WHAT IS CLAIMED IS:

1	1. An electrostatic valve device comprising:
2	a substrate;
3	a first fluid channel disposed on the substrate;
4	a second fluid channel disposed on the substrate;
5	a polymer based diaphragm coupled between the first fluid channel and the
6	second fluid channel;
7	an orifice disposed within a portion of the polymer diaphragm, the orifice
8	being adapted to provide fluid communication between the first fluid channel and the second
9	fluid channel;
10	a first electrode coupled to the substrate;
11	a second electrode coupled to the polymer based diaphragm and separated
12	from the first electrode by the first fluid channel; and
13	a power source coupled between the first electrode and the second electrode,
14	the power source being adapted to actuate the diaphragm to block fluid communication
15	between the first fluid channel and the second fluid channel through the orifice.
.1	2. The device of claim 1 wherein the first fluid channel and the second
2	fluid channel contain liquid.
-	nord entition contain inquite
1	3. The device of claim 1 wherein the first fluid channel and the second
2	fluid channel contain gas.
1	4. The device of claim 1 wherein at least one of the first and second fluid
2	channels is characterized by a height of less than 5 micron.
_	onalment is enaracterized by a norgin of less than 5 interest.
1	5. The device of claim 1 wherein both the first and second fluid channels
•	3. The device of claim? Wherein both the first and second fluid channels
2	are characterized by a height of equal or larger than 5 micron.
2	are characterized by a height of equal or larger than 5 micron.
2	are characterized by a height of equal or larger than 5 micron. 6. The device of claim 1 wherein first fluid channel has a height that is
2	are characterized by a height of equal or larger than 5 micron.
2	are characterized by a height of equal or larger than 5 micron. 6. The device of claim 1 wherein first fluid channel has a height that is

1	8. The device of claim 1 wherein the polymer diaphragm is characterized
2	by a diameter larger than 1000 micron.
1	9. The device of claim 1 wherein the polymer diaphragm is characterized
2	by a thickness ranging from 0.1 to 10 micron.
1	10. The device of claim 1 wherein the polymer based diaphragm is
2	characterized by a thickness of larger than 10 micron.
1	11. The device of claim 1 wherein the second electrode is embedded
2	within the polymer based diaphragm.
1	12. The device of claim 1 wherein the substrate is made of a material
2	selected from silicon or glass.
1	13. The device of claim 1 wherein the polymer based diaphragm comprise
2	a material selected from parylene, polyimide, or silicone.
1	14. The device of claim 1 wherein at least one of the first and second
2	electrodes comprises a conducting material selected from the group consisting of chrome,
3	gold, aluminum, titanium, platinum, and doped polysilicon.
1	15. The device of claim 1 further comprising a flow sensor coupled to one
2	of the first and the second flow channels, the flow sensor configured to provide flow
3	measurement information to the valve to achieve feedback flow control.
1	16. A method for fabricating a micro fluidic device, the method
2	comprising:
3	providing a substrate;
4	forming a first electrically conducting layer overlying the substrate;
5	patterning the first electrode layer to form a first electrode element;
6	forming a first polymer based layer overlying the first electrode element and
7	the substrate;
8	forming a first sacrificial layer overlying the first polymer based layer;
9	forming a second polymer based layer overlying the first sacrificial layer, the
10	second polymer layer defining an aperture;

11	;	forming a second electrically conducting layer overlying the first polymer	
12	based layer;		
13	1	patterning the second electrode layer to form a second electrode element	
14	associated with	the first electrode element, the second electrode layer excluded from the	
15	aperture;		
16	1	forming a third polymer based layer overlying the second electrode element to	
17	sandwich the se	econd electrode element between the second polymer based layer and the third	
18	polymer based	layer, the third polymer based layer also excluded from the aperture;	
19	1	forming a second sacrificial layer overlying the third polymer based layer and	
20	the first sacrific	ial layer within the aperture;	
21	1	forming a fourth polymer based layer overlying the second sacrificial layer;	
22	and		
23	1	releasing the first and second sacrificial layers to define respective first and	
24	second flow cha	annels in fluid communication through the aperture.	
1		17. The method of claim 16 wherein forming the first and second	
2	sacrificial layer	s comprises patterning photoresist.	
1	-	18. The method of claim 17 wherein releasing the first and second	
2		s comprises exposing the first and second sacrificial layers to acetone.	
1		19. The method of claim 18 further comprising exposing the first and	
2	second sacrifici	al layers to isopropyl alcohol once the first and second flow channels have	
3	been substantia	lly defined.	
1	2	20. The method of claim 16 wherein the first polymer based layer, the	
2	second polymer	based layer, and third polymer based layer are provided using chemical	
3	vapor depositio	n of Parylene.	
1	2	21. The method of claim 16 wherein:	
2	I	patterning the second electrode layer also forms a heating element, the heating	
3	element in thermal communication with one of the first and the second flow channel; and		
4	r	releasing the first sacrificial layer defines a cavity providing thermal isolation	
5	of the heating e	lement.	
1	2	22. A method of controlling a flow of fluid comprising:	

2	providing a first polymer based layer overlying a first electrode supported by a		
3	substrate;		
4	defining a flow channel between the first polymer layer and a diaphragm		
5	comprising a second electrode sandwiched between second and third polymer based layers,		
6	the second electrode and second and third polymer based layers defining an aperture; and		
7	selectively applying a potential difference between the first and second		
8	electrodes to draw the second electrode toward the first electrode, thereby causing the		
9	diaphragm to seat on the first polymer layer and block a flow of fluid through the aperture.		
1	23. The method of claim 22 further comprising:		
2	defining a thermal isolation cavity between the first polymer layer and a		
3	heating element sandwiched between the second and third polymer layers and in thermal		
4	communication with the flow channel;		
5	detecting a voltage change in the heating element reflecting a velocity of fluid		
6	flow through the flow channel; and		
7	changing the potential difference based on the voltage change.		
1	24. The method of claim 22 wherein defining the flow channel comprises:		
2	patterning a first sacrificial layer over the first polymer layer;		
3	forming a second sacrificial layer in the aperture over a first sacrificial layer;		
4	and		
5	removing the first and second sacrificial layers.		
1	25. The method of claim 24 wherein:		
2	patterning a first and second sacrificial layers comprises patterning		
3	photoresist; and		
4	removing the first and second sacrificial layers comprises introducing acetone.		
1	26. The method of claim 22 wherein the first polymer based layer, the		
2	second polymer based layer, and the third polymer based layer are provided using chemical		
3	vapor deposition of Parylene.		