

End to End Multimodal Imitation Learning

Group 3 | APP-RAS | Milestone 3 | WS 22/23

Agenda

- 1. End-to-End Imitation Learning in Autonomous Driving
- 2. Goal & Steps Overview
- 3. Dataset
- 4. Model Architectures
- 5. Model Training
- 6. Model Evaluation

1. End-to-End Multimodal Imitation Learning in AD

2. Goal & Steps Overview

3. Dataset - Acquisition

3. Dataset - Characteristics

Driving Length: 1 day 14h

Raw size: 61 GBNumber Towns: 9

Sensors: 3 RGB (160 x 960), LiDAR, Speedometer, ...

Target values: Steer, Throttle, Brake (Control Commands)

Additional: Navigational Command (turn left, turn right, go straight, ...)

3. Dataset - Preprocessing

4. Model Architectures

5. Model Training

6. Model Evaluation - "Longest6" Benchmark Statistics

	Camera	Camera + LiDAR
Avg. driving score ↑	9.601	13.365
Avg. route completion ↑	39.452	33.597
Avg. infraction penalty ↑	0.358	0.464
Collisions with pedestrians \	0.000	0.000
Collisions with vehicles ↓	3.031	1.601
Collisions with layout 	0.421	0.378
Red lights infractions ↓	0.512	0.608
Stop sign infractions ↓	0.162	0.123
Off-road infractions ↓	0.855	0.273
Route deviations ↓	0.389	0.828
Route timeouts ↓	0.097	0.032
Agent blocked ↓	0.943	0.956

→ Camera + LiDAR outperforms Camera in the "Average driving Score"

6. Model Evaluation - Visual Inspection

6. Model Evaluation - Camera + Lidar during Night

6. Model Evaluation - Camera + Lidar - Right Turn

6. Model Evaluation - Camera - Alignment to the Lane

6. Model Evaluation - Camera - Crash during Right Turn

6. Model Evaluation - Camera - Crash in Straight Lane

Conclusion

Objectives

- Sensor choices: Decide on a set of sensors and different combinations (setups). ✓
- **Expert Driver**: Choose an expert driver for CARLA.
- **Dataset**: Generate a Dataset with the expert driver.
- **E2E Model**: Implement an E2E model capable of driving autonomously.
- Data Preprocessing (for all sensor setups): Build a pipeline to generate compatible data for the chosen architecture. \checkmark
- **Training**: Train the different models with varying sensor setups and varying data sizes.
- **Evaluation**: Conduct the experiments and compare the sensor setups. \checkmark

Use Cases

We expect **route completions and low infractions** in:

- Easy environment: (short routes, less cars) empty roads, good weather (on training routes) 🗸
- Hard environment: (long routes, max cars) "Longest6"

Future Work

- Room for improvement in terms of hyperparameters (functions architectures)
- Validation using CARLA after every epoch (Model Selection)
- Changing to Vision Transformer architectures
- More sensor configurations
- More in-depth comparative analysis and more context

Thank you for listening!

Any questions?

Visualising Dev and Collision improvement

Lidar Preprocessing

- Transform [X,Y,Z,I] (coordinates, intensity loss during travel)
- To 2d Histogram representing a horizontal plane in front of the car
- Birds eye view, can process both other cars in traffic (positive obstacles), as well as holes in the ground or small objects below the eye level (negative obstacles)
- "Lidar-histogram for fast road and obstacle detection"

Leaderboard

How do we measure performance, specifically?

We use the Longest6 benchmark!

- 36 routes
- Average route length 1.5 km (official leaderboard ~1.7km)
- High density of dynamic agents: vehicles spawned at all possible locations in CARLA
- Unique environmental conditions with combinations of:
 - Six weather conditions: Cloudy, Wet, MidRain, WetCloudy, HardRain, SoftRain
 - Six daylight conditions Night, Twilight, Dawn, Morning, Noon, Sunset.

Measuring performance

The Longest6 benchmark uses three major factors to measure performance:

- **Driving score**: RiPi, Main metric of the leaderboard, serving as the product between the route completion and the infractions penalty. Here **Ri** is the percentage of completion of the i-th route, and **Pi**, the infraction penalty of the i-th route.
- Route completion: Percentage of the route distance completed by an agent.
- **Infraction penalty**: $\prod_{j}^{\text{ped., ..., stop}}(p_{i}^{j})^{\text{#infractions}}$. The leaderboard tracks several types of infractions and this metric aggregates all of these infractions triggered by an agent as a geometric series. Agents start with an ideal **1.0** base score, which is reduced each type an infraction is committed.

Breaking it down

Infractions and shutdown events

The CARLA leaderboard offers individual metrics for a series of infractions. Each of these has a penalty coefficient that will be applied everytime it happens. Ordered by severity, the infractions are the following.

- Collisions with pedestrians 0.50.
- Collisions with other vehicles 0.60.
- Collisions with static elements 0.65.
- Running a red light 0.70.
- Running a stop sign 0.80.