

The integrated order batching and routing problem in online grocery retail with dynamic demands

Imadeddine Aziez Jean-François Côté Leandro C. Coelho

Université Laval

Département d'Opérations et Systèmes de Décision

December 14th, 2020

Plan

- 1. Introduction
- 2. Literature review
- 3. Solution approach
- 4. Expected results
- 5. Conclusion

Market growth and challenges

Online grocery shopping is a massive, rapidly growing market

- Many challenges are faced by online grocery services:
 - Customer satisfaction
 - High operating costs

Online grocery retail in Canada

Many actors in the market

- ► A survey conducted by Deloitte Canada from March 16 to 18, 2020
 - interviewed 1,000 Canadian consumers
 - ▶ 8% of have increased their spending in the past 30 days
 - ▶ 15% say they will spend more in the coming weeks
 - 21% of expect to spend more on groceries

Will Online Grocery Shopping Continue Post-COVID?

Yes, according to experts and analysts

General overview of the processes

Operational problems

- Discrete picking may not be efficient
- Processes are traditionally approached as individual problems

The integrated order batching and routing problem in online grocery retail with dynamic demands

Benefits of integration

- Improved customer service
- Cost-saving potentials

Literature review

► Introduced by Schmid et al. [2013]

Table: Problem characteristics in publications of integrated order picking and vehicle routing problems [Schubert, 2020]

		Order picking			hicle	fleet	<u>. 0</u>	TW restrictions			D D
Publication	SOPP	OBP	ZPP	VRP-HC	MTVRP	VRPSD	Interm. Storage	Hard	Semi-hard	Soft	Planning
Schubert et al. [2018]	Х				Χ				X		
Moons et al. [2018]	X			X				X			
Ramaekers et al. [2018]	X				Χ			X			್ತು
Moons et al. [2019]	X				Χ			X			Static
Schubert et al. [2020]	Х					Χ		Х			တ
Kuhn et al. [2020]		Χ			Χ				Χ		
Ostermeier et al. [2020]	X		Χ	Х			Х	X		Χ	

Problem description 1/2

- Set of n customer orders to deliver such that:
 - Orders arrive dynamically
 - Each customer order consists of a set of items
 - ightharpoonup A release time R_r for each order
 - Two problems must be solved: Order picking + VRP

Order picking problem

- Picking customer orders in a supermarket
- A set of identical capacitated picking devices
- Ordered items are located in different places
- Orders must be grouped into batches -> Order batching
- ► Same picker picks all items of the same order

Problem description 2/2

Vehicle routing problem

- Assigning orders to vehicles
- Planning routes for each vehicle
- A set of identical capacitated vehicles
- TWs are associated to customer locations

Interconnection and Objective

- OBOP and VRP are interconnected by:
 - The release times of orders by order pickers
 - The start times of vehicles
- ► The objective can be to minimize:
 - Routing cost, tardiness, routing cost + tardiness
 - Others

Periodic re-optimization

Algorithm Dynamic Optimization Algorithm

- 1: Create a solution S that contains the initial requests
- 2: **Do**
- 3: Add the new requests to S
- 4: ExecuteALNS(S)
- 5: While there are new events

Adaptive Large Neighborhood Search

ALNS overview

- Removal and insertion operators compete to change the solution
- Operators are selected based on their past performance
- Removal and insertion operators treat one sub-problem at a time

Removal and insertion operators

- Vehicle routing
 - Removal operators: Random removal, Worst removal, Related removal, Time-oriented related removal
 - ► Insertion operators: Greedy insertion, regret insertion, random insertion
- Order picking
 - Removal operators: Random removal & Worst removal (Applied to orders and batches)
 - ► Removal operators + neighborhood-based shaking moves
 - Insertion operators: Greedy insertion, regret insertion, random insertion

Enhanced ALNS

General Adaptive Large Neighborhood Search

- ► A local search procedure is applied after the the repair heuristic
- ► A local search is applied with a certain probability
- It outperforms ALNS in solving the static problem [Kuhn et al., 2020]

Expected results

Fleet exploitation strategy

- 1st strategy: New requests are assigned to vehicles at the depot
 - Cost-effective and ensures high service quality
 - Large-size fleet
- 2nd strategy: New requests can be assigned to on-service vehicles
 - More flexibility in serving customers using less number of vehicles
 - Increasing routing cost and possible violation of TWs

Large TWs vs Tight TWs & Hard TWs vs Semi-Hard TWs

Effects of TWs on Picker and Vehicle fleet size

Highlights

- Described a rich problem
- Proposed the 1st dynamic algorithm for this problem
- ► Enhanced ALNS by using local search
- Presented expected results

- H. Kuhn, D. Schubert, and A. Holzapfel. Integrated order batching and vehicle routing operations in grocery retail—a general adaptive large neighborhood search algorithm. *European Journal of Operational Research*, 2020.
- S. Moons, K. Ramaekers, A Caris, and Y. Arda. Integration of order picking and vehicle routing in a b2c e-commerce context. Flexible Services and Manufacturing Journal, 30(4):813–843, 2018.
- S. Moons, K. Braekers, K. Ramaekers, A. Caris, and Y. Arda. The value of integrating order picking and vehicle routing decisions in a b2c e-commerce environment. *International Journal of Production Research*, 57(20):6405–6423, 2019.
- M. Ostermeier, H. Kuhn, A. Holzapfel, and D. Schubert. Integrated zone picking and delivery operations in grocery retail. Technical report, Working paper, Catholic University of Eichstaett-Ingolstadt, Chair of Supply ..., 2020.
- K. Ramaekers, A. Caris, S. Moons, and T. van Gils. Using an integrated order picking-vehicle routing problem to study the impact of delivery time windows in e-commerce. *European Transport Research Review*, 10(2):56, 2018.

- Verena Schmid, Karl F Doerner, and Gilbert Laporte. Rich routing problems arising in supply chain management. European Journal of Operational Research, 224(3):435–448, 2013.
- D. Schubert. Integrated order picking and vehicle routing operations—literature review and further research opportunities. Available at SSRN 3631748, 2020.
- D. Schubert, A. Scholz, and G. Wäscher. Integrated order picking and vehicle routing with due dates. *OR Spectrum*, 40(4):1109–1139, 2018.
- D. Schubert, H. Kuhn, and A. Holzapfel. Same-day deliveries in omnichannel retail: Integrated order picking and vehicle routing with vehicle-site dependencies. *Naval Research Logistics (NRL)*, 2020.