Example 19.03 Refinery Optimization

File: Ch19_E03_cvx.m

Determine the optimal production schedule for the following process.

	Volumetr	Capacity	
	Crude #1	Crude #2	bbl/day
Gasoline	80%	44%	24,000
Kerosine	5%	10%	2,000
Fuel Oil	10%	36%	6,000

Processing Cost \$0.50/bbl \$1.00/bbl

Contents

- Script Requirments
- Decision Variables
- CVX Optimization Model
- Crude Utilization
- Production
- Process Utilization
- Questions to Explore

Script Requirments

- displaytable.m
- CVX

```
addpath('utilities');
```

Decision Variables

```
clabels = {'Crude 1','Crude 2'};
plabels = {'Gasoline','Kerosene','Fuel Oil','Residual'};
```

CVX Optimization Model

```
cvx begin
```

```
% Decision Variables
    variables c(2) p(4)
    c >= 0; p <= 100000;
    p >= 0; p <= 100000;
    % Objective Function
    revenue = 36*p(1) + 24*p(2) + 21*p(3) + 10*p(4);
    rawmaterials = 24*c(1) + 15*c(2);
    processing = 0.5*c(1) + 1.0*c(2);
    profit = revenue - rawmaterials - processing;
    maximize(profit)
    % Refinery Yield Model
    Y = [0.80 \ 0.44; \ 0.05 \ 0.10; \ 0.10 \ 0.36; \ 0.05 \ 0.10];
    p == Y*c;
    % Refinery Production Capacity
    dual variable z
    Capacity = [24000; 2000; 6000; 100000];
    z : p <= Capacity;</pre>
cvx_end
```

Crude Utilization

```
displaytable(c,clabels,'bbl/day','%6.1f');
```

```
bbl/day
Crude 1 26206.9
Crude 2 6896.6
```

Production

```
displaytable(p,plabels,'bbl/day','%6.1f');
```

```
bbl/day
Gasoline 24000.0
Kerosene 2000.0
Fuel Oil 5103.4
Residual 2000.0
```

Process Utilization

```
displaytable( ...
    [p, Capacity, Capacity - p, z], plabels, ...
    {'Production', 'Capacity', 'Slack', 'Sensitivity'}, '%6.1f');
```

	Production	Capacity	Slack	Sensitivity
Gasoline	24000.0	24000.0	0.0	4.7
Kerosene	2000.0	2000.0	0.0	87.5
Fuel Oil	5103.4	6000.0	896.6	0.0
Residual	2000.0	100000.0	98000.0	0.0

Questions to Explore

- 1. Why is the sensitivity so high for Kerosene?
- 2. You're considering expanding the Kerosene and Fuel Oil capacities for the plant. Each bbl of additional capacity has the same cost. Plot the additional profit as a function of additional capacity.

Published with MATLAB® R2013b