Computational Physics

How Different Factors Affect Projectile Motion

By RJ Okonowski & Josh Harris

Scientific Topic

- The behavior of projectile motion when different factors are changed.
- Factors that we looked at:
 - Air Drag
 - Initial Velocity
 - Launch Angle
 - Elevation

Model

The equations that were used to model the projectile motion:

$$\bullet \quad \frac{d^2x}{dt^2} = 0 \,, \, \frac{d^2y}{dt^2} = -g$$

•
$$\frac{dx}{dt} = v_x$$
, $\frac{dv_x}{dt} = 0$, $\frac{dy}{dt} = v_y$, $\frac{dv_y}{dt} = -g$

$$\bullet \quad F_d = \frac{C_d \rho A v^2}{2}$$

$$\bullet \qquad \rho = \rho_0 e^{-\frac{y}{y_0}}$$

Numerical Methods

 We used Euler's method to solve the differential equations of projectile motion, as well as to solve for each position and velocity value in all three simulations. If a value is known for a time t, using Euler's method, the new value can be calculated a short time later. This can be repeated to calculate our value over a certain interval.

Results

Angle (Degrees)	Final X-displacement (meters)
55	47076.286013511635
50	49269.67028247294
45	50116.19311659685
40	49333.26213686243
35	47019.327342187826

Results (cont'd)

Angle (Degrees)	Final X-displacement (meters)
55	19603.240388104426
50	20874.206479373133
45	21671.38861076387
40	22055.305219727895
35	21915.110811837614

Results (cont'd)

Angle (Degrees)	Final X-displacement (meters)
45	21671.38861076387
45 (with elevation)	26697.914232738196
35	21915.110811837614
35 (with elevation)	25241.745732494026

Analysis

Without Air Drag:

• Larger launch angle, further distance in the y direction. A 45 degree angle causes the object to travel furthest in the x direction.

With Air Drag:

• Larger launch angles, further distance in the y direction. A 40 degree angles cause the object to travel furthest in the x direction. Travels a smaller distance in both directions than the case without air drag.

With Elevation:

Adding changing air densities causes the object to travel further in both directions.

Summary

This project uses Euler's method and the basic model for projectile motion to test how different factors affect the projectile motion of an object. The factors that we tested were the launch angle, initial velocity, air drag, and elevation. These results can be used to find the most ideal parameters to use to throw a perfect pass. This is important because throwing a perfect pass can be very difficult and can involve a lot of scientific techniques. So, using these results, throwing a perfect pass can become much easier.

References

- [1] Giordano, Nicholas J. Computational Physics. Prentice-Hall, Inc., 1997. p. 23-28
- [2] H. Fearn, and C. Horn. On the Flight of the American Football. Unpublished, 2007, pp. 1–22, On the Flight of the American Football.
- [3] Newman, Mark. Computational Physics. Createspace, 2013.
- [4] NBC. "Science of NFL Football: Projectile Motion & Damp; Parabolas." NBC Learn, 7 Sept. 2010, www.nbclearn.com/science-of-nfl-football/cuecard/50689.

Questions?