Tree-based Models

Zhiyu Quan

University of Connecticut

20 March, 2018

Introduction and motivation

- Nonparametric approach distribution free
- Interpret by visualizing the tree structure
- Robust to the outliers and missing data
- Partially solves multicollinearity
- Detect non-linear effects and interactions

Introduction and motivation

- Regression trees can fit almost all the traditional statistical models
 - Least-squares, Logistic, Poisson, Proportional Hazards models
 - Quantile, Longitudinal, multiresponse

CART (classification and regression tree)

- Grows a large tree
- Prune the large tree

CART (Grows a large tree)

• Decision tree($T(\mathbf{x}, \Theta)$) algorithm partition the explanatory variable space into disjoint regions M regions R_1, R_2, \ldots, R_M ; then assign a constant c_m in each region which is the estimated values \hat{y}_i of the response variable y_i in region R_m :

$$\hat{y}_i = f(y_i|\mathbf{x}_i, \Theta) = T(\mathbf{x}_i; \Theta) = \sum_{m=1}^{M} c_m \mathbf{1}_{R_m}(\mathbf{x}_i) \text{ where } \Theta = \{R_m, c_m\}_{m=1}^{M}$$

• Under the sum of square error(SSE), recursive binary splitting, first finds the single numerical explanatory variable $X_{.j}$ which best splits the data into two regions $R_1(j,s)=\{\mathbf{x}_i|X_{.j}< s\}$ and $R_2(j,s)=\{\mathbf{x}_i|X_{.j}> s\}$, i.e. For any j and s,

$$\underset{j,s}{\operatorname{argmin}} \sum_{i: \mathbf{x}_i \in R_1(j,s)} (y_i - \hat{c}_{R_1(j,s)})^2 + \sum_{i: \mathbf{x}_i \in R_(j,s)} (y_i - \hat{c}_{R_2(j,s)})^2$$

CART (Prune the large tree)

cost-complexity pruning:

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} \sum_{\mathbf{x}_i \in R_m} (y_i - \hat{c}_m)^2 + \alpha |T|$$

• The tuning parameter $\alpha \geq 0$ governs the tradeoff between tree size and its goodness of fit to the data.

CART (Missing data)

- The CART employees a series of "surrogate" splits
- Splits on alternate explanatory variables that substitute for the best explanatory variable which has a missing value
- Surrogate splits are also used to provide variable importance.

CART Algorithm

- **Grow** a full tree T_0 on the training data using recursive binary splitting. Stopping cariteria is *minsplit* which is the minimum number of observations that must exist in a node in order for a split to be attempted.
- **Prune** the full tree T_0 to the subtree T_{α} using cost-complexity pruning.
- **Determine** α using K-fold cross-validation, i.e. selecting best cp which is numerical value of α . In detail, divide the training set into K folds. For each k = 1,...,K:
- 4 (a) Repeat Step 1 and 2 on all except for kth fold.
- 5 (b) Calculate the mean squared prediction error on the hold out kth fold using T_{α} .
- **6** Finally, average the results from (b) for each value of α , and pick α to minimized the average prediction error.
- **7 Return** the best subtree T_{α} .

Algorithm 1: CART: R-package-rpart

Regression Tree

Figure 1: Univariate Regression Tree

Random Forest

 Random forest weakens the dependence among the CART trees by using a random subset of explanatory variables for split selection at each node of a tree.

Random Forest

Ensemble methods

$$F_B(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} T(\mathbf{x}; \Theta_b)$$

- Train on bootstrap samplings B
- Random set of explanatory variables
- Decreases the correlation between different trained trees
- As $B \to \infty$, by the Strong Law of Large Numbers,

$$E_{\mathbf{x},\mathbf{y}}(\mathbf{y} - F_B(\mathbf{x}))^2 \to E_{\mathbf{x},\mathbf{y}}(\mathbf{y} - E_{\theta}T(\mathbf{x};\Theta))^2$$
 a.s.

Random Forest Algorithm

- 1 **Bootstrap** For b = 1 to B(ntree):
- 2 (a) Draw a bootstrap sample of size sampsize from the training data.
- 3 (b) Grow a full tree $T_b(\mathbf{x}; \Theta_b)$ on the bootstrap sample using recursive binary splitting. In detail, which different from Algorithm 1, select mtry variables at random from the p variables and stopping cariteria is nodesize.
- **Return** the ensemble of trees $\{T(\mathbf{x}; \Theta_b), b = 1, 2, ..., B\}$.
- 5 Averaging $F_B(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} T(\mathbf{x}; \Theta_b)$

Algorithm 2: randomForest: R-package-randomForest

Bagging

 Bagging uses an ensemble of unpruned CART trees constructed from bootstrap samples of the data.

Gradient Boosted Regression Trees

 Boosting sequentially constructs the trees in the ensemble by putting more weight on the observations residuals in the previous step.

Gradient Boosted Regression Trees

Builds regression trees sequentially on residuals

$$\begin{aligned} F_b(\mathbf{x}) &= F_{b-1}(\mathbf{x}) + \sum_{m=1}^{M_b} c_{mb} \mathbf{1}_{R_{mb}}(\mathbf{x}) \\ \hat{c}_{mb} &= \arg\min_{c} \sum_{\mathbf{x}_i \in R_{mb}} L(y_i, F_{b-1}(\mathbf{x}_i) + c) \\ F_B(\mathbf{x}) &= \sum_{b=1}^{B} T_b(\mathbf{x}; \Theta_b) \end{aligned}$$

• The tree predictions $T_b(\mathbf{x}; \Theta_b)$ at each steps are analogous to the components of the negative gradient

$$g_{ib} = -\nabla_{F_{b-1}} L(y_i, F_{b-1}(\mathbf{x}_i)) = -\left[\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F(\mathbf{x}_i) = F_{b-1}(\mathbf{x}_i)}$$

Gradient Boosted Regression Trees Algorithm

- Initialize model with a constant value, $F_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- **2 Gradient line search** For b = 1 to B(n.trees):
- 3 (a) For i=1 to N*p, p is bag.fraction, compute
 - $g_{ib} = -\nabla_{F_{b-1}} L(y_i, F_{b-1}(\mathbf{x}_i))$
- 4 (b) Fit a regression tree $T_b(\mathbf{x}; \Theta_b)$ to the targets g_{ib} giving terminal regions $R_1, R_2 \dots, R_{M_b}$. In detail, which different from Algorithm 1, set interaction.depth = M_b and stopping cariteria is n.minobsinnode.
- 5 (c) For m= 1 to M_b compute $\hat{c}_{mb} = \operatorname*{arg\,min}_{c} \sum_{\mathbf{x}_i \in R_{mb}} L(y_i, F_{b-1}(\mathbf{x}_i) + c)$
- 6 (d) Update $F_b(\mathbf{x}) = F_{b-1}(\mathbf{x}) + \lambda \sum_{m=1}^{M_b} c_{mb} \mathbf{1}_{R_{mb}}(\mathbf{x})$ here we can add shrinkage λ to reduce the impact of each additional fitted base-learner, regression tree, $T_b(\mathbf{x}; \Theta_b)$.
- 7 **Return** $F_B(\mathbf{x}) = \sum_{b=1}^B \lambda T_b(\mathbf{x}; \Theta_b)$.

Algorithm 3: gbm: R-package-gbm

Multivariate regression trees

- Extended the univariate regression trees
- Multivariate measure

$$L(\mathbf{y}_i, \hat{\mathbf{y}}_i) = \sum_{i=1}^{N} (\mathbf{y}_i - \hat{\mathbf{y}}_i)^T (\mathbf{y}_i - \hat{\mathbf{y}}_i)$$

$$L(\mathbf{y}_i, \hat{\mathbf{y}}_i) = \sum_{i=1}^{N} \sum_{j=1}^{k} |y_{ij} - \tilde{y}_j|$$

- Inherited univariate decision tree advantages
- Robust to the outliers and missing data
- Constrained clustering