Owen Trueblood Problem Set 1

OLLABORATION

Problem 3

On problem 3, I collaborated with no one, and received, help from Alex Willisson and Robert Sloan, and referred to wolframalpha.com, wikipedia.org, and mathisfun.com.

	j.					
a)	(Pim	plies	Q) or (Q imp	lies l	can be simpl	ified by the
	equiv	alence	e of Pimplies	a to	NOTEP) OR Q	•
	P	Q	(P implies Q)	OR	(Q implies P)	
	T	T	十	T	一	
	T	F	F	十	T	
	F	T	\ 'T	T	F	
	F	F	T	T	T	
			•		; (P->G)V(Q->P)	is valid

b) problem: construct R such that it is valid iff P and Q are equivalent.

when P ≠ Q F F	when P=Q TT	R = (PAQ) Y(PAG)								
FT	FF	PT	a	(P	Λ	<u>a)</u>	٧	(P	٨	<u>a></u>
TF)	T	T	F	F	F	T	T	T	T
TT	1	T	F	F	F	T	F	T	Ŧ	F
	1	F	T	T	F	F	F	F	F	T
	-	F	F	$ \tau $	T	T	T	F	F	F

R=(PAQ)v(PAQ) is only always frue (valid) when P and Q are equivalent.

- c) NOTCP) is true only when P is false. For P to be valid according to the proposition, it must be false, which is a contradiction, because a valid proposition can never be false.
- d) [P. IFF P2 = S] forces P. to be different than P2. Because the set & P1,..., Pr3 is only consistent if they are the propositions are all true, S forces them to be inconsistent if S is valid.