

Università degli Studi di Ferrara

Intelligenza Artificiale (IA)

- Il calcolatore programmabile è in grado di svolgere compiti noiosi e ripetitivi in maniera veloce e corretta
- Come tutte le macchine, l'obiettivo è quello di far fare ad una macchina i lavori che agli uomini non piace fare
- Purtroppo, il calcolatore in sé non ha intelligenza, quindi non è in grado di svolgere molti compiti
- L'Intelligenza Artificiale è un insieme di discipline che si occupa di migliorare l'intelligenza delle macchine, in modo che possano svolgere compiti tradizionalmente svolti dall'uomo

Branche dell'Intelligenza Artificiale

- riconoscimento delle immagini
- interpretazione dei testi scritti
- apprendimento automatico
- elaborazione di vincoli
- rappresentazione della conoscenza
- ragionamento automatico
- pianificazione automatica
- ...

Esempio: Orario delle lezioni

- I Professori tengono delle lezioni, che sono seguite dagli studenti. Ogni lezione si tiene in un'aula.
- Un professore non può dare due lezioni contemporaneamente
- Uno studente non può seguire due lezioni diverse allo stesso tempo
- Un'aula non può contenere due lezioni diverse allo stesso tempo
- Alcune lezioni devono essere tenute in laboratori
- Le aule devono essere abbastanza grandi da contenere tutti gli studenti

Corso di Laurea in Ingegneria Dell'informazione - Ordinamento 2010 > Anno: 1

	Lunedi	Martedi	Mercoledi	Giovedi	Venerdî	
8:00						
	08:30 - 11:00	08:30 - 11:00	08:30 - 11:00	08:30 - 11:00	08:30 - 11:00	ľ
9:00	ANALISI	GEOMETRIA E	GEOMETRIA E	ANALISI	GEOMETRIA E	r
0.00	MATEMATICAI	ALGEBRA	ALGEBRA	MATEMATICAI	ALGEBRA	ŀ
	(Aula 1)	(Aula 1)	(Aula 1)	(Aula 1)	(Aula 1)	H
10:00						ŀ
	44.00 40.00	44.00 40.00	44.00 40.00	44.00 40.00	44.00 40.00	L
11:00	11:00 - 13:30 FISICA I (Aula 1)	11:00 - 13:00 FONDAMENTI DI	11:00 - 13:30 FISICA I (Aula 1)	11:00 - 13:00 FONDAMENTI DI	11:00 - 13:30 FISICA I (Aula 1)	ı.
	PISICAT (Adia 1)	INFORMATICA:	rision (nuia i)	INFORMATICA:	FISION (Adia 1)	ı
12:00						Г
		MODULO A		MODULO A		ŀ
12.00		(Aula 1)		(Aula 1)		H
13:00		13:30 - 16:00		13:30 - 16:00		ŀ
		FONDAMENTI DI		FONDAMENTI DI	14:00 - 16:30	ŀ
14:00		INFORMATICA:		INFORMATICA:	14:00 - 16:30 ANALISI	ı.
		MODULO A		MODULO A	MATEMATICAL	ı
15:00		(Laboratorio di		(Laboratorio di		
					(Aula 1)	ŀ
16:00		Informatica		Informatica		H
16:00						١.

Esempio: Vehicle Routing

- Un dato numero di veicoli deve partire da un punto iniziale per fornire beni a tutti i clienti
- Ogni cliente richiede un dato quantitativo di beni
- Ogni veicolo ha una capacità massima, che non può essere superata
- Tutti i clienti devono essere serviti
- Qual è la soluzione migliore?

ma ... è importante?

- Nel mondo verranno spesi circa 30.000 miliardi di dollari nei prossimi 20 anni in nuove strade e progetti simili, secondo l'economista CIBC Benjamin Tal
- Le congestioni del traffico costano attualmente nella Unione Europea oltre l'1% del Prodotto Interno Lordo (PIL)
- Negli Stati Uniti, nel congestionamento stradale durante il 2007 sono stati sprecati 12,6 miliardi di litri di carburante e 4,2 miliardi di ore

Esempio: impacchettamento

- Impacchettare molti oggetti in uno spazio limitato
- tagliare materiali in rettangoli minimizzando il materiale sprecato
- Non ci possono essere sovrapposizioni fra rettangoli

Cos'hanno in comune?

- I professori tengono lezioni, che sono seguite dagli studenti. Ogni lezione è tenuta in un'aula.
- Un professore non può fare due lezioni allo stesso tempo
- Uno studente non può seguire due lezioni allo stesso tempo
- Un'aula può contenere una sola lezione alla volta
- Alcune lezioni si fanno in laboratorio
- L'aula deve essere abbastanza capiente
- Tutti i clienti devono essere visitati
- Non si può superare la capacità dei veicoli
- I rettangoli non possono sovrapporsi

		ngognona Bon	miomiazione	O a a a a a a a a a a a a a a a a a a a	2010 / 11110.
	Lunedi	Martedi	Mercoledi	Giovedi	Venerdi
8:00					
	08:30 - 11:00	08:30 - 11:00	08:30 - 11:00	08:30 - 11:00	08:30 - 11:00
9:00	ANALISI	GEOMETRIA E	GEOMETRIA E	ANALISI	GEOMETRIA E
5.00		ALGEBRA	ALGEBRA	MATEMATICAI	ALGEBRA
		(Aula 1)	(Aula 1)	(Aula 1)	(Aula 1)
10:00					
11:00	11:00 - 13:30	11:00 - 13:00	11:00 - 13:30	11:00 - 13:00	11:00 - 13:30
	FISICA I (Aula 1)		FISICA I (Aula 1)		FISICA I (Aula 1)
12:00					
12.00					
		(Aula 1)		(Aula 1)	
13:00					
		13:30 - 16:00		13:30 - 16:00	
14:00		FONDAMENTI DI		FONDAMENTIDI	14:00 - 16:30
		INFORMATICA:		INFORMATICA:	ANALISI
		MODULO A		MODULO A	MATEMATICA I
15:00		(Laboratorio di		(Laboratorio di	(Aula 1)
		Information		Information	

Corso di Laurea in Ingegneria Dell'informazione - Ordinamento 2010 > Anno:

Vincoli

- Se mi propongono una soluzione, so dire se è corretta o no:
 - se soddisfa tutti i vincoli, ok,
 - altrimenti no

Due rettangoli sovrapposti: errore!!

Vincoli

- Un vincolo è associato al concetto matematico di relazione
- Una relazione può essere vista come una tabella che indica quali combinazioni sono accettabili e quali non lo sono.
- Esempio: A<B
- Se A=1 e B=3 il vincolo A<B è soddisfatto
- Se A=3 e B=3 il vincolo A<B non è soddisfatto

	B=1	B=2	B=3	B=4
A=1	×	✓	✓	✓
A=2	×	×	✓	✓
A=3	×	×	×	✓
A=4	×	×	×	×

Vincoli

- Un vincolo è associato al concetto matematico di relazione
- Un altro modo per descrivere una relazione è elencare (in un insieme) le combinazioni che contiene
- Esempio: A<B
- L'insieme delle coppie (se A e B spaziano da 1 a 4) che soddisfano il vincolo è:

```
• {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}
```


Constraint Satisfaction Problem

- Un Problema di Soddisfacimento di Vincoli (Inglese: Constraint Satisfaction Problem o CSP) è definito tramite:
 - un insieme di variabili, che vengono considerate delle incognite
 - ogni variabile ha un suo dominio. Il dominio è un insieme di valori. In un CSP, il dominio deve essere finito
 - Sull'insieme delle variabili vengono imposti dei vincoli. I vincoli sono relazioni
- Soluzione: ad ogni variabile deve essere associato un valore preso dal suo dominio, in modo da soddisfare tutti i vincoli.

Esempio di CSP

Variabili		Domini
Α	€	{1,2,3,4}
В	€	{1,2,3,4}
С	€	{2,4,5}

Vincoli	
A ≠ B	
A≥C	
C = B+1	

Una soluzione è

- A=4
- B=1
- C=2

A≠B	B=1	B=2	B=3	B=4
A=1	×	✓	✓	✓
A=2	✓	×	✓	✓
A=3	✓	✓	X	✓
A=4	V •	✓	✓	×

A≥C	C=2	C=4	C=5
A=1	X	X	X
A=2	✓	X	X
A=3	✓	X	X
A=4	✓ •	✓	X

C=B+1	B=1	B=2	B=3	B=4
C=2	✓ •	×	×	×
C=4	×	×	✓	×
C=5	×	×	×	✓

Es Sudoku

- Variabili: 📃
 - A1,A2,A3 ... A9
 B1,B2...B9
 ...
 I1,I2,...I9
- Domini: {1,2,3,...,9}
- Vincoli:
 - A7=6, A8=8, B5=7, B6=6, ...
 - Gli elementi su una riga devono essere tutti diversi

A1≠A2, A1≠A3, A1≠A4 ... A2≠A3, A2≠A4..., A8≠A9 ... I1≠I2, I1≠I3, I1≠I4 ... I2≠I3, I2≠I4..., I8≠I9

• Gli elementi su una colonna devono essere tutti diversi

A1≠B1, A1≠C1, A1≠D1 ... B1≠C1, B1≠D1..., H1≠I1 ...

• Gli elementi in un riquadro devono essere tutti diversi

•••

6

7

8

9

D

Н

8

Esempio: Timetabling

Per ogni lezione, due variabili:

A che ora inizia la lezione?

Ora_{Fisiologia1}, Ora_{Microbiologia2}, ...

• In quale aula si tiene la lezione? Aula_{Fisiologia1}, Aula_{Microbiologia2}, ...

Domini:

 dalle 8:00 alle 18:00 dal lunedì al venerdì

{lu8, lu9, ... ve17, ve18}

 Insieme delle aule disponibili {aula_magna,f9,aula_levi,...}

orso di Laurea in Ingegneria Dell'informazione - Ordinamento 2010 > Anno: 1

	Lunedi	Martedi	Mercoledi	Giovedî	Venerdî	
8:00						
	08:30 - 11:00	08:30 - 11:00	08:30 - 11:00	08:30 - 11:00	08:30 - 11:00	ľ
9:00	ANALISI		GEOMETRIA E	ANALISI	GEOMETRIA E	ŀ
3.00	MATEMATICA I		ALGEBRA	MATEMATICAI	ALGEBRA	ŀ
	(Aula 1)		(Aula 1)	(Aula 1)	(Aula 1)	H
0:00						l
						l
1:00	11:00 - 13:30	11:00 - 13:00	11:00 - 13:30	11:00 - 13:00	11:00 - 13:30	ı
	FISICA I (Aula 1)		FISICA I (Aula 1)	FONDAMENTI DI	FISICA I (Aula 1)	ľ
2:00				INFORMATICA:		ŀ
2.00				MODULO A		ŀ
		(Aula 1)		(Aula 1)		ŀ
13:00						l.
		13:30 - 16:00		13:30 - 16:00		
14:00				FONDAMENTIDI	14:00 - 16:30	ľ
				INFORMATICA:	ANALISI	ŀ

Timetabling: vincoli orari

Variabili

A che ora inizia la lezione?

Ora_{Fisiologia1}, Ora_{Microbiologia2}, ...

NoOverlap, se le lezioni durano 2h:

noOv erlap	lu8	lu9	lu10	lu11	lu12	lu14	lu15
lu8	F	F	V	V	V	V	V
lu9	F	F	F	V	V	V	V
lu10	V	F	F	F	V	V	V
lu11	V	V	F	F	F	V	V
lu12	V	V	V	F	F	V	V
lu14	V	V	V	V	V	F	F
lu15	V	V	V	V	V	F	F

Domini:

- Vincoli sugli orari:
 - Vincoli docente:

- Non sovrapposizione stesso docente: noOverlap(Ora_{Fisiologia1}, Ora_{Fisiologia2})
- Non sovrapposizione stesso studente: noOverlap(Ora_{Fisiologia1}, Ora_{Microbiologia1})

Timetabling: vincoli aule

Variabili:

In quale aula si tiene la lezione?
 Aula_{Fisiologia1}, Aula_{Microbiologia2}, ...

Vincoli sulle aule:

• Vincoli di capacità

Aula_{Fisiologia1}≠aula_levi, ...

Tipo di aule (laboratori, ...)
 Aula_{IA} = f9

Domini:

 Insieme delle aule disponibili {aula_magna,f9,aula_levi,...}

 y_{max}

Packing

- For each rectangle, 2 variables:
 - X position
 - Y position
- Domains:
 - X variables: from 0 to x_{max}
 - Y variables: from 0 to y_{max}
- Constraints:
 - Given 2 rectangles (*X*1,*Y*2) (*X*2,*Y*2) then:
 - either Rectangle 1 is left of Rectangle 2: $X1 + w1 \le X2$
 - or Rectangle 1 is right of Rectangle 2: $X2+w2 \le X1$
 - or Rectangle 1 is under Rectangle 2: Y1+h1 ≤ Y2
 - or Rectangle 1 is over Rectangle 2: $Y2+h2 \le Y1$

Packing: vincolo

- Il vincolo:
 - "Given 2 rectangles (X1,Y2) (X2,Y2) then:
 - either Rectangle 1 is left of Rectangle 2: $X1 + w1 \le X2$
 - or Rectangle 1 is right of Rectangle 2: X2+w2 ≤ X1
 - or Rectangle 1 is under Rectangle 2: Y1+h1 ≤ Y2
 - or Rectangle 1 is over Rectangle 2: Y2+h2 ≤ Y1"
- coinvolge 4 variabili (X1,Y1,X2,Y2), quindi per rappresentarlo come tabella ci vorrebbe una tabella a 4 dimensioni (difficile da disegnare, ma concepibile)
- Altrimenti, si può rappresentare come insieme di quadruple: nel caso di 2 quadrati 3x3

si avrebbe:

X1	Y1	X2	Y2
1	1	4	1
1	1	4	2

Riassumendo

- Vari problemi di Intelligenza Artificiale si possono rappresentare come Problemi di Soddisfacimento di Vincoli
- Questi problemi sono definiti da 3 entità:
 - Un insieme di variabili, che sono le incognite del problema
 - Un dominio finito per ogni variabile
 - Un insieme di vincoli. I vincoli sono relazioni, possono coinvolgere 1 o più variabili.
- Nelle prossime lezioni studieremo come risolvere questi tipi di problemi

Esercizio

- Tre bimbi giocano a biglie; ciascuno dei 3 ha un numero di biglie da 1 a 5.
- Aldo è quello che ne ha di più.
- Bruno e Carlo, insieme, ne hanno 5.
- Bruno ha un numero di biglie diverso da quello che ha Carlo
- Si formalizzi il problema come CSP, si definiscano quindi:
 - le variabili
 - i domini
 - i vincoli
- Si mostri la relazione associata a ciascun vincolo tramite una tabella

