Numerical Optimization exercise sheet

review on 11.12.2024 during the exercise class

1. (Linear programming and KKT)

We are going to show necessary and sufficient conditions for linear problems. From the Optimization lecture we know that every linear program can be written as

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax = b$

$$x \ge 0$$
(1)

which has the associated dual problem

$$\max_{(\lambda,\mu)\in\mathbb{R}^m\times\mathbb{R}^n} b^T \lambda$$
s.t. $A^T \lambda + \mu = c$

$$\mu \ge 0.$$
(2)

Note that $\mu = c - A^T \lambda$ can be seen as a slack variable. For those linear problems, one can show

Theorem 1 (Necessary and sufficient optimality conditions). The following statements are equivalent:

- i) The primal problem (1) has a solution \bar{x} .
- ii) The dual problem (2) has a solution $(\bar{\lambda}, \bar{\mu})$.
- iii) The optimality system

$$A^{T}\lambda + \mu = c, \quad Ax = b, \quad x^{T}\mu = 0, \quad x \ge 0, \quad \mu \ge 0$$
 (3)

has a solution $(\bar{x}, \bar{\lambda}, \bar{\mu})$.

The tasks are:

- a) Derive the dual problem (2) from the primal problem (1) with the definition of the dual problem (D) and the dual feasible region \mathcal{F}_D of Section 3.2.1 in the lecture notes.
- b) Proof Theorem 1.

Hint: Some hints are in order:

- The saddle point property (Theorem 3.2.3) is important.
- Show ACQ for such linear programs (you only have to prove it for the primal problem).
- Linear programs are convex, so you may use Theorem 3.1.20 (KKT for convex problems) in some way or another.
- How do the KKT conditions for problem (1) and problem (2) look like?

(14 Points)

2. (Penalty Method)

Consider for $f \in C(\mathbb{R}^n)$ and $h \in C(\mathbb{R}^n; \mathbb{R}^m)$ the constrained optimization problem

$$\begin{cases}
\min & f(x) \\
\text{s.t.} & h(x) = 0
\end{cases}$$
(4)

with

$$\mathcal{F} := \{ x \in \mathbb{R}^n : h(x) = 0 \} \neq \emptyset.$$

Let $(\tau_k)_{k\in\mathbb{N}}\subset\mathbb{R}_{>0}$ be a strictly monotonically increasing sequence with $\lim_{k\to\infty}\tau_k=\infty$. Prove that for a sequence $(x^{(k)})_{k\in\mathbb{N}}$ generated by the penalty method, it holds:

- a) The sequence $(\mathcal{L}_{\tau_k}(x^{(k)}))_{k\in\mathbb{N}}$ is monotonically increasing.
- b) The sequence $(\|h(x^{(k)})\|)_{k\in\mathbb{N}}$ is monotonically decreasing.
- c) The sequence $(f(x^{(k)}))_{k\in\mathbb{N}}$ is monotonically increasing.
- d) It holds $\lim_{k\to\infty} h(x^{(k)}) = 0$.
- e) Every accumulation point of $(x^{(k)})_{k\in\mathbb{N}}$ is a (global) solution of (4).

(8 Points)

3. (Penalty Method and Lagrange Method)

a) Write a MATLAB routine

which performs the penalty method with a suitable termination criteria. The input parameter are given by:

- **f**: The objective function $f: \mathbb{R}^n \to \mathbb{R}$ (function handle).
- h: The constraint function $h: \mathbb{R}^n \to \mathbb{R}^m$ with $m \leq n$ (function handle).
- x0: Initial value $x^{(0)} \in \mathbb{R}^n$.
- tau0: Initial penalty parameter τ_0 .
- rho: Parameter for increasing the penalty parameter τ .
- tol: Tolerance for termination criterion.
- maxIt: Maximal number of iterations for termination criterion.

The output parameter is given by:

• x: Vector containing the evolution of all solutions computed by the penalty method.

For minimizing the penalty Lagrange function $\mathcal{L}_{\tau}: \mathbb{R}^n \to \mathbb{R}$ defined by

$$\mathcal{L}_{\tau}(x) = f(x) + \frac{1}{2}\tau ||h(x)||^2$$

you can use fminsearch or fminuc.

b) Write a MATLAB routine

which performs the method of lagrange multipliers (Section 3.5 in the lecture notes) with a suitable termination criteria. In addition to the notations from subtask a) the input parameter are given by

• lambda0: Initial lagrange parameter $\lambda^{(0)}$.

The output parameter is given by:

• x: Vector containing the evolution of all solutions computed by the penalty method.

For minimizing the function $\mathcal{G}_{\tau}: \mathbb{R}^n \to \mathbb{R}$ defined by

$$\mathcal{G}_{\tau}(x,\lambda) = f(x) + \lambda^{\top} h(x) + \frac{1}{2} \tau ||h(x)||^2$$

you can use fminsearch or fminuc.

c) Apply the MATLAB routine penalty_method.m and lagrange_method.m to the function $f: \mathbb{R}^2 \to \mathbb{R}$ with

$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

subject to the constraint $h(x_1, x_2) = 0$, where

$$h(x_1, x_2) = (x_1 + 0.5)^2 + (x_2 + 0.5)^2 - 0.25,$$

by using the initial value $x^{(0)} = (1,1)^{\top}$ and the parameter $\tau^{(0)} = 0.1$, $\rho = 6$ and $\lambda^{(0)} = 10$, respectively. Create a plot displaying the contour lines of f together with the solution of each iteration of the penalty method and the method of lagrange multipliers. Discuss your results.

(8 Points)