Dynamic design:

1. state machine diagram

MCU 1:

a. DIO:

b. light_Switch_L:

c. door_Sensor_D:

d. speed_Sensor_S:

e. COM:

RTOS (ECU1):

speed_Sensor_S_update state door_Sensor_D_update_state

light_Switch_L_get_State

MCU 2:

a. DIO:

b. LED:

c. BUZZER:

d. CAN:

RTOS (ECU 2)

Idle task:

ECU1 Sequence diagram:

ECU2 Sequence diagram:

ECU1 CPU Load:

$$U = \frac{\sum_{i=1}^{n} (E_i)}{H}$$

That:

- *U* is CPU utilization
- \blacksquare *H* is the hyper period.
- E_i is the ith task total execution time.
- \bullet *n* is the number of tasks.

Assume:

- $E_1 = 10 \mu s$
- $E_2 = 50 \mu s$
- $E_3 = 500 \mu s$

So,

$$U = \frac{((4*0.01)+(2*0.05)+(1*0.5))}{20} = 0.03$$

U% = 3.2 %

ECU2 CPU Load:

$$U = \frac{\sum_{i=1}^{n} (E_i)}{H}$$

That:

- *U* is CPU utilization
- *H* is the hyper period.
- E_i is the ith task total execution time.
- \blacksquare *n* is the number of tasks.

Assume:

- $E_1 = 20 \mu s$
- $E_2 = 60 \mu s$
- $E_3 = 300 \mu s$

So,U=
$$\frac{((4*0.02)+(2*0.06)+(1*0.3))}{20}$$
 = 0.025 $\therefore U\%$ = 2.5%

CAN Bus Load calculations:

$$L = \frac{used\ capacity}{Maximum\ capacity}$$

Over 20 ms (Hyper period)

Assume we use Baud Rate of 200kbps, and we have frame size with 7 byte data with worst-case stuffing is something like 32+47+19=98.

Data	Description
1 byte * 4	speed_Sensor_S_Value
1 byte * 2	door_Sensor_D_State
1byte * 1	light_Switch_L_State
So data size over 20 ms = 7 bytes	

- Maximum capacity in 1 sec = 200000 bit.
- Number of frames sent in 1 sec = $\frac{1000}{20}$ = 50 frame So bus load

$$L = \frac{50 * 98}{200000} = 0.0245$$

L% =2.45%