Modelowanie Matematyczne - Projekt 3

Bartłomiej Krawczyk, 310774

Zadanie

Zestaw 6 JG

Opis modelowanego problemu:

Przedsiębiorstwo produkuje trzy produkty P1, P2, P3 (sztuki). Każdy z tych produktów potrzebuje trzech różnych składników S1, S2, S3 (kg/jednostkę). Każdy z produktów ma inną ceną jednostkową sprzedaży C_P1 , C_P2 , C_P3 (tyś.PLN/jednostkę). Firma zwraca uwagę na ekologię i szacuje jednostkowy poziom zanieczyszczeń emitowanych dla poszczególnych produktów Z_P1 , Z_P2 , Z_P3 (kg/jednostkę). Dostępne są również jednostkowe koszty produkcji K_P1 , K_P2 , K_P3 (tyś.PLN/jednostkę).

Ograniczenia:

- 1. Nie można użyć więcej niż 110 kg składnika S1, ale 100 kg jest akceptowalne.
- 2. Zaleca się użycie 50 kg składnika S2, ale zużycie powyżej 55 kg nie jest akceptowalne.
- 3. Nie jest akceptowalne zużycie składnika S3 powyżej $50~{\rm kg}.$
- 4. Zakłada się się, że produkcja produktu P1 powinna być nie mniejsza niż 3 sztuki, a produktu P3 nie mniejsza niż 5 sztuk.

Cele postawione przez zarządzających firmą:

- 1. Maksymalizacja zysków; dążenie do zysku na poziomie 150 tyś. PLN, ale akceptowalny jest zysk na poziomie 130 tyś PLN.
- 2. Minimalizacja emisji zanieczyszczeń; dążenie do emisji na poziomie 30 kg, ale poziom 35 kg jest akceptowalny.
- 3. Minimalizacja kosztów produkcji; dążenie do kosztów na poziomie 70 tyś. PLN, ale koszty na poziomie 80 tyś. sa akceptowalne.

Polecenia do wykonania:

- 1. (2) Sformułować i opisać wielokryterialny model planowania produkcji z wykorzystaniem metody punktu odniesienia.
- 2. (3) Sformułować i opisać wielokryterialny model optymalnego planowania produkcji z wykorzystaniem zbiorów rozmytych.
- 3. (10) Sformułować równoważne zadanie optymalizacji dla zadania 2 z wykorzystaniem zbiorów rozmytych adaptując podejście Zimmermana dla więcej niż jednego kryterium.
- 4. (3) Zapisz zadanie/zadania sformułowane w punkcie 1 w postaci do rozwiązania z wykorzystaniem wybranego narzędzia implementacji (np. AMPL, AIMMS) i rozwiąż to zadanie/zadania. W przypadku niedopuszczalności zadania zaproponuj zmianę celów i/lub innych parametrów.
- 5. (7) Zapisz zadania sformułowane w punkcie 3 w postaci do rozwiązania z wykorzystaniem wybranego narzędzia implementacji (np. AMPL, AIMMS) i rozwiąż te zadania. W przypadku niedopuszczalności zadania zaproponuj zmianę celów i/lub innych parametrów.
- 6. (3) Porównaj rozwiązania zadań z poprzednich dwóch punktów.
- 7. (2) Rozwiąż zadanie z punktu 2 za pomoca pakietu R FuzzyLP. Należy w obliczeniach rozpatrywać niezależnie każde z kryteriów.
- 8. (3) Zaproponuj i zastosuj graficzną formę analizy rozwiązań.

9. (2) Opisz zalety i wady modelowania opisanego problemu z wykorzystaniem zbiorów rozmytych.

Dane:

produkt	S1	S2	S3	Cx	Zx	Kx
P1	2	8	4	9	1	1
P2	10	1	0	21	1	3
P3	4	4	2	11	3	3

produkt [sztuki] \ składniki [kg/jednostkę]	S1	S2	S3
P1	2	8	4
P2	10	1	0
P3	4	4	2

produkt [sztuki] \ cena jednostkowa [tyś.PLN/jednostkę]	Cx
P1	9
P2	21
P3	11

produkt [sztuki] \ emitowane zanieczyszczenia [kg/jednostkę]	Zx
P1	1
P2	1
P3	3

produkt [sztuki] \ koszty produkcji [tyś.PLN/jednostkę]	Kx
P1	1
P2	3
P3	3

Opracowany domyślny model

Został przygotowany bazowy model na bazie, który w zależności od podpunktu zadania został rozbudowany o dodatkowe zbiory, parametry, zmienne decyzyjne, ograniczenia i funkcje oceny.

Zbiory

- $PRODUCTS = \{P1, P2, P3\}$ zbiór możliwych do wyprodukowania produktów,
- $COMPONENTS = \{S1, S2, S3\}$ zbiór składników, z których wytwarzane są produkty,
- $OBJECTIVES = \{S1S2incomeemissionscost\}$ zbiór nazwanych zmiennych decyzyjnych, dla których ustalone są aspiracje. Tak zdefiniowany zbiór pozwala na uproszczenie zapisu niektórych ograniczeń.

Parametry

• $PRODUCT_INCOME[p], p \in PRODUCTS$ - jednostkowa cena sprzedaży produktów p (tyś.PLN/jednostkę),

PRODUCTS	$PRODUCT_INCOME[p]$
P1	9
P2	21
P3	11

• $EMITTED_POLLUTANTS[p], p \in PRODUCTS$ - jednostkowy poziom zanieczyszczeń emitowanych dla poszczególnych produktów p (kg/jednostkę),

$\overline{PRODUCTS}$	$EMITTED_POLLUTANTS[p]$
P1	1
P2	1
P3	3

• $PRODUCTION_COST[p], p \in PRODUCTS$ - jednostkowe koszty produkcji produktu p (tyś.PLN/jednostkę),

PRODUCTS	$PRODUCTION_COST[p]$
P1	1
P2	3
P3	3

- $PRODUCT_COMPONENTS[p][c], p \in PRODUCTS, c \in COMPONENTS$ - wymagana ilość składnika c do wytworzenia produktu p.

$\overline{PRODUCT_COMPONENTS[p][c]}$	S1	S2	S3
P1	2	8	4
P2	10	1	0
P3	4	4	2

Dodatkowe parametry wynikające z zadanych ograniczeń:

- $COMPONENT_USAGE_HARD_LIMIT[c], c \in COMPONENTS$ - maksymalna ilość składnika c jaką można wykorzystać,

$\overline{COMPONENTS}$	$COMPONENT_USAGE_HARD_LIMIT[c]$
S1	110
S2	55
S3	50

• $MINIMAL_PRODUCTION[p], p \in PRODUCTS$ - minimalna ilość sztuk produktu p jaką należy wyprodukować,

PRODUCTS	$MINIMAL_PRODUCTION[p]$
P1	3
P2	0
P3	5

- $MIN_INCOME = 130$ minimalny akceptowalny poziom zarobków,
- MAX EMISSIONS = 35 maksymalny akceptowalny poziom emisji zanieczyszczeń,
- $MAX_COST = 80$ maksymalny akceptowalny koszt wytwarzania wszystkich produktów.

Parametry wynikające z zadanych aspiracji:

• $ASPIRATIONS[o], o \in OBJECTIVES$ - aspiracje ustalone dla poszczególnych zmiennych decyzyjnych.

$\overline{OBJECTIVES}$	ASPIRATIONS[o]
S1	100
S2	50
income	150
emissions	30
cost	70

Zmienne decyzyjne

- $production[p], p \in PRODUCTS$ zmienna reprezentująca ilość wyprodukowanych produktów typu p,
- $component_usage[c], c \in COMPONENTS$ reprezentuje całkowite wykorzystanie składnika typu c do produkcji wszystkich produktów,
- income zmienna pomocnicza oznaczająca całkowity zysk ze sprzedaży produktów,
- emissions całkowite zanieczyszczenia wyemitowane podczas produkcji wszystkich produktów,
- cost sumaryczne koszty produkcji wyrobów.

W celu prostszego zapisu wzorów na zadane aspiracje został zdefiniowany dodatkowy wektor zmiennych decyzyjnych:

• $objectives[o], o \in OBJECTIVES$ - zmienna agregująca wartości kilku innych zmiennych decyzyjnych. W ramach tej zmiennej zostały także zdefiniowane odpowiednie ograniczenia:

$$objectives[S1] = component_u sage[S1]$$

 $objectives[S2] = component_u sage[S2]$
 $objectives[income] = income$
 $objectives[emissions] = emissions$
 $objectives[cost] = cost$

Ograniczenia

Ograniczenia wynikające z treści:

• Poszczególne składniki sa wykorzystywane do produkcji różnych produktów w różnych proporcjach:

$$\forall c \in COMPONENTS$$
:

$$component_usage[c] = \sum_{p \in PRODUCTS} PRODUCT_COMPONENTS[p,c] * production[p]$$

 Na całkowity zysk składają się zarobki ze sprzedaży wyprodukowanych wyrobów pomniejszone o koszty produkcji:

$$income = (\sum_{p \in PRODUCTS} PRODUCT_INCOME[p] * production[p]) - cost$$

Całkowity emisje są rezultatem zanieczyszczeń wytworzonych podczas produkcji poszczególnych produktów:

$$emissions = \sum_{p \in PRODUCTS} EMITTED_POLLUTANTS[p] * production[p]$$

• Całkowite koszty produkcji składają się z kosztów wytworzenia poszczególnych produktów:

$$cost = \sum p \in PRODUCTSPRODUCTION_COST[p] * production[p]$$

Ograniczenia wynikające z zadanych ograniczeń:

• Zadane są limity wykorzystania poszczególnych składników, których przekroczenie jest nie akceptowalne:

$$\forall c \in COMPONENTS: component_usage[c] <= COMPONENT_USAGE_HARD_LIMIT[c]$$

• Narzucona jest minimalna produkcja poszczególnych produktów:

$$\forall p \in PRODUCTS : production[p] >= MINIMAL_PRODUCTION[p]$$

• Oczekujemy minimalnych zysków na poziomie MIN INCOME:

$$income >= MIN \ INCOME$$

- Można wyprodukować maksymalnie $MAX_EMISSIONS$ zanieczyszczeń:

$$emissions <= MAX_EMISSIONS$$

- Koszty produkcji nie mogą przekroczyć MAX_COST :

$$cost <= MAX \ COST$$

Funkcja oceny

Funkcje oceny, które są optymalizowane będą zdefiniowane oddzielnie w zależności od rozwiązywanego podpunktu.

1. Sformułować i opisać wielokryterialny model planowania produkcji z wykorzystaniem metody punktu odniesienia.

Model bazuje na przygotowanym modelu podstawowym. W tym rozdziale zostaną jedynie zdefiniowane parametry, ograniczenia, i zmienne decyzyjne, które zostały zdefiniowane, by wykorzystać metodę punktu odniesienia.