

Α

Project Report

On

Image Processing Based Semi-Automated Target Detector and Shooter

Submitted By

Aniket Sudhakar Chopade BEETA121

Swapnil Nileshrao Dasarwar BEETA123

Raviraj Mahadeo Khopade BEETA146

Under the Guidance of Project Guide

Mr. M.M. Narkhede

Department Of

ELECTRONICS & TELECOMMUNICATION

PIMPRI CHINCHWAD COLLEGE OF ENGINEERING (SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE) 2020-21

CERTIFICATE

Project Phase -II Report On

Image Processing Based Semi-Automated Target Detector and Shooter

Submitted for Partial Fulfillment of the Requirements for the Degree of Bachelor of Engineering in the Department of Electronics & Telecommunication Engineering Pimpri Chinchwad College of Engineering, Savitribai Phule University of Pune, Pune

By

Aniket Sudhakar Chopade	BEETA121
-------------------------	----------

Swapnil Nileshrao Dasarwar BEETA123

Raviraj Mahadeo Khopade BEETA146

M. M. Narkhede Dr. M. T. Kolte Dr. G. V. Parishwad (Project Guide) (H.O.D) (Principal)

Pimpri Chinchwad College of Engineering, Savitribai Phule University of Pune, Pune.

2020-21

CONTENTS

ACKNOWLEDGEMEN	NT	1	
ABSTRACT		ii	
TABLE OF CONTENT	Γ	iii	
LIST OF FIGURES		V	
LIST OF ABBREVATI	IONS	vi	
LIST OF TABLES		vii	
Chapter 1 Introduction			
1. Introduct	ion	•••••	9
1.1 Moti	ivation		9
1.2 Back	kground		9
		• • • • • • • • • • • • • • • • • • • •	
Chapter 2 Literature Su	rvey		10
Chapter 3 Methodology	7		
3.1 Bloc	k Diagram		20
	_		
	-		
		tion	
-	3.3.1 Flow Chart Explana		
Chapter 4 Software Imp	olementation		29
Chapter 5 Testing & Tre	oubleshooting		
5.1 Test	ing		36
5.2 Test	ing strategies & Test Prod	cedures	37
5.3 Resu	ılt		38
Chapter 6 Advantages &	& Applications		
•			36
	-		
0.2 App.	110ati0115	•••••	
Chapter 7 Conclusion			38

References IST OF FIGURE	JRES:	39
Figure 3.1	Block Diagram	.20
Figure 3.2.1	Raspberry Pi 4 Model B	.21
Figure 3.2.2	Pi Camera	. 22
Figure 3.2.3	ADC0804 IC	.22
Figure 3.2.4.a	Stepper Motor	23
Figure 3.2.4.b	ULN2003 IC	.23
Figure 3.2.4.c	DC Motor	.23
Figure 3.2.4.d	L293D IC	.24
Figure 3.2.5	Push-Pull Solenoid	.24
Figure 3.2.7	Li-ion Batteries	.25
Figure 3.2.8	Display	.25
Figure 3.3.1	System Flow Chart.	.26
Figure 3.3.2	Target Detection Flowchart	.27
Figure 4.1	Anaconda IDE	. 29
Figure 4.2	Google Colab.	.29
Figure 4.3.1	MS COCO Object Detection.	.30
Figure 4.3.2	Mish Activation Function.	.31
Figure 4.3.2	Accuracy Comparison Graph.	.32
Figure 5.1.1	Testing of Pi camera module.	.36
Figure 5.3.1	Object detecting model training.	.37
Figure 5.3.2.a	Image Processing using YOLOv4.	.38
Figure 5.3.2.b	Image Processing using YOLOv4-tiny.	.38
Figure 5.3.2.c	YOLOv4 FPS.	.39
Figure 5.3.2.d	YOLOv4-tiny FPS.	.40

LIST OF ABBREVIATIONS:

DC - Direct Current

μC - Microcontroller

PCB - Printed Circuit Board

USB - Universal Serial Bus

CPU - Central Processing Unit

IC - Integrated Circuit

RPM - Revolutions Per Minute

DMM - Digital Multimeter

IDE - Integrated Development Environment

OS - Operating System

Li-ion - Lithium ion

ADC -Analog to Digital Convertor

GPIO - General Purpose Input Output

LAN - Local Area Network

Rpi – Raspberry Pi

YOLO - You Only Look Once

FPS – Frames Per Second

CNN – Convolution Neural Network

SPP - Spatial Pyramid Pooling

Acknowledgement All the accomplishments in the world require the effort of many people and this project is no different. Regardless of the source, we wish to express our gratitude to those who have contributed to the success of this project. We gratefully acknowledge and express heartfelt regards to all the people, who helped us in making the idea of the project a reality. We express our gratitude towards Prof. M. M. Narkhede for his guidance and constant supervision as well as for providing necessary information regarding the project and also for his support in completing the project. We have been lucky to have an H.O.D like Dr. M. T. Kolte, whose reviews, comments, corrections and suggestions have enormously enriched our project. We are also grateful to our principal Dr. N. B. Chopade for his constant encouragement and support. We are also glad to express our gratitude and thanks to our parents and friends for their constant inspiration and encouragement. Finally, we express our appreciation and sincere thanks to lab assistance, department of electronics & telecommunication, for their constant involvement at every step in the project which has led this project to the path of success.

Abstract

With ever-growing increase in technology everything is getting automation. As we know currently India is not having good foreign relations with neighboring countries like China and Pakistan. These countries continuously trying to provoke war against us wherein we are losing our soldiers. Therefore, to reduce human casualties and to improve defensive systems at borderline we must upgrade our systems. Keeping this in mind this system is designed which emphasizes on fabrication of automated target detector and shooter robot.

The primary objective of this system is to serve a wireless automated machine which is better aesthetically. The system will be based on raspberry pi processor with pi camera and computer vision for its basic purpose and will be trained for specific object or event detection in real time video and will send the signal back to controller so that necessary actions will be taken. The appropriate processor is selected for the application so that it will handle the power requirement and processing capacity of all the necessary requirements. The greatest motivation behind this project is changing technology and greatest inspiration is Boston dynamics. This system with some advancement can be used for projectile target detection in hilly areas. By the end of the project one can use this system with very ease remotely from certain radio distance to control it and find a specified target with the help of system.

CHAPTER:1	

Introduction

1.1 Motivation

India is a developing country. We as a country are always trying to push our limits by technological advancements. For sustaining in this era India has to bring developments in the technology as well as its self-defense capabilities. Self-defense is the important priority of our nation in 21st century. As we know currently India is not having good foreign relations with neighboring countries like China and Pakistan. These countries continuously trying to provoke war against us wherein we are losing our soldiers. Therefore, to reduce human casualties and to improve defensive systems at borderline we must upgrade our systems. The main motive of this project is to create a system which can replace humans at battlefields, which can be used remotely and which can help our nation to defend itself from threats of neighboring countries. Which is why we are designing a system which will be a prototype of real machine that can be deployed on borders to increase our defense capabilities and to reduce the casualties on the borders.

1.2 Background

The kind of robots used widely are in industries, companies and in gaming appliances. But there are very few robots working on defense. Out there on borders all that needed is continuous lookout of any unusual movements happening nearby where very less robots are happen to be effective. But what if those robots are given vision and monitoring can be done more feasibly? This system is developed such that it can see the movements happening around and wirelessly from remote location and can work efficiently without any human casualties. We know that in near future all that human work is going to be replaced by the AI powered machineries. Taking this into consideration we came up with this idea of making computer vision-based robot which works automatically for detection of specific event and take actions accordingly.

1.3 Project Specification

To design an integrated Computer Vision based system which captures real time video input and processes it to detect specific object, decides it as safe or threat and shoots at object.

Literature Survey

Sr.	Title of the Paper	Year of	Publication/	Conclusion
No.		Publication	Conference	
1	Digital image	2016	International	Digital image processing deals with
	processing techniques –		Multidisciplinary	manipulation of digital images through
	a survey		Research Journal	a digital computer. In this paper various
				types of DIP technique presented in the
				literature are discussed and analysed.
				The DIP technique using image
				compression, edge detection and
				segmentation provides better
				compression ratio and accuracy of an
				image.
2	Literature survey on the	2016	International	In this paper, we have presented various
	various methods of		Research Journal	studies, methods through which a better
	object detection in video		of Engineering	and clean picture of video surveillance
	surveillance systems		and Technology	can be projected. It is clearly stated that
			(IRJET)	if all the steps of video analytics is
				taken and problem solving methods
				with its pros and cons are applied, an
				effective mechanism can be build up
				which will result in fruitful and clear
				image capturing.
3	Object detection with	2019	IEEE	Due to its powerful learning ability and
	deep learning: a review			advantages in dealing with occlusion,
				scale transformation and background
				switches, deep learning-based object

				detection has been a research hotspot in
				recent years.
4	Analytical description	2013	International	We studied about various types of
	of pneumatic system		Journal of	Pneumatic actuators and its working.
			Scientific &	
			Engineering	
			Research	
5	Real-time object	2011	2011 World	The proposed algorithm for object
	detection and tracking in		Congress on	detection and tracking in unknown
	an unknown		Information and	environment shall open new vista in
	environment		Communication	field of computer vision for developing
			Technologies	real world applications and also
				improvising currently existing
				algorithms to be operational in the real
				world.
6	Real Time Object	2018	IEEE	Deep learning has gained a tremendous
	Detection and Tracking Using Deep Learning			influence on how the world is adapting
	and OpenCV			to Artificial Intelligence since past few
				years. Some of the popular object
				detection algorithms are Region-based
				Convolutional Neural Networks
				(RCNN), FasterRCNN, Single Shot
				Detector (SSD) and You Only Look
				Once (YOLO). Amongst these, Faster-
				RCNN and SSD have better accuracy,
				while YOLO performs better when
				speed is given preference over
				accuracy. Deep learning combines SSD
				and Mobile Nets to perform efficient
				implementation of detection and
				tracking. This algorithm performs

				efficient object detection while not
				compromising on the performance.
7	Research of the Real-	2008	IEEE	A vehicle detection algorithm was
	time Detection of Traffic Flow			proposed based on the morphology and
	Based on OpenCV			wavelet transform, in the context of the
				traditional difference. First, the
				background model was established,
				using statistical means of the rapid
				sequence. As background to transform
				the impact of light obviously, the
				corresponding easy and quick to update
				the background algorithm was used.
				Using the background of the video
				images to do background subtraction,
				and then images of the vehicles were
				accurate detection of mathematical
				morphology and wavelet transform. A
				video vehicle detection system was
				developed using visual C++6.0 and
				OpenCV image and development kits.
				A highway traffic flow has been
				detected by a background extraction,
				image filtering, image binary,
				morphological transformation, vehicle
				detection and segmentation methods
				and steps. To achieve some highway
				traffic flow analysis, results showed
				that: the system to identify the correct
				rate of more than 98 percent, satisfying
				the requirements of practical
				applications.

8	Robust Real-time	2015	Cambridge	This paper describes a visual object
	Object Detection		Research	detection framework that is capable of
				processing images extremely rapidly
				while achieving high detection rates.
				There are three key contributions. The
				first is the introduction of a new image
				representation called the "Integral
				Image" which allows the features used
				by our detector to be computed very
				quickly. The
				second is a learning algorithm, based of
				AdaBoost, which selects a small
				number of critical visual features and
				yields extremely efficient classifiers
9	You Only Look Once:	2016	IEEE	Prior work on object detection
	Unified, Real-Time	Object Detection		repurposes classifiers to perform
	Object Detection		detection. Instead, we frame object	
				detection as a regression problem to
				spatially separated bounding boxes and
				associated class probabilities. A single
				neural network predicts bounding boxe
				and class probabilities directly from fu
				images in one evaluation. Since the
				whole detection pipeline is a single
				network, it can be optimized end-to-en
				directly on detection performance. Our
				unified architecture is extremely fast.
				Our base YOLO model processes
				images in real-time at 45 frames per
				second. A smaller version of the
				network, Fast YOLO, processes an

				astounding 155 frames per second while
				still achieving double the mAP of other
				real-time detectors. Compared to state-
				of-the-art detection systems, YOLO
				makes more localization errors but is
				less likely to predict false positives on
				background. Finally, YOLO learns very
				general representations of objects. It
				outperforms other detection methods,
				including DPM and R-CNN, when
				generalizing from natural images to
				other domains like artwork.
10	Low-cost smart security	2014	IEEE	In order to further maintain peace and
	camera with night vision capability using			provide security to people now a day,
	Raspberry Pi and	Raspberry Pi and		Closed-circuit television (CCTV)
	OpenCV			surveillance system is being utilized.
				This study focused on the design and
				implementation of a low-cost smart
				security camera with night vision
				capability using Raspberry Pi (RPI) and
				OpenCV. The system was designed to
				be used inside a warehouse facility. It
				has human detection and smoke
				detection capability that can provide
				precaution to potential crimes and
				potential fire. The credit card size
				Raspberry Pi (RPI) with Open-Source
				Computer Vision (OpenCV) software
				handles the image processing, control
				algorithms for the alarms and sends
				captured pictures to user's email via Wi-
				Fi.

11	Study on Object	2017	International	It is concluded that comparing images
	Detection using Open		Journal of	using colour, texture, and shape are not
	CV – Python		Computer	enough because two objects might have
			Applications	same attributes.
			(0975 - 8887)	
12	Vision-andLidar Based	2018	IEEE	A real-time, effective onboard outdoor
	Real-time Outdoor		International	localization system with a depth camer
	Localization for		Conference on	and a laser scanner shows the maximal
	Unmanned Vehicles		Information and	utility of image information and laser
			Automation	information to improve the robustness
			Wuyi Mountain,	and accuracy of pose estimation.
			China	
13	Design, Realization and	2010	International	The hand is the result of a design that
	Sensorization of the		Conference on	optimized the level of integration of th
	Dexterous iCub Hand		Humanoid	hand in the overall robot to meet the
			Robots	project specifications in terms of
			Nashville, TN,	dimensions, dexterity and sensorization
			USA, December	
			6-8, 2010	
14	Design of Intelligent	2007	Design of	By using the design implemented for
	Mobile Robot System		Intelligent	this paper, the sensor pods could be
	Based on Ultrasonic		Mobile Robot	integrated with other mobile robots to
	Sensors		System Design	provide noncontact sensing and
			of Intelligent	navigation for them as well.
			Mobile Robot	
			System	
			Automation and	
			Systems	
15	Image processing and	2020	International	In this paper we came to know that
	machine learning		Journal of	neither a single technique is applicable
	techniques used in computer-aided		Electrical and	to all types of images nor all the techniques perform well for one
	detection system for			particular image. Furthermore, none of

mammogram screening-A review	Computer Engineering (IJECE)	the segmentation procedure is fully automatic. So, machine learning based intelligent systems can help to make the complete procedure automated.

Image Processing Based Automated Target Detector and Shooter
Literature Survey Summary:
These papers gave us idea about latest technological trends not only in electronics but also from mechanical background which have major contribution in the robotics field. Most of the focus of image processing-based computer vision projects is to implement algorithms such as reinforcement learning, archer algorithm, neural network algorithms in order to provide better efficiency to its applications. These papers gave a brief idea about how an image can be manipulated and processed in order to get effective outcome such as improving the surveillance camera captures, etc. Besides electronics we have also studied how Mechanical systems are used in robot actuations and various movements. We have discovered how a pneumatic system can be used in our project based on its operation or mode of actuation to give a proper thrust or force to our arrow.
2020.21

Image Processing Based Automated Target Detector and Shoote
CHAPTER:3

Methodology

The implementation of the project using a block structure is explained here, it shows the hardware components used, with block wise flow according to which the project works.

3.1 Block Diagram:

Fig. 3.1 Block Diagram

3.1.1 Block Diagram Explanation:

The proposed system works as a normal machine does. It takes several inputs and gives the required output. The main central processing unit of robot is Raspberry Pi 4 model B. The inputs to raspberry pi are Pi camera, Power supply and trained weights from the memory card. The pi camera is used for real time image and video capture and the trained weights used are generated using machine learning which will help to identifying the target. Power supply is connected in order to work of real time image/video processing inside the controller. The power supply provided is using Li-ion batteries. The robot after processing the input produces several outputs too. After processing the video this video is then transferred to the display for user interaction. Another output is in terms of motor actuation which is used for robot to align itself such that it aligns with the target. After aligning itself with target and having proper actuation with help of push pull solenoid to shoot target.

3.2 Elements of Block Diagram:

3.2.1 Raspberry Pi 4 Model B:

Fig 3.2.1 Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B is advanced version of Raspberry Pi 4 series. It is working on 64-bit quad core processor with the clock frequency of 1.44Ghz and 2 GB ram. It is basically the CPU of our robot which will carry out all the necessary actions required for object detection and motor actuation. It also supports dual band 2.4GHz and 5GHz which will be used for signal transfer to and from the Raspberry Pi to user interface such as signaling motor actuation and retrieving the live camera footage. It is also provided with in-built Bluetooth 4.2/BLE module which can be used as alternative to Wi-Fi communication. The I/O port of Raspberry Pi is used for interfacing the Pi camera which is compatible with Raspberry Pi. For memory storage purpose it has been given Micro SD port in which OS and necessary code and weights can be stored.

3.2.2 Pi camera:

Fig 3.2.2 Pi Camera

To identify the target using image processing algorithm the basic requirement is an image. So, the Pi camera is used for providing the source of images to the Raspberry Pi. Pi camera is compatible with Raspberry Pi and has a 5MP camera for better image capture.

3.2.3 ADC0804 IC:

Fig 3.2.3 ADC0804 IC

To convert the sensor signal/analog signal into the digital one to transmit it between robot and user interface/display wirelessly it is required for the data to be in digital form. So, the ADC804 is used which is 8 pin IC which is used to convert the analog signal to digital signal.

3.2.4 Motor and Motor drivers:

Fig 3.2.4.a Stepper Motor

A stepper motor acts in steps and hence can provide very precise movement. Also, the motors position can be commanded and hold at one step using the magnetic locking mechanism which provide high torque for stability purpose. To carry out the vertical movement of robot body to align itself towards the target stepper motor is used.

Fig 3.2.4.b ULN2003

ULN20003 is a motor driver IC, which is used to drive a stepper motor to take a precise step angular movement.

Fig 3.2.4.c DC Motor

Simple DC motors which convert electrical energy into mechanical energy are used to drive the robot. These motors are taken in application considering the power requirement by the motors and the power source used in the project. The power source used is sufficient to drive DC motors. 4 DC motors are used as 4 different wheels of the robot which will be having 4-wheel drive mechanism.

Fig 3.2.4.d L293D IC

L293D IC is a DC motor driver IC which is capable of driving 2 DC motors at a time. There are times which the robot has to move front and back and sometimes no movement. L293D is used to drive the motors in bidirectional mode i.e., clockwise and anticlockwise using a direct current.

3.2.5 Push-Pull Solenoid:

Fig 3.2.5: Push - Pull Solenoid

Fig 3.2.5 shows a Push – Pull Solenoid which is an Electro-mechanical device which is used to hit the shooting material giving an impulse to it in the forward direction to hit the target.

3.2.6Power supply:

Fig 3.2.6 Li-ion Batteries

Currently widely used batteries are lithium-ion battery or Li-ion battery. These batteries are commonly used because of its low density and better efficiency as compared to Lead acid batteries which are heavy and more hazardous to nature. Li-ion batteries are used as the base power supply for the robot system and Raspberry Pi controller.

3.2.7Display:

Fig 3.2.7 Display

A mobile phone display to see what the camera is capturing and to see if the target is properly in the frame for further process. Also, this display is provided with the controls which will operate the robot remotely and will be responsible for movements of robot.

3.3 Flow Chart:

Fig 3.3.1 System Flow Chart

3.3.1 Flow Chart Explanation:

The robot starts taking manual control action and starts tracing the target in camera as soon as it turns on. The robot keeps on searching the target until it detects target into the camera screen, as soon as the target is found anywhere in pi camera the robot performs following operations in order.

- 1. Identify the target
- 2. Aligning robot such that the target is centred.
- 3. Give feedback to controller and wait for further instructions.

When controller confirms the target and releases shoot command then the power is applied to the shooter through pneumatic actuator and target is been hit.

Fig 3.3.2 Target Detection Flowchart

As per the Fig 3.3.2 as soon as system starts tracing target it will take input video for processing via Pi Camera.

- It will then load the model which we have trained to detect the particular target. These model loading consists of weights and cfg(configuration) file.
- After model loading system starts prediction. It starts to predict whether the input video has the target/object which is to be traced.
- There is a prediction thresholding which should be set so that if the prediction rate crosses the threshold, then system can be sure if that is the required target.
- After crossing threshold value, it creates bounding boxes around the target with certain amount of confidence level so that target will be easily visible on the display.
- These bounding boxes will act as an output which will be provided to the user. This real time processing of video makes it easier to identifying potential threats.

Image Processing Based Automated	Target Detector and Shooter
CHAPTER:4	

Software Implementation

4.1 Anaconda IDE:

Fig 4.1 Anaconda IDE

Conda works on command line interface or anaconda prompt on windows which uses command line interface. To have various testing conda offers variety of packages. Basically, anaconda IDE is used as an environment or development tool for python program applications. Since our programing language is python, we opted for this as an IDE. Also, by using simple commands in anaconda prompt various testing of pi camera is done. Before actually going into real time processing the basic testing on image processing algorithm is done in Anaconda using python programing and OpenCV and numpy libraries.

4.2 Google Colab:

Fig 4.2 Google Colab

Google colab or google collaborator is an online product which is made available by google research. Using colab one can write and execute the arbitrary python code on google server through browser. Google colab provides a virtual platform for development which comprises of high-speed processors with clock frequency in terms of TB's. We personally used this platform to train the supervised machine learning model using neural networks and labelled images. We have implemented the machine learning model by using transfer learning which used an algorithm YOLO (You only look once) which requires a image data in labelled form. We used this algorithm because it is proven to be the effective real-time object recognition algorithm.

4.3 YOLOv4 Algorithm:

Fig 4.3.1 MS COCO Object Detection [13]

Today's World has rapidly developing environment and needs fast processing at smooth and faster rate. The above graph shows the comparison of YOLOv4 algorithm with its competitive algorithms used for real-time object detection. Here we can clearly see that YOLOv4 is always a better option wherein it is able to process a greater number of frames (FPS) with greater mean average Precision (AP). There are some algorithms which have greater AP but can process a very smaller number of frames at a time which is not feasible in great automation sectors. So as precision and speed both re essential parts of the project the YOLOv4 algorithm is used. Also, it is better than its previous version where the AP is increased by 10% and the FPS is increased by 12%.

• One Stage Detection Model:

Basic two stage detection models predict bounding boxes for each object and for each object found it then classifies the probabilities of each object so this way the model speed gets reduced wherein in one stage detection model, it requires only a single pass to predict all the bounding boxes as well as to classify the probability of each object. As YOLOv4 is using the one stage detection modelling for object detection it is faster way to get the object bounding boxes and its probabilities in real time scenarios.

• Architecture:

YOLOv4 is consisting of following parts:

1. Backbone:

In YOLOv4 Backbone is referred as feature-extraction architecture in which according to the different name of YOLO, different backbones are used. In this project Darknet52 backbone is used for object detection which means that there are 53 layers of convolutional layers in

between input and the successful output for better accuracy. It is bit slower to train than other backbones such as YOLO-tiny which uses 9 layers of CNN but here accuracy is major concern so darknet53 has been chosen.

2. Neck:

To detect the object from different scales and different resolutions, a hierarchical structure is produced in between backbone and head to have feature mapping at different resolutions. This part also consists several designs. During training of data, the network requires fixed size for each data but we don't have fixed sized data all the time. Spatial pyramid pooling (SPP) is one of the layers that removes the fixed sized constraint. SPP layer performs the information aggregation to avoid the need of cropping or wrapping or resizing of image.

• Activation Function:

There are various activations functions which can be used such as ReLU, leaky-ReLU, parametric-ReLU, ReLU6, SELU, Swish, or Mish. Following is the Mish Activation function.

Fig 4.3.2 Mish Activation Function [12]

The mish function used in YOLOv4 because of its low cost and various properties which improves the model's performance as compared to other activation functions. The non-monotonic property of Mish helps to preserve small negative values thereby stabilizing gradient flow.

Fig 4.3.3 Accuracy Comparison Graph [12]

As shown in above graph the Mish activation function gives better testing accuracy at higher number of hidden layers so it is preferred activation function for the Darknet53 architecture.

The equation of Mish function is given by,

$$f(x) = x \cdot \tanh(\varsigma(x))$$
 where, $\varsigma(x) = \ln(1+e^x)$, is a SoftMax activation function.

•	Image	Process	ing B	ased A	utomated	Target 1	Detector	and	Shooter
-	mage	110003	mg D	ascu A	utomateu	rarget.	Detector	and	SHOOLEI

4.4 YOLOv4-tiny Algorithm:

In proposed system for video processing, we used YOLOv4 as well as YOLOv4-tiny algorithm to find out which one is better at processing real time video. Here are some key features of YOLOv4-tiny.

- ► One stage Detection Model
- Compressed Version of YOLOv4
- ► Consists of 29 pretrained CNN layered architecture
- ► Neck (SPP) removes the fixed size constraint
- ► 10% more mean AP than YOLOv3
- ► 8 times FPS Support than YOLOv4
- ► 5/2 times FPS Support for proposed model
- Computational Complexity CSPBlock to ResBlock-D is 10:1
- ► Complexity ratio for proposed model is 4:1
- ► Train 350 images in 1 hour when using a Tesla P100 GPU
- ► For our model approx. 1 hour and for Yolov4 model 3-4 hours (6000 iterations) Tesla T4 CPU
- ➤ YOLOv4-tiny has an inference speed of 3 ms on the Tesla P100, making it one of the fastest object detection models to exist.

YOLOv4	YOLOv4-tiny
Works better with images.	Works better with videos.
Low FPS support (upto 55 FPS).	High FPS support (upto 155 FPS).
More time complexity.	Less time complexity.
More space complexity.	Less space complexity.
Training average loss: 0.314525	Training average loss: 0.012734

Table 4.4: YOLOv4 vs YOLOv4-tiny

Image Processing Based Automated Target Detector and Shoote
CHAPTER:5

Testing and Troubleshooting

5.1 Testing:

The figure 5.1.1 shows the testing of pi camera module.

Fig 5.1.1 Testing of Pi camera module

5.2 Testing Strategies and Test Procedures:

5.2.1 Object Detector Model Training:

For testing purpose of machine learning model, we have provided a set of 58 different images to the ML model. The system or algorithm used by us is YOLOv4-tiny. YOLO stands for "You only look once". We chose this algorithm for our project because latest Yolo system can process 45 frames per second and can enhance the real time detection system and since we are working on real time video processing, we chose this algorithm. The model was trained to extract the features and store the weights of given data images. We then tested the accuracy of our project and we found it to be working quite good with small set of images only. The following images are tested by using Yolo algorithm.

You can find the code here:

https://drive.google.com/file/d/17rsfDBS1aiwTL6Yr9gBpm8znk-W17lMq/view?usp=sharing

5.3 Results:

5.3.1 Object Detector Model Training:

Fig 5.3.1 Object Detector Model Training

5.3.2 Comparison Based on Simulations:

Fig 5.3.2.a: YOLOv4

Fig 5.3.2.b: YOLOv4-tiny

Comparison Results:

- ➤ YOLOv4 Average Precision: 94.27
- ➤ YOLOv4-Tiny Average Precision: 93.90
- ➤ Impact on average precision: ~0.5%

 Here we can see that for Image processing YOLOv4 algorithm has provided average confidence level of 94.27 whereas YOLOv4-tiny algorithm has provided average confidence level of 93.90. Hence, we can say that YOLOv4 have better precision than YOLOv4-tiny for image processing.

Following are the Frames per second (FPS) results obtained from simulation:

```
cvWriteFrame
     Objects:
 D
     FPS:19.3
                    AVG FPS:18.6
     cvWriteFrame
     Objects:
     FPS:19.1
                     AVG FPS:18.6
     cvWriteFrame
     Objects:
     FPS:19.2
                     AVG_FPS:18.6
      cvWriteFrame
     Objects:
     FPS:19.3
                     AVG FPS:18.6
      cvWriteFrame
     Objects:
[18] # Download the video showing object detection on local system
     from google.colab import files
     files.download('Video_Output_main.avi')
```

Fig 5.3.2.c: YOLOv4 FPS

```
FPS:79.2
                   AVG FPS:47.9
   cvWriteFrame
   Objects:
   FPS:80.1
                  AVG FPS:47.9
    cvWriteFrame
   Objects:
   FPS:80.2
                  AVG FPS:47.9
    cvWriteFrame
   Objects:
   FPS:81.0 AVG_FPS:47.9
    cvWriteFrame
   Objects:
                  AVG_FPS:47.9
   FPS:81.2
    cvWriteFrame
   Objects:
   FPS:82.8
                  AVG FPS:47.9
    cvWriteFrame
18] # Download the video showing object detection on local system
   from google.colab import files
```

Fig 5.3.2.d: YOLOv4-tiny FPS

From fig 5.3.2.c and fig 5.3.2.d we can clearly observe that for Video processing YOLOv4-tiny is better as compared to YOLOv4. We can see that YOLOv4 algorithm process average FPS of 18.6 while on the other hand YOLOv4-tiny algorithm provides processing in average FPS of 47.9 which is 3x more than YOLOv4 algorithm. Hence, we can say that YOLOv4-tiny is better for Video processing than YOLOv4 algorithm.

Image Processing Based Automated Target Detector and Shoote
CHAPTER:6

Image	Proces	sing F	Based	Automated	Target	Detector	and	Shoote
IIIIuge	110000	J1115 I	Juseu .	lacomacca	Iuiget	Detector	unu	SHOOL

Advantages and Applications

6.1 Advantages

- 1. System can replace Humans on the battlefield and therefore helps in reducing the human casualties on borders.
- 2. Detection is improved due to real time image processing capabilities.
- 3. Accuracy of hitting the target is increased.
- 4. Human error can be reduced due to human-machine interface.
- 5. System can be controlled over long distance.

6.2 Applications

- 1. Military application i.e., target detection and shooting purpose.
- 2. Can be used as a Tranquilizer gun for animals in sanctuaries to inject anesthetic drug or tranquilizer.

Image Processing Based Automated Target Detector and Shoot
CHAPTER:7

	Image Processing Based Automated Target Detector and Shooter
Chapter 7	
Conclusion	
video processing algorithm. Once the target ob at the same targeted object. Maximum accuracy This proposed system consisting of wireless of	puld detect specific target objects with the help of ject is detected, system controller shoots aiming is achieved by using pneumatic based subsystem. communication provides long range contactless future can replace human-beings and therefore r.

Image Processing Based Automated Target Detector and Shooter
References
[1] https://github.com/tzutalin/labelImg
[2] https://github.com/AlexeyAB/darknet
[3] P.F. Felzenszwalb and D. P. Huttenlocher, 2005. Pictorial structures for object recognition. IJCV, 61(1):55–
79, 2005.
[4] Y. Ren, C-S. Chua and Y-K. Ho, 2003. Motion Detection with Nonstationary Background, MVA, Springer-
Verlag.
[5] P. F. Felzenszwalb, R. B. Girshick, D. McAlester, and D. Ramanan, "Object detection with discriminatively
trained part-based models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, p. 1627, 2010.
[6] P. L. Rosin, "A simple method for detecting salient regions," Pattern Recognition, vol. 42, no. 11, pp.
2363–2371, 2009.
[7] C. Szegedy, A. Toshev, and D. Erhan, "Deep neural networks for object detection," in NIPS, 2013.

[8] B Gupta, Ashish Chaube," Study on Object Detection using Open CV – Python, 2017", International conference of Computer applications, doi: 10.5120/ijca2017913391

[9] Chen, Haipeng & He, Zhentao & Shi, Bowen & Zhong, Tie. (2019). Research on Recognition Method of Electrical Components Based on YOLO V3. IEEE Access. 7. 1-1. 10.1109/ACCESS.2019.2950053.

[10] Cancan Yang, Zan Yang, Shan Liao, Zheming Hong, Wei Nai.(2020) Triple-GAN with Variable Fractional Order Gradient Descent Method and Mish Activation Function.

1	Image	Process	sing F	Based .	Automated	Target I	Detector .	and	Shooter
-	mage	110000	பாதட	Juscu 1	lutomateu	Imget	Ciccioi	ana	SHOOLCI

[11] A. M. Ghoreyshi, A. AkhavanPour and A. Bossaghzadeh, "Simultaneous Vehicle Detection and Classification Model based on Deep YOLO Networks," 2020 International Conference on Machine Vision and Image Processing (MVIP), 2020, pp. 1-6, doi: 10.1109/MVIP49855.2020.9116922.

[12] Z. Zhang, Z. Yang, Y. Sun, Y. Wu and Y. Xing, "Lenet-5 Convolution Neural Network with Mish Activation Function and Fixed Memory Step Gradient Descent Method," 2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2019, pp. 196-199, doi: 10.1109/ICCWAMTIP47768.2019.9067661.

[13] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.

[14] J. Huang, Y. Lu, "A Method for Identifying and Classifying Resistor and Capacitors Based on YOLO Network, "2019 IEEE 4th International Conference on Signal and Image Processing, 2019.