Let \mathcal{SV}^* be the set of optimal supervisors. Let $M_{SV^*}^{\otimes}$ denote the product DES M^{\otimes} controlled by the optimal supervisor SV^* .

For a Markov chain MC_{SV}^{\otimes} induced by a product MDP M^{\otimes} with a positional policy π , let $S_{SV}^{\otimes} = T_{SV}^{\otimes} \sqcup R_{SV}^{\otimes 1} \sqcup \ldots \sqcup R_{SV}^{\otimes h}$ be the set of states in MC_{SV}^{\otimes} , where T_{SV}^{\otimes} is the set of transient states and $R_{SV}^{\otimes i}$ is the recurrent class for each $i \in \{1, \ldots, h\}$, and let $R(MC_{SV}^{\otimes})$ be the set of all recurrent classes in MC_{SV}^{\otimes} . Let $\delta_{SV,i}^{\otimes}$ be the set of transions in a recurrent class $R_{SV}^{\otimes i}$, namely $\delta_{SV,i}^{\otimes} = \{(s^{\otimes}, \pi, s^{\otimes i}) \in \delta^{\otimes}; s^{\otimes} \in R_{SV}^{\otimes i}, \ P^{\otimes}(s^{\otimes i}|s^{\otimes}, \pi) > 0\}$, and let $P_{SV}^{\otimes}: S_{SV}^{\otimes} \times S_{SV}^{\otimes} \to [0, 1]$ be the transition probability under SV.

Theorem 1