Sternschaltung

Verschaltung bei einer Sternschaltung

Es gelten die Kirchhoffschen Regeln:

$$0 = \sum_{i=1}^{n} I_i$$

$$0 = \Sigma U$$

Verschaltung bei einer Dreieckschaltung

Es gelten die Kirchhoffschen Regeln:

$$0 = \sum_{i=1}^{N} I_i$$

Symmetrische Sternschaltung mit Nulleiter $\rightarrow Z_1 = Z_2 = Z_3$

In den Stern- und Dreiecksschaltungen sind keine Phasenverschiebungen zu erkennen (linksseitig), diese tauchen sofern vorhanden jeweils nur in den entsprechenden Zeigerdiagrammen auf (rechtsseitig).

Unsymmetrische Sternschaltung mit Nulleiter \rightarrow $Z_1 \neq Z_2 \neq Z_3$ (hier zusätzlich alle Z reell \rightarrow ϕ = 0)

Unsymmetrische Sternschaltung ohne Nulleiter $\rightarrow Z_1 \neq Z_2 \neq Z_3$ (hier zusätzlich alle Z reell $\rightarrow \phi = 0$)

- → Verschiebung des "Sternpunktes"
- → Unsymmetrische Strangspannungen ! U^{*}₁, U^{*}₂, U^{*}₃

Unsymmetrische Dreieckschaltung ohne Nulleiter $\rightarrow Z_1 \neq Z_2 \neq Z_3$ (hier zusätzlich alle Z reell $\rightarrow \phi = 0$)

