Кодирование случайных множеств в булевой модели с переменной интенсивностью

Давыденкова Мария Сергеевна

Научный руководитель: Лифшиц Михаил Анатольевич Рецензент: Белопольская Яна Исаевна

Санкт-Петербургский государственный университет

18 июня 2020 г.

Средняя ошибка дискретизации

Пусть S — случайный элемент некоторого метрического пространства (X, dist).

Определение

Средней ошибкой дискретизации S называется величина

$$D^{(q)}(r) := \inf_{\#\mathcal{C} \leqslant e^r} \mathbb{E} \min_{A \in \mathcal{C}} dist(S, A), \quad r > 0.$$

Важной характеристикой распределения S является оценка скорости убывания этой величины при стремлении r к бесконечности.

Булева модель

Рассмотрим куб $[0,a]^d$ в \mathbb{R}^d и случайный набор шаров:

- ightharpoonup центры шаров $\xi_i \sim \mathcal{U}[0,a]^d$;
- ightharpoonup радиусы $R_i\geqslant 0$ одинаково распределены;
- ightharpoonup количество шаров $N \sim \mathcal{P}(a^d \lambda)$, где $\lambda = \lambda(a)$.

Все эти случайные величины независимы.

Определение

Булева модель случайного множества:

$$S_a = \bigcup_{i=1}^N B(\xi_i, R_i) \cap [0, a]^d.$$

Минимальное число видимых шаров

Определение

Минимальным числом видимых шаров называется следующая величина:

$$\mathcal{K}_a = \min\{r \geqslant 1 | \exists i_1, \dots, i_r \subset \{1, \dots, N\} :$$

$$\mathcal{S}_a = \bigcup_{l=1}^r B(\xi_{i_l}, R_{i_l}) \cap [0, a]^d \}.$$

Вероятности больших уклонений этой величины играют важную роль в оценке скорости убывания средней ошибки дискретизации.

Вероятности больших уклонений K_a

Будем предполагать, что $n\gg a^d\lambda$.

Тривиальная оценка:

$$\mathbb{P}[K_a \geqslant n] \leqslant \exp(-n \log n + dn \log a + n \log \lambda + O(n)), \ n, a \to \infty.$$

lacktriangle Ф. Аурзада, М. Лифшиц (2019, J. Complexity) изучали случай $a=1,\ \lambda=const$ и показали, что для некоторых распределений R_i выполнено

$$\mathbb{P}[K_1 \geqslant n] = \exp(-\beta \cdot n \log n \cdot (1 + o(1))), \quad n \to \infty.$$

Константа $\beta>1$ зависит от размерности d, нормы в \mathbb{R}^d и распределения радиусов.

Полученные результаты: одномерный случай

Отдельно рассматривается случай d=1.

Теорема

Пусть $n\gg a\lambda, n\gg a$. Тогда

lacktriangle если распределение R_1 имеет плотность $p(z) \approx z^{\alpha-1}$ для $z \to 0$ и некоторого $\alpha > 0$:

$$\mathbb{P}[K_a \geqslant n] = \exp(-(1+\alpha)n\log n + (1+\alpha)n\log a + n\log \lambda + O(n)),$$

 $n, a \to \infty.$

ightharpoonup если $R_1 \equiv r > 0$ п.н.:

$$\mathbb{P}[K_a \geqslant n] = 0$$

для достаточно больших п и а.

Полученные результаты: многомерный случай

Рассмотрим случай $d \geqslant 2$.

Теорема

Пусть $n \gg a^d \lambda, n \gg a^d$. Тогда

• если распределение R_1 имеет плотность $p(z) \approx z^{\alpha-1}$ для $z \to 0$ и некоторого $\alpha > 0$:

$$\mathbb{P}[K_a \geqslant n] = \exp(-\beta n \log n + \beta n \log a + n \log \lambda + O(n)),$$

$$n, a \to \infty.$$

ightharpoonup если $R_1 \equiv r > 0$ п.н.:

$$\mathbb{P}[K_a \geqslant n] = 0$$

для достаточно больших п и а.

Два подхода к решению задачи

Первый подход: для некоторых распределений были найдены события E_1 и E_2 :

$$\mathbb{P}[E_1] \leqslant \mathbb{P}[K_a \geqslant n] \leqslant \mathbb{P}[E_2].$$

Второй подход: сведение к задаче для куба постоянного размера. Были доказаны теоремы, позволяющие получить из оценок для случая a=1 оценки для параметра a, стремящегося к бесконечности.

Сведение к задаче для куба постоянного размера

Теорема (Нижняя оценка)

Пусть $R_1\leqslant r$ п.н. для некоторого $r>0,\ d\geqslant 1,\ n\gg a^d\lambda$, и $n\gg a^d$. Предположим, что

$$\mathbb{P}[K_1 \geqslant n] \geqslant \exp(-\beta \cdot n \log n + \gamma \cdot n \log \lambda + O(n)), \ n \to \infty.$$

Тогда

$$\mathbb{P}[K_a \geqslant n] \geqslant \exp(-\beta \cdot n \log n + \beta \cdot dn \log a + \gamma \cdot n \log \lambda + O(n)),$$

$$n, a \to \infty.$$

Сведение к задаче для куба постоянного размера

Теорема

Пусть $d\geqslant 1$, $n\gg a^d\lambda$ и $n\gg a^d$. Обозначим через $K_a^{(b)}$ минимальное число видимых шаров в картинке с радиусами, увеличенными в b раз. Предположим, что для любого числа $b\in (0,1)$ верно следующее:

$$\mathbb{P}[K_1^{(b)} \geqslant n] = \mathbb{P}[K_1 \geqslant n] \leqslant \exp(-\beta \cdot n \log n + \gamma \cdot n \log \lambda + O(n)),$$

$$n \to \infty.$$

Тогда

$$\mathbb{P}[K_a \geqslant n] \leqslant \exp(-\beta \cdot n \log n + \beta \cdot dn \log a + \gamma \cdot n \log \lambda + O(n)),$$

$$n, a \to \infty.$$

Поведение K_a при малых λ

Отдельно изучался случай, когда $n\gg a^d\lambda$, но неверно, что $n\gg a^d$. Было доказано следующее утверждение.

Теорема

Пусть $\lambda=\lambda(a)$ таково, что $a^d\lambda^2\to 0$ при $a\to\infty$, и случайная величина R_1 имеет d-й момент, $d\geqslant 1$. Тогда

$$\mathbb{P}[K_a < N] \to 0, \ a \to \infty.$$

To есть для достаточно быстро убывающих λ выполнено $\mathcal{K}_a \sim \mathcal{N}$ при $a \to \infty$.

Спасибо за внимание.