Лабораторная работа №1	ГРУППА	2022
	M3137	
Название работы – Построение логических	ФИО Кузнецов	в Сергей
схем в среде моделирования	Павлович	

Цель работы: моделирование логических схем на элементах с памятью.

Инструментарий и требования к работе: среда моделирования Logisim evolution.

Описание:

Счетчик

Вариант

Асинхронный вычитающий счётчик по модулю 24.

Счётчик — устройство для подсчёта числа входных импульсов. Асинхронный счётчик представляет собой несколько последовательных включённых счетных триггеров. Счетный триггер — триггер, который изменяет своё состояние на противоположное при каждом изменении импульса. (М) Модуль счёта — максимальное количество сигналов, которое может сосчитать счётчик.

Асинхронный вычитающий счётчик — принимает последовательно значения от M-1, до 0.

Для начала реализуем простые триггеры.

Рисунок 1 – Синхронный RS тригтер с PoR

S	R	С	Q	`Q
X	X	0	0	1
0	0	1	Сохранение предыдущего	
0	1	1	0	1
1	0	1	1	0

1 1 1	Запрещенное состояние
-------	-----------------------

Таблица 1 – таблица истинности Синхронного RS триггера

Рисунок 2 - JK триггер на основе RS

С	J	K	Q(t)	Q(t+1)	
0	X	X	0	0	Хранит
					предыдущее
0	X	X	1	1	Хранит
					предыдущее
1	0	0	0	0	Хранит
					предыдущее
1	0	0	1	1	Хранит
					предыдущее
1	1	0	0	1	Устанавливает
					1
1	1	0	1	1	Устанавливает
					1
1	0	1	0	0	Установка 0
1	0	1	1	0	Установка 0
1	1	1	0	1	Счётный
					режим

Таблица 2 – Таблица истинности ЈК триггера

Рисунок 3 – Мультиплексор 2-1

Мультиплексор 2-1 работает по такому принципу: при истинности управляющего входа А подает на выход значение X1, иначе X0

Рисунок 4 – Битовый сумматор (S)

X	y	Z	h
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Таблица 3 – Таблица истинности битового сумматора

Рисунок 5 – D триггер с дополнительными входами W и Wc

Данный D триггер работает по такому принципу, если Wc = 0, тогда из первого мультиплексора подаётся отрицательное значение Q на J и Q на K, на синхронизацию передаётся сигнал C, который передается от предыдущего триггера или от тактового генератора для самого первого триггера. При Wc = 1, триггер запишет значение, которое соответствует D, некое подобие set и reset триггера. Сигнал W, нужен чтобы при включении Wc, триггер не остался без синхронизации, ведь при записи значение не нужно учитывать то, что передает предыдущий триггер.

Рисунок 6 – Итоговая схема

При последовательным подключение D триггеров, где на вход первому подается сигнал такта, для этого используется тактовый генератор, а выходы Q подаются на вход C следующему триггеру. Для входа W, подается такт, который активируется при обнулении счетчика. Если оставить только соединенные D триггеры получится суммирующий асинхронный счётчик. Для получения вычитающего счётчика используется такая система: когда все значения триггеров устанавливается на 1, счетчик сбрасывается до значения $2^n - (M-1)$, где n - кол-во тригтеров, а M модуль счёта. Потому что счетчику нужно пройти M значений, но счетчик добавляет значение, а не уменьшает его, поэтому нам нужно добиться того, чтобы при установке начального значения счётчику осталось M-1 действий, -1 так как он уже находится в одном значение. Поэтому для модуля мы устанавливаем значение 32 - 23 = 9. Это делается при подаче на D 1 на 1 и 4 счетчик. Далее мы инвертируем значения всех триггеров и проверяем

если, все инвертируемые значения = 1, тогда подаем на входы Wc=1 и записываем значение с D. При подаче на вход мы прибавляем 1, чтобы мы могли использовать значение всех единиц для сброса.

Рисунок 7 – временная диаграмма счетчика

Регистр

Вариант

Регистр сдвига с линейной обратной связью конфигурация Галуа (16, 14, 13, 11)

Регистр сдвига с линейной обратной связью – сдвиговый регистр битовых последовательностей, у которого значение входного бита равно линейной булевой функции от значений остальных битов регистра до сдвига.

Теоретическая схема выглядит так

Рисунок 8 – Теоретическая схема

То есть, каждая ячейка хранит значение и при изменение тактов, передает значение следующему в зависимости от конфигурации это значение берется вместе со значение первого (нулевого бита) по модулю 2 $S_k = (S_{K+1} \text{ xor } S_0)$

В схеме используются RS триггер, JK триггер описанные раннее.

С	D	Q	
0	X	?	Хранит
			предыдущие
1	1	1	Записывает 1
1	0	0	Записывает 0

Рисунок 10 – Схема регистра

Рисунок 11 – Первая половина регистра

Рисунок 12 – Вторая половина

PowerOnReset нужен для задания первому биту N0 начальной 1. Далее при сменен тактов происходит перезапись всех D триггеров, либо на значение предыдущего, либо на значение первого хог с предыдущим.