Solutions to Bain and Engelhardt's Introduction to Probability and Mathematical Statistics

06.01

Given: the pdf of x
$$f_x(x) = \begin{cases} 4x^3 & , & 0 < x < 1 \\ 0 & , & o/w \end{cases}$$
 Find: PDF of a) $Y = X^4$

Setup: Use the CDF technique to get the CDF of Y in terms of a CDF of X $F_Y(y) = P[Y \le y] = P[X^4 \le Y] = P[-y^{\frac{1}{4}} \le X \le y^{\frac{1}{4}}] = F_X(y^{\frac{1}{4}}) - F_X(-y^{\frac{1}{4}})$

Steps: i) Differentiate with respect to y to find an equation given in terms of the pdf of x: $f_y(y) = \frac{d}{dy} F_X(y^{\frac{1}{4}}) - \frac{d}{dy} F_X(-y^{\frac{1}{4}}) = f_x(y^{\frac{1}{4}}) \frac{d}{dy} y^{\frac{1}{4}} - f_x(-y^{\frac{1}{4}}) \frac{d}{dy} - y^{\frac{1}{4}} = f_x(y^{\frac{1}{4}}) \frac{y^{-\frac{3}{4}}}{4} - f_x(-y^{\frac{1}{4}}) \frac{-y^{-\frac{3}{4}}}{4}$

ii) Plug in the original limits and function for the pdf of x, and compute the cdf for y

Result:
$$f_y(y) = \begin{cases} 4y^{\frac{3}{4}} \frac{1}{4y^{\frac{3}{4}}} &, & 0 < x < 1 \\ 0 &, & o/w \end{cases} = \begin{cases} 1 &, & 0 < x < 1 \\ 0 &, & o/w \end{cases}$$

Find: PDF of b) $W = e^X$

Setup: Use the CDF technique to get the CDF of W in terms of a CDF of X $F_W(w) = P[W \le w] = P[e^X \le W] = P[X \le lnW] = F_X(lnW)$

Steps: i) Differentiate with respect to w to find an equation given in terms of the pdf of x: $f_w(w) = \frac{d}{dw} F_X(lnW) \frac{d}{dw}(lnw) = f_x(lnw) \frac{1}{w}$

ii) Plug in the original limits and function for the pdf of x, and compute the cdf for y

Result:
$$f_W(w) = \begin{cases} \frac{4(\ln w)^3}{w} & , & 1 < w < e \\ 0 & , & o/w \end{cases}$$

Find: PDF of c) $Z = \ln x$

Setup: Use the CDF technique to get the CDF of Z in terms of a CDF of X $F_Z(z) = P[Z \le z] = P[\ln x \le z] = P[X \le e^z] = F_X(e^z)$

Steps: i) Differentiate with respect to z to find an equation given in terms of the pdf of x: $f_z(z) = \frac{d}{dz} F_X(e^z) = f_x(e^z) \frac{de^z}{dz}$

ii) Plug in the original limits and function for the pdf of x, and compute the cdf for y

Result:
$$f_Z(z) = \begin{cases} 4e^{4z} & , & -\infty \le z < 0 \\ 0 & , & o/w \end{cases}$$

Find: **PDF** of d)
$$U = (X - 0.5)^2$$

Setup: Use the CDF technique to get the CDF of U in terms of a CDF of X $F_U(u) = P[U \le u] = P[(X - 0.5)^2 \le u] = P[|X - 0.5| \le u^{0.5}] = F_X(u^{1/2} + 1/2) - F_X(-u^{1/2} + 1/2)$

Steps: i) Differentiate with respect to u to find an equation given in terms of the pdf of x: $f_U(u) = \frac{d}{du} F_X(u^{1/2} + 1/2) = f_x(u^{1/2} + 1/2) \frac{d}{du}(u^{1/2} + 1/2) - f_x(-u^{1/2} + 1/2) \frac{d}{du}(-u^{1/2} + 1/2) f_x(u^{1/2} + 1/2) 1/2u^{-1/2}) - f_x(-u^{1/2} + 1/2) 1/2u^{-1/2}$

ii) INCOMPLETE

Result:
$$f_Z(z) = \begin{cases} 4e^{4z} & , & -\infty \le z < 0 \\ 0 & , & o/w \end{cases}$$
06.02

Given: $X \sim Unif(0,1)$

Find: a) PDF of $Y = X^{1/4}$

Setup:
$$F_Y(y) = P[Y \le y] = P[X^{1/4} \le y] = P[X \le y^4] = F_X(y^4)$$

Steps: i) find the pdf of x. Because X is a Uniform distribution with parameters 1 and 0, the pdf, which for Unif(a,b) is 1/b-a where a < x < b. Here, Unif(0,1) gives 1/1-0 =1

ii) Differentiate with respect to y to find an equation given in terms of the pdf of x: $f_Y(y) = \frac{d}{dy} F_X(y^4) = 4y^3$

Result:
$$f_Y(y) = \begin{cases} 4y^3 & , & 0 < y < 1 \\ 0 & , & o/w \end{cases}$$

Find: b) PDF of $W = e^{-X}$

Setup:
$$F_W(z) = P[W \le w] = P[e^{-X} \le W] = P[-X \le lnw] = P[X \ge -lnw] = 1 - F_x(-lnw)$$

Steps: i) find the pdf of x. See part a) for an explanation of why it is 1 when a < x < b

ii) Differentiate with respect to w to find an equation given in terms of the pdf of x: $f_W(w) = -\frac{d}{dw} F_X \frac{d}{dw} (-lnw) = -f_X (-lnw) \frac{-1}{w}$ for $e^{-1} < w < 1 = -\frac{1}{w}$

Result:
$$f_W(w) = \begin{cases} \frac{1}{w} &, e^{-1} < w < 1 \\ 0 &, o/w \end{cases}$$

Find: c) PDF of $Z = 1 - e^{-X}$

Setup:
$$F_Z(z) = P[Z \le z] = P[1 - e^{-X} \le z] = P[-e^{-X} \le z - 1] = P[e^{-X} \ge 1 - z] = P[-X \ge ln(1-z)] = P[X \le -ln(1-z)] = F_x(-ln(1-z))$$

Steps: i) find the pdf of x. See part a) for an explanation of why it is 1 when a < x < b

ii) Differentiate with respect to w to find an equation given in terms of the pdf of x: $f_Z(z) = -ln(1-z) = -\frac{-1}{1-z} = \frac{1}{1-z}$ for $0 < z < e^{-1}$

Result:
$$f_W(w) = \begin{cases} \frac{1}{1-z} &, & 0 < z < e^{-1} \\ 0 &, & o/w \end{cases}$$

Find: d) **PDF** of U = X(1 - X)

Setup:
$$F_U(u) = P[U \le u] = P[X(1-x) \le u] = P[-X^2 + X \le u] = P[-(X-1/2)^2 \le u - 1/4] = P[(X-1/2)^2 \ge 1/4 - u] = P[|(X-1/2)| \ge (1/4 - u)^{1/2}] =$$

Steps: i) find the pdf of x. See part a) for an explanation of why it is 1 when a < x < b

ii) INCOMPLETE: $f_Z(z) = -ln(1-z) = -\frac{-1}{1-z} = \frac{1}{1-z}$ for $0 < z < e^{-1}$

Result:
$$f_W(w) = \begin{cases} \frac{1}{1-z} &, & 0 < z < e^{-1} \\ 0 &, & o/w \end{cases}$$
06.03

Given: PDF $f_R(r) = \begin{cases} 6r(1-r) & , & 0 < r < 1 \\ 0 & , & o/w \end{cases}$

Find: Distribution of the circumference

Setup: The circumference is $c=2\pi r$ - we have the pdf in terms of x, so this is the transformation

$$F_C(c) = P[C \le c] = P[2\pi r \le c] = P[r \le c/2\pi] = F_x(c/2\pi)$$

Steps: i) Differentiate with respect to c to find an equation given in terms of the pdf of x. $f_C(c) = \frac{d}{dc} F_R(c/2\pi) = f_R(c/2\pi) \frac{d}{dc}(c/2\pi) = f_R(c/2\pi)(1/2\pi)$

Plug the original pdf back into this new form:

$$f_C(c) = \frac{6c}{2\pi} (1 - (c/2\pi))(1/2\pi) = \frac{6c(2\pi - c)}{2\pi^3}$$
 if $0 < c < 2\pi$

Result:
$$f_C(c) = \begin{cases} \frac{6c(2\pi - c)}{2\pi^3} & , & 0 < c < 2\pi \\ 0 & , & o/w \end{cases}$$

Find: Distribution of the area

Setup: The area is
$$a = \pi r^2$$
 so the cdf $F_A(a) = P[A \le a] = P[\pi r^2 \le a] = P[r^2 \le a/\pi]$
= $P[|r| \le (a/\pi)^{1/2}] = P[-(a/\pi)^{1/2} \le c \le (a/\pi)^{1/2}] = F_r(a/\pi)^{1/2} - F_r - (a/\pi)^{1/2}$

Steps: i) Differentiate with respect to a to find an equation in terms of the pdf of x. $f_A(a) = \frac{d}{da} F_R(a/\pi)^{1/2} - \frac{d}{da} F_R - (a/\pi)^{1/2} = f_R[(a/\pi)^{1/2}] \frac{d}{da} (a/\pi)^{1/2} f_R[-(a/\pi)^{1/2}] \frac{d}{da} - (a/\pi)^{1/2} f_R[-(a/\pi)^{1/2$

Result:
$$f_A(a) = \begin{cases} \frac{3(\sqrt{\pi} - \sqrt{a})}{\pi^{3/2}}, & 0 < a < \pi \\ 0, & o/w \end{cases}$$

06.14

Given: Joint PDF
$$f(x,y) = \begin{cases} 4e^{-2(x+y)}, & 0 < x < \infty, 0 < y < \infty \\ 0, & o/w \end{cases}$$

Find: a) CDF of W=X+Y

Setup:
$$F_w(w) = P[W \le w] = P[X + Y \le w]$$

Steps:

- Express as a sum of probabilities, replace probabilities with binomials
- Simplify and Use Combinatorial Identity

Result: $\binom{n+m}{k}$ **06.15** This is a simplified version of example 6.4.5.

 $X_1, X_2 \sim POI(\lambda)$ so the MGF of both is $e^{\lambda(e^t-1)}$. Thus by theorem 6.4.4

$$M_Y(t) = e^{\lambda(e^t - 1)} e^{\lambda(e^t - 1)} = e^{2\lambda(e^t - 1)} \sim POI(2\lambda)$$

The pdf then of Y is

$$f_Y(y) = \begin{cases} \frac{e^{-2\lambda}(2\lambda)^y}{y!} & y = 0, 1, 2, \dots \\ 0 & otherwise. \end{cases}$$

06.16 Note: the pdf of $f_{x_1,x_2} = \frac{1}{x_1^2} \frac{1}{x_2^2}$

a) We need to find $f_{u,v} = f_{x_1,x_2}(x_1(u,v), x_2(u,v))|J|$ where J is our jacobian. First we let $u = x_1x_2$ and $v = x_1$ thus $x_1 = v$ and $x_2 = \frac{u}{v}$, now we can find J.

$$J = \left| \begin{array}{cc} 0 & 1 \\ \frac{1}{v} & 0 \end{array} \right| = \frac{1}{v}$$

Finally, our pdf is:

$$f_{U,V}(u,v) = f_{x_1,x_2}(v,\frac{u}{v}) \left| \frac{1}{v} \right|$$

$$= \frac{1}{v^2} \frac{1}{\left(\frac{u}{v}\right)^2} \left| \frac{1}{v} \right|$$

$$= \frac{1}{u^2 v}, 1 < v < u < \infty$$

06.23 We will use the property that independant identically distributed random variables has the form of 6.4.4, $M_Y(t) = [M_X(t)]^n$ where $Y = X_1 + X_2 + ... + X_n$. then since $X_i \sim GEO(p)$

$$Mgf(Y) = M_{X_1}(t)M_{X_2}(t)...M_{X_k}(t)$$

$$= (M_X(t))^k$$

$$= (\frac{pe^t}{1 - ge^t})^k \sim NegativeBinomial(k, p)$$

06.25 First note, X_1, X_2, X_3, X_4 are all independant, but they are not IID as only $X_2, X_3, X_4 \sim POI(5)$ with X_1 not being listed. So formula 6.4.5 does not hold. 6.4.4 does though.

A)

$$Mgf(Y) = M_{X_1}(t)M_{X_2+X_3+X_4}(t)$$

= $M_{X_1}(t)(M_{X_i}(t))^3$

Since X_2, X_3, X_4 are iid 6.4.5 holds for moving to this mgf

$$= M_{X_1}(t)(e^{\mu(e^t-1)})^3$$

$$= M_{X_1}(t)e^{3\mu(e^t-1)}$$

$$= M_{X_1}(t)e^{15(e^t-1)}$$

$$e^{25(e^t-1)} = M_{X_1}(t)e^{15(e^t-1)}$$

$$\frac{e^{25(e^t-1)}}{e^{15(e^t-1)}} = M_{X_1}(t)$$

$$e^{10(e^t-1)} = M_{X_1}(t) \sim POI(10)$$

B) For $W = X_1 + X_2$ we have $X_1 \sim POI(10)$ and $X_2 \sim POI(5)$. So POI(10+5) = POI(15) **06.29**

Given: PDF
$$f(x) = \begin{cases} \frac{1}{x^2} &, & 1 \le x < \infty, 0 < y < \infty \\ 0 &, & o/w \end{cases}$$

Find: a) Joint PDF of the order statistics

Setup:
$$F_w(w) = P[W \le w] = P[X + Y \le w]$$

Steps: i) Differentiate with respect to a to find an equation in terms of the pdf of x. $f_A(a) = \frac{d}{da} F_R(a/\pi)^{1/2} - \frac{d}{da} F_R - (a/\pi)^{1/2} = f_R[(a/\pi)^{1/2}] \frac{d}{da} (a/\pi)^{1/2} f_R[-(a/\pi)^{1/2}] \frac{d}{da} - (a/\pi)^{1/2}$

ii) Simplify and Use Combinatorial Identity

Result:
$$\binom{n+m}{k}$$

Find: b) PDF of the smallest order statistic Y_1

Setup:

Steps: i)

Result:

Find: c) PDF of the largest order statistic Y_n

Setup:

Steps: i)

Result:

Find: d) PDF of the sample range $R = Y_n - Y_1$, forn = 2

Setup: The area is $a = \pi r^2$ so the cdf $F_A(a) = P[A \le a] = P[\pi r^2 \le a] = P[r^2 \le a/\pi]$ = $P[|r| \le (a/\pi)^{1/2}] = P[-(a/\pi)^{1/2} \le c \le (a/\pi)^{1/2}] = F_r(a/\pi)^{1/2} - F_r - (a/\pi)^{1/2}$

Steps: i)

Result:

Find: e) PDF of the sample median $R = Y_r - Y_1$, fornoddsothatr = (n+1)/2

Setup:

Steps: i)

Result: 07.11 a First we need to know the μ and the σ . For a Uniform variable with a=0,b=1 we have $\mu=1/2$ and $\sigma=1/\sqrt{12}$ (Note: it is not σ^2). We also need to know that n=20 from there we can use the CLT:

$$\Pr\left(\sum^{20} X_i < 12\right) = \Pr\left(\frac{\sum X_i - 10}{\sqrt{20} \frac{1}{\sqrt{12}}} < \frac{12 - 10}{\sqrt{20} \frac{1}{\sqrt{12}}}\right)$$
$$= \Phi\left(\frac{12 - 10}{\sqrt{20} \frac{1}{\sqrt{12}}}\right)$$
$$\approx .9394$$