Combinational Logic Design using ROM Array

Read-Only Memory (ROM)

- Combinational circuits are often referred to as memoryless circuits, because their output depends only on their current input and no history of prior inputs is retained.
- There is a type of memory that is implemented with combinational circuits, namely **read-only memory** (**ROM**).

Read-Only Memory (ROM)

- ROM is a memory unit that performs only the read operation
- Binary information stored in a ROM is permanent and is created during the fabrication process
- A given input to the ROM (address lines) always produces the same output (data lines)
- Because the outputs are a function only of the present inputs, ROM is a combinational circuit

- ROM is a programmable logic device (PLD). The binary information that is stored within such a device is specified in some fashion and then embedded within the hardware in a process is referred to as programming the device.
- Other such units of PLD are the programmable logic array (PLA), programmable array logic (PAL), and the field-programmable gate array (FPGA).

- A word is the basic unit that moves in and out of memory
- The length of a word is often multiples of a byte (=8 bits)
- Memory units are specified by its number of words and the number of bits in each word

• A ROM is essentially a memory device in which permanent binary information is stored

- Ex: 1024(words) x 16(bits)
 - Each word is assigned a particular **address**, starting from 0 up to 2^k -1 (k = number of address lines)

Read-Only Memory (ROM)

• A ROM can be implemented with a decoder and a set of OR gates.

For a 2^k x n ROM, it consists of

k inputs (address line)
and n outputs (data)

2^k words of n-bit each

 A k x 2^k decoder (generate all minterms)

n OR gates with 2^k inputs

 Initially, all inputs of OR gates and all outputs of the decoder are fully connected

Fig. 7-10 Internal Logic of a 32 × 8 ROM

Programming the ROM

- Each intersection (crosspoint) in the ROM is often implemented with a fuse.
- Blow out unnecessary connections according to the truth table
 - 1 means connected (marked as X)
 - 0 means unconnected
- Cannot recovered after programmed

ROM Structure

Example

A	В	С	F ₀	\mathbf{F}_{1}	F ₂	\mathbf{F}_3	F ₄
0	0	0	0	1	0	1	0
0	0	1	1	1	1	1	0
0	1	0	0	0	0	1	1
0	1	1	1	1	1	0	1
1	0	0	0	1	0	1	0
1	0	1	0	1	1	1	1
1	1	0	1	0	1	0	1
1	1	1	1	1	0 1 0 1 0 1 1	1	0

ROM Memory Array

ROM Truth Table (Partial)

Inputs					Outputs							
<i>I</i> ₄	<i>I</i> ₃	I ₂	<i>I</i> ₁	<i>I</i> ₀	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A_0
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
		:							:			
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

Design Comb. Circuit with ROM

- Derive the truth table of the circuit
- Determine minimum size of ROM
- Program the ROM

• Design a combinational circuit using a ROM. The circuit accepts a three-bit number and outputs a binary number equal to the square of the input number.

Example

Inputs									
A ₂	A_1	A ₀	B ₅	B_4	B_3	B ₂	B_1	B ₀	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	1
0	1	0	0	0	0	1	0	0	4
0	1	1	0	0	1	0	0	1	9
1	0	0	0	1	0	0	0	0	16
1	0	1	0	1	1	0	0	1	25
1	1	0	1	0	0	1	0	0	36
1	1	1	1	1	0	0	0	1	49

A_2	A_1	A_0	B_5	B_4	B_3	B_2
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0 1	0 0 0 0 0	0 0 0 0 1 1	0 0 0 1 0 1	0 0 1 0 0
1	1	0 1	1 1	0 1	0	1

(b) ROM truth table