University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Example of Serialization

Serial Design is Smaller for $N \ge 4$

To handle **N-bit** operands,

a bit-sliced design requires:

- 6N 2-input gates, and
- 2N inverters.

A serial design (independent of N) requires

- 24 2-input gates, and
- · 6 inverters.

The serial design is smaller for $N \ge 4$.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved

Serial Designs are Slower than Bit-Sliced Designs

The tradeoff? Serial designs are **slower** than bit-sliced designs.

Why?

There are three reasons:

- 1. All paths matter.
- 2. Selection logic and flip-flops add to delay.
- 3. Other logic may further reduce the speed of the common clock.

Let's look at each in more detail.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

All Paths Matter in a Serial Design

In an N-bit bit-sliced design,

- All external inputs appear at time 0,
- So only the slice-to-slice paths in the bit slice contribute to the multiplier on N.
- Other paths contribute only constant time to the overall delay in the design.

In a **serial design**, all paths matter.

- All input bits arrive in the cycle in which they are consumed, so
- · long paths from any input can slow down the design overall.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 15

Flip-Flops and Selection Logic Add to Delay

Flip-flops take time

- To store values,
- To produce values.

And the selection logic sits between the flip-flops and the bit-slice inputs.

The clock cycle

- must be long enough
- ${}^{\circ}\!$ to account for all of these delays.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 16

Clock Speed is Determined by the Slowest Logic

The longest path through combinational logic determines the speed of the common clock.

In practice,

- \circ engineers identify complex and/or important elements and
- work hard to make them fast or
- to split them into several cycles.

Even if a serial design's logic needs only 0.1 clock cycles, operating on N-bit operands still takes N clock cycles.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved

1:1 15

Assume Four Gate Delays On Either Side of Clock Edge

Let's analyze the delay of a serial comparator.

We can count gate delays

- oin the bit slice, and
- for the selection logic.

What about the flip-flops?

Let's assume

- four gate delays of stable D input needed before the rising edge, and
- four gate delays after the rising edge.

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

lide 18

Bit-Sliced and Serial Designs are Extrema

Both designs are **simple**.

Serial designs are relatively small, but slow.

Bit-sliced designs are fast, but large.

But we can build anything in between:

- 2 bit slices per cycle,
- 3 bit slices per cycle,
- o and so forth.

And/or **optimize more than one bit slice** (increase complexity).

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 23

An Example of Partial Serialization in Practice

In one generation of Intel processors,

- $\circ\, the \; designers \; included \; {\bf 16\text{-}bit} \; adders$
- clocked at twice the main clock speed (6 GHz instead of 3 GHz).

These adders could be used to ...

- ° perform a **single 32-bit add** (two cycles at 6 GHz), **or**
- perform **two 16-bit adds** for multimedia codes.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 24