1. Homogeno rješenje diferencijalne jednadžbe

Zadatak je zadan diferencijalnom jednadžbom

$$y''(t)+a_1y'(t)+a_2y(t)=b_0u''(t)+b_1u'(t)+b_2u(t)$$
,

početnim uvjetima $y(0^{\text{-}})$ i $y'(0^{\text{-}})$ i pobudom u(t) . Uz y''(t) inače stoji a_0 , no uvijek vrijedi $a_0\!=\!1$. Također često vrijedi $b_0\!=\!0$.

Homogeno se rješenje traži na slijedeći način.

Prvo zanemarimo pobudu, tj. postavimo sustav jednak nuli.

$$y''(t)+a_1y'(t)+a_2y(t)=0$$

ldući korak je riješavanje kvadratne jednadžbe koja se dobije pisanjem $s^n = y^{(n)}$ pa imamo

$$s_2 + a_1 s + a_2 = 0$$

$$s_{1,2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4 \cdot a_2}}{2}$$

Kada smo našli realne ili kompleksne brojeve s_1 i s_2 pišemo homogeno rješenje.

$$y_h = C_1 e^{s_1 t} + C_2 e^{s_2 t}$$

Ako vrijedi $s_1 = s_2$ pišemo slijedeće:

$$v_h = C_1 e^{st} + C_2 t e^{st}$$

Konstante $\ C_1\$ i $\ C_2\$ za sada ostaju nepoznanice.

Primjer 1:

$$y''(t)+4y'(t)+3y(t)=u'(t)+2u(t)$$

$$s_{1,2} = \frac{s^2+4s+3=0}{2} = \frac{-4\pm\sqrt{16-12}}{2} = \frac{-4\pm2}{2}$$

$$s_1 = -1 , s_2 = -3$$

$$v_b = C_1 e^{-t} + C_2 e^{-3t}$$

Primjer 2:

$$y''(t)-4y'(t)+4y(t)=2u'(t)+u(t)$$

$$s_{1,2} = \frac{s^2-4s+4=0}{2} = \frac{4\pm0}{2}$$

$$s_{1,2} = \frac{4\pm0}{2} = \frac{4\pm0}{2}$$

$$y_h = C_1 e^{2t} + C_2 t e^{2t}$$

2. Partikularno rješenje diferencijalne jednadžbe

Zadatak je zadan diferencijalnom jednadžbom

$$y''(t)+a_1y'(t)+a_2y(t)=b_0u''(t)+b_1u'(t)+b_2u(t)$$
,

početnim uvjetima $y(0^{\text{-}})$ i $y'(0^{\text{-}})$ i pobudom u(t) .

Partikularno rješenje postavljamo ovisno o zadanoj pobudi po slijedećoj tablici.

u(t)	$y_p(t)$
A(konst.)	K
$Ar^{t}, r \neq s_{i}$	Kr^{t}
Ar^{t} , $r = s_{i}$	Ktr ^t
At^m	$K_0+tK_1++t^mK_m$
$r^{t}t^{m}$	$r^{t}(K_0+tK_1+\ldots+t^mK_m)$
$Acos(\omega_0 t)$	$K_0\cos(\omega_0 t) + K_1\sin(\omega_0 t)$
$Asin(\omega_0 t)$	$K_0\cos(\omega_0 t) + K_1\sin(\omega_0 t)$

Nakon toga partikularno rješenje uvrštavamo u zadanu diferencijalnu jednadžbu da nađemo nepoznanice.

$$y_p''(t)+a_1y_p'(t)+a_2y_p(t)=b_0u''(t)+b_1u'(t)+b_2u(t)$$

Jednadžba koju se dobije se uvijek lako može riješiti (jer je namještena) iako na početku izgleda složeno. Kada smo našli konstante* pišemo partikularno rješenje y_p bez nepoznanica te ga množimo s $\mu(t)$ ako je pobuda kauzalna (tj. ako vrijedi $u(t) = \mu(t) f(t)$). U zadacima je pobuda uvijek** kauzalna pa se partikularno rješenje uvijek množi s $\mu(t)$.

Radi se o tome da je prirodni odziv (homogeno rješenje) svevremenski (jer sustav postoji uvijek), a prisilni odziv (partikularno rješenje) postoji samo onda kada postoji pobuda.

Primjer 1:

$$y''(t)+4y'(t)+3y(t)=u'(t)+2u(t)$$

 $u(t)=\mu(t)$
 $y_p=K$
 $0+0+3K=0+2$
 $K=\frac{2}{3}$

^{*}Ako je partikularno rješenje neko koje ima više od jedne konstante rješavanje se komplicira. To nikad neće biti zadano. Drugim riječima samo su prva tri retka gornje tablice relevantna.

^{**}Postoje zadaci u Laplaceovoj domeni gdje pobuda nije kauzalna; odziv će istitrati (jer je sustav stabilan) te se gledaju samo promjene u trenutku t=0 i dodaju se postojećem odzivu (jer je sustav linearan - aditivnost).

$$y_p = \frac{2}{3}\mu(t)$$

Primjer 2:

$$y''(t)-4y'(t)+4y(t)=2u'(t)+u(t)$$

$$u(t)=2\cdot3^{t}\mu(t) , s_{i}\neq3$$

$$y_{p}=K\cdot3^{t}$$

$$3^{t}\ln^{2}3K-4\cdot3^{t}\ln 3K+4\cdot3^{t}K=4\cdot3^{t}\ln 3+2\cdot3^{t}$$

$$K\ln^{2}3-4K\ln 3+4K=4\ln 3+2$$

$$K=\frac{4\ln 3+2}{\ln^{2}3-4\ln 3+4}$$

$$y_{p}=\frac{4\ln 3+2}{\ln^{2}3-4\ln 3+4}3^{t}\mu(t)$$

3. Totalni odziv kontinuiranog sustava u vremenskoj domeni

Totalni odziv je zbroj prirodnog (homogeno rješenje) i prisilnog (partikularno rješenje) odziva. U zadatku su također zadani početni uvjeti $y(0^{\text{-}})$ i $y'(0^{\text{-}})$ potrebni za računanje konstanti C_1 i C_2 iz homogenog (dakle i totalnog) rješenja. To su stanja sustava u trenutku prije nule. Za računanje konstanti će nam zapravo trebati $y(0^{\text{+}})$ i $y'(0^{\text{+}})$, dakle stanja u trenutku poslije nule. Koristimo zadane konstante a_0 , a_1 , a_2 , b_0 , b_1 i b_2 za pronalaženje $y(0^{\text{+}})$ i $y'(0^{\text{+}})$ u slijedećim jednadžbama:

$$\Delta y = b_0 u(0^+) \text{ i}$$

$$\Delta y' + a_1 \Delta y = b_0 u'(0^+) + b_1 u(0^+) \text{ ,}$$

$$t.d. \Delta y^{(i)} = y^{(i)}(0^+) - y^{(i)}(0^-)$$

Kada znamo $y(0^+)$ i $y'(0^+)$ to uvrštavamo u totalno rješenje, tj. derivirano totalno rješenje za trenutak $t\!=\!0^+$ i rješavamo dvije jednadžbe s dvije nepoznanice za C_1 i C_2 . Kada izračunamo konstante C_1 i C_2 zapisujemo rješenje $y\!=\!y_h\!+\!y_p$ bez nepoznanica.

Pogledajmo zadatak iz prvog primjera 1. i 2. poglavlja:

$$y''(t)+4y'(t)+3y(t)=u'(t)+2u(t)$$

 $u(t)=u(t)$, $y(0)=1$, $y'(0)=2$

Dobili smo rješenja:

$$y_h = C_1 e^{-t} + C_2 e^{-3t}$$
 i $y_p = \frac{2}{3} \mu(t)$,

dakle totalni odziv je

$$y = C_1 e^{-t} + C_2 e^{-3t} + \frac{2}{3} \mu(t)$$
.

Izračunajmo sada početne uvjete nakon nule; $y(0^+)$ i $y'(0^+)$.

$$y(0^{+})-y(0^{-})=b_{0}u(0^{+})=0$$

$$\Rightarrow y(0^{+}) = y(0^{-}) = 1$$

$$y'(0^{+}) - y'(0^{-}) + a_{1}y(0^{+}) - a_{1}y(0^{-}) = b_{0}u'(0^{+}) + b_{1}u(0^{+})$$

$$\Rightarrow y'(0^{+}) = b_{1}u(0^{+}) + y'(0^{-}) = 1 + 2 = 3$$

Primjetimo da je derivacija pobude jednaka nuli iako je pobuda $\ \mu(t)$. To je zato što koristimo pobudu u trenutku nakon nule, a nakon nule nema nikakvih skokova; jedini skok step funkcije je u nuli, nakon nule je vrijednost funkcije $\ 1$. S obzirom da je pobuda ~uvijek kauzalna ovdje ćemo uvijek koristiti derivaciju bez stepa, tj. derivaciju nakon nule. Drugim riječima tu pišemo normalnu derivaciju pobude s tim da u pobudi zanemarimo član $\ \mu(t)$.

Sada imamo $y(0^+)=1$ i $y'(0^+)=3$, idemo dalje.

Treba nam derivacija totalnog odziva (nakon nule, dakle $\mu(t)=1$):

$$y' = -C_1 e^{-t} - 3C_2 e^{-3t}$$
.

Sada računamo konstante C_1 i C_2 :

$$y(0^{+}) = C_{1} + C_{2} + \frac{2}{3} = 1$$

$$y'(0^{+}) = -C_{1} - 3C_{2} = 3$$

$$\Rightarrow C_{1} = -3 - 3C_{2}$$

$$\Rightarrow -3 - 2C_{2} = \frac{1}{3}$$

$$\Rightarrow C_{2} = -\frac{5}{3} \Rightarrow C_{1} = 2$$

$$\Rightarrow y = 2e^{-t} - \frac{5}{3}e^{-3t} + \frac{2}{3}\mu(t)$$

Totalni odziv je, dakle, zbroj prirodnog i prisilnog odziva.

Postoje još dvije važne vrste odziva: mirni i nepobuđeni. Računaju se na sličan način, te njihov zbroj također daje totalni odziv.

Mirni se odziv dobije kao totalan odziv sustava u kojemu su početni uvjeti jednaki nuli, tj.

 $y(0^{\text{-}}) = y'(0^{\text{-}}) = 0$. Sve ostalo se radi na isti način, uključujući računanje početnih uvjeta $y(0^{\text{+}})$ i $y'(0^{\text{+}})$.

Nepobuđeni se odziv dobije kao totalan odziv sustava bez pobude, tj. u(t)=0 i $b_0=b_1=b_2=0$. Također zbog toga pri računanju početnih uvjeta uvijek vrijedi $y(0^+)=y(0^-)$ i $y'(0^+)=y'(0^-)$. Pogledajmo primjer računanja totalnog odziva pomoću mirnog i nepobuđenog odziva, isti primjer kao maloprije.

$$y''(t)+4y'(t)+3y(t)=u'(t)+2u(t)$$

 $u(t)=\mu(t)$, $y(0)=1$, $y'(0)=2$

Prvo računamo mirni odziv (svejedno je, naravno), tako da su početni uvjeti (u0) jednaki nuli. Homogeno i partikularno rješenje računamo isto kao i ranije, tako da imamo $y_h = C_1 e^{-t} + C_2 e^{-3t}$ i

$$y_p = \frac{2}{3}\mu(t)$$
 . Totalni mirni odziv je $y_m = C_1e^{-t} + C_2e^{-3t} + \frac{2}{3}\mu(t)$

Računamo nove početne uvjete u 0^+ :

$$y(0^{+})-y(0^{-})=b_{0}u(0^{+})=0$$

 $\Rightarrow y(0^{+})=0$

$$y'(0^{+}) - y'(0^{-}) + a_{1}y(0^{+}) - a_{1}y(0^{-}) = b_{0}u'(0^{+}) + b_{1}u(0^{+})$$

$$\Rightarrow y'(0^{+}) - 0 + 0 - 0 = 0 + b_{1}u(0^{+})$$

$$\Rightarrow y'(0^{+}) = 1$$

Trebat ćemo derivaciju totalnog mirnog odziva koja je kao i prije: $y_m{'}{=}{-C_1}e^{-t}{-}3\,C_2e^{-3t}$. Računamo C_1 i C_2 :

$$y(0^{+}) = C_{1} + C_{2} + \frac{2}{3} = 0$$

$$y'(0^{+}) = -C_{1} - 3C_{2} = 1$$

$$\Rightarrow C_{1} = -1 - 3C_{2}$$

$$\Rightarrow -1 - 2C_{2} = -\frac{2}{3}$$

$$\Rightarrow C_{2} = -\frac{1}{6} \Rightarrow C_{1} = -\frac{1}{2}$$

$$\Rightarrow y_{m} = -\frac{1}{2}e^{-t} - \frac{1}{6}e^{-3t} + \frac{2}{3}\mu(t)$$

Dobili smo mirni odziv, sada računamo nepobuđeni.

$$y''(t)+4y'(t)+3y(t)=u'(t)+2u(t)$$

Rekli smo: u nepobuđenom odzivu nema pobude, tako da vrijedi:

$$v(0^{-}) = v(0^{+}) = 1$$
, $v'(0^{-}) = v'(0^{+}) = 2$

Partikularnog rješenja nema jer nema pobude, dakle $y_h = y_{nep} = C_1 e^{-t} + C_2 e^{-3t}$. Računamo C_1 i C_2 :

$$y(0^{+}) = C_{1} + C_{2} = 1$$

$$y'(0^{+}) = -C_{1} - 3C_{2} = 2$$

$$\Rightarrow C_{1} = -2 - 3C_{2}$$

$$\Rightarrow -2 - 2C_{2} = 1$$

$$\Rightarrow C_{2} = -\frac{3}{2} \Rightarrow C_{1} = \frac{5}{2}$$

$$\Rightarrow y_{nep} = \frac{5}{2}e^{-t} - \frac{3}{2}e^{-3t}$$

Zbrojimo li mirni i nepobuđeni odziv dobit ćemo totalni odziv od početka:

$$y = y_m + y_{nep} = -\frac{1}{2}e^{-t} - \frac{1}{6}e^{-3t} + \frac{2}{3}\mu(t) + \frac{5}{2}e^{-t} - \frac{3}{2}e^{-3t}$$
$$y = 2e^{-t} - \frac{5}{3}e^{-3t} + \frac{2}{3}\mu(t)$$