

1/7

FIG. 1

 $K = 3, l = 2$ convolutional encoder

FIG. 2

Trellis for ordinary convolutional code

2/7

FIG. 3

Inserting zero at the first position periodically

FIG. 4

Insert zero at the second position periodically

3/7

FIG. 5

Generator Matrix

Let

$$C(j) = X(j)G, \quad j = 1, 2, \dots, K-1, \quad (1)$$

where $X(j) = [1, x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots]$, $x_{tK+j} = 0, t = 0, 1, \dots$, G is the Toeplitz block matrix

$$G = [\vec{g}_{i-j}]_{i,j=0,1,\dots}$$

with $1 \times K$ sub-blocks

$$\vec{g}_i = \begin{cases} [g_{1,i}, g_{2,i}, \dots, g_{l,i}], & i = 0, 1, \dots, m; \\ 0, & \text{others.} \end{cases}$$

4/7

FIG. 6

Gj Presentation

$$\begin{bmatrix} \vec{g}_0(t) & \vec{g}_1(t+1) & \cdots & \vec{g}_m(t+m) & \cdots \\ 0 & \vec{g}_0(t+1) & \cdots & \vec{g}_{m-1}(t+m) & \cdots \\ \cdot & \cdot & \cdots & \cdot & \cdots \end{bmatrix},$$

FIG. 6A

$$\begin{aligned} & \phi_t \left(X_{t-K+2}^t \right) \\ &= \max_{X_0^{t-K+1}} M(X_0^t) \\ &= \max_{x_{t-K+1}} \left[L \left(X_{t-K+1}^t \right) + \phi_{t-1} \left(X_{t-K+1}^{t-1} \right) \right] \end{aligned}$$

5/7

FIG. 7A

DECODING

Step 1 Initialization: For $0 \leq t < K - 1$, starting from $\phi(X_{-K}^{-1}) = 0$ we calculate $\phi(X_{t-K+1}^t)$ for all possible combinations of X_0^t by (3).

30

Step 2 Recursive forward algorithm at t

If $t \neq K - 1 \pmod K$, we compute $\phi(X_{t-K+2}^t)$ by (3) and save

$$\begin{aligned} & \tilde{x}_{t-K+1} (X_{t-K+2}^t) \\ &= \arg \max_{x_{t-K+1}} \left[L(X_{t-K+1}^t) + \phi(X_{t-K+1}^{t-1}) \right]; (5) \end{aligned}$$

otherwise we compute $\phi(X_{t-K+2}^t)$ by (4).

Go to Step 3.

STEP 3

32

6/7

FIG. 7B

Step 3 Recursive backward algorithm at t :If $t - D \neq K - 1 \pmod{K}$, starting from

$$\hat{X}_{t-K+2}^t = \arg \max_{X_{t-K+2}^t} \phi \left(X_{t-K+2}^t \right) \quad (6)$$

we calculate $\hat{x}_k = \tilde{x}_k \left(\hat{X}_{k+1}^{K-1} \right)$, $k = t - K + 1, t - K, t - K - 1, \dots$ until backward D symbols to find

$$\hat{x}_{t-D} = \tilde{x}_{t-D} \left(\hat{X}_{t-D+1}^{t-D+K-1} \right); \quad (7)$$

otherwise $\hat{x}_{t-D} = 0$.T \neq N, Back to Step 2

34

If $t = n$ go to Step 4; otherwise go to Step 2.

36

Step 4 Termination: Let $n \leq t < n + K - 2 = N$.

If $t \neq K - 1 \pmod{K}$, we compute $\phi \left(X_{t-K+2}^t \right)$ by (3) and save $\tilde{x}_{t-K+1} \left(X_{t-K+2}^t \right)$ by (5); otherwise we compute $\phi \left(X_{t-K+2}^t \right)$ by (4) and we do not need to save $\tilde{x}_{t-K+1} \left(X_{t-K+2}^t \right)$ since it must be zero.

Repeat this step until $t = N$, then go to Step 5.

To Step 5

38

7/7

FIG. 7C

From Step 4

40

Step 5 Recursive backward algorithm at the end: Starting from

$$\hat{x}_n = \arg \max_{x_n} \phi \left(\underbrace{0, \dots, 0}_{K-2}, x_n \right),$$

we estimate x_t by

$$\hat{x}_t = \tilde{x}_t \left(\hat{X}_t^{t+K-2} \right), \quad t = n-1, n-2, \dots, n-D.$$

FIG. 8

Code	Conv. Code	Conv. Zero Code
Code Rate	$\frac{T}{(T+K-1)l} \approx \frac{1}{l}$	$\frac{T}{Nl} \approx \frac{K-1}{Kl}$
Complexity	$\approx T(l+2)2^K$	$\approx \frac{K}{K-1} T(l+2)2^{K-1}$
Memory	2^{KD}	$2^{K-1} \left(D - \left[\frac{D}{K} \right] \right)$
Delay	D	D