Tema 2: Autómatas finitos probabilisticos

Contenido

- Repaso
- Autómata probabilísticos
- Modelos Ocultos de Markov
 - ¿Cuál es la probabilidad $x \subseteq L(AFP)$?
 - ¿Qué secuencia de estados es más probable dada x para L(AFP)?
 - ¿Cómo definir los elementos de L(AFP) para que generalice ejemplos del cadenas?

Dr. Ivan Meza, IIMAS, UNAM, 2010

Conceptos

- Espacio de muestreo y ley de Probabilidad
- Eventos: simples y complejos
- Probabilidad condicional
- Probabilidad total
- Red de Bayes
- Independencia e independencia condicional

Dr. Ivan Meza, IIMAS, UNAM, 2010

Lenguaje estocástico

- Un lenguaje estocástico es una distribución probabilística para las cadenas de Σ*
 - P(w) donde w∈ Σ *
- $\bullet \Omega = \Sigma^*$
- AFP nos van a ayudar a definir lenguages estocásticos

Dr. Ivan Meza, IIMAS, UNAM, 2010

AF determinísticos

• AF determinísticos para reconocer cadenas

- 0010011
- aabaabc

Dr. Ivan Meza, IIMAS, UNAM, 2010

AF

• AF no determinísticos para generar cadenas

- a b a a
- 0 1 0 ??
- ¿Necesitamos una estrategía?

Generando cadenas

- Inicializar la máquina: Escoger un estado usando la distribución I
- 2. Sea q el estado actual, decidir si se para la generación con F(q) o si avanzamos con (q,a,q') de tal forma que se genera "a" y el nuevo estado actual es q'
- 3. Si se decidió parar, finalizar, caso contrario Regresar a 2

Dr. Ivan Meza, IIMAS, UNAM, 2010

Nuevas preguntas

- Agregamos a nuestra lista
 - ¿Cuál es la probabilidad $x \subseteq L(AFP)$?
 - ¿Qué secuencia de estados es más probable dada *x* para L(*AFP*)?
 - ¿Cómo definir los elementos de L(AFP) para que generalice ejemplos del cadenas?

Dr. Ivan Meza, IIMAS, UNAM, 2010

Autómatas finitos probabilísticos

- AF Probabilístico No-determinístico (AFP)
- AF Probabilístico No-determinístico con transiciones Λ (AFP-Λ)
- AF Probabilístico determinístico (AFPD)

Dr. Ivan Meza, IIMAS, UNAM, 2010

AFP

- Sexteta donde:
 - -Q es un conjunto finito (de estados)
 - $-\Sigma$ es un alfabeto (finito) de símbolos de entrada
 - $-\delta$ es un conjunto de transiciones de $Q \times \Sigma \times Q$
 - -I es $Q \rightarrow \mathbb{R}^+$, probabilidad inicial
 - -P es $\delta \to \mathbb{R}^+$, probabilidad de transición
 - $-F \text{ es } Q \rightarrow \mathbb{R}^+$, probabilidad final

Dr. Ivan Meza, IIMAS, UNAM, 2010

Restricciones en I,P,F $\sum_{q\in\mathcal{Q}}I(q)=1$ $\forall q\in\mathcal{Q}, F(q)+\sum_{a\in\Sigma, q'\in\mathcal{Q}}P(q,a,q')=1$ Dr. Ivan Meza, IIMAS, UNAM, 2010

P(x) dado un AFP • Dada una cadena x, con |x| = k, P(x₁x₂...xk) - Comenzar en el estado s0 - Generar a x₀ - llegar a s₁ - Generar a x₁ - Llegar a s₂ - ... - Llegar a sk - Parar Dr. Ivan Meza, IIMAS, UNAM, 2010

P(x) dado un AFP

• Dada una cadena x, con |x| = k, $P(x_1x_2...x_k)$

$$I(S_0) \left(\prod_{j=1}^{k} P(s_{j-1}, x_j, s_j) \right) F(s_k)$$

Ruta ψ/Path

- Secuencia de estados y cadena.
 - $s_0, x_0, s_1, x_1, \dots x_{k-1}, x_k, s_k$
- ¿Qué pasa si se trata de un DAFP?
 - Solamente existe una ruta
- ¿Qué pasa si se trata de un AFP?
 - Potencialmente existen varias rutas
- ¿Qué pasa si se trata de un AFP-Λ?
 - La ruta puede ser más grande que |x|!

Dr. Ivan Meza, IIMAS, UNAM, 2010

P(x) dado un AFP

- Dada una cadena x, con |x| = k, $P(x_1x_2...x_k)$
 - Para una ruta ψ

$$P(\psi) = I(S_0) \left(\prod_{j=1}^{k} P(s_{j-1}, x_j, s_j) \right) F(s_k)$$

- Ruta válida, sí P(ψ)>0
- Sea $\Psi(x)$ el conjunto de todas las rutas válidas de x
- Entonces:

$$P(x) = \sum_{y \in \Psi(x)} P(\theta)$$
Dr. Ivan Meza, IIMAS, UNAM, 2010

Dr. Ivan Meza, IIMAS, UNAM, 2010

Ejemplo: P(01)

- $\psi_1 = I(s_0)P(s_0, \Lambda, q_0)P(q_0, 0, q_1)P(q_1, 1, q_1)F(q_1)$
- $\psi_1 = 1.0*0.5*1.0*0.5*0.5$

Ejemplo: P(01)

- $\psi_2 = I(s_0)P(s_0, \Lambda, p_0)P(p_0, 0, p_0)P(p_0, 1, p_1)F(p_1)$
- $\bullet \ \psi_2 = 1.0*0.5*0.5*0.5*1.0$

Ejemplo: P(01)

- $\bullet \theta_1 = 1.0*0.5*1.0*0.5*0.5 = 0.125$
- $\bullet \theta_2 = 1.0*0.5*0.5*0.5*1.0 = 0.125$
- P(01)=0.125+0.125=.25

Dr. Ivan Meza, IIMAS, UNAM, 2010

Equivalencias

- Dos PFA son equivalentes si generan la misma distribución
- ¿Son equivalentes los AFP, AFP-Λ y AFPD?
 - Existen distribuciones que pueden ser generadas por AFP pero no por AFPD
 - Para todo AFP-A, existe un AFP con la misma distribución

Dr. Ivan Meza, IIMAS, UNAM, 2010

Consistencia

• ¿Realmente todas las probabilidades suman 1?

Un PFA es consistente si todos sus estados son *útiles*

• Un estado es útil si aparece en una ruta valida

Dr. Ivan Meza, IIMAS, UNAM, 2010

Ejemplo: HMM

- HMM son modelos AFP que factoriza la probabilidad P(δ) en dos partes
 - Probabilidad de transición: A:QxQ
 - Probabilidad de emisión: B:QxΣ
- Además, no hay estados finales

Dr. Ivan Meza, IIMAS, UNAM, 2010

¿Por qué factorizar?

- Suponga |Q|=10 y $|\Sigma|=10$
- $P(QxQx \Sigma)=10*10*10=1000$
- A(QxQ)=10*10=100
- $B(Qx \Sigma)=10*10=100$

Dr. Ivan Meza, IIMAS, UNAM, 2010

Equivalencia

• $P(q_0,a,q_1)=A(q_1|q_0)B(a|q_0)$

Dr. Ivan Meza, IIMAS, UNAM, 2010