CSci5521: Machine Learning Fundamentals

- Mixture Models and EM II

Catherine Qi Zhao
Computer Science and Engineering
University of Minnesota

K-Means Clustering: Distortion Measure

- ightharpoonup Dataset $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$
- ▶ Partition in *K* clusters
- ▶ Cluster prototype: μ_k
- ▶ Binary indicator variable, 1-of-K Coding scheme $r_{nk} \in \{0,1\}$ $r_{nk} = 1$, and $r_{nj} = 0$ for $j \neq k$. Hard assignment.
- ► Distortion measure

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$
 (9.1)

K-Means Clustering: Expectation Maximization

▶ Find values for $\{r_{nk}\}$ and $\{\mu_k\}$ to minimize:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$
 (9.1)

- ► Iterative procedure:
 - 1. Minimize J w.r.t. r_{nk} , keep μ_k fixed (Expectation)

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \mu_j\|^2 \\ 0 & \text{otherwise} \end{cases}$$
 (9.2)

2. Minimize J w.r.t. μ_k , keep r_{nk} fixed (Maximization)

$$2\sum_{n=1}^{N} r_{nk}(\mathbf{x}_n - \mu_k) = 0$$
 (9.3)

$$\mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}} \tag{9.4}$$

Multivariate Gaussian Distribution

$$\mathbf{x} \sim \mathcal{N}_d(\mu, \Sigma)$$

$$\mathbf{x} \sim \mathcal{N}_d(\mu, \Sigma)$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right]$$

Mixture of Gaussians: Latent variables

Gaussian Mixture Distribution:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)$$
 (9.7)

- ► Introduce latent variable z
 - ightharpoonup z is binary 1-of-K coding variable
 - $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z})$

Mixture of Gaussians: Latent variables (2)

- $p(z_k=1)=\pi_k$ constraints: $0 \le \pi_k \le 1$, and $\sum_k \pi_k = 1$ $p(\mathbf{z})=\prod_k \pi_k^{z_k}$
- $p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$ $p(\mathbf{x}|\mathbf{z}) = \prod_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)^{z_k}$
- $p(\mathbf{x}) = \sum_{z} p(\mathbf{x}, \mathbf{z}) = \sum_{z} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k} \pi_{k} \mathcal{N}(\mathbf{x}|\mu_{k}, \Sigma_{k})$
- ► The use of the joint probability $p(\mathbf{x}, \mathbf{z})$, leads to significant simplifications

Mixture of Gaussians: Latent variables (3)

responsibility of component k to generate observation \mathbf{x} (9.13):

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_k p(z_k = 1)p(\mathbf{x}|z_k = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}$$

is the posterior probability

Mixture of Gaussians: Maximum Likelihood

▶ Log Likelihood

$$\ln p(\mathbf{X}|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k) \right\}$$
(9.14)

Mixture of Gaussians: EM for Gaussian Mixtures

- ▶ Informal introduction of *expectation-maximization* algorithm (Dempster *et al.*, 1977).
- Maximum of log likelihood: derivatives of $\ln p(\mathbf{X}|\pi,\mu,\Sigma)$ w.r.t parameters to 0.

$$\ln p(\mathbf{X}|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k) \right\}$$
(9.14)

▶ For the μ_k^1 :

$$0 = -\sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)} \Sigma_k^{-1}(\mathbf{x}_n - \mu_k) \qquad (9.16)$$

$$\mu_k = \frac{1}{\sum_n \gamma(z_{nk})} \sum_n \gamma(z_{nk}) \mathbf{x}_n \qquad (9.17)$$

¹Error in book, see erata file

Mixture of Gaussians: EM for Gaussian Mixtures

 \blacktriangleright For Σ_k :

$$\Sigma_k = \frac{1}{\sum_n \gamma(z_{nk})} \sum_n \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T \qquad (9.19)$$

- ▶ For the π_k :
 - ▶ Take into account constraint $\sum_k \pi_k = 1$
 - Lagrange multiplier

multiplier
$$\ln p(\mathbf{X}|\pi,\mu,\Sigma) + \lambda(\sum_{k} \pi_{k} - 1) \qquad (9.20)$$

$$0 = \sum_{n} \frac{\mathcal{N}(\mathbf{x}_{n}|\mu_{k},\Sigma_{k})}{\sum_{k} \pi_{k} \mathcal{N}(\mathbf{x}_{n}|\mu_{k},\Sigma_{k})} + \lambda \qquad (9.21)$$

$$\pi_{k} = \frac{\sum_{n} \gamma(z_{nk})}{N} \qquad (9.22)$$

Mixture of Gaussians: EM for Gaussian Mixtures Example

- ▶ No closed form solutions: $\gamma(z_{nk})$ depends on parameters
- ► But these equations suggest simple iterative scheme for finding maximum likelihood:

Alternate between estimating the current $\gamma(z_{nk})$ and updating the parameters $\{\mu_k, \Sigma_k, \pi_k\}$.

- lacktriangle More iterations needed to converge than K-means algorithm, and each cycle requires more computation
- ightharpoonup Common, initialise parameters based K-means run.

Mixture of Gaussians: EM for Gaussian Mixtures Summary

- 1. Initialize $\{\mu_k, \Sigma_k, \pi_k\}$ and evaluate log-likelihood
- 2. E-Step Evaluate responsibilities $\gamma(z_{nk})$
- 3. M-Step Re-estimate paramters, using current responsibilities:

$$\mu_k^{\text{new}} = \frac{1}{\sum_n \gamma(z_{nk})} \sum_n \gamma(z_{nk}) \mathbf{x}_n$$
 (9.23)

$$\Sigma_k^{\text{new}} = \frac{1}{\sum_n \gamma(z_{nk})} \sum_n \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T \qquad (9.24)$$

$$\pi_k^{\text{new}} = \frac{\sum_n \gamma(z_{nk})}{N} \tag{9.25}$$

4. Evaluate log-likelihood $\ln p(\mathbf{X}|\pi,\mu,\Sigma)$ and check for convergence (go to step 2).

Practice Question with White Board