Kondensator messen

- Thema
- Ladekurve
- Zeitkonstante
- Excel Ladekurve
- Kapazität ermitteln
- C berechnen
- Zeitkonstante berechnen
- Schaltbild
- Oszilloskop
- Links
- https://github.com/EKlatt/Experiences/RP2040_Zero_Kapazität

Thema

RC-Schaltung zur Untersuchung von Lade- und Entladevorgängen.

Besteht aus einem Widerstand R und einem Kondensator C.

Die Lade- und Entladekurve von RC-Schaltungen zeigen exponentielles Verhalten.

Die Abhängigkeit der Spannung von der Zeit wird durch eine e-Funktion beschrieben.

Über sie kann die Kapazität von unbekannten Kondensatoren ermittelt werden.

Die Zeitkonstante τ ist das Produkt aus dem Widerstandswert R und dem Kapazitätswert C.

$$u(t) = U \cdot (1 - e^{\frac{-t}{T}}) \quad T = R \cdot C$$

Quelle

https://elektro.turanis.de/html/prj080/index.html

Ladekurve

Die Ladezeit ist nur von den Größen des Kondensators C und des Widerstandes R abhängig.

Quelle

https://elektro.turanis.de/html/prj080/index.html

Zeitkonstante

Das Produkt aus Kapazität C und Widerstand R ist als Zeitkonstante τ (tau) festgelegt.

Zeitkonstante = Widerstand * Kapazität $\tau = R \times C$ 1 s = 1 Ω * 1 F

In der Zeit 1τ , also $(t/\tau = 1)$ hat sich der Kondensator auf

(1 - 1/e¹) = 63,2 % der Ladespannung aufgeladen.

Quelle

https://elektro.turanis.de/html/prj080/index.html

Excel Ladekurve

In der Zeit x=1 hat sich der Kondensator auf 1 - 1 /e = 63,2% der Ladespannung aufgeladen.

$$y = 1 - e^{-x}$$

Für
$$y = 1 - e^{-1}$$
 oder $y = 1 - \frac{1}{e^{1}}$

folgt
$$y = 0.632$$

Quelle

https://www.elektronik-labor.de/OnlineRechner/Zeitkonstante.html

Kapazität ermitteln

Bei 63,2 % der Ladespannung entspricht die Ladezeit t dem Wert der Zeitkonstanten τ .

Wann sind 63,2 % der Ladespannung erreicht?

Am analogen Eingang des μ C steht der ADC-Wert von 0 ... 4095 für einen Spannungsbereich an. (12 Bit Auflösung)

Bekannte Ladespannung:

(an Kollektor Q2)

Für 63,2 % der Ladespannung ergeben sich:

$$U_T = 3,25 \text{ V x } 63,2 \%$$

$$U_T = 2,054 \text{ V}$$

$$T_{ADC} = ADC_{max} * U/U_{T}$$

$$T_{ADC} = 4095 / 3,25 \times 2,054 = 2588$$

Die Zeit "t" messen bis T_{ADC} = 2588 erreicht werden.

Vergleichswert für C++ Skript:

Algorithmus

C berechnen

Rechnung im Sketch

$$t = 11.4 \text{ s}$$
 (vom ADC des RP2040 Zero)

$$R = 99.8 k\Omega$$

$$C = 11,4 \text{ s/99,8 k}\Omega$$

$$C = 114 \, \mu F$$

Angabe auf Kondensator 100 μ F.

Zeitkonstante berechnen

	Welche Zeitkonstante war zu erwarten?
Zeitkonstante?	$\tau = R \times C$
	$R = 100 \text{ k}\Omega$
	$C = 100 \mu F$
	$ au=$ 100 k $\Omega imes 100$ μF
	au= 10 s
Gemessen	t = 11,4 s
Fazit	Die gemessene Zeit t (bei 63,2 %) und die Zeitkonstante τ liegen in der erwarteten Größenordnung.

Schaltbild

Oszilloskop

Links

https://www.elektronik-labor.de/OnlineRechner/Zeitkonstante.html

https://www.rahner-edu.de/mikrocontroller/avr-controller-und-bascom/entladung-kondensator/

https://elektro.turanis.de/html/prj080/index.html

https://am.heise.de/abo/06_ma_education/kondensatormessger%C3%A4t.pdf?wt_mc=intern.abo.make.education.lp_ad.10.10

https://www.az-delivery.de/blogs/azdelivery-blog-fur-arduino-und-raspberry-pi/prototyp-eines-kapazitatsmessgerates

https://www.raspberry-pi-geek.de/ausgaben/rpg/2021/06/kapazitaetsmessung-von-kondensatoren/

https://en.wikipedia.org/wiki/RC_time_constant

https://arduino-pico.readthedocs.io/en/latest/analog.html