Continuité

Dans tout ce chapitre I désigne un intervalle de \mathbb{R} non vide et non réduit à un point et f est une fonction définie sur I à valeurs dans \mathbb{R} .

I. Continuité en un point

Définition. Soit $a \in I$. On dit que f est continue en a si f admet une limite finie en a

Proposition. Caractérisation séquentielle

Soit $a \in I$ alors f est continue en a si et seulement si

$$\forall u \in I^{\mathbb{N}}, \lim u = a \Rightarrow \lim f(u_n) = f(a)$$

Définition. Soit $a \in (\overline{I} \setminus I) \cap \mathbb{R}$.

On dit que f est prolongeable par continuité en a par ℓ si f admet une limite finie ℓ en a. Dans ce cas la fonction

$$\tilde{f}: I \cup \{a\} \rightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} f(x) & \text{si } x \neq a \\ \ell & \text{sinon} \end{cases}$$

est continue en a et est appelée prolongement par continuité de f en a.

Remarque : Soit a un point intérieur de I et f définie sur $I \setminus \{a\}$. On dit aussi que est prolongeable par continuité en a si f admet une limite finie ℓ en a. On peut alors définir son prolongement par continuité :

$$\tilde{f}: I \to \mathbb{R}$$

$$x \mapsto \begin{cases} f(x) & \text{si } x \neq a \\ \ell & \text{sinon} \end{cases}$$

qui est continue en a.

Exemple. $x \mapsto \frac{\sin x}{x}$ est prolongeable par continuité en 0 et $x \mapsto \begin{cases} \frac{\sin x}{x} & si \ x \neq 0 \\ 1 & sinon \end{cases}$ est continue en 0.

Définition. On dit que f est continue à droite en $a \in I \cap \mathbb{R}$ si $f_{|I \cap [a, +\infty[}$ est continue en a i.e. si f admet une limite à droite en a et si $\lim_{x \to a, \ x > a} f(x) = f(a)$.

Définition. On dit que f est continue à gauche en $a \in I \cap \mathbb{R}$ si $f_{|I \cap]-\infty,a]}$ est continue en a i.e. si f admet une limite à gauche en a et si $\lim_{x \to a, \ x < a} f(x) = f(a)$.

Proposition. Soit a un point intérieur de I alors f est continue en a si et seulement si f est continue à gauche et à droite en a.

Proposition. Soit $a \in I$. L'ensemble des fonctions réelles définies sur I et continue en a est stable par combinaison linéaire et par produit.

Proposition. Si f et g sont deux fonctions continues en $a \in I$, alors

- -|f| est continue en a,
- Max(f,g) et Min(f,g) sont continues en a.

Proposition. Si f est une fonction continue en a telle que $f(a) \neq 0$ alors la fonction 1/f est définie au voisinage de a et continue en a.

Théorème. Soient f et g respectivement définies sur les intervalles I et J telles f soit à valeurs dans J alors la fonction $g \circ f$ est bien définie sur J. De plus, si f est continue en a et si g est continue en f(a) alors $g \circ f$ est continue en a.

II. Continuité sur un intervalle

Définition. Soit f une fonction définie sur l'intervalle I. On dit que f est continue sur I si f est continue en tout point de I.

On note $C^0(I,\mathbb{R})$ l'ensemble des fonctions continues de I dans \mathbb{R} .

Proposition. L'ensemble $C^0(I,\mathbb{R})$ est stable par combinaison linéaire et par produit.

Proposition. Si f et g sont deux fonctions continues sur I, alors

- -|f| est continue sur I,
- sup(f,g) et inf(f,g) sont continue sur I.

Proposition. Si f est une fonction continue sur I et qui ne s'annule pas sur I, alors la fonction 1/f est définie et continue sur I.

Théorème. Soient f et g respectivement définies sur les intervalles I et J telles f soit à valeurs dans J alors la fonction $g \circ f$ est bien définie sur J. De plus, si f est continue sur I et si g est continue sur J alors $g \circ f$ est continue sur I.

Remarque : On peut aussi s'intéresser à la continuité d'une fonction définie sur une union d'intervalles.

III. Image d'un intervalle par une fonction continue

Théorème. (*) Soit f une fonction continue sur I. Soient a et b dans I et tels que a < b et $f(a)f(b) \le 0$, alors il existe un réel $c \in [a,b]$ tel que f(c) = 0.

Corolaire. Soit f une fonction continue sur I. Si f ne s'annule pas alors f est de signe constant.

Théorème. Théorème des valeurs intermédiaires (*):

Soit f une fonction continue sur I. Soient a et b dans I et tels que a < b soit γ un réel compris entre f(a) et f(b) alors il existe un réel $c \in [a,b]$ tel que $f(c) = \gamma$.

Corolaire. (*) Soit f une fonction continue sur I. Alors f(I) est un intervalle.

Théorème. (*) Soit f une fonction monotone sur I.

Alors f est continue si, et seulement si, f(I) est un intervalle.

IV. Image d'un segment par une fonction continue

Théorème. (*) Soit f une fonction continue sur un segment [a, b], alors f est bornée et atteint ses bornes.

Théorème. (*) L'image d'un segment par une fonction continue est un segment. Plus précisément, si f est une fonction continue sur un segment [a,b] alors f([a,b]) = [m,M] où $m = \min_{[a,b]} f$ et $M = \max_{[a,b]} f$.

V. Continuité, stricte monotonie et injectivité

Proposition. Toute fonction strictement monotone est injective.

Théorème. de la bijection continue (*)

Si f est continue et strictement monotone sur un intervalle I, alors f réalise une bijection de I dans f(I), f(I) est un intervalle et f^{-1} est continue sur f(I).

Théorème. (*) Toute fonction continue injective sur un intervalle est strictement monotone

Corolaire. Si f est continue sur un intervalle. Il y a équivalence entre f est strictement monotone et f est injective.

VI. Extension aux fonctions complexes

Définition. Soit $a \in I$. On dit que f est continue en a si f admet une limite finie en a

Proposition. f est une fonction continue sur I si, et seulement si, ses parties réelles et imaginaires le sont.

On note $C^0(I,\mathbb{C})$ l'ensemble des fonctions continues de I dans \mathbb{C} .

Proposition. L'ensemble $C^0(I,\mathbb{C})$ est stable par combinaison linéaire et par produit.

Proposition. Si f est continue, alors |f| aussi.

Proposition. Si f est une fonction continue sur I et ne s'annulant pas sur I, alors la fonction 1/f est définie et continue sur I.

Attention: le théorème des valeurs intermédiaires n'est plus valable.

Par exemple, la fonction : $f: x \mapsto e^{ix}$ est continue sur $[0,\pi]$, f(0)=1 et $f(\pi)=-1$ mais $\forall x \in [0,\pi], f(x) \neq 0$.

Proposition. Si f est une fonction continue sur un segment, alors la fonction f est bornée.

Remarque: Si $f \in \mathcal{C}^0([a,b],\mathbb{C})$ alors les quantités $m = \min_{[a,b]} |f|$ et $M = \max_{[a,b]} |f|$ sont définies.