

Advanced GAN Workshop

Vahid Reza Khazaie

Western University

August, 2020

Overview

- GAN
- DCGAN
- Contex Encoder
- Pix2pix
- CycleGAN
- Progressive GAN
- BigGAN
- StyleGAN

high-dimensional training distribution.
No direct way to do this!

random noise and then learn the transformations to make it like the

Start with a simple distribution like a

Generative Adversarial Network

distribution of real data set.

Use Neural Networks!

Generative Adversarial Network

Probability distributions:

Discriminator

The discriminator, on the other hand, is a common binary classifier. It has two main jobs. First, it categorizes whether its received input comes from the true data distribution or from the Generator distribution. In addition, D also guides G to create more realistic samples by passing to G its gradients. In fact, taking the gradients from D is the only way G optimize its parameters.

Generator

The generator creates samples as an attempt to mimic the ones from the same probability distribution.

Different Types of GAN

Deep Convolutional Generative Adversarial Network (DCGAN)

Generator

Discriminator

Deep Convolutional Generative Adversarial Network (DCGAN)

Transposed Convolution

6	14	4
2	17	21
0	1	5

Output

6	2	
2	10	

12	4
4	20

	3	1
	1	5

Unsupervised Feature Learning by Inpainting

Traditional Autoencoders

Context Encoders

Context Encoders

(a) Input context

(b) Human artist

(c) Context Encoder (L2 loss)

Image-to-Image Translation

U-Net

PatchGAN

Image-to-Image Translation with Conditional Adversarial Networks (pix2pix)

Image-to-Image Translation with Conditional Adversarial Networks (pix2pix)

Image-to-Image Translation with Conditional Adversarial Networks (pix2pix)

Occluded Visual Object Recognition Using Deep Conditional Generative Adversarial Nets and Feedforward Convolutional Neural Networks

Occluded Visual Object Recognition Using Deep Conditional Generative Adversarial Nets and Feedforward Convolutional Neural Networks

What if we don't have pairs?

Loss to minimize?

$$J^{(D1)} = -\frac{1}{m_{real}} \sum_{i=1}^{m_{real}} \log(D1(z^{(i)})) - \frac{1}{m_{gen}} \sum_{i=1}^{m_{gen}} \log(1 - D1(G1(H^{(i)})))$$

$$J^{(G1)} = -\frac{1}{m_{gen}} \sum_{i=1}^{m_{gen}} \log(D1(G1(H^{(i)})))$$

$$J^{(D2)} = -\frac{1}{m_{real}} \sum_{i=1}^{m_{real}} \log(D2(h^{(i)})) - \frac{1}{m_{gen}} \sum_{i=1}^{m_{gen}} \log(1 - D2(G2(Z^{(i)})))$$

$$J^{(G2)} = -\frac{1}{m_{gen}} \sum_{i=1}^{m_{gen}} \log(D2(G2(Z^{(i)})))$$

$$J^{cycle} = \frac{1}{m_{gen}} \sum_{i=1}^{m_{gen}} ||G2(G1(H^{(i)}) - H^{(i)}||_{1} + \frac{1}{m_{gen}} \sum_{i=1}^{m_{gen}} ||G1(G2(Z^{(i)}) - Z^{(i)}||_{1}$$

$$J = J^{(D1)} + J^{(G1)} + J^{(D2)} + J^{(G2)} + \lambda J^{cycle}$$

Pix2pix vs CycleGAN

Generator	Act.	Ou	tput s	haj	œ	Params
Latent vector	_	512 ×	1	×	1	-
Conv 4×4	LReLU	512 ×	4	×	4	4.2M
Conv 3 × 3	LReLU	512 ×	4	×	4	2.4M
Upsample	-	512 ×	8	×	8	-
Conv 3 × 3	LReLU	512 ×	8	×	8	2.4M
Conv 3 × 3	LReLU	512 ×	8	×	8	2.4M
Upsample	-	512 ×	16	X	16	-
Conv 3 × 3	LReLU	512 ×	16	×	16	2.4M
Conv 3 × 3	LReLU	512 ×	16	×	16	2.4M
Upsample	-	512 ×	32	×	32	
Conv 3 × 3	LReLU	512 ×	32	×	32	2.4M
Conv 3 × 3	LReLU	512 ×	32	×	32	2.4M
Upsample	-	512 ×	64	X	64	-
Conv 3 × 3	LReLU	256 ×	64	×	64	1.2M
Conv 3 × 3	LReLU	256 ×	64	×	64	590k
Upsample	-	256 ×	128	×	128	_
Conv 3 × 3	LReLU	128 ×	128	×	128	295k
Conv 3 × 3	LReLU	128 ×	128	×	128	148k
Upsample		128 ×	256	×	256	
Conv 3 × 3	LReLU	64 ×	256	×	256	74k
Conv 3 × 3	LReLU	64 ×	256	×	256	37k
Upsample	-	64 ×	512	×	512	-
Conv 3 × 3	LReLU	32 ×	512	×	512	18k
Conv 3 × 3	LReLU	32 ×	512	×	512	9.2k
Upsample	-	32 ×	1024	×	1024	_
Conv 3 × 3	LReLU	16 ×	1024	×	1024	4.6k
Conv 3 × 3	LReLU	16 ×	1024	×	1024	2.3k
Conv 1 × 1	linear	3 ×	1024	×	1024	51
Total trainable	parameters					23.1M

Discriminator	Act.	Output shape	Params
Input image	-	3 × 1024 × 1024	_
Conv 1 × 1	LReLU	$16 \times 1024 \times 1024$	64
Conv 3 × 3	LReLU	16 × 1024 × 1024	2.3k
Conv 3 × 3	LReLU	$32 \times 1024 \times 1024$	4.6k
Downsample	-	$32 \times 512 \times 512$	-
Conv 3 × 3	LReLU	32 × 512 × 512	9.2k
Conv 3 × 3	LReLU	64 × 512 × 512	18k
Downsample	-	64 × 256 × 256	50000
Conv 3 × 3	LReLU	64 × 256 × 256	37k
Conv 3 × 3	LReLU	128 × 256 × 256	74k
Downsample	-	$128 \times 128 \times 128$	
Conv 3 × 3	LReLU	128 × 128 × 128	148k
Conv 3 × 3	LReLU	$256 \times 128 \times 128$	295k
Downsample	-	256 × 64 × 64	-
Conv 3 × 3	LReLU	256 × 64 × 64	590k
Conv 3 × 3	LReLU	512 × 64 × 64	1.2M
Downsample	-	512 × 32 × 32	-
Conv 3 × 3	LReLU	512 × 32 × 32	2.4M
Conv 3×3	LReLU	512 × 32 × 32	2.4M
Downsample	-	512 × 16 × 16	-
Conv 3 × 3	LReLU	512 × 16 × 16	2.4M
Conv 3 × 3	LReLU	512 × 16 × 16	2.4M
Downsample	-	512 × 8 × 8	100000000
Conv 3 × 3	LReLU	512 × 8 × 8	2.4M
Conv 3 × 3	LReLU	512 × 8 × 8	2.4M
Downsample	-	512 × 4 × 4	-
Minibatch stddev	-	513 × 4 × 4	
Conv 3 × 3	LReLU	512 × 4 × 4	2.4M
Conv 4 × 4	LReLU	512 × 1 × 1	4.2M
Fully-connected	linear	$1 \times 1 \times 1$	513
Total trainable para	meters		23.1M

Big GAN

- 1. Self-Attention Module
- 2. Adversarial Hinge Loss
- 3. Class-conditional batch normalization
- 4. Update discriminator more
- 5. Larger Batch Size
- 6. Much more parameters
- 7. Skip-z connection
- 8. Truncation Trick
- 9. Weight Initialization

BigGAN

BigGAN

StyleGAN

- 1. Progressive Growing Method
- 2. Mapping Network
- 3. Adaln
- 4. Constant Latent Point
- 5. Noise Addition
- 6. Mixing regularization

StyleGAN

StyleGAN

Still More?

GANalyze: Toward Visual Definitions of Cognitive Image Properties

SinGAN: Learning a Generative Model from a Single Natural Image

Conclusion

- What is GAN?
- Different types of GAN
- GAN Applications

Thank you everyone!

Vahid Reza Khazaie

Contact: vkhazaie@uwo.ca

References

- CS230 Stanford University
- MIT Introduction to Deep Learning Course
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Paper
- Context Encoders: Feature Learning by Inpainting
- Image-to-Image Translation with Conditional Adversarial Networks Paper
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- Progressive Growing of GANs for Improved Quality, Stability, and Variation
- Large Scale GAN Training for High Fidelity Natural Image Synthesis
- A Style-Based Generator Architecture for Generative Adversarial Networks