International Rectifier

Si4435DYPbF

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Lead-Free

Description

These P-channel HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications..

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infrared, or wave soldering techniques.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain- Source Voltage	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-8.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-6.4	A
I _{DM}	Pulsed Drain Current ①	-50	1
P _D @T _A = 25°C	Power Dissipation	2.5	W
P _D @T _A = 70°C	Power Dissipation	1.6	
	Linear Derating Factor	0.02	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	50	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.019		V/°C	Reference to 25°C, I _D = -1mA
Rook	Static Drain-to-Source On-Resistance		0.015	0.020	Ω	V _{GS} = -10V, I _D = -8.0A ②
R _{DS(on)}			0.026	0.035	52	V _{GS} = -4.5V, I _D = -5.0A ②
V _{GS(th)}	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
9fs	Forward Transconductance		11		S	$V_{DS} = -15V, I_D = -8.0A$
1	Drain-to-Source Leakage Current			-10		$V_{DS} = -24V$, $V_{GS} = 0V$
I _{DSS}				-10	μA	$V_{DS} = -15V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	$V_{GS} = -20V$
1655	Gate-to-Source Reverse Leakage			100	11/4	$V_{GS} = 20V$
Qg	Total Gate Charge		40	60		$I_D = -4.6A$
Q _{gs}	Gate-to-Source Charge		7.1		nC	$V_{DS} = -15V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		8.0			V _{GS} = -10V ②
t _{d(on)}	Turn-On Delay Time		16	24		V _{DD} = -15V, V _{GS} = -10V ②
t _r	Rise Time		76	110	ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		130	200	115	$R_G = 6.0\Omega$
t _f	Fall Time		90	140		$R_D = 15\Omega$
C _{iss}	Input Capacitance		2320			V _{GS} = 0V
Coss	Output Capacitance		390		pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		270			f = 1.0kHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			-2.5		MOSFET symbol		
I _{SM}	(Body Diode) Pulsed Source Current				A	showing the integral reverse		
Civi	(Body Diode) ①			50	-50	-50		p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25$ °C, $I_S = -2.5$ A, $V_{GS} = 0$ V ②		
t _{rr}	Reverse Recovery Time		34	51	ns	$T_J = 25^{\circ}C$, $I_F = -2.5A$		
Q _{rr}	Reverse Recovery Charge		33	50	nC	di/dt = -100A/µs ②		

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 300 μ s; duty cycle \leq 2%.

International Rectifier

Si4435DYPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Typical Vgs(th) Variance Vs. Juction Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International
TOR Rectifier

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

International

TOR Rectifier

Si4435DYPbF

MILLIMETERS

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

MIN	MAX	MIN	MAX		
.0532	.0688	1.35	1.75		
.0040	.0098	0.10	0.25		
.013	.020	0.33	0.51		
.0075	.0098	0.19	0.25		
.189	.1968	4.80	5.00		
.1497	.1574	3.80	4.00		
.050 BASIC		1.27 BASIC			
.025 B	ASIC	0.635 BASIC			
.2284	.2440	5.80	6.20		
.0099	.0196	0.25	0.50		
.016	.050	0.40	1.27		
0°	8°	0°	8°		
	.0532 .0040 .013 .0075 .189 .1497 .050 B. .025 B. .2284 .0099	0532 .0688 .0040 .0098 .013 .020 .0075 .0098 .189 .1968 .1497 .1574 .050 B≺IC .025 B≺IC .2284 .2440 .0099 .0196 .016 .050	.0532 .0688 1.35 .0040 .0098 0.10 .013 .020 0.33 .0075 .0098 0.19 .189 .1968 4.80 .1497 .1574 3.80 .050 BASIC 1.27 B/2 .025 BASIC 0.635 E .2284 .2440 5.80 .0099 .0196 0.25 .016 .050 0.40		

INCHES

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

International IOR Rectifier

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.09/04