距離関数

集合 X 上の実数値関数 d が次を満たすとする。

$$d: X \times X \to \mathbb{R} \tag{1}$$

$$d(a,b) \ge 0 \tag{2}$$

$$d(a,b) = 0 \Leftrightarrow a = b \tag{3}$$

$$d(a,b) = d(b,a) \tag{4}$$

$$d(a,b) + d(b,c) \ge d(a,c) \tag{5}$$

このとき、関数 d を距離関数という。

集合 X に距離関数 d が定義される場合、この 2 つの組合せ (X,d) を距離空間という。 点と集合の距離について

集合 X の部分集合 A について点 $x \in X$ と集合 A の距離 d(x,A) を次のように定義する。

$$d(x,A) = \min\{d(x,a) \mid a \in A\}$$
(6)

集積点

位相空間 X とその部分集合 A について、 $x \in X$ の任意の近傍 U が $(A \setminus \{x\}) \cap U \neq \emptyset$ となるとき $x \in X$ を A の集積点という。

連続写像

2 つの距離空間 $(X, d_X), (Y, d_Y)$ 上で定義された写像 $f: X \to Y$ が連続写像であるとは $\forall a \in X$ に対して次が成り立つときをいう。

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ s.t. \ x \in X, \ d_X(a, x) < \delta \Rightarrow d_Y(f(a), f(x)) < \varepsilon$$
 (7)

問題

1. 距離空間 (X,d) とその部分集合 A に於いて、 $|d(x,A)-d(y,A)| \leq d(x,y)$ が成り立つことを示せ。

.....

 $x,y\in X$ とする。 $d(x,A)=\min\{d(x,a)\mid a\in A\}$ であるので、 $d(y,A)=d(y,a_y)$ となる $a_y\in A$ を取ってくる。 これにより次の三角不等式が成り立つ。

$$d(x,y) + d(y,a_y) \ge d(x,a_y) \tag{8}$$

 $d(x, a_y) \ge d(x, A)$ であるので、上記不等式は次のように書き換えられる。

$$d(x,y) + d(y,A) \ge d(x,A) \tag{9}$$

これにより次の式が得られる。

$$d(x,y) \ge d(x,A) - d(y,A) \tag{10}$$

x,y を入れ替えて同様の議論を行うことにより次式が得られる。

$$d(x,y) \ge d(y,A) - d(x,A) \tag{11}$$

よって、次が成立する。

$$d(x,y) \ge |d(x,A) - d(y,A)| \tag{12}$$

2. $A = \{1/n \mid n \in \mathbb{N}\}$ とするとき、0 は A の集積点であることを示せ。

.....

A は距離空間 (\mathbb{R},d) の部分集合である。

 $\forall \varepsilon > 0$ として、 $0 \in \mathbb{R}$ の近傍を $U = (-\varepsilon, \varepsilon)$ とする。

 $n_{\varepsilon}\in\mathbb{N}$ を $n_{\varepsilon}>\frac{1}{\varepsilon}$ を満たすように一つ取ってくる。これは $\varepsilon>\frac{1}{n_{\varepsilon}}$ である。よって、 $\frac{1}{n_{\varepsilon}}\in U$ である。

また、 $n_{\varepsilon} \in \mathbb{N}$ であるので、 $\frac{1}{n_{\varepsilon}} \in A$ である。

 $\frac{1}{n_{\varepsilon}} \neq 0$ であるが、 $\frac{1}{n_{\varepsilon}} \in A \cap U$ である為、 $0 \in \mathbb{R}$ は A の集積点である。

3. (X,d) を距離空間とする。写像 $f:X\to\mathbb{R}$ が連続であることの必要十分条件は、任意の開区間 $I=(a,b)\subset\mathbb{R}$ の逆像 $f^{-1}(I)$ は X の開集合であることを示せ。

 \dots 写像 f が連続 \Rightarrow $f^{-1}(I)$ が開集合 \dots の

開集合として \emptyset を考えるとき、 $f^{-1}(\emptyset) = \emptyset$ である。

開集合として \mathbb{R} を考えるとき、 $f^{-1}(\mathbb{R}) = X$ である。

開区間 $I=(a,b)\subset\mathbb{R}$ に対して、 $\forall p\in f^{-1}(I)$ とする。 $f(p)\in I$ であるので、 $\exists \varepsilon>0$ に対し $f(p)\in (f(p)-\varepsilon,f(p)+\varepsilon)\subset I$ である。

f は連続写像であるため、ある $\delta > 0$ が存在し、 $p \in X$ の近傍 U_{δ} が $f(U_{\delta}) \subset (f(p) - \varepsilon, f(p) + \varepsilon)$ となる。つまり、近傍 U_{δ} は f(p) の近傍の逆像に含まれる。

$$U_{\delta} \subset f^{-1}(f(p) - \varepsilon, f(p) + \varepsilon) \subset f^{-1}(I)$$
(13)

 $p \in X$ とする。 $\varepsilon > 0$ に対し開区間 $I = (f(p) - \varepsilon, f(p) + \varepsilon)$ を定める。

条件から $f^{-1}(I)$ は開集合である。つまり、 $\delta>0$ に対し、 $p\in X$ の近傍 U_δ が $U_\delta\subset f^{-1}(I)$ を満たす。

$$U_{\delta} = \{ x \in X \mid d(p, x) < \delta \} \tag{14}$$

$$U_{\delta} \subset f^{-1}(I)$$
 より

$$f(U_{\delta}) \subset I = (f(p) - \varepsilon, f(p) + \varepsilon)$$
 (15)

である。

よって、f は連続写像である。