k-NN on Amazon Fine Food reviews Dataset

Exercise:

- 1. Download Amazon Fine Food Reviews dataset from Kaggle. You may have to create a Kaggle account to download data. (https://www.kaggle.com/snap/amazon-fine-food-reviews)
- 2. Perform featurization, BoW, tf-idf,Avg Word2Vec, tf-idf-Word2Vec.
- 3. Split data into train and test using time based slicing as 70% train & 30% test.
- 4. Perform 10-fold cross validation to find optimal k.
- 5. Report test accuracy for all four featurization.
- 6. Write your observations in English as crisply and unambiguously as possible. Always quantify your results.

Information regarding data set:

- 1. Title: Amazon Fine Food Reviews Data
- 2. Sources: Stanford Network Analysis Project(SNAP)
- 3. **Relevant Information**: This dataset consists of reviews of fine foods from amazon. The data span a period of more than 10 years, including all ~568,454 reviews up to October 2012(Oct 1999 Oct 2012). Reviews include product and user information, ratings, and a plain text review.
- 4. Attribute Information:

ProductId - unique identifier for the product

UserId - unqiue identifier for the user

ProfileName - name of the user

HelpfulnessNumerator - number of users who found the review helpful

HelpfulnessDenominator - number of users who indicated whether they found the review helpful or not

Score - rating between 1 and 5.(rating of 4 or 5 could be cosnidered a positive review. A review of 1 or 2 could be considered negative. A review of 3 is nuetral and ignored)

Time - timestamp for the review

Summary - brief summary of the review

Text - text of the review

Objective:

It is a 2-class classification task, where we have to analyze, transform(BoW,TF-IDF,AVG-W2V,TF-IDF-W2V) and calculate probabilistic class label values, which evaluates whether a review is positive or negative.

```
In [2]: import warnings
        warnings.filterwarnings("ignore", category=UserWarning, module='gensim')
        warnings.filterwarnings("ignore", category=UserWarning)
        from sklearn.exceptions import DataConversionWarning
        warnings.filterwarnings(action='ignore', category=DataConversionWarning)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
        import traceback
        import sqlite3
        import datetime as dt
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from matplotlib.colors import ListedColormap
        import seaborn as sn
        import itertools
        from tqdm import tqdm
        from sklearn import preprocessing
        from sklearn.preprocessing import StandardScaler
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.model_selection import cross_val_score
        from sklearn.model_selection import cross_validate
        from sklearn.model_selection import train_test_split
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.decomposition import TruncatedSVD
        from gensim.models import Word2Vec
        from prettytable import PrettyTable
        from imblearn.over_sampling import SMOTE
        from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score
        from sklearn.metrics import make_scorer,accuracy_score,confusion_matrix,classification_report
```

(1) Load dataset:

```
In [4]: # Load 'finalDataSet.sqlite' in panda's daraframe.
        # This dataset is already gone through data deduplication and text preprocessing, so it is approx ~364
        # Create connection object to load sqlite dataset
        connection = sqlite3.connect('finalDataSet.sqlite')
        # Load data into pandas dataframe.
        reviews_df = pd.read_sql_query(""" SELECT * FROM Reviews """,connection)
        # Drop index column
        reviews_df = reviews_df.drop(columns=['index'])
        # Convert timestamp to datetime.
        reviews_df['Time'] = reviews_df[['Time']].applymap(lambda x: dt.datetime.fromtimestamp(x))
        # Sort the data on the basis of time.
        reviews_df = reviews_df.sort_values(by=['Time'])
        # Take first 100K sample of reviews
        reviews_df = reviews_df.head(100000)
        print("Dataset Shape : \n", reviews_df.shape)
        print("\nColumn Names: \n",reviews_df.columns)
        print("\nTarget Class label : ")
        print(reviews_df['Score'].value_counts())
        print()
         # Split data into 70% training and 30% testing.
        x_train_original,x_test_original,y_train_original,y_test_original = train_test_split(reviews_df['Clean
        edText'].values,
                                                                                               reviews df['Scor
        e'].values,
                                                                                               test_size=0.3,
                                                                                               shuffle=False,
                                                                                               random state=0)
        # Plot review counts
        plot count values(reviews df)
```



```
In [8]: ###--- All utility variables and functions ---##
        # List of odd numbers from 0 to 30
        neighbors = list(filter(lambda x: x % 2 != 0, list(range(0,30))))
        # Training Error
        train_error = []
        # Test Error
        test_error = []
        # Test Error
        list_k = []
        # http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
        # for list allowed scoring values
        scoring = {'acc': 'accuracy',
                    'prec_macro': 'precision_macro',
                    'rec_micro': 'recall_macro'}
        scoring_parameter = "Accuracy, Precision, Recall"
        # Target Classes
        target_classes = ["negative", "positive"]
        def get_optimal_k(x_train, y_train,algorithm_name):
            This function, plots error and k values and, then returns optimal k value.
            scores = dict()
            # Pretty table instance
            ptable = PrettyTable()
            ptable.title = "Optimal K : 10-Fold Cross Validation"
            ptable.field_names = ["K Value", "Cross Validation Scoring Mean", "Scoring Parameter Used"]
            # Perform 10-fold cross validation
            for k in neighbors:
                knn_classifier = KNeighborsClassifier(n_neighbors=k,algorithm=algorithm_name,n_jobs=-1)
                result = cross_val_score(knn_classifier, x_train, y_train, cv=10, scoring=custom_scorer)
                 scores[k] = result.mean()
                 ptable.add_row([k, scores[k], scoring_parameter])
            # Print pretty table values
            print(ptable)
            \# Plot the value of alpha's (x-axis) and crosss validation scoring (accuracy, precision, recall)(y-axi)
        5)
            plt.plot(scores.keys(),scores.values())
            plt.xlabel("Value of k for k-NN")
            plt.ylabel("Cross validated scoring - accuracy,precision,recall")
            plt.show()
            optimal_k = max(scores, key=scores.get)
            list_k.append(optimal_k)
            print("\nOptimal value of hyperparameter k is ",optimal_k)
            return optimal_k
        def getScores(estimator, x, y):
            yPred = estimator.predict(x)
            return (accuracy_score(y, yPred),
                     precision_score(y, yPred, pos_label=3, average='macro'),
                     recall_score(y, yPred, pos_label=3, average='macro'))
        def custom_scorer(estimator, x, y):
            a, p, r = getScores(estimator, x, y)
            return a+p+r
        def apply_k_nn(algorithm_name,optimal_k,x_train,y_train):
            This funtion tries to fit the model and returns the corresponding classifier.
            # instantiate learning model k with optimal_k and specified algorithm(brute,kd-tree)
            knn_classifier = KNeighborsClassifier(n_neighbors=optimal_k,algorithm=algorithm_name,n_jobs=-1)
            # Fitting the model.
            knn classifier.fit(x train, y train)
            return knn_classifier
```

```
def plot_count_values(reviews_df):
    sn.catplot(x ="Score", kind='count', data=reviews_df, height=5)
   plt.title("Score Count", fontsize=18)
   plt.show()
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    11 11 11
   This function prints and plots the confusion matrix.
   Normalization can be applied by setting `normalize=True`.
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
   plt.title(title)
   plt.colorbar()
   tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
   plt.yticks(tick_marks, classes)
   fmt = '.2f' if normalize else 'd'
   thresh = cm.max() / 2.
   for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
   plt.ylabel('True label')
   plt.xlabel('Predicted label')
   plt.tight_layout()
   plt.show()
def generate_report(optimal_k, y_test, predicted_y_test):
    This funtion generate reports like recall, precision, f1-score, confusion matrix.
   print()
   # Pretty table instance
   ptable = PrettyTable()
   ptable.title = "Classification Report with k = {0}".format(optimal_k)
   ptable.field_names = ["Class Lable/Averages","Precision", "Recall","F1-Score","Support"]
    report_dict = classification_report(y_test, predicted_y_test,output_dict = True)
    for key , value in report_dict.items():
        inner_dict = value
        ptable.add_row([key,inner_dict['precision'],inner_dict['recall'],inner_dict['f1-score'],inner_
dict['support']])
    # Print pretty table values
   print(ptable)
   print()
   print("\nAccuracy Score: {0}%".format(accuracy_score(y_test, predicted_y_test)*100))
   test_error.append(1-accuracy_score(y_test, predicted_y_test))
   print()
   cnf_mat = confusion_matrix(y_test, predicted_y_test)
   plt.figure()
   plot_confusion_matrix(cnf_mat, classes=target_classes,title='Confusion Matrix')
   TN = cnf_mat[0,0]
   FP = cnf_mat[0,1]
   FN = cnf_mat[1,0]
   TP = cnf_mat[1,1]
   # Sensitivity, hit rate, recall, or true positive rate
   TPR = TP/(TP+FN)
    # Specificity or true negative rate
   TNR = TN/(TN+FP)
   # Fall out or false positive rate
   FPR = FP/(FP+TN)
   # False negative rate
   FNR = FN/(TP+FN)
   # Overall accuracy
   ACC = (TP+TN)/(TP+FP+FN+TN)
```

```
print()
   # Pretty table instance
   ptable = PrettyTable()
    ptable.title = "Confusion Matrix Report"
    ptable.field_names = ['Term','Value']
   ptable.add_row(["TP (True Positive)",TP])
    ptable.add_row(["TN (True Negative)",TN])
    ptable.add_row(["FP (False Positive)",FP])
    ptable.add_row(["FN (False Negative)",FN])
   ptable.add_row(["TPR (True Positive Rate)= TP/(TP+FN))",TPR])
    ptable.add_row(["TNR (True Negative Rate)= TN/(TN+FP))",TNR])
    ptable.add_row(["FPR (False Positive Rate)= FP/(FP+TN))",FPR])
    ptable.add_row(["FNR (False Negative Rate)= FN/(TP+FN))",FNR])
   ptable.add_row(["ACC (Accuracy)= (TP+TN)/(TP+FP+FN+TN))",ACC])
    # Print pretty table values
   print(ptable)
def conclude():
   ptable=PrettyTable()
    ptable.title = "***Conclusion***"
    ptable.field_names=["Vectorizer","Model","Algorithm","Hyperparameter(k)","Train Error","Test Erro
r"]
    ptable.add_row(["BoW",
                    "K-NN",
                    "Brute-Force Search",
                    list_k[0],
                    str(round(train_error[0], 2)*100)+"%",
                    str(round(test_error[0], 2)*100)+"%"])
    ptable.add_row(["BoW",
                    "K-NN",
                    "KD-Tree",
                    list_k[1],
                    str(round(train_error[1], 2)*100)+"%",
                    str(round(test_error[1], 2)*100)+"%"])
    ptable.add_row(["TF-IDF",
                    "K-NN",
                    "Brute-Force Search",
                    list_k[2],
                    str(round(train_error[2], 2)*100)+"%",
                    str(round(test_error[2], 2)*100)+"%"])
   ptable.add_row(["TF-IDF",
                    "K-NN",
                    "KD-Tree"
                    list_k[3],
                    str(round(train_error[3], 2)*100)+"%",
                    str(round(test_error[3], 2)*100)+"%"])
    ptable.add_row(["AVG W2V",
                    "K-NN",
                    "Brute-Force Search",
                    list_k[4],
                    str(round(train_error[4], 2)*100)+"%",
                    str(round(test_error[4], 2)*100)+"%"])
    ptable.add_row(["AVG W2V",
                    "K-NN",
                    "KD-Tree",
                    list_k[5],
                    str(round(train_error[5], 2)*100)+"%",
                    str(round(test_error[5], 2)*100)+"%"])
    ptable.add_row(["TF-IDF W2V",
                     "K-NN",
                    "Brute-Force Search",
                    list k[6],
                    str(round(train_error[6], 2)*100)+"%",
                    str(round(test_error[6], 2)*100)+"%"])
    ptable.add_row(["TF-IDF W2V",
                    "K-NN",
                    "KD-Tree",
                    list_k[7],
                    str(round(train_error[7], 2)*100)+"%",
                    str(round(test_error[7], 2)*100)+"%"])
    print(ptable)
def run_knn(x_train,y_train,x_test,y_test,chosen_algorithm = None):
    algorithms = chosen_algorithm
    for algorithm_name in algorithms:
```

```
if algorithm_name == 'brute':
       print()
       print("-----")
       else:
       print("\n\n")
       print("-----")
       if(algorithm_name == "kd_tree"):
       print("\nPerforming TruncatedSVD, which will return dense matrix with lower dimensions...
\n")
       svd = TruncatedSVD(n_components = 100)
       x_train = svd.fit_transform(x_train)
       x_test = svd.transform(x_test)
     # Find optimal K
     optimal_k = get_optimal_k(x_train, y_train,algorithm_name)
     # Perform naive bayes
     classifier = apply_k_nn(algorithm_name,optimal_k,x_train,y_train)
     # Make class predictions for x_test
     # Also make class predictions for x_train(training error)
     predicted_y_test = classifier.predict(x_test)
     predicted_y_train = classifier.predict(x_train)
     train_error.append(1 - accuracy_score(y_train, predicted_y_train))
     # Generate report
     generate_report(optimal_k,y_test,predicted_y_test)
```

(2) Convert review text to vector representation and perform k-NN on the corresponding vector :

(2.1) Bag of Words (BoW):

Note: KD-Tree is computationaly very costly for high demensional dataset, so we will use truncatedSVD to reduce the dimensionality of data.

```
In [5]: | %%time
         # Instantiate CountVectorizer (vectorizer)
        bow_count_vectorizer = CountVectorizer()
        # learn the 'vocabulary' of the training data (occurs in-place)
        bow_count_vectorizer.fit(x_train_original)
        # Transform training and testing data(features) into a 'document-term matrix' or 'row-column matrix'
        x_train_dtm = bow_count_vectorizer.transform(x_train_original)
        x_test_dtm = bow_count_vectorizer.transform(x_test_original)
        # Data Standardization
        sc = StandardScaler(with_mean=False)
        x_train_dtm = sc.fit_transform(x_train_dtm)
        x_test_dtm = sc.transform(x_test_dtm)
         print("\nthe type of count vectorizer ",type(x_train_dtm))
        print("the shape of BOW vectorizer ",x_train_dtm.get_shape())
        print("the number of unique words ", x_train_dtm.get_shape()[1])
        the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'>
        the shape of BOW vectorizer (70000, 36118)
        the number of unique words 36118
        Wall time: 4.15 s
In [9]: | %%time
        # Perform k-NN on dataset.(BoW)
        try:
             choice = ['brute','kd_tree']
            run_knn(x_train_dtm, y_train_original, x_test_dtm, y_test_original, chosen_algorithm = choice)
        except Exception:
             traceback.print_exc()
```

 	Optimal K : 10-Fold Cros	55
:	•	
K Value	Cross Validation Scoring Mean	Scoring Parameter Used
1 1	1.9758874015270744	Accuracy, Precision, Recall
3	2.0815822586119976	Accuracy, Precision, Recall
5	2.13608057674377	Accuracy, Precision, Recall
7	2.1807375724696216	Accuracy, Precision, Recall
9	2.230342253354761	Accuracy, Precision, Recall
11	2.2487415924844205	Accuracy, Precision, Recall
13	2.2645068680048923	Accuracy, Precision, Recall
15	2.286919194114564	Accuracy, Precision, Recall
17	2.286403758688782	Accuracy, Precision, Recall
19	2.2722423587922207	Accuracy, Precision, Recall
21	2.288929131323467	Accuracy, Precision, Recall
23	2.247173970300085	Accuracy, Precision, Recall
25	2.2902042972637617	Accuracy, Precision, Recall
27	2.270967431881206	Accuracy, Precision, Recall
29	2.2840983517044955	Accuracy, Precision, Recall

Optimal value of hyperparameter k is 25

Classification Report with $k = 25$					
Class Lable/Averages	Precision	Recall	F1-Score	Support	
negative	+ 0.8666666666666667	0.006542526421741319	0.012987012987012986	+ 3974	
positive	0.8682682682682683	0.9998463075386153	0.929423530252161	26026	
micro avg	0.868266666666666	0.868266666666666	0.868266666666666	30000	
macro avg	0.8674674674674675	0.5031944169801783	0.471205271619587	30000	
weighted avg	0.8680561094427761	0.868266666666666	0.8080262395984377	30000	

Accuracy Score: 86.8266666666667%

+			
Term Value			
TP (True Positive) TN (True Negative) FP (False Positive) FN (False Negative) TPR (True Positive Rate)= TP/(TP+FN)) TNR (True Negative Rate)= TN/(TN+FP)) FPR (False Positive Rate)= FP/(FP+TN)) FNR (False Negative Rate)= FN/(TP+FN)) ACC (Accuracy)= (TP+TN)/(TP+FP+FN+TN))	26022 26 3948 4 0.9998463075386153 0.006542526421741319 0.9934574735782586 0.00015369246138476907 0.86826666666666666666666666666666666666		

+		+
	Optimal K : 10-Fold Cros	ss Validation
+	+	++
K Value	Cross Validation Scoring Mean	Scoring Parameter Used
+	+	+
1	1.9420706220019224	\mid Accuracy, Precision, Recall \mid
3	1.9861669609343917	\mid Accuracy, Precision, Recall \mid
5	2.012114866530535	Accuracy, Precision, Recall
7	2.0345826150740725	Accuracy, Precision, Recall
9	2.0612883615796918	Accuracy, Precision, Recall
11	2.073735426431774	Accuracy, Precision, Recall
13	2.076114472030658	Accuracy, Precision, Recall
15	2.0584030803126963	Accuracy, Precision, Recall
17	2.042706242514274	Accuracy, Precision, Recall
19	2.0701151344159467	Accuracy, Precision, Recall
21	1.9956316762231854	Accuracy, Precision, Recall
23	2.0105681641733613	Accuracy, Precision, Recall
25	2.0146750432057488	Accuracy, Precision, Recall
27	2.0003888917585595	Accuracy, Precision, Recall
29	1.991116087445856	Accuracy, Precision, Recall
+	-	- +

Optimal value of hyperparameter k is 13

Classification Report with $k = 13$					
Class Lable/Averages	Precision	Recall	F1-Score	Support	
negative	0.5076923076923077	0.008303975842979365	0.016340678385739042	3974	
positive	0.8683480875229664	0.9987704603089218	0.9290041278747699	26026	
micro avg	0.8675666666666667	0.867566666666666666666666666666666666666	0.8675666666666667	30000	
macro avg	0.688020197607637		0.4726724031302545	30000	
weighted avg	0.8205732185547318		0.8081066429324563	30000	

Accuracy Score: 86.75666666666667%

t Confusion Matrix Report			
Term	Value		
TP (True Positive) TN (True Negative) FP (False Positive) FN (False Negative) TPR (True Positive Rate)= TP/(TP+FN)) TNR (True Negative Rate)= TN/(TN+FP)) FPR (False Positive Rate)= FP/(FP+TN)) FNR (False Negative Rate)= FN/(TP+FN))	25994 33 3941 32 0.9987704603089218 0.008303975842979365 0.9916960241570206 0.0012295396910781526		
ACC (Accuracy)= (TP+TN)/(TP+FP+FN+TN))	0.867566666666666666666666666666666666666		

Wall time: 3h 57min 3s

(2.2) Term Frequency - Inverse Document Frequency (TF-IDF) :

```
In [10]: %%time
         # Instantiate TfidfVectorizer (vectorizer)
         tfidf_vectorizer = TfidfVectorizer(min_df = 3,ngram_range=(1,2))
         # learn the 'vocabulary' of the training data (occurs in-place)
         tfidf_vectorizer.fit(x_train_original)
         # Transform training and testing data(features) into a 'document-term matrix' or 'row-column matrix'
         x_train_dtm = tfidf_vectorizer.transform(x_train_original)
         x_test_dtm = tfidf_vectorizer.transform(x_test_original)
         # Data Standardization
         x_train_dtm = sc.fit_transform(x_train_dtm)
         x_test_dtm = sc.transform(x_test_dtm)
         print("\nthe type of count vectorizer ",type(x_train_dtm))
         print("the shape of TF-IDF vectorizer ",x_train_dtm.get_shape())
         print("the number of unique words ", x_train_dtm.get_shape()[1])
         the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'>
         the shape of TF-IDF vectorizer (70000, 162272)
         the number of unique words 162272
         Wall time: 14 s
In [11]: %%time
         # Perform k-NN on dataset.(BoW)
             choice = ['brute','kd_tree']
             run_knn(x_train_dtm, y_train_original, x_test_dtm, y_test_original, chosen_algorithm = choice)
         except Exception:
             traceback.print_exc()
```

	Optimal K : 10-Fold Cro	ss Validation
K Value	Cross Validation Scoring Mean	Scoring Parameter Used
1	1.981832064764698	Accuracy, Precision, Recall
3	1.8281608045616953	Accuracy, Precision, Recall
5	1.8281839821964732	Accuracy, Precision, Recall
7	1.8282071499377555	Accuracy, Precision, Recall
9	1.8282071499377555	Accuracy, Precision, Recall
11	1.8282071499377555	Accuracy, Precision, Recall
13	1.8282071499377555	Accuracy, Precision, Recall
15	1.8282071499377555	Accuracy, Precision, Recall
17	1.8282071499377555	Accuracy, Precision, Recall
19	1.8282071499377555	Accuracy, Precision, Recall
21	1.8282071499377555	Accuracy, Precision, Recall
23	1.8282071499377555	Accuracy, Precision, Recall
25	1.8282071499377555	Accuracy, Precision, Recall
27	1.8282071499377555	Accuracy, Precision, Recall
29	1.8282071499377555	Accuracy, Precision, Recall

Optimal value of hyperparameter k is 1

Classification Report with k = 1					
Class Lable/Averages	Precision	Recall	F1-Score	Support	
negative	0.30714285714285716	0.010820332159033719	+ 0.020904229460379193	+ 3974	
positive	0.868352310783657	0.9962729578114193	0.9279247038614322	26026	
micro avg	0.8657333333333334	0.8657333333333334	0.8657333333333334	30000	
macro avg	0.5877475839632571	0.5035466449852265	0.4744144666609057	30000	
weighted avg	0.794010765158039	0.86573333333333334	0.8077747250191061	30000	

Accuracy Score: 86.57333333333334%

+ Confusion Matrix Report			
Term	Value		
TP (True Positive) TN (True Negative) FP (False Positive) FN (False Negative) TPR (True Positive Rate)= TP/(TP+FN)) TNR (True Negative Rate)= TN/(TN+FP)) FPR (False Positive Rate)= FP/(FP+TN)) FNR (False Negative Rate)= FN/(TP+FN) ACC (Accuracy)= (TP+TN)/(TP+FP+FN+TN))	25929 43 3931 97 0.9962729578114193 0.010820332159033719 0.9891796678409662 0.00372704218858065 0.8657333333333333333333333333333333333333		

Optimal K : 10-Fold Cross Validation				
K Value	Cross Validation Scoring Mean	Scoring Parameter Used		
+	1.8881627977720357 1.9377068912015578 1.9590974181422816 1.987215725156068 2.027064477757251 2.0628837031265888 2.0777778311313977 2.096177663906706 2.0965963271193226 2.047977027808475 2.071558979608495 2.0836608024837537 2.102290957491914	Accuracy, Precision, Recall		
27 29	2.0623372129711104 2.0913380485521094	Accuracy, Precision, Recall Accuracy, Precision, Recall		

Optimal value of hyperparameter k is 25

Classification Report with $k = 25$					
Class Lable/Averages	Precision	Recall	F1-Score	Support	
negative	0.5454545454545454	0.003019627579265224	0.006006006006006006	3974	
positive micro avg	0.8678364133698045 0.8676	0.999615768846538 0.8676	0.9290764945361045 0.8676	26026 30000	
macro avg weighted avg	0.706645479412175 0.8251315619332966	0.5013176982129016 0.8676	0.46754125027105525 0.8068004238221507	30000 30000	

Accuracy Score: 86.76%

Confusion Matrix Report			
Term	Value		
TP (True Positive) TN (True Negative) FP (False Positive) FN (False Negative) TPR (True Positive Rate)= TP/(TP+FN)) TNR (True Negative Rate)= TN/(TN+FP)) FPR (False Positive Rate)= FP/(FP+TN)) FNR (False Negative Rate)= FN/(TP+FN)) ACC (Accuracy)= (TP+TN)/(TP+FP+FN+TN))	26016 12 3962 10 0.999615768846538 0.003019627579265224 0.9969803724207348 0.0003842311534619227 0.8676		

Wall time: 4h 40min 18s

(2.3) Average Word2Vec:

```
In [19]: %%time
         # Make list of list from training data
         list_of_sentences_in_train=[]
         for sentence in x_train_original:
             list_of_sentences_in_train.append(sentence.split())
         # Make list of list from testing data - this will be useful when vectorizing testing data.
         list_of_sentences_in_test=[]
         for sentence in x_test_original:
             list_of_sentences_in_test.append(sentence.split())
         print("Shape of training data : ",x_train_original.shape)
         print("Shape of testing data : ",x_test_original.shape)
         print("Number of sentences present in training data : ",len(list_of_sentences_in_train))
         print("Number of sentences present in testing data : ",len(list_of_sentences_in_test))
         # Generate model.
         w2v_model = Word2Vec(list_of_sentences_in_train,min_count=3,size=101, workers=6)
         w2v_words = list(w2v_model.wv.vocab)
         print("Length of vocabulary : ",len(w2v_words))
         # Prepare train vectorizer using trained word2vec model
         train_list = []
         for sentence in tqdm(list_of_sentences_in_train,unit=" sentence",desc='Average Word2Vec - Train dat
             word_2_vec = np.zeros(101)
             cnt_words = 0
             for word in sentence:
                 if word in w2v_words:
                     vec = w2v model.wv[word]
                     word_2_vec += vec
                     cnt_words += 1
             if cnt_words != 0 :
                 word_2_vec /= cnt_words
             train_list.append(word_2_vec)
         # Prepare test vectorizer using trained word2vec model
         test_list = []
         for sentence in tqdm(list_of_sentences_in_test,unit=" sentence",desc='Average Word2Vec - Test data'):
             word_2_{vec} = np.zeros(101)
             cnt_words = 0
             for word in sentence:
                 if word in w2v_words:
                     vec = w2v_model.wv[word]
                     word_2_vec += vec
                     cnt_words += 1
             if cnt_words != 0 :
                 word_2_vec /= cnt_words
             test_list.append(word_2_vec)
         avg_w2v_train = np.array(train_list)
         avg_w2v_test = np.array(test_list)
         Shape of training data: (70000,)
         Shape of testing data: (30000,)
         Number of sentences present in training data: 70000
         Number of sentences present in testing data: 30000
         Length of vocabulary: 13792
                                                                                     70000/70000 [02:02<00:00, 5
         Average Word2Vec - Train data: 100%
         70.21 sentence/s]
         Average Word2Vec - Test data: 100%
                                                                                     30000/30000 [00:57<00:00, 5
         19.26 sentence/s]
         Wall time: 3min 14s
In [20]: | %%time
         # Perform k-NN on dataset.(AVG-W2V)
         try:
             choice = ['brute','kd_tree']
             run_knn(avg_w2v_train, y_train_original, avg_w2v_test, y_test_original, chosen_algorithm = choice)
         except Exception:
             traceback.print exc()
```

+	Optimal K : 10-Fold Cross Validation				
K Value	Cross Validation Scoring Mean	Scoring Parameter Used			
1 3 5 7 9 11 13 15	2.1628714206952155 2.2551569323385814 2.2871062765765644 2.2996565698373597 2.308852176035892 2.31511878310089 2.31323855605532 2.3127818380065657 2.3108915845934193	Accuracy, Precision, Recall Accuracy, Precision, Recall			
19 21 23 25 27 29	2.3108313643334133 2.3108114653081158 2.310647107732236 2.3146211169019155 2.312155879338108 2.314523813922711 2.312627095480022	Accuracy, Precision, Recall			

Optimal value of hyperparameter k is 11

Classification Report with k = 11				
Class Lable/Averages	Precision	Recall	F1-Score	Support
negative positive micro avg macro avg weighted avg	0.7321848081440877 0.8941962886885074 0.8873 0.8131905484162976 0.8727351678990566	0.23527931555108203 0.9868592945516023 0.8873 0.6110693050513422 0.8873	0.35612264330603693 0.938245447405432 0.8873 0.6471840453557345 0.8611335799557321	3974 26026 30000 30000 30000

Accuracy Score: 88.73%

+			
Term	Value		
TP (True Positive) TN (True Negative) FP (False Positive) FN (False Negative) TPR (True Positive Rate)= TP/(TP+FN)) TNR (True Negative Rate)= TN/(TN+FP)) FPR (False Positive Rate)= FP/(FP+TN)) FNR (False Negative Rate)= FN/(TP+FN)) ACC (Accuracy)= (TP+TN)/(TP+FP+FN+TN))	25684 935 3039 342 0.9868592945516023 0.7647206844489179 0.013140705448397755 0.8873		

+	+ Optimal K : 10-Fold Cross Validation				
K Value	Cross Validation Scoring Mean	Scoring Parameter Used			
+	2.1621815915863367 2.255385587565956 2.2872566920414 2.299530946644346 2.3088421670702077 2.3155276359259878 2.3129902025637676 2.31296312596434 2.311428540292225 2.310997376329459 2.3108412271331895 2.3139363533046655 2.3125187980817055	Accuracy, Precision, Recall Accuracy, Precision, Recall			
27	2.3139119089597338 2.3125070976070115	Accuracy, Precision, Recall Accuracy, Precision, Recall			

Optimal value of hyperparameter k is 11

Classification Report with k = 11				
Class Lable/Averages	Precision	Recall	F1-Score	Support
negative	0.73046875	0.23527931555108203	0.35591929958127144	3974
positive	0.8941852367688022	0.9867440252055637	0.9381872648230007	26026
micro avg	0.8872	0.8872	0.8872	30000
macro avg	0.8123269933844011	0.6110116703783228	0.6470532822021361	30000
weighted avg	0.8724982594881615	0.8872	0.8610561683606464	30000

Accuracy Score: 88.72%

+ Confusion Matrix Report			
Term	Value		
TP (True Positive) TN (True Negative) FP (False Positive) FN (False Negative) TPR (True Positive Rate)= TP/(TP+FN)) TNR (True Negative Rate)= TN/(TN+FP)) FPR (False Positive Rate)= FP/(FP+TN)) FNR (False Negative Rate)= FN/(TP+FN)) ACC (Accuracy)= (TP+TN)/(TP+FP+FN+TN))	25681 935 3039 345 0.9867440252055637 0.23527931555108203 0.7647206844489179 0.013255974794436333 0.8872		

Wall time: 4h 35min 47s

(2.4) Term Frequency - Inverse Document Frequency Weighted Word2Vec (TF-IDF-Word2Vec) :

```
In [21]: %%time
         # Make list of list from training data.
         sentences_in_train=[]
         for sentence in x_train_original:
             sentences_in_train.append(sentence.split())
         # Make list of list from testing data - this will be useful when vectorizing testing data.
         sentences_in_test=[]
         for sentence in x_test_original:
              sentences_in_test.append(sentence.split())
         # Generate model
         w2v_model = Word2Vec(sentences_in_train,min_count=3,size=101, workers=6)
         # Instantiate TfidfVectorizer
         tfidf_vectorizer = TfidfVectorizer(min_df = 3,ngram_range=(1,2))
         # Tokenize and build vocab
         tfidf_vectorizer.fit(x_train_original)
         # Encode document
         x_train_matrix = tfidf_vectorizer.transform(x_train_original)
         # Get feature names
         feature_names = tfidf_vectorizer.get_feature_names()
         # Dictionary with word as a key, and the idf as a value
         dict_word_idf = dict(zip(feature_names, list(tfidf_vectorizer.idf_)))
         # Prepare train vectorizer using trained word2vec model
         train_list = []
         row = 0
         for sentence in tqdm(sentences_in_train,unit=" sentence",desc='TF-IDF Weighted Word2Vec - Train dat
             word_2_{vec} = np.zeros(101)
             weight_tfidf_sum = 0
             for word in sentence:
                 try:
                      vec = w2v_model.wv[word]
                     # dict_word_idf[word] = idf value of word in whole courpus
                     # sentence.count(word) = tf valeus of word in this review
                     tfidf_value = dict_word_idf[word]*sentence.count(word)
                     word_2_vec += (vec * tfidf_value)
                     weight_tfidf_sum += tfidf_value
                 except:
                      pass
             if weight_tfidf_sum != 0:
                 word_2_vec /= weight_tfidf_sum
             train_list.append(word_2_vec)
             row += 1
         # Prepare test vectorizer using trained word2vec model
         test_list = []
         row = 0
         for sentence in tqdm(sentences_in_test, unit=" sentence",desc='TF-IDF Weighted Word2Vec - Test data'):
             word_2_vec = np.zeros(101)
             weight_tfidf_sum = 0
             for word in sentence:
                 try:
                      vec = w2v_model.wv[word]
                      # dict_word_idf[word] = idf value of word in whole courpus
                      # sentence.count(word) = tf valeus of word in this review
                      tfidf_value = dict_word_idf[word]*sentence.count(word)
                      word_2_vec += (vec * tfidf_value)
                      weight_tfidf_sum += tfidf_value
                  except:
                      pass
             if weight tfidf sum != 0:
                 word_2_vec /= weight_tfidf_sum
             test_list.append(word_2_vec)
             row += 1
         tfidf_w2v_train = np.array(train_list)
         tfidf_w2v_test = np.array(test_list)
         TF-IDF Weighted Word2Vec - Train data: 100%
                                                                                    70000/70000 [00:18<00:00, 38
         71.72 sentence/s]
         TF-IDF Weighted Word2Vec - Test data: 100%
                                                                                   30000/30000 [00:08<00:00, 37
         39.67 sentence/s]
```

+					
1	Optimal K : 10-Fold Cross Validation				
K Value	Cross Validation Scoring Mean	Scoring Parameter Used			
1	2.112375770805098	Accuracy, Precision, Recall			
3	2.1989783480024974	\mid Accuracy, Precision, Recall \mid			
5	2.2394154812564855	\mid Accuracy, Precision, Recall \mid			
7	2.2502454973864006	Accuracy, Precision, Recall			
9	2.2564495932403306	\mid Accuracy, Precision, Recall \mid			
11	2.263034368995337	\mid Accuracy, Precision, Recall \mid			
13	2.2668180412481425	\mid Accuracy, Precision, Recall \mid			
15	2.2760606575805857	\mid Accuracy, Precision, Recall \mid			
17	2.2759919566887463	\mid Accuracy, Precision, Recall \mid			
19	2.276980929467527	\mid Accuracy, Precision, Recall \mid			
21	2.2819985092175235	\mid Accuracy, Precision, Recall \mid			
23	2.290588236821965	\mid Accuracy, Precision, Recall \mid			
25	2.286489548865189	\mid Accuracy, Precision, Recall \mid			
27	2.2848238099389278	Accuracy, Precision, Recall			
29	2.283615954029004	Accuracy, Precision, Recall			

Optimal value of hyperparameter k is 23

Classification Report with k = 23					
Class Lable/Averages Precision Recall F1-Score Support					
negative positive micro avg macro avg weighted avg	0.7218710493046776 0.8834948132424938 0.8792333333333333 0.8026829312735857 0.862085051979531	0.1436839456467036 0.9915469146238377 0.87923333333333333 0.5676154301352706 0.87923333333333333	0.23966421825813225 0.934407531456504 0.8792333333333333 0.5870358748573181 0.8423772005681597	3974 26026 30000 30000	

Accuracy Score: 87.923333333333333

+			
Term	Value		
TP (True Positive) TN (True Negative) FP (False Positive) FN (False Negative) TPR (True Positive Rate)= TP/(TP+FN)) TNR (True Negative Rate)= FN/(TN+FP)) FPR (False Positive Rate)= FP/(FP+TN))	25806 571 3403 220 0.9915469146238377 0.1436839456467036 0.8563160543532964		
FNR (False Negative Rate)= FN/(TP+FN)) ACC (Accuracy)= (TP+TN)/(TP+FP+FN+TN))	0.0084530853761623 0.87923333333333333		

+ Optimal K : 10-Fold Cross Validation				
K Value	Cross Validation Scoring Mean	Scoring Parameter Used		
1 3		Accuracy, Precision, Recall Accuracy, Precision, Recall		
5	2.2400450838170576	Accuracy, Precision, Recall		
9	2.250817509916746 2.257107056729584	Accuracy, Precision, Recall Accuracy, Precision, Recall		
11 13	2.262266203335425 2.267592487623287	Accuracy, Precision, Recall Accuracy, Precision, Recall		
15 17	2.2754764941569228 2.2764637824090928	Accuracy, Precision, Recall Accuracy, Precision, Recall		
19 21	2.2776903004508813 2.2816199244234854	Accuracy, Precision, Recall Accuracy, Precision, Recall		
23 25	2.28995441132665 2.2853453828025754	Accuracy, Precision, Recall Accuracy, Precision, Recall		
27	2.2858217341891574	Accuracy, Precision, Recall		
29	2.282489937144562	Accuracy, Precision, Recall		

Classification Report with $k = 23$				
Class Lable/Averages	Precision	Recall	F1-Score	Support
negative positive micro avg macro avg weighted avg	0.72222222222222 0.8835250616269515 0.87926666666666666 0.8028736419245869 0.8621578121671384	0.14393558127830902 0.9915469146238377 0.8792666666666666666666666666666666666666	0.2400335711288292 0.9344244487091284 0.8792666666666666666 0.5872290099189789 0.8424408037923248	3974 26026 30000 30000 30000

Accuracy Score: 87.926666666666666

+ Confusion Matrix Report			
Term	Value		
TP (True Positive)	25806		
TN (True Negative)	572		
FP (False Positive)	3402		
FN (False Negative)	220		
TPR (True Positive Rate)= TP/(TP+FN))	0.9915469146238377		
TNR (True Negative Rate) = TN/(TN+FP))	0.14393558127830902		
FPR (False Positive Rate)= FP/(FP+TN))	0.856064418721691		
FNR (False Negative Rate)= FN/(TP+FN))	0.0084530853761623		
ACC (Accuracy) = (TP+TN)/(TP+FP+FN+TN))	0.8792666666666666		

Wall time: 2h 57min 47s

Conclusion:

In [23]: conclude()

Conclusion					
Vectorizer	Model	Algorithm	Hyperparameter(k)	Train Error	Test Error
BoW	K-NN	Brute-Force Search	25	11.0%	13.0%
BoW	K-NN	KD-Tree	13	11.0%	13.0%
TF-IDF	K-NN	Brute-Force Search	1	0.0%	13.0%
TF-IDF	K-NN	KD-Tree	25	11.0%	13.0%
AVG W2V	K-NN	Brute-Force Search	11	9.0%	11.0%
AVG W2V	K-NN	KD-Tree	11	9.0%	11.0%
TF-IDF W2V	K-NN	Brute-Force Search	23	10.0%	12.0%
TF-IDF W2V	K-NN	KD-Tree	23	10.0%	12.0%

Observations:

- compare testing acccuracies for different factorization.
- 2. We have sensible confusion matrix, but stil it can be improved with more data points with balanced positive and negative points.
- 3. Because of the dense nature of the matrix, it is computationally very costly to take more number of samples to train under kd-tree, .
- 4. Different classification techniques(Like logistic regression) can be applied to find perfect classifier, which can further increase the testing accuracy.