МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федерально автономное образовательное учреждение высшего образования «Севастопольский государственный университет» кафедра Информационных систем

Куркчи Ариф Эрнестович

Институт информационных технологий и управления в технических системах курс 4 группа ИС/б-41-о 09.03.02 Информационные системы и технологии (уровень бакалавриата)

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Архитектура инфокоммуникационных систем и сетей» на тему «Исследование протокола IP

и технологии маршрутизации»

Отметка о зачете		
		(дата)
Руководитель практикума		
старший преподаватель		Волкова А.В.
(должность)	(подпись)	(инициалы, фамилия)

1. ЦЕЛЬ РАБОТЫ

Исследовать особенности функционирования и формат пакета протокола IP, технологию маршрутизации и принцип работы системного программного обеспечения на сетевом уровне модели взаимодействия открытых систем, приобрести практические навыки по конфигурации маршрутизаторов

2. ВАРИАНТ ЗАДАНИЯ

Вариант	N1	N2	N3	N4
8	8	23	54	85

3. ХОД РАБОТЫ

На рисунке 1 представлена топология сети из 5 подсетей разных размеров. Сети имеют свитч 6-32 адреса, свитч 7-16 адресов, свитч 4-128 адресов, свитч 5-64 адреса. Дополнительная подсеть между роутерами на 4 адреса

Рисунок 1 – Топология сети

Таблица 1. Подсетей и их масок

Имя	ІР-адрес	Маска подсети
Switch4	192.168.8.0	255.255.255.128
Switch5	192.168.8.128	255.255.255.192
Switch6	192.168.8.192	255.255.255.224
Switch7	192.168.8.224	255.255.255.240
Router1-2	192.168.8.240	255.255.255.252

В каждый роутер добавлено 2 Ethernet порта, которые выступают шлюзами для соответствующих подсетей, занимая первый свободный адрес в сети 192.168.8.1, 192.168.8.129, 192.168.8.193, 192.168.8.225 и 192.268.8.241. Из существующего интерфейса используется только один, он связан со вторым роутером посредством сгоѕѕ-кабеля и интерфейсы роутеров имеют адреса в подсети 192.168.8.240 (241 и 242).

В последствии на роутерах настроена таблица статической маршрутизации, в которой адресация подсетей смежного роутера происходит через IP-адрес этого роутера в смежной подсети.

Проверим принятые настройки: соединение подсетей 1-2 (рисунок 2), 2-3 (рисунок 3), 4-1 (рисунок 4), таблица маршрутизации роутера 1 (рисунок 5) и роутера 2 (рисунок 6).

```
PC>ping 192.168.8.131

Pinging 192.168.8.131 with 32 bytes of data:

Reply from 192.168.8.131: bytes=32 time=4ms TTL=127

Reply from 192.168.8.131: bytes=32 time=1ms TTL=127

Reply from 192.168.8.131: bytes=32 time=1ms TTL=127

Reply from 192.168.8.131: bytes=32 time=2ms TTL=127

Ping statistics for 192.168.8.131:

Packets: Sent = 4, Received = 4, Lost = 0 (0%)

loss),

Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 4ms, Average = 2ms
```

Рисунок 2 – Проверка связи подсетей 1-2

```
PC>ping 192.168.8.194

Pinging 192.168.8.194 with 32 bytes of data:

Reply from 192.168.8.194: bytes=32 time=0ms TTL=126
Reply from 192.168.8.194: bytes=32 time=0ms TTL=126
Reply from 192.168.8.194: bytes=32 time=1ms TTL=126
Reply from 192.168.8.194: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.8.194:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

Рисунок 3 – Проверка связи подсетей 2-3

```
PC>ping 192.168.8.2 with 32 bytes of data:

Reply from 192.168.8.2: bytes=32 time=3ms TTL=126
Reply from 192.168.8.2: bytes=32 time=1ms TTL=126
Reply from 192.168.8.2: bytes=32 time=10ms TTL=126
Reply from 192.168.8.2: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.8.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 10ms, Average = 3ms
```

Рисунок 4 – Проверка связи подсетей 4-1

Type	Network	Port	Next Hop IP	Metric
S	192.168.8.0/25	177	192.168.8.241	1/0
S	192.168.8.128/26		192,168.8.241	1/0
C	192.168.8.192/27	Ethernet0/0/0		0/0
C	192.168.8.224/28	Ethernet0/1/0		0/0
C	192.168.8.240/30	FastEthernet0/0		0/0

Рисунок 5 – Таблица маршрутизации роутера 1

Type	Network	Port	Next Hop IP	Metric
C	192.168.8.0/25	Ethernet0/0/0		0/0
C	192.168.8.128/26	Ethernet0/1/0	***	0/0
5	192.168.8.192/27		192.168.8.242	1/0
S	192.168.8.224/28		192.168.8.242	1/0
C	192.168.8.240/30	FastEthernet0/0	***	0/0

Рисунок 6 – Таблица маршрутизации роутера 2

Выводы

В ходе выполнения лабораторной работы были исследованы особенности функционирования и формат пакета протокола IP, технология маршрутизации и принцип работы программного обеспечения на сетевом уровне взаимодействия открытых систем, приобретены практические навыки по конфигурации маршрутизаторов. Настроена маршрутизация для 4х подсетей различной ёмкости с использованием 5ой подсети между роутерами и таблиц статической маршрутизации.