Storage

G54CCS – Lecture 6 Richard Mortier

http://www.cs.nott.ac.uk/~rmm/teaching/2011-g54ccs/

- What is Storage?
- Managing Many Disks
- Tradeoffs

- What is Storage?
 - Disks
 - Capacity growth
 - Demand growth
- Managing Many Disks
- Tradeoffs

What is Storage?

- How you maintain data after loss of power
 - Used to involve a wide range of media
 - Now usually focus on (magnetic) hard disks
 - Surge of interest in solid-state devices (SSDs)
- Disk metaphor led to consideration of blocks
 - Derive from disk geometry
 - Fixed-size chunks of addressable storage

What is Storage?

- Used to maintain data after loss of power
 - Once involved a wide range of media
 - Now usually focus on (magnetic) hard disks
 - Recent surge of interest in solid-state devices (SSDs)
- Disk metaphor led to consideration of blocks
 - Derive from disk geometry
 - Fixed-size chunks of addressable storage
- The most basic abstraction offered
 - E.g., Amazon Elastic Block Store (EBS)

- Disk capacity has grown dramatically
 - My first PC had 40MB HDD
 - Have 1TB USB HDD on my desk as cheap backup

- Disk capacity has grown dramatically
 - My first PC had 40MB HDD
 - Have 1TB USB HDD on my desk as cheap backup
- Not just capacity
 - HDD capacity: 3.75MB to > 1TB (> 270,000:1)
 - Size: 87.9 cub. ft. to 0.002 cub. ft. (40,000:1)
 - Price: \$15k/MB to < \$0.0001/MB (> 1.5M:1)
 - Latency: > 0.1s to < 0.004s (> 40:1)

- Disk capacity has grown dramatically
 - My first PC had 40MB HDD
 - Have 1TB USB HDD on my desk as cheap backup
- Not just capacity
 - HDD capacity: 3.75MB to > 1TB (> 270,000:1)
 - Size: 87.9 cub. ft. to 0.002 cub. ft. (40,000:1)
 - Price: \$15k/MB to < \$0.0001/MB (> 1.5M:1)
 - Latency: > 0.1s to < 0.004s (> 40:1)
- So has data

1 ZB = 1000 EB = 1 Billion TB

1 ZB = 1000 EB = 1 Billion TB

- What is Storage?
- Managing Many Disks
 - Higher-layer abstractions
 - SQL vs. NoSQL
- Tradeoffs

- Disk capacity has grown dramatically
 - My first PC had 40MB HDD
 - Have 1TB USB HDD on my desk as cheap backup
 - So has data
- Can be organized in different ways
 - Single Large Expensive Disk (SLED)
 - Redundant Array of Inexpensive Disks (RAID)
 - Just a Bunch of Disks (JBOD)
- JBOD is the de facto standard in the cloud
 - Let the software do the hard work at scale

Higher Layer Abstractions

Blobs

- Sequence of bytes, no exposed structure
- E.g., Amazon S3, Google Cloud Storage, Azure BLOB Service
- Object-Relational Mappings
 - Often really a key-value store
 - E.g., Google App Engine, Amazon Simple DB, Azure Table Service
- Relational Tables
 - Expose relations within data (rows, columns)
 - E.g., Amazon Relational DB Service (RDS), SQL Azure

SQL vs. NoSQL

- Not about SQL per se, but the structure of the data store
- Relational store
 - More structure, availability of indexes, good for SQL
 - More design required by developers, schema migration issues
 - Column store vs. Row store Map-Reduce
- Key-value store
 - Commonly used, easy to shard, easy to think about, often SQL-like
 - Lack of rich indexing can cause performance cliffs
- Document store
 - Little structure, no schema issues, very flexible
 - Cf. Key-value store
- Performance at scale claims are highly contested
 - E.g., MongoDB war stories http://bit.ly/ugrtmx

- What is Storage?
- Managing Many Disks
- Tradeoffs
 - Price
 - Problems of scale
 - Example of scale: Facebook Messages

Tradeoffs

- Managed vs. Unmanaged
 - Price for managed is much higher
- Local vs. remote
 - Care about latency and bandwidth
 - In the cloud, have network overheads and costs
- Read vs. write performance
 - Need to know your workload
 - In the cloud, multi-tenancy gives high variability

Service	Resource	Price
EC2	Local disk	Free, but no persistence across reboots
EBS	Block store	\$0.11 / GB-month
	IO Requests	\$0.11 / 1M
S3	Data	\$0.14 / GB-month
	Reduced Redundancy	\$0.093 / GB-month
	GET Requests (DELETEs free)	\$0.01 / 10,000
	PUT,POST,COPY,LIST Reqs	\$0.01 / 1,000
Simple DB	Machine hour (normalized)	\$0.154 / hour
	Storage (+ 45B / item)	\$0.275 / GB-month
RDS	Instance, Storage	\$0.12 – \$2.96 / hour, \$0.11 / GB-month
	Multi Availability Zone	\$0.24 – \$5.92 / hour, \$0.22 / GB-month
	IO Requests	\$0.11 / 1M
	Data transfer OUT (IN is free)	\$0.00 – \$0.05 / GB OUT up to 500 TB

Scale Creates Problems

- Concurrency
 - Perfect consistency is hard
 - Eventual consistency is in vogue
 - http://bit.ly/qSlpxP
- Management
 - Large numbers and MTTF suggests disks fail all the time
 - ...but we build software for the common case
 - ...so can be (counter intuitively) more reliable
- Complexity
 - Demonstrates distributed systems problems
 - E.g., Etsy http://bit.ly/rhdpGJ

Facebook Messages

- Small messages (HDFS/Hbase)
 vs. Photo store (Haystack)
 - 6B+ messages/day
 - 75B+ R+W ops/day (1.5M/sec at peak)
 - 55% R vs. 45% W each W inserts avg. 16 records
 - 2PB+ online data in HBase (6PB+ with replication)
 - Compressed: message data, metadata, search index
 - 250 TB / month