The Generalised Linear Model (2)

PSM 2

Bennett Kleinberg

22 Jan 2019

Welcome

Probability, Statistics & Modeling II

Lecture 3

GLM₂

What question do you have?

Today

- Recap linear regression
- Why the GLM?
- Extended cases: logistic regression
- How good is the model?
- How does one model compare to another?

Recap linear regression

Ingredients?

Recap linear regression Core idea?

Recap linear regression Types of effects?

Recap linear regression Residuals?

```
10
0
       0
     0
                                  \infty
            0
          0
                                  9
                                        X
                  0
               0
                       0
                    0
 10
                       7
                            0
       8
             9
                  Þ
              λ
```

y = x1 + rep(c(-1, 1))
df = data.frame(x1, y)
plot(x1, y)

```
10
     0
   0
                                   \infty
          0
        0
                                   9
                                         X
               0
             0
                                   7
0١
ب
                    7
                         0
                             Z-
     8
          9
               Þ
               λ
```

```
lm_1 = lm(y ~ x1, data=df)
{plot(x1, y, ylim=c(-2, 10))
    abline(lm_1)}
```

Continuation from last week

How to find the "optimal" terms for my model?

Maybe we can optimise this?

What if you don't know what the 'ideal' model is?

Especially neat for predictive modelling

**Back to the shooting data: **

```
smsd = smsd[smsd$school_related != 'Killed', ]
load('./data/mass_shootings_detailed.RData'
                                                                                 smsd = droplevels(smsd)
                                                                                                                             names (smsd
```

```
"date"
"n\_injured"
               "gender"
                            "school_related" "mental illness"
"n_fatal"
"caseid"
              "day"
```

Automated variable selection

1. Specify the complete model

```
complete_model = lm(n_fatal ~ n_guns*mental_illness*school_related, data
```

2. Specify the null model

```
null_model = lm(n_fatal ~ 1, data = smsd)
```

3. Run model selection ...

3 predictor variables: how many terms in the model?

- 1 intercept
- 3 main effects
- 3 2-way interactions
- 1 3-way interaction

Model selection

```
summary(complete_model)
```

```
.90.0
                                                                                                                                              Estimate Std. Error t valu
                lm(formula = n_fatal ~ n_guns * mental_illness * school_related,
                                                                                                                                                                                                                             0.49495
                                                                                                                                                                                                                                            0.77367
                                                                                                                                                                              0.39577
                                                                                                                                                                                                             1.70127
                                                                                                                                                                                             1.28991
                                                                                                                                                                             0.86436
                                                                                                                                                                                                                                            -1.02874
                                                                                                                                                                                                           -0.01274
                                                                                                                                                                                                                             0.03300
                                                                                                                                                                                             1.47991
                                                                               3Q Max
1.2421 26.2074
                                                                                                                                                                                                                                                            mental illnessVes.school
                                                                                                                                                                                                                            n_guns:mental illnessYes
                                                                                                                                                                                                                                            n_guns:school_relatedYes
                                                                              Median
                                                                                              -6.9592 -2.1233 -0.6777
                                                                                                                                                                                             mental illnessYes
                                                                                                                                                                                                             school_relatedYes
                                data = smsd)
                                                                                                                              Coefficients:
                                                                                                                                                              (Intercept)
                                                               Residuals:
                                                                               Min
                                                                                                                                                                                 n_guns
Call:
```

Model selection

summary(null_model)

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
                                                                                                                                                                                                                                                                                                                                                                                            Residual standard error: 4.491 on 180 degrees of freedom
                                                                                                                                                                                                                                          Estimate Std. Error t value Pr(>|t|)
4.4751 0.3338 13.4 <2e-16 ***
                                                                                                                                            -4.4751 -2.4751 -0.4751 1.5249 27.5249
                            ## lm(formula = n_fatal ~ 1, data = smsd)
                                                                                                                   10 Median
                                                                                                                                                                                                                                                                 (Intercept) 4.4751
                                                                                                                                                                                                              Coefficients:
                                                                                       ## Residuals:
Call:
```

Model selection: backward

```
'backward')
step(complete model, direction =
```

```
school related,
                                                                                               72.456 2863.0
                                                        Df Sum of Sq
                 ~ n_guns * mental illness * school related
                                                                                                                                                                                  lm(formula = n_fatal ~ n_guns * mental_illness *
                                                                                                                                                                                                                                                                                                          u guns
                                                                                                                                                                                                                                                                                                                         0.86436
                                                                                                                                                                                                                                                                                                                                           mental_illnessYes
                                                                                                                                                                                                                                                                                                                                                                                                                         n_guns:mental illnessYes
                                                                                                                                                                                                                                                                                                                                                                                                                                             0.03300
                                                                                                                                                                                                                                                                                                                                                                                                                                                               n_guns:school_relatedYes
                                                                                                                                                                                                                                                                                                                                                                                    school relatedYes
                                                                                                                                                                                                                                                                                                                                                                                                       -0.01274
                                                                                                                                                                                                                                                                                    2.30041
                                                                                                                                                                                                                                                                                                                                                                1.47991
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1 02874
                                                                                                                                                                                                                                                                 (Intercept)
                                                                                               - n_guns:mental illness:school related
AIC=511.13
                                                                                                                                                                                                        smsd)
                                                                                                                                                                                                                                            Coefficients:
                                                                                                                                                                                                      data =
                    n fatal
 Start:
                                                                            ## <none>
```

Model selection: forward

```
scope=list(lower=null_model, upper=complete_model))
step(null model, direction = 'forward'
```

```
95.460 3000.2 514.24
57.394 3038.3 516.52
                                                               535.46 3095.7 517.91
                                                                                                                                                                                                                                                     3095.7 517.91
                                                 RSS
                                              Df Sum of Sq
                                                                                                                                                                                                  Df Sum of Sq
AIC=544.78
                                                                                                                                                  Step: AIC=517.91
                                                                               + mental illness
                                                                                                                                                                                                                    ## + mental illness
                                                                                                                                                                  n fatal ~ n_guns
                                                                                                                                                                                                                                     + school_related
                                                                                                 + school_related
Start:
                                                                                                                    <non>
```

```
## lm(formula = n_fatal ~ n_guns + mental_illness + school_related +
                                                   n_guns:mental_illness, data = smsd
```

```
n_guns
0.6060
school_relatedYes
-1.5038
       (Intercept)
2.7122
                          ## mental_illnessYes
## 0.3975
## n_guns:mental_illnessYes
##
## Coefficients:
         # # #
# # #
```

Limitations of linear regression?

```
plot(a, b, main = round(cor(a, b), 4))
                  rnorm(1000, 30, 10)
a + rnorm(1000, 2, 8)
              = rnorm(1000,
set.seed(123
```



```
a_scaled
abline(lm(a scaled ~ b scaled))
                                                                                                        0
                                                     ε
                                                             7
                                                                                              շ-
                                                                              0
                                                                                                       ٤-
                                                                      p_scaled
```

{plot(a_scaled, b_scaled)

```
## Call:
## lm(formula = a_scaled ~ b_scaled - 1)
##
Coefficients:
## b_scaled
## 0.7969
lm(a_scaled ~ b_scaled - 1)
```

Limitations of linear regression?

- Correlation!= causation
- Continuous outcome variable

Generalising the model The Generalised Linear Model

GLM in general

- framework to deal with different outcome variables
- uses the same "linearity in parameters" idea
- key feature: linking the outcome to the predictor(s)

The GLM in R

```
rela
 n guns*mental illness*school
my_model_glm = glm(formula = n fatal
                      family = gaussian
                                                  data = smsd)
                                                                           summary(my model glm)
```

```
2.18
                                                                                                                                                                                             1.14
                                                                                                                                                                                                               .00.0-
                                                                                                                                                                                                                              90.0
                                                                                                                                               Estimate Std. Error t valu
               glm(formula = n_fatal ~ n_guns * mental_illness * school_related,
                                                                                                                                                                                                                               0.49495
                                                                                                                                                              0.93210
                                                                                                                                                                                                                                              0.77367
                                                                                                                                                                              0.39577
                                                                                                                                                                                                               1.70127
                                                                                                                                                                                              1.28991
                                                                                                                                                                              0.86436
                                                                                                                                                               2.30041
                                                                                                                                                                                                              -0.01274
                                                                                                                                                                                                                             0.03300
                                                                                                                                                                                                                                             -1.02874
                                                                                                                                                                                              1.47991
                                                                                                                                                                                                                                                              41734
                                                                                Max
                                                                                               26.2074
                                                                                                                                                                                                                                                             mental illneceVec.cchool relatedVec
                               family = gaussian, data = smsd)
                                                                                              1.2421
                                                                                              -0.6777
                                                                               Median
                                                                                                                                                                                                                           n_guns:mental_illnessYes
                                                                                                                                                                                                                                             n_guns:school_relatedYes
                                                               Deviance Residuals:
                                                                                                                                                                                              mental illnessYes
                                                                                                                                                                                                               school_relatedYes
                                                                                             -6.9592 -2.1233
                                                                                                                              Coefficients:
                                                                                                                                                               (Intercept)
                                                                                Min
                                                                                                                                                                                 n_guns
## Call:
```

Compared to 1m

```
my_model_lm = lm(formula = n_fatal ~ n_guns*mental_illness*school_relate
                                          data = smsd)
                                                                                summary(my_model_lm)
```

```
2.184
                                                                                                                                                                          1.14
                                                                                                                            Std. Error t value
                                                                                                                                                                                          -0.00
lm(formula = n_fatal ~ n_guns * mental_illness * school_related,
                                                                                                                                            0.93210
                                                                                                                                                                                                          0.49495
                                                                                                                                                                                                                         0.77367
                                                                                                                                                                                                                                         2420R
                                                                                                                                                           0.39577
                                                                                                                                                                                         1.70127
                                                                                                                                                                           1.28991
                                                                                                                           Estimate
                                                                                                                                                           0.86436
                                                                                                                                           2.30041
                                                                                                                                                                                         -0.01274
                                                                                                                                                                                                          0.03300
                                                                                                                                                                                                                         -1.02874
                                                                                                                                                                          1.47991
                                                                                                                                                                                                                                         3 41734
                                                               Max
                                                                                                                                                                                                                                         mental illnessVes•school relatedVes
                                                                                                                                                                                                         n_guns:mental illnessYes
                                                                                                                                                                                                                         n_guns:school relatedYes
                                                            Median
                                                                             -6.9592 -2.1233 -0.6777
                                                                                                                                                                          mental illnessYes
                                                                                                                                                                                          school_relatedYes
                data = smsd)
                                                                                                            Coefficients:
                                                                                                                                            (Intercept)
                                              Residuals:
                                                              Min
                                                                                                                                                            n_guns
                                                                                                            ##
```

GLM vs LM

The LM is a GLM with the Gaussian link function.

- link function 'links' the linear predictor to the mean of the distribution of the outcome variable
- e.g. if outcome variable from normal distribution -> "normal" link function (Gaussian)
- e.g. if outcome variable from poisson distribution -> "Poisson" link (Log)
- e.g. if outcome variable from binomial distributiob -> "Binomial" link (Logit)

Why bother with this?

```
df1 = data.frame(a1 = 1:100, b1)
{plot(b1)
abline(lm(b1 ~a1, data=df1))}
```


m1 = lm(b1 ~a1, data=df1)
hist(ml\$residuals)

Why bother with this?

Compare:

```
b2 = rep(c(1,0), each=50)
df2 = data.frame(a2 = 1:100, b2)
                                       {plot(b2)
abline(lm(b2 ~a2, data=df2))}
```


0.4 Histogram of m2\$residuals m2\$residuals ١0 8 7 0 ゎ 9 Þ Frequency

m2 = lm(b2 ~a2, data=df2)
hist(m2\$residuals)

What to do?

We need a representation of the outcome variable...

that is linear to the predictor

i.e. transforms the data to so that Y has a linear relationship to the predictors

But which function does this?

The link function

Answer: for binary outcomes, the logit function

- transforms the outcome to a continuous probability
- and uses the log-odds to model a linear relationship between X and Y

The logit function

```
 maps 0, 1 values to -Inf:
```

- assumes a probability of P(Y ==
- probability is expressed as the odds
- linearity through the log of the odds

```
prob = 0.40
odds = prob/(1+prob)
```

```
# [1] 0.2857143
```

```
log(odds)
```

```
## [1] -1.252763
```

Intermezzo: odds

	Smoker	Smoker Nonsmoker
Dead	30	Dead 30 20
Alive	70	80
	100	100 100

#Odds of smoker dead: (30/100)/(70/100)

[1] 0.4285714

equal to 30/70

[1] 0.4285714

Odds = event_present/event_not_present

٨

odds = P/(1-P)

	Smoker	Smoker Nonsmoker
Dead	30	Dead 30 20
Alive	70	80
	100	100 100

Odds of nonsmoker alive?

	Smoker	Smoker Nonsmoker
Dead	30	20
Alive	70	Alive 70 80
	100	100 100

#Odds of nonsmoker alive: 80/20

[1] 4

	Smoker	Nonsmoker
Dead	30	Dead 30 20
Alive	70	Alive 70 80
	100	100 100

Odds of nonsmoker alive dead?

	Smoker	Smoker Nonsmoker
Dead	30	Dead 30 20
Alive	70	Alive 70 80
	100	100 100

Odds of nonsmoker alive dead?

20/80

[1] 0.25

1/(80/20)

[1] 0.25

	Smoker	Nonsmoker
Dead	30	Dead 30 20
Alive	70	Alive 70 80
	100	100 100

Odds ratio: association between both factors.

OR = (30/70)/(20/80)

[1] 1.714286

The logit function

Models the binary outcome through the log odds of the predictors.

2	J	ogodd
	0100	90675
0	01010	4.5951
	470	1.73460
		1.38629
	33333	.09861
	28571	.847297
	38461	.619039
	99999	.405465
.45	18	.20067
	N	00670
	-	05465
	.85714	.6190392
	\sim	47297
		00061

741004 2500F 07700 094791 200mon 9173C •0 9777PF 247999 9 99999 99 5 റയവയത 90 $\cdot \infty$ •0

mplication: transformation of the coefficients

Remeber: we model the log of the odds ratio.

The logit function

Implication: transformation of the coefficients

Remeber: we model the log of the odds ratio.

So we need to 'unlog' the coefficients to get the odds.

Case today: Parole data

Dataset from Kaggle.

```
load('./data/parole_data.RData')
parole_data
```

```
granted
race
                                                                                                                   HISPANIC
                HISPANIC
                                         HISPANIC
                                                 HISPANIC
                                                         BLACK
                                                                 WHITE
                                                                                  HISPANIC
                                                                                           WHITE
                                BLACK
                                                                          WHITE
                                                                                                  BLACK
                                                                                                           BLACK
                                                                                                                                            RI.ACK
                                                                                                                    MALE
                                         MALE
                                                 MALE
                                                                                  MALE
                MALE
                                                         MALE
                                                                                                           MALE
                                                                 MALE
                                                                          MALE
                                                                                           MALE
                                                                                                   MALE
                                                                                                                                            MAT.F
```

Suppose we model the success of parole hearings...

```
family = 'binomial')
                     data=parole_data
glm(granted ~ sex
parole success =
                                                            parole success
```

```
## Call: glm(formula = granted ~ sex, family = "binomial", data = parol
                                                                                                                                               ## Degrees of Freedom: 41534 Total (i.e. Null); 41533 Residual
                                                                                                                                                                                                 AIC: 46320
                                                                                                                                                                         46850
                                                                         SEXMALE
                                                                                                  -1.363
                                                                                                                                                                                                Residual Deviance: 46320
                                                                                                                                                                        ## Null Deviance:
                                              ## Coefficients:
## (Intercept)
                                                                          (Intercept) 2.392
```

summary(parole success)

```
glm(formula = granted ~ sex, family = "binomial", data = parole data)
                                                                                                                                                                                                                                                         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
                                                                                                                                                                                                                                                                                                    (Dispersion parameter for binomial family taken to be 1)
                                                                                                                                                                                                                                                                                                                                               Niill deviance. 16851 on 11531 dearees of freedom
                                                                                                                                                                                                                 <2e-16 ***
                                                                                                                                                                    Estimate Std. Error z value Pr(>|z|)
                                                                                      Max
                                                                                                       0.7818
                                                                                                                                                                                            34.58
                                                                                                                                                                                                               -19.44
                                                                                                      0.7818
                                                                                                                                                                                           0.06916
                                                                                                       0.7818
                                                                                   Median
                                                                                                                                                                                            (Intercept) 2.39190
                                                                                                                                                                                                              -1.36305
                                                               Deviance Residuals:
                                                                                    Min 10
-2.2268 -1.6337
                                                                                                                                                  ## Coefficients:
                                                                                                                                                                                                                 SEXMALE
## Call:
```

What does this mean?

```
coefficients(parole_success)
```

```
## (Intercept) sexMALE
## 2.391896 -1.363046
```

What would the Im interpretation be?

Coefficient interpretation

Remember what the logit function does?

Y ~ log_odds_ratio(X)

... So the coefficient x needs to be transformed.

Coefficient interpretation

Transforming the coefficient:

log odds to probability

- log -> un-log
- natural logarithm reverse
- e -> exp() in R

Coefficient interpretation

Let's use the output and transform:

```
coefficients(parole_success)
                                                   SEXMALE
                                                                    -1.363046
                                                                  2.391896
                                                  ## (Intercept)
```

```
## [1] 0.2566608
\exp(-1.36)
```

Understanding the odds

table(parole_data\$granted, parole_data\$sex)

```
## FEMALE MALE
## 0 228 10220
## 1 2493 28594
```

Odds by hand

	Female Male	Male	
0		10220	
\leftarrow	1 2493	28594	
	2721 38814	38814	

Odds of male granted:

(28594/38814)/(10220/38814)

[1] 2.797847

#Note: equivalent to 28594/10220

Odds of female granted:

2493/228

[1] 10.93421

```
Odds ratio male to female granted
                                                                                                                                              Proof:
                                                                                                                                                                                                                                                                                            coefficients(parole_success)
                                                                                                                                                                                                                                                                                                                                          SEXMALE
                                                                                                                                                                                                                                                                                                                                                       -1.363046
                                                                                                                                                                                                                                               ## [1] -1.363359
                                                                                                            ## [1] 0.2558761
                                                                                                                                                                                                                                                                                                                                         ## (Intercept)
## 2.391896
                                                              2.7978/10.9342
                                                                                                                                                                                                   log(0.2558)
```

Interpretation

Conversely: Female to male odds ration...

10.9342/2.7978

[1] 3.908142

The odds of being granted parole as a female are 3.90 times the odds of being granted parole as a male.

Add additional factor?

```
tapply(parole_data$granted, list(parole_data$race), mean)
```

```
## BLACK HISPANIC WHITE ## 0.6965374 0.7137377 0.8355549
```

Extend the model

```
glm(formula = granted ~ sex + race, family = "binomial", data = parol
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ## (Dicharsion naramatar for hinomial family takan to ha 1)
                                                                                                                                                                                                                                                                                                                                      Estimate Std. Error z value Pr(>|z|) 2.04089 0.07057 28.920 < 2e-16 ***
                                                                                                                                                                                                                                                                                                                                                                                                         3.317 0.000911 ***
                                                                                                                                                                                                                                                   Max
glm(granted ~ sex + race
                                          family = 'binomial')
                   data=parole_data
                                                                                                                                                                                                                                                                      0.8680
                                                                                                                                                                                                                                                                                                                                                          0.07057
0.07054
0.02909
                                                                                                                                                                                                                                                                                                                                                                                                                             0.02763
                                                                                                                                                                                                                                                  Median
                                                                                                                                                                                                                                                                        0.6224
                                                                 summary(parole success 2)
                                                                                                                                                                                                                                                                                                                                                                                 -1.25900
                                                                                                                                                                                                                                                                                                                                                                                                         0.09646
                                                                                                                                                                                                                                                                                                                                                                                                                               0.76131
                                                                                                                                                                                                                            Deviance Residuals:
parole success 2
                                                                                                                                                                                                                                                                                                                 Coefficients:
                                                                                                                                                                                                                                                                                                                                                                                                          raceHISPANIC
                                                                                                                                                                                                                                                                                                                                                             (Intercept)
                                                                                                                                                                                                                                                                                                                                                                                                                                raceWHITE
                                                                                                                                                                                                                                                                    -2.3921
                                                                                                                                                           ## Call:
```

Interpretation

```
coefficients(parole_success_2)
```

```
raceWHITE
            0.76131449
 SEXMALE raceHISPANIC
            0.09646174
            -1.25900315
 (Intercept)
2.04089495
##
          ##
```

222

-> Key: odds ratio to reference group

Interpretation

```
# --> race: HISPANIC to BLACK
exp(0.096)
                                                                                                                                                                                                                                                                                    # --> race: WHITE to BLACK
exp(0.7613)
# --> sex: MALE to FEMALE
                                                                             ## [1] 0.2839378
                                                                                                                                                                                                                                                                                                                                                                  ## [1] 2.141058
                                                                                                                                                                                                                        ## [1] 1.100759
                \exp(-1.259)
```

Adding more...

parole_data\$granted) interaction.plot(parole_data\$sex, parole_data\$race,

Interactions?

```
tapply(parole_data$granted, list(parole_data$sex, parole_data$race), mea
```

```
## FEMALE 0.8870804 0.8757764 0.9456215
                                         0.6859737 0.7072319 0.8236240
HISPANIC
BLACK
                                          ## MALE
```

Extend the model further

```
data=parole_data
family = 'binomial')
glm(granted ~ sex*race
parole success 3
                                                            parole success 3
```

```
## Call: glm(formula = granted ~ sex * race, family = "binomial", data
                                                                                                        SexMALE: raceWHITE
                                                               raceHISPANIC
                                                                                                                             -0.03488
                                                                                   -0.10823
                                                                                                                                                                       41529 Residual
                                                                                                                                                                      ## Degrees of Freedom: 41534 Total (i.e. Null);
                                                                                                        SexMALE: raceHISPANIC
                                                               SEXMALE
                                                                                                                              0.20885
                                                                                   -1.27990
                                                                                                                                                                                                                AIC: 45480
                                                                                                                                                                                                                Residual Deviance: 45470
                                                                                                        raceWHITE
                                                                                  2.06126
                                                                                                                             0.79461
                                                                (Intercept)
                                         ## Coefficients:
```

Interpretation

```
coefficients(parole_success_3)
```

```
raceHISPANIC
                          SexMALE: raceWHITE
                                      -0.03488046
             -0.10823161
                                      0.20884686
                         raceWHITE SEXMALE: raceHISPANIC
 SEXMALE
             -1.27989659
                                      0.79461370
             2.06125922
 (Intercept)
            # # #
# #
```

Have a look at this Stackexchange answer.

Interpretation

```
exp(coefficients(parole_success_3))
```

```
raceHISPANIC
                                SexMALE: raceWHITE
                                              0.9657208
                0.8974197
                               SexMALE: raceHISPANIC
 SEXMALE
                                              1.2322563
                0.2780661
                                raceWHITE
              7.8558559
                                              2.2135857
 (Intercept)
```

Odds ratios!

For males the OR of BLACK to HISPANIC is 1.23 the OR of females

exp(coefficients(parole_success_3))

```
raceHISPANIC
                            SexMALE: raceWHITE
                                         0.9657208
             0.8974197
                           SexMALE: raceHISPANIC
 SEXMALE
                                         1.2322563
             0.2780661
                            raceWHITE
             7.8558559
                                        2.2135857
 (Intercept)
                          ##
```

Odds ratios!

For males the OR of BLACK to WHITE is 0.97 the OR of females

exp(coefficients(parole_success_3))

```
SexMALE: raceWHITE
                                                  0.9657208
 raceHISPANIC
                0.8974197
                                raceWHITE SEXMALE: raceHISPANIC
SEXMALE
                0.2780661
                                                1.2322563
               7.8558559
                                                2.2135857
(Intercept)
```

Odds ratios!

For males the OR of granted parole is 0.27 the OR of females

SexMALE: raceWHITE 0.9657208 raceHISPANIC 0.8974197 SexMALE: raceHISPANIC SEXMALE 1.2322563 0.2780661 raceWHITE 7.8558559 2.2135857 (Intercept ##

Odds ratios!

parole is 2.21 the OR of BLACK defendants For WHITE defendants the OR of granted

Connections to machine learning

- Regression the best starting point
- Core difference: explanatory modelling vs predictive modelling
- More care against overfitting in predictive modelling
- Split the data

Goodness-of-fit of a model Assessing how good a model is

Model fit

Model fit

Explained variance: R-squared (multiple vs adjusted)

```
summary(complete model)
```

```
Estimate Std. Error t valu
                  lm(formula = n_fatal ~ n_guns * mental_illness * school_related,
                                                                                                                                                                                                                                                         0.49495
                                                                                                                                                                                                                                       1.70127
                                                                                                                                                                                                                                                                          0.77367
                                                                                                                                                                                                    0.39577
                                                                                                                                                                                                                     1.47991
-0.01274
                                                                                                                                                                                                    0.86436
                                                                                                                                                                                                                                                         0.03300
                                                                                                                                                                                                                                                                        -1.02874
                                                                                                                                                                                2.30041
                                                                                                           1.2421 26.2074
                                                                                                                                                                                                                                                       n_guns:mental_illnessYes
                                                                                                                                                                                                                                                                          n_guns:school_relatedYes
                                                                                                                                                                                                                                                                                            mental illnessVes·school
                                                                                         Median
                                                                                                          -6.9592 -2.1233 -0.6777
                                                                                                                                                                                                                     mental illnessYes
                                                                                                                                                                                                                                        school_relatedYes
                                     data = smsd)
                                                                                                                                              Coefficients:
                                                                                                                                                                                 (Intercept)
                                                                       Residuals:
                                                                                                                                                                                                      n_guns
Call:
```

Mean squared error

mean(complete_model\$residuals^2)

[1] 15.41751

Root mean square error

sqrt(mean(complete_model\$residuals^2))

[1] 3.926514

Mean absolute error

mean(abs(complete_model\$residuals))

[1] 2.519573

Mean percentage error

```
mean(complete_model$residuals/(complete_model$model$n_fatal+1)*100)
```

```
## [1] -50.7433
```

Mean absolute percentage error

mean(abs(complete_model\$residuals/(complete_model\$model\$n_fatal+1))*100)

[1] 75.17279

When to choose one model over the other?

Idea: 2 models compete

Requirement: the two models are nested

Nested models

```
model_2 = lm(n_fatal ~ mental_illness+school_related, data = smsd)
                                                                    data = smsd
                                                                  model 3 = lm(n_fatal ~ mental_illness*school_related,
~ mental_illness, data = smsd)
 lm(n_fatal
 model
```

Rough model evaluation

```
sqrt(mean(model_1$residuals^2))
                                                                                                                                                                                                                                                                                                                       sqrt(mean(model_3$residuals^2))
                                                                                                                                                            sqrt(mean(model_2$residuals^2))
                                                                                                                                                                                                                                                                                                                                                                                                     ## [1] 4.306262
                                                                             ## [1] 4.370098
                                                                                                                                                                                                                                         ## [1] 4.311128
```

But you want to be precise... Model comparison test

```
anova(model 1, model 2)
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
                       Analysis of Variance Table
```

```
anova(model_2, model_3)
```

```
## Model 1: n_fatal ~ mental_illness + school_related
## Model 2: n_fatal ~ mental_illness * school_related
                                                                                                                                               7.589 0.4002 0.5278
                                                                                                F Pr(>F)
                                                                                               RSS Df Sum of Sq
## Analysis of Variance Table
                                                                                                                                               177 3356.4
                                                                                                                    178 3364.0
                                                                                            Res.Df
```

```
anova(model_1, model_3)
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
                                                                               ## Model 2: n_fatal ~ mental_illness * school_related
                                                                                                                                                               100.25 2.6433 0.07393 .
                                                                                                           F Pr(>F)
                                                   ## Model 1: n_fatal ~ mental_illness
                                                                                                         RSS Df Sum of Sq
## Analysis of Variance Table
                                                                                                    Res.Df RSS Df Sum
179 3456.7
177 3356.4 2
```


- only if additional parameters improve the model significantly
- vice versa: you only reject your model if it's significantly worse than a more complicated model

RECAP

- model selection
- logistic regressioncoefficient interpretation
- model selection

Outlook

Next week

- Hypothesis testing beyond t-tests
- GLM as ANOVA

Homework

Advanced regression modelling in R

END