Why do we ever need that?

- Compress data
 - |code| << |data|
- Dimensionality reduction
 - Before feeding data to your XGBoost :)
- Learn some great features!
 - -Before feeding data to your XGBoost
- Unsupervised pretraining
 - -Large amounts of unlabeled data

Expanding autoencoder

Bigger/richer representation

Expanding autoencoder

Bigger/richer representation

Something's wrong with this guy. Ideas?

Expanding autoencoder

Naive approach will learn identity function! Gotta regularize!

$$L = ||X - Dec(Enc(X))||$$

Sparse autoencoder

Naive approach will learn identity function! Idea 1: L1 on activations, sparse code

$$L = ||X - Dec(Enc(X))|| + \sum_{i} |Enc_{i}(X)|$$

Redundant autoencoder

Naive approach will learn identity function! Idea 2: noize/dropout, redundant code

$$L = ||X - Enc(Dec(Noize(X)))||$$

Denoizing autoencoder

Naive approach will learn identity function! Idea 3: distort input, learn to fix distorsion

$$L = \|X - Enc(Dec(Noize(X)))\|$$

Sparse Vs Denoizing

Filter weights, 12x12 patches

These images are actually clueless:)

Why do we ever need that?

- Compress data
 - |code| << |data|
- Dimensionality reduction
 - Before feeding data to your XGBoost
- Learn some great features!
 - Before feeding data to your XGBoost
- Unsupervised pretraining
 - Large amounts of unlabeled data

Pretraining

Use autoencoder as initialization

Pretraining

Use autoencoder as initialization

Pretraining

Supervised pre-training (on similar task)

- Needs labels for similar problem
- Luckily, we have Imagenet and Model Zoo
 - Alas, it's only good for popular problems

Unsupervised pretraining (autoencoder)

- Needs no labels at all!
- May learn features irrelevant to your problem
- e.g. background sky color for object classification