Lab Project: Anchored Rectangle Packing

Anton Lorenzen

University of Bonn

June 23, 2022

The problem

Definition

Given a finite set of points $P \subset [0,1]^2$, find a rectangle $R^p = [p_x, r_x^p) \times [p_y, r_y^p) \subseteq [0,1]^2$ for each $p \in P$ such that $R^p \cap R^q = \varnothing$ for all $p \neq q \in P$. Area: $\sum_{p \in P} (r_x^p - p_x) (r_y^p - p_y)$

Q: Can you always cover 50% if $(0,0) \in P$?

Why 50% ?

(interactive)

Contents

Algorithmic Approach

Optimal Algorithm through Dynamic Programming

Two Heuristics: TILEPACKING and GREEDYPACKING

Different Greedys

Ordering

Ordering

Tile

Greedy Choices

Basic Algorithm

```
\label{eq:covered} \begin{split} & \text{covered} := 0 \\ & \text{For all permutations } \pi \text{ of } P, \\ & \text{R} := \text{pack rectangles greedily in order } \pi \\ & \text{covered} := \max(\text{s, coverage}(\text{R})) \\ & \text{return covered} \end{split}
```

Dynamic Programming

If $\pi=\pi',x$ is the optimal permutation, then π' is optimal for $P\backslash\{x\}$.

Idea: Inductively compute π for all subsets of P.

Held-Karp Dynamic Programming Solver for TSP $O(2^n n \log n)$.

Improving it with Heuristics

Figure: Time (ms) for the Optimal Algorithm on n uniformly distributed points; 100 instances

TilePacking

Choose a permutation through a sweep and pack accordingly

Easy to implement in time $O(n \log n)$

Can not cover more than 43% in some instances

TilePacking: Points

TilePacking: Permutation

Problem with TilePacking in Practice

(interactive)

Performance in Theory

GreedyPacking is no better in theory

Reduction by adding 2 points $(x - \epsilon, y), (x, y - \epsilon)$ for each $(x, y) \in P$

Corollary: GreedyPacking can not reach 50% either!

Performance in Practice

Figure: Average coverage of the algorithms on n uniformly random points; 100 instances

GreedyPacking

Best previous algorithm: $O(n^2 \log n)$ time, $O(n^2)$ space

Implemented: $O(n^2)$ time, O(n) space

Described: $O(n \log^2 n + k)$ time, $O(n \log^2 n)$ space

Find Tile Rectangle

O(n) time, no extra storage

Make greedy choice

O(n) time, no extra storage $O(\log^2 n + k)$ time for k points in the tile rect, using a range tree

Find Tile Rectangle (better)

 $O(\log^2 n)$ time using interval and priority search tree

Find Tile Rectangle (better)

 $O(\log^2 n)$ time using interval and priority search tree

Find Tile Rectangle (better)

 $O(\log^2 n)$ time using interval and priority search tree

Solves the TilePacking Problem

GreedyPacking: runtime

Figure: Time (ms) for the Greedy Algorithm on n uniformly distributed points; 100 instances

GreedyPacking: Manhattan

GreedyPacking: Euclidean

GreedyPacking: Infinity

GreedyPacking: Minus Infinity

Norms in Practice

Figure: Average coverage of the greedy algorithm on n uniformly random points; 100 instances

Why are other norms interesting?

No norm is better than any other!

Damerius found no counter-example for the $(-)\infty$ -norms

Interactive

Questions?