

Machine Intelligence 1 1.4 Additional Topics

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

WS 2016/2017

1.4.1 Stochastic Approximation and Online Learning

Online learning

$$\Delta \mathbf{w}_{ij}^{v'v} = -\eta \frac{\partial E_{[\mathbf{w}]}^T}{\partial \mathbf{w}_{ij}^{v'v}} = -\eta \frac{1}{p} \sum_{\alpha=1}^p \frac{\partial e_{[\mathbf{w}]}^{(\alpha)}}{\partial \mathbf{w}_{ij}^{v'v}}$$

Online learning

$$\Delta \mathbf{w}_{ij}^{v'v} = -\eta \frac{\partial E_{[\underline{\mathbf{w}}]}^T}{\partial \mathbf{w}_{ij}^{v'v}} = -\eta \frac{1}{p} \sum_{\alpha=1}^p \frac{\partial e_{[\underline{\mathbf{w}}]}^{(\alpha)}}{\partial \mathbf{w}_{ij}^{v'v}}$$

while convergence criterion not met do $\begin{vmatrix} \text{ select the a data point: } \left(\underline{\mathbf{x}}^{(\alpha)}, y_T^{(\alpha)}\right) \\ \text{ change weights according to: } \left(\Delta \mathbf{w}_{ij}^{v'v}\right)^{(t+1)} = -\eta_t \frac{\partial e_{[\underline{\mathbf{w}}^{(t)}]}^{(\alpha)}}{\partial \mathbf{w}_{ij}^{v'v}} \\ \text{ update learning rate } \eta_t \end{aligned}$

end

- Adaptive learning rate
 - \blacksquare first constant $\eta_t = \eta_0$
 - then decaying $\eta_t = \frac{\eta_0}{t}$

Convergence in online learning (1)

Stochastic Approximation (Robbins & Munro, 1951)

g, f: correlated random variables

Convergence in online learning (1)

Stochastic Approximation (Robbins & Munro, 1951)

g, f: correlated random variables

Application to online learning:

- lacksquare f are model parameters $\underline{\mathbf{w}}$
- \blacksquare M(f) are batch-gradients $\frac{\partial E^T}{\partial \underline{\mathbf{w}}}\big|_{[\underline{\mathbf{w}}]}$
- lacksquare g are individual gradients $rac{\partial e^{lpha}}{\partial \mathbf{\underline{w}}} |_{[\mathbf{\underline{w}}]}$
- \blacksquare θ are optimal parameters $\underline{\mathbf{w}}^*$, i.e.

$$\frac{\partial E^T}{\partial \mathbf{w}}\big|_{[\mathbf{w}^*]} = M(\theta) \stackrel{!}{=} \gamma = 0$$

Convergence in online learning (2)

Let $g_t, f_t \in \mathbb{R}, \ g_t|f_t$, be correlated random variables and let the initial f_1 be an arbitrary real number. If

- \blacksquare q_t are bounded
- lacksquare M(f) is monotonously increasing

$$\ \ \ M(\theta) = \gamma \text{ and } \frac{\partial M(\theta)}{\partial f} > 0$$

lacksquare and for the learning rates η_t holds

$$\label{eq:total_equation} \begin{array}{lll} \sum\limits_{t=1}^{\infty}\eta_t \; = \; \infty & \text{and} & \sum\limits_{t=1}^{\infty}\eta_t^2 \; < \; \infty \, , \end{array}$$

then the sequence

$$f_{t+1} = f_t + \eta_t(\gamma - g_t), \quad \eta_t > 0,$$

converges to θ in the sense $\lim_{t\to\infty} \langle (f_t-\theta)^2 \rangle = 0$.

Stochastic Approximation (Robbins & Munro, 1951)

g, f: correlated random variables

Convergence in online learning (2)

Let $\frac{\partial e^{\alpha}}{\partial \underline{\mathbf{w}}}|_{[\underline{\mathbf{w}}_t]}, \underline{\mathbf{w}}_t \in \mathbb{R}^{|C|}$ be correlated random variables and let the initial $\underline{\mathbf{w}}_1$ be an arbitrary real vector. If

- $\blacksquare \frac{\partial e^{\alpha}}{\partial \mathbf{w}} \Big|_{[\mathbf{w}_t]}$ are bounded
- \blacksquare E^T is a convex function
- $\qquad \qquad \frac{\partial E^T}{\partial \underline{\mathbf{w}}}\big|_{[\underline{\mathbf{w}}^*]} = 0 \text{ and } \frac{\partial^2 E^T\![\underline{\mathbf{w}}^*]}{\partial^2 \underline{\mathbf{w}}} > 0 \text{ (min. } \underline{\mathbf{w}}^*\text{)}$
- lacksquare and for the learning rates η_t holds

$$\label{eq:total_equation} \begin{array}{lll} \sum\limits_{t=1}^{\infty} \eta_t \; = \; \infty & \text{and} & \sum\limits_{t=1}^{\infty} \eta_t^2 \; < \; \infty \, , \end{array}$$

then the sequence

$$\underline{\mathbf{w}}_{t+1} = \underline{\mathbf{w}}_t - \eta_t \frac{\partial e^{\alpha}}{\partial \underline{\mathbf{w}}} \Big|_{[\mathbf{w}_t]}, \qquad \eta_t > 0,$$

Stochastic Approximation (Robbins & Munro, 1951)

g, f: correlated random variables

converges to $\underline{\mathbf{w}}^*$ in the sense $\lim_{t\to\infty}\langle(\underline{\mathbf{w}}_t-\underline{\mathbf{w}}^*)^2\rangle=0$.

1.4.2 Improving Gradient-Descent Optimization

Impulse terms

Impulse terms

Adaptive step size

$$\eta_{t+1} = \left\{ \begin{array}{ll} \rho \eta_t, & \text{if } \Delta E^T < 0, & \text{increase step size, if } E^T \downarrow \\ \delta \eta_t, & \text{if } \Delta E^T > 0, & \text{decrease step size, if } E^T \uparrow \end{array} \right.$$

typical values: $\rho = 1.1, \delta = 0.5$

1.4.3 The Conjugate Gradient Method

Optimal step size

Parabolic interpolation

Parabolic interpolation

Line search

Line search using successive parabolic interpolation

Initialization:
$$a_0, b_0, c_0$$
 (on $\lambda \underline{\mathbf{d}}_t$); $E_{(a_0)}^T, \quad E_{(b_0)}^T > E_{(c_0)}^T$

while stopping criterion not fulfilled do

Fit a parabola through the three points a_t, b_t, c_t

Calculate location d_t of its minimum

Set
$$c_{t+1} = d_t$$
, $b_{t+1} = c_t$, $a_{t+1} = \begin{cases} a_t, & E_{(a_t)}^T < E_{(b_t)}^T \\ b_t, & \text{else} \end{cases}$

end

For details and implementation see e.g. Numerical Recipes, 2nd edition, Chapter 10.2.

The conjugate direction

Parabolic cost function

Parabolic cost function

$$\underline{\mathbf{d}}_t^{\top}\underline{\mathbf{H}}\,\underline{\mathbf{d}}_{t+1} \stackrel{!}{=} 0\,, \qquad H_{ij} := \frac{\partial^2 E^T}{\partial w_i \partial w_j} \quad \text{(Hebb Matrix)}$$

Polak-Ribiere rule

Adaptive momentum: the Polak-Ribiere rule

$$\begin{split} \underline{\mathbf{g}}_{t+1} &:= \frac{\partial E^T}{\partial \underline{\mathbf{w}}} \bigg|_{\underline{\mathbf{w}}_{t+1}} & \text{(gradient at } \underline{\mathbf{w}}_{t+1}) \\ \underline{\mathbf{d}}_{t+1} &= -\underline{\mathbf{g}}_{t+1} + \beta_t \underline{\mathbf{d}}_t & \text{(conjugate direction)} \\ \beta_t &= \frac{\underline{\mathbf{g}}_{t+1}^T \big(\underline{\mathbf{g}}_{t+1} - \underline{\mathbf{g}}_t \big)}{\underline{\mathbf{g}}_t^T \underline{\mathbf{g}}_t} & \text{("smart momentum")} \end{split}$$

Conjugate gradient descent algorithm

$$\mathbf{w}_{ij}(t+1) = \mathbf{w}_{ij}(t) + \eta_t \, \underline{\mathbf{d}}_{t-1}$$

```
Initialization: \underline{\mathbf{w}}, \quad \underline{\mathbf{d}} = -\mathbf{g}
while stopping criterion not fulfilled do
     Minimize E^T along d using line-search
                                                                 \rightarrow new \mathbf{w}
     Calculate the new conjugate direction

ightarrow new {f d}
end
```

1.4.4 Overfitting and Underfitting

Overfitting and underfitting

data generation:

e.g.
$$y_T = y^*_{(\underline{\mathbf{x}})} + \underbrace{\eta}_{\text{noise}}$$

Goal

Find a good model for $y_{(.)}^*$ (explanation, prediction)

Underfitting

Diagnostics

$$\left. \begin{array}{c} E^T \text{ large} \\ E^G \text{ large} \end{array} \right\} E^T \approx E^G$$

Well fitted model

Diagnostics

$$\left. \begin{array}{c} E^T \text{ small} \\ E^G \text{ small} \end{array} \right\} E^T \approx E^G$$

Overfitting

Diagnostics

$$\left. \begin{array}{l} E^T \text{ small} \\ E^G \text{ large} \end{array} \right\} E^T \ll E^G$$

Consequences

Example with MLPs

MLP with M sigmoid hidden neurons $f_j^1(x)=\tanh(x)$ and linear output neuron $f_1^2(x)=x$, from Bishop (2006)

1.4.5 Bias and Variance

Example scenario

Observations:
$$y_T = \underbrace{y^*_{(\underline{\mathbf{x}})}}_{\text{true}} + \underbrace{\eta}_{\text{noise}}, \quad \underline{\mathbf{x}} \in \mathbb{R}^N, \ y_T \in \mathbb{R}, \ \eta \sim \mathcal{N}(0, \sigma_\eta)$$

- \mathbf{x}, y_T are random variables
- \blacksquare Many iid. datasets of equal length from $P_{(y_T,\mathbf{x})} = P_{(y_T|\mathbf{x})}P_{(\mathbf{x})}$

Example scenario

Observations:
$$y_T = \underbrace{y^*_{(\mathbf{x})}}_{\text{true}} + \underbrace{\eta}_{\text{noise}}, \quad \underline{\mathbf{x}} \in \mathbb{R}^N, \ y_T \in \mathbb{R}, \ \eta \sim \mathcal{N}(0, \sigma_{\eta})$$

- \mathbf{x}, y_T are random variables
- \blacksquare Many iid. datasets of equal length from $P_{(y_T,\mathbf{x})} = P_{(y_T|\mathbf{x})}P_{(\mathbf{x})}$
- fitting one MLP to every dataset
- ightarrow w (model parameters) are random variables
- $\rightarrow y_{(\mathbf{x};\mathbf{w})}$ (predicted values) are random variables

Example: squared error cost

$$\left\langle \left(\underbrace{y_{(\underline{\mathbf{x}};\underline{\mathbf{w}})}}_{y} - \underbrace{y^*_{(\underline{\mathbf{x}})}}_{y^*}\right)^2 \right\rangle_{\text{all datasets}}$$

with

Regression example

Bias, variance and generalization error

Relation to generalization performance (for previous example)

$$E^G = \left\langle e^G \right\rangle_{P_{(\mathbf{x})}}, \text{ where } e^G = \left\langle (y_{(\mathbf{x};\underline{\mathbf{w}})} - y_T)^2 \right\rangle_{P_{(y_T|\mathbf{x})}}$$

Bias, variance and generalization error

Relation to generalization performance (for previous example)

⇒ bias-variance trade-off applies to wide range of inductive learning problems

1.4.6 Regularization

Regularization

Risk function

$$R_{[\underline{\mathbf{w}}]} = \underbrace{E_{[\underline{\mathbf{w}}]}^T}_{\substack{\text{training} \\ \text{error}}} + \underbrace{\lambda E_{[\underline{\mathbf{w}}]}^R}_{\substack{\text{tegularization} \\ \text{term}}} \stackrel{!}{=} \min$$

- \blacksquare E^R : prior knowledge of solution
- \blacksquare λ : regularization parameter

Regularization example: weight decay

$$E^R_{[\underline{\mathbf{w}}]} \quad = \quad \frac{1}{2} \sum_{i,j,v,v'} \left(\mathbf{w}^{vv'}_{ij}\right)^2$$
 empirical minimum regularized minimum

Minimization of R through gradient descent

$$\Delta \mathbf{w}_{ij}^{vv'} \quad \sim \quad -\frac{\partial R}{\partial \mathbf{w}_{ij}^{vv'}} \quad = \quad -\underbrace{\frac{\partial E^T}{\partial \mathbf{w}_{ij}^{vv'}}}_{\substack{\text{e.g. via} \\ \text{backprop}}} \quad - \quad \underbrace{\lambda \mathbf{w}_{ij}^{vv'}}_{\substack{\text{decay} \\ \text{term}}}$$

Other forms of regularization

 \blacksquare general form of regularization: $E^R = \sum\limits_{ijv'v} |w_{ij}^{v'v}|^q$

Regularization example: symmetries

Odd vs. even function

$$E_{[\mathbf{w}]}^{R} = \frac{1}{2p} \sum_{\alpha=1}^{p} \left(y_{(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \pm y_{(-\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right)^{2}$$

Regularization example: symmetries

Odd vs. even function

$$E_{[\mathbf{w}]}^{R} = \frac{1}{2p} \sum_{\alpha=1}^{p} \left(y_{(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \pm y_{(-\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right)^{2}$$

Invariance under translation:

$$E_{[\mathbf{w}]}^R = \frac{1}{2p} \sum_{\alpha=1}^p \left(y_{(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} - y_{(\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{t}};\underline{\mathbf{w}})} \right)^2$$

Regularization example: symmetries

Odd vs. even function

$$E_{[\mathbf{w}]}^{R} = \frac{1}{2p} \sum_{\alpha=1}^{p} \left(y_{(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \pm y_{(-\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right)^{2}$$

Invariance under translation:

$$E_{[\mathbf{w}]}^{R} = \frac{1}{2p} \sum_{\alpha=1}^{p} \left(y_{(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} - y_{(\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{t}};\underline{\mathbf{w}})} \right)^{2}$$

Monotony:

$$E_{[\mathbf{w}]}^R = \frac{1}{n_p} \sum_{\mathbf{x}^{(\alpha)} > \mathbf{x}^{(\beta)}} \left\{ \begin{array}{l} \left(y_{(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} - y_{(\underline{\mathbf{x}}^{(\beta)};\underline{\mathbf{w}})}\right)^2 & \text{, if } y_{(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} < y_{(\underline{\mathbf{x}}^{(\beta)};\underline{\mathbf{w}})} \\ 0 & \text{, else} \end{array} \right.$$

Testset-Method

lacktriangle perform model selection for different values of λ (on training data)

train test validation

Testset-Method

- **1** perform model selection for different values of λ (on training data)
- 2 select value of λ , which provides best prediction results (on test data)

train test validation

Testset-Method

- lacktriangledown perform model selection for different values of λ (on training data)
- ② select value of λ , which provides best prediction results (on test data)

train	test	validation

n-fold cross-validation

 $\begin{array}{ll} \text{for } \lambda = \lambda_1 \ \, \textit{TO} \, \lambda_n \, \, \textit{DO} \, \, \text{do} \\ \mid \, \, \text{perform} \, \, n\text{-fold cross-validation on data with regularization} \, \, \lambda \\ \text{end} \end{array}$

pick optimal λ^{opt} with minimum \widehat{E}^G

final model: train network on all data with λ^{opt}

Validation

- ullet do n 1 cross-validation for all values of λ
- train with best λ
- validate with learned model

- ullet do n 1 cross-validation for all values of λ
- train with best λ
- validate with learned model

- ullet do n 1 cross-validation for all values of λ
- train with best λ
- validate with learned model

- Never use test data for model selection (including hyper-parameter search).
- \blacksquare Always embed the whole selection procedure (including hyper-parameter search) within an n-fold cross-validation run.

1.4.7 Classification Problems (Multi-Class)

Overview inductive learning

data representation model class all models performance measure good models excellent models optimization validation

Data representation

Prediction of class labels

observations:
$$\left\{\left(\underline{\mathbf{x}}^{(\alpha)}, y_T^{(\alpha)}\right)\right\}, \quad \alpha \in \{1, \dots, p\}$$
 $c \text{ classes } C_k, \quad k \in \{1, \dots, c\} \quad \Rightarrow \quad y_T^{(\alpha)} \in \{C_1, \dots, C_c\}$

Data representation

Prediction of class labels

observations:
$$\left\{\left(\underline{\mathbf{x}}^{(\alpha)}, y_T^{(\alpha)}\right)\right\}, \quad \alpha \in \{1, \dots, p\}$$
 $c \text{ classes } C_k, \quad k \in \{1, \dots, c\} \quad \Rightarrow \quad y_T^{(\alpha)} \in \{C_1, \dots, C_c\}$

Prediction of class probabilities

1-out-of-c-code

$$y_{Tk}^{(\alpha)} = \left\{ \begin{array}{ll} 0, & \underline{\mathbf{x}}^{(\alpha)} \notin C_k \\ 1, & \underline{\mathbf{x}}^{(\alpha)} \in C_k \end{array} \right. \Rightarrow \text{binary vector } \underline{\mathbf{y}}_T^{(\alpha)} \text{, one non-zero element}$$

Limiting case of probabilities: true labels are known.

Model class

probabilistic interpretation of network output:

$$\begin{aligned} y_{k(\mathbf{x}; \underline{\mathbf{w}})} &:= P_{(C_k | \mathbf{x}; \underline{\mathbf{w}})} \\ 0 &\le y_{k(\mathbf{x}; \underline{\mathbf{w}})} &\le 1 \\ \sum_{k=1}^{c} y_{k(\mathbf{x}; \underline{\mathbf{w}})} &= 1 \end{aligned}$$

Softmax normalization

$$y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} = \frac{\exp(h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})})}{\sum_{l} \exp(h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})})}$$

Performance measure

True probability: $P_{(C_k|\underline{\mathbf{x}})} \longleftrightarrow \mathsf{Model}$ prediction: $P_{(C_k|\underline{\mathbf{x}};\underline{\mathbf{w}})}$

Kullback-Leibler-Divergence D_{KL}

$$D_{KL} = \sum_{k=1}^{c} \int d\underline{\mathbf{x}} \, P_{(\underline{\mathbf{x}})} P_{(C_k | \underline{\mathbf{x}})} \ln \left(\frac{P_{(C_k | \underline{\mathbf{x}})}}{P_{(C_k | \underline{\mathbf{x}}; \underline{\mathbf{w}})}} \cdot \frac{P_{(\underline{\mathbf{x}})}}{P_{(\underline{\mathbf{x}})}} \right)$$

- distance measure between probability distributions and densities
- non-negative: $D_{KL}=0$ iff $P_{(C|\mathbf{x})}\equiv P_{(C|\mathbf{x};\mathbf{w})}$ (distributions are equal)
- lacksquare asymmetric: $D_{KL}(p\|q)$ does not generally equal $D_{KL}(q\|p)$

Performance measure

True probability: $P_{(C_k|\underline{\mathbf{x}})} \longleftrightarrow \mathsf{Model}$ prediction: $P_{(C_k|\underline{\mathbf{x}};\underline{\mathbf{w}})}$

Kullback-Leibler-Divergence D_{KL}

$$D_{KL} = \sum_{k=1}^{c} \int d\underline{\mathbf{x}} \, P_{(\underline{\mathbf{x}})} P_{(C_k | \underline{\mathbf{x}})} \ln \left(\frac{P_{(C_k | \underline{\mathbf{x}})}}{P_{(C_k | \underline{\mathbf{x}}; \underline{\mathbf{w}})}} \cdot \frac{P_{(\underline{\mathbf{x}})}}{P_{(\underline{\mathbf{x}})}} \right)$$

- distance measure between probability distributions and densities
- non-negative: $D_{KL}=0$ iff $P_{(C|\mathbf{x})}\equiv P_{(C|\mathbf{x};\mathbf{w})}$ (distributions are equal)
- lacksquare asymmetric: $D_{KL}(p\|q)$ does not generally equal $D_{KL}(q\|p)$

$$D_{KL} = -\sum_{k=1}^{c} \int d\underline{\mathbf{x}} P_{(\underline{\mathbf{x}})} P_{(C_k|\underline{\mathbf{x}})} \ln P_{(C_k|\underline{\mathbf{x}};\underline{\mathbf{w}})} + \sum_{k=1}^{c} \int d\underline{\mathbf{x}} P_{(\underline{\mathbf{x}})} P_{(C_k|\underline{\mathbf{x}})} \ln P_{(C_k|\underline{\mathbf{x}})}$$

independent of model parameters

Cross entropy

$$E^{G} \equiv -\sum_{k=1}^{c} \int d\mathbf{\underline{x}} \underbrace{P_{(\mathbf{x})} P_{(C_{k}|\mathbf{x})}}_{\text{unknown!}} \ln P_{(C_{k}|\mathbf{\underline{x}};\underline{\mathbf{w}})}$$

Cross entropy

$$E^{G} \equiv -\sum_{k=1}^{c} \int d\underline{\mathbf{x}} \underbrace{P_{(\underline{\mathbf{x}})} P_{(C_{k}|\underline{\mathbf{x}})}}_{\text{unknown!}} \ln P_{(C_{k}|\underline{\mathbf{x}};\underline{\mathbf{w}})}$$

multinomial distribution

$$P_{(\underline{\mathbf{y}}_T | \underline{\mathbf{x}}, \underline{\mathbf{w}})} = \prod_{k=1}^{c} (y_{k(\underline{\mathbf{x}}; \underline{\mathbf{w}})})^{y_{Tk}},$$
$$y_{k(\underline{\mathbf{x}}; \underline{\mathbf{w}})} \ge 0, \quad \forall k, \quad \sum_{k=1}^{c} y_{k(\underline{\mathbf{x}}; \underline{\mathbf{w}})} = 1, \quad \forall \underline{\mathbf{x}}, \forall \underline{\mathbf{w}}$$

Cross entropy

$$E^{G} \equiv -\sum_{k=1}^{c} \int d\underline{\mathbf{x}} \underbrace{P_{(\underline{\mathbf{x}})} P_{(C_{k}|\underline{\mathbf{x}})}}_{\text{unknown!}} \ln P_{(C_{k}|\underline{\mathbf{x}};\underline{\mathbf{w}})}$$

multinomial distribution

$$P_{(\underline{\mathbf{y}}_T | \underline{\mathbf{x}}, \underline{\mathbf{w}})} = \prod_{k=1}^{c} (y_{k(\underline{\mathbf{x}}; \underline{\mathbf{w}})})^{y_{Tk}},$$

$$y_{k(\underline{\mathbf{x}}; \underline{\mathbf{w}})} \ge 0, \quad \forall k, \quad \sum_{k=1}^{c} y_{k(\underline{\mathbf{x}}; \underline{\mathbf{w}})} = 1, \quad \forall \underline{\mathbf{x}}, \forall \underline{\mathbf{w}}$$

mathematical expectation \rightarrow empirical average over training set:

$$E^{T} = \frac{1}{p} \sum_{\alpha=1}^{p} e^{(\alpha)} = -\frac{1}{p} \sum_{\alpha=1}^{p} \sum_{k=1}^{c} y_{Tk}^{(\alpha)} \ln \left(y_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right)$$

Optimization via gradient descent (on-line)

$$\frac{\partial e^{(\alpha)}}{\partial \underline{\mathbf{w}}} \quad = \quad -\frac{\partial}{\partial \underline{\mathbf{w}}} \sum_{k=1}^c y_{Tk}^{(\alpha)} \ln \left(y_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right) \qquad \qquad \text{with} \qquad y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} = \frac{\exp h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\sum_l \exp h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}}$$

see blackboard...

Optimization via gradient descent (on-line)

$$\begin{split} \frac{\partial e^{(\alpha)}}{\partial \mathbf{\underline{w}}} &= & -\frac{\partial}{\partial \mathbf{\underline{w}}} \sum_{k=1}^{c} y_{Tk}^{(\alpha)} \ln \left(y_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right) & \text{with} & y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} &= \frac{\exp h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\sum_{l} \exp h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}} \\ &= & \sum_{k=1}^{c} \left(y_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} - y_{Tk}^{(\alpha)} \right) \frac{\partial h_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} \end{split}$$

~backprop

Validation

- test-set method or n-fold cross-validation
- BUT: using the cross-entropy based cost

$$\hat{E}^G = \frac{1}{q} \sum_{\beta=1}^q e^{(\beta)} = -\frac{1}{q} \sum_{\beta=1}^q \sum_{k=1}^c y_{Tk}^{(\beta)} \ln \left(y_{k(\underline{\mathbf{x}}^{(\beta)};\underline{\mathbf{w}})} \right)$$

Prediction of class labels

- Decision costs
 - \blacksquare $\$_{ij}$: cost for choosing C_i when $\underline{\mathbf{x}}$ is of class C_j

	patient is sick	patient is not sick
prediction: sick	buy medicine (\$20)	adverse effects (\$100)
prediction: not sick	sick leave (\$1500)	everything is fine (\$0)

■ Choose C_k with minimal predicted costs,

i.e.
$$k = \underset{i}{\operatorname{argmin}} \sum_{j=1}^{c} \$_{ij} \ y_j(\underline{\mathbf{x}}; \underline{\mathbf{w}})$$

End of Section 1.4

the following slides contain

OPTIONAL MATERIAL

Classification example

- bias-variance trade-off also applies to classification ("boundary error")
- BUT for classification: not additive & variance dominates

Gradient of softmax normalization

Network computation of probabilities

$$y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} = \frac{\exp(h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})})}{\sum_{l} \exp(h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})})}$$

(softmax function)

Gradient of softmax normalization

Network computation of probabilities

$$y_{k(\mathbf{x}; \mathbf{w})} = \frac{\exp(h_{k(\mathbf{x}; \mathbf{w})})}{\sum_{l} \exp(h_{l(\mathbf{x}; \mathbf{w})})}$$
 (softmax function)

$$\frac{\partial y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} = \frac{\exp(h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}) \frac{\partial h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} \sum_{l=1}^{c} \exp(h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}) - \exp(h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}) \frac{\partial}{\partial \underline{\mathbf{w}}} \sum_{l=1}^{c} \exp(h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})})}{\left(\sum_{l=1}^{c} \exp(h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})})\right)^{2}}$$

Gradient of softmax normalization

Network computation of probabilities

$$y_{k(\mathbf{x}; \mathbf{w})} = \frac{\exp(h_{k(\mathbf{x}; \mathbf{w})})}{\sum_{l} \exp(h_{l(\mathbf{x}; \mathbf{w})})}$$
 (softmax function)

$$\frac{\partial y_{k(\mathbf{x}; \mathbf{w})}}{\partial \mathbf{w}} = \frac{\exp(h_{k(\mathbf{x}; \mathbf{w})}) \frac{\partial h_{k(\mathbf{x}; \mathbf{w})}}{\partial \mathbf{w}} \sum_{l=1}^{c} \exp(h_{l(\mathbf{x}; \mathbf{w})}) - \exp(h_{k(\mathbf{x}; \mathbf{w})}) \frac{\partial}{\partial \mathbf{w}} \sum_{l=1}^{c} \exp(h_{l(\mathbf{x}; \mathbf{w})})}{\left(\sum_{l=1}^{c} \exp(h_{l(\mathbf{x}; \mathbf{w})})\right)^{2}}$$

$$= y_{k(\mathbf{x}; \mathbf{w})} \frac{\partial h_{k(\mathbf{x}; \mathbf{w})}}{\partial \mathbf{w}} - y_{k(\mathbf{x}; \mathbf{w})} \sum_{l=1}^{c} y_{l(\mathbf{x}; \mathbf{w})} \frac{\partial h_{l(\mathbf{x}; \mathbf{w})}}{\partial \mathbf{w}}$$

$$\frac{\partial e^{(\alpha)}}{\partial \underline{\mathbf{w}}} \quad = \quad -\frac{\partial}{\partial \underline{\mathbf{w}}} \sum_{k=1}^{c} y_{Tk}^{(\alpha)} \ln \left(y_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right)$$

$$\frac{\partial e^{(\alpha)}}{\partial \underline{\mathbf{w}}} \quad = \quad -\frac{\partial}{\partial \underline{\mathbf{w}}} \sum_{k=1}^{c} y_{Tk}^{(\alpha)} \ln \left(y_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right)$$

$$\text{with} \qquad y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} = \frac{\exp h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\sum_{l} \exp h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}}$$

$$\begin{array}{lcl} \frac{\partial e^{(\alpha)}}{\partial \underline{\mathbf{w}}} & = & -\frac{\partial}{\partial \underline{\mathbf{w}}} \sum_{k=1}^{c} y_{Tk}^{(\alpha)} \ln \left(y_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right) \\ \\ & = & -\sum_{k=1}^{c} \frac{y_{Tk}}{y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}} \cdot \frac{\partial y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} \end{array}$$

$$\text{with} \qquad y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} = \frac{\exp h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\sum_{l} \exp h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}}$$

see derivation on Slide 3

$$\begin{split} \frac{\partial e^{(\alpha)}}{\partial \mathbf{\underline{w}}} &= -\frac{\partial}{\partial \mathbf{\underline{w}}} \sum_{k=1}^{c} y_{Tk}^{(\alpha)} \ln \left(y_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right) & \text{with} \quad y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} &= \frac{\exp h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\sum_{l} \exp h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}} \\ &= -\sum_{k=1}^{c} \frac{y_{Tk}}{y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}} \cdot \frac{\partial y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} & \text{see derivation on Slide 3} \\ &= -\sum_{k=1}^{c} \frac{y_{Tk}}{y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}} \left(y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} \frac{\partial h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} - y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} \frac{\partial h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} \right) \end{split}$$

$$\begin{split} \frac{\partial e^{(\alpha)}}{\partial \underline{\mathbf{w}}} &= -\frac{\partial}{\partial \underline{\mathbf{w}}} \sum_{k=1}^{c} y_{Tk}^{(\alpha)} \ln \left(y_{k(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \right) & \text{with} \quad y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} &= \frac{\exp h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\sum_{l} \exp h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}} \\ &= -\sum_{k=1}^{c} \frac{y_{Tk}}{y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}} \cdot \frac{\partial y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} & \text{see derivation on Slide 3} \\ &= -\sum_{k=1}^{c} \frac{y_{Tk}}{y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}} \left(y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} \frac{\partial h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} - y_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})} \sum_{l=1}^{c} y_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})} \frac{\partial h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} \right) \\ &= -\sum_{k=1}^{c} y_{Tk} \frac{\partial h_{k(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}} + \underbrace{\left(\sum_{k=1}^{c} y_{Tk}\right) \left(\sum_{l=1}^{c} y_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})} \frac{\partial h_{l(\underline{\mathbf{x}};\underline{\mathbf{w}})}}{\partial \underline{\mathbf{w}}}\right)} \end{split}$$

=1

$$\begin{split} \frac{\partial e^{(\alpha)}}{\partial \mathbf{\underline{w}}} &= -\frac{\partial}{\partial \mathbf{\underline{w}}} \sum_{k=1}^{c} y_{Tk}^{(\alpha)} \ln \left(y_{k(\mathbf{\underline{x}}^{(\alpha)}; \mathbf{\underline{w}})} \right) & \text{with} \quad y_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})} &= \frac{\exp h_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})}}{\sum_{l} \exp h_{l(\mathbf{\underline{x}}; \mathbf{\underline{w}})}} \\ &= -\sum_{k=1}^{c} \frac{y_{Tk}}{y_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})}} \cdot \frac{\partial y_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})}}{\partial \mathbf{\underline{w}}} & \text{see derivation on Slide 3} \\ &= -\sum_{k=1}^{c} \frac{y_{Tk}}{y_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})}} \left(y_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})} \frac{\partial h_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})}}{\partial \mathbf{\underline{w}}} - y_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})} \sum_{l=1}^{c} y_{l(\mathbf{\underline{x}}; \mathbf{\underline{w}})} \frac{\partial h_{l(\mathbf{\underline{x}}; \mathbf{\underline{w}})}}{\partial \mathbf{\underline{w}}} \right) \\ &= -\sum_{k=1}^{c} y_{Tk} \frac{\partial h_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})}}{\partial \mathbf{\underline{w}}} + \left(\sum_{k=1}^{c} y_{Tk} \right) \left(\sum_{l=1}^{c} y_{l(\mathbf{\underline{x}}; \mathbf{\underline{w}})} \frac{\partial h_{l(\mathbf{\underline{x}}; \mathbf{\underline{w}})}}{\partial \mathbf{\underline{w}}} \right) \\ &= \sum_{k=1}^{c} \left(y_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})} - y_{Tk} \right) \frac{\partial h_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})}}{\partial \mathbf{\underline{w}}} \\ &\to \frac{\partial h_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})}}{\partial \mathbf{\underline{w}}} - y_{Tk} \right) \underbrace{\frac{\partial h_{k(\mathbf{\underline{x}}; \mathbf{\underline{w}})}}{\partial \mathbf{\underline{w}}}}_{\text{plackgroup}} \end{split}$$