Data Analytics in Business

Zhaohu (Jonathan) Fan

Information Technology Management Scheller College of Business Georgia Institute of Technology September 26, 2024

Week 6: Upcoming deadlines and updates

- Week 6 (Module 6) is now available.
- (Graded) Self-Assessment 5 has been released and is due by this Sunday, September 29, at 11:59 PM EST.
- (Graded) Group Project Proposal is due by next Sunday, October 6, at 11:59 PM EST
- **(Graded) Homework #2:** is now available and is due in three weeks, by Sunday, October 13, at 11:59 PM EST. This assignment includes:
 - Homework #2, Part 1 (Theoretical): One attempt allowed.
 - Homework #2, Part 2 (Computation): One attempt allowed.
 - You can work on both parts as much as you want within the due period, but remember to click "submit" only when you're completely ready.
- **Piazza Forum:** Always open for questions! It's the perfect place to interact with our teaching team and your classmates.

Vote for Your favorite TA of September

Scan me

- Or click on the link provided below.
 - Survey link

Main topics

- Module 2: Finance & Investment (weeks 6-8)
 - Week 6: Introduction, and Measuring Risk and Return

Introduction: investing analytics

- Simple and compound returns(Return.cumlative() and chart.CumReturns())
 - Stock splits (e.g., 3 for 2)
 - Dividends

Example I: stock split

We will calculate the new price per share after a stock split.

- **Scenario**: The original stock price is \$30.375 per share before the split. We have a **3 for 2** stock split.
- The split ratio means that for every 2 shares owned before the split, the shareholder now owns 3 shares. To find the new price per share, we divide the old price by the split ratio of 1.5 (which is the equivalent of 3/2).

R code

```
# Step 1: Old price before the stock split
old_price ← 30.375
# Step 2: The split ratio is 3 for 2
split_ratio ← 1.5
# Step 3: Calculating the new price per share after the stock split
new_price ← old_price / split_ratio
```

Output

```
*new_price
20.25
```

Measuring risk

Measures of risk

- Standard deviation (SD): measures variation by looking at how far observations are from the mean
 - a measure of total risk
 - table.Stats()
- \circ Beta (β): a measure of a stock's sensitivity to overall market movements/measures sensitivity to market movements
 - e.g., a risk free asset has a β =0 and the overall stock market has a β =1.
- $\circ \ R^2$: a measure of the percentage of the fund's performance that occurs as a result of the market
- Compounded return
- Drawdown: measures the peak to trough decline in your investment
 - cumulative loss since losses started
 - chart.Drawdown() and table.Drawdowns()
- **Sharpe ratio** (e.g., Return–Risk free rate)/Standard Deviation of excess return)

Simple returns

- Calculating Simple Returns in R
 - This example demonstrates how to calculate the simple return of a stock, including dividends. The formula for the simple return is:

$$\blacksquare \ \ Simple \ Return = \frac{ \ Closing \ Price_{end} + Dividend - Closing \ Price_{start} }{ \ Closing \ Price_{start} }$$

Output

Date	Close	Dividend Si	.mpleReturn
1 2023-01-01	100	0	NA
2 2023-01-02	105	2	0.07

Calculating simple returns in R

R code

```
# Example data
data ← data.frame(
  Date = as.Date(c('2023-01-01', '2023-01-02')),
  Close = c(100, 105), # Adjusted closing prices
  Dividend = c(0, 2) # Dividends paid out
)

# Calculating simple return
data$SimpleReturn ← with(data, (Close + Dividend) / lag(Close)-1)

# Viewing the results
print(data)
```

Output

```
## Date Close Dividend SimpleReturn
## 1 2023-01-01 100 0 NA
## 2 2023-01-02 105 2 0.07
```

For more details, see the "Simple-Return.R" file, under 'Instructor's Session Files

Calculating simple returns in R (cont'd)

Note:

- The shift() function from the data.table package achieves the same result as the dplyr package's lag() function.
 - Please click on the link provided below.
 - shift function

Q&A

• **Q:** which stock is most/least risky based on standard deviation. For this purpose are we to consider the standard deviation of the "market" to be a stock?`

Q&A (cont'd)

- **Q:** which stock is most/least risky based on standard deviation. For this purpose are we to consider the standard deviation of the "market" to be a stock?`
 - **A:** In simple terms, no, we usually don't treat the market's standard deviation as a stock. The market is more like a backdrop to compare how risky each individual stock is. We look at the market to get a sense of the overall risk, but we don't call it a stock itself.

Open for discussion

What is the topic for next week?

Factor investing

Factor investing

Prior academic research has uncovered a number of fundamental factors that drive stock

returns: Click on the link: Description of Fama/French Factors

• Size (SMB)

• A positive coefficient on SMB indicates that the fund is tilted toward small cap stocks.

• Market Value (HML)

• A positive coefficient on HML indicates that the fund is titled toward value stocks.

Momentum (MOM)

• A positive coefficient on MOM indicates that the fund is tilted toward high momentum stocks.

• Risk (BAB)

• A positive coefficient on BAB indicates that the fund is titled toward safe stocks.

• Quality (QMJ)

• A positive coefficient on QMJ indicates that the fund is titled toward profitable stocks.

Run factor regressions in R

We typically estimate factor models using linear regression:

- The dependent variable r^{fund} r^{f} is typically the fund's excess return above the risk free rate.
- The factors are typically the independent variables.
 - \circ Market Beta r^{m} r^{f} , Size (SMB), Market Value (HML), Quality (QMJ)...
- The constant term (intercept) captures alpha: the measure of skill for the fund manager
 - A positive (negative) alpha and significant coefficient indicate the fund manager is outperforming (underperforming) the regression-based benchmark

R code

```
factor1 ← lm(Contra.rf~Mkt_rf, data=data)
factor3 ← lm(Contra.rf ~ Mkt_rf+SMB+HML, data = data)
factor4 ← lm(Contra.rf ~ Mkt_rf+SMB+HML+Mom, data=data)
factor6 ← lm(Contra.rf~Mkt_rf+SMB+HML+Mom+BAB+QMJ, data=data)
```

		Dependent	variable:				
	Contra.rf						
	(1)	(2)	(3)	(4)			
Mkt_rf	0.901***	0.885***	0.913***	0.914***			
	(0.019)	(0.020)	(0.019)	(0.022)			
SMB		0.048*	0.042	0.038			
		(0.029)	(0.027)	(0.030)			
HML		-0.048	0.004	-0.070**			
		(0.030)	(0.029)	(0.032)			
Mom			0.132***	0.096***			
			(0.018)	(0.019)			
BAB				0.150***			
				(0.025)			
QMJ				-0.011			
				(0.045)			
Constant	0.002***	0.002***	0.001	0.0004			
	(0.001)	(0.001)	(0.001)	(0.001)			
Observations	462	462	462	462			
\mathbb{R}^2	0.833	0.835	0.852	0.863			
Adjusted R ²	0.832	0.834	0.851	0.861			
Residual Std. Error	0.018 (df = 460)	0.018 (df = 458)	0.017 (df = 457)	0.016 (df = 455)			
F Statistic	2,288.618*** (df = 1; 460)) 773.335*** (df = 3; 458)	658.014*** (df = 4; 457)	478.797*** (df = 6; 455)			
Note:			* n<	:0.1; **p<0.05; ***p<0.01			

	Dependent variable:						
_	Contra.rf						
	(1)	(2)	(3)	(4)			
Mkt_rf	0.901***	0.885***	0.913***	0.914***			
	(0.019)	(0.020)	(0.019)	(0.022)			
SMB		0.048*	0.042	0.038			
		(0.029)	(0.027)	(0.030)			
HML		-0.048	0.004	-0.070**			
		(0.030)	(0.029)	(0.032)			
Mom			0.132***	0.096***			
			(0.018)	(0.019)			
BAB				0.150***			
				(0.025)			
QMJ				-0.011			
				(0.045)			
Constant	0.002***	0.002***	0.001	0.0004			
	(0.001)	(0.001)	(0.001)	(0.001)			
Observations	462	462	462	462			
R^2	0.833	0.835	0.852	0.863			
Adjusted R ²	0.832	0.834	0.851	0.861			
Residual Std. Error	0.018 (df = 460)	0.018 (df = 458)	0.017 (df = 457)	0.016 (df = 455)			
Statistic 2,	288.618*** (df = 1; 460)	773.335*** (df = 3; 458)	658.014*** (df = 4; 457)	478.797*** (df = 6; 4			
Vote:			*p<	:0.1; ***p<0.05; ****p<0			

• Model 4 (six-factors model):Four coefficients are significant.

• Mkt_rf: The fund has a market beta of 0.914.

• HML: The fund is tilted away from value stocks.

• Mom: The fund is tilted toward high momentum stocks.

• BAB: The fund is tilted toward safe stocks (those with low beta).