Data Science and Deep Learning (2024)

Lecture 2

Working with High-Dimensional Data

Stan Z. Li

Outline

- 1. High-dimensional data
- 2. Lower-dimensional patterns/manifolds
- 3. Representational learning/dimension reduction
 - Linear projection
 - Nonlinear projection/neural networks transformation

High-Dimensional Data

- Images, Videos, Text, Audio,
- Web pages, Social Networks
- Molecular Structures
- DNA Sequences
- Protein Sequence-Structures

Handwritten Digit images

- Image size 20x20 = 400
- Pixel values in {0,1}
- Image Space $S = \{0,1\}^{400}$
- $\#S = 2.58 \times 10^{120}$
- Only a tiny portion of S is of digits
- The digit pattern lives in a low dim subspace (manifold)

100 pixels

Face Image Data

- Image size $100x100 = 10^4$ pixels
- RGB image size 3x10⁴ pixels
- Dimensionality = $3x10^4$
- Pixel values in {0,...,255}
- #Possibility = $256^{30,000} \cong infinity$
- Only a tiny portion is of faces
- Face pattern lives in low dim subspace

100 pixels

Manifold Assumption

High-Dimensional Data: Images, Web pages, Gene sequences,

Dimension Reduction into Coordinate System of a Lower Dim

- For representation learning (feature extraction)
- For data visualization in 2D or 3D

Manifold Assumption: an interesting pattern in high

dimensional data resides on a low dimensional manifold

Manifold in Hi-D Data Space: 1D Curve in 3D Space

Conical Helix:

x=t*cos(6t), y=t*sin(6t), z=t $0 \le t \le 2\pi$

1D line segment Latent variable t

2D Manifold in 3D Space

Swiss Roll:

 $x=\phi\cos(\phi)$, $y=\phi\sin(\phi)$, $z=\psi$

 $1.5\pi \le \phi \le 4.5\pi$, $0 \le \psi \le 10$

Manifold: 2D rectangle generated by two latent variables φ, ψ

Geodesic Distance on Manifolds

Data Samples on Manifold

$$y=f(x)$$
 sampled to $\{(x_i, y_i) | i = 1,...,n\}$

Samples on Face Manifold in Data Space

Samples Close to the Face Manifold

Low-Dim Manifold/Surface in High-Dim Space

Samples on low-dim but complex manifold in highdim data space

Features in lower-dim Euclidean embedding space

Scientific Modeling

Thanks

