Solutionnaire

Contrôle périodique 3

LOG1810

Sigle du cours

Sigle et titre du cours		Groupe		Trimestre
LOG1810 Structures discrètes		Tous		Été 2023
Professeur		Local		Téléphone
Aurel Randolph, Chargé de cours Lévis Thériault, Coordonnateur				
Jour	Date		Durée	Heures
Samedi	17 juin 2023		1h	10h30-11h30
Documentation		Calculatrice		
Aucune		Aucune	Les appareils	
⊠ Toute		☐ Toutes		électroniques personnels
⊠ Voir directives particulières		⊠ Non programmable (AEP)		sont interdits.

Question 1 (2 points)

Le graphe ci-dessous contient-il une chaîne hamiltonienne ? Si oui, donnez-en une.

Réponse:

- Oui, le graphe contient une chaîne hamiltonienne.
- Exemple de chaîne hamiltonienne : 11 12 15 9 10 16 14 13

Question 2 (4.5 points)

On considère les variables réelles a, b, c, d et e.

a. (2.5 points) Donnez l'arbre algébrique correspondant à l'expression :

$$2(a + b) - (c - (d - e)) + ((a/b) - c) - (d - e)$$

Réponse:

b. (2 points) Donnez la forme infixe correspondant à l'expression algébrique :

$$2(a + b) + (c - (d - e)) - ((a/b) - c) - (d - e)$$

Réponse:

$$2 x a + b + c - d - e - a / b - c - d - e$$

Question 3 (5.5 points)

Construisez un automate fini déterministe correspondant à l'automate suivant. Vous devez préalablement fournir les tables d'états-transition des deux automates.

Réponse :

La table d'états-transition de l'automate initial est la suivante. Les états initiaux et finaux sont marqués des signes \rightarrow et \leftarrow , respectivement.

	Entrées		
États	0	1	
$\rightarrow \{e_0\}$	$\{e_1, e_2\}$	$\{e_2, e_3\}$	
$\{e_1\}$	{e₃}	$\{e_1\}$	
$\{e_2\}$	$\{e_2\}$	{ <i>e</i> ₃}	
← { <i>e</i> ₃ }	Ø	Ø	

La table d'états-transition de l'automate déterministe émondé est la suivante. Les états initiaux et finaux sont marqués des signes \rightarrow et \leftarrow , respectivement.

	Entrées		
États	0	1	
$\rightarrow \{e_0\}$	$\{e_1, e_2\}$	$\{e_2, e_3\}$	
$\{e_1, e_2\}$	$\{e_2, e_3\}$	$\{e_1, e_3\}$	
$\leftarrow \{e_2, e_3\}$	$\{e_2\}$	{ <i>e</i> ₃}	
$\leftarrow \{e_1, e_3\}$	{ <i>e</i> ₃}	$\{e_1\}$	
{e ₂ }	{e ₂ }	{ <i>e</i> ₃}	
← { <i>e</i> ₃ }	Ø	Ø	
{e ₁ }	{ <i>e</i> ₃}	{e ₁ }	

L'automate est :

LOG1810-É2023 Contrôle périodique 3 **Solutionnaire**

Question 4 (5 points)

Soit le graphe suivant. Trouvez l'arbre de recouvrement de poids minimal en appliquant l'algorithme de Kruskal. Vous devez présenter toutes les étapes de votre réponse.

Réponse:

• **Méthode** : Kruskal

1. Tri les arcs en ordre croissant		2. Construction de l'arbre par	À titre illustratif, les arcs non
de coût :		ajout itératif d'arcs. À cet effet, il	retenus sont barrés.
AB	1	faut parcourir la liste triée du haut	AB 1
CG	1	vers le bas en ne sélectionnant	CG 1
BE	2	que les arcs qui n'ajoutent pas de	BE 2
BI	2	cycle dans l'arbre en construction.	BI 2
IJ	2	Arrêter après l'ajout de (n-1) = 11	IJ 2
CD	2	arcs, avec n = 12 le nombre de	CD 2
DH	2	sommets dans le graphe initial.	DH 2
AE	3		AE 3
EI	3		El 3
IF	3		IF 3
CF	3		CF 3
JG	3		JG 3
FJ	3		FJ 3
GL	3		GL 3
FG	4		FG 4
GK	4		GK 4
JK	4		JK 4
DG	4		DG 4
BC	5		BC 5
BF	5		BF 5 GH 5
GH	5		VL 5
KL	5		HL 5
HL	5		, J

LOG1810-É2023 Contrôle périodique 3 **Solutionnaire**

Question 5 (3 points)

C'est bientôt l'été! Une crèmerie propose des parfums extra-euphoriques pour la nouvelle saison, mais garde dans son menu six (6) parfums de base pour ses crèmes glacées: vanille, chocolat, fraise, framboise, menthe, caramel. En attendant de découvrir les nouveautés de la saison à une occasion spéciale, vous décidez de n'acheter que des parfums de base. L'envie de vous gâter étant très forte, vous décidez d'acheter 5 cornets de crème glacée. Vous vous permettez également de prendre, s'il le faut, plus d'une fois un ou des parfums. C'est votre plaisir qui compte!

Combien de choix possibles avez-vous ? Justifiez votre réponse.

Réponse:

Il s'agit d'une répétition non ordonnée, avec :

- n = 6 variétés de parfums
- r = 5 cornets de crème glacée avec répétition

Le nombre de choix possibles est C(n+r-1, r) = C(10, 5) = 252.