Geir Storvik

Geilo Winter school 2023

Outline

- Sequential Monte Carlo
- 2 Details on SMC
- Feynman-Kac formulation
- Smoothing algorithms
- 5 A Case study Covid-19
- SMC and parameter estimation
 - Offline methods
 - Online methods
 - Online methods

Static versus dynamic inference

- MCMC/INLA: Inference when all data is collected
- Assume now y₁, y₂, ... are collected dynamically in time
- Want to do inference based on y_{1:t} at each time point t
- Can in principle start MCMC/INLA from scratch
- Possible to utlize computation performed at time t − 1?
 - YES: by sequential Monte Carlo

Sequential updating

- Aim now: Sequential sampling from $\pi_t(\mathbf{x}_t)$ for t = 1, 2, ...
- State space settings:

$$egin{aligned} & m{x}_t \sim & p(m{x}_t | m{x}_{t-1}; m{ heta}) & \text{State process} \ & m{y}_t \sim & p(m{y}_t | m{x}_t; m{ heta}) & \text{Observation process} \end{aligned}$$

Aim:
$$\pi_t(\mathbf{x}_t) = p(\mathbf{x}_t | \mathbf{y}_{1:t}) \text{ or } \pi_t(\mathbf{x}_{1:t}) = p(\mathbf{x}_{1:t} | \mathbf{y}_{1:t})$$

- Complex Bayesian settings
 - p(x|y) complex, p(x) simple
 - Construct $\pi_t(\mathbf{x}) \propto p(\mathbf{x})p(\mathbf{y}|\mathbf{x})^{\gamma_t}$ with $\gamma_t = \frac{t}{T}$, t = 0, ..., T
- Sequential updating: Breaks down high-dimensional sampling to many low-dimensional ones
- References:
 - Dai et al. (2022): An invitation to sequential Monte Carlo samplers
 - Naesseth et al. (2019): Elements of sequential Monte Carlo
 - Doucet et al. (2001): Sequential Monte Carlo methods in practice
 - Chopin et al. (2020): An introduction to sequential Monte Carlo

• Assume $\mathbf{x} = \mathbf{x}_{1:t} = (\mathbf{x}_1, ..., \mathbf{x}_t)$ have a Markov structure

$$\pi_t(\mathbf{x}_{1:t}) = \pi_1(\mathbf{x}_1) \prod_{s=2}^t \pi_s(\mathbf{x}_s | \mathbf{x}_{s-1})$$

• Assume $\mathbf{x} = \mathbf{x}_{1:t} = (\mathbf{x}_1, ..., \mathbf{x}_t)$ have a Markov structure

$$\pi_t(\mathbf{x}_{1:t}) = \pi_1(\mathbf{x}_1) \prod_{s=2}^t \pi_s(\mathbf{x}_s | \mathbf{x}_{s-1})$$

Also assume a proposal distribution with Markov property:

$$g_t(\mathbf{x}_{1:t}) = g_1(\mathbf{x}_1) \prod_{s=2}^t g_s(\mathbf{s}_i | \mathbf{x}_{s-1})$$

• Assume $\mathbf{x} = \mathbf{x}_{1:t} = (\mathbf{x}_1, ..., \mathbf{x}_t)$ have a Markov structure

$$\pi_t(\mathbf{x}_{1:t}) = \pi_1(\mathbf{x}_1) \prod_{s=2}^t \pi_s(\mathbf{x}_s | \mathbf{x}_{s-1})$$

Also assume a proposal distribution with Markov property:

$$g_t(\mathbf{x}_{1:t}) = g_1(\mathbf{x}_1) \prod_{s=2}^t g_s(\mathbf{s}_i | \mathbf{x}_{s-1})$$

Importance weights:

$$w(\mathbf{x}_{1:t}) = \frac{\pi_t(\mathbf{x}_{1:t})}{g_t(\mathbf{x}_{1:t})} = \frac{\pi_1(\mathbf{x}_1)}{g_1(\mathbf{x}_1)} \prod_{s=2}^t \frac{\pi_s(\mathbf{x}_s|\mathbf{x}_{s-1})}{g_s(\mathbf{x}_s|\mathbf{x}_{s-1})} = w(\mathbf{x}_{1:t-1}) \frac{\pi_t(\mathbf{x}_t|\mathbf{x}_{t-1})}{g_t(\mathbf{x}_t|\mathbf{x}_{t-1})}$$

• Assume $\mathbf{x} = \mathbf{x}_{1:t} = (\mathbf{x}_1, ..., \mathbf{x}_t)$ have a Markov structure

$$\pi_t(\mathbf{X}_{1:t}) = \pi_1(\mathbf{X}_1) \prod_{s=2}^t \pi_s(\mathbf{X}_s | \mathbf{X}_{s-1})$$

Also assume a proposal distribution with Markov property:

$$g_t(\mathbf{x}_{1:t}) = g_1(\mathbf{x}_1) \prod_{s=2}^t g_s(\mathbf{s}_i | \mathbf{x}_{s-1})$$

Importance weights:

$$w(\mathbf{x}_{1:t}) = \frac{\pi_t(\mathbf{x}_{1:t})}{g_t(\mathbf{x}_{1:t})} = \frac{\pi_1(\mathbf{x}_1)}{g_1(\mathbf{x}_1)} \prod_{s=2}^t \frac{\pi_s(\mathbf{x}_s|\mathbf{x}_{s-1})}{g_s(\mathbf{x}_s|\mathbf{x}_{s-1})} = w(\mathbf{x}_{1:t-1}) \frac{\pi_t(\mathbf{x}_t|\mathbf{x}_{t-1})}{g_t(\mathbf{x}_t|\mathbf{x}_{t-1})}$$

- Opens up for sequential sampling/estimation
- Note: Possible to generalize to non-Markov settings as well
 - More computing at each step

Algorithm 1 SMC

- 1: Sample $\mathbf{x}_1 \sim g_1(\cdot)$. Let $w_1 = u_1 = \pi_1(\mathbf{x}_1)/g_1(\mathbf{x}_1)$. Set t = 2
- 2: Sample $\mathbf{x}_{t}|\mathbf{x}_{t-1} \sim g_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1})$.
- 3: Append \mathbf{x}_t to $\mathbf{x}_{1:t-1}$, obtaining \mathbf{x}_t
- 4: Let $u_t = \pi_t(\mathbf{x}_t | \mathbf{x}_{t-1})/g_t(\mathbf{x}_t | \mathbf{x}_{t-1})$
- 5: Let $w_t = w_{t-1}u_t$, the importance weight for $\mathbf{x}_{1:t}$
- 6: Increment t and return to step 2

Algorithm 2 SMC

- 1: Sample $\mathbf{x}_1 \sim g_1(\cdot)$. Let $w_1 = u_1 = \pi_1(\mathbf{x}_1)/g_1(\mathbf{x}_1)$. Set t = 2
- 2: Sample $\mathbf{x}_{t}|\mathbf{x}_{t-1} \sim g_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1})$.
- 3: Append \mathbf{x}_t to $\mathbf{x}_{1:t-1}$, obtaining \mathbf{x}_t
- 4: Let $u_t = \pi_t(\mathbf{x}_t | \mathbf{x}_{t-1}) / g_t(\mathbf{x}_t | \mathbf{x}_{t-1})$
- 5: Let $w_t = w_{t-1}u_t$, the importance weight for $\mathbf{x}_{1:t}$
- 6: Increment t and return to step 2
- Can simulate N sequences in parallel!
- Approximation: $p(\mathbf{x}_t|\mathbf{y}_{1:t}) \approx \sum_{i=1}^N w_t^i \delta_{\mathbf{x}_t^i}(\mathbf{x}_t)$
 - Typically one would normalize weights

$$w_t^i \rightarrow w_t^i / \sum_i w_t^j$$

General rule:

$$var[Y] = E[var[Y|Z]] + var[E[Y|Z]] \ge var[E[Y|Z]]$$

General rule:

$$var[Y] = E[var[Y|Z]] + var[E[Y|Z]] \ge var[E[Y|Z]]$$

•
$$Y = w_t, Z = \mathbf{x}_{1:t-1}$$
 (w_{t-1} given by $\mathbf{x}_{1:t-1}$):

$$E[w_t|\mathbf{x}_{1:t-1}] = w_{t-1}E[\frac{\pi_t(\mathbf{x}_t|\mathbf{x}_{t-1})}{g_t(\mathbf{x}_t|\mathbf{x}_{t-1})}|\mathbf{x}_{1:t-1}]$$

= $w_{t-1} \cdot 1 = w_{t-1}$

General rule:

$$\mathsf{var}[Y] = E[\mathsf{var}[Y|Z]] + \mathsf{var}[E[Y|Z]] \ge \mathsf{var}[E[Y|Z]]$$

•
$$Y = w_t, Z = \mathbf{x}_{1:t-1}$$
 (w_{t-1} given by $\mathbf{x}_{1:t-1}$):

$$E[w_t|\mathbf{x}_{1:t-1}] = w_{t-1}E[\frac{\pi_t(\mathbf{x}_t|\mathbf{x}_{t-1})}{g_t(\mathbf{x}_t|\mathbf{x}_{t-1})}|\mathbf{x}_{1:t-1}]$$

= $w_{t-1} \cdot 1 = w_{t-1}$

implying that

$$var[w_t] \ge var[w_{t-1}]$$

which indicates that the variance will increase at each time-step.

General rule:

$$var[Y] = E[var[Y|Z]] + var[E[Y|Z]] \ge var[E[Y|Z]]$$

• $Y = w_t, Z = \mathbf{x}_{1:t-1}$ (w_{t-1} given by $\mathbf{x}_{1:t-1}$):

$$E[w_t|\mathbf{x}_{1:t-1}] = w_{t-1}E[\frac{\pi_t(\mathbf{x}_t|\mathbf{x}_{t-1})}{g_t(\mathbf{x}_t|\mathbf{x}_{t-1})}|\mathbf{x}_{1:t-1}]$$

$$= w_{t-1} \cdot 1 = w_{t-1}$$

implying that

$$var[w_t] \ge var[w_{t-1}]$$

which indicates that the variance will increase at each time-step.

- Practical consequence:
 - Only a few samples will dominate the others
 - Variability of estimate will increase

Bootstrap filter for state space models

- Introduce resampling
 - Discard samples (particles) with small weight
 - Duplicate particles with high weight

Algorithm 3 SMC

1: Simulate $\mathbf{x}_{1}^{i} \sim p(\mathbf{x}_{1})$ for i = 1, ..., N.

▷ Initialization

- 2: Put weights $w_1^i = p(y_1|x_1^i)$.
- 3: Sample $\{B_1^1, ..., B_1^N\}$ from $\{1, ..., N\}$ with probabilities $\{w_1^i\}$.
- 4: **for** t = 2, 3, ... **do** \triangleright Sequential Monte Carlo
- 5: Simulate $\mathbf{x}_{t}^{i} \sim p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{B_{t-1}^{i}})$ for i = 1, ..., N.
- 6: Put weights $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$.
- 7: Sample $\{B_t^1, ..., B_t^N\}$ from $\{1, ..., N\}$ with probabilities $\{w_t^i\}$.
- 8: end for
 - Approximation: $p(\mathbf{x}_t|\mathbf{y}_{1:t}) \approx \sum_{i=1}^N w_t^i \delta_{\mathbf{x}_t^i}(\mathbf{x}_t)$
 - More general: Optional resampling with weights propagated if no resampling

State space models

Model

$$egin{aligned} & m{x}_t \sim & p(m{x}_t | m{x}_{t-1}; m{ heta}) & \text{State process} \ & m{y}_t \sim & p(m{y}_t | m{x}_t; m{ heta}) & \text{Observation process} \end{aligned}$$

• Target distributions (assuming for now θ known):

$$\pi(\mathbf{x}_{1:t}) = p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t}) \propto p(\mathbf{x}_1)p(\mathbf{y}_1|\mathbf{x}_1) \prod_{s=2}^{t} p(\mathbf{x}_s|\mathbf{x}_{s-1})p(\mathbf{y}_s|\mathbf{x}_s)$$

Unknown normalization constant(s):

$$p(\boldsymbol{x}_t|\boldsymbol{y}_{1:t}) \approx \sum_{i=1}^N W_t^i \delta_{\boldsymbol{x}_t^i}(\boldsymbol{x}_t)$$

with
$$W_t^i = \frac{w_t^i}{\sum_i w_t^j}$$

Lemmings data

- Observations: $y_t \in \{0, 1\}$, =1 if "lemming year"
- Possible simple model: $\mathbf{x}_t = \log(N_t)$

$$x_t = ax_{t-1} + x_{t-2} + \sigma \varepsilon_t$$
 $\varepsilon_t \sim N(0, 1)$

• Of interest: $p(N_t|y_{1:t})$

Lemmings - results

Script: SMC_lemmings.R

The many uses of Markov

- Markov chain Monte Carlo
- Markov assumption in Ising model:

$$p(x_i|\mathbf{x}_{-i}) = p(x_i|\mathbf{x}_{N_i})$$

- SMC: Markov structure in $\pi_t(\mathbf{x}_{1:t}) = \pi_1(\mathbf{x}_1) \prod_{s=2}^t \pi_s(\mathbf{x}_s | \mathbf{x}_{s-1})$
- SMC: Markov structure in $g_t(\mathbf{x}_{1:t}) = g_1(\mathbf{x}_1) \prod_{s=2}^t g_s(\mathbf{s}_i | \mathbf{x}_{s-1})$

Discuss the different uses of Markov assumptions

Details on SMC

Effective sample size

- Assume $w_i = w(\mathbf{x}_i)$, i = 1, ..., N are normalized weights
- Define effective sample size by

$$\widehat{N}_{eff} = \frac{1}{\sum_{i=1}^{N} w_i^2}$$
= N if $w_i = \frac{1}{n}$ for all i
= $N - z$ if $w_i = 0, i \le z, w_i = \frac{1}{N - z}, i > z$
= 1 if $w_i = 1, w_i = 0, i \ne j$

- General: Resampling introduce extra Monte Carlo variability
- Rule of tump: Resample only if $\hat{N}_{eff} < 0.5N$

Resampling

- Simplest option:
 - Resample with probabilities equal to w_t^i .
 Put weights on resample to $\tilde{w}_t^i = N^{-1}$.

 - Number of repeats of \mathbf{x}_t^i , N_t^i is Binomial(N, w_t^i)
 - $E[N_t^i \tilde{w}_t^i] = Nw_t^i$

Resampling

- Simplest option:
 - Resample with probabilities equal to w_t^i .
 Put weights on resample to $\tilde{w}_t^i = N^{-1}$.

 - Number of repeats of \mathbf{x}_t^i , N_t^i is Binomial(N, w_t^i)
 - $E[N_t^i \tilde{W}_t^i] = NW_t^i$
- More general resampling strategies are possible
- Sufficient requirement: $E[N_t^i \tilde{w}_t^i] = Nw_t^i$

Resampling

- Simplest option:
 - Resample with probabilities equal to w_t^i .
 - Put weights on resample to $\tilde{w}_t^i = N^{-1}$
 - Number of repeats of \mathbf{x}_t^i , N_t^i is Binomial(N, \mathbf{w}_t^i)
 - $E[N_t^i \tilde{w}_t^i] = Nw_t^i$
- More general resampling strategies are possible
- Sufficient requirement: $E[N_t^j \tilde{w}_t^j] = Nw_t^j$
- Optimal strategy (for equally weighted samples)
 - For i = 1, ..., N, put ($\lfloor a \rfloor$ is the largest integer smaller than a)

$$\widetilde{N}_t^i = \lfloor Nw_t^i \rfloor$$
 (Some will be zero)

- Let $\delta_t^i = w_t^i \widetilde{N}_t^i/N$
- Define $K = N \sum_{i=1}^{N} \widetilde{N}_{t}^{i}$ (remaining particles that have not been allocated)
- Sample $(D_t^1, ..., D_t^N)$ from the multinomial distribution with probabilities proportional to $(\delta_t^1, ..., \delta_t^N)$.
- Put $N_t^i = \tilde{N}_t^i + D_t^i$
- Make N_t^i replicates of \mathbf{x}_t^i , but all weights to 1/N

Resampling - degeneracy

- At time *t*: Samples $\{x_{1:t}^i, i = 1, ..., N\}$ from $p(x_{1:t}|y_{1:t})$
- When resampling, resample whole vector $\mathbf{x}_{1:t}$
- When repeated resampling at many time-steps, x₁ is resampled each time, less and less unique values

Why did it work in the Lemmings example?

- The results based on $p(x_t|\mathbf{y}_{1:t})$
- Degeneracy problem related to $p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t})$
 - but would be a problem also for $p(x_t|\mathbf{y}_{1:t})$ if no resampling!
- Theoretical properties:
 - If interest in $p(x_t|\mathbf{y}_{1:t})$: Error will be uniform over time
 - If interest in $p(x_{1:t}|\mathbf{y}_{1:t})$: Error will increase (exponential) over time

Marginal likelihood

We have

$$L(\boldsymbol{\theta}) = p(\boldsymbol{y}_{1:T}|\boldsymbol{\theta}) = p(\boldsymbol{y}_1|\boldsymbol{\theta}) \prod_{t=2}^{T} p(\boldsymbol{y}_t|\boldsymbol{y}_{1:t-1};\boldsymbol{\theta})$$

• Estimate of $p(\mathbf{y}_t|\mathbf{y}_{1:t-1})$:

$$\hat{\rho}(\mathbf{y}_t|\mathbf{y}_{1:t-1}) = \frac{1}{N} \sum_{i=1}^{N} w_t^i$$

Estimate of marginal likelihood:

$$\hat{L}(\theta) = \prod_{t=1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} w_t^i \right)$$

• Can show that $\hat{L}(\theta)$ is an unbiased estimator of $L(\theta)$

Feynman-Kac formulation

Reformulation of target density

State space models:

$$p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t}) \propto p(x_1)p(y_1|x_1) \prod_{s=2}^{t} p(x_s|x_{s-1})p(y_s|x_s)$$

• Using that $p(x_s|x_{s-1})p(y_s|x_s) = p(x_s, y_s|x_{s-1}) = p(x_s|x_{s-1}, y_s)p(y_s|x_{s-1})$, we have

$$p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t}) \propto p(x_1|y_1)p(y_1) \prod_{s=2}^{t} p(x_s|x_{s-1},y_s)p(y_s|x_{s-1})$$

- Indicate different sampling strategy:
 - Simulate $x_s \sim p(x_s|x_{s-1}, y_s)$
 - Update weights with $u_t = p(y_s|x_{s-1})$
- Will typically give better proposals
 - But more difficulty in calculating weights

Algorithm general

Algorithm 4 Guided Particle filter

- 1: Simulate $\mathbf{x}_1^i \sim q(\mathbf{x}_1)$ for i = 1, ..., N.
- 2: Put weights $w_1^i = p(\mathbf{y}_1 | \mathbf{x}_1^i) \frac{p(\mathbf{x}_1)}{q(\mathbf{x}_1^i)}$.
- 3: Sample $\{B_1^1, ..., B_1^N\}$ from $\{1, ..., N\}$ with probabilities $\{w_1^i\}$.
- 4: Put $w_1^i = 1/N$.
- 5: **for** t = 2, 3, ... **do**

⊳ Sequential Monte Carlo

▷ Initialization

- 6: Simulate $\mathbf{x}_{t}^{i} \sim q(\mathbf{x}_{t}|\mathbf{x}_{t-1}^{B_{t-1}^{i}}, \mathbf{y}_{t})$ for i = 1, ..., N.
- 7: Put weights $w_t^i = \rho(\mathbf{y}_t | \mathbf{x}_t^i) \frac{\rho(\mathbf{x}_t^i | \mathbf{x}_{t-1}^{B_{t-1}})}{q(\mathbf{x}_t^i | \mathbf{x}_{t-1}^{B_{t-1}}, \mathbf{y}_t)}$.
- 8: Sample $\{B_t^1, ..., B_t^N\}$ from $\{1, ..., N\}$ with probabilities $\{w_t^i\}$.
- 9: Put $w_t^i = 1/N$.
- 10: end for
 - Approximation: $p(\mathbf{x}_t|\mathbf{y}_{1:t}) \approx \sum_{i=1}^N w_t^i \delta_{\mathbf{x}_t^i}(\mathbf{x}_t)$
 - More general: Optimal resampling with weights propagated if no resampling

Feynman-Kac formulation - Chopin et al. (2020)

Assume a general set of target distributions

$$Q_{t}(x_{1:t}) = \frac{1}{L_{t}}G_{1}(x_{1}) \left\{ \prod_{s=2}^{t} G_{s}(x_{s-1}, x_{s}) \right\} M_{t}(x_{1:t})$$

$$M_{t}(x_{1:t}) = M_{1}(x_{1}) \prod_{s=2}^{t} M_{s}(x_{s-1}, x_{s})$$
Markov process

Ordinary state space model:

$$M_s(x_{s-1}, x_s) = p(x_s|x_{s-1})$$
 $G_s(x_{s-1}, x_s) = p(y_s|x_s)$

Feynman-Kac formulation - Chopin et al. (2020)

Assume a general set of target distributions

$$\begin{aligned} Q_t(x_{1:t}) &= \frac{1}{L_t} G_1(x_1) \left\{ \prod_{s=2}^t G_s(x_{s-1}, x_s) \right\} M_t(x_{1:t}) \\ M_t(x_{1:t}) &= M_1(x_1) \prod_{s=2}^t M_s(x_{s-1}, x_s) \end{aligned} \qquad \text{Markov process}$$

Ordinary state space model:

$$M_s(x_{s-1}, x_s) = p(x_s|x_{s-1})$$
 $G_s(x_{s-1}, x_s) = p(y_s|x_s)$

Reformulated model

$$M_s(, x_{s-1}x_s) = p(x_s|x_{s-1}, y_s)$$
 $G_s(x_{s-1}, x_s) = p(y_s|x_{s-1})$

Possible with other reformulations as long as

$$G_s(x_{s-1}, x_s)M_s(x_{s-1}, x_s) = p(y_s|x_s)p(x_s|x_{s-1})$$

Why Feynman-Kac formalism?

- Different formulations share the same fundamental structure
 - Can be exploited for obtaining theoretical results
 - Can construct/exploit a variety of SMC algorithms in a common framework
- Ideal for development of generic software
 - Chopin et al. (2020): particles library (python)
 - Different algorithms correspond to "Bootstrap filter" for reformulated models
 - Bootstrap filter: Use $M_s(x_{s-1}, x_s)$ as proposal, use $G_s(x_{s-1}, x_s)$ as weight update.

Smoothing algorithms

Smoothing algorithms

- Algorithms so far target $p(\mathbf{x}_t|\mathbf{y}_{1:t})$ or $p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t})$ filtering
- In many cases interest in $p(\mathbf{x}_t|\mathbf{y}_{1:T})$ or $p(\mathbf{x}_{1:t}|\mathbf{y}_{1:T})$
 - State space models (parameters known)

Smoothing algorithms

- Algorithms so far target $p(\mathbf{x}_t|\mathbf{y}_{1:t})$ or $p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t})$ filtering
- In many cases interest in $p(\mathbf{x}_t|\mathbf{y}_{1:T})$ or $p(\mathbf{x}_{1:t}|\mathbf{y}_{1:T})$
 - State space models (parameters known)

$$igwedge x_{t-1} \longrightarrow x_t \longrightarrow x_{t+1} \longrightarrow \operatorname{Process} \ \downarrow \qquad \downarrow \qquad \downarrow \ y_{t-1} \qquad y_t \qquad y_{t+1} \qquad \operatorname{Observations}$$

Smoothing distributions

$$\rho(\mathbf{x}_{1:T}|\mathbf{y}_{1:T}) = \rho(\mathbf{x}_{T}|\mathbf{y}_{1:T}) \prod_{t=T-1}^{1} \rho(\mathbf{x}_{t}|\mathbf{x}_{t+1:T},\mathbf{y}_{1:T})
= \rho(\mathbf{x}_{T}|\mathbf{y}_{1:T}) \prod_{t=T-1}^{1} \rho(\mathbf{x}_{t}|\mathbf{x}_{t+1},\mathbf{y}_{1:t})$$

Further

$$p(\mathbf{x}_{t}|\mathbf{x}_{t+1},\mathbf{y}_{1:t}) = \frac{p(\mathbf{x}_{t+1}|\mathbf{x}_{t})p(\mathbf{x}_{t}|\mathbf{y}_{1:t})}{p(\mathbf{x}_{t+1}|\mathbf{y}_{1:t})}$$

Smoothing algorithms - cont

$$\rho(\mathbf{x}_{t}|\mathbf{x}_{t+1:T},\mathbf{y}_{1:T}) = \rho(\mathbf{x}_{t}|\mathbf{x}_{t+1},\mathbf{y}_{1:t}) = \frac{\rho(\mathbf{x}_{t+1}|\mathbf{x}_{t})\rho(\mathbf{x}_{t}|\mathbf{y}_{1:t})}{\rho(\mathbf{x}_{t+1}|\mathbf{y}_{1:t})}$$

From filter algorithm:

$$\begin{aligned} & \rho(\boldsymbol{x}_t|\boldsymbol{y}_{1:t}) \approx \sum_{i=1}^N w_t^i \delta_{\boldsymbol{x}_t^i}(\boldsymbol{x}_t) \\ & \rho(\boldsymbol{x}_{t+1}|\boldsymbol{y}_{1:t}) = \int_{\boldsymbol{x}_t} \rho(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t) \rho(\boldsymbol{x}_t|\boldsymbol{y}_{1:t}) d\boldsymbol{x} \approx \sum_{i=1}^N w_t^i \rho(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t^i) \end{aligned}$$

Combined:

$$p(\mathbf{x}_{t}|\mathbf{x}_{t+1}, \mathbf{y}_{1:t}) \approx \frac{\sum_{i=1}^{N} w_{t}^{i} p(\mathbf{x}_{t+1}|\mathbf{x}_{t}^{i}) \delta_{\mathbf{x}_{t}^{i}}(\mathbf{x}_{t})}{\sum_{i=1}^{N} w_{t}^{i} p(\mathbf{x}_{t+1}|\mathbf{x}_{t}^{i})}$$

$$= \sum_{i=1}^{N} \widetilde{w}_{t}^{i} p(\mathbf{x}_{t+1}|\mathbf{x}_{t}^{i}) \delta_{\mathbf{x}_{t}^{i}}(\mathbf{x}_{t}) \qquad \widetilde{w}_{t}^{i} = w_{t}^{i} p(\mathbf{x}_{t+1}|\mathbf{x}_{t}^{i})$$

Smoothing algorithm

Algorithm 5 Particle smoother

- 1: Put $\widetilde{w}_{T}^{i} = w_{T}^{i}, i = 1, ..., N$
- 2: Sample $\{B_T^1,...,B_T^N\}$ from $\{1,...,N\}$ with probabilities $\{\widetilde{w}_T^i\}.\triangleright$ Initialization
- 3: **for** t = T 1, T 2, ..., 1 **do**

- ▷ Backwards smoothing
- 4: Calculate $\widetilde{w}_t^i = w_t^i \cdot p(\boldsymbol{x}_{t+1}^{\mathcal{B}_{t+1}^i} | \boldsymbol{x}_t^i)$ for i = 1, ..., N.
- 5: Sample $\{B_T^1, ..., B_T^N\}$ from $\{1, ..., N\}$ with probabilities $\{\widetilde{w}_t^i\}$.
- 6: end for
 - Approximation: $p(\mathbf{x}_t|\mathbf{y}_{1:T}) \approx \sum_{i=1}^N \widetilde{w}_t^i \delta_{\mathbf{x}_i^i}(\mathbf{x}_t)$
 - Several other smoother algorithms

Lemmings - smoothing results

A Case study - Covid-19

Case study - Covid-19

See separate file

SMC and parameter estimation

SMC and parameter estimation

Assume

$$\mathbf{x}_t \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}; \boldsymbol{\theta})$$

$$y_t \sim p(\boldsymbol{y}_t | \boldsymbol{x}_t; \boldsymbol{\theta})$$

SMC and parameter estimation

Assume

$$\mathbf{x}_t \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}; \theta)$$

 $\mathbf{y}_t \sim p(\mathbf{y}_t | \mathbf{x}_t; \theta)$

- Aim now: Simultaneous inference on θ
- Two main approaches:
 - Maximum likelihood: $\hat{\theta}_{ML} = \arg \max_{\theta} L(\theta)$
 - Bayesian approach: $p(\theta|\mathbf{y}_{1:T}) \propto p(\theta)p(\mathbf{y}_{1:T}|\theta) = p(\theta)L(\theta)$
- Important property of SMC: Unbiased estimate of marginal likelihood $L_t(\theta) = p(\mathbf{y}_{1:T}|\theta)$:

$$\hat{L}_{T}(\boldsymbol{\theta}) = \prod_{t=1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} w_{t}^{i} \right)$$

- Two main classes of methods
 - Offline methods
 - Online methods

SMC and Bayesian parameter estimation

Assume

$$\mathbf{x}_{t} \sim p(\mathbf{x}_{t}; \theta)$$

$$\mathbf{x}_{t} \sim p(\mathbf{x}_{t} | \mathbf{x}_{t-1}; \theta)$$

$$\mathbf{Y}_{t} \sim p(\mathbf{y}_{t} | \mathbf{x}_{t}; \theta)$$

$$\frac{\theta}{\theta} \sim p(\theta)$$

- Aim now: Simulate from $p(\mathbf{x}_t, \theta | \mathbf{y}_{1:t})$
- Several approaches
 - Direct use of SMC
 - Introducing dynamics in θ
 - Using sufficient statistics
 - Particle MCMC

SMC and maximum likelihood

Interested in maximizing

$$L_t(\theta) = p(\boldsymbol{y}_{1:t}|\theta) = \int_{\boldsymbol{x}_{1:t}} p(\boldsymbol{y}_{1:t}|\boldsymbol{x}_{1:t};\theta) p(\boldsymbol{x}_{1:t}|\theta) d\boldsymbol{x}_{1:t}.$$

SMC and maximum likelihood

Interested in maximizing

$$L_t(\theta) = p(\mathbf{y}_{1:t}|\theta) = \int_{\mathbf{x}_{1:t}} p(\mathbf{y}_{1:t}|\mathbf{x}_{1:t};\theta) p(\mathbf{x}_{1:t}|\theta) d\mathbf{x}_{1:t}.$$

 Main problem: Calculation of the likelihood function (and possibly the score function in order to do optimization)

SMC and maximum likelihood

Interested in maximizing

$$L_t(\theta) = p(\mathbf{y}_{1:t}|\theta) = \int_{\mathbf{x}_{1:t}} p(\mathbf{y}_{1:t}|\mathbf{x}_{1:t};\theta) p(\mathbf{x}_{1:t}|\theta) d\mathbf{x}_{1:t}.$$

- Main problem: Calculation of the likelihood function (and possibly the score function in order to do optimization)
- Main approach: Use that

$$L(\theta) = p(\mathbf{y}_{1:T}|\theta) = p(\mathbf{y}_1|\theta) \prod_{t=2}^{T} p(\mathbf{y}_s|\mathbf{y}_{1:s-1};\theta) \approx \prod_{t=1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} w_t^i\right)$$

- Poyiadjis et al. (2011): Algorithms for calculating the score function and information (matrix) recursively
- Can be used for gradient descent methods

Particle MCMC

- Andrieu et al. (2010)
- Ideal MCMC $(p(\theta|\mathbf{y}) \propto p(\theta)L(\theta))$:
 - **1** Sample $\theta^* \sim g(\theta^*|\theta)$
 - Calculate M-H ratio $r = \frac{p(\theta^*)L(\theta^*)g(\theta|\theta^*)}{p(\theta)L(\theta)g(\theta^*|\theta)}$
 - **3** Accept θ^* with prob min $\{1, r\}$

Particle MCMC

- Andrieu et al. (2010)
- Ideal MCMC $(p(\theta|\mathbf{y}) \propto p(\theta)L(\theta))$:
 - **1** Sample $\theta^* \sim g(\theta^*|\theta)$
 - 2 Calculate M-H ratio $r = \frac{p(\theta^*)L(\theta^*)g(\theta|\theta^*)}{p(\theta)L(\theta)g(\theta^*|\theta)}$
 - **3** Accept θ^* with prob min $\{1, r\}$
- Pseudo-Marginal algorithm:
 - **1** Sample $\theta^* \sim g(\theta^*|\theta)$
 - ② Calculate $\hat{L}(\theta^*)$
 - 3 Calculate M-H ratio $\hat{r} = \frac{\pi(\theta^*)p(\theta|\theta^*)}{\pi(\theta)p(\theta^*|\theta)}$
 - 4 Accept θ^* with prob min $\{1, \hat{r}\}$
- Particle MCMC: Use SMC to calculate $\hat{L}(\theta^*)$

Direct use of SMC

- Assume at time t-1 the existence of a properly weighted sample $\{(\boldsymbol{x}_{t-1}^i, \theta^i, \boldsymbol{w}_{t-1}^i)\}$ with respect to $p(\boldsymbol{x}_{t-1}, \theta|\boldsymbol{y}_{1:t-1})$.
- We have

$$p(\mathbf{x}_{t}, \theta | \mathbf{y}_{1:t-1}) = \int_{\mathbf{x}_{t-1}} p(\mathbf{x}_{t} | \mathbf{x}_{t-1}, \theta) p(\mathbf{x}_{t-1}, \theta | \mathbf{y}_{1:t-1}) d\mathbf{x}_{t-1}$$

$$\approx \sum_{i=1}^{N} \mathbf{w}_{t-1}^{i} p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \theta^{i}) \delta_{\theta}(\theta^{i})$$

and

$$p(\boldsymbol{x}_t, \theta | \boldsymbol{y}_{1:t}) \approx c \cdot \sum_{i=1}^{N} w_{t-1}^{i} p(\boldsymbol{x}_t | \boldsymbol{x}_{t-1}^{i}, \theta^{i}) \delta_{\theta^{i}}(\theta) p(\boldsymbol{y}_t | \boldsymbol{x}_t, \theta^{i})$$

- Updated samples $\{(\theta^i, \mathbf{x}_t^i, \mathbf{w}_t^i)\}$:
 - Simulate $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \theta^i)$
 - ② Update the weights by $w_t^i \propto w_{t-1}^i p(\mathbf{y}_t | \mathbf{x}_t^i, \theta^i)$
- The sample $\{\theta^i\}$ do not change over time.
- With resampling, this will lead to degeneracy

Direct use of SMC - properly weighted?

Proposal:

$$\theta^i \sim g(\theta) \mathbf{x}_s^i \sim p(\mathbf{x}_s | \mathbf{x}_{s-1}^i, \theta^i), \quad s = 1, ..., t$$

• Weights at time t = 1:

$$\mathbf{w}_{1}^{i} = \frac{p(\theta^{i})p(\mathbf{x}_{1}^{i}|\theta^{i})p(\mathbf{y}_{1}|\mathbf{x}_{1}^{i},\theta^{i})}{g(\theta)p(\mathbf{x}_{1}^{i}|\theta^{i})} = \frac{p(\theta^{i})p(\mathbf{y}_{1}|\mathbf{x}_{1}^{i},\theta^{i})}{g(\theta)}$$

giving properly weighted samples at time 1.

Direct use of SMC - properly weighted?

Proposal:

$$\theta^i \sim g(\theta) \mathbf{x}_s^i \sim p(\mathbf{x}_s | \mathbf{x}_{s-1}^i, \theta^i), \quad s = 1, ..., t$$

Weights at time t = 1:

$$w_1^i = \frac{p(\theta^i)p(\mathbf{x}_1^i|\theta^i)p(\mathbf{y}_1|\mathbf{x}_1^i,\theta^i)}{g(\theta)p(\mathbf{x}_1^i|\theta^i)} = \frac{p(\theta^i)p(\mathbf{y}_1|\mathbf{x}_1^i,\theta^i)}{g(\theta)}$$

giving properly weighted samples at time 1.

• At time t:

$$\begin{split} & \boldsymbol{w}_{t}^{i} = \frac{p(\boldsymbol{\theta}^{i})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{1}|\boldsymbol{x}_{1}^{i},\boldsymbol{\theta}^{i})\prod_{s=2}^{t}p(\boldsymbol{x}_{s}^{i}|\boldsymbol{x}_{s-1}^{i},\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s}^{i},\boldsymbol{\theta}^{i})}{g(\boldsymbol{\theta})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i}))\prod_{s=2}^{t}p(\boldsymbol{x}_{s}^{i}|\boldsymbol{x}_{s-1}^{i},\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s}^{i},\boldsymbol{\theta}^{i})}\\ &= \frac{p(\boldsymbol{\theta}^{i})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{1}|\boldsymbol{x}_{1}^{i},\boldsymbol{\theta}^{i})\prod_{s=2}^{t}p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s}^{i},\boldsymbol{\theta}^{i})}{g(\boldsymbol{\theta})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i}))}\\ &= \frac{p(\boldsymbol{\theta}^{i})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{1}|\boldsymbol{x}_{1}^{i},\boldsymbol{\theta}^{i})\prod_{s=2}^{t-1}p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s}^{i},\boldsymbol{\theta}^{i})}{g(\boldsymbol{\theta})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i}))}p(\boldsymbol{y}_{t}|\boldsymbol{x}_{t}^{u},\boldsymbol{\theta}^{i})\\ &= w_{t-1}^{i}p(\boldsymbol{y}_{t}|\boldsymbol{x}_{t}^{u},\boldsymbol{\theta}^{i}) \end{split}$$

Direct use of SMC - properly weighted?

Proposal:

$$\theta^i \sim g(\theta) \mathbf{x}_s^i \sim p(\mathbf{x}_s | \mathbf{x}_{s-1}^i, \theta^i), \quad s = 1, ..., t$$

• Weights at time t = 1:

$$w_1^i = \frac{p(\theta^i)p(\mathbf{x}_1^i|\theta^i)p(\mathbf{y}_1|\mathbf{x}_1^i,\theta^i)}{g(\theta)p(\mathbf{x}_1^i|\theta^i)} = \frac{p(\theta^i)p(\mathbf{y}_1|\mathbf{x}_1^i,\theta^i)}{g(\theta)}$$

giving properly weighted samples at time 1.

• At time t:

$$\begin{split} & \boldsymbol{w}_{t}^{i} = \frac{p(\boldsymbol{\theta}^{i})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{1}|\boldsymbol{x}_{1}^{i},\boldsymbol{\theta}^{i})\prod_{s=2}^{t}p(\boldsymbol{x}_{s}^{i}|\boldsymbol{x}_{s-1}^{i},\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s}^{i},\boldsymbol{\theta}^{i})}{g(\boldsymbol{\theta})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i}))\prod_{s=2}^{t}p(\boldsymbol{x}_{s}^{i}|\boldsymbol{x}_{s-1}^{i},\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s}^{i},\boldsymbol{\theta}^{i})}\\ &= \frac{p(\boldsymbol{\theta}^{i})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{1}|\boldsymbol{x}_{1}^{i},\boldsymbol{\theta}^{i})\prod_{s=2}^{t}p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s}^{i},\boldsymbol{\theta}^{i})}{g(\boldsymbol{\theta})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i}))}\\ &= \frac{p(\boldsymbol{\theta}^{i})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i})p(\boldsymbol{y}_{1}|\boldsymbol{x}_{1}^{i},\boldsymbol{\theta}^{i})\prod_{s=2}^{t-1}p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s}^{i},\boldsymbol{\theta}^{i})}{g(\boldsymbol{\theta})p(\boldsymbol{x}_{1}^{i}|\boldsymbol{\theta}^{i}))}p(\boldsymbol{y}_{t}|\boldsymbol{x}_{t}^{u},\boldsymbol{\theta}^{i})\\ &= \boldsymbol{w}_{t-1}^{i}p(\boldsymbol{y}_{t}|\boldsymbol{x}_{t}^{u},\boldsymbol{\theta}^{i}) \end{split}$$

Main problem: Now we need to resample (θ, x_{1:t}).
 Will result in degeneracy when p(θ, x_t|y_{1:t}) is of interest.

Lemmings data

- Interested in the dynamics of the lemmings populations
- From church books: Binary records on lemmings years or not.

Lemmings data

- Interested in the dynamics of the lemmings populations
- From church books: Binary records on lemmings years or not.
- Define $\mathbf{x}_t = \log(N_t)$, N_t population size at year t
- Model

$$\mathbf{x}_{t} = a\mathbf{x}_{t-1} + \varepsilon_{t}, \quad \varepsilon_{t} \sim N(0, \sigma^{2})$$

 $\mathbf{y}_{t} \sim \text{Binom}\left(1, \frac{\exp(\mathbf{x}_{t})}{1 + \exp(\mathbf{x}_{t})}\right)$

- Of interest: $p(\mathbf{x}_t|\mathbf{y}_{1:t})$, $p(a|\mathbf{y}_{1:t})$
- SMC_lin_bin.R, SMC_lemmings_parest_direct.R

Results - Lemmings

Introducing dynamics in θ

• Liu and West (2001): Assume θ is (slowly) changing with time:

$$\theta_t = \theta_{t-1} + \zeta_t, \quad \zeta_t \sim N(0, q)$$

- Focus on $p(\mathbf{x}_t, \theta_t | \mathbf{y}_{1:t})$.
- Assume a weighted sample $\{(\boldsymbol{x}_{t-1}^i, \theta_{t-1}^i, \boldsymbol{w}_{t-1}^i)\}$

Introducing dynamics in θ

• Liu and West (2001): Assume θ is (slowly) changing with time:

$$\theta_t = \theta_{t-1} + \zeta_t, \quad \zeta_t \sim N(0, q)$$

- Focus on $p(\mathbf{x}_t, \theta_t | \mathbf{y}_{1:t})$.
- Assume a weighted sample $\{(\boldsymbol{x}_{t-1}^i, \theta_{t-1}^i, w_{t-1}^i)\}$

$$p(\mathbf{x}_{t}, \theta_{t}|\mathbf{y}_{1:t-1}) = \int_{\mathbf{x}_{t-1}} p(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \theta_{t}) p(\theta_{t}|\theta_{t-1}) p(\mathbf{x}_{t-1}, \theta_{t-1}|\mathbf{y}_{1:t-1}) d\mathbf{x}_{t-1} d\theta_{t-1}$$

$$\approx \sum_{i=1}^{N} w_{t-1}^{i} p(\mathbf{x}_{t}|\mathbf{x}_{t-1}^{i}, \theta_{t}) p(\theta_{t}|\theta_{t-1}^{i})$$

$$p(\mathbf{x}_{t}, \theta_{t}|\mathbf{y}_{1:t}) \approx c \cdot \sum_{i=1}^{N} w_{t-1}^{i} p(\mathbf{x}_{t}|\mathbf{x}_{t-1}^{i}, \theta_{t}) p(\theta_{t}|\theta_{t-1}^{i}) p(\mathbf{y}_{t}|\mathbf{x}_{t}, \theta_{t}).$$

Introducing dynamics in θ

• Liu and West (2001): Assume θ is (slowly) changing with time:

$$\theta_t = \theta_{t-1} + \zeta_t, \quad \zeta_t \sim N(0, q)$$

- Focus on $p(\mathbf{x}_t, \theta_t | \mathbf{y}_{1:t})$.
- Assume a weighted sample $\{(\boldsymbol{x}_{t-1}^i, \theta_{t-1}^i, w_{t-1}^i)\}$

$$\begin{split} \rho(\boldsymbol{x}_{t}, \theta_{t} | \boldsymbol{y}_{1:t-1}) &= \int_{\boldsymbol{x}_{t-1}} \rho(\boldsymbol{x}_{t} | \boldsymbol{x}_{t-1}, \theta_{t}) \rho(\theta_{t} | \theta_{t-1}) \rho(\boldsymbol{x}_{t-1}, \theta_{t-1} | \boldsymbol{y}_{1:t-1}) d\boldsymbol{x}_{t-1} d\theta_{t-1} \\ &\approx \sum_{i=1}^{N} w_{t-1}^{i} \rho(\boldsymbol{x}_{t} | \boldsymbol{x}_{t-1}^{i}, \theta_{t}) \rho(\theta_{t} | \theta_{t-1}^{i}) \\ \rho(\boldsymbol{x}_{t}, \theta_{t} | \boldsymbol{y}_{1:t}) \approx c \cdot \sum_{i=1}^{N} w_{t-1}^{i} \rho(\boldsymbol{x}_{t} | \boldsymbol{x}_{t-1}^{i}, \theta_{t}) \rho(\theta_{t} | \theta_{t-1}^{i}) \rho(\boldsymbol{y}_{t} | \boldsymbol{x}_{t}, \theta_{t}). \end{split}$$

- Update samples to $\{(\theta_t^i, \mathbf{x}_t^i, \mathbf{w}_t^i)\}$ by
 - **1** Simulate $\theta_t^i \sim p(\theta_t | \theta_{t-1}^i)$,
 - Simulate $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \theta_t^i)$
 - **3** Update the weights by $w_t^i \propto w_{t-1}^i p(\mathbf{y}_t | \mathbf{x}_t^i, \theta_t^i)$.
- SMC_lemmings_parest_dyn.R

Results - Lemmings

Dynamics in θ - continued

• New values $\{\theta_t^i\}$ are generated at each time point

Dynamics in θ - continued

- \bullet New values $\{\theta_t^i\}$ are generated at each time point
- Main problem: Introduce extra variability in θ_t .
- Consequence: Estimation of θ_t mainly based on most recent observations
- The model

$$\theta_t = \theta_{t-1} + \zeta_t, \quad \zeta_t \sim N(0, q)$$

might be reasonable

- New problem: Estimate the static parameter q.
- SMC_lin_bin_parest_dyn.R

Sufficient statistics

• Example:

$$\mathbf{x}_t = a\mathbf{x}_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2), \quad \sigma \text{ known for simplicity}$$

- The distribution $p(\mathbf{y}_t|\mathbf{x}_t)$ can be arbitrary (but not depending on θ).
- $\theta = a$ needs to be estimated. Assume a prior $a \sim N(\mu_a, \sigma_a^2)$.

Sufficient statistics

Example:

$$\mathbf{x}_t = a\mathbf{x}_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2), \quad \sigma \text{ known for simplicity}$$

- The distribution $p(y_t|x_t)$ can be arbitrary (but not depending on θ).
- $\theta = a$ needs to be estimated. Assume a prior $a \sim N(\mu_a, \sigma_a^2)$.
- Can be shown:

$$p(a|\mathbf{x}_{1:t}) = N(\mu_{a|t}, \sigma_{a|t}^2)$$

where

$$\mu_{a|t} = \frac{\sigma_a^2 \sum_{s=2}^t \mathbf{x}_s \mathbf{x}_{s-1} + \sigma^2 \mu_a}{\sigma_a^2 \sum_{s=2}^t \mathbf{x}_{s-1}^2 + \sigma^2}; \quad \sigma_{a|t}^2 = \frac{\sigma^2 \sigma_a^2}{\sigma_a^2 \sum_{s=2}^t \mathbf{x}_{s-1}^2 + \sigma^2}.$$

Sufficient statistics

Example:

$$\mathbf{x}_t = a\mathbf{x}_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2), \quad \sigma \text{ known for simplicity}$$

- The distribution $p(\mathbf{y}_t|\mathbf{x}_t)$ can be arbitrary (but not depending on θ).
- $\theta = a$ needs to be estimated. Assume a prior $a \sim N(\mu_a, \sigma_a^2)$.
- Can be shown:

$$p(a|\mathbf{x}_{1:t}) = N(\mu_{a|t}, \sigma_{a|t}^2)$$

where

$$\mu_{a|t} = \frac{\sigma_a^2 \sum_{s=2}^t \mathbf{x}_s \mathbf{x}_{s-1} + \sigma^2 \mu_a}{\sigma_a^2 \sum_{s=2}^t \mathbf{x}_{s-1}^2 + \sigma^2}; \quad \sigma_{a|t}^2 = \frac{\sigma^2 \sigma_a^2}{\sigma_a^2 \sum_{s=2}^t \mathbf{x}_{s-1}^2 + \sigma^2}.$$

- Main point: Given $x_{1:t}$, the distribution of a (and simulation) is simple.
- $p(a|\mathbf{x}_{1:t})$ only depend on $S_{t,1} = \sum_{s=2}^t \mathbf{x}_s \mathbf{x}_{s-1}$ and $S_{t,2} = \sum_{s=2}^t \mathbf{x}_{s-1}^2$
- Both terms can be recursively updated through

$$S_{t,1} = S_{t-1,1} + \boldsymbol{x}_t \boldsymbol{x}_{t-1}, \quad S_{t,2} = S_{t-1,2} + \boldsymbol{x}_{t-1}^2.$$

- Assume $p(\mathbf{y}_t|\mathbf{x}_t)$ do not depend on θ .
- Assume $p(\theta|\mathbf{x}_{1:t}) = p(\theta|S_t)$, S_t sufficient statistic.
- Assume $S_t = h(S_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_t)$

- Assume $p(\mathbf{y}_t|\mathbf{x}_t)$ do not depend on θ .
- Assume $p(\theta|\mathbf{x}_{1:t}) = p(\theta|S_t)$, S_t sufficient statistic.
- Assume $S_t = h(S_{t-1}, x_{t-1}, x_t)$
- Fearnhead (2002) and Storvik (2002): Focus on $p(\mathbf{x}_t, S_t | \mathbf{y}_{1:t})$, not $p(\mathbf{x}_t, \theta | \mathbf{y}_{1:t})$.

- Assume $p(\mathbf{y}_t|\mathbf{x}_t)$ do not depend on θ .
- Assume $p(\theta|\mathbf{x}_{1:t}) = p(\theta|S_t)$, S_t sufficient statistic.
- Assume $S_t = h(S_{t-1}, x_{t-1}, x_t)$
- Fearnhead (2002) and Storvik (2002): Focus on $p(\mathbf{x}_t, S_t | \mathbf{y}_{1:t})$, not $p(\mathbf{x}_t, \theta | \mathbf{y}_{1:t})$.
- Assume a properly weighted sample $\{(\boldsymbol{x}_{t-1}^i, S_{t-1}^i, w_{t-1}^i), i=1,...,N\}$ with respect to $p(\boldsymbol{x}_{t-1}, S_{t-1}|\boldsymbol{y}_{1:t-1})$
- Similar recursions as before:

$$\begin{split} \rho(\mathbf{x}_{t}, S_{t}|\mathbf{y}_{1:t-1}) &= \int_{\mathbf{x}_{t-1}} \rho(\mathbf{x}_{t}, S_{t}|\mathbf{x}_{t-1}, S_{t-1}) \rho(\mathbf{x}_{t-1}, S_{t-1}|\mathbf{y}_{1:t-1}) d\mathbf{x}_{t-1} dS_{t-1} \\ &\approx \sum_{i=1}^{N} w_{t-1}^{i} \rho(\mathbf{x}_{t}, S_{t}|\mathbf{x}_{t-1}^{i}, S_{t-1}^{i}) \\ \rho(\mathbf{x}_{t}, S_{t}|\mathbf{y}_{1:t}) \approx c \cdot \sum_{i=1}^{N} w_{t-1}^{i} \rho(\mathbf{x}_{t}, S_{t}|\mathbf{x}_{t-1}^{i}, S_{t-1}^{i}) \rho(\mathbf{y}_{t}|\mathbf{x}_{t}). \end{split}$$

- Assume $p(\mathbf{y}_t|\mathbf{x}_t)$ do not depend on θ .
- Assume $p(\theta|\mathbf{x}_{1:t}) = p(\theta|S_t)$, S_t sufficient statistic.
- Assume $S_t = h(S_{t-1}, x_{t-1}, x_t)$
- Fearnhead (2002) and Storvik (2002): Focus on $p(\mathbf{x}_t, S_t | \mathbf{y}_{1:t})$, not $p(\mathbf{x}_t, \theta | \mathbf{y}_{1:t})$.
- Assume a properly weighted sample $\{(\boldsymbol{x}_{t-1}^i, S_{t-1}^i, w_{t-1}^i), i=1,...,N\}$ with respect to $p(\boldsymbol{x}_{t-1}, S_{t-1}|\boldsymbol{y}_{1:t-1})$
- Similar recursions as before:

$$p(\mathbf{x}_{t}, S_{t}|\mathbf{y}_{1:t-1}) = \int_{\mathbf{x}_{t-1}} p(\mathbf{x}_{t}, S_{t}|\mathbf{x}_{t-1}, S_{t-1}) p(\mathbf{x}_{t-1}, S_{t-1}|\mathbf{y}_{1:t-1}) d\mathbf{x}_{t-1} dS_{t-1}$$

$$\approx \sum_{i=1}^{N} w_{t-1}^{i} p(\mathbf{x}_{t}, S_{t}|\mathbf{x}_{t-1}^{i}, S_{t-1}^{i})$$

$$p(\mathbf{x}_{t}, S_{t}|\mathbf{y}_{1:t}) \approx c \cdot \sum_{i=1}^{N} w_{t-1}^{i} p(\mathbf{x}_{t}, S_{t}|\mathbf{x}_{t-1}^{i}, S_{t-1}^{i}) p(\mathbf{y}_{t}|\mathbf{x}_{t}).$$

- Simulation from $p(\mathbf{x}_t, S_t | \mathbf{x}_{t-1}^i, S_{t-1}^i)$ (possible proposal function)
 - Simulate $\theta^i \sim p(\theta|\mathbf{x}_t^i, S_{t-1}^i) = p(\theta|S_{t-1}^i)$.
 - 2 Simulate $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \theta^i)$.
 - 3 Put $S_t^i = h(S_{t-1}^i, \mathbf{x}_{t-1}^i, \mathbf{x}_t^i)$.

Algorithm (Storvik filter)

Algorithm 6 SMC with parameter updating

```
1: Simulate \theta' \sim p(\theta) for i = 1, ..., N.
                                                                                                  ▷ Initialization
 2: Simulate \mathbf{x}_1^i \sim p(\mathbf{x}_1|\theta^i) for i = 1, ..., N.
 3: Put weights \mathbf{w}_1^i = p(\mathbf{y}_1 | \mathbf{x}_1^i).
 4: Put S_1^i = 0 for i = 1, ..., N.
 5: for t = 2, 3, ... do
                                                                               Simulate \theta^i \sim p(\theta|S_{t-1}^i) for i = 1, ..., N.
          Simulate \mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \theta^i) for i = 1, ..., N.
 7:
          Put weights w_t^i = w_{t-1}^i p(\mathbf{v}_t | \mathbf{x}_t^i).
 8:
          Put S_t^i = h(S_{t-1}^i, \mathbf{x}_{t-1}^i, \mathbf{x}_t^i).
 9:
10: if \hat{N}_{eff} is small then
                                                                                                  ▶ Resampling
               Resample (\mathbf{x}_t^i, S_t^i) with probabilities proportional to \mathbf{w}_t^i.
11:
               Put w_{t}^{i} = 1/N.
12:
          end if
13:
14: end for
```

SMC_lin_bin_parest_suff.R

Offline methods

- C. Andrieu, A. Doucet, and R. Holenstein. Particle markov chain monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269-342, 2010.
- N. Chopin, O. Papaspiliopoulos, et al. An introduction to sequential Monte Carlo. Springer, 2020.
- C. Dai, J. Heng, P. E. Jacob, and N. Whiteley. An invitation to sequential monte carlo samplers. Journal of the American Statistical Association, (just-accepted):1-38, 2022.
- A. Doucet, N. De Freitas, N. J. Gordon, et al. Sequential Monte Carlo methods in practice, volume 1. Springer, 2001.
- P. Fearnhead. Markov chain Monte Carlo, sufficient statistics, and particle filters. Journal of Computational and Graphical Statistics, 11(4):848-862, 2002.
- J. Liu and M. West. Combined parameter and state estimation in simulation-based filtering. In Sequential Monte Carlo methods in practice. pages 197–223. Springer, 2001.
- C. A. Naesseth, F. Lindsten, T. B. Schön, et al. Elements of sequential monte carlo. Foundations and Trends® in Machine Learning, 12(3):307–392, 2019.
- G. Poyiadjis, A. Doucet, and S. S. Singh. Particle approximations of the score and observed information matrix in state space models with application to:

000

parameter estimation. *Biometrika*, 98(1):65–80, 2011. doi: 10.1093/biomet/asq062. URL

+http://dx.doi.org/10.1093/biomet/asg062.

G. Storvik. Particle filters for state-space models with the presence of unknown static parameters. *IEEE Transactions on signal Processing*, 50 (2):281–289, 2002.

Resampling

- Degeneracy of weights a serious problem.
- Solution: Resampling (SIR idea)

•00

Resampling

- Degeneracy of weights a serious problem.
- Solution: Resampling (SIR idea)
- How:
 - Resample from $\{\pmb{x}_t^{(1)},...,\pmb{x}_t^{(N)}\}$ with normalized probabilities $w(\pmb{x}_t^{(1)}),...,w(\pmb{x}_t^{(N)})$
 - Put all weights equal to 1
 - Either at each time step or when \widehat{N}_{eff} is small

Resampling

- Degeneracy of weights a serious problem.
- Solution: Resampling (SIR idea)
- How:
 - Resample from $\{ \boldsymbol{x}_t^{(1)}, ..., \boldsymbol{x}_t^{(N)} \}$ with normalized probabilities $w(\boldsymbol{x}_t^{(1)}), ..., w(\boldsymbol{x}_t^{(N)})$
 - Put all weights equal to 1
 - Either at each time step or when \widehat{N}_{eff} is small
- Resampling will introduce extra random noise at the current time-point
- Can reduce noise at later time points

- Degeneracy of weights a serious problem.
- Solution: Resampling (SIR idea)
- How:
 - Resample from $\{\pmb{x}_t^{(1)},...,\pmb{x}_t^{(N)}\}$ with normalized probabilities $w(\pmb{x}_t^{(1)}),...,w(\pmb{x}_t^{(N)})$
 - Put all weights equal to 1
 - Either at each time step or when \widehat{N}_{eff} is small
- Resampling will introduce extra random noise at the current time-point
- Can reduce noise at later time points
- Gives a good approximation to $\pi_t(\mathbf{x}_t)$
- Does not give a good approximation to $\pi_t(\mathbf{x}_{1:t})$ or $\pi(\mathbf{x}_1)!$
- SMC_cosnorm.R

Hidden Markov models - state space models

Assume

$$egin{aligned} \mathbf{x}_1 \sim & p(\mathbf{x}_1) \\ \mathbf{x}_t \sim & p(\mathbf{x}_t | \mathbf{x}_{t-1}) \\ \mathbf{x}_t \sim & p(\mathbf{y}_t | \mathbf{x}_t) \end{aligned}$$

- $\{y_t\}$ observed, $\{x_t\}$ hidden
- Aim: $p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t})$ or $p(\mathbf{x}_{t}|\mathbf{y}_{1:t})$
- Recursive relationship:

$$\rho(\mathbf{x}_{1:t}|\mathbf{y}_{1:t}) = \frac{\rho(\mathbf{x}_{1:t}, \mathbf{y}_{t}|\mathbf{y}_{1:t-1})}{\rho(\mathbf{y}_{t}|\mathbf{y}_{1:t-1})} \\
= \frac{\rho(\mathbf{x}_{1:t-1}|\mathbf{y}_{1:t-1})\rho(\mathbf{x}_{t}|\mathbf{x}_{t-1})\rho(\mathbf{y}_{t}|\mathbf{x}_{t})}{\rho(\mathbf{y}_{t}|\mathbf{y}_{1:t-1})} \\
\propto \rho(\mathbf{x}_{1:t-1}|\mathbf{y}_{1:t-1})\rho(\mathbf{x}_{t}|\mathbf{x}_{t-1})\rho(\mathbf{y}_{t}|\mathbf{x}_{t})$$

SMC and hidden Markov models

• Assume $g_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = p(\mathbf{x}_t|\mathbf{x}_{t-1})$ $w_t = \frac{p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t})}{g(\mathbf{x}_{1:t})}$ $\propto \frac{p(\mathbf{x}_{1:t-1}|\mathbf{y}_{1:t-1})p(\mathbf{x}_t|\mathbf{x}_{t-1})p(\mathbf{y}_t|\mathbf{x}_t)}{p_{\mathbf{x}_1}(\mathbf{x}_1)\prod_{s=2}^t p(\mathbf{x}_s|\mathbf{x}_{s-1})}$ $= \frac{p(\mathbf{x}_{1:t-1}|\mathbf{y}_{1:t-1})}{g(\mathbf{x}_{1:t-1})} \frac{p(\mathbf{x}_t|\mathbf{x}_{t-1})p(\mathbf{y}_t|\mathbf{x}_t)}{p(\mathbf{x}_t|\mathbf{x}_{t-1})}$ $= w_{t-1}p(\mathbf{y}_t|\mathbf{x}_t)$

SMC and hidden Markov models

• Assume $g_t({\pmb x}_t|{\pmb x}_{t-1}) = p({\pmb x}_t|{\pmb x}_{t-1})$

$$w_{t} = \frac{p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t})}{g(\mathbf{x}_{1:t})}$$

$$\propto \frac{p(\mathbf{x}_{1:t-1}|\mathbf{y}_{1:t-1})p(\mathbf{x}_{t}|\mathbf{x}_{t-1})p(\mathbf{y}_{t}|\mathbf{x}_{t})}{p_{\mathbf{x}_{1}}(\mathbf{x}_{1})\prod_{s=2}^{t}p(\mathbf{x}_{s}|\mathbf{x}_{s-1})}$$

$$= \frac{p(\mathbf{x}_{1:t-1}|\mathbf{y}_{1:t-1})}{g(\mathbf{x}_{1:t-1})} \frac{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})p(\mathbf{y}_{t}|\mathbf{x}_{t})}{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})}$$

$$= w_{t-1}p(\mathbf{y}_{t}|\mathbf{x}_{t})$$

- Algorithm
 - **1** Sample $\mathbf{x}_{1}^{i} \sim p_{\mathbf{x}_{1}}(\cdot), i = 1, ..., N.$
 - **2** Let $w_1^{*i} = p(y_1|x_1^i)$, normalize to $w_i^i = w_1^{*i} / \sum_j w_1^{*j}$. Set t = 2
 - **3** Sample $\mathbf{x}_t^i | \mathbf{x}_{t-1}^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i), i = 1, ..., N.$
 - Append \mathbf{x}_t^i to $\mathbf{x}_{1:t-1}^i$, obtaining \mathbf{x}_t^i
 - **1** Let $w_t^{*i} = w_{t-1}^i p(y_t | x_t^i)$, normalize to $w_t^i = w_t^{*i} / \sum_j w_t^{*j}$.
 - **6** If \hat{N}_{eff} is small, perform resampling
 - Increment t and return to step 3

Terrain navigation

Assume movement model for airplane

$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{d}_t + \boldsymbol{\varepsilon}_t$$

d_t =Drift of plane measured by internal navigation system (assumed known)

$$\boldsymbol{\varepsilon}_t = \boldsymbol{R}_t^T \boldsymbol{Z}_t$$

$$\mathbf{R}_{t} = \frac{1}{\mathbf{x}_{1,t-1}^{2} + \mathbf{x}_{2,t-1}^{2}} \begin{pmatrix} -\mathbf{x}_{1,t-1} & \mathbf{x}_{2,t-1} \\ -\mathbf{x}_{2,t-1} & -\mathbf{x}_{1,t-1} \end{pmatrix}
\mathbf{Z}_{t} \sim N_{2} \begin{pmatrix} \mathbf{0}, q^{2} \begin{pmatrix} 1 & 0 \\ 0 & k^{2} \end{pmatrix} \end{pmatrix} \qquad q = 400, k = 0.5$$

$$Y_t = m(\mathbf{x}_t) + \delta_t$$

 $m(\mathbf{x}_t)$ =Elevation at point \mathbf{x}_t

• Example_6_7.R

SMC and particle filters

- SMC with resampling usually called particle filters
- Some mix/confusion about terminology, mainly the same!
- Bootstrap filter: SMC for hidden Markov models with $g(\mathbf{x}_t|\mathbf{x}_{t-1}) = p(\mathbf{x}_t|\mathbf{x}_{t-1})$

•
$$N = 5$$
, $\mathbf{w} = (0.3, 0.4, 0.05, 0.15, 0.2)$

- N = 5, $\mathbf{w} = (0.3, 0.4, 0.05, 0.15, 0.2)$
- $N * \mathbf{w} = (1.5, 2.0, 0.25, 0.75, 1.0)$

- N = 5, $\mathbf{w} = (0.3, 0.4, 0.05, 0.15, 0.2)$
- $N * \mathbf{w} = (1.5, 2.0, 0.25, 0.75, 1.0)$
- $\tilde{N} = (1, 2, 0, 0, 1)$

- N = 5, $\mathbf{w} = (0.3, 0.4, 0.05, 0.15, 0.2)$
- $N * \mathbf{w} = (1.5, 2.0, 0.25, 0.75, 1.0)$
- $\tilde{N} = (1, 2, 0, 0, 1)$
- K = 5 4 = 1

- N = 5, $\mathbf{w} = (0.3, 0.4, 0.05, 0.15, 0.2)$
- $N * \mathbf{w} = (1.5, 2.0, 0.25, 0.75, 1.0)$
- $\tilde{N} = (1, 2, 0, 0, 1)$
- K = 5 4 = 1
- $\tilde{N}/N = (0.2, 0.4, 0.0, 0.0, 0.2)$

- N = 5, $\mathbf{w} = (0.3, 0.4, 0.05, 0.15, 0.2)$
- $N * \mathbf{w} = (1.5, 2.0, 0.25, 0.75, 1.0)$
- $\tilde{N} = (1, 2, 0, 0, 1)$
- K = 5 4 = 1
- $\bullet \ \tilde{N}/N = (0.2, 0.4, 0.0, 0.0, 0.2)$
- \bullet $\delta = (0.1, 0.0, 0.05, 0.15, 0.0)$

- N = 5, $\mathbf{w} = (0.3, 0.4, 0.05, 0.15, 0.2)$
- $N * \mathbf{w} = (1.5, 2.0, 0.25, 0.75, 1.0)$
- $\tilde{N} = (1, 2, 0, 0, 1)$
- K = 5 4 = 1
- $\tilde{N}/N = (0.2, 0.4, 0.0, 0.0, 0.2)$
- \bullet $\delta = (0.1, 0.0, 0.05, 0.15, 0.0)$
- Sample **D** from Multinom(1 : N, 1, $(\frac{0.1}{0.3}, \frac{0.0}{0.3}, \frac{0.05}{0.3}, \frac{0.15}{0.3}, \frac{0.0}{0.3})$) e.g **D** = (1, 0, 0, 0, 0)

- N = 5, $\mathbf{w} = (0.3, 0.4, 0.05, 0.15, 0.2)$
- $N * \mathbf{w} = (1.5, 2.0, 0.25, 0.75, 1.0)$
- $\tilde{N} = (1, 2, 0, 0, 1)$
- K = 5 4 = 1
- $\bullet \ \tilde{N}/N = (0.2, 0.4, 0.0, 0.0, 0.2)$
- \bullet $\delta = (0.1, 0.0, 0.05, 0.15, 0.0)$
- Sample **D** from Multinom(1 : N, 1, $(\frac{0.1}{0.3}, \frac{0.0}{0.3}, \frac{0.05}{0.3}, \frac{0.15}{0.3}, \frac{0.0}{0.3})$) e.g **D** = (1, 0, 0, 0, 0)
- Put $\mathbf{N} = \tilde{\mathbf{N}} + \mathbf{D} = (2, 2, 0, 0, 1)$