- 1. First order equations.
 - (a) Linear equations

$$y' + p(t)y = q(t).$$

- i. Solve by **integrating factors**. Bring the equation in standard linear form:
- ii. Integrating factor

$$u(t) = \exp\left(\int p(t) dt\right)$$

iii. Multiply by u, rewrite the equation as

$$(uy)' = uq$$

and solve from here.

- (b) Nonlinear equations
 - i. Separable

$$\frac{dy}{dx} = f(x)g(y).$$

Separate variables, then integrate.

ii. Autonomous equations

$$\frac{dy}{dx} = f(y).$$

Equilibrium solutions/critical points are found by f(y) = 0. Type of critical points: stable, unstable. Phase line.

iii. Exact

$$M(x,y) + N(x,y)y' = 0.$$

Check exactness:

$$M_y = N_x$$
.

Find a function ϕ such that $\phi_x = M, \phi_y = N$. Set $\phi = \text{constant}$.

2. Second order homogeneous equations

$$y'' + p(t)y' + q(t)y = 0.$$

- (a) General facts:
 - i. **Superposition**: if y_1, y_2 are solutions, $c_1y_1 + c_2y_2$ is also a solution.
 - ii. Fundamental pair of solutions: the Wronskian

$$W(y_1, y_2)(t) = \det \begin{bmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{bmatrix} \neq 0.$$

For a fundamental pair, the general solution is

$$y = c_1 y_1 + c_2 y_2.$$

iii. Abel's theorem

$$W(y_1, y_2) = C \exp\left(-\int p(t) dt\right).$$

(b) Constant coefficient equation: p(t) = a, q(t) = b.

- i. Characteristic equation $r^2 + br + c = 0$.
- ii. Distinct real roots r_1 and r_2 , then the fundamental solutions are

$$y_1 = e^{r_1 t}, y_2 = e^{r_2 t}.$$

iii. Complex roots: fundamental solutions are the real and imaginary part of e^{r_1t} . If $r_1 = \alpha + i\beta$, then

$$y_1 = e^{\alpha t} \cos \beta t, y_2 = e^{\alpha t} \sin \beta t.$$

iv. Repeated roots $r_1 = r_2 = a$: fundamental solutions are

$$y_1 = e^{at}, y_2 = te^{at}.$$

(c) Inhomogeneous second order equations.

i. General solution

$$y = y_h + y_p,$$

where y_h is the homogenous solution, and y_p is the particular solution.

ii. Find a particular solution by undetermined coefficients

$$y'' + py' + qy = g(t).$$

There are three cases: g(t) can be polynomial, trigonometric, or exponential.

- A. For g(t) polynomial: look for y_p as a polynomial with undetermined coefficients. (Try to guess its degree first.)
- B. For g(t) trigonometric: look for $y_p = A \cos t + B \sin t$.
- C. For exponential case $g(t) = e^{\lambda t}$, use

$$y_p = Ce^{\lambda t}$$

unless λ is a root of the characteristic equation $r^2 + br + c = 0$. In this case, look for $y_p = e^{\lambda t}(At + B)$ for undetermined A, B. If λ is a double root for the characteristic equation, you will need to work with $y_n = e^{\lambda t}(At^2 + Bt + C)$.

- D. For a term $g(t) = e^{\lambda t} \times \text{polynomial}$ or trigonometric function, substitute $y = e^{\lambda t}u$, find the differential equation for u, then solve for u by undetermined coefficients.
- iii. Alternatively, you may use variation of parameters

$$y = u_1(t)y_1(t) + u_2(t)y_2(t)$$

where

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W(y_1, y_2)} dt, \quad u_2(t) = \int \frac{y_1(t)g(t)}{W(y_1, y_2)} dt.$$

- 3. First order systems of equations $\vec{x}' = A\vec{x}$.
 - (a) Find **eigenvalues** λ of A:

$$\det(A - \lambda I) = 0.$$

Eigenvectors are found by solving the system

$$(A - \lambda I)\vec{\xi} = 0.$$

- (b) Finding solutions: find eigenvalues λ_1, λ_2 with eigenvectors $\vec{\xi}^{(1)}$ and $\vec{\xi}^{(2)}$.
 - If real eigenvalues, general solution

$$\vec{x} = c_1 e^{\lambda_1 t} \, \vec{\xi}^{(1)} + c_2 e^{\lambda_2 t} \, \vec{\xi}^{(2)}.$$

- If complex eigenvalues, take real and imaginary part of $e^{\lambda_1 t} \vec{\xi}^{(1)}$ to obtain the fundamental solutions, then superimpose.
- (c) Repeated eigenvalues $\lambda_1 = \lambda_2 = \lambda$.

Defective case: one eigenvector $\vec{\xi}$. Solutions

$$\vec{x}^{(1)} = e^{\lambda t} \vec{\xi}^{(1)}, \quad \vec{x}^{(2)} = e^{\lambda t} (\vec{\xi}^{(2)} + t \vec{\xi}^{(1)})$$

where $\vec{\xi}^{(2)}$ is a generalized eigenvector

$$(A - \lambda I)\vec{\xi}^{(2)} = \vec{\xi}^{(1)}.$$

- (d) Phase portraits.
 - Saddles: real eigenvalues of opposite sign.
 - nodes: real distinct eigenvalues of same sign.
 - spiral: complex eigenvalues. To find the direction of spirals, compute the velocity vector at a point on the trajectory.
 - (Not on the exam) improper nodes: repeated eigenvalues.

4. Series solutions.

- Power series, summation notation, shift in the indices, differentiation of power series.
- Applications to ODEs: find the recurrence relations between the coefficients, assembling the solutions.

5. Laplace transform.

- (a) Laplace transforms of the standard functions: $1, t^n, \sin(at), \cos(at), e^{at}, e^{at}f(t)$.
- (b) Solve differential equations with Laplace transform. Recall that

$$\mathcal{L}{f'}$$
 = $sF(s) - f(0)$, $\mathcal{L}{f''}$ = $s^2F(s) - sf(0) - f'(0)$.

- (c) Discontinuous functions (Heaviside function).
- (d) Solving differential equations with discontinuous response functions via Laplace transforms.