Genomics BDSI

Sijia Huo, Sean Kelly Gregory Raskind

Genome Assembly

Sijia Huo Sean Kelly Gregory Raskind

University of Michigan

University of Illinois

14 July 2017

Background

Genomics BDSI

Sijia Huo, Sean Kelly, Gregory Raskind In our cells, DNA carries genetic information:

- Each DNA strand contains a sequence of A, C, G, and Ts
- The human genome is around 3 billion base pairs long

Types of DNA Variation:

- Single base variations
- Copy number variations

@H3GFVCCXX150415:8:2224:9627:35467/1 GGGAATTTTAACTGGCAAAACTCAGAACTCCATCCAAAC.

AAAFF<<FFAFAFAAAAFFFAFAAAAAAFAAAFAAFAFA @H3GFVCCXX150415:8:2224:8957:23407/1 CATACTTGATGGTCTCAGATATGTGTGGATTTTGGAATT

<FAFAFFAAAA7AAFAAAAFAAAAAAFAFAFFFAAFFFF. @H3GFVCCXX150415:8:2224:8907:25745/1 GTTAATTAAAAGCCCTTTACGAATGGACTAGATGTACCT

AAAFFAFAFAF/FFAAAA-FAA7FFAAAFAFAF7FAAFAAF @H3GFVCCXX150415:8:2224:8825:55175/1 GCACCCTGTGTCAACAACCTGACAGTGGCCTTGAGTTGC' + AAFAAAAAAAAFFAFFAAFAAAAAFAAAAFFAAAAFFAA

AU3/EU/CVV1EA/1E.0.333/.77A0.313/E

(a) FASTA file stores reference genome

(b) FASTQ file stores sequenced reads

Data Source: National Center for Biotechnology Information

Mapping vs Assembly

Genomics BDSI

Sijia Huo, Sean Kelly, Gregory Raskind

Assembly

- Reconstructs genome from sequenced reads
- Particularly useful to detect large genetic variants. (i.e. free from bias towards reference genome)
- Slow, memory-intensive, and hard to implement

Mapping

- Match to reference genome to locate variation
- Fast, easy to understand
- Cannot handle sequenced reads containing complex variation

Constructing De Bruijn Graph of Reference Genome

Genomics BDSI

Sijia Huo, Sean Kelly Gregory Raskind Create process to store and reassemble a reference genome **Method:** Break DNA string into 'kmers' and store in a De Bruijn Graph

Impact of K on complexity of De Bruijn Graph

Genomics BDSI

Sijia Huo, Sean Kelly Gregory Raskind

Methodology: Functions

Genomics BDSI

Sijia Huo, Sean Kelly Gregory Raskind

Figure: Comparison of The Lengths Of The Longest Paths

DNA Variation in a De Bruijn Graph

Genomics BDSI

Sijia Huo, Sean Kelly Gregory Raskind

Given an individual's sequenced DNA, we want to locate where their genome varies from the reference

Method: Create De Bruijn graph for sequenced reads to store only variations in genome

Storage Structure

Genomics BDSI

Sijia Huo, Sean Kelly Gregory Raskind

(a) Kmer Graph Structure

DNA Sequence: K-mer Map of The KMFR TCGACAGCC Reference Genome TCGATAGCC 11011000 01100001 10000100 A=00 00010010 C=01 01001001 G=10 Variant Map of The 00100101 T=11 Sample Genome KMER NEXT KMER NEXT KMER NEXT KMER NEXT KMER COLINT OF C COUNT OF G COUNT OF 01100011 0 0 10001100 0 0 0 00110010 0 0 0 11001001 0

(b) Variant Graph Structure

Figure: Data Structures Of The Graphs

Implemented in C++

Future Plans

Genomics BDSI

Sijia Huo Sean Kelly Gregory Raskind

Cleaning/Pruning Variant Graph

- More accurate and usable
- Reduces storage size

FM indexing

 Allows compression of input text while still permitting fast substring queries

References

Genomics BDSI

Sijia Huo, Sean Kelly Gregory Raskind

For Images:

Iqbal, Zamin, Mario Caccamo, Isaac Turner, Paul Flicek, and McVean Gil. "De Novo Assembly and Genotyping of Variants Using Colored De Bruijn Graphs." Nature Genetics (2012): Nature Publishing Group. Web.

For information on sequencing and assembly methods

- Paolo Ferragina and Giovanni Manzini (2000). "Opportunistic Data Structures with Applications". Proceedings of the 41st Annual Symposium on Foundations of Computer Science. p.390.
- http://genome.cshlp.org/content/18/5/821.long#sec-17
- http://cortexassembler.sourceforge.net/index_ cortex_var.html
- Umich Biostats lectures

Acknowledgments

Genomics BDSI

Sijia Huo, Sean Kelly Gregory Raskind

> University of Michigan and Bhramar Mukherjee Hyun Min Kang, Goncalo Abecasis, Greg Zajac NSF