PARALLEL SINGLE-CELL SEQUENCING LINKS TRANSCRIPTIONAL AND EPIGENETIC HETEROGENEITY

Angermueller et al., Nature Methods, January 11, 2016. doi:10.1038/nmeth.3728.

Saket Choudhary February 11, 2016 BISC 542 scM&T-seq: Parallel single-cell genome-wide methylation & transcriptome seq ⇒ Coupled/Uncoupled?

Protocol

Data:

76 individual serum ESC + 16 ESCc in '2i'[induces hypomethylation]

Variation in methylation levels are explained by cell type

Methylation PCs partially recapitulate expression

Methylation PCs correlate with Expression PCs

Methylation PC

Global methylome and transcriptome profiles are complementary

Association between expression levels and methylation : BOTH negative and positive \implies Interactions are Complex!

Correlation coefficients in alternative genomic context:

Validates with bulk RNA-seq and BS-seq[Oranges]

Insights

Transcriptome and Methylome can be uncoupled

Insights

Association with transcription:

- v/s methylation at non-CpG island promoters : negative (known)
- v/s methylation at distal regulatory elements :both

Summary

- Parallel methylome & transcriptome profiling: feasbile
- · Associations can be quantified at single-cell level
- Fluctuating pluripotency in serum ESC ≅
 Epigenetic heterogenity

Ideas/Issues

- Spearman Correlation? for individual CpGs or regions to observe trend
- · Infer cell state from data?[Complementary]
- · CA instead of PCA to reveal transcriptome-methylome clusters. See Fellenberg et al.
- $(-)log_{10}(q-val)$ and Pearson (r^2) ?

Academic Valentine

http://tinyurl.com/acadvalentines

References

- Seisenberger, Stefanie, et al. "The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells." Molecular cell 48.6 (2012): 849-862.
- Han, Han, et al. "DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter." Human molecular genetics (2011): ddr356.
- Ficz, Gabriella, et al. "Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation." Nature 473.7347 (2011): 398-402.
- Macaulay, Iain C., et al. "G&T-seq: parallel sequencing of single-cell genomes and transcriptomes." Nature methods 12.6 (2015): 519-522.
- Smallwood, Sébastien A., et al. "Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity." Nature methods 11.8 (2014): 817-820.
- Yang, Xiaojing, et al. "Gene body methylation can alter gene expression and is a therapeutic target in cancer." Cancer cell 26.4 (2014): 577-590.
- Bogdanović, Ozren, et al. "Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis." Genome research 21.8 (2011): 1313-1327.
- Fellenberg, Kurt, et al. "Correspondence analysis applied to microarray data."
 Proceedings of the National Academy of Sciences 98.19 (2001): 10781-10786.