EAIiIB	Ewa Stachów		Rok	Grupa	Zespół
Informatyka	Weronika Olcha		II	3	6
Pracownia	Temat:			•	Nr ćwiczenia:
FIZYCZNA	Fale podłużne w ciałach stałych				29
WFiIS AGH					29
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
27.11.2016	05.12.2016				

Ćwiczenie nr 29: Fale podłużne w ciałach stałych

1 Cel ćwiczenia

Wyznaczenie modułu Younga dla różnych materiałów na podstawie pomiaru prędkości rozchodzenia się fali.

2 Część teoretyczna

Fala podłużna to fala, w której drgania odbywają się w kierunku zgodnym z kierunkiem jej rozchodzenia się. Opisuje ją równanie

$$y = A\cos(\omega t \pm kx)$$

Prawa Hooke'a: Odkształcenie jest wprost proporcjonalne do wywołującej je siły. Opisuje to wzór:

$$\Delta l = \frac{Fl}{ES}$$

 Δl - zmiana długości pręta, F - siła odkształcająca, l - długość, S - pole przekroju. Współczynnik E to właśnie stała nazwana modułem Younga. Wyprowadzenie wzoru na moduł Younga, który będzie przydatny do późniejszych obliczeń. Wychodząc od ogólnego wzoru na prawo Hooke'a:

$$\sigma = \varepsilon E$$

 σ - naprężenie, ε - odkształcenie względne

$$\varepsilon = \frac{\delta \Psi}{\delta x}$$

Otrzymujemy wzór na prędkość rozchodzenia się fali w pręcie:

$$v = \sqrt{\frac{E}{\rho}}$$

czyli

$$E = v^2 \rho$$

W pręcie powstaje fala stojąca, odległość między węzłami fali stojące wynosi $l=\frac{1}{2}\lambda$, z tego obliczamy prędkość rozchodzenia się fali v=2lf, f - częstotliwość fali. Podstawiając to wcześniejszego wzoru ostatecznie otrzymujemy:

$$E = 4\rho f^2 l^2$$

3 Przebieg ćwiczenia

Układ pomiarowy składa się ze stojaka z prętami i rurami zawieszonymi na niciach, wagi, młotka, śruby mikrometrowej i komputera z mikrofonem z zainstalowanym oprogramowaniem Zelscope. Przebieg doświadczenia:

- 1. Zważenie pręta lub rury, dokonanie pomiarów długości i wymiarów podstawy, ustalenie rodzaju materiału z jakiego wykonany jest badany obiekt.
- 2. Wyznaczenie za pomocą młotka i programu składowych harmonicznych dla badanego obiektu
- 3. Powtórzenie procedury dla kolejnych obiektów.

4 Wyniki pomiarów

PRĘT 1 (MIEDŹ)			
Długość l [m]	1.8	Masa m [kg]	0.067
Objętość [m³]	0.0000075	Gęstość ro $\left[\frac{kg}{m^3}\right]$	8886,15
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f $[Hz]$	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $[\frac{m}{s}]$
1	1031.25	3.6	3712,5
2	2062,5	1.8	3712,5
3	3093,75	1.2	3712,5
4	4125	0.9	3712,5
5	5156,25	0.72	3712,5
6	6187,5	0.6	3712,5
		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	3712,5
		MODUŁ YOUNGA [GPa]	122.48

PRET 2 (STAL)				
Długość l [m]	1.8	Masa m [kg]	0.033	
Objętość [m³]	0.000004	Gęstość ro $\left[\frac{kg}{m^3}\right]$	8243,41	
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f $[Hz]$	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $[\frac{m}{s}]$	
1	1429,69	3.6	5146,884	
2	2859,38	1.8	5146,884	
3	4289,06	1.2	5146,872	
4	5742,19	0.9	5167,971	
5	7171,88	0.72	5163,75	
6	8601,56	0.6	5160,94	
•		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	5155,55	
		MODUŁ YOUNGA [GPa]	219,11	

PRET 3 (MOSIĄDZ)				
Długość l [m]	1	Masa m [kg]	0.175	
Objętość $[m^3]$	0.00002	Gęstość ro $[\frac{kg}{m^3}]$	8741,26	
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f $[Hz]$	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $[\frac{m}{s}]$	
1	1710,94	2	3421,88	
2	3445,31	1	3445,31	
3	5156,25	0,67	3437,5	
4	6890,63	0,5	3445,315	
5	8601,56	0,4	3440,624	
		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	3438,1258	
		MODUŁ YOUNGA [GPa]	103,33	

PRĘT 4 (ALUMINIUM)				
Długość l [m]	1	Masa m [kg]	0.024	
Objętość [m^3]	0.0000086	Gęstość ro $[\frac{kg}{m^3}]$	2790,66	
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f $[Hz]$	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $\left[\frac{m}{s}\right]$	
1	2460,94	2	4921,88	
2	4945,31	1	4945,31	
3	7406,25	0,67	4937,5	
4	9867,19	0,5	4933,595	
		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	4934,57	
		MODUŁ YOUNGA [GPa]	67,85	

5 Opracowanie wyników

Dla obliczeń błędów pomiaru przyjęto następujące niepewności:

Dla długości pręta: u(l) = 1[mm]

Dla długości mierzonych suwmiarką: u(s) = 0, 1[mm]

Dla masy próbki:u(m) = 1[g]Dla częstotliwości:u(f) = 20[Hz]

Niepewność gęstości:

$$\begin{split} u(\rho) &= \sqrt{\left(\frac{\partial \rho}{\partial m} u(m)\right)^2 + \left(\frac{\partial \rho}{\partial l} u(l)\right)^2 + \left(\frac{\partial \rho}{\partial r} u(r)\right)^2 + \left(\frac{\partial \rho}{\partial R} u(R)\right)^2} = \\ &= \sqrt{\left(\frac{1}{l\Pi(R^2 - r^2)} u(m)\right)^2 + \left(\frac{-m}{l^2\Pi(R^2 - r^2)} u(l)\right)^2 + \left(\frac{-2mr}{l\Pi(R^2 - r^2)^2} u(r)\right)^2 + \left(\frac{-2mR}{l\Pi(R^2 - r^2)^2} u(R)\right)^2} \end{split}$$

Niepewność długości fali:

$$u(\lambda) = \sqrt{\left(\frac{2}{n}u(l)\right)^2}$$

Niepewność prędkości fali:

$$u(v) = \sqrt{\left(\frac{\partial v}{\partial f}u(f)\right)^2 + \left(\frac{\partial v}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(\lambda u(f)\right)^2 + \left(fu(\lambda)\right)^2}$$

Niepewność modułu Younga:

$$u(E) = \sqrt{\left(\frac{\partial E}{\partial \rho}u(\rho)\right)^2 + \left(\frac{\partial E}{\partial v}u(v)\right)^2} = \sqrt{\left(v^2u(\rho)\right)^2 + \left(2\rho vu(v)\right)^2}$$

Nr pręta (materiał)	Niepewność gęstości u(ro) $\left[\frac{kg}{m^3}\right]$	Niepewność prędkości fali u(v) $[\frac{m}{s}]$	Niepewność moduług Younga u(E) [GPa]
1 (miedź)	1421,81	72,01	20,16
2 (stal)	92,16	72,01	6,59
3 (mosiądz)	129,94	40,04	2,86
4 (aluminium)	446,51	40,0	10.93

6 Porównanie wyników z wartościami tabelarycznymi

 E_t – wartość tabelaryczna modułu Younga, E_w – wartość wyliczona modułu Younga $\mathbf{MIED\hat{Z}}$

$$|E_t - E_w| = |117 - 122, 48| [GPa] < 2 \cdot 20, 16 [GPa]$$

STAL

$$|E_t - E_w| = |200 - 219, 11| [GPa] > 2 \cdot 6,59 [GPa]$$

MOSIADZ

$$|E_t - E_w| = |103 - 103, 33| [GPa] < 2 \cdot 2, 86 [GPa]$$

ALUMINIUM

$$|E_t - E_w| = |69 - 67,85| [GPa] < 2 \cdot 10,93 [GPa]$$

7 Wnioski

Na podstawie wymiarów pręta oraz pomiaru częstotliwości przy pomocy programu Zelscope wyznaczyłyśmy gęstość materiału oraz prędkość rozchodzenia się w nim fali. Dzięki temu obliczyłyśmy wartość modułu Younga oraz niepewność standardową wartości modułu Younga dla każdego z materiałów. Prawie wszystkie wyznaczone wartości modułu Younga zgadzają się z wartościami tabelarycznymi, wyjątek stanowi stal (możliwy błąd w pomiarach materiału, błąd rachunkowy).