1. Symmetry of QM

- 2. Theory of Angular moventum.
- 3. Scattering theory

Symmetry of transformation of space \mathbb{R}^3 wave function $\psi(\mathbb{P})$ $\overline{\mathbb{P}} \in \mathbb{R}^3$. consider linear transf. $\mathbb{Q}: \mathbb{R}^3 \to \mathbb{R}^3$ $\mathbb{Q} = \overline{\mathbb{P}}'$ $\mathbb{P}: 3d$ column vector $\mathbb{Q}: 3 \times 3$ matrix

Q is a symmetry of the space if it preserves the inner product

$$\vec{r}_{i} \cdot \vec{r}_{i} = (Q \vec{r}_{i}).(Q \vec{r}_{i})$$

in particular, a presences the distance in R3

old wave
function Q induces transforaction of 4(2) s.t. +(r) = +(r) 4'(QP) = 4(P) \mathcal{T}^{\prime} \mathcal{A}^{-1} new were 4'(r) = +(0) function. = D(a)+(2) $Q: \mathbb{R}^3 \to \mathbb{R}^3$ $p(s): \mathcal{H} \to \mathcal{H}$ $\mathcal{H} = L^2(\mathbb{R}^3, d^3x)$ 14> -> 14/> 4(2) = p(0) 4(2) = 4 (Q 7) properties of D(Q) linear sperator on H. · unitarity: <4,14> = \(d^3\varphi\) \(\frac{4}{1.60}\) \(\frac{2}{2}\varphi^2\) change of $= \int d^{3}(Q_{7}^{2}) \frac{1}{4(Q^{2})} + Q^{2}(Q^{2})$ variable

7 > Q1 P

Lemma detQ =
$$\pm 1$$

Pf : $\vec{r} \cdot \vec{r} = S_{ij} \cdot r^{i} \cdot r^{j}$
 $Q\vec{r} \cdot Q\vec{r}' = S_{ij} \cdot Q^{i}_{k} \cdot r^{k} \cdot Q^{i}_{k} \cdot r^{i} \cdot r^{j}$
 $Q^{T}Q = 1_{3k3}$
 $\Rightarrow Q^{T} = Q^{T}$
 $\det Q = \pm 1$
 $d^{3}(Q^{T}\vec{r}) = d^{3}\vec{r} \mid \det Q^{T}l = d^{3}\vec{r}$
 $\langle 4, 14, \gamma = \int \vec{r} \cdot \vec{r} \cdot \vec{r} \cdot r^{j} \cdot r$

=> D(Q) is unitary operator.

· Consider 2 transformations Q1, Q2 2 [R3 -> R3

$$Q = Q_{1} \circ Q_{2}$$

$$Q = Q_{1} \circ Q_{2} \circ Q_{2$$

it we view to be a map from symmetry transfor R3 to linear operators on H.

D respects the product of transf.

•
$$D(Q)D(Q^{-1}) = D(QQ^{-1}) = D(1_{3\times3})$$

 $D(1) + (P) = 4(1P) = 4(P)$
 $D(1) = 1_{10}$

$$D(Q)D(Q^{-1}) = 1_{H}$$

$$D(Q)^{-1} = D(Q^{-1})$$
Drespects
the inverse,

Det Agroup is a set G together with a binary speration $a \cdot b \in G$ $\forall a, b \in G$ Called group multiplication $S, t = (a, b) \cdot c = a \cdot (b \cdot c) \quad \forall a, b, c \in G$ (associativity)

(2)] ! e & G , s.t. e.a = a \ a & G (identity)

Example (1) 12/503 with multiplication

(2) set of symmetry transf. Q's on R's multiplication; composition of Q, Q2 Q; 3x3 metrix - associativity * identity 1 3x3 · inverse $Q^TQ = 1$ $Q^{-1} = Q^{-1}$ the set of all 3×3 natrices with $Q^{-1}=Q7$ is called 0(3) group (orthogonal group on R3)