Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 ПО ДИСЦИПЛИНЕ: ОСНОВЫ ЭЛЕКТРОНИКИ

Исследование характеристик и параметров полупроводниковых диодов

Студент	Палладий Е.И	
Группа	ИУ7-31Б	

Название предприятия: НУК ИУ МГТУ им. Н. Э. Баумана

Студент	Палладий Е.И.
Преподаватель	Оглоблин Д.И.

СОДЕРЖАНИЕ

1.	Цель работы	2
2.	Эксперимент 1	3
3.	Эксперимент 2	8
4.	Эксперимент 3	1(
5.	Эксперимент 4	15

1 Цель работы

Получение и исследование статических и динамических характеристик германиевого и кремниевого полупроводниковых диодов с целью определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобретение навыков расчета моделей полупроводниковых приборов в программах *Multisim* и *Mathcad* по данным, полученным в экспериментальных исследованиях, а также включение модели в базу компонентов.

Добавление модели полупроводникового диода, описанного в формате *PCPICE*, в базу данных *MULTISIM*

1. Я создал новое семейство компонентов в *User Database* и назвал его *lab3*.

2. Задал схемное обозначение элемента в окне $Component\ RefDes\$ как D.

3. Запустил мастер создания компонентов (Component Wizard).

4. Настроил графическое представление компонента.

5. Определил параметры выводов компонента.

6. Загрузил данные для своего диода D2d2998d.

7. Связал символ на схеме с электрической моделью, поменяв местами контакты A и K.

8. Добавил готовый компонент в библиотеку *Multisim*.

9. Проверил, что диод появился в базе данных.

Исследование ВАХ полупроводниковых диодов с использованием мультиметров

1. Сначала я собрал схему, которая включала два мультиметра, резистор на 1 Ом, источник напряжения на 2 В, заземление и диод KD209A для измерения прямого тока.

2. Затем провел измерения и построил вольт-амперную характеристику для прямого тока.

3. После этого пересобрал схему для измерения обратного тока, развернув диод.

Selected Trace:I(R1)

4. Затем выполнил измерения и построил вольт-амперную характеристику для обратного тока.

Исследование ВАХ полупроводниковых диодов с использованием осциллографа и генератора

1. Смоделировал схему

2. Настроил генератор

3. Настроил осиллограф и получил его ВАХ на экране

4. Получил следующих график в Grapher View

5. Сохраню полученные данные в текстовом файле и открыл его в ${\it MathCAD}$

 $VAX := READPRN("D:\BAX.txt")$

+		0	1
	0	-6.183·10-4	-2.211.10-5
	1	-5.183·10-4	-1.09·10-5
	2	-4.183·10-4	3.10-7
	3	-3.183·10-4	1.15.10-2
	4	-2.183·10-4	2.271 · 10-5
	5	-1.183·10-4	3.391.10-5
	6	-1.835·10-5	4.512.10-5
VAX =	7	8.165.10-5	5.632.10-5
	8	1.817 · 10-4	6.753 · 10 - 5
	9	2.817 · 10 - 4	7.873 · 10 - 5
	10	3.817.10-4	8.993 · 10 - 5
	11	4.817.10-4	1.011.10-4
	12	5.817 · 10 - 4	1.123 · 10 - 4
	13	6.817 10-4	1.235.10-4
	14	7.817 · 10 - 4	1.348 10-4
	15	8.817 10-4	

	0	-6.183 · 10 -4
	1	-5.183 · 10 - 4
	2	-4.183 10-4
	3	-3.183 • 10 - 4
	4	-2.183·10-4
	5	-1.183 · 10 -4
(0)	6	-1.835 10-5
$VAX^{\langle 0 \rangle} =$	7	8.165.10-2
	8	1.817 · 10 - 4
	9	2.817 · 10 - 4
	10	3.817 10-4
	11	4.817 10-4
	12	5.817 10-4
	13	6.817 10-4
	14	7.817 10-4
	15	

6. Построил ВАХ

7. Нашел теоретические характеристики диода, выбрав 3 произвольные точки на графике

$$\begin{split} Ud1 &:= \left(VAX^{\langle 0 \rangle}\right)_{203} = 0.02 & Ud2 := \left(VAX^{\langle 0 \rangle}\right)_{502} = 0.05 & Ud3 := \left(VAX^{\langle 0 \rangle}\right)_{802} = 0.08 \\ Id1 &:= \left(VAX^{\langle 1 \rangle}\right)_{203} = 2.886 \times 10^{-3} & Id2 := \left(VAX^{\langle 1 \rangle}\right)_{502} = 9.75 \times 10^{-3} & Id3 := \left(VAX^{\langle 1 \rangle}\right)_{802} = 0.022 \\ Rb &:= \frac{Ud1 - 2.Ud2 + Ud3}{Id1} & Rb = 0.035 & + \\ NFt &:= \frac{3.Ud2 - 2.Ud1 - Ud3}{In(2)} & NFt = 0.043 \\ Io &:= Id1 \cdot exp \left(\frac{Ud3 - 2.Ud2}{NFt}\right) & Io = 1.83 \times 10^{-3} \end{split}$$

8. Взял четвертую точку и рассчитал характеристики диода методом *Given Minerr*

9. Выполнил сравнение практических и теоретических данных, в моем случае максимальное значение силы тока не превышает 0.03

Idiod :=
$$0, 10^{-5} ... 3 \cdot 10^{-2}$$

$$Udiod(Idiod) := Idiod \cdot Rb + Ft \cdot ln \left(\frac{Idiod + Is0}{Is0} \right)$$

1. Настроил осциллограф на измерение временной развертки сигнала генератора: частота генератора $1 \kappa \Gamma$ ц, амплитуда 10 B.

2. Собрал схему со своим диодом

3. Параллельно нагрузочному резистору поставил накопительный конденсатор, среднее напряжение выросло. Получился однополупериодный выпрямитель.

ЗАКЛЮЧЕНИЕ

Целью данного исследования было получение и анализ статических и динамических характеристик германиевых и кремниевых полупроводниковых диодов с целью определения параметров модели полупроводниковых диодов и их последующего включения в базу данных программ для схемотехнического анализа. Я приобрел навыки расчета моделей полупроводниковых приборов с использованием программных средств, таких как *Multisim* и *Mathcad*, на основе данных, полученных в ходе экспериментальных исследований. Это позволило внедрить полученные модели в базу компонентов для будущих проектов и анализа полупроводниковых приборов.