

Human skin sample

Red: WGA; Green: Keratin; Blue: Nuclei

Skin culture sample

We compared the ten-days old-skin organ cultures with real human skin using H&E (hematoxylin and eosin) stained sections. In general, the organ cultures share very similar morphology both in the epidermis and the dermis connective tissue (compare A to C, and B to D). (E) Confocal microscopy of triple labeled samples shows the differentiation and maturation of Keratin differentially epidermis. is expressed in the basal versus the apical layers much like in vivo. WGA (wheat germ agglutinin) labeling shows a deposition **ECM** between layer of epidermis and the connective tissue.

ADDARAGA AUGEDA

Phase-contrast image of fibroblasts (double arrowheads) inside the collagen matrix. Vessel structure is out of focus. (B) Phase-contrast image of the intricate "microvessel" network in the middle of the collagen gel.

mv=microvessel bl= basal lamina

(A) Cross section through human breast skin showing a microvessel with a single layer of endothelial cells (arrow) and two peri-endothelial cells (arrowheads). Fibrobroblasts are labeled with double arrowheads. (B and C) Cross sections through a 10-day-old organ culture showing "microvessels" with well defined endothelial cells and with peri-endothelial cells (arrow). Summary: The microvessels in the human skin organ culture are extremely similar to those of the real human skin.

dependent production/deposition of laminin during microvessel development. Summary: The "microvessels" in the organ cultures image of a cross section of the same culture immunolabled for laminin, a major component of the basal lamina, showing that these microvessels are surrounded by a continuous lamina. (D) Immunoblot analysis of cell extracts taken from cultures to show a timecells. Cell nuclei are labeled blue. (B) Staining for PECAM in an "in face" area of a microvessel of the organ culture. (C) Projection express the most characteristic marker for endothelial cells, PECAM, and are surrounded by a continuous basal lamina. mv=microvessels (A) Projection image of a cross section through a 10-day-old organ culture immunolabeled for PECAM (red), a marker for endothelial

To characterize this organ culture system we used a variety of antibodies to human cell surface proteins and ECM molecules to determine whether this system develops the characteristics of human skin.

To detect the presence of glycosylated molecules on the cell surface and on ECM molecules, we used fluorochrome-conjugated lectins that bind specific sugars. Wheat Germ Agglutinin (WGA) specifically binds to N-acetylglucosamine and N-acetylneuraminic acid and Concanavalin A (Con A) selectively recognizes α -mannopyranosyl and α -glucopyranosayl. Both lectins stain all of the components of the organ culture. We also stained for hyaluronic acid (HA, a glucosaminoglycan that is present in areas of blood vessel remodeling) using biotinylated hyaluronic acid binding protein which binds to HA at specific site along the in the molecule. We observed punctated staining in the extracellular matrix regions, in particular in the areas surrounding the microvessels.

production and activity increase in a time-dependent manner and in the mature cultures is it remains at a very abundant. hMVEC were maintained by phobol ester treatment. MMP-2 in these cultures is very low whereas pro-MMP-9 is relatively high level, whereas there is no detectable activity of MMP-9. In the cultures without fibroblast the Gelatin zymograms showing the activity of remodeling proteases activities during the culture maturation. MMP-2

FN, collagen III and matrix proteases that are known to be involved in remodeling. Tenascin, however, a molecule not Summary: The "skin" organ culture produces human cell surface and ECM molecules that are glycosilated and produces found in normal skin is only produced very sporadically in pockets closely associated with the endothelial cells.

Red: PECAM-1; Green: VEGFs

Red: PECAM-1; Green: bFGF; Blue: Nuclei

When culturing the hMVEC directly to the middle layer of collagen sandwich without dermal fibroblasts, hMVEC can self-organize into the vessel-like structure. But hMVEC will die of apoptosis and the structure will be degenerated after day3 of plating. Comparing to the simple 3D culture, vessel structure in our co-culture system can be maintained for more than 15 days. To exploring the survival factors for these vessels, we analyzed the supernatant of different cultures by SDS PAGE silver staining. We detected several lower molecular weight proteins are expressed at higher level in our co-culture model (Data not shown). We verified these proteins as VEGFs and bFGFs by western blot. With confocal imaging, we observed that VEGFs are produced only by endothelial cells of the vessel and the neighbor fibroblast, and deposited sorropunding the vessels. Whereas, bFGFs are expressed by fibroblasts in a majority without the correlation of the distance to the vessel.

In our organ cultures, fibroblasts can differentiate into myofibroblasts that associate or are found in very close proximity to the microvessels. α -Smooth Muscle Actin (α -SMA), a differentiation marker protein that is highly expressed in pericytes and the smooth muscle cells that associate with blood vessels, is produced by these peri-endothelial cells. (A) shows overview of α -SMA localization. Fibroblasts distant from the microvessels do not produce α -SMA. (B&C) High magnification confocal images to show peri-endothelial cells more clearly. Summary: Under the conditions of our organ culture system fibroblasts in the vicinity of the microvessels differentiate into myofibroblasts.

When the endothelial cells develop into larger vessels we observe the presence of leukocytes inside these vessels (A). (B-E) High magnification of regions in (A) to illustrate the presence of these leukocytes. (F) Blood cell immunolabeled with an antibody for macrophage scavenger receptor (mSR), a specific protein for these leukocytes. (G) Blood cells stained with an antibody to CD68 also a cell surface marker for mononuclear leukocytes. Summary: Under our culture conditions, endothelial cells are able to differentiate into mononuclear leukocytes.

ABSTRACT

Chemokines are well known for their functions in inflammation and some CXC chemokines (e.g. IL-8, cCAF) are known to be angiogenic. Our studies on IL-8 using the Chorioallantoic membrane (CAM) assay show that this chemokine stimulates blood vessel tortuosity and sprouting without leukocyte chemotaxis, strongly suggesting that it directly induces sprouting angiogenesis. We hypothesized that IL-8 functions in the early stages of this process, which involves increase in permeability of the endothelium, basal lamina degradation, and endothelial cell proliferation/migration to form the sprout. stimulation of permeability, we used tight monolayers of primary human microvascular endothelial cells on a thin layer of basement membrane-like ECM in transwell units to mimic the wall of a microvessel. Treatment with IL-8 resulted in a dose- and timedependent increase in permeability that was inhibited by antibodies to IL-8 receptors and Increase in permeability is accompanied by tyrosine by tyrosine kinase inhibitors. phosphorylation of VE-Cadherin and PE-CAM-1, two adhesion molecules that are very important in maintaining the integrity of microvascular endothelium. To investigate IL-8 functions in basal lamina degradation and sprouting we developed a 3D co-culture system that mimics human connective tissue. These cultures develop microvessel-like tubes that have a well-developed, continuous, basal lamina (BL). IL-8 stimulates increase of MMP-9 activity, an enzyme that is important in BL degradation. These findings provide first evidence of the potential molecular mechanisms stimulated by a chemokine in the initiation of the angiogenic process. Because chemokines are major players in pathological conditions that involve inflammation and angiogenesis, our studies provide a basis for development of novel therapeutic targets for angiogenesis, in particular because these small cytokines and their receptors are very amenable to pharmacological manipulations.

INTRODUCTION

The most common process by which new blood vessels form in adults occurs by sprouting from pre-existing vessels (angiogenesis). This process can be productively divided into the following steps: (1) Destabilization of endothelium, leading to blood vessel permeability and flexibility; (2) degradation of the basal lamina that surrounds the preexisting blood vessels; (3) localized proliferation of endothelial cells to provide cells for sprout formation; (4) endothelial cell migration, tube formation and elongation of the sprout; (5) stabilization of the endothelium by deposition of new basal lamina; (6) recruitment of periendothelial support cells to the endothelium, (7) stabilization of the interactions between periendothelial cells and endothelial cells; (8) formation of mature microvessels. Numerous factors have been identified that participate in these steps of sprout formation during embryonic development (c.f. Hanahan, 1997; Beck & D'Amore, 1997; Kumar et al., 1998; Carmeliet and Jain, 2000, Yancopoulos et al., 2000). However, in adults, angiogenesis driven by injury or pathological conditions involves additional/alternative factors, including chemokines, of which IL-8 is a major player (e.g. Arenberg et al., 1997a & b). We have observed that the homologue of human IL-8 (hIL-8) in chickens, cCAF (chicken Chemotactic and Angiogenic Factor), stimulates angiogenesis in the Chorioallantoic Membrane (CAM) assay and in young chicks (Martins-Green and Feugate, 1998). We performed similar experiments in the CAM using hIL-8. Our results showed that hIL-8 is capable of stimulating blood vessel sprouting in the CAM assay much like cCAF, the endogenous chicken chemokine.

MATERIAL & METHODS

<u>Cell cultures:</u> For these studies we used Human primary microvascular endothelial cells (hMVEC; Clonetics), and normal dermal fibroblasts (NHDF; Clonetics). For these studies we used either 24-well plates or transwell units (Becton Dickinson) with polyethylene tetraphthalate filters containing 4 μ m pores.

Permeability assays: For these studies we used hMVEC. The filters of the Transwell units were coated, on the upper chamber side, with a very thin coat of matrigel. The thin layer of matrigel allows the cells to adhere well to the filter in an environment that approximates true basal lamina and the very high density forces the cells into a tight monolayer rather than promoting tube formation. The small pore size prevents the cells from migrating through the filters. In this manner we are able to mimic the endothelial lining of blood vessels. Tight monolayers of hMVEC were cultured on the matrigel and treated with different doses of IL-8 from the basal side (lower chamber). VEGF and PDBu served as positive controls and DMSO as control for the PDBu vehicle. 10 µg/ml of fluorescent Dextran (MW 3000; Molecular Probes) per transwell unit was added at the beginning of the experiment. At each time point, the medium was collected and fluorescence measured with an Hitachi F2000 fluorimeter at Ex 488nm, Em 518nm for 30s. After each collection, an equivalent amount of fresh medium was added.

Connective tissue model: For the molecular studies, hMVEC and NHDF were cultured in 3D and allowed to mature into a tissue that mimics human connective tissue. To prepare these cultures we used either normal 24-well plates or transwell units and sandwiched the endothelial cells between two collagen gels. To make the bottom layer of the tissue, an interstitial collagen matrix of collagens I and III was prepared from Vitrogen (Cohesion Technologies) and the cells evenly suspended in the collagen mixture and applied to the culture well/insert. This layer of collagen was allowed to jellify and then was covered with hMVEC. After the hMVEC were attached, the medium was removed and a new collagen gel was prepared the same way as the first gel and applied on top of the hMVEC. Thirty minutes later, after the collagen gelified, 1ml of EGM2-MV medium was applied on top of the sandwich culture in the 24 well plates, or 1ml to the bottom chamber and 0.5 ml to the upper chamber when the transwell units were used. Cultures were maintained at 37°C and of 5% CO2 for at least 2 weeks. Medium was changed 24 hours after the cultures were started and then fed every 48 hours.

Immunoblotting: SDS-PAGE was performed on 10% separating Doucet gels. Protein transfer to nitrocellulose was performed using a wet-transfer apparatus (Bio-Rad) at 100V for 45min. The membranes were blocked for 1h in 5% BSA in TTBS (tweenTBS), incubated overnight at 4oC in primary antibody in 1% BSA in TTBS, washed 3 times for 20min each with TTBS, incubated in anti-mouse or anti-rabbit HRP (1:10,000) in 1% BSA for 1hr, washed as above, and the bands visualized using ECL chemiluminescent kit (Amersham).

Zymography: Zymography was done using 10% denaturing polyacrylamide gels as previously described (Paech and Christianson, 1994). Briefly, gels to test for gelatinolytic activity contained 1% gelatin (Sigma) and were cast 12 hours before the sample separation. Protein samples were separated at 4oC with 10mA constant current for each gel. The gels were renatured in 2.5% Triton-X100 twice (15 minutes each) at room temperature. Renaturation solution was replaced by developing buffer (50mM Tris-HCl, 200mM NaCl, 10mM CaCl2, 0.02% Brij 35, pH7.5), the gels incubated at 37 oC for 8-14 hours, fixed (methanol:water:acetic acid, 5:5:1) for 10 minutes, stained with 0.5% Coomassie Blue for 1 hr and destained (40% methanol plus 10% acetic acid) for appropriate time to obtain appropriate contrast.

Plasminogen activity assay: A chromogenic plasminogen activator substrate (Boc-Val-Gly-Arg-b NA.AcOH) was purchased from Calbiochem. $50\mu l$ of a 10mM stock solution of substrate in water was added to $200\mu l$ of 0.1mM HEPES buffer pH 8.0 and heated to 250C. $25\mu l$ cell extract was added to the substrate and absorbance was then read at $405\,nm$.

Figure 1. IL-8 Induces Sprouting Angiogenesis in the CAM assay

Bright field micrographs of Chorioallantoic Membranes (CAMs). The control membrane shows blood vessels organized in a dendritic pattern. The hIL-8 treated CAM shows that the chemokine stimulates abundant sprouting from the pre-existing vessels (arrowheads). P = Pellet.

One of the earliest events in sprout formation involves loss of adhesion between the endothelial cells that line the microvessel. This process is accompanied by an increase in blood vessel permeability. To determine whether hIL-8 stimulates blood vessel permeability we used a culture system that mimics the wall of a blood vessel (see M&M).

Figure 2. Transwell Model for IL-8 Induced Permeability Assay

PET Membrane with pores

Schematic representation of the culture system used to study IL-8-induced permeability. To mimic the angiogenic process *in vivo*, IL-8 was added into the lower chamber to access the endothelial monolayer from the basal side. The permeability was measured as the total amount of FITC light units that leaked into the upper chamber (see technical details in the M&M section).

Figure 3. Pilot Experiment to Detect IL-8-Induced Permeability

In this pilot experiment, we determined the effects of different doses of IL-8 on permeability increase as measured by leakage of fluorecent Dextran into the upper chamber. IL-8 is a potent permeability-inducing agent and its effects are dose-dependent and decrease with increasing concentration of IL-8. The latter effect is characteristic of receptor desensitization and occurs frequently in chemokine receptor function. The phorbol ester PDBu was used as the positive control and DMSO is the vehicle of PDBu.

Figure 4. Dose-dependent effects of hIL-8 on permeability

The results presented in Fig. 3 suggested that concentrations of IL-8 lower than 50ng/ml may be more efficient in stimulating an increase in permeability. Under the conditions of our assay, 50ng/ml IL-8 is the optimal dose and the effects on permeability are comparable to those of 100ng/ml VEGF, the well-known angiogenic factor that causes blood vessel permeability.

Maintenance of integrity of the endothelium involves adherens junctions. Critical molecules for maintenance of the integrity of these junctions include the integral membrane proteins vascular endothelial-cadherin (VE-cadherin) and platelet endothelial cell adhesion molecule (PECAM), and their associated cytoplasmic partners, α -, β -, γ - and p120-catenins and SHP2 phosphatase. Loss of adhesion between the endothelial cells can involve phosphorylation of VE-cadherin, PECAM and the catenins.

<u>Figure 5</u>. Schematic representation of the molecular components of adherens junctions.

The adherens junctions are primarily composed of VE-cadherin molecules that bind to each other in the presence of Ca⁺⁺. Associated with the cadherins are the catenins and actin. In addition, PECAM is also present in these junctions.

Figure 6. IL-8 Induces VE-Cadherin Tyrosine Phosphorylation

To biochemically characterize IL-8 effects on the hMVEC monolayer, samples treated with 50ng/ml IL-8 were collected at successive times after application of the chemokine and analyzed by immunoblot for anti-phosphor-tyrosine. We detected strong tyrosine phosphorylation as early as 5 min after treatment. 100ng/ml VEGF served as positive control.

Human IL-8 functions through 2 receptors: CXCR1 and CXCR2. Because both receptors are present on endothelial cells, we determined whether either or both are involved the IL-8-induced permeability.

Figure 7. Effects of function-inhibiting antibodies to CXCR1 or CXCR2 on IL-8-induced permeability

To determine which receptor is responsible for the IL-8 effects on permeability, function-blocking antibodies against CXCR1 and CXCR2 were used in the transwell assay. (A) Both antibodies inhibit increase in permeability. (B) Detailed analysis of the earlier stages of permeability increase (first 90 min of treatment) showed that these two antibodies function in different phases. CXCR1 appears to be responsible for the immediate permeability increase and CXCR2 plays a major role in the sustained leakage.

<u>Figure 8</u>. Schematic representation of potential signal transduction pathways stimulated by chemokines upon binding to their seven transmembrane receptors.

Approdix B, page 11

Figure 9. Effects of inhibitors of specific signaling molecules on hIL-8-induced permeability

With the transwell model, we explored the downstream signal events that lead to permeability increase. As expected, IL-8 function is inhibited by pertussis toxin, the Gai inhibitor that blocks the function of most chemokine receptors. We also detected strong inhibition by the PKC inhibitor, Calphostin C, and Src tyrosine inhibitor, Hermimycin. Surprisingly, with the treatment of AG1517, the specific EGFR tyrosine kinase inhibitor, we cannot detect any permeability decrease, even though there is a report indicating that IL-8 downstream signaling depends on the transactivation from GPCR to EGFR.