

Digital IC Design

Week1: Brief History of Semiconductor Fabrication and Process of Semi Custom IC

2024 | Nineplus Infotech X Anseong Polytechnic University Sr Research Engineer, William Woo

cādence°

1. Intro

강사소개

우승안 (William Woo)

- Senior Research Engineer: Semi Custom Design
- BA, Sungkunkwan University
- MA, Incheon University: Accelerator Design / CUDA Architecture
- Nineplus Infotech Inc.
- Interest: OOP Design(C++), Firmware Control, Linux System
- https://github.com/codefoolosopher/Digital_Design
- TEL: 010-5280-9795
- E-Mail: sawoo@npit.co.kr
- Office Hour: (Thu.) 15:00 ~ 18:00 / (Fri.) 16:00 ~ 18:00

강의소개: Digital IC Design

What is Digital IC?

강의소개: Digital Realization of the RTL-to-GDSII Flow

강의소개: Course Overview

- 본 과목은 NCS 교과임
- 강의는 Semi Custom Design 기준으로 Cadence Solution 활용하여 진행
- 각 수업마다 Lecture + LAB으로 구성
- 교재
 - 。 강의: 자체 교재(강의안) 및 LAB 제공
 - 。 Self Study: "Verilog HDL 설계"(신경욱, 한빛아카데미)
- 평가는 총 3회
 - 。 1회차(10%): 이론
 - 。 2회차(20%): 이론 + 실습(Design)
 - 。 3회차(40%): 실습(Design + Front End Flow)
- 학습 능력과 진도에 따라 (온라인) 보강이 있을 수 있음
- Office Hour시간: 상담 및 개별 보충

THINK

Self Checking

Roadmap for Your Success

Study Guide for Beginner

2. History of IC Development and HDL Emerging

THINK

Why on earth does we need Hardware Descriptive Language?

Old Schematic & Design Methodology: Intel 4004

THINK

가람들은 어떻게 하드웨어를 만들어 왔을까?

Development of Circuit Design Concept

1966, IBM360/37 mainframepowered CAD at Fairchild

Mask layout drawing hand digitizing system at Intel

Source: National Instrument | pixabay | Wikipedia | Computer History Museum

Development of Circuit Design Concept

Diverse viewpoint to scrutinize chip designs

Device Level

• 소자의 설계

Circuit Level

• TR기반의 회로설계

Gate Level

• Logic Gate기반의 회로설계

RTL(Module) Level

• 레지스터간 데이터 흐름 / 논리 연산 모델링 기반 회로설계

System Level

• 시스템 모듈 및 인터페이스를 통한 전체 시스템 설계

How to realize semiconductor chip? | Full Custom

- Full Custom IC
 - ◆ Circuit 수준에서 설계 진행
 - ◆ Transistor / Resistor / Capacitor 기반

Schematic using primitives

Vco schematic using primitives and hierarchical symbols

Logic Design

Physical Implementation: Layout

How to realize semiconductor chip? | Semi Custom IC

- Semi Custom IC
 - ◆ Gate Level 수준에서 설계 진행
 - ◆ Standard Cell 기반
 - * Standard Cell: 미리 만들어 놓은 논리 게이트 소자

Source: IBM

How to realize semiconductor chip? | Semi Custom IC

Logic HW Design

Implementation: Place & Route

Standard Cell Library

How to realize semiconductor chip? | FPGA

- FPGA(Field Programmable Gate Array)
 - ◆ Gate Level 수준에서 설계 진행
 - Standard Cell이 미리 구현되어 있음

Fig. 4 X 4 multiplexer schematic

Design Styles

ASIC | FPGA

https://wordcloud.kr/

Semi Custom Design Process

Logic Synthesis: power of EDA tools

What if no EDA Tools?

Advantages of HDL-based design

효율성

- •설계오류 수정이 쉽다
- •합성에 의한 회로 생성과 설계의 변경이 쉽다

QoR 향상

- •다양한 설계기법에 의한 최적화
- •선택적인 최적화를 통한 합성

독립성

- •특정 ASIC제조업체에 종속되지 않음
- •동일한 HDL설계의 다른 라이브러리를 이용한 합성
- •신속한 prototyping 가능

비용

- •상위레벨 설계도구 사용에 따른 설계 생산성 증가
- •설계기간 단축 →설계비용 감소
- •설계자산 재사용

표준성

•IEEE표준으로 학계 및 산업계에서 설계 및 설계 정보 교환수단으로 사용

관리

•구조적 설계 이용한 기능별 분할 설계 및 문서화 용이

LAB

System Setup

Homework

Chapter1: ~pp.30

