

Department Of Computer Science, CUI Lahore Campus

CSC102 - Discrete Structures

By

Mahwish Waqas

Course Outline

Nested Quantifiers

Nested Quantifiers

 Two quantifiers are nested if one is within scope of other, such as

$$\forall x \exists y(x + y = 0).$$

- Everything within the scope of a quantifier can be thought of as a propositional function.
- For example,

$$\forall x \exists y(x + y = 0)$$

is the same thing as $\forall x Q(x)$, where Q(x) is $\exists y P(x, y)$, where P(x, y) is x + y = 0.

Nested Quantifiers

- $\forall x \exists y P(x, y)$
 - "For all x, there exists a y such that P(x, y)".
 - Example:
 - $\forall x \exists y (x + y = 0)$ where x and y are integers
- $\exists x \forall y P(x,y)$
 - There exists an x such that for all y, P(x, y) is true"
 - Example: $\exists x \forall y (x \times y = 0)$
- $\forall x \forall y \forall z (x + (y + z) = (x + y) + z)$
- THINK QUANTIFICATION AS LOOPS

Nested Quantifiers Example

• Let Domain of x is the students in this class Doamin of y is the courses in software engineering Q(x,y) = x takes course y, true when x takes course y, otherwise false.

Translate the following logical expression:

- $\forall x \forall y Q(x,y)$
- $\exists x \exists y Q(x,y)$
- $\forall x \exists y Q(x,y)$
- $\exists x \forall y Q(x,y)$

Meaning of Multiple Quantifiers

Suppose P(x, y) = "x likes y." Domain of x: {St1, St2}; Domain of y: {Cricket, Hockey}

- $\forall x \forall y P(x, y)$
 - P(x, y) true for all x, y pairs.
- $\exists x \exists y P(x, y)$
 - P(x, y) true for at least one x, y pair.
- $\forall x \exists y P(x, y)$
 - For every value of x we can find a (possibly different) y so that P(x,y) is true.
- $\exists x \forall y P(x, y)$
 - There is at least one x for which P(x,y) is always true.

Predicates - the meaning of multiple quantifiers

10/11/2020

Statement	When True?	When False?
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y.	There is a pair x , y for which $P(x, y)$ is false.
∀ <i>x</i> ∃ <i>yP(x, y)</i>	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
∃ <i>x</i> ∃ <i>yP(x, y)</i> ∃ <i>y</i> ∃ <i>xP(x, y)</i>	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

• Let Q(x, y): "x + y = 0"

What are the truth values of the quantifications $\exists y \forall x Q(x, y)$ and $\forall x \exists y Q(x,y)$, where the domain for all variables consists of all real numbers?

• Let Q(x, y) denote "x + y = 0." What are the truth values of the quantifications $\exists y \forall x Q(x, y)$ and $\forall x \exists y Q(x, y)$, where the domain for all variables consists of all real numbers?

Solution:

The quantification $\exists y \forall x Q(x,y)$ denotes the proposition

"There is a real number y such that for every real number x, Q(x, y)."

• No matter what value of y is chosen, there is only one value of x for which x + y = 0. Because there is no real number y such that x + y = 0 for all real numbers x, the statement $\exists y \forall x Q(x, y)$ is false.

- The quantification $\forall x \exists y Q(x, y)$ denotes the proposition "For every real number x there is a real number y such that Q(x, y)."
- Given a real number x, there is a real number y such that x + y = 0; namely, y = -x.
- Hence, the statement $\forall x \exists y Q(x, y)$ is true.

Order of Quantifiers

- ∃x∀y and ∀x∃y are not equivalent!
- ∃x∀y P(x,y)
 - P(x,y) = (x+y == 0) is false
- ∀x∃y P(x,y)
 - P(x,y) = (x+y == 0) is true

$$Q(x,y,z)$$
: x + y = z

Domain: Real numbers

- $\forall x \forall y \exists z \ Q(x, y, z)$ True/False???
- For all real numbers x and for all real numbers y there is a real number z such that x + y = z.
- True
- $\exists z \forall x \forall y \ Q(x, y, z)$ True/False???
- There is a real number z such that for all real numbers x and for all real numbers y that x + y = z.
- False

 Translate the statement "The sum of two positive integers is always positive" into a logical expression.

 Translate the statement "The sum of two positive integers is always positive" into a logical expression.

Solution:

- First rewrite it so that the implied quantifiers and a domain are shown: "For every two integers, if these integers are both positive, then the sum of these integers is positive."
- Next, introduce the variables x and y to obtain "For all positive integers x and y, x + y is positive."
- Statement is $\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$,
- where the domain for both variables consists positive integers.

Translate the following statement into English

$$\forall x(C(x) \lor \exists y(C(y) \land F(x, y)))$$

where

C(x): "x has a computer,"

F(x, y): "x and y are friends,"

The domain for both *x* and *y* consists of all students in your school.

Translate the following statement into English

$$\forall x(C(x) \lor \exists y(C(y) \land F(x, y)))$$

where

C(x): "x has a computer,"

F(x, y): "x and y are friends,"

The domain for both *x* and *y* consists of all students in your school.

Solution:

- The statement says that for every student x in your school, x
 has a computer or there is a student y such that y has a
 computer and x and y are friends.
- In other words, every student in your school has a computer or has a friend who has a computer.

Negating Multiple Quantifiers

- Recall negation rules for single quantifiers:
 - $\neg \forall x P(x) = \exists x \neg P(x)$
 - $\neg \exists x P(x) = \forall x \neg P(x)$
 - Essentially, you change the quantifier(s), and negate what it's quantifying
- Examples:
 - $\neg(\forall x \exists y \ P(x,y)) = \exists x \ \neg \exists y \ P(x,y) = \exists x \forall y \ \neg P(x,y)$
 - $\neg(\forall x \exists y \forall z \ P(x,y,z)) = \exists x \neg \exists y \forall z \ P(x,y,z)$ = $\exists x \forall y \neg \forall z \ P(x,y,z) = \exists x \forall y \exists z \ \neg P(x,y,z)$

Negating Multiple Quantifiers

- Consider $\neg(\forall x \exists y \ P(x,y)) = \exists x \forall y \ \neg P(x,y)$
 - The left side is saying "for all x, there exists a y such that P is true"
 - To negate it, you need to show that "there exists an x such that for all y, P is false"
- Consider $\neg(\exists x \forall y \ P(x,y)) = \forall x \exists y \ \neg P(x,y)$
 - The left side is saying "there exists an x such that for all y, P is true"
 - To negate it, you need to show that "for all x, there exists a y such that P is false"

Chapter Reading

 Chapter 1, Kenneth H. Rosen, Discrete Mathematics and Its Applications, Section 1.5

Chapter Exercise (For Practice)

Question # 1, 2, 3, 4, 8, 23, 24, 25, 26, 27, 30, 31, 39, 41