

Malaria Molecular Surveillance Study Design Workshop

Dr. Bob Verity, Dr. Shazia Ruybal-Pesántez

MRC Centre for Global Infectious Disease Analysis

WHO Collaborating Centre for Infectious Disease modelling

School of Public Health Imperial College London

Welcome!

Genomic epidemiology: the study of the genetic characteristics of pathogens to understand their transmission, distribution, and evolution. Combines genetic data with epidemiological information to improve our understanding of disease.

Genomic surveillance: the systematic, ongoing collection and analysis of pathogen genetic data to monitor for genetic changes that could impact public health. Focuses on actionable information and impacts on control.

High priority areas for surveillance

- 1. Monitoring the prevalence of established molecular markers of drug resistance (*crt, dhfr, dhps, mdr1*).
- 2. Detecting the emergence of rare variants of concern and tracking their spread in space and time (e.g. *k13*).
- 3. Measuring the prevalence of *hrp2/3* gene deletions as part of decision frameworks that directly impact control strategies.

Other applications of MMS

- 1. Detect imported vs. locally acquired cases
- 2. Measure migration and connectivity between populations
- 3. Estimate transmission chains and networks
- 4. Measure changes in transmission (e.g. impact of interventions)
- 5. Classifying infections as reinfection, recrudescence, and relapse (vivax)

Other things we will NOT cover here

- 1. Therapeutic Efficacy Studies (TES)
- 2. Vector surveillance/genomics
- 3. Study designs for measuring interventions, e.g. clinical trials

Current state of play

Chloroquine	pfcrt	CVIET haplotype, K76T SVMNT haplotype, A220S
Sulfadoxine- Pyrimethamine (SP)	pfdhps pfdhfr	A437G, K540E , A581G N561I, C59R, S108N , I164L
Mefloquine and Lumifantrine	pfmdr1	N86Y, Y184F, D1246Y

pfcrt

- Historically (pre-2000) at high prevalence, following intense use of chloroquine
- Decline in some places following switch to ACTs
- Current distribution is patchy

Fig. 1 The number of imported P. falciparum cases from Africa and percentage of haplotypes of Pfcrt

pfcrt

Democratic Republic of the Congo

pfdhps A437G

Median map: dhps437, 2005

pfdhps K540E

pfdhps A581G

Median map: dhps581, 2005

Detecting pfk13 variants

- Delayed parasite clearance following artemisinin treatment, Western Cambodia (2000s)
- Identification of *kelch* 13 domain (2013)
- High prevalence of delayed clearance, and strong association with pfk13 (2014)

Detecting pfk13 variants

- Enhanced survival of parasites after in vitro artemisinin exposure in Northern Uganda (2018)
- In Rwanda, pfk13 mutations found to have increased between 2015 and 2018
- Spread in space and time from Northern Uganda (2023)

Detecting pfk13 variants

pfk13 mutations now found throughout Sub-Saharan Africa

Identifying and quantifying pfhrp2/3 deletions

- First reports in Peru in 2010
- Turning point in 2016, identification in Eritrea and India
- Similar time (2017) identification in DRC from large cross-sectional surveys
- Moderate prevalence in Kenya, scattered prevalence in Mozambique and Tanzania

Identifying and quantifying pfhrp2/3 deletions

Pfhrp2/3 deletions now found throughout Sub-Saharan Africa, and at high prevalence in the Horn of Africa

Surveillance patterns in Africa

Partner drug resistance

Patchy distribution throughout SSA. Some markers close to fixation, others spreading or receding

Artemisinin resistance

Distinct epicenters in Northern Uganda and the Horn of Africa

pfhrp2/3 deletions

High prevalence in the Horn of Africa, identified throughout SSA

Back to study design

How does study design come into this

Major changes in MMS...

- Scale-up in number of sites and samples
- Deeper and wider sequencing
- Changes in distribution of genomic infrastructure

Few general guidelines on...

- Study structure
- Minimum sample size
- Type of sequencing technology
- Which analysis tools to use

Aims for the workshop

Strengthen our statistical plans

- Precision and confidence intervals
- Power analysis
- Sample size calculation
- More advanced tools

Put this in real world context

- Combine statistics with logistics, feasibility, budget etc.
- Discuss challenges and share solutions
- Identify areas for future development