#### Chapter 11: Project Risk Management



Information Technology Project Management, Fourth Edition

#### Learning Objectives

- Understand what risk is and the importance of good project risk management.
- Discuss the elements involved in risk management planning and the contents of a risk management plan.
- List common sources of risks in information technology projects.

#### Learning Objectives (cont'd)

- Describe the risk identification process, tools, and techniques to help identify project risks, and the main output of risk identification, a risk register.
- Discuss the qualitative risk analysis process and explain how to calculate risk factors, create probability/impact matrixes, apply the Top Ten Risk Item Tracking technique, and use expert judgment to rank risks.

#### Learning Objectives (cont'd)

- Explain the quantitative risk analysis process and how to apply decision trees, simulation, and sensitivity analysis to quantify risks.
- Provide examples of using different risk response planning strategies to address both negative and positive risks.
- Discuss what is involved in risk monitoring and control.
- Describe how software can assist in project risk management.

# The Importance of Project Risk Management

- Project risk management is the art and science of identifying, analyzing, and responding to risk throughout the life of a project and in the best interests of meeting project objectives.
- Risk management is often overlooked in projects, but it can help improve project success by helping select good projects, determining project scope, and developing realistic estimates.

### Research Shows Need to Improve Project Risk Management

- Study by Ibbs and Kwak shows risk has the lowest maturity rating of all knowledge areas.
- KLCI study shows the benefits of following good software risk management practices.
- KPMG study found that 55 percent of **runaway projects**—projects that have significant cost or schedule overruns—did *no* risk management at all.

## Table 11-1. Project Management Maturity by Industry Group and Knowledge Area

**KEY: 1 = LOWEST MATURITY RATING** 

**5 = HIGHEST MATURITY RATING** 

| Knowledge Area  | Engineering/<br>Construction | Telecommunications | Information<br>Systems | Hi-Tech<br>Manufacturing |
|-----------------|------------------------------|--------------------|------------------------|--------------------------|
| Scope           | 3.52                         | 3.45               | 3.25                   | 3.37                     |
| Time            | 3.55                         | 3.41               | 3.03                   | 3.50                     |
| Cost            | 3.74                         | 3.22               | 3.20                   | 3.97                     |
| Quality         | 2.91                         | 3.22               | 2.88                   | 3.26                     |
| Human Resources | 3.18                         | 3.20               | 2.93                   | 3.18                     |
| Communications  | 3.53                         | 3.53               | 3.21                   | 3.48                     |
| Risk            | 2.93                         | 2.87               | 2.75                   | 2.76                     |
| Procurement     | 3.33                         | 3.01               | 2.91                   | 3.33                     |

### Figure 11-1. Benefits from Software Risk Management Practices



#### Negative Risk

- A dictionary definition of risk is "the possibility of loss or injury."
- Negative risk involves understanding potential problems that might occur in the project and how they might impede project success.
- Negative risk management is like a form of insurance; it is an investment.

#### Risk Can Be Positive

- Positive risks are risks that result in good things happening; sometimes called opportunities.
- A general definition of project **risk** is an uncertainty that can have a negative or positive effect on meeting project objectives.
- The goal of project risk management is to minimize potential negative risks while maximizing potential positive risks.

#### Risk Utility

- **Risk utility** or **risk tolerance** is the amount of satisfaction or pleasure received from a potential payoff.
  - Utility rises at a decreasing rate for people who are risk-averse.
  - Those who are risk-seeking have a higher tolerance for risk and their satisfaction increases when more payoff is at stake.
  - The risk-neutral approach achieves a balance between risk and payoff.

# Figure 11-2. Risk Utility Function and Risk Preference



#### Project Risk Management Processes

- **Risk management planning**: Deciding how to approach and plan the risk management activities for the project.
- **Risk identification**: Determining which risks are likely to affect a project and documenting the characteristics of each.
- Qualitative risk analysis: Prioritizing risks based on their probability and impact of occurrence.

# Project Risk Management Processes (cont'd)

- Quantitative risk analysis: Numerically estimating the effects of risks on project objectives.
- **Risk response planning**: Taking steps to enhance opportunities and reduce threats to meeting project objectives.
- **Risk monitoring and control**: Monitoring identified and residual risks, identifying new risks, carrying out risk response plans, and evaluating the effectiveness of risk strategies throughout the life of the project.

#### Risk Management Planning

- The main output of risk management planning is a risk management plan—a plan that documents the procedures for managing risk throughout a project.
- The project team should review project documents and understand the organization's and the sponsor's approaches to risk.
- The level of detail will vary with the needs of the project.

# Table 11-2. Topics Addressed in a Risk Management Plan

- Methodology
- Roles and responsibilities
- Budget and schedule
- Risk categories
- Risk probability and impact
- Risk documentation

## Contingency and Fallback Plans, Contingency Reserves

- Contingency plans are predefined actions that the project team will take if an identified risk event occurs.
- Fallback plans are developed for risks that have a high impact on meeting project objectives, and are put into effect if attempts to reduce the risk are not effective.
- Contingency reserves or allowances are provisions held by the project sponsor or organization to reduce the risk of cost or schedule overruns to an acceptable level.

### Common Sources of Risk in Information Technology Projects

- Several studies show that IT projects share some common sources of risk.
- The Standish Group developed an IT success potential scoring sheet based on potential risks.
- Other broad categories of risk help identify potential risks.

### Table 11-3. Information Technology Success Potential Scoring Sheet

| <b>Success Criterion</b>        | Relative Importance |
|---------------------------------|---------------------|
| User Involvement                | 19                  |
| Executive Management support    | 16                  |
| Clear Statement of Requirements | 15                  |
| Proper Planning                 | 11                  |
| Realistic Expectations          | 10                  |
| Smaller Project Milestones      | 9                   |
| Competent Staff                 | 8                   |
| Ownership                       | 6                   |
| Clear Visions and Objectives    | 3                   |
| Hard-Working, Focused Staff     | 3                   |
| Total                           | 100                 |

#### Broad Categories of Risk

- Market risk
- Financial risk
- Technology risk
- People risk
- Structure/process risk

#### Risk Breakdown Structure

- A risk breakdown structure is a hierarchy of potential risk categories for a project.
- Similar to a work breakdown structure but used to identify and categorize risks.

## Figure 11-3. Sample Risk Breakdown Structure



#### Table 11-4. Potential Negative Risk Conditions Associated With Each Knowledge Area

| Knowledge Area  | Risk Conditions                                                                                                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------|
| Integration     | Inadequate planning; poor resource allocation; poor integration management; lack of post-project review                            |
| Scope           | Poor definition of scope or work packages; incomplete definition of quality requirements; inadequate scope control                 |
| Time            | Errors in estimating time or resource availability; poor allocation and management of float; early release of competitive products |
| Cost            | Estimating errors; inadequate productivity, cost, change, or contingency control; poor maintenance, security, purchasing, etc.     |
| Quality         | Poor attitude toward quality; substandard design/materials/workmanship; inadequate quality assurance program                       |
| Human Resources | Poor conflict management; poor project organization and definition of responsibilities; absence of leadership                      |
| Communications  | Carelessness in planning or communicating; lack of consultation with key stakeholders                                              |
| Risk            | Ignoring risk; unclear assignment of risk; poor insurance management                                                               |
| Procurement     | Unenforceable conditions or contract clauses; adversarial relations                                                                |

#### Risk Identification

- Risk identification is the process of understanding what potential events might hurt or enhance a particular project.
- Risk identification tools and techniques include:
  - Brainstorming
  - The Delphi Technique
  - Interviewing
  - SWOT analysis

#### Brainstorming

- **Brainstorming** is a technique by which a group attempts to generate ideas or find a solution for a specific problem by amassing ideas spontaneously and without judgment.
- An experienced facilitator should run the brainstorming session.
- Be careful not to overuse or misuse brainstorming.
  - Psychology literature shows that individuals produce a greater number of ideas working alone than they do through brainstorming in small, face-to-face groups.
  - Group effects often inhibit idea generation.

#### Delphi Technique

- The **Delphi Technique** is used to derive a consensus among a panel of experts who make predictions about future developments.
- Provides independent and anonymous input regarding future events.
- Uses repeated rounds of questioning and written responses and avoids the biasing effects possible in oral methods, such as brainstorming.

#### Interviewing

- **Interviewing** is a fact-finding technique for collecting information in face-to-face, phone, e-mail, or instant-messaging discussions.
- Interviewing people with similar project experience is an important tool for identifying potential risks.

#### SWOT Analysis

- SWOT analysis (strengths, weaknesses, opportunities, and threats) can also be used during risk identification.
- Helps identify the broad negative and positive risks that apply to a project.

#### Risk Register

- The main output of the risk identification process is a list of identified risks and other information needed to begin creating a risk register.
- A risk register is:
  - A document that contains the results of various risk management processes and that is often displayed in a table or spreadsheet format.
  - A tool for documenting potential risk events and related information.
- **Risk events** refer to specific, uncertain events that may occur to the detriment or enhancement of the project.

#### Risk Register Contents

- An identification number for each risk event.
- A rank for each risk event.
- The name of each risk event.
- A description of each risk event.
- The category under which each risk event falls.
- The root cause of each risk.

#### Risk Register Contents (cont'd)

- Triggers for each risk; triggers are indicators or symptoms of actual risk events.
- Potential responses to each risk.
- The risk owner or person who will own or take responsibility for each risk.
- The probability and impact of each risk occurring.
- The status of each risk.

### Table 11-5. Sample Risk Register

| No. | Rank | Risk | Description | Category | Root<br>Cause | Triggers | Potential<br>Responses | Risk<br>Owner | Probabilit<br>y | Impact | Status |
|-----|------|------|-------------|----------|---------------|----------|------------------------|---------------|-----------------|--------|--------|
| R44 | 1    |      |             |          |               |          |                        |               |                 |        |        |
| R21 | 2    |      |             |          |               |          |                        |               |                 |        |        |
| R7  | 3    |      |             |          |               |          |                        |               |                 |        |        |

#### Qualitative Risk Analysis

- Assess the likelihood and impact of identified risks to determine their magnitude and priority.
- Risk quantification tools and techniques include:
  - Probability/impact matrixes
  - The Top Ten Risk Item Tracking
  - Expert judgment

#### Probability/Impact Matrix

- A probability/impact matrix or chart lists the relative probability of a risk occurring on one side of a matrix or axis on a chart and the relative impact of the risk occurring on the other.
- List the risks and then label each one as high, medium, or low in terms of its probability of occurrence and its impact if it did occur.
- Can also calculate risk factors:
  - Numbers that represent the overall risk of specific events based on their probability of occurring and the consequences to the project if they do occur.

# Figure 11-4. Sample Probability/Impact Matrix

| High                      | risk 6           | risk 9                      | risk 1<br>risk 4 |
|---------------------------|------------------|-----------------------------|------------------|
| <b>Probability</b> Medium | risk 3<br>risk 7 | risk 2<br>risk 5<br>risk 11 |                  |
| Low                       |                  | risk 8<br>risk 10           | risk 12          |
|                           | Low              | Medium<br><b>Impact</b>     | High             |

#### Table 11-6. Sample Probability/Impact Matrix for Qualitative Risk Assessment

| PROBABILITY OF FAILURE (PF) ATTRIBUTES OF SUGGESTED TECHNOLOGY |                                                  |                              |                                   |  |  |
|----------------------------------------------------------------|--------------------------------------------------|------------------------------|-----------------------------------|--|--|
| VALUE                                                          | MATURITY<br>HARDWARE/SOFTWARE                    | COMPLEXITY HARDWARE/SOFTWARE | SUPPORT BASE                      |  |  |
| 0.1                                                            | Existing                                         | Simple Design                | Multiple Programs<br>And Services |  |  |
| 0.3                                                            | Minor Redesign                                   | Somewhat Complex             | Multiple Programs                 |  |  |
| 0.5                                                            | Major Change Feasible                            | Fairly Complex               | Several Parallel Programs         |  |  |
| 0.7                                                            | Complex HW Design/ New<br>SW Similar to Existing | Very Complex                 | At Least One Other Program        |  |  |
| 0.9                                                            | Some Research Completed/<br>Never Done Before    | Extremely Complex            | No Additional Programs            |  |  |

| VALUE | FALLBACK<br>SOLUTIONS              | LIFE CYCLE COST<br>(LCC) FACTOR       | SCHEDULE FACTOR<br>(INITIAL OPERATIONAL<br>CAPABILITY = IOC) | DOWNTIME (DT)<br>FACTOR                             |
|-------|------------------------------------|---------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| 0.1   | Several Acceptable<br>Alternatives | Highly Confident<br>Will Reduce LCC   | 90—100% Confident<br>Will Meet IOC<br>Significantly          | Highly Confident<br>Will Reduce DT                  |
| 0.3   | A Few Known<br>Alternatives        | Fairly Confident<br>Will Reduce LCC   | 75—90% Confident<br>Will Meet IOC                            | Fairly Confident<br>Will Reduce DT<br>Significantly |
| 0.5   | Single Acceptable<br>Alternative   | LCC Will Not<br>Change Much           | 50—75% Confident<br>Will Meet IOC                            | Highly Confident<br>Will Reduce DT<br>Somewhat      |
| 0.7   | Some Possible<br>Alternatives      | Fairly Confident<br>Will Increase LCC | 25—50% Confident<br>Will Meet IOC                            | Fairly Confident<br>Will Reduce DT<br>Somewhat      |
| 0.9   | No Acceptable<br>Alternatives      | Highly Confident<br>Will Increase LCC | 0—25% Confident<br>Will Meet IOC                             | DT May Not Be<br>Reduced Much                       |

## Figure 11-5. Chart Showing High-, Medium-, and Low-Risk Technologies



#### Top Ten Risk Item Tracking

- Top Ten Risk Item Tracking is a qualitative risk analysis tool that helps to identify risks and maintain an awareness of risks throughout the life of a project.
- Establish a periodic review of the top ten project risk items.
- List the current ranking, previous ranking, number of times the risk appears on the list over a period of time, and a summary of progress made in resolving the risk item.

# Table 11-7. Example of Top Ten Risk Item Tracking

|                          | Monthly Ranking |               |                     |                                                                            |
|--------------------------|-----------------|---------------|---------------------|----------------------------------------------------------------------------|
| Risk Item                | This<br>Month   | Last<br>Month | Number<br>of Months | Risk Resolution<br>Progress                                                |
| Inadequate planning      | 1               | 2             | 4                   | Working on revising the entire project plan                                |
| Poor definition of scope | 2               | 3             | 3                   | Holding meetings with project customer and sponsor to clarify scope        |
| Absence of leadership    | 3               | 1             | 2                   | Just assigned a new project manager to lead the project after old one quit |
| Poor cost estimates      | 4               | 4             | 3                   | Revising cost estimates                                                    |
| Poor time estimates      | 5               | 5             | 3                   | Revising schedule estimates                                                |

#### Expert Judgment

- Many organizations rely on the intuitive feelings and past experience of experts to help identify potential project risks.
- Experts can categorize risks as high, medium, or low with or without more sophisticated techniques.
- Can also help create and monitor a **watch list**, a list of risks that are low priority, but are still identified as potential risks.

#### Quantitative Risk Analysis

- Often follows qualitative risk analysis, but both can be done together.
- Large, complex projects involving leading edge technologies often require extensive quantitative risk analysis.
- Main techniques include:
  - Decision tree analysis
  - Simulation
  - Sensitivity analysis

### Decision Trees and Expected Monetary Value (EMV)

- A decision tree is a diagramming analysis technique used to help select the best course of action in situations in which future outcomes are uncertain.
- Estimated monetary value (EMV) is the product of a risk event probability and the risk event's monetary value.
- You can draw a decision tree to help find the EMV.

# Figure 11-6. Expected Monetary Value (EMV) Example



#### Simulation

- Simulation uses a representation or model of a system to analyze the expected behavior or performance of the system.
- Monte Carlo analysis simulates a model's outcome many times to provide a statistical distribution of the calculated results.
- To use a Monte Carlo simulation, you must have three estimates (most likely, pessimistic, and optimistic) plus an estimate of the likelihood of the estimate being between the most likely and optimistic values.

#### Steps of a Monte Carlo Analysis

- 1. Assess the range for the variables being considered.
- 2. Determine the probability distribution of each variable.
- 3. For each variable, select a random value based on the probability distribution.
- 4. Run a deterministic analysis or one pass through the model.
- 5. Repeat steps 3 and 4 many times to obtain the probability distribution of the model's results.

# Figure 11-7. Sample Monte Carlo Simulation Results for Project Schedule



#### Sensitivity Analysis

- Sensitivity analysis is a technique used to show the effects of changing one or more variables on an outcome.
- For example, many people use it to determine what the monthly payments for a loan will be given different interest rates or periods of the loan, or for determining break-even points based on different assumptions.
- Spreadsheet software, such as Excel, is a common tool for performing sensitivity analysis.

# Figure 11-8. Sample Sensitivity Analysis for Determining Break-Even Point



#### Risk Response Planning

- After identifying and quantifying risks, you must decide how to respond to them.
- Four main response strategies for negative risks:
  - Risk avoidance
  - Risk acceptance
  - Risk transference
  - Risk mitigation

## Table 11-8. General Risk Mitigation Strategies for Technical, Cost, and Schedule Risks

| TECHNICAL RISKS                                                      | Cost Risks                                                                 | SCHEDULE RISKS                               |
|----------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|
| Emphasize team support<br>and avoid stand-alone<br>project structure | Increase the frequency of project monitoring                               | Increase the frequency of project monitoring |
| Increase project manager authority                                   | Use WBS and CPM                                                            | Use WBS and CPM                              |
| Improve problem handling and communication                           | Improve communication,<br>project goals understanding,<br>and team support | Select the most experienced project manager  |
| Increase the frequency of project monitoring                         | Increase project manager authority                                         |                                              |
| Use WBS and CPM                                                      |                                                                            |                                              |

#### Response Strategies for Positive Risks

- Risk exploitation
- Risk sharing
- Risk enhancement
- Risk acceptance

#### Residual and Secondary Risks

- It's also important to identify residual and secondary risks.
- **Residual risks** are risks that remain after all of the response strategies have been implemented.
- Secondary risks are a direct result of implementing a risk response.

#### Risk Monitoring and Control

- Involves executing the risk management process to respond to risk events.
- Workarounds are unplanned responses to risk events that must be done when there are no contingency plans.
- Main outputs of risk monitoring and control are:
  - Requested changes.
  - Recommended corrective and preventive actions.
  - Updates to the risk register, project management plan, and organizational process assets.

## Using Software to Assist in Project Risk Management

- Risk registers can be created in a simple Word or Excel file or as part of a database.
- More sophisticated risk management software, such as Monte Carlo simulation tools, help in analyzing project risks.
- The PMI Risk Specific Interest Group's Web site at www.risksig.com has a detailed list of software products to assist in risk management.

## Results of Good Project Risk Management

- Unlike crisis management, good project risk management often goes unnoticed.
- Well-run projects appear to be almost effortless, but a lot of work goes into running a project well.
- Project managers should strive to make their jobs look easy to reflect the results of well-run projects.

#### Chapter Summary

- Project risk management is the art and science of identifying, analyzing, and responding to risk throughout the life of a project and in the best interests of meeting project objectives.
- Main processes include:
  - Risk management planning
  - Risk identification
  - Qualitative risk analysis
  - Quantitative risk analysis
  - Risk response planning
  - Risk monitoring and control