





## Phase-2

Student Name: D Sakthivel

Register Number: 620123106095

Institution: AVS engineering college

Department: Electronic and communication engineering

Date of Submission: 08.05.2025

Github Repository Link: GITHUB LINK

1. Problem Statement

Increasing air pollution levels threaten public health and the environment.

Existing monitoring systems often lack predictive capabilities for proactive measures. Need for a reliable machine learning model to predict air quality levels using historical sensor data.

## 2. Project Objectives

Co llect and preprocess air quality data from relevant sources.

Analyze and visualize air pollution patterns.

Develop predictive models using machines learning algorithms.

Evaluate and compare model performance.

## 3. Flowchart of the Project Workflow









# 4. Data Description

### SOURCE:

OpenAQ, UCI ML Repository, or real-time sensors (DHT11, MQ-







135,etc..).

#### **FEATURES:**

Timestamp

PM2.5,PM10

- CO,NO2,O3,SO2
- Tempreture , Humidity
- AQI (Target variable)
  - 5. Data Preprocessing

Handling missing/null values (imputation or removal)

- Data type conversion (e.g., data-time parsing)
- Outlier detection and treatment.
- Data normalization or standardization.
- 6. Exploratory Data Analysis (EDA)
- Distribution of pollutants

Temporal trends in AQI

- Correlation matrix between pollutants and AQI
- AQI levels by region and time of day
- 7. Feature Engineering
- Extraction of date-time features (hour, day, month, weekday).

Creating pollutant interaction terms.







Encoding categorical features (e.g., location).

- Lag features for time-series modelling.
- 8. Model Building
- Train-Test split or TimeSeriesSplit
- Alogorithms used:

Linear Regressor

Gradient Boosting (e.g., XGBoost, LightGBM)

LSTM (if time-series)

- Hyperparameter tuning with GridSearchCV or Optuna.
- 9. Visualization of Results & Model Insights
- Predicted vs Actual AQI plots.
- Residual plots and error distribution.

Features important graph.

- SHAP values or LIME for model interpretability.
- 10. Tools and Technologies Used
- Programming Language: Python
- Libraries: Pandas, Numpy, Scikit-learn, Matplotlib, seaborn, XGBoost, LightGBM, SHAP.

Visualization: Tableau, Power BI, Plotly.

IDE/Notebook: Jupyter Notebook, VS Code.







Version Control: GitHub

•

### 11. Team Members and Contributions

•

Saleth harison J - Project Manager

- Defined problem scope, coordinated team, monitored progress.
- Thirupathi E Data Scientist
- Led data preprocessing, EDA, feature engineering, and model training.

Mourish Kanna V - ML Engineer

Handled model selection, hyperparameter tuning, and optimization.

Sakthivel D - Visualization & Deployment

Designed visuals, created insights, and worked on front-end deployment.