Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

Δημήτρης Ψούνης

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

ΠΕΡΙΕΧΟΜΕΝΑ

Α. Σκοπός του Μαθήματος

Β. Θεωρία

- 1. Πεπερασμένα Αυτόματα
 - 1. Λειτουργία και Παραδείγματα
 - 2. Τρόπος Εκτέλεσης
- 2. Ντετερμινιστικά Πεπερασμένα Αυτόματα
 - 1. Επεξήγηση Όρων
 - 2. Ορισμός Κανονικής Γλώσσας
 - 3. Τυπικός Ορισμός ΝΠΑ

Γ.Μεθοδολογία

Δ.Ασκήσεις

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

www.osounis.or

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

- > Πεπερασμένα Αυτόματα και ορισμοί
- > Μεθοδολογία Κατασκευής ΝΠΑ

Επίπεδο Β

> Τυπικός Ορισμός Ντετερμινιστικού Πεπερασμένου Αυτομάτου (ΝΠΑ) Επίπεδο Γ

> (-)

Δημήτρης Ψούνης, ΠΛΗ3ο, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

Β. Θεωρία

1.Πεπερασμένο Αυτόματο

1. Λειτουργία και Παραδείγματα

Ορισμός:

- Av $x \in L$ τότε «απαντά» NAI.
 - Ή πιο τυπικά... Αναγνωρίζει ή κάνει δεκτές τις συμβολοσειρές που ανήκουν στην L
- Av $x \notin L$ τότε «απαντά» OXI.
 - Ή πιο τυπικά... Απορρίπτει τις συμβολοσειρές που δεν ανήκουν στην L

Β. Θεωρία

1.Πεπερασμένο Αυτόματο

1.Λειτουρνία και Παραδείνματα

Παράδειγμα 1: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w περιέχει το 00} είναι το ακόλουθο:

Και για παράδειγμα:

Αναγνωρίζει την συμβολοσειρά 010010

Απορρίπτει την συμβολοσειρά 101011

Τα δομικά στοιχεία με τα οποία κατασκευάζουμε το αυτόματο είναι τα:

X Μετάβαση όταν Μη τελική Τελική Αρχική Κατάσταση διαβάζω το χ Κατάσταση Κατάσταση

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

1.Πεπερασμένο Αυτόματο

2.Τρόπος Εκτέλεσης

Ενα Πεπερασμένο Αυτόματο λειτουργεί ως εξής:

- > Ξεκινά από την αρχική κατάσταση (που πάντα σε ένα αυτόματο είναι μοναδική)
- > Διαβάζει το επόμενο σύμβολο από την είσοδο και ακολουθεί το βέλος που αντιστοιχεί στο σύμβολο που διάβασε. Επαναλαμβάνει το διάβασμα του επόμενου συμβόλου μέχρι να διαβαστεί όλη η είσοδος.
- Αν με το τέλος της εισόδου:
 - > Βρεθεί σε μία τελική κατάσταση, αναγνωρίζει την είσοδο, δηλαδή απαντά ΝΑΙ (οτί η συμβολοσειρά ανήκει στην γλώσσα)
 - > Βρεθεί σε μία μη τελική κατάσταση, απορρίπτει την είσοδο, δηλαδή απαντά ΟΧΙ (ότι η συμβολοσειρά δεν ανήκει στην γλώσσα)

Δημήτρης Ψούνης, ΠΛΗ3ο, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

Β. Θεωρία

1.Πεπερασμένο Αυτόματο

1.Λειτουρνία και Παραδείνματα

Παράδειγμα 3: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w αρχίζει με 00} είναι το ακόλουθο:

Β. Θεωρία

2. Ντετερμινιστικό Πεπερασμένο Αυτόματο

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

1. Επεξήγηση Όρων

Κάθε αυτόματο που μελετήσαμε στα παραδείγματα χαρακτηρίζεται

- Ντετερμινιστικό: (ή αιτιοκρατικό): Διότι σε κάθε κατάσταση καθορίζεται μονοσήμαντα (ντετερμινιστικά) η μετάβαση του αυτομάτου με κάθε σύμβολο που μπορεί να διαβαστεί. Με
 - > Θα μελετήσουμε και μη ντετερμινιστικά αυτόματα σε επόμενο μαθημα

απλά λόγια, φεύγει ακριβώς ένα βελάκι με 0 και ακριβώς ένα βελάκι με 1.

Πεπερασμένο:

Διότι οι κατάστασεις τους είναι πεπερασμένες (όχι άπειρες)

- Δεν θα μελετήσουμε άπειρα αυτόματα (εκτός ύλης)
- Αυτόματο:

Διότι με μία μηχανική διαδικασία εκτελεί την ενέργεια αναγνώρισης μιας συμβολοσειράς

Συνεπώς μία γλώσσα μπορεί να έχει ένα Ντετερμινιστικό Πεπερασμένο Αυτόματο (Ν.Π.Α.) που αναγνωρίζει τις συμβολοσειρές της.

Β. Θεωρία

2. Ντετερμινιστικό Πεπερασμένο Αυτόματο

2. Ορισμός Κανονικής Γλώσσας (ξανά)

Ορισμός Κανονικής Γλώσσας:

- Μία γλώσσα θα λέγεται Κανονική Γλώσσα αν και μόνο αν
 - Υπάρχει Κανονική Εκφραση (Κ.Ε.)που την περιγράφει.
 - Υπάρχει Ντετερμινιστικό Πεπερασμένο Αυτόματο (Ν.Π.Α.) που αναγνωρίζει τις συμβολοσειρές της.
- > Άρα για να δείξουμε ότι μία γλώσσα είναι κανονική αρκεί:
 - > Να δώσουμε μια Κ.Ε. που παράγει τις συμβ/ρες της γλώσσας
 - Να δώσουμε ένα Ν.Π.Α. που αναγνωρίζει τις συμβολοσειρές της γλώσσας
- ➢ Άρα, διαισθητικά, οι έννοιες της Κ.Ε. Και του Ν.Π.Α είναι ισοδύναμες (κάνουν την ίδια δουλειά, αποδεικνύουν ότι μία γλώσσα είναι κανονική)

Β. Θεωρία

- 2. Ντετερμινιστικό Πεπερασμένο Αυτόματο
- 3. Τυπικός (μαθηματικός) Ορισμός ΝΠΑ

Ορισμός:

Ένα Ντετερμινιστικό Πεπερασμένο Αυτόματο είναι μία 5-άδα

 $M=(Q, \Sigma, q_0, \delta, F)$

Όπου:

- Q είναι το σύνολο των καταστάσεων
- > Σ είναι το αλφάβητο των συμβόλων εισόδου
- ho $q_0 \in Q$ είναι η αρχική κατάσταση
- $\delta: Q \times \Sigma \to Q$ είναι <u>η συνάρτηση μετάβασης</u> (π.χ. $\delta(q_1, \sigma) = q_2$ αν όταν είμαστε στην κατάσταση q_1 και διαβάσουμε σ, μεταβαίνουμε στην κατάσταση q_2)
- $ightharpoonup F \subseteq Q$ είναι το σύνολο των τελικών καταστάσεων

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

www.psounis.gr

Β. Θεωρία

1.Πεπερασμένο Αυτόματο

3. Τυπικός (μαθηματικός) Ορισμός ΝΠΑ

Παράδειγμα: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w περιέχει το 00} είναι το ακόλουθο:

Και τυπικά περιγράφεται από την πεντάδα: $M=(Q, \Sigma, q_0, \delta, F)$ όπου:

- \triangleright Q={A,B, Γ }
- $\Sigma = \{0,1\}$
- > a₀=A
- Η δ μπορεί να περιγραφεί από τον ακόλουθο πίνακα μετάβασης:

	0	1
A	В	A
В	Γ	A
Γ	Γ	Γ

≻ F={Γ}

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

www.psounis.gr

Β. Θεωρία

- 2. Ντετερμινιστικό Πεπερασμένο Αυτόματο
- 4. Απόφαση μέσω της αναδρομικής συνάρτησης δ*

Για να μπορούμε να κατασκευάσουμε μια υπολογιστική διαδικασία υπολογισμού της λειτουργίας του αυτομάτου, ορίζουμε την συνάρτηση δ* ως εξής:

Ορισμός:

Έστω ένα αυτόματο Μ=(Q,Σ,q0,δ,F). Ορίζουμε την συνάρτηση δ* ως:

- $> \delta^*(q,\epsilon)=q$
- \triangleright $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$
 - q: κατάσταση,
 - wσ: είναι μία συμβολοσειρά με τελευταίο σύμβολο το σ

Η συνάρτηση δ*:

 Με όρισμα μία κατάσταση q και μία συμβολοσειρά w επιστρέφει σε ποια κατάσταση οδηγείται το αυτόματο αφού διαβάσει την συμβολοσειρά w

Β. Θεωρία

1.Πεπερασμένο Αυτόματο

4. Απόφαση μέσω της αναδρομικής συνάρτησης δ*

Παράδειγμα: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w περιέχει το 00} είναι το ακόλουθο:

		0	1
F	A	В	A
I	3	Γ	A
I	Γ	Γ	Γ

Να υπολογιστεί το δ*(Α,100):

$$\delta$$
*(A,100)=

$$\delta(\delta^*(A,10),0) =$$

$$\delta(\delta(\delta^*(A,1),0),0) =$$

$$\delta(\delta(\delta(\delta(\delta^*(A,\varepsilon),1),0),0)) =$$

$$\delta(\delta(\delta(A,1),0),0) =$$

$$\delta(\delta(A,0),0) =$$

$$\delta$$
(B,0)=

άρα από το Α με είσοδο την 100 καταλήγουμε στο Γ.

Γ. Μεθοδολογία

1.Κατασκευή ΝΠΑ

1. «αρχίζει»

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

 $L = \{w \in \{0,1\}^* | w \text{ arxize me 0.11}\}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

<u>Γ. Μεθοδολογία</u>

1.Κατασκευή ΝΠΑ

2. «περιέχει»

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

 $L = \{w \in \{0,1\}^* \mid w \text{ present to 0.11}\}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

Γ. Μεθοδολογία

1.Κατασκευή ΝΠΑ

3. «τελειώνει»

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

 $L = \{w \in \{0,1\}^* | w$ τελειώνει με 011}

Γ. Μεθοδολογία

1.Κατασκευή ΝΠΑ

4. «μήκος»

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* | w$$
 έχει μήκος 2 $\}$

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* \mid w \text{ έχει μήκος τουλάχιστον 2}\}$$

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* \mid w \text{ έχει μήκος το πολύ 2}\}$$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

18 www.psounis.gr

Γ. Μεθοδολογία

1.Κατασκευή ΝΠΑ

5. «άρτια» και «περιττά»

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* | w$$
 έχει άρτιο πλήθος 1 $\}$

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* \mid w \text{ έχει περιττό πλήθος 1}\}$$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

Γ. Μεθοδολογία

1.Κατασκευή ΝΠΑ

6. «δεν έχει» μία ιδιότητα (συμπλήρωμα)

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* | w$$
 δεν περιέχει το 11 $\}$

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* \mid w \text{ δεν αρχίζει με 11}\}$$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

Γ. Μεθοδολογία

1.Κατασκευή ΝΠΑ

7. περίπλοκες κατασκευές

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

 $L = \{w \in \{0,1\}^* \mid w \text{ έχει άρτια 0 και τουλάχιστον έναν άσσο}\}$

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

 $L = \{w \in \{0,1\}^* | w$ έχει άρτια 0 και περιττά 1 $\}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

22 www.psounis.gr

Δ. Ασκήσεις Εφαρμογή 1

Κατασκευάστε Ν.Π.Α. για τις γλώσσες:

L₁={w∈ {0,1}*| η w δεν περιέχει το 1100}

L₂={w∈ {0,1}*| η w δεν αρχίζει με 0011}

► L₃={w∈ {a,b}*| η w δεν τελειώνει με 0101}

Δημήτρης Ψούνης, ΠΛΗ3ο, Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

www.psounis.gr

Δ. Ασκήσεις Εφαρμογή 2

Δώστε Ν.Π.Α για τις γλώσσες που παράγονται από τις κανονικές εκφράσεις:

 $ightharpoonup L_2 = (1+01)^*$