CS 461 - Computer Graphics

Colors

Visible Spectrum

How it works

Pin hole camera

Human Eye

Visual Saliency

Cones & Rods

Photoreceptor cell

Color vision table

State	Types of cone cells	Approx. number of colors perceived	Carriers
Monochromacy	1	200	Marine mammals, owl monkey, Australian sea lion, achromat primates
Dichromacy	2	40,000	Most terrestrial non-primate mammals, color blind primates
Trichromacy	3	10 million ^[49]	Most primates, especially great apes (such as humans), marsupials, some insects (such as honeybees)
Tetrachromacy	4	100 million	Most reptiles, amphibians, birds and insects, rarely humans
Pentachromacy	5	10 billion	Some insects (specific species of butterflies), some birds (pigeons for instance)

Photoreceptors

Reflecting the light

Overlapping the signals

Stimulus

1924 Luminous Efficiency Function, $V(\lambda)$

- Function that describes the human eye's sensitivity to light at different wavelengths in daylight
- ► If you have a green and blue light that appear to be equally bright, then you know that the blue light is more luminous

1931 RGB Color Matching Functions

1931 RGB Color Matching Functions

1931 RGB Color Matching Functions

$$\lambda = 610$$
nm $r(\lambda) = 0.34756$ $g(\lambda) = 0.04776$ $b(\lambda) = -0.00038$

Tristimulus values

- Functions are scaled as if all the primary lights are equally bright
- Blue light must be more luminous than an equally bright green light
- Un-scaling to get absolute luminance

```
Lr = 1 # r luminance scale

Lg = 4.5907 # g luminance scale

Lb = 0.0601 # b luminance scale

\lambda = 610nm

R = r(\lambda)/Lr = 0.34756

G = g(\lambda)/Lg = 0.04776

B = b(\lambda)/Lb = -0.00038
```


- Colors specified as three tristimulus values, like in the RGB, are difficult to visualize
- Remove the intensity dimension from the data, so that dark red and light red are the same value - Chromaticity

```
RGB are tristimulus values  r = R/(R+G+B)   g = G/(R+G+B)   b = B/(R+G+B)   rgb are chromaticity coordinates and <math> r + g + b = 1
```


CIE XYZ Color Space

XYZ Color Matching Functions

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 3.24 & -1.54 & -0.50 \\ -0.97 & 1.88 & 0.04 \\ 0.06 & -0.20 & 1.06 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0.41 & 0.36 & 0.18 \\ 0.21 & 0.72 & 0.07 \\ 0.02 & 0.12 & 0.95 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

HSV & CMYK Color models

Color blindness

Ishihara Test

Image-Recoloring for Dichromats

Next class

- ► Only seminars on 10th
- Next class: 12th October 9 to 10