Create account Log in

Main page Contents Featured content Current events Random article Donate to Wikipedia Wikimedia Shop

Interaction

Help About Wikipedia Community portal Recent changes Contact page

Tools

Print/export

Languages Français

Edit links

Article Talk

Read Edit View history Search

Log-distance path loss model

From Wikipedia, the free encyclopedia

The log-distance path loss model is a radio propagation model that predicts the path loss a signal encounters inside a building or densely populated areas over distance.

- 1 Applicable to / Under conditions
- 2 Mathematical formulation
 - 2.1 The model
 - 2.2 Corresponding non-logarithmic model
- 3 Empirical coefficient values for indoor propagation
- 4 References
- 5 Further reading
- 6 See also

Applicable to / Under conditions [edit]

The model is used to predict the propagation loss for a wide range of environments

Mathematical formulation [edit]

The model [edit]

Log-distance path loss model is formally expressed as:

$$PL = P_{Tx_{dBm}} - P_{Rx_{dBm}} = PL_0 + 10\gamma \log_{10} \frac{d}{d_0} + X_g,$$

where

PI, is the total path loss measured in Decibel (dB)

$$P_{Tx_{dBm}} = 10 \log_{10} rac{P_{Tx}}{1mW}$$
 is the transmitted power in dBm, where

 $P_{T_{x}}$ is the transmitted power in watt.

$$P_{Rx_{dBm}} = 10 \log_{10} \frac{P_{Rx}}{1 mW}$$
 is the received power in dBm, where

 P_{Rx} is the received power in watt.

 PL_0 is the path loss at the reference distance \emph{d}_0 . Unit: Decibel (dB)

d is the length of the path.

 d_0 is the reference distance, usually 1 km (or 1 mile).

 γ is the path loss exponent.

 X_q is a normal (or Gaussian) random variable with zero mean, reflecting the attenuation (in decibel) caused by flat fading [citation needed]. In case of no fading, this variable is 0. In case of only shadow fading or slow fading, this random variable may have Gaussian distribution with σ standard deviation in dB, resulting in log-normal distribution of the received power in Watt. In case of only fast fading caused by multipath propagation, the corresponding gain in Watts $F_a = 10^{\frac{-Xg}{10}}$ may be modelled as a random variable with Rayleigh distribution or Ricean distribution.[1]

Corresponding non-logarithmic model [edit]

This corresponds to the following non-logarithmic gain model:

$$\frac{P_{Rx}}{P_{Tx}} = \frac{c_0 F_g}{d^{\gamma}}$$

 $c_0 = d_0^{\gamma} 10^{rac{-L_0}{10}}$ is the average multiplicative gain at the reference distance d_0 from the transmitter. This gain depends on factors such as carrier frequency, antenna heights and antenna gain, for example due to directional antennas; and

 $F_{g}=10^{rac{-X_{g}}{10}}$ is a stochastic process that reflects flat fading. In case of only slow fading (shadowing), it may have log-normal distribution with parameter σ dB. In case of only fast fading due to multipath propagation, its amplitude may have Rayleigh distribution or Ricean distribution.

Empirical coefficient values for indoor propagation [edit]

Empirical measurements of coefficients γ and σ in dB have shown the following values for a number of indoor wave propagation cases. [2]

Building Type	Frequency of Transmission	γ	σ [dB]
Vacuum, infinite space		2.0	0
Retail store	914 MHz	2.2	8.7
Grocery store	914 MHz	1.8	5.2
Office with hard partition	1.5 GHz	3.0	7
Office with soft partition	900 MHz	2.4	9.6
Office with soft partition	1.9 GHz	2.6	14.1
Textile or chemical	1.3 GHz	2.0	3.0
Textile or chemical	4 GHz	2.1	7.0, 9.7
Metalworking	1.3 GHz	1.6	5.8
Metalworking	1.3 GHz	3.3	6.8

References [edit]

- 1. A Julius Goldhirsh; Wolfhard J. Vogel. "11.4" . Handbook of Propagation Effects for Vehicular and Personal Mobile Satellite Systems.
- 2. ^ Wireless communications principles and practices, T. S. Rappaport, 2002, Prentice-Hall

Further reading [edit]

- Introduction to RF propagation, John S. Seybold, 2005, Wiley.
- Wireless communications principles and practices, T. S. Rappaport, 2002, Prentice-Hall.

See also [edit]

- ITU Model for Indoor Attenuation
- Radio propagation model
- Young model

Categories: Radio frequency propagation

This page was last modified on 12 March 2014 at 02:26.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Mobile view

