

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э.Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

Дисциплина: «Математическая статистика»

Домашняя работа №2. Вариант 15

Студент: Рязанов М.С.

Группа: ИУ7-62Б

Преподаватель: Власов П. А.

Задача 1 (проверка параметрических гипотез)

До наладки станка была проверена точность изготовления $n_1=10$ втулок, в результате чего получено значение $S_2(\overrightarrow{x_{n_1}})=9.6$ мкм 2 . После наладки была проверена партия из $n_2=15$ втулок и получено значение $S^2(\overrightarrow{y_{n_2}})=5.7$ мкм 2 . Считая распределение контролируемого признака нормальным, при уровне значимости $\alpha=0.05$ проверить гипотезу о том, что после наладки станка точность изготовления втулок увеличилась.

Решение:

По условию случайные величины X,Y характеризующие результаты измерений втулок(X - до наладки, Y - после наладки станка) имеют нормальное распределение. Т.е $X \sim N(m_1, \sigma_1^2), Y \sim N(m_2, \sigma_2^2)$.

Проверим нулевую гипотезу $H_0:\sigma_1=\sigma_2$ при конкурирующей гипотезе $H_1:\sigma_1>\sigma_2$

Воспользуемся статистикой:

$$T(\overrightarrow{X_{n_1}}, \overrightarrow{Y_{n_2}}) = \frac{max\{S_1^2(\overrightarrow{X_{n_1}}), S_2^2(\overrightarrow{Y_{n_2}})\}}{min\{S_1^2(\overrightarrow{X_{n_1}}), S_2^2(\overrightarrow{Y_{n_2}})\}} = \frac{S^2(\overrightarrow{x_{n_1}})}{S^2(\overrightarrow{y_{n_2}})} \sim F(n_1 - 1, n_2 - 1)$$

Условие определяющее критическую область W:

$$T(\overrightarrow{X_{n_1}}, \overrightarrow{Y_{n_2}}) \geqslant F_{1-\alpha}(n_1 - 1, n_2 - 1) \tag{1}$$

где $F_{1-\alpha}(n_1-1,n_2-1)$ - квантиль уровня $1-\alpha$ распределения Фишера с степенями свободы n_1-1 и n_2-1 .

$$T(\overrightarrow{x_{n_1}}, \overrightarrow{y_{n_2}}) = \frac{9.6}{5.7} \approx 1.68$$

Из таблицы квантилей распределения Фишера с 10-1=9 и 15-1=14 степенями свободы:

$$F_{0.95} = 2.65$$

Условие 1 не выполняется, следовательно нет оснований отвергнуть нулевую гипотезу о равенстве генеральных дисперсий.

Ответ: при уровне значимости $\alpha = 0.05$ нет оснований считать, что точность увеличилась.