Electric Vehicle (EE60082)

Lecture 16: Charger part1

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Battery Management System (BMS) (recap

A generic definition of BMS:

- > BMS is combination of all the parts of the system that performs one or more of the following functions for the battery pack,
 - Control
 - Monitor
 - Protect
 - Communicate

A generic BMS (recap)

Functions of a BMS (recap)

- Number of functions of a BMS depends on the application
- More functions mean higher cost

- > BMS functions depend on the following factors
 - > The cost of the portable product: cost of the BMS should be small compared to the product cost
 - The features of the portable product: high-end product has more features that need the BMS to be more sophisticated
 - > Type of product: Products with high energy demand and frequent use needs more sophisticated BMS
 - Type of battery: some types of cell chemistries need more care and extra protection features

BMS ICs (from TI) (recap)

Functions of BMS for EV (recap)

Main goals of BMS

- Control battery charging and discharging
- Ensure safe operation
- Maximize battery utilization
- Prolong battery life

Challenges of fast charging for BMS

- Higher and faster voltage unbalance
- Higher power loss and cell temperature, leading to cell degradation
- Complicated thermal management

Charge/discharge Control

- Charge with desired profile
- High efficiency energy conversion

Measure and monitor

- Cell voltage, current, temperature
- Collect data for analysis, prediction, and decision making

Protect and bypass

- Detect over-current, over-voltage, over-temperature
- Detect faulty cell and bypass

- Status report
- Data collection
- Charging control

Cell balancing

- Fast active cell balancing
- Multi-cell to multi-cell balancing with high efficiency

Thermal management

- Embedded cooling in battery pack
- Maintain safe temperature during fast charging

Cell balancing (recap)

Voltage equalization:

- Voltage equalizer equalizes cell voltages
- Over-charged cells are discharged
- Under-charged cells are charged
- Over-charge and over-discharge of any cell is avoided.

Passive Resistor Balancing (recap)

Energy of high-voltage cells is consumed by resistors

Loss of energy due to balance

Hard to manage heat

Can only balance the over-voltage cell

Active balancing: capacitive charge transfer

(recap)

Active balancing: inductive charge transfer

(recap)

Classification of cell balancers: based on energy transfer paths (recap)

Module 4: EV chargers

Basic requirements for a charger

- > Available power sources
 - >50/60 Hz single phase grid at home
 - >50/60 Hz three phase grid at charging stations
- > Minimum requirements are
 - Controllable DC source
 - Isolation for safety

Charger architectures

On-board charger

- Low power
- ➤ Slow charging
- Home charger
- Called AC charger

Transformer ac 50/60 Hz Rectifier Rectifier hfac = Battery dc Inverter And and Filter Filter ← Off-board On-board Conductive ac

Off-board charger

- Medium to high power
- > Fast charging
- Charging stations
- ➤ Called DC charger

Standards for EV chargers

1. International Standards

- IEC 61851 Electric vehicle conductive charging system
 - Defines different charging modes (Mode 1, 2, 3, 4)
 - Covers safety, communication, and performance requirements
- IEC 62196 Plugs, socket-outlets, vehicle connectors, and inlets
 - Defines connector types (Type 1, Type 2, CCS, CHAdeMO, etc.)
- ISO 15118 Vehicle-to-Grid (V2G) communication interface
 - Covers secure communication between the EV and charger
- IEC 60364-7-722 Electrical installations for EV charging
 - Safety regulations for charging stations

3. European Standards (CEN/CENELEC)

- EN 61851 European adaptation of IEC 61851
- EN 62196 European standard for charging connectors

2. US Standards (SAE & UL)

- SAE J1772 Standard for AC charging connectors (Type 1)
- SAE J2847 Communication between EVs and chargers
- SAE J2954 Wireless charging standard
- UL 2202 Safety standard for DC fast chargers
- UL 2594 Safety standard for EV supply equipment

4. Indian Standards (BIS & ARAI)

- IS 17017 Standard for EV charging system
- IS 17017-1 General requirements
- **IS 17017-2-2** DC fast charging system
- IS 17017-2-3 AC charging system
- AIS-138 Standards for EV conductive charging

Charger standards around the world

Type of Charging	North America	Japan	EU & rest of the market	China	All markets except EU	India
AC Type1: 1-3kW Type2: 3-22kW			000	0000	000	0000
Plug Name	J1772 (Type 1)	J1772 (Type 1)	Mennekes (Type 2) IEC62196-2	GB/T		Commando (Type- 1): IEC60309 Mennekes (Type-2): IEC62196-2
DC 10-400kW			PP	o o o		
Plug Name	CCS1	CHAdeMO	CCS2	GB/T	TESLA	GB/T, CCS2, CHAdeMO

Charger categories in US

	Level 1	Level 2	DC Fast Charging
Connector Type ²	J1772 connector	J1772 connector	CCS connector
	•••	0	CHAdeMO connector
			00
			Tesla connector

	Level 1	Level 2	DC Fast Charging
Voltage ³	120 V AC	208 - 240 V AC	400 V - 1000 V DC
Typical Power Output	1 kW	7 kW - 19 kW	50 - 350 kW
Estimated PHEV Charge Time from Empty ⁴	5 - 6 hours	1 - 2 hours	N/A
Estimated BEV Charge Time from Empty ⁵	40 - 50 hours	4 - 10 hours	20 minutes - 1 hour ⁶
Estimated Electric Range per Hour of Charging	2 - 5 miles	10 - 20 miles	180 - 240 miles
Typical Locations	Home	Home, Workplace, and Public	Public

Charger categories in India

SAE J1772 (AC)

Combined Charging Systems (CCS)

DC charger: Bypassing OBC, directly to battery

DC charger connector

CCS

Combined Charging Systems (CCS)

On-board charger

Topology

- On-board charger (OBC)
 - > power supplied from single phase grid
 - AC/DC rectification needed
 - > isolation needed for safety

OBC Requirement

- Cost sensitive; $(\$ > PD > \eta)$
- Automotive qualified parts;
- -40°C ~ +85°C ambient, water cooled;
- Protection installed;
- Mechanical vibration.

OBC Specs example

- Power Factor at rated power: > 0.99
- Grid-side Current THD < 5%
- Efficiency estimate ~ 94%
- Output voltage ripple: <2%
- Output current ripple: <5%
- Operating temperature range: -40°C~100°C
- Operating voltage range: 85VAC~240VAC
- Output voltage range: 200VDC~450VDC
- Rated charging power: 6.6kW
- Voltage mode / Current mode: CC & CV Charging
- Ambient: 70°C.
- Power density: (>2kW/L)
- Bidirectional power flow (plus)

Charger with diode bridge rectifier

THD requirements

➤ IEC 61851-21-2 governs the conductive charging system for electric vehicles (EVs) and specifies power quality requirements, including harmonic distortion limits

- > EV chargers ≤ 16 A per phase (Low Power AC Charger) must comply with IEC 61000-3-2 Harmonic current limits
 - ➤ Total Harmonic Distortion (THD) is typically limited to ≤ 8%.

- EV chargers > 16 A and ≤ 75 A per phase (Higher Power AC/DC Chargers) must comply with IEC 61000-3-12
 - > Individual harmonic limits are set for odd and even harmonics.
 - > THD is typically limited to ≤ 5% for high-power chargers.

Charger with Power Factor Correction (PFC)

Charger with PFC and EMI filter

Standard to follow: CISPR 25 for on-board charger

PFC stage design

$$v_{ac}(\theta) = \sqrt{2}V_{ph}\cos\theta$$

$$i_{ac}(\theta) = \sqrt{2}I_{ph}\cos\theta$$

$$\nu_{RB}(\theta) = \sqrt{2} V_{ph} |\cos \theta|$$

$$i_{RB}(\theta) = \sqrt{2}I_{ph}|\cos\theta|$$

DC current from PFC

> AC power

$$p_{ac}(\theta) = v_{ac}(\theta) \times i_{ac}(\theta) = \sqrt{2}V_{ph}\cos\theta \times \sqrt{2}I_{ph}\cos\theta = 2V_{ph}I_{ph}\cos^2\theta$$

$$P_{ac} = V_{ph}I_{ph}$$

DC power

$$p_D(\theta) = V_{dc} \times i_D(\theta)$$

Power balance

$$p_D(\theta) = p_{ac}(\theta)$$

DC current

$$i_D(\theta) = \frac{p_{ac}(\theta)}{V_{dc}} = \frac{2V_{ph}I_{ph}}{V_{dc}}\cos^2\theta$$

PFC boost inductor design

Duty cycle for the switch

$$d(\theta) = 1 - \frac{v_{RB}(\theta)}{V_{dc}} = 1 - \frac{\sqrt{2}V_{ph}|\cos\theta|}{V_{dc}}$$

Peak-peak current ripple

$$\Delta I_{L(p-p)}(\theta) = \frac{\sqrt{2}V_{ph}|\cos\theta|}{f_s L}d(\theta) = \frac{\sqrt{2}V_{ph}}{f_s L}\left(|\cos\theta| - \frac{\sqrt{2}V_{ph}\cos^2\theta}{V_{dc}}\right)$$

Other types of PFC

Conventional Single-phase OBC (H-bridge PFC+Half-bridge Resonant)

Boost-type PFC

Grid-side diodes are hard turned off.

Other types of PFC

Totem Pole PFC+Half-bridge Resonant DCDC

Boost-type PFC

Grid-side diodes are soft switched.

DC capacitor design

> Challenges: presence of second harmonic current

Option 1: allow this current into battery

Option 2: Filter out this current with the DC capacitor

Option 3: active dc bus

Active filtering

Drawbacks of passive filtering:

- Very costly (especially if High-Voltage / High-Power)
- >Large weight

Active filtering:

- Use additional circuitry to source/sink current into a "energy reservoir"
- Capacitor Cs can be small as it does not have any ripple specification

Wireless charging

enhanced safety

➤ More user friendly

Higher technical challenges and cost

Wireless charger (inductive)

Wireless charger (capacitive)

Dynamic wireless charger

EE60082

Thank you!