기계학습 (Machine Learning)

L10

- Regularization

한밭대학교

정보통신공학과

최 해 철

ToC

- ◆ Overfitting & Underfitting
- ◆ Bias and Variance
- ◆ Regularization by Weight Penalty

References

- *기계 학급 "3장 다층 퍼셉트론"* by 오일석, *패턴 인식* by 오일석
- 단단한 머신러닝 by 조우쯔와

1. Overfitting & Underfitting

Generalization

일반화

● 모델이 학습 데이터에 대해 학습한 후, **이전에 본 적이 없는 ____에 대해 정확하게 예측할 수 있는 능력**

Example: in Classification...

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2^2 + \cdots)$$

Underfitting

- ◆ ____ 과소적합 -___과 훈련 오차
 - '모델의 용량이 너무 작아' or '훈련집합이 너무 작아' 오차가 클 수밖에 없는 현상
 - 예) 아래 그림의 선형(1차 다항식) 또는 2차 다항식 모델을 사용한 경우

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x + \theta_2 x^2)$$

Underfitting

- ◆ Underfitting 방지
 - 비선형 모델 등과 같이 용량이 더 큰 모델을 사용
 - 충분한 훈련 집합을 활용
 - 예) 아래 그림의 3차, 4차, 12차 다항식 모델의 경우

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_{11} x^{11} + \theta_{12} x^{12})$$

Overfitting

- ◆ <u>과적합 (overfitting)</u> 과 예측(시험) 오차
 - 12차 다항식 곡선을 채택한다면 훈련집합에 대해 거의 완벽하게 근사화함
 - 하지만 <u>'새로운' 데이터</u>를 예측한다면 큰 문제 발생 (빨간 점)
 - 이유는 '용량이 너무 크기' 때문에 학습 과정에서 잡음까지 수용 → 과잉적합 현상

$$\hat{y} = f(x) +$$
noise

Causes of Overfitting – 1. Data

- ◆ Insufficient # of Training Examples
 - the training set may be too <u>Sparse</u> or cannot represent the full variety of the data

N: # of traing examples

- 해결책: 충분히 많은 Training Data 사용
 - Cf.) 데이터 증대(Data Augmentation) 기법 등을 통해 기존 Training Data 증대 가능

Causes of Overfitting – 2. Model

- ◆ Too Large # of Parameters (Model Capacity)
 - the model is relatively too flexible for the dataset
 - the resulting parameters tend to have <u>large values</u>

	M = 0	M = 1	M = 3	M = 9
w_0^*	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
w_3^*			17.37	48568.31
w_{A}^{*}				-231639.30
w_5				640042.26
w_6^*				-1061800.52
w;				1042400.18
w_8^*				-557682.99
w_{0}^{*}				125201.43

3차 예,
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3)$$

Causes of Overfitting – 2. Model (cont'd)

- ◆ 해결책 1: ______음 이용한 ___모델 선택
 - 훈련집합과 테스트집합과 다른 별도의 **검증집합**을 준비한다.
 - **모델집합**에 속한 각각의 모델에 대해 **훈련집합**으로 학습시킨다. (훈련 성능)
 - 앞의 예에서는 서로 다른 차수의 다항식의 집합(서로 다른 용량)이 모델집합인 셈
 - 검증집합에 대해 최고의 성능을 보인 모델을 선택한다. (검증 성능) → Overfitting 방지

 h^* : model with lowest validation error

 \hat{h} : model with lowest test error

Overfitting

- ◆ 해결책 2: <u>적당한 용량</u>의 모델을 선택
 - Model selection, model evaluation 작업을 수행
 - Example: in Regression...

Example: in Classification...

Causes of Overfitting – 2. Model (cont'd)

규제

- - 용량이 충분히 큰 모델 + 다양한 규제(Regularization) 기법을 적용
 - 예시: Weight Penalty, Drop-out...
 - Overfitting을 방지하기 위한 기술을 통칭하여 '규제'라고 부르기도 함
 - Regularization Parameter들은 *Validation Set* 을 이용하여 결정 가능 (model selection)

2. Bias and Variance

suppose we have multiple training sets

VISUAL MEDIA LAB.

HANBAT NATIONAL UNIVERSITY

suppose we have multiple training sets

suppose we have multiple training sets

평균의 취하면?

lacktriangle A point estimator $\hat{\theta}$ of some parameter or function θ

Bias-Variance of the Squared Error

$$\operatorname{Bias}[\hat{\theta}] = E[\hat{\underline{\theta}}] - \underline{\theta}$$

$$Var[\hat{\theta}] = E[\hat{\theta}^2] - (E[\hat{\theta}])^2$$

$$Var[\hat{\theta}] = E \left[(E[\hat{\theta}] - \hat{\theta})^2 \right]$$

"ML Notation" for Squared Error Loss

$$y = f(x)$$
 target \leftarrow For simplicity, we ignore the noise term

$$\hat{y} = \hat{f}(x) = h(x)$$
 prediction

$$S = (y - \hat{y})^2$$
 squared error

- Expectation: 확률 변수의 평균값 또는 평균적인 결과를 나타내는 개념
- The **expectation** is over the training data, i.e, the average estimator from different training samples

Intuition

Intuition

$$\mathrm{Bias}[\hat{\theta}] = E[\hat{\theta}] - \theta$$

Bias is the difference between the average estimator from different training samples and the true value. (The expectation is over the training sets.)

Intuition

(we ignore noise in this lecture for simplicity)

Noise

Toront

The **variance** provides an estimate of how much the estimate varies as we vary the training data (e.g. by resampling)

$$Var[\hat{\theta}] = E[\hat{\theta}^2] - (E[\hat{\theta}])^2$$

Bias-Variance Decomposition

Loss = Bias + Variance + Noise

$$\operatorname{Bias}[\hat{\theta}] = E[\hat{\theta}] - \theta$$

$$y = f(x)$$
 target

$$Var[\hat{\theta}] = E[\hat{\theta}^2] - (E[\hat{\theta}])^2$$

$$\hat{y} = \hat{f}(x) = h(x)$$
 prediction

$$Var[\hat{\theta}] = E \left[(E[\hat{\theta}] - \hat{\theta})^2 \right]$$

$$S = (y - \hat{y})^2$$
 squared error

$$(y - \hat{y})^2 = (y - E[\hat{y}] + E[\hat{y}] - \hat{y})^2$$

= $(y - E[\hat{y}])^2 + (E[\hat{y}] - \hat{y})^2 + 2(y - E[\hat{y}])(E[\hat{y}] - \hat{y})$

$$Bias[\hat{\theta}] = E[\hat{\theta}] - \theta$$

$$y = f(x)$$
 target

$$Var[\hat{\theta}] = E[\hat{\theta}^2] - (E[\hat{\theta}])^2$$

$$\hat{y} = \hat{f}(x) = h(x)$$
 prediction

$$Var[\hat{\theta}] = E \left[(E[\hat{\theta}] - \hat{\theta})^2 \right]$$

$$S = (y - \hat{y})^2$$
 squared error

$$(y - \hat{y})^2 = (y - E[\hat{y}] + E[\hat{y}] - \hat{y})^2$$

= $(y - E[\hat{y}])^2 + (E[\hat{y}] - \hat{y})^2 + 2(y - E[\hat{y}])(E[\hat{y}] - \hat{y})$

$$E[S] = E\left[(y - \hat{y})^2 \right]$$

$$Bias[\hat{\theta}] = E[\hat{\theta}] - \theta$$

$$y = f(x)$$
 target

$$Var[\hat{\theta}] = E[\hat{\theta}^2] - (E[\hat{\theta}])^2$$

$$\hat{y} = \hat{f}(x) = h(x)$$
 prediction

$$Var[\hat{\theta}] = E \left[(E[\hat{\theta}] - \hat{\theta})^2 \right]$$

$$S = (y - \hat{y})^2$$
 squared error

$$(y - \hat{y})^2 = (y - E[\hat{y}] + E[\hat{y}] - \hat{y})^2$$

$$= (y - E[\hat{y}])^2 + (E[\hat{y}] - \hat{y})^2 + 2(y - E[\hat{y}])(E[\hat{y}] - \hat{y})$$

$$E[S] = E[(y - \hat{y})^2] = (y - E[\hat{y}])^2 + E[(E[\hat{y}] - \hat{y})^2]$$

$$E[2(y - E[\hat{y}])(E[\hat{y}] - \hat{y})] = 2E[(y - E[\hat{y}])(E[\hat{y}] - \hat{y})]$$

$$= 2(y - E[\hat{y}])E[(E[\hat{y}] - \hat{y})]$$

$$= 2(y - E[\hat{y}])(E[E[\hat{y}]] - E[\hat{y}])$$

$$= 2(y - E[\hat{y}])(E[\hat{y}] - E[\hat{y}])$$

$$= 0$$

Bias-Variance Tradeoff

◆ 모델의 복잡도 관점에서 봤을 때 분산과 편향이 트레이드 오프(trade-off) 관계

Generalization Error

3. Regularization by Weight Penalty

Regularization (규제)

- ◆ 『Deep Learning』 책의 규제 정의
 - "...any modification we make to a learning algorithm that is intended to *reduce its generalization error* ..."

 (일반화 오류를 줄이려는 의도를 가지고 학습 알고리즘을 수정하는 방법 모두)

- ◆ 규제는 오래 전부터 수학과 통계학에서 연구해온 주제
 - 모델 용량에 비해 데이터가 부족한 경우의 불량 문제를ill-posed problem 푸는 데 사용
 - 현대 기계학습도 규제를 널리 사용
- ◆ 명시적 규제와 암시적 규제
 - 명시적 규제: 가중치 감쇠나 드롭아웃처럼 목적함수나 신경망 구조를 직접 수정하는 방식
 - **암시적 규제**: 조기 멈춤, 데이터 증대, 잡음 추가, 앙상블처럼 간접적으로 영향을 미치는 방식

Regularization by Weight Penalty (가중치 감쇠)

◆ Regularized Cost Function

$$\underbrace{J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{규제를 적용한 목적함수}} = \underbrace{J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{목적함수}} + \lambda \underbrace{R(\mathbf{\Theta})}_{\text{규제 항}}$$

• 규제항은 훈련집합과 무관하며, 데이터 생성 과정에 내재한 **사전 지식**에 해당

Regularization by Weight Penalty (가중치 감쇠)

$$\underline{J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})} = \underline{J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})} + \lambda \underline{R(\mathbf{\Theta})}$$
 국제를 적용한 목적함수 목적함수 규제 항

- ◆ 규제항 $R(\Theta)$ 로 무엇을 사용할 것인가? → 가중치 감쇠 (가중치 벌칙)
 - 큰 가중치(⊕)에 벌칙을 가해 작은 가중치를 유지 →
 - L2 norm 사용: $R(\Theta) = \|\Theta\|_2^2$
 - L1 norm 사용: $R(\Theta) = \|\Theta\|_1$
 - 가중치 감쇠는 모델의 구조적 용량을 충분히 크게 하고 모델의 _ ←치적 용량을 제

용량을 제한	하는 규	제 기번	

M = 0	M = 1	M = 3	M = 9
0.19	0.82	0.31	0.35
	-1.27	7.99	232.37
		-25.43	-5321.83
		17.37	48568.31
			-231639.30
			640042.26
			-1061800.52
			1042400.18
			-557682.99
			125201.43
		0.19 0.82	0.19 0.82 0.31 -1.27 7.99 -25.43

Regularization – L2 Norm,

◆ Regularized Cost & Gradient

$$\underbrace{J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{규제를 적용한 목적함수}} = \underbrace{J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{목적함수}} + \lambda \underbrace{\|\mathbf{\Theta}\|_{2}^{2}}_{\text{규제 항}}$$

$$\nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) = \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + 2\lambda \mathbf{\Theta}$$

◆ Parameter Update

$$\mathbf{\Theta} = \mathbf{\Theta} - \rho \nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})$$
$$= \mathbf{\Theta} - \rho (\nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + 2\lambda \mathbf{\Theta})$$
$$= (1 - 2\rho\lambda)\mathbf{\Theta} - \rho \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})$$

- ullet L2 규제는 $oldsymbol{\Theta}$ 를 $2
 ho\lambda$ 의 비율로 줄인 후 업데이트 하는 셈
 - 즉, 가중치 감소 정도가 ___^{현재가중차크기에 비해} _____ 힏

Weight decay (가중치 감쇠)

$$\underbrace{J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{규제를 적용한 목적함수}} = \underbrace{J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{목적함수}} + \lambda \underbrace{\|\mathbf{\Theta}\|_2^2}_{\text{규제 항}}$$

$$\min_{\beta} \sum_{i=1}^{\infty} (y_i - \hat{y}_i)^2 + 5000\beta_3^2 + 5000\beta_4^2$$

$$\beta_3 \approx 0$$
 $\beta_4 \approx 0$

Regularization – L1 Norm

◆ Regularized Cost & Gradient

$$\underline{J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})} = \underline{J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})} + \lambda \underline{\|\mathbf{\Theta}\|_{1}}$$
 규제를 적용한 목적함수 목적함수 규제 항

$$\nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) = \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + \lambda \mathbf{sign}(\mathbf{\Theta})$$

sign(0): 0의 부호 벡터 (1, -1)

◆ Parameter Update

$$\begin{aligned} \mathbf{\Theta} &= \mathbf{\Theta} - \rho \nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) \\ &= \mathbf{\Theta} - \rho (\nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + \lambda \mathbf{sign}(\mathbf{\Theta})) \\ &= \mathbf{\Theta} - \rho \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) - \rho \lambda \mathbf{sign}(\mathbf{\Theta}) \end{aligned}$$

$$= \mathbf{\Theta} - \rho \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) - \rho \lambda \mathbf{sign}(\mathbf{\Theta})$$
PM When the property of the

- \bullet L1 규제는 Θ 를 $\rho\lambda($ 고정값)만큼 <u>줄인</u>후 업데이트 하는 셈
- L1 규제의 희소성(Sparse) 효과: _ 이 되는 가중치가 많이 발생
 - 선형 회귀에 적용하면 특징 선택 효과

(a)
$$sign(\Theta) = (1,1)^{T}$$
인 경우

(b) $sign(\Theta) = (-1,1)^{T}$ 인 경우

Regularization – L1 norm vs. L2 norm

L1 norm이 0이 되는 가중치가 많이 발생하는 이유:
1. 업데이트 속도차이 L1은 고정적인 비율로 갱신 L2는 가중치 크기에 비례

^{1.} 업네이트 속노자이 L1은 고성석인 비율로 갱신 L2는 가중지 크기에 비려 2

◆ **L1 norm** updae

$$\begin{aligned} \mathbf{\Theta} &= \mathbf{\Theta} - \rho \nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) \\ &= \mathbf{\Theta} - \rho (\nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + \lambda \mathbf{sign}(\mathbf{\Theta})) \\ &= \mathbf{\Theta} - \rho \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) - \rho \lambda \mathbf{sign}(\mathbf{\Theta}) \end{aligned}$$

◆ **L2 norm** update

$$\mathbf{\Theta} = \mathbf{\Theta} - \rho \nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})$$
$$= \mathbf{\Theta} - \rho (\nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + 2\lambda \mathbf{\Theta})$$
$$= (1 - 2\rho\lambda)\mathbf{\Theta} - \rho \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})$$

Lasso Regression의 기하학적 이해

Regularization – L1 norm vs. L2 norm

◆ Lasso (L1) vs. Ridge (L2) Regression

$$\underline{J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})} = \underline{J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})} + \lambda \underline{R(\mathbf{\Theta})}$$
 국제를 적용한 목적함수 목적함수 규제 항

0이 되는 가중치가 많이 발생

https://medium.com/@mukulranjan/how-does-lasso-regression-l1-encourage-zero-coefficients-but-not-the-l2-20e4893cba5d VISUAL MEDIA LAB.

Regularization – L1 norm vs. L2 norm

◆ Lasso (L1) vs. Ridge (L2) Regression

Regularization – Selecting Lambda

- ◆ Test Error가 가장 작게 되는 *入*가 최적
 - 그러나 학습시에는 test set에 접근할 수 없으므로, validation set을 이용하여 최적의 λ를 선택함

Regularization – Do Not Penalize Bias!

- ◆ For Centered Dataset (when both x and y have zero mean)
 - No problem even if we have zero bias (i.e., $w_0 = 0$).

$$J(\mathbf{\Theta}) = \frac{1}{n} \|\mathbf{y} - \mathbf{x}^{\mathsf{T}} \mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(y_{i} - w_{0} - \sum_{j=1}^{d} w_{j} x_{ij} \right)^{2} + \lambda \sum_{j=0}^{d} w_{j}^{2}$$

- ◆ For Non-centered Dataset (the general case)
 - Penalizing bias often leads to bad performance.
 - Thus we need to exclude the bias (w_0) from the regularization term:

$$J(\mathbf{\Theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - w_0 - \sum_{j=1}^{d} w_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{d} w_j$$

Regularization – Example: Linear Regression

- 선형 회귀에 적용
 - 선형 회귀는 훈련집합 $\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}, \mathbb{Y} = \{y_1, y_2, \cdots, y_n\}$ 이 주어지면, 식 (5.24)를 풀어 $\mathbf{w} = (w_1, w_2, \cdots, w_d)^{\mathrm{T}}$ 를 구하는 문제. 이때 $\mathbf{x}_i = (x_{i1}, x_{i2}, \cdots, x_{id})^{\mathrm{T}}$

$$w_1 x_{i1} + w_2 x_{i2} \cdots + w_d x_{id} = \mathbf{x}_i^{\mathrm{T}} \mathbf{w} = y_i, \qquad i = 1, 2, \cdots, n$$
 (5.24)

■ 식 (5.24)를 행렬식으로 바꿔 쓰면,

$$Xw = y$$

(5.25)
$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_d^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ x_1^{(n)} & x_2^{(n)} & \cdots & x_d^{(n)} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix}$$

■ 가중치 감쇠를 적용한 목적함수

$$J_{regularized}(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2} = (\mathbf{X}\mathbf{w} - \mathbf{y})^{T}(\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \|\mathbf{w}\|_{2}^{2}$$
(5.27)

Regularization – Example: Linear Regression (cont'd)

■ 식 (5.27)을 미분하여 o으로 놓으면,

$$\frac{\partial J_{regularized}}{\partial \mathbf{w}} = \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w} - \mathbf{X}^{\mathrm{T}} \mathbf{y} + 2\lambda \mathbf{w} = \mathbf{0} \implies (\mathbf{X}^{\mathrm{T}} \mathbf{X} + 2\lambda \mathbf{I}) \mathbf{w} = \mathbf{X}^{\mathrm{T}} \mathbf{y}$$
(5.28)

■ 식 (5.28)을 정리하면,

$$\widehat{\mathbf{w}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X} + 2\lambda \mathbf{I})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y} \tag{5.29}$$

공분산 행렬 X^TX의 대각 요소가 2λ만큼씩 증가 → 역행렬을 곱하므로 가중치를 축소하여 원점으로 당기는 효과 ([그림 5-21])

■ 예측 단계에서는.

$$y = \mathbf{x}^{\mathrm{T}} \widehat{\mathbf{w}} \tag{5.30}$$

$$\prec$$

$$\frac{\partial J}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} \| \mathbf{X} \mathbf{w} - \mathbf{y} \|_2^2 \quad \Xi$$

$$||X\mathbf{w} - \mathbf{y}||_{2}^{2} = (X\mathbf{w} - \mathbf{y})^{\mathrm{T}}(X\mathbf{w} - \mathbf{y}) \stackrel{\text{(1)}}{=} (\mathbf{w}^{\mathrm{T}}X^{\mathrm{T}} - \mathbf{y}^{\mathrm{T}})(X\mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{\mathrm{T}}X^{\mathrm{T}}X\mathbf{w} - \mathbf{y}^{\mathrm{T}}X\mathbf{w} - \mathbf{w}^{\mathrm{T}}X^{\mathrm{T}}\mathbf{y} + \mathbf{y}^{\mathrm{T}}\mathbf{y}$$

$$\stackrel{\text{(2)}}{=} \mathbf{w}^{\mathrm{T}}X^{\mathrm{T}}X\mathbf{w} - 2\mathbf{y}^{\mathrm{T}}X\mathbf{w} + \mathbf{y}^{\mathrm{T}}\mathbf{y}$$

$$\frac{\partial}{\partial \mathbf{w}} \| \mathbf{X} \mathbf{w} - \mathbf{y} \|_{2}^{2} = \frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w}) - \frac{\partial}{\partial \mathbf{w}} (2\mathbf{y}^{\mathrm{T}} \mathbf{X} \mathbf{w}) + \frac{\partial}{\partial \mathbf{w}} (\mathbf{y}^{\mathrm{T}} \mathbf{y})$$

$$\stackrel{(3)}{=} 2\mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w} - 2\mathbf{X}^{\mathrm{T}} \mathbf{y} + 0$$

$$= 2\mathbf{X}^{\mathrm{T}} (\mathbf{X} \mathbf{w} - \mathbf{y})$$

$$(\mathbf{A} - \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} - \mathbf{B}^{\mathrm{T}}$$
$$(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} = \mathbf{y}^{\mathrm{T}}\mathbf{x}$$

$$\mathbf{w}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{y} = (\mathbf{X}\mathbf{w})^{\mathrm{T}}\mathbf{y} = \mathbf{y}^{\mathrm{T}}(\mathbf{X}\mathbf{w})$$

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}) = (\mathbf{A} + \mathbf{A}^{\mathrm{T}}) \mathbf{x} \begin{bmatrix} \mathbf{X}^{\mathrm{T}} \mathbf{X} : \text{symmetric} \\ \mathbf{X}^{\mathrm{T}} \mathbf{X} = (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{\mathrm{T}} \end{bmatrix}$$

$$\frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w}) = (\mathbf{X}^{\mathrm{T}} \mathbf{X} + (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{\mathrm{T}}) \mathbf{w}$$
$$= (\mathbf{X}^{\mathrm{T}} \mathbf{X} + \mathbf{X}^{\mathrm{T}} \mathbf{X}) \mathbf{w}$$
$$= 2\mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w}$$

$$\frac{\partial}{\partial \mathbf{x}}(\mathbf{y}^{\mathrm{T}}\mathbf{x}) = \mathbf{y}$$

$$\frac{\partial}{\partial \mathbf{w}}(\mathbf{y}^{\mathrm{T}}\mathbf{X}\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}}((\mathbf{X}^{\mathrm{T}}\mathbf{y})^{\mathrm{T}}\mathbf{w}) = \mathbf{X}^{\mathrm{T}}\mathbf{y}$$

 $\mathbf{v}^{\mathrm{T}}\mathbf{X}$: a row vector

Regularization – Example: Linear Regression (cont'd)

예제 5-1

리지 회귀

훈련집합 $\mathbb{X} = \{\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \mathbf{x}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \ \mathbf{x}_3 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}\}, \ \mathbb{Y} = \{y_1 = 3.0, \ y_2 = 7.0, y_3 = 8.8\}$ 이 주어졌다고 가정하자. 특징 벡터가 2차원이므로 d=2이고 샘플이 3개이므로 n=3이다. 훈련집합으로 설계행렬 \mathbf{X} 와 레이블 행렬 \mathbf{y} 를 다음과 같이 쓸 수 있다.

$$\mathbf{X} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 3 \end{pmatrix}, \qquad \mathbf{y} = \begin{pmatrix} 3.0 \\ 7.0 \\ 8.8 \end{pmatrix}$$

이 값들을 식 (5.29)에 대입하여 다음과 같이 $\hat{\mathbf{w}}$ 을 구할 수 있다. 이때 $\lambda = 0.25$ 라 가정하자.

$$\widehat{\mathbf{w}} = \left(\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 3 \end{pmatrix} + \begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix} \right)^{-1} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \end{pmatrix} \begin{pmatrix} 3.0 \\ 7.0 \\ 8.8 \end{pmatrix} = \begin{pmatrix} 1.4916 \\ 1.3607 \end{pmatrix}$$

따라서 하이퍼 평면은 $y=1.4916x_1+1.3607x_2$ 이다. 새로운 샘플로 $\mathbf{x}=(5-4)^\mathrm{T}$ 가 입력되면 식 (5.30)을 이용하여 12.9009를 예측한다.

감사합니다.