

Concours Centrale Supelec TSI 2017.

Mise en situation

Gestion du mouvement vertical

Objectif

Déterminer les réglages de la commande asservie des moteurs genou droit et gauche permettant d'assurer un mouvement vertical ne déséquilibrant pas le porteur de l'exosquelette puis valider les performances attendues listées par le cahier des charges.

Question 1 Déterminer la grandeur physique de la consigne et la grandeur physique asservie à partir du modèle multiphysique présenté plus bas et préciser leurs unités de base dans le système international d'unités (SI).

Correction

En faisant l'hypothèse que le couple perturbateur est nul, on a : $H_{\Omega}(p) = \frac{\Omega_m(p)}{\Omega_{mC}(p)} =$ $\frac{C_{\Omega}(p)M_{C}(p)\frac{1}{Jp+f}}{1+C_{\Omega}(p)M_{C}(p)\frac{1}{Jp+f}}. \text{ En conséquences}: H_{\Omega}(p)=\frac{K_{2}}{Jp+K_{2}}=\frac{1}{\frac{Jp}{CK_{2}}+1}.$

Question 3 Exprimer $\varepsilon(p)$ en fonction de $\theta_{mC}(p)$, $H_{\Omega}(p)$, K_1 et p.

Correction

D'une part,
$$\varepsilon(p) = \theta_{mC}(p) - \theta_m(p)$$
. D'autre part, $\theta_m(p) = H_{\Omega}(p) \frac{K_1}{p} \varepsilon(p)$. Par suite,
$$\varepsilon(p) = \theta_{mC}(p) - H_{\Omega}(p) \frac{K_1}{p} \varepsilon(p) \Leftrightarrow \varepsilon(p) \left(1 + H_{\Omega}(p) \frac{K_1}{p}\right) = \theta_{mC}(p)$$
. En conséquences,
$$\varepsilon(p) = \frac{\theta_{mC}(p)}{1 + H_{\Omega}(p) \frac{K_1}{p}}.$$

Question 4 Déterminer l'erreur de position ε_p puis l'erreur de traînage ε_v . Conclure sur la valeur de K_1 pour satisfaire à l'exigence d'erreur en traînage.

Correction

$$\triangleright \varepsilon_p = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{1}{1 + H_{\Omega}(p) \frac{K_1}{p}} \frac{1}{p} = \lim_{p \to 0} \frac{1}{1 + \frac{1}{\frac{Jp}{C_{\Omega}K_2} + 1}} \frac{K_1}{p} = 0$$

(ce qui était prévisible pour un système de classe 1);
$$\varepsilon_v = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{1}{1 + H_{\Omega}(p) \frac{K_1}{p}} \frac{1}{p^2} = \lim_{p \to 0} \frac{1}{1 + \frac{1}{\frac{Jp}{C_{\Omega}K_2} + 1}} \frac{1}{p} \frac{1}{p}$$

$$=\lim_{p\to 0}\frac{1}{p+\frac{1}{\frac{Jp}{C_{\Omega}K_{2}}}+1}=\frac{1}{K_{1}} \text{ (ce qui était prévisible pour un système de classe 1 et }$$
 de gain K_{1} en BO).

Ainsi, pour avoir une erreur de traînage inférieure à 1%, il faut $\frac{1}{K_1}$ < 0, 01 et K_1 > 100.

Question 5 Déterminer l'erreur en accélération et conclure quant au respect du cahier des charges.

Correction

En raisonnant de même, on a :
$$\varepsilon_a = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{1}{1 + H_{\Omega}(p) \frac{K_1}{p}} \frac{1}{p^3}$$

$$= \lim_{p \to 0} \frac{1}{1 + \frac{1}{\frac{Jp}{C_{\Omega}K_2} + 1}} \frac{1}{p^2} = 0 = \lim_{p \to 0} \frac{1}{p^2 + \frac{p}{\frac{Jp}{C_{\Omega}K_2} + 1}} = \infty \text{ (ce qui était prévisible pour un système de classe 1)}.$$

Ainsi, le correcteur choisi ne permet pas de vérifier le cahier des charges.

Question 6 Exprimer $\varepsilon(p)$ en fonction de $\theta_{mC}(p)$, T, K_1 , K_3 et p.

Correction

En utilisant le schéma-blocs, on a :

- $\blacktriangleright \ \varepsilon(p) = \theta_{mC}(p) \theta_{m}(p);$

$$\begin{aligned} & \text{On a donc: } \varepsilon(p) = \theta_{mC}(p) - \Omega_{mC}(p) \frac{1}{p} \frac{1}{1 + Tp} = \theta_{mC}(p) - (K_3 p \theta_{mC}(p) + K_1 \varepsilon(p)) \frac{1}{p (1 + Tp)} \\ & = \theta_{mC}(p) - \frac{K_3 p}{p (1 + Tp)} \theta_{mC}(p) - \frac{K_1}{p (1 + Tp)} \varepsilon(p). \\ & \text{On a alors } \varepsilon(p) \left(1 + \frac{K_1}{p (1 + Tp)}\right) = \theta_{mC}(p) \left(1 - \frac{K_3}{1 + Tp}\right) \\ & \Leftrightarrow \varepsilon(p) \frac{p (1 + Tp) + K_1}{p (1 + Tp)} = \theta_{mC}(p) \frac{1 + Tp - K_3}{1 + Tp}. \\ & \text{Enfin, } \varepsilon(p) = \theta_{mC}(p) \frac{p (1 + Tp - K_3)}{p (1 + Tp) + K_1}. \end{aligned}$$

Question 7 Exprimer l'erreur de traînage et déterminer la valeur de K₃ permettant l'annuler cette erreur.

Correction

$$\varepsilon_v = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p \, \varepsilon(p) = \lim_{p \to 0} p \, \frac{p \, (1 + Tp - K_3)}{p \, (1 + Tp) + K_1} \, \frac{1}{p^2} = \lim_{p \to 0} \frac{(1 + Tp - K_3)}{p \, (1 + Tp) + K_1} = \frac{1 - K_3}{K_1}.$$
 Au final, pour annuler l'erreur de traînage, on doit avoir $K_3 = 1$.

Question 8 Exprimer et déterminer l'erreur d'accélération en prenant les valeurs de K₃ et de K₁ déterminées précédemment. Conclure quant au respect du cahier des charges.

Correction

On a :
$$\varepsilon_a = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p \, \varepsilon(p) = \lim_{p \to 0} p \, \frac{p \, (1 + Tp - K_3)}{p \, (1 + Tp) + K_1} \, \frac{1}{p^3} = \lim_{p \to 0} \frac{(1 + Tp - K_3)}{p \, (1 + Tp) + K_1} \, \frac{1}{p}$$
. En prenant $K_3 = 1$ et $K_1 = 100$, on obtient : $\varepsilon_a = \frac{T}{p \, (1 + Tp) + 100} = \frac{33 \times 10^{-3}}{100}$. L'erreur est donc de 33×10^{-5} . Le cahier des charges est donc validé.

Synthèse

Question 9 En utilisant la figure ci-dessous, conclure sur les actions qui ont mené à une validation du cahier des charges.

