

Dispositivos e Circuitos Eletrônicos Básicos

Prof. Marcos Severo

Sala: 2624

Telefone: 3409 3453

e-mail: marcoss@cpdee.ufmg.br

PowerPoint Overheads for

Sedra/Smith
Microelectronic Circuits 5/e

Programa

- Introdução a Eletrônica (Capítulo 1)
- > Amplificadores Operacionais AmpOp (Capítulo 2)
- Diodos (Capítulo 3)
- > Transistores a Efeito de Campo FET (Capítulo 4)
- > Transistores Bipolares de Junção TBJ (Capítulo 5)
- Outros Circuitos com Amp. Operacionais (Capítulos 12 e 13)
- Conversores de Dados Uma Introdução (Capítulo 9)

Avaliações

Avaliação	Data	Valor
Primeira Prova	23/09	25
Segunda Prova	04/11	25
Terceira Prova	07/12	25
Trabalho 1 - Simulação LTSpice		7,5
Trabalho 2 - Simulação LTSpice		7,5
Trabalho 3 - Simulação LTSpice		10
Total		100
Avaliação	Data	Valor
Quarta prova - Substitutiva	14/12	25
Exame especial	21/12	100

Dispositivos e Circuitos Eletrônicos Básicos

Introdução à Eletrônica

Sumário

1. Sinais

- 2. Valor médio, Valor eficaz e potência média
- 3. Espectro de frequências de sinais
- 4. Sinais Digitais
- 5. Amplificadores
- 6. Modelos de Amplificadores

Sinal

Sinal: todo meio que contém informações de interesse

Exemplo: Informações sobre o tempo:

- Temperatura do ar
- Pressão
- Velocidade do vento

Exemplo: A voz de um narrador ao ler as notícias de um jornal produz um sinal acústico.

O microfone é um TRANSDUTOR, que converte este sinal para a forma elétrica.

Representações para sinais elétricos

$$v_{S}(t) = R_{S}i_{S}(t)$$

Figure 1.1 Two alternative representations of a signal source: **(a)** the Thévenin form, and **(b)** the Norton form.

Sinal no domínio do tempo

Figure 1.2 An arbitrary voltage signal $v_s(t)$.

Sinal senoidal

Figure 1.3 Sine-wave voltage signal of amplitude V_a and frequency f = 1/T Hz. The angular frequency $v = 2\pi f$ rad/s.

Valor médio de um sinal

$$X_m = \frac{1}{T} \int_{c}^{c+T} x(t)dt$$

Potência média

$$P = \frac{1}{T} \int_{c}^{c+T} p(t)dt = \frac{1}{T} \int_{c}^{c+T} v(t)i(t)dt$$

Valor Eficaz

$$P = \frac{1}{T} \int_{c}^{c+T} v(t)i(t)dt = \frac{1}{R} \left[\frac{1}{T} \int_{c}^{c+T} v^{2}(t)dt \right] = \frac{V_{ef}^{2}}{R}$$

$$V_{ef} = \sqrt{\frac{1}{T}} \int_{c}^{c+T} v^{2}(t)dt$$

Série de Fourier

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{2\pi}{T} nt + b_n \sin \frac{2\pi}{T} nt)$$

$$a_n = \frac{2}{T} \int_{c}^{c+T} x(t) \cos(\frac{2\pi}{T}nt) dt$$

$$b_n = \frac{2}{T} \int_{c}^{c+T} x(t) \sin(\frac{2\pi}{T}nt) dt$$

Sinal Quadrado

Série de Fourier:

$$v(t) = \frac{4V}{\pi} \left(\sin w_0 t + \frac{1}{3} \sin 3w_0 t + \frac{1}{5} \sin 5w_0 t + \frac{1}{7} \sin 7w_0 t \dots \right)$$

Figure 1.4 A symmetrical square-wave signal of amplitude *V*.

Espectro de um sinal quadrado

Figure 1.5 The frequency spectrum (also known as the line spectrum) of the periodic square wave of Fig. 1.4.

Espectro de um sinal quadrado

Espectro de um sinal quadrado

$$v(t) = \frac{4V}{\pi} \left(\sin w_0 t + \frac{1}{3} \sin 3w_0 t + \frac{1}{5} \sin 5w_0 t + \frac{1}{7} \sin 7w_0 t \dots \right)$$

Espectro de frequências de sinais não periódicos

Figure 1.6 The frequency spectrum of an arbitrary waveform such as that in Fig. 1.2.

Sinais Analógicos x sinais digitais

Figure 1.7 Sampling the continuous-time analog signal in (a) results in the discrete-time signal in (b).

Sinal Digital Binário

Figure 1.8 Variation of a particular binary digital signal with time.

Conversor Analógico Digital

$$D = b_0 2^0 + b_1 2^1 + b_2 2^2 + \dots + b_{N-1} 2^{N-1}$$

Figure 1.9 Block-diagram representation of the analog-to-digital converter (ADC).

Conversor Analógico Digital

 V_{FSR} - Full scale range

$$1 LSB = \frac{V_{FSR}}{2^n}$$
 Resolução

$$V_{FSV} = (1 - 2^{-n})V_{FSR}$$
 Full scale value

 \triangleright Conversor A/D de 3 bits com $V_{FSR} = 10V$.

$$LSB = 1,25V$$

$$V_{FSV} = 8,75V$$

 \triangleright Conversor A/D de 12 bits com $V_{FSR} = 10V$.

$$LSB = 2,44 \text{ mV}$$

Amplificadores de Sinais

Os transdutores muitas vezes fornecem sinais na faixa de alguns micro-volts ou mili-volts.

Se:

$$v_o(t) = Av_i(t)$$

O amplificador é linear.

A – ganho do amplificador

Caso contrário dizemos que o amplificador introduz DISTORÇÃO.

Amplificadores de sinais

Figure 1.10 (a) Circuit symbol for amplifier. **(b)** An amplifier with a common terminal (ground) between the input and output ports.

Amplificador de tensão

Figure 1.11 (a) A voltage amplifier fed with a signal $v_l(t)$ and connected to a load resistance R_L . **(b)** Transfer characteristic of a linear voltage amplifier with voltage gain A_V .

Ganho de Potência e ganho de corrente

ganho de corrente:

$$A_i = \frac{i_O}{i_I}$$

ganho de potência:

$$A_p = \frac{v_O i_O}{v_I i_I} = A_v A_i$$

Ganhos em Decibéis

$$A_{v}(db) = 20 \log |A_{v}|$$

$$A_i(db) = 20 \log |A_i|$$

$$A_p(db) = 10 \log |A_p|$$

Fontes de Alimentação

$$P_{dc} = V_1 I_1 + V_2 I_2$$

$$P_{dc} + P_I = P_L + P_{dissipada}$$

Figure 1.12 An amplifier that requires two dc supplies (shown as batteries) for operation.

Saturação do Amplificador

Figure 1.13 An amplifier transfer characteristic that is linear except for output saturation.

waveforms

Característica de transferência não linear e polarização

Convenção de símbolos

Figure 1.16 Symbol convention employed throughout the book.

Amplificadores de tensão

Figure 1.17 (a) Circuit model for the voltage amplifier. **(b)** The voltage amplifier with input signal source and load.

Os quatro tipos de amplificadores

Amplificador de tensão

Amplificador de corrente

Amplificador de transcondutância

Table 1.1 The Four Amplifier Types

Amplificador de transresistência

O transistor bipolar

$$R_S=5K\Omega$$
 $r_\pi=2.5K\Omega$ $g_m=40mA/V$ $r_o=100K\Omega$ $R_L=5K\Omega$

$$\frac{v_O}{v_S} = ?$$

Exercício 1.20

Determine a resistência de entrada do amplificador, R_{in} .

Figure E1.20

Resposta em frequência

Figure 1.20 Measuring the frequency response of a linear amplifier. At the test frequency v, the amplifier gain is characterized by its magnitude (V_o/V_i) and phase f.

Resposta em frequência – Curva de módulo

Figure 1.21 Typical magnitude response of an amplifier. |T(v)| is the magnitude of the amplifier transfer function—that is, the ratio of the output $V_o(v)$ to the input $V_i(v)$.

Resposta em frequência – Passa baixa

Resposta em frequência – Passa Alta

Lista de Exercício da Unidade I

Sedra - Microeletrônica 5/e
 Capítulo 1
 - 1.1,1.2,1.5,1.8,1.9 e 1.11

■ E 1.6, 1.10, 1.15, 1.16 e 1.17 desta apresentação.

Exercício 1.6

Determine expressões para V_O e R_O.

Figure P1.6

Divisores de Corrente

Determine expressões para as correntes I_1 e I_2 .

Figure P1.10

Aplique repetidamente o teorema de Thévenin e determine o circuito equivalente de Thévenin do nó 4 para terra.

Figure P1.15

Determine as correntes no circuito e a tensão no nó comum usando dois métodos:

- 1 Chame de I_1 e I_2 as correntes nos resistores R_1 e R_2 respectivamente. Escreva duas equações de malhas.
- 2 Chame de V a tensão no nó comum. Escreva uma equação de nó.

Figure P1.16

Determine a corrente e tensão no resistor R5.

Figure P1.17

Figure P1.18

Figure P1.37

Figure P1.58

Figure P1.63

Figure P1.65

 ov_o

Figure P1.67

Figure P1.68

Figure P1.72

Figure P1.77

Figure P1.79