Radio Resource Management in Heterogeneous Wireless Networks

Jason Ernst, PhD Student, University of Guelph

Pervasive and Wireless Networking Research Group (PERWIN)

Advisor: Dr. Nidal Nasser

1st PhD Seminar – August 31st 2010

Outline

- Introduction
- Motivation
- Architectures for HWNs
- Applications and Deployments of HWNs
- Classification of Solutions
- O Limitations, Open Research Problems
- O Conclusions & Future Work

Introduction

- Heterogeneous Wireless Networks (HWNs)
 - Composed of component (homogeneous) networks or technologies
 - 802.11 (Wifi), 802.15 (Bluetooth, Zigbee), 802.16 (WiMAX), Cellular and Mobile Technologies
 - Called "Radio Access Technologies" or RATs
 - Many modern devices contain several different radios: ex) Bluetooth, Wifi, GPS, CDMA

Introduction

4

Outline

- O Introduction
- Motivation
- Architectures for HWNs
- Applications and Deployments of HWNs
- Classification of Solutions
- O Limitations, Open Research Problems
- O Conclusions & Future Work

Motivation

- Cellular / Mobile & WiMAX technologies provide widespread coverage
 - Limited bandwidth, high cost
- O Wifi, Bluetooth, Zigbee provide high bandwidth, low cost
 - Limited coverage
- Existing technologies do not work well together
- O Users manually select technology / radio for use in many cases

Motivation

Start on wifi, want to Seamlessly continue transmitting via Skype On my way to my car

Outline

- Introduction
- Motivation
- Architectures for HWNs
- Applications and Deployments of HWNs
- Classification of Solutions
- O Limitations, Open Research Problems
- O Conclusions & Future Work

Dense Architectures

- Multiple RATs available in many places within the network
- O User device or networks able to decide on best access
- O Best used in:
 - O urban environments
 - Environments with extensive infrastructure
 - O Where more capacity is required in the network

Dense Architecture

10

Dense Architecture

At a given position, a device may have multiple technologies it is able to connect to

Sparse Architectures

- Network stitched together with different technologies
- Often only one possible choice for access
- Route traffic through several technologies to Internet gateway
- O Best used in:
 - O rural environments
 - O developing countries

Sparse Architecture

- Traffic originating in a network without an Internet gateway (GW)
- Which network to route through?
 - Consider: cost, capacity, congestion, power levels etc.
- Also consider networks which are opportunistic
 - Portions of the network may be unavailable at a given time

Variations on Architectures

- Variations of HWN Architectures
 - O Repeater / Relay Nodes [15]
 - O Used to add capacity, reduce distance of long links, aggregate data, reduce power consumption
 - Caching / Prefetching Solutions [13,14]
 - One of more layers cache data to reduce requests to Internet
 - O Clustering [12]

Outline

- Introduction
- Motivation
- Architectures for HWNs
- Applications and Deployments of HWNs
- Classification of Solutions
- O Limitations, Open Research Problems
- O Conclusions & Future Work

Applications

- Improved network access and capacity [1,2,9]
- Rural and Broadband access, Community Access Networks, Pervasive Network Coverage [5,6]
- Increased choices for consumers
 - (ability to pay more for increased service using multiple RATs)
- Multimedia Applications [4,7,8]
 - O Unique challenge high QoS requirement
- O Health care, Military, Emergency Response
 - O Unique challenge high QoS and security requirement
- O Interplanetary Networks [17]
 - O Unique challenges delay tolerance

Applications

Source: Rolta & Thales (rolta.com accessed August 2010)

Applications

18

Source: Pervasive Healthcare: IEEE Computer Society

Deployments

• Testbeds:

- HAWK Heterogeneous Advanced Wireless network (Hong Kong Polytechnic University) (2009) [5]
- SCORPION Santa Cruz mObile Radio Platform for Indoor and Outdoor Networks (University of California at Santa Cruz) (2009) [6]
- O Some LTE or 4g mobile networks
 - Smooth handover / handoff between heterogeneous networks is a requirement of these networks
 - Many LTE and 4g Networks are still in early stages of deployment
 - "Heterogeneous" usually does not include technology such as wifi (only other existing mobile technologies)

Deployments - SCORPION [6]

20

Source: Bromage et al. [6]

Outline

- Introduction
- Motivation
- Architectures for HWNs
- Applications and Deployments of HWNs
- Classification of Solutions
- O Limitations, Open Research Problems
- O Conclusions & Future Work

Classifications by Research Area

- Radio Resource Management
 - O Resource Scheduling [16]
 - Power Control, Rate Control, Access Control [7,8,9]
 - O Prefetching, Caching [13,14]
 - Cognitive / Software Defined Radio
- Quality of Service (QoS)
 - O Service classes, Access Control / Access Selection [8,9]
 - O Topology Control, Routing, Relay Placement [11,12,13]
 - O Delay Tolerance [17]
- O Handover / Handoff
 - O Optimal Network Selection [4]
 - Mobility Management [1,2]
- Other popular research areas that will not be covered in this talk
 - O Security, Multichannel / Multi radio, non-QoS routing ...

Outline

- Introduction
- Motivation
- Architectures for HWNs
- Applications and Deployments of HWNs
- Classification of Solutions
- Limitations, Open Research Problems
- O Conclusions & Future Work

Open Research Problem: Radio Resource Management

- Limited bandwidth in wireless networks
- Broadcast medium creates problems such as hidden and exposed terminal
 - O Contribute to poor multi-hop wireless performance
- Mobile devices extremely limited in resources (power, cpu, memory)
- Manage the Resources in the network while keeping in mind QoS
 - O In HWN, the major unique problem is vertical handover
 - In other networks, Resource Management & QOS studied extensively (WLAN, WMN, adhoc etc)

Open Research Problems: Radio Resource Management

- Resource Scheduling [16]
 - Managing Time, Space in Queues, Frequency etc.
- Power Control, Rate Control [7], Access Control [8,9]
 - O Avoid interference, minimize power consumption
 - O Prevent buffer overflows, avoid bottlenecks
 - Avoid admitting more users than can be supported
- O Prefetching, Caching [13,14]
 - O Avoid requests from the original source on the Internet by temporarily storing at some level in the hetero network
- Cognitive / Software Defined Radio

Open Research Problems: Radio Resource Management

Source: Goebbels [14], ex) of caching archtiecture

Open Research Problems: Quality of Service (QoS)

- Provide some guarantee of service level, support for particular applications (multimedia, voice, web, email etc)
- Service classes, Access Control / Access Selection [8,9]
 - Each service class has different priority
 - Access is controlled by whether there is capacity to admit based on priority classes
- Topology Control [11,12], Routing, Relay Placement [13]
 - QoS aware routing
 - O Some research suggests relays increase capacity, thus increase QoS by adding more relays in strategic points
 - O GW placement for optimal QoS
- O Delay Tolerance [17]
 - Some applications have delay tolerance (email, download etc)
 - Some network types this becomes more important (long distance, or opportunistic networking)

Open Research Problems: Handover

- Decide when to switch between technologies or between stations
- Optimal Network Selection [4]
 - O Decide when to change networks while stationary (because of changing conditions)
 - O Dense HWN, select the best network based on some criteria, ex):
 - O Cost, Capacity, "user fairness", ...
 - Sparse HWN, which network to forward through
- Mobility Management [1,2]
 - Deciding when to change networks while moving
 - Vertical Handover (between technologies or component networks)[9,1,2]
 - Horizontal Handover (within a technology or component network) (many existing works in cellular/mobile, WMN etc

Handover

Optimal Network Selection

Mobility Management

Handover Types

Handover

- Often formulated as an optimization problem
 - Cost / Reward function which determines whether a handoff should occur [3,4]
- Many solutions are adaptive and make use of "cognitive/software radio" techniques
 - (applying AI, certain types of optimization)
 - O Traditionally used to determine if radios can venture into licensed bands when not in use

Limitations & Assumptions

- O Some experiments make use of small networks, more research required to ensure the networks are scalable
 - [8] uses only three WLANs and two 3g networks
- Some proposals do not account for future technology, designed specifically to a set of existing technology
 - O Not "future-proof"
 - O Ex) assumption of ipv4
 - O Ex) assume only 2 or 3 network types: 802.11, 802.16 etc.
 - [9] Assumes only 802.11 + 3G
- O Many proposals for interoperability, little work in standardization [9]
- O Existing work uses mostly simulation, it is recognized that experiments must be evaluated in test-beds and on real equipment when possible

Limitations & Assumptions

Future Work

- O Investigate cross-layering [10] to help solve wireless problems since OSI model is not suited to wireless
 - ex) TRAMCAR cross layer architecture for HWN[1]
- O Ensure any framework which is designed or used will be scalable, extensible and flexible to support future technologies
- Develop a business model or incentive program which motivates service providers to swap traffic in a manner similar to the Internet
- Many existing experimental work performed in simulation
 - O extend to test-bed with equipment in PERWIN lab

Conclusions

- Broad overview of state of research in HWNs
 - Emphasis on Resource Management, QoS and Handover
- Two architectures discussed
- Existing approaches classified according to solution type
- O Open Research Problems, Limitations
- Exciting active field with many applications
- Much to be done to fully realize potential of the technology

References

- 1. A. Hasswa, N. Nasser, H. Hassanein, "A seamless context-aware architecture for fourth generation wireless networks," in Wireless Personal Communications, vol. 43(1), pp. 1035-1049, 2007.
- 2. N. Nasser, A. Hasswa, H. Hassanein, "Handoffs in Fourth Generation Hetrogeneous Networks,"
- 3. Y. Zhang, M. Fujise, Resource, Mobility, and Security Management in Wireless Networks and Mobile Communications, October 25, 2006, Heterogeneous Wireless Networks: Optimal Resource Management and QoS Provisioning.
- 4. P. Si, F.R. Yu, H. Ji, V.C.M. Leung, "Optimal Network Selection in Heterogeneous Wireless Multimedia Networks," in Wireless Networks, vol. 16(5), pp. 1277-1288, July 2010.
- 5. J. Cao, K. Xie, W. Wu, C. Liu, G. Yao, W. Feng, Y. Zou, J. Wen, C. Zhang, X. Xiao, X. Liu, Y. Yan, "HAWK: Real-World Implementation of High-Performance Heterogeneous Wireless Network for Internet Access," in 29th IEEE Int. Conf. on Distributed Computing Systems Workshops, pp 214-220, 2009.
- 6. S. Brommage, C. Engstrom, M. Bromage, S. Dabideen, M. Hu, R. Menchaca-Mendez, D. Nyugen, B. Nunes, V. Petkov, D. Sampath, H. Taylor, M. Veyseh, J.J. Garcia-Luna-Aceves, K. Obraczka, H. Sadjadpour, B. Smith, "Poster Abstract: SCORPION: A Heterogeneous Wireless Networking Testbed," in Mobile and Communications Review, vol 13 (1), pp. 65-68, January 2009.
- 7. A. Boukerche, F. Kazem, "An Adaptive Rate Control Algorithm for Real-time Streaming of 3d Image-based Rendering over Heterogeneous Wireless Networks," in Proc. of Int. Symposium on World of Wireless, Mobile and Multimedia Networks, pp. 462-468, 2006.
- 8. N-C. Wang, J-W. Jiang, "Extending RSVP For QOS Support in Heterogeneous Wireless Networks," in Int. Conf. on Communications Systems (ICCS 2006), pp. 1-5, October 2006.

References

- 9. M. Kim, S-Y. Kim, S-J. Cho, "A Study of Seamless Handover Service and QoS in Heterogeneous Wireless Networks," in the 9th Int. Conf. on Advanced Communication Technology, pp. 1922-1925, February 2007.
- 10. Z. Chen, "A Customizable QoS Strategy For Convergent Heterogeneous Wireless Communications," in IEEE Wireless Communications, pp.1536 1284, April 2007.
- 11. N. Li, J.C. Hou, "Topology Control in Heterogeneous Wireless Networks: Problems and Solutions," in 23rd IEEE Computer and Communications Societies INFOCOM, pp. 232-243, 2004.
- 12. Y. Zhu, H. Xu, J. Xiao, "A Clustering Topology Control Algorithm for Heterogeneous Wireless Networks," in Int. Conf. on Communications, Circuits and Systems, pp. 392-396, May 2005.
- 13. S. Drew, B. Liang, "Mobility-Aware Web Prefetching Over Heterogeneous Wireless Networks,", in 15th IEEE Conf. On Personal, Indoor and Mobile Communications (PIMRC 2004), pp. 687 691, 2004
- 14. S. Goebbels, "Smart Caching Joins Hierarchical Mobile IP," in Vehicular Technology Conference (VTC 2007) pp. 2625 2630, 2007.
- 15. C. Shen, A Heuristic Relay Positioning Algorithm for Heterogeneous Wireless Networks," in Vehicular Technology Conference (VTC 2009), pp. 1-5, April 2009.
- 16. S.Z. Ahmad, M.A. Qadir, M.S. Akbar, "A distributed resource management scheme for load-balanced QoS Provisioning in Heterogeneous Mobile Wireless Networks," in Int. Workshop on Modelling, Analysis and Simulation of Wireless and Mobile Systems, pp. 63-70, 2008.
- 17. H. Samuel, W. Zhang, B. Preiss, "Routing over Interconnected Heterogeneous Wireless Networks with Intermittent Connections," in Internation Conference on Communications (ICC 2008), pp 2282 2286, May 2008.

Questions?

Thanks for listening

Jason Ernst, University of Guelph

Email: jernst@uoguelph.ca

Website: http://www.uoguelph.ca/~jernst

Hidden Terminal Problem

Both⁹A and C can communicate with B but cannot detect each other leading to collisions at B, solved with RTS/CTS but introduces ET problem

Exposed Terminal Problem

B and C detect each other and fail to transmit even though A is out of the transmit even the transmit even though A is out of the transmit even the transm

Classification by Network Type

- Number and type of technologies involved
 - O Ex) 802.11, 3g [9]
- Number of layers / tiers involved (the highest number of overlapping coverage technologies)
 - 0 2 Layer [9]
 - O 3 Layer
 - O 4 Layer ...
- Sparse or dense (whether overlap is supported or not)
 - Majority of current work is in dense HWN

Classification by Objective

- Increasing performance (packet delivery ratio, throughput, delay etc.)
- Increasing profit, or conversely decreasing cost (take into consideration cost of using particular networks within the hetero network)
- Increasing coverage or capacity (solutions which use multiple access technologies to increase service)