For convenience let $\bar{L}(k) = \bigcup_{i \le k} L(i)$.

Proposition 1. Any element t of A(n) may be written as x + yz where $x \in \bar{L}(k)$, $y \in A$, and $z \in A(n-k) \setminus \mathbb{F}_2$ for any $k \geq 0$. Equivalently, $A(n) \subset \bar{L}(k) + A(\operatorname{Sq}^i)_{i \leq k}$, where we take $A(\operatorname{Sq}^i)_{i \leq k}$ to be the left ideal of A generated by $\{\operatorname{Sq}^i\}_{i \leq k}$, for any $k \geq 0$.

Proof. It suffices to prove the proposition on some basis for $\mathcal{A}(n)$. Recall that in Wood's Z-basis of the Steenrod algebra, a basis for $\mathcal{A}(n)$ consists of all strings of squares selected from (1) and multiplied in the given order:

$$\operatorname{Sq}^{2^{n+1}-2^n}\operatorname{Sq}^{2^{n+1}-2^{n-1}}\cdots\operatorname{Sq}^{2^{n+1}-1}\operatorname{Sq}^{2^n-2^{n-1}}\cdots\operatorname{Sq}^{2^n-1}\cdots\operatorname{Sq}^2\operatorname{Sq}^3\operatorname{Sq}^1 \qquad (1)$$

We induct on the number of squares selected. The empty product is 1, which is in $\bar{L}(k)$, so we are done. So now suppose the proposition holds on all elements of the Wood Z-basis of length at most l-1, and let t be an element of length l. Then, for some $m=2^j-2^i, i < j \le n+1$, we may write $t=\operatorname{Sq}^m(x+yz)$ where x,y, and z are as in the statement of the proposition.

Now $\operatorname{Sq}^m yz$ is clearly of the prescribed form, since $\operatorname{Sq}^m y$ is in \mathcal{A} . If $x \in \overline{L}(k-1)$, then $\operatorname{Sq}^m x \in \overline{L}(k)$ (since application of the Adem relations cannot increase the length of a monomial), so we may suppose $x \in L(k)$.

Write x in admissible form as $\operatorname{Sq}^{i_1}\operatorname{Sq}^{i_2}\cdots\operatorname{Sq}^{i_k}$. If $\operatorname{Sq}^m\operatorname{Sq}^{i_1}\operatorname{Sq}^{i_2}\cdots\operatorname{Sq}^{i_k}$ is already in admissible form, then we have that $2^ki_k\leq 2^{k-1}i_{k-1}\leq \cdots \leq 2i_1\leq m<2^{n+1}$, so in particular, $i_k<2^{n-k+1}$, so $i_k\in\mathcal{A}(\operatorname{Sq}^i)_{i\leq k}$, so in fact the entire product Sq^mx is in $\mathcal{A}(\operatorname{Sq}^i)_{i\leq k}$. Then we may apply the Adem relations at least once, to get

$$\operatorname{Sq}^m \operatorname{Sq}^{i_1} \operatorname{Sq}^{i_2} \cdots \operatorname{Sq}^{i_k} = a_0 \operatorname{Sq}^{m+i_1} \operatorname{Sq}^{i_2} \cdots \operatorname{Sq}^{i_k} + \sum_{1 \leq j \leq \frac{m}{2}} a_j \operatorname{Sq}^{m+i_1-j} \operatorname{Sq}^{j} \operatorname{Sq}^{i_2} \cdots \operatorname{Sq}^{i_k};$$

the first term we know is in L(k). For each of the remaining terms, if we may repeat the same process, ignoring the first factor; either the product is in $\mathcal{A}(\operatorname{Sq}^i)_{i\leq k}$, or it may be further reduced by the Adem relations. Finally, if we apply the Adem relations k times, the rightmost factor must be Sq^i for $i\leq \frac{m}{2^k}<2^{n-k+1}$, so similarly the product lies in the ideal $\mathcal{A}(\operatorname{Sq}^i)_{i\leq k}$. Then $\operatorname{Sq}^m x$ may be written in the desired form, so we are done.