Calculus I Homework Areas and integrals

- 1. Estimate the integral using a Riemann sum using the indicated sample points and interval length.
 - (a) $\int_0^4 (\sqrt{8x+1}) dx$. Use four intervals of equal width, choose the sample point to be the left endpoint of each interval.
 - (b) $\int_0^6 \frac{1}{x^2 + 1} dx$. Use three intervals of equal width, choose the sample point to be the left endpoint.
 - (c) $\int_{-3.5}^{-0.5} \frac{dx}{x^2 + 1}$. Use three intervals of equal width, choose the sample point to be the midpoint of each interval.
 - (d) $\int_0^2 \frac{\mathrm{d}x}{1+x+x^3}$. Use $\Delta x = \frac{1}{2}$ and right endpoint sampling points.
 - (e) $\int_{-2}^{0} \frac{dx}{1+x+x^2}$. Use $\Delta x = \frac{2}{3}$ and left endpoint sampling points.
 - (f) $\int_{0}^{2} \frac{dx}{1+x^3}$. Use four intervals of equal width, choose the sample point to be the left endpoint of each interval.
 - (g) $\int_{-2}^{0} \frac{dx}{x^4 + 1}$. Use four intervals of equal width, choose the sample point to be the right endpoint.
 - (h) $\int_{-1}^{0} \frac{1}{3x^2 + 1} dx$. Use 3 **intervals** of equal width, choose the sampling points to be the **left endpoints** of each interval. Simplify your answer to a rational number (single fraction of two integers).