Листок 2. Многообразия (ориентируемость, касательное пространство)

Гладкие многообразия

Крайний срок сдачи 20.10.2020

Задачи со звездочками можно сдавать и после дедлайна.

- **1.** Можно ли на границе единичного квадрата ввести (а) структуру гладкого многообразия? (б) структуру подмногообразия \mathbb{R}^2 ?
- **2.** Рассмотрим пространства $n \times n$ -матриц с нормой $|A|^2 = \sum_{i,j} |a_i^j|^2$. Покажите, что следующие группы G являются гладкими многообразиями и опишите касательные пространство к группам G в их матричных единицах, если (a) $G = \mathrm{GL}(n,\mathbb{R});$ (б) $G = \mathrm{SL}(n,\mathbb{R});$ (а) $G = \mathrm{SO}(n,\mathbb{R});$ (б) $G = \mathrm{SU}(n,\mathbb{C}).$
 - **3.** Покажите, что $SL(2,\mathbb{R})$ как многообразие диффеоморфно полноторию.
 - **4.** (a) Постройте атлас $\mathbb{R}P^2$ и покажите, что оно неориентируемо.
- (б) Постройте атласы $\mathbb{R}P^n$. При каких n эти многообразия являются ориентируемыми, а при каких нет?
- **5.** Пусть отображение $F:S^n\to \mathbb{R}P^n$, сопоставляющее каждой точке сферы S^n проходящую через неё и начало координат прямую в \mathbb{R}^{n+1} . Докажите, что отображение F гладкое, dF невырожден во всех точках.
- **6.** (а) Докажите, что лист Мёбиуса и бутылка Клейна— неориентируемые многообразия. (б)* Докажите, что двумерное многообразие тогда и только тогда ориентируемо, когда не содержит в себе лист Мёбиуса.
- 7. Докажите, что гладкие структуры на множестве M совпадают тогда и только тогда, когда пространства гладких функций на этих многообразиях совпадают.
- **8.** (а) Приведите пример погружения многообразия в \mathbb{R}^n , взаимно однозначного с образом, но не являющегося вложением. (б) Пусть $f:N\to M$ гладкое отображение одного многообразия в другое. Если существует такое подмногообразие (L,g) многообразия M, что $f(N)\subset g(L)$, то существует единственное отображение $h:N\to L$ такое, что $g\circ h=f$. Всегда ли отображение h является гладким (непрерывным)? Приведите контрпример, если он существует. (В этом случае говорят, что отображение f пропускается через подмногообразие (L,g).)
- **9.** * Введите структуру гладкого многообразия на TM и T^*M . Являются ли они ориентируемыми?
- **10.** * Докажите, что компактное n-мерное многообразие с краем M может быть вложено в евклидово полупространство $H^N = (-\infty, 0] \times \mathbb{R}^{N-1}$ при достаточно большом N так, что образ ∂M лежит в пространстве $x^1 = 0$.