Lógica I Aula 15

Professor: José Eurípedes F. de Jesus Filho

Contato: jeferreirajf@gmail.com

Nesta aula

• Sistema formal proposicional \wp_a .

• Exercícios.

Introdução

• Seja qualquer fórmula H da lógica proposicional. É fato que existe uma fórmula G equivalente a H na forma normal.

- Existem duas formas normais:
 - Forma Normal Disjuntiva (fnd)
 - Forma Normal Conjuntiva (fnc)

• Mas antes de entendermos as formas normais, é necessário entender o conceito de literal.

Sistema \wp_a

- O sistema é definido a partir de quatro conjuntos:
 - 1. Alfabeto da Lógica Proposicional;
 - 2. Conjunto das fórmulas da Lógica Proposicional;
 - 3. Subconjunto das fórmulas especiais, denominadas axiomas;
 - 4. Conjunto de regras de dedução

Axiomas do Sistema \wp_a

• Os axiomas lógicos do sistema são:

- 1. $Ax_1 = (H \cup H) \rightarrow H$;
- 2. $Ax_2 = H \rightarrow (G \cup H)$;
- 3. $Ax_3 = (H \rightarrow G) \rightarrow ((E \cup H) \rightarrow (G \cup E)).$

Regra de inferência do Sistema \wp_a

- A regra de inferência modus ponens é:
 - ➤ Dadas as fórmulas $\mathbf{H} \in \mathbf{G}$, a regra de inferência do sistema \wp_a , denominada modus ponens, é definida pelo procedimento: tendo $\mathbf{H} \in \mathbf{G}$ deduza \mathbf{G} .
 - Note que dado uma interpretação I, se I[H]=T e I[H → G]=T, então I[G]=T.

Notação de inferência do Sistema \wp_a

• A notação do modus ponens é:

$$>MP = \frac{H,(H \to G)}{G}$$

■ O numerador é o antecedente e o denominador é o consequente.

Exemplos

1.
$$MP = \frac{P,(P \to Q)}{Q};$$

2. $MP = \frac{P \to Q,((P \to Q) \to R)}{R};$
3. $MP = \frac{P,(P \to (Q \cup R))}{(Q \cup R)};$
4. $MP = \frac{(P \cap Q),((P \cap Q) \to (Q \to R))}{(Q \to R)};$