2025-03-08 STEP Practice: Problem 89 (1998 01.06)

$$\alpha_1 = \cos x$$
 with $0 < x < \frac{\pi}{2}$. Let $b_1 = 1$.

$$e_{n+1} = \frac{1}{2} [a_n + b_n]$$

$$b_{n+1} = [a_{n+1}b_n]^{\frac{1}{2}}$$

$$\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$$

 $\cos x = \left[\frac{1}{2}\cos(2x) + \frac{1}{2}\right]^{\frac{1}{2}}$

$$u_2 = \frac{1}{2}[u_1 + b_1] = \frac{1}{2}[\cos x + i] = \frac{1}{2}\cos x + \frac{1}{2} = \cos^2(\frac{x}{2})$$

$$\cos^{2}(\frac{x}{2}) = \left[\frac{1}{2}\cos x + \frac{1}{2}\right]^{\frac{1}{2}}$$

$$\cos^{2}(\frac{x}{2}) = \frac{1}{2}\cos x + \frac{1}{2}$$

$$b_2 = [a_2b_1]^{\frac{1}{2}} = [\frac{1}{2}cosx + \frac{1}{2}]^{\frac{1}{2}} = cos(\frac{x}{2})$$

$$O_3 = \frac{1}{2}[u_2 + b_2] = \frac{1}{2}[cos^2(\frac{x}{2}) + cos(\frac{x}{2})]$$

$$= cos(\frac{x}{2})[\frac{1}{2}cos(\frac{x}{2}) + \frac{1}{2}]$$

$$= cos(\frac{x}{2})(cos^2(\frac{x}{2}) + cos(\frac{x}{2}))$$

Guess:
$$a_n = cos(\frac{x}{z^{n-1}}) \prod_{i=1}^{n-1} cos(\frac{x}{z^i})$$
, $b_n = \prod_{i=1}^{n-1} cos(\frac{x}{z^i})$ for $n \ge 2$

These are valid of they satisfy they satisfy the recurrence equations.

Ventuction:
$$u_{n+1} = cos(\frac{x}{z^n}) \prod_{i=1}^{n} cos(\frac{x}{z^i}) = cos(\frac{x}{z^n}) \prod_{i=1}^{n-1} cos(\frac{x}{z^i}) = \left[\frac{1}{2}cos(\frac{x}{z^{n-1}}) + \frac{1}{2}\right] \prod_{i=1}^{n-1} cos(\frac{x}{z^i})$$

=
$$\frac{1}{2} cos(\frac{x}{2^{n-1}}) \prod_{i=1}^{n-1} cos(\frac{x}{2^{i}}) + \frac{1}{2} \prod_{i=1}^{n-1} cos(\frac{x}{2^{i}}) = \frac{1}{2} a_n + \frac{1}{2} b_n = \frac{1}{2} [a_n + b_n]$$

$$b_{n+1} = \prod_{i=1}^{n} cos(\frac{x_{i}}{z^{n_{i}}}) = cos(\frac{x_{i}}{z^{n_{i}}}) \prod_{i=1}^{n-1} cos(\frac{x_{i}}{z^{n_{i}}}) = \left[\frac{1}{2}cos(\frac{x_{i}}{z^{n_{i-1}}}) + \frac{1}{2}\right]^{\frac{1}{2}}b_{n} = \left[\frac{1}{2}cos(\frac{x_{i}}{z^{n_{i-1}}}) + \frac{1}{2}b_{n}^{2}\right]^{\frac{1}{2}}$$

$b_{n+1} = \left[\frac{1}{2}a_nb_n + \frac{1}{2}b_n^2\right]^{\frac{1}{2}} = \left[b_n\left[\frac{1}{2}a_n + \frac{1}{2}b_n\right]^{\frac{1}{2}} = \left[a_{n+1}b_n\right]^{\frac{1}{2}}\right]$ This, the yeard expression for an and by are correct.					
	bn+1 = [= 20	in bn + 2b2] = [b	n[=cn+=bn]=	=[an+16n] =	
They, are great expressed for an over an over the contract.					
	, 5, 5, 6	jenere enpresent	101 un viv un	ore coren.	
· ·					