线性代数超强总结

$$|A| = o \Leftrightarrow$$

$$\begin{cases} A \land \neg \ddot{\psi} \\ r(A) < n \\ Ax = o \uparrow \Rightarrow & \text{find } a \end{cases}$$
 $0 \neq A \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow A \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{find } a \Leftrightarrow Ax = o \uparrow \Rightarrow \Rightarrow \text{$

向量组等价 相似矩阵 矩阵合同

√ 关于 e_1, e_2, \dots, e_n :

- ①称为 ℝ"的标准基, ℝ"中的自然基,单位坐标向量;
- ② e_1,e_2,\cdots,e_n 线性无关;
- $\Im |e_1, e_2, \dots, e_n| = 1;$
- $4 \operatorname{tr}(E) = n$;
- ⑤任意一个n维向量都可以用 e_1, e_2, \cdots, e_n 线性表示.

√ 行列式的计算:

- ① 若 A与B 都是方阵(不必同阶),则 $\begin{vmatrix} A & * \\ o & B \end{vmatrix} = \begin{vmatrix} A & o \\ * & B \end{vmatrix} = \begin{vmatrix} A & o \\ o & B \end{vmatrix} = |A||B|$ $\begin{vmatrix} * & A \\ B & o \end{vmatrix} = (-1)^{mn} |A||B|$
- ②上三角、下三角行列式等于主对角线上元素的乘积.

③关于副对角线:
$$\begin{vmatrix} * & & & a_{1n} \\ & & a_{2n-1} \\ & & & \\ &$$

√ 逆矩阵的求法:

②
$$(A:E)$$
 $\xrightarrow{\text{初等行变换}}$ $(E:A^{-1})$

- ✓ 方阵的幂的性质: $A^{m}A^{n} = A^{m+n}$ $(A^{m})^{n} = (A)^{mn}$
- ✓ 设 $f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$, 对 n 阶矩阵 A 规定: $f(A) = a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 E$ 为 A 的一个多项式.
- \checkmark 设 $A_{\scriptscriptstyle m\times n}, B_{\scriptscriptstyle n\times s},$ A 的 列 向 量 为 $\alpha_{\scriptscriptstyle 1}, \alpha_{\scriptscriptstyle 2}, \cdots, \alpha_{\scriptscriptstyle n}$, B 的 列 向 量 为 $\beta_{\scriptscriptstyle 1}, \beta_{\scriptscriptstyle 2}, \cdots, \beta_{\scriptscriptstyle s}$, AB 的 列 向 量 为

则:
$$r_i = A\beta_i, i = 1, 2, \dots, s$$
,即 $A(\beta_1, \beta_2, \dots, \beta_s) = (A\beta_1, A\beta_2, \dots, A\beta_s)$ 用 A, B 中简 若 $\beta = (b_1, b_2, \dots, b_n)^T$,则 $A\beta = b_1\alpha_1 + b_2\alpha_2 + \dots b_n\alpha_n$ 即: AB 的第 i 个列向量 r_i 是 A 的列向量的线性组合,组合系数就是 β 的各分量: 高运算速度 AB 的第 i 个行向量 r_i 是 B 的行向量的线性组合,组合系数就是 α 的各分量.

✓ 用对角矩阵 Λ 左乘一个矩阵, 相当于用 Λ 的对角线上的各元素依次乘此矩阵的行向量;

用对角矩阵 Λ 右乘一个矩阵,相当于用 Λ 的对角线上的各元素依次乘此矩阵的列向量.

✓ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,

与分块对角阵相乘类似,即:
$$A = \begin{bmatrix} A_{11} & & & o \\ & A_{22} & & \\ o & & & A_{kk} \end{bmatrix}, B = \begin{bmatrix} B_{11} & & & o \\ & B_{22} & & \\ & & \ddots & \\ o & & & & B_{kk} \end{bmatrix}$$

$$AB = \begin{bmatrix} A_{11}B_{11} & & & o \\ & A_{22}B_{22} & & \\ & & \ddots & \\ o & & & A_{kk}B_{kk} \end{bmatrix}$$

✓ 矩阵方程的解法: 设法化成(I)AX = B 或 (II)XA = B 当 $|A| \neq 0$ 时,

(II) 的解法: 将等式两边转置化为 $A^TX^T = B^T$,用(I)的方法求出 X^T ,再转置得X

√ Ax = o 和 Bx = o 同解 (A, B 列向量个数相同),则:

- ① 它们的极大无关组相对应,从而秩相等;
- ② 它们对应的部分组有一样的线性相关性;
- ③ 它们有相同的内在线性关系.

✓ 判断 $\eta_1, \eta_2, \dots, \eta_s$ 是Ax = 0的基础解系的条件:

- ① $\eta_1, \eta_2, \dots, \eta_s$ 线性无关;
- ② $\eta_1, \eta_2, \dots, \eta_s$ 是 Ax = 0 的解;
- ③ s = n r(A) =每个解向量中自由变量的个数.
- ① 零向量是任何向量的线性组合,零向量与任何同维实向量正交.
- ② 单个零向量线性相关; 单个非零向量线性无关.
- ③ 部分相关,整体必相关;整体无关,部分必无关.
- (4) 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.
- ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关.
- ⑥ 向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 中任一向量 α_i ($1 \le i \le n$)都是此向量组的线性组合.
- ⑦ 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性相关 \Leftrightarrow 向量组中至少有一个向量可由其 $\Re n-1$ 个向量线性表示. 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关 \Leftrightarrow 向量组中每一个向量 α_i 都不能由其 $\Re n-1$ 个向量线性表示.
- ⑧ m 维列向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关 $\Leftrightarrow r(A) < n$; m 维列向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关 $\Leftrightarrow r(A) = n$.
- (9) $r(A) = 0 \Leftrightarrow A = o$.
- ⑩ 若 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关,而 $\alpha_1, \alpha_2, \dots, \alpha_n, \beta$ 线性相关,则 β 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示,且表示法惟一.

- ① 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.
- ② 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.

向量组等价 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 和 $\beta_1,\beta_2,\cdots,\beta_n$ 可以相互线性表示. 记作: $\{\alpha_1,\alpha_2,\cdots,\alpha_n\} = \{\beta_1,\beta_2,\cdots,\beta_n\}$

矩阵等价 A经过有限次初等变换化为B. 记作: $A \cong B$

- ① 矩阵 A = B 等价 $\Leftrightarrow r(A) = r(B) \neq > A, B$ 作为向量组等价,即: 秩相等的向量组不一定等价. 矩阵 A = B 作为向量组等价 $\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_n) = r(\beta_1, \beta_2, \dots, \beta_n) = r(\alpha_1, \alpha_2, \dots \alpha_n, \beta_1, \beta_2, \dots, \beta_n) \Rightarrow$ 矩阵 A = B 等价.
- ① 向量组 $\beta_1, \beta_2, \dots, \beta_s$ 可由向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示 $\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_n, \beta_1, \beta_2, \dots, \beta_s) = r(\alpha_1, \alpha_2, \dots, \alpha_n) \Rightarrow r(\beta_1, \beta_2, \dots, \beta_s) \leqslant r(\alpha_1, \alpha_2, \dots, \alpha_n)$.
- ① 向量组 $\beta_1, \beta_2, \dots, \beta_s$ 可由向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示,且s > n ,则 $\beta_1, \beta_2, \dots, \beta_s$ 线性相关。 向量组 $\beta_1, \beta_2, \dots, \beta_s$ 线性无关,且可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示,则 $s \leq n$.
- ① 向量组 $\beta_1,\beta_2,\cdots,\beta_s$ 可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示,且 $r(\beta_1,\beta_2,\cdots,\beta_s)=r(\alpha_1,\alpha_2,\cdots,\alpha_n)$,则两向量组等价;
- ① 任一向量组和它的极大无关组等价.
- (18) 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等.

- (19) 若两个线性无关的向量组等价,则它们包含的向量个数相等.
- ② 若 $A \in m \times n$ 矩阵, 则 $r(A) \le \min\{m,n\}$, 若 r(A) = m, A 的行向量线性无关;

若r(A) = n, A的列向量线性无关,即:

 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关.

线性方程组的矩阵式

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \beta = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

向量式
$$x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n = \beta$$

$$\alpha_{j} = \begin{bmatrix} \alpha_{1j} \\ \alpha_{2j} \\ \vdots \\ \alpha_{mj} \end{bmatrix}, j = 1, 2, \dots, n$$

$$\beta \text{可由}\alpha_{1},\alpha_{2},\cdots,\alpha_{n}$$
线性表示 $\Leftrightarrow Ax = \beta$ 有解 $\Leftrightarrow r(A) = r(A:\beta)$
$$\begin{cases} \langle n \rangle \Leftrightarrow Ax = \beta \text{有无穷多解} \rangle \Rightarrow Ax = o \text{有非零解} \xrightarrow{\exists_{A/35}\text{阵时}} \Rightarrow |A| = 0 \\ \Rightarrow \alpha_{1},\alpha_{2},\cdots,\alpha_{n}$$
线性根关
$$\Leftrightarrow Ax = \beta \text{有唯一组解} \rangle \Rightarrow Ax = o \text{只有零解} \xrightarrow{\exists_{A/35}\text{阵时}} \Rightarrow |A| \neq 0 \\ \Rightarrow \alpha_{1},\alpha_{2},\cdots,\alpha_{n}$$
线性无关
$$\Rightarrow \alpha_{1},\alpha_{2},\cdots,\alpha_{n}$$
线性无关
$$\Rightarrow \alpha_{1},\alpha_{2},\cdots,\alpha_{n}$$
线性表示 $\Leftrightarrow Ax = \beta$ 无解
$$\Leftrightarrow r(A) \neq r(A:\beta) \\ \Leftrightarrow r(A) < r(A:\beta) \\ \Leftrightarrow r(A) + 1 = r(A:\beta) \end{cases}$$

矩阵转置的性质:	$(A^T)^T = A$	$(AB)^T = B^T A^T$	$(kA)^T = kA^T$	$\left A^T \right = \left A \right $	$(A+B)^T = A^T + B^T$		
矩阵可逆的性质:	$(A^{-1})^{-1} = A$	$(AB)^{-1} = B^{-1}A^{-1}$	$(kA)^{-1} = k^{-1}A^{-1}$	$\left A^{-1}\right = \left A\right ^{-1}$	$(A^{-1})^T = (A^T)^{-1}$	$(A^{-1})^k = (A^k)^{-1} = A^{-k}$	
伴随矩阵的性质:	$\left(A^*\right)^* = \left A\right ^{n-2} A$	$(AB)^* = B^*A^*$	$\left (kA)^* = k^{n-1}A^* \right $	$\left A^* \right = \left A \right ^{n-1}$	$(A^{-1})^* = (A^*)^{-1} = \frac{A}{ A }$ $(A^T)^* = (A^*)^T$	$(A^*)^k = (A^k)^*$	$AA^* = A^*A = A E$
$r(A^*) = \begin{cases} n & 若r(A) = n \\ 1 & 若r(A) = n - 1 \\ 0 & 若r(A) < n - 1 \end{cases}$		AB = A B	$\left kA \right = k^n \left A \right $	$\left A^{k}\right = \left A\right ^{k}$			

(1)
$$\eta_1, \eta_2$$
是 $Ax = 0$ 的解, $\eta_1 + \eta_2$ 也是它的解

- (2) η 是Ax = 0的解,对任意 $k, k\eta$ 也是它的解
- (3) $\eta_1, \eta_2, \dots, \eta_k$ 是Ax = 0的解, 对任意k个常数 $\lambda_1, \lambda_2, \dots, \lambda_k, \lambda_1, \eta_1 + \lambda_1, \eta_2 + \lambda_k, \eta_k$ 也是它的解

线性方程组解的性质:

- $\{(4) \ \gamma \in Ax = \beta$ 的解, $\eta \in Ax = \beta$ 的解, $\eta \in Ax = \beta$ 的解
- (5) η_1, η_2 是 $Ax = \beta$ 的两个解, $\eta_1 \eta_2$ 是其导出组Ax = 0的解
- (6) η_2 是 $Ax = \beta$ 的解,则 η_1 也是它的解 $\Leftrightarrow \eta_1 \eta_2$ 是其导出组Ax = 0的解
- (7) $\eta_1, \eta_2, \dots, \eta_k$ 是 $Ax = \beta$ 的解,则 $\lambda_1 \eta_1 + \lambda_2 \eta_2 + \lambda_k \eta_k$ 也是 $Ax = \beta$ 的解 $\Leftrightarrow \lambda_1 + \lambda_2 + \lambda_k = 1$ $\lambda_1 \eta_1 + \lambda_2 \eta_2 + \lambda_k \eta_k$ 是Ax = 0的解 $\Leftrightarrow \lambda_1 + \lambda_2 + \lambda_k = 0$

✓ 设 A 为 $m \times n$ 矩阵, 若 r(A) = m, 则 $r(A) = r(A : \beta)$, 从而 $Ax = \beta$ 一定有解.

当m < n 时,一定不是唯一解. $\Rightarrow \frac{ 方程个数}{ 向量维数} < \frac{ 未知数的个数}{ 向量个数}$,则该向量组线性相关.

 $m \in r(A)$ 和 $r(A:\beta)$ 的上限.

√ 矩阵的秩的性质:

$$2 r(A \pm B) \leq r(A) + r(B)$$

$$3 r(AB) \leq \min\{r(A), r(B)\}$$

$$\textcircled{4} \quad r(kA) = \begin{cases} r(A) & \text{$\vec{\Xi}$} k \neq 0 \\ 0 & \text{$\vec{\Xi}$} k = 0 \end{cases}$$

⑥ 若
$$A \neq 0$$
,则 $r(A) \geq 1$

⑦ 若
$$A_{m\times n}, B_{n\times s}, \exists r(AB) = 0, 则 r(A) + r(B) \leq n$$

⑧ 若
$$P,Q$$
可逆,则 $r(PA) = r(AQ) = r(A)$

⑨ 若
$$A$$
可逆,则 $r(AB) = r(B)$

若B可逆,则
$$r(AB) = r(A)$$

$$AB = 0 \Rightarrow B = 0$$

$$AB = AC \Rightarrow B = C$$

标准正交基 $n \cap n$ 维线性无关的向量, 两两正交, 每个向量长度为 1.

 $\boxed{\alpha 与 \beta$ 正交 $(\alpha, \beta) = 0$.

 α 是单位向量 $\|\alpha\| = \sqrt{(\alpha,\alpha)} = 1$.

✓ 内积的性质: ① 正定性: $(\alpha,\alpha) \ge 0$, $\mathbb{L}(\alpha,\alpha) = 0 \Leftrightarrow \alpha = 0$

② 对称性: $(\alpha,\beta)=(\beta,\alpha)$

③ 双线性: $(\alpha, \beta_1 + \beta_2) = (\alpha, \beta_1) + (\alpha, \beta_2)$ $(\alpha_1 + \alpha_2, \beta) = (\alpha_1, \beta) + (\alpha_2, \beta)$ $(c\alpha, \beta) = (c\alpha, \beta) = (\alpha, c\beta)$

施密特 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,

正交化
$$\begin{cases} \beta_1 = \alpha_1 \\ \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1 \beta_1)} \beta_1 \\ \beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1 \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2 \beta_2)} \beta_2 \end{cases}$$
 单位化:
$$\eta_1 = \frac{\beta_1}{\|\beta_1\|} \qquad \eta_2 = \frac{\beta_2}{\|\beta_2\|} \qquad \eta_3 = \frac{\beta_3}{\|\beta_3\|}$$

正交矩阵 $AA^T = E$.

√ A是正交矩阵的充要条件: A的n个行(列)向量构成ℝ"的一组标准正交基.

✓ 正交矩阵的性质: ① $A^T = A^{-1}$;

③ A是正交阵,则 A^{T} (或 A^{-1})也是正交阵;

④ 两个正交阵之积仍是正交阵;

⑤ 正交阵的行列式等于1或-1.

A 的特征矩阵 $\lambda E - A$.

A 的特征多项式 $|\lambda E - A| = f(\lambda)$.

A的特征方程 $|\lambda E - A| = 0$.

✓ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n各元素.

✓ 若|A|=0,则 $\lambda=0$ 为A的特征值,且Ax=0的基础解系即为属于 $\lambda=0$ 的线性无关的特征向量.

的特征值为: $\lambda_1 = \operatorname{tr} A = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$, $\lambda_2 = \lambda_3 = \dots = \lambda_n = 0$.

✓ 若A的全部特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$, f(x)是多项式,则:

- ① f(A) 的全部特征值为 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$;
- ② 当A可逆时, A^{-1} 的全部特征值为 $\frac{1}{\lambda_1},\frac{1}{\lambda_2},\cdots,\frac{1}{\lambda_n}$,

 A^* 的全部特征值为 $\frac{|A|}{\lambda_1},\frac{|A|}{\lambda_2},\cdots,\frac{|A|}{\lambda_n}$

 λ λ 是A的特征值,则: $egin{cases} kA & k\lambda & a\lambda+b & a\lambda+b & a\lambda+b & \lambda^{-1} &$

 \sqrt{x} 是A关于 λ 的特征向量,则x也是 $egin{cases} kA & k\lambda & a\lambda+bE & a\lambda+bE & a\lambda+b & \lambda^{-1} & \pm \Delta^{-1} & \pm \Delta^{-1} & \lambda^{-1} & \lambda^{$

A 与 B 相似

 $B = P^{-1}AP$ (P为可逆阵) 记为: $A \sim B$

- ✓ A相似于对角阵的充要条件: A恰有n个线性无关的特征向量. 这时, P为A的特征向量拼成的矩阵, $P^{-1}AP$ 为对角阵, 主对角线上的元素为A的特征值.
- \sqrt{A} 可对角化的充要条件: $n-r(\lambda_i E-A)=k_i$ k_i 为 λ_i 的重数.
- √ 若n阶矩阵A有n个互异的特征值,则A与对角阵相似.

A = B 正交相似 $B = P^{-1}AP$ (P 为正交矩阵)

- ✓ 相似矩阵的性质: ① $A^{-1} \sim B^{-1}$ 若 A, B 均可逆
 - $\widehat{2} \quad A^T \sim B^T$
 - ③ $A^k \sim B^k$ (k 为整数)
 - ④ $|\lambda E A| = |\lambda E B|$, 从而 A, B 有相同的特征值, 但特征向量不一定相同. 即: x 是 A 关于 λ_0 的特征向量, $P^{-1}x$ 是 B 关于 λ_0 的特征向量.
 - ⑤ |A| = |B| 从而 A, B 同时可逆或不可逆
 - \bigcirc r(A) = r(B)
 - \bigcirc tr(A) = tr(B)
- √ 数量矩阵只与自己相似.
- √ 对称矩阵的性质:
 - ① 特征值全是实数,特征向量是实向量;
 - ② 与对角矩阵合同;
 - ③ 不同特征值的特征向量必定正交;
 - ④ k 重特征值必定有k 个线性无关的特征向量;
 - ⑤ 必可用正交矩阵相似对角化(一定有n个线性无关的特征向量,A可能有重的特征值,重数= $n-r(\lambda E-A)$).

A 可以相似对角化 A 与对角阵 Λ 相似. 记为: $A \sim \Lambda$ (称 Λ 是 A 的相似标准型)

✓ 若A为可对角化矩阵,则其非零特征值的个数(重数重复计算) = r(A).

√ 设 α_i 为对应于 λ_i 的线性无关的特征向量,则有:

$$A(\alpha_{1},\alpha_{2},\cdots,\alpha_{n}) = (A\alpha_{1},A\alpha_{2},\cdots,A\alpha_{n}) = (\lambda_{1}\alpha_{1},\lambda_{2}\alpha_{2},\cdots,\lambda_{n}\alpha_{n}) = \begin{bmatrix} \alpha_{1},\alpha_{2},\cdots,\alpha_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & & \\ & \lambda_{2} & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix}.$$

$$\checkmark$$
 若 $A \sim B$, $C \sim D$,则:
$$\begin{bmatrix} A & o \\ o & C \end{bmatrix} \sim \begin{bmatrix} B & o \\ o & D \end{bmatrix}$$
.

√ 若 $A \sim B$,则 $f(A) \sim f(B)$, |f(A)| = |f(B)|.

$$A = B$$
 合同 $B = C^T A C$. 记作: $A \simeq B$ (A,B为对称阵,C为可逆阵)

- √ 两个矩阵合同的充分必要条件是: 它们有相同的正负惯性指数.
- √ 两个矩阵合同的充分条件是: $A \sim B$
- √ 两个矩阵合同的必要条件是: r(A) = r(B)

$$\checkmark$$
 $f(x_1, x_2, \dots, x_n) = X^T A X$ 经过 $\left\langle \begin{array}{l} \text{正交变换} \\ \text{合同变换} \end{array} \right.$ $X = C Y$ 化为 $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n d_i y_i^2$ 标准型. 可逆线性变换

- ✓ 当标准型中的系数 d_i 为 1,-1 或 0 时,则为规范形 .
- √ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.

- ✓ 用正交变换法化二次型为标准形:
 - ① 求出 A 的特征值、特征向量;
 - ② 对 n 个特征向量单位化、正交化;
 - ③ 构造C (正交矩阵), $C^{-1}AC = \Lambda$;
 - ④ 作变换 X = CY,新的二次型为 $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n d_i y_i^2$, Λ 的主对角上的元素 d_i 即为 A 的特征值.

正定二次型 x_1, x_2, \dots, x_n 不全为零, $f(x_1, x_2, \dots, x_n) > 0$.

正定矩阵 正定二次型对应的矩阵.

- √ 合同变换不改变二次型的正定性.
- √ 成为正定矩阵的充要条件 (之一成立):
 - ① 正惯性指数为n;
 - ② A的特征值全大于0;
 - ③ A的所有顺序主子式全大于0;
 - ④ A合同于E, 即存在可逆矩阵Q使 $Q^TAQ = E$;
 - ⑤ 存在可逆矩阵P,使 $A = P^T P$ (从而|A| > 0);

⑥ 存在正交矩阵,使
$$C^TAC = C^{-1}AC = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$
 $(\lambda_i$ 大于 0).

√ 成为正定矩阵的必要条件: $a_{ii} > 0$; |A| > 0.