MATHS 7107 Data Taming Assignment Final Report

Chang Dong

2023-04-24

Appendix

pacman::p_load(skimr, tidyverse, tidymodels, themis, recipes, dials,kknn, vip,forcats,caret,MASS,discri

1.1 Data import

```
spotify_songs_origin <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/s
## Rows: 32833 Columns: 23
## -- Column specification ------
## Delimiter: ","
## chr (10): track_id, track_name, track_artist, track_album_id, track_album_na...
## dbl (13): track_popularity, danceability, energy, key, loudness, mode, speec...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
skim(spotify_songs_origin)</pre>
```

Table 1: Data summary

Name Number of rows Number of columns	spotify_songs_origin 32833 23
Column type frequency: character numeric	10 13
Group variables	None

Variable type: character

skim_variable	n_missing	$complete_rate$	min	max	empty	n_unique	whitespace
track_id	0	1	22	22	0	28356	0
track_name	5	1	1	144	0	23449	0
$track_artist$	5	1	2	69	0	10692	0
$track_album_id$	0	1	22	22	0	22545	0
$track_album_name$	5	1	1	151	0	19743	0
track album release date	0	1	4	10	0	4530	0

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
playlist_name	0	1	6	120	0	449	0
playlist_id	0	1	22	22	0	471	0
playlist_genre	0	1	3	5	0	6	0
playlist_subgenre	0	1	4	25	0	24	0

Variable type: numeric

skim_variable n_r	nissingc	omplete_rat	emean	sd	p0	p25	p50	p75	p100	hist
track_popularity	0	1	42.48	24.98	0.00	24.00	45.00	62.00	100.00	
danceability	0	1	0.65	0.15	0.00	0.56	0.67	0.76	0.98	
energy	0	1	0.70	0.18	0.00	0.58	0.72	0.84	1.00	
key	0	1	5.37	3.61	0.00	2.00	6.00	9.00	11.00	
loudness	0	1	-6.72	2.99	-	-8.17	-6.17	-4.64	1.27	
					46.45					
mode	0	1	0.57	0.50	0.00	0.00	1.00	1.00	1.00	
speechiness	0	1	0.11	0.10	0.00	0.04	0.06	0.13	0.92	
acousticness	0	1	0.18	0.22	0.00	0.02	0.08	0.26	0.99	
instrumentalness	0	1	0.08	0.22	0.00	0.00	0.00	0.00	0.99	
liveness	0	1	0.19	0.15	0.00	0.09	0.13	0.25	1.00	
valence	0	1	0.51	0.23	0.00	0.33	0.51	0.69	0.99	
tempo	0	1	120.88	26.90	0.00	99.96	121.98	133.92	239.44	
duration_ms	0	1 2	25799.	8159834.01	4000.00	187819.0	00216000.0	00253585.0	0517810.0	00

1.2 Data Cleanning Method

spotify_songs <- spotify_songs %>%

These have n_unique more than 1000 should be considered as Text instead of Categorical data ("track_id", "track_name", "track_artist", "track_album_id", "track_album_name"), , "track_album_release_date" is not included, because we know it is a time series should be numerical.

```
mutate(track_album_release_year = as.numeric(format(as.Date(track_album_release_date, format = "%Y-%m
dplyr::select(-track_album_release_date)

numerical_variables <- c(numerical_variables, "track_album_release_year")

skim(spotify_songs)</pre>
```

Table 4: Data summary

Name Number of rows Number of columns	spotify_songs 32833 18
Column type frequency: factor numeric	4 14
Group variables	None

Variable type: factor

skim_variable	n_missing comp	olete_rate	ordered	n_unique	top_counts
playlist_name	0	1	FALSE	449	Ind: 308, 202: 247, Per: 244, Har: 219
$playlist_id$	0	1	FALSE	471	4Jk: 247, 37i: 198, 6Kn: 195, 3xM: 189
$playlist_genre$	0	1	FALSE	6	edm: 6043, rap: 5746, pop: 5507, r&b:
					5431
playlist_subgenre	0	1	FALSE	24	pro: 1809, sou: 1675, ind: 1672, lat:
					1656

Variable type: numeric

skim_variable	n_missingo	mplete_	ratmenean	sd	p0	p25	p50	p75	p100	hist
track_popularity	0	1.00	42.48	24.98	0.00	24.00	45.00	62.00	100.00	
danceability	0	1.00	0.65	0.15	0.00	0.56	0.67	0.76	0.98	
energy	0	1.00	0.70	0.18	0.00	0.58	0.72	0.84	1.00	
key	0	1.00	5.37	3.61	0.00	2.00	6.00	9.00	11.00	
loudness	0	1.00	-6.72	2.99	_	-8.17	-6.17	-4.64	1.27	
					46.45					
mode	0	1.00	0.57	0.50	0.00	0.00	1.00	1.00	1.00	
speechiness	0	1.00	0.11	0.10	0.00	0.04	0.06	0.13	0.92	
acousticness	0	1.00	0.18	0.22	0.00	0.02	0.08	0.26	0.99	
instrumentalness	0	1.00	0.08	0.22	0.00	0.00	0.00	0.00	0.99	
liveness	0	1.00	0.19	0.15	0.00	0.09	0.13	0.25	1.00	
valence	0	1.00	0.51	0.23	0.00	0.33	0.51	0.69	0.99	
tempo	0	1.00	120.88	26.90	0.00	99.96	121.98	133.92	239.44	
duration_ms	0	1.00	225799.8	8159834.0	14000.00	187819.0	0216000.0	0253585.0	0517810.0	00
track_album_rele	ease <u>18</u> %6ar	0.94	2012.20	10.40	1957.00	2010.00	2017.00	2019.00	2020.00	

spotify_songs <- spotify_songs %>%
 drop_na()

skim(spotify_songs)

Table 7: Data summary

Name spotify_songs
Number of rows 30947
Number of columns 18

Column type frequency:
factor 4
numeric 14

Group variables None

Variable type: factor

$skim_variable$	$n_{missing}$	$complete_rate$	ordered	n _unique	top_counts
playlist_name	0	1	FALSE	449	Ind: 299, 202: 247, Per: 212, Har: 211
playlist_id	0	1	FALSE	471	4Jk: 247, 6Kn: 195, 37i: 190, 3xM: 189
$playlist_genre$	0	1	FALSE	6	edm: 5969, rap: 5471, pop: 5303, r&b:
					5094
playlist_subgenre	0	1	FALSE	24	pro: 1760, ind: 1647, lat: 1573, neo:
					1547

Variable type: numeric

skim_variable	n_missingor	nplete_	ratmenean	sd	p0	p25	p50	p75	p100	hist
track_popularity	0	1	42.75	24.96	0.00	25.00	45.00	62.00	100.00	
danceability	0	1	0.66	0.14	0.00	0.57	0.67	0.76	0.98	
energy	0	1	0.70	0.18	0.00	0.58	0.72	0.84	1.00	
key	0	1	5.37	3.61	0.00	2.00	6.00	9.00	11.00	
loudness	0	1	-6.64	2.95	-	-8.07	-6.09	-4.61	1.27	
					46.45					
mode	0	1	0.56	0.50	0.00	0.00	1.00	1.00	1.00	
speechiness	0	1	0.11	0.10	0.00	0.04	0.06	0.13	0.92	
acousticness	0	1	0.18	0.22	0.00	0.02	0.08	0.26	0.99	
instrumentalness	0	1	0.09	0.23	0.00	0.00	0.00	0.01	0.99	
liveness	0	1	0.19	0.15	0.00	0.09	0.13	0.25	1.00	
valence	0	1	0.51	0.23	0.00	0.33	0.51	0.69	0.99	
tempo	0	1	120.94	26.85	0.00	99.97	122.00	133.52	239.44	
duration_ms	0	1	223950.1	ь брага бай	894000.00	186750.0	0214400.0	0251133.0	0517810.0	00
track_album_rele	ease_year	1	2012.20	10.40	1957.00	2010.00	2017.00	2019.00	2020.00	

1.3 Exploratory Data Analysis(EDA) Method

Categorical variable

 $playlist_id$

```
playlist_id_counts <- spotify_songs %>%
  count(playlist_id) %>%
  arrange(desc(n))
playlist_id_counts %>% ggplot(aes(x= n)) + geom_histogram(bins = 30, color = "white") +
  ggtitle("Fig1. Playlist id counts Distribution") +xlab("playlist id counts") +ylab("count")
```

Fig1. Playlist id counts Distribution

$playlist_name$

```
playlist_name_counts <- spotify_songs %>%
  count(playlist_name) %>%
  arrange(desc(n))
playlist_name_counts %>% ggplot(aes(x= n)) + geom_histogram(bins = 30, color = "white") +
  ggtitle("Fig2. Playlist name counts Distribution") +xlab("playlist name counts") +ylab("count")
```


$playlist_subgenre$

$playlist_genre~(Response~variable)$


```
chisq_test <- function(variable_name) {
  contingency_table <- spotify_songs %>%
    count(!!sym(variable_name), playlist_genre) %>%
    spread(key = playlist_genre, value = n, fill = 0) %>%
    column_to_rownames(var= variable_name)

chi_square_test <- chisq.test(contingency_table)
  cat(variable_name)
  print(chi_square_test)
}

for (variable in setdiff(categorical_variables, "playlist_genre")) {
  chisq_test(variable)
}</pre>
```

Chi²-Test (categorical data versus categorical data)

```
## Warning in chisq.test(contingency_table): Chi-squared approximation may be
## incorrect

## playlist_name
## Pearson's Chi-squared test
##
## data: contingency_table
## X-squared = 152976, df = 2240, p-value < 2.2e-16

## Warning in chisq.test(contingency_table): Chi-squared approximation may be</pre>
```

```
## incorrect
## playlist_id
## Pearson's Chi-squared test
##
## data: contingency_table
## X-squared = 152976, df = 2350, p-value < 2.2e-16
##
## playlist_subgenre
## Pearson's Chi-squared test
##
## data: contingency_table
## X-squared = 154735, df = 115, p-value < 2.2e-16
spotify_songs <- spotify_songs %>%
    dplyr::select(-setdiff(categorical_variables, "playlist_genre"))
```

Numerical variable

Compile a standard function for EDA

- plot a histogram to check the distribution of each numerical variable
- plot a box plot to check the distribution of each numerical variable in different genres
- Anova test to check the distribution differences in different genres

```
analyze_variable_hist <- function(variable_name) {</pre>
  # histogram
  idx = 4 + 2*which(numerical_variables == variable_name)-1
  histo_gram <- spotify_songs %>% ggplot(aes_string(variable_name)) +
    geom_histogram(bins = 30,color="white") +
    ggtitle(paste("Fig",idx,". Histogram of", variable_name)) +
    xlab(variable_name) + ylab("count")
  print(histo_gram)
}
analyze_variable_box <- function(variable_name) {</pre>
# boxplot
  idx = 4 + 2*which(numerical_variables == variable_name)
  box_plot <- spotify_songs %>% ggplot(aes_string(x = "playlist_genre",
                                                   y = variable_name,
                                                    fill = "playlist_genre")) +
    geom_boxplot() + ggtitle(paste("Fig",idx,". Distribution of", variable_name, "in different genres")
    xlab("Genres") + ylab(paste("Distribution of", variable_name))
  print(box_plot)
analyze_variable_ANOVA <- function(variable_name) {</pre>
  #ANOVA
  avg_by_genre <- tapply(spotify_songs[[variable_name]], spotify_songs$playlist_genre, mean)</pre>
  print(avg_by_genre)
  formula_str <- paste(variable_name, "~ playlist_genre")</pre>
  anova result <- aov(as.formula(formula str), data = spotify songs)
  print(summary(anova_result))
```

```
tukey_result <- TukeyHSD(anova_result)
print(tukey_result)
}

for (variable in numerical_variables) {
    cat("\n")
    cat("\n")
    analyze_variable_hist(variable)
    cat("\n")
    cat("\n")
    analyze_variable_box(variable)
    cat("\n")
    cat(variable)
    cat("\n")
    cat(variable)
    cat("\n")
    analyze_variable_ANOVA (variable)
    print("NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>")
}
```

Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
i Please use tidy evaluation ideoms with `aes()`

Fig 5 . Histogram of track_popularity


```
##
  track_popularity
##
##
        edm
               latin
                                   r&b
                                                    rock
                          pop
                                            rap
## 34.93885 47.56679 48.07147 41.81017 43.62128 41.42247
                          Sum Sq Mean Sq F value Pr(>F)
##
                                 129095
                                           214.4 <2e-16 ***
                          645473
## playlist_genre
                      5
                                     602
## Residuals
                  30941 18627072
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                    diff
                                lwr
                                                   p adj
## latin-edm 12.6279435 11.2847705 13.9711166 0.0000000
             13.1326183 11.8131651 14.4520714 0.0000000
## pop-edm
## r&b-edm
              6.8713181 5.5376085 8.2050277 0.0000000
## rap-edm
               8.6824251
                         7.3737436
                                    9.9911066 0.0000000
                                     7.8971099 0.0000000
## rock-edm
               6.4836233
                         5.0701367
## pop-latin
               0.5046747 -0.8762588
                                    1.8856082 0.9039405
## r&b-latin -5.7566255 -7.1511871 -4.3620638 0.0000000
## rap-latin -3.9455185 -5.3161635 -2.5748734 0.0000000
## rock-latin -6.1443202 -7.6153624 -4.6732780 0.0000000
## r&b-pop
              -6.2613002 -7.6330308 -4.8895695 0.0000000
              -4.4501932 -5.7976020 -3.1027843 0.0000000
## rap-pop
```

Fig 7 . Histogram of danceability


```
##
  danceability
##
        edm
               latin
                                   r&b
                          pop
                                            rap
                                                    rock
## 0.6546405 0.7134672 0.6406509 0.6697148 0.7175184 0.5201989
                  Df Sum Sq Mean Sq F value Pr(>F)
##
                     115.7
                            23.149
                                     1364 <2e-16 ***
## playlist_genre
                   5
                             0.017
## Residuals
                30941
                     525.3
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                   diff
                                lwr
                                                   p adj
             0.058826742  0.051694070  0.065959414  0.0000000
## latin-edm
            -0.013989618 -0.020996330 -0.006982906 0.0000002
## pop-edm
## r&b-edm
             ## rap-edm
             -0.134441537 -0.141947596 -0.126935478 0.0000000
## rock-edm
## pop-latin -0.072816359 -0.080149551 -0.065483168 0.0000000
            -0.043752455 -0.051158016 -0.036346894 0.0000000
## r&b-latin
## rap-latin
             ## rock-latin -0.193268278 -0.201079976 -0.185456581 0.0000000
## r&b-pop
             0.029063904 \quad 0.021779583 \quad 0.036348226 \ 0.0000000
             0.076867512  0.069712346  0.084022677  0.0000000
## rap-pop
```

Fig 9 . Histogram of energy


```
##
##
  energy
##
         edm
                latin
                                       r&b
                            pop
                                                 rap
                                                          rock
## 0.8029283 0.7076550 0.6983240 0.5889020 0.6502701 0.7385113
##
                     Df Sum Sq Mean Sq F value Pr(>F)
                        146.1
                               29.212
                                          1045 <2e-16 ***
## playlist_genre
                      5
## Residuals
                 30941
                        864.6
                                 0.028
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                     diff
                                  lwr
                                                        p adj
                                                upr
## latin-edm -0.09527329 -0.10442416 -0.0861224264 0.0000000
             -0.10460426 -0.11359353 -0.0956149974 0.0000000
## pop-edm
## r&b-edm
             -0.21402625 -0.22311265 -0.2049398600 0.0000000
## rap-edm
             -0.15265824 -0.16157412 -0.1437423549 0.0000000
## rock-edm
             -0.06441699 -0.07404689 -0.0547870819 0.0000000
## pop-latin -0.00933097 -0.01873910 0.0000771546 0.0533869
## r&b-latin -0.11875296 -0.12825393 -0.1092519889 0.0000000
## rap-latin -0.05738494 -0.06672297 -0.0480469105 0.0000000
## rock-latin 0.03085631 0.02083428 0.0408783312 0.0000000
## r&b-pop
             -0.10942199 -0.11876742 -0.1000765634 0.0000000
             -0.04805397 -0.05723370 -0.0388742455 0.0000000
## rap-pop
```

```
## rock-pop 0.04018728 0.03031259 0.0500619677 0.0000000  
## rap-r&b 0.06136802 0.05209316 0.0706428778 0.0000000  
## rock-r&b 0.14960927 0.13964608 0.1595724573 0.0000000  
## rock-rap 0.08824125 0.07843332 0.0980491802 0.0000000  
##
```

[1] "NEXT>>>>NEXT>>>>NEXT>>>>"

Fig 11 . Histogram of key


```
##
## key
##
        edm
               latin
                                   r&b
                                            rap
                                                    rock
                          pop
## 5.351148 5.481161 5.301150 5.390459 5.455675 5.203279
                     Df Sum Sq Mean Sq F value Pr(>F)
##
                                          3.77 0.00206 **
                                 49.22
                      5
                           246
## playlist_genre
                                 13.06
## Residuals
                  30941 403958
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                     diff
                                  lwr
                                              upr
                                                      p adj
             0.13001299 -0.06778771 0.32781369 0.4188392
## latin-edm
           -0.04999730 -0.24430492 0.14431031 0.9778599
## pop-edm
## r&b-edm
              0.03931177 -0.15709531 0.23571885 0.9929300
## rap-edm
              0.10452778 -0.08819355 0.29724912 0.6345533
## rock-edm
             -0.14786812 -0.35602345 0.06028722 0.3282987
## pop-latin -0.18001030 -0.38337174 0.02335115 0.1175059
## r&b-latin -0.09070122 -0.29606959 0.11466714 0.8075283
## rap-latin -0.02548521 -0.22733154 0.17636112 0.9992140
## rock-latin -0.27788111 -0.49451229 -0.06124993 0.0034988
## r&b-pop
              0.08930907 \ -0.11269712 \ \ 0.29131526 \ \ 0.8068408
## rap-pop
              0.15452509 -0.04389939 0.35294957 0.2287320
```

Fig 13 . Histogram of loudness


```
##
## loudness
         edm
                 latin
                                       r&b
                             pop
                                                 rap
                                                          rock
  -5.411837 -6.222340 -6.300329 -7.807318 -7.013525 -7.410332
                     Df Sum Sq Mean Sq F value Pr(>F)
                      5 20647
                                  4129
                                         514.2 <2e-16 ***
## playlist_genre
                                     8
## Residuals
                  30941 248461
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
     Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                     diff
                                 lwr
                                             upr
                                                    p adj
## latin-edm -0.81050326 -0.9656307 -0.65537584 0.000000
             -0.88849278 -1.0408807 -0.73610485 0.000000
## pop-edm
## r&b-edm
             -2.39548156 -2.5495160 -2.24144711 0.000000
## rap-edm
             -1.60168884 -1.7528327 -1.45054497 0.000000
             -1.99849539 -2.1617435 -1.83524724 0.000000
## rock-edm
## pop-latin -0.07798952 -0.2374780 0.08149897 0.731055
## r&b-latin -1.58497830 -1.7460407 -1.42391586 0.000000
## rap-latin -0.79118558 -0.9494858 -0.63288533 0.000000
## rock-latin -1.18799213 -1.3578876 -1.01809670 0.000000
## r&b-pop
             -1.50698878 -1.6654144 -1.34856316 0.000000
             -0.71319606 -0.8688127 -0.55757944 0.000000
## rap-pop
```

Fig 15 . Histogram of mode


```
##
## mode
##
         edm
                 latin
                                       r&b
                             pop
                                                 rap
                                                          rock
## 0.5191824 0.5617570 0.5855176 0.5188457 0.5189179 0.6956836
##
                     Df Sum Sq Mean Sq F value Pr(>F)
                      5
                           108
                                21.519
                                         88.61 <2e-16 ***
## playlist_genre
## Residuals
                  30941
                          7514
                                 0.243
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                       diff
                                     lwr
                                                 upr
                                                         p adj
              4.257456e-02 0.015596958
## latin-edm
                                         0.06955216 0.0001005
              6.633519e-02 0.039834002 0.09283638 0.0000000
## pop-edm
## r&b-edm
             -3.367418e-04 -0.027124270 0.02645079 1.0000000
## rap-edm
              -2.645117e-04 -0.026549350 0.02602033 1.0000000
## rock-edm
              1.765012e-01 0.148111338
                                          0.20489103 0.0000000
## pop-latin
              2.376063e-02 -0.003975389
                                          0.05149665 0.1421710
## r&b-latin -4.291130e-02 -0.070921040 -0.01490156 0.0001838
## rap-latin -4.283907e-02 -0.070368446 -0.01530970 0.0001344
## rock-latin 1.339266e-01 0.104380776 0.16347247 0.0000000
## r&b-pop
              -6.667193e-02 -0.094223109 -0.03912075 0.0000000
              -6.659970e-02 -0.093662378 -0.03953702 0.0000000
## rap-pop
```

```
## rock-pop 1.101660e-01 0.081054500 0.13927749 0.0000000 ## rap-r&b 7.223008e-05 -0.027270908 0.02741537 1.0000000 ## rock-r&b 1.768379e-01 0.147465526 0.20621033 0.0000000 ## rock-rap 1.767657e-01 0.147851012 0.20568038 0.0000000 ##
```

[1] "NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>

Fig 17 . Histogram of speechiness


```
##
## speechiness
         edm
                  latin
                                          r&b
                                                              rock
                               pop
                                                    rap
## 0.08687212 0.10327175 0.07482399 0.11890188 0.19613449 0.05865602
                    Df Sum Sq Mean Sq F value Pr(>F)
##
## playlist_genre
                     5 61.81
                              12.362
                                         1478 <2e-16 ***
                 30941 258.76
                                0.008
## Residuals
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                    diff
                                 lwr
                                             upr p adj
              0.01639963 0.01139338
                                                    0
## latin-edm
                                    0.02140587
             -0.01204814 -0.01696597 -0.00713030
                                                     0
## pop-edm
## r&b-edm
              0.03202976 0.02705879 0.03700073
                                                     0
## rap-edm
              0
             -0.02821611 -0.03348442 -0.02294779
## rock-edm
                                                     0
                                                     0
## pop-latin -0.02844776 -0.03359475 -0.02330078
                                                     0
              0.01563013 0.01043236 0.02082791
## r&b-latin
## rap-latin
              0.09286274 0.08775410
                                     0.09797138
                                                    0
## rock-latin -0.04461573 -0.05009857 -0.03913290
                                                     0
## r&b-pop
              0.04407790 0.03896521
                                     0.04919058
                                                     0
## rap-pop
              0.12131050 0.11628847 0.12633254
```

```
## rock-pop -0.01616797 -0.02157020 -0.01076574 0
## rap-r&b 0.07723261 0.07215853 0.08230668 0
## rock-r&b -0.06024587 -0.06569652 -0.05479522 0
## rock-rap -0.13747847 -0.14284418 -0.13211276 0
##
## [1] "NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>
```

Fig 19 . Histogram of acousticness


```
## acousticness
       edm
             latin
                               r&b
                                               rock
                       pop
                                       rap
## 0.0816723 0.2110486 0.1730262 0.2629757 0.1959889 0.1400041
                 Df Sum Sq Mean Sq F value Pr(>F)
##
                         21.070
## playlist_genre
                 5 105.3
                                  468 <2e-16 ***
              30941 1392.9
                          0.045
## Residuals
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Tukey multiple comparisons of means
##
     95% family-wise confidence level
##
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                 diff
                           lwr
                                      upr
                                            p adj
            0.12937634
                               0.140991532 0.0000000
                     0.11776115
## latin-edm
                     0.07994379
                               0.102763938 0.0000000
## pop-edm
            0.09135387
## r&b-edm
            ## rap-edm
            0.11431655
                     ## rock-edm
                     0.04610854 0.070555005 0.0000000
            0.05833177
## pop-latin -0.03802247 -0.04996420 -0.026080746 0.0000000
## r&b-latin
            ## rap-latin -0.01505979 -0.02691254 -0.003207029 0.0039839
## rock-latin -0.07104457 -0.08376552 -0.058323620 0.0000000
## r&b-pop
            ## rap-pop
```

Fig 21 . Histogram of instrumentalness


```
## instrumentalness
         edm
                 latin
                                        r&b
                                                            rock
                              pop
                                                  rap
## 0.21881824 0.04495271 0.05858493 0.02913776 0.07864474 0.06558976
                   Df Sum Sq Mean Sq F value Pr(>F)
                              27.222
                                      575.3 <2e-16 ***
## playlist_genre
                    5 136.1
                30941 1464.0
                               0.047
## Residuals
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                    diff
                                 lwr
                                                      p adj
## latin-edm -0.173865530 -0.185773460 -0.1619575999 0.0000000
            -0.160233306 -0.171930947 -0.1485356657 0.0000000
## pop-edm
## r&b-edm
            -0.189680485 -0.201504516 -0.1778564528 0.0000000
## rap-edm
             -0.140173500 -0.151775645 -0.1285713561 0.0000000
            -0.153228478 -0.165759774 -0.1406971814 0.0000000
## rock-edm
              0.013632224 \quad 0.001389527 \quad 0.0258749198 \ 0.0188423
## pop-latin
## r&b-latin -0.015814955 -0.028178471 -0.0034514381 0.0036354
## rap-latin
             ## rock-latin 0.020637052 0.007595496 0.0336786089 0.0000950
## r&b-pop
             -0.029447178 \ -0.041608286 \ -0.0172860705 \ 0.0000000
             ## rap-pop
```

Fig 23 . Histogram of liveness


```
##
## liveness
        edm
                latin
                                     r&b
                                                       rock
                           pop
                                              rap
## 0.2125270 0.1803575 0.1767067 0.1749040 0.1899724 0.2045341
##
                    Df Sum Sq Mean Sq F value Pr(>F)
                         6.5 1.2929
                     5
                                       55.04 <2e-16 ***
## playlist_genre
## Residuals
                 30941
                      726.9 0.0235
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                     diff
                                  lwr
                                                       p adj
## latin-edm -0.032169489 -0.040559929 -0.0237790481 0.0000000
             -0.035820312 -0.044062580 -0.0275780433 0.0000000
## pop-edm
## r&b-edm
            -0.037622962 -0.045954287 -0.0292916373 0.0000000
## rap-edm
             -0.022554632 -0.030729613 -0.0143796511 0.0000000
## rock-edm
             -0.007992933 -0.016822604 0.0008367368 0.1022232
## pop-latin -0.003650823 -0.012277143 0.0049754965 0.8341357
## r&b-latin -0.005453474 -0.014164925 0.0032579772 0.4761509
## rap-latin
              ## rock-latin 0.024176555 0.014987351 0.0333657595 0.0000000
## r&b-pop
             -0.001802650 -0.010371482 0.0067661814 0.9910974
## rap-pop
              0.013265680 0.004848780 0.0216825805 0.0001033
```

Fig 25 . Histogram of valence


```
##
## valence
##
        edm
              latin
                                  r&b
                         pop
                                           rap
                                                   rock
## 0.3984501 0.6027073 0.5004120 0.5236551 0.5000706 0.5311139
##
                  Df Sum Sq Mean Sq F value Pr(>F)
                             24.00
                                    477.1 <2e-16 ***
                   5
                       120
## playlist_genre
                       1556
                              0.05
## Residuals
               30941
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                    diff
                                lwr
                                                  p adj
                                           upr
             0.2042571750 0.191979625
## latin-edm
                                    0.21653472 0.0000000
             0.1019619220 0.089901189
                                    0.11402265 0.0000000
## pop-edm
## r&b-edm
             ## rap-edm
             ## rock-edm
             0.1326637807
                         0.119743516
                                    0.14558405 0.0000000
## pop-latin -0.1022952530 -0.114917960 -0.08967255 0.0000000
## r&b-latin -0.0790521602 -0.091799437 -0.06630488 0.0000000
## rap-latin -0.1026367118 -0.115165375 -0.09010805 0.0000000
## rock-latin -0.0715933943 -0.085039758 -0.05814703 0.0000000
## r&b-pop
             ## rap-pop
            -0.0003414588 -0.012657727 0.01197481 0.9999996
```

Fig 27 . Histogram of tempo


```
##
##
  tempo
##
        edm
               latin
                                    r&b
                                                     rock
                          pop
                                             rap
##
  125.7464 118.7115 120.4868 114.2492 121.1452 125.2136
##
                     Df
                           Sum Sq Mean Sq F value Pr(>F)
                          467636
                      5
                                    93527
                                            132.5 <2e-16 ***
## playlist_genre
                                      706
##
  Residuals
                  30941 21841480
##
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
##
                     diff
                                   lwr
                                                       p adj
                                               upr
## latin-edm
               -7.0348422
                           -8.4892986
                                        -5.5803857 0.0000000
                           -6.6883475
                                        -3.8308049 0.0000000
## pop-edm
               -5.2595762
## r&b-edm
              -11.4971479 -12.9413568 -10.0529390 0.0000000
## rap-edm
               -4.6011697
                           -6.0182768
                                        -3.1840625 0.0000000
               -0.5328016
## rock-edm
                           -2.0633971
                                         0.9977939 0.9206764
## pop-latin
                1.7752660
                             0.2799206
                                         3.2706113 0.0093529
                                        -2.9522032 0.0000000
## r&b-latin
               -4.4623057
                           -5.9724083
## rap-latin
                2.4336725
                             0.9494680
                                         3.9178770 0.0000437
## rock-latin
                6.5020406
                             4.9091209
                                         8.0949602 0.0000000
## r&b-pop
               -6.2375717
                           -7.7229517
                                        -4.7521917 0.0000000
## rap-pop
                0.6584065
                           -0.8006366
                                         2.1174497 0.7929058
```

```
## rock-pop 4.7267746 3.1572725 6.2962767 0.00000000 ## rap-r&b 6.8959782 5.4218144 8.3701420 0.00000000 ## rock-r&b 10.9643463 9.3807779 12.5479147 0.0000000 ## rock-rap 4.0683681 2.5094767 5.6272594 0.00000000 ##
```

[1] "NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>

Fig 29 . Histogram of duration_ms

Genres

Fig 30 . Distribution of duration_ms in different genres

```
##
## duration_ms
        edm
               latin
                                   r&b
                                                    rock
                          pop
                                            rap
## 221647.9 215760.6 216827.5 236093.9 211773.5 247319.9
                                    Mean Sq F value Pr(>F)
##
                           Sum Sq
                      5 4.461e+12 8.922e+11
                                              266.2 <2e-16 ***
## playlist_genre
## Residuals
                  30941 1.037e+14 3.351e+09
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
                    diff
                                lwr
                                           upr
                                                   p adj
               -5887.289
                                     -2718.422 0.0000018
## latin-edm
                          -9056.156
               -4820.402
                         -7933.309
                                     -1707.496 0.0001484
## pop-edm
## r&b-edm
               14445.948 11299.407
                                     17592.489 0.0000000
## rap-edm
               -9874.436 -12961.930
                                     -6786.943 0.0000000
## rock-edm
               25671.992
                          22337.238
                                     29006.746 0.0000000
## pop-latin
               1066.887
                          -2191.067
                                      4324.840 0.9380135
               20333.237 17043.131 23623.342 0.0000000
## r&b-latin
## rap-latin
               -3987.148
                         -7220.828
                                     -753.467 0.0058983
## rock-latin 31559.281
                          28088.740 35029.823 0.0000000
## r&b-pop
               19266.350 16030.108
                                     22502.591 0.0000000
## rap-pop
               -5054.034 -8232.895
                                    -1875.174 0.0000860
```

```
## rock-pop 30492.394 27072.874 33911.915 0.0000000
## rap-r&b -24320.384 -27532.189 -21108.580 0.0000000
## rock-r&b 11226.045 7775.877 14676.212 0.0000000
## rock-rap 35546.429 32150.026 38942.832 0.0000000
##
## [1] "NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>
```

Fig 31 . Histogram of track_album_release_year


```
track_album_release_year
##
##
        edm
               latin
                                   r&b
                                            rap
                                                    rock
                          pop
## 2016.780 2015.176 2014.843 2010.361 2013.411 1999.331
##
                        Sum Sq Mean Sq F value Pr(>F)
                                 183649
                        918246
                                           2341 <2e-16 ***
## playlist_genre
                      5
                                     78
  Residuals
                  30941 2427434
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
## Fit: aov(formula = as.formula(formula_str), data = spotify_songs)
##
## $playlist_genre
##
                     diff
                                  lwr
                                                      p adj
                                              upr
                           -2.0886385
               -1.6037595
                                       -1.1188805 0.0000000
## latin-edm
                           -2.4128826
                                       -1.4602501 0.0000000
## pop-edm
               -1.9365664
## r&b-edm
               -6.4188497
                           -6.9003124
                                       -5.9373869 0.0000000
## rap-edm
               -3.3686033
                          -3.8410310
                                      -2.8961755 0.0000000
## rock-edm
              -17.4487799 -17.9590418 -16.9385181 0.0000000
## pop-latin
               -0.3328069
                           -0.8313173
                                        0.1657034 0.4005061
                           -5.3185202 -4.3116602 0.0000000
## r&b-latin
               -4.8150902
## rap-latin
               -1.7648438
                          -2.2596401
                                      -1.2700475 0.0000000
## rock-latin -15.8450205 -16.3760596 -15.3139813 0.0000000
## r&b-pop
                                       -3.9870952 0.0000000
               -4.4822833
                           -4.9774714
## rap-pop
               -1.4320369 -1.9184450 -0.9456288 0.0000000
```

```
## rock-pop
             -15.5122135 -16.0354459 -14.9889812 0.0000000
## rap-r&b
               3.0502464
                          2.5587975
                                     3.5416954 0.0000000
             -11.0299302 -11.5578519 -10.5020086 0.0000000
## rock-r&b
             -14.0801767 -14.5998716 -13.5604817 0.0000000
## rock-rap
## [1] "NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>NEXT>>>>
```

How does track popularity change over time

```
spotify_songs <- spotify_songs %>%
  mutate(year_group = 5 * (track_album_release_year %/% 5))
spotify_songs %>%
  ggplot(aes(x = factor(year_group),
             y = track_popularity,
             fill = year_group)) +
  geom_boxplot() +
  xlab("Year Group (5-year intervals)") +
  ylab("Track Popularity") +
  ggtitle("Fig33. Track Popularity by 5-year Intervals") +
  theme_minimal()
```

Fig33. Track Popularity by 5-year Intervals

Year Group (5-year intervals)

```
spotify_songs <- spotify_songs %>%
  dplyr::select(-year_group)
spotify_songs %>%
  group_by(track_album_release_year) %>%
  summarize(avg_popularity = mean(track_popularity)) %>%
```

```
ggplot(aes(x = track_album_release_year, y = avg_popularity)) +
geom_point() +
geom_line() +
xlab("Year") +
ylab("Average Track Popularity") +
ggtitle("Fig34. Average Track Popularity by Year") +
theme_minimal()
```

Fig34. Average Track Popularity by Year


```
spotify_songs %>% ggplot(aes(x = track_album_release_year, y =track_popularity)) +
geom_point(alpha = 0.1) +
geom_smooth( formula = y ~ x, method = "loess") +
ggtitle("Fig3.Track_popularity-Year(detaied)")
```



```
##
## Call:
## lm(formula = track_popularity ~ track_album_release_year, data = spotify_songs)
## Residuals:
               1Q Median
                               3Q
##
      Min
                                      Max
                    2.524
                          19.364 56.162
  -43.998 -18.037
##
##
## Coefficients:
##
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           -279.38805
                                        27.39308 -10.20
                                                           <2e-16 ***
## track_album_release_year
                              0.16009
                                         0.01361
                                                   11.76
                                                           <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\#\# Residual standard error: 24.9 on 30945 degrees of freedom
## Multiple R-squared: 0.004449, Adjusted R-squared: 0.004417
## F-statistic: 138.3 on 1 and 30945 DF, p-value: < 2.2e-16
PCA
```

spotify_songs_recipe_PCA <- recipe(playlist_genre ~ ., data = spotify_songs) %>%
 step_normalize(all_predictors()) %>% # Normalise our predictors

```
step_pca(all_predictors() ) # Do the PCA.
spotify_songs_recipe_PCA
##
## -- Recipe -----
##
## -- Inputs
## Number of variables by role
## outcome:
               1
## predictor: 14
##
## -- Operations
## * Centering and scaling for: all_predictors()
## * PCA extraction with: all_predictors()
spotify_songs_prepped <- spotify_songs_recipe_PCA %>% prep()
tidy(spotify_songs_prepped)
## # A tibble: 2 x 6
     number operation type
                                 trained skip id
##
      <int> <chr>
                   <chr>
                                 <lgl>
                                         <lgl> <chr>
## 1
          1 step
                      normalize TRUE
                                         FALSE normalize_LQOKm
## 2
                                 TRUE
          2 step
                      pca
                                         FALSE pca_3KvVU
sdev <- spotify_songs_prepped$steps[[2]]$res$sdev</pre>
ve <- sdev^2 / sum(sdev ^2)</pre>
variance_explained <- ve * 100</pre>
sorted_var_explained <- sort(variance_explained, decreasing = TRUE)</pre>
cumulative_var_explained <- cumsum(sorted_var_explained)</pre>
PC_CUM <- data.frame(PC = 1:length(cumulative_var_explained),</pre>
                      cumulative_var_explained = cumulative_var_explained)
PC_CUM %>% filter(cumulative_var_explained > 95)
     PC cumulative var explained
## 1 12
                         95.56142
## 2 13
                         98.48400
## 3 14
                        100.00000
PC_CUM %% ggplot(aes(x = PC , y = cumulative_var_explained)) + geom_point() + geom_line() +
  ggtitle("Fig36. Proportion of Total Variance Explained by PC") + xlab("PC") +
  ylab("Proportion of Variance Explained")
```

poundance Explained Explained PC

Fig36. Proportion of Total Variance Explained by PC

1.4 Modeling

Sampling to reduce data set size

```
set.seed(1897402)
songs_per_genre <- 1000

spotify_songs_sampled <- spotify_songs %>%
    group_by(playlist_genre) %>%
    sample_n(songs_per_genre) %>%
    ungroup()

skim(spotify_songs_sampled)
```

Table 10: Data summary

Name Number of rows Number of columns	spotify_songs_sampled 6000 15				
Column type frequency:					
factor	1				
numeric	14				
Group variables	None				

Variable type: factor

skim_variable	n_missing	complete_rate orde	red n_unique	top_counts
playlist_genre	0	1 FAL	SE 6	edm: 1000, lat: 1000, pop: 1000, r&b: 1000

Variable type: numeric

skim_variable	n_missingor	mplete_	ratmean	sd	p0	p25	p50	p75	p100	hist
track_popularity	0	1	42.77	24.69	0.00	25.00	46.00	62.00	98.00	
danceability	0	1	0.65	0.15	0.08	0.56	0.67	0.76	0.97	
energy	0	1	0.70	0.18	0.02	0.58	0.72	0.84	1.00	
key	0	1	5.42	3.63	0.00	2.00	6.00	9.00	11.00	
loudness	0	1	-6.70	3.02	-	-8.17	-6.14	-4.60	0.64	
					36.51					
mode	0	1	0.56	0.50	0.00	0.00	1.00	1.00	1.00	
speechiness	0	1	0.11	0.10	0.02	0.04	0.06	0.13	0.86	
acousticness	0	1	0.18	0.22	0.00	0.02	0.08	0.26	0.98	
instrumentalness	0	1	0.08	0.22	0.00	0.00	0.00	0.00	0.99	
liveness	0	1	0.19	0.15	0.01	0.09	0.13	0.25	1.00	
valence	0	1	0.51	0.23	0.00	0.33	0.52	0.70	0.98	
tempo	0	1	120.79	27.19	52.65	99.90	121.04	134.03	220.25	
duration_ms	0	1	224650.0	959104.8	131893.00	0187510.2	25214323.5	5 0 252233.2	25517125.0	00
$track_album_rele$	ease_y e ar	1	2011.48	11.26	1958.00	2009.00	2016.00	2019.00	2020.00	

Split Train and Test

#

```
set.seed(1897402)
spotify_songs_split <- initial_split(spotify_songs_sampled,</pre>
                                     strata = playlist_genre)
spotify_songs_split
## <Training/Testing/Total>
## <4500/1500/6000>
spotify_songs_train <- training(spotify_songs_split)</pre>
spotify_songs_test <- testing(spotify_songs_split)</pre>
head(spotify_songs_train)
## # A tibble: 6 x 15
                                          key loudn~4 mode speec~5 acous~6 instr~7
##
    track_pop~1 play1~2 dance~3 energy
##
          <dbl> <fct>
                           <dbl> <dbl> <dbl>
                                                <dbl> <dbl>
                                                              <dbl>
                                                                      <dbl>
                                                                              <dbl>
                                          0 -5.41
                                                          0 0.0648 0.00221 0
## 1
              29 edm
                           0.478 0.904
## 2
              48 edm
                           0.355 0.993
                                            5 -0.627
                                                          0 0.221 0.0108 1.13e-1
## 3
              71 edm
                           0.687 0.707
                                            4 -6.19
                                                          1 0.0328 0.0536 9.29e-5
## 4
                           0.891 0.794
                                            3 -3.44
                                                          0 0.0526 0.383
              55 edm
                                                                            1.99e-4
## 5
              46 edm
                           0.755 0.83
                                            8 -6.34
                                                          0 0.124 0.104
                                                                            6.6 e-1
## 6
              37 edm
                           0.893 0.748
                                           7 -5.60
                                                          0 0.051 0.311
                                                                            2.59e-5
## # ... with 5 more variables: liveness <dbl>, valence <dbl>, tempo <dbl>,
      duration_ms <dbl>, track_album_release_year <dbl>, and abbreviated variable
## #
      names 1: track_popularity, 2: playlist_genre, 3: danceability, 4: loudness,
```

5: speechiness, 6: acousticness, 7: instrumentalness

```
spotify_songs_train %>% count(playlist_genre) %>%
 mutate(percent = prop.table(n) * 100)
## # A tibble: 6 x 3
    playlist_genre
                    n percent
    <fct> <int> <dbl>
##
## 1 edm
                   750
                          16.7
## 2 latin
                  750
                          16.7
## 3 pop
                   750
                          16.7
                    750
## 4 r&b
                          16.7
## 5 rap
                    750
                          16.7
## 6 rock
                    750
                          16.7
spotify_songs_test %>% count(playlist_genre) %>%
mutate(percent = prop.table(n) * 100)
## # A tibble: 6 x 3
##
    playlist_genre
                     n percent
##
   <fct>
            <int> <dbl>
## 1 edm
                    250
                          16.7
## 2 latin
                    250
                          16.7
                   250
                        16.7
## 3 pop
## 4 r&b
                    250
                        16.7
## 5 rap
                    250
                          16.7
                    250
                          16.7
## 6 rock
Preprocessing
spotify_songs_rcp <- recipe(playlist_genre ~ ., data = spotify_songs_train) %>%
 step_zv(all_predictors()) %>%
 step_normalize(all_predictors()) %>%
 step_corr(all_predictors()) %>%
 prep()
spotify_songs_rcp
##
## -- Recipe ------
##
## -- Inputs
## Number of variables by role
## outcome:
             1
## predictor: 14
##
## -- Training information
## Training data contained 4500 data points and no incomplete rows.
##
## -- Operations
```

```
## * Zero variance filter removed: <none> | Trained
## * Centering and scaling for: track_popularity, danceability, ... | Trained
## * Correlation filter on: <none> | Trained
spotify_train_prep <- juice(spotify_songs_rcp)</pre>
spotify_train_prep %>% head()
## # A tibble: 6 x 15
##
    track ~1 dance~2 energy
                                 key loudn~3
                                               mode speec~4 acous~5 instr~6 liven~7
##
        <dbl>
               <dbl> <dbl>
                               <dbl>
                                       <dbl> <dbl>
                                                      <dbl>
                                                              <dbl>
                                                                      <dbl>
                                                                              <dbl>
      -0.554 -1.16 1.13
                             -1.47
                                       0.428 - 1.14
                                                    -0.417 -0.795 -0.366
                                                                              1.42
       0.214 -1.99 1.61
                                                      1.10
## 2
                             -0.0991
                                       2.00 -1.14
                                                             -0.757
                                                                      0.144
                                                                              0.996
               0.244 0.0521 -0.374
                                       0.172 0.878 -0.727 -0.567
                                                                     -0.365
                                                                             -0.193
## 3
       1.14
## 4
       0.496
               1.62 0.527 -0.649
                                                    -0.535
                                                              0.893 -0.365
                                       1.08 - 1.14
                                                                             -0.707
                                                                             -0.667
## 5
       0.133
               0.701 0.724
                              0.725
                                       0.122 - 1.14
                                                      0.156 - 0.344
                                                                      2.61
## 6
      -0.231
                1.63 0.276
                              0.451
                                       0.367 - 1.14
                                                     -0.551
                                                              0.574 -0.365
                                                                              1.17
## # ... with 5 more variables: valence <dbl>, tempo <dbl>, duration_ms <dbl>,
      track_album_release_year <dbl>, playlist_genre <fct>, and abbreviated
      variable names 1: track_popularity, 2: danceability, 3: loudness,
## #
       4: speechiness, 5: acousticness, 6: instrumentalness, 7: liveness
spotify_test_prep <- bake(spotify_songs_rcp, new_data = spotify_songs_test)</pre>
spotify_test_prep %>% head()
## # A tibble: 6 x 15
##
     track_~1 dance~2 energy
                                 key loudn~3
                                               mode speec~4 acous~5 instr~6 liven~7
##
        <dbl>
                <dbl> <dbl>
                               <dbl>
                                       <dbl> <dbl>
                                                      <dbl>
                                                              <dbl>
                                                                      <dbl>
                                                                              <dbl>
## 1
      0.577
              -0.570 0.380 0.176
                                      0.185 - 1.14
                                                    -0.253 -0.335 -0.366
                                                                             -0.673
## 2 -0.554
               0.876 1.06 -0.374
                                    0.0944 - 1.14
                                                      0.602 - 0.633
                                                                      0.932
                                                                             -0.671
## 3
      0.0923
               0.607 0.467 -0.374
                                    0.632
                                              0.878 -0.643 -0.739 -0.366
                                                                              0.730
## 4
     -1.08
                0.439 1.52
                              1.55
                                      1.07
                                             -1.14
                                                      0.602 -0.613 -0.197
                                                                              1.24
## 5 -1.64
                                                     -0.507 -0.759 -0.366
                0.432 \quad 0.560 \quad -1.20
                                      0.403 - 1.14
                                                                              0.840
     1.14
               -2.14
                       1.57 -0.0991 1.27
                                             -1.14
                                                     -0.500 -0.660
                                                                      3.10
                                                                              0.236
## # ... with 5 more variables: valence <dbl>, tempo <dbl>, duration ms <dbl>,
      track_album_release_year <dbl>, playlist_genre <fct>, and abbreviated
      variable names 1: track_popularity, 2: danceability, 3: loudness,
      4: speechiness, 5: acousticness, 6: instrumentalness, 7: liveness
set.seed(1897402)
spotify_cv <- vfold_cv(</pre>
data = spotify_train_prep,
v = 5
strata = playlist_genre)
spotify_cv %>%
 slice( 1 ) %>%
pull( splits )
## [[1]]
## <Analysis/Assess/Total>
## <3600/900/4500>
set.seed(1897402)
spotify_bootstrap <- bootstraps(spotify_train_prep, times = 10, strata = playlist_genre )</pre>
```

```
###LDA
```

```
lda_model <- discrim_linear(mode = "classification") %>%
  set_engine("MASS")
spotify_resamples <- fit_resamples(</pre>
 object = lda_model,
 preprocessor = recipe(playlist_genre ~ ., data = spotify_train_prep),
 resamples = spotify_bootstrap,
 control = control_resamples(save_pred = T)
prediction_lda <- spotify_resamples %>% collect_predictions()
metrics_lda <- spotify_resamples %>% collect_metrics()
lda_10cfm <- prediction_lda %>%
  group_by(id) %>%
  conf_mat(truth = playlist_genre, estimate = .pred_class) %>%
  pull(conf_mat)
lda_boost_result <- spotify_resamples %>%
  collect_predictions() %>%
  group_by(id)
confusionMatrix(lda_boost_result$.pred_class, as_factor(lda_boost_result$playlist_genre))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction edm latin pop r&b
                                    rap rock
##
       edm
            1550
                    277 357
                                    288 191
                              103
##
       latin 324 1282 554 381
                                    428 123
                    434 1139
##
       pop
              561
                              413
                                    246 456
##
               114
                     240 325 869
                                    325
                                        191
       r&b
                              634 1405
##
               183
                     365 162
                                          23
       rap
                     111 205 357
##
       rock
               18
                                     81 1798
##
## Overall Statistics
##
##
                  Accuracy : 0.4871
                    95% CI: (0.4794, 0.4947)
##
##
      No Information Rate: 0.1685
      P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.3846
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                        Class: edm Class: latin Class: pop Class: r&b Class: rap
                                                   0.41539
## Sensitivity
                           0.56364
                                        0.47324
                                                              0.31520
                                                                         0.50667
                                        0.86888
                                                                         0.90051
## Specificity
                           0.91165
                                                   0.84678
                                                              0.91313
## Pos Pred Value
                           0.56038
                                        0.41462
                                                   0.35057
                                                              0.42103
                                                                         0.50685
## Neg Pred Value
                           0.91271
                                        0.89367
                                                   0.87915
                                                            0.86933
                                                                         0.90044
```

```
0.16605
## Prevalence
                         0.16654
                                      0.16405
                                                           0.16696
                                                                     0.16793
## Detection Rate
                         0.09387
                                      0.07764
                                                0.06898
                                                           0.05263
                                                                     0.08508
## Detection Prevalence
                         0.16750
                                      0.18725
                                                0.19675
                                                           0.12499
                                                                     0.16787
## Balanced Accuracy
                                      0.67106
                                                0.63108
                                                                     0.70359
                         0.73764
                                                           0.61416
                      Class: rock
## Sensitivity
                          0.6463
## Specificity
                          0.9438
## Pos Pred Value
                          0.6996
                          0.9294
## Neg Pred Value
## Prevalence
                          0.1685
## Detection Rate
                          0.1089
## Detection Prevalence
                           0.1556
## Balanced Accuracy
                           0.7950
KNN
```

```
knn_model <- nearest_neighbor(</pre>
 mode = "classification",
  neighbors = tune()
) %>%
  set_engine("kknn")
k_grid <- grid_regular(</pre>
 levels = 20,
  neighbors(range = c(1, 100))) %>%
  as_tibble()
spotify_knn_tune <- tune_grid(</pre>
  object = knn model,
 resamples = spotify_bootstrap,
  grid = k_grid,
  preprocessor = recipe(playlist_genre ~., data = spotify_train_prep),
best.k <- spotify_knn_tune %>%
  select_best("accuracy")
best.k
## # A tibble: 1 x 2
     neighbors .config
         <int> <chr>
## 1
            89 Preprocessor1_Model18
knn_model_best <-
  nearest_neighbor(mode = "classification",
                    neighbors = best.k$neighbors) %>%
  set_engine( "kknn" )
knn_model_best
## K-Nearest Neighbor Model Specification (classification)
## Main Arguments:
```

```
neighbors = best.k$neighbors
##
##
## Computational engine: kknn
spotify_knn_tune %>% collect_metrics()
## # A tibble: 40 x 7
##
      neighbors .metric .estimator mean
                                              n std_err .config
##
          <int> <chr>
                         <chr>
                                    <dbl> <int>
                                                  <dbl> <chr>
## 1
              1 accuracy multiclass 0.417
                                             10 0.00317 Preprocessor1_Model01
## 2
              1 roc_auc hand_till 0.650
                                             10 0.00188 Preprocessor1 Model01
## 3
             6 accuracy multiclass 0.432
                                             10 0.00321 Preprocessor1_Model02
## 4
             6 roc_auc hand_till 0.742
                                             10 0.00226 Preprocessor1_Model02
## 5
            11 accuracy multiclass 0.451
                                             10 0.00382 Preprocessor1_Model03
            11 roc auc hand till 0.764
                                             10 0.00275 Preprocessor1 Model03
## 6
## 7
            16 accuracy multiclass 0.462
                                             10 0.00432 Preprocessor1_Model04
## 8
            16 roc_auc hand_till 0.776 10 0.00290 Preprocessor1_Model04
## 9
             21 accuracy multiclass 0.471
                                             10 0.00444 Preprocessor1_Model05
            21 roc_auc hand_till 0.783 10 0.00283 Preprocessor1_Model05
## 10
## # ... with 30 more rows
\mathbf{RF}
rf_spec <- rand_forest(mode = "classification",</pre>
                       trees = 100,
                       mtry = tune(),
                       min_n = tune()) %>%
  set_engine("ranger", importance = "permutation")
rf_grid <- grid_regular(</pre>
  finalize( mtry(),
            spotify_train_prep%>%
              dplyr::select( -playlist_genre ) ),
  min n(),
  levels = 5)
set.seed(1897402)
doParallel::registerDoParallel() # This makes macs run a little faster
spotify_rf_tune <- tune_grid(object = rf_spec,</pre>
                             preprocessor = recipe(playlist_genre ~ ., data = spotify_train_prep),
                             resamples = spotify_bootstrap,
                             grid = rf_grid)
spotify_rf_tune %>%
 collect_metrics() %>%
  mutate( min_n = as.factor( min_n ) ) %>%
  ggplot( aes( x = mtry, y = mean, colour = min_n ) ) +
  geom_point( size = 2 ) +
  geom_line(alpha = 0.75) +
  ggtitle("Fig37. Accuracy and ROC_AUC in different param")+
```

facet_wrap(~ .metric, scales = "free", nrow = 3)

Fig37. Accuracy and ROC_AUC in different param

1.5 Model Evaluation Method

standard model build function

```
model_build_function <- function(model) {</pre>
  model.cv <- fit_resamples(</pre>
    object = model,
   preprocessor = recipe(playlist_genre ~ . ,
                          data = spotify_train_prep),
   resamples = spotify_cv,
    control = control_resamples(save_pred = T))
  model.metrics <- model.cv %>%
    collect metrics()
  model.prediction <- model.cv %>%
    collect predictions()
  return(list(metrics = model.metrics, prediction = model.prediction))
}
genre = c(".pred edm", ".pred latin", ".pred pop", ".pred r&b", ".pred rap", ".pred rock" )
genrename = c("edm","latin","pop","r&b","rap","rock" )
ROC_plot <- function(prediction,i,idx,model_name){</pre>
  index = idx+i
  predictions <-
  prediction %>%
  mutate(.pred_other = 1 - across(genre[i])) %>%
  mutate(playlist_genre = ifelse(playlist_genre == genrename[i],genrename[i], "other")) %%
  mutate(playlist_genre = factor(playlist_genre, levels = c(genrename[i], "other"))) %>%
  mutate(.pred_class = ifelse(.pred_class == genrename[i],genrename[i],"other"))
  plot <- predictions %>% group_by( id ) %>%
  roc_curve( truth = as_factor(playlist_genre), estimate = genre[i] ) %>%
    ggplot(aes(x= 1-specificity, y = sensitivity)) + geom_point(alpha = 0.2, color = "red") +
   ggtitle(paste("Fig",index,". ROC curve of ", genrename[i],"for ", model_name)) + theme_minimal()
return(plot)
AUC_value <- function(prediction,i){
  predictions <-
  prediction %>%
  mutate(.pred_other = 1 - across(genre[i])) %>%
  mutate(playlist_genre = ifelse(playlist_genre == genrename[i],genrename[i], "other")) %%
  mutate(playlist_genre = factor(playlist_genre, levels = c(genrename[i], "other"))) %%
  mutate(.pred_class = ifelse(.pred_class == genrename[i],genrename[i],"other"))
 roc_data <- predictions %>% group_by( id ) %>%
 roc_curve( truth = as_factor(playlist_genre), estimate = genre[i])
return(roc data)
```

LDA

```
lda.cv.model <- model_build_function(lda_model)</pre>
lda.prediction <- lda.cv.model$prediction</pre>
lda.cv.model$metrics
## # A tibble: 2 x 6
##
     .metric .estimator mean
                                  n std_err .config
             <chr> <dbl> <int>
                                       <dbl> <chr>
## 1 accuracy multiclass 0.489
                                  5 0.00338 Preprocessor1_Model1
                                   5 0.00204 Preprocessor1_Model1
## 2 roc_auc hand_till 0.806
lda.cfm <- confusionMatrix(lda.prediction$.pred_class, as_factor(lda.prediction$playlist_genre))</pre>
lda.cfm
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction edm latin pop r&b rap rock
##
        edm
             418
                    72 94 31 78
##
                    360 147 103 108
       latin 87
                                     31
##
             159
                   120 313 109 69 123
       pop
##
       r&b
              30
                     64 93 238 82
                                     53
##
              52
                   102 45 171 389
                                      6
       rap
##
       rock
                4
                    32 58 98 24 484
## Overall Statistics
##
##
                  Accuracy : 0.4893
                    95% CI : (0.4746, 0.5041)
##
##
      No Information Rate: 0.1667
      P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.3872
##
## Mcnemar's Test P-Value : < 2.2e-16
## Statistics by Class:
##
                        Class: edm Class: latin Class: pop Class: r&b Class: rap
##
## Sensitivity
                          0.55733
                                        0.4800
                                                   0.41733
                                                              0.31733
                                                                         0.51867
## Specificity
                          0.91253
                                        0.8731
                                                   0.84533
                                                              0.91413
                                                                         0.89973
## Pos Pred Value
                          0.56032
                                        0.4306
                                                  0.35050
                                                              0.42500
                                                                         0.50850
## Neg Pred Value
                          0.91156
                                        0.8936
                                                   0.87885
                                                             0.87005
                                                                         0.90335
## Prevalence
                          0.16667
                                        0.1667
                                                  0.16667
                                                             0.16667
                                                                         0.16667
## Detection Rate
                          0.09289
                                        0.0800
                                                  0.06956 0.05289
                                                                         0.08644
## Detection Prevalence
                          0.16578
                                       0.1858
                                                   0.19844 0.12444
                                                                         0.17000
## Balanced Accuracy
                           0.73493
                                        0.6765
                                                   0.63133
                                                              0.61573
                                                                         0.70920
##
                        Class: rock
## Sensitivity
                           0.6453
## Specificity
                            0.9424
## Pos Pred Value
                            0.6914
## Neg Pred Value
                            0.9300
## Prevalence
                            0.1667
```