Ejercicio 2-75. Resolver el sistema de ecuaciones Ax=b con elementros de la matriz A y del vector b dados en función de las filas y columnas i y j.

Francisco Javier Fernández Caro

12 de febrero de 2024

1. Introducción

En este ejercicio vamos a resolver el sistema de ecuaciones de tamaño n=14 con a_{ij} dado de la siguiente forma:

$$a_{ij} = \begin{cases} 1+i , & \text{si} \quad i=j ,\\ \frac{(-1)^{i+j}}{i+j} , & \text{si} \quad i \neq j , \end{cases}$$
 $b_i = \frac{1}{i}$

He utilizado Fortran para que nos saque un documento .txt y mostrar las matrices que nos quedan al rellenar los elementos a_{ij} como nos pide el ejercicio. Dándonos los siguientes resultados:

Matriz A:

		Matri	z a										
2.000	-0.333	0.250	-0.200	0.167	-0.143	0.125	-0.111	0.100	-0.091	0.083	-0.077	0.071	-0.067
-0.333	3.000	-0.200	0.167	-0.143	0.125	-0.111	0.100	-0.091	0.083	-0.077	0.071	-0.067	0.062
0.250	-0.200	4.000	-0.143	0.125	-0.111	0.100	-0.091	0.083	-0.077	0.071	-0.067	0.062	-0.059
-0.200	0.167	-0.143	5.000	-0.111	0.100	-0.091	0.083	-0.077	0.071	-0.067	0.062	-0.059	0.056
0.167	-0.143	0.125	-0.111	6.000	-0.091	0.083	-0.077	0.071	-0.067	0.062	-0.059	0.056	-0.053
-0.143	0.125	-0.111	0.100	-0.091	7.000	-0.077	0.071	-0.067	0.062	-0.059	0.056	-0.053	0.050
0.125	-0.111	0.100	-0.091	0.083	-0.077	8.000	-0.067	0.062	-0.059	0.056	-0.053	0.050	-0.048
-0.111	0.100	-0.091	0.083	-0.077	0.071	-0.067	9.000	-0.059	0.056	-0.053	0.050	-0.048	0.045
0.100	-0.091	0.083	-0.077	0.071	-0.067	0.062	-0.059	10.000	-0.053	0.050	-0.048	0.045	-0.043
-0.091	0.083	-0.077	0.071	-0.067	0.062	-0.059	0.056	-0.053	11.000	-0.048	0.045	-0.043	0.042
0.083	-0.077	0.071	-0.067	0.062	-0.059	0.056	-0.053	0.050	-0.048	12.000	-0.043	0.042	-0.040
-0.077	0.071	-0.067	0.062	-0.059	0.056	-0.053	0.050	-0.048	0.045	-0.043	13.000	-0.040	0.038
0.071	-0.067	0.062	-0.059	0.056	-0.053	0.050	-0.048	0.045	-0.043	0.042	-0.040	14.000	-0.037
-0.067	0.062	-0.059	0.056	-0.053	0.050	-0.048	0.045	-0.043	0.042	-0.040	0.038	-0.037	15.000

Matriz B:

	Matriz b	
1	1.0000	
ĺ	0.5000	ĺ
	0.3333	
	0.2500	
	0.2000	
	0.1667	
	0.1429	
	0.1250	
	0.1111	
	0.1000	
	0.0909	
	0.0833	
	0.0769	
- 1	0.0714	I

A continuación planteamos el sistema de ecuaciones Ax=b

2. Método de resolución

Una vez definido nuestro sistema de ecuaciones con las matrices A y b escritas correctamente, podemos resolver el sistema mediante la descomposición en matrices LU llamando a la subrutina ofrecida por el profesor "ludcmp.f", que nos descompone nuestra matriz en las matrices L y U haciendo equivalente las expresiones Ax=b y LUx=b.

Una vez dispuesto el problema de ésta manera, podemos llamar a la siguiente subrutina ofrecida por el profesor para resolver el sistema de ecuaciones llamada "lubksb.f" que utiliza el método de sustitución hacia atrás visto en clase.

3. Resultados

La subrutina "lubskb.f" nos devuelve los valores calculados x_i siendo los resultados:

$X_1 = 0.537$
$X_2 = 0.226$
X_3 =0.638E-01
$X_4 = 0.655E - 01$
X_5 =0.243E-01
X_6 =0.310E-01
X_7 =0.128E-01
X_8 =0.180E-01
$X_9 = 0.792E - 02$
X_10 =0.118E-01
X_11 =0.538E-02
X_12 =0.831E-02
X_13 =0.389E-02
X_14 =0.617E-02

4. Conclusión

Nos piden representar los valores de x_i en función de i para discutir el resultado. Para ello usamos gnuplot. He decidido hacer dos gráficas. Una gráfica a escala lineal en ambos ejes y otra gráfica con escala logarítmica en el eje y:

Como podemos observar, los valores de x_i se van acercando a 0 en ambas representaciones conforme aumenta i.

Otra observación, aunque en la representación lineal no se ve tan claramente, es que si hiciesemos una curva de regresión para los valores de x_i dados, vemos que los valores impares de i estarían siempre por debajo de esa curva y los valores pares de i estarían siempre por encima. Vemos también que ésta curva de regresión tiene menos pendiente conforme aumenta i, lo que nos hace pensar que es posible que ésta curva converge a un límite distinto de 0 con valores de i grandes.