Statistical Physics: Workshop Problems 3

(1) (a) If the microstates states of a system occur with probability p_i then the entropy of the system is

$$S = -k_B \sum_{i} p_i \log p_i.$$

Therefore the entropy of an 8-sided dice is $k_B \log 8$ and for a 12-sided dice it's $k_B \log 12$.

- (b) The phase space density of the microcanonical ensemble is constant in equilibrium.
- (c) The partition functions are dimensionless.
- (d) (N,V,E) in the microcanonical ensemble, (N,V,T) in the canonical ensemble and (μ,V,T) in the grand canonical ensemble (where μ is the chemical potential/Fermi level).
- (2) (a) The partition function is $Z = \sum_{\text{states}} e^{-\beta \epsilon_{\text{states}}}$ where $\beta = 1/k_B T$. Therefore

$$Z = \sum_{i=1}^{3} e^{-\beta\hbar\omega_i} = e^{-\beta\hbar\omega} + e^{-\beta\hbar2\omega} + e^{-\beta\hbar3\omega}.$$

The probabilities are $p_i = e^{-\beta \epsilon_i}/Z$ hence

$$p_1 = \frac{e^{-\beta\hbar\omega}}{Z}, p_2 = \frac{e^{-\beta\hbar2\omega}}{Z}, p_3 = \frac{e^{-\beta\hbar3\omega}}{Z}.$$

(b) The limit $T \to 0$ is $\beta \to \infty$ so we have

$$(p_1): \lim_{\beta \to \infty} \frac{e^{-\beta\hbar\omega}}{e^{-\beta\hbar\omega} + e^{-\beta\hbar2\omega} + e^{-\beta\hbar3\omega}} = 1,$$

$$(p_2): \lim_{\beta \to \infty} \frac{e^{-2\beta\hbar\omega}}{e^{-\beta\hbar\omega} + e^{-\beta\hbar2\omega} + e^{-\beta\hbar3\omega}} = 0,$$

$$(p_3): \lim_{\beta \to \infty} \frac{e^{-3\beta\hbar\omega}}{e^{-\beta\hbar\omega} + e^{-\beta\hbar2\omega} + e^{-\beta\hbar3\omega}} = 0,$$

and the limit $T \to \infty$ is $\beta \to 0$ so we have

$$(p_j): \lim_{\beta \to 0} \frac{e^{-j\beta\hbar\omega}}{e^{-\beta\hbar\omega} + e^{-\beta\hbar2\omega} + e^{-\beta\hbar3\omega}} = \frac{1}{3}, j = 1, 2, 3$$

(c) Internal energy is

$$U = -\left[\frac{\partial \ln Z}{\partial \beta}\right] = = \hbar \omega \frac{e^{-\beta \hbar \omega} + 2e^{-2\beta \hbar \omega} + 3e^{-3\beta \hbar \omega}}{e^{-\beta \hbar \omega} + e^{-2\beta \hbar \omega} + e^{-3\beta \hbar \omega}}.$$

Free energy is

$$F = -\frac{1}{\beta} \ln Z = -\frac{1}{\beta} \ln \left(e^{-\beta\hbar\omega} + e^{-\beta\hbar2\omega} + e^{-\beta\hbar3\omega} \right).$$

The difference between internal energy and the free energy is essentially the entropy, $S = -\beta k_B(U - F)$, and so represents the unavailability of energy to do work.

1

3) (a) Tabulate the possibilities with N=3 and $U=3\epsilon$

	0ϵ	1ϵ	2ϵ	3ϵ	•••	Classical Permutations
$\overline{D_1}$	2	0	0	1		$3!/(2! \ 0! \ 0! \ 1!) = 3$
D_2	1	1	1	0		$3!/(1! \ 1! \ 1! \ 0!) = 6$
D_3	0	3	0	0		$3!/(0! \ 3! \ 0! \ 0!) = 1$
						3+6+1=10 microstates

For classical particles the distribution D_2 is most likely with a probability of 6/10.

- (b) For Fermions then only one particle per state is allowed. Distributions D_1 and D_3 are not possible and so only distribution D_2 is allowed. Note also that for indistinguishable particles there is only one microstate in distribution D_2 (no permutations). We find distribution D_2 with 100% probability.
- (c) For Bosons each of the classical distributions are allowed but since the particles are indistinguishable then there is only one microstate per distribution. Hence all 3 distributions are equally likely, probability 1/3.
- (4) The population distribution is given by

$$\frac{n_j}{n_i} = \exp\left(\frac{\epsilon_i - \epsilon_j}{k_B T}\right)$$

therefore

$$T = \frac{\epsilon_i - \epsilon_j}{k_B \log\left(\frac{n_j}{n_i}\right)}.$$

Using the values of n_1 , n_2 and n_3 given in the question, taking each possible pair we obtain the following values of T: 99.0K, 100.2K and 99.6K. Therefore, with the information given the mean value of temperature is 99.6K.