Correction: les ensembles de nombres

www.bossetesmaths.com

Exercice 1

	\mathbb{Z}	\mathbb{Z}	Q	\mathbb{R}	\mathbb{R}^+
3	€	€	€	E	€
-4	⊄	€	€	€	⊄
$\frac{3}{4}$	⊄	⊄	€	E	€
-2,15	⊄	⊄	⊌	E	⊄
$\frac{\sqrt{3}}{2}$	⊄	Ø	⊄	€	E
$\frac{\sqrt{0,09}}{2}$	Ø	Ø	€	E	E

Quelques remarques:

- * Tous les nombres appartiennent à \mathbb{R} .
- * Un nombre appartient à \mathbb{R}^+ si et seulement si c'est un nombre positif.
- * Comme on a la relation $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$, alors :
- Si un nombre appartient à \mathbb{N} , alors il appartient à \mathbb{Z} , à \mathbb{Q} et à \mathbb{R} .
- Si un nombre appartient à \mathbb{Z} , alors il appartient à \mathbb{Q} et à \mathbb{R} .
- Si un nombre appartient à \mathbb{Q} , alors il appartient à \mathbb{R} . * $\frac{3}{4} = 0.75 = \frac{0.75}{1} = \frac{75}{100}$ donc $\frac{3}{4}$ n'est pas entier mais appartient à \mathbb{Q} , à \mathbb{R} et à \mathbb{R}^+ .
- * $-2,15 = \frac{-2,15}{1} = \frac{-215}{100}$ donc -2,15 n'est pas entier mais appar-
- * $\frac{\sqrt{0,09}}{2} = \frac{0,3}{2} = \frac{3}{20}$ donc $\frac{\sqrt{0,09}}{2}$ n'est pas entier mais appartient à

Exercice 2

 $4 \in \mathbb{N}$ (4 est un entier positif)

 $-2 \in \mathbb{Z}$ (-2 est un entier)

 $-3,4 \not\in \mathbb{Z}$ (-3,4 n'est pas entier)

 $\frac{-6}{7} \in \mathbb{Q} \left(\frac{-6}{7} \text{ est le quotient des entiers } -6 \text{ et } 7 \right)$

 $\mathbb{N} \subset \mathbb{Q}$ (par exemple, $4 \in \mathbb{N}$ peut s'écrire $\frac{4}{1}$ quotient de deux entiers donc $4 \in \mathbb{Q}$)

 $\sqrt{2} \notin \mathbb{Q}$ ($\sqrt{2} \approx 1,414...$ ne pourra jamais s'écrire comme quotient de deux entiers, c'est un nombre dit irrationnel)

$$\frac{\sqrt{2}}{5} \in \mathbb{R}$$

$$\frac{120}{3} \in \mathbb{Z} \left(\frac{120}{3} = 40 \text{ donc entier}\right)$$

 $\sqrt{0,16} \in \mathbb{Q} \ (\sqrt{0,16} = 0, 4 = \frac{0,4}{1} = \frac{4}{10} \ \text{quotient de deux entiers donc appartient à } \mathbb{Q})$

 $0 \in \mathbb{R}^+$ (\mathbb{R}^+ est l'ensemble de tous les réels positifs ou nuls donc 0 appartient à \mathbb{R}^+ puisqu'il est nul)

 $\pi \notin \mathbb{R}^-$ ($\pi \approx 3, 14...$ est un nombre positif donc n'est pas négatif)

 $\mathbb{Q} \not\subset \mathbb{Z}$ (on a $\mathbb{Z} \subset \mathbb{Q}$ mais pas le "contraire", par exemple $\frac{1}{3} \approx 0,33...$ est un nombre appartenant à \mathbb{Q} mais pas à \mathbb{Z})

 $\sqrt{36} \in \mathbb{N} (\sqrt{36} = 6 \text{ donc entier naturel})$ $-12,56 \in \mathbb{Q} (-12,56 = \frac{-12,56}{1} = \frac{-1256}{100} \text{ quotient de deux entiers donc appartient à } \mathbb{Q})$

 $\mathbb{R}^+ \subset \mathbb{R}$ (un nombre réel positif est un nombre réel)

 $\mathbb{Z} \not\subset \mathbb{N}$ (on a $\mathbb{N} \subset \mathbb{Z}$ mais pas le "contraire", par exemple -4 appartient à \mathbb{Z} mais pas à \mathbb{N}).

Plus dur:

a) Appliquons la double distributivité pour développer l'expression A :

$$A = (\sqrt{18} - 4) \left(\frac{3}{4} \sqrt{2} + 1 \right)$$

$$A = \sqrt{18} \times \frac{3}{4} \sqrt{2} + \sqrt{18} \times 1 - 4 \times \frac{3}{4} \sqrt{2} - 4 \times 1$$

$$A = \frac{3}{4} \sqrt{18 \times 2} + \sqrt{18} - 3\sqrt{2} - 4$$

$$A = \frac{3}{4} \sqrt{36} + \sqrt{9 \times 2} - 3\sqrt{2} - 4$$

$$A = \frac{3}{4} \times 6 + \sqrt{9} \times \sqrt{2} - 3\sqrt{2} - 4$$

$$A = \frac{18}{4} + 3\sqrt{2} - 3\sqrt{2} - 4$$

$$A = \frac{9}{4} - \frac{4}{1}$$

$$A = \frac{9}{4} - \frac{8}{2}$$

$$A = \frac{3}{4}\sqrt{18 \times 2} + \sqrt{18} - 3\sqrt{2} - 4$$

$$A = \frac{3}{4}\sqrt{36} + \sqrt{9 \times 2} - 3\sqrt{2} - 4$$

$$A = \frac{3}{4} \times 6 + \sqrt{9} \times \sqrt{2} - 3\sqrt{2} - 4$$

$$A = \frac{48}{4} + 3\sqrt{2} - 3\sqrt{2} - 4$$

$$A = \frac{9}{2} - \frac{4}{2}$$

$$A = \frac{9}{2} - \frac{8}{2}$$

 $A = \frac{1}{2}$ quotient de deux entiers donc $A \in \mathbb{Q} : A$ est un nombre rationnel.

b) Il faut connaître tes identités remarquables pour développer l'expression *B*!

$$B = \frac{(a+b)^2 - (a-b)^2}{ab}$$

$$B = \frac{ab}{(a^2 + 2ab + b^2) - (a^2 - 2ab + b^2)}$$

$$B = \frac{ab}{ab + b^2 - (a^2 - 2ab + b^2)}$$

$$B = \frac{a^2 + 2ab + b^2 - a^2 + 2ab - b^2}{ab}$$

$$B = \frac{4ab}{ab}$$

$$B = \frac{4ab}{ab}$$

$$B = 4 \text{ entier naturel donc } B \in \mathbb{N}.$$