Bài toán 1: (2 điểm)

Cho phần tử tứ giác có tọa độ như hình dưới. Dùng phương pháp cầu phương Gauss,

- a. Tính diện tích A của phần tử
- b. Tính tích phân sau: $I = \int_A (x_1^3 + x_1 x_2 x_2) dA$ với A là miền diện tích phần tử

Bài toán 2: (6 điểm)

Cho kết cấu phẳng như hình vẽ, các phần tử có cạnh a với các thông số như sau:

$$a = 0.2m$$
; $p = 50MPa$; $F = pa$; $E = 2 \times 10^{11} Pa$; $v = 0.2$; khối lượng riêng $\rho = 7500 kg / m^3$

Giả sử trạng thái ứng suất phẳng, thực hiện các yêu cầu sau:

- 1. Thiết lập ma trận cứng từng phần tử
- 2. Thiết lập ma trận cứng tổng thể (sau khi thu gọn các bậc tự do ràng buộc)
- 3. Thiết lập vector tải tổng thể (sau khi thu gọn các bậc tự do ràng buộc)

- 4. Tìm vector chuyển vị của hệ
- 5. Tìm các thành phần ứng suất, chuyển vị của phần tử 2
- 6. Xác định 4 tần số riêng f (Hz) đầu tiên của kết cấu
- 7. Tìm các vector dạng riêng ứng với 4 tần số riêng đầu tiên của kết cấu

Bài toán 3: (2 điểm)

Cho phương trình chuyển động của hệ có dạng như sau: $\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} = \mathbf{F}(t)$

Trong đó:
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
; $\mathbf{K} = \begin{bmatrix} 4 & 1 & 4 \\ 1 & 6 & 3 \\ 4 & 3 & 5 \end{bmatrix}$; $\mathbf{F}(t) = \begin{bmatrix} 1.2 \\ -2.4 \\ 1 \end{bmatrix} (0.5t + 0.2)$ với $t = 0 \div 0.5$

- a. Với C = 0, $\Delta t = 0.1$, tính các vector $\ddot{\mathbf{u}}$, $\dot{\mathbf{u}}$, \mathbf{u}
- b. Với $\mathbf{C} = 0.1 \times \mathbf{M} + 0.05 \times \mathbf{K}$, $\Delta t = 0.1$, tính các vector $\ddot{\mathbf{u}}$, $\dot{\mathbf{u}}$, \mathbf{u}