BINARAY LOGISTIC REGRESSION MODEL CROSS VALIDATION IN PYTHON

Contents

- 1. Cross Validation
- 2. Hold out validation
- 3. Performance Measures : Accuracy, Recall, Precision
- 4. K-fold validation

Recap:Data Snapshot

	Independent	Variables	Depende	Dependent Variable		
SN	AGE EMPLOY A		NC CREDDEBT OTHDEBT 9.3 11.36 5.01	DEFAULTE 1		
Column	Description	Type	Measurement	Possible Values		
SN	Serial Number	numeric	-	-		
AGE	Age Groups	Categorical	1(<28 years), 2(28- 40 years), 3(>40 years)	3		
EMPLOY	Number of years customer working at current employer	Continuou s	-	Positive value		
ADDRESS	Number of years customer staying at current address	Continuou s	-	Positive value		
DEBTINC	Debt to Income Ratio	Continuou s	-	Positive value		
CREDDEBT	Credit to Debit Ratio	Continuou s	-	Positive value		
OTHDEBT	Other Debt	Continuou	-	Positive value		

Binary Logistic Regression in Python

Import data and check data structure before running model

```
import pandas as pd
bankloan=pd.read_csv('BANK LOAN.csv')
bankloan.info()
```

Output:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 700 entries, 0 to 699
Data columns (total 8 columns):
            700 non-null int64
SN
AGE
            700 non-null int64
            700 non-null int64
EMPLOY
ADDRESS
           700 non-null int64
           700 non-null float64
DEBTINC
CREDDEBT
           700 non-null float64
            700 non-null float64
OTHDEBT
DEFAULTER
            700 non-null int64
dtypes: float64(3), int64(5)
memory usage: 43.8 KB
```


Binary Logistic Regression in Python

```
# Change 'AGE' variable into categorical
bankloan['AGE']=bankloan['AGE'].astype('category') 
bankloan.info()

# Output:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 700 entries, 0 to 699
Data columns (total 8 columns):
SN 700 non-null int64
AGE 700 non-null category
EMPLOY 700 non-null int64
```

700 non-null int64

700 non-null float64 700 non-null float64

700 non-null float64

700 non-null int64

dtypes: category(1), float64(3), int64(4)

ADDRESS

DEBTINC

CREDDEBT

OTHDEBT

DEFAULTER

memory usage: 39.1 KB

Age is an integer and need to convert into type "category" for modeling purpose.

Binary Logistic Regression in Python

```
# Logistic Regression using logit function
import statsmodels.formula.api as smf

riskmodel = smf.logit(formula = 'DEFAULTER ~ AGE + EMPLOY + ADDRESS +
DEBTINC + CREDDEBT + OTHDEBT', data = bankloan).fit()
```

Model summary

riskmodel.summary()

logit() fits a logistic regression model to the data
summary() generates detailed

summary() generates detailed summary of the model.

Logit Regression Results							
Dep. Variable	:	DEFAULTE	R No. Obs	ervations:		700	
Model:		Logi	t Df Resi	.duals:		692	
Method:		ML	E Df Mode	:1:		7	
Date:	Tue,	23 Mar 202	1 Pseudo	R-squ.:		0.3120	
Time:		11:41:0		elihood:		-276.70	
converged:		Tru	e LL-Null	.:		-402.18	
Covariance Ty	pe:	nonrobus	t LLR p-v	alue:		1.733e-50	
						=======	
	coef	std err	Z	P> z	[0.025	0.975]	
Intercept	-0.7882	0.264	-2.985	0.003	-1.306	-0.271	
C(AGE)[T.2]	0.2520	0.267	0.946	0.344	-0.270	0.774	
C(AGE)[T.3]	0.6271	0.361	1.739	0.082	-0.080	1.334	
EMPLOY	-0.2617	0.032	-8.211	0.000	-0.324	-0.199	
ADDRESS	-0.0996	0.022	-4.459	0.000	-0.143	-0.056	
DEBTINC	0.0851	0.022	3.845	0.000	0.042	0.128	
CREDDEBT	0.5634	0.089	6.347	0.000	0.389	0.737	
OTHDEBT	0.0231	0.057	0.405	0.685	-0.089	0.135	
1							

Interpretation:

Since p-value is <0.05 for Employ, Address, Debtinc, Creddebt,

Re-run Model in Python

- Once the variables to be retained are finalized, re-run the model with these final variables and obtain revised coefficients for the model.
- Re-run the model with employ, address, debtinc, creddebt.

```
riskmodel = smf.logit(formula = 'DEFAULTER ~ EMPLOY + ADDRESS +
DEBTINC + CREDDEBT', data = bankloan).fit()
riskmodel.summary()
```


Re-run Model in Python

Output:

Dep. Variabl	.e:	DEFAULT	ER No. (bservations:		700
Model:		Log	it Df Re	siduals:		695
Method:		M	LE Df Mo	del:		4
Date:	Tue	e, 23 Mar 20	21 Pseud	lo R-squ.:		0.3079
Time:		11:36:	38 Log-l	ikelihood:		-278.37
converged:		Tr	ue LL-Nu	11:		-402.18
Covariance T	ype:	nonrobu	st LLR p	-value:		2.114e-52
=======	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.7911	0.252	-3.145	0.002	-1.284	-0.298
EMPLOY	-0.2426	0.028	-8.646	0.000	-0.298	-0.188
ADDRESS	-0.0812	0.020	-4.144	0.000	-0.120	-0.043
DEBTINC	0.0883	0.019	4.760	0.000	0.052	0.125
CREDDEBT	0.5729	0.087	6.566	0.000	0.402	0.744

Interpretation:

Since p-value is <0.05 for Employ, Address, Debtinc and Creddebt, these independent variables are significant.

Cross Validation in Predictive Modeling

Cross Validation is a process of evaluating the model on 'Out of Sample' data

- Model performance measures for binary logistic regression such as Accuracy rate,
 Sensitivity, Specificity tend to be optimistic on 'In Sample Data'
- More realistic measures of model performance are calculated using "Out of Sample' data
- Cross-validation is a procedure for estimating the generalization performance in this context

Cross validation is important because although a model is built on historical data, ultimately it is to be used on future data. However good the model, if it fails on out of sample data then it defeats the purpose of predictive modeling

Cross Validation in Predictive Modeling

There are different approaches for cross validation. Five most significant of them are:

We will focus on **Hold Out** and **K-Fold** Cross validation methods.

Hold-Out Validation

In Hold-Out validation method, available data is split into two non-overlapped parts: 'Training Data' and 'Testing Data'

- The model is
 - Developed using training data
 - Evaluated using testing data
- Training data should have more sample size. Typically 70%-80% data is used for model development

Hold Out Validation in Python

Create 2 groups of the data: Training and Testing

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import statsmodels.formula.api as smf

bankloan=pd.read_csv('BANK LOAN.csv')

X_train, X_test = train_test_split(bankloan, test_size=0.3)
```

- Import train_test_split from sklearn.model_selection
- train_test_split() creates Training and Testing data sets
- test_size= is the percentage of data to be kept as test data

Hold Out Validation in Python

Check the dimensions training and testing data

X_train.shape

Output:

(490, 8)

X_test.shape

Output:

(210, 8)

The data of 700 observations are partitioned into 2 parts: With 490 observations in training (model development) data and

remaining 210 observations in testing data (out of sample).

Hold Out Validation

- Model will be run on the training data and predicted probabilities will be generated.
- Same model will be applied to test data to get the predicted probabilities.
- Classification Report will be used to check the performance of the model in training and testing data.

Performance Measures : Accuracy, Precision, Recall

• Accuracy: Accuracy is defined as the ratio of correctly predicted cases by the total cases.

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

• **Precision**: Precision tells us what percentage of predicted positive cases are correctly predicted.

$$Precision = \frac{TP}{TP + FP}$$

• Recall or Sensitivity: Recall tells us what percentage of actual positive cases are correctly predicted.

$$Recall = \frac{TP}{TP + FN}$$

Performance Measures in Python

Generate classification report for training data

```
riskmodel=smf.logit(formula = 'DEFAULTER ~ EMPLOY + ADDRESS +
DEBTINC + CREDDEBT', data = X_train).fit()

predicted_values1=riskmodel.predict()
threshold=0.3
predicted_class1=np.zeros(predicted_values1.shape)
predicted_class1[predicted_values1>threshold]=1

from sklearn.metrics import classification_report
print(classification_report(X_train['DEFAULTER'],predicted_class1))
```

Output:

	precision	recall	f1-score	support
0 1	0.89 0.55	0.78 0.75	0.83 0.63	360 130
accuracy macro avg weighted avg	0.72 0.80	0.76 0.77	0.77 0.73 0.78	490 490 490

Performance Measures in Python

Generate classification report for test data

```
predicted_values1=riskmodel.predict(X_test)
threshold=0.3
predicted_class1=np.zeros(predicted_values1.shape)
predicted_class1[predicted_values1>threshold]=1

print(classification_report(X_test['DEFAULTER'],predicted_class1))
```

Output:

	precision	recall	f1-score	support
0	0.84	0.77 0.63	0.81 0.58	150 60
accuracy macro avg weighted avg	0.68 0.75	0.70 0.73	0.73 0.69 0.74	210 210 210

Interpretation:

Accuracy & Sensitivity of test data is lower than that of train data. However, the values are still acceptable.

K fold Cross Validation

- In k-fold cross-validation the data is first partitioned into k equally (or nearly equally) sized segments or folds.
- Then k iterations of training and testing are performed such that each time one fold is kept aside for testing and model is developed using k-1 folds.

K-fold Validation in Python

Create k-folds

```
from sklearn import linear_model
lmreg = linear_model.LogisticRegression()

y=bankloan.DEFAULTER
X=bankloan[['EMPLOY', 'ADDRESS', 'DEBTINC', 'CREDDEBT']]

from sklearn.model_selection import cross_val_predict
from sklearn.metrics.classification import cohen_kappa_score

predicted_prob = cross_val_predict(lmreg, X, y, cv=4,
method='predict_proba')
threshold=0.3
predicted = predicted_prob[:,1]
predicted_class1=np.zeros(predicted.shape)
predicted_class1[predicted>threshold]=1
```

- cross_val_predict()
 generates cross-validated
 estimates for each input
 data point.
- method='predict_proba' calculates probabilities for both classes.
- □ cv=4 specifies 4 folds

K-fold Validation in Python

Generate classification report for k-fold validation

print(classification_report(y,predicted_class1))

Output:

	precision	recall	f1-score	support
0 1	0.90 0.57	0.80 0.75	0.85 0.65	517 183
accuracy macro avg weighted avg	0.74 0.81	0.77 0.79	0.79 0.75 0.80	700 700 700

classification_repo
 rt(): gives accuracy,
 recall and precision
 values

Interpretation: accuracy of 0.79 and recall of 0.75 indicate that the model is performing good.

Quick Recap

In this session, we learnt about Model Validation:

Cross Validation

• Cross Validation is a process of evaluating the model on 'Out of Sample' data.

Hold out validation

• In Hold-Out validation method, available data is split into two non-overlapped parts: 'Training Data' and 'Testing Data'.

Performance Measures

- Performance measures like Accuracy, recall & precision are calculated to check model performance of train & test data.
- classification_report() gives all these measures

K-fold validation

- In k-fold cross-validation the data is first partitioned into k equally (or nearly equally) sized segments or folds.
- Then k iterations of training and testing are performed such that each time one fold is kept aside for testing and model is developed using k-1 folds.

THANK YOU!!

