Logical equivalence

Р	Q	$P \Rightarrow Q$	$(\sim Q) \Rightarrow (\sim P)$
Т	T		
T	F		
F	T		
F	F		

We use the notation

$$P \! \Rightarrow \! Q \ \equiv \ (\sim \! Q) \! \Rightarrow \! (\sim \! P)$$

and call the two sides logically equivalent.

Set notations

- $\{...\}$: set. E.g. $\{1,2,3\}$ is the set containing elements 1, 2, and 3.
- \varnothing : the empty set.
- \in : membership. E.g. $x \in S$ means x is an element of the set S. E.g. $x, y \in S$ means x and y are both in S.
- \subset : subset. E.g. $A \subset B$ means set A is a subset of set B.
- \mathbb{N} : the set of natural numbers.
- \mathbb{Z} : the set of integers.
- \mathbb{Q} : the set of rational numbers.
- \mathbb{R} : the set of real numbers.

Quantifiers

- Universal quantifier: "for all...", "for any...", "for every..." we use the notation "∀" (an upside down "A")
- **Existential** quantifier: "there exists...", "there is...", "for some...", "for at least one..." we use the notation "∃" (an "E" facing the wrong way)

Example 1 Let S be the set of all states in USA. Consider the following open sentences

$$P(x, y)$$
: x and y are neighbors (share land borders)

Write the following expressions in words and then determine their truth values.

- 1. $\forall x \in S, \exists y \in S, P(x, y)$.
- 2. $\forall x \in S, \exists y \in S, \sim P(x, y)$.
- 3. $\exists x, y, z \in S, P(x, y) \land P(x, z) \land P(y, z)$.

4. $\exists x \in S, \forall y \in S, P(x, y)$.

5. $\exists x \in S, \forall y \in S, \sim P(x, y)$.

Negations of "for all..."

$$\sim (\forall x \in S, P(x)) \equiv \exists x \in S, \sim P(x)$$

 \sim ("for all x in S, P(x) is true") \equiv "there exists an x in S such that P(x) is false"

Negation of "there exists..."

$$\sim (\exists x \in S, P(x)) \equiv \forall x \in S, \sim P(x)$$

$$\sim (\text{"there exists an } x \text{ in } S \text{ such that } P(x) \text{ is true}) \equiv \text{"for all } x \text{ in } S, P(x) \text{ is false"}$$

Example 2 Consider the open sentence

$$P(x, y) : x < y$$
.

Write the following expressions in words and then determine their truth values.

1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, P(x, y).$

In words:

Its negation in symbols:

Its negation in words:

2. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, P(y, x).$

In words:

Its negation in symbols:

Its negation in words:

3. $\forall x, y \in \mathbb{R}, P(x, y) \Rightarrow (\exists z \in \mathbb{R}, P(x, z) \land P(z, y))$.

In words:

Its negation in symbols:

Its negation in words: