Определение 1. (Непрерывность по Коши́.) Пусть $M \subseteq \mathbb{R}$. Функция $f: M \to \mathbb{R}$ называется *непрерывной в точке* $a \in M$, если если для любой окрестности $\mathcal V$ точки f(a) найдется такая окрестность $\mathcal W$ точки a, что при всех x из $\mathcal W \cap M$ число f(x) лежит в $\mathcal V$. Обозначение: $f \in C(a)$.

Аналогично можно дать определение непрерывности по Гейне (сделайте это!).

Если f непрерывна в каждой точке $a \in M$, то говорят, что f непрерывна на M, и пишут $f \in C(M)$.

Задача 1. Запишите без отрицаний: « $f: M \to \mathbb{R}$ разрывна (не является непрерывной) в точке $a \in M$ ».

Задача 2. В каких точках непрерывны функции: **a)** x; **б)** $\operatorname{sgn} x$; **в)** x^2 ; **г)** $\{x\}$; **д)** $\frac{1}{x}$; **е)** \sqrt{x} . (Как обычно, функцию, заданную формулой, мы считаем определённой всюду, где эта формула имеет смысл.)

Определение 2. Пусть $M \subseteq \mathbb{R}$. Говорят, что $f: M \to \mathbb{R}$ ограничена на M, если найдётся такое число k, что |f(x)| < k при всех $x \in M$.

Задача 3. Будет ли функция, непрерывная в точке a, ограниченной на некоторой окрестности точки a?

Задача 4. Пусть $f: M \to \mathbb{R}$ непрерывна в точке $a \in M$, причём f(a) > 0. Докажите, что существует такая окрестность U точки a, что f положительна на множестве $U \cap M$.

Задача 5. Пусть функция f определена в некоторой окрестности \mathcal{U} точки a. Докажите, что f непрерывна в точке a тогда и только тогда, когда $\lim_{x\to a} f(x) = f(a)$.

Задача 6. Пусть $f, g \in C(a)$. Докажите, что: **a)** $|f| \in C(a)$; **б)** $f \pm g \in C(a)$; **в)** $f \cdot g \in C(a)$; **г)** если $g(a) \neq 0$, то функция f/g непрерывна в точке a.

Задача 7. Докажите непрерывность функции (на её области определения): **a)** x^n , где $n \in \mathbb{N}$; **б)** многочлен из $\mathbb{R}[x]$; **в)** P(x)/Q(x), где $P,Q \in \mathbb{R}[x]$, $Q \neq 0$; **г)** $\sqrt[n]{x}$, где $n \in \mathbb{N}$; **д)** $\sin x$; **е)** $\cos x$; **ж)** $\operatorname{tg} x$.

Задача 8. Придумайте определённую на \mathbb{R} функцию f, множество точек разрыва которой есть **a)** \mathbb{R} ; **б)** \mathbb{R} без одной точки; **b)** $\{1/n \mid n \in \mathbb{N}\}$; **r)*** \mathbb{Q} .

Задача 9. а) Пусть $f \in C([a;b])$, причём f(a) > 0, f(b) < 0. Найдётся ли такое $\gamma \in (a,b)$, что $f(\gamma) = 0$? б) (Теорема о промежуточном значении). Пусть $f \in C([a;b])$, причём f(a) < f(b). Докажите, что для любого $k \in [f(a), f(b)]$ найдётся такая точка $\gamma \in [a,b]$, что $f(\gamma) = k$.

Задача 10. Докажите: любой многочлен нечётной степени из $\mathbb{R}[x]$ имеет хотя бы один корень из \mathbb{R} .

Задача 11. (Теорема Л. Бра́уэра о неподвижной точке для отрезка). Пусть $f \in C([0;1])$ и все значения функции f содержатся в отрезке [0;1]. Докажите, что уравнение f(x) = x имеет корень.

Задача 12. Функция непрерывна на отрезке I. Всегда ли она **a**) ограничена на I; **б**) достигает своего наибольшего и наименьшего значений на I? **в**) Та же задача, если I — интервал или прямая. **r**) Каким может быть множество значений непрерывной функции на отрезке; интервале; прямой?

Задача 13. Пусть I-nромежсуток, то есть отрезок, интервал, полуинтервал, луч или вся прямая. Функция f непрерывна на $I \subseteq \mathbb{R}$. Докажите, что f обратима на I если и только если f строго монотонна на I. Докажите, что при этом f^{-1} строго монотонна и непрерывна (на $[\min_{x \in I} f(x); \max_{x \in I} f(x)]$).

Задача 14. Докажите непрерывность $\arcsin x$ и $\arctan x$ (на их области определения).

Задача 15. Пусть $A,B\subseteq\mathbb{R},$ и функции $f:A\to B,$ $g:B\to\mathbb{R}$ непрерывны. Докажите, что $g\circ f\in C(A).$

Задача 16. Пусть $f,g\in C(\mathbb{R})$, причём f(x)=g(x) для любого $x\in\mathbb{Q}$. Докажите, что f=g.

Задача 17. Найдите все $f \in C(\mathbb{R})$, такие что f(x+y) = f(x) + f(y) для любых $x,y \in \mathbb{R}$.

Равномерная непрерывность

Определение 3. Функция $f: M \to \mathbb{R}$ называется равномерно непрерывной на M, если для каждого $\varepsilon > 0$ найдётся такое $\delta > 0$, что для любых $x, y \in M$, таких что $|x-y| < \delta$, выполнено $|f(x)-f(y)| < \varepsilon$.

Задача 18. Функция f равномерно непрерывна на $M \subseteq \mathbb{R}$. Обязательно ли тогда f непрерывна на M?

Задача 19. Какие из функций x^2 , \sqrt{x} , 1/x равномерно непрерывны **a)** на $[1;\infty)$; **б)** на (0;1)? **в)** (Теорема Кантора). Докажите: непрерывная на отрезке функция равномерно непрерывна на нём.

1	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	2 Г	2 д	2 e	3	4	5	6 a	66	6 B	6 Г	7 a	7 б	7 B	$\begin{bmatrix} 7 \\ \Gamma \end{bmatrix}$	7 д	7 e	7 ж	8 a	8 6	8 B	8 Г	9 a	9 6	10	11	12 a	12 б	12 B	12 Г	13	14 15	5 16	17	18	19 a	191 б в	9