

Scalar curvature rigidity and higher index theory

Workshop: Geometric moduli spaces - rigidity, genericity, stability

Contributor: Thomas Tony

Classical existence question

Does a given manifold admit a Riemannian metric of positive scalar curvature (pscm)?

Let M be a closed connected spin manifold of dimension m.

 \widehat{A} -genus: $\widehat{A}(M) := \operatorname{ind} \mathcal{D} \in \mathbb{Z}$.

Rosenberg index: $\alpha(M) := \operatorname{ind} \mathcal{D}_{\mathcal{L}} \in \mathrm{KO}_m(\mathrm{C}^*\pi)$ (higher index).

- $ightharpoonup \mathcal{D}$: Dirac operator induced by the spinor bundle of M.
- $ightharpoonup \mathcal{D}_{\mathcal{L}}$: $\mathbb{C}l_n$ -linear spin Dirac operator twisted by the Mishchenko-Fomenko bundle $\mathcal{L}(M) \coloneqq \widetilde{M} \times_{\pi} \mathrm{C}^*\pi$.
- $C^*\pi$: group C^* -algebra of the fundamental group π of M.

Fact. The Rosenberg index is the most general known index-theoretical obstruction to the existence of a pscm on ${\cal M}.$

Examples. ightharpoonup The \widehat{A} -genus of the n-torus is zero but the Rosenberg index does not vanish.

▶ There exist exotic spheres Σ^k of non-zero Rosenberg index.

General principle classical index replace by higher index

What geometric usefull information can we deduce from a non-vanishing higher index?

Classically: A non-vanishing \widehat{A} -genus gives rise to a non-vanishing \mathcal{D} -harmonic spinor u. In extreme geometric situations u is parallel, hence

$$|u|_p^2 = \langle u(p), u(p) \rangle_p = \text{const.}$$

New method

Technical Lemma (T. [3]). Let \mathcal{A} be a unital Real C^* -algebra and $\mathcal{S} \to M$ a graded Real \mathcal{A} -linear Dirac bundle with induced \mathcal{A} -linear Dirac operator \mathcal{D} .

- If the higher index of D does not vanish, there exists a family u_{ϵ} of almost D-harmonic sections.
- ▶ If, moreover, u_{ϵ} is L^2 -almost parallel, the family is almost constant, i.e. there exist constants C, r > 0 and an element $a \in \mathcal{A}^+$ such that

$$\left\| a - \left\langle u_{\epsilon}(p), u_{\epsilon}(p) \right\rangle_{p} \right\|_{\mathcal{A}} < C\epsilon^{r} \quad \forall p \in M \ \forall \epsilon \in (0, 1).$$

Rigidity question

How rich is the space of Riemannian metrics satisfying a certain lower scalar curvature bound?

Theorem (Llarull [2]). Let $f: M \to S^m$ be a smooth map of non-zero degree and $m \ge 3$. Then

We generalize an extremality and rigidity statement by Goette and Semmelmann [1] (a generalization of Llarull's theorem).

Main Theorem (T. [3]). Let $f: M \to N$ be a spin map between two closed connected Riemannian manifolds of dimension n+k and n, respectively. Suppose

- ▶ $\mathcal{R}_N \ge 0$, $\mathrm{scal}_N > 2 \operatorname{Ric}_N > 0$ and
- $\blacktriangleright \chi(N) \cdot \deg_{\mathsf{hi}}(f) \neq 0 \in \mathsf{KO}_k(\mathbf{C}^*\pi).$

Then the following implication holds:

$$\frac{\operatorname{scal}_{M} \geq \operatorname{scal}_{N} \circ f}{g_{M} \geq f^{*}g_{N} \text{ on } \bigwedge^{2}TM} \right\} \Longrightarrow \left\{ \begin{array}{c} \operatorname{scal}_{M} = \operatorname{scal}_{N} \circ f \text{ and} \\ f \text{ is a Riem. submersion} \end{array} \right.$$

Definition. Let f be as in the Main Theorem.

- f is called *spin* if $w_i(TM) = f^*(w_i(TN))$ (i = 1, 2) holds.
- $\label{eq:poisson}$ The **higher mapping degree** of f is defined for a regular value p of the map f via

$$\deg_{\mathsf{hi}}(f) \coloneqq \operatorname{ind}\left(\mathcal{D}_{\mathcal{S}f^{-1}(p)\otimes\mathcal{L}(M)\upharpoonright_{f^{-1}(p)}}\right) \in \mathrm{KO}_{k}(\mathrm{C}^{*}\pi).$$

Proof. The map f gives rise to a $\mathbb{C}l_{n+k,n}\otimes\mathbb{C}^*\pi$ -linear Dirac bundle $\mathcal{S}M\otimes f^*\mathcal{S}N\otimes\mathcal{L}(M)$ with induced Dirac operator $\mathcal{D}_{\mathcal{L}}$ satisfying

- ▶ $\operatorname{ind}(\mathcal{D}_{\mathcal{L}}) = \deg_{\operatorname{hi}}(f) \cdot \chi(N) \neq 0$ and
- $\mathcal{D}_{\mathcal{L}}^2 \geq \nabla^* \nabla + \frac{1}{4} (\operatorname{scal}_M \operatorname{scal}_N \circ f).$

The rigidity statement follows from the Technical Lemma.

Examples. The Main Theorem applies to the following maps:

- $ightharpoonup \operatorname{pr}_1: \mathbb{RP}^{2n} \times \Sigma^k \to \mathbb{RP}^{2n}$

References

- S. Goette and U. Semmelmann. "Scalar curvature estimates for compact symmetric spaces". In: Diff. Geom. Appl. 16.1 (2002).
- [2] M. Llarull. "Sharp estimates and the Dirac operator". English. In: Mathematische Annalen 310.1 (1998).
- B] T. Tony. "Scalar curvature rigidity and the higher mapping degree". In: Journal of Functional Analysis 288.3 (2025). To appear.

