中山大学理工学位工作细则》第六条,"考试作弊不授予学士学位。" 中山大学理工学院 2010 学年 1 学期期末 数学物理方法 试卷 (A)
19 年级 物理、临床医学、理工逸仙班 专业 姓名:学号:
考试成绩。 一、选择题(在正确答案前打 $$,每题只有一个正确答案。每题 5 分,共 35 分。) A) $f(z) = $ 常数 (B) $ f(z) = $ 常数 (C) 当 $z \to \infty$, $f(z) \to \infty$ (D) \forall 围线 C , 有 $\int_C f(z) dz = 0$ A) 振动发生在一固定平面内 (B) 弦是完全柔软的 (C) 弦的两端是固定的 (D) 振动幅度很小 A) 振动发生在一固定平面内 (B) 弦是完全柔软的 (C) 弦的两端是固定的 (D) 振动幅度很小 A) 第一类边界条件 (D) 东程中的非齐次项 (D) 大星中的非子次项 (D) 大星中的非子次项 (D) 大星中的非子次项 (D) 大星中的非子次项 (D) 大星中次,有量的一个工程,在这个大量,是这个大量,在这个大量,是这个大量,是这个大量,在这个大量,是这个大量,是这个大量,这个大量,这个大量,这个大量,这个大量,这个大量,这个大量,是这个大量,是一个大量,这个大量,这个大量,这个大量,这个大量,是一个大量,这个大量,这个大量,这个大量,这个大量,这个大量,这个大量,这个大量,这
$C(r,r_0)=0$, $G _{r\in\partial D}=-\delta(r-r_0)$ $C(r,r_0)=0$, $G _{r\in\partial D}=0$. 用镜像法求解半径为 a 的球内 Laplace 方程第一边值问题的 Green 函数,在球内 r_0 处放置点电荷 ϵ_0 ,则 $C(r,r_0)=0$ 及放置点电荷 ϵ_0 ,则 $C(r,r_0)=0$ 及放置点电荷 ϵ_0 ,则
A) $Q = -\epsilon_0$ (B) $Q = -(r_0/a)\epsilon_0$ (C) $Q = -(a/r_0)\epsilon_0$ (D) 以上三项都不对
二、填空題(答案直接填在下面空白处、每题 15 分, 共 30 分.)
. 在 $z=0$ 附近将 $f(z)=e^{1/(2-z)}$ 展开为 Taylor 级数至 z^3 , 结果是 $f(z)=e^{\frac{z^2}{2}}$ ($f(z)=e^{\frac{z^2}{2}}$)
Taylor 级数的收敛半径为 (2) R = 2
(Taylor 级数的收敛半径为 (2) $R=2$ 球坐标系中,轴对称边界条件下,Laplace 方程的一般解是 $u(r,\theta)=\frac{2}{5}$ $An(a)+Bn(a)$ D_{1} $U(x,\theta)$ D_{2} 虚球内的定解问题,设球面上 $u _{r=a}=u_{0}\cos 2\theta$,
$u(r,\theta) = \frac{\sum_{k=0}^{\infty} \int_{\mathbb{R}} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{k} \int_{\mathbb{R}} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{k} \right) \left(\frac{1}{2} \left(\frac{1}{2} $
计算题(在答题纸上解答. 共 35 分.)
求解弦振动问题. 设弦长为 l ,两端固定. 弦受到强迫力,使波动方程中 $u_1 x_1 x_1 x_1 x_2 x_3 x_3 x_4 x_4 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5$

学号:	姓名:	成绩:	教师签字:	
4	中山大学授予学士学位工作	乍细则》第六条:"考试	作弊不授予学士学位."	
Laurent级数,则记 文某区域上的解析 (A) 必为零;(B) 3、x=0 是常微分方 (A) 常点;(B) 正 一类边界绝。 哪个值可以	题 5 分,共 35 分.每题只性奇点 z_0 而形成的环域上数级数 (A) 无负幂项;函数为实函数,则它必为常数;(C) 一阶号程 $(1-x)xy''+3xy'+(1-x^2)$ 规 商点;(C) 非正则奇点;然的导热细杆,中点保持生件;(B) 第二类边界条件。做为本征值问题 $T''-\lambda T=0$ 。 π^2/t_0^2 ;(C), $-\pi^2/t_0^2$;(D) $=e^{1/(z-1)}$ 的	(B) 有有限个负幂项; (b) 有有限个负幂项; (c) 第三类边界条件; (d) 四大条件; (e) 第三类边界条件; (e) 第三类边界条件; (f) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	把它在环内一点和的表面。(C) 有无限个负幂项:(C) 有无限个负幂项:(C) 有无限个负幂项:(D) 有无限个负幂项:(D) 初始条件.	三心邻域展开成 D) 不收敛,
6. z=1 是函数 f(z)	$=e^{1/(z-1)}$ 的 (A) 一阶	极点: (B) 可去奇点; (C) 非孤立奇点: (D) 本	性奇点.
₹. 设复变函数 ƒ (在交点处	z) = u(x,y) + iv(x,y) 在区域 (B) 夹角为钝角; (C) 夹	或 D 内解析,则 D 内	的曲线 $u(x,y)=c_1$ 和日	曲线 $v(x,y) = c_2$
二、填空题(答案	紧直接填在下面空 白处,每	手小题 6 分, 共 30 分. i	青不要把答案写在答题组	纸上.)
(1. 考虑复变函数	$f(z) = 1/(z^2 + a^2)(z^2 + b^2)$, (其中 a,b > 0,且 a ≠ b). f(z)在上半平面的	奇点及类型分别
是(1)	ai bi Aft-ft si	32.	f(z) 在这些奇点处	的留数分别是
(2)	$\frac{1}{2}$ 1	留数定理求实变积分 I = .(0 < x < +∞,0 < y < +∞,-∞	$\int_{0}^{\infty} f(x)dx, \text{结果是 (3)}$ $0 < z < +\infty, u \Big _{x=0} = f(y, z)$	$\frac{-\tau}{1 + \epsilon \left(\frac{1}{2} + \frac{1}{2} +$
相应的 Green 函			2	$\frac{7}{3} = (\frac{1}{6} + \frac{1}{6}) = \frac{7}{3}$
(1)	7-7 (0<	x, x, x, x, y 5 6	(7 7) x=0 =0, G	(F, 70)/y===0
该 Green 函数为		1 1 1- 0	.1	
(2) G= TAR -	1-4-4-1 (x, -9,>	1	1.	·
	题纸上解答. 共35分.)			- Bush 13x.
	内 Laplace 方程定解问题			
2.(20分)长为 1 向管内扩散 设初 初步原件仅不	的柱形管,x=1 端封闭 始时刻管内空气不含该和	中杂质气体,求以后各	空气中含有某种杂质与时刻该气体在管内的液	度 u(x,t).

警示

《中山大学授予学士学位工作细则》第六条:"考试作弊不授予学士学位。" 中山大学理工学院 2012 学年 1 学期期末 数学物理方法 试卷 (A)

丛牛级	70年 4 亚	姓名:	———— 学号:
老师姓名: 林琼桂		考	试成绩:
一、选择题(在正确	角答案前打 /, 每题只	有一个正确答案. 每题!	A ++ == 0
1. 口知一解析函数出	的头部为 $u(x,y)=e^{-x}$	cosy, 则其虚部可能具	
(A) $e^x \sin y$	(B) $-e^x \sin y$	(C) e ^{-x} sin * 1	(D) $-e^{-x}\sin y + 2$
2. z=0 是函数 zsin	$1(1/z^2)$ 的	$(\circ) \circ \sin y + 1$	$(D) -e^{-x}\sin y + 2$
	(B) 一阶极点	(C) 二阶极点	
3. 函数 cos[(z ² -9)/	$(z^2 - 4)$] 可以在下列	哪个区域内展开为不可	to det - se
(A) $ z-2 < 4$	(B) $0 < z - 2 $	< 2 (C) let	3 (D) z-3 < 2
4. 已知 f(z) 在 0 <	z < 4 内解析,则可以	以肯定	3 (D) $ z-3 < 2$
(A) $\int f(z) dz \neq 0$	(B) $f(0) = \frac{1}{1} \int_{0}^{1} f(0) dt$	$\frac{f(z)}{dz} dz$ (C) $f(z) = 1$	$\int f(z)$
5. 弹性均匀细杆,在	$2\pi i \int_{ z =}$ 纵向振动过程中,其	-1 z 2πi	$\int_{ z-2 =1} \frac{f(z)}{z-2} dz$ (D) $\int_{ z =1} f(z) dz = $ 的作用在定解问题中表现为
(A) 方程中的非齐次:	项 (B) 第一类边	界条件 (C) 第一米计	为1F/71年在FFID题中表现为
0. 区国知昌内印列的	以力性 $\partial u/\partial t - a^2 \partial^2 u/$	$\partial x^2 = 0$ 在对 x 作 Fourier	· 李扬 (81./- 1) ****
(A) uo/uk + k a 0 =	$= 0$ (B) $dU/dt + k^2$	$a^2U = 0$ (C) $dU/dk -$	120211 - 0 (D) 111/11 12 0-
7. 某均匀导热球, 球	面绝热, 球内有稳定抗	热源, 热传导方程为 au/a	$t - a^2 \nabla^2 u = f(r)$, 为使球内的温度分布
在区时间后达到稳定	,从物理上判断,应该	发 要求	
(A) f(r) 为常数 (B)	f(r) 为常数且初始温	度分布均匀(C) [to f(r) d	$r=0$ (D) 只当 $f(r)\equiv 0$ 才能达到稳定
二、填空题(答案直	接填在下面空白处.	每题 15 分, 共 30 分.)	(-) / / / / / / / / / / / / / / /
2. 球坐标系中,轴对	称边界条件下,Lapla	ce 方程的一般解是	
$\underline{(1)\ u(r,\theta)} =$			
考虑球内的定解问题,	. 设球面上 u r=a = u(sin ² θ,则球内	
$(2) \ u(r,\theta) =$			
			$u _{x=0} = g(y,z), u _{y=0} = f(x,z).$ H
应的 Green 函数 $G(r,$	r_0)满足的定解问题,	是	
(1)			
该 Green 函数为			
(2)			
三、计算题(在答题组			
1. 计算积分 $I = \int_0^{2\pi} 1$	$\frac{\mathrm{d}\varphi}{1+2p\sin\varphi+p^2}$ (共	中 0 < p < 1). (15 分)	· · · · · · · · · · · · · · · · · · ·
2. 考虑细杆的热传导的	问题. 设杆长为 1,杆	侧面绝热, 左端保持零度	, 右端绝热. 杆上有热源分布, 使热传 物为常数, 目 α≠ (πα/2l) ² . 已知初始
时杆上的温度分布为u	$0\sin(3\pi x/2l)$, 其中 u	$_0$ 是常数. 求 $t>0$ 时杆上	_的温度分布 u(x,t). (20 分)

警示

《中山大学授予学士学位工作细则》第六条:"考试作弊不授予学士学位." 中山大学理工学院 2013 学年 2 学期期末 数学物理方法 试卷 (A)

12 年级 物理、临床医学 专业 姓名: 学号:
老师姓名: 林琼桂 考试成绩:
一、选择题(在正确答案前打 √、每题只有一个正确答案、每题 5 分, 共 40 分.)
1. 已知一解析函数的实部为 $u(x,y) = e^y \cos x$,则其虚部可能是
(A) e ^y sin x (B) -e ^y sin x + 1 (C) e ^{-y} cos x (D) e ^{-y} sin x
2. 将函数 1/(1-z+z²) 以 a = 0 为中心展开为 Taylor 级数,则该级数的收敛半径 R 满足
(A) R < 1 (B) R > 1 (C) R 1 (G) R 1
(A) R < 1 (B) R > 1 (C) R = 1 (D) 难以算出通项,无法确定. 3. 用分离变量法求解一维波动动物,体导问题时,但用点型上面积
3. 用分离变量法求解一维波动或热传导问题时,如果方程与定解条件均非齐次,则首先应该将哪一项齐次化?
(A) 边界条件 (B) 方程 (C) 初始条件 (D) 以上三项中至少两项.
4. 考虑一维金属细杆的热传导问题,细杆上有直流电流 I 通过,则 I 在定解问题中表现为
(A) 初始条件 (B) 方程中的非齐次项 (C) 第二类边界条件 (D) 第三类边界条件
5. 上半平面的 Laplace 方程 $\partial^2 u/\partial x^2 + \partial^2 u/\partial y^2 = 0$ 在对 x 作 Fourier 变换 $\mathscr{F}[u(x,y)] = U(k,y)$ 后成为
(A) $d^2U/dk^2 + k^2U = 0$ (B) $d^2U/dk^2 - k^2U = 0$ (C) $d^2U/dy^2 - k^2U = 0$ (D) $d^2U/dy^2 + k^2U = 0$
6. 用 Green 函数法求解区域 D 上的 Laplace 方程定解问题 $\nabla^2 u(r) = 0$ (其中 $r \in D$), $u _{r \in \partial D} = \varphi(r)$, 相
应的 Green 函数 $G(r,r_0)$ 应该满足定解问题
(A) $\nabla^2 G(\mathbf{r}, \mathbf{r}_0) = -\delta(\mathbf{r} - \mathbf{r}_0), \ G _{\mathbf{r} \in \partial D} = -\delta(\mathbf{r} - \mathbf{r}_0)$ (B) $\nabla^2 G(\mathbf{r}, \mathbf{r}_0) = 0, \ G _{\mathbf{r} \in \partial D} = 0$
(C) $\nabla^2 G(\mathbf{r}, \mathbf{r}_0) = 0$, $G _{\mathbf{r} \in \partial D} = -\delta(\mathbf{r} - \mathbf{r}_0)$ (D) $\nabla^2 G(\mathbf{r}, \mathbf{r}_0) = -\delta(\mathbf{r} - \mathbf{r}_0)$, $G _{\mathbf{r} \in \partial D} = 0$
7. 用镜像法求解圖内 Laplace 方程第一边值问题的 Green 函数, 在圆内 $ ho_0$ 处放置二维点电荷 ϵ_0 , 则应该
在圆外的对称点 (圆的半径为 a) $\rho_0' = (a^2/\rho_0^2)\rho_0$ 处放置二维点电荷
(A) $Q = -\epsilon_0$ (B) $Q = \epsilon_0$ (C) $Q = -(a/\rho_0)\epsilon_0$ (D) $Q = -(\rho_0/a)\epsilon_0$
8. $x = 1$ 是常微分方程 $(1 - x^2)y'' - 2xy' + \lambda y = 0$ (其中 λ 是常数)的
(A) 极点 (B) 本性奇点 (C) 常点 (D) 正则奇点
二、填空题(答案直接填在下面空白处. 共 25 分.)
(5. 1) de militar et 1/14 de militar et la silver et la s
1. (10 分) 在 $z = 0$ 附近将 $f(z) = e^{1/(1+z)}$ 展开为 Taylor 级数至 z^3 , 结果是
$(1) \ f(z) = $
2. (15 分) 球坐标系中, 轴对称边界条件下, Laplace 方程的一般解是
1) $u(r,\theta) =$
考虑球内的定解问题,设球面上 $u _{r=a}=u_0(\cos 2\theta-1)$,则球内
$2) \ u(r,\theta) =$
E、计算题 (在答題纸上解答. 共 35 分.)
. 计算积分 $I = \int_0^\pi \frac{\mathrm{d}\varphi}{(1 - 2p\cos\varphi + p^2)^2}$ (其中 $0). (15 分)$
$\int_0^{\infty} (1-2p\cos\varphi+p^2)^2$

止. 在 t=0 时突然放开该端. 求解 t>0 时的位移函数 u(x,t). (20分)

中山大学本科生期末考试 考试科目:《数学物理方法》(A卷)

学年学期: 2016 学年第 1 学	期 姓	名:				
学 院: 物理学院		号:				
考试方式: 闭卷	年级	号: 专业:15 级	物理			
考试时长: 120 分钟	班	别:				
警示《中山大学授予学	班 学士学位工作细则》第八名	答:"考试作弊者,不甚	受予学士学位,"			
———以下为试题区域	战, 共三道大题, 总分 100	分,考生请在答题纸	上作答———			
一、选择题(请直接在下面 🗸 出正确答案. 共 8 小题, 每小题 5 分, 共 40 分.)						
1. 已知一解析函数的实部为 u(x, 3	y) = x + y,则该解析函数	可能是				
(A) $(1-i)z + 2i$ (B)			(D) $z - i\bar{z}$			
9 日知本上限和公 パシュッパ	NA B MAMERIA	sad				
(A) $a = 1$ (B) $a = -1$	(C) $a = 0$	(D) a 可	以是任意常数			
3. 将函数 $1/(1-z-z^2)$ 以 $a=-1$						
(A) 1 (B) $\sqrt{7}/2$						
4. $z=0$ 是函数 $\cot z/z^2$ 的		•				
(A) 本性奇点 (B) 一阶) 极点 (C) 二	阶极点 ((D) 三阶极点			
5. 上半平面的 Laplace 方程 $\partial^2 u/\partial$						
(A) $d^2U/dk^2 + k^2U = 0$ (B) d^2U	$dk^2 - k^2U = 0$ (C) d ²	$^2U/\mathrm{d}y^2 + k^2U = 0$	(D) $d^2U/dy^2 - k^2U = 0$			
6. 弹性均匀细杆, 在纵振动过程中						
(A) 方程中的非齐次项 (B) 第						
7. 长为1的均匀导热细杆,两端和						
其中 f ₀ 和 λ 为常数, 下述哪个条件	中可以使杆上的温度分布	在长时间后达到稳定的				
(A) $\lambda l = \pi$ (B) $\lambda l = 2$	$l\pi$ (C) $\lambda l =$	$\pi/2$ (I	$\lambda l = 3\pi/2$			
8. 对于本征值问题 $y'' + 2y'/x + \lambda y$ 函数有正交关系	y = 0 (0 < a < x < b < +a	$\infty),\ y(a)=y(b)=0,$	对应于不同本征值的本征			
(A) $\int_{a}^{b} x^{2} y_{m}(x) y_{n}(x) dx = 0$ (B) $\int_{a}^{b} x^{2} y_{m}(x) y_{n}(x) dx = 0$	$^{-6}xy_{m}(x)y_{n}(x) dx = 0$ (6)	C) $\int_{0}^{b} y_{-}(x)y_{-}(x) dx =$	0 (D) 不一定正交			
			(D) 11 ZEEZ			
二、填空题(共 2 小题,各小题分数	XWXX对 10 分、15 分,3	氏 25 分.)				
1. 球坐标系中,轴对称边界条件下	, Laplace 方程的一般解	\mathbb{E} (1) $u(r, \theta) =$. 考虑球外的定解问题,			
1. 球坐标系中,轴对称边界条件下,Laplace 方程的一般解是 $(1) u(r, \theta) =$. 考虑球外的定解问题,设球面上 $u _{r=a} = (3/2)u_0 \sin^2 \theta$,则球外 $(2) u(r, \theta) =$.						
2. 考虑 $1/4$ 空间的定解问题 $\nabla^2 u = 0$ ($-\infty < x < +\infty, y > 0, z > 0$), $u _{y=0} = g(x,z)$, $u _{z=0} = f(x,y)$, 相						
应的 Green 函数 $G(r, r_0)$ 満足的定	解问题是 (1)	,该 Green 函数	为 (2) .			
三、计算题 (共 2 小题, 各小题分数		も 35 分.)				
1. 计算积分 $I = \int_{-\infty}^{+\infty} \frac{\cos 2m\pi x}{x^2 + x + 1} dx$, 其中 m > 0.		*			
2. 均匀导热薄板,形状为 $1/4$ 圆盘 (即扇形),半径为 a . 板面绝热,两条直边 (即半径) 保持温度为 0 度,						
而圆弧上保持恒定温度 u_0 . 求板上的稳定温度分布 $u(\rho,\phi)$. 已知平面极坐标中 $\nabla^2 u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{\partial^2 u}{\partial \phi^2}$.						