Endpoint Detection and Response (EDR) Extension

Ongoing Analysis

Update - Dennis

- Suggestion 1: Make sure we design to interact with EDR systems, not solely with instrumented EDR endpoints
 - Strong contextual, detection, analysis, explain-ability and action consistency within an EDR system.
 - Working on how we extend (information architecture) to incorporate the EDR system view.
- Suggestion 2: I believe that we need models to expand use cases significantly
 - Rationale follows...

EDR Normalization Challenge

Det Heuristics
ML Inf modules
ID
Tagging
Grouping

...

Consistent under 1
Vendor/Deployment,
mutually opaque across
Vendors/Deployments

Normalized at the interface to the OS abstractions

EDR/XDR Normalization Challenge

Context, heuristics, ML training, ML inference, grouping, management topology... are effectively silo'd

Comparability, explainablility, and interpretability are only possible across consistent underlying attributes/relationships.

Hunting, analysis, planning, actions at scale ... all need context that is not unifyable across vendors.

*Communicating Indicators and Actions may be normalizeable, but may not be enough for effective EDR operation

Stix-Shifter:

Highlights the limits of model-less normalization xEDRs

Distributing IOCs, fielding simple alerts and taking simple action may work fine, if aimed at the EDR as a system ... and if Stix-Shifter mappings are expanded consistently.

Semantic inconsistencies that will interfere with xEDR sense making, decision support and action:

xEDR attrib relationships xEDR attrib representations Opaque unjoinable IDs

Normalizing the consumption of EDR capability, via the Stix-Shifter mapping approach won't work, due to limitations in what products expose (attributes, reps, analytics, inf, train, ...mgmt).

(XDR-ish) is_multipart to refs CarbonBlack STIX Property Data Source Field process path parent directory process name hashes.MD5 process md5 hashes.SHA-256 process sha256 process_path parent name ipv4-addr value ipv4-add hashes.SHA-256 ipv4-addr ipv4-add creator user ref ipv6-add value created process_start_time ipv6-add value ipv6-add binary_ref process_guid network-traffic protocols process_cmdline network-traffic src port parent_name network-traffic binary_ref parent name network-traffic network-traffic parent_ref parent name network-traffic dst port parent pid network-traffic x unique id parent guid network-traffi network-traffic command line parent cmdline network-traffic network-traffi protocols network-traffi command lin device name binary_ref binary_ref x-cbcloud x-cbcloud device_external_ip device_external_ip device_os device_os c-cbcloud device group id device group id -cbcloud process terminated process terminate -cbcloud regmod count -cbcloud c-chcloud c-cbcloud

Trend

objectFilePath

CrowdStrike processFilePath narontFiloPath hashes.SHA-25 parent sha256 sha256 ioc quarantined file sha256 md5_ioc pv4-addr binary ret filepath command_line srcFilePath file name command lin parent cmdline parent cmdline file_sha1 endpointle objectIp objectIps source_ip detection id detection id scenario endpointlp technique objectlps source ip tactic id technique_id technique_id last_seen obiectlo obiectlp objectPort ioc value objectPort source_ip ioc_value ioc value objectCmd ioc value objectFileHashSha obiectFilePath processFileHashSha hostname hostname x-oca-asse ip_refs mac_refs platform name process_re outcome registry re domain_ioc network_re sha256 ioo file ref quarantined file sha256 parent process host ref Ref. https://github.com/opencybersecurityalliance/stix-shifter/tree/develop/adapter-guide

scenario

agent_local_time

config_id_base

config id build

config id platforr

product_type_des

display nam

registry key

md5 ioc

system product name

We need a model... probably two models

Malware behavior: invariant across EDR/XDRs (good normalization candidate)

Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command and Control	Exfiltration	Impact
Drive-by Compromise		Scheduled Task		Binary Padding	Network	k Sniffing	AppleScript	Audio Capture	Commonly Used Port	Automated Exfiltration	Data Destruction
Exploit Public-Facing	Laun	chctl	Access Toker	Manipulation	Account Manipulation	Account Discovery	Application Deployment	Automated Collection	Communication Through	Data Compressed	Data Encrypted for Impact
Application	Local Job S	Scheduling	Bypass User A	ccount Control	Bash History	Application William	Software	Clipboard Data	Removable Media	Data Encrypted	Defacement
External Remote Services	LSASS	Driver	Extra Window N	Memory Injection	Brute Force	Discovery	Distributed Component	Data from Information	Connection Proxy	Data Transfer Size Limits	Disk Content Wipe
Hardware Additions	Tra	ар	Process	Injection	Credential Dumping	Browser Bookmark	Object Model	Repositories	Custom Command and	Exfiltration Over Other	Disk Structure Wipe
Replication Through	AnnieScrint		DLL Search Order Hijacking		Credentials in Files	Discovery	Exploitation of	Data from Local System	Control Protocol	Network Medium	Endpoint Denial of Service
Removable Media	CMSTP	lm	age File Execution Options Inject	ion	Credentials in Registry	Domain Trust Discovery	Remote Services	Data from Network	Custom Cryptographic	Exfiltration over command	Firmware Corruption
Spearphishing Attachment	Command-Line Interface		Plist Modification		Exploitation for	File and Directory Discovery	Logon Scripts	Shared Drive	Protocol	and Control Channel	Inhibit System Recovery
Speamhishing Link	Compiled HTML File		Valid Accounts		Credential Access	Network Service Scanning	Pass the Nath	Data from Removable Media	Data Encoding	Exfiltration Over Atemative	Network Denial of Service
Spearphishing via Service	Centrol Panel Items	Accessibili	ty Features	BITS Jobs	Forced Authentication	Network Share Discovery	Pass the Ticket	eata Staged	Data Obfuscation	Protocol	Resource Hijacking
Supply Chain Compromise	Dynamic Data Exchange	AppCe	rt DLLs	Clear Command History	Hooking	Password Policy Discovery	Remote Deskiop Protocol	Email Collection	Domain Fronting	Exfiltration O er	Runtime Data Manipulation
Trusted Relationship	Execution through API	Applni	t DLLs	CMSTP	Input Capture	Peripheral Device Discovery	Remote File Copy	Input Capture	Domain Generation	Physical Medium	Service Stop
Valid Accounts	Exect on through	A plication	Shimming	Code Signing	Input Prompt	Permission Groups Discovery	Remote Seniess	Man in the Browser	Algorithms	Scheduled Transfer	Stored Data Manipulation
	Module Load	- Н	ijacking	Complete LITARI Eile	Kerberoasting	Process Discovery	Replication Through	Screen Capture	Fallback Channels	/	Transmitted Data
	Exploitation for	File System Com	issiene Weaknee	Component Firmware	Keychain	Query Discovery	Removable redia	Video Capture	Multiband Communication	/	Manipulation
	Client Execution	Hoo	king	Component Object Model	LLMNR/NB1 - 15 Poisoning	Remote System Discovery	Shared Webroot		Multi-hop Proxy	/	
	Graphical User Interface	Lauren	Poemon	Hijacking	and Relay	Security Software Discovery	SSH Hija king		Multilayer Encryption	/	
	InstallUtil	New S		Control Panel Items	Password Filter DLL	System Information	Taint Share Content		Multi-Stage Channels		
	Mshta	Path Inte	erception	DCShadow	Private Keys	Discovery	Third-pagy Software		Port Knocking		
	PowerShell	Port M		Deobfuscate/Decode Files	Securityd Memory	vstem Network	Window Admin Shares		Remote Access Tools	. /	
	Regsvcs/Regasm	Service Registry Per		or Information	Two-Factor Authentication	Configuration Discovery	Mindows Remote		Remete File Copy		
	Regsvr32		nd Setgid	Disabling Security Tools	Interception	System Network	Management	J	Standard Application Layer		
	Rundl32	Startup		DLL Side-Loading		Connections Discovery			Protocol		
	Scripting	Web	Shell	Execution Guardrails		System Owner/User			Standard Cryptographic		
	Service Execution	.bash_profile and .bashrc	Exploitation for	Exploitation for		Discovery]		Protocol		
	Signed Binary	Account Manipulation	Privilege Escalation	Defense Evasion		System Service Discovery]		Standard Non-Application		
	Proxy Execution	Authentication Package	SID-History Injection	File Deletion	ļ	System Time Discovery			Layer Protocol		
	Signed Script	BITS Jobs	Sudo	File Permissions		Virtualization/Sandbox			Uncommonly Used Port		
	Proxy Execution	Bootkit	Sudo Caching	Modification	ļ	Evasion	J		Web Service		
	Source	Browser Extensions		File System Logical Offsets	l						
	Space after Filename	Change Default		Gatekeeper Bypass	Į						
	Third-party Software	File Association		Group Policy Modification	Į						
	Trusted Developer Utilities	Component Firmware		Hidden Files and Directories	I						

Representative malware behavior and detection is only visible at the EDR/XDR system level. Not in endpoint telemetry. Consider "action profile detection" vs "HMM detection" or "Kalman detection" ... completely different (inconsistent) X EDRs

Different EDR/XDR tools observe, detect and respond very differently

Ref. https://attackevals.mitre-engenuity.org/enterprise/carbanak fin7/

Carbon Black

No clear basis for interpretability, explain-ability or actionability across different EDR/XDR tools at the telemetry or detection (largely cloud based) level.

Normalizing at the TTP level (via mapping) makes these semantic and action discontinuities clear.

IOCs and "actions" mask these fundamental differences, for all but the simplest actions and indications. Supply Chain and Ransomware exploits are much more complex, and often with little or know prior knowledge when it matters most (during hunting, anomaly and behavioral recognition).

FireEye

Needed to support EDR/XDR use cases (hunting, analysis mitigation planning,

^{*} This is far less of a problem for detection and response over exactly 1 EDR/XDR solution per enterprise.

Inconsistencies across EDR/XDR break OODA; for a single EDR/XDR this is far less of a problem

Recommendation

- Two parallel tracks
 - 1. Continue to do what can be done with existing mapping approach
 - Has hard limits requiring additional parallel mechanisms
 - Enhanced by interacting with EDR systems, beyond just instrumented endpoints.
 - Can happen fast
 - 2. Investigate the potential of leveraging existing models to extend the normalization of EDR/XDR consumption
 - More general enablement of normalized EDR consumption for more use cases
 - Requires analysis, debate and design
 - 3. 1. and 2. above are highly complementary, probably mutually necessary to cultivate sustainable communities of interest, and to influence the market.
 - So, I'd like to still proceed on the expanded analysis proposed in the last meeting

Previous work follows ...

EDR Now

- Mitre key EDR components
 - https://heimdalsecurity.com/blog/what-is-edr-endpoint-detection-and-response/
 - Endpoint data Collection
 - Data Analysis and Forensics
 - Threat Hunting Chasing and resolving inconsistencies, indicators, outliers
 - Automated response to block malicious activity
- Gartner primary EDR capabilities
 - https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
 - Detect Security Incidents
 - Contain Incident at the endpoint
 - Investigate security incidents
 - Provide remediation guidance
 - File-based and file-less threats

*Forrester EDR -> XDR:

From Adapt or Die: EDR is Dead, Forrester – Crowdstrike, PAN, Trend ... April 28, 2021

- In XDR the endpoint becomes the correlation anchor, across sensing modalities, business context, and security tooling – consolidating related alerts across its data lake into a single incident.
- In XDR, all offerings support automated RCA (in EDR: Trend, Kaspersky).
 Extends detection to entire attack lifecycle.
- In XDR, responses are analytics triggered workflows, adaptively triggering (risk or criteria) captive playbooks. Risk-based triggers, policy structure/logic and orchestration are offering specific and externally opaque.
- In XDR, beyond endpoint telemetry, includes network, platform, user, device, ... in one place. (for analysis, ML training, pivoting, ...). Hunting, causal analysis, mitigation planning, ... are all more accessible without cobbling across tools.

*Current XDR design drivers

- In modern attacks, coherent telemetry across all endpoints is necessary (workstations, servers, mobile devices, cloud assets, ...)
- Cloud hosted data lake, analytics, training require cloud hosting for elasticity and pervasive availability, despite enterprise compromise.
- Many enterprise will augment with, or rely on MDR to gain security analyst, hunting, mitigation planning expertise.

EDR Tools Now - Open Source

- *Wazuh OSSEC ++
- *OSSEC LIDS (xEndpoint), MW & RK detection, Automatable Actions, FIM, Inventory
- *TheHive Cortex IP, URL, domain, hashes, files, containment integration
- OSQuery very generic host monitoring (configuration, performance, infrastructure health), + FIM, YARA (file artifacts) scanning, anomaly detection, process auditing, log settings, ...
- *GRR YARA, APIs, search and collect: files, reg, procs, mem cap, CPU, network, context ... all OSs, massive scale, full API, full cloud enablement/leveraging
- MIG logs, files, memory, network, auditing, vulnerability mgmt, ... eroding forensics
- Volatility digital forensics & incident response, EDR ++ (forensic dimension)
- Complementary Open Source (NDRish)
 - NESSUS –
 - SNORT –
 - Ethercap –
 - Infection Monkey (Guardicore)

^{*} Multi-endpoint enabled comparison, analytics, behavior, detection. Querying individual endpoints severely limits EDR utility for these OS EDR tools.

EDR Tools Now - Commercial

Gartner EPP MQ Leaders

- Microsoft Defender for Endpoint
- Crowdstrike Falcon
- Trend Micro Apex One XDR for Cloud (Cloud One)
- SentinelOne Singularity
- McAfee MVISION EDR
- Sophos Intercept-X
- 13 non-Leaders

Very different models, semantics, actions, integrations, positioning

But EDR queries, results and semantics are highly balkanized

- Different EDR interaction models: Structured API model, Query, Analyzers (which the refer artifacts), inter-endpoint...
- Different property/attribute/value naming and representations not too bad at the OS, but diverges as synthetic artifacts get referenced
- Semantics can be wildly different:
 - Different detection approaches have different SNR, meaning and mitigation contexts (nw detection of any anomaly only informs network mitigation; ep detection may not know about any nw mitigations (.g. virtual patching))
 - Virtual patching at an upstream firewall, is not comparable to actual patching of a discovered vulnerability.
- Example: See STIX Shifter

Example: Cortext 2

Cortex 2 API: https://github.com/TheHive-Project/CortexDocs/blob/master/api/api-guide.md#analyzer-model

API Guide This guide applies only to Cortex 2 and newer. It is not applicable to Cortex Table of Contents Introduction Request & Response Formats Authentication Organization APIs Organization Model Create Update Delete Obtain Details List Users List Enabled Analyzers User APIs User Model List All List Users within an Organization Create Update Get Details Set a Password Change a password Set and Renew an API Kev Get an API Key Revoke an API Key Job APIs o Job Model List and Search Get Details o Get Details and Report Wait and Get Job Report Get Artifacts Delete Analyzer APIs Analyzer Model List and Search Get Details Get By Type

Update

- Not artifact centric. Stimulate analyzers that the touch whatever observables they need to.
- Heavily focused on the process of orchestrating EDR across roles and controlling access to the observables.
- Enables analysis, detection and response across endpoints.
- Many internally defined abstractions (orgs, users, jobs, analyzers, ...). Conventional EDR is embedded.
- There is a file analyzer.

Example: Microsoft Defender for Endpoint

Defender for Endpoint API: https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/ti-

indicator?view=o365-worldwide

~	Microsoft Defender for Endpoint APIs Schema
	Supported Microsoft Defender for Endpoint APIs
	Common REST API error codes
	Advanced Hunting
	> Alert
	> Assessments of vulnerabilities and secure
	configurations
	> Automated Investigation
	> Domain
	> File
	> Indicators
	> IP
	> Machine
	> Machine Action
	> Recommendation
	> Remediation activity
	> Score
	> Software
	> User
	> Vulnerability
>	How to use APIs - Samples
> Ra	w data streaming API
> SIE	M integration
> Pa	rtners & APIs
> Ro	le-based access control

roperty	Туре	Description
d	String	Identity of the Indicator entity.
ndicatorValue	String	The value of the Indicator.
ndicatorType	Enum	Type of the indicator. Possible values are: "FileSha1", "FileSha256", "FileMd5", "CertificateThumbprint", "IpAddress", "DomainName" and "Url".
application	String	The application associated with the indicator.
action	Enum	The action that will be taken if the indicator will be discovered in the organization. Possible values are: "Warn", "Block", "Audit", "Alert", "AlertAndBlock", "BlockAndRemediate" and "Allowed".
externalID	String	ld the customer can submit in the request for custom correlation.
sourceType	Enum	"User" in case the Indicator created by a user (for example, from the portal), "AadApp" in case it submitted using automated application via the API.
createdBySource	string	The name of the user/application that submitted the indicator.
createdBy	String	Unique identity of the user/application that submitted the indicator.
lastUpdatedBy	String	Identity of the user/application that last updated the indicator.
creationTimeDateTimeUtc	DateTimeOffset	The date and time when the indicator was created.
expirationTime	DateTimeOffset	The expiration time of the indicator.
lastUpdateTime	DateTimeOffset	The last time the indicator was updated.
severity	Enum	The severity of the indicator. possible values are: "Informational", "Low", "Medium" and "High".
title	String	Indicator title.
description	String	Description of the indicator.
recommendedActions	String	Recommended actions for the indicator.
rbacGroupNames	List of strings	RBAC device group names where the indicator is exposed and active. Empty list in case it exposed to all devices.
rbacGrouplds	List of strings	RBAC device group ID's where the indicator is exposed and active. Empty list in case it exposed to all devices.
generateAlert	Enum	True if alert generation is required, False if this indicator should not generate an alert.

Method	Return Type	Description
List MachineActions	Machine Action	List Machine Action entities.
Get MachineAction	Machine Action	Get a single Machine Action entity.
Collect investigation package	Machine Action	Collect investigation package from a machine.
Get investigation package SAS URI	Machine Action	Get URI for downloading the investigation package.
Isolate machine	Machine Action	Isolate machine from network.
Release machine from isolation	Machine Action	Release machine from Isolation.
Restrict app execution	Machine Action	Restrict application execution.
Remove app restriction	Machine Action	Remove application execution restriction.
Run antivirus scan	Machine Action	Run an AV scan using Windows Defender (when applicable).
Offboard machine	Machine Action	Offboard machine from Microsoft Defender for Endpoint.
Stop and quarantine file	Machine Action	Stop execution of a file on a machine and delete it.
Run live response	Machine Action	Runs a sequence of live response commands on a device
Get live response result	URL entity	Retrieves specific live response command result download link by its index. $ \\$
Cancel machine action	Machine Action	Cancel an active machine action.

- Very artifact centric...
- Unique abstractions (e.g. "investigation package")
- Deep integration of opaque analytics, correlation, policy driven actions.

EDR, NDR, XDR, and MDR are converging.

- *Gartner labels the market for technology in this convergence EPP subsuming EDR.
 - Endpoint and network convergence is accelerating. All attacks exhibit both. Detect++
 - By 2032 YE, cloud delivered EPP will exceed 95% of deployments
 - By 2025 50% of EDR users will be using managed detection and response
 - By 2025 60% of EDR solutions will include data from multiple security control sources, such as Identity, CASB and DLP
- Question: Do we address this rapidly consolidating EPP space, which includes EDR, NDR, XDR, MDR? Or focus on the evaporating conventional EDR space?
- Concern: Directly interacting with endpoints, about files processes, hashes, simple indicators ... does not seem to be the center of EDR-EPP detection or action.

OASIS OpenC2-ap-edr

openc2-ap-edr - Defining Actions, Targets, Specifiers and Options that are consistent with the version 1.0 of the OpenC2 Language Specification in the context of command and control of <u>various</u> endpoint detection and response technologies.

https://github.com/oasis-tcs/openc2-ap-edr

Q: How much of this scope, do we envision covering?

Q: If not all, how do we describe the subset we will cover?

Assumption: Schema extension must be a semantic and context cover of the scope we embrace.

Utility of Mitre ATT&CK is growing

- Comparing EDR, NDR, XDR, MDR detection coverage
- Bridging endpoint and network observed behaviors and state
- Normalizing results (via mappings) across EDR, NDR, XDR, MDR offerings
- Augmentation with Detection and Mitigation alternatives for same Procedure
- TTPs across layers of abstraction:
 - Enterprise OS, Cloud, Network, Container,
 - Mobile,
 - ICS
- ...and across endpoints

Big Question

Question: Should we be integrating the schema at EDR system abstractions, rather than endpoint EDR instrumentation tool?

- Would leverage higher level functionality.
- Would leverage pre-existing policy orchestration and automation.
- Would leverage real-time in-line controls.

Appendix

Suggestions

- Make sure we design to interact with EDR systems, not solely with instrumented EDR endpoints
 - Strong contextual, detection, analysis, explain-ability and action consistency within an EDR system.
 - Working on how we extend (information architecture) to incorporate the EDR system view.

EDR Normalization Challenge

Det Heuristics
ML Inf modules
ID
Tagging
Grouping

...

Consistent under 1
Vendor/Deployment,
mutually opaque across
Vendors/Deployments

Normalized at the interface to the OS abstractions

EDR/XDR Normalization Challenge

Context, heuristics, ML training, ML inference, grouping, management topology... are effectively silo'd

Comparability, explainablility, and interpretability are only possible across consistent underlying attributes/relationships.

Hunting, analysis, planning, actions at scale ... all need context that is not unifyable across vendors.

*Communicating Indicators and Actions may be normalizeable, but may not be enough for effective EDR operation

Stix-Shifter:

Highlights the limits of model-less normalization xEDRs

Distributing IOCs, fielding simple alerts and taking simple action may work fine, if aimed at the EDR as a system ... and if Stix-Shifter mappings are expanded consistently.

Semantic inconsistencies that will interfere with xEDR sense making, decision support and action:

xEDR attrib relationships xEDR attrib representations Opaque unjoinable IDs

Normalizing the consumption of EDR capability, via the Stix-Shifter mapping approach won't work, due to limitations in what products expose (attributes, reps, analytics, inf, train, ...mgmt).

CarbonBlack STIX Property Data Source Field process path process name hashes.MD5 process md5 hashes.SHA-256 process sha256 process_path parent name hashes.SHA-256 creator user ref created process_start_time binary_ref process_guid process_cmdline parent_name binary_ref parent name parent_ref parent name parent pid x unique id parent guid command line parent cmdline device name x-cbcloud x-cbcloud device_external_ip device_external_ip c-cbcloud device_os device_os c-cbcloud device group id device group id -cbcloud process terminated process terminate -cbcloud regmod count -cbcloud c-chcloud filemod count filemod count c-cbcloud

Trend

(XDR-ish)

CrowdStrike objectFilePath processFilePath narontFiloPath sender ret pv4-addr is_multipart to refs srcFilePath parent directory r hashes.SHA-1 file name file_sha1 ipv4-addr value ipv4-add value endpointle ipv4-addr objectIp ipv4-add value objectIps source_ip ipv6-add value ipv6-add value endpointlp ipv6-add objectlps source ip network-traffic protocols network-traffic src port network-traffic network-traffic network-traffic protocols network-traffic dst port network-traffic protocol network-traffic obiectlo network-traffic protocol obiectlp network-traffic objectPort network-traffic protocols objectPort network-traffi source_ip command lin objectCmd binary_ref objectFileHashSha binary_ref obiectFilePath processFileHashSha x-oca-asse processFilePath parentFileHashSha

hashes.SHA-256

binary ret

command_line

creator_user_

command lin

machine doma

detection id

technique_id

ioc value

ioc_value

ioc value

ioc value

hostname

ip_refs

mac_refs

process_re

outcome

file ref

file ref

registry re

network_re

parent process

scenario

parent sha256 sha256 ioc quarantined file sha256 md5_ioc

filepath

parent cmdline parent cmdline

detection id

scenario

technique

tactic id

last_seen

ioc_type

config_id_base

config id build

product_type product_type_des

hostname

platform name

display nam

registry key domain_ioc

sha256 ioo

md5 ioc

quarantined file sha256

config id platforr

system product name

technique_id

agent_local_time

We need a model... probably two models

Inconsistencies across EDR/XDR break OODA

Recommendation

- Two parallel tracks
 - 1. Continue to do what can be done with existing mapping approach
 - Has hard limits requiring additional parallel mechanisms
 - Enhanced by interacting with EDR systems, beyond just instrumented endpoints.
 - Can happen fast
 - 2. Investigate the potential of leveraging existing models to extend the normalization of EDR/XDR consumption
 - More general enablement of normalized EDR consumption for more use cases
 - Requires analysis, debate and design
 - 3. 1. and 2. above are highly complementary, probably mutually necessary to cultivate sustainable communities of interest, and to influence the market.
 - So, I'd like to still proceed on the expanded analysis proposed in the last meeting

EDR Normalization Objectives Expressed in PACE Meeting

- Normalizing Response to EDR Detections (detection and action) across uniform deployments of any EDR
 - Possible with OpenC2, but actionable context will need to communicated using another or additional functionality.
 - May require talking to EDR systems (managers)
- Normalizing Response to EDR Detections (detection and action) across heterogeneous deployments of arbitrary EDRs
 - Far harder, due to balkanized/fragmented and inconsistent model, analytics, ML, tagging, grouping, system topology, data domains (training) ...
 - Certainly requires talking to managers.
- Liberating the market from the walled gardens of proprietary EDR
 - Requires models of Telemetry, Mal behavior and Mitigation options