CS2210 Data Structures and Algorithms

Lecture 2:

Analysis of Algorithms
Asymptotic notation

Instructor: Olga Veksler

Outline

- Comparing algorithms
- Pseudocode
- Theoretical Analysis of Running time
 - primitive Operations
 - counting primitive operations
- Asymptotic analysis of running time

Comparing Algorithms

- Given 2 or more algorithms to solve the same problem, how do we select the best one?
- Some criteria for selecting an algorithm
 - 1) Is it easy to implement, understand, modify?
 - 2) How long does it take to run it to completion?
 - 3) How much of computer memory does it use?
- Software engineering is primarily concerned with the first criteria
- In this course we are interested in the second and third criteria

Comparing Algorithms

- Time complexity
 - The amount of time algorithm needs to run to completion
- Space complexity
 - The amount of memory algorithm needs to run
- Occasionally will look at space complexity, but mostly interested in time complexity in this course
- Thus the better algorithm is the one which runs faster (has smaller time complexity)

How to Calculate Running time

Most algorithms transform input objects into output objects

- Algorithm running time typically grows with the input size
- Analyze running time as a function of input size
 - T(n), where n is integer expressing the input size
 - Example: n is the size of the input array

How to Calculate Running Time

- Even on inputs of the same size, running time can be different
 - Example: algorithm that finds the first prime number in an array by scanning it left to right
- Idea: analyze running time in the
 - best case
 - worst case
 - average case

How to Calculate Running Time

- Best case running time is usually useless
- Average case running time is very useful but often difficult to determine
- We focus on the worst case running time
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Evaluation of Running Time

- Implementing algorithm
- Run the program with inputs of varying size and composition
- Use System.currentTimeMillis()
 to measure actual running time
- Plot results

Limitations of Experiments

- Experimental evaluation of running time is useful but
 - necessary to implement algorithm, which may be difficult
 - results may not be indicative of the running time on other inputs not included in the experiment
 - to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis of Running Time

- Uses a pseudo-code description of the algorithm instead of implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows to evaluate the speed of algorithm independent of hardware/software

Pseudocode

- We mostly use pseudocode to describe algorithm
- Pseudocode is a high-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max array element

Algorithm *arrayMax*(*A*, *n*)

Input: array **A** of **n** integers

Output: maximum element of A

 $currentMax \leftarrow A[0]$

for $i \leftarrow 1$ to n-1 do

if A[i] > currentMax then

 $currentMax \leftarrow A[i]$

return currentMax

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

```
Algorithm method (arg, arg...)
Input ...
Output ...
```

```
Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A
currentMax \leftarrow A[0]
for i \leftarrow 1 to n - 1 do
```

if A[i] > currentMax then

 $currentMax \leftarrow A[i]$

return *currentMax*

Pseudocode Details

- Method callvar.method (arg [, arg...])
- Return value return expression
- Expressions
 - ← Assignment (like = in Java)
 - = Equality testing
 (like == in Java)
 - n² superscripts and other mathematical formatting allowed

Algorithm *arrayMax*(*A*, *n*)

Input: array **A** of **n** integers

Output: maximum element of A

 $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n-1 do
 if A[i] > currentMax then
 $currentMax \leftarrow A[i]$ return currentMax

Primitive Operations

- For theoretical analysis, count primitive or basic operations
 - are simple computations performed by algorithm
- Basic operations are:
 - Identifiable in pseudocode
 - Largely independent from the programming language
 - Exact definition not important (will see why later)
 - Assumed to take a constant amount of time
 - i.e. independent of the input size

Primitive Operations

Examples of primitive operations:

evaluating an	expression	x^2+e^y
Evaluating an	cyhicssioii	Λ TC'

Counting Primitive Operations

 Determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A, n) # operations currentMax \leftarrow A[0] 2
for i \leftarrow 1 to n-1 do 2+n if A[i] > currentMax then currentMax \leftarrow A[i] 2(n-1) { increment counter i } 2(n-1) return currentMax 1
```

Estimating Running Time

- Algorithm *arrayMax* executes 7*n* 1 primitive operations in the worst case
- Let
 - a = time taken by the fastest primitive operation
 - **b** = time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax, then

$$a(7n-1) \le T(n) \le b(7n-1)$$

bounded by two linear functions

Growth Rate of Running Time

$$a(7n-1) \le T(n) \le b(7n-1)$$

- *T*(*n*) has a **linear growth** rate
 - grows proportionally with n, i.e. running time is n times a constant factor
- Changing hardware/software environment affects T(n)
 by a constant factor, but does not change growth rate
- Thus linear growth rate of T(n) is an intrinsic property of algorithm arrayMax
- Want to focus on the growth rate of an algorithm, i.e. "the big picture"

Growth Rates Examples

- These often appear in algorithm analysis:
 - constant ≈ 1
 - logarithmic ≈ log n
 - linear ≈ n
 - N-Log-N \approx *n* log *n*
 - quadratic ≈ n²
 - cubic $\approx n^3$
 - exponential $\approx 2^n$

Comparison of Growth Rates

n	log(n)	n	nlog(n)	n ²	n ³	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4096	65536
32	5	32	160	1024	32768	4.3x10 ⁹
64	6	64	384	4096	262144	1.8x10 ¹⁹
128	7	128	896	16384	2097152	3.4x10 ³⁸
256	8	256	2048	65536	16777218	1.2x10 ⁷⁷

Growth Rates Illustration

Running Time in ms	Maximum Problem Size (n)				
(10 ⁻³ of sec)	1000 ms	60000 ms	36*10 ⁵ ms		
	(1 second)	(1 minute)	(1 hour)		
n	1000	60,000	3,600,000		
n ²	32	245	1,897		
2 ⁿ	10	16	22		

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order (slowly growing) terms
- Examples
 - $10^2 n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function
- How do we "ignore" constant factors and focus on the essential part (growth rate) of the running time?

- big-Oh notation is used widely to characterize running times and space bounds
- big-Oh notation allows us to
 - ignore constant factors and
 - ignore lower order terms
 - focus on the main components that affect growth rate

- Want to show T(n) has some growth rate
 - Example: T(n) = 2n + 10
- Rename T(n) = f(n) for now
 - consistency with the most commonly used notation
- Growth rate is also some function, call it g(n)
 - $g(n) = n, g(n) = n^2, \text{ etc.}$
- Want to show f(n) has growth rate g(n)
 - Example: f(n) = 2n + 10 has growth rate g(n) = n
- Main step: show f(n) grows slower or the same as g(n)

Main step: show f(n) grows slower or the same as g(n)

• Need to show $f(n) \le g(n)$

• Need to show $f(n) \le g(n)$

- initial range of *n* can be ignored, interested in what happens eventually, for large *n*
 - thus name "asymptotic" analysis
- formally: for $n \ge n_0$, for some constant integer $n_0 \ge 1$

Constants do not affect growth rate, want to ignore them

- Instead of $f(n) \le g(n)$ show $f(n) \le cg(n)$ for a positive constant c
- and, as before, for $n \ge n_0$, for some constant integer $n_0 \ge 1$

Big-Oh Notation Definition

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

• Meaning: f(n) does not grow faster than g(n) asymptotically

Example Proof

- Show that 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

- For c = 3, we took the exact intersection point for n_0
- But n_o = 11, 12,... would work just as well
- There are infinitely many choices for \boldsymbol{c} and $\boldsymbol{n_o}$

"Negative" Example

- Example: n^2 is not O(n)
 - Suppose $n^2 \le cn$ for some c > 0 and all $n \ge n_0$
 - $n \le c$ for some c > 0 and all $n \ge n_0$
 - take $m = \lceil c \rceil + n_0$
 - m > c and $m > n_0$
 - Contradiction!

More Big-Oh Examples

• 7n + 2 is O(n)

Proof:

$$7n + 2 \le 7n + 2n$$
 for all $n \ge 1$

$$7n + 2 \le 9n$$
 for all $n \ge 1$

Take
$$c = 9$$
 and $n_0 = 1$, then
$$7n + 2 \le cn \text{ for all } n \ge n_0$$

More Big-Oh Examples

 $\mathbf{n}^3 + 20n^2 + 5$ is $O(n^3)$

Proof:

$$3n^3 + 20n^2 + 5 \le 3n^3 + 20n^3 + 5n^3$$
 for $n \ge 1$
 $3n^3 + 20n^2 + 5 \le 28 n^3$ for $n \ge 1$

Take c = 28,
$$n_0$$
 = 1 then
 $3n^3 + 20n^2 + 5 \le cn^3$ for $n \ge n_0$

More Big-Oh Examples

• $3 \log n + 5 \text{ is } O(\log n)$

Proof:

$$3 \log n + 5 \le 3 \log n + 5 \log n = 8 \log n \text{ for } n \ge 2$$

 $3 \log n + 5 \le 8 \log n$ for $n \ge 2$

Take
$$c = 8$$
, $n_0 = 2$, then
$$3 \log n + 5 \le c \log n \qquad \text{for } n \ge n_0$$

Big-Oh Etiquette

- Use the smallest possible class of functions
 - \times 2n is $O(n^2)$
 - true but is nota as accurate and informative
 - therefore considered to be a "poor taste"
 - \square 2*n* is O(n)
 - precise and accurate
 - preferred statement
- Use the simplest expression of the class
 - \times 3**n** + 5 is **O**(3**n**)
 - true but more complicated than needed
 - \square 3n + 5 is O(n)
 - preferred statement

Big-Oh is an Upper Bound

- Statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- Thus big-Oh notation gives an upper bound on the growth rate of a function

	f(n) is $O(g(n))$	g (n) is O (f (n))
g(n) grows more	Yes	No
f (n) grows more	No	Yes
Same growth	Yes	Yes

- Are there theoretical concepts that say
 - f(n) grows at the same rate as g(n)?
 - f(n) and g(n) have the same growth rate?

Big-Omega, a Relative of Big-Oh

big-Omega

- f(n) is $\Omega(g(n))$ if there is a real constant c>0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge cg(n)$ for $n \ge n_0$
- means f(n) is asymptotically greater than or equal to g(n)
- f(n) is $\Omega(g(n))$ if and only if g(n) is O(f(n))

Big-Theta, a Relative of Big-Oh

big-Theta

■ f(n) is $\Theta(g(n))$ if there are real constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that

$$c'g(n) \le f(n) \le c''g(n)$$
 for $n \ge n_0$

- means f(n) is asymptotically equal to g(n)
- f(n) is $\Theta(g(n))$ if and only if g(n) is O(f(n)) and if f(n) is O(g(n))

Big-Oh Polynomial Rule

$$f(n) = a_0 + a_1 n + a_2 n^2 + ... + a_d n^d$$

- If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$
 - Drop lower-order terms
 - Drop constant factors

Useful Big-Oh Rules

1. If d(n) is O(f(n)) and e(n) is O(g(n)) then

$$d(n) + e(n)$$
 is $O(f(n) + g(n))$
 $d(n)e(n)$ is $O(f(n) g(n))$

- 2. If d(n) is O(f(n)) and f(n) is O(g(n)) then d(n) is O(g(n))
- 3. If p(n) is a polynomial in n then

 $\log p(n)$ is $O(\log(n))$

Asymptotic Algorithm Analysis

- Asymptotic algorithm analysis determines running time in big-Oh notation (or big-Theta, or big-Omega)
- To perform the asymptotic analysis
 - find the worst-case number of primitive operations executed as a function of input size
 - express this function with big-Oh notation
- Example:
 - Algorithm *arrayMax* executes at most 7n 1 primitive operations
 - Algorithm arrayMax runs in O(n) time
- Since constant factors and lower-order terms are eventually dropped, can disregard them when counting primitive operations

Computing Prefix Averages

The *i*-th prefix average of an array *X* is average of first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

 Computing array A of prefix averages of another array X has applications to financial analysis

Prefix Averages: Quadratic Algorithm

```
Algorithm prefixAverages1(X, n)
   Input array X of n integers
   Output array A of prefix averages of X
                                                #operations
  A ← new array of n integers
   for i \leftarrow 0 to n-1 do
        s \leftarrow X[0]
                                           1 + 2 + ... + (n - 1)
       for j \leftarrow 1 to i do
                                           1 + 2 + ... + (n - 1)
                s \leftarrow s + X[j]
       A[i] \leftarrow s/(i+1)
   return A
```

Arithmetic Progression

Running time of *prefixAverages1* is

$$O(1 + 2 + ... + n)$$

Adding up

- The sum of the first n integers is n(n + 1)/2
- prefixAverages1 runs in $O(n^2)$ time

Prefix Averages: Linear Algorithm

```
Algorithm prefixAverages2(X, n)
  Input array X of n integers
   Output array A of prefix averages of X
                                                 #operations
  A ← new array of n integers
   s \leftarrow 0
   for i \leftarrow 0 to n-1 do
       s \leftarrow s + X[i]
       A[i] \leftarrow s/(i+1)
   return A
```

- 4**n**+2 is **O**(**n**)
- Algorithm prefixAverages2 runs in O(n) time

Math you need to Review

- Summations
- Logarithms and Exponents
 - properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

$$log_b(x/y) = log_bx - log_by$$

$$log_bx^a = alog_bx$$

$$log_ba = log_xa/log_xb$$

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$

$$a^{bc} = (a^b)^c$$

$$a^b / a^c = a^{(b-c)}$$

$$b = a^{\log_a b}$$

$$b^c = a^{c*\log_a b}$$

Final Notes

- We focus on the asymptotic growth using big-Oh notation, but practitioners do care about constant factors occasionally
- Suppose
 - Algorithm A has running time 30000n
 - Algorithm B has running time 3n²
- Asymptotically, algorithm A is better than algorithm B
- However, if the problem size you deal with is always less than 10000, then the quadratic one is faster

