Colorações por orientações de grafos

Bolsista: Tiago Carvalho G. Montalvão

Bacharelado em Ciência da Computação

PIBIC/UFRJ desde março de 2016

Orientadora: Profa Márcia R. Cerioli

Departamento de Ciência da Computação

19 de outubro de 2016 XXXVIII Jornada Giulio Massarani de Iniciação Científica, Tecnológica, Artística e Cultural

Dado um digrafo D,

a **cor por orientação** de um vértice u é o grau de entrada $d_i(u)$ em D.

Dado um digrafo D,

a **cor por orientação** de um vértice u é o grau de entrada $d_i(u)$ em D.

Dado um digrafo D,

a cor por orientação de um vértice u é o grau de entrada $d_i(u)$ em D.

uma **coloração por orientação** de um grafo G consiste em orientar as arestas em E(G) de tal maneira que as cores por orientação dos vértices de V(G) formem uma

coloração.

Dado um digrafo D,

a cor por orientação de um vértice u é o grau de entrada $d_i(u)$ em D.

uma **coloração por orientação** de um grafo G consiste em orientar as arestas em E(G) de tal maneira que as cores por orientação dos vértices de V(G) formem uma coloração.

2

O número cromático orientado de G, denotado por $\vec{\chi}(G)$, é a menor maior cor dentre todas as colorações por orientação.

O número cromático orientado de G, denotado por $\vec{\chi}(G)$, é a menor maior cor dentre todas as colorações por orientação.

O problema consiste em achar este parâmetro para um grafo G arbitrário.

Inserção e remoção de arestas mudam completamente a estrutura do grafo.

Inserção e remoção de arestas mudam completamente a estrutura do grafo.

Inserção e remoção de arestas mudam completamente a estrutura do grafo.

A orientação reversa pode não fornecer uma coloração por orientação.

A orientação reversa pode não fornecer uma coloração por orientação.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

Pela hipótese de indução, G\{u} possui uma coloração por orientação.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

Pela hipótese de indução, G\{u} possui uma coloração por orientação.

Nesta coloração, nenhum v_i tem cor Δ , pois eles teriam grau $d(v_i) \ge \Delta + 1$ em G.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

Seja G = (V, E) um grafo simples. A demonstração segue por indução em |V|.

Considere $u \in V$, tal que $d(u) = \Delta(G)$ e seja $v_i \in N(u)$.

Pela hipótese de indução, G\{u} possui uma coloração por orientação.

Nesta coloração, nenhum v_i tem cor Δ , pois eles teriam grau $d(v_i) \ge \Delta + 1$ em G.

Portanto, basta orientar todas as arestas de v_i para u e teremos uma coloração para G com maior cor Δ . Portanto, temos $\vec{\chi}(G) \leq \Delta(G)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

O problema está bem definido para qualquer grafo G e $\vec{\chi}(G) \leq \Delta(G)$.

O caso base da indução consiste no grafo trivial, que claramente possui uma coloração, e $0 = \overrightarrow{\chi}(G) \le \Delta(G) = 0$.

Comparação com número cromático:

Temos a seguinte cota inferior:

$$\chi(G) - 1 \le \overrightarrow{\chi}(G) \le \Delta(G)$$

Comparação com número cromático:

Temos a seguinte cota inferior:

$$\chi(G) - 1 \le \overrightarrow{\chi}(G) \le \Delta(G)$$

Coloração por orientação

Comparação com número cromático:

Temos a seguinte cota inferior:

$$\chi(G) - 1 \le \overrightarrow{\chi}(G) \le \Delta(G)$$

$$\chi(G) = 2$$

$$\vec{\chi}(G) = 2$$

Coloração por orientação

Available online at www.sciencedirect.com

Discrete Applied Mathematics 143 (2004) 374-378

DISCRETE APPLIED MATHEMATICS

www.elsevier.com/locate/dam

Notes

Minimizing maximum indegree

V. Venkateswaran

AT&T Laboratories, 200 Laurel Avenue, Middletown, NJ 07748, USA

Received 9 July 2001; received in revised form 9 July 2003; accepted 16 July 2003

Abstract

We study the problem of orienting the edges of a given simple graph so that the maximum indegree of nodes is minimized. We also develop an algorithm to produce such an extremal orientation on any given simple graph.

© 2003 Elsevier B.V. All rights reserved.

MSC: 05C35

Keywords: Graph theory; Extremal orientation

V. Venkateswaran / Discrete Applied Mathematics 143 (2004) 374 – 378

A primeira classe de grafos estudada foi a de caminho de triângulos.

A primeira classe de grafos estudada foi a de caminho de triângulos.

Seja T_i o caminho com i triângulos, como abaixo:

A primeira classe de grafos estudada foi a de caminho de triângulos.

Seja T_i o caminho com i triângulos.

Obtivemos o seguinte resultado:

- $\vec{\chi}(T_i) = 2$, para i = 1, 2
- $\vec{\chi}(T_i) = 3$, para $i \ge 3$

A primeira classe de grafos estudada foi a de caminho de triângulos.

Seja T_i o caminho com i triângulos.

Obtivemos o seguinte resultado:

- $\vec{\chi}(T_i) = 2$, para i = 1, 2
- $\vec{\chi}(T_i) = 3$, para $i \ge 3$

Dentro de cada triângulo, cada vértice deve ter um cor diferente. Portanto $\vec{\chi}(T_i) \ge 2$.

Lema estrutural:

Seja T um triângulo, com um vértice de cor 1 devido a uma aresta externa ao triângulo.

Lema estrutural:

Seja T um triângulo, com um vértice de cor 1 devido a uma aresta externa ao triângulo. Esta estrutura não pode ocorrer em nenhuma orientação de G para gerar uma coloração com $\vec{\chi}(G) = 2$.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Pelo lema, u não pode ter a cor 1.

Como o vértice u pode ser qualquer vértice do triângulo, nenhum pode ter a cor 1.

Seja T_i , $i \ge 5$.

Seja u um vértice de grau 4.

Pelo lema, u não pode ter a cor 1.

Como o vértice u pode ser qualquer vértice do triângulo, nenhum pode ter a cor 1.

Portanto, precisamos da cor 3, sendo então $\vec{\chi}(T_i) \ge 3$.

Seja T_i , $i \ge 5$.

Seja *u* um vértice de grau 4.

Pelo lema, u não pode ter a cor 1.

Como o vértice u pode ser qualquer vértice do triângulo, nenhum pode ter a cor 1.

Portanto, precisamos da cor 3, sendo então $\overrightarrow{\chi}(T_i) \ge 3$.

Para T_i , $i \le 4$, a demonstração se dá de maneira exaustiva, tirando vantagem da simetria do grafo.

Árvores

Árvores

- Grau máximo $\Delta(T)$
- Estrutura
 - Caterpillars
 - Árvores com "caminho central"

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) = 2$.

Para esta classe de árvores, podemos mostrar que $\chi(G) = 2$.

Para esta classe de árvores, podemos mostrar que $\vec{\chi}(G) = 2$.

Para esta classe de árvores, podemos mostrar que $\chi(G) = 2$.

Baseado neste raciocínio, estudamos outro tipo de árvores. Para esta classe de árvores, podemos mostrar que também temos $\vec{\chi}(G) \le 3$.

Baseado neste raciocínio, estudamos outro tipo de árvores. Para esta classe de árvores, podemos mostrar que também temos $\vec{\chi}(G) \le 3$.

Baseado neste raciocínio, estudamos outro tipo de árvores. Para esta classe de árvores, podemos mostrar que também temos $\vec{\chi}(G) \le 3$.

Baseado neste raciocínio, estudamos outro tipo de árvores. Para esta classe de árvores, podemos mostrar que também temos $\vec{\chi}(G) \le 3$.

Conjectura

Existe um inteiro k, tal que $\vec{\chi}(G) \le k$, para qualquer árvore.

$$\vec{\chi}(T) = 4$$

Trabalhos futuros

Trabalhos futuros

- Provar ou refutar a conjectura sobre árvores.
- Caracterizar as árvores com $\vec{\chi}(G) = 1$, $\vec{\chi}(G) = 2$, $\vec{\chi}(G) = 3$, $\vec{\chi}(G) = 4$, ... (?)
- Encontrar outras estruturas que impedem que $\vec{\chi}(G)$ assuma algum valor.

Obrigado!

Colorações por orientações de grafos

Bolsista: Tiago Carvalho G. Montalvão

Bacharelado em Ciência da Computação

PIBIC/UFRJ desde março de 2016

Orientadora: Profa Márcia R. Cerioli

Departamento de Ciência da Computação

19 de outubro de 2016 XXXVIII Jornada Giulio Massarani de Iniciação Científica, Tecnológica, Artística e Cultural

