3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

3.23 Fall 2007 – Lecture 5 THE HYDROGEN E(ONOMY

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Last time

- 1. Commuting operators, Heisenberg principle
- 2. Measurements and collapse of the wavefunction
- 3. Angular momentum and spherical harmonics
- 4. Electron in a central potential and radial solutions

Simultaneous eigenfunctions of L², L_z

$$\hat{L}_{z}Y_{l}^{m}(\theta,\varphi) = m\hbar Y_{l}^{m}(\theta,\varphi)$$

$$\hat{L}^{2}Y_{l}^{m}(\theta,\varphi) = \hbar^{2}l(l+1)Y_{l}^{m}(\theta,\varphi)$$

$$Y_{l}^{m}(\theta,\varphi) = \Theta_{l}^{m}(\theta)\Phi_{m}(\varphi)$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

An electron in a central potential

$$\hat{H} = -\frac{\hbar^2}{2\mu} \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) + \frac{\hat{L}^2}{2\mu r^2} + \hat{V}(r)$$

$$\psi_{nlm}(\vec{r}) = R_{nlm}(r)Y_{lm}(\vartheta,\varphi)$$

An electron in a central potential (III)

$$u_{nl}(r) = r R_{nl}(r)$$
 $V_{eff}(r) = \frac{\hbar^2}{2\mu} \frac{l(l+1)}{r^2} - \frac{Ze^2}{4\pi\varepsilon_0 r}$

$$\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V_{eff}(r) \right] u_{nl}(r) = E_{nl} u_{nl}(r)$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Figures by MIT OpenCourseWare.

Solutions in a Coulomb Potential

5d

4f

59

Images removed; please see any visualization of the 5d, 4f, and 5g hydrogen orbitals.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

The Full Alphabet Soup

http://www.orbitals.com/orb/orbtable.htm

Courtesy of David Manthey. Used with permission. Source: http://www.orbitals.com/orb/orbtable.htm.

Good Quantum Numbers

• For an operator that does not depend on t:

$$\frac{d\langle A\rangle}{dt} = \frac{d\langle \Psi | \hat{A} | \Psi \rangle}{dt} = \left\langle \frac{\partial}{\partial t} \Psi | \hat{A} | \Psi \rangle + \left\langle \Psi | \frac{\partial}{\partial t} A | \Psi \rangle + \left\langle \Psi | \hat{A} | \frac{\partial}{\partial t} \Psi \rangle \right\rangle = \dots$$

$$\dots$$

$$\frac{d\langle A\rangle}{dt} = \frac{d\langle \Psi | \hat{A} | \Psi \rangle}{dt} = \left\langle \frac{\partial}{\partial t} \Psi | \hat{A} | \Psi \rangle + \left\langle \Psi | \hat{A} | \frac{\partial}{\partial t} \Psi \rangle \right\rangle = \dots$$

$$\dots$$

$$\frac{d\langle A\rangle}{dt} = \frac{d\langle \Psi | \hat{A} | \Psi \rangle}{dt} + \left\langle \Psi | \hat{A} | \Psi \rangle + \left\langle \Psi | \hat{A} | \Psi \rangle \right\rangle = \dots$$

$$\dots$$

$$\frac{d\langle A\rangle}{dt} = \frac{d\langle \Psi | \hat{A} | \Psi \rangle}{dt} + \left\langle \Psi | \hat{A} | \Psi \rangle + \left\langle \Psi | \hat{A} | \Psi \rangle \right\rangle = \dots$$

$$\frac{d\langle A\rangle}{dt} = \frac{d\langle \Psi | \hat{A} | \Psi \rangle}{dt} + \left\langle \Psi | \hat{A} | \Psi \rangle \right\rangle = \dots$$

 Then, if it commutes with the Hamiltonian, its expectation value does not change with time (it's a constant of motion – if we are in an eigenstate, that quantum number will remain constant)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Three Quantum Numbers

- $\hat{H} \leftrightarrow$ Principal quantum number **n** (energy, accidental degeneracy)

 $\hat{H} \leftrightarrow$ Principal quantum number **n** (energy, accidental degeneracy)

 $\hat{H} \leftrightarrow$ Principal quantum number **n** (energy, accidental degeneracy)

 $\hat{H} \leftrightarrow$ Principal quantum number **n** (energy, accidental degeneracy)

 $\hat{H} \leftrightarrow$ Principal quantum number **n** (energy, accidental degeneracy)

 $\hat{H} \leftrightarrow$ Principal quantum number **n** (energy, accidental degeneracy)
- $\hat{L}^2 \leftrightarrow$ Angular momentum quantum number I I = 0,1,...,n-1 (a.k.a. s, p, d... orbitals)
- $\hat{L}_z \leftrightarrow$ Magnetic quantum number \emph{m} \emph{m} = -l,-l+1,...,l-1,l

How do you measure angular momentum?

• Coupling to a (strong!) magnetic field \vec{B}

Image removed due to copyright restrictions.

Please see any experimental setup
for observing the Zeeman Effect.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Right experiment – wrong theory (Stern-Gerlach)

Image courtesy Teresa Knott. Used with Permission.

$$\hat{H} \rightarrow \hat{H} + \frac{\mu_B}{\hbar} (\hat{L} + 2\hat{S}) \cdot \vec{B} = \hat{H} + \frac{\mu_B}{\hbar} (\hat{L}_z + 2\hat{S}_z) B_z$$
Goudsmit and Uhlenbeck

Spin

- Dirac derived the relativistic extension of Schrödinger's equation; for a free particle he found two independent solutions for a given energy
- There is an operator (spin S) that commutes with the Hamiltonian and that can only have two eigenvalues
- In a magnetic field, the spin combines with the angular momentum, and they couple via $\hat{H} \rightarrow \hat{H} + \frac{\mu_B}{\hbar} (\hat{L} + 2\hat{S}) \cdot \vec{B}$

$$\hat{H} \rightarrow \hat{H} + \frac{\mu_B}{\hbar} (\hat{L} + 2\hat{S}) \cdot \vec{B}$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Spin Eigenvalues/Eigenfunctions

Norm (s integer → bosons, half-integer → fermions)

$$\hat{S}^2 \Psi_{spin} = \hbar^2 s (s+1) \Psi_{spin}$$

• Z-axis projection (electron is a fermion with s=1/2)

$$\hat{S}_z \Psi_{spin} = \pm \frac{\hbar}{2} \Psi_{spin}$$

• Spin-orbital: product of the "space" wavefunction and the "spin" wavefunction

Pauli Exclusion Principle

We can't have two electrons in the same quantum state \rightarrow

Any two electrons in an atom cannot have the same 4 quantum numbers n,l,m,m_s

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Figure by MIT OpenCourseWare.