A)

Lab1 - Problem 1

10

5

-5

-10

-5

x (cm)

Case 2

B) The last two digits in my student number is 33.

Lab1 - Problem 2

Case 1

Case 2

C) An arc of a circle.

D) Let the angle between the two links be γ . When $\theta=90$, $\gamma=0$ since the link is being pulled down by gravity, so it must be pointing straight down. Then, as link 2 rotates from the vertically up direction, γ has to increase at the same rate as θ in order to keep link 2 pointing straight down. Thus, between $\theta \in [0,360)$,

$$\gamma = |-90 + \theta|$$

More generally, for angles greater than 360 degrees or less than 0 degrees, $\gamma = 90 - \theta \text{ for } \theta \in [-90 + 360n, 90 + 360n], n \in \mathbb{Z}$ $\gamma = -90 + \theta \text{ for } \theta \in (90 + 360n, 270 + 360n), n \in \mathbb{Z}$

Optional Problem:

