Modelos de Computação CC1004

2015/2016

Exame – 13.06.2016

duração: 3h

N.º	Nome
1. K	Sejam M, K e L linguagens de alfabeto $\Sigma = \{0, 1\}$, com M = $\{x \mid x \in \Sigma^* \text{ e tem número par de 0's}\}$, = $\{x \mid x \in \Sigma^*, \text{ tem 01 como subpalavra e termina em 0}\}$ e L = M \cap K = $\{x \mid x \in M \text{ e } x \in K\}$.
a)	Desenhe o AFD mínimo que aceita M. b) Defina M por uma expressão regular (abreviada).
c)	ndique uma expressão regular (abreviada) que descreva a linguagem L.
	Apresente as regras (de produção) de uma GIC G que gere \mathbf{L} , com símbolo inicial B , e descreva rmalmente $\mathcal{L}_X = \{ w \mid X \Rightarrow_G^\star w \text{ e } w \in \Sigma^\star \}$, para cada variável X de G , com exceção de B .
	Desenhe o diagrama do AFD mínimo que reconhece \mathbf{K} e descreva $\mathcal{L}_s = \{x \mid x \in \Sigma^* \text{ e } \hat{\delta}(s_0, x) = s\}$ uma expressão regular (abreviada), para cada estado s , sendo s_0 o estado inicial.
ten	Da análise da construção do AFD produto, pode-se concluir que o AFD mínimo que reconhece L no máximo estados e exatamente estados finais/estado final. nplete a frase e justifique abaixo sucintamente as respostas, enunciando os resultados que as suportam.

N.º Nome	
g) Por aplicação do corolário do teorema de Myhill-Nerode, determine o AFD mínimo que reconhe (Em alternativa pode indicar um AFD que reconhece L, justificar a sua correção e minimizá-lo pelo ritmo de Moore). Em ambos os casos, deve justificar detalhadamente os passos da construção.	
2. Seja A o AFND- ε representado pelo diagrama de transição seguinte. $ (s_1) \leftarrow -$	
a) Indique o conjunto de estados em que A pode estados en A pode esta	ır após
b) Desenhe o diagrama de transição do AFD equivalente, que se obtém pelo método de conversão (ba em subconjuntos). Deve <u>obrigatoriamente</u> manter as designações dos estados do AFD como conjuntos	

N.º		Nome						
a)	Sejam $r = (((01) + \emptyset)$ Desenhe os diagrams empson às expressões	as de transição	dos au	tómatos fir	itos que re	sultam da		do método de
	Usando a definição is ve que $\mathcal{L}((rs)) = \Sigma^*$.					nguagem	que a expr	essão descreve,
4.	Seja $G = (\{S, X, Y\})$	$, \{0,1\}, P, S), c$			C 1	00444	= C(C)	
	$S \rightarrow 00XX \mid 1$ $X \rightarrow 0XX \mid 1$ $Y \rightarrow \varepsilon \mid Y1$	148 104		a) Diga, ji	istificando,	se ooiii	$\in \mathcal{L}(G)$.	
b)	Prove que G é ambígu	ıa.	<u>c)</u>	Apresente	a noção de	GIC na fo	orma norma	al de Chomsky.
	Por conversão de G , overta G' à forma norm			equivalente	e a G mas s	em variáv	eis que ger	em ε . A seguir,

(Continua)

N.º	Nome
5. alfa	Considere a linguagem $L=\{y\mid y \text{ \'e cap\'eua}\}\cap \{y\mid y \text{ tem n\'umero \'impar de 2's ou começa por 1}\}$, de abeto $\Sigma=\{0,1,2\}$.
a)	Use o lema da repetição ou o teorema de Myhill-Nerode para provar que L não é regular.
b)	Indique uma GIC G <u>não ambígua</u> que gere L e represente $a(s)$ árvore (s) de derivação de 120121021
c)	Explique como é que garantiu a não ambiguidade de G .
R	esolva apenas uma das alíneas d) , e), e f)
d)	Apresente um autómato de pilha que reconheça a linguagem $L \cap \{y \mid y \text{ tem número ímpar de 2's}\}$. Pode

- d) Apresente um autómato de pilha que reconheça a linguagem $L \cap \{y \mid y \text{ tem número ímpar de 2's}\}$. Pode escolher o critério de aceitação (ou pilha vazia ou estados finais), mas deve indicar a sua opção. **Indique sucintamente a interpretação de cada estado e as ideias principais subjacentes**.
- e) Prove que a linguagem $L \cap \{x \mid x \text{ tem igual número de 0's e 1's} \}$ não satisfaz a condição do lema da repetição para LICs para nenhum n > 0.
- f) Apresente uma máquina de Turing que reconheça a linguagem $L \cap \{x \mid x \text{ tem igual número de 0's e 1's}\}$. O símbolo branco é e a máquina pode destruir a palavra. Descreva **as ideias principais** do algoritmo.

Use o verso da folha para responder à questão.	