初中物理公式汇总

速度公式: $v = \frac{s}{t}$

单位 -速度 km/h km -时间

单位换算:

 $1 \text{ m} = 10 \text{dm} = 10^2 \text{cm} = 10^3 \text{mm}$ 1h=60min=3600 s; 1min=60s 1 m/s = 3.6 km/h

公式变形: 求路程--s = vt

求时间——t=s/v

重力与质量的关系:

G = mg

物理量 单位

G——重力 N m——质量

g---重力与质量的比值

g=9.8N/kg; 粗略计算时取 g=10N/kg。

密度公式:

物理量 单位 ρ——密度 kg/m³ g/cm³ *m*——质量 kg g V---体积 m^3 cm^3

单位换算: 1kg=10³ g $1 \text{g/cm}^3 = 1 \times 10^3 \text{kg/m}^3$ $1 \text{m}^3 = 10^6 \text{cm}^3$ $1L=1 dm^3=10^{-3}m^3$ $1 \text{mL} = 1 \text{cm}^3 = 10^{-6} \text{m}^3$

浮力公式:

 $F_{\varnothing} = G_{\vartheta} - F_{\Xi}$

物理量 单位 F = 一浮力

 $G_{\mathfrak{h}}$ ——物体的重力 N

 F_{π} ——物体浸没液体中时弹簧测力计的读数 N

 $F_{\not =} = G_{\sharp} = m_{\sharp} g$

 $F_{\mathcal{A}} = \rho_{\mathcal{R}} g V_{\mathcal{A}}$

物理量 单位

F_浮——浮力 ρ ——密度 N kg/m³

V_{**}——物体排开的液体的体积 g=9.8N/kg, 粗略计算时取 g=10N/kg G #--物体排开的液体 受到的重力 N -物体排开的液体 的质量

 $F_{\mathbb{A}} = G_{\mathfrak{M}}$

提示:[当物体处于<u>漂浮</u>或<u>悬浮</u>时]

P=F/S(固体) P=- 压强 Pa 或 N/m² P=- 压力 N Pa 或 N/m²

注意: S 是受力面积, 指 有受到压力作用的那部 分面积

面积单位换算: $1 \text{ cm}^2 = 10^{-4} \text{m}^2$ $1 \text{ mm}^2 = 10^{-6} \text{m}^2$

1

液体压强公式:

Pa 或 N/m² kg/m³

g=9.8N/kg, 粗略计算时取 g=10N/kg

单位

注意: 深度是指液体内部某一点 到自由液面的竖直距离;

 $p=\rho gh$

杠杆的平衡条件: 物理量 单位 $F_1L_1=F_2L_2$ F_1 —动力臂 M $F_1L_1=F_2L_2$ F_2 —阻力 F_2 —阻力 F_2 —阻力 F_2 —阻力臂 F_2 —阻力 F_2 —阻力 F_2 —阻力 F_2 —

提示: 应用杠杆平衡条件解题时, L_1 、 L_2 单位只要相同即可, 无须国际单位;

滑轮组:

$$F=rac{1}{n}G_{ar{eta}}$$
($G_{ar{eta}}=G_{ar{eta}}+G_{ar{eta}}$)
物理量

对于定滑轮而言:
$$: n=1 : F = G_{\text{by}}$$
 $s = h$

对于动滑轮而言:
$$: n=2$$
 $: F = \frac{1}{2} (G_{\eta} + G_{\eta})$ $s = 2h$

功的公式:

W=Fs

提示: 克服重力做功或重力做功 (即竖直方向):

$$W=Gh$$

公式变形: W=Pt

单位换算: 1W=1J/s 1 马力=735W 1kW=10³W

机械效率: $\eta = \frac{W_{\text{有用}}}{W_{\text{\omega}}} \times 100\%$ $\eta = \frac{W_{\text{ph}}}{W_{\text{\omega}}} \times 100\%$ $\eta = \frac{W_{\text{ph}}}{W_{\text{ph}}} \times 100\%$ $\eta = \frac{W_{\text{ph}}}{W_{\text{ph}}} \times 100\%$

提示: 机械效率 η 没有单位,用百分率表示,且总小于 W_{π} =Gh[对于所有简单机械] W_{Ξ} =Fs[对于杠杆、滑轮和斜面] W_{Ξ} =Pt[对于起重机和抽水机等电动机]

热量计算公式:

物体吸热或放热 $Q = c \ m \ _ \triangle t$ $\left\{ egin{array}{ll} \textbf{ $w} \textbf{ g} & \textbf{ ψ} \textbf{ d} \\ Q & --- \text{ w} \text{ w} \textbf{ d} & \text{ d} \\ c & --- \text{ t} \text{ k} \text{ g} \\ m & --- \text{ f} \textbf{ f} & \text{ k} \\ \text{ Δt} & --- \text{ l} \textbf{ g} & \text{ \mathbb{C}} \end{array} \right.$

提示:

当物体吸热后,终温 t 高于初温 t_0 , $\triangle t = t - t_0$ 当物体放热后,终温 t_0 低于初温 t, $\triangle t = t_0 - t$ $C_{\pi} = 4.2 \times 10^3 \, \text{J/(kg·}^{\circ}\text{C})$

电流定义式:

$$I = \frac{Q}{t}$$

提示: 电流等于 1s 内通过导体横截面的电荷量。

同一性: I, U, R 三量必须对应同一导体(同一段电路); 同时性: I, U, R 三量对应的是同一时刻。

变换式: R = U/IU=IR

电功公式:

提示:

- (1) I、U、t 必须对同一段电路、同一时刻而言。
- (2) 式中各量必须采用国际单位: 1 度=1 kWh = 3.6×10^{6} J。
- (3)普遍适用公式,对任何类型用电器都适用。

W = UIt 结合 U = IR →→ (串联) $W = I^2Rt$ W = UIt 结合 $I = U/R \rightarrow ($ **并联**) $W = \overline{R}$ t

只能用于如电烙铁、电热器、白炽 灯等纯电阻电路 (对含有电动机、 日光灯等非纯电阻电路不能用)

电热公式 (电阻产生的热量): (串联) $Q = I^2Rt$ (并联) Q = R如果电能全部转化为内能,则: $Q=I^2Rt=W=UIt$ 如电热器。

电功率公式: 物理量 单位 $\left\{egin{array}{lll} P--- 电功率 & W & kW \ W--- 电功 & J & k \cdot Wh \ t--- 通电时间 & h \end{array}
ight.$

串联电路的特点:

电流:在串联电路中,电流处处都相等。表达式: $I=I_1=I_2$

电压:电路两端的总电压等于各部分用电器两端电压之和。表达式: $U=U_1+U_2$

串联分压原理:
$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

串联电路中,电流在电路中做的总功等于电流在各部分电路所做的电功之和。 $W = W_1 + W_2$

$$\frac{W_1}{W_2} = \frac{R_1}{R_2}$$

各部分电路的电功与其电阻成正比。 $\frac{W_1}{W_2} = \frac{R_1}{R_2}$

串联电路的总功率等于各串联用电器的电功率之和。表达式: $P = P_1 + P_2$

$$\frac{P_1}{R_2} = \frac{R_1}{R_2}$$

串联电路中,各用电器的电功率与电阻成正比。表达式:

并联电路的特点:

电流: 在并联电路中,干路中的电流等于各支路中的电流之和。表达式: $I=I_1+I_2$

并联分流原理:
$$\frac{I_1}{I_2} = \frac{R_2}{R_1}$$

电压:各支路两端的电压相等。表达式: $U=U_1=U_2$

并联电路中, 电流在电路中做的总功等于电流在各支路所做的电功之和。 $W = W_1 + W_2$

各支路的电功与其电阻成反比。
$$\frac{W_1}{W_2} = \frac{R_2}{R_1}$$

并联电路的总功率等于各并联用电器的电功率之和。表达式: $P = P_1 + P_2$

$$\frac{P_1}{P_2} = \frac{P_1}{P_2}$$
 并联电路中,用电器的电功率与电阻成反比。表达式:

串、并联电路中用电器之间各个物理量的相关规律及变化比较:

串联: 电流 I 相等, 分电压 U, 电阻 R 越大, 分电压越多, 实际电功率 P 越大, 如果是小灯泡越亮, 产生的电热 Q 越多,消耗电能 W 越多。

(串联电路中,各个用电器的 U,P,Q,W 都与电阻 R 成正比)

并联: 电压 U 相等, 分电流 I, 电阻 R 越大, 分电流越小, 实际电功率 P 越小, 如果是小灯泡越暗, 产生的电热 O 越少,消耗电能 W 越少。

(并联电路中,各个用电器的 I, P, O, W 都与电阻 R 成反比)

初 中 物 理 公 式 一 览 表

物理量	主 要 公 式	主要单位
长度 (L)	(1) 用刻度尺测 (2)路程 $S = vt$ (3) 力的方向上通过的距离: $s=W / F$ (4) 力臂 $l_1=F_2 L_2 / F_1$ (5)液体深度 $h=p / (p \cdot g)$ (6)物体厚度 $h=V / S$ $a=\sqrt[3]{V}$	Km 、m、dm、cm 、mm 等 1km=1000m 1m=100cm
面积(S)	(1) 面积公式 $S=ab$ $S=a^2$ $S=\pi R^2=\frac{1}{4}\pi D^2$ (2) 体积公式 $s=V$ / h (3) 压强公式 $s=p$ / F	$m^2 \ dm^2 \ dm^2 \ cm^2$ $1m^2=10^2dm^2$ $1m^2=10^4cm^2$
体积 (V)	(1) 数学公式 $V_x=a^3$ $V_x=Sh=abh$ $V_x=Sh$ V 球 = $\frac{4}{3}$ π R^3 (2) 密度公式 $V=\frac{m}{\rho}$ (3) 用量筒或量杯 $V=V_2-V_1$ (4) 阿基米德原理 浸没时 $V=V_x=F_x/\rho_x$	m³、dm³、dm³、cm³ 1m³=10³dm³ 1dm³=10³cm³ 1cm³=10³mm³ 1m³=106cm³
时间(t)	(1) 速度定义 t=s/v (2) 功率 t=W/P (3) 用钟表测量	h. min. s 1h=60min 1min=60s
速度(v)	(1) v=s/t (2) $P = \frac{W}{t} = \frac{Fs}{t} = Fv$ $\mathbb{N} v = \frac{P}{F}$	m/s km/h 1m/s=3.6km/h
重力(G)	 (1) 重力公式 G = mg (2) 功的公式 G=W / h (3) 用弹簧秤测量 	N g=9.8N/kg; 粗略计算时取 g=10N/kg。
质量 (m)	 (1) 重力公式 m=G/g (2) 功的公式 W=Gh=mgh m=W / gh (3) 密度公式 m = ρV (4) 用天平测量 	t、kg、g、mg 1t=1000kg 1kg=1000g 1g=1000mg
密度(ρ)	(1) $\rho = \frac{m}{V}$ $m = \frac{G}{g}$ 有 $\rho = \frac{G}{gV}$ (2) 压强公式 $p = \rho gh$ $\rho = \frac{p}{gh}$ (3) 阿基米德原理 $F_{\mathfrak{F}} = \rho_{\mathfrak{K}} gV_{\mathfrak{F}}$ 则 $\rho_{\mathfrak{K}} = \frac{F_{\mathfrak{F}}}{gV_{\mathfrak{F}}}$	kg/m³ g/cm³ 1g/cm³=1000kg/m³

合力 (F)	(1) 同方向 F=F₁+F₂ (同一直线 <u>同方向</u> 二力的合力计算) (2) 反方向 F= F₁-F₂ (F ₁ >F ₂) (同一直线 <u>反方向</u> 二力的合力 计算)	N
压强 (p)	(1) $p = \frac{F}{S}$ (适用于一切固体和液体) (2) $p = \rho g h$ 适用于一切液体和侧面与底面垂直的固体(长方体、正方体、圆柱体)	1Pa=1N/m²
浮力 (F♯)	 (1) 称重法	N
动力、阻力	$F_1 l_1 = F_2 l_2$ \mathcal{M} $F_1 = \frac{F_2 l_2}{l_1}$ $F_2 = \frac{F_1 l_1}{l_2}$	l_1 与 l_2 单位相同即可
功(W)	(1) 定义 W=Fs 重力做功 W=Gh=mgh 摩擦力做功 W=fs (2) 总功 $W_{\&}=F_{_{\!$	1 J = 1 N·m = 1 w·s
机械效率 (η)	(1) $\eta = \frac{W_{f}}{W_{\dot{\otimes}}} = \frac{W_{f}}{W_{f} + W_{\tilde{\otimes}}} = \frac{1}{1 + \frac{W_{\tilde{\otimes}}}{W_{f}}}$ (2) $\eta = \frac{W_{f}}{W_{\dot{\otimes}}} = \frac{P_{f}t}{P_{\dot{\otimes}}t} = \frac{P_{f}}{P_{\dot{\otimes}}}$ (3) 对于滑轮组 $\eta = \frac{G}{nF}$ (n 为在动滑轮上的绳子股数) (4) $\eta = \frac{W_{f}}{W_{\dot{\otimes}}} = \frac{Gh}{Gh + G_{\dot{\otimes}}h} = \frac{G}{G + G_{\dot{\otimes}}}$	由于有用功总小于总功, 所以η总小于1
拉力(F)	(1) 不计动滑轮和绳重及摩擦时, $F = \frac{1}{n}G$ (2) 不计绳重及摩擦时 $F = \frac{1}{n}(G_{\eta\eta} + G$ 动) (3) 一般用 $F = \frac{G}{\eta n}$ (n 为在动滑轮上的绳子股数) (4) 物体水平匀速运动,一般 $F = f$ (f 一般为摩擦力)	N
功率(P)	(1) $P = \frac{W}{t}$ (2) $P = \frac{W}{t} = \frac{Fs}{t} = Fv$ (3) 从机器的铭牌上读出	1w=1J/s=1N·m/s
比热容(c)	(1) $Q_{\pi} = cm(t-t_0)$ $Q_{\pi} = cm(t_0-t)$	C 的单位为 J/(Kg·°C), 水的比热为

	可统一为 $\mathbf{Q}=\mathbf{cm}\Delta\mathbf{t}$ 则 $c=\frac{Q}{m\Delta t}$ (2) 不计热量的损失时 $\mathbf{Q}_{\mathbf{z}}=\mathbf{Q}_{\mathbf{z}}$ (热平衡方程)	4.2×10³J/(Kg·°C),物 理意义为1kg水温度升高 1°C吸收的热量为4.2× 10³J
电流 (1)	(1) 定义 $I = \frac{Q}{t}$ (Q 为电荷量) (2) 欧姆定律 $I = \frac{U}{R}$ (3) 电功 W=UIt 则 $I = \frac{W}{Ut}$ (4) 电功率 P=UI 则 $I = \frac{P}{U}$ (P 为电功率) (5) 焦耳定律 Q=I²Rt 则 $I = \sqrt{\frac{Q}{Rt}}$ (6) 纯电阻电路 W=UIt=I²Rt 则 $I = \sqrt{\frac{W}{Rt}}$ (7) 电功率推导式 P=UI=I²R 则 $I = \sqrt{\frac{P}{R}}$ (8) 串联: $I = I_1 = I_2$ 并联: $I = I_1 + I_2$ (9) 从电流表上读出	1A=1000mA 1mA=1000 後安
电压(U)	(1) 欧姆定律 U=IR (2) $U = \frac{W}{It}$ (3) $U = \frac{P}{I}$ (4) 焦耳定律 $Q = \frac{U^2}{R}t$ 则 $U = \sqrt{\frac{QR}{t}}$ (Q 为产生的热量) (5) $P = \frac{U^2}{R}$ 则 $U = \sqrt{PR}$ (6) 串联: U=U ₁ +U ₂ 并联: U=U ₁ =U ₂ (7) 从电压表上读出	1KV=1000V, 1V=1000mV。 一节干电池电压为 1.5V 一节蓄电池电压为 2.0V 我国家庭电路电压为 220V 对人体的安全电压不超过 36V

电阻(R)	(1) $R = \frac{U}{I}$ (伏安法测电阻的原理) (2) 由 W=UIt=I ² Rt= $\frac{U^2}{R}t$ 得 $R = \frac{W}{I^2t}$ 或 $R = \frac{U^2t}{W}$ (3) $P = I^2R$ 则 $R = \frac{P}{I^2}$ $P = \frac{U^2}{R}$ 则 $R = \frac{U^2}{P}$ (4) 焦耳定律Q=I ² Rt 则 $R = \frac{Q}{I^2t}$ 或 $R = \frac{U^2t}{Q}$ (5) 串联: R=R ₁ +R ₂ 则R ₁ =R-R ₂ R ₂ =R-R ₁ (6) 并联: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ $R = \frac{R_1R_2}{R_1 + R_2}$ (7) 从欧姆表上读出或从铭牌上读出: 如滑动变阻器上的"10Q 1A"等字样。	1 Ω = 1V/A 1K Ω = 10 ³ Ω 1M Ω = 10 ⁶ Ω
电功(W)	(1) W=UIt (2) W=Q= $I^2Rt = \frac{U^2}{R}t$ (纯电阻电路) (3) W= Pt (4) 从电能表上读出(其单位为 K·Wh)	国际单位为 J, 电能表上常 用单位为 KW·h 1K·Wh=3.6×10 ⁶ J
电功率(P)	(1) $P = UI = I^2 R = \frac{U^2}{R}$ (2) $P = \frac{W}{t}$ (3) 从用电器上读出	1Kw=1000w 1 马力=735w
电热 (Q)	(1) $Q = I^2Rt = \frac{U^2}{R}t$ 当不计热量损失时,Q=W=UIt= I^2Rt (2) 热平衡方程 Q $_{\rm M}$ =Q $_{\rm M}$	其单位为 J