свойства на програмите за МНР с една входна променлива означава да разглеждаме свойство на функциите, които тези програми пресмятат, т.е. свойство на функциите от класа \mathcal{C}_1 . Всяко такова свойство може да се зададе със съответно множество $\mathcal{A} \subseteq \mathcal{C}_1$ — това е множеството от всички функции, имащи това свойство. Следователно проблемът дали една функция от \mathcal{C}_1 има свойството P е еквивалентен на проблема дали тази функция принадлежи на множеството $\mathcal{A} = \{f \mid f$ има свойството $P\}$. Формално този проблем ще записваме така:

"
$$\varphi_a \in \mathcal{A}$$
?"

Например проблемът дали P_a завършва за всяко x е точно проблемът дали φ_a е тотална, или все едно — дали φ_a принадлежи на класа

$$\mathcal{A}_{tot} = \{f \mid f \text{ е тотална и изчислима}\}.$$

Следователно проблемът дали P_a завършва за всяко x може да се запише така: " $\varphi_a \in \mathcal{A}_{tot}$?".

Друг пример е npoблемът за коректността, т.е. дали програмата P_a пресмята конкретна функция f_0 . Имаме

$$P_a$$
 пресмята $f_0 \iff \varphi_a = f_0 \iff \varphi_a \in \mathcal{A}_0 \stackrel{\text{деф}}{=} \{f_0\}.$

Значи проблемът за коректността може да се запише като проблема дали " $\varphi_a \in \mathcal{A}_0$?".

Нека $\mathcal{A} \subseteq \mathcal{C}_1$. Индексното множество $I_{\mathcal{A}}$ на \mathcal{A} дефинираме по следния начин:

$$I_{\mathcal{A}} = \{ a \mid \varphi_a \in \mathcal{A} \}.$$

С други думи, в $I_{\mathcal{A}}$ влизат всевъзможните индекси на всяка функция от \mathcal{A} . Да отбележим, че $I_{\mathcal{A}}$ вече е множество от *числа*. Това ни дава възможност да говорим за *сложеност* на проблема " $\varphi_a \in \mathcal{A}$?", като разглеждаме сложността на индексното му множество $I_{\mathcal{A}}$.

Определение 4.7. Ще казваме, че проблемът " $\varphi_a \in \mathcal{A}$?" е разрешим (полуразрешим, неразрешим), ако индексното му множество $I_{\mathcal{A}}$ е разрешимо (полуразрешимо, неразрешимо).

Ще казваме, че един проблем от вида " $\varphi_a \in \mathcal{A}$?" е <u>нетривиален</u>, ако има поне една функция, която е в \mathcal{A} , и поне една извън \mathcal{A} , с други думи, ако $\emptyset \subsetneq \mathcal{A} \subsetneq \mathcal{C}_1$. Следващата теорема показва, че всеки нетривиален проблем " $\varphi_a \in \mathcal{A}$?" е неразрешим.

Теорема 4.3. (Теорема на Райс-Успенски) Нека $\emptyset \subsetneq \mathcal{A} \subsetneq \mathcal{C}_1$. Тогава проблемът " $\varphi_a \in \mathcal{A}$?" е неразрешим.

Доказателство. По-краткото (но и по-малко информативно) доказателство минава през втората теорема за рекурсия.

Да допуснем, че проблемът " $\varphi_a \in \mathcal{A}$?" е разрешим, т.е. множеството $I_{\mathcal{A}} = \{a \mid \varphi_a \in \mathcal{A}\}$ е разрешимо. Да фиксираме два индекса b и c, такива че $\varphi_b \in \mathcal{A}$ и $\varphi_c \notin \mathcal{A}$, и да разгледаме функцията

$$h(a) = \begin{cases} c, & \text{ако } \varphi_a \in \mathcal{A} \\ b, & \text{ако } \varphi_a \notin \mathcal{A}. \end{cases}$$

Условието $\varphi_a \in \mathcal{A}$ е еквивалентно на $a \in I_{\mathcal{A}}$, което е разрешимо по допускане, и значи h е рекурсивна функция. Тогава ще съществува индексa, такъв че

$$\varphi_a = \varphi_{h(a)}. \tag{4.2}$$

Да разгледаме двете възможности за стойностите на h(a):

1 сл.: h(a)=b, което означава, че $\varphi_a \notin \mathcal{A}$. Тогава от равенството (4.2) ще имаме $\varphi_a=\varphi_b$ и следователно $\varphi_a\in \mathcal{A}$ — противоречие.

2 сл.: h(a) = c, което съгласно дефиницията на h означава, че $\varphi_a \in \mathcal{A}$. Тогава отново от (4.2) ще имаме $\varphi_a = \varphi_c$, и понеже $\varphi_c \notin \mathcal{A}$, то и $\varphi_a \notin \mathcal{A}$ — пак противоречие, което показва, че допускането ни, че проблемът " $\varphi_a \in \mathcal{A}$?" е разрешим, е погрешно.

Друг начин да покажем, че проблемът " $\varphi_a \in \mathcal{A}$?" е неразрешим, е чрез свеждане. По-точно, ще покажем, че $K \leqslant I_{\mathcal{A}}$, откъдето не само ще следва, че множеството $I_{\mathcal{A}}$ е неразрешимо, но това неравенство ще ни казва още, че сложността на $I_{\mathcal{A}}$ е над тази на K. В частност, ако $I_{\mathcal{A}}$ е полуразрешимо, то ще е със сложността на K.

Без ограничение на общността можем да си мислим, че $\emptyset^{(1)} \notin \mathcal{A}$, защото ако не е така, можем да разгледаме проблема " $\varphi_a \in \overline{\mathcal{A}}$?" и за него да покажем, че не е разрешим. Тогава множеството $I_{\overline{\mathcal{A}}}$ няма да е разрешимо, откъдето и $I_{\mathcal{A}}$, като негово допълнение, също няма да е разрешимо.

Нека отново приемем, че b е индекс на функция от класа \mathcal{A} , т.е. $b \in I_{\mathcal{A}}$. Да дефинираме функцията f по следния начин:

$$f(a,x)\simeq egin{cases} arphi_b(x), & ext{ako } a\in K \ \lnot!, & ext{иначе.} \end{cases}$$

Тази функция очевидно е изчислима, и значи към нея можем да приложим S_n^m -теоремата. Така ще получим, че има рекурсивна функция h, такава че за всяко a и x, $\varphi_{h(a)}(x) \simeq f(a,x)$. Оттук веднага

$$\varphi_{h(a)} = \begin{cases} \varphi_b, & \text{ако } a \in K \\ \emptyset^{(1)}, & \text{иначе.} \end{cases}$$

Като имаме предвид, че $\varphi_b \neq \emptyset^{(1)}$, лесно съобразяваме, че

$$a \in K \iff \varphi_{h(a)} \in \mathcal{A} \iff h(a) \in I_{\mathcal{A}},$$

което означава, че $K \leqslant I_{\mathcal{A}}$. И тъй като K не е разрешимо, по Tе ${\it vpdenue}$ 4.18 и $I_{\mathcal{A}}$ няма да е разрешимо.

Да отбележим, че двата случая, които се изключват от теоремата на Райс-Успенски — $\mathcal{A} = \emptyset$ и $\mathcal{A} = \mathcal{C}_1$, са тривиално разрешими, защото индексните им множества са \emptyset и \mathbb{N} .

Да предположим, че индексното множество $I_{\mathcal{A}}$ на даден проблем е полуразрешимо. От $3a\partial aua$ 4.23 имаме, че тогава $I_{\mathcal{A}}\leqslant K$. В доказателството по-горе получихме и обратното свеждане $K\leqslant I_{\mathcal{A}}$. Това означава, че $I_{\mathcal{A}}\equiv K$, с други думи, ако се случи един проблем от вида " $\varphi_a\in \mathcal{A}$?" да е полуразрешим, то той е със сложността на K. Ясно е също, че индексните множества на всички такива полуразрешими проблеми ще бъдат еквивалентни помежду си, защото всички те са еквивалентни на K.

От доказателството на теоремата на Райс-Успенски (по втория начин) се вижда още едно полезно следствие:

Следствие 4.6. Нека класът от функции $\mathcal{A} \subsetneq \mathcal{C}_1$ е такъв, че $\emptyset^{(1)} \in \mathcal{A}$. Тогава проблемът " $\varphi_a \in \mathcal{A}$?" не е полуразрешим.

Доказателство. Разглеждаме допълнителния проблем " $\varphi_a \in \overline{\mathcal{A}}$?". Той очевидно е непразен (защото $\emptyset^{(1)} \in \mathcal{A}$), а също и $\overline{\mathcal{A}} \neq \mathcal{C}_1$ (защото $\mathcal{A} \subsetneq \mathcal{C}_1$). За него имаме още, че $\emptyset^{(1)} \notin \overline{\mathcal{A}}$ и следователно $K \leqslant I_{\overline{\mathcal{A}}}$. Тогава $\overline{K} \leqslant I_{\mathcal{A}}$ (тъй като $I_{\mathcal{A}} = \mathbb{N} \setminus I_{\overline{\mathcal{A}}}$). И понеже \overline{K} не е полуразрешимо, то и $I_{\mathcal{A}}$ няма да е полуразрешимо.

Като директно приложение на теоремата на Райс-Успенски да си дадем сметка, че са неразрешими следните проблеми:

Задача 4.38. Докажете, че следните проблеми са неразрешими:

- 1) Проблемът за тоталността: дали програмата P_a завършва за всяко x, т.е. проблемът " φ_a е тотална?"
- 2) Проблемът за ограничената тоталност: дали P_a завършва за всяко $x \leq c$, където c е фиксирано, или формално " $\forall x_{x < c} ! \varphi_a(x)$?"

- 3) Проблемът дали програмата P_a спира при безкрайно много входове, те дали " $Dom(\varphi_a)$ е безкрайно?"
- 4) Проблемът за коректността, т.е. дали програмата P_a пресмята фиксирана функция f_0 , или все едно " $\varphi_a = f_0$?"
- 5) Проблемът дали P_a пресмята примитивно рекурсивна функция, или все едно " $\varphi_a \in \mathcal{PR}_1$?", където \mathcal{PR}_1 е класът на всички едноместни примитивно рекурсивни функции.

Решение. Единственото, което трябва да съобразим е, че всички тези проблеми са нетривиални, което е очевадно $\ddot{-}$. Тогава по теоремата на Райс-Успенски те автоматично ще бъдат неразрешими.

Задача 4.39. Докажете, че следните проблеми не са полуразрешими:

- 1) " φ_a е крайна функция?"
- 2) " φ_a не е тотална?"
- 3) " $\varphi_a = \emptyset^{(1)}$?"
- 4) $c \in \mathbb{N}$, " $\exists x_{x \leq c} \neg ! \varphi_a(x)$?".

Решение. Лесно се съобразява, че всеки от тези проблеми е в сила за никъде недефинираната функция $\emptyset^{(1)}$. Освен това никой от тях не е валиден *за всяка* функция. Тогава съгласно *Следствие* 4.6 никой от тях не е полуразрешим.

Да припомним, че програмите P_a и P_b са еквивалентни ($P_a \approx P_b$), ако пресмятат една и съща функция, т.е. ако $\varphi_a = \varphi_b$. Индексното множество на проблема " $\varphi_a = \varphi_b$?" е множеството $E = \{(a,b) \mid \varphi_a = \varphi_b\}$.

Твърдение 4.23. (Проблемът за еквивалентността на МНР програмите не е полуразрешим) Множеството

$$E = \{(a, b) \mid \varphi_a = \varphi_b\}$$

не е полуразрешимо.

Доказателство. Да допуснем, че E е полуразрешимо. Твърдим, че тогава ще бъде полуразрешимо и множеството

$$E_0 = \{ a \mid \varphi_a = \emptyset^{(1)} \}.$$

Това звучи правдоподобно, защото проблемът " $\varphi_a = \emptyset^{(1)}$?" е частен случай на проблема " $\varphi_a = \varphi_b$?", но да го съобразим все пак: наистина, $C_{E_0}(a) \simeq C_E(a,b_0)$, където b_0 е фиксиран индекс на $\emptyset^{(1)}$, следователно C_{E_0} също е изчислима, и значи E_0 е полуразрешимо. Но E_0 е индексното

множество на проблема " $\varphi_a = \emptyset^{(1)}$?", който не е полуразрешим, съгласно $3a\partial a ua$ 4.39 — противоречие. Следователно E не е полуразрешимо.

Сега ще дефинираме две понятия за коректност на програма. За тях ще покажем, че проблемът за коректността не е дори полуразрешим.

Нека P е произволна програма с една входна променлива, а I(x) и O(x,y) са съответно някакво входно и някакво изходно условие за P (или спецификация за P).

Казваме, че програмата P е *частично коректна* относно дадената спецификация I / O, ако е вярно, че за всеки вход x, такъв че входното условие I(x) е в сила, $a\kappa o$ програмата спре върху x с резултат y, то този резултат ще е коректен, т.е ще е изпълнено изходното условие O(x, y).

Функцията f, която тази програма пресмята, очевидно ще удовлетворява свойството $P_{p.c.}(f)$, което се дефинира по следния начин:

$$P_{p.c.}(f) \iff \forall x (I(x) \& !f(x) \implies O(x, f(x))).$$

Програмата P е <u>томално коректна</u>, ако при всеки коректен вход тя sadължително завършва и резултатът отново е коректен, разбира се. Тогава за функцията f, която тя пресмята, ще е изпълнено свойството $P_{t.c.}$, където

$$P_{t.c.}(f) \iff \forall x (I(x) \implies !f(x) \& O(x, f(x))).$$

Задача 4.40. Докажете, че всеки нетривиален проблем за частична коректност на MHP програмите не е полуразрешим.

Решение. Да фиксираме някаква спецификация I / O и нека

$$\mathcal{A}_{p.c.} = \{ f \mid f \text{ е изчислима & } P_{p.c.}(f) \}.$$

Тогава P_a е частично коректна относно I / O точно когато $\varphi_a \in \mathcal{A}_{p.c.}$.

При смислена спецификация със сигурност проблемът " $\varphi_a \in \mathcal{A}_{p.c.}$?" ще е нетривиален. Пример за тривиален проблем е да кажем този с входно условие $I(x) \stackrel{\text{деф}}{\Longleftrightarrow} x = x + 1$. Това условие е тъждествената лъжа, и следователно свойството свойствата $P_{p.c.}(f)$ и $P_{t.c.}(f)$ ще са в сила за всяка функция f, т.е. ще имаме $\mathcal{A}_{p.c.} = \mathcal{C}_1$ и $\mathcal{A}_{t.c.} = \mathcal{C}_1$.

Лесно се вижда, свойството $P_{p.c.}$ е в сила за $\emptyset^{(1)}$. Следователно ако $\mathcal{A}_{p.c.} \neq \mathcal{C}_1$, проблемът за частичната коректност няма да е полуразрешим, съгласно Cnedcmeue~4.6.

Проблемът за тоталната коректност също не е полуразрешим, но това ще следва от един по-общ критерий за неполуразрешимост, който предстои да докажем — теоремата на Райс-Шапиро.

Задача 4.40 показва, че не може да се съществува универсална програмаверификатор, която да проверява дали всяка МНР програма е коректна относно дадена спецификация.

4.3.4 Теорема на Райс-Шапиро

Вече се убедихме, че всеки нетривиален проблем от вида " $\varphi_a \in \mathcal{A}$?" е неразрешим. Сега да видим, че съществуват поне *полуразрешими* проблеми от този тип. Следващата задача ще ни подскаже, че тези проблеми трябва да отговарят на едно специфично условие.

Задача 4.41. Докажете, че проблемът " φ_a не е инективна?" е полуразрешим.

Решение. По определение една *частична* функция $f: \mathbb{N} \longrightarrow \mathbb{N}$ е инективна, ако е изпълнено условието:

$$\forall x \forall y (x \neq y \& !f(x) \& !f(y) \implies f(x) \neq f(y)).$$

Тогава

$$\varphi_a$$
 не е инективна $\iff \exists x \exists y \exists z (x \neq y \& \varphi_a(x) \simeq z \& \varphi_a(y) \simeq z)$ $\iff \exists x \exists y \exists z \underbrace{\chi_{\neq}(x,y) + |\Phi_1(a,x) - z| + |\Phi_1(a,y) - z|}_{f(a,x,y,z)} \simeq 0$

f е изчислима, значи множеството $A = \{(a,x,y,z) \mid f(a,x,y,z) \simeq 0\}$ е полуразрешимо, а оттам по теоремата за проекцията (приложена трикратно) ще е полуразрешимо и множеството $I = \{a \mid \varphi_a \text{ не е инективна}\}$. Следователно проблемът " φ_a не е инективна?" е полуразрешим.

Следващата теорема ни дава neofxodumo (но недостатъчно) условие един проблем от типа " $\varphi_a \in \mathcal{A}$?" да е полуразрешим. Затова няма как да я използваме, за да доказваме, че даден проблем е полуразрешим. Но това няма да бъде и нашата цел; ние ще я прилагаме с контрапозиция, за да показваме, че даден проблем ne е полуразрешим.

Теорема 4.4. (**Теорема на Райс-Шапиро**) Нека проблемът " $\varphi_a \in \mathcal{A}$?" е полуразрешим. Тогава за всяка функция $f \in \mathcal{C}_1$ е в сила еквивалентността:

$$f \in \mathcal{A} \iff \exists \theta (\theta \text{ е крайна } \& \theta \subseteq f \& \theta \in \mathcal{A}).$$
 (4.3)

Доказателство. Условието (4.3) ни казва, че за да е полуразрешим даден проблем " $\varphi_a \in \mathcal{A}$?", той трябва да се локализира до някоя крайна част θ от функцията $f \in \mathcal{A}$.

Да вземем за пример свойството "неинективност" от 3a da va 4.41. За да не е инективна една функция f, е достатъчно да има две различни точки x и y от дефиниционната ѝ област, за които f(x) = f(y). Значи в качеството на $\theta \subseteq f$ можем да вземем функцията θ , която е дефинирана само в тези две точки.

Тази теорема остава без доказателство, защото не остана време за него :(. Все пак го оставям в записките, за тези, които искат да се уверям във верността на теоремата. :) Най-напред да се заемем с правата посока на еквивалентността (4.3). За целта да фиксираме изчислима функция $f \in \mathcal{A}$ и да допуснем, че условието в дясната страна на (4.3) не е изпълнено. Това означава, че за всяка крайна $\theta \subseteq f$ ще е вярно, че $\theta \notin \mathcal{A}$. Да видим, че тогава $\overline{K} \leqslant I_{\mathcal{A}}$, което ще противоречи на полуразрешимостта на $I_{\mathcal{A}}$.

От третото НДУ за полуразрешимост ($Tespdenue\ 4.10$), приложено за полуразрешимото множество K, ще съществува рекурсивна функция ρ , такава че за всяко a:

$$a \in K \iff \exists t \ \rho(a, t) = 0.$$
 (4.4)

Чрез тази функция ρ дефинираме функцията g по следния начин:

$$g(a,x) \simeq egin{cases} f(x), & ext{ako } orall t \leq x \
ho(a,t) > 0 \\ \lnot!, & ext{ako } \exists t \leq x \
ho(a,t) = 0. \end{cases}$$

Тъй като f е изчислима, а условието $\forall t \leq x \ \rho(a,t) > 0$ е разрешимо, то и g ще е изчислима. S_n^m -теоремата, приложена към нея, ще ни даде рекурсивна функция h, такава че за всяко a и x,

$$\varphi_{h(a)}(x) \simeq g(a, x).$$
 (4.5)

Нашата цел ще бъде да покажем, че \overline{K} се свежда към $I_{\mathcal{A}}$ чрез горната функция h (т.е. $a \in \overline{K} \iff h(a) \in I_{\mathcal{A}}$).

Да разгледаме най-напред случая $a \in \overline{K}$. Тогава от (4.4) ще имаме, че $\forall t \ \rho(a,t)>0$. Но това означава, че $g(a,x)\simeq f(x)$ за всяко x. Тогава според (4.5) ще имаме, че

$$\varphi_{h(a)}(x) \simeq f(x)$$

за всяко x и значи $\varphi_{h(a)}=f$. Но съгласно нашия избор, $f\in\mathcal{A}$, с други думи, $\varphi_{h(a)}\in\mathcal{A}$ и значи $h(a)\in I_{\mathcal{A}}$. Така получихме, че

$$a \in \overline{K} \implies h(a) \in I_{\mathcal{A}}.$$
 (4.6)

Нека сега $a \in K$. Тогава от (4.4) ще имаме, че $\rho(a,t) = 0$ за някое t. Нека t_0 е първото с това свойство. Лесно се вижда, че

$$\varphi_{h(a)}(x) \simeq g(a,x) \simeq \begin{cases} f(x), & \text{ако } x < t_0 \\ \neg !, & \text{иначе.} \end{cases}$$

Следователно в този случай $\varphi_{h(a)}$ е крайна и очевидно $\varphi_{h(a)}\subseteq f$. Но по допускане никоя такава функция не може да е в класа \mathcal{A} , т.е. имаме $\varphi_{h(a)}\notin \mathcal{A}$ и съответно — $h(a)\notin I_{\mathcal{A}}$. Така стигнахме до импликацията

$$a \in K \implies h(a) \notin I_A$$

която заедно с обратната ѝ импликация (4.6) ни дава общо $a \in \overline{K} \iff h(a) \in I_{\mathcal{A}}$. Това означава, че $\overline{K} \leqslant I_{\mathcal{A}}$ — противоречие с факта, че $I_{\mathcal{A}}$ е полуразрешимо.

Сега да проверим и обратната посока на еквивалентността (4.3). Нека за изчислимата функция f е вярно, че съществува крайна функция θ , такава че $\theta \subseteq f$ и $\theta \in \mathcal{A}$. Да допуснем, че $f \notin \mathcal{A}$. Целта ни е отново да стигнем до свеждането $\overline{K} \leqslant I_{\mathcal{A}}$, което ще ни даде търсеното противоречие.

Сега дефинираме функцията g както следва:

$$g(a,x)\simeq egin{cases} f(x), & \text{ако } x\in Dom(heta) & \lor & a\in K \\ \lnot!, & \text{иначе}. \end{cases}$$

Да означим с A множеството $\{(a,x)\mid x\in Dom(\theta)\lor a\in K\}$ от дефиницията на a. Тогава

$$(a, x) \in A \iff x \in Dom(\theta) \lor a \in K \iff (a, x) \in (\mathbb{N} \times Dom(\theta)) \cup (K \times \mathbb{N}).$$

Така $A = (\mathbb{N} \times Dom(\theta)) \cup (K \times \mathbb{N})$ и значи A е полуразрешимо, следователно g е изчислима. Отново прилагаме S_n^m -теоремата и получаваме, че има рекурсивна функция h, такава че за всяко a и x:

$$\varphi_{h(a)}(x) \simeq g(a,x).$$

Ако $a \in K$, тогава за всяко $x, g(a,x) \stackrel{\text{деф}}{\simeq} f(x)$, което според горното равенство означава, че за всяко $x, \varphi_{h(a)}(x) \simeq f(x)$, т.е. $\varphi_{h(a)} = f \notin \mathcal{A}$. Тогава $h(a) \notin I_{\mathcal{A}}$, или дотук проверихме, че

$$a \in K \implies h(a) \notin I_{\mathcal{A}}.$$

Нека сега $a \notin K$. Тогава от дефиницията на g ще имаме:

$$arphi_{h(a)}(x) \simeq g(a,x) \simeq egin{cases} f(x), & \text{ако } x \in Dom(heta) \\ \neg !, & \text{иначе.} \end{cases}$$

Понеже $\theta \subseteq f$, излезе, че в този случай $\varphi_{h(a)} = \theta$, като $\theta \in \mathcal{A}$, т.е. получихме, че $\varphi_{h(a)} \in \mathcal{A}$ и съответно — $h(a) \in I_{\mathcal{A}}$. Така проверихме импликацията $a \in \overline{K} \implies h(a) \in I_{\mathcal{A}}$, която заедно с обратната импликация от по-горе, ни дава общо $a \in \overline{K} \iff h(a) \in I_{\mathcal{A}}$ и търсеното противоречие.

От тази теорема на момента получаваме, че проблемът за тоталността не е полуразрешим, защото няма крайни функции, за които той да е в сила: **Задача 4.42.** Докажете, че проблемът " $\varphi_a \in \mathcal{A}_{tot}$?" не е полуразрешим.

Решение. Ако допуснем, че е полуразрешим, то трябва да е изпълнено условието (4.3). Но няма крайна функция, която принадлежи на \mathcal{A}_{tot} , и значи допускането ни е погрешно.

От теоремата на Райс-Шапиро получаваме следното удобно за използване ДУ за неполуразрешимост:

Следствие 4.7. Нека проблемът " $\varphi_a \in \mathcal{A}$?" е полуразрешим. Тогава класът \mathcal{A} е затворен нагоре, т.е. за всяка $f, g \in \mathcal{C}_1$ е в сила импликацията:

$$f \in \mathcal{A} \& f \subseteq g \implies g \in \mathcal{A}.$$

Доказателство. Нека $f \in \mathcal{A}$. Тогава от еквивалентността (4.3), прочетена в правата посока, ще имаме, че за някоя крайна функция $\theta \subseteq f$ ще е вярно, че $\theta \in \mathcal{A}$. Сега ако $f \subseteq g$, по транзитивността на \subseteq получаваме, че $\theta \subseteq g$, и оттук отново чрез (4.3), но този път приложена в обратната посока, достигаме до $g \in \mathcal{A}$.

Оттук лесно се вижда как теоремата на Райс-Успенски следва леко от теоремата на Райс-Шапиро:

Задача 4.43. Изведете теоремата на Райс-Успенски като следствие на теоремата на Райс-Шапиро.

Решение. Нека $\emptyset \subsetneq \mathcal{A} \subsetneq \mathcal{C}_1$ и да приемем, че проблемът " $\varphi_a \in \mathcal{A}$?" е разрешим. Тогава и двата проблема — " $\varphi_a \in \mathcal{A}$?" и " $\varphi_a \in \overline{\mathcal{A}}$?" ще са полуразрешими. Разглеждаме поотделно двата случая:

1 сл.: $\emptyset^{(1)} \in \mathcal{A}$. Тъй като за всяка функция $g \in \mathcal{C}_1$ е вярно, че $\emptyset^{(1)} \subseteq g$, то от горното следствие веднага следва, че $\mathcal{A} = \mathcal{C}_1$, което противоречи на условието $\mathcal{A} \subsetneq \mathcal{C}_1$.

2 сл.: $\emptyset^{(1)} \notin \mathcal{A}$. Но тогава $\emptyset^{(1)} \in \overline{\mathcal{A}}$ и разсъждавайки както в сл. 1, ще получим, че $\overline{\mathcal{A}} = \mathcal{C}_1$, откъдето $\mathcal{A} = \emptyset$ — отново противоречие с условието. Следователно допускането ни, че проблемът " $\varphi_a \in \mathcal{A}$?" е разрешим, е било погрешно.

От това следствие с контрапозиция получаваме, че ако \mathcal{A} не е затворен нагоре, то проблемът " $\varphi_a \in \mathcal{A}$?" не е полуразрешим. Така можем да покажем, че не са полуразрешими редица проблеми.

Задача 4.44. Нека f_0 е фиксирана едноместна изчислима функция. Докажете, че проблемът " $\varphi_a = f_0$?" не е полуразрешим.

Решение. Този проблем можем да разпишем като " $\varphi_a \in \mathcal{A}$?", където $\mathcal{A} = \{f_0\}$. Да видим, че той не е полуразрешим. Ще разгледаме следните два случая за f_0 :

1 сл.: f_0 е крайна. Тогава според горното *Следствие* 4.7, класът \mathcal{A} трябва да е затворен нагоре, а той очевидно не е — противоречие.

2 сл.: f_0 не е крайна. Тогава според (4.3) класът \mathcal{A} трябва да съдържа крайна функция, а той очевидно не съдържа такава — отново противоречие.

Видяхме, че проблемът " $\varphi_a = f_0$?" не е полуразрешим. Дали това ще бъде вярно и за допълнителния проблем " $\varphi_a \neq f_0$?"? Оказва се, че не е.

Задача 4.45. Има ли изчислима функция f_0 , за която проблемът " $\varphi_a \neq f_0$?" да е полуразрешим?

Решение. Нека $\mathcal{A} = \{ f \mid f \neq f_0 \}$. Тогава

$$\varphi_a \neq f_0 \iff \varphi_a \in \mathcal{A}$$

и можем да разсъждаваме за \mathcal{A} .

Ако f_0 не е $\emptyset^{(1)}$, то $\emptyset^{(1)} \in \mathcal{A}$ и следователно проблемът " $\varphi_a \neq f_0$?" няма да е полуразрешим, съгласно *Следствие* 4.6.

Ако $f_0=\emptyset^{(1)}$, се оказва, че проблемът " $\varphi_a\neq f_0$?", т.е " $\varphi_a\neq\emptyset^{(1)}$?", вече е полуразрешим. Наистина, в този случай ще имаме, че за произволно a:

$$a \in I_A \iff \varphi_a \neq \emptyset^{(1)} \iff \exists x \,! \varphi_a(x) \iff \exists x \,! \Phi_1(a,x)$$

и значи $I_{\mathcal{A}}$ е полуразрешимо множество.