Definitions and Results afferent to Unitary Recurrent Networks

Jean-Philippe Bernardy

April 1, 2022

1 Orthogonal matrices

Definition 1.1 (Orthogonal matrix). A matrix Q is orthogonal iff it is square and $Q^TQ=I$.

Theorem 1.2 (Properties of orthogonal matrices). *A matrix Q is orthogonal iff.*

- $|\det Q| = 1$
- the rows of Q form an orthogonal basis
- the columns of Q form an orthogonal basis
- multiplying by Q preserve dot products
- multiplying by Q preserve euclidean norms

Theorem 1.3 (Orthogonal matrices form a group). If Q is orthogonal, its inverse is Q^T . If P and Q are orthogonal, so is their product PQ.

Definition 1.4 (Skew-symmetric matrix). A square matrix S is skew-symmetric iff $S^T = -S$.

Theorem 1.5. Assume S, u and λ , such that $S^T = -S$ and $Su = \lambda u$. Then λ is pure imaginary.

Proof. We have $u^*Su = \lambda u^*u = \lambda \|u\|^2$. Taking the hermitian conjugate of both sides yields $u^*S^*u = \bar{\lambda}\|u\|^2$. Because S is skew-symmetric, we also have $-u^*Su = \bar{\lambda}\|u\|^2$. We then conclude $\lambda = -\bar{\lambda}$, which is satisfied only when λ is pure imaginary. \Box

Theorem 1.6. If S is skew-symmetric then e^S is orthogonal.

Proof. By the spectral theorem, S admits a unitary diagonalisation $S=Q^*\Theta Q$. Let $\Lambda=e^\Theta$. By properties of matrix exponential, $e^S=Q^*\Lambda Q$. Because Θ is diagonal with elements $i\theta_j$, Λ is diagonal with elements $\lambda_j=e^{i\theta_j}$. By ??, every θ_j is real, and thus every λ_j is unimodular. Consequently, Λ is unitary. Thus e^S is the product of unitary matrices, and consequently itself unitary.

2 Average effect and distances

Theorem 2.1. For every orthogonal matrix Q of dimension n and a random unit vector s, $\mathbb{E}_s[\langle Qs,s\rangle]=\frac{1}{n}\mathsf{trace}(Q)$.

Proof. By the spectral theorem, Q admits a diagonalisation of the form $Q = U^*\Lambda U$, with U unitary. Let λ_i be the (diagonal) elements of Λ and let x = Us. Remark that because U is unitary, ||x|| = ||s|| = 1. Thus $\sum_i |x_i|^2 = 1$. Obviously, $\mathbb{E}\left[\sum_i |x_i|^2 = 1\right]$. By assumption, all dimensions of x have the same distribution (applying Q to s does not change this fact, because multiplying by it conserve densities), and thus $\mathbb{E}[|x_i|^2] = \frac{1}{n}$. We can now compute:

$$\begin{split} \mathbb{E}_s[\langle Qs,s\rangle] &= \mathbb{E}_s[s^TQs] \\ &= \mathbb{E}_s[s^TU^*\Lambda Us] \\ &= \mathbb{E}_x[x^*\Lambda x] \\ &= \mathbb{E}_x \left[\sum_i |x_i|^2 \lambda_i \right] \qquad \text{by Λ diagonal} \\ &= \sum_i \lambda_i \mathbb{E}_x[|x_i|^2] \qquad \text{by linearity of expectation} \\ &= \frac{1}{n} \sum_i \lambda_i \\ &= \frac{1}{n} \text{trace}(\Lambda) \\ &= \frac{1}{n} \text{trace}(\Lambda UU^*) \\ &= \frac{1}{n} \text{trace}(U^*\Lambda U) \end{split}$$

Theorem 2.2. For any two orthogonal matrices P and Q of dimension n, $||P - Q||^2 = 2(n - \langle P, Q \rangle)$.

¹Here, even if Q is real, U, λ_i and thus x_i are complex.

Proof.

$$||P - Q||^2 = \langle P - Q, P - Q \rangle$$

$$= \langle P, P \rangle - \langle P, Q \rangle - \langle P, Q \rangle + \langle Q, Q \rangle$$

$$= n - 2\langle P, Q \rangle + n$$

Theorem 2.3. For any two orthogonal matrices P and Q of dimension n, and a random unit vector s, $\mathbb{E}_s[\langle Ps, Qs \rangle] = \frac{1}{n}\langle P, Q \rangle$.

Proof. By the spectral theorem, P^TQ admits a diagonalisation of the form $P^TQ = U^*\Lambda U$, with U unitary. The proof proceeds as for $\ref{eq:proof:eq$

Theorem 2.4. For every orthogonal matrices P and Q of dimension n and a random unit vector s, $\mathbb{E}_s[\|Ps - Qs\|^2] = \frac{1}{n}\|P - Q\|^2$.

Proof. A direct consequence of ?? and ??.

3 Planes

Theorem 3.1. If S is skew-symmetric, the rank of S gives the maximum number of eigenvalues of e^S different from 1.

Proof. The proof relies on the construction provided in the proof of ??.

We then note that if $\theta_j=0$ then $\lambda_j=1$. Because the rank of S gives the number of non-zero elements of Θ , it is also the maximum number of elements of Λ different from 1. (These numbers can differ when $\theta_j=2\pi$ for some j.)

Definition 3.2 (Plane similarity). Assume two planes an n-dimensional space, each defined by two orthogonal vectors arranged in a n by 2 matrix. The similarity between A and B is defined by $sim(A,B) = max_{\Omega}\langle B,A\Omega\rangle$ for Ω orthogonal.

The role of taking the minimum for Ω is to account for equal planes, but which are defined by another basis. Indeed, $A\Omega$ covers all possible bases of the plane defined by A when varying Ω .

Theorem 3.3. sim(A, B) is the sum of singular values of B^TA .

Proof. Let $U\Sigma V^T=B^TA$ be a singular value decomposition of B^TA .

$$\begin{split} \max_{\Omega}\langle B,A\Omega\rangle &= \max_{\Omega} \operatorname{trace}(B^TA\Omega) \\ &= \max_{\Omega} \operatorname{trace}(U\Sigma V^T\Omega) \\ &= \max_{\Omega} \operatorname{trace}(\Sigma V^T\Omega U) \\ &= \operatorname{trace}(\Sigma) \end{split}$$

The last step is justified by $V^T\Omega U$ being orthogonal. Because Σ is diagonal, the maximum trace for the product is achieved when $V^T\Omega U=I$.