

WHAT IS A CYBER-PHYSICAL SYSTEM

A cyber-physical system is a computer system where a mechanism is controlled or monitored by computer-based algorithms. In these systems, physical and software components operate ubiquitously and can interact with each other by changing context.

CYBERNETICS MECHATRONICS UTILITIES

DIFFERENCE BETWEEN IOT AND CYBER-PHYSICAL SYSTEMS

The primary difference between cyber-physical systems and IoT is the focus on automation vs feedback loops. IoT centers around pure automation without the need for human assistance, whereas cyber-physical systems work in a feedback loop utilizing human intervention.

EXAMPLES

Naming	Classification	Description
Smart House	Industrial- Consumer IoT	Control Smart Devices Homeowner Security & Comfort
Oil Refinery	Industrial- Transportation IoT	 Naphta, Gasoline, Diesel Asphalt, Petroleum, Fuel, Oil
Smart Grid	Industrial IoT	Smart Efficient Energy Energy Control & Management
Water Treatment	Industrial- Consumer IoT	Improved Water Quality Overcome Contamination & Undesirable Components
Medical Devices	Medical- Wearable IoT	Improved Patients Life Enhanced Medical Treatment Remote Patient Monitoring
SCADA	Industrial IoT	 Control & Monitor Telecoms. Control & Monitor Industries
Smart Cars	Industrial- Transportation IoT	Echo Friendly Enhanced Driver Experience Advanced Safety Features
Supply Chains	Industrial- Transportation IoT	 Real-Time Delivery Source/Destination Less Delays & Echo Friendly

SCADA APPLICATION

SCADA stands for 'Supervisory Control and Data Acquisition' and is a control system architecture comprising of computers, networked data communications, and user interfaces for operation of machines and processes. This architecture also covers devices such as sensors and logic controllers.

SCADA SYSTEM IMPLEMENTATIONS

UTILITIES

Electrical Power Distribution Electrical Power Transmission

WATER

Water Treatment Centers Waste Collection Facilities

OIL AND GAS

Pipeline Control Remote Asset Monitoring Offshore Platforms

SCADA COMPONENTS

SUPERVISORY COMPUTERS (SC)

Core of the system, sending control commands to field devices based on gathered data.

REMOTE TERMINAL UNITS (RTU)

Connect to sensors/actuators and have embedded control capabilities.

PROGRAMMABLE LOGIC CONTROLLERS (PLC)

Specifically designed controllers networked to the supervisory system.

COMMUNICATION INTERFACE

Connects the supervisory system to the RTUs and PLCs, which operate autonomously on near-real time control using the last command given by the SC.

HUMAN-MACHINE INTERFACE (HMI)

The HMI presents information to operating personnel in the form of diagrams, which allows the personnel to control the entire system through the Supervisory Computer.

HISTORIAN

A software service within the HMI which accumulates timestamped data, events, and alarms in a database which can be queried or used to populate graphic trends in the HMI.

RM FOR SCADA

SCADA SECURITY CHALLENGES

MAROOCHY ATTACK

- Ex-employee for company Hunter Watertech hijacked the SCADA system for Maroochy Shire in Queensland, Australia and caused the system to dump over 800,000 liters of sewage into local parks and rivers.
- Utilized stolen devices from Hunter Watertech and issued radio commands throughout the area on at least 46 occasions from February 28, 2000 to April 23, 2000

REFERENCES

- https://www.industrialcybersecuritypulse.com/facilities/throwback-attack-an-insider-releases-265000-gallons-of-sewage-on-the-maroochy-shire/
- https://www.researchgate.net/publication/221654716_Lessons_Learned_from_the_
 Maroochy_Water_Breach
- https://en.wikipedia.org/wiki/SCADA#cite_note-SlayMiller-29
- https://www.sciencedirect.com/science/article/pii/S1389128620312883

