Capstone

Predict Car Accident Severity in Seattle.

The Plan

What do we do?

- 1. Introduction
- 2. Data acquisition and cleaning
- 3. Exploratory Data Analysis
- 4. Predictive Modeling
- 5. Conclusions
- 6. Future directions

Introduction Why?

- Car accidents is still a problem
- We have navigation and helpers already
- Roads safety varies
- Take historical accidents severity into account
- More advanced navigation

Data acquisition and cleaning

Seattle car accidents 2004-2011

- Accidents dataset from Traffic Management of the city of Seattle, CSV formatted file and PDF formatted metadata
- Severity, weather, road, geo point, number of vehicles and persons involved etc
- 39 features and 194673 rows
- Dropped irrelevant data, null, "Other" and "Unknown"
- One-hot encoded, severity to boolean, 28 features in final set

Explore our data

Can we spot relations?

Less severe in darkness

Dry is not safe

Speeding is not always the cause

Models

Is there a best algorithm?

- Decision Tree
- K-Means
- SVM
- Logistic Regression
- Gradient Boost
- Random Forest
- Ridge Regression

Predicted label

Results

Depends on application

Do we need probability?

- no RidgeClassifier with alternative of SVC
- yes DecisionTreeClassifier with alternative of LogisticRegression and RandomForestClassifier

Future Can we improve?

- Sure we can
- More experience
- More models
- More feature engineering
- More data
- Other sets of data