

pumas^{Al}

DeepPumas Embedding models

Niklas Korsbo

Generative AI

Goal: Generated data instinguishable in distribution from real data

www.thispersondoesnotexist.com

How is that done?

Data is a mix of

- Observed quantities (pixel intensities)
- Unobserved quantities (face, smiling, ...)

We humans learn to extract the unobserved GenAl needs to do that too.

How is that done?

Data is a mix of

- Observed quantities (y)
- Unobserved quantities (z "latent variables")

Generative models

- Definitions
 - **z**: latent variables of dimension d
 - y: observed response/data
 - y_g : generated/simulated/synthetic response/data
- Model

$$\begin{aligned} \boldsymbol{y_g} &= \boldsymbol{f}(\boldsymbol{z}) + \boldsymbol{\epsilon} \\ \boldsymbol{z} &\sim \text{Normal}(0, \boldsymbol{I}_{d \times d}) \\ \boldsymbol{\epsilon_i} &\sim \text{Normal}(0, \sigma^2) \end{aligned}$$

• Objective: choose $m{f}$ such that the distribution of $m{y}_{m{g}}$ is close to the distribution of the observed data $m{y}$

Conditional generative models

- Definitions
 - **z**: latent variables of dimension d
 - *x*: observed covariates
 - **y**: observed response
 - y_g : generated/simulated/synthetic response
- Model

$$y_g = f(z, x) + \epsilon$$

$$z \sim \text{Normal}(0, I_{d \times d})$$

$$\epsilon_i \sim \text{Normal}(0, \sigma^2)$$

• Objective: choose f such that the conditional distribution of $y_g \mid x$ is close to the conditional distribution of the observed data $y \mid x$

NLME is Generative Al!

- Definitions
 - η : latent variables of dimension d and covariance matrix Ω
 - *x*: observed covariates
 - **dv**: observed response
 - dv_g : generated/simulated/synthetic response
- Model

$$\mathbf{dv_g} = f_{\theta}(\eta, x) + \epsilon$$
$$\eta \sim \text{Normal}(0, \Omega)$$
$$\epsilon_i \sim \text{Normal}(0, \sigma^2)$$

• Objective: choose f_{θ} such that the conditional distribution of $\mathbf{dv_g} \mid x$ is close to the conditional distribution of the observed data $\mathbf{dv} \mid x$

Latent variables = Random effects

An Introduction to Variational Autoencoders

Diederik P. Kingma, Max Welling

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{z})p_{\theta}(\mathbf{x}|\mathbf{z}) \tag{1.14}$$

where $p_{\theta}(\mathbf{z})$ and/or $p_{\theta}(\mathbf{x}|\mathbf{z})$ are specified. The distribution $p(\mathbf{z})$ is often called the *prior distribution* over \mathbf{z} , since it is not conditioned on any observations.

The marginal distribution over the observed variables $p_{\theta}(\mathbf{x})$, is given by:

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$
 (1.13)

This is also called the (single datapoint) marginal likelihood or the model evidence, when taken as a function of $\boldsymbol{\theta}$.

Maximize the marginal likelihood.

Marginalize over **z**

Generative AI – Typical anatomy

NLME as GenAl

Input: Time series of outcomes/concentrations

Output: Time series of outcomes/concentrations

Decoder: The structural NLME (parameter transforms, dynamics, etc.)

Encoder: ???

What do "latent variables" represent?

NLME:

- Interpretation from structural constraints: $CL = tvCL \cdot \exp(\eta_{cl})$.
 - These interpretations can fool us!
- Structural constraints not necessary: $NN\left(\frac{Central}{Vc}, \eta\right)$

What do "latent variables" represent?

Image GenAI:

For an image:

Not pixel-by-pixel intensity

Rather:

- What objects are in the image
- What are the characteristics of the objects
- What are they doing
- What's the style

What do "latent variables" represent?

Text GenAl:

Not words

rather:

- Sentiment
- Conveyed information
- Writing style
- Language
- •

Embedding models

Extract meaningful, information-dense features from the data

https://huggingface.co/spaces/mteb/leaderboard

A unified "API" for complex data

Different data modalities (images, text, etc) all map to embeddings - simple vectors of numbers.

