

Network Traffic Packets Classified as Textual Images for Intrusion Detection

Myriam Leggieri | @iammyr

Let's Connect!

The "Never Decrypt" Solution

Promising Results

Myriam Leggieri

@iammyr

Design and Code Security Review

Development of Security Tools

Security Awareness

Pentesting

Encryption vs. Security

Proposed Solution

Convolutional Neural Networks (CNN)

Long Short Term Memory Networks (LSTM)

Conditional Random Fields (CRF)

CNN → Learn Spatio-Temporal features

LSTM → Learn Long-Term Memories

CRF → Learn from Textual Metadata

DataSet

- 100 GB
- 2.540.044 raw pcap traffic
 - 175.341 training set
 - 82.332 test set
- Sets of 4 packets
- 49 features each
 - R 4 x 1 time/space -related features
 - G 3 x 37 src/dest, IP+Port -related features
 - B 4 x 11 remaining features

0<px<255 → normalise input

1. Fuzzers

2. Analysis

5. Exploits

6. Generic

8. Shellcode

9. Worms

7. Reconnaissance

4. DoS

3. Backdoors

NN

- Activation Function = 1/(1+e^{-x})
- Weights = strengths of rel. = slope of sigmoid
- Bias = control on when to activate
- Goal: find min of cost(X)
- \rightarrow gradient(cost(X)) = 0

^^Intractable → Backpropagation in Gradient Descent Algorithm

https://www.surenderthakran.com/images/articles/tech/implement-back-propagation-neural-network/xor-neural-network-weights.png

CNN

Convolution = moving filter Overlapping area = stride[1, 1]

- 1. Sparse connections
- 2. Constant Weights in Filter

Filter → Features → Channel

Non-Linear Activation Function = Rectified Linear Unit (ReLU)

Max() Pooling on sliding window, stride [2, 2]

Batch Normalisation

Loss Function: Softmax Cross Entropy

Flatten m chans of X x Y pooling matrices into vector[X x Y x m]

➤ Less # Params

LSTM

Vanishing Gradient Problem

$$x * y = z; y < 1; z << 1$$
 \longrightarrow ? \to LSTM!

Gambler wins 97 cents on every dollar → bankrupt!

LSTM

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

- Forget gate
 Input gate

 (x_t, h_{t-1})
- Output gate ◄

CRF

Interdependence of attackers' movements

Given X sets of packets, Y labels,

1) Goal: find transition matrix T that minimises the neg log likelihood

$$\sum_{y'} \sum_{i=0}^{n} Log(P(x_i|y_i')T(y_i'|y_{i-1}')) - \sum_{i=0}^{n} Log(P(x_i|y_i)T(y_i|y_{i-1}))$$

(avg-ed for the whole dataset → HUGE denominator

BUT current label only depends on previous label aka

Forward-Backward Algorithm

2) Goal: use T to find the most likely seq of labels, given a seq of packets aka

Viterbi Algorithm

Promising Results #GHC18

Promising Results

- <u>Learning (car) Traffic as Images</u> (2017)
 - Goal: network speed prediction
 - CNN || RNN || LSTM
 - CNN performs best in long-term predictions
 - CNN outperforms with +42.91% on avg acc
- Network Traffic Classifier for IoT (2017)
 - Goal: infer the application/service used
 - CNN + LSTM

■ 2 CNN layers + 1 LSTM outperforms with 96% accuracy

Implementation in progress

Future Work

- Bidirectional LSTM (having access to future packets for a given range of time)
- ELU may be better as an activation function than ReLU
- Try changing in CNN:
 - loss function,
 - hyperparameters for convolutional and pooling layers (filter size, pooling size, polling method),
 - depth of the CNN
- Identify which packets' metadata are more relevant for classification
- Include the encrypted payload among the considered features

@iammyr

