

Modelos de Computación (2015/16) 3º Grado en Ingeniería Informática y Doble Grado 28 de Enero de 2016

Normas para la realización del examen:

Duración: 2:30 horas

El ejercicio 5 es voluntario y sirve para subir la nota (hasta 1 punto).

Δ Ejercicio 1 > Preguntas tipo test

[2.5 puntos]

Indicar si son verdaderas o falsas las siguientes afirmaciones

- NH El lenguaje de las palabras sobre {0, 1} en las que hay el doble de número de ceros que de unos es regular
- producciones unitarias que genere exactamente el mismo lenguaje que la gramática original. La gramática compuesta por la siguientes reglas de producción $\{S \to A | BA, B \to a|b, A \to a|aA\}$ es ambigua Dada una gramática independiente del contexto sin producciones nulas, siempre se puede construir una gramática sin
- UT A W El complementario de un lenguaje con un número finito de palabras es siempre regular
- infinitos árboles de derivación distintos En una gramática independiente del contexto en forma normal de Chomsky puede haber una palabra generada que tenga
- 0 En el algoritmo que transforma un autómata con pila a una gramática libre de contexto, hay que añadir las reglas S $[q_1,Z_0,q_0]$, donde q_0 es el estado inicial y Z_0 el símbolo inicial de la pila
- 7 La intersección de dos lenguajes aceptados por autómatas con pila no deterministas da lugar a un lenguaje independiente
- 600 En un autómata con pila determinista no puede haber transiciones nulas
- minista Todo lenguaje aceptado por un autómata finito no determinista puede también ser aceptado por un autómata finito deter-
- El conjunto de cadenas formado por las fechas con el formato dd/mm/aaaa (dos digitos para el día, dos para el mes y cuatro para el año, separados por el carácter //) forman un lenguaje regular

Δ Ejercicio 2

[2.5 puntos]

Construir un Autómata Finito Deterministico minimal que acepte el lenguaje generado por la siguiente gramática

$$S \rightarrow AB$$
 $A \rightarrow b$

$$B \rightarrow bBb$$

 $A \rightarrow Aa$

$$A \rightarrow Ac$$

 $B \rightarrow b$

Ejercicio 3 >

[2.5 puntos]

Encuentra una gramática libre de contexto en forma normal de Chomsky que genere el siguiente lenguaje sobre el alfabeto $\{0,1\}$

$$L = \{uu^{-1}ww^{-1} : u, w \in \{0,1\}^*\}$$

Comprueba con el algoritmo CYK si la cadena 011001 pertenece al lenguaje generado por la gramática

Ejercicio 4 D

[2.5 puntos]

Determinar si los siguientes lenguajes sobre el alfabeto {0,1} son regulares y/o independientes del contexto. Justifica las respuestas

- $=\{u\in\{0,1\}^*:u \text{ no contiene la subcadena '01' y el número de 1's es impar }\}$
- el conjunto de los palindromos que tienen la misma cantidad de 0 s que de 1 s.
- realmente definido sobre el alfabeto {0, 1, c}) = {ucx $u,x \in \{0,1\}^*, u^{-1}$ es una subcadena de x} donde c es un símbolo que no está en $\{0,1\}$ (este lenguaje está
- 4 el complementario del lenguaje {0'1' | i ≥ 0}

Ejercicio Adicional Voluntario

[+1 puntos]

Si L_1 y L_2 son lenguajes, sea $L_1 \diamond L_2 = \{xy | x \in L_1, y \in L_2, |x| = |y|\}$ Demostrar que si L_1 y L_2 son regulares, entonces $L_1 \diamond L_2$ es independiente del contexto. Dar un ejemplo en el que L_1 y L_2 son regulares y $L_1 \diamond L_2$ no lo es Dar un ejemplo en el que L_1 y L_2 son regulares y $L_1 \circ L_2$ no lo es