Do Now: Triangle congruence proofs

1. Given two parallel lines are intersected by a transversal, $\overrightarrow{MD}||\overrightarrow{BC}|$. $m\angle AMD = 4x + 5$ and $m\angle MBC = 5x - 7$. Find $m\angle AMD$.

2. In the diagram above, the point M bisects \overline{AB} . If AM=4 find AB.

3. Given $\triangle ABC$ and $\triangle EFG$ with $\overline{AB} \cong \overline{EF}$, $\overline{BC} \cong \overline{FG}$, and $\overline{AC} \cong \overline{EG}$. Prove $\triangle ABC \cong \triangle EFG$ (by filling in the blanks below)

Statement

- 1) $\triangle ABC$, $\triangle EFG$
- $2) \ \overline{AB} \cong \overline{EF}$
- 3) $\overline{BC} \cong \overline{FG}$, $\overline{AC} \cong \overline{EG}$
- 4) $\triangle ABC \cong \triangle EFG$

- 1) Given
- 2) _____
- 3) _____
- 4) _____

4. Given two parallel lines intersect a transversal, $\overrightarrow{MD}||\overrightarrow{BC}$. Given $\overline{MD}\cong \overline{BC}$ and M is the midpoint of \overline{AB} . Prove $\triangle ADM\cong\triangle MCB$.

Statement

- 1) $\overrightarrow{MD}||\overrightarrow{BC}|$
- 2) M is the midpoint of \overline{AB}
- 3) $\cong \overline{BC}$
- 4) $\angle AMD \cong \angle MBC$
- 5) $\underline{\hspace{1cm}} \cong \overline{AM}$
- 6) $\triangle ADM \cong \triangle MCB$

- 1) _____
- 2) _____
- 3) Given
- 4) _____
- 5) Definition of a midpoint
- 6) _____

4.6 Homework: Triangle congruence proofs

1. Given $\triangle ABC$ and $\triangle EFG$ with $\angle A\cong \angle E, \ \overline{AB}\cong \overline{EF}, \ \text{and} \ \overline{AC}\cong \overline{EG}$. Prove $\triangle ABC\cong \triangle EFG$.

Statement

- 1) $\triangle ABC$, $\triangle EFG$
- 2) $\angle A \cong \angle E$
- 3) $\overline{AB} \cong \overline{EF}$, and $\overline{AC} \cong \overline{EG}$
- 4) $\triangle ABC \cong \triangle EFG$

- 1) Given
- 2) _____
- 3) _____
- 4) _____
- 2. Given two vertical angles, $m \angle 1 = 5x + 9$, $m \angle 2 = 6x 1$. Find $m \angle 1$. For full credit, check by comparing to $m \angle 2$.

3. Given $\triangle ABP$ and $\triangle JKP$ with $\angle A \cong \angle J$ and $\overline{AP} \cong \overline{JP}$. Prove $\triangle ABP \cong \triangle JKP$.

Statement

- 1) $\triangle ABC$, $\triangle JKP$
- 2) _____
- 3) $\angle APB \cong \angle JPK$
- 4) $\triangle ABP \cong \triangle JKP$

- 1) Given
- 2) Given
- 3) _____
- 4) _____
- 4. Express the result to the nearest thousandth.

(a)
$$\cos 60^{\circ} =$$

(c)
$$\sin 41^{\circ} =$$

(b)
$$\tan 25^{\circ} =$$

(d)
$$\cos 75^{\circ} =$$

- 5. Find the image of A(3,2) after a translation four to the right and down two.
- 6. Apply the translation $(x,y) \to (x-5,y+1)$ to the point B(-2,-1).
- 7. State the translation that would map C(6,3) onto C'(5,13).

BECA	/ Dr.	Huson	/ 10th	${\rm Grade}$	Geometry
5 Decer	nber :	2018			

Name:

List of theorem/situations for $\triangle \cong$ proofs

- 8. Vertical angles w segment bisectors
- 9. Transversal corresponding
- 10. Transversal with shared side on transversal
- 11. Two inscribed in circle with vertical angles
- 12. Inscribed in circle triangle with external angle, showing arc measure relationship
- 13. Rotate triangle