Fiche de synthèse : Fonction x^2 et équations du second degré Benjamin L'Huillier

1 Étude de la fonction $x \mapsto x^2$

1.1 Définition

Definition 1.1: Fonction carrée

La fonction carrée est définie par :

$$f: \mathbb{R} \to \mathbb{R}$$
 (1)

$$x \mapsto f(x) = x^2. \tag{2}$$

Elle associe à tout réel x le carré de x, c'est-à-dire le produit $x \times x$.

1.2 Propriétés

• Domaine de définition : La fonction est définie pour tout réel :

$$\mathcal{D}_f = \mathbb{R}$$

• Parité : La fonction est paire, c'est-à-dire que :

$$f(-x) = (-x)^2 = x^2 = f(x)$$

Cela signifie que le graphe de la fonction est symétrique par rapport à l'axe des ordonnées.

• Variations:

$$\begin{cases} f \text{ est décroissante sur }] - \infty, 0] \\ f \text{ est croissante sur } [0, +\infty[$$

Intuitivement, plus on s'éloigne de 0, plus le carré augmente.

• Minimum : La fonction atteint son minimum en x = 0, où :

$$f(0) = 0$$

Ce minimum est absolu sur \mathbb{R} .

1.3 Représentation graphique

Remarque 1.1: Forme du graphe

Le graphe de la fonction carrée est une ${\bf parabole}$:

- orientée vers le haut,
- ayant pour sommet l'origine (0,0),
- symétrique par rapport à l'axe des ordonnées.

Figure 1: Graphe de la fonction $y = x^2$

2 Fonctions quadratiques (trinômes du second degré)

2.1 Définition

Definition 2.1: Trinôme du second degré

Un trinôme du second degré est une fonction polynomiale de la forme :

$$f(x) = ax^2 + bx + c$$
, avec $a \neq 0$,

où a, b, c sont des nombres réels appelés coefficients.

2.2 Influence des coefficients

- \bullet a détermine la concavité :
 - Si a>0, la parabole est tournée vers le haut.
 - Si a < 0, elle est tournée vers le bas.
- ullet b influence la position de l'axe de symétrie et du sommet.
- c est l'ordonnée à l'origine, c'est-à-dire f(0) = c.

2.3 Les trois formes d'un trinôme

Forme développée

$$f(x) = ax^2 + bx + c$$

C'est la forme la plus directe, mais elle ne permet pas de lire les caractéristiques géométriques facilement.

Forme canonique

Definition 2.2: Forme canonique

On peut réécrire le trinôme sous la forme :

$$f(x) = a(x - \alpha)^2 + \beta,$$

où:

$$\alpha = -\frac{b}{2a}, \quad \beta = f(\alpha) = \frac{4ac - b^2}{4a}$$

Cette forme permet d'identifier facilement le **sommet** de la parabole : $S(\alpha, \beta)$.

Forme factorisée (si $\Delta \geq 0$)

Definition 2.3: Forme factorisée

Si l'équation $ax^2 + bx + c = 0$ admet des racines réelles x_1 et x_2 , alors :

$$f(x) = a(x - x_1)(x - x_2)$$

Cette forme permet de lire directement les solutions de l'équation f(x) = 0, c'est-à-dire les points d'intersection du graphe avec l'axe des abscisses.

2.4 Propriétés géométriques

Propriété 2.1: Propriétés Géométriques

• Axe de symétrie : Le graphe est symétrique par rapport à la droite verticale :

$$x = \alpha = -\frac{b}{2a}$$

• Sommet : Le sommet de la parabole a pour coordonnées :

$$S\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

- · Concavité:
 - Si a > 0, la parabole est ouverte vers le haut (minimum).
 - Si a < 0, elle est ouverte vers le bas (maximum).

Remarque 2.1: Résumé visuel

Les trois formes du trinôme permettent de lire différentes informations :

- **Développée** : coefficients a, b, c, ordonnée à l'origine.
- Canonique : sommet.
- Factorisée : racines.

3 Résolution de l'équation du second degré

3.1 Équation standard

On considère l'équation suivante, où $a \neq 0$:

$$ax^2 + bx + c = 0$$

Elle est appelée équation du second degré.

3.2 Discriminant

Definition 3.1: Discriminant

Le discriminant de l'équation $ax^2 + bx + c = 0$ est le nombre réel :

$$\Delta = b^2 - 4ac$$

La valeur de Δ permet de déterminer le nombre de solutions réelles de l'équation.

Propriété 3.1: Nombre de racines

• Si $\Delta > 0$, l'équation admet deux racines réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

• Si $\Delta=0,$ l'équation admet une unique racine réelle (double) :

$$x_0 = -\frac{b}{2a}$$

• Si $\Delta < 0$, l'équation n'a pas de solution réelle.

3.3 Méthodes de résolution

3.3.1 Racines évidentes

Avant toute méthode générale, on peut tester les entiers simples, par exemple $x \in \{-2, -1, 0, 1, 2\}$ pour voir si l'un d'eux annule le trinôme $f(x) = ax^2 + bx + c$. Si c'est le cas, on peut utiliser une factorisation directe :

$$f(x) = a(x - x_1)(x - x_2),$$

où x_1 est une racine évidente.

Example 3.1: Résolution d'une équation du second degré avec une racine évidente

Résolvons l'équation $5x^2 - 25x + 20 = 0$.

On observe que x = 1 est une racine évidente :

$$f(1) = 5(1)^2 - 25(1) + 20 = 5 - 25 + 20 = 0.$$

On factorise alors:

$$f(x) = 5x^2 - 25x + 20 = 5(x^2 - 5x + 4).$$

Puis on factorise le trinôme :

$$x^{2} - 5x + 4 = (x - 4)(x - 1),$$

donc:

$$f(x) = 5(x-1)(x-4).$$

Les solutions sont x = 1 et x = 4.

3.3.2 Complément de carré

On peut résoudre l'équation en complétant le carré. Partons de l'expression générale :

$$f(x) = ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c.$$

On ajoute et retranche le carré du demi-coefficient de x:

$$= a \left[\left(x + \frac{b}{2a} \right)^2 - \left(\frac{b}{2a} \right)^2 \right] + c,$$

$$= a \left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a} + c,$$

$$= a \left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a}.$$

Ainsi, on peut résoudre :

$$f(x) = 0 \iff \left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}, \text{ avec } \Delta = b^2 - 4ac.$$

Formule des racines La méthode directe à l'aide du discriminant donne :

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$
, avec $\Delta = b^2 - 4ac$.

Factorisation (si possible) Lorsque le discriminant est positif ou nul, le trinôme se factorise :

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$

où les racines x_1 et x_2 sont données par la formule des racines.

4 Dérivée et étude du signe

4.1 Dérivée d'un trinôme

Propriété 4.1: Dérivée du trinôme

Soit $f(x) = ax^2 + bx + c$ un trinôme du second degré. Sa dérivée est :

$$f'(x) = 2ax + b$$

Remarque 4.1: Nature de la dérivée

La dérivée d'un trinôme est une fonction affine. Son signe dépend donc du coefficient a.

4.2 Sens de variation

Le signe de f'(x) permet de déterminer les variations de f.

Propriété 4.2: Minimum ou maximum

Le trinôme $f(x) = ax^2 + bx + c$ atteint un extremum en

$$x_0 = -\frac{b}{2a}$$

- Si a > 0, alors f atteint un **minimum** en x_0 .
- Si a < 0, alors f atteint un **maximum** en x_0 .

Dans les deux cas, x_0 est l'abscisse du sommet de la parabole.

4.3 Tableau de variations

L'étude du signe de la dérivée permet de dresser le tableau de variations :

- Si a > 0, alors f'(x) < 0 pour $x < x_0$, $f'(x_0) = 0$, et f'(x) > 0 pour $x > x_0$: la fonction est décroissante puis croissante.
- Si a < 0, le sens de variation est inversé : croissante puis décroissante.

Remarque 4.2: Lien avec la forme canonique

La forme canonique $f(x) = a(x - \alpha)^2 + \beta$ montre aussi que $\alpha = x_0 = -\frac{b}{2a}$, et que β est la valeur de l'extremum.

5 Résumé à retenir

5.1 Les trois formes du trinôme

Forme	Écriture	Intérêt principal
Développée	$f(x) = ax^2 + bx + c$	Lecture directe de a,b,c ; valeur en $x=0$
Canonique	$f(x) = a(x - \alpha)^2 + \beta$	Lecture du sommet (α, β)
Factorisée	$f(x) = a(x - x_1)(x - x_2)$	Lecture des racines (si $\Delta \geq 0$)

5.2 Propriétés clés à retenir

- Le graphe d'un trinôme est une parabole.
- Le signe de a détermine la concavité :
 - -a > 0: parabole tournée vers le haut, minimum.
 - -a < 0: parabole tournée vers le bas, maximum.
- L'axe de symétrie est $x = -\frac{b}{2a}$.
- Le discriminant $\Delta = b^2 4ac$ donne le nombre de racines :
 - $-\Delta > 0$: deux racines réelles distinctes.
 - $-\Delta = 0$: une racine double.
 - $-\Delta < 0$: pas de racine réelle.

5.3 Graphes types selon Δ

a > 0

a < 0

