Practice: Tube under internal pressure

Let us consider a circular tube with height h, and internal radius r, and thickness e. The tube is imposed to internal pressure p (see Fig. 1). Note that gravity and atmospheric pressure are neglected.

Figure 1: Circular tube under internal pressure

Question 1: Please verify that a static solution exist! Assume that $\underline{\underline{\sigma}}$ only depends on r (the polar radius)

Question 2: Find all the local equations satisfied by $\underline{\underline{\sigma}}(r)$ that define the static admissibility? Prove that $\sigma_{r\theta} = 0$ with the assumption $\underline{\underline{\sigma}}(r)$?