Learning to Act by Predicting the Future

Yonatan Deloro - Amine Kheldouni

Ecole des Ponts ParisTech https://github.com/AmineKheldouni/DirectFuturePrediction

January 14th, 2019

Plan

- Introduction
- 2 The model
- 3 Experiments
- 4 Improvements

Section 1

Introduction

Motivations

Classic approaches to learn goal-directed behavior generally falls into the reinforcement learning field.

Several limitations in complex sensory environments :

- Scalar reward signal
 vs. rich feedback at various time offsets
- Designed to learn to behave with respect to only one given goal vs. goal can change dynamically at test time

Motivations

In contrast, we will aim to study DFP, a supervised learning-based approach to learn how to behave in complex sensory environments. The model learns to act based on :

- Sensory stream: raw sensory inputs of a complex and dynamic three-dimensional environment.
- Measurements stream: intrisic measurements (low-dimensional variable characterizing the state)
- **Goal**: vectorial goal defined with respect to the selected measurements

Section 2

The model

Direct Future Prediction modelling

- The observations o_t are formed with the raw sensory input s_t and a set of measurements m_t .
- Goals can be expressed as linear combinations of future measurements $(u(f;g)=g^Tf)$. f being the differences of future and present measurements for a temporal offset τ :

$$f = \langle m_{t+\tau_1} - m_t, ..., m_{t+\tau_n} - m_t \rangle$$

 At test time, the agent chooses the action maximizing the predicted outcome :

$$a_t = \underset{a \in \mathcal{A}}{\operatorname{argmax}} g^T F(o_t, a, g; \theta)$$

where F is a parameterized function approximator of f to be learnt.

The architecture of f the function approximator

Figure – Network architecture modelling the function approximator F

The training

- At train time, goal can be fixed or generated randomly at each episode.
- Agent follows an ϵ -greedy policy, where ϵ decreases throughout time (ie. exploration decreases)
- F trained with experiences collected by the agent using experience replay: mini-batch selected randomly among a fixed-size memory of most recent experiences.

Loss:
$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \|F(o_i, a_i, g_i; \theta) - f_i\|^2$$

Implementation used and refinements

We forked Mr. Felix Yu's repository⁽²⁾ for DDQN and DFP.

Our changes:

- Moved from the DDQN implementation to a DQN model
- Adapted the sensory inputs to match the original DFP model (one sensory image)
- Added random goal training regime, and a test session
- Enabled multiple environments (D2, D3)
- Implemented a logger engine for results gathering and experiences

Section 3

Experiments

Experiment 1 : DFP against DQN

Figure - Agent's life in environment D1 ("health gathering")

Experiment 2 : Scalar reward against vectorial feedback

Figure - Agent's life in environment D2 ("health gathering supreme")

Experiment 3 : Predicting measurements at multiple temporal offsets

Figure - Agent's life in environment D2 ("health gathering supreme")

Figure - Agent's life in environment D2 ("health gathering supreme")

Figure – Results for agent's life (left) and medkits (right) on D3 (red: fixed, green: random [0,1], blue: random [-1,1]

Figure – Results for agent's ammo (left) and frags (right) on D3 (red: fixed, green: random [0,1], blue: random [-1,1]

$$m = (ammo, health, frags)$$

Test goal	Fixed goal			Random goal [0,1]			Random goal $[-1,1]$		
	Α	Н	F	Α	Н	F	Α	Н	F
(0.5, 0.5, 1)	3.4	271.5	6.5	3.7	283.7	6.9	2.4	265	2.6
(0,0,1)	1.5	298.1	2	4.3	291	6.3	5.9	240.3	6.9
(0, 1, 0)	21.6	195	0	23	210.6	0	22.2	207	1

Table – Average scores in environment D3 (each group of three columns is a train regime and each row is a test-time goal)

Section 4

Improvements

We do not have a pair of stereo images here.

- Prediction from motion : DepthNet "End-to-end depth from motion with stabilized monocular videos"
 - only for translational movement of the camera, lack of rotation, no distortion!
- Prediction from a single image : FCRN for Depth Map prediction.
 - " Iro Laina and al., "Deeper Depth Prediction with Fully Convolutional Residual Networks".
 - ResNet50 where fully connected layer replaced by new up-sampling block
 - No post-processing/refinement step
 - Input: (304,228,3) / Prediction: (160,128)
 - Pre-trained on NYU-Depth-v2 dataset or Make3D, but weights only available for tf framework for NYU-Depth-v2

Segmentation of the sensory input

- Object detection with Fast-RCNN (Region Proposal Network and classification)
- Fully convolutional network (FCN) on Region of Interest (Rol)

 \implies Segmentation Masks

Segmentation : first example

Figure - Image segmentation of a nerby medkit in VizDoom simulator

Segmentation : second example

Figure - Image segmentation of multiple medkits in VizDoom simulator

Improving DFP model

Figure – From the (R,G,B) channels to (gray image, depth map, segmentation image)

Results with Depth Map

Figure – Results fore agent's life (*left*) and medkits (*right*) with and without a depth map channel in D1

CartPole environment

The CartPole environment is a basic reinforcement learning problem where the system is an inverted pendulum

Goal: Perform an action { *left*, *right* } on the car to keep the pendulum inverted.

Figure – CartPole environment rendering

CartPole : DFP against DQN

- Sensorimotor control : An image of the environment.
- Measurements stream : Accumulated reward.
- Goal : Positive goal over the accumulated reward (g = 1)
- RL Coach module on Intel's GitHub repository⁽³⁾.

Figure – Life, train and test reward for CartPole for DFP vs DQN (*left :* Life, *middle :* Train reward, *right :* Test reward

Conclusive remarks

- Experimental illustration of DFP advantages in sensory environments:
 - vectorial reward ⇒ accelerated training.
 - ullet learning without fixed goal at training time \Rightarrow dynamic goal at test time
- Improvement trial to enrich the perception module, predicting features directly from the image input.
 - Need for transfer learning
 - Computational challenge (prediction time for depth map / segmentation)
 - Open question: add directly measurements from these predicted features? (eg. distance to the closest healthpack)

What we learnt and liked!

- Work on cutting-edge approach for behavioral learning
- Read and learn about Deep Reinforcement Learning and Computer Vision
- Practice with experimental study process and "code integration"
- Practice with computation engines : Cuda, Tensorflow, Google Cloud's Computer Engineé

This project was entertaining and genuinely interesting in a Deep Computer Vision and Learning perspective, as well as in logistics assimilation and ressources gathering! Thanks.

Thank you!

References

- Alexey Dosovitskiy, Vladlen Koltun. Learning to Act by Predicting the Future https://arxiv.org/abs/1611.01779
- Felix Yu. GitHub open-source DFP implementation. https://flyyufelix.github.io/2017/11/17/direct-future-prediction.html.
- Intel® NervanaTM Artificial Intelligence Products Group. CartPole DQN/DFP implementation. https://github.com/NervanaSystems/coach
- Matterport, Inc. Mask R-CNN implementation in Keras and TensorFlow https://github.com/matterport/Mask_RCNN
- Iro Laina and al. Deeper Depth Prediction with Fully Convolutional Residual Networks
 https://github.com/iro-cp/FCRN-DepthPrediction