University of Rome "La Sapienza"

Master in Artificial Intelligence and Robotics

Machine Learning

A.Y. 2018/2019

Prof. Luca locchi

Luca locchi 12. Kernels Methods 1 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Sapienza University of Rome, Italy Master in Artificial Intelligence and Robotics Machine Learning (2018/19)

12. Kernels Methods

Luca locchi

Luca locchi 12. Kernels Methods 2 / 23

Summary

- Kernel functions
- Kernelized linear models
- Kernelized SVM classification
- Kernelized SVM regression

References

C. Bishop. Pattern Recognition and Machine Learning. Sect. 7.1

Luca locchi 12. Kernels Methods 3 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Kernels

So far:

Objects represented as fixed-length feature-vectors $\mathbf{x} \in \mathbb{R}^M$ or $\phi(\mathbf{x})$.

Issue:

what about objects with variable length or infinite dimensions?

Examples:

- strings
- trees
- image features
- time-series
- ...

Luca locchi 12. Kernels Methods 4 / 23

Kernels

Approach:

use a similarity measure $k(\mathbf{x}, \mathbf{x}') \geq 0$ between the objects \mathbf{x}, \mathbf{x}' . $k(\mathbf{x}, \mathbf{x}')$ is called a kernel function.

Note: If we have $\phi(\mathbf{x})$ a possible choice is $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$.

Luca locchi 12. Kernels Methods 5 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Kernels

Definition

Kernel function: a real-valued function $k(\mathbf{x}, \mathbf{x}') \in \mathbb{R}$, for $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, where \mathcal{X} is some abstract space.

Typically k is:

• symmetric: $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$

• non-negative: $k(\mathbf{x}, \mathbf{x}') \geq 0$.

Note: Not strictly required!

Luca locchi 12. Kernels Methods 6 / 23

Kernel examples

Linear

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

Polynomial

$$k(\mathbf{x}, \mathbf{x}') = (\beta \mathbf{x}^T \mathbf{x}' + \gamma)^d, \ d \in \{2, 3, \ldots\}$$

Radila Basis Function (RBF)

$$k(\mathbf{x}, \mathbf{x}') = \exp(-\beta |\mathbf{x} - \mathbf{x}'|^2)$$

Sigmoid

$$k(\mathbf{x}, \mathbf{x}') = \tanh(\beta \mathbf{x}^T \mathbf{x}' + \gamma)$$

Luca locchi

12. Kernels Methods

7 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Kernelized linear models

Consider a linear model $y(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$

Minimize
$$J(\mathbf{w}) = (\mathbf{t} - \mathbf{X}\mathbf{w})^T (\mathbf{t} - \mathbf{X}\mathbf{w}) + \lambda \|\mathbf{w}\|^2$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}$$
 is the design matrix.

Optimal solution

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda I_M)^{-1} \mathbf{X}^T \mathbf{t} = \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda I_N)^{-1} \mathbf{t},$$
 with I_N the $N \times N$ identity matrix.

Luca locchi 12. Kernels Methods 8 / 23

Kernelized linear models

Let
$$\alpha = (\mathbf{X}\mathbf{X}^T + \lambda I_N)^{-1}\mathbf{t}$$
,

then
$$\hat{\mathbf{w}} = \mathbf{X}^T \alpha = \sum_{i=1}^N \alpha_i \mathbf{x}_i$$
.

Hence we have $y(\mathbf{x}; \hat{\mathbf{w}}) = \hat{\mathbf{w}}^T \mathbf{x} = \sum_{i=1}^N \alpha_i \mathbf{x}_i^T \mathbf{x}$.

If we consider a linear kernel $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$, we can rewrite the model as $y(\mathbf{x}; \hat{\mathbf{w}}) = \sum_{i=1}^{N} \alpha_i k(\mathbf{x}_i, \mathbf{x})$

Solution

$$\alpha = (K + \lambda I_N)^{-1} \mathbf{t}$$
, with $K = \mathbf{X} \mathbf{X}^T$.

Luca locchi 12. Kernels Methods 9 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Kernelized linear models

Linear model with any kernel k

$$y(\mathbf{x}; \hat{\mathbf{w}}) = \sum_{i=1}^{N} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

Solution

$$\alpha = (K + \lambda I_N)^{-1} \mathbf{t}$$

Gram matrix

$$K = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

Luca locchi 12. Kernels Methods 10 / 23

Kernel trick

Kernel trick or kernel substitution

If input vector \mathbf{x} appears in an algorithm only in the form of an inner product, replace the inner product with some kernel.

- Can be applied to any x (even infinite size)
- No need to know $\phi(\mathbf{x})$
- Directly extend many well-known algorithms

Luca locchi 12. Kernels Methods 11 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Kernelized SVM - classification

Solution has the form:

$$\hat{\mathbf{w}} = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i$$

Linear model (with linear kernel)

$$y(\mathbf{x}, \hat{\mathbf{w}}) = \operatorname{sign}(w_0 + \sum_{i=1}^{N} \alpha_i \mathbf{x}_i^T \mathbf{x})$$

Kernel trick

$$y(\mathbf{x}, \hat{\mathbf{w}}) = \operatorname{sign}\left(w_0 + \sum_{i=1}^N \alpha_i k(\mathbf{x}_i, \mathbf{x})\right)$$

Luca locchi 12. Kernels Methods 12 / 23

Kernelized SVM - classification

Lagrangian problem for kernelized SVM classification

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

Solution

$$a_i = ...$$

$$w_0 = rac{1}{|SV|} \sum_{\mathbf{x}_k \in SV} \left(t_k - \sum_{\mathbf{x}_j \in S} a_j t_j k(\mathbf{x}_k, \mathbf{x}_j)
ight)$$

Luca locchi 12. Kernels Methods 13 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

SVM - regression

Linear model for regression $y = \mathbf{w}^T \mathbf{x}$ and data set $D = \{(\mathbf{x}_i, t_i)_{i=1}^N\}$ Minimize the regularized loss function

$$J(\mathbf{w}) = \sum_{i=1}^{N} E(y_i, t_i) + \lambda ||\mathbf{w}||^2,$$

where $y_i = \mathbf{w}^T \mathbf{x}_i$.

Note: if $E(y_i, t_i) = (y_i - t_i)^2$ it is equivalent to regularized linear regression.

Luca locchi 12. Kernels Methods 14 / 23

SVM - regression

Solution

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda I_M)^{-1} \mathbf{X}^T \mathbf{t} = \mathbf{X}^T \alpha$$

Predictions are made using:

$$y(\mathbf{x}; \hat{\mathbf{w}}) = \sum_{i=1}^{N} \hat{\alpha}_i \mathbf{x}_i^T \mathbf{x}.$$

Luca locchi 12. Kernels Methods 15 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Kernelized SVM - regression

Apply the kernel trick:

$$y(\mathbf{x}; \hat{\mathbf{w}}) = \sum_{i=1}^{N} \alpha_i k(\mathbf{x}_i, \mathbf{x}), \text{ with } \alpha = (K + \lambda I_N)^{-1} \mathbf{t}$$

Due to K all data points are involved and α is not sparse.

Luca locchi 12. Kernels Methods 16 / 23

Kernelized SVM - regression

Consider

$$J(\mathbf{w}) = C \sum_{i=1}^{N} E_{\epsilon}(y_i, t_i) + \frac{1}{2} ||\mathbf{w}||^2,$$

with C inverse of λ and an ϵ -insensitive error function:

$$E_{\epsilon}(y,t) = \begin{cases} 0 & \text{if } |y-t| < \epsilon \\ |y-t| - \epsilon & \text{otherwise} \end{cases}$$

Not differentiable \rightarrow difficult to solve.

Luca locchi 12. Kernels Methods 17 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Kernelized SVM - regression

Introduce slack variables $\xi_i^+, \xi_i^- \geq 0$:

$$t_i \le y_i + \epsilon + \xi_i^+$$

$$t_i \ge y_i - \epsilon - \xi_i^-$$

Points inside the ϵ -tube $y_i - \epsilon \le t_i \le y_i + \epsilon \Rightarrow \xi_i = 0$

$$\xi_i^+ > 0 \Rightarrow t_i > y_i + \epsilon$$

$$\xi_i^- > 0 \Rightarrow t_i < y_i - \epsilon$$

with
$$y_i = y(\mathbf{x}_i; \mathbf{w})$$

Luca locchi 12. Kernels Methods 18 / 23

Kernelized SVM - regression

Loss function can be rewritten as:

$$J(\mathbf{w}) = C \sum_{i=1}^{N} (\xi_i^+ + \xi_i^-) + \frac{1}{2} ||\mathbf{w}||^2,$$

subject to the constraints:

$$t_i \leq y(\mathbf{x}_i, \mathbf{w}) + \epsilon + \xi_i^+$$

 $t_i \geq y(\mathbf{x}_i, \mathbf{w}) - \epsilon - \xi_i^-$
 $\xi_i^+ \geq 0$
 $\xi_i^- \geq 0$

This is a standard quadratic program (QP), can be "easily" solved.

Luca locchi

12. Kernels Methods

19 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Kernelized SVM - regression

Lagrangian problem

$$\tilde{L}(\mathbf{a}, \mathbf{a}') = \ldots \sum_{n=1}^{N} \sum_{m=1}^{N} \ldots k(\mathbf{x}_n, \mathbf{x}_m) \ldots$$

from which we compute \hat{a}_n , \hat{a}'_n (sparse values, most of them are zero)

Prediction

$$y(\mathbf{x}) = \sum_{n=1}^{N} (\hat{a}_n - \hat{a}'_n) k(\mathbf{x}, \mathbf{x}_n) + \hat{w}_0$$

$$\hat{w}_0 = t_n - \epsilon - \sum_{m=1}^{N} (\hat{a}_m - \hat{a}'_m) k(\mathbf{x}_n, \mathbf{x}_m)$$

for some data point n such that $0 < a_n < C$

Luca locchi 12. Kernels Methods 20 / 23

Kernelized SVM - regression

Support vectors contribute to predictions

$$\hat{a}_n > 0 \Rightarrow \epsilon + \xi_n + y_n - t_n = 0$$

data point lies on or above upper boundary of the ϵ -tube

$$\hat{a}'_n > 0 \Rightarrow \epsilon + \xi_n - y_n + t_n = 0$$

data point lies on or below lower boundary of the ϵ -tube

All other data points inside the ϵ -tube have $\hat{a}_n = 0$ and $\hat{a}'_n = 0$ and thus do not contribute to prediction.

Luca locchi 12. Kernels Methods 21 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Kernelized SVM - regression

 ϵ insensitive error function (red)

support vectors and ϵ insensitive tube

Luca locchi 12. Kernels Methods 22 / 23

Summary

- Kernel methods overcome difficulties in defining non-linear models
- Kernelized SVM is one of the most effective ML method for classification and regression
- Still requires model selection and hyper-parameters tuning

Luca locchi 12. Kernels Methods 23 / 23