Struktura a architektura počítačů

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické

© Hana Kubátová, 2021

Řadič, pipelining

BI-SAP, květen 2021

Obsah

- Řídící jednotka procesoru řadič počítače
- Pipelining, procesory typu RISC a CISC
- Příklad návrhu výkonné a řídící jednotky: přednáška ASICentrum

HW počítače - shrnutí

- Všechny počítače se skládají z 5 základních částí:
 - Datová část (ALU) v procesoru
 - Řídící část (řadič) v procesoru
 - Hlavní paměť často mimo procesor
 - Vstupní zařízení
 - Výstupní zařízení
- Paměťový systém
 - Registry
 - Caches: rychlé, dražší, kapacitně menší, umísťované blíž k procesoru
 - Hlavní paměť: pomalejší, levnější, větší
 - Vnější paměť: ještě pomalejší, ale velká kapacita
 - Záložní paměť: CD, DVD, flash, magnetická páska
- Vstupní a výstupní zařízení ... HW a aplikačně závislé

Procesor: návrh řadiče

CPU (procesor) musí obsahovat:

- ALU výkonnou jednotku (kombinační obvody)
- řadič … řídící jednotku (control unit, sekvenční obvod)
- registry pro dočasné uchování dat

Činnost řadiče je popsána instrukčním cyklem pro všechny instrukce, které procesor umí. Při dekódování instrukce (i jen částečném) dochází k větvení.

Instrukční cyklus

Řadič procesoru

- Složitější řídící automat
- Pracuje podle instrukčního cyklu
- Řídí činnost všech výkonných jednotek počítače podle instrukcí a jejich (strojového) kódu, podle instrukčního cyklu
- Je to sekvenční obvod závisí na sekvenci vstupních (stavových) signálů, které generují výkonné jednotky (ALU, HP - instrukce) a vysílá jim řídící signály (výstupy řadiče)
- Pracuje v nekonečném cyklu řídí zpracování instrukcí
- Navrhuje se podle instrukčního cyklu a výběru ISA (tzn. z grafu přechodů, vývojového digramu)
- Lze ho realizovat obvodově (klasicky) nebo mikroprogramově

AB

Řízení některé akce mohou/musí proběhnout paralelně.

- nahraj data do registrů WPC, WRI, Wregi
- output enable registrů OEPC, OEregi
- inkrement/dekrement registru IncPC (SP)
- výběr operace ALU ADD, SUB, CMP,
- čti zapiš do paměti WM, RM, RESET ... PC = 0

Totéž jako graf přechodů

Obvodový řadič

totéž realizované jako obvodový řadič v kódu 1 z N: tzn. každému stavu Mi odpovídá jeden D-KO

Realizace řadiče

- jde o sekvenční obvod
- mnoho vstupů
- mnoho výstupů

- ale v daném taktu (stavu)
 se uplatní jen málo z nich, tzn. jeden nebo žádný
- většinou se pokračuje následujícím stavem
 jde o popis algoritmu tedy činností v instrukčním cyklu,
 lze použít vývojový diagram

Realizace řadiče

- Podle způsobu jeho realizace existuje tzv. obvodový (klasický) řadič a mikroprogramový řadič
- Obvodový řadič návrh klasického sekvenčního obvodu ...
 usnadnění ... kód vnitřních stavů 1 z n pak lze návrh provést z
 vývojových diagramů popisující činnost procesoru při provádění
 instrukcí podle instrukčního cyklu
- Mikroprogramový řadič
 - Sekvenční obvod s kombinační částí realizovanou pamětí (nazývá se řídící paměť, paměť mikroprogramů, "control memory")
 - Jednotlivé dílčí operace, které se provádějí při zpracování instrukcí jsou uloženy v této paměti a říká se jim mikroinstrukce
 - Soubor mikroinstrukcí tvoří mikroprogram, soubor všech mikroprogramů je mikroprogramové vybavení - firmware

Mnoho vstupů (stavových signálů) ... ale rozhoduje se podle nich jen někdy a jen podle některých:

Mikroprogramový řadič

Moorův automat

Mikroprogramový řadič

- jsou možné další úpravy a vylepšení podle souboru instrukcí a výkonných jednotek
- čítač adres mikroinstrukcí, protože většinou se pokračuje následující
- např. pro často se opakující části instrukcí zavést možnost podmikroprogramů a HW zásobník jako součást řadiče a čítač taktů s možností přednastavení pro počet opakování cyklů mikroinsrukcí
- Horizontální a vertikální mikroprogramování

Terminologie

program se skládá z instrukcí

instrukce ... se provádí ve několika taktech a skládá se z mikroinstrukcí

mikroinstrukce ... okamžitý stav procesoru skládá se:

- z řídících signálů pro výkonné jednotky
- určení následného stavu (kde se bude pokračovat)
- volby vstupů, které jsou v příštím taktu významné

firmware ... soubor všech mikroprogramů, tzn. popisů činností každé instrukce v taktech, též mikroprogramové vybavení

• urychlení:

Proudové zpracování instrukcí

Pipelining = princip výrobního pásu, zpracování instrukce po částech, v čase paralelně

- každá jednotka provede část operace
- jednotky pracují současně

...pipelining

- triviální případ předčítání instrukcí, jedna instrukce se čte, další dekóduje, provádí ...
- v ideálním případě je v každém taktu dokončena jedna instrukce

konflikty:

- datový potřebná data dosud nejsou uložena
- skokový adresu skoku zatím nelze určit

řešení ... počkat (to nejjednodušší, ale ne jediné), predikce skoků, ... vždy nějaký HW navíc + algoritmus

Počítače typu RISC

Reduced Instruction Set Computers

- jak navrhnout rychlý procesor? Co nejvíce výkonných instrukcí?
- statistika .. co nejefektivnější mají být ty nejpoužívanější (přesuny, skoky, srovnání, ...), výkonné se používají málo ... vyplývá z Amdahlova zákona:
- Výpočet výkonového zisku, tedy vylepšení celkového zrychlení počítače podle dílčích vylepšení. Podle těchto výpočtů vychází, že je lepší zefektivnit **nejčastěji** prováděné instrukce.
- Složité instrukce ... chyby v mikroprogramech, instrukce mají různou délku (zpomalení dekódování, problémy s pipeliningem)

Počítače typu RISC - charakteristika

- malý počet jednoduchých instrukcí (<128)
- krátká doba provedení instrukce dokončení v jednom taktu
- pipelining
- obvodový řadič
- malý počet formátů instrukcí (<=4)
- malý počet způsobů adresace (<=4)
- velký počet registrů (>32)
- komunikace s pamětí pouze instrukcí "přesun"

protipól CISC - Complex Instruction Set Computers počítače s rozsáhlým souborem instrukcí

ASIC

- Aplication Specific Integrated Circuit:
 - obvod vyvíjený na zakázku pro jednu konkrétní aplikaci jednoho zákazníka
 - vyplatí se pro sériovou výrobu
 - vysoká cena vývoje
 - dlouhá doba "time-to-market"
 - Ale typicky malá velikost, nízký příkon

Příklad

Návrh jednoduché výkonné jednotky a jejího řízení

Příklad: Navrhněte číslicový obvod pro násobení dvou čtyřbitových nezáporných čísel včetně řízení

- výkonná jednotka … sčítačka, obvody pro posuv
- řadič … generování signálů pro zápis do registrů, posuv a okamžik sčítání
- registry pro násobenec, násobitel, dočasný výsledek a celkový výsledek