# Single cell transcriptomics

10x genomics Chromium



# All captured **transcripts** from **single** cell: **identical** + **unique** barcode



- reverse transcriptionbreaking GEMs
  - fragmentation
  - primer ligation
  - index PCR



### Sequencing output

```
ETV6-RUNX1_1_S1_L001_I1_001.fastq.gz
ETV6-RUNX1_1_S1_L001_R1_001.fastq.gz
ETV6-RUNX1_1_S1_L001_R2_001.fastq.gz
sample ID lane
```

- Dual indexing: second index in I2
- Indexes can also be added to fastq titles

# After sequencing (preprocessing)

- 1. Assign reads to cell
- 2. Alignment
- 3. Quantification: # UMI/gene
- 4. Cell calling

For 10x all with cellranger count

Alternatives:

<u>STARSolo</u> Alevin

#### cellranger references

- Human & mouse: download pre-built from 10x website
- Other organisms: custom reference with cellranger mkref
- Exogenous marker genes (e.g. GFP): add sequence to both fasta and gtf
- Features (e.g.) hashing or surfaceproteins: feature barcode reference csv

# Why count UMI (and not read alignments?)

- UMI: Unique Molecular Identifier:
  - Identifies each molecule (i.e. sequence) uniquely
- Molecules from a common PCR template
  - -> carry the same UMI
- By counting UMI: correct for PCR duplicates

# Cellranger report

#### ETV6-RUNX1\_1

#### **Alerts**

The analysis detected A 1 warning.

| , | Alert                                                      | Value | Detail                                                                                                                                                                                                                                                                                      |
|---|------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Fraction of RNA read<br>bases with Q-score >=<br>30 is low |       | Fraction of RNA read bases with Q-score >= 30 should be above $65\%$ . A lower fraction might indicate poor sequencing quality. This is Read 1 for the Single Cell 3' v1 chemistry and Single Cell 5' paired end, Read 2 for the Single Cell 3' v2/v3 chemistry and Single Cell 5' R2-only) |

Summary

Analysis

3,091
Estimated Number of Cells

68,259 1,717
Mean Reads per Cell Median Genes per Cell

| Number of Reads               | 210,987,037 |
|-------------------------------|-------------|
| Number of Short Reads Skipped | 0           |
| Valid Barcodes                | 98.2%       |
| Valid UMIs                    | 100.0%      |
| Sequencing Saturation         | 84.4%       |
| Q30 Bases in Barcode          | 96.4%       |
| Q30 Bases in RNA Read         | 59.4%       |
| Q30 Bases in UMI              | 96.5%       |





| Sample             |                                      |  |  |  |
|--------------------|--------------------------------------|--|--|--|
| Sample ID          | ETV6-RUNX1_1                         |  |  |  |
| Sample Description |                                      |  |  |  |
| Chemistry          | Single Cell 3' v2                    |  |  |  |
| Include introns    | False                                |  |  |  |
| Reference Path     | nger/refdata-cellranger-GRCh38-3.0.0 |  |  |  |
| Transcriptome      | GRCh38-3.0.0                         |  |  |  |
| Pipeline Version   | cellranger-6.0.1                     |  |  |  |

## Cell calling





Background 'cells': low #UMI/barcode

### Other parameters

- Number of cells: typically, <20k/channel</li>
- Sequencing saturation
- Reads mapped to genome/transcriptome

$$saturation = 1 - \frac{\# unique \, reads}{\# \, reads}$$



#### 10x single cell flex

- FFPE fixed cells
- Based on probe hybridzation:
  - Specificy through ligation
  - ~3 probes/gene
  - Only human and mouse
  - Hybridized probes are sequenced
- 16 barcoded probe sets allows for multiplexing!

