

Introduction to Convolutional Neural Networks

Prof. Francesco Maurelli Arturo Gomez Chavez

Jacobs University Bremen gGmbH Robotics, Computer Science and Electrical Engineering a.gomezchavez@jacobs-university.de

Before you start...

- These slides are meant to highlight main points of discussion about the topic, and are a compilation of the next sources.
 Please read them for full understanding:
 - General and intuitive introduction of CNNs:
 - https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
 - A more math based explanation:
 - https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neuralnetworks-584bc134c1e2
 - Very intuitive video tutorial of CNNs:
 - https://www.youtube.com/watch?v=JiN9p5vWHDY
 - A very condensed summary of recent developments in computer vision in the last years:
 - http://www.themtank.org/a-year-in-computer-vision

Motivation

- Need of computer vision algorithms that are not only <u>ACCURATE</u> but <u>FAST</u> and with <u>EASY DEPLOYMENT</u>.
- Algorithms that can be processed on mobile systems
 - (EDGE COMPUTING)

Motivation

- Not so far from fiction anymore.
- DeepGlint, presented in CVPR 2016.
- https://www.youtube.com/watch?v=xhp47v5OBXQ

What do you see in the picture ???

Happy kid VS kid attacking a cake.

- In a daily basis humans:
 - Label
 - Make predictions
 - Recognize patterns
 - Create models
- We are trained since birth

- 500 million years of evolution → visual pathway
- Millions of pictures

 Adapt what the computer sees to mimic the brain

- A receptive field is a single sensory neuron on the retina.
- Different events trigger each receptive field.
- For example, when they eye perceives a line or and edge, or even a familiar shape.
- Others trigger with movement
- 1960s D.H Hubel and T.N Wiesel research on mammals.
- STACK HIERARCHICALY MILLIONS OF THIS

History

- 1980 Fukushima Neocognitron.
- 1998 Yoshua Bengio, Yan Le Cun, et.al. – Convolutional Neural Network LeNet-5
- 2012 AlexNet Alex Krizhervsky
- And then ...

CNN - Architecture

- Input image
- Convolutional layer (Features computation)
- Pooling layer (Dimensionality reduction)
- Fully Connected Layer (Classification)
- Softmax Layer (Classification)

CNN - Convolution

- Use of a filter or kernel to do a feature map.
- Features such as SIFT, SURF, ORB, HOG apply the same principle.

1x1	1x0	1x1	0	0
0x0	1x1	1 x 0	1	0
0 x 1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

CNN - Convolution

- Use of a filter or kernel to do a feature map.
- Features such as SIFT, SURF, ORB, HOG apply the same principle.

CNN - Intuition

Flashlight analogy

CNN - Intuition

Flashlight analogy – Each filter provides a feature

CNN - Intuition

Flashlight analogy – Each filter provides a feature

CNN - Parameters

- Kernel Size
- Filter count (No. Features)
- Stride (Displacement)
- Padding (Zeros at the edges)

CNN - Pooling

Dimensionality reduction

Success!!!

Object detection

CNN - Visualization

 Very good toolbox for visualization of CNN https://www.youtube.com/watch?v=AgkflQ4IGaM

