Práctica 0 Preliminares de Análisis

Pablo Brianese

15 de abril de 2021

Definición 1. Dadas $f, g : \mathbb{R}^n \to \mathbb{R}$ ambas en $L(\mathbb{R}^n)$, definimos la convolución de la siguiente manera

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$
 (1)

Ejercicio 1. Probar que si $f, g, h \in L^1(\mathbb{R}^n)$ y $\lambda \in \mathbb{R}$, entonces valen:

1.
$$f * g = g * f$$

2.
$$f * (g + h) = f * g + f * h$$

3.
$$f * (g * h) = (f * g) * h$$

4.
$$\lambda(f * q) = f * (\lambda q)$$

5.
$$||f * g||_1 \le ||f||_1 ||g||_1$$

Observación 1. Las propiedades anteriores se pueden resumir diciendo que $(L^1(\mathbb{R}^n),\|-\|_1)$ es un álgebra de Banach conmutativa con la convolución como producto.

Solución. 1 Haremos un argumento por clases crecientes.

Supongamos que f,g son las funciones características de subconjuntos medibles $A,B\subseteq\mathbb{R}^n$. Observemos que $\mathbbm{1}_C(x-y)=\mathbbm{1}_{x-C}(y)$ para todo par $x,y\in\mathbb{R}^n$ y todo subconjunto $C\subseteq\mathbb{R}^n$. Luego para todo $x\in\mathbb{R}^n$

$$f * g(x) = \int_{\mathbb{R}^n} \mathbb{1}_A(y) \mathbb{1}_B(x - y) dy = \int_{\mathbb{R}^n} \mathbb{1}_A(y) \mathbb{1}_{x - B}(y) dy$$
 (2)

$$= \int_{\mathbb{R}^n} \mathbb{1}_{A \cap (x-B)}(y) dy = \lambda(A \cap (x-B))$$
 (3)

$$g * f(x) = \int_{\mathbb{R}^n} \mathbb{1}_A(x - y) \mathbb{1}_B(y) dy = \int_{\mathbb{R}^n} \mathbb{1}_A(x - y) \mathbb{1}_B(x - (x - y)) dy$$
 (4)

$$= \int_{\mathbb{R}^n} \mathbb{1}_A(x-y) \mathbb{1}_{x-B}(x-y) dy = \int_{\mathbb{R}^n} \mathbb{1}_{A \cap (x-B)}(x-y) dy$$
 (5)

$$= \int_{\mathbb{R}^n} \mathbb{1}_{x-A\cap(x-B)}(y) dy = \lambda(x-A\cap(x-B))$$
 (6)

Ahora la ecuación que necesitamos se sigue de la invarianza por traslaciones (+x) y reflexiones (-) de la medida de Lebesgue, algo que es facil de ver en el caso de los rectángulos que generan su σ -álgebra. Concretamente, para todo $x \in \mathbb{R}^n$

$$\lambda(A \cap (x - B)) = \lambda(x - A \cap (x - B)) \tag{7}$$

En conclusión f*g=g*f, al menos en el caso de las funciones características. Supongamos $f\geq 0$. Y pensemos en el caso en que g es la función característica, $g=\mathbbm{1}_A$, de un conjunto boreliano $A\subseteq \mathbb{R}^n$.

Esto nos permite calcular, para todo $x \in \mathbb{R}^n$, fórmulas muy similares para ambas convoluciones

$$f * \mathbb{1}_A(x) = \int_{\mathbb{R}^n} f(y) \mathbb{1}_A(x - y) dy$$
 (8)

$$= \int_{\mathbb{R}^n} f(y) \mathbb{1}_{x-A}(y) \mathrm{d}y \tag{9}$$

$$\mathbb{1}_A * f(x) = \int_{\mathbb{R}^n} f(x - y) \mathbb{1}_A(y) dy$$
(10)

$$= \int_{\mathbb{R}^n} f(x-y) \mathbb{1}_A(x-(x-y)) dy$$
 (11)

$$= \int_{\mathbb{R}^n} f(x-y) \mathbb{1}_{x-A}(x-y) dy$$
 (12)

Sea $\{f_n\}_n$ una sucesión de funciones simples nonegativas que convergen puntualmente a f. Por el teorema de convergencia dominada

$$\lim_{n \to \infty} f_n * \mathbb{1}_A(x) = \lim_{n \to \infty} \int_{\mathbb{D}^n} f_n(y) \mathbb{1}_{x-A}(y) \mathrm{d}y$$
 (13)

$$= \int_{\mathbb{D}^n} f(y) \mathbb{1}_{x-A}(y) \mathrm{d}y \tag{14}$$

$$= f * \mathbb{1}_A(x) \qquad (\forall x \in \mathbb{R}^n) \qquad (15)$$

$$\lim_{n \to \infty} \mathbb{1}_A * f_n(x) = \lim_{n \to \infty} \int_{\mathbb{R}^n} f_n(x - y) \mathbb{1}_{x - A}(x - y) dy$$
 (16)

$$= \int_{\mathbb{D}_n} f(x-y) \mathbb{1}_{x-A}(x-y) \mathrm{d}y \tag{17}$$

$$= \mathbb{1}_A * f(x) \qquad (\forall x \in \mathbb{R}^n) \tag{18}$$