Тятя! Тятя! Наши сети притащили мертвеца!

Листочек с задачками №3: Матричное дифФфФфФфириенцирование*

https://github.com/FUlyankin/neural_nets_prob

РАНX осень 2020

«Джек и бобовый стебель» (1890)

Упражнение 1

В этой задачке нужно просто найти немного производных:

- а. $f(x) = a^\mathsf{T} x$, где a и x векторы размера $1 \times n$
- б. $f(x) = x^T A x$, где x вектор размера $1 \times n$, A матрица размера $n \times n$
- в. $f(x) = ln(x^TAx)$, где x вектор размера $1 \times n$, A матрица размера $n \times n$
- г. $f(x) = a^T X A X a$, где x вектор размера $1 \times n$, A матрица размера $n \times n$
- д. $f(x) = xx^\mathsf{T} x$, где x вектор размера $1 \times n$
- е. $f(X) = X^{-1}$, где матрица X размера $n \times n$
- ж. $f(X)=\det X$, где матрица X размера $\mathfrak{n}\times\mathfrak{n}$

Упражнение 2

В этой задачке нужно просто найти много разных производных:

- а. f(X)=tr(AXB), где матрица A размера $p\times m$, матрица B размера $n\times p$, матрица X размера $m\times n$.
- б. $f(X) = tr(AX^TX)$, где матрица A размера $n \times n$, матрица X размера $m \times n$.
- B. $f(X) = \ln \det X$
- $\mathrm{r.}\ f(X) = \ln A X^{-1} \mathrm{B}$

^{*}Часть задач взята из прототипа задачника по ML Бориса Демешева, часть из конспектов по ML Жени Соколова

д.
$$f(X) = tr(AX^TXBX^{-T})$$

e.
$$f(X) = ln det(X^TAX)$$

ж. $f(x) = x^\mathsf{T} A b$, где матрица A размера $n \times n$, вектора x и b размера $n \times 1$.

з.
$$f(A) = x^T Ab$$
.

Упражнение 3

Рассмотрим задачу линейной регресии

$$Q(w) = (y - Xw)^{T}(y - Xw) \rightarrow \min_{w}$$
.

- а. Найдите dQ(w), выведите формулу для оптимального w.
- б. Как выглядит шаг градиентного спуска в матричном виде?
- в. Найдите $d^2Q(w)$. Убедитесь, что мы действительно в точке минимума.

Упражнение 4

В случае Ridge-регрессии минимизируется функция

$$Q(w) = (y - Xw)^{\mathsf{T}}(y - Xw) + \lambda w^{\mathsf{T}}w,$$

где λ — положительный параметр, штрафующий функцию за слишком большие значения w.

- а. Найдите dQ(w), выведите формулу для оптимального w.
- б. Как выглядит шаг градиентного спуска в матричном виде?
- в. Найдите $d^2Q(w)$. Убедитесь, что мы действительно в точке минимума.

В случае Lasso-регрессии мы имеем дело с функцией

$$Q(w) = (y - Xw)^{\mathsf{T}}(y - Xw) + \lambda |w|,$$

- а. Найдите dQ(w), выведите формулу для оптимального w.
- б. Как выглядит шаг градиентного спуска в матричном виде?

Упражнение 5

Пусть х $_i$ — вектор-столбец $k \times 1$, у $_i$ — скаляр, равный +1 или -1, w — вектор-столбец размера $k \times 1$. Рассмотрим функцию

$$Q(w) = \sum_{i=1}^{n} \ln(1 + \exp(-y_i x_i^\mathsf{T} w)) + \lambda w^\mathsf{T} w$$

а. Найдите dQ;

б. Найдите вектор-столбец ∇Q .

Упражнение 6

Упражняемся в матричном методе максимального правдоподобия. Допустим, что векторы $X_1, ..., X_m$ выбраны из многомерного нормального распределения с неизвестными вектором средних μ и ковариационной матрицей Σ . В этом задании нужно найти оценки максимального правдоподобия для $\hat{\mu}$ и $\hat{\Sigma}$. Обратите внимание, что выборкой здесь будет не $x_1, ..., x_m$, а

$$\begin{pmatrix} x_{11}, \dots, x_{m1} \\ \dots \\ x_{1n}, \dots, x_{mn} \end{pmatrix}$$

Упражнение 7

Найдите симметричную матрицу X наиболее близкую к матрице A по норме Фробениуса, $\sum_{i,j} (x_{ij} - a_{ij})^2$. Тут мы просто из каждого элемента вычитаем каждый и смотрим на сумму квадратов таких разностей.

То есть решите задачку условной матричной минимизации

$$\begin{cases} ||X - A||^2 \to \min_A \\ X^T = X \end{cases}$$

Hint: Надо будет выписать Лагранджиан. А ещё пригодится тот факт, что $\sum_{i,j} (x_{ij} - a_{ij})^2 = ||X - A||^2 = \operatorname{tr}((X - A)^\mathsf{T}(X - A))$. То, что это так мы доказали на семинаре :) Вспоминайте!