	Sub	Ject:	Imagi	e clas	SITIC	cation	pipes	line			/	/	
	· An image is just a graid of numbers.												
	First classifier: Nearest Neighbor Memorize all data & labels												
	· Predict the label of the most similar training image												
Example dataset: CIFAR10													
Lo 10 classes													
	50,000 training images 10,000 testing images												
How to compare images?													
	La Distance metric to compare images: Manhatlan/L1 distance: $d_1(I_1, I_2) = \sum_{i=1}^{p} I_1^p - I_2^p $												
3	N	lanhatl	an/L1 a	Listance	2 &	d1 (I1)	I_2) =	= <u>S</u>					
3	-to	est.	inge	. (training	image	2	laedA	lute o	1; f f		
9	56	32 23	10	18	10	10 20	24 89	F1 001	46	12	14 39	1 22	Sur
	24	26	178	200	12	16	178	170	= 12	10	0	30	= 426
7	2	0	255	220]	4	32	233	112	(2	32	2)_	108	
	Tir	ne	comple	xity:									
			Training	ng: 0(,1)								
3			Predi	cting: (O(C)) => 0	wol						

```
Subject:
 import numpy as np
 class NearestNeighbor:
   def __init__(self):
     pass
   def train(self, X, y):
     """ X is N x D where each row is an example. Y is 1-dimension of size N """
     # the nearest neighbor classifier simply remembers all the training data
     self.Xtr = X
     self.ytr = y
   def predict(self, X):
      """ X is N x D where each row is an example we wish to predict label for """
     num test = X.shape[\theta]
     # lets make sure that the output type matches the input type
     Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
     # loop over all test rows
     for i in xrange(num test):
       # find the nearest training image to the i'th test image
       # using the L1 distance (sum of absolute value differences)
       distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
       min_index = np.argmin(distances) # get the index with smallest distance
       Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
     return Ypred
```


There was no neavest neighbor

. Take majority vote while predicting

0			
111	LT	ect	
<u> </u>	ν_{\perp}	601	4

- · For a new point x, compute L1.
- . Sost by decreasing order
- · Choose k smallest distances
- · Choose the category that appears majorily in those k points.

$$d_2(I_1,I_2) = \sqrt{\frac{2}{p}(I_1^p - I_2^p)^2}$$

$$d_1\left(I_1,I_2\right) = \sum_{P} \left|I_1^P - I_2^P\right|$$

- · Doesn't depend on wordtnate system
- · Depends on coordinate system

Hyperparameters:

- · Set them ahead of time
 - ·Try different values

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

- 1) Choose hyperparametres
- 2) Perform 5 eterations:
 - i) Train on folds 1,2,3,4; Test on fold 5
 - in Train on folds 1,2,3,5; Test on fold 4

Subject: iii) Train on folds 1,2,4,5; Test on fold 3 is) Train on folds 1,3,4,5; Test on fold 2 y Train on folds 2,3,4,5; Test on fold 1 3. Calculate any across all 5 iterations Cross-validation on k 0.31 0.30 ₾ 0.29 0.28 0.26 0.25 $\cdot k = 7$ works best for this problem. Problems of k-nearest: · All 3 images to the left of oxiginal have same L2 distance La Fails to capture preceptional Lifferences · Curse of dimensionality: - Curse of dimensionality · Fox good predictions, we need points to cover the space densily. As dimensions increases, the

points needed to cover the space donsly increases exponentially