机器学习 Machine Learning

北京航空航天大学计算机学院智能识别与图像处理实验室 IRIP Lab, School of Computer Science and Engineering, Beihang University 黄迪 刘庆杰

> 2020年秋季学期 Fall 2020

決策树 Decision Tree

引例

● 引例1: 相亲

● 引例2: 天气是否适合打网球

 \vee (Outlook = Rain \wedge Wind = Weak)

P38 《机器学习》, T. M. Mitchell著, 曾华军译

问题背景

● 问题举例

- ■根据症状或检查结果分类患者
- ■根据起因或现象分类设备故障
- ■根据拖欠支付的可能性分类贷款申请

● 分类问题

■把样例分类到各可能的离散值对应的类别

● 问题特征

- ■实例由"属性-值"对表示, 训练数据可以包含缺少属性值的实例
- ■属性可以是连续值或离散值
- ■具有离散的输出值

决策树定义

- 决策树(Decision Tree)
 - 决策树是一种树型结构, 由结点和有向边组成
 - 结点
 - 内部结点表示一个属性或特征
 - 叶结点代表一种类别
 - 有向边/分支
 - 分支代表一个测试输出

决策树算法

●基本思想

- 采用自顶向下的递归方法,以信息熵为度量构造一棵熵值下降最快的树,到叶子结点处的熵值为零,此时每个叶结点中的实例都属于同一类
 - 决策树可以看成一个if-then的规则集合
 - 一个决策树将特征空间划分为不相交的单元(Cell)或区域(Region)

算法流程

- ●基本流程分为两步
 - 第1步: 训练,从数据中获取知识进行学习 利用训练集建立(并精化)一棵决策树,构建决策树模型.
 - 第2步:测试,利用生成的模型对输入数据进行分类 对测试样本,从根结点依次测试记录的属性值,直至到 达某个叶结点,找到该样本所在的类别.

算法流程

- 构建过程的基本流程
 - Step1: 选取一个属性作为决策树的根结点,然后就这个属性所有的取值创建树的分支.
 - Step2: 用这棵树来对训练数据集进行分类:
 - 如果一个叶结点的所有实例都属于同一类,则以该类为标记标识此叶结点。
 - 如果所有的叶结点都有类标记,则算法终止.
 - Step3: 否则,选取一个从该结点到根路径中没有出现 过的属性作为标记标识该结点,然后就这个属性的所 有取值继续创建树的分支;重复算法步骤2.

主要算法

建立决策树的关键,即在当前状态下选择哪个属性作为 分类依据

示例: 高? 富? 帅? 会C++? 会图像处理? 深度学习?

- 目标:每个分支结点的样本尽可能属于同一类别,即结点的"纯度"(Purity)越来越高
- 根据不同的目标函数,建立决策树主要有以下三种算法

■ ID3: 信息增益

■ C4.5: 信息增益率

■ CART: 基尼指数

- ID3 (Iterative Dichotomiser 3)迭代二分器算法
 - 由J. R. Quinlan于1979年提出
 - 一种最经典的决策树学习算法

基本思想:以信息熵为度量,用于决策树结点的属性选择,每次优先选取信息增益最大的属性,即能使熵值最小的属性,构造一棵熵值下降最快的决策树。到叶子结点的熵值为0,此时对应实例集中的实例属于同一类别。

- 信息熵(Entropy)
 - 信息论与概率统计中,熵表示随机变量不确定性的大小, 是度量样本集合纯度最常用的一种指标.
 - 令离散随机变量X概率分布为 $p(X = x_i) = p_i$,则随机变量X的熵定义为:

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

信息按二进制位编码, 因此以2为底

- 若X为连续随机变量,则概率分布变成概率密度函数、 求和符号变成积分符号即可.

- 信息熵(Entropy)
 - 熵定义了一个函数(概率密度函数)到一个值(信息熵) 的映射 $P(x)\rightarrow H$ (函数 \rightarrow 数值)
 - 熵是随机变量不确定性的度量:
 - 不确定性越大,熵值越大;
 - 若随机变量退化成定值,熵为0.
 - 示例:明天下雪?明天晴天?
 - 均匀分布是"最不确定"的分布

- 经验(信息)熵
 - 假设当前样本集合D中第c(c=1,2,...,C)类样本所占比例为 p_c ,则D的经验信息熵(简称经验熵)定义为:

$$H(D) = -\sum_{c=1}^{C} p_c \log_2 p_c$$
$$= -\sum_{c=1}^{C} \frac{D_c}{D} \log_2 \frac{D_c}{D}$$

-H(D)的值越小,则D的纯度越高.

- 条件熵(Conditional Entropy)
 - 对随机变量(X, Y),联合分布为 $p(X = x_i, Y = y_i) = p_{ij}$ 条件熵H(Y|X)表示在已知随机变量X的条件下,随机变量Y的不确定性,定义为在X给定条件下Y的条件概率分布的熵对X的数学期望:

$$H(Y | X) = -\sum_{i=1}^{n} p_i H(Y | X = x_i)$$

- (X, Y)发生所包含的信息熵,减去Y单独发生包含的信息熵——在Y发生前提下, X发生"新"带来的信息熵.

● 条件熵(Conditional Entropy)

● 条件熵-推导

$$H(X|Y) = H(X,Y) - H(Y)$$

$$= -\sum_{x,y} p(x,y) \log_2 p(x,y) + \sum_y p(y) \log_2 p(y)$$

$$= -\sum_{x,y} p(x,y) \log_2 p(x,y) + \sum_y (\sum_x p(x,y)) \log_2 p(y)$$

$$= -\sum_{x,y} p(x,y) \log_2 p(x,y) + \sum_{x,y} p(x,y) \log_2 p(y)$$

$$= -\sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(y)}$$

$$= -\sum_{x,y} p(x,y) \log_2 p(x|y)$$

● 经验条件熵

- 假设当前样本集合D共有C类,每一类有 D_c 个样本,属性 $a(a \in A)$ 有不同的取值 $\{a_1, a_2, ..., a_N\}$,每一类中属性为i的样本数为 D_c ",则D的经验条件熵定义为

$$H(D \mid a) = -\sum_{n,c} p(D_c, a_n) \log_2 p(D_c \mid a_n)$$

$$= -\sum_{n=1}^{N} \frac{\left|D^n\right|}{\left|D\right|} \sum_{c=1}^{C} \frac{\left|D_c^n\right|}{\left|D^n\right|} \log_2 \frac{\left|D_c^n\right|}{\left|D^n\right|}$$

$$= \sum_{n=1}^{N} \frac{\left|D^n\right|}{\left|D\right|} H(D^n)$$

- 特征a的信息对样本D的信息的不确定性减少的程度

- 信息增益(Information Gain)
 - 特征a对训练数据集D的信息增益G(D,a),定义为集合D的经验熵H(D)与特征a给定条件下D的经验条件熵H(D|a)之差,即:

$$G(D, a) = H(D) - H(D \mid a)$$

$$= H(D) - \sum_{n=1}^{N} \frac{\left|D^{n}\right|}{\left|D\right|} H(D^{n})$$

- ID3算法即是以此信息增益为准则,对每次递归的结点属性进行选择的.

• 决策树的生成算法

输入: 训练数据集D,特征集A,阈值 ε

输出: 决策树T

- (1)若D中所有实例属于同一类 C_k ,则T为单结点树,并将类 C_k 作为该结点的类标记,返回T;
- (2)若A=0,则T为单结点树,并将D中实例数最大类 C_k 作为该结点类标记,返回T;
- (3)否则,计算A中各特征对D的信息增益,选择信息增益最大的特征 A_g ;
- (4)如果 A_g 的信息增益小于阈值 ε ,则置T为单结点树,并将D中样本数最大的类 C_k 作为该结点的类标记,返回T;
- (5)否则,对 A_g 的每一个可能值 a_i ,分割D为若干非空子集 D_i ,将 D_i 中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T;
- (6)对第i个子结点,以 D_i 为训练集,A- $\{A_g\}$ 为特征集,递归的调用第(1)~(5)步,得到子树 T_i ,返回 T_i 。

				_		_	
编号		根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	 是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	

● 计算信息熵-以属性色泽为例

$$H(D) = -\sum_{c=1}^{C} p_c \log_2 p_c = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

$$H(D^{\text{fist}}) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.000$$

$$H(D^{3}) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918$$

$$H(D^{\text{left}}) = -\left(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}\right) = 0.722$$

参照教材《机器学习》-周志华P75-77示例

● 计算信息增益-以属性色泽为例

$$G(D, 色泽) = H(D) - \sum_{n=1}^{3} \frac{|D^{n}|}{|D|} H(D^{n})$$

$$= 0.998 - \left(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722\right)$$

$$= 0.109$$

$$G(D,$$
 色泽) = 0.109

$$G(D, 脐部) = 0.289$$

$$G(D, 根蒂) = 0.143$$

$$G(D, 纹理) = 0.381$$

$$G(D, 触感) = 0.006$$

● 基于属性"纹理"对根节点进行划分

- 继续进行划分-以"纹理=清晰"分支为例
 - "纹理=清晰"分支:

样本 {1, 2, 3, 4, 5, 6, 8, 10, 15}

- 计算信息增益

 $G(D^{清晰}, 色泽) = 0.043$

 $G(D^{清晰}$, 敲声) = 0.331

 $G(D^{清晰}$, 触感) = 0.458

 $G(D^{清晰}, 根蒂) = 0.458$

 $G(D^{清晰}, 脐部) = 0.458$

• 谁在买计算机?

问题:

假定公司收集了右表数据,那么对于任意给定的客人(测试样例),预测这位客人是属于"买"计算机的一类,还是属于"不买"计算机的一类?

计数	年龄	收入	学生	信誉	买计算机?
64	青	盲	否	良	不买
64	青	恒	否	优	不买
128	中	恒	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	盲	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

计数	年龄	收入	学生	信誉	买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	恴	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第1步: 计算数据集的经验熵

决策属性"买计算机?" 该属性分两类: 买/不买 $|C_1|$ (买)=641 $|C_2|$ (不买)= 383 $|D|=|C_1|+|C_2|=1024$

$$P_1$$
=641/1024=0.6260
 P_2 =383/1024=0.3740

$$H(D) = -P_1 \text{Log}_2 P_1 - P_2 \text{Log}_2 P_2$$

= $-(P_1 \text{Log}_2 P_1 + P_2 \text{Log}_2 P_2)$
= 0.9537

计数	年龄	收入	学生	信誉	买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第2步:计算特征的信息增益

条件属性共有4个,分别是: 年龄、收入、学生、信誉 计算不同属性的信息增益

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第2-1步:计算年龄的经验条件熵

年龄共分三个组: 青年、中年、老年 青年买与不买比例为128/256

$$|D_{11}(\mathbf{y})|$$
=128
 $|D_{12}(\mathbf{不}\mathbf{y})|$ = 256
 $|D_{1}|$ = $|D_{11}|$ + $|D_{12}|$ =384

$$P_{11}$$
=128/384
 P_{12} =256/384

$$H$$
(青年|年龄)
=- P_{11} Log₂ P_1 - P_{12} Log₂ P_2
=- $(P_{11}$ Log₂ P_{11} + P_{12} Log₂ P_{12})
=0.9183

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第2-2步:计算年龄的经验条件熵

年龄共分三个组: 青年、中年、老年 中年买与不买比例为256/0

$$|D_{21}(\mathbf{y})| = 256$$

 $|D_{22}(\mathbf{不}\mathbf{y})| = 0$
 $|D_{2}| = |D_{21}| + |D_{22}| = 256$

$$P_{21}$$
=256/256 P_{22} =0/256

$$H$$
(中年|年龄)
=- P_{21} Log₂ P_{21} - P_{22} Log₂ P_{22}
=- $(P_{21}$ Log₂ P_{21} + P_{22} Log₂ P_{22})
=0

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第2-3步:计算年龄的经验条件熵

年龄共分三个组: 青年、中年、老年 老年买与不买比例为125/127

$$|D_{31}(\mathbf{y})| = 125$$

 $|D_{32}(\mathbf{不}\mathbf{y})| = 127$
 $|D_{3}| = |D_{31}| + |D_{32}| = 252$

$$P_{31}$$
=125/252
 P_{32} =127/252

$$H$$
(老年|年龄)
=- P_{31} Log₂ P_{31} - P_{32} Log₂ P_{32}
=- $(P_{31}$ Log₂ P_{31} + P_{32} Log₂ P_{32})
=0.9157

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第2-4步:计算年龄的信息增益

年龄共分三个组: 青年、中年、老年 所占比例 青年组 384/1025=0.375 中年组 256/1024=0.25 老年组 384/1024=0.375

计算年龄的平均信息期望 H(年龄)=0.375*0.9183+ 0.25*0+ 0.375*0.9157 =0.6877 G(年龄信息增益) =0.9537-0.6877

=0.2660

(1)

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第3步:计算收入的信息增益

收入共分三个组: 高、中、低 H(收入)=0.9361 G(收入信息增益)= 0.9537- 0.9361=0.0176 (2)

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第4步:计算学生的信息增益

学生共分二个组: 学生、非学生 H(学生)=0.7811 G(学生信息增益)= 0.9537-0.7811=0.1726 (3)

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第5步:计算信誉的信息增益

信誉分二个组: 良好、优秀 H(信誉)= 0.9048 G(信誉信息增益)= 0.9537-0.9048=0.0453 (4)

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	不买
64	中	低	是	优	买
128	青	中	否	良	不买
64	青	低	是	良	买
132	老	中	是	良	买
64	青	中	是	优	买
32	中	中	否	优	买
32	中	高	是	良	买
63	老	中	否	优	不买
1	老	中	否	优	买

第6步:选择结点

年龄信息增益= 0.9537-0.6877=0.2660 (1)

收入信息增益= 0.9537-0.9361=0.0176 (2)

学生信息增益= 0.9537-0.7811=0.1726 (3)

信誉信息增益= 0.9537-0.9048=0.0453 (4)

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	青	中	否	良	不买
64	青	低	是	良	买
64	青	中	是	优	买

青年买与不买比例为128/256

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	青	中	否	良	不买
64	青	低	是	良	买
64	青	中	是	优	买

$$|D_{11}(\mathbf{y})|$$
=128
 $|D_{12}(\mathbf{不}\mathbf{y})|$ = 256
 $|D_{1}|$ = $|D_{11}|$ + $|D_{12}|$ =384

$$|P_{11}=128/384|$$

 $|P_{12}=256/384|$

$$H$$
(青年|年龄)
=- P_{11} Log₂ P_1 - P_{12} Log₂ P_2
=- $(P_{11}$ Log₂ P_{11} + P_{12} Log₂ P_{12})
=0.9183

● 如果选择收入作为结点,分高、中、低

计数	年龄	收入	学生	信誉	归类: 买计算机?
64	青	高	否	良	不买
64	青	高	否	优	不买
128	青	中	否	良	不买
64	青	低	是	良	买
64	青	中	是	优	买

H(高)=0

比例: 28/384=0.3333

H(中)=0.9183

比例: 192/384=0.5

H(低)=0

比例: 64/384=0.1667

经验条件熵(加权总和):

H(收入) = 0.3333 * 0 + 0.5 * 0.9183 + 0.1667 * 0 = 0.4592

收入的信息增益

Gain(收入) = H(青年) - H(收入) = 0.9183 - 0.4592 = 0.4591

计数	年龄	收入	学生	信誉	归类: 买计算机?	年龄
64	青	高	否	良	不买	
64	青	高	否	优	不买	青
128	中	高	否	良	买	年年年
60	老	中	否	良	买	
64	老	低	是	良	买	
64	老	低	是	优	不买	学生
64	中	低	是	优	买	ni.
128	青	中	否	良	不买	叶子 :
64	青	低	是	良	买	图
132	老	中	是	良	买	
64	青	中	是	优	买	
32	中	中	否	优	买	不买(买)(买
32	中	高	是	良	买	买/不买 买
63	老	中	否	优	不买	마 · · · · · · · · · · · · · · · · · · ·
1	老	中	否	优	买	子 子 ↑ 子

ID3算法

● 算法优点

- 只需对训练实例进行较好地标注,就能进行学习,从一类无序、无规则事物(概念)中推理出分类规则.
- 分类模型是树状结构,简单直观,可将决策树中到达每个叶结点的路径转换为IF—THEN形式的分类规则,比较符合人类的理解方式.

ID3算法

- ID3算法局限性
 - 信息增益偏好取值多的属性(极限趋近于均匀分布)
 - 可能会受噪声或小样本影响, 易出现过拟合问题
 - 无法处理连续值的属性
 - 无法处理属性值不完整的训练数据
 - 无法处理不同代价的属性

属性筛选度量标准

●信息增益的问题

$$G(D, a) = H(D) - \sum_{n=1}^{N} \frac{|D^{n}|}{|D|} H(D^{n})$$

- 信息增益准则对可取值数目N较多的属性有所偏好.
- 取值更多的属性容易使得数据更"纯",其信息增益更大。决策树会首先挑选这个属性作为树的顶/结点;结果训练出来的形状是一棵庞大且深度很浅的树,这样的划分极不合理.

属性筛选度量标准

● 信息增益率(Information Gain Ratio)

$$G_{ratio}(D,a) = \frac{G(D,a)}{H(a)}$$

其中

$$H(a) = -\sum_{n=1}^{N} \frac{|D_n|}{|D|} \log_2 \frac{|D_n|}{|D|}$$

称为属性a的固有值

N越大,H(a)通常也越大;因此采用信息增益率,可缓解信息增益准则对可取值数目较多的属性的偏好.

C4.5算法就采用增益率替代了ID3算法的信息增益

属性筛选度量标准

● 基尼指数(Gini Index)

$$Gini(D) = \sum_{c=1}^{C} \sum_{c' \neq c} p_c p'_c = 1 - \sum_{c=1}^{C} p_c^2 = 1 - \sum_{c=1}^{C} \left(\frac{|D_c|}{|D|} \right)^2$$

直观反映了从数据集中随机抽取两个样本,其类别不一致的概率;基尼指数越小,数据集的纯度越高.

- 属性A的基尼指数
$$Gini(D,a) = \sum_{n=1}^{N} \frac{|D^n|}{|D|} Gini(D^n)$$

$$-$$
 最优属性选择 $a^* = \arg\min_{a \in A} Gini(D, a)$

CART算法就采用基尼指数替代了ID3算法的信息增益

剪枝处理(Pruning)

- 问题: 过拟合
 - ■决策树对训练数据有很好的分类能力,但对未知的测试数据未必有好的分类能力,泛化能力弱,即可能发生过拟合现象.

● 可能原因

- 训练数据有噪声,同时拟合了 数据和噪音,影响分类效果.
- 叶结点样本太少,易出现耦合的规律性,使一些属性恰巧可很好地分类,但却与实际目标函数无关.

剪枝处理(Pruning)

- 针对过拟合问题
 - ■剪枝是主要手段
- 基本策略
 - 预剪枝策略(Pre-pruning): 决策树生成过程中,对每个结点在划分前进行估计,若划分不能带来决策树泛化性能提升,则停止划分并将该节点设为叶结点.
 - ■后剪枝策略(Post-pruning): 先利用训练集生成决策树,自底向上对非叶结点进行考察,若将该结点对应子树替换为叶结点能带来泛化性能提升,则将该子树替换为叶结点.

剪枝处理(Pruning)

_	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
训	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
•	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
练	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
样 -	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
件	10	青绿	硬挺	清脆	清晰	平坦	软粘	否
本	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
_	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	
_		 色泽	 根蒂	 敲声		 脐部	 触感	 好瓜
测	4					<u> </u>		
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
试	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
样	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
1 +	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
本	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	

- 第一步: 评估结点1
 - ■属性选择:基于信息增益准则,选择属性"脐部" 不划分:
 - ●标记为训练样例数最多的类别,如"好瓜"
 - ●泛化性能: {4, 5, 8}被正确分类 3/7= 42.9%

划分:

●结点2: 稍凹{6,7,15,17} "好瓜"

●结点3: 平坦{10,16} "好瓜"

●结点4: 凹陷{1, 2, 3, 14} "坏瓜"

●泛化性能: {4,5,8,11,12}被正确分类 5/7= 71.4%

评估结果/预剪枝决策: 划分

● 第二步: 评估结点2: 训练样本{6,7,15,17}

■属性选择:基于信息增益准则,选择属性"根蒂"

不划分: {4, 5, 8, 11, 12}被正确分类 5/7= 71.4%

划 分: {4, 5, 8, 11, 12}被正确分类 5/7= 71.4%

评估结果/预剪枝决策: 不划分

第三步:评估结点4:训练样本{1,2,3,14}

■属性选择:基于信息增益准则,选择属性"色泽"

不划分: {4, 5, 8, 11, 12}被正确分类 **5/7= 71.4%**

划 分: {4, 5, 8, 11, 12}被正确分类 **4/7= 57.1%**

评估结果/预剪枝决策:不划分

● 最终生成的决策树

测试集精度

"脐部=?" 划分前:71.4%

划分后: 57.1%

预剪枝决策: 不划分

测试集精度

"色泽=?" 划分前: 71.4%

划分后: 71.4%

预剪枝决策: 不划分

● 策略特点

- ■优势: "剪掉"很多没必要展开的分支,降低了过拟合风险,并且显著减少了决策树的训练时间开销和测试时间开销.
- **劣势**:有些分支的当前划分有可能不能提高甚至降低 泛化性能,但后续划分有可能提高泛化性能;预剪枝 禁止这些后续分支的展开,可能会导致欠拟合.

● 第一步:评估结点6

剪枝前:

- ●属性为"纹理"; 样本为{7,15}
- ●泛化性能: {4, 11, 12}被正确分类 3/7= 42.9%

剪枝后:

- ●把节点6替换为叶结点, "好/坏瓜"
- ●泛化性能: {4, 8/9, 11, 12}被正确分类 4/7= 57.1%

评估结果/后剪枝决策: 剪枝

● 第二步:评估结点5

剪枝前:

- ●属性为"色泽", 样本{6,7,15}
- ●泛化性能: 同第一步 4/7= 57.1%

剪枝后:

- ●把节点5替换为叶结点,"好瓜"
- ●泛化性能: {4, 8, 11, 12}被正确分类 4/7= 57.1%

评估结果/后剪枝决策: 不剪枝

● 第三步:评估结点4

剪枝前:

- ●属性为"色泽", 样本{1, 2, 3, 14}
- ●泛化性能:同上一步 4/7= 57.1%

剪枝后:

- ●把结点4替换为叶结点,"好瓜"
- ●泛化性能: {4, 5, 8, 11, 12}被正确分类 5/7= 71.4%

评估结果/后剪枝决策: 剪枝

● 第四步:评估结点2

剪枝前:

- ●属性为"根蒂", 样本{6,7,15,17}
- ●泛化性能:同上一步 5/7= 71.4%

剪枝后:

- ●把结点2替换为叶结点, "好/坏瓜"
- ●泛化性能: {4, 5, 8/9, 11, 12}被正确分类 5/7= 71.4%

评估结果/后剪枝决策: 不剪枝

● 第五步:评估结点1

剪枝前:

●泛化性能:同上一步 5/7= 71.4%

剪枝后:

●把结点1替换为叶结点

●泛化性能: {4, 5, 8, 11, 12}被正确分类 5/7= 71.4%

评估结果/后剪枝决策: 不剪枝

剪枝后: 57.1%

后剪枝决策:剪枝

● 策略特点

- ■优势:测试了所有分支,比预剪枝决策树保留了更多分支,降低了欠拟合的风险,泛化性能一般优于预剪枝决策树.
- **劣势**: 后剪枝过程在生成完全决策树后再进行,且要自底向上对所有非叶节点逐一评估; 因此,决策树的训练时间开销要高于未剪枝决策树和预剪枝决策树.

连续值处理

- 基本思想:采用二分法(Bi-Partition)进行离散化
 - 给定样本集D和连续属性 $a(a \in A)$,假定a在D上有N个不同取值,将这些值从大到小排序得到 $\{a_1, a_2, ..., a_N\}$
 - 基于划分点t,可将D分为子集 D_t^+ 和 D_t^- ,其中 D_t^+ (D_t^-) 包含了属性值A不小(大)于t的样本子集
 - *t*在[*a_n*, *a_{n+1}*)上的任意取值的划分结果都相同

连续值处理

● 基本思想:采用二分法(Bi-Partition)进行离散化

■ **候选划分点集合**
$$T_a = \left\{ \frac{a_n + a_{n+1}}{2} \mid 1 \le n \le N - 1 \right\}$$

■ 信息増益 $G(D,a) = \max_{t \in T_a} G(D,a,t)$

$$= \max_{t \in T_a} \left(H(D) - \sum_{\lambda \in \{+,-\}} \frac{\left| D_t^{\lambda} \right|}{\left| D \right|} H(D_t^{\lambda}) \right)$$

其中, G(D,A,t) 是样本集D基于划分点t二分后的信息增益. 我们需选择使 G(D,A,t) 最大的划分点t.

						_				
-	编号		根蒂	敲声	纹理	 脐部	触感	密度	含糖率	好瓜
-	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.46	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	0.634	0.264	是
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是
	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	0.481	0.149	是
_	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	0.437	0.211	是
	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
	10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	0.245	0.057	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	0.343	0.099	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	0.36	0.37	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	0.593	0.042	否
_	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否

● 计算候选划分点集合

$$T_a = \left\{ \frac{a_n + a_{n+1}}{2} \mid 1 \le n \le N - 1 \right\}$$

■ T_{sig} = {0.244, 0.294, 0.351,..., 0.708, 0.746}

■ $T_{\underline{\alpha}} = \{0.049, 0.074, 0.095, ..., 0.373, 0.126\}$

参照教材《机器学习》-周志华P84-85示例

● 计算信息增益

$$G(D,a) = \max_{t \in T_a} \left(H(D) - \sum_{\lambda \in \{+,-\}} \frac{\left| D_t^{\lambda} \right|}{\left| D \right|} H(D_t^{\lambda}) \right)$$

■
$$G(D, 密度) = 0.262$$

$$T^*$$
密度=0.381

已知:

$$G(D,$$
 色泽) = 0.109

$$G(D, 脐部) = 0.289$$

$$G(D, 根蒂) = 0.143$$

$$G(D, 纹理) = 0.381$$

$$G(D, 触感) = 0.006$$

● 最终生成的决策树

● 问题描述

- 基本假设: 所有样本的属性完整
- 实际情况:存在不完整样本,即样本的某些属性缺失, 特别是属性数目较多时
- 如果简单放弃不完整样本,会导致数据信息浪费
- 存在实际应用需要在属性缺失情况下进行决策 例如在医疗领域,由于诊测成本、隐私保护等问题,只 有部分诊断结果...

● 需要解决的两个问题

- 如何在属性值缺失的情况下进行划分属性选择(计算信息增益)?
- 给定划分属性,若样本在该属性上的值缺失,如何对 样本进行划分?

● 定义

- $\blacksquare \tilde{D}: D$ 中在属性 α 上没有缺失值的样本子集
- ■属性 $\mathbf{a}(a \in A)$ 有 \mathbb{N} 个可取值 $\{a_1, a_2, ..., a_N\}$
- ■ \tilde{D}^n : \tilde{D} 中在属性**a**上取值为**a**_n的样本子集
- ■ \tilde{D}_c : \tilde{D} 中属于第 $c(c \in C)$ 类的样本子集
- 无缺失值样本所占比例 $\rho = \frac{\sum_{x \in \tilde{D}} \omega_x}{\sum_{x \in D} \omega_x}$
- 无缺失样本中第 $^{\mathbf{c}}$ 类比例 $\tilde{p}_{c} = \frac{\sum_{x \in \tilde{D}_{c}} \omega_{x}}{\sum_{x \in \tilde{D}} \omega_{x}}, (1 \le c \le C), \sum_{c=1}^{C} \tilde{p}_{c} = 1$
- 无缺失样本中属性*a*上取 $\tilde{r}_n = \frac{\sum_{x \in \tilde{D}^n} \omega_x}{\sum_{x \in \tilde{D}} \omega_x}$, $(1 \le n \le N)$, $\sum_{n=1}^N \tilde{r}_n = 1$ 值为*a_n* 的比例

• 信息増益 $G(D,A) = \rho \times G(\tilde{D},A)$

$$= \rho \times \left(H(\tilde{D}) - \sum_{n=1}^{N} \tilde{r}_{n} H(\tilde{D}_{n}) \right)$$

其中
$$H(\tilde{D}) = -\sum_{c=1}^{C} \tilde{p}_c \log_2 \tilde{p}_c$$

原则: 让样本以不同概率划分到不同的子结点去

- 若样本x在属性 α 上的取值已知,则将x划入与其取值对应的子结点,且样本权值保持为 ω_x
- 若样本x在属性 α 上的取值未知,则将x划入所有子结点,且样本权值在与属性值对应的子结点中调整为 $\tilde{r}_n \cdot \omega_x$

编号 色泽 根蒂 敲声 纹理 脐部	水 触感 好瓜
1 蜷缩 浊响 清晰 凹陷	百 硬滑 是
2 乌黑 蜷缩 沉闷 清晰 凹陷	当 — 是
3 乌黑 蜷缩 — 清晰 凹陷	鱼 硬滑 是
4 青绿 蜷缩 沉闷 清晰 凹陷	鱼 硬滑 是
5 — 蜷缩 浊响 清晰 凹陷	鱼 硬滑 是
6 青绿 稍蜷 浊响 清晰 —	软粘 是
7 乌黑 稍蜷 浊响 稍糊 稍且	g 软粘 是
8 乌黑 稍蜷 浊响 — 稍且	四 硬滑 是
9 乌黑 — 沉闷 稍糊 稍且	四 硬滑 否
10 青绿 硬挺 清脆 — 平均	旦 软粘 否
11 浅白 硬挺 清脆 模糊 平均	且 — 香
12 浅白 蜷缩	旦 软粘 否
13 — 稍蜷 浊响 稍糊 凹陷	百 硬滑 否
14 浅白 稍蜷 沉闷 稍糊 凹陷	百 硬滑 否
15 乌黑 稍蜷 浊响 清晰 —	软粘 否
16 浅白 蜷缩 浊响 模糊 平均	且 硬滑 否
17青绿 沉闷 稍糊 稍止	四 硬滑 否

● 计算信息熵-以属性色泽为例

$$H(\tilde{D}) = -\sum_{c=1}^{C} \tilde{p}_c \log_2 \tilde{p}_c = -\left(\frac{6}{14} \log_2 \frac{6}{14} + \frac{8}{14} \log_2 \frac{8}{14}\right) = 0.985$$

$$H(\tilde{D}^{\dagger \sharp \sharp}) = -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1.000$$

$$H(\tilde{D}^{2}) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918$$

$$H(\tilde{D}^{\text{left}}) = -\left(\frac{0}{4}\log_2\frac{0}{4} + \frac{4}{4}\log_2\frac{4}{4}\right) = 0.000$$

参照教材《机器学习》-周志华P86-88示例

● 计算信息增益-以属性色泽为例

$$G(\tilde{D}, 色泽) = H(\tilde{D}) - \sum_{n=1}^{3} \tilde{r}_n H(\tilde{D}_n)$$

$$= 0.985 - \left(\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000\right)$$

$$= 0.306$$

$$G(D,$$
色泽 $) = \rho \times G(\tilde{D},$ 色泽 $) = \frac{14}{17} \times 0.306 = 0.252$

$$G(D,$$
 色泽) = 0.252

$$G(D, 敲声) = 0.145$$

$$G(D, 脐部) = 0.289$$

$$G(D, 根蒂) = 0.171$$

$$G(D, 纹理) = 0.424$$

$$G(D, 触感) = 0.006$$

- 因此选择属性"纹理"用于对根结点划分
 - ■属性不缺失样本
 - "纹理=清晰"分支: 样本 {1, 2, 3, 4, 5, 6, 15}
 - "纹理=稍糊" 分支: 样本 {7,9,13,14,17}
 - "纹理=模糊"分支: 样本 {11, 12, 16}
 - 且样本在各结点中的权重ω保持为1
 - ■属性缺失样本
 - 样本 $\{8, 10\}$:同时进入三个分支,权重 ω 分别为 $\frac{7}{15}$, $\frac{5}{15}$, $\frac{3}{15}$

● 最终生成的决策树

不同代价属性的处理

● 问题描述

- 不同的属性测量具有不同的代价
- 医疗诊断为例:
 - 属性:体温、血压、血常规、活检
 - 代价不同:所需时间、费用、友好性等

● 基本思想

- 在属性筛选度量标准中考虑属性的不同代价
- 优先选择低代价属性的决策树
- 必要时才依赖高代价属性

不同代价属性的处理

● 属性筛选度量标准1 [Tan et al., 1990, 1993]

$$G_{Cost}(D,a) = \frac{G(D,a)}{Cost(a)}$$

● 属性筛选度量标准2 [Nunez, et al., 1988, 1991]

$$G_{Cost}(D,a) = \frac{2^{G(D,a)} - 1}{(Cost(a) + 1)^{\omega}}$$

其中Cost(a)为属性a的代价

 $\omega \in [0,1]$ 为常数,决定代价对于信息增益的相对重要性

延伸阅读

- 概念学习系统(Concept Learning System, CLS)
 - ■1966年由Hunt等人提出,奠定决策树算法发展的基础
- 分类回归树(Classification And Regression Tree, CART)算法:
 - ■1984年由Breiman等人提出,是一种二分递归分割技术
- J. R. Quinlan
 - ■1979年: ID3算法; 1993年: C4.5算法
- 多变量决策树
 - OC1[Murthy et al., 1994]等