Vehicle Insurance Fraud Detection

DS105 Project Presentation Yeo Siew Ping

Content

- Dataset Introduction
- Problem Statement
- Summary of Approach
- Exploratory Data Analysis
- Key Steps for Data-Preprocessing
- Machine Learning
 - Overview of Approaches
 - Evaluation Metrics
 - Model Training and Performance
 - Selection of Best Model
- Conclusion and Way Ahead

1

Dataset Introduction

1. Dataset Introduction

- Vehicle insurance fraud involves conspiring to make false or exaggerated claims involving property damage or personal injuries following an accident
- Dataset consists of vehicle and insurance-related details
- Taken from Kaggle (https://www.kaggle.com/datasets/shivamb/vehicle-claim-fraud-detection) and is originally a real-life fraud machine learning case study used by Oracle
- Columns: 33
- Rows: 15420

1. Dataset Introduction

```
<class 'pandas.core.frame.DataFrame'>
                                                          RepNumber
                                                                                  15420 non-null
                                                                                                   int64
RangeIndex: 15420 entries, 0 to 15419
                                                          Deductible
                                                                                  15420 non-null
                                                                                                   int64
Data columns (total 33 columns):
                                                          DriverRating
                                                                                  15420 non-null
                                                                                                  int64
                          Non-Null Count Dtype
     Column
                                                          Days Policy Accident
                                                                                  15420 non-null
                                                                                                   object
    Month
                          15420 non-null
                                         obiect
                                                          Days Policy Claim
                                                                                  15420 non-null
                                                                                                   object
    WeekOfMonth
                          15420 non-null
                                         int64
                                                          PastNumberOfClaims
                                                                                  15420 non-null
                                                                                                   object
    DavOfWeek
                          15420 non-null object
                                                          AgeOfVehicle
                                                                                  15420 non-null
                                                                                                   object
    Make
                          15420 non-null object
                                                          AgeOfPolicyHolder
                                                                                                   object
                                                                                  15420 non-null
    AccidentArea
                          15420 non-null object
                                                          PoliceReportFiled
    DayOfWeekClaimed
                                                                                  15420 non-null
                                                                                                   object
                          15420 non-null
                                         object
    MonthClaimed
                          15420 non-null
                                         object
                                                          WitnessPresent
                                                                                  15420 non-null
                                                                                                   object
    WeekOfMonthClaimed
                          15420 non-null int64
                                                                                  15420 non-null
                                                                                                   object
                                                          AgentType
     Sex
                          15420 non-null
                                         object
                                                          NumberOfSuppliments
                                                                                  15420 non-null
                                                                                                   object
    MaritalStatus
                          15420 non-null
                                         object
                                                          AddressChange Claim
                                                                                  15420 non-null
                                                                                                   object
                          15420 non-null int64
     Age
                                                          NumberOfCars
                                                                                                   object
    Fault
                          15420 non-null
                                         object
                                                                                  15420 non-null
    PolicyType
                          15420 non-null object
                                                                                  15420 non-null
                                                                                                   int64
                                                          Year
    VehicleCategory
                          15420 non-null
                                         object
                                                          BasePolicv
                                                                                  15420 non-null
                                                                                                   object
    VehiclePrice
                          15420 non-null
                                         object
                                                     dtypes: int64(9), object(24)
    FraudFound P
                          15420 non-null
                                         int64
                                                     memory usage: 3.9+ MB
    PolicyNumber
                          15420 non-null
                                        int64
```

- There are 1 continuous features and 32 categorical features
- Label FraudFound_P (0,1)

2

Problem Statement

2. Problem Statement

- In this project, we aim to help the insurance company to filter out potential fraud cases and minimise actual fraud cases
- **End Goal**: Create a machine learning model to predict if a specific vehicle insurance claim is a fraudulent one
- Supervised classification model predict if case is fraudulent or not (Binary Classification)

2. Problem Statement

Sub-goals:

- How do the features vary for fraud cases?
- How do the **demographics** (e.g. Age, Gender, Marital Status) vary with the features for fraud cases?
 - There was a decreasing trend for fraud from 1994 to 1996 why? Were there a difference in the demographics along the years?
 - As most of the vehicles involved in fraud were priced from \$20000-\$29000 and mostly Sedan, what were the demographics for this group of fraudsters?
 - For the common car models in fraud cases, what were the demographics like?

3

Summary of Approach

3. Summary of Approach

Import relevant libraries and dataset

Initial data exploration

Initial data cleaning and wrangling Exploratory data analysis

 to address the sub-goals Datapreprocessing and feature engineering Machine Learning

- to address the end-goal

Conclusion and Way Ahead

3. Summary of Approach

Import relevant libraries and dataset

Initial data exploration

Initial data cleaning and wrangling Exploratory data analysis

- to address the sub-goals

Datapreprocessing and feature engineering Machine Learning

- to address the end-goal

Conclusion and Way Ahead

4

Exploratory Data Analysis

Addressing the Sub-Goals

1. How do the features vary for fraud cases?

Time Features	Binary Features	Multi-class Features
January, March and May	Urban areas	Pontiac, Honda, Toyota
Week 2, 3	Male	Policy Holder are usually Married or Single
Mondays, Fridays	Policy holder at fault	Sedan with vehicle price from 20000-29000
Fraud claims are usually made on a weekday instead of weekend	Police report not made	Policy deductible is usually at \$400
	Witness not present	Claim made more than 30 days after policy purchase
	Policy under external agents	Vehicle age usually more than 6 years
		Age of policyholder usually from 31-50
		Number of suppliments mostly zero
		No address change
		Decreasing trend seen from 1994 to 1996

1. How do the features vary for fraud cases?

- Age of person involved in fraud accident
- Slightly right-skewed → Log transformation

2. There was a decreasing trend for fraud from 1994 to 1996 - why? Were there differences in the demographics across the years?

- Average age of both gender did not fluctuate much over the years
- Age for singles decreased over the years

2. There was a decreasing trend for fraud from 1994 to 1996 - why? Were there differences in the demographics along the years?

Age of policy holder follows the decreasing trend over the years

3. As most of the vehicles involved in fraud were priced from \$20000 - \$29000 and mostly Sedan, what were the demographics for this group of policyholders?

Countplots of Demographic Features from 1994 to 1996

- Most of the fraudsters are Married or single
- Age group of policy holder
 31 to 35

3. As most of the vehicles involved in fraud were priced from \$20000 - \$29000 and mostly Sedan, what were the demographics for this group of policyholders?

- Most of the fraudsters are male
- Age of person involved in fraud accident
 26 to 35 years old

4. For the common car models in fraud cases, what were the demographics like?

Countplots and Boxplots of Demographic Features of Top 3 Car Models

- Top 3 car models involved in fraud cases - Pontiac, Honda and Toyota
- Honda had a significant higher number of policy holders in age group 16-17 years old

4. For the common car models in fraud cases, what were the demographics like?

- Although Honda had a significant group of young policyholders, the average age of person involved in accident was the highest
- Possible misuse of policy by fraudsters due to mismatch in ages
- Possible higher payout for young policy holders; Lax regulation by Honda

4. For the common car models in fraud cases, what were the demographics like?

- Honda vehicles used in fraud were much younger and more expensive (> \$69000)
- All brand new cars priced above \$69000 in fraud cases were from Honda
- Brand new or expensive Honda cars can get higher payout?

5

Key Steps for Data Pre- Processing

5. Data-Preprocessing

- Binning for the following features:
 - Make
 - Marital Status
 - Days_Policy_Accident
 - Days_Policy_Claim
 - AddressChange_Claim
 - NumberOfCars

5. Data-Preprocessing

As a guide for encoding in this project, only features with max 3 categories will be considered for dummy encoding.

No.	Get_dummies	Ordinal Encoding	Frequency Encoding	Label
1	AccidentArea	VehiclePrice	Month	FraudFound_P
2	Sex	Deductible	WeekOfMonth	
3	Fault	DriverRating	DayOfWeek	
4	PoliceReportFiled	PastNumberOfClaims	DayOfWeekClaimed	
5	WitnessPresent	AgeOfVehicle	MonthClaimed	
6	AgentType	AgeOfPolicyHolder	WeekOfMonthClaimed	
7	MaritalStatus	NumberOfSuppliments	Make	
8	Days_Policy_Accident		RepNumber	
9	Days_Policy_Claim			
10	AddressChange_Claim			
11	NumberOfCars			
12	PolicyType			
13	VehicleCategory			
14	Year			
15	BasePolicy			

5. Data-Preprocessing

• Log Transformation for Age Column

6

Machine Learning

Addressing End-Goal

Overview of Approaches

- As this dataset is highly imbalanced (6% fraud cases), techniques are applied to address this problem
- Oversampling methods are only applied to the train set and not the entire dataset →
 prevent bias and data leakage
- Multiple approaches :
 - 1. Using oversampling method ADASYN and standard scaler
 - 2. Using oversampling method SMOTE and standard scaler
 - Stacking multiple models (Ensemble Technique)
 - 3. Using oversampling method SMOTE, min-max scaler and standard scaler
 - 4. Adjusting class weights in model training and standard scaler

Decide on the best model and conduct hyperparameter tuning

Overview of Approaches

- Classification algorithms to be explored:
 - Logistic Regression
 - K-Nearest Neighbour
 - Naives Bayes
 - Random Forest
 - XGBoost
 - Gradient Boosting
 - Support Vector Machine

Evaluation Metrics

- Recall Out of total fraud cases, how many fraud cases have been caught by the model?
- Precision How many fraud cases are classified correctly?
- ROC-AUC Score How well does the model perform under different probability thresholds
- Precision-Recall curve Trade-off between precision and recall for different probability threshold

Best Model

- 1. High Recall Score catch as many fraud cases
- 2. Reasonable Precision reduce false positives and investigation cost
- 3. Good AUC Score
- 3. Reasonable Precision Recall Curve

1. Using oversampling method ADASYN and standard scaler

Model	Precision	Recall	AUC Score
Logistic Regression	0.13	0.62	0.737
KNN	0.12	0.50	0.567
Naives Bayes	0.12	0.81	0.770
Random Forest Classifier	0.32	0.04	0.777
XGBoost	0.38	0.07	0.729
SVM	0.15	0.42	0.495
Gradient Boosting	0.00	0.00	0.777

1. Using oversampling method ADASYN and standard scaler

Hyperparameter Tuning

Model	Precision	Recall	AUC Score
Logistic Regression	0.13	0.62	0.737
KNN	0.12	0.50	0.567
Naives Bayes	0.12	0.81	0.770
Random Forest Classifier	0.32	0.04	0.777
XGBoost	0.38	0.07	0.729
SVM	0.15	0.42	0.495
Gradient Boosting	0.00	0.00	0.777

Precision	Recall	AUC Score
0.13	0.69	0.784

0.09	0.87	0.726

 Recall and AUC Score improved but precision for Naives Bayes model is bad

2. Using oversampling method SMOTE and standard scaler

Model	Precision	Recall	AUC Score
Logistic Regression	0.13	0.62	0.732
KNN	0.13	0.53	0.572
Naives Bayes	0.12	0.82	0.767
Random Forest Classifier	0.50	0.06	0.768
XGBoost	0.44	0.06	0.766
SVM	0.15	0.42	0.491
Gradient Boosting	0.00	0.00	0.776

2. Using oversampling method SMOTE and standard scaler

Model	Precision	Recall	AUC Score
Logistic Regression	0.13	0.62	0.732
KNN	0.13	0.53	0.572
Naives Bayes	0.12	0.82	0.767
Random Forest Classifier	0.50	0.06	0.768
XGBoost	0.44	0.06	0.766
SVM	0.15	0.42	0.491
Gradient Boosting	0.00	0.00	0.776

2. Using oversampling method SMOTE and standard scaler

Stacking Models (Ensemble Technique) with class weights adjusted

Precision	Recall	AUC Score
0.13	0.53	0.755

2. Using oversampling method SMOTE and standard scaler

Stacking Models (Ensemble Technique) with class weights adjusted

3. Using oversampling method SMOTE, min-max scaler and standard scaler

Model	Precision	Recall	AUC Score
Logistic Regression	0.13	0.64	0.516
KNN	0.12	0.53	0.519
Naives Bayes	0.12	0.82	0.495
Random Forest Classifier	0.36	0.06	0.529
XGBoost	0.44	0.06	0.472
SVM	0.14	0.53	0.506
Gradient Boosting	0.00	0.00	0.637

Model Training and Performance

3. Using oversampling method SMOTE, min-max scaler and standard scaler

Model	Precision	Recall	AUC Score
Logistic Regression	0.13	0.64	0.516
KNN	0.12	0.53	0.519
Naives Bayes	0.12	0.82	0.495
Random Forest Classifier	0.36	0.06	0.529
XGBoost	0.44	0.06	0.472
SVM	0.14	0.53	0.506
Gradient Boosting	0.00	0.00	0.637

- Precision and Recall did not change much
- AUC Score fares even poorly

Model Training and Performance

4. Adjusting class weights in model training and standard scaler

Model	Precision	Recall	AUC Score
Logistic Regression	0.13	0.91	0.796
KNN	0.27	0.03	0.531
Random Forest Classifier	1.00	0.01	0.757
XGBoost	0.24	0.29	0.686
SVM	0.15	0.64	0.502

Model Training and Performance

4. Adjusting class weights in model training and standard scaler

Hyperparameter Tuning

Model	Precision	Recall	AUC Score
Logistic Regression	0.13	0.91	0.796
KNN	0.27	0.03	0.531
Random Forest Classifier	1.00	0.01	0.757
XGBoost	0.24	0.29	0.686
SVM	0.15	0.64	0.502

Precision	Recall	AUC Score	
0.13	0.92	0.804	

- Recall and AUC score improved slightly after tuning
- Recall and AUC score is highest
- Best model out of all

Selection of Best Model

Best Model : Logistic Regression Model with class weights adjusted and standard scaler used

Classification Report

	precision	recall	f1-score	support
0	0.99	0.59	0.74	3624
1	0.13	0.92	0.22	231
accuracy			0.61	3855
macro avg	0.56	0.76	0.48	3855
weighted avg	0.94	0.61	0.71	3855

- 212 out of 231 (92%) fraud cases are caught by model
- 19 (8%) fraud cases undetected
- 1473 (38%) flagged transactions but not fraud cases (false positive)

Confusion Matrix

Selection of Best Model

Best Model : Logistic Regression Model with class weights adjusted and standard scaler used

Changing Probability Threshold

AIM: Balance the costs incurred by the Type I and Type II errors

Type I Error	False Positives (Flagged out as a fraud but not a fraud case)	Precision	Incur cost of human labour for investigating the flagged transactions	Low precision score
Type II Error	False Negatives (Fraud cases undetected by model)	Recall	Incur cost of fraud	Low recall score

- To lower cost of Type I error → increase probability threshold
- To lower cost of Type II error → decrease probability threshold

Changing Probability Threshold

Best Model : Logistic Regression Model with class weights adjusted and standard scaler used

- 8% of the fraud cases has probability < 0.5
- If probability threshold is shifted to the left, false positive cases will increase, false negative cases will decrease
- Feasible if cost of fraud
 cost of investigation
 and monitoring

- 92% of the fraud cases has probability > 0.5
- If probability threshold is shifted towards the right, false positive cases will decrease, false negative cases will increase
- Feasible if cost of investigation and monitoring > cost of fraud

Feature Importance

Best Model : Logistic Regression Model with class weights adjusted and standard scaler used

7

Conclusion and Way Ahead

Conclusion

- It is essential that model catches most of the fraud cases (Recall), while keeping the cost to monitor and investigate fraud cases flagged out by the model under control(Precision)
- Need to incorporate actual business costs incurred by stakeholders before deciding if the model is suitable to be deployed
- As such, we will have to look at the cost incurred from Type I and Type II errors in order to determine the optimal probability threshold to balance precision and recall of the model

To incorporate business impact into the model:

- 1. Adjusting class weights during model training using the true cost ratio
 - Find out the labour cost needed for investigation (e.g. cost of monitoring per fraud case) and the cost of uncaught fraud (e.g. the average cost of an undetected fraud case)
 - Calculate the cost ratio and adjust the class weights accordingly (customised class weights) in the model training process.
- 2. Adjusting the probability threshold to balance the cost of type I errors and type II errors accordingly.
- 3. Optimising for F1-score, which balances precision and recall of the model.

How can this model be improved further:

- 1. Include more relevant features in the machine learning process
 - From the feature importance plot, the weights of the features that lead to the prediction of positive class are not as high.
- 2. Increase the size of data to get a bigger portion of insurance claims that are fraudulent
 - Oversampling techniques and adjusting class weights might still not be the ideal solution in some imbalanced dataset. Although it is hard to get a larger proportion of fraud cases, it can help significantly in model training if there are enough positive labels.

The End