Computation and Communication Co-scheduling for Timely Multi-Task Inference at the Wireless Edge

Md Kamran Chowdhury Shisher, Adam Piaseczny, Yin Sun* and Christopher G. Brinton

Dept. of ECE, Purdue University, USA Dept. of ECE, Auburn University, USA*

Remote Inference

- A sensor or a camera sends observed signals (e.g., a sequence of video frames) to a receiver that predicts a time-varying target (e.g., location of vehicles) by using a neural network.
- Due to **limited communication resources**, sending high dimensional sensor observations to a remote receiver is not efficient. The observations can get delayed, and information can be lost.
- This will yield inaccurate inference that can affect real-time decision for critical applications.

Remote Inference

- We split the neural network to feature generator and predictor.
- Use feature generator in the edge device which takes the signal observation and generates low dimensional features, then sends them to the receiver.

Multi-Task Inference

- Predict locations of vehicles
- Classify road signs

- Classify friendly Vs. hostile agents
- Predict position of own agents

- Classify customer reaction
- Predict current inventory
- From autonomous vehicle, military, smart retail to Digital Twin, edge device may need to perform multiple inference tasks.
- Edge device may have limited computation resources to generate features for all tasks at the same time slot.

Multi-Task Remote Inference with Multiple Sources

- *M* edge devices are connected to a receiver
- Receiver predicts K_m targets for each device m based on the most recently delivered features
- Delivered features may not be fresh due to limited computation and communication resources.
- We use Age of Information (AoI) to measure freshness

How can we develop a **computation and communication co-scheduling methodology** to minimize the inference errors across tasks while adhering to network resource constraints?

Age of Information

Definition: At time t, the **Age of Information (AoI)** $\Delta(t)$ is time difference between the current time t and the generation time $t - \Delta(t)$ of the freshest received feature

If feature i is generated at S_i and delivered at D_i

$$\Delta(t) = t - \max\{S_i : D_i \le t\}$$

Time difference between data generation and usage

Inference Error

Definition: At time t, the **Inference error** for j-th inference task of source m can be expressed as a function of AoI $\Delta_{m,j}(t) = \delta$ [Shisher and Sun, MobiHoc' 22, Shisher et al, ToN' 24]

$$p_{m,j}(\delta) = \mathbb{E}_{Y,X \sim P_{Y_{m,j,t},X_{m,t-\delta}}} \left[L_{m,j}(Y,\psi_{m,j}(\phi_{m,j}(X),\delta)) \right]$$

- Notations:
 - $X_{m,t-\delta}$ denote the signal value generated δ time slots ago from m-th edge devices
 - $\phi_{m,j}(\cdot)$ and $\psi_{m,j}(\cdot)$ are feature generator and predictor functions, respectively
 - $L(y, \hat{y})$ measures the incurred loss when the actual target is y and the predicted value is \hat{y}

Our results can be applied to any loss function $L(y, \hat{y})$. Some examples are: 0-1 loss, quadratic loss, and log loss

Problem Formulation

• Our goal is to minimize infinite horizon discounted sum of inference errors for all inference tasks subject to computation and communication resource constraints:

$$\bar{p}_{opt} = \inf_{\pi \in \Pi} \sum_{t=0}^{\infty} \frac{\gamma^t}{K} \sum_{m=1}^{M} \sum_{j=1}^{k_m} \mathbb{E}_{\pi} \left[p_{m,j}(\Delta_{m,j}(t)) \right],$$
s.t.
$$\sum_{j=1}^{k_m} \pi_{m,j}(t) \leq C_m, t = 0, 1, \dots, m = 1, \dots, M,$$
Computation Resource Constraints
$$\sum_{m=1}^{M} \sum_{j=1}^{k_m} \pi_{m,j}(t) \leq N, \quad t = 0, 1, 2, \dots,$$
Communication Resource Constraint

Combinatorial Decision Problem

- M + 1 constraints
- M computation constraints, 1 for each device m
- 1 communication constraint shared by all devices
- Weakly Coupled MDP (PSPACE-Hard)

- $\pi_{m,j}(t) = 1$: feature for j-th inference task of m-th device is generated and transmitted
- At most, *N* features can be sent at one time slot
- Edge device m can generate features for at most C_m tasks

Related Works

- Aol-based Scheduling:
 - Prior works [Kadota et al, ToN' 18, Shisher and Sun, MobiHoc' 22, Shisher et al, ToN' 24, Tripathi and Modiano ToN'24, Ornee and Sun MobiHoc' 23] considers only one communication constraint
 - Prior works are modeled as RMAB, a special case of weakly coupled MDP
 - Whittle Index Policy are used in RMAB provided that the problem is indexable
- Systematic introduction of the Remote Inference problem [Shisher and Sun, MobiHoc' 22, Shisher et al, ToN' 24]
- Learning and Communications Co-design for Remote Inference [Shisher et al, JSAIT' 23]
- Interpretation of Information Aging on Remote Inference
 - Information-theoretic interpretation of information aging for Markov signals [Sun and Cyr, SPAWC' 18, JCN' 19]
 - Information-theoretic interpretation of information aging for general non-Markov signals [Shisher et al, INFOCOM AoI Workshop'21, Shisher and Sun, MobiHoc' 22, Shisher et al, ToN' 24]
 - AR-model-based analysis/interpretation of information aging [Shisher and Sun, INFOCOM ASol workshop' 24]
 - Experimental results of remote inference [Shisher and Sun, MobiHoc' 22, Shisher et al, ToN' 24, JSAIT' 23]

Q. How to design Computation and Communication Co-scheduling?

Lagrangian Primal Dual

• Primal Problem: (Reoptimized) At every time τ given AoI value $\Delta_{m,j}(\tau)$, we truncate the problem to T time slots and apply Lagrange multipliers to constraints

$$\bar{p}(\boldsymbol{\lambda}, \boldsymbol{\mu}; \tau : T) = \inf_{\pi \in \Pi} \sum_{t=\tau}^{T} \sum_{m=1}^{M} \sum_{j=1}^{k_m} \frac{\gamma^t \mathbb{E}_{\pi} \left[p_{m,j}(\Delta_{m,j}(t)) \right]}{K}$$

$$+ \sum_{t=\tau}^{T} \sum_{m=1}^{M} \lambda_{m,t} \frac{\gamma^t}{K} \left(\left(\sum_{j=1}^{k_m} \pi_{m,j}(t) \right) - C_m \right)$$

$$+ \sum_{t=\tau}^{T} \mu_t \frac{\gamma^t}{K} \left(\left(\sum_{m=1}^{M} \sum_{j=1}^{k_m} \pi_{m,j}(t) n_{m,j} \right) - N \right),$$

Dual Problem: We obtain optimal Lagrange Multipliers after solving the dual problem

$$\max_{(\boldsymbol{\lambda},\boldsymbol{\mu})\geq 0} \bar{p}(\boldsymbol{\lambda},\boldsymbol{\mu};\tau:T)$$

Solution of Primal and Dual

Solution of Primal Problem:

Decompose the Primal problem into per-inference task problem:

$$\bar{p}_{m,j}(\boldsymbol{\lambda}_m, \boldsymbol{\mu}; \tau: T) = \inf_{\boldsymbol{\pi}_{m,j} \in \Pi_{m,j}} \sum_{t=\tau}^{T} \gamma^t \mathbb{E}_{\boldsymbol{\pi}_{m,j}} \left[p_{m,j}(\Delta_{m,j}(t)) + \lambda_{m,t} \boldsymbol{\pi}_{m,j}(t) + \mu_t \boldsymbol{\pi}_{m,j}(t) n_{m,j} \right]$$

We solve the problem by dynamic programming:

$$\min_{\pi_{m,j}(t)\in\{0,1\}} Q_{m,j,t}^{\boldsymbol{\lambda}_m,\boldsymbol{\mu}}(\Delta_{m,j}(t),\pi_{m,j}(t))$$

Solution of Dual Problem:

Action Value Function
$$\max_{\boldsymbol{\lambda} \geq 0, \boldsymbol{\mu} \geq 0} \sum_{t=\tau}^{T} \sum_{m=1}^{M} \sum_{j=1}^{k_m} V_{m,j,t}^{\boldsymbol{\lambda}_m,\boldsymbol{\mu}}(\Delta_{m,j}(t)) - \sum_{t=\tau}^{T} \sum_{m=1}^{M} \gamma^{t-\tau} \lambda_{m,t} C_m + \sum_{t=\tau}^{T} \gamma^{t-\tau} \mu_t N$$

Maximum Gain First Policy (Reoptimized)

Gain Index:

$$\alpha_{m,j,t}(\delta) = Q_{m,j,t}^{\boldsymbol{\lambda}_m^*,\boldsymbol{\mu}^*}(\delta,0) - Q_{m,j,t}^{\boldsymbol{\lambda}_m^*,\boldsymbol{\mu}^*}(\delta,1)$$

• At time *t*, maximize sum of Gain Indices of all inference tasks subject to the resource constraints

At time t,

- We iterate through all tasks, ordered by their maximum gain indices.
- If constraints satisfies, we schedule the task

Algorithm 1: Maximum Gain First (MGF) Policy

```
1 for t = 0, 1, ... do
         Update \Delta_{m,j}(t) for all (m,j)
         Initialize \pi_{m,j}(t) \leftarrow 0 for all (m,j)
         Get \lambda^* and \mu^* that maximizes \bar{p}(\lambda, \mu; t:T)
         \alpha_{m,j} \leftarrow \alpha_{m,j,t}(\Delta_{m,j}(t)) for all (m,j)
         C_{m,\text{curr}} \leftarrow 0 \text{ and } N_{\text{curr}} \leftarrow 0
         A(t) \leftarrow \{(m, j) : \alpha_{m, j} > 0\}
         while A(t) is not empty do
             (m^*, j^*) \leftarrow \arg\max_{m,j} \alpha_{m,j}
               c \leftarrow C_{m^*, \text{curr}} + 1 and n \leftarrow N_{\text{curr}} + n_{m^*, j^*}
10
               if c \leq C_{m^*} and n \leq N then
11
                     Update \pi_{m^*,j^*}(t) \leftarrow 1
12
                     Update C_{m^*, \text{curr}} \leftarrow c and N_{\text{curr}} \leftarrow n
13
                A(t) = A(t) \setminus (m^*, j^*)
```


Maximum Gain First Policy (Reoptimized)

Theorem: If all AoI functions $p_{m,j}(\delta)$ are bounded and the following holds

$$T \ge \log_{\frac{1}{\gamma}} \left(\sum_{m=1}^{M} \sqrt{k_m} \right),$$

then the MGF policy is asymptotically optimal as the number of inference tasks per source increases, i.e.,

$$\bar{p}_{\text{MGF}} - \bar{p}_{\text{opt}} = O\left(\frac{1}{\sum_{m=1}^{M} \sqrt{k_m}}\right)$$

- [Brown and Zhang, Operation Research' 23] introduced Reoptimized Fluid Policy using LP and Occupancy measures. The paper considers all constraints are shared by all sources
- The optimality gap provided in our paper is tighter than

$$\bar{p}_{\text{MGF}} - \bar{p}_{\text{opt}} = O\left(\frac{1}{\sqrt{\sum_{m=1}^{M} k_m}}\right)$$

of Reoptimized Fluid Policy provided in [Brown and Zhang, Operation Research' 23]

• This is because we use the structural information that M computation constraints are not shared by all devices M

Simulation Results (Synthetic Evaluations)

- We consider linear Aol function, logarithmic Aol function, and exponential Aol function [Tripathi and Modiano ToN'24]
- (a) N = 10, $k_m = 3$, (b) M = 20, N = 10, (c) M = 20, $k_m = 3$
- Our policy 26 times better compared to Maximum Aol First (MAF) and 32 times better compared to Random Policy

Simulation Results (Real World Evaluations)

 We consider traffic prediction and segmentation using dataset collected from Next-generation Simulation Program of US Department of Transportation Federal Highway Administration

Summary

Use Inference Error as a metric to design Computation and Communication Co-scheduling

Inference Error = f(AoI)

Modeled as Weakly Coupled MDP

Proposed Lagrangian-based Reoptimized (MGF) Policy to solve the problem

- Computation + Communication Policy for optimizing AoI and Remote Inference
 - Remote Inference problem
 - Aol-based Scheduling

Future Works:

- How to optimally design feature generators and predictors?
- Jointly optimize learning, computation, and communication?
- System implementation

Thank You

Email: mshisher@purdue.edu

