Project Development Phase

SPRINT DELIVERY – 4

Team ID	PNT2022TMID01763
Project Name	Smart Farmer - IoT Enabled Smart
	Farming Application
Date	12th November 2022

Receiving commands from IBM cloud using Python program

import time import
sys
import ibmiotf.application
import ibmiotf.device import
random

#Provide your IBM Watson DeviceCredentials

```
organization = "157uf3" deviceType =

"abcd" deviceId = "7654321" authMethod

= "token" authToken = "87654321"
```

Initialize GPIO

```
except Exception as e:
      print("Caught exception connecting device: %s" %
str(e)) sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud
as an event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
  data = { 'temp' : temp, 'Humid': Humid ,
'Mois': Mois}
    #print data
                  def
myOnPublishCallbac
k():
      print ("Published Temperature = %s C" % temp, "Humidity = %s
%%" % Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
     success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0, on_publish=myOnPublishCallback) if not success:
      print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback =
myCommandCallback # Disconnect the device and
application from the cloud deviceCli.disconnect()
```

```
import time
imp.:.rt ibmiotf.opplicotion
impc.rt ibmiotf.device
import r8ndoe

#Provide your IBM Natson Cmvice Credentials
organiza6:ion - "157uf3"
deviceType = 'abcd"
deviceType = 'abcd"
deviceId - '7654321'
authMethod - 'token'
euthToken - '87654321"

# Initialize 1PlO
dof myCommandCollback(nnd):
    print('Command received: 8s" % cmd.data['command'))
    atatuz=cmd.data [ 'commund']
    if status=="motoron/:
        print ("motor is on")
    ell( status -- 'motoroff":
        print ('motor is off")
        print ("please send proper command')

        deviceOptionx - ("org': organization, 'type': deviceType, "id": deviceld, "euth-method": authMe
        deviceCli = ibmiotf.device.Client(deviceoptions)
```

```
Yellon 3.7.0 (v3.7.é:lbf9cc5093, Jun 37 2018, 04:59:51( [NSC v.1914 %4 bit (AMDé' 4)] on win32

Typs 'copyright', 'credits' or 'licsñse()" for more iéformstion.

- '- - RESTART: C:\U8ers\ELCOT\Downloadñ\lbmiotpubli4hsubscribe.py ------
2021-11-07 20:01:24,074 ibmiotf.devime.Client INFo Connected auccessfu
1ly: d:157uf3:abcd:7654321

Published Moisture = 90 deg C Temperature = 96 C Humidity = 76 % to IBM Watxon
Published Moisture = 102 deg C Temperature = 110 € humidity = 68 % to IBM Uatgon
Published Moisture = 45 deg C Temperature = 99 C humidity = 100 % to IBM Watson

motor is on
Published Moisture = 77 deg C Temperature = 91 C humidity = 85 % to IBM Watson
Published Moisture = 73 deg C Temperature = 94 C humidity = 86 % to IBM Motson

motor is off
Published Moisture = 101 deg C Tempéfature = 104 C humidity = 87 % to IBM Uatson
```

Flow Chart

Observations & Results

Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- · Better standards of

living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile

App.

Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.