EDOs (suite) PVI

Runge-Kutta 4

The state of the s

Runge-Kutta 4

$$k_{1} = hf(x_{i}, y_{i}) \frac{1}{2} \qquad \frac{1}{2} \qquad = hf_{1}$$

$$k_{2} = hf(x_{i} + e_{2}h, y_{i} + a_{21}k_{1}) \qquad \frac{1}{2} \qquad = hf_{2}$$

$$k_{3} = hf(x_{i} + e_{3}h, y_{i} + a_{31}k_{1} + a_{32}k_{2}) \qquad = hf_{3}$$

$$k_{4} = hf(x_{i} + e_{4}h, y_{i}^{0} + a_{41}k_{1} + a_{42}k_{2} + a_{43}k_{3}) \qquad = hf_{4}$$

$$0 \qquad 0$$

$$y_{i+1} = y_{i} + w_{1}k_{1} + w_{2}k_{2} + w_{3}k_{3} + w_{4}k_{4}$$

$$\frac{k_{1} = hf(x_{i}, y_{i})}{k_{2} = hf(x_{i}, y_{i} + \frac{h}{2}, y_{i} + \frac{1}{2}k_{1})}$$

$$k_{3} = hf(x_{i} + \frac{h}{2}, y_{i} + \frac{1}{2}k_{2})$$

 $k_4 = hf\left(x_i + h, y_i + k_3\right)$

Méthodes de R-K explicites

 W_1

 W_2 W_3

 W_m

Méthodes de R-K implicites

Méthode d'Euler explicite

$$f(X,t) = \begin{pmatrix} -y \\ x \end{pmatrix}$$

La solution exacte est un cercle:

$$X(t) = \begin{pmatrix} r\cos(t+k) \\ r\sin(t+k) \end{pmatrix}$$

La Spirale d'Euler

La solution exacte est un cercle:

La méthode d'Euler engendre des spirales

Euler Implicite

$$\frac{dX}{dt} = f(X,t)$$

$$f(X,t) = \begin{pmatrix} -y \\ x \end{pmatrix}$$

$$X(t) = \begin{pmatrix} r\cos(t+k) \\ r\sin(t+k) \end{pmatrix}$$

Euler: Explicite vs. Implicite

$$\frac{dy}{dt} = f(t, y)$$

$$y_{i+1} = y_i + f(x_i, y_i)h$$

$$y_{i+1} = y_i + f(x_{i+1}, y_{i+1})h$$

Euler Explicite

$$\frac{dx}{dt} = -kx$$

$$x(t) = x_0 e^{-kt}$$

En général

$$x_{i+1} = x_i + hf(t+h, x_i)$$

Pour ce cas

$$x_{i+1} = x_i - h k x_i$$

$$x_1 = (1-kh)x_0$$
$$x_i = (1-kh)^i x_0$$

$$|1-hk| \le 1$$
 Contrainte

T

Stabilité

$$\begin{cases} \frac{dy}{dt} = -ay \\ y(0) = y_0 \end{cases} \rightarrow y = y_0 e^{-at}$$

$$si\ y(0) = y_0 + \varepsilon, \ alors\ y^* = (y_0 + \varepsilon)e^{-at}$$

$$soit\ E(x) = y^*(t) - y(t) \implies \begin{cases} dE / dt = -aE \\ E(0) = \varepsilon \end{cases}$$

$$E = \varepsilon e^{-at} \Rightarrow \begin{cases} a < 0 \text{: l'erreur croit exponentiellement } \to \text{instable} \\ a = 0 \text{: stable (neutre)} \\ a > 0 \text{: l'erreur decroit exponentiellement } \to \text{stable} \end{cases}$$

Euler explicite

$$\frac{dy}{dt} = f(x, y) = -ay; \quad y(0) = y_0$$

$$y_{i+1} = y_i + \frac{dy_i}{dt}h = y_i + (-ay_i)h = (1 - ah)y_i$$

Condition de stabilité

$$\left|\frac{\mathbf{y}_{i+1}}{\mathbf{y}_i}\right| \le 1 \quad ou \quad |1-ah| \le 1$$

Region de stabilité absolue

$$-1 \leq 1 - ah \leq 1$$

Euler implicite

$$\frac{dy}{dt} = f(x, y) = -ay \; ; \quad y(0) = y_0$$

$$y_{i+1} = y_i + \frac{dy_{i+1}}{dt}h \; ; \quad \frac{dy_{i+1}}{dt} = -ay_{i+1}$$

$$y_{i+1} = \frac{y_i}{1+ah}$$

$$\left| \frac{\mathbf{y}_{i+1}}{\mathbf{y}_i} \right| = \left| \frac{1}{1 + ah} \right| \le 1 \quad pour \ tout \ h$$

POLYTECHNIQUE MONTREAL INCONDITIONAL INCONDI

Régions de Stabilité

Euler explicite

$$0 \le ah \le 2$$

$$\mathbf{y}_{i+1} = (1 - ah)\mathbf{y}_i$$

Questions

Stabilité: la solution est bornée, mais estelle semblable à la solution réelle?

Précision: quel ∆t (h) utiliser pour obtenir une erreur en dessous d'un certain seuil?

3

Euler Implicite

$$\frac{dy}{dt} = -ky$$

$$y(t) = y_0 e^{-kt}$$

$$y_{i+1} = y_i - hky_{i+1}$$

$$y_{i+1} = \left(\frac{1}{1+hk}\right) y_i$$

Stable, pas de limite pour h, mais on a la même précision que celle de la méthode explicite

Euler implicite

En général

$$y_{i+1} = y_i + hf(t+h, y_i + \Delta y)$$

$$f(t+h, y_i + \Delta y) = f(t+h, y_i) + \frac{df}{dy} \Delta y$$
 Taylor

$$\Delta y = y_{i+1} - y_i = h \left(f(t+h, y_i) + \frac{df}{dy} \Delta y \right)$$

Euler implicite

$$\Delta y = \frac{hf(t+h, y_i)}{1 - h\frac{df}{dy}}$$

Systèmes

$$y'=Ay$$
 $f(t,y)=Ay$

$$y_{k+1} = y_k + Ay_{k+1}h_k$$

$$(I-h_k A)y_{k+1} = y_k$$

On doit résoudre un système à chaque itération

T

Méthodes R-K implicites

ÉCOLE POLYTECHNIQUE M O N T R É A L	w_1	W_2	W_3	• • •	W_{m-1}	W_m M. Reggio
	a_{m1}	a_{m2}				$a_{m,m}$
C_m	• • •				• • •	• • •
•	•	•	•	•		
C_3	a_{31}	a_{32}	a_{33}			
c_2	a_{21}	a_{22}			• • •	$a_{2,m}$
c_1	a_{11}	a_{12}			• • •	$a_{1,m}$

Position c_l

Position c_l

Deux pentes pondérées

Deux pentes pondérées

Formulation générale

$$k_l = hf\left(x_i + c_l h, y_i + \sum_{m=1}^{s} a_{lm} k_m\right)$$

$$y_{i+1} = y_i + \sum_{l=1}^{s} b_l k_l$$

$$k_l = \Delta y_l$$

$$b_l = w_l$$

$$c_m = \sum_{j=1}^s a_{mj} \qquad m = 1,2...s$$

$$\sum_{l=1}^{s} bk_l = w_1 \Delta y_1 + w_2 \Delta y_2 + \cdots + w_s \Delta y_s$$

$$\frac{c}{b^T}$$

Approximation de l'intégrale

Collocation

quadrature

$$I = \int_{a}^{b} f(x) dx$$

$$\Phi_j = f_j$$

$$L_{j} = \prod_{i=1}^{s} \frac{(x - x_{i})}{(x_{i} - x_{i})} \quad polynôme de \ Lagrange$$

$$w_j = \int_a^b L_j dx$$

Collocation

$$I = \int_a^b f(x) dx \approx \sum_{j=1}^s w_j f(x_j)$$

Collocation $L_j = \prod_{i=1}^{s} \frac{(x-x_i)}{(x_j-x_i)}$

Exemple: polynôme linéaire

$$L_1 = \frac{(x-b)}{(a-b)}$$

$$L_2 = \frac{(x-a)}{(b-a)}$$

$$w_1 = \int_a^b \frac{(x-b)}{(a-b)} dx = \frac{(x-b)^2}{2(a-b)} \Big|_a^b = \frac{1}{2}(b-a)$$

$$I \approx w_1 f_1 + w_2 f_2 = \frac{b-a}{2} (f(a) + f(b))$$

Quadrature et RK

$$\frac{dy}{dx} = f(x, y)$$

$$\frac{d\Phi}{dx} = f(x, \Phi)$$

$$\phi(x_{i+1}) = y_{i+1}, \quad \phi(x_i) = y_i, \quad x_{i+1} = x_i + h$$

$$K_m = \phi'(x_i + c_m h) = f(x_i + c_m h, \phi(x_i + c_m h)), m = 1, 2...$$

$$K_m = \phi'(x_i + c_m h)$$

$$\int \rightarrow$$

$$\Phi'(x) = h \sum L_m(c)$$

$$h\sum_{m=1}$$

$$L_m(c)$$

$$K_m$$

Quadrature de Lagrange pour Φ'

7

Quadrature et RK

$$\frac{dy}{dx} = f(x, y)$$

$$\frac{d\Phi}{dx} = f(x, \Phi)$$

$$\phi(x_{i+1}) = y_{i+1}, \quad \phi(x_i) = y_i, \quad x_{i+1} = x_i + h$$

$$K_m = \phi'(x_m) = f(x_m) + \phi(x_m), \quad \phi(x_m), \quad \phi(x_m) = 1, 2...$$

$$K_m = \phi'(x_m)$$

$$\int$$

$$\Phi'(x) = \sum_{x} e^{-x}$$

$$\sum_{m=1}^{\infty} L_m(c)$$

 K_m

Quadrature de Lagrange pour Φ'

$$\Phi'(x) =$$

$$\sum_{c} L_m(c)$$

$$K_m$$

$$\mathcal{X}_{m}$$

$$K_m = \phi'(x_i + c_m h)$$

$$L_m(c) = \prod_{l \neq m} \frac{(c - c_l)}{(c_m - c_l)} \quad 1 \le l \le s$$

$$\phi(x_i + c_l h) - \phi(x_i) = \sum_{m=1}^{s} \left(\int_0^{c_l} L_m(c) dc \right) K_m$$

 y_l

 y_i

 a_{lm}

$$\phi(x_{i+1}) - \phi(x_i) = \sum_{m=1}^{s} \left(\int_{0}^{1} L_m(c) dc \right) K_m$$

 y_{i+1}

 y_{i}

 b_{i}

$$\Phi'(x) =$$

$$\sum_{c} L_m(c)$$

$$K_m$$

$$K_m = \phi'(x_m)$$

$$L_m(c) = \prod_{l \neq m} \frac{(c - c_l)}{(c_m - c_l)} \quad 1 \le l \le s$$

$$-\phi(x_i) - \phi(x_i) = \sum_{m=1}^{s} \left(\int_0^{c_l} L_m(c) dc \right) K_m$$

 y_l

 y_i

 a_{lm}

$$\phi(x_{i+1}) - \phi(x_i) = \sum_{m=1}^{s} \left(\int_0^1 L_m(c) dc \right) K_m$$

 y_{i+1}

 y_i

 b_l

$$a_{lm} = \int_0^{c_l} L_m(c) dc \qquad b_m = \int_0^1 L_m(c) dc \qquad l, m = 1, \dots$$

$$k_l = \Delta y_l \qquad \qquad l: \text{ points}$$

$$k_l = hf \left(x_l, y_l + \sum_{m=1}^s a_{lm} k_m \right) \qquad l: \text{ points}$$

$$d'\text{ intégration}$$

$$y_{l+1} = y_l + \sum_{l=1}^s b_l k_l \qquad \qquad Pondération \text{ interne}$$

$$\sum_{l=1}^s bk_l = w_l \Delta y_l + w_2 \Delta y_2 + \cdots w_s \Delta y_s \qquad \qquad Pondération \text{ finale des } \Delta y_l \qquad \text{M. Reggio}$$

Un point de Gauss:s=1,c=1/2

$$a_{11} = \int_0^{1/2} 1 \, dx = \frac{1}{2} \qquad b_1 = \int_0^1 1 \, dx = 1$$

$$L_1 = 1$$

$$\frac{1/2}{2} \qquad \frac{1/2}{2} \qquad c_1 \qquad a_{11}$$

$$b_1$$

$$Méthode implicite du point milieu$$

$$a_{lm} = \int_0^{c_l} L_m(c) dc \qquad b_m = \int_0^1 L_m(c) dc$$

Un point de Radau:s=1,c=1

$$a_{11} = \int_0^1 1 dx = 1$$
 $b_1 = \int_0^1 1 dx = 1$

$$L_1 = 1$$

$$c_1$$
 a_{11} b_1

Méthode d'Euler implicite

$$a_{lm} = \int_0^{c_l} L_m(c) dc$$
 $b_m = \int_0^1 L_m(c) dc$

$$b_m = \int_0^1 L_m(c) dc$$

Un point de Radau:s=1,c=1

$$a_{11} = \int_0^1 dx = 1$$
 $b_1 = \int_0^1 dx = 1$

$$L_1 = 1$$

$$c_1$$
 a_{11} b_1

Méthode d'Euler implicite

$$a_{lm} = \int_{0}^{c_{l}} L_{m}(c)dc$$
 $b_{m} = \int_{0}^{1} L_{m}(c)dc$

$$b_m = \int_0^1 L_m(c) dc$$

Deux points de Lobatto $c_1 = 0, c_2 = 1$

$$a_{21} = \int_{0}^{c_{2}=1} (1-x) dx = 1/2 \qquad b_{1} = \int_{0}^{1} (1-x) dx = 1/2$$

$$a_{22} = \int_{0}^{c_{2}=1} x dx = 1/2 \qquad b_{2} = \int_{0}^{1} x dx = 1/2$$

$$a_{22} = \int_{0}^{c_{2}=1} x dx = 1/2 \qquad b_{2} = \int_{0}^{1} x dx = 1/2$$

$$a_{21} = \int_{0}^{c_{2}=1} x dx = 1/2 \qquad c_{1} = a_{11} = a_{12}$$

$$a_{21} = a_{22} = a_{21} = a_{22}$$

$$a_{21} = a_{22} = a_{21} = a_{22}$$

Méthode trapezoïdale implicite

$$a_{lm} = \int_0^{c_l} L_m(c) dc$$
 $b_m = \int_0^1 L_m(c) dc$

Euler implicite

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$$

$$F_i^k = y_{i+1}^k - y_i^k - hf(y_{i+1}^k, t_{i+1})$$

$$\frac{\partial F}{\partial y} = 1 - h \frac{\partial f}{\partial y}$$

MÉTHODE de

$$\left(1 - h \frac{\partial f}{\partial y}\right) \delta y_{i+1} = -F(y_{i+1}^k)$$

$$F_i^k = \mathbf{y}_{i+1}^k - y_i^k - hf(\mathbf{y}_{i+1}^k, t_{i+1})$$

$$y_{i+1}^{k+1} = y_{i+1}^k + \delta y_{i+1}$$

Méthode Trapezoidale

$$y_{i+1} = y_i + \frac{h}{2}f(y_{i+1}, t_{i+1}) + \frac{h}{2}f(y_i, t_i)$$

Explicite

$$y_{i+1} - \frac{h}{2} f(y_i + hf(y_i, t_i), t_{i+1}) = y_i + \frac{h}{2} f(y_i, t_i)$$

$$\approx y_{i+1}$$

Implicite

$$y_{i+1} - \frac{h}{2} f(y_{i+1}, t_{i+1}) = y_i + \frac{h}{2} f(y_i, t_i)$$

$$F_i^k = y_{i+1}^k - y_i^k - \frac{h}{2}f(y_i^k, t_i) - \frac{h}{2}f(y_{i+1}^k, t_{i+1})$$

Méthode Trapezoidale

MÉTHODE de NEWTON

$$\left(1 - h \frac{\partial f}{2 \partial y}\right) \delta y_i = -F_i^k$$

$$y_{i+1}^{k+1} = y_i^k + \delta y_i$$

$$F_i^k = y_{i+1}^k - y_i^k - \frac{h}{2}f(y_i^k, t_i) - \frac{h}{2}f(y_{i+1}^k, t_{i+1})$$

Méthode du point milieu

Explicite

$$y_{i+1} = y_i + hf\left(\frac{y_i}{2} + \frac{1}{2}f(y_i + hf(y_i, t_i)), t_i + \frac{h}{2}\right)$$
 $\approx y_{i+1}$

Implicite

$$y_{i+1} = y_i + hf\left(\frac{y_i}{2} + \frac{y_{i+1}}{2}, t_i + \frac{h}{2}\right)$$

$$F_{i}^{k} = y_{i+1}^{k} - y_{i}^{k} - hf\left(\frac{y_{i}}{2} + \frac{y_{i+1}}{2}, t_{i} + \frac{h}{2}\right)$$

Méthode du point milieu

$$y_{i+1} = y_i + hf\left(\frac{y_i}{2} + \frac{y_{i+1}}{2}, t_i + \frac{h}{2}\right)$$

$$\left[1 - h \frac{\partial f\left(\frac{y_i}{2} + \frac{y_{i+1}}{2}, t_i + \frac{h}{2}\right)}{\partial y}\right] \delta y_i = -F_i^k$$

$$y_{i+1} = y_i + \delta y_i$$

$$F_i^k = y_{i+1}^k - y_i^k - hf\left(\frac{y_i}{2} + \frac{y_{i+1}}{2}, t_i + \frac{h}{2}\right)$$

Deux points c₁ et c₂

$$Y_1 = y_i + ha_{11}f(x_i + c_1h, Y_1) + ha_{12}f(x_i + c_2h, Y_1)$$

$$Y_2 = y_i + ha_{21}f(x_i + c_1h, Y_2) + ha_{22}f(x_i + c_2h, Y_2)$$

$$k_{l} = hf\left(x_{l}, y_{i} + \sum_{m=1}^{s} a_{lm}k_{m}\right)$$

$$y_{i+1} = y_{i} + \sum_{l=1}^{s} b_{l}k_{l}$$

$$Y_{l}, \quad l = 1, 2$$

Système 2x2

$$F_1 = Y_1 - y_i - ha_{11}f(x_i + c_1h, Y_1) - ha_{12}f(x_i + c_2h, Y_2)$$

$$F_2 = Y_2 - y_i - ha_{21}f(x_i + c_1h, Y_1) - ha_{22}f(x_i + c_2h, Y_2)$$

$$Y = \begin{vmatrix} Y_1 \\ Y_2 \end{vmatrix}$$

$$J \delta Y^{k} = -F(Y^{k})$$
$$Y^{k+1} = Y^{k} + \delta Y^{k}$$

$$J = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix} \begin{bmatrix} \delta Y_1 \\ \delta Y_2 \end{bmatrix} = - \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

Boucle de
$$\begin{bmatrix} 1-ha_{11} & -ha_{12} \\ -ha_{21} & 1-ha_{22} \end{bmatrix} \begin{bmatrix} \delta Y_1 \\ \delta Y_2 \end{bmatrix} = -\begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}^{(k+1)} = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}^{(k)} + \begin{bmatrix} \delta Y_1 \\ \delta Y_2 \end{bmatrix}$$

Autres méthodes

Runge-Kutta

- un pas à la fois
- utilisent des valeurs intermédiares entre x; et x;+1
- plusieurs évaluations par pas

Multi-pas

- utilisent plusieurs points en x_i, x_{i-1}, x_{i-2} etc
- une seule évaluation par point

Méthodes Multi-pas

Méthodes multi-pas

L'idée derrière les mèthodes multi-pas est l'utilisation de valeurs de y et/ou de f, soit dy/dx, pour construir un polynôme Φ pour approcher la fonction

Comparaison

Développement classique

Série de Taylor

$$y_{i+1} = y_i + h \left. \frac{dy}{dx} \right|_i + \left. \frac{h^2}{2} \frac{d^2y}{dx^2} \right|_i + \dots + \left. \frac{h^n}{n!} \frac{d^ny}{dx^n} \right|_i$$

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2}f_i' + \cdots + \frac{h^n}{n!}f_i^{n-1}$$

Formule d'ordre deux

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2}f_i' + \theta(h^3)$$

$$f_i' = \frac{f_i - f_{i-1}}{h} + \theta(h)$$

$$y_{i+1} = y_i + \frac{h}{2}(3f_i - f_{i-1})$$

Adams-Moulton

Développement en arrière

$$y_i = y_{i+1} - hf_{i+1} + \frac{h^2}{2}f'_{i+1} - \frac{h^3}{6}f''_{i+1} + \cdots$$

$$y_{i+1} = y_i + hf_{i+1} - \frac{h^2}{2}f'_{i+1} + \frac{h^3}{6}f''_{i+1} + \cdots$$

Formule d'ordre deux

$$y_{i+1} = y_i + hf_{i+1} - \frac{h^2}{2}f'_{i+1} + \theta(h^3)$$

$$f'_{i+1} = \frac{f_{i+1} - f_i}{h} + \theta(h)$$

$$y_{i+1} = y_i + \frac{h^2}{2}(f_{i+1} + f_i)$$

Formule générale

$$y_{i+1} = y_i + h \sum_{k=0}^{n} \beta_{nk} f_{i-k} + O(h^{n+2})$$

Adams-Moulton

Formule générale

$$y_{i+1} = y_i + h \sum_{k=0}^{n} \widehat{\beta}_{nk} f_{i+1-k} + O(h^{n+2})$$

**John C. Adams(1819-1892)

Francis Bashforth (1819-1912)

An Attempt to Test the Theories of Capillary Action By Comparing the Theoretical and Measured Forms of Drops of Fluid

Francis Bashforth 1819-1912

THE THEORETICAL AND MEASURED FORMS OF DROPS OF FLUID,

BY

FRANCIS BASHFORTH, B.D.

LATE PROFESSOR OF APPLIED MATHEMATICS TO THE ADVANCED CLASS OF ROYAL ARTILLERY OFFICERS, WOOLWICH, AND FORMERLY FELLOW OF ST JOHN'S COLLEGE, CAMBRIDGE.

WITH

AN EXPLANATION OF THE METHOD OF INTEGRATION
EMPLOYED IN CONSTRUCTING THE TABLES WHICH GIVE THE THEORETICAL
FORMS OF SUCH DROPS,

BY

J. C. ADAMS, M.A, F.R.S.

FELLOW OF PEMBROKE COLLEGE, AND LOWNDEAN PROFESSOR OF ASTRONOMY AND GEOMETRY IN THE UNIVERSITY OF CAMBRIDGE.

Cambridge:

AT THE UNIVERSITY PRESS.

1883

Méthode à deux pas

$$y_{n+1} = y_n + h \left[\frac{3}{2} f(t_n, y_n) - \frac{1}{2} f(t_{n-1}, y_{n-1}) \right]$$

Pour démarrer, y₁ doit être calculée par une autre méthode, avec celle de Runge-Kutta, par exemple

À trois pas

$$y_{n+1} = y_n + \frac{h}{12} \left[23f(t_n, y_n) - 16f(t_{n-1}, y_{n-1}) + 5f(t_{n-2}, y_{n-2}) \right]$$

À quatre pas

$$y_{n+1} = y_n + \frac{h}{24} \left[55f(t_n, y_n) - 59f(t_{n-1}, y_{n-1}) + 37f(t_{n-2}, y_{n-2}) - 9f(t_{n-3}, y_{n-3}) \right]$$

$$\begin{cases} 2 \ pas : y_{i+1} = y_i + \frac{h}{2}(3f_i - f_{i-1}) \\ 3 \ pas : y_{i+1} = y_i + \frac{h}{12}(23f_i - 16f_{i-1} + 5f_{i-2}) \\ 4 \ pas : y_{i+1} = y_i + \frac{h}{24}(55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3}) \\ 5 \ pas : y_{i+1} = y_i + \frac{h}{720}(1901f_i - 2774f_{i-1} + 2616f_{i-2} - 1274f_{i-3} + 251f_{i-4}) \end{cases}$$

Méthodes d'Adams-Bashforth

ordre	b_0	$b_{\scriptscriptstyle 1}$	b_2	b_3	b_4	b_5	err. de troncature
1	1						$\frac{1}{2}h^2f'(\eta)$
2	$\frac{3}{2}$	$-\frac{1}{2}$					$\frac{5}{12}h^3f''(\eta)$
3	$\frac{23}{12}$	$-\frac{16}{12}$	$\frac{5}{12}$				$\frac{9}{24}h^4f'''(\eta)$
4	$\frac{55}{24}$	$-\frac{59}{24}$	$\frac{37}{24}$	$-\frac{9}{24}$			$\frac{251}{720}h^5f^{(4)}(\eta)$
5	$\frac{1901}{720}$	$-\frac{2774}{720}$	$\frac{2616}{720}$	$-\frac{1274}{720}$	$\frac{251}{720}$		$\frac{475}{1440}h^6f^{(5)}(\eta)$
6	$\frac{4277}{720}$	$-\frac{7923}{720}$	$\frac{9982}{720}$	$-\frac{7298}{720}$	$\frac{2877}{720}$	$-\frac{475}{720}$	$\frac{19087}{60480}h^7f^{(6)}(\eta)$

1

Forest Ray Moulton (1872-1952)

Adams-Moulton

Adams-Moulton à 1 pas (Euler modifiée: Heun)

$$y_{n+1} = y_n + \frac{h}{2} [f(t_{n+1}, y_{n+1}) + f(t_n, y_n)]$$

Adams-Moulton à 2 pas

$$y_{n+1} = y_n + \frac{h}{12} [5f(t_{n+1}, y_{n+1}) + 8f(t_n, y_n) - f(t_{n-1}, y_{n-1})]$$

Adams-Moulton

Méthode Implicite – on a besoin de f_{i+1}

$$\begin{cases} 1 \ pas : y_{i+1} = y_i + \frac{h}{2}(f_{i+1} + f_i) \\ 2 \ pas : y_{i+1} = y_i + \frac{h}{12}(5f_{i+1} + 8f_i - f_{i-1}) \\ 3 \ pas : y_{i+1} = y_i + \frac{h}{24}(9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2}) \\ 4 \ pas : y_{i+1} = y_i + \frac{h}{720}(251f_{i+1} + 646f_i - 264f_{i-1} + 106f_{i-2} - 19f_{i-3}) \end{cases}$$

Méthodes d'Adams-Moulton

ordre	b_0	$b_{_{1}}$	b_2	b_3	b_4	b_5	err. de troncature
2	$\frac{1}{2}$	$\frac{1}{2}$					$-\frac{1}{12}h^3f''(\eta)$
3	$\frac{5}{12}$	$\frac{8}{12}$	$-\frac{1}{12}$				$-\frac{1}{24}h^4f'''(\eta)$
4	$\frac{9}{24}$	$\frac{19}{24}$	$-\frac{5}{24}$	$\frac{1}{24}$			$-\frac{19}{720}h^5f^{(4)}(\eta)$
5	$\frac{251}{720}$	$\frac{646}{720}$	$-\frac{264}{720}$	$\frac{106}{720}$	$-\frac{19}{720}$		$-\frac{27}{1440}h^6f^{(5)}(\eta)$
6	$\frac{475}{1440}$	$\frac{1427}{1440}$	$-\frac{798}{1440}$	$\frac{482}{1440}$	$-\frac{173}{1440}$	$\frac{27}{1440}$	$-\frac{863}{60480}h^7f^{(6)}(\eta)$

1

Adams-Bashforth et Adams-Moulton

T

Schémas multi-pas

- Comment alléger le côté implicite d' Adams-Moulton ?
- On remplace y_{n+1} par une valeur estimée par Adams-Bashforth :

Adams-Bashforth-Moulton

$$\begin{cases} pr\'{e}dicteur: y_{i+1}^* = y_i + h(b_1 f + b_2 f_{i-1} + ...) \\ correcteur: y_{i+1} = y_i + h(\overline{b_0} f_{i+1}^* + \overline{b_1} f_i + ...); f_{i+1}^* = f(x_{i+1}, y_{i+1}^*) \end{cases}$$

Prédicteur-correcteur d'ordre 3

$$\begin{aligned} y_{i+1}^* &= y_i + \frac{h}{12} (23f_i - 16f_{i-1} + 5f_{i-2}) \\ &= y_i + \frac{h}{12} [23f(x_i, y_i) - 16f(x_{i-1}, y_{i-1}) + 5f(x_{i-2}, y_{i-2})] \\ y_{i+1} &= y_i + \frac{h}{12} (5f_{i+1}^* + 8f_i - f_{i-1}) \\ &= y_i + \frac{h}{12} [5f(x_{i+1}, y_{i+1}^*) + 8f(x_i, y_i) - f(x_{i-1}, y_{i-1})] \end{aligned}$$

** Prediction-Correction

Adams- Bashforth à trois points pour un premier pas

$$\mathbf{y}_{i+1}^* = y_i + \frac{\Delta h}{12} [23f_i - 16f_{i-1} + 5f_{i-2}]$$

Adams-Moulton à trois points pour un deuxième pas

$$y_{i+1} = y_i + \frac{\Delta h}{12} [5f_{i+1}^* + 8f_i - f_{i-1}]$$

Exemple: Adams-Bashforth

$$\frac{dy}{dx} = y - x^2$$

$$y(0) = 1$$

Le pas:
$$\Delta h = 0.1$$

À partir de quantités obtenues par Runge-Kutta-4

$$f(0,1) = 1.0000$$
 $\frac{dy}{dx} = y - x^2 = f(x,y)$ $f(0.1,1.104829) = 1.094829$

$$f(0.2, 1.218597) = 1.178597$$

 $y(0.2), RK4$

Pour calculer $y_{0.3}$ la formule d'**Adams-Bashforth** est:

$$\Delta y = \frac{0.1}{12} [23f_{0.2} - 16f_{0.1} + 5f_{0.0}]$$

Étape de **prédiction**:
$$y_{i+1}^* = y_i + \frac{\Delta h}{12} [23f_i - 16f_{i-1} + 5f_{i-2}]$$

$$\Delta y = \frac{0.1}{12} [23(\mathbf{1}.\mathbf{178597}) - 16(\mathbf{1}.\mathbf{094829}) + 5(1)]$$

$$= 0.121587$$

$$y^*(0.3) = 1.218597 + 0.121587 = 1.340184$$

 $y(0.2)$

$$f^*(0.3, 1.340184) = 1.250184$$

$$\frac{dy}{dx} = y - x^2 = f(x, y)$$

Étape de **correction**:
$$y_{i+1} = y_i + \frac{\Delta h}{12} [5f_{i+1}^* + 8f_i - f_{i-1}]$$

$$\Delta y = \frac{0.1}{12} [5(\mathbf{1.250184}) + 8(\mathbf{1.178597}) - 1(\mathbf{1.094829})]$$

$$= 0.121541$$

$$y(0.3) = 1.218597 + 0.121541 = 1.340138$$

 $y(0.2)$

$$f(0.3,1.340184) = 1.250138$$

$$\Delta y_{i+1} = |y_{i+1} - y_{i+1}^*| \le tol$$

	Adams-Moulton Predicteur-Correcteur à Trois Points				
Х	у	f		y*	f*
0	1	1			
0.1	1.104829	1.094829			
0.2	1.218597	1.178597		1.340184	1.250184
0.3	1.340138	1.250138		1.468219	1.308219
0.4	1.468168	1.308168		1.601323	1.351323
0.5	1.601266	1.351266		1.737925	1.377925
0.6	1.737863	1.377863		1.876291	1.386291
0.7	1.876222	1.386222		2.014502	1.374502
0.8	2.014425	1.374425		2.150438	1.340438
0.9	2.150353	1.340353		2.281757	1.281757
1	2.281663	1.281663		2.405869	1.195869

Interprétation intégrale

Les méthodes à multi-pas découlent de l'intégration de:

$$\frac{dy}{dt} = f(y,t) \qquad y_{i+1} = y_i + \int_{t_i}^{t_{i+1}} f(y,t)dt$$

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} y'(t)dt = y(t_n) + \int_{t_i}^{t_{i+1}} P_i dt$$

Adams-Bashforth

L'intégrale I est calculée en remplaçant f par une interpolation polynomiale d'ordre r (avec les points t_n à t_{n-r})

$$f(t, y(t)) \approx \sum_{k=0}^{r} L_k(t) f(t_{n-k}, y(t_{n-k}))$$

$$I = h \sum_{k=0}^{r} b_k f(t_{n-k}, y(t_{n-k}))$$

$$\left(w_{j} = \int_{a}^{b} L_{j} dx\right) \qquad \left(b_{k} = \frac{1}{h} \int_{t_{n}}^{t_{n+1}} L_{k}(t) dt\right)$$

Adams-Moulton

L'intégrale I et calculée en remplaçant f par une interpolation polynomiale d'ordre r+1 (avec les points t_{n+1} à t_{n-r})

$$I = h \sum_{k=-1}^{r} b_k f(t_{n-k}, y(t_{n-k}))$$

$$y_{n+1} = y_n + I$$

Méthode <u>implicite</u> : y_{n+1} dépend de $f(t_{n+1}, y_{n+1})$

$$y_{i+1} - y_i = \int_{x_i}^{x_{i+1}} P_i(x) dx$$

$$P_i^{(r)} = \sum_{k=0}^r f_{i-k} L_{i,k}^{(r)}(x)$$

$$L_{i,k}^{(r)}(x) = \prod_{j=0}^{r} \frac{(x - x_{i-j})}{(x_{i-k} - x_{i-j})}$$

k: indice du polynôme, i indice du dernier point d'un total de r+1 points

$$y_{i+1} - y_i = \sum_{k=0}^{r} f_{i-k} \int_{x_i}^{x_{i+1}} L_{i,k}^{(r)}(x) dx$$

$$b_{i,k}^{(r)} = \frac{1}{h} \int_{x_i}^{x_{i+1}} L_{i,k}^{(r)}(x) dx$$

$$y_{i+1} = y_i + h \sum_{k=0}^{r} b_{i,k}^{(r)} f_{i-k}$$

$$b_{i,k} = w_{i-k}$$

Cas linéaire

$$x = x_0, \quad x = x_1$$

 $y = y_0, \quad y = y_1$

$$L_0(x) = \frac{(x - x_1)}{(x_0 - x_1)} \qquad L_1(x) = \frac{(x - x_0)}{(x_1 - x_0)}$$

$$P(x) = y_0 L_0(x) + y_1 L_1(x)$$

Cas quadrtique

$$x_1 = 2, x_2 = 4, x_3 = 5,$$

$$y_1 = 3, y_2 = 2, y_3 = 4,$$

$$L_1(x) = \frac{(x-4)(x-5)}{(2-4)(2-5)}$$

$$L_2(x) = \frac{(x-2)(x-5)}{(4-2)(4-5)}$$

$$L_3(x) = \frac{(x-2)(x-4)}{(5-2)(5-4)}$$

$$P(x) = 3L_1(x) + 2L_2(x) + 4L_3(x)$$

Ex: Adams-Bashforth

$$L_0(x) = \frac{(x - x_1)}{(x_0 - x_1)}$$
 $x_0 = -h$ $x_1 = 0$

$$x_0 = -h \qquad x_1 = 0$$

$$L_1(x) = \frac{(x - x_0)}{(x_1 - x_0)}$$

$$L_{i,1}^{(1)}(x) = \frac{(x+h)}{h}$$

$$b_{i,0}^{(1)} = \frac{1}{h} \int_{0}^{h} -\frac{x}{h} dx = -\frac{1}{2}$$

$$b_{i,0}^{(1)} = \frac{1}{h} \int_0^h -\frac{x}{h} dx = -\frac{1}{2} \qquad b_{i,1}^{(1)} = \frac{1}{h} \int_0^h \frac{x+h}{h} dx = \frac{3}{2}$$

$$y_{i+1} = y_i + \frac{h}{2}(3f_i - f_{i-1})$$

Ex: Adams-Moulton

$$L_{i,0}^{(1)}(x) = -\frac{x}{h}$$

$$L_{i,1}^{(1)}(x) = \frac{(x+h)}{h}$$

$$\hat{b}_{i,0}^{(1)} = \frac{1}{h} \int_{-h}^{0} -\frac{x}{h} dx = \frac{1}{2}$$

$$\hat{b}_{i,0}^{(1)} = \frac{1}{h} \int_{-h}^{0} -\frac{x}{h} dx = \frac{1}{2} \qquad \hat{b}_{i,1}^{(1)} = \frac{1}{h} \int_{-h}^{0} \frac{x+h}{h} dx = \frac{1}{2}$$

$$y_{i+1} = y_i + \frac{h}{2}(f_i + f_{i+1})$$

$$y'(x) = f(x,y)$$
 dans l'intervalle $[i,i+1]$

1. L'intégration

$$y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f(x, y) dx$$

2. L'approximation de f(x,y) par un polynôme $\phi(x,y)$

$$\phi^{(r)}(x) = \sum_{k=0}^r f_k L_k^{(r)}(x) \quad \text{avec} \quad L_k^{(r)}(x) = \prod_{j=0}^r \frac{(x-x_k)}{(x_j-x_k)}$$

Formulation Unique

$$y_{i+1} = y_i + h \sum_{k=1}^r \left(\int_{x_i}^{x_{i+1}} L_k(x) dx \right) f_k$$

Lorsque les f_k sont évaluées aux positions; $i+1, i, i-1, \cdots \rightarrow \mathsf{ADAMS}$.

Si on inclut, i+1, \rightarrow Adams-Moulton. Le cas contraire \rightarrow Adams-Bashforth.

Lorsque les f_k sont évaluées dans l'intévalle [i, i+1, \rightarrow Runge-Kutta.

EDOs d'ordre supérieur

On peut les représenter par

$$\begin{cases} y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)}) \\ y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(n-1)} = \alpha_{n-1} \end{cases}$$

et on les transforme

$$soit \begin{cases} u_{1} = y \\ u_{2} = y' \\ u_{3} = y'' \\ \vdots \\ u_{n} = y^{(n-1)} \end{cases} \Rightarrow \begin{cases} u'_{1} = u_{2}, & u_{1}(0) = \alpha_{0} \\ u'_{2} = u_{3}, & u_{2}(0) = \alpha_{1} \\ u'_{3} = u_{4}, & u_{3}(0) = \alpha_{2} \\ \vdots & \vdots \\ u'_{n} = f(x, u_{1}, u_{2}, \dots, u_{n}), & u_{n}(0) = \alpha_{n-1} \end{cases}$$

Système de 1er ordre

Exemple
$$\begin{cases} y''' = f(x, y, y', y'') = x^2 + 4xy - 3y' + 5y'' \\ y(0) = 2, \ y'(0) = 4, \ y''(0) = 1 \end{cases}$$

$$avec \ u_1 = y, \ u_2 = y', \ u_3 = y''$$

On trouve trois EDOs aux valeurs initiales

$$\begin{cases} u_1' = f_1(x, u_1, u_2, u_3) = u_2 \\ u_2' = f_2(x, u_1, u_2, u_3) = u_3 \\ u_3' = f_3(x, u_1, u_2, u_3) = x^2 + 4xu_1 - 3u_2 + 5u_3 \end{cases} \begin{cases} u_1(0) = 2 \\ u_2(0) = 4 \\ u_3(0) = 1 \end{cases}$$

En Notation Vectorielle \Rightarrow u' = f(x, u)

$$\begin{cases} y''' = f(x, y, y', y'') = x^2 + 4xy - 3y' + 5y'' \\ y(0) = 2, \qquad y'(0) = 4, \qquad y''(0) = 1 \end{cases}$$

Premier pas: x(0) = 0, x(1) = 0.5 (h = 0.5)

$$\begin{cases} u_1(1) = u_1(0) + hu_2(0) = 2 + (0.5)(4) = 4.0 \\ u_2(1) = u_2(0) + hu_3(0) = 4 + (0.5)(1) = 4.5 \\ u_3(1) = u_3(0) + h[x^2(0) + 4x(0)u_1(0) - 3u_2(0) + 5u_3(0)] \\ = 1 + 0.5[(0)^2 + 4(0)(2) - 3(4) + 5(1)] = -5/2 \end{cases}$$

$$\begin{bmatrix} u_1(0) = 2 \\ u_2(0) = 4 \\ u_3(0) = 1 \end{bmatrix}$$

$$\begin{cases} u_1' = f_1(x, u_1, u_2, u_3) = u_2 \\ u_2' = f_2(x, u_1, u_2, u_3) = u_3 \\ u_3' = f_4(x, u_1, u_2, u_3) = x^2 + 4xu_1 - 3u_2 + 5u_3 \end{cases} \begin{cases} u_1(0) = 2 \\ u_2(0) = 4 \\ u_3(0) = 1 \end{cases}$$

En Notation Vectorielle $\Rightarrow u' = f(x, u)$

Reggio

Exemple: Euler

$$\begin{cases} u_1(2) = u_1(1) + hu_2(1) = 4.0 + (0.5)(4.5) = 6.25 \\ u_2(2) = u_2(1) + hu_3(1) = 4.5 + (0.5)(-5/2) = -13/4 \\ u_3(2) = u_3(1) + h[x^2(1) + 4x(1)u_1(1) - 3u_2(1) + 5u_3(1)] \\ = 2.5 + 0.5[(0.5)^2 + 4(0.5)(4.0) - 3(4.5) + 5(-5/2)] = 0.25 \end{cases}$$

$$\begin{cases} u'_1 = f_1(x, u_1, u_2, u_3) = u_2 \\ u'_2 = f_2(x, u_1, u_2, u_3) = u_3 \\ u'_3 = f_4(x, u_1, u_2, u_3) = x^2 + 4xu_1 - 3u_2 + 5u_3 \end{cases} \begin{cases} u_1(0.5) = 4 \\ u_2(0.5) = 4.5 \\ u_3(0.5) = -2.5 \end{cases}$$

$$En \ Notation \ Vectorielle \implies u' = f(x, u)$$

MONIKEAL

Deux EDOs Runge-Kutta

Méthode du point milieu

$$\begin{cases} k_1 = hf(x_i, y_i) \\ k_2 = hf(x_i + h/2, y_i + k_1/2) \\ y_{i+1} = y_i + k_2 \end{cases}$$

Deux EDOs (u,v)

$$\begin{cases} k_1 = hf(x_i, u_i, v_i) \\ m_1 = hg(x_i, u_i, v_i) \\ k_2 = hf(x_i + h/2, u_i + k_1/2, v_i + m_1/2) \\ m_2 = hg(x_i + h/2, u_i + k_1/2, v_i + m_1/2) \\ u_{i+1} = u_i + k_2 \\ v_{i+1} = v_i + m_2 \end{cases}$$

Runge-Kutta:systèmes

Runge-Kutta d'ordre deux

$$\begin{cases} k_1 = hf_1(x(i), u_1(i), u_2(i), u_3(i)) \\ k_2 = hf_2(x(i), u_1(i), u_2(i), u_3(i)) \\ k_3 = hf_3(x(i), u_1(i), u_2(i), u_3(i)) \end{cases}$$

$$\begin{cases} m_1 = hf_1(x(i) + h/2, u_1(i) + k_1/2, u_2(i) + k_2/2, u_3(i) + k_3/2) \\ m_2 = hf_2(x(i) + h/2, u_1(i) + k_1/2, u_2(i) + k_2/2, u_3(i) + k_3/2) \\ m_3 = hf_3(x(i) + h/2, u_1(i) + k_1/2, u_2(i) + k_2/2, u_3(i) + k_3/2) \end{cases}$$

$$\begin{cases} u_1(i+1) = u_1(i) + m_1 \\ u_2(i+1) = u_2(i) + m_2 \\ u_3(i+1) = u_3(i) + m_3 \end{cases}$$

Système M-R-A

Système M-R-A

On transforme en un système de 4 EDOs de 1er ordre

soit
$$u_1 = x_1$$
, $u_2 = x_1'$, $u_3 = x_2$, $u_4 = x_2'$

$$\begin{cases} u_1' = u_2 \\ u_2' = -\frac{s_1}{m_1}u_1 + \frac{s_2}{m_1}(u_3 - u_1) \\ u_3' = u_4 \\ u_4' = -\frac{s_2}{m_2}(u_3 - u_1) \end{cases} \begin{cases} u_1(0) = \alpha_1 \\ u_2(0) = \alpha_2 \\ u_3(0) = \alpha_3 \\ u_4(0) = \alpha_4 \end{cases}$$

$$m_2\ddot{x}_2 = -s_2(x_2 - x_1) \quad m_1\ddot{x}_1 = -s_1x_1 + s_2(x_2 - x_1)$$

Fin.........

