

Application No. 09/892,469

Date November 25, 2003

Reply to office action of January 15, 2003

## Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

- 1. (currently amended) A method of making a continuously chirped highly accurate gain flattening filter in a single Bragg grating in an optical waveguide material material, including the steps of:
- disposing a strongly chirped phase mask placed between a light beam and the optical waveguide material, the light beam being capable of changing the effective index of refraction of the optical waveguide material, and
- irradiating said optical waveguide material with said light beam non-uniformly through the phase mask, said irradiation producing a suitable an approximate filter response and required attenuation over the filter band.
- replacing said phase mask with a movable, adjustable slit to irradiate selected portions of said filter, for predetermined periods of time, while monitoring said filter response, comparing said filter response to a target response, and ceasing irradiation when said filter response is in agreement with said target response.
- 2. (Original) A method as defined in claim 1 in which the light beam is an ultraviolet light beam.
- 3. (Original) A method as defined in claim 1 in which an amplitude mask is used to control the amount of light along the grating.
- 4. (cancelled) A method as defined in claim 1 in which a moveable slit is used to control the amount of light along the grating.
- 5. (Original) A method as defined in claim 1 in which the optical waveguide material is an optical fiber.
- 6. (Original) A method as defined in claim 1, further including the step of stabilizing said change in effective index of refraction in the optical waveguide material.