Sandiego Univ "Algorithm Toolbox" Week 3. Greedy Algorithm

1. Largest number

Carfueling. MinRefill

최대 리필 횟수는 기껏해야 n 번// 외부 loop, 내부 loop 구분

2. Subproblems in Greedy Algorithms

2.1 Safe Move

Safe move

- A move is called safe if there is an optimal solution consistent with this first move
- Not all first moves are safe
- Often greedy moves are not safe

- 2.2 General Strategy

General Strategy

- Make a greedy choice
- Prove that it is a safe move
- Reduce to a subproblem

 Solve the subproblem

3. Grouping Children

Running time

3.1 Naive

```
m \leftarrow \operatorname{len}(C)

m \leftarrow \operatorname{len}(C)

for each partition into groups

C = G_1 \cup G_2 \cup \cdots \cup G_k:

good \leftarrow \text{true}

for i from 1 to k:

if \max(G_i) - \min(G_i) > 1:

good \leftarrow \text{false}

if good:

m \leftarrow \min(m, k)

return m
```

Lemma

The number of operations in MinGroups(C) is at least 2^n , where n is the number of children in C.

Proof

- Consider just partitions in two groups
- $C = G_1 \cup G_2$
- For each $G_1 \subset C$, $G_2 = C \setminus G_1$
- Size of C is n
- lacksquare Each item can be included or excluded from G_1
- There are 2^n different G_1

It's too slow and inefficient.

3.2 Efficient method

Treat points instead of the above children.

Covering points by segments

Input: A set of n points $x_1, \ldots, x_n \in \mathbb{R}$.

Output: The minimum number of segments of unit length needed to cover all

the points.

There is points on a line.

Many lines with same length over the line means covering. But this is not optimal solution.

See 3 lines below the centered line. These lines mean covering, and this arrangement is optimal solution for there are the least number of the covering required.

Safe move: cover the leftmost point with a unit segment with left end in this point.

3.2.1 Algorithm

Assume $x_1 \leq x_2 \leq \ldots \leq x_n$

PointsCoverSorted (x_1, \ldots, x_n)

$$R \leftarrow \{\}, i \leftarrow 1$$
while $i \leq n$:
 $[\ell, r] \leftarrow [x_i, x_i + 1]$
 $R \leftarrow R \bigcup \{[\ell, r]\}$
 $i \leftarrow i + 1$
while $i \leq n$ and $x_i \leq r$:
 $i \leftarrow i + 1$
We'll start with an empty set

return of segments denoted by R and

R: empty set

i = 1

While (i < = n): # Currently, 'i' refers to leftmost point

l, r = xi, xi+1 # xi point is in left end. (2) [l,r]: [left, right] in a specific segmentR = R U I,r

i = i+1 # Not remove the point, but just move the pointer

Lemma

The running time of PointsCoverSorted is O(n).

Proof

- \blacksquare i changes from 1 to n
- For each i, at most 1 new segment
- Overall, running time is O(n)

Conclusion

- Straightforward solution is exponential
- Important to reformulate the problem in mathematical terms
- Safe move is to cover leftmost point
- Sort in $O(n \log n)$ + greedy in O(n)

4. Fractional Knapsack

4.1 Long Hike

>> It requires enough foods.

What is the maximized amount of calories that I can get from these foods?

4.2 Fractional Knapsack

Fractional knapsack Input: Weights w_1, \ldots, w_n and values v_1, \ldots, v_n of n items; capacity W. Output: The maximum total value of fractions of items that fit into a bag of capacity W.

Safe move

Lemma

There exists an optimal solution that uses as much as possible of an item with the maximal value per unit of weight.

Greedy Algorithm

- While knapsack is not full
- Choose item *i* with maximum $\frac{v_i}{w_i}$
- If item fits into knapsack, take all of it
- Otherwise take so much as to fill the knapsack

4.3 Implementation, Analysis, and Optimization

4.3.1 Naive

Knapsack($W, w_1, v_1, \dots, w_n, v_n$) $A \leftarrow [0, 0, \dots, 0], V \leftarrow 0$ repeat n times: if W = 0: return (V, A)select i with $w_i > 0$ and $\max \frac{v_i}{w_i}$ $a \leftarrow \min(w_i, W)$ $V \leftarrow V + a \frac{v_i}{w_i}$ $w_i \leftarrow w_i - a, A[i] \leftarrow A[i] + a, W \leftarrow W - a$ return (V, A)

For _ in range(n):

If W == 0: Return (V, A)

4.3.2 Efficient ver

Assume
$$\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \cdots \ge \frac{v_n}{w_n}$$

$Knapsack(W, w_1, v_1, \ldots, w_n, v_n)$

$$A \leftarrow [0,0,\ldots,0], V \leftarrow 0$$
for i from 1 to n :

if $W=0$:

return (V,A)
 $a \leftarrow \min(w_i,W)$
 $V \leftarrow V + a \frac{v_i}{w_i}$
 $w_i \leftarrow w_i - a, A[i] \leftarrow A[i] + a, W \leftarrow W - a$

return (V,A)

Lemma

The running time of Knapsack is $O(n^2)$

Proof

- Select best item on each step is O(n)
- Main loop is executed *n* times
- Overall, $O(n^2)$

5. Review

Main Ingredients

- Safe move
- Prove safety
- Solve subproblem
- Estimate running time

Safe Moves

- Put max digit first
- Find first occurrence of first character
- Cover leftmost point
- Use item with maximum value per unit of weight