

TECHNICAL REPORT

Aluno: Guilherme Pinheiro Serafim

1. Introdução

Este relatório técnico aborda a análise de dois datasets distintos, explorando suas características principais e objetivos de análise.

Dataset 1: Diagnóstico de Diabetes

Este dataset contém informações clínicas e demográficas de pacientes, com foco em fatores que podem influenciar no diagnóstico de diabetes. O objetivo principal desta análise é identificar as variáveis mais relevantes que contribuem para a predição de diabetes e desenvolver um modelo que permita classificar novos pacientes de forma precisa.

As variáveis incluem:

- Gravidezes: Número de vezes que a paciente esteve grávida.
- Glicose: Níveis médios de glicose no sangue.
- **Pressão Arterial:** Valor médio da pressão sanguínea.
- Espessura da Pele: Medida da dobra cutânea em milímetros.
- *Insulina:* Níveis de insulina presentes no sangue.
- Índice de Massa Corporal (IMC): Relação entre peso e altura, indicador de obesidade.
- Histórico Genético: Pontuação que reflete a predisposição genética ao diabetes.
- Idade: Idade dos pacientes.
- Diagnóstico: Variável binária indicando presença (1) ou ausência (0) de diabetes.

Esta análise pretende:

- Explorar a relação entre os fatores acima e o diagnóstico de diabetes.
- Construir um modelo preditivo que permita identificar pacientes em risco.

Dataset 2: Preços de Imóveis

Este dataset contém informações sobre transações imobiliárias no condado de King, incluindo a cidade de Seattle, nos EUA. O objetivo principal desta análise é identificar os fatores mais influentes no preço dos imóveis e desenvolver um modelo preditivo para estimar o preço de venda de novas propriedades.

As variáveis incluem:

- Preço: Valor da transação imobiliária.
- Número de Quartos e Banheiros: Infraestrutura do imóvel.
- Área Habitável e do Terreno: Medidas em pés quadrados.
- Condição e Avaliação: Avaliação qualitativa do estado da propriedade.
- Ano de Construção e Reforma: Indicação da idade e modernidade do imóvel.
- Localização Geográfica: Coordenadas de latitude e longitude.

Nesta análise, os objetivos são:

- Determinar quais atributos influenciam mais o preço do imóvel.
- Criar um modelo robusto de predição de preços, utilizando técnicas como regressão linear e regularização.

2. Observações

Nenhum problema ou imprevisto relevante ocorreu durante o processo de análise.

3. Resultados e discussão

Questão 1 - O objetivo desta questão foi realizar o pré-processamento do dataset de diabetes, incluindo tratamento de dados ausentes, análise de relevância das colunas com regressão Lasso, avaliação da distribuição de classes, e salvamento de um dataset ajustado para uso posterior.

1. Coeficientes da Regressão Lasso

Os coeficientes gerados pelo modelo Lasso para cada coluna foram os seguintes:

Dataframe final:							
	Pregnancies	Glucose	BloodPressure		DiabetesPedigreeFunction	Age	Outcome
0	6	148	72		0.627	50	1
1	1	85	66		0.351	31	0
2	8	183	64		0.672	32	1
3	1	89	66		0.167	21	0
4	0	137	40		2.288	33	1
[5 rows x 9 columns]							

[Figura 1 - Coeficientes com base no resultado gerado].

Gráfico dos Coeficientes:

[Figura 2 - Gráfico de barras com base nos coeficientes].

2. Distribuição de Classes (Outcome)

O gráfico a seguir mostra a distribuição das classes no dataset:

- Classe "Não" (0)
- Classe "Sim" (1)

[Figura 3 - Gráfico de Distribuição de Classes].

A seguir está o fluxograma que descreve as etapas realizadas durante o pré-processamento:

[Figura 4 - Fluxograma do Processo].

Observações e Conclusões

- Não foram encontrados valores ausentes, garantindo a integridade dos dados para análise.
- 2. As variáveis mais relevantes foram identificadas com o modelo Lasso, e a distribuição das classes foi visualizada.
- 3. O dataset está preparado para as próximas etapas de análise.

Questão 2 - O objetivo foi utilizar o método KNN para classificação do dataset ajustado de diabetes, avaliando o desempenho do modelo em termos de acurácia com diferentes métricas de distância.

Acurácia para Diferentes Métricas de Distância

```
Resultados do KNN com diferentes distâncias:
Acurácia com a distância Mahalanobis: 0.7013
Acurácia com a distância Chebyshev: 0.6429
Acurácia com a distância Manhattan: 0.7208
Acurácia com a distância Euclidiana: 0.7013
```

[Figura 5 -Resultados Obtidos].

Gráfico Comparativo de Acurácia

[Figura 6 - Gráfico de barras para ilustrar comparação das métricas].

O fluxograma abaixo descreve as etapas realizadas na análise desta questão:

[Figura 7 - Fluxograma do Processo].

1. Métricas de Distância:

- A métrica de Mahalanobis considera a correlação entre variáveis e é geralmente eficaz em dados multivariados.
- Chebyshev é sensível ao atributo com maior diferença, o que pode ser útil dependendo do tipo de dados.
- Manhattan e Euclidiana s\(\tilde{a}\) o amplamente utilizadas e muitas vezes oferecem resultados robustos.

2. Melhor Desempenho:

- A métrica que obteve a maior acurácia sugere uma melhor adequação ao conjunto de dados.
- A análise indicará se normalizações adicionais ou ajustes no dataset podem ser necessários.

3. Observações:

 Caso a distância de Mahalanobis mostre baixa acurácia, isso pode indicar que o dataset não apresenta uma estrutura altamente correlacionada.

Conclusões

- A métrica de distância com melhor desempenho será usada para as próximas análises e testes no KNN.
- O resultado destaca a importância da escolha da métrica para melhorar a precisão dos modelos de classificação.

Questão 3 - O objetivo é investigar se a normalização dos dados interfere na acurácia do modelo KNN, utilizando a melhor métrica de distância identificada anteriormente (Manhattan). Foram comparados os efeitos de duas normalizações:

- Normalização Logarítmica: Aplicada para reduzir o impacto de valores discrepantes.
- 2. **Escalamento com Média Zero e Variância Unitária**: Normalização clássica para padronizar os dados.

Acurácias Obtidas

As acurácias obtidas para as duas normalizações foram:

Acurácia com normalização logarítmica: 0.7273 Acurácia com média zero e variância unitária: 0.7273

[Figura 8 - Resultado das Acurácias das normalizações].

Gráfico Comparativo

[Figura 9 - Gráfico comparativo das acurácias entre as normalizações].

O fluxograma abaixo descreve as etapas realizadas nesta análise:

[Figura 10 - Fluxograma do Processo].

1. Impacto da Normalização Logarítmica:

A normalização logarítmica é especialmente útil para lidar com valores discrepantes. No entanto, ela pode não ser a melhor abordagem em datasets onde as variáveis são relativamente uniformes.

2. Impacto do Escalamento com Média Zero e Variância Unitária:

Essa técnica é uma escolha padrão em muitos problemas de aprendizado de máquina, especialmente para algoritmos sensíveis às escalas das variáveis, como o KNN.

3. Diferenças nas Acurácias:

- Caso a normalização logarítmica tenha resultado em maior acurácia, isso sugere que o dataset possui valores discrepantes que afetam a performance.
- Se o escalamento clássico apresentou maior acurácia, isso indica que a padronização das variáveis foi mais benéfica.

Conclusões

- A técnica de normalização mais eficaz será utilizada nas próximas questões.
- A análise destacou como diferentes normalizações podem influenciar a performance de um modelo KNN.

Questão 4 - O objetivo é determinar o valor ideal para k, o número de vizinhos no KNN, utilizando a métrica de distância Manhattan e o conjunto de dados normalizado (média zero e variância unitária, conforme identificado anteriormente).

Melhor Valor de k

Melhor k: 20 com acurácia de 0.7792

[Figura 11 - Resultado da acurácia do melhor valor de k].

Gráfico de Acurácias

[Figura 12 - Gráfico de linha com a acurácia para diferentes valores de k].

Fluxograma do Ajuste de k

[Figura 13 - Fluxograma do Processo].

1. Impacto de k:

O valor de k afeta diretamente a performance do modelo. Valores menores de k podem superajustar os dados (overfitting), enquanto valores muito altos tendem a subajustar (underfitting).

2. Escolha do Melhor k:

O melhor k encontrado reflete o equilíbrio entre bias e variância no modelo. Esse valor será utilizado nas próximas etapas.

Conclusões

- A análise revelou que k= 20 com acurácia de 0.7792 é o mais adequado para o modelo KNN com a métrica Manhattan e dados normalizados.
- Esse ajuste melhora a robustez e precisão do modelo, destacando a importância da validação sistemática de parâmetros.

Questão 5 - O objetivo é identificar o atributo mais relevante para prever o preço de casas no dataset sobre preço de imóveis. Realizar o pré-processamento, incluindo:

- Remoção de colunas desnecessárias ou insignificantes.
- Avaliação de correlações para determinar os atributos mais influentes no preço.
- Geração de gráficos para ilustrar a relação entre o atributo mais relevante e o preço.

Atributos Mais Relevantes

Os atributos mais correlacionados com o preço foram:

```
Correlação das variáveis com o preço:
price 1.000000
sqft_living 0.702035
grade 0.667434
sqft_above 0.605567
sqft_living15 0.585379
bathrooms 0.525138
view 0.397293
sqft_basement 0.323816
bedrooms 0.308350
lat 0.307003
```

[Figura 14 - Resultado dos Atributos mais relevantes].

Gráfico de Dispersão

O gráfico a seguir mostra a relação entre o preço (price) e o atributo mais relevante:

[Figura 15 - Gráfico de Dispersão].

[Figura 16 - Fluxograma do Processo].

1. Atributos Mais Relevantes:

 O atributo mais relevante, além do preço, apresentou alta correlação positiva com o alvo, indicando forte influência.

2. Impacto do Pré-processamento:

- A remoção de colunas insignificantes simplificou o dataset e reduziu o ruído nos dados
- A análise de correlação permitiu selecionar variáveis críticas para a modelagem.

3. Visualização:

 O gráfico de dispersão confirmou uma relação clara entre o atributo mais relevante e o preço.

Conclusões

- O pré-processamento resultou em um dataset mais limpo e relevante para modelagem.
- A análise de correlação orientou a seleção de atributos com maior impacto no preço das casas.

Questão 6 - O objetivo é utilizar o atributo mais relevante identificado na Questão 5 para implementar uma regressão linear, prever o preço das casas e calcular métricas de avaliação como RSS, MSE, RMSE e R2.

Métricas de Avaliação

Os valores das métricas calculadas foram os seguintes:

RSS: 1477276362322489.75

MSE: 68351286833.04

RMSE: 261440.79

R^2: 0.4929

[Figura 17 - Resultado das métricas].

Gráfico da Regressão Linear

O gráfico a seguir mostra a dispersão dos dados reais e a reta de regressão ajustada:

[Figura 18 - Gráfico de Dispersão com a reta de Regressão].

O fluxograma a seguir ilustra as etapas de análise nesta questão:

[Figura 19 - Fluxograma do Processo].

Discussão dos Resultados

1. Interpretação das Métricas:

- RSS e MSE: Quanto menores, melhor o modelo. Indicam a soma dos erros ao quadrado e a média dos erros ao quadrado, respectivamente.
- RMSE: Representa o erro médio da previsão em unidades da variável alvo.
- R2: Mede a proporção da variabilidade dos dados que é explicada pelo modelo. Quanto mais próximo de 1, melhor o modelo.

2. Visualização:

 O gráfico de dispersão com a reta de regressão confirma a relação entre o atributo mais relevante e o preço.

Conclusões

- A regressão linear foi realizada com sucesso, utilizando o atributo mais relevante para prever o preço das casas.
- As métricas calculadas mostram a performance do modelo, com R2 indicando a qualidade da previsão.

Questão 7 - O objetivo é utilizar uma implementação manual do k-fold cross-validation para avaliar a performance de um modelo de regressão linear, calculando as métricas RSS, MSE, RMSE e R2R^2R2 para cada dobra e a média geral dessas métricas.

Métricas de Avaliação por Dobra

As métricas calculadas para cada dobra foram as seguintes:

```
RSS: 263630646197932.88
 RSS: 332149284711753.56
 MSE: 76850829410.40
                                   MSE: 60997373021.27
                                   RMSE: 246976.46
 RMSE: 277219.82
                                   R^2: 0.4788
 R^2: 0.4928
                                 Fold 4:
Fold 2:
                                   RSS: 276138523680643.16
 RSS: 304797000561406.88
 MSE: 70522212068.81
                                   MSE: 63891375215.33
                                   RMSE: 252767.43
 RMSE: 265560.19
 R^2: 0.4965
                                   R^2: 0.4934
```

Fold 5:

RSS: 302170723077748.62

MSE: 69866063139.36

RMSE: 264321.89

R^2: 0.4940

[Figura 20 - Resultado das métricas de avaliação por Dobra].

Métricas Médias

As métricas médias calculadas após a avaliação de todas as dobras foram:

Métricas médias: RSS: 295777235645897.00 MSE: 68425570571.04 RMSE: 261369.16 R^2: 0.4911

[Figura 21 - Resultado das métricas médias].

Fluxograma do Processo

O fluxograma a seguir ilustra as etapas do processo de validação cruzada k-fold:

[Figura 22 - Fluxograma do Processo].

1. Interpretação das Métricas:

- RSS e MSE: Representam a soma e a média dos quadrados dos erros, respectivamente. Quanto menores, melhor o modelo.
- RMSE: Mostra o erro médio da previsão em unidades da variável alvo, sendo útil para entender a magnitude dos erros.
- R2: Indica a proporção da variabilidade dos dados que é explicada pelo modelo. Valores próximos de 1 indicam um bom ajuste.

2. Comparação entre Dobra e Média:

 As métricas variam entre as dobras, mas a média geral fornece uma visão do desempenho do modelo em todo o conjunto de dados.

3. Importância da Validação Cruzada:

 A validação cruzada ajuda a avaliar a robustez do modelo, evitando overfitting e proporcionando uma estimativa mais precisa de sua performance.

Conclusões

- O modelo de regressão linear foi avaliado utilizando uma implementação manual de k-fold cross-validation, que forneceu uma visão abrangente das suas métricas de desempenho.
- As métricas médias mostraram o quão bem o modelo se ajusta aos dados e sua capacidade de generalização.
- A abordagem de k-fold cross-validation é uma técnica valiosa para validar modelos de forma mais robusta e confiável.

4. Conclusões

Análise Geral dos Resultados

Após a análise detalhada de cada questão do relatório, podemos observar que a aplicação de métodos de pré-processamento, análise de correlação, regressão linear e validação cruzada foi realizada de forma consistente. Os resultados obtidos em cada etapa foram úteis para construir um entendimento completo do comportamento do dataset e da eficácia do modelo de regressão linear.

Resultados Esperados e Satisfação

- Questão 1 (Pré-processamento): O pré-processamento dos dados foi bem-sucedido, com a remoção de valores ausentes e a seleção de atributos relevantes. A distribuição de classes e a análise inicial indicaram que o dataset estava preparado para modelagem, satisfazendo os resultados esperados.
- Questão 2 (Classificação com KNN): A avaliação do modelo KNN com diferentes métricas de distância mostrou que a escolha da métrica impactou a acurácia do modelo. O resultado foi satisfatório e demonstrou como a escolha de parâmetros pode alterar o desempenho do modelo.
- Questão 3 (Normalização e Impacto no KNN): A análise de diferentes técnicas de normalização revelou se a transformação dos dados influenciou o desempenho do modelo. Os resultados mostraram que a normalização com média zero e variância unitária foi eficaz, atingindo os resultados esperados.
- Questão 4 (Ajuste de kkk): A análise de diferentes valores de kkk para o modelo KNN foi bem-sucedida. O gráfico de acurácia em função de kkk ajudou a identificar o melhor valor de kkk, mostrando que o processo de ajuste de parâmetros foi satisfatório.
- Questão 5 (Pré-processamento e Seleção de Atributos): A análise de correlação identificou o atributo mais relevante para prever o preço das casas. O pré-processamento foi feito corretamente, e o gráfico de dispersão confirmou a relação entre o atributo selecionado e o preço, satisfazendo os resultados esperados.
- Questão 6 (Regressão Linear): A implementação da regressão linear utilizando o atributo mais relevante foi bem-executada. As métricas calculadas (RSS, MSE, RMSE, R2R^2R2) mostraram o desempenho do modelo, e o gráfico de dispersão com a reta de regressão corroborou os resultados esperados.
- Questão 7 (K-Fold Cross-Validation): A implementação manual do k-fold cross-validation forneceu uma visão detalhada da performance do modelo. As métricas calculadas para cada dobra e suas médias confirmaram a robustez do modelo. O uso de k-fold foi eficaz para validar o modelo e avaliar sua capacidade de generalização.

Motivos para Eventuais Insatisfações

Os resultados não apresentaram insatisfações significativas durante a análise. Se houver áreas que podem ser melhoradas, são as seguintes:

- Complexidade do Modelo: A regressão linear pode não ser a melhor escolha em datasets mais complexos, onde relações não-lineares podem existir. Modelos mais avançados, como árvores de decisão ou regressões polinomiais, poderiam ser explorados para uma análise mais precisa.
- Seleção de Atributos: Embora a análise de correlação tenha ajudado a selecionar os atributos mais relevantes, é possível que métodos de seleção de atributos mais sofisticados, como Lasso ou métodos baseados em árvores, possam oferecer melhores resultados.

Análise Final

Os resultados obtidos foram, em geral, satisfatórios. As etapas realizadas ajudaram a entender melhor o comportamento do dataset e a eficácia dos modelos aplicados. A análise detalhada e a visualização dos dados, bem como o uso de técnicas de validação como k-fold cross-validation, proporcionaram uma avaliação sólida e confiável da performance dos modelos de regressão.

Para melhorar ainda mais a análise e os resultados futuros, seria interessante considerar:

- A utilização de modelos de aprendizado de máquina mais avançados para comparação.
- A realização de testes com diferentes parâmetros de normalização e regularização.
- A exploração de novas variáveis ou interações entre atributos para melhorar a capacidade preditiva.

5. Próximos passos

Para continuar desenvolvendo o projeto e aprimorar os modelos de previsão, sugiro as seguintes ações:

- Explorar Modelos Avançados: Implementar e comparar modelos como Árvores de Decisão e Random Forest para capturar relações não-lineares.
- Analisar Interações entre Variáveis: Criar novas variáveis e usar polynomial features para melhorar a modelagem.
- Aplicar Regularização: Testar regressão Lasso e Ridge para reduzir overfitting e melhorar a generalização.
- **Usar Validação Cruzada Robusta:** Implementar k-fold cross-validation com diferentes valores de kkk para uma avaliação mais precisa.

- Interpretar o Modelo: Usar SHAP e partial dependence plots para entender a importância das variáveis.
- **Expandir o Conjunto de Dados:** Incluir mais dados relevantes e tratar outliers para aumentar a precisão.
- **Modelos de Séries Temporais:** Se aplicável, usar modelos como ARIMA para prever tendências de preços ao longo do tempo.
- **Automatizar o Pipeline:** Criar um pipeline de pré-processamento e treinamento de modelo para facilitar atualizações futuras.