

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA CAMPUS COAHUILA, ESCUELA SUPERIOR DE CÓMPUTO						
PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial						
UNIDAD DE APRENDIZAJE: Fundamentos de diseño digital SEMESTRE: 2						

ONIONO DE MINERO	EAGE: I diladillelitos de	aloono di	91141	OEMEOTRE: 2	-			
		de memo	ria a p	E APRENDIZAJE artir de su representación	Booleana, los len	guajes		
CONTENIDOS:	I. Principios del diseño de Sistemas Digitales II. Tecnología y lenguajes de programación de dispositivos reconfigurables III. Lógica combinacional IV. Elementos básicos de memoria digital							
	Métodos de enseñar	ıza		Estrategias de aprendiz	aje			
	a) Inductivo		Х	a) Estudio de casos				
ORIENTACIÓN	b) Deductivo		Х	b) Aprendizaje basado e	en problemas	х		
DIDÁCTICA:					o proyectos			
	d) Heurístico		Х	d)				
	e)			e)				
	Diagnóstica		Х	Saberes Previamente Adquiridos				
	Solución de casos Organizadores gráficos							
	Problemas resueltos	roblemas resueltos		Problemarios		Х		
EVALUACIÓN Y ACREDITACIÓN:	Reporte de proyecto	s		Exposiciones		Х		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Reportes de indagad	ión				•		
	Reportes de práctica	ıs	Х	Otras evidencias a eval	/aluar:			
	Evaluaciones escrita	ıs	Х					
	Autor (es)	Año		ítulo del documento	Editorial/IS			
	Brown, S. & Vranesic, Z.	2009*		amentals digital logic with L design	Mc Graw-H 978-0-07-3529			
BIBLIOGRAFÍA BÁSICA:	Morris Mano, M.	2013*		ño digital	Pearson Prentice Hall/ 9786073220408			
	Tocci, R. J., Widmer, N. S. & Moss, G. L.	2017		mas digitales principios y aciones	Pearson Pror			
	Pedroni, V.	2010*	Circu	it design with VHDL	MIT Press Edition 0262014335			
	Pardo, F. & Boluda, J.	2012*		L Lenguaje para síntesis y elado de circuitos	ALFAOMEGA Ra-Ma 978-84-9964-040-2			

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA DE ESTUDIOS

UNIDAD DE APRENDIZAJE: Fundamentos de diseño digital HOJA 2 DE 8

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA CAMPUS COAHUILA, ESCUELA SUPERIOR DE CÓMPUTO								
PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial								
SEMESTRE: ÁREA DE FORMACIÓN: MODALIDAD:								
2		Profesional		Escolarizada				
	T	IPO DE UNIDAD DE	APRENDIZAJE:					
Teórica-Práctica/ Obligatoria								
VIGENTE A PARTIR DE: CRÉDITOS:								
Agosto 2020 TEPIC: 7.5 SATCA: 6.3								
INTENCIÓN EDUCATIVA								

La unidad de aprendizaje contribuye al perfil de egreso del Ingeniero Inteligencia Artificial desarrollando habilidades de diseño de sistemas digitales combinatorios a partir del análisis, síntesis y representación de circuitos lógicos, del desarrollo de algoritmos para su descripción usando HDL (Lenguajes de Descripción de Hardware) y su implementación en Lógica reprogramable o reconfigurable a fin de ofrecer soluciones para aplicaciones específicas. Asimismo, fomenta la comunicación efectiva, trabajo en equipo, empatía, ética, creatividad, responsabilidad social, asertividad, ingenio, capacidad de organización y planificación.

Esta unidad de aprendizaje se relaciona de manera antecedente con Matemáticas discretas , de forma lateral Algoritmos y estructura de datos; y de manera consecuente con Diseño de sistemas digitales.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Construye sistemas lógicos combinacionales y de memoria a partir de su representación Booleana, los lenguajes de descripción de hardware y dispositivos reconfigurables.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 3.0

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE: 54.0

HORAS PRÁCTICA/SEMESTRE:

27.0

HORAS APRENDIZAJE AUTÓNOMO: 24.0

HORAS TOTALES/SEMESTRE: 81.0

UNIDAD DE APRENDIZAJE DISEÑADA POR:

Comisión de Diseño del Programa Académico.

APROBADO POR:

Comisión de Programas Académicos del H. Consejo General Consultivo del IPN.

25/11/2019

AUTORIZADO Y VALIDADO POR:

Ing. Juan Manuel Velázquez Peto Director de Educación Superior

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Fundamentos de diseño digital HOJA 3 DE 8

UNIDAD TEMÁTICA I		HORA DOC	HRS	
Principios de diseño de Sistemas Digitales	CONTENIDO	т	Р	AA
UNIDAD DE COMPETENCIA Resuelve problemas de diseño de sistemas digitales combinatorios a partir del álgebra de Boole y los métodos	 1.1 Estado del arte de Sistemas Digitales 1.2 Algebra de Boole 1.3 Método gráfico de Mapa de Karnaugh 1.4. Método tabular de Quine McCluskey 1.5 Aplicaciones de circuitos digitales combinatorios 	1.0 1.0 1.0 1.0 2.0		1.0 1.0 1.0 1.0 1.0
de Karnaugh y McCluskey.	Subtotal	6.0		5.0

UNIDAD TEMÁTICA II		HORA: DOCI		
Tecnología y lenguajes de descripción de dispositivos lógicos programables	CONTENIDO	т	Р	HRS AA
UNIDAD DE COMPETENCIA Utiliza los dispositivos lógicos programables y lenguajes de descripción de hardware a partir de sus características y sentencias de programación.	 2.1 Escala de Integración de los Circuitos Integrados (CI) 2.2 Características de las Familias Lógicas 2.3 Dispositivos Lógicos Programables (PLD) 2.4 Lenguajes de Descripción de Hardware (HDL) 2.4.1 Estructura de un programa en HDL 2.4.2 Estilos de programación 2.4.3 Sentencias concurrentes y secuenciales 	1.0 2.0 2.0 6.0	3.0	1 3
	Subtotal	11.0	3.0	5

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Fundamentos de diseño digital HOJA 4 DE 8

UNIDAD TEMÁTICA III	CONTENIDO	HORA	HRS AA	
Lógica Combinacional	CONTENIDO	Т	Р	
UNIDAD DE COMPETENCIA Desarrolla circuitos de lógica	3.1 Circuito sumador/restador 3.1.1 Representación booleana	4.0	3.0	2.0
combinacional a partir de su representación booleana y su descripción en dispositivos	3.1.2 Descripción en HDL (Lenguajes de descripción de Hardware) usando dispositivos lógicos programables 3.2 Circuito convertidor de código	4.0	3.0	1.0
lógicos programables.	 3.2.1 Representación booleana 3.2.2 Descripción en HDL (Lenguajes de descripción de Hardware) usando dispositivos lógico programables 3.3 Circuito comparador de Magnitud 	4.0	3.0	2.0
	3.3.1 Representación booleana 3.3.2 Descripción en HDL (Lenguajes de descripción de Hardware) usando dispositivos lógicos programables 3.4 Circuitos multiplexor y demultiplexor 3.4.1 Teorema de Expansión de Shannon	6.0	6.0	2.0
	3.4.2 Descripción en HDL (Lenguajes de descripción de Hardware) usando dispositivos lógicos programables 3.5 Circuitos codificador y decodificador 3.5.1 Representación booleana 3.5.2 Descripción en HDL (Lenguajes de descripción de Hardware) usando dispositivos lógicos Programables	5.0	6.0	2.0
	Subtotal	23.0	21.0	9.0

UNIDAD TEMÁTICA IV				HORAS CON DOCENTE		
Elementos básicos de Memoria		CONTENIDO				
UNIDAD DE COMPETENCIA		Multivibradores en configuración monoestable, piestable y astable	1.5		1.0	
Desarrolla los elementos básicos de memoria a partir de los		Configuraciones Monoestable y Astable del Temporizador 555	1.5			
multivibradores astables en CI y	4.3 E	Elementos de memoria tipo Latch SR, JK, T y D	4.0		1.0	
biestables en Flip-Flops.		Elementos de memoria tipo Flip-Flop SR, JK, T	4.0		1.0	
	4.5 D	escripción con HDL de Elementos de Memoria	3.0	3.0	2.0	
		Subtotal	14.0	3.0	5.0	

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Fundamentos de diseño digital HOJA: 5 DE 8

ESTRATEGIAS DE APRENDIZAJE

Estrategia de Aprendizaje Basado en Problemas

El alumno desarrollará las siguientes actividades:

- Indagación de conceptos teóricos básicos de la Unidad de aprendizaje a través de fuentes bibliográficas y digitales confiables.
- Solución de ejercicios y problemarios que integren los conceptos y las técnicas de diseño adquiridos en el curso
- 3. El alumno desarrollará la solución de problemas propuestos por el profesor utilizando los conocimientos, habilidades y capacidades adquiridas en la unidad de aprendizaje.
- 4. Realización de prácticas

EVALUACIÓN DE LOS APRENDIZAJES

Evaluación diagnóstica

Portafolio de evidencias:

- Exposiciones de temas referentes a la unidad de aprendizaje
- 2. Problemarios resueltos en clase de forma individual o por equipo
- 3. Solución de problemas
- 4. Reporte de prácticas
- 5. Evaluaciones escritas

SECRETARÍA ACADÉMICA **DIRECCIÓN DE EDUCACIÓN SUPERIOR**

DE 8

HOJA:

UNIDAD DE APRENDIZAJE: Fundamentos de diseño digital

 	 	 ź	 	_

	RELACIÓN DE PRÁCTICAS									
PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	LUGAR DE REALIZACIÓN							
1	Método de minimización de Quine McCluskey	I								
2	Compuertas Lógicas básicas en dispositivos lógicos programables	I, II								
3	Circuito sumador/restador en dispositivos lógicos programables	II, III								
4	Circuito convertidor de código en dispositivos lógicos programables	II, III								
5	Circuito comparador de magnitud en dispositivos lógicos programables	II, III	Laboratorio de Electrónica Digital							
6	Circuito multiplexor en dispositivos lógicos programables	II, III								
7	Circuitos decodificadores en dispositivos lógicos programables	II, III								
8	Aplicaciones con circuitos lógicos combinacionales en dispositivos lógicos programables	II, III								
9	Elementos de memoria tipo Flip-Flop SR, JK, T y D en dispositivos lógicos programables	II, IV								
		TOTAL DE HORAS	27.0							

SECRETARÍA ACADÉMICA **DIRECCIÓN DE EDUCACIÓN SUPERIOR**

Χ

Χ

DE

HOJA:

Χ

(2019).

de:

2019

Fundamentos de diseño digital UNIDAD DE APRENDIZAJE:

EasyEDA, EasyEDA - Online PCB design & circuit simulator. Recuperado el 14 de

IODEMA Srl, Electrodroid. (2019). Recuperado el 14 de noviembre del 2019 de: https://play.google.com/store/apps/details?id=it.android.demi.elettronica&hl=es

https://play.google.com/store/apps/details?id=com.Suborbital.CircuitScramble&hl

noviembre

Circuit Scramble-

de

14

noviembre del 2019 de: https://easyeda.com/

el

ΜX

Suborbital Games,

Recuperado

=es MX

Bibliografía											
									Doc	ume	nto
Tipo	Autor(es)	Año	Título del documento	Editorial			Libro	Antología	Otros		
В	Brown, S. & Vranesic, Z.	2009	Fundamentals digital logic with VHDL design	Mc Graw-Hill/ 978-0-07-352953-0			Х				
В	Morris Mano, M.	2013	Diseño digital	Pearson Prentice Hall/ 9786073220408				Х			
В	Pardo, F. & Boluda, J.	2012	VHDL Lenguaje para síntesis y modelado de circuitos	ALFAOMEGA Ra-Ma/ 978-84-9964-040-2			Х				
В	Tocci, R. J., Widmer, N. S. & Moss, G. L.	2017	Sistemas digitales principios y aplicaciones	Pearson Prentice Hall/ 6073241542				Х			
B Pedroni, V. 2010 Circuit design with VHDL						MIT Press Edition / 0262014335			Х		
Recursos digitales											
Autor, año, título y Dirección Electrónica Simulador Video								Presentación	Diccionario	Otro	

Computer Logic Puzzles.

del

SECRETARÍA ACADÉMICA **DIRECCIÓN DE EDUCACIÓN SUPERIOR**

UNIDAD DE APRENDIZAJE:

Fundamentos de diseño digital

HOJA:

DE

PERFIL DOCENTE: Ingeniería en Comunicaciones y Electrónica, Sistemas Computacionales, Mecatrónica o áreas afines con grado de Maestría y/o Doctorado en áreas afines a electrónica o computación.

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS	HABILIDADES DIDÁCTICAS	ACTITUDES
Mínima de dos años en docencia a nivel licenciatura o posgrado En áreas de la industria y servicios afines a Ingenierías en electrónica, cómputo y comunicaciones (no indispensable) de un año En proyectos de investigación (no indispensable) de un año	Electrónica digital Diseño de sistemas digitales Lenguajes de descripción de hardware (HDL) Dispositivos lógicos programables (PLD) Implementación de sistemas digitales en dispositivos lógicos programables Programación con algún lenguaje Manejo de equipo de laboratorio eléctrico y electrónico Desarrollo de proyectos de investigación Del Modelo Educativo Institucional	conocimientos Capacidad de organización y planificación Liderazgo Capacidad para el manejo de grupos Metodológicas, metódicas, estratégicas y de evaluación Dirección de proyectos de	Ética profesional Respeto Responsabilidad Honestidad Empatía Tolerancia Compromiso social e institucional Disponibilidad para trabajar en equipo

ELABORÓ	REVISÓ	AUTORIZÓ
M. en C. Francisco Javier Cerda Martínez Profesor Coordinador		Ing. Carlos Alberto Paredes Treviño Director Académico UPIIC
M. en C. Claudia Alejandra López Rodríguez Profesor colaborador	M. en C. Iván Giovanny Mosso García Subdirector Académico	Lic. Andrés Ortigoza Campos Director ESCOM

ESCOM