三维点云算法

Date: 2020.07.26 Author: MagicTZ Homework: 4 Description:

The implementation of clustering algorithm regarding:

- 1. Using RANSAC to fit the ground
- 2. Removing ground and downsampling the non-ground points
- 3. Clustering the non-ground points by DBSCAN

1 数据处理(以一组数据为例,其他两组数据附在后面)

1.1 原始数据

1.2 地面点

1.3 非地面点

1.4 下采样

1.5 聚类

(1) 采样前

(2) 采样后

2 数据分析

	1	2	3	4
原始点云(个数)	115839	123397	121691	123178
非地面点(个)	66863	49324	68779	63323
非地面点(采样	15509	25769	16190	23890
后)				
采样前聚类[s]	28.116	13.3229	34.976	23.5575
采样后聚类[s]	1.542	3.764	1.581	3.677

上面的表格结合所有的图片结果可以发现,原始点云往往数据量非常大,如果仅仅对原始点云进行处理,效率会非常低,虽然结果比较好。因此在本次实验中,首先使用 RANSAC 的方法获取地面点数据,然后计算非地面点点云并进行下采样(使用之前 voxel_filter 函数),降低数据的规模,然后再使用 DBSCAN 的方式对点云进行聚类(首先需要利用 kdtree 找到所有核心点,不能使用欧式距离,矩阵太大,矩阵运算速度巨大),可以发现,采样后的结果不会对最后聚类的结果产生很大影响,但却使聚类速度有了巨大的提高。

3 问题

- A. 当前的算法无法很好的检测出斜坡,因为如果阈值过大,会对路沿进行无检测,优化思路是对路面进行分段检测,但时间上肯定会大打折扣。
- B. 如何平衡算法的速度和性能。如果参数设置过大,误检测的概率会小很多,但是搜索的速度往往影响会更大,而且数据特点的不同,参数的设置也会随之改变,一组参数不能对应所有的情况。

4 其他几组结果

(1)第二组数据

(2)第三组数据

(3)第四组数据

