Segundo Proyecto Parcial

Crecimiento Bacteriano y Métodos Numéricos

Equipo 2

Tecnológico de Monterrey

02 de noviembre del 2021

Investigación: 1 Problema

Investigación: 2 Problema

Equipo 2

Tecnológico de Monterrev

Introducción

Este proyecto se adaptará al tema de crecimiento bacteriano, el cual se define como el incremento en número de bacterias, existen varios factores que pueden influir en dicho crecimiento, como: los nutrientes, humedad, temperatura, entre otros, por lo que se utilizarán distintos métodos y teoremas para resolver problemas de crecimiento bacteriano. Así mismo aplicaremos un método de sistemas de ecuaciones no lineales.

Objetivos

General: Aplicar los métodos vistos en clase en un tema relacionado a la carrera de ingeniería en biotecnología.

Específicos: Aplicar un sistema de ecuaciones lineales como: Cramer, Jacobi, Seidel, eliminación, Gauss Jordan, seleccionando 3 métodos de estos, para la resolución de un problema de crecimiento bacteriano.

Aplicar un sistema de ecuaciones NO lineales como Newton Raphson, para la resolución de un problema de crecimiento bacteriano.

Método de Newton Raphson: Sistema de ecuaciones NO lineales

Problema: La concentración de bacterias en un lago disminuye de acuerdo con la siguiente ecuación: c=75e-1.5 t+2000e-0.075 t, Determinar el tiempo requerido para que la concentración de bacterias se reduzca a 15 (Alejandra, H., 2020).

Graficos Excel y Matlab

_0	-0.079	385	x_n	$_{+1}=x_{n}-% -\sum_{n=0}^{\infty }\left\{ x_{n}^{n}-x_{n}^{n} ight\} $	$\frac{f(x_n)}{f'(x_n)}$.					
			Donde	f^\prime denota la	derivada de	f.				
	Pn-1	f(Pr	1-1)	f'(Pn-1)	Pn	f(Pn)	E	Validacion	1 Validacion 2	
	-0.07938	3524	13.45413457		29.33464187	27823.64525826	0.00010000	fracaso	fracaso	
	29,33464	1187	27823,64525826	2757.57149172	19.24473292	8237.55361989	0.00010000	fracaso	fracaso	
	3 19.24473	3292	8237,55361989	1226,54763345	12,52868424	2436.50540152	0.00010000	fracaso	fracaso	
	4 12,52868	3424	2436,50540152	546.07589174	8.06684031	719.16259937	0.00010000	fracaso	fracaso	
	5 8.06684	1031	719.16259937	243.62277972	5.11488894	211.30244534	0.00010000	fracaso	fracaso	
	6 5.11488		211,30244534	109.17560015	3.17945240	61.46757500			fracaso	
	7 3.17945		61.46757500	49.40346714	1.93525683	17.48361767	0.00010000		fracaso	
	8 1,93525		17.48361767	22.84719799	1.17001561	4,70848670			fracaso	
	9 1,17001		4,70848670	11.12690326	0.74685325	1.08995641	0.00010000		fracaso	
1			1.08995641	6.15448879	0.56975382	0.15881141	0.00010000		fracaso	
1			0.15881141	4.39238119	0.53359771	0.00610898			fracaso	
1			0.00610898	4.05576585	0.53209147	0.00010030	0.00010000		exito	
1			0.00010030	4.04191280	0.53203147	0.00001043	0.00010000		exito	
1			0.00001043	4.04191280	0.53208889	0.0000000	0.00010000		exito	
1			0.00000000							
1	5 0.53208	8889	0.00000000	4.04188907	0.53208889	0.00000000	0.00010000	exito	exito	
			1						-2.679385	454.099
									-2.479385	420.2038
Metodo Newthon Raphson									-2.279385	386.308
							_	-2.079385	352.412	
Ejemplo 1			f(v) - 75	1.1 5v+20	75.44.0.07	ISv.			-1.879385 -1.679385	318.516 284.620
cjeli	Jempio I		f(x) = 75e^-1.5x+2075e^-0.075x						-1.679385 -1.479385	284.620 250.724
			21 _ 4/	D E-M 4 I	AFE C	25-4/ 0.0	7.E.a.\		-1.279385	216.828
			= -	12.5e^(-1.5	DX)-155.b.	ZDE"(-U.U.	(XC)		-1.079385	182,933
									-0.879385	149.037
			1				1		-0.679385	115.1415
									-0.479385	81.2457

Graficos Excel y Matlab

```
    Matlab:

• %1.- Encontrar a v b
• clear, clc, close all
• C=15:
• syms t real

    f=75*exp(-1.5*t)+20*exp(-0.075*t)-15;

    fplot(f,[3,6], 'color', 'b')

• grid on
• a=3.8: b=4.0:

    Es=0.005;

fd=diff(t):
x(1)=a;

    %Fórmula interactiva

• for i=2:10000
     %Método de Newton Raphson
     % x(i+1)=xi-f(xi)/f'(xi)
         x(i) = x(i-1) - subs(f, (x(i-1))) / subs(fd, x(i-1))
     %Criterio de error absoluto
     E=abs(x(i)-x(i-1));
     if E<Es
         break
                                                               3.5
                                                                           4.5
                                                                                 5
     end
 end

    %Mostrar resultados

• fprintf('El tiempo requerido para la disminución de concentración de
 bacterias es de \$0.3f', x(i)
```

Regla de Cramer

Tres especies bacterianas diferentes se cultivan en un plato y se alimentan de tres nutrientes. Cada individuo de la especie I consume una unidad de cada uno de los primeros y segundos nutrientes y 2 unidades del tercer nutriente. Cada individuo de la especie II consume 2 unidades del primer nutriente y 2 del tercer nutriente. Cada individuo de la especie III consume 2 unidades del primer nutriente, 3 unidades del segundo nutriente y 5 unidades del tercer nutriente. Si al cultivo se le dan 5300 unidades del primer nutriente, 6900 unidades del segundo nutriente y 12,200 unidades del tercer nutriente, ¿Cuánto crecimiento bacteriano de cada especie se pueden mantener para que se consuman todos los nutrientes?

Resultado: Gráfica

det(D)

x1=det(B)/det(A);
x2= det(C)/det(A);

Método Jacobi

Una fábrica de guesos desea someter a pruebas sus cultivos de Penicillium roqueforti con el objetivo de reducir el tiempo de incubación del cultivo para introducirlo al queso con mayor rapidez; en busca de un cultivo con el menor tiempo duplicación y mayor crecimiento exponencial para sus quesos se cultiva in vitro en tres placas petri con diferentes tratamientos. A las 24 horas de incubación se hizo un conteo celular de los tratamientos y se se obtuvieron 370 UFC en la placa con tratamiento 1, 420 UFC en la plaza con tratamiento 2 y 290 UFC en placa con tratamiento 3, ¿ Qué factor de crecimiento tiene mayor influencia en el crecimiento bacteriano de P. roqueforti?

Resultado: Gráfica

Resultado en Matlab

Método Gauss-jordan

Una fábrica de quesos desea someter a pruebas sus cultivos de Penicillium roqueforti con el objetivo de reducir el tiempo de incubación del cultivo para introducirlo al queso con mayor rapidez; en busca de un cultivo con el menor tiempo duplicación y mayor crecimiento exponencial para sus quesos se cultiva in vitro en tres placas petri con diferentes tratamientos

Método Gauss-jordan

La misma cepa hasta llegar a una concentración de 1*10 a la 9 UFC/gr: el tratamiento 1 consiste en 3 dosis del f.c. A (factor de crecimiento), 1 dosis del f.c. B y 2 dosis del f.c. C; el tratamiento 2 consiste en 2 dosis del f.c. A (factor de crecimiento), 3 dosis del f.c. B y 2 dosis del f.c. C y el tratamiento 3 consiste en 1 dosis del f.c. A (factor de crecimiento), 2 dosis del f.c. B y 3 dosis del f.c. C. A las 24 horas de incubación se hizo un conteo celular de los tratamientos y se se obtuvieron 370 UFC en la placa con tratamiento 1, 420 UFC en la plaza con tratamiento 2 y 290 UFC en placa con tratamiento 3, ¿ Qué factor de crecimiento tiene mayor influencia en el crecimiento bacteriano de P. roqueforti?

Resultados

Conclusiones

Cramer: Al realizar una comparación uno a uno entre la resolución del problema con dos diferentes métodos de resolución (Excel/ Matlab), se obtienen los resultados en 0 correspondientes a las variables X,Y,Z. De igual manera, al realizar el despeje correspondiente a las variables se obtienen los resultados del crecimiento bacteriano correspondiente a las unidades de sustrato bacteriológico usado.

Conclusiones

Jacobi:En conclusión es posible observar la congruencia entre ambas herramientas utilizadas para resolver el problema por el método de Jacobi, ambas coinciden que el factor de crecimiento con mayor inferencia en el crecimiento bacteriano es el f.c. a que corresponde a la variable x; en ambos modelos hay congruencia con el método empleado ya que la matriz corresponde a una matriz diagonal dominante.

Conclusiones

Este método, no nos permite determinar de manera eficiente el crecimiento bacteriano, ya que su objetivo principal es calcular matrices inversas para llegar a una matriz diagonal, esto lo podemos corroborar mediante el cotejamiento de los resultados obtenidos tanto en excel como en matlab y que nos demuestre lo discordante que son.

Trello

