0.1 不变因子

定义 0.1 (k) 阶行列式因子)

设 $A(\lambda)$ 是 n 阶 λ -矩阵,k 是小于等于 n 的正整数. 如果 $A(\lambda)$ 有一个 k 阶子式不为零,则定义 $A(\lambda)$ 的 k **阶行 列式因子** $D_k(\lambda)$ 为 $A(\lambda)$ 的所有 k 阶子式的最大公因式(首一多项式). 如果 $A(\lambda)$ 的所有 k 阶子式都等于零,则定义 $A(\lambda)$ 的 k 阶行列式因子 $D_k(\lambda)$ 为零.

引理 0.1

设 $D_1(\lambda), D_2(\lambda), \cdots, D_r(\lambda)$ 是 $A(\lambda)$ 的非零行列式因子,则

$$D_i(\lambda) \mid D_{i+1}(\lambda), \quad i = 1, 2, \dots, r-1.$$

证明 设 A_{i+1} 是 $A(\lambda)$ 的任一 i+1 阶子式,即在 $A(\lambda)$ 中任意取出 i+1 行及 i+1 列组成的行列式. 将这个行列式按某一行展开,则它的每一个展开项都是一个多项式与一个 i 阶子式的乘积. 由于 $D_i(\lambda)$ 是所有 i 阶子式的公因子,因此 $D_i(\lambda)$ | A_{i+1} . 而 $D_{i+1}(\lambda)$ 是所有 i+1 阶子式的最大公因子,因此 $D_i(\lambda)$ | $D_{i+1}(\lambda)$ 对一切 $i=1,2,\cdots,r-1$ 成立.

定义 0.2 (不变因子)

设 $D_1(\lambda), D_2(\lambda), \cdots, D_r(\lambda)$ 是 λ -矩阵 $A(\lambda)$ 的非零行列式因子, 则

$$g_1(\lambda) = D_1(\lambda),$$

$$g_2(\lambda) = D_2(\lambda)/D_1(\lambda),$$

. . .

$$g_r(\lambda) = D_r(\lambda)/D_{r-1}(\lambda)$$

称为 $A(\lambda)$ 的**不变因子**.

🕏 笔记 由不变因子和行列式因子的定义可知,不变因子和行列式因子相互唯一确定.

 \dot{L} 以后特征矩阵 $\lambda I - A$ 的行列式因子和不变因子均简称为 A 的行列式因子和不变因子.

命题 0.1

求下列矩阵的行列式因子和不变因子:

$$A(\lambda) = \begin{pmatrix} d_1(\lambda) & & & & \\ & \ddots & & & \\ & & d_r(\lambda) & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}$$

其中 $d_i(\lambda)$ 为非零首一多项式且 $d_i(\lambda) \mid d_{i+1}(\lambda)$ ($i = 1, 2, \dots, r-1$).

解 $A(\lambda)$ 的非零行列式因子为

$$D_1(\lambda) = d_1(\lambda),$$

$$D_2(\lambda) = d_1(\lambda)d_2(\lambda),$$

. . .

$$D_r(\lambda) = d_1(\lambda)d_2(\lambda)\cdots d_r(\lambda).$$

根据不变因子的定义可知 $A(\lambda)$ 的不变因子分别为: $d_1(\lambda), d_2(\lambda), \cdots, d_n(\lambda)$.

定理 0.1

相抵的 λ-矩阵有相同的行列式因子, 从而有相同的不变因子.

证明 我们只需证明行列式因子在三类初等变换下不改变就可以了. 对第一类初等变换, 交换 λ -矩阵 $A(\lambda)$ 的任意 两行 (列), 显然 $A(\lambda)$ 的 i 阶子式最多改变一个符号, 因此行列式因子不改变.

对第二类初等变换, $A(\lambda)$ 的i阶子式与变换后矩阵的i阶子式最多差一个非零常数,因此行列式因子也不改变.

对第三类初等变换, 记变换后的矩阵为 $B(\lambda)$, 则 $B(\lambda)$ 与 $A(\lambda)$ 的 i 阶子式可能出现以下 3 种情形: 子式完全相同; $B(\lambda)$ 子式中的某一行 (列) 等于 $A(\lambda)$ 中相应子式的同一行 (列) 加上该子式中某一行 (列) 与某个多项式之积; $B(\lambda)$ 子式中的某一行 (列) 等于 $A(\lambda)$ 中相应子式的同一行 (列) 加上不在该子式中的某一行 (列) 与某个多项式之积. 在前面两种情形, 行列式的值不改变, 因此不影响行列式因子. 现在来讨论第三种情形. 设 B_i 为 $B(\lambda)$ 的 i 阶子式. 相应的 $A(\lambda)$ 的 i 阶子式记为 A_i , 则由行列式的性质得

$$B_i = A_i + f(\lambda)\widetilde{A}_i,$$

其中 \widetilde{A}_i 由 $A(\lambda)$ 中的 i 行与 i 列组成, 因此它与 $A(\lambda)$ 的某个 i 阶子式最多差一个符号. $f(\lambda)$ 是乘以某一行(列)的那个多项式, 于是 $A(\lambda)$ 的行列式因子 $D_i(\lambda)$ | A_i , $D_i(\lambda)$ | A_i , 故 $D_i(\lambda)$ | B_i . 这说明, $D_i(\lambda)$ 可整除 $B(\lambda)$ 的所有 i 阶子式, 因此 $D_i(\lambda)$ 可整除 $B(\lambda)$ 的 i 阶行列式因子 $\widetilde{D}_i(\lambda)$. 但 $B(\lambda)$ 也可用第三类初等变换变成 $A(\lambda)$,于是 $\widetilde{D}_i(\lambda)$ | $D_i(\lambda)$. 由于 $D_i(\lambda)$ 及 $\widetilde{D}_i(\lambda)$ 都是首一多项式, 因此必有 $D_i(\lambda)$ = $\widetilde{D}_i(\lambda)$.

推论 0.1

设n 阶 λ -矩阵 $A(\lambda)$ 的法式为

 $\Lambda = \operatorname{diag}\{d_1(\lambda), d_2(\lambda), \cdots, d_r(\lambda); 0, \cdots, 0\},\$

其中 $d_i(\lambda)$ 是非零首一多项式且 $d_i(\lambda)$ | $d_{i+1}(\lambda)$ ($i=1,2,\cdots,r-1$),则 $A(\lambda)$ 的不变因子为 $d_1(\lambda),d_2(\lambda),\cdots,d_r(\lambda)$ 特别地,**法式和不变因子之间相互唯一确定**.

证明 首先, 由定理 0.1可知, $A(\lambda)$ 与 Λ 有相同的不变因子. 再由命题 0.1可知, Λ 的不变因子为 $d_1(\lambda)$, $d_2(\lambda)$, \cdots , $d_r(\lambda)$, 从而它们也是 $A(\lambda)$ 的不变因子. 故 $A(\lambda)$ 的法式可以唯一确定其不变因子.

接着, 设 $A(\lambda)$ 的不变因子为 $d_1(\lambda), d_2(\lambda), \cdots, d_r(\lambda)$, 由定理??, 可设 $A(\lambda)$ 相抵于对角阵

$$B(\lambda) = \operatorname{diag}\{d'_1(\lambda), d'_2(\lambda), \cdots, d'_r(\lambda); 0, \cdots, 0\},$$
(1)

其中 $d_i'(\lambda)$ 是非零首一多项式且 $d_i'(\lambda)$ | $d_{i+1}'(\lambda)$ ($i=1,2,\cdots,r-1$). 再由命题 0.1可知, $B(\lambda)$ 的不变因子为 $d_1'(\lambda)$, $d_2'(\lambda),\cdots,d_r'(\lambda)$. 由定理 0.1可知, $A(\lambda)$ 和 $B(\lambda)$ 的不变因子相同,故不失一般性,我们就有

$$d_1(\lambda) = d'_1(\lambda),$$

 $d_2(\lambda) = d'_2(\lambda),$

• • • • • • • • • •

 $d_r\left(\lambda\right) = d'_r\left(\lambda\right).$

因此 $A(\lambda)$ 的相抵于对角阵

 $\Lambda = \operatorname{diag}\{d_1(\lambda), d_2(\lambda), \cdots, d_r(\lambda); 0, \cdots, 0\},\$

其中 $d_i(\lambda)$ 是非零首一多项式且 $d_i(\lambda)$ | $d_{i+1}(\lambda)$ ($i=1,2,\cdots,r-1$). 上式也就是 $A(\lambda)$ 的法式. 故 $A(\lambda)$ 的不变因子可以唯一确定其法式.

推论 0.2

设 $A(\lambda)$, $B(\lambda)$ 为 n 阶 λ -矩阵, 则 $A(\lambda)$ 与 $B(\lambda)$ 相抵当且仅当它们有相同的法式.

 \Diamond

证明 若 $A(\lambda)$ 与 $B(\lambda)$ 有相同的法式,显然它们相抵. 若 $A(\lambda)$ 与 $B(\lambda)$ 相抵,由定理 0.1 知 $A(\lambda)$ 与 $B(\lambda)$ 有相同的不变因子,从而由推论 0.1可知, $A(\lambda)$ 与 $B(\lambda)$ 有相同的法式.

推论 0.3

n 阶 λ-矩阵 A(λ) 的法式与初等变换的选取无关.

证明 设 Λ_1 , Λ_2 是 $A(\lambda)$ 通过不同的初等变换得到的两个法式, 则 Λ_1 与 Λ_2 相抵, 由推论 0.2可得 $\Lambda_1 = \Lambda_2$.

定理 0.2

数域 \mathbb{K} 上 n 阶矩阵 A 与 B 相似的充分必要条件是它们的特征矩阵 $\lambda I - A$ 与 $\lambda I - B$ 具有相同的行列式因子或不变因子.

证明 显然不变因子与行列式因子之间相互唯一确定. 再由定理??、推论 0.2 及推论 0.1即得结论.

推论 0.4

设 \mathbb{F} ⊆ \mathbb{K} 是两个数域,A,B 是 \mathbb{F} 上的两个矩阵, 则 A 与 B 在 \mathbb{F} 上相似的充分必要条件是它们在 \mathbb{K} 上相似.

室记 这个推论告诉我们: 矩阵的相似关系在基域扩张下不变. 事实上, 这个推论的证明过程也说明: 矩阵的不变因子在基域扩张下也不变.

证明 若 A 与 B 在 \mathbb{F} 上相似,由于 \mathbb{F} ⊆ \mathbb{K} ,它们当然在 \mathbb{K} 上也相似. 反之,若 A 与 B 在 \mathbb{K} 上相似,则 $\lambda I - A$ 与 $\lambda I - B$ 在 \mathbb{K} 上有相同的不变因子,也就是说它们有相同的法式. 由 \mathbf{t} 论 $\mathbf{0}$.3 可知,求法式与初等变换的选取无关. 注意到 $\lambda I - A$ 与 $\lambda I - B$ 是数域 \mathbb{F} 上的 λ -矩阵,故可用 \mathbb{F} 上 λ -矩阵的初等变换就能将它们变成法式,其中只涉及 \mathbb{F} 中数的 λI 一 λI 一 λI 是 λI

$$P(\lambda)(\lambda I - A)Q(\lambda) = M(\lambda)(\lambda I - B)N(\lambda) = \text{diag}\{d_1(\lambda), \dots, d_n(\lambda)\},\$$

从而

$$M(\lambda)^{-1}P(\lambda)(\lambda I - A)Q(\lambda)N(\lambda)^{-1} = \lambda I - B,$$

即 $\lambda I - A 与 \lambda I - B$ 在 \mathbb{F} 上相抵,由定理?? 可得 A 与 B 在 \mathbb{F} 上相似.