Entry Test MCQs: Conic Sections - Exercise 6.1 (Chapter 6, Mathematics Part-II, Class 12)

These 20 multiple-choice questions are designed for an entry test, focusing on circles from Exercise 6.1, Chapter 6: Conic Sections. They test conceptual understanding of circle equations, centers, radii, tangents, and circle relationships, with distractors reflecting common errors.

MCQs: Conic Sections - Circles

- **1.** What is the radius of the circle $x^2 + y^2 6x + 4y + 13 = 0$?
 - (a) $\sqrt{13}$
 - (b) 0
 - (c) 4
 - (d) $\sqrt{9}$

Answer: b) $0 (g = -3, f = 2, c = 13, \text{ radius} = \sqrt{9 + 4 - 13} = 0, \text{ point circle}).$

2. A circle has center (5, -2) and radius 4. What is its equation in general form?

(a)
$$x^2 + y^2 - 10x + 4y + 13 = 0$$

(b)
$$x^2 + y^2 + 10x - 4y + 13 = 0$$

(c)
$$x^2 + y^2 - 10x + 4y + 25 = 0$$

(d)
$$x^2 + y^2 + 10x - 4y - 13 = 0$$

Answer: a) $(x-5)^2 + (y+2)^2 = 16 \Rightarrow x^2 + y^2 - 10x + 4y + 13 = 0$.

3. The equation of a circle with diameter endpoints (-3,2) and (5,-6) is:

(a)
$$x^2 + y^2 - 2x + 4y - 27 = 0$$

(b)
$$x^2 + y^2 + 2x - 4y - 27 = 0$$

(c)
$$x^2 + y^2 - 2x + 4y + 27 = 0$$

(d)
$$x^2 + y^2 - 2x - 4y - 27 = 0$$

Answer: a) Center = (1, -2), radius = $\sqrt{32}$, equation: $(x - 1)^2 + (y + 2)^2 = 32$.

- **4.** If a circle passes through (4,5), (-4,-3), and (8,-3), what is the coefficient of x in its general form equation?
 - (a) -4
 - (b) 4

- (c) -8
- (d) 8

Answer: a) Equation: $x^2 + y^2 - 4x + 2y - 25 = 0$, coefficient of x: -4.

- 5. The center of the circle $5x^2 + 5y^2 + 14x + 12y 10 = 0$ lies in which quadrant?
 - (a) First
 - (b) Second
 - (c) Third
 - (d) Fourth

Answer: c) Divide by 5: $x^2 + y^2 + \frac{14}{5}x + \frac{12}{5}y - 2 = 0$, center: $\left(-\frac{7}{5}, -\frac{6}{5}\right)$, third quadrant.

- **6.** A circle is tangent to both axes in the second quadrant with radius a. What is its center?
 - (a) (a, a)
 - (b) (-a, a)
 - (c) (-a, -a)
 - (d) (a, -a)

Answer: b) Tangent to x-axis at (-a,0), y-axis at (0,a), center: (-a,a).

- 7. The distance between the centers of circles $x^2+y^2+2x-2y-7=0$ and $x^2+y^2-6x+4y+9=0$ is:
 - (a) 5
 - (b) 3
 - (c) $\sqrt{13}$
 - (d) 7

Answer: a) Centers: (-1,1), (3,-2), distance: $\sqrt{(3+1)^2 + (-2-1)^2} = 5$.

- 8. Two circles touch externally if:
 - (a) Distance between centers equals the difference of their radii.
 - (b) Distance between centers equals the sum of their radii.
 - (c) Distance between centers is less than the sum of their radii.
 - (d) Distance between centers is greater than the sum of their radii.

Answer: b) External touching: $|C_1C_2| = r_1 + r_2$.

- **9.** For a circle tangent to x y 4 = 0 at (1, -3) with radius 2, what is one possible center?
 - (a) $(1+\sqrt{2},-3-\sqrt{2})$
 - (b) $(1 \sqrt{2}, -3 \sqrt{2})$
 - (c) (1, -3)
 - (d) (3,-1)

Answer: a) Solve: $(1-h)^2 + (-3-k)^2 = 4$, perpendicular to line slope 1, gives $h = 1 \pm \sqrt{2}$, $k = -3 \mp \sqrt{2}$.

- **10.** The circle passing through (a,0), (0,b), and (0,0) has the equation:
 - (a) $x^2 + y^2 ax by = 0$
 - (b) $x^2 + y^2 + ax + by = 0$
 - (c) $x^2 + y^2 ax + by = 0$
 - (d) $x^2 + y^2 + ax by = 0$

Answer: a) Solve: c = 0, $g = -\frac{a}{2}$, $f = -\frac{b}{2}$, equation: $x^2 + y^2 - ax - by = 0$.

- **11.** If a circle's center lies on 4x 3y 3 = 0 and passes through (3, -1), (0, 1), what is the coefficient of y?
 - (a) -18
 - (b) 18
 - (c) -9
 - (d) 9

Answer: a) Equation: $x^2 + y^2 - 15x - 18y + 17 = 0$, coefficient of y: -18.

- 12. The line 3x 2y = 0 is tangent to the circle $x^2 + y^2 + 6x 4y = 0$ because:
 - (a) Distance from center to line equals the radius.
 - (b) Distance from center to line is zero.
 - (c) Line passes through the center.
 - (d) Radius is perpendicular to the line.

Answer: a) Center: (-3, 2), radius: $\sqrt{13}$, distance: $\frac{|3(-3)-2(2)|}{\sqrt{13}} = \sqrt{13}$.

- **13.** What is the radius of the circle $4x^2 + 4y^2 8x + 12y 25 = 0$?
 - (a) $\sqrt{38}$
 - (b) $\frac{\sqrt{38}}{2}$
 - (c) $\sqrt{25}$
 - (d) $\frac{\sqrt{25}}{2}$

Answer: b) Divide by 4: $x^2 + y^2 - 2x + 3y - \frac{25}{4} = 0$, radius: $\sqrt{1 + \frac{9}{4} + \frac{25}{4}} = \frac{\sqrt{38}}{2}$.

- **14.** The circle passing through (5,6), (-3,2), (3,-4) has center at:
 - (a) $(\frac{7}{3}, \frac{4}{3})$
 - (b) $\left(-\frac{7}{3}, -\frac{4}{3}\right)$
 - (c) $\left(\frac{7}{3}, -\frac{4}{3}\right)$
 - (d) $\left(-\frac{7}{3}, \frac{4}{3}\right)$

Answer: c) Solve: $g = -\frac{7}{3}$, $f = -\frac{4}{3}$, center: $(\frac{7}{3}, -\frac{4}{3})$.

15.	A circle with radius 2 and center on $2x - 3y + 3 = 0$ passing through $(-3, 1)$ has how many possible equations?
	(a) 1
	(b) 2
	(c) 3
	(d) 0
	Answer: b) Quadratic in k: $13k^2 + 10k - 3 = 0$, yields two solutions.
16.	The parametric equations $x = 3\cos\theta$, $y = 3\sin\theta$ represent a circle with:
	(a) Center $(0,0)$, radius 3
	(b) Center (3, 3), radius 3
	(c) Center $(0,0)$, radius 9
	(d) Center $(3,0)$, radius 3
	Answer: a) Standard parametric form: center $(0,0)$, radius 3.
17.	If a circle is tangent to $x + 3y - 3 = 0$ at $(1,4)$, and passes through $(-1,8)$, what is one possible radius?
	(a) $\sqrt{10}$
	(b) $\sqrt{250}$
	(c) 10
	(d) 5
	Answer: a) Solve: $r^2 = 10$ or $r^2 = 250$, so $r = \sqrt{10}$.
18.	The circles $x^2 + y^2 + 2x - 8 = 0$ and $x^2 + y^2 - 6x + 6y - 46 = 0$ touch internally because:
	(a) Distance between centers equals sum of radii.
	(b) Distance between centers equals difference of radii.
	(c) Distance between centers is zero.
	(d) Radii are equal.
	Answer: b) Distance: 5, radii: 3, 8; $8 - 3 = 5$.
19.	If the circle $x^2 + y^2 - 2\sqrt{2}x + 6\sqrt{3}y + 21 = 0$ has center $(\sqrt{2}, -3\sqrt{3})$, what is its radius?
	(a) $2\sqrt{2}$
	(b) $\sqrt{2}$
	(c) 4
	(d) 2
	Answer: a) Radius: $\sqrt{(\sqrt{2})^2 + (-3\sqrt{3})^2 - 21} = 2\sqrt{2}$.
20.	The condition for a line to be tangent to a circle is:
	(a) Distance from center to line equals the radius

- (b) Line intersects the circle at two points.
- (c) Line passes through the center.
- (d) Distance from center to line is greater than the radius.

Answer: a) Tangent touches at one point, distance equals radius.

