Project Euler #29: Distinct powers

This problem is a programming version of Problem 29 from projecteuler.net

Consider all integer combinations of a^b for $2 \le a \le 5$ and $2 \le b \le 5$:

$$2^{2} = 4, 2^{3} = 8, 2^{4} = 16, 2^{5} = 32$$
 $3^{2} = 9, 3^{3} = 27, 3^{4} = 81, 3^{5} = 243$
 $4^{2} = 16, 4^{3} = 64, 4^{4} = 256, 4^{5} = 1024$
 $5^{2} = 25, 5^{3} = 125, 5^{4} = 625, 5^{5} = 3125$

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

How many distinct terms are in the sequence generated by a^b for $2 \le a \le N$ and $2 \le b \le N$?

Input Format

Input contains an integer ${\it N}$

Constraints

$$2 \le N \le 10^5$$

Output Format

Print the answer corresponding to the test case.

Sample Input

5

Sample Output

15