Introduction to Machine Learning

Introduction: Supervised Learning & Learning Tasks

Learning goals

- Understand the idea of supervised learning
- Know examples of supervised learning
- Understand the difference between the regression

IDEA OF SUPERVISED LEARNING

- **Goal:** Identify the fundamental functional relation in the data that maps an object's features to the target.
- Ideally, we would have full knowledge about the data-generating process and thus be able to specify this mapping function precisely.
- However, in practical applications we don't know this mapping and we must try to learn the mapping function: for objects with certain patterns or properties, some values of the target are much more likely than others.
 - \rightarrow We call such an assumed mapping a **model** f.

IDEA OF SUPERVISED LEARNING

- Supervised learning means we make use of labeled data, i.e., observations for which we already know the target.
- We try to construct f automatically from a set of labeled data.
 → The algorithm for finding f is called learner.
- Using the learned model, we can make predictions of the target, based on the features of our data.
- Knowing the "truth" allows us to test how well we have grasped the nature of the underlying mapping: we just need to compare our predictions to the actually observed values.

SUPERVISED LEARNING EXAMPLE (1)

House Prices

Aim: Predict the price for a house in a certain area

	Target y			
square footage of the house	number of bedrooms	swimming pool (yes/no)		house price in US\$
1,180	3	0		221,900
2,570	3	1		538,000
770	2	0		180,000
1,960	4	1		604,000

SUPERVISED LEARNING EXAMPLE (2)

Length-of-stay in a hospital

Aim: Predict the number of days a single patient has to stay in hospital at the time of admission

Features x					Target y
diagnosis category	admission type	gender	age		Length-of-stay in the hospital in days
heart disease	elective	male	75		4.6
injury	emergency	male	22		2.6
psychosis	newborn	female	0		8
pneumonia	urgent	female	67		5.5

SUPERVISED LEARNING EXAMPLE (3)

Risk category in life insurance

Aim: Predict one of five risk categories (**classification**) for a life insurance customer to determine the insurance premium

	Target y			
job type	age	smoker		risk group
carpenter	34	1		3
stuntman	25	0		5
student	23	0		1
white-collar worker	39	0		2

SUPERVISED LEARNING EXAMPLE (4)

Imagine you want to investigate how salary and workplace conditions (features) affect productivity of employees (target) – a standard regression task. Therefore, you collect data about their worked minutes per week (productivity), how many people work in the same office as the employees in question, and the employees' salary.

	Feat	ures x	Target y	
	People in Office (Feature 1) x_1 (Feature 2) x_2		Worked Minutes Week (Target Variable)	
	4	4300 € 🍾	2220	
$p=2$ $\Big\langle$	y 12	2700 €	1800	
\downarrow	5	3100 €	1920	
$x_1^{(2)}$	n =	= 3	$x_2^{(1)}$	$y^{(3)}$

SUPERVISED LEARNING EXAMPLE (4)

- For our observed data we know which outcome is produced.
- For new employees we can only observe the features but not the target.
- We use the labeled data to learn the model f.
- Ultimately, we use our model to compute predictions for new data whose target values are unknown.

	x_1	x_2	Functional Relationship	y
Already seen Data	4	4300 €	NO.	2200
	12	2700 €	1	1800
	15	3100 €	f	1920
New Data	6	3300 €	rico de	???
	5	3100 €		???

SUPERVISED LEARNING EXAMPLE (4)

Train Set

y	x_1	x_2	
2200	4	4300	
1800	12	2700	
1920	15	3100	

TASKS IN SUPERVISED LEARNING

In general, supervised learning comes in two flavors we call tasks:

• **Regression**: Given features \mathbf{x} , predict corresponding output from $\mathcal{Y} \in \mathbb{R}^m$.

TASKS IN SUPERVISED LEARNING

• Classification: Assign an observation with features \mathbf{x} to one class of a finite set of classes $\mathcal{Y} = \{C_1, ..., C_g\}, g \geq 2$ (details later).

