DOCUMENTO PRUEBAS MÉTODOS PRIMERA ENTREGA

Búsquedas Incrementales

```
Hay una raiz entre -2.5 y -2
Hay una raiz entre -1 y -0.5
Hay una raiz entre 0.5 y 1
Hay una raiz entre 2 y 2.5
Hay una raiz entre 4 y 4.5
Hay una raiz entre 5 y 5.5
Hay una raiz entre 7 y 7.5
Hay una raiz entre 8 y 8.5
Hay una raiz entre 10 y 10.5
Hay una raiz entre 11.5 y 12
Hay una raiz entre 13.5 y 14
Hay una raiz entre 14.5 y 15
Hay una raiz entre 16.5 y 17
Hay una raiz entre 17.5 y 18
Hay una raiz entre 19.5 y 20
Hay una raiz entre 21 y 21.5
Hay una raiz entre 22.5 y 23
Hay una raiz entre 24 y 24.5
Hay una raiz entre 26 y 26.5
Hay una raiz entre 27 y 27.5
Hay una raiz entre 29 y 29.5
Hay una raiz entre 30 y 30.5
Hay una raiz entre 32 y 32.5
Hay una raiz entre 33.5 y 34
Hay una raiz entre 35 y 35.5
Hay una raiz entre 36.5 y 37
Hay una raiz entre 38.5 y 39
Hay una raiz entre 39.5 y 40
Hay una raiz entre 41.5 y 42
Hay una raiz entre 43 y 43.5
Hay una raiz entre 44.5 y 45
Hay una raiz entre 46 y 46.5
```

Bisección

Iter	a	xm	ь	f(xm)	E
0	0.00000000000000000	0.5000000000000000000	1.00000000000000000	-2.9e-1	
1	0.500000000000000000	0.750000000000000000	1.00000000000000000	-1.2e-1	2.5e-1
2	0.7500000000000000000	0.875000000000000000	1.00000000000000000	-3.7e-2	1.3e-1
3	0.875000000000000000	0.937500000000000000	1.000000000000000000	6.3e-4	6.3e-2
4	0.875000000000000000	0.906250000000000000	0.937500000000000000	-1.8e-2	3.1e-2
5	0.906250000000000000	0.921875000000000000	0.937500000000000000	-8.5e-3	1.6e-2
6	0.921875000000000000	0.929687500000000000	0.937500000000000000	-3.9e-3	7.8e-
7	0.929687500000000000	0.933593750000000000	0.937500000000000000	-1.6e-3	3.9e-
8	0.933593750000000000	0.935546875000000000	0.937500000000000000	-5.0e-4	2.0e-
9	0.935546875000000000	0.93652343750000000	0.937500000000000000	6.9e-5	9.8e-4
10	0.935546875000000000	0.93603515625000000	0.93652343750000000	-2.1e-4	4.9e-
11	0.93603515625000000	0.93627929687500000	0.93652343750000000	-7.3e-5	2.4e-
12	0.93627929687500000	0.93640136718750000	0.93652343750000000	-1.9e-6	1.2e-
13	0.93640136718750000	0.93646240234375000	0.93652343750000000	3.3e-5	6.1e-
14	0.93640136718750000	0.93643188476562500	0.93646240234375000	1.6e-5	3.1e-
15	0.93640136718750000	0.93641662597656250	0.93643188476562500	7.0e-6	1.5e-
16	0.93640136718750000	0.93640899658203125	0.93641662597656250	2.6e-6	7.6e-0
17	0.93640136718750000	0.93640518188476563	0.93640899658203125	3.5e-7	3.8e-
18	0.93640136718750000	0.93640327453613281	0.93640518188476563	-7.6e-7	1.9e-
19	0.93640327453613281	0.93640422821044922	0.93640518188476563	-2.0e-7	9.5e-
20	0.93640422821044922	0.93640470504760742	0.93640518188476563	7.2e-8	4.8e-
21	0.93640422821044922	0.93640446662902832	0.93640470504760742	-6.6e-8	2.4e-7
22	0.93640446662902832	0.93640458583831787	0.93640470504760742	2.9e-9	1.2e-
23	0.93640446662902832	0.93640452623367310	0.93640458583831787	-3.2e-8	6.0e-

Regla falsa.

Se encontro una aproximacion de la raiz en 0.936404580879889						
a	xm	b	f(xm)	Е		
0.00000000000000000	0.93394038071821572	1.00000000000000000	-1.4e-3			
0.93394038071821572	0.93650605166562539	1.00000000000000000	5.9e-5	2.6e-3		
0.93394038071821572	0.93640473074264130	0.93650605166562539	8.7e-8	1.0e-4		
0.93394038071821572	0.93640458110086866	0.93640473074264130	1.3e-10	1.5e-7		
0.93394038071821572	0.93640458087988898	0.93640458110086866	1.9e-13	2.2e-10		
	a 0.0000000000000000 0.93394038071821572 0.93394038071821572 0.93394038071821572	a xm 0.0000000000000000000000000000000000	a xm b 0.0000000000000000000000000000000000	a xm b f(xm) 0.0000000000000000 0.93394038071821572 1.000000000000000 -1.4e-3 0.93394038071821572 0.93650605166562539 1.000000000000000 5.9e-5 0.93394038071821572 0.93640473074264130 0.93650605166562539 8.7e-8 0.93394038071821572 0.93640458110086866 0.93640473074264130 1.3e-10		

Newton.

Se encontro una aproximacion de la raiz en 0.9364045808795621

iter	xi	f(xi)	Е
0	0.500000000000000000	-2.9e-1	
1	0.92839198991257188	-4.7e-3	4.3e-1
2	0.93636674126733133	-2.2e-5	8.0e-3
3	0.93640458001899018	-5.0e-10	3.8e-5
4	0.93640458087956213	-1.1e-16	8.6e-10

Punto fijo

se encor	ntro una aproximación en	1: -0.37444505296105535		
iter	xi	g(xi)	f(xi)	Е
0	-0.500000000000000000	-0.29310872673137661	2.1e-1	
1	-0.29310872673137661	-0.41982154360625734	-1.3e-1	2.1e-1
2	-0.41982154360625734	-0.34630451917766508	7.4e-2	1.3e-1
3	-0.34630451917766508	-0.39095845654230948	-4.5e-2	7.4e-2
4	-0.39095845654230948	-0.36440503489413922	2.7e-2	4.5e-2
5	-0.36440503489413922	-0.38042630316795628	-1.6e-2	2.7e-2
6	-0.38042630316795628	-0.37083679528020885	9.6e-3	1.6e-2
7	-0.37083679528020885	-0.37660564536358121	-5.8e-3	9.6e-3
8	-0.37660564536358121	-0.37314541760718900	3.5e-3	5.8e-3
9	-0.37314541760718900	-0.37522464118705617	-2.1e-3	3.5e-3
10	-0.37522464118705617	-0.37397658604830963	1.2e-3	2.1e-3
11	-0.37397658604830963	-0.37472621570843212	-7.5e-4	1.2e-3
12	-0.37472621570843212	-0.37427613331045390	4.5e-4	7.5e-4
13	-0.37427613331045390	-0.37454642845809227	-2.7e-4	4.5e-4
14	-0.37454642845809227	-0.37438412643484470	1.6e-4	2.7e-4
15	-0.37438412643484470	-0.37448159083195509	-9.7e-5	1.6e-4
16	-0.37448159083195509	-0.37442306518389706	5.9e-5	9.7e-5
17	-0.37442306518389706	-0.37445820986270584	-3.5e-5	5.9e-5
18	-0.37445820986270584	-0.37443710584945561	2.1e-5	3.5e-5
19	-0.37443710584945561	-0.37444977872741303	-1.3e-5	2.1e-5
20	-0.37444977872741303	-0.37444216876320036	7.6e-6	1.3e-5
21	-0.37444216876320036	-0.37444673850520471	-4.6e-6	7.6e-6
22	-0.37444673850520471	-0.37444399440652526	2.7e-6	4.6e-6
23	-0.37444399440652526	-0.37444564222126353	-1.6e-6	2.7e-6
24	-0.37444564222126353	-0.37444465271927385	9.9e-7	1.6e-6
25	-0.37444465271927385	-0.37444524690906023	-5.9e-7	9.9e-7
26	-0.37444524690906023	-0.37444489010190096	3.6e-7	5.9e-7
27	-0.37444489010190096	-0.37444510436235334	-2.1e-7	3.6e-7
28	-0.37444510436235334	-0.37444497570031510	1.3e-7	2.1e-7
29	-0.37444497570031510	-0.37444505296105535	-7.7e-8	1.3e-7
30	-0.37444505296105535	-0.37444500656647139	4.6e-8	7.7e-8

Secante

Se encontro una aproximación de la raiz en 0.9364045808795624

Iter	xi	f(xi)	Е
0	0.500000000000000000	-2.9e-1	
1	1.00000000000000000	3.5e-2	5.0e-1
2	0.94616622230652503	5.6e-3	5.4e-2
3	0.93599658079117265	-2.4e-4	1.0e-2
4	0.93640700237670393	1.4e-6	4.1e-4
5	0.93640458147311956	3.4e-10	2.4e-6
6	0.93640458087956147	-5.0e-16	5.9e-10

Raíces Múltiples

Se encontro una aproximacion de la raiz en -4.218590698935789e-11

Iter	xi	f(xi)	Е
0	1.00000000000000000	7.2e-1	
1	-0.23421061355351425	2.5e-2	1.2e+0
2	-0.0084582799107610906	3.6e-5	2.3e-1
3	-0.000011890183808588653	7.1e-11	8.4e-3
4	-4.2185906989357889e-11	0.0e+0	1.2e-5

Eliminación Gaussiana Simple

```
Ingrese la matriz A de la forma [[a, b, c], [d, e, f]] y luego de un : la matriz B de la forma [g, h, i] ->
[[2, -1, 0, 3], [1, 0.5, 3, 8], [0, 13, -2, 11], [14, 5, -2, 3]]:[1, 1, 1, 1]
ETAPA 0
  2.0000000
               -1.0000000
                              0.0000000
                                            3.0000000
                                                           1.0000000
  0.0000000
               1.0000000
                              3.0000000
                                            6.5000000
                                                           0.50000000
  0.0000000
               13.000000
                              -2.0000000
                                            11.000000
                                                           1.0000000
               12.000000
  0.0000000
                              -2.0000000
                                            -18.000000
                                                           -6.0000000
ETAPA 1
  2.0000000
               -1.0000000
                              0.0000000
                                            3.0000000
                                                           1.0000000
  0.0000000
               1.0000000
                              3.0000000
                                            6.5000000
                                                           0.50000000
  0.0000000
               0.0000000
                              -41.000000
                                            -73.500000
                                                           -5.5000000
  0.0000000
               0.0000000
                              -38.000000
                                            -96.000000
                                                           -12.000000
ETAPA 2
                                            3.0000000
                                                           1.0000000
  2.0000000
               -1.0000000
                              0.0000000
               1.0000000
                                            6.5000000
                                                           0.50000000
  0.0000000
                              3.0000000
                              -41.000000
  0.0000000
               0.0000000
                                            -73.500000
                                                           -5.5000000
  0.0000000
               0.0000000
                                            -27.878049
                                                           -6.9024390
                              0.0000000
ETAPA 3
  2.0000000
               -1.0000000
                              0.0000000
                                            3.0000000
                                                           1.0000000
                                                           0.50000000
  0.0000000
               1.0000000
                              3.0000000
                                            6.5000000
               0.0000000
                              -41.000000
  0.0000000
                                            -73.500000
                                                           -5.5000000
 0.0000000
               0.0000000
                              0.0000000
                                            -27.878049
                                                           -6.9024390
```

Eliminación Gaussiana con pivoteo parcial

```
Ingrese la matriz A de la forma [[a, b, c], [d, e, f]] y luego de un : la matriz B de la forma [g, h, i] ->
[[2, -1, 0, 3], [1, 0.5, 3, 8], [0, 13, -2, 11], [14, 5, -2, 3]]:[1, 1, 1, 1]
ETAPA 0
               -1.0000000
                              0.0000000
                                            3.0000000
                                                          1.0000000
  2.0000000
  1.0000000
               0.50000000
                              3.0000000
                                            8.0000000
                                                          1.0000000
  0.0000000
               13.000000
                              -2.0000000
                                             11.000000
                                                          1.0000000
  14.000000
               5.0000000
                              -2.0000000
                                             3.0000000
                                                          1.0000000
ETAPA 1
               5.0000000
                              -2.0000000
                                            3.0000000
                                                          1.0000000
  14.000000
  0.0000000
               0.14285714
                              3.1428571
                                             7.7857143
                                                          0.92857143
  0.0000000
               13.000000
                              -2.0000000
                                                          1.0000000
                                             11.000000
  0.0000000
               -1.7142857
                              0.28571429
                                            2.5714286
                                                          0.85714286
ETAPA 2
               5.0000000
                             -2.0000000
                                            3.0000000
                                                          1.0000000
  14.000000
                                             11.000000
  0.0000000
               13.000000
                             -2.0000000
                                                          1.0000000
  0.0000000
               0.0000000
                             3.1648351
                                             7.6648352
                                                          0.91758242
  0.0000000
               0.0000000
                                            4.0219780
                            0.021978028
                                                          0.98901099
ETAPA 3
  14.000000
               5.0000000
                             -2.0000000
                                           3.0000000
                                                         1.0000000
  0.0000000
               13.000000
                             -2.0000000
                                           11.000000
                                                         1.0000000
  0.0000000
               0.0000000
                             3.1648351
                                           7.6648352
                                                         0.91758242
  0.0000000
               0.0000000
                            0.0000000
                                           3.9687500
                                                         0.98263889
```

Eliminación Gaussiana con pivoteo total

```
Ingrese la matriz A de la forma [[a, b, c], [d, e, f]] y luego de un : la matriz B de la forma [g, h, i] ->
[[2, -1, 0, 3], [1, 0.5, 3, 8], [0, 13, -2, 11], [14, 5, -2, 3]]:[1, 1, 1, 1]

ETAPA 0
```

2.0000000	-1.0000000	0.0000000	3.0000000	1.0000000
1.0000000	0.50000000	3.0000000	8.0000000	1.0000000
0.0000000	13.000000	-2.0000000	11.000000	1.0000000
14.000000	5.0000000	-2.0000000	3.0000000	1.0000000

ETAPA 1

14.000000	5.0000000	-2.0000000	3.0000000	1.0000000
0.0000000	0.14285714	3.1428571	7.7857143	0.92857143
0.0000000	13.000000	-2.0000000	11.000000	1.0000000
0.0000000	-1.7142857	0.28571429	2.5714286	0.85714286

ETAPA 2

14.000000	5.0000000	-2.0000000	3.0000000	1.0000000
0.0000000	13.000000	-2.0000000	11.000000	1.0000000
0.0000000	0.0000000	3.1648351	7.6648352	0.91758242
0.0000000	0.0000000	0.021978028	4.0219780	0.98901099

ETAPA 3

14.000000	5.0000000	3.0000000	-2.0000000	1.0000000
0.0000000	13.000000	11.000000	-2.0000000	1.0000000
0.0000000	0.0000000	7.6648352	3.1648351	0.91758242
0.0000000	0.0000000	0.0000000	-1.6387096	0.50752689

x: [['0.0384951'],['-0.180227'],['0.247594'],['-0.309711']'