Exercises on the Elvis Problem - Part I

1 Preliminaries

Exercise 1.1. Suppose $f: \mathbb{R}^n \to \overline{\mathbb{R}}$.

- (a) The effective domain of $f(\cdot)$ is defined by $dom(f) := \{x : f(x) < \infty\}$. Show if $f(\cdot) \in \mathcal{F}$, then dom(f) is a convex set.
- (b) If dom(f) = \mathbb{R}^n , show that $f \in \mathcal{F}$ if and only if

$$f(x_{\lambda}) \le \lambda f(x_0) + (1 - \lambda)f(x_1) \tag{1}$$

for all $x_0, x_1 \in \mathbb{R}^n$ and $0 \le \lambda \le 1$, and where $x_{\lambda} := \lambda x_0 + (1 - \lambda)x_1$.

- (c) Define an arithmetic and an order relation on $\overline{\mathbb{R}}$ so that the property that a lsc $f(\cdot)$ is convex is characterized by (1).
- (a) Proof. Assume that $f \in \mathcal{F}$. Let $0 \le \lambda \le 1$ and $x_0, x_1 \in \text{dom}(f)$. Then since epi(f) is convex,

$$(x_0, f(x_0)), (x_1, f(x_1)) \in \operatorname{epi}(f)$$

$$\lambda(x_0, f(x_0)) + (1 - \lambda)(x_1, f(x_1)) \in \operatorname{epi}(f)$$

$$(\lambda x_0 + (1 - \lambda)x_1, \lambda f(x_0) + (1 - \lambda)f(x_1)) \in \operatorname{epi}(f)$$

By definition of epi(f),

$$f(\lambda x_0 + (1 - \lambda)x_1) \le \lambda f(x_0) + (1 - \lambda)f(x_1).$$

Since $x_0, x_1 \in \text{dom}(f), f(x_0) < \infty \text{ and } f(x_1) < \infty \text{ so that}$

$$f(\lambda x_0 + (1 - \lambda)x_1) < \infty.$$

Therefore, $\lambda x_0 + (1 - \lambda)x_1 \in \text{dom}(f)$ so dom(f) is a convex set.

(b) Proof.

Let $dom(f) = \mathbb{R}^n$.

 (\Rightarrow) Assume that $f(\cdot) \in \mathcal{F}$. Let $0 \leq \lambda \leq 1$ and $x_0, x_1 \in \mathbb{R}^n$. Since $dom(f) = \mathbb{R}^n$, $f(x_0), f(x_1) < \infty$. Then

$$(x_0, f(x_0)), (x_1, f(x_1)) \in \operatorname{epi}(f)$$

 $(\lambda x_0 + (1 - \lambda)x_1, \lambda f(x_0) + (1 - \lambda)f(x_1)) \in \operatorname{epi}(f)$

By definition of the epi(f),

$$f(x_{\lambda}) = f(\lambda x_0 + (1 - \lambda)x_1) \le \lambda f(x_0) + (1 - \lambda)f(x_1).$$

(\Leftarrow) Assume that $f(x_{\lambda}) \leq (1 - \lambda)f(x_0) + \lambda f(x_1)$. Let $0 \leq \lambda \leq 1$ and $x_0, x_1 \in \mathbb{R}^n$. Since $dom(f) = \mathbb{R}^n$, $f(x_0), f(x_1) < \infty$. Then $(x_0, f(x_0)), (x_1, f(x_1)) \in epi(f)$ so that $epi(f) \neq \emptyset$ meaning $f(\cdot)$ is proper. Using the assumption,

$$f(x_{\lambda}) \le \lambda f(x_0) + (1 - \lambda)f(x_1)$$

Then epi(f) is convex since

$$(x_{\lambda}, \lambda f(x_0) + (1 - \lambda)f(x_1)) \in \operatorname{epi}(f).$$

To see that $f(\cdot)$ is lsc consider the sequence $(x_k, f(x_k)) \in \operatorname{epi}(f)$ such that

$$(x_k, f(x_k)) \to (\overline{x}, f(\overline{x})).$$

Since $\overline{x} \in \mathbb{R}^n$ we have that $\overline{x} \in \text{dom}(f)$ so that $f(\overline{x}) < \infty$. Therefore, $(\overline{x}, f(\overline{x})) \in \text{epi}(f)$ so epi(f) is closed and $f(\cdot)$ is lsc. It follows that $f(\cdot) \in \mathcal{F}$.

(c) Rules of arithmetic on $\overline{\mathbb{R}}$ (to be added to the usual arithmetic rules)

$$\alpha + \infty = \infty + \alpha = \infty \text{ for } -\infty < \alpha \le \infty,$$

$$\alpha - \infty = -\infty + \alpha = -\infty \text{ for } -\infty < \alpha \le \infty,$$

$$\alpha \infty = \infty \alpha = \infty, \alpha(-\infty) = (-\infty)\alpha = -\infty \text{ for } 0 \le \alpha \le \infty$$

$$\alpha \infty = \infty \alpha = -\infty, \alpha(-\infty) = (-\infty)\alpha = \infty \text{ for } -\infty < \alpha < 0$$

$$\infty - \infty = -\infty + \infty = \infty$$

The order relation on $\overline{\mathbb{R}}$ is $-\infty \leq \alpha \leq \infty$ for every $\alpha \in \overline{\mathbb{R}}$.

Exercise 1.2. Suppose $S \subseteq \mathbb{R}^n$. Show $I_S(\cdot)$

- (a) is lsc if and only if S is closed;
- (b) is a convex function if and only if S is a convex set; and
- (c) belongs to \mathcal{F} if and only if S belongs to \mathcal{C} .
- (a) Proof.
 - (\Rightarrow) Let $I_S(\cdot)$ be lsc, then $\operatorname{epi}(I_S)$ is closed. Consider the sequence $(x_k, r_k) \in \operatorname{epi}(I_S)$ with $(x_k, r_k) \to (\overline{x}, \overline{r})$. Then $(\overline{x}, \overline{r}) \in \operatorname{epi}(I_S)$ so that $I_S(\overline{x}) \leq \overline{r} \in \mathbb{R}$. Then $I_S(\overline{x}) = 0$ so that $\overline{x} \in S$. By similar reasoning, the sequence $x_k \in S$ and since $x_k \to \overline{x}$, S is closed.
 - (\Leftarrow) Let S be closed. Consider the sequences $x_k \in S$ with $x_k \to \overline{x}$ and $r_k \ge 0$ with $r_k \to \overline{r} \ge 0$. Then $\overline{x} \in S$ and $(x_k, r_k), (\overline{x}, \overline{r}) \in \operatorname{epi}(I_S)$ such that $(x_k, r_k) \to (\overline{x}, \overline{r})$. Therefore $\operatorname{epi}(I_S)$ is closed so that I_S is lsc.
- (b) Proof.

Recall that $x_{\lambda} := (1 - \lambda) x_0 + \lambda x_1$.

(⇒) Let $I_S(\cdot)$ be convex function, $0 \le \lambda \le 1$, and $x_0, x_1 \in S$. Since $I_S(\cdot)$ is convex, epi (I_S) is convex and $(x_0, r_0), (x_1, r_1) \in \text{epi}(I_S)$ for $r_0, r_1 \ge 0$. So that $(x_\lambda, \lambda r_0 + (1 - \lambda)r_1) \in \text{epi}(I_S)$. Then

$$I_S(x_\lambda) \le \lambda r_0 + (1 - \lambda)r_1 \Rightarrow I_S(x_\lambda) = 0 \Rightarrow x_\lambda \in S.$$

So S is a convex set.

 (\Leftarrow) Let $0 \le \lambda \le 1$. Assume S is a convex set with $x_0, x_1 \in S$ and $(x_0, r_0), (x_1, r_1) \in \operatorname{epi}(I_S)$. Since S is convex,

$$x_{\lambda} \in S \Rightarrow I_S(x_{\lambda}) = 0.$$

Furthermore, $I_S(x_0) = 0$ and $I_S(x_1) = 0$. Then $0 \le r_0, r_1$ so that $0 \le \lambda r_0 + (1 - \lambda)r_1$. Then we have that

$$I_S(x_\lambda) \le \lambda r_0 + (1 - \lambda)r_1$$

so that $(x_{\lambda}, \lambda r_0 + (1 - \lambda)r_1) \in \operatorname{epi}(I_S)$ meaning $\operatorname{epi}(I_S)$ is convex so that $I_S(\cdot)$ is a convex function.

(c) Proof.

Assume that $S \subseteq \mathbb{R}^n$.

- (⇒) Let $I_S(\cdot) \in \mathcal{F}$ so that $I_S(\cdot)$ is lsc, convex and proper. In order to show that $S \in \mathcal{C}$, must show that S is closed, convex, and nonempty. By parts (a) and (b), S is closed and convex. Since $I_S(\cdot)$ is proper, $\operatorname{epi}(I_S) \neq \emptyset$ or there exists $(x,r) \in \operatorname{epi}(I_S)$ such that $r \geq I_S(x)$. Then $I_S(x) \neq \infty$ so $x \in S$.
- (\Leftarrow) Let $S \in \mathcal{C}$ so that S is closed, convex, and nonempty. By parts (a) and (b), $I_S(\cdot)$ is lsc and convex. To show that $I_S(\cdot)$ is proper, let $x \in S$. Then for every $r \geq 0$, $I_S(x) = 0 \geq r$ meaning $(x, r) \in \operatorname{epi}(I_S)$.

Exercise 1.3. Show that F is closed and convex if and only if

$$F = \bigcap \left\{ \mathcal{H}_{\vec{n},r} : \vec{n} \in \mathbb{R}^n, r \in \mathbb{R} \text{ are such that } F \subseteq \mathcal{H}_{\vec{n},r} \right\}$$

Proof.

 (\Rightarrow) Assume that F is closed and convex. Define the following

$$H := \bigcap \left\{ \mathcal{H}_{\vec{n},r} : \vec{n} \in \mathbb{R}^n, r \in \mathbb{R} \text{ are such that } F \subseteq \mathcal{H}_{\vec{n},r} \right\}$$

Let v be arbitrary such that $v \notin F$. Since F is closed, we can find $x = \operatorname{proj}_F(v)$. Then by the Separation Theorem, for each v there exists $\vec{n} \in \mathbb{R}^n$ such that

$$\sup\{\langle v', \vec{n}\rangle : v' \in F\} < \langle v, \vec{n}\rangle.$$

In particular, $\vec{n} = \frac{v-x}{2}$. Then the half space that separates v from F is

$$\mathcal{H}_{\vec{n},r} := \{ w : \langle \vec{n}, w \rangle \le r \}.$$

Where $r = \langle \vec{n}, \frac{v+x}{2} \rangle$ so that $F \subseteq \mathcal{H}_{\vec{n},r}$. $\langle \vec{n}, w \rangle = ||\vec{n}|| ||w|| \cos \theta$.) Since $F \subseteq \mathcal{H}_{\vec{n},r}$ for every such $\mathcal{H}_{\vec{n},r}$,

$$F \subseteq H$$
.

Furthermore, since above we showed that for every $v \notin F$ we can find a $\mathcal{H}_{\vec{n},r} \not\ni v$ we have $F^c \cap H = \emptyset$. Thus F = H.

(\Leftarrow) Assume that F = H. Let $x_0, x_1 \in \mathcal{H}_{\vec{n},r}$ for some $\vec{n} \in \mathbb{R}^n$, $r \in \mathbb{R}$ such that $F \subseteq \mathcal{H}_{\vec{n},r}$. Then $\langle \vec{n}, x_0 \rangle \leq r$ and $\langle \vec{n}, x_1 \rangle \leq r$ so that

$$\langle \vec{n}, \lambda x_0 + (1 - \lambda)x_1 \rangle = \lambda \langle \vec{n}, x_0 \rangle + (1 - \lambda)\langle \vec{n}, x_1 \rangle$$

 $\leq \lambda r + (1 - \lambda)r$
 $= r$

Therefore $\lambda x_0 + (1 - \lambda)x_1 \in \mathcal{H}_{\vec{n},r}$ so that each $\mathcal{H}_{\vec{n},r}$ is convex. Since F is the intersection of convex sets, it itself is convex. Similarly since each half space is closed, the intersection of all half spaces is closed. Thus F is both convex and closed.