POLYMER DATA HANDBOOK

*Home
*Browse/Search Contents
*Browse by Polymer Class
*Browse the Index
*Online help

Copyright © 1999 by Oxford University Press, Inc.

EDITED BY JAMES E. MARK, UNIVERSITY OF CINCINNATI

PUBLISHED BY OXFORD UNIVERSITY PRESS

The online version of the *Polymer Data Handbook* includes key data on over two hundred polymers. Please note that entries are presented as PDF files and can only be read using Adobe Acrobat Reader Version 3. If you do not have the freeware reader, it can be downloaded from <u>Adobe in the United States</u> or <u>Adobe in the United Kingdom</u>. Each entry opens with a citation of the contributor's name and notations of acronyms and trade names, class of polymer, structure, and major applications. These are followed by tabular displays showing the properties of each polymer. The maximum consistency possible has been established for properties presented with regard to format, terminology, notations, and units. However, not all properties are applicable to all polymers contained in the handbook; some properties may not even be relevant for certain polymer classes. Also, some polymers exhibit properties shown by few others (e.g., electroluminescence); these properties have been noted as "Properties of Special Interest." Each entry closes with a list of references for the reader interested in further investigation of a polymer.

View the <u>editor's preface</u> to the print edition (HTML format).

View the directory of contributors (PDF format).

PREFACE TO THE PRINT EDITION

The *Polymer Data Handbook* offers, in a standardized and readily accessible tabular format, concise information on the syntheses, structures, properties, and applications of the most important polymeric materials. Those included are currently in industrial use or they are under study for potential new applications in industry and in academic laboratories. Considerable thought was given to the criteria for selecting the polymers included in this volume. The first criterion was current commercial importance—the use of the polymer in commercial materials—for example, as a thermoplastic, a thermoset, or an elastomer. The second criterion was novel applications—a polymer that is promising for one or more purposes but not yet of commercial importance—for example, because of its electrical conductivities, its nonlinear optical properties, or its suitability as a preceramic polymer. The hope is that some readers will become interested enough in these newer materials to contribute to their further development and characterization. Finally, the handbook includes some polymers simply because they are unusually interesting—for example, those utilized in fundamental studies of the effects of chain stiffness, self-assembly, or biochemical processes.

Based on these three criteria, more than two hundred polymers were chosen for inclusion in this work. The properties presented for each polymer include some of great current interest, such as surface and interfacial properties, pyrolyzability, electrical conductivity, nonlinear optical properties, and electroluminescence. Not all the properties are available for all the polymers included, and some properties may not even be relevant for certain polymer classes. Some polymers exhibit properties shown by few others—such as electroluminescence—and those have been presented as "Properties of Special Interest."

The handbook entries were written by authors carefully chosen for their recognized expertise in their specific polymers. The authors were asked to be highly selective, to choose and document those results that they considered to have the highest relevance and reliability. All the entries were then reviewed carefully by one or more referees, to ensure the highest quality and significance. Care was taken to achieve maximum consistency between entries, especially with regard to terminology, notations, and units. The goal was to facilitate searches in the printed version of the handbook and electronically on the online site.

Grateful acknowledgment is made here to the important contributions of the anonymous referees. It is also my real pleasure to thank a number of people at Oxford University Press for their help: specifically, Robert L. Rogers and Sean Pidgeon contributed greatly to the initiation and formulation of the basic structure of the handbook, and Matthew Giarratano carried out its implementation. It is appropriate here to thank my wife Helen for the kind of support, tangible and intangible, that makes an intimidating project, like this one, doable and sometimes even a pleasant experience.

James E. Mark University of Cincinnati October 1998

BROWSE/SEARCH CONTENTS

To find a material of interest, search this page using your browser's search/find option, or use the alphabetical browser.

Click on the material to view the full text of that entry in PDF format. To view the PDF files, you must have Adobe Acrobat Reader Version 3 installed on your computer. If you do not have the freeware reader, it can be downloaded from Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or Adobe in the United States or <a <="" href="Adobe in the United States" th="">
Acrylonitrile-butadiene elastomers
Alkyd resins
Amino resins
Amylopectin
<u>Amylose</u>
Bisphenol-A polysulfone
Carborane-containing polymers
Carboxylated ethylene copolymers, metal salts (ionomers)
Cellulose
<u>Cellulose acetate</u>
<u>Cellulose butyrate</u>

Cellulose nitrate

Chitin

Collagen

Elastic, plastic, and hydrogel-forming protein-based polymers

Poly(p-phenylene oxide)
Poly(p-phenylene sulfide)
Poly(1,4-phenylene vinylene)
Poly(alpha-phenylethyl isocyanide)
Poly(phenylmethylsiloxanes), cyclic
Poly(phenylsilsesquioxane)
Poly(phenyl/tolylsiloxane)
Polyphosphates
Poly(phosphazene), bioerodible
Poly(phosphazene) elastomer
Poly(phosphazene), semicrystalline
Poly(phosphonate)
Polypropylene, atactic
Polypropylene, elastomeric (stereoblock)
Polypropylene, isotactic
Poly(propylene oxide)
Poly(propylene sulfide)
Polypropylene, syndiotactic
Poly(pyromellitimide-1,4-diphenyl ether)
Polypyrrole
Polyquinoline

Poly(rotaxane), example 1
Poly(rotaxane), example 2
Poly(silphenylene-siloxanes)
Poly(silylenemethylene)
<u>Polystyrene</u>
Polystyrene, head-to-head
Poly(sulfur nitride)
Poly(tetrafluoroethylene)
Poly(tetrahydrofuran)
Polythiophene
Poly(1,3-trimethyleneimine) dendrimers
Poly(trimethylene oxide)
Poly[1-(trimethylsilyl)-1-propyne]
<u>Polyurea</u>
Polyurethane
Polyurethane elastomers
Polyurethane urea
Poly(vinyl acetate)
Poly(vinyl alcohol)
Poly(vinyl butyral)
Poly(N-vinyl carbazole)

BROWSE BY POLYMER CLASS

To find a material of interest, search this page using your browser's search/find option, or select a class of polymer. Then click on the material to view the full text of that entry in PDF format. To view the PDF files, you must have Adobe Acrobat Reader Version 3 installed on your computer. If you do not have the freeware reader, it can be downloaded from <u>Adobe in the United States</u> or <u>Adobe in the United Kingdom</u>.

Acrylic polymers

Addition polyimides

Aliphatic polyamides

Aliphatic polyesters

Aromatic nylons

Aromatic polyamides

Cage structure polymers

Carbohydrate polymers

Chemical copolymers

Chiral aliphatic polyesters

Cofacial polymers

Composite matrix resins

Conjugated and other unsaturated polymers

Conjugated conducting polymers

Cyclic polymers

 $\underline{\mathbf{D}_{n}}$ -carborane siloxanes

Dendrimers

Dendritic polymers

Dendrons

Diene elastomers

Di-methyl silicones and siloxanes

Electrically conductive polymers

Engineering thermoplastics

Ethylene copolymers

Fluoroelastomers

Homopolymers

Inorganic and semi-inorganic polymers

N-substituted 1-nylons

Polyacetals

Polyamines

Polyanhydrides

Polyaromatics

Polycarbosilanes

Polyesters

Polyethers

Poly(ether sulfones)

Polyformals

Polyheterocyclics

Poly(alpha-hydroxy esters)

Polyimides

Poly(isocyanates)

Polyketones
Polynitriles
Polyolefin copolymers
Poly(alpha-olefins)
Polypeptides and proteins
Polyphosphazenes
<u>Polysaccharides</u>
<u>Polysilanes</u>
<u>Polysilazanes</u>
Polysiloxanes
Polysulfides
Polyureas
Polyurethanes
Rigid-rod polymers
Saturated thermoplastic elastomers
Siloxane ladder polymers The arm on location
Thermoplastics Thermoset polymore
Thermoset polymers Thermoset resins
Unsaturated thermoplastic elastomers
Vinyl polymers
Vinylidene polymers
Acrylic polymers
Poly(acrylonitrile)
Poly(methyl methacrylate)
1 Ory(metrry) metriacrylate)
A 1 1974
Addition polyimides
Poly(bis maleimide)
Poly(bis maleimide)
Poly(bis maleimide)
Poly(bis maleimide) Aliphatic polyamides
Aliphatic polyamides
Aliphatic polyamides Nylon 3
Aliphatic polyamides
Aliphatic polyamides Nylon 3
Aliphatic polyamides Nylon 3
Aliphatic polyamides Nylon 3 Nylon 4,6
Aliphatic polyamides Nylon 3 Nylon 4,6 Nylon 6
Aliphatic polyamides Nylon 3 Nylon 4,6
Aliphatic polyamides Nylon 3 Nylon 4,6 Nylon 6 Nylon 6 copolymer
Aliphatic polyamides Nylon 3 Nylon 4,6 Nylon 6
Aliphatic polyamides Nylon 3 Nylon 4,6 Nylon 6 Nylon 6 copolymer

Nylon 6,10
Nylon 6,12
Nylon 11
Nylon 12
Nylon MXD6
Aliphatic polyesters
Poly(epsilon-caprolactone)
Poly(hydroxybutyrate)
Aromatic nylons
Nylon 6,6 copolymer
Aromatic polyamides
<u>Kevlar</u>
Nylon 6,6 copolymer
Kevlar Nylon 6,6 copolymer Poly(p-benzamide) Poly(m-phenylene isophthalamide)
Nylon 6,6 copolymer Poly(p-benzamide) Poly(m-phenylene isophthalamide)
Nylon 6,6 copolymer Poly(p-benzamide)
Nylon 6,6 copolymer Poly(p-benzamide) Poly(m-phenylene isophthalamide) Cage structure polymers

Amylopectin
Amylose
Cellulose
Cellulose acetate
Cellulose butyrate
Cellulose nitrate
<u>Chitin</u>
Ethylcellulose
Glycogen
Hydroxypropylcellulose
<u>Starch</u>
Chemical copolymers
Acrylonitrile-butadiene elastomers Amino resins
Acrylonitrile-butadiene elastomers
Acrylonitrile-butadiene elastomers Amino resins Carboxylated ethylene copolymers, metal salts (ionomers)
Acrylonitrile-butadiene elastomers Amino resins Carboxylated ethylene copolymers, metal salts (ionomers) Ethylene-propylene-diene monomer elastomers
Acrylonitrile-butadiene elastomers Amino resins Carboxylated ethylene copolymers, metal salts (ionomers) Ethylene-propylene-diene monomer elastomers Ethylene-vinyl acetate copolymer
Acrylonitrile-butadiene elastomers Amino resins
Acrylonitrile-butadiene elastomers Amino resins Carboxylated ethylene copolymers, metal salts (ionomers) Ethylene-propylene-diene monomer elastomers Ethylene-vinyl acetate copolymer Ethylene-vinyl alcohol copolymer

Phenolic resins
Polystyrene, head-to-head
Poly(vinyl chloride), head-to-head
Styrene-acrylonitrile
Styrene-butadiene elastomers
Styrene-methylmethacrylate copolymer
Sulfo-ethylene-propylene-diene monomer ionomers
Vinylidene fluoride–hexafluoropropylene elastomers
Chiral aliphatic polyesters
Poly(hydroxybutyrate)
Cofacial polymers
Metallophthalocyanine polymers
Metallophthalocyanine polymers Silicon (germanium) oxo hemiporphyrazine polymers
Silicon (germanium) oxo hemiporphyrazine polymers
Silicon (germanium) oxo hemiporphyrazine polymers Composite matrix resins
Silicon (germanium) oxo hemiporphyrazine polymers Composite matrix resins
Silicon (germanium) oxo hemiporphyrazine polymers Composite matrix resins Poly(bis maleimide)
Silicon (germanium) oxo hemiporphyrazine polymers Composite matrix resins Poly(bis maleimide) Conjugated and other unsaturated polymers
Silicon (germanium) oxo hemiporphyrazine polymers Composite matrix resins Poly(bis maleimide) Conjugated and other unsaturated polymers Polyacetylene

Conjugated conducting polymers
Polypyrrole
Polythiophene
Cyclic polymers
Poly(dimethylsiloxanes), cyclic
Poly(phenylmethylsiloxanes), cyclic
Poly(rotaxane), example 1
Poly(rotaxane), example 2
Poly(vinylmethylsiloxanes), cyclic
\mathbf{D}_n -carborane siloxanes
Carborane-containing polymers
Dendrimers
Poly(amidoamine) dendrimers
Poly(1,3-trimethyleneimine) dendrimers
Dendritic polymers
Poly(amidoamine) dendrimers
Poly(1,3-trimethyleneimine) dendrimers
Dendrons
Poly(amidoamine) dendrimers

Diene elastomers
1,2-Polybutadiene
cis-1,4-Polybutadiene
trans-1,4-Polybutadiene
<u>Polychloroprene</u>
cis-1,4-Polyisoprene
<u>trans-1,4-Polyisoprene</u>
Poly(norbornene)
<u>Polyoctenamer</u>
<u>Polypentenamer</u>
Di-methyl silicones and siloxanes
Poly(dimethylsiloxane)
Poly(dimethylsiloxanes), cyclic
Electrically conductive polymers
<u>Polyaniline</u>
Engineering thermoplastics
Poly(amide imide)
Poly(2,6-dimethyl-1,4-phenylene oxide)
Poly(ether imide)
Poly(methylene oxide)

Ethylene copolymers Carboxylated ethylene copolymers, metal salts (ionomers) **Fluoroelastomers** Vinylidene fluoride-hexafluoropropylene elastomers **Homopolymers** Poly(N-vinyl carbazole) Poly(4-vinyl pyridine) Poly(N-vinyl pyrrolidone) **Inorganic and semi-inorganic polymers** Poly[(*n*-butylamino)thionylphosphazene] Poly(dimethylferrocenylethylene) Poly(ferrocenyldimethylsilane) **Polygermanes** Polymeric selenium Polymeric sulfur **Polyphosphates** Poly(phosphonate) Poly(sulfur nitride) Poly(vinylferrocene)

N-substituted 1-nylons
Poly(<i>n</i> -butyl isocyanate)
Poly(n-hexyl isocyanate)
Polyacetals
Polychloral
Poly(1,3-dioxolane)
Poly(methylene oxide)
Polyamines
Poly(ethylene imine)
Polyanhydrides
Poly(1,3-bis-p-carboxyphenoxypropane anhydride)
Poly(erucic acid dimer anhydride)
Polyaromatics
Poly(1,4-phenylene)
Poly(1,4-phenylene vinylene)
Polyquinoline
Poly(p-xylylene)
Polycarbosilanes
Poly(methylsilmethylene)

Poly(silylenemethylene)
Polyesters
Poly(butylene terephthalate)
Poly(epsilon-caprolactone)
Polycarbonate
Polyesters, unsaturated
Poly(ethylene-2,6-naphthalate)
Poly(ethylene terephthalate)
Poly(glycolic acid)
Poly(4-hydroxy benzoic acid)
Poly(hydroxybutyrate)
Poly(lactic acid)
Polyethers
Poly(2,6-dimethyl-1,4-phenylene oxide)
Poly(epichlorohydrin)
Poly(ethylene oxide)
Poly(methylene oxide)
Poly(p-phenylene oxide)
Poly(propylene oxide)
Poly(tetrahydrofuran)
Poly(trimethylene oxide)

Poly(ether sulfones)
Bisphenol-A polysulfone
Poly(ether sulfone)
Polyformals
Poly(1,3-dioxepane)
Polyheterocyclics
Polypyrrole
Polyquinoline
Polythiophene
Poly(alpha-hydroxy esters)
Poly(glycolic acid)
Poly(lactic acid)
Polyimides
Poly(amide imide)
Poly(bis maleimide)
Poly(ether imide)
Poly(pyromellitimide-1,4-diphenyl ether)
Poly(isocyanates)

Poly(<i>n</i> -butyl isocyanate)
Poly(n-hexyl isocyanate)
Poly(isocyanides)
Poly(alpha-phenylethyl isocyanide)
Polyketones
Poly(ether ether ketone)
Poly(ether ketone)
Polynitriles
Poly(methylacrylonitrile)
Polyolefin copolymers
Ethylene-propylene-diene monomer elastomers
Polyethylene, linear low-density
Poly(alpha-olefins)
Poly(butene-1)
Polyethylene, elastomeric (very highly branched)
Polyethylene, linear high-density
Polyethylene, linear low-density
Polyethylene, low-density
Polyethylene, metallocene linear low-density

Poly(hexene-1)
Poly(4-methyl pentene-1)
Polypropylene, atactic
Polypropylene, elastomeric (stereoblock)
Polypropylene, isotactic
Polypropylene, syndiotactic
Poly(tetrafluoroethylene)
Polypeptides and proteins
Collagen
Elastic, plastic, and hydrogel-forming protein-based polymers
<u>Gelatin</u>
Poly(L-alanine)
Poly(gamma-benzyl-L-glutamate)
Polyglycine
Silk protein
Polyphosphazenes
Poly(aryloxy)thionylphosphazenes
Poly(phosphazene), bioerodible
Poly(phosphazene) elastomer
Poly(phosphazene), semicrystalline

Polysaccharides
Cellulose
Chitin
Glycogen
Polysilanes
Poly(di-n-hexylsilylene)
Poly(dimethylsilylene)
Poly(dimethylsilylene-co-phenylmethylsilylene)
Poly(methylphenylsilylene)
Polysilazanes
Hydridopolysilazane
Poly(N-methylcyclodisilazane)
Polysiloxanes
Poly(di-n-butylsiloxane)
Poly(diethylsiloxane)
Poly(di-n-hexylsiloxane)
Poly(dimethylsiloxane)
Poly(dimethylsiloxanes), cyclic
Poly(di-n-pentylsiloxane)
Poly(diphenylsiloxane)

Poly(hydridosilsesquioxane)
Poly(methylphenylsiloxane)
Poly(methylsilsesquioxane)
Poly(methyltrifluoropropylsiloxane)
Poly(phenylsilsesquioxane)
Poly(phenyl/tolylsiloxane)
Poly(silphenylene-siloxanes)
Polysulfides
Poly(ethylene sulfide)
Poly(p-phenylene sulfide)
Poly(propylene sulfide)
Polyureas
<u>Polyurea</u>
Polyurethanes
<u>Polyurethane</u>
Polyurethane elastomers
Polyurethane urea
Rigid-rod polymers
Poly(benzimidazole)

Poly(di-*n*-propylsiloxane)

Poly(benzobisoxazole)
Poly(benzobisthiazole)
Saturated thermoplastic elastomers
Kraton G1600 SEBS
Siloxane ladder polymers
Poly(hydridosilsesquioxane)
Poly(methylsilsesquioxane)
Poly(phenylsilsesquioxane)
Thermoplastics
Epoxy resins
Poly(amide imide)
Poly(butylene terephthalate)
Poly(epsilon-caprolactone)
Poly(2,6-dimethyl-1,4-phenylene oxide)
Poly(ether imide)
Poly(ethylene-2,6-naphthalate)
Poly(ethylene terephthalate)
Poly(methylene oxide)
Poly(p-phenylene oxide)
Thermoset polymers

Alkyd resins
Amino resins
Epoxy resins
Phenolic resins
Poly(bis maleimide)
Polyesters, unsaturated
Thermoset resins
Poly(bis maleimide)
Unsaturated thermoplastic elastomers
Kraton D1100 SBS
Vinyl polymers
Polyacrylamide
Poly(acrylic acid)
Poly(p-chlorostyrene)
Poly(ethyl acrylate)
Poly(N-isopropyl acrylamide)
Poly(methyl acrylate)
Poly(alpha-methylstyrene)
Poly(p-methylstyrene)
Polystyrene

Polystyrene, syndiotactic
Poly(vinyl acetate)
Poly(vinyl alcohol)
Poly(vinyl butyral)
Poly(N-vinyl carbazole)
Poly(vinyl chloride)
Poly(vinyl fluoride)
Poly(vinyl methyl ether)
Poly(4-vinyl pyridine)
Poly(N-vinyl pyrrolidone)
Vinylidene polymers
Poly(chlorotrifluoroethylene)
Poly(chlorotrifluoroethylene) Poly(cyclohexyl methacrylate)
Poly(chlorotrifluoroethylene) Poly(cyclohexyl methacrylate) Poly(2-hydroxyethyl methacrylate)
Vinylidene polymers Poly(chlorotrifluoroethylene) Poly(cyclohexyl methacrylate) Poly(2-hydroxyethyl methacrylate) Poly(isobutylene), butyl rubber, halobutyl rubber Poly(methacrylic acid)
Poly(chlorotrifluoroethylene) Poly(cyclohexyl methacrylate) Poly(2-hydroxyethyl methacrylate) Poly(isobutylene), butyl rubber, halobutyl rubber
Poly(chlorotrifluoroethylene) Poly(cyclohexyl methacrylate) Poly(2-hydroxyethyl methacrylate) Poly(isobutylene), butyl rubber, halobutyl rubber Poly(methacrylic acid)
Poly(chlorotrifluoroethylene) Poly(cyclohexyl methacrylate) Poly(2-hydroxyethyl methacrylate) Poly(isobutylene), butyl rubber, halobutyl rubber Poly(methacrylic acid) Poly(methyl methacrylate)

BROWSE THE INDEX

To find a material of interest, search this page using your browser's search/find option, or use the alphabetical browser.

all text of that entry in PDF format. To view the PDF files, you Version 3 installed on your computer. If you do not have the ded from Adobe in the United States or Adobe in the United

Click on the material to view the furmust have Adobe Acrobat Reader V freeware reader, it can be download Kingdom.
<u>A-C</u>
Acetal
Aciplex
Acrylic polymers
Poly(acrylonitrile)
Poly(methyl methacrylate)
Acrylonitrile-butadiene elastomers
Acrysol
<u>Acumer</u>
Acusol
Addition polyimide
Advaco

AFAX

<u>Airco</u>

Airvol

Albigen
Alcogum
Alcosperse
Algoflon
Aliphatic polyamides
Nylon 3
<u>Nylon 4,6</u>
Nylon 6
Nylon 6 copolymer
<u>Nylon 6,6</u>
Nylon 6,10
<u>Nylon 6,12</u>
Nylon 11
Nylon 12
Nylon MXD6
Aliphatic polyesters
Poly(epsilon-caprolactone)
Poly(hydroxybutyrate)
Alkyd resins
Altek
Ameripol

Poly(ethylene-2,6-naphthalate)
Poly(ethylene terephthalate)
<u>Astramol dendrimers</u>
Atactic polypropylene
Bakelite
Balata
Barex (copolymer)
Baypren
Baysilone M fluid
Biodel-CPP
Biodel-EAD
Biodone
Bioerodible poly(phosphazene)
Biopol
Bisphenol-A polycarbonate
Bisphenol-A polysulfone
<u>BMI</u>
<u>BR</u>
Branched PE
BrIIR

Brominated isobutylene isoprene rubber

Butacite
Butaclor
<u>Butvar</u>
Butyl rubber
<u>CA</u>
Cage structure polymers
Carborane-containing polymers
Fullerene-containing polymers
<u>Capron</u>
Carbohydrate polymers
Amylopectin
Amylose
Cellulose
Cellulose acetate
Cellulose butyrate
<u>Cellulose nitrate</u>
Chitin
Ethylcellulose
Glycogen
Hydroxypropylcellulose
Starch

Kraton G1600 SEBS
Perfluorinated ionomers
Phenolic resins
Polystyrene, head-to-head
Poly(vinyl chloride), head-to-head
Styrene-acrylonitrile
Styrene-butadiene elastomers
Styrene-methylmethacrylate copolymer
Sulfo-ethylene-propylene-diene monomer ionomers
Vinylidene fluoride-hexafluoropropylene elastomers
Chemigum
Chiral aliphatic polyester
Chitin
Chlorinated isobutylene isoprene rubber
Chlorinated PBD rubber
Chloroprene rubber
Chloroprene
<u>p-CISt</u>
<u>p-CIST</u>
<u>Cl-cis-PBD</u>

Cl-trans-PBD

Clarene
CIIIR
<u>CLPHS</u>
<u>CN</u>
Cofacial polymers
Metallophthalocyanine polymers
Silicon (germanium) oxo hemiporphyrazine polymers
Collagen
Composite matrix resin
Conjugated and other unsaturated polymers
Polyacetylene
Polyaniline
Poly[1-(trimethylsilyl)-1-propyne]
Conjugated conducting polymers
<u>Polypyrrole</u>
Polythiophene
Cook
Соро
<u>CPI</u>
<u>CR</u>
Crospovidone

<u>Crystalor</u>
<u>p-CST</u>
<u>Cyanamer</u>
Cyclic PDMS
Cyclic polymers
Poly(dimethylsiloxanes), cyclic
Poly(phenylmethylsiloxanes), cyclic
Poly(rotaxane), example 1
Poly(rotaxane), example 2
Poly(vinylmethylsiloxanes), cyclic
Cyclic PPMS
Cyclic PVMS
Cyclolinear poly(phenylsiloxane)
<u>Cymel</u>
<u>D</u> carborane siloxanes
<u>Dacron</u>
<u>Daiamid</u>
<u>Dai-el</u>
<u>Darex</u>
<u>Delrin</u>
Dendrimers

	Poly(amidoamine) dendrimers
	Poly(1,3-trimethyleneimine) dendrimers
Dendri	tic polymers
	Poly(amidoamine) dendrimers
	Poly(1,3-trimethyleneimine) dendrimers
Dendro	<u>on</u>
<u>DER</u>	
<u>Dexon</u>	
<u>Dexsil</u>	
DIC-PI	<u>PS</u>
Diene e	elastomers
	1,2-Polybutadiene
	cis-1,4-Polybutadiene
	trans-1,4-Polybutadiene
	Polychloroprene
	cis-1,4-Polyisoprene
	trans-1,4-Polyisoprene
	Poly(norbornene)
	Polyoctenamer
	Polypentenamer
Dimeth	<u>uicone</u>

<u>Di</u>

Di-methyl silicones and siloxanes

Poly(dimethylsiloxane)
Poly(dimethylsiloxanes), cyclic
<u>Dion</u>
Divergan
Dow Corning 200 fluid
Dow Corning 710 fluid
<u>Duolite</u>
<u>Duradene</u>
<u>Durez</u>
<u>Duroflex</u>
<u>Eastoflex</u>
<u>Ebonite</u>
<u>EC</u>
Ekonol
Elastic, plastic, and hydrogel-forming protein-based polymers
Elastic protein-based polymers
Elastomeric polyethylene (very highly branched)
Elastomeric poly(phosphazene)
Elastomeric polypropylene (stereoblock)
Electrically conductive polymer
<u>elPP</u>

Ethylcellulose
Ethylene copolymer
Ethylene copolymer, homogeneous
Ethylene copolymer, ultra-low-density
Ethylene-propylene-diene monomer elastomers
Ethylene-vinyl acetate copolymer
Ethylene-vinyl alcohol copolymer
EVA
Ethylene-vinyl acetate copolymer
Ethylene-vinyl alcohol copolymer
<u>Eval</u>
EYPEL-F
<u>Fenilin</u>
<u>Fibroin</u>
Flemion
Flexible linear aliphatic polyester
Flexible linear aromatic polyester
Floraflon
<u>Fluon</u>
<u>Fluorel</u>
<u>Fluoroelastomer</u>
Fluoroplast

Fluorosilicone
<u>Fortron</u>
<u>FOx</u>
<u>FS</u>
<u>Fullerene-containing polymers</u>
Gantrez M
Gelatin
<u>Gelvatol</u>
<u>Gentro</u>
Geon
<u>GL</u>
Glaskyd
Glass resin
Poly(methylsilsesquioxane)
Poly(phenylsilsesquioxane)
Glycogen
<u>Gohsenol</u>
Good-ritel Control of the Control of
Grilamid
<u>GR-M</u>
Gutta percha

Halobutyl rubber
<u>Halon</u>
<u>p-Halostyrene</u>
<u>HBPSE</u>
<u>HDPE</u>
<u>Hetron</u>
<u>Hevea</u>
H-H polystyrene
H-H PS
H-H PVC
HH PVC
High-density linear polyethylene
High-performance polymer
High-pressure PE
Homogeneous ethylene copolymers
Homopolymers
Poly(N-vinyl carbazole)
Poly(4-vinyl pyridine)
Poly(N-vinyl pyrrolidone)
<u>Hostaflon</u>
<u>HPC</u>

<u>HPCS</u>
<u>HPZ</u>
HSQ
<u>Humex</u>
Hycar
Hydridopolycarbosilane
Hydridopolysilazane
<u>Hydridosilsesquioxane</u>
Hydrogel-forming protein-based polymers
Hydrogen silsesquioxane
<u>Hydron</u>
Hydroxypropylcellulose
<u>IIR</u>
In-chain modified polysiloxane
Inorganic and semi-inorganic polymers
Poly[(n-butylamino)thionylphosphazene]
Poly(dimethylferrocenylethylene)
Poly(ferrocenyldimethylsilane)
Polygermanes
Polymeric selenium
Polymeric sulfur
<u>Polyphosphates</u>

Leucoemeraldine
<u>Levapren</u>
Levasint
<u>Lexan</u>
Linear aliphatic flexible polyester
Linear aromatic polyester
Linear aromatic rigid polyester
Linear flexible aromatic polyester
Linear high-density polyethylene
<u>Linear low-density polyethylene</u>
Linear low-density polyethylene, metallocene
Linear styrene-butadiene-styrene triblock copolymer
Linear styrene-(ethylene-butylene)-styrene triblock copolymer
<u>LLDPE</u>
LLDPE, single site catalyzed
Low-density linear metallocene polyethylene
Low-density linear polyethylene
Low-density polyethylene
Low-pressure PE
Low swell
<u>LPE</u>

<u>LPHSQ</u>
<u>LS</u>
Lucite
Lustran
<u>Lutonal M</u>
Luvican
<u>Luviskol</u>
<u>Makrolon</u>
<u>Maranyl</u>
Melamines
Metallocene linear low-density polyethylene
Metallocene PE
Metallophthalocyanine polymers
Methylphenyl silicone oil
Methylsilicone oil
Methyl-T
Microthene
<u>mLLDPE</u>
<u>MN</u>
<u>Modic</u>
Molecular bracelet

Molecular necklace
<u>Movital</u>
<u>Mowiol</u>
<u>4MS</u>
<u>p-MS</u>
<u>MST</u>
<u>Nafion</u>
<u>Natsyn</u>
Natural rubber
<u>NBR</u>
Neoflon
Neoprene
Nipol
Acrylonitrile-butadiene elastomers
Styrene-butadiene elastomers
<u>NK</u>
Nomex
Norsorex
Novatec
Novolacs
<u>NR</u>
N-substituted 1-nylons

Poly(<i>n</i> -butyl isocyanate)
Poly(n-hexyl isocyanate)
Nylatron
Nylon 2
Nylon 3
Nylon 4,6
Nylon 6
Nylon 6 copolymer
<u>Nylon 6,6</u>
Nylon 6,6 copolymer
Nylon 6/6T
Nylon 6,10
<u>Nylon-610</u>
Nylon 6,12
Nylon 11
Nylon 12
Nylon MXD6
Nysyn
<u>OCF</u>
ODA-PMDA

<u>PA-6</u>

<u>PA-11</u>
<u>PA 12</u>
PA 610
<u>PA-610</u>
<u>PAA</u>
<u>PAAc</u>
PAAm PAAm
<u>PAI</u>
PAMAM dendrons and dendrimers
<u>PAMS</u>
<u>PANI</u>
<u>Paracril</u>
Parylene N
<u>PATP</u>
<u>PB</u>
PBA PBA
<u>PBD</u>
PBFP
<u>PBI</u>
<u>PBIC</u>
<u>PBLG</u>

```
PBO
PBT
       Poly(benzobisthiazole)
       Poly(butylene terephthalate)
PBTFP
PBZI
PBZT
PC
       Polycarbonate
       Poly(methylsilmethylene)
PCHMA
<u>PCL</u>
PCS
       Poly(p-chlorostyrene)
       Poly(methylsilmethylene)
PCTFE
PDBuS
PDES
PDHeS
PDHS
PDMS
       Poly(dimethylsiloxane)
```

Poly(dimethylsilylene) PDMS, cyclic <u>PDPeS</u> **PDPrS PDPS PDX PDXL PDXP** <u>PE</u> PE, branched PE, high-pressure PE, low-pressure <u>PEA</u> **PECH Pedigree PEEK** PEI Poly(ether imide) Poly(ethylene imine) **PEK**

PEN

<u>PEO</u>
Perbunan C
<u>Peregal</u>
Perfluorinated ionomers
<u>Pernigraniline</u>
PES
Poly(ether sulfone)
Poly(ethylene sulfide)
<u>PET</u>
<u>PF</u>
<u>PFPN</u>
<u>PGA</u>
<u>PHB</u>
<u>P(3HB)</u>
PHBA
<u>PHE</u>
PHEMA
Phenolic resins
Phenyl silicobenzoic anhydride
Phenyl siliconic anhydride
Phenyl-T
<u>PHEX</u>

<u>PHIC</u>
<u>PIB</u>
<u>Pioester</u>
<u>cis</u> -PIP
<u>trans-PIP</u>
<u>PLA</u>
<u>Plasdone</u>
<u>Plaskon</u>
Plastic protein-based polymers
Plexiglas
<u>Plioflex</u>
<u>Pliolite</u>
<u>PLOS</u>
PMA
Poly(methacrylic acid)
Poly(methyl acrylate)
<u>PMAA</u>
<u>PMAN</u>
<u>PMBD</u>
PMDA-ODA
<u>PpMeS</u>

```
PpMeS
PMMA
PMP
P4MPE
PMPS
       Poly(methylphenylsiloxane)
       Poly(methylphenylsilylene)
PMS
P(alpha)MS
<u>PpMS</u>
<u>P-pMS</u>
P4MS
PMSQ
PNF elastomer
PNIPA
PNIPAAm
<u>POE</u>
Polyacetals
       Polychloral
       Poly(1,3-dioxolane)
       Poly(methylene oxide)
```

```
Polyacetylene
Polyacrylamide
Poly(acrylic acid)
Poly(acrylonitrile)
Poly(L-alanine)
Poly(aldehyde)
Polyamide 12
Poly(amide imide)
Polyamides, aliphatic
       Nylon 3
       <u>Nylon 4,6</u>
       Nylon 6
       Nylon 6 copolymer
       <u>Nylon 6,6</u>
       <u>Nylon 6,10</u>
       Nylon 6,12
       Nylon 11
       Nylon 12
       Nylon MXD6
Polyamides, aromatic
       Kevlar
       Nylon 6,6 copolymer
```

```
Poly(p-benzamide)
       Poly(m-phenylene isophthalamide)
Poly(amidoamine) dendrimers
Polyamine
Polyanhydrides
       Poly(1,3-bis-p-carboxyphenoxypropane anhydride)
       Poly(erucic acid dimer anhydride)
Polyaniline
Polyaramid
Polyaramide
Polyaromatics
       Poly(1,4-phenylene)
       Poly(1,4-phenylene vinylene)
       Polyquinoline
       Poly(p-xylylene)
Poly(aryloxy)thionylphosphazenes
Poly(p-benzamide)
Poly(benzimidazole)
Poly(benzobisoxazole)
Poly[(benzo[1,2-d:5,4-d']bisoxazole-2,6-diyl)-1,4-phenylene]
Poly(benzobisthiazole)
```

```
Poly[(benzo[1,2-d:4,5-d']bisthiazole-2,6-diyl)-1,4-phenylene]
Poly(gamma-benzyl-L-glutamate)
Poly(1,3-bis-p-carboxyphenoxypropane anhydride)
Poly(bis maleimide)
Polybutadiene
       1,2-Polybutadiene
       cis-1,4-Polybutadiene
       trans-1,4-Polybutadiene
1,2-Polybutadiene
cis-1,4-Polybutadiene
trans-1,4-Polybutadiene
Polybutene
Poly(butene-1)
Poly[(n-butylamino)thionylphosphazene]
Polybutylene
Poly(butylene terephthalate)
Poly(n-butyl isocyanate)
Poly-(epsilon)-caproamide
Poly(epsilon-caprolactone)
Polycarbonate
Polycarbonate, bisphenol-A
Polycarbosilanes
```

Poly(methylsilmethylene) Poly(silylenemethylene) **Polychloral** Poly(2-chloro-1,3-butadiene) Poly(1-chloro-1-butenylene) Polychloroprene Poly(*p*-chlorostyrene) Poly(chlorotrifluoroethylene) Polyclar Poly(CPP) Poly(CPP-SA) Poly(cyclohexyl methacrylate) Poly(1,3-cyclopentylenevinylene) Poly(di-*n*-butylsiloxane) Poly(diethylsiloxane) Polydi-*n*-hexylsilane Poly(di-*n*-hexylsiloxane) Poly(di-*n*-hexylsilylene) Poly(dimethylferrocenylethylene) Poly(2,6-dimethyl-1,4-phenylene oxide) Polydimethylsilane

```
Poly(ethylene terephthalate)
       Poly(glycolic acid)
       Poly(4-hydroxy benzoic acid)
       Poly(hydroxybutyrate)
       Poly(lactic acid)
Polyesters, aliphatic
       Poly(epsilon-caprolactone)
       Poly(hydroxybutyrate)
Polyesters, aromatic
       Poly(butylene terephthalate)
       Poly(ethylene-2,6-naphthalate)
       Poly(ethylene terephthalate)
Polyesters, unsaturated
Poly(ether ether ketone)
Poly(ether imide)
Poly(ether ketone)
Polyethers
       Poly(2,6-dimethyl-1,4-phenylene oxide)
       Poly(epichlorohydrin)
       Poly(ethylene oxide)
       Poly(methylene oxide)
       Poly(p-phenylene oxide)
```

Poly(propylene oxide)
Poly(tetrahydrofuran)
Poly(trimethylene oxide)
Poly(ether sulfones)
Bisphenol-A polysulfone
Poly(ether sulfone)
Poly(ethyl acrylate)
Polyethylene, elastomeric (very highly branched)
Poly(ethylene imine)
Polyethylene, linear high-density
Polyethylene, linear low-density
Polyethylene, low-density
Polyethylene, metallocene linear low-density
Poly(ethylene-2,6-naphthalate)
Poly(ethylene oxide)
Poly(ethylene sulfide)
Poly(ethylene terephthalate)
Poly(ferrocenyldimethylsilane)
Polyflon
Polyformal
Polygermanes

Polygermylenes
Polyglycine
Poly(glycolic acid)
Polyheterocyclics
Polypyrrole
Polyquinoline
Polythiophene
Poly(hexamethylcyclodisilazane)
Poly(hexamethylene adipamide)
Poly(hexamethylene decanoamide)
Poly(hexamethylene sebacamide)
Poly(hexene-1)
Poly(n-hexyl isocyanate)
Poly(hydridosilsesquioxane)
Polyhydrosilsesquoxane
Poly(4-hydroxy benzoic acid)
Poly(hydroxybutyrate)
Poly(3-hydroxybutyrate)
Poly(alpha-hydroxy esters)
Poly(glycolic acid)
Poly(lactic acid)
Poly(2-hydroxyethyl methacrylate)

```
Polyimides
       Poly(amide imide)
       Poly(bis maleimide)
       Poly(ether imide)
       Poly(pyromellitimide-1,4-diphenyl ether)
Poly(iminoadipolyiminohexamethylene)
Poly[imino(1,6-dioxohexamethylene) iminohexamethylene]
Poly(iminoethylene)
Poly(iminohexamethylene-iminosebacoyl)
Poly[imino-1,6-hexanediylimino(1,10-dioxo-1,10-decanediyl)]
Poly[imino-1,6-hexanediylimino(1,12-dioxo-1,12-dedecanediyl)]
Poly(imino-1,4-phenyleneiminocarbonyl-1,4-phenylenecarbonyl)
Poly(isobutylene), butyl rubber, halobutyl rubber
Poly(isocyanates)
       Poly(n-butyl isocyanate)
       Poly(n-hexyl isocyanate)
Poly(isocyanide)
Poly(isonitrile)
cis-1,4-Polyisoprene
trans-1,4-Polyisoprene
Poly(N-isopropyl acrylamide)
```

Polyketones
Poly(ether ether ketone)
Poly(ether ketone)
Poly(lactic acid)
<u>Polylaurolactam</u>
<u>Polylite</u>
Polymeric selenium
Polymeric sulfur
Poly(methacrylic acid)
Poly(methyl acrylate)
Poly(methylacrylonitrile)
cis-1,4-Poly(2-methylbutadiene)
Poly(N-methylcyclodisilazane)
Poly(methylene oxide)
Poly(methyl methacrylate)
<u>Polymethylpentene</u>
Poly(4-methyl pentene-1)
Polymethylphenylsilane
Poly(methylphenylsiloxane)
Poly(methylphenylsilylene)
Poly(methylsilmethylene)

```
Poly(methylsilsesquioxane)
Poly(alpha-methylstyrene)
Poly(p-methylstyrene)
Poly(methyltrifluoropropylsiloxane)
Polymide 11
Polynitrile
Poly(norbornene)
Polyoctenamer
Poly(1-octenylene)
Polyolefin copolymers
       Ethylene-propylene-diene monomer elastomers
       Polyethylene, linear low-density
Poly(alpha-olefin copolymer)
Polyolefin elastomer
Polyolefin plastomers
Poly(alpha-olefins)
       Poly(butene-1)
       Polyethylene, elastomeric (very highly branched)
       Polyethylene, linear high-density
       Polyethylene, linear low-density
       Polyethylene, low-density
       Polyethylene, metallocene linear low-density
```

```
Poly(hexene-1)
       Poly(4-methyl pentene-1)
       Polypropylene, atactic
       Polypropylene, elastomeric (stereoblock)
       Polypropylene, isotactic
       Polypropylene, syndiotactic
       Poly(tetrafluoroethylene)
Poly[oxy(dimethylsilylene)]
Polyoxymethylene
Poly[oxy(methylphenylsilylene)]
Poly(oxy-1-oxo-3-methyl-trimethylene)
Polypentenamer
Poly(1-pentenylene)
Polypeptides and proteins
       Collagen
       Elastic, plastic, and hydrogel-forming protein-based polymers
       Gelatin
       Poly(L-alanine)
       Poly(gamma-benzyl-L-glutamate)
       Polyglycine
       Silk protein
```


Poly(aryloxy)thionylphosphazenes
Poly(phosphazene), bioerodible
Poly(phosphazene) elastomer
Poly(phosphazene), semicrystalline
Poly(phosphonate)
Polyphthalamide
Nylon 6 copolymer
Nylon 6,6 copolymer
Polypropylene, atactic
Polypropylene, elastomeric (stereoblock)
Polypropylene, isotactic
Poly(propylene oxide)
Poly(propylene sulfide)
Polypropylene, syndiotactic
Polypropylenimine dendrimers
Poly(pyromellitimide-1,4-diphenyl ether)
Polypyrrole
Polyquinoline
Poly(rotaxane), example 1
Poly(rotaxane), example 2
Polysaccharides
Cellulose

```
Chitin
       Glycogen
Polysar S
Polysar SS
Poly(silaethylene)
Polysilanes
       Poly(di-n-hexylsilylene)
       Poly(dimethylsilylene)
       Poly(dimethylsilylene-co-phenylmethylsilylene)
       Poly(methylphenylsilylene)
Polysilastyrene
Polysilazanes
       Hydridopolysilazane
       Poly(N-methylcyclodisilazane)
Polysiloxanes
       Poly(di-n-butylsiloxane)
       Poly(diethylsiloxane)
       Poly(di-n-hexylsiloxane)
       Poly(dimethylsiloxane)
       Poly(dimethylsiloxanes), cyclic
       Poly(di-n-pentylsiloxane)
```


Poly(vinylidene chloride)
Poly(vinylidene fluoride)
Poly(vinylidene fluoride-co-hexafluoropropylene)
Poly(vinyl methyl ether)
Poly(vinylmethylsiloxanes), cyclic
Poly(4-vinyl pyridine)
Poly(N-vinyl pyrrolidone)
Poly(p-xylylene)
POP
POPAM dendrimers
<u>Poval</u>
Povidone
<u>PP</u>
<u>PPA</u>
<u>PPBA</u>
PPE
Poly(2,6-dimethyl-1,4-phenylene oxide)
Poly(p-phenylene oxide)
<u>PPHOS</u>
<u>PPMS</u>
PPMS, cyclic
PPO

```
Poly(2,6-dimethyl-1,4-phenylene oxide)
       Poly(p-phenylene oxide)
       Poly(propylene oxide)
PPO
PPP
PPS
       Poly(p-phenylene sulfide)
       Poly(phenylsilsesquioxane)
       Poly(propylene sulfide)
PPSQ
PPTA
PP/TS
PPV
PPX
PPy
PQ
PR
       Poly(rotaxane), example 1
       Poly(rotaxane), example 2
2-Propenamide homopolymer
Protein-based polymers
```

Proteins and polypeptides	
	Collagen
	Elastic, plastic, and hydrogel-forming protein-based polymers
	<u>Gelatin</u>
	Poly(L-alanine)
	Poly(gamma-benzyl-L-glutamate)
	Polyglycine
	Silk protein
<u>PS</u>	
<u>PSE</u>	
<u>PSF</u>	
<u>PSM</u>	
<u>PSS</u>	
<u>PT</u>	
<u>PTFE</u>	
<u>PTFP</u>	
PTHF	
<u>PTMO</u>	
PTMSF	o -
<u>PTP</u>	
PU	

Polyurea

	<u>Polyurethane</u>
	Polyurethane elastomers
	Polyurethane urea
PUR	
	<u>Polyurea</u>
	Polyurethane
	Polyurethane elastomers
<u>PUU</u>	
<u>PV-110</u>	<u>6 resin</u>
<u>PVA</u>	
<u>PVAC</u>	
<u>PVB</u>	
<u>PVC</u>	
<u>PVDC</u>	
<u>PVDF</u>	
<u>PVF</u>	
PVF2	
<u>PVK</u>	
<u>PVM</u>	
<u>PVME</u>	
<u>PVMS</u>	, cyclic

PVP
Poly(4-vinyl pyridine)
Poly(N-vinyl pyrrolidone)
P4VP
Rayon
Regenerated cellulose
Reillex
Reny
Resimene
Resoles
Rexflex
Rextac
Rhovinal B
Rigid linear aromatic polyester
Rigid-rod polymers
Poly(benzimidazole)
Poly(benzobisoxazole)
Poly(benzobisthiazole)
Rilsan A
Rilsan B
Rubber

Polychloroprene
Poly(isobutylene), butyl rubber, halobutyl rubber
cis-1,4-Polyisoprene
Ryton
Saflex
SAN
Saran (copolymer)
Saturated thermoplastic elastomer
<u>SB</u>
SBR
SCC
Semicrystalline poly(phosphazene)
Semi-inorganic and inorganic polymers
Poly[(n-butylamino)thionylphosphazene]
Poly(dimethylferrocenylethylene)
Poly(ferrocenyldimethylsilane)
Polygermanes
Polymeric selenium
Polymeric sulfur
<u>Polyphosphates</u>
Poly(phosphonate)
Poly(sulfur nitride)

Poly(vinylferrocene)
<u>SiB</u>
Silarylene-siloxane polymers
Silicon (germanium) oxo hemiporphyrazine polymers
Silk
Silk protein
Siloxane ladder polymers
Poly(hydridosilsesquioxane)
Poly(methylsilsesquioxane)
Poly(phenylsilsesquioxane)
Silphenylenes
Single site catalyzed LLDPE
Skyprene
<u>S'Lec</u>
<u>SMMA</u>
$(SN)_{\underline{x}}$
Sokalan
Solef
Solprene
Soltex

Spectratech

Spidroin
<u>s-PP</u>
<u>sPP</u>
<u>SPS</u>
Srereon
SSC LLDPE
<u>Stanyl</u>
Starburst dendrons and dendrimers
<u>Starch</u>
Styrene-acrylonitrile
Styrene-butadiene elastomers
Styrene-methylmethacrylate copolymer
Styrofoam
Sulfo-EPDM ionomers
Sulfo-ethylene-propylene-diene monomer ionomers
SupersoftPP
Surlyn
Syndiotactic polypropylene
Syndiotactic polystyrene
Synpol
Technyl D

<u>Tecnoflon</u>
Tedlar PVF film
Tedlar SP film
<u>Teflon</u>
<u>Teijinconex</u>
Telene (copolymer)
ter-Polymer elastomer
Thermoplastics
Epoxy resins
Kraton D1100 SBS
Kraton G1600 SEBS
Poly(amide imide)
Poly(butylene terephthalate)
Poly(epsilon-caprolactone)
Poly(2,6-dimethyl-1,4-phenylene oxide)
Poly(ether imide)
Poly(ethylene-2,6-naphthalate)
Poly(ethylene terephthalate)
Poly(methylene oxide)
Poly(p-phenylene oxide)
Thermoplastic saturated elastomer
Thermoplastic unsaturated elastomer

Alkyd resins
Amino resins
Epoxy resins
Phenolic resins
Poly(bis maleimide)
Polyesters, unsaturated
Thermoset resin
<u>Tohprene</u>
<u>TOR</u>
Torelina
<u>Torlon</u>
<u>TP 301</u>
<u>TPX</u>
<u>Trosofioil</u>
<u>TW241F10</u>
<u>TW300</u>
<u>Tylac</u>
<u>Tyril</u>
<u>UBE Nylon 12</u>
<u>Udel P1700</u>

Thermoset polymers

<u>Udel P3500</u>
<u>Ultem</u>
<u>Ultraform</u>
<u>Ultra-low-density ethylene copolymer</u>
<u>Ultramid</u>
<u>Ultramid A</u>
<u>Ultramid S</u>
<u>Ultramid T</u>
<u>Ultrathene</u>
<u>Unsaturated polyesters</u>
Unsaturated polymers
Polyacetylene
Polyaniline
Poly[1-(trimethylsilyl)-1-propyne]
<u>Unsaturated thermoplastic elastomer</u>
<u>Urea resins</u>
Vespel
Vestamid
Vestenamer
Vestolite
<u>Victrex</u>

Victrex 100P
Victrex 200P
Vinoflex
Vinol
Vinylidene fluoride-hexafluoropropylene elastomers
Vinylidene polymers
Poly(chlorotrifluoroethylene)
Poly(cyclohexyl methacrylate)
Poly(2-hydroxyethyl methacrylate)
Poly(isobutylene), butyl rubber, halobutyl rubber
Poly(methacrylic acid)
Poly(methyl methacrylate)
Poly(vinylidene chloride)
Poly(vinylidene fluoride)
Vinylite XYHL
Vinyl polymers
<u>Polyacrylamide</u>
Poly(acrylic acid)
Poly(p-chlorostyrene)
Poly(ethyl acrylate)
Poly(N-isopropyl acrylamide)
Poly(methyl acrylate)

Poly(alpha-methylstyrene)
Poly(p-methylstyrene)
Polystyrene
Polystyrene, syndiotactic
Poly(vinyl acetate)
Poly(vinyl alcohol)
Poly(vinyl butyral)
Poly(N-vinyl carbazole)
Poly(vinyl chloride)
Poly(vinyl fluoride)
Poly(vinyl methyl ether)
Poly(4-vinyl pyridine)
Poly(N-vinyl pyrrolidone)
<u>Vistalon derivative</u>
Viton
Wacker SWS101 fluid
Xarec
Zytel

AT. ---

FECHNICAL SUPPORT
If you require assistance in using this online application, please send e-mail to: polymer@oup-usa.org

OXFORD UNIVERSITY PRESS

Oxford New York
Athens Auckland Bangkok Bogotá
Buenos Aires Calcutta Cape Town Chennai
Dar es Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madrid Melbourne Mexico City
Mumbai Nairobi Paris São Paulo Singapore
Taipei Tokyo Toronto Warsaw

and associated companies in

Berlin Ibadan

Copyright © 1999 by Oxford University Press, Inc.

Published by Oxford University Press, Inc., 198 Madison Avenue, New York, New York 10016

http://www.oup-usa.org

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press.

SHUHONG WANG

ACRONYM, TRADE NAMES NBR, Chemigum[®] (The Goodyear Tire & Rubber Co.), Hycar[®] (BF Goodrich Specialty Chemicals), JSR (Japan Synthetic Rubber Co.), Krynac[®] (Bayer AG), NIPOL (Nippon Zeon Co.), Nysyn[®] (DSM Copolymer Rubber and Chemical Co.), Paracril[®] (Uniroyal Chemical Co.)

CLASS Chemical copolymers

STRUCTURE
$$-[CH_2-CH=CH-CH_2]_m-[CH_2-CH]_n-$$

$$|C=N|$$

MAJOR APPLICATIONS Hoses where oil, fuel, chemicals, and solutions are transported. Oil-drilling industry. Powder and particulate forms in cements and adhesives. Modification of PVC and ABS to improve impact resistance.

PROPERTIES OF SPECIAL INTEREST Special-purpose, oil-resistant rubbers. Balance of low-temperature, oil, fuel, and solvent resistance. Good abrasion resistance, gas permeability, and thermal stability. Good strength.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	$g \text{cm}^{-3}$	26-27% ACN	0.92	(1)
Glass transition temperature $T_{\rm g}$	K	~20% ACN ~30% ACN ~34% ACN ~40% ACN ~48% ACN	213 231 238 255 263	(2)
Service temperature (max)	K	9% N	373	(3)
Solubility parameter	$(MPa)^{1/2}$	25% ACN, 25°C, calc.	18.93	(4)
Theta temperature θ	K	26% ACN, cyclohexane/MEK (64/36) 40% ACN, cyclohexane/MEK (52.5/47.5)	293.2 295.2	(5)

Volume swell (%) (Black loaded vulcanizate, 72 h at room temperature, or 100°C with *) $^{(2)}$

Solvent	17% ACN	34% ACN	37% ACN
Lard*	18	-2	-3
Butter fat*	29	-3	-3
Lanolin*	20	0	-1.5
Margarine*	24	-5	-5
Stearic acid*	26	23	-2
Oleic acid	20	3	0
Cod liver oil	5	0	0
Dehydrogenated corn oil	3	0	0
Automobile lube oil (SAE-20)	0	0	0
Automobile hydraulic fluid	8	8	6
Jet aircraft fuel			
18% aromatic, 28% olefin	60	14	11
21% aromatic, 0.1% olefin	38	9	5
Ethylene glycol	0	0	0
Automobile gasoline	39	8	6
Skydrol hydraulic fluid	112	59	41
Dioctyl phthalate	52	6	2
Dibutyl phthalate	119	76	52
Tricresyl phosphate	50	21	16
Butyl carbitol formal (polyether)	92	32	21
Bis(dimethyl benzyl)ether	147	45	29
Liquid polyester	-2	0	-3
Triglycol dioctylate	83	12	5
Tributoxy ethyl phosphate	67	29	17

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	Unfilled, vulcanizate ($26 \sim 27\%$ ACN)	$4 \sim 7$	(1)
Ultimate elongation	%	_	$350\sim800$	(1)

PROPERTY	UNITS				VALUES	5			REFERENCE
	ACN % Polymer Mooney	40 60	33 30	33 50	33 70	33 85	27 50	20 40	-
Tensile strength	MPa	17.9	15.8	16.0	17.6	19.5	14.2	13.4	(6)
Ultimate elongation	%	466	478	433	357	439	334	387	(6)
Modulus, 100% Modulus, 200% Modulus, 300%	MPa MPa MPa	3.6 8.6 13.0	3.1 7.0 10.5	3.2 7.7 11.7	3.9 9.5 14.8	3.5 8.9 14.1	3.7 8.5 12.8	2.9 7.0 10.5	(6) (6) (6)
Hardness	Shore A values	68	67	66	67	66	67	64	(6)

PROPERTY	UNITS				VALUES	5			REFEREN
	ACN %	40	33	33	33	33	27	20	
	Polymer Mooney	60	30	50	70	85	50	40	
									_
		Oven	aging at	100°C,	70 h				-
Гensile change	%	3	5	5	1	-9	8	-1	(6)
Elongation change	%	-12	-17	-15	-10	-25	-10	-21	(6)
Hardness change	%	4	4	4	4	4	4	3	(6)
		Oven	aging at	121°C,	70 h				
Гensile change	%	3	9	6	8	1	16	4	(6)
Elongation change	%	-24	-21	-21	-8	-21	-10	-24	(6)
Hardness change	%	6	6	6	5	5	5	5	(6)
		Fluid	aging at	121°C i	n ASTM	oil No.	1		
Гensile change	%	6	12	15	9	8	6	13	(6)
Elongation change	%	-24	-26	-11	-13	-18	-18	-17	(6)
Hardness change	%	9	9	9	7	8	5	-2	(6)
Volume swell	%	-6.5	-5.9	-5.2	-5.2	-4.6	-2.6	0.9	(6)
		Fluid	aging at	121°C i	n ASTM	oil No.	3		
Tensile change	%	1	11	8	8	-1	0	-27	(6)
Elongation change	%	-20	-11	-4	1	-16	-11	-35	(6)
Hardness change	%	3	0	0	0	1	-6	-9	(6)
Volume swell	%	1.8	5.6	7.8	8.2	6.6	18	35	(6)
		Fluid	aging at	23°C in	ASTM I	Fuel B			
Гensile change	%	-43	-43	-42	-43	-46	-43	-54	(6)
Elongation change	%	-42	-40	-40	-41	-45	-44	-59	(6)
Hardness change	%	-9	-12	-10	-9	-9	-13	-14	(6)
Volume swell	%	18	26	28	28	28	38	53	(6)
		Fluid	aging at	23°C in	ASTM I	Fuel C			
Гensile change	%	-54	-51	-57	-55	-58	-58	-66	(6)
Elongation change	%	-58	-52	-58	-54	−59	-61	-72	(6)
Hardness change	%	-11	-15	-12	-10	-10	-13	-13	(6)
Volume swell	%	37	45	50	48	46	68	94	(6)
		Fluid	aging at	100°C i₁	n distille	ed water			
Tensile change	%	-5	-8	-2	8	-8	-3	5	(6)
Elongation change	%	-18	-26	-18	−1	-23	-16	_8	(6)
Hardness change	%	0	-1	0	0	0	0	0	(6)
Volume swell	%	3.6	3.6	4.4	3.2	3.9	2.4	2.1	(6)
			- · -						(-)

PROPERTY	UNITS				VALUES	;			REFERENCE
	ACN %	40	33	33	33	33	27	20	
	Polymer Mooney	60	30	50	70	85	50	40	
Compression set	%	100°C,	, 70 h (A	STM D	395, met	hod B)			
		10.1	12.5	10.8	8.4	13.2	10.1	11.2	(6)
		121°C,	, 70 h (A	STM D	395, met	hod B)			
		24.0	26.0	23.0	20.1	23.9	24.0	25.3	(6)
Rebound	%	Goody	year–He	ealey me	ethod, 23	3°C			
		42	57	58	59	57	61	64	(6)
		Goody	year–He	ealey me	ethod, 10	00°C			
		60	74	76	77	76	78	79	(6)
Brittle temperature	K	245.5	236.5	234.7	234.1	234.1	222.1	218.5	(6)
Gehman temperature		Torsio	n						
T(2)	K	269	258	257	256	257	252	246	(6)
T(5)	K	262	253	251	251	252	248	241	(6)
T(10)	K	259	251	249	249	250	245	239	(6)
T(100)	K	255	245	242	244	244	240	232	(6)
Low temperature	K	50% elongation							
retraction, TR-10		252	246	244	244	246	241	231	(6)

^{*}NBR compound formulation – Polymer: 100 phr, N774: 60 phr, ZnO: 4 phr, Wingstay 100: 2 phr, Paraplex G–25: 5 phr, TP 95 Plasticizer: 7 phr, METHYL TUADS: 2 phr, AMAX: 2 phr, Stearic Acid: 0.5 phr, Sulfur: 0.4 phr.

REFERENCES

- 1. Mark, J. E., ed. *Physical Properties of Polymers Handbook*. American Institute of Physics Press, Woodbury, N.Y., 1996.
- 2. Bayer Nitrile Handbook.
- 3. Ohm, R. F. In *The Vanderbilt Rubber Handbook*, 3d ed. R. T. Vanderbilt Co., Norwalk, Conn., 1990.
- 4. Small, P. A. J. Appl. Chem. 3 (1953): 71.
- 5. Poddubnyi, I. Ya., V.A. Grechanovskii, and A.V. Podalinskii. *J. Polym. Sci., Part C*, 16 (1968): 3,109.
- Purdon, J. R. In *The Vanderbilt Rubber Handbook*, 3d ed. R. T. Vanderbilt Co., Norwalk, Conn., 1990.

Alkyd resins

MEE Y. SHELLEY

TRADE NAMES Plaskon, Durez, Glaskyd

CLASS Thermoset polymers (polyesters modified with monobasic fatty acids)

PRINCIPAL COMPONENTS Fatty acids and oils (e.g., lauric, palmitic, stearic, oleic, linoleic, linolenic, eleostearic, and licanic acids). Polyhydric alcohols (e.g., glycerol, pentaerythritol, ethylene glycol). Polybasic acids (e.g., phthalic acid/anhydride, maleic acid/anhydride, fumaric acid/anhydride).

MAJOR APPLICATIONS Paints, brushing enamels, and clear varnish. Industrial coatings (spraying, dipping, flow coating, roller coating). Industrial baking finishes.

PROPERTIES OF SPECIAL INTEREST Rapid drying. Good adhesion. Flexibility. Mar resistance and durability. Ester groups can be hydrolyzed under alkaline conditions.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Processing temperature	K	Molding, mineral filled (granular and putty)		(1)
		Compression	405-450	` ,
		Injection	410-470	
		Transfer	430-460	
		Molding, glass fiber-reinforced		(1)
		Compression	420-450	
		Injection	410-470	
		Unspecified	425–440	(2)
Molding pressure	MPa	Molding, mineral filled (granular and putty)	14-140	(1)
01		Molding, glass fiber-reinforced	14-170	()
Compression ratio		Molding, mineral filled (granular and putty)	1.8-2.5	(1)
-		Molding, glass fiber-reinforced	1-11	
Linear mold shrinkage	ratio	Molding, mineral filled (granular and putty)	0.003-0.010	(1)
8		Molding, glass fiber-reinforced	0.001-0.010	(1)
		Unspecified	0.002-0.007	(2)
Density	$\rm gcm^{-3}$	Molding, mineral filled (granular and putty)	1.6-2.3	(1)
2 charty	8	Molding, glass fiber-reinforced	2.0-2.3	(1, 3)
		Unspecified	2.05-2.16	(2)
		Coating	1.2	(3)
Water absorption	%	Molding, mineral filled (granular and putty),	0.05-0.5	(1)
vaca absorption	/0	1/8 in. thick specimen, 24 h	0.05-0.5	(1)
		Molding, glass fiber-reinforced, 1/8 in. thick specimen, 24 h	0.03-0.5	(1)
		Coating	2	(3)
		South 19	_	(3)

Alkyd resins

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength at break	MPa	Molding, mineral filled (granular and putty)	20-60	(1)
_		Molding, glass fiber-reinforced	30-66	(1)
		Molding, glass fiber-filled	41	(3)
		Unspecified	40-60	(2)
		Coating	35	(3)
Elongation	%	Coating Molding, glass fiber-filled	65 2	(3)

Solubility parameters $^{(4,5)}$

Conditions	Hansen parameters (MPa) ^{1/2}						
	$\delta_{\sf d}$	δ_{p}	δ_{h}	δ_{t}			
Long oil (66% oil length, Plexal P65, Polyplex)	20.42	3.44	4.56	21.20			
Short oil (coconut oil 34% phthalic anhydride; Plexal C34)	18.50	9.21	4.91	21.24			

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile yield strength	MPa	Unspecified	45-48	(2)
Compressive strength (rupture or yield)	MPa	Molding, mineral filled (granular and putty) Molding, glass fiber-reinforced Unspecified	83–260 100–250 150–190	(1) (1) (2)
Flexural strength (rupture or yield)	MPa	Molding, mineral filled (granular and putty) Molding, glass fiber-reinforced Unspecified Molding, glass fiber-filled	40-120 60-180 60-160 103	(1) (1) (2) (3)
Tensile modulus	MPa	Molding, mineral filled (granular and putty) Molding, glass fiber-reinforced	3,000-20,000 14,000-19,000	(1)
Compressive modulus	MPa	Molding, mineral filled (granular and putty) Molding, glass fiber-filled	14,000-20,000 140	(1) (3)
Flexural modulus	MPa	Molding, mineral filled (granular and putty), 296 K	14,000	(1)
		Molding, glass fiber-reinforced, 296 K Unspecified	14,000 14,000–20,000	(1) (2)
Impact strength, Izod	$J m^{-1}$	Molding, mineral filled (granular and putty) Molding, glass fiber-reinforced Unspecified	16–27 27–850 17–400	(1) (1) (2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Hardness	Rockwell	Molding, mineral filled (granular and putty)	E98	(1)
	Rockwell	Molding, glass fiber-reinforced	E95	(1)
	Rockwell	Molding, glass fiber-filled	E80	(3)
	Shore	Coating	D80	(3)
Deflection temperature	K	Molding, mineral filled (granular and putty) under flexural load, 1.82 MPa	450-530	(1)
		Molding, glass fiber-reinforced under flexural load, 1.82 MPa	480-530	(1)
		Molding, glass fiber-filled, 1.82 MPa	470	(3)
Maximum resistance to	K	Coating	360	(3)
continuous heat		Molding, glass fiber-filled	470	()
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	Granular and putty, mineral filled	0.5-1.0	(1)
,		Glass fiber-reinforced	0.6-1.0	()
Dielectric strength	$V mil^{-1}$	Molding, mineral filled (granular and putty)	350-450	(1)
		Molding, glass fiber-reinforced	259-530	(1)
		Glass-filled	375	(6)
		Mineral-filled	400	(6)
Volume resistivity	ohm cm	Glass-filled	10^{15}	(6)
,		Mineral-filled	10^{14}	()
Dielectric constant	_	Glass-filled, 1 MHz	4.6	(6)
		Mineral-filled, 1 MHz	4.7	(6)
		Unspecified, 1MHz	4.7-6.7	(2)
		Coating	4	(3)
Dissipation factor at 1 MHz	_	Glass-filled	0.02	(6)
		Mineral-filled	0.02	(6)
		Unspecified	0.009-0.02	(2)

REFERENCES

- 1. Kaplan, W. A., et al., eds. *Modern Plastics Encyclopedia '97*. McGraw-Hill, New York, *Modern Plastics*, Mid-November 1996.
- Plastics Digest, Thermoplastics and Thermosets, 15th ed., vol. 1. D.A.T.A. Business Publishing, Englewood, 1994.
- 3. Seymour, R. B. *Polymers for Engineering Applications*. ASM International, Washington, D.C., 1987
- 4. Hansen, C. M., Skand. Tidskr, Färg Lack, 17 (1971): 69.
- 5. Du, Y., Y. Xue, and H. L. Frisch. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. Wiley-Interscience, New York, 1996, pp. 227–239.
- Harper, C. A., ed. Handbook of Plastics, Elastomer, and Composites, 3d ed. McGraw-Hill, New York, 1996.

Amino resins

MILIND SOHONI

ALTERNATIVE NAMES Melamines, urea resins

TRADE NAMES Resimene (Solutia, Inc.), Cymel (Cytek Industries, Inc.)

CLASS Thermoset polymers; chemical copolymers

TYPICAL COMONOMERS Melamines, urea, formaldehyde, ethylene urea, benzoguanamine, thiourea, acetoguanamine

POLYMERIZATIONS Condensation

MAJOR APPLICATIONS Molding resins, adhesives, coatings, treatment of paper and textiles, automobile tires

PROPERTIES OF SPECIAL INTEREST Hardness, nonflammability, arc resisitance, thermal properties, lightfastness

Properties of amino-formaldheyde molding compounds⁽¹⁾

Property	Units	Resin and filler		
		Urea-formaldehyde, alpha-cellulose	Melamine-formaldehyde, alpha-cellulose	
Pigmentation and coloring possibilities	_	Unlimited	Unlimited	
Appearance	_	Translucent to opaque	Translucent to opaque	
Molding qualities	_	Excellent	Excellent	
Type of resin	_	Thermosetting	Thermosetting	
Molding temperature	°F (°C)	275–300 (135–177)	280-370 (138-188)	
Molding pressure	psi	2,000-8,000	1,500-8,000	
Mold shrinkage	in in ⁻¹	0.006-0.014	0.005-0.015	
Specific gravity	_	1.47-1.52	1.47-1.52	
Tensile strength	psi	$6-13 \times 10^3$	$7-13 \times 10^3$	
Flexural strength	psi	$10-16 \times 10^3$	$10-16 \times 10^3$	
Notched Izod impact strength	ft-lb in ⁻¹	0.25-0.4	0.24-0.35	
Rockwell hardness	_	M 110-M 120	M 110-M 125	
Thermal expansion	$^{\circ}\mathrm{C}^{-1}$	$2.2 - 3.6 \times 10^{-6}$	4.0×10^{-6}	
Deflection temperature under load	$^{\circ}\mathrm{F}$	260-290	410	
Dielectric strength, short time, 0.125 in thickness	$V mil^{-1}$	300-400	300-400	
Dielectric constant	_	6-8	7.2-8.4	
Dissipation factor	_	0.025-0.035	0.027-0.045	
Arc resistance	S	80-150	110-180	
Cold-water absorption, room temp.				
24 h, 0.125 in thickness	%	0.4-0.8	0.1-0.6	
7 days	$mg (100 cm^2)^{-1}$	800	270	
Boiling water test, 10 min, 100°C	%	3.4	0.4	
Burning rate	_	Self-extinguishing	Self-extinguishing	
Effect of sunlight	_	Pastels turn gray	Slight color change	

Curing range of urea- and melamine-formal dehyde molding compounds $\ensuremath{^{(1)}}$

Cure time (min)	Cure temperature (°C)							
	0.5	1	1.5	2	3	4	6	8
Urea-formaldehyde base								
Upper limit	_	170	167	163	158	154	148	145
Optimum temperature	_	169	164	160	155	151	145	140
Lower limit	_	167	160	156	150	145	139	135*
Melamine-formaldehyde								
Upper limit	187	182	179	177	172	169	165	161
Optimum temperature	175	167	159	154	146	140	130^{*}	120*
Lower limit	172	155	145	138	125*	120*	115*	110*

^{*}Value extrapolated.

Rate constants for urea-formal dehyde reactions at $35^{\circ}\mathrm{C}$ and pH $4.0^{(3)}$

Reaction*	Rate constant K , L (s mol) ⁻¹
$U + F \rightarrow UF$	4.4×10^{-4}
$UF + U \rightarrow U - CH_2 - U$	3.3×10^{-4}
$UF + UF \rightarrow U - CH_2 - UF$	0.85×10^{-4}
$UF_2 + UF \rightarrow FU - CH_2 - UF$	0.5×10^{-4}
$UF_2 + UF_2 \rightarrow FU - CH_2 - UF_2$	$<3 \times 10^{-6}$

 $^{^*}U = urea. F = formaldehyde.$

 1H NMR chemical shifts † for melamine $resins^{(2)}$

Proton	Chemical shift	Structure
$-NH_2^*$	5.8-6.2	Broad singlet
$-NH^*$	7.2-7.4	Broad singlet
$-N-CH_2OH^*$	5.4-5.6	Broad triplet
$-N-CH_2^*OH$	_	_
$-N-CH_2^*OR$	4.6-5.1	Broad peak
$-N-CH_2^*-N-$	_	_
$-O-CH_3^*$	3.2	Singlet
$-O-CH_2^*CH_3$	3.0-3.2	Quadruplet
$-O-CH_2CH_3^*$	1.2	Triplet
$-O-CH_2^*CH_2CH_3$	3.5	Triplet
$-O-CH_2CH_2^*CH_3$	1.5	Multiplet
-O-CH ₂ CH ₂ CH ₃ *	1.1	Triplet
$-O-CH^*(CH_3)_2$	3.8-4.0	Multiplet
$-O-CH(CH_3^*)_2$	1.0-1.1	Doublet
-O-CH ₂ CH ₂ CH ₂ CH ₃	3.0-3.3	Triplet
$-O-CH_2CH_2^*CH_2^*CH_3$	1.0-1.5	Multiplet
$-O-CH_2CH_2CH_2CH_3^*$	0.7-1.0	Triplet
$-O-CH_2^*CH(CH_3)_2$	3.5	Multiplet
$-O-CH_2CH^*(CH_3)_2$	1.5	Multiplet
$-O-CH_2CH(CH_3^*)_2$	0.8	Doublet

[†]Chemical shifts in ppm relative to TMS.

Amino resins

¹³C NMR chemical shifts[†] for melamine resins⁽⁵⁾

Carbon atom	Chemical shift
N	
C^*-NH_2	167.4
N	
N	
C^* – $NH(CH_2O-)$	166.0-166.6
N	
N	
$C^*-N(CH_2O-)_2$	165.4-165.8
N	
-NHCH2OC*H2O-	93.0
$-N(C^*H_2OCH_3)_2$	76.8
-NHC*H ₂ OCH ₃	72.6
$-N(C^*H_2OC_4H_9)_2$	74.4
$-NHC^*H_2OC_4H_9$	71.0
-NHC*H ₂ OC*H ₂ NH-	68.0-69.0
-NHC*H ₂ OH	64.5
$-N(CH_2OC^*H_3)_2$	55.4
-NHCH2OC*H3	54.5
-NCH ₂ OC*H ₂ CH ₂ CH ₂ CH ₃	66.9
-NCH ₂ OCH ₂ CH ₂ CH ₂ CH ₃	31.4
-NCH ₂ OCH ₂ CH ₂ C*H ₂ CH ₃	18.9
-NCH ₂ OCH ₂ CH ₂ CH ₂ C*H ₃	13.7
-NCH2OCH2C*H(CH3)2	28.1
-NCH2OCH2CH(C*H3)2	18.9

[†]Chemical shifts in ppm relative to TMS.

Melamine/formaldehyde reactions⁽²⁾

- 1. $-NCH_2OCH_3 + ROH \rightarrow -NCH_2OR + CH_3OH$
- $2. \hspace{0.5cm} 2-NCH_2OCH_3+H_2O\rightarrow -NCH_2N-+H_2C=O+2CH_3OH$
- 3. $-NCH_2OCH_3 + -NH \rightarrow -NCH_2N + CH_3OH$
- $4. \hspace{0.5cm} 2-NCH_2OCH_3 \rightarrow -NCH_2N-+CH_3OCH_2OCH_3 \\$
- 5. $-NCH_2OCH_3 + -NCH_2OH \rightarrow -NCH_2OCH_2N + CH_3OH$
- $6. \hspace{0.5cm} -NCH_2OCH_3 + H_2O \rightarrow -NCH_2OH + CH_3OH \\$
- 7. $-NCH_2OH \rightarrow -NH + H_2C = O$
- $8. \hspace{0.5cm} -NCH_2OH + -NH \rightarrow -NCH_2N + H_2O \\$
- $9. \hspace{0.5cm} 2-NCH_2OH \rightarrow -NCH_2N-+H_2C=O+H_2O$
- 10. $-NCH_2OH + ROH \rightarrow -NCH_2OR + H_2O$
- $11. \quad 2-NCH_2OH \rightarrow -NCH_2OCH_2N- + H_2O$

Reaction constants for urea-formaldehyde at 35°C and pH $7.0^{(4)}$

Reaction	Second order reaction velocity constant, k_1 (I mol ⁻¹ s ⁻¹)	Equilibrium constant, $K(k_2k_1^{-1})$ (mol I^{-1})
1. $U + F \xrightarrow{R_1} UF$	0.9×10^{-4}	0.036
2. $UF + F \xrightarrow{R_2} UF_2$	0.38×10^{-4}	0.22
3. $UF_2 + F \underset{R_2}{\overset{R_1}{\rightleftharpoons}} UF_3$	0.1×10^{-4}	1.2

Properties of melamine-formal dehyde laminates $\sp(1)$

Property	Units	Melamine-formaldehyde la	minate
		Cellulose paper base	Glass fabric base
Coloring possibilities	_	Unlimited	Unlimited
Appearance	_	Translucent/opaque	Translucent/opaque
Laminating temperature	$^{\circ}\mathrm{F}$	270-320	270-300
Laminating pressure	psi	500-1,800	1,000-1,800
Specific gravity	-	1.4-1.5	1.82-1.98
Tensile strength	psi	$10-25 \times 10^3$	$25-40 \times 10^3$
Flexural strength	psi	$14-20 \times 10^3$	$40-65 \times 10^3$
Notched Izod impact strength	$\hat{f}t$ -lb in ⁻¹	0.3-1.5	5-15
Rockwell hardness	_	M 110-M 125	M 115-M 125
Water absorption, 24 h, room temp., 0.125 in thickness	%	1.0-2.0	1.0-2.5
Effect of sunlight	_	Slight color change	Slight color change
Machining qualities	_	Fair	Fair
Thermal expansion	$^{\circ}\mathrm{C}^{-1}$	0.7 – 2.5×10^{-5} *	$0.7 1.2 \times 10^{-5}$
Resistance to heat (continuous)	$^{\circ}\mathrm{F}$	210-260	300
Burning rate	_	\sim Nil	Nil
Dielectric strength, short time	${ m V~mil}^{-1}$	400-700	200-500
Dielectric constant, at 10 ⁶ cps	_	6.4-8.5	6.0-9.0
Dissipation factor, at 10 ⁶ cps	_	0.035-0.05	0.011-0.025
Arc resistance	S	100	175-200

^{*}Cotton fabric filler.

Rate constants for melamine-formal dehyde resins at pH $7.7^{(6)}\,$

Reaction	Temp. (°C)	Second order rate constant of forward reaction, k_1	First order rate constant of reverse reaction, k_2
$1. M + F \rightleftharpoons MF$	50	1.4×10^{-3}	0.3×10^{-4}
	70	6.1×10^{-3}	3.5×10^{-4}
2. $MF + F \rightleftharpoons MF_2$	50	1.0×10^{-3}	1.4×10^{-4}
	70	5.4×10^{-3}	6.6×10^{-4}
3. $MF_2 + F \rightleftharpoons MF_3$	50	1.8×10^{-3}	_
	70	7.4×10^{-3}	_

Property	Units	Urea	Melamine			
		Alpha-cellulose	Alpha-cellulose	Macerated fabric	Asbestos	Glass fiber
Physical						_
Specific gravity	_	1.47-1.52	1.47-1.52	1.5	1.7-2.0	1.8-2.0
Water absorption, 24 h,	%	0.48	0.1-0.6	0.3-0.6	0.08 - 0.14	0.09-0.21
3.2 mm thick						
<u>Mechanical</u>	_					
Tensile strength	MPa $(10^3 \mathrm{psi})$	38-48 (5.5-7)	48-90 (7-13)	55-69 (8-10)	38-45 (5.5-6.5)	35-70 (5-10)
Elongation	% _	0.5-1.0	0.6-0.9	0.6 - 0.8	0.3-0.45	
Tensile modulus	GPa (10 ⁵ psi)	9-9.7 (13-14)	9.3 (13.5)	9.7-11 (14-16)	13.5 (19.5)	16.5 (24)
Hardness, Rockwell M	_	110-120	120	120	110	115
Flexural strength	MPa (10^3 psi)	70-124 (11-18)	83-104 (12-15)	83-104 (12-15)	52-69 (7.4-10)	90-165 (13-24)
Flexural modulus	GPa (10^5 psi)	9.7-10.3 (14-15)	7.6 (11)	9.7 (14)	12.4 (18)	16.5 (24)
Notch Impact strength	$\operatorname{Jm}^{-1}(\operatorname{ft-lbin}^{-1})$	14-18 (0.27-0.34)	13-19 (0.24-0.35)	32-53 (0.6-1.0)	16-21 (0.3-0.4)	32-1000 (0.6-18)
<u>Thermal</u>						
Thermal conductivity	$10^{-4} \text{ J-cm s}^{-1} \text{ cm}_{-1}^{-2} {}^{\circ}\text{C}^{-1} {}^{*}$	42.3	29.3-42.3	44.3	54.4-71	48.1
Coefficient of thermal	$10^{-5}\mathrm{cm}\mathrm{cm}^{-1}^{\circ}\mathrm{C}^{-1}^{*}$	2.2-3.6	2.0-5.7	2.5-2.8	2.0-4.5	1.5–1.7
expansion						
Deflection temperature at	°C	130	182	154	129	204
1.8 MPa (264 psi)		1	_			
Flammability class	_	$V_{\mathbf{Q}^{\dagger}}^{\dagger}$	VQ [†]	_	_	VO
Continuous no-load service	°C	77 [‡]	99 [‡]	121	149	149-204
temperature						
<u>Electrical</u>	** / o o o o = *					
Dielectric strength	V/0.00254 cm					
Short time, 3.2 mm thick		330–370	270-300	250-350	410-430	170-300
Step by step		220-250	240-270	200-300	280–320	170-240
Dielectric constant, 22.8°C	_		0.4.0.4	E (10 (< 4.40 2	0 = 44.4
60 Hz		7.7–7.9	8.4-9.4	7.6–12.6	6.4–10.2	9.7–11.1
$10^3 \mathrm{Hz}$		_	7.8-9.2	7.1–7.8	9.0	_
Dissipation factor, 22.8°C	_	0.004.0.040	0.000 0.000	0.07.024	0.05.045	0.14.0.22
60 Hz		0.034-0.043	0.030-0.083	0.07-0.34	0.07-0.17	0.14-0.23
10 ³ Hz	1	_ 0.5.5.0	0.015-0.036	0.03-0.05	0.07	- 0.0.2.0 40 ¹¹
Volume resistivity, 22.8°C, 50% rh	ohm cm	$0.5 - 5.0 \times 10^{11}$	$0.8 - 2.0 \times 10^{12}$	$1.0 - 3.0 \times 10^{11}$	1.2×10^{12}	$0.9 - 2.0 \times 10^{11}$
Arc resistance	S	80-100	125-136	122-128	20-180	180-186

^{*}To convert J to cal divide by 4.184.

†Applies to specimens thicker than 1.6 mm.

‡Based on no color change.

REFERENCES

- 1. Widmer, G. In *Encyclopedia of Polymer Science and Technology*, Vol. 2. John Wiley and Sons, New York, 1965, p. 54.
- 2. Bauer, D. R. Progress in Organic Coatings 14 (1986): 193.
- 3. Updegraff, I. H., S. T. Moore, W. F. Herbes, and P. B. Roth. In *Kirk-Othmer Encyclopedia of Chemical Technology*, 3rd ed., Vol. 2, edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1978, p. 440.
- 4. Vale, C. P., and W. G. K. Taylor. Aminoplastics. Iliffe Books, London, 1964, p. 24.
- 5. Christensen, G. Prog. Org. Coat. 8 (1980): 211.
- 6. Vale, C. P., and W. G. K. Taylor. Aminoplastics. Iliffe Books, London, 1964, p. 47.

The author wishes to acknowledge McWhorter Technologies for its generous support in compiling these data.

Amylopectin

W. BROOKE ZHAO

CLASS Carbohydrate polymers

MAJOR APPLICATIONS Thickeners, stabilizers, and adhesives.

PROPERTIES OF SPECIAL INTERESTS The highly branched nature of amylopectin accounts for the extreme brittleness of its films and extrudates. The extensive branching reduces chain entanglements usually required in high polymers to achieve satisfactory film properties.

PREPARATIVE TECHNIQUES Fractionation of starches. Native starches usually contain about 70–80% amylopectin. Genetic modification can result in starches having virtually no amylose content, such as waxy maize.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight	$g \text{mol}^{-1}$	Ranges	$4.5 \times 10^4 - 4.2 \times 10^8$	(1)
(of repeat unit)		Method: DMSO, light scattering	4.0×10^{7}	(2)
		Barley Pea	4.0 × 10	
		Smooth	5.0×10^{7}	
		Wrinkled	5.0×10^{7}	
		Potato I	4.4×10^{7}	
		Potato II	6.5×10^{6}	
		Tapioca	$4.5 imes 10^{7}_{-}$	
		Waxy maize	4.0×10^{7}	
		Waxy maize, sheared	1.0×10^{6}	
		Wheat	4.0×10^7	
Polydispersity index	_	Range, depending on source	300-500	(1)
$(M_{ m w}/M_{ m n})$		In DMSO, GPC ($M_{\rm w} = 15.96 \times 10^6$; $M_{\rm n} = 8.5 \times 10^6$)	1.88	(3)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Degree of polymerization	-	Depending on plant source methods of extraction	Depending on plant source and methods of extraction		(1)
NMR	ppm	¹³ C chemical shift Solid state CP/MAS 25.18 MHz		101.9-100.3 (C-1) 63.1 (C-6)	(4)
Surface tension	$\mathrm{mN}\mathrm{m}^{-1}$	_		35	(5)
Specific rotation	Degrees	Solvent	λ (nm)		
[lpha]		Water	135	+200 +192 +163	(6) (7)
		1 M NaOH 1 N KOH Ethylenediamine Ethylenediamine hydrate Formamide	134 _ _ _ _	+163 +160 +173 +182 +167 +192	(6) (7) (7) (7) (7) (7)
Refractive index increment dn/dc	$ml g^{-1}$	0.5 N KCl 1 N KOH Ethylenediamine Ethylenediamine hydrate Formamide Water		$\begin{array}{c} 0.156 \\ 0.142 \\ 0.098 \pm 0.001 \\ 0.092 \pm 0.003 \\ 0.069 \pm 0.002 \\ 0.151, 0.155 \end{array}$	(8) (7) (7) (7) (7) (9)
Common solvents		lfoxide, ethylene-diamine (hy l hydrazine hydrate	drate and a	nhydrate), chloral	(2)
Dilute-limit self diffusion coefficient	$m^2 s^{-1}$	D_0 In DMSO In d -DMSO In H_2 O Mass-weighted average model $(D_0(M_{\rm w}))$ In d -DMSO In D_2 O Mass- z average molar mas In DMSO, 24° C		8×10^{-13} $(3.2 \pm 0.7) \times 10^{-11}$ $(1.0 \pm 0.2) \times 10^{-12}$ $(9 \pm 2) \times 10^{-12}$ $(2.8 \pm 0.6) \times 10^{-12}$ $(13 \pm 3) \times 10^{-13}$ $(9 \pm 2) \times 10^{-13}$	(10) (11) (11) (11) (11) (11) (12)
Diffusion coefficient	-	_		9×10^{-12}	(10)

(10) (3)

38 28

J = a/b (ratio of semi-axes of the particles)

Amylopectin

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Sedimentation coefficient (s ₀)	Svedberg	Plant source Rongotes Crossbow Aotea Karamu Hilgendorf	88 ± 3 115 ± 4 103 ± 1 65 ± 7 67 ± 1 73 ± 1 105 ± 2 87 ± 8 98 ± 4	(13)	
Hydrodynamic volume $(a^2/b)^{1/3}$	-	In DMSO		18(7)	(10)
Hydrodynamic radius (R_D)	nm	In DMSO In <i>d</i> -DMSO In D ₂ O		22(3) 14 82	(10) (11) (11)
Solvation coefficient (h)	gg^{-1}	Amylopectin/H ₂ O Amylopectin/DMSO		0.25 ± 0.04 0.6 ± 0.2	(11)
Radius of gyration	Å	Solvent for light scattering 1N KOH Ethylenediamine Ethylenediamine hydrate Formamide Water	$\begin{aligned} M_{\rm w} \\ 8.0 \times 10^7 \\ 1.0 \times 10^8 \\ 7.5 \times 10^7 \\ 9.5 \times 10^8 \\ 1.66 \times 10^8 \\ 4.3 \times 10^7 \end{aligned}$	2050 2060, 2120 2150, 2120 2050, 2090 2960, 2920 1540, 1630	(7)
Second virial coefficient A_2	$\operatorname{mol}\operatorname{cm}^3\operatorname{g}^{-2}$	Solvent for light scattering 1N KOH Ethylenediamine Ethylenediamine hydrate Formamide Water	$\begin{aligned} M_{\rm w} \\ 8.0 \times 10^7 \\ 1.0 \times 10^8 \\ 7.5 \times 10^7 \\ 9.5 \times 10^8 \\ 1.66 \times 10^8 \\ 4.3 \times 10^7 \end{aligned}$	9.6×10^{7} 7.6×10^{7} 2.4×10^{7} 2.9×10^{7} 8.0×10^{7} 0	(7)

REFERENCES

- 1. Powell, E. L. In *Industrial Gums: Polysaccharides and Their Derivatives*, 2d ed., edited by R. L. Whistler and J. N. Bemiller. Academic Press, New York, 1973.
- 2. Young, Austin H. In *Starch: Chemistry and Technology*, 2d ed., edited by R. L. Whistler, J. N. Bemiller, and E. F. Paschall. Academic Press, Orlando, Fla., 1984 (and references therein).
- 3. Salemis, P., and M. Rinaudo. Polym. Bull. 11 (1984): 397.
- 4. Hewitt, J. M., M. Linder, S. Perez, and A. Buleen. Carbohydr. Res. 154 (1986): 1.
- 5. Ray, B. R., J. R. Anderson, and J. J. Scholtz. J. Phys. Chem. 62 (1958): 1,220.
- 6. Neely, W. B. J. Org. Chem. 26 (1961): 3,015.

- 7. Stacy, C. J., and J. F. Foster. J. Polym. Sci. 20 (1956): 57.
- 8. Brice, B. A., and M. Halwer. J. Opt. Soc. Amer. 41 (1951): 1,033.
- 9. Debye, P. J. Phys. Coll. Chem. 51 (1947): 18.
- 10. Callaghan, P. T., J. Lelievre, and J. A. Lewis. Carbohydr. Res. 162 (1987): 83.
- 11. Collaghan, P. T., and J. Lelievre. Biopolymers 24 (1985): 441.
- 12. Dickenson, E., J. Lelievre, G. Stainsby, and S. Waight. In *Progress in Food and Nutrition Science: Gums and Stabilizers for the Food Industry. Part II. Applications of Hydrocolloids.* Pergamon Press, Oxford, 1984.
- 13. Lelievre, J., J. A. Lewis, and K. Marsden. Carbohydr. Res. 153 (1986): 195.

Amylose

W. BROOKE ZHAO

CLASS Carbohydrate polymers

MAJOR APPLICATIONS Adhesives, food, pharmaceutical, gels and foams, coating, and biodegradable packaging films.

PROPERTIES OF SPECIAL INTERESTS The linear glucan chains in amylose are responsible for its film-forming ability.

PREPARATIVE TECHNIQUES Fractionation of starches. Native starches contain about 20–30% amylose. Genetic modification can result in high amylose content (up to 80%).

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Molecular weight	$g \text{mol}^{-1}$	Range		3.2×10^4 – 3.6×10^6	(1)
		Source	Methods		(2)
		Apple	Anaerobic, viscosity	2.4×10^5	
		Banana	Anaerobic, viscosity	2.7×10^{5}	
		Broad bean	Anaerobic, viscosity	2.9×10^{5}	
		Barley	Anaerobic, viscosity	3.0×10^{5}	
		-	DMSO, light scattering	2.11×10^{6}	
		Iris (rhizome)	Anaerobic, viscosity	2.9×10^{5}	
		Mango seed	Anaerobic, viscosity	2.9×10^{5}	
		Oat	Anaerobic, viscosity	2.1×10^{5}	
			DMSO, light scattering	2.19×10^{6}	
		Parsnip	Anaerobic, viscosity	7.1×10^{5}	
		Pea	·		
		Smooth	Anaerobic, viscosity	2.1×10^{5}	
		Wrinkled	Anaerobic, viscosity	1.6×10^{5}	
		Potato	Anaerobic, light scattering	4.9×10^{5}	
		Potato	DMSO, light scattering	1.9×10^{6}	
		Rubber seed	Anaerobic, light scattering	2.4×10^{5}	
		Rye	DMSO, light scattering	2.5×10^{6}	
		Sweet corn	Anaerobic, light scattering	1.8×10^{5}	
		Wheat	Anaerobic, light scattering	3.4×10^{5}	
		Wheat I	DMSO, light scattering	1.33×10^{6}	
		Wheat II	DMSO, light scattering	2.65×10^{6}	

				Amylose
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Polydispersity index (M_w/M_n)	_	In DMSO, GPC, $M_{\rm w} = 2.83 \times 10^5$, $M_{\rm n} = 1.53 \times 10^5$	1.85	(3)
Degree of polymerization (DP)	_	Depending on plant source and extracting methods	200–22,000	(1)
Polymorphs	_	Alkali amylose after kept at 80% or higher relative humidity at 85–90°C Alkali amylose after kept at 80% or higher relative humidity at room temperature	A-amylose B-amylose	(2)
		V_h form after extensive drying Crystallized from n -butanol	V _a -amylose V _h -amylose	

Polymorphs	Lattice	Cell din	nension (/	Å)	Cell angle	Helix symmetry	Intercha intersh	ain and eet spacir	ngs (Å)	Ref.
		а	b	c	γ		$oldsymbol{d}_{\uparrow\downarrow}$	d ₁₁₀	h	
A	Orthorhombic	11.90	17.70	10.52	90	2 × 6/1 in 21.04 A repeat	10.66	9.87	3.51	(4)
В	Orthorhombic	18.50	18.50	10.40	90	$2 \times 6/1$ in 20.8 A repeat	10.68	9.25	3.47	(4)
$\begin{matrix} V_a \\ V_h \end{matrix}$	Orthorhombic Orthorhombic	12.97 13.7	22.46 23.7	7.91 8.05	90 90	21 (~6/5) 6/5	12.97 13.69	11.23 11.86	1.32 1.34	(4) (4)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Infrared absorption	cm^{-1}	OH stretching		(5)
_		V-amylose (crystalline)	3,500-3,300 (broad)	
		B-amylose (crystalline)	3,500–3,300 (broad), 1,122	
		Amorphous	3,500-3,300 (sharper)	
		CH_2OH bending, $V \rightarrow B$	$1,263 \rightarrow 1,254$	
		CH_2 skeletal, $V \rightarrow B$	946 o 936	
NMR	ppm	¹ H chemical shift		
		DMSO- d_6 (100°C)	5.07 (H-1), 3.30 (H-2), 3.64 (H-3),	(6)
			3.32 (H-4), 3.4 (H-5) 3.7 (H-6)	
		D_2O , 500 MHz (75°C)	5.896 (d) (H-1), 4.162 (dd) (H-2),	(7)
			4.478 (dd) (H-3), 4.162 (t) (H-4),	
			4.350 (H-5), 4.406 (dd) (H-6 _a),	
		12	4.328 (dd) (H-6 _b)	
		¹³ C chemical shift	100.4 (C-1), 72.6 (C-2), 73.7 (C-3),	(6)
			79.4 (C-4), 72.1 (C-5), 61.2 (C-6)	
		Solid state CP/MAS		(8)
		A-amylose	102.30, 101.32, 100.05 (t) (C-1),	
			63.67, 62.73 (shoulder) (C-6)	
		B-amylose	101.71, 100.74 (d) (C-1) 62.69 (C-6)	
		V _h -amylose	103.85 (C-1), 62.21 (C-6)	
		V _a -amylose	103.76 (C-1), 61.79 (C-6)	

Α	m	γl	0	se

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Spin-spin coupling constant ³ J _{HH}	Hz	D ₂ O, 500 MHz (75°C)	4.0 (H-1), 9.9 (H-2 9.3 (H-4), 2.0 4.7		(7)
Dissociation constant pK_a	_	$pH = 11.2 \pm 0.1$ $pH = 12.5 \pm 1$	$12.5 \pm 0.2 \\ 13.0 \pm 0.1$		(9)
Degree of dissociation α	_	$pH = 11.2 \pm 0.1$ $pH = 12.5 \pm 1$	0.05 0.26		(9)
Electrophoretic mobility <i>U</i>	$cm^2V^{-1}s^{-1}$	$pH = 11.2 \pm 0.1$ $pH = 12.5 \pm 1$	3.5 18.4		(9)
Common solvents		cions, aqueous chloral hydrate, forman , dimethyl sulfoxide, acetamide, ethyle , and urea			(2)
Theta temperature Θ	K	0.33 M KCl DMSO/acetone 43.5%	293–296 298		(10) (11)
Mark-Houwink	_		$K \times 10^5 \; (\text{ml g}^{-1})$	а	(2)
parameters: K and a		Water	13.2	0.69	, ,
_				0.68 0.93	
		0.5 N NaOH	1.44		
		O JENINI OLI	3.64	0.85	
		0.15 N NaOH	8.36	0.77	
		0.2 N KOH	6.92	0.78	
		0.5 N KOH	8.5	0.76	
		1.0 N KOH	1.18	0.89	
		0.33 N KCl	113	0.50	
			112	0.50	
		O ENLYCI	115	0.50	
		0.5 N KCl	55	0.53	
		A I/C1/ + + 1 (()	55 50	0.53	
		Aqueous KCl (acetate buffer)	59	0.53	
		Dimethyl sulfoxide	1.25	0.87	
			30.6	0.64	
			15.1	0.70	
		Ed. 1. 1: :	3.95	0.82	
		Ethylenediamine	15.5	0.70	
		Formamide	22.6 30.5	0.67 0.62	
Flexibility parameter	-	KCI · KOH, 25°C Hydrodynamic data in Θ condition Stockmayer-Fixman plot Extrapolation of λ tending to zero	$\lambda_{\theta} = 2.70$ $\lambda_{\theta} = 2.58$ $\lambda_{\theta,1/2} = 1.34$ $\lambda_{\theta,1/3} = 2.18$ $\lambda_{\theta,1/4} = 2.69$		(12)

					Amylose
PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Unperturbed chain	\mathring{A}^2	Solvent			(13)
dimension $\langle S \rangle^2/P$		Me ₂ SO-H ₂ O		12.2	
. , ,		Five solvents		12.2	
		Me ₂ SO-KCl		12.2	
		Me ₂ SO-acetone		12.8	
		Me ₂ SO-acetone		13.2	
		Me ₂ SO-MeOH		14.6	
		H ₂ O-KCl		14.6	
		0.5 N NaOH		14.9	
		H_2O		14.7	
		Formamide		14.7	
		Me ₂ SO		14.7	
Second virial	$mol cm^3 g^{-2}$	$DP = 3,650, 20^{\circ}C$			
coefficient A_2	S	DMSO/44% ace	etone	-2.3×10^{-6}	(14)
-		DMSO/42% acetone		3.45×10^{-5}	(14)
		DMSO/39% ace	etone	1.322×10^{-4}	(14)
		Formamide		2.19×10^{-4}	(14)
		DMSO/30% ace	etone	2.59×10^{-4}	(14)
		DMSO/20% acetone		3.92×10^{-4}	(14)
		DMSO/10% ace		4.78×10^{-4}	(14)
		DMSO		5.35×10^{-4}	(14)
		Ethylenediamin	ne	5.64×10^{-4}	(14)
		0.5 N NaOH Water 1 N KOH		4.88×10^{-4}	(14)
				1.10×10^{-4}	(14)
				8.9×10^{-5}	(11)
		0.5 KCl, 31°C		2.89×10^{-5}	(11)
		0.5 KCl, 28°C		1.41×10^{-5}	(11)
Expansion coefficient	_	$DP = 3,650, 20^{\circ}C$			(14)
α		DMSO/44% acetone		0.96	
		MSO/42% aceto	one	1.1	
		DMSO/39% ace		1.25	
		Formamide		1.47	
		DMSO/30% ace	etone	1.53	
		DMSO/20% ace	etone	1.73	
		DMSO/10% ace		1.88	
		DMSO		2.0	
		Ethylenediamin	ie	2.08	
		0.5 N NaOH		1.86	
		Water		1.59	
Radius of	Å	Solvent for L.S.	$M_{ m w}$		(11)
gyration		DMSO	2.22×10^{6}	935	
		1N KOH	2.23×10^{6}	912	
		0.5 N KCl, 31°C	2.44×10^{6}	763	
		0.5 N KCl, 28°C	_	745	
		DMSO	1.35×10^6	724	
		DMSO	1.05×10^{6}	656	
		DMSO	8.47×10^{5}	610	
		DMSO	5.52×10^5	543	
		DMSO	2.70×10^{5}	425	
		DMSO	1.46×10^{5}	334	

Amylose

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Universal constant	_	_		2.1×10^{21}	(15)
Θ				3.6×10^{21}	(16)
Length of Kuhn	Å	Aqueous, viscos	ity	21.1	(10)
statistical		Aqueous, sedim	entation	17.3	(10)
segment		DMSO		95	(10)
		Helical region, e $b_0 = 1.33 \mathrm{\AA}$	efficient bond length		(17)
		0.33 M KCl,	viscosity	24	
		0.33 M KCl,	sedimentation	26	
		0.2 M KOH,	viscosity	74	
			sedimentation	70	
		Nonhelical region $b_0 = 4.41 \text{Å}$	on, efficient bond length		(17)
		0.33 M KCl,	viscosity	90	
		0.33 M KCl,	sedimentation	86	
		0.2 M KOH,	viscosity	240	
		0.2 M KOH,	sedimentation	230	
Glass transition temperature $T_{\rm g}$	K	Extrapolation da amylose	ata from substituted	317	(18)
Melting temperature $T_{\rm m}$	K	Extrapolation da amylose	ata from substituted	527	(18)
Pyrolysis		Acidic catalyst,	79–120°C. 3–8 h	White dextrins	(19)
1 y Toly old		•	150-270°C, 6-18 h	Yellow or canary dextrins British gums	(13)
Pyrolysis weight	%	Amount (mg)	Temp. range		(20)
loss		80	240-265	10	
1033		00	265-300	59	
		100	300-350	11	
		100	240-265	10	
			265-300	58	
			300–350	12	
Enthalpy of hydration	kJ mol ⁻¹	$50-95^{\circ}\text{C}$, V_h (hel 13.7Å) \leftrightarrow $H_2\text{C}$ diameter, 13.0C	O+Va (helix	43.5	(21)

Am	wl	O	9
		v.	3 C

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Specific rotation	Degree	Solvent	λ (nm)		
$[\alpha]$		Water	135	+200	(22)
			546	+232, 236	(23)
		0.5 M KCl	134	+201	(22)
			546	+200	(11)
		8 M urea	132	+200	(22)
		1 M NaOH	132	+162	(22)
		DMSO	210	+175	(22)
			546	+225, 226	(23)
			546	+171	(11)
		Formamide	546	+238, 239	(23)
		Ethylenediamine	546	+191, 195	(23)
		Hexamethylphosphoramide	546	+210, 212	(23)
		1 N KOH	546	+156	(11)
		0.5 N KOH	546	+174	(11)
Refractive index n_2^{46}	_	_		1.5198	(24)
Refractive index	mlg^{-1}	DMSO, $\lambda = 436 \mathrm{nm}$		$0.0676 \pm 3\%$	(11)
increment dn/dc	Ü	DMSO, $\lambda = 546 \mathrm{nm}$		$0.0659 \pm 3\%$	(11)
,		1N KOH		0.146	(25)
Sedimentation	Svedberg	Ultracentrifugation		10.2	(26)
coefficient		Source			(27)
		Rongotea		5.0 ± 0.2	
				5.2 ± 0.5	
				4.5 ± 0.1	
		Crossbow		2.6 ± 0.4	
				3.2 ± 0.1	
		Aotea		3.3 ± 0.1	
		Karamu		4.0 ± 0.7	
		Hilgendorf		5.7 ± 0.9	
				2.9 ± 0.6	
Segment mobility ms	-	Ultracentrifugation		0 (rigid)	(26)
Segment size l_{m}	Å	Ultracentrifugation		1.3	(26)
Surface tension	$\mathrm{mN}\mathrm{m}^{-1}$	_		37	(28)
					` ′

Amylo	se
-------	----

PROPERTY	UNITS	CONDITIONS		VALUE		REFERENCE
Tensile strength	MPa	50% relative hur	midity, 72°F			(29)
Ü		Source	ĎΡ	Dry ($\times 10^{-2}$)	Wet ($\times 10^{-3}$)	` '
		Tapioca	2,110	6.08	1.3	
		White potato	1,610	5.79	2.1	
		Wheat	1,230	6.47	1.5	
		Sweet potato	1,215	6.27	2.2	
		Tapioca	1,205	6.86	1.8	
		Tapioca	915	7.06	1.9	
		Corn	820	7.15	2.0	
		Corn	505	6.66	1.0	
		Corn	435	6.96	0.2	
		Corn	420	7.25	0.6	
		Corn	400	7.45	1.0	
		Corn	310	5.19	0.5	
		Corn	265	6.47	_	
		Corn	230	1.86	_	
		Com	230	1.00	_	
Elongation at	%	50% relative hur				(29)
break		Source	DP	Dry	Wet	
		Tapioca	2,110	13	39	
		White potato	1,610	9	57	
		Wheat	1,230	13	19	
		Sweet potato	1,215	14	42	
		Tapioca	1,205	18	38	
		Tapioca	915	14	18	
		Corn	820	13	15	
		Corn	505	6	6	
		Corn	435	7	5	
		Corn	420	8	5	
		Corn	400	10	6	
		Corn	310	6	4	
		Corn	265	9	_	
		Corn	230	1	_	
Гear strength	g	50% relative hur				(29)
		Source	DP			
		Tapioca	2,110	8		
		White potato	1,610	10		
		Wheat	1,230	10		
		Sweet potato	1,215	9		
		Tapioca	1,205	8		
		Tapioca	915	_		
		Corn	820	8		
		Corn	505	6		
		Corn	435	7		
		Corn	420	4		
		Corn	400	7		
		Corn	310	5		
		Corn	265	3		
		Corn	230	5		
		Com	230	_		

					Amylose
PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Permeability constant	$\mathrm{mol}\mathrm{cm}^{-1}\mathrm{s}^{-1}$ $\mathrm{mm}\mathrm{Hg}^{-1}$	Water at 25°C Relative humidity 1–53% 29–1% 1–100%		3.1 ± 10^{-11} 1.5 ± 10^{-10} 2.7 ± 10^{-10}	(30)
		Organic vapor	Vapor pressure (cm Hg) at 35°C		(30)
		Methanol Ethanol 1-Propanol 1-Butanol Acedic acid Ethyl acetate Acetone Carbon tetrachloride Benzene Benzaldehyde	20.4 10.4 3.74 1.31 2.67 16.5 34.6 17.6 14.8 0.16	2.5 ± 10^{-12} 5.8 ± 10^{-14} 8.6 ± 10^{-14} 2.5 ± 10^{-13} 5.6 ± 10^{-14} 4.4 ± 10^{-14} 3.4 ± 10^{-14} 1.6 ± 10^{-14} 6.3 ± 10^{-14} 8.0 ± 10^{-13}	
		Gas at 25°C Air Oxygen Nitrogen Carbon dioxide Ammonia Sulfur dioxide		$0\\0\\0\\2.6 \pm 10^{-16}\\1.1 \pm 10^{-12}\\7.8 \pm 10^{-14}$	(30)

REFERENCES

1. Howe-Grant, M. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed. Vol. 4, edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1992.

- 2. Young, A. H. In Starch: Chemistry and Technology, 2d ed., edited by R. L. Whistler, J. N. Bemiller, and E. F. Paschall, Academic Press, Orlando, Fla., 1984 (and references therein).
- 3. Salemis, P., and M. Rinaudo. Polym. Bull. 11 (1984): 397.
- 4. Sarko, A., and P. Zugenmaier. In Fiber Diffraction Methods, (ACS Symposium Series 141), edited by A. D. French and K. K. Gardner. American Chemical Society, Washington, D.C., 1980.
- 5. Casu, B., and M. Reggiani. J. Polym. Sci., Part C, 7 (1964): 171.
- 6. Gagnaire, D., D. Mancier, and M. Vincendon. Org. Mag. Res. 11 (1978): 1,978.
- 7. Neszmelyi, A., and J. Hollo. Starch/Starke 5 (1990): 167.
- 8. Horii, F., H. Yamamoto, A. Hirai, and R. Kitamaru. Carbohydr. Res. 160 (1987): 29.
- 9. Doppert, H. L., and A. J. Staverman. J. Polym. Sci., Part A-1, 4 (1966): 2,367 and 2,373.
- 10. Banks, W., and C. T. Greenwood. Macromol. Chem. 67 (1963): 49.
- 11. Everett, W. W., and J. F. Foster. J. Am. Chem. Soc. 81 (1959): 3,459.
- 12. Gonzalez, C., F. Zamora, G. M. Guzman, and L. M. Leon. J. Macromol. Sci. Phys. B26(3) (1987):
- 13. Burchard, W. In Solution Properties of Natural Polymers (Special Publication Number 23). The Chemical Society, London, 1967.
- 14. Burchard, W. Makromol. Chem. 59 (1963): 16.
- 15. Mandelkern, L., and P. J. Flory. J. Chem. Phys. 20 (1952): 212.
- 16. Flory, P. J., and T. G. Fox. J. Am. Chem. Soc. 73 (1951): 1,904.
- 17. Banks, W., and C. T. Greenwood. Eur. Polym. J. 5 (1969): 649.
- 18. Cowie, J. M. G., P. M. Toporowski, and F. Costaschuk. Makromol. Chem. 121 (1969): 51.

Amylose

- Greenwood, C. T. In Advances in Carbohydrate Chemistry, Vol. 22. Academic Press, New York, 1967.
- 20. Desai, D. H., K. C. Patel, R. D. Patel, and V. Vidyanagar. Die Starke 11 (1976): 377.
- 21. Nicolson, P. C., G. U. Yuen, and B. Zaslow. Biopolymers 4 (1966): 677.
- 22. Neely, W. B. J. Org. Chem. 26 (1961): 3,015.
- 23. Dintzis, F. R., R. Tobin, and G. E. Babcock. Biopolymers 10 (1971): 379.
- 24. Van Wijk, R., and A. J. Staverman. J. Polym. Sci., Part A-2, 4 (1966): 1,012.
- 25. Foster, J. F., and M. D. Sterman. J. Polym. Sci. 21 (1956): 91.
- 26. Elmgren, H. Carbohydr. Res. 160 (1987): 227.
- 27. Lelievre, J., J. A. Lewis, and K. Marson. Carbohydr. Res. 153 (1986): 195.
- 28. Ray, B. R., J. R. Anderson, and J. J. Scholtz. J. Phys. Chem. 62 (1958): 1,220.
- 29. Wolff, I. A., et al. Ind. Eng. Chem. 43 (1951): 915.
- 30. Rankin, J. C., I. A. Wolff, H. A. Davis, and C. E. Rist. Ind. Eng. Chem. 3 (1958): 120.

Bisphenol-A polysulfone

TAREK M. MADKOUR

ACRONYM, TRADE NAMES PSF, Udel P1700 and P3500 (Amoco)

CLASS Poly(ether sulfones)

SYNTHESIS Polycondensation

STRUCTURE

MAJOR APPLICATIONS Medical and household appliances that are sterilizable by hot air and steam such as corrosion-resistant piping. Also used in electric and electronic applications and as membranes for reverse gas streams and gas separation.

PROPERTIES OF SPECIAL INTEREST High-performance thermoplastic of relatively low flammability. Amorphous, high-creep resistance and stable electrical properties over wide temperature and frequency ranges. Transparent with good thermal and hydrolytic resistance. High alkaline stability.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	_	442.53	_
Infrared bands (frequency)	cm^{-1}	Group assignments SO ₂ scissors deformation	560	(1, 2)
		Aromatic ring bend	690	
		Para out-of-plane aromatic CH wag	834	
		Para in-plane aromatic CH bend	1,014	
		Para in-plane aromatic CH bend	1,105	
		SO ₂ symmetric stretch	1,151	
		SO ₂ symmetric stretch	1,175	
		Aryl-O-aryl C-O stretch	1,244	
		SO ₂ asymmetric stretch	1,294	
		SO ₂ asymmetric stretch	1,325	
		CH ₃ symmetric (umbrella) deformation	1,365	
		Para aromatic ring semicircle stretch	1,410	
		Para aromatic ring semicircle stretch	1,490	
		Para aromatic ring semicircle stretch	1,505	
		Para aromatic ring quadrant stretch	1,585	

Bisphenol-A polysulfone

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Infrared bands (frequency)	cm ⁻¹	Group assignments CH ₃ symmetric stretch CH ₃ asymmetric stretch Aromatic CH stretches	2,875 2,970 3,000–3,200	(1, 2)
Thermal expansion coefficient	K^{-1}	1 atm and 20°C	2.1×10^4	(3)
Isothermal compressibility	bar^{-1}	20°C	2.2×10^5	(3)
Density	$\rm gcm^{-3}$	_	1.24	(4)
Solubility parameter	$(MPa)^{1/2}$	_	20.26	(5)
Glass transition temperature	K	Forced oscillation dynamic- mechanical analysis	459	(6)
Sub- $T_{\rm g}$ transition temperature	K	β -relaxation temperature γ -relaxation temperature	358 193	(6)
Heat deflection temperature	K	(1.82 MPa)	447	(7)

$Mechanical\ properties^{(4,7,8)}$

Property	Units	Resin			
		Neat resin	30% glass fiber reinforced	30% carbon fiber reinforced	
Tensile modulus	MPa	2,482	_	_	
Tensile strength	MPa	69.0	120	190	
Maximum extensibility $(L/L_0)_r$	%	3.0	2.31	1.02	
Flexural modulus	MPa	2,758	6,747	13,069	
Flexural strength	MPa	103	208	244	
Notched Izod impact strength	$\mathrm{J}\mathrm{m}^{-1}$	80.4	400	118	
Unnotched Izod impact strength	$\mathrm{J}\mathrm{m}^{-1}$	_	1,049	456	
Hardness	Shore D	69	85	87	

Bisphenol-A polysulfone

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
WLF parameters: C_1 and C_2	_	_	$C_1 = 15.3$ $C_2 = 49.0$			(9)
Dielectric strength	MVm^{-1}	_	14.6			(4)
Resistivity	ohm cm	_	5×10^{16}			(4)
Thermal conductivity k	$Wm^{-1}\;K^{-1}$	_	0.26			(11)
Melt index	$g (10 min)^{-1}$	_	6.5			(4)
Water absorption	%	24 h	0.3			(4)
Intrinsic viscosity	$\mathrm{cm}^3~\mathrm{g}^{-1}$	25°C in chloroform	End grou	ир		(12)
			NH ₂	Cl	t-Butyl	
		Mol. wt. = 5,720 Mol. wt. = 9,934 Mol. wt. = 17,500 Mol. wt. = 21,230	0.16 0.23 0.29 0.34	0.16 - - -	- 0.24 0.30 0.33	

REFERENCES

- 1. Colthup, N., L. Daly, and S. Wiberley. *Introduction to Infrared and Raman Spectroscopy*, 2d ed. Academic Press, New York, 1975.
- 2. Pouchert, C. The Aldrich Library of FT-IR Spectra. Aldrich Chemical, Milwaukee, 1985.
- 3. Zoller, P. J. Polym. Sci., Polym. Phys. Ed., 16 (1978): 1,261.
- Elias, H., and F. Vohwinkel. New Commercial Polymers 2. Gordon and Breach Science Publishers, New York, 1986, chap. 8.
- 5. Matsuura, T., P. Blais, and S. Sourirajan. J. Appl. Polym. Sci. 20 (1976): 1,515.
- 6. Aitken, C., J. McHattie, and D. Paul. Macromolecules 10 (1992): 2,910.
- Ma, C. In Proc. of the Natl. SAMPE Symp. Exhib., 30 (Adv. Technol. Mater. Processes), 1985, p. 543.
- 8. Hisue, E., and R. Miller. In *Proc. of the Natl. SAMPE Symp. Exhib.*, 30 (Adv. Technol. Mater. Processes), 1985, p. 1,035.
- 9. Hwang, E., T. Inoue, and K. Osaki. Polym. Eng. Sci. 34 (1994): 135.
- 10. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.
- 11. Mark, H., et al., eds. Kirk-Othmer: Encyclopedia of Chemical Technology, 3d ed. Wiley-Interscience, New York, 1984.
- 12. Yoon, T., et al. *Macromol. Symp.*, 98 (35th IUPAC International Symposium on Macromolecules), 1995, p. 673.

Carborane-containing polymers

EDWARD N. PETERS AND R. K. ARISMAN

ACRONYM, TRADE NAME SiB, Dexsil (Olin Corp.)

CLASS Cage structure polymers; D_n-carborane siloxanes

STRUCTURE $[-Si(CH_3)_2CB_{10}H_{10}CSi(CH_3)_2-O-\{Si(CH_3)_2-O-\}_{n-1}-]$, where $CB_{10}H_{10}C$ is as follows:

MAJOR APPLICATIONS Liquid phase in gas chromatography. High-temperature elastomer used to formulate gaskets, O-rings, and wire coatings. Can be fabricated like conventional silicones.

PROPERTIES OF SPECIAL INTEREST Elastomeric. Very high thermal stability. Outstanding flame resistance.

IR (characteristic absorption frequencies)*(1)

n	Assignment								
	С-Н	В-Н	CH ₃	Si-O	Si-C				
1	2,963; 2,904	2,600	1,410; 1,262	1,090	800				
3	2,960; 2,900	2,595	1,411; 1,263	1,090; 1,048	801				
4	2,963; 2,904	2,600	1,411; 1,260	1,095; 1,047	800				
5	2,963; 2,904	2,594	1,410; 1,263	1,065; 1,030	800				

^{*}Wave numbers (cm $^{-1}$) for $[-Si(CH_3)_2CB_{10}H_{10}CSi(CH_3)_2-O-\{Si(CH_3)_2-O-\}_{n-1}-]$.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
NMR	Proton NMR in CDCl ₃ At 60 MHz at 100 MHz			(2) (1)
Solvents	-	At 25°C	Diethyl ether Chlorobenzene	(2) (3)
Nonsolvents	_	At 25°C	Methanol	(3)
Mark Houwink parameters: K and a	$K = \text{ml g}^{-1}$ a = None	-	$K = 1.02 \times 10^{-4}$ $a = 0.72$	_

PROPERTY	UNITS	CONDITIONS*				VALUE	REFERENCE
Density	g cm ⁻³	R_1	R_2	R_3	п		(4)
		CH ₃	CH ₃	CH ₃ (67) Phenyl (33)	2	1.074	
		CH ₃	Phenyl (33) CH ₃ (67)	Phenyl (33) CH ₃ (67)	2	1.123	
Glass transition	K	R_1	R_2	R_3	n		
temperature		CH ₃	CH ₃	_	1	298	(5)
		CH_3	CH_3	CH_3	2	243	(5)
		J	3	J		223	(5)
		CH_3	CH_3	CH_3	3	205	(7)
		CH_3	CH_3	CH_3	4	203	(7)
		CH_3	CH_3	CH_3	5	185	(7)
		CH_3	CH_3	Phenyl	2	261	(6)
		CH ₃	CH ₃	CH ₃ (33) Phenyl (67)	2	251	(6)
		CH ₃	CH ₃	CH ₃ (67) Phenyl (33)	2	236	(6)
		CH_3	Phenyl	Phenyl	2	295	(6)
		CH ₃	Phenyl (33) CH ₃ (67)	Phenyl (33) CH ₃ (67)	2	248	(6)
		CH ₃	Phenyl (24) CH ₃ (76)	Phenyl (24) CH ₃ (76)	2	240	(6)
		CH ₂ CH ₂ CF ₃	CH ₂ CH ₂ CF ₃	_	1	301	(8)
		CH ₃	CH ₃	CH ₂ CH ₂ CF ₃	2	244	(9)
		CH ₂ CH ₂ CF ₃	CH ₂ CH ₂ CF ₃	CH ₃	2	261	(9)
		CH ₂ CH ₂ CF ₃	CH ₂ CH ₂ CF ₃	CH ₂ CH ₂ CF ₃	2	270	(9)
		CH ₂ CH ₂ CF ₃	CH ₂ CH ₂ CF ₃	CH ₂ CH ₂ CF ₃	3	270	(8)
Melting temperature	K	R_1	R_2	R_3	n		
		CH ₃	CH ₃	_	1	513	(5)
		CH_3	CH ₃	CH_3	2	339	(5)
		3	3	3		341, 363	(5)
		CH_3	CH ₃	CH_3	3	313	(7)
Tensile modulus [†]	MPa	R_1	R_2	R_3	n		
		CH ₃	CH ₃	CH ₃ (33) Phenyl (67)	2	3.45	(10)
		CH_3	Phenyl (33)	Phenyl (33)	2	2.97	(11)
Tensile strength [†]	MPa	R_1	R_2	R_3	n		
		CH ₃	CH ₃	CH ₃ (33) Phenyl (67)	2	3.58	(10)
		CH ₃	Phenyl (33) CH ₃ (67)	Phenyl (33) CH ₃ (67)	2	5.10	(11)

Carborane-containing polymers

PROPERTY	UNITS	CONDITIONS*				VALUE	REFERENCE
Maximum extensibility [†]	%	R_1	R_2	R_3	п		
		CH ₃	CH ₃	CH ₃ (33) Phenyl (67)	2	130	(10)
		CH ₃	Phenyl (33) CH ₃ (67)	Phenyl (33) CH ₃ (67)	2	220	(11)
Dielectric constant ε^{\dagger}		R_1	R_2	R_3	n		(12)
		CH ₃	CH ₃	CH ₃	2	2.27	
		CH_3	CH_3	CH_3	4	5.92	
Loss factor $\tan \delta^{\dagger}$		R_1	R_2	R_3	n		(12)
		CH ₃	CH ₃	CH ₃	2	0.0053	
		CH_3	CH_3	CH_3	4	0.52	
Pyrolyzability	%	800°C in ar	gon				(7)
		$\overline{R_1}$	R_2	R_3	n		
		CH ₃	CH ₃	_	1	20	
		CH_3	CH_3	CH_3	2	29	
		CH_3	CH_3	CH_3	3	36	
		CH_3	CH_3	CH_3	4	47	
		CH_3	CH_3	CH_3	5	48	
		800°C in ar	gon				(6)
		R_1	R_2	R_3	n		
		CH_3	CH_3	Phenyl	2	4	
		CH_3	CH_3	CH ₃ (33)	2	5	
				Phenyl (67)			
		CH_3	CH_3	CH ₃ (67)	2	6	
				Phenyl (33)			
Flammability		_	_	_			
Oxygen index	%	R_1	R_2	R_3	п		(10)
		CH_3	CH_3	Phenyl	2	62	
TGA: 5% weight loss	K	R_1	R_2	R_3	п		
temperature in air		CH_3	CH_3	_	1	>973	(13)
		CH_3	CH_3	CH ₃ (67) Phenyl (33)	2	1,023	(6)
		CH_3	CH ₃	CH ₃ (33) Phenyl (67)	2	>1,073	(6)
		CH_3	Phenyl	Phenyl	2	>1,073	(6)
		CH_3	CH_3	CH_3	3	793	(2)

^{*}For the polymer series: R_1 R_1 R_2 $[-SiCB_{10}H_{10}CSi-O-\{Si-O-\}_{n-1}-]$

 $^{^{\}uparrow}$ CH₃ $^{\uparrow}$ CH₃ $^{\uparrow}$ $^{\uparrow}$ Mechanical properties: for resins with 30 phr trimethylsilated amorphous silica, 2.5 phr ferric oxide, and cured with 2.5 phr dicumyl peroxide.

Synthesis

n	Solvent	Catalyst	Temp. (°C)	Monomers	Reference
1	-	FeCl ₃	175–225	1,7-bis-(methoxydimethylsilyl)- <i>m</i> -carborane 1,7-bis-(chlorodimethylsilyl)- <i>m</i> -carborane	(14)
2	Chlorobenzene	-	-10	1,7-bis-(hydroxyldimethyl)- <i>m</i> -carborane bis(N-phenyl-N'-tetramethyleneureido)silane	(3)
3	Diethyl ether/THF/water	-	25	1,7-bis-(chloro-1,1,3,3-tetramethyldisilyl)- <i>m</i> -carborane	(2)

REFERENCES

- 1. Mohadger, Y., M. B. Roller, and J. K. Gillham. J. Applied Polymer Sci. 17 (1973): 2,635.
- 2. Knollmueller, K. O., et al. J. Polym. Sci.: Part A-1, 9 (1971): 1,071.
- 3. Hedaya, E., et al. J. Polym. Sci., Polym. Chem. Ed., 15 (1977): 2,229.
- 4. Peters, E. N. Ind. Eng. Chem. Prod. Res. Dev. 23 (1984): 28.
- Zaganiaris, E. J., L. H. Sperling, and A. V. Tobolsky. *J. Macromol. Sci.: Chem.*, A-1(6) (1967): 1,111.
- 6. Peters, E. N., et al. J. Polymer Sci., Polym. Phys. Ed., 15 (1977): 723.
- 7. Roller, M. B., and J. K. Gillham. J. Appl. Poly. Sci. 17 (1973): 2,141.
- 8. Scott, R. N., et al. J. Polym. Sci., Part A-1, 10 (1972): 2,303.
- 9. Peters, E. N., et al. J. Polym. Sci., Polym. Chem. Ed., 15 (1977): 973.
- 10. Peters, E. N., et al. Rubber Chem. Technol. 48 (1975): 14.
- 11. Peters, E. N., et al. J. Elastomers Plast. 10 (1978): 29.
- 12. Schroeder, H., et al. Rubber Chem. Technol. 39 (1966): 1,184.
- 13. Roller, M. B., and J. K. Gillham. J. Appl. Poly. Sci. 17 (1973): 2,623.
- 14. Papetti, S., et al. J. Polym. Sc.: Part A-1, 4 (1966): 1,623.

RUSKIN LONGWORTH

TRADE NAME Surlyn (Du Pont)

CLASS Chemical copolymers; ethylene copolymers

STRUCTURE
$$-(CH_2-CH_2)_n - [CH_2-C(CH_3)(Co_2Na^+)]_m - [-CH_2-CH_2-CCH_3(CO_2-H)]_l -$$
Typically, if $n+m+l=100$, then $m+l$ is 1–5.

GENERAL INFORMATION The Surlyn brand of ionomers consists of copolymers of ethylene with methacrylic acid, partially or wholly neutralized with a variety of metals, including sodium, zinc, and lithium.^(1,2) The neutralization process drastically increases the melt viscosity and decreases the solubility, making molecular weight determinations of the final product impossible. However, the metal ions can be removed by treatment with acids, and the unneutralized copolymer examined by methods similar to those used for low density polyethylene (LDPE) and copolymers thereof. In certain cases, the properties of the ionomer resemble LDPE; where applicable, these values are given in italics. About twenty grades of Surlyn plastics exist. Here we report on two representative samples: sodium (Na) neutralized and zinc (Zn) neutralized. Where experimental conditions are described by a "D-" number, these refer to test procedures of the American Society for Testing Materials.

MAJOR APPLICATIONS Moldings (e.g., golf ball covers, ski boots) and film (e.g., meat packaging, coextrusions).

Preparative techniques⁽¹⁾

Method	Conditions
Free radical polymerization	Peroxide initiator, high pressure (>100 MPa)
Ceiling temperature	550 K
Comonomer	Methacrylic acid
Post-synthesis adducts	Sodium, lithium, zinc

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	28	_
Molecular weight (of acid comonomer)	$g mol^{-1}$	_	86	(1)
Tacticity	_	_	Random	_
Trans unsaturation	_	_	0.025/1,000C	(3)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Vinylidene unsaturation	_	_	0.15/1,000C	(3)
Short-chain branching	_	_	2/100C	(3)
Long-chain branching	_	_	1/1,000C	(3)
Molecular weight (M_w)	${\rm g}{\rm mol}^{-1}$	_	500,000	(3)
Polydispersity	_	_	10	(3)
Morphology	-	Three phases	Semicrystalline PE Amorphous PE Ionic clusters (ionic comonomers with some PE)	(1)
IR (characteristic absorption frequencies)	cm ⁻¹	Hydrogen-bonded hydroxyl Unionized carbonyl Carboxylate	2,650 1,700 1,560	(4)
Thermal expansion coefficient	K^{-1}	D-696 Na Zn	$5.9 \times 10^{-5} \\ 5.7 \times 10^{-5}$	(2)
Density	g cm ³	Na Zn Amorphous	0.95 0.94 0.855	(2) (2) (5)
Degree of crystallinity	%	Na; annealed 4h at 348 K	30	(6)
Heat of fusion	$kJ mol^{-1}$	Na; annealed 4h at 348 K	2.32	(6)
Density	$g cm^3$	Crystalline PE	1.014	(7)
Transition temperatures	K	Amorphous polyethylene Crystalline polyethylene (M.P.) Beta transition (amorphous hydrocarbon)	148 373 253	(1)
		Ionic transition (order-disorder)	331	
Heat capacity	$kJ K^{-1}$	-	4.2-5.0	(2)
Deflection temperature	K	Vicat, D-1525 Na Zn	337 346	(2)
Flex modulus	MPa	D-790, 298 K Na Zn	350 130	(2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile modulus	MPa	Secant modulus, D-882, 298 K		(8)
		Na	290	
		Zn	280	
Storage modulus (1 Hz, G')	MPa	Na		(1)
		193 K	1,000	
		273 K	330	
		295 K	205	
		334 K	30	
Loss modulus (1 Hz, G")	MPa	Na		(1)
, ,		193 K	25.9	()
		273 K	32.3	
		295 K	20.9	
		334 K	6.2	
Tensile strength	MPa	D-638, 296 K		(2)
renone outengur	IVII U	Na	33.1	(=)
		Zn	21.4	
Yield strength	MPa	D-638, 296 K		(2)
		Na	15.9	(-)
		Zn	8.3	
Maximum elongation	%	Na	470	_
g		Zn	500	
Flex modulus	MPa	D-790, 296 K		_
		Na	350	
		Zn	130	
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	D-250, notched Izod, 296 K		(2)
1 0	•	Na	1.02×10^{5}	` '
		Zn	No break	
Tensile impact strength	$\mathrm{J}\mathrm{m}^{-2}$	D-1822S		(2)
1	•	Na; 296 K	1,020	` '
		Na; 233 K	7 60	
		Zn; 296 K	925	
		Zn; 233 K	560	
Hardness	Shore D	Na	65	(2)
		Zn	54	. ,
Entanglement molecular weight	_	_	15,000	(1)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Abrasion resistance	-	D-1630 Na Zn	370 170	(2)
Index of refraction	_	Zn	1.49	(7)
Dielectric constant	_	Na; 1kHz, 296 K	3.8	(9)
Dielectric loss	_	Na; 1kHz, 296 K	4.0×10^{-3}	(9)
Strain-optical coefficient K_s	_	Na; maximum at 331 K	2.4×10^{-2}	(10)
Permeability	$m^3 m s^{-1} m^{-2} Pa^{-1}$ $g m s^{-1} m^{-2} Pa^{-1}$	Oxygen, 296 K Na Zn	1.80×10^{-17} 2.00×10^{-17} 7.00×10^{-12}	(7)
Viscosity	Pas ($\times 10^4$)	Water vapor, 296 K; Na, Zn Piston rheometer; shear rate = 1.30s^{-1} Na at 393 K Na at 413 K Na at 433 K	5.18 2.85 1.61	_
Melt index	$g s^{-1} (\times 10^{-3})$	D-1238-57-T, condition E Na, shear rate = $7.0 \mathrm{s}^{-1}$ Zn, shear rate = $4.0 \mathrm{s}^{-1}$	4.7 2.7	_
Maximum use temperature (heat deflection temperature)	K	D-648, 455 kPa Na Zn	317 313	(2)
Flammability	${\rm cms}^{-1}$	D-635 Na Zn	3.81 3.38	(2)
Water absorption	wt%	Saturation, 296 K Na (3 mol% carboxylate) Na (6 mol% carboxylate)	11 29	(1)
Haze	%	D-1003 Na Zn	3.0 7.0	-
Clarity	%	D-1746; Na, Zn	40-60	_
Elmendorf tear strength	${\rm Nmm^{-1}}$	D-1922 Na (MD, TD) Zn (MD, TD)	3.2 20.0	-

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Cost	US\$ kg ⁻¹	-	3.33-4.02	_	
Important patent	Rees, R. W. U.S. Patent 3,264,272 (assigned to E. I du Pont de Nemours and Co.)				
Supplier	E. I. du Pont de Nem USA	nours and Co., Du Pont Polymers, Wilm	ington, Delawa	re 19898,	

REFERENCES

- 1. Longworth, R. In *Ionic Polymers*, edited by L. Holliday. Applied Science Publishers, Barking, U.K., 1975, chap. 2.
- 2. Surlyn Product Guide. E. I. du Pont de Nemours and Co.
- 3. Groenewege, M. P., et al. In *Crystalline Olefin Polymers I*, edited by R. A. V. Raff and K. W. Doak. Interscience Publishers, New York, 1965.
- 4. MacKnight, W. J. et al. J. Phys. Chem. 72 (1968): 1,122.
- 5. Allen, G., G. Gee, and G. J. Wilson. Polymer 1 (1960): 456.
- 6. Marx, C. L., and S. L. Cooper. Die Makromolekulare Chemie 168 (1973): 339.
- 7. Walter, E. R., and F. P. Reding. J. Polym. Sci. 21 (1956): 561.
- 8. Surlyn Selector Guide: Film. E. I. du Pont de Nemours and Co.
- 9. Phillips, P. J., and W. J. MacKnight. J. Polym. Sci., Part A-2, 8 (1970): 727.
- 10. Kajiyama, T., R. S. Stein, and W. J. MacKnight. J. Appl. Phys. 41 (1970): 4,361.

Cellulose

RACHEL MANSENCAL

ALTERNATIVE NAMES Rayon, cellophane, regenerated cellulose⁽¹⁾

CLASS Carbohydrate polymers; polysaccharides

STRUCTURE

FUNCTIONS It is the basic structural material of the cell walls of all higher land plants and of some seaweeds. $^{(2-8)}$

NATURAL SOURCES Wood (coniferous, deciduous), bamboo, cotton, hemp, straw, jute, flax, reed, sisal. Cellulose is isolated from the plant cell walls and is never in a pure form in nature. Always associated with lignin and hemicellulose. (2-4)

Source ⁽⁴⁾	Cellulose (%)
Cotton	94
Hemp	77
Flax	75
Kapok	75
Sisal	75
Ramie	73
Jute	63
Wood (coniferous or deciduous)	50
Bamboo	40-50
Straw	40-50

BIOSYNTHESIS Depends on the system. (6-8)

COMMERCIAL USES Natural cellulose is used as fuel and lumber. Purified cellulose is employed for production of paper and textiles. Derivatives of cellulose are used in plastics, films, foils, glues, and varnishes. Most of the cellulose is used in paper and paperboard manufacture.⁽⁴⁾

EXTRACTION The separation process of cellulose from hemicellulose and lignine is by pulping. The two different kinds of pulping are mechanical and chemical. (2-4,6)

PROPERTIES OF SPECIAL INTEREST Cellulose is the most abundant macromolecular material naturally occurring in plant cell walls. Semicrystalline natural polymer. Very difficult to dissolve. (2-7)

Cellulose

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Average molecular weight	g mol ⁻¹	_	≈10 ₆	(6)
Specific gravity	g cm ⁻³	In heptane In benzene In water	1.540 1.570 1.604–1.609	(4)
Cellulose fibril size	nm	Subelementary Elementary	1.5 3.5	(4)
X-ray density	$g\mathrm{cm}^{-3}$	Crystalline portion Amorphous portion	1.590-1.630 1.482-1.489	(4)
Average crystallinity	%	Native	70	(4)
Optical refractive index	-	$n_{ m D}^{\parallel}$	1.618 1.599 1.600 1.595	(4)
		$n_{ m D}^{\perp}$	1.543 1.532 1.531 1.534	
Solubility	-	Water, organic solvent, dilute acid, alkalies Cuprammonium hydroxide Cupriethylenediamine hydroxide Cadmium ethylene diamine hydroxide Iron sodium tartrate complex	Insoluble Soluble (complex formation)	(5)
Solubility parameters	$(MPa)^{1/2}$	_	32.02	(1)

Unit cell dimensions (2,8,9)

Isomer Lattice		group per unit cell		Cell dimension* (Å)			Cell angles (degrees)
				а	b (fiber axis)	c	γ
Cellulose I	monoclinic	2 ₁	2 (parallel arrangement of the chains)	9.35	10.3	7.9	96.0
Cellulose II	monoclinic	2 ₁	2 (antiparallel arrangement of the chains)	8.0	10.3	9.0	117

^{*}For ramie and cotton.

				Cellulose
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Polymorphs	Cellulose I, II	, III, IV, III-1, III-2, IV-1, IV-2		(2)
Degree of crystallinity	%	Determined by X-ray diffraction Type of cellulose Cellulose (valonia ventricosa) Different wood pulps Ramie	0.68 0.62-0.70 0.60-0.71	(5, 10) (5, 10, 11) (5, 10, 11)
Thermal conductivity $\lambda_{\rm c}$	$W m^{-1} K^{-1}$	Cotton, 293 K Rayon Sulfite pulp, wet Sulfite pulp, dry Laminated kraft paper Different papers, 303–333 K	0.071 0.054-0.07 0.8 0.067 0.13 0.029-0.17	(1, 5, 13) (1, 5, 14) (1, 5, 15) (1, 5, 15) (1, 5, 16) (1, 5, 17)
Thermal expansion coefficient (linear expansion) for different papers	$K^{-1} (\times 10^{-6})$	Machine direction Cross-machine direction	2–7.5 7.9–16.2	(5, 18)
Specific heat	$\rm Jg^{-1}K^{-1}$	_	1.22	(4)
Heat of combustion	kJg^{-1}	_	17.43	(4)
Dielectric constant	_	Crystalline portion	5.7	(4)
Isolation resistance	ohm cm	_	2×10^4	(4)
Insulating value	$kV cm^{-1}$	_	500	(4)
Thermal decomposition	K	_	523	(4)
Start of thermal degradation	K	Linters Bleached sulfite pulp Kraft pulp Filter paper (under nitrogen)	498 498 513 493	(19) (19) (19) (20)
Fast endothermal degradation	K	Linters Bleached sulfite pulp Cotton (under nitrogen) Cellulose powder (thermogravimetry)	≈573 ≈603 563 563	(19) (19) (4) (21, 22)
Ignition temperature	K	Cotton Viscose rayon	663, 673 693	(14, 23) (23)
Self ignition temperature	K	Cotton	673	(4)

(01	ш	ose

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
External ignition temperature	K	Cotton	623		(4)
Maximum flame temperature	K	Cotton 19% O ₂ 25% O ₂	1,123 1,323		(4, 5) (5, 24)
Heat capacity	$kJ kg^{-1} K^{-1}$	Cellulose Cotton Mercerized cotton Ramie Flax Hemp Jute Viscose rayon Paper	1.34 1.22 1.235 1.775 1.344-1.348 1.327-1.352 1.357 1.357 1.17-1.32		(5, 25) (5, 26) (5, 26) (5, 27) (5, 28) (5, 28) (5, 28) (5, 28) (5, 28)
Heat of crystallization	$kJ kg^{-1}$	Cellulose I Cellulose II	121.8 134.8		(5) (5)
Heat of recrystallization	$kJ kg^{-1}$	Amorphous cellulose \rightarrow Cellulose I	41.9		(5, 29)
Heat of transition	$kJ kg^{-1}$	Cellulose I \rightarrow Cellulose II	38.1		(5, 30)
Heat of formation	$kJ kg^{-1}$	_	5949.7		(5, 31)
Heat of solution of dry material	kJ kg ⁻¹	Cotton in cupriethylendiamine Cotton in Et ₃ PhNOH Rayon in Et ₃ PhNOH Cellulose II in Et ₃ PhNOH	108.0 142.5 95.5 182.7		(5, 32) (5, 33) (5, 34) (5, 33)
Yields of scission $G(S)$	μ mol J ⁻¹	Electron beam or γ -irradiation	11		(5, 35)
Glass transition temperature	K	-	503 493–518		(5)
Secondary transition	K	_	292–296 298		(5)
Tensile strength	MPa		Dry	Wet	(4)
		Ramie Cotton Flax Viscose rayon Viscose rayon, highly oriented Cellulose acetate	200–800 824 200–400 610	1,060 200–800 863 100–200 520 100–120	

					Cellulose
PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Relative wet/dry	%	Ramie	117		(4)
strength		Cotton	105		` /
O		Flax	105		
		Viscose rayon	50		
		Viscose rayon, highly oriented	86		
		Cellulose acetate	65		
Extension at break	%		Dry	Wet	(4)
		Ramie	2.3	2.4	-
		Cotton	16-12	6-13	
		Flax	1.8	2.2	
		Viscose rayon	8-26	13-43	
		Viscose rayon, highly oriented	9	9	
		Cellulose acetate	21-30	29-30	
Elastic modulus	MPa	Native flax	78,000-1	08,000	(4)
		Native hemp		59,000-78,000	
		Native ramie	48,000-6		
		Mercerized ramie	80,000	•	
		Oriented rayon	33,000		
		Cellulose acetate film	4,000		

Void system determination by X ray small angle scattering

Cellulose	Relative internal surface (Å ² Å ⁻³)	Specific internal surface (m ² g ⁻¹)	Conditions	Reference
Microcrystalline	0.09273	2.93	Average values	(5, 36, 37)
·	0.0714	1.74		
Microfine	0.07232	1.10	_	(5)
	0.12800	2.08		` '

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Permeability to gases	_	Cellulose, 25°C, pressure not specified	H ₂ , N ₂ , O ₂ , CO ₂ , SO ₂ , H ₂ S, NH ₃	(5, 38)
Density	$\rm gcm^{-3}$	Cellulose I Cellulose II Cellulose IV Cotton Ramie Flax Hemp Jute Wood pulps	1.582-1.630 1.583-1.62 1.61 1.545-1.585 1.55 1.541 1.541 1.532 1.535-1.547	(5, 39-41) (5, 40) (5) (5, 42-44) (40) (5) (5) (5) (5, 40, 45)

Cellulose

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of adsorption of	Jg^{-1}	Cotton, 25°C	384	(4)
water, $\Delta H_{\rm ads}$	_	Holocellulose, 25°C	344	
		Bleached sulfite pulp, 20°C	348	
		Cellophane, 25°C	358	
		Viscose rayon, 25°C	397	
IR (characteristic absorption frequencies)	cm ⁻¹	Cellulose I	3,125–3,660; 3,375; 3,275; 2,970; 2,960; 2,945; 2,900; 1,760; 1,730–1,740; 1,550–1,650; 1,035; 1,025; 1.015; 700; 740	(4)
		Cellulose II	6,770; 3,464–3,490; 3,444–3,450; 3,374–3,394	

Optical configuration parameters $^{(1,46)}$

Cellulose	Delta alpha (A³)	Diluent
Cellulose acetate $DS = 2.4$	0	Pyridene
Cellulose benzoate $DS = 3.0$	-617	Dimethylformamide
Cellulose nitrate $DS = 1.9$	-62	Cyclohexanone
Cellulose nitrate $DS = 1.9$	149	Dioxane

^{*}DS = Degree of substitution.

Mark-Houwink parameter*: *K* and *a*

Solvent	Temp. (°C)	$\textit{K}_{\rm m} imes 10^2 \; (ml g^{-1})$	а	$K_{\rm m}'$ (mlg $^{-1}$) †	Viscosity range $[\eta] imes 10^{-2} ext{ (ml g}^{-1})$	Method of calibration	Reference
Cuoxam ^(a)	20	0.308	1.0	0.5	0.9-9	Osmotic	(5, 47)
	25	11.3	0.657	3.19	0.2-4	Visco ^(d)	(5, 48)
	25	10.1	0.661	2.91	0.2-4	Visco ^(d)	(5, 48)
Cuene ^(b)	25	_	0.905	1.33	1-21.4	Visco ^(d)	(5, 49, 50)
	25	0.498	1.0	0.807	2.4-21.4	_	(5, 49, 50)
Cadoxene ^(c)	25	_	1.0	0.435	0.5-7.5	Visco ^(d)	(5, 51)

^{*}For cellulose; from osmotic measurements on fractionated samples.

 $^{^{\}dagger}$ K'_m is relating intrinsic viscosity and degree of polymerization $^{(a)}$ Cuoxam: cuprammonium hydroxide.

⁽b) Cuene: cupriethylenediamine.

⁽c) Cadoxene: cadmiumethylenediamine.

⁽d)Visco: viscosimetric comparison.

				Cellulose
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Martin coefficient K'	-	Cellulose Solvent Cuene* Cuoxam [†]	0.13-0.15 0.1303 0.112	(5)
Huggins coefficient <i>K</i> "	-	Cellulose Solvent Cuoxam [†] Cadoxene [‡]	0.37 0.26-0.39	(5)
Schulz-Blaschke coefficient K'''	_	Cellulose Solvent Cuene* Cuoxam [†] Cadoxene [‡]	0.33 0.29 0.1552 0.287 0.280	(5) (5, 52) (5, 53) (5, 52) (5)
Second virial coefficient A_2	$ \text{mol cm}^3 \text{ g}^{-2} $ $ (\times 10^4) $	Cellulose Hydrolyzed linters; cadmium ethylene diamine solvent; 25° C; $M = (225-945) \times 10^{-3} \text{ g mol}^{-1}$; light scattering Sulfite pulp; $M = 215 \times 10^{-3} \text{ g mol}^{-1}$; light scattering	16.1	(5)
Sedimentation coefficients s_0	s × 10 ¹³	Cellulose in solution Cuene*; 25° C $M = 175 \times 10^{-3} \text{ g mol}^{-1}$ $M = 9.5 \times 10^{-3} \text{ g mol}^{-1}$ Cadoxene [‡] ; 12° C $M = 33.6 \times 10^{-3} \text{ g mol}^{-1}$ $M = 24.5 \times 10^{-3} \text{ g mol}^{-1}$ $M = 18.8 \times 10^{-3} \text{ g mol}^{-1}$ $M = 10.1 \times 10^{-3} \text{ g mol}^{-1}$	5.5 8.3 1.25 1.13 1.04 0.74	(1, 5) (1, 5, 54)
Diffusion coefficients D_0	cm ³ s (×10 ⁷)	Cellulose in solution Cuene*; 25° C $M = 175 \times 10^{-3} \text{ g mol}^{-1}$ $M = 9.5 \times 10^{-3} \text{ g mol}^{-1}$	1.2 0.95	(1, 5)
Frictional ratios v_2	$\mathrm{cm}^3\mathrm{g}^{-1}$	Cellulose in solution; cuene*; 25°C; $M = 175 \times 10^{-3} \text{ g mol}^{-1}$	0.65	(1, 5)
Specific resistance ρ	ohm cm	_	10^{18}	(5, 55)
Dielectric constant ε	_	106 kHz	5.5-8.1	(5, 56)

Cellulose

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric loss factor	_	20°C, 0.1 kHz	0.015	(5)
$ an \delta$		20°C, 1 kHz	0.02	
		20°C, 10 kHz	0.03	
		20°C, 10 ² kHz	0.045	
		20°C, 10 ³ kHz	0.065	
		20°C, 10⁴ kHz	0.08	
		20°C, 10 ⁵ kHz	0.07	
Dielectric strength	$kV \text{ mm}^{-1}$	Dry (native cellulose fiber)	50	(5, 57)
Zeta-potential	mV	Fines from filter paper, Whatman No. 1	21.0	(5, 58)
Surface tension	mN m ⁻¹	Contact angle method, at 20°C Cellulose regenerated from cotton Cellulose regenerated from wood pulp	42 36-42	(5, 59)

Specific refractive index increment in dilute solution, dn/dc (ml g⁻¹)

Solvent	$\lambda_0=$ 436 nm	$\lambda_0=$ 546 nm	Temp. (°C)	Reference
Acetone	0.111	_	25	(1, 60)
Cadoxene*	0.186	0.183	25	(1, 12, 54)
Cadoxene*, (5% Cd)/water (1:1 vol)	0.190	0.189	25	(1, 61)
0.237 M Cd	0.1317	0.1927	25	(1, 62)
Cuoxam [†] 0.205 M Cu	0.117	0.233	25	(1, 5)
Cuoxam [†] 0.0518 M Cu	0.1352	0.2574	25	(1, 62)
FeTNa	0.110	0.245	25	(1, 63)

^{*}Cadoxene: cadmiumethylenediamine.

Microbial biodegradation⁽⁵⁾

Class	Microorganism
Bacteria	Cellvibro gilvus
	Clostridium thermocellum
	Bacteroides succinogenus
	Ruminococcus albus
	Psudonomas fluorescence var cellulosa
	Sporocytophaga myxococcides

^{*}Cuene: cupriethylenediamine.
†Cuoxam: cuprammonium hydroxide.

^{*}Cadoxene: cadmiumethylenediamine.

[†]Cuoxam: cuprammonium hydroxide.

Class	Microorganism
Fungi	Coriolus vesicolor
	Phanerochaete chrysosprium
	Irpex lacteus
	Schizophyllum commune
	Fomess annonus
	Stereum sanguinolentum
	Peurotus ostreatus
	Polyporrus schweinitzii
	Poria placenta
	Poria vailantii
	Coniophora cerebella
	Tyromyces palustris
	Serpula lacrymans
	Lentinus lepideus
	Chaetomium globosum
Ascomycetes and fungi imperfecti	Chaetomiium thermophile
	Trichoderma viride
	Trichoderma reesei
	Trichoderma koningii
	Penicillium funicolosum
	Fusarium solani
	Aspergillus aculeatus
	Aspergillus niger
	Sporotrichum thermophile
	Myrothecium verrucaria

REFERENCES

- 1. Zhao, W., and J. E. Mark. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996.
- 2. Huang, Y., and J. Chen. In *Polymeric Materials Encyclopedia*, edited by J. C. Salamone. CRC Press, Boca Raton, Fla., 1996, vol. 2.
- 3. James, D. W. Jr, J. Preiss, and A. D. Elbein. In *The Polysaccharides*, edited by G. O. Aspinall. Academic Press, New York, 1985, vol. 3.
- 4. Dane, J. R. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 3.
- 5. Gröbe, A. In *Polymer Handbook*, 3d ed., edited by J. Branrup and E. H. Immergut. John Wiley and Sons, New York, 1989.
- Tarchevsky, I. A., and G. N. Marchenko, eds. Cellulose: Biosynthesis and Structure. Springer-Verlag, New York, 1991.
- 7. Brown, R. M. Jr., ed. Cellulose and Other Natural Polymer Systems. Plenum Press, New York, 1982
- 8. Kennedy, J. F., G. O. Phillips, and P. A. Williams, eds. *Cellulose, Structural and Functional Aspects*. Ellis Horwood Ltd., Chichester, 1989
- 9. Kolpak, F. J., and J. Blackwell. Macromolecules 273 (1976): 1.
- 10. Hermans, P. H.and A. Weidinger. J. Polym. Sci. 5 (1950): 565.
- 11. Hermans, P. H. Makromol. Chem. 6 (1951): 25.
- 12. Henley, D. Swensk Papperstidn 63 (1960): 143.
- 13. Hammons, M. A., and W. A. Reeves. Textiles Chem. Colourists 14 (1982): 26/210.
- 14. Goerlach, H. Chemiefasern 22(6) (1972): 524.

- 15. Guthrie, J. C. J. Textile Inst. 40 (1949): T489.
- 16. Terada, T., N. Ito, and Y. Goto. Kami Pa Gikyoshi 23 (1969): 191.
- 17. Terasaki, K., and K. Matsuura. Kami Pa Gikyoshi 26(4) (1972): 173.
- 18. Kubat, J., S. Martin-Loef, and Ch. Soeremark. Swensk Paperstidn. 72 (1969): 763.
- 19. Otmar, T., H. Dreilheller, and G. Grossberger. Ger. Offen. 1 (1971): 964.
- 20. Broido, A., and S. B. Martin. U.S. Dept. Com., Office Tech. Serv., AD 268 (1961): 729.
- 21. Fu, Y. L., and F. Shafizadeh. Carbohydr. Res. 29(1) (1973): 113.
- 22. Shafizadek, F., and Y. Sekiguchi. Carbon 21 (1983): 511.
- 23. The Flammability of Textile Fibers, Bull. X-45. E. I. DuPont de Nemours, Wilmington, 1955.
- 24. Miller, B., et al. Textile Res. J. 46 (1976): 531.
- 25. National Research Council (U.S.). *International Critical Tables*. McGraw-Hill, New York, 1926–1930, vol. II, p. 237.
- 26. Magne, F. C., H. J. Portas, and H. Wakeham. J. Am. Chem. Soc. 69 (1947): 1,896.
- 27. Mikhailov, N. V., and E. Z. Fainberg. Vysokomol. Soedin. 4 (1962): 230.
- 28. Goetze, W., and F. Winkler. Faserforsch. Textiltechn. 18 (1967): 119.
- 29. Hermans, P. H., and A. Weidinger. J. Am. Chem. Soc. 68 (1946): 2,547.
- 30. Lauer, K. Kolloid-Z. 121 (1951): 139.
- 31. Jessup, R. S., and E. I. Proser. J. Res. Natl. Bur. Std. (1950): 44.
- 32. Calvet, E., and P. H. Hermans. J. Polym. Sci. 6 (1951): 33.
- 33. Lipatov, S. M., D. V. Zharkovskii, and I. M. Zagraevskaya. Kolloidn. Zh. 21 (1959): 526.
- 34. Mikhailov, N. V., and E. Z. Fainberg. J. Polym. Sci. 30 (1958): 259.
- 35. Charlesby, A. J. Polym. Sci. 15 (1955): 263.
- 36. Schurz, J., and A. Janosi. Das Papier 36 (982): 584.
- 37. Schurz, J., and A. Janosi. Holzforschung 36 (1982): 307.
- 38. Simril, V. L., and A. Hershberger. Modern Plastics 27 (1950): 95.
- 39. Kast, W., and R. Schwarz. Z. Electrochem. 56 (1952): 228.
- 40. Hermans, P. H. Contribution to the Physics of Cellulose Fibers. Elsevier, New York, 1946.
- 41. Lyons, W. J. J. Chem. Phys. 9 (1941): 377.
- 42. Stamm, A. J., and L. A. Hansen. J. Phys. Chem. 41 (1937): 1,007.
- 43. Wakeham, H. Textile Res. J. 19 (1949): 595.
- 44. Hermans, P. H., J. J. Hermans, and D. Vermas. J. Polymer Sci. 1 (1946): 149, 156, 162.
- 45. Brenner, F. C., V. Frilette, and H. Mark. J. Am. Chem. Soc. 70 (1948): 877.
- 46. Tsvetkov, V. S. Rigid-chain Polymer Molecules. Nauka, Moscow, 1985.
- 47. Staudinger, H., and G. Daumiller. Ann. Chem. 529 (1937): 219.
- 48. Cumberbirch, R. J. E., and W. G. Harland. J. Textile Inst. 49 (1958): T679.
- 49. Immergut, E. H., J. Schurz, and H. F. Mark. Monatsh. Chem. 84 (1953): 219.
- 50. Immergut, E. H., B. G. Ranby, and H. F. Mark. Ind. Eng. Chem. 45 (1953): 2,483.
- 51. Prati, G., and L. Errani. Tincoria 59 (1962): 233, 279.
- 52. Marx, M., and G. V. Schulz. Makromol. Chem. 31 (1959): 140.
- 53. Schulz, G. V., and F. Blaschke. J. Prakt. Chem. 158 (1941): 130.
- 54. Brown, W., and R. Wirkstroem. Eur. Polym. J. 1 (1965): 1.
- 55. Murphy, E. J. Can. J. Phys. 41 (1963): 1,022.
- Claussnitzer, W. In Landolt-Boerstein, Zalhenwerte und Funktionen, 6th ed. Springer-Verlag, Berlin, 1957, vol. IV, part 3.
- 57. Meyer, K., and H. Mark. Makromoleculare Chemie, 2d ed. Akad. Verlag, Leipzig. 1950.
- 58. McKenzie, A. W. APPITA 21(4) (1968): 104.
- 59. Luner, P., and M. Sandell. J. Polym. Sci. c28 (1969): 115.
- 60. Marx-Figini, M., and E. Penzel. Makromol. Chem. 87 (1965): 307.
- Huglin, M. B., S. J. O'Donohue, and P. M. Sasia. J. Polym. Sci. Polym., Phys. Ed., 26 (1988): 1,067.
- 62. Vink, H., and G. Dahlström. Makromol. Chem. 109 (1967): 249.
- 63. Valtasaari, L. Tappi 48 (1965): 627.

Cellulose acetate

YONG YANG

ACRONYM CA

CLASS Carbohydrate polymers

STRUCTURE CH₂OR Ο. Ĥ OR H

(R is COCH₃ or H)

MAJOR APPLICATIONS Textile fibers, cigarette filters, plastics for molding and extrusion, films for photography and recording tape, sheeting, lacquers, protective coatings for paper, metal, and glass, adhesive for photographic film, membranes.

PROPERTIES OF SPECIAL INTEREST White, ordorless, nontoxic, wide range of solvent tolerances.

ÓR

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	Degree of substitution $(DS) = 3.0$	288.25	_
Preparation (acetylation)	Cellulose	$e + Acetic anhydride \xrightarrow{[H_2SO_4]/\Delta} Cellu$	lose acetate	(1)
IR (characteristic absorption frequencies)	cm ⁻¹	Assignment (OH) stretching (CH ₃) asymmetric stretching (CH ₃) symmetric stretching (C=O) stretching ((CH ₃) asymmetric deformation (CH ₃) symmetric deformation Acetate C-C-O stretching (C-O) stretching Structural factor	~3,400 ~2,950 ~2,860 ~1,750 ~1,432 ~1,370 ~1,235 ~1,050 ~603	(2-4)
NMR	_	¹³ C and ¹ H	_	(5)
Thermal expansion coefficient	K^{-1}	Sheet	$(10-15) \times 10^{-5}$	(6)
Density	${\rm g~cm^{-3}}$	_	1.29-1.30	(1)

Cellulose acetate

Solvents and nonsolvents

DS	Solvent	Nonsolvent	Reference
0.6-0.8	Water	_	(7)
1.3-1.7	2-Methoxyethanol	Acetone, water	(7-9)
2-2.5	Acetic acid*, acetone*, acrylic acid*, aniline, benzyl alcohol, cyclohexanone, <i>p</i> -chlorophenol*, <i>m</i> -cresol*, dichloroacetic acid*, diethanolamine, difluoroacetic acid*, <i>N</i> , <i>N</i> -dimethylacetamide*, dimethylformamide*, 1,5-dimethyl-2-pyrrolidone*, dimethylsulfoxide*, 1,4-dioxane*, ethylene glycol ether, ethyl acetate, formic acid*, glycol sulfite*, hexafluoroisopropanol*, methyl acetate, <i>n</i> -methylpyrrolidone-2*, naphthol*, nitrobenzene/ethyl acetate, nitromethane*, phenol*, phosphoric acid*, pyridine*, tetrafluoro- <i>n</i> -propanol*, tetrafluoroisopropanol*, trifluoroethanol*	Hydrocarbons, aliphatic ethers, weak mineral acids	(7-9)
3.0	Acetic acid* acetone*, acetone/water (8:2), aniline*, chloroform, <i>m</i> -cresol*, dichloroacetic acid*, dichloromethane*, <i>N</i> , <i>N</i> -dimethylacetamide*, dimethylformamide*, dimethylsulfoxide*, 1,4-dioxane*, ethyl acetate, ethylene carbonate, ethylene glycol ether acetates, methyl acetate*, methylene chloride, methylene chloride/ethanol (8:2), nitromethane*, 3-picoline*, 4-picoline*, <i>n</i> -propyl acetate*, pyridine*, tetrachloroethane*, tetrahydrofuran, trifluoroacetic acid*, trifluoroethane, trifluoroethanol*	Aliphatic hydrocarbons, benzene, dichloroethane, chlorobenzene, o-chlorotoluene, ethanol, aliphatic ethers, weak mineral acids	(7-9)

^{*}Forms liquid crystalline mesophase.

Solubility parameter δ

DS	Solvent	Method	δ [(MPa) $^{1/2}$]	Reference
1.9	_	Heat of solution/solvation	27.2	(10)
2.3	Acetone	Osmotic pressure	23.0	(11)
	m-Cresol	Osmotic pressure	21.2	, ,
	Dioxane	Osmotic pressure	22.5	
	Methyl acetate	Osmotic pressure	22.6	
	α -Picoline	Osmotic pressure	21.9	
	β - Picoline	Osmotic pressure	22.4	
	γ- Picoline	Osmotic pressure	22.0	
	Pyridine	Osmotic pressure	22.5	
2.3	_	Gel swelling	24.7	(12)
2.4	_	Intrinsic viscosity maximum	21.7	(13)
2.5	_	Heat of solution/solvation	27.8	(10)
2.8	_	Gel swelling	27.8	(12)

Polymer-liquid interaction parameters $\chi~(\phi_2)^{(11,\,14-18)}$

Solvent	DS	Temp. (K)	$\chi(0)$	$\chi(extbf{0.2})$	$\chi(0.4)$	$\chi(0.6)$
Acetone	2.3	298-318	0.44	_	_	_
	2.5	303	_	0.30	0.51	_
Acetic acid	2.3	298-318	_	0.40	_	_
Aniline	2.3	298-318	_	0.375 - 0.34	_	_
Chloroform	3.0	298	0.34	_	_	_
	3.0	303	_	0.36	0.45	0.51
Dichloromethane	3.0	298	0.3	_	_	0.49
1,4-Dioxane	2.3	298-318	0.38	_	_	_
	2.5	303	0.31	0.51	_	_
Methyl acetate	2.3	298-318	0.45	_	_	_
•	2.5	303	_	0.43	0.59	_
Nitromethane	2.3	298-318	0.43	_	_	_
2-Picoline	2.3	298	0.36	_	_	_
3-Picoline	2.3	298	0.285	_	_	_
4-Picoline	2.3	298	0.26	_	_	_
Pyridine	2.3	298-318	0.28	_	_	_
•	2.5	303	_	0.07	0.09	_
Tetrahydrofuran	2.5	286	0.442	_	_	_

Second virial coefficients A_2

Polymer	Solvent	Temp. (K)	$M_{\rm w}~10^{-3}~({\rm g~mol^{-1}})$	$A_2 imes 10^4$ (mol cm 3 g $^{-2}$)	Reference
Cellulose acetate	Acetone	RT	60-173	9.4-5.8	(19)
Cellulose diacetate	Acetone	285.3	94	4.1	(20)
(DS = 2.46)		298.6	_	3.8	, ,
		311.0	_	3.6	
		363.2	_	3.5	
		323.5	_	3.4	
	Butanone	303	71	-0.5	(21)
		313	_	-0.25	
		323	_	0	
		333	_	0.25	
		313	92	-0.25	
		323	92	0	
		323	141	-0.21	

Cellulose acetate

Mark-Houwink parameters: K and $a^{(22,23)}$

Solvent	DS	Temp. (K)	$M_{ m w} imes 10^{-4}~({ m g~mol}^{-1})$	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	а
Acetone	2.0	298	27	133	0.616
	2.25-2.38	303	2.6-15	16	0.82
	3.0	293	14	2.38	1.0
		298	18	8.97	0.90
		298	30	3.30	0.760
		298	39	14.9	0.82
		298	69	28.9	0.725
Acetone/methylene chloride	3.0	298	1.4-13	2.2	0.95
Acetone/water (80/20)	3.0	293	11	2.65	1.0
Chloroform	3.0	293	13	2.2	0.95
		298	69	45.4	0.649
		303	18	14.4	0.800
		303	18	4.5	0.9
o-Cresol	3.0	303	18	6.15	0.9
Dichloromethane	3.0	293	69	24.7	0.704
Dimethylacetamide	0.49	298	15	191	0.6
,	1.75	298	14	95.8	0.65
	2.0	298	19	39.5	0.738
	3.0	298	69	26.4	0.750
Dimethyl sulfoxide	0.49	298	15	171	0.61
Ethanol/methylene chloride (20/80 by vol.)	3.0	298	30	13.9	0.834
Formaldehyde	0.49	298	15	20.9	0.60
Methylene chloride	3.0	298	DP = 150-560	1.45^{*}	0.83
Tetrachloroethane	2.86	298	_	5.8	0.90
Tetrahydrofuran	2.0	298	30	51.3	0.688
Trifluoroacetic acid	2.0	298	19	52.7	0.696
	3.0	298	69	39.6	0.706
Water	0.49	298	15	20.9	0.60

^{*}From $\eta = K(DP)^a$, DP = degree of polymerization.

Unit cell dimension of cellulose triacetate (CTA)

Lattice		Monomers per	Chain per unit cell	Cell dimension (Å)			Space group	Density (g cm ⁻³)	Reference
		unit ceii	unit teli	а	b	c		(g cm)	
CTA I	Orthogonal	4	2	23.63	6.27	10.43	P2 ₁	1.239	(24)
	Orthorhombic	16	8	44.3	13.45	10.47	P2 ₁	1.228	(25)
CTA II	Orthorhombic	8	4	24.68	11.52	10.54	$P2_12_12_1$	1.278	(26)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Theta temperature Θ	K	DS = 2.46		
		Acetone	428	(27)
		Butanone	310	(27)
			323	(21)
		Cellulose triacetate, acetone	300	(28)
Characteristic ratio $\langle r^2 \rangle_0 / n l^2$	_	Cellulose diacetate, 298 K, light scattering		(22)
		Acetone	26.3	
		THF	13.2	
Persistence length	Å	Acetone	55.6	(29)
		Trifluoroethanol	59.7	
Chain conformation	_	CTA I and II	2 ₁ helix	(25)
Glass transition temperature	K	Conflicting data	243-473	(30)
Melting point	K	CTA I, annealed at 250°C for 15–30 min, DSC, 20°C min ⁻¹	580	(25)
		CTA II annealed at 250°C for 15–30 min, DSC, 20°C min ⁻¹	582	(25)
		DS = 2.3-2.5	508-528	(24)
Heat capacity (of repeat unit)	kJ K ⁻¹ mol ⁻¹	Sheet Molding	0.36-0.60 0.36-0.51	(6)
Deflection temperature	K	1.82 MPa 0.455 MPa	321–364 326–371	(6)
Tensile modulus	MPa	Sheet Molding, lightly cross-linked $\overline{M}_{\rm c} = 12,300~{\rm g~mol}^{-1}$	$(2.1-4.1) \times 10^3$ $(0.45-2.8) \times 10^3$ 2,300	(6) (6) (31)
Tensile strength	MPa	Molding, lightly cross-linked $\overline{M_{\rm c}}=12{,}300~{\rm g~mol}^{-1}$	14–248 10	(6) (31)
Maximum extensibility	%	Sheet Molding	20–50 60–70	(6)
Compressive strength	MPa	Molding, ASTM D695	14-248	(6)
Flexural yield strength	MPa	Sheet	41-69	(6)
		Molding	14-110	` ,
Impact strength	$\mathrm{J} \ \mathrm{m}^{-1}$	Molding, 0.5 by 0.5 in notched bar, Izod test, ASTM D256	21-278	(6)

()	ш	lose	2	coto	10

PROPERTY	UNITS	COND	ITIONS			VALUE		REFERENCE
Hardness	R scale	Rock				0F 100		(6)
			eet olding			85–120 34–125		(6)
		1010	olullig			34-123		
Index of refraction n	_	_				1.47-1.48		(32)
Refractive index increment dn/dc	${\rm ml}~{\rm g}^{-1}$	DS	Solvent	Temp.	(K)	dn/dc (λ_0 nm)		_
		0.49	DMA	_		0.068 (436)		(33)
un juc			Formamide	_		0.069 (436)		(33)
			Water	_		0.131 (436)		(33)
			DMA	298		0.046 (436)		(33)
		2.45		298		0.071 (436)		(33)
		2.45	Trifluoroethano			0.157 (436)		(33)
		2.46		298		0.122 (436)		(20, 21)
		2.46 3	Acetone DMA	298		0.109 (546)		(20)
		3	DMA	298		0.040 (436)		(32)
Resistivity of cellulose	ohm cm ⁻¹	RH ((%)			Commercial	Purified	(32)
acetate fiber		45				967,000	81,500,500	
acctate fiber		55				424,000	6,040,000	
		65				150,000	448,000	
		75				28,900	33,200	
		85 95				1,610 11	2,460 39	
Permeability	m ³ (STP) m s ⁻¹ m ⁻² Pa ⁻¹ (×10 ¹⁷)	Pe	ermeant T	emp. (K)				
coefficient P		\overline{H}_{i}	2	93	2.6	63		(34)
		•	_			.1-9.5		(35)
		H	e 2	93	10	.2		(34)
		N_2		03	0.2			(34)
		O_2		03		585		(34)
		C	O_2^* 3	03	17			(34)
				00		.4–73.7		(35)
		-		98		30		(34)
		-	-	98	55			(34)
		H		03	2.6			(34)
		П _і		03 03	4.5			(34) (34)
				03	4.2			(34)
Surface tension	$\rm mN~m^{-1}$	Co	ontact angle		45	.9		(36)
Thermal conductivity	${\rm W} {\rm m}^{-1} {\rm K}^{-1}$	29	3 K		0.2	20		(37)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE					
Water absorption	%	25% RH 50% RH 75% RH 95% RH	0.6 2.0 3.8 7.8	(1)					
Flammability	${\rm cm}~{\rm min}^{-1}$	_	1.27-5.08	(35)					
Supplier	Eastman Cher	Eastman Chemical Co., P.O. Box 431, Kingsport, Tennessee 37662, USA							

^{*}Film with plasticizer.

REFERENCES

- Bogan, R. T., C. M. Kuo, and R. J. Brewer. In Kirk-Othmer Encyclopedia of Chemical Technology, edited by J. I. Kroschwitz. John Wiley and Sons, New York, Vol. 5, 1979.
- Noda, I., A. E. Dowrey, and C. Marcott. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996.
- 3. Zhbankov, R. G. In *Infrared Spectra of Cellulose and Its Derivatives*, edited by A. B. I. Stepanov. Consultants Bureau Publishing, New York, 1966.
- 4. Blackwell, J., and R. H. Marchessault. High Polym. 5 (1971): 1.
- Doyle, S., and R. A. Pethrick. *Polymer* 27 (1986): 19; Miyamoto, T., et al. *J. Polym. Sci., Polym. Chem. Ed.*, 22 (1984): 2,363.
- Rudd, G. E., and R. N. Sampson. In Handbook of Plastics, Elastomers, and Composites, edited by C. A. Harper. McGraw-Hill, New York, 1992.
- 7. Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/379.
- 8. Aharoni, S. M. Mol. Cryst. Liq. Crysl. Lett. 56 (1980): 237.
- 9. Gray, D. G. J. Appl. Polym. Sci., Appl. Polym. Symp., 37 (1983): 179.
- 10. Shvarts, A. G. Kolloidn. Zh. 18 (1956): 755.
- 11. Moore, W. R., J. A. Epstein, A. M. Brown, and B. M. Tidswell. J. Polym.Sci. 23(103) (1957): 23.
- 12. Golender, B. A., P. P. Larin, and S. A. Tashmukhamedov. *Polym. Sci. USSR* 18 (1976): 1,522.
- Barton, A. F. M. CRC Handbook of Polymer-Liquid Interaction and Solubility Parameters. CRC Press, Boca Raton, Fla., 1990.
- 14. Orwoll, R. A., and P. A. Arnold. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996.
- 15. Gundert, F., and B. A. Wolf. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/173.
- 16. Moore, W. R., and B. M. Tidswell. J. Polym. Sci. 27 (1958): 459.
- 17. Moore, W. R., and R. Shuttleworth. J. Polym. Sci., Polym. Chem. Ed., 1 (1963): 733.
- 18. Moore, W. R., and B. M. Tidswell. J. Polym. Sci. 29 (1958): 37.
- 19. Lechner, M. D., and D. G. Steinmeier. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/61.
- 20. Suzuki, H., Y. Miyazaki, and K. Kamide. Euro. Polym. J. 16 (1980): 703.
- 21. Suzuki, H., Y. K. Muraoka, and M. Saitoh. Euro. Polym. J. 18 (1982): 831.
- 22. Kurata, M., and T. Tsunashima. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/46.
- 23. Gröbe, A. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. V/117.
- 24. Spanovic, A. T., and A. Sarka. Polymer 19 (1978): 3.
- 25. Roche, E., H. Chanzy, M. Bouldenlle, and R. H. Marchessault. Macromolecules 11 (1978): 86.
- 26. Zugenmaier, P. J. Appl. Polym. Sci., Polym. Symp., 37 (1983): 223.
- 27. Suzuki, H., K. Kamide, and M. Saitoh. Euro. Polym. J. 18 (1982): 123.

Cellulose acetate

- 28. Elias, H.-G. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/205.
- 29. Gilbert, R. D., and P. A. Patton. Prog. Polym. Sci. 9 (1983): 115.
- Peyser, P. In Polymer Handbook, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/258.
- 31. Yang, Y. Ph.D. Thesis, University of Cincinnati, 1993.
- 32. Seard, G. A., and J. R. Sanders. In *Kirk-Othmer Encyclopedia of Chemical Technology*, edited by J. I. Kroschwitz. John Wiley and Sons, New York, Vol. 5, 1979.
- 33. Huglin, M. B. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/466.
- 34. Pauly, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/451.
- 35. Seard, G. A. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. Wiley-Interscience, New York, Vol. 3, 1985.
- 36. Wu, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/411.
- 37. Yang, Y. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996.

Cellulose butyrate

YONG YANG

ACRONYM CB

CLASS Carbohydrate polymers

(R is COC₃H₇ or H)

MAJOR APPLICATIONS Used as cellulose acetate butyrate in lacquers, coatings, hotmelt adhesives, and plastics.

ÓR

PROPERTIES OF SPECIAL INTEREST Good tolerance for inexpensive lacquer solvents and common diluents.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight of (repeat unit)	g mol ⁻¹	Degree of substitution (DS) = 3.0	372.41	_
Preparation	Cellulose -	+ Butyric anhydride $\xrightarrow{[H_2SO_4]/\Delta}$ Cellulo	se butyrate	(1)
Density	$\mathrm{g}~\mathrm{cm}^{-3}$	-	1.17	(1)
IR (characteristic absorption frequencies)	cm ⁻¹	Assignment (C_3H_7) stretching (C_3H_7) stretching (C_3H_7) stretching $(C=0)$ stretching $(C=0)$ stretching (C_3H_7) stretching (C_3H_7) deformation Structural factors	2,960 2,940 2,870 1,750 1,460 1,420 1,380 1,370 1,310 1,250 1,170 1,080	(2)
Solubility parameter δ	$(MPa)^{1/2}$	-	17-24	(3)

Cellulose butyrate

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Theta temperature Θ	K	Dodecane/tetralin (75:25 vol) Tetrachloroethane	395 329.7	(3) (4)
Solvents	_	For cellulose tributyrate	Benzene, chloroform, cyclohexanone, dodecane/ tetralin (3:1, >130°C), tetrachloroethane, xylene (hot)	(4, 5)
Nonsolvents	_	For cellulose tributyrate	Cyclohexane, diethyl ether, 2-ethylhexanol, hexane, methanol	(4, 5)

Mark-Houwink parameters*: K and $a^{(6)}$

Solvent	Method	Temp. (K)	$\emph{M}_{ m w} imes 10^{-4}~({ m g~mol}^{-1})$	$K \times 10^3 \text{ (ml g}^{-1}\text{)}$	а
Butanone	Light scattering	303	6-32	4.3	0.87
	Osmometry	303	8-22	18.2	0.80
Tributyrin	Light scattering	273	6-32	5.3	0.87
•	Light scattering	298	6-32	5.6	0.85
	Light scattering	323	6-32	6.1	0.82
	Light scattering	343	6-32	6.2	0.80
Dodecane/tetralin (75/25 by vol)	Osmometry	403	11-21	82	0.50

 $^{{}^*}For cellulose tributy rate.$

Unit cell dimension of cellulose tributyrate $^{(6,7)}$

Lattice	Monomers	Chains per	Cell dimension (Å)			
	per unit cell	unit cell	а	b	c	
Orthorhombic	16	8	31.3	25.6	10.36	

PROPERTY	UNITS	CONDITIONS	CONDITIONS		
Degree of crystallinity of cellulose tributyrate	(%)	Annealing temp. (K)	Annealing hours		(8)
		298	18	36	
		363	136	40	
		373	72	39	
		383	18	41	
		393	18	43	
		403	18	43	
		413	18	45	
Chain conformation	_	_		2 ₁ helix	(9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE			
Heat of fusion (of repeat unit)	kJ mol ⁻¹	_			12.6 12.8	(9) (8)	
Density (crystalline)	${\rm g~cm}^{-3}$	_			1.192	(9)	
Glass transition temperature	K	DS = 3.0 DS = 3.0, 100% amorphous, D	SC		388 354	(10) (8)	
Melting point	K	-	_				
Heat capacity (of repeat unit)	kJ mol ⁻¹	_			0.108	(8)	
Tensile strength	MPa	_			30.4	(1)	
Water absorption	_	Relative humidity (%) 25 50 75 95	25 50 75				
Refractive index increment dn/dc	${\rm ml}~{\rm g}^{-1}$	Solvent Bromoform Dimethylformamide Dioxane/water (93.5/6.5 vol) Methyl ethyl ketone	3.0 3.0 3.0 3.0	Temp. (K) 294 314 336 294	dn/dc (λ ₀ nm) -0.11 (546) 0.0442 (436) 0.0478 (546) 0.104 (546) 0.078 (546)	(11)	

REFERENCES

- 1. Bogan, R. T., C. M. Kuo, and R. J. Brewer. In *Kirk-Othmer Encyclopedia of Chemical Technology*, edited by J. I. Kroschwitz. John Wiley and Sons, New York, Vol 5, 1979.
- 2. Zhbankov, R. G. In *Infrared Spectra of Cellulose and Its Derivatives*, edited by A. B. I. Stepanov. Consultants Bureau Publishing, New York, 1966.
- 3. Barton, A. F. M. CRC handbook of Polymer-Liquid Interaction and Solubility Parameters. CRC Press, Boca Raton, Fla., 1990.
- 4. Elias, H.-G. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/205.
- 5. Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/379.
- 6. Kurata, M., and Y. Tsunashima. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/31.
- 7. Zugenmaier, P. J. Appl. Polym. Sci., Polym. Symp., 37 1983: 223.
- 8. Piana, U., M. Pizzoli, and C. M. Buchanan. Polymer 36(2) 1995: 373.
- 9. Miller, R. L. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/88.
- Peyser, P. In Polymer Handbook, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/258.
- 11. Huglin, M. B. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/409.

Cellulose nitrate

YONG YANG

ACRONYM CN

CLASS Carbohydrate polymers

MAJOR APPLICATIONS Protective and decorative lacquer coatings, rotogravure and flexographic inks, leather finishes, fabric and household adhesives, explosives, propellants, plastics.

PROPERTIES OF SPECIAL INTEREST Soluble in a wide variety of organic solvents, fast solvent release under ambient drying conditions, durability, toughness.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	Degree of substitution (DS) $= 3.0$	297.13	_
Preparation	Cellulose -	$+$ HNO ₃ \rightarrow Cellulose nitrate		(1)
IR (characteristic absorption frequencies)	cm ⁻¹	Assignment (OH) stretching (CH ₂) stretching (CH ₂) stretching (ONO ₂) stretching (ONO ₂) stretching (ONO ₂) stretching (ONO ₂) stretching (C-C-O) stretching	3,450 2,970 2,940 1,650 1,280 840 1,070	(2, 3)
Thermal expansion coefficient	K^{-1}	_	$(8-12) \times 10^{-5}$	(4)
Specific gravity	$\rm gcm^{-1}$	DS = 2.20-2.32	1.58-1.65	(1)
Solubility parameters δ	(MPa) ^{1/2}	DS = 2.21 $DS = 2.08$	21.7 30.39 23.5 21.93	(5) (5) (5) (5)
		DS = 2.21	21.44	(6)

Solvents and nonsolvents^(1,7,8)

DS	Solvent	Nonsolvent
1.00	Water	
1.83-2.32	Acetone*, acetic acid (glacial), lower alcohols, alcohol/diethyl ether, amyl acetate, <i>n</i> -butyl acetate*, butyl lactate, γ-butyrolactin*, cyclopentanone*, diethyl acetate*, diethyl ketone*, <i>N</i> , <i>N</i> -dimethylacetamide*, dimethyl carbonate*, dimethyl cyanamide*, dimethylformamide*, dimethyl maleate*, dimethylsulfoxide*, 2-ethoxyethyl acetate, ethyl acetate*, ethyl amyl ketone, ethylene glycol ethers, ethyl lactate, 2-hexanone*, methyl acetate*, methyl ethyl ketone*, methyl propyl ketone*, <i>n</i> -methylpyrrolidone-2*, 2-octanone*, 1-pentanone*, <i>n</i> -pentyl acetate*, pyridine*	Higher alcohols, higher carboxylic acids, higher ketones, tricresyl phosphate
2.48	Acetone*, cyclohexanone, ethanol/diethyl ether, ethyl butyrate, ethylene carbonate, ethylene glycol ether acetates, ethyl lactate, halogenated hydrocarbons, methyl acetate*, methyl amyl ketone*, furan derivatives, nitrobenzene	Alcohols, aliphatic hydrocarbons, aromatic hydrocarbons, carboxylic acids, dil, ethylene glycol, diethyl ether, water

^{*}Forms liquid crystalline mesophase.

Polymer–liquid interaction parameters χ (ϕ_2) at various volume fractions of polymer ${\phi_2}^{(6,9,10)}$

Solvent	DS	Temp. (K)	χ(0)	χ(0.2)	χ(0.4)	χ(0.6)	χ(0.8)	χ(1.0)
Acetone	2.4	298	0.27	_	_	_	_	
		303	0.24	0.05	_	_	_	_
	2.6	293	_	0.14	0.06	-0.37	-1.24	_
Acetonitrile	2.6	293	_	_	0.59	0.42	0.12	-0.1
Amyl acetate	2.4	298	0.02	_	_	_	_	_
2-Butanone	2.4	298	0.21	_	_	_	_	_
Butyl acetate	2.4	298	0.015	_	_	_	_	_
Cyclopentanone	2.6	293	_	0.42	0.07	-0.71	-2.4	_
2,4-Dimethyl-3-pentanone	2.6	293	-0.89	-1.8	-1.7	_	_	_
1,4-Dioxane	2.4	293	_	_	1.2	-0.25	-1.7	_
Ethyl acetate	2.4	298	0.02	_	_	_	_	_
,	2.6	293	_	0.04	-0.43	-1.35	_	_
Ethyl formate	2.6	293	_	-0.08	-0.14	-0.42	-3.2	_
Ethyl <i>n</i> -propyl ether	2.6	293	_	_	_	1.20	_	_
2-Heptanone	2.4	298	0.02	_	_	_	_	_
2-Hexanone	2.4	298	0.15	_	_	_	_	_
Isopentyl acetate	2.6	293	_	-0.89	-1.8	-3.3	_	_
Isoproyl ketone	2.6	293	_	0.62	-0.08	-1.7	_	_
Methyl acetate	2.4	298	0.30	_	_	_	_	_
,		303	0.17	-0.06	_	_	_	_
Methyl <i>t</i> -butyl ketone	2.6	293	_	0.016	5	-2.8	-3.7	_
Methyl isopropyl ketone	2.6	293	_	-0.5	-0.52	-1.6	_	_

Cellulose nitrate

Solvent	DS	Temp. (K)	χ(0)	χ (0.2)	χ (0.4)	χ (0.6)	χ (0.8)	χ(1.0)
Nitromethane	2.6	293	_	0.66	0.64	0.60	0.45	
2-Octanone	2.4	298	0.16	_	_	_	_	_
Propyl acetate	2.4	298	0.13	_	_	_	_	_
	2.6	293	_	-0.38	-0.83	-2.0	-4.1	_

Second virial coefficients A_2

Conditions	Solvent	Temp. (K)	$M_{ m w} imes 10^{-3}$ (g mol $^{-1}$)	Method	$A_2 imes 10^4$ (mol cm 3 g $^{-2}$)	Reference
DS = 2.91	Acetone	298	81-3,850	Light scattering	10.8-8.2	(11)
DS = 2.55	Acetone	298	141-1,700	Light scattering	13.3-12.5	(11)
DS = 2.78	Acetone	RT	61.6-2,482	Osmometry	0.24	(11)
	_	298	77-2,640	Light scattering	6.10	(11)
	_	_	780	Light scattering	11.2	(11)
From raw cotton				o o		` '
DS = 2.82	Acetone	288	22.8-417	Osmometry	0.24	(11)
DS = 2.87	Ethyl acetate	_	$\sim 1,000$	Light scattering	6.2-7.0	(12)
From cotton	Acetone	293	31-661	Osmometry	0.28	(11)
	Butyl acetate	293	150-400	Light scattering	1.0 - 0.5	(11)
	_ `	298	30-360	Osmometry	3.5 - 0.3	(11)
From viscose rayon	Ethyl acetate	303	71.5	Osmometry	44.1	(11)
From chemical cotton		_	295-450	Osmometry	28.5-25.7	(11)
DS = 2.39	Butanone	298	130	Osmometry	10.8	(11)

Mark-Houwink parameters: K and $a^{(13)}$

Polymer	Solvent	Temp. (K)	$\emph{M}_{ m W} imes 10^{-4}~({ m g~mol}^{-1})$	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	а	Method
Cellulose	Acetone	293	250	2.80	1.00	Sedimentation
Trinitrate		298	265	1.69	1.00	Light scattering
		298	250	1.66	0.86	Light scattering
		298	32	10.8	0.89	Light scattering
(DS = 2.55)		298	200	5.70	0.90	Light scattering
(DS = 2.91)		298	400	6.93	0.91	Light scattering
		298	50	7.00	0.933	Osmometry
		298	100	11.0	0.91	Osmometry
		298	26	23.5	0.78	Osmometry
	Butyl acetate	298	50	5.68	0.969	Osmometry
	Butyl formate	298	26	23	0.81	Osmometry
	Cyclohexanone	298	22	2.24	0.810	Osmometry
	Ethyl acetate	298	100	3.8	1.03	Osmometry
	,	298	26	8.3	0.90	Osmometry
		298	250	1.66	0.86	Light scattering
		303	57	2.50	1.01	Light scattering
	Ethyl butyrate	298	50	3.64	1.0	Osmometry
	Ethyl formate	298	26	30	0.79	Osmometry

Cellulose nitrate

Polymer	Solvent	Temp. (K)	$M_{\rm w} imes 10^{-4} ({ m g \ mol}^{-1})$	$K \times 10^3 \text{ (ml g}^{-1}\text{)}$	а	Method
	Ethyl lactate	298	65	12.2	0.92	Osmometry
	2-Heptanone	298	26	5.0	0.93	Osmometry
	Methyl acetate	298	22	18.3	0.835	Osmometry
	Nitrobenzene	298	22	6.1	0.945	Osmometry
	Pentyl acetate	298	26	1.1	1.04	Osmometry

Persistence length

Conditions	Solvent	Temp. (K)	Persistence length (nm)	Reference
DS = 2.91	Acetone	298	970	(13)
DS = 2.55	Acetone	298	530	(13)
DS = 2.75	Ethyl acetate	303	700	(13)
DS = 2.26	Acetone	293	0.48	(13)
Cellulose trinitrate	Acetone	298	360	(13)
		295	0.26 ± 0.01	(13)
		293	0.40-0.70	(13)
Cellulose trinitrate	Acetone	_	13.2	(14)
	Ethyl acetate	_	11.8	(14)

Unit cell dimension of cellulose trinitrate

Lattice	Monomers	Cell dimension (Å)		γ	<i>T</i> _m (K)	Heat of fusion	Chain	Reference		
	per unit cell	а	b	с			(kJ mol ⁻¹)	conformation		
Orthorhombic	10	12.25	25.4	9.0	_	697	3.8	51	(15, 16)	
Orthorhombic	10	9.0	14.6	25.4	_	700	6.3	52	(16)	
Monoclinic (CTNII)	10	12.3	8.55	25.4	91°	-	_	_	(17)	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Huggins constants: k' and k''	_	_	_	(11)
Glass transition temperature	K	_	326, 329	(18)
Heat capacity	$kJ~K^{-1}~mol^{-1}$	_	0.37-0.50	(4)
Deflection temperature	K	At 1,820 KPa	60-71	(4)
Tensile modulus	MPa	_	1,310-1,520	(4, 19)
Tensile strength	MPa	RS, 296 K, 50% RH	62–110 48.3–55.2	(1) (19)
Maximum extensibility	%	RS, 296 K, 50% RH	13-14 40-45	(1) (4)

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Compressive strength	MPa	ASTM D695			152-241	(4)
Flexural yield strength	MPa	_			62-75.9	(4)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	0.5 by 0.5 in no ASTM D256	tched bar ,	Izod test,	267-374	(4)
Hardness	-	RS, Sward, % or Rockwell, R sca			90 95–115	(1) (4)
Index of refraction <i>n</i>	_	_			1.51	(1)
Refractive index increment <i>dn/dc</i>	mlg^{-1}	Solvent	DS	Temp. (K)	$dn/dc \ (\lambda_0 \ \text{nm})$	(12, 20)
increment un/ac		Acetone Ethyl acetate	1.96 2.23 2.26–2.35 2.43 2.55 3.0 2.05 2.77 — 2.87 3.0 —	298 - 293 298 - 298 293 298 293 - 303 298 293	0.1022 (436), 0.0998 (546) 0.1010 (436), 0.0985 (546) 0.107 (436), 0.0950 (546) 0.0968 (436) 0.1151 (436) 0.0930 (436), 0.0903 (546), 0.098 (1086) 0.103 (546) 0.102 (436) 0.105 (436, 546) 0.102 (436) 0.107 (436) 0.107 (436) 0.107 (436) 0.105 (436), 0.103-0.105 (546)	
Dielectric constant ε''	_	$293-298 K \\ 60 Hz \\ 1,000 Hz \\ 1 \times 10^6 Hz$			7–7.5 7 6	(1)
Power factor	%	293–298 K 60 Hz 1,000 Hz			3–5 3–6	(1)
Surface tension	mNm^{-1}	_			38	(21)
Thermal conductivity	$W m^{-1} K^{-1}$	_			0.23	(22)
Water absorption	%	294 K, 24 h, 80%	RH		1.0	(1)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE		
Compatible polymers	catible polymers Cellulose acetate, ethyl cellulose, ethylhydr poly(carprolacton), poly(vinyl acetate)						
Permeability coefficient P	m ³ (STP) m s ₁₇ ⁻¹ m ⁻²	Permeant	Temp. (K)		(24)		
	$Pa^{-1} (\times 10^{17})$	$\overline{\text{H}_2}$	293	1.5			
		He	298	5.18			
		N_2	298	0.087			
		O_2	298	1.46			
		Ār	298	0.0825			
		CO_2	298	1.59			
		NH_3	298	42.8			
		H_2O	298	4,720			
		SO_2	298	1.32			
		C_2H_6	298	0.0473			
		CH_3H_8	298	0.0063			
Cost	US\$ kg ⁻¹	In 30% isopre	opanol	3.7-5.5	_		
Supplier	Hercules Inc., 1313 N	orth Market Stre	eet, Wilmington,	DE 19894, 1	USA		

REFERENCES

- 1. Nitrocellulose: Chemical and Physical Properties. Hercules, Inc., Wilmington, Del., 1996.
- 2. Zhbankov, R. G. In Infrared Spectra of Cellulose and Its Derivatives, edited by A. B. I. Stepanov. Consultants Bureau Publishing, New York, 1966.
- 3. Julian, J. M., et al. In An Infrared Spectroscopy for the Coatings Industry, 4th ed., edited by D. R. Brezinski. Federation of Societies for Coatings Technology, Blue Bell, Penn., 1991.
- 4. Rudd, G. E., and R. N. Sampson. In Handbook of Plastics, Elastomers, and Composites, edited by C. A. Harper. McGraw-Hill, New York, 1992.
- 5. Grulke, E. A. In Polymer Handbook, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/555.
- 6. Du, Y., Y. Xue, and H. L. Frish. In *Physical Properties of Polymer Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996.
- 7. Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/400.
- 8. Gray, D. G. J. Appl. Polym. Sci., Appl. Polym. Symp., 37 (1983): 179.
- 9. Gundert, F., and B. A. Wolf. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/173.
- 10. Orwoll, R. A. Rubber Chem. Technol. 50 (1977): 451.
- 11. Lechner, M. D., and D. G. Steinmeier. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/134.
- 12. Holt, C., W. Mackie, and D. B. Sellen. Polymer 17 (1976): 1,027.
- 13. Kurata, M., and Y. Tsunashima. In Polymer Handbook, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/46.
- 14. Gilbert, R. D., and P. A. Patton. Prog. Polym. Sci. 9 (1983): 115.
- 15. Miller, R. L. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/1.
- 16. Meader, D., E. D. T. Atkins, and Happey. Polymer 19 (1978): 1,371.
- 17. Marchessault, R. H., and P. R. Sundarajan. The Polysaccharides. Academic Press, Orlando, 1983.

Cellulose nitrate

- 18. Peyser, P. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VT/209.
- 19. Bogan, R. T., C. M. Kuo, and R. J. Brewer. In *Kirk-Othmer Encyclopedia of Chemical Technology*, edited by J. I. Kroschwitz. John Wiley and Sons, New York, Vol. 5, 1979.
- 20. Huglin, M. B. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/409.
- 21. Wu, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/411.
- 22. Yang, Y. In *Physical Properties of Polymer Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996.
- 23. Krause, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/352.
- 24. Pauly, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/451.

Chitin

RACHEL MANSENCAL

CLASS Carbohydrate polymers; polysaccharides

STRUCTURE

NATURAL RESOURCES Chitin is a biopolymer found in crustaceans shells (crab, shrimp, prawn, lobster) in some mollusks (krill, oyster, clam shells, squid skeleton). It is also found in fungi (mushrooms, yeast) and in various insects (cockroaches, silkworms, spiders, beetles).^(1–2)

${f BIOSYNTHESIS}^{(1-2)}$

 $\mbox{\it EXTRACTION}$ Chitin is produced by removing calcium carbonate and proteins from the shells. $\mbox{}^{(1)}$

MAJOR APPLICATIONS Biomedical (wound and burn healing, treatment of fungal infections, antitumor agent, hemostatic agent, etc.); cosmetics (additives); biotechnology (enzyme and cell immobilization); industry (paper industry, food industry, etc.); agriculture and environmental protection. (1–3)

Chitin

PROPERTIES OF SPECIAL INTEREST Natural resources; basic polysaccharides; nontoxic; biodegradability; bioactivity; biosynthesis; interesting derivatives (chitosan); toughness; graft copolymerization; chelating ability for transition metal cations; immobilizes enzymes by chemical linking or adsorption; chiral polymer. $^{(1-4)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Infrared absorption (wavelength)	cm ⁻¹	α -chitin	3,450; 3,265; 3,102; 2,950; 2,922; 2,887; 1,654; 1,548; 1,414; 1,377; 1,310; 1,261; 1,205; 1,115; 1,072; 1,026; 953; 893	(5, 6)
		β -chitin	3,295; 1,430; 972; 638	
¹³ C NMR (chemical shift)	ppm	C=O	173.7	(7-9)
		C_1	103.7	
		C_4	83.7	
		C_5	75.6	
		C_3	73.2	
		C_6	60.6	
		C_2	55.2	
		CH ₃	22.6	
X-ray diffraction peaks	Degrees	_	8°58′-10°26′	(10)
n ray annaction peaks	Degrees		19°58′–20°00′	(10)
Molecular weight	$g \text{mol}^{-1}$	Native chitin	>10 ⁶	(1-4)
Woleculai Weight	gmor	Commercial chitin	$(1-5) \times 10^5$	(1-4)
Matatana	0/		2 10	
Moisture	%	_	2–10	_
Nitrogen content	%	_	6–7	_
Deacetylation	%	_	10-15	_
Dissociation constant K_a	_	_	6.0-7.0	_
Ash	%	900°C	<1.0	_
Transition metals	μgg^{-1}	_	<5.0	(1-4)
Solubility	_	Nonsoluble in classical solvent	_	(4)
	_	Soluble in N-N dimethylacetamide and 5% LiCl	Up to 5%	
Protein content	%	Amino-acid catalyst	<0.5	(4)

				Chitin
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Biodegradability (effective microorganisms)	Chitinoclastic bacteria Chitinase associated with chitobiases, β -N, acetylhexosaminidases, and lysozymes	Normal pH = 4.0-7.0	Very slow Most active	(2)
Toxicity	g kg ⁻¹ body weight	LD 50	16	(1)

Unit cell dimensions (10-13)

Isomer	Monomers	Lattice	Space	Cell dimensions (Å)			Cell angle (°)
	per unit cell		group	а	b	c (fiber axis)	$\overline{\gamma}$
α -chitin	2 (antiparallel arrangement of the chains)	Orthorhombic	P2 ₁ 2 ₁ 2 ₁	4.74	1.88	1.032	90
β -chitin	2 (parallel arrangement of the chains)	Monoclinic	P2 ₂	4.85	9.26	10.38	97.5

REFERENCES

- Mark, H. F., et al. Encyclopedia of Polymer Science and Engineering, 2d ed. John Wiley and Sons, New York, 1989, vol. 3.
- 2. Salamone, J. C., ed. Polymeric Materials Encyclopedia. CRC Press, Boca Raton, Fla., 1996, vol. 2.
- 3. Zikakis, John, ed. Chitin, Chitosan and Related Enzymes. Academic Press, Orlando, 1984.
- 4. Muzzarelli, R. A. A. Natural Chelating Polymers. Pergamon Press, Oxford, 1973.
- 5. Gow, N. A. R., et al. Carbohydr. Res. 165 (1987): 105.
- 6. Huong, D. M., N. X. Dung, and D. V. Luyen. Journal of Chemistry 27(3) (1989): 20.
- 7. Saito, H., R. Tabeta, and S. Hirano. Chem. Lett. (1981): 1,479.
- 8. Saito, H., R. Tabeta, and R. Ogawa. Macromolecules 20 (1987): 2,424.
- 9. Hirai, A., H. Odani, and A. Nakajima. Polym. Bull. 26(1) (1991): 87.
- 10. Persson, J. E., A. Domard, and H. Chanzy. Int. J. Biol. Macromol. 14(2) (1992): 221.
- 11. Minke, R., and J. Blackwell. J. Mol. Biol. 120 (1978): 167.
- 12. Gardner, K. H., and J. Blackwell. Biopolymers 14(8) (1975): 1,581.
- 13. Muzzarelli, R. A. A. In *The Polysaccharides*, edited by G. O. Aspinall. Academic Press, New York, 1982, vol. 3.

CHANDIMA KUMUDINIE AND JAGATH K. PREMACHANDRA

CLASS Polypeptides and proteins

STRUCTURE The most common type of collagen, Collagen I, is composed of two kinds of polypeptide helices, $\alpha 1$ and $\alpha 2$, in a 2:1 ratio respectively, to form a triple helix. The $\alpha 1$ and $\alpha 2$ chains of tropocollagen have a regularly repeating sequence of amino acid residues in which glycine is found at every third residue. This sequence can be written (GLY-X-Y)_n, where X and Y are often proline and hydroxyproline respectively. (1)

FUNCTIONS An extracellular protein, which is responsible for the strength and flexibility of connective tissue. Accounts for 25–30% of the protein in an animal.⁽²⁾ Major component in all mammalian tissues including skin, bone cartilage, tendons, and ligaments.⁽³⁾

MAJOR APPLICATIONS Biomaterial applications such as dermal implant, carrier of drugs, cell culture matrix, wound dressing, material for hybrid organ, drug delivery system, soft contact lens, tissue implants, cardiovascular graft, artificial heart, etc. Synthetic sausage casings in food industry. (3,4)

Major types of collagen^(1,5)

Molecular formula	Composition	Tissue distribution
$\frac{(\alpha 1)_2 \ \alpha 2}{\text{Type I chains}}$	Low hydroxylysine, low carbohydrate, broad fibrils	Tendons, bone, skin, ligaments, cornea, internal organs (comprises 90% of body collagen)
$(\alpha 1)_3$ Type II chains	High carbohydrate, high hydroxylysine, thin fibrils	Cartilage, vitreous body of eye, intervertebral disc
$(\alpha 1)_3$ Type III chains	Low carbohydrate, high hydroxylysine, high hydroxyproline	Blood vessels, skin, internal organs
$(\alpha 1)_3$ Type IV chains	High hydroxylysine, high carbohydrate	Basal laminae
$(\alpha 1)_2 \alpha 2$ Type V chains	High carbohydrate, high hydroxylysine	Many tissues in small amounts

Biosynthesis of collagen⁽⁶⁾

Step 7. Deamination of lysine residues to form aldehyde and formation of cross-links

Selected amino acid analysis of collagens⁽⁷⁾

Amino acid*	Collagen					
	α (I) $^{(a)}$	$lpha$ 2 $^{(a)}$	$lpha$ 2 $^{(b)}$	$lpha$ (II) $^{(c)}$	$lpha$ (III) $^{(a)}$	$lpha$ (IV) $^{(d)}$
3-Hydroxyproline	1	0	1	2	0	11
4-Hydroxyproline	96	82	86	99	125	130
Aspartic acid	41	47	49	42	42	51
Threonine	16	19	19	20	13	23
Serine	37	35	37	26	39	37
Glutamic acid	71	68	73	90	<i>7</i> 1	84
Proline	133	120	107	121	107	61
Glycine	336	337	324	332	350	310
Alanine	115	105	102	100	96	33
Cysteine	0	0	0	0	2	8.0
Valine	20	33	37	18	14	29
Methionine	7	5	4.6	9	8	10
Isoleucine	7	15	17	9	13	30
Leucine	20	30	34	25	22	54
Tyrosine	1.9	4.6	3.0	1	3	6
Phenylalamine	12	12	12	13	8	27
Hydroxylysine	5.4	7.6	11.5	14	5	44.6
Lysine	30	22	21	22	30	10
Histidine	2	10	7.9	2	6	10
Arginine	49	51	53	51	46	33
Galactose	_	_	1.0	_	_	34.0
Glucose	_	_	0.65	_	_	2.0

 $^{^*}$ Values expressed as residues per 1,000 amino acids. $^{\rm (a)}$ Human skin. $^{\rm (b)}$ Human cornea. $^{\rm (c)}$ Human cartilage. $^{\rm (d)}$ Human glumerular basement membrane.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Typical molecular weight range of polymer $M_{ m w}$	$g \text{mol}^{-1} \\ (\times 10^5)$	Calf skin, solvents: citrate pH 3.7, phosphate pH 7.4, sedimentation equilibrium	2.5-3.1	(8)
		Calf skin, solvent: citrate pH 3.7, viscosity	3.5	(8)
		Dogfish shark skin, solvent: formate pH 3.8, sedimentation equilibrium	<3.5	(8)
		Chick cartilage and skin, sedimentation equilibrium	2.62-3.07	(9)
		Type I collagen, rat tail tendon, aggregates in 0.01 M HCl	8.05	(10)
		Type I collagen, single molecules	2.82	(10)
IR (characteristic absorption frequencies)	cm^{-1}	N-H stretch	3,330	(11)

CHAIN CONFORMATION	REFERENCE
Collagen I, the most common type of collagen, is composed of two kinds of polypeptide helices, $\alpha 1$ and $\alpha 2$, in a 2:1 ratio respectively, to form a triple helix. The $\alpha 1$ and $\alpha 2$ chains of tropocollagen have a regularly repeating sequence of amino acid residues in which glycine is found at every third residue. This sequence can be written (GLY-X-Y) _n , where X and Y are often proline and hydroxyproline.	(1)
Arranged in fibrils, composed of microfibrils, characteristic striation with a repeat distance of about 670 Å.	(2)
Consists of macrofibrils, fibrils, and subfibrils of diameters $\sim 10^4$ Å, 10^3 Å, and 10^2 Å respectively, spun collagen fiber after thermal treatment at 170° C, by scanning electron microscopy.	(12)
Helical structure, when heated above 40°C, the helices loosen and form thread-like chains and the collagen becomes gelatin.	(3)
Triple helix, by optical rotatory dispersion.	(4)
Rodlike with a length \sim 2,800 Å, by light scattering.	(11)
Helical rod, length \sim 3,000 Å and width \sim 15 Å.	(13)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Linear thermal expansion coefficient	K^{-1}	Whale ligament Rat tail tendons	$^{\sim 0}_{3.24 \times 10^{-4}}$	(14)
Density	$g\mathrm{cm}^{-3}$	At 25°C, in 8 M LiBr-diethyleneglycol monobutyl ether		(14)
		Rat tail tendon from a 2-month-old rat	1.30	
		Rat tail tendon from a 10-month-old rat	1.30	
		Whale ligament	1.32	
		Rat tail tendon cross-linked with	1.33	
		1,3-bis(vinylsulfonyl)-2-propanol (BVSP)		

				Collagen
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	At 25°C, in 8 M LiBr-diethyleneglycol nonomethyl ether, cross-linked with BVSP, rat tail tendon	1.34	(14)
Solubility	physiologic	ts mature form is insoluble under cal conditions, can be denatured by heat, or alkaline treatment		(2)
Second virial coefficient	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	Solvent: 2 M KCNS at 25°C	3.0×10^{-4}	(11)
Degree of crystallinity	%	X-ray diffraction from collagen fibers	20-40	(11)
Denaturation temperature	K	Non-cross-linked, spun collagen fibers Before thermal treatment 100°C for 30 min 170°C for 30 min	316 314 312	(12)
		3 wt% glutaraldehyde cross-linked Before thermal treatment 100°C for 30 min 170°C for 30 min	337 337 318	(12)
		7 wt% Cr-tanned Before thermal treatment 100°C for 30 min 170°C for 30 min	365 360 353	(12)
		Type I collagen Type II collagen Type III collagen Type III collagen In 0.1 M acetic acid by optical rotation	312.6 314.0 312.2	(15) (15) (15) (9)
		Chick cartilage Chick skin	313.7 315.5	(9)
		Lamb anterior lens capsule by circular dichroism spectroscopy	313	(16)
		Pig kidney collagen Muscle layer collagen in Ascaris Intact collagen	310 313	(17) (17) (18)
		Bovine semimembranosus Bovine longissimus dorsi Bovine longissimus dorsi, after 1-week	343.6 344.3 340.2	` '
		storage Bovine longissimus dorsi Rat skin Bovine tendon	344.5 341.3 340.7	
		Cod skin Tropocollagen	323.6	(18)
		Calf skin Rat skin	323.6 329.2	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Denaturation temperature	K	Type IV procollagen, optical rotatory dispersion, at neutral pH Heating rate ~0.17°C min ⁻¹ Heating rate ~0.027°C min ⁻¹ At neutral pH, DSC In 10 mM acetic acid Soluble collagen, conc = 0.86 mg ml ⁻¹ , in 0.15 M potassium acetate buffer,	308–315, 321 307–314, 320 309.0, 315.1, 321.0 308.6, 311.9, 314.7, 323.0	(19) (20)
		pH 4.7, solvent: Ethylene glycol (1 M) 2-Methoxyethanol (1 M) Control 2-Ethoxyethanol (1 M) 2-Butoxyethanol Type IV collagen, bovine anterior lens capsules	312.3 312.0 311.9 311.1 308.3 327.4, 361.8	(21)
Transition enthalpy	kJ mol ⁻¹	In 50 mM sodium citrate buffer, pH 3.9, in kJ mol ⁻¹ in tripeptide units Type I collagen Type II collagen Type III collagen	17.0 17.5 16.5	(15)
Heat capacity	$\rm kJK^{-1}\\mol^{-1}$	Native hydrated Native anhydrous	1.60×10^{-3} 1.22×10^{-3}	(22)
Tensile modulus	MPa	Gauge length 2.0 cm, strain rate 50% min $^{-1}$ Uncross-linked, unstretched fiber, wet diameter $d=327\mu\mathrm{m}$ 10% stretched fiber, uncross-linked, $d=253\mu\mathrm{m}$ 30% stretched fiber, uncross-linked, $d=173\mu\mathrm{m}$ 50% stretched fiber, uncross-linked, $d=147\mu\mathrm{m}$ Unstretched fiber, cross-linked, $d=94\mu\mathrm{m}$ 10% stretched fiber, cross-linked, $d=95.6\mu\mathrm{m}$ 30% stretched fiber, cross-linked, $d=86.1\mu\mathrm{m}$ 50% stretched fiber, cross-linked, $d=86.1\mu\mathrm{m}$ 50% stretched fiber, cross-linked,	1.8 ± 0.3 5.7 ± 2.5 20.8 ± 4.34 46.0 ± 19.9 383 ± 112 429 ± 111 726 ± 120 766 ± 111	(23)
		$d = 80.3 \mu \text{m}$ Gauge length = 1 cm, elongation rate = 100 mm min ⁻¹ Collagen-poly(lactic acid) (PLA) composites, 50% collagen fiber and 50% PLA matrix (w/w)	~37	(24)

				Collagen
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile modulus	MPa	Collagen-collagen composites, 50%	~18	(24)
		collagen fiber and 50% collagen matrix (w/w) Uncross-linked collagen matrix	10	(24, 25)
Shear modulus	MPa	At 25°C, in 8 M LiBr-diethyleneglycol monobutyl ether,		(14)
		Rat tail tendon from a 2-month-old rat Rat tail tendon from a 10-month-old rat Whale ligament Rat tail tendon cross-linked with	2.91×10^{-3} 0.129 0.172 0.622	
		1,3-bis(vinylsulfonyl)-2-propanol (BVSP) At 25°C, in 8 M LiBr-diethyleneglycol nonomethyl ether, rat tail tendon cross-linked with BVSP	0.602	(14)
Tensile strength	MPa	Gauge length 2.0 cm, strain rate 50% min ⁻¹ Uncross-linked, unstretched fiber,	0.91 ± 0.21	(23)
		wet diameter $d=327\mu m$ 10% stretched fiber, uncross-linked, $d=253 \mu m$	2.0 ± 1.2	
		$a = 255 \mu \text{m}$ 30% stretched fiber, uncross-linked, $d = 173 \mu \text{m}$	5.9 ± 1.3	
		$a = 175 \mu \text{m}$ 50% stretched fiber, uncross-linked, $d = 147 \mu \text{m}$	7.2 ± 1.3	
		Unstretched fiber, cross-linked, $d=94\mu\text{m}$ 10% stretched fiber, cross-linked, $d=95.6\mu\text{m}$ 30% stretched fiber, cross-linked, $d=86.1\mu\text{m}$ 50% stretched fiber, cross-linked, $d=80.3\mu\text{m}$	46.8 ± 17.1 51.6 ± 17.0 71.5 ± 18.3 68.8 ± 15.8	
		Gauge length = 1 cm, elongation rate = 100 mm min ⁻¹	00.0 ± 10.0	(24)
		Collagen-poly(lactic acid) (PLA) composites, 50% collagen fiber and 50% PLA matrix (w/w)	~13	
		Collagen-collagen composites, 50% collagen fiber and 50% collagen matrix (w/w)	~7	(24)
		Uncross-linked collagen matrix Gauge length = 2cm , strain rate 1mm min^{-1} Uncross-linked fiber	5 ∼350	(24, 25) (12, 26)
		0.1 wt% glutaraldehyde (GA) cross-linked fiber 1 wt% GA cross-linked fiber	~300 ~320	
		0.7 wt% Cr-tanned fiber 7 wt% Cr-tanned fiber	\sim 425 \sim 400	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Ultimate	%	Gauge length = 2.0cm , strain rate $50\% \text{min}^{-1}$		(23)
elongation		Uncross-linked, unstretched fiber,	68.0 ± 6.87	
		wet diameter $d = 327 \mu\text{m}$		
		10% stretched fiber, uncross-linked, $d=253\mu\mathrm{m}$	45.1 ± 8.97	
		30% stretched fiber, uncross-linked,	32.5 ± 4.76	
		$d = 173 \mu\text{m}$	32.3 ± 4.70	
		50% stretched fiber, uncross-linked,	24.1 ± 5.67	
		$d=147\mathrm{\mu m}$		
		Unstretched fiber, cross-linked, $d = 94 \mu m$	15.6 ± 2.66	
		10% stretched fiber, cross-linked, $d = 95.6 \mu m$	15.5 ± 2.61	
		30% stretched fiber, cross-linked, $d = 86.1 \mu m$	12.3 ± 1.75	
		50% stretched fiber, cross-linked, $d = 80.3 \mu\text{m}$	11.6 ± 2.49	
		Gauge length = 1 cm, elongation rate = 100 mm min^{-1}		(24)
		Collagen-poly(lactic acid) (PLA) composites,	\sim 20	
		50% collagen fiber and 50% PLA matrix		
		(w/w)		
		Collagen-collagen composites, 50%	${\sim}24$	
		collagen fiber and 50% collagen matrix (w/w)		
		Gauge length = 2 cm , strain rate 1 mm min^{-1}	•	(12, 26)
		Uncross-linked fiber	~ 20	
	0.1 wt% glutaraldehyde (GA) cross-linked	~30		
		fiber	\sim 24	
		1 wt% GA cross-linked fiber 0.7 wt% Cr-tanned fiber	\sim 24 \sim 22	
		7 wt% Cr-tanned fiber	\sim 22 \sim 18	
		7 Wt/8 C1-taillied liber	\sim 16	
Optical rotation	Degrees	At 589 μm		(17)
		Muscle layer collagen in Ascaris	-400	
		Pig kidney collagen	-380	
		Ascaris muscle layer, denatured	-150	
		Pig kidney, denatured	-130	(1.5)
			-380 to -420	(13)
Electrical	Scm^{-1}	From bovine corium, dissolved in 1 mM HCl, conc.	\sim (1.5–2.25)	(27)
conductivity		0.19% at 5°C, temp. range \sim 20–50°C, heating	$\times 10^{-4*}$	()
σ		$rate = 0.3^{\circ}C \min^{-1}$		
		Pepsin-solubilized prepared collagen, conc. 0.20% in	\sim (1.75–2.5)	(27)
		1 mM HCl, temp. range \sim 20–50°C, heating	$\times 10^{-4}$	
		$rate = 0.3^{\circ}C min^{-1}$		
Permeability	$cm S^{-1}$	Collagen/poly(vinyl alcohol) (PVA) cross-linked films		(28)
remedeling	CIII O	to NaCl at 37°C		(=0)
		At 0 wt% PVA content	~5.5	
		At 50 wt% PVA content	~15	
		At 80 wt% PVA content	\sim 17.5	
Townstatt 1	2 0-1	T I II	4.510-8	(10)
Translational	cm ⁻ S ⁻	Type I collagen rat tail tendon, aggregates in 0.01 M HCl		(10)
diffusion		Type I collagen, single molecules	7.8×10^{-8}	
coefficient				

				Collagen
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Intrinsic viscosity	$dl g^{-1}$	Ascaris muscle layer, in 0.5 M NaCl at 25°C	16	(17)
		Pig kidney, in 0.15 M sodium acetate, pH = 4.0, at \sim 25°C	12	
Average	_	In chicken tendon	880	(29)
hydrophobicity		α -fraction in calf skin	880	
		Spongin B in sponge	760	
		Sturgeon swim bladder	770	

 $^{^*\}sigma$ increased with temperature then decreased stepwise at \sim 40°C, and then increase again.

REFERENCES

- 1. Rawn, J. D. Biochemistry. Neil Patterson Publishers, Burlington, N.C., 1989.
- 2. Scott, T., trans. *Concise Encyclopedia of Biochemistry*. Walter de Gruter and Co., Berlin, 1983, p. 101.
- 3. Itoh, H., and T. Miyata. In *Polymeric Materials Encyclopedia*, edited by J. C. Salamone. CRC Press, Boca Raton, Fla., 1996, vol. 2, pp. 1,287–1,290.
- 4. Piez, K. A. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1985, vol. 3, pp. 699-727.
- 5. Stryer, L. Biochemistry, 2d ed. W. H. Freeman and Co., San Fransisco, 1975.
- Mathews, C. K., and K. E. Van Holde. *Biochemistry*, 2d ed.. Benjamin/Cummings Publishing, Menlo Park, Calif., 1996, pp. 178–180.
- 7. Fasman, G. D., ed. *Handbook of Biochemistry and Molecular Biology, Proteins*, 3d ed. CRC Press, Cleveland, 1976, vol. 3, pp. 520–521.
- 8. von Hippel, P. H. In *Treatise on Collagen*, edited by G. N. Ramachandran. Academic Press, London, 1967.
- 9. Igarashi, S., R. L. Trelstad, and A. J. Kang. Biochim. Biophys. Acta 295 (1973): 514.
- 10. Silver, F. H., and R. L. Trelstad. J. Biol. Chem. 255 (1980): 9,427.
- 11. Walton, A. G., and J. Blackwell. Biopolymers. Academic Press, New York, 1973.
- 12. Takaku, K., et al. J. Appl. Polym. Sci. 59 (1996): 887.
- 13. Hashemeyer, R. H., and A. E. V. Haschemyer. *Proteins: A Guide to Study by Physical and Chemical Methods*. John Wiley and Sons, New York, 1973, pp. 410–419.
- 14. Honda, I., and K. Arai. J. Appl. Polym. Sci. 62 (1996): 1,577.
- 15. Davis, J. M., and H. P. Bachinger. J. Biol. Chem. 268 (1993): 25,965.
- 16. Gelman, R. A., et al. Biochim. Biophys. Acta 427 (1976): 492.
- 17. Fujimoto, D. Biochim. Biophys. Acta 168 (1968): 537.
- 18. McClain, P. E., and E. R. Wiley. J. Biol. Chem. 247 (1972): 692.
- 19. Davis, J. M., B. A. Boswell, and H. P. Bachinger. J. Biol. Chem. 264 (1989): 8,956.
- 20. Hart, G. J., A. E. Russell, and D. R. Cooper. Biochem. J. 125 (1971): 599.
- 21. Bailey, A. J., et al. Biochem. J. 296 (1993): 489.
- 22. Fasman, G. D., ed. *Handbook of Biochemistry and Molecular Biology, Proteins*, 3d ed. CRC Press, Cleveland, 1976, vol. 1, pp. 109–110.
- 23. Pins, G. D., et al. J. Appl. Polym. Sci. 63 (1997): 1,429.
- 24. Dunn, M. G., et al. J. Appl. Polym. Sci. 63 (1997): 1,423.
- 25. Dunn, M. G., P. N. Avasarala, and J. P. Zawadski. J. Biomed. Mater. Res. 27 (1993): 1,545.
- 26. Takaku, K., T. Kuriyama, and I. Narisawa. J. Appl. Polym. Sci. 61 (1996): 2,437.
- 27. Matsushita, S., et al. J. Appl. Polym. Sci. 50 (1996): 1,969.
- 28. Giusti, P., L. Lazzeri, and M. G. Cascone. In *Polymeric Materials Encyclopedia*, edited by J. C. Salamone. CRC Press, Boca Raton, Fla., 1996, vol. 1, pp. 538–549.
- 29. Fasman, G. D., ed. *Handbook of Biochemistry and Molecular Biology, Proteins*, 3d ed. CRC Press, Cleveland, 1976, vol. 1, pp. 217.

CHI-HAO LUAN AND DAN W. URRY

CLASS Polypeptides and proteins

REPRESENTATIVE STRUCTURES

 $\begin{array}{ll} \text{Elastomer} & \text{Poly}(G\beta G\alpha P) \\ \text{Plastic} & \text{Poly}(AVGVP) \\ \text{Hydrogel} & \text{Poly}(GGAP) \end{array}$

MAJOR APPLICATIONS *Medical*: soft tissue augmentation; cell attachment to elastic matrices; prevention of post-surgical adhesions; tissue reconstruction; coatings on catheters, leads, and tubings; drug delivery; biosensors. *Nonmedical*: controlled release of herbicides, pesticides, fertilizers, and growth factors; food product additives; material coating; transducers (sensors/actuators); molecular machines; biodegradable plastics; controllable super absorbents.⁽¹⁾

PROPERTIES OF SPECIAL INTEREST Water soluble below a critical temperature. Hydrophobic folding and assembly (inverse temperature transition). Biocompatible. Biodegradable (chemical clocks enabling proteolytic degradation). Relatively low cost when microbially produced. To perform free energy transduction involving the intensive variables of mechanical force, temperature, pressure, chemical potential, electrochemical potential, and light. Thermoplastics (regular and inverse).^(2,3)

SYNTHESIS Chemical synthesis using solution and solid phase methods. Microbial synthesis using gene construction and expression in the cells of animals and plants.

SUPPLIER Bioelastic Researchs Ltd., 2800 Milan Court, STE 386, Birmingham, Alabama 35211.

Table 1. Hydrophobicity scale for protein-based polymers and proteins based on the properties of the inverse temperature transition of elastic protein-based polymers, poly[$f_V(GVGVP)$, $f_X(GXGVP)$]. (a)

Residue X			<i>T</i> _b (°C)	$\Delta H^{(4,5)}$ (kcal mol ⁻¹) ^(b)	$\Delta S^{(4,5)}$ (cal mol ⁻¹ K ⁻¹) ^(b)	
Three-letter abbreviation	One-letter symbol	(in pbs) ⁽²⁾	(in H ₂ O) ^(4,5)	±0.05	±0.05	
Lys (dihydro NMeN) ^(c)	_	-130	_	_	_	
Trp	(W)	-90	-105	2.10	7.37	
Tyr	(Y)	-55	-75	1.87	6.32	
Phe	(F)	-30	-45	1.93	6.61	
His (imidazole)	(H ^O)	-10	_	_	_	
Leu	(L)	5	5	1.51	5.03	
Ile	(I)	10	10	1.43	4.60	
Lys (6-OH tetrahydro NMeN) ^(c)	-	15	_	_	_	
Met	(M)	20	15	1.00	3.29	

Residue X		<i>T</i> _t (°C)	τ _b (°C)	$\Delta extit{H}^{(4,5)}$ (kcal mol $^{-1}$) $^{(b)}$	$\Delta S^{(4,5)}$ (cal mol $^{-1}$ K $^{-1}$) $^{(b)}$	
Three-letter abbreviation	One-letter symbol	(in pbs) ⁽²⁾	(in H ₂ O) ^(4,5)	±0.05	±0.05	
Val	(V)	24	26	1.20	3.90	
Glu(COOCH ₃)	(E^m)	25	_	_	_	
Glu(COOH)	(E^{O})	30	20	0.96	3.14	
Cys	(C)	30	_	_	_	
His (imidazolium)	(H^+)	30	_	_	_	
Lys(NH ₂)	(K^{O})	35	40	0.71	2.26	
Pro	(P)	$-8^{(d)}$, $40^{(e)}$	$40^{(e)}$	0.92	2.98	
Asp(COOH)	(D ^O)	45	40	0.78	2.57	
Ala	(A)	45	50	0.85	2.64	
НуР	_	50	_	_	_	
Thr	(T)	50	60	0.82	2.60	
Asn	(N)	50	50	0.71	2.29	
Ser	(S)	50	60	0.59	1.86	
Gly	(G)	55	55	0.70	2.25	
Arg	(R)	60	_	_	_	
Gln	(Q)	60	70	0.55	1.76	
$Tyr(\phi - O^-)$	(Y ⁻)	120	140	0.31	0.94	
$Lys(NH_3^+)$	(K^+)	120	_	_	_	
Lys(NMeN,oxidized)(c)	_	120	_	_	_	
$Asp(COO^{-})$	(D^-)	170	_	_	_	
Glu(COO ⁻)	(E^{-})	250	_	_	_	
$Ser(PO_4^=)$	_	1,000	_	_	_	

^(a) $T_{\rm t}$ and $T_{\rm b}$ are the on-set temperature for the hydrophobic folding and assembly transition, that is, inverse temperature transition, in pbs (0.15 N NaCl, 0.01 M phosphate) as determined by light scattering and in water as determined by DSC, respectively. Both values are linearly extrapolated to $f_{\rm X}=1$ and rounded to a number divisible by 5. ΔH and ΔS are the values at $f_{\rm X}=0.2$ on the curve for a linear fit of the DSC derived endothermic heats and entropies of the transitions for the polymers in water.

Table 2a. Hydrophobic-induced pK shifts on polytricosamers and polymers of random mixtures of composite pentamers. $^{*(6)}$

Glu-containing polymer	рКа
Poly[0.8(GVGVP), 0.2(GEGVP)]	4.3
Poly[GEGFP GVGVP GVGVP GFGFP GFGFP]	7.7
Poly[(GEGFP), 3(GVGVP), 2(GFGFP)] [†]	4.7
Poly[GEGVP GFGFP GFGVP GVGVP GFGFP GVGVP]	7.8
Poly[GEGFP GVGVP GVGFP GFGFP GVGVP GVGFP]	8.1
Poly[(GEGFP), 2(GVGVP), 2(GVGFP), (GFGFP)] [†]	5.2

⁽b) Per mole of pentamer.

⁽c) NMeN is for N-methyl nicotinamide pendant on a lysyl side chain, that is, N-methyl-nicotinate attached by amide linkage to the εNH₂ of Lys. N-methyl-1,6-dihydronicotinamide (dihydro NMeN) is the most hydrophobic reduced state, and the second reduced state is N-methyl-6-OH, 1,4,5,6-tetrahydronicotinamide (6-OH tetrahydro NMeN).

⁽d) The calculated T_t value for Pro comes from poly(GVGVP) when the experimental values of Val and Gly are used. This hydrophobicity value of -8° C is unique to the β -spiral structure where there is hydrophobic contact between the Val_i¹ γ CH₃ and the adjacent Pro_i² δ CH₂ and the interturn Pro_{i+3} β CH₂ moieties.

⁽e) The experimental value determined from poly[$f_V(GVGVP)$, $f_P(GVGPP)$].

Asp-containing polymer	рКа
Poly[GDGFP GVGVP GVGFP GFGFP GVGVP GVGFP]	10.1
Poly[(GDGFP), 2(GVGVP), 2(GVGFP), (GFGFP)] [†]	4.6
Poly[GDGFP GVGVP GVGVP GFGFP GFGFP]	9.5
Poly[(GDGFP), 3(GVGVP), 2(GFGFP)] [†]	5.2
Poly[GDGVP GFGFP GFGVP GVGVP GFGFP GVGVP]	6.7

^{*} Experimental conditions: 40 mg ml^{-1} at 20°C , M.W. of the polypeptides > 50 kDa.

Table 2b. Hydrophobic-induced pK shift for poly[$f_V(GVGIP)$, $f_X(GXGIP)$], where X = E, D, and K, and f_X varies from 0.06 to 1.0.^(7,8,9)

$f_{\rm E}$	0.06	0.15	0.31	0.37	0.42	0.49	0.70	0.77	0.90	1.00
pK*	6.08	5.70	4.90	4.70	4.55	4.50	4.40	4.35	4.35	4.35
pΚ [†]	6.61	5.92	5.03	4.80	4.48	4.40	4.35	4.40	4.55	4.70
$f_{\rm D}$	0.06	0.08	0.19	0.28	0.35	0.51	0.73	0.84	0.89	1.00
pK*	5.4	5.2	4.7	4.3	4.1	4.0	3.9	3.9	3.9	3.8
pΚ [†]	6.0	5.0	4.5	4.2	3.9	3.8	3.9	4.1	4.2	4.6
$f_{\rm K}$	0.06	0.09	0.14	0.22	0.41	0.59	0.76	0.88	0.91	1.00
pK* pK [†]	8.60	8.90	9.13	9.38	9.59	9.68	9.70	9.65	9.60	9.40
pΚ [†]	8.18	8.65	8.85	9.11	9.43	9.55	9.60	9.62	9.58	9.20

^{*} In 0.15 N NaCl; †In H₂O; M.W. of the polypeptides > 50 kDa; at 37°C.

Table 2c. Stretch-induced pK shifts for cross-linked Glu-containing polymers.

Polymer	ΔpK	Force		рК
		dynes cm ⁻²	grams	
X20-poly[0.8(GVGVP), 0.2(GEGVP)]*(10)	0.0	0.0	0.0	3.99
	0.85	_	1.0	4.84
X20-poly[0.82(GVGIP), 0.18(GEGIP)]*(11)	0.0	0.0	0.0	6.2
* * * * * * * * * * * * * * * * * * * *	0.37	3.6×10^{5}	1.0	6.57
	0.65	5.4×10^{5}	1.5	6.85
	1.25	6.4×10^{5}	1.75	7.45
	1.95	7.3×10^{5}	2.0	8.15
	2.8	8.0×10^5	2.2	9.0

^{*} X20 indicates 20 Mrad γ -irradiation cross-linked polymer matrix.

[†] Random mixture of pentamers comprising associated polytricosapeptide.

Table 3a. Composition effect on inverse temperature transition in water. *(3,5)

Polymer	<i>T</i> _b (°C)	<i>T</i> _m (°C)	ΔQ (cal g $^{-1}$)	ΔH (kcal mol $^{-1}$)	ΔS (cal mol $^{-1}$ K $^{-1}$)
Poly(AVGIP)	18.4	19.7	10.39	4.54	15.46
Poly(AVGVP)	33.6	34.7	6.20	2.62	8.47
Poly(GVGIP)	11.2	13.3	6.31	2.67	9.32
Poly(GVGVP)	27.8	30.0	2.69	1.10	3.59
$(GVGVP)_{251}$	26.9	29.0	3.21	1.32	4.31
Poly[(GVGVP), (GVGIP)]	18.9	20.3	4.24	1.77	5.98
Poly[0.8(GVGVP), 0.2(GFGVP)]	12.9	16.0	4.58	1.92	6.54
Poly[0.8(GVGVP), 0.2(GAGVP)]	31.8	34.9	1.99	0.80	2.57
Poly(GVGVAP) (irreversible)	29.0	35.3	1.61	0.77	2.50

^{*} Examples with different repeat compositions of 2,000 polymer preparations. $T_{\rm b}$, $T_{\rm m}$, ΔQ , ΔH , and ΔS are on-set temperature, maximum heat absorption temperature, heat, enthalpy, and entropy of the inverse temperature transition as determined by DSC, respectively. ΔH and ΔS are values per mole of repeating peptide. This is true for the DSC data reported in all tables in this article.

Table 3b. Effect of pH on inverse temperature transition of poly[0.82(GVGIP), 0.18(GEGIP)]. (3)

рН	α^*	T _b (°C)	<i>T</i> _m (°C)	ΔQ (cal g $^{-1}$)	ΔH (kcal mol $^{-1}$)	ΔS (cal mol $^{-1}$ K $^{-1}$)
2.3	0.00	10.3	12.9	4.00	1.71	5.92
3.5	0.04	15.2	18.2	2.80	1.20	4.10
4.2	0.11	20.7	24.9	1.51	0.64	2.14
4.6	0.13	24.0	32.0	1.19	0.51	1.66
5.1	0.20	26.0	37.0	0.60	0.26	0.83

 $^{^*\}alpha$ is the degree of ionization of the Glu side chain.

Table 3c. Solute effect on inverse temperature transition. (2,5,12)

Polymer	Solute	$\delta T_{\rm t}$ (°C [M] $^{-1}$)	$\delta\Delta Q$ (cal g $^{-1}$ [M] $^{-1}$)	Linearity
Poly(GVGVP)	$Na_3PO_4 \ (pH > 8)$	-140.0	_	Yes
	$(NH_4)_2SO_4$	-69.0	_	Yes
	$Na_2CO_3 \ (pH > 8)$	-28.0	_	Yes
	NaCl	-13.9	1.25	Yes
	CaCl ₂	-6.6	_	Yes
	NaBr	-3.5	_	Yes
	NaI, NaSCN	3.5	_	No
	Sodium dodecyl sulfate	~600.0	_	_
Poly(GGIP)	NaCl	-13.4	1.35	Yes
Poly(GGVP)	NaCl	-15.6	0.52	Yes
Poly(GVGLP)	NaCl	-12.6	2.99	Yes
Poly(VPGVGVPGG)	NaCl	-15.9	0.96	Yes
Poly(AVGVP)	NaCl	-14.7	1.80	Yes

Table 3d. Lowering transition temperature by charge neutralization. (5)

Polymer	[NaCl]/[N]	<i>T</i> _t (°C)	<i>T</i> _t (°C)
Poly[0.8(GVGVP), 0.2(GEGVP)]		pH < 3	pH > 7
	0.0	26.4	>100
	0.15	24.5	91.5
	0.20	_	73.7
	0.25	_	52.0
	0.50	19.9	47.0^{*}
	1.0	13.6	35.8*
	1.5	_	26.0*
		$\delta T_{\rm t}/[{\rm N}] = -12.8$	$\delta T_{\rm t}/[{\rm N}]^* = -21.0$
Poly[0.85(GVGVP), 0.15(GDGVP)]		pH < 3	pH > 7
	0.0	28.3	>100
	0.15	24.5	75.0
	0.25	_	55.0
	0.50	21.5	50.3*
	0.75	_	44.0^{*}
	1.0	15.5	40.0^{*}
	1.5	_	31.0^{*}
		$\delta T_{\rm t}/[{\rm N}] = -12.3$	$\delta T_{\rm t}/[{\rm N}]^* = -19.0$
Poly[0.76(GVGVP), 0.24(GKGVP)]		pH < 12	pH > 6
	0.0	30.4	>100
	0.05	_	70.0
	0.10	_	58.4
	0.125	_	53.0
	0.20	28.0	43.5
	0.25	_	35.2
	0.50	_	32.0*
	1.0	17.8	23.3*
	1.5	_	16.0*
		$\delta T_{\rm t}/[{\rm N}] = -12.6$	$\delta T_{\rm t}/[{\rm N}]^* = -16.0$

^{*} Value for [NaCl] > 0.25; at lower salt concentration the slope is much steeper.

Table 3e. Enhanced charge neutralization effect by CaCl₂ on lowering T_{t} . (5)

Polymer	[CaCl ₂]/[N]	<i>T</i> _t (°C)	<i>T</i> _t (°C)
Poly[0.8(GVGVP), 0.2(GEGVP)]		pH = 2	pH = 7
	0.0	26.4	> 100.0
	0.0125	_	78.6
	0.025	_	70.0
	0.05	_	55.4
	0.1	25.5	51.5
	0.2	_	47.4^{*}
	0.3	24.0	45.1*
	0.4	_	43.5^{*}
	0.7	21.7	39.6*
		$\delta T_{\rm t}/[{ m N}] = -6.8$	$\delta T_{\rm t}/[{\rm N}]^* = -13.6$

^{*} Value for [CaCl₂] > 0.1; at lower salt concentration the slope is much steeper.

Table 3f. Urea and guanidine salt effect on inverse temperature transition. (5)

Polymer	Solute	Range [M]	$\langle \delta T_{t} angle^*$ (°C [M] $^{-1}$)	$\langle\delta\Delta Q angle$ (cal g $^{-1}$ [M] $^{-1}$)	Linearity
Poly(GVGVP)	Guanidine ₂ ·H ₂ SO ₄ (pH 7.6)	[0, 1]	-11.4	1.06	Yes [†]
• • • • • • • • • • • • • • • • • • • •	Guanidine·HCl	[0, 2]	10.3	-1.01	Yes^\dagger
	Urea	[0, 3]	5.3	-0.57	Yes^\dagger
	Dimethyl urea	[0, 1]	12.2	-2.28	Yes
Poly(GVGIP)	Guanidine ₂ ·H ₂ SO ₄ (pH 7.6)	[0, 1]	-8.9	0.76	Yes
• • • • •	Guanidine·HCl	[0, 3]	6.8	-1.52	Yes^\dagger
	Urea	[0, 3]	4.0	-0.95	Yes

 $^{^*\}langle \delta T_{\rm t} \rangle =$ average slope over the listed range.

Table 3g. Cosolvent effect on inverse temperature transition of poly(GVGVP) in water. (5)

Cosolvent	Volume (%)	<i>T</i> _b (°C)	ΔQ (cal g $^{-1}$)	ΔH (kcal mol $^{-1}$)	ΔS (cal mol $^{-1}$ K $^{-1}$)
DMSO	35	16.7	0.38	0.15	0.53
	30	21.1	0.51	0.21	0.70
	20	29.5	0.91	0.37	1.21
	10	30.0	1.73	0.71	2.30
Acetone	20	31.8	0.99	0.40	1.30
	10	29.0	2.10	0.86	2.79
Dioxane	20	41.1	0.44	0.18	0.56
	10	31.6	1.42	0.58	1.87
H ₂ O		26.7	2.90	1.20	3.90

[†]With small nonlinearity.

Table 3h. Cosolvent effect on inverse temperature transition of poly(AVGVP) in water. (5)

Cosolvent	Volume (%)	<i>T</i> _b (°C)	ΔQ (cal g^{-1})	ΔH (kcal mol $^{-1}$)	ΔS (cal mol $^{-1}$ K $^{-1}$)
EtOH	15	27.2	4.51	1.91	6.31
	10	30.9	5.37	2.27	7.42
	5	32.8	6.65	2.81	9.14
Ethylene glycol	20	23.2	3.89	1.65	5.52
	10	29.6	5.54	2.35	7.70
Acetone	30	31.2	1.54	0.65	2.13
	20	32.7	3.31	1.40	4.55
H ₂ O		33.1	7.20	3.05	9.89

Table 3i. Cosolvent effect on inverse temperature transition of poly(GVGIP) in water. (5)

Acetone (volume %)	τ _b (°C)	ΔQ (cal g^{-1})	ΔH (kcal mol $^{-1}$)	ΔS (cal mol $^{-1}$ K $^{-1}$)
20	5.0	2.71	1.15	4.06
10	10.2	3.91	1.66	5.77
5	11.5	4.53	1.92	6.67
0	11.8	6.40	2.71	9.41

Table 3j. Solvent deuteration effect on inverse temperature transition. (13)

Polymer	Solvent	<i>T</i> _b (°C)	ΔQ (cal g^{-1})	ΔH (kcal mol ⁻¹)
Poly(GVGVP)	D ₂ O	27.2	3.25	1.33
	H_2O	28.8	2.62	1.07
Poly(GVGLP)	D_2O	13.7	6.70	2.83
	H_2O	15.5	6.02	2.55
Poly(GVGIP)	D_2O	9.0	6.76	2.86
	H_2O	10.6	6.17	2.61
Poly(AVGVP)	D_2O	31.7	7.17	3.04
	H_2O	34.2	6.46	2.73
	D_2O , 1.0 M urea	36.5	6.07	2.57
	H_2O , 1.0 M urea	38.5	5.27	2.23
	D_2O , 2.0 M urea	40.8	5.09	2.16
	H_2O , 2.0 M urea	43.0	4.37	1.85
	D_2O , 3.0 M urea	45.8	3.94	1.67
	H_2O , 3.0 M urea	48.5	3.55	1.51
	D_2O , 0.5 N NaCl	24.5	7.50	3.17
	H_2O , 0.5 N NaCl	26.1	6.93	2.93
	D_2O , 1.0 N NaCl	17.6	9.24	3.91
	H_2O , 1.0 N NaCl	19.1	8.79	3.72

Table 3k. Alcohol effect on inverse temperature transition of poly(GVGVP) in water. (5)

					·
Alcohol		<i>T</i> _b (°C)	ΔQ (J g $^{-1}$)	ΔH (kJ g ⁻¹)	ΔS (J mol $^{-1}$ K $^{-1}$)
Mole %	Volume %				
Methanol					
16.01	30	13.6	1.21	0.50	1.67
10.0	20	23.5	3.47	1.42	4.73
4.71	10	27.8	7.07	2.89	9.46
2.29	5	28.2	9.87	4.06	13.18
Ethanol					
8.00	22	18.3	1.76	0.71	2.47
7.16	20	20.5	2.01	0.84	2.76
5.16	15	26.4	4.44	1.80	5.98
3.31	10	28.8	7.28	2.97	9.71
1.60	5	29.1	10.04	4.10	13.35
iso-Propanol					
5.55	20	18.4	3.01	1.21	4.14
3.26	15	26.0	4.56	1.84	6.19
2.08	10	28.1	7.70	3.14	10.33
n-Propanol					
5.69	20	11.9	3.51	1.42	4.94
4.08	15	19.8	7.03	2.89	9.71
2.61	10	25.5	9.50	3.89	12.80
tert-Butanol					
4.56	20	14.0	3.14	1.30	4.39
3.26	15	21.2	6.15	2.51	8.45
2.08	10	26.6	8.95	3.68	12.01
1.0	5	28.7	11.46	4.69	15.23
Ethylene glycol					
12.16	30	14.9	2.09	0.84	2.93
7.47	20	22.2	4.56	1.84	6.19
3.46	10	26.1	7.70	3.14	10.33
1.67	5	27.0	10.08	4.14	13.51
Glycerol					
9.57	30	9.4	6.53	2.68	9.25
5.82	20	20.1	7.28	2.97	10.00
2.67	10	24.2	9.04	3.68	12.22
1.28	5	26.4	10.50	4.31	14.06
H ₂ O		27.5	12.34	5.06	16.44

Table 4. Physical properties of elastic and plastic protein-based polymers.

Polymer	Property	Conditions	Value		
Elastic Polymer					
X ²⁰ -poly (GVGVP) ⁽¹⁾ X ²⁰ -(GVGVP)251 ⁽¹⁾	Young's modulus	50% extension, 37°C	1.0×10^{6}		
X ²⁰ -(GVGVP)251 ⁽¹⁾	Young's modulus	50% extension, 37°C	1.6×10^{6}		
	Max. extensibility (L/L_0)	_	>2.5		
	Entropic elasticity (f_e/f)	_	< 0.1		
	Tensile strength	300% extension, 37°C	3.1kg cm^{-2}		
X ²⁰ -poly (GVGIP) ⁽¹⁾	Young's modulus	90% extension, 37°C	3.9×10^{6}		
	Max. extensibility (L/L_0)	_	>2.6		
	Entropic elasticity (f_e/f)	_	< 0.1		
X^{20} -poly[3(GVGVP), (GFGVP)] ⁽¹⁾	Young's modulus	80% extension, 37°C	4.9×10^{6}		
	Transition temperature	$40\mathrm{mgml}^{-1}~\mathrm{H}_2\mathrm{O}$	13°C		
	Max. extensibility (L/L_0)	_	>2		
	Entropic elasticity (f_e/f)	_	< 0.05		
X ²⁰ -poly (GGVP)	Young's modulus	20% extension, 64°C	8.2×10^{5}		
20 (44)	Transition temperature	$40\mathrm{mgml}^{-1}\mathrm{H}_2\mathrm{O}$	48°C		
X ²⁰ -poly(VPGFGVGAG) ⁽¹⁴⁾	Young's modulus	5% extension, 37°C	6.8×10^{7}		
	Transition temperature	$40\mathrm{mgml}^{-1}\mathrm{H}_2\mathrm{O}$	8°C		
Plastic Polymer					
X^{20} -poly $(AVGVP)^{(3)}$	Young's modulus	7% extension, 37°C	2.0×10^8		
Hydrogel Polymer		Density $(mg ml^{-1})$			
X^{20} -poly (GVGVP) ⁽¹⁾	<25°C	\sim 40 at 4° C			
X ²⁰ -poly (GVGVP) ⁽¹⁾ X ²⁰ -poly (GVGIP) ⁽¹⁾	<25°C	\sim 80 at 4° C			
X^{20} -poly $(AVGVP)^{(1)}$	<30°C	\sim 40 at 4° C			
X^{20} -poly (GGXP), $X = A, V, I$	<50°C	$\sim\!\!20$ at $4^\circ\mathrm{C}$			
Poly[0.8(AVGVP), 0.2(AFGVP)]	$2(AFGVP)$] Forms gel at concentrations $>20 \mathrm{mg}\mathrm{ml}^{-1}$ and $>18^{\circ}\mathrm{C}$				
Poly (AVGIP)	Forms gel at concentrations $>$ 20 mg ml $^{-1}$ and $>$ 18 $^{\circ}$ C				

Table 5. Reversible contraction-relaxation of cross-linked polymer matrices.

Elastic polymer	Variable	Length
Thermally driven		
χ^{20} -poly(GVGVP) ⁽¹⁵⁾	40°C	4.4 cm
(3 g load)	20°C	5.4 cm
pH driven		
X^{20} -poly[0.8(GVGVP), 0.2(GEGVP)] ⁽²⁾	pH = 2	4.2 mm
(3 g load)	pH = 7	8.2 mm
Salt driven	-	
χ^{20} -poly(GVGVP) $^{(15)}$	1 N NaCl	5.15 cm
(at 20°C, 3 g load)	H_2O	5.50 cm
Organic solvent driven		
X^{20} -(VPGVG) ₂₅₁ ⁽⁵⁾	H_2O	23.5 mm
(at 23°C, no load)	20 vol% EtOH	21.0 mm
Pressure driven	As in table 6	
Redox driven	As in table 6	

Table 6. Examples of free energy transduction effected by elastin protein-based polymers.

Transduction/Elastic polymer*	Intensive variable	Property measured
Thermo-mechanical X ²⁰ -poly(GVGVP) ⁽¹⁶⁾ (at constant length) X ²⁰ -poly[0.9(GVGVP), 0.1(GEGVP)] ⁽¹⁶⁾ (in pbs at 37°C, constant length.)	Temp. (°C) 36 5 37 3	Force (dynes cm ⁻²) 1.0×10^6 4.0×10^5 2.3×10^6 4.0×10^5
Chemo-mechanical X^{20} -poly[0.80(GVGVP), 0.20(GEGVP)] ⁽¹⁷⁾ (in pbs at 37°C, constant length.) X^{20} -poly(GVGVP) ⁽¹⁸⁾ (at 25°C, constant length)	Chemical potential $pH = 2.1$ $pH = 7.4$ [0.15 N NaCl, 0.01 M phosphate] H_2O	Force (dynes cm ⁻²) 5.1×10^5 $< 1.0 \times 10^4$ 2.1 g 0
Baro-mechanical Poly[0.79(GVGVP), 0.21(GVGFP)] ^(19,20) (at 12.6°C, 1 gram constant force)	Pressure (atm) 68 1	Length (mm) (16.2) ⁽¹⁹⁾ , (38.5) ⁽²⁰⁾ (15.2) ⁽¹⁹⁾ , (37.0) ⁽²⁰⁾
Electro-mechanical X ²⁰ -poly[0.70(GVGVP), 0.30(GVGK{NMeN}P)] ⁽²⁰⁾ X ²⁰ -poly[0.73(GVGVP), 0.27(GVGK{NMeN}P)] ⁽²¹⁾	Redox Reduced Oxidized	Length (mm) (3.2) ⁽²⁰⁾ , (1.92) ⁽²¹⁾ (4.0) ⁽²⁰⁾ , (2.16) ⁽²¹⁾
Photo-mechanical Poly[0.8(GVGVP), 0.2(GVGE{AzB}P)] ⁽²²⁾	Photon Dark 350 nm light	T _t (°C) 32 42

Table 6. Continued

Transduction/Elastic polymer*	Intensive variable	Property measured
Mechano-chemical X ²⁰ -poly[0.82(GVGIP), 0.18(GEGIP)] ⁽¹¹⁾	Mechanical force 0 $8.0 \times 10^5 \text{ (dynes cm}^{-2}\text{)}$	pK of Glu(E) 6.2 9.0
Electro-chemical Poly(GDGFP GVGVP GVGVP GFGVP GVGVP GVGK{NMeN}P) ⁽²³⁾	Redox Reduced Oxidized	pK of Asp(D) 11.0 8.5

^{*}K{NMeN} = N-methyl nicotinamide derivatised Lys; E{AzB} = azobenzene derivatized Glu.

Table 7. Physical properties of the synthetic poly(W4)* from human elastin. (24)

Polymer	Condition	<i>T</i> _b (°C)	ΔQ (cal g $^{-1}$)	ΔH (kcal mol $^{-1}$) †	ΔH (kcal mol $^{-1}$) ‡	ΔS (kcal mol $^{-1}$ K $^{-1}$) ‡
Poly(W4)	pH = 2.0	25.5	1.92	0.86	8.79	28.63
	pH = 4.3	27.8	1.45	0.65	6.63	21.43
	pH = 5.8	28.0	0.32	0.14	1.48	4.62
	pK of the $Glu = 4.84$					
X ²⁰ -poly(W4)	Young's modulus = 3.4×10^5 dynes cm ⁻² at 37°C in pbs Entropic elasticity indicated by a $f_{\rm e}/f$ value of < 0.1 from 35 to 50°C					

^{*}W4(6-56): GLVPGGPGFPGGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPE.

REFERENCES

- 1. Urry, D. W., et al. In *Handbook of Biomaterials and Bioengineering Part A: Materials*. Marcel Dekker, New York, 1995, pp. 1,619–1,673.
- Urry, D. W. Angew. Chem. (German) 105 (1993): 859-883; Angew. Chem. Int. Ed. Engl. 32 (1993): 819-841.
- 3. Urry, D. W., C.-H. Luan, C. M. Harris, and T. M. Parker. In *Proteins and Modified Proteins as Polymeric Materials*, edited by K. McGrath and D. Kaplan. Birkhauser Press, Boston, 1997, pp. 133–177.
- 4. Urry, D. W., et al. J. Am. Chem. Soc. 113 (1991): 4,346-4,348.
- 5. Luan, C.-H., et al. Unpublished data, 1997.
- Urry, D. W., et al. In The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications. CRC Press, Boca Raton, Fla., 1995.
- 7. Urry, D. W., S. Q. Peng, and T. M. Parker. J. Am. Chem. Soc. 115 (1993): 7,509–7510.
- 8. Urry, D. W., et al. Angew. Chem. (German) 105 (1993): 1,523–1,525; Angew. Chem. Int. Ed. Engl. 32 (1993): 1,440–1442.
- 9. Urry, D. W., et al. Chemical Physics Letters 225 (1994): 97-103.
- 10. Urry, D. W., et al. Biopolymers 30 (1990): 215-218.
- 11. Urry, D. W., and S. Q. Peng. J. Am. Chem. Soc. (1995): 8,478-8,479.
- 12. Luan, C.-H., T. M. Parker, K. U. Prasad, and D. W. Urry. Biopolymers 31 (1991): 465-475.
- 13. Luan, C.-H., and D. W. Urry. J. Phys. Chem. 95 (1991): 7,896-7,900.
- 14. Urry, D. W., et al. In *Progress in Biomed. Polym.*, edited by C. G. Gebelein and R. L. Dunn. Plenum Publishing, New York, 1990, 171–178.
- 15. Urry, D. W. Prog. Biophys. Molec. Biol. 57 (1992): 23-57.
- 16. Peng, S. Q., D. C. Gowda, T. M. Parker, and D. W. Urry. Unpublished data, 1997.

[†]Per mole of pentapeptide.

[‡]Per mole of W4.

- 17. Urry, D. W., et al. Proc. Natl. Acad. Sci. USA 85 (1988): 3,407-3,411.
- 18. Urry, D. W., R. D. Harris, and K. U. Prasad. J. Am. Chem. Soc. 110 (1988): 3,303-3,305.
- Urry, D. W., L. C. Hayes, T. M. Parker, and R. D. Harris. Chem. Phys. Letters 201 (1993): 336– 340
- 20. Hayes, L. C., D. C. Gowda, T. M. Parker, and D. W. Urry. Unpublished data, 1997.
- Urry, D. W., L. C. Hayes, and D. Channe Gowda. *Biochem. Biophys. Res. Comm.* 204 (1994): 230–237.
- 22. Strzegowski, L. A., et al. J. Am. Chem. Soc. 116 (1994): 813-814.
- 23. Urry, D. W., et al. Biochem. Biophys. Res. Commun. 210 (1995): 1,031-1,039.
- 24. Gowda, D. C., et al. Int. J. Pept. Protein Res. 46 (1995): 453-463.

The authors wish to acknowledge the support of the Office of Naval Research under grant number N00014-89-J-1970.

Epoxy resins

MEE Y. SHELLEY

TRADE NAMES Araldite, DER, Epi-Cure, Epi-Res, Epikote, Epon, Epotuf, etc.

CLASS Thermoset polymers, after curing (the uncured base resins are thermoplastic)

MAJOR RESIN TYPES DGEBA (diglycidyl ether of bisphenol A), novolacs, peracid resins, hydantoin resins, etc.

OTHER INGREDIENTS IN EPOXY FORMULATION Diluents, resinuous modifiers (to affect flexibility, toughness, peel strength, adhesion, etc.), fillers, colorants and dyes, other additives (e.g., rheological additives, flame retardants).

MAJOR APPLICATIONS Protective coatings (for appliance, automotive primers, pipes, etc.). Encapsulation of electrical and electronic devices. Adhesives. Bonding materials for dental uses. Replacement of welding and riveting in aircraft and automobiles. In composites for materials in space industry, printed circuitry, pressure vessels and pipes. Construction uses such as flooring, paving, and airport runway repair.

PROPERTIES OF SPECIAL INTEREST Wide range of properties depending on the formulation and processing. Chemical and weathering resistance, toughness, durability. Excellent adhesion to a variety of surfaces. Good electrical and thermal insulation. Better mechanical properties than most other castable plastics. Discolor when exposed to UV. Some are skin sensitizers.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Specific gravity	_	Unfilled	1.2-1.3	(1)
		Bisphenol molding compounds (glass fiber-reinforced/mineral-filled)	1.6-2.1	(2)
		Bisphenol molding compounds (low density glass sphere-filled)	0.75-1.0	(2)
		Sheet molding compounds	0.1	(2)
		Novolac molding compounds	1.6 - 2.05	(2)
		Casting resins, silica-filled	1.6 - 2.0	(2)
		Casting resins, aluminum-filled	1.4 - 1.8	(2)
		Casting resins, flexibilized	0.96 - 1.35	(2)
		Casting resins, cycloaliphatic	1.16-1.21	(2)
Water absorption	%	1/8 in. thick specimen, 24 h		
		Bisphenol molding compounds	0.04 - 1.0	(2)
		Sheet molding compounds	1.4 - 1.6	(2)
		Novolac molding compounds	0.04 - 0.29	(2)
		Casting resins, silica-filled	0.04 - 0.1	(2)
		Casting resins, aluminum-filled	0.1 - 4.0	(2)
		Casting resins, flexibilized	0.27 - 0.5	(2)
		Filament wound (80 wt% glass fiber-reinforced)	0.50	(3, 4)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Impact strength, Izod	$\mathrm{J}\mathrm{m}^{-1}$	Unfilled	10-50	(1)
		Silica-filled	16-24	(2)
		Aluminum-filled	21-85	(2)
		Flexibilized	120-270	(2)
		Bisphenol molding compounds (glass fiber-reinforced)	16-530	(2)
		Bisphenol molding compounds (mineral-filled)	16–27	(2)
		Bisphenol molding compounds (low density glass sphere-filled)	8–13	(2)
		Sheet molding compounds (glass fiber-reinforced)	1,600-2,100	(2)
		Sheet molding compounds (carbon fiber-reinforced)	800-1,100	(2)
		Novolac molding compounds	16-27	(2)
		Filament wound (80 wt% glass fiber-reinforced)	2,400	(3, 4)
Hardness	Shore	Casting resins, flexibilized	D65-89	(2)
	Barcol	Novolac molding compounds	70-78	(2)
	Rockwell	Filament wound (80 wt% glass fiber-reinforced)	M98	(3, 4)
Fracture toughness	$\rm Jcm^{-3}m^{1/2}$	Unspecified	0.6	(1)
Tensile modulus	MPa	Unfilled	3,000-5,000	(1)
		Casting, unfilled	2,400	(2)
		Bisphenol molding compounds (glass fiber-reinforced)	21,000	(2)
		Bisphenol molding compounds (mineral-filled)	2,400	(2)
		Sheet molding compounds (glass fiber-reinforced)	14,000-28,000	(2)
		Sheet molding compounds carbon fiber-reinforced)	70,000	(2)
		Novolac molding compounds Filament wound (80 wt% glass fiber-reinforced)	14,500–16,600 27,600	(2) (3, 4)
Compressive modulus	MPa	Casting, flexibilized	7-2,400	(2)
		Casting, cycloaliphatic Bisphenol molding compounds (mineral-filled)	3,400 4,500	
		Novolac molding compounds (mineral- and glass-filled, high temperature)	4,550	

Epoxy resins

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Stress at break	MPa	Unfilled	30-90	(1)
Tensile strength at break	MPa	Casting resins, unfilled	28-90	(2)
		Casting resins, silica-filled	48-90	(2)
		Casting resins, aluminum-filled	48-83	(2)
		Casting resins, flexibilized	14-70	(2)
		Casting resins, cycloaliphatic	55-83	(2)
		Bisphenol molding compounds (glass fiber-reinforced/mineral-filled)	28–140	(2)
		Bisphenol molding compounds (low density glass sphere-filled)	17–28	(2)
		Sheet molding compounds (glass fiber-reinforced)	140-240	(2)
		Sheet molding compounds	280-340	(2)
		(carbon fiber-reinforced)		
		Novolac molding compounds	34-110	(2)
		Filament wound (80 wt% glass	552	(3, 4)
		fiber-reinforced)		
Elongation at break	%	Unfilled	1–2	(1)
		Bisphenol molding compounds (filled with glass fiber)	4	(2)
		Sheet molding compounds	0.5-2	(2)
		Casting resins, unfilled	3-6	(2)
		Casing resins, aluminum-filled	0.5-3	(2)
		Casing resins, silica-filled	1-3	(2)
		Casing resins, flexibilized	20-85	(2)
		Casing resins, cycloaliphatic	2–10	(2)
		Filament wound (80 wt% glass fiber-reinforced)	1.6	(3, 4)
Flexural strength	MPa	Bisphenol molding compounds	34-200	(2)
		Sheet molding compounds	340-660	
		Novolac molding compounds	70-150	
		Casting resins and compounds	55–170	
Flexural modulus	MPa	Bisphenol molding compounds	3,400-31,000	(2)
		Sheet molding compounds	14,000–34,000	(2)
		Novolac molding compounds	9,700–17,000	(2)
		Filament wound (80 wt% glass fiber-reinforced)	34,500	(3, 4)
Compressive strength	MPa	Casting, unfilled	100-170	(2)
		Casting, silica or alumina-filled	100-240	(2)
		Casting, flexibilized	7–97	(2)
		Casting, cycloaliphatic	100-140	(2)
		Bisphenol molding compounds	120-280	(2)
		(glass fiber-reinforced/mineral-filled)		

				Epoxy resins
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Compressive strength	MPa	Bisphenol molding compounds (low density glass sphere-filled)	70–100	(2)
		Sheet molding compounds (glass fiber-reinforced)	140-210	(2)
		Sheet molding compounds (carbon fiber-reinforced)	210-280	(2)
		Novolac molding compounds	170-330	(2)
		Filament wound (80 wt% glass fiber-reinforced)	310	(3, 4)

Surface tension

Polymer	Temp. (K)	Value (mN m ⁻¹)	Reference
DGEBA with 6 wt% N-N-diethylaminopropylamine, cured	293	46.8	(5)
DGEBA with stoichiometric amount of triethylenetetramine, cured	293	39.1	(5)
DGEBA, 2,3-(diglycidoxy-1,4-phenylene)propane, chain extended with bisphenol A	296	51.2	(5, 6)

Interfacial tension⁽⁵⁾

Polymer	Temp. (K)	Value (mN m ⁻¹)
Poly(butadiene) vs. epoxy resin*	296	1.77
	328	1.40
Poly(butadiene-stat-acrylonitrile) 18 wt% AN vs. epoxy resin*	293	1.23
	328	0.57
Poly(butadiene-stat-acrylonitrile) 26 wt% AN vs. epoxy resin*	328	0.58

^{*}Epoxy resin: DGEBA, chain extended with bisphenol A.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Volume resistivity	ohm cm	Filled with glass Filled with mineral	$10^{16} \\ 10^{16}$	(7)
Dielectric strength	$V mil^{-1}$	Filled with glass Filled with mineral	360 400	(7)
Dielectric constant		At 1 MHz Filled with glass Filled with mineral	4.6 5.0	(7)

Epoxy resins

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	Casting grade, 293 K	0.19	(8, 9)
		Casting grade, 300-500 K	0.19 - 0.34	(9, 10)
		Foam, $d = 0.032 - 0.048 \mathrm{g cm^{-3}}$	0.016 - 0.022	(9, 11)
		Foam, $d = 0.080 - 0.128 \mathrm{g}\mathrm{cm}^{-3}$	0.035 - 0.040	(9, 11)
		Filled with 50% aluminum	1.7-3.4	(9, 12)
		Filled with 25% Al ₂ O ₃	0.35-0.52	(9, 12)
		Filled with 50% Al ₂ O ₃	0.52-0.69	(9, 12)
		Filled with 75% Al ₂ O ₃	1.4 - 1.7	(9, 12)
		Filled with 30% mica	0.24	(9, 8)
		Filled with 50% mica	0.39	(9, 8)
		Filled with silica	0.42 - 0.84	(9, 8, 12)
		Filament wound (80 wt% glass	1.77	(3, 4)
		fiber-reinforced)		,
Deflection temperature	K	Under flexural load, 1.82 MPa		(2)
•		Bisphenol molding compounds,	380-530	,
		glass fiber-reinforced/mineral-filled		
		Bisphenol molding compounds, low density glass sphere-filled	370–390	
		Sheet molding compounds	560	
		Novolac molding compounds	420-530	
		Casting resins and compounds (unfilled)	320-560	
		Casting resins and compounds (silica-filled)	340-560	
		Casting resins and compounds (aluminum-filled)	360-590	
		Casting resins and compounds (flexibilized)	296-390	
		Casting resins and compounds (cycloaliphatic)	370-510	

Radiation resistance, half-value dose in air*

Conditions	Dose rate (Gy h ⁻¹)	Value (MGy)	Reference
Filled with glass fiber	$\geq 10^{5}$	25-100+	(13, 14)
Filled with graphite	$\geq 10^5$	50	(13, 14)
Filled with mineral flour	$\geq 10^5$	10-30	(13, 14)
Filled with mineral flour (85% quartz sand)	500	7	(13, 15)
Filled with cotton	$\geq 10^5$	1	(13, 14)

^{*}Defined as the absorbed dose that reduces a property (flexural strength) to 50% of the initial value.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solubility parameters	$(MPa)^{1/2}$			
Hildebrand parameter δ		_	22.3	(16, 17)
Hansen parameters		Epikote 1001 (Shell)		(17, 18)
$\delta_{ extsf{d}}$			20.36	
$rac{\delta_{ m p}}{\delta_{ m h}}$			12.03	
$\hat{\delta_{ m h}}$			11.48	
δ_{t}			26.29	
Processing temperature	K	Bisphenol molding compounds		(2)
		Compression	390-440	, ,
		Transfer	390-470	
		Sheet molding compounds		
		Compression	390-440	
		Transfer	405-440	
		Novolac molding compounds		
		Compression	410-460	
		Injection	420-450	
		Transfer	390-480	
Molding pressure	MPa	Bisphenol molding compounds	0.7-34	(2)
01		Sheet molding compounds	3.4-14	()
		Novolac molding compounds	1.7-21	
Compression ratio	_	Bisphenol molding compounds	2.0-7.0	(2)
1		Sheet molding compounds	2.0	()
		Novolac molding compounds	1.5-2.5	
Mold shrinkage (linear)	_	Bisphenol molding compounds	0.001-0.01	(2)
<i>5</i> . ,		Sheet molding compounds	0.001	. ,
		Novolac molding compounds	0.004-0.008	
		Casting resins	0.0005-0.01	

- 1. Brostow, W., J. Kubát, and M. M. Kubát. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. Wiley-Interscience, New York, 1996, pp. 313–334.
- Kaplan, W. A., et al., eds. Modern Plastics Encyclopedia '97. McGraw-Hill, New York, Modern Plastics, Mid-November, 1996.
- 3. Rosato, D. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1988, vol. 14, pp. 350–391.
- 4. Fiberglas Plus Design: A Comparison of Materials and Processes for Fiber Glass Composites. Owens-Corning Fiberglas Corp., July 1985.
- 5. Wu, S. In *Polymer Handbook*, edited by J. Brandrup and E. H. Immergut, 3d ed. Wiley-Interscience, New York, 1989, pp. VI 411–434.
- 6. Sohn, J. E., et al. Polym. Mater. Sci. Eng. 49 (1983): 449.
- 7. Harper, C. A., ed. *Handbook of Plastics, Elastomer, and Composites,* 3d ed. McGraw-Hill, New York, 1996.
- 8. Thompson, E. V. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 16, pp. 711–747.

Epoxy resins

- Yang, Y. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. Wiley-Interscience, New York, 1996, pp. 111–117.
- 10. Chern, B. C., et al. In *Thermal Conductivity 14, Proceedings of the 14th International Thermal Conference*, edited by P. G. Klemens and T. K. Chu. Plenum, New York, 1975.
- Mark, H. F., et al., eds. Encyclopedia of Chemical Technology, 3d ed. Wiley-Interscience, New York, 1978.
- Goodman, I., and H. Sidney, eds. Handbook of Thermoset Plastics. Noyes, Park Ridge, N.J., 1986.
- 13. Wündrich, K., In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, pp. VI 463–474.
- 14. Schönbacher, H., and A. Stolarz-Izycka. CERN 79-08 (1979).
- 15. Rauhut, K., S. Rösinger, and H. Wilski. Kunststoffe 70 (1980): 89.
- Tobolsky, A. V. Properties and Structure of Polymers. John Wiley and Sons, New York, 1960, pp. 64–66.
- 17. Du, Y., Y. Xue, and H. L. Frisch. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. Wiley-Interscience, New York, 1996, pp. 227–239.
- 18. Hansen, C. M. Skand. Tidskr, Färg Lack, 17 (1971): 69.

Ethylcellulose

YONG YANG

ACRONYM EC

CLASS Carbohydrate polymers

STRUCTURE

$$\begin{array}{c|c} CH_2OR \\ H \\ OR \\ H \\ OR \end{array}$$

(R is CH₂CH₃ or H)

MAJOR APPLICATIONS Lacquers for wood, plastic, and paper, varnishes, hot melts, adhesives, thickener in coatings and inks, tablet coatings and binding, encapsulation.

PROPERTIES OF SPECIAL INTEREST Low temperature flexibility, soluble in a variety of organic solvents.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	_	Degree of substitution $(DS) = 3.0$	246.30	_
Preparation		+ NaOH → Na-cellulose (alkali cose + C_2H_5Cl → Ethyl cellulose +		(1)
IR (characteristic absorption frequencies)	cm ⁻¹	Assignment (C_2H_5) stretching (C_2H_5) stretching (C_2H_5) stretching (C_2H_5) stretching (C_2H_5) deformation	2,970 2,870 2,900 2,870 1,490 1,450 1,410 1,380 1,320 1,280 1,109	(2, 3)
Thermal expansion coefficient	K^{-1}	Sheet	$(10-20) \times 10^{-5}$	(4)
Specific gravity	${\rm g~cm^{-3}}$	_	1.14	(1)

Ethylcellulose	Ξth	/lce	llul	ose
----------------	-----	------	------	-----

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Solubility parameters	$(MPa)^{1/2}$	Solvent	DS	Temp. (K)		
δ		_	2.4-2.6	_	21.1	(5)
		Poor H-bonding solvent	2.4-2.6	_	20	(6)
		8	_	_	16.6-22.7	(7)
			2.6-2.8	_	17.4-19.4	(7)
		Moderate H-bonding solvent	2.4-2.6	_	21	(6)
		0	_	_	15.1-22.2	(7)
		Strong H-bonding solvent	2.4-2.6	_	19.4-29.7	(7)
		8	2.6-2.8	_	19.4-23.3	(7)
		Acetone	2.5	298	19.4	(8)
		n-Amyl acetate	2.5	298	18.7	(8)
		Benzene	2.5	298	20.6	(8)
		n-Butyl acetate	2.5	298	18.7	(8)
		Ethyl acetate	2.5	298	19.1	(8)
		Methyl acetate	2.5	298	19.3	(8)
		Methyl <i>n</i> -amyl ketone	2.5	298	18.8	(8)
		Methyl ethyl ketone	2.5	298	19.1	(8)
		Methyl <i>n</i> -propyl ketone	2.5	298	19.0	(8)
		n-Propyl acetate	2.5	298	18.8	(8)
		Tetrachloromethane	2.5	298	20.6	(8)
		Toluene	2.5	298	20.4	(8)
		Trichloromethane	2.5	298	18.6	(8)
Polymer-liquid	_	Solvent	DS	Temp. (K)		(8, 9)
interaction		Acetone	2.45	298	0.46	
parameter χ		n-Amyl acetate	2.45	298	0.28	
		Benzene	2.45	298	0.48	
		n-Butyl acetate	2.45	298	0.24	
		Ethyl acetate	2.45	298	0.40	
		Methyl acetate	2.45	298	0.41	
		Methyl <i>n</i> -amyl ketone	2.45	298	0.38	
		Methyl ethyl ketone	2.45	298	0.42	
		Methyl <i>n</i> -propyl ketone	2.45	298	0.37	
		<i>n</i> -Propyl acetate	2.45	298	0.33	
		Tetrachloromethane	2.45	298	0.46	
		Toluene	2.45	298	0.47	
		Trichloromethane	2.45	298	0.34	
		Water	1.4	328	1.1	

Solvents and nonsolvents (1, 10, 11)

DS	Solvent	Nonsolvent
0.5-0.7	Aqueous alkali	Water
1.0 - 1.5	Acetic acid, formic acid, pyridine, water (cold)	Ethanol
2	Chloroform, chlorohydrins, dichloroethylene, ethanol, methylene chloride, tetrahydrofuran	Alcohols, carbon tetrachloroethylene, diethyl ether, esters, ketones, hydrocarbons, water
2.3	Acetic esters, alcohols, alkyl halogenids, benzene, carbon disulfide, furan derivatives, ketones, nitromethane	Acetone (cold), ethylene glycol
2.4-2.6	Acetic acid*, acetone, amyl acetate, amyl alcohol, benzene, benzyl acetate, benzyl alcohol, butanol, butyl acetate, butyl lactate, carbon tetrachloride*, chloroform*, <i>m</i> -cresol*, cyclohexanol, cyclohexanone, dichloroacetic acid*, dichloromethane*, 1,5-dimethyl-2-pyrrolidone*, dioxane, ethanol, ethylene chloride, ethyl acetate, ethyl ether, ethyl formate, ethyl lactate, formic acid*, hexone, methanol, methyl ethyl ketone, methylene dichloride, methyl formate, 1-nitropropane, 2-nitropropane, phenol*, propanol, propyl acetate, toluene, trichloroethylene*, trifluoroacetic acid*, trifluoroethanol*, xylene	Hexane, nitromethane, petroleum ether
3	Alcohols, ester, benzene, methylene chloride	Carbon tetrachloride, diols, hydrocarbons, <i>n</i> -propyl ether, tetrahydrofurfuryl alcohol

^{*}Forms liquid crystal mesophase.

Mark-Houwink parameters: K and $a^{(12)}$

Solvent	Temp. (K)	$\emph{M}_{ m w} imes 10^{-4}~({ m g~mol}^{-1})$	Method	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	а
Acetone	293	8	Osmometry	1.51	1.05
Benzene	293	8	Osmometry	1.34	1.07
	298	14	Osmometry	29.2	0.81
	333	14	Osmometry	35.8	0.78
Butanone	298	14	Osmometry	18.2	0.84
	333	14	Osmometry	26.7	0.79
Butyl acetate	298	14	Osmometry	14.0	0.87
Ž	333	14	Osmometry	18.1	0.83
Chloroform	298	14	Osmometry	11.8	0.89
	319	14	Osmometry	9.3	0.90
Ethyl acetate	298	14	Osmometry	10.7	0.89
,	333	14	Osmometry	14.0	0.85
Methanol	298	14	Light scattering	52.3	0.65
Nitroethane	298	14	Osmometry	4.2	0.96
	333	14	Osmometry	22.6	0.79

Ethylcellulose

Unit cell dimension of triethylcellulose $^{\left(13\right) }$

Lattice	Monomers	Chains	Cell dimension (Å)			Density	Chain
	per unit cell	per unit cell	а	b	с	(g cm ⁻³)	conformation
Orthorhombic	12	6	15.64	27.09	15.0	1.158	32

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Martin coefficient k'	_	Toluene/ethanol (80/20)	0.111	(14)
Glass transition temperature	K	- DS = 2.45-2.60	316 393–397	(15) (1)
Heat capacity (of repeat unit)	$kJ\ K^{-1}\ mol^{-1}$	_	0.31-0.77	(4)
Deflection temperature	K	1.82 MPa	319-362	(4)
Tensile modulus	MPa	_	897-2,069	(4)
Tensile strength	MPa	_	14-55 47-72	(4) (1)
Maximum extensibility	%	– Conditioned at 298 K, 50% RH	15–100 7–30	(4) (1)
Compressive strength	MPa	ASTM D695	69-241	(4)
Flexural yield strength	MPa	_	28-83	(4)
Flexural strength	MPa	_	62-69	(16)
Impact strength	$\mathrm{J}~\mathrm{m}^{-1}$	0.5 × 0.5 in notched bar, Izod test, ASTM D256 Molding Sheet	107–455 16–91	(4)
Hardness	-	Rockwell, R scale Sward, 3-mil film	50-115 52-61	(4) (1)
Index of refraction <i>n</i>	_	_	1.47	(4)
Refractive index increment dn/dc	${\rm ml}~{\rm g}^{-1}$	MeOH, $\lambda = 436$ nm, 298 K	0.130	(17)
Dielectric constant ε''	-	298 K, 1 MHz 298 K, 1,000 Hz 298 K, 60 Hz	2.8–3.9 3.0–4.1 2.5–4.0	(1)
Power factor	-	298 K, 1 Hz 298 K, 60 Hz	0.002-0.02 0.005-0.02	(1)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Resistivity	ohm cm ⁻¹	_		10 ¹² -10 ¹⁴	(1)
Surface tension	${ m mN~m^{-1}}$	Contact angle	e	32	(18)
Thermal conductivity	${\rm W} \; {\rm m}^{-1} \; {\rm K}^{-1}$	_		0.21	(19)
Water absorption	%	24 h at 50% I	RH	2	(1)
Permeability coefficient P	$m^3(STP) m s_{17}^{-1} m^{-2}$	Permeant	Temp. (K)		(20)
	$Pa^{-1} (\times 10^{17})$	$\overline{\mathrm{H_2}}$	293	65.3	
		He	298	40.1	
		N_2	298	3.32	
		O_2	298	19.0	
		Ar	298	7.65	
		CO_2	298	84.8	
		SO_2	298	198	
		$N\bar{H_3}$	298	529	
		H_2O	298	6700	
		C_2H_6	298	6.9	
		C_3H_8	298	2.78	
		n-C ₄ H ₁₀	298	2.9	
		n - C_5H_{12}	298	2.78	
		n-C ₆ H ₁₄	298	5.75	
Cost	US\$ kg ⁻¹	_		17.5-26	_
Supplier	Hercules Inc., 1313 N	orth Market Str	eet, Wilmington	, Delaware 19	894, USA

- 1. Ethylcellulose, Chemical and Physical Properties. Hercules, Inc., Wilmington, Del., 1989.
- 2. Zhbankov, R. G. In *Infrared Spectra of Cellulose and Its Derivatives*, edited by A. B. I. Stepanov. Consultants Bureau Publishing, New York, 1966.
- 3. Prouchert, C. J. *The Aldrich Library of FT-IR Spectra*, 1st ed. Aldrich Chemical Co., Milwaukee, 1985.
- 4. Rudd, G. E., and R. N. Sampson. In *Handbook of Plastics, Elastomers, and Composites*, edited by C. A. Harper. McGraw-Hill, New York, 1992.
- 5. Burrell, H. Interchem. Rev. 14 (1955): 3.
- 6. Kent, D. J., and R. C. Rowe. J. Pharm. Pharmocol. 30 (1978): 808.
- 7. Grulke, E. A. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/555.
- 8. Barton, A. F. M. CRC handbook of Polymer-Liquid Interaction and Solubility Parameters. CRC Press, Baca Raton, Fla., 1990.
- 9. Moore, W. R., J. A. Epstein, A. M. Brown, and B. M. Tidswell. J. Polym. Sci. 23 (1957): 23.
- Fuchs, O. In Polymer Handbook, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/399.
- 11. Gray, D. G. J. Appl. Polym. Sci., Appl. Polym. Symp., 37 (1983): 179.
- 12. Kurata, M., and Y. Tsunashima. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/31.

Ethylcellulose

- 13. Zugenmaier, P. J. Appl. Polym. Sci., Polym. Symp., 37 (1983): 223.
- 14. Gröbe, A. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. V/117.
- 15. Peyser, P. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VT/209.
- 16. Haynes, W. Cellulose: The Chemical That Grows. Doubleday, Garden City, N.Y., 1953.
- 17. Huglin, M. B. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/409.
- 18. Wu, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/411.
- Yang, Y. In *Physical Properties of Polymer Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996.
- 20. Pauly, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/451.

GARY W. VER STRATE AND DAVID J. LOHSE

ACRONYMS, ALTERNATIVE NAME EP, EPM, EPR (as copolymer), EPDM (contains a third monomer, which provides up to 10 weight % of an olefin site for cross-linking), ethene-propene-diene elastomers. (1–5)

CLASS Chemical copolymers; polyolefin copolymer; ter-polymer elastomer

PROPERTIES OF SPECIAL INTEREST High plateau modulus $(1.6\,\mathrm{MPa})$ permits high filler loadings and cost-effective compounds, chemically inert, semicrystalline grades have high green strength. $^{(2,3,6)}$

PREPARATIVE TECHNIQUES Type of polymerization: Ziegler-Natta or metallocene (e.g., $VOCl_3/Et_3Al_2Cl_3$, 30–70°C, hydrocarbon solution, or $Cp_2Zr/methalumoxane$, hydrocarbon solution, 80–120°C. $^{(2-6)}$

TYPICAL COMONOMERS Ethene, propene, ethylidene norbornene (ENB) or dicyclopentadiene or (DCPD), 1,4 hexadiene (4,4 HD), or vinyl norbornene (VNB) or norbornadiene (NBD). (2-7)

Ziegler-Natta gives better incorporation of bicyclic dienes than metallocenes; for straight-chain dienes the reverse is true.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Ceiling temperature	K	Polymerization at <1 MPa up to this temperature is possible	>440	(6)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	50 mol% ethene, 1 mol% diene	~35 (average)	(2-5)
Tacticity (stereoregularity)	% stereo-regular propene in elastomer grades	Vanadium or metallocene catalysis	0	(2-5, 8)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Head-to-head contents	%	Vanadium or metallocene catalysis	<3	(2-5, 8)
Degree of branching	% of molecules having long branches	Vanadium catalysis mostly by cationic diene coupling; metallocene by end group copolymerization; can be controlled (information available from manufacturers)	0–100	(2-5)
Typical molecular weight range of polymer $\bar{M}_{\rm n}$	g mol ⁻¹	500–5,000 as dispersants 2,000–300,000 as elastomers 5,000–5,000,000 in blends	_	(2-5, 7)
Typical polydispersity index $(M_{\rm w}/M_{\rm n})$	Dimensionless	Controlled by catalyst choice, reactor type	1.5-50	(2-5)
Morphology in multiphase systems	As shown	Semicrystalline copolymers, blends, block copolymers Lamellae, width Lamellae, length Elastomer blends, major dimension	50–150 Å 0.01–2 μm 0.5–10 μm	(2-4, 9, 10)
IR (characteristic absorption frequencies)	cm ⁻¹	20°C, films -CH ₂ Isopropyl -CH ₃ -CH ₃	720 1,145 1,370	(2-4, 11)
UV (characteristic absorption frequencies)	nm	20°C in solution (broad, maximum, depends on diene type)	<200	(2-4)
NMR	ppm (chemical shift)	¹³ C, ¹ H (see references for extensive detailed work)	Specific carbons or protons have specific shifts	(3, 8)
Thermal expansion coefficients	K^{-1}	1 atmosphere, no crystallinity $(1/V)(dV/dT)_P$	7×10^{-4}	(2, 12, 13)
Compressibility coefficients	bar ⁻¹	20° C $(1/V)(dV/dP)_T$	5.8×10^{-8}	(2, 12, 13)
Reducing temperature T^*	K	150-250°C, 10-200 MPa	6,800	(12)
Reducing pressure P^*	MPa	150-250°C, 10-200 MPa	444-465	(12)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Reducing volume V*	$\mathrm{cm}^3\mathrm{g}^{-1}$	150–250°C, 10–200 MPa	1.000	(12)
Density (amorphous)	g cm ⁻³	20°C, no diene present, <55 wt% ethene, the dienes ENB, DCPD, and VNB raise density as does crystallinity	0.854	(2, 12)
Solvents	_	Ambient	Aliphatic, aromatic, halogenated hydrocarbons	(2, 3, 14)
Nonsolvents	-	Ambient	Water, organic acids, ketones, polar halogenated hydrocarbons	(2, 3, 14)
Solubility parameter	$(MPa)^{1/2}$	By SANS (depending on	16–17	(13)
		ethene %) By GLC	16	(15)
Theta temperature Θ	K	Phenyl ethyl ether, depends on exact composition	353	(2, 3, 14, 16–18)
		n-Octyl acetate n-Decyl acetate n-Hexyl acetate	300 278 334	
Interaction parameter χ	Dimensionless	n-Heptane, 300 K	$(0.35 + 0.08 \times V_{\rm polymer})$	(2, 3, 14)
Second virial coefficient	$\mathrm{mol}\mathrm{cm}^3~\mathrm{g}^{-2}$	Trichlorobenzene, 135°C	$(9.9 \times 10^{-3}) M^{-0.18}$	(3, 19)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = ml g^{-1}$ $a = None$	Trichlorobenzene, 135°C	$K = 2.9 \times 10^{-2}$ $a = 0.726$	(3, 19)
Huggins constants k'	-	Theta solvents, depends on polymer molecular weight	0.4-0.8	(18)
Characteristic ratio $\langle r^2 \rangle_0 / n l^2$	_	Phenyl ethyl ether, 80°C SANS, 20°C	6.9 6.9	(16) (17)
Lattice	-	Methylene units crystallize into a polyethene lattice, methyl groups can incorporate somewhat	Orthorhombic	(2, 14)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Unit cell dimensions	Å	1 atm, 20°C, -CH ₂ - sequences only, methyl group causes expansion	a = 7.418 b = 4.946 c = 2.546	(2, 3, 14, 20)
Unit cell contents	Number of mers	Ethene crystallinity	2	(2, 3, 14, 20)
Degree of crystallinity	%	Depends on ethene content	0-50	(2, 3)
Heat of fusion (of repeat units)	kJ mol ⁻¹ cal g ⁻¹	DSC on samples annealed at $20^{\circ}\text{C} > 48\text{h}$, varies with ethene content	0-4.4 0-35	(2, 3)
Density (crystalline)	g cm ⁻¹	1 atm, 20°C	0.997 (can be reduced by defects to 0.99 and below)	(2, 3, 20)
Glass transition temperature	K	1 atm, DSC, dynamic mechanical, depends on ethene content, lowest at about 50% ethene; crystallinity confuses the issue at high ethene contents	213–240	(2, 3, 21)
Melting point	K	1 atm, DSC, depends on ethene content; often melts just above last annealing temperature; will crystallize down to $T_{\rm g}$	218-373	(2, 3)
Heat capacity (of repeat units)	$kJK^{-1}mol^{-1}$	DSC, 1atm	0.078	(2, 3, 12)
Polymers with which miscible	_	MW < 150,000	Head-to-head	(22)
misciple		MW < 100,000	polypropylene Ethylene-butene copolymers of similar comonomer content	
Tensile modulus	MPa	20° C, low strain rate, filled compound 25% rubber, 50% carbon black, 25% oil tested at $\sim 1\mathrm{s}^{-1}$	3–7	(2, 3, 6, 23)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Shear modulus	MPa	20°C, low strain rate, filled compound 25% rubber, 50% carbon black, 25% oil	1-4	(2, 3, 6, 23)
Storage modulus	MPa	High molecular weight gum rubber, 20°C, 1 Hz	0.16	(6, 15)
Loss modulus, $\tan \delta$	_	High molecular weight gum rubber, 20°C, 1 Hz	0.2	(6, 15)
Tensile strength	MPa	Dependent on compounding and test conditions, typical compounds at 20° C, 1s^{-1}	0.5–50 5–25	(2, 3, 6, 23, 24)
Maximum extensibility $(L/L_0)_r$	%	Dependent on compounding and test conditions	200-800	(2, 3, 6, 23)
Hardness	Shore A values	Dependent on compounding and test conditions	10-100	(2, 3, 23)
Poisson's ratio	_	$0-50^{\circ}$ C, strained at $100 \mathrm{s}^{-1}$ or less	0.49	(6, 11)
Plateau modulus	MPa	20-150°C	1.6	(6, 15)
Entanglement molecular weight	$g \text{mol}^{-1}$	20°C, $M_{\rm e}=\rho RT~G_{\rm N}^{\circ}$	1,300	(2, 3, 6, 21)
WLF parameters: C_1 and C_2	C_1 = None C_2 = K	$T_0 = 300 \mathrm{K}$, depends on composition	$C_1^{\circ} = 5.4, 4.1$ $C_2^{\circ} = 148, 122$	(3, 6, 21, 25)
Index of refraction n_D	_	1 atm, no diene, 23°C No crystallinity, 90°C 125°C	1.4740 1.4524 1.4423	(2, 3)
Refractive index increment dn/dc	$\mathrm{ml}\mathrm{g}^{-1}$	Trichlorobenzene, 135°C	-0.104	(3)
Dielectric constant ε'	-	20°C, 10 ³ Hz, 1 atm, depends on the compound, a good insulator	2.8	(2, 3, 14, 23)
Dielectric loss ε''	-	20°C, 10 ³ Hz, 1 atm, depends on the compound	0.2 0.25	(2, 3, 14)
Resistivity	log R, ohm cm	1 atm, 20°C, depends on compound, generally a good insulator	3–14	(2, 14, 26–28)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molar polarizability α	cm ³	Frequency	4.4×10^{-26}	(2, 3)
Surface tension	$\mathrm{mN}\mathrm{m}^{-1}$	20°C, 1 atm, increases with ethene content	29.4-36.8	(28, 29)
Interfacial tension	$\mathrm{mN}\mathrm{m}^{-1}$	With PDMS, 20°C With PS, 140°C	3.2-5.3 5.1-5.9	(28, 29)
Permeability coefficient	([m ³] [m])/([S] [m ²] [^T Pa])	He 25°C N ₂ 25°C	$ \begin{array}{c} 16.0-24.0 \\ (\times 10^{-17}) \\ 3.7-4.1 \\ (\times 10^{-17}) \end{array} $	(30)
Thermal conductivity	$W m^{-1} K^{-1}$	20°C, 1 atm	0.355	(2, 3, 31)
Melt viscosity	Pa s	Newtonian at 100°C	$(4 \times 10^{-5})M^{3.6}$	(3, 21)
Melt index	g	2.2 kg, 190°C, depends completely on polymer molecular weight	0.001-50	(2, 3, 23)
Mooney viscosity	Mooney units	125°C	5-100	(2, 3, 23)
Pyrolyzability, amount of product remaining	%	>500°C	<0.3%	(2, 3, 32)
Severe decomposition	K	N ₂ blanket	580	(2, 32)
Maximum use temperature	K	Open atmosphere	450	(2, 3, 23)
Decomposition temperature	K	Nitrogen atmosphere, 1 minute	570	(2, 3, 32)
Scission, G factor, $G(s)$	$\operatorname{mol} J^{-1}$	γ irradiation, depends on ethene and diene content	$1.1-5.9 \\ (\times 10^{-8})$	(2, 24, 33)
Cross-linking, G factor, $G(x)$	$\operatorname{mol} J^{-1}$	γ irradiation, depends on ethene and diene content	2.7-22.6 (×10 ⁻⁸)	(2, 24, 33)
Gas evolution, G factor, G (gas)	$\operatorname{mol} J^{-1}$	γ irradiation, depends on ethene and diene content	3.4×10^{-7}	(24)
Water absorption	% volume increase % tensile change	168 h, 55% ethylene glycol in water, boiling	+1 -1	(23)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Cost	US $\$$ kg $^{-1}$	_	2.60	(34-36)
Availability	_	_	ktons	(3, 34-36)
Suppliers	Exxon Chemic	Exxon Chemical; DSM; JSR; Mitsui; DuPont-Dow; Uniroyal; Bayer		

- 1. D1418 Rubber and Rubber Latices Nomemclature. American Society for Testing and Materials
- 2. Baldwin, F. P., and G. Ver Strate. Rubber Reviews 44 (1972): 709.
- 3. Ver Strate, G. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1987, vol. 6, p. 522.
- 4. Cesca, S. J. Macromol. Sci., Macromolecular Reviews, 10 (1972): 1.
- 5. Banzi, V., et al. Die Angew Makromol. Chemie, 229 (1995): 113.
- 6. Mark, J., B. Erman, F. Eirich. *Science and Technology of Rubber*, 2d ed. Academic Press, New York, 1994, p. 70 (catalysis), pp. 157, 211, 495 (mechanical properties).
- See the proceedings of Flexpo Conferences. Chemical Market Resources, Houston, (281) 333-3313.
- 8. Trillo, I., et al. Macromolecules, 28 (1995): 342 (and references therein).
- 9. Ver Strate, G., et al. Flexpo '97. Chemical Market Resources, Houston, 1997.
- 10. Hess, W. M., C. R. Herd, and P. C. Vegvari. Rubber Reviews 66 (1993): 330.
- D3900-94 Determination of Ethylene Units in EPM and EPDM. American Society for Testing and Materials.
- 12. Walsh, D. J., et al. Macromolecules 25 (1992): 5,236.
- 13. Krishnamoorti, R. PhD Thesis, Princeton, 1994.
- Brandrup, J., and E. Immergut, ed. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.
- 15. Schuster, R. H., H. M. Issel, and V. Peterseim. Rubber Chem. and Tech. 69 (1996): 769.
- 16. Bruckner, S., et al. Eur. Polym. J. 10 (1974): 347.
- 17. Zirkel, A., et al. Macromolecules 25 (1992): 954.
- 18. Mays, J. W., and L. J. Fetters. Macromolecules 22 (1989): 921.
- 19. Scholte, Th. G., et al. J. Appl. Pol. Sci. 29 (1984): 3,763.
- Wunderlich, B. Crystals of Linear Macromolecules. American Chemical Society, Washington, D.C., 1973.
- 21. Gotro, J. E., and W. W. Graessley. Macromolecules 17 (1984): 2,767.
- 22. Krishnamoorti, R., et al. Macromolecules 27 (1994): 3,073.
- 23. Vistalon Users Guide. Exxon Chemical Co., Houston.
- 24. Bohm, G. A., and J. O. Tveekrem. Rubber Reviews 55 (1982): 575.
- 25. Ferry, J. D. Viscoelastic Properties of Polymers, 3d ed., John Wiley and Sons, New York, 1980.
- 26. Aminabhavi, T. M., P. E. Cassidy, and C. M. Thompson. Rubber Reviews 63 (1990): 451.
- 27. Thompson, C. M., and J. S. Allen. Rubber Chem. and Tech. 67 (1994): 107.
- 28. Wu, S. Polymer Interface and Adhesion. Marcel Dekker, New York, 1982.
- 29. Roe, R. J. J. Colloid Interface Sci. 31 (1969): 228.
- 30. Paul, D. R., and A. T. Dibenedetto. J. Polymer Sci., Part C, 10 (1965): 17.
- 31. Mark, H. F., et al., eds. *Encyclopedia of Chemical Technology*. Wiley-Interscience, New York, 1978.
- 32. Sircar, A. Rubber Reviews 65 (1992): 503.
- 33. Odian, G., D. Lamparella, and J. Canamare. J. Polymer Sci. Part C, 16 (1968): 3,619.
- 34. Annual reports on synthetic rubber. Chemical and Engineering News.
- 35. Blue Book. Bill Communications, New York.
- 36. Rubber Red Book. Communications Channels, Inc., Atlanta.

Ethylene-vinyl acetate copolymer

PING XU

ACRONYMS, TRADE NAMES EVA; A- $C^{\mathbb{R}}$ (Allied Signal); Elvax $^{\mathbb{R}}$ (DuPont); Levapren $^{\mathbb{R}}$ (Bayer); Microthene $^{\mathbb{R}}$, Spectratech $^{\mathbb{R}}$, Ultrathene $^{\mathbb{R}}$ (Quantum Chemical); Modic $^{\mathbb{R}}$, Novatec $^{\mathbb{R}}$ (Mitsubishi Kasei); PDX $^{\mathbb{R}}$ (LNP)

CLASS Chemical copolymers

STRUCTURE
$$[-CH_2-CH_2-]_m - [-CH_2-CH-]_n \\ \begin{matrix} O \\ C \\ C \\ CH_3 \end{matrix}$$

MAJOR APPLICATIONS Film extrusion, packaging, wire and cable insulation, adhesives, coatings, and compounding.

PROPERTIES OF SPECIAL INTEREST Flexibility and toughness, good adhesion, and stress crack resistance.

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Linear thermal expansion coefficient	K^{-1}	ASTM D696, no composition given	$16-25 \times 10^{-5}$	(1)
Density	$g\mathrm{cm}^{-3}$	ASTM D792, 9-28% vinyl acetate	0.93-0.95	(2)
Solubility parameter	$(MPa)^{1/2}$	Halogenated aliphatic and aromatic liquids, 20°C		(3)
		30% vinyl acetate	19.0	
		40% vinyl acetate	19.2	
		67% vinyl acetate	19.0	
		Halogenated aliphatic and aromatic liquids, 30°C		
		30% vinyl acetate	18.8	
		40% vinyl acetate	18.9	
		67% vinyl acetate	18.9	
Interaction parameter χ	_	29% vinyl acetate, 150°C, inverse GC, infinite solution		(4, 5)
		Acetaldehyde	0.16	
		Acetic acid	1.12	
		Benzene	-0.02	
		1-Butanol	0.65	
		2-Butanol	0.51	
		Cyclohexane	0.07	

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Interaction parameter χ	_	Dioxane	0.45	
		Ethanol	1.28	
		Hexane	0.25	
		Methanol	1.69	
		Octane	0.23	
		2-Propanol	0.93	
		Tetrahydrofuran	0.25	
		<i>m</i> -Xylene	-0.02	
Glass transition temperature	K	30% vinyl acetate, $M_{\rm n} = 27,000 {\rm g mol}^{-1}$, $M_{\rm w} = 110,000 {\rm g mol}^{-1}$	231	(3)
•		40% vinyl acetate, $M_{\rm n} = 25,000 \mathrm{g}\mathrm{mol}^{-1}$, $M_{\rm w} = 130,000 \mathrm{g}\mathrm{mol}^{-1}$	235	
Melting point	K	30% vinyl acetate, $M_{\rm n} = 27,000{\rm gmol^{-1}},$ $M_{\rm w} = 110,000{\rm gmol^{-1}}$	345	(3)
		40% vinyl acetate, $M_{\rm n} = 25,000 {\rm g mol^{-1}}$, $M_{\rm w} = 130,000 {\rm g mol^{-1}}$	318	
Brittleness temperature	K	ASTM D746		(2)
1		9% vinyl acetate, melt index = $2.2 \mathrm{g}/10 \mathrm{min}$	<197	()
		9% vinyl acetate, melt index = $9.8 \text{g} / 10 \text{min}$	<197	
		15% vinyl acetate, melt index = $8.2 \mathrm{g}/10 \mathrm{min}$	<197	
		15% vinyl acetate, melt index = $30 \text{ g}/10 \text{ min}$	<197	
		18% vinyl acetate, melt index = $1.5 \text{g}/10 \text{min}$	<197	
		18% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$	<197	
		19% vinyl acetate, melt index = $0.45 \mathrm{g}/10 \mathrm{min}$	<197	
		19% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$	<197	
		28% vinyl acetate, melt index = $3.1 \text{g}/10 \text{min}$	<197	
Vicat softening	K	ASTM D1525, ring and ball method		(2)
temperature		9% vinyl acetate, melt index = $2.2 \mathrm{g}/10 \mathrm{min}$	356	
		9% vinyl acetate, melt index = $9.8 \mathrm{g}/10 \mathrm{min}$	348	
		15% vinyl acetate, melt index = $8.2 \mathrm{g}/10 \mathrm{min}$	339	
		15% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$	334	
		18% vinyl acetate, melt index = $1.5 \text{g} / 10 \text{min}$	334	
		18% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$	327	
		19% vinyl acetate, melt index = $0.45 \mathrm{g}/10 \mathrm{min}$	335	
		19% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$	331	
		28% vinyl acetate, melt index = $3.1 \mathrm{g}/10 \mathrm{min}$	322	
Tensile strength at	MPa	ASTM D638		(2)
break		9% vinyl acetate, melt index = $2.2 \mathrm{g}/10 \mathrm{min}$	13.9	
		9% vinyl acetate, melt index = $9.8 \text{g}/10 \text{min}$	11.7	
		15% vinyl acetate, melt index = $8.2 \mathrm{g}/10 \mathrm{min}$	12.8	
		15% vinyl acetate, melt index = $30 \text{ g}/10 \text{ min}$	10.4	
		18% vinyl acetate, melt index = $1.5 \mathrm{g}/10 \mathrm{min}$	13.5	

Ethylene-vinyl acetate copolymer

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Tensile strength at break	MPa	18% vinyl acetate, melt index = $30\mathrm{g}/10\mathrm{min}$ 19% vinyl acetate, melt index = $0.45\mathrm{g}/10\mathrm{min}$ 19% vinyl acetate, melt index = $30\mathrm{g}/10\mathrm{min}$ 28% vinyl acetate, melt index = $3.1\mathrm{g}/10\mathrm{min}$	9.0 19.3 8.1 15.2	
Elongation at break	%	ASTM D638 9% vinyl acetate, melt index = $2.2 \text{g}/10 \text{min}$ 9% vinyl acetate, melt index = $9.8 \text{g}/10 \text{min}$ 15% vinyl acetate, melt index = $8.2 \text{g}/10 \text{min}$ 15% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$ 18% vinyl acetate, melt index = $1.5 \text{g}/10 \text{min}$ 18% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$ 19% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$ 19% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$ 28% vinyl acetate, melt index = $3.1 \text{g}/10 \text{min}$	740 675 730 750 850 700 740 680 750	(2)
1% Secant modulus	МРа	ASTM D638 9% vinyl acetate, melt index = $2.2 \text{g}/10 \text{min}$ 9% vinyl acetate, melt index = $9.8 \text{g}/10 \text{min}$ 19% vinyl acetate, melt index = $0.45 \text{g}/10 \text{min}$ 19% vinyl acetate, melt index = $30 \text{g}/10 \text{min}$ 28% vinyl acetate, melt index = $3.1 \text{g}/10 \text{min}$	75.9 93.1 33.1 29.7 18.6	(2)
Dart drop impact	$F_{50} g^{-3}$	ASTM D1709 9% vinyl acetate, melt index = $2.2 \text{ g}/10 \text{ min}$ 9% vinyl acetate, melt index = $9.8 \text{ g}/10 \text{ min}$ 15% vinyl acetate, melt index = $8.2 \text{ g}/10 \text{ min}$ 18% vinyl acetate, melt index = $1.5 \text{ g}/10 \text{ min}$	300 305 310 >600	(2)
Flexural modulus	MPa	ASTM D790, no composition given	53.1	(1)
Hardness	Shore D/A values	ASTM D2240 9% vinyl acetate, , melt index = $2.2\mathrm{g}/10\mathrm{min}$ 9% vinyl acetate, melt index = $9.8\mathrm{g}/10\mathrm{min}$ 15% vinyl acetate, melt index = $30\mathrm{g}/10\mathrm{min}$ 18% vinyl acetate, melt index = $1.5\mathrm{g}/10\mathrm{min}$ 18% vinyl acetate, melt index = $30\mathrm{g}/10\mathrm{min}$ 19% vinyl acetate, melt index = $30\mathrm{g}/10\mathrm{min}$ 28% vinyl acetate, melt index = $3.1\mathrm{g}/10\mathrm{min}$	93 (A) 34 (D) 30 (D) 42 (D) 30 (D) 88 (A) 78 (A)	(2)
Dielectric strength	$V \\ mil^{-1}$	ASTM D149, no composition given, 0.31-cm thick specimen	620-760	(1)
Water absorption	%	ASTM D570, no composition given, 24 h	0.005-0.13	(1)

^{*} The melt index values were obtained with ASTM D1238.

- 1. Modern Plastics Encyclopedia'96. McGraw-Hill, New York.
- 2. Ultrathene[®] High Ethylene Vinyl Acetate Copolymers, Resins, Key Properties and Applications. Quantum Chemical Corporation, USI Division product bulletin, Cincinnati, 1992.
- 3. Lath, D., E. Lathova, and J. M. G. Cowie. In *Prepr. Short Contrib. Bratislava IUPAC 5th Int. Conf. Modif. Polym.* 2 (1979): 225.
- 4. Dincer, S., and D. C. Bonner. Macromolecules 11 (1978): 107.
- 5. Aspler, J. S. Chromatogr. Sci. 29 (1985): 399.

PING XU

ACRONYMS, TRADE NAMES EVA, Clarene[®] (Colortech); $Eval^{\$}$ (Eval); $GL^{\$}$; $Levasint^{\$}$ (Bayer)

CLASS Chemical copolymers

Structure
$$[-CH_2-CH_2-]_m-[-CH_2-CH_-]_n$$
 OH

MAJOR APPLICATIONS Coextrusion, film lamination, coatings, and food packaging.

PROPERTIES OF SPECIAL INTEREST Superior barrier properties to gases, fragrances, solvents, etc.

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Linear thermal expansion coefficient	K^{-1}	32 mol% vinyl alcohol, melt index = 3.8 g/10 min	11×10^{-5}	(1)
expansion econicient		38 mol% vinyl alcohol, melt index = 3.8 g/10 min	12×10^{-5}	
		44 mol% vinyl alcohol, melt index = 13.0 g/10 min	13×10^{-5}	
Density	$\rm g~cm^{-3}$	ASTM D1505		(1)
,	Ü	27 mol% vinyl alcohol, melt index = $3.0 \text{ g}/10 \text{ min}$	1.20	, ,
		32 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	1.19	
		38 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	1.17	
		44 mol% vinyl alcohol, melt index = $13.0 \text{ g}/10 \text{ min}$	1.14	
Interaction parameter χ	_	No composition given, 20°C, water	1.2-1.8	(2)
Heat of fusion	$\mathrm{J}\mathrm{g}^{-1}$	32 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	81.9	(1)
		38 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	81.1	
		44 mol% vinyl alcohol, melt index = $13.0 \text{ g}/10 \text{ min}$	79.8	
Heat of combustion	$\mathrm{J}\mathrm{g}^{-1}$	32 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	30,037	(1)
		38 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	31,200	

REFERENCE
(1)
(1)
(1)
(1)
(1)

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Elongation at break	%	38 mol% vinyl alcohol, melt	280	
		index = 3.8 g/10 min	200	
		44 mol% vinyl alcohol, melt index = $13.0 \text{g}/10 \text{min}$	380	
Izod impact strength	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D255, notched		(1)
		27 mol% vinyl alcohol, melt index = $3.0 \text{ g}/10 \text{ min}$	58.7	
		32 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	90.7	
		38 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	64.1	
		44 mol% vinyl alcohol, melt index = $13.0 \text{ g}/10 \text{ min}$	53.4	
Rockwell hardness		ASTM D785		(1)
Rockweii Hardness	_	27 mol% vinyl alcohol, melt index = $3.0 \text{ g}/10 \text{ min}$	104	(1)
		32 mol% vinyl alcohol, melt index = $3.8 \text{ g/} 10 \text{ min}$	100	
		38 mol% vinyl alcohol, melt index = $3.8 \text{ g/} 10 \text{ min}$	93	
		44 mol% vinyl alcohol, melt index = 13.0 g/10 min	88	
Taber abrasion	mg	ASTM D1175, 1,000 times		(1)
		32 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	1.2	
		38 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	2.0	
		44 mol% vinyl alcohol, melt index = 13.0 g/10 min	2.2	
Bending strength	MPa	ASTM D790		(1)
		27 mol% vinyl alcohol, melt index = $3.0 \text{g}/10 \text{min}$	149	
		32 mol% vinyl alcohol, melt index = 3.8 g/10 min	128	
		38 mol% vinyl alcohol, melt index = $3.8 \text{ g}/10 \text{ min}$	108	
Surface resistivity	ohm	Various films	$1.9 2.7 \times 10^{15}$	(1)
Volume resistivity	ohm cm	Various films	0.47 – 1.2×10^{13}	(1)
Thermal conductivity	$Wm^{-1}\ K^{-1}$	32 mol% vinyl alcohol, melt	0.35	(1)
		index = 3.8 g/10 min 44 mol% vinyl alcohol, melt index = 13.0 g/10 min	0.36	

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Water permeability	cm 3 25 μ m (m 2 day atm) $^{-1}$	Eval films, 40°C	21.7–124	(3)
Oxygen permeability	cm 3 25 μ m (m 2 day atm) $^{-1}$	Eval films, 23°C	0.095-1.8	(3)
Water absorption	%	24 h, Eval [®] F resins	0.19-7.7	(4)

^{*} The melt index values were obtained with ASTM D1238.

- Eval[®] Ethylene Vinyl Alcohol Copolymers Resins: Resins, Key Properties and Applications. Eval Company of America product bulletin, Lisle, Ill., 1992.
- 2. Barton, A. F. M. CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters. CRC Press, Boca Raton, Fla., 1990.
- 3. Permeability and Other Film Properties of Plastics and Elastomers. Plastics Design Library, New York, 1995.
- 4. Elias, H. G., and F. Vohwinkel. *New Commercial Polymers* 2. Gordon and Breach Science Publishers, New York, 1986.

Fullerene-containing polymers

WARREN T. FORD AND ALANTA LARY

CLASS Cage structure polymers

STRUCTURES

H HNR

$$C_6H_5$$
 C_6H_5
 C_6H_5

MAJOR APPLICATIONS Electrical and optical materials, crosslinking of elastomers, and low-friction films, none of which are commercial.

PROPERTIES OF SPECIAL INTEREST Electrical conductivity, photoconductivity, and nonlinear optical activity.

Fullerene-containing polymers

STRUCTURE	C ₆₀ (wt %)	$M_{\rm n}$ (g mol $^{-1}$)	${\it M}_{\rm w}/{\it M}_{\rm n}$	SOLVENTS	ANALYSES	REFERENCE
1 (R1)	18	20,000	NR	Toluene, CS ₂	¹³ C MAS NMR, IR, UV-vis, TGA	(1)
1 (R2)	2.6	20,000	NR	Toluene, THF, heptane	IR	(2)
1 (R3)	4.3	12,100	1.24	Toluene	UV, ¹³ C NMR, DSC	(3)
2	29	12,300	3.1	CHCl ₃ , THF, C ₆ H ₅ Cl	UV-vis, IR, ¹ H NMR, DSC, TGA	(4)
3	0.5	146,000	1.06	THF, toluene	Light scattering	(5)
3	0.9	82,000	Bimodal	_	_	_
3	14	5,300, 3,000	Bimodal	THF	SANS $R_g = 19.6 \text{Å}$	(6)
4	5	14,500	1.12	Toluene, THF	DSC, photoconductivity	(7)
4	2.2	12,900	1.8	Benzene, 1,4-dioxane	_	(8)
4	14	38,000 (M _w)	NR	CHCl ₃ , toluene, o-C ₆ H ₄ Cl ₂	-	(9)
5	7.7	4,200	1.8	_	¹³ C NMR, DSC, TGA	(10)
5	1.2	23,000	1.4	-	GPC (UV, RI, LS, viscometry)	(11)
6	NR	18,000	1.45	THF:DMF (3:1)	IR, DSC, TMA	(12)
1 (R4)	19	_	_	Insoluble	TGA, coeff. friction	(13)
Photo polymer of C ₆₀ (7)	100	$(720)_n$, $n = 1-21$	-	Insoluble	MS, SEM, IR, Raman, XRD, LDMS	(14) (15)
Pressure polymer of C ₆₀ (7)	100	(720) _n	-	Insoluble	XRD, Raman, IR, ¹³ C MAS NMR	(16)
Single-walled	d carbon na	notubes		liameter $\times > 1 \mu m$ long as of 100–500 tubes	XRD, SEM, TEM, single-rope $\rho < 10^{-4}$ ohm cm at 300 K	(17)
Multiwalled	carbon nan	otubes	Average long	7 nm diameter × 2 μm	TEM, tensile modulus $1.8 \times 10^6 \mathrm{MPa}$	(18)

Fullerene-containing polymers

- 1. Geckeler, K. E., and A. Hirsch. J. Am. Chem. Soc. 115 (1993): 3,850-3,851.
- 2. Patil, A. O., and G. W. Schriver. Macromol. Symp. 91 (1995): 73-79.
- 3. Weis, C., C. Friedrich, R. Mühlhaupt, and H. Frey. Macromolecules 28 (1995): 403-405.
- 4. Hawker, C. J. Macromolecules 27 (1994): 4,386-4,387.
- 5. Ederlé, Y., and C. Mathis. Macromolecules 30 (1997): 2,546-2,555.
- 6. Wignall, G. D., et al. Macromolecules 28 (1995): 6,000-6,006.
- 7. Wang, C., et al. Polym. Bull. 37 (1996): 305-311.
- 8. Cao, T., and S. E. Webber. Macromolecules 29 (1996): 3,826-3,830.
- 9. Sun, Y.-P., et al. Macromolecules 29 (1996): 8,441-8,448.
- 10. Camp, A. G., A. Lary, and W. T. Ford. Macromolecules 28 (1995): 7,959-7,961.
- 11. Ford, W. T., T. D. Graham, and T. H. Mourey. Macromolecules 30 (1997): 6,422-6,429.
- 12. Chiang, L. Y., L. Y. Wang, and C.-S. Kuo. Macromolecules 28 (1995): 7,574-7,576.
- 13. Nigam, A., et al. J. Chem. Soc., Chem. Commun. (1995): 1,547-1,548.
- 14. Rao, A. M., et al. Science 259 (1993): 955-957.
- 15. Cornett, D. S., et al. J. Phys. Chem. 97 (1993): 5,036-5,039.
- 16. Persson, P.-A., et al. Chem. Phys. Lett. 258 (1996): 540-546.
- 17. Thess, A., et al. Science 273 (1996): 483-487.
- 18. Treacy, M. M. J., T. W. Ebbesen, and J. M. Gibson. Nature 381 (1996): 678-680.

Gelatin

W. BROOKE ZHAO

CLASS Polypeptides and proteins

STRUCTURE +Glycine-X-Y $+_n$

X and *Y* are frequently proline and hydroxy-proline, respectively.

MAJOR APPLICATIONS Food, pharmaceutical, photographic, and biodegradable packaging materials.

PROPERTIES OF SPECIAL INTEREST The ability of gelation by temperature changes. Relatively low cost. The polypeptide backbone is biodegradable. Manufacturing from waste.

PREPARATIVE TECHNIQUES Thermal denaturation and physical and chemical degradation of collagen.

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENC
Amino acid composition	Numbers per		Туре А	Туре В	(1)
	1,000 residues	Alaine	112	117	-
		Arginine	49	48	
		Asparagine	16	0	
		Aspartic acid	29	46	
		Cysteine	_	0	
		Glutamic acid	48	72	
		Glutamine	48	0	
		Glycine	330	335	
		Histidine	4	4.2	
		Hydroxyproline	91	93	
		Hydroxylysine	6.4	4.3	
		Isoleucine	10	11	
		Leucine	24	24.3	
		Lysine	27	28	
		Methionine	3.6	3.9	
		Phenylalanine	14	14	
		Proline	132	124	
		Serine	35	33	
		Threonine	18	18	
		Tryptophan	_	_	
		Tyrosine	2.6	1.2	
		Valine	26	22	

Gelatin

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	Alpha Beta Gamma Limed-ossein Weight-average Number-average		9.65×10^{4} 1.93×10^{5} 2.89×10^{5} 2.2×10^{5} $(1 - >5) \times 10^{5}$ $(5-15) \times 10^{4}$	(1)
Gel rigidity	Bloom	Depending on source conditions	e and extracting	75–330	(1)
Density	$\rm gcm^{-3}$	_		1.35	(2)
IR (characteristic absorption frequencies)	cm^{-1}	-C=O stretching -NH stretching		1,650 3,300	(3)
Common solvents	Water (warm), acetic acid, trifluro-ethanol, formamide, ethylene glycol, glycerol, dimethyl sulfoxide				
Common nonsolvents	Ethanol, acetone, tetrahydrafuran				(1)
Isoionic pH	_	Type A Type B		4.8–5.2 7–9	(1)
pK_a of the ionizable side groups of gelatin	_	Anionic amino acid Aspartic acid Glutamic acid Tyrosine α -COOH Cationic amino acid Lysine Hydroxylysine Arginine Histidine α -NH $_2$	Conc. (mmol g ⁻¹) 0.50, 0.32 0.78, 0.52 0.011-0.044 0.011 0.30 0.054 0.53 0.044 0.011	4-4.5 4.5 10 3.6 10-10.4 9.5 >12 6.5-7 7.8	(4)
Mark-Houwink parameters:	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Calf skin gelatin		$K = 1.66 \times 10^{-5}$ $a = 0.885$	(5)
K and a		Pig skin		$K = 1.10 \times 10^{-4}$ $a = 0.74$	(6)
Radius of gyration	Å	Alpha Beta Gamma		138 215 257	(1)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Radius of gyration	Å	Solvent	M _w (ossein gelatin)		(7)
		1.0 M KCNS, 25°C, pH = 5.1 0.15 M NaCl, 40°C	90,000	175	
		pH = 5.1	89,000	165	
		pH = 3.1	88,000	175	
			M _w (Type B)	_	(8)
		0.05 M phosphate	2.7×105	302	
		1.0 M KCNS	3.02×105	302	
		1.0 M KCNS	3.83×105	242	
		1.0 M KCNS	5.96×105	280	
			$M_{\rm w}$ (bovine corium		(9)
		Alcohol-water ratio	extract)	_	
		$2:1 \sim 2.5:1$	8.33×10^{6}	2,410	
		$2.5: 1 \sim 3.0:1$	$7.45 imes 10^5$	444	
		$2.5: 1 \sim 3.0:1$	3.45×10^{5}	314	
		$2.5:1 \sim 3.0:1$	2.32×10^{5}	371	
		$3.0:1 \sim 3.5:1$	2.02×10^{5}	345	
			$M_{ m w} imes 10^{-5}$		(10)
		0.2 M KCl	3.3 (acid-precusor)	452	
		0.2 M KCl	3.3 (alkali-precusor)	447	
		Rousselot gelatin, ph $M_{\rm w} = 1.9 \times 10^5$, M	otographic grade,	350 ± 40	(11)
Radius of gyration of the cross-section R_c	Å	Rousselot gelatin, ph $M_{\rm w} = 1.9 \times 10^5, M$		3.2 ± 1	(11)
Root-mean-square	Å	Solvent	$M_{ m w}$ (Type B gelatin)	_	(8)
end-to-end		0.05 M phosphate	2.7×10^{5}	740	
distance $(\overline{r^2})^{1/2}$		1.0 M KCNS	3.02×10^{5}	740	
		1.0 M KCNS	3.83×10^{5}	590	
		1.0 M KCNS	5.96×10^5	685	
Expansion	_	Solvent	$M_{\rm w}$ (Type B gelatin)	_	(8)
coefficient α		1.0 M KCNS	3.83×10^{5}	1.25	
		1.0 M KCNS	5.96×10^5	1.25	
Universal constant	_	Solvent	$M_{ m w}$ (Type B gelatin)		(8)
Φ		1.0 M KCNS	3.83×10^{5}	1.29×10^{21}	
		1.0 M KCNS	5.96×10^{5}	1.63×10^{21}	

Gelatin

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Second virial	$mol cm^3 g^{-2}$	Solvent	M _w (ossein gelatin)		(7)
coefficient A_2		1.0 M KCNS, 25°C pH = 5.1 0.15 M Nalco, 40°C	9 × 10 ⁴	2.6×10^{-4}	
		pH = 5.1 pH = 3.1	8.9×10^4 8.8×10^4 $M_{\rm w}$ (Type B)	$2.9 \times 10^{-4} \\ 6.0 \times 10^{-4}$	(8)
		0.05 M phosphate 1.0 M KCNS 1.0 M KCNS 1.0 M KCNS	$ 2.7 \times 10^{5} 3.02 \times 10^{5} 3.83 \times 10^{5} 5.96 \times 10^{5} $	2.4×10^{-4} 2.6×10^{-4} 3.3×10^{-4} 2.4×10^{-4}	
		Rousselot gelatin, p $M_{\rm w} = 1.9 \times 10^5, N_{\rm w}$		$(3\pm1)\times10^{-4}$	(11)
Persistence length l	Å	Rousselot gelatin, p $M_{\rm w} = 1.9 \times 10^5, N_{\rm w}$		20 ± 3	(11)
Mass per unit length	$g \; mol^{-1} \; \mathring{A}^{-1}$	Rousselot gelatin, p $M_{\rm w} = 1.9 \times 10^5, N_{\rm w}$		28 ± 8	(11)
Screen length ξ	Å	Rousselot gelatin, p $M_{\rm w} = 1.9 \times 10^5, N$ 1% 2% 5%		70 ± 10 51 ± 5 35 ± 3	(11)
Hydrodynamic screen length $\xi_{\rm h}$	Å			25-100	(12)
Sizes of inhomogeneities <i>a</i>	Å	Rousselot gelatin, photographic grade, $M_{\rm w}=1.9\times10^5,M_{\rm w}/M_{\rm n}=2.3$ 1% 2% 5%			(11)
z -average self-diffusion coefficient $\langle D_0 \rangle_{\rm z}$	$\mathrm{cm^2s^{-1}}$	Quasi-elastic light scattering, dilute solution Rousselot gelatin, photographic grade, $M_{\rm w}=1.9\times10^5$, $M_{\rm w}/M_{\rm n}=2.3$		2×10^{-7} (fast-mode) 3.5×10^{-8} (slow-mode)	(12)
Hydrodynamic radius R_h	Å	Quasi-elastic light s gelatin, photogra $M_{\rm w}=1.9\times10^5$, M In dilute solution In semi-dilute sol	$M_{\rm w}/M_{\rm n}=2.3$	220 210	(12)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Flory-Huggins interaction parameter χ	-	Type A gelatin 283.15 K 293.15 K		0.497-0.498 0.497	(13)
Self-diffusion coefficient <i>D</i>	$\mathrm{cm}^2\mathrm{s}^{-1}$	Gelatin, quasi- elastic neutron scattering	Volume fraction 0.031 0.063 0.129 0.199 0.274 0.353	1.36×10^{7} 1.01×10^{7} 7.1×10^{6} 6.1×10^{6} 5.3×10^{6} 4.9×10^{6}	(14)
Collective self-diffusion coefficient $D_{\rm coll}$	$\mathrm{cm}^2\mathrm{s}^{-1}$	Gelatin, quasi- elastic neutron scattering	Volume fraction 0.031 0.063 0.129 0.199 0.274 0.353	4.8×10^{6} 5.2×10^{6} 5.2×10^{6} 5.4×10^{6} 5.1×10^{6} 4.8×10^{6}	(14)
Single-particle self-diffusion coefficient $D_{\text{s-p}}$	$\mathrm{cm}^2\mathrm{s}^{-1}$	Gelatin, quasi- elastic neutron scattering	Volume fraction 0.031 0.063 0.129 0.199 0.274 0.353	8.8×10^{6} 4.9×10^{6} 1.9×10^{6} 7.0×10^{5} 2.0×10^{5} 1.0×10^{5}	(14)
Residence time τ_0	S	Gelatin, quasi- elastic neutron scattering	Volume fraction 0.031 0.063 0.129 0.199 0.274 0.353	2.0 2.7 9.8 22 66 165	(14)
Specific optical rotation $[\alpha]$	Degree	Alpha Beta Gamma Limed-ossein		-137 -137 -137 -137	(1)
Refractive index	_	Dry, $\lambda = 546.1 \mathrm{nm}$		1.54	(15)

_		
(-0	latin	١

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Refractive	_	$\lambda = 300 \mathrm{nm}$	0.187	(16)
increment dn/dc		$\lambda = 436\mathrm{nm}$		
		Ossein gelatin	(7)	
		H ₂ O, 25°C	0.194	
		0.1 M NaCl, 25°C	0.1925	
		1.0 M NaCl, 25°C	0.186	
		1.0 M KCNS, 25°C	0.185	
		2.0 M KCNS, 25°C	0.173	
		Bovine corium extract		
		H ₂ O, 40°C	0.192	(9)
		0.25 M NaCl, 40°C	0.192	(9)
		0.10 M KCl, 40°C	0.192	(9)
		0.25 M KCl, 40°C	0.192	(9)
		1.0 M KCl, 40°C	0.176	(17)
		Type B gelatin		(8)
		1.0 M KCNS, 30°C	0.172	(-)
		0.1 M KH ₂ PO ₄ , 30°C	0.172	
		0.1 M K ₂ HPO ₄ , 30°C	0.172	
		$\lambda = 632.8 \text{nm}$, Rousselot gelatin,	0.18	(11)
		photographic grade, $M_{\rm w}=1.9\times10^5$, $M_{\rm w}/M_{\rm n}=2.3$	0.10	(11)
Glass transition	K	Dilatometry	368	(18)
temperature $T_{\rm g}$		Viscoelastic	393	` '
1 8		Viscoelastic	463 (calculated)	
		Viscoelastic	453	
		Thermomechanical	473	
		DTA, viscoelastic	448 ± 10	
		,	(uncross-linked)	
		DTA, viscoelastic	469 ± 3	
		2 114, (1866)	(cross-linked)	
Melting	K	Dilatometry	418	(18)
temperature $T_{\rm m}$		DTA, X-Ray	491	,
temperature 1 _m		Viscoelastic	493	
		DTA, TGA	503 (calculated)	
		DSC	503	
		DTA, X-Ray	503	
Activation energy of hydrolysis	$kJ mol^{-1}$	pН		(19)
	Ny IIIOT	3.05	107.2	` /
		3.60	107.2	
		4.75	72.2	
		7.10	72.2	
		8.50	72.2	
		9.35	72.2	
		9.85	108.8	
		7.00	100.0	

					Gelatin
PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Contact angle of	Degrees	15% aqueous gelatin gel, 20°C		75	(20)
water		Gelatin hydrogel		(21)	
		Air-equilibrated surface	110		
		Fresh-cut wet surface	36		
		Gelatin film, Langmuir-Blog	-		(22)
		Surface in contact with ai		110	
		Surface in contact with be	enzene	90	
Tensile strength MPa		Type B, uniaxially	Stretching ratio (%)		(23)
O		oriented in water, ν_2 at	0	25.61	, ,
	stretching = 0.2 – 0.25	65	41.57		
	<u> </u>	120	63.39		
		145	84.84		
			180	27.87(⊥)*	
		87	74.94		
		Biaxial Type A, uniaxially	0	28.36	
		oriented in water, ν_2 at	75	54.48	
		stretching = $0.2-0.25$	125	80.88	
		<u> </u>	155	109.19	
			190	139.80	
			110	60.46(⊥)*	
			160	44.31(⊥)*	
		Biaxial	50	50.68	
			90	104.47	
			110	128.37	
Tensile modulus	MPa	Type B, uniaxially oriented	Stretching ratio (%)		(23)
		in water, ν_2 at	0	473	,
		stretching = $0.2-0.25$	65	690	
		<u> </u>	120	790	
			145	1300	
			180	930(⊥)*	
			87	1345	
		Biaxial Type A, uniaxially	0	631	
		oriented in water, ν_2 at	75	890	
		stretching = $0.2-0.2\overline{5}$	125	1090	
		~	155	1240	
			190	1690	
			110	1100(⊥)*	
			160	1040(⊥)*	
		Biaxial	50	1090	
			90	1200	

Gelatin

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Elongation at break	%	Type B, uniaxially	Stretching ratio (%)		(23)
· ·		oriented in water, ν_2 at	0	7.7	, ,
		stretching = 0.2 - 0.25	65	8.3	
		<u> </u>	120	12.3	
			145	8.3	
			180	3.6(⊥)*	
			87	15.5	
		Biaxial Type A, uniaxially	0	6.7	
		oriented in water ν_2 at	75	11.4	
		stretching = $0.2-0.25$	125	14.9	
		e e e e e e e e e e e e e e e e e e e	155	21.6	
			190	22.5	
			110	$7.7(\perp)^*$	
			160	5.5(⊥)*	
		Biaxial	50	5.86	
			90	14.5	
			110	18.4	
Toughness	MPa	Type B, uniaxially	Stretching ratio (%)		(23)
		oriented in water, ν_2 at	0	1.24	
		stretching = 0.2-0.25	65	2.31	
			120	5.00	
			145	4.05	
			180	$0.60(\pm)^*$	
			87	8.93	
		Biaxial Type A, uniaxially	0	1.26	
		oriented in water, ν_2 at	75	4.15	
		stretching = $0.2-0.25$	125	8.42	
		<u> </u>	155	17.13	
			190	23.85	
			110	3.00(⊥)*	
			160	1.45(⊥)*	
		Biaxial	50	1.86	
			90	9.51	
			110	17.56	

^{*}Property measured at the direction perpendicular to the orientation direction.

- 1. Rose, P. I. In *Encyclopedia of Polymer Science and Engineering*, Vol. 7, edited by H. F. Mark et al. John Wiley and Sons, New York, 1987.
- 2. Chien, J. C. W. J. Macromol. Sci. Rev. Macromol. Chem. 12 (1975): 1.
- 3. Veis, A. Macromolecular Chemistry of Gelatin. Academic Press, New York, 1964, p. 49.
- 4. Kenchington, A. W., and A. G. Ward. Biochem. J. 58 (1954): 202.
- 5. Pouradier, J., and A. M. Venet. J. Chem. Phys. 47 (1950): 391.
- 6. Pouradier, J., and A. M. Venet. J. Chem. Phys. 49 (1950) 85.
- 7. Boedtker, H., and P. Doty. J. Phys. Chem. 58 (1954) 968.
- 8. Gouinlock, E. V., Jr., P. J. Flory, and H. A. Scheraga. J. Polym. Sci. 16 (1955): 383.
- 9. Veis, A., D. N. Eggenberger, and J. Cohen. J. Am. Chem. Soc. 77 (1955): 2,368.

- 10. Veis, A., and J. Cohen. J. Polym. Sci. 26 (1957): 113.
- 11. Pezron, I., M. Djabourov, and J. Leblond. Polymer 32 (1991): 17.
- 12. Herning, T., M. Djabourov, J. Leblond, and G. Takerkart. Polymer 32 (1991): 3,211.
- 13. Holtus, G., H. Cölfen, and W. Borchard. Progr. Colloid. Polym. Sci. 86 (1991): 92.
- 14. Mel'nichenko, Y. B., and L. A. Bulavin. Polymer 32 (1991): 3,295.
- 15. Sklar, E. Photogr. Sci. Eng. 13 (1969): 29.
- 16. Lewis, M. S., and K. A. Piez. Biochemistry 3 (1964): 1126.
- 17. Veis, A., and J. Cohen. J. Am. Chem. Soc. 78 (1956): 6,238.
- 18. Yannas, I. V. J. Macromol. Sci. Revs. Macromol. Chem. C7(1) (1972): 49.
- 19. Marshall, A. S., and S. E. B. Petrie. J. Photogr. Sci. 28 (1980): 128.
- 20. Yasuda, T., T. Okuno, and H. Yasuda. Langmui, 10 (1994): 2,435.
- 21. Wolfram, E., and C. Stergiopulos. Acta Chim. Acad. Sci. Hung. 92 (1977): 157.
- 22. Mironjuk, N. V., and B. D. Summ. Vysokomol Soedin., Ser. 24 (1982): 391.
- 23. (a) Zhao, W., Ph.D. Thesis, University of Cincinnati, 1995. (b) Zhao, W., et al. *J. Macromol. Sci. Pure Appl. Chem.* A33(5) (1996): 525. (c) Zhao, W., et al. *CHEMTECH* 26 (1996): 32.

Glycogen

RACHEL MANSENCAL

CLASS Carbohydrate polymers; polysaccharides.

STRUCTURE Branched glucan. α -D-glucopyranosyl units joined by α -D-(1 \rightarrow 4) glycosidic linkages. (1-2)

FUNCTIONS Biological function restricted to source of energy. Principal food-reserve materials in animals. Found in cells of vertebrates and invertebrates. No commercial use. $^{(1-2)}$

EXTRACTION Extraction with hot concentrated alkali. But extensive degradation. Milder extraction with cold trichloracetic acid solution, dimethyl sulfoxide, or water-phenol mixtures. $^{(1-6)}$

PURIFICATION After extraction, redissolution in distilled water; low speed centrifugation (100 g); precipitation with excess ethanol; high speed centrifugation (1,500 g).

PROPERTIES OF SPECIAL INTEREST Amorphous polymer; very high molecular weight; polydisperse; highly soluble; very good hydrodynamic behavior. (1–2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight	$g \text{mol}^{-1}$	Rabbit liver	2.7×10^{8}	_
Average degree of polymerization	_	-	1.7×10^6	(1-2)
Average chain length	-	Depending on the source of the glycogen and the method used	6-21	(1-2)
Average interior chain length	-	Depending on the source of the glycogen and the method used	2–5	(1-2)
Morphology	_	α -particle $\approx 100~\beta$ -particles β -particle diameter $= 25~\mathrm{nm}$	-	(2)

Action of enzymes on glycogen⁽²⁾

Enzyme	Glucosidic bond attacked	Source
Phosphorylase	$(1 \rightarrow 4)$ - α	Plants, microbes, mammals
Amylo-1,6-glucosidase	$(1 \rightarrow 4)$ - α $(1 \rightarrow 6)$ - α	Yeast, mammals
Pullulanase	$(1 \rightarrow 6)$ - α	Aerobacter aerogenes
Glucoamylase	$(1 \rightarrow 4)$ - α	Microbes
Isoamylase	$(1 \rightarrow 6)$ - α	Cytophaga pseudomonas
β -Amylase	$(1 \rightarrow 4)$ - α	Sweet potato, cereals

Weight mean sedimentation coefficients of glycogen fraction (2)

Fraction number	$s_{20,w}^0$ at boundary (S)	Absolute range (S)	$\bar{\mathbf{s}}_{\mathbf{w}} \; (\mathbf{S})$
20	0	0-85	26
19	46	0-181	85
18	114	40-292	175
17	225	150-419	291
16	353	278-561	422
15	495	420-717	570
14	651	576-884	732
13	818	743-1,061	904
12	915	920-1,249	1,087
11	1,182	1,107-1,444	1,278
10	1,378	1,303-1,648	1,478
9	1,581	1,507-1,858	1,658
8	1,792	1,717-2,074	1,898
7	2,008	1,933-2,298	2,117
6	2,231	2,156-2,531	2,346
5	2,464	2,389-2,781	2,588
4	2,714	2,639-3,064	2,855
3	2,998	2,923-3,428	3,178
2	3,361	3,286-4,020	3,647
1	3,953	3,878-7,077	4,335
0	7,010	-	_

Glycogen

Z-average standard diffusion coefficients of glycogen fractions⁽²⁾

Fraction number	$\overline{\mathrm{D}}\mathrm{z}~(\mathrm{10^{-8}~cm^2~s^{-1}})$
20	2.56 ± 0.02
19	2.7 ± 0.4
18	4.3 ± 0.3
17	5.90 ± 0.07
16	5.8 ± 0.1
15	5.1 ± 0.1
14	4.3 ± 0.1
13	3.6 ± 0.1
12	3.4 ± 0.1
11	3.01 ± 0.05
10	2.74 ± 0.07
9	2.73 ± 0.04
8	2.59 ± 0.04
7	2.42 ± 0.04
6	2.6 ± 0.2
5	2.27 ± 0.06
4	2.42 ± 0.06
3	2.21 ± 0.04
2	2.18 ± 0.02
1	2.5 ± 0.1

Hydrodynamic parameters for glycogen subfractions^(2,7)

Fraction number	Average molecular weight $(\times 10^{-6})$	Scheraga-Mandelkern function $oldsymbol{eta} (imes \mathbf{10^{-6}})$	Viscosity (ml g ⁻¹)	Frictional ratio (f/f_{\min})
20	6	0.61	14	7.1
19	20	0.71	9	5.0
18	26	1.26	6.5	2.6
17	32	1.75	6.0	1.8
1-16	48-1600	2.06 ± 0.17	6.7 ± 0.4	1.7 ± 0.1

- 1. BeMiller, J. N. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, 1989, vol. 3, p. 545–551.
- 2. Geddes, R. In *The Polysaccharides*, edited by G. O. Aspinal. Academic Press, New York, 1985, vol. 3, p. 283–336.
- 3. Pfluger, E. F. W. Arch. Gen. Physiol. 129 (1909): 362.
- 4. Stetten, M. R., H. M. Katzen, and D. Setten, Jr. J. Biol. Chem. 222 (1956): 587.
- 5. Whistler, R. L., and J. N. Be Miller. Arch. Biochem. Biophys. 98 (1962): 120
- 6. Laskov, R., and E. Margoliash. Bull. Res. Counc. Isr., Sect A, 11(4) (1963): 351.
- 7. Geddes, R., J. D. Harvey, and P. R. Wills. Biochem. J. 163 (1977): 201.

Hydridopolysilazane

DONNA M. NARSAVAGE-HEALD

ACRONYM HPZ

CLASS Polysilazanes

EMPIRICAL FORMULA $(SiH)_{39.7}(Me_3Si)_{24.2}(NH)_{37.3}(N)_{22.6}$

MAJOR APPLICATION Composites

PROPERTIES OF SPECIAL INTEREST Preceramic polymer; melt-spinnable polymer; produces a ceramic fiber upon pyrolysis.

PREPARATIVE TECHNIQUE Condensation (step) polymerization: Exothermic reaction; temperature rises to 75°C. Mixture is heated to 150°C and eventually to 200–230°C. Reaction of trichlorosilane with hexamethyldisilazane ($1 \ge 3$ mol ratio) in Ar purged flask at room temperature. (1)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight	g mol ⁻¹	GPC data	$M_{\rm n} = 3,800$ $M_{\rm w} = 15,100$ $M_{\rm z} = 38,000$	(1)
NMR	ppm	¹ H	0.2, broad, SiMe 1.0, broad, NH 4.8, broad, SiH	(1)
Glass transition temperature	K	TMA	368	(1)
Melt viscosity	P	Determined using a viscometer in a glove box; at 503 K	100	(1)
Pyrolyzability, nature of product	_	$3^{\circ}\text{C min}^{-1}$ to 1,200°C under high purity N_2	Silicon carbonitride	(1)
Pyrolyzability, amount of product	_	TGA, N_2 flow	74%	(1)
Pyrolyzability, impurities remaining	_	$3^{\circ}\text{C min}^{-1}$ to 1,200°C under high purity N_2	~5 wt% carbon, 2.2 wt% oxygen	(1)
Decomposition temperature	K	TGA	563	(1)
Fiber spinning	_	Inert atmosphere	$Fibers \leq 1520\mu\text{m}$ obtained	_
Important patents		U.S. Patent 4,535,007 U.S. Patent 4,543,344		(2) (3)

Hydridopolysilazane

- 1. Legrow, G. E., et al. Am. Cer. Soc. Bull. 66(2) (1987): 363-367.
- 2. Cannady, J. P. U.S. Patent 4,535,007 (13 August 1985).
- 3. Cannady, J. P. U.S. Patent 4,543,344 (24 September 1985).

Hydroxypropylcellulose

YONG YANG

ACRONYM HPC

CLASS Carbohydrate polymers

STRUCTURE

$$\begin{array}{c|c} CH_2OR \\ H \\ OR \\ H \\ OR \end{array}$$

(R is $CH_2CH(OR')CH_3$ or H, R' is R or H)

MAJOR APPLICATIONS Paints, coatings, inks, adhesives, cosmetics, papers, pharmaceuticals, encapsulation.

PROPERTIES OF SPECIAL INTEREST Water and alcohol soluble.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	Molar substitution $(MS) = 3.0$	336	_
Preparation		$+$ NaOH \rightarrow Na-cellulose (alkali cellulose) ose $+$ Propylene oxide \rightarrow Hydroxypropylcellulos	e	(1)
Density	$\rm gcm^{-3}$	Water cast film	1.17	(2)
¹³ C NMR	_	_	_	(3)
IR (characteristic absorption frequencies)	cm ⁻¹	Assignment (OH) side chain stretching (OH) ring stretching (CH ₃) asymmetric stretching (CH ₂) asymmetric stretching (CH ₂) symmetric stretching (CH ₃) symmetric stretching (CH ₃) symmetric stretching and CH ring stretching (CH ₃) asymmetric bending deformation (OH + CH) side chain bending deformation (OH + CH) ring bending deformation (CH ₃) symmetric bending deformation (OH + CH) ring bending deformation (OH + CH) ring bending deformation (OH + CH) side chain bending deformation	3,450 3,440 2,965 2,930 2,900 2,870 1,455 1,425 1,410 1,373 1,324 1,300	(2, 4)

Hydroxypropylcellulose

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR (characteristic absorption frequencies)	cm ⁻¹	Assignment (CH) ring bending deformation	1,265	
,		(C–O–C) ring asymmetric stretching	1,150	
		(C–O) side chain stretching	1,126	
		(C-O-C) ring asymmetric stretching	1,120	
		(C–O–C) side chain asymmetric stretching	1,085	
		(C–O) ring stretching	1,055	
		(C–O–C) ether bridge asymmetric stretching	1,045	
Solvents	chloro dichlo dimetl ethyle: 2-hydi 2-metl 2,2'-ox 1-prop	cid*, acetone*, acetonitrile*, benzene:water (1:1), form, cyclohexanone, dichloroacetice acid*, romethane*, <i>N</i> , <i>N</i> -dimethylacetamide*, nylformamide*, dimethylsulfoxide*, dioxane*, eth ne glycol monomethyl ether*, formamide*, formic roxyethyl methacrylate*, isopropanol*, methanol*, noxyethanol*, methyl ether ketone*, morphloline*, ydiethanol*, 1-pentanol*, phenol*, 1,2-propanedic anol*, propylene glycol, pyridine*, tetrahydrofuran, hate*, trifluoroacetic acid*, trimethyl phosphate*,	e acid*, , , ol*, triethyl	(5–10)
Nonsolvents		c hydrocarbons, benzene, carbon tetrachloride, mo form, toluene, trichloroethylene	ethyl	(5–10)

^{*}Forms liquid crystalline mesophase

Solubility parameter (δ) and interaction parameter (χ) at infinite dilution*(11,12)

Solvent	δ (MPa $^{1/2}$)	χ
Acetic acid	25.6	-2.28
Acetic anhydride	20.8	-1.65
Acetone	19.3	0.38
1-Butanol	24	0.26
n-Butyl acetate	17.2	0.14
Cyclohexane	16.3	0.96
Cyclohexanol	21.0	2.31
Cyclohexanone	20.1	0.18
N-Decane	18.8	1.83
Dichloromethane	19.8	-0.38
N,N-dimethylformamide	29.3	-0.01
Dimethylsulfoxide	25.8	-0.19
Diethyl ether	15.1	-0.14
1,4-Dioxane	19.3	0.06
Ethanol	26	0.38
N-haptane	14.8	0.10
Methanol	29	0.47
1-Proponal	24	0.26
2-Proponal	24	0.43

Solvent	δ (MPa $^{1/2}$)	χ
Pyridine	21.0	-0.42
Tetrachloromethane	16.8	0.45
Tetrahydrofuran	18.6	-0.12
Toluene	17.7	0.17
Trichloromethane	18.0	-0.73
Water	47	1.55

^{*}By inverse GC; MS = 4.0; $M_{\rm w} = 10^5$; 323.4 K.

Unit cell dimension⁽²⁾

Lattice	Monomers	Chains	Cell dimension (Å)		
	per unit cell	per unit cell	a	b	с
Tetragonal	6	2	11.3	11.3	15.0

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ $a = \text{None}$	$[\eta] = K'_{\rm m}$ (DP = Degree of polymerization), ethanol, 25°C	$K'_{\rm m} = 0.121$ a = 1.17	(13)
Chain conformation	_		Irregular 3 ₁ helix	(2)
Degree of crystallinity	%	Water cast film	14.9	(2)
Heat of fusion (of repeat units)	$kJ mol^{-1}$	Melting point depression due to a diluent	10.6	(2)
Entropy of fusion (of repeat units)	$kJ mol^{-1}$	Melting point depression due to a diluent	0.021	(2)
Density	$g cm^{-3}$	Amorphous region, 24° C Crystalline region, $MS = 4.0$, calculated from crystallographic data	1.088 2.054	(2)
Glass transition temperature	K	Dynamic mechanical property measurement	298	(14)
Melting point	K	MS = 4	481	(2)
Mesomeric transition temperature	K	Isotropic to cholesteric	433-473	(15)

Hydroxypropylcellulose

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile modulus	MPa	_	414	(16)
		$MS = 4.25$, H_2O cast	440	(17)
		MS = 4.25, MeOH cast	1240	(17)
		MS = 4.25, DMAc cast	570	(17)
			703	(8)
		$\begin{split} MS = 4.0, & \text{ lightly cross-linked,} \\ \overline{M}_c = 1.23 \times 10^3 \text{ g mol}^{-1} \end{split}$	6.2×10^2	(18)
Storage modulus	MPa	288-413 K, 110 Hz	$(2.5 - 0.3) \times 10^3$	(5)
Loss modulus	MPa	288-413 K, 110 Hz	$(2.6 0.4) \times 10^2$	(5)
Tensile strength	MPa	_	13.8	(16)
8.		$MS = 4.25$, H_2O cast	9.3	(17)
		MS = 4.25, MeOH cast	24	(17)
		MS = 4.25, DMAc cast	9	(17)
		100 = 4.25, Divirie cust	16	(19)
		$\begin{split} MS = 4.0 \text{, lightly cross-linked,} \\ \overline{M}_c = 1.23 \times 10^3 \text{g mol}^{-1} \end{split}$	16	(18)
Maximum extensibility	%	_	50	(20)
,		Cross-head speed = $5 \mathrm{mm min}^{-1}$		(17)
		$MS = 4.25$, H_2O cast	17.3	,
		MS = 4.25, MeOH cast	3.5	
		MS = 4.25, DMAc cast	7.0	
		Cross-head speed = 2.5mm min^{-1} , MS = 4.0 , lightly cross-linked, $\overline{M}_c = 1.23 \times 10^3 \text{g mol}^{-1}$	100	(18)
Index of refraction <i>n</i>	_	-	1.48	(2)
D (1	ı –1	Til 1) 546	0.420	(20)
Refractive index	$\mathrm{ml}\mathrm{g}^{-1}$	Ethanol, $\lambda = 546 \text{nm}$	0.120	(20)
increment dn/dc		Water, $\lambda = 436 \text{nm}$	0.146	
		Water, $\lambda = 546 \text{nm}$	0.143	
		Water, $\lambda = 578 \mathrm{nm}$	0.143	
Dielectric constant ε''	_	1,000 Hz, 297 K		(1)
Dielectric constant		101.3 kPa, 38% RH	9.07	(-)
		133 Pa, 0% RH	6.71	
Dialoguio los //		1 000 H_ 207 V		(1)
Dielectric loss ε''	_	1,000 Hz, 297 K	0.0707	(1)
		101.3 kPa, 38% RH	0.0706	
		133 Pa, 0% RH	0.0408	
Resistivity	$\rm ohmcm^{-1}$	297 K, 101.3 kPa, 38% RH	5×10^9	(1)
130311VILY	Omnem	133 Pa, 0% RH	9×10^{11}	(1)
		133 f a, U/0 INI I	9 X 10	

			Hydroxy	propylcellulose
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Water absorption	%	50% RH, 296 K 84% RH, 296 K	4 12	(1)
Supplier	01760, 1	International Chemical, Inc., 1 USA n Chemical Corp., 16 School Str	,	,

Hercules, Inc., 1313 North Market Street, Wilmington, Delaware 19894, USA

- 1. KLUCEL Hydroxypropylcellulose. Hercules, Inc., Wilmington, Del., 1987.
- 2. Samuels, R. J. J. Polym. Sci., Part A-2, 7 (1969): 1,197.
- 3. Kimura, K., T. Shigemura, M. Kubo, and Y. Maru. Macromol. Chem. 186 (1985): 61.
- 4. Zhbankov, R. G. In *Infrared Spectra of Cellulose and Its Derivatives*, edited by A. B. I. Stepanov. Consultants Bureau Publishing, New York, 1966.
- 5. Gray, D. G. J. Appl. Polym. Sci., Applied. Polym. Symp., 37 (1983): 179.
- Fuchs, O. In Polymer Handbook, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/379.
- 7. Nishio, T., T. Yamane, and T. Takahashi. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 1,043.
- 8. Bheda, J., J. F. Fellers, and J. L. White. Colloid and Polym. Sci. 258 (1980): 1,335.
- 9. Werbowyj, R. S., and D. G. Gray. Macromolecules 17 (1984): 1,512.
- 10. Werbowyj, R. S., and D. G. Gray. Macromolecules 13 (1980): 69.
- Barton, A. F. M. CRC handbook of Polymer-Liquid Interaction and Solubility Parameters. CRC Press, Boca Raton, Fla., 1990.
- 12. Aspler, J. S., and D. G. Gray. Macromolecules 12 (1979): 5,626; Polymer 23 (1982): 43.
- 13. Gröbe, A. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. V/117.
- 14. Suto, S., M. Kudo, and M. Karasawa. J. Appl. Polym. Sci. 31 (1986): 1,217.
- 15. Shimaura, K, J. L. White, and J. F. Fellers. J. Appl. Polym. Sci. 26 (1981): 2,165.
- Just, E. K., and T. G. Magewicz. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. Wiley-Interscience, New York, Vol. 3, 1985.
- 17. Suto, S., Tashiro, H., and M. Karasawa. J. Appl. Polym. Sci. 45 (1992): 1,569.
- 18. Yang, Y. Ph.D. Thesis. University of Cincinnati, 1993.
- 19. Yanajida, N., and M. Matsuo. Polymer 33(5) (1992): 996.
- Huglin, M. B. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/466.

Kevlar

BRENT D. VIERS

ACRONYM, ALTERNATIVE NAMES PPTA, poly(p-phenylene terephthalamide), aramid, aramide, polyaramid, polyaramide

IUPAC NOMENCLATURE Poly(imino-1,4-phenyleneiminocarbonyl-1,4-phenylenecarbonyl)

CAS REGISTRY NUMBER 24938-64-5

CLASS Aromatic polyamides

STRUCTURE

MAJOR APPLICATIONS Cut, heat, and bullet-fragment resistant apparel, brake and transmission friction parts, gaskets, ropes and cables, composites, fiber-optic cables, circuit-board reinforcement, sporting goods, tires, automotive belts and hoses.

MAJOR FORMS Continuous filament yarn, staple, wet and dry pulp floc, cord.

PROPERTIES OF SPECIAL INTEREST High tensile strength at low weight, low elongation to break, high modulus (structural rigidity), low electrical conductivity, high chemical resistance, low thermal shrinkage, high toughness (work-to-break), excellent dimensional stability, high cut resistance, flame resistant, self-extinguishing.

OTHER POLYMER SHOWING THIS SPECIAL PROPERTY Polybenzamide. (See also the entry on *Polybenzamide* in this handbook.)

SUPPLIER Kevlar is a registered trademark of E. I. Dupont de Nemours.

Preparative techniques

PROPERTY	CONDITIONS	VALUE	REFERENCE
Condensation of terephthaloyl chloride and paraphenylene diamine	Interfacial polymerization Low temperature solution condensation		(1)
Direct syntheses	Yamazaki procedure (PBA): Para-aminobenzoic acid (pABA) Pyridine (as acid scavenger) (Py) N-methyl pyrrolidone (NMP) Triphenyl phosphate activator (TPP) Lithium chloride (LiCl) Dry conditions/inert atmosphere	$\begin{split} &[\text{pABA}] = 0.75 \text{mol I}^{-1} \\ &\text{NMP/Py} = 3 (\text{v/v}) \\ &3.7\% \text{LiCl}_2 (\text{w/v}) \\ &[\text{TPP}]/[\text{pABA}] = 0.6 \\ &T = 115 ^{\circ}\text{C} \\ &(\text{higher } M_{\text{w}} \text{when TPP} \\ &\text{added stepwise}) \end{split}$	(2)

Effect of salt in the synthesis of PBA⁽²⁾

LiCl ₂ (% w/v)	CaCl ₂ (% w/v)	LiCl + CaCl ₂ (% w/v)	η_{inh} (dl g^{-1})
3.7	0.0	3.7	2.00*
3.7	11.3	15.0	2.15^{*}
0.9	2.8	3.7	0.85^{*}
1.6	4.8	6.4	1.53^{\dagger}
1.4	0.0	1.4	1.82^{\dagger}
6.7	0.0	6.7	2.19^{\dagger}

[[]pABA] = 0.75; NMP/Py = 3; [TPP]/[pABA] = 0.6.

Effect of salt in the synthesis of PPTA⁽²⁾

LiCl ₂ (% w/v)	CaCl ₂ (% w/v)	LiCl + CaCl ₂ (% w/v)	η_{inh} (dl g^{-1})
2.7	0.0	2.7	0.32*
0.7	2.0	2.7	0.21^{*}
0.0	3.5	3.5	0.24^{*}
5.5	0.0	5.5	1.22^{\dagger}
6.7	0.0	6.7	1.16^{\dagger}
0.0	6.7	6.7	1.26^{\dagger}
1.7	5.0	6.7	6.84^{\dagger}

[[]TA] = 0.125; NMP/Py = 1.5; [TPP]/[TA] = 2.0.

 $^{^{\}dagger}$ [pABA] = 0.27; NMP/Py = 5; [TPP]/[pABA] = 0.6; $T = 115^{\circ}$ C.

 $^{^{\}dagger}$ [TA] = 0.083; NMP/Py = 5; [TPP]/[TA] = 2.0.

Kevlar

Effect of reactant ratios in the synthesis of PBA⁽²⁾

[TPP]/[pABA]	η_{inh} (dl g^{-1})
0.4	0.31*
0.6	2.00^{*}
0.8	1.80^{*}
1.0	1.26^{*}
0.4	0.10^{\dagger}
0.6	1.53^{\dagger}
0.8	1.38^{\dagger}
1.0	1.40^{\dagger}

^{*}Yamakazi conditions: [pABA] = 0.75; NMP/Py = 3; 3.7% LiCl.

Effect of reactant ratios in the synthesis of PPTA⁽²⁾

[TPP]/[TA]	η_{inh} (dl g^{-1})
1.3	0.24*
1.7	0.36*
2.0	0.31*
2.3	0.38^{*}
2.0	6.84^{\dagger}
2.2	8.15^{\dagger}
2.4	6.89^{\dagger}

^{*}Yamakazi conditions: [TA] = 0.125; NMP/Py = 1.5; 2.7% LiCl; T = 115° C.

Effect of temperature in the synthesis of PBA⁽²⁾

Temperature (°C)	η_{inh} (dl g^{-1}) *
105	1.70
110	1.66
115	2.19
120	1.53

^{*}Yamakazi conditions: [pABA] = 0.27; NMP/Py = 5; [TPP]/ [pABA] = 0.6; 6.7% LiCl.

[†]Higashi conditions: [pABA] = 0.27; NMP/Py = 5; 1.7% LiCl; 5.0% CaCl₂; T = 115°C.

[†]Higashi conditions: [TA] = 0.083; NMP/Py = 5; 1.7% LiCl; 5.0% CaCl₂.

Effect of temperature in the synthesis of $\mbox{PPTA}^{(2)}$

Temperature (°C)	$\eta_{inh} \; (dl g^{-1})$
100	0.28*
110	0.36^{*}
115	0.31^{*}
120	0.37^{*}
107	7.71^\dagger
115	8.15^{\dagger}
122	6.27^{\dagger}

^{*}Yamakazi conditions: [TA] = 0.125; NMP/Py = 1.5, [TPP]/ [TA] = 2.0, 2.7% LiCl.)

[†]Higashi conditions: [TA] = 0.083; NMP/Py = 5, [TPP]/ [TA] = 2.2; 1.7% LiCl, 5.0% CaCl₂.)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight of repeat unit	g mol ⁻¹	Poly(p-phenylene terephthalamide)	240.2	_
Typical polydispersity	$g \text{mol}^{-1}$	_	$>4.5 M_{\rm z}: 1.6 M_{\rm w}: 1 M_{\rm p}$	(3)
index	ratios		$>5.3 M_z : 1.57 M_w : 1 M_n$	(3)
$(M_{\rm z}:M_{\rm w}:M_{\rm n})$			$M_{\rm w}: M_{\rm n} = 1.85$ $(M_{\rm w} = 12,300)$	(4)
			$M_{\rm w}: M_{\rm n} = 1.63$ $(M_{\rm w} = 6.300)$	(4)
			$M_{\rm w}: M_{\rm n} = 1.37$ $(M_{\rm w} = 5{,}300)$	(4)
Morphology in multiphase systems	_	Composites	Rods (in weaves, fibers, etc.)	_
Raman (characteristic	cm^{-1}	Kevlar 29, 49 fibers		(5)
absorption frequencies)		NC torsion, CC out of plane bending	92 (m)	` '
1 /		CC in plane bending; ring torsion	106 (m)	
		NH out of plane bending; NC torsion	225 (w)	
		CC in plane bending; CO out of plane bending	265 (w)	
		CC out of plane bending; ring asymmetric torsion	414 (w)	
		CC ring in plane deformation	629 (w)	
		CH out of plane deformation, CO bending	695 (w)	
		Amide V	710 (w)	
		CO in plane bending; ring asymmetric CH deformation; CN stretching	733 (w)	

Kevlar

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Raman (characteristic absorption frequencies)	cm ⁻¹	CH out of plane deformation; CCC ring puckering deformation	788 (m)	(5)
		1:4 substituted ring deformation	815 (vw)	
		CH out of plane deformation; ring CC stretching, ring bending, and ring torsion	843 (w)	
		Ring out of plane bending	915 (m)	
		ω_4 ring and ring CH deformation	1,182 (m)	
		ω_4 ring and ring CH in plane deformation	1,190 (sh)	
		NH bending, CH stretching	1,277 (s)	
		Ring CH bending	1,328 (s)	
		ω_3 symmetric ring puckering/aromatic CH in plane bending	1,412 (vw)	
		ω_{14} ring vibration; ring CH bending	1,517 (m)	
		Amide II vibration, δ (NH) and ν (CN)	1,569 (w)	
		ω_2 (aromatic ring) CC stretching vibration	1,611 (vs)	
		Amide 1 (C=O) stretching	1,647 (m)	

Raman depolarization $ratios^{(5)}$

Δu (cm $^{-1}$)	Kevlar $ ho_\perp$	Kevlar 29 $ ho_\perp$	Kevlar 49 $ ho_{\perp}$
1,182	0.54 ± 0.02	0.56 ± 0.02	0.30 ± 0.01
1,190	0.55 ± 0.02	0.56 ± 0.02	0.32 ± 0.01
1,277	0.57 ± 0.01	0.56 ± 0.01	0.32 ± 0.01
1,328	0.56 ± 0.01	0.54 ± 0.01	0.30 ± 0.01
1,412	0.55 ± 0.05	0.57 ± 0.05	_
1,517	0.57 ± 0.02	0.54 ± 0.02	0.32 ± 0.01
1,569	0.64 ± 0.05	0.62 ± 0.05	0.33 ± 0.04
1,611	0.53 ± 0.01	0.55 ± 0.01	0.30 ± 0.01
1,647	0.53 ± 0.02	0.56 ± 0.02	0.30 ± 0.01

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
X-ray photoelectron (XPS)	eV	Kevlar 29, 49 fibers	C 1s = 284.6 (intense) O 1s = 530.3 (intense)	(6)
` '		Valence band XPS is more sensitive to surface functionalized species, although the surface appears to be identical to the bulk	N 1s = 399.7 (intense) C(KVV) = 990 (weak Auger) N(KVV) = 873 (weak Auger) O(KVV) = 745 (weak Auger)	

PROPERTY	UNITS	CONDITION	IS	VALUE		REFERENCE
Bragg spacings	-	hkl	d-value (nm)	2θ (degree) $(\lambda = 0.1542 \mathrm{nm})$	Intensity n)	(7)
		110	0.4327	20.53	vs	
		200	0.3935	22.60	vs	
		020	0.2590	34.63	vw	
		310	0.2340	38.46	m	
		220	0.2163	41.75	W	
		011	0.4807	18.46	vw	
		111	0.4102	21.66	ms	
		211	0.3045	29.33	S	
		021	0.2539	35.35	W	
		121	0.2417	37.20	vw	
		311	0.2302	39.12	VW	
Thermal expansion	K^{-1}		9 fiber ASTM D3379-75e	-3.2×10^{-6}	4 × 10 ⁻⁶	(8)
coefficients	axial thermal expansion $-2\times 10^{-6} < \alpha < -4\times 10$ coefficient					
Solvents		Concentrated H_2SO_4 Polar aprotic solvents (NMP/DMAc) w \sim 5 wt% LiCl ₂				-
Nonsolvents	Aroma	tics, aliphat	tics, water, alcohols, ether	rs, esters		_

Chemical resistances $^{(9)}$

Benzoic 3 99 100 Ap Chromic 10 21 1,000 Ap Formic 90 21 100 No Formic 40 21 1,000 Mo Formic 90 99 100 De Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Ap Nitric 10 21 100 Ap Nitric 70 21 24 Ap	ct [†]
Acetic 40 21 1,000 Sli Acetic 40 99 100 Ap Benzoic 3 99 100 Ap Chromic 10 21 1,000 Ap Formic 90 21 100 No Formic 40 21 1,000 Mo Formic 90 99 100 De Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrofluoric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Ap Nitric 10 21 100 Ap Nitric 70 21 24 Ap	
Acetic 40 99 100 Ap Benzoic 3 99 100 Ap Chromic 10 21 1,000 Ap Formic 90 21 100 No Formic 90 99 100 De Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	ne
Benzoic 3 99 100 Ap Chromic 10 21 1,000 Ap Formic 90 21 100 No Formic 40 21 1,000 Mo Formic 90 99 100 De Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	tht
Chromic 10 21 1,000 Ap Formic 90 21 100 No Formic 40 21 1,000 Mo Formic 90 99 100 De Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	preciable
Formic 90 21 100 No Formic 40 21 1,000 Mo Formic 90 99 100 De Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	- preciable
Formic 40 21 1,000 Mo Formic 90 99 100 De Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	- preciable
Formic 90 99 100 De Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	ne ne
Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	derate
Hydrobromic 10 21 1,000 Ap Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	graded
Hydrochloric 37 21 24 No Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	, preciable
Hydrochloric 10 21 100 Ap Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 No Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	-
Hydrochloric 10 71 10 De Hydrofluoric 10 21 100 Nc Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	preciable
Nitric 1 21 100 Sli Nitric 10 21 100 Ap Nitric 70 21 24 Ap	graded
Nitric 10 21 100 Ap Nitric 70 21 24 Ap	ne
Nitric 70 21 24 Ap	tht
Nitric 70 21 24 Ap	, preciable
	preciable
Oxalic 10 99 100 Ap	preciable
Phosphoric 10 21 100 No	-
Phosphoric 10 21 1,000 Sli	;ht

Chemical*	Conc. (%)	Temp. (°C)	Time (h)	Effect [†]
Acids				
Phosphoric	10	99	100	Appreciable
Salicylic	3	99	1,000	None
Sulfuric	10	21	1,000	Moderate
Sulfuric	10	21	100	None
Sulfuric	10	100	10	Appreciable
Sulfuric	70	21	100	Moderate
Bases				
Ammonium hydroxide	28.5	21	24	None
Ammonium hydroxide	28	21	1,000	None
Potassium hydroxide	50	21	24	None
Sodium hydroxide	40	21	100	None
Sodium hydroxide	10	21	1,000	None
Sodium hydroxide	10	99	100	Degraded
Sodium hydroxide	10	100	10	Appreciable
Sodium hypochlorite	0.1	21	1,000	Degraded
Salt solutions				
Copper sulfate	3	21	1,000	None
Copper sulfate	3	99	100	Moderate
Ferric chloride	3	99	100	Appreciable
Sodium chloride	3	21	1,000	None
Sodium chloride	10	99	100	None
Sodium chloride	10	121	100	Appreciable
Sodium phosphate	5	99	100	Moderate
Organic solvents				
Carbon tetrachloride	100	Boiling	100	Moderate
Ethylene glycol/H ₂ O	50/50	99	1,000	Moderate
Brake fluid	100	113	100	Moderate

^{*}Chemicals not listed in the table have no noticeable effect.

 $^{^{\}dagger}$ Effect on breaking strength: none = 0-10% stress loss; slight = 11-20% stress loss; moderate = 21-40% stress loss; appreciable = 41-80% stress loss; degraded = 81-100% stress loss.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Phase diagrams	Solid/anisot	ropic solution/isotropic solution	on regimes	(10, 11)
Fractionation	-	Chromatography 90% H ₂ SO ₄ 96% H ₂ SO ₄ Tetrahydrofuran	Preparative GPC, silica gel GPC GPC, shodex	(12) (13) (13)

				Kevlar
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ a = None	$(a \text{ values greater than } 1.7 \text{ indicate strong} $ aggregation effects) $1.0 < a < 1.85$ PBA $3,100 < M_{\mathrm{w}} < 13,000$ Concentrated $\mathrm{H_2SO_4}$, $25^{\circ}\mathrm{C}$	K = 2.14 $a = 1.203$	(14)
Persistence length	Å	96% sulfuric acid, 25° Electric birefringence, Kerr effect Light scattering, $R_{\rm g}$ Light scattering, depolarization ratio Light scattering depolarization Light scattering Light scattering Viscosity Flow birefringence Flow birefringence Flow birefringence Plow birefringence Depolarization ratio, unfractionated Depolarization ratio, unfractionated oligomer $M_{\rm w} < 10,900$	PPTA = 300 PBA = 400 PPTA = 200 PPTA = 150 PPTA = 287 PPTA = 450 PBA = 600 PPTA = 200 PBA = 400 PPTA = 150 PBA = 1050 PPTA = 650 PBA = 435 PPTA = 275 PBA = 325 PPTA = 185 PPTA = 1020 PPTA = 306	(15) (12) (12) (16) (17) (18) (13) (13) (13) (19) (20) (20) (21) (22) (14) (14)
Viscosity vs. shear rate	poise	$ \begin{split} & \text{Kevlar-100\% H}_2\text{SO}_4 \text{ solutions, } 25^{\circ}\text{C} \\ & 0.5 \text{ wt\% Kevlar, } 10^{-1} \text{s}^{-1} < \gamma < 10 \text{s}^{-1} \\ & 6\text{8 wt\% Kevlar, } 10^{-2} \text{s}^{-1} < \gamma < 10^1 \text{s}^{-1} \\ & 10 \text{ wt\% Kevlar} \\ & \gamma = 10^{-2} \text{s}^{-1} \\ & \gamma = 10^{-1} \text{s}^{-1} \\ & \gamma = 10^0 \text{s}^{-1} \\ & \gamma = 10^1 \text{s}^{-1} \end{split} $	$\eta = 2.1$ $\eta = 1,100$ $\eta = 30,000$ $\eta = 6,000$ $\eta = 800$ $\eta = 300$	(1)
Viscosity vs. shear stress	poise	Kevlar-100% H_2SO_4 solutions, 25°C 6-8 wt% Kevlar 10^1 dynes cm ⁻² $< \sigma_{12} < 10^4$ dynes cm ⁻² 10 wt% Kevlar $\sigma_{12} = 5 \times 10^2$ dynes cm ⁻² $\sigma_{12} = 10^3$ dynes cm ⁻² $\sigma_{12} = 3 \times 10^3$ dynes cm ⁻²	$\eta = 1,100$ $\eta = 40,000$ $\eta = 4,000$ $\eta = 200$	(1)

K	ev	دا	r
-	C V	а	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Normal stress vs. shear rate	dynes cm ⁻²	Kevlar-100% H ₂ SO ₄ solutions, 25°C 6 wt% Kevlar		(1)
Tute		$ \gamma = 2 s^{-1} \gamma = 8 s^{-1} $	$N_1 = 3,000$ $N_1 = 10^5$	
		8 wt% Kevlar	1	
		$\gamma = 1\mathrm{s}^{-1}$	$N_1 = 5,000$	
		$\gamma = 8\mathrm{s}^{-1}$	$N_1 = 10^5$	
		10 wt% Kevlar	_	
		$\gamma = 0.7\mathrm{s}^{-1}$	$N_1 = 2 \times 10^5$	
		$\gamma = 1 \mathrm{s}^{-1}$	$N_1 = 5 \times 10^4$	
		$\gamma = 8 \mathrm{s}^{-1}$	$N_1 = 8 \times 10^4$	
Bond lengths	Å	C(1)-C(2)	1.47	(23)
		C(2)-C(3)	1.39	
		C(3)-C(4)	1.39	
		C(1)-O(1)	1.24	
		C(1)-N(1)	1.34	
		N(1)-H(1)	1.00	
		N(1)-C(8)	1.42	
		C(8)-C(9)	1.39	
		C(9)-C(10)	1.39	
		C-H(phenyl)	1.00	
Bond angles	Degrees	C(4)-C(3)-C(2)	120	(24)
		C(3)-C(2)-C(7)	120	
		C(3)-C(2)-C(7)	120	
		C(7)-C(2)-C(1)	120	
		C(2)-C(1)-N(1)	120	
		C(2)-C(1)-O(1)	120	
		N(1)-C(1)-O(1)	115	
		C(1)-N(1)-H(1)	123	
		C(8)-N(1)-H(1)	120	
		N(1)-C(8)-C(9)	117	
		N(1)-C(8)-C(13)	120	
		C(9)-C(18)-C(13)	120	
		C(8)-C(9)-C(10)	120	
Torsional potential diagram	_	-	_	(23)
Persistence length	Å	Extended all <i>trans</i> conformation		(23)
		(upper bound) PBA (no temp. dependence)	900	
		PPTA (no temp. dependence)	410	
		Rotatable amide group (lower bound)		
		PBA at 200 K	200	
		PBA at 600 K	~ 0	
		PBA at 300 K	100	
		PPTA at 200 K	200	
		PPTA at 600 K	~ 0	
		PPTA at 300 K	100	

				Kevlar
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Maximum temperature for liquid crystallinity	K	_	600	(23)
Lattice	_	-	Monoclinic (pseudo orthorhombic)	(24)
Space group	_	_	$P2_{1/n}$ - C_{2h}	(24)
Chain conformation	_	Extended trans	Modification 1,2	(24)
Unit cell dimensions	Å	-	a = 7.80, b = 5.19, c (fiber axis) = 12.9	(24)
Unit cell angles	Degrees	_	$\gamma = 90$	(24)
Unit cell contents (number of repeat units)	_	-	2 chains/cell	(24)
Degree of crystallinity	%	Kevlar 49 H ₂ SO ₄ cast film Annealed 100°C, 2 h Annealed 200°C, 2 h Annealed 300°C, 2 h	0.22 0.38 0.45	(25)
Polymorphs	_	Modification I (PBA-LiCl ₃ -DMAc) Modification II (PBA-LiCl ₂ cocrystal) Modification III (PBA) Lyotropic nematic		(26)
Glass transition temperature	K	_	698	(27)
Melting point	K	In general beyond decomposition temperature (500°C) Modification III(PBA)	827	(26)
Super- $T_{\rm g}$ transition temperatures	K	Modification I (PBA-LiCl ₃ -DMAc) Modification II (PBA-LiCl ₂ cocrystal) Modification III (PBA)	$I-II = 487 K$ $I-amorphous = wash with H_2O$ $II-III = anneal at 748 K, then cool$ $II-III = wash with H_2O$ $I-III = wash with H_2O and anneal >673 K$	(26)

$\boldsymbol{\nu}$	ev	110	
\mathbf{r}	ev	A To	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Super- $T_{\rm g}$ transition temperatures	K	Modification III (PBA)	II-nematic = 748 K III-nematic = 827 III-amorphous = heat to 873 K and cool	(26)
Sub- $T_{\rm g}$ transition temperatures	_	$\begin{array}{lll} f = 10,\!000\mathrm{Hz} & T_{\gamma} = 291\mathrm{K} \\ f = 10,\!000\mathrm{Hz} & T_{\gamma^*} = 417\mathrm{K} \\ f = 110\mathrm{Hz} & T_{\beta} = 733\mathrm{K} \\ f = 110\mathrm{Hz} & T_{\gamma} = 333\mathrm{K} \\ f = 110\mathrm{Hz} & T_{\delta} = 243\mathrm{K} \\ f \sim 1\mathrm{Hz} & T_{\beta} = 816\mathrm{K} \\ f \sim 1\mathrm{Hz} & T_{\gamma} = 235\mathrm{K} \\ f \sim 1\mathrm{Hz} & T_{\gamma^*} = 440\mathrm{K} \\ f \sim 1\mathrm{Hz} & T_{\delta} = 115\mathrm{K} \\ \end{array}$	$\begin{split} E_{\mathrm{a},\gamma} &= 63 \mathrm{kJ mol^{-1}} \\ E_{\mathrm{a},*} &= 92 \mathrm{kJ mol^{-1}} \\ E_{\mathrm{a},\beta} &= 767 \mathrm{kJ mol^{-1}} \\ E_{\mathrm{a},\gamma} &= 204 \mathrm{kJ mol^{-1}} \\ E_{\mathrm{a},\delta} &= 52 \mathrm{kJ mol^{-1}} \\ E_{\mathrm{a},\delta} &= 813 \mathrm{kJ mol^{-1}} \\ E_{\mathrm{a},\gamma} &= 54 \mathrm{kJ mol^{-1}} \\ E_{\mathrm{a},\gamma} &= 83 \mathrm{kJ mol^{-1}} \\ E_{\mathrm{a},\gamma} &= 83 \mathrm{kJ mol^{-1}} \\ E_{\mathrm{a},\delta} &= 21 \mathrm{kJ mol^{-1}} \end{split}$	(28) (28) (29) (29) (30) (30) (30) (30) (30)
Polymers with which they are compatible	_	None known. Surface modifications for composites.		-
Tensile modulus	MPa	Ultimate Modulus D Kevlar 29 fiber Kevlar 49 fiber Kevlar 149 fiber Twaron LM fiber Twaron HM fiber	$\sim 165 \times 10^3$ 83×10^3 124×10^3 161×10^3 76×10^3 105×10^3	(9)
Crystal modulus	MPa	Kevlar, Twaron fibers XRD Kevlar, Twaron fibers	$156 \times 10^3 \\ 220 \times 10^3$	-
Shear modulus	МРа	Kevlar fibers in tension and compression	1,150	_
Storage modulus	MPa	$ \begin{aligned} & \text{Kevlar}/100\% \ \text{H}_2\text{SO}_2 \ \text{solutions} \\ & 8 \ \text{wt}\% \ \text{Kevlar} \\ & \omega = 0.02 \text{Hz} \\ & \omega = 0.1 \text{Hz} \\ & \omega = 0.5 \text{Hz} \\ & \omega = 1 \text{Hz} \\ & \omega = 5 \text{Hz} \\ & \omega = 10 \text{Hz} \\ & 10 \ \text{wt}\% \ \text{Kevlar} \\ & \omega = 0.01 \text{Hz} \\ & \omega = 0.1 \text{Hz} \\ & \omega = 0.5 \text{Hz} \\ & \omega = 1 \text{Hz} \\ & \omega = 5 \text{Hz} \end{aligned} $	$G^{ } = 1 \times 10^{-9}$ $G^{ } = 2 \times 10^{-9}$ $G^{ } = 1 \times 10^{-8}$ $G^{ } = 2 \times 10^{-8}$ $G^{ } = 7 \times 10^{-8}$ $G^{ } = 2 \times 10^{-7}$ $G^{ } = 4 \times 10^{-7}$ $G^{ } = 5 \times 10^{-7}$ $G^{ } = 6 \times 10^{-7}$ $G^{ } = 7 \times 10^{-7}$ $G^{ } = 1 \times 10^{-6}$ $G^{ } = 2 \times 10^{-6}$	(1)

ev	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Loss tangent vs. frequency	_	Kevlar/100% H ₂ SO ₄ solutions		(1)
		8 wt% Kevlar		
		$\omega = 0.02\mathrm{Hz}$	$\tan \delta = 2$	
		$\omega = 0.05\mathrm{Hz}$	$\tan \delta = 3$	
		$\omega=0.1\mathrm{Hz}$	$\tan \delta = 4$	
		$\omega=0.5\mathrm{Hz}$	$\tan \delta = 5$	
		$\omega=1\mathrm{Hz}$	$\tan \delta = 6$	
		$\omega = 5\mathrm{Hz}$	$\tan \delta = 5$	
		$\omega = 10\mathrm{Hz}$	$\tan \delta = 3$	
		10 wt% Kevlar		
		$\omega=0.01\mathrm{Hz}$	$\tan \delta = 0.3$	
		$\omega = 0.1\mathrm{Hz}$	$ an \delta = 0.4$	
		$\omega = 1\mathrm{Hz}$	$\tan \delta = 0.6$	
		$\omega = 10\mathrm{Hz}$	$\tan \delta = 0.9$	
Tensile strength	MPa	LC solution spun Kevlar fibers	2,000-3,000	_
Maximum extensibility	%	Kevlar 29 fiber in tension	4.0	(27)
$(L/L_0)_{\rm r}$		Kevlar 49 fiber in tension	2.5	(9)
Fracture stress	MPa	Fiber in tension		_
		Kevlar 29 fiber	2,500	
		Kevlar 49 fiber	2,300	
		Kevlar 149 fiber	1,700	
		Twaron LM fiber	3,400	
		Twaron HM fiber	2,800	
Fracture strain	%	Fiber in tension		_
		Kevlar 29 fiber	2.5	
		Kevlar 49 fiber	1.8	
		Kevlar 149 fiber	1.0	
		Twaron LM fiber	2.4	
		Twaron HM fiber	2.5	
		i waron i nvi noer	2.0	
Compressive strength	Four p	point bend of a fiber embedded in a	PMMA matrix	_
Tenacity (fiber)	MPa	Kevlar 49	2,800	(27)
		Kevlar 29	2,800	
Poisson ratio	_	_	0.36	9)
Force-temperature relationships	_	Kevlar 49 fibers in ASTM D3379-75e; force-temperature cycling 5 gpd applied load-heat to 300°C, cool to ambient	Critical temp. for stress- drop decreases from ~493 K to 198 K as 1.0 gpd stress applied	(8)
Thermal expansivity		Axial expansivity, Kevlar fiber At 200 K At 450 K	-0.8 -0.7	(6)

\mathbf{r}	ev	ы	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Index of refraction <i>n</i>	_	$n_{\perp}=$ index of refraction perpendicular to fiber axis Kevlar 29	2.0499 (center of fiber) 2.0853 (fiber edge)	(31)
		$n_{ }=$ index of refraction parallel to fiber axis	1.5886 (center of fiber) 1.6504 (edge of fiber)	
Refractive index increment dn/dc	$\mathrm{ml}\mathrm{g}^{-1}$	All values at 25°C using a 633 nm source		
,		Chlorosulfonic acid Chlorosulfonic acid + 0.01 M LiClSO ₃	0.275 0.287	(32) (33)
		H_2SO_4	0.278	(32)
		96% H ₂ SO ₄	0.309 (546 nm source)	(13)
		Methane sulfonic acid	0.254	(33)
Segmental polarizability $(\alpha_1 - \alpha_2)$, $(\alpha_{ } - \alpha_{\perp})$	cm ³	Sulfuric acid (includes form effect)	$(\alpha_1 - \alpha_2) = +5,250 \times 10^{-25}$	(34, 35)
			$(\alpha_{\parallel} - \alpha_{\perp}) = +206 \times 10^{-25}$	
		Copolymer with poly(benzamide) 1/9 PPTA/PBA ratio	$(\alpha_1 - \alpha_2) = +4,380 \times 10^{-25}$	
		11 1A/1 DA 1auo		
Segmental optical anisotropy δ_0^2	_	Light depolarization, unfractionated polymer	PPTA = 0.266	(14)
anisotropy v_0		Light depolarization, unfractionated oligomers, $M_{\rm w} < 10,900$	PPTA = 0.357	
Optical anisotropy Δ^2	_	Depolarization ratio, fractiona	ted PPTA	(16)
Optical amsocropy \(\Delta\)		$M = 1,560 \text{ g mol}^{-1}$	0.290	(10)
		$M = 2,160 \text{ g mol}^{-1}$	0.223	
		$M = 2,760 \text{ g mol}^{-1}$	0.184	
		$M = 3.480 \text{ g mol}^{-1}$	0.154	
		$M = 4,560 \text{ g mol}^{-1}$	0.30	
		$M = 6,600 \text{ g mol}^{-1}$	0.103	
		$M = 7,920 \text{ g mol}^{-1}$	0.094	
		Unfractionated PPTA	0.050	(1.6)
		$M_{\rm w} = 2,160 \mathrm{g mol}^{-1}$	0.270	(16)
		$M_{\rm w} = 4{,}320{ m gmol}^{-1} \ M_{ m w} = 1{,}680{ m gmol}^{-1}$	0.177	(16)
		$M_{\rm w} = 1,800 {\rm g mol}$ $M_{\rm w} = 4,500 {\rm g mol}^{-1}$	0.294 0.183	(13) (13)
		$M_{\rm w} = 4,300 {\rm g mol}^{-1}$ $M_{\rm w} = 9,350 {\rm g mol}^{-1}$	0.164	(13)
		$M_{\rm w} = 9,300 \mathrm{g mol}^{-1}$ $M_{\rm w} = 19,700 \mathrm{g mol}^{-1}$	0.104	(13)
		$M_{\rm w} = 15,700 {\rm g mor}$ $M_{\rm w} = 35,000 {\rm g mol}^{-1}$	0.105	(13)
		$M_{\rm w} = 43,500 \mathrm{g mol}^{-1}$	0.094	(13)
		$M_{\rm w} = 63,000 {\rm g mol^{-1}}$	0.084	(13)
		111 _W = 00,000 g 11101	0.001	(10)

				Kevlar
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Surface free energy	${ m mJ}{ m m}^{-1}$	$\gamma_{\rm s}^{\rm d}$ dispersive	40 ± 4	_
Heat of adsorption	kJ mol ⁻¹	IGC adsorption Epoxystyrene on Kevlar 29 Aniline on Kevlar 29	45 ± 3 11	_
Specific free energy of interaction	kJ mol ⁻¹	ΔG_{sp} Epoxystyrene on Kevlar 29 Aniline on Kevlar 29	5.6 11	_
Heat of hydration	$kJ mol^{-1}$	ΔH_{H} of Kevlar 29 Fiber	-60	_

Permeability coefficient (Kevlar 49 film, H_2SO_4 cast)* $^{*(25)}$

Gas (at 35°C)	Annealed 2	h at	Amorphous Kevlar/Nomex		
	200°C	100°C	300°C	copolymer	
$\overline{H_2}$	10,000	10,000	6,000	_	
He	11,500	11,000	10,100	_	
CO_2	1,020	1,020	500	_	
O_2	220	220	80	2,579	
$\overline{N_2}$	20	35		_	

 $^{^*}Values$ given in cm²(STP) cm s^{-1} cm $^{-2}$ cmHg $^{-1}$ ($\times 10^{-15})$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Temperature dependence of	$cm^2(STP) cm s^{-1}$	Linear (Arrhenius) decay for H ₂		(25)
permeability coefficient P	cm ⁻¹ cmHg	and CO ₂		
-	_	Amorphous Kevlar/Nomex		
		copolymer		
		25°C	5.8×10^{-12}	
		65°C	0.9×10^{-11}	
		Kevlar 49 H ₂ SO ₄ cast film		
		Annealed 100°C, 2h		
		25°C	8×10^{-13}	
		65°C	1.5×10^{-12}	
		Annealed 200°C, 2 h		
		25°C	1×10^{-12}	
		65°C	3×10^{-12}	
		Annealed 300°C, 2 h		
		25°C	3×10^{-13}	
		65°C	1×10^{-12}	

Ke	v		-
VE.	v	а	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Arrhenius activation energy for permeability coefficient E_P	kcal mol ⁻¹	Carbon dioxide Amorphous Kevlar/Nomex copolymer Kevlar 49 H ₂ SO ₄ cast film	5.5	(25)
		Annealed 100°C, 2 h Annealed 200°C, 2 h Annealed 300°C, 2 h	5.6 6.3 5.9	
Diffusion coefficient	$\mathrm{cm}^2\mathrm{s}^{-1}$	Water into Kevlar 29 fiber Kevlar 29 H ₂ SO ₄ film	0.95×10^{-12} (See table below)*	(36) (25)

Gas	Kevlar 49 filr	n, annealed 2 h at	Amorphous Kevlar/Nomex	
	100°C	200°C	300°C	copolymer
$\overline{\mathrm{H_2}}$	~200	~200	~200	_
He	~800	$\sim \! 800$	~800	_
CO ₂	0.4	0.42	0.2	_
O_2	0.81	1.10	0.62	9.26
N_2	0.18	0.22	_	_

^{*}Values given in $cm^2 s^{-1} (\times 10^{10})$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Temperature dependence of	$\mathrm{cm}^2\mathrm{s}^{-1}$	Linear (Arrhenius) Relationship for		(25)
diffusion coefficient D		H ₂ and CO ₂		,
		Amorphous Kevlar/Nomex		
		copolymer		
		25°C	2×10^{-10}	
		65°C	1.62×10^{-9}	
		Kevlar 49 H ₂ SO ₄ cast film		
		Annealed 100°C, 2 h		
		25°C	2×10^{-11}	
		65°C	1×10^{-10}	
		Annealed 200°C, 2 h		
		25°C	2.2×10^{-11}	
		65°C	1.3×10^{-10}	
		Annealed 300°C, 2 h		
		25°C	8×10^{-12}	
		65°C	5×10^{-11}	
Arrhenius activation energy	kcal mol ⁻¹	Carbon dioxide		_
for diffusion coefficient E_D	11011 11101	Amorphous Kevlar/Nomex	10.5	
Tot unituation eventient 25		copolymer	10.0	
		Kevlar 49 H ₂ SO ₄ cast film		
		Annealed 100°C, 2h	9.2	
		Annealed 200°C, 2 h	9.4	
		Annealed 300°C, 3 h	10.1	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of sorption $\Delta H_{\rm s}$	kcal mol ⁻¹	Carbon dioxide Amorphous Kevlar/Nomex copolymer Kevlar 49 H ₂ SO ₄ cast film Annealed 100°C, 2 h	-5.0 -3.6	(25)
		Annealed 200°C, 2 h Annealed 300°C, 2 h	-3.1 -4.2	
Thermal conductivity	$\begin{array}{c} Wm^{-1}K^{-1} \\ Wm^{-1}K^{-2} \\ Wm^{-1}K^{-1} \end{array}$	Phonon propagation in Kevlar 49 5–250 K Axial thermal conductivity, 125–250 K	$ \begin{array}{l} 10 \\ dK/dT = 1 \\ 20-30 \end{array} $	(37) (37) (38)
Biodegradability, effective microorganisms	-	Degradation by A. flavus	Kevlar 29 degrades more than Kevlar 49	(39)
Degradation mechanisms		UV radiation	Critical UV window = 300- 500 nm	(9)
		UV reduction of $M_{\rm n}$	Photolytic-degradation kinetics	(40, 41)
		Hydrolytic	Concentrated H ₂ SO ₄ Humidity, temperature	(42) (43)
		Atomic oxygen/UV	UV resistance mechanism	(44)
		Laser	488 nm Ar ion laser beam	(45)
		Photolytic Thermal	Simulated sunlight Radical homolytic High pressure	(46) (47, 48) (49)
		Photochemical	ESR radical study Smog, ozone, temp., RH Oxidation in H ₂ SO ₄	(50) (51) (52, 53)
Maximum use temperature	K	In air	573-623	(9)
Decomposition temperature	K	In air	700–755	(9)
Decomposition products	K	H ₂ , CO, CO ₂ , HCN, H ₂ O, benzene, toulene, benzonitrile	573–773	(9, 54)
		CO ₂ , H ₂ O, CO Benzene, HCN, benzonitrile, H ₂	643–723 723–823	(9, 55) (9, 55)
Heat of combustion	$\rm J~kg^{-1}$	_	35×10^6	(9)
Limiting oxygen index	_	_	29	(9)

- 1. Aoki, H., et al. J. Polym. Sci., Polym. Sym. (Rigid Chain Polym.: Synth. Prop.) 65 (1978): 29-40.
- 2. Mariani, A., S. L. E. Mazzanti, and S. Russo. Can. J. Chem. 73(11) (1995): 1,960-1,965.
- 3. Chu, B., et al. Polym. Commun. 25(7) (1984): 211-213.
- 4. Ogata, N., K. Sanui, and S. Kitayama. J. Polym. Sci., Polym. Chem. Ed. 22(3) (1984): 863-867.
- 5. Edwards, H. G. M., and S. Hakiki. Br. Polym. J. 21(6) (1989): 505–512.
- 6. Xie, Y., and P. M. A. Sherwood. Chem. Mater. 5(7) (1993): 1,012-1,017.
- 7. Northolt, M. G. Eur. Polym. J. 10 (1974): 799.
- Pottick, L. A., and R. J. Farris. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 25(2) (1984): 209–210.
- 9. Kevlar Technical Guide, http://www.dupont.com.
- 10. Salaris, F., et al. Makromol. Chem. 177(10) (1976): 3,073-3,076.
- 11. Lin, J., H. Wu, and S. Li. Eur. Polym. J. 30(2) (1994): 231-234.
- 12. Arpin, M., and C. Strazielle. Makromol. Chem. 177 (1976): 581.
- 13. Arpin, M., and C. Strazielle. Polymer 18 (1977): 591.
- 14. Zero, K., and S. M. Aharoni. Macromolecules 20 (1987): 1,957-1,960.
- 15. Tsvetkov, V. N. Polym. Sci. USSR. (Engl. Trans.) 21 (1979): 2,879.
- 16. Arpin, M., et al. Polymer 18 (1977): 262.
- 17. Ying, Q., and B. Chu. Makromol. Chem. Rapid. Commun. 5 (1984): 785.
- 18. Cotts, P. M., and G. C. Berry. J. Polym. Sci., Polym. Phys. Ed., 21 (1983): 1,255.
- 19. Tsvetkov, V. N. Polym. Sci. USSR. (Engl. Trans.) 19 (1977): 2,485.
- 20. Tsvetkov, V. N., and L. N. Andreeva. Adv. Polym. Sci. 39 (1981): 27.
- Pogodin, N. V., I. N. Bogatova, and V. N. Tsvetkov. *Polym. Sci. USSR (Engl. Trans.)* 27 (1985): 1,574.
- 22. Arpin, M., F. Debeauvais, and C. Strazielle. Makromol. Chem. 177 (1976): 585.
- 23. He, C., and A. H. Windle. Macromol. Theory Simul. 4(2) (1995): 289-304.
- 24. Chatzi, E. G., and J. L. Koenig. Polym.-Plast. Technol. Eng. 26(3-4) (1987): 229-270.
- 25. Weinkauf, D. H., H. D. Kim, and D. R. Paul. *Macromolecules* 25(2) (1992): 788–796.
- 26. Takase, M., et al. J. Polym. Sci., Part B: Polym. Phys. 24(8) (1986): 1,675-1,682.
- Fitzgerald, J. A., and R. S. Irwin. Spec. Publ.: High Value Polym. (R. Soc. Chem.) 87 (1991): 392–419.
- 28. Frosini, V., and E. Butta. J. Polym. Sci., Polym. Lett., 9 (1971): 253.
- 29. Kunugi, T., H. Watanabe, and M. Hashimoto. J. Appl. Polym. Sci. 24 (1979): 1,039.
- 30. Badayev, A. S., I. I. Perepechko, and Y. Y. Sorokin. Polym. Sci. USSR 30 (1988): 892.
- 31. Warner, S. B. Macromolecules 16 (1983): 1,546-1,548.
- 32. Cotts, P. M., and G. C. Berry. J. Polym. Sci. Polym. Phys. Ed. 21 (1983): 189.
- 33. Wong, C. P., H. Ohnuma, and G. C. Berry. J. Polym. Sci., Polym. Symp., 65 (1978): 173.
- 34. Tsvetkov, V. N. Rigid Chain Polymer Molecules. Nauka, Moscow, 1985.
- 35. Pogodina, N. V., et al. Vysokomol. Soedin. 23A (1981): 2,185.
- 36. Rebouillat, S., et al. J. Appl. Polym. Sci. 58(8) (1995): 1,305-1,315.
- 37. Poulaert, B., et al. Polym. Commun. 26(5) (1985): 132-133.
- 38. Choy, C. L., et al. J. Polym. Sci., Part B: Polym. Phys., 33(14) (1995): 2,055-2,064.
- 39. Watanabe, T. Sen'i Gakkaishi 47(8) (1991) 439-441.
- 40. Knoff, W. F. J. Appl. Polym. Sci. 52(12) (1994) 1,731-1,737.
- 41. Harris, G. G. J. Ind. Fabr. 1(1) (1982): 18-28.
- 42. Morgan, R. J., and N. L. Butler. Polym. Bull. (Berlin) 27(6) (1992): 689-696.
- 43. Morgan, R. J., et al. In *Proceedings of the 29th National SAMPE Symposium Exhib. (Technol. Vectors)*, Reno, Nev., 3–5 April 1984. Society for Advancement of Material and Process Engineering, Covina, Calif., 1984, pp. 891–900.
- 44. Powell, S. C., et al. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 32(1) (1991): 122–123.
- 45. Young, R. J., D. Lu, and R. J. Day. Polym. Intl. 24(2) (1991): 71-76.
- 46. Toy, M. S., and R. S. Stringham. ACS Symp. Ser. (Chem. React. Polym.) 364 (1988): 326-341.
- 47. Schulten, H. R., et al. Angew. Makromol. Chem. 155 (1987): 1-20.
- 48. Brown, J. R., and A. J. Power. Polym. Degrad. Stab. 4(5) (1982): 379–392.
- 49. Brown, J. R., and D. K. C. Hodgeman. *Polymer* 23(3) (1982): 365–368.
- 50. Brown, J. R., et al. Text. Res. J. 53(4) (1983): 214-219.

- 51. Mead, J. W., et al. Ind. Eng. Chem. Prod. Res. Dev. 21(2) (1982): 158-163.
- 52. Toy, M. S.; Stringham, R. S. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) (1986), 27(2), 83–4
- 53. Toy, M. S., and R. S. Stringham. Polym. Mater. Sci. Eng. 54 (1986): 312-315.
- 54. Krasnov, Ye. P., et al. Polym. Sci. USSR 8 (1966): 413.
- 55. Krasnov, Ye. P., et al. Vysokomolekul. Soedin. 8 (1970): 380.
- 56. Andrews, M.C., D. Lu, and R. J. Young. *Polymer* 38(10) (1997): 2,379–2,388.)

Kraton D1100 SBS

C. M. ROLAND

CHEMICAL NAME Linear styrene-butadiene-styrene triblock copolymer

CLASS Chemical copolymers; unsaturated thermoplastic elastomers

MAJOR APPLICATIONS Asphalt modifiers, adhesives, sealants, coatings, footwear, polymer modifers.

PROPERTIES OF SPECIAL INTEREST In general, thermoplastic elastomers (TPE) provide the mechanical properties of rubber in combination with the processing characteristics of plastics; recyclable; Kraton D's are the lowest cost TPE (\geq \$0.85 lb⁻¹).

OTHER COMPARABLE COMMERCIAL MATERIALS Cariflex (Shell), K-Resin and Solprene (Phillips), Dexco (Dow/Exxon), Europrene (Enichem), Tufprene and Asaprene (Asahi), Stereon (Firestone), Dynaflex (GLS), Vitacom (British Vita), Europrean (Enoxy), Finaprene (Petrofina), Calprene (Calatrava).

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Price	$$ lb^{-1}$	_	0.85-1.30	(1)
Specific gravity	_	_	0.94	(2)
Glass transition temperature $T_{\rm g}$	K	_	178	(3)
Styrene/rubber	$wt. wt.^{-1}$	_	31/69	(4)
300% modulus	MPa	ASTM D412	2.8	(2, 4)
Elongation	%	ASTM D412	880	(2, 4)
Tensile strength	MPa	ASTM D412	32	(2, 4)
Stress relaxation	Relaxed/initial	RT (9% strain)	0.58	(5)
Processing temperature	K	_	423-473	(6)
			Kraton D1101 Kraton D1102	
S/B/S Physical form	wt% -		15/70/15 14/72/14 Porous pellet, Porous pellet powder	(2, 7) (7)
Brookfield viscosity Hardness Melt index	Shore A	Toluene at 77°F — (ASTM D1238)	$4,000$ 1,200 71 62 <1 $6^{(1)}$ $11^{(2)}$	(7) (2) (2, 7)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Chemical resistance	_	Acids	Good		(8)
		Bases	Good		
		Aromatics	None		
		Aliphatics	None		
		Oil in water	Good		
		Water in oil	None		
Gas permeability of D1101					(9)
Permeability	SI	O_2	2×10^{-12}		
coefficient		CO_2	8×10^{-12}		
Transmission rate	$\mathrm{cm}^2\mathrm{s}^{-1}$	O_2	2×10^{-7}		
Tansinission rate	CIII 3	CO ₂	8×10^{-7}		
		CO_2	8 × 10		
Water permeability of D1101					(9)
Permeability coefficient	SI	_	2.7×10^{-10}		
Transmission rate	$\mathrm{gcm^{-2}s^{-1}}$	-	3.0×10^{-8}		
Wet chemical	_	Step	Observed col	or	(10)
identification of Kraton D		Pyrolysis vapors passed into Burchfield reagent	Yellow green		
		Added methanol and boiled	Green		
Effect of solvent on D1	101 viscosity	Dones			(11)
Solubility	$(\text{cal cc}^{-1})^{1/2}$	Solvent			(11)
parameter	(caree)	MIBK	8.35		
parameter		Toluene	8.59		
		Tetralin	8.76		
		o-Xylene	9.03		
		Cyclohexanone	9.62		
Intrincia viagogity	$\mathrm{dl}\mathrm{g}^{-1}$	Solvent	9.02		
Intrinsic viscosity	urg	MIBK	0.21		
			0.31 1.04		
		Toluene			
		Tetralin	1.17		
		o-Xylene	0.91		
		Cyclohexanone	0.44		
			Kraton D/As		(12)
Kraton D1101	wt%	_	67	50	
Asphalt	wt%	_	33	50	
Mechanical properties					
300% Modulus	MPa	_	1.8	0.8	
Elongation	%	_	1,700	1,500	
Tensile strength	MPa	_	17.5	9.7	
Hardness	Shore A	_	46	36	
Permanent set	%	_	50	30	
i eimanem set	/0		50	50	

Kraton D1100 SBS

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE		
Softening point	K	Kraton D1101 (wt%) in asphalt/oil blends				(12)		
		0 '	311					
		2	335					
		4	347					
		6	354					
		8	360					
		10	365					
		12	371					
Adhesion of 10%	180 peel strength (lb in ⁻¹)	Adherend				(12)		
Kraton D1101 in asphalt/oil blend		Itself	5.5			,		
		Smooth plywood	6.8					
		Ground steel	5.6					
		Concrete	7.0					
		Galvanized iron	5.4					
Kraton D blends with HIPS	As indicated	HIPS (wt%)	100	90	90	(13)		
		Kraton D1101 (wt%)	_	10	_	()		
		Kraton 1102 (wt%)	_	_	10			
		1/8 in notched Izod (N)	85	150	120			
		Flex modulus (GPa)	2,100	1,800	1,900			
Supplier	Shell Chemical Co., One Shell Plaza, P.O. Box 2463, Houston, Texas 77252-2463, USA							

- 1. Holden, G. In *Thermoplastic Elastomers*, 2d ed., edited by G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder. Hanser Publishers, New York, 1996, chap. 16.
- Wilder, C. R. In Handbook of Elastomers, edited by A. K. Bhowmick and H. L. Stephens. Marcel Dekker, New York, 1988, chap. 9.
- 3. Holden, G., and N. R. Legge. In *Thermoplastic Elastomers*, 2d ed., edited by G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder. Hanser Publishers, New York, 1996, chap. 3.
- 4. Shell Technical Bulletin SC0068-96. Shell Chemical Co., Houston, January 1997.
- Bard, J. K., and C. I. Chung. In *Thermoplastic Elastomers*, 1st ed., edited by N. R. Legge, G. Holden, and H. E. Schroeder. Hanser Publishers, New York, 1987, chap. 12.
- 6. Shell Technical Bulletin SC0455-96. Shell Chemical Co., Houston, August 1996.
- Shell Technical Bulletin SC1434-96. Shell Chemical Co., Houston, March 1996; SC1158-93, February 1996.
- 8. Shell Technical Bulletin SC519-93. Shell Chemical Co., Houston, August 1993.
- 9. Shell Technical Bulletin SC941-87. Shell Chemical Co., Houston, July 1994.
- 10. Braun, D. Identification of Plastics, 3d ed. Hanser Publishers, New York, 1996.
- 11. Paul, D. R., J. E. St. Lawrence, and J. H. Troell. Polym. Eng. Sci. 10 (1970): 70.
- 12. Shell Technical Bulletin SC0057-84. Shell Chemical Co., Houston, July 1984.
- 13. Shell Technical Bulletin SC0165-93. Shell Chemical Co., Houston, July 1994.

Kraton G1600 SEBS

C. M. ROLAND

CHEMICAL NAME Linear styrene-(ethylene-butylene)-styrene triblock copolymer

$$\begin{array}{lll} \textbf{STRUCTURE} & [-CH-CH_2-]_m - [[-CH_2-CH_2]_x - [CH-CH_2]_y]_n - [-CH-CH_2-]_m \\ & & C_6H_5 & CH_2-CH_3 & C_6H_5 \\ \end{array}$$

CLASS Chemical copolymers; saturated thermoplastic elastomers

MAJOR APPLICATIONS Asphalt modifiers, adhesives, sealants, coatings, footwear, polymer modifiers, and oil gels.

PROPERTIES OF SPECIAL INTEREST In general, thermoplastic elastomers (TPE) provide the mechanical properties of rubber in combination with the processing characteristics of plastics; recyclable; Kraton G's are low cost TPEs with oxidative and thermal stability, good weathering, and ozone resistance.

OTHER COMPARABLE COMMERCIAL MATERIALS Elexar (Shell), Dexco (Dow/Exxon), Dynaflex (GLS), Vitacom (British Vita), Tekron (Teknor), C-Flex (Concept), Septon (Kuraray), Finaprene (Petrofina), Calprene (Calatrava)

DDODEDTV	LINUTE	CONDITIONS	VALUE		DEFEDENCE
PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Price	$$ lb^{-1}$	Kraton G1650	1.85-2.80		(1)
Specific gravity	_	Kraton G1650	0.91		(2)
Glass transition temperature $T_{\rm g}$	K	Kraton G1650, EB block	213		(1)
Molecular weight $M_{\rm w}$	$g \text{mol}^{-1}$	Kraton G1650 EB block S block	54,000 10,000 (×2)		(3)
			Kraton G1650	Kraton G1652	
S/B/S	wt%	_	15/70/15	15/70/15	(2, 4)
Physical form	_	_	Powder	Powder	(4)
Viscosity	Brookfield	Toluene, 25°C	8,000	1,350	(4)
Hardness	Shore A	_	72	77	(2)
Melt Index	_	ASTM D1238	0	2.5 (463 K) 10 (473 K)	(2, 4)
300% Modulus	MPa	ASTMD412	3.8	5.5	(2)
Elongation	%	ASTMD412	560	520	(2)
Tensile strength	MPa	ASTMD412	26	27	(2)

Kraton G1600 SEBS

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Chemical resistance	_	Acids	Good	(5)
		Bases	Good	
		Aromatics	Poor	
		Aliphatics	Poor/fair	
		Oil in water	Good	
		Water in oil	Poor/fair	
Gas permeability of Kraton G				(6)
Permeability coefficient	SI	G1650 resin		
		O_2	1.1×10^{-12}	
		CO_2	4.4×10^{-11}	
		G1651 resin		
		O_2	1.0×10^{-11}	
		$\overline{CO_2}$	2.9×10^{-11}	
		G1652 resin		
		O_2	1.3×10^{-12}	
		$\overrightarrow{CO_2}$	4.4×10^{-11}	
Transmission rate	$\mathrm{cm^2~s^{-1}}$	G1650 resin		
		O_2	1.1×10^{-7}	
		$\overrightarrow{CO_2}$	2.7×10^{-7}	
		G1651 resin		
		O_2	9.8×10^{-8}	
		$\overrightarrow{CO_2}$	2.8×10^{-7}	
		G1652 resin		
		O_2	1.2×10^{-7}	
		CO_2	3.9×10^{-7}	
		202	5.5 × 10	
Water permeability of Kraton G			- a to-11	(6)
Permeability coefficient	SI	G1650 resin	5.8×10^{-11}	
		G1651 resin	6.6×10^{-11}	
	2 1	G1652 resin	8.7×10^{-11}	
Transmission rate	${\rm g}{\rm cm}^{-2}{\rm s}^{-1}$	G1650 resin	6.4×10^{-9}	
		G1651 resin	7.3×10^{-9}	
		G1652 resin	9.7×10^{-9}	
Viscosity of Kraton G1650	Pa s	In toluene solutions		(7)
y		(wt%)		()
		7 5	6.8×10^{-1}	
		80	1.8×10^{-1}	
		85	3.8×10^{-2}	
		90	5.6×10^{-3}	
		95	7.5×10^{-4}	
			/	

PROPERTY	UNITS	CONDITIONS		VALUE				REFERENCE
Viscosity of Kraton G1650 solutions (15% solids)	Pa s	Solvent Isobutyl isobutyrate Ethyl benzene Cyclohexane Methyl-N-amyl-ketone Toluene	1.4 × 4.8 × 3.6 × 1.5 × 4.3 ×	$10^{-2} 10^{-2} 10^{-3}$				(7)
Resin and oil compatibility with EB segment	-	Polyterpenes Hydrogenated resin esters Saturated hydrocarbon resins Naphthenic oils Paraffinic oils Low molecular weight polybutenes		Incompatible Incompatible Compatible Incompatible Compatible Compatible				(8)
Kraton G-polypropylene blends	As indicated	Aromatic resins Polypropylene (wt%) Kraton G1650 (wt%) Kraton G1652 (wt%) 1/8 in. notched Izod (N) Flex modulus (GPa)	100 - - 48 1,500	90 10 – 64 1,200	80 20 - 690	90 - 10 75 1,000	80 - 20 520 890	(9)
Supplier	Shell Chen	nical Co., One Shell Plaza, P.O	. Box 24	63, Hou	ıston,	Texas ?	77252	-2463, USA

Effect of SEBS level on failure of PET/HDPE $50/50~\text{blends}^{(10)}$

SEBS (%)	Modulus (MPa)	Yield (MPa)	Elongation (%)
0	1,300	26	3
5	1,200	23	40
10	920	20	130
20	650	18	(no break)

Kraton G modification of mopping asphalts $^{(11)}$

Property	Units	Type III asphalt	Kraton G modified asphalt
Cold bond (ASTM D5147-91)	K	288	253
Elongation	%	100	1,000
Tensile strength	MPa	0.21	0.69
Puncture sealing	_	Poor	Very good/fast
Ring and ball softening point	K	362	379

- 1. Holden, G. In *Thermoplastic Elastomers*, 2d ed., edited by G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder. Hanser Publishers, New York, 1996, chap. 16.
- Wilder, C. R. In Handbook of Elastomers, edited by A. K. Bhowmick and H. L. Stephens. Marcel Dekker, New York, 1988, chap. 9.
- 3. Yoshimura, D. K., and W. D. Richards. Modern Plastics (March 1987): 64.
- Shell Technical Bulletin SC 1434-96. Shell Chemical Co., Houston, March 1996; SC1158-93, February 1996.
- 5. Shell Technical Bulletin SC519-93. Shell Chemical Co., Houston, August 1993.
- 6. Shell Technical Bulletin SC941-87. Shell Chemical Co., Houston, July 1994.
- 7. Shell Technical Bulletin SC0072-85. Shell Chemical Co., Houston, July 1994.
- 8. Holden, G. In *Thermoplastic Elastomers*, 1st ed., edited by N. R. Legge, G. Holden, H. E. Schroeder. Hanser Publishers, New York, 1987, chap. 13.
- 9. Shell Technical Bulletin SC0165-93. Shell Chemical Co., Houston, July 1994.
- 10. Paul, D. R. In *Thermoplastic Elastomers*, 2d ed., edited by G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder. Hanser Publishers, New York, 1996, chap. 15C.
- 11. Shell Technical Bulletin SC01810-94. Shell Chemical Co., Houston, July 1994.

MARTEL ZELDIN AND YULI ZHANG

CLASS Cofacial polymers

STRUCTURES

 $[M(Pc)O]_n$:

where M = Si, Ge, or Sn; Pc = phthalocyanine.

where $M' = Fe^{2+}$, Fe^{3+} , Co^{2+} , Co^{3+} , Ru^{2+} , Mn^{2+} , Mn^{3+} , or Cr^{3+} .

$$L =$$

 CN^{1-} , or SCN^{1-} .

 $Pc'=Pc^{2-}$, R_4Pc^{2-} , R_8Pc^{2-} , 1,2- Nc^{2-} (1,2-naphthalocyaninato), 2,3- Nc^{2-} (2,3-naphthalocyaninato), or TBP^{2-} . R=t-Bu, Et, OR' ($R'=C_5H_{11}-C_{12}H_{25}$) (substituted in the peripheral positions).

SYNTHESIS Condensation of $Si(Pc)(OH)_2$, $Ge(Pc)(OH)_2$, $Sn(Pc)(OH)_2$ to form phthalocyaninato polysiloxanes, polygermyloxanes, and polystannyloxanes. $^{(1-4)}$

MAJOR APPLICATIONS Electrical conductors, semiconductors, and materials with photooptical properties.

Electric conductivity

POLYMER	UNITS	у	VALUE	REFERENCE
$\overline{[Si(Pc)O]_n}$	$\sigma_{\mathrm{RT}}\mathrm{ohm^{-1}cm^{-1}}$	Nondoped	3×10^{-8}	(5)
	σ (300 K) ohm ⁻¹ cm ⁻¹	Nondoped	5.5×10^{-6}	(6)
$\{[Si(Pc)O]I_y\}_n$	$\sigma_{\mathrm{RT}} \mathrm{ohm}^{-1} \mathrm{cm}^{-1}$	0.50	2×10^{-2}	(5)
2 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1.40	2×10^{-1}	(5)
		4.60	1×10^{-2}	(5)
$\{[Si(Pc)O](I_3)_y\}_n$	$s (300 \text{ K}) \text{ ohm}^{-1} \text{ cm}^{-1}$	0.37	5.8×10^{-1}	(6)
$\{[Si(Pc)O]Br_y\}_n$	$\sigma_{\mathrm{RT}} \mathrm{ohm}^{-1} \mathrm{cm}^{-1}$	1.00	6×10^{-2}	(5)
$\{[Si(Pc)O]BF_{4y}\}_n$	σ (300 K) ohm ⁻¹ cm ⁻¹	$0.00^{(a)}$	3.0×10^{-4}	(7)
-y -	, ,	$0.00^{(b)}$	2.2×10^{-6}	(7)
		0.11	3.7×10^{-3}	(6)
		0.13	3.3×10^{-3}	(7)
		0.18	2.4×10^{-2}	(6)
		0.19	1.4×10^{-2}	(7)
		0.20	5.3×10^{-2}	(6)
		0.27	2.9×10^{-2}	(7)
		0.28	6.7×10^{-2}	(6)
		0.31	9.0×10^{-2}	(6)
		0.36	1.8×10^{-1}	(7)
		0.36	$8.6 imes 10^{-2}$	(6)
		0.41	1.2×10^{-1}	(7)
		0.50	1.3×10^{-1}	(7)
$\{[Si(Pc)O]TOS_y\}_n$		0.10	5.6×10^{-4}	(7)
(TOS = p-toluenesulfonate)		0.19	1.0×10^{-2}	(7)
,		0.28	2.0×10^{-2}	(7)
		0.37	3.7×10^{-2}	(7)
		0.52	4.5×10^{-2}	(7)
		0.67	4.3×10^{-2}	(7)
$\{[Si(Pc)O]SO_{4y}\}_n$		0.040	8.5×10^{-3}	(7)
-yy//		0.095	8.8×10^{-2}	(7)
$\{[Si(Pc)O]PF_{6y}\}_n$	σ (300 K) ohm ⁻¹ cm ⁻¹	0.08	1.3×10^{-2}	(6)
29311	,	0.18	1.7×10^{-2}	(6)
		0.20	2.3×10^{-2}	(6)
		0.32	7.8×10^{-2}	(6)
$\{[Si(Pc)O]SbF_{6y}\}_n$	σ (300 K) ohm ⁻¹ cm ⁻¹	0.39	1.5×10^{-1}	(6)
$[Ge(Pc)O]_n$	$\sigma_{\rm RT}{ m ohm}^{-1}{ m cm}^{-1}$	Nondoped	$< 10^{-8}$	(5)
$\{[Ge(Pc)O]I - y\}_n$	$\sigma_{\rm RT}$ ohm ⁻¹ cm ⁻¹	1.80	3×10^{-2}	(5)
		1.90	5×10^{-2}	(5)
		1.94	6×10^{-2}	(5)
		2.0	1×10^{-1}	(5)
$[Sn(Pc)O]_n$	$\sigma_{\mathrm{RT}}\mathrm{ohm}^{-1}\mathrm{cm}^{-1}$	Nondoped	$< 10^{-8}$	(5)
$\{[\operatorname{Sn}(\operatorname{Pc})\operatorname{O}]\operatorname{I}_{y}\}_{n}$	$\sigma_{\rm RT}{ m ohm}^{-1}{ m cm}^{-1}$	1.2	1×10^{-6}	(5)
3-		5.5	2×10^{-4}	(5)

POLYMER	UNITS	у	VALUE	REFERENCE
$\{[Fe(Pc)pyz]I_y\}_n$	$\sigma_{\rm RT}{ m ohm}^{-1}{ m cm}^{-1}$	0 ^(c)	7.79×10^{-8}	(8)
		$0.19^{(d)}$	9.31×10^{-4}	(8)
		$0.38^{(d)}$	2.58×10^{-3}	(8)
		$0.77^{(d)}$	8.63×10^{-3}	(8)
		2.10 ^(d)	7.55×10^{-3}	(8)
		2.76 ^(d)	2.33×10^{-2}	(8)
		$0.38^{(e)}$	4.60×10^{-4}	(8)
		1.49 ^(e)	5.99×10^{-3}	(8)
		2.10 ^(e)	1.28×10^{-1}	(8)
		2.54 ^(e)	1.90×10^{-1}	(8)
$[Fe(Pc)tz]_n$	$\sigma_{ m RT}{ m ohm}^{-1}{ m cm}^{-1}$	Nondoped ^(f)	2×10^{-2}	(9)
$[Ru(Pc)tz]_n$		Nondoped ^(f)	1×10^{-2}	(9)
$[Fe(Pc)Me_2tz]_n$		Nondoped ^(f)	$4 imes 10^{-3}$	(9)
$[Ru(Pc)(NH_2)_2tz]_n$		Nondoped ^(f)	$4 imes 10^{-3}$	(9)
[Ru(Pc)p-(NH2)C6H4]n		Nondoped ^(f)	5×10^{-9}	(9)
$[Ru(Pc)Cl_2tz]_n$		Nondoped ^(f)	3×10^{-3}	(9)
$[Os(Pc)pyz]_n$		Nondoped ^(f)	1×10^{-6}	(9)
$[Os(Pc)tz]_n$		Nondoped ^(f)	1×10^{-2}	(9)
$[Fe(Me_8Pc)pyz]_n$		Nondoped ^(f)	3×10^{-9}	(9)
$[Fe(Me_8Pc)tz]_n$		Nondoped ^(f)	1×10^{-2}	(9)
$[Ru(Pc)Me_2tz]_n$		Nondoped ^(f)	4×10^{-3}	(9)
$[Fe(CN_4Pc)pyz]_n$		Nondoped ^(f)	5×10^{-9}	(9)
$[Fe(CN_4Pc)tz]_n$		Nondoped ^(f)	1×10^{-6}	(9)
$[Fe(2,3-Nc)pyz]_n$		Nondoped ^(f)	5×10^{-5}	(9)

Thermoelectric power⁽⁷⁾

Polymer	У	\emph{S} (300 K) $^{(a)}$ (μ V K $^{-1}$)	$(\Delta \text{S}/\Delta \text{\textit{T}}) \sim 300 \text{ (mV K}^{-2} \text{)}$	4t ^(b) (eV)
$\{[Si(Pc)O]BF_{4y}\}_n$	0.13	113		
	0.19	62.9		
	0.27	43.4	0.101	2.70
	0.36	10.5	0.134	1.16
	0.41	4.6	0.135	0.81
	0.50	0.31	0.100	0.70
$\{[Si(Pc)O]TOS_y\}_n$	0.10	284		
CE (/ 2 y 2	0.19	114		
	0.28	82.1	0.079	4.2
	0.37	50.9	0.115	1.27
	0.52	28.2	0.109	0.63
	0.67	26.0	0.096	0.36
$\{[Si(Pc)O]SO_{4y}\}_n$	0.095	48.6	0.17	3.8

⁽f) Room temperature, pressed pellets, 1kbar.

 $^{{}^{(}a)}S_{\text{sample}} = \text{(Slope of voltage} \sim \text{temp. data)} \\ (S_{\text{thermocouple}}) + S_{\text{gold}}. \\ {}^{(b)}\text{Tight-binding bandwidth derived from a fit to:} \\ S = [2\pi^2k_B^2T\cos(\pi\rho/2)]/[3e(4t)\sin^2(\pi\rho/2)].$

Static magnetic susceptibility

Polymer	у	$\begin{matrix} \chi_{Paulli}(^{a)} \\ (\mathbf{10^{-4}}\ emu\ mol^{-1}) \end{matrix}$	Pauli-like spins/M(Pc) ^(b)	A (10 ⁻⁴)	α	Curie-like spins/M(Pc) ^(c)	Reference
${\{[Si(Pc)O]BF_{4y}\}_n}$	0.11	0.68	0.05	135	0.82	0.10	(7)
	0.19	1.40	0.11	16	0.67	0.13	(7)
	0.26	2.39	0.19	101	0.83	0.07	(7)
	0.35	2.22	0.18	92	1.00	0.024	(7)
	0.43	2.28	0.18	90	1.00	0.024	(7)
	0.50	2.32	0.18	83	1.00	0.022	(7)
$\{[Si(Pc)O]TOS_y\}_n$	0.67	3.13	0.25	124	1.00	0.032	(7)
$\{[Si(Pc)O]SO_{4y}\}_n$	0.095	1.93	0.15	116	0.82	0.09	(7)
$\{[Si(Pc)O]BF_{4y}\}_n$	0.36	2.22	0.18	_	_	_	(6)
$\{[Si(Pc)O]PF_{6y}\}_n$	0.36	2.49	0.19	_	_	_	(6)
$\{[Si(Pc)O]SbF_{6y}\}_n$	0.36	2.22	0.18	_	_	_	(6)
$\{[Si(Pc)O](I_3)_y\}_n$	0.37	2.35	0.18	_	_	_	(6)
$\{[Ge(Pc)O](I_3)_y\}_n$	0.37	2.70	0.21	_	_	_	(6)

Unit cell dimensions

Polymer	У	Space	Z	Cell din	nensions (Å)	Interplanar	Staggering angle	Reference
		group		а	b	с	spacing (Å)	ϕ (degrees)	
$[Si(Pc)O]_n$	_	Ibam	4	13.80	27.59	6.66	3.33	39	(5)
$[Ge(Pc)O]_n$	_	<i>P</i> 4/m	1	13.27	3.53	_	3.53	0	(5)
	_	<i>I</i> 4/m	2	18.76	3.57	_	3.57	0	(5)
$[Sn(Pc)O]_n$	-	<i>P</i> 4/m	1	12.81	3.8	_	3.82	Probably eclipsed	(5)
$[Ga(Pc)F]_n$	-	PI		3.871	12.601	12.793	3.87	Probably eclipsed	(5)
$\{[Si(Pc)O]BF_{4y}\}_n$	0.36	P4/mcc	2	13.70	_	6.58	3.29	40	(6, 7)
J	0.50	P4/mcc	2	13.96	_	6.66	_	_	(7)
$\{[Si(Pc)O]PF_{6y}\}_n$	0.36	P4/mcc	2	13.98	_	6.58	3.29	40	(6, 7)
v	0.47	P4/mcc	2	14.08	_	6.63	_	_	(7)
$\{[Si(Pc)O]SbF_{6y}\}_n$	0.36	P4/mcc	2	14.31	_	6.58	3.29	40	(6, 7)
	0.41	P4/mcc	2	14.19	_	6.61	_	_	(7)
$\{[Si(Pc)O](I_3)_y\}_n$	0.37	P4/mcc	2	13.97	_	6.60	3.30	39	(6)
$\{[Si(Pc)O](Br_3)_y\}_n$	0.37	P4/mcc	2	13.97	_	6.60	3.30	39	(6)
$\{[Ge(Pc)O](I_3)_y\}_n$	0.36	P4/mcc	2	13.96	_	6.96	3.48	40	(6)
$\{[Si(Pc)O]TOS_y\}_n$	0.67	P4/mcc	2	14.39	_	6.64	_	_	(7)
$\{[Si(Pc)O]PYS_{y}\}_{n}$	0.22	P4/mcc	2	13.70	_	6.65	_	_	(7)
$\{[Si(Pc)O](CF_3SO_3)y\}_n$	0.55	P4/mcc	2	13.99	_	6.60	_	_	(7)
$\{[Si(Pc)O]SO_{4y}\}_n$	0.095	P4/mcc	2	13.86	_	6.67	_	_	(7)
$\{[Si(Pc)O]NFBS_y\}_n$	0.36	P4/mcc	2	14.37	_	6.63	_	_	(7)
$\{[Si(Pc)O]PFOS_y\}_n$	0.26	P4/mcc	2	13.91	_	6.61	_	_	(7)

⁽a) For $\chi = \chi_{\text{Pauli}} + \text{AT}^{\circ}$. (b) $N_{\text{p}} = {}^{3}\chi_{\text{Pauli}}kT/Ng^{2}\mu_{\text{B}}^{2}S(S+1)$, where $T=298\,\text{K}$. (c) $N_{\text{C}} = 3AT^{1-\alpha}k/Ng^{2}\mu_{\text{B}}^{2}S(S+1)$, where $T=298\,\text{K}$.

Other physical properties⁽⁴⁾

PROPERTY	POLYMER	CONDITIONS
Color	$[Si(Pc)O]_n$	Dark purple powder
Solubility	$[Si(Pc)O]_n$	Concentrated $\rm H_2SO_4$ and $\rm HSO_3CH_3$: $0.013\rm g$ in 25 ml concentrated $\rm H_2SO_4$ at room temperature $0.020\rm g$ in 25 ml concentrated $\rm H_2SO_4$ at 80C

Densities

POLYMER	у	DENSITY (G CM ⁻³)	REFERENCE	
		CALCULATED	FOUND	
$\overline{[\mathrm{Si}(\mathrm{Pc})\mathrm{O}]_n}$	_	1.458	1.432	(4, 6)
$[Ge(Pc)O]_n$	_	1.609 ^(a)	1.512	(4, 6)
. , , , , , , , , , , , , , , , , , , ,	_	1.589 ^(b)	_	(4, 6)
$[Sn(Pc)O]_n$	_	1.715	1.719	(4, 6)
$\{[Si(Pc)O]BF_{4y}\}_n$	0.36	1.581	1.545	(6)
$\{[Si(Pc)O]PF_{6y}\}_n$	0.36	1.573	1.563	(6)
$\{[Si(Pc)O]SbF_{6y}\}_n$	0.36	1.582	1.591	(6)
$\{[Si(Pc)O](I_3)_y\}_n$	0.37	1.802	1.744	(6)
$\{[Ge(Pc)O](I_3)_y\}_n$	0.36	1.805	1.774	(6)

⁽a) Space group: P4/m; Z = 1; a = 13.27, c = 3.53. (b) Space group: I4/m; Z = 2; a = 18.76, c = 3.57.

Infrared spectroscopy $^{(4)}$

POLYMER	IR SPECTRAL DATA (CM ⁻¹)*
[Si(Pc)O] _n	530(m), 575(m), 646(w), 721(vs), 759(vs), 762(w), 804(w), 869(vw), 910(s), 936(vw), 1000(bd), 1043(m), 1080(vs), 1121(vs), 1164(s), 1170(sh), 1192(w), 1289(s), 1334(vs), 1351(m), 1426(vs), 1517(s), 1596(w), 1614(m)
$[Ge(Pc)O]_n$	425(vw), 435(vw), 508(m), 572(m), 640(w), 660(vw), 725(vs), 753(m), 762(vw), 772(vw), 801(w), 865(bd), 899(s), 935(vw), 945(vw), 970(vw), 998(w), 1068(vs), 1087(vs), 1119(vs), 1162(s), 1195(w), 1284(m), 1332(vs), 1345(m), 1419(s), 1500(m), 1588(w), 1612(m)
$[Sn(Pc)O]_n$	428(w), 435(sh), 495(m), 570(m), 640(w), 660(vw), 687(vw), 716(vs), 750(s), 762(m), 769(m), 775(sh), 808(m), 825(bd), 872(w), 888(m), 950(w), 1005(vw), 1058(s), 1089(s), 1120(vs), 1168(m), 1183(w), 1263(w), 1284(m), 1293(w), 1338(vs), 1405(sh), 1580(sh), 1610(m)

^{*}Peaks not readily assigned to M(Pc) moiety; s = strong, m = medium, w = weak, bd = broad, sh = shoulder, v = very.

Optical spectroscopy⁽⁴⁾

COMPOUND	ABSORPTION MAXIMUM (NM)
$[Si(Pc)O]_n$	203, 285, 335, 625
$[Ge(Pc)O]_n$	285, 350, 645
$[Sn(Pc)O]_n$	205, 290, 365, 655, 695

- 1. Hanack, M. *Inorg. and Organometal. Polym. II. Advanced Materials and Intermediates.* In *ACS Symposium Series*, edited by P. Wisian-Neilson, H. R. Allcock and K. J. Wynne. American Chemical Society, Washington, D.C., 1994, p. 572.
- 2. Marks, T. J., K. F. Schoch, Jr., and B. R. Kundaldar. Synth. Met. 1 (1980): 337.
- 3. Joyner, R. J., and M. E. Kenney. Inorg. Chem. 82 (1960): 5,790.
- 4. Davison, J. B., and K. J. Wynne. Macromolecules 11 (1978): 186 (and references therein).
- 5. Dirk, C. W., et al. J. Am. Chem. Soc. 105(6) (1983): 1,539-1,550.
- 6. Inabe, T., et al. J. Am. Chem. Soc. 108(24) (1986): 7,595-7,608.
- 7. Almeida, M., et al. J. Am. Chem. Soc. 111(14) (1989): 5,271-5,284.
- Schoch, K. F. Jr., B. R. Kundalkar, and T. J. Marks. J. Am. Chem. Soc. 101(23) (1979): 7,071-7,073.
- 9. Diel, B. N., et al. J. Am. Chem. Soc. 106(11) (1984): 3,207-3,214.

Nylon 3

JUNZO MASAMOTO

CLASS Aliphatic polyamides

STRUCTURE $[-CH_2CH_2CONH-]$

MAJOR APPLICATION Thermal stabilizer for polyoxymethylene, and stabilizer for polyacetal resin. Because of high amide concentration, nylon 3 shows properties of an excellent formaldehyde scavenger. (1)

PROPERTIES OF SPECIAL INTEREST Nylon 3 shows properties of an excellent stabilizer for polyoxymethylene. Features of nylon 3 as a stabilizer for polyoxymethylene are as follows: High thermal stability, negligible decoloration when the polymer remains for a long time in injection mold machine at its molten state, and low deposit on the mold. Nylon 3 is an interesting material as an odd-numbered nylon with shortest methylene group, thus forming high glass transition temperature and high absorption of water.

OTHER POLYMER SHOWING THIS SPECIAL PROPERTIES Formaldehyde scavenger: copolyamide composed of Nylon 6, Nylon 6,6 and Nylon 6,10.

PREPARATIVE TECHNIQUES Hydrogen transfer polymerization: Acryl amide is polymerized in the presence of a strong base catalyst (e.g., t-BuOK). The polymerization occurs with hydrogen transfer, producing nylon 3. The polymerization is conducted using inactive solvents, such as toluene, pyridine, chlorobenzene, and o-dichlorobenzene from 80 to 200° C. (1–4)

The following methods were also reported for the preparation of nylon 3: anionic ring-opening polymerization of β -lactam (β -propiolactam); ^(5,6) ring-opening polymerization of 8-ring dilactam (1,5-diazacyclooctane-2,6-dion); ⁽⁷⁾ thermal polymerization of ethylene cyanehydrine; ⁽⁸⁾ and alternative copolymerization of carbon monoxide and ethylene imine. ⁽⁹⁾

The polymerization method of α -amino acid to nylon 3 poly(- β -alanine) was also studied. For example, nylon 3 was synthesized from β -alanine N-carboxyanhydride (NCA), N-dithiocarbonyl ethoxycarbonyl- β -alanine and N-carbothiophenyl- β -alanine. (10–12)

The use of various active β -alanine esters for the preparation of poly(- β -alanine) was proposed. (13) The direct condensation of β -alanine to obtain nylon 3 was also reported. (14)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-	71	_
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	Light scattering	$M_{\rm w} = 90,000 - 120,000$	(15)
ŭ . ,		Light scattering Viscosity Intrinsic viscosity in 90% formic acid	$M_{\rm w} = 80,000$ 43,000 54,000	(2) (16, 17) (18)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
IR (characteristic absorption frequencies)	cm ⁻¹	Amide VII for the extended planar zigzag conformation of the molecular chain	240	(19)	
		Skeletal vibration of delta methylene CH ₂ CONHCH ₂)	365	(19)	
		Skeletal vibration of delta methylene NCH ₂ CH ₂	465	(19)	
		Amide VI	580	(19)	
		Amide V	700	(19)	
		NH asymmetric	3,400	(20)	
		NH asymmetric	3,250	(20)	
		-NH···C=O	3,070		
				(20)	
		$CH_2(N)$	2,927	(20)	
		CH ₂	2,890	(20)	
		C=O amide I	1,640	(20)	
		Amide II	1,530	(20)	
		Amide III Amide IV	1,283, 1,220 1,100, 1,040,	(20) (20)	
			960		
		Amide V	683	(20)	
Raman	cm^{-1}	Amide VI	577	(21)	
		Amide V	682		
		C-CO stretch	970		
		C-C stretch	1,110		
		NH wagging	1,227		
		Amide III	1,260		
		CH ₂ twisting	1,293		
		CH ₂ wagging	1,367		
		CH ₂ -CO bending	1,426		
		CH ₂ bending	1,443		
		Amide I	1,630		
		Symmetric CH ₂ stretching	2,853, 2,900		
		Asymmetric CH ₂ stretching	2,933		
		CH ₂ stretching	2,963/2,995		
		NH stretching	3,293		
NMR		z ¹ H NMR: trifluoroacetic acid at 60°C w		(3)	
	¹ H NMR: D ₂ O (0.5% solution) at room temperature with a Bruker Model-WH 270 spectrometer				
	¹³ C NN	rrometer WH dR: FSO3H, 90.5 MHz with a Bruker WH drometer	I 360 FT-NMR	(23)	
Solvents	triflu	Soluble at room temperature: formic acid, dichloroacetic acid, trifluoroacetic acid Soluble at 60°C: chloral hydrate			
Nonsolvents		ole at room temperature: water, methano	l. butanol	(25)	

N	v	on	3
---	---	----	---

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	0.4 mol-KCl/ <i>l</i> -HCOOH, at 35°C	$K = 1.6 \times 10^{-4}$ $a = 0.50$	(26)
Huggins constants k'	-	99 wt% formic acid: 90 wt% formic acid: 80 wt% formic acid 0.4 mol-KCl/99 wt%-HCOOH 0.4 mol-KCl/80 wt%-HCOOH	0 0.4 0.5 0.4 0.5	(27)
Lattice	_	Modification I	Monoclinic Orthorhombic	(19, 28, 29) (28)
Space group	_	_	P2 ₁ C2-2	(19) (28)
Chain conformation	_	Modification I (monoclinic), II, and III	Extended chain of planar zigzag	(19)
		Monoclinic form and orthorhombic form	Both extended	(28)
Unit cell dimensions	Å	Modification I (monoclinic)	a = 9.33, $b = 4.78$ (fiber identity period), $c = 8.73$	(19, 29)
(19, 29)		Monoclinic	a = 9.60, b = 4.78 (fiber identity period), c = 8.96	(28)
(19, 29)		Orthorhombic	a = 9.56, b = 4.78 (fiber identity period), c = 7.56	(19, 29)
Unit cell angles	degrees	Monoclinic, modification I Monoclinic Monoclinic	$\beta = 60$ $\beta = 122.5$ $\beta = 57.5$	(19) (28) (30)
Unit cell contents	monomeric units	Monoclinic form	4	(19, 28-30)
		Orthorhombic form	4	(28)
Degree of crystallinity	%	Dielectric relaxation of nylon 3 powder	38	(31)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	Theoretical density for modification I	1.39	(19)
		Observed density for nylon 3 drawn fiber (modification I) at 25°C	1.33	(19)
		Observed density for nylon 3 undrawn fiber (modification II) at 25°C	1.32	(19)
		Observed density for nylon 3 for modification III at 25°C	1.33	(19)
		Theoretical density for monoclinic and orthorhombic	1.36	(28)
		Observed density for nylon 3	1.00	(20)
		Form I (monoclinic) Form II (orthorhombic)	1.30 1.27	(28) (28)
D.1	3.6. 11.61	·		
Polymorphs		tion I (monoclinic); Modification II; cation III; Modification IV (smectic hexag	ronal)	(19)
		monoclinic); Form II (orthorhombic)	onarj	(28)
Glass transition temperature	K	Tan δ maximum of drawn fiber	443-453	(32)
		DTA Dialectric relevation of pulon 3 nowder	384 384	(33)
		Dielectric relaxation of nylon 3 powder 20 K min ⁻¹ , with a Perkin Elmer DSC 4	396	(31) (34)
		NMR method, water insoluble nylon 3 in dry state	480	(18)
Melting point	K	With decomposition, water insoluble polymer	613	(2)
		With decomposition, water soluble polymer	598	(2)
		Hot stage microscope, water insoluble nylon 3	625	(18)
Sub T_g transition	K	NMR, local motion of the methylene groups of the polymer chain in amorphous region, molecular chain approach a rigid structure in this temperature range	77–130	(18)
Tensile modulus	MPa	Drawn and wet heat-treated fiber	8,000-12,000	(32)
Tensile strength	MPa	Drawn and wet heat-treated fiber	240-360	(32)
Yield strain	%	Drawn and wet heat-treated fiber	3	(32)
Maximum extensibility	%	Drawn and wet heat-treated fiber	10-20	(32)
Dielectric constant	_	10^{-3} - 10^{-7} Hz, 30° C	4.7	(31)
Dielectric loss	_	10^{-3} – 10^{-7} Hz, 30° C	10^{-2} – 10^{-1}	(31)

Nylon 3

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE		
Decomposition temperature	K	50% weight loss, 2°C min ⁻¹ , in air	608-613	(31)		
Water absorption	%	60% RH, 25°C	7	(1)		
Important Patents	U.S. Patent 4,855,365 U.S. Patent 5,015,707, assigned to Asahi Chemical					
Availability	Not commercially available (only used inside Asahi Chemical Industry Company Ltd., 1-1-2, Yuraku-cho, Chiyoda-ku, Tokyo, 100 Japan)					

- Masamoto, J. In Polymeric Material Encyclopedia, edited by J. C. Salamone. CRC Press, Boca Raton, Fla., 1996, vol. 6, p. 4,672.
- 2. Breslow, D. S., G. E. Hulse, and A. S. Matrack. J. Am. Chem. Soc. 79 (1957): 3,760.
- Masamoto, J., K. Yamaguchi, and H. Kobayashi. Kobunshi-kagaku (Jpn. J. Polym. Sci. Technol.) 26 (1969): 631.
- 4. Masamoto, J., C. Ohizumi, and H. Kobayashi. Jpn. J. Polym. Sci. Technol. 26 (1969): 638.
- 5. Bestian, R. Angew. Chem. 80 (1968): 304.
- 6. Kodaira, T., et al. Bull. Chem. Soc. Jpn. 38 (1965): 1,788.
- 7. Hall, H. K. J. Am. Chem. Soc. 80 (1958): 604.
- 8. Lautenschlanger, H. U.S. Patent 3,126,353 (1964), assigned to BASF.
- 9. Kagiya, T., et al. J. Polym. Sci., Part B, 3 (1965): 617.
- 10. Birkhofer, L., and R. Modic. Liebigs Ann. Chem. 628 (1959): 162.
- 11. Noguchi, J., and T. Hayakawa. J. Am. Chem. Soc. 76 (1954): 2,846.
- 12. Higashimura, T., et al. Makromol. Chem. 90 (1966): 243.
- 13. Hanabusa, K., K. Kondo, and K. Takemoto. Makromol. Chem. 180 (1979): 307.
- Sakabe, H., H. Nakamura, and H. Konishi. Sen-i Gakkaisshi (J. Soc. Fiber Sci. Technol. Jpn.) 45 (1991): 493.
- 15. Masamoto, J., K. Sasaguri, and H. Kobayashi. J. Soc. Fiber Sci. Technol. Jpn. 26 (1970): 246.
- 16. Munoz-Guerra, S., et al. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 733.
- 17. Munoz-Guerra, S., and A. Prieto. In *Crystallization of Polymers*, edited by M. Dosiere. Kluwer Academic Publishers, Netherlands, 1993, p. 277.
- 18. Tsumi, A., et al. J. Polym. Sci., Part A-2, 6 (1968): 493.
- 19. Masamoto, J., et al. J. Polym. Sci., Part A-2, 8 (1970): 1,703.
- 20. Morgenstern, U., and W. Berger. Makrol. Chem. 193 (1992): 2,561.
- 21. Hendra, P. J., et al. Spectrochimica Acta 46 (1990): 747.
- 22. Verneker, V. R. P., and B. Shaha. Polym. Commun. 25 (1984): 363.
- 23. Kricheldorf, H. R. J. Polym. Sci., Polym. Chem. Ed., 16 (1978): 2,253.
- 24. Masamoto, J., et al. J. Soc. Fiber Sci. Technol. Jpn. 25 (1969): 525.
- 25. Masamoto, J., K. Yamaguchi, and H. Kobayashi. J. Soc. Fiber Sci. Technol. Jpn. 25 (1969): 533.
- 26. Masamoto, J., K. Sasaguri, and H. Kobayashi. J. Soc. Fiber Sci. Technol. Jpn. 26 (1970): 246.
- 27. Masamoto, J., et al. J. Soc. Fiber Sci. Technol. Jpn. 26 (1970): 239.
- 28. Munoz-Guerra, S., et al. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 733.
- 29. Tadokoro, E. Structure of Crystalline Polymers. John Wiley and Sons, London, 1979.
- 30. Munoz-Guerra, S., A. Prieto, and J. M. Montserrant. J. Mater. Sci. 27 (1992): 89.
- 31. Wolfle, E., and B. Stoll. Colloid Polym. Sci. 258 (1980): 300.
- 32. Masamoto, J., et al. J. Appl. Polym. Sci. 14 (1970): 667.
- 33. Tsvetkov, V. N., et al. Vysokomol. Soedin A 10 (1968): 547.
- 34. Morgenstern, U., and W. Berger. Makrol. Chem. 193 (1992): 2,561.
- 35. Kricheldorf, H. R., and G. Schilling. Makromol. Chem. 177 (1976): 607.

Nylon 4,6

DINESH V. PATWARDHAN

TRADE NAMES Stanyl (DSM); TW300 (dry, unfilled Stanyl); TW241F10 (dry, 50% glass fiber filled Stanyl). Approximately 50 other varieties of filled or unfilled Stanyl are available.

CA NUMBER $50327-22-5^{(1)}$

CLASS Aliphatic polyamides; Nylons

STRUCTURE
$$H-(HN-(CH_2)_4-HN-CO-(CH_2)_4-CO)_n-OH$$

PREPARATIVE TECHNIQUES Nylon 4,6 is polymerized from 1,4-diaminobutane and adipic acid; 1,4-diaminobutane is prepared separately by reacting acrylonitrile and HCN followed by hydrogenation. The first step in polymer formation involves condensing the two monomers, 1,4-diaminobutane and adipic acid, to give a low molecular weight pre-polymer. This is done at lower temperature (200°C) to avoid formation of cyclics by the amine. In a separate step, this pre-polymer is molded into uniform cylindrical pellets and heated to about 250°C in an atmosphere of nitrogen and steam. The use of pre-formed pellets is important for uniform rate of solid-state polymerization and thus the degree of polymerization. These pellets are especially important for nylon 4,6 because transamidation, which leads to uniform molecular weight, cannot be performed on the final melt due to the sensitivity of nylon 4,6 to thermal degradation. The typical molecular weight range of nylon 4,6 thus obtained is 30,000 g mol⁻¹ with polydispersity of 1.15.⁽¹⁻⁴⁾

MAJOR APPLICATIONS Nylon 4,6 is often blended with glass fiber or polytetrafluoroethylene and is used in underhood automotive parts, gears, electrical parts, and bearings.⁽⁵⁾

PROPERTIES OF SPECIAL INTEREST Distribution of methylene moieties in nylon 4,6 exists in regular groups of four. This high order leads to higher crystallinity and a faster rate of crystallization compared with other polyamides such as nylon 6,6 or nylon 6. Nylon 4,6 therefore has higher tensile strength, heat deflection, and tenacity, which makes it a better high-temperature engineering plastic compared with more common polyamides. On the other hand, high moisture regain is a significant drawback. (1,3)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Specific gravity/density	_	23°C, dry, unfilled (TW300)	1.18	(6)
Melting point	K	Dry, unfilled (TW300)	563	(6)
Specific heat	btu/lb-F	_	0.5	(5)
Solvent	_	Dry, unfilled (TW300)	95% formic acid	(4)

Nylon 4	4.6
---------	-----

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR (characteristic absorption frequencies)	cm ⁻¹	Obtained on thin films from formic acid solution N-H C-H ₂ Amide I-VI	3,300 (vs); 3,070 (m) 2,945 (s); 2,870 (m) 1,638 (vvs); 1,540 (vvs); 1,280 (m); 940 (w); 730 (sh); 690 (s,b); 575 (m); 520 (w)	(4)
NMR	ppm	Deuterated formic acid as the solvent ^{1}H ^{13}C	1.57; 1.66; 2.37; 3.27 25.19; 25.95; 35.46; 39.65	(7)
Crystalline state properties Crystal system Unit cell dimensions Cell angles	nm Degrees	- - -	Monoclinic $a = 0.49, b = 0.53,$ $c = 1.48$ $\alpha = 51, \beta = 77,$ $\gamma = 62$	(8)
Heat of fusion	$kJ mol^{-1}$	Sample quenched and annealed for 5 min at 279°C	15.1	(4)
Tensile modulus	MPa	Dry, unfilled (TW300) Dry, filled (TW241F10)	3,000 16,000	(5) (9)
Tensile strength at break	MPa	Dry, unfilled (TW300)	99.31	(5)
Tensile strength at yield	MPa	Dry, unfilled (TW300) Dry, filled (TW241F10)	79.31 234.5	(5) (9)
Yield stress	MPa	Dry, unfilled (TW300)	95	(6)
Elongation at break	%	Dry, unfilled (TW300)	30	(5)
Flexural modus	MPa	Dry, unfilled (TW300) Dry, filled (TW241F10)	3,100 14,000	(6) (9)
Flexural strength at yield	MPa	Dry, unfilled (TW300) Dry, filled (TW241F10)	149.6 350	(5) (9)
Impact strength	ft-lb/in	Izod, 73°F, dry, unfilled Dry, filled (TW241F10)	1.8 2.2	(5) (9)
Hardness	Shore D	Durameter	85	(5)

				Nylon 4,6
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Poisson ration	_	_	0.37	(5)
Dielectric constant ε'	_	1 kHz	3.83	(5)
Resistivity	ohms cm	_	5×10^{14}	(5)
Surface resistivity	ohms	_	8×10^{15}	(5)
Thermal conductivity	btu-in/hr-ft ² -F	_	2	(5)
Water absorption	%	50% relative humidity	3	(6)
Vicat softening temperature	K	_	560.8	(5)
Distortion temperature	K	_	433	(10)
Cost	$\text{US}\$\ \text{kg}^{-1}$	Dry, unfilled, 1994 price	6.5	(2)
Supplier		ng Plastics, P.O. Box 3333, 2267 West I diana 47732, USA	Mill Road,	(9)

- 1. Palmer, R. J. In *Encyclopedia of Chemical Technology* 4th ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1996, vol. 19, p. 497.
- 2. Weber J. N. In *Encyclopedia of Chemical Technology* 4th ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1996, vol. 19, p. 571.
- 3. O'Sullivan, D. Chemical and Engineering News 62(21) (1984): 33.
- 4. Gaymans R. J., et al. J. Polym. Sci. 15 (1977): 537.
- 5. Material Data Sheet on Stanyl TW300 (dry). Ashland, Inc., 1996-1997.
- 6. Johnson, R. W., et al. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1988, vol. 11, p. 371.
- 7. De Vries, N. K. Polymer Bull. (Berlin) 26(4) (1991): 451.
- 8. Jones, N. A., et al. Macromolecules 29 (1996): 6,011.
- 9. Product Data Sheet on Stanyl TW241F10 (dry). DSM Engineering Plastics, 1996.
- Ash, M., and I. Ash, eds. Handbook of Plastic Compounds, Elastomers, and Resins. VCH Publishers, New York, 1992, p. 177.

Nylon 6

PAUL G. GALANTY

ACRONYM, ALTERNATIVE NAME, TRADE NAMES PA-6, poly- ε -caproamide, Capron[®], Ultramid[®], Nylatron[®]

CLASS Aliphatic polyamides

STRUCTURE $[-NH(CH_2)_5CO-]$

MAJOR APPLICATIONS Gears, fittings, and bearings. Electrical switches, bobbins, and connectors. Food packaging film. Monofilament for weed trimmers and fishing line. Blow and roto-molded containers. Wire and cable jacketing. Power tool housings, wheelchair wheels, automotive cooling fans, and other underhood parts.

PROPERTIES OF SPECIAL INTEREST Excellent load bearing (strength and stiffness) capability at elevated temperatures. Good chemical and abrasion resistance. Low coefficient of friction. Toughness and impact resistance.

PREPARATIVE TECHNIQUES (a) Hydrolytic polymerization of ε -caprolactam; temperature = 250-260°C; pressure cycle for hydrolysis and addition; vacuum cycle for accelerated rate condensation. (b) Solid state polymerization for very high molecular weight; temperature = 140-170°C (higher temperature causes discoloration); high vacuum to reach target molecular weight; nitrogen purge at atmospheric pressure is a costly alternative.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Monomer Molecular mass Melting point Boiling point Bulk density	- g mol ⁻¹ K K K g cm ⁻³	- - - -	ε-Caprolactam 113.16 342.2 543 0.6-0.7	(2)
Polymerization heats of reaction	kcal mol ⁻¹	Hydrolysis Addition Condensation	2.1 -4 -6.1	(3)
Repeat unit	[-NH(CH ₂)	₅ CO-]		(4)
Molecular mass range	$g \text{mol}^{-1}$	Typical as sold Solid state	$1.8-5.2 \; (\times 10^4)$ $\sim 1 \times 10^5$	(3)
Typical polydispersity index	_	-	1.9-2.0	(3)
IR (characteristic absorption frequencies)	cm ⁻¹	Assignment N-H hydrogen-bonded stretch C=O amide I stretch C-N amide II stretch	3,300 1,640 1,545	(5)

Chemical resistance⁽⁶⁾

Chemical	Temp. (°C)	Conc. (%)	Rating				
			Excellent	Good	Poor	Severe attack	
Acetone	23	100	✓				
Benzene	23	100	\checkmark				
Ethylene glycol/water	23	50		\checkmark			
Ethylene glycol/water	120	50				\checkmark	
Formic acid	23	90				\checkmark	
Gasoline	100	100	\checkmark				
Gasoline/methanol (15%)	23	15			\checkmark		
Hydrochloric acid	23	10				\checkmark	
Potassium hydroxide	23	10		\checkmark			
Potassium hydroxide	60	20			\checkmark		
Trichloroethylene	23	100		\checkmark			
Water	Up to 50	100		\checkmark			
Water (steam)	100-150	100				\checkmark	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Lattice	_	_	Monoclinic	(7)
Unit cell dimensions	nm	$lpha$ structure γ structure	a = 0.956, b = 1.724, c = 0.801 a = 0.933, b = 1.688, c = 0.478	(7)
Unit cell angles	Degrees	α structure γ structure	67.5 121	(7)
Unit cell contents	_	α structure γ structure	4 4	(7)
Heat of fusion	$\mathrm{J}\mathrm{g}^{-1}$	Calorimetry	188	(8)
Density	$\rm gcm^{-3}$	ASTM D-792; dry as molded	1.13	(9)
Degree of crystallinity	%	Typical molded	50	(10)
Mark-Houwink parameters: K and a	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	In 85% formic acid; 25°C	K = 0.023 $a = 0.82$	(11)
Polymorphs	_	_	α , γ	(7)
Refractive index	_	At thickness < 0.5 mm; molded, undrawn	1.53	(12)
Glass transition temperature	K	DSC	320–330	(13)

Ny	lon	6
----	-----	---

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting point	K	ASTM D-789; Fisher-Johns	493	(9)
Specific heat	$Jg^{-1}K^{-1}$	Neat, 0°C Neat, 120°C Neat, 160°C	1.38 2.30 2.68	(14)
Thermal expansion coefficient	mm (mm K) ⁻¹	ASTM D-696 Neat resin 33% glass fiber	$8.30 \times 10^{-4} \\ 3.80 \times 10^{-4}$	(9)
Deflection temperature under load	K	ASTM D-648 Neat resin Load = 1.80 MPa Load = 0.45 MPa 33% glass fiber Load = 1.80 MPa Load = 0.45 MPa	338 438 483 493	(9)
Tensile strength, yield	MPa	ASTM D-638 Neat resin DAM, 23°C* DAM, 121°C 50% RH, 23°C* 33% glass fiber DAM, 23°C DAM, 121°C 50% RH, 23°C	79 21 36 200 83 127	(9)
Tensile elongation, yield	%	ASTM D-638 Neat resin DAM, 23°C DAM, 121°C 50% RH, 23°C 33% glass fiber DAM, 23°C DAM, 121°C 50% RH, 23°C	7 15 16 3 7 6	(9)
Tensile elongation, ultimate	%	ASTM D-638 Neat resin DAM, 23°C DAM, 121°C 50% RH, 23°C 33% glass fiber DAM, 23°C DAM, 121°C 50% RH, 23°C	70 >300 260 3 7 6	(9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Flexural strength	MPa	ASTM D-790		(9)
		Neat resin		
		DAM, 23°C	108	
		DAM, 121°C	17	
		50% RH, 23°C	35	
		33% glass fiber		
		DAM, 23°C	276	
		DAM, 121°C	112	
		50% RH, 23°C	179	
Flexural modulus	MPa	ASTM D-790		(9)
		Neat resin		. ,
		DAM, 23°C	2,829	
		DAM, 121°C	304	
		50% RH, 23°C	738	
		33% glass fiber		
		DAM, 23°C	9,384	
		DAM, 121°C	3,319	
		50% RH, 23°C	5,127	
Notched Izod impact	Jm^{-1}	ASTM D-256		(9)
strength	•	Neat resin		. ,
O		DAM, 23°C	53	
		50% RH, 23°C	NB	
		33% glass fiber		
		DAM, 23°C	117	
		50% RH, 23°C	235	
Hardness, Rockwell	R scale	ASTM D-785; DAM, 23°C		(9)
		Neat resin	119	()
		33% glass fiber	121	
Abrasion resistance	mg kcycles ⁻¹	ASTM D-1044, Taber; DAM, 23°C		(15)
		Neat resin	9	
		33% glass fiber	30	
Volume resistivity	ohm cm	ASTM D-257; DAM, 23°C		(9)
		Neat resin	1.00×10^{14}	
		33% glass fiber	1.00×10^{15}	
Surface resistivity	ohms	ASTM D-257; DAM, 23°C	15	(9)
		Neat resin	1.00×10^{15}	
		33% glass fiber	1.00×10^{15}	
Dielectric constant	_	ASTM D-150; DAM, 23°C, 1 MHz;	3.80	(9)
		33% glass fiber		

N۱	ılο	n	6

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric strength, short	$kV mm^{-1}$	ASTM D-149; DAM, 23°C, 3.2 mm		(9)
time		Neat resin	460	
		33% glass fiber	560	
Thermal conductivity	$W (m K)^{-1}$	_	0.23	(16)
Coefficient of friction	_	ASTM D-1894, polymer to steel		(17)
		Neat resin		
		Static	0.24	
		Dynamic	0.16	
		33% glass fiber		
		Static	0.25	
		Dynamic	0.16	
Thermal index ratings	K	UL-746B; 60,000-h half-life at indicated		(9)
		temperature; 3.2 mm		
		Neat resin		
		Mechanical	378	
		Impact	378	
		Electrical	403	
		33% glass fiber		
		Mechanical	413	
		Impact	393	
		Electrical	413	
Moisture absorption	%	ASTM D-570; 23°C		(9)
		Neat resin		
		50% RH equilibrium	2.7	
		Saturation	9.5	
		33% glass fiber		
		50% RH equilibrium	1.9	
		Saturation	6.7	
Flammability ratings		UL-94; 3.2 mm		(9)
		Neat resin	V-2	
		33% glass fiber	HB	
Price	US\$ kg ⁻¹	Commercial quantities of 2–5 $(\times 10^5) \text{ kg yr}^{-1}$		(18)
		Neat resin	0.66-0.68	
		33% glass fiber	0.68-0.70	
Major suppliers	BASF, Mt. 0	ıl, Morristown, New Jersey Olive, New Jersey burgh, Pennsylvania		
		sins, Henderson, Kentucky ilmington, Delaware		
		Manchester, New Hampshire		

 $^{^*\}mathrm{DAM} = \mathrm{tested}\ \mathrm{dry}\ \mathrm{as}\ \mathrm{molded}; 50\%\ \mathrm{RH} = \mathrm{tested}\ \mathrm{after}\ \mathrm{equilibration}\ \mathrm{in}\ \mathrm{a}\ 50\%\ \mathrm{RH}, 23^\circ\mathrm{C}\ \mathrm{room}.$

- 1. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, pp. 525-526.
- 2. Bander, J. AlliedSignal Nylon-6 Databook, Section F, 1985.
- 3. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 524.
- 4. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 110.
- 5. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 85.
- 6. Chemical Resistance Guide. AlliedSignal Plastics, 1995, p. 2-7.
- 7. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, pp. 114-119.
- 8. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 142.
- 9. Capron® Nylon Resins Product Selection Guide. AlliedSignal Plastics, 1993.
- 10. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 125.
- 11. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 81.
- 12. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 348.
- 13. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 147.
- 14. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 344.
- 15. Product Information Bulletin 92-102. AlliedSignal Plastics, 1994.
- 16. Kohan, M. L. Nylon Plastics Handbook. Hanser/Gardner Publications, 1995, p. 344.
- 17. Product Information Bulletin 92-103. AlliedSignal Plastics, 1992.
- 18. AlliedSignal Plastics, Sales Department, 1997.

Nylon 6 copolymer

SHAW LING HSU

TRADE NAME, ALTERNATIVE NAMES Ultramid T (BASF), nylon 6/6T, polyphthalamide

CLASS Aromatic polyamides; aromatic nylon

STRUCTURE These aromatic nylons consist of aliphatic and aromatic building blocks incorporating the repeat units of nylon 6—poly(caprolactam)—and nylon 6T—poly(hexamethylene terephthalamide). Because of this composition, Ultramid T resins are often designated as nylon 6/6T materials. The basic structure is nylon 6/6T, with a majority component of nylon 6.

(Nylon 6)
$$-N - CH_{2} - C - U_{2} - U_{$$

PROPERTIES OF SPECIAL INTEREST Extremely high melting temperature can be achieved by adjusting the relative amount of the aromatic component. Good mechanical properties at elevated temperatures. Good resistance to chemicals. Good dielectric properties. Dimensional stability in the presence of moisture. Low moisture absorption, good impact resistance, good dielectric properties, good resistance to chemicals, easy to process.

MAJOR APPLICATIONS High-temperature applications, automobile parts (e.g., radiator, ventilation, and fuel supply systems), electronics housings, plug and socket connectors, printed circuit boards, tennis rackets, golf clubs.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
NMR*	ppm	Range for amide proton peaks	6-7	(1)
		Range for methylene proton peaks	1-4	
IR (characteristic absorption frequencies)	cm^{-1}	Overall, the infrared spectrum greatly resembles those found for other polyamides. The principal spectroscopic features can be definitively assigned. N-H stretching Amide I Amide II Range for symmetric and asymmetric	3,305 1,627 1,545 3,000	(2, 10) (2, 10) (2, 10) (3-7, 9-15)
		methylene stretching vibrations Methylene bending vibrations	1,400	_

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR (characteristic absorption frequencies)	cm ⁻¹	Other specific spectroscopic features can be presence of the nylon 6T component		(16, 17)
		Vibrations assignable to para-disubstituted aromatic units	862, 1,019, ~1,300, [†] 1,498	(3, 8, 18)
Melting tempuratue [‡]	K	-	583-613	(20, 21)
Glass transition temperature	K	-	473	(21)
Degradation of aromatic polyamides	conce copol	treatment can modify aromatic nylons reducing entration of amide units relative to that in untre- ymer. When these polyamides are dissolved in ton, the polyamid is gradually degraded.	ated nylon 6,6	(22)
Density	$\rm gcm^{-3}$	-	1.18	(20)
Linear thermal expansion coefficient	%	60°C	0.2	(20)
Tensile modulus	MPa	Dry and moist	3,200	(20)
Tensile strength	MPa	Dry Moist	100 90	(20)
Heat deflection temperature	K	At 624 psi	473	(20)
Dielectric constant	-	1 MHz	4.0	(20)
Moisture absorption	%	23°C, saturation 23°C, 50% RH	7 1.8	(21) (20)
Solvents	Hexaflu	oroisopropanol (HFIP)		(22)

^{*}Both assignments fall into the range of peak positions listed for these groups in standard NMR tables.

- 1. Gordon, A. J. The Chemist's Companion: A Handbook of Practical Data, Techniques, and References. John Wiley and Sons, New York, 1972.
- 2. Wobkemeier, M., and G. Hinrichsen. Polymer Bulletin 21 (1989): 607.
- 3. Kohan, M. I., ed. Nylon Plastics. Wiley-Interscience, New York, 1973.
- 4. Miyazawa, T., and E. R. Blout. J. Am. Chem. Soc. 83 (1961): 712.
- 5. Miyazawa, T. J. Chem. Phys. 32 (1960): 1,647.
- 6. Bradbury, E. M., and A. Elliot. Polymer 4 (1963): 47.
- 7. Jakes, J., and S. Krimm. Spectrochim Acta 27A (1971): 19-34.

[†]Broad features.

[‡]A broad melting behavior starts at approximately 483 K and ends at approximately 563 K. These trends are consistent with the melting behaviors reported for nylon 6/6T copolymers.⁽¹⁹⁾

Nylon 6 copolymer

- 8. D. Sadtler Research Laboratories. D7529K. D7527K.
- 9. Chen, C.-C. Ph D Thesis. University of Massachusetts, 1996.
- 10. Arimoto, H. J. Polym. Sci.: Part A, 2 (1964): 2,283.
- 11. Snyder, R. G., J. H. Sachtschneider. Spectrochim. Acta 20 (1964): 853.
- 12. Snyder, R. G. J. Chem. Phys. 42 (1965): 1,744.
- 13. Snyder, R. G. J. Chem. Phys. 47 (1967): 1,316.
- 14. Snyder, R. G. Macromolecules 23 (1990): 2,081.
- 15. Miyake, A. J. Polym. Sci. 54 (1960): 223.
- Keske, R. G. In *Polymeric Materials Encyclopedia*, edited by J. C. Salamone. CRC Press, Baco Raton, Fla., 1996.
- 17. Blinne, G., et al. Kunststoffe 79 (1989): 814.
- 18. Colthup, N. B., L. H. Daly, and S. E. Wiberley. *Introduction to Infrared and Raman Spectroscopy*. Academic Press, New York, 1990.
- 19. Ajroldi, G., et al. J. Appl. Polym. Sci. 17 (1973): 3,187-3,197.
- 20. BASF Product literature.
- 21. Kohan, M. I., ed. Nylon Plastics Handbook. Hanser, Munich, 1995.
- Inagaki, N., S. Tasaka, and H. Kawai. J. Polym. Sci: Part A, Polymer Chem. 33 (1995): 2,001– 2,011.

Nylon 6,6

BRENT D. VIERS

COMMON NAME Poly(hexamethylene adipamide)

IUPAC NOMENCLATURE Poly[imino(1,6-dioxohexamethylene) imnohexamethylene], poly[iminoadipolyiminohexamethylene]

TRADE NAMES Zytel (DuPont), Maranyl (ICI), Ultramid A (BASF)

CAS REGISTRY NUMBERS 32131-17-2

CLASS Aliphatic polyamides

STRUCTURE

$$- \left(\begin{matrix} O & O \\ -N - (CH_2)_6 - N - C - (CH_2)_4 - C \end{matrix} \right)_n$$

MAJOR APPLICATIONS Gear teeth, pinions, ball bearing cages, switch parts, spools, electro-insulating parts; semifinished products, pipes, profiles; machine parts, parts subject to wear such as friction bearings, roller bearing cages, engine parts, water pump impellers, and also parts of door locks; fan and blower wheels, parts of housings, fuel filters, clips, chain tension rails; sliding bearings for swivel chairs and folding tables, sliding feet and fittings, connecting parts in furniture making; patio and party furniture.

PROPERTIES OF SPECIAL INTEREST High mechanical strength, great rigidity, good deepdrawing behavior, good dimensional stability under heat, good toughness even at low temperatures, favorable tribological properties, good resistance to chemicals, very good electro-insulating properties, good dimensional stability, rapid processing. Relatively high $T_{\rm m}$ and $T_{\rm g}$ for aliphatic polyamides (used in synthetic fibers; can be toughened as resin).

OTHER POLYMERS SHOWING THIS SPECIAL PROPERTY Poly(ε -caprolactam) (Nylon 6). (See also the entry on $Nylon\ 6$ in this handbook.)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Type of polymerization	_	Interfacial, melt	Condensation between hexamethylene diamine and adipic acid	_
Enthalpy of reaction $-\Delta H_{\rm a}$	kJ mol ⁻¹	Decrease in temperature shifts equilibrium to higher molecular weight	25–29 (average) 42–46 (limit)	(1)
Side products	1-2% of c	yclic oligomers (14 membered rir	ng)	(1)

Nν	lon	6.6
----	-----	-----

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Kinetic parameters	_	Second order kinetics, not accelerated by catalysts	Conversion <90%	(2, 3)
		Third order kinetics, carboxyl catalyzed, low water	Conversion >90%	(1, 4)
Typical comonomers	_	Aliphatic amines	Heptamethylene diamine, octamethylene diamine, decamethylene diamine, cyclohexyl diamine	-
		Aliphatic diacids (sometimes diacid chlorides)	Sebacic acid, undecanedioic acid, suberic acid	
		Aromatic amines Aromatic diacids/diacid chlorides	p-Xylenediamine Terephthalic acid, phenylenedipropionic acid	
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	226.3	_
Degree of branching	Can be co	ontrolled by controlled copolyme /acids	rization of polyfunctional	_
Typical molecular weight range of polymer	g mol ⁻¹	High conversion ($p > 0.99$) (lowered by monofunctional end-blockers)	12,000–20,000	(1)
Typical polydispersity index (M_w/M_n)	_	Most probable Undergoes amide interchange reactions (broadened by incorporation of multifunctional units)	2 (expected) 1.7-2.1 (by GPC)	(1)
Typical viscosity averages	_	Relative viscosity: 8.4% solution in 90% formic acid	$\eta_{\rm r}=3070$	_
averages		Inherent viscosity: $0.5 \text{ g}/100 \text{ cm}^3$ in <i>m</i> -cresol	$ \eta_{\text{onh}} = 1 \text{dl g}^{-1} $	
IR (characteristic absorption frequencies)	cm ⁻¹	NH wag (broad) CH ₂ rock N-C=O skeletal vibration N-C=O skeletal vibration CH ₂ wag CH ₂ symmetric scissors deformation (CH ₂ next to	700 722 1,170 1,200 1,370 1,420	(5, 6)
		C=O) CH ₂ symmetric scissors deformation (CH ₂ next to N)	1,440	

Νv	lon	6,6

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
IR (characteristic absorption	cm^{-1}	CH ₂ symmetric scissors deformation	1,460	(5, 6)	
frequencies)		NH bend/C-N stretch	1,540		
		Amide C=O stretch	1,640		
		CH ₂ symmetric stretch	2,860		
		CH ₂ asymmetric stretch	2,920		
		2× NH bend (1,540) overtone	3,100		
		NH stretch	3,300		
NMR	s^{-1}	13 C NMR T_1 relaxation times		(7)	
		Amorphous	1.37	,	
		Meso	9.2		
		Crystalline	82.5		
Thermal expansion	$K^{-1} (\times 10^{-4})$	Zytel ASTM D 696	0.81	(8)	
coefficients	, ,	Crystalline, volumetric 20°C	2.8	(9)	
		Linear crystalline, 20°C	7-10	(10)	
		Linear crystalline, 100°C	10-14	(10)	
		Triclinic, α_a	2.1	(11)	
		Triclinic, $\alpha_{\rm c}$	22.0	(11)	
Compressibility coefficients	$(MPa)^{-1}$	Pressure/temperature dependence			
1	$(\times 10^{-6})$	50 MPa, 20°C	62	(12)	
	,	100 MPa, 20°C	58	(12)	
		150 MPa, 20°C	54	(12)	
		300 MPa, 20°C	50	(12)	
		50 MPa, 120°C	125	(12)	
		100 MPa, 120°C	115	(12)	
		150 MPa, 120°C	95	(12)	
		300 MPa, 120°C	75	(12)	
		>100 MPa, 200°C	>300	(13)	
Molar volume	$cm^3 mol^{-1}$	20°C, nylon rods	193	(9)	
		20°C, amorphous	207.5	(14)	
		20°C, amorhous group contribution calculation	208.3	(14)	
Density (amorphous)	$g\mathrm{cm}^{-3}$	Zytel ASTM D 792, 23°C	1.14	_	
Solvents	Room temperature: trifluoroethanol, trichloroethanol, phenols, chloral hydrate, formic acid, chloro-acetic acid, HF, HCl, methanol, H ₂ SO ₄ , phosphoric acid, benzyl alcohol, ethylene chlorohydrin, 1,3 chloropropanol, 2-butene-1,4,diol., diethylene glycol, acetic acid, formamide, DMSO				
Nonsolvents	Hydrocarbons, aliphatic alcohols, chloroform, diethyl ether, aliphatic ketones, esters				

Nylon 6,	N۱	/loi	า 6	.6
----------	----	------	-----	----

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Chemical resistances	of resistand nylon 6 Base resistand bases at ele Solvent resist polar solve	ce: limited; attacked by strong acids; generally englon 6,12 > nylon 6,6 > copolymers of the excellent at room temperature; attacked evated temperatures cance: generally excellent; some absorption ents as water, alcohols, and certain halogerons causing plasticization and dimension of	(8)	
Solubility parameter	(MPa) ^{1/2}	δ Dispersive component δ_{D}	27.8 24.02 22.87 18.62	(15) (16) (17) (16, 17)
		Polar component $\delta_{\rm P}$ Hydrogen bonding component $\delta_{\rm H}$	5.11 14.12 12.28	(16) (17) (16)
Theta temperature Θ	K	Carbon tetrachloride/ <i>m</i> -cresol/ cyclohexane	293	(18)
		Formic acid/KCl/H ₂ O	298	(19, 20)
Second virial coefficient A_2	$mol cm^{3} g^{-2}$ $(\times 10^{-4})$	<i>m</i> -Cresol, 60°C, $M_n = 18,000$ Formic acid (90%), 25°C, $M_n = 18,000$ Formic acid (90%)/0.2–2.5 M KCl, 25°C, $M_n = 31,000$	183 840	(21) (22) (20)
		At 0.2 M KCl	59.2	
		At 2.5 M KCl Formic acid (90%)/2.3 M KCl, 25°C, $M_{\rm n} = 31,000$	7.0 0	(20)
		Formic acid (82.5–40%), 2 M KCl, 25°C, $M_n = 31,000$		(20)
		At 82.5% At 40% Formic acid (90%), 2 M KCl,	-9.4 36.5	(18)
		$2,000 < M_{\rm n} < 52,000$ At $2,000~M_{\rm n}$ At $52,000~M_{\rm n}$	312 10.1	
		Formic acid (75–98%), 0.5 M NaHCOO, 2,2,3,3-tetrafluoropropanol, 25°C, $M_n = 32,000$	1.0-4.0	(23)
		2,2,3,3-tetrafluoropropanol, 0.1 M sodium trifluroacetate, 25°C, $M_{\rm n}=62,000$	57.1	(24)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Fractionation	_	Fractional precipitation	<i>m</i> -Cresol/cyclohexane Phenol/H ₂ O	(25, 26) (27)
		Turbitimetric titration	<i>m</i> -Cresol/cyclohexane <i>m</i> -Cresol/ <i>n</i> -heptane	(28) (29)
		Chromatography	Methylene chloride	(30)
		Gel permeation	Hexafluoroisopropanol	(31)
		Partition chromatography, 20°C	Formic acid/H ₂ O (88%)	(32)
		Sedimentation gradient: ultracentrifugation	Carbon tetrachloride/ m-cresol/cyclohexane	(19)
		Continuous immiscible liquid distribution	Phenol/water	(33)
Mark-Houwink parameters:	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	o-Chlorophenol, 25°C, 14,000 $< M_n < 50,000$	K = 168, $a = 0.62$	(34)
K and a		<i>m</i> -Cresol, 25° C, $14,000 < M_{\rm n} < 50,000$	K = 240, $a = 0.61$	(34)
		<i>m</i> -Cresol, 25°C, 150 $< M_{\rm n} < 50{,}000$	$[\eta] = 0.5 + 0.0353M^{0.792}$	(18)
		Dichloroactetic acid, 25° C, $150 < M_{\rm n} < 50,000$	$[\eta] = 0.5 + 0.0352M^{0.551}$	(18)
		2,2,3,3-Tetrafluoropropanol/ CF ₃ COONa (0.1 M), 25°C, 14,000 < M_n < 50,000	K = 114, a = 0.66	(34)
		Aqueous HCOOH (90 vol%), 25°C		
		$6,000 < M_{\rm n} < 65,000$	K = 35.3, $a = 0.786$	(34)
		$5,000 < M_{\rm n} < 25,000$	K = 110, a = 0.72	(27)
		$14,000 < M_{\rm n} < 50,000$	$[\eta] = 2.5 + 0.0132 M^{0.873}$	(18)
		HCOOH (90%)/HCOONa (0.1 M), 25°C	· ·	()
		$10,000 < M_{\rm n} < 50,000$	K = 32.8, $a = 0.74$	(34)
		$14,000 < M_{\rm n} < 50,000$	K = 87.7, a = 0.65	(34)
		150 < M _n < 50,000 HCOOH (90%)/KCl (2.3 M), 25°C	$[\eta] = 1.0 + 0.0516M^{0.687}$	(18)
		$14,000 < M_{\rm n} < 50,000$	$K = 227, a = 0.50 (\theta)$	(34)
		$150 < M_{\rm n} < 50,000$	$K = 253, a = 0.50 (\theta)$	(18)
		H ₂ SO ₄ (95%), 25°C,	$[\eta] = 2.5 + 0.0249 \dot{M}^{0.832}$	(18)
		$150 < M_{\rm n} < 50,000$		` '
		H ₂ SO ₄ (96%), 25°C, 14,000 < M _n < 50,000	K = 115, $a = 0.67$	(34)
		Melt polymer, high molecular weight	a = 3.5	(35, 36)
Huggins constants:	_	Formic acid, 25°C		(37)
$k_{ m H}$		$[\eta] = 83 \mathrm{ml} \mathrm{g}^{-1}$	0.20	
		$[\eta] = 100 \mathrm{ml} \mathrm{g}^{-1}$	0.22 ± 0.01	
		$[\eta] = 120 \mathrm{ml} \mathrm{g}^{-1}$	0.24 ± 0.02	
		$[\eta] = 140 \mathrm{ml} \mathrm{g}^{-1}$	0.27 ± 0.02	
		$[\eta] = 160 \mathrm{ml}\mathrm{g}^{-1}$ $[\eta] = 180 \mathrm{ml}\mathrm{g}^{-1}$	0.27 ± 0.02	
		$[\eta] = 180 \mathrm{mig}$ $[m] = 200 \mathrm{mig}^{-1}$	0.28 ± 0.02	
		$[\eta] = 200 \mathrm{ml}\mathrm{g}^{-1}$	0.29 ± 0.01	

Nylon 6	Nν	lon	6.6
---------	----	-----	-----

PROPERTY	UNITS	CONDITIONS		VALUE		
Schulz-Bakke coefficients k_{SB}	-	Formic acid, 25° C $[\eta] = 83 \text{ ml g}^{-1}$ $[\eta] = 100 \text{ ml g}^{-1}$ $[\eta] = 120 \text{ ml g}^{-1}$ $[\eta] = 140 \text{ ml g}^{-1}$ $[\eta] = 200 \text{ ml g}^{-1}$	$\begin{array}{c} 0.20 \\ 0.22 \pm 0.02 \\ 0.24 \pm 0.02 \\ 0.26 \pm 0.02 \\ 0.28 \pm 0.01 \end{array}$			(37)
Characteristic ratio $\langle r^2 \rangle_0 / n l^2$	-	HCOOH (90%), 25°C HCOOH (90%)/KCl 2.3 M, 25°C	5.3 6.85 5.95			(25, 27) (22) (38, 39)
End-to-end distance $r_0/M^{1/2}$	nm (×10 ⁻⁴)	HCOOH (90%), 25°C HCOOH (90%)/KCl 2.3 M, 25°C	890 ± 1,010 935	40		(25, 27) (22) (38, 39)
Lattice (monoclinic, etc.)	-	_	(α) I: (α) II: (β) tri (high	triclinic monocl triclinic iclinic temper linic (17	inic c ature)	_
Space group	_	_	CI-1			_
Chain conformation $(\rho_n \text{ of helix})$	_	_	14*1/	1		-
Unit cell dimensions	Å		а	b	С	
		α I: monoclinic α I: triclinic	15.7 4.9 5.00 4.87	10.5 5.4 4.17 5.26	17.3 17.2 17.3 17.15	(40) (41) (42) (43)
		α II: triclinic β triclinic High temperature (170°C)	4.97 4.95 4.9 5	5.47 5.45 8.0 5.9	17.29 17.12 17.2 16.23	(44) (44) (45) (46)
Unit cell angles	Degrees		α	β	γ	
		lpha I: monoclinic $lpha$ I: triclinic	- 48 81 50	73 77 76 76	- 63 63 64	(40) (41) (42) (43)
		α II: triclinic β triclinic High temperature	48 52 90 57	77 80 77 80	62 63 67 60	(44) (44) (45) (46)

PROPERTY	UNITS	CONDITIONS		VALUE		REFERENCE
Unit cell contents	_	α I: monoclinio	2	9		(40)
(number of repeat		α I: triclinic		1		(42-44)
units)		α II: triclinic		1		(44)
		β triclinic		2		(45)
		High temperat	rure	1		(46)
					Relative	
Bragg spacings	_	hkl	d-value (nm)	2θ (degrees)	intensity	(45)
		002	0.641	13.83	w	
		100, 010, 110	0.390	22.96	vvs	
		015	0.335	26.65	W	
		110, 210	0.236	38.12	S	
		017, 127	0.233	38.69	w	
		117, 027	0.218	41.37	w	
		117, 027	0.194	46.71	w	
		020, 220	0.134	49.70	S	
			0.103		5	
Degree of crystallinity	As shown	General range		40-60%		(1)
		General equation based on density		$\alpha = 830 \text{-} (900/\rho)\%$		(10)
		IR determination		Crystalline = Amorphous =		(1)
Heat of fusion	$kJ mol^{-1}$	α I triclinic		46.5		(47)
	,			40		(47)
				36.8		(48)
				68		(48)
				58		(48)
				46.9		
						(49)
		TT 4 * 1* *		53.2		(44)
		α II triclinic		43.4		(44)
	_ 1			41.9		(50)
Heat of fusion (per repeat unit)	Jg^{-1}	α II triclinic		191.9		(44)
Entropy of fusion	$J K^{-1} mol^{-1}$	_		83-86		(10)
17				79.9		(44)
Density (crystalline)	$\rm gcm^{-3}$	α I triclinic		1.220		(40)
	U			1.24		(41)
				1.241		(42)
				1.225		(43)
				1.204		(44)
		α II triclinic		1.152		(44)
		a ii dicilline		1.165		(45)
		β , triclinic		1.25		(46)
		High temperat	uro (170°C)	1.10		
		triclinic	uie (170 C)	1.10		(5)
		Crystalline mo	lded	1.09		(51)

Nylon 6	Nν	lon	6.6
---------	----	-----	-----

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Density (amorphous)	$\rm gcm^{-3}$	a I triclinic a II triclinic b, triclinic Amorpho Melt, 270°	ic us molded		1.09 1.12 1.069 1.095 1.095 1.09 0.989 1.248	(52) (53) (54) (50) (44) (53) (51) (5)
Crystal modulus	dynes cm ⁻²	α 1			175×10^4	(7)
Polymorphs (listing)	_	_			α I, α II, β , high temperature	_
Crystal growth activation energy	kJ mol ⁻¹	_			64.5	(10)
Maximum crystallization rate	_	150°C			_	(7)
Growth rate $(T_f = \text{fusion})$	$\mu m s^{-1}$ $nm s^{-1}$	Maximum linear growth $M_{\rm n} \times 10^3$ $T_{\rm f}$ (°C) $T_{\rm c}$ (°C)		20	(51)	
temperature; $T_{\rm c}={ m crystallization}$ temperature)		11.6	295 295 295 295 285 262 (10 min)	241 247 250 252 247 251 256 257 259 261 263 265	166.7 58.35 13.84 10.50 66.08 14.21 (negative spherulites) 83.4 13.3 9.17 6.67 4.17 2.50	(55) (55) (55) (55) (56) (56) (57) (57) (57) (57)
		12.9	300 (30 min)	246 248 253	106.7 56.34 10.84	(58) (58) (58)
		13.7	300 (30 s)	141 160 180 199 215 230 234 237 239.5 241 244	13,502.7 13,669.4 12,119.1 8,901.8 5,167.7 2,117.1 1,530.3 920.18 765.15 471.76 368.40	(59) (59) (59) (59) (59) (59) (59) (59)

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Growth rate	$\mathrm{nm}\mathrm{s}^{-1}$	$M_{\rm n} \times 10^3$	T _f (°C)	<i>T</i> _c (°C)		
$(T_{\rm f}={ m fusion}$		14.6	280	241.5	283.39	(58)
temperature;				243	230.05	(58)
$T_{\rm c}={ m crystallization}$				245	180.86	(58)
temperature)				248	33.685	(58)
				252	14.66	(58)
			300	241.5	204.4	(58)
			500	243	175.0	(58)
				245	128.3	(58)
				248	58.34	(58)
		14.6	300	252	G = 5.501	(60)
		14.0	315	241.5	280.0	(60)
			313	243	168.4	(60)
				245	113.4	(60)
				248	56.68	
				252		(60)
		25 5 (34)		50	6.335	(60)
		$25.5 (M_{\rm w})$		100	3,650.7 (positive spherulites)	(60)
					4,706.6	(60)
				142	6,751.3	(60)
				160	6,101.2	(60)
				178	5,201.0	(60)
				198	3,700.7	(60)
				200	12,900.6	(60)
		25.5	200	228	466.7	(60)
		25.5	300	180	11,435.6 (positive spherulites)	(60)
				200	7,951.5	(60)
				211	5,284	(60)
				220	2,733.8	(60)
				230	1,615.3	(60)
				235.5	680.13	(60)
				240	483.4	(60)
Hoffman-Lauritzen theory c	onstants					(55)
Growth rate constant G_0	$\mathrm{cm}\mathrm{s}^{-1}$	_			1.55×10^{3}	
Diffusion activation	${ m cal}{ m mol}^{-1}$	_			167	
energy U^*						
Chain dimensions	Å	_			$a_0 = 4.76, b_0 = 3.70$	
Nucleation rate constant	K^2	_			1.02×10^{5}	
$K_{ m g}$						
Lateral surface free	${\rm ergcm^{-2}}$	_			8.0	
energy σ	O					
Fold surface free energy	${\rm ergcm^{-2}}$	_			40	
$\sigma_{ m e}$	U ·					
Melting point (equilibrium)	K	T _m (determ	ined by T_1	$_{\rm m}-T_{\rm c}$	542.2	(44)
,		extrapola				` '
		1	,			

Nylo	on 6.	6
------	-------	---

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Deformation induced crystallization	_	Spinning effects	_	(7)
Glass transition temperature	K	Dependent on relative humidity (water plasticized)	320-330	(1)
		Oven dry	351	(7)
		50% RH	308	(7)
		100% RH	258	(7)
Melting point	K	General	537	_
		α I: monoclinic	543	
		α I: triclinic	534-574	
		α II: triclinic	542.5	
Sub- T_g transition	K	β (plasticized glass transition)	0.60	((4)
temperatures		At 11 Hz	363	(61)
		– At 1 Hz	357 370	(62)
		γ (amide hydrogen bond motions with sorbed H ₂ O)	370	(63)
		At 40–600 Hz	249	(64)
		_	245	(62)
		δ (methylene group motion)		
		At 40–600 Hz	156	(64)
		_	186	(62)
Heat capacity (of repeat units)	$kJkg^{-1}K^{-1}$	DSC annealed nylon solid	1.4	(65)
Deflection temperature	K	Zytel ASTM D 648		(8)
-		0.5 MPa	508	
		1.8 MPa	363	
Tensile modulus	MPa	Nylon 23°C	3,300	(10)
		Nylon 23°C moist ISO-1110	1,700	, ,
		Nylon, 100°C	600	
Bulk modulus	MPa	Nylon dry crystalline rods	3,300	(10)
Shear modulus	MPa	23°C	1,300	(10)
		23°C (nucleated)	1,700	
		100°C	300	
		200°C	150	
Shear strength	MPa	Zytel Resins ASTM D 732, 23°C	66.8-72.4	(8)
		50% relative humidity, 23°C	63.4-68.9	
Storage modulus	MPa	0.1-110 Hz	5-100	(7)

				Nylon 6,6
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Loss modulus	_	0.1–110 Hz, $\log \tan \delta$	-1.3 to 0.9	(7)
Tensile strength	MPa	Zytel Resins ASTM D 638		(8)
		$-40^{\circ}\mathrm{C}$	113.8-128.9	
		23°C	82.7-90.3	
		77°C	58.6-62.1	
		121°C	42.7–47.6	
		50% relative humidity		
		$-40^{\circ}\mathrm{C}$	110.3–117.2	
		23°C	62.1–77.2	
		77°C	40.7-50.3	
		121°C	32.4-42.1	
Yield stress	MPa	Zytel Resins ASTM D 638		(8)
		$-40^{\circ}\mathrm{C}$	113.8-128.9	
		23°C	82.7-90.3	
		77°C	44.8-58.6	
		121°C	33.1-34.5	
		50% relative humidity		
		−40°C	110.3-117.2	
		23°C	58.6-62.1	
		77°C	39.3-40.7	
		121°C	27.6-32.4	
Yield strain $(L/L_0)_y$	%	Zytel Resins ASTM D 638		(8)
(/ 0/9		_40°C	4-5	()
		23°C	4-5	
		77°C	25-30	
		121°C	30-45	
		50% relative humidity		
		-40°C	5	
		23°C	25-30	
		77°C	30	
		121°C	30-40	
Maximum extensibility $(L/L_0)_r$	%	Zytel ASTM D 638		(8)
(2, 20)r	, -	−40°C	10-15	(-)
		23°C	30-60	
		77°C	145->300	
		121°C	200->300	
		50% relative humidity		
		−40°C	15-35	
		23°C	200->300	
		77°C	250->300	
		121°C	>300	

Nν	lon	6.6
----	-----	-----

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Flexural modulus	MPa	Zytel ASTM D 790		(8)
		−40°C	3,241-3,516	
		23°C	2,827-2,964	
		77°C	689-724	
		121°C	538-552	
		50% relative humidity	330-332	
		-	2.447	
		−40°C	3,447	
		23°C	1,207-1,310	
		77°C	565–586	
		121°C	414	
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	Zytel ASTM D 256 Izod		(8)
1 8	,	_40°C	32	()
		23°C	53-64	
			00 01	
		50% relative humidity Izod	27	
		−40°C	27	
		23°C	112–133	
	$kJ m^{-2}$	Zytel ASTM D 1822 tensile		
		impact, 23°C		
		Long specimen	504	
		50% RH long specimen	1,470	
		Short specimen	157	
		50% RH short specimen	231	
Compressive strength	MPa	20°C nylon molded 2.5% H ₂ O		
		1% strain	14	(10)
		2% strain	28	(10)
		4% strain	56	
		6% strain	70	
Hardness	_	Zytel ASTM D676 Durometer	89	(8)
		50% Relative humidity	82	
Poisson ratio	_	General extruded rod	0.41	(8)
1 0155011 14410		General extraded for	0.38	(10)
		100°C		
		100°C	0.44	(10)
		Melt	0.5	(10)
Abrasion resistance	$gMHz^{-1}$	Zytel Taber abrasion CS-17	4-7	(8)
	-	wheel, 1,000 g		•
Refractive index increment				
TOTACHTO HIMON HICHCHICH	$ml \sigma^{-1}$	(All data at 25°C)	(Source wavelenoth noted)	
dn/dc	$\mathrm{ml}~\mathrm{g}^{-1}$	(All data at 25°C)	(Source wavelength noted)	(66)
dn/dc	ml g ⁻¹	Formic acid $90\% + 0.5 \mathrm{M}$ sodium	(Source wavelength noted) 0.137 (436 nm)	(66)
dn/dc	ml g ⁻¹	Formic acid 90% + 0.5 M sodium formate	0.137 (436 nm)	` '
dn/dc (Trifluoroacetylated nylon 6,6)	ml g ⁻¹	Formic acid $90\% + 0.5 \mathrm{M}$ sodium		(66) (66) (67)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Refractive index increment	$\mathrm{ml}~\mathrm{g}^{-1}$	(All data at 25°C)	(Source wavelength noted)	
dn/dc		Formic acid		
		75%	0.144 (633 nm)	(39)
		80%	0.145 (633 nm)	(39)
		85%	0.141 (436 nm)	(68)
		90%	0.145 (633 nm)	(20, 39)
		90%	0.145 (546 nm)	(18)
		90%	0.145 (436 nm)	(68)
		95%	0.150 (633 nm)	(39)
		100%	0.157 (633 nm)	(39)
		100%	0.1525 (436 nm)	(69)
		Formic acid + KCl	,	(20)
		85% + 2.0 M KCl	0.124 (633 nm)	(==)
		90% + 0.2 M KCl	0.143 (633 nm)	
		90% + 0.5 M KCl	0.140 (633 nm)	
		90% + 1.0 M KCl	0.136 (633 nm)	
		90% + 1.5 M KCl	0.131 (633 nm)	
		90% + 2.0 M KCl	0.126 (633 nm)	
		90% + 2.5 M KCl	0.122 (633 nm)	
		95% + 2.0 M KCl	0.129 (633 nm)	
		Formic acid + sodium formate	0.125 (055 1111)	(39)
		75% + 0.5 M NaHCOO	0.138 (633 nm)	(37)
		80% + 0.5 M NaHCOO	0.136 (633 nm)	
		90% + 0.02 M NaHCOO	0.147 (633 nm)	
		90% + 0.05 M NaHCOO	0.146 (633 nm)	
		90% + 0.03 M NaHCOO	0.140 (633 nm)	
			0.142 (633 nm)	
		90% + 0.2 M NaHCOO		
		90% + 0.5 M NaHCOO	0.136 (633 nm)	
		90% + 0.75 M NaHCOO	0.130 (633 nm)	
		90% + 1.0 M NaHCOO	0.124 (633 nm)	
		95% + 0.5 M NaHCOO	0.136 (633 nm)	
		100% + 0.5 M NaHCOO	0.136 (633 nm)	(24)
		Tetrafluropropanol	0.190 (546 nm)	(24)
		Tetrafluropropanol + 0.1 N sodium trifluroacetate buffer	0.190 (436 nm)	(24)
Birefringence	_	$n_{ }$	1.582	(51)
O		$n_{\perp}^{''}$	1.519	(9)
Dielectric constant ε'	_	Zytel ASTM D 150		(8)
		$1 \times 10^2 \mathrm{Hz}$	4.0	
		$1 \times 10^3 \mathrm{Hz}$	3.9	
		$1 \times 10^6 \mathrm{Hz}$	3.6	
		$1 \times 10^2 \mathrm{Hz}$	8.0	
		50% relative humidity		
		$1 \times 10^3 \mathrm{Hz}$	7.0	
		$1 imes 10^6\mathrm{Hz}$	4.6	
			(See also table below)	

Dielectric constant ε'

Temp. (°C)	10 ² Hz	10 ³ Hz	10 ⁴ Hz	10⁵ Hz	10 ⁶ Hz	10 ⁷ Hz	10 ⁸ Hz	10 ⁹ Hz
-30	120	105	105	130	165	160	100	49
0	110	120	135	160	200	200	160	81
30	85	125	180	215	250	255	220	135
60	810	590	460	390	370	360	320	240
90	2,000	1,450	1,300	1,450	1,600	1,300	810	440
20 (50% RH)	1,100	1,020	1,000	900	700	450	280	170

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric $\tan \delta$	-	Nylon (coupled with above table) values given as $\tan\delta \times 10^4$	See table below	(10)

Dielectric $\tan \delta$

Temp. (°C)	10 ² Hz	10 ³ Hz	10 ⁴ Hz	10 ⁵ Hz	10 ⁶ Hz	10 ⁷ Hz	10 ⁸ Hz	10 ⁹ Hz
-30	3.1	3.1	3.1	3.0	3.0	3.0	3.0	3.0
0	3.3	3.3	3.2	3.2	3.1	3.0	3.0	3.0
30	3.6	3.5	3.4	3.4	3.2	3.1	3.1	3.0
60	5.0	4.6	4.3	4.0	3.7	3.5	3.3	3.1
90	10	8.9	7.6	6.2	5.0	4.0	3.4	3.2
20 (50% RH)	7.5	5.9	4.8	4.1	3.7	3.4	3.3	3.2

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric strength	V cm ⁻¹	VDE 0303, part 2, IEC-243, electrode K20/P50 Dry Dry, 100°C Moist ISO-1110	$120 \times 10^{-4} \\ 40 \times 10^{-4} \\ 80 \times 10^{-4}$	(10)
Dissipation factor	-	Zytel ASTM D 150 1×10^2 Hz 1×10^3 Hz 1×10^6 Hz 50% relative humidity 1×10^2 Hz 1×10^3 Hz 1×10^6 Hz	0.01 0.02 0.02 0.2 0.2 0.1	(8)
Resistivity	ohm cm	Zytel ASTM D 257 Zytel ASTM D 257, 50% RH Nylon, 20°C, 50% RH Nylon, 20°C, 100% RH Nylon, 60°C Nylon, 100°C Nylon, 100°C Nylon, 100°C, 50% RH	$\begin{array}{c} 1\times 10^{15} \\ 1\times 10^{13} \\ 3\times 10^{11} \\ 1\times 10^{9} \\ 6\times 10^{11} \\ 3\times 10^{9} \\ 4\times 10^{7} \end{array}$	(8) (8) (10) (10) (10) (10) (10)

				Nylon 6,6
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Thermally stimulated current	-	Relaxation, humidity effects	-	(7)
Surface tension	mN m ⁻¹	Nylon, $M_{\rm n}=17,000$, $M_{\rm w}=35,000$ $20^{\circ}{\rm C}$ $150^{\circ}{\rm C}$ $200^{\circ}{\rm C}$ $280^{\circ}{\rm C}$ $325^{\circ}{\rm C}$ $-d\gamma/dT$ $\gamma_{\rm LV}$ at $20^{\circ}{\rm C}$ Zisman critical wetting surface tension, $\gamma_{\rm c}$	46.5 38.1 34.8 29.6 26.7 0.065 46.4 42.5	(70) (41, 70) (41) (71)
Contact angle θ	Degrees	Water	72	(72)
Surface free energy	$\mathrm{mJ}\mathrm{m}^{-2}$	Dispersive, $\gamma^{\rm D}$ Polar, $\gamma^{\rm P}$ Lifschitz-van Der Waals, $\gamma^{\rm LW}$ Lewis Acid Base, $\gamma^{\rm AB}$ Electron acceptor parameter, γ^+ Electron donor parameter, γ^-	40.8 6.2 36.4 1.3 0.02 21.6	(72) (72) (73) (73) (73) (73)
Interfacial tension	${ m mN} \ { m m}^{-1} \ { m mN} \ { m m}^{-1} \ { m K}^{-1}$	Polyethylene, γ_{12} at 20° C $-d\gamma/dT$	14.9 0.018	(70)
Adhesive bond strength	MPa	Nylon-aluminum tensile Nylon-steel tensile Nylon-copper tensile	68 70 76	(74)
Diffusion coefficient	$\mathrm{cm}^2\mathrm{s}^{-1}$	H_2O , $20^{\circ}C$ H_2O , $60^{\circ}C$ H_2O , $100^{\circ}C$ CO_2 , $5^{\circ}C$, undrawn fiber CO_2 , $25^{\circ}C$, undrawn fiber CO_2 , $5^{\circ}C$, drawn fiber CO_2 , $25^{\circ}C$, drawn fiber	0.02×10^{-8} 3.5×10^{-8} 25×10^{-8} 1.8×10^{-10} 8.3×10^{-10} 1.8×10^{-10} 4.8×10^{-10}	(10) (10) (10) (75) (75) (75) (75)
Activation energy for diffusion	kJ mol ⁻¹	H ₂ O	58	(10)
Permeability coefficient	cm ³ (STP) cm s ⁻¹ cm ⁻² Pa ⁻¹ cm ³ (NPT) m ⁻² mil ⁻¹ atm ⁻¹	CO ₂ , 5°C, undrawn fiber CO ₂ , 25°C, undrawn fiber CO ₂ , 5°C, drawn fiber CO ₂ , 25°C, undrawn fiber CO ₂ O ₂ N ₂	0.018×10^{-13} 0.052×10^{-13} 0.023×10^{-13} 0.071×10^{-13} 140 80 5	(75) (75) (75) (75) (7) (7) (7)

Nν	lon	6.6
----	-----	-----

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Activation energy for permeation	_	CO ₂	_	(75)
Solubility coefficient	cm ³ (STP) cm ⁻³ Pa ⁻¹	CO ₂ , 5°C, undrawn fiber CO ₂ , 25°C, undrawn fiber CO ₂ , 5°C, drawn fiber CO ₂ , 25°C, undrawn fiber	9.97×10^{-6} 6.32×10^{-6} 12.8×10^{-6} 14.8×10^{-6}	(75)
Thermal conductivity	$W \ m^{-1} \ K^{-1}$	Zytel resins	0.25	_
Melt viscosity	Pa s	Newtonian (shear stress $< 30 \text{kPa}$) $[\eta] = 1.09 \text{dl g}^{-1}, M_{\rm n} = 14,000$ $270 ^{\circ}\text{C}$ $280 ^{\circ}\text{C}$ $290 ^{\circ}\text{C}$	40–1,000 110 70 50	(1)
Speed of sound	${\rm m\ s}^{-1}$	Longitudinal; density = $1.147 \mathrm{g cm^{-3}}$ Shear; density = $1.147 \mathrm{g cm^{-3}}$	2,710 1,120	(76)
Biodegradability, effective microorganisms	-	Wood Rotting Basidiomycetes	_	(7)
Heat of combustion	$kJ kg^{-1}$	_	-31.400	(51)
Decomposition products	K	H ₂ O, CO ₂ , cyclopentanone, hydrocarbons H ₂ O, CO ₂ , NH ₃ , cyclic monomomer, cyclopentanone, cyclopentylidinicyclopentanone, cyclopentylcyclopentanane, hexylamine, hexamethyleneimine, hexamethylene diamine	583–653 578	(77) (78)
Cross-linking, G factor	$\mathrm{mol}\;\mathrm{J}^{-1}$	Electron beam/ γ irradiation	0.50	(79)
Gas evolution, G factor	$\operatorname{mol} \operatorname{J}^{-1}$	_	0.70	(79)
Water absorption	%	Zytel ASTM D 570 24 h immersion, 23°C Saturation, 23°C Annealed (Karl Fisher method)	1.2 8.5 7	(8)
Solvent absorption	%	Ethanol, 20°C, saturation Butanol, 20°C, saturation Glycol, 20°C, saturation Methanol, 20°C, saturation Propanol, 20°C, saturation	9-12 4-8 2-10 9-14 9-12	(10)
Oxygen index	%	Zytel ASTM D 2863	28-31	(8)

- Zimmerman, J. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1985–1989.
- 2. Flory, P. J. Chem. Rev. 39 (1946): 137.
- 3. Cologne, J., and E. Ficket. Bull. Soc. Chim. (1955): 412.
- 4. Griskey, R. G., and B. I. Lee. J. Appl. Polym. Sci. 10 (1966): 105.
- 5. Pouchert, C. J. The Aldrich Library of FT-IR Spectra. Aldrich Chemical, Milwaukee, 1985.
- Noda, I., A. E. Dowrey, and C. Marcott. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996.
- Okajima, K., C. Yamane, and F. Ise. In *Polymeric Encyclopedia*, edited by J. Salamone. CRC Press, Boca Raton, Fla., 1996.
- 8. Dupont Zytel product information sheet. http://www.dupont.com.
- 9. Warfiled, R. W., E. G. Kayser, and B. Hartmann. Makromol. Chem. 184 (1983): 1,927.
- 10. Pflüger, R. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, pp. V/109–115.
- 11. Wakelin, J. H., A. Sutherland, and L. R. Beck. J. Polym. Sci. 42(139) (1960): 278.
- 12. Tautz, H., and L. Strobel. Koll. Z. f. Polym. 202(1) (1965): 33.
- 13. Griskey, R. G., and J. K. P. Shou. Modern Plastics 45 (1968): 148.
- 14. Müller, A., and R. Pflüger. Kunststoffe 50(4) (1960): 203.
- 15. Tobolsky, A. V. Properties and Structures of Polymers. John Wiley and Sons, New York, 1960.
- 16. Rigbi, Z. Polymer 19 (1978): 1,229.
- 17. Hansen, C. M. Skand. Tidskr. Faerg. Lack. 17 (1971): 69.
- 18. Elias, H. G., and R. Schumacher. Makromol. Chem. 76 (1964): 23.
- 19. Threlkeld, J. O., and H. A. Ende. J. Polym. Sci., Part A-2, 4 (1966): 663.
- 20. Saunders, P. R. J. Polym. Sci. 57 (1962): 131.
- 21. Wallach, M. L. Polym. Prepr. (Amer. Chem. Soc. Div. Poly. Chem.) 6/1 (1965): 53.
- 22. Schumacher, R., and H.-G. Elias. Makromol. Chem. 76 (1964): 23.
- 23. Saunders, P. R. J. Polym. Sci. A3 (1965): 1,221.
- 24. Beachell, H. C., and D. W. Carlson. J. Polym. Sci. 40 (1959): 543.
- 25. Howard, G. J. J. Polym. Sci. 37 (1959): 310.
- 26. Juilfs, J. Kolloid. J. 141 (1955): 88.
- 27. Taylor, G. B. J. Am. Chem. Soc. 69 (1947): 638.
- 28. Howard, G. J. J. Polym. Sci. A1 (1963): 2,667.
- 29. Morozov, A. G., et al. Soviet Plast. 8 (1972): 85.
- 30. Jacobi, E., H. Schuttenberg, and R. C. Schultz. Makromol. Chem. Rapid. Commun. 1 (1980): 397.
- 31. Hughes, A. J., and J. P. Bell. J. Polym. Sci., Polym. Phys., 16 (1978): 201.
- 32. Ayers, C. W. Abakyst 78 (1953): 382.
- 33. Duveau, N., and A. Piguet. J. Polym. Sci. 57 (1962): 357.
- 34. Burke, J. J., and T. A. Orofino. J. Polym. Sci., Part A-2, 7 (1969): 1.
- 35. Fox, T. G., and S. Loshack. J. Appl. Phys. 26 (1955): 1,080.
- 36. Bueche, F. J. Chem. Phys. 20 (1952): 1,959; and 26 (1956): 599.
- 37. Heim, E. Faserforch. u. Texiltech. 11 (1960): 513.
- 38. Flory, P. J., and A. D. Williams. J. Polym. Sci., Part A-2, 5 (1967): 399.
- 39. Saunders, P. R. J. Polym. Sci. A-2 (1964): 3,755.
- 40. Korshak, V. V., and T. M. Frunze. *Synthetic Hetero-Chain Polyamides*, translated by N. Kaner. Daniel Davey and Co., New York, 1960.
- 41. Fowkes, F. M. I. Phys. Chem. 66 (1962): 382.
- 42. Echochard, E. J. Chim. Phys./Phys.-Chim. Biol. 43 (1946): 113.
- 43. Itoh, T. Jap. J. Appl. Phys. 15 (1976): 2,295.
- 44. Starkweather, H. W. Jr., P. Zoeller, and G. A. Jones. *J. Polym. Sci., Polym. Phys.*, 22 (1984): 1,615.
- 45. Bunn, C. W., and E. V. Garner. Proc. Roy. Soc. A189 (1947): 39.
- 46. Colclough, M. L., and R. Baker. J. Mater. Sci. 13 (1978): 2,531.
- 47. Schaefgen, J. R. J. Polym. Sci. 38(1959): 549.
- 48. Rybnikar, F. Collect. Czech. Chem. Commun. 24 (1959): 2,861
- 49. Kirshenbaum, I. J. Polym. Sci. A3 (1965): 1,869.

- 50. Haberkorn, H., H. H. Illers, and P. Simak. Polym. Bull. (Berlin) 1 (1979): 485.
- Van Krevelen, D. W., and P. J. Hoftyzer. Properties of Polymers Correlation with Chemical Structure, 2d ed. Elsevier, Amsterdam, 1976.
- 52. Starkweather, H. W. Jr., et al. J. Polym. Sci. 21 (1956): 189.
- 53. Illers, H.-K., and H. Haberkorn. Makromol. Chem. 146 (1971): 267.
- 54. Starkweather, H. W. Jr., R. E. Moynihan. J. Polym. Sci. 22 (1956): 363.
- 55. Magill, J. H. Polymer 6 (1965): 367.
- 56. Boasson, E. H., and J. M. Wostenenk. J. Polym. Sci. 24 (1957): 57.
- 57. Khoury, F. J. Polym. Sci. 33 (1958): 389.
- 58. McLaren, J. V. Polymer 4 (1963): 175.
- 59. Burnett, B. B., and W. F. McDevit. J. Appl. Phys. 28 (1957): 1,101.
- 60. Lindegren, C. R. J. Polym. Sci. 50 (1961): 181.
- 61. Murayama, T. Polym. Eng. Sci. 22 (1982): 788.
- 62. Birkinshaw, C., M. Buggy, and S. Daly. Polym. Commun. 28 (1987): 286.
- Chung, I., E. Throckmorton, and D. Chundury. In Annual Technical Conference. Society of Plastics Engineers, Brookfield Center, Conn., 1991, XXXVII, p. 681.
- 64. Willbourn, A. H. Trans. Faraday Soc. 54 (1950): 717.
- 65. Wilhoit, R. C. J. Phys. Chem. 57 (1953): 14.
- 66. Dietrich, W., and A. Basch. Angew. Makromol. Chem. 38, 40/41 (1974): 159.
- 67. Weisskopf, K., and G. Meyerhoff. Polymer 23 (1982): 483.
- 68. Fendler, H. G., and H. A. Stuart. Makromol. Chem. 25 (1958): 159.
- Nasini, A. G., C. Ambrosino, and L. Trossarelli. Ricerca Sci. (Int. Symp. Macromol. Chem., Milan-Turin, 1954) 25 (1955): 625.
- Wu, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. V1/421 (and references therein).
- 71. Fox, H. W., and W. A. Zisman. J. Phys. Chem. 58 (1954): 503.
- 72. Owens, D. K., and R. C. Wendt. J. Appl. Polym. Sci. 13 (1969): 1,741.
- 73. van Oss, C. J., R. J. Good, and H. J. Busscher. J. Dispersion Sci. Technol. 11 (1990): 75.
- 74. Pellon, J., and W. G. Carpenter. J. Poly. Sci., Part A, 1 (1962): 863.
- 75. Brandt, W. W. J. Polym. Sci. 41 (1959): 415.
- 76. Hartmann, B., and J. Jarzynski. J. Accoust. Soc. Am. 56 (1974): 1,469–1,477.
- 77. Strauss, L. A., and J. Wall. J. Res. Natl. Bur. Std. 63A (1959): 269; and 60 (1958): 280.
- 78. Peebles, L. H. Jr., and M. W. Huffman. J. Polym. Sci., Part A-1, 9 (1971): 1,807.
- Dawes, K, and L. C. Glover. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, chap. 41.
- 80. Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII/393.

Nylon 6,6 copolymer

SHAW LING HSU

ACRONYM, ALTERNATIVE NAME, TRADE NAME PPA, polyphthalamide, Amodel (Amoco)

CLASS Aromatic polyamides; aromatic nylons

STRUCTURE As described in several articles and patents, $^{(1,2)}$ this type of aromatic nylon resin is a polyamide consisting of varying portions of aliphatic and aromatic units. Hexamethylene diamine is the main aliphatic component, which may be augmented by various amounts of adipic acid. The main aromatic component is terephthalic acid, which may be augmented by lesser amounts of isophthalic acid. Depending on relative composition, Amodel (nylon 6,6 copolymer) resins can be regarded as co- and terpolymers consisting of repeat units of nylon 66, nylon 6T, and nylon 6I – poly(hexamethylene isophthalamide). The major potential difference of other aromatic nylons, such as Ultramid T from BASF, is the presence of the 6I component. $^{(1,2)}$

PROPERTIES OF SPECIAL INTEREST Because of the *p*-phenylene unit, extremely high melting temperature can be achieved. The degree of crystallinity, embrittlement, and transparency can all be controlled by adjusting the chemical composition (nylon 6I content). Dimensional stability in the presence of moisture. Exceptional mechanical properties (modulus $> 2 \times 10^6$ psi, strength), creep resistance, and flexural strength.

MAJOR APPLICATIONS High temperature applications, industrial and chemical processing equipment, bearings and gears, aerospace components, appliance and plumbing parts, electrical/electronics applications such as connectors, under-hood automobile applications, packaging.

Nylon 6,6 cc	ppolvmer
--------------	----------

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
NMR*	ppm	Range for amide proton peaks Range for methylene proton peaks	6-7 1-4	(4)
IR (characteristic absorption frequencies)	cm^{-1}	Overall, the infrared spectrum gr those found for other polyamic		(5-12)
		N-H stretching	3,305	_
		Amide I	1,627	_
		Amide II	1,545	_
		Methylene stretching vibrations	3,000	(7-9, 11-17)
		Methylene bending vibrations	1,400	(7-9, 11-17)
		Other specific spectroscopic feature to the presence of the aromatic		(2, 18)
		Vibrations assignable to paradisubsitituted aromatic units	862, 1,019, ~1,300, [†] 1,498	(9, 10, 19)
		Methylene/amide ratio is indicat the integrated band intensity at at 3,305 cm ⁻¹	ed by the ratio of	(9, 20)
Melting temperature [‡]	K	Range (depending on	543-593	(21)
		composition) For Amoco products	585	
Glass transition temperature	K	Depending on composition	400 362-408 399	(22) (22) (3)
Density	$\rm gcm^{-3}$	_	1.27	(22)
Moisture uptake	%	23°C, saturation 23°C, 50% RH 23°C, 100% RH	62.55.9	(3)
Melt viscosity	poise	325°C	3,000	(22)
Degradation of aromatic polyamides by radiation	relative co untreated	tment can modify aromatic nylons oncentration of amide units relative nylon 6,6 copolymer. These aroma yzed in acid solutions.	e to that in	(23)
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	40°C	0.24	(22)
Modulus	psi	Strength	$>2 \times 10^6$	_
Tensile strength	MPa	_	103-117	(22)
Yield stress	MPa	_	103-117	(22)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Yield strain	%	_	3	(22)
Flexural modulus	MPa	_	3,500-3,800	(22)
Flexural strength	MPa	_	310	_
Degree of crystallinity	%	_	22–28	(22)
Deflection temperature	K	_	363-403	(22)
Solvents	Hexafluor	Hexafluoroisopropanol (HFIP), hot sulfuric acid, hot phenol		(22)

^{*}Both assignments fall into the range of peak positions listed for these groups in standard NMR tables.

- 1. Richardson, J. A., et al. In U.S. Patent Database. Amoco Corporation, 1995, no. 5550208.
- Keske, R. G. In *Polymeric Materials Encyclopedia*, edited by J. C. Salamone. CRC Press, Boca Raton, Fla., 1996.
- 3. Kohan, M. I., ed. Nylon Plastics Handbook. Hanser, Munich, 1995.
- 4. Gordon, A. J. The Chemist's Companion: A Handbook of Practical Data, Techniques, and References. John Wiley and Sons, New York, 1972.
- 5. Miyazawa, T., and E. R. Blout. J. Am. Chem. Soc. 83 (1961): 712.
- 6. Miyazawa, T. J. Chem. Phys. 32 (1960): 1,647.
- 7. Bradbury, E. M., and A. Elliot. Polymer 4 (1963): 47.
- 8. Jakes, J., and S. Krimm. Spectrochim. Acta 27A (1971): 19-34.
- 9. Kohan, M. I., ed. Nylon Plastics. Wiley-Interscience, New York, 1973.
- 10. D. Sadtler Research Laboratories. D7529K. D7527K.
- 11. Chen, C.-C. Ph.D. Thesis. University of Massachusetts, 1996.
- 12. Arimoto, H. J. Polym. Sci., Part A, 2 (1964): 2,283.
- 13. Snyder, R. G., and J. H. Sachtschneider. Spectrochim. Acta 20 (1964): 853.
- 14. Snyder, R. G. J. Chem. Phys. 42 (1965): 1,744.
- 15. Snyder, R. G. J. Chem. Phys. 47 (1967): 1,316.
- 16. Snyder, R. G. Macromolecules 23 (1990): 2,081.
- 17. Miyake, A. J. Polym. Sci. 54 (1960): 223.
- 18. Blinne, G., et al. Kunststoffe 79 (1989): 814.
- 19. Colthup, N. B., L. H. Daly, and S. E. Wiberley. *Introduction to infrared and Raman spectroscopy*. Academic Press, New York, 1990.
- 20. Wobkemeier, M., and G. Hinrichsen. Polymer Bulletin 21 (1989): 607.
- 21. Edgar, O. B., and R. Hill. J. Polym. Sci. 8 (1952): 1-22.
- 22. Desio, G. P. AMOCO Product Performance Data. 1997.
- Inagaki, N., S. Tasaka, and H. Kawai. J. Polym. Sci: Part A, Polymer Chem., 33 (1995): 2,001– 2,011.

[†]Broad features.

^{*}DSC melting curves associated with aromatic nylons have been reported for various compositions of the two components.

MELVIN I. KOHAN

ACRONYMS, TRADE NAMES PA 610, PA-610, Nylon-610, Amilan (Toray), Technyl D (Rhone Poulenc), Ultramid S (BASF)

CHEMICAL NAMES Poly(hexamethylene sebacamide), poly(hexamethylene decanoamide), poly(iminohexamethylene-iminosebacoyl), poly[imino-1,6-hexanediylimino(1,10-dioxo-1,10-decanediyl)] (CAS Registry No. 9008-66-6)

CLASS Aliphatic polyamides

 $\begin{array}{ll} \textbf{STRUCTURE} & -[NH(CH_2)_6NHCO(CH_2)_8CO] - \end{array}$

This most often is not a pure homopolymer because the sebacic acid made from castor oil that is used in the commercial synthesis is not the 100% pure dibasic acid.

MAJOR APPLICATIONS Monofilament, hardware, industrial parts, and precision instruments.

PROPERTIES OF SPECIAL INTEREST Relatively low melting point; resistance to solvents, particularly hydrocarbons, and resistance to aqueous zinc chloride; low water absorption; stiffness; abrasion resistance; dimensional stability.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight	g mol ⁻¹	Per amide group Per repeat unit	141.21 282.42	_
Typical moleculare weight range	$\rm gmol^{-1}$	-	11,000-20,000	(1)
Typical polydispersity index, $M_{\rm m}/M_{\rm n}~(M_{\rm w}/M_{\rm n})$	-	_	2.0	_
Density	g cm ⁻³	Crystalline, α , triclinic Crystalline Typical injection molded Melt 270°C, 1 bar Melt 230–290°C Amorphous Amorphous	1.156 1.152 1.07-1.09 0.913 0.91-0.94 1.05 1.041	(2) (4) — (5) (1) (3) (4)
IR (characteristic absorption frequencies)	cm^{-1}	N-vic. CH_2 bend (α) CH_2 bend CH_2 bend CO -vic. CH_2 bend (α) Amide III (?) (α) (γ , amorphous) (amorphous)	1,474 1,466 1,437 1,419 1,284 1,191 1,180 1,133	(6)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR (characteristic absorption frequencies)		C-CO stretch (α or γ) CH ₂ wag Amide V (α) Amide VI (α)	938 730 689 583	
NMR	_	_	_	(7)
Coefficient of linear thermal expansion	K^{-1}	-	9.0×10^{-5}	_
Compressibility of the melt	Pa ⁻¹ (bar ⁻¹)	_	$\sim 5~(\sim 5\times 10^{-5})$	(1)
PVT curves Reduction temperature T^* Reduction pressure P^* Reduction volume V^*	K MPa cm³ g ⁻¹	_ _ _	8,240 661 0.845	(8)
Solvents	_	25°C	Concentrated sulfuric	_
		Redissolution, 156°C Redissolution, 139°C	acid, <i>m</i> -cresol Ethylene glycol Propylene glycol	(9) (9)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{cm}^3 \text{g}^{-1}$ $a = \text{None}$	<i>m</i> -Cresol, 25°C, for $M_{\rm n} = 8,000-24,000$	K = 13,500 a = 0.96	(10)
Polymers with which compat	ible	_	_	(22)
Unit cell dimensions	Å	α -Triclinic β -Triclinic	a = 4.95, b = 5.4, c = 22.4 a = 4.9, b = 8.0, c = 22.4	(2)
Unit cell angles	Degrees	α -Triclinic α -Triclinic	$\alpha = 49, \beta = 76.5, \gamma = 63.5$ $\alpha = 90, \beta = 77, \gamma = 67.5$	(2)
Units in cell	_	α -Triclinic β -Triclinic	1 2	(2)
Degree of crystallinity	%	Range, injection molded	25-45	(11)
Heat of fusion	$kJ mol^{-1}$ $(kJ kg^{-1})$	Crystalline, from $\Delta H_{\rm m}$, DTA	56.8 (201)	(12)
(per repeat unit)	(K) Kg)	Crystalline, from $\Delta H_{\rm m}$, DTA	54.6 (193)	(13)
		Crystalline, from sp. ht.	53.2 (188)	(14)
Entropy of fusion (per repeat unit)	$J~K^{-1}~mol^{-1}$	Crystalline	110-114	(18)
Glass transition temperature	K	Dry, mech. loss peak Dry, flex. mod. vs. temp. Dry, DTA 50% RH, mech. loss peak 100% RH, mech. loss peak	340 343 315 313 283	(15) (15) (16) (15) (15)

Nylo	on 6	.10
------	------	-----

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Melting point	K	X-ray	500		(17)
		DTA			(17)
		Start	494		
		Peak	497		
		End	499		
		Equilibrium	≥510		(29)
		-1	Range	Average	(=-,)
		Fisher-Johns	489-496	492	(17)
		Capillary	485-494	490	(17)
		Köfler hot stage	485-503	493	
		Roller flot stage	463-303	493	(17)
Heat capacity (per repeat unit)	$J K^{-1} mol^{-1}$	_	502		(19)
Deflection temperature	K	ASTM D 648 = DIN 53461 = ISO 75			(20, 21)
		Dry			
		455 kPa	430-448		
		1,820 kPa	339		
		50% RH			
		455 kPa	433		
		1,820 kPa	333		
Tensile properties, ASTM	D 638 = DIN 534	55 = ISO 527			
Tensile modulus	MPa	23°C			(20, 21)
		Dry	2,400		(==, ==)
		50% RH	1,500		
Tensile strength	MPa	-40°C	1,500		(20, 21)
Telishe stieright	wii a	Dry	83		(20, 21)
		50% RH	83		
		23°C	65		
		Dry	59		
		50% RH	49		
		77°C	4)		
		Dry	37		
		50% RH	37		
Yield stress	MPa	-40°C	<i>57</i>		(20, 21)
ricia stress	1111 4	Dry	83		(20) 21)
		50% RH	83		
		23°C	00		
		Dry	60		
		50% RH	50		
		77°C	30		
		Dry	37		
		50% RH	37		
		50% KH	37		

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Yield strain $(L/L_0)_y$	%	−40°C		(20, 21)
		Dry	10	
		50% RH	13	
		23°C	10	
		Dry 50% RH	10 30	
		77°C	30	
		Dry	30	
		50% RH	_	
Maximum extensibility	%	-40°C		(20, 21)
$(L/L_0)_{\rm r}$,-	Dry	20	(,)
(-7-071		50% RH	30	
		23°C		
		Dry	70-100	
		50% RH	≥150	
		77°C		
		Dry	300	
		50% RH	_	
Flexural modulus	MPa	ASTM D 790 = DIN 53457 =		(20, 21)
		ISO 178		(',)
		$-40^{\circ}\mathrm{C}$		
		Dry	2,240	
		50% RH	2,520	
		23°C		
		Dry	2,000	
		50% RH	1,100	
		100% RH	690	
		77°C, dry	480	
Bulk modulus	MPa	25°C	2,300	(24)
Shear strength	MPa	ASTM D 732, 23°C, dry	58	(21)
mpact strength (cf. ASTM	$\mathrm{J}\mathrm{m}^{-1}$	Notched Izod, 23°C		(20, 21)
D 256, DIN 53453, ISO 179)	,	Dry	50	, ,
,		50% RH	200	
	$kJ m^{-2}$	Charpy, 20°C		(21)
		Dry	4-10	
		65% RH, 4 months	13-15	
Hardness		ASTM D 785; 23°C		
Turaness	M scale	Dry	75	(20, 21)
	M scale	50% RH	60	(20, 21)
	R scale	Dry	110-111	(21)
		<i>y</i>		(-)
Poisson ratio	_	20°C, moldings	0.3-0.4	(5)
		100°C	0.47	

Nγ	lon	6,1	0

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Abrasion resistance, Taber	mg kHz ⁻¹	C17 wheel, 1 kg	5-6	(21)
Index of refraction	_	25°C, molded, undrawn	1.532	(11)
		Isotropic	1.52	,
		Parallel	1.57	
		Perpendicular	1.52	
Dielectric constant	_	ASTM D 150, IEC 250		
		Dry		(21)
		50-100 Hz	3.9	
		1kHz	3.6	
		1MHz	3.3	
		$-30,0^{\circ}\text{C};100\text{Hz-}1\text{GHz}$	3.0	(5)*
		30°C		(5)
		100 Hz-1 kHz	3.2	()
		1MHz-1GHz	3.0	
		60°C		(5)
		100 Hz	4.6	()
		1kHz	4.2	
		1 MHz	3.4	
		1GHz	3.0	
		90°C		(5)
		100 Hz	13	(-)
		1 kHz	10.5	
		1 MHz	5.2	
		1GHz	3.1	
		20°C, 65% RH		(5)
		100 Hz	6.5	(0)
		1kHz	5.4	
		1 MHz	3.5	
		1 GHz	3.0	
Dissipation factor, dielectric	_	ASTM D 150, IEC 250		
loss		Dry		(21)
		50–100 Hz	0.04	()
		1kHz-1MHz	0.03	
		−30°C	0.00	(5)*
		100 Hz	0.012	(-)
		1kHz	0.011	
		1 MHz	0.015	
		1GHz	0.006	
		0°C	0.000	(5)
		100 Hz-1 kHz	0.013	(5)
		1MHz	0.017	
		1 GHz	0.017	
		I GI IZ	0.010	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dissipation factor, dielectric	_	30°C		(5)
loss		100 Hz	0.010	
		1 kHz	0.015	
		1 MHz	0.021	
		1GHz	0.013	
		60°C		(5)
		100 Hz	0.090	
		1kHz	0.065	
		1MHz	0.054	
		1GHz	0.025	
		90°C		(5)
		100 Hz	0.250	
		1kHz	0.170	
		1MHz	0.190	
		1GHz	0.035	
		20°C; 65% RH		(5)
		100 Hz	0.200	
		1kHz	0.150	
		1MHz	0.080	
		1GHz	0.020	
Volume resistivity	ohm cm	ASTM D 257, IEC 93		
		Dry		(5, 21)
		20°C	10^{15}	
		60°C	5×10^{11}	
		100°C	5×10^{8}	
		20°C		(5)
		50% RH	2×10^{12}	
		100% RH	3×10^{10}	
Surface tension	mNm^{-1}	Melt, 265°C	37	(23)
Thermal conductivity	${ m W}{ m m}^{-1}{ m K}^{-1}$	_	0.23	(21)
		Amorphous, moist, 30°C	0.35	(24, 25)
		Dependence on pressure,	1.90	(24, 25)
		λ (25 kbar)/ λ (atm. pressure); 25°C		(, -)
Melt viscosity	Pa s	Commercial injection molding		(26)
Wicht viscosity	1 4 5	grade resin, 280°C		(20)
		10 s ⁻¹	37	
		10^{3} s^{-1}	34	
		10^{3} s^{-1}	27	
		10^{4} s^{-1}	14	
	1			
Activation energy of viscous	$kJ mol^{-1}$	_	60	(27)
flow				
Coefficient of friction	_	Thrust washer, $275 \mathrm{kPa}$, $0.25 \mathrm{m s}^{-1}$		(28)
		Static	0.23	• •
		Dynamic	0.31	
		-		

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Limiting PV against steel	$kPa m s^{-1}$	$0.5{\rm m~s^{-1}}$	70	(28)
Water absorption	%	50% RH 100% RH	$1.4-1.5 \\ 3.3 \pm 0.3$	_ (5)
Solvent absorption	%	Ethanol, 20°C, saturation Butanol, 20°C, saturation Glycol, 20°C, saturation Methanol, 20°C, saturation Propanol, 20°C, saturation	8-13 8-12 2-4 16 10	(5)
Oxygen index	%	ASTM D 2863, dry	24	(5)

^{*}Moisture content unspecified, but data indicate dry specimens.

- 1. "'Ultramid' S Processing Properties." BASF Tech. Bulletin, July 1969.
- 2. Bunn, C. W., and E. V. Garner. Proc. Roy. Soc. (London) A 189 (1947): 39.
- 3. Müller, A., and R. Pflüger. Kunststoffe 50(4) (1960): 203.
- 4. Starkweather, H. W., Jr., and R. E. Moynihan. J. Polym. Sci. 22 (1956): 363.
- Pflüger, R. In Polymer Handbook, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. V/109–116.
- Sibilia, J. P., et al. In Nylon Plastics Handbook, edited by M. I. Kohan. Hanser/Gardner Publishers, Cincinnati, 1995, p. 88.
- 7. Ibid, pp. 90-97.
- Walsh, D. J. In Nylon Plastics Handbook, edited by M. I. Kohan. Hanser/Gardner Publishers, Cincinnati, 1995, pp. 165–171.
- 9. Johnson, F. R., and E. Weadon. J. Tex. Inst. Trans. 55 (1964): T162.
- 10. Morgan, P. W., and S. L. Kwolek. J. Polym. Sci., Part A, 1 (1963): 1,147-1,162.
- 11. Bonner, R. M. et al. In *Nylon Plastics*, edited by M. I. Kohan. Wiley-Interscience, New York, 1973, pp. 327–407.
- 12. Inoue, M. J. Polym. Sci., Part A, 1 (1963): 2,697-2,709.
- 13. Ke, B., and A. W. Sisko. J. Polym. Sci. 50 (1961): 87-98.
- 14. Dole, M., and B. Wunderlich. Makromol. Chem. 34 (1959): 29.
- 15. Kohan, M. I., ed. Nylon Plastics. Wiley-Interscience, 1973, p. 330.
- 16. Gordon, G. A. J. Polym. Sci., Part A-2, 9 (1971): 1,693.
- Starkweather, H. W., Jr. In Nylon Plastics, edited by M. I. Kohan. Wiley-Interscience, New York, 1973, p. 308.
- 18. Van Krevelen, D. W., and P. J. Hoftyzer. In *Properties of Polymers: Correlation with Chemical Structure*, 2d ed. Elsevier, Amsterdam, 1976, p. 91.
- 19. Warfield, R. W., E. G. Kayser, and B. Hartmann. Makromol. Chem. 184 (1983): 1,927.
- 20. "Nylon Resin 610." Monsanto Bulletin. (Cited in Kohan, M. I., ed. Nylon Plastics Handbook. Hanser/Gardner Publishers, Cincinnati, 1995, p. 557.)
- 21. Willams, J. C. L., S. J. Watson, and Boydell. In *Nylon Plastics Handbook*, edited by M. I. Kohan. Hanser/Gardner, Publishers, Cincinnati, 1995, pp. 293–360.
- Ellis, T. S. In Nylon Plastics Handbook, edited by M. I. Kohan. Hanser/Gardner Publishers, Cincinnati, 1995, pp. 268–277.
- 23. Hybart, F. J., and T. R. White. J. Appl. Polym. Sci. 3(7) (1960): 118-121.
- 24. Anderson, P. Makromol. Chem. 177 (1976): 271.
- 25. Hellwege, K.-H., R. Hoffmann, and W. Knappe. Kolloid-Z. Polymere 226(2) (1968): 109-115.
- 26. Kohan, M. I., ed. In Nylon Plastics. Wiley-Interscience, New York, 1973, pp. 115–153.

- 27. Estimated from data on PA-6, PA-66, and PA-MXD6 in Kohan, M. I., ed. *Nylon Plastics Handbook*. Hanser/Gardner Publishers, Cincinnati, 1995, pp. 177, 568; and Laun, M. H. *Rheol. Acta* 18 (1979): 478.
- 28. "LNP Internally Lubricated Reinforced Plastics." LNP Corp. Bulletin (1978): 254-278.
- 29. Mandelkern, L., N. L. Jain, and H. Kim. J. Polym. Sci., Part A-2, 6 (1968): 165-180.

GUS G. PETERSON AND W. BROOKE ZHAO

ALTERNATIVE NAMES Poly[imino-1,6-hexanediylimino(1,12-dioxo-1,12-dedecanediyl)]

CLASS Aliphatic polyamides

 $\begin{array}{ccc} & O & O \\ \parallel & \parallel \\ \text{structure} & \{(CH_2)_6 - NH - C - (CH_2)_{10} - C - NH\} \end{array}$

MAJOR APPLICATIONS Engineering resin

PROPERTIES OF SPECIAL INTEREST Low water absorption compared to Nylon 6,6

PREPARATIVE TECHNIQUES Polycondensation of hexamethylenediamine and dodecanedioic acid

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	Size-exclusion chromatography	$25,700 \pm 700$	(1)
IR (characteristic absorption frequencies)	cm^{-1}	N-H stretching C=O stretching (amide I band)	3,050 1,650-1,634	(2)
NMR (15N)	ppm	32°C 36°C 42°C 49°C 56°C	119.8 119.8 119.8 119.7 119.6	(3)
Thermal expansion coefficient	K^{-1}	Linear	9×10^{-5}	(2)
Density	$\rm gcm^{-3}$	_	1.06	(4)
Common solvents	Phenols, formic acid, chloral hydrate, fluorinated alcohols, mineral acids			(2)
Contact angle	Degrees	c-Hex i-Oct	$113.9 \pm 1.0 \\ 109.0 \pm 0.8$	(5)
Equilibrium heats of fusion $\Delta H_{\rm f}^0$	$kJ mol^{-1}$	_	80.1	(6)
Glass transition temperature $T_{\rm g}$	K	_	319	(6)
Melting temperature $T_{\rm m}$	K	_	520-480	(6)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat capacity	kJ K ⁻¹ mol ⁻¹	230°C 300°C 400°C 600°C	0.382 0.494 0.771 0.981	(7)
Deflection temperature	K	0.455 MPa 1.82 MPa	453 363	(2)
Brittleness temperature	K	_	164	(2)
Specific heat	$kJK^{-1}\;mol^{-1}$	_	0.525	(2)
Tensile strength	MPa	_	60.7	(2)
Yield stress	MPa	_	51.0	(2)
Elongation at break	%	_	≥300	(2)
Elongation at yield	%	_	25	(2)
Shear strength	MPa	Dry	55.8	(2)
Flexural modulus	MPa	_	1,241	(2)
Izod impact strength	$\mathrm{J}\mathrm{m}^{-1}$	_	75	(2)
Dielectric constant ε'	_	_	5.3×10^3	(2)
Volume resistivity	ohm cm	_	10^{13}	(4)
Dissipation factor	_	1,000 Hz	0.15	(2)
Dispersion force component of surface free energy $\gamma_{\rm S}^d$	${ m mJm^{-2}}$	-	62 ± 9	(5)
Nondispersive interaction free energy between solid and water I_{SM}^n	$\mathrm{mJ}\mathrm{m}^{-2}$	-	30.7 ± 0.4	(5)
Polar surface free energy $\gamma_{\rm S}^p$	${\rm mJm}^{-2}$	_	4.7	(5)
Surface free energy γ_S	${\rm mJm^{-2}}$	_	67	(5)
Thermal conductivity	$Wm^{-1}K^{-1}$	_	0.22	(2)
Intrinsic viscosity	dLg^{-1}	_	1.45	(8)
Water absorption	%	At saturation	3.0	(2)
Flammability, oxygen index	_	_	28	(2)

- 1. Mourey, T. H., and T. G. Bryan. J. Chromatography 679 (1994): 201.
- 2. Zimmerman, J. In *Encyclopedia of Polymer Science and Engineering*, Vol. 11, edited by H. F. Mark et al. John Wiley and Sons, New York, 1989, 315.
- 3. Holmes, B. S., G. C. Chingas, W. B. Moniz, and R. C. Ferguson. Macromolecules 14 (1981): 1,785.
- 4. Deanin, R. D. In *Polymeric Materials Encyclopedia*, 2d ed, Vol. 3, edited by J. C. Salamone. CRC Press, New York, 1996, p. 2,080.
- 5. Matsunaga, T. J. Appl. Polym. Sci. 21 (1977): 2,847.
- 6. Xenopoulos, A., and B. J. Wunderlich. Polym. Sci., Part B Polym. Phys. 28 (1990): 2,271.
- 7. Wen, J. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. American Institute of Physics, New York, 1996.
- 8. Yeung, M. W.-Y., and H. L. Williams. J. Appl. Polym. Sci. 32 (1986): 3,695.

Nylon 11

GEORGE APGAR

ACRONYMS, TRADE NAME Polyamide 11, PA-11, Rilsan® B (Elf Atochem)

CLASS Aliphatic polyamides

STRUCTURE
$$[-C=O-(CH_2)_{10}-NH-]$$

MAJOR APPLICATIONS Tubing, hoses, and pipes for automotive, trucking, industrial, and petroleum production applications. Examples are heavy truck airbrake tubing, automotive fuel lines, and submarine flexible pipes for offshore oil production. Thermoplastic powder coatings for industrial, transportation, and retail items are prepared in a Nylon 11 base. Nylon 11 has be used in a variety of food-contact applications, including sausage casing, beverage tubing, and reusable kitchen devices.

PROPERTIES OF SPECIAL INTEREST Nylon 11 has low moisture absorption relative to other nylons. Specific gravity is also low. Chemical resistance to hydrolytic reagents is unusually good for a polyamide. Modulus is low, which provides superior impact properties at both ambient and subambient temperatures.

PREPARATIVE TECHNIQUES Nylon 11 is prepared by a condensation polymerization reaction. The commercial monomer is 11, aminoundecanoicacid. This aminoacid is unique among the nylon monomers because it is made from castor oil, a renewable, agricultural raw material. The 18-carbon ricinoleicacid is thermally cracked to 7-carbon and 11-carbon fractions. The 11-carbon portion has an omega unsaturation, which is hydrobrominated then aminated to the aminoacid monomer.⁽¹⁾

PROPERTY*	UNITS	CONDITIONS	VALUE	REFERENCE
Common form	_	_	α , triclinic	(2)
Unit cell dimensions	Å	a axisb axisc axis	4.9 5.4 14.9	(2)
Angles	Degrees	Alpha Beta Gamma	40 77 63	(2)
Density, crystalline	$\rm gcm^{-3}$	_	1.15	(2)
Density, amorphous	$g \text{cm}^{-3}$	25% crystallinity is typical after melt processing	1.01	(2)
Water absorption	wt%	Equilibration at 23°C, 65% RH 23°C, 100% RH 100°C, 65% RH	1.1 1.9 3.0	(2)

	Ny	lon	11
--	----	-----	----

PROPERTY*	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion	$\mathrm{J}\mathrm{g}^{-1}$	24% crystallinity	39	(2)
Specific heat	$\mathrm{J}\mathrm{g}^{-1}\mathrm{K}^{-1}$	23°C 250°C	1.752.6	(2)
Glass transition temperature	K	_	315	(2)
Thermal conductivity	$Wm^{-1}K^{-1}$	_	0.19	(3)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	For PA-11; mol. wt. = 1.8- 9×10^4 at 30°C in <i>m</i> -Cresol	K = 91 $a = 0.69$	(4)
Melt viscosity	Poise	For commercial grades of PA-11; 240°C ; 500s^{-1} shear rate	1,000-7,000	(5)
Dielectric constant	_	Dry, 10 ⁶ Hz	3.1	(6)
Dissipation factor	_	Dry, 10 ⁶ Hz	0.04	(6)
Specific gravity	_	23°C Unmodified Plasticized 43% glass	1.03 1.05 1.36	(2)
Melting point	K	Unmodified Plasticized 43% glass	461 457 461	(2)
Yield stress	MPa	23°C Unmodified Plasticized	36 21	(2)
Yield elongation	%	23°C Unmodified Plasticized	22 26	(2)
Break stress	MPa	-40°C Unmodified Plasticized 23°C Unmodified Plasticized 43% glass 80°C	72 76 68 62 145	(2)
		Unmodified Plasticized	66 54	

N۱	∕lon	11

PROPERTY*	UNITS	CONDITIONS	VALUE	REFERENCE
Break elongation	%	−40°C		(2)
<u> </u>		Unmodified	160	
		Plasticized	220	
		23°C		
		Unmodified	360	
		Plasticized	380	
		43% glass	8	
		80°C		
		Unmodified	420	
		Plasticized	420	
Flexural modulus	MPa	−40°C		(2)
		Unmodified	1,586	. ,
		Plasticized	2,275	
		23°C		
		Unmodified	1,269	
		Plasticized	310	
		43% glass	8,480	
		80°C		
		Unmodified	255	
		Plasticized	159	
Izod impact strength	$\mathrm{J}\mathrm{m}^{-1}$	-40°C		(2)
		Unmodified	27	
		Plasticized	21	
		23°C		
		Unmodified	99	
		Plasticized	No break	
		43% glass	247	
		80°C		
		Unmodified	NB	
		Plasticized	NB	
Deflection temperature	K	Unmodified	320	(2)
2 circeitori terriperature		Plasticized	313	(-)
		43% glass	452	
			402	
Rockwell hardness	_	23°C	_	(2)
		Unmodified	R108	
		Plasticized	R75	
		43% glass	R111	
Hardness	Shore D values	23°C		(2)
		Unmodified	72	
		Plasticized	63	

Nylon 11

PROPERTY*	UNITS	CONDITIONS	VALUE	REFERENCE
Coefficient of linear thermal	K^{-1} (×10 ⁻⁵)	−30 to 50°C		(2)
expansion	, ,	Unmodified	8.5	· /
•		Plasticized	11	
		43% glass	7	
		50−120°C		
		Unmodified	15	
		Plasticized	21	
		43% glass	13	
Volume resistivity	ohm cm	500 VDC; 20°C		(2)
•		Unmodified	1,014	. ,
		Plasticized	1,011	
		43% glass	1,014	
Surface resistivity	ohm	20°C		(2)
,		Unmodified	1,014	()
		Plasticized	1,011	
		43% glass	1,014	
Dielectric strength	$kV mm^{-1}$	20°C		(2)
		Unmodified	30	()
		Plasticized	24	
		43% glass	45	

^{*}All properties measured in a dry, as-molded state.

- 1. Apgar, G., and M. Koskoski. In *High Performance Polymers: Their Origin and Development*, R. B. Seymour and G. S. Kirshenbaum, Elsevier, New York, 1986, p. 55–65.
- Apgar, G. In Nylon Plastics Handbook, edited by M. I. Kohan. Hanser, Munich, 1995, p. 576–582.
- 3. Williams, J. C. L. In *Nylon Plastics Handbook*, edited by M. I. Kohan. Hanser, Munich, 1995, p. 344.
- Sibila, J. P., et al. In Nylon Plastics Handbook, edited by M. I. Kohan. Hanser, Munich, 1995, p. 81.
- 5. Technical literature. Elf Atochem, Paris and Philadelphia.
- 6. Watson, S. G. In Nylon Plastics Handbook, edited by M. I. Kohan. Hanser, Munich, 1995, p. 346.

Nylon 12

H. ULF W. ROHDE-LIEBENAU

ACRONYMS, TRADE NAMES PA 12, polyamide 12, polydodecanolactam, polylaurolactam; Daiamid[®] (Daicel Chemical Industries); Grilamid[®] (EMS Chemie); Rilsan[®] A (Elf Atochem); UBE Nylon 12[®] (UBE Industries); Vestamid[®] (Creanova)

CLASS Aliphatic polyamides

STRUCTURE
$$-[NH_2-(CH_2)_{11}-CO]_p-$$

PROPERTIES OF SPECIAL INTEREST Hydrolytic polycondensation at 260–300°C. Very low monomer content in melt-equilibrium. Activated anionic polymerization = monomer casting (small market volume). PA 12 crystallizes in pseudo-hexagonal modification. Combination of typical nylon and polyolefin properties. Low moisture absorption and density, chemical resistance similar to other nylons, not sensitive to stress cracking. Good to excellent impact strength, in dry state or at low temperatures. Engineering plastic, can be modified by glass or carbon fiber reinforcement, plasticizer, or other additives. PA 12 copolymers with PTHF: polyether block amides (PEBA)—see below. (1)

MAJOR APPLICATIONS Multiplicity of applications in technical engineering, especially in automotive and electrical industries. Antistatic parts. Precision molding. Sports and leisure goods. Coatings by extrusion, fluidized bed, or electrostatic process.

GENERAL INFORMATION Most properties were determined by relevant ISO and IEC standards in accordance with CAMPUS[®]. Three grades from the vast range of grades were selected: (1) unmodified extrusion, (2) with \sim 13% plasticizer, and (3) 30% glass fiber modified grade. (See ISO 1874-2 for a list of relevant standards.)

PROPERTIES	UNIT	CONDITIONS	VALUE			REFERENCE
			Unmodified	Plasticized	30% glass fiber	
Density	g cm ⁻³	Standard: ISO 1183 At 23°C	1.01-1.02	1.03	1.24	(2-4)
		Annealed at 160°C	1.028	Monomer casting	_	(2-4)
		At 260°C (melt)	\sim 0.86	~0.88	~ 1.04	(5)
Moisture	%	Standard: DIN 53495				(2-4)
absorption		23°C, 50% RH	0.8	0.7	0.4 - 0.5	
_		23°C, immersed	1.5	1.4	1.1	
Melting range	K	Polarization microscopy	448-453			(2-4)
Heat deflection temperature	K	Standard: ISO 75; load = 0.45 MPa	388	363	448	(2-4)

Nylon 12

PROPERTIES	UNIT	CONDITIONS	VALUE			REFERENCE
			Unmodified	Plasticized	30% glass fiber	
Vicat softening point	K	Standard: ISO 306; load = 10 N	443	433	448	(2-4)
Glass transition temperature	K	Standard: ISO 537; $\tan \delta$ by torsional pendulum Dry as molded 50% RH (=0.7% H ₂ O)	328 318			(2-4)
Thermal expansion coefficient	$K^{-1} (\times 10^{-4})$	Standard: DIN 53752; for 23–80°C In flow direction Perpendicular direction	1.5 1.1	1.8 1.5	0.6	(2-4)
Specific heat	$Jg^{-1}K^{-1}$	Solid (23–60°C) Melt (250°C)	2.0 2.9	- 3.0	1.6 2.5	(3)
Heat of fusion	$\mathrm{J}\mathrm{g}^{-1}$	_	65-75 ^(a)	_	$35 - 40^{(b)}$	(3)
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	20-100°C	0.24	0.23	0.29	(3)
Melt volume index	$ml (10 min)^{-1}$	275°C (5 kg load) ⁻¹	~36	~60	~30	(5)
Maximum use temperature	K	Standard: UL 746B	358	353	378	(UL 746)
Flammability	Most PA 12 g extinguishin	rades are slow burning (HB ang grades	acc. UL 94),	but there ar	e self-	(UL 94)
Oxygen index	%	Unmodified PA 12	21-22			(5)
Tensile modulus	MPa	Standard: ISO 527; equilibrated to 50% RH	1,450	400	6,500	(2-4)
Yield stress	MPa	Standard: ISO 527; equilibrated to 50% RH	46	26	130	(2-4)
Strain at yield	%	Standard: ISO 527; equilibrated to 50% RH	5	30	5	(2-4)
Strain at break	%	Standard: ISO 527; equilibrated to 50% RH	>200	>200	5-6	(2-4)
Notched impact strength (Izod)	$kJ m^{-2}$	Standard: ISO 180/1A; equilibrated to 50% RH At 23°C At -30°C	20 7	No break	24 20	(2-4)

PROPERTIES	UNIT	CONDITIONS	VALUE			REFERENCE
			Unmodified	Plasticized	30% glass fiber	
Notched impact strength	$kJ m^{-2}$	Standard: ISO 179; equilibrated to 50% RH	A ^(c)	$B^{(d)}$		(2-4)
(Charpy)		At 23°C At -30°C	6 5	20 7		
Dielectric constant ε'	_	Standard: IEC 250; 1 MHz; equilibrated to 50% RH	3.0	3.8	3.4	(4)
Dielectric loss ε''	-	Standard: IEC 250; 1 MHz; equilibrated to 50% RH	280×10^{-4}	$1,500 \times 10^{-4}$	230×10^{-4}	(4)
Dielectric strength	kV mm ⁻¹	Standard: IEC 243; equilibrated to 50% RH	26	31	44	(4)
Surface resistivity R_{OA}	ohm	Standard: IEC 93; equilibrated to 50% RH	10 ¹³	10 ¹²	10 ¹³	(4)
Volume resistivity	ohm cm	Standard: IEC 93; equilibrated to 50% RH	10 ¹⁵	10 ¹²	10 ¹⁵	(4)
Comp. tracking index	_	Standard: IEC 112; equilibrated to 50% RH	600	600	>600	(4)
Molecular mass	g mol ⁻¹	_	$M_{\rm n} = 1.4 - 3$ $M_{\rm w} = 3.5 - 3$			(6-8)
Typical polydispersity index $(M_{\rm w}/M_{\rm n})$	_	_	2.5–3.5			(6–8)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ a = None	-	$K = 524 \times a = 0.73$	10^{-4}		(6-8)
Degree of crystallinity	,-	Cooled After annealing at 150°C	~0.3 0.35-0.40			-
Unit cell dimensions	Pseudohex	agonal gamma-modificatio	on with unit	cell dimension	าร	(2, 3)
Lattice		_	Pseudohexa	agonal		(2, 3)
Unit cell content (number of repeat units)		_	4			(9)

Nylon	1	2
-------	---	---

PROPERTIES	UNIT	CONDITIONS	VALUE	REFERENCE
			Unmodified Plasticized 30% glass fiber	
Cell dimensions	nm	_	a = 0.479, b = 3.19, c = 0.958	(9)
Cell angle	Degrees	_	$\beta = 120$	(9)
Density (crystalline)	g cm ⁻³	Also unstable monoclinic α modification	1.106 ^(e)	(10)
Index of refraction $n_{\rm D}^{25}$	_	Only film and thin quenched parts are transparent	1.52-1.53	(5)

⁽a) Range = $160-195^{\circ}$ C. (b) Range = $155-185^{\circ}$ C.

Polyether block amides (PEBA) are internally plasticized by copolycondensation of PA 12 and PTHF block segments. The grades are differentiated by Shore hardness D as a measure of flexibility. In addition to typical PA 12 application ranges, PEBA are used for seals, gaskets and in medical devices. (Trade name of these grades of Elf Atochem is Pebax[®])

PROPERTY	UNITS	[STANDARD]/ CONDITIONS	SHORE D HARDNESS*				PA 12	REFERENCE
			35	47	55	62		
Density	g cm ⁻³	[ISO 1183]	1.01	1.02	1.03	1.03	1.01-1.02	(1-3)
Tensile modulus	MPa	[ISO 527]	-	120	230	370	1,450	(1-3)
Yield stress	MPa	[ISO 527]	_	_	_	24	47	(1-3)
Tensile strength	MPa	[ISO 527]	17	23	32	_	_	(1-3)
Strain at break	%	[ISO 527]	>200	>200	>200	>200	>200	(1-3)
Notched impact strength (Izod)	$kJ m^{-2}$	[ISO 180/1A] At 23°C At -30°C		No break No break		No break	20 7	(1-3)
Heat deflection temperature	K	[ISO 75]; load 0.45 MPa	328	338	363	373	393	(1-3)
Vicat softening point	K	[ISO 306]; load 10 N	398	413	433	438	443	(1-3)

^{*}Standard: ISO 868.

⁽c) A = low molecular weight/injection molding. (d) B = high molecular weight/extrusion.

⁽e) Some sources give the crystalline density as 1.03 to $1.05\,\mathrm{g\,cm^{-3}}$, which is too low. If one extrapolates data from reference (11) or if a parallel for nylon 12 is drawn to the line of density vs. crystallinity for nylon 11 from reference (12), then one can derive the approximate crystalline density of $1.10\,\mathrm{g\,cm^{-3}}$.

Suppliers

EMS Chemie AG, Domat, Switzerland Elf Atochem S.A., Paris, France UBE Industries, Tokyo, Japan Creanova GmbH., Division of Degussa-Hüls AG., Marl, Germany

- 1. Apgar, G. B., and M. J. Koskoski. In *High Performance Polymers: Their Origin and Development*, edited by R. B. Seymour and C. S. Kirshenbaum. Elsevier Science Publishing, New York, 1986, pp. 55–65.
- 2. Kohan, M. I., ed. *Nylon Plastics Handbook*, Hanser Publishers, Munich (Hanser/Gardner Publications, Cincinnati), 1995 (and references therein).
- 3. Bottenbruch, L., and R. Binsack, eds. *Kunststoff Handbook, Vol. 3–4, Polyamide*. Carl Hanser Verlag, Munich and Vienna, 1998, sec. 4 (and references therein).
- 4. Technical literature and CAMPUS[®] data bank from Daicel; EMS; Elf Atochem; Hüls (see suppliers above).
- 5. Unpublished data from Hülls AG.
- 6. Scholten, H., and R. Feinauer. Agnew. Makromol. Chem. 21 (1973): 187.
- 7. Hammel, R., and C. Gerth. Makromol. Chem. 34 (1973): 2,697.
- 8. Griehl, W., and J. Zarate. Plastverarb 18 (1967): 527.
- 9. Gogolewski, S., K. Czerniawska, and M. Gasiorek. Colloid and Polym. Sci. 258 (1980): 1,130.
- 10. Cojazzi, G., et al. Makromol. Chem. 168 (1973): 289.
- 11. Müller, A. and R. Pflüger. Kunstst. 50 (1960): 203.
- 12. Kohan, M. I., ed. Nylon Plastics. Wiley-Interscience, New York, 1973, p. 332.

Nylon MXD6

AKIRA MIYAMOTO

TRADE NAME Reny (Mitsubishi Gas Chemical Co.)

CLASS Aliphatic polyamides

 $\begin{array}{ll} \textbf{STRUCTURE} & H-[NHCH_2-m-C_6H_4CH_2NHCO(CH_2)_4CO]_n-OH \end{array}$

MAJOR APPLICATIONS Blow molded bottles. Extruded film and sheets for food packaging, including blend, multilayer, and laminate with nylon 6, PET, and polyolefins. Monofilament for bristle and filter cloth. Glass fiber reinforced injection molding materials used to make parts for the automotive, machine, electrical/electronic, civil engineering, sports, and other industries as a metal substitute.

PROPERTIES OF SPECIAL INTEREST Relatively low cost. High mechanical strength, modulus, and heat resistance. Very low oxygen permeability in humid atmosphere.

TYPE OF POLYMERIZATION Polycondensation in melt or solid phase

TYPICAL COMONOMERS *p*-Xylylenediamine

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	246.31	(1)
Typical molecular weight range	$g mol^{-1}$	End group titration	$(1.6-4.0) \times 10^4$	(6)
IR	cm^{-1}	Ref. KBr tablet	1,650; 1,550; 1,440; 1,030; 790; 700	(6)
UV	nm	Ref. 96% H ₂ SO ₄	260	(7)
¹ H-NMR	ppm	Formic acid solution	1.8, 2.5, 4.5, 7.3	(6)
¹³ C-NMR	ppm	Formic acid solution	25.7, 36.3, 44.7, 127.7, 130.0, 138.7, 177.7	(6)
Thermal expansion coefficient	K^{-1}	ASTM D696	5.1×10^{-5}	(1)
Density (amorphous)	$\rm gcm^{-3}$	296 K	1.19	(6)
Solvents	-	Room temp. 433 K 473 K	Sulfuric acid, formic acid, trifluoroacetic acid, <i>m</i> -cresol, <i>o</i> -cresol, phenol/ethanol (4:1 by vol), hexafluoroisopropanol Benzyl alcohol, ethylene glycol Diethylene glycol, triethylene glycol	(6)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Nonsolvents	_	Room temp.	Water, <i>n</i> -butanol, <i>n</i> -heptane	
Crystalline state	-	Lattice Space group Chain conformation	Triclinic C_i^1 -P1 Planes incline to the c axis by a few degrees from planar zigzag	(5)
Unit cell dimensions	Å	-	a = 12.01, b = 4.83, c = 29.8	(5)
Unit cell angles	Degrees	-	$\alpha = 75.0$, $\beta = 26.0$, $\gamma = 65.0$	(5)
Unit cell contents	_	-	2	(5)
Degree of crystallinity	%	Solid phase polymerized, DSC	35	(6)
Heat of fusion	$kJ mol^{-1}$	DSC	37	(6)
Density (crystalline)	$\rm gcm^{-3}$	-	1.25	(5)
Glass transition temperature	K	DSC	358	(6)
Melting point	K	DSC	510	(6)
Heat capacity	$JK^{-1}g^{-1}$	DSC 313 K 533 K	1.31 2.51	(6)
Deflection temperature	K	ASTM D648, 1.8 MPa	369	(1)
Tensile modulus	MPa	ASTM D638 dry	4,700	(1)
Tensile strength	MPa	ASTM D638 dry	99	(1)
Maximum extensibility (L/L_0)	%	ASTM D638 dry	2.3	(1)
Flexural modulus	MPa	ASTM D790 dry	4,400	(1)
Flexural strength	MPa	ASTM D790 dry	160	(1)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D256 dry, notched	20	(1)
Hardness	Rockwell M	ASTM D785 dry	108	(1)
Abrasion resistance	g kcycles ⁻¹	ASTM D1044	19×10^{-3}	(2)

Nivion	MXD6
	IVIADO

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Index of refraction n	_	ASTM D542, amorphous	1.582	(6)	
Dielectric constant ε'	_	ASTM D150, 110 and 10 ³ MHz	3.9	(2)	
Dielectric loss index ε''	_	ASTM D150, 110 and 10 ³ MHz	0.039	(2)	
Resistivity	ohm cm	ASTM D257	1.2×10^{16}	(2)	
Permeability coefficient	m ³ (STP) m s ⁻¹ m ⁻² Pa ⁻¹	O ₂ , 296 K, 60% RH	5.7×10^{-21}	(6)	
Thermal conductivity	$Wm^{-1}\;K^{-1}$	_	0.38	(2)	
Melt viscosity	Pas	543 K, shear stress 24.5 kPa $M_{\rm n}=16,000$ $M_{\rm n}=19,000$ $M_{\rm n}=25,000$ $M_{\rm n}=39,000$	140 280 730 2,400	(1)	
Melt index	g	ASTM D1238, condition K $M_{\rm n} = 16,000$ $M_{\rm n} = 19,000$ $M_{\rm n} = 25,000$ $M_{\rm n} = 39,000$	7 4 2 0.5	(1)	
Decomposition temperature	K	TGA	653	(6)	
Water absorption	%	293 K, equilibrium	5.8	(1)	
Important patents	_	_	_	(3, 4)	
Cost	US kg^{-1}$	_	4-6		
Availability	kg	_	$\sim 1 \times 10^7$		
Suppliers	Mitsubishi Gas Chemical Co., Inc., Tokyo, Japan Solvay & C ^{ie} , Brussels, Belgium				

- 1. Mitsubishi Gas Chemical Catalog. Polyamide MXD6.
- 2. Mitsubishi Gas Chemical Catalog. Reny, Engineering Plastics.
- 3. Miyamoto, A., et al. *U.S. Patents* 4 433 136 and 4 438 257 (1984); *European Patents* 0 071 000 and 0 084 661 (1986).
- 4. Miyamoto, A., et al. U.S. Patents 3 962 524 and 3 968 071 (1976).
- 5. Ota, T., M. Yamashita, O. Yoshizaki, and E. Nagai. J. Polymer Sci., Part A-2, 4 (1966): 959.
- 6. Mitsubishi Gas Chemical Co. Private communications.
- 7. Tsukamoto, A., H. Nagai, K. Eto, and N. Fujimoto. Kobunshi Kagaku 30 (1973): 339.

Perfluorinated ionomers

RICHARD E. FERNANDEZ

TRADE NAMES Nafion[®], Flemion[®], Aciplex[®]

CLASS Chemical copolymers

PREPARATIVE TECHNIQUES 1. Free radical polymerization in fluorocarbon solvents. 2. Aqueous emulsion polymerization.

TYPICAL COMONOMERS

Nafion Carboxylate

Nafion, Flemion
$$CF_2 = CF - O - CF_2 - CF - O - CF_2 CF_2 SO_2 F$$
 CF_3

Aciplex $CF_2 = CF - O - CF_2 - CF - O - CF_2 CF_2 SO_2 F$
 CF_3

Nafion, Aciplex $CF_2 = CF - O - CF_2 - CF - O - CF_2 CF_2 SO_2 F$
 CF_3

Flemion $CF_2 = CF - O - CF_2 - CF - O - CF_2 CF_2 CO_2 CH_3$

STRUCTURES

Nafion Sulfonate Resin $-(CF_2 CF_2)_n - CFO - CF_2 - CFO - CF_2 CF_2 SO_2 F$
 CF_2
 CF_3

Nafion Carboxylate Resin $-(CF_2 CF_2)_n - CFO - CF_2 - CFO - CF_2 CF_2 CO_2 CH_3$
 CF_2
 CF_3

STRUCTURES AFTER HYDROLYSIS

Nafion Sulfonate $-(CF_2 CF_2)_n - CFO - CF_2 - CFO - CF_2 CF_2 SO_3 H$
 CF_2
 CF_3

(For commercial materials *n* varies from about 5–11.)

MAJOR APPLICATIONS Nafion is the DuPont trademark for its family of perfluorinated ionomers, that is, resins and membranes. Asahi Chemical Industry Company produces Aciplex and Asahi Glass Company, Ltd., Japan, produces Flemion; both are competitive products to Nafion in form and function. These perfluorinated ionomers are used in a variety of applications, the largest of which are as an ion exchange resin and in membrane separators in the commercial electrolysis of brine to produce caustic and chlorine. Nafion membranes are also being used in the development of fuel cells and as heterogeneous super acid catalysts in supported, cubed, or powdered form.

Perfluorinated ionomers

PROPERTIES OF SPECIAL INTEREST The equivalent weight (EW) is a key indicator of the polymer and is defined as the grams of polymer per mole of exchange sites, that is, $-SO_3H$ or CO_2H groups. In other words, EW is the weight in grams of the polymer in acid form that will neutralize one equivalent of base. EW can also be described as the average molecular weight of a repeat unit; for example, one vinyl ether (446) and six TFE units (600) give an EW of 1,046, a typical value for Nafion Sulfonate Resin.

REPEAT UNIT

$$\begin{array}{c} -(\mathrm{CF_2CF_2})_x - (\mathrm{CF_2CF})_y \\ -(\mathrm{CF_2-CFO} - \mathrm{CF_2CF_2X} \\ -(\mathrm{CF_3}) \end{array}$$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Average molecular weight (of repeat unit)	_	Defines equivalent weight	_	_
Head-to-head contents	%	_	Unknown	_
Degree of branching	%	_	0	_
Typical molecular weight range of polymer	g mol ⁻¹	-	$1-10 \ (\times 10^5)$	(1)
Typical polydispersity index (M_w/M_n)	_	-	Unknown	_
Morphology	Structure of hydrolyzed membranes is generally believed to be of a reverse micelle type, 3050Å in size, containing the aqueous ions, acid, and/or salt groups embedded in a continuous fluorocarbon phase.			
IR	_	_	_	(7-8)
UV	Transparent	down to 200 nm		_
NMR	_	_	_	(9-13)
Solvents	For hydrolyzed sulfonic polymer, aqueous or alcoholic solutions can be made by dissolving the acid form of the polymer at 150–300°C.			(14)
	For hydrolyzed carboxylic polymer, the lithium ion form is preferred and degradation can occur at 250–300°C.			
Swelling	As a function	n of the solvent, counter ion, EW, ar	nd temperature	(16-17)
Solubility parameter As a measure of the intermolecular forces present				(18)
Solvent effects on molecular motion – (19				

Perfluorinated ionomers

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion	Jg^{-1}	Depends on EW	5-25	_
Density	$g \text{cm}^{-3}$	Unhydrolyzed Hydrolyzed	2 1.4–2.05	(20)
Glass transition temperature	K	Sulfonate, unhydrolyzed -SO ₃ H form -SO ₃ Li form -SO ₃ Na form -SO ₃ K form -SO ₃ Cs form	~273 376 489 508 498 483	- (21) (21) (21) (21) (21)
Melting point	K	For unhydrolyzed 1050, depends on EW	523 (typically)	_
Other thermal transitions	-	_	_	(22)
Mechanical properties	-	Sulfonate membranes Carboxylate membranes Both types	_ _ _	(23–25) (26) (27)
Dielectric properties	_	_	_	(28-29)
Electronic conductivity	_	_	_	(30-32)
Permeability coefficient	membrane	ermeation through 700-800 EW Fle s hydrogen permeation through Nafic	•	(33) (34)
Ion and water transport				(35-48)
Water transport				(49-51)
Proton transport		– For Dow membranes		(52–55) (56)
Melt index	g	10 minutes at 270°C using a 1,200 g weight in unhydrolyzed form	5–15 (typically)	_
Biodegradability, effective m	icroorganisms		None known	
Maximum use temperature	K	Atmospheric cell pressure	353–363 (typically)	_
Decomposition temperature	K	Sulfonate in Na ⁺ form Carboxylate	∼673 ∼573	_
Water absorption	%	Sulfonate in Na ⁺ form (depending on EW); H ⁺ form is greater	15-25	(57)

Perfluorinated ionomers

		44115151414			
ROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
lammability, flame propaga	ation rate		None		
Cost	US $$ kg^{-2}$	Sulfonic resin	2,000		
Availability	Commercia	lly available			
suppliers	Asahi Glass	nical Industry Company Company, Ltd., Japan t de Nemours and Company, Inc.			
 "Preparation of fluorin "Ion exchange method "Membrane, electroche 	ated copolymonand apparatuemical cell, and halogen and	s." d electrolysis." metal hydroxides with cation exchango	U U U	IS 5310765 IS 5281680 IS 4591439 IS 4437951 IS 4030988	940125 860527 840320
		age membranes of improved	U	IS 4026783	770531

EXCELLENT REVIEW ARTICLES

7. "Ion-exchange membrane for brine electrolysis."

- Eisenberg, A., and F. Bailey, eds. "Coulombic Interactions in Macromolecular Systems." ACS Symp. Ser. 302. American Chemical Society, Washington, DC, 1986.
- 2. Eisenberg, A., and M. King. Ion-Containing Polymers. Academic Press, New York, NY, 1977.

US 4666574

870519

- 3. Eisenberg, A., and H. Yeager, eds. "Perfluorinated Ionomer Membranes." ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.
- 4. Heitner-Wirguin, C. J. Membrane Science 120 (1996): 1-33.
- Lloyd, D., ed. "Material Science of Synthetic Membranes." ACS Symp. Ser. 269. American Chemical Society, Washington, DC, 1985.
- 6. Schlick, S., ed. Ionomers. CRC Press, Boca Raton, Fla., 1996.
- Sondheimer, S., N. Bunce, and C. Fyfe. J. Macromol. Sci., Rev. Macromol. Chem. Phys. C26 (1986): 353.
- 8. Tant, M., K. Mauritz, and G. Wilkes, eds. Ionomers. Blackie, London, 1997.

- 1. Heitner-Wirguin, C. J. Membrane Science 120 (1996): 1-33.
- T. Gierke, and W. Hsu. In *Perfluorinated Ionomer Membranes*, edited by A. Eisenberg and H. Yeager. ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.
- Rodmacq, B., J. Coey, and M. Pineri. In *Perfluorinated Ionomer Membranes*, edited by A. Eisenberg and H. Yeager. ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.
- Gierke, T., G. Munn, and F. Wilson. In Perfluorinated Ionomer Membranes, edited by A. Eisenberg and H. Yeager. ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.
- Hashimoto, T., M. Fujimura, and H. Kawai. In *Perfluorinated Ionomer Membranes*, edited by A. Eisenberg and H. Yeager. ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.

- Gierke, T., and W. Hsu. In *Perfluorinated Ionomer Membranes*, edited by A. Eisenberg and H. Yeager. ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.
- 7. Sondheimer, S., N. Bunce, and C. Fyfe. J. Macromol. Sci., Rev. Macromol. Chem. Phys. C26 (1986): 353.
- Falk, M. In Perfluorinated Ionomer Membranes, edited by A. Eisenberg and H. Yeager. ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.
- Duplessix, R., et al. In Adv. Chem. Ser. 187, Chapter 28. American Chemical Society, Washington, DC, 1982.
- 10. Boyle, N., V. McBrierty, and D. Douglass. Macromolecules 16 (1983): 80.
- 11. Boyle, N., V. McBrierty, and A. Eisenberg. Macromolecules 16 (1983): 75.
- 12. Boyle, N., et al. Macromolecules 17 (1984): 1,331.
- 13. Komoroski, R., and K. Mauritz. In *Perfluorinated Ionomer Membranes*, edited by A. Eisenberg and H. Yeager. ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.
- 14. Grot, W., and C. Chadds. European Pat. 0,066,369, (182).
- 15. Martin, C., T. Rhoades, and J. Ferguson. Anal. Chem. 54 (1982): 161.
- 16. Gebel, G., A. Aldebert, and M. Pineri. Polymer 34 (1993): 333.
- 17. Yeo, R. J. Appl. Poly. Sci. 32 (1986): 5,733.
- Yeo, R. In Perfluorinated Ionomer Membranes, edited by A. Eisenberg and H. Yeager. ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.
- 19. Miura, Y., and H. Yoshida. Thermochim. Acta 163 (1990): 161.
- 20. Zook, L. A., and J. Leddy. Anal. Chem. 68 (1996): 3,793.
- 21. Yeo, S. C., and A. Eisenberg. J. Appl. Polym. Sci. 21(4) (1977): 875.
- Moore, R. B., and K. M. Cable. *Polym. Prepr.* (American Chemical Society, Division of Polymer Chemistry) 38(1) (1997): 272.
- Kyu, T., and A. Eisenberg. In *Perfluorinated Ionomer Membranes*, edited by A. Eisenberg and H. Yeager. ACS Symp. Ser. 180. American Chemical Society, Washington, DC, 1982.
- 24. Deng, Z., and K. Mauritz. Macromolecules 25 (1992): 2,369.
- 25. Perusich, S., P. Avakian, and M. Keating. Macromolecules 26 (1993): 4,756.
- 26. Nakano, Y., and W. MacKnight. Macromolecules 17 (1984): 1,585.
- 27. Kirsh, Y., S. Smirov, Y. Popkov, and S. Timashev. Russian Chemical Reviews 59 (1990): 560.
- 28. Su, S., and K. Mauritz. Polym. Mater. Sci. Eng. 70 (1993): 388.
- 29. Su, S., and K. Mauritz. Macromolecules 27(8) (1994): 2,079.
- 30. Narebski, A., and S. Koter. Electrochim. Acta 32 (1987): 449.
- 31. Koter, S., and A. Narebski. Electrochim. Acta 32 (1987): 455.
- 32. Halim, J., et al. Electrochim. Acta 39 (1994): 1,303.
- 33. Inaba, M., et al. Electrochim. Acta 38(13) (1993): 1,727-1,731.
- 34. Broka, K., and P. Ekdunge. J. Appl. Electrochem. 27 (1997): 117.
- 35. Yeager, H., Z. Twardowski, and L. Clarke. J. Electrochem. Soc. 129 (1982): 324.
- 36. Twardowski, Z., H. Yeager, and B. O'Dell. J. Electrochem. Soc. 129 (1982): 328.
- 37. Steck, A., and H. Yeager. J. Electrochem. Soc. 130 (1983): 1,297.
- 38. Hsu, W., and T. Gierke. J. Membrane Sci. 13 (1983): 307.
- 39. Herrera, A., and H. Yeager. J. Electrochem. Soc. 134 (1987): 2,446.
- 40. Kujawski, W., and A. Narebska. J. Membrane Sci. 56 (1991): 99.
- 41. Narebski, A., and S. Koter. J. Membrane Sci. 30 (1987): 141.
- 42. Narebski, A., W. Kujawski, and S. Koter. J. Membrane Sci. 30 (1987): 125.
- 43. Narebski, A., S. Koter, and W. Kujawski. J. Membrane Sci. 25 (1985): 153.
- 44. Pourcelly, G., A. Lindheimer, and C. Gavach. J. Electroanal. Chem. 305 (1991): 97.
- 45. Verbrugge, M., and R. Hill. J. Electrochem. Soc. 137 (1990): 886.
- 46. Verbrugge, M., and R. Hill. J. Electrochem. Soc. 137 (1990): 893.
- 47. Verbrugge, M., and R. Hill. J. Electrochem. Soc. 137 (1990): 1,131.
- 48. Verbrugge, M., and R. Hill. Electrochim. Acta 37 (1992): 221.
- 49. Fuller, T., and J. Newman. J. Electrochem. Soc. 139 (1992): 1,332.
- 50. Zawodzinski, T. Jr., et al. *J. Electrochem. Soc.* 140 (1993): 1,041.
- 51. Zawodzinski, T. Jr., S. Gottesfeld, S. Shoichet, and T. McCarthy. *J. Appl. Electrochem.* 23 (1993): 86.
- 52. Chen, Y., and T. Chou. *Electrochim. Acta* 38 (1992): 2,171.

Perfluorinated ionomers

- 53. Cahan, B., and J. Wainright. J. Electrochem. Soc. 140 (1993): L185.
- 54. Cappadonia, M., J. Erning, and U. Stimming. J. Electroanal. Chem. 376 (1994): 189.
- 55. Kreur, K., T. Dippel, W. Meyer, and J. Maier. Mater. Res. Soc. Symp. Proc. 293 (1993): 273.
- 56. Tsou, Y., M. Kimble, and R. White. J. Electrochem. Soc. 139 (1992): 1,913.
- 57. Pushpa, K., D. Nandan, and R. Iyer. J. Chem. Soc. Faraday Trans. 1, 84(6) (1988): 2,047-2,056.

Phenolic resins

MILIND SOHONI

ALTERNATIVE NAMES Novolacs, resoles

TRADE NAME Bakelite (Georgia Pacific Resins, Inc.)

CLASS Thermoset polymers; chemical copolymers

TYPICAL COMONOMERS Phenols, substituted phenols, formaldehyde

POLYMERIZATIONS Condensation

MAJOR APPLICATIONS Construction materials, electronics, aerospace, molded parts, insulating varnishes, laminated sheets, industrial coatings, wood bonding, fiber bonding, and plywood adhesives.

PROPERTIES OF SPECIAL INTEREST Toughness, temperature resistance, low void content, chemical resistance, and corrosion inhibition.

Substituted phenols used for phenolic resins⁽¹⁾

Substituted phenol	Resin application
Cresol (o-, m-, p-)	Coatings, epoxy hardners
<i>p-t-</i> Butylphenol	Coatings, adhesives
<i>p</i> -Octylphenol	Carbonless paper, coatings
p-Nonylphenol	Carbonless paper, coatings
<i>p</i> -Phenylphenol	Carbonless paper
Bisphenol A	Low color molding compounds, coatings
Resorcinol	Adhesives
Cashew nutshell liquid	Friction particles

Forms of formaldehyde used in phenolic resin synthesis⁽¹⁾

		Resin preparation		
Туре	Chemical formula	Advantages	Disadvantages	
Gaseous formaldehyde Formalin	CH ₂ O	_	Unstable	
36%	$HO(CH_2O)_nH$, $n\approx 2$	Easy handling, moderate reactivity, stable at RT	High water content	
50%	$HO(CH_2O)_nH$, $n \approx 3$	Increased capacity	Elevated temp. storage, formic acid formation	
Paraformaldehyde	$HO(CH_2O)_nH,$ $n \approx 20-100$	Increased capacity, water free	Dangerously high reactivity, solids handling	
Trioxane	$(CH_2O)_3$	Water-free	Catalyst requirements, cost	
Hexamethylenetetramine	$(CH_2)_6N_4$	Autocatalytic	Amine incorporation	

Phenolic resins

Relative rate constants for methylolation of phenol

Rate constant	Ref. (2)	Ref. (3)	Ref. (4)
$\stackrel{\text{OH}}{\longrightarrow} \longrightarrow \stackrel{\text{OH}}{\longrightarrow}^{\text{CH}_2\text{OH}}$	1.00	1.00	1.00
$\overset{\text{OH}}{\bigcirc} \longrightarrow \overset{\text{OH}}{\bigcirc}$	1.18	1.09	1.46
$ \overset{\text{OH}}{\longrightarrow} \overset{\text{OH}}{\longrightarrow} \overset{\text{OH}}{\longrightarrow} \overset{\text{CH}_2\text{OH}}{\longrightarrow} $	1.66	1.98	1.75
$\overset{\text{OH}}{\longrightarrow} \overset{\text{OH}}{\longleftarrow} \overset{\text{OH}}{\longrightarrow} \overset{\text{CH}_2\text{OH}}{\longrightarrow} \overset{\text{CH}_2OH$	1.39	1.80	3.00
$ \begin{array}{cccc} OH & OH & CH_2OH \\ \hline CH_2OH & CH_2OH \end{array} $	0.71	0.79	0.85
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.73	1.67	2.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.94	3.33	4.36

Methylene group distribution, % in resoles⁽¹⁾

	Catalyst			
Methylene group	NaOH	Hexamethylenetetramine (6 pph)		
2-CH ₂ OH	30	24		
2-CH ₂ OCH ₂ OH	24	1		
2-CH ₂ OR	2	4		
4-CH ₂ OH	12	9		
4-CH ₂ OCH ₂ OH	16	0		
4-CH ₂ OR	2	4		
2, 2'-CH ₂	0	0		
2,4'-CH ₂	7	12		
4,4'-CH ₂	7	10		
2-CH ₂ N	0	27		
$4-CH_2N$	0	7		
Benzoxazine	0	2		

Proton NMR chemical shifts of methylene groups in phenolic $\operatorname{resins}^{(5)}$

Methylene group	Chemical shift* (ppm)
2-CH ₂ OH	5.1
2-CH ₂ OR	5.0
4-CH ₂ OH	4.8
4-CH ₂ OR	4.7
$2, 2'-CH_2$	4.2
2,4'-CH ₂	4.1
4,4'-CH ₂	3.8
2-CH ₂ N	4.0
4-CH ₂ N	3.5

^{*10%} concentration in d_5 -pyridine.

Chemical shifts of methylene carbons in liquid $\operatorname{resoles}^{(1)}$

Structure*		Chemical shift [†] (ppm)
Methylol C in	OH CH ₂ OH	61.3
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(a) 65.4 (b) 88.0
Benzyl C in	OH OH OH	68.9
Methylol C in	CH ₂ OH	63.8
	OH CH ₂ OCH ₂ OH (a) (b) OH	(a) 68.5 (b) 88.0
		71.5
Methylene C in	CH ₂ OCH ₂ C ₆ H ₄ OH OH OH CH ₂	31.5
Methylene C in	OH CH ₂ OH	35.0
Methylene C in	HO CH ₂ OH	40.4

^{*}Designated carbon is shown underlined or described.

[†]From tetramethylsilane in d_6 -acetone solution.

Phenolic resins

Phenolic resins used in coatings $^{(1)}$

Property	Unsubstituted phe	nol	Substituted phenol		
	Heat-reactive	Non-heat-reactive	Heat-reactive	Non-heat-reactive	
Туре	Phenol	Phenol	Cresol p-t-Butyl phenol Bisphenol A	Cresol p-t-Butyl phenol Bisphenol A	
Formaldehyde ratio	F > P	P > F	F > P	P > F	
Catalyst Stability	Alkaline Low	Acid High	Alkaline Low	Acid High	
Softening point	Low	High	Low	High	

Strength properties of phenolic-carbon-fiber composites⁽¹⁾

Property	Units	Resin (%)			
		Phenolic		Epoxy novolak, 27	
		40	35		
Tensile strength	MPa*	115	63	64	
Flexural strength	MPa^*	183	126	110	
Flexural modulus	GPa [†]	15.8	6.3	6.4	

^{*}To convert MPa to psi, multiply by 145.

Functionality versus number of phenol alcohols $^{(6)}$

Phenol	Functionality of phenol	Number of mono-alcohols	Number of di-alcohols	Number of tri-alcohols	Number of tetra-alcohols	Total number of alcohols
2,4-Dimethylphenol	1	1	_	_	_	1
2,6-Dimethylphenol	1	1	_	_	_	1
p-Cresol	2	1	1	_	_	2
o-Cresol	2	2	1	_	_	3
2,3-Dimethylphenol	2	2	1	_	_	3
2,5-Dimethylphenol	2	2	1	_	_	3
3,4-Dimethylphenol	2	2	1	_	_	3
3,5-Dimethylphenol	3	2	2	1	_	5
Phenol	3	2	2	1	_	5
Resorcinol	3	2	2	1	_	5
m-Cresol	3	3	3	1	_	7
Hydroquinone	4	1	3	1	1	6
Catechol	4	2	3	2	1	8

[†]To convert GPa to psi, multiply by 145,000.

First-order rate constants and comparative rates of reaction for various phenols $^{(7)}$

Phenol	Apparent first-order rate constant	Relative reactivity	
3,5-Xylenol	0.0630	7.75	
m-Cresol	0.0233	2.88	
2,3,5-Trimethylphenol	0.0121	1.49	
Phenol	0.00811	1.00	
3,4-Xylenol	0.00673	0.83	
2,5-Xylenol	0.00570	0.71	
p-Cresol	0.00287	0.35	
Saligenin	0.00272	0.34	
o-Cresol	0.00211	0.26	
2,6-Xylenol	0.00130	0.16	

Properties of phenol-formaldehyde molding compounds⁽⁸⁾

Property	Units	Phenol-formaldehyde, wood flour and cotton floe
Pigmentation and coloring possibilities	_	Limited
Appearance	_	Opaque
Molding qualities	_	Excellent
Type of resin	_	Thermosetting
Molding temperature	°F (°C)	290–380 (143–193)
Molding pressure	psi	2,000-4,000
Mold shrinkage	$in in^{-1}$	0.004-0.009
Specific gravity	_	1.32-1.45
Tensile strength	psi	$6.5 - 9 \times 10^3$
Flexural strength	psi	$8.5 - 12 \times 10^3$
Notched Izod impact strength	ft-lb in ⁻¹	0.24-0.6
Rockwell hardness	_	M 96-M 120
Thermal expansion	$^{\circ}\text{C}^{-1}$	$3.0 - 4.5 \times 10^{-5}$
Deflection temperature under load	$^{\circ}\mathrm{F}$	260-340
Dielectric strength, short time, 0.125 in thickness	$ m V~mil^{-1}$	200-425
Dielectric constant	_	4.0-7.0
Dissipation factor	_	0.03-0.07
Arc resistance	S	Tracks
Cold-water absorption, room temperature		
24 h, 0.125 inch thickness	%	0.3-1.0
7 days	$mg (100 cm^2)^{-1}$	200-750
Boiling water test, 10 min, 100°C	%	0.4-1.0
Burning rate	_	Very low
Effect of sunlight	_	General darkening

Phenolic resins

Properties of phenol-formaldehyde laminates⁽⁸⁾

Properties	Units	Phenol-formaldehyde laminate		
		Paper-base filler	Glass fabric base	
Coloring possibilities	_	Limited	Limited	
Appearance	_	Opaque	Opaque	
Laminating temperature	${}^{\circ}\mathrm{F}$	275-350	275-350	
Laminating pressure	psi	1,000-1,800	1,500-2,000	
Specific gravity	_	1.28-1.4	1.4-1.9	
Tensile strength	psi	$8-20 \times 10^{3}$	$9-50 \times 10^{3}$	
Flexural strength	psi	$10.5-30 \times 10^3$	$16-80 \times 10^3$	
Notched Izod impact strength	tt-lb in ⁻¹	0.3-1.0	4-18	
Rockwell hardness	_	M 70-M 120	M 105-M 110	
Water absorption, 24 h, room temperature, 0.125 inch thickness	%	0.2–4.5	0.3–1.5	
Effect of sunlight	_	General darkening and lower surface resistance	General darkening and lower surface resistance	
Machining qualities	_	Fair to excellent	Fair to good	
Thermal expansion	$^{\circ}\text{C}^{-1}$	$1.4 - 3.0 \times 10^{-5}$	$1.5 - 2.5 \times 10^{-5}$	
Resistance to heat (continuous)	$^{\circ}\mathrm{F}$	225-250	250-500	
Heat-distortion temperature	$^{\circ}\mathrm{F}$	250-over 320	Over 320	
Burning rate	_	Very low	Nil	
Dielectric strength, short time	$ m V~mil^{-1}$	300-1,000	300-700	
Dielectric constant, at 10 ⁶ cps	_	3.6-6.0	3.7-6.0	
Dissipation factor, at 10 ⁶ cps	_	0.02-0.08	0.005-0.05	
Arc resistance	S	Tracks	Tracks	

REFERENCES

- 1. Kopf, P. W. In *Encyclopedia of Polymer Science and Engineering*, Vol. 11. John Wiley and Sons, New York, 1988, p. 45.
- 2. Freeman, J. H., and C. Lewis. J. Am. Chem. Soc. 76 (1954): 2,080.
- 3. Zsavitsas, A., and A. Beaulieu. Am. Chem. Soc. Div. Org. Coat. Plast. Chem. Pap. 27 (1967): 100.
- 4. Eapen, K., and L. Yeddanapalli. Makromol. Chem. 4 (1968): 119.
- Kopf, P. W. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 18, edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1996, p. 603.
- 6. Martin, R. W. The Chemistry of Phenolic Resins. John Wiley and Sons, New York, 1956, p. 12.
- 7. Martin, R. W. The Chemistry of Phenolic Resins. John Wiley and Sons, New York, 1956, p. 262.
- 8. Widmer, G. In *Encyclopedia of Polymer Science and Technology*, Vol. 2, edited by H. F. Mark. John Wiley and Sons, New York, 1965, p. 54.

The author wishes to acknowledge McWhorter Technologies for its generous support in compiling these data.

Polyacetylene

SHUHONG WANG AND PING XU

CLASS Conjugated and other unsaturated polymers

MAJOR APPLICATIONS Power cable sheathing, prime conductor, energy load leveling systems, batteries, and signal processing devices.

PROPERTIES OF SPECIAL INTEREST Insulating, semiconducting, conducting, and nonlinear optical properties.

POLYMERIZATION Solvent evacuation (SE) method and intrinsic nonsolvent (INS) method.

Thermal behavior⁽¹⁾

- Cis isomer 1. Cis to trans isomerization at 145°C
 - 2. Molecular rearrangement at 325°C
 - 3. Thermal decomposition at 420°C

Unit cell dimensions

		Cell dime			
Isomer	Lattice	а	b	с	Reference
Cis Trans	Orthorhombic Orthorhombic	7.61 7.32	4.47 4.24	4.39 2.46	(2-5) (6-8)

PROPERTY	UNITS	CONDITIONS	CIS VALUE	TRANS VALUE	REFERENCE
Tensile strength	MPa	SE polyacetylene INS polyacetylene	600 800	900 2,100	(9)
Tensile elongation	%	SE polyacetylene INS polyacetylene	6–8 6–9	_ _	(9)
Tensile modulus	MPa	SE polyacetylene INS polyacetylene	30–40 28	100 40	(9)

Polyacetylene

PROPERTY	UNITS	CONDITIONS	CIS VALUE	TRANS VALUE	REFERENCE
Cis content	%	SE polyacetylene INS polyacetylene	70–90 85–95	_ _	(9)
Density	$\rm g \ cm^{-3}$	SE and INS polyacetylene	1.0-1.15	1.0-1.15	(9)
Magic angle spinning ¹³ C NMR	ppm	Solid-state	127-128	136-137	(10)
Linear absorption coefficient	cm^{-1}	Reflection method: <i>cis</i> at 18,500 cm ⁻¹ ; <i>trans</i> at 15,400 cm ⁻¹	1.4×10^5	1.5×10^5	(11)
Absorption edge	eV	_	1.90	1.35	(12)
Thermal activation energy	eV	_	0.6	0.3	(12)
Dark conductivity	$(W cm)^{-1}$	_	2×10^{-9}	5×10^{-6}	(12)
Electrical conductivity	S cm ⁻¹	Doping species None I_2 AsF_5 IBr $NaC_{10}H_8$ $MoCl_5$ WCl_6 $PtCl_4$ $RhCl_3$ $CuCl_2$ $InCl_3$ $LiAlH_4$	1.9×10^{-9} 360 560 400 25 200 200 134 6×10^{-4} 2×10^{-3} 600	4.4×10^{-5} 160 400 120 80 $ 6$	(13)

- 1. Ito, T., Shirakawa, and S. Ikeda. J. Polym. Sci. Polym. Chem. Ed. 13 (1975): 1,943.
- 2. Baughmann, R. H., S. L. Hsu, G. P. Pez, and A. J. Signorelli. J. Chem. Phys. 68 (1972): 5,405.
- 3. Akasimi, T., et al. J. Polym. Sci. Polym. Phys. Ed. 18 (1980): 745.
- 4. Fincher, C. R., et al. Phys. Rev. Lett. 48 (1982): 100.
- 5. Robin, P., et al. Phys. Rev. Sect. B27 (1983): 3,938.
- Shimamura, K., F. E. Karasz, J. Hirsch, and J. C. W. Chien. Makromol. Chem. Rapid Commun. 2 (1981): 473.
- 7. Bolognesi, A., et al. Makromol. Chem. Rapid Commun. 4 (1983): 403.
- 8. Robin, P., et al. Polymer 24 (1983): 1,558.
- 9. Akagi, K., and H. Shirakawa. In *The Polymer Materials Encyclopedia*, edited by J. C. Salamone. CRC Press, Boca Raton, Fla., 1996.
- 10. Maricq, M. M., et al. J. Am. Chem. Soc. 100 (1978): 7,729.
- 11. Fujimoyo, H., K. Kamiya, M. Tanaka, and J. Tanaka. Synth. Met. 10 (1985): 367.
- 12. Kanicki, J. In *Handbook of Conducting Polymers*, Vol. 1, edited by T. A. Skotheim. Marcel Dekker, New York, 1986.
- Gibson, H. W., and J. M. Pochan. In Encyclopedia of Polymer Science and Engineering, 2d ed., Vol. 1, edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1985.

Polyacrylamide

ROBERT A. ORWOLL AND YONG S. CHONG

ACRONYM; CHEMICAL ABSTRACTS NAME AND NUMBER; TRADE NAME PAAm; 2-propenamide homopolymer [9003-05-08]; Cyanamer (American Cyanamid)

CLASS Vinyl polymers

STRUCTURE
$$[-CH_2-CH-]$$
 CONH₂

MAJOR APPLICATIONS Flocculants in water treatment, paper manufacture, mining, and oil recovery; absorbents; gels for electrophoresis.

PROPERTIES OF SPECIAL INTEREST Amorphous. High affinity for water and completely miscible in water. Low toxicity. Low cost.

POLYMERIZATION CONDITIONS Free-radical polymerizations of acrylamide in aqueous solutions and solid-state polymerization of crystalline acrylamide with ionizing radiation.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-	71.08	_
Tacticity (stereoregularity)	-	Reaction conditions: temp. = 70° C; monomer conc. = 16 wt% in water; initiator = $(NH_4)_2S_2O_8$; chain- transfer agent = isopropanol	Probability meso $P_{\rm m}=0.43$	(1)
Head-to-head contents	_	$\begin{split} & \text{Reaction conditions: temp.} = 25^{\circ}\text{C}; \\ & \text{monomer conc.} = 10\% \text{ in water;} \\ & \text{initiators } (25\text{mg}/100\text{ml}) = K_2S_2O_8, \\ & Na_2S_2O_5 \end{split}$	Head-to-head units = 4.5%	(2)
IR spectrum	_	_	_	(3, 4)
Raman spectrum	_	_	_	(5)
NMR	_	¹³ C spectrum, 100 MHz	_	(1)
Solvents	Water, etl	hylene glycol, formamide, hydrazine		(6)
Nonsolvents	Methanol	, hydrocarbons, and other common organ	nic liquids	(6)
Partial specific volume $(\partial V/\partial m_2)$	$cm^3 g^{-1}$	20°C, water 25°C, water 25°C, water 25°C, water 20°C, water/methanol (3:2 v/v) 0.1 M NaCl (aq.)	0.696 0.716 0.693 ± 0.002 0.674 0.655 0.702	(7) (8) (9) (10) (10) (11)

Polyacrylamide

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Apparent adiabatic compressibility in solution	cm ³ bar ⁻¹ g ⁻¹	25°C, water			-4.2×10^{-6}	(8)
Theta temperature Θ	K	Water (extrapolated value) Water/methanol (3:2 v/v), $0.33 < M_{\rm w} \times 10^{-4} < 81$			235 293	(12) (10)
		Water/methanol ($92 < M_{\rm w} \times 10^{-4}$	< 820		294	(13)
		Water/methanol ($43 < M_{\rm w} \times 10^{-4}$			298	(14)
Interaction parameter	_	Solvent Temp. ($^{\circ}$ C) $M \times 10^{-}$	$^6 (g \text{mol}^{-1})$		
χ		Water 25 Water 60	0.43 0.43		0.44 0.42	(12) (12)
		Water 25	0.107		0.495	(9)
Enthalpy parameter	_	Solvent Temp. ($^{\circ}$ C) $M \times 10^{-}$	6 (g mol ⁻¹)		
Хн		Water 25 Water 60 Water 25	0.43 0.43 0.107		$0.22 \\ 0.20 \\ 0.08 \pm 0.008$	(12) (12) (9)
Second virial coefficient A_2		Solvent	Temp. (°C)	$M \times 10^{-6}$ (g mol ⁻¹)		
		Water	20	0.25	3.1	(7)
		Water	20	2.4	2.9	(7)
		Water	20	11	2.2	(7)
		Water	25	0.43	4.4	(14)
		Water	25	4.7	0.64	(15)
		Water	25	0.5-6	4 ± 2	(16)
		Water	25	0.11	1.4	(9)
		Water	25	10	1.7	(14)
		0.1 M NaCl (aq.)	_	6	2.5 ± 0.4	(11)
		1 M NaCl (aq.)	_	5.5 5.5	2.7 2.9	(11)
		4 M NaCl (aq.) 0.1 M LiCl	_	6.8	1.9	(11) (11)
		Water/methanol (3:2 v/v)	20	0.77	0.008	(11)
		Ethylene glycol	25	0.5-5	0.27 ± 0.08	(16)
		Formamide	_	6.8	1.3	(11)

Mark-Houwink parameters: K and a

Solvent	Temp. (°C)	$M \times 10^{-6} \ ({\rm g mol}^{-1})$	$ extit{K} imes extsf{10}^2$ (with $[\eta]$ in ml $ extsf{g}^{-1}$)	а	Reference
Water	20	0.25-3	3.09	0.67	(7)
Water	25	0.5-6	0.49	0.8	(16)
Water	25	0.038-9	1.00	0.755	(6)
Water	25	0.01-0.36	6.8	0.66 ± 0.05	(17)

Solvent	Temp. (°C)	$ extbf{\textit{M}} imes 10^{-6} \ (ext{g mol}^{-1})$	$ extit{K} imes 10^2$ (with $[\eta]$ in ml $ extit{g}^{-1}$)	а	Reference
Water	25	0.003-0.8	1.83	0.72	(18)
Water	25	0.43-10	0.742	0.775	(14)
Water	30	0.02-0.5	0.631	0.80	(19)
Water	30	0.04 - 1.3	0.65	0.82	(20)
0.1 M NaCl (aq.)	_	0.2-8	0.933	0.75	(11)
0.2 M NaCl (aq.)	20	0.25-3	3.02	0.68	(7)
0.5 M NaCl (aq.)	25	0.5-6	0.719	0.77	(16)
1.0 M NaCl (aq.)	20	0.25-3	2.88	0.69	(7)
10% NaCl (aq.)	25	0.43-10	0.81	0.78	(14)
$1.0 \mathrm{M} \mathrm{NaNO_3}$ (aq.)	30	0.5-3	3.73	0.66	(6)
Water/methanol (3:2 v/v)	20	0.006-0.8	0.127	0.50	(10)
Water/methanol $(59:41 \text{ v/v})$	25	0.43-10	15	0.50	(14)
Ethylene glycol	25	0.5-5	13.6	0.54	(16)
Formamide	25	0.5-6	1.27	0.74	(21)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Huggins constant k'	_	0.5 M NaBr (aq.) 20°C	0.46 See table below	(22) (7)

	Huggins const	ant k'	
$M_{ m w} imes 10^{-6} \ ({ m g mol^{-1}})$	Water	0.2 M NaCl (aq.)	1.0 M NaCl (aq.)
0.26	0.41	0.38	0.38
0.62	0.40	0.41	0.37
1.0	0.28	0.40	0.36
2.4	0.17	0.34	0.37
2.8	0.39	0.38	0.39
11	0.37	0.40	0.35

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Sedimentation constant S_0	$s^{-1} (\times 10^{13})$	Solvent	Temp. (°C)	$M \times 10^{-6}$ (g mol ⁻¹)		(16)
		0.5 M NaCl (aq.)	20	0.8-6	$0.09~M_{\rm w}^{0.32}$	
Characteristic ratio $\langle r^2 \rangle / n l^2$		Solvent	Temp. (°C)	$M \times 10^{-6}$ (g mol ⁻¹)		
$(l=0.154\mathrm{nm})$		Water	25	0.5-6	$3.6~M_{\rm w}^{0.18}$	(16)
		0.1 M NaCl (aq.)	_	0.8-8	$49~M_{\rm W}^{0.28}$	(11)
		Water/methanol (3:2 v/v), ⊖ solvent	20	0.08-0.8	9.3	(18)

Polyacrylamide

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Characteristic ratio $\langle r^2 \rangle / n l^2$		Solvent	Temp. (°C)	$M \times 10^{-6}$ (g mol ⁻¹)		
(l = 0.154 nm)		Water/methanol (59:41 v/v), ⊖ solvent	25	0.43-10	11.3	(14)
		Salt/water/methanol (?:59:41 v/v), ⊖ solvent	21	0.9-8	14	(13)
		Ethylene glycol	25	0.5-6	$21 \ M_{ m w}^{0.02}$	(16)
Glass transition temperature T_g	K	-			461	(22)
Softening temperature	K	_			481	(23)

Refractive index increment dn/dc

Solvent	Temp (°C)	dn/dc ($cm^3 g^{-1}$)		Reference
		$\lambda =$ 436 nm	$\lambda=$ 546 nm	λ not reported	
Water	20	0.185	0.182	_	(7)
Water	25	_	0.187	_	(16)
Water	25	_	0.189	_	(14)
Water	20-60	_	0.149	_	(12)
Water	_	_	_	0.165	(11)
0.1 M LiCl (aq.)	_	_	_	0.164	(11)
0.1 M NaCl (aq.)	_	_	_	0.165	(11)
0.2 M NaCl (aq.)	20	0.186	0.182	_	(7)
1 M NaCl (aq.)	_	_	_	0.159	(11)
$1 \text{ M Mg}(ClO_4)_2$ (aq.)	25	_	0.174	_	(10)
Ethylene glycol	25	_	0.095-0.105	_	(16)
Formamide	_	_	_	0.095	(11)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Critical surface tension γ_c	$\rm mNm^{-1}$	20°C, contact angle method	52.3	(24)
Water absorption (residual wt% water)	%	Dried under vacuum at 20°C Dried overnight under vacuum at 60–80°C Dried overnight under vacuum at 60–80°C, then 4 h at 120°C Dried under vacuum for 24 h at 25°C Dried under vacuum for 24 h at 25°C, then 9 h at 50°C Dried under vacuum for 24 h at 25°C, then 9 h at 50°C, then 7 h at 110°C	15 7-11 ~0 3 0.9 ~0	(25) (7) (7) (16) (16) (16)

- 1. Lancaster, J. E., and M. N. O'Connor. J. Polym. Sci., Polym. Lett. Ed., 20 (1982): 547.
- 2. Sawant, S., and H. Morawetz. Macromolecules 17 (1984): 2,427.
- 3. Kulicke, W.-M., and H. W. Siesler. J. Polym. Sci., Polym Phys. Ed., 20 (1982): 553.
- Pouchert, C. J. The Aldrich Library of Infrared Spectra, 3d ed. Aldrich Chemical Company, Milwaukee, 1981, p. 1,592, spectrum A.
- 5. Gupta, M. K., and R. Bansil. J. Polym. Sci., Polym. Phys. Ed., 19 (1981): 353.
- 6. Thomas, W. M., and D. W. Wang. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1985, vol. 1, pp. 169–211.
- 7. Munk, P., et al. Macromolecules 13 (1980): 871.
- 8. Roy-Chowdhury, P., and K. M. Kale. J. Appl. Polym. Sci. 14 (1970): 2,937.
- 9. Day, J. C., and I. D. Robb. Polymer 22 (1981): 1,530.
- 10. Bohdanecky, M., V. Petrus, and B. Sedlácek. Makromol. Chem. 184 (1983): 2,061.
- 11. François, J., et al. Polymer 20 (1979): 969.
- 12. Silberberg, A., J. Eliassaf, and A. Katchalsky. J. Polym. Sci. 23 (1957): 259.
- 13. Schwartz, T., J. Sabbadin, and J. François. Polymer 22 (1981): 609.
- Izyumnikov, A. L. et al. Vysokomol. Soedin, Ser. A 30 (1988): 1,030; Polym. Sci. U.S.S.R. 30 (1988): 1,062.
- 15. Klärner, P. E. O., and H. A. Ende. In *Polymer Handbook*, 2d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1975, pp. IV/61–113.
- 16. Klein, J., and K.-D. Conrad. Makromol. Chem. 181 (1980): 227.
- 17. Collinson, E., F. S. Dainton, and G. S. McNaughton. Trans. Faraday Soc. 53 (1957): 489.
- 18. Calculated from data in reference (10).
- 19. Scholtan, W. Makromol. Chem. 14 (1954): 169.
- Du, Y., Y. Xue, and H. L. Frisch. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, pp. 241–248.
- 21. Klein, J., G. Hannemann, and W.-M. Kulicke. Colloid. Polym. Sci. 258 (1980): 719.
- 22. Klein, J., and R. Heitzmann. Makromol. Chem. 179 (1978): 1895.
- 23. Miller, M. L. Can. J. Chem. 36 (1958): 309.
- 24. Kitazaki, Y., and T. Hata. *J. Adhesion Soc. Japan*, 8 (1971): 131; as recorded in Wu, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI/416.
- 25. Sawant, S., and H. Morawetz. J. Polym. Sci., Polym. Lett. Ed., 20 (1982): 385.

Poly(acrylic acid)

ROBERT A. ORWOLL AND YONG S. CHONG

ACRONYMS; CHEMICAL ABSTRACTS NUMBER; TRADE NAMES PAA, PAAc; [9003-01-4]; Acrysol, Acumer, Acusol, Duolite (Rohm & Haas); Alcogum, Alcosperse, Aquatreat (Alco); Carbopo, Good-ritel (B F Goodrich); Sokalan (BASF)

CLASS Vinyl polymers

STRUCTURE
$$[-CH_2-CH-]$$
 COOH

MAJOR APPLICATIONS Thickening and suspension agents for petroleum recovery, pigment dispersements in paint, ion exchange resins (with cross-linking), flocculating agents for particles suspended in water, adhesives. Many applications involve copolymers of acrylic acid.

PROPERTIES OF SPECIAL INTEREST Amorphous polymers.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	72.06	_
IR spectrum	_	_	_	(1)
Density	$\rm gcm^{-3}$	_	1.22	(2)
Solvents	Water, dioxane	e, ethanol, dimethylformamide, metha	inol	(3)
Nonsolvents	Acetone, dieth	yl ether, benzene, aliphatic hydrocarb	oons	(3)
Partial specific volume	$\mathrm{cm}^3\mathrm{g}^{-1}$	Water, 25°C	0.648	(4)
Apparent adiabatic compressibility in solution	$cm^3 bar^{-1} g^{-1}$	25°C, water 25°C, PAAc 25% neutralized with NaOH, water 25°C, PAAc 100% neutralized with NaOH, water 25°C, PAAc 25% neutralized with NaOH, 1.0 M NaCl (aq.)	1.2×10^{-6} -18×10^{-6} -54×10^{-6} -53×10^{-6}	(4)
Theta temperature Θ	K	Dioxane Water, 1.245 M in NaCl, and enough NaOH to neutralize 1/3 of acid groups 0.2 M HCl (aq.)	$303 \pm 1 \text{ (LCST)}$ $305 \pm 3 \text{ (UCST)}$ 287	(5) (5)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
$\label{eq:linear_parameter} \hline \text{Interaction parameter } \chi$	_	0.2 M HCl (aq.); $M_{\rm v}=0.43\times 10^6$ g mol $^{-1}$ 20°C 68°C	0.498 0.490	(6)
Enthalpy parameter $\chi_{\rm H}$	-	Water; $M=0.43\times 10^6~{ m g~mol^{-1}}$ $20^{\circ}{ m C}$ $68^{\circ}{ m C}$	0.0631 0.0542	(6)
Second virial coefficient A_2	$mol cm^3 g^{-2}$	0.2 M HCl (aq.); 20–68°C; $M_{\rm v} = 0.43 \times 10^{-6} \ {\rm g \ mol}^{-1}$	49.9(1-287 K/T)	(6)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ (with $[\eta]$) $a = \text{None}$	1,4-Dioxane; 30° C; $M = 0.13$ -0.82 (×10 ⁶) g mol ⁻¹	$K = 8.5 \times 10^{-2}$ $a = 0.50$	(7)
Huggins constant k'	-	1,4-Dioxane, 30°C 0.5 M NaBr (aq.)	0.25-0.30 0.30	(3) (8)
Characteristic ratio $\langle r^2 \rangle / n l^2$ $(l = 0.154 \mathrm{nm})$	_	1,4-Dioxane; 30°C; $M = 0.13$ –0.82 ($\times 10^6$) g mol ⁻¹	9.0 ± 0.5	(7)
Glass transition temperature $T_{\rm g}$	K	_	376 379 ± 2 399	(9) (10) (8)
Refractive index increment <i>dn/dc</i>	$\mathrm{cm}^3\mathrm{g}^{-1}$	1,4-Dioxane, 25°C, $\lambda = 436$ nm 0.2 M HCl (aq.), 20–60°C, $\lambda = 546$ nm	0.089 0.146	(7) (6)
Water absorption (wt% water)	%	30°C, 32% relative humidity 30°C, 54% relative humidity 30°C, 69% relative humidity	4.8 7.7 13.7	(10)

- 1. Pouchert, C. J. *The Aldrich Library of Infrared Spectra*, 3d ed. Aldrich Chemical Company, Milwaukee, 1981, p. 1,580, spectra A and B.
- Welsh, W. J. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, pp. 401–407.
- 3. Nemec, J. W., and W. Bauer, Jr. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1985, vol. 1, pp. 211–234.
- 4. Roy-Chowdhury, P., and K. M. Kale. J. Appl. Polym. Sci. 14 (1970): 2,937.
- 5. Flory, P. J., and J. E. Osterheld. J. Phys. Chem. 58 (1954): 653.
- 6. Silberberg, A., J. Eliassaf, and A. Katchalsky. J. Polym. Sci. 23 (1957): 259.
- 7. Newman, S., et al. J. Polym. Sci. 14 (1954): 451.
- 8. Klein, J., and R. Heitzmann. Makromol. Chem. 179 (1978): 1,895.
- 9. Eisenberg, A., T. Yokoyama, and E. Sambalido. J. Polym. Sci., Part A-1, 7 (1969): 1,717.
- 10. Hughes, L. J. T., and D. B. Fordyce. J. Polym. Sci. 22 (1956): 509.

Poly(acrylonitrile)

ANTHONY L. ANDRADY

TRADE NAME Barex (copolymer)

CLASS Acrylic polymers

 $\begin{array}{ll} \textbf{STRUCTURE} & [-CH_2CHCN-] \end{array}$

MAJOR APPLICATIONS Acrylonitrile copolymers are used extensively in textile fiber manufacture and in nitrile rubber. Copolymers are used in gaskets, grommets, hoses, printing roll surfaces, diaphragms, and in plumbing accessories. They also are used in adhesive and coating applications.

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Preparative techniques	Radical polymerization Bulk polymerization peroxides) at < Continuous slurry Emulsion polyme	ion using conventic 100°C y process	onal initiators (A	AIBN,	(1) (2) (3)
Typical comonomers	Vinylidene chloride styrene	, 4-vinyl pyridine,	styrene, butadie	ene and	(4)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	-		53.06	-
IR	FTIR study of the he	FTIR study of the homopolymer and its thermal degradation			(5-7)
NMR	¹³ C NMR of homop DMSO at 50°C	olymer in 20 wt%			(8) (9, 10)
Solvents	Dioxanone, ethylene carbonate, DMSO, chloroacetonitrile, dimethyl phosphite, dimethyl sulfone, sulfuric acid, nitric acid, DMF			(11-15)	
Nonsolvents	Hydrocarbons, chlorinated hydrocarbons ketones, diethyl ether, acetonitrile		(12, 13)		
Second virial coefficient A_2	$mol cm^3 g^{-2} (\times 10^4)$	Temp. (°C)	$M_{\rm n}$		
		20	98-120 9-69	22.9–21.4 32.2–7.0	(16, 17) (16)
		25	43-298 27-159	21 16–20	(16, 18) (16, 19)
		25-40	35–101	19.1	(16, 20)

Poly(acryl	onitrile)
------------	-----------

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Mark-Houwink	$K = \text{ml g}^{-1}$	Butyrolactone	$K \times 10^3$	а	(21)
parameters: K and a	a = None	20°C	34.3	0.730	
		30°C	57.2	0.67	
		30°C	34.2	0.70	
		30°C	40.0	0.69	
		DMF, 20°C	30.7	0.76	(22)
Unit cell dimensions	Å	Orthorhombic	a = 10.55 $c = 5.0$		(23)
			a = 21.2, c = 5.0		(24)
			a = 18.1, c = 5.0		(25)
Heat of fusion	$kJ mol^{-1}$	_	5.021		(26, 27)
Entropy of fusion	$kJ mol^{-1}$	-	0.0085		(26, 27)
Glass transition	K	Dielectric, 1 Hz	398		(28)
temperature		Calorimetry	370		(29)
Melting transition	K	Calorimetry	593		(30)
temperature		Calorimetry (40°C min ⁻¹ heating rate)	599		(31)
Heat capacity	$kJ K^{-1} mol^{-1}$	100°C	0.0302		(32)
. ,		200°C	0.0493		. ,
		300°C	0.0688		
		370°C	0.0862		
Tensile strength	MPa	Styrene-acrylonitrile copolymers: % Acrylonitrile			(33)
		27	72.47		
		21	63.85		
		14	57.37		
		9.8	54.61		
		5.5	42.27		
Elongation	%	Styrene-acrylonitrile copolymers: % Acrylonitrile			(33)
		27	3.2		
		21	2.5		
		14	2.2		
		9.8	2.1		
		5.5	1.6		

Poly(acrylonitrile)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric constant (film)	_	Frequency (Hz)		(34)
, ,		10^{6}	4.2	, ,
		10^{3}	5.5	
		60	6.5	
Dissipation factor	_	Frequency (Hz)		(34)
•		10^{6}	0.033	, ,
		10^{3}	0.085	
		60	0.113	
Permeability coefficient P	$m^3(STP)m s^{-1} m^{-2}$	Unplasticized film, 25°C		(35)
,	$Pa^{-1} (\times 10^{-9})$	\hat{O}_2	0.00015	,
	,	$\overline{\text{CO}}_2$	0.00060	
		$H_2\tilde{O}$	230	
Pyrolyzability	Thermal degradation copolymers	n and cyclization of homopolymer an	d	(5, 36)
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	293°C	0.26	(37, 38)

- 1. Garcia-Rubio, L. H., A. E. Hamielec, and J. F. MacGregor. *J. Appl. Polym. Sci.* 23(5) (1979): 1,413.
- 2. Mallison, W. C. U.S. Patent 2.847,405 (12 Aug. 1958), to American Cyanamid.
- 3. Brubaker, M. M. U.S. Patent 2.462,354 (22 Feb. 1949), to E.I du Pont de Nemours and Co.
- Peng, F. M. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, 1987, vol. 1, p. 426.
- 5. Coleman, M. M., and R. J. Petcavich. J. Polym. Sci., Polym. Phys. Ed., 16(5) (1978): 821.
- 6. Tadokoro, H., et al. J. Polym. Sci., Part A-1, (1963): 3,029.
- 7. Grassie, N., and J. N. Hay, J. Polym. Sci. 56 (1962): 189.
- 8. Inoue, Y., A. Nishioka, and R. Chujo. J. Polym. Sci., Polym. Phys. Ed., 11 (1973): 2,237.
- 9. Yoshino, J. J. Polym. Sci. B5 (1967): 703.
- 10. Svegliado, G., and G. Talamini. J. Polym. Sci., Part A-1, 5 (1967): 2,875.
- 11. Kurata, M., and W. H. Stockmeyer. Adv. Polymer Sci. 3 (1963): 196.
- 12. Moyer, W. W., and D. A. Grev. J. Polym. Sci. B1 (1963): 29.
- 13. Ham, G. E. Ind. Eng. Chem. 46 (1954): 390.
- 14. Thinius, K. Analytische Chemie der Plaste. Springer Verlag, Berlin, 1963.
- 15. Nitsche, R., and K. A. Wolf. Struktur und Physikalisches Verhalten der Kunststoffe. Springer Verlag, Berlin, 1961, vol. 1.
- Brandrup, J., and E. H. Immegut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.
- 17. Kamide, K. Chem. High Polym. (Tokyo) 24 (1967): 679.
- 18. Onyon, P. E. J. Polym. Sci. 37 (1959): 315.
- 19. Onyon, P. E. J. Polym. Sci. 22 (1956): 13.
- 20. Krigbaum, W. R., and A. M. Kotliar. J. Polym. Sci. 32 (1958): 323.
- 21. Inagaki, H., K. Hayashi, and T. Matsuo. Makromol. Chem. 84 (1965): 80.
- 22. Fujisaki, Y., and H. Kobayashi. Kobunshi Kagaku (Chem. High Polym., Tokyo) 19 (1962): 73, 81.
- 23. Kobayashi, H. J. Polym. Sci. B1 (1963): 209.
- 24. Klement, J. J., and P. H. Geil. J. Polym. Sci., Part A-2, 6 (1968): 1,381.
- 25. Menzcik, Z. Vysokomol. Soedin 2 (1960): 1,635.

- 26. Krigbaum, W. R., and N. Takita. J. Polym. Sci. 43 (1960): 467.
- 27. Natta, G., and G. Moraglio. Rubber Plastic Age 44 (1963): 42.
- 28. Gupta, A. K., and N. Vhand. J. Polym. Sci., Polym. Phys. Ed., 18(5) (1980): 1,125.
- 29. Park, H. C., and E. M. Mount. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1987, vol. 7, p. 89.
- 30. Hinrichsen, G. Angew Makromol. Chem. 20 (1974): 121.
- 31. Dunn, P., and B. C. Ennins. J. Appl. Polym. Sci. 14 (1970): 1,759.
- 32. Gaur, U., S. F. Lau, and B. B. Wunderlich. J. Phys. Chem. Ref. Data 11 (1982): 1,065.
- 33. Hanson, A. W., and R. I. Zimmerman. Ind. Eng. Chem. 49(11) (1957): 1,803.
- 34. Harris, M. Handbook of Textile Fibers. Harris Research Laboratories, Washington, D.C., 1954.
- 35. Salame, M. J. Polym. Sci. Symp. 41 (1973): 1.
- 36. Grassie, N. Dev. Polym. Deg. 1 (1977): 137.
- 37. Thompson, E. V. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1985, vol. 16, pp. 711–737.
- 38. Harper, C. A., ed. *Handbook of Plastics, Elastomers, and Composites*. McGraw-Hill, New York, 1992.

Poly(L-alanine)

DOUGLAS G. GOLD AND WILMER G. MILLER

CLASS Polypeptides and proteins

STRUCTURE
$$\begin{bmatrix} & & & & & & \\ & & & & & & \\ & & NH-CH-C & & & \\ & & & CH_3 & & \end{bmatrix}_n$$

MAJOR APPLICATIONS Serves as a model for various proteins.

PROPERTIES OF SPECIAL INTEREST Two crystalline forms of poly(L-alanine), the α -helix and β -sheet, have been observed. (1)

SYNTHESIS Similar to the synthesis of $poly(\gamma-benzyl-L-glutamate)$ (see the entry on $Poly(\gamma-benzyl-L-glutamate)$ in this handbook); involves the conversion of the amino acid to the N-carboxyanhydride (NCA) monomer by reaction with phosgene gas followed by polymerization of the NCA with an appropriate initiator (e.g., n-butyl amine). Typical comonomers include other amino acid NCAs.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	_	71	_
Typical molecular weight range	$g \text{mol}^{-1}$	_	<50,000	_
IR (characteristic absorption frequencies)	cm^{-1}	α -helix β -sheet	1,657; 2,930; 2,985; 3,293 1,634; 2,930; 2,985; 3,283	(2)
NMR	_	_	_	(3)
Solvents	-	25°C	Dichloroacetic acid (DCA), tri-fluoroacetic acid (TFA), phosphoric acid, mixed solvents containing TFA	(4, 5)
Nonsolvents	_	_	Water	_
Second virial coefficient	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	DCA, 25°C, 1.6×10^4	5×10^{-3}	(6)
Characteristic ratio	_	DCA, 25°C	5.3-5.6	(6)
Persistence length	Å	DCA, 25°C	44	(7)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density (crystalline)	g cm ⁻³	α -helix β -sheet	1.25 1.34–1.37	(8)
Optical activity $[m']_D$	_	99% CHCl ₃ , 1% DCA TFA	$[m']_{\rm D} + 21$ $[m']_{\rm D} - 90$	(8)
Surface tension	$\rm mN~m^{-1}$	20°C	45.2	(8)
Helix pitch	Å	α -helix	5.41	(1)
Axial translation per residue	Å	α -helix	1.496	(1)
Cost	US $\$ g^{-1}$	25 mg – 1 g	110	_
Availability	g	_	0.025-1	_
Suppliers	Sigma Chemical Co., P.O. Box 14508, St. Louis, Missouri 63178, USA. Aldrich Chemical Co., Inc., 1001 West Saint Paul Avenue, Milwaukee, Wisconsin 53233 USA.			

- 1. Fraser, R. D. B., and T. P. MacRae. *Conformation in Fibrous Proteins and Related Synthetic Polypeptides*. Academic Press, New York, 1973.
- 2. Elliott, A. Proc. Roy. Soc. A 226 (1954): 408.
- 3. Ferretti, J. A., and L. Paolillo. Biopolymers 7 (1969): 155.
- 4. Sober, H. A., ed. *Handbook of Biochemistry: Selected Data for Molecular Biology*, 2d ed. CRC Company, Cleveland, 1970.
- 5. Bamford, C. H., A. Elliott, and W. E. Hanby. Synthetic Polypeptides: Preparation, Structure, and Properties. Academic Press, New York, 1956.
- 6. Nakajima, A., and M. Murakami. Biopolymers 11 (1972): 1,295.
- 7. Brumberger, H., and L. C. Anderson. Biopolymers 11 (1972): 679.
- 8. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.

Poly(amide imide)

LOON-SENG TAN

ACRONYM, TRADE NAMES PAI, Torlon®, Amoco-AI-10

CLASS Polyimides; engineering thermoplastics

STRUCTURE

(Ar = aromatic bridging group)

SYNTHESIS Poly(amide imides) can be prepared via the following methods: (a) two-step polycondensation of trimellitic anhydride and aromatic amines; (1, 2) (b) low temperature polymerization of trimellitic anhydride-based diacid chlorides and aromatic amines; (3) (c) polycondensation of trimellitic anhydride or dicarboxylic acids derived from trimellitic anhydride with aromatic diisocyanates; (4) and (d) direct polycondensation of dicarboxylic acids derived from trimellitic anhydride and aromatic amines via Yamazaki-Higashi reaction. (5)

MAJOR APPLICATIONS A wide variety of injection-molded automotive parts such as housings, connectors, switches, relays, thrust washers, spline liners, valve seats, bushings, piston rings and seals, wear rings, ball bearings, rollers, thermal insulators, etc.; laminated parts such as printed circuit boards, honeycomb core, radomes, etc.

PROPERTIES OF SPECIAL INTEREST Commercial poly(amide imide) (Torlon) is melt-processable and injection-moldable either in neat form or with reinforcing fillers such as glass fiber, graphite fiber, and combinations of these with polyfluorocarbon and with TiO₂. Parts fabricated from Torlon have excellent frictional properties, and can be used without lubrication in many applications.

Commercial poly(amide imide) products*

Product name	Product description
Torlon 4000T	Unfilled poly(amide imide) powder for adhesive applications
Torlon high strength grades	High-strength grades perform more like metals at elevated temperature and are recommended for repetitively-used precision mechanical and load-bearing parts
	4203L contains 3% TiO ₂ and 0.5% fluorocarbon
	5030 contains 30% glass fiber and 1% fluorocarbon
	7130 contains 30% graphite fiber and 1% fluorocarbon
	7330 is a proprietary blend of carbon fiber and fluorocarbon
Torlon wear resistant grades	4347 contains 12% graphite powder and 8% fluorocarbon
	4301 contains 12% graphite powder and 3% fluorocarbon
	4275 contains 20% graphite powder and 3% fluorocarbon
AMOCO-AI-10	Poly(amide imide) powder composed of about 50% of amic acid form

^{*}Supplier: Amoco Polymers, Inc., 4500 McGinnis Ferry Road, Alpharetta, Georgia 30202-3914.

Typical mechanical properties of unfilled Torlon 4000T

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	$g \text{cm}^{-3}$	ASTM D792	1.380	(6)
Tensile strength, break	MPa	MPa ASTM D638, 23°C 1		(7)
Tensile modulus	MPa	ASTM D638, 23°C	5,200	(7, 6)
Elongation, break	%	ASTM D638, 23°C	10-18	(7, 6)
Flexural strength, yield	MPa	ASTM D790, 23°C	189.0	(7, 6)
Flexural modulus	MPa	ASTM D790	3,590	(7, 6)
Compressive strength	MPa	ASTM D695, 23°C	241.4	(7, 6)
Impact strength, notched Izod	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D256, 23°C, 3.2 mm	136	(7, 6)
Impact strength, unnotched Izod	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D256, 23°C, 3.2 mm	1,088	(6)
Hardness, Rockwell E	_	_	78	(7)
Thermal conductivity	$Wm^{-1}K^{-1}$	ASTM C177	0.24	(7)
Linear thermal expansion coefficient	K^{-1}	ASTM D696, (cm/cm)	3.60×10^{-5}	(7, 6)
Deflection temperature	K	ASTM D648, at 1.81 MPa	525-533	(7, 6)
Volume resistivity	ohm m	ASTM D257	3.0×10^{13}	(7)
Surface resistivity	ohm	ASTM D257	$> 1.0 \times 10^{17}$	(7)

Poly(amide imide)						
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE		
Dielectric strength	$kV mm^{-1}$	ASTM D149	17.3	(7)		
Dielectric constant	_	ASTM D150, at 106 Hz	4.0	(7)		
Dissipation factor	_	ASTM D150, at 106 Hz	0.009	(7)		

Mechanical properties of Torlon 4203L*

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	ASTM D1708 -196°C 23°C 135°C 232°C	218 192 117 66	(8, 9)
Tensile elongation	%	ASTM D1708 -196°C 23°C 135°C 232°C	6 15 21 22	(8, 9)
Tensile modulus	MPa	ASTM D1708, 23°C	4,900	(8, 9)
Flexural strength	MPa	ASTM D790 -196°C 23°C 135°C 232°C	287 244 174 120	(8, 9)
Flexural modulus	MPa	ASTM D790 -196°C 23°C 135°C 232°C	7,900 5,000 3,900 3,600	(8, 9)
Compressive strength	MPa	ASTM D695, 23°C	220	(8, 9)
Compressive modulus	MPa	ASTM D695, 23°C	4,000	(8, 9)
Shear strength	MPa	ASTM D732, 23°C	128	(8, 9)
Impact strength, notched Izod	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D256, 23°C, 3.2 mm	142	(8, 9)
Impact strength, unnotched Izod	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D256, 23°C, 3.2 mm	1,062	(8, 9)
Poisson's ratio	_	_	0.45	(8, 9)

^{*} Filler contents: 3% TiO₂; 0.5% fluorocarbon.

Thermal properties of Torlon 4203L*

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Deflection temperature	K	ASTM D648, at 1.8 Mpa	551	(8, 9)
Linear thermal expansion coefficient	K^{-1}	ASTM D696, (cm/cm)	30.6×10^{-6}	(8, 9)
Thermal conductivity	$W m^{-1} K^{-1}$	ASTM C177	0.26	(8, 9)

^{*} Filler contents: 3% TiO₂; 0.5% fluorocarbon.

Flammability data of Torlon 4203L*

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Limiting oxygen index	%	ASTM D2863	45	(8, 9)
FAA smoke density (minimum light transmittance)	%	National Bureau of Standards, NFPA 258, specimen thickness = $1.3-1.5 \text{ mm}$	92 (smoldering) 6 (flaming)	(8, 9)
Maximum specific optical density D_{m}	-	National Bureau of Standards, NFPA 258, specimen thickness = 1.3–1.5 mm	5 (smoldering) 170 (flaming)	(8, 9)
Time to 90% $D_{\rm m}$	min	National Bureau of Standards, NFPA 258, specimen thickness = 1.3-1.5 mm	18.5 (smoldering) 18.6 (flaming)	(8, 9)
Flash ignition temperature	K	ASTM D1929	843	(8, 9)
Self ignition temperature	K	ASTM D1929	893	(8, 9)
Flammability	_	UL-94	94V-O	(8, 9)

^{*} Filler contents: 3% TiO₂; 0.5% fluorocarbon.

Poly(amide imide)

Electrical properties of Torlon 4203L*

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric constant	_	ASTM D150		(8, 9)
		103 Hz	4.2	
		106 Hz	3.9	
Dissipation factor	_	ASTM D150		(8, 9)
1		103 Hz	0.026	(, ,
		106 Hz	0.031	
Volume resistivity	ohm m	ASTM D257	2×10^{15}	(8, 9)
Surface resistivity	ohm	ASTM D257	5×10^{18}	(8, 9)
Dielectric strength	$kV mm^{-1}$	ASTM D149, 1 mm	23.6	(8, 9)

^{*} Filler contents: 3% TiO₂; 0.5% fluorocarbon.

Other physical properties of Torlon 4203L*

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	ASTM D792	1.42	(8, 9)
Hardness, Rockwell E	_	ASTM D785	86	(8, 9)
Water absorption	%	ASTM D570	0.33	(8, 9)

^{*} Filler contents: 3% TiO₂; 0.5% fluorocarbon.

Glass-transition temperatures (K) of poly(amide imides) derived from trimellitic anhydride (see structure above)

Ar	Conditions	Value	Reference
Torlon	-	550	(10)
-\	TMA in air at heating rate of $10^{\circ} \text{C min}^{-1}$	533	(11)
	Dielectric constant and dissipation factor measurements	558	(12)

Ar	Conditions	Value	Reference
(Amoco AI-10) ————————————————————————————————————	_	545	(13, 14)
	TMA in air at heating rate of 10° C min ⁻¹	603	(2)
			(-)
S			

Glass-transition and secondary-relaxation temperatures and associated activation energy values of $(Torlon)^{(15, 16)}$

Conditions	<i>T</i> _g (K)	$E_{\rm a}$ (kJ mol ⁻¹)	Т _ь (К)	$E_{\rm a}$ (kJ mol ⁻¹)	<i>T</i> _g (K)	E _a (kJ mol ⁻¹)
Forced oscillation dynamic mechanical analysis at 1 Hz	549	-	338	117	204	_

- 1. Alvino, W. M. J. Appl. Polym. Sci. 19 (1975): 651.
- 2. Imai, Y., N. N. Maldar, and M. Kakimoto. J. Polym. Sci. Polym. Chem. Ed. 23 (1985): 2,077.
- (a) Wrasilo, W., and J. M. Augl. J. Polym. Sci. Polym. Chem. Ed. 7 (1969): 321; (b) Ray, A., et al. Polymer J. 15 (1983): 169; (c) Das, S., and S. Maiti. Makromol. Chem. Rapid Commun. 1 (1980): 403; (d) Ray, A., S. Das, and S. Maiti. Makromol. Chem. Rapid Commun. 2 (1981): 333; (e) Mauti, S., and A. Ray. Makromol. Chem. Rapid Commun. 2 (1981): 649; (f) de Abajo, J., J. P. Gabarda, and J. Fontan. Angew. Makromol. Chem. 71 (1978): 143.
- (a) Nieta, J. L., J. G. de la Campa, and J. de Abajo. *Makromol. Chem.* 183 (1982): 557; (b) de la Campa, J. G., J. de Abajo, and J. L. Nieta. *Makromol. Chem.* 183 (1982): 571; (c) Kakimoto, M., R. Akiyama, Y. S. Negi, and Y. Imai. *J. Polym. Sci., Polym. Chem. Ed.*, 26 (1988): 99.
- 5. Yang, C.-P., and J.-H. Lin. J. Polym. Sci., Part A: Polym. Chem., 32 (1994): 2,653.
- 6. *Plastic: A Desk-Top Data Bank*, Book B, 5th ed. The International Plastic Selector, Cordura Publications, San Diego, 1980, p. B-396.
- 7. Cekis, G. V. Modern Plastics. Mid-October Encyclopedia issue, 1990, p. 32.
- 8. Torlon Engineering Polymers Design Manual. Amoco Performance Products, Atlanta.
- 9. Sroog, C. E. In *Polyimides*, edited by D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother. Chapman and Hall, New York, 1990, p. 270.
- 10. Bicerano, J. Prediction of Polymer Properties. Marcel Dekker, New York, 1993, p. 157.
- 11. Imai, Y., N. Maldar, and M.-A. Kakimoto. J. Polym. Sci., Polym. Chem. Ed., 23 (1985): 2,077.
- 12. Alvino, W. M. J. Appl. Polym. Sci. 19 (1975): 665.
- 13. Lee, H., D. Stoffey, and K. Neville. *New Linear Polymers*. McGraw-Hill, New York, 1967, Ch. 7, p. 171.
- 14. AMOCO AI-10 Polymer, Application Bulletin. Amoco Performance Products, Atlanta.
- 15. Fried, J. R. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, chap. 13, pp. 166167.
- 16. Dallas, G., and T. Ward. Eng. Plast. 7 (1994): 329

PETAR R. DVORNIC AND DONALD A. TOMALIA

ACRONYM, TRADE NAMES PAMAM dendrons and dendrimers, Starburst $^{\circledR}$ dendrons and dendrimers

CLASS Dendritic polymers; dendrons; dendrimers

STRUCTURE Dendrimers are three-dimensional macromolecules consisting of three major architectural components: a core, an interior (branch cells), and terminal groups. These products are constructed from repeat units called *branch cells* (e.g., $-N(H)CH_2CH_2N[CH_2CH_2C(O)]_2$) in concentric generations (*G*) surrounding various initiator cores according to dendritic rules and principles, where $N_c = \text{multiplicity of core}$; $N_b = \text{multiplicity of branch cell}$; and $Z = \text{terminal groups (i.e., <math>-OCH_3$; $-NH-(CH_2)_2-NH_2$; $-NH-C-(CH_2-OH)_3$; or $-NH-(CH_2)_2-OH$). Core $=-[CH_2N(CH_2CH_2CO)_2]_2-$, ($N_b = 2$, $N_c = 4$), or Core $=N-[CH_2CH_2CO]_3-$, ($N_b = 2$, $N_c = 3$).

MAJOR APPLICATIONS Very precise nanoscale macromolecules (i.e., diameters between 1 and 15 nm). They are spherical, if grown from a pointlike core such as NH₃, or ellipsoidal, if grown from α , ω -alkylenediamines (e.g., NH₂-CH₂-CH₂-NH₂). Dendrimers are ideal macromolecular standards for use in size exclusion chromatography, (1) membrane porosity evaluation, Newtonian viscosity applications, (20) and electron microscopy. (2-4) Unique, high surface functionality (Z may range from 2, 3, or 4 to several thousand) provides nanoscopic building blocks for complex nanoconstructions based on either covalent bonding or self assembly-type processes. In the biomedical field, dendrimers have been used for drug delivery, (5-7) gene therapy, (8-11) antigen conjugates, (diagnostics) (12,13) NMR contrast agents, (14) and synthetic vaccines. (15) In the materials science area, dendrimers have been used for adhesive tie coats to glass, metal, carbon, or polymer surfaces, additives for polymer resins and composites, printing inks, (16, 17) surfactants, cross-linking agents, electrically conductive nano devices, (18) flow regulators, processing aids, and chemical sensors. (19)

PROPERTIES OF SPECIAL INTEREST Unique dendrimer properties not found in traditional macromolecular architecture include: (1) a distinct parabolic intrinsic viscosity curve with a maximum as a function of molecular weight; (2) very

monodispersed sizes and shapes (i.e., $\overline{M}_{\rm w}/\overline{M}_{\rm n}$ routinely below 1.1 even at high molecular weights); (3) *exo* presentation of exponentially larger numbers of surface functional groups as a function of generation (i.e., up to several thousand); (4) a *dense-shell*-type surface with a soft, spongy interior; ⁽²¹⁾ and (5) typical Newtonian-type rheology even at molecular weights exceeding 50,000 g mol⁻¹. In the PAMAM series, over 45 different surface group modifications have been reported. ⁽²²⁾

PREPARATIVE TECHNIQUES PAMAM dendrimers are synthesized by the divergent method starting from NH₃ (N_c = 3) or H₂N–CH₂CH₂–NH₂ (EDA) (N_c = 4) initiator core reagents. They are amplified by progressing through a reiterative sequence consisting of (a) a double Michael addition of methyl acrylate to a primary amino group followed by (b) amidation of the resulting carbomethoxy intermediate with a large excess of ethylenediamine (EDA). Products up to generation 10 (i.e., molecular weight of over 930,000 g mol⁻¹) have been obtained. Reactions are performed between room temperature and about 50°C in methanol. Samples are available in methanol or in water solutions. Dendrimers soluble in organic solvents (e.g., toluene or chloroform) can be readily prepared by modification of amine terminated dendrimers with hydrophobic reagents.

SUPPLIER Dendritech, Inc., 3110 Schuette Drive, Midland, Michigan 48642, USA.

Molecular properties of ethylenediamine (EDA) core PAMAM dendrimers

Generation Number of		Molecular	Hydrodyna	Hydrodynamic diameters (Å) ^(b)		Hydrodynamic volumes (Å ³) ^(e)	
	terminal groups ^(a)	weight (g mol ⁻¹) ^(a)	SEC ^(c)	DSV ^(d)	SEC	DSV	
0	4	517	15.2	_	1,838	_	
1	8	1,430	21.7	20.2	5,348	4,314	
2	16	3,256	28.6	28.8	12,243	12,501	
3	32	6,909	35.7	38.9	23,811	30,805	
4	64	14,215	44.8	50.0	47,056	65,417	
5	128	28,826	54.4	65.8	84,251	149,093	
6	256	58,048	67.4	_	160,235	_	
7	512	116,493	81	_	278,121	_	
8	1,024	233,383	97	_	477,632	_	
9	2,048	467,162	114	_	775,341	_	
10	4,096	934,720	135	_	1,287,596	_	

⁽a) Theoretical values.

 $^{^{(}b)}$ At 25°C; 0.1 molar citric acid in water; pH = 2.7.

⁽c) Size exclusion chromatography; relative to linear PEO standards.

⁽d) Dilute solution viscometry.

⁽e) Calculated from hydrodynamic diameters assuming ideal sphericity.

Molecular properties of NH₃ core PAMAM dendrimers

Generation	Number of terminal groups*	Molecular weight (g mol ⁻¹)*	Diameter (Å)
0	3	359	10.8
1	6	1,044	15.8
2	12	2,414	22
3	24	5,154	31
4	48	10,633	40
5	96	21,591	53
6	192	43,507	67
7	384	87,340	80
8	768	175,005	92
9	1,536	350,335	107
10	3,072	701,012	\sim 115

^{*}Theoretical values.

Generation dependent properties

PROPERTY	UNIT	CONDITIONS	VALUE	REFERENCE
Density (amorphous)	g cm ⁻³	Neat dendrimer in phenetol at 20° C EDA core; $G = 0$ EDA core; $G = 1$ EDA core; $G = 2$ EDA core; $G = 3$ EDA core; $G = 4$	1.178 ± 0.003 1.196 ± 0.001 1.214 ± 0.002 1.219 ± 0.007 1.224 ± 0.002	(23)
Glass transition temperature	K	DSC; 20° C min ⁻¹ EDA core; $G = 0$ EDA core; $G = 1$ EDA core; $G = 2$ EDA core; $G = 3$ EDA core; $G = 4$ EDA core; $G = 5$	262 270 273 284 287 287	(22, 23)
Steady shear viscosity	poise	75% wt. dendrimer solution in EDA; 20° C EDA core; G = 0; shear rate range = 0.01 - $170 \mathrm{s}^{-1}$ EDA core; G = 1; shear rate range = 0.01 - $20 \mathrm{s}^{-1}$ EDA core; G = 2; shear rate range = 0.01 - $3 \mathrm{s}^{-1}$ EDA core; G = 3; shear rate range = 0.01 - $2 \mathrm{s}^{-1}$ EDA core; G = 4; shear rate range = 0.01 - $1.5 \mathrm{s}^{-1}$ EDA core; G = 5; shear rate range = 0.01 - $0.75 \mathrm{s}^{-1}$ EDA core; G = 6; shear rate range = 0.01 - $0.5 \mathrm{s}^{-1}$	8.28 113.6 329.3 621.6 1,460 1,640 2,400	(20)

PROPERTY	UNIT	CONDITIONS	VALUE	REFERENCE
Complex viscosity	poise	Neat dendrimers at 95°C EDA core; G = 0; frequency range = 0.08–150 Hz EDA core; G = 1; frequency range = 0.1–150 Hz EDA core; G = 2; frequency range = 0.015–200 Hz EDA core; G = 3; frequency range = 0.1–150 Hz EDA core; G = 4; frequency range = 0.1–150 Hz EDA core; G = 5; frequency range = 0.1–80 Hz	20	(23)
Electrical conductivity	$S \text{cm}^{-1}$	Diimide anion radical modified EDA core, generation 3 PAMAM dendrimer. Film; 4 point measurement; 90% relative humidity	11	(18)

Generation independent properties (23)

PROPERTY	UNIT	CONDITIONS	VALUE
Solvents		Water; methanol; DMF,DMSO	
Nonsolvents		Most aliphatic and aromatic solvents, THF, chloroform	
Thermal stability	K	Neat dendrimer in nitrogen; dynamic TGA; 20°C min ⁻¹ Neat dendrimer in nitrogen; isothermal TGA for 16 h; weight loss less than 1%	453 443
Thermo-oxidative stabiltiy	K	Neat dendrimer in air; dynamic TGA; $20^{\circ}\text{C min}^{-1}$ Neat dendrimer in air; isothermal TGA for 16 h; weight loss less than 1%	433 373

Practical matters

PROPERTY	CONDITIONS	VALUE
Availability	Gold standards: low defect levels, biomedical applications	Units: 100 mg; 500 mg; g
	Technical grade: higher defect levels, reduced regularity, materials applications	Units: kg
Suppliers C	Gold standards (mg); technical grade (kg)	Dendritech, Inc., 3110 Scheutte Drive, Midland, Michigan 48642, USA
	Primary amine, sodium carboxylate, and certain hydroxyl surface groups are available	Aldrich Chemical Company, Inc., 1001 West St. Paul Avenue, Milwaukee, Wisconsin 53233, USA

PROPERTY	VALUE
Significant patents for composition of matter	U.S. Patent 4,507,466 (1985) U.S. Patent 4,558,120 (1985) U.S. Patent 4,568,737 (1986) U.S. Patent 4,587,329 (1986) U.S. Patent 4,631,337 (1986) U.S. Patent 4,694,064 (1986) U.S. Patent 4,857,599 (1989)

- (a) Dubin, P. L., et al. Analytical Chemistry 64 (1992): 2,344; (b) Dubin, P. L., S. L. Edwards, and M. S. Mehta. Journal of Chromatography 635 (1993): 51.
- 2. Jackson, C. L., et al. Polymer Mat. Sci. and Eng. 77 (1997): 222.
- 3. Yin, R., Y. Zhu, and D. A. Tomalia. J. Am. Chem. Soc. 120 (1998): 2,678.
- Tomalia, D. A., A. M. Naylor, and W. A. Goddard III. Angew. Chem. Int. Ed. Engl. 29(2) (1990): 138.
- 5. Duncan, R., and N. Malik. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 23 (1996): 105.
- 6. Duncan, R. Chemistry & Industry 7 (1997): 262.
- 7. Tomalia, D. A., and R. Esfand. Chemistry & Industry 11 (1997): 416.
- 8. Kukowska-Latallo, J. F., et al. Proc. Natl. Acad. Sci. 93 (1996): 4,897.
- 9. Bielinska, A., et al. Nucleic Acids Research 24(11) (1996): 2176.
- 10. Tomalia, D. A., et al. U.S. Patent 5,714,166 (1998).
- 11. Tang, M. X., C. T. Redemann, and F. Szoka, Jr. Bioconjugate Chem. 7 (1996): 703.
- 12. Singh, P. Bioconjugate Chem. 9(1) (1998): 54.
- 13. Singh, P., et al. Clinical Chemistry 42(9) (1996): 1,567.
- 14. Wiener, E. C., et al. Magnetic Resonance in Medicine 31 (1994): 1.
- 15. Rao, C., and J. P. Tam. J. Am. Chem. Soc. 116 (1994): 6,975.
- 16. Tomalia, D. A., and L. R. Wilson. U.S. Patent 4,713,975 (1994).
- 17. Winnik, F. M., A. R. Davidson, and M. P. Breton. U.S. Patent 5,120,361 (1992).
- 18. Miller, L., et al. J. Am. Chem. Soc. 119 (1997): 1,005.
- 19. Crooks, R. M., and A. J. Ricco. Acc. Chem. Res. 31 (1998): 219.
- 20. Uppuluri, S., et al. Macromolecules 31 (1998): 4,498.
- 21. Uppuluri, S., D. A. Tomalia, and P. R. Dvornic. Polym. Mater. Eng. 77 (1997): 116.
- 22. Tomali, D. A., and P. R. Dvornic. In *Polymeric Materials Encyclopedia*, edited by J. C. Salamone. CRC Press, Boca Raton, Fla., 1996, p. 1,814.
- 23. Uppuluri, S. Diss. Abstr. Int., B 1997, 58(5) (1997): 2,446.

Polyaniline

STEPHEN S. HARDAKER AND RICHARD V. GREGORY

ACRONYM, ALTERNATIVE NAMES, TRADE NAMES PANI, emeraldine, leucoemeraldine, pernigraniline, Ormecron (Zipperling Kessler and Co.), Zypan (Du Pont)

CLASS Conjugated and other unsaturated polymers; electrically conductive polymers

STRUCTURE Polyaniline base of variable oxidation state

$$- \left\{ \begin{array}{c} \\ \\ \end{array} \right\} - NH - \left[\begin{array}{c} \\ \\ \end{array} \right] - NH - \left[$$

y = 0: Leucoemeraldine base (LEB)

y = 0.5: Emeraldine base (EB)

y = 1: Pernigraniline base (PNB)

Emeraldine salt (ES)

$$- \underbrace{ \left(\right)}_{NH} - \underbrace{ \left(\right)}_{NH} - \underbrace{ \left(\right)}_{NH} - \underbrace{ \left(\right)}_{H} - \underbrace{ \left(\right$$

MAJOR APPLICATIONS Polyaniline is finding widespread use in novel organic electronic applications such as: light emitting diodes (LED), electroluminescense, metallic corrosion resistance, organic rechargeable batteries, biological and environmental sensors, composite structures, textile structures for specialized applications or static dissipation, membrane gas-phase separation, actuators, EMI shielding, organic semiconductor devices for circuit applications, blends with insulative host polymers to impart a slight electrical conductivity, bioelectronic medical devices, and a variety of other applications where tunable conductivity in an organic polymer is desirable.

PROPERTIES OF SPECIAL INTEREST Electrical conductivity in the range of 10^{-8} to $400\,\mathrm{S\,cm}^{-1}$. This conductivity will increase as better processing methods are developed reducing structural defects. The conductivity can be tuned to specific end uses for a variety of applications. Polyaniline is reasonably stable under ambient conditions and, with the proper selection of dopants, retains its conductivity over long periods of time (i.e., five years and longer). Polyaniline easily switches from the conductive form (emeraldine salt) to the insulative form (emeraldine base) as a function of pH. Under acidic conditions the polymer acid dopes and becomes conductive. When exposed to higher pH levels the polymer switches to the insulative form. This facile switching can be cycled many times.

Polyaniline

Unit cell dimensions (1)

Form	a (Å)	b (Å)	c (Å)	Lattice	Comments
EB-II	7.80	5.75	10.05	Orthorhombic	NMP-cast, stretched film
	7.65	5.75	10.20	Orthorhombic	THF/NMP-extracted powder
	7.65	5.65	10.40	Orthorhombic	Powder from THF-extracted solution
ES-II	7.1	7.9	10.4	Orthorhombic	NMP-cast, stretched film, HCl dopant
	7.0	8.6	10.4	Orthorhombic	THF/NMP-extracted powder, HCl dopant
ES-I	4.3	5.9	9.6	Pseudoorthorhombic	As synthesized, HCl dopant

Solubility parameters of polyaniline and several solvents

Compound	δ (MPa $^{1/2}$)	$\delta_{\sf d}$ (MPa $^{1/2}$)	$\delta_{ m p}({ m MPa}^{1/2})$	δ_{h} (MPa $^{1/2}$)	Comment	Reference
Emeraldine base	22.2	17.4	8.1	10.7	Empirical	(2)
Emeraldine salt	23.6	17	8.9	13.7	Empirical	(2)
Leucoemeraldine base	23-25	21.1	5.6	7.3	Empirical	(2)
1-Methyl-2-pyrrolidinone (NMP)	23.7	16.5	10.4	13.5	Calculated	(2)
N,N'-dimethyl propylene urea (DMPU)	22.3	16.4	11.3	10.0	Calculated	(3)
<i>m</i> -Cresol	22.7	18.7	4.8	13.5	Calculated	(2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Permeability	m^3 (STP) $m s^{-1}$	Gas		(4)
•	$m^{-2} Pa^{-1}$	H_2	3,580	. ,
		$\overline{\text{CO}}_2$	586	
		O_2	123	
		N_2	13.4	
		CH_4	3.04	
Huggins parameter: k'	_	Form/Solvent		(5)
		EB/NMP	0.384	. ,
		EB/DMPU	0.371	
Storage modulus	MPa	EB form; EB film cast from NMP; DMTA, 1 Hz, 25°C	2,000	(6)
		ES-HCl form; EB film cast from NMP then doped with HCl; DMTA, 1 Hz, 25°C	2,300	
Loss modulus	MPa	EB form; EB film cast from NMP; DMTA, 1Hz, 25°C	256	(6)
		ES-HCl form; EB film cast from NMP then doped with HCl; DMTA, 1 Hz, 25°C	218	

Mechanical properties of polyaniline fibers

Fiber process ^(a)	Base			Dopant	Dopant Doped				Reference
	Tenacity (gpd) ^(b)	Modulus (gpd) ^(b)	Elongation (%)		Tenacity (gpd) ^(b)	Modulus (gpd) ^(b))	Elongation (%)	(S cm ⁻¹)	
PANI-CSA/m- cresol ^(c)	n/a	n/a	n/a	CSA	0.2	7.3	8.4	203	(7)
PANI-EB/H ₂ SO ₄	n/a	n/a	n/a	H_2SO_4	1.8	39.3	25.4	6.3	(7)
PANI-EB/NMP ^(d) drawn	3.9	_	_	HCl	1.4	_	_	160	(8)
PANI-EB/DMPU as-spun	0.2-0.6	27	7	CH ₃ SO ₃ H	< 0.2	-	_	10-32	(9)
PANI-EB/DMPU 4× drawn	2.4	56	13	CH ₃ SO ₃ H	<1.0	-	_	350	(9)
PANI-LEB/DMPU as-spun	1.1	57	51	CH ₃ SO ₃ H	0.8	-	_	15	(10)
PANI-LEB/DMPU 2× drawn	3.6	89	15	HCl	1.9	-	-	140	(10)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Room temperature conductivity	$S cm^{-1}$	CSA dopant; film cast from <i>m</i> -cresol; PANI-CSA complex formed in solution	400	(11)	
,		CH ₃ SO ₃ H dopant; fiber spun in EB form from DMPU and 4× drawn then doped	350		(9)
		CSA dopant; as-spun fiber from <i>m</i> -cresol; EB and CSA mixed as powder	203		(7)
		CSA dopant; film cast from 30/70 chloroform/ <i>m</i> -cresol; EB and CSA mixed as powder	70		(11)
		CH ₃ SO ₃ H/acetic acid dopant; film cast from EB/DMPU then doped	60		(5)
		HCl dopant; film cast from EB/NMP and 4× drawn then doped	24		(12)
		I ₂ dopant; spin-coated from LEB/DMPU then doped	11.4		(13)
		H ₂ SO ₄ dopant	6.31		(14)
Apparent bandgap	eV	Polyaniline form	Onset	Peak	(11)
(absorption)		LEB EB PNB	3.2 1.6 (3.0) 1.8	3.6 2.0 (3.8) 2.3	
Melting temperature	K	LEB film and fiber from DMPU; DSC, 20° C min ⁻¹ , N_2	658		(15)

^(a)Fiber process is designated as: polyaniline form/solvent, post process. ^(b)gpd \equiv g denier⁻¹. Denier is a linear density: 1 denier = 1 g (9,000 m)⁻¹. ^(c)Mixture of emeraldine base and (\pm)-camphor sulfonic acid dissolved in *m*-cresol. ^(d)Solution also contained a gel inhibitor.

Polyaniline

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature	K	LEB fiber spun from DMPU; DSC, 5° C min ⁻¹ , N_2	474	(16)
1		EB film cast from NMP; DMTA, 5°C min ⁻¹ , 1Hz	493	(6)
Sub- T_g transition temperature	K	EB film cast from NMP; DMTA, 3° C min ⁻¹ , 1 Hz; assigned to phenyl ring twisting	193	(17)
Thermal stability	K	Cross-linking reaction; EB film cast from NMP; DMTA, 3°C min ⁻¹ , 1 Hz	453	(17)
		Decomposition (LEB) reaction; LEB spin coated film from DMPU; TGA, 20°C min ⁻¹ , N ₂	780	(15)
		Decomposition (EB) reaction; EB film cast from NMP; TGA, 20°C min ⁻¹ , N ₂	673	(6)
Index of refraction <i>n</i>	_	EB spin-coated from DMPU, average, 1,550 nm	1.85	(18)
Zero- T dielectric constant $\varepsilon_{\mathrm{mw}}(T \to 0)$	_	PANI-CSA cast from chloroform	~30	(11)
Dielectric constant $\varepsilon_{\rm mw}$	_	PANI-CSA cast from <i>m</i> -cresol, 300 K, 6.5 GHz	-4.5×10^{-4}	(11)
Plasma frequency ω_{p}	eV	PANI-CSA cast from m-cresol, 300 K	0.016	(11)
Dielectric relaxation time τ	s	PANI-CSA cast from <i>m</i> -cresol, 300 K	1.1×10^{-11}	(11)
Electroluminescence emission peak	nm	Porous Si/PANI-CSA(m -cresol), $0.5 \mathrm{Acm}^{-2}$ current density	800	(19)

Surface energies⁽²⁰⁾

Form Surface Energy				Comments	
	γ (erg cm $^{-2}$)	$\gamma^{\sf d}$ (erg cm $^{\sf -2}$)	γ^{p} (erg cm $^{-2}$)		
EB PANI-HCI	44.6 63.5	36.9 38.7	7.7 24.8	NMP cast film NMP cast EB; doped with HCl (pH = 0)	

Electrochemical potentials of redox processes in polyaniline

Redox Couple	Potential* (V)	Conditions	Reference
Leucoemeraldine/emeraldine	0.15	vs. Cu/CuF_2 in $NH_4F + 2.3HF$	(21)
Emeraldine/pernigraniline	0.80	vs. Cu/CuF_2 in $NH_4F + 2.3HF$	(21)
Leucoemeraldine/emeraldine	0.115	vs. SCE in 1.0 M HCl	(22)
Emeraldine/pernigraniline	0.755	vs. SCE in 1.0 M HCl	(22)

^{*} Reported potentials are average of oxidation and reduction potentials for a given redox couple.

- 1. Pouget, J. P., et al. Macromolecules 24 (1991): 779.
- 2. Shacklette, L. W., and C. C. Han. Mat. Res. Soc. Symp. Proc. 328 (1994): 157.
- 3. Ou, R. Private communication, 1998.
- Conklin, J. A., et al. In *Handbook of Conducting Polymers*, edited by T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds. Marcel Dekker, New York, 1998, p. 945.
- Gregory, R. V. In *Handbook of Conducting Polymers*, edited by T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds. Marcel Dekker, New York, 1998, p. 437.
- 6. Wei, Y., et al. Polymer 33(2) (1992): 314.
- 7. Hsu, C. H., and A. J. Epstein. SPE ANTEC'96 54(2) (1996): 1,353.
- 8. Hsu, C. H., J. D. Cohen, and R. F. Tietz. Synthetic Metals 59 (1993): 37.
- 9. Hardaker, S. S., et al. SPE ANTEC'96 54(2) (1996): 1,358.
- 10. Chacko, A. P., S. S. Hardaker, and R. V. Gregory. Polymer Preprints 37(2) (1997): 743.
- Kohlman, R. S., and A. J. Epstein. In *Handbook of Conducting Polymers*, edited by T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds. Marcel Dekker, New York, 1998, p. 85.
- 12. Wang, Z. H., et al. Phys. Rev. B 45(8) (1992): 4,190.
- 13. Hardaker, S. S., et al. Mat. Res. Soc. Symp. Proc. 488 (1998): 365.
- 14. Menon, R., et al. In *Handbook of Conducting Polymers*, edited by T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds. Marcel Dekker, New York, 1998, p. 27.
- 15. Chacko, A. P., et al. Polymer 39(14) (1998): 3,289.
- 16. Chacko, A. P., et al. Synthetic Metals 84 (1997): 41.
- 17. Milton, A. J., and A. P. Monkman. J. Phys. D: Appl. Phys. 26 (1993): 1,468.
- 18. Cha, C., et al. Synthetic Metals 84 (1997): 743.
- 19. Halliday, D. P., et al. ICSM'96, Elsevier Science Publishers, New York, 1997, p. 1,245.
- 20. Liu, M. J., K. Tzou, and R. V. Gregory. Synthetic Metals 63 (1994): 67.
- 21. Genies, E. M., and M. Lapkowski. J. Electroanal. Chem. 236 (1987): 189.
- 22. Focke, W. W., G. E. Wnek, and Y. Wei. *J. Phys. Chem.* 91 (1987): 5,813.

Poly(aryloxy)thionylphosphazenes

JOSEPH H. MAGILL

ACRONYMS PATP, PTP

CLASS Polyphosphazenes; poly(thionylphosphazenes)

STRUCTURE
$$-[(NSOX)(NP(OAr_2)_2)]_n - (X = Cl \text{ in this context})$$

$$\begin{bmatrix} O & OR & OR \\ || & | & | \\ -S = N - P = N - P = N - \\ || & | & | \\ X & OR & OR \end{bmatrix}_n$$

MAJOR APPLICATIONS Experimental specimens have considerable potential interest. There are ongoing evaluations and development of these new types of noncrystalline polymers. $^{(1-6)}$

PROPERTIES OF SPECIAL INTEREST Film-forming elastomers, potential oxygen sensors for biomedical and aerospace are among this class of poly(thionylphosphazenes) depending upon substituents present. $^{(3,4,6)}$

SYNTHESIS TECHNIQUES AND TYPES OF STRUCTURES Thermal ring-opening polymerization of cyclic thiophosphazene—comprehensive reviews on the chemistry of halogen side-group replacement reactions in cycloheterophosphazenes have been published by van de Grampel⁽²⁾—to produce a linear polymer intermediate.⁽²⁾ Upon reaction of this halo side group intermediate—these elastomeric materials are hydrolytically sensitive as are other halogenated polymer intermediates—with organic nucleophiles poly(thiophosphazenes) are produced, whose properties depend on the nature of the substituents. A wide variety of material properties are anticipated following these procedures. To date only amorphous polymers have been synthesized and characterized by conventional analytical methods.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Chemical structure and properties	_	Depends upon substituents	Variable	(5, 6)
Molecular mass (of repeat unit)	$g mol^{-1}$	_	569.64	_
Typical molecular weight	$g \text{mol}^{-1}$	GPC	$M_{\rm w} = 1.4 \times 10^5$ $M_{\rm n} = 5.1 \times 10^4$	_
Typical polydispersity $M_{\rm w}/M_{\rm n}$	_	_	<3	_
Solvents	Generally THF, toluene, chlorinated hydrocarbons such as CH_2Cl_2 , etc.			
Nonsolvents		r (hexanes) or highly polar H-bo) or MeOH	onded liquids such	(7)

Spectroscopic properties

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
UV-visible spectrum	Nm	Unresolved peaks	252; 272	(6)
IR-spectrum	cm^{-1}	Thin films cast on KBr disks S=O P=N C-O S=O P-O	1,307 1,203 1,165 1,148 967	_
NMR-spectrum (solution)	ppm	¹ H in CDCl ₃ ³¹ P in CHCl2 ³¹ C in CDCl3 o-Ph m-Ph' p-Ph' o-Ph' m-Ph' p-Ph ipso Ph' ipso Ph' ipso Ph, all s	7.1 (m) -20.9 121.3 126.9 127.2 128.0 128.8 138.1 139.9 149.9	(6)

^{*} Ph denotes the phenyl ring closest to the polymer backbone; Ph' refers to the ring furthest away. (6) Ab initio molecular orbital calculations depicting conformational parameters are compiled in reference (4).

Transition temperatures

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature*	K	DSC method (10° min ⁻¹ heating rate)	328	(6)
Mesophase transition	_	DSC method (10° min ⁻¹ heating rate)	None reported	_
Melting temperature	_	DSC method (10° min ⁻¹ heating rate)	None reported	_

 $^{^*}$ Values are reported for various poly(thiophosphazenes) ranging from 217 to 330 K, depending on the side groups and molecular weight. $^{(4,6,8)}$

Solution properties

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solvents	_	_	THF, CH ₂ Cl ₂ , dioxane	(7)
Theta temperature Θ	K	THF solution, $M_{ m w}=6.4 \times 10^{4*}$	295	(6)
Hydrodynamic Stokes	Å	THF, 295 K, $M_{\rm w} = 6.4 \times 10^4$	59 (radius, <i>R</i> _h , eff.)	(6)

Poly(aryloxy)thionylphosphazenes

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Diffusion coefficient	$\mathrm{cm_2s^{-1}}$	THF, 295 K, $M_{\rm w} = 6.4 \times 10^4$	7.75×10^{-7}	_
Second virial coefficient	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	THF, 295 K, $M_{\rm w} = 6.4 \times 10^4$	~0.0	_
Refractive index increment <i>dn/dc</i>	$\mathrm{ml}\mathrm{g}^{-1}$	THF, 295 K, $M_{\rm w} = 6.4 \times 10^4$	0.208	-

^{*} There is an apparent discrepancy in molecular weights measured by GPC and low-angle laser light scattering (LALLS) techniques. (6) GPC overestimates it by about 30% unless corrections are made to coil size between the phosphazene and the polystyrene calibrant.

Stabilities

CONDITIONS	VALUE
In air (years)	Stable
In hot solution, NaOH or Na aryloxide	Rapidly decomposes by nucleophilic attack at the S in backbone

- 1. Dodge, J. A., et al. J. Amer. Chem. Soc. 112 (1990): 1,268.
- 2. van de Grampel, H. C. Coordination Chem. Revs. 112 (1992): 247.
- 3. Liang, M., and I. Manners. *J. Amer. Chem. Soc.* 113 (1991): 4,044; Gates, D. P., and I. Manners. *J. Chem. Soc., Daltons Trans.*, (1997): 2,525.
- 4. Jaeger, R., et al. Macromolecules 28 (1995): 539.
- 5. Ni, Y., et al. Macromolecules 29 (1996): 3,401.
- 6. Ni, Y., et al. Macromolecules 25 (1992): 7,119.
- 7. Manners, I. Private communication.
- 8. Manners, I. Polymer News 18 (1993): 133.

Poly(p-benzamide)

GURU SANKAR RAJAN

ACRONYMS PBA, PPBA

CLASS Aromatic polyamides

REGISTRY PBA (SRU) 24991-08-0; PBA (homopolymer) 25136-77-0.

GENERAL INFORMATION PBA is the first nonpeptide, synthetic condensation polymer (AB type) reported to form a liquid-crystalline solution. (1) PBA is obtained by the low-temperature solution polymerization as described by Kwolek. (1) Other methods include those of Memeger, (5) Russo, (7) or Preston. (8,9) PBA forms liquid-crystalline solutions because of an inherently extended rigid chain structure produced by a combination of a para-linked benzene ring and partial double-bond character of the carbon-nitrogen bond in predominantly *trans* amide linkages. (1) The molecular conformation is TCTC, where the internal rotation angles about the N–C bond of the amide group and about the virtual bond of N–phenyl–C are T (*trans*) and C (*cis*) conformations, respectively. (10) The chain of all amide groups is in the "head-to-tail" order for PBA. (11)

MAJOR APPLICATIONS The dopes of PBA can be utilized for the preparation of films, filaments, fibrids, and coatings. Wet-extruded, tough, clear, flexible films can be applied to substrates like glass, ceramics, metals, concrete, and polymeric materials. The high-temperature resistance of the polyaramids make them suitable for asbestos replacement in heat-resistant work wear. The service life is longer for asbestos and the wearing comfort is greater. PBA has been superseded by poly(p-phenylene terephthalamide). p

Synthesis

Scheme 1 from reference (1)

Poly(p-benzamide)

Scheme 1 from reference (1)

or

$$I + H_2O \xrightarrow{\text{amide}} - N - C \xrightarrow{n} + SO_2 + \text{amide} \cdot HC$$

Scheme 2 from reference (5)

HO — C —
$$NH_2 + CS_2$$
 — B $BH^+ - OC$ — NHC — $S^- HB^+$ $BH^+ - OC$ — NHC —

Intrinsic viscosities, molecular weights ($M_{\rm w}$ and $M_{\rm n}$), and $M_{\rm w}/M_{\rm n}^{(14)}$

$[\eta]^*$ (dl g $^{-1}$)	$M_{\rm w}$ (g mol ⁻¹)	$M_{\rm n}$ (g mol ⁻¹)	$M_{\rm w}/M_{\rm n}$
0.46	5,300*	2,700	2.0
0.88	6,800*	4,400	1.5
1.21	7,250*	4,250	1.7
1.15	8,700*	_	_
1.62	10,400*	5,750	1.8
2.08	11,700*	6,760	1.7
2.10	12,400*	_	_
2.20	13,800*	_	_
2.43	14,200*	_	_
5.20	$26,000^{\dagger}$	_	_
9.00	51,000 [†]	_	_
12.5	64,400*	_	_

^{*}In concentrated sulfuric acid.

Mark-Houwink parameters: K and $a^{(14-16)}$

Range	<i>K</i> (dl g ⁻¹)	Author	а
<12,000*	1.9×10^{-7}	Schaefgen, <12,000*	1.70
>12,000*	7.8×10^{-5}	Schaefgen, >12,000*	1.08
$3,100 \le M_{\rm w} \le 13,000^*$	2.14×10^{-5}	Arpin*	1.20
$5,300 \le M_{\rm w} \le 51,000^*$	1.67×10^{-5}	Chu [†]	1.46
$7,140 \le M_{\rm w} \le 23,000^*$	2.69×10^{-5}	Papkov [†]	1.85

^{*}In H₂SO₄.

Average molecular weight and MWD using different methods of data analysis $^{(11)}$

Method	Sample	$\textit{M}_{n}\times 10^{-4}$	$\textit{M}_{\rm w} imes 10^{-4}$	$\textit{M}_{z}\times10^{-4}$	$M_{\rm w}/M_{\rm n}$	$M_{\rm z}/M_{\rm w}$
CONTIN	4	2.63	4.77	11.8	1.82	2.47
	5	1.81	3.00	6.69	1.66	2.23
MSVD	4	2.30	3.84	10.8	1.67	2.80
	5	2.20	3.28	8.67	1.49	2.64

Observed band frequencies for the cis-trans conformation by infrared spectroscopy $^{(17)}$

Intensity	Frequency (cm ⁻¹)
Very strong	1507, 1319, and 1238
Strong	3346, 1662, 1605, 1593, 1527, 1410, 1402, 1272, 1186, and 847
Medium strong	1091
Medium	1127, 1019, 807, and 764
Weak	3062, 3036, 701, 691, 631, 539, and 486
Very weak	972, 950, and 601

[†]In chlorosulfonic acid, 0.1 N LiClSO₃.

[†]In dimethyl acetamide +3% LiCl.

Poly(p-benzamide)

Relaxation times of selected ¹³C resonances*(18)

 T_1 (ms) † and T_2 (ms) † at 126 ppm (protonated aromatic, isotropic site) are 130 \pm 10 and 1.20 \pm 0.30; at 131 ppm (protonated aromatic, isotropic site) are 140 \pm 10 and 1.25 \pm 0.50; at 154 ppm (protonated aromatic, nematic site) are 120 \pm 20 and 0.90 \pm 0.20; at 159 ppm (protonated aromatic, nematic site) are 110 \pm 20 and 1.15 \pm 0.40; at 173 ppm (carbonyl, isotropic site) are 470 \pm 70 and 1.90 \pm 0.70; and at 205 ppm (carbonyl, nematic site) are 450 \pm 100 and 1.60 \pm 1.00, respectively.

Shift of fluorescence peak wavelength* (19)

 $\lambda_{\rm ex}$ (nm) at 380, 390, 400, 410, 420, and 465. Peak $\lambda_{\rm ex}$ (nm) at 431, 431, 460, 478, 496, and 513.

Standard values for bond lengths (Å) and bond angles (degrees)⁽¹⁰⁾

Bond lengths for C1=O, C1-C7, C1-N, N-H1, C-C (phenyl), and C-H (phenyl) are 1.24, 1.50, 1.35, 0.96, 1.395, and 1.084, respectively.

Bond angles for O'-C1⁷-C7, C7-C1'-N', O-C1-N, C1-N-H1, C1-N-C2, and H1-N-C2 are 120.9, 116.3, 122.8, 117.9, 124.5, and 117.6, respectively.

Average thermal expansion coefficients between 300 and 500 $K^{(20,21)}$

Expansion cefficients (10 ⁻⁵ K ⁻¹)	Calculated	Experimental
α_1	7.7	7.0
α_2	4.6	4.1
α_3	-0.84	-0.77

Solvents and nonsolvents (12,22)

Solvents	Tetramethylurea (TMU), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), N,N-dimethyl ethylene urea, N-acetylpyrrolidone, N,N-diethylacetamide, N-ethylpyrrolidone, N,N-dimethylpropionamide, N,N-dimethylbutyramide, and N,N-dimethylisobutyramide. (Li or Ca chloride can increase the solubility of sparingly soluble rodlike aromatic polyamides such as PBA in DMAc, TMU, and NMP)
Nonsolvents	Water bath (65–90°C), ethylene gylcol, glycerol, mixtures of TMU and water, mixtures of alcohol and water, and aqueous salt baths (preferably maintained at 40–45°C or above)

^{*}Under conditions of nematic/isotropic coexistence (inversion-recovery and spin-echo data fits on 12.4% w/w PBA/ H_2SO_4 solutions at $45^{\circ}C$).

[†]Error margins denote the standard deviations of the fits.

^{*}For a 0.1% solution of PBA in H₂SO₄.

Values of the two phases of a solution of PBA in TMU-LiCl⁽¹⁾

Property	Units	Isotropic phase	Optically anisotropic phase
Proportion	% by volume	31	69
Density	gcm^{-3}	1.0598	1.0664
LiCl content	$g cm^{-3}$	0.085	0.082
Polymer content	$g \text{cm}^{-3}$	0.105	0.121
Polymer η_{inh}	$dl g^{-1}$	0.59	0.88
Bulk viscosity	cP	~6,000	3,000

Static and dynamic properties of PBA in DMAc + 3% (g cm⁻³) $LiCl^{(11)}$

Sample	$\textit{M}_{\rm w} imes 10^{-4}$	Second virial coefficient $A_2 \times 10^{-3}$ (cm ³ mol g ⁻²)	Radius of gyration $R_{\rm g}$ (nm)	Persistence length <i>q</i> (Å)	Anisotropy δ
1	5.17	1.63	32	750 ± 30	0.40
2	5.52	0.31	36	750 ± 30	0.40
3	22.9	0.59	90	_	(0.22)
4	4.41	_	_	750 ± 30	0.41
5	2.88	_	_	750 ± 30	0.51

Persistence lengths and Kuhn segments (23-26)

Method	Kuhn segment (Å)	q (Å)	Method	Kuhn segment (Å)	q (Å)
Sedimentation (in DMAc + LiCl)	380-390	190-195	Flow bifringence (in H ₄ SO ₄)	2,100	1,050
Light scattering (in H ₂ SO ₄)	_	400	_	1,960	980
Viscosity (in H ₂ SO ₄)	_	180-240	_	1,000	500

Constants* for the clearing temperatures (27)

M _w	Α	α
10,000	41 (6)	0.92 (0.06)

^{*}*A* and α are from least-squares fits of the clearing temperature (T_{ni}) versus concentration (c) measurements to a relation of the form $T_{ni} = Ac^{\alpha}$. The standard deviations of A and α are shown in parentheses.

Thermal properties (28-30)

Property	Units	Value
Glass transition temperature*	K	>503
Crystal transformation temperature	K	487 (modification I to II)
Crystal-nematic transition temperature [†]	K	748 (II)
		817 (III)

^{*}The DSC thermogram of the PBA crystalline solvate exhibits two broad endotherms in the 120–230°C temperature range, which disappears when the sample anneals above 230°C, but a different crystal form appears.

[†]By heating II above 475°C and cooling, or by washing with water, or by washing I with water and annealing, III can be obtained.

Poly(p-benzamide)

Crystallographic data $^{(10,28,31)}$

Parameters	Units	Reference (28)	Reference (31)	Reference (10)
Crystal system	_	Orthorhombic	_	_
Space group	_	P212121-D24	_	P212121-D24
Lattice constants	Å			
a		7.71	8.06	7.75
b		5.14	5.13	5.30
c (fiber axis)		12.8	12.96	12.87
Density	${ m g~cm}^{-3}$			
Observed	· ·	1.48	1.48	1.48
Calculated		1.54	1.48	1.50
Number of chains in a unit cell	_	2	1	2

Isothermal liquid crystallization ${\rm data}^{(32)}$

Property	Units	PBA/H ₂	O ₄ system		
Liquid crystallization temperature	K	318	323	328	333
Avrami exponent n	_	1.35	1.20	1.15	0.95
Half-time for the liquid crystallization $t^{1/2}$	s	8.8	11.4	16.4	22.7

Effect of anisotropy on fiber properties $(\eta_{inh}=2.1,$ in $\rm H_2SO_4)^{(1)}$

Anisotropic phase	Spin dope*		As-extruded filaments				
in spin dope	η (cP)	Wt% of polymer	Tenacity (N tex ⁻¹)	Elongation (%)	Initial modulus (N tex ⁻¹)	Orientation angle (degrees)	
None	14,000	4.6	0.39	10.9	16.1	33	
Small amount	5,600	5.8	0.75	9.7	29.1	20	
Larger amount	1,800	6.7	0.86	8.3	37.4	16	

^{*}Spin dope = 13% in tetramethylurea-lithium chloride (6.54%).

Mechanical properties of undrawn fiber by dry spinning $(\eta_{inh}=1.48,$ in $H_2SO_4)^{(1)}$

Spin stretch factor*	Tex per filament	Tenacity (N tex ⁻¹)	Elongation (%)	Initial modulus (N tex ⁻¹)	Orientation angle (degrees)
Free fall	0.67	0.28	3.7	12.4	39
1.90	0.68	0.33	2.7	20.7	37
2.42	0.53	0.37	3.4	19.4	38
2.56	0.56	0.46	3.3	24.7	26
3.83	0.34	0.61	2.9	34.4	22
5.11	0.26	0.76	3.0	41.5	22
6.39	0.21	0.71	2.8	38.0	19

^{*}Spin dope = 13% in tetramethylurea-lithium chloride (6.54%).

Effect of spinning method on fiber properties (33,34)

η_{inh} (dl g $^{-1}$) $^{(a)}$	Spun from ^(b)	Spinning method ^(c)	Tex per filament	Tenacity (N tex ⁻¹)	Elongation to break (%)	Initial modulus (N tex ⁻¹)
1.67	O(-)	D	_	0.72	3.1	44.9
2.36	O(A)	W	$0.54^{(d)}$	0.64	8.1	25.0
Same dope	O(I)	W	2.53 ^(e)	0.11	9.0	5.6
3.7	A(A)	DJ-W	0.11	1.7	4.0	50.3

 $^{^{(}a)}$ In H_2SO_4 .

Tensile properties before and after annealing $^{\left(13\right) }$

	Units	Dry spinning*	Annealing [†]
Tensile modulus	MPa	65,000	137,000
Tensile strength	MPa	1,050	2,200
Elongation to break	%	3.1	1.9

^{*}Spin stretch factor of 3.2.

Literature available

Poly(p-benzamide)	Reference
Synthesis, anisotropic solutions, and fibers	(1-9, 12)
Crystal structure	(4, 6, 10, 11, 45)
Phase diagrams, composition and fractionation	(4, 6, 43, 47, 48, 50–52, 54)
Static and dynamic properties	(11)
Mechanical properties	(12, 13, 33, 34)
Optical properties	(55, 56)
Viscosity-molecular weight relationships	(14–16, 57)
IR, Jacobian and force constants, NMR, chemical shift tensor parameters, fluorscence spectra	(17–19, 23)
Thermal expansion and isothermal elastic stiffness constants	(20, 21)
Solubility, persistence length, effect of solvent on the structure and property	(1, 2, 5, 12, 22-26, 58)
Surface tension	(59)
Diffusion and sedimentation	(60)
Thermal transition, thermal behavior, clearing temperatures	(27–30)
Magnetic field orientation	(28)
Characterization and conformation	(23)
Vapor permeation	(49)
Kinetics of liquid crystallization	(32)
Dynamic birefringence, rigidity	(35, 45, 53)
Patents	(12, 36–41)
Thermomechanical and ultrasonic properties	(44)
Moments of end-to-end vectors, order parameter	(42, 46)
Molecular simulation	(31)

 $^{^{(}b)}O = \text{organic solvent}; A = \text{acid } (H_2SO_4); (I) = \text{isotropic dope}; (A) = \text{anisotropic dope}.$

⁽c) D = dry-spun; W = wet-spun; DJ-W = dry-jet-wet-spun.

⁽d)Spun from anisotropic layer of dope.

⁽e) Spun from isotropic layer of dope.

[†]Brief annealing for a few seconds at 525°C under nitrogen.

- 1. Kwolek, S. L., et al. Macromolecules 10 (1977): 1,390.
- 2. Memeger, W. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 17 (1976): 163.
- 3. Kwolek, S. L., et al. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 17 (1976): 53.
- 4. Panar, M., and L. F. Beste. Macromolecules 10 (1976): 1,401.
- 5. Memeger, W. Macromolecules 9 (1976): 1,401.
- 6. Panar, M., and L. F. Beste. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 17 (1976): 65.
- 7. Mariani, A., S. L. E. Mazzanti, and S. Russo. Can. J. Chem. 73 (1995): 1960.
- 8. Krigbaum, W. R., et al. J. Polym. Sci., Polym Chem. Ed., 23 (1985): 1,907.
- 9. Krigbaum, W. R., et al. J. Polym. Sci., Polym. Chem. Ed., 22 (1984): 4,045.
- 10. Takahashi, Y., et al. J. Polym. Sci., Polym. Phys. Ed., 31 (1993): 1,135.
- 11. Ying, Q., and B. Chu. Macromolecules 20 (1987): 871.
- 12. Kwolek, S. L. U. S. Patent 3,600,350 (17 August 1971); U. S. Patent 3,671,542 (20 June 1972).
- 13. Collyer, A. A. Materials Science and Technology 6 (October 1990): 981.
- 14. Schaefgen, J. R., et al. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 17 (1976): 69.
- 15. Aharoni, S. M. Macromolecules 20 (1987): 2,010.
- 16. Ying, Q., et al. Polym. Mater. Sci. Eng. 54 (1986): 546.
- 17. Yang, X., et al. Polymer 34 (1993): 43.
- 18. Zhou, M., V. Frydman, and L. Frydman. Macromolecules 30 (1997): 5,416.
- 19. Bai, F., et al. Macromol. Chem. Phys. 195 (1994): 969.
- 20. Lacks, D. J., and G. C. Rutledge. Macromolecules 27 (1994): 7,197.
- 21. Ii, T., et al. Macromolecules 19 (1986): 1,772.
- Orwall, R. A. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 15, pp. 399.
- 23. Arpin, M., and C. Strazielle. Polymer 18 (1977): 591.
- 24. Papkov, S. P., and U. Kolontzova. Advances in Polymer Science 59 (1984): 75.
- Ciferri, A., ed. Liquid Crystallinity in Polymers: Principles and Fundamental Properties. VCH Publishers, New York, 1991.
- 26. Blumstein, A., ed. Liquid Crystalline Order in Polymers. Academic Press, New York, 1978.
- 27. Picken, S. J. Macromolecules 22 (1989): 1,766.
- 28. Tashiro, K., M. Kobayashi, and H. Tadokoro. Macrmolecules 10 (1977): 413.
- 29. Takase, M., W. R. Krigbaum, and H. Hacker. J. Polym. Sci., Polym Phys. Ed., 24 (1986): 1,115.
- 30. Takase, M., et al. J. Polym. Sci., Polym Phys. Ed., 24 (1986): 1,675.
- 31. Yang, X., and S. L. Hsu. Macromolecules 24 (1991): 6,680.
- 32. Lin, J., H. Wu, and S. Li. Polymer International 34 (1994): 141.
- Preston, J. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 11, pp. 392.
- 34. Conio, G., et al. Polymer J. 19 (1987): 757.
- 35. Tsvetkov, V. N., et al. European Polymer J. 12 (1976): 517.
- 36. Hoeggner, R. F., J. R. Schaefgen, and C. W. Stephens. U. S. Patent 3,575,933 (20 April 1971).
- 37. Preston, J., and R. W. Smith. U. S. Patent 3,225,011 (21 December 1965).
- 38. Kwolek, S. L. U. S. Patent 3,819,587 (25 June 1974).
- 39. Stephens, C. W. U. S. Patent 3,472,819 (14 October 1969).
- 40. Huffmann, W. A., and R. W. Smith. U. S. Patent 3,203,933 (31 August 1965).
- 41. Pikl, J. U. S. Patent 3,541,056 (17 November 1970).
- 42. Erman, B., P. J. Flory, and J. P. Hummel. Macromolecules 13 (1980): 484.
- 43. Conio, G., et al. Macromolecules 14 (1981): 1,084.
- 44. Ii, T., et al. Macromolecules 19 (1986): 1,809.
- 45. Tsvetkov, V. N., and I. N. Shtennikova. Macromolecules 11 (1978): 306.
- 46. Sartirana, M. L., et al. Macromolecules 19 (1986): 1,176.
- 47. Balbi, C., et al. J. Polym. Sci., Polym. Phys. Ed., 18 (1980): 2,037.
- 48. Krigbaum, W. R., et al. J. Polym. Sci., Polym. Phys. Ed., 25 (1987): 1,043.
- 49. Ikeda, R. M., and F. P. Gay. J. Appl. Polym. Sci. 17 (1973): 3,821.
- 50. Sato, T., et al. Polymer 30 (1989): 311.
- 51. Bianchi, E., et al. Polymer J. 20 (1988): 83.
- 52. Bianchi, E., et al. Macromol. Chem. Phys. 198 (1997): 1,239.

- 53. Krigbaum, W. R., et al. Macromolecules 24 (1991): 4,142.
- 54. Bianchi, E., A. Ciferri, and A. Tealdi. Macromolecules 15 (1982): 1,268.
- 55. Khanchich, O. A., et al. Khim. Volokna 1 (1978): 21.
- 56. Dibrova, A. K., et al. Vysokomol. Soedin. Ser. A 22 (1980): 1,311.
- 57. Kulichikhin, V. G., et al. Vysokomol. Soedin. Ser. A 16 (1974): 169.
- 58. Aref'ev, N. M., et al. Khim. Volokna 4 (1981): 21.
- 59. Panfilova, A. A., et al. Kolloidn. Zh. 37 (1975): 210.
- 60. Vitovskaya, M. G., et al. Vysokomol. Soedin. Ser. A 19 (1977): 1,966.

Poly(benzimidazole)

WILLIAM J. WELSH

ACRONYMS, ALTERNATIVE NAME PBI, PBZI, poly[2,2'-(*m*-phenylene)-5,5'-bibenzimidazole]

CLASS Rigid-rod polymers

STRUCTURE

MAJOR APPLICATIONS Fire-resistant material, replacement for asbestos, thermal-protective clothing, ion-exchange resins, microporous absorbent beads, membrane applications.

PROPERTIES OF SPECIAL INTEREST High-temperature stability, nonflammability, unusual resistance to organic solvents, excellent mechanical properties, interesting electrical and nonlinear optical properties.

SYNTHESIS Condensation polymerization of 3,3',4,4'-tetraaminobiphenyl (TAB) and diphenyl isophthalate (DPIP) in poly(phosphoric) acid, ⁽¹⁾ or in a hot molten nonsolvent such as sulfolane or diphenyl sulfone. ⁽²⁾

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	$g cm^{-3}$	Fiber, stabilized	1.43	(3)
•	Ü	Fiber, unstabilized	1.39	
		Fiber-grade film		
		Untreated	1.2	
		Annealed	1.3	
		Plasticized	1.4	
Young's modulus	N/tex	Fiber, stabilized	39.6	(3)
_		Fiber, unstabilized	79.2	
	MPa	Fiber-grade film		
		Untreated	2,750	
		Annealed	3,790	
		Plasticized	2,270	
		High MW film		
		Untreated	3,170	
		Plasticized	2,820	

Tensile strength (tenacity) N/tex Fiber, stabilized Fiber, unstabilized Fiber-grade film Untreated Annealed Plasticized High MW film Untreated Plasticized Fiber-grade film Untreated Plasticized Fiber-grade film Untreated Plasticized Fiber-grade film Untreated Plasticized Fiber-grade film Untreated Annealed Plasticized Glass transition temperature $T_{\rm g}$ K After annealing Thermal decomposition onset K Fiber, stabilized Fiber, unstabilized Fiber, unstabilized Fiber, unstabilized Fiber, unstabilized	3 (3)	FERENCE
Fiber, unstabilized 2.3 MPa Fiber-grade film Untreated 117 Annealed 186 Plasticized 103 High MW film Untreated 96 Plasticized 96 Elongation at break % Fiber 30 Fiber-grade film Untreated 41 Annealed 14 Annealed 24 Plasticized 20 Glass transition temperature $T_{\rm g}$ K — \sim 77 After annealing 773 Thermal decomposition onset K — \sim 8 Fiber, stabilized 6 Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15	3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7)
$\begin{array}{c} & \text{Annealed} \\ & \text{Plasticized} \\ & \text{High MW film} \\ & \text{Untreated} \\ & \text{Plasticized} \\ & 96 \\ & \text{Elongation at break} \\ & & & \text{Fiber} \\ & & & \text{grade film} \\ & & & \text{Untreated} \\ & & & \text{Annealed} \\ & & & \text{24} \\ & & \text{Plasticized} \\ & & 20 \\ & & & \text{Glass transition temperature } T_{g} \text{K} \qquad - & & \sim 7 \\ & & & & \text{After annealing} \\ & & & & \text{Thermal decomposition onset} \\ & & & & \text{Fiber, stabilized} \\ & & & & \text{Fiber, stabilized} \\ & & & & \text{50} \\ & & & & \text{Moisture content} \\ & & & & & \text{Fiber, stabilized, 21°C,} \\ & & & & \text{15} \\ \end{array}$	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Elongation at break % Fiber 30 Fiber-grade film Untreated 41 Annealed 42 Plasticized 20 Glass transition temperature $T_{\rm g}$ K — ~ 70 After annealing 773 Thermal decomposition onset K — ~ 8 Fiber, stabilized 6 Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15	3	
Elongation at break % Fiber 30 Fiber-grade film Untreated 14 Annealed 24 Plasticized 20 Glass transition temperature $T_{\rm g}$ K — ~ 70 After annealing 773 Thermal decomposition onset K — ~ 8 Fiber, stabilized 6 Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15		
Fiber-grade film Untreated 14 Annealed 24 Plasticized 20 Glass transition temperature $T_{\rm g}$ K — ~ 70 After annealing 773 Thermal decomposition onset K — ~ 8 Flame-test shrinkage % Fiber, stabilized 6 Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	,
Glass transition temperature $T_{\rm g}$ K — \sim 77 After annealing 773 Thermal decomposition onset K — \sim 8 Flame-test shrinkage % Fiber, stabilized 6 Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15		
Glass transition temperature $T_{\rm g}$ K — After annealing 773 Thermal decomposition onset K — ~ 8 Flame-test shrinkage % Fiber, stabilized 6 Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15		
After annealing 773 Thermal decomposition onset K – ~8 Flame-test shrinkage % Fiber, stabilized 6 Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15		
Thermal decomposition onset K – ~8 Flame-test shrinkage % Fiber, stabilized 6 Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15	())
Flame-test shrinkage % Fiber, stabilized 6 Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15	3	
Fiber, unstabilized 50 Moisture content % Fiber, stabilized, 21°C, 15	373 (3))
Moisture content % Fiber, stabilized, 21°C, 15	(3))
	(3))
Fiber-grade film		
Untreated 10		
Annealed 5		
Plasticized 12		
High MW film		
Untreated 10		
Plasticized 12		
Surface resistivity ohm sq^{-1} Film 10^{1}	11 (3))
Volume resistivity ohm cm Film 10 ¹	13 (3))
Dielectric constant – Film, at 100 Hz	(3))
25°C 5.4		
250°C 3.7	,	
Dielectric strength $V m^{-1}$ Film, at $100 Hz$	(3))
25°C 3,9		
250°C 2,50	500	
Dissipation factor – Film, at 100 Hz	(3))
25°C 0.0		
250°C 0.0)21	

Poly(benzimidazole)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Bulk protonic conductivity	ohm ⁻¹ cm ⁻¹	Film, at 100% relative humidity	8×10^{-5}	(3)
Characteristic peaks	cm ⁻¹	FTIR, dry polymer film Aromatic C-H stretch Imidazole free N-H stretch FTIR, wet polymer Aromatic C-H stretch Imidazole free N-H stretch Water O-H stretch	3,150 3,420 3,150 3,420 3,620	(4)

- 1. Iwakura, Y., K. Uno, and Y. Imai. J. Polym. Sci. 12 (1948): 2,605.
- 2. Hedberg, F. L., and C. S. Marvel. J. Polym. Sci. 12 (1974): 1,823.
- 3. Buckley, A., D. E. Stuetz, and G. A. Serad. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1988, vol. 11, p. 572 (and references therein).
- 4. Brooks, N. W., et al. Polymer 34 (1993): 4,038.

Poly(benzobisoxazole)

WILLIAM J. WELSH

ACRONYM, ALTERNATIVE NAMES PBO, poly(*p*-phenylene-2,6-benzoxazolediyl), poly[(benzo[1,2-d:5,4-d']bisoxazole-2,6-diyl)-1,4-phenylene]

CLASS Rigid-rod polymers

STRUCTURE

MAJOR APPLICATIONS High-performance films, fibers, and coatings.

SYNTHESIS Polycondensation of a terephthalic acid with 4,6-diamino-1,3-benzenediol dihydrochloride in poly(phosphoric acid). Processing is primarily limited to variations of wet extrusion.^(1,2)

PROPERTIES OF SPECIAL INTEREST High-temperature resistance, unusual resistance to organic solvents, excellent mechanical properties, interesting electrical and nonlinear optical properties.

SOLUBILITY (a) Protonic sulfonic acids RSO₃H, where R = -OH, $-CH_3$, -Cl, $-CF_3$, $-C_6H_5$, etc., polyphosphoric acid (PPA), *m*-cresol/dichloroacetic acid (70/30), dichloroacetic acid/MSA (90/10).⁽¹⁾ (b) Aprotic organic solvents (e.g., nitroalkanes) containing metal halide Lewis acids (e.g., AlCl₃, GaC₃, FeCl₃) – up to 7.5% polymer.⁽³⁾

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	As-spun fiber Fiber	1.50 1.58	(4) (5)
		X-ray diffraction data	1.50	(6)

Unit cell dimensions

Lattice	Monomers	Cell dime	Cell dimensions (Å)			Cell angles (degrees)		
	per unit cell	а	b	c (chain axis)	α	β	γ	
Monoclinic	2	11.20	3.540	12.050	90	90	101.3	(6)
Monoclinic	1	5.65	3.58	11.74	90	90	102.5	(7)
Monoclinic	1	5.598	3.540	12.05	90	90	102.5	(8)

Poly(benzobisoxazole)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Young's (tensile) modulus	g denier ⁻¹	Fiber, as-spun	502	(9)
		Fiber, heat-treated	711	(9)
	GPa	Ribbons	7.6	(9)
		Along fiber or draw direction)	85	(10)
		Perpendicular to fiber or draw direction)	6.5	(10)
		Fiber, heat treated (value depends on MW)	221-304	(4)
		Fiber, as-spun	144	(11)
		Heat treated (600°C)	250	(11)
		Geat-treated (650°C)	262	(11)
		Fiber	200-360	(5)
		Fiber	370	(7)
		Fiber	317, 365	(12)
		Fiber, as-spun	166	(13)
		Heat-treated (600°C)	318	(13)
		Heat-treated (665°C)	290	(13)
		Fiber, as-spun	144 ± 23	(14)
		Heat-treated (600°C)	250 ± 20	(14)
		Heat-treated (650°C)	262 ± 25	(14)
X-ray modulus	_	Fiber, as-spun	387	(13)
,		Heat-treated (600°C)	477	(13)
		Heat-treated (665°C)	433	(13)
Compressive modulus	GPa	Fiber	240	(15)
Tensile strength	g denier ⁻¹	Fiber , as-spun	4.2	(2)
C		Fiber, heat-treated	4.8	(2)
	GPa	Ribbon	0.103	(3)
		Fiber	4.9, 5.8	(12)
		Fiber, as-spun	2.31	(4)
		Fiber, as spun	4.6	(11)
		Heat-treated (600°C)	5.1	(11)
		Heat-treated (650°C)	3.4	(11)
		Fiber	3.0-5.7	(5)
		Fiber	3.6	(7)
		Fiber, heat-treated (value depends on MW)	2.2-4.7	(4)
		Fiber, as-spun	4.6	(13)
		Heat-treated (600°C)	4.9	(13)
		Heat-treated (665°C)	3.0	(13)
		Fiber, as-spun	4.6 ± 0.5	(14)
		Heat-treated (600°C)	5.1 ± 0.6	(14)
		Heat-treated (650°C)	3.4 ± 0.5	(14)
Elongation at break	%	Fiber, as-spun	1.4	(2)
		Fiber, heat-treated	0.7	(2)
		Ribbon	0.8	(2)
		Fiber	1.7, 1.6	(12)
		Fiber, as-spun	2.1	(4)
		Fiber, as-spun	3.2	(11)
		, wo op an	~· -	()

			i diy(benzobisoxuzole)			
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE		
Elongation at break	%	Heat-treated (600°C) Heat-treated (650°C) Fiber Fiber, heat-treated (value depends on MW) Fiber, as-spun Heat-treated (600°C) Heat-treated (665°C) Fiber, as-spun	1.9 1.3 1.9 1.1-1.8 2.8 1.7 1.2 3.2 \pm 0.4	(11) (11) (7) (4) (13) (13) (13) (14)		
		Heat-treated (600°C) Heat-treated (650°C)	1.9 ± 0.3 1.3 ± 0.3	(14) (14)		
Compressive strength	GPa	Fiber Fiber Fiber	0.2-0.3 0.68 0.300 ± 0.035	(5) (4) (15)		
Torsional modulus	GPa	Fiber	1.0	(5)		
Persistence length Q	nm	300°C	20-30	(16)		
Elastic moduli	GPa	C_{11} C_{12} C_{13} C_{15} C_{22} C_{23} C_{25} C_{33} C_{35} C_{44} C_{46} C_{55} C_{66}	16.33 16.64 -0.49 -2.19 84.0 0.69 2.01 0.49 19.11 3.79 -4.18 14.10 10.34	(5)		
Coefficient of thermal expansion	ppm K ⁻¹	Fiber	−7 to −10	(5)		
Degradation temperature	K	Film, uniaxial	>873	(17)		
Fiber flammability – critical oxygen concentration (COC)	_	Fiber	36.1 (top) 22.8 (bottom)	(2)		
Apparent activation energy of polymerization	kcal mol ⁻¹	-	7.16	(18)		
Index of refraction $n_{\rm r}$ $n_{\rm t}$ $n_{\rm 2}$	_	_	1.663 1.589 >3.0 (est.)	(4)		

Poly(benzobisoxazole)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Third-order nonlinear optical susceptibility $\chi^{(3)}$	esu	Nonresonant ($\lambda = 602 \text{nm}$)	$\sim 10^{-11}$	(19)
Raman (characteristic frequencies	cm^{-1}	-	1,615 1,540 1,280	(14)

- 1. Wolfe, J. F., and F. E. Arnold. Macromolecules 14 (1981): 909.
- 2. Choe, E. W., and S. N. Kim. Macromolecules 14 (1981): 920.
- 3. Jenekhe, S. A., P. O. Johnson, and A. K. Agrawal. Macromolecules 22 (1989): 3,216.
- 4. Northolt, M. G., and D. J. Sikkema. In *Liquid Crystal Polymers: From Structures to Applications*, edited by A. A. Collyer. Elsevier Applied Science, London and New York, 1992, p. 273.
- 5. Polymeric Materials Encyclopedia, vol. 10, 1996.
- Fratini, A. V., et al. In *The Materials Science and Engineering of Rigid-Rod Polymers*, Mat. Res. Soc. Symp. Proc., edited by W. W. Adams, R. K. Eby, and D. E. McLemore. Materials Research Society, Pittsburgh, 1989, vol. 134, p. 431.
- 7. Krause, S. J., et al. Polymer 29 (1988): 1,354.
- 8. Adams, W. W., et al. Polymer Commun. 30 (1989): 285.
- 9. Choe, E. W., and S. N. Kim. Macromolecules 14 (1981): 920.
- 10. Rao, D. N., et al. Macromolecules 22 (1989): 985.
- 11. Young, R. J., R. J. Day, and M. Zakikhami. J. Mater. Sci. 25 (1990): 127.
- 12. Ledbetter, H. D., S. Rosenberg, and C. W. Hurtig. In *Mat. Res. Soc. Symp. Proc.*, edited by W. W. Adams, R. K. Eby, and D. E. McLemore. Materials Research Society, Pittsburgh, 1989, vol. 134, p. 253.
- Lenhert, P. G., and W. W. Adams. In *The Materials Science and Engineering of Rigid-Rod Polymers*, Mat. Res. Soc. Symp. Proc., edited by W. W. Adams, R. K. Eby, and D. E. McLemore. Materials Research Society, Pittsburgh, 1989, vol. 134, p. 329.
- Young, R. J., R. J. Day, and M. Zakikhami. In *The Materials Science and Engineering of Rigid-Rod Polymers*, Mat. Res. Soc. Symp. Proc., edited by W. W. Adams, R. K. Eby, and D. E. McLemore. Materials Research Society, Pittsburgh, 1989, vol. 134, p. 351.
- Fawaz, S. A., A. N. Palazotto, and C. S. Wang In *The Materials Science and Engineering of Rigid-Rod Polymers*, Mat. Res. Soc. Symp. Proc., edited by W. W. Adams, R. K. Eby, and D. E. McLemore. Materials Research Society, Pittsburgh, 1989, vol. 134, p. 381.
- 16. Roitman, D. B., and M. McAdon. Macromolecules 26 (1993): 4,381.
- 17. Wolfe, J. F., B. H. Loo, and F. E. Arnold. Macromolecules 14 (1981): 909.
- 18. Cotts, D. B., and G. C. Berry. Macromolecules 14 (1981): 930.
- Prasad, P. N. In *The Materials Science and Engineering of Rigid-Rod Polymers*, Mat. Res. Soc. Symp. Proc., edited by W. W. Adams, R. K. Eby, and D. E. McLemore. Materials Research Society, Pittsburgh, 1989, vol. 134, p. 635.

Poly(benzobisthiazole)

WILLIAM J. WELSH

ACRONYMS, ALTERNATIVE NAMES PBT, PBZT, poly(*p*-phenylene-2,6-benzobisthiazolediyl), poly[(benzo[1,2-d:4,5-d']bisthiazole-2,6-diyl)-1,4-phenylene]

CLASS Rigid-rod polymers

STRUCTURE

MAJOR APPLICATIONS High-performance films, fibers, and coatings.

PROPERTIES OF SPECIAL INTEREST High-temperature resistance, unusual resistance to organic solvents, excellent mechanical properties, interesting electrical and nonlinear optical properties.

PREPARATIVE TECHNIQUES Polycondensation of a terephthalic acid with 2,5-diamino-1,4-benzenedithiol dihydrochloride in poly(phosphoric acid). Processing is primarily limited to variations of wet extrusion. (1)

SOLVENTS Protonic sulfonic acids RSO₃H, where R is -OH, $-CH_3$, -Cl, $-CF_3$, $-C_6H_5$, etc., and polyphosphoric acid (PPA). Aprotic organic solvents (e.g., nitroalkanes) containing metal halide Lewis acids (e.g., AlCl₃, GaCl₃, FeCl₃) – up to 7.5% polymer. Protonic sulfonic acids (e.g., AlCl₃, GaCl₃, FeCl₃) – up to 7.5% polymer.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	As-spun fiber	1.47-1.53	(3)
·	Ü	Heat treated fiber	1.54-1.60	(3)
		Model compound	1.44	(4)
		Film; uniaxial	1.56	(5)
		Film; balanced biaxial (quasi-isotropic)	1.56	(5)
		X-ray diffraction data	1.69	(6)
		X-ray diffraction data	1.713	(7)
		Microfibrils	1.46	(8)
		Fiber	1.58	(9)

Unit cell dimensions

Lattice	Monomers	Cell dimen	Cell dimensions (Å)			Cell angles (degrees)			
	per unit cell	a	b	c (chain axis)	α	β	γ		
Monoclinic	1	5.83	3.54	12.35	90	90	96	(6)	
Monoclinic	2	7.10	6.65	12.35	90	90	63	(6)	
Monoclinic	2	11.957	3.555	12.35	90	90	100.9	(7)	
Monoclinic	1	6.55	3.56	12.35	90	90	116.4	(7)	
Monoclinic	2	11.790	3.539	12.514	90	90	94.0	(10)	

Poly(benzobisthiazole)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Young's modulus	GPa	Fibers (25 mm) A-spun fiber Heat-treated fiber Ribbon Fiber Filor Filaments, as-spun Filaments, heat-treated Fibers Fiber Film, uniaxial Film, balanced biaxial (quasi-isotropic)	18-331 110 280 40 186 310 17.0-159 303-331 200-330 320 270 34	(3) (11) (11) (12) (13) (14) (15) (15) (9) (16) (5) (5)
Tensile strength	GPa	Fiber (25 mm) As-spun fiber Heat-treated fiber Ribbon Fiber Filament, as-spun Filament, heat-treated Fibers Fiber Film, uniaxial Film, balanced biaxial (quasi-isotropic)	2.35-4.19 1.1 2.7 0.5 1.518 2.28-2.35 3.49-4.19 3.0-4.2 3.1 2.0 0.55	(3) (11) (11) (12) (13) (15) (15) (9) (16) (5) (5)
Elongation at break	%	Fiber (25 mm) Filament, as-spun Filament, heat-treated Fiber Film, uniaxial Film, balanced biaxial (quasi-isotropic)	1.3-7.1 2.4-7.1 1.3-1.4 1.1 0.88 2.5	(3) (15) (15) (16) (5) (5)
Compressive strength	GPa	_ _ Fibers	0.3 0.68 0.2-0.4	(8) (3) (9)
Torsional modulus	GPa	Fiber	1.2	(9)
Persistance length <i>Q</i>	nm	300°C CSA solvent	$55-80$ 64.0 ± 0.9	(17) (18)
Coefficient of thermal expansion	ppm K ⁻¹	Film, uniaxial Film, biaxial (quasi-isotropic)	-10 -5	(5)
Degradation temperature	K	Film, uniaxial Film, biaxial (quasi-isotropic) Fiber	>873 >873 ~873	(5) (5) (19)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Fiber flammability - critical oxygen concentration (COC)	_	Fiber	35.7 (top) 22.6 (bottom)	(20)
Dielectric constant ε	-	Film, uniaxial Film, biaxial (quasi-isotropic)	2.8 2.8	(5)
Dissipation factor	-	Film, uniaxial Film, biaxial (quasi-isotropic)	0.005 0.005	(5)
Dielectric strength	$\begin{array}{c} \text{volt} \\ \text{mil}^{-1} \end{array}$	Film, uniaxial Film, biaxial (quasi-isotropic)	8,900 8,900	(5)
Electrical conductivity Cathodic peak Anodic peak	ohm ⁻¹ cm ⁻¹ volts volts	Electrochemically doped Undoped Versus SCE Versus SCE	$ \sim 20 $ $ \sim 10^{12} $ $ -1.70 $ $ -1.23 $	(21)
Energy band gap	eV	Band edge at \sim 500 nm	2.48	(22)
Index of refraction	_	Film ($\lambda = 602 \text{nm}$)	2.16	(23)
Optical loss α	cm^{-1}	Film	5.2×10^3	(23)
Third-order nonlinear optical susceptibility $\chi^{(3)}$	esu	Nonresonant ($\lambda = 602 \text{nm}$) – 1.3 μm	$\begin{array}{l} 4.5 \times 10^{-10} \\ \sim 10^{-11} \\ 8.31 \pm 1.66 \; (\times 10^{-11}) \end{array}$	(23) (24) (25)
Quantum efficiency	%	Solid state	6	(26)
IR (characteristic frequencies) (intensity)	cm^{-1}	Highly oriented film	3,076 (w); 3,076 (w); 3,027 (w); 1,605 (w); 1,532 (m); 1,500 (sh); 1,485 (vs); 1,428 (m); 1,410 (s); 1,401 (s); 1,314 (vs); 1,252 (s); 1,211 (w); 1,113 (m); 1,056 (m); 1,017 (w); 960 (vs); 860 (s); 837 (s); 732 (w); 705 (m); 689 (s); 627 (w); 605 (s); 488 (m)	(27)
Raman (characteristic frequencies) (intensity)	-	-	1,605 (s) 1,481 (s) 1,160-1,300 (m)	(28)
Wavelength at maximum of band	nm	UV-vis absorption in MSA	440	(29)
Birefringence	cm^{-1}	IR region	0.88 ± 0.04	(30)

- 1. Wolfe, J. F., and F. E. Arnold. Macromolecules 14 (1981): 915.
- 2. Jenekhe, S. A., P. O. Johnson, and A. K. Agrawal. Macromolecules 22 (1989): 3,216.
- 3. Northolt, M. G., and D. J. Sikkema. In *Liquid Crystal Polymers: From Structures to Applications*, edited by A. A. Collyer. Elsevier Applied Science, London and New York, 1992, p. 273.
- 4. Wellman, M. W., et al. Macromolecules 14 (1981): 935.
- Lusignea, R. W. In *The Materials Science and Engineering of Rigid-Rod Polymers*, Mat. Res. Soc. Symp. Proc., edited by W. W. Adams, R. K. Eby, and D. E. McLemore. Materials Research Society, Pittsburgh, 1989, vol. 134, p. 265.
- Roche, E. J., T. Takahashi, and E. L. Thomas. In *Fibre Diffraction Methods*, edited by A. D. French and K. H. Gardner. ACS Symp. Ser. 141, American Chemical Society, Washington, D.C., 1980, p. 303.
- 7. Odell, J. A., et al. J. Mat. Sci. 16 (1981): 3,309.
- 8. Cohen, Y., and E. L. Thomas. Macromolecules 21 (1988): 433.
- Kumar, S. In Polymeric Materials Encyclopedia. CRC Press, Boca Raton, Fla., 1996, vol. 10, p. 7,512.
- Fratini, A. V., et al. In *The Materials Science and Engineering of Rigid-Rod Polymers*, Mat. Res. Soc. Symp. Proc., edited by W. W. Adams, R. K. Eby, and D. E. McLemore. Materials Research Society, Pittsburgh, 1989, vol. 134, p. 431.
- 11. Allen, S. R., et al. J. Appl. Polymer Sci. 26 (1981): 291.
- 12. Minter, J. R., K. Shimamura, and E. L. Thomas. J. Mat. Sci. 16 (1981): 3,303.
- 13. Critchley, J. P. Die Angewandte Makromolekulare Chemie 109-110 (1982): 41.
- 14. Hwang, W.-F., et al. Polym. Eng. Sci. 23 (1983): 784.
- 15. Wolfe, J. F. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1988, vol. 11, p. 572.
- 16. Krause, S. J., et al. *Polymer* 29 (1988): 1,354 (see reference 14 therein).
- 17. Roitman, D. B., and M. McAdon. Macromolecules 26 (1993): 4,381.
- 18. Crosby, C. R., et al. J. Chem. Phys. 75 (1981): 4,298.
- 19. Wolfe, J. F., B. H. Loo, and F. E. Arnold. Macromolecules 14 (1981): 915.
- 20. Choe, E. W., and S. N. Kim. Macromolecules 14 (1981): 920.
- 21. DePra, P. A., J. G. Gaudiello, and T. J. Marks. Macromolecules 21 (1988): 2,295.
- 22. Jenekhe, S. A., P. O. Johnson, and A. K. Agrawal. Macromolecules 22 (1989): 3,216.
- 23. Lee, C. Y.-C., et al. Polymer 32 (1991): 1,195.
- 24. Rao, D. N., et al. *Appl. Phys. Lett.* 48 (1986): 1,187. (Note: The lower value than given in reference 23 may be due to poor film quality.)
- 25. Jenekhe, S. A., et al. Polym. Prepr. 32(3) (1991): 140.
- 26. Osaheni, J. A., and S. A. Jenekhe. Macromolecules 28 (1995): 1,172.
- 27. Shen, D. Y., and S. L. Hsu. Polymer 23 (1982): 969 (supplement).
- 28. Osaheni, J. A., et al. Macromolecules 25 (1992): 5,828.
- 29. Shen, D. Y., et al. J. Polym. Sci., Polym. Phys. Ed., 20 (1982): 509.
- 30. Chang, C., and S. L. Hsu. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 2,307.

Poly(γ -benzyl-L-glutamate)

DOUGLAS G. GOLD AND WILMER G. MILLER

ACRONYM PBLG

CLASS Polypeptides and proteins

STRUCTURE

MAJOR APPLICATIONS Modeling of conformational changes of biopolymers and modeling of α -helical polypeptides. Used in chromatography as a stationary phase for the resolution of racemic materials. Microencapsulation of pharmaceutically active hydrophobic liquids. Improves shatter resistance of plastics when blended with poly(vinyl chloride), poly(vinyl acetate), or their copolymers.

PROPERTIES OF SPECIAL INTEREST Exists in a highly ordered, well-defined, α -helical conformation held intact by intramolecular hydrogen bonds. The α -helical structure renders the polymer as a relatively stiff rigid rod and is retained when the polymer is dissolved in many solvents. In these helicogenic solvents, PBLG exists as a single isotropic phase at low concentration. At higher concentrations a liquid-crystalline cholesteric phase is present.

COMMONS SOLVENTS AND NONSOLVENTS α -helical conformation when dissolved in solvents such as dimethylformamide, benzene, toluene, methylene chloride, and chloroform. Random coil conformation in trifluoroacetic acid (TFA) and dichloroacetic acid (DCA), and in mixed solvents containing TFA and DCA. Nonsolvents include water and methanol.

SYNTHESIS The first step involves the synthesis of the amino acid γ -benzyl-L-glutamate by a standard Fischer esterification reaction of L-glutamic acid with benzyl alcohol in the presence of strong acid. The amino acid is subsequently converted to the N-carboxyanhydride (NCA) monomer by reaction with phosgene gas, $^{(1)}$ or by reaction with the less hazardous compound triphosgene. The NCA is polymerized by initiation with a variety compounds such as primary and secondary amines, and alkoxides. Typical comonomers include other amino acid NCAs.

FRACTIONATION Fractionation has been accomplished using the following solvent/nonsolvent combinations: dichloroethane/petroleum ether, dioxane/ethanol, methylene chloride/methanol. (3)

Poly(γ -benzyl- ι -glutamate)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	-	219	_
Typical molecular weight range	$g \text{mol}^{-1}$	-	$10^4 - 3 \times 10^5$	-
Typical polydispersity index (M_w/M_n)	-	-	1.2	-
IR (characteristic absorption frequencies)	cm^{-1}	-	3,291; 1,733; 1,652; 1,550; 1,167	(1)
UV (characteristic absorption frequencies)	cm^{-1}	-	61,000; 53,800; 51,000; 47,800; 45,700	(1)
NMR	_	_	_	(1, 10)
Thermal expansion	K^{-1}	$T < T_{\rm g} \approx 15^{\circ}$ C, buoyant-weight	2.3×10^{-4}	(4)
coefficients		technique $T > T_{\rm g} \approx 15^{\circ}{\rm C}$, buoyant-weight technique	4.5×10^{-4}	
Second virial coefficient	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	Dry DMF, 5–75°C, $M_{\rm w} \sim 10^5$	4×10^{-4}	(5)
Mark-Houwink parameters:			K a	
K and a	a = None	Dimethylformamide, 25°C, helical, 70,000–340,000	2.9×10^{-7} 1.7	(3)
		Dimethylformamide, 25°C, 60,000–570,000	5.6×10^{-6} 1.45	
		Dichloroacetic acid, 25°C,	2.78×10^{-3} 0.87	
		random coil, 20,000-340,000 Dichloroacetic acid, 25°C, 60,000-570,000	8.8×10^{-3} 0.77	
Characteristic ratio	_	Dichloroacetic acid, 25°C, random coil	10.3	(3)
		m-Cresol, helical	400-622	(6)
Persistence length	Å	Helicogenic solvents	$1,\!100\pm500$	(6-8)
Theta temperature	K	Dichloroethane/diethylene glycol (80:20)	298	(3)
Density (crystalline)	$\rm gcm^{-3}$	_	1.26-1.30	(3)
$T_{\rm g}$ -like transition temperature	K	Onset of side-chain rotation	288-293	(4, 9)

Poly(γ -benzyl- ι -glutamate)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Shear modulus	MPa	25°C -40°C	1,000 7,000	(4)	
Storage modulus	MPa	0°C, 0.1 Hz 25°C, 0.1 Hz	1,000 100	(9)	
Loss modulus	MPa	0°C, 0.1 Hz 25°C, 0.1 Hz	100 30	(9)	
WLF parameters: C_1 and C_2	°C (C ₂)	-	$C_1 = -8.86$ $C_2 = 101.6$	(9)	
Refractive index increment dn/dc	$\mathrm{ml}\mathrm{g}^{-1}$	Dichloroacetic acid, 25° C Dioxane, 25° C Dimethylformamide, 25° C, λ variable	0.085 0.114 0.118-0.127	(3) (1, 3) (5)	
Optical activity $[\alpha]_D$	_	Chloroform dichloroacetic acid	$[\alpha]_{546} + 14 [\alpha]_{546} - 15$	(3)	
Electronic band gap	eV	_	2.07	(1)	
Conductance	$\rm ohm^{-1}~cm^{-1}$	_	2×10^{-17}	(1)	
Piezoelectric coefficient	pCN^{-1}	_	-0.4	(1)	
Magnetic susceptibility	$emu g^{-1}$	-	-0.52×10^{-6}	(1)	
Surface tension	$mN\ m^{-1}$	20°C	39.2	(3)	
Decomposition temperature	K	_	473	(1)	
Helix pitch	Å	_	5.42	(1)	
Axial translation per residue	Å	-	1.505	(1)	
Residues per turn	_	_	3.6	(1)	
Cost	$US\$g^{-1}$	25 mg-1,g	95	_	
Availability	g	_	0.025-1	_	
Suppliers		al Co., P.O. Box 14508, St. Louis, Misso c., 400 Valley Road, Warrington, Penns			

Poly(γ -benzyl- ι -glutamate)

- 1. Block, H. *Poly*(*γ*-*benzyl-L-glutamate*) and Other Glutamic Acid Containing Polymers. Gordon and Breach Science Publishers, New York, 1983.
- 2. Daly, W. H., and D. Poche. Tetrahedron Lett. 29 (1988): 5,859.
- 3. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.
- 4. McKinnon, A. J., and A. V. Tobolsky. J. Phys. Chem. 72(4) (1968): 1,157.
- 5. DeLong, L. M., and P.S. Russo. Macromolecules 24 (1991): 6,139.
- 6. Aharoni, S. M. Macromolecules 16 (1983): 1,722.
- 7. Schmidt, M. Macromolecules 17 (1984): 553.
- 8. Iwata, K. Biopolymers 19 (1980): 125.
- 9. Yamashita, Y., et al. Polymer Journal 8(1) (1976): 114.
- 10. Bovey, F. A. Polymer Conformation and Configuration. Academic Press, New York, 1969.

Poly(1,3-bis-p-carboxyphenoxypropane anhydride)

ABRAHAM J. DOMB AND ROBERT LANGER

ACRONYMS, TRADE NAMES BIODEL-CPP, Poly(CPP), Poly(CPP-SA)

CLASS Polyanhydrides

STRUCTURE
$$[-CO-C_6H_4-O-CH_2-CH_2-CH_2-O-C_6H_4-COO-]$$

MAJOR APPLICATIONS Biodegradable polymer for controlled drug delivery in a form of implant or injectable microspheres (e.g., GliadelTM-BCNU-loaded wafer for the treatment of brain tumors).

PROPERTIES OF SPECIAL INTEREST Anhydride copolymers of 1,3-bis-*p*-carboxyphenoxypropane (CPP) with aliphatic diacids such as sebacic acid (SA) degrade in a physiological medium to CPP and SA. Matrices of the copolymers loaded with dissolved or dispersed drugs degrade in vitro and in vivo to constantly release the drugs for periods from 1–10 weeks.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight	$10^4 \mathrm{g} \mathrm{mol}^{-1}$	P(CPP-SA) GPC-polystyrene standards	$M_{\rm w} = 3$ –20, $M_{\rm n} = 0.5$ –3	_
	$dl g^{-1}$	Viscosity 25°C, dichloromethane	$\eta_{\rm sp} = 0.2 0.9$	_
IR (characteristic absorption frequencies)	cm^{-1}	Film on NaCl pellet PSA P(CPP-SA) P(CPP)	1,750, 1,810 1,740, 1,770, 1,810 1,712, 1,773	(1)
Raman	cm^{-1}	Film on NaCl pellet PSA P(CPP-SA) P(CPP)	1,739, 1,803 1,723, 1,765, 1,804 1,712, 1,764	(1)
UV (characteristic absorption wavelength)	nm	P(CPP-SA), dichloromethane CPP monomer, 1 N NaOH solution	265265	_
Optical rotation	_	Dichloromethane	No optical rotation	_

Poly(1,3-bis-p-carboxyphenoxypropane anhydride)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE			
Solubility	mg ml ⁻¹			SA), ol% CPP	P(CPP- 100 mol	SA), 70- % CPP	(2)
		Chloroform	>300	>300			
		Dichloromethane	>300		<1		
		Tetrahydrofuran	20		<1		
		Ketones	1		<1		
		Ethyl acetate	<1		<1		
		Alkanes and arenes	<1		<1		
		Ethers Water	<1 <1		<1 <1		
Mark-Houwink parameters: <i>K</i> and <i>a</i>	ml g ⁻¹ None	CHCl ₃ , 23°C	K = 3.8 $a = 0.6$				(3)
Thermal properties		P(CPP-A), DSC, 10°C min ⁻¹	0:100	22:78	46:54	100:0	(3)
	K	$T_{ m m}$	359.0	339.0	458.0	513.0	
	K	$T_{\rm g}^{\rm m}$	333.1	320.0	274.8	369.0	
	$kJ kg^{-1}$	$\Delta \overset{\circ}{H}$	150.7	64.0	13.0	110.9	
Crystallinity	%	P(CPP-SA), powder, X-ray diffraction	0:100	22:78	46:54	100:0	(3)
		$X_{\rm c}$	_	30.0	6.1	_	
		$W_{\rm c}$	66.0	35.0	14.2	61.4	
Comonomer sequence		P(CPP-SA), ¹ H-NMR, CDCl ₃	8:92	22:78	59:41	49:51	(3)
distribution		Probability for SA-SA	0.86	0.61	0.36	0.24	
		Probability for SA-CPP	0.14	0.34	0.47	0.49	
		Average block length L(SA)	12.3	4.6	2.5	2.0	
		Degree of randomness	0.3	0.7	0.9	1.0	
Stability in chloroform			P(CPP-	·SA)			(4)
(anhydride interchan	ge depoly:	merization)	0:100	20:80) 40:	:50	
Depolymerization rate constant	t^{-1}	37°C	0.1325	0.153	5 0.0	743	
Activation energy	kcal mol	$^{-1} K^{-1}$	8.08	8.27	7.2	7	
Erosion rate	$\rm mg\;h^{-1}$	P(CPP-SA), $14 \times 1.2 \text{mm}$ disc,					(5)
		0.1 M phosphate buffer,	0:100	22:78	49:51	100:0	
		pH 7.4, 37°C SA	2.3	1.8	0.4	_	
		CPP	_	0.5	0.3	< 0.01	
				0.0	0.0	(3.01	

Poly(1,3-bis-p-carboxyphenoxypropane anhydride)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE	
Erosion front	μm day ⁻¹	0.1 M phosphate buffer, pH 7.4, 37°C P(CPP-SA), 20:80 P(CPP-SA), 50:50	106 ± 5 118 ± 18		(6)	
Elimination in vivo	%		CPP	SA	(7)	
		7 days in rat brain 21 days in rat brain	2 64	95 100		
Drug release in vitro	% day ⁻¹	P(CPP-SA), 20:80 3.8% BCNU in disc 5% indomethacin in disc	30 9		(7) (6)	
Drug release in vivo	% day ⁻¹	7 ⁻¹ 3.8% BCNU disc implanted in a rat brain			(7)	
Biocompatibility	Compatible with human brain Compatible with rabbit brain, cornea, muscle, subcutane					
Supplier	Guilford Pharmaceuticals, Inc., Baltimore, Maryland, USA					

- 1. Tudor, A. M., et al. Spectrochimica Acta 9/10 (1991): 1,335-1,343.
- 2. Domb, A. J., and M. Maniar. J. Polym. Sci. 31 (1993): 1,275-1,285.
- 3. Ron, E., et al. Macromolecules 24 (1991): 2,278-2,282.
- 4. Domb, A. J., and R. Langer. *Macromolecules* 22 (1989): 2,117-2,122.
- 5. Tamada, J. A., and R. Langer. Proc. Natl. Acad. Sci. USA 90 (1993): 552.
- 6. Gopferich, A., D. Karydas, and R. Langer. Eur. J. Pharm. Biopharm. 41 (1995): 81-87.
- 7. Domb, A. J., et al. Biomaterials 15 (1994): 681-688.
- 8. Domb, A. J., S. Amselem, R. Langer, and M. Maniar. In *Designed to Degrade Biomedical Polymers*, edited by S. Shalaby, Carl Hauser Verlag, 1994, pp. 69–96.

Poly(bis maleimide)

LOON-SENG TAN

ACRONYM BMI

CLASS Polyimides; thermoset resins; addition polyimides; composite matrix resins

STRUCTURE

(X = aromatic or aliphatic bridging groups - see tables below)

MAJOR APPLICATIONS Printed circuit boards, laminating powder, carbon-fiber composites for aero-engines and military aircraft parts such as flap inboard cover, forward nozzle, gun pack, ammunition pack, blade choke, deep choke, speed brake, and ventral fin.⁽¹⁾

PROPERTIES OF SPECIAL INTEREST BMI resins are generally brittle. They can be toughened with additives such aromatic diamines (chain extension via Michael Addition reaction), divinylbenzene or bis(allylphenyl) compounds (chain extension via Diels-Alder reaction and ene reaction, respectively), benzocyclobutene derivatives (chain extension via Diels-Alder reaction), low molecular weight rubber, and thermoplastics. Certain bismaleimides are liquid crystalline. (2)

SYNTHESIS Bismaleimides are generally prepared from the two-step reaction of maleic anhydride and diamines in the presence of acetic anhydride and catalytic amounts of nickel acetate and triethylamine. Sodium acetate may be substituted for nickel acetate. Poly(bismaleimides) are highly cross-linked polymers formed from thermally cured bismaleimides. Thermal curing can be promoted by either a radical-type initiator (peroxides or azo compounds) or an ionic-type initiator such as 1,4-diazabicyclo-[2.2.2.]octane (DABCO), 2-methylimidazole and triphenylphosphine.

Thermal properties of bismaleimides*

LINKING GROUP (X) [†]	<i>T</i> _m (°C)	T _{poly,max} (°C)	$\Delta H_{ m poly}$ (kJ mol $^{-1}$)	REFERENCE
	363 [‡]	-	-	(9)
	202-203	_	56.3	(10)

B 1 /1 1			
Polythic	ma	aim	IAAI
Poly(bis	IIIa	CIII	IUCI

LINKING GROUP (X) [†]	<i>T</i> _m (°C)	T _{poly,max} (°C)	$\Delta H_{ m poly}$ (kJ mol $^{-1}$)	REFERENCE
	241	-	-	(11)
CH ₃	174–176	_	50.8	(10)
C ₂ H ₅ CH ₃	146-150	_	54.1	(10)
OCH ₃	174–175	-	61.1	(10)
	155–157 –	235 —	86.0 70.9	(10) (12)
\sim	195–196	_	-	(13)
	164–165	_	-	(13)
H ₃ C CH ₃	210–212	-	-	(12, 14)
H_3C C_2H_5 CH_2 CH_3	150-154	298	85.0 82.7	(10) (12)
H_5C_2 C_2H_5 C_2H_5	149-151 -	328 -	132 96.9	(10) (12)
CH ₃ CH ₃	235	290	83.5	(12)
-\(\)_0-\(\)_	172–178	286	57.6	(10, 12)

Poly(bis maleimide)				
LINKING GROUP (X) [†]	<i>T</i> _m (°C)	T _{poly,max} (°C)	$\Delta H_{ m poly}$ (kJ mol $^{-1}$)	REFERENCE
	212	236	_	(11)

$$CF_3$$
 CF_3 F_3C 112 323 66.5 (17)

			Poly(bis r	maleimide)
LINKING GROUP (X) [†]	<i>T</i> _m (°C)	T _{poly,max} (°C)	$\Delta H_{ m poly}$ (kJ mol $^{-1}$)	REFERENCE
CN CN	205	_	109	(19)
	137	258	186	(18)
	239	250	89–100	(12)
	85–91	304	123	(12)
	226	285 —	_ 74.6	(12) (19)
	293	-	64.1	(19)
	209	-	104	(19)
	60-65 185	314	- 87.2	(12) (19)
	230	245	-	(20)
O—(CH ₂ CH ₂) ₃ —O—	176	274	_	(20)
H_3C CH_3	90–100	203	39.4	(4, 12)
s	181-182	300	-	(11, 21)
-__\s -__\s -___	255–257	_	_	(21)

Poly(bis maleimide)

LINKING GROUP (X) [†]	<i>T</i> _m (°C)	T _{poly,max} (°C)	$\Delta H_{ m poly}$ (kJ mol ⁻¹)	REFERENCE
	185–186	_	_	(21)
CH ₃ -CH ₂ -C-CH ₂ -CH-CH ₂ -CH ₂ - CH ₃ CH ₃	70–130	-	_	(11)
$-(CH_2)_2-$	191-192	_	_	
$-(CH_2)_6$	140-141.5	_	_	(22)
$-(CH_2)_8-$	123	_	_	(23)
	120-122	_	_	(22)
$-(CH_2)_{10}-$	113.5-115	_	_	(22)
$-(CH_2)_{12}-$	110-112	_	_	(22)

^{*} $T_{\rm m}$ = normal melting temperature; $T_{\rm poly,max}$ = maximum of polymerization exotherm; $\Delta H_{\rm poly}$ = enthalpy of polymerization. X = 1 = an aromatic or aliphatic bridging group referred to in the structure shown at the beginning of this entry.

Typical physical properties of bis(4-maleimidophenyl)methane(11,24)

PROPERTY	UNITS	CONDITIONS	VALUE
Physical form	_	-	Fine powder
Color	_	_	Yellow
Melting point	K	DSC	422-427
Exotherm peak temperature	K	DSC	533
Polymerization energy	$\mathrm{J}\mathrm{g}^{-1}$	DSC, heating rate at 20°C min ⁻¹	>190

Properties of cured bis(4-maleimidophenyl)methane(11,24)

PROPERTY	UNITS	CONDITIONS	VALUE
Glass transition temperature	K	DSC, heating rate at 20°C min ⁻¹	503-563
Tensile strength	MPa	23°C	41-83
Tensile modulus	MPa	23°C	$4-5 \ (\times 10^3)$
Flexural strength	MPa	23°C	76-145
Flexural modulus	MPa	23°C	$3.4-4.8~(\times 10^3)$
Flexural strain to failure	%	23°C	1.3-2.3
Fracture energy	$\mathrm{J}\mathrm{m}^{-2}$	G _{IC} , 23°C	24-33

[‡] Decomposition temperature.

Compimide 353 * property data $^{(10,25)}$

PROPERTY	UNITS	CONDITIONS	VALUE
Melting point	K	_	341-402
Gel time	min	At 171°C	35-65
Viscosity	mPa	At 110°C	400-1,400
Polymerization exotherm, onset temperature	K	DSC, heating rate at 20°C min ⁻¹	466 ± 10
Exotherm peak temperature	K	DSC, heating rate at 20°C min ⁻¹	548 ± 15
Polymerization energy	$\mathrm{J}\mathrm{g}^{-1}$	DSC, heating rate at 20°C min ⁻¹	220 ± 40

^{*} A mixture comprising 50% of 1,4-bis(maleimido)diphenylmethane, 40% of 2,5-bis(maleimido)toluene, and 10% 1,6-bis(maleimido)-2,2-dimethyl-4-methyl-hexane.

Properties of compimide 353* neat resin castings^(10,25)

PROPERTY	UNITS	CONDITIONS	VALUE
$T_{ m g}$	K	_	>575
Flexural strength	MPa	At 24°C At 249°C	60 50
Flexural modulus	MPa	At 24°C At 249°C	$5.5 \times 10^3 \\ 3.4 - 3.5 \; (\times 10^3)$
Fracture energy	$\mathrm{J}\mathrm{m}^{-2}$	At 24°C, G _{IC}	~25

^{*} A eutectic mixture comprising 50% of 1,4-bis(maleimido)diphenylmethane, 40% of 2,5-bis(maleimido)toluene, and 10% 1,6-bis(maleimido)-2,2-dimethyl-4-methyl-hexane.

Range of properties of bismaleimides resins (26)

PROPERTY	UNITS	CONDITIONS	VALUE
Tensile strength	MPa	24°C 200°C	332–617 275–497
Tensile strain to failure	%	24°C 150°C	1.2–3.6 2.6
Flexural strength	MPa	24°C	121.3-166.8
Fracture toughness	$\mathrm{J}\mathrm{m}^{-1}$	At 24°C, GIC2	30-389

Poly(bis maleimide)

PROPERTY	UNITS	CONDITIONS	VALUE
Glass transition temperature	K	_	478-593
Density	$\rm g~cm^{-3}$	24°C	1.22-1.30
Moisture absorption	wt%	_	1.0-4.8

Fracture toughness (G_{IC}) of some commercial BMI resins

BMI RESIN	UNITS	CONDITIONS	VALUE	REFERENCE
Kerimid 601	$J m^{-2}$	23°C	34	(27)
Kerimid 70003	$\rm J~m^{-2}$	23°C	82	(27)
Kerimid or Compimide 353	$\mathrm{J} \ \mathrm{m}^{-2}$	23°C	25	(27)
Compimide 795, 766, 800, 183	$\mathrm{J} \ \mathrm{m}^{-2}$	23°C	40-180	(27)
Modified Compimide 353	$\mathrm{J} \ \mathrm{m}^{-2}$	23°C	389	(27)
Desbimid	$\mathrm{J} \ \mathrm{m}^{-2}$	23°C	470	(28)
Ciba-Geigy Matrimid 5292 (XU292)	$\mathrm{J} \ \mathrm{m}^{-2}$	23°C	210, 259	(27)

Range of mechanical properties of graphite fiber/BMI composites (unidirectional) $^{(26)}$

PROPERTY	UNITS	CONDITIONS	VALUE
Density	g cm ⁻³	60 vol% fiber and 40 vol% BMI	1.5-1.6
Flexural strength	MPa	24°C, dry 24°C, wet	1,916-2,047 1,930-2,041
Flexural strength	MPa	177°C, dry 177°C, wet 232°C, dry	1,930 1,378 1,234–1,378
Flexural modulus	MPa	24°C, dry 24°C, wet	$124.1-144.1 \; (\times 10^3) \\ 142.0 \times 10^3$
Glass transition temperature	K	DSC	478-593

Dielectric constant values of some cured BMI⁽¹⁷⁾

x *	CONDITIONS	VALUE
$- \underbrace{\begin{array}{c} CH_3 \\ CH_3 \end{array}} = 0$	1 MHz, room temperature	3.2
$- \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}} - O - \underbrace{\begin{array}{c} CF_3 $	1 MHz, room temperature	3.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 MHz, room temperature	2.8

^{*} X = an aromatic or aliphatic bridging group referred to in the structure shown at the beginning of this entry.

Thermal properties of liquid crystalline, bismaleimide-based ester monomers*

R	TRANSITION TEMPERATURES [†] (°C	·)	
	Crystal to nematic $(k \rightarrow n)$	Nematic to isotropic $(n \rightarrow i)$	Thermosetting/Solidification
Н	282	Not observed	293
CH_3	245	Not observed	280
Cl	215	Not observed	270

^{*} Adapted from reference (2).

[†] Conditions: transition temperatures were determined by hot-stage, polarized light microscopy with a heating rate of approximately 20°C min⁻¹.

Poly(bis maleimide)

Commercial BMI products

PRODUCT NAME	DESCRIPTION	SUPPLIERS
FM-32 Cycom 3100	Bismaleimide-based adhesives A proprietary BMI formulation for carbon fiber prepreg	American Cyanamid Co., Engineered Materials Department, 1300 Revolution Street, Havre de Grace, Maryland, USA
MR-54-4	A tough BMI resin formulation with cured $T_{\rm g}$ of 260°C, low water uptake, 180°C hot/wet service	Amoco Performance Products, Bound Brook, New Jersey 08805, USA
MR 56-2	A BMI resin formulation for high use temperature ($T_{\rm g}$ 350°C), for prepreg uses	
Narmco 5250-2, 5250-3, and 5250-4	Proprietary BMI prepreg resins; Narmco-5250-2 has the highest $T_{\rm g}$ and Narmco-5250-4 is the toughest of the series	BASF, Ludwigshafan, Germany; BASF, Structural Materials, Inc., Anaheim, California, USA
Vicotex 5564-1	A BMI formulation for autoclave molding	Brochier S. A. Lyon, France (a subsidiary of Ciba-Geigy)
Fibredux DLS 811, Fibredux 6451	Proprietary formulations for low-pressure autoclave molding	Ciba-Geigy, Composite Duxford, UK
Fiberite X86	A high-temperature BMI resin for laminates	ICI/Fiberite, Tempe, Arizona/Winona, Minnesota 55987/Greenwich, Texas 75401, USA
R6450, R6452, R6453	Proprietary BMI formulation	Ciba-Geigy, Composite Materials Division, Anaheim, California, USA
Matrimide 5292 A,B	A two-component resin system consists of 4,4'-bismaleimidodiphenylmethane (M5292A) and diallylbisphenol-A (M5292B)	Ciba-Geigy Corporation, Hawthorne, New York 10532, USA
RD85-101	A BMI resin derived from diaminodiphenyllindane and designed for hot-melt prepregging	
Araldite, XU5292	A BMI resin solution for printed circuit board applications	
Desmid	A BMI formulation, a mixture of 4,4'-diaminodiphenylmethane-based BMI (~50%), styrene, 2-hydroxyethylmethacrylate and a curing agent (trigonox HM)	DSM Advanced Composites, P.O. Box 18, 6160 MD Geleen, The Netherlands
MV-A2	A BMI building block derived from 1,3-diaminobenzene	Du Pont Company, Wilmington, Delaware, USA

PRODUCT NAME	DESCRIPTION	SUPPLIERS
F 178	A first generation high $T_{\rm g}$ BMI resin formulation, for prepreg uses	Hexcel Corporation, Dublin, California, USA
F 650	A high- $T_{\rm g}$ BMI resin system, for prepreg uses	
F 652	A tough, controlled-flow BMI resin formulation for prepreg uses	
F 655	A controlled-flow, tough BMI system (for intermediate modulus fibers) for prepreg uses	
EA-9655	Bismaleimide-based adhesives	Hysol/Dexter Corporation, Pittsburg,
EA-9673	BMI-based adhesives	California 94565, USA
LR100-74	BMI-based adhesives	
BMI-70	BMI building block derived from bis(3-methyl-4-amino-5-ethyl-phenyl)methane	Ihara Chemical Industry Co.; Ken Seika Corporation
BT resins	Blends of bismaleimide (B) and triazine (T) resins, primarily for printed circuit board applications	Mitsubishi Gas Chemicals Co., Inc., Mitsubishi International Corporation, 520 Madison Avenue, 11th Floor, New York, New York 10022, USA
Bismaleimide-S	BMI building block derived from 4,4'-bismaleimidodiphenylmethane	Mitsui Toatsu Chemicals, Inc., Kasumigaseki, Chiyodaku, Tokyo, Japan; MTC America, Inc., New York, USA
IM-AD resins	A line of BMI resins designed for the manufacture of printed circuit boards, aerospace laminates, and structural composites	Reichhold Chemicals, Inc., Warren, New York 07060, USA
Kerimide 601	A resin system consists of a mixture of 1,1'-(4-methylene-1-phenylene)bismaleimide (BMPM) and methylene dianiline (MDA) in a BMPM:MDA molar ratio of 2.5:1	Rhone-Poulenc Chimie, Lyon, France; Rhone-Poulenc, Inc., Seattle, USA
Kerimid 353	A tacky mixture of three BMIs; melts at 70–125°C; low resin viscosity at 125°C allows for rapid and thorough fiber impregnation	
Rhodmid M3	A BMI resin derived from 4,4'-bismaleimidodiphenylmethane	

Poly(bis maleimide)

PRODUCT NAME	DESCRIPTION	SUPPLIERS
Compimide MDAB	A BMI building block based on 4,4'-bismaleimidodiphenylmethane	Shell Chemical Company, Houston, Texas 77252, USA;
Compimides 353, 353A, 796	A basic hot-melt type, eutectic mixture of BMI based on methyldianiline and	Technochemie GmbH-Verfarenstechnik, Dossenheim, Germany;
Compimide 15MRK	aliphatic diamines A formulated BMI resin for injection and	Deutche Shell Chemie GmbH, Eschhorn, Germany
Compimide 65 FWR	compression molding A filament windable BMI resin	
Compimide 1206-F55	A 50–60% by weight solution of BMI resin for prepregging	
V378A	A high- T_g hot/wet resistant resin	U. S. Polymeric, Santa Ana, California;
V390	A toughened high- T_g BMI formulation	Hitco Materials Division;
V398	A tough BMI system	BP Chemicals (Hitco) Inc., Anaheim,
V391	A BMI thermoset with thermoplatic-like toughness	California

REFERENCES

- 1. Wilson, D. In *Polyimides*, edited by D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother. Chapman and Hall, New York, 1990, chap. 7, 190–198.
- 2. Hoyt, A. E., and B. C. Benicewicz. J. Polym. Sci..: Part A, Polym. Chem., 28 (1990): 3,417.
- 3. Searle, N. E. U.S. Patent 2,444,536; Chem Abst. 42 (1948): 1,340.
- (a) Lee, B. H., M. A. Chaudhari, and T. Galvin. In Proc. 17 National SAMPE Tech. Conf., 1985, pp. 172–178; (b) Barrett, K. A., M. A. Chaudhari, and B. H. Lee. In Proc. 33rd International SAMPE Symp., 1988, p. 398.
- 5. Cole, N., and W. F. Grubber. U.S. Patent 3,127,414 (March, 1964).
- 6. Cubbon, R. C. P. Polymer 6 (1965): 419.
- 7. Stenzenberger, H. D., et al. Proc. 30th National. SAMPE Symp., 1985, p. 1,568.
- 8. Shibahara, S., et al. Polymer J. 28 (1996): 752.
- 9. Crivello, J. V. J. Polym. Sci., Polym. Chem. Ed., 11 (1973): 1,185.
- 10. Stenzenberger, H. D. In *Structural Adhesives: Developments in Resins and Primers*, edited by A. J. Kinloch. Elsevier Applied Science Publishers, New York, 1986, chap. 4, pp. 77–126.
- 11. Lin, S.-C., and E. M. Pearce. *High-Performance Thermosets: Chemistry, Properties*. Hanser Publishers, Munich, 1994, chap. 2, pp. 13–63.
- Stenzenberger, H. D. In *Polyimides*, edited by D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother. Chapman and Hall, New York, 1990, chap. 4, pp. 79–128.
- 13. Bell, V. L. and P. R. Young, J. Polym. Sci., Polym. Chem. Ed., 24 (1986): 2,647-2,655.
- (a) Kraiman, E. A. U. S. Patent 2,890,206 (1959); (b) U. S. Patent 2,890,207; (c) Chem. Abst. 53 (1959): 17,572.
- (a) Varma, I. K., G. Fohlen, and J. A. Parker. U. S. Patent 4,276,344 (1981); (b) Varma, I. K., et al. In Chemistry and Properties of Crosslinked Polymers, edited by S. S. Labana. Academic Press, New York, 1977, p. 115.
- 16. Heisey, C., et al. Polym. Mater. Sci. Eng. 67 (1992): 28.
- 17. Nagai, A., et al. J. Appl. Polym. Sci. 44 (1992): 159.
- 18. T. Pascal, R. Mercier, and B. Sillion. *Polymer* 30 (1989): 739.
- 19. Stenzenberger, H. D. Adv. Polym. Sci. 117 (1994): 165.
- 20. Takeda, S., et al. J. Appl. Polym. Sci. 35 (1988): 1,341.
- 21. Sergeyev, V. A., et al. Vysokomol. Soyed 28(9) (1986): 1,925.
- Stenzenberger, H. D., K. U. Heinen, and D. O. Hummel. J. Polym. Sci., Polym. Chem. Ed., 14 (1976): 2,911.

- 23. White, J. E., M. D. Scaia, and D. A. Snider. J. Appl. Polm. Sci. 29 (1984): 891.
- 24. Compinide MDAB. Technical Bulletin SC:1015-88, Shell Chemical Company.
- 25. Compinide 353. Technical Bulletin SC:1018-88, Shell Chemical Company.
- Scola, D. A. In *International Encyclopedia of Composites*, edited by S. M. Lee. VCH Publishers, New York, 1991, vol. 6, p. 34.
- 27. Scola, D. A. In *Engineered Materials Handbook: Composites*. ASM International, Metals Park, Ohio, 1987, pp. 78–89.
- 28. Scholle, K. F. M., and H. Winter. Proc. 33rd International SAMPE Symp. 1988, p. 1,109.

1,2-Polybutadiene

RAHUL D. PATIL

CLASS Diene elastomers; diene polymers

CAS REGISTRY NUMBER [26160-98-5]

SYNDIOTACTIC [31567-90-5]

STRUCTURE

$$\begin{array}{c|c}
H & H \\
 \hline
 C & C \\
 \hline
 H & HC = CH
\end{array}$$

MAJOR APPLICATIONS With one chiral center, 1,2-polybutadiene can exist in the amorphous atactic form and two crystalline forms: isotactic and syndiotactic. In the formation of 1,2-polybutadiene, it is believed that the syn p-allyl form yields the syndiotactic structure, while the anti p-allyl form yields the isotactic structures. The equilibrium mixture of syn and anti p-allyl structures yields heterotactic polybutadiene. At present, the two stereo-isomers that are most used commercially are the syndiotactic and heterotactic structures. $^{(1)}$

COMMERCIAL USE Syndiotactic 1,2-polybutadiene is used in films, footwear soles, tubes, and hoses; atactic 1,2-polybutadiene is extensively used in the rubber and tire industry. (1,2)

PROPERTIES OF SPECIAL INTEREST Syndiotactic 1,2-polybutadiene is a reactive thermoplastic resin, which has characteristics of both a thermoplastic and an elastomer. $^{(1,2)}$

PREPARATION The preparation of amorphous high (99%) 1,2-polybutadiene was first reported in 1981.⁽³⁾ Several reports in the literature describe the preparation of low, medium, and high vinyl 1,2-polybutadienes.^(1,4,5) Syndiotactic 1,2-polybutadiene can be prepared using various cobalt catalysts.^(1,6-9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Average molecular weight M _w	g mol ⁻¹	Syndiotatic	100,000	(10)
Specific gravity	$\rm g~cm^{-3}$	92% 1,2 content	0.902	(11)
Melting temperature	K	Syndiotactic Isotactic Atactic	429 399 —	(12)
Glass transition temperature	K	Syndiotactic Isotactic Atactic	245 269	(12)
Solubility parameter	$(MPa)^{1/2}$	90% 1,2- units	17.4	(13)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml } g^{-1}$ $a = \text{None}$	In toluene	$K = 9.01 \times 10^{-5}$ $a = 0.81$	(14)
Intrinsic viscosity	$dl g^{-1}$	In benzene at 30°C	1.52	(15)
Infrared absorption coefficients	$(dl cm^{-1} mg^{-1}) \times 10^{-3}$	Wave length (mm) 10.35 10.95–10.98 13.5–13.65	0.828 26.7 0.231	(16)
Infrared absorption coefficients	$\text{mol}^{-1} \text{cm}^{-1}$	Wave length (mm) 10.3 11.0 12-15.75	6.7 184 4.7	(17)
Water contact angle	degrees	At pH 1 At pH 12	95 97	(10)
Critical surface tension	$(Nm^{-1})\times 10^3$	_	25	(18)
Refractive index	_	_	1.51	1
Solubility	_	In THF at 25°C In toluene at 25°C	Soluble Soluble	(14)

Unit cell dimensions $^{(19-22)}$

Isomer	Lattice	Monomers	Cell dimensions (Å)			Cell angles (degrees)		
		per unit cell	а	b	c (chain axis)	α	β	γ
Isotactic (99%) Syndiotactic (98%)	Rhombohedral Orthorhombic	18 4	17.3 10.98	17.3 6.60	6.5 5.14	90 90	90 90	120 90

Parameters of internal rotation $^{(13)}$

1,2 content (%)	с	s	U	U_0 (J mol $^{-1}$)	ε
30	2.32	1.67	1.40	2385	0.83
50	2.34	1.83	1.55	2427	0.97
66	2.41	1.89	1.55	2469	1.06
90	2.41	2.05	1.79	2469	1.20

1,2-Polybutadiene

Molecular weight and intrinsic viscosity $^{*(13)}$

$[\eta]$ (dl g $^{-1}$)	$ extit{M}_{ m w} imes 10^{-4}$
1.40	20.12
1.98	30.94
2.45	41.66
2.74	49.20
3.40	68.41
4.27	92.92

^{*} For 90% 1,2- and 10% *trans*, intrinsic viscosity was measured in toluene at 30°C \pm 0.05°C.

Microstructure and properties of syndiotactic 1,2-polybuta diene $^{\left(23\right) }$

mp (°C)	Heat of fusion	Crystallinity	$[\eta]$	¹ H-NMR	¹³ C-NMR (%)		
	(J g ⁻¹)	(%)	(dl g ⁻¹)	1,2 content (%)	1,2 content	Syndiotactic	
210	78.7	77.5	6.06	99.72	99.0	99.6	
208	77.4	79.7	5.08	99.74	99.2	99.4	
206	<i>7</i> 5. <i>7</i>	81.7	2.00	99.02	98.8	98.8	
202	74.5	77.2	1.94	97.75	96.8	97.9	
200	79.5	78.3	1.11	97.28	96.0	97.8	
192	76.6	72.2	0.46	95.35	93.6	95.1	
156	45.2	55.6	0.12	86.27	83.2	87.7	

Mechanical properties⁽¹¹⁾

PROPERTY	UNITS	CONDITIONS	VALUE
Tensile strength	MPa	_	11.2
Elongation	%	_	650
M300 stress at 300%	MPa	_	6.9
Tear strength	$kN m^{-1}$	_	68.8
Yield stress	MPa	_	5.6
Hardness	Shore D	_	35
Impact strength	$(Jm^{-1})\times 10^{-3}$	_	5.0
Tension set	%	At 100% elongation At break	22 145
Hysteresis loss	-	At 30% strain At 300% strain	0.177 0.772

Properties of syndiotactic-PB fibers⁽²⁴⁾

mp (°C)	Stretching temp. ratio	Diameter (μm)	Initial modulus (t cm ⁻²)	Tenacity (t cm ⁻²)	Elongation (%)	Birefringence $\Delta \times 10^3$
187	60 × 1.8	14.5	11.4	1.50	68	-11.5
185	60×2.1	14.4	16.7	2.25	19	-12.1
192	60×2.3	14.0	16.9	1.61	18	-13.6

Literature available

1,2-polybutadiene	Reference
Conformational properties	(25)
Effects of fillers on mechanical and viscoelastic properties	(11)
Infrared laser-induced reactions with difluorovinylidene	(26)
Adhesion and wettability studies	(18, 27)
Radiation induced addition of carbon tetrachloride	(28)
Hydrogenation	(29, 30)

Suppliers

- 1. Scientific Polymer Products, Inc., 6265 Dean Parkway, Ontario, New York 14519-8997, USA
- 2. Acros Organics USA, 711 Forbes Avenue, Pittsburgh, Pennsylvania 15219-4785, USA
- 3. Niss America, Inc., 220E 42nd Street, Suite 3002, New York, New York 10017, USA

REFERENCES

- 1. Halasa, A. F., and J. M. Massiein. In *Kirk-Othmer Encyclopedia of Chemical Technology*, 4th ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1989, vol. 8.
- Tate, D. P., and T. W. Bethea. In Encyclopedia of Polymer Science and Engineering, edited by H. F. Mark, et al., 2d ed. John Wiley and Sons, New York, 1989, vol. 2.
- 3. Halasa, A. F., D. F. Lohr, and J. E. Hall. J. Polym. Sci., Poly. Chem. Ed., 19 (1981): 1,347.
- 4. Tobolsky, A. V., D. I. Kelley, and H. J. Hsieh. J. Polym. Sci. 26 (1957): 240.
- 5. Binder, J. L. Anal. Chem. 26 (1954): 1,877.
- 6. Natta, G., and P. Corradin. J. Polym. Sci. 20 (1956): 251.
- 7. Susa, E. J. Polym. Sci., Part C, 4 (1964): 399.
- 8. Longiave, C., and R. Castelli. J. Polym. Sci., Part C, 4 (1964): 387.
- 9. Ashitaka, H., K. Jinda, and H. Ueno. J. Polym. Sci., Poly. Chem. Ed., 21 (1983): 1,951.
- 10. Carey, D. H., and G. S. Ferguson. Macromolecules 27 (1994): 7,254.
- 11. Bhagawan, S. S., D. K. Tripathy, and S. K. De. J. Appl. Polym. Sci. 34 (1987): 1,581.
- 12. Lee, W. A., and R. A. Rutherford. In *Polymer Handbook*, 2d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1975, p. III-139.
- 13. He, T., B. Li, and S. Ren. J. Appl. Polym. Sci. 31 (1986): 873.
- 14. Anderson, J. N., M. L. Barzan, and H. E. Adam. Rubber Chem. and Tech. 45 (1972): 1,270.
- 15. Liaw, D. J., and L. L. Lin. J. Appl. Polym. Sci. 37 (1989): 1,993.
- 16. Morero, P., et al. Chim. Ind. (Milan) 41 (1959): 758.
- 17. Silas, R. S., J. Yates, and V. Thornton. Anal. Chem. 31 (1959): 529.
- 18. Lee, L. H., J. Poly. Sci., Part A-2, 5 (1967): 1,103.
- 19. Stephens, H. L. In *Polymer Handbook*, 3d ed, edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. III-139.
- 20. Natta, G., P. Corradini. Nuovo Cimento 15(Suppl. 1) (1960): 9-39.
- 21. Natta, G., et al. Atti. Accad. Nazl. Lincei Rend. 20 (1956): 560.

1,2-Polybutadiene

- 22. Natta, G., and P. Corradini. Rubber Chem. and Tech. 33 (1960): 732.
- 23. H. Ashitaka, K. Inaishi, and H. Ueno, J. Polym. Sci., Poly. Chem. Ed., 21, 1973 (1983).
- 24. Ashitaka, H., et al. J. Appl. Polym. Sci. 29 (1984): 2,763.
- 25. Ma, H., and L. Zhang. Polymer Journal 26 (1994): 121.
- 26. Thomsen, M. W., and B. F. Kimmich. Macromolecules 24 (1991): 6,343.
- 27. Friedmann, G., and J. Brossas. J. Appl. Polym. Sci. 30 (1985): 755.
- 28. Okamoto, H., S. Adachi, and T. Iwai. J. Polym. Sci., Poly. Chem. Ed., 17 (1979): 1,267.
- 29. D. N. Schulz in *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 7.
- 30. Jones, R. V., C. W. Marberly, and W. B. Reynolds. Ind. Eng. Chem. 45 (1953): 1,117.

M. A. SHARAF

CLASS Diene elastomers

MAJOR APPLICATIONS Tires and tire products, sealants, belts, gaskets, hoses, automotive molded articles, rubber bands, gloves, footware, sporting goods, and rubber sheeting. Block copolymers with styrene are used for adhesives and footware.

PROPERTIES OF SPECIAL INTEREST High green strength, tack, can be compounded with fillers and other polymers, can form block copolymers for specialty applications, high tensile strength owing to strain-induced crystallization.

Preparative techniques

CATALYST SYSTEMS	MICROSTRU	CTURE (%)		REFERENCE	
	CIS-1,4	TRANS-1,4	1,2-VINYL		
Ziegler-Natta					
AIR ₃ /TiI ₄	92	3	5	(1-4)	
$AlR_3/TiI_4O(i-C_3H_7)_2$	92-94	2-3	5	(5)	
AlR ₃ /TiCl ₄ /TiI ₄	93-94	2-3	4	(6, 7)	
$AlR_2Cl/Co(acac)_2/2H_2O$	98	≈1	≈1	(8-15)	
$AlR_3/Ni(OCOR)_2/BF_3O(C_2H_5)_2$	97	≈1.5	≈1.5	(16, 17)	
$Al(C_2H_5)_2Cl/Nd(OCOR)_3/AlR_3$	98-99	_	≈1	(18-21)	
AlR ₃ /NdCl ₃ /Donor	99	_	≈1	(20, 21)	
η 3-Allyl derivatives of transition metals					
$(\eta 3\text{-C}_4\text{H}_7)\text{CrOCOCl}_3$	93	4	3	(22, 23)	
$(\eta 3-C_4H_7)CrCl_2$	90	5	5	(23)	
$(\eta 3-C_4H_7)$ CoCl	91	2	7	(23)	
$(\eta 3-C_4H_7)NiCl_2$	85-90	5-10	_	(24, 25)	
$(\eta 3-C_4H_7)NiOC_6H_2(NO_2)_3$	97	3	_	(26)	
$(\eta 3-C_4H_7)NiOCOCF_3$	91-98	1-8	1	(26, 27)	
$(\eta 3-C_{12}H_{19})$ NiOCOCF ₃	98	2	_	(28)	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of polymerization	$kJ mol^{-1}$	Cis-1,4- addition at 25°C	78	(29)
Entropy of polymerization	$\rm JK^{-1}mol^{-1}$	Cis-1,4- addition at 25°C	84	(30)
Activation energy of thermal depolymerization	$kJ mol^{-1}$	_	259	(31)
Major infrared bands	cm^{-1}	In phase out-of-plane CH wag CH ₂ wag C=C stretching	730 1,310 1,655	(32)
Infrared absorption coefficients	$\frac{\rm dl\ cm^{-1}\ mg^{-1}}{(\times 10^{-3})}$	In phase out-of-plane CH wag, $740\mathrm{cm}^{-1}$ (shift to $725\mathrm{cm}^{-1}$ for lower content of <i>cis</i> -1,4- units)	5.73	(33–37)
Infrared molar absorptivities	$\mathrm{mol}^{-1}\mathrm{cm}^{-1}$	In phase out-of-plane CH wag, $740\mathrm{cm}^{-1}$ (shift to $725\mathrm{cm}^{-1}$ for lower content of <i>cis</i> -1,4- units)	10.1	(32-38)
High resolution ¹ H NMR res Proton resonance lines	onance lines ppm	250 MHz or greater 1,2 methylene 1,4 methylene (occurs as doublet corresponding to <i>cis-trans</i> units) 1,2 terminal vinyl 1,4 olefinic (occurs as doublet corresponding to <i>cis-trans</i> units) 1,2 nonterminal vinyl	1.3 2.0 4.8 5.4	(39, 40)
Solid state proton	ppm	1,4 methylene	25	(41)
resonance lines ¹³ C resonance lines	ppm	1,4 olefinic In CDCl ₃ at 40°C 1,4 methylene 1,4 olefinic	≈27.5 129	(42-46)
13 C T_1 13 C correlation time	s ns	In CDCl ₃ at 54°C In CDCl ₃ at 54°C	3 0.01–0.016	_ (47)
Schaefer width parameter <i>p</i>	_	Methylene carbon, $T = 40-45$ °C	9	(47)
J-coupling constant (¹³ C satallite signal of olefinic protons)	Hz	55°C	10.7	(48)
Neutron scattering length density	10^{14} m^{-2}	23°C	0.41	(49)
Density	$\rm g~cm^{-3}$	1,4-cis 1,4-cis (98-99%), 5°C	0.915 1.01	(50) (51)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Reducing paremeters for the Simha-Somcyncky equation of state: T^* , V^* , P^*	$T^* = K$ $V^* = cm^3 g^{-1}$ $P^* = MPa$	T-range = 5–55°C, P -range = 0–300 MPa	$T^* = 9,644$ $V^* = 1.0861$ $P^* = 771.4$	(52)

Theta solvents and temperatures

Cis units (%)	Solvent	θ Temp. (K)	Method	Reference
97	n-Heptane	272	Phase equilibria	(53)
97	n -Propyl acetate	308.5	Virial coefficient, viscosity	(53)
97	5-Methyl-2-hexanone/2-pentanone (1/3 V)	319.2	Phase equilibria	(54)
97	5-Methyl-2-hexanone/2-pentanone (1/1 V)	305.7	_	(54)
97	5-Methyl-2-hexanone/2-pentanone (3/1 V)	295.3	_	(54)
97	3-Pentanone	283.3	_	(54)
97	3-Pentanone/2-pentanone (3/2 V)	303.0	_	(54)
94	Diethyl ketone	486	_	(55)
94	Ethyl propyl ketone	513	_	(55)
94	Propylene oxide	419	_	(55)
93	Diethyl ketone	287	_	(55)
93	Diethyl ketone	481	_	(55)
93	Ethyl propyl ketone	251	_	(55)
93	Ethyl propyl ketone	510	_	(55)
93	Propylene oxide	308	_	(55)
93	Propylene oxide	414	_	(55)
90	<i>i</i> -Butyl acetate	293.5	Virial coefficient, viscosity	(56)
90	n-Heptane/ n -hexane (50/50 V)	278	Phase equilibria	(57)
90	n-Heptane/ n -hexane (25/75)	293		(57)
90	5-Methyl-2-hexanone	285.6	_	(58)
90	2-Pentanone	332.7	_	(58)
90	3-Pentanone	283.6	_	(58)

Second virial coefficient (59)

Solvent	Temp. (°C)	$M \times 10^{-5} \ ({\rm g mol}^{-1})$	Condition	Method	$A_2 imes 10^{10} \ m (mol~m^3~g^{-2})$
Benzene	28.6	0.6-2.93 1.38		Osmometry	15.3 27.9
Cyclohexane	28.6	8.4-43.5 1.43-1.64	Unfractionated sample Fractionated sample	Light scattering	2.92 7.5–1.63

PROPERTY	CONDITIONS	VALUE	REFERENCE			
Solvents	Hydrocarbons, tetrahydrofuran, higher ketones, higher	er aliphatic esters	(60, 61)			
Nonsolvents	Alcohol, lower ketones, lower esters, nitromethane, proponitrile, water, dilute acids, dilute alkalies, hypochlorite solutions					
Solvent/nonsolvent mixtures	Benzene/acetone, benzene/n-butanol, benzene/n-methanol, chloroform/acetone, dichloroethane/2-butanone, toluene/n-butanol, toluene/methanol	Fractional precipitation	(61)			
	Amyl acetate/2-ethoxy ethanol, benzene/methanol, acetone, (acetone, <i>n</i> -hexane)	Fractional solution				
	Benzene/methanol, carbon tetrachloride/n-butanol	Turbidimetric titration				

Super critical fluids $^{(62,63)}$

Mol. wt. (g mol ⁻¹)	Solvent	Temp. (°C)	Pressure (MPa)	Conc. (wt%)	Method	Conditions
5,000	CO ₂	25	19.3	0.27	Cloud point	Cis-1,4

Unit cell dimensions $^{(50,64-68)}$

Isomer	Lattice	Space group	Monomer per unit cell	Density, cryst. (g cm ⁻³)	Melting point T _m (°C)	Unit cell dimensions (Å)		Cell angles (degrees)			
						а	b	c (chain axis)	α	β	γ
1,4-cis (98-99%)	Monoclinic	CS-4	4	1.012	1	4.6	9.5	8.6	90	109	90

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion	kJ mol ⁻¹	1,4-cis	2.51 9.2 ± 0.5	(69) (70)
Entropy of fusion	$\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$	1,4-cis (98%)	33.5	(71)
Glass transition temperature	K	1,4-cis 1,4-cis 1,4-cis (98-99%)	167 171 178	(69) (71) (72)
Melting temperature	K	1,4-cis (98-99%) 1,4-cis (98.5%)	275 274 285	(50, 73) (52) (68)
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	Unspecified microstructure, $T = 20^{\circ}\text{C}$	0.22	(73)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Coefficient of thermal expansion	$K^{-1} \times 10^{-4}$	Unspecified microstructure, $T = 25^{\circ}\text{C}$	6.7 1.5	(74) (75)
Compressibility	$P^{-1} \times 10^{-10}$	Estimated, unspecified microstructure	7.25	(74)
Cohesive energy density	$(Jm^{-3})^{1/}2\times 10^3$	Cis-1,4	16.85	(76)
Solubility parameters δ	$(MPa)^{1/2}$	Polybutadiene, unspecified microstructure	16.57 17.08 14.65–17.6	(77) (78) (79)
		Different solvents	_	(77, 79)
Huggins coefficients: $[\eta]$ and k'	-	Cis; toluene; 25°C	$[\eta] = 2.52$ k' = 0.33	(80)
Heat capacity C_p	$\rm JK^{-1}mol^{-1}$	94% cis, 3% trans, 3% vinyl 1,2	See table below	(81, 82)

Temp. (K)	C _p	Condition	<i>T</i> _g (K)	$(\Delta C_p)_{T_g}$	<i>T</i> _m (K)	$(\Delta \textit{\textbf{C}}_{p})_{\textit{\textbf{T}}_{m}}$
10	1.18	Solid	171	29.1	284	86.78-103.1
50	19.98	Solid	_	_	_	_
100	34.63	Solid	_	_	_	_
150	48.5	Solid	_	_	_	_
300	106.00	Melt	_	_	_	_
350	114.9	Melt	_	_	_	_

Polymer-solvent interaction parameter χ

Solvent	${\boldsymbol{v_2}^*}$	χ	Conditions	Method	Reference
<i>n</i> -Heptane	_	$0.45 + 0.35v_2$	_	_	(83)
Benzene	_	0.21	98% <i>cis</i> units	Vapor sorption	(84)
		0.325	Unspecified cis content		(85)
Benzene	0.0995	0.253	$\nu_{\mathrm{eff}} = 136^{\dagger}$	Calculated from stress-strain	(86)
Decane	0.256	0.477		and swelling meaurements on networks	, ,
Benzene	0.0679	0.275	$ u_{ m eff}=64^{\dagger}$	_	(86)
Decane	0.191	0.477			, ,
Benzene	0.08	0.292	$ u_{\mathrm{eff}} = 79^{\dagger}$	_	(86)
Decane	0.186	0.445			, ,
Hexadecane	0.304	0.545			
Benzene	0.0588	0.28	$ u_{ m eff} = 48.2^\dagger$	_	(86)
Decane	0.155	0.453			` '
Hexadecane	0.256	0.538			

 $^{^* \}upsilon_2 =$ volume fraction of polymer. $^\dagger \nu_{\rm eff} =$ number density of elastically effective chains (mol m³).

Mark-Houwink parameters: *K* and *a*

Micros	structure		Solvent	Temp.		Conditions	Method	<i>K</i> (ml g ⁻¹)	а	Reference
% Cis	% Trans	% Vinyl 1,2		(°C)	$(M \times 10^{-5})$					
98	0	2	Benzene	30	5	_	Osmometry	0.0337	0.715	(56)
			Isobutyl acetate	20.5	0	θ solvent	Osmometry	0.185	0.5	(56)
			Toluene	30	5	_	Osmometry	0.0305	0.725	(56)
95	1	4	Benzene	30	5	_	Light scattering	0.0085	_	(87)
			Cyclohexane	30	5	_	Light scattering	0.0112	_	(87)
			5-Methyl-2- hexanone	12.6	-	θ solvent	Light scattering	0.15	-	(88)
			3-Pentanone	10.3	-	θ solvent	Light scattering	0.152	-	(88)
			Toluene	30	_	_	Osmometry	0.0339	_	(89)
94	4	2	Benzene	_	_	_	Osmometry	0.0414	_	(90)
			Dioxane	20.2	12	θ solvent	Osmometry	0.205	_	(90)
92	3	5	Benzene	32	16	θ solvent	Light scattering	0.01	0.77	(59)

Unperturbed dimensions, $\langle r \rangle_0 / M^{1/2}$, and characteristic ratios, C_{\bullet}

Microstructure		Solvent	Temp. (°C)	Conditions	Method	$\langle r angle_0/M^{1/2} imes 10^4$ (nm)	C.	Reference	
% Cis	% Trans	% Vinyl 1,2		(C)			(IIII)		
100	0	0	Dioxane	20.2	θ solvent	Viscosity	920	5.15	(90)
98	0	2	Isobutyl acetate	20.5	_	Viscosity	880	4.75	(56)
95	0	5	2-Pentanone	59.7	_	Viscosity	835	4.3	(88)
			3-Pentanone	10.3	_	Viscosity	825	4.2	(88)

Temperature coefficients of unperturbed mean squared end-to-end distance, $d \ln \langle r^2 \rangle_0 / dT$; and energetic contribution to total elastic force, $f_{\rm e}/f$

% Cis units	Solvent	Temp. (°C)	$\begin{array}{c} \textbf{Deformation} \\ \alpha \end{array}$	$\frac{\text{d ln}\langle r^2\rangle_0/\text{dT}\times}{\text{10}^3~\text{K}^{-1}}$	$ extit{f}_{ extsf{e}}/ extit{f}$	Conditions	Method	Reference
94	Undiluted	50-90	1.25	0.4	0.12	Peroxide cure	Stress-	(91)
			1.34	0.36	0.12	_	temperature,	(91)
			1.35	0.24	0.08	β -Radiation	elongation	(91)
_	Undiluted	25-65	0.95	0.43	0.14	γ -Radiation;	Stress-	(91)
			0.9	0.45	0.14	cross-linking	temperature,	(91)
			0.85	0.48	0.15	in solution of toluene	compression	(91)
_	1-Chloronaphthalene	_	0.9	0.41	0.13	_	_	(91)
	1		0.85	0.44	0.14	_	_	(91)
			0.8	0.47	0.15	_	_	(91)
			0.75	0.51	0.16	_	_	(91)
96	_	_	_	0.31	0.1	_	_	(92)
96	_	_	_	0.41	0.12	_	_	(93)

Rotational isomeric state (RIS) parameters and matrices (94)*

	u _i	u ₀	E_0 (kJ mol ⁻¹)	Conditions
γ	10	1	-6.7	343 K
σ	1.4	1	-0.8	_

		t	s^+	g^+	С	g^{-}	s^{-}
	t	1	1	0	0	0	1
	s^+	0	0	0	0	0	0
$u_a =$	g^+	1	1	0	0	0	1
	С	0	0	0	0	0	0
	g^{-}	1	1	0	0	0	1
	s^{-}	0	0	0	0	0	0

$$u_{b} = \begin{bmatrix} t & s' & g' & c & g & s \\ \hline t & 0 & 1 & 0 & 0 & 0 & 1 \\ s^{+} & 1 & \gamma & 0 & 0 & 0 & \gamma \\ u_{b} = g^{+} & 0 & 0 & 0 & 0 & 0 & 0 \\ c & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ g^{-} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ s^{-} & 1 & \gamma & 0 & 0 & 0 & \gamma \end{bmatrix}$$

^{*}Further RIS work on cis-1,4-polybutadiene can be found in references (95–98).

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Refractive index	_	Cis-1,4, 25°C	1.526 1.5	(99) (100)
Refractive index increment dn/dc	$\mathrm{ml}~\mathrm{g}^{-1}$	1,4- units, 25°C, cyclohexane $\lambda = 436\mathrm{nm}$ $\lambda = 546\mathrm{nm}$	0.121 0.113	(101)
Molar polarizability α	$m^3\times 10^{-31}$	Cis-1,4	71.4	(99)
Directional polarizabilities	$m^3\times 10^{-31}$	96% <i>cis,</i> undiluted b_{xx} b_{yy} b_{zz}	93.52 77.19 50.90	(102)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Optical segmental anisotropy	$m^3\times 10^{-31}$	Swollen polymer networks	$(\alpha_1 - \alpha_2)$	$(b_{\rm l}-b_{\rm t})$	
$(\alpha_1 - \alpha_2)$ and optical		Benzene	61.3-63	30.8	(90, 103, 104)
anisotropy of monomer		Carbon tetrachloride	53.5	31.7	(104)
units $(b_{ m l}-b_{ m t})$		Carbon tetrachloride	55.2	_	(103)
		Cyclohexane	57.3	33.9	(104)
		Toluene	72	42.6	(104)
		<i>p</i> -Xylene	86.9	51.4	(104)
		Undiluted	77.7	29.2	(102)
Temperature coefficient of segmental anisotropy, $R d \ln(\alpha_1 - \alpha_2)/d(1/T)$	kJ mol ⁻¹	96% cis units	0.355		(102)
Surface tension	$mN\ m^{-1}$	Cis-1,4	32		(105)

Sedimentation coefficient, s_0 , and diffusion coefficient, D_0

% Cis units	Solvent	Temp. (°C)	Mol. mass, $M \times 10^{-5} \text{ (g mol}^{-1}\text{)}$	$s_0 \times 10^{13} \text{ (s}^{-1}\text{)}$	$\begin{array}{c} \textit{D}_0 \times 10^{11} \\ (\text{m}^2 \text{s}^{-1}) \end{array}$	Conditions	Reference
94	Diethylketone	10.3	_	$0.53 \times 10^{-15} M^{0.5}$	_	θ solvent	(106)
90	Hexane/heptane (1:1)	20	0.5-10.8	$2.80 \times 10^{-15} M^{0.48}$		TiI ₄ catalyst system	(57)
90	Hexane/heptane (1:1)	20	0.35-10.4	$2.33 \times 10^{-15} M^{0.5}$	_	CoCl ₂ catalyst system	(57)
High	Hexatriacontane	80	_	_	4.78		(107)
High	Dodecane	80	_	_	23.8	_	(107)
High	Hexaflourobenzene	80	_	_	16.3	_	(107)

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Transport of gases		Permeant	Temp. (°C)	Temp. range (°C)		(75, 108, 109)
Permeability coefficient P	m ³ (STP)	$\overline{N_2}$	25	25-50	4.84	
,	${\rm m} {\rm s}^{-1} {\rm m}^{-2}$	O_2	_	25-50	14.3	
	$Pa^{-1} \times 10^{-17}$	$\overline{\text{CO}_2}$	_	25-50	104	
		He	24	0-45	24.5	
		Ne	_	0-45	14.4	
		Ar	_	0-45	30.8	
		N_2	_	0-45	14.4	
Preexponential factor P_0	m ³ (STP)	N_2	25	25-50	4.91	
•	${\rm m}\ {\rm s}^{-1}\ {\rm m}^{-2}$	O_2	_	25-50	2.27	
	$\mathrm{Pa}^{-1}\times10^{-17}$	CO_2	_	25-50	0.683	
		He	24	0-45	0.0855	
		Ne	_	0-45	0.096	
		Ar	_	0-45	0.084	
		N_2	_	0-45	0.078	

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Transport of gases		Permeant	Temp. (°C)	Temp. range (°C)		
Diffusion coefficient D	$m^2s^{-1}\times 10^{-10}$	$\overline{N_2}$	25	25-50	1.1	
		O_2	_	25-50	1.5	
		$\overrightarrow{CO_2}$	_	25-50	1.05	
		He	24	0-45	15.7	
		Ne	_	0-45	6.55	
		Ar	_	0-45	4.06	
		N_2	_	0-45	2.96	
Solubility coefficient S	m ³ (STP)m ⁻³	N_2	25	25-50	0.444	
,	$Pa^{-1} \times 10^{-6}$	O_2	_	25-50	0.957	
		CO_2	_	25-50	9.87	
		He	24	0-45	0.156	
		Ne	_	0-45	0.220	
		Ar	_	0-45	0.758	
		N_2	_	0-45	0.488	
Activation energy of	$kJ mol^{-1}$	N_2	25	25-50	34.3	
permeation E_p	,	O_2	_	25-50	29.7	
r		CO_2	_	25-50	21.8	
		He	24	0-45	20.3	
		Ne	_	0-45	21.8	
		Ar	_	0-45	19.4	
		N_2	_	0-45	21.3	
Activation energy of	$kJ mol^{-1}$	N_2	25	25-50	30.1	
diffusion $E_{ m D}$	•	O_2	_	25-50	28.5	
٥		$\overline{\text{CO}_2}$	_	25-50	30.6	
		He	24	0-45	17.3	
		Ne	_	0-45	17.4	
		Ar	_	0-45	21.3	
		N_2	_	0-45	25.0	
Heat of solution E_S	$kJ mol^{-1}$	N_2	25	25-50	4.2	
		O_2	_	25-50	1.2	
		$\overline{\text{CO}_2}$	_	25-50	-8.8	
		He	24	0-45	2.9	
		Ne	_	0-45	4.4	
		Ar	_	0-45	-1.9	
		N_2	_	0-45	-3.7	
Heat of solution $E_{\rm s}$	$kJ mol^{-1}$	_			2.9	(109)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Activation energy of viscous flow	kJ mol ⁻¹	Uspecified microstructure	33.4-41.8	(75)	
Rheological properties Plateau modulus G_N° Entanglement molecular	MPa $g mol^{-1}$	96% <i>cis</i> - units, T = 25°C	0.76 0.73 (calculated) 2,300	(110)	
mass $M_{ m e}$ Tube diameter $d_{ m t}$ Packing length p	nm nm		2,400 (calculated) 430 (calculated) 24.3		
WLF parameters: C_1 and C_2	K	Microstructure = 96% cis , 2% $trans$, and 2% vinyl 1,2; reference temp. $T_0 = 29.8$ °C; $T_g = 161$ °C; shift factor $a_{T,S}$ of the softening dispersion	$C_1 = 3.44$ $C_2 = 196.6$	(111)	
Effect of radiation: <i>G</i> -factors for cross-linking and scission, $G(x)$ and $G(s)/G(x)$	-	Cis-1,4	G(x) = 5.3 G(s)/G(x) = 0.1	(112, 113)	
Thermal oxidative stability	K	Unspecified microstructure $T_{1/2}$ = temperature at which the polymer loses half its mass when heated in vacuum for 30 min	680	(114-117)	
		$T_{\rm h} = { m upper}$ use temperature $T_{ m d} = { m lowest}$ temperature reported for thermal decomposition	373 598		
Biodegradability		$I_n = 650$; method = molecular mass s; inoculum = acenitobacter	measurements and	-	

REFERENCES

- 1. Moyer, P. H., and M. H. Lehr. J. Polym. Sci. A3 (1965): 217.
- 2. Saltman, W. M., and T. H. Link. Ind. Eng. Chem. Prod. Res. Dev. 3 (1964): 199.
- 3. Zelinski, R. P., and D. R. Smith. U.S. Patent 3,050,513, 1956.
- 4. Moyer, P. H. J. Polym. Sci. A3 (1965): 209.
- 5. Henderson, J. F. J. Polym. Sci. C4 (1963): 233.
- 6. Marconi, W., A. Mazzei, M. Araldi, and M. De Malde. J. Polym. Sci. A3 (1965): 735.
- 7. Mazzei, A., M. Araldi, W. Marconi, and M. De Malde. J. Polym. Sci. A3 (1965): 753.
- 8. Longiave, C., R. Castelli, and G. F. Croce. Chim. Ind. (Milan) 43 (1961): 625.
- 9. Gippin, M. Ind. Eng. Chem. Prod. Res. Dev. 4 (1965): 160.
- 10. Takahashi, A., and S. Kambara. J. Polym. Sci. B3 (1965): 279.
- 11. Racanelli, P., and L. Porri. Eur. Polym. J. 6 (1970): 751.
- 12. van de Kamp, F. P. Makromol. Chem. 93 (1966): 202.

- 13. Bawn, C. E. H. Rubber Plast. Age 46 (1965): 510.
- 14. Porri, L., A. Di Corato, and G. Natta. J. Polym. Sci. B5 (1967): 321.
- 15. Longiave, C., R. Castelli, and G. F. Croce. Belgium Patent 573,680.
- 16. Sakata, R., J. Hosono, A. Onishi, and K. Ueda. Makromol. Chem. 139 (1970): 73.
- 17. Beebe, D. H., et al. J. Polym. Sci., Polym. Chem. Ed., 16 (1978): 2,285.
- 18. Shen, Z., et al. J. Polym. Sci., Polym. Chem. Ed., 18 (1980): 3,345.
- 19. Witte, J. Angew. Makromol. Chem. 94 (1981): 119.
- 20. Hsieh, H. L., and Y. C. Yeh. Rubber Chem. and Technol. 58 (1985): 117.
- 21. Yang, J. H., M. Tsutsui, Z. Chen, and D. E. Bergbreiter. Macromolecules 15 (1982): 2,303.
- 22. Oreshkin, I. A., E. I. Tinyakova, and B. A. Dolgoplosk. Vysokomol. Soedin A11 (1969): 1,840.
- 23. Dolgoplosk, B. A., I. A. Oreshkin, E. I. Tinyakova, and V. A. Yakovlev. *Izv. Akad. Nauk SSSR, Ser. Khim.* (1967): 2,130.
- Kormer, V. A., B. D. Babitskii, M. I. Lobach, and N. N. Chesnokova. J. Polym. Sci. C16 (1969): 3,451.
- 25. Porri, L., G. Natta, and M. C. Gallazzi. J. Polym. Sci. C16 (1967): 2,525.
- 26. Dawans, F., J. P. Durand, and Ph. Teyssie. J. Polym. Sci. B10 (1972): 493.
- 27. Dawans, F., and Ph. Teyssie. J. Polym. Sci. B7 (1969): 11.
- 28. Durand, J. P., F. Dawans, and Ph. Teyssie. J. Polym. Sci. B6 (1968): 757.
- 29. Roberts. D. E. J. Res. Natl. Bur. Std. 44 (1950): 221.
- 30. Dainton, F. S., D. M. Evans, F. E. Hoare, and T. P. Melia. Polymer 3 (1962): 297.
- 31. Sawada, H. Thermodynamics of Polymerization. Marcel Dekker, New York, 1976.
- 32. Colthup, N. B., L. H. Daly, and S. E. Wiberly. *Introduction to Infrared and Raman Spectroscopy*, 2d ed. Academic Press, New York, 1975.
- 33. Morero, P., A. Santambrogio, L. Porri, and F. Ciampelli. Chim. Ind. (Milan) 41 (1959): 758.
- 34. Binder, J. L. Anal. Chem. 26 (1954): 1,877.
- 35. Binder, J. L. J. Polym. Sci., Part A, 3 (1965): 1,587.
- 36. Hampton, R. R. Anal. Chem. 21 (1949): 923.
- 37. Silas, R. S., J. Yates, and V. Thornton. Anal. Chem. 31 (1959): 529.
- 38. Amram, B., L. Bokobza, and L. Monnerie. *Polymer* 29 (1988): 1,155.
- 39. Santee, E. R. Jr., R. Chang, and M. Morton. J. Polym. Sci., Polym. Lett. Ed., 11 (1973): 449.
- 40. Santee, E. R. Jr., V. D. Mochel, and M. Morton. J. Polym. Sci., Polym. Lett. Ed., 11 (1973): 453.
- 41. English, A. D., and C. R. Dybowski. Macromolecules 17 (1984): 446.
- 42. Bovey, F. A., and L. W. Jelinski. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1988, Vol. 10, p. 254.
- 43. Duch, M. W., and D. M. Grant. Macromolecules 3 (1970): 165.
- 44. Elgert, K. F., G. Quack, and P. Stuetzel. Polymer 15 (1974): 612.
- 45. Elgert, K. F., G. Quack, and P. Stuetzel. Polymer 16 (1975): 154.
- 46. Guerry, J. L. Rev. Gen. Caoutch. Plast. 54 (1977): 103.
- Komoroski, R. A., and L. Mandelkern. In *Applications of Polymer Spectroscopy*, edited by E. G. Brame, Jr. Academic Press, New York, 1978, p. 57; Grunski, W., and N. Murayama. *Makromol. Chem.* 177 (1976): 3,017.
- 48. Katoh, T., M. Ikura, and K. Hikichi. Polymer J. 20 (1988): 185.
- Wignall, G. D. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, p. 299.
- 50. Natta, G. Science 147 (1965): 269.
- Sharaf, M. A., J. E. Mark, and S. Cesca. Polym. Eng. Sci. 26 (1986): 304; Sharaf, M. A. Rubber Chem. Tech. 67 (1994): 88.
- 52. Jaine, R. K., and R. Simha. Polym. Eng. Sci. 19 (1979): 845.
- 53. Moraglio, G. Europ. Polym. J. 1 (1965): 103.
- 54. Abe, M., and H. Fujita. J. Phys. Chem. 69 (1965): 3,263.
- 55. Cowie, J. M. G., and I. J. McEwen. Polymer 16 (1975): 933.
- 56. Danusso, F., G. Moraglio, and G. Gianott. J. Polym. Sci. 51 (1961): 475.
- 57. Poddubnyi, I. Ya., V. A. Grechanovskii, and M. I. Mosevitskii. *Vysokomol. Soedin* 5 (1964): 1,049; *Polym. Sci. USSR* 5 (1964): 105.
- 58. Abe, M., and H. Fujita. Reports Prog. Polym. Phys. (Japan) 7 (1964): 42.
- 59. Cooper, W. G., G. Vaughan, D. E. Eaves, and R. W. Madden. J. Polym. Sci. 50 (1961): 159.

- 60. Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1988, p. VII-379.
- 61. Bello, A., J. M. Barrales-Rienda, and G. M. Guzman. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1988, p. VII/233.
- 62. Heller, J. P., and K. Dandge. Soc. Petroleum Engineers Preprints 11,789 (1983): 173.
- 63. Shine, A. D. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodburry, N.Y., 1996, p. 249.
- 64. Natta, G. Rubber Plastics Age 38 (1957): 495.
- 65. Natta, G., and P. Corradini. Angew. Chem. 68 (1956): 615.
- 66. Natta, G., and P. Corradini. J. Polym. Sci. 20 (1956): 251.
- 67. Natta, G., and P. Corradini. Rubber Chem. Technol. 33 (1960): 732.
- 68. Wunderlich, B. Macromolecular Physics, Vol. 1. Academic Press, New York, 1973.
- 69. Bahary, W. S., D. I. Sapper, and J. H. Lane. Rubber Chem. Technol. 40 (1967): 1,529.
- 70. Natta, G., and G. Moraglio. Makromol. Chem. 66 (1963): 218.
- 71. Trick, G. S. J. Appl. Polym. Sci. 3 (1960): 253.
- 72. Baccaredda, M., and E. Butta. Chim. Ind. (Milan) 42 (1960): 978.
- 73. Berger, M., and D. J. Buckley. J. Polym. Sci. A1 (1963): 2,945.
- 74. DiBenedetto, A. T. J. Polym. Sci. A1 (1963): 3,459.
- 75. Thompson, E. V. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark et al. Wiley-Interscience, New York, 1985, Vol. 16, p. 737.
- 76. Stephens, H. L. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1988, p. V-1.
- Tobolsky, A. V. Properties and Structure of Polymers. John Wiley and Sons, New York, 1960, p. 66.
- 78. Scott, R. L., and M. Magat. J. Polym. Sci. 4 (1949): 555.
- 79. Grulke, E. A. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1988, p. VII-519.
- 80. Bristow, G. M., J. Polym. Sci. 62(174) (1962): S168.
- 81. Gaur, U., S. F. Lau, B. B. Wunderlich, and B. Wunderlich. *J. Phys. Chem. Ref. Data* 12 (1983): 41, 29.
- 82. Grebowicz, J., W. Avcock, and B. Wunderlich. Polymer 27 (1986): 575.
- 83. Burton, A. S. M. Handbook of Solubility Parameters. CRC Press, Boca Raton, Fla., 1983.
- 84. Saeki, S., J. C. Holste, and D. C. Bonner. J. Polym. Sci., Polym. Phys. Ed., 20 (1982): 793.
- 85. Jessup, R. S. J. Res. Nat. Bur. Stand. 60 (1958): 47.
- 86. Brotzman, R. W., and P. J. Flory. Macromolecules 20 (1987): 351.
- 87. Kurata, M., and Y. Tsunashima. *Polymer Handbook*, 3d ed., edited by J. Brandrup and H. Immergut. Wiley-Interscience, New York, 1989, p. VII-1.
- 88. Abe, M., Y. Murakami, and H. Fujita. J. Appl. Polym. Sci. 9 (1965): 2,549.
- 89. Takeda, M., and R. Endo. Rep. Prog. Polym. Phys. Japan 6 (1963): 37.
- 90. Poddubnyi, I. Ya., Ye. G. Erenburg, and M. A. Yeremina. Vysokomol. Soedin., Ser. A, 10 (1968): 1,381.
- 91. Becker, R. H., C. U. Yu, and J. E. Mark. Polymer J. 8 (1975): 234.
- Shen, M., T. Y. Chen, E. H. Cirlin, and H. M. Gebhard. In *Polymer Networks: Structure and Mechanical Properties*, edited by A. J. Chomff and S. Newman. Plenum Press, New York, 1971.
- 93. Price, C., and N. Yoshimura. *Polymer* 16 (1975): 261.
- 94. Mark, J. E. J. Am. Chem. Soc. 88 (1966): 4,354.
- 95. Rehahn, M., W. L. Mattice, and U. W. Suter. *Rotational Isomeric State Models in Macromolecular Systems*. Springer-Verlag, New York, 1997, p. V001.
- 96. Ishikawa, T., and K. Nagai. J. Polym. Sci., Part A-2, 7 (1969): 1,123.
- 97. Abe, Y., and P. J. Flory. Macromolecules 4 (1971): 219.
- 98. Tanaka, S., and A. Nakajima. Polymer J. 3 (1972): 500.
- 99. Furukawa, J., S. Yamashita, T. Kotani, and M. Kawashima. J. Appl. Polym. Sci. 13 (1969): 2,527.
- 100. Seferis, J. C. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1988, p. VI-451.

- 101. Kratochvil, R., D. Strakova, and P. Schmidt. Angew. Makromol. Chem. 23 (1972): 169.
- 102. Morgan, R. J., and L. R. G. Treloar. J. Polym. Sci., Part A-2, 10 (1972): 51.
- 103. Ishikava, T., and K. Nagai. Polym. J. 1 (1970): 116.
- 104. Fukuda, M., G. L. Wilkes, and R. S. Stein. J. Polym. Sci., Part A-2, (1971): 1,417.
- 105. Lee, L., and H. Lee. J. Polym. Sci., Part A-2, 5 (1967): 1,103.
- 106. Cerny, L. C., R. C. Graham, and H. James, Jr. J. Appl. Polym. Sci. 11 (1967): 1,941.
- 107. Ferguson, R. D., and E. von Meerwall. J. Polym. Sci., Polym. Phys. Ed., 18 (1980): 1,285.
- 108. Amerongen, G. J. J. Polym. Sci. 5 (1950): 307.
- 109. Paul, D. R., and A. T. DiBenedetto. *J. Polym. Sci., Part C,* 10 (1965): 17; Pauly, S. In *Polymer Handbook,* 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1988, p. VI-435.
- 110. Fetters, L. J., D. J. Lohse, and R. H. Colby. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press Woodburry, N.Y., 1996, p. 335.
- 111. Nagai, K. L., and D. J. Plazek. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodburry, N.Y., 1996, p. 341.
- 112. Kozlov, V. T., A. G. Yevseyev, and P. I. Zubov. Vysokomol. Soed. A11 (1969): 2,330.
- 113. Bohm, G. G., and J. O. Tveekrem. Rubber Chem. Technol. 55 (1982): 575.
- van Krevelen, D. W., and P. J.Hoftyzer. Properties of Polymers. Elsevier Scientific, Amsterdam, 1976, p. 459.
- 115. Billmeyer, F. W. Jr. Textbook of Polymer Science. Wiley-Interscience, New York, 1984, p. 143.
- 116. Welsh, W. J. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodburry, N.Y., 1996, p. 605.
- Grassie, N. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, N.Y., 1988, p. II-365.
- 118. Tsuchii, A., T. Suzuki, and Y, Takahara. Agribiol. Chem. 42 (1978): 1,217.
- 119. Andrady, A. L. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodburry, New York, 1996, p. 625.

trans-1,4-Polybutadiene

ZHENGCAI PU

ACRONYMS PBD, BR

CLASS Diene elastomers

STRUCTURE

MAJOR APPLICATIONS Tire treads, carcass, belts, hoses, gaskets, seals, and protective coatings; component in other synthetic rubbers and blends. $^{(1)}$

PROPERTIES OF SPECIAL INTEREST Good low-temperature properties and adhesion to metals; good resilience, durability, and abrasion resistance. $^{(1,2,3)}$

PRODUCERS AND/OR SUPPLIERS Anic; Bayer; Bunawerke Huels; Bridgestone/Firestone Tire and Rubber Company; Goodyear Tire and Rubber Company; Michelin. (1)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Anistropy of segment	cm ⁻³	Benzene CCl4 Cyclohexane Toluene p-Xylene	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(4)	
Coefficient of thermal expansion	K^{-1}	Cubicle	6.75×10^{-4}	(6)	
Solvents	Hydroca	Hydrocarbons, tetrahydrofuran, higher ketones, higher aliphatic esters			
Nonsolvents	Alcohol, lower ketones and esters, nitromethane, propionitrile, water, diluted acids, diluted alkalies, hypochlorite solutions				
Critical surface tension of spreading $\gamma_{\rm c}$	${\rm Nm}^{-1}$	-	0.031	(7)	
Decomposition temperature	K	Initial decomposition Half decomposition; heated in vacuum for 30 min	598 680	(5)	
Density ρ	${\rm g~cm^{-3}}$	_	0.93-0.97	(4)	
Dielectric constant	_	1 MHz	2.51 3.3	(8) (6)	

			trans-1,4-Polybutadiene
PROPERTY	UNITS	CONDITIONS	VALUE REFERENCE
Dielectric loss factor	-	_	0.002 (8)
Dielectric strength	kVm^{-1}	_	400–600 (6)
Enthalpy of fusion	$J \text{mol}^{-1}$	Modification I Modification II	13,807 (5) 4,602
Entropy of fusion	$JK^{-1} mol^{-1}$	Modification I Modification II	26.8, 37.4 (2, 4, 5) 11.3, 10.9
Glass transition temperature	K	_	166, 171 (4, 5, 9)
Heat of fusion	$kJ mol^{-1}$	Modification I Modification II	4.184 (10) 4.184-4.6 (11, 12)

Fractionation systems $^{(4)}$

Method of fractionation	Solvent or solvent/nonsolvent mixture
Fractional precipitation	Benzene/acetone
	Benzene/methanol
	Benzene/ <i>n</i> -butanol Pentane/methanol
	,
	Tetrahydrofuran/water Toluene/ethanol
	Toluene/ <i>n</i> -butanol
	· · · · · · · · · · · · · · · · · · ·
	Toluene/methanol
Fractional solution	Benzene/methanol
	Chloroform/methanol
	Ethyl ether
Fractional crystallization	Heptane
Gel permeation chromatography	Chloroform
	o-Dichlorobenzene
	Dichloromethane
	Tetrahydrofuran
	Toluene
	1,2,4-Trichlorobenzene
	Trichloroethylene
	THEIROTOCHTYTETIC

trans-1,4-Polybutadiene

Heat capacity (4,5)

Solid		Melt			
Temperature (K)	Heat capacity (kJ K ⁻¹ mol ⁻¹)	Temperature (K)	Heat capacity (kJ K ⁻¹ mol ⁻¹)		
30	0.00970	360	0.1166		
40	0.01439	370	0.1184		
50	0.01874	380	0.1202		
60	0.02256	390	0.1220		
70	0.02589	400	0.1237		
80	0.02900	410	0.1255		
90	0.03202	420	0.1273		
100	0.03498	430	0.1291		
110	0.03786	440	0.1309		
120	0.04070	450	0.1326		
130	0.04353	460	0.1344		
140	0.04626	470	0.1362		
150	0.04899	480	0.1380		
160	0.05171	490	0.1390		
170	0.05452	500	0.1415		
180	0.05788				

Intersurface tension⁽⁴⁾

Surface 1	Surface 2	Interfacial tension γ_{12} (N m $^{-1}$)			$-d\gamma_{12}/dT$	
		293 K	423 K	473 K	(N m ⁻¹ K ⁻¹)	
PBD, $M_{\rm n} = 960$	PDMS, $M_{\rm n} = 3,900$	0.00248	0.00207	0.00191	3.22×10^{-6}	
PBD, $M_{\rm n} = 2,350$	PDMS, $M_{\rm n} = 3,900$	0.00386	0.00270	0.00225	8.95×10^{-6}	
PBD, $M_{\rm n} = 960$	PDMS, $M_{\rm n} = 5,200$	0.00398	0.00285	0.00242	8.65×10^{-6}	
PBD, $M_n = 2,350$	PDMS, $M_n = 5,200$	0.00258	0.00225	0.00213	2.50×10^{-6}	

Mark-Houwink parameters: K and $a^{(4)}$

Solvent	Temperature (K)	Molecular weight (kg mol ⁻¹)	K (ml g ⁻¹)	а
Cyclohexane	313	170	0.0282	0.70
Toluene	303	160	0.0294	0.753

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	_	14-17	(6)
Tensile modulus	MPa	_	2–10	(6)
Tensile elongation	%	_	450	(6)
Tensile compression set	%	_	10-30	(6)
Tensile resilience	%	ASTM 945	50-90	(6)

				1	trans-1,4-Poly	butadiene
PROPERTY	UNITS	CONDITION	s		VALUE	REFERENCE
Melting point	K			370 418	(2, 4)	
Refractive index	_	298 K			1.515	(4)
Refractive index increment	$1\mathrm{kg^{-1}}$	303 K, in	cyclohexane		0.110	(4)
Scattering length density of neutron scattering	cm^{-2}	-			4.1×10^{-11}	(5)
Second virial coefficients A_2	$mol m^3 kg^{-2}$ $(\times 10^{-4})$	Solvent - Dioxane Toluene	Temp. (K) 307 307 307	M.W. (kg mol ⁻¹) 17.4-370 17.9-434 18.2-466	18.3-9.48 3.81-1.49 19.4-11.5	(4)
Sedimentation coefficient at zero concentration $S_0(s)$	-	Diethyl ke M _w (kg 60 187 350 436 778 1,380	etone, 283 K r mol ⁻¹)		1.76×10^{-13} 2.76×10^{-13} 3.45×10^{-13} 4.28×10^{-13} 4.52×10^{-13} 5.15×10^{-13}	(4)

Service temperature	K	_	172-366	(6)
Solubility parameter	$(MPa)^{1/2}$	_	14.6-17.6	(4, 5)
Theta temperature	K	Diethyl ketone Ethyl propyl ketone, $M_{\rm h}=47$ –193 kg ${ m mol}^{-1}$	486 513	(5)
		Propylene oxide	419	
Thermal conductivity	$Wm^{-1}K^{-1}$	293 K	0.22	(5)
Transition temperature	K	Modification I to Modification II	348	(4)
Unperturbed dimension $\sigma = r_0/r_{0\mathrm{f}}$ $C_{\infty} = r_0^2/nl^2$	_	328 K, in decalin	1.23 5.8	(4) (4)

Surface tension⁽⁴⁾

$M_{\rm n}$ (g mol ⁻¹)	End group	Surface ten	sion γ (N m $^{-1}$)		$-d\gamma/dT$
		293 K	423 K	473 K	$(N m^{-1} K^{-1})$
5,400	Carboxyl acid	0.0486	0.0299	0.0227	1.440×10^{-4}
5,400	Methyl ester	0.0431	0.0288	0.0233	1.098×10^{-4}

trans-1,4-Polybutadiene

Unit cell data^(3,4)

Property	Modification	ıl	Modification	II
Crystallographic system	PHEX	MONO	PHEX	HEX
Space group	_	C_{2h}^5	_	_
Cell dimension				
a_0 (Å)	4.54	8.63	4.88	4.95
b_0 (Å)	4.54	9.11	4.88	4.95
c_0 (Å)	4.9	4.83	4.68	4.66
α (°)	_	_	_	_
β (°)	_	114	_	_
γ (°)	_	_	_	_
Crystal density (g cm ⁻³)	1.03	1.036	0.930	0.908
Repeat distance	0.485	_	0.465	_
Repeat unit per unit cell	1	4	1	1

REFERENCES

- 1. Ulrich, H. Introduction to Industrial Polymers, 2d ed. Hanser Publishers, Munich, 1993.
- 2. Salamone, J. C. Polymer Materials Encyclopedia. CRC Press, Boca Raton, Fla., vol. 8, 1996.
- 3. Mark, H. F., et al., eds. *Encyclopedia of Polymer Science and Engineering*. John Wiley and Sons, New York, 1996, vol. 6.
- 4. Brandrup, J., and E. H. Immergut. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 5. Mark, J. E., ed. Physical Properties of Polymers Handbook, AIP Press, New York, 1996.
- 6. Pentone Publication. Materials Engineering, 106 (1989): 178.
- 7. Anderson, J. N., M. L. Barzan, and H. E. Adams. Rubber Chem. Technol. 45 (1972): 1,281.
- 8. Pegoraro, M., and K. Mitoraj. Makromol. Chem., 61 (1963): 132.
- 9. Bahary, W. S., D. I. Sapper, and J. H. Lane. Rubber Chem. Technol. 40 (1967): 1,529.
- 10. Berger, M., and D. J. Buckley. J. Polym. Sci. A 1 (1963): 2,945.
- 11. Natta, G., and G. Moraglio. Makromol. Chem. 66 (1963): 218.
- 12. Mandeldern, L., and F. A. Quinn, Jr. J. Polym. Sci. 19 (1956): 77.
- 13. Hummel, D. O. Infrared Spectra of Polymers in the Medium and Long Wavelength Regions. Interscience Publishers, New York, 1966.

Poly(butene-1)

D. R. PANSE AND PAUL J. PHILLIPS

ALTERNATIVE NAMES, ACRONYM, TRADE NAME Polybutylene, polybutene, PB, Duroflex[®] (Shell)

CLASS Poly{ α -olefins)

STRUCTURE OF REPEAT UNIT $[-CH_2CH(C_2H_5)-]$

MAJOR APPLICATIONS Hot water and high-pressure piping; films; adhesives; comonomer for ethylene polymers; atactic polymer is used in sealants.

PROPERTIES OF SPECIAL INTEREST The polymer exhibits excellent creep properties. It is tough, retains strength at elevated temperatures, and is resistant to stress cracking and abrasion.

PREPARATIVE TECHNIQUE Ziegler-Natta polymerization: nickel-based catalysts, 80–120°C, 7–15 MPa.

 $Other\ typical\ catalytic\ systems:\ TiCl_3+Et_2AlCl,\ TiCl_3+cocatalyst+MgCl_2,\ chiral\ racemic\ zirconium\ dichloride+methylaluminoxane.^{(1-5)}$

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Typical comonomers used	-	_	Ethylene, propylene, 1-pentene	_
Molecular weight (of repeat unit)	g mol ⁻¹	_	56.11	_
Stereoregularity	_	Ziegler-Natta polymerization Catalyst system		
		1. Lithium diphenyl-phosphide + Et ₂ AlCl +TiCl ₃ -AA	94.7% isotactic	(6)
		2. DMH + hydrogen + $Et_2AlCl + TiCl_3$ -AA 3. $Et_2AlCl + TiCl_3$	97.7% isotactic 84.5% isotactic	(7) (7)
Typical molecular weight range	g mol ⁻¹	Ziegler-Natta polymerization 1. Number average 2. Weight average 3. Z-average	$7-7.5(\times10^4)$ $7.25-7.5(\times10^5)$ $2.5-3.0(\times10^6)$	(8)
Typical polydispersity index	-	Type of polymerization 1. Ziegler-Natta 2. Anionic	10–11 1.02	(8) (9)
Thermal expansion coefficient	K^{-1}	Temperature range = 140 – 240 °C	6.7×10^{-4}	(10)

Po	ly(butene-1)
----	-----	-----------

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Compressibility coefficient	bar ⁻¹	140-240°C	$10.1 15.8 \ (\times 10^{-5})$	(10)
Reducing temperature	K	None given	10,808	(11)
Reducing pressure	Pa	None given	608.5×10^6	(11)
Reducing volume	${\rm cm}^{-3}~{\rm g}^{-1}$	None given	1.1635	(11)
Density	${\rm g} \; {\rm cm}^{-3}$	$Temperature = 23^{\circ}C$	0.859	(12)
Solvents	_	Above 100°C	Benzene, toluene, decalin, tetralin, chloroform, chlorobenzenes	(13)
Nonsolvents	_	At room temperature	Organic solvents	(13)
Theta temperature	K	Solvent/Method used		
		 Atactic polymer Anisole/VM Anisole/PE Diphenyl ether/PE, VM Phenetole/VM i-Amyl acetate/PE, VM Isotactic polymer Toluene/PE, VM Anisole/PE Anisole/PE Anisole/PE, VM Cyclohexane and n-propanol (69/31 by vol.)/vm Diphenyl ether/PE, VM Phenetole/PE, VM 	356 359.2 414 334 296 227 362.1 362 308 421 337.5	(14) (15) (16) (14) (16) (16) (15) (16) (17) (16) (16)
Polymer-solvent interaction — parameter χ		Solvent/Temp. (°C) n-Heptane/115-135 n-Octane/115-135 n-Nonane/115-135 n-Decane/115-135 Benzene/135 Cyclohexane/135 2,5-Dimethylhexane/115-135 2,4-Dimethylpentane/115-135 3-Ethylpentane/115-135 2-Methylhexane/115-135 3-Methylhexane/115-135 Toluene/135	n-Heptane/115-135 0.38 n-Octane/115-135 0.36 n-Nonane/115-135 0.32 n-Decane/115-135 0.30 Benzene/135 0.49 Cyclohexane/135 0.20 2,5-Dimethylhexane/115-135 0.36 2,4-Dimethylpentane/115-135 0.40 2,3-Dimethylpentane/115-135 0.35 3-Ethylpentane/115-135 0.34 2-Methylhexane/115-135 0.39 3-Methylhexane/115-135 0.38	

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Second virial coefficient	$mol cm^3 g^{-2}$ (×10 ⁻⁴)	Solvent/Temp. (°C)/Mol. wt. (10 ³ g mol ⁻¹)		(15)
	$(\times 10^{-2})$	1. Atactic polymer		
		<i>n</i> -Nonane/35/44.1–1,300	2.4	
		Toluene/45/26.3-558	10.8 - 4.1	
		2. Isotactic polymer		
		<i>n</i> -Nonane/80/105–935	6.05-1.05	
		Toluene/45/90.1-775	6.57-3.73	
Characteristic ratio C_{∞}	_	Solvent/Temp. (°C)/Method		
50		Nonane/35/LS	15.1	(15)
		-/25-223/SANS	5.1-5.5	(9)
		-/5-53/VM	5.9-5.3	(6)

^{*}PE = phase equilibria; VM = intrinsic viscosity/molar mass; LS = light scattering; SANS = small angle neutron scattering.

Mark-Houwink parameters: K and a

Solvent/method	Temp. (°C)	Mol. wt. $(\times 10^{-4})$	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	а	Reference
Isotactic polymer					
Anisole/LS	89	57	111	0.5	(16)
Decalin/LS	115	90	9.49	0.73	(19)
Ethylcyclohexane/LS	70	94	7.34	0.80	(15)
Heptane/LS	35	90	4.73	0.80	(19)
Heptane/LS	60	90	15	0.69	(19)
Nonane/LS	80	94	5.85	0.80	(15)
Phenetole/OS*	64.5	57	113	0.5	(16)
Phenylether/OS	148	57	103	0.5	(16)
1,2,4-Trichlorobenzene/GPC	135	Not given	11.8	0.729	(20)
Cyclohexane and propanol (80/20)/LS	35	73	102	0.59	(21)
Atactic polymer					
Anisole/LS	86.2	130	123	0.5	(15)
Benzene/EG*	30	0.5	22.4	0.72	(22)
Ethylcyclohexane/LS	70	130	7.34	0.80	(15)
Phenylether/OS	141	66	104	0.5	(16)

^{*}OS = osmotic pressure; EG = end group titration.

Poly(butene-1)

Crystalline state properties

Crystal property	Units	Isotactic polymorphs			Reference
		ī	II	III	
Lattice	_	Hexagonal	Tetragonal	Orthorhombic	(23-25)
Unit cell dimensions	Å	a = 17.7	a = 14.85	a = 12.38	(23-25)
		b = 17.7	b = 14.85	b = 8.92	
		c = 6.5	c = 20.6	c = 7.45	
Unit cell angles	Degree	$\alpha = \beta = \gamma = 90$	$\alpha = \beta = \gamma = 90$	$\alpha = \beta = \gamma = 90$	(23-25)
Monomer per unit cell	_	18	44	8	(23-25)
Helix conformation	_	31	113	41	(23-25)
Space group	_	D3D-6	Not given	Not given	(23)
Crystalline density at 23°C	${\rm g~cm^{-3}}$	0.951	0.902	0.905	(23-25)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Degree of crystallinity	%	Form I obtained after extrusion	48-55	(8)
Heat of fusion	kJ mol ⁻¹	_	6.318	(26, 27)
		_	6.276	(26, 27)
		_	6.485	(26, 27)
		Clapeyron equation	7.782	(28, 29)
			7.531	(28, 29)
Entropy of fusion	$kJ K^{-1} mol^{-1}$	_	15.5	(26, 27)
17	$(\times 10^{-3})$	_	15.8	(26, 27)
	, ,	Clapeyron equation	19.2	(28, 29)
Avrami exponent	_	Compression molded, cooled at 40°C min ⁻¹ from 180°C	0.9-1.07	(30)
		Blown film samples, draw ratio between 1 and 6	0.32-0.74	
Glass transition temperature	K	Method employed = DMA	256-248	(31)
Melting point	K	1. Isotactic polymer		(13)
		I	411-415	
		II	393-403	
		III	374-383	
		2. Syndiotactic polymer		
		I	323	
		II	323	
Sub- T_g transition temperatures	K	Nature of transition: onset of local motion of side groups	115	(31)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat capacity	kJ K ⁻¹ mol ⁻¹	Temperature (K) 100 200 300 600	0.0377 0.0684 0.1170 0.1720	(32)
Polymers with which compatible	_	All proportions	PP	(33)
Tensile modulus	MPa	ASTM D638	290-295	(8)
Tensile strength at yield	MPa	ASTM D638	16-18	(8)
Tensile strength at break	MPa	ASTM D638	32-35	(8)
Elongation at break	%	ASTM D638	275-320	(8)
Flexural modulus	MPa	ASTM D790	375-380	(8)
Notched Izod impact strength	$\rm J~m^{-1}$	ASTM D256	640-800	(8)
Hardness, Shore D	_	ASTM D2240	55-65	(8)
Poisson ratio	_	At 25°C	0.47	(34)
Dart impact strength	g	ASTM D1709 (for film thickness = $50.8 \mu m$)	350	(8)
Elmendorf tear strength	kN m ⁻¹	ASTM D1922 (for film thickness = $50.8 \mu m$) MD TD	425 386	(8)
Index of refraction <i>n</i>	_	Isotactic polymer	1.5125	(8)
Birefringence	_	Polymorphs I II	0.034 0.013	(35)
Refractive index increment dn/dc	$\mathrm{ml}~\mathrm{g}^{-1}$	Solvent/Temperature (°C) n-Nonane/35 n-Nonane/80 1-Chloronaphthalene/135 Cyclohexane/25	0.092 0.108 -0.206 0.074	- (36) (37)
Dielectric constant	_	103-106 Hz	2.53	(8)
Dissipation factor	_	103–106 Hz	0.0005	(8)

Poly(butene-1)

PROPERTY		UNITS	CONDITIONS	VALUE	REFERENCE	
Thermal conductivity	7	${\rm W} {\rm m}^{-1} {\rm K}^{-1}$	ASTM C177	0.22	(8)	
Melt index		$g (10 min)^{-1}$	ASTM D 1238 (E)	0.4	(8)	
Oxygen permeability		m ³ (STP)m s ⁻¹ m ⁻² Pa ⁻¹	Film thickness = 100 mil	1.74×10^{-15}	(38)	
Heat-deflection temp	erature	K	At 1.82 MPa, ASTM D648 At 0.46 MPa, ASTM D648	327–333 375–386	(8)	
Brittleness temperatu	ire	K	ASTM D746	255	(8)	
Water absorption %		24 h, ASTM D570	< 0.03	(8)		
Suppliers	Shell Chemical Company, USA (27,000 tons/yr) Mitsui Petrochemicals, Japan Neste Oy and Idemitsu, Finland					

- 1. Keim. W. Makromol. Chem. Macromol. Symp. 66 (1993): 225.
- 2. Morris, G. D. L., and M. Roberts. Chem. Week 151 (18 Nov. 1992): 43.
- 3. European Patent Application 2522 (1979), to Phillips Petroleum Co.
- 4. Kashiwa, N., and J. Yoshitake. Polym. Bull. 11 (1985): 485.
- 5. Kaminsky, W., et al. Angew. Chem., Intl. Ed., England, 24 (1985): 507.
- 6. European Patent Application 6968 (1980), to Conoco Inc.
- 7. U.S. Patent 3,907,761 (1975), to Ethylene Plastique, France.
- Chatterjee. A. M. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1985, vol. 2.
- 9. Zirkel, A., et al. Macromolecules 25(23) (1992): 6,148.
- 10. Zoller. P. J. Appl. Polym. Sci. 23 (1979): 1,057.
- 11. Zoller. P. J. Polym. Sci., Polym. Phys. Ed., 16 (1978): 1,491.
- 12. Wunderlich. B. Macromolecular Physics. Academic Press, New York, 1980, vol. 3.
- 13. Kissin, Y. V. In *Kirk-Othmer Encyclopedia of Chemical Technology*, edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1996.
- 14. Moraglio, G., G. Gianotti, and F. Danusso. Europ. Polym. J. 3 (1967): 251.
- 15. Krigbaum, W. R., J. E. Kurz, and P. Smith. J. Phys. Chem. 65 (1961): 1,984.
- 16. Moraglio, G., et al. Europ. Polym. J. 7 (1971): 303.
- 17. Sastry, S., and R. D. Patel. Europ. Polym. J. 5 (1969): 79.
- 18. Charlet, G., R. Ducasse, and G. Delmas. Polymer 22 (1981): 1,190.
- 19. Stivala, S. S., R. J. Wales, and D. W. Levi. J. App. Polym. Sci. 7 (1963): 97.
- 20. Constntine. D. Europ. Polym. J. 13 (1977): 907.
- 21. Katime, I., P. Garro, and J. M. Teijon. Europ. Polym. J. 11 (1975): 881.
- 22. Endo, R., K. Iimura, and M. Takeda. Bull. Chem. Soc. Japan 37 (1964): 950.
- 23. Natta, G., P. Corradini, and I. W. Bassi. Makromol. Chem. 21 (1956): 240.
- 24. Turner-Jones. A. J. Polym. Sci., Part B, 1 (1963): 455.
- 25. Fischer, E. W., F. Kloos, and G. Lieser. J. Polym. Sci., Part B, 7 (1969): 845.
- 26. Danusso, F., and G. Gianotti. Makromol. Chem. 61 (1963): 139.
- 27. Wilski, H., and T. Grewer. J. Polym. Sci., Polym. Symp., 6 (1964): 33.
- 28. Starkweather, H. W. Jr., and G. A. Jones. J. Polym. Sci., Polym. Phys. Ed., 24 (1986): 1,509.
- 29. Leute, U., and W. Dollhopt. Colloid. Polym. Sci. 261 (1983): 299.
- 30. Hong, K.-B., and J. E. Spruiell. J. Appl. Polym. Sci. 30 (1985): 3,163.

- 31. Choy, C. L., W. K. Luk, and F. C. Chen. Polymer 22 (1981): 543.
- 32. Gaur, U., B. B. Wunderlich, and B. Wunderlich. J. Phys. Chem., Ref. Data, 12 (1983): 29.
- 33. Foglia, A. J. App. Polym. Symp. 11 (1969): 1.
- 34. Warfield, R. W., F. R. Barnet. Die Angew. Makromol. Chem. 27 (1972): 215.
- 35. Tanaka, A., et al. Polym. J. 7 (1975): 529.
- 36. Horska, J., J. Stejskal, and P. Kratochril. J. Appl. Polym. Sci. 28 (1983): 3,873.
- 37. Chandra, R., and R. P. Singh. Makromol. Chem. 181 (1980): 1,637.
- 38. Luciani, L., J. Seppala, and B. Lofgren. Prog. Polym. Sci. 13(1) (1988): 37.

Poly[(n-butylamino)thionyl-phosphazene]

IAN MANNERS

CLASS Inorganic and semi-inorganic polymers

STRUCTURE $[NSO(HN^nBu)\{NP(NH^nBu)_2\}_2]_n$

PROPERTIES OF SPECIAL INTEREST Low cost, ease of synthesis, high gas permeability and low glass transition temperature.

SYNTHESIS Poly[(n-butylamino)thionylphosphazene] can be prepared via the aminolysis of the chlorinated poly(thionylphosphazene) with butylamine. (1) The chlorinated poly(thionylphosphazene) is synthesized via the thermal ring opening polymeriztion (ROP) of the corresponding cyclic thionylphosphazene [SOCl(NPCl₂)₂]. (1)

PROPERTY	UNITS	CONDITION	VALUE	REFERENCE
Glass transition temperature	K	DSC experiment	257	(1)
Unit cell dimensions		For monomer [SOCl(NPCl ₂) ₂]		(2)
Lattice	_	_	Orthorhombic	_
Monomers per unit cell	_	_	4	_
Cell dimensions	Å	_	a = 7.461	_
			b = 8.359	_
			c = 16.228	_
Cell angles	Degrees	_	$\alpha = \beta = \gamma = 90$	_

- 1. Ni, Y., et al. Macromolecules 29 (1996): 3,401.
- 2. van Bolhuis, F., and J. C. van der Grampel. Acta Cryst. B32 (1976): 1,192.

Poly(butylene terephthalate)

JUDE O. IROH

ACRONYM PBT

CLASS Polyesters; linear and flexible aromatic polyesters; thermoplastics

STRUCTURE

$$\begin{bmatrix} O \\ \parallel \\ C \end{bmatrix} \leftarrow C - O - (CH_2)_4 - O \end{bmatrix}_n$$

MAJOR APPLICATIONS Molding plastic, molecular component of polyether ester thermoplastic block copolymer elastomer, fiber and plastic forming, used in tooth and paint brush and in bristles and filler fabrics.

PROPERTIES OF SPECIAL INTEREST Mostly synthesized as flexible semicrystalline thermoplastic, PBT has outstanding resilience and toughness. High toughness and resilience is due to improved chain flexibility derived from the four methylene units. Used in thermoplastic matrix composites for gears, machine parts, small pump housings, and insulators.

PREPARATIVE TECHNIQUES Synthesized by step-growth polymerization between butylene glycol and terephthalic acid. PBT is often synthesized by ester-exchange polymerization using weak basic catalysts such as alkanoates, hydrides, and alkoxides of sodium, lithium, zinc, calcium, magnesium, titanium, etc. PBT is formed by the reaction of dimethyl terephthalate with 1,4-butanediol at 0.020 atm and 160–230°C. Final reaction occur at 260–300°C under vacuum at 0.001 atm. (1-4)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Molecular conformation	_	_	Nearly p	olanar	_
Unit cell	_	_	Triclinic	/allomorphs	(4)
Lattice constants	degrees	X-ray diffraction	α	β	(5, 6)
		а	4.86	4.72	
		b	5.96	5.79	
		С	1.165	1.300	
		α	99.70	102.70	
		eta	116	120.2	
		γ	110.8	103.7	
Unit cell volume	nm^3	X-ray diffraction	$\alpha = 0.26$	15, $\beta = 0.2729$	(5, 6)
Number of chains per unit cell	_	_	1		(6)
Unit cell density	$\rm gcm^{-3}$	X-ray diffraction	$\alpha = 1.39$	7, $\beta = 1.338$	(6)

Poly(bu	utylene	terep	htha	late)
---------	---------	-------	------	-------

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Measured density	$g\mathrm{cm}^{-3}$	_	$\alpha = 1.34, \beta = 1.33$	(6)
Number of chains	_	-	1	(5, 6)
Number of monomers	_	-	1	(5, 6)
Glass transition temperature $T_{\rm g}$	K	ASTM D3418	303-333	(5, 7, 8)
Melting temperature $T_{\rm m}$	K	ASTM D3418	495–505	(3, 5, 8, 9)
Heat of fusion ΔH	$kJ mol^{-1}$	DSC	21.2	(5, 7)
Breaking strength $\sigma_{\rm B}$	MPa	ASTM D638	55	(5, 8, 10-14)
Tensile (Young's) modulus <i>E</i>	MPa	ASTM D638	2,600	(5, 8, 10-14)
Flexural modulus (rigidity) <i>E</i>	MPa	3-point flexure, ASTM D790	2,300	(5, 8, 10-14)
Ultimate strain ε_{B}	%	ASTM D638	200-300	(5, 8, 10-14)
Yield strain ε_Y	%	ASTM D638	4	(5, 8, 10-14)
Yield strength σ_Y	MPa	ASTM D638	52	(15)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D256-86	53	(5, 8, 10-14)
Linear coefficient of thermal expansion α	K^{-1}	ASTM D696	7.0×10^{-5}	(5, 8, 13–15)
Specific heat	$kJkg^{-1}K^{-1}$	_	223	(5, 8, 13, 14)
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	_	1.35	(5, 8, 13, 14)
Thermal deflection	K	ASTM D648 At 264 psi At 66 psi	54 154	(5, 8, 13, 14)
Outdoor weathering	%	ASTM D1435	Good resistance	(5, 8, 13, 14)
Volume resistivity	ohm cm (×10 ¹⁶)	ASTM D257	0.1	(5, 8, 13, 14)
Dissipation factor	100 Hz 106 Hz	D150 D150	0.005 0.012	(5, 8, 13, 14)
Dielectric strength	$kV mm^{-1}$	ASTM D149	15.8	(5, 8, 13, 14)

			Poly(butylene te	erephthalate)
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric constant	$10^6\mathrm{Hz}$	ASTM D150	3.24	(5, 8, 13, 14)
Mark-Houwink parameters: K and a	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Solution viscometry (30°C)	$K = 1.17 \times 10^{-2}$ $a = 0.87$	(5, 16)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	-	220	_
Weight average molecular weight	$g \text{mol}^{-1}$	Light scattering	30,000-80,000	(5, 17)

- 1. Whinfield J. R., and J. T. Dickson. *U.S. Patent* 2,465,319 (1940), to E.I. du Pont de Nemours and Company.
- Jaquiss, D. B. G., W. F. H. Borman, and R. W. Campbell. In *Encyclopedia of Chemical Technology*, edited by M. Grayson. John Wiley and Sons, New York, 1982, vol. 18, p. 549.
- Rodriguez, F. Principles of Polymer Systems, International Student Edition, 2d ed. McGraw-Hill, London, 1983, pp. 432, 435.
- 4. Wilfong, R. E. J. Polym. Sci. 54 (1961): 385.
- Mark, H. F., et al., eds. Encyclopedia of Polymer Science and Engineering. John Wiley and Sons, New York, 1985, vol. 12, p. 226.
- Hall, I. H. Structure of Crystalline Polymers. Elsevier Applied Science Publishers, Barking, U.K., 1984, p. 39.
- 7. Illers, K. H. Colloid Polym. Sci. 258 (1980): 117.
- 8. Rubin, I. I., ed. *Hand Book of Plastics Materials and Technology*. John Wiley and Sons, New York, 1990, p. 634.
- 9. Rosen, S. L. Fundamental Principles of Polymeric Materials, 2d ed. John Wiley and Sons, New York, 1993, p. 111.
- 10. Theberge, J. E., J. Crosby, and M. Hutchins. Mach. Des. 67 (1985): 57,930.
- 11. Theberge, J. E. Polym. Plast. Technol. Eng. 16(1) (1981): 41.
- 12. Russo R. V. U.S. Patent 3,764,576 (8 October 1973), to Celanese Corp.
- 13. Jaquiss, D. B. G., W. F. H. Borman, and R. W. Campbell. In *Encyclopedia of Chemical Technology*, edited by M. Grayson. John Wiley and Sons, New York, 1982, vol. 18, p. 549.
- 14. Brozenick, N. J. In Modern Plastics Encyclopedia. McGraw-Hill, New York, 1986-1987, p. 464.
- Mark, H. F., et al., eds. Encyclopedia of Polymer Science and Engineering. John Wiley and Sons, New York, 1985, vol. 12, p. 23.
- 16. Borman W. F. J. Appl. Polym. Sci. 22 (1978): 2,119
- 17. Jackson W. J., Jr., H. F. Kuhfuss, and J. R. Caldwell. *British Patent* 1,320, 520 (1973), to Eastman Kodak Company.

CHANDIMA KUMUDINIE AND JAGATH K. PREMACHANDRA

ACRONYM PBIC

CLASS Poly(isocyanates); N-substituted 1-nylons

 $\begin{array}{ccc} \textbf{STRUCTURE} & C_4 H_9 \\ & | \\ & + N - C + \\ & O \end{array}$

MAJOR APPLICATION An ideal example of a polymer model for a rigid-rod macromolecular chain material amenable to physical studies.

PROPERTIES OF SPECIAL INTEREST Hydrodynamic rigid-rod molecule, unusual chain stiffness, helical conformation. $^{(1)}$

OTHER POLYMERS SHOWING THIS SPECIAL PROPERTY Rigid-rod molecule, helical conformation: poly(n-hexyl isocyanate), poly(γ -benzyl-L-glutamate).

Preparative techniques

Polymerization process	Solvent	Temp. (°C)	Catalyst	Reference
Anionic	Benzene	-55	NaCN in dimethylformamide	(2)
Anionic	Toluene-THF	_	<i>n</i> -Butyllithium	(3)
Anionic	Toluene	-78	<i>n</i> -Butyllithium	(4)
Anionic	Toluene	-78	Fluorenyl sodium	(4)
Anionic	Toluene	-78	Ethyllithium in benzene	(5)
Anionic	Toluene	-78	$(C_2H_5)_2$ Be	(5)
Anionic	_	-40 to -70	NaCN in dimethylformamide	(6)
Anionic	CH_2Cl_2	-78	<i>n</i> -Octyl sodium	(5)
Anionic	CS_2^2	-78	Ethyllithium in benzene	(5)
Anionic	THF	-78	Ethyllithium in benzene	(5)
Anionic	Acetone	-78	LiOC ₄ H ₉	(5)
Anionic	CH_2Cl_2	-78	Ethyllithium in benzene	(5)
Cationic*		_	<u> </u>	(5)

^{*}No polymers were obtained.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight of repeat unit	g mol ⁻¹	_	99	_
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	$M_{ m w} \ M_{ m w} \ M_{ m w}$	$(0.14-2.3) \times 10^6$ $(1.75-2.4) \times 10^5$ $(0.23-5.3) \times 10^5$	(1) (7) (8)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE		
Typical polydispersity	_	_	1.0-1.2	(9)		
index $(M_{\rm w}/M_{\rm n})$		_	2.5	(9)		
		_	1.07-1.20	(10)		
		Light scattering and osmometry	1.15-1.30	(11)		
		Dielectric measurements	1.06-1.44	(11)		
		In chloroform, initiator: NaCN in dimethylformamide	1.1-1.4	(4)		
		In chloroform, initiator: fluorenyl sodium	1.1-9.5	(4)		
		In chloroform, initiator: n-butyllithium	1.3-8.4	(4)		
		In benzene, dielectric measurements	3.2-4.4	(4)		
IR (characterisitc absorption frequencies)	cm^{-1}	Carbonyl, solid state	~1,700	(2, 5, 12–14)		
		Carbonyl, dilute solution	1,690-1,695	(13, 14)		
		Disubstituted amide, solid state	1,282 and 1,390	(2)		
UV	nm	Absorption maxima at the high wavelength band, λ_{\max}	254	(15, 16)		
	$\mathrm{L}\mathrm{mol}^{-1}\mathrm{cm}^{-1}$	Extinction coefficient	3.7×10^3	(16)		
NMR		7-MHz spectrometer, in CDCl ₃ at	55°C	(16)		
	¹³ C NMR, , 20- ¹ H NMR, poly	(13, 17) (18)				
	spectromete					
	¹ H NMR	¹ H NMR				
Solvents		Aromatic and chlorinated hydrocarbons				
		Nonpolar solvents such as benzene and toluene				
	THF, benzene,			(3, 7)		
	CCl ₄ , CHCl ₃ , 1	1,2,4-trichlorobenzene-chloroform	(75/25 v/v)	(7)		
Nonsolvents	Methanol			(2, 19)		
	Acetone, ethyl	acetate, dimethylformamide, meth	hylethylketone	(3)		
		rectoric, early acctate, afficulty normalitac, metry learly rectoric				

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Second virial coefficient	$mol cm^3 g^{-2}$	In toluene at 37°C, $M_{\rm n}=(0.23-5.3)\times 10^5{\rm gmol}^{-1}$, osmometry	$(1.85 - 2.36) \times 10^{-3}$	(8)
		In toluene at 37°C, $M_n = (0.23 - 5.2) \times 10^5 \text{ g mol}^{-1}$, osmometry	$(1.8 - 2.5) \times 10^{-3}$	(4)
		In toluene, osmometry, arithmetic mean	2.13×10^{-3}	(4)
		In chloroform, $M_{\rm w} = 6.1 \times 10^4 {\rm g mol^{-1}}$	3×10^{-3}	(4)
		In chloroform, $M_{\rm w} = 1.0 \times 10^7 \rm g mol^{-1}$	2.1×10^{-3}	(4)
		In chloroform, $M_{\rm w} = 1.0 \times 10^{9} \rm g mol^{-1}$	1.5×10^{-3}	(4)
		$M_{\rm w} = 1.03 \times 10^{9} \text{g mol}$ In chloroform, $M_{\rm w} = 5.40 \times 10^{5} \text{g mol}^{-1}$	2.5×10^{-3}	(4)
		In chloroform,	2.0×10^{-3}	(4)
		$M_{\rm w} = 1.65 \times 10^5 {\rm g mol^{-1}}$ In chloroform,	2.4×10^{-3}	(4)
		$M_{\rm w}=2.45\times 10^6{\rm gmol^{-1}}$ In chloroform, light scattering, arithmetic mean	2.51×10^{-3}	(4)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	_	In tetrahydrofuran In carbon tetrachloride	a = 1.18 $K = 3.16 \times 10^{-4}$, a = 1.2	(20) (21, 22)
Huggins constant	_	In carbon tetrachloride at 22°C	0.27-0.97	(10)
Radius of gyration	Å	In chloroform, $M = (1 \times 10^4 \text{ cm s})^{-1}$	320	(4)
		$M_{\rm w} = 6.1 \times 10^4 {\rm g mol}^{-1}$ In chloroform,	5,200	
		$M_{\rm w} = 1.0 \times 10^7 {\rm g mol^{-1}}$ In chloroform,	420	
		$M_{\rm w} = 1.03 \times 10^5 \mathrm{g mol^{-1}}$ In chloroform,	1,250	
		$M_{\rm w} = 5.40 \times 10^5 {\rm g mol^{-1}}$ In chloroform,	625	
		$M_{ m w}=1.65 imes10^5{ m gmol}^{-1}$ In chloroform, $M_{ m w}=2.45 imes10^6{ m gmol}^{-1}$	2,800	
Monomer projection length	Å	Translation diffusion Rotatory diffusion Viscosity Viscosity Relaxation time measurements Viscosity sedimentation-diffusion Dielectric measurements Dielectric and viscoelastic relaxation	2.0 2.7 2.0 1.50-1.80 1.19-1.49 2.1 1.1 0.6-1.1	(21) (21) (21) (10) (10) (23, 24) (25) (26)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Monomer projection	Å	In chloroform, light scattering	1.8-2.1	(4, 27)	
length		In chloroform	2	(28)	
		X-ray diffraction	1.94	(29)	
Chain diameter	Å	In toluene at 37°C, osmometry	10	(27)	
			11	(9)	
Number of monomer units	_	Translatory diffusion	600	(21)	
in segment of molecular		Rotatory diffusion	500		
chain		Flow birefringence	370		
		Birefringence in an electric field	700		
Persistence length	Å	In carbon tetrachloride	600	(21)	
C		In chloroform	500-600	(27)	
		In chloroform	300	(28)	
		Viscosity sedimentation-diffusion	1,300	(23, 24)	
		Dielectric measurements	880	(25)	
		Dielectric and viscoelastic relaxation	>400	(26)	
		Light scattering	500-600	(4)	
Space group	Triclin	ic with the axes of the molecule at 1/3, 1	/6, z and 2/3, 5/6, z	(29)	
Chain conformation	n Rigid rod, nonpolar, and possibly helical				
Chair Comornadon		structure with a translation of 1.94 Å a	nd a rotation of 135°	(1) (29)	
	per monomeric unit (8 ₃ helix)				
		od up to degree of polymerization, DP	600 with an enget	(30)	
		exibility at higher DP	~ 000, with an onset	(30)	
	The co	nformation of the polymer is same in th	e solid phase and in	(29)	
	solut	set of flexibility occurs at $M_{ m w}=(0.73$ –1.	22) $\times 10^5 \text{ cm s}^{1-1}$	(15)	
	The on	is set of flexibility occurs at $M_{\rm w} = (0.75-1.00)$.55) × 10 g 11101 41-1	(15)	
		lity is encountered when $M_{\rm w} > 5.0 \times 10^{-3}$		(9)	
	Low m	solecular weight molecule, $M_{\rm w} < 8.0 \times 10^{-3}$	Is rodlike and	(25)	
		al. At high molecular weight, $M_{ m w} > 1.0$ and conformation is random coil	× 10°, the polymer		
Unit cell dimensions				(29)	
Unit cell dimensions Lattice	_	_	Pseudohexagonal	(29)	
	_	_ _	Pseudohexagonal	(29)	
Lattice	_ _ Å	- - -	a = b = 13.3,	(29)	
Lattice Monomers per unit cell	_	- - -	2	(29)	
Lattice Monomers per unit cell	_	- - -	a = b = 13.3,		
Lattice Monomers per unit cell Cell dimensions	_ _ Å	- - -	a = b = 13.3, c = 15.4	(5)	
Lattice Monomers per unit cell Cell dimensions	_ _ Å	- - -	2 a = b = 13.3, c = 15.4 44.5	(5) (5)	
Lattice Monomers per unit cell Cell dimensions	_ _ Å	- - -	2 a = b = 13.3, c = 15.4 $ 44.5 36.4 22.7$	(5) (5) (5)	
Lattice Monomers per unit cell Cell dimensions	_ _ Å	$[\eta] = 4.2 \mathrm{dl} \mathrm{g}^{-1}$ in benzene $[\eta] = 7.3 \mathrm{dl} \mathrm{g}^{-1}$ in benzene $[\eta] = 10.6 \mathrm{dl} \mathrm{g}^{-1}$ in benzene $[\eta] = 11.6 \mathrm{dl} \mathrm{g}^{-1}$ in benzene	2 a = b = 13.3, c = 15.4 $ 44.5 36.4$	(5) (5) (5) (5)	
Lattice Monomers per unit cell Cell dimensions	_ _ Å	$[\eta]=4.2\mathrm{dl}\mathrm{g}^{-1}$ in benzene $[\eta]=7.3\mathrm{dl}\mathrm{g}^{-1}$ in benzene $[\eta]=10.6\mathrm{dl}\mathrm{g}^{-1}$ in benzene $[\eta]=11.6\mathrm{dl}\mathrm{g}^{-1}$ in benzene Relatively high and depends on the	2 a = b = 13.3, c = 15.4 $ 44.5 36.4 22.7$	(5) (5) (5)	
Lattice Monomers per unit cell Cell dimensions	_ _ Å	$[\eta] = 4.2 \mathrm{dl} \mathrm{g}^{-1}$ in benzene $[\eta] = 7.3 \mathrm{dl} \mathrm{g}^{-1}$ in benzene $[\eta] = 10.6 \mathrm{dl} \mathrm{g}^{-1}$ in benzene $[\eta] = 11.6 \mathrm{dl} \mathrm{g}^{-1}$ in benzene	2 a = b = 13.3, c = 15.4 $ 44.5 36.4 22.7$	(5) (5) (5) (5)	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Degree of crystallinity	%	Higher degree of crystallinity of the polymer prepared with C_2H_5Li than with NaCN in dimethylformamide	-	(5)
Density	$\rm gcm^{-3}$	– Highly crystalline Calculated	0.97 1.25 1.071 1.10	(29) (7) (25) (29)
Glass transition temperature	K	DSC DTA-DSC, at 20°C min ⁻¹ ; Ar atmosphere	None observed 258	(7) (13)
Melting point	K	DTA-DSC; Ar atmosphere; heating rate: 20°C min ⁻¹	\sim 458	(13)
		¹³ C NMR thermal cycling in the bulk	463	(17)
		Polymerization catalyst: <i>n</i> -octyl sodium; solvent: CH ₂ Cl ₂	438	(5)
		Polymerization catalyst: C ₂ H ₅ Li in benzene; solvent: THF	438	(5)
		By hot-stage microscopy	487 471–473 472–474 482	(32) (31) (31) (33)
Mesomeric transition temperatures	K	Crystalline-nematic transition, by hot-stage microscopy	484	(32)
Sub- $T_{\rm g}$ transition temperatures	K	Relaxations, by hot-stage microscopy	444	(32)
Softening temperature	K	-	453	(2, 33)
Enthalpy of propagation	$kJ mol^{-1}$	-	5.7	(6)
Tensile modulus	MPa	At room temperature, $\eta_{\rm sp}/{\rm C}$ in CHCl ₃ = 8.1 dl g ⁻¹	~810	(13)
		At 23°C, strain rate = $8.3 \times 10^{-4} \text{ s}^{-1}$	~500	(34)
		At 20°C, strain rate = $6.7 \times 10^{-4} \text{ s}^{-1}$	~1,570	(7)
		At 80° C, strain rate = 6.7×10^{-4} s ⁻¹	\sim 2,940	(7)
		At 0° C, strain rate = $6.7 \times 10^{-4} \text{ s}^{-1}$	~1,765	(7)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	At room temperature, $\eta_{\rm sp}/{\rm C}$ in CHCl ₃ = 8.1 dl g ⁻¹	~45	(13)
		At 23°C, strain rate = $8.3 \times 10^{-4} \text{s}^{-1}$	~52	(34)
		At -20° C, strain rate = $6.7 \times 10^{-4} \text{s}^{-1}$, 30-40% crystalline, $\eta = 7.25 \text{dl g}^{-1}$	~58	(7, 35)
		At 0°C, strain rate = $6.7 \times 10^{-4} \text{s}^{-1}$, 30–40% crystalline, $\eta = 7.25 \text{dl g}^{-1}$	~50	(7, 35)
		At 23°C, strain rate = $6.7 \times 10^{-4} \text{ s}^{-1}$, 30-40% crystalline, $\eta = 7.25 \text{ dl g}^{-1}$	~34	(7, 35)
Maximum extensibility	%	At room temperature, $\eta_{\rm sp}/C$ in CHCl ₃ = 8.1 dl g ⁻¹	32	(13)
		At 23°C, strain rate = $8.3 \times 10^{-4} \text{s}^{-1}$	~33	(34)
		At -20° C, strain rate = $6.7 \times 10^{-4} \text{ s}^{-1}$, 30–40% crystalline, $\eta = 7.25 \text{ dl g}^{-1}$	~15	(7, 35)
		At 0°C, strain rate = $6.7 \times 10^{-4} \text{s}^{-1}$, 30–40% crystalline, $\eta = 7.25 \text{dl g}^{-1}$	~23.5	(7, 35)
		At 23°C, strain rate = $6.7 \times 10^{-4} \text{ s}^{-1}$, 30-40% crystalline, $\eta = 7.25 \text{ dl g}^{-1}$	~39	(7, 35)
Specific refractive index increment, <i>dn/dc</i>	mlg^{-1}	In chloroform, $\lambda_0=5,460\text{Å}$ In tetrahydrofuran, $\lambda_0=4,358\text{Å}$	0.054 0.99	(1, 11) (27)
Relative electrical birefringence	-	In carbon tetrachloride, frequency $< 5 \times 10^3 \text{ Hz}$,	~1-0.03	(21)
		$M_{\rm w} = 2.46 \times 10^5 {\rm g mol}^{-1}$ In carbon tetrachloride; frequency range: 10^3 - 10^4 Hz; $M_{\rm w} = 2.0 \times 10^4 {\rm g mol}^{-1}$	~1-0.75	
Dielectric constant ε'	_	In dilute benzene solution (10^{-4} g cm ⁻³), at 22.5°C; frequency range: 10^{-1} to	~2.28-2.76	(1)
		2×10^6 Hz; $M_{\rm w} = 1.84 \times 10^6$ g mol ⁻¹ In carbon tetrachloride at 22.9°C; frequency range: 10^{-1} - 10^6 Hz; $M_{\rm w} = 2.35 \times 10^5$ g mol ⁻¹	2.35-2.37	(25)
Dielectric loss ε''	_	In dilute benzene solution (10^{-4} g cm ⁻³), at 22.5°C; frequency range: 10^{-1} to 2×10^6 Hz; $M_{\rm w} = 1.84 \times 10^6$ g mol ⁻¹	~0.01-0.10	(1)
		In carbon tetrachloride at 22.9°C; frequency range: 10^{-1} - 10^{6} Hz; $M_{\rm w} = 2.35 \times 10^{5}$ g mol ⁻¹	~0.003-0.053	(11, 25)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric critical frequency	Hz	In dilute benzene solution (10^{-4} g cm ⁻³), at 22.5°C; frequency range: 10^{-1} to 2×10^6 Hz; $M_{\rm w} = (0.14-2.3) \times 10^6$ g mol ⁻¹	100,000-32	(1)
		In carbon tetrachloride at 22.9°C; frequency range: 10^{-1} – 10^6 Hz; $M_{\rm w}=2.35\times10^5$ g mol $^{-1}$	~540	(11, 25)
Relaxation time	μs	In dilute benzene solution ($10^{-4} \mathrm{g cm^{-3}}$), at 22.5°C; frequency range: 10^{-1} to 2×10^{6} ; $M_{\rm w} = (0.142.3) \times 10^{6} \mathrm{g mol^{-1}}$	1.6-5,000	(1)
		In tetrahydrofuran, $M_{\rm w}=3\times10^5{\rm gmol}^{-1}$	17.8	(9)
		In chloroform, $M_{\rm w} = 3 \times 10^5 \mathrm{g mol}^{-1}$	20.0	(9)
		In benzene, $M_{\rm w}=3\times10^5{\rm gmol^{-1}}$	25.0	(9)
		In benzene, $M_{\rm w} = 1.33 \times 10^5 {\rm g mol}^{-1}$	30.0	(9)
		In benzene, $M_{\rm w} = 6.0 \times 10^4 {\rm g mol^{-1}}$	3.3	(9)
		In benzene, $M_{\rm w} = 2.0 \times 10^4 {\rm g mol^{-1}}$	0.42	(9)
		In carbon tetrachloride at 22°C, $M_{\rm w} = (0.2 3.8) \times 10^5 {\rm g mol}^{-1}$	0.40-1,260	(10)
		In carbon tetrachloride at 22.9°C, $M_{\rm w} = (2-7.3) \times 10^4 {\rm g mol}^{-1}$	~0.40-20	(25)
		In carbon tetrachloride at 22.9°C, $M_{ m w}=(1.035.4) imes10^5{ m gmol}^{-1}$	~45–1,995	(25)
		In carbon tetrachloride at 22.9°C, $M_{\rm w} = (0.12\text{-}1.0) \times 10^7 {\rm g mol}^{-1}$	~4,467–89,125	(25)
Dipole moment D	_	Net dipole moment is parallel to the major as	is of the molecule	(1)
Dipote moment D		$M_{\rm w}=1.7\times10^6{\rm gmol}^{-1}$	4,500	(36)
		$M_{\rm w} = 3.8 \times 10^5 {\rm g mol^{-1}}$	2,120	(36)
		In benzene, $M_n = 1.2 \times 10^5 \mathrm{g mol^{-1}}$, specific volume = $0.8 \mathrm{cm^3 g^{-1}}$	1,224	(9)
		In benzene, $M_{\rm n} = 5 \times 10^4 {\rm g mol}^{-1}$, specific volume = $0.8 {\rm cm}^3 {\rm g}^{-1}$	481	(9)
		In benzene, $M_{\rm n}=2\times10^4{\rm gmol}^{-1}$, specific volume = $0.8{\rm cm}^3{\rm g}^{-1}$	179	(9)
		In carbon tetrachloride at 22.9°C, $M_{\rm w} = (2-7.3) \times 10^4 {\rm g mol}^{-1}$	226–726	(25)
		In carbon tetrachloride at 22.9°C, $M_{\rm w}=(1.035.4)\times10^5{\rm gmol}^{-1}$	806–2,561	(25)
		In carbon tetrachloride at 22.9°C, $M_{\rm w}=(1.23.5)\times10^6{\rm gmol}^{-1}$	3,768-6,277	(25)
		In carbon tetrachloride at 22.9°C, $M_{\rm w} = (0.541.0) \times 10^7 {\rm g mol}^{-1}$	2,561–10,954	(25)
Anisotropy of the	_	_	$1.1 \times 10^{-24} \\ 1.46 \times 10^{-24}$	(21) (37)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Anisotropy of the Kuhn statistical segment	_	_	3.6×10^{-22}	(21)
Kerr constant	_	-	$(0.2524) \times 10^{-7}$	(21)
Optical activity $[\alpha]_{D}$	Degree	Poly[(S)-(+)-2-methylbutyl isocyanate], in chloroform	+160	(18)
Reduced dichorism	-	In carbon tetrachloride at 22.9°C, $M_{\rm w}=73,\!000{\rm gmol^{-1}},$ field strength $\sim\!(1.32.3)\times10^4{\rm Vcm^{-1}}$	~0.24-0.068	(15)
Diffusion coefficient D	_	In carbon tetrachloride, $M_{\rm w}=10^3$ – $10^6~{\rm g~mol}^{-1}$	$(0.0751.6) \times 10^{-6}$	(21)
		$M = (0.10 3.0) \times 10^5 \mathrm{g mol^{-1}}$	$1.07 \times 10^{-3} M^{-0.8}$	
Rotatory diffusion coefficient	S^{-1}	In tetrahydrofuran, $M_{\rm w}=3.0\times10^5{\rm gmol^{-1}}$ In chloroform, $M_{\rm w}=3.0\times10^5{\rm gmol^{-1}}$ In benzene, $M_{\rm w}=3.0\times10^5{\rm gmol^{-1}}$ In benzene, $M_{\rm w}=1.33\times10^5{\rm gmol^{-1}}$ In benzene, $M_{\rm w}=6.0\times10^4{\rm gmol^{-1}}$ In benzene, $M_{\rm w}=2.0\times10^4{\rm gmol^{-1}}$ In benzene, $M_{\rm w}=2.0\times10^4{\rm gmol^{-1}}$	2.8×10^4 2.5×10^4 2.0×10^4 1.66×10^4 1.5×10^5 1.20×10^6	(9)
Index of sedimentation [S]	-	In carbon tetrachloride, $M_{\rm w}=10^310^6\mathrm{gmol}^{-1}$ $M=(0.103.0)\times10^5\mathrm{gmol}^{-1}$	$\sim (1.26 - 1.38) \times 10^{-13}$ $1.97 \times 10^{-14} M^{0.2}$	(21)
Intrinsic viscosity $[\eta]$	$dl g^{-1}$	In benzene, $C = 0.2 \mathrm{g}\mathrm{dl}^{-1}$ In carbon tetrachloride, $10^3 - 10^6 \mathrm{g}\mathrm{mol}^{-1}$ $M = (0.10 - 3.0) \times 10^5 \mathrm{g}\mathrm{mol}^{-1}$	1.2 \sim 12-2,370 3.16 \times 10 ⁻⁴ $M^{1.2}$	(31) (21) (21)
Decomposition temperature	K	At polymer melting point TGA, heating rate: 10°C min ⁻¹ TGA, heating rate: 20°C min ⁻¹ , nitrogen atmosphere By hot-stage microscopy	482 ~423 458 ~492	(2) (13) (38) (32)

$Pyrolyzability^{(38)}\\$

	Conditions	Observation
Nature of product	Direct pyrolysis mass spectrometry	Cyclic trimer of <i>n</i> -butyl isocyanate as the principle decomposition product, and trace amounts of monomer

- 1. Yu, H., A. J. Bur, and L. J. Fetters. J. Chem. Phys. 44 (1966): 2,568.
- 2. Shashoua, V. E., W. Sweeny, and R. F. Tietz. J. Am. Chem. Soc. 82 (1959): 866.
- 3. Godfrey, R. A., and G. W. Miller. J. Polym. Sci., Part A-1, 7 (1969): 2,387.
- 4. Fetters, L. J., and H. Yu. Macromolecules 4 (1971): 385.
- 5. Natta, G., J. Dipietro, and M. Cambini. Macromol. Chem. 56 (1962): 200.
- 6. Eromosele, I. C., and D. C. Pepper. J. Polym. Sci., Polym. Chem. Ed., 25 (1987): 3,499.
- 7. Owadh, A. A., I. W. Parsons, J. N. Hay, and R. N. Haward. Polymer 19 (1978): 386.
- 8. Fetters, L. J., and H. Yu. Polym. Prepr. 7 (1966): 443.
- 9. Jennings, B. R., and B. L. Brown. Eur. Polym. J. 7 (1971): 805.
- 10. Bur, A. J., and L. T. Fetters, and H. Yu. Macromolecules 6 (1973): 874.
- 11. Bur, A. J. J. Chem. Phys. 52 (1970): 3,813.
- 12. Iwakura, Y., K. Uno, and N. Kobayashi. J. Polym. Sci., Part A-1, 6 (1968): 1,087.
- 13. Aharoni, S. M. Macromolecules 12 (1979): 94.
- 14. Aharoni, S. M., and J. P. Sibilia. Polym. Prepr. 20 (1979): 118.
- 15. Milstein, J. B., and E. Charney. Macromolecules 2 (1969): 678.
- 16. Green, M. M., R. A. Gross, C. Crosby III, and F. C. Schilling. Macromolecules 20 (1987): 992.
- 17. Aharoni, S. M. Polym. Prepr. 21(1) (1980): 209.
- 18. Goodman, M., and S. Chen. Macromolecules 4 (1971): 625.
- 19. Berger, M. N., and B. M. Tidswell. J. Polym. Sci. 42 (1973): 1,063.
- 20. Burchard, W. Macromol. Chem. 67 (1963): 182.
- 21. Tsvetkov, V. N., I. N. Shtennikova, E. I. Rjumtsev, and Yu. P. Getmanchuk. *Eur. Polym. J.* 7 (1971): 767.
- 22. Tsvetkov, V. N., Ye. I. Rjumtsev, and I. N. Shtennikova. Polym. Sci. USSR 13 (1971): 579.
- 23. Tsvetkov, V. N., et al. Polym. Sci. USSR 10 (1968): 2,482.
- 24. Tsvetkov, V. N., Eur. Polym. J., Suppl., 23 (1969): 7.
- 25. Bur, A. J., and D. E. Roberts. J. Chem. Phys. 51 (1969): 406.
- 26. Dev, S. B., R. Y. Lochhead, and A. M. North. Discuss. Faraday Soc. 49 (1970): 244.
- 27. Fetters, L. J., and H. Yu. Polym. Prepr. 2 (1970): 1,093.
- 28. Rubingh, D. N., and H. Yu. Polym. Prepr. 14(2) (1973): 1,118.
- 29. Shmueli, U., and W. Traub. J. Polym. Sci., Part A-2, 7 (1969): 515.
- 30. Troxell, T. C., and H. A. Scheraga. Macromolecules 4 (1971): 528.
- 31. Iwakura, Y., K. Uno, and N. Kobayashi. J. Polym. Sci., Part A-2, 4 (1966): 1,013.
- 32. Aharoni, S. M. J. Polym. Sci., Polym. Phys. Ed., 18 (1980): 1,303.
- 33. Ulrich, H. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1987, Vol. 8, pp. 448-462.
- 34. Aharoni, S. M. Polymer 22 (1981): 418.
- 35. Owadh, A. A. J., I. W. Parsons, J. N. Hay, and R. N. Haward. Polymer 17 (1976): 926.
- 36. Baijal, M. D., R. M. Diller, and F. R. Pool. Polym. Prepr. 10 (1969): 1,464.
- 37. Tsvetkov, V. N., and L. N. Andreeva. Adv. Polym. Sci. 39 (1981): 95.
- 38. Durairaj, B., A. W. Dimock, E. T. Samulski, and M. T. Shaw. *J. Polym. Sci., Part A, Polym. Chem.*, 27 (1989): 3,211.

Poly(ε -caprolactone)

JUDE O. IROH

ACRONYM PCL

CLASS Polyesters; linear aliphatic flexible polyesters; thermoplastics

structure
$$\underset{\stackrel{||}{\leftarrow} C-(CH_2)_5-O\frac{1}{2n}}{O}$$

MAJOR APPLICATIONS Films, formulation of copolymers, biodegradable polyesters, formulation of elastomeric block copolyesters, formation of diol for extension by diisocyanate.

PROPERTIES OF SPECIAL INTEREST Mostly synthesized as semicrystalline thermoplastic. PCL is a clear and flexible polyester with elastomeric properties.

PREPARATIVE TECHNIQUES Synthesized by ring-opening addition polymerization of ε -caprolactone at 170°C in a nitrogen atmosphere using dibutyl stanneous oxide (Bu₂SnO) as the catalyst. A wide range of initiators such as organometal catalysts and alkanolamine can be used. The copolymer poly(ε -caprolactone-co-ethylene glycol) is used as a diol extension for polyurethane.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular conformation	_	_	Nearly planar	_
Molecular weight (of repeat unit)	g mol ⁻¹	-	114	_
Weight average molecular weight	g mol ⁻¹	GPC	74,000	(8)
Number average molecular weight	g mol ⁻¹	GPC	25,000	(11)
Intrinsic viscosity	$\mathrm{cm}^3\mathrm{g}^{-1}$	Dilute solution viscometry	0.9	(10)
Solvents	_	-	Dimethylacetamide(DMAc), benzene, chloroform	(9, 13)
Enthalpy of polymerization	kJ mol ⁻¹	25°C and 1 atm	-28.8	(8)
Entropy of polymerization	kJ mol ⁻¹	25°C and 1 atm	-53.9	(8)
Gibbs free energy of polymerization	kJ mol ⁻¹	25°C and 1 atm	-12.8	(8)

$Poly(\varepsilon$ -caprolactone)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Physical state	_	Semicrystalline	_	_
Degree of crystallinity	%	DSC	69	(11)
Unit cell	_	– X-ray diffraction	Orthorhombic: 2θ peaks at 22° and 24°	(9-12)
Lattice constants	Å	X-ray diffraction	a = 7.45 $b = 4.98$ $c = 17.05$	(10)
Number of repeat units per unit cell	_	_	4	(10)
Unit cell density	${\rm g~cm^{-3}}$	X-ray diffraction	1.20	(10)
Measured density	${\rm g~cm}^{-3}$	X-ray diffraction	1.094-1.2000	(8, 10, 12)
Elongation	%	_	700	(8)
Glass transition temperature $T_{\rm g}$	K	DSC	201	(8, 12)
Melting temperature $T_{\rm m}$	K	DSC	331	(8, 12)
Heat of fusion $\Delta H_{\rm f}$	$kJ mol^{-1}$	DSC	8.9	(12)

- 1. Lundberg, R. D., J. V. Koleske, and K. B. Wischmann. J. Polym. Sci. Part A-1, 7 (1969): 2,915.
- 2. Mazier, C., et al. Eur. Polym. J. 16 (1980): 773.
- 3. Hostettler, F., and D. M. Young. *U.S. Patent* 3,274,143 (10 September 1966), to Union Carbide Corp.
- 4. Schindler, A., et al. In *Contemporary Topics in Polymer Science*, edited by E. M. Pearce and J. R. Schaefgen. Plenum Publishing, New York, 1977, vol. 2, pp. 251–289.
- 5. Teyssie, P., et al. Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem., 18 (1977): 65.
- 6. Ito, K., Y. Hashizuka, and Y. Yamashita. Macromolecules 10 (1977): 821.
- 7. Mark, H. F., et al., eds. *Encyclopedia of Polymer Science and Engineering*. John Wiley and Sons, New York, 1985, vol. 12, pp. 1–37.
- 8. Shuster, M., and M. Narkis. Polym. Eng. and Sci. 34(21) (1994): 1,613.
- 9. Nishio, Y., and R. St. J. Manley. Polym. Eng. and Sci. 30(2) (1990): 71.
- 10. Chatani, Y., et al. Polym. J. 1 (1970): 555.
- 11. Ong, C. J., and F. P. Price. J. Polym. Sci., Polym. Symp., 63 (1978): 45.
- 12. Huarng, J. C., K. Min, and J. L. White. Polym. Eng. and Sci. 28(24) (1988): 1,590.
- 13. Mark, H. F., et al., eds. *Encyclopedia of Polymer Science and Engineering*. John Wiley and Sons, New York, 1985, vol. 12, p. 50.

Polycarbonate

TAREK M. MADKOUR

ACRONYM, ALTERNATIVE NAME, TRADE NAMES PC, bisphenol-A polycarbonate, Lexan $^{(\!R\!)}$ (GE), Makrolon $^{(\!R\!)}$ (Bayer)

CLASS Polyesters

SYNTHESIS Polycondensation

$$\begin{bmatrix}
CH_3 & O \\
C & C
\end{bmatrix}$$

$$CH_3 & O \\
CH_3 & O$$

MAJOR APPLICATIONS Used in making canopies for supersonic aircraft, bubble helmets for astronauts, break-resistant windows, and bullet-resistant laminates for banks and armored cars. It is also used for computer housings where mechanical, electrical and fire-resistance properties are needed. It is also used in steam-sterilizable food-processing equipment.

PROPERTIES OF SPECIAL INTEREST Polycarbonate engineering thermoplastics are amorphous, clear polymers that exhibit superior dimensional stability, good electrical properties, good thermal stability, and outstanding impact strength. They also offer excellent moldability and extrudability, low-temperature toughness, and the availability of flame-retardant and other special grades.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	_	254	(1)
Typical molecular weight (M_n)	$g\mathrm{mol}^{-1}$	-	11,000	(1)
Typical polydispersity index (M_w/M_n)	_	-	2.7	(1)
Infrared bands (frequency)	cm^{-1}	Assignment Para out-of-plane aromatic CH wag, two adjacent Hs	830	(2)
		Para in-plane aromatic CH bend	1,015	
		$(CH_3)_2$ rock/C-C stretch	1,080	
		Carbonate C-O stretch	1,160	
		Carbonate C-O stretch	1,193	
		Carbonate aryl-O-aryl C-O stretch	1,230	
		CH ₃ symmetric (umbrella) deformation	1,362	
		Para aromatic ring semicircle stretch	1,405	

Polycarbonate

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Infrared bands (frequency)	cm ⁻¹		tretch stretch	1,505 1,600 1,775 2,875 2,970 3,000–3,200	(2)
UV absorption cut-off	cm	_		280×10^7	(3)
Raman frequencies	cm^{-1}	Assignment Phenyl ring Phenyl ring Phenyl ring Methyl group Phenyl ring Phenyl ring Carbonyl Quaternary carbon	Motion Diagonal breathing Breathing Breathing Bond stretching Lateral stretching Lateral stretching Stretching Bond stretching	634 702 732 885 1,108 1,177 1,232 1,600	(4)
Thermal expansion coefficient	K^{-1}	Measured at 40°C		2.6×10^4	(5)
Isothermal compressibility	bar^{-1}	Measured at 40°C at pressure	nd atmospheric	2.6×10^5	(5)

Tait equation parameters $^{(3)}$

	С	B ₀ (bar)	<i>b</i> ₁ (°C ^{−1})
Below $T_{\rm g}$	0.0894	3,878	0.00261
Above $T_{\rm g}$	0.0894	3,100	0.00408

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	ASTM D792	1.2	(1)
Solvent/nonsolvent mixtures	-	Temperature 23°C 50°C -20°C	Chloroform/methanol Chloroform/ <i>n</i> -octane Methylene chloride-cresol/ petroleum ether	(6)
Theta temperature	K	<i>n</i> -Butyl benzyl ether Dioxane/cyclohexane (64/36)	443 298	(7)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Second virial coefficient	mol cm ³ g ⁻²	THF at 25°C for mol. wt. = 76.9-31.6 $(\times 10^3) \text{ g mol}^{-1}$	11.0-13.0 (×10 ⁴)	(8)
Intrinsic viscosity	dlg^{-1}	Chloroform at 30°C	0.5-0.55	(1)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ $a = \text{None}$	<i>n</i> -Butyl benzyl ether at 170°C, for mol. wt. = 4.0×10^4 g mol ⁻¹	$K = 210 \times 10^3$ $a = 0.50$	(7)
Characteristic ratio C_{∞}	_	Calculated for very high molecular weights	2.4	(9)
Glass transition temperature	K	Dielectric measurements at frequency of 10 Hz	423	(3)
Sub- $T_{\rm g}$ transition temperature	K	β -relaxation temperature γ -relaxation temperature	343 173	(3)
Heat capacity	$kJK^{-1}mol^{-1}$	_	0.32	(1)
Heat deflection temperature	K	At 1.82 MPa	405	(1)
Vicat softening point	K	_	430	(3)
Tensile modulus	MPa	ASTM: D638, D759, D1708	2,380	(1, 3)
Tensile strength	MPa	At yield At ultimate	62.1 65.5	(1)
Yield strain $(L/L_0)_y$	%	-	6-8	(1)
Maximum extensibility $(L/L_0)_r$	%	-	110	(1)
Flexural modulus	MPa	_	2,340	(1)
Flexural strength	MPa	_	93.1	(1)
Impact strength	$\mathrm{J} \ \mathrm{m}^{-1}$	Izod, notched	850	(3)
Entanglement molecular weight	$g \text{mol}^{-1}$	-	4,800	(9)
WLF parameters: C_1 and C_2	_	$T_0 = 418 \mathrm{K}$	$C_1 = 22.88$ $C_2 = 78.64$	(3)
Index of refraction	-	Measured at room temperature	1.586	(1)

Po	lycar	bon	ate
----	-------	-----	-----

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Optical properties	%		Initial	After 3 yr	(1)
		Light transmittance Haze	85 3	82 19	
Dielectric constant	_	At 60 Hz At 1,000 Hz	3.17 2.9		(1)
Volume resistivity	ohm cm	_	8×10^{1}	16	(1)
Surface tension γ	$\rm mN~m^{-1}$	20°C 150°C 200°C	42.9 35.1 32.1		(6)
Permeability coefficients	m^{3} (STP) m s ⁻¹ m^{-2} Pa ⁻¹ $(\times 10^{17})$	Gas (at 25° C) He H ₂ Ar O ₂ CO ₂ N ₂	7.5 9.0 0.6 1.05 6.0 0.225		(10)
Diffusion coefficients	$m^2 s^{-1}$ (×10 ¹⁰)	Gas (at 25° C) H_2 Ar O_2 CO_2	0.64 0.015 0.021 0.0048		(10)
Solubility coefficients	m ³ (STP) m ⁻³ Pa ⁻¹ (×10 ⁶)	Gas (at 25°C) H ₂ Ar O ₂ CO ₂	1.38 4.15 5.03 124		(10)
Thermal conductivity	$W\ m^{-1}\ K^{-1}$	_	0.192		(1)
Melt viscosity	Pa s	At 270°C	1,100		(1)
Speed of sound	$\mathrm{m}~\mathrm{s}^{-1}$	Measured at room temperature and 1 MHz frequency Longitudinal Shear	2,220 909		(3)
Ignition temperature	K	_	651		(3)
Flammability	${\rm m\ s}^{-1}$	_	0.03		(1)
Oxygen index	%	_	25		(1)

			Poly	/carbonate
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Surface reradiation loss	$\mathrm{W}~\mathrm{m}^{-2}$	_	11,000	(3)
Heat of gasification	${\rm MJmol^{-1}}$	Flammability apparatus	0.53	(3)
Maximum use temperature	K	_	373-408	(1, 3)

- Mark, H., et al., eds. Kirk-Othmer: Encyclopedia of Chemical Technology, 3d ed. Wiley-Interscience, New York, 1984.
- 2. Pouchert, C. The Aldrich Library of FT-IR Spectra. Aldrich Chemical, Milwaukee, 1985.
- 3. Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, Woodbury, N.Y., 1996.
- 4. Stolarski, V., et al. Polym. Mater. Sci. Eng. 71 (1994): 479.
- 5. Zoller, P. J. Polym. Sci., Polym. Phys. Ed., 20 (1982): 1,453.
- 6. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.
- 7. Berry, G., H. Nomura, and K. Mayhan. J. Polym. Sci., Part A-2, 5 (1967): 1.
- 8. Moore, W., and M. Uddin. Eur. Polym. J. 5 (1969): 185.
- 9. Wool, R. Macromolecules 26 (1993): 1,564.
- 10. Norton, F. J. Appl. Polym. Sci. 7 (1963): 1,649.
- 11. Lagakos, N., et al. J. Appl. Phys. 59 (1986): 4,017.

Polychloral

JAGATH K. PREMACHANDRA, CHANDIMA KUMUDINIE, AND JUNZO MASAMOTO

CLASS Polyacetals; poly(aldehydes)

STRUCTURE
$$CCl_3$$
 $-(-CH-O-)_n$

MAJOR APPLICATIONS Potential material for engineering plastics with rodlike backbone. Possible use as a packing material for high-performance liquid chromatography. (1)

PROPERTIES OF SPECIAL INTEREST Crystalline material with mechanical properties comparable to engineering plastics with rigid backbone of 4_1 helix similar to that of isotactic polyacetaldehyde, completely isotactic nature, and clean degradation to monomer at elevated temperature. Optical activity of polychloral based on macromolecular asymmetry is a new development; the values of optical activity of these polymers is in the thousands of degrees.

OTHER POLYMERS SHOWING THIS SPECIAL PROPERTY Poly(*n*-hexyl isocyanate): rigid polymer backbone with bulky side chain. Triarylmethyl methacrylates: high value of optical activity with helix polymer structure.

Preparative Techniques*

Polymerization Process	Conditions	Reference
Anionic	Anionic polymerization is widely used. Initiators: alkali metal oxides, tertiary amines, tertiary phosphines, organometallic compounds, etc. Chloral is mixed with an anionic initiator above the threshold temperature, for bulk polymerization, and the mixture is then cooled (usually to 0°C under quiescent conditions). Thus, polychloral pieces of desired shape can be prepared.	(2-4)
Anionic	With lithium alkoxide of cholesterol at 0°C in hexane (0.2 mol% initiator relative to chloral)	(1)
Anionic	Oligomerization of chloral with lithium <i>t</i> -butoxide	(5, 6)
Anionic	Cooligomerization of chloral and bromal with lithium <i>t</i> -butoxide or bornyl oxide followed by acetate end-capping	(7)
Anionic	At -78° C using a series of organometallic catalysts, (3–45%) yield	(8)
Anionic	Initiator: lithium alkoxide of (-)borneol	(9)
	Initiators: H ₂ SO ₄ and pyridine	(10)
Cationic	Initiators: BF ₃ , CH ₃ SO ₃ H, H ₂ SO ₄ etc.	(2-4)

^{*}For synthesis of the monomer, chloral (trichloro acetaldehyde), see reference (2).

				Polychloral
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Ceiling temperature	K	In toluene In tetrahydrofuran	282 284	(2, 11)
Enthalpy of polymerization	kJ mol ⁻¹	From solution in toluene to partially crystalline polymer From solution in tetrahydrofuran to polymer		(2, 11)
Entropy of polymerization	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	From solution in toluene to partially crystalline polymer From solution in tetrahydrofuran to polymer		(2, 11)
Typical comonomers	with isocy Monochloro	nghly studied family of polychloral co yanates pacetaldehyde and dichloroacetaldehyd maldehyde, trioxane, etc.		(4, 12, 13, 14 (15) (2)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	147.5	_
Tacticity	-	X-ray diffraction, magic angle ¹³ C NMR and ³⁵ Cl-NQR	Completely isotactic structure because of bulkiness of the trichloromethyl group	(2, 16)
		X-ray single crystal analysis, linear oligomers of chloral	Isotactic	(17)
Degree of polymerization	_	Catalyst AlBr ₃ , solvent CH_2Cl_2 , at $-30^{\circ}C$ for 5 h Catalyst $(C_4H_9)_3CH_3NI$, no solvent, at $0^{\circ}C$ for 0.5 h Catalyst 2,6-dimethoxyphenyllithium, solvent propylene, at $-48^{\circ}C$ for 1 h	190 380 600	(10)
IR (characteristic absorption frequencies)	cm^{-1}	CH bending C-O stretching C-Cl stretching	1,360 1,125 682	(18)
NMR	Cross polari ¹³ C NMR, F and at 25	pectroscopy, solid-state at 100.5 MHz ization/magic angle spinning (CP/Mz ourier transform NMR spectrometer a MHz. Internal standard: tetramethylsi and 2D-NMR, at 35°C in CDCl ₃ under	it room temperature	(19) (19) (1) (5)
	atmosphe ¹ H NMR, m	re. Internal standard: tetramethylsilan iixture of acetylated chloral addition p NMR, chloral oligomers prepared by	e products	(20) (21)

initiation

Pol	lyc	hlo	ral
-----	-----	-----	-----

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Mass spectrometry	Chloral K+ ioni t-but press Amine-	omers of chloral and bromal (up to pental oligomers by GC ization of desorbed species (K+IDS) species oxide-initiated, acetate-capped chloral observe $< 10^{-6}$ Torr, source temperature $= 2$ initiated chloral oligomers, K+IDS mass lary GC	trometry, linear igomers, ion source 00°C	(7) (5) (6) (22)
Thermal expansion coefficients	K^{-1}	_	4×10^{-5}	(2, 13)
Solvents		etely insoluble in any organic solvent mers of chloral with monochloroacetald ${f l}_3$	ehyde is dissolved in	(2)
Nonsolvents	Conver Any so	ganic solvent ntional organic solvents lvent monomer		(2, 23) (24) (1, 10) (2)
Lattice	_	_	Tetragonal	(25)
Space group	_	_	$I4_1/a$	(25)
Chain conformation	_	Helical, by IR spectroscopy 4 ₁ helix similar to polyacetaldehyde, elemono evidence of chain folding or lame angle scattering suggests rodlike polyacetal polyacetal scattering suggests rodlike polyacetal helix, axis of helix is parallel to the X-ray single crystal analysis, linear of the table of	ellar structure and small ymer c-axis of the crystal, by oligomers of chloral d film samples as that were drawn over a 5.2 Å, monomer repeat	(10) (2, 24, 25) (17) (25) (13) (23)
Unit cell dimensions	Å	_	a = 17.38, b = 6.45 c = 5.2 c = 4.81	(25) (2, 13, 23) (17)
Unit cell contents (nur	nber of re	epeat units)	16	(25)
Degree of crystallinity	%	Wide angle X-ray diffraction of an oriented fiber Depends upon the method of preparation	20–30	(2, 13) (10)

				Polychloral
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density (crystalline)	$\rm gcm^{-3}$	Theoritical density Observed density	2.012 1.9	(13, 25) (2, 13)
Glass transition temperature $T_{\rm g}$	K	No $T_{\rm g}$ was observed between 123 and	473, and over 493	(13)
Melting point	K	Hypothetical melting point	733 >533	(2, 13) (23)
Vicat softening temperature	K	Onset of decomposition	473	(2, 13)
Tensile modulus	MPa	– Chloral/dichloroacetaldehyde (DCA) copolymer, 28 mol% DCA	2,500-3,500 ~1,100	(2, 13) (10)
		Chloral/DCA copolymer, 45 mol% DCA	~1,450	(10)
		Chloral/aromatic isocyanate (10%) copolymer	1,700-2,800	(13)
Shear modulus	MPa	Room temperature -18°C	850 2,000	(2, 13) (2)
Tensile strength	MPa	Polychloral fibers Chloral/DCA copolymer, 28 mol% DCA Chloral/DCA copolymer, 45 mol% DCA Chloral/aromatic isocyanate (10%)	35–50 40 41.4 42 42–63	(2, 13) (2) (10) (10) (13)
		copolymer		
Yield stress	MPa	-	38	(2, 13)
Yield strain $(L/L_0)_y$	%	_	5	(13)
Maximum extensibility $(L/L_0)_r$	%	–Chloral/DCA copolymer, 28 mol%DCA	12-20 12	(2, 13) (10)
(<i>D</i> / <i>D</i> 0)r		Chloral/DCA copolymer, 45 mol% DCA	12	(10)
		Chloral/aromatic isocyanate (10%) copolymer	15-45	(13)
Flexural modulus	MPa	_	2,200	(13)
Compressive strength	MPa	_	10	(13)

DDODEDTY	LINUTE	COMPITIONS	VALUE	DEFEDENCE
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Notched Izod impact strength	$\mathrm{J}\mathrm{m}^{-1}$	_	60-80	(2, 13)
Hardness	_	Rockwell hardness	R10, M50	(13)
Index of refraction <i>n</i>	_	25°C	1.58	(2, 13)
Dielectric constant ε'	_	Room temperature	2.8	(2, 13)
Dissipation factor	_	_	0.003	(2, 13)
Optical activity: specific rotation $[\alpha]_d$	Degree	Using chiral lithium alkoxides as initiators Initiated with tetramethylammonium (-) acetyl mandelate, holding time = 10-50 min	Thousands 4,000 to -4,000 +84 to +310 (a linear increase in specific rotation with time was observed)	(2) (26) (27)
		Initiated with tetramethylammonium (-) α -methoxy mandelate	Initial increase followed by a leveling off	(27)
		Holding time $= 10-30 \mathrm{min}$	+136 to +163	(27)
		Holding time = 50min Initiated with lithium $R(\text{-})\text{-}2\text{-}\text{octanoxide}$, holding temperature = 65°C , holding time = $10\text{-}70 \text{min}$	+114 ~(4,300–1,000), higher holding times results in lower rotation values	(27) (28)
		Initiated with lithium $R(-)$ -2-octanoxide, holding temperature = 85° C, holding time = 10 -70 min	~(2,300–500), higher holding temperatures results in lower rotation values	(28)
		Initiated with lithium $S(+)$ -2-octanoxide, holding temperature = 85°C, holding time = 10-70 min	~(-2,000 to -800)	(28)
		Initiated with lithium (±)-2-octanoxide,	Optically inactive	(28)

holding temperature = 85° C, holding

Initiated with lithium cholestenoxide, holding time = 10-70 min

Using chiral initiators, solid films

time = 10-70 min

At 65°C

At 75°C

At 85°C

 \sim (3,400–1,000)

 \sim (2,500–600)

 \sim (2,500–250)

Up to 5,000

(28)

(28)

(28)

(23)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Resistivity	ohm cm	_	4×10^{15}	(2, 13)
Coefficient of sliding friction μ	-	Both static and dynamic	0.55	(2, 13)
Pyrolyzability, nature of product	-	_	Clean degradation to chloral	(2, 18)
Pyrolyzability, amount of product	_	_	Clean degradation to chloral	(2, 18)
Decomposition	K	Usually start to degrade by	493	(2, 29, 30)
temperature		depoymerization to monomer 20°C min ⁻¹ , properly end-capped and stabilized polymer under nitrogen atmosphere	523	(2, 29)
		20°C min ⁻¹ , maximum rate of degradation of properly end- capped and stabilized polymer under N ₂ atmosphere	613	(2, 29)
Relative thermal decomposition rate	% min ⁻¹	Acetate end-capped polymer Unend-capped polymer	0.04 1.48	(10)
Flammability	_	_	Nonflammable	(13, 24)

- 1. Hatada, K., T. Kitayama, S. Shimizu, and H. Yuki. J. Chromatography 248 (1982): 63.
- Vogl, O. In Encyclopedia of Polymer Science and Engineering, edited by K. Jacqueline. Wiley, New York, Vol. 1, pp. 623-643.
- 3. Vogl, O. Macromolecules 5 (1972): 658.
- 4. Kubisa, P., and O. Vogl. Macromol. Synth. 6 (1977): 49.
- 5. Jaycox, G. D., et al. Polym. Prepr. 30(2) (1989): 167.
- 6. Simonsick, W. J. Jr., K. Hatada, F. Xi, and O. Vogl. Macromolecules 24 (1991): 1,720.
- 7. Kruger, F. W. H., et al. Polym. Prepr. 33(1) (1992): 1,012.
- 8. Furukawa, J., T. Saegusa, and H. Fujii. Makromol. Chem. 44 (1961): 398.
- 9. Zhang, J., G. D. Jaycox, and O. Vogl. Polym. J. 19 (1987): 603.
- 10. Rosen, I. Polym. Prepr. 7 (1966): 221.
- 11. Kubisa, P., and O. Vogl, Polymer 21 (1980): 525.
- 12. Kubisa, P., et al. Macromol. Chem. 181 (1980): 2,267.
- 13. Kubisa, P., et al. Polym. Eng. Sci. 21 (1981): 829.
- 14. Odian, G., and L. S. Hiraoka. J. Polym. Sci., Part A-1, 8 (1970): 1,309.
- McCain, G. H., D. E. Hudgin, and I. Rosen. Polym. Prepr., ACS., Div. Polym. Chem., 6 (1965):
- 16. Brame, E. G., et al. Polym. Bull. (Berlin) 10 (1983): 521.
- 17. Vogl, O., et al. Macromolecules 22 (1989): 4,660.
- 18. Corley, L.S., and O. Vogl. J. Macromol. Sci.-Chem. A14 (1980): 1,105.
- 19. Hatada, K., et al. Polymer J. 26 (1994): 267.
- 20. Zhang, J., G. D. Jaycox, and O. Vogl. Polymer 29 (1988): 707.

Polychloral

- 21. Hatada, K., et al. Makromol. Chem. 190 (1989): 2,217.
- 22. Bartus, J., W. J. Simonsick Jr., K. Hatada, and O. Vogl. Polym. Prepr. 33(2) (1992): 114.
- 23. Vogl, O., and G. D. Jaycox. Polymer 28 (1987): 2,179.
- 24. Abe, A., K. Tasaki, K. Inomata, and O. Vogl. Macromolecules 19 (1986): 2,707.
- 25. Wasai, T., et al. Kogyo Kagaku Zasshi (J. Ind. Chem. Jpn) 67 (1964): 1,920.
- 26. Jaycox, G. D., and O. Vogl. Polym. J. 23 (1991): 1,213.
- 27. Harris, W. J., and O. Vogl. Polym. Prepr. 22(2) (1981): 309.
- 28. Jaycox, G. D., and O. Vogl. Polym. Prepr. 30(1) (1989): 181.
- 29. Corley, L. S., and O. Vogl. Makromol. Chem. 181 (1980): 2,111.
- 30. Ilyina, D. E., B. A. Krentsel, and G. E. Semenido. J. Polym. Sci., Part C, 4 (1964): 999.

Polychloroprene

VASSILIOS GALIATSATOS

ALTERNATIVE NAMES, ACRONYMS, TRADE NAMES Poly(1-chloro-1-butenylene), poly(2-chloro-1,3-butadiene), chloroprene rubber (CR), GR-M, Baypren, Butaclor $^{\tiny{(R)}}$, Neoprene, Perbunan C, Skyprene

CLASS Diene elastomers

STRUCTURE
$$-CH_2-Cl-C=CH-CH_2-$$

MAJOR APPLICATIONS Aerospace industry (gaskets, seals, deicers); automotive industry (timing belts, window gaskets, fuel-hose covers, cable jacketing, sparkplug boots, hoses, and joint seals); industrial applications (pipeline pigs, gaskets, hoses, power transmission belts, conveyor belts, escalator handrails); and electronics (wire and cable jacketing). Also for sponge shoe soles and foam cushions.

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE		
Type of polymerization	_	_	Emulsion	polymerization	_		
Typical initiator	_	_	$K_2S_2O_8$	$K_2S_2O_8$			
Typical regulator	_	_	n-Dodecyl	mercaptan	_		
Typical comonomer	_	_	Sulfur		_		
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	-	88.54		-		
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	-	1×10^5 to $>1 \times 10^6$		-		
Tacticity	70 and 90%	Major isomeric form is the trans-1,4 unit, which varies between 70 and 90% depending on temperature of polymerization. Remaining units are <i>cis</i> -1,4 and -1,2 types.					
Head-to-head content	%	_	10-15		_		
Mark-Houwink parameters	$K = dL g^{-1}$		$K \times 10^5$	а	(1-4)		
	a = None	Polychloroprene, toluene at 25°C	50	0.615			
		Linear polychloroprene, THF at 30°C	4.18	0.83			
		Neoprene CG, benzene	2.02	0.89			
		Neoprene GN, benzene	14.6	0.73			
		Neoprene W, benzene	15.5	0.73			

Polychloroprene

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature	K	Cooling rate = 0.3° C min ⁻¹ for the all <i>trans</i> polymer	228-234 228.5	(5)
		1,4-cis polymer	253	
Melting temperature	K	Polymerization temperature range = -40 to 40° C	318-348	(6)
		1,4-cis polymer	343	
		All trans form	388, 380, and 353	
		Polymer prepared at -150°C	651	
Heat of fusion	$kJ \ mol^{-1}$	-	8.37	_
Unit cell dimensions	nm	Orthorhombic	a = 0.884, b = 1.024, c = 0.48	(7)
Unit cell content (number of repeat units)	_	_	4	_

13 C-NMR analysis of polychloroprenes $^{*(8,9)}$

Polymerization temp. (°C)	Total (%) (1,4-trans)	Inverted (%) (1,4-trans)	1,2	1,2 isomerized	3,4	Cis-1,4
90	85.4	10.3	2.3	0.6	4.1	7.8
40	90.8	9.2	1.7	0.8	1.4	5.2
20	92.7	8.0	1.5	0.9	1.4	3.3
0	95.9	5.5	1.2	1.0	1.1	1.8
(20	97.1	4.3	0.9	0.6	0.5	0.8
(40	97.4	4.2	0.8	0.6	0.5	0.7
10	_	_	_	_	_	_

^{*}Resulting structure depends on polymerization temperature.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Mooney viscosity	°ML	_	47	_
Specific gravity	_	Neoprene WM1 (DuPont)	1.23	_
Thermal conductivity	$W\ m^{-1}\ K^{-1}$	20°C	0.19	_
Specific heat capacity	$\mathrm{J}~\mathrm{K}^{-1}~\mathrm{kg}^{-1}$	_	2,175	_
Relative gas permeability and selectivity	_	Polychloroprene film at 23–25°C Helium vs. methane Oxygen vs. nitrogen Hydrogen vs. methane Carbon dioxide vs. methane	5.0 3.64 7.69 8.5	_

				Polyc	hloroprene
PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Dose required to reduce the elongation at break to 50% of original	Gy		te conditions in air te or inert atmospheric	3×10^5 5×10^5	(10)
Flow behavior index n'	_	80°C 100°C 120°C		0.15 0.11 0.07	(11)
Consistency of flow K'	_	80°C 100°C 120°C		225.1 257.6 279.6	(11)
Shear viscosity	kPa s	Temp. (°C) 80 80 80 80 100 100 100 120 12	Shear rate (s ⁻¹) 122.6 245.2 490.4 735.6 122.6 245.2 490.4 735.6 122.6 245.2 490.4 735.6	1.6 0.9 0.48 0.035 1.10 0.06 0.032 0.02 0.075 0.042 0.022 0.015	(11)
Dynamic extensional viscosity	MPa s	Temp. (°C) 80.5 80.5 80 80 100 100 100 120 120 120 120 120	Shear rate (Hz) 110 35 11 3.5 110 35 11 3.5 110 35 110 35 110 35	0.004 0.003 0.027 0.046 0.005 0.0025 0.038 0.042 0.002 0.004 0.03 0.025	(11)
Scorch time	min	Mooney visc Δ5°ML	osity measured at 140°C,	30	(12)
Minimum plasticity	$^{\circ}$ ML	_		43	(12)
Shrinkage on calendering	%	50°C		331	(12)

Pol	vc	hl	or	n	re	ne
ГΟ	vu	ш	91	UN		ПE

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	kg cm ⁻²	Vulcanization time		(12)
		5 min	179	
		10 min	210	
		15 min	190	
Elongation at break	%	Vulcanization time		(12)
S		5 min	1,020	,
		10 min	930	
		15 min	830	
300% modulus	kg cm ⁻²	Vulcanization time		(12)
	O	5 min	10	()
		10 min	14	
		15 min	16	
500% modulus	kg cm ⁻²	Vulcanization time		(12)
	0	5 min	21	()
		10 min	26	
		15 min	32	
Permanent set	%	Vulcanization time		(12)
		5 min	13	, ,
		10 min	8	
		15 min	6	
Dielectric loss peaks	K	300 Hz		(12)
-		lpha-relaxation	200 (in the glassy state)	
		β -relaxation	251 (above T_g)	
Extension dependence	K	Of the glass transition temperature in the dilatometric time scale	1.05–1.25	_
Anisotropy of segments	$(\alpha_1 - \alpha_2) \text{ cm}^3$	α -Bromonapthalene	+110	(13)
and monomer units	/	Carbon tetrachloride	+33	
		Chlorobenzene	+64	
		Dichloroethane	+39	
		α -Methylnapthalene	+99	
		Tetrachloroethylene	+46	
		Toluene	+67	
		<i>p</i> -Xylene	+88	

Suppliers

Trade name	Supplier
Baypren	Bayer AG, Leverkusen, Germany Miles, Inc., Polymer Division, Pittsburg, Pennsylvania, USA
Butacor	A. Schulman, Akron, Ohio, USA
Neoprene	DuPont, Wilmington, Deleware, USA DuPont UK, Herts, United Kingdom
Perbunan C	Bayer AG, Leverkusen, Germany Miles, Inc., Polymer Division, Pittsburg, Pennsylvania, USA
Skyprene	Tosoh Corporation, Tokyo, Japan Tosoh USA, Inc., Atlanta, Georgia, USA

- 1. Coleman, M. M., and R. E. Fuller. J. Macromol. Sci. Phys. 11(3) (1975): 419.
- 2. Mochel, W. E., and J. B. Nichols. J. Am. Chem. Soc. 71 (1949): 3,425.
- 3. Mochel, W. E., J. B. Nichols, and C. J. Mighton. J. Am. Chem. Soc. 70: (1948) 2,185.
- 4. Mochel, W. E., and J. B. Nichols. Ind. Eng. Chem. 43 (1951): 154.
- 5. Aufdermarsh, C. A., and R. Pariser. J. Polym. Sci., Part A, 2 (1964): 4,727.
- Garrett, R. R., C. A. Hargreaves II, and D. N. Robinson. J. Macromol. Sci. Chem. 4(8) (1970): 1,679.
- 7. Bunn, C. W. Proc. R.S. London Ser. A 180 (1942): 40.
- 8. Coleman, M. M., and E. G. Brame. Rubber Chem. Technol. 51 (1978): 668.
- Coleman, M. M., D. L. Tabb, and E. G. Brame, Jr. Rubber Chem. Technol. 50 (1977): 49; Ebdon, J. R. Polymer 19 (1978): 1,232.
- 10. Gillen, K. T., and R. L. Clough. Radiat. Phys. Chem. 18 (1981): 679.
- 11. Kundu, P. P., A. K. Bhattacharya, and D. K. Tripathy. J. Appl. Polym. Sci. 66 (1997): 1,759.
- 12. Nakajima, K., M. Naoki, and T. Nose. Polym. J. 10(3) (1978): 307.
- 13. Brandrup, J., and E. H. Immergut, eds. In *Polymer Handbook*, 3rd ed., edited by John Wiley and Sons, New York, 1989.

JONATHAN H. LAURER AND RICHARD J. SPONTAK

ACRONYMS p-CST, PCS, p-CIST, p-CISt

CLASS Vinyl polymers; *p*-halostyrenes

STRUCTURE
$$+CH-CH_2)_n$$

MAJOR APPLICATIONS High-contrast negative e-beam resist. $^{(1)}$ Comonomer in numerous block copolymer systems. $^{(2,3)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	$g cm^{-3}$	$\overline{M}_{\mathrm{w}} = 650,000\mathrm{gmol}^{-1}$	1.246	(4)
Specific free volume	$\mathrm{cm}^3\mathrm{g}^{-1}$	$\overline{M}_{\mathrm{w}} = 650,000\mathrm{gmol}^{-1}$	0.124	(4)
13 C NMR chemical shift δ	ppm	For β -carbon, δ	114.4	(5)
Thermal expansion parameter α	K^{-1}	_	0.582	(6)
Ionization potential I_p	eV	_	8.45	(7)
Heat capacity increase $\Delta C_{\rm p}$	$\rm JK^{-1}mol^{-1}$	At T_g 300 K to T_g T_g to 550 K	$31.1 \\ -4.20 + 0.4866T \\ 112.57 + 0.2775T$	(8)
γ -Loss peak	K	_	143	(9)

Dynamic elastic shear modulus* compared to linear polystyrene⁽⁹⁾

T (°C)	Poly(<i>p</i> -chlorostyrene) <i>G'</i> (MPa)	Linear polystyrene <i>G'</i> (MPa)
-78	1,400	1,260
-98	1,420	1,280
-123	1,420	1,320
-148	1,450	1,350
-173	1,500	1,350

^{*}Calculated from the frequencies of free vibration, moment of inertia of the system, and room-temperature polymer dimensions. Measurements performed on a torsion pendulum at a constant frequency of 1Hz.

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Solubility parameters δ	$(MPa)^{1/2}$	$T = 25^{\circ}\text{C}$	19.7	(10)	
		$T = 25^{\circ}\text{C}$; (group contribution of	calculation)	20.0	(6)
		$T = 160^{\circ}\text{C}$; (experimental)		12.3	(6)
Theta temperature θ	K	Composition (v/v) by phase ed method	quilibria		
		Benzene		281	(11)
		Benzene/Methanol (4.5/1)		314.6	(11)
		Benzene/Methanol (5.0/1)		305.4	(11)
		Benzene/Methanol (5.5/1)		299.7	(11)
		Carbon tetrachloride		323.7	(12)
		Cumene		332	(13)
		Ethyl carbitol		300.8	(12)
		Ethyl chloroacetate		271.2	(12)
		Ethylbenzene		258.3	(12)
		Isopropyl acetate		348.5	(12)
		Isopropyl benzene		332	(12)
		Isopropyl chloroacetate		264.8	(12)
		Methyl chloroacetate	337.6	(12)	
		<i>n</i> -Butyl carbitol		323.1	(12)
		t-Butyl acetate		338.4	(12)
		Tetrachloroethylene		317.4	(12)
Second virial coefficient A_2	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	Solvent			(10)
	Ü	Toluene		1.20	
		Methylethylketone		1.72	
		Cumene		-0.20	
Flory-Huggins	_	Solvent	<i>T</i> (°C)		
interaction parameter χ		t-Butyl acetate	30	0.462	(12)
		<i>n</i> -Butylcarbitol	30	0.468	(12)
		Ethylcarbitol	30	0.505	(12)
		Ethyl chloroacetate	30	0.464	(12)
		Isopropyl acetate	30	0.446	(12)
		Isopropyl chloroacetate	30	0.460	(12)
		Toluene	30	0.460	(10)
			150	0.294	(6)
			160	0.270	(6)
			170	0.233	(6)
		Methylethylketone	30	0.447	(10)
		Methyl chloroacetate	30	0.549	(12)
		Cumene	55	0.505	(10)
		Carbon tetrachloride	30	0.528	(12)
		<i>n</i> -Pentane	150	0.600	(6)
			160	0.540	(6)
		**	170	0.470	(6)
		<i>n</i> -Hexane	150	0.755	(6)
			160	0.694	(6)
			170	0.641	(6)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Flory-Huggins	_	Solvent	T (°C)		
interaction parameter χ		<i>n</i> -Heptane	150	0.843	(6)
		1	160	0.798	(6)
			170	0.771	(6)
		Benzene	150	0.305	(6)
			160	0.271	(6)
			170	0.225	(6)
		Ethylbenzene	30	0.474	(12)
		Isopropylbenzene	30	0.478	(12)
		1 17	150	0.491	(6)
			160	0.473	(6)
			170	0.455	(6)
		<i>n</i> -Propylbenzene	150	0.497	(6)
		17	160	0.472	(6)
			170	0.429	(6)
		Tetrachloroethylene	30	0.618	(12)
	_	Monomer or polymer	<i>T</i> (°C)		
		Phenylene oxide	200	0.030	(2)
		Phenylsulfonylated phenylene oxide	200	0.017	(2)
		o-Chlorostyrene	150	0.0915	(3)
		o emorostyrene	200	0.0940	(2, 3)
			250	0.109	(3)
			300	0.135	(3)
		Styrene	150	0.0720	(3)
		Styrene	200	0.0792	(3)
			250	0.0927	(3)
			300	0.111	(3)
Interaction parameter χ_{12}^*	_	Solute	<i>T</i> (°C)		(6)
based on hard-core		<i>n</i> -Pentane	150	0.965	
volumes		77 I CIRCUITO	160	0.951	
			170	0.941	
		<i>n</i> -Hexane	150	1.047	
		W Tiexare	160	1.016	
			170	0.996	
		<i>n</i> -Heptane	150	1.085	
		"Teptate	160	1.064	
			170	1.061	
		Toluene	150	0.478	
		Totache	160	0.466	
			170	0.451	
		Benzene	150	0.431	
		DCILETIE	160	0.503	
			100	0.505	
			170	0.470	
		Icanronylhanzana	170 150	0.479	
		Isopropylbenzene	170 150 160	0.479 0.640 0.635	

Pol	w	n-ch	lorostv	rana)
PU	v	D-CH	เบเบรเง	nene,

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Interaction parameter χ_{12}^*	_	Solute	T (°C)		(6)
based on hard-core volumes		n-Propylbenzene	150 160 170	0.641 0.629 0.608	
Glass transition	K	$\overline{M}_{\mathrm{w}} \times 10^{-4} \; (\mathrm{g} \mathrm{mol}^{-1})$	$\overline{M}_{\mathrm{n}} \times 10^{-4} \; (\mathrm{g} \mathrm{mol}^{-1})$		
temperature $T_{ m g}$		8.7	16.0	405	(2)
		16.4	8.0	402	(7)
		25.26	6.16	388	(14)
		26.7	14.0	406	(8)
		65.0	_	399	(4)

Intrinsic viscosity [η]; and partial specific volume $\nu_{\rm p}$

Solvent	$\overline{\textit{M}} \times 10^{-4} \text{ (g mol}^{-1}\text{)}$	T (°C)	$ u_{ m p}$ (cm $^{ m 3}$ g $^{-1}$)	$[\eta]$ (dl g $^{-1}$)	Reference
Toluene	33.0*	30	0.778	0.557	(10)
Methylethylketone	33.0^{*}	30	0.770	0.603	(10)
Cumene	33.0*	55	0.788	0.354	(10)
Chloroform	14.04^{*}	25	_	0.79	(8)
Benzene	179.9^{\dagger}	27	_	0.963	(11)
	129.7^{\dagger}	27	_	0.793	(11)
	81.7^{\dagger}	27	_	0.617	(11)
	48.9^{\dagger}	27	_	0.466	(11)
	34.1^{\dagger}	27	_	0.375	(11)
	179.9^{\dagger}	32	_	1.020	(11)
	129.7^{\dagger}	32	_	0.825	(11)
	81.7^{\dagger}	32	_	0.626	(11)
	48.9^{\dagger}	32	_	0.481	(11)
	34.1^{\dagger}	32	_	0.383	(11)
	179.9^{\dagger}	42	_	1.059	(11)
	129.7^{\dagger}	42	_	0.863	(11)
	81.7^{\dagger}	42	_	0.649	(11)
	48.9^{\dagger}	42	_	0.484	(11)
	34.1^{\dagger}	42	_	0.390	(11)
Experimental fits	_			0.45	
Toluene	_	30	_	$(12.3 \times 10^{-5}) \overline{M}_{W_{co}}^{0.65}$	(13)
Ethylbenzene		30		$(12.3 \times 10^{-5}) \overline{M}_{\rm W}^{0.65}$ $(21.7 \times 10^{-5}) \overline{M}_{\rm w}^{0.60}$	(13)

^{*}Number-average molecular weight. †Viscosity-average molecular weight.

PROPERTY	UNITS	CONDITIONS		VALUE		REFERENCE
Permeability coefficient P	$cm^3(STP) cm$ $(cm^2 s cm Hg)^{-1}$	$\overline{M}_{ m w}=650,000{ m gmol}$ measured at $1{ m atm}$ Gas				(4)
				1(1)	× 10 ⁻¹⁰	
		He		16.4 >	10-11	
		CH ₄		$2.6 \times 1.2 \times$	10 10-10	
		O_2		1.2 × 2.3 ×	10-11	
		$egin{array}{c} N_2 \ CO_2 \end{array}$		2.3 × 4.3 ×	10^{-10}	
Diffusion coefficient <i>D</i>	$\mathrm{cm}^2\mathrm{s}^{-1}$	$\overline{M}_{\rm w}=650,000{\rm gmol}$	<u>−1</u>			(4)
		measured at 1 atm	n, 35°C			
		Gas				
		CH_4		$6.1 \times$		
		O_2		$7.8 \times$		
		N_2		$2.4 \times$	10^{-8}	
		CO_2		2.2 ×	10^{-8}	
Refractive index (n)	_	Solvent	<i>T</i> (°C)	dn^2/dc	dε/dc	(15)
increment, and		Benzene	15	0.271	2.237	•
dielectric constant (ε)			25	2.277	1.869	
increment, ($C = p$ -ClSt weight fraction in			35	0.283	1.757	
			50	0.290	1.712	
solvent)			60	0.291	1.722	
			70	0.296	1.668	
		Isopropyl benzene	30	0.295	1.735	
		1 17	50	0.296	1.685	
			60	0.297	1.665	
			70	0.300	1.588	
			80	0.301	1.534	
			90	0.301	1.438	
		n-Propyl benzene	20	0.291	1.644	
		w rropyr benizerie	30	0.292	1.600	
			40	0.296	1.597	
			50	0.297	1.569	
			60	0.298	1.552	
			70	0.298	1.513	
			80	0.299	1.453	
			90	0.302	1.392	
Mean square dipole	_	Solvent	<i>T</i> (°C)			(15)
moment ratio,			. ,	0.500		` /
$D_{\infty} = \langle \mu^2 \rangle / x \mu_0^2$		Benzene	15 25	0.599		
∞ (r-77-r-0			25	0.513		
			35	0.501		
			50	0.521		
			60	0.556		
			70	0.562		

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Mean square dipole	_	Solvent	T (°C)		(15)
moment ratio,		Isopropyl benzene	30	0.493	
$D_{\infty} = \langle \mu^2 \rangle / x \mu_0^2$		1 17	40	0.513	
			50	0.521	
	n-Propy		60	0.540	
			70	0.534	
			80	0.537	
			90	0.520	
		<i>n</i> -Propyl benzene	20	0.436	
			30	0.445	
			40	0.465	
			50	0.478	
			60	0.496	
			70	0.505	
			80	0.503	
			90	0.499	

Preparative techniques

Living cationic polymerization	
Initiating system	1-Phenylethyl chloride/SnCl ₄
Solvent	Methylene chloride
Temperature	0°C
Reagent concentrations	$[p\text{-CISt}] = 1.0 \text{M}$, $[1\text{-phenylethyl chloride}] = 20 \text{mM}$, $[\text{SnCl}_4] = 100 \text{mM}$
% Conversion	80% in 2h
Molecular weight range	$10^3 - 10^4 \mathrm{g}\mathrm{mol}^{-1}$
$\overline{M}_{ m w}/\overline{M}_{ m n}$	1.1
Reference/Note	(5)/Authors also report living polymerization at 25°C

Living carbocationic polymerization

Initiating system	Cumyl methyl ether/BCl ₃
Solvent	Methylene chloride
Temperature	-60°C
Reagent concentrations	[Cumyl methyl ether] = 4.92×10^{-3} M, [BCl ₃] = 0.104 M
% Conversion	66–72
Molecular weight range	$4,190-12,390 \mathrm{g} \mathrm{mol}^{-1}$
$\overline{M}_{\rm w}/\overline{M}_{\rm p}$	1.40–1.79
Reference/Note	(16)/Authors attribute high $\overline{M}_{\rm w}/\overline{M}_{\rm n}$ to slow cationation

Living carbocationic polymerization

g				
Initiating system	2-Chloro-2,4,4-trimethylpentane (TMPCI)/TiCl $_4$ + dimethylacetamide (DMA) (electron donor) + 2,6- di - t -butylpyridine (DtBP) (proton trap)			
Solvent	Methyl chloride/methylchlorohexane			
Temperature	-80°C			
Reagent concentrations	$[TMPC1] = 5.4 \text{ mM}, [TiCl_4] = 0.086 \text{ M}, [DMA] = 4.3 \text{ mM}, [DtBP] = 3.6 \text{ mM}$			
% Conversion	97–100%			
Molecular weight range	$3,500-7,670 \mathrm{g}\mathrm{mol}^{-1}$			
$\overline{M}_{\rm w}/\overline{M}_{\rm p}$	1.26–1.51			
Reference/Notes	[16]/TiCl ₄ is moisture sensitive compared to BCl ₃			

Photochemical polymerization

Initiating system	Polymethylphenylsilane (PMPS): UV $\lambda=300$ – $400\mathrm{nm}$
Solvent	In bulk
Temperature	30°C
Reagent concentrations	$[p\text{-ClSt}] = 7.96 \mathrm{M}, [\mathrm{PMPS}] = 0.39\text{-}1.50 \mathrm{M}$
Molecular weight range	$50,000-85,500 \mathrm{g}\mathrm{mol}^{-1}$
$\overline{M}_{\rm w}/\overline{M}_{\rm p}$	2.09–2.63
Reference	(17)

Typical comonomers used in copolymerizations

Comonomer	Reference
Citraconic anhydride	(18)
Styrene	(7, 19, 20)
Maleic anhydride	(21)
o-Chlorostyrene	(3)

- 1. Liutkus, J., M. Hatzakis, J. Shaw, and J. Paraszczak. Polym. Engr. Sci. 23 (1983): 1,047.
- 2. Vukovic, R., et al. J. Polym. Sci. B: Polym. Phys. 32 (1994): 1,079.
- 3. Cimmino, S., F. E. Karasz, and W. J. MacKnight. J. Polym. Sci. B: Polym. Phys. 30 (1992): 49.
- 4. Puleo, A. C., N. Muruganandam, and D. R. Paul. J. Polym. Sci.: Polym. Phys. Ed. 27 (1989): 2,385.
- 5. Kanaoka, S., Y. Eika, M. Sawamoto, and T. Higashimura. *Macromolecules* 29 (1996): 1,778.
- 6. Yilmaz, F., Ö. G. Cankurtaran, and B. M. Baysal. Polymer 33 (1992): 4,563.
- 7. Gustafsson, A., G. Wiberg, and U. W. Gedde. Polym. Engr. Sci. 33 (1993): 549.
- 8. Judovits, L., R. C. Bopp, U. Gaur, and B. Wunderlich. *J. Polym. Sci.: Polym. Phys. Ed.* 24 (1986): 2,725.
- 9. Illers, K. H., and E. Jenckel. J. Polym. Sci. 41 (1959): 528.
- 10. Ogawa, E., N. Yamaguchi, and M. Shima. Polym. J. 18 (1986): 903.
- 11. Hernández-Fuentes, I., and M. G. Prolongo. Eur. Polym. J. 15 (1979): 571.
- 12. Izumi, Y., and Y. Miyake. Polym. J. 3 (1972): 647.
- 13. Izumi, Y., and Y. Miyake. Polym. J. 4 (1973): 205.
- 14. Malhotra, S. L., P. Lessard, and L. P. Blanchard. J. Macromol. Sci.: Chem. A15 (1981): 279.
- 15. Yilmaz, F., and B. M. Baysal. J. Polym. Sci. B: Polym. Phys. 30 (1992): 197.
- 16. Kennedy, J. P., and J. Kurian. Macromolecules 23 (1990): 3,736.
- 17. Chen, H. B., T. C. Chang, Y. S. Chiu, and S. Y. Ho. J. Polym. Sci. A: Poly. Chem. 34 (1996): 679.
- 18. Brown, P. G., and K. Fujimori. Macromol. Chem. Phys. 195 (1994): 917.
- 19. Ramelow, U., and B. M. Baysal. J. Appl. Polym. Sci. 32 (1986): 5,865.
- 20. Grassi, A., P. Longo, A. Proto, and A. Zambelli. Macromolecules 22 (1989): 104.
- 21. Rungaphinya, W., K. Fujimori, I. E. Craven, and D. J. Tucker. Polym. Int. 42 (1997): 17.

Poly(chlorotrifluoroethylene)

ANTHONY L. ANDRADY

ACRONYM, TRADE NAME PCTFE, Kel-F 81 (3M Company)

CLASS Vinylidene polymers

STRUCTURE $(-CF_2CFCl-)$

MAJOR APPLICATIONS Used to mold equipment parts, seals, and gaskets, particularly in chemical process equipment and in cryogenic systems. Also used as barrier packaging in pharmaceutical industry. Elastomeric homo- and copolymers used in o-rings, gaskets, and diaphragms.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Radical polymerization	_	Bulk polymerization with the initiators Trichloroacetyl peroxide Dichlorotrifluoropropionyl peroxide		(1) (2)
Typical comonomers		e fluoride (Kel-F 800, 3M Company) (Halar, Aclar, Allied Corporation)		-
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	116.47	_
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	_	740×10^4	(3)
Solvents		nne (235°C), benzene (200°C), toluene (142°C), carbon tetrachloride		(4-7)
Nonsolvents	Hydrocarl	bons, alcohols	_	
Crystalline structure	nm	Pseudohexagonal structure	a = 0.644, $c = 4.15$	(8)
Degree of crystallinity	%	Commercial polymer	40-80	(3)
Heat of fusion	$kJ mol^{-1}$	_	5.021	(9)
Entropy of fusion	$kJ mol^{-1}$	_	0.0104	(9)
Density (crystalline)	g cm ³	Estimate for completely crystalline	2.187	(10)
		polymer Estimate for completely amorphous polymer	2.077	
Avrami exponent	_	Dilatometry 180-196°C	3	(11)

Poly(chlorotrifluoroethylene)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature	K	Sample with ~80% crystallinity (dynamic mechanical at 1 Hz)	423	(12)
Melting transition temperature	K	Differential thermal analysis	483-488	(13)
Sub- $T_{\rm g}$ transitions	K	Sample with \sim 80% crystallinity Dynamic mechanical (1 Hz) β transition γ transition Mechanical loss β transition	363 236 368	(12) (14)
		γ transition	230	
Heat capacity	$kJ K^{-1} mol^{-1}$	100°C 200°C 250°C	0.0363 0.0575 0.0690	(15)
Tensile modulus	МРа	−196°C 25°C	7,660 14,000	(8) (13)
Tensile strength	МРа	−196°C 25°C 125°C	119–173 40 4	(8) (13) —
Elongation	%	−196°C 25°C 125°C	2-4 150 400	(8) (13) —
Flexural modulus	MPa	ASTM D790 23°C -196°C	1,250 14,420	(13)
Flexural strength	MPa	_ −190°C	74 400	(13) (16)
Permeability coefficient P	m^{3} (STP) m s ⁻¹ m ⁻² Pa ⁻¹ (×10 ⁻¹⁷)	Unplasticized film, \sim 30% crystalline H_2 , 20°C N_2 , 25°C	0.705 0.0038	(16) (17)
		O_2 , 40° C CO_2 , 40° C H_2O , 25° C Unplasticized film, $\sim 80\%$ crystalline	0.03 0.158 0.218	(17) (17) (18)
		N ₂ , 25°C O ₂ , 40°C CO ₂ , 40°C	0.0023 0.0188 0.036	(17) (17) (17)

Poly(chlorotrifluoroethylene)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Pyrolyzability		decomposition product is monomer (26% on waxes also formed	by weight).	(19)
Thermal decomposition temperature	K	_	623-643	(19)

- 1. Jewel, J. W. U.S. Patent 3,014,015 (to 3M Company), 19 December 1961.
- Dittman, A. L., and J. M Wrightson. U.S. Patent 2,705,706 (to M. W. Kellog Company), 5 April 1955.
- Chandrasekaran, S. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, N. M. Bikkales, C. G. Overberger, and G. Menges. John Wiley and Sons, New York, 1987, Vol. 3, p. 466.
- 4. Thinius, K. Analytische Chemie der Plaste. Springer-Verlag, Berlin, 1963.
- Nitsche, R., and K.A Wolf. Struktur und Physikalisches Verhalten der Kunstoffe, Vol. 1. Springer-Verlag, Berlin, 1961.
- 6. Kurata, M., and W. H. Stockmeyer. Adv. Polymer Sci. 3 (1963): 196.
- 7. Hall, H. T. J. Am. Chem. Soc. 74 (1952): 68.
- 8. Mencik, Z. J. Polym. Sci., Polym. Phys. Ed., 11 (1973): 1,585.
- 9. Bueche, A. M. J. Am. Chem. Soc. 74 (1952): 65.
- 10. Hoffman, J. D., and J. J. Weeks. J. Res. Natl. Bur. Stand. 60 (1958): 465.
- 11. Rybnikar, F. Coll. Czech. Commun. 27 (1962): 449.
- 12. Scott, A. H., et al. J. Res. Natl. Bur. Stand. 66A (1962): 269.
- 13. Brandup, J., and E. H Immergut. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989, P. V-54.
- 14. McRum, N. G. J. Polym. Sci. 60 (1962): 53.
- 15. Gaur, U., S. F. Lau, and B. B. Wunderlich. J. Phys. Che. Ref. Data 12 (1983): 29.
- 16. Ito, Y. Kobunshi Kagaku 18 (1961): 124.
- 17. Myers, A. W., V. Tammela, V. Stannett, and M. Szwarc. Mod. Plastics 37(10) (1960): 139.
- 18. Rust, G., and F. Herrero. Material prüfung 11(5) (1969): 166.
- 19. Mardosky, S. L., and S. Straus. J. Res. Natl. Bur. Stand. 55 (1955): 223.

JIANYE WEN

ACRONYM PCHMA

CLASS Vinylidene polymers

STRUCTURE

$$\begin{array}{c|c} H & CH_3 \\ [-C-C-] & \\ H & C=0 \\ \\ O & \\ \end{array}$$

MAJOR APPLICATIONS Adhesives and binders, coatings, optical waveguides, and blends with other polymers for various applications.

PROPERTIES OF SPECIAL INTEREST Hard; $T_{\rm g}$ similar to poly(methyl methacrylate) but much higher $T_{\rm g}$ than its n-hexyl isomer because of the bulkiness of the cyclohexyl group.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-	168	-
Coefficient of thermal	$K^{-1} \ (\times 10^{-4})$	20°C	2.4	(1)
expansion		40°C	2.5	
		60°C	2.5	
		80°C	2.5	
		120°C	5.6	
		140°C	6.0	
		160°C	6.2	
		180°C	6.3	
		200°C	6.4	
Compressibility	$bar^{-1} (\times 10^{-5})$	20°C, glassy state	2.5	(1)
1	,	40°C, glassy state	2.7	()
		60°C, glassy state	2.8	
		140°C	6.3	
		160°C	7.0	
		180°C	7.7	
		200°C	8.6	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Decomposition	K	Initial	463	(2)
temperature		_	473	(3)
1		50%	543	(2)
		Max	557, 629, 719	(3)
		_	623	(2)
Density	$\rm gcm^{-3}$	20°C	1.100	(4, 5, 6)
J	O	40°C	1.095	(1)
		80°C	1.084	(1)
		120°C	1.066	(1)
		140°C	1.054	(1)
		160°C	1.041	(1)
		180°C	1.028	(1)
		200°C	1.015	(1)
		110-199°C	$1.1394 - (5.90 \times 10^{-4})t - (0.163 \times 10^{[} - 6)t^{2}$	(1)
Glass transition	K	_	384	(3)
temperature $T_{\rm g}$		Atactic	377	(5, 7, 8)
. 8		Syndiotactic	436	(5, 7)
		Isotactic	324	(5, 7)

Mark-Houwink parameters: K and a

Solvent	Temp. (°C)	Mol. wt. range ($M \times 10^{-4}$)	$ extit{K} imes 10^3 ext{(ml g}^{-1} ext{)}$	а	Reference
Benzene	30	-200	8.4	0.69	(9)
	25	-419	3.54	0.77	(10)
Butanol	23 (θ)	-445	33.7	0.50	(11)
	$22.5 (\theta)$	-125	45.2	0.50	(12)
	25	-125	31.8	0.533	(12)
Butanone	25	-560	5.79	0.68	(11)
	30	-200	7.0	0.66	(9)
Cyclohexane	25	-418	8.8	0.67	(10)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molar refraction (R)	cm ³	_	45.05	(13)
Molar volume ($V_{\rm m}$)	$\mathrm{cm^3mol^{-1}}$	_	150.80	(13)
Index of refraction n_{25}^{D}	_	_	1.50645 1.5066	(4, 6, 14) (15)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE	
Theta solvent	_	n-Butanol		22.5°C	(12)	
				23°C	(11)	
		<i>n</i> -Decane		93.6°C	(16)	
				120.0°C	(17)	
		<i>n</i> -Decanol		23.0°C	(16)	
		<i>n</i> -Dodecane		97.5°C	(16)	
				129.9°C	(17)	
		<i>n</i> -Hexanol		9.2°C	(16)	
		n-Nonanol		20.2°C	(16)	
		n-Octanol		17.9°C	(16)	
		<i>n</i> -Octane		83.4°C	(16)	
				112.1°C	(17)	
		n-Propanol		39.5°C	(16)	
Solvents		Tetrachloromethane, toluene, tetrahydrofuran, benzene, chloroform, methyl ethyl ketone, and cyclohexanone				
Nonsolvents	Hexane, dimeth	nylformamide, a	and methanol		(2)	
Unperturbed dimension	$[\eta]/M^{1/2}\times 10^4$	Solvent	Temp. (° <i>C</i>)		(17)	
		n-Propanol	39.2	4.88		
		n-Butanol	22.7	4.58		
		n-Hexanol	9.2	4.37		
		n-Ocanol	17.0	4.51		
		<i>n</i> -Nonanol	19.8	4.56		
		<i>n</i> -Decanol	23.0	4.66		
		<i>n</i> -Octane	112.1	4.08		
		<i>n</i> -Decane	120.0	4.18		
		<i>n</i> -Dedecane	129.9	4.36		

- 1. Olabisi, O., and R. Simha. Macromolecules 8 (1975): 206.
- 2. Ryttel, A. J. Appl. Polym. Sci. 57 (1995): 863.
- 3. Matsumoto, A., K. Mizuta, and T. Otsu. J. Polym. Sci., Polym. Chem., 31 (1993): 2,531.
- 4. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed., Wiley-Interscience, New York, 1989.
- 5. Van Krevelen, D. W. Properties of Polymers. Elsevier Publishing, Amsterdam, 1976.
- 6. Lewis, O. G. Physical Constants of Linear Homopolymers. Springer-Verlag, New York, 1968.
- 7. Crawford, J. W. C. J. Soc. Chem. Ind. London 68 (1949): 201.
- 8. Novak, R. W., and P. M. Lesko. In *Kirk-Othmer Encyclopedia of Chemical Technology*, 4th ed., edited by J. I. Kroschwitz. Wiley-Interscience, New York, 1995, Vol. 16, p. 506.
- 9. Cohn, E. S., I. L. Scogna, and T. A. Orofino. Unpublished work cited in *Dilute Solution Properties of Acrylic and Methacrylic Polymers*, Part I, Revison 1, by S. Krause. Rohm & Haas Co., Philadephia, Penn., 1961.
- 10. Hadjichristidis, N., M. Devaleriola, and V. Desreux. Eur. Polym. J. 8 (1972): 1,193.
- 11. Hakozaki, J. Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sec.) 82 (1961): 158.
- 12. Amashta, I. A. K., and G. Sanchez. Eur. Polym. J. 11 (1975): 223.
- 13. Patel, M. P., K. W. M. Davy, and M. Braden. Biomaterials 13 (1992): 643.

- 14. Wiley, R. H., and G. M. Braver. J. Polym. Sci. 3 (1948): 455.
- 15. Seferis, J. C. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. VI-451.
- 16. Sedlak, K., and D. Lath. Makrotest Sb. Prednasek, Celustatni Konf. 5 (1978): 71.
- 17. Lath, D., K. Sedlak, S. Florian, and E. Lathova. Polym. Bull. 16 (1986): 453.

Poly(di-n-butylsiloxane)

YULI K. GODOVSKY AND VLADIMIR S. PAPKOV

ACRONYM PDBuS

CLASS Polysiloxanes

STRUCTURE $[-(C_4H_9)_2SiO-]$

PROPERTIES OF SPECIAL INTEREST Low glass transition temperature, mesophase behavior.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Preparative technique	Anionic ring-	opening polymerization of hexabutylcyclo	trisiloxane	(1-4)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	-	158.31	-
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	_	$10^4 - 10^5$	-
NMR spectroscopy	Solid state ¹ H	I, ¹³ C, ²⁹ Si		(3, 4)
Heat of fusion	kJ mol ⁻¹	High temperature crystal 2 to mesophase	0.9-1.1	(3-5)
Entropy of fusion	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	_	3.9	(3-5)
Glass transition temperature	K	DSC	157	(3)
Melting temperature	K	High temperature crystal 2 to mesophase	254	(3-5)
Polymorphs		Low-temperature crystal 1; DSC, X-ray data		(3-6)
		High temperature crystal 2 Mesophase		(3-6) (3-6)
Transition temperature	K	Crystal 1-crystal 2, DSC	229	(3-5)
Heat of transition	$kJ mol^{-1}$	Crystal 1-crystal 2	3.6	(3-5)
Isotropization temperature	K	Polarization microscopy Strong MW dependence 2.8×10^4 1.28×10^5	489 572	(3)

- 1. Moeller, M., et al. Makromol. Chem., Macromol. Symp., 34 (1990): 171.
- 2. Moeller, M., et al. ACS Polym. Prep. 33(1) (1992): 176.
- 3. Out, G. J. J. et al. Makromol. Chem. Phys. 196 (1995): 2,035.
- 4. Out, G. J. J., et al. Polym. Adv. Technology 5 (1994): 796.
- 5. Out, G. J. J., A. A. Turetskii, and M. Moeller. Macromol. Rapid. Commun. 16 (1995): 107.
- 6. Out, G. J. J., et al. Macromolecules 27 (1994): 3,310.

Poly(diethylsiloxane)

YULI K. GODOVSKY AND VLADIMIR S. PAPKOV

ACRONYM PDES

CLASS Polysiloxanes

STRUCTURE $[-(C_2H_5)_2SiO-]$

MAJOR APPLICATIONS Comonomer for low-temperature silicone rubbers: for example, poly(dimethyl-diethyl)siloxane. Low molecular weight PDES is used in Russia as basis for low- and high-temperature silicone oils, greases, and lubricants. (1)

PROPERTIES OF SPECIAL INTEREST Low glass transition temperature, mesophase behavior including reversible stress-induced mesophase formation accompanied by necking-denecking phenomena in cyclic deformation of elastomers at room temperature and above. $^{(2,3)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Preparative technique	Anionic ring	-opening polymerization of hexae	thylcyclotrisiloxane	(4-7)
Enthalpy of polymerization	$kJ mol^{-1}$	$T_{\rm pol} = 443 \mathrm{K}$	15.1 ± 0.4	(8)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	102.21	-
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	-	$2\times10^31\times10^6$	_
Typical polydispersity index $(M_{\rm w}/M_{\rm n})$	-	-	1.1-2.0	(4-7, 9)
Raman spectroscopy	Temperature	e range: 129-293 K		(10)
IR spectroscopy	Temperature	e range: 129-303 K		(11)
NMR spectroscopy	Solid state ¹ l	H, ¹³ C, ²⁹ Si		(6, 12-15)
Density (amorphous)	$g\mathrm{cm}^{-3}$	293 K	0.99	(5, 16)
Thermal expansion coefficient	K^{-1}	293-363 K (dilatometry); pressure $P = 0-0.1$ GPa (mesophase state and isotropic melt)	$(6.3 - 17P) \times 10^{-4}$	(16)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Toluene, 25°C, $MW = (1.15-3.7) \times 10^5$	$K = 2.71 \times 10^{-2}$ $a = 0.636$	(17)

Poly(diethylsiloxane)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio $\langle r^2 \rangle / n l^2$	_	Toluene, 25°C	7.9	(17)
Temperature dependence of the unperturbed dimensions of chains, $d \ln \langle r^2 \rangle_0 / dT$	_	Stretching calorimetry, 25–100°C	-0.80×10^3	(18)
Energy contribution f_u/f	_	Stretching calorimetry, 25–100°C	-0.25	(18)

Unit cell dimensions⁽¹⁹⁾

Polymorphs	Lattice	Monomers	Cell dimension (Å)			Cell angles (degrees)		
		per unit cell	a	b	c (chain axis)	α	β	γ
$\overline{\alpha_1}$	Monoclinic	2	14.45	8.75	4.72	90	90	29.8
α_2	Monoclinic	2	14.59	8.90	4.75	90	90	29.7
β_1	Tetragonal	2	7.83	7.83	4.72	90	90	90
β_2	Tetragonal	2	7.90	7.90	4.72	90	90	90
μ (mesophase)	Monoclinic (close to pseudohexagonal)	2	14.75	8.89	4.88	90	90	31.2

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Degree of crystallinity	%	Cold crystallization after quenching amorphous sample	≈30	(5, 19, 20)
		Crystallization from mesomorphic state	>90	
Heat of fusion	$kJ mol^{-1}$	$\alpha_2 \to \mu$	1.72	(5, 6)
		$eta_2 o \mu$	2.14	
Heat of isotropization	$kJ mol^{-1}$	$\mu ightarrow$ isotropic melt	0.31	(5, 6, 21)
Entropy of fusion	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$		6.14	(5, 6, 21)
		$eta_2 o \mu$	7.38	(5, 6)
Entropy of isotropization	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	$\mu ightarrow$ isotropic melt	0.92	(5, 6, 21)
Density (crystalline)	$\rm gcm^{-3}$	From X-ray data		(19)
		α_1 , < 212 K	1.17 1.10	
		α_2 , 223 K β_1 , 193 K	1.10	
		β_2 , 223 K	1.14	
Density (mesophase)	$\rm gcm^{-3}$	μ, 293 Κ	1.02	(19)

Poly(diethylsiloxane)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition	K	DSC	134	(5)
temperature		Adiabatic calorimetry	130	(8, 22)
•		Dielectric, 1 KHz	146	(11)
		Dielectric, 100 Hz	133	(23)
		NMR, T_1 and T_2	138-140	(13, 22)
		DMA, 1Hz	134	(11)
Melting temperature	K	$\alpha_2 \rightarrow \mu$, MW = 1.6 × 105	280	(5, 21)
		$eta_2 o \mu$	290	
Transition temperature	K	$\alpha_1 \rightarrow \alpha_2$	214	(5, 21)
		$\beta_1 o \beta_2$	206	
Heat of transition	$kJ mol^{-1}$	$\alpha_1 \rightarrow \alpha_2$	2.86	(5, 21)
		$\beta_1 o \beta_2$	2.65	
Isotropization	K	$MW (\times 10^3) =$		(5, 21, 24)
temperature		765	326	
-		425	325	
		172	319	
		100	307	
		58	296	
		≈25	No mesophase	
Avrami exponent n	_	Crystallization at 276 K from mesophase	≈2	(21)
		Formation of mesophase from the melt at 293–306 K	1.75	
Heat capacity	$JK^{-1} mol^{-1}$	β_1 polymorph		(8, 22, 25)
	(of repeat units)	10 K	2.289	,
	` '	20 K	10.97	
		50 K	39.60	
		100 K	75.40	
		200 K	123.0	
		β_2 polymorph		(8, 22, 25)
		250 K	140.5	(, , ,
		330 K (melt)	174.0	
		$\Delta C_{\rm p}$ at $T_{\rm g}$	36.0	(5, 8)
Dielectric constant ε'	_	83-123 K	2.60-2.70	(23)
Loss factor tan δ	_	200-300 K	0.015	(11)
Viscosity	Pa s	$MW = 6.69 \times 10^5$, rate of shear 10^{-4} s^{-1}		(26)
		Mesophase (20°C) Melt (60–100°C)	$2 \times 10^8 \\ 5 \times 10^5$	

- Sobolevskii, M., I. Skorokhodov, and K. Grinevich. Oligoorganosiloxanes. Khimiya, Moscow, 1985.
- 2. Godovsky, Yu. K. Angew. Makromol. Chem. 202-203 (1992): 187.
- 3. Papkov, V. S., et al. Vysokomol. soedin. A31 (1989): 1,577.
- 4. Lee, C. L., et al. ACS Polym. Preprints 10(2) (1969): 1,319.
- 5. Papkov, V. S., et al. J. Polym. Sci., Polym. Chem. Ed. 22 (1984): 3,617.
- 6. Koegler, G., A. Hasenhindl, and M. Moeller. Macromolecules 22 (1989): 4,190.
- 7. Zavin, B., et al. Polym. Sci. A37 (1995): 355.
- 8. Lebedev, B., et al. Vysokomol. soedin. 26 (1984): 2,476.
- 9. Molenberg, A., et al. Macromol. Symp. 102 (1996): 199.
- Friedrich, J., and J. F. Rabolt. Macromolecules 20 (1987): 1,975.
- 11. Papkov, V. S., and Yu. P. Kvachev. Progr. Colloid Polym. Sci. 80 (1989): 221.
- 12. Froix, M. F., et al. J. Polym. Sci., Polym. Phys. Ed., 13 (1975): 1,269.
- 13. Litvinov, V., et al. Vysokomol. Soedin. 27A (1985): 1,529.
- 14. Moeller, M., et al. Makromol. Chem., Macromol. Symp., 34 (1990): 171.
- 15. Litvinov, V., et al. Colloid Polym. Sci. 267 (1989): 681.
- 16. Pechhold, W., and P. Schwarzenberger. In *Frontiers of High-pressure Research*, edited by H. D. Hochheimer and D. Etters. Plenum Press, New York, 1991, pp. 58–71.
- 17. Mark, J. E., D. S. Chin, and T. K. Su. Polymer 19 (1978): 407.
- 18. Godovsky, Yu. K. In *Synthesis, Characterization and Theory of Polymeric Networks and Gels*, edited by S. M. Aharoni. Plenum Press, New York, 1992, pp. 127-145.
- 19. Tsvankin, D. Ya., et al. J. Polym. Sci., Polym. Chem. Ed., 23 (1985): 1,043.
- 20. Out, G., et al. Polymer 36 (1995): 3,213.
- 21. Papkov, V. S., et al. J. Polym. Sci.: Part B: Polym. Phys. 25 (1987): 1,859.
- 22. Beatty, C. L., and F. E. Karasz. J. Polym. Sci., Polym. Phys. Ed., 13 (1975): 971.
- 23. Pochan, J. M., C. L. Beatty, and D. F. Hinman. J. Polym. Sci., Polym. Phys. Ed., 13 (1975): 977.
- 24. Godovsky, Yu. K., and V. S. Papkov. Makromol. Chem., Macromol. Symp., 4 (1986): 71.
- 25. Varma-Nair, M., J. P. Wesson, and B. Wunderlich. J. Thermal Anal. 35 (1989): 1,913.
- 26. Molenberg, A. Dissertation, University of Ulm, Germany, 1997.

Poly(di-n-hexylsiloxane)

YULI K. GODOVSKY AND VLADIMIR S. PAPKOV

ACRONYM PDHeS

CLASS Polysiloxanes

STRUCTURE $[-(C_6H_{13})_2SiO-]$

PROPERTIES OF SPECIAL INTEREST Low glass transition temperature, mesophase behavior.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Preparative technique	Anionic ring-	opening polymerization of hexaher	xylcyclotrisiloxane	(1, 2)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	214.41	-
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	-	$10^4 - 10^6$	_
NMR spectroscopy	Solid state ²⁹ 5	Si		(2, 3)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Toluene, 298 K	K = 0.275 a = 0.463	(3)
Heat of fusion	$kJ mol^{-1}$	High temperature crystal 2 to mesophase	1.8-2.2	(3-5)
Entropy of fusion	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	_	7.2	(3-5)
Glass transition temperature	K	DSC	168	(5)
Melting temperature	K	High temperature crystal 2 to mesophase	296	(3-5)
Polymorphs		nture crystal 1; DSC, X-ray data ature crystal 2		(3–5) (3–5) (3–5)
Transition temperature	K	Crystal 1-crystal 2, DSC	246	(3-5)
Heat of transition	$kJ mol^{-1}$	Crystal 1-crystal 2	6. 7	(3)
Isotropization temperature	K	Polarization microscopy	603	(3)

- 1. Moeller, M., et al. ACS Polym. Prep. 33(1) (1992): 176.
- 2. Out, G. J. J., A. A. Turetskii, and M. Moeller. Macromol. Rapid. Commun. 16 (1995): 107.
- 3. Out, G. J. J., et al. Macromolecules 27 (1994): 3,310.
- 4. Out, G. J. J. Dissertation, Universiteit Twente, The Netherlands, 1994.
- 5. Molenberg, A. Dissertation, University of Ulm, Germany, 1997.

Poly(di-n-hexylsilylene)

ROBERT WEST

ACRONYM, ALTERNATIVE NAME PDHS, polydi-n-hexylsilane

CLASS Polysilanes

STRUCTURE $[-nC_6H(13-Si-nC_6H_{13}-)]$

MAJOR APPLICATIONS None

PROPERTIES OF SPECIAL INTEREST Transition from crystalline phase to columnar mesophase at 42°C. That is, PDHS is crystalline with an all-*trans* arrangement of the polysilane chain below the disordering temperature of 42°C; above this temperature the polymer exists in a hexagonal columnar liquid crystalline phase.

For general information about polysilane polymers see the entry for *Poly(methylphenylsilylene)* in this handbook.

Preparative techniques

REACTANTS	TEMP. (°C)	YIELD (%)	M _w	$M_{\rm w}/M_{\rm n}$	REFERENCE
n-Hex ₂ SiCl ₂ , Na, toluene, 15-crown-5	110	24	_	_	(1)
<i>n</i> -Hex ₂ SiCl ₂ , Na, toluene, 15-crown-5, ultrasound	20	50	67,000	_	-
n-Hex ₂ SiCl ₂ , Na, toluene (25% diglyme)	24	_	45,000	1.73	(2)
Same as above with 3% 18-crown-6	_	63.4	9,200	3.6	(2)
n-Hex ₂ SiCl ₂ , Na, Et ₂ O, 15-crown-5	35	22	23,800	_	(3)
n-Hex ₂ SiCl ₂ , Na, toluene, 2% EtOAc	110	12.6	1,300,000	1.8	(4)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Repeat unit	g mol ⁻¹	$(C_6H_{13})_2Si$	198	_
Infrared spectrum	cm^{-1}	_	2,961, 2,924, 2,871, 2,854, 1,471, 1,417, 1,379, 1,233, 1,175, 1,110, 977, 899, 727, 673	(5)
UV absorption	λ_1 (nm)	Hexane, $\varepsilon = 9,700$	318	(2)
Emission spectrum	λ_1 (nm)	Hexane, $\phi=0.42$, $\tau=150\mathrm{ps}$	342	(6)

(di- <i>n-</i> he	

PROPERTY	UNITS	CONDITIONS	5		VALUE	REFERENCE
NMR spectra	δ (ppm)	Nucleus	Conditions	Temp. (°C)		
		²⁹ Si	Solution, trichlorobenzene- dioxane-d ₈	25	-24.8	(7)
		²⁹ Si	Solid	25	-20.8	(8)
		13 _		44.3	-24.1	(8)
		¹³ C	Solution, trichlorobenzene-dioxane- d_8	25	14.45 23.49 32.55 35.19 28.41 15.92	(7)
		^{1}H	Solution, CDCl ₃	25	0.6-1.7	(2)
Solvents	THF, toluen	e, CH ₂ Cl ₂ , ł	nexane			
Nonsolvents	Ethanol, 2-p	ropanol				
Properties from ligh		•				(9)
$M_{ m w}$	g mol ⁻¹	Hexane			2.2×10^6	
$M_{ m w}/M_{ m n}$ dn/dc	$\frac{-}{ml}g^{-1}$	_			2.3 0.138	
A_2	ml mol g^{-2}	_			1.62×10^{-4}	
$R_{\rm g}$	nm	_			1.02×10^{8}	
	nm	_			6–7	
$\lambda_{ m persist} \ M_{ m w}$	g mol ⁻¹	THF			2.2×10^6	
$M_{ m w}/M_{ m n}$	5 11101	_			2.3	
dn/dc	$^{-}$ ml g^{-1}				0.177	
A_2	ml mol g^{-2}	_			1.14×10^{-1}	
	_	_			92	
$R_{ m g} \ l/k$	nm	_			5.4	
C_{∞}	nm	_			19	
	nm			6.4206	19	
Crystalline properties			v transition temperatur esophase above transit		re	
Crystalline phase	Å	25°C			a = 13.75, b = 21.82, c = 4.07	(10, 11)
	Degrees	25°C			$\gamma = 88$	(10, 11)
Hexagonal columnar mesophase, <i>a</i>	Å	>42°C			1.56	(10, 11)
Surface tension	$mN m^{-1}$	-			29.9	(12)

Poly(di-n-hexylsilylene)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Scission, quantum yield, $\phi_{\rm s}$	mol Einstein ⁻¹	Toluene solution, $\lambda = 353 \text{nm}$	0.6	(6)	
Cross-linking, quantum yield, $\phi_{\rm x}$	mol Einstein ⁻¹	Toluene solution, $\lambda = 353 \mathrm{nm}$	0	(6)	
Suppliers	Gelest, Inc., 612 William Leigh Drive, Tullytown, PA 19007-6308, USA				

Nonlinear optical properties⁽¹³⁾

$M_{\rm w}$ (g mol ⁻¹)	Temp. (°C)	λ (nm)	Lp (thickness, nm)	X^{131} (esu $^{(\times 10-12)}$)
>300,000	23	1,064	50	11
	21	1,064	120	5.5
	50	1,064	120	2.0
	23	1,064	240	4.6
		1,907	240	1.3
		1,907	240	0.9

- 1. Miller, R. D., D. Thompson, R. Sooriyakumaran, and G. N. Fickes. J. Polym. Sci., Polym. Chem. Ed., 29 (1991): 813.
- 2. Matyjazewski, K., D. Greszka, J. S. Hrkach, and H. K. Kim. Macromolecules 28 (1995): 59.
- Cragg, R. H., R. G. Jones, A. C. Swain, and S. J. Welsh. J. Chem. Soc., Chem. Commun., (1990): 1,147.
- 4. Miller, R. D., and P. K. Jenker. Macromolecules 27 (1994): 5,921.
- 5. Rabolt, J. F., D. Hofer, R. D. Miller, and G. N. Fickes. Macromolecules 19 (1986): 611.
- 6. Miller, R. D., and J. Michl. J. Chem. Rev. 89 (1989): 1,359.
- 7. Schilling, F. C., Bovey, F. A., and J. M. Zeigler. Macromolecules 19 (1986): 2,309.
- 8. Gobbi, G. C., W. W. Fleming, R. Sooriyakumaran, and R. D. Miller. J. Am. Chem. Soc. 108 (1986): 5,624.
- Shukla, P., et al. *Macromolecules* 24 (1991): 5,606; Cotts, P. M., S. Ferline, G. Dalgi, and J. C. Pearson. *Macromolecules* 24 (1991) 6,730.
- 10. Kuzmany, H., J. F. Rabolt, B. L. Farmer, and R. D. Miller. J. Chem. Phys. 85 (1986): 7,413.
- 11. Weber, P., D. Guillon, A. Skoulios, and R. D. Miller. Liq. Cryst. 8 (1990): 825.
- 12. Fujisaka, T., R. West, and C. Murray. J. Organometal. Chem. 449 (1993): 105.
- 13. Baumert, J. C., et al. Appl. Phys. Lett. 53 (1988): 1,147.

Poly(dimethylferrocenylethylene)

IAN MANNERS

CLASS Inorganic and semi-inorganic polymers

STRUCTURE $[(C_5H_3Me)Fe(C_5H_3MeCH_2CH_2)]_n$

PROPERTIES OF SPECIAL INTEREST Low cost; ease of synthesis; and interesting optical, magnetic, and electrical properties.

SYNTHESIS Poly(dimethylferrocenylethylene) can be synthesized via the thermal ring opening polymeriztion (ROP) of the strained ethylene bridged dimethyl[2]ferrocenophane, $(C_5H_3Me)_2FeCH_2CH_2$. (1)

PROPERTY	UNITS	CONDITION	VALUE	REFERENCE
UV-vis absorption, λ_{max}	nm	THF solution	440	(1)
UV-vis absorption coefficient, ε	$M^{-1}cm^{-1}$	THF solution	190	(1)
Glass transition temperature	K	DSC experiment	338	(1)
Unit cell dimensions Lattice Monomers per unit cell Cell dimensions	_ _ Å	For monomer $(C_5H_4)_2$ FeCH $_2$ CH $_2$	Orthorhombic 8 $a = 7.421$ $b = 12.305$ $c = 19.839$	- - - -
Cell angles	Degrees	_	$\alpha = \beta = \gamma = 90$	_

REFERENCES

1. Nelson, J. M., et al. Chem. Eur. J. 3 (1997): 573.

Poly(2,6-dimethyl-1,4-phenylene oxide)

ALLAN S. HAY AND YONG DING

ACRONYMS PPO, PPE

CLASS Polyether engineering thermoplastics

STRUCTURE

MAJOR APPLICATIONS Automotive, business machine, and electrical/electronics industries. PPO is mainly used to manufacture blends with high-impact polystyrene (HIPS). PPO/nylon, PPO/PBT, and PPO/polyolefin blends are also available on the market. PPO based materials rank first in terms of total consumption among blends based on engineering resins such as nylon, polycarbonate (PC), polyacetal, and reinforced terephthalate polyesters (PET and PBT).⁽¹⁾

PROPERTIES OF SPECIAL INTEREST Amorphous and relatively nonpolar. Low moisture absorption, good strength, and high heat-resistance. Excellent compatibility with other polymers for blending. Pure PPO resin cannot be easily processed at temperatures above its glass transition temperature because of poor melt flow.

PREPARATIVE TECHNIQUES Prepared by oxidative C-O coupling polymerization of 2,6-dimethylphenol in an aromatic solvent at room temperature in the presence of a catalyst. (2–5) Generally, the catalyst is a copper and diamine complex.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight of repeat unit	g mol ⁻¹	-	120.15	(1-5)
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	Pyridine solvent Nitrobenzene-pyridine solvent Commercial sample, Cu-diamine catalyst	$ 2-3 \times 10^4 \sim 1 \times 10^5 3.72 \times 10^4 (M_w) $	(3)
Typical polydispersity index (M_w/M_n)	-	Commercial sample, Cu-diamine catalyst	2.01	(6)
NMR	_	 H-NMR (CDCl₃) C-NMR (CDCl₃) Analysis of hydroxyl end groups weight by ³¹P-NMR 	and molecular	(7) (8) (9)
Thermal expansion coefficients	K^{-1}	-	5.2×10^{-5}	(10)

Poly(2,6-dimethyl-1,4-phenylene oxide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Compressibility coefficients	bar ⁻¹	_	2.0×10^{-5}	(6)
Density (amorphous)	$g cm^{-3}$	296 K Melt	1.06 0.958	(6)
Solvents	Toluene, bei	nzene, halogenated hydrocarbons		(6)
Nonsolvents	Acetone, alc	Acetone, alcohols, tetrahydrofuran		(6)
Solubility parameter	$(MPa)^{1/2}$	-	9.5-10.21	(11)
Theta temperature Θ	K	Methylene chloride	342.4	(12)
Interaction parameter χ				(13)

Second virial coefficient (14)

Solvent	$M_{ m w} imes 103^{-3}~({ m g~mol}^{-1})$	Temp. (K)	$A_2 imes 10^4 ext{ (mol cm}^3 ext{ g}^{-2} ext{)}$
Toluene	111	298	9.4
Benzene	130	298	11.1
Xylene	106	298	8.8
Chloroform	130	298	14.1
Dioxan	85	358	2.0

Mark-Houwink parameters: K and a

Solvent	Temp. (K)	$M_{ m w} imes 10^{-3}~({ m g~mol^{-1}})$	$ extit{K} imes 10^2 ext{ (ml g}^{-1} ext{)}$	а	Reference
Toluene	298	26.5-415	2.85	0.68 ± 0.02	(15)
Chlorobenzene	298	26.5-415	3.78	0.66 ± 0.02	(15)
Chloroform	298	26.5-415	4.83	0.64 ± 0.02	(15)
Benzene	298	39.7-164	2.60	0.69	(14)
Carbon tetrachloride	298	39.7-164	7.44	0.58	(14)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio $\langle r^2 \rangle_0/nl^2$	_	Toluene, chlorobenzene Chloroform	$4.74, 2.88$ $(2\sigma^2)$	(15, 16)
Persistence length	Å	Benzene Carbon tetrachloride	0.84 0.86	(14)
Lattice	_	_	Monoclinic	(17)
Chain conformation	_	_	(4/1) helix	(17)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Unit cell dimensions	Å	α -Pinene solution	a = 11.92 b = 17.10	(17)
Unit cell angles	Degree	-	97 91.02	(17) (18)
Unit cell contents (number o	f repeat units)		6	(17)
Degree of crystallinity	%	Commercial sample (ΔH_f) As prepared (x-ray) Cooling from melt at $12\mathrm{K}\mathrm{h}^{-1}$ (ΔH_f) Exposure to 2-butanone (MEK)	40 25 0 ~ 30	(19) (19) (19) (20)
Heat of fusion (of repeat units)	kJ mol ⁻¹	Methylene chloride 1-Chloronaphthalene DSC Toluene-polystyrene-PPO	5.88 3.77 1.80 ± 0.36 5.08	(12) (21) (19) (22)
Entropy of fusion (of repeat units)	$kJK^{-1}mol^{-1}$	DSC	$(9.5 \pm 1.8) \times 10^{-3}$	(19)
Density (crystalline)	$g cm^{-3}$	_	1.16	(23)
Avrami exponent	_	Melt-crystallization	1.6	(24)
Glass transition temperature	K	DSC (5 K h^{-1}) DSC $(2.4 \times 10^3 \text{ K,h}^{-1})$	498 480	(19) (25)
Melting point	K	DSC (5 K h^{-1}) DSC $(2.4 \times 10^3, \text{K h}^{-1})$	535 540	(29) (25)
Heat capacity	$kJ K^{-1} mol^{-1}$	400-482 K 482-570 K	$C_p = (0.3428T + 53.86) \times 10^{-3}$ $C_p = (0.2279T + 141.09) \times 10^{-3}$	(26)
Deflection temperature	K	_	452	(27)
Polymers with which compatible		Polystyrene Poly(<i>p</i> -methylstyrene) Poly(α-methylstyrene) Poly(2-methyl-6-phenyl-1,4-pheroly(2-methyl-6-benzyl-1,4-pherominated poly(2,6-dimethyly)	nylene ether)	(28) (29) (30) (31) (32) (33)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile modulus	MPa	ASTM D638		(10)
		296 K	2,690	
		366 K	2,480	
Shear modulus	MPa	ASTM D638		(10)
		296 K	2,690	
		366 K	2,480	
Tensile strength	MPa	ASTM D638		(10)
<u> </u>		296 K	80	, ,
		366 K	55	
Maximum extensibility	%	ASTM D638		(10)
$(L/L_0)_r$		296 K	20-40	, ,
		366 K	30-70	
Flexural modulus	MPa	ASTM D790		(10)
		256 K	2,650	, ,
		296 K	2,590	
		366 K	2,480	
Flexural strength	MPa	ASTM D790		(10)
C		263 K	2,650	
		296 K	2,590	
		366 K	2,480	
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D256		(10)
		233 K, notched	53	
		296 K, notched	64	
		366 K, notched	91	
		Unnotched	>2000	
Hardness	_	Rockwell hardness	M78	(10)
Shear stress	MPa	ASTM D732	76	(10)
Important patents		06,874 (1967), A. S. Hay (to Gen 83,435 (1968), E. P. Cizek (to Ge		

- 1. Utracki, L. A. Polymer Alloys and Blends; Hanser Publishers, New York, 1989.
- Hay, A. S., H. S. Blanchard, G. F. Endres, and J. W. Eustance. J. Am. Chem. Soc. 81 (1959): 6,335.
- 3. Hay, A. S. J. Polym. Sci. 58 (1962): 581.
- 4. Hay, A. S., H. S. Blanchard, G. F. Endres, and J. W. Eustance. Macromol. Synth. 1 (1963): 75.
- 5. Hay, A. S. U.S. Patent 4,028,341 (to General Electric), 1977.
- 6. Hay, A. S., et al. In *Encyclopedia of Polymer Science Engineering*, 1st ed., edited by H. F. Mark et al. John Wiley and Sons, New York, 1969, vol. 10, p. 92.

Poly(2,6-dimethyl-1,4-phenylene oxide)

- 7. White, D. M. J. Org. Chem. 34 (1969): 297.
- 8. White, D. M., and S. A. Nye. Macromolecules 23 (1990): 1,318.
- 9. Chan, K. P., et al. Macromolecules 27 (1994): 6,371.
- 10. Aycock, D., V. Abolins, and D. M. White. In *Encyclopedia of Polymer Science Engineering*, edited by H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges. John Wiley and Sons, 1988, vol. 13, p. 1.
- 11. Krause, S. In *Polymer Blends I*, edited by D. R. Paul and S. Newman. Academic Press, Orlando, Fla., 1978.
- 12. Shultz, A. R., and C. R. McCullough. J. Polym. Sci., Part A-2, 7 (1969): 1,577.
- 13. Barton, A. F. M. CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters. CRC Press, Boca Raton, Fla., 1990.
- 14. Akers, P. J., G. Allen, and M. J. Bethell. Polymer 9 (1968): 575.
- 15. Butte, W. A., C. C. Price, and R. E. Hughes. Polym. Lett. 4 (1966): 939.
- 16. Barrales-Rienda, J. M., and D. C. Pepper Europ. Polym. J. 3 (1967): 535.
- 17. Horikiri, S. J. Polym. Sci., Part A-2, 10 (1972): 1,167.
- 18. Butte, W. A., C. C. Price, and R. E. Hughes. J. Polym. Sci. 61 (1962): S28.
- 19. Karasz, F. E., H. E. Bair, and J. M. O'Reilly. J. Polym. Sci., Part A-2, 6 (1968): 1,141.
- 20. Wenig, W., R. Hammel, W. J. Macknight, and F. E. Karasz. Macromolecules 9 (1976): 253.
- 21. Karasz, F. E., J. M. O'Reilly, H. E. Bait, and R. A. Kluge. Polym. Prepr. 9 (1968): 822.
- 22. Shultz, A. R., and C. R. McCullough. J. Polym. Sci., Part A-2, 10 (1972): 307.
- Magré, E. P. and J. Boon. Communication presented at the Microsymposium on Structure of Organic Solids, Prague, Czechoslovakia, 16–19 September 1968.
- 24. Packter, A., and K. A. Sharif. Polym. Lett. (1971): 435.
- 25. Karasz, F. E., and J. M. O'Reilly. Polym. Lett. 3 (1965): 561.
- 26. Gaur, U., and B. Wunderlich. J. Phys. Chem. Ref. Data 10 (1981): 1,005.
- 27, Heijboer, U. J. Polym. Sci., Polym. Symp. 16 (1968): 3,755.
- 28. Fried, J. R., G. A. Hanna, and H. Kalkanoglu. In *Polymer Compatibility and Incompatibility*, edited by K. Solc. Harwood Academic Publishers, New York, 1982, vol. 2, p. 237.
- 29. Su, A. C., J. R. Fried, and T. Lorenz. Polym. Mater. Sci. Eng. 51 (1984): 275.
- 30. Cizek, E. P. U.S. Patent 3,383,435 (to General Electric), 1969.
- 31. Shultz, A. R., and B. M. Gendron. Polym. Prepr. 14(1) (1973): 571.
- 32. Shultz, A. R., and B. M. Gendron. J. Polym. Sci., Polym. Symp. 43 (1973): 89.
- 33. Maconnachie, A., R. P. Kambour, and R. C. Bopp. Polymer 25 (1984): 357.

Poly(dimethylsiloxane)

ALEX C. M. KUO

ACRONYM, ALTERNATE NAMES, TRADE NAMES PDMS; poly[oxy(dimethylsilylene)]; dimethicone; methylsilicone oil; Dow Corning $^{(\!R\!)}$ 200 fluid; Wacker SWS101 fluid; Baysilone $^{(\!R\!)}$ M fluid

CLASS Polysiloxanes; di-methyl silicones and siloxanes

STRUCTURE
$$-[(CH_3)_2Si-O-]_n$$

MAJOR APPLICATIONS Release agents, rubber molds, sealants and gaskets, surfactants, water repellents, adhesives, foam control agents, biomedical devices, personal care and cosmetics, dielectric encapsulation, glass sizing agents, greases, hydraulic fluids, heat transfer fluids, lubricants, fuser oil, masonry protectants, process aids.

PROPERTIES OF SPECIAL INTEREST Thermal stability, low temperature performance and minimal temperature effect. Good resistance to UV radiation. Excellent release properties and surface activity. High permeability to gases. Good damping behavior, antifriction and lubricity. Hydrophobic and physiological inertness. Shear stability, weak intermolecular forces, and excellent dielectric strength. Low volatility at high molecular weight, and high volatility at low molecular weight.

Shorthand notation for siloxane polymer units

End-group and structure of certain dimethylsiloxanes

End group	Structure	MDTQ formula	CAS Reg. No.
Methyl	$(CH_3)_3Si-O-[(CH_3)_2Si-O-]_nSi(CH_3)_3$	MD_nM	9016-00-6;
			63148-62-9
Hydroxyl	$HO-(CH_3)_2Si-O-[(CH_3)_2Si-O-]_nSi(CH_3)_2-OH$	$M^{OH}D_nM^{OH}$	70131-67-8
Vinyl	$CH_2 = CH - (CH_3)_2Si - O - [(CH_3)_2Si - O -]_nSi(CH_3)_2 - CH = CH_2$	$M^{vi}D_nM^{vi}$	68083-19-2
Hydrogen	$H-(CH_3)_2Si-O-[(CH_3)_2Si-O-]_nSi(CH_3)_2-H$	$M^HD_nM^H$	70900-21-9
None	$[(CH_3)_2Si-O-]_3$; cyclic trimer	D_3	541-05-9
Methyl	$[(CH_3)_2Si-O-]_3SiH$	M_3T^H	1873-89-8

Poly(dimethylsiloxane)

Product form and properties⁽¹⁾

Form	Structure and properties
Fluids	Linear polymer. Liquid at low molecular weights and solid gum at high molecular weights
Elastomers	Cross-linked solids. Reinforcement necessary for property performance
Resins	Highly branched cross-linked solids or fluids

Branched polymers⁽¹⁾

Silicone resins and rubbers are cross-linked polymers with branched polymer chains containing M (monofunctional), D (difunctional), T (trifunctional), and Q (tetrafunctional) units. Slightly branched polymers made from D, T, and Q structures have lower bulk viscosity and intrinsic viscosity than linear polymers of the same average molecular weight.

Infrared characteristic absorption^(2,3)

Group	Absorption, wave number (cm ⁻¹)
$-\text{Si}(\text{CH}_3)_2 - \text{O} - \text{Si}(\text{CH}_3)_2 -$	2,905–2,960; 1,020; 1,090
$Si(CH_3)_3$	2,905–2,960; 1,250; 840; 765
$Si(CH_3)_2$	2,905–2,960; 1,260; 855; 805
Si-CH ₃	2,905-2,960; 1,245-1,275; 760-845
Si-H	2,100-2,300; 760-910
Si-OH	3,695; 3,200–3,400; 810–960
Si-CH=CH ₂	1,590-1,610; 1,410; 990-1,020; 940-980

²⁹Si Nuclear magnetic resonance spectroscopy for typical structural building units in dimethylsiloxanes (4,5)

Structure	MDTQ formula*	Chemical shifts (ppm down-field from TMS)		
$-O-Si(CH_3)_3$	M	6.6-7.3		
$-\text{Si}(\text{CH}_3)_2 - (\text{C}_6\text{H}_5)$	M^{ph}	-1		
$-Si(CH_3)_2-CH=CH_2$	M^{vi}	-4		
$-Si(CH_3)_2-H$	M^{H}	-7		
$-Si(CH_3)_2$ $-OH$	M^{OH}	-12		
$-[O-Si(CH_3)_2-]$	D	-19 to -23		
$[O-Si(CH_3)_2-]_3$	D_3	-9.1		
$[O-Si(CH_3)_2-]_4$	D_4	-19.5		
$(-O_{0.5}-)_3Si-CH_3$	T	-63 to -68		
$(-O_{0.5}-)_4Si$	Q	-105 to -115		

^{*}See note above for "Branched polymers."

X-ray photoelectron spectroscopy elemental analysis $^{(6)}$

Element identification	Binding energy	Atomic composition
Si-2p	102.6	25.0
C-1s	285.0	50.0
O-1s	532.6	25.0

Preparative techniques

Polymerization process	Monomers	Major catalysts	Reference
Hydrolysis	Dichlorodimethylsilane and dialkoxydimethylsilane	Acids, alkalies, and polychlorophosphazenes	(1, 7, 8)
Condensation	Oligomeric dimethylsiloxane-diol	H ₂ SO ₄ , HCl, tin dicarboxylates, hydroxides of alkali metals or zeolite	(7, 9–11)
Anionic	Cyclic dimethylsiloxanes	Hydroxides, silanolates and alcoholates of alkali metals, quaternary ammonium or phosphonium bases	(7, 9, 12–14)
Cationic	Cyclic dimethylsiloxanes	Strong protic acids (H ₂ SO ₄ and CF ₃ SO ₃ H)	(7, 9, 14, 15)
Emulsion	Silanol ended oligomer or cyclic dimethylsiloxanes	Sodium silicate, tin dicarboxylates acid salt hydroxides of alkali metals	(16–18)
Radiation	Cyclic dimethylsiloxanes	γ (60 Co)	(9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Enthalpy of polymerization	kJ mol ⁻¹	D ₃ at 25°C	2.79	(19)	
$-\Delta H_{ m p}$		D ₃ at 77°C	23.4		
r		D ₄ at 25°C	-6.4		
		D ₄ at 77°C	-13.4		
Entropy of polymerization	$J K^{-1} mol^{-1}$	D ₃ at 25°C	51.0	(19)	
$\Delta S_{ m p}^{1}$,	D ₃ at 77°C	-3.03	()	
		D ₄ at 25°C	194.4		
		D_4 at $77^{\circ}C$	190.0		
Ceiling temperature	K	PDMS in toluene with 0.22 g ml^{-1}	383	(20)	
Solvents	Benzene, toluene, xylene, diethyl ether, chloroform, carbon tetrachloride, ethyl acetate, butanone, perchloroethylene, kerosene			(21)	
Partially soluble solvents	Acetone, ethanol, isopropanol, butanol, dioxane, ethyl phenyl ether			(21)	
Nonsolvents	Water, methanol, cyclohexanol, ethylene glycol, 2-ethoxy ethanol, dimethyl phthalate, aniline, 2-ethoxyethanol, 2-(2-ethoxyethoxy)ethanol, bromobenzene			(21)	

Poly(dimethylsiloxane)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solubility parameter δ	$(MPa)^{1/2}$	Average range	14.9-15.59	(22)
• •		PDMS (100-60,000 cs)	15.1	(23)
		Static vapor sorption for PDMS $(M_n = 89,000)$	15.0	(24)
		Gas chromatography method for PDMS $(M_n = 2,410-218,000)$ at 25°C	15.1	(25)
		Gas chromatography method for PDMS ($M_{\rm n}=$ 2,410–218,000) at 90°C	13.4	(25)
Theta temperature Θ	K	Bromobenzene	351.7	(26)
•		Bromocyclohexane	302	(26)
		Bromocyclohexane	300.6	(27)
		Ethyl iodide	275.1	(26)
		Ethyl phenyl ether	362.5	(26)
		Ethyl phenyl ether	356	(28)
		Butanone	293	(29)
Second virial coefficient A_2	$mol cm^3 g^{-2}$	PDMS		
Second vinar coefficient 712	8	In toluene at 27°C	4.5×10^{-4}	(27)
		In benzene at 27°C	2.95×10^{-4}	(27)
		In chlorobenzane at 30°C	10.4×10^{-5}	(27)
		In bromobenzene at 40°C	3.0×10^{-5}	(26)
		In bromocyclohexane at 36.5°C	3.62×10^{-5}	(27)
		In bromocyclohexane at 47.2°C	6.57×10^{-5}	(27)
		In bromocyclohexane at 56.2°C	9.54×10^{-5}	(27)
		In benzene at 20°C	2.1×10^{-4}	(29)
		In benzene at 20°C	1.84×10^{-4}	(29)

Mark-Houwink parameters: K and a

Solvents	Temp. (°C)	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	а	Reference
Butanone	20	81.5	0.5	(28)
Butanone	20	89	0.5	(30)
Butanone	20	78.3	0.5	(29)
Ethyl phenyl ether	83	77	0.5	(28)
Ethyl phenyl ether	89.5	73	0.5	(26)
Toluene	25	20	0.66	(31)
Toluene	25	8.28	0.72	(29)
Toluene	25	11	0.92	(30)
Benzene	20	12	0.68	(29)
Mixture of C_8F_{18} and $C_2Cl_4F_2$ (1:2)	22.5	105.7	0.5	(29)
Bromobenzene	78.7	76	0.5	(26)
Ethyl iodide	2.1	70	0.5	(26)
Bromocyclohexane	29	74	0.5	(26)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE			
Characteristic ratio	_	Mixture of C_8F_{18} and $C_2C_8F_{18}$	Cl ₄ F ₂ (1:2) at 22.5°C	7.7	(29)			
$C_{\infty} = \langle r^2 \rangle_0 / n l^2$		Butanone at 20°C	- letties etles d	6.3 3.32–5.28	(29) (32)			
			Calculation based on Ising lattice method ($l=1.64\text{Å}, \theta_1=110^\circ, \theta_2=143^\circ$)					
Root-mean-square end-	nm $mol^{1/2}$	PDMS in various theta so		2.5×10^{-2}	(26)			
to-end chain length	$g^{-1/2}$	PDMS in butanone at 20°		7.30×10^{-2}	(28)			
$(\langle r^2 \rangle_0/M)^{1/2}$		Free rotation value calcul $l = 1.65 \text{ Å}, \ \theta_1 = 110^\circ, \ \theta_2$	$=130^{\circ}$	4.56×10^{-2}	(28)			
		Free rotation value calcul $l=1.65\text{Å}$, $\theta_1=110^\circ$, θ_2		5.30×10^{-2}	(28)			
Root-mean-square radius of gyration	Å	Blend of PDMS and pred $(M_n = 3,000-25,000)$	uterated PDMS	41	(33)			
$R_{\rm g} = \langle s^2 \rangle_{\rm z}^{1/2}$		PDMS in benzene- d_6						
$\kappa_{g} = \langle s \rangle_{z'}$		$M_z = 4,990$		18.6	(34)			
		$M_z = 8,670$		25.2	(34)			
		$M_z = 12,890$		33.8	(34)			
		$M_{\rm z} = 20,880$		49.4	(34)			
		Network prepared by PD	39	(33)				
		preduterated PDMS						
Z-average square radius of gyration $\langle s^2 \rangle_{z,linea} / \langle s^2 \rangle_{z,ring}$	_	Linear and cyclic PDMS i benzene-d ₆	1.9 ± 0.2	(34)				
Interaction parameter of	_	Organic solvent	Conditions					
PMDS in organic		Pentane	Swelling at 25°C	0.43	(35)			
solvents χ_{12}		Toluene	Swelling at 25°C	0.465	(35)			
		Nitrobenzene	Swelling at 25°C	2.2	(35)			
		Ethyl ether	Swelling at 25°C	0.43	(35)			
		Cyclohexane	Swelling at 25°C	0.44	(35)			
		Hexane	Swelling at 25°C	0.40	(35)			
		Carbon tetrachloride	Swelling at 25°C	0.45	(35)			
		Ethyl iodide	Swelling at 25°C	0.58	(35)			
		Dioxane	Swelling at 25°C	0.61	(35)			
		2,3-dimethylpentane	Swelling at 25°C	0.392	(36)			
		2,2,4-trimethylpentane	Swelling at 25°C	0.38	(36)			
		Chlorobenzene	Osmotic measurement	0.477	(37)			
		G 11	at 20°C	0.420	(25)			
		Cyclohexane	Osmotic measurement	0.429	(37)			
		Ranzona	at 25°C Osmotic	0.491	(27)			
		Benzene	measurement at 25°C	0.481	(37)			

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
		Organic solvent	Conditions		
		Pentane	Gas chromatography at 100°C	0.311	(38)
		Toluene	Gas chromatography at 100°C	0.594	(38)
		Cyclohexane	Gas chromatography at 100°C	0.351	(38)
		Hexane	Gas chromatography at 100°C	0.296	(38)
		Chloroform	Gas chromatography at 100°C	0.60	(38)
		Benzene	Gas chromatography at 100°C	0.577	(38)
		Chlorobenzene	Gas chromatography at 100°C	0.764	(38)
		Dioxane	Gas chromatography at 100°C	1.064	(38)
		n-Butanol	Gas chromatography at 100°C	1.908	(38)
		Ethanol	Gas chromatography at 100°C	2.571	(38)

Interaction parameter χ_{12}

Materials/condition	Temp. (K)	Method	χ ₁₂	Reference
PDMS network/PDMS ($M = 422-875$)	298	Swelling	0.19-0.25	(35)
PDMS network/PDMS ($M = 700-26,400$)	298	Swelling	-0.017 to 0.006	(39)
PDMS network/D ₅	298	Swelling	0.247	(40)
PDMS/D ₄	298	Osmotic measurement	0.298	(41)
PDMS network/MD ₃ , M	298	Swelling	0.345	(42)
PDMS network/MD ₂ ph M	298	Swelling	0.438	(42)
PDMS network/MD ^{ph} M	298	Swelling	0.356	(42)
$MD_{13}M/MD_{28}^{ph}M$	458	Light scattering	0.112	(43)
$MD_{13}M/MD_{23}^{ph}M$	518	Light scattering	0.122	(43)
$M^{OH}D_{15}M^{OH}/MD_{23}^{ph}M$	446	Light scattering	0.111	(44)
$MD_{13}M/D_4^{ph}$ cycloisomers	360-371	Light scattering	0.300	(40)
PDMS/polyethylmethylsiloxane $(M_n = 30,300)$	332.5	Light scattering	0.00664-0.0077	(45)
PDMS/poly(ethylene oxide)	343-373	Gas chromatography	0.4-1.1	(46)

Parameters for the equation of state

PDMS	Method	<i>T</i> * (K)	$V_{\rm sp}^{*}$ (cm ³ g ⁻¹)	<i>P</i> * (MPa)	Reference
$M_{\rm v} = 1 \times 10^5$	Flory-Orwoll and Vrij theory at 25°C	5,528	0.8395	341	(47)
$M_{\rm n} = 162.4$	Flory-Orwoll and Vrij theory at 25°C	4,468	0.9995	325.3	(48)
$M_{\rm n} = 340$	Modified Flory-Orwoll and Vrij theory at 40-73°C	3,726.5	0.94877	373.9	(49)
$M_{\rm n} = 958$	Flory-Orwoll and Vrij theory at 25°C	5,288	0.8694	313.3	(48)
$M_{\rm n} = 7,860$	Flory-Orwoll and Vrij theory at 25°C	5,554	0.8403	311.5	(48)
$M_{\rm n} = 187,000$	Modified Flory-Orwoll and Vrij theory at 42–93°C	4,386.7	0.88085	382.6	(49)
$M_{\rm n} = 47,200$	Ising fluid model at 25-70°C	476	0.9058	302	(50)

Morphology in multiphase systems

System A/B	Microstructure	Architecture	Reference
Poly(butadiene)/PDMS	Cylinders/spheres	A-B diblock	(51)
Poly(styrene)/PDMS	Spheres/lamellae/cylinders	A-B diblock	(52)
Poly(diphenylsiloxane)/PDMS	Lamellae	A-B-A triblock or star-block	(53)
Poly(methyl styrene)/PDMS	Spheres/lamellae	A-B diblock and A-B-A triblock	(54)
Poly(ethylene oxide)/PDMS	Lamellae/cylinders	B-A-B triblock	(46)
Poly(methyl methacrylate)/ PDMS	Spheres/cylinders	A-g-B graft	(55)

Properties of trimethylsiloxy terminated polydimethylsiloxane vs. $viscosity^{(23,56)}$

Properties	Units	PDMS viscosity at 25°C (cs)							
		0.65	2.0	10	100	1,000	12,500	60,000	
Molecular weight (estimated)	$g \text{mol}^{-1}$	162	410	1,250	5,970	28,000	67,700	116,500	
Flash point	K	269.7	352	484	>599	>599	>599	>599	
Pour point	K	205	173	173	208	223	227	232	
Freezing point	K	205	189	_	_	_	227	_	
Specific gravity at 25°C	_	0.760	0.872	0.935	0.964	0.970	0.974	0.977	
Viscosity temperature coefficient	_	0.31	0.48	0.56	0.60	0.61	0.61	0.61	
$[1 - (\eta_{372\text{K}}/\eta_{311\text{K}})]$									

PROPERTY	UNITS	CONDITIONS	VALUE*	REFERENCE
- NOI ENT I			VALUE	NEI ENLIVEE
Density ρ	$\rm g~cm^{-3}$	PDMS (1,000–12,500 cs)	0.970	(56)
ρ vs. temperature	-	PDMS ($M_{\rm v} = 1 \times 10^5$) from 20-207°C	$\rho = 0.9919 - (8.925 \times 10^{-4})t + (2.65 \times 10^{-7})t^2 - (3.0 \times 10^{-11})t^3$	(47)
Specific volume $\nu_{\rm sp}$	$\mathrm{cm}^3\mathrm{g}^{-1}$	From 20-90°C	$\nu_{\rm sp} = 1.0265 + (9.7 \times 10^{-4})(t - 20)$	(57)
$\nu_{\rm sp}$ vs. temperature	_	From 90-170°C	$\nu_{\rm sp} = 1.0944 + (10.3 \times 10^{-4})(t - 90)$	(57)
Thermal expansion coefficient α	K^{-1}	PDMS ($M_{\rm v}=1\times10^5$) at $25^{\circ}{ m C}$	9.07×10^{-4}	(47)
coefficient a		PDMS (from 100–60,000 cs)	9.6×10^{-4}	(23)
		PDMS ($M = 1.5 \times 10^4$) at 30° C	9.0×10^{-4}	(58)
α vs. temperature	_	PDMS ($M_{\rm v} = 1 \times 10^5$) from 20–207°C	$\alpha = 0.90 \times 10^{-3} + (2.76 \times 10^{-7})t + (1.0 \times 10^{-10})t^2$	(47)
Thermal pressure coefficient, γ , vs. temperature	bar K ⁻¹	PDMS ($M_{\rm v} = 1 \times 10^5$) from 24–161°C	$\gamma = 8.71 + (4.74 \times 10^{-2})t + (9.3 \times 10^{-5})t^2$	(47)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Water solubility	ppm	MDM at 296 K, nonturbulent measurement MD ₃ M at 296 K, nonturbulent measurement PDMS ($M = 1,200$) at 298 K, water elution measurement PDMS ($M = 6,000$) at 298 K, water elution measurement	3.45×10^{-2} 7.0×10^{-5} 1.6 0.56	(59) (59) (60) (60)
		PDMS ($M = 25,000$) at 298 K, water elution measurement PDMS ($M = 56,000$) at 298 K, water elution measurement		(60) (60)

$Compressibility^{(61)} \\$

Pressure (kgf cm ⁻²)	Viscosity of PDMS (cs)										
	0.65	1	2	100	350	1,000	12,500				
	Volume re	duction (%)									
0	0	0	0	0	0	0	0				
500	6.34	5.36	4.85	4.49	4.47	4.58	4.46				
1,000	10.04	8.84	8.21	_	7.42	7.36	7.29				
25,000	16.33	15.08	14.34	12.71	12.78	12.74	12.53				
50,000	Gel	20.66	20.07	17.43	17.96	17.87	17.71				
30,000	_	34.57	34.56	_	32.94	31.31	31.25				

X-ray diffraction pattern⁽⁶²⁾

Condition	2θ	Reflection
PDMS rubber at -50° C for 6 h	11°40′ (amorphous halo) 19°30′ 23°20′	110 + 001 $110 + 020$ $021 + 112$

Unit cell dimensions $^{(63)}$

Lattice	Monomer per unit cell	Unit cell dimension (Å)		Cell angle (degrees)			Theoretical density (g cm ⁻³)		
		а	b	с	α	β	γ	Crystal	Amorphous
Monoclinic	6	13.0	8.3	7.75	90	60	90	1.07	0.98

Crystalline state properties

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Si-C bond length	Å	$[(CH_3)_2SiO-]_4$ at $-50^{\circ}C$	1.92	(64)
Si-O bond length	Å	$[(CH_3)_2SiO-]_4$ at $-50^{\circ}C$	1.65	(65)
Si-C bond energy	$kJ mol^{-1}$	_	326	(65)
Si-O bond energy	$kJ mol^{-1}$	_	443	(65)
O-Si-O bond angle	Degree	$[(CH_3)_2SiO-]_4$ at $-50^{\circ}C$ Conformation analysis	109 112	(64) (66)
Si – O–Si bond angle	Degree	X-ray diffraction analysis Conformation analysis for hexamethyldisloxane	140 ± 10 $145-150$	(63) (67)
		$[(CH_3)_2SiO-]_4$ at $-50^{\circ}C$	142.5	(64)
C-Si-C bond angle	Degree	$[(CH_3)_2SiO-]_4$ at $-50^{\circ}C$	106	(64)
Degree of crystallinity α	%	X-ray measurement for 17% silica filled PDMS rubber at -60° C	42	(68)
		X-ray measurement for 17% silica filled PDMS rubber at -80°C	59	(68)
		DSC measurement for PDMS $(M_n = 1.11 \times 10^5)$ at T_g using a cooling rate = $10 \mathrm{K min}^{-1}$	58.8	(69)
		Calorimeteric measurement for PDMS $(M \sim 6 \times 10^5)$ at T_g	67	(19)
		DSC measurement for PDMS at T_g using a cooling rate = $2.1 \mathrm{Kmin^{-1}}$	79	(70)

Avrami parameters

Conditions	Crystallization temp., T _c (°C)	<i>k</i> × 10 ³	n	$ au_{ extsf{0.5}}$ (min)	Reference
Isothermal crystallization of PDMS	-55.6	1.905	2.19	15	(62)
$(M=4\times10^5)$	-58.0	5.75	2.08	8	(62)
,	-57.5	7.0	2.2	9	(71)
	-60.5	120	1.75	2.5	(71)
Isothermal crystallization of PDMS	-60.5	1.0	2.5	13.5	(71)
$(M=1\times10^5)$	-65.0	7.35	2.2	8.2	(71)
,	-71.0	23	2.25	4.8	(71)
NMR measurement for PDMS $(M_n = 7.4 \times 10^5)$	-58.8	_	3.1	_	(72)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition	K	Measured by DSC	150	(70)
temperature $T_{\rm g}$			123.3–149.9	(73)
Melting point $T_{\rm m}$	K	Measured by DSC	T_{m1} T_{m2}	
			226–232 236	(70)
			217.8-228.3 235.3-235.6	(73)
Cold crystallization	K	Measured by DSC	173-183	(70)
temperature $T_{\rm c}$			181.4-196.8	(73)
Enthalpy of fusion $\Delta H_{\rm u}$	$kJ mol^{-1}$	Calculation by melting temperature depression of	1.36	(70)
—u		PDMS in toluene solution		
		Calorimeteric measurement for a PDMS ($M \sim 6 \times 10^5$) with 67% crystallinity	3.04	(19)
Entropy of fusion ΔS	$kJ K^{-1} mol^{-1}$	Calculation by melting	5.78×10^{-3}	(70)
		temperature depression of		
		PDMS in toluene solution Calorimeter measurement for a PDMS ($M \sim 6 \times 10^5$) with 67% crystallinity	12.46×10^{-3}	(19)
Specific heat C_p	$kJ kg^{-1} K^{-1}$	PDMS (2-1,000 cs)	1.35-1.51	(56)
opecare near op	19116 11	PDMS (350 cs) at 298 K	1.464	(23)
		PDMS (1,000 cs) at 298 K	1.461	(23)
		PDMS ($M = 400,000$)	1.552	(23)
Specific heat, C_p ,	_	PDMS $(M_n = 1.11 \times 10^5)$ at:		(69)
effect of		120 K	0.66	
temperature		140 K	0.824	
		250 K	1.439	
		300 K 350 K	1.532 1.625	
Bulk viscosity- molecular weight relationship	cs	PDMS ($M_{\rm n} > 2,500$) at 25°C	$\log \eta = 1.00 + 0.0123 M^{0.5}$	(31)
Energy of	$kJ mol^{-1}$	MD_9M	90.45	(74)
vaporization E_{vap}		MD_8M	83.75	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Energy of activation for viscous flow E_{visc}	$kJ mol^{-1}$	MD ₉ M PDMS ($M = 4.7 \times 10^3 \text{ to } 4.8 \times 10^5$)	13.74 14.6	(74) (75)
Critical molecular weight for entanglement $M_{\rm c}$	g mol ⁻¹	Linear PDMS Linear PDMS Linear PDMS Linear PDMS Linear PDMS Trifunctional branched PDMS Tetrafunctional branched PDMS	21,000 29,000 30,000 33,000 98,000 110,000	(76) (31, 77) (75) (78) (78) (78)
Color	APHA	PDMS (Dow Corning 200 fluids)	5	(23)

Monolayer properties of force vs. area isotherm for PDMS on water surface⁽⁷⁹⁾

Property	Units	Material	Value
Area per monomer unit A_0	\mathring{A}^2	$MD_{14}M$	22
Film pressure, <i>F</i> , at 7 Å2	$\mathrm{mN}\mathrm{m}^{-1}$	$MD_{14}M$	10.2
Surface electrostatic potential difference, ΔV , at 7 Å^2	mV	$MD_{14}M$	150
Apparent dipole moment per mole per monolayer, μ_p , at 7Å^2	mD	$MD_{14}M$	30

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Water contact angle θ	Degrees	PDMS (500 cs) film on soda-lime glass after 15 min treatment		
		At 25°C	54	(80)
		At 100°C	70	(80)
		At 200°C	102	(80)
		At 300°C	110	(80)
		At 400°C	103	(80)
		At 500°C	85	(80)
		At 525°C	0	(80)
		PDMS films end-grafted onto silicone wafer	112–117.5	(81)
		PDMS fluid, cross-linked PDMS paper coating, and unfilled PDMS elastomer	95–113	(82)
Methylene iodide contact angle θ	Degrees	PDMS fluid, cross-linked PDMS paper coating, and unfilled PDMS elastomer	67–77	(82)
<i>n</i> -Hexadecane contact angle θ	Degrees	Surface of cross-linked PDMS sheet	40	(83)
Perfluorodecalin contact angle θ	Degrees	PDMS elastomer vs. perfluorocarbon monolayer on mica surface	37	(84)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Critical surface	$mN m^{-1}$	Silica filled PDMS rubber at 20°C	20-23	(85)
tension γ		Dimethylsiloxane dimer at 20°C	15.7	(86)
,		Dimethylsiloxane tetramer at 20°C	17.60	(86)
		Dimethylsiloxane heptamer at 20°C	18.60	(86)
		Dimethylsiloxane dodecamer at 20°C	19.56	(86)
		PDMS (35 cs) at 20°C	19.9	(86)
		PDMS (70 cs) at 20°C	20.3	(86)
		PDMS (100 cs) at 25°C	20.9	(23)
		PDMS (1,000 cs) at 25°C	21.2	(23)
		PDMS (12,500 cs) at 25°C	21.5	(23)
		PDMS (10^6 and 6×10^4 cs) at	20.4	(57)
		20°C	20.4	(37)
		PDMS (10^6 and 6×10^4 cs) at 150° C	13.6	(57)
		PDMS (6×10^4 cs) at 180° C	12.1	(87)
Surface tension vs. $M_{\rm n}$	$\mathrm{mN}\mathrm{m}^{-1}$	PDMS at 24°C	$\gamma^{-0.25} = (21.06)^{-0.25} + 8.486/M_{\rm n}$	(87)
Temperature coefficient of surface tension	$mN m^{-1} K^{-1}$	PDMS (10^6 , 6×10^4 cs) at 150° C PDMS (35 cs) at 20° C	0.048 0.067	(57) (86)
$-d\gamma/dT$				
Interfacial tension	$\mathrm{mN}\mathrm{m}^{-1}$	PDMS (0.65 cs) at 20°C	39.9	(86)
against water γ_{1w}		PDMS (1.0 cs) at 20°C	42.5	
		PDMS (5.0 cs) at 20°C	42.2	
		PDMS (35 cs) at 20°C	43.1	
Polarity x^p		Form interfacial tension of PDMS $(6 \times 10^4 \text{ cs})$	0.042	(87)
Friction force (interfacial shear	$\mathrm{N}\mathrm{m}^{-2}$	PDMS elastomer vs. fluorocarbon monolayer on	$21.4(\pm 0.7)\times 10^4$	(88)
strength)		mica surface PDMS elastomer vs. hydrocarbon monolayer on mica surface	$4.6(\pm 0.2) \times 10^4$	
Surface shear viscosity	$\mu N\text{sm}^{-1}$	PDMS ($M = 500-105,000$)	~1	(89)

Interfacial tension of polymer pairs

Polymer pair	γ_{12} , (mN m $^{-1}$)	$-d\gamma_{12}/dT$, (mN m $^{-1}$ K $^{-1}$)	Reference
PDMS/polypropylene	3.2 at 20°C	0.002	(90)
PDMS/poly(<i>t</i> -butyl methacrylate)	3.6 at 20°C	0.0025	(91)
PDMS/poly(isobutene)	4.9 at 20°C	0.006	(92)
PDMS/poly(isobutylene)	3.9 at 20°C	0.016	(93)
PDMS/polybutadiene	4.15 at 25°C	0.00865	(94)
PDMS/poly(<i>n</i> -butyl methacrylate)	4.2 at 20°C	0.0038	(91)
PDMS/polyethylene, branch	5.3 at 20°C	0.002	(89, 92)
PDMS/polystyrene	6.1 at 20°C	~ 0	(92)
PDMS/poly(oxytetramethylene)	6.4 at 20°C	0.0012	(91)
PDMS/polychloroprene	7.1 at 20°C	0.0050	(91)
PDMS/poly(vinyl acetate)	8.4 at 20°C	0.0081	(91, 93)
PDMS/polyethylene	5.08 at 150°C	0.0016	(95)
PDMS/poly(vinyl acetate)	7.43 at 150°C	0.0087	(95)
PDMS/poly(oxyethylene)	9.85 at 150°C	0.0078	(95)
PDMS/poly(tetrahydrofuran)	6.26 at 150°C	0.0004	(95)

Gas permeability from PDMS membranes filled with 33% silica (cm 3 (STP) cm (s cm 2 cm Hg) $^{-1}$) $^{(96)}$

Gas	<i>Pr</i> × 10 ⁹	Gas	<i>Pr</i> × 10 ⁹	Gas	$\textit{Pr} \times 10^9$
$\overline{\mathrm{H_2}}$	65	N ₂ O	435	n-C ₆ H ₁₄	940
He	35	NO ₂	760	<i>n</i> -C ₈ H ₁₈	860
NH_3	590	SO_2	1500	n - $C_{10}H_{22}$	430
H_2O	3600	CS_2	9000	HCHO	1110
CO	34	CH_4	95	CH ₃ OH	1390
N_2	28	C_2H_6	250	COCl ₂	1500
NO	60	C_2H_4	135	Acetone	586
O_2	60	C_2H_2	2640	Pyridine	1910
H_2S	1000	C_3H_8	410	Benzene	1080
Ar	60	$n-C_4H^{10}$	900	Phenol	2100
CO_2	325	n - C_5H_{12}	2000	Toluene	913

Temperature effect of oxygen permeability and solubility from PDMS membrane $^{(96)}$

Temp. (°C)	$\textit{Pr} \times 10^9 \; (\text{cm}^3 (\text{STP}) \; \text{cm (s cm}^2 \; \text{cm Hg})^{-1})$	Solubility (ml g ⁻¹)
28	62	0.31
-40	20	0.39
-75	0.74	47

Solubility of gases in PDMS at 25°C/760 mm Hg

Gas	Solubility (ml g^{-1}) $^{(61)}$	Solubility (ml g^{-1}) $^{(96)}$	Diffusion rate, $D \times 10^5 (\text{cm}^2 \text{s}^{-1})^{(96)}$
He	0.010	0.045	60
Ar	0.301	0.33	14
Air	0.168	_	_
O_2	0.258	0.31	16
N_2	0.166	0.15	15
CO_2	1.497	2.2	11
CH_4	0.543	0.57	12.7
SF ₆	0.996	_	_
C_3F_8	1.041	_	_
H_2	_	0.12	_
C_4H_{10}	_	15.0	25

 $Williams-Landel-Ferry\ (WLF)\ parameters\ measurement\ for\ trimethylsiloxy-terminated\ PDMS^{(133)}$

PDMS, <i>M</i> _n (g mol ⁻¹)	Reference temp. T ₀ (K)	C ₁	C ₂ (K ⁻¹)	T _g , DSC (K)
10370	147	10.4	14.24	149.5
4160	145.5	14.22	23.84	149.3
2080	143.8	14.32	23.37	147.5
830	141.1	13.48	20.03	141.2
420	136.5	11.46	14.01	135.9

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	PDMS (100 cs) at 80°C	0.1511	(56)
•		PDMS (1,000 cs) at 80°C	0.1566	(56)
		PDMS (12,500 cs) at 80°C	0.1520	(56)
		PDMS (1,000-60,000 cs) at 50°C	0.1591	(23)
		PDMS (12,500 cs) at 14.7°C	0.1678	(98)
Load-bearing capacity	kg	PDMS fluid	50-150	(1)
Lubricity	mm	Shell four ball test; wear scar, steel on steel; PDMS (100 cs) at 1 h/600 rpm/50 kg load/ambient temperature	1.91	(99)
		Shell four ball test; wear scar, steel on bronze; PDMS (100 cs) at 1 h/600 rpm/ 10 kg load/ambient temperature	2.0	
Speed of sound	${\rm ms^{-1}}$	PDMS (0.65 cs) at 30°C	837.2	(97)
longitudinal velocity		PDMS (50 cs) at 30°C	981.6	
· ·		PDMS (100 cs) at 30°C	985.2	
		PDMS (1,000 cs) at 30°C	987.3	
		PDMS (1,000 cs) at 50.7°C	933.3	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Temperature coefficient of sound transmission	_	PDMS (0.65 cs) at 30°C PDMS (50 cs) at 30°C PDMS (100 cs) at 30°C PDMS (1,000 cs) at 30°C	-3.8 -2.7 -2.7 -2.6	(97)
Anomalous longitudinal velocity due to phase transition effect	ms^{-1}	PDMS (200,000 cs) cooling at $T < 205 \mathrm{K}$ PDMS (200,000 cs) cooling at $T > 235 \mathrm{K}$	1,850 1,200	(100)

Dielectric properties of trimethylsiloxy terminated PDMS at various viscosity $^{(23,\,101)}$

Viscosity at 25°C (cs)	0.65	2.0	10	100	1,000	12,500	60,000
Dielectric constant, at 10^2 – 10^4 Hz	2.2	2.45	2.72	2.75	2.75	2.75	2.75
Dielectric strength at 25°C (kV cm ⁻¹)	118	138	148	158	158	158	158
Volume resistivity at 25°C (ohm cm)	1.0×10^{14}	5.0×10^{14}	1.0×10^{15}				

Dielectric data for PDMS (440 cs) at various temperatures (1)

Properties	Units	Sample	20°C	100°C	200°C
Dielectric constant ε	_	PDMS (440 cs)	2.8	2.5	2.3
Dissipation factor, $\tan \delta$ at 800 Hz	_	PDMS (440 cs)	1.2×10^{-4}	1.3×10^{-4}	1.5×10^{-4}
Volume resistivity	ohm cm	PDMS (440 cs)	4×10^{15}	6×10^{14}	1×10^{14}
Dielectric strength	$kV cm^{-1}$	PDMS (440 cs)	120	100	95

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Refractive index $n_{\rm D}^{25}$	_	PDMS (0.65-10 cs) at 25°C PDMS (100-60,000 cs) at 25°C	1.375-1.399 1.4030-1.4036	(101)
Diamagnetic susceptibility X_m	$cm^3 g^{-1}$	PDMS ($M = 1,200$) MD_5M D_3 and D_4	0.620×10^{-6} 0.658×10^{-6} 0.632×10^{-6}	(102) (103) (103)
Verdet constant of magnetic rotary power	min gauss ⁻¹ cm ⁻¹	PDMS (0.65-1,000 cs) at 25°C and 5,893 Å	$(1.623-1.693) \times 10^{-2}$	(104)
Dipole moment μ	D	Hydroxy-terminated PDMS $(M = 20,000)$ in cyclohexane at 25 °C	11.54	(105)
		Hydroxy-terminated PDMS $(M = 70,230)$ in cyclohexane at 25 °C	21.48	
		Trimethylsiloxy-terminated PDMS $(M = 78,500)$ in cyclohexane at 25 °C	22.24	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dipole moment per repeat unit $\mu/n^{1/2}$	D	Trimethylsiloxy-terminated PDMS in cyclohexane Hydroxy-terminated PDMS in cyclohexane	0.697 0.666	(105)
Root-mean-square dipole moment ratio $\langle \mu^2 \rangle_0/nm^2$	_	PDMS (DP = 194–2,076) undiluted at 25 $^{\circ}$ C PDMS (DP = 194–2,076) in cyclohexane at 25 $^{\circ}$ C PDMS (DP = 2–4,940) in cyclohexane at 25 $^{\circ}$ C	0.30 0.40 0.29	(106) (106) (107)
True contact charge density	$nC cm^{-2}$	RTV silicone rubber under contact pressure $(1.2 \times 10^4 \ N \ m^{-2})$	-15 ± 5	(108)
Autoignition temperature (ASTM D 286-30)	K	PDMS (1 cs) PDMS (5 cs) PDMS (10 cs) PDMS (100 cs)	691 716 725 >763	(21)
Limiting oxygen index (LOI)	%	PDMS silicone rubber	26-42	(109)
Arc resistance	s	PDMS silicone rubber	250	(109)
Corona resistance	kV	PDMS silicone rubber	40	(109)

Anisotropy of segments and monomer units of PDMS

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Optical configuration parameter Δa	cm ³	PDMS ($M = 1.8 \times 10^6$) in petroleum ether	0.96×10^{-25}	(110)
1		Cross-linked PDMS at 20°C	4.5×10^{-25}	(111)
		Cross-linked PDMS at −60°C	0	(111)
		Cross-linked PDMS at 70°C	8.1×10^{-25}	(112)
		Cross-linked PDMS swelled in decalin at 70°C	5.1×10^{-25}	(112)
		Cross-linked PDMS swelled in cyclohexane at 70°C	3.8×10^{-25}	(112)
		Cross-linked PDMS swelled in CCl_4 at $70^{\circ}C$	1.8×10^{-25}	(112)
Stress-optical coefficient <i>C</i>	$m^2 N^{-1}$	PDMS		
oness-optical coefficient C	111 11	At 200°C At 22/25°C At 105/190°C	1.35×10^{-10} $1.35/1.75 \times 10^{-10}$ $1.9/2.65 \times 10^{-10}$	(113) (114) (114)

Degradation behavior

End-group of PDMS	Depolymerization conditions	Activation energy (kJ mol ⁻¹)	Reference
Trimethylsiloxy-terminated	Random scission thermal depolymerization at 420-480°C	176	(115)
Trimethylsiloxy-terminated	Thermal oxidation depolymerization at 350-420°C	126	(115)
Hydroxyl-terminated	Unzipping in vacuum at $T > 250^{\circ}$ C	35.6	(115)
Hydroxyl-terminated	0.01% NaOH or $0.01%$ H ₂ SO ₄ catalyzed depolymerization at $170-300$ °C	58.6	(116)
Hydroxyl-terminated	Stress relaxation measurement in anhydrous argon at 150–260°C	95.4	(117)
Hydroxyl-terminated	0.01% KOH catalyzed reaction at 60-140°C	21.4	(118)
Trimethylsiloxy-terminated ¹⁴ C-PDMS	Degradation occurred in soil with < 3% moisture and formed volatilized dimethylsilane diol	_	(119)
Trimethylsiloxy-terminated ¹⁴ C-PDMS	No biodegradation was found in activated sewage sludge bacteria	_	(119)

Thermochemical parameters $^{(118)}$

Viscosity of PDMS (cs)	Heat of gasification (MJ kg ⁻¹)	Heat of combustion (MJ kg ⁻¹)	Flame heat radiated to surface (kW m ⁻²)
0.65	0.327	36.1	_
2.0	0.492	30.0	_
10	3.0-3.6	26.8	26
10,000,000	3.0-3.6	26.8	26

Decomposition products⁽¹²⁰⁾

Thermal decomposition products (100 cs PDMS)	% at 475°C	Thermal-oxidative decomposition product	% at 430°C (approximate)
$\overline{D_3}$	45	Cyclic siloxanes	81
D_4	19	НСНО	13
D_5	5	CO_2	3
D_6	11	CO	2
D_7	7	CH₃OH	1.5
D_8	2	HCO₂H	0.2

Fire parameters (cone calorimeter test) $^{(118)}$

Samples	External heat flux (kW m ⁻²)	Peak rate of heat release (kW m ⁻²)	Specific extinction area (m ² kg ⁻¹)
MM	30	2,800	_
MD_2M	60	2,200	_
MD_3M	60	1,750	_
MD_8M	60	750	_
10 cs PDMS	60	175	_
50 cs PDMS	60	140	600
6×10^5 cs PDMS	60	105	550
1×10^7 cs PDMS	60	95	550
Elastomers/silica filled	60	80-110	1,300-1,700

Ecotoxicity in aquatic compartment

Species	Materials	Result or hazard rating	Reference
Fresh water			
Salmo gairdneri	PDMS (350 cs) 25% in food for 28 days, followed by a 14-day observation period	No effect on behavior and growth with $10 \mathrm{mg}$ PDMS fish ⁻¹ day ⁻¹	(119)
Phoxinus phoxinus	PDMS (viscosity not specified)	$LC_{40} - 8 days = 3,000 (mg l^{-1})$	(119)
Leuciscus idus	350 (Baysilone fluid M350)	$LC_0 - 96 h = 200 \text{ (mg l}^{-1}\text{)}$	(121)
Sea water			. ,
Pomatoschistus minutus, Gasterosteus aculeatus	PDMS (100, 350, and 12,500 cs)	No mortality 96 h at saturation	(119)
Pleuronectes platessa	PDMS (50 cs)	Toxicity – 96 h > 10,000 mg l ⁻¹ at the surface of water (5 mg l ⁻¹ in water)	(119)
Scorpaena porcus	PDMS (50 cs) 30% emulsion	$LC_{50} - 50 \mathrm{h} = 700 (\mathrm{mg}\mathrm{l}^{-1})$	(119)
Carassius auratus	PDMS (50 cs) 30% emulsion	$LC_{50} - 24 h = 3,500 \text{ (mg l}^{-1}\text{)}$	(119)

Ecotoxicity in terrestrial compartment $\!\!^{(119)}$

Species	Materials	Result or hazard rating
Plant: Soybean	Soil containing a sewage sludge with ¹⁴ C-PDMS was examined as nutrients for plants from germination of the seed growth to grains during a 7 month period	No significant difference from controls were observed
Insects activity: Acheta domesticus	PDMS (5–1,000 cs) direct apply 5 µl to the ventral thorax of insect	The time of loss of righting reflex increased with the viscosity of the PDMS, and the mortality at 48 h decreased 2 fold when the viscosity of PDMS increased 200 fold
Birds: Anas platyrhynchos and Colinus virginatus	PDMS (100 cs) was used for feed for 5 days in the diet (5,000 mg kg ⁻¹ food) and kept 3 additional days on a standard food	No mortality and no other signs of toxicity occurred

Acute oral toxicity

Species	PDMS viscosity (cs)	Result or hazard rating, LD ₅₀ (mg kg ⁻¹)	Reference
Rat	10	>4,990	(119)
Guinea pig	50	>47,750	(119)
Rat	100	>4,800	(119)
Rabbit/dog/cat	140	>9,800	(119)
Rat	350	>48,600	(119)
Rat	1,000	>4,800	(119)
Rat	350 (Baysilone M350)	>5,000	(121)
Female rat	All viscosities (SWS101 fluids)	>34,600	(122)

Acute dermal toxicity

Species	PDMS viscosity (cs)	Result or hazard rating, LD ₅₀ (mg kg ⁻¹)	Reference
Rabbit (male New Zealand)	350	No adverse effect at 24 h, LD_{50} is $>19,400$ mg kg ⁻¹ bw	(119)
Rats Rabbits	50, 500, and 1,000 0.65–1,000,000	LD_{50} is $>19,400$ mg kg $^{-1}$ bw LD_{50} is $>2,000$ mg kg $^{-1}$ bw LD_{50} is $>10,200$ mg kg $^{-1}$	(119) (122)

Inhalation toxicity $^{(119)}$

Species	PDMS materials	Result and hazard rating, LC_{50} (mg kg $^{-1}$)
Wistar rat	PDMS (10,000 cs) aerosol in a 25% solution in white	No observed adverse effect,
	spirit	LC_{50} : 4 h is >11,582 mg m ⁻³
Wistar rat	Aerosol of 10,000 cs PDMS fluid 25% solution in dichloromethane	No observed adverse effect, LC_{50} : 4 h is >695 mg m ⁻³

Skin irritation⁽¹¹⁹⁾

PDMS viscosity (cs)	Species	Volume (ml)	Type of application	No. of applications	Duration (days)	Effects
50	Rabbit	_	Semi occlusive (continuous application to intact skin)	10	14	Nonirritating
100	Rabbit	0.5	Applied to the ears under an occlusive dressing	1	1	Nonirritating
100	Guinea pig	0.5	Draize method, 10 times per day	10 (daily)	15	Nonirritating
_	Rabbit (female, New Zealand)	0.5	Draize method	1	3	Nonirritating
1,000	Rabbit	0.5	Draize method, OEDC Guideline 404	1	7	Nonirritating

Silicone PDMS rubber preparation $^{(109,\,123,\,124)}$

Method	Fabricating system	Chemistry	Major applications
Room temperature vulcanizing silicone	One-part or two-part	Hydrosilylation or condensation	Sealant, adhesive, encapsulation and mold making
High temperature vulcanizing silicone	One-part or two-part from 150–230°C	Hydrosilylation or peroxide catalyzed reaction	Molded, extruded, calendered or fabric coated rubber parts (e.g., insulators, gaskets, seals, keypads, baby-bottle nipples)
Others	One-part	Electron, gamma, and UV radiation	Protective coating and cable wire insulation

Properties of PDMS elastomer

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Poisson's ratio	_	Dimethylsiloxane block in copolymer of poly[dimethylsiloxane- <i>b</i> -styrene]	0.5	(69)
Shear modulus	Pa	Unfilled PDMS elastomer $(M_n = 10,000)$	2.03×10^5	(125)
		Trifunctional PDMS networks	2.32×10^{5}	(126)
Resilience (Bashore)	%	ASTM 2632, reinforced PDMS rubber	30-65	(127)
Abrasion resistance	rev/0.254 cm	ASTM D 1630-61, reinforced PDMS rubber	155-1,600	(128)
Tear propagation	cycles/1.27 cm	ASTM D 813-59, reinforced PDMS rubber	120-150,000	(128)
Volumetric thermal expansion coefficient	K^{-1}	Reinforced PDMS rubber	$(5.9-7.9) \times 10^{-4}$	(127)
Specific heat	$kJkg^{-1}K^{-1}$	Reinforced PDMS rubber	1.17-1.46	(127)
Hardness	Points	ASTM 2240, reinforced PDMS rubber (shore A)	30-80	(127)
Compression set	%	ASTM D 395B, reinforced PDMS rubber with post cured at 4 h/200°C After 22 h/177°C After 22 h/23°C	~10 ~10	(127)
		After $22 \text{ h}/-40^{\circ}\text{C}$ After $22 \text{ h}/-50^{\circ}\text{C}$	~30 ~100	
		After 3 years/23°C	~20	

Properties of PDMS elastomers (129, 130)

PROPERTY	UNITS	CONDITIONS	VALUES [†]			
			A	В	С	D
Specific gravity	_	ASTM D 792	1.13	1.04	1.51	1.04
Viscosity	Pas	ASTM 4287, $10 \mathrm{s}^{-1}$	290	Nonflow	Nonflow	Nonflow
Extrusion rate	${\rm gmin}^{-1}$	At 90 psi, 1/8 in orifice	100	350	110	440
Durometer (shore A)	points	ASTM D 2240	40	25	37	35
Tensile strength	MPa	ASTM D 412	9.0	2.24	1.55	1.79
Elongation	%	ASTM D 412	725	550	640	430
Tear strength, Die B	kNm^{-1}	ASTM D 624	37.7	4.9	6.48	5.6
Dielectric strength	$kVmm^{-1}$	ASTM D 149	18.5	21.7	17.4	13.5
Dielectric constant ε	_	ASTM D 150, at 100 Hz	2.98	2.8	3.69	2.77
Volume resistivity	ohm cm	ASTM D 257	3.8×10^{14}	1.5×10^{15}	6.1×10^{14}	2.4×10^{14}
Dissipation factor	_	ASTM D 150, at 100 Hz	0.0033	0.0015	0.0022	0.0035

^{*}Prepared by vulcanization of PDMS polymer with cross-linker and reinforcement filler.

Properties of methylsiloxane resins, $(CH_3)_x(SiO)_v^{*(131)}$

C/Si RATIO	DENSITY (g cm ⁻³)	REFRACTIVE INDEX $n_{\rm D}^{25}$
1.17	1.20	1.425
1.34	1.15	1.422
1.41	1.08	1.421
1.5	1.06	1.418

^{*}Prepared by hydrolysis of mixed methyltrichlorosilane and dimethyldichlorosilane.

[†]A = Injection molded liquid silicone rubber, Silastic[®] LSR 9280-40. B = One-part RTV acetoxy cure, Dow Corning[®] 732. C = One-part RTV alcohol cure, Dow Corning[®] 737. D = One-part RTV oxime cure, Dow Corning[®] 739.

Major producers⁽¹³²⁾

USA	Europe	Asia
Dow Corning Corp.	Wacker Silicones Co.	Shin-Etsu Chemical Co.
General Electric Co.	Dow Corning Corp.	Dow Corning Toray Silicone Co.
Wacker Silicones Co.	General Electric Co.	GE-Toshiba Silicone Co.
McGhan NuSil Co.	Bayer AG	
OSi Specialties Inc.	Rhone-Poulenc Inc.	
•	Hüls Aktiengesellschaft Th. Goldschmidt AG	

- 1. Noll, W. Chemistry and Technology of Silicone. Academic Press, New York, 1968, chap. 6.
- 2. Lipp, E. D., and A. L. Smith. In *Analysis of Silicone*, 2d ed., edited by A. L. Smith. John Wiley and Sons, New York, 1991, chap. 11.
- 3. Mayhan, K. G., L. F. Thompson, and C. F. Magdalin. J. Paint Tech. 44 (1972): 85.
- 4. Harris, R. K., and M. L. Robins. Polymer 19 (1978): 1,123.
- 5. Taylor, R. B., B. Parbhoo, and D. M. Fillmore. In *Analysis of Silicone*, 2d ed., edited by A. L. Smith. John Wiley and Sons, New York, 1991, chap. 12.
- Pertsin, A. J., M. M. Gorelova, V. Yu. Levin, and L. I. Makarova. J. Appl. Polym. Sci. 45 (1992): 1,195.
- 7. Chojnowski, J. In *Siloxane Polymer*, edited by S. J. Clarson and J. A. Semlyen. Prentice Hall, Englewood Cliffs, N.J., 1993, chap. 1.
- 8. Burkhardt, J., et al. European Patent EP 0,258,640 (1988).
- 9. Voronkov, M. G., V. P. Mileshkevich, and Yu. A. Yuzhelevski. *The Siloxane Bond*. Consultants Bureau, New York, 1978. Translation of *Siloksanovaya Svyaz*. Nauka, Novosybirsk, 1976 (and references therein).
- 10. Vaughn, H. British Patent GB 1,039,445 (1964).
- 11. Pike, R. British Patent GB 943,841 (1960).
- 12. Hyde, J. F. U.S. Patent 2,490,357 (1949).
- 13. Hyde, J. F., and J. R. Wehrly. U.S. Patent 3,337,497 (1967).
- 14. Kendrick, T. C., B. M. Parbhoo, and J. W. White. In *Comprehensive Polymer Science*, edited by G. Allen, et al. Pergamon Press, Oxford, 1989, vol. 4, p. 459.
- 15. Sigwalt, P. Polym. J. 19 (1987): 567.
- 16. Hyde, J. F., and J. R. Wehrly. U.S. Patent 2,891,920 (1955).
- 17. Graiver, D., D. J. Huebner, and J. C. Saam. Rubber Chem. Technol. 56 (1983): 918.
- 18. De Gunzbourg, A., J.-C. Favier, and P. Hemery. Polym. Int. 35 (1994): 179.
- 19. Lebedev, B. V., N. N. Mukhina, and T. G. Kulagina. Vysokomol. Soyed. A20 (1978): 1,297.
- 20. Semlyen, J. A., and P. V. Wright. Polymer 10 (1969): 543.
- 21. Barry, A. J., and H. N. Beck. In *Inorganic Polymer*, edited by F. G. A. Stone and W. A. G. Graham. Academic Press, New York, 1962.
- 22. Grulke, E. A. In *Polymer Handbook*, 2d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1975, p. VII-557 (and references therein).
- Dow Corning[®] 200 Fluid. Information about Dow Corning Silicone Fluid, Dow Corning Corp., Midland, Mich., Form No. 22-931A-90, 22-926D-93, 22-927B-90, 22-928E-94, 22-929A-90, 22-930A-90.
- 24. Ashworth, A. J., and G. J. Price. Macromolecules 19 (1986): 362.
- 25. Roth, M. J. Polym. Sci.: Part B, Polym. Phys., 28 (1990): 2,715.
- 26. Schulz, G. V., and A. Haug. Z. Phys. Chem. (Frankfurt) 34 (1962): 328.
- 27. Kubota, K., K. Kubo, and K. Ogino. Bull. Chem. Soc. Japan 49 (1976): 2,410.
- Flory, P. J., L. Mandelkern, J. B. Kinsinger, and W. B. Shultz. J. Am. Chem. Soc. 74 (1952): 3.364.
- 29. Crescenzi, V., and P. J. Flory. J. Am. Chem. Soc. 86 (1964): 141.
- 30. Andrianov, K. A., et al. Vysokomol. Soyed. A19 (1977): 2,300.
- 31. Barry, A. J. J. Appl. Phys. 17 (1946): 1,020.

- 32. Flory, P. J., V. Crescenzi, and J. E. Mark. J. Am. Chem. Soc. 86 (1964): 146.
- 33. Bleltzung, M., C. Picot, P. Rempp, and J. Herz. Macromolecules 15 (1982): 1,594.
- 34. Higgins, J. S., K. Dodgson, and J. A. Semlyen. *Polymer* 20 (1979): 553.
- 35. Bueche, A. M. J. Polym. Sci. 15 (1955): 97.
- 36. Malone, S. P., C. Vosburgh, and C. Cohen. Polymer 34 (1993): 5,149.
- 37. Flory, P. J., and H. Shih. Macromolecules 5 (1972): 761.
- Munk, P., P. Hattam, Q. Du, and A. A. Abdel-Azim. J. Appl. Polym. Sci.: Appl. Polym. Symp., 45 (1990): 289.
- 39. Mark, J. E., and Z.-M. Zhang. J. Polym. Sci.: Polym. Phys. Ed., 21 (1983): 1,971.
- 40. Kuo, C. M. PhD Dissertation, University of Cincinnati, 1991.
- 41. Shiomi, T., Y. Kohra, F. Hamada, and A. Nakajima. Macromolecules 13 (1980): 1,154.
- 42. Clarson, S. J., V. Galiatsatos, and J. E. Mark. Macromolecules 23 (1990): 1,504.
- 43. Kuo, C. M., and S. J. Clarson. Macromolecules 25 (1992): 2,192.
- 44. Kuo, C. M., and S. J. Clarson. Eur. Polym. J. 29 (1993): 661.
- 45. Meier, G., B. Momper, and E. W. Fischer. J. Chem. Phys. 97 (1992): 5,884.
- 46. Galin, M., and A. Mathis. Macromolecules 14 (1981): 677.
- 47. Shih, H., and P. J. Flory. Macromolecules 5 (1972): 758.
- 48. Lichtenthaler, R. N., D. D. Liu, and J. M. Prausnitz. Macromolecules 11 (1978): 192.
- 49. Dee, G. T., T. Ougizawa, and D. J. Walsh. Polymer 33 (1992): 3,462.
- 50. Sanchez, I. C., and R. H. Lacombe. J. Polym. Sci. Polym. Lett. Ed. 15 (1977): 71.
- 51. Li, W., and B. Huang. J. Polym. Sci.: Part B, Polym. Phys., 30 (1992): 727.
- 52. Chu, J. H., P. Rangarajan, J. L. Adams, and R. A. Register. Polymer 36 (1995): 1,569.
- 53. Ibemesi, J., et al. Mater. Res. Soc. Symp. Proc. 171 (1990): 105.
- 54. Hartney, M. A., A. E. Novembre, and F. S. Bates. J. Vac. Sci. Technol. B3 (1985): 1,346.
- 55. Smith, S. D., et al. Macromolecules 25 (1992): 2,575.
- 56. Bates, O. K., Ind. Eng. Chem. 41 (1949): 1,966.
- 57. Roe, R. J. J. Phys. Chem. 72 (1968): 2,013.
- 58. Allen, G., et al. Polymer 1 (1960): 467.
- 59. Varaprath, S., C. L. Frye, and J. Hamelink. Environ. Toxicol. Chem. 15 (1996): 1,263.
- 60. Watanabe, N., et al. Sci. Total Environ. 38 (1984): 167.
- 61. Tanimura, M. Silicone Materials Handbook. Toray Dow Corning Silicone, Tokyo, 1993.
- 62. Andrianov, K. A., et al. J. Polym. Sci., Part A-1, 10 (1972): 1.
- 63. Damaschun, V. G. Kolloid Z. 180 (1962): 65.
- 64. Steinfink, H., B. Post, and I. Fankuchen. Acta Cryst. 8 (1955): 420.
- 65. Cottrell, T. L. The Strength of Chemical Bond, 2d ed. Butterworths, London, 1958.
- 66. Grigoras, S., and T. H. Lane. J. Comput. Chem. 9 (1988): 25.
- Grigoras, S., and T. H. Lane. Silicone Based Polymer Science. Adv. Chem. Ser. 224, edited by J. M. Zeigler and F. W. G. Fearon. American Chemical Society, Washington, DC, 1990, chap. 7.
- 68. Ohlberg, S. M., L. E. Alexander, and E. L. Warrick. J. Polym. Sci. 27 (1958): 1.
- 69. Wang, B., and S. Krause. Macromolecules 20 (1987): 2,201.
- 70. Lee, C. L., O. K. Johannson, O. L. Flaningam, and P. Hahn. *Polymer Preprint* (Am. Chem. Soc. Polym. Chem. Div.), 10(2) (1969): 1,311.
- 71. Slonimskii, G. L., and V. Yu. Levin. Vysokomol. Soyed. 8 (1966): 1,936.
- 72. Feio, G., G. Buntinx, and J. P. Cohen-Addad. J. Polym. Sci.: Part B, Polym. Phys., 27 (1989): 1.
- 73. Clarson, S. J., K. Dodgson, and J. A. Semlyen. *Polymer* 26 (1985): 930.
- 74. Wilcock, D. F. J. Am. Chem. Soc. 68 (1946): 691.
- 75. Kataoka, T., and S. Ueda. J. Polym. Sci., Polym. Lett. Ed., 4 (1966): 317.
- Pethrick, R. A. In Siloxane Polymer, edited by S. J. Clarson and J. S. Semlyen. Prentice Hall, Englewood Cliffs, N.J., 1993, chap. 10.
- 77. Bagley, E. B., and D. C. West. J. Appl. Phys. 29 (1958): 1,511.
- 78. Valles, E. M., and C. W. Macosko. Macromolecules 12 (1979): 521.
- 79. Bernett, M. K., and W. A. Zisman. Mcaromolecules 4 (1971): 47.
- 80. Hunter, M. J., et al. Ind. Eng. Chem., 39 (1947): 1,389.
- She, H., M. K. Chaudury, and M. J. Owen. *Polymer Preprint* (Am. Chem. Soc. Polym. Chem. Div.), 39(1) (1998): 548.

- 82. Duel, L. A., and M. J. Owen. J. Adhesion 16 (1983): 49.
- 83. Chaudury, M. K., and G. M. Whitesides. Langmuir 7 (1991): 1,013.
- 84. Chaudury, M. K. J. Adhesion Sci. and Technol 7 (1993): 669.
- 85. Lee, L. H. J. Adhes. 4 (1972): 39.
- 86. Fox, H. W., P. W. Taylor, and W. A. Zisman. Ind. Eng. Chem. 39 (1947): 1,401.
- 87. Wu, S., J. Macromol. Sci. C10 (1974): 1.
- 88. Chaudury, M. K., and M. J. Owen. Langmuir 9 (1993): 29.
- 89. Jarvis, N. L. J. Phys. Chem. 70 (1966): 3,027.
- 90. Oda, Y., and T. Hata. Preprints from the 17th Annual Meeting of the High Polymer Society. Japan, 1968, p. 267.
- 91. Wu, S. J. Polym. Sci.: Part C, 34 (1971): 19.
- 92. Kitazaki, Y., and T. Hata. Preprints from the 18th Annual Meeting of the High Polymer Society. Japan, 1969, p. 478.
- 93. Wanger, M., and B. A. Wolf. Macromolecules 26 (1993): 6,498.
- 94. Anastasiadis, S. H., et al. Polym. Eng. Sci. 26 (1986): 1,410.
- 95. Roe, R. J. J. Colloid Interface Sci. 31 (1969): 228.
- 96. Robb, W. L. Ann. N.Y. Acad. Sci. 146 (1968): 119.
- 97. Weissler, A. J. Am. Chem. Soc. 71 (1949): 93.
- 98. Cocci, A. A., and J. J. C. Picot. Polym. Eng. Sci. 13 (1973): 337.
- 99. Meals, R. N., and F. M. Lewis. Silicone. Reinhold Publishing, New York, 1959, chap. 2.
- 100. Beattie, A. G. J. Appl. Phys. 43 (1972): 1,448.
- 101. Bass, S. L., and R. H. Leitheiser. Yale Sci. Mag. 34(2) (1959): 7.
- 102. Bondi, A. J. Phys. Coll. Chem. 55 (1951): 1,355.
- 103. Mathur, R. M. Trans. Faraday. Soc. 54 (1958): 1,477.
- 104. Lagemann, R. J. Polym. Sci. 3 (1948): 663.
- 105. Nagy, J., S. Ferenczi-Gresz, R. Farkas, and A. Czuppon. *Acta Chim. Acad. Sci. (Hungary)* 91 (1976): 351.
- 106. Liao, S. C., and J. E. Mark. J. Chem. Phys. 59 (1973): 3,825.
- 107. Yamada, T., T. Yoshizaki, and H. Yamakawa. Macromolecules 25 (1992): 1,487.
- 108. Cottrell, G. A. J. Phys. D: Appl. Phys. 11 (1978): 681.
- 109. Tomanek, A. Silicone and Industry. Hanser Velag, Munich, 1991.
- 110. Tsvetkov, V. N., E. V. Frisman, and N. N. Boitsova. Vysokomol. Soyed 2 (1960): 1,001.
- 111. Mills, N. J., and D. W. Saunders. J. Macromol. Sci. Phys. B2 (1968): 369.
- 112. Liberman, M. H., Y. Abe, and P. J. Flory. Macromolecules 5 (1972): 550.
- 113. Wales, J. L. S. The Application of Flow Birefringence to Rheological Studies of Polymer Melts. Delft University Press, 1976.
- 114. van Krevelen, D. W. Properties of Polymer, 2d ed. Elsevier, Amsterdam, 1976.
- 115. Thomas, T. H., and T. C. Kendrick. J. Polym. Sci., Part A-2, 7 (1969): 537.
- 116. Rodé, V. V., M. A. Verkhotin, and S. R. Rafikov. Vysokomol. Soyed. A11 (1969): 1,529.
- 117. Osthoff, R. C., A. M. Bueche, and W. T. Grubb. J. Am. Chem. Soc. 76 (1954): 4,659.
- 118. Buch, R. R. Fire Safety Journal 17 (1991): 1.
- 119. Joint Assessment of Commodity Chemicals No. 26, *Linear Polydimethylsiloxanes (viscosity 10–100,000 centistokes)*. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 1994 (and references therein).
- 120. Hainline, A. N. In *Silicone Technology*, edited by P. F. Bruins. Applied Polymer Symposia, No. 14. John Wiley and Sons, New York, 1970.
- 121. MDMS of Baysilone[®] Fluid M350. Bayer Corp., 1995.
- 122. MDMS of Silicone Fluid SWS101. Wacker Silicone Corp., 1996.
- 123. Moretto, H.-H., M. Schulz, and G. Wanger. *Ullmann's Encyclopedia of Industrial Chemistry*. VCH Publishers. New York, 1993, vol. A24.
- 124. Koerner, G., M. Schulze, and J. Weis. *Silicone Chemistry and Technology*. Vulkan-Verlag, Essen, 1991.
- 125. Bleltzung, M., C. Picot, and J. Herz. Macromolecules 17 (1984): 663.
- 126. Valles, E. M., E. J. Rost, and C. W. Macosko. Rubber Chem. Technol. 57 (1984): 55.
- 127. Silicone Rubber Design Guide. Dow Corning Corp., Midland, Mich. Form No.45-112A-97.
- 128. Polmanteer, K. E. Rubber Chem. Technol. 61 (1987): 470.

- 129. Silastic[®] Liquid Silicone Rubber Product Selector Guide. Dow Corning Corp., Midland, Mich. Form No.45-115-96.
- 130. Dow Corning[®] 732, Dow Corning[®] 737, and Dow Corning[®] 739. *Dow Corning Products for High-Performance Sealing Application*, Dow Corning Corp., Midland, Mich. Form No. 10-336B-90.
- 131. Rochow, E. G., and W. F. Gilliam. J. Am. Chem. Soc. 63 (1941): 798.
- 132. Smart, M., F. Kalt, and N. Takei. In *Chemical Economics Handbook*. SRI International, Menlo Park, Calif., 1993, p. 583.0100.
- 133. Kirst, K. U., F. Kremer, T. Pakula, and J. Hollingshurst. Colloid Polym. Sci. 272 (1994): 1,420.

Poly(dimethylsiloxanes), cyclic

STEPHEN J. CLARSON

ACRONYM Cyclic PDMS **CLASS** Cyclic polymers **STRUCTURE** $-[(CH_3)_2SiO]_x-$

INTRODUCTION Polymer molecules may have a variety of architectural structures such as linear, ring, star, branched, and ladder chains as well as three-dimensional network structures. The first synthetic cyclic polymers to be prepared and characterized were the poly(dimethylsiloxanes) (PDMS), which were reported in 1977. Since that time a number of other cyclic polymers have been synthesized including cyclic polystyrene, cyclic poly(phenylmethylsiloxane), cyclic poly(2-vinylpyridine), cyclic polybutadiene, and cyclic poly(vinylmethylsiloxane). (2)

PREPARATIVE TECHNIQUES The preparation of cyclic poly(dimethylsiloxanes) is achieved by isolating the distribution of cyclic PDMS from PDMS ring-chain equilibration reactions carried out either in the bulk state or in solution. The successful utilization of such reactions for preparing large ring molecules is largely because of extensive experiments performed to characterize this system. There is also a good theoretical understanding of the reactions through the Jacobson-Stockmayer cyclization theory when used in conjunction with the rotational isomeric state model for PDMS. After attaining an equilibrium distribution of rings, vacuum fractional distillation and preparative gel permeation chromatography (GPC) may be used to prepare sharp fractions of the cyclic siloxanes having narrow molar mass distributions. Such methods allow the preparation of cyclic PDMS samples containing up to 1,000 skeletal bonds, on average, on a gram scale. The molar mass for each polymer and the polydispersity may then be characterized using techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), analytical gel permeation chromatography (GPC), and other methods.

MAJOR APPLICATIONS Ring-opening polymerization of small rings to give linear PDMS high polymers. Copolymerization with other siloxane small rings to give copolymers of controlled composition. Both the homopolymer and copolymers are widely used as silicone fluids, elastomers, and resins.

PROPERTIES OF SPECIAL INTEREST Some selected properties of cyclic poly(dimethylsiloxanes) are given in the table below including their solution, bulk, and surface properties. It is also highlighted where significant differences are seen when compared to their linear polymeric PDMS analogs. Detailed calculations molar cyclization constants for ring-chain equilibration reactions and their dependence on the conformations of poly(dimethylsiloxane) chains and on their distributions have been described by Flory and Semlyen; (3) this approach also enables a number of properties of the rings to be theoretically calculated. The area of topological entrapment of ring polymers into network structures has also be described in the literature, (4,5) which is an area that is not accessible to linear polymers unless they undergo end-cyclizing chemistry. This concept of topological threading is somewhat general for ring molecules as it may also be utilized in the preparation of novel catenanes and rotaxanes.

Poly(dimethylsiloxanes), cyclic

Selected properties of the cyclic poly(dimethylsiloxanes) (r) compared to linear poly(dimethylsiloxanes) (l)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio $\langle r^2 \rangle / n l^2$	_	Derived from molar cyclization equilibrium constants in the bulk state at 383 K	6.8	(6)
Density	${\rm kg}{\rm m}^{-3}$	At $298 \mathrm{K} (x = 95)$	971.67	(7)
Glass transition temperature $T_{\rm g}(\infty)$	K	-	149.8	(4, 8)
Melting point	K	$M_{\rm n} = 24,370 {\rm g mol}^{-1}$ $T_{\rm m1}$ $T_{\rm m2}$	227.0 237.8	(8)
Raman absorption $\nu_{\rm s}({\rm Si-O})$	cm^{-1}	Crystalline region Amorphous region	466 486	(9)
Activation energy	kJ	For viscous flow $E_{\rm visc}(\infty)$	15.5	(10, 11)
Static dielectric permittivity $\varepsilon_{\rm o}$	_	At 298 K ($x = 95$)	2.757	(7)
Root mean square dipole moment	Cm	$10^{30} \ \langle \mu^2 \rangle^{1/2}$ at 298 K ($x = 95$)	14.3	(7)
Refractive index	-	At $298 \text{ K} (x = 95)$ 632.8 nm 436.0 nm	1.4025 1.4140	(7)
Onset temperature for thermal depolymerization	K	Under N ₂	623	(12)
Intrinsic viscosities $[\eta]_{\rm r}/[\eta]_{\rm l}$	_	In butanone (θ -solvent) at 293 K In cyclohexane at 298 K In bromocyclohexane (θ -solvent) at 301 K	0.67 0.58 0.66	(1, 13)
Diffusion coefficients $D_{\rm r}/D_{\rm l}$	-	In PDMS networks at 296 K In toluene at 298 K	$1.18 \pm 0.03 \\ 0.84 \pm 0.01$	(11, 14, 15)
Means square radius of gyration $\langle s^2 \rangle_{z,l}/\langle s^2 \rangle_{z,r}$	_	In benzene d ₆ at 292 K	1.90	(11)
Translational friction coefficients f_r/f_1	_	In toluene at 298 K	0.83 ± 0.01	(10, 11, 14)
Number-average molar masses of PDMS rings and chains	_	With the same GPC retention values $M_{\rm r}/M_{\rm l}$	1.24 ± 0.04	(10, 11)
Melt viscosities	_	At $\eta_{\rm r}/\eta_{\rm l}$ for $M_{\rm w}=24,000{\rm gmol}^{-1}$	0.45 ± 0.02	(11)

Poly(dimethylsiloxanes), cyclic

- 1. Dodgson, K., and J. A. Semlyen. Polymer 18 (1977): 1,265-1,268.
- 2. Clarson, S. J. New Journal Chem. 17 (1993): 711-714.
- 3. Flory, P. J., and J. A. Semlyen. J. Am. Chem. Soc. 88 (1965): 3,209.
- 4. Di Marzio, E. A., and C. M. Guttman. Macromolecules 20 (1987): 1,403.
- 5. Clarson, S. J., J. E. Mark, and J. A. Semlyen. Polym. Communications 27 (1986): 244-245.
- 6. Semlyen, J. A., and P. V. Wright. Polymer 10 (1969): 543.
- 7. Beevers, M. S., et al. Polymer 24 (1983): 1,565-1,570.
- 8. Clarson, S. J., K. Dodgson, and J. A. Semlyen. Polymer 26 (1985): 930-934.
- 9. Clarson, S. J., and J. F. Rabolt. Macromolecules 26 (1993): 2,621-2,623.
- 10. Edwards, C. J. C., R. F. T. Stepto, and J. A. Semlyen. Polymer 21 (1980): 781-786.
- 11. Edwards, C. J. C., and R. F. T. Stepto. In *Cyclic Polymers*, edited by J. A. Semlyen. Elsevier, Barking, U.K., 1986, pp. 135–165.
- 12. Clarson, S. J., and J. A. Semlyen. Polymer 27 (1986): 91-95.
- 13. Clarson, S. J., et al. Polymer Communications 27 (1986): 31-32.
- 14. Edwards, C. J. C., R. F. T. Stepto, and J. A. Semlyen. Polymer 23 (1982): 865-868.
- 15. Garrido, L., et al. Polymer Communications 25 (1984): 218-220.
- 16. Brown, J. F., and G. M. J. Slusarczuk. J. Am. Chem. Soc. 87 (1965): 931.
- 17. Bannister, D. J., and J. A. Semlyen. Polymer 22 (1981): 377-381.
- 18. Edwards, C. J. C., R. F. T. Stepto, and J. A. Semlyen. Polymer 23 (1982): 869-872.
- 19. Edwards, C. J. C., et al. Polymer 23 (1982): 873-876.
- 20. Wright, P. V. In *Ring Opening Polymerization*, edited by K. J. Ivin and T. Saegusa. Elsevier, New York, 1984, vol. 2, p. 324.
- 21. Granick, S., et al. Polymer 26 (1985): 925-929.
- 22. Garrido, L., et al. Polym. Communications 26 (1985): 53-55.
- 23. Garrido, L., et al. Polym. Communications 26 (1985): 55-57.
- 24. Clarson, S. J., J. E. Mark, and J. A. Semlyen. *Polym. Communications* 28 (1987): 151–153.
- 25. Barbarin-Castillo, J.-M., et al. Polymer Communications 28 (1987): 212-215.
- 26. Pham-Van-Cang, C., et al. Polymer 28 (1987): 1,561-1565.
- 27. Orrah, D. J., J. A. Semlyen, and S. B. Ross-Murphy. Polymer 29 (1988): 1,455–1,458.
- Clarson, S. J., and J. A. Semlyen, eds. Siloxane Polymers. Prentice Hall, Englewood Cliffs, N.J., 1993
- 29. Kuo, C. M., S. J. Clarson, and J. A. Semlyen. *Polymer* 35 (1994): 4,623.
- 30. Goodwin, A. A., et al. Polymer 37(13) (1996): 2,603-2,607.
- 31. Snyder, C. R., H. Marand, and S. J. Clarson. Macromolecules (in press, 1998).
- 32. Clarson, S. J. Macro Group UK Bulletin (RSC) 49 (1998): 16-18.

Poly(dimethylsilylene)

ROBERT WEST

ACRONYM, ALTERNATIVE NAME PDMS, polydimethylsilane

CLASS Polysilanes

STRUCTURE $-(Me_2Si)_n$

 $\begin{tabular}{ll} \textbf{MAJOR APPLICATIONS} & Precursor to silicon carbide ceramics via intermediate pyrolysis to polycarbosilane. \end{tabular}$

PROPERTIES OF SPECIAL INTEREST Relatively low cost, compared with other polysilanes.

For general information about polysilane polymers see the entry for *Poly(methylphenylsilylene)* in this handbook.

Preparative techniques^(2,3)

Reactants	Solvent	Temp. (°C)	Yield (%)
Me ₂ SiCl ₂ , Na	Toluene	110	80
	Octane	125	_

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Typical comonomers for copolymerization			PhMeSiCl ₂ , Ph ₂ SiCl ₂	
Repeat unit	${\rm g}{\rm mol}^{-1}$	$(CH_3)_2Si$	58	_
IR absorption	cm^{-1}	_	2,950, 2,890, 1,905, 1,250, 835, 750, 695, 632	(2)
UV absorption	λ (nm)	Solid	340	(3)
NMR spectra	δ (ppm)	Solid; ²⁹ Si nucleus	-34.45	(3)
Solvents	Fluorene (220°C), α -chloronaphthalen	e (238°C)	
Nonsolvents	Toluene, 7	THF, hexane, 2-propanol, CF	H_2Cl_2 , acetone	
Lattice	_	-	Monoclinic	(3)
Monomers per unit cell	_	_	2	(3)
Unit cell dimensions	Å	-	a = 12.18, b = 8.00, c = 3.88	(3)
Unit cell angles	Degrees	_	$\alpha = \beta = \gamma = 90$	(3)
Transition temperature	K	$2.5 \operatorname{cal} g^{-1}$ $0.3-0.8 \operatorname{cal} g^{-1}$	333 499	(3)

Poly(dimethylsilylene) **PROPERTY** UNITS CONDITIONS VALUE REFERENCE $g \, cm^{-3}$ Density 0.971 (2) $< 10^{-12}$ $\mathrm{S\,cm}^{-1}$ Electronic conductivity Undoped (4) 10^{-3} H_2SO_4 Suppliers Nippon Soda Co. Ltd., 2-1, Ohtemachi 2-chome, Chiyoda-ku, Tokyo 100, Japan Gelest Inc., 612 William Leigh Drive, Tullytown, PA 19007-6308, USA

- Yajima, S., K. Okamura, J. Hayashi, and M. Omori. J. Am. Ceramic Sci. 59 (1976): 324; Hayashi, J., M. Omori, and S. Yajima. U.S. Patent 4,159,259 (1979).
- 2. Wesson, J. P., and T. C. Williams. J. Polym. Sci., Polym. Chem. Ed., 17 (1979): 2,833.
- 3. Lovinger, A. J., et al. Macromolecules 24 (1991): 132.
- Usuki, A., and M. Marase. Jpn. Kokai Tokkyo Koho, JP 69, 59,623; Chem. Abst. 107 (1987): 218592u.

Poly(dimethylsilylene-co-phenylmethylsilylene)

ROBERT WEST

ACRONYM, ALTERNATIVE NAME PSS, polysilastyrene

CLASS Polysilanes

STRUCTURE $[-(Me_2Si)_n(PhMeSi)_m -] (n, m = 0.5-2)$

MAJOR APPLICATIONS Precursor for silicon carbide ceramic. $^{(1,2)}$ Initiator for free-radical polymerization. $^{(3)}$

PROPERTIES OF SPECIAL INTEREST None. For general information about polysilane polymers see the entry for *Poly(methylphenylsilylene)* in this handbook.

GENERAL INFORMATION Polysilastyrene is a copolymer of Me₂Si units (58 g mol⁻¹) with PhMeSi units (120 g mol⁻¹). As ordinarily prepared by cocondensation of Me₂SiCl₂ and PhMeSiCl₂, it is somewhat blocklike, but a more ordered polymer is obtained from ClSiMe₂SiMePhCl. The polymer is atactic and amorphous. The molecular weight distribution is bi- or polymodal.

Preparative techniques

Reactants	Solvent	Temp. (°C)	Yield (%)	M _w	Reference
PhMeSiCl ₂ , Me ₂ SiCl ₂ , Na	Toluene	110	49	40,000 39,000 14,000	(4)
ClSiMePhSiMe ₂ Cl, Na	Toluene	110	45	600,000 4,000	(5)

PROPERTY	UNITS	CONDITION		VALUE	REFERENCE
UV absorption	λ (nm)		peat = $8,000$ peat = $6,000$	330 320	(4) (5)
NMR spectra	δ (ppm)	Nucleus	Conditions		
		²⁹ Si	Random polymer, C ₆ D ₆ solution	-36.6 -37.4 -38.2 to -40.4	(5)
		²⁹ Si ²⁹ Si	Ordered polymer Solid	-35 to -39 -45	(5) (6)

Poly(dimethylsilylene-co-phenylmethylsilylene)

PROPERTY	UNITS	CONDITION		VALUE	REFERENCE
NMR spectra	δ (ppm)	Nucleus	Conditions		
		¹³ C	Random polymer, C ₆ D ₆ solution	127.4 134.7 137.0 -3.8 -5.3 -6.2 -6.9	(4)
Solvents	THF, toluen	e, CH ₂ Cl ₂			
Nonsolvents	Hexane, 2-p	ropanol			
Electronic conductivity	Scm ⁻¹	Undoped As F_5 , 15 To Sb F_5 , 5 To	orr	$<10^{-12}$ 1.5×10^{-6} 5×10^{-7}	(1)
Suppliers	* *		-1, Ohtemachi 2-chome, Ch Leigh Drive, Tullytown, PA	,	

- 1. West, R., et al. Ceramic Bull. 62 (1983): 891.
- 2. Wolff, A. R., I. Nozue, J. Maxka, and R. West. J. Polym. Sci., Polym. Chem. Ed., 26 (1988): 701.
- 3. Welsh, K. J., et al. Polym Preprints. 24 (1983): 131.
- 4. West, R. J. Organometal. Chem. 300 (1986): 327.
- 5. Suganuma, K., et al. J. Materials Sci. 28 (1993): 1,175.
- 6. Wolff, A. R., and R. West. Applied Organomet. Chem. 1 (1987): 7.

Poly(1,3-dioxepane)

EVARISTO RIANDE AND JULIO GUZMÁN

ACRONYM PDXP

CLASS Polyformals

STRUCTURE $[-CH_2-O-CH_2-CH_2-CH_2-CH_2-O-]$

MAJOR APPLICATIONS None known

PROPERTIES OF SPECIAL INTEREST None known

PREPARATIVE TECHNIQUES Cationic polymerization of 1,3-dioxepane in solution or in bulk at temperatures normally lower than 25° C. Initiators: Lewis acids, oxonium salts, etc. (1-4)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Ceiling temperature	K	Initiator: ClO ₄ H in CH ₂ Cl ₂ Initiator: BF ₃ in bulk	300 517	(5) (6)
Typical comonomers	Isobutyl vinyl	ether, 1,3-dioxolane		(7, 8, 9)
Specific volume	$\mathrm{cm}^3\mathrm{g}^{-1}$	Amorphous Crystal	$0.94 + (3.1 \times 10^{-4})T$ $0.813 + (2.4 \times 10^{-4})T$	(10)
Solvents	Almost all the	e organic solvents		
Nonsolvents	Alkanes			
Solubility parameter	$(MPa)^{1/2}$	From viscosity measurements	18.81	(3)
Cohesive energy density	MPa	From viscosity measurements	353.6	(3)
Lattice	_	_	Orthorhombic	(11)
Space group	_	_	P2cn (C _{2v})	(11)
Monomers per unit cell	_	_	2	(11)
Unit cell dimensions	Å	Chain axis	a = 8.50 b = 4.79 c = 13.50	(11)
Degree of crystallinity	%	$M_{\rm n}=1.2\times105$	35	(10)

Poly(1,3-dioxepane)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion	kJ mol ⁻¹	DSC	14.454 14.3	(10) (12)
Entropy of fusion	$kJK^{-1}mol^{-1}$	DSC	0.0477	(10)
Avrami exponent	_	Dilatometry	3	(10)
Glass transition temperature $T_{\rm g}$	K	DSC $M_{\rm n} = 1 \times 10^5$ $M_{\rm n} = 3,500$	192 179 189	(2) (2) (12)
Equilibrium melting temperature ${T_{\rm m}}^{\circ}$	K	Dilatometric data. Extrapolation $T_{\rm m}$ vs. $T_{\rm c}$	303	(10)
Melting temperature $T_{\rm m}$	K	DSC	296 297	(12) (11)
Heat capacity	$KJK^{-1}mol^{-1}$	Crystal $(T_g < T < T_m)$ Amorphous $(T > T_m)$		(12)
Dipolar ratio $\langle \mu^2 \rangle_0 / nm^2$	_	30°C	0.158	(4)
$d\ln\langle\mu^2\rangle_0/dT$	K^{-1}	_	5.4×10^{-3}	(4)
Molecular conformation	-CH ₂ -CH ₂ -C T T T		-CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -O- T T G T G G	(4, 11)

- 1. Ivin, K. J., and T. Saegusa. *Ring-Opening Polymerization*, Vol. 1, Ch. 6. Elsevier, New York, 1984.
- 2. Marco, C., J. Garza, J. G. Fatou, and A. Bello. An. Quim. 77(2) (1981): 250.
- 3. Marco, C., A. Bello, J. G. Fatou, and J. Garza. Makromol. Chem. 187(1) (1986): 177.
- 4. Riande, E., and J. E. Mark. J. Polym. Sci., Polym. Phys. Ed. 17(11) (1979): 2,013.
- 5. Plesh, P. H., and P. H. Westermann. Polymer 10 (1969): 105.
- 6. Busfield, W. K., and R. M. Lee. Makromol. Chem. 169 (1973): 199.
- 7. Okada, M., and Y. Yamashita. Makromol. Chem. 126 (1969): 266.
- 8. Tüdos, F., T. Kelen, B. Turcsanyi, and J. P. Kennedy. *J. Polym. Sci., Polym. Chem. Ed.* 19 (1981): 1,119.
- 9. Chwialkowska, W., P. Kubisa, and S. Penczek. Makromol. Chem. 183 (1982): 753.
- 10. Garza, J., C. Marco, J. G. Fatou, and A. Bello. Polymer 22 (1981): 477.
- 11. Sasaki, S., Y. Takahashi, and H. Tadokoro. Polym. J. 4 (1973): 172.
- 12. Clegg, G. A., and T. P. Melia. Polymer 11(5) (1970): 245.

Poly(1,3-dioxolane)

EVARISTO RIANDE AND JULIO GUZMÁN

ACRONYM PDXL

CLASS Polyacetals

STRUCTURE $[-CH_2-O-CH_2-CH_2-O-]$

MAJOR APPLICATIONS None known. Stabilizer of Delrin by copolymerization with trioxane.

PROPERTIES OF SPECIAL INTEREST Possible use as a modifier for elastomers.

PREPARATIVE TECHNIQUES Cationic polymerization of 1,3-dioxolane in solution or in bulk at temperatures normally lower than 25° C. Initiators: Lewis acids, oxonium salts, etc. (1)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Ceiling temperature	K	Initiators		
		HClO ₄ in CH ₂ Cl ₂	274	(2)
		BF ₃ OEt ₂ in benzene	265	(3)
		BF ₃ in CDCl ₃	320	(4)
		HClO ₄ in bulk	417	(5)
Typical comonomers	Cyclic ethers, cy	clic acetals,diketene, lactones,	styrene	(6, 7–10, 11, 12, 13)
Specific volume	$\mathrm{cm}^3\mathrm{g}^{-1}$	Amorphous	$0.796 + (7.64 \times 10^{-4})T$	(14)
opeenie voidine	cm g	Crystal II	$0.6965 + (5.0 \times 10^{-4})T$	(11)
		Crystal III	$0.7350 + (6.5 \times 10^{-4})T$	
			0.000 ((0.0 // 10))1	
Thermal expansion	K^{-1}	Liquid (dilatometry)	6.73×10^{-4}	(15)
coefficient		Glass (thermal mechanical analysis)	3.40×10^{-4}	,
Solvents	Chlorinated solv toluene, etc.), ke	vents (methylene chloride, chl tones, ethers	oroform, etc.), aromatic (ber	nzene,
Nonsolvents	Hydrocarbons (pentane, hexane)		
Solubility parameter	$(MPa)^{1/2}$	From viscosity	20.67	(16)
<i>y</i> r · · · · · · · · · · · · · · · · · · ·		measurements		(' ')
Virial coefficient	$cm^{3} mol^{-1} g^{-2}$	In tetrahydrofuran at 25°C		(17)
	8	$M_{\rm n}=1.1\times10^5$	9.15×10^{-4}	()
		$M_{\rm n} = 9 \times 10^4$	9.40×10^{-4}	
		$M_{\rm n}=6.6\times10^4$	9.48×10^{-4}	
		$M_{\rm n} = 3.55 \times 10^4$	9.78×10^{-4}	
		п	· · · · · · · · · · · · · · · · · · ·	

Poly(1,3-dioxolane)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio $C_{\infty} = \langle r^2 \rangle_0 / n l_2$	_	From virial coefficient	3.7	(17)
Temperature coefficient of unperturbed dimensions $d \ln \langle r^2 \rangle_0 / dT$	K^{-1}	Intrinsic viscosities	0.2×10^{-3}	(18)
Cohesive energy density	MPa	From viscosity measurements	427	(16)
Degree of crystallinity	%	$M_{\rm w} = 1.2 \times 10^5$ $M_{\rm w} = 8.8 \times 10^3$	55 80	(19)
Heat of fusion	kJ mol ⁻¹	DSC	16.698 ± 0.32 15.49	(20) (21)
Entropy of fusion	$kJK^{-1}\ mol^{-1}$	DSC	0.0423	(21)
Avrami exponent	_	DSC, crystallization between 0 and 21°C	2	(22)
		Dilatometry	3	(19)

Unit cell dimensions $^{(23,24)}$

Lattice and space group	Monomers per unit cell	Cell dime	Cell dimensions (Å)			Cell angles		
		а	b	c (Chain axis)	α	β	γ	
Triclinic	15	12.32	4.66	24.7	_	_		
Orthorhombic, Pbca-D _{2H} ¹⁵	8	9.07	7.79	9.85	_	_	_	
Hexagonal	18	8.07	8.07	29.5	_	_	120	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature $T_{\rm g}$	K	DSC	209 210	(20) (15)
Equilibrium melting temperature $T_{\rm m}$	K	Dilatometric data. Extrapolation $T_{\rm m}$ vs. $T_{\rm c}$ Low molecular weight High molecular weight	352 358, 366	(22) (19, 22)
Melting temperature $T_{\rm m}^{\circ}$	K	DSC	333 325	(25) (20)
Heat capacity	$KJK^{-1}mol^{-1}$	Crystal ($T_g < T < T_m$) Amorphous ($T > T_m$)	$(0.189 \times 10^{-3}) + (3.7 \times 10^{-6})T$ $(1.396 \times 10^{-3}) + (1.472 \times 10^{-6})T$	(20)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dipolar moment ratio $\langle \mu^2 \rangle_0 / nm^2$	_	30°C	0.17	(26)
$d\ln\langle\mu^2\rangle_0/dT$	K^{-1}	30-60°C	6.0×10^{-3}	(26)
Intrinsic viscosity $[\eta]$	dlg^{-1}	Chlorobenzene in tetrahydrofuran at 25° C ($3.55 \times 10^4 < M_n < 1.1 \times 10^5$)	$[0] = 0.002 M^{0.5}$ $[0] = 1.7 \times 10^{-4} M_n^{0.73}$	(27) (17)
Molecular conformation	O—CH G' 79	$ \begin{array}{ccccccccccccccccccccccccccccccccc$		(23)

- 1. Ivin, K. J., and T. Saegusa. *Ring-Opening Polymerization*, Vol. 1, Ch. 6, Elsevier, New York, 1984.
- 2. Plesch, P. H., and P.H. Westermann. J. Polym. Sci. C16 (1968): 3,837.
- 3. Yamashita, Y., M. Okada, K. Suyama, and H. Kasahara. Makromol. Chem. 114 (1968): 146.
- 4. Busfield, W. K., R. M. Lee, and O. Merigold. Makromol. Chem. 156 (1972): 183.
- 5. Binet, R., and J. Leonard. *Polymer* 14 (1973): 355.
- 6. Okada, M. et al. Makromol. Chem. 82 (1965): 16.
- 7. Jaacks, V. Makromol. Chem. 101 (1967): 33.
- 8. Kucera, M., and J. Pichler. Polymer 5 (1964): 371.
- 9. Yamashita, Y., T. Asakura, M. Okada, and K. Ito. Makromol. Chem. 129 (1969): 1.
- 10. Gibas, M., and Z. Jedlinsky. Macromolecules 14 (1981): 102.
- 11. Okada, M., Y. Yokoyama, and H. Sumitomo. Makromol. Chem. 162 (1972): 31.
- 12. Yokoyama, Y., M. Okada, and H. Sumitomo. *Makromol. Chem.* 175 (1974): 2,525; 176 (1975): 2,815, 3,537.
- 13. Okada, M., Y. Yamashita, and Y. Ishii. Makromol. Chem. 94 (1966): 181.
- 14. Archambault, P., and R. E. Prud'Homme. J. Polym. Sci.: Polym. Phys. Ed. 18 (1980): 35.
- 15. Alamo, R., J. G. Fatou, and J. Guzmán. An. QuRm. 79 (1983): 652.
- 16. Marco, C., A. Bello, J. G. Fatou, and J. Garza. Makromol. Chem. 187 (1986): 177.
- 17. Alamo, R., A. Bello, and J. G. Fatou. *Polym. J.* 15 (1983): 491.
- 18. Rahalkar, R., J. E. Mark, and E. Riande. Macromolecules 12 (1986): 795.
- 19. Alamo, R., J. G. Fatou, and J. Guzmán. Polymer 23 (1982): 374, 379.
- 20. Clegg, G. A., and T. P. Melia. Polymer 10 (1969): 912.
- Alamo, R. G., A. Bello, J. G. Fatou, and C. Obrador. J. Polym. Sci.: Part B, Polym. Phys. Ed. 28 (1990): 907.
- 22. Neron, M., A. Tardif, and R. E. Prud'Homme. Eur. Polym. J. 12 (1976): 605.
- 23. Brandrup, J., and E. H. Immergut, eds. Polymer Handbook, 2d ed. Wiley, New York, 1975.
- 24. Sasaki, S., Y. Takahashi, and H. Tadokoro. J. Polym. Sci.: Polym. Phys. Ed. 10 (1972): 2,363.
- 25. Prud'Homme, R. E. J. Polym. Sci.: Polym. Phys. Ed. 15 (1977): 1,619.
- 26. Riande, E., and J. E. Mark. Macromolecules 11 (1978): 956.
- Pravinkova, N. A., Y. B. Berman, Y. B. L. Lyudvig, and A. G. Davtyan. *Polym. Sci. USSR* 12 (1970): 653.

Poly(di-n-pentylsiloxane)

YULI K. GODOVSKY AND VLADIMIR S. PAPKOV

ACRONYM PDPeS

CLASS Polysiloxanes

STRUCTURE $[-(C_5H_{11})_2SiO-]$

PROPERTIES OF SPECIAL INTEREST Low glass transition temperature, mesophase behavior.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Preparative technique		-opening polymerization of lcyclotrisiloxane		(1, 2)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	186.36	_
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	_	$10^4 - 10^6$	_
NMR spectroscopy	Solid state ²⁹	Si		(2, 3)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Toluene, 298 K	K = 0.741 $a = 0.514$	(3)
Heat of fusion	$kJ mol^{-1}$	High temperature crystal 2 to mesophase	1.9	(3–5)
Entropy of fusion	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	-	7.6	(3-5)
Glass transition temperature	K	DSC	167	(3)
Melting temperature	K	High temperature crystal 2 to mesophase	250	(3–5)
Polymorphs		ature crystal 1; DSC, X-ray data ature crystal 2		(3-5) (3-5) (3-5)
Transition temperature	K	Crystal 1-crystal 2, DSC	235	(3-5)
Heat of transition	$kJ mol^{-1}$	Crystal 1-crystal 2	9.0	(3)
Isotropization temperature	K	Polarization microscopy	603	(3)

- 1. Moeller, M., et al. ACS Polym. Prep. 33(1) (1992): 176.
- 2. Out, G. J. J., A. A. Turetskii, and M. Moeller. Macromol. Rapid. Commun, 16 (1995): 107.
- 3. Out, G. J. J., et al. Macromolecules 27 (1994): 3,310.
- 4. Out, G. J. J. Dissertation, Universiteit Twente, The Netherlands, 1994.
- 5. Molenberg, A. Dissertation, University of Ulm, Germany, 1997.

Poly(diphenylsiloxane)

DALE J. MEIER

ACRONYM PDPS

CLASS Polysiloxanes

STRUCTURE $[-Si(C_6H_5)_2O-]$

MAJOR APPLICATIONS PDPS is not a commercial polymer. Diphenylsiloxane is a component in various copolymers.

PROPERTIES OF SPECIAL INTEREST Highly crystalline, high melting point, excellent thermal stability, mesomophic state at high temperatures.

PREPARATIVE TECHNIQUES	CONDITIONS	REFERENCE
Anionic	From hexaphenylcyclotrisiloxane Li alkyl, bulk KOH, bulk Li alkyl, solution	(1) (2, 3) (4, 5)
Condensation	From diphensilanediol	(6)
Typical comonomer	Dimethylsiloxane Random Block	(4, 7-9) (1, 4, 5, 10)

Crystalline state properties

Lattice	Cell dimensions (Å)		Cell angles (degrees)			Reference	
	а	b	С	α	$oldsymbol{eta}$	γ	
Pbn21, hexagonal packking in quasi-planar sequential configuration	20.145	9.820	4.944	90	90	90	(11)
Rhombic unit cell, 2 monomers per cell	20.1	10.51	10.24	_	_	_	(18)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solvents	K	Diphenyl ether	>410	_
		1-Chloronaphalene	>410	_
		1,2,4 Trichlorobenzene	>410	_
		From quenched state: chloroform, toluene	320	(4)
Density	$g cm^{-3}$	Experimental	1.22	(13)
	O	Unit cell	1.26-1.3	(11)

			Poly(diphen	ylsiloxane)
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting temperature	K	To mesomorphic state	538 545	(16) (14)
		Oligomers	503 471, 481, 487	(15) (19)
Transition temperature	K	To isotropic state	813	(16)
Heat of fusion	Jg^{-1}	To mesomorphic state	35.5 20.4	(14) (15)
Entropy of fusion	$\rm JK^{-1}mol^{-1}$	_	12.8 7.98	(14) (15)
Glass transition temperature	K	DSC	313 322	(16) (3)
Thermal stability	K	TGA, 10% weight loss, 10° min $^{-1}$ under N_2	784	(16)
Dielectric constant	_	MW = 1,500-2,600	3.5-2.2	(17)
Dielectric loss	_	MW = 1,500-2,600	0.004-0.5	(17)
Elastomer reinforcement	_	In dimethylsiloxane elastomers	_	(6)
Sequence distributions and crystallinity in copolymers with dimethylsiloxane	_	Computer simulations	-	(20, 21)

KrF laser irradiation, 248 nm

340

(22)

REFERENCES

Light emission

(peak emmision)

- 1. Bosdic, E. E. ACS Poly. Preprints 10 (1969): 877.
- 2. Buzin, M., et al. J. Poly. Sci., Part A: Polym. Chem 35 (1997): 1,973.

nm

- 3. Buzin, M. I., Y. P. Kvachev, V. S. Svistunov, and V. S. Psapkov. *Vysokomol. Soedin.* 34, Series B (1992): 66.
- 4. Ibemesi, J., et al. ACS Poly. Preprints 26 (1985): 18.
- Ibemesi, J., et al. In *Polymer Based Molecular Composites*, edited by J. E. Mark and D. W. Schaefer. Materials Research Society, Pittsburgh, 1989.
- 6. Wang, S., and J. E. Mark. J. Materials Sci. 25 (1990): 65.
- 7. Lee, C. L., and O. W. Marko. ACS Poly. Preprints 19 (1978): 250.
- 8. Babu, G. N., S. S. Christopher, and R. A. Newmark. Macromol. 20 (1987): 2,654.
- 9. Yang, M.-H., and C. Chou. J. Poly. Research 1 (1994): 1.
- Fritzsche, A. K., and F. P. Price. In *Block Copolymers*, edited by S. L. Aggarwal. Plenum Press, New York, 1970.
- 11. Grigoras, S., et al. Macromol. 28 (1995): 7,371.
- 12. Dubchak, I. L., et al. Vysokomol. Soedin. 31, Series A (1989): 65.
- 13. Tsvankin, D. Y., et al. Poly. Sci. USSR (English translation) 21 (1980): 2,348.

Poly(diphenylsiloxane)

- 14. Govodsky, Y. K., and V. S. Papkov. Adv. Poly. Sci. 88 (1989): 129.
- 15. Falender, J. R., et al. J. Poly. Sci.: Polymer Physics, 18 (1980): 388.
- 16. Lee, M. K., and D. J. Meier. Polymer 34 (1993): 4,882.
- 17. Karavan, Y. V., and S. P. Gukalov. Fiz. Elekron. (Lvov) 7 (1974): 77; CA 81:121610.
- 18. Babchinitser, T. M., et al. Polymer 26 (1985): 1,527.
- 19. Harkness, B. R., M. Tachikawa, and H. Mita. Macromol. 28 (1995): 1,323.
- 20. Madkour, T. M., and J. E. Mark. Comput. Poly. Sci. 4 (1994): 87.
- 21. Madkour, T. M., and J. E. Mark. ACS Poly. Preprints 36 (1995): 673.
- 22. Suzuki, M., et al. Material Sci. Eng. B49 (1997): 172; CA 127:332153.

Poly(di-n-propylsiloxane)

YULI K. GODOVSKY AND VLADIMIR S. PAPKOV

ACRONYM PDPrS

CLASS Polysiloxanes

STRUCTURE $[-(C_3H_7)_2SiO-]$

PROPERTIES OF SPECIAL INTEREST Low glass transition temperature, mesophase

behavior.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Preparative technique		-opening polymerization o	of	(1-4)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	130.26	-
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	_	$10^3 - 10^5$	_
NMR spectroscopy	_	Solid state ¹ H, ²⁹ Si		(3, 5)
Theta temperature	K	Toluene 2-Pentanone	283 351	(6)
Mark-Houwink parameters: K and a	$K = \text{ml g}^{-1}$ a = None	Toluene, 25° C, $MW = (2.5-30) \times 10^{5}$ Toluene, 10° C 2-Pentanone, 78° C	$K = 4.35 \times 10^{-2}, a = 0.58$ $K = 1.09 \times 10^{-1}, a = 0.5$ $K = 8.71 \times 10^{-2}, a = 0.5$	(6)
Characteristic ratio $\langle r^2 \rangle/nl^2$	_	_	13.0 ± 1.0	(6-8)

Unit cell dimensions⁽⁹⁾

Polymorph	Lattice	Monomers	Cell dim	Cell dimension (Å)			Cell angles (degrees)		
		per unit cell	а	b	c (chain axis)	α	$\boldsymbol{\beta}$	γ	
High temperature β_2	Tetragonal Space group P4 ₁ or P4 ₃	4 Helix 4 ₁	9.52	9.52	9.40	90	90	90	

Poly(di-n-propylsiloxane)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion	$kJ mol^{-1}$	$\beta_2 \rightarrow \mu$ (mesophase)	2.86	(2, 10, 11)
Heat of isotropization	$kJ mol^{-1}$	$\mu ightarrow$ isotropic melt	0.42	(2, 10, 11)
Entropy of fusion	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	$eta_2 o \mu$	8.59	(2, 10, 11)
Entropy of isotropization	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	$\mu ightarrow$ isotropic melt	0.88	(2, 10, 11)
Density (crystalline)	$\rm gcm^{-3}$	From X-ray data, β_2 , 293 K	1.015	(9)
Glass transition temperature	K	DSC	164	(2, 3, 10, 11)
Melting temperature	K	$\beta_2 \to \mu$	333	(2, 10, 11)
Polymorphs	High tempe Low temper	rature β_1 (tetragonal) rature β_2 (tetragonal) rature α_1 (monoclinic ?) rature α_2 (monoclinic ?)		(2, 10-13) (2, 9-13) (12-13) (12-14)
Transition temperature	K	$\beta_1 o \beta_2$	218	(2, 10, 11)
Heat of transition	$kJ mol^{-1}$	$\beta_1 \to \beta_2$	2.04	(2, 10, 11)
Isotropization temperature	K	$MW (\times 10^{3}) = 87$ 68 51 43	480 450 445 418	(16, 17)
		≈ 10	No mesophase	

- 1. Lee, C. L., et al. ACS Polym. Preprints 10(2) (1969): 1,319.
- 2. Godovsky, Yu. K., et al. Makromol. Chem., Rapid Commun., 6 (1985): 443.
- 3. Out, G. J. J., et al. Polym. Adv. Technology 5 (1994): 796.
- 4. Molenberg, A., et al. Macromol. Symp. 102 (1996): 199.
- 5. Moeller, M., et al. Makromol. Chem., Macromol. Symp., 34 (1990): 171.
- 6. Lee, C. L., and F. A. Emerson. J. Polym. Sci., Part A-2, 5 (1967): 829.
- 7. Mark, J. E. Macromolecules 11 (1978): 627.
- 8. Stepto, R. F. T. In *Siloxane Polymers*, edited by S. J. Clarson and J. A. Semlyen. PTR Prentice Hall, Englewood Cliffs, N.J., 1993, chap. 8.
- 9. Peterson, D. R., D. R. Carter, and C. L. Lee. J. Macromol. Sci., Phys. B3 (1969): 519.
- 10. Godovsky, Yu. K., and V. S. Papkov. Adv. Polym. Sci., 88 (1989): 129.
- 11. Godovsky, Yu. K., and V. S. Papkov. Makromol. Chem. Macromol. Symp. 4 (1986): 71.
- 12. Shulgin, A. I., and Yu. K. Godovsky. Polym. Sci. USSR 29 (1987): 2,845.
- 13. Shulgin, A., and Yu. K. Godovsky. J. Thermal Anal. 38 (1992): 1,243.
- 14. Shulgin, A., Yu. K. Godovsky, and N. N. Makarova. Thermochim. Acta 238 (1994): 337.
- 15. Out, G. J. J., A. A. Turetskii, and M. Moeller. Makromol. Chem., Rapid Commun., 16 (1995): 107.
- 16. Godovsky, Yu. K., et al. Makromol. Chem., Rapid Commun., 6 (1985): 797.
- 17. Molenberg, A., M. Moeller, and E. Sautter. Progr. Polym. Sci. 22 (1997): 1,133.

Poly(epichlorohydrin)

QINGWEN WENDY YUAN

ACRONYM PECH
CLASS Polyethers

STRUCTURE $[-CH_2-CH(CH_2Cl)-O-]$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (repeat unit)	g mol ⁻¹	_	92.5	_
Polymerization	_	_	Ring-opening	(1, 2)
Typical copolymers	EPI-allyl g	hydrin (EPI)-ethylene oxide (l glycidyl ether (AGE) copolym GE terpolymer		(3)
Glass transition temperature	K	n = 5,000-20,000 Heating rate = $20 \mathrm{K min}^{-1}$	258.5 251	(2) (3, 4)
Tensile strength	MPa	_	17	(5)
Elongation	%	_	280	(5)
Engineering modulus	MPa	Elongation = 100% Elongation = 200%	5.1 12.6	(5)
Hardness	Shore A	_	72	(5)
Tear strength	$kN m^{-1}$	_	36	(5)
Compression set	%	70 h at 100°C 70 h at 150°C	26 57	(5)
Volume change	%	70 h, ASTM Fuel A, 20°C 70 h, ASTM Fuel C, 20°C 70 h, ASTM Oil #1, 150°C 70 h, ASTM Oil #3, 150°C	0 25 0 1	(5)
Surface tension	mNm^{-1}	$M = 1,500, T = 293.5 \mathrm{K}$	43.2	(3)
Fractionation	-	Extraction; precipitation	Acetone (cold), acetone/methanol, methanol/water	(3)

Poly(epichlorohydrin)

Crystalline-state properties⁽³⁾

Lattice	Space group	Unit cell parameters (Å)		Monomers per unit	Density (g cm ⁻³)	
		A	В	С		
Orthorhombic	D2-4 or C2V-9	12.14	4.90	7.07	4	1.461
Orthorhombic	C2V-9	12.16	4.90	7.03	4	1.467
Orthorhombic	_	12.24	4.92	6.96	4	1.466
Orthorhombic	D2-4	12.15	4.86	7.07	4	1.472

- 1. Odian, G. Principles of Polymerization, 3d ed. Wiley-Interscience, New York, 1991.
- 2. Rodriguez, F. *Principles of Polymer Systems*, 4th ed. Taylor and Francis Publishers, New York, 1996.
- 3. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 4. Blythe, A. R., and G. M. Jeffs. J. Macromol. Sci. B3 (1969): 141.
- Mark, H. S., et al., eds. Encyclopedia of Polymer Science and Engineering, Vol. 16. Wiley-Interscience, New York, 1989.

Poly(erucic acid dimer anhydride)

ABRAHAM J. DOMB AND ROBERT LANGER

ACRONYMS, TRADE NAMES BIODEL-EAD, Poly(EAD), Poly(EAD-SA)

CLASS Polyanhydrides

MAJOR APPLICATIONS Biodegradable polymer for controlled drug delivery in a form of implant, film, or injectable microspheres (e.g., SeptacinTM–gentamicin-loaded linked beads for the treatment of chronic bone infections).

PROPERTIES OF SPECIAL INTEREST Anhydride copolymers of erucic acid dimer (EAD) with aliphatic diacids such as sebacic acid (SA) degrade in a physiological medium to EAD and SA. Matrices of the copolymers loaded with dissolved or dispersed drugs degrade in vitro and in vivo to constantly release the drugs for periods from 1–12 weeks.

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Molecular weight	$10^4\mathrm{g\ mol}^{-1}$ dLg^{-1}	P(EAD-SA) GPC-polystyrene standards Viscosity 25°C, dichloromethane	$M_{\rm w} = 3-30$ $\eta_{\rm sp} = 0.2-1$		(1)
IR (characteristic absorption frequencies)	cm^{-1}	PSA, P(EAD-SA), or P(EAD) film on NaCl pellet	1,740, 1,810)	(1)
UV (characteristic absorption wavelength)	nm	P(EAD-SA), EAD monomer dichloromethane	253		_
Optical rotation	_	Dichloromethane	No optical	rotation	_
Solubility	${\rm mgml^{-1}}$	25°C	P(EAD)	P(EAD-SA)	(2)
		Chloroform Dichloromethane Tetrahydrofuran Ketones Ethyl acetate Ethers Alkanes and arenes Water	>300 >300 180 80 30 5 <1 <1	<300 <300 100 50 25 3 <1 <1	
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	CHCl ₃ , 23°C	K = 3.46 $a = 0.634$		(1)

Poly(erucic acid dimer anhydride)

PROPERTY	UNITS	CONDITIONS	VALUE				REFERENCE
Thermal properties	mol %	P(EAD-SA), DSC, 10°C min ⁻¹	0:100	8:92	22:78	100:0	(2)
Crystallinity	$egin{array}{c} K \ K \ kJkg^{-1} \ \% \end{array}$	$T_{\rm m}$ $T_{\rm g}$ ΔH	359.0 333.1 150.7 66	348.0 <283.0 50.2 54	337.0 <283.0 13.0 35	293.0 <273.0 4.0 <5	
Stability in chloroforn	n (decrease in	$_{1}M$)	P(EAD)-SA)			
(anhydride intercha			$\frac{1}{0:100}$	511)	22:78		
Depolymerization rate constant	t^{-1}	37°C	0.1325		0.1233		
Tensile strength	MPa	Film by melt, P(EAD-SA) 22:78, $M_{\rm w} = 1.55 \times 10^5 {\rm g mol}^{-1}$	4.2				(1)
Tensile modulus	MPa	Film by melt, P(EAD-SA) 22:78, $M_{\rm w} = 1.55 \times 10^5 {\rm g mol}^{-1}$	45				(1)
Elongation yield	%	Film by melt, P(EAD-SA) 22:78, $M_{\rm w} = 1.55 \times 10^5 {\rm g mol}^{-1}$	14				(1)
Elongation at break	%	Film by melt, P(EAD-SA) 22:78, $M_{\rm w} = 1.55 \times 10^5 {\rm g mol}^{-1}$	85				(1)
Erosion rate, SA release	${\rm mg~h}^{-1}$	14×2.7 mm P(EAD-SA) disc, $0.1\mathrm{M}$ phosphate buffer, pH 7.4 , $37^{\circ}\mathrm{C}$	0.3				(2)
Erosion front	${\rm mmday}^{-1}$	_	188				
Elimination time in vivo	days	Implant in dog bone	35				(3)
Drug release in vitro	% day ⁻¹	From P(EAD-SA) 22:78 Hydrophilic drugs (i.e. gentamicin, carboplatin) Hydrophobic drugs (i.e.,	3-6 1-3				(1)
		taxol, dexamethasone)	10				
Drug release in vivo	% day ⁻¹	Beads of 20% gentamicin in rabbit bone	5				(3)
Biocompatibility		e with human bone and musc e with rabbit brain, bone, mus		cutane			(1)
Supplier	Guilford Pl	narmaceuticals, Inc., Baltimore	e, Maryl	and, USA	Α		

Poly(erucic acid dimer anhydride)

- 1. Domb, A. J., and M. Maniar. J. Polym. Sci. 31 (1993): 1,275-1,285.
- 2. Shieh, L., et al. J. Biomat. Mater. Res. 28 (1994): 1,465-1,975.
- 3. Shea, J., et al. Pharm. Res. 8 (1991): 195.

MEE Y. SHELLEY

TRADE NAMES Dion, Hetron, Polylite, Advaco, Altek, Cargill, Cook, OCF, Pedigree, Pioester, etc.

CLASS Thermoset polymers (mixtures of polyester prepolymers with aliphatic unsaturation and a vinyl monomer)

PRINCIPAL COMPONENTS Prepolymers (oligomer): glycols (e.g., 1,3-propylene glycol), saturated acids (e.g., phthalic anhydride/acid), unsaturated acids (e.g., maleic anhydride/acid). Monomers: styrene, α -methylstyrene, methyl acrylate, methyl methacrylate, etc.

OTHER INGREDIENTS Inhibitors to prevent premature cross-linking and to allow a suitable shelf life (e.g., hydroquinone). Initiators (catalysts): methyl ethyl ketone peroxides, benzoyl peroxides, etc. Accelerators: cobalt naphthenate, cobalt octanoate, etc.

MAJOR APPLICATIONS Laminates, coatings, art objects, insulation, construction (e.g., bath tubs, floor tiles, countertops, roofing, siding, skylights, fences, etc.), automobile parts, embedding of specimens (e.g., decorative, zoological), encapsulation of electronic assemblies, toys, playground equipment, furniture, pearl buttons, sports equipment (snow boards, skis, bowling balls, etc.), chemical storage tanks.

PROPERTIES OF SPECIAL INTEREST Low cost, excellent wetting and surface quality, ease of moldability, versatility, processible over a wide temperature range, high impact resistance, good weathering resistance, high cure shrinkage.

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Linear mold shrinkage	Ratio	Unfilled	0.001-0.007	(1)
_		Glass fiber-reinforced	0.0002-0.012	(2)
		SMC, glass fiber-reinforced	0.00002	(3, 4)
		BMC, glass fiber-reinforced		(3, 4)
		Compression	0.00001	
		Injection	0.00004	
		EMI shielding (conductive)	0.0002-0.001	(2)
Processing temperature	K	Glass fiber-reinforced		(2)
		Preformed, chopped roving, (compression)	350-430	
		Premix, chopped glass, (compression)	410-450	
		Woven cloth, (compression)	296-390	
		Molding, glass fiber-reinforced		
		Compression	405-470	
		Injection	405-470	
		Transfer	405-450	

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Processing temperature	K	EMI shielding (conductive)		(2)
		Compression	405-470	(-)
		Injection	405-460	
		Transfer	410-430	
Molding pressure	MPa	Glass fiber-reinforced		(2)
		Preformed, chopped roving	1.7-14	. ,
		Premix, chopped glass	3.4-14	
		Woven cloth	2.1	
		SMC, glass fiber-reinforced	2.1-14	
		SMC, BMC, glass fiber-reinforced, low-density	3.4-14	
		SMC, glass fiber-reinforced, low pressure	1.7-5.5	
		SMC, glass fiber-reinforced, low shrink	3.4-14	
		BMC, TMC, glass fiber-reinforced	2.8-7.6	
		EMI shielding (conductive)	3.4–14	
			011 11	
Viscosity	Pa s	Brookfield model lvf #3 spindle at 60 rpm		(5)
		Cast, rigid	0.65-0.85	
		Cast, flexible	1.1-1.4	
Specific gravity	_	Cast, rigid	1.04-1.46	(2)
		Cast, flexible	1.01-1.20	
		Glass fiber-reinforced		
		Preformed, chopped roving	1.35 - 2.3	
		Premix, chopped glass	1.65-2.3	
		Woven cloth	1.5 - 2.1	
		SMC, glass fiber-reinforced	1.65-2.6	
		SMC, glass fiber-reinforced, low density	1.0 - 1.5	
		BMC, TMC, glass fiber-reinforced	1.72 - 2.1	
		EMI shielding (conductive)	1.75–1.85	
Water absorption	%	1/8 in. thick sample, 24 h		
1		Cast, rigid	0.15-0.6	(2)
		Cast, flexible	0.5-2.5	(2)
		SMC, glass fiber-reinforced	0.1-0.5	(3, 4)
		BMC, glass fiber-reinforced	0.20	(3, 4)
		Pultruded, glass fiber-reinforced	0.75	(3, 4)
		Spraying/lay-up, glass fiber-reinforced	1.30	(3, 4)
		Woven roving, lay-up, glass fiber-reinforced		(3, 4)
Volume resistivity	ohm cm	Unspecified	10^{14}	(5)
voidine resistivity	Offin Ciri	Glass fiber-reinforced SMC, compression	5.7×10^{14}	(3, 4)
		BMC, compression	27×10^{14}	(3, 4)
		Pultruded	10^{13}	(3, 4)
		Woven roving, lay-up	10^{14}	(3, 4)
		Woven Toving, tay-up	10	(U, 1)
Dielectric constant	_	At 1 MHz, cast	2.8-3.0	(1)
		At 1 MHz, molding	3.2-4.5	(1)
		Glass fiber-reinforced	5	(6)

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Dissipation factor	_	At 1MHz	0.02	(5)
Thermal conductivity	$W m^{-1} K^{-1}$	Glass fiber-reinforced		(3, 4)
•		BMC, compression or injection	8.37	, ,
		Pultruded	6.92	
		Spraying/lay-up	2.60	
Specific heat	$\rm Jkg^{-1}K^{-1}$	Glass fiber-reinforced		(3, 4)
1	, 0	SMC or BMC	1.26	(/ /
		Pultruded	1.17	
		Spraying/lay-up	1.30	
Deflection temperature	K	Under 1.82 MPa		
•		Cast, rigid	330-480	(2)
		Blend (flexible:rigid = 30:70)	324	(5)
		Blend (flexible:rigid = 20:80)	331	(5)
		Blend (flexible:rigid = 10:90)	336	(5)
		Blend (flexible:rigid = 5:95)	358	(5)
		Glass fiber-reinforced	430-560	(2)
		EMI shielding (conductive)	470 - 480 +	(2)
Maximum resistance to continuous heat	K	Glass-reinforced	430	(6)
Arc resistance	S	SMC or BMC, glass fiber-reinforced Pultruded, glass fiber-reinforced	188–190 80	(3, 4)
Flash point	K	Cast, rigid or flexible, Seta closed cup	305	(5)

 $^{^*}$ SMC = sheet molding compounds; BMC = bulk molding compounds; TMC = thick molding compounds; EMI = electromagnetic interference.

Resistance to chemicals $^{(6)}$

Conditions	Satisfactory resistance to:	Questionable resistance to:
Glass-reinforced, 298 K	Nonoxidizing acids Aqueous salt solutions Polar organic solvents Water	Oxidizing acids Aqueous alkalies Nonpolar solvents

Radiation resistance, half-value dose in air*

Conditions	Determined by:	Dose rate (Gy h ⁻¹)	Value (MGy)	Reference
Filled with glass fiber	Flexural strength	$\geq 10^{5}$	10-50	(7, 8)
Filled with mineral flour and glass fiber	Flexural strength	$\geq 10^{5}$	>30	(7, 9)
Filled with mineral flour and glass fiber	Impact strength	$\geq 10^{5}$	>10	(7, 9)
Filled with mineral flour and glass fiber (50% mineral flour)	Flexural strength	10	>1	(7, 9)
Filled with mineral flour and glass fiber (15% glass fiber)	Impact strength	10	>0.5	(7, 9)
Filled with mineral flour (82% quartz sand)	Flexural strength	500	>7	(7, 10)

^{*}Defined as the absorbed dose that reduces the mechanical property in the second column to 50% of the initial value.

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Tensile strength at break	MPa	Cast, rigid	4.1-90	(2)
<u> </u>		Cast, flexible	3.4-21	(2)
		Glass fiber-reinforced		
		Preformed, chopped roving	100-210	(2)
		Premix, chopped glass	21-69	(2)
		Woven cloth	210-340	(2)
		Pultruded	207	(3, 4)
		SMC, glass fiber-reinforced	28-170	(2)
		BMC, TMC, glass fiber-reinforced	21-90	(2)
		EMI shielding (conductive)	28-55	(2)
Elongation at break	%	Cast, rigid	<2.6	(2, 5)
		Cast, flexible	40-310	(2)
		Blend (flexible:rigid = 30:70)	10	(5)
		Blend (flexible:rigid = 20:80)	4.8	(5)
		Blend (flexible:rigid = 10:90)	1.7	(5)
		Blend (flexible:rigid = 5:95)	1.3	(5)
		Glass fiber-reinforced	0–5	(2)
Compressive strength	MPa	Cast, rigid	90-210	(2)
(rupture or yield)		Glass fiber-reinforced		
		Preformed, chopped roving	100-210	(2)
		Premix, chopped glass	140-210	(2)
		Woven cloth	170-340	(2)
		Pultruded	207	(3, 4)
		Glass fiber-reinforced	172	(6)
		Molding, glass fiber-reinforced	97-210	(2)
		EMI shielding (conductive)	120-170	(2)

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Flexural strength (rupture or yield)	MPa	Cast, rigid Glass fiber-reinforced	60-160	(2)
(rupture or yield)		Preformed, chopped roving	70-280	
		Premix, chopped glass	50-140	
		Woven cloth	280-550	
		Molding, glass fiber-reinforced	62-250	
		EMI shielding (conductive), SMC, TMC	120-140	
		EMI shielding (conductive), BMC	83	
Tensile modulus	MPa	Cast, rigid	2,100-4,400	(2)
		Glass fiber-reinforced	5,500-31,000	
Flexural modulus	MPa	Cast, rigid, 296 K Glass fiber-reinforced	3,400-4,200	(2)
		Preformed, chopped roving, 296 K	7,000-21,000	(2)
		Premix, chopped glass, 296 K	7,000–14,000	(2)
		Woven cloth, 296 K	7,000-21,000	(2)
		Woven cloth, 366 K	4,600	(2)
		Woven cloth, 394 K	3,000	(2)
		Woven cloth, 422 K	1,900	(2)
		Pultruded	11,000	(3, 4)
		SMC, 296 K	7,000-15,000	(2)
		SMC, low pressure, 296 K	7,000-150,000	(2)
		BMC, TMĈ, 296 K	10,000-12,000	(2)
		EMI shielding (conductive), 296 K	9,700-10,000	(2)
Impact strength, Izod	$\mathrm{J}\mathrm{m}^{-1}$	Cast, rigid	11-21	(2)
		Cast, flexible	>370	(2)
		Glass fiber-reinforced	80-1,600	(2)
		EMI shielding (conductive)	270-640	(2)
Hardness	Rockwell	Glass-reinforced	M50	(6)
	Barcol	Glass fiber-reinforced	40-80	(2)
	Barcol	EMI shielding (conductive)	45-50	(2)
	Barcol	Cast, rigid	35–75	(2)
	Shore	Cast, flexible	D84-94	(2)
	Barcol	Blend (flexible:rigid = 30:70)	0–5	(5)
	Barcol	Blend (flexible:rigid = 20:80)	20-25	(5)
	Barcol	Blend (flexible:rigid = 10:90)	30-35	(5)
	Barcol	Blend (flexible:rigid = 5:95)	35-40	(5)

^{*}SMC = sheet molding compounds; BMC = bulk molding compounds; TMC = thick molding compounds; EMI = electromagnetic interference.

- Plastics Digest, Thermoplastics and Thermosets, 15th ed., vol. 1. D.A.T.A. Business Publishing, Englewood, 1994.
- Kaplan, W. A., et al., eds. Modern Plastics Encyclopedia '97. McGraw-Hill, New York, Modern Plastics, Mid-November 1996.
- 3. Rosato, D. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1988, vol. 14, pp. 350–391.
- 4. Fiberglas Plus Design: A Comparison of Materials and Processes for Fiber Glass Composites. Owens-Corning Fiberglas Corp., July 1985.
- Harper, C. A., ed. Handbook of Plastics, Elastomer, and Composites, 3d ed. McGraw-Hill, New York, 1996.
- Seymour, R. B. Polymers for Engineering Applications. ASM International, Washington, D.C., 1987.
- 7. Wündrich, K. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, pp. VI 463–474.
- 8. Schönbacher, H., and A. Stolarz-Izycka. CERN 79-08 (1979).
- 9. Wilski, H. Europäisches Treffen der chemischen Technik (Achema). Frankfurt, June 18 1970.
- 10. Rauhut, K., S. Rösinger, and H. Wilski. Kunststoffe 70 (1980): 89.

Poly(ether ether ketone)

J. R. FRIED

ACRONYM, TRADE NAME PEEK, Victrex® (ICI)

CLASS Polyketones

MAJOR APPLICATIONS General-purpose molding and extrusion polymer for high-performance applications, especially as resin for carbon fiber composites. Examples include chemical resistant tubing and electrical insulation, automotive bearings, pump and valve construction for corrosive applications, and compressor valve plates.

PROPERTIES OF SPECIAL INTEREST Good abrasion resistance; low flammability and emission of smoke and toxic gases; low water absorption; resistance to hydrolysis, wear, solvents, radiation, and high-temperature steam; ease of processing and excellent thermal stability and mechanical properties at high temperatures.

TYPE OF POLYMERIZATION Nucleophilic displacement of activated aromatic halides in polar solvents by alkali metal phenates or Friedel–Crafts processes; examples include polycondensation of the potassium salt of hydroquinone and 4,4'-difluorobenzophenone in DMSO at temperatures up to 340°C and the polycondensation of 4,4'-difluorobenzophenone and silylated hydroquinone at 220– 320°C .

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	288.31	_

Solvents

Very low or no solubility in ordinary solvents; concentrated sulfuric acid will dissolve and sulfonate PEEK; at high temperatures, dilute solutions can be obtained in hydrofluoric acid, trifluoromethanesulfonic acid, dichlorotetrafluoroacetone monohydrate, phenol–1,2,4-trichlorobenzene, and benzophenone

Polymers with which compatible	Poly(ether ketone), poly(ether ether ether ketone), poly(ether ether ketone ketone); polyetherimide				
Characteristic ratio $\langle r^2 \rangle_0/nl^2$	_	_	3.04	(1)	
Compressibility coefficient, isothermal	bar ⁻¹	At $T_{\rm m}$ At 340°C At 360°C At 380°C	9.302×10^{-5} 9.4×10^{-5} 10.2×10^{-5} 11.0×10^{-5}	(2)	
Continuous service temperature	K	_	473	(3)	

Poly(ether ether					
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Crystallinity	%	Typical Maximum	30-35 48	(4)	
Density	$\rm gcm^{-3}$	Amorphous Crystalline	1.263–1.265 1.400–1.401	(5, 6, 7)	
Entropy of fusion	$kJK^{-1}mol^{-1}$	<i>PVT</i> data DSC data	0.0758 0.0951	(2) (5)	
Maximum extensibility $(L/L_0)_{\rm r}$	%	Annealed As molded ASTM D 638	42 103 150	(8) (8) (3)	
Flexural modulus	MPa	At 23°C At 100°C At 200°C At 300°C	3,700 3,600 500 300	(9)	
Glass transition temperature	K	PVT data Quenched (DSC) Annealed (DSC)	425 410 415	(2) (8) (8)	
Hardness	R scale	Rockwell	126	(9)	
Heat capacity	kJ K ⁻¹ mol ⁻¹	Amorphous, 350 K Amorphous, 400 K Amorphous, 610 K Amorphous, 660 K 32% crystalline, 350 K 32% crystalline, 400 K 32% crystalline, 450 K 32% crystalline, 500 K 32% crystalline, 550 K	0.367 0.415 0.600 0.623 0.366 0.425 0.484 0.529 0.559	(10)	
Heat deflection temperature	K	At 1.81 MPa (D648)	433	(3)	
Heat of fusion	kJ mol ⁻¹	_	36.8 37.5	(2) (5)	
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	Unnotched Izod Notched Izod (D256)	No break 84	(8)	
Index of refraction, <i>n</i>	_	_	1.671	(11)	
Maximum use temperature	K	1h exposure	673	(9)	
Melt viscosity	Pa s	At 380° C and $1,000\mathrm{s}^{-1}$	100-300	(9)	

Poly(ether ether ketone)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting temperature	K	DSC Equilibrium	608–616 657–668	(5, 6, 8) (5, 12, 13)
Persistence length	Å	97.4% H ₂ SO ₄ , 30°C	54	(14)
Plateau modulus $G_{\rm N}^0$	MPa	At 623 K (calculated)	4.0	(15)
Reducing temperature T^*	K	Flory equation of state (0-500 bar)	9,272	(16)
Reducing pressure P	MPa	Flory equation of state (0-500 bar)	726.6	(16)
Reducing volume v^*	$\mathrm{cm}^3\mathrm{g}^{-1}$	Flory equation of state (0-500 bar)	0.6842	(16)
Solubility parameter	$(MPa)^{1/2}$	Calculated	21.2-22.6	(17)
Sub- $T_{\rm g}$ transition	K	1 Hz (DMTA) 1 kHz (dielectric)	205 239	(18)
Tensile modulus	GPa	D638	3.56	(8)
Tensile strength	MPa	At 23°C At 100°C At 200°C At 300°C	92.0 50 12.0 10.0	(9)
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	C177	0.25	(9)
Thermal expansion coefficient	K^{-1}	$30^{\circ}\text{C} < T < 150^{\circ}\text{C}$ at $P = 0$ Melt	$1.610 \times 10^{-4} \\ 6.690 \times 10^{-4}$	(2)
Volume resistivity	$\mathrm{W}\mathrm{cm}^{-1}$	23°C	4.9×10^{16}	(9)
Water absorption	%	24 h at 40% RH	0.15	_
WLF parameters: C_1 and C_2	$C_1 = \text{None}$ $C_2 = K$	$T_0 = 412.9 \mathrm{K}$	$C_1 = 29.96$ $C_2 = 53.74$	(19)
Yield stress	MPa	D638	91	(3)

Avrami parameters for isothermal crystallization

<i>T</i> _c (K)	n*	k (s ⁻³)	Reference
427.6	2.98	8.9×10^{-11}	(20)
429.6	2.81	7.1×10^{-10}	(20)
432.6	3.07	1.2×10^{-8}	(20)
643	3.4	2.6×10^{-3}	(21)
663	3.6	6.7×10^{-5}	(21)
683	3.8	2.9×10^{-5}	(21)

^{*}At half-life for crystallization.

PROPERTIES	UNITS	CONDITIONS	VALUE				REFERENCE
Gas evolution, G value	_	γ irradiation (under vacuum)	H ₂ CO CO ₂ C		CH ₄	(10)	
(10 ⁻⁴) of component gas		Amorphous; quenched (7.4 MGy dose)	12	6.5	12	0.20	
		Crystalline (8.1 MGy dose) Electron beam	6.3	12	5.5	0.14	(22)
		Amorphous (6 MGy dose)	12	5.2	16	0.22	,
		Crystalline (5.8 MGy dose)	7.5	3.4	11.3	0.16	
Infrared spectrum	cm^{-1}	Assignment		venur	nber		(23)
(principal absorptions)		In-place vibration of aromatic hydrogens	1,	.160			
		Asymmetric stretch of diphenyl ether groups Skeletal in-phase phenyl ring vibration		1,227 and 1,190			
				1,599 and 1,492			
		Carbonyl stretching		1,655			
Permeability P	m^3 (STP) $\mathrm{m}~\mathrm{s}^{-1}$	±', 1		$6.2 \times 10^{-16} \ 6.0 \times 10^{-18} \ 2.4 \times 10^{[} - 18$			(24)
	$\dot{m}^{-2} \dot{Pa}^{-1}$						(25)
		CO ₂ , 26–30% crystallinity		$2.4 \times 10^{6} - 18$			(25)
Lattice	_	_	Ort	horho	mbic		(4, 26)
Monomers per unit cell	_	_	2/3			(4, 26)	
Unit cell dimensions	Å	_		a = 7.75-7.88 b = 5.86-5.94			(4, 26)
			c (c			9.88–	
Important patent	J. Rose and P. Staniland (assigned to ICI Americas, Inc.) U.S. 4,320,224, 16 Mar. 1982.						

- 1. Roovers, J., J. D. Cooney, and P. M. Toporowski. Macromolecules 23 (1990): 1,611.
- Zoller, P., T. A. Kehl, H. W. Starkweather, and G. A. Jones. J. Polym. Sci.: Part B: Polym. Phys., 27 (1989): 993.
- 3. Attwood, T. E., et al. Polymer 22 (1981): 1,096.
- 4. Nguyen, H. X., and H. Ishida. Polym. Compos. 8 (1987): 57.
- 5. Blundell, D. J., and B. N. Osborn. Polymer 24 (1983): 953.
- 6. Dawson, P. C., and D. J. Blundell. Polymer 21 (1980): 577.
- 7. Lu, S. X., P. Cebe, and M. Capel. Polymer 37 (1996): 2,999.
- 8. Harris, J. E., and L. M. Robeson. J. Appl. Polym. Sci. 35 (1988): 1,977.
- 9. May, R. In *Encyclopedia of Polymer Science and Engineering*, edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1990, Vol. 12, pp. 313–320.
- 10. Hegazy, E.-S. A., T. Sasuga, M. Nishii, and T. Seguchi. Polymer 33 (1992): 2,897.
- 11. Voice, A. M., D. I. Bower, and I. M. Ward. Polymer 34 (1993): 1,154.
- 12. Hay, J. N., and D. J. Kemmish. Plast. Rubber Process. Applic. 11 (1989): 29.

Poly(ether ether ketone)

- 13. Lee, Y., and R. S. Porter. Macromolecules 20 (1987): 1,336.
- 14. Bishop, M. T., F. E. Karasz, P. S. Russo, and K. H. Langley. Macromolecules 18 (1985): 86.
- 15. Fetter, L. J., D. J. Lohse, and R. H. Colby. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, pp. 335-340.
- 16. Rodgers, P. A. J. Appl. Polym. Sci. 48 (1993): 1,061.
- 17. Bicerano, J. Prediction of Polymer Properties, 2nd ed. Marcel Dekker, New York, 1996, p. 130.
- 18. Goodwin, A., and R. Marsh. Macromol. Rapid Comm. 17 (1996): 475.
- 19. David, L., A. Sekkat, and S. Etienne. J. Non-Cryst. Solids 172-174 (1994): 214.
- 20. Kemmish, D. J., and J. N. Hay. Polymer 26 (1985): 905.
- 21. Lee, Y., and R. S. Porter. Macromolecules 21 (1988): 2,770.
- 22. Hegazy, E.-S. A., T. Sasuga, M. Nishii, and T. Seguchi. Polymer 33 (1992): 2,904.
- 23. Nguyen, H. X., and H. Ishida. Polymer 27 (1986): 1,400.
- 24. Orchard, G. A. J., and I. M. Ward. Polymer 33 (1992): 4,207.
- 25. De Candia, F., and V. Vittoria. J. Appl. Polym. Sci. 51 (1994): 2,103.
- 26. Dawson, P. C., and D. J. Blundell. Polymer 21 (1980): 307.

Poly(ether imide)

LOON-SENG TAN

ACRONYM, TRADE NAME PEI, Ultem®

CLASS Polyimides; engineering thermoplastics

STRUCTURE

SYNTHESIS Aromatic polyetherimides are usually prepared from (a) bisphenoxide salts and aromatic dinitrobisimides via nucleophilic nitro-displacement reactions^(1,2,3); (b) two-step polycondensation of aromatic diamines and ether-dianhydrides in a polar aprotic solvent, followed by thermal⁽⁴⁾ or chemical^(5,6) cyclodehydration of the polyamic acid precursors; and (c) one-step, high temperature solution polymerization of aromatic diamines and ether-dianhydrides in a phenolic solvent, removing water of condensation azeotropically.⁽⁷⁾ Certain polyetherimides can also be synthesized via direct melt polymerization.⁽⁸⁾

MAJOR APPLICATIONS Printed circuit boards and hard disks for computers, underthe-hood automotive uses, reinforced composites for aerospace applications.

PROPERTIES OF SPECIAL INTEREST Commercial polyetherimide (Ultem) is an amorphous thermoplastic with the following characteristics: high heat resistance, strength, and modulus; inherent flame resistance with low smoke evolution; high dielectric strength, stable dielectric constant and dissipation factor over a wide range of temperature and frequencies; transparency; amenable to conventional molding processes (injection, compression or blow-molding).

Glass-transition and melting (T_m) temperatures* of 4,4'-isomeric polyetherimides[†]

Ar ₁ (BISPHENOLATE)	Ar ₂ (BISPHTHALIMIDE)						
		—					
<u> </u>	515	_	528	_	472 603 (T _m)		
	482	_	497	_	403		
	502	-	520	_	478 616 (T _m)		

Poly(ether imide)

Ar ₁ (BISPHENOLATE)	Ar ₂ (BISPHTHALIMIDE)	Ar ₂ (BISPHTHALIMIDE)						
		—						
-C	488	_	500	_	457			
-__s -__	485	499 ⁽⁹⁾ 699 (T _m)	$\begin{array}{c} 482 \\ 465^{(10)} \end{array}$	530 ⁽⁹⁾ 755 (T _m)	451			
	533	_	538	-	492			
	483	_	512	_	467			
	496	_	488	-	_			

Glass-transition temperatures* of 3,3'-isomeric polyetherimides[†]

$$\begin{bmatrix} 0 & 0 & -Ar_1 & 0 & 0 \\ N & 0 & 0 & -Ar_2 \end{bmatrix}_{I}$$

Ar ₁ (BISPHENOLATE)	Ar ₂ (BISPHTHALIMIDE)					
					$-(CH_2)_6-$	
	536	532	-	487	_	
	499	514	_	466	-	
	550	548	_	497	_	
0	512	505	_	471	401	
s	507	504	_	475	_	
	540	539	-	503	_	

 $^{^{\}ast}$ Temperatures (in K) as determined by DSC. † Unless otherwise indicated, all the values are from references (2) and (7).

Ar ₁ (BISPHENOLATE)	Ar ₂ (BISPHTHALIMIDE)			
		T			$-(CH_2)_6-$
	-	521	_	489	_
-CH ₃	508	509	503	-	408

Glass-transition and melting ($T_{\rm m}$) temperatures * of naphthalene-based polyetherimides $^{(11)}$

Ar (AMINE)	NAPH [NAPHTHALENE BIS(ANHYDRIDE)]					
	533	528	503 613 (<i>T</i> _m)	527		
	513	508	522	518		
0-0-	508	499	498	494		
$-\!$	538	_	509	520		
$-\!$	526	_	519	519		
	_	502	_	501		
	_	481	-	Not found		

^{*} Temperatures (in K) as determined by DSC.
† All the values are from references (2) and (7).

Poly(ether imide)

Ar (AMINE)	NAPH [NAPHT	HALENE BIS(ANH	YDRIDE)]	
	_	500	503	504
$\begin{array}{c} H_3C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	554	538	-	545
$\begin{array}{c} H_3C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Not found	581	-	Not found
CF_3	523	523	-	508
$- \underbrace{ \begin{bmatrix} CF_3 \\ C \end{bmatrix}}_{CF_3}$	549	529	491	529

^{*} Temperatures (in K) as determined by DSC.

Commercial polyetherimide products

PRODUCT NAMES*	PRODUCT DESCRIPTION		
Ultem 1000 series	Unreinforced grades polyetherimide resins		
	CH ₃ CH ₃ O O O O O O O O O O O O O O O O O O O		
Ultem 2000 series	Glass reinforced resins (10-40% glass fillers)		
Ultem 3000 series	Glass- and mineral-fiber reinforced polyetherimide resins for a		
	balance of low warpage, dimensional stability and low CTE		
Ultem 4000 series	Polyetherimide containing internal lubricants		
Ultem CRS5000 series	Copolyetherimide with improved chemical resistance		
Ultem 7000 series	Carbon reinforced polyetherimide resins		
Ultem 8000 and 9000 series aircraft resins	Polyetherimide resins to meet FAR 25.853 regulations for commercial aircraft interiors		
Ultem LTX series resins	A PEL/polycarbonate blend with higher impact resistance		
Ultem Healthcare (HP) resins	Ultem 1000 resins melt filtered to 40 microns		

^{*} Supplier: GE Plastics, Plastics Technology Center, One Plastics Avenue, Pittsfield, Massachussetts 01201, USA.

Poly(ether imide)

Mechanical properties of Ultem 1000

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	ASTM D 638; yield, Type I, 3.2 mm	105	(12)
Tensile elongation	%	ASTM D 638; yield, Type I, 3.2 mm	7.0	(12)
Tensile elongation, ultimate	%	ASTM D 638; break, Type I, 3.2 mm	60	(12)
Tensile modulus	MPa $(\times 10^3)$	ASTM D 638; yield, Type I, 3.2 mm	3.0	(13)
Flexural strength	MPa	ASTM D 790; yield, 3.2 mm	150	(12)
Flexural modulus	MPa $(\times 10^3)$	ASTM D 790; yield, 3.2 mm	3.3	(12)
Compressive strength	MPa	ASTM D 695	150	(12)
Compressive modulus	MPa $(\times 10^3)$	ASTM D 695	3.3	(12)
Shear strength	MPa	ASTM D 732	100	(12)
Impact strength, unnotched Izod	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D 256; 3.2 mm, 23°C	1,300	(12)
Impact strength, notched Izod	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D 256; 3.2 mm, 23°C	50	(12)
Gardner impact	J	ASTM D 3029; 23°C	37	(12)
Shear strength, ultimate	MPa	_	90-103	(12)
Rockwell hardness	_	ASTM D 785	109	(12)
Taber abrasion	mg (1,000 cycles) ⁻¹	ASTM D 1044; CS-17, 1 kg	10	(12)
Poisson's ratio	_	ASTM D638	0.36	(12)

Thermal properties of Ultem 1000

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Vicat softening point, method B	K	ASTM D1525; Rate B	492	(12)
Heat deflection temperature	K	ASTM D648 Unannealed at 0.45 MPa, 6.4 mm	483	(12)
		Unannealed at 1.8 MPa, 6.4 mm	473	(12)
Thermal conductivity	$W m^{-1} K^{-1}$	ASTM C177	0.22	(12)

Poly(ether imide) **PROPERTY** UNITS CONDITIONS VALUE REFERENCE $10^{-5}~{\rm K}^{-1}$ Coefficient of thermal ASTM E831; flow X E-5, from -20 to 5.6 (12)expansion 150°C Continuous service temperature K UL 756B 443 (13)index

Glass-transition and secondary-relaxation temperatures and associated activation energy values of poly(etherimide) $(Ultem)^*$

Test Method/Conditions	<i>T</i> _g (K)	$E_{\rm a}$ (kJ mol ⁻¹)	T_{eta} (K)	$E_{\rm a}$ (kJ mol ⁻¹)	T_{γ} (K)	$E_{\rm a}$ (kJ mol ⁻¹)	Reference
Torsion pendulum; ∼1 Hz	485	_	343	_	168	_	(14)
Forced oscillation dynamic-	492	_	355	_	160	_	(15)
mechanical analysis; 1 Hz							
Forced oscillation dynamic-	501	330-1250	_	_	_	_	(16)
mechanical analysis; 1 Hz							
Forced oscillation dynamic-	_	_	379	_	186	_	(17)
mechanical analysis; 35 Hz							
Dielectric measurement; 1,000 Hz	513	_	_	_	_	_	(16)
Dielectric measurement	_	_	_	_	_	43	(18)

^{*}Adapted from reference (19).

Flammability of Ultem $1000^{(12)}$

PROPERTY	UNITS	CONDITIONS	VALUE
UL94V-O flame class rating	mm	UL 94	0.41
UL94-5VA flame class rating	mm	UL 94	1.9
Oxygen index (LOI)	%	ASTM D2863	47
NBS smoke density flaming mode	-	ASTM E662 Flaming, $D_{\rm s}$ at 4 min Flaming, $D_{\rm max}$ at 20 min	0.7 30

Electrical properties of Ultem 1000⁽¹²⁾

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Volume resistivity	ohm m	ASTM D2571; 1.6 mm	1.0×10^{15}	12
Dielectric strength	$kV mm^{-1}$	ASTM D149 1.6 mm, in air	33	12
		1.6 mm, in oil	28	
		3.2 mm, in oil	20	
Dielectric constant	_	ASTM D150		12
		At 100 Hz,	3.15	
		At 1kHz	3.15	
Dissipation factor	_	ASTM D150		12
•		At 100 Hz	0.0015	
		At 1 kHz	0.0012	
		At 2,450 MHz	0.0025	
Arc resistance	S	_	128	13

Physical properties of Ultem 1000

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Specific gravity	_	ASTM D792	1.27	(12)
Mold shrinkage	(m/m)	ASTM D955; flow, 3.2 mm	0.007	(12)
Water absorption	%	ASTM D570 At 24 h, 23°C	0.25	(12)
		Equilibrium, 23°C	1.25	(12)
CO ₂ permeabilities	barrer*	35°C and 10 atm pressure	1.33	(12)
Permselectivity for CO ₂ and CH ₄ (a)	_	35°C and 10 atm pressure	36.9	(20)

 $^{^*1}$ Barrer = 10^{-10} cm 3 (STP) cm/ (s cm 2 cmHg), where the standard temperature and pressure (STP) are 273.15 K and 1 atm (1.1013 \times 10 $^{-5}$ Pa), respectively.

- 1. Wirth, J. G., and D. R. Heath. U.S. Patent 3,730,940 (1973).
- 2. Takekoshi, T., et al. J. Polym. Sci., Polym. Chem. Ed., 18 (1980): 3,069.
- 3. White, D. M., et al. J. Poly. Sci., Polym. Chem. Ed., 19 (1981): 1,635.
- 4. Sroog, C. E., et al. J. Polym. Sci., Part A, 3 (1965): 1,373.
- 5. Vinogradova, S. V., et al. Polym. Sci. USSR 16 (1974): 584.
- 6. Eastmond, G. C., J. Paprotny, and I. Webster. Polymer 34 (1993): 2,865.
- 7. Takekoshi, T. et al. J. Polym. Sci., Polym. Symp., 74 (1986): 93.
- 8. Takekoshi, T., and J. E. Kochanowski. U.S. Patent 3,803,085 (1974).
- 9. St. Clair, T. L., and A. K. St. Clair. J. Polym. Sci., Polm. Chem. Ed., 15 (1976): 1,529.

Poly(ether imide)

- Hergenrother, P. M., N. T. Wakelyn, and S. J. Havens. J. Polym. Sci., Part A, Polym. Chem., 25 (1987): 1,093.
- 11. Eastmond, G. C., and J. Paprotny. J. Mater. Chem. 6 (1996): 1,459.
- 12. *Ultem Product Bulletin*, ULT-306H (12/92) RTB, General Electric Company.
- 13. Ultem Product Bulletin, ULT-201B, General Electric Company.
- 14. Harris, J. E., and L. M. Robeson. J. Appl. Polym. Sci. 35 (1988): 1,877.
- 15. Fried, J. R., H.-C. Liu, and C. Zhang. J. Polym. Sci.: Part C, Polym. Lett., 27 (1989): 385.
- 16. Biddlestone, F., et al. Polymer 32 (1991): 3,119.
- 17. Pegoraro, M., and L. D. Landro. Plast. Rubber Compos. Process. Appl. 17 (1992): 269.
- 18. Schartel, B., and J. H. Wendorff. Polymer 36 (1995): 899.
- Fried, J. R. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, chap. 13, pp. 166–167.
- 20. Chern, R. T., et al. J. Polym. Sci., Polym. Phys. Ed., 32 (1984): 69.

Poly(ether ketone)

J. R. FRIED

ACRONYM, TRADE NAME PEK, Kadel®

CLASS Polyketones

TYPE OF POLYMERIZATION Nucleophilic displacement of activated aromatic halides in polar solvents by alkali metal phenates or Friedel-Crafts processes.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	196.21	_
Density	$g cm^{-3}$	Amorphous Crystalline	1.272 1.430	(1) (1, 2)
Maximum extensibility $(L/L_0)_{\rm r}$	%	_	68	(3)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	Notched Izod (D256)	59	(3)
Glass transition temperature	K	DSC	425 427	(1, 3) (2)
Melt flow	$\rm dgmin^{-1}$	At 400°C	1.5	(1)
Melting temperature	K	DSC	634-640	(1-3)
Tensile impact strength	kJm^{-2}	_	168	(3)
Tensile modulus	GPa	D638	3.19	(3)
Tensile strength	MPa	D638	104.0	(3)
Unit cell dimensions	Å	_	a = 7.63 b = 5.96 c (chain axis) = 10.0	(1, 2)

- 1. Harris, J. E., and L. M. Robeson. J. Polym. Sci.: Part B: Polym. Phys., 25 (1987): 311.
- 2. Dawson, P. C., and D. J. Blundell. Polymer 21 (1980): 577.
- 3. Harris, J. E., and L. M. Robeson. J. Appl. Polym. Sci. 35 (1988): 1,977.

Poly(ether sulfone)

TAREK M. MADKOUR

ACRONYM, TRADE NAMES PES, Victrex 100P and 200P (ICI)

CLASS Poly(ether sulfones)

SYNTHESIS Polycondensation

STRUCTURE

$$SO_2$$

MAJOR APPLICATIONS Medical and household appliances that are sterilizable by hot air and steam such as corrosion-resistant piping. Also used in electric and electronic applications such as television components. Used as membranes for reverse gas streams and gas separation.

PROPERTIES OF SPECIAL INTEREST High performance thermoplastic of relatively low flammability. Amorphous, high-creep resistance and stable electrical properties over wide temperature and frequency ranges. Transparent with good thermal and hydrolytic resistance.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	_	232.25	_
Infrared bands (frequency)	cm ⁻¹	Group assignments SO ₂ scissors deformation SO ₂ symmetric stretch SO ₂ asymmetric stretch Aryl-O-aryl C-O stretch Aromatic CH stretches	560 1,151; 1,175 1,294; 1,325 1,244 3,000-3,200	(1, 2)
Thermal expansion coefficient	K^{-1}	Victrex 200P Victrex 430P (30% glass fiber)	5.5×10^5 2.3	(3)
Density	$\rm gcm^{-3}$	Victrex 200P Victrex 430P (30% glass fiber)	1.37 1.60	(3) (3)
Molar volume	${\rm cm}^3{\rm mol}^{-1}$	25°C	157	(4)
Solubility parameter δ	$(MPa)^{1/2}$	Calculated, 25°C Victrex 4800	23.12 22.9	(4) (5)
Theta temperature	K	DMF/methanol (83/17) DMF/toluene (39/61)	298 303	(6)

			Poly(eth	er sulfone)
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature	K	Forced oscillation dynamic- mechanical analysis	498	(7)
Sub- $T_{\rm g}$ transition temperature	K	γ -relaxation temperature	193	(7)
Heat capacity	$kJK^{-1}mol^{-1}$	-	0.174	(8)
Heat deflection temperature	K	(1.82 MPa) 30% glass fiber reinforced 30% carbon fiber reinforced	507 476 507	(9)

$Mechanical\ properties^{(3,9,10)}$

Property	Units	Resin			
		Neat resin	30% glass fiber reinforced	30% carbon fiber reinforced	
Tensile modulus	MPa	2,413	_	_	
Tensile strength	MPa	82.8	146.9	211.7	
Maximum extensibility $(L/L_0)_r$	%	40-80	2.57	1.11	
Flexural modulus	MPa	2,552	6,987	13,973	
Flexural strength	MPa	128	210	264	
Notched Izod impact strength	$\mathrm{J}\mathrm{m}^{-1}$	85.7	296	88	
Unnotched Izod impact strength	$\mathrm{J}\mathrm{m}^{-1}$	_	1,082	521	
Hardness	Shore D	88	86	89	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
WLF parameters: C_1 and C_2	_	_	70.98 241.2	(11)
Refractive index <i>n</i>	_	20°C	1.545	(12)
Dielectric constant	_	_	3.5	(13)
Resistivity	ohm cm	_	1×10^{17}	(3)
Speed of sound, longitudinal	$\rm ms^{-1}$	_	2,260	(14)

Poly(ether sulfone)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Permeability coefficients	m ³ (STP) m s ⁻¹ m ⁻² Pa ⁻¹	50°C and pressure difference of 10 bar Gas He CO_2 O_2	7.95×10^{-17} 3.15×10^{-17} 6.0×10^{-18}	(15)
Thermal conductivity k	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	_	0.18	(13)
Maximum use temperature	K	_	491	(13)
Water absorption	%	24 h	0.43	(3)

Dual-mode parameters⁽¹⁶⁾

Gas	as Sorption parameters			Diffusion coefficients	pefficients	
	$K_{\rm D}$ [m ³ (STP) m ⁻³ atm ⁻¹]	C'_{H} [m ³ (STP) m ⁻³]	b (atm ⁻¹)	$D_{\rm D} imes 10^{12} \ ({ m m}^2 \ { m s}^{-1})$	$D_{\rm H} imes 10^{12} \ ({ m m^2 \ s^{-1}})$	
CO ₂	0.807	16.310	0.398	2.792	0.441	
C_2H_6	0.496	10.844	0.289	_	_	
CH_4	0.240	6.445	0.109	0.151	0.128	

- 1. Colthup, N., L. Daly, and S. Wiberley. *Introduction to Infrared and Raman Spectroscopy*, 2d ed. Academic press, New York, 1975.
- 2. Pouchert, C. The Aldrich Library of FT-IR Spectra. Aldrich Chemical, Milwaukee, 1985.
- 3. Elias, H., and F. Vohwinkel. *New Commercial Polymers* 2. Gordon and Breach Science Publishers, New York, 1986, chap. 8.
- 4. Bucknall, C., and I. Partridge. Polym. Eng. Sci. 26 (1986): 54.
- 5. Wang, D., K. Li, and W. Teo. J. Membr. Sci. 115 (1996): 85.
- 6. Park, Y., and D. Lee. Polymer (Korea) 12 (1988): 749.
- 7. Aitken, C., J. McHattie, and D. Paul. Macromolecules 10 (1992): 2,910.
- 8. Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, Woodbury, N.Y., 1996.
- Ma, C. In Proc. of the Natl. SAMPE Symp. Exhib., 30 (Adv. Technol. Mater. Processes), 1985, p. 543.
- 10. Hisue, E., and R. Miller. In *Proc. of the Natl. SAMPE Symp. Exhib.*, 30 (Adv. Technol. Mater. Processes), 1985, p. 1,035.
- 11. David, L., A. Sekkat, and S. Etienne. J. Non-Cryst. Solids 214 (1994): 172.
- 12. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.
- Mark, H., et al., eds. Kirk-Othmer: Encyclopedia of Chemical Technology, 3d ed. Wiley-Interscience, New York, 1984.
- 14. Phillips, D., A. North, and R. Pethrick. J. Appl. Polym. Sci. 21 (1977): 1,859.
- 15. Wang, D., K. Li, and W. Teo. J. Membrane Sci. 105 (1995): 89.
- 16. Reimers, M., and T. Barbari. J. Polym. Sci. Polym. Phys. 32 (1994): 131.

Poly(ethyl acrylate)

JIANYE WEN

ACRONYM PEA

CLASS Vinyl polymers

$$\begin{array}{cc} \text{STRUCTURE} & [-CH_2 - CH -] \\ & COOC_2H_5 \end{array}$$

MAJOR APPLICATIONS Coatings, textiles finishing, paper saturants, leather finishing, and oil-resistant and high-temperature-resistant elastomers.

PROPERTIES OF SPECIAL INTEREST A rubberlike, considerably softer, and more extensible polymer compared to poly(methyl acrylate); has superior resistance to degradation and shows remarkable retention of its original properties under use conditions.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	25°C	1.12	(1-3)
Glass transition temperature	K	Inherent viscosity = 0.05 g polymer in 100 ml toluene		
•		0.25	231	(4)
		0.6	230	(4)
		0.9	238	(4)
		5.0	246	(4)
		7.0	245	(4)
		Conventional	249	(2, 4-7)
		Syndiotactic	249	(3, 8)
		Isotactic	248	(9, 10)
Heat capacity	$\mathrm{KJ}\mathrm{K}^{-1}\mathrm{mol}^{-1}$	-183°C -73°C 27°C 227°C ΔC _p	0.0579 0.1030 0.1787 0.2219 4.560/10.021	(11)
Interaction parameter χ	_	Butane, 70–90°C Hexane, 70–110°C Heptane, 70–110°C Decane, 70–110°C Cyclohexane, 70–110°C Benzene, 70–110°C Toluene, 70–100°C Chloroform, 70–110°C Carbon tetrachloride, 70–110°C	1.318-1.232 1.483-1.296 1.585-1.345 1.926-1.645 1.148-0.974 0.183-0.188 0.289-0.301 -0.478 to -0.322 0.384-0.365	(12)

Poly(ethyl acrylate)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Interaction parameter χ	-	Acetone, 70–110°C Methyl ethyl ketone, 70–110°C Tetrahydrofuran, 70–100°C Dioxane, 70–100°C Methyl acetate, 70–110°C Ethyl acetate, 70–110°C	0.507-0.411 0.400-0.218 0.215-0.191 0.239-0.255 0.402-0.394 0.365-0.363	(12)

Mark-Houwink parameters: K and a

Solvent	Temp. (°C)	Mol. wt. range ($M \times 10_4$)	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	a	Reference
Acetone	25	-450	51	0.59	(13)
Acetone	30	-50	20.0	0.66	(14)
Benzene	30	-67	27.7	0.67	(15)
Butanone	30	-700	2.68	0.80	(16)
Chloroform	30	-54	31.4	0.68	(15)
Ethyl acetate	30	-54	26.0	0.66	(15)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	_	0.2	(17, 18)
Elongation at break	%	-	1,800	(17, 18)
Refractive index $n_{\rm D}^{25}$	_	-	1.464	(19)
Second virial coefficient	$A_2 \times 10^4 \mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	Acetone 20°C , $M \times 10^4 = 5.586$ 28°C , $M \times 10^5 = 3.280$ 30°C , $M \times 10^5 = 1.451.91$	5.0-3.1 10.52 14.6	(20) (21) (22)
Solubility parameter	$(MPa)^{1/2}$	-	19.3	(23)
Solvents		s, chlorinated hydrocarbons, tetrahyd ol, butanol, glycol ether	lrofuran,	(24)
Nonsolvents		, hydrogenated naphthalenes, diethy 5), cyclohexanol, tetrahydrofurfuryl		(24)
Surface tension	$mN m^{-1}$ $mN m^{-1} K^{-1}$ χ^{p}	$M_{ m w}=2.8 imes10^4$ $20^{\circ}{ m C}$ $150^{\circ}{ m C}$ $200^{\circ}{ m C}$ $-d\gamma/dT$ Polarity	37.0 27.0 23.2 0.070 0.174	(25)

			Poly(ethyl acrylate)		
PROPERTY	UNITS	CONDITIONS	VALUE REFERENCE		
Thermal conductivity I	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	310.9 K 422.1 K 533.2 K	0.213 (26) 0.230 0.213		
Theta solvent	_	n-Butanol Ethanol Methanol n-Propanol	44.9°C (27) 37.4°C 20.5°C 39.5°C		

Unperturbed dimension*

Conditions	$r_0/M^{1/2} imes 10^4$ (nm)	$r_0/M^{1/2} imes 10^4$ (nm)	$\sigma = r_0/r_{0f}$	$C_{\infty}=r_0^2/nl^2$	Reference
Acetone; methanol, 30°C	720 ± 30	308	2.34 ± 0.10	10.9	(28)
Acetone, 25°C	856	308	2.78	15.4	(16)
Undiluted, 60°C	$d \ln r_0 2/dT = -0.2 \times 10^{-3} \text{ [deg}^{-1}]$	_	_	_	(29)

^{*}See references (19, 30, 31) for details.

- 1. Van Krevelen, D. W. Properties of Polymers, Elsevier Publishing, Amsterdam, 1976.
- 2. Shetter, J. L. J. Polym. Sci., Part B, 1 (1963): 209.
- 3. Kine B. B., and R. W. Novak. In *Encyclopedia of Polymer Science and Technology*, Vol. 1, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1989, p. 257.
- 4. Wiley, R. H., and G. M. Braver. J. Polym. Sci. 3 (1948): 647.
- 5. Crawford, J. W. C. J. Soc. Chem. Ind. London 68 (1949): 201.
- 6. Reding, F. P., J. A. Faucher, and R. D. Whitman. J. Polym. Sci. 57 (1962): 483.
- 7. Hughes, L. J., and G. L. Brown. J. Appl. Polym. Sci. 5 (1961): 580.
- 8. Rehberg, C. E., and C. H. Fisher. Ind. Eng. Chem. 40 (1948): 1,429.
- 9. Mikhailov, G. P., and V. A. Shevelev. Polym. Sci. USSR 9 (1967): 2,762.
- Lawler, J., D. C. Chalmers, and J. Timar. ACS Div. Rubber Chem. Spring Meeting, May 1967, Paper 42(10).
- 11. Gaur, U. et. al. J. Phys. Chem. Ref. Data. 11 (1982): 1,065.
- 12. Tian, M., and P. Munk. J. Chem. Eng. Data 39 (1994): 742.
- 13. Giurgea, M., C. Ghita, I. Baltog, and A. Lupu. J. Polym. Sci. A2, 4 (1966): 529.
- 14. Sumitimo, H., and Y. Hachihama. Kobunshi Kagaku: Chem. High. Polym. (Tokyo) 10 (1953): 544.
- 15. Sumitimo, H., and Y. Hachihama. Kobunshi Kagaku: Chem. High. Polym. (Tokyo) 12 (1955): 479.
- 16. Mangaraj, D., and S. K. Patra. Makromol. Chem. 107 (1967): 230.
- 17. Brendley, W. H. Jr. Paint Varn. Prod. 63 (1973): 19.
- 18. Craemer, A. S. Kunststoffe 30 (1940): 337.
- 19. Kine, B. B., and R. W. Novak. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1987, Vol. 1, p. 234.
- 20. Wunderlich, W. Angew. Makromol. Chem. 11 189 (1970).
- 21. Hansen, J. E., M. G. McCarthy, and T. J. Dietz. J. Polym. Sci. 7 (1951): 77.
- 22. Hachihama, Y., and H. Sumitomo. Tech. Rept. Osaka Univ. 3 (1953): 385.
- 23. Gardon, J. L. In *Encyclopedia of Polymer Science and Technology*, Vol. 3, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1965, p. 833.
- 24. Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. VII379.

Poly(ethyl acrylate)

- 25. Partington, J. R. An Advanced Treatise of Physical Chemistry: Physico-Chemical Optics, Vol. IV. Longmans, Green and Co., London, 1960.
- Touloukian, Y. S., R. W. Powell, C. Y. Ho, and P. G. Klemens, eds. Thermal Conductivity, Nonmetallic Solids, Vol. 2, Thermophysical Properties of Matter. IFI/Plenum, New York, 1970.
- 27. Liopis, J., A. Albert, and P. Usobiaga. Eur. Polym. J. 3 (1967): 259.
- 28. Kurata, M., and W. H. Stockmayer. Fortschr. Hochpolymer. Forsch. 3 (1963): 196.
- 29. Tobolsky, A. V., D. Carlson, and N. Indictor. J. Polym. Sci. 54 (1961): 175.
- 30. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 31. Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, Woodbury, N.Y., 1996.

Polyethylene, elastomeric (very highly branched)

A. PRASAD

ACRONYM, ALTERNATIVE NAMES POE, polyolefin elastomer, ultra-low-density ethylene copolymer

CLASS Poly(α -olefins)

STRUCTURE
$$-[CH_2-CH_2-CHR-CH_2]_n$$
 (R = α -olefin)

MAJOR APPLICATIONS POE is a new family of ethylene α -olefin copolymers produced using metallocene catalyst. The uncross-linked polymers referred to in this chapter are known to have only moderate elastomeric recovery properties (up to 96%). These copolymers are characterized by a narrow molecular weight distribution (MWD) ($M_{\rm w}/M_{\rm n}=2$ -2.5) and homogeneous comonomer distribution. The control of chain microstructure by the use of metallocene catalyst makes it possible to produce poly(α -olefin) copolymers with considerably lower density, which has not been possible before using the conventional Ziegler-Natta catalyst. Some of the highly branched ethylene copolymers presented in the entry on *Polyethylene*, *metallocene linear low-density*, in this handbook may be closely related.

Engage[®] POE, an octene-1 copolymer, is now commercially available in wide variety of melt indexes and density ranges (over 18 grades) from Dow Chemical Company produced using Dow's proprietary single-site, constrained geometry catalyst (Insite) technology.^(3,6) Engage POEs are known to have small amounts of long chain branching (LCB) to improve processibilty.⁽¹²⁾ Some butene-1 and hexene-1 copolymers of density lower than 0.880 g cm⁻³ made by the Exxon's metallocene catalyst are also known to exhibit moderate elastomeric properties.⁽⁷⁾

The moderate elastomeric properties in these ethylene copolymers have been attributed to the high fractional volume of amorphous phase anchored at multiple points to the minor crystalline domain on the same chains akin to a cross-linked system. $^{(1,3-5,7,9,10)}$ At present, POEs are being actively studied in academic and industrial laboratories. Consequently, only limited data is available in the open literature. Properties listed below are intended to represent best published examples of the most commonly available commercial grades of POEs in the density range of 0.863 to 0.885 g cm $^{-3}$.

POEs have been used in both plastic and rubber applications. These elastomeric polyethylenes have ability to be cross-linked via peroxide, irradiation, and moisture (if silane grafted). Potential applications include tubing, impact modifiers, low-voltage cable insulation, elastic films, foams, shoe soles, belts, automotive hoses, medical applications, gasket seals, and other electrical applications.

PROPERTIES OF SPECIAL INTEREST Modulus/flexibility, elasticity, toughness, processibility, excellent optics and electrical properties, superior heat resistance, and UV stability over cross-linked rubbers such as EPDM and EPM, low brittleness temperature, good chemical resistance to common solvents, and good heat seal.

Polyethylene, elastomeric (very highly branched)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melt index	g (10 min) ⁻¹	D 1238	0.5-30.0+	(6)
Density range	$g\mathrm{cm}^{-3}$	D 792 (commercial resins)	0.863-0.885	(6)
Mooney viscosity range	_	D 1646, ML 1 + 4 at 394 K	<5-35	(6)
Total SCB	mol%	Not specified	4.7-13.6	(3, 4, 13)
Glass transition temperature	K	DSC, density = $0.8717 \mathrm{g cm^{-3}}$ (12 mol% octene-1)	221	(13)
		DMA DMA, $\tan \delta$ peak at 1 Hz, density range = 0.880-0.885 g cm ⁻³ (butene-1)	224 244–239	(3) (7)
Melting temperature	K	DSC (broad melting range from 253–363 K), peak endotherm values	322–349	(3, 4, 6–8, 10, 14)
Crystallinity	%	DSC	9-21	(3, 4, 7, 8, 10, 13)
Heat of fusion	$kJ mol^{-1}$	DSC	0.35-1.1	(3, 4, 7, 8, 10)
Lamella thickness	Å	SAXS	32-53	(9-11)
Avrami exponent	_	DSC and microscopy, octene-1: 46 CH ₃ /1,000 C Isothermal crystallization temperature range: 319-325 K 327-334 K	2.0 1.0	(11)
Tensile modulus	MPa	D 1708, quenched Octene-1, density = $0.8702 \mathrm{g cm^{-3}}$ 25 mm min ⁻¹ draw D 412, 5 mm min ⁻¹ draw, (octene-1, density range = $0.856-889 \mathrm{g cm^{-3}}$)	7.0 12.5 1.5–12.5	(3) (5) (2)
Yield stress	MPa	D 1708, quenched (octene-1, density = $0.8702 \mathrm{g cm}^{-3}$)	None detected	(3)
1% Secant modulus	MPa	D 790 (butene-1, density = $0.885 \mathrm{g cm}^{-3}$)	32–35	(7)
2% Secant modulus	MPa	D 790, density = $0.8717 \mathrm{g cm^{-3}}$ (12 mol% octene-1)	14.8	(13)

Polyethylene, elastomeric (very highly branched)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength at break	MPa	D 638M, 50 mm min ⁻¹	9-30	(5, 6)
Elongation at break	%	D 638M, 50mm min^{-1}	750->1,000	(5, 6)
Tensile strain recovery	%	25.4 cm min ⁻¹ , butene-1 28% strain 70% strain 143% strain	100 96 89	(7)
Permanent tension set	%	4th pull, 100% strain	5-35	(5)
Dynamic compression set	%	D 395B, at 20 Hz, 20% strain, 12,000 cycles at 296 K, density = 0.87 – $0.885 \mathrm{g cm^{-3}}$	4.5-5.75	(8)
Hysteresis loss	%	12,000 cycles at 296 K, density range = 0.87 - $0.885 \mathrm{g cm}^{-3}$ Peroxide cross-linked (4 pph) at 393 K	8-11 1-4	(8)
Hardness	⁰ Shore	D 2240, Shore A	66-79	(6, 13)

REFERENCES

- Hwang, Y. C., et al. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1994, p. 3,414.
- 2. Sehanobish, K., et al. J. Appl. Polym. Sci. 51 (1994): 887.
- 3. Bensason, S. et al. J. Polym. Sci., Polym. Phys. Ed., 34 (1996): 1,301.
- 4. Minick, J., et al. J. Appl. Polym. Sci. 58 (1995): 1,371.
- 5. Chum, P. S., C. I. Kao, and G. W. Knight. Plast. Eng. (June 1995): 21.
- 6. Data supplied courtesy of Dr. D. Parekh, Dow Chemical Company, Freeport, Texas.
- 7. Woo, L., S. P. Westphal, and M. T. K. Ling. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1993, p. 358.
- 8. Minick, J., and K. Sehanobish. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1996, p. 1,883.
- 9. Phillips, P. J., and K. Monar. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1996, p. 1,624.
- 10. Phillips, P. J., and K. Monar. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1997, p. 1,506.
- 11. Phillips, P. J., M. Kim, and K. Monar. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1995, p. 1,481.
- 12. Lai, S., and G. W. Knight. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1993, p. 1,188.
- 13. Dibbern, J. A., M. K. Laughner, and H. C. Silvis. *SPE Proceedings from the X International Conference on Polyolefins*, Houston, Tex., 1997, p. 185.
- Bensason, S., et al. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1996, p. 1,982.

Poly(ethylene imine)

TAREK M. MADKOUR

ACRONYM PEI

CLASS Polyamines

STRUCTURE $[-CH_2-CH_2-NH-]_n$

MAJOR APPLICATIONS PEI offers potential cosmetic uses and new directions for clear antidandruff hair products and antiperspirants. Also used as a wet-strength agent in the paper-making process, a flocculating agent with silica sols, and in the coating of composite hollow-fiber membranes.

PROPERTIES OF SPECIAL INTEREST A special highly branched poly(ethylene amine). A cationic surfactant with natural affinity for hair and skin. A chelating agent with the ability to complex with heavy metal salts such as zinc and zirconium salts.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	_	43.07	(1)
Degree of branching	%	Primary amine groups Secondary amine groups Tertiary amine groups	30 40 30	(2)
Molecular weight range	$g \text{ mol}^{-1}$	Ring opening polymerization	600-70,000	(1)
Typical polydispersity range $(M_{\rm w}/M_{\rm n})$	-	Ring opening polymerization	1.9-56.8	(3)
Heat of polymerization	kJ mol ⁻¹	_	-83.7	(4)
Density	g cm ⁻³	Low mol. wt. PEI at 20°C Mol. wt. (g mol ⁻¹) 60.1 103.1 146.2 189.2	0.8994 0.9586 0.9839 0.9994	(1)
Mark-Houwink parameters: K and a	$K = \text{ml g}^{-1}$ a = None	25° C, 0.1 M Na $1 \times 10^{3} < M_{\rm w} < 2 \times 10^{4}$ $2 \times 10^{4} < M_{\rm w} < 3 \times 10^{6}$	K a 2.32 0.14 0.075 0.43	(5, 6)
pН	_	Commercial form	11-12	(4)

Poly(ethylene imine)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio $\langle r^2 \rangle_0/nl^2$	_	Calculated at 27°C for the isotactic polymer For the syndiotactic polymer	6.21 6.56	(7)
Temperature coefficient $d \ln \langle r^2 \rangle / dT$	$K^{-1} (\times 10^3)$	Calculated theoretically for the isotactic polymer	1.93	(7)
\. //		For the syndiotactic polymer	2.85	

Unit cell dimensions⁽¹⁾

Isomer	Lattice	Monomers	Cell dimension (Å)			Cell angle (degrees)	Density
		per unit cell	а	b	с	β	(g cm ⁻³)
Anhydrate	Ortho	40	29.8	17.2	4.79	Double	1.165
Hemihydrate	Mono	8	10.89	9.52	7.31	127.6	1.152
Sesquihydrate	Mono	8	11.55	9.93	7.36	104.5	1.139
Dihydrate	Mono	4	13.26	4.61	7.36	101.0	1.190

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting point	K	Mol. wt. (g mol ⁻¹) 60.1 146.2 404.7	284 285 331	(1)
Boiling point	K	Mol. wt. (g mol ⁻¹)/mbar 60.1/1,013 103.1/1,013 146.2/1,013 189.2/1,013 318.5/11 404.7/1	389.5 480.1 550.9 606 382–383 472–473	(1)
Cationic charge density	$^{-1}$ milli-equiv g^{-1}	_	20	(4)
Refractive index <i>n</i>	_	25° C, mol. wt. = 404g mol^{-1}	1.5161	(1)
Maximum adsorbtion on pulp fiber	$mg g^{-1}$	$pH = 6$, $M_w = 6 \times 10^5$	0.67	(8)
Adsorption equilibrium constant	$g l^{-1}$	_	3.5	(8)
Free energy of adhesion	kJ mol ⁻¹	_	0.191	(8)

Poly(ethylene imine)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Maximum sorption	%	60 min on virgin hair Low mol. wt. on damaged hair High mol. wt. on damaged hair	1.25 1.5 3.4	(4)
Optimum flocculation dosage	equiv l ⁻¹	PEI PEI:HCl (1:1) PEI:HCl (4:1)	6.0×10^{-4} 3.0×10^{-4} 4.0×10^{-4}	(9)
Maximum use temperature	K	_	523	(2)
Toxicity (LD50)	$\rm g~kg^{-1}$	_	3	(4)

REFERENCES

- 1. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.
- Mark, H., et al., eds. Kirk-Othmer: Encyclopedia of Chemical Technology, 3d ed. Wiley-Interscience, New York, 1984.
- 3. Dermer, O., and G. Ham. Ethylenimine and other Aziridines. Academic Press, New York, 1969.
- 4. Feigenbaum, H. Cosmet. Toiletries 108(8) (1993): 73.
- 5. Hostetler, R., and J. Swanson. J. Polym. Sci., Polym. Chem. 12 (1974): 29.
- 6. Van der Berg, J., C. Bloys von Treslong, and A. Polderman. *Recl. Trav. Chim. Pays-Bas* 92 (1973): 3.
- 7. Wang, S., L. DeBolt, and J. E. Mark. Polym. Prepr. 34(2) (1993): 478.
- 8. Van de Ven, T. Adv. Colloid Interface Sci. 48 (1994): 121.
- 9. Ishikawa, M. J. Colloid Interface Sci. 56 (1976): 596.

LEO MANDELKERN AND RUFINA G. ALAMO

ACRONYMS, TRADE NAMES PE, HDPE, LPE

CLASS Poly(α -olefins)

STRUCTURE $-CH_2-CH_2-$ poly(ethylene) or $-CH_2-$ poly(methylene)

PREPARATIVE TECHNIQUES Type of polymerization: coordination polymerization.

TYPICAL COMONOMERS Alkenes, vinyl acetate, methacrylates, acrylates, methacrylic acid, acrylic acid.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular mass weight of repeat unit	g mol ⁻¹	Ethylene Methylene	28 14	_
Typical molecular mass range	$\mathrm{g}\mathrm{mol}^{-1}$	Very wide range available	$1\times10^38\times10^6$	_
Typical polydispersity (M_w/M_n)	_	Very wide range available	1.07 - >10	_

IR (characteristic adsorption frequencies)⁽¹⁾

Frequency (cm ⁻¹)	Phase	Transition moment orientation*	Assignment
720	Crystalline	b-axis	Out-of-phase CH ₂ rock of the two chains in the unit cell
	Amorphous	\perp <i>b</i> -axis	$CH_2 \operatorname{rock} (tttt)_n, n > 4$
731	Crystalline	a-axis	In-phase CH ₂ rock of the two chains in the unit cell
888	Amorphous	Ï	CH ₂ rock
1,050	Crystalline	Ï	CH ₂ twist
1,078	Amorphous	Ï	Skeletal C-C stretch (<i>g</i> and <i>t</i> conformation)
1,176	Crystalline		CH ₂ wag
1,303	Amorphous		CH ₂ wag (gtg conformation)
1,353	Amorphous	Ï	CH ₂ wag (gg conformation)
1,368	Amorphous	Ï	CH ₂ wag (gtg conformation)
1,463	Crystalline	b-axis	CH ₂ bend
	Amorphous	_	CH ₂ bend
1,473	Crystalline	a-axis	CH ₂ bend
1,820	Crystalline	Ï	Combination of 1,100 or 1,130 + 720, 730 (weak)
1,894	Crystalline	Ï	Combination of CH_2 rock. $1,168 + 720,730$ (weak)
2,016	Both		Combination of 1,294 + 720, 730 (weak)
2,150	Both	Ţ	Combination of CH_2 1,440 + 720, 730 (weak) or 1,100 + 1,050
2,850	_	_	CH ₂ symmetric stretch
2,918	_	_	CH ₂ asymmetric stretch

^{*}With respect to uniaxial stretch.

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
NMR (solution)	$T_1 = s$		T_1	$ au_{0}$	2	
T_1 relaxation time τ_c correlation time 13 C	$\tau_{\rm c}={\rm ns}$	1,2,4-Trichlorobenzene, 383 K	2.52	0.	.019	(2)
		o-Dichlorobenzene, 373 K o-Dichlorobenzene, 303 K (extrapolated)	2.70 1.24		.018 .040	(3) (3, 4)
NMR (melt), 1 H-chemical shift $-(CH_{2})_{n}$	ppm	Reference peak: TMSi 220 MHZ	1.3			(5, 6)
NMR (solid, state), ¹³ C chemical shifts	ppm	Melt crystallized, reference peak: TMSi and solid adamantane 50 MHz, 4.7 T	Crystalline component = 32.9 Liquid-like component = 31.1		(7)	
¹ H dipolar-decoupled, ¹³ C chemical shifts	ppm	Uniaxially oriented films, $M_{\rm v}=3.8\times10^5$, reference peak: TMSi and solid adamantane 50 MHz, $1.4T$	Crystalline component = 11.8 Liquid-like component = 32.6		(8)	
Spin relaxation times	As indicated	Uniaxially oriented films, $M_{\rm v}=3.85\times 10^5$, reference peak: TMSi and solid adamantane $50{\rm MHz}$, $1.4T$	1,100 Liquid	Crystalline component = $1,100 \text{ s}$, 60.5 s , 5 s Liquid-like component = 370 ms , $34 \mu \text{s}$		(8)
¹ H dipolar-decoupled, MAS pulse, ¹³ C NMR, chemical shifts	ppm	Melt crystallized, reference peak: TMSi and solid adamatane 50 MHz, 4.7 T	Liquid	-like comp	ponent = 31	(9)
Spin relaxation times	S		T_{1H}	T_{1C}	T_{2C}	(9)
		Crystalline component, melt crystallized, $M_{\rm v}=3\times10^6$ (unfractionated), $T_{\rm c}=403{\rm K},4$ weeks	1.87	2,560, 263, 1.7	_	
	As indicated	Liquid-like component, melt crystallized, $M_{\rm v}=3\times10^6$ (unfractionated), $T_{\rm c}=403$ K, 4 weeks	0.39 s	0.37 s	2.4 ms	
	As indicated	Interfacial component, melt crystallized, $M_{\rm v}=3\times10^6$ (unfractionated), $T_{\rm c}=403$ K, 4 weeks	1.61 s	0.37 s	0.044 ms	

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
_			$T_{1\mathrm{H}}$	T_{1C}	T_{2C}	(9)
	s	Melt crystallized, $M_{\rm v} = 2.48 \times 10^5$ (fraction), $T_{\rm c} = 402$ K, 23 days				•
		Crystalline component	2.20	2,750, 111, 1.3	-	
		Liquid-like component	0.50	0.41	_	
	S	Interfacial component Solution crystallized, $M_{\rm v}=9.1\times10^4$ (fraction), $T_{\rm c}=358$ K, 0.08 w/v% in toluene	2.04	0.41	_	
		Crystalline component	1.90	220, 21, 2	_	
		Interfacial component	1.9	0.46	_	
Thermal expansion coefficient	$^{\circ}\text{C}^{-1}$	Liquid state (<i>t</i> in °C) 130–207°C	(0.030)	727×10^{-3}) - 0×10^{-5}) t - 20×10^{-7}) t^2 - 21×10^{-9}) t^3		(10)
		140°C	$\alpha_{\rm l} = 7.1$	51×10^{-4}		
	K^{-1}	Crystalline state (semicrystalline) (T in K)		734×10^{-3}) 3×10^{-6}) T	+	(11)
		293–383 K (orthorbombic unit cell)	$\alpha_{\rm c} = 3$	< 10 ⁻⁴		
		298 K	$\alpha_{\rm c} = 2.1$	10×10^{-4}		
Compressibility coefficient	bar ⁻¹	Liquid state, 413–473 K (t in °C)	(0.894/	1,767)e ^{(4.661×3}	$t^{10^{-1}}t$	(11)
		Crystalline state, 293–383 K (<i>t</i> in °C)	0.0894/	(4,758-22.	7 <i>t</i>)	
Density	g cm ⁻³	Liquid state, $403-480 \mathrm{K}$ (t in $^{\circ}\mathrm{C}$)	(0.003	$674 - (0.063)$ $674 \times 10^{-4})t$ $055 \times 10^{-6})t$	2_	(10)
Reducing variables	-	(A) From Simha-Somcynsky(B) From Flory-Orwoll-Vrij(C) From Sanchez-Lacombe	_			(11–13) (10, 14) (15, 16)
Reducing temperatures	K	A: 413–473 K, 0–200 MPa A: 423–476 K, 0–200 MPa A: 415–473 K, 0–200 MPa B: 413 K, 0–3.55 MPa C: 408–471 K, 0–100 MPa	9,250 10,046 9,772 7,300 649			(11) (11) (11) (10) (16)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Reducing pressure	MPa	A: 413-473 K, 0-200 MPa	897	(11)
		A: 423–476 K, 0–200 MPa	716	(11)
		A: 415–474 K, 0–200 MPa	748	(11)
		B: 413 K, 0-3.55 MPa	460	(10)
		C: 408-471 K, 0-100 MPa	358	(16)
Reducing volume	$\mathrm{cm}^3\mathrm{g}^{-1}$	A: 413-473 K, 0-200 MPa	1.129	(11)
	Ü	A: 423-476 K, 0-200 MPa	1.155	(11)
		A: 415-473 K, 0-200 MPa	1.142	(11)
		B: 408-471 K, 0-100 MPa	1.127	(10)
Solvents	Solubility of	only above 353 K. Hydrocarbons, hal	ogenated	_
	hydrocarbo di- <i>n</i> -amyl o	ons and aromatics, higher aliphatic e	esters, ketones,	
	•			
Nonsolvents		n solvents below 353 K. Most polar vated temperatures, inorganic solve		_
Solubility parameters	$(MPa)^{1/2}$	Calculated	16.0, 16.8	(17)
y r	(' ' ' ' '	Calculated	16.2	(18)
		Measured	17.1	(19)
Theta temperature Θ	K	Solvent		
•		Biphenyl	398	(20)
		Biphenyl	401	(21-24)
		Diphenylene oxide	~391	(20)
		Diphenyl ether	434	(23, 25)
		Diphenyl ether	437	(24)
		Dodecanol-1	411	(26, 23)
		Dodecanol-1	417	(22)
		n-Octyl alcohol	453	(21, 24)
		n-Octyl alcohol	458	(23)
		n-Decyl alcohol	427	(21, 23, 24)
		n-Lauryl alcohol	411	(21, 24)
		p-Tertiary amyl alcohol	472	(21, 24)
		p-Octyl phenol	448	(21, 24)
		<i>p</i> -Nonyl phenol	436	(21, 24)
		2-Ethyl hexyl sebacate	423	(20)
		2-Ethyl hexyl adipate	443	(26)
		3,5,5-Trimethyl hexyl acetate	394	(22)
		Anisole	427	(21, 24)
		Benzyl phenyl ether	465	(21, 24)
		Nitrobenzene	>473	(20)
		Di-butyl phthalate	>473	(20)
		<i>n</i> -Pentane	~358	(27)
		<i>n</i> -Hexane	407, 437	(27)
		<i>n</i> -Octane	504, 489	(28)
		" Cetarie	001, 10,	(-0)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCI
Interaction parameter χ	_	Solvent, Temp. (K)		
		cis-Decahydronapthalene, 419	0.08	(29)
		cis-Decahydronapthalene, 426	0.06	(29)
		trans-Decahydronapthalene, 419	0.06	(29)
		trans-Decahydronapthalene, 426	0.05	(29)
		n-Decane, 419	0.32	(29)
		n-Decane, 426	0.31	(29)
		<i>n</i> -Decane, 418–463	0.18	(30)
		n-Decane, 458	0.12	(31)
		2,4-Dimethyl hexane, 419	0.39	(29)
		2,4-Dimethyl hexane, 426	0.36	(29)
		2,5-Dimethyl hexane, 419	0.43	(29)
		2,5-Dimethyl hexane, 426	0.38	(29)
		3,4-Dimethyl hexane, 419	0.32	(29)
		3,4-Dimethyl hexane, 426	0.30	(29)
		n-Dodecane, 419	0.29	(29)
		n-Dodecane, 426	0.28	(29)
		Ethyl benzene, 419	0.37	(29)
		Ethyl benzene, 426	0.37	(29)
		Mesitylene, 419	0.29	(29)
		Mesitylene, 426	0.27	(29)
		3-Methyl hexane, 419	0.42	(29)
		3-Methyl hexane, 426	0.39	(29)
		2-Methyl heptane, 419	0.39	(29)
		2-Methyl heptane, 426	0.39	(29)
		3-Methyl heptane, 419	0.37	(29)
		3-Methyl heptane, 426	0.36	(29)
		n-Nonane, 419	0.35	(29)
		<i>n</i> -Nonane, 426	0.33	(29)
		n-Octane, 419	0.37	(29)
		n-Octane, 426	0.35	(29)
		1,2,3,4-Tetrahydronapthalene, 419	0.33	(29)
		1,2,3,4-Tetrahydronapthalene, 426	0.32	(29)
		1,2,3,4-Tetrahydronapthalene, 383	0.32 0.39	(32) (29)
		Toluene, 419 Toluene, 426	0.39	(29)
		2,2,4-Trimethyl hexane, 419	0.40	
			0.37	(29)
		2,2,4-Trimethyl hexane, 426	0.33	(29) (29)
		2,2,4-Trimethyl pentane, 419 2,2,4-Trimethyl pentane, 426	0.41	(29)
		• -	0.39	
		p-Xylene, 419		(29)
		p-Xylene, 426	0.32 0.34	(29) (29)
		<i>m</i> -Xylene, 419 <i>m</i> -Xylene, 426	0.34	(29)
		m-Aylene, 420	0.34	(49)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Second virial	mol cm ³	Solvent, Temp. (K), $M_{\rm w} \times 10^{-5}$			
coefficient	$g^{-2} \times 10^4$	1-Chloronaphthalene, 398, 1.10–21.6	12.0-0.78		(33)
		1-Chloronaphthalene, 398, 1.75	10.0		(34)
		1-Chloronaphthalene, 398, 1.44	8.6		(34)
		1-Chloronaphthalene, 398, 0.5–5.6	12.4-2.7		(35)
		1-Chloronaphthalene, 408, 1.20	4.0		(36)
		1-Chloronaphthalene, 408, 0.14–1.20	15.9-10.3		(30)
		Diphenyl methane, 415, 0.82–0.89	-0.25 - 0.93		(36)
		<i>n</i> -Decane, 388, 1.44	5.9		(34)
		1,2,4-Trichlorobenzene, 408, 0.94	20.6		(36)
		1,2,4-Trichlorobenzene, 413, 0.11–0.20	45.2-41.1		(37)
		1,2,3,4-Tetrahydronaphthalene, 378, 1.44	21.8		(34)
		1,2,3,4-Tetrahydronaphthalene, 378, 1.25-4.65	23.1-15.9		(38)
		1,2,3,4-Tetrahydronaphthalene, 398, 0.92–2.19	26.8–1.7		(33)
Mark-Houwink	As indicated	Solvent, Temp. (K), $M_{\rm w} \times 10^{-4}$	$\underline{k \times 10^2 \text{ (ml g}^{-1})}$	а	
parameters: K and a	indicated	1,2,4-Trichlorobenzene, 408, 0.08-12.3	5.1	0.71	(39)
		1,2,4-Trichlorobenzene, 408, –	5.2	0.69	(26)
		1,2,4-Trichlorobenzene, 408, 0.6-20	5.6	0.70	(40)
		1,2,4-Trichlorobenzene, 408, 0.07-6.9	3.9	0.73	(41)
		Decalin, 408, 0.2-10.0	6.2	0.70	(25, 42)
		Decalin, 408, 0.3-10.0	6.8	0.67	(43)
		Decalin, 408, 0.3-6.4	4.6	0.73	(44)
		Decalin, 408, —	5.3	0.73	(45)
		Decalin, 408, 0.3-11.7	6.2	0.70	(39, 25)
		Diphenyl ether, 434.6, 0.2-10.0	29.5	0.50	(25)
		1-Chloronapthalene, 398, —	14.0	0.58	(46)
		1-Chloronapthalene, 398, 0.5-5.6	4.3	0.67	(35)
		1-Chloronapthalene, 402, —	2.7	0.71	(47)
		1-Chloronapthalene, 402, —	9.1	0.69	(47)
		1-Chloronapthalene, 403, 0.6-20	5.6	0.68	(41)
		Tetralin, 378, 1.3–5.7	1.6	0.83	(38)
		Tetralin, 393, 0.5–10.0	2.4	0.78	(48)
		Tetralin, 393, 0.03–5.5	3.3	0.77	(49)
		Tetralin, 403, 0.04–5.0	4.4	0.76	(50)
		Tetralin, 403, 0.08–2.0	3.8	0.72	(51)
		<i>p</i> -Xylene, 278, 1.3–5.0	1.7	0.83	(38)
		<i>p</i> -Xylene, 278, 0.1–1.2	1.8	0.83	(52)
		3,5,5-Trimethyl hexyl acetate, 394, 0.1–5.8	_	0.55	(22)
		Dodecanol-1, 401, 0.09-5.8	_	0.61	(22)
		Biphenyl, 401, 0.18-5.8	-	0.60	(22)

			Polyeth	ylene, lir	near hi	igh-density
PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
Huggins constant: k'	_	Solvent, Temp. (K), $M_{\rm w} \times 10^{-5}$				
		Decalin, 408, 0.1–10.0 1-Chloronaphthalene, 403, 0.07–6.9 1,2,4-Trichlorobenzene, 403, 0.07–6.9	0.70 0.22-0.72 0.36-0.79			(43) (41) (41)
Characteristic ratio $\langle r^2 \rangle_0/nl^2$	_	Theoretical, 413 K Dodecanol, 411 K Dodecanol, 401 K Diphenyl methane, 415 K 1-Chloronapthalene, 413 K bis-2-Ethyl hexyl adipate, 418 K Biphenyl , 401 K Diphenyl ether, 434 K	6.9 7.4, 7.6 6.7 7.1 6.8 7.0 6.8 10.3 7.0 6.4			(53) (54) (23, 25, 53) (24) (25) (24) (25) (47) (23) (25)
		Diphenyl ether, 437 K Octanol, 453 K	6.8 6.4			(24) (25)
Lattice	_	Most stable, 1 atmosphere	Orthorhombic		(55, 56)	
Space group	_	Orthorhombic	Pnam	Pnam		(55, 56)
Chain conformation	_	Orthorhombic	Planar zig-zag		(55, 56)	
Unit cell dimensions	Å		а	b	С	
		Orthorhombic, oriented sheet Orthorhombic, fiber Orthorhombic, powder, melt crystallized Orthorhombic, powder, slow, melt crystallized Orthorhombic, solution, expitaxial	7.40 7.41 7.40 7.42 7.48	4.93 4.95 4.93 4.95 4.97	2.53 2.55 2.53 2.55 2.55	(55) (56) (57) (58) (59)
Unit cell content	_	Orthorhombic	4 CH ₂ u	nits		(55, 56)
Lattice	_	Metastable, requires deformation	monocli	nic		(60)
Space group	_	Monoclinic	$C2 \text{ m}^{-1}$			(60)
Chain conformation	_	Monoclinic	Planar z	ig-zag		(60)
Unit cell dimensions	Å	Monoclinic		a = 8.09, b = 4.79, c = 2.53		(60)
Unit cell angle	Degrees	Monoclinic	$\beta = 107.$	9		(60)
Unit cell content	_	Monoclinic	4 CH ₂ u	nits		(60)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Lattice	_	Requires > 3 k bar, near melting point	Hexagonal	(61, 62)
Unit cell dimension	Å	Referred to orthohexagonal axis	a = 8.46, b = 4.88, c = 2.45	(61, 62)
		Referred to hexagonal axis	a = 4.88	(61, 62)
Unit cell content	_	Hexagonal	4 CH ₂ units	(61, 62)
Degree of crystallinity	%	Depends on molecular weight, crystallization conditions, and method of measurement	35-90	(63-65)
Heat of fusion	kJ mol ⁻¹ (of CH ₂	Macroscopic crystal, melting point depression by diluent	4.140	(66, 69)
	units)	Actual finite crystal, depends on molecular weight, crystallization conditions, and method of measurement	1.450-3.730	(63, 65)
Entropy of fusion	$kJ K^{-1}$ mol^{-1} (of CH_2	Macroscopic ideal crystal, from heat of fusion and equilibrium melting temperature	9.9×10^{-3}	(66–70)
	units)	Actual finite crystal, depends on measured enthalpy of fusion	$3.5 - 8.9 \times 10^{-3}$	(63–65, 70)
Density (crystalline)	$g \text{cm}^{-3}$	Orthorhombic unit cell Observed depends on molecular weight and crystallization conditions	0.996 0.92–0.99	(55, 56, 63–65)
Polymorph	-	Stable at atmospheric pressure Metastable, involves deformation Pressure > 3 k bar, near melting temperature	Orthothombic Monoclinic Hexagonal	(55, 56) (60) (61, 62)
Avrami exponent	_	$M (g \text{ mol}^{-1}) = 4,800-5,800, T_c = 125-128^{\circ}\text{C}$	4	(64)
		$M (g \text{ mol}^{-1}) = 7,800-11,500,$ $T_c = 129-128^{\circ}\text{C}$	4	(64)
		$T_{\rm c} = 125 - 126 {\rm C}$ $T_{\rm c} = 125 - 128 {\rm C}$	3	(64)
		$M (g \text{ mol}^{-1}) = 1.4 \times 10^4 - 1.2 \times 10^6,$	3	(64)
		$T_c = 125-132$ °C $M (g \text{ mol}^{-1}) = 3 \times 10^6 - 8 \times 10^6,$ $T_c = 125-130$ °C	2	(64)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition	K	Expansion coefficient	153	(71)
temperature		Expansion coefficient	140	(72)
-		Differential scanning calorimetry	150	(72)
		Adiabatic calorimety	148	(73, 74)
		Dynamic mechanical (5 Hz)	150	(72)
		Dynamic mechanical (0.1-1.0 Hz)	146-155	(75)
		Dynamic mechanical 0.67 Hz	140	(76)
		Dynamic mechanical 4.8 Hz	149	(77)
		Dynamic mechanical 10 ² Hz	160	(78)
		Small angle X-ray, expansion coefficient	148	(79)
		Vibrational spectroscopy	< 180	(80)
β -Transition	K	Dynamic mechanical (3.5 Hz)	258 ± 5	(81, 82)
,		Dynamic mechanical (0.67 Hz)	253	(83)
		Dynamic mechanical (1 Hz)	253	(84)
		Dynamic mechanical (112)	283	(78)
		Expansion coefficient	243	(85)
Turnities	V	Demonsis model (25 H-)	202 241	(93)
α -Transition	K	Dynamic mechanical (3.5 Hz)	303-341	(82)
		Dynamic mechanical (0.1 Hz)	323–383	(75)
		(Value depends on crystallite thickness)		
Equilibrium melting	K	Theoretical	418 ± 1	(86)
temperature		Dilatometry	419	(87)
I		Extrapolated, $T_{\rm m}/T_{\rm c}$	419	(88)
		Extrapolated, Gibbs-Thomson	419	(89)
		Extrapolated, Gibbs-Thomson	419	(90–93)
Directly observed	K	Depends on molecular weight,	391-419	(64, 94)
melting temperature		crystallization conditions, and method of measurement		
Ugat capacity	kJK^{-1}	Experimental 100 V exystalling	9.45×10^{-3}	(05)
Heat capacity	mol^{-1}	Experimental 100 K, crystalline	43.87×10^{-2}	(95)
	moi	Experimental, liquid 608 K Extrapolated, liquid 300 K	30.89×10^{-2}	
		Extrapolated, fiquid 500 K	30.69 × 10	
Tensile modulus	MPa	Initial modulus: depends on	60-290	(96)
		molecular mass and morphological		
D. II.		structure	D	
Bulk modulus	_	_	Reciprocal of	_
			compressibility	
Storage modulus	MPa	$T = 298 \mathrm{K}$, slow cooled	800	(77)
<u>-</u>		$T = 253 \mathrm{K}, d = 0.936 \mathrm{g cm^{-3}}, 0.67 \mathrm{Hz}$	600	(83)
		$T = 253 \mathrm{K}$, crystallinity 0.40, 1 Hz	400	(75)
				, ,

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Loss modulus	MPa	T = 298 K, slow cooled, 0.67 Hz $T = 253 \text{ K}$, $d = 0.936 \text{ g cm}^{-3}$, 0.67 Hz T = 253 K, crystallinity 0.40, 1 Hz	6.2 7.6 8.0		(77) (83) (75)
Tensile strength	МРа	Depends on molecular mass, based on original cross-section, strain rate 10^{-1} s ⁻¹ , $T = 298$ K	10-60		(96)
Yield stress	MPa	Depends on crystallinity level, strain rate 10^{-1} s^{-1} , $T = 298 \text{ K}$	18-32		(96)
Maximum extensibility (L/L_0)	-	Depends on molecular mass, strain rate 10^{-1} s ⁻¹ , $T = 298$ K	18-4		(96)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	Izod (notched), $d = 0.94-0.97 \mathrm{g cm}^{-3}$	30-200		(97)
Hardness	Shore D	_	45-70		(98)
Plateau modulus	MPa	378 K 413 K	2.2 2.6		(99) (100)
Entanglement molecular weight	g mol ⁻¹	378 K 413 K	1,100 800		(99) (100)
WLF parameters:	_		C_1	C_2	
C_1 and C_2		$M_{\rm v} = 2 \times 10^6$ (unfractionated), calculated from ¹³ C NMR	12.5	34.3	(101)
		correlation times, $T_{\rm g}=173~{\rm K}=T_{\rm ref}$ $M_{\rm n}=6\times10^5$, $M_{\rm w}=4\times10^6$, dynamic mechanical, 1 Hz, $T_{\rm g}=155~{\rm K}=T_{\rm ref}$ Degree of crystallinity = 0.40 Degree of crystallinity = 0.50 Degree of crystallinity = 0.70	15.0 15.4 16.3	50.5 50.0 48.0	(75)
Abrasion resistance	$g\mathrm{MHz}^{-1}$	Tabor	2-10		(98)
Index of refraction	on –	Crystal, $\lambda = 5,461 \text{ Å}$, $T = 298 \text{ K}$	$lpha \simeq eta = 1.520, \ \gamma = 1.582$		(102)
		Amorphous, $\lambda = 5,461 \text{Å}$ T = 403 K T = 412.9 K T = 423.6 K	1.4327 1.4297 1.4261		(103)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Refractive index	mlg^{-1}	Solvent, Temp. (K)	$\lambda = 436 \mathrm{nm}$	$\lambda = 546 \mathrm{nm}$	
increment		Biphenyl, 396	_	-0.174	(103)
		Biphenyl, 408	-0.195	-0.172	(104)
		Biphenyl, 400	-0.202	-0.176	(104)
		Bromobenzene, 408	-0.101	-0.089	(104)
		1-Chloronaphtalene, 363	_	-0.198	(42)
		1-Chloronaphtalene, 387–424	_	-0.196 - 0.194	(105)
		1-Chloronaphtalene, 398	_	-0.195	(42)
		1-Chloronaphtalene, 408	_	-0.190	(42)
		1-Chloronaphtalene, 400	_	-0.191	(106)
		1-Chloronaphtalene, 403	_	-0.193	(107)
		1-Chloronaphtalene, 408	_	-0.193	(108)
		1-Chloronaphtalene, 418	_	-0.196	(107)
		1-Chloronaphtalene, 418	_	-0.188 -0.193	(109)
		1-Chloronaphtalene, 418	-0.215	-0.192	(110)
		<i>n</i> -Decane, 384–422	_	0.087-0.099	(105)
		n-Decane, 408	0.117	0.114	(104)
		<i>n</i> -Decane, 379–408	0.116-0.132	0.113-0.126	(111)
		p-Dibromobenzene, 408	-0.179	-0.162	(104)
		o-Dichlorobenzene, 408	-0.091	-0.081	(104)
		o-Dichlorobenzene, 408	-0.095	-0.083	(104)
		Diphenyl methane, 415	-0.146	-0.129	(104)
		1-Dodecanol, 410	0.048	0.046	(104)
		1-Methyl napthalene, 408	-0.206	-0.177	(104)
		Tetrahydronapthalene, 408	-0.087	-0.077	(104)
		Tetrahydronapthalene, 368-417	_	-0.091- 0.080	(105)
		1,2,4-Trichlorobenzene, 408	-0.125	-0.192– 011	(104, 110)
Surface tension	$Nm^{-1}\times 10^{-5}$	Pendant drop			
		413 K	28.8		(112, 113)
		453 K	26.5		(112, 113)
		298 K (extrapolated)	35.7		(112, 113)
		423 K	28.1		(114)
		423 K	26.4		(115)
		Wilhelm plate			(116)
		485 K	24.5		
		458 K	26.0		
		293 K (extrapolated)	36.0		
		Maximum bubble pressure, 423 K	22.8		(117)
		Pendant drop, poly(styrene)			(118)
		293 K (extrapolated)	8.6		
		413 K	5.9		
		453 K	5.1		
		Pendant drop, poly(n-butyl			(118)
		methacrylate)			
		293 K (extrapolated)	7.1		
		413 K	5.3		
		453 K	4.7		

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Surface tension	$N m^{-1} \times 10^{-5}$	Pendant drop, poly(methyl		(118)
		methacrylate)		
		293 K (extrapolated)	11.9	
		413 K	9.7	
		453 K	9.0	
		Pendant drop, poly(ethylene oxide), 423 K	9.5	(115)
		Pendant drop, poly(dimethyl siloxane), 423 K	5.1	(115)
		Pendant drop,	4.1	(115)
		poly(tetrahydrofuran), 423 K	1.1	(110)
		Pendant drop, poly(ethylene- vinyl acetate, 423 K	1.3	(115)
		Pendant drop, poly(vinyl acetate),		
		453 K	10.2	(113)
		423 K	9.8	, ,
				(115)
		413 K	11.3	(113)
		293 K (extrapolated)	14.5	(113)
		Spinning drop, poly(styrene), 473 K	4.4	(119)
		Spinning drop, poly(hexamethylene	10.7	(119)
		adipamide), 523 K		
		Spinning drop, poly(methyl methacylate), 473 K	10.0	(119)
Permeability	cm3 ³ (STP)	Semicrystalline, $d = 0.964 \mathrm{g cm^{-3}}$,		(120)
coefficient P	$cm^{-1} s^{-1}$ atm^{-1} $(\times 10^{-8})$	permeant He, 298 K	0.87	` ,
	,	O ₂ , 298 K	0.31	
		Ar, 298 K	1.29	
		CO ₂ , 298 K	0.28	
		CO, 298 K	0.15	
		N ₂ , 298 K	0.13	
		CH ₄ , 298 K	0.30	
		C_2H_6 , 298 K	0.45	
		C_3H_4 , 298 K	3.06	
		C_3H_6 , 298 K	0.88	
		C_3H_8 , 298 K	0.41	
		SF ₆ , 298 K	0.0064	
		H ₂ S, 293 K	6.5	
Thermal conductivity	$W m^{-1} K^{-1}$	-	0.52	(121)

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
Melt viscosity	Pa s	Zero shear, fractions temp. (K)	410 K	465 K	468 K	(122)
		$M_{\rm w} = 13,600; M_{\rm w}/M_{\rm n} = 1.12$		_	2.52	_
		$M_{\rm w} = 19{,}300; M_{\rm w}/M_{\rm p} = 1.11$	2.57	10.1	_	
		$M_{\rm w} = 32,100; M_{\rm w}/M_{\rm p} = 1.11$	_	_	28,500	
		$M_{\rm w} = 33,900; M_{\rm w}/M_{\rm n} = 1.10$	157.0	64.5	_	
		$M_{\rm w} = 58,400; M_{\rm w}/M_{\rm n} = 1.10$	708.0	28.0	_	
		$M_{\rm w} = 77,400; M_{\rm w}/M_{\rm n} = 1.19$	1,630.0	64.0	_	
		$M_{\rm w} = 119,600; M_{\rm w}/M_{\rm n} = 1.18$	_	_	8,000	
		$M_{\rm w} = 520,000; M_{\rm w}/M_{\rm n} = 1.18$	_	_	28,500	
Coefficient of	_	Sliding on steel				(123)
sliding fraction		Polished	0.60			()
O		Abraded	0.33			
Speed of sound	${\rm m\ s}^{-1}$	273 K	1,600			(124)

REFERENCES

- Noda, I., A. E. Dowrey, and C. Marcott. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, p. 291.
- Bovey, F. A. In Stereodynamics of Molecular Systems, edited by R. H. Sharma. Pergamon, Oxford, 1979.
- 3. Inoue, Y., A. Nishioka, and R. Chujo. Makromol. Chem. 168 (1973): 163.
- 4. Heatley, F. Polymer 16 (1975): 493.
- 5. Ferguson, R. C. ACS Polymer Preprints 8(2) (1967): 1,026.
- 6. Bovey, F. A. High Resolution NMR of Macromolecules. Academic Press, New York (1972).
- 7. VanderHart, D. L. J. Chem. Phys. 84 (1986): 1,196.
- 8. Nakagawa, M., F. Horii, and R. Kitamaru. Polymer 31 (1990): 323.
- 9. Kitamaru, R., F. Horii, and K. Muruyama. Macromolecules 19 (1986): 636.
- 10. Orwoll, R. A., and P. J. Flory. J. Amer. Chem. Soc. 89 (1967): 6,814.
- 11. Olabisi, O., and R. Simha. Macromolecules 8 (1975): 206.
- 12. Simha, S., and T. Somcynsky. Macromolecules 2 (1969): 342.
- 13. Simha, R. Macromolecules 10 (1977): 1,025.
- 14. Flory, P. J., R. A. Orwoll, and A. Vrij. J. Amer. Chem. Soc. 86 (1964): 3,507.
- 15. Sanchez, I. C., and R. H. Lacombe. J. Phys. Chem. 80 (1976): 2,352.
- 16. Sanchez, I. C., and R. H. Lacombe. J. Polym. Sci., Poly. Ltrs. 15B (1977): 71.
- 17. Hayes, R. A., J. Applied Polym. Sci. 5 (1961): 318.
- 18. Tobolsky, A. V. Properties and Structure of Polymers. Wiley, New York, 1960, p. 64.
- 19. Allen, G., et al. Polymer 1 (1960): 467.
- 20. Stacey, C. J., and R. L. Arnett. J. Phys. Chem. 69 (1965): 3,109.
- 21. Nakajima, A., H. Fujiwara, and F. Hamada. J. Polym. Sci., Part A-2, 4 (1960): 507.
- 22. Wagner, H. L., and C. A. Hoeve. J. Polym. Sci. 54C (1976): 327.
- 23. Chiang, R. J. Phys. Chem. 70 (1966): 2,348.
- 24. Nakajima, A., F. Hamada, and S. Hayashi. J. Polym. Sci. 15C (1966): 285.
- 25. Chiang, R. J. Phys. Chem. 69 (1965): 1,645.
- 26. Constantin, D. Europ. Polym. J. 13 (1977): 907.
- 27. Nakajima, A., and F. Hamada. Report Polymer Phys. Japan 9 (1966): 41.
- 28. Hamada, F., K. Fujisawa, and A. Nakajima. Polymer 4 (1973): 316.
- 29. Schreiber, H. P., Y. B. Tewari, and D. Patterson. J. Polym. Sci.: Phy. Ed. 11 (1973): 15.

- 30. Patterson, D., Y. B. Tewari, and H. P. Schreiber. Macromolecules 4 (1971): 356.
- 31. Brockmeier, N. F., R. W. McCoy, and J. A. Meyer. Macromolecules 5 (1972): 130.
- 32. Tung, L. H. J. Polym. Sci. 24 (1957): 333.
- 33. Tung, L. H. J. Polym. Sci. A2 (1964): 4,875.
- 34. Kokle, V., F. W. Billmeyer, Jr., L. T. Muus, and E. J. Newitt. J. Polym. Sci. 62 (1962): 251.
- 35. Atkins, J. T., L. T. Muus, C. W. Smith, and E. T. Pieski. J. Amer. Chem. Soc. 79 (1957): 5,089.
- 36. Stejskal, J., J. Horska, and P. Kratocvichil. J. Appl. Polym. Sci. 27 (1982): 3,929.
- 37. Mirabella, F. M. Jr. J. Appl. Polym. Sci. 25 (1980): 1,775.
- 38. Trementozzi, Q. A. J. Polym. Sci. 36 (1959): 113.
- 39. Otocka, E. P., R. J. Roe, M. Y. Hellman, and P. M. Miglia. Macromolecules 4 (1971): 507.
- 40. Hert M., and C. Strazielle. Makromol. Chem., 184 (1983): 135.
- 41. Wagner, H. L., and C. A. J. Hoeve. J. Polym. Sci.: Polym. Phys. Ed. 11 (1973): 1,189.
- 42. Chiang, R. J. Polym. Sci. 36 (1959): 91.
- 43. Francis, P. S., R. Cooke, Jr., and J. H. Elliot. J. Polym. Sci. 31 (1957): 453.
- 44. Henry, P. M. J. Polym. Sci. 36 (1959): 3.
- 45. Tung, L. H. J. Polym. Sci. 36 (1959): 287.
- 46. Wesslau, H. Makromol. Chem. 20 (1956): 111.
- 47. Kotera, A., T. Saito, K. Takamisawa, and Y. Miyazawa. Report Prog. Polymer Soc. Japan. 3 (1960): 58.
- 48. Duch, E., and L. Küchler. Z. Electrochem. 60 (1956): 218.
- 49. Wesslau, H. Makromol. Chem. 26 (1952): 96.
- 50. Kaufman, H. S., and E. K. Walsh. J. Polym. Sci. 26 (1957): 124.
- 51. Stacy, C. J., and R. L. Arnett. J. Polym. Sci. A2 (1964): 167.
- 52. Krigbaum, W. R., and Q. A. Trementozzi. J. Polym. Sci. 28 (1958): 295.
- Flory, P. J. Statistical Mechanics of Chain Molecules, revised ed. Hanser Publishers, New York, 1988.
- 54. Abe, A., R. L. Jernigan, and P. J. Flory. J. Amer. Chem. Soc. 88 (1966): 631.
- 55. Bunn, C. W. Trans. Farad. Soc. 35 (1939): 482.
- 56. Busing, W. R. Macromolecules 23 (1990): 4,608.
- 57. Kawaguchi, A., M. Ohara, and K. Kobayashi. J. Macromol. Sci. Phys. B16 (1973): 193.
- 58. Zugenmaier, P., and H.-J. Cantow. Kolloid-Z. Z. Polymer 230 (1968): 229.
- 59. Hu, H., and D. L. Dorset. Acta. Cryst. B45 (1989): 283.
- 60. Seto, T., T. Hara, and T. Tanaka, Japan J. Appl. Phys., 7 31 (1968).
- 61. Bassett, D. C., S. Block, and S. Piermarina. J. Appl. Phys. 45 (1974): 4,146.
- 62. Yasuniwa, F., R. Enoshito, and T. Takemura. Japan J. Appl. Phys. 15 (1970): 142.
- 63. Fatou, J. G., and L. Mandelkern. J. Phys. Chem. 69 (1965): 417.
- 64. Ergoz, E., J. G. Fatou, and L. Mandelkern. Macromolecules 5 (1972): 147.
- 65. Mandelkern, L. Polym. J. 17 (1985): 337.
- 66. Flory, P. J., and A. Vrij. J. Amer. Chem. Soc. 85 (1963): 3,548.
- 67. Quin, F. A. Jr., and L. Mandelkern. J. Amer. Chem. Soc. 80 (1958): 31,781.
- 68. Mandelkern, L. Rubber Chem. Tech. 32 (1959): 1,392.
- 69. Nakajima, A., and F. Hamada. Koll. Z. Z. Polymer 205 (1965): 55.
- 70. Sharma, R. K., and L. Mandelkern. Macromolecules 2 (1969): 266.
- 71. Dannis, M. L. J. Appl. Polym. Sci. 1 (1959): 121.
- 72. Stehling, F. C., and L. Mandelkern. Macromolecules 3 (1970): 242.
- 73. Beatty, C. L., and F. E. Karasz. J. Macromol. Sci. Rev. Macromal. Chem. C17 (1971): 37.
- 74. Simon, J., C. L. Beatty, and F. E. Karasz. J. Thermal Anal. 7 (1975): 187.
- 75. Alberola, N., J. Y. Cavaille, and J. Perez. European Polym. J. 28 (1992): 935.
- 76. Gray, R. W., and N. G. McCrum. J. Polym. Sci., Part A-2, 7 (1969): 1,329.
- 77. Flocke, H. Kolloid Z. Z. Polymere 180 (1962): 118.
- 78. Willbourn, A. H. Trans. Farad. Soc. 54 (1958): 717.
- 79. Fischer, E. W., and F. Kloos. J. Polym. Sci. Polym. Ltrs. 8B (1970): 685.
- 80. Hendra, P. J., H. Jobic, and K. Holland-Moritz. J. Polym. Sci. 13B (1975): 365.
- 81. Popli, R., and L. Mandelkern. Polym. Bull. 9 (1983): 260.
- Popli, R., M. Glotin, L. Mandelkern, and R. S. Benson. J. Polym. Sci., Polym. Phys. Ed. 22 (1984): 407.

- 83. Cooper, J. W., and N. G. McCrum. J. Material Sci. Ltrs. 7 (1972): 1,221.
- 84. Moore, R. S., and S. Matsuoka. J. Polym. Sci. 5C (1964): 163.
- 85. Magill, J. H., S. S. Pollack, and D. P. Wyman. J. Polym. Sci. A3 (1965): 3,781.
- 86. Flory, P. J., and A. Vrij. J. Amer. Chem. Soc. 85 (1963): 3,548.
- 87. Rijke, A. M., and L. Mandelkern. J. Polym. Sci. A-2 8 (1970): 225.
- 88. Gopalan, M., and L. Mandelkern. J. Phys. Chem. 71 (1967): 3,833.
- 89. Chivers, R. A., P. J. Barham, I. Martinez-Salazar, and A. Keller. J. Polym. Sci., Poly. Phys. Ed. 20 (1982): 1,717.
- 90. Brown, R. J., and R. K. Eby. J. Appl. Phys. 35 (1964): 1,156.
- 91. Huseby, T. W., and H. E. Bair. J. Appl. Phys. 39 (1968): 4,969.
- 92. Hoffman, J. D., G. T. Davis, and J. I. Lauritzen, Jr. In *Treatise in Solid State Chemistry*, Vol. 3, edited by N. B. Hannay. Plenum Press, New York, 1976, p. 497.
- 93. Bair, H. E., T. W. Huseby, and R. Salovey. ACS Polym. Preprints 9 (1968): 795.
- 94. Fatou, J. G., and L. Mandelkern. J. Phys. Chem. 69 (1965): 417.
- 95. Gaur, U., and B. Wunderlich. J. Phys. Chem. Ref. Data 10 (1981): 119.
- 96. Kennedy, M. A., A. J. Peacock, and L. Mandelkern. Macromolecules 27 (1994): 5,279.
- 97. Brostow, W., J. Kubát, and M. M. Kubát. *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, p. 313.
- 98. Aggarwal, S. L. *Polymer Handbook*, Vol. 13, 2d ed., edited by J. Brandrupand and E. H. Immergut. John Wiley, New York, 1975.
- Graessley, W. W. In *Physical Properties of Polymers*, 2d ed., edited by J. E. Mark. American Chemical Society, Washington, D.C., 1992, p. 97.
- Fetters, L. J., D. J. Lohse, and R. H. Colby. *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, p. 335.
- 101. Dekmazian, A., et al. J. Polym. Sci.: Polym. Phys. Ed. 23 (1985): 367.
- 102. Bryant, W. M. D. J. Polym. Sci. 2 (1947): 547.
- 103. Scholte, Th. G. J. Polym. Sci. A-2 6 (1968): 91.
- 104. Horska, J., J. Stejkal, and P. Kratocvichil. J. Appl. Polym. Sci. 24 (1979): 1,845.
- 105. Ehl, J., C. Loucheux, C. Reiss, and H. Benoit. Makromol. Chem. 75 (1964): 35.
- 106. Casper, R., U. Bishop, H. Lange, and U. Pohl. Makromol. Chem. 177 (1976): 1,111.
- 107. Peyrouset, A., R. Prechner, R. Panaris, and H. Benoit. J. Appl. Polym. Sci. 19 (1975): 1,363.
- 108. Suzuki, H., Y. Muraoka, and H. Inagoki. J. Polym. Sci. Polym. Phys. Ed. 19 (1981): 189.
- 109. Wagner, H. L. J. Res. Natl. Bur. Stnds. 76A (1972): 151.
- 110. Horska, J., J. Stejkal, and P. Kratocvichil. J. Appl. Polym. Sci. 28 (1983): 3,873.
- 111. Böhn, L. L., U. Lanier, and M. D. Lechner. Makromol. Chem. 184 (1983): 585.
- 112. Wu, S. J. Polym. Sci. C34 (1971): 19.
- 113. Wu, S. J. Colloid and Interface Sci. 31 (1969): 153.
- 114. Roe, R. J. J. Phys. Chem. 72 (1968): 2,013.
- 115. Roe, R. J. J. Colloid and Interface Sci. 31 (1969): 228.
- 116. Dettre, R. H., and R. E. Johnson, Jr. J Colloid and Interface Sci. 21 (1966): 367.
- 117. Hybart, F. J., and T. R. White. J. Appl. Polym. Sci. 3 (1960): 118.
- 118. Wu, S. J. Phys. Chem. 74 (1970): 632.
- 119. Elmendorp, J. J., and G. DeVos. *Polym. Eng. Sci.* 26 (1986): 415.
- 120. Michaels, A. S., and H. J. Bixler. J. Polym. Sci. 50 (1961): 413.
- 121. Yang, Y. In *Physical Properties of Polymer Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, p. 111.
- 122. Raju, V. R., et al. J. Polym. Sci. Polym. Phys. 17 (1979): 1,183.
- 123. Brandrup, J., and E. Immergut, eds. *Polymer Handbook*, Vol. 18, 3d ed. John Wiley, New York, 1989.
- 124. Baccaredda, M., E. Butta, and V. Frosiui. Makromol. Chem. 61 (1963): 14.

A. PRASAD

ACRONYMS, ALTERNATIVE NAMES LLDPE, low-pressure PE, poly(α -olefin) copolymer

CLASS Poly(α -olefins)

STRUCTURE $-[CH_2-CH_2-CHR-CH_2]_n$ (R = α -olefin)

INTRODUCTION LLDPE is the common name for copolymers of ethylene with α -olefin comonomer. The comonomers most frequently used commercially are butene, hexene, and octene. Commercial grade LLDPE resins with 4-methyl-1-pentene (4-MP-1) as comonomer is also available. LLDPE prepared by the conventional Ziegler-Natta catalyst system always exhibit high heterogeneity in the intermolecular distribution of comonomer units along the polymer chains. (1-5) The branches are preferentially located in the lower molecular weight chains; thus the bulk of LLDPE behaves as if it were a blend of high molecular weight, linear molecules and low molecular weight, branched molecules. LLDPE differs from LDPE principally through a lack of long-chain branching (LCB) and a narrower molecular weight distribution (MWD).

New types of LLDPEs based on the metallocene catalyst technology have been introduced recently in the market place. Such LLDPEs are characterized by narrower molecular weight and homogeneous short-chain branching distribution. (6-9) Some of the metallocene catalyst based octene-1 LLDPE copolymers made by the Dow Chemical Company are known to have LCB. (9) For the properties of metallocene LLDPE see the entry *Polyethylene, metallocene linear low density,* in this handbook.

LLDPE is commercially available in wide variety of melt indexes (MI) and density ranges. The properties of LLDPE are functions of molecular weight (MW), MWD, density, type, and amount of comonomer. (10–13) The comonomers are also referred to as short-chain branches (SCB). Consequently, physical and mechanical properties also vary accordingly. Mechanical properties such as tensile, tear, and impact are strongly dependent on the chemical nature of the comonomer type. Therefore, it is difficult to list all properties separately. The values of the properties shown in the following table are given in ranges because of their dependence on molecular structure and type of comonomer and are intended to represent the best published examples of the most commonly used commercial grades of LLDPE resins. The physical properties of extruded materials may vary substantially from those of the compression molded materials. For illustration purposes, a few of the physical properties that depend on the chemical nature of the comonomer are presented in Tables 3, 6, and 7.

MAJOR APPLICATIONS Major applications include blown and cast films for bags, shrink-wrap, packaging, and injection molding. Such films exhibit exceptional toughness, dart impact, and puncture resistance when compared to blown films of LDPE. Other applications include blow molding, pipe and conduit, lamination, coextrusion, rotomolding, and wire and cable coatings. There is considerable use of blends of LLDPE with LDPE in a wide variety of applications.

PROPERTIES OF SPECIAL INTEREST Low cost, flexibility, toughness, high impact strength, low brittleness temperature, good chemical resistance to acids and aqueous solvents, good dielectric properties, good heat seal properties, and much better thermal, stress-crack resistance, and moisture barrier properties when compared to LDPE. The limitations include poor resistance to oxidizing agents; aliphatic, aromatic and polar liquids; and chlorinated solvents. LLDPE is relatively difficult to process by extrusion due to narrower MWD and poor optical clarity when compared to LDPE.

MAJOR SUPPLIERS Equistar Chemicals LP, Dow Chemical Co., Chevron Chemical Co., Du Pont Co., Exxon Chemical Co., Eastman Chemical Co., Union Carbide Corp., Mobil Polymers, Montell Polyolefins, Solvay Polymers, Inc., Novacor Chemicals, Inc.

Catalyst for LLDPE^(11,14,15)

POLYMERIZATION PROCESS	CATALYST SPECIFICATION	POLYMERIZATION CONDITION
Gas-phase fluidized bed polymerization, solution polymerization, slurry polymerization, and polymerization in melt under high ethylene pressure	 LLDPEs are produced with two broad class of catalysts: (1) Ziegler catalyst: derivative of a transition metal (such as titanium) and organoaluminium compound (such as triethylaluminium) supported on inorganic and organic support (such as silica, magnesium dichloride etc.) (2) Chromium oxide-based catalysts from Phillips Petroleum Co.: these are mixed silica titania support containing 2–20 wt% of titania and a co-catalyst (i.e., trialkylaluminum compounds). These catalysts produce LLDPEs of very broad MWD (M_w/M_n in the range of 12–35) and MI in the 80–200 range 	Typical heterogeneous Ziegler catalysts operate at temperature range of 343–373 K and low pressures of 0.1 to 2 MPa in inert liquid medium (e.g., hexane and isobutane) or in the gas phase

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Typical comonomers	_	Butene, hexene, octene, and 4-MP-1	_	(1, 3, 4, 11, 12, 16)
Degree of branching, commercial grades	mol%	D 2238, NMR	2–4	(11)
Typical molecular weight range (M_w)	$g \text{mol}^{-1}$	GPC, in 1,2,4-trichlorobenzene (TCB) at 408 K	5-20 (×10 ⁴)	(11)
Typical polydispersity index $(M_{\rm w}/M_{\rm n})$	_	GPC	4-35	(11)
IR (characteristic absorption frequencies)	cm ⁻¹	D 2238	See table below	(17-23)

Characteristic IR bands used to identify the type of short-chain branching*

Comonomer type Methyl deformation band position (cm ⁻¹)		Methyl rocking band position [†] (cm ⁻¹)	Reference
Butene-1	1,379	908, 887, 771(vs)	(17-23)
Hexene-1	1,377.8	908, 894(vs), 837(s), 779(w)	(17-23)
Octene-1	1,377.6	908(vs), 889(s)	(17-23)
4-MP-1	1,383	908, 920(s)	(22)

^{*}See also the entry on LDPE in this handbook.

[†]vs, s, w refer to the intensities of the absorbance bands: very strong, strong, and weak, respectively.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
NMR	ppm	TCB/d6-benzene solution at 398 K	See Table 1	(24-27)
Linear thermal expansion coefficient	K^{-1}	D 696, 308-423 K	16-20 (×10 ⁻⁵)	(28)
Solvents	-	368 K 369 K 371 K 341 K 374 K	Decalin, toluene Xylene Tetralin Cyclohexene <i>n</i> -Tetracosane	(29) (29) (29) (30) (30)
Nonsolvents	_	359 K 361 K 366 K	Methylene chloride <i>o</i> -Dichloro benzene 1,2-Dichloropropane	
Mark-Houwink parameter: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ a = None	Decahydronaphthalene, 410 K TCB, 408 K	$K = 4.6 \times 10^{-4},$ a = 0.73 $K = 3.63 \times 10^{-4},$ a = 0.72	(31, 32) (33)
Crystallographic data	Å	Unit cell dimensions depends on comonomer type and amount, and lamellae thickness	See Table 2	(13, 24, 34–36)
Degree of crystallinity	%	DSC (see also Table 3)	33–53	(3–6, 11, 24, 35, 37)
Heat of fusion	$kJ mol^{-1}$	DSC (see also Table 3)	1.37-2.18	(3-6, 11, 24, 35, 37)
Density, commercial resin	$\rm gcm^{-3}$	D 1505-85 D 792	0.912-0.930	(10–12) (28)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Avarami exponent	-	Dependent on counit content and is independent of counit type; copolymer fractions of butene-1 4-MP-1 and octene-1 = 0.7-5.2 mol% range; isothermal crystallization range = 365-385 K	1.8-2.8	(4)
Long period spacing and lamellae thickness	Å	Raman longitudinal acoustic mode (LAM) and small-angle X-ray scattering (SAXS)	See Table 4	(5, 24, 35– 37)
Surface free energy $\sigma_{\rm e}$ (chain-folding crystal face)	$\mathrm{J}\mathrm{m}^{-2}$	Dependent on counit content; counit content range = 0.70-7.6 mol%	0.067-0.225	(4, 38, 39)
Crystal phase structure	%	Raman LAM	See Table 3	(40)
Crystal orientation and birefringence	_	Wide-angle X-ray (WAXD) and infrared diachroism	See Table5	(41)
Radius of gyration $R_{\rm G}/M^{0.5}$	$\mathrm{Amol}^{0.5g^{0.5}}$	Hydrogenated polybutadiene, 18 ethyl/1,000 C, SANS	0.440	(42)
Melting temperature	K	DSC peak endotherms (dual endotherm, peak range)	378–383, and 394–398	(3-6, 11, 24, 35, 37)

Equilibrium melting point $T_{\rm m}^{(4,37-39,43,44)}$

Copolymer	M _w	${\it M}_{\rm w}/{\it M}_{\rm n}$	Counit (mol%)	Method	T _m (K)	Reference
Butene-1	_	_	2.2	Thompson-Gibbs	406	(37, 38)
Butene-1	_	_	7.3	Thompson-Gibbs	407, 411	(37, 38)
Octene-1 (metallocene)	98400	2.2	1.5	Thompson-Gibbs	412.5	(44)
Octene-1 (metallocene)	102,700	2.1	3.6	Thompson-Gibbs	407.3	(44)

Note: The equilibrium melting temperature $(T_{\rm m}^0)$ of copolymers depends on the molecular weight, sequence distribution and counit content. The $T_{\rm m}^0$ value is determined by two commonly used techniques: the Hoffman-Weeks plot and the Thompson-Gibbs plot. The application of the Hoffman-Weeks method to determine the $T_{\rm m}^0$ of a copolymer is unreliable (see reference 43). The more reliable method is to use the Thompson-Gibbs relationship of $T_{\rm m}$ as a function of lamellar thickness, provided a large range of lamella thickness can be obtained. Considerable disagreement exists between different authors on the exact value of transition that can be identified for the copolymers. Consequently, values tabulated in this table must be used cautiously. See references (39, 43, and 44) for detailed discussions.

Transition temperatures and activation energy*

Copolymer	Designation	Temperature range (K)	Activation energy (kJ mol ⁻¹)	Reference
Octene-1	α	333	62	(45)
(Dow 321)	β	253	319	(45)
$\tan \delta$ peak at 10 Hz	γ	153	40	(45)
Octene-1	α	333	_	(46)
$MI = 3.3$, density = $0.912 \mathrm{g cm^{-3}}$	β	256	_	(46)
$\tan \delta$ peak at 1 Hz	γ	150	_	(46)
Butene-1	α	304	_	(46)
$MI = 1$, density = $0.890 \mathrm{g cm^{-3}}$	β	253	_	(46)
$\tan \delta$ peak at 1Hz	γ	155	_	(46)

^{*}Conditions: DMA.

Note: The transitions and relaxation temperatures associated with amorphous regions are designated as α , β , γ , etc. in descending temperature order. The values of T_{α} depends only on crystallite thickness. The temperature of beta transition, T_{β} , does not depend on the crystallite thickness but rather on the comonomer type and content. The γ transition is associated with glass transition. All transition values depend on the frequency of the DMA test. See reference (47) for a detailed discussion.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Vicant softening point	K	D1525	353-367	(28, 33)
Tensile modulus	MPa	D 638	137-520	(10-12, 28, 33)
Tensile yield strength	MPa	D 638	9-20	(10-12, 28, 33)
Elongation at break	%	D 638	100-1,200	(10-12, 28, 33)
Yield stress	MPa	D 638	6.2-11.5	(10-12, 33)
Flexural modulus	MPa	D 790, 298 K	235-800	(10-12, 28, 33)
Impact strength, notched Izod	$J \ m^{-1}$	D 256A	53.0-no break	(10, 28, 33)
Hardness	Shore D	D 676	47-58	(10, 28, 33)
Low temperature brittleness F_{50}	K	D 746	<197	(10-12, 33)
Blown film properties	-	See Tables 6 and 7	-	(11, 12, 16, 48, 50, 52)
Refractive index $n_{\rm D}^{25}$	_	D 542	1.52	(10)
Dielectric constant	_	D 150	2.3	(28)
Loss factor, $\tan\delta$	-	D 150, up to 100 MHz (at 1 MHz)	< 0.0005	(28)
Melt index	g (10 min) ⁻¹	D 1238	0.2-50	(11, 12)
Sonic velocity	ms^{-1}	MD and TD, blown films	See Table 5	(41)
Flow activation energy	$kJ mol^{-1}$	RMS, MI = 1.0, density = 0.918 gm cm ⁻³ , temp. range = 423-483 K	30-32	(49)

Table 1. Characteristic ¹³C NMR bands by short-chain branching type^(24,25)

Chemica	l shift (ppm)	Chemical	shift (ppm)	Chemica	l shift (ppm)	Chemica	l shift (ppm)
Butene	Sequence assignment*	Hexene	Sequence assignment*	Octene	Sequence assignment*	4-MP-1	Carbon assignment*
40.2	BBBB	41.4	НННН	40.33	0000	44.5	3-C
39.56	BBBE + EBBB	40.86	HHHE + EHHH	38.24	EOE	35.7	-CH-
37.24	EBB + BBE	40.18	EHHE	34.62	EOEE + EEOE	34.6	alpha-C
35.0	BBB	38.13	EHE	32.22	EOE	26.8	beta-C
34.5	EBEB + BEBE	35.85	EHH + HHE	30.47	OEEE + EEEO	25.8	2-C
34.33	EBEE + EEBB	35.0	HHEH + HEHH	27.27	EOE	23.0	3-C
30.92	BEEB	34.9	EHH + HHE	27.09	OOEE + EEOO		
30.47	BEEE + EEEB	34.54	EHEE + EEHE	22.89	EOE + EOO + OOE -	+ OOO	
27.7	BBB	34.13	EHE	14.17	EOE + EOO + OOE -	000	
27.27	EBEE + EEBE	30.94	HEEH				
27.1	BBEE + EEBB	30.47	HEEE + EEEH				
26.68	EBE	29.51	EHE				
11.2	EBE	29.34	EHH + HHE				
11.0	EBB + BBE	27.28	EHEE + EEHE				
10.81	BBB	27.09	HHEE + EEHH				
		24.39	EHEHH + HHEHE				
		24.25	HHEHH				
		23.37	EHE + EHH + HHE +	-HHH			
		14.12	EHE + EHH + HHE +	-HHH			

 $^{^*}$ E, B, H, and O refers to ethylene, butene, hexene, and octene comonomers. 13 C NMR assignment at 50.3 MHz in 10% 1,2,4-trichlorobenzene solution at 125°C. Internal standard = tetramethylsilane.

Table 2. Unit cell information*

Lattice	Space	Comonomer		Unit cell d	limensions (Å)		Reference
	group	Туре	mol%	а	b	с	
Orthorhombic	Pnam	Butene	0.3	7.43	4.95	_	(34)
		Butene	0.6	7.45	4.95	_	(34)
		Butene	1.29	7.46	4.95	2.571	(36)
		Butene	3.85	7.48	4.97	2.571	(36)
		Butene	8.45	7.50	5.01	2.571	(36)
		Hexene	0.3	7.42	4.94	_	(34)
		Hexene	0.6	7.42	4.95	_	(34)
		Octene	0.065	7.429	4.950	_	(35)
		Octene	3.76	7.500	4.966	_	(35)
		Octene	5.0	7.571	4.987	_	(35)
		Octene	5.5	7.48	4.97	_	(34)

^{*}Measured unit cell dimensions are dependent on lamellae thickness, which in turn depends on the crystallization temperature, comonomer type, and amount (see references 13 and 34–36 for details).

Table 3. Physical properties of commercial grade LLDPEs as a function of counit content and $type^{*(40)}$

Counit type	$M_{\rm w}~(\times 10^{-3})$	Counit (mol%)	Crystallinity (%)	$\alpha_{\rm c}$ (%)	$lpha_{a}$ (%)	α_{b} (%)	Modulus (MPa)	Yield stress (MPa)	Ultimate tensile stress	Draw ratio at break
Butene	104	0.6	39	46	36	18	152	20.3	296	9.9
	105	1.88	22	30	52	18	106	12.3	195	6.8
Hexene	65	0.34	63	63	27	10	361	32.1	264	10.6
Octene	98	0.62	41	48	35	16	160	18.4	224	7.4
	99	0.90	37	43	42	15	144	16.2	219	7.0
	70	0.94	39	40	42	18	163	16.4	191	6.9
	103	1.33	35	35	47	18	123	13.2	197	6.4
	81	1.77	49	26	52	22	75	9.5	183	8.1
	128	2.58	12	14	67	19	35	5.9	93	7.0
	228	5.38	4	7	76	17	3	1.8	_	_

^{*}Samples were compression molded and slow cooled in air; tensile properties were determined at a draw rate of 25.4 mm min⁻¹; percent crystallinity was determined by DSC at a heating rate of 10° C min⁻¹; crystal phase structures were determined by Raman internal mode technique (LAM); α_c , α_b , and α_a refer to fraction of chain units in the perfect crystals, interfacial region, and amorphous region, respectively of a lamella.

Table 4. Long-period spacings and lamellae thickness of LLDPE fractions by short-chain branching type*

Comonomer type	Mol% branching	<i>M</i> _w (×10 ⁻⁴)	$M_{\rm w}/M_{\rm n}$	Conditions	Long-period spacing (Å)	Lamellae thickness (Å)	Reference
Butene-1	1.29	13.0	2.96	SAXS	162	75	(36)
	2.29	19.0	5.55		118	52	(36)
	3.17	9.93	3.09		105	55	(36)
	3.85	8.22	3.11		105	45	(36)
	5.10	4.61	2.90		92	50	(36)
	8.45	2.66	4.73		80	43	(36)
Butene-1	0.42	14.0	7.14	Raman LAM	_	91	(5)
	1.15	_	_		_	75	(5)
	3.43	_	_		_	72	(5)
	4.10	_	_		_	56	(5)
Hexene-1	1.57	259	11.5	Raman LAM	153	_	(24)
4-MP-1	1.76	94.5	5.0	Raman LAM	157	_	(24)
	2.74	91.2	4.0		130	_	(24)
	3.53	107.0	4.0		122	_	(24)
Octene-1	1.49	5.35	2.60	Raman LAM	_	80	(5)
	2.49	235.0	5.9		132	_	(24)
Octene-1	0.065	25.20	2.20	SAXS	369	163	(35)
	1.32	17.63	2.44		275	130	(35)
	2.22	14.62	2.75		187	70	(35)
	2.81	12.82	2.76		166	51	(35)
	3.76	9.40	2.86		140	43	(35)
	5.0	4.93	3.37		116	24	(35)

^{*}Crystallization conditions are not known.

Table 5. Morphological properties and crystal orientation of LLDPE (hexene-1) blown tubular films⁽⁴¹⁾

Thickness	Density			Infrared diachroic	X-ray and	X-ray angle (degrees)			
(μm)	(g cm ⁻³)	(×10³)	(km s ⁻¹)	ratio at 730 cm ⁻¹	atio at 730 cm ⁻¹ ————————————————————————————————————		<i>b</i> -axis	
			MD	TD	MD/TD	MD-TD	ND-MD	MD-TD	ND-MD
27.1	0.9116	-0.7478	828	1,009	1.26	90	90	0	0
24.7	_	+1.99	818	951	1.39	90	90	0	0
17.0	0.9172	0.00	843	717	1.24	90	90	0	0

Table 6. Physical properties of commercial grade LLDPE film samples as a function of comonomer type*

PROPERTY	UNITS	CONDITIONS	BUTENE	HEXENE	OCTENE
Melt index	g (10 min) ⁻¹	D 1238	1.0	1.04	1.04
Density	$g\mathrm{cm}^{-3}$	D 1505	0.919	0.919	0.920
Total SCB	CH ₃ /1,000 C	NMR	21.7	17.9	13.7
Peak melting point	K	DSC, 10°C min ⁻¹ , cooling and heating rates	372 and 395	372 and 397.5	371 and 394
Heat of fusion	$kJ mol^{-1}$	DSC, 10°C min ⁻¹ , cooling and heating rates	1.50	1.68	1.65
$M_{\rm w}~(\times 10^{-5})$	$g \text{mol}^{-1}$	GPC, 408 K in TCB	1.3	1.24	1.36
$M_{\rm w}/M_{\rm n}$	_	GPC	3.7	4.1	4.6
Total haze	%	D 1003	15	16	12
Gloss, 45°D	Units	D 2457	46	41	48
Narrow angle scattering	%	D 1746	7	20	34
Modulus, 1% secant	MPa	D 882, MD D 882, TD	185 227	206 250	200 230
Dart impact (per mil)	g	D 1709, D 4272	74	187	201
Elmendorf tear	g	D 1922, MD D 1922, TD	58 520	270 710	340 750
Tensile strength at break	MPa	D 882, MD D 882, TD	41 18	39 20	58 31
Elongation at break	%	D 882, MD D 882, TD	430 560	430 550	440 600

^{*}See references (11, 48, 50, and 51) for the effect of blowing conditions on film properties of LLDPEs. The result in this table was obtained for the following blown film conditions: blow-up ratio = 2.5:1; die gap = 2.54 mm; output = 32 kg h $^{-1}$; film thickness = 25.4 mm; die size = 102 mm; frost line height = 230 mm; melt temperature = 483 K. $^{(52)}$

Table 7. Comparison of blown film properties of butene-1, 4-MP-1 copolymer, and butene/4-MP-1 $terpolymer^{*(16)}$

PROPERTY	UNITS	CONDITIONS [†]	BUTENE COPOLYMER	BUTENE/4-MP-1 TERPOLYMER	4-MP-1 COPOLYMER
Modulus, 1% secant	MPa	D 882, MD D 882, TD	154 205	205 234	277 354
Dart drop, F-50 at 66 cm (per mil)	g	D 1709 and D 4272	140	161	180
Elmendorf tear (per mil)	g	D 1922, MD D 1922, TD	200 470	240 540	250 720
Tensile strength at break	MPa	D 882, MD D 882, TD	24.7 18.8	33.5 25.8	42 31.7
Tensile strength at yield	MPa	D 882, MD D 882, TD	7.9 8.75	10.7 11.7	12.7 13.5
Elongation at break	%	D 882, MD D 882, TD	460 620	460 600	510 680

^{*}Approximate melt index of $1\,\mathrm{g}\,(10\,\mathrm{min})^{-1}$ and density $0.920\,\mathrm{g}\,\mathrm{cm}^{-3}$. Extrusion conditions: blow-up ratio = 2:1; die gap $= 2.03\,\mathrm{mm}$; output $= 32\,\mathrm{kg}\,\mathrm{h}^{-1}$; film thickness $= 31.75\,\mathrm{\mu m}$; die size $= 63.5\,\mathrm{mm}$; frost line height $= \mathrm{unknown}$; melt temperature $= 466\,\mathrm{K}$.

Note: The film properties of Tables 6 and 7 should not be compared due to different extrusion conditions.

REFERENCES

- 1. Wild, L., et al. J. Polym. Sci., Poly. Phys. Ed., 20 (1982): 441.
- 2. Mathot, V. B. F., and M. F. Pijpers. Polym. Bull. 11 (1984): 297.
- 3. Hosoda, S. Polym. J. 20 (1986): 383.
- 4. Zhou, X. O., and J. N. Hav. Polym. J. 29 (1993): 291.
- 5. Alamo, R., R. Domszy, and L. Mandelkern. J. Phys. Chem. 88 (1984): 6,587.
- 6. Speed, C. S., et al. In SPE RETEC, VII Polyolefins International Conference, 1991, pp. 45.
- 7. Alamo, R. G., B. D. Viers, and L. Mandelkern. Macromolecules 26 (1993): 5,740.
- 8. Elston, C. T. U. S. Patent 3,645,992 (1972).
- 9. Lai, S., and G. W. Knight. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1993, pp. 1,188.
- 10. Toensmeier, P. A., ed. In Modern Encyclopedia. McGraw-Hill, New York, 1996, pp. B-185.
- 11. Kissin, Y. V. In *Kirk-Othmer Encylopedia of Chemical Technology*, 4th ed., edited by M. Graysen and D. Eckroth. Wiley-Interscience, New York, 1991, vol. 17, p. 756.
- 12. James, D. E. *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, 1985, vol. 6, p. 429.
- 13. Schouterdem, P., G. Groeninckx, and H. Reynaers. In *Advances in Polyolefins*, edited by R. B. Seymour and T. Cheng. Plenum Publishing, New York, 1985, p. 373.
- Kissin, Y. V. In Isospecific Polymerization of Olefins with Heterogeneous Ziegler-Natta Catalyst. Springer-Verlag, New York, 1985.
- 15. McDaniel, M. P., and E. A. Benham. *U. S. Patent* 5,208,309 (4 May 1993); and *U. S. Patent* 5,274,056 (28 December 1993); (both to Phillips Petroleum Co.)
- 16. Leaversuch, R., Modern Plast. (August 1996): 42.

[†]MD and TD referes to machine and transverse directions film properties.

- 17. ASTM Designation D 2238-92. "Standard Test Methods for Absorbance of Polyethylene Due to Methyl Groups at 1378 cm⁻¹¹." Annual Book of ASTM Standards, 1996.
- 18. Usami, T., and S. Takayama. Polym. J. 16 (1984): 731.
- 19. McRae, M. A., and W. Maddams. Makromol. Chem. 177 (1976): 449.
- 20. Rugg, F. M., J. J. Smith, and L. H. Wartman. J. Polym. Sci. 11 (1953): 1.
- 21. Willbour, A. H. J. Polym. Sci. 34 (1959): 569.
- 22. Blitz, J. P., and D. McFaddin. J. Appl. Polym. Sci. 51 (1994): 13.
- 23. Prasad, A., and D. Mowery. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1997, p. 2,310.
- 24. Bodor, G., H. J. Dalcolmo, and O. Schroter. Coll. Polym. Sci. 267 (1989): 480.
- 25. Randall, J. J. Macromol. Sci. Rev. Macromol. Chem. Phys. C29 (1989): 201.
- 26. Cheng, H. Macromolecules 24 (1991): 4,813.
- 27. De Pooter, M., et al. J. Appl. Polym. Sci. 42 (1991): 399.
- 28. Pate, T. J. In *Handbook of Plastics Material and Technology*, edited by I. I. Rubin. John Wiley and Sons, New York, 1990, p. 327.
- 29. Coran, A. Y., and C. E. Anagnostopoulos. J. Polym. Sci. 57 (1962): 13.
- 30. Cernia, E. M., C. Mancini, and A. Saini. J. Appl. Poly. Sci. 12 (1968): 789.
- 31. Wagner, H. L. J. Phys. Chem. Ref. Data 14(2) (1985): 611.
- 32. Springer, H., A. Hengse, and G. Hinrichsen. Colloid and Polym. Sci. 271 (1993): 523.
- 33. Prasad, A. Unpublished data.
- 34. Bailey, F. E. Jr., and E. R. Walter. Polym. Eng. Sci. 15 (1975): 842.
- 35. Defoor, F., et al. Macromolecules 26 (1993): 2,575.
- 36. Heink, M., K. D. Haberle, and W. Wilke. Colloid and Polym. Sci. 269 (1991): 675.
- 37. Martuscelli, E., and M. Pracella. Polymer 15 (1974): 306.
- 38. Darras, O., and R. Seguela. Polymer 34 (1993): 2,946.
- 39. Lambert, W. S., and P. J. Phillips. Macromolecules 27 (1994): 3,537.
- 40. Peacock, A. J., and L. Mandelkern. J. Polym. Sci., Polym. Phys. Ed., 28 (1990): 1,917.
- 41. Haber, A., and M. R. Kamal. Plastics Engineering 47(10) (1987): 43.
- 42. Crist, B., W. W. Graessley, and G. D. Wignall. Polymer 23 (1982): 1,561.
- 43. Alamo, R. G., E. K. Chan, and L. Mandelkern. Macromolecules 25 (1992): 6,381.
- 44. Kim, M., and Phillips, P. J. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1996, p. 2,205.
- 45. Jang, Y. T., D. Parikh, P. J. Phillips. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 2,483.
- 46. Woo, L., T. K. Ling, and S. Westphal. J. Plast. Film and Sheet. 10 (1994): 116.
- 47. Mandelkern, L. In *Physical Properties of Polymers*, 2d ed., edited by J. Mark. ACS Professional Reference Book, American Chemical Society, Washington, D.C., 1993, p. 189.
- 48. Dighton, G. L. In *Alpha Olefins Applications Handbook*, edited by G. R. Lappin and J. D. Sauer. Marcel Dekker, New York, 1989, p. 63.
- 49. Mavridis, H., and R. Shroff. Polym. Eng. Sci. 32 (1992): 1,778.
- 50. Patel, R. M., et al. Polym. Eng. Sci. 34 (1994): 1,506.
- 51. Sukhadia, A. M. J. Plastic Film and Sheet 10 (1994): 213.
- 52. Data supplied through the courtesy of Equistar Chemicals, LP (formerly known as Millennium Petrochemicals, Inc.), Cincinnati, Ohio.

Polyethylene, low-density

A. PRASAD

ACRONYMS LDPE, branched PE, high-pressure PE

CLASS Poly(α -olefin)

STRUCTURE $-[CH_2-CH_2]_n-$

INTRODUCTION LDPE is produced under high pressure (82–276 MPa) and high temperature (405–605 K) with a free radical initiator (such as peroxides and oxygen) and contains some long chain branches (LCB), which could be as long as chain backbones, ^(1,2) and short chain branches (SCB). ⁽³⁾ It is produced by either a tubular or a stirred autoclave reactor. ⁽⁴⁾ The autoclave process can produce LDPE resins having a wide range of molecular weight distribution (MWD) and less LCB in comparison with a tubular reactor. ⁽⁴⁾ Long chain branching has a strong influence on MWD, and hence on resin properties, such as processibility, melt strength, and film optical properties. ⁽⁴⁾ SCBs disrupt chain packing and are principally responsible for lowering the melting temperature and the crystal density for hydrocarbon polymers. LDPE is commercially available in a wide variety of molecular weight, MWD, SCB, and LCB contents, and density ranges. ⁽⁴⁻⁶⁾

Thermal and mechanical properties of semicrystalline polymers are strongly dependent on MW, MWD, branching content, and density. (5,7,8) Controlled variations in these structural parameters result in a broad family of products with wide differences in thermal and mechanical properties. Shear modified LDPE samples are also available commercially. (9,10) The deliberate shearing of polymer melt results in a reduction in melt viscosity and elasticity without significant change in MW. (11) These reversible changes are advantageous for molding and extrusion and also result in film with better optical properties. (9,10,12) Shear modified LDPEs show vastly different crystallization rates. (12) The properties shown in the following table are given in ranges because of their dependence on molecular structure and are intended to represent best published examples of most commonly used commercial grades of LDPE for blown film, molding, and extrusion coating applications. Table 3 contains properties of tubular blown films.

MAJOR APPLICATIONS Major applications include blown film for bags and packaging; extrusion coatings for paper, metal, and glass; and injection molding for can lids, toys, and pails. Other applications include blow molding (squeeze bottles), rotomolding and wire and cable coatings, carpet backing, and foam for packaging material. There is considerable use of blends of LDPE with high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) in a wide variety of applications. These blends are deliberately excluded in the data presented below.

PROPERTIES OF SPECIAL INTEREST LDPE has a good balance of mechanical and optical properties with easy processibility and low cost. It can be fabricated by many different methods for a broad range of applications. Special properties of interest include: optical clarity, flexibility, toughness, high impact strength, good heat seal, low brittleness temperature, good chemical resistance to aqueous solvents, and good electrical properties. LDPE may not be suitable for applications that require

high stiffness and high tensile strength. Other limitations include: poor resistance to oxidizing agents, aliphatic solvents, aromatic solvents, polar liquids, chlorinated solvents, low softening point, poor scratch resistance, poor gas and moisture permeability, and relatively lower stress-crack resistance when compared to other types of polyethylene. LDPE undergoes thermal degradation at high temperatures and chain extension under shear conditions.

MAJOR SUPPLIERS Equistar Chemicals LP., Dow Chemical Co., Chevron Chemical Co., Westlake Plastics Co., Du Pont Co., Exxon Chemical Co., Eastman Chemical Co., Union Carbide Corp., Mobil Polymers, Rexene Corp., Novacor Chemicals, Inc.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Type of branching	_	FTIR, NMR	Methyl, ethyl, butyl, amyl and longer branches	(13–15)
Type of unsaturation	%	FTIR Vinylidene Vinyl <i>Trans</i>	80 10 10	(16)
Degree of SCB, commercial grades	Methyl/1,000 carbon	FTIR, NMR	10-33	(13-15)
Typical $M_{\rm w}$ range, commercial grades	$g \text{mol}^{-1}$	GPC	340×10^4	(5, 16)
Typical polydispersity index (Mw/Mn)	-	GPC, strongly influenced by the amount of LCB	4-30	(17–19)
IR (characteristic absorption frequencies)	cm ⁻¹	Thin film sample at room temperature	See table below	(14, 15, 20)

Characteristic frequencies of crystalline LDPE*

Wave number	Intensity	Assignments
720	Very strong	CH ₂ rocking
731	Very strong	CH ₂ rocking
888	Very weak	Vinylidene groups
890	Very weak	CH ₃ rocking
908	Medium	Terminal vinyl groups
964	Very weak	Trans double bond
990	Weak	Terminal vinyl groups
1,050	Very weak	CH ₂ twisting
1,176	Very weak	CH ₂ wagging
1,375	Weak-medium	CH ₃ symmetrical bending
1,457	Very weak	CH ₃ asymmetrical bending
1,463	Very strong	CH ₂ bending

Polyethylene, low-density

Characteristic frequencies of crystalline LDPE*

Wave number	Intensity	Assignments
1,473	Very strong	CH ₂ bending
2,850	Very strong	CH ₂ symmetrical stretching
2,857	Very strong	CH ₂ symmetrical stretching
2,874	Weak	CH ₃ symmetrical stretching
2,899	Very strong	CH ₂ asymmetrical stretching
2,924	Very strong	CH ₂ asymmetrical stretching
2,960	Weak	CH ₃ asymmetrical stretching

^{*}Observed in the infrared spectra and band assignments.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Linear thermal expansion coefficient	$K^{-1} (\times 10^{-5})$	D 696 Temperature range = 238-423 K	10.0-51.0 See table below	(21–23) (5, 16)

Temp. (K)	Coefficient of expansion ($\times 10^{-5}$)		
	Linear	Cubical	
238	10.0	30.0	
273	18.3	55.0	
293	23.7	71.0	
313	29.0	87.0	
333	33.7	101.0	
353	40.3	121.0	
373	46.6	140.0	
383	51.0	153.0	
388-423	25.0	75.0	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density (amorphous)	$g\mathrm{cm}^{-3}$	At 298 K, extrapolated from melt temperature	0.855	(24, 25)
Solvents	-	368 K 369 K 371 K 341 K 374 K	Decalin, toluene Xylene Tetralin Cyclohexene <i>n</i> -Tetracosane	(26, 27)
Nonsolvents	-	359 K 361 K 366 K	Methylene chloride <i>o</i> -Dichloro benzene 1,2-Dichloropropane	(27)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solubility parameter	(MPa) ^{1/2}	n-Tetracosane, 374 K	15.20	(27)
3 1	,	Cyclohexene, 341 K	17.10	(27)
		n-Heptane, 359 K	14.57	(27)
		n-Octane, 361 K	14.50	(27)
		n-Hexane, 359 K	12.46	(27)
		n-Pentane, 361 K	12.52	(27)
		Chloroform, 350 K	16.00	(27)
		Carbon tetrachloride, 346 K	14.77	(27)
		Tetrachloroethylene, 346 K	15.69	(27)
		Chlorobenzene, 349 K	18.13	(27)
		o-Dichlorobenzene, 361 K	18.62	(27)
		Methylene chloride, 359 K	13.75	(27)
		See also the other references	13.73 —	(27, 28–31
		for more data	_	(27, 28-31
_				
Theta temperature θ	K	Bis(2-ethylhexyl)adipate	418-443	(28)
		Bis(2-ethylhexyl)sebacate	423	
Flory interaction	_	<i>n</i> -Tetracosane, 374 K	-0.09	(27)
parameter χ		Cyclohexene, 341 K	-0.03	(27)
		<i>n</i> -Heptane, 359 K	0.13	(27)
		<i>n</i> -Octane, 361 K	0.18	(27)
		n-Octane, 393 K	0.31	(29)
		n-Octane, 418 K	0.30	(29)
		n-Hexane, 359 K	0.23	(27)
		<i>n</i> -Pentane, 361 K	0.35	(27)
		Toluene, 393 K	0.34	(29)
		Xylene, 350 K	0.51	(29)
		<i>m</i> -Xylene, 393 K	0.29	(29)
		p-Xylene, 393 K	0.29	(29)
				` '
		Chloroform, 350 K	0.25	(27)
		Tetrachloroethylene, 346 K	-0.05	(27)
		Chlorobenzene, 349 K	0.04	(27)
		o-Dichlorobenzene, 361 K	0.41	(27)
		Methylene chloride, 359 K	0.60	(27)
		Carbon tetrachloride, 346 K See also the other references for more data	0.01	(27) (27–29)
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 =2	T . 1: 2241/		(02, 02)
Second virial coefficient A_2	$mol cm^3 g^{-2}$	Tetralin, 334 K	0.00 10-1	(32, 33)
		$M_{\rm w} = 5.73 \times 10^5$	0.92×10^{-4}	
		$M_{\rm w}=1.98\times10^6$	0.84×10^{-4}	

Polyethylene, low-density

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ a = None	Should be used for approximate MW values only because LDPE contains long-chain branching	_	(32-36)
		Decalin, 342 K	$K = 3.87 \times 10^{-4},$ a = 0.78	(36)
		p-Xylene, 347 K	$K = 1.05 \times 10^{-3},$ a = 0.63	(33)
		Xylene, 353 K	$K = 1.35 \times 10^{-4},$ $a = 0.63$	(34)
Characteristics ratio $\langle r^2 \rangle/nl^2$	_	Tetralin, 334 K	7.26, 7.58	(32)
Crystallographic data	Å	Wide-angle X-ray (WAXD)	See table below	(37-40)

Unit cell information

Lattice	Space	Unit cell d	limensions (Å)		Monomers per unit cell	Reference
	group	а	b	с		
Orthorhombic	Pnam	7.40	4.93	2.534	2	(37)
		7.36	4.92	_	_	(38)
		7.51	4.97	_	_	(39)
Monoclinic	C2/m	8.09	2.53	4.79	2	(40)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Crystallinity	%	DSC	33-53	(41-48)
Heat of fusion (per repeat unit)	kJ mol ⁻¹	DSC	1.37-2.18	(41-48)
Density	$g\mathrm{cm}^{-3}$	Commercial resins, ASTM D 1505 Unit cell, 100% crystalline Unit cell, 100% crystalline	0.910-0.935 1.00 1.014	(4-6) (37) (38)
Lamellae thickness	Å	Raman longitudinal acoustic mode (LAM), various crystallization conditions used	See Table 1	(16, 48)
Crystal phase structure	%	LAM	See Table 1	(48)
Crystal orientation and birefringence	_	WAXD and infrared diachroism	See Table 2	(58)
Melting temperature	K	DSC, peak endotherms	378-388	(5, 6, 41, 44)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature	K	DMA, TMA	140–170 (See also transition and relaxation temperature table below)	(45-47)
Transition and relaxation temperatures; and activation energy*	_	DMA	See table below	(16, 45–49)

^{*}The transitions and relaxation temperatures associated with amorphous regions are designated as α , β , γ , etc. in descending temperature order. Several conflicting interpretations and values have been given regarding the origin and molecular nature of the transitions in LDPE (see references 45 to 49). It is believed that the values of T_a depends on crystallite thickness. The temperature of beta transition, T_{β} , does not depend on the crystallite thickness but rather the comonomer type and content. The γ transition is associated with glass transition. All transition values depend on the frequency of the DMA test. See references (46) and (47) for detailed discussions. The transition temperatures associated with peaks in dynamic loss listed in this table are given in ranges because of a wide range of values cited in the literature (for a specific examples see Table 1 below).

Transitions	Temperature range (K)	Approximate activation energy (kJ mol ⁻¹)
α	293-360	>420
β	233-280	160-200
γ	140-170	32–75

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat capacity (of repeat units)	$kJ k^{-1} mol^{-1}$	At constant pressure and temperature of $298 \mathrm{K}$, (density = $0.921 \mathrm{g cm}^{-3}$)	1.6536×10^{-4}	(50, 51)
		At other temperatures	_	(51)
Enthalpy (of repeat unit)	kJ mol ⁻¹	Calorimeter Temperature (K)		(51)
		80	0.287	
		140	0.883	
		200	1.722	
		260	2.887	
		320	4.545	
		380	7.619	
		415	9.384	
Entropy (of repeat unit)	$kJ k^{-1} mol^{-1}$	Calorimeter		(51)
15 (1)	·	Temperature (K)		· /
		80	0.00586	
		140	0.0114	
		200	0.0164	
		260	0.0214	
		320	0.0273	
		380	0.0357	
		415	0.0406	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Deflection temperature	K	D 648, at 273 K and 0.45 MPa	311-322	(23)
Heat distortion temperature	K	D 648, 455 KPa	313-323	(21)
Vicant softening point	K	D 1525	363-375	(5)
Tensile modulus	MPa	D 638	102-310	(5, 21, 52)
Compressive strength	MPa	D 695	18-25	(23)
Tensile yield strength	MPa	D 638	9-15	(5, 21, 52)
Elongation at break	%	D 638	100-800	(5, 21, 52)
Yield stress	MPa	D 638	6.2-11.5	(5, 21, 52)
Flexural modulus	MPa	D 790 at 298 K	240-330	(6, 21, 52)
Impact strength, notched Izod	$\mathrm{J}\mathrm{m}^{-1}$	D 256A	No break	(6, 21, 52)
Hardness	Shore D	D 676	40-60	(5, 6, 21, 52)
Low-temperature brittleness F ₅₀	K	D 746	<197	(21, 52)
Refractive index	_	D 542, crystalline (value depends on density and chain branching)	1.5168-1.5260	(21, 53)
		Amorphous Refractive index in melt	1.49 See table below	(16, 54) (54)
Specific volume	$\mathrm{cm}^3\mathrm{g}^{-1}$	Differential refractometer and dilatometer, Alathon 10	See table below	(54)
Specific refractivity	$\mathrm{cm}^3\mathrm{g}^{-1}$	Differential refractometer and	See table below	(54)

Temperature (K)	Specific volume (cm ³ g ⁻¹)	Refractive index	Refractivity (cm ³ g ⁻¹)
363.16	1.159	1.4801	0.3293
368.16	1.168	1.4736	0.3281
373.16	1.178	1.4693	0.3283
378.16	1.195	1.4630	0.3291
381.16	1.209	1.4575	0.3297
384.16	1.282	1.4510	0.3290
386.16	1.239	1.4432	0.3286
391.16	1.250	1.4392	0.3289
387.56	1.256	1.4368	0.3288

dilatometer, Alathon 10

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric constant ε'	_	D 150 at 1 kHz Density (g cm ⁻³) 0.920	2.28	(5, 21, 55)
		0.930 0.935	2.30 2.31	
Loss factor, $\tan \delta$	_	Up to 100 MHz	10^{-4} – 10^{-3}	(5, 21)
Dielectric strength	$\mathrm{Mv}\mathrm{cm}^{-1}$	D 149, 283 K D 149, 373 K	7.0 2.0	(21, 55, 56)
Power factor	_	D 150 at 1 kHz	0.0003	(5)
Melt index	$g (10 min)^{-1}$	D 1238	0.2-50	(4, 6)
Flow activation energy: EH and E_{V}^*	kJ mol ⁻¹	RMS, melt index = \sim 1 g (10 min) ⁻¹ density = 0.919-0.931 g cm ⁻³ , temp. range = 423-483 K	$E_{\rm H} = 61-67$ $E_{\rm V} = 8-10.5$	(59)
Coefficient of sliding friction μ	_	D 1894, dynamic c.o.f. to stainless steel, melt index = $2 g (10 min)^{-1}$ density = $0.915 g cm^{-3}$	0.7	(57)
Sonic velocity	ms^{-1}	Blown films	See Table 2	(58)
Water absorption	%	D 570, 24 h	< 0.02	(21)

^{*}The horizontal shift factor reflects the temperature dependence of relaxation time, and the vertical shift factor reflects the temperature dependence of modulus.

Table 1. Morphological and relaxation properties of LDPE as a function of crystallization condition*(48)

Condition	lpha-Relaxation	eta-Relaxation	Crystallinity	Crystallite thickness	% Cry	stal phase	structure
	(K, 3.5 Hz)	(K, 3.5 Hz)	(%)	(Å)	α_{c}	$lpha_{a}$	$lpha_{b}$
Slow cooled	348	258	36	105	37	49	14
Cooled in air	323	258	_	82	_	_	_
Quenched 80°C	323	258	40	80	36	53	11
Quenched 40°C	278	_	_	70	_	_	_
Quenched 0°C	273	_	32	_	_	_	_
Quenched -120°C	270	_	29	65	38	49	13

 $^{^*}M_{\rm w} = 3.46 \times 10^5$, $M_{\rm w}/M_{\rm n} = 18.5$, total SCB/1,000 C = 10.6, LCB/1,000 C = 2.2.

Note: Compression molded specimens were rapidly quenched to the specified quenching temperatures. Relaxation temperatures (tan δ peaks) were obtained on a DMA instrument at a heating scan rate of 1°C min⁻¹. Crystal phase structures were obtained by Raman LAM. The degree of crystallinity was determined from the heat of fusion data obtained on a DSC instrument.

Polyethylene, low-density

Table 2. Morphological properties and crystal orientation of LDPE (density $0.920\,\mathrm{g\,cm^{-3}}$) blown tubular films $^{(58)}$

Thickness	Density	Birefringence	Sonic v	elocity	Infrared diachroic	X-ray ang	le (degree)		
(μm)	(g cm ⁻³)	(×10³)	(m s ⁻¹)		ratio (at 730 cm ⁻¹)	a-axis		<i>b</i> -axis	
			MD*	TD*	MD/TD*	MD-TD*	ND-MD*	MD-TD*	ND-MD*
54	0.9182	-9.79	953	1,128	1.15	45-50	45-60	0	0
26	_	-8.23	870	1,003	0.88	45	45-60	0	0
23	0.9175	-3.07	852	998	1.13	70	60-70	0	0

^{*}MD, TD, and ND refers to the machine, transverse, and normal direction of a blown film sample.

Table 3. Blown film properties of high clarity grade LDPE*

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melt index	g (10 min) ⁻¹	D 1238	2.0	(66)
Density	$\rm gcm^{-3}$	D 1505	0.924	(66)
Peak melting point	K	DSC, 10°C min ⁻¹ cooling and heating rate	382.5	(66)
Heat of fusion	$kJ mol^{-1}$	DSC, 10°C min ⁻¹ cooling and heating rate	1.50	(66)
$M_{ m w}$	$g \text{mol}^{-1}$	GPC, 408 K in 1,2,4-trichlorobenzene	79,200	(66)
$M_{\rm w}/M_{\rm n}$	_	GPC	3.8	(66)
Total haze	%	D 1003	5.2	(66)
Gloss, 45°D	Units	D 2457	71	(66)
Narrow angle scattering	%	D 1746	72	(66)
Modulus, 1% secant	MPa	D 882, MD D 882, TD	200 240	(66)
Dart impact (per mil)	g	D 1709, D 4272	74	(66)
Elmendorf tear	g	D 1922, MD D 1922, TD	360 220	(65)
Tensile strength at break	MPa	D 882, MD D 882, TD	25 17	(66)
Elongation at break	%	D 882, MD D 882, TD	290 500	(66)

^{*}Film and optics properties depend upon processing conditions (see references 9, 10, 60–65). This table presents some representative values of typical high clarity grade LDPE films processed using the following conditions: blow-up ratio = 2:1; die gap = 0.635 mm; output = 48 kg h $^{-1}$; film thickness = 30.5 µm; die = 203 mm; frost line height = 330 mm; melt temperature = 463 K.

REFERENCES

- 1. Flory, P. J. J. Am. Chem. Soc. 59 (1937): 241.
- 2. Flory, P. J. J. Am. Chem. Soc. 69 (1947): 2,893.
- 3. Roedel, M. J. J. Am. Chem. Soc. 75 (1953): 6,110.
- 4. Doak, K. W., and A. Schrage. In *Crystalline Olefin Polymers Part 1*, edited by R. A. V. Raff and K. W. Doak. Interscience Publishers, New York, chap. 8, 1965.
- Bibee, D. V. In Handbook of Plastics Materials and Technology, edited by I. I. Rubin. John Wiley and Sons, 1990, p. 317.
- Toensmeier, P. A., ed. In Modern Plastics Encyclopedia. McGraw-Hill, New York, 1996, p. B-185.
- 7. Popli, R., and L. Mandelkern. J. Polym. Sci., Polym. Phys. Ed., 25 (1987): 441.
- 8. Peacock, A. J., and L. Mandelkern. J. Polym. Sci., Polym. Phys. Ed., 28 (1990): 1,917.
- 9. Meissner, J. Pure Appl. Chem. 42 (1975): 551.
- 10. Stehling, F. C., C. S. Speed, and L. Westerman. Macromolecules 14 (1981): 698.
- 11. Van Prooyen, K., T. Bremner, and A. Rudin. Polym. Eng. Sci. 34 (1994): 570.
- 12. Magill, J. H., S. V. Peddada, and G. M. McManus. Poly. Eng. Sci. 21 (1981): 1.
- 13. Mandelkern, L., and J. Maxfield. J. Polym. Sci., Polym. Phys. Ed., 17 (1979): 1,913.
- 14. Willbourn, A. H. J. Polym. Sci. 34 (1959): 569.
- 15. Blitz, J. P., and D. C. McFaddin. J. Appl. Polym. Sci. 51 (1994): 13.
- Aggarwal, S. L. In *Polymer Handbook*, 2d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1975, chap. V, p. 13.
- 17. Guillet, J. E., et al. J. Appl. Polym. Sci. 8 (1965): 757.
- 18. Lecacheux, D., J. Lesec, and C. Quivoron. J. Appl. Polym. Sci. 27 (1982): 4,877.
- 19. Han, C. D., et al. J. Appl. Polym. Sci. 28 (1983): 3,435
- Groenewege, M. P., et al. In Crystalline Olefin Polymers Part 1, edited by R. A. V. Raff and K. W. Doak. Interscience Publishers, New York, chap. 14, 1965.
- 21. Boysen, R. L. In *Kirk-Othmer Encyclopedia of Chemical Technology*, 3d ed., edited by J. I. Kroschwitz. Wiley-Interscience, New York, 1981, vol. 16, pp. 402-420.
- 22. Hann, F. C., M. L. Macht, and D. A. Fletcher. Ind. Eng. Chem. 37 (1945): 526.
- Chanda, M., and S. K. Roy. Plastics Technology Handbook. Marcel Dekker, New York, 1987, p. 519.
- 24. Allen, G., G. Gee, and G. J. Wilson. Polymer 1 (1960): 456.
- 25. Chiang, R., and P. J. Flory. J. Am. Chem. Soc. 83 (1961): 2,857.
- 26. Coran, A. Y., and C. E. Anagnostopoulos. J. Poly. Sci. 57 (1962): 13.
- 27. Cernia, E. M., C. Mancini, and A. Saini. J. Appl. Polym. Sci. 12 (1968): 789.
- 28. Barton, A. F. M. CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters. CRC Press, Boca Raton, Fla., 1990, pp. 161–177.
- 29. Barton, A. F. M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters. CRC Press, Boca Raton, Fla., 1983, p. 256.
- 30. Richards, R. B. Trans. Faraday Soc. 42 (1946): 10.
- 31. Muthana, M. S., and H. Mark. J. Polym. Sci. 4 (1949): 527.
- 32. Trementozzi, Q. A. J. Polym. Sci. 36 (1959): 113.
- 33. Trementozzi, Q. A. J. Polym. Sci. 23 (1957): 887.
- 34. Harris, I. J. Polym. Sci. 8 (1952): 353.
- 35. Billmeyer, J. W. J. Am. Chem. Soc. 75 (1953): 6,118.
- 36. (a) Tung, L. H. In Crystalline Olefin Polymers Part 1, edited by R. A. V. Raff and K. W. Doak. Interscience Publishers, New York, 1965, chap. 11; (b) Trementozzi, Q. A., and S. Newman. In Crystalline Olefin Polymers Part 1, edited by R. A. V. Raff and K. W. Doak. Interscience Publishers, New York, chap. 9, 1965.
- 37. Bunn, C. W. Trans. Faraday Soc. 35 (1939): 482.
- 38. Walter, E. R., and P. F. Reading. J. Polym. Sci. 21 (1956): 561.
- 39. Bailey, F. E., and E. R. Walter. Polym. Eng. Sci. 15 (1975): 842.
- 40. Tanaka, K., T. Seto, and T. Hara. J. Phys. Soc. (Japan) 17 (1962): 873.
- 41. Prasad, A. Unpublished data.
- 42. Glotin, M., and L. Mandelkern. Colloid and Polym. Sci. 260 (1982): 182.
- 43. Strobl, G. R., and W. Hagedorn. J. Polym. Sci., Polym. Phys. Ed., 16 (1978): 1,181.

Polyethylene, low-density

- 44. Doak, K. W. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1985, vol. 6, p. 387.
- 45. Stehling, F. C., and L. Mandelkern. Macromolecules 3 (1970): 242.
- 46. Mandelkern, L. In *Physical Properties of Polymers*, 2d ed., edited by J. Mark. ACS Professional Reference Book, American Chemical Society, Washington, D.C., 1993, p. 189.
- 47. Klein, D. E., J. A. Sauer, and A. E. Woodward. J. Polym. Sci. 22 (1956): 455.
- 48. Popli, R., et al. J. Polym. Sci., Polym. Phys. Ed., 22 (1984): 407.
- 49. Illers, K. H. Kolloid Z. Z. Polym. 250 (1972): 426.
- Wilski, H. In *Polymer Handbook*, 2d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1975, chap. III, p. 215.
- 51. Passaglia, E., and H. K. Kevorkian. J. Appl. Polym. Sci. 7 (1963): 119.
- 52. Prasad, A. Unpublished data.
- 53. Baccaredda, M., and G. Schiavinato. J. Polym. Sci. 12 (1954): 155.
- 54. Bianchi, J. P. J. Polym. Sci. 27 (1958): 561.
- 55. Lanza, V. L., and D. B. Herrmann. J. Polym. Sci. 28 (1958): 622.
- Doepken, H. C., K. D. Kiss, and D. Mangaraj. In Preprints Organic Coatings and Plastics Chemistry. American Chemical Society, Washington, D.C., 1978, vol. 38, p. 418.
- 57. Lundberg, R. D. In *Handbook of Thermoplastic Elastomers*, edited by B. M. Walker. Van Nostrand Reinhold, New York, 1979, chap. 6, p. 250.
- 58. Haber, A., and M. R. Kamal. Plastics Engineering 43(10) (1987): 43.
- 59. Mavridis, H., and R. Shroff. Polym. Eng. Sci. 32 (1992): 1,778.
- 60. Choi, K., J. E. Spruiell, and J. L. White. J. Polym. Sci., Polym. Phys. Ed., 20 (1982): 27.
- 61. Kwack, T. H., and C. D. Han. J. Appl. Polym. Sci. 28 (1983): 3,419.
- 62. Lindenmeyer, P. H., and S. Lustig. J. Appl. Polym. Sci. 9 (1965): 227.
- 63. Gupta, A., D. M. Simpson, and I. R. Harrison. J. Appl. Polym. Sci. 50 (1993): 2,085.
- 64. Simpson, D. M., and I. R. Harrison. J. Plast. Film and Sheet. 8 (1992): 192.
- 65. Shang, S. W., and R. D. Kamala. J. Plast. Film and Sheet. 11 (1995): 21.
- 66. Data supplied through the courtesy of Equistar Chemicals, Cincinnati, Ohio.

A. PRASAD

ACRONYMS, ALTERNATIVE NAMES mLLDPE, metallocene PE, single site catalyzed LLDPE (SSC), polyolefin plastomers (POP), homogeneous ethylene copolymers

CLASS Poly(α -olefins)

STRUCTURE
$$-[CH_2-CH_2-CHR-CH_2]_n$$
 (R = α -olefin)

INTRODUCTION New types of linear low-density polyethylenes (LLDPE) based on the metallocene catalyst technology have been introduced recently in the market place. Metallocene-based Ziegler-Natta catalysts utilize a new synthetic approach for the polymerization of poly(α -olefins).^(1–5) Metallocene precatalysts are based primarily on group IV transition metals (primarily titanium and zirconium straddled by a pair of cyclic alkyl molecules) and require a coactivator, which is typically methylalumoxane but certain acids containing noncoordinating anions as bases also work well.

This new family of polyolefin copolymers has a significantly different chain microstructure than conventional LLDPE. (6-15) The single site characteristics of metallocenes, with the catalyst site being identical, are known to produce materials having the most probable molecular weight distribution ($M_{\rm w}/M_{\rm n}\sim 2.0$), with essentially a random comonomer distribution and narrow composition distribution. The comonomers most frequently used commercially are butene, hexene, and octene. Copolymerization of ethylene with 4-methyl-1-penetene (4-MP-1) and cyclic and bicylic groups has been also reported in the literature. (16) Several terpolymers are also commercially available. (11) Exxon Chemical Company manufactures ethylene-butene copolymers, ethylene-hexene copolymers, and terpolymers of butene and hexene comonomers. Exxon markets these mLLDPEs under the trademark name of ExxpolTM Exact PE (density range of 0.910–0.865 g cm⁻³) and ExxpolTM Exceed PE (density range of 0.925–0.910 g cm⁻³). Dow Chemical Company manufactures ethylene-octene copolymers using constrained geometry catalyst technology (CGCTTM). The Dow mLLDPE trade mark names are EngageTM, AffinityTM and Enhanced TM PE. The Affinity resins range in density from 0.902 to 0.935 g cm⁻³, in weight percent comonomer from 2 to 12% octene comonomer, and melt index (MI) from 1.0 to $3.5 \,\mathrm{g} \,(10 \,\mathrm{min})^{-1}$.

Metallocene LLDPEs are relatively difficult to process because of narrow molecular weight distribution (MWD) when compared to conventional Ziegler LLDPEs. (10) Metallocene catalyst based octene-1 LLDPE copolymers made by the Dow Chemical Company are known to process better as a result of their long-chain branched (LCB) structure, referred to as Dow Rheology Index (DRI) numbers. (10,17) The LCB is also responsible for improved melt strength in mLLDPEs. (13) Exxon has also addressed the processibility issue with advanced performance terpolymers. (11) LCB bimodal mLLDPE resins are commercially available from BP Chemicals. (18) Such mLLDPEs are produced by BP's proprietary gas phase fluid bed technology called Innovene TM technology. (18)

Besides molecular weight (MW) and molecular weight distribution (MWD), mechanical and thermal properties of LLDPE depend on the comonomer amount (density), composition distribution, and comonomer type. (5,6,8,13,15,19-21) The comonomer type is also referred to as short-chain branches (SCB). Consequently, mLLDPEs have quite different mechanical properties than conventional LLDPE made by Ziegler-Natta type catalyst. The mLLDPEs are commercially available in wide variety of MI and density ranges. The materials in the density range of 0.885 0.863 g cm⁻³ are called elastomeric PE and are presented in the entry on *Polyethylene*, elastomeric (very highly branched), in this handbook. Metallocene LLDPEs of density greater than $0.886 \,\mathrm{g\,cm}^{-3}$ are called plastomers. This entry covers properties of mLLDPE plastomers in the density range of 0.886 to 0.935 g cm⁻³. Due to wide range of MI and density, mLLDPE properties shown in the following table are given in ranges. Here, only those properties are listed that differ substantially from the conventional Ziegler-Natta type LLDPE and are intended to represent best published examples of commercially available grades of mLLDPE resins. The physical properties of extruded materials may vary substantially from those of the compression molded samples. For illustration purposes, some of the compression molded samples and blown film properties that depend on the chemical nature of the comonomer are listed in Tables 2, 3, and 4.

MAJOR APPLICATIONS Major applications include blown and cast packaging films, injection molding goods, medical devices, automotive applications, wire and cable coatings, electrical cables, adhesives, and sealants. Other applications include blow molding, pipe and conduit, rotomolding, foams for sporting goods and houseware goods.

PROPERTIES OF SPECIAL INTEREST Flexibility, low extractability, high shock resistance, high toughness, exceptionally high dart-impact strength and puncture resistance, balanced machine and transverse direction tear strength, better clarity, low heat seal temperature, better electrical/abrasion properties, good organoleptic properties and better biaxial orientation than conventional LLDPEs. Other properties of interest include low brittleness temperature, good chemical resistance to acids and aqueous solvents, good heat seal, good stress-crack resistance properties, and good structural stability at high temperatures.

LIMITATIONS mLLDPEs without the long-chain branching are relatively difficult to process because of narrower MWD. Other limitations include: poor stretchability, no significant advantage in film tear properties, and higher resin cost when compared to conventional Ziegler LLDPE.

MAJOR SUPPLIERS Dow Chemical Co., Exxon Chemical Co., BP Chemicals, BASF, Mitsubishi Chemical Corp., Mitsui Petrochemicals, Mobil Polymers.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Typical comonomer	_	Butene, hexene, octene	_	(1, 5, 6-8)
Degree of branching, commercial resins	mol%	NMR, ethyl, butyl, and hexyl branches	0.5–7.0	(3,15)
Typical molecular weight range ($M_{ m w}$)	$g mol^{-1}$	GPC, in 1,2,4-trichlorobenzene	4-11 (×10 ⁴)	(22)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Typical polydispersity index $(M_{\rm w}/M_{\rm n})$	_	GPC	2-2.5	(5, 17, 19)
Crystallographic data*	Å	Wide angle X-ray	See table below	(23)

^{*}Crystalline unit cell parameters depend on crystallite thickness. The comonomer amount, comonomer type, and crystallization conditions determine the crystallite thickness in ethylene copolymers. The major cause of lattice expansion in ethylene copolymers is due to decrease in lamellae thickness by exclusion of branch points from the lamellar crystals coupled with surface stress on thin lamellae (see references 24 and 25 for details). The table below is for butene-1 mLLDPE $(M_{\rm w}=122,000,\,M_{\rm w}/M_{\rm n}=2)$, crystallized from the melt at a cooling rate of 7°C min⁻¹.

Lattice	Mol%	Unit cell dimensions (Å)		Mol% Unit cell dimensions (Å)		Unit cell volume (nm³)	Unit cell density (g cm ⁻³)
		а	b	с			
Orthorhombic	3.0 5.2	7.53 5.58	5.00 4.99	2.54 2.54	0.0959 0.0963	0.9724 0.9679	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Crystallinity	%	DSC	33-53	(5-9, 19)
Heat of fusion	$kJ mol^{-1}$	DSC	1.37-2.18	(5-9, 19)
Density, commercial resins	$\rm gcm^{-3}$	D1505-85	0.886-0.940	(15, 26)
Avrami exponent*	-	Depends on counit content and crystallization temperature	See table below	(27, 28)

^{*}A caution should be exercised in using Avrami exponent values for the copolymers. In contrast to homopolymer crystallization, the isotherms of copolymers do not superpose one with the other; deviations from the Avrami relation occurs at low levels of crystallinity; and retardation in crystallization rate is pronounced with the extent of transformation due to continuous change in both composition and sequence distribution during crystallization. See reference (28) for the detailed discussion. Avrami exponent values for selected mLLDPE are shown below.

Comonomer	Mole (%)	Crystallization condition	Value	Reference
Octene	<7.5	Not known	2-4	(27)
Octene	>7.5	Isotherm crystallization: <328 K	2	(27)
Octene	>7.5	Isotherm crystallization: >328 K	1	(27)
Hexene	1.21	Isotherm crystallization: 381–388 K	3	(28)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Lamellae thickness and crystal phase structure	Å and %	Raman longitudinal acoustic mode (LAM), small-angle X-ray (SAXS), transmission electron microscopy (TEM)	See Table 1	(14, 19, 20, 23)
Surface free energy, $\sigma_{\rm e}$ (chain-folding crystal face)	$\mathrm{J}\mathrm{m}^{-2}$	Thomson-Gibbs equation; value is dependent on counit content: Octene-1 0.9 mol% Octene-1 3.9 mol% Octene-1 2.4 mol% Octene-1 4.7 mol% Butene-1 7.5 mol%	0.066 0.096 0.214-0.286 0.268-0.357 0.268-0.357	(20) (20) (29) (29) (29)
Melting temperature $T_{\rm m}$	K	DSC peak endotherm, density range = $0.886-0.935 \mathrm{gm cm^{-3}}$ ($T_{\rm m}$ depends on MW and SCB content but not on SCB type. Single and multiple endotherms have been observed)	363–398	(5–9)
Transition and relaxation temperatures	K	DMA $\tan \delta$ peaks at 1 Hz, heating rate = 3°C min ⁻¹ (values depend on mol% branching); value for 2.8–8.2 mol%, octene-1	$\alpha = 322-373$ $\beta = 245-232$ $\gamma = 153-163$	(8, 30, 31)
Vicant softening point	K	D 1525, density range = 0.920 - $0.912 \mathrm{gm}\mathrm{cm}^{-3}$	382–368	(12, 32)
Tensile modulus	MPa	D 412, <1% strain, density	20-550	(15)
		range = 0.887-0.935 gm cm ⁻³ 2-3% strain, independent of comonomer type, depends on crystallinity, value for crystallinity range of 7-50%	4–70	(19)
		D 1708, octene-1 Density = 0.916 gm cm ⁻³	400	(8)
		Density = $0.9014 \mathrm{gm cm^{-3}}$ ISO 527, octene-1 298 K, density = $0.909 \mathrm{gm cm^{-3}}$ Density = $0.935 \mathrm{gm cm^{-3}}$	120 200 700	(32)
Elongation at break	%	D 638	>700, no break	(33)

Yield stress*(8, 19, 32, 34)

Comonomer	Mole (%)	$M_{ m w} imes 10^4$ (g cm $^{-3}$)	Density (%)	Crystallinity	Conditions	Yield stress (MPa)	Reference
Butene	0.95	5.3	_	40.0	Specimen quenched to 195 K,	12.0	(19)
	1.26	9.0	_	37.0	draw rate = $2.54 \mathrm{cm}\mathrm{min}^{-1}$	10.4	(19)
	2.05	12.5	_	27.0		8.3	(19)
Hexene	0.6	5.6	_	40.0	Same as above	11.4	(19)
	1.1	5.8	_	36.0		10.3	(19)
	2.8	5.7	_	19.0		5.6	(19)
	3.5	6.3	_	15.0		5.5	(19)
4-MP-1	0.7	12.7	_	37.0	Same as above	10.0	(19)
	1.3	13.7	_	27.0		7.0	(19)
	2.0	10.6	_	26.0		7.0	(19)
	2.1	23.8	_	18.0		3.5	(19)
Octene	0.7	11.7	_	40.0	Same as above	12.0	(19)
	1.4	7.9	_	28.0		7.5	(19)
	4.6	14.9	_	7.0		2.1	(19)
	0.005	8.25	0.935	_	ISO 527	20.0	(32)
	1.8	9.67	0.909	_	ISO 427	8.0	(32)
	2.8	_	0.9209	46.0	D 1708	13.0	(8)
	5.2	_	0.9029	33.0	D 1708	7.8	(8)

^{*}Yield stress value is independent of comonomer type but depends on crystallinity value.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Flexural modulus	MPa	ISO 178, octene-1 298 K, density = $0.909 \mathrm{gm}\mathrm{cm}^{-3}$ Density = $0.935 \mathrm{gm}\mathrm{cm}^{-3}$	125 635	(32)
Ultimate tensile stress	MPa	Depends on MW and counit content, has maximum value at $\sim M_{\rm w}$ of 10^5 for all the copolymers; for $M_{\rm w}=10^5$		(19)
		mol% branch = < 1	48	(19)
		mol% branch = 1-3.5	38	(19)
		mol% branch => 3.5	32	(19)
		mol% octene = 2.8	34.6	(8)
		mol% octene = 5.2	30.9	(8)
Impact strength, notched Izod	$\mathrm{J}\mathrm{m}^{-1}$	ISO 180, octene-1 298 K, density = $0.909 \mathrm{gm}\mathrm{cm}^{-3}$ Density = $0.935 \mathrm{gm}\mathrm{cm}^{-3}$	No break 2,500	(32)
Dynatup impact	J	D 3763-86, several mLLDPE used Butene-1: density = $0.912 \mathrm{gm cm^{-3}}$ Butene-1: density = $0.921 \mathrm{gm cm^{-3}}$ Octene-1: density = $0.912 \mathrm{gm cm^{-3}}$ Octene-1: density = $0.921 \mathrm{gm cm^{-3}}$	17 13 27 19.5	(35)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Hardness	Shore A	D 2240, octene-1, 6.2 mol%	75	(36)
Volume resistivity	ohm cm (×10 ¹⁴)	1 mm thick sample Density = $0.915 \mathrm{g cm^{-3}}$		(37)
	,	293 K	10,800	
		313 K	2,220	
		333 K	54.0	
		363 K	1	
		$Density = 0.935 cm^{-3}$		
		293 K	32,000	
		313 K	10,000	
		333 K	550	
		363 K	18.0	
Melt index	g (10 min) ⁻¹	D 1238	0.8-30	(26)
Water vapor transmission rate (WVTR)	$g m^{-2} day^{-1}$	Test temperature = 311 K; relative humidity = 90%; butene-1: density range = 0.900 - 0.910 g cm ⁻³	15.5–19.5	(38)
Oxygen transmission rate (OTR)	mmol cm/ cm ² h kPa	Test temperature = 273-298 K; various types of mLLDPE	6-10 (×10 ⁻⁸)	(38, 39)
Carbon dioxide transmission rate (CO_2TR)	mmol cm/ cm ² h kPa	Test temperature = 273–298 K; various types of mLLDPE	$8-50 \ (\times 10^{-8})$	(38, 39)

Table 1. Crystal phase structure and lamellae thickness of mLLDPE by short chain branching type*

Comonomer	Mole % branch	$\textit{M}_{\rm w}~(\times 10^{-4})$	Conditions [†]	Lamellae thickness (Å)	% Crystallinity (DSC)	$lpha_{a}$ (%)	α_{b} (%)	$\alpha_{\rm c}$ (%)	Reference
Butene	0.95	5.3	A	87	34	44	16	40	(19)
	1.26	9.0		93	31	46	17	37	(19)
	2.05	12.5		72	24	62	11	27	(19)
Butene	3.0	12.2	В	47	33	45	10	45	(23)
	5.2	11.9		29	25	47	15	38	(23)
Hexene	0.6	5.6	A	95	41	48	12	40	(19)
	1.1	5.8		82	35	46	18	36	(19)
	1.2	10.4		77	_	58	10	32	(19)
	2.2	8.8		62	_	68	12	20	(19)
	3.5	6.27		57	12	67	18	15	(19)
Hexene	1.9	9.65	С	86	49	9	41	50	(14)
			D	71	_	13	42	45	(14)

Table 1. (continued)

Comonomer	Mole % branch	$\textit{M}_{\rm w}~(\times 10^{-4})$	Conditions [†]	Lamellae thickness (Å)	% Crystallinity (DSC)	$lpha_{a}$ (%)	α_{b} (%)	α_{c} (%)	Reference
4-MP-1	0.7	12.7	A	72	40	55	8	37	(19)
	1.3	13.7		67	38	61	12	27	(19)
	2.0	10.6		_	28	55	19	26	(19)
	3.6	6.3		50	19	67	22	11	(19)
Octene	0.7	11.7	A	87	34	47	13	40	(19)
	1.4	7.9		78	27	52	20	28	(19)
	4.6	14.9		45	8	82	11	7	(19)
Octene	0.9	7.7	E	140	60	_	_	_	(20)
	3.9	8.14		72	41	_	_	_	(20)

 $^{{}^*\}alpha_c$, α_b , and α_a refers to fraction of chain units in the perfect crystals, interfacial region, and amorphous region, respectively of a lamella. See references (7) and (19) for more data and detailed discussions.

Table 2. Blown film properties comparison of ethylene-octene mLLDPEs of different densities and conventional Ziegler ethylene-octene LLDPE*

PROPERTY	UNITS	CONDITIONS	MLLDPE1 (OCTENE)	MLLDPE2 (OCTENE)	MLLDPE3 (OCTENE)	LLDPE (OCTENE)
Melt index	g (10 min) ⁻¹	D 1238	0.85	1.5	1.6	1.0
Density	$\rm gcm^{-3}$	D 1505	0.920	0.912	0.895	0.920
Total short-chain branch	Mol%	NMR	1.7	2.4	3.7	2.7
$M_{\rm w}/M_{\rm n}$	_	GPC	2.0	2.0	2.0	4.6
Total haze	%	D1003	12	11	1.1	11.3
Gloss, 45°D	Units	D2457	61	63	90	61
Modulus, 2% secant	MPa	D882, MD D882, TD	206 230	152 152	53 55	190 215
Dart impact	g	D1709, D4272	>850 (no break)	650	>850 (no break)	266
Elmendorf tear	g	D1922, MD D1922, TD	740 990	1,190 1220	550 590	980 1,210

^{*}The results in Table 2 were obtained for the following blown film conditions: blow-up ratio = 2.5:1; die gap = 1.78 mm; output not mentioned; film thickness = 50.5 mm; die size = 152.4 mm; frost line height not mentioned; melt temperature = 508 K. $^{(12,40)}$

Note: It is well-known that film properties depend on the chemical nature of the comonomer. (41–43) However, blown film properties also depend on the processing conditions. (41,43–45) Properties listed in Tables 2 and 3 were obtained at different extrusion conditions and, therefore, should not be compared.

 $^{^{\}dagger}$ A = LAM, quenched to 195 K. B = SAXS, sample cooled at 7°C min⁻¹. C = Lamella thickness by TEM, crystal phase structure by 13 C NMR; samples were crystallized isothermally at 383 K for 18 h. D = quench cooled to 73 K. E = SAXS, sample cooled at 20°C min⁻¹.

Table 3. Blown film properties comparison of ethylene-hexene mLLDPEs of different densities and conventional Ziegler ethylene-hexene LLDPE*

PROPERTY	UNITS	CONDITIONS	MLLDPE (HEXENE)	MLLDPE (HEXENE)	MLLDPE (HEXENE)	LLDPE (HEXENE)
Melt index	g (10 min) ⁻¹	D 1238	0.80	1.0	1.0	1.04
Density	$g\mathrm{cm}^{-3}$	D 1505	0.925	0.918	0.917	0.919
Total short-chain branch	Mol%	NMR	2.18	3.38	3.66	3.88
Peak melting point	K	DSC, at a cooling and heating rate of 5°C min ⁻¹	385 and 394	379.5 and 392.5	379.5 and 391.5	372 and 397.5
Heat of fusion	$kJ mol^{-1}$	DSC, at a cooling and heating rate of 5°C min ⁻¹	1.93	1.49	1.49	1.68
$M_{\rm w} \times 10^{-5}$	$g \text{mol}^{-1}$	GPC, 408 K in 1,2,4-trichlorobenzene	1.37	1.22	1.25	1.24
$M_{\rm w}/M_{\rm n}$	_	GPC	2.7	2.4	2.6	4.1
Total haze	%	D1003	19	12	10	16
Gloss, 45°D	Units	D2457	38	58	61	41
Modulus, 1% secant	MPa	D882, MD D882, TD	305 290	187 185	175 168	206 250
Dart impact	g	D1709, D4272	230	860	1040	215
Elmendorf tear	g	D1922, MD D1922, TD	300 450	230 480	260 420	360 710
Tensile yield	MPa	D 882, MD D 882, TD	11.8 14.0	9.0 8.7	8.9 11.1	9.6 11.2
Elongation at yield	%	D 882, MD D 882, TD	6 16	8 12	8.5 20	8 14
Tensile strength break	MPa	D 882, MD D 882, TD	56 57	61 49	58 47	35 22
Elongation break	%	D 882, MD D 882, TD	530 650	580 600	560 580	420 540
Hexene extractables	%	312 K for 2 h	<1	<1	<1	>3

^{*}The results in Table 3 were obtained for the following blown film conditions: blow-up ratio = 2.5:1; die gap = 2.54 mm; output = $30 \, \text{kg h}^{-1}$; film thickness = $28 \, \text{mm}$; die size = $102 \, \text{mm}$; frost line height = $330 \, \text{mm}$; melt temperature = $475 \, \text{K}^{(46)}$. See also references (5, 11, 13, 35, 47) for more data.

Table 4. Blown film properties comparison of ethylene-octene and ethylene-butene mLLDPEs of different densities with the compression molded specimens*

PROPERTY	UNITS	CONDITIONS	BUTENE-1	OCTENE-1	BUTENE-1	OCTENE-1
Melt index	g (10 min) ⁻¹	D 1238	0.94	0.93	0.97	1.02
Density	$\rm gcm^{-3}$	D 792	0.912	0.912	0.921	0.921
Total short-chain branch	Mol%	NMR	4.17	3.04	3.04	1.77
Peak melting point	K	DSC, at a cooling and heating rate of 10°C min ⁻¹	374.2	379.4	383.3	386.5
$M_{\rm w}~(\times 10^{-4})$	$g \text{mol}^{-1}$	GPC, 423 K in 1,2,4-trichlorobenzene	7.54	9.0	7.28	8.3
$M_{\rm w}/M_{\rm n}$	_	GPC	2.22	2.12	2.25	2.19
COMPRESSION MOLDED SAMPI	LE PROPERTIES					
Intrinsic tear	g	Elmendorf A tear test using 254 µm sample (normalized to per mil)	86	345	63	300
Dynatup impact	J	D 3763-86	17.0	27.0	13.0	19.5
Tensile yield	MPa	D 638	8.68	8.96	12.00	11.64
Tensile break	MPa	D 638	15.73	25.61	14.63	24.14
Tensile strain at break	%	D 638	743	697	640	767
BLOWN FILM SAMPLE PROPERT	IES					
Density (film)	$g\mathrm{cm}^{-3}$	D792	0.9086	0.9085	0.9177	0.9173
Film haze	%	D1003	5.01	3.92	6.86	5.33
Dart impact	g	D1709	184	>860	50	188
Elmendorf tear	g	D1922, MD D1922, TD	85 475	237 475	26 163	208 392
Tensile yield	MPa	D 882, MD D 882, TD	6.2 5.6	6.4 6.2	11.8 11.9	12.4 12.9
Tensile strength at break	MPa	D 882, MD D 882, TD	29.1 20	53.8 51.0	28.2 22.1	57.0 45.5
Elongation at break	%	D 882, M D D 882, TD	586 651	622 744	497 567	571 629

^{*}The results in Table 4 were obtained for the following blown film conditions: blow-up ratio = 2.5:1; die gap = 1.78 mm; output = 14.5 kg h $^{-1}$; film thickness = 25.4 mm; die size = 76.2 mm; frost line height = 28 cm; melt temperature unknown. $^{(35)}$

REFERENCES

- 1. Elston, C. T. U.S. Patent 3,645,992 (1972).
- 2. Kaminsky, W., et al. U.S. Patent 4,542,199 (1985).
- 3. Spaleck, W. Organometallics 13 (1994): 954.
- 4. Soga, K. Macromol. Symp. 101 (1996): 281.
- 5. Speed, C. S., et al. In SPE RETEC, VII Polyolefins International Conference, 1991, p. 45.
- 6. Alamo, R. G., B. D. Viers, and L. Mandelkern. Macromolecules 26 (1993): 5,740.
- 7. Alamo, R. G., and L. Mandelkern. Macromolecules 22 (1989): 1,273.
- 8. Bensason, S., et al. J. Polym. Sci., Polym. Phys. Ed., 34 (1996): 1,301.
- de Garavilla, J. R. In Proceedings of Fourth International Business Forum on Specialty Polyolefins, Preprints. Schotland Business Research, Houston, 1994, p. 323.
- Swogger, K. W. In Proceedings of Second International Business Forum on Specialty Polyolefins, Preprints. Schotland Business Research, 1992, p. 155.
- Michiels, D. J. In Worldwide Metallocene Conference Proceedings, Metcon '94, Preprints. Houston, 1994.
- 12. Whiteman, N. F., et al. In Society of Plastics Engineers IX International Polyolefins RETEC Conference Proceedings, Preprints, Houston, 1995, p. 575.
- 13. Todo, A., and N. Kashiwa. Macromol. Symp. 101 (1996): 310.
- 14. Kuwabara, K., et al. Macromolecules 30 (1997): 7,516.
- 15. Sehanobish, K., et al. J. Appl. Polym. Sci. 51 (1994): 887.
- 16. Marathe, S., T. P. Mohandas, and S. Sivaram. Macromolecules 28 (1995): 7,318.
- Swogger, K. W., et al. J. Plast. Film Sheet. 11 (1995): 102; (Catalyst) Macromolecules 28 (1995): 7,318.
- Howard, P., et al. In Proceedings of Fifth International Business Forum on Specialty Polyolefins, Preprints. Schotland Business Research, 1995, p. 313.
- 19. Kennedy, M. A., et al. Macromolecules 28 (1995): 1,407.
- 20. Miri, V. G., S. Elkoun, and R. Seguela. Polym. Eng. Sci. 37(10) (1997): 1,672.
- 21. Plumley, T. A., et al. J. Plast. Film Sheet. 11 (1995): 269.
- 22. Trudell, B. C., and C. D. Malpass. In *Proceedings of Fifth International Business Forum on Specialty Polyolefins, Preprints*. Schotland Business Research, 1995, p. 45.
- 23. Marigo, A., R. Zannetti, and F. Milani. Eur. Polym. J. 33(5) (1997): 595.
- 24. Defoor, F., et al. Macromolecules 26 (1993): 2,575.
- 25. (a) Howard, P. R., and B. Crist. *J. Polym. Sci., Polym. Phys. Ed.*, 27 (1989): 2,269; (b) Bunn, C. W. In *Polyethylene*, edited by A. Renfrew and P. Morgan. Wiley-Interscience, New York, 1957, chap. 7.
- 26. (a) *The Metallocene Monitor*, June 1994, vol. II, p.7; (b) Childress, B. C. In *Worldwide Metallocene Conference Proceedings, Metcon '94, Preprints*, Houston, 1994.
- 27. Phillips, P. J., M-H Kim, and K. Monar. Society of Plastics Engineers Annual Technical conference Proceedings (SPE ANTEC), Preprints, 1995, p. 1,481.
- 28. Alamo, R., and L. Mandelkern. Macromolecules 24 (1991): 6,480.
- 29. Minick, J., et al. J. Appl. Polym. Sci. 58 (1995): 1,371.
- 30. Starck, P. Eur. Polym. J. 33 (1997): 339.
- 31. Woo, L., M. Ling, and S. Westphal. Thermochim. Acta. 272 (1996): 171.
- 32. Schellenberg, J. Adv. Polym. Tech. 16(2) (1997): 135.
- 33. Chum, P. C., C. I. Kao, and G. W. Knight. Plast. Eng. (July 1995): 21.
- 34. Graham, J. T., R. G. Alamo, and L. Mandelkern. J. Polym. Sci., Polym. Phys. Ed., 35 (1997): 213.
- 35. Kale, L. T., et al. In Society of Plastics Engineers Annual Technical conference Proceedings (SPE ANTEC), Preprints, 1995, p. 2,249.
- 36. Huang, J.-C., and H.-L. Huang. J. Poly. Eng. 17(3) (1997): 213.
- 37. Wang, S., et al. *J. Electrostatics* 42 (1997): 219.
- Michiels, D. J. In Society of Plastics Engineers Annual Technical conference Proceedings (SPE ANTEC), Preprints, 1995, p. 2,239.
- Young, G. L. In Society of Plastics Engineers Annual Technical Conference Proceedings (SPE ANTEC), Preprints, 1995, p. 2,234.
- Jain, P., L. G. Hazlitt, and J. A. deGroot. In Society of Plastics Engineers X International Polyolefins RETEC Conference Proceedings, Preprints, Houston, 1997, p. 109.

- 41. Kissin, Y. V. In *Kirk-Othmer Encyclopedia of Chemical Technology*, 4th ed., edited by M. Graysen and D. Eckroth. Wiley-Interscience, New York, 1991, vol. 17, p. 756.
- 42. James, D. E. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1985, vol. 6, p. 429.
- 43. Dighton, G. L. In *Alpha Olefins Applications Handbook*, edited by G. R. Lappin and J. D. Sauer. Mercel Dekker, New York, 1989, p. 63.
- 44. Patel, R. M., et al. Polym. Eng. Sci. 34 (1994): 1,506.
- 45. Sukhadia, A. M. J. Plastic Film and Sheet 10 (1994): 213.
- 46. Data supplied courtesy of Equistar Chemicals LP, Cincinnati, Ohio.
- 47. Sukhadia, A. M. J. Plastic Film and Sheet 14 (1998): 54.

Poly(ethylene-2,6-naphthalate)

JUDE O. IROH

ACRONYM PEN

CLASS Polyesters; linear aromatic rigid polyesters; thermoplastics

STRUCTURE
$$\begin{matrix} O \\ \parallel \\ C \end{matrix} - C - O - (CH_2)_2 - O \end{matrix}$$

MAJOR APPLICATIONS Films, rigid thermoplastic polyesters.

PROPERTIES OF SPECIAL INTEREST Mostly synthesized as semicrystalline thermoplastic. PEN is a clear and rigid polyester.

PREPARATIVE TECHNIQUES Synthesized by step-growth polymerization of ethylene glycol and naphthalene-2,6-dicarboxylate.⁽¹⁾

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular conformation	_	_	Nearly planar	_
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	242	_
Glass transition temperature $T_{\rm g}$	K	DSC	390-394	(2-4, 8)
Melting temperature $T_{\rm m}$	K	DSC	538-539	(2-4, 8)
Crystallization temperature	K	DSC	471–476	(2, 3)
Heat of fussion ΔH	kJ mol ⁻¹	DSC 100% crystallinity	9.2 46	(2, 3)
Heat of cold crystallization $\Delta H_{\rm cc}$	$kJ mol^{-1}$	DSC	7.3	(2, 3)
Coefficient of thermal expansion α	K^{-1}	-	4.4×10^{-5}	(2)
Inherent viscosity	dlg^{-1}	Dilute solution viscometry	0.51-0.53	(2, 4)
Intrinsic viscosity	$\mathrm{dl}\mathrm{g}^{-1}$	Dilute solution viscometry at 25°C	0.59	(8)

Poly(ethylene-2,6-naphthalate)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solvent	_	-	Phenol/o-dichlorobenzene	(7, 8)
Physical state	_	Semicrystalline	_	_
Unit cell	_	_	Triclinic	_
Lattice constants	_	X-ray diffraction	a = 6.57 b = 5.75 c = 13.2 $\alpha = 81^{\circ}20^{\circ}$ $\beta = 144^{\circ}$ $\gamma = 100^{\circ}$	(3, 5, 6)
Number of chains per unit cell	_	– X-ray diffraction	1 _	(5, 6)
Number of chains	_	_	1	(5, 6)
No of monomers	_	_	1	(5, 6)
Breaking strength $\sigma_{\rm B}$	MPa	Tensile	83	(7)
Tensile (Young's) modulus <i>E</i>	MPa	_	2,000	(7)
Flexural strength σ^*	MPa	3-point flexure	108	(7)
Flexural modulus <i>E</i>	MPa	3-point flexure	2,500	(7)
Elongation ε_{B}	%	Tensile	48.53	(7)
Measured density	$\rm gcm^{-3}$	Autodensimeter	1.3471	(7)

REFERENCES

- Fried, J. R. Polymer Science and Technology. Prentice Hall PTR, Englewood Cliffs, N.J., 1995, p. 350–351.
- 2. Kim, B. S., and S. H. Jang. Polym. Eng. and Sci. 35(18) (1995): 1,421-1,432.
- 3. Cakmak, M., Y. D. Wang, and M. Simhambhatla. Polym. Eng. and Sci. 30(12) (1990): 721-733.
- 4. Yoon, K. H., and S. C. Lee. Polym. Eng. and Sci. 35(22) (1995): 1,807-1,810.
- 5. Mencik, Z. Chem. Prim. 17(2) (1967): 78.
- 6. Zachmann, H. G., et al. Makromol. Chem. Suppl. 12 (1985): 175.
- 7. Jang, S. H., and B. S. Kim. Polym. Eng. and Sci. 35(6) (1995): 538-545.
- 8. Kit, K. M., and R. M. Gohil. Polym. Eng. and Sci. 35(8) (1995): 680-692.

QINGWEN WENDY YUAN

ACRONYM PEO

CLASS Polyethers

 $\begin{array}{ll} \textbf{STRUCTURE} & [-CH_2 - CH_2 - O -] \end{array}$

MAJOR APPLICATIONS Textile applications, cosmetics, antifoaming agents, others (chemical intermediates, ink and dye solvents, demulsifiers, plasticizers, etc.) $^{(1,2)}$

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE			
Molecular weight (of repeat unit)	g mol ⁻¹	_		44	_			
Polymerization	_	_	Anionic r	ing-opening	(1)			
Solvents	dimeth	alcohols, chloroform, esters, cyclohexan nylacetamide, acetonitrile, water (cold), a 35°C), aqueous MgSO ₄ (0.39 M above 45	O ₄ (0.45 M	(3)				
Nonsolvents	Ethers, d	dioxane (sw), water (hot), aliphatic hydrocarbons						
Theta temperature	K	Solvent*	Method [†]					
		Acetonitrile/ <i>i</i> -propyl ether (45/55) Benzene/isooctane (100/48)	CP CT PE	293.5 344.3 344.5	(3, 4) (3, 5) (3, 5)			
		$CaCl_2$ /water (2 mol l^{-1})	CT	355.5 359.5	(3, 6) (3, 7)			
		Chloroform/ n -hexane (54/46)	CT	293.5	(3, 8)			
		Chloroform/ n -hexane (47.4/52.6)	CT, VM	293.5	(3, 9)			
		$CsCl/water (2 mol l^{-1})$	CT	333.5	(3, 6)			
		Diethylene glycol diethylether	VM	323.5	(3, 10)			
		KCl/water (2 mol l ⁻¹)	CT	327.5 330.5	(3, 7) (3, 6)			
		KNO_3 /water (2 mol l ⁻¹)	CT	338.5	(3, 7)			
		K_2SO_4 /water (0.45 mol l ⁻¹)	CT	307.5 307.5	(3, 11) (3, 7)			
			PE	308.5	(3, 12)			
			VM	308.5	(3, 10)			
		$LiCl/water (2 mol l^{-1})$	CT	363.5	(3, 6, 7)			
		Methyl <i>i</i> -butyl ketone	VM	323.5	(3, 10)			
		$MgCl_2/water (2 mol l^{-1})$	CT	353.5	(3, 6)			
				363.5	(3, 7)			
		$MgSO_4/water (0.39 mol l^{-1})$	CT	315.5	(3, 11)			
		- · · · · · · · · · · · · · · · · · · ·	CP	315.5	(3, 7)			
			PE	318.5	(3, 12)			

Poly	/(eth	vlene	oxide)
	(,	Uniac,

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Theta temperature	K	Solvent*		Method [†]		
		NaCl/water (2 mol l ⁻¹	1)	CT	333.5 334.5	(3, 6) (3, 7)
		NH ₄ Cl/water (2 mol l	CT	349.5 350.5	(3, 6) (3, 7)	
		Nitroethane/i-propyl (45/55)	ether	CP	293.5	(3, 8)
		RbCl/water $(2 \text{ mol } 1^{-1})$)	CT	329.5	(3, 6)
		SrCl ₂ /water (2 mol l ⁻¹		CT	346.5	(3, 6)
		27	,		355.5	(3, 7)
		Water		DM, VM	278.6	(3, 13)
				CT	369.5	(3, 7)
					390.5	(3, 6)
Interaction	_	Method: vapor pressu				
parameter χ		Benzene, $T = 323.8$ $v_2 = 0.2$	K		0.18	
		$v_2 = 0.2$ $v_2 = 0.4$			0.14	
		$v_2 = 0.6$			0.10	
		Benzene, $T = 343.5$	K			
		$v_2 = 0.2$			0.19	
		$v_2 = 0.4$			0.14	
		$v_2 = 0.6$			0.12	
		$v_2 = 0.8$			0.09	
Second virial	$mol cm^3 g^{-2}$	Solvent	Temp.	Mol. wt.		
coefficient	$(\times 10^{-4})$	-	(°C)	$(g \text{mol}^{-1})$		
		Benzene	25	7.70×10^{3}	27.4	(3, 15)
			25	3.79×10^{3}	78	(3, 15)
		Dimethylformamide	_	3.79×10^3	30	(3, 15)
		N. d. 1	25–120	$\sim 3.5 \times 10^3$	37–47	16)
		Methanol	25	7.70×10^3 3.79×10^3	66.0 56.0	(3, 15)
				(0.316-6.75)	56.0 18.0–16.4	(3, 15) (3, 17)
				$\times 10^{3}$, ,
				(0.0(0.07.0)	170-34.8	(3, 18)
				(0.062-37.3) $\times 10^3$	1,220–46	(3, 18)
				$(1-31) \times 10^3$	102.5-39	(3, 19)
				$(1-10) \times 10^3$	84.5-47.5	(3, 20)
				$(4-23) \times 10^3$	87-46	(3, 21)
		Motor	25	$(3-48) \times 10^3$	48-27.5	(3, 22)
		Water	25	$(10.9-800)$ $\times 10^{3}$	116-30.4	(3, 23)
				10.1×10^{3}	62	(3, 21)
				10.1 / 10	3 -	(3, 21)

_			
DOIN	lathi	ILANA	oxide)
FUIV	(Etii)	/ICIIC	ONIGE

PROPERTY	UNITS	CONDITIONS			'	/ALUE		REFERENCE
Huggins	_	Solvent	Temp. (°C) [η]				(3)
coefficient		Benzene	20	2		~3.7		
				48		0.4		
		Chloroform	20	3		~0.9		
				82		0.4		
		Dimethylformamide	20	3	-	~0.6		
		·		45	(0.4		
		Toluene	30	3		~2.50		
				39	(0.4		
			35	1.1	8	3.16		
				1.9	3	3.41		
				2.4	2	2.06		
				5.5	2	2.3		
		Water	20	3	1	1.1		
				5	(0.4		
			35	1.7	4	1.95		
				3.0	2	2.42		
				5.0	(0.93		
				10.8	(0.44		
Mark-Houwink parameters:	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Solvent	Temp. I	Mol. wt. (g mol ⁻¹)	1	$K (\times 10^{-3})$	а	
K and a		Acetone	25 ($(7-100) \times 10$	0^4 3	32	0.67	(3, 11)
				$(0.02-0.3) \times$		156	0.50	(3, 24)
		Benzene		$(0.01-1.9) \times$		18	0.68	(3, 20)
				$(8-520) \times 10$		30.7	0.686	(3, 25)
				$(0.02-0.8) \times$		129	0.5	(3, 24)
		Carbon tetrachloride		$(0.02-1.1) \times$		69	0.61	(3, 20)
				$(7-100) \times 10$		62	0.64	(3, 11)
		Chloroform		0.02-0.15)		206	0.50	(3, 24)
		Cyclohexane		0.006-1.1)	$\times 10^4$ [$[\eta] = 0.5 + 0$	$.035M^{0.64}$	(3, 20)
		Diethylene glycol diethyl ether		$(7-100) \times 10$		140	0.51	(3, 11)
		Dimethylformamide	25 ($(0.1-3) \times 10$	$)^4$	$[\eta] = 2.0 + 0$	$.024M^{0.73}$	(3, 19)
		Dioxane	20 (0.006-1.1)	$\times 10^4$	$ \eta = 0.75 + 1$	$0.035M^{0.71}$	(3, 20)
				0.02-0.15)	$\times 10^4$ 1	138	0.5	(3, 24)
		Methanol		$(0.06-1.9) \times$	10 ⁴	$[\eta] = 2.0 + 0$	$.033M^{0.72}$	(3, 20)
			25			32.5	0.57	(3, 26)
		4-Methylpenta-2-one	50	$(7-100) \times 10$		120	0.52	(3, 11)
		Toluene	35 ($(0.04-0.4) \times$	10^4 1	14.5	0.70	(3, 27)
		Water	20	0.006-1.1)	$\times~10^4$ [$[\eta] = 2.0 + 0$		(3, 26)
			25	0.019-0.1)	$\times 10^4$ 1	156	0.50	(3)
				$(2-500) \times 10$		12.5	0.78	(3, 28)
				$(3-700) \times 10$		5.4	0.82	(3, 12)
				$(0.04-0.4) \times$		16.6	0.82	(3, 27)

PROPERTY	UNITS	CONDITIONS			VALUE		REFERENCE
Mark-Houwink parameters:	$K = \text{ml g}^{-1}$ a = None	Solvent	Temp.	Mol. wt. $(g \text{mol}^{-1})$	$K (\times 10^{-3})$	а	
K and a		Aqueous K ₂ SO ₄	35	$(3-700) \times 10^4$	130	0.50	(3, 12)
		$(0.45 \mathrm{M})$	45	$(7-100) \times 10^4$	280	0.45	(3, 11)
				$(3-700) \times 10^4$	100	0.50	(3, 12)
Solubility parameter	$(MPa)^{1/2}$	Method: IPGC, 25°C			20.2 ± 2		(3, 29)
Heat of	$\mathrm{J}~\mathrm{g}^{-1}$	Semicrystalline poly	mer				(3)
solution		Benzene, 30°C, 4.3		mol^{-1}	170		()
		Chloroform, 30°C,	6×10^{3}	$g \text{mol}^{-1}$	52		
		Water, 25° C, $2 \times 10^{\circ}$	0 ⁴ g mol	_1	10		
		Water, 30° C, $6 \times 10^{\circ}$	$0^3 g \text{ mol}$	-1	24		
		Water, 25° C, $2 \times 10^{\circ}$ Water, 30° C, $6 \times 10^{\circ}$ Water, 30° C, $4.3 \times 10^{\circ}$	10 ⁴ g m	ol^{-1}	40		
Heat of fusion	$kJ mol^{-1}$	_			8.29		(3)
					9.5		
					8.04		
					11.7		
					9.41		
					7.86		
					8.7		
					7.33		
Glass transition temperature	K	Conflicting data; val	ue range	es from 158 to	232(?)		(1, 30–37)
		Method: differential $R[(CH_2)_2O)]_n(CH_2$			(38)		
		R = OH $n = 1$			162.5		
		n=1 $n=2$			170.5		
		n=2 $n=3$			174.5		
		n = 3 n = 4			174.5		
		n=1 $n=5$			181.5		
		n = 3 $n = 7$			183.5		
		R = Cl			100.0		
		n=1			139.5		
		n=2			157.5		
		n=3			168.5		
		n=4			177.5		
		n = 5			185.5		
					187.5		
		n = 7			107.5		
		n = 7 Electron spin resonar	nce		213		(39)

				•
$\mathbf{p}_{\mathbf{n}}$	athy	ILANA	oxide	n
FUIV	eun	/ICIIC	ONIGE	,

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE	
Melting temperature	K	Method: differential microcalorimeter; $R[(CH_2)_2O)]_n(CH_2)_2R$ $R=OH$			(38)	
		n = 011	265.5			
		n-1 $n=3$	262.5			
		n=3 $n=4$	273.5			
		n=4 $n=5$	282.5			
		n = 3 $n = 7$	285.5			
		n = 7 R = Cl	200.0			
		n = 1	209.5			
		n=1 $n=3$	261.5			
		n=4	254.5			
		n=5	258.5			
		n = 7	249.5		(40)	
		Highly crystalline	339.5		(40)	
Heat capacity C_p	$kJ K^{-1} mol^{-1}$ (×10 ⁻³)	Temp. (K)	Solid	Melt	(3, 41, 42)	
	(×10 ·)	10	0.51	_		
		20	3.18	_		
		30	7.24	_		
		40	11.16	_		
		50	14.62	_		
		60	17.60	_		
		70	20.13	_		
		80	22.33	_		
		90	24.90	_		
		100	26.93	_		
		110	28.78	_		
		120	30.44	_		
		130	32.10	_		
		140	33.57	_		
		150	35.05	_		
		160	36.53	_		
		170	37.80	_		
		180	39.11	_		
		190	40.40	_		
		200	41.88	_		
		210	43.17	81.88		
		220	44.64	82.55		
		230	45.91	83.21		
		240	47.26	83.88		
		250	48.61	84.55		
		260	49.96	85.22		
		270	51.31	85.89		
		280	52.66	86.55		
		290	54.01	87.22		
		- /	U 1.U 1	01.22		
		300	55.36	87.89		

PROPERTY	UNITS	CONDITIONS			V	ALUE		REFERENCE
Heat capacity C _p	kJ K ⁻¹ mol ⁻¹	Temp. (K)			S	olid	Melt	(3, 41, 42)
	$(\times 10^{-3})$	320			5	8.06	89.23	
		330				9.41	89.89	
		340				0.76	90.56	
		350			_	_	91.23	
		360			_	_	91.90	
		370			_	_	92.57	
		380			_	_	93.23	
		390			_	_	93.90	
		400			_	_	94.57	
		410			_	_	95.24	
		420			_	-	95.91	
		430			_	-	96.57	
		440			_	-	97.24	
		450			-	-	97.91	
Index of refraction	_	_			1	.4563	3	(1)
		High molecu	High molecular weight			.51-1	1.54	,
Specific refractive m index	\log^{-1}	Solvent	Temp. (°C)	Mol. wt. $(g \text{mol}^{-1})$	$\lambda_0 = 436 \mathrm{r}$	nm	$\lambda_0 = 546 \mathrm{nm}$	
increment		Acetonitrile	25	62	0.0964		_	(3, 18)
dn/dc				100	_		0.106	(3, 18)
				161	_		0.114	(3, 18)
				205	_		0.121	(3, 18)
				316	_		0.123	(3, 18)
				407	_		0.130	(3, 18)
				970	_		0.135	(3, 18)
				9,400	_		0.135	(3, 18)
	I	Benzene	_	106	-0.086		_	(3, 43)
			_	194	-0.073		_	(3, 43)
			_	282	-0.066		_	(3, 43)
			_	810	-0.059		_	(3, 43)
			25	3,510	_		-0.016	(3, 18)
			30	3,510	-0.018		_	(3, 44)
			54	3,510	-0.013		_	(3, 44)
			25	$(0.15-53)$ $\times 10^4$	-0.017 to -0.010		_	(3, 45)
	I	Bromoform	23	_	-0.108		-0.090	(3, 46)
		<i>ı</i> -Butanol	_	_	_		0.076	(3, 47)
		Carbon tetrachloride/ methanol	25	_				(*,)
		(75/25 vol.)			_		0.066	(3, 48)
		(50/50 vol.)			_		0.091	(3, 48)
		(20/80 vol.)			_		0.128	(3, 48)

PROPERTY	UNITS	CONDITIONS			VALUE		REFERENCE
Specific refractive index	ml g ⁻¹	Solvent	Temp. (°C)	Mol. wt. $(g \text{ mol}^{-1})$	$\lambda_0 = 436\mathrm{nm}$	$\lambda_0 = 546 \mathrm{nm}$	
increment dn/dc		Chloroform	23	_	0.054	0.053	(3, 46)
,		Chlara (arms /	30	_	0.054	_ 0.001	(3, 44)
		Chloroform/ n-hexane (47/53 vol.)	20	_	_	0.091	(3, 9)
		1,2-Dibromoethane	23	_	-0.048	-0.044	(3, 46)
		Dioxane	_	10,000	_	0.045	(3, 43)
			45	_	0.061	_	(3, 44)
		Methyl ethyl ketone	_	810	_	0.092	(3, 43)
		y say	_	10,000	_	0.094	(3, 43)
		Methanol	_	_	_	0.150	(3, 47)
			25	62	_	0.118	(3, 20)
				100	_	0.127	(3, 18)
				161	_	0.135	(3, 18)
				205	_	0.139	(3, 18)
				316	_	0.141	(3, 18)
				445	_	0.142	(3, 18)
				810	_	0.143	(3, 43)
				1,020	_	0.144	(3, 18)
				3,000	_	0.149	(3, 43)
				6,000	_	0.150	(3, 43)
				9,400	_	0.150	(3, 18)
				10,000	_	0.148	(3, 43)
				31,000	_	0.150	(3, 18)
			25	_	0.143	_	(3, 9)
			45	_	0.152	_	(3)
			30	_	0.145	0.142	(3)
			45	_	0.150	-	(3, 44)
		Methyl acetate	25	6,700	0.130	0.111	(3, 14) $(3, 18)$
		Pyridine	23	6,700	-0.026	-0.018	(3, 46)
		1,1,2,2-	23	6,700	0.026	0.007	(3, 46)
		Tetrachloroethane	25	0,700	0.000	0.007	(3, 40)
		Tetrahydrofuran	_	6,700	_	0.068	(3, 47)
		Water	27	6,700	0.134	0.132	(3, 49)
					_	0.139	(3, 47)
			20	6,700	0.138	0.135	(3, 49)
			25	_	0.138	_	(3, 49)
			30	_	0.136	_	(3, 49)
			40	_	0.134	0.132	(3, 49)
			50	_	0.133	0.131	(3, 49)
			25	62	0.093	_	(3, 43)
				106	0.108	_	(3, 43)
				194	0.124	_	(3, 43)
				300	0.126	0.123	
				300 600	0.126 0.135	0.123 0.131	(3, 43) (3, 43)

PROPERTY	UNITS	CONDITIONS				VALUI	E			REFERENCE	
Specific refractive index	ml g ⁻¹	Solvent		Temp.	Mol. wt. $(g \text{mol}^{-1})$	$\lambda_0 =$	436 nm	λ_0	= 546 nm		
increment dn/dc		Water		80	1,200 3,000 6,000 9,400 10,000 14,400 14,400	0.139 0.141 0.145 - 0.142 -	;	0.13 - 0.13 0.13 - 0.13 0.13	39 35 39 15	(3, 43) (3, 43) (3, 43) (3, 43) (3, 50) (3, 50)	
					31,000 340,000	0.149)	0.13	35	(3, 18) (3, 51)	
Surface tension	mNm^{-1}	Solvent	Mol. w	t. (g mo	l^{-1})	20°C	150°	°C	200°C	(3, 52–54)	
		Diol Dimethylether	86–17,0 6,000 6,000 114 148 182 600 5,000 100,000			42.9 42.5 28.6 31.1 32.9 37.5 44.1 44.2	30.1 33.0 30.1 16.0 18.6 20.5 26.1 32.7 32.8		25.2 29.2 25.4 11.1 13.8 15.8 21.7 28.3 28.4		
Diffusion coefficient	$cm^2 s^{-1} (\times 10^{-7})$	Solvent	Temp.		Mol. wt. g mol ⁻¹)					(3)	
		coefficient (×10°)	Acetone Formamide Methanol	25 25 25	4 4 2	0.3×10^{3} 0.3×10^{3} 0.3×10^{3} 0.3×10^{3} 0.3×10^{3} 0.3×10^{3}	37.8 5.76 23.5 10.7 10.7				
		Water	20	0 0 1 3 5 8 1 1 1 1 1 4 2 2 3	$\begin{array}{c} 3.2 \times 10^{3} \\ 3.29 \times 10^{3} \\ 3.25 \times 10^{3} \\ 3.25 \times 10^{3} \\ 3.8 \times 10^{3} \\ 3.8 \times 10^{3} \\ 3.426 \times 10^{3} \\ 3.470 \times 10^{3} \\ 3.778 \times 10^{3} \\ 3.3 \times 10^{3} \\ 3.3 \times 10^{3} \\ 3.8 \times 10^{3} \\ 2 \times 10^{3} \\ 3.8 \times 10^{3} \\ 7.3 \times 10^{3} \\ 7.7 \times 10^{3} \end{array}$	37.0 29.2 24.0 13.3 11.6 10.3 7.2 23.6 22.6 19.7 20.1 11.5 4.85 7.35 4.85 3.95 1.33					

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Diffusion coefficient	$cm^2 s^{-1}$ (×10 ⁻⁷)	Solvent	Temp. (°C)	Mol. wt. (g mol ⁻¹)		(3)
		Water	25	30.0×10^{3} 67.9×10^{3} 119×10^{3} $1,130 \times 10^{3}$ $1,470 \times 10^{3}$ $1,900 \times 10^{3}$ $2,000 \times 10^{3}$ $2,610 \times 10^{3}$ $2,630 \times 10^{3}$ $2,670 \times 10^{3}$ 320×10^{3}	1.08 0.79 0.63 1.33 1.36 1.15 1.12 0.93 0.93 0.94 1.0	
Dipole moment	D	Solvent	Temp. (°C)	P_{n}		(3)
per momomer unit		Dioxane Benzene Benzene Benzene Benzene (End group:	25 20 20 25 25 25 —OC ₂ H ₅)	1-7 1.0-33.6 2-227 4.1-153.0 4.0-176.2	1.68–1.29 1.41–1.09 1.46–1.07 1.61–1.13 1.68–1.13	
		Benzene Benzene Benzene	20 25 50	2 and 6 1–6 1–6	1.15 and 1.11 1.14–1.07 1.14–1.09	

^{*}Numbers in parenthesis are compositions in volume/volume.

Crystalline-state properties⁽³⁾

Lattice	Space group	Unit cel	l parameter:	s (Å)	Angles	Monomers	Density
		а	b	с	(degrees)	per unit cell	(g cm ⁻³)
Monoclinic	_	9.5	19.5	12.0	$\beta = 101$	36	1.207
Monoclinic	C2H-5	8.05	13.04	19.48	$\beta = 125.4$	28	1.229
Monoclinic	CS-2	8.03	13.09	19.52	$\beta = 125.1$	28	1.220
Monoclinic	_	7.95	13.11	19.39	$\beta = 124.6$	28	1.231
Monoclinic	_	8.02	13.4	19.25	$\beta = 126.9$	28	1.238
Monoclinic	_	8.16	12.99	19.30	$\beta = 126.1$	28	1.239
Monoclinic	_	7.51	13.35	19.90	$\beta = 118.6$	28	1.169
Triclinic	CI-1	4.71	4.44	7.12	$\alpha = 62.8, \beta = 93.2, \\ \gamma = 111.4$	2	1.197

[†]CP = cloud point; CT = cloud temperature; VM = intrinsic viscosity/molar mass; PE = phase equilibria; DM = diffusion coefficient/molar mass.

REFERENCES

- 1. Odian, G. Principles of Polymerization, 3d ed. Wiley-Interscience, New York, 1991.
- Mark, H. S., et. al., eds. Encyclopedia of Polymer Science and Engineering, Vol. 6. Wiley-Interscience, New York, 1986.
- Brandrup, J., and E. H. Immergut, eds. Polymer Handbook, 3d ed. Wiley-Interscience, New York, 1989.
- 4. Hay, J. N., and A. M. Afifi-Effat. Brit. Polym. J. 9 (1977): 1.
- 5. Afifi-Effat, A. M., J. N. Hay, and M. Wiles. J. Polym. Sci. Part B, 11 (1973): 87.
- 6. Napper, D. H. J. Colloid Interface Sci. 33 (1970): 384.
- 7. Boucher, E. A., P. M. Hines. J. Polym. Sci., Polym Phys. Ed., 16 (1978): 501.
- 8. Elias, H.-G., and U. Gruber. Makromol. Chem. 78 (1964): 72.
- 9. Elias, H.-G., and U. Gruber. Makromol. Chem. 50 (1961): 1.
- 10. Beech, D. R., and C. Booth. J. Polym. Sci., Part A-1, 7 (1969): 575.
- 11. Napper, D. H. J. Colloid Interface Sci. 32 (1970): 106.
- 12. Bailey, F. E. Jr., and R. W. Callard. J. Appl. Polym. Sci. 1 (1959): 56.
- 13. Chew, B. A., and A. Couper. J. Chem. Soc. Faraday Soc. 72(1) (1976): 382.
- 14. Booth, C., and C. J. Devoy. Polymer 12 (1971): 309.
- 15. Elias, H.-G., and H. Schlumpf. Makromol. Chem. 85 (1965): 118.
- 16. Elias, H.-G., and E. Maenner. Makromol. Chem. 40 (1960): 207.
- 17. Kamide, K., K. Sugamiya, and C. Nakayama. Makromol. Chem. 132 (1970): 75.
- 18. Elias, H.-G., and H. P. Lys. Makromol. Chem. 92 (1966): 1.
- 19. Ritscher, T. A., and H.-G. Elias. Makromol. Chem. 30 (1959): 48.
- 20. Sadron, C., and P. Rempp. J. Polym. Sci. 29 (1958): 127.
- 21. Elias, H.-G. Z. Phys. Chem. (Frankfurt) 28 (1961): 303.
- 22. Elias, H.-G. Chem. Ing.-Tech. 33 (1961): 359.
- 23. Elias, H.-G. Angew. Chem. 73 (1961): 209.
- 24. Rossi, C., and C. Cuniberti. J. Polym. Sci., Part B, 2 (1964): 681.
- 25. Allen, G., et al. Polymer 8 (1967): 391.
- 26. Elias, H.-G. Kunststoffe-Plastics 4 (1961): 1.
- 27. Thomas, D. K., and A. Charlesby. J. Polym. Sci. 42 (1960): 195.
- 28. Bailey, F. E. Jr., J. L. Kucera, and L. G. Imhof. J. Polym. Sci. 32 (1958): 517.
- 29. DiPaola-Baranayi, G. Macromolecules 15 (1982): 622.
- 30. Faucher, J. A., et al. J. Appl. Phys. 37 (1966): 3,962.
- 31. Hellwege, K.-H., R. Hoffman, W. Knappe, and Z.-Z. Kolloid. *Polymer* 226 (1968): 109
- 32. Faucher, J. A., and J. V. Koleske. Polymer 9 (1968): 44.
- 33. Swallow, J. C. Proc. Roy. Soc., London, A238 (1957): 1.
- 34. Mabdlekern, L., N. L. Jain, and H. Kim. J. Polym. Sci., Part A-2, 6 (1968): 165.
- 35. Ishida, Y., M. Matsuo, and M. Takayanagi. J. Polym. Sci., Part B, 3 (1965): 321.
- 36. Miller, W. G., and J. H. Saunders. J. Appl. Polym. Sci. 3 (1969): 1,277.
- 37. Vandenberg, E. J., R. H. Ralston, and B. J. Kocher. Rubber Age 102 (1970): 47.
- 38. Privalko, V. P., and A. P. Lobodina. Europ. Polym. J. 10(11) (1974): 1,033.
- 39. Tormala, P. Europ. Polym. J. 10(6) (1974): 519.
- Rodriguez, F. Principles of Polymer Systems, 4h ed. Taylor & Francis Publishers, New York, 1996.
- 41. Guar, U., and B. Wunderlich. J. Phys. Chem. Ref. Data 10(4) (1981): 1,010.
- 42. Suzuki, H., and B. Wunderlich. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 1,671.
- 43. Rempp, P. J. Chem. Phys. 54 (1957): 421.
- 44. Carpenter, D. K., G. Santiago, and A. H. Hung. J. Polym. Sci., Polym. Symp., 44 (1974): 75.
- 45. Candau, F., C. Dufour, and J. Francois. Makromol. Chem. 177 (1976): 3,359.
- 46. Spatorico, A. L. J. Appl. Polym. Sci. 18 (1974): 1,793.
- 47. Strazielle, S. Makromol. Chem. 119 (1968): 50.
- 48. Hert, M., C. Strazielle. Europ. Polym. J. 9 (1973): 543.
- 49. Polik, W. F., and W. Burchard. Macromolecules 16 (1983): 978.
- 50. Schnabel, W., U. Borgwadt. Makromol. Chem. 123 (1969): 73.

- 51. Teramoto, A., H. Fujita. Makromol. Chem. 85 (1965): 261
- 52. Wu, S. J. Macromol. Sci. C10 (1974): 1.
- 53. Bender, G. W., D. G. LeGrand, and G. L. Gaines, Jr. Macromolecules 2 (1969): 681.
- 54. Rastogi, A. K., and L. E. St. Pierre. J. Colloid Interface Sci. 35 (1971): 16.

Poly(ethylene sulfide)

JUNZO MASAMOTO

ACRONYM PES

CLASS Polysulfides

STRUCTURE $-(S-CH_2CH_2)-$

MAJOR APPLICATION Poly(ethylene sulfide) is a high melting plastics material. However, this polymer has not yet achieved commercial production, although its properties makes it warrant serious consideration as a plastic. (1)

PROPERTIES OF SPECIAL INTEREST Poly(ethylene sulfide) is a high melting crystalline material. High-molecular-weight polymers prepared by ring-opening polymerization of ethylene sulfide have melting points generally above 478 K. The melting point of PES is much higher compared to poly(ethylene oxide) (melting point = 341 K). Only a few solvents are known that dissolve PES, but only at temperatures above 413 K. PES requires addition of stabilizers to permit processing in standard molding equipment, the best of which are polyamines with high boiling points and their derivatives. The polymer, properly stabilized, can best be molded using screw injection-molding equipment at temperature of 488–523 K.⁽²⁾

PREPARATIVE TECHNIQUES There are two different pathways (polycondensation and ring-opening polymerization) for preparation of PES.⁽²⁾ The first method leads to a polymer of relatively low molecular weight, whereas the ring-opening polymerization reaction can lead to high molecular weight polymers under particular circumstances.

Following is the polycondensation reaction: (3,4)

$$Br-CH_2CH_2-Br+nK_2S \rightarrow (-C_2H_4S-)_n+2nKBr$$

Condensation of an ethylene dihalide with an alkali metal sulfide $^{(3)}$ was studied in the latter part of the nineteenth century. The acid catalyzed polycondensation of certain mercapto alcohols represents a second method of synthesis. $^{(4)}$

Following is the ring-opening polymerization reaction: (2,5)

$$n \stackrel{\textstyle \frown}{\searrow} \rightarrow (-CH_2CH_2S-)_n$$

It was found by Thiokol Chemical Corp. (Trenton, New Jersey, USA) that a catalyst formed by the reaction of diethyl zinc with water readily produces ethylene sulfide polymers that melted at $481-485~{\rm K.}^{(5)}$

Poly(ethylene sulfide	Poly	(eth	ylene	sul	fid	e)
-----------------------	------	------	-------	-----	-----	----

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-	60	_
Typical molecular weight range of polymer	g mol ⁻¹	Determined from zero- intercept melt viscosity	1.48×10^5	(6, 7)
IR (characteristic absorption frequencies)	cm^{-1}	Rocking motion CH ₂ Stretching C-S Twisting CH ₂ Wagging CH ₂ Symmetric deformation CH ₂	672 724 1,183 1,259 1,427	(8)
Solvents		nts are known that PES at temperature above	α -methylnaphthalene, nitorobenzene, o -dichlorobenzene, dithiolane, dimethyl sulfoxide	(2)
Nonsolvents	No ordinary below 140		ssolve PES at temperatures	(2)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Solvent: dithiolane and stabilizer, at 160°C	$K = 2.2 \times 10^{-3}$ $a = 0.65$	(9)
Melt viscosity-molecular weight	_	M = molecular weight; G = melt index $(g \min^{-1})$	$\log M = 5.14 - 0.4167(\log G)$	(7)
Characteristic ratio $\langle r^2 \rangle / n l^2$	_	-	4.2	(10, 11)
Lattice	_	-	Orthorhombic	(12-14)
Space group	_	_	Pbcn-D2h-6	(12-14)
Chain conformation	-	_	CH ₂ -CH ₂ trans CH ₂ -S Gauche (right-handed) S-CH ₂ Gauche (right-handed) CH ₂ -CH ₂ trans CH ₂ -S Gauche (left-handed) S-CH ₂ Gauche (left-handed)	(8, 12, 15, 16)
Crystalline state conformation	_	_	(2/0) glide plane	(12)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Unit cell dimensions		X-ray photograph of oriented sample Electron diffraction of single crystal and fiber	a = 8.50, b = 4.95, c = 6.70 (fiber axis) a = 8.508, b = 4.938, c = 6.686 (fiber axis)	(12) (13, 14)
Unit cell contents	-	–	4 monomeric units per unit cell (2 molecular chains)	(12)
Degree of crystallinity	%	X-ray diffraction and density	50-68	(9)
Heat of fusion	$kJ \text{mol}^{-1}$ $J g^{-1}$	100% crystallinity 54% crystallinity sample	$H_0 = 14.1$ 126	(9)
Entropy of fusion	$\rm JK^{-1}mol^{-1}$	_	$S_0 = 28.8$	(9)
Density	$\rm g \ cm^{-1}$	Theoretical density for crystalline PES	1.41	(12)
		Observed density Amorphous density	1.33–1.34 1.295	(12) (9)
Glass transition temperature	K	Extraporation from the $T_{\rm g}$ values of amorphous copolymers ethylene sulfide/isobutylene sulfide. DSC, heating rate = 10° C min ⁻¹	223	(17)
Melting point	K	-	481-485 489	(2) (11, 19)
Deflection temperature	K	1.8 MPa	432	(2)
Tensile modulus	MPa	At 20°C At 70°C At 125°C Unaged Aged 7 days at 120°C Aged 7 days at 150°C	2,200 1,800 1,060–1,150 770–790 2,070 2,200 2,500	(2) (9) (9) (9) (1) (1) (1)
Tensile strength	MPa	- At 20°C At 60°C At 100°C At 125°C Unaged Aged 7 days at 120°C Aged 7 days at 150°C	72 70-78 56-62 38-48 30-38 68 39 32	(2) (9) (9) (9) (9) (1) (1) (1)

Poly(ethylene sulfide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Maximum extensibility	%	_	10	(2)
(elongation)		At 20°C	10-14	(9)
		At 60°C	12	(9)
		At 100°C	25-40	(9)
		At 125°C	40-50	(9)
		Unaged	15	(1)
		Aged 7 days at 120°C	4.2	(1)
		Aged 7 days at 150°C	3.7	(1)
Flexural modulus	Mpa	_	2,070	(1)
Flexural strength	MPa	_	72	(1)
Notched Izod impact	$\mathrm{J}\mathrm{m}^{-1}$	_	69	(2)
strength	,	Unaged	64	(1)
Suchgui		Aged 7 days at 120°C	16	(1)
		Aged 7 days at 120 °C	16	
		Aged 7 days at 150 C	10	(1)
Melt viscosity	Pa s	Theoretical molecular weight		(9)
, and the second		80,000	4,950	()
		9,500	570	
Melt index	$g \min^{-1}$	235°C	0.01-0.2	(6)
Pyrolyzability, nature of product	the polymer	zer, above the melting point (225°C), viscosity falls rapidly with darkening and the liberation of	Ethylene, hydrogen sulfide, dithiane, methyldithiolane	(1, 6)
D = 1 -1.212		2020 C. N.	(010-5	
Pyrolyzability, amount	mol gas (unit	223°C, N ₂	6.0×10^{-5}	_
of product	$ES)^{-1} min^{-1}$	230°C, N ₂	8.7×10^{-5}	
		240°C, N ₂	39.4×10^{-5}	
		250°C, N ₂	76.1×10^{-5}	
Pyrolyzability, amount of impurities	or cadmium	ability is influenced by the nature of initiator. Polymers initiated by zinc or cadmium thiolate, or triethylene diamine are less stable than those prepared with the zinc ethyl/water catalyst. Acid and oxygen initiate degradation		
Decomposition	K	Without stabilizer, the polymer	Above the melting	_
temperature		viscosity falls rapidly Polymers initiated by zinc ethyl/ water system with the stabilizers (polyamines in conjunction with zinc oxide or zinc hydroxychloride)	point (498) 523	(1, 6)
Water absorption	%	24 h	0.03	(2)
rrater absorption	70	211 1	0.00	(-)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE		
Weight change	%	After immersion for 30 days				
0 0		50% sulfuric acid, 121°C	-0.7	(2)		
		15% sodium hydroxide, 121°C	-0.3	. ,		
		Benzene, 93°C	+4.0			
		Perchloroethylene, 121°C	7.0			
Creep	%	Room temperature, 34 MPa, 500 h	1	(2)		
Important patents	_	Polymerization	U.S. Patent 3,365,431	(19)		
		Stabilizer	Canadian Patent 736,026	(20)		
		Stabilizer	Canadian Patent 778,848	(21)		
Cost	_	_	Expensive			
Availability	Not co	Not commercially available (no commercial availability of ethylene sulfide monomer)				

REFERENCES

- 1. Cooper, W. Br. Polym. J. 3 (1971): 28-35.
- 2. Gobran, R. H. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. Interscience, New York, 1969, vol. 10, pp. 324–36.
- 3. Meyer, V. Ber. 19 (1886) 325.
- 4. Berenbaum, M. B., E. Broderick, and R. C. Christina. *U.S. Patent* 3,317,486 (1967), assigned to Thiokol Chemical Corp.
- 5. Gobran, R. H., and R. Larseen. J. Polym. Sci., Part C, 31 (1970): 77.
- 6. Casiff, E. H., M. N. Gillis, and R. H. Gobran. J. Polym. Sci., Part A-1, 9 (1971): 1,271.
- 7. Casiff, E. H. J. Appl. Polym. Sci. 15 (1971): 1,641-1,648.
- 8. Angood, A. C., and J. L. Koenig. J. Macromol. Sci.: Phys. B3 (1969): 321-328.
- 9. Nicco, A., et al. E. Polym. J. 6 (1970): 1,427-1,435.
- 10. Abe, A. Macromolecules 13 (1980): 546-549.
- 11. Bhaumik, D., and J. E. Mark. Macromolecules 14 (1981): 162.
- 12. Takahashi, Y., H. Tadokoro, and Y. Chatani. J. Macromol. Sci.: Phys. B2 (1968): 361-367.
- 13. Hasegawa, H., W. Claffey, and P. H. Geil. J. Macromol. Sci.: Phys. B13 (1977): 89-100.
- 14. Dorset, P., and M. P. McCourt. J. Macromol. Sci.: Phys. B36 (1997): 301-313.
- 15. Yokoyama, M., et al. J. Macromol. Sci.: Phys. B7 (1973): 465-485.
- 16. Rinde, E., and J. Guzman. Macromoleculles 14 (1981): 1,234-1,238.
- 17. Sorta, E., and A. De Chirico. Polymer 17 (1976): 348-349.
- 18. Chiro, A., and L. Zotteri. E. Polym. J. 11 (1975): 487-490.
- 19. Gorban, R. H., and S. W. Osborn. *U.S. Patent* 3,365,431 (1968), assigned to Thiokol Chemical Corp.
- 20. Bulbenko, G. F., et al. Canadian Patent 736,026 (1968), assigned to Thiokol Chemical Corp.
- 21. Larsen, R. Canadian Patent 778,848 (1968), assigned to Thiokol Chemical Corp.

Poly(ethylene terephthalate)

JUDE O. IROH

ACRONYM, TRADE NAME PET, Dacron

CLASS Polyesters; linear aromatic polyesters; thermoplastics

STRUCTURE

$$\begin{bmatrix} O & O & O \\ \parallel & & \parallel \\ C & & -C & -O & -(CH_2)_2 & O \end{bmatrix}$$

MAJOR APPLICATIONS Fibers, films, barrier film, soft drink bottles (amorphous PET), film for compression molding polyethylene, polypropylene, and for replacement of commodity metals such as steel and aluminum.^(1–3)

PROPERTIES OF SPECIAL INTEREST Mostly synthesized as semicrystalline thermoplastic. Amorphous PET is clear and is formed by quenching the polymer melt. Excellent film properties and easy to process. Impearmeable to air and hydrophobic.

PREPARATIVE TECHNIQUES Synthesized by condensation/step-growth polymerization between ethylene glycol and terephthalic acid. Low-viscosity and easily spinnable PET are synthesized by ester interchange. Dimethyl terephthalate is reacted with ethylene glycol in a 1:1.7 ratio at 0.020 atm and $160-230^{\circ}$ C. Final reaction occur at $260-300^{\circ}$ C under vacuum at 0.001 atm. Synthesis of PET is done by using aromatic sulphonates as catalysts⁽⁴⁻⁷⁾

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular conformation	_	_	Nearly planar	_
Molecular weight (of repeat unit)	${\rm g}{\rm mol}^{-1}$	_	192	_
Mark-Houwink parameters: K and a	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Solution viscometry, 30°C	$K = 3.72 \times 10^{-2}$ $a = 0.73$	(7, 8)
Solvent	_	_	o-Chlorophenol	(7, 8, 18)
Weight average molecular weight	${\rm g}{\rm mol}^{-1}$	_	30,000-80,000	(7, 9, 10)
Unit cell	_	_	Triclinic:	_
Lattice constants	degrees	X-ray diffraction	a = 4.56 b = 5.94 c = 10.75 $\alpha = 98.5$ $\beta = 112$ $\gamma = 111.5$	(7, 11, 12, 13)

		Po	oly(ethylene t	erephthalate)
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Number of chains per unit cell	_	_	1	(7, 11, 12, 13)
Unit cell density	$\rm gcm^{-3}$	X-ray diffraction	1.501	(7, 11)
Measured density	$\rm gcm^{-3}$	_	1.41	(7, 11)
Number of chains	_	_	1	(7, 11)
Number of monomers	_	_	1	(7, 11, 12, 13)
Glass transition temperature $T_{\rm g}$	K	DSC	342-388	(5, 7, 14-16)
Melting temperature $T_{\rm m}$	K	DSC	538	(5, 7, 14-16)
Heat of fussion ΔH	$kJ mol^{-1}$	DSC	24.1	(7, 14, 16, 17)
Breaking strength $\sigma_{\rm B}$	MPa	Tensile	50	(1, 2, 15, 16)
Tensile (Young's) modulus <i>E</i>	MPa	_	1,700	(1, 2, 15, 16)
Flexural modulus (rigidity) <i>E</i>	MPa	3-point flexure	2,000	(1, 2, 15, 16)
Ultimate strain ε_{B}	%	Tensile	180	(1, 2, 15, 16)
Yield strain $\varepsilon_{\rm Y}$	%	Tensile	4	(1, 2, 15, 16)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	Notched Izod, ASTM D256-86	90	(1, 2, 15, 16)
Hardness	_	Rockwell	R105	(1, 2, 15, 16)
Deflection temperature	K	HDT At 264 psi At 66 psi	336 344	(1, 2, 15, 16)
Thermal expansion coefficient α	K^{-1}	TMA	9.1×10^{-5}	(18)
Water absorption	%	After 24 h	0.5	(1, 2, 16, 17)
Dielectric strength	kV mm ¹	Thermal 1/8 in 1/16 in Electrical; ASTM D149	15.7 22.1 26	(1, 2, 16, 17)
Dielectric constant	$10^6\mathrm{Hz}$	Thermal Electrical; ASTM D150	3.2 3.3	(1, 2, 16, 17)
Volume resistivity	ohm cm	ASTM D257	0.1×10^{16}	(1, 2, 16, 17)
Power factor	$10^6\mathrm{Hz}$	D150	0.019	(1, 2, 16, 17)

Poly(ethylene terephthalate)

- Jaquiss, D. B. G., W. F. H. Borman, and R. W. Campbell. In *Encyclopedia of Chemical Technology*, edited by M. Grayson. John Wiley and Sons, New York, 1982, vol. 18, p. 549.
- 2. Brozenick, N. J. In Modern Plastics Encyclopedia. McGraw-Hill, New York, 1986–1987, p. 464.
- Margolis, J. M., ed. Engineering Thermoplastics: Properties and Applications. Marcel Dekker, New York, 1986–1987, p. 42.
- 4. Billica, H. R. U.S. Patent 2,647,885 (4 August 1953), to E. I. du Pont de Nemours and Company.
- Rodriguez, F. Principles of Polymer Systems, 2d ed., International Student Edition. McGraw-Hill, London, 1983, p. 432, 435.
- 6. Wilfong, R. E. J. Polym. Sci. 54 (1961): 385.
- 7. Mark, H. F., et al., eds. *Encyclopedia of Polymer Science and Engineering*. John Wiley and Sons, New York, 1985, vol. 12, p. 226.
- 8. Hergenrother, W. L., and C. J. Nelson. J. Polym. Sci., Polym. Chem. Ed., 12 (1974): 2,905.
- 9. Kamiya, T., I. Okamura., and Y. Yamamoto. *Proceedings of the 29th SPI Annual Technical Conference*. Society of the Plastics Industry, New York, 1974, sect. 24-D, p. 1.
- 10. Dixon, E. R., and J. B. Jackson. J. Mater. Sci. 3 (1968): 464.
- Hall, I. H. Structure of Crystalline Polymers. Elsvier Applied Science Publishers, Barking, U.K., 1984, p. 39.
- 12. Sperling, L. H. *Introduction to Physical Polymer Science*, 2d ed. John Wiley and Sons, New York, 1992, p. 212.
- 13. Tadokoro, H. Structure of Crystalline Polymers. Wiley-Intersciences, New York, 1979.
- 14. Sperling, L. H. *Introduction to Physical Polymer Science*, 2d ed. John Wiley and Sons, New York, 1992, p. 199.
- 15. Palys, C. H., and P. J. Phillips. J. Polym. Sci., Polym. Phys. Ed., 18 (1980): 829.
- 16. Rubin I. I., ed. *Handbook of Plastics Materials and Technology*. John Wiley and Sons, New York, 1990, p. 644–645.
- 17. Mark, H. F., et al., eds. *Encyclopedia of Polymer Science and Engineering*. John Wiley and Sons, New York, 1985, vol. 12, p. 230–244.
- 18. Mark, H. F., et al., eds. *Encyclopedia of Polymer Science and Engineering*. John Wiley and Sons, New York, 1985, vol. 12, pp. 23–50.

Poly(ferrocenyldimethylsilane)

IAN MANNERS

CLASS Inorganic and semi-inorganic polymers

STRUCTURE $[(C_5H_4)Fe(C_5H_4SiMe_2)]_n$

PROPERTIES OF SPECIAL INTEREST Low cost; ease of synthesis; interesting optical, magnetic, and electrical properties; and precursor to CSiFe solid state ceramic materials.

SYNTHESIS Poly(ferrocenyldimethylsilane) can be synthesized via the thermal ring opening polymeriztion (ROP) of the strained dimethylsila[1]ferrocenophane, $(C_5H_4)_2$ FeSiMe $_2$. Additionally, poly(ferrocenyldimethylsilane) can be prepared via anionic initiated ROP^(2,3) or transition metal catalyzed ROP^(4,5) of the strained [1]ferrocenophane.

PROPERTY	UNITS	CONDITION	VALUE	REFERENCE
UV-vis absorption, λ_{max}	nm	THF solution	430	(1)
UV-vis absorption coefficient, ε	$\mathrm{M}^{-1}\mathrm{cm}^{-1}$	THF solution	190	(1)
Glass transition temperature	K	DMA experiment DSC experiment	306 298	(1)
Melting temperature	K	DSC experiment	395-418	(6)
Unit cell dimensions		For monomer (C ₅ H ₄) ₂ FeSiMe ₂		(7)
Lattice	_	_	Monoclinic	_
Monomers per unit cell	_	_	4	_
Cell dimensions	Å	_	a = 7.438	_
			b = 10.322	_
			c = 15.575	_
Cell angles	Degrees	_	$\alpha = 90$	_
-	-		$\beta = 99.04$	_
			$\gamma = 90$	_

- 1. Foucher, D. A., et al. Macromolecules 26 (1993): 2,878.
- 2. Rulkens, R., Y. Z. Ni, and I. Manners. J. Am. Chem. Soc. 116 (1994): 12,121.
- 3. Rulkens, R., A. J. Lough, and I. Manners. J. Am. Chem. Soc. 118 (1996): 4,102.
- 4. Ni, Y., R. Rulkens, J. K. Pudelski, and I. Manners. Macromol. Rapid Commun. 16 (1995): 637.
- 5. Reddy, N. P., H. Yamashita, and M. Tanaka. J. Chem. Soc., Chem. Commun. (1995): 2,263.
- 6. Rasburn, J., et al. Chem. Mater. 7 (1995): 871.
- 7. Finckh, W., et al. Organometallics 12 (1993): 823.

Polygermanes

ROBERT WEST

ALTERNATIVE NAME Polygermylenes

CLASS Inorganic and semi-inorganic polymers

STRUCTURE $[-R_2Ge-]$

PROPERTIES OF SPECIAL INTEREST Polygermane polymers, with their main chain consisting entirely of germanium atoms, resemble polysilanes in showing properties resulting from delocalization of the σ -electrons along the polymer backbone. Thus the polygermanes have strong UV absorption bands, are thermochromic and photoactive, and become semiconducting when doped with SbF₅. Polysilane-polygermane copolymers have also been prepared, and are of interest as possible superlattice polymers. Listed below are known polygermanes and copolymers, with selected properties.

SYNTHESIS METHODS (a) Reaction of $GeCl_2 \cdot dioxane$ with RLi. (b) R_2GeCl_2 , Na, toluene, $110^{\circ}C$. (c) Electroreduction.

POLYGERMANE	SYNTHESIS*	YIELD (%)	M _w	$M_{\rm w}/M_{\rm n}$	λ MAX. †	REFERENCE
$\overline{(Me_2Ge)_n}$	a	25	31,000	_	_	(1)
$(\mathrm{Et_2Ge})_n$	b	_	3,400	1.2	303	(2)
$(n-Pr_2Ge)_n$	b	15	6,300	1.3	300	(2)
$(n\text{-Bu}_2\text{Ge})_n$	b	25	423,000 8,200	1.74 1.3	333	(3)
	b b a	- 52.5 38	10,000 6,800 17,900	1.16 1.6 —	329 320 324	(4) (2) (1)
(i-Bu ₂ Ge)	b	2	3,900	1.12	330	(2)
$(n\text{-Pent}_2\text{Ge})_n$	b	8.3	25,900	1.53	338	(5)
$(n\text{-Hex}_2\text{Ge})_n$	ь ь с	20 9.5 23	15,100 976,000 6,500 5,350	1.5 1.56 1.12 1.24	325 340 —	(2) (5) (2) (5)
$(n\text{-}\mathrm{Oct}_2\mathrm{Ge})_n$	b	70	4,437	_	_	(5)
$(PhGeMe)_n$	b b	_ _	8,600 5,000	2.07 1.4	330 327	(4) (2)
$(n\text{-BuGePh})_n$	b	_	19,900	_	355	(6)

^{*}See "Synthesis Methods" above.

[†]UV absorption maxima in solution.

33

20,600

335

(7)

 $[(n-BuGePh)_{1.08}(PhSiMe)]_n$

[†]UV absorption maxima in solution.

OTHER PROPERTIES OF POLYGERMANES	REFERENCE
Photoresist properties of $(n-Bu_2Ge)_n$	(8)
Luminescence of $(n\text{-Hex}_2\text{Ge})_n$	(9)
Flash photolysis of polygermanes	(2)
Polygermane-polysilane superlattice	(7, 10)
Conductivity of $(PhGeMe)_n$ and $(n-Bu_2Ge)$, doped with SbF_5	(4)
Hole transport properties	(11)

b

- 1. Kobayashi, S., and S. Cao. Chem. Letters (1993): 1,385.
- Mochida, K., et al. Organometallics 13 (1994): 404; Mochida, K., and H. Chiba. J. Organomet Chem. 473 (1994): 45.
- 3. Trefonas, P., and R. West. J. Polym. Sci., Polym. Chem. Ed., 23 (1985): 2,099.
- 4. Hayashi, T., Y. Uchimaru, P. Reddy, and M. Tanaka. Chem. Lett. (1992): 647.
- 5. Miller, R. D., and Sooriyakumaran. J. Polym. Sci., Polym. Chem. Ed., 25 (1985): 111.
- 6. Shono, T., S. Kushimura, and H. Murase. J. Chem. Soc., Chem. Commun. (1992): 896.
- 7. Isaka, H., M. Fujiki, M. Fujino, and N. Matsumoto. Macromolecules 24 (1991): 2,647.
- 8. Ban, H., K. Deguchi, and A. Tanaka. J. Appl. Polym. Sci. 37 (1989): 1,589.
- 9. Tachibana, H., et al. Phys. Rev. B. 45 (1992): 8,752.
- 10. Takeda, K., K. Shiraishi, and N. Matsumoto. J. Am. Chem. Soc. 112 (1980): 5,043.
- 11. Abkowitz, M., H. Baessler, and M. Stolka. Phil. Mag. B 63 (1991): 210.

^{*}See "Synthesis Methods" above.

Polyglycine

DOUGLAS G. GOLD AND WILMER G. MILLER

TRADE NAME Nylon 2

CLASS Polypeptides and proteins

MAJOR APPLICATIONS Serves as a model for various proteins.

PROPERTIES OF SPECIAL INTEREST Two crystalline forms of polyglycine, I and II, have been observed. Form I is thought to have a β structure where the individual chains exist in a helical conformation and form sheets stabilized by hydrogen bonds. (1,2) The individual chains in form II also have a helical conformation but are packed in a hexagonal lattice with a three-dimensional array of hydrogen bonds. (2)

SYNTHESIS The synthesis is similar to that of $poly(\gamma-benzyl-L-glutamate)$. (See also the entry on $Poly(\gamma-benzyl-L-glutamate)$ in this handbook.) It involves the conversion of the amino acid to the N-carboxyanhydride (NCA) monomer by reaction with phosgene gas followed by polymerization of the NCA with an appropriate initiator (e.g., triethylamine). Typical comonomers include other amino acid NCAs.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	_	57	_
Typical molecular weight range	g mol ⁻¹	_	<20,000	_
IR (characteristic absorption frequencies)	cm^{-1}	Polyglycine I Polyglycine II	3,308; 1,685; 1,636; 1,517; 1,432; 708 3,303; 1,644; 1,554; 1,420; 740	(3)
Solvents	_	25°C	Dichloroacetic acid, trifluoroacetic acid, concentrated Li ⁺ and NH ₄ ⁺ halides, phosphoric acid	(1, 4)
Nonsolvents	_	_	Water	_
Optical activity $[\alpha]_D$	_	_	0	_
Surface tension	mNm^{-1}	0°C	50.1	(5)
Axial translation per residue	Å	Form I Form II	3.5 3.1	(2) (1, 2)

				Polyglycine	
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Cost	US\$ g ⁻¹	25 mg - 1g	150	_	
Availability	g	-	0.025-1	_	
Suppliers	Sigma Chemical Co., P.O. Box 14508, St. Louis, Missouri 63178, USA. Aldrich Chemical Co., Inc., 1001 West Saint Paul Avenue, Milwaukee, Wisconsin 53233, USA.				

- 1. Bamford, C. H., A. Elliott, and W. E. Hanby. *Synthetic Polypeptides: Preparation, Structure, and Properties*. Academic Press, New York, 1956.
- 2. Fraser, R. D. B., and T. P. MacRae. *Conformation in Fibrous Proteins and Related Synthetic Polypeptides*. Academic Press, New York, 1973.
- 3. Suzuki, S., Y. Iwashita, and T. Shimanouchi. Biopolymers 4 (1966): 337.
- 4. Sober, H. A., ed. *Handbook of Biochemistry: Selected Data for Molecular Biology*, 2d ed. CRC Company, Cleveland, 1970.
- 5. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.

Poly(glycolic acid)

LICHUN LU AND ANTONIOS G. MIKOS

ACRONYM, TRADE NAME PGA, Dexon (Davis and Geck)

CLASS Poly(α -hydroxy esters)

STRUCTURE
$$\begin{array}{cccc} H & O \\ & | & | \\ +O-C-C+ \\ & | \\ & H \end{array}$$

MAJOR APPLICATIONS Sutures, drug delivery devices, and scaffolds for use in cell culture, transplantation, and organ regeneration.

PROPERTIES OF SPECIAL INTEREST Good biocompatibility; biodegradable mainly by simple hydrolysis; bioresorbable; good processability; a wide range of degradation rates, physical, mechanical, and other properties can be achieved by PGA of various molecular weights and its copolymers.

PREPARATIVE TECHNIQUES Practically useful high molecular weight PGA can be synthesized by a cationic ring opening polymerization of glycolide using organometallic compounds or Lewis acids as catalysts and alcohol as molecular weight and reaction rate control agent at high temperature and low pressure.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Degree of crystalline X_c	%	Dexon suture	46-52	(1)
Density ρ	$g cm^{-3}$	Typical range Complete amorphous	1.5-1.64 1.450 1.50	(2) (3) (4)
		Complete crystalline	1.69 1.707	(5,6) (4)
Heat of fusion $\Delta H_{\rm f}$	kJ mol ⁻¹	Complete crystalline	8.1 11.1	(7)* (8)
Entropy of fusion $\Delta S_{ m f}$	$kJ K^{-1} mol^{-1}$	_	0.022	(9)

^{*}Data calculated from $X_c(0.52) = \Delta H_f(72.3 \, \mathrm{J \, g^{-1}})/\Delta H_f$ (100% crystalline).

Unit cell dimensions

Lattice	Space group		Cell dimension [†] (Å)			Packing	Chain conformation	Reference
			а	b	c (fiber axis)	density <i>k</i>	N*P/Q	
Orthorhombic	$P2_12_12_1$	4	6.36	5.13	7.04	_	3*2/1	(5)
Orthorhombic	Pcmn	4	5.22	6.19	7.02	0.81	3*2/1	(5)
Orthorhombic	_	2	_	_	7	_	_	(6)

[†]Cell angles $\alpha = \beta = \gamma = 90^{\circ}$.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Refractive index	_	Highly oriented fiber	$n_{ } = 1.556,$ $n_{\perp} = 1.466$	(6)
		Single crystal hedrite	$\alpha = 1.46,$ $\beta = 1.50,$ $\gamma = 1.66$	
Glass transition	K	$M_{\rm w} > 20,000$	318	(7)
temperature $T_{\rm g}$		$M_{\rm w} = 50,000$	309	(1)
Melting point $T_{\rm m}$	K	$M_{\rm w} > 20,000$	495	(7)
		$M_{\rm w} = 50,000$	483	(10)
		$M_{\rm w} = 50,000$	503	(1)
		_	500-503	(4)
			506	(5)
Heat capacity C_p	$JK^{-1}mol^{-1}$	Crystalline PGA in temp. range = $0-318 \mathrm{K}$	_	(3)*
		T = 273.15	115.0	(3)
		T = 298.15	121.4	(3)
		$T = 318.0 \ (T_g)$	126.5	(3)
		Molten PGA, $T = 318.0-550.0 \text{ K}$	226.5-243.4	(3)
		Predicted results in temp.	_	(11)
		range = $0-1,000 \text{K}$		()
Solvent	Glycolide at	high temperature		(12)
		opropanol at room temperature		(13)
		lorophenol at $T = 190^{\circ}$ C		(12, 14)
Inhorant viceocity	$\mathrm{dl}\mathrm{g}^{-1}$	In havefluoroisanrananal	0.5-1.6	(2)
Inherent viscosity	arg	In hexafluoroisopropanol In phenol/trichlorophenol at $T = 30^{\circ}\text{C}$	0.35	(2) (14)
Water absorption	%	250 µm films in 0.2 M pH7 phosphate buffer	28	(1)
Apparent permeability <i>K</i>	$m^4 N^{-1} s^{-1}$	Prewetted nonwoven discs	4.29×10^{-10}	(15)

Poly(glycolic acid)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Degradation rate	-	In vitro In vivo	_ _	(13, 15–17) (2, 17)
Decomposition temperature $T_{\rm d}$	K	$M_{\rm w} = 50,000$, $X_{\rm c} = 0.52$ at heating rate $= 20$ °C min ⁻¹ under nitrogen	527	(10)
G factor		60 Co irradiation at $T = 25^{\circ}$ C, chain scission oximately equal to cross-linking factor	factor	(14)
Tensile strength	MPa	Dexon plus (PGA multifilament) Gauge 0 Gauge 1	339 394	(18)
Tenacity	MPa	Melt-spun fiber (diameter = 15–25 μ m) Dexon suture	690–1,380 6,050	(2) (16)
Knot pull strength	MPa	Size 3/0 suture	343	(2)
Straight pull strength	MPa	Size 3/0 suture	536	(2)
Knot/straight tenacity	%	Melt-spun fiber (diameter = 15–25 μ m)	50-80	(2)
Elongation at break	%	Melt-spun fiber (diameter = 15–25 μ m)	15-35	(2)
Confined compressive modulus	MPa	Prewetted nonwoven discs	2.86×10^{-3}	(15)
Aggregate modulus	MPa	Prewetted nonwoven discs	1.22×10^{-3}	(15)

^{*}Data in reference (3) referred to (CH₂-COO-CH₂-COO).

- 1. Gilding, D. K., and A. M. Reed. Polymer 20 (1979): 1,459.
- 2. Frazza, E. J., and E. E. Schmitt. J. Biomed. Mater. Res. Symp. 1 (1971): 43.
- Gaur, U., S.-F. Lau, B. B. Wunderlich, and B. Wunderlich. J. Phys. Chem. Ref. Data 12 (1983): 65.
- 4. Chujo, K., H. Kobayashi, J. Suzuki, and S. Tokuhara. Makromol. Chem. 100 (1967): 267.
- 5. Chatani, Y., et al. Makromol. Chem. 113 (1968): 215.
- 6. Grabar, D. G. Microscope 18 (1970): 203.
- 7. Cohn, D., H. Younes, and G. Marom. Polymer 28 (1987): 2,018.
- 8. Chu, C. C., and A. Browning. J. Biomed. Mater. Res. 22 (1988): 699.
- Wunderlich, B. Macromolecular Physics: Vol. 3, Crystal Melting. Academic Press, New York, 1980.
- 10. Engelberg, I., and J. Kohn. Biomaterials 12 (1991): 292.
- 11. Lim, S., and B. Wunderlich. Polymer 28 (1987): 777.
- 12. Chujo, K., et al. Makromol. Chem. 100 (1967): 262.
- 13. Suggs, L. J., and A. G. Mikos. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. American Institute of Physics Press, Woodbury, N.Y., 1996, pp. 615–624.
- Pittman, C. U. Jr., M. Iqbal, C. Y. Chen, and J. N. Helbert. J. Polym. Sci., Polym. Chem. Ed. 16 (1978): 2,721.

- 15. Ma, P. X., and R. Langer. In *Polymers in Medicine and Pharmacy*, edited by A. G. Mikos, et al. Materials Research Society, Pittsburgh, 1995, pp. 99–104.
- 16. Chu, C. C. Polymer 26 (1985): 591.
- 17. Chu, C. C. In *Critical Reviews in Biocompatibility*, edited by D. F. Williams. CRC Press, Boca Raton, Fla., 1985, pp. 261–322.
- 18. Singhal, J. P., H. Singh, and A. R. Ray. J. Macromol. Sci.-Rev. Macromol. Chem. Phys. C28 (1988): 475.

Poly(hexene-1)

D. R. PANSE AND PAUL J. PHILLIPS

ACRONYMS PHE, PHEX

CLASS Poly(α -olefins)

Structure of repeat unit
$$\begin{array}{cc} [-CH_2-CH-] \\ & CH_2CH_2CH_2CH_3 \end{array}$$

MAJOR APPLICATIONS Comonomer for ethylene and 4-methyl pentene-1, flow modifier.

PREPARATIVE TECHNIQUE Coordination polymerization: (a)

bis(cyclopentadienyl)zirconium dichloride + methylaluminoxane catalyst; $^{(1)}$ (b) soluble magnesium-titanium catalyst in xylene + diethylaluminium chloride cocatalyst at 40° C for 420 min; $^{(2)}$ (c) MgCl₂ supported TiCl₃ catalyst. $^{(3)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Typical comonomers used	_	_	Ethylene, 4-methyl pentene-1,1-pentene	_
Molecular weight (of repeat unit)	$g \text{ mol}^{-1}$	_	84.16	_
Stereoregularity	-	Soluble magnesium-titanium catalyst in xylene + diethylaluminium chloride cocatalyst	Mainly isotactic	(2)
Typical molecular	${\rm g\ mol}^{-1}$	1. Stereorigid metallocene catalysts	<30,000	(4)
weight range		 (number average mol. wt.) 2. MgCl₂ supported TiCl₃ catalyst (weight average mol. wt.) 	100,000	(3)
Typical polydispersity index	-	 Stereorigid metallocene catalysts Heterogeneous MgCl₂ supported TiCl₃ catalyst 	2–3 5–11	(4) (3)
		3. Soluble magnesium-titanium catalyst	2.0-2.7	(2)
Solvents	_	 For amorphous polymer at ambient temperature For crystalline isotactic polymer at 135°C 	Saturated and aromatic hydrocarbon solvents Decalin	(5)
Nonsolvents	_	For crystalline isotactic polymer at ambient temperature	Saturated and aromatic hydrocarbon solvents	(5)
Theta temperature	K	Phenetole/VM	334.3	(6)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio	_	Method: viscometry at 27°C	13.0	(7)
Lattice	_	None given	Monoclinic	(8)
Unit cell dimensions	Å	Isotactic polymer	a = 22.2 b = 8.89 c = 13.7	(8)
Unit cell angles	Degrees	Isotactic polymer	$\alpha = \beta = 90$ $\gamma = 94.5$	(8)
Monomers per unit cell	_	Isotactic polymer	14	(8)
Helix conformation	_	Isotactic polymer	7 ₂	(8)
Crystalline density	$\rm g~cm^{-3}$	Isotactic polymer	0.83	(8)
Glass transition temperature	K	Calorimetry	215 223	(9) (10)
Melting temperature	K	None given	<293	(5)
Heat capacity	kJ K ⁻¹ mol ⁻¹	Temperature (K) 100 200 250 290	0.059 (amorphous) 0.112 0.160 (amorphous) 0.1749 (amorphous)	(10)
Polymers with which compatible	-	Single $T_{\rm g}$ criteria	1-Pentene	(11)
WLF constants: C_1 and C_2	-	None given	$C_1 = 17.4$ $C_2 = 51.6$	(12)
Refractive index increment	$ml g^{-1}$	Cyclohexane at 25°C Toluene at 25°C	-0.063 -0.042	(13)

- 1. Sivaram, S., and S. Marathe. Unpublished work from reference (2).
- 2. Satyanarayana, G., and S. Sivaram. Makromol. Rapid Comm. 15 (1994): 601.
- 3. Chien, J. C. W., and B. M. Gong. J. Polym. Sci., Part A, Polym. Chem., 31 (1993): 1,747.
- 4. Asanuma, T., et al. Polym. Bull. 25 (1991): 567.
- 5. Kissin. Y. V. In *Kirk-Othmer Encyclopedia of Chemical Technology*, edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1996.
- 6. Lin, F. C., S. S. Stivala, and J. A. Biesenberger. J. Appl. Polym. Sci. 17 (1973): 3,465.
- 7. Wang, J.-S., R. S. Porter, and J. R. Knox. Polym. J. 10(6) (1978): 619.
- 8. Turner-Jones. A. Makromol. Chem. 71 (1964): 1.
- 9. Bourdariat, J., R. Isnard, and J. Odin. J. Polym. Sci., Polym. Phys. Ed., 11(9) (1973): 1,817.

Poly(hexene-1)

- 10. Gaur, U., B. B. Wunderlich, and B. Wunderlich. J. Phys. Chem., Ref. Data, 12 (1983): 29.
- 11. Dacroix, J. Y., and A. Piloz. Rev. Gen. Caoutsch. Plast. 54 (1977): 91.
- 12. Kurath, S. F., E. Passaglia, and R. Pariser. J. Appl. Phys. 28 (1957): 499.
- 13. Lin, F. C., S. S. Stivala, and J. A. Biesenberger. J. Appl. Polym. Sci. 17 (1973): 1,073.

JAGATH K. PREMACHANDRA, CHANDIMA KUMUDINIE, AND JUNZO MASAMOTO

ACRONYM PHIC

CLASS Poly(isocyanates); N-substituted 1-nylons

STRUCTURE

$$C_6H_{13}$$
 $-(N-C)$
 0

MAJOR APPLICATIONS An ideal example of a polymer model for a semi-rigid macromolecular chain material amenable to physical studies.

PROPERTIES OF SPECIAL INTEREST Polymer model for a semi-flexible macromolecular chain material. Stiff-chain solution characteristics due to helical configuration; $^{(1,2)}$ liquid crystalline properties; $^{(3)}$ and molecular weight dependent chain dimensions in solution. $^{(4)}$

Other polymers showing this special property Poly(n-butyl isocyanate), $poly(\gamma$ -benzyl-L-glutamate)

Preparative techniques*

Polymerization Process	Conditions	Reference
Anionic	Temp.: –58°C; catalyst: NaCN in dimethylformamaide; solvent: benzene	(5)
Anionic	Temp.: -78 to -100 °C; catalyst: NaCN in dimethylformamaide; solvent: toluene	(6)
Coordination	Catalysts: TiCl ₃ (OCH ₂ CF ₃), TiCl ₃ (OCH ₂ CF ₃)-(THF) ₂	(7)
Coordination	Catalysts: $C_p TiCl_2 N(CH_3)_2$, $C_p = \eta^5$ -cyclopentadienyl; 1 equivalent of Lewis base per monomer; no solvent	(8)

^{*}For synthesis of the monomer, *n*-hexyl isocyanate, see reference (2).

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Ceiling temperature	K	_	316.4 251	(7) (9)
Typical comonomers	-	_	Styrene, methyl methacrylate for block copolymer	(10)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	127	_

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Typical molecular weight range of polymer	g mol ⁻¹	_	$2.4 \times 10^{4} - 5.14 \times 10^{5}$ $> 10^{6}$ $4 \times 10^{3} - 7 \times 10^{6}$	(11) (12) (13)
Typical polydispersity index $(M_{\rm w}/M_{\rm n})$	_	_	1.4 1.05–1.2 1.05–1.1	(14) (15) (16)
IR (characteristic absorption frequencies)	cm^{-1}	Solid state Solid state Dilute solution in tetrachloroethane Solid state	C=O absorption at 1,700 C=O absorption at 1,709 C=O absorption at 1,700 Disubstituted amide at 1,282 and 1,390	(17) (5) (17) (5)
UV (absorption maxima at the high wavelength band, $\lambda_{\rm max}$)	nm	In <i>n</i> -hexane at room temperature	252	(18)
Extinction coefficient	$\mathrm{L}\mathrm{mol}^{-1}\mathrm{cm}^{-1}$	In <i>n</i> -hexane at room temperature	4,572	(18)
NMR	relaxation ti in or near th	- and 500-MHz instrument, spin- mes and nuclear Overhauser enh ne backbone of the extended-cha th measurement	ancements of carbon atoms	(19) (20) (21)
Solvents		chlorinated hydrocarbons yl benzene, toluene, many solve c acid	nts in the presence of	(4, 5) (4)
Nonsolvents	Methanol, cycl of carbons >	ohexyl benzene, dodecyl benzen • 6)	e, higher paraffins (number	(4)
Theta temperature θ	K	In toluene In methanol/toluene (19.5% v/v), turbidity point	289.4 298	(22) (4)
		method In methanol/carbon tetrachloride	298	(4)
		(18.5% v/v), turbidity point method	297	(23)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Second virial coefficient	$mol cm^3 g^{-2}$	In tetrahydrofuran at 25°C, $M_{\rm w} = (3.8 \times 10^4 - 4.24 \times 10^5) {\rm g mol}^{-1}$, light scattering	$(9.716.6) \times 10^{-4}$	(4)
coefficient		In toluene at 34.4° C, $M_n = (3.9 \times 10^4 - 3.85 \times 10^5)$ g mol ⁻¹ , osmometry	$(3.668.34) \times 10^{-4}$	(4)
		In tetrachloroethane, $M_{\rm w} = 9.6 \times 10^4 {\rm g mol^{-1}}$, in anisotropic phase, light scattering	1.8×10^{-3}	(14, 24)
		In tetrachloroethane, $M_{\rm w} = 5.6 \times 10^4 {\rm g mol}^{-1}$, in isotropic phase, light scattering	1.8×10^{-3}	(14, 24)
		In tetrachloroethane, $M_{\rm w} = 7 \times 10^4 {\rm g mol^{-1}}$, in anisotropic phase, osmometry	1.9×10^{-3}	(14, 24)
		In tetrachloroethane, $M_n = 4 \times 10^4 \mathrm{g mol}^{-1}$, in isotropic phase, osmometry	3.1×10^{-3}	(14, 24)
		In toluene at 34.4° C, $M_n = 7.9 \times 10^4 \text{ g mol}^{-1}$, osmometry	7.8×10^{-4}	(23)
		In hexane at 25°C, $M_{\rm w} = 6.8 \times 10^4 {\rm g mol}^{-1}$, light scattering	9.8×10^{-4}	(23)
		In hexane at 25°C, $M_{\rm w} = 4.63 \times 10^6 {\rm g mol}^{-1}$, light scattering	7.5×10^{-4}	(23)
		In hexane at 25°C, $M_{\rm w} = 7.24 \times 10^6 {\rm g mol}^{-1}$, light scattering	5.4×10^{-4}	(23)
		$M_{\rm w} = (1.1 \times 10^5 - 1.06 \times 10^6) \mathrm{g mol^{-1}}$, light scattering	$(5.97 6.49) \times 10^{-4}$	(16)
		In tetrahydrofuran, $M_{\rm w} = (1.46 - 3.55) \times 10^5 {\rm g mol}^{-1}$, light scattering	$(6.9-8.2) \times 10^{-4}$	(25)

Mark-Houwink parameters: K and a

Solvent	Temp. (°C)	Molecular weight (g mol ⁻¹)	$\textit{K}_{\rm m} imes 10^5~{ m (dlg^{-1})}$	а	Reference
Toluene	25	$M_{\rm w} = (0.038 - 4.3) \times 10^5$	2.48	1.05	(4)
Methanol/toluene	25	$M_{\rm w} = (0.038 - 4.3) \times 10^5$	2.72	1.04	(4)
Carbon tetrachloride	25	$M_{\rm w} = (0.038 - 4.3) \times 10^5$	1.52	1.10	(4)
Trifluro acetic acid/carbon tetrachloride	25	$M_{\rm w} = (0.038 - 4.3) \times 10^5$	5.68	0.96	(4)
Tetrahydrofuran	25	$M_{\rm w} = (0.038 - 4.3) \times 10^5$	2.20	1.06	(4)
Chloroform	25	$M_{\rm w} = (0.038 - 4.3) \times 10^5$	4.99	0.97	(4)
Dichloromethane	20	$(0.24-5.14) \times 10^5$	6.6	0.923	(11)
Hexane	25	$(0.68-3.9) \times 10^5$	100	1.2	(23)
Hexane	25	$>10^{6}$	8,800	0.77	(23)
Hexane	25	$(0.091 2.3) \times 10^6$	540	0.97	(26)

$ \begin{array}{c} \text{Carbon tetrachloride at } 25^{\circ}\text{C} & 0.341 & (4) \\ \text{Chloroform at } 25^{\circ}\text{C} & 0.319 & (4) \\ \text{Tetrahydrofuran at } 25^{\circ}\text{C} & 0.331 & (4) \\ 1.5\% & \text{acetic acid/carbon tetrachloride} & 0.328 & (4) \\ 1.5\% & \text{methanol/toluene} & 0.326 & (4) \\ \text{Hexane at } 25^{\circ}\text{C}, \ M_{\text{w}} = (0.683.34) \times 10^{5} \text{g mol}^{-1} & 0.38 & (23) \\ \text{Hexane at } 25^{\circ}\text{C}, \ M_{\text{w}} = (0.683.34) \times 10^{5} \text{g mol}^{-1} & 0.56 & (25) \\ \text{Benzene, } M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.51 & (25) \\ \text{Benzene, } M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.51 & (25) \\ \text{Tetrahydrofuran, } M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran/dimethylformamide } (4:1), & 0.75 & (25) \\ M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran } d \text{imethylformamide } (4:1), & 0.75 & (25) \\ M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.10 & (27) \\ \end{array}$	PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
$\begin{array}{c} \text{Chloroform at } 25^{\circ}\text{C} & 0.319 & (4) \\ \text{Tetrahydrofuran at } 25^{\circ}\text{C} & 0.331 & (4) \\ 1.5\% \ \text{acetic acid/ carbon tetrachloride} & 0.328 & (4) \\ 1.5\% \ \text{methanol/toluene} & 0.326 & (4) \\ \text{Hexane at } 25^{\circ}\text{C}, M_w = (0.68-3.34) \times 10^5 \ \text{g mol}^{-1} & 0.38 & (23) \\ \text{Hexane at } 25^{\circ}\text{C}, M_w = 3.55 \times 10^6 \ \text{g mol}^{-1} & 0.50 & (23) \\ \text{Carbon tetrachloride, } M_{w_0} = 3.55 \times 10^5 \ \text{g mol}^{-1} & 0.56 & (25) \\ \text{Benzene, } M_w = 3.55 \times 10^5 \ \text{g mol}^{-1} & 0.51 & (25) \\ \text{Benzene, } M_w = 3.55 \times 10^5 \ \text{g mol}^{-1} & 0.51 & (25) \\ \text{Tetrahydrofuran, } M_w = 3.55 \times 10^5 \ \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran, } dimethylformamide (4:1), & 0.75 & (25) \\ M_w = 3.55 \times 10^5 \ \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran, } dimethylformamide (4:1), & 0.75 & (25) \\ M_w = 3.55 \times 10^5 \ \text{g mol}^{-1} & 0.10 & (25) \\ \text{Chloroform} & 1.10 & (25) \\ \text{Chloroform} & 1.10 & (25) \\ \text{Characteristic ratio} & - & - & 410 & (27) \\ (r^2)_0/nl^2 & 1 & 1 \text{tetrachloroethane, } M_w = 9.6 \times 10^4 \ \text{g mol}^{-1}, & 315 & (14) \\ \text{in inisotropic phase} & 1 \text{n tetrachloroethane, } M_w = 9.6 \times 10^4 \ \text{g mol}^{-1}, & 180 & (14) \\ \text{in inisotropic phase} & 1 \text{n tetrachloroethane, } M_w = 9.6 \times 10^4 \ \text{g mol}^{-1}, & 180 & (14) \\ \text{in inisotropic phase, light scattering} & 2.11 \times 10^6 \ \text{g mol}^{-1} & 2.21 \times 10^6 \ \text{g mol}^{-1}, & 2.21 \times 10^6 \ g mol$	Huggins constant	_	Toluene at 25°C	0.346	(4)
$\begin{array}{c} \text{Chloroform at } 25^\circ\text{C} & 0.3319 & (4) \\ \text{Tetrahydrofuran at } 25^\circ\text{C} & 0.331 & (4) \\ 1.5\% & \text{acetic acid/carbon tetrachloride} & 0.328 & (4) \\ 1.5\% & \text{methanol/toluene} & 0.326 & (4) \\ \text{Hexane at } 25^\circ\text{C}, M_w = (0.68-3.34) \times 10^5 \text{g mol}^{-1} & 0.50 & (23) \\ \text{Carbon tetrachloride}, M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.50 & (25) \\ \text{Benzene}, M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.51 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 0.44 & (27) \\ \text{Characteristic ratio} & - & - & 410 & (27) \\ \text{Chloroform} & 1.10 & (25) \\ \text{Characteristic ratio} & - & - & 410 & (27) \\ \text{In tetrahydrofuran at } 25^\circ\text{C}, M_w = (0.38- & 162-966) & (4) \\ \text{4.3)} \times 10^5 \text{g mol}^{-1} & 1.10 & (27) \\ \text{In tetrahydrofuran at } 25^\circ\text{C}, M_w = (0.38- & 162-966) & (4) \\ \text{4.3)} \times 10^5 \text{g mol}^{-1} & 1.10 & (27) \\ \text{In tetrahydrofuran,} M_w = 3.55 \times 10^5 \text{g mol}^{-1} & 1.10 \\ \text{In tetrahydrofuran,} M_w = 3.00 & 300 \\ In tetrahydrofu$			Carbon tetrachloride at 25°C	0.341	(4)
$\begin{array}{c} 1.5\% \ \ {\rm acctic\ acid/carbon\ tetrachloride} \\ 1.5\% \ \ {\rm methanol/toluene} \\ 1.5\% \ \ {\rm methanol/toluene} \\ 1.5\% \ \ {\rm methanol/toluene} \\ 1.5\% \ \ \ {\rm methanol/toluene} \\ 1.5\% \ \ \ {\rm methanol/toluene} \\ 1.5\% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			Chloroform at 25°C	0.319	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Tetrahydrofuran at 25°C	0.331	(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.5% acetic acid/carbon tetrachloride	0.328	
$\begin{array}{c} \text{Hexane at } 25^{\circ}\text{C}, \ M_{w} = (0.68-3.34) \times 10^{5} \text{g mol}^{-1} & 0.38 & (23) \\ \text{Hexane at } 25^{\circ}\text{C}, \ M_{w} = 7.24 \times 10^{6} \text{g mol}^{-1} & 0.50 & (23) \\ \text{Carbon tetrachloride, } \ M_{w} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.56 & (25) \\ \text{Benzene, } \ M_{w} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.51 & (25) \\ \text{Tetrahydrofuran, } \ M_{w} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran, } \ dimethylformamide } (4:1), & 0.75 & (25) \\ M_{w} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.43 & (25) \\ M_{w} = 3.55 \times 10^{5} \text{g mol}^{-1} & 1.10 & (25) \\ \end{array}$				0.326	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Hexane at 25°C, $M_{\rm w} = (0.68-3.34) \times 10^5 {\rm g mol}^{-1}$	0.38	
$ \begin{array}{c} \text{Carbon tetrachloride, } M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.56 & (25) \\ \text{Benzene, } M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.51 & (25) \\ \text{Tetrahydrofuran, } M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 0.43 & (25) \\ \text{Tetrahydrofuran, } d \text{imethylformamide } (4:1), & 0.75 & (25) \\ M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 1.10 & (25) \\ M_{\text{w}} = 3.55 \times 10^{5} \text{g mol}^{-1} & 1.10 & (25) \\ \text{Characteristic ratio} & - & - & 410 & (27) \\ \text{Characteristic ratio} & - & - & 410 & (27) \\ \text{Characteristic ratio} & - & - & 410 & (27) \\ \text{Radius of gyration} & \mathring{A} & \text{In tetrahydrofuran at } 25^{\circ}\text{C}, M_{\text{w}} = (0.38^{-} & 162^{-}966 & (4) \\ 4.3) \times 10^{5} \text{g mol}^{-1} & 16 \text{tetrachloroethane, } M_{\text{w}} = 9.6 \times 10^{4} \text{g mol}^{-1}, & 315 & (14) \\ \text{in anisotropic phase} & \text{In tetrachloroethane, } M_{\text{w}} = 9.6 \times 10^{4} \text{g mol}^{-1}, & 180 & (14) \\ \text{in in isotropic phase} & \text{In tetrachloroethane, } M_{\text{w}} = 5.6 \times 10^{4} \text{g mol}^{-1}, & 180 & (14) \\ \text{in isotropic phase, light scattering} & 300^{-}2,190 & (28) \\ 2.1) \times 10^{6} \text{g mol}^{-1} & 2.21 \times 10^{6} \text{g mol}^{-1}, & 180 & (14) \\ \text{In carbon tetrachloride} & \sim 2.1 \times 1.1 & (4) \\ \text{In toluene} & \sim 2.1 \times 1.1 & (4) \\ \text{elength} & \text{In cloronaphthalene at } 25^{\circ}\text{C}, \text{ chain diameter} & 230 & (29) \\ \text{In 1-chloronaphthalene at } 45^{\circ}\text{C}, d = 16.4 \mathring{\text{A}} & 200 & (29) \\ \text{In 1-chloronaphthalene at } 45^{\circ}\text{C}, d = 16.4 \mathring{\text{A}} & 200 & (29) \\ \text{In 1-chloronaphthalene at } 45^{\circ}\text{C}, d = 10.3 \mathring{\text{A}} & 110 & (29) \\ \text{In 1-chloronaphthalene at } 90.2^{\circ}\text{C}, d = 16.4 \mathring{\text{A}} & 90 & (29) \\ \text{In 1-chloronaphthalene at } 90.2^{\circ}\text{C}, d = 16.4 \mathring{\text{A}} & 90 & (29) \\ \text{In 1-chloronaphthalene at } 90.2^{\circ}\text{C}, d = 16.4 \mathring{\text{A}} & 90 & (29) \\ \text{In 1-chloronaphthalene at } 10.8^{\circ}\text{C}, d = 10.3 \mathring{\text{A}} & 110 & (29) \\ \text{In 1-chloronaphthalene at } 10.8^{\circ}\text{C}, d = 10.3 \mathring{\text{A}} & 110 & (29) \\ \text{In 1-chloronaphthalene at } 10.8^{\circ}\text{C}, d = 10.3 \mathring{\text{A}} & 100 & (29) \\ \text{In 1-chloronaphthalene at } 10.8^{\circ$			Hexane at 25°C, $M_{\rm w} = 7.24 \times 10^6 {\rm g mol}^{-1}$	0.50	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.56	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.51	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.43	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Tetrahydrofuran/dimethylformamide (4:1),	0.75	
$ \begin{array}{c} \text{Characteristic ratio} \\ (r^2)_0/nl^2 \\ \end{array} \begin{array}{c} \dot{A} \\ Note that the proof of the proo$				1 10	(25)
$ \langle r^2 \rangle_0 / n l^2 $ Radius of gyration \mathring{A} In tetrahydrofuran at 25°C , $M_{\text{w}} = (0.38-162\text{-}966)$ (4) $4.3 \times 10^5 \text{g mol}^{-1}$ In tetrachloroethane, $M_{\text{w}} = 9.6 \times 10^4 \text{g mol}^{-1}$, 315 (14) in anisotropic phase In tetrachloroethane, $M_{\text{w}} = 5.6 \times 10^4 \text{g mol}^{-1}$, 180 (14) in isotropic phase, light scattering In butyl chloride, light scattering, $M_{\text{w}} = (0.043-2.1) \times 10^6 \text{g mol}^{-1}$ (28) $2.1 \times 10^6 \text{g mol}^{-1}$ (4) In carbon tetrachloride In toluene $2.1-1.0 \text{g mol}^{-1}$ (4) $2.1-1.0 \text{g mol}^{-1}$ (4) In 1-chloronaphthalene at 25°C ; chain diameter 230 (29) In 1-chloronaphthalene at 25°C ; chain diameter 230 (29) In 1-chloronaphthalene at 25°C ; 200 (29) In 1-chloronaphthalene at 25°C ; 200 (29) In 1-chloronaphthalene at 25°C ; 200 (29) In 1-chloronaphthalene at 200°C ; 200 (29) In 1-chloronaphthalene at 200°C ; 200 (30) In 1-chloronaphthalene at 200°C ; 20			Chiofolom	1.10	(20)
Radius of gyration $\begin{tabular}{lll} \mathring{A} & In tetrahydrofuran at 25°C, $M_{\rm w}$ = (0.38- $4.3) \times 10^5 {\rm g mol}^{-1}$ & In tetrachloroethane, $M_{\rm w}$ = 9.6 \times 10^4 {\rm g mol}^{-1}$, 315 (14) in anisotropic phase In tetrachloroethane, $M_{\rm w}$ = 5.6 \times 10^4 {\rm g mol}^{-1}$, in isotropic phase, light scattering In butyl chloride, light scattering, $M_{\rm w}$ = (0.043- $300-2,190$ (28) $2.1) \times 10^6 {\rm g mol}^{-1}$ & 180 (14) in in toluene In chloroform & $\sim 2.1-1.1$ (4) In toluene In chloroform & $\sim 2.1-1.1$ (4) In toluene In chloroform & $\sim 2.0-0.7$	Characteristic ratio $\frac{\langle r^2 \rangle}{\langle r \rangle^2}$	_	_	410	(27)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\r /0/m				
in anisotropic phase In tetrachloroethane, $M_{\rm w}=5.6\times10^4{\rm gmol^{-1}},$ 180 (14) in isotropic phase, light scattering In butyl chloride, light scattering, $M_{\rm w}=(0.043-300-2.190)$ (28) $2.1)\times10^6{\rm gmol^{-1}}$ (4) In carbon tetrachloride In toluene $\sim2.1-1.1$ (4) In toluene $\sim2.1-1.0$ In chloroform $\sim2.0-0.7$ (29) In 1-chloronaphthalene at 25°C; chain diameter $d=10.3{\rm \AA}$ In 1-chloronaphthalene at 25°C, $d=16.4{\rm \AA}$ 200 (29) In 1-chloronaphthalene at 45°C, $d=10.3{\rm \AA}$ 190 (29) In 1-chloronaphthalene at 45°C, $d=16.4{\rm \AA}$ 165 (29) In 1-chloronaphthalene at 45°C, $d=16.4{\rm \AA}$ 95 (29) In 1-chloronaphthalene at 90.2°C, $d=16.4{\rm \AA}$ 95 (29) In 1-chloronaphthalene at 110.8°C, $d=16.4{\rm \AA}$ 80 (29) In 1-chloronaphthalene at 110.8°C, $d=16.4{\rm \AA}$ 80 (29) In chloroform 200 (30) In dichloroform 10 (31) In dichloromethane 110.8°C, $d=16.4{\rm \AA}$ 80 (29) In chloroform 200 (30) In dichloromethane 185 (11) In dichloromethane 185 (11) In dichloromethane 185 (11) In toluene at 10°C (210 (31) (31) (31, 37) In toluene at 25°C (370 (31, 37) (31, 37) In toluene at 25°C (370 (31, 37) (31, 37)	Radius of gyration	Å		162-966	(4)
In tetrachloroethane, $M_{\rm w}=5.6\times10^4~{\rm gmol}^{-1}$, 180 (14) in isotropic phase, light scattering In butyl chloride, light scattering, $M_{\rm w}=(0.043-300-2.190)$ (28) $2.1)\times10^6~{\rm gmol}^{-1}$ (4) Monomer projection length In toluene $2.1-1.1$ (4) $-2.1-1.0$ $-2.0-0.7$ (29) In 1-chloronaphthalene at 25°C; chain diameter $d=10.3~{\rm \AA}$ In 1-chloronaphthalene at 25°C, $d=16.4~{\rm \AA}$ (200 (29) In 1-chloronaphthalene at 45°C, $d=16.4~{\rm \AA}$ (29) In 1-chloronaphthalene at 45°C, $d=16.4~{\rm \AA}$ (29) In 1-chloronaphthalene at 45°C, $d=16.4~{\rm \AA}$ (29) In 1-chloronaphthalene at 90.2°C, $d=16.4~{\rm \AA}$ (29) In 1-chloronaphthalene at 90.2°C, $d=16.4~{\rm \AA}$ (29) In 1-chloronaphthalene at 90.2°C, $d=16.4~{\rm \AA}$ (29) In 1-chloronaphthalene at 110.8°C, $d=16.4~{\rm \AA}$ (29) In 1				315	(14)
In butyl chloride, light scattering, $\dot{M}_{\rm w} = (0.043 - 300 - 2.190)$ (28)			In tetrachloroethane, $M_{\rm w} = 5.6 \times 10^4 {\rm g mol}^{-1}$,	180	(14)
length In toluene In chloroform $\sim 2.1-1.0$ $\sim 2.0-0.7$ Persistence length Å In 1-chloronaphthalene at 25°C; chain diameter $d=10.3$ Å In 1-chloronaphthalene at 25°C, $d=16.4$ Å 200 (29) In 1-chloronaphthalene at 45°C, $d=10.3$ Å 190 (29) In 1-chloronaphthalene at 45°C, $d=16.4$ Å 165 (29) In 1-chloronaphthalene at 45°C, $d=16.4$ Å 165 (29) In 1-chloronaphthalene at 90.2°C, $d=16.4$ Å 95 (29) In 1-chloronaphthalene at 90.2°C, $d=16.4$ Å 95 (29) In 1-chloronaphthalene at 110.8°C, $d=16.4$ Å 80 (29) In 1-chloronaphthalene at 110.8°C, $d=16.4$ Å 80 (29) In chloroform 200 (30) In dichloromethane 185 (11) In dichloromethane 185 (11) In dichloromethane 185 (11) In bexane 420 (23) In toluene at 10°C 410 (31, 37) In toluene at 25°C 370 (31, 37) In toluene at 40°C 340 (31, 37)			In butyl chloride, light scattering, $M_{\rm w} = (0.043$ –	300-2,190	(28)
length In toluene In chloroform $\sim 2.1-1.0$	Monomer projection	Å	In carbon tetrachloride	~2.1-1.1	(4)
Persistence length Å In 1-chloronaphthalene at 25°C; chain diameter $d=10.3$ Å In 1-chloronaphthalene at 25°C, $d=16.4$ Å 200 (29) In 1-chloronaphthalene at 45°C, $d=16.4$ Å 190 (29) In 1-chloronaphthalene at 45°C, $d=16.4$ Å 165 (29) In 1-chloronaphthalene at 45°C, $d=10.3$ Å 110 (29) In 1-chloronaphthalene at 90.2°C, $d=10.3$ Å 110 (29) In 1-chloronaphthalene at 90.2°C, $d=16.4$ Å 95 (29) In 1-chloronaphthalene at 110.8°C, $d=16.4$ Å 80 (29) In 1-chloronaphthalene at 110.8°C, $d=16.4$ Å 80 (29) In chloroform 200 (30) In dichloromethane at 110.8°C, $d=16.4$ Å 80 (29) In 1-chloronaphthalene at 10°C 210 (31) In hexane 420 (23) In toluene 375 (11) In toluene at 10°C 410 (31, 37) In toluene at 25°C 370 (31, 37) In toluene at 40°C 340 (31, 37)			In toluene	\sim 2.1–1.0	,
d = 10.3 Å In 1-chloronaphthalene at 25°C, $d = 16.4 Å$ In 1-chloronaphthalene at 45°C, $d = 10.3 Å$ In 1-chloronaphthalene at 45°C, $d = 10.3 Å$ In 1-chloronaphthalene at 45°C, $d = 16.4 Å$ In 1-chloronaphthalene at 90.2°C, $d = 16.4 Å$ In 1-chloronaphthalene at 90.2°C, $d = 10.3 Å$ In 1-chloronaphthalene at 110.8°C, $d = 16.4 Å$ In 1-chloronaphthalene at 1			In chloroform	\sim 2.0-0.7	
In 1-chloronaphthalene at 45° C, $d = 10.3 \text{ Å}$ 190 (29) In 1-chloronaphthalene at 45° C, $d = 16.4 \text{ Å}$ 165 (29) In 1-chloronaphthalene at 90.2° C, $d = 10.3 \text{ Å}$ 110 (29) In 1-chloronaphthalene at 90.2° C, $d = 16.4 \text{ Å}$ 95 (29) In 1-chloronaphthalene at 110.8° C, $d = 16.4 \text{ Å}$ 90 (29) In 1-chloronaphthalene at 110.8° C, $d = 16.4 \text{ Å}$ 80 (29) In chloroform 200 (30) In dichloromethane 185 (11) In dichloromethane 420°C 210 (31) In hexane 420 (23) In toluene at 10° C 410 (31, 37) In toluene at 25° C 370 (31, 37) In toluene at 40° C 340 (31, 37)	Persistence length	Å		230	(29)
In 1-chloronaphthalene at 45° C, $d = 10.3 \text{ Å}$ 190 (29) In 1-chloronaphthalene at 45° C, $d = 16.4 \text{ Å}$ 165 (29) In 1-chloronaphthalene at 90.2° C, $d = 10.3 \text{ Å}$ 110 (29) In 1-chloronaphthalene at 90.2° C, $d = 16.4 \text{ Å}$ 95 (29) In 1-chloronaphthalene at 110.8° C, $d = 16.4 \text{ Å}$ 90 (29) In 1-chloronaphthalene at 110.8° C, $d = 16.4 \text{ Å}$ 80 (29) In chloroform 200 (30) In dichloromethane 185 (11) In dichloromethane 420°C 210 (31) In hexane 420 (23) In toluene at 10° C 410 (31, 37) In toluene at 25° C 370 (31, 37) In toluene at 40° C 340 (31, 37)			In 1-chloronaphthalene at 25°C, $d = 16.4 \text{ Å}$	200	(29)
In 1-chloronaphthalene at 45° C, $d = 16.4 \text{ Å}$ In 1-chloronaphthalene at 90.2° C, $d = 10.3 \text{ Å}$ In 1-chloronaphthalene at 90.2° C, $d = 16.4 \text{ Å}$ In 1-chloronaphthalene at 90.2° C, $d = 16.4 \text{ Å}$ In 1-chloronaphthalene at 110.8° C, $d = 10.3 \text{ Å}$ In 1-chloronaphthalene at 110.8° C, $d = 10.3 \text{ Å}$ In chloroform In chloroform In dichloromethane In dichloromethane In dichloromethane In dichloromethane In toluene In toluene In toluene In toluene In toluene In toluene at 10° C In toluene				190	1 1
In 1-chloronaphthalene at 90.2° C, $d = 10.3 \text{ Å}$ 110 (29) In 1-chloronaphthalene at 90.2° C, $d = 16.4 \text{ Å}$ 95 (29) In 1-chloronaphthalene at 110.8° C, $d = 10.3 \text{ Å}$ 90 (29) In 1-chloronaphthalene at 110.8° C, $d = 16.4 \text{ Å}$ 80 (29) In chloroform 200 (30) In dichloromethane 185 (11) In dichloromethane at 20° C 210 (31) In hexane 420 (23) In toluene 375 (11) In toluene at 10° C 410 (31, 37) In toluene at 25° C 370 (31, 37) In toluene at 40° C 340 (31, 37)				165	
In 1-chloronaphthalene at 90.2° C, $d = 16.4 \text{Å}$ 95 (29) In 1-chloronaphthalene at 110.8° C, $d = 10.3 \text{Å}$ 90 (29) In 1-chloronaphthalene at 110.8° C, $d = 16.4 \text{Å}$ 80 (29) In chloroform 200 (30) In dichloromethane 185 (11) In dichloromethane at 20° C 210 (31) In hexane 420 (23) In toluene 375 (11) In toluene at 10° C 410 (31, 37) In toluene at 25° C 370 (31, 37) In toluene at 40° C 340 (31, 37)				110	
In 1-chloronaphthalene at 110.8° C, $d = 10.3 \text{ Å}$ 90 (29) In 1-chloronaphthalene at 110.8° C, $d = 16.4 \text{ Å}$ 80 (29) In chloroform 200 (30) In dichloromethane 185 (11) In dichloromethane at 20° C 210 (31) In hexane 420 (23) In toluene 375 (11) In toluene at 10° C 410 (31, 37) In toluene at 25° C 370 (31, 37) In toluene at 40° C 340 (31, 37)				95	
In 1-chloronaphthalene at 110.8° C, $d = 16.4 \text{ Å}$ 80 (29) In chloroform 200 (30) In dichloromethane 185 (11) In dichloromethane at 20° C 210 (31) In hexane 420 (23) In toluene 375 (11) In toluene at 10° C 410 (31, 37) In toluene at 25° C 370 (31, 37) In toluene at 40° C 340 (31, 37)				90	
In chloroform 200 (30) In dichloromethane 185 (11) In dichloromethane at 20°C 210 (31) In hexane 420 (23) In toluene 375 (11) In toluene at 10°C 410 (31, 37) In toluene at 25°C 370 (31, 37) In toluene at 40°C 340 (31, 37)					
In dichloromethane 185 (11) In dichloromethane at 20°C 210 (31) In hexane 420 (23) In toluene 375 (11) In toluene at 10°C 410 (31, 37) In toluene at 25°C 370 (31, 37) In toluene at 40°C 340 (31, 37)				200	
In dichloromethane at 20°C 210 (31) In hexane 420 (23) In toluene 375 (11) In toluene at 10°C 410 (31, 37) In toluene at 25°C 370 (31, 37) In toluene at 40°C 340 (31, 37)			In dichloromethane	185	
In hexane 420 (23) In toluene 375 (11) In toluene at 10°C 410 (31, 37) In toluene at 25°C 370 (31, 37) In toluene at 40°C 340 (31, 37)			In dichloromethane at 20°C	210	
In toluene 375 (11) In toluene at 10°C 410 (31, 37) In toluene at 25°C 370 (31, 37) In toluene at 40°C 340 (31, 37)			In hexane	420	
In toluene at 10° C			In toluene	375	
In toluene at 25°C 370 (31, 37) In toluene at 40°C 340 (31, 37)			In toluene at 10°C		
In toluene at 40° C 340 (31, 37)			In toluene at 25°C	370	1 1
In tetralin 400 (32)			In toluene at 40°C	340	
			In tetralin	400	(32)

			1 Oly (17 Hexyl 1	socyanate,
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Persistence length	Å	In tetrahydrofuran	425	(4)
		In tetrahydrofuran	400-500	(33)
		In butyl chloride	450	(28)
Lattice	_	Only a few <i>d</i> spacings were given	_	(34, 35)
Chain conformation	A helical	lid state by X-ray scattering: 125 helix rodlike conformation at low molecular weigh ion to random-coil conformation at high mole		(34) (1, 4)
Degree of crystallinity	%	X-ray diffraction	Low order of crystallinity	(5)
Density	$\rm gcm^{-3}$	_	1.000	(14, 36)
Partial specific volume	$\mathrm{cm}^3\mathrm{g}^{-1}$	In toluene at 25°C	0.987	(37)
•	O	In toluene at 40°C	1.002	` /
		In toluene at 10°C	0.972	
		In dichloromethane at 20°C	0.992	
Glass transition	K	By thermally stimulated discharge currents	223	(38)
temperature		Hydrosilation cross-linked, DSC	258	(39)
-		Copolymer with 10 mol% allyl composition, DSC	273	(39)
Melting point	K	DTA-DSC, Ar atmosphere, heating rate = 10° C min ⁻¹	\sim 428	(17)
		$M_{\rm w} = 9.6 \times 10^4 {\rm g mol}^{-1}$	468	(40)
			468	(5)
			473	(41)
Mesomeric transition	K	Crystalline-nematic transition	438	(41)
temperatures		Crystalline-nematic transition, $M_{\rm w} = 9.4 \times 10^4$	450	(40)
Sub- $T_{\rm g}$ transition	K	Chain skeleton rearrangement relaxations	293 and 313	(42)
temperatures		(or transition), $M_{\rm w} = 9.4 \times 10^4 \mathrm{g mol}^{-1}$	393	(40)
Softening temperature	K	_	393	(5)
Tensile modulus	MPa	At 23°C, strain rate = $8.3 \times 10^{-4} \text{s}^{-1}$	\sim 420	(43)
		$At -100^{\circ}C$	1,600	(44)
		$At -40^{\circ}C$	1,000	(44)
		At 20°C	300	(44)
		Highly oriented fibers, orientation angle = 4.6° , room temperature, strain rate = $10 \mathrm{mm min}^{-1}$	~4,000	(45)
Theoretical axial modulus	MPa	Side chain reduced the axial modulus of rigid-chain polyamides by $\sim 90\%$	~6,000	(45)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	At 23°C, strain rate = $8.3 \times 10^{-4} \mathrm{s}^{-1}$ Highly oriented fibers, room temperature, strain rate = $10 \mathrm{mm min}^{-1}$	~10 ~200	(43) (45)
Maximum extensibility	%	At 23°C, strain rate = $8.3 \times 10^{-4} \mathrm{s}^{-1}$ Highly oriented fibers, room temperature, strain rate = $10 \mathrm{mm min}^{-1}$	~8 ~6.6	(43) (45)

Mechanical properties of cross-linked $\mathrm{PHIC}^{(46,\,47)}$

Conditions	Properties		
	Tensile modulus (MPa)	Tensile strength (MPa)	Elongation at break (%)
Uncross-linked, 10% allyl concentration	140	10.6	11.0
Cross-linked, high-temp., hydrosilation	30	2.6	46.0
Oriented, high-temp., hydrosilation	260	15.6	12.5
Crosslinker: hydrido-oligo (dimethylsiloxane)			
Unoriented	30	4.55	166.6
Oriented, uniaxial //			
Extension ratio 35%	83	9.72	84.4
Extension ratio 70%	233	18.76	65.5
Extension ratio 100%	310	24.13	49.4
Oriented, uniaxial \perp			
Extension ratio 20%	49	5.77	79.5
Extension ratio 50%	27	3.48	59.2
Oriented, biaxial			
Extension ratio 20%	62	13.71	157.5
Cross-linker: hexamethyl-trisiloxane			
Unoriented	16	7.05	172.7
Oriented, uniaxial //			
Extension ratio 80%	103	23.60	80.8
Extension ratio 120%	309	34.21	33.8
Extension ratio 140%	394	39.82	37.1

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Entanglement molecular weight $M_{\rm c}$	g mol ⁻¹	_	6,350	(27, 33)
Refractive index increment dn/dc	mlg^{-1}	In <i>n</i> -butyl chloride at 25°C, $\lambda_0 = 546\mathrm{nm}$ In <i>n</i> -hexane at 25°C, $\lambda_0 = 546\mathrm{nm}$ In tetrahydrofuran, $\lambda_0 = 436\mathrm{nm}$ In tetrahydrofuran, $\lambda_0 = 546\mathrm{nm}$ In tetrahydrofuran, $\lambda_0 = 436\mathrm{nm}$ In tetrahydrofuran at 25°C, $M_\mathrm{w} = 3.8 \times 10^4\mathrm{gmol}^{-1}$	0.092 0.134 0.100 0.097 0.099 0.088	(13) (23) (48) (48) (33) (4)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Refractive index increment <i>dn/dc</i>	$ml g^{-1}$	In tetrahydrofuran at 25°C, $M_{\rm w}=6.8\times10^4{\rm gmol}^{-1}$	0.0900	(4)
		In tetrahydrofuran, $M_{\rm w} = 7.2 \times 10^4$ and 7.9×10^4 g mol ⁻¹	0.0910	(4)
		In tetrahydrofuran, $M_{\rm w}=(1.11,1.35,1.62,2.04,3.12,{\rm and}4.24)\times 10^5{\rm gmol}^{-1}$	0.0934	(4)
Dielectric constant ε'	-	In toluene at 292.2 K, 21.4% polymer (w/w), frequency range \sim (2–1 \times 10 ⁵) Hz	~(10-120)	(49)
Dielectric loss ε''	_	In toluene at 292.2 K, 21.4% polymer (w/w), frequency range \sim (2-1 \times 10 ⁵) Hz	~(4-24)	(49)
Dielectric critical frequency f_c	Hz	In toluene at 292.2 K, 21.4% polymer (w/w), frequency range \sim (2-1 \times 10 ⁵) Hz	~400	(49)
Optical activity: specific rotation $[\alpha]_D$	Degree	Poly((R)-1-deuterio- <i>n</i> -hexyl isocyanate) at the sodium <i>d</i> -line in dilute solution of chloroform at:		
		10°C	-450	(50)
		25°C	-367	(50)
		47°C	-258	(50)
		Poly((R)-1-deuterio- n -hexyl isocyanate), degree of polymerization = 6,800:		` '
		In chloroform and in hexane, $(60 \text{ to } -20^{\circ}\text{C})$	\sim 3 fold increase in $[\alpha]_D$	(51)
		In chloroform, (70 to -30° C)	\sim (-550 to -150)	(52)
		Poly((R)-1-deuterio- <i>n</i> -hexyl isocyanate) and poly((R)-2-deuterio- <i>n</i> -hexyl	$[\alpha]_{ m D}$ increases with	(53)
		isocyanate), in dicloromethane, in 1-chlorobutane, in toluene and in hexane, $(100 \text{ to } -20^{\circ}\text{C})$	decreasing temperature	
		Copolymer of 99.5% n -hexyl isocyanate and 0.5% (R)-2, 6-dimethylheptyl isocyanate, (40 to -20° C) (for n -hexane $\sim -5^{\circ}$ C, for n -octane $\sim 10^{\circ}$ C)	Sudden increase in $[\alpha]_{\rm D}$	(54)
Decomposition temperature	K	TGA, N_2 atmosphere, heating rate = 20° C min ⁻¹	463	(3)
-		TGA, heating rate = 10° C min ⁻¹	\sim 453	(17)
		At polymer melting point	468	(5)

Intrinsic viscosity

Molecular weight (g mol ⁻¹)	Solvent	Temp. (°C)	$[\eta]$ (dl g^{-1})	Reference
$M_{\rm v} = (1.01 - 2.78) \times 10^5$	Toluene	25	4.4-12.9	(29)
$M_{\rm v} = (1.01 2.78) \times 10^5$	1-Chloronaphthalene	25	3.4-9.1	(29)
$M_{\rm v} = (1.01 - 2.78) \times 10^5$	1-Chloronaphthalene	45	3.1-7.6	(29)
$M_{\rm v} = (1.01 2.01) \times 10^5$	1-Chloronaphthalene	90.2	2.0 - 3.4	(29)
$M_{\rm v} = (1.01 2.78) \times 10^5$	1-Chloronaphthalene	110.8	1.6 - 3.8	(29)
$M_{\rm w}=3.55\times10^4$	Carbon tetrachloride	_	12.1	(25)
$M_{\rm w} = 3.55 \times 10^4$	Benzene	_	11.5	(25)
$M_{\rm w} = 3.55 \times 10^4$	Tetrahydrofuran	_	10.0	(25)
$M_{\rm w} = 3.55 \times 10^4$	Tetrahydrofuran-dimethylformamide (4:1)	_	7.8	(25)
$M_{\rm w}=3.55\times10^4$	Chloroform	_	7.3	(25)
$M_{\rm w} = 6.5 \times 10^4$	Toluene	25	2.6	(17)
$M_{\rm w}=6.5\times10^4$	Chloroform	_	2.2	(17)
$M_{\rm w}=6.5\times10^4$	Methanol/toluene (19.5 v/v%)	_	2.38	(17)

Pyrolyzability

	Conditions	Observation	Reference
Nature of product	Direct pyrolysis mass spectrometry	Cyclic trimer of <i>n</i> -hexyl isocyanate as the principle decomposition product, and small amounts of hexyl isocyanate	(3)
	Thermal degradation tandem mass spectrometry	Principal pyrolysis product is the neutral trimer, minor amounts of monomer	(55)
Amount of product	At 138°C in xylene solution	Cyclic trimer of <i>n</i> -hexyl isocyanate	(5)
•	(conc. 0.1%)	Relative viscosity reduced quickly (within 30 min)	(5)
Impurities remaining	At room temperature in dimethylformamide	Depolymerization occurs in the presence of anionic initiator such as sodium cyanide	(5)

- 1. Bur, A. J., and L. J. Fetters. Chem. Rev. 76(6) (1976): 727.
- 2. Ulrich, H. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1987, Vol. 8, pp. 448–462.
- 3. Durairaj, B., A. W. Dimock, E. T. Samulski, and M. T. Shaw. *J. Polym. Sci., Part A, Polym. Chem.*, 27 (1989): 3,211.
- 4. Berger, M. N., and B. M. Tidswell. J. Polym. Sci. 42 (1973): 1,063.
- 5. Shashoua, V. E., W. Sweeny, and R. F. Tietz. J. Am. Chem. Soc. 82 (1959): 866.
- 6. Okamoto, Y., et al. Macromolecules 25 (1992): 5,536.
- 7. Patten, T. E., and B. M. Novak. J. Am. Chem. Soc. 113 (1991): 5,065.
- 8. Patten, T. E., and B. M. Novak. Macromolecules 26 (1993): 436.
- 9. Ivin, K. J. Angew. Chem., Int. Ed. Engl., 12 (1973): 487.
- 10. Chen, J. T., and E. L. Thomas. J. Mater. Sci. 31 (1996): 2,531.
- 11. Conio, G., E. Bianchi, A. Ciferri, and W. R. Krigbaum. Macromolecules 17 (1984): 856.
- 12. Fukuwatari, N. Macromol. Rapid Commun. 17 (1996): 1.

- 13. Kuwata, M., H. Murakami, T. Norisue, and H. Fujita. Macromolecules 17 (1984): 2,731.
- 14. Aharoni, S. M., and E. K. Walsh. Macromolecules 12(2) (1979): 271.
- 15. Patten, T. E., and B. M. Novak. J. Am. Chem. Soc. 118 (1996): 1,906.
- 16. Jinbo, Y., T. Sato, and A. Teramoto. Macromolecules 27 (1994): 6,080.
- 17. Aharoni, S. M. Macromolecules 12(1) (1979): 94.
- 18. Munoz, B., K. Zero, and M. M. Green. Polym. Prepr. 33(2) (1992): 294.
- 19. DuPre, D. B., and H. Wang. Macromolecules 25 (1992): 7,155.
- 20. Cook. R., et al. Macromolecules 23 (1990): 3,454.
- 21. Aharoni, S. M. Polymer 21 (1980): 21.
- 22. Kim, Y. C., and D. C. Lee. Pollimo 3 (1979): 115.
- 23. Murakami, H., T. Norisue, and H. Fujita. Macromolecules 13 (1980): 345.
- 24. Aharoni, S. M. Polym. Prepr. 21(1) (1980): 211.
- 25. Schneider, N. S., S. Furusaki, and R. W. Lenz. J. Polym. Sci., Part A, 3 (1965): 933.
- 26. Rubingh, D. N., and H. Yu. Macromolecules 9 (1976): 681.
- 27. Aharoni, S. M. Macromolecules 16 (1983): 1,722.
- 28. Wang, H., and D. B. DuPre. J. Chem. Phys. 96(2) (1992): 1,523.
- 29. Bianchi, E., A. Ciferri, G. Conio, and W. R. Krigbaum. Polymer 28 (1987): 813.
- 30. Cantor, A. S., and R. Pecora. Macromolecules 27 (1994): 6,817.
- 31. Itou, T., H. Chikiri, A. Teramoto, and S. Aharoni. Polym. J. 20 (1988): 143.
- 32. Nemoto, N., J. L. Schrag, and J. D. Ferry. Polym. J. 7 (1975): 195.
- 33. Fetters, L. J., and H. Yu. Macromolecules 4 (1971): 385.
- 34. Clough, S. B. In *Characterization of Materials in Research, Ceramics and Polymers*, edited by J. J. Burke and V. Weiss. Syracuse University Press, New York, 1975, pp. 417–436.
- 35. Aharoni, S. M. Macromolecules 14 (1981): 222.
- 36. Aharoni, S. M., and E. K. Walsh. J. Polym. Sci., Polym. Lett. Ed., 17 (1979): 321.
- 37. Itou, T., and A. Teramoto. Macromolecules 21 (1988): 2,225.
- 38. Mano, J. F., N. T. Correia, and J. J. M. Ramos. J. Chem. Soc. Faraday Trans. 91(13) (1995): 2,003.
- 39. W. Zhao, et al. Macromolecules 29 (1996): 2,796.
- 40. Aharoni, S. M. J. Polym. Sci., Polym. Phys. Ed., 18 (1980): 1,303.
- 41. Aharoni, S. M. Polym. Prepr. 21(1) (1980): 209.
- 42. Pierre, J., and E. Marchal. J. Polym. Sci., Polym. Lett. Ed., 13 (1975): 11.
- 43. Aharoni, S. M. Polymer 22 (1981): 418.
- 44. Owadh, A. A., I. W. Parsons, J. N. Hay, and R. N. Harward. Polymer 19 (1978): 386.
- 45. Postema, A. R., K. Liou, F. Wudl, and P. Smith. Macromolecules 23 (1990): 1,842.
- 46. Zhao, W., et al. Macromolecules 29 (1996): 2,805.
- 47. Zhao, W. Ph. D. Thesis. University of Cincinnati, 1995.
- 48. Plummer, H., and B. R. Jennings. Eur. Polym. J. 6 (1970): 171.
- 49. Moscicki, J. K., G. Williams, and S. M. Aharoni. Macromolecules 15 (1982): 642.
- 50. Green, M. M., C. Andreola, B. Munoz, and M. P. Reidy. J. Am. Chem. Soc. 110 (1988): 4,063.
- 51. Lifson, S., C. Andreola, N. C. Peterson, and M. M. Green. J. Am. Chem. Soc. 111 (1989): 8,850.
- 52. Andreola, C., M. M. Green, N. C. Peterson, and S. Lifson. Polym. Prepr. 32(3) (1991): 643.
- 53. Okamoto, N., et al. Macromolecules 29 (1996): 2,878.
- 54. Green, M. M., C. A. Khatri, M. P. Reidy, and K. Levon. *Macromolecules* 26 (1993): 4,723.
- 55. Majumdar, T. K., et al. J. Am. Soc. Mass Spectrom. 2 (1991): 130.

Poly(hydridosilsesquioxane)

RONALD H. BANEY

ACRONYMS, ALTERNATIVE NAMES, TRADE NAME HSQ, LPHSQ, hydridosilsesquioxane, hydrogen silsesquioxane, polyhydrosilsesquioxane, FOx[®] (Dow Corning Corp.)

CLASS Polysiloxanes (siloxane ladder polymers)

STRUCTURE The structure has not been reported in the literature.

MAJOR APPLICATIONS Interlayer dielectrics, high-temperature resins.

PROPERTIES OF SPECIAL INTEREST Very high thermal stability (>500°C) and good dielectric properties.

RELATED POLYMERS Polyalkylsilsesquioxane and poly-co-silsesquioxanes. There are many references to these classes of materials, ⁽¹⁾ but they are generally poorly characterized. Thus, they are not included in this handbook.

Process

Acronym	Process	Reference
PHSQ	Hydrolysis of HSiCl ₃ with sulfuric acid in aromatic solvents	(2)
LPHSQ	Pre-aminolysis of HSiCl ₃ with 1,4-phenylene diamine (PDA) (2:1 mole ratio) and then hydrolysis in acetone-toluene solvent mixtures	(3)
LPPMHSQ	An oligomer of LPHSQ was reacted with an oligomer of ${\rm MeSiO_{3/2}}$ prepared in the same way as LPHSG	(3)

Characterization of hysdridosilsesquioxanes

Material	Solubility	GPC M _w	IR (cm ⁻¹)	Density (g cm ⁻³)	Dielectric constant (1 MHz)	Reference
PHSQ, 400°C cure	_	_	_	1.7	3.0	(4)
LPHSQ	Toluene	$10^5 - 10^6$	1,076, 1,132 (Si-O-Si) 2,257 (Si-H) 835 (Si-OH)	_	_	(3)
LBPMHSQ	Toluene	10 ⁶	1,113 (Si-O-Si) 2,259 (Si-H) 835 (Si-OH) 769, 1,274 (Si-Me)	-	_	(3)

- 1. Baney, R. H., M. Itoh, A. Sakakibara, and T. Suzuki. Chem. Rev. 95(5) (1995): 1,409.
- 2. Frye, C. L., and W. T. Collins. J. Am. Chem. Soc. 92 (1970): 5,586.
- 3. Xie, Z., S. Jin, Y. Wan, and R. Zhang. Chinese Journal of Polymer Science 10(4) (1992): 362.
- 4. Trade literature on FOx®. Dow Corning, Midland, Mich.

Poly(4-hydroxy benzoic acid)

TAREK M. MADKOUR

ACRONYM, TRADE NAME PHBA, Ekonol® (Norton)

CLASS Polyesters

SYNTHESIS Polycondensation

STRUCTURE

MAJOR APPLICATIONS A component in a family of random copolymers that show thermotropic liquid crystalline behavior and are marketed as structural materials.

PROPERTIES OF SPECIAL INTEREST Intractable polymer with no melting behavior below temperatures of significant degradation. It polymerizes directly into the crystalline state, thus showing high tensile stiffness, low dielectric constant, and dimensional stability at high temperatures.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-	120.11	(1)
Typical molecular weight range	$g \text{mol}^{-1}$	_	1,000-20,000	(2)
Infrared bands (frequency)	cm ⁻¹	-	3,440; 1,735; 1,600; 1,540; 1,420; 880	(3)
¹³ C NMR bands	_	Solid state from CP/MAS data Phenoxy Carboxyl	155.0 162.9	(4)
Thermal expansion coefficient	K^{-1}	_	5.04×10^5	(5)
Characteristic ratio $\langle r^2 \rangle_0/nl^2$	_	Calculated at 300 K, for a chain with 30 monomeric units	20	(6)
Persistence length	Å	Calculated at 300 K, for a chain with 30 monomeric units	65	(6)
Radius of gyration	Å	Calculated at 300 K, for a chain with 30 monomeric units	42	(6)

Poly(4-hydroxy benzoic acid)

Unit cell dimensions (1,7)

Isomer Lattice		tice Space		nsion (Å)		Chain	Density
	group	а	b	С	confirmation	(g cm ⁻³)	
Phase I	Ortho	Pbc2 ₁	7.42	5.70	12.45	6*2/1	1.51
Phase II	Ortho	Pbc2 ₁	3.83	11.16	12.56	6*2/1	1.48
Phase III	Ortho	_	9.2	5.3	12.4	6*2/1	_

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Unit cell contents (number of repeat units)	_	-	4	(8)
Unit cell volume	\mathring{A}^3	_	532	(8)
Glass transition temperature	K	_	434	(9)
Crystal-plastic crystal transition temperature	K	_	623	(7, 10)
Enthalpy of fusion	$kJ mol^{-1}$	_	4.204	(10)
Plastic crystal – nematic transition temperature	K	_	718	(7)
Heat capacity C_p	$kJ K^{-1} mol^{-1}$	Under constant pressure 170 K 300 K 400 K 434 K	0.071 0.123 0.164 0.176	(9)
Specific heat increment	$kJK^{-1}mol^{-1}$	At T _g	0.034	(9)
Elastic modulus	MPa	-	6,896	(5)
Flexural strength	MPa	-	75.8	(5)
Dielectric strength	kV/mm	-	26	(5)
Volume resistivity	ohm cm	Unfilled samples	1×10^{15}	(5)
Dissipation factor	_	_	2×10^{-4}	(5)
Thermal conductivity k	$Wm^{-1}K^{-1}$	_	0.013	(5)
Intrinsic viscosity $[\eta]$	_	Polymerized for 3 h in water bath: Solvent Mesogenic character Xylene Smectic Toluene Smectic-nematic	0.0321 0.0330	(3)
		Benzene Smectic Nitrobenzene Nonmesogenic	0.0355 0.0384	

Poly(4-hydroxy benzoic acid)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Maximum use temperature	K	_	723	(5)
TGA weight loss	%	Heating rate 10°C per minute 250°C 300°C 350°C 400°C 500°C 600°C	2.97 4.80 5 11.45 22.9 98.43	(3)

- 1. Brandrup, J., and E. H. Immergut. eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.
- 2. Geiss, R., et al. J. Polym. Sci., Polym. Lett. Ed., 22 (1984): 433.
- 3. Vora, R., et al. Mol. Cryst. Liq. Cryst. 108 (1984): 187.
- 4. Johnson, R., et al. Polym. Commun. 31 (1990): 383.
- 5. Economy, J., B. Nowak, and S. Cottis. Polym. Prepr. 11(1) (1970): 332.
- 6. Jung, B., and B. Schüermann. Macromolecules 22 (1989): 477.
- 7. Iannelli, P., and D. Yoon. J. Polym. Sci., Polym. Phys. Ed., 33 (1995): 977.
- 8. Yoon, D., et al. Macromolecules 23 (1990): 1,793.
- 9. Cao, M., and B. Wunderlich. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 521.
- 10. Hanna, S., and A. Windle. Polym. Commun. 29 (1988): 236.

ISAO NODA, ROBERT H. MARCHESSAULT, AND MIKIO TERADA

ACRONYMS, ALTERNATIVE NAMES, TRADE NAMES PHB, poly(3-hydroxybutyrate), $P(3HB)^*$, poly(0xy-1-0x0-3-methyl-trimethylene), BiopolTM

CLASS Chiral aliphatic polyesters

STRUCTURE $[-O-CH(CH_3)-CH_2-CO-]$

MAJOR APPLICATIONS In bacteria, PHB is a carbon reserve. The purified product is used as biodegradable packaging (bottles, containers, sheets, films, laminates, fibers, and coatings), especially as a copolymer of β -hydroxybutyrate and β -hydroxyvalerate. In biomedical applications, it is an excipient, a prosthetic material, etc. In organic syntheses, it provides chiral synthons.

PROPERTIES OF SPECIAL INTEREST Biocompatibility and biodegradability. Biologically produced PHB is a semicrystalline isotactic stereoregular polymer of 100% *R* configuration that allows a high level of degradability. PHB is obtained by fermentation of bacteria capable of biosynthesizing polyesters as energy storage media. It can be completely biodegraded by numerous microorganisms. Synthetic racemic stereoblock structures degrade more slowly than the bacterial products. Copolymers, such as poly(3-hydroxybutyrate-*co*-3-hydroxyvalerate), are also available.

PREPARATIVE TECHNIQUES The 100% R configuration isotactic polymers are prepared by bacterial fermentation. Production in transgenic plants promises an agrotechnological production method similar to that for starch. Optically active synthetic polymer can also be prepared either by starting with optically active β -butyrolactone or by using a stereoselective catalyst with racemic β -butyrolactone. In vitro enzymatic synthesis using cloned synthase and (R)- β -hydroxybutyryl-CoA monomer.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	86.09	_

Tacticity (stereoregularity)

Catalyst	Monomer	Isotactic dyads (%)	Syndiotactic dyads (%)	Reference
Alcaligenes eutrophus	(R)-β-hydroxybutyryl-CoA	100	0	(1)
ZnEt ₂ /H ₂ O	(S)- β -butyrolactone	100	0	(1)
1-Ethoxy-3- chlorotetrabutyldistannoxane	(R)- β -butyrolactone	94	6	(2)
Methylaluminoxane	(R,S) - β -butyrolactone	32 ± 5	68 ± 5	(3)
1-Ethoxy-3- chlorotetrabutyldistannoxane	(R,S) - β -butyrolactone	30	70	(2)

^{*}P(3HB-co-3HV) is a copolymer with valerate.

Polydispersity index (M_w/M_n)

Bacterial products in vivo depending on bacterial strain and carbon source⁽⁴⁾

Strain	Carbon source	Method	M _w	$M_{\rm w}/M_{\rm n}$
Alcaligenes eutrophus	Fructose	GPC	7.37×10^{5} 4.32×10^{5} 1.66×10^{5} 5.42×10^{5}	1.9
Alcaligenes eutrophus	Butyric acid	GPC		2.1
Bacillus megaterium	Glucose	GPC		2.9
Zoogloea ramigera	Glucose	GPC		2.5

Fractionated bacterial products in $vivo^{*(5)}$

Sample code	M _w	Method	M _n	Method	$M_{\rm w}/M_{\rm n}$
A-12	3.99×10^{6}	Light scattering	_	_	_
A-22	1.64×10^{6}	Light scattering	_	_	_
AB-12	1.35×10^{6}	Light scattering	_	_	_
AB-22	8.57×10^{5}	Light scattering	_	_	_
B-23	6.30×10^{5}	Light scattering	2.80×10^{5}	Osmotic pressure	2.25
B-32	5.33×10^{5}	Light scattering	2.77×10^{5}	Osmotic pressure	1.92
B-42	3.74×10^{5}	Light scattering	2.25×10^{5}	Osmotic pressure	1.66
B-5	2.36×10^{5}	Light scattering	1.91×10^{5}	Osmotic pressure	1.24
B-62	2.29×10^{5}	Light scattering	1.60×10^{5}	Osmotic pressure	1.43
B-72	1.15×10^5	Light scattering	8.55×10^{4}	Osmotic pressure	1.35

^{*}Strain: Azotobacter vinerand ATCC 12837. Carbon source: sucrose.

Bacterial products in vitro

Enzyme	Monomer	Method	M _w	Reference
PHB synthase	(R) - β -hydroxybutyryl-CoA	GPC	1.3×10^{7}	(6)
Porcine pancreatic lipase	(R,S) - β -butyrolactone	MALDI-TOF MS*	$256 \sim 1,045$	(7)
Pseudomons cepacia lipase	(R,S) - β -butyrolactone	MALDI-TOF MS*	$643 \sim 681$	(7)

^{*}MALDI-TOF MS: matrix-assisted laser desorption and ionization time of flight mass spectroscopy.

Synthetic products

Catalyst	Monomer	M _w *	$M_{\rm w}/M_{\rm n}$	Isotactic dyads (%)	Reference
ZnEt2/H20	(S)- β -butyrolactone	20,000	1.5	0	(1)
Methylaluminoxane	(R,S) - β -butyrolactone	130,000	8.1	79 ± 5	(3)
1-Ethoxy-3-chlorotetrabutyldistannoxane	(R) - β -butyrolactone	424,000	2.4	94	(2)
1-Ethoxy-3-chlorotetrabutyldistannoxane	(R,S) - β -butyrolactone	261,000	1.8	30	(2)

^{*}Determined by GPC.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR (characteristic absorption frequencies)	cm ⁻¹	C=O stretching	1,754	(8)

IR (characteristic absorption frequencies) (continued)

Frequency (cm ⁻¹)	Relative intensity	Polarization	Interpretation
2,990	Shoulder	1	CH ₃
2,960	Medium	\perp	CH_2
2,930	Medium	\perp	CH_3
2,860	Shoulder	_	CH_2
1,730	Strong		C=O
975	Medium	<u></u>	_

Assignment	Frequency (cm ⁻¹)	Intensity	Polarization
CH ₃ rock and C–C skeletal	973	Medium	
C-O stretch and others	1,053	Strong	_
C-O stretch and C-C skeletal	1,130	Medium-strong	_
C-O stretch and C-C skeletal	1,181	Strong	_
C-C-O stretch	1,276	Strong	_
CH ₃ symmetric deformation (umbrella)	1,378	Medium	_
CH ₂ deformation, CH3 asymmetric deformation	1,454	Medium	_
C=O stretch	1,726	Very strong	II.
CH ₂ symmetric stretch	2,854	Medium	_
CH ₂ asymmetric stretch	2,927	Medium	\perp
CH ₃ asymmetric stretch	2,974	Weak	\perp

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
¹ H chemical shift	ppm	Solution state: 2.0 (w/v)% polymer solution in CDCl ₃ , 500 MHz (27°C). Bacterial product (strain: <i>B. megaterium</i>) <i>d</i> , CH ₃ <i>m</i> , CH <i>m</i> , CH ₂	1.27 5.26 2.45–2.65	(9)
$\begin{array}{ccc} \text{Spin-spin coupling constant} \\ & H_A & CH_{X_3} \\ & -C-C-C-C-O- \\ & O & H_B & H_M \end{array}$	Hz	Solution state: 2.0 (w/v)% polymer solution in CDCl ₃ , 500 MHz (27°C). Bacterial product (strain: <i>B. megaterium</i>) JAB JAM JBM JMX	-15.5 5.7 7.3 6.4	(9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
¹³ C chemical shift	ppm	Bacterial product (strain: <i>A. eutrophus</i> , 100% isotactic). Solution state: 2.0 (w/v)% polymer		(10)
		solution in CDCl ₃ , 125.7 MHz (27°C).	10.0	
		CH ₃	19.8	
		CH_2	40.8	
		CH	67.6	
		C=0	169.2	(10)
		Solid state: CP/DD/MAS 67.8 Hz	24.2	(10)
		CH ₃	21.3	
		CH_2	42.8	
		CH	68.4	
		C=O	169.8	
		Solution state: 3–5 (w/v)% polymer solution in CDCl ₃ , 125 MHz (room temperature)		(11)
		Isotactic (88% dyad), C=O	169.10	
		Syndiotactic (66% dyad), C=O	169.09, 169.11, 169.20, 169.22	
		Solid state: CP/MAS, 75.3 MHz		(12)
		Isotactic		
		CH_3	21.3	
		CH_2	42.9	
		CH	68.5	
		C=O	170.2	
		Syndiotactic		
		CH ₃	20.4	
		CH_2	40.7	
		CH	68.7	
		C=O	170.7	
Common solvents	_	Soluble in:	.1 1	(10)
		Chloroform, trichloroethylene, 2,2,2-trifluoro dimethylformamide, ethylacetoacetate, tric glacial acetic acid, 0.5 N aqueous phenol, N N-hyamine hydroxide (NH ₄ OH)	olein, comphor,	(13)
		Methylene chloride		(14)
		1,1,2,2-Tetrachloroethane		(15)
		Triacetin (glycerol triacetate) (110°C)		(16)
		Dichloroacetic acid		(17)
		Propylene carbonate, 1,2-dichloroethane		(4)
		Partially soluble in:		(1)
		Dioxane, toluene, octanol, pyridine		(13)
		Benzene, xylene, aniline, oleic acid dibutypht	halate	(18)
Nonsolvents	_	n-Hexane, carbon tetrachloride, acetone*, ethyl methanol, ethanol, water, dilute mineral acid hypochlorite		(13)
		Isopropanol, <i>n</i> -butanol, methylal, glycerides		(18)

Dalvi	h	رس لم	~~~	hut	rate)
POIV	ш	/ur	JXV	DUL	/rate)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solubility parameter	(MPa) ^{1/2}	Calculated using Hoy's group contributions of molar attraction constant	19.2	(19)
Solubility parameter of solvent	$(MPa)^{1/2}$	Soluble in:		(20)
J 1	,	Chloroform	19.0	` '
		Trichloroethylene	18.8	
		2,2,2-Trifluoroethanol [†]	22.2	
		Dimethylformamide	24.8	
		Ethylacetoacetate	17.7	
		Triolein [†]	18.5	
		Camphor [†]	15.2	
		Glacial acetic acid	20.7	
		Methylene chloride	19.8	
		1,1,2,2-Tetrachloroethane	19.8	
		Triacetin [†]	19.4	
		Dichloroacetic acid	22.5	
		Propylene carbonate	27.2	
		1,2-Dichloroethane	20.1	
		Partially soluble in:		(20)
		Dioxane	20.5	
		Toluene	18.2	
		Octanol	21.1	
		Pyridine	21.9	
		Benzene	18.8	
		Xylene	18.0	
		Aniline	21.1	
		Oleic acid [†]	17.2	
		Dibutylphthalate	19.0	
Solubility parameter of	$(MPa)^{1/2}$	n-Hexane	14.9	(20)
nonsolvent	,	Carbon tetrachloride	17.6	` '
		Acetone	20.3	
		Ethyl Acetate	18.6	
		Diethyl ether	15.1	
		Methanol	29.7	
		Ethanol	26.0	
		Isopropanol	23.5	
		n-Butanol	23.3	
		Methylal [†]	17.4	
Interaction parameter χ	_	Chloroform, 30° C, $M_{\rm n}=127,000$	0.361	(21)

^{*}Acetone is a solvent for amorphous PHB.

[†]Solubility parameters calculated from Klevelen and Hoftyzer's group contributions of solubility parameter components in reference (19).

Second virial coefficient A_2

	Light scattering in trifluoroethanol, 25°C	Osmotic pressure in chloroform, 35°C	
$\textit{M}_{n}\times 10^{-4}$	$A_2 \times 10^4 \text{ (mol cm}^3 \text{ g}^{-2}\text{)}$	$A_2 \times 10^4 \text{ (mol cm}^3 \text{ g}^{-2}\text{)}$	Reference
910 ± 20	6.20 ± 0.2	_	(22)
761 ± 30	6.28 ± 0.2	_	(22)
667 ± 20	6.38 ± 0.2	_	(22)
590 ± 10	6.52 ± 0.2	_	(22)
380 ± 10	6.88 ± 0.2	_	(22)
335 ± 5	7.12 ± 0.2	_	(22)
252 ± 5	8.06 ± 0.2	_	(22)
183 ± 2	8.24 ± 0.2	_	(22)
120 ± 1	9.56 ± 0.1	_	(22)
77.9 ± 1	10.2 ± 0.1	_	(22)
63.0	10.6	6.07	(5)
53.3	10.6	8.40	(5)
37.4	12.4	8.72	(5)
23.6	13.5	9.34	(5)
22.9	12.9	10.3	(5)
11.5	16.4	12.5	(5)

Mark-Houwink-Sakurada parameters $[\eta] = K \; (M_{\rm w})^a$

Solvent	Temp. (°C)	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	а	Reference
Chloroform	30	7.7	0.82	(17)
	30	11.8	0.78	(5)
	30	16.6	0.76	(5)
Trifluoroethanol	30	25.1	0.74	(23)
	25	12.5	0.80	(5)
	25	22.2	0.76	(24)
	30	17.5	0.78	(24)
1,2-Dichloroethane	30	9.18	0.78	(5)
	30	16.8	0.74	(24)
n-Butyl chloride	13 (θ)	100	0.5	(24)
1-Chloronaphthalene	40	39.6	0.62	(24)

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Huggins constant k'	_	Solvent	Temp. (°C)	$M_{\rm n}$		
		Chloroform	30	138,000	0.42	(17)
		Chloroform	30	127,000	0.35	(17)
		Chloroform	30	85,000	0.49	(17)
		Chloroform	30	66,000	0.65	(17)
		Chloroform	30	36,000	0.35	(17)
		Chloroform	30	31,700	0.44	(17)
		Chloroform	30	31,360	0.50	(17)
		Chloroform	30	20,400	0.63	(17)
		Chloroform-d	_	400,000	0.478	(15)
		Tetrachloro- ethane- <i>d</i>	_	400,000	1.72	(15)
Radius of gyration $\langle S^2 \rangle^{1/2}$	Å	Light scattering $M_{\rm w} \times 10^{-4}$, trifluoroethar	nol, 25°C		(22)
\5 /		910 ± 20			$2,560 \pm 50$	
		761 ± 30			$2,300 \pm 50$ $2,320 \pm 50$	
		667 ± 20			$2,140 \pm 50$	
		590 ± 10			$1,980 \pm 20$	
			434 ± 20			
		380 ± 10			$1,710 \pm 50$ $1,490 \pm 20$	
		335 ± 5			$1,387 \pm 20$	
		252 ± 5			$1{,}191\pm20$	
		183 ± 2			952 ± 15	
		120 ± 1			769 ± 5	
		77.9 ± 1			586 ± 10	
		51.0 ± 0.5			431 ± 5	
Flory viscosity	$10^{-21} mol^{-1}$	Calculated data	from $M_{\rm w}$, $[\eta]$,	and $\langle S^2 \rangle$		(5)
constant Φ		$M_{ m w} imes 10^{-4}$				
		339			1.95	
		164			1.94	
		135			1.80	
		85.7			2.24	
		63.0			2.01	
		53.3			2.18	
		37.4			2.10	
		23.6			1.99	
		22.9 11.5			1.74 1.61	
Total	$10^{-13} \mathrm{s}^{-1}$	14				(17)
Intrinsic sedimentation S°	10 S	$M_{\rm w} = 780,000$			O OF	(17)
seamentation S		370,000			-9.95 8 16	
					-8.16	
		156,000			-4.96	
		83,500 21,100			-3.50 2.00	
		21,100			-2.00	

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Degree of	%	Purification	Drying	Annealing		
crystallinity		Enzyme Enzyme Hypochlorite Solution precipitation	Spray-dry Spray-dry Freeze-dry Vacuum	None 120°C, 48 h None 160°C, 24 h	70 80 30 86	(25) (25) (25) (26)
Lattice	_	Isotactic, α form			Orthorhombic	(8)
Space group	_	Isotactic, α form			P2 ₁ 2 ₁ 2 ₁	(8)

	Cell dimension (A)			Packing energy (Kcal mol ⁻¹)*			Torsional angle summary				
Form	а	b	с	v. der W.	C.E.	Total	$\overline{-[CH(CH_3)\!-\!CH_2\!-\!C(O)\!-\!O]_{n}}-$			Reference	
α	5.76	13.20	5.96	-28.7	-13.5	-42.2	142	-57	-31	180	(27)
α	5.76	13.20	5.96	-28.5	-14.7	-43.2	152	-52	-42	-175	(28)
α	5.73	13.14	5.93	-29.1	-47.4	-76.5	149	-59	-35	-173	(29)
β	_	_	4.6	_	_	_	112	-179	-110	174	(30)

^{*}Packing energies calculated in a Dreiding II force field (Cerius² from Molecular Simulation, Inc.)

PROPERTY	UNITS	CONDITIONS	5	VALUE	REFERENCE
Heat of fusion ΔH	kJ mol ⁻¹		allinity, DSC (differential g calorimetry)	12.5	(26)
Density	$g\mathrm{cm}^{-3}$		us (extrapolation data from volumes)	1.177	(26)
	Crystalline (calculated data from cry lattice parameters)		`	1.262	(8)
		Sample	Pretreatment		
		Film	None	1.232	(21)
		Film	Hot-stretched	1.250	(21)
Glass transition	K	Amorpho	us PHB		
temperature $T_{\rm g}$		Dilatom	netry	269-274	(26)
- 0		Dynami	ic mechanical measurement	268-278	(26)
		3 mol% 3H	HV	281	(31)
		9 mol% 3F	⊣V	279	(31)
		14 mol% 3		277	(31)
		20 mol% 3	BHV	272	(31)
		25 mol% 3	BHV	267	(31)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting temperature $T_{\rm m}$ (optical observation)		3 mol% 3HV 9 mol% 3HV 14 mol% 3HV 20 mol% 3HV 25 mol% 3HV M _n Method 85,500 Osmotic pressure 52,400 Osmotic pressure 42,000 Osmotic pressure 31,360 Osmotic pressure 20,400 Osmotic pressure 20,400 Osmotic pressure 15,100 Osmotic pressure 15,100 Osmotic pressure 4,970 Osmotic pressure 1,870 Osmotic pressure 688 Chromatography 602 Chromatography 516 Chromatography 430 Chromatography 344 Chromatography	443 435 423 418 410 453 453 453 447 444 443 438 419 387 374 362 354 338 320	(31)
Equilibrium melting point of infinite crystal $T_{\rm m}{}^{\circ}$	K	Calculated data from fitting of crystalline growth rate to Hoffman's theory	470 ± 2	(26)
Tensile modulus	MPa	_	1,400-2,200	(33)
Tensile strength	MPa	– Cold-rolling treatment 10 mol% 3HV 20 mol% 3HV	40 60 25 20	(31, 34, 35) (33) (36) (36)
Flexural modulus	MPa	_ _ 10 mol% 3HV 20 mol% 3HV	4,000 3,500 1,200 800	(35) (36) (36) (36)
Young's modulus	MPa	– Biaxially drawn film 3 mol% 3HV 9 mol% 3HV 14 mol% 3HV 20 mol% 3HV 25 mol% 3HV	3,500 4,000 2,900 1,900 1,500 1,200 700	(31)
Extension at break	%	– – Biaxially drawn film 10 mol% 3HV 20 mol% 3HV	6 6 ~ 8 8 75 20 50	(31, 35) (34) (36) (31) (36) (36)

				Poly(hydi	oxybutyrate)
PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Stress at break	MPa	Biaxially drawn film		100	(31)
Breaking strain	%	Cold-rolling treatment		130	(33)
Notched Izod impact strength	$\mathrm{J}\mathrm{m}^{-1}$	- 3 mol% 3HV 9 mol% 3HV 14 mol% 3HV 20 mol% 3HV 25 mol% 3HV		35 50 60 95 120 200 400	(37) (31) (31) (31) (31) (31)
Solvent resistance	_	_		Poor	(34, 35)
UV resistance	_	_		Good	(34, 35)
Fold surface free energy $\sigma_{\rm e}$	$\mathrm{mJ}\mathrm{m}^{-2}$	Calculated data from plot of $T_{\rm m}$ of inverse lamellar thickness	as function	38 ± 6	(26)
Specific rotation $[\alpha]^{30}$	Degree	Solvent	λ (nm)		
		Chloroform (room temp.) Ethylene dichloride (at 25°C) Dimethyl formamide (at 60°C) Trifluoroethanol Dichloroacetic acid 2-Chloroethanol	350 589 350 589 350 589 350 589 350 589 350 589	11 -2 21 0 16 -3 28 0 80 14 33 2	(38) (38) (5) (5) (5) (5) (5) (5) (5) (5)
Oxygen permeability coefficient	m ³ (STP)	$m s^{-1} m^{-2} Pa^{-1}$		2.1	(31, 34)

$Pyrolysis^{(39)}$

Degradation	$\emph{M}_{n} imes 10^{-3} \; (\emph{M}_{w}/\emph{M}_{n})$						Rate constant (k _d)
temperature (°C)	0 min.	1 min.	2 min.	5 min.	10 min.	20 min.	
175	546 (2.1)	505 (2.2)	417 (2.2)	_	_	146 (1.9)	$2.2 \pm 0.5 \times 10^{-5}$
180	477 (2.2)	432 (2.0)	434 (1.8)	312 (2.0)	169 (2.0)	93 (2.1)	$3.8 \pm 0.1 \times 10^{-5}$
190	402 (2.1)	192 (2.9)	136 (3.3)	_ ` ´	52 (2.4)	_ ` ´	$1.4 \pm 0.1 \times 10^{-4}$
200	282 (2.0)	121 (2.2)	121 (2.2)	37 (2.4)	_ ` ´	7 (3.9)	$6.2 \pm 0.5 \times 10^{-4}$

Poly(hydroxybutyrate)

PROPERTY	UNITS	CONDITIONS	VA	ALUE	REFERENC
Activation energy of random chain session	kJ mol ⁻¹	Calculated from Arrhenius plot for rate constant k_d . Temperature range: 170–200°C		2 ± 10	(39)
Biodegradability of PHB single crystals			bated with <i>P. lemoig</i> racellular depolyme		(40)
Sample (% isotactic dyads)	$M_{\rm w}$ (g ml ⁻¹)	Heat of fusion (J g ⁻¹)	Degradation time (h)	Weight loss (9	%)
100	500,000	85	50	100	<u> </u>
79	130,000	51	890	64	
55	9,500	14	730	84	

$Biodegradation^{*(41)}$

34

Environment	Temperature (°C)	Degradation time (weeks)
Sea water	15	350
Soil	25	75
Aerobic sewage	_	60
Anaerobic sewage	_	6

2.700

30

REFERENCES

- 1. Zang, Y., R. A. Gross, and R. W. Lenz. Macromolecules 23 (1990): 3,206.
- 2. Hori, Y., Y. Takahashi, A. Yamaguchi, and T. Hagiwara. Can. J. Microbiol. 41 (1995): 282.

890

45

- 3. Hocking, P. J., and R. H. Marchessault. Polym. Bull. 30 (1994): 163.
- 4. Doi, Y. Microbial Polyesters. VCH, New York, 1990.
- 5. Akita, S., Y. Einaga, Y. Miyaki, and H. Fujita. Macromolecules 9 (1976): 774.
- 6. Gerngross, T. U., and D. P. Martin. Proc. Natl. Acad. Sci. USA 92 (1995): 6,279.
- 7. Nobes, G. A. R., P. J. Kazlauskas, and R. H. Marchessault. Macromolecules 29 (1996): 4,829.
- 8. Okamura, K., and R. H. Marchessault. In *Conformation of Biopolymers*, Vol. 2, edited by G. N. Ramachandran. Academic Press, New York, 1967, p. 709.
- 9. Doi, Y., M. Kunioka, Y. Nakamura, and K. Koga. Macromolecules 19 (1986): 1,274.
- 10. Doi, Y., M. Kunioka, Y. Nakamura, and K. Koga. Macromol. Chem., Rapid Commun. 7 (1986): 661.
- 11. Hocking, P. J., and R. H. Marchessault. Macromolecules 28 (1995): 6,401.
- Hocking, P. J. Characterization and Enzymatic Degradation of Poly[(R,S)-β-hydrobutyrate] of Varied Tacticities. Doctoral thesis, McGill University, Montreal, Quebec, Canada, 1995.
- 13. Dawes, E. A., and P. J. Senior. Adv. Microb. Physiol. 10 (1973): 203.
- 14. Schlegle, H. G., G. Gottschalk, and R. von Bartha. Nature 191 (1961): 463.
- 15. Nedea, M. E., F. G. Morin, and R. H. Marchessault. Macromolecules 22 (1989): 4,208.
- 16. Lauzzier, C., and R. H. Marchessault. Polymer 33 (1992): 823.
- 17. Marchessault, R. H., K. Okamura, and C. J. Su. Macromolecules 3 (1970): 735.
- 18. Kepes, A., and C. Peaud Lenoel. Bull Soc. Chim. Biol. 34 (1952): 563.
- 19. van Krevelen, D. W., and P. J. Hoftyzer. *Properties of Polymers: Their Estimation and Correlation with Chemical Structure*. Elsevier, Amsterdam, 1976.
- Gruke, E. A. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989.

^{*}All 1-mm thick samples.

- 21. Okamura, K. *X-Ray Structure and Morphology of Poly(β-Hydroxybutyrate)*. Master of Science thesis, State University of New York, College of Forestry, Syracuse, New York, 1965.
- 22. Akita, S., Y. Einaga, Y. Miyaki, and H. Fujita. Macromolecules 10 (1977): 1,356.
- 23. Cornibert, J., R. H. Marchessault, H. Benoit, and G. Weill. Macromolecules 3 (1970): 741.
- 24. Hirose, T., Y. Einaga, and H. Fujita. Polym. J. 11 (1979): 819.
- 25. Lauzier, C., J. F. Revol, E. M. Debzi, and R. H. Marchessault. Polymer 35 (1994): 4,156.
- 26. Barham, P. J., A. Keller, E. L. Otun, and P. A. Holmes. J. Mater. Sci. 19 (1984): 2,781.
- 27. Cornibert, J., and R. H. Marchessault. J. Mol. Biol. 71 (1972): 735.
- 28. Yokouchi, M., et al. Polymer 14 (1973): 267.
- 29. Bruckner, S., et al. Macromolecules 21 (1988): 967.
- 30. Orts, W. J., R. H. Marchessault, T. L. Bluhm, and G. K. Hamer. *Macromolecules* 23 (1990): 5.368.
- 31. Holmes, F. A. In *Developments in Crystalline Polymers*, Vol. 2, edited by D. C. Basset. Elsevier, London, 1988, pp. 1–65.
- 32. Marchessault, R. H., et al. Can. J. Chem. 59 (1981): 38.
- 33. Barham, P. J., and A. Keller. J. Polym. Sci. Polm. Phys. Ed. 24 (1986): 69.
- 34. Brandle, H., R. A. Gross, R. W. Lenz, and R. C. Fuller. Adv. Biochem. Eng. Biotechnol. 41 (1990): 77.
- 35. Howells, E. R. Chem. Ind. 15 (1982): 508.
- 36. Liddell, J. M. Spec. Publ. R. Soc. Chem. (Chem. Ind. Friend. Environ.) 103 (1992): 10.
- 37. Byrom, D. In Plast. Microbes, edited by D. P. Mobley. Hanser, Munich, 1994, p. 5.
- 38. Alper, R., D. G. Lundgren, R. H. Marchessault, and W. Core. Biopolymers 1 (1963): 545.
- 39. Kunioka, M., and Y. Doi. Macromolecules 23 (1990): 1,933.
- 40. Hocking, P. J., et al. J. Macro. Sci. A32 (1995): 889.
- 41. Winton, J. M. Chem. Week 28 (1985): 55.

Poly(2-hydroxyethyl methacrylate)

NICHOLAS A. PEPPAS

ACRONYM, TRADE NAME PHEMA, Hydron

CLASS Vinylidene polymers

STRUCTURE
$$\begin{array}{c} CH_3 \\ -\{CH_2-CH\}-\\ C=O \\ O \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ OH \end{array}$$

MAJOR APPLICATIONS Contact lenses, drug delivery systems, biomedical applications, chromatographic columns, flocculating agents.

PROPERTIES OF SPECIAL INTEREST Hydrophilicity. Good swelling in water and electrolytic solutions.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature	K	Isotactic	308	(1)
-		Atactic	328	(2)
		Atactic	359	(3)
		Atactic	363	(4)
		Atactic	371	(5)
		Atactic	373	(6)
		Syndiotactic	382	(1)
		As a function of cross-linking ratio	388-399	(7)
Polymer-water interaction	_	_	$0.32 + 0.904v_2$	(8)
parameter χ_1			0.77-0.83	(9)
Water equilibrium volume fraction v_2	_	Swelling	0.40 0.421	(2, 10) (11)
rraction \mathcal{O}_2			0.395-0.431	(12, 13)
Water diffusion coefficient	$\mathrm{cm}^2\mathrm{s}^{-1}$	Diffusion at 7°C	2.17×10^{-6}	(14)
		Diffusion at 23°C	3.46×10^{-6}	(14)
		Diffusion at 34°C	4.78×10^{-6}	(14)

Poly(2-hydroxyethyl methacrylate)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Water self diffusion coefficient	$\mathrm{cm}^2\mathrm{s}^{-1}$	_	$0.59 - 5.37 \times 10^{-6}$	(15)
Ion diffusion coefficient	$\mathrm{cm}^2\mathrm{s}^{-1}$	KF at 37° C KCl at 37° C KBr at 37° C KI at 37° C KHCO ₃ at 37° C K ₂ O ₄ at 37° C KNO ₃ at 37° C K ₂ CO ₃ at 37° C	1.04×10^{-6} 1.34×10^{-6} 1.42×10^{-6} 1.56×10^{-6} 8.1×10^{-7} 4.1×10^{-7} 1.5×10^{-6} 8×10^{-7}	(16)
Linear expansion coefficient $\alpha_{\rm g}$	K^{-1}	Solid	3.7×10^{-4}	(17)
Storage modulus G' (sheer)	MPa	From −20 to 160°C	1.03-2.01	(18)
Swelling rate \dot{v}	h^{-1}	As a function of 0–1 wt% cross-linking agent	7–13.3	(19)

REFERENCES

- 1. Sung, Y. K., D. E. Gregonis, G. A. Russell, and J. D. Andrade. Polymer 19 (1996): 1,362.
- 2. Franson, N. M., and N. A. Peppas. J. Appl. Polym. Sci. 28 (1983): 1,299.
- 3. Shen, M. C., J. D. Strong, and F. J. Matusik. J. Macromol. Sci. B1 (1967): 15.
- 4. Ilavsky, M., and W. Prins. Macromolecules 3 (1970): 415.
- 5. Ilavský, M., and J. Haša. Coll. Czech. Chem. Commun. 33 (1968): 2,142.
- 6. Kolařik, J. and J. Janaček. J. Polym. Sci., A2 10 (1972): 11.
- 7. Roorda, W. E., J. A. Bouwstra, M. A. de Vries, and H. E. Junginger. Pharm. Res. 5 (1988): 722.
- 8. Janaček, J., and J. Hasa. Coll. Czech. Chem. Commun. 31 (1966): 2,186.
- 9. Shen, M. C., and A. V. Tobolsky. J. Polym. Sci., A2, 2 (1964): 2,513.
- 10. Rosenberg, M., P. Bartl, and J. Lesko. J. Ultrastruct. Res. 4 (1960): 298.
- 11. Allen, L. Polym. Prepr. 15 (1974): 395.
- 12. Ratner, B. D., and A. S. Hoffman. In *Hydrogels for Medical and Related Applications*, edited by J. D. Andrade. ACS Symposium Series, Vol. 31, 1. American Chemical Society, Washington, DC, 1976.
- 13. Roorda, W.E., J. A. Bouwstra, M. A. de Vries, and H. E. Junginger. Biomaterials 2 (1988): 494.
- 14. Wisniewski, S., and S. W. Kim. J. Membr. Sci. 6 (1980): 309.
- 15. Peschier, L. J. C., et al. Biomaterials 14 (1993): 945.
- 16. Hamilton, C. J., S. M. Murphy, N. D. Atherton, and B. J. Tighe. *Polymer* 29 (1988): 1,879.
- 17. Moynihan, H. J., M. S. Honey, and H. A. Peppas. Polym. Eng. Sci. 26 (1986): 1,180.
- 18. Wilson, T. W., and D. T. Turner. Macromolecules 21 (1988): 1,184.
- 19. Wood, J. M., D. Attwood, and J. H. Collett. Intern. J. Pharmac. 7 (1981): 189.

GARY W. VER STRATE AND DAVID J. LOHSE

ACRONYMS PIB, IIR (isobutylene isoprene rubber), CIIIR (chlorinated IIR), BrIIR (brominated IIR) $^{(1,2)}$

CLASS Vinylidine polymers (IIR and halogenated derivatives are olefin-containing elastomers)

PROPERTIES OF SPECIAL INTEREST High bulk density $(0.917\,\mathrm{g\,cm}^{-3}$ at $20^{\circ}\mathrm{C}$ for PIB and IIR) for an amorphous elastomer, which leads to low gas permeability and high hysteresis at a given temperature. The introduction of a mole percent of olefin or halogen dramatically changes chemical reactivity but not physical properties. $^{(2,3)}$

PREPARATIVE TECHNIQUES Type of polymerization: cationic, Lewis acids (e.g., $AlCl_3/H_2O$), $-80^{\circ}C^{(2,4)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Ceiling temperature	K	CO ₂ at 139 bar	361	(5)
Typical comonomers		ramethyl styrene, halogen is introd ation process	uced in a post	(2)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	Isobutene	56	(2)
Tacticity (stereoregularity)		ble, backbone symetrically disubstit below 20°C or under stress (see be		
Head-to-head contents	_	Negligible	_	(2, 6)
Degree of branching	branched	branching is negligible except for ir commercially made products (e.g., con Chemical)		(2)
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	As dispersants, As elastomers In blends, viscosity modifiers, chewing gum	$500-5,000$ $1-6 (\times 10^5)$ $5 \times 10^3 - 6 \times 10^6$	(2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Typical polydispersity index $(M_{\rm w}/M_{\rm n})$	_	-	2.0-4.0	(2, 4)	
IR (characteristic absorption frequencies)	cm^{-1}	Ambient, film, doublet	922; 948; also 1,225; 1,365; 1,385; 1,470	(7)	
UV (characteristic absorption frequencies)	nm	Ambient, THF, hexane, broad centered at:	<200	(8)	
NMR (compositional analysis)	¹³ C and ¹ H N	¹³ C and ¹ H NMR (see reference for detailed peak assignments)			
Thermal expansion coefficients	K^{-1}	1 atm, 27° C $(1/V)(dV/dT)_P$	5.5×10^{-4}	(12)	
Compressibility coefficients	bar ⁻¹	$(1/V)(dV/dP)_T$	4.8×10^{9}	(12)	
Reducing temperature T^*	K	150-250°C, 10-200 MPa	7,693	(12)	
Reducing pressure P^*	$\rm Jcm^{-3}$	150-250°C, 10-200 MPa	469	(12)	
Reducing volume V^*	$\mathrm{cm}^3\mathrm{g}^{-1}$	150-250°C, 10-200 MPa	0.959	(12)	
Density (amorphous)	$g\mathrm{cm}^{-3}$	1 atm, no halogen	$0.917(1 - 30/M_n)$	(13)	
Solvents		d aliphatic hydrocarbons, lubric ntaining liquids	cating oils, nonpolar	(2, 14)	
Nonsolvents		unds, organic acids, ketones, al mber, methyl chloride	cohols with low	(2, 14)	
Solubility parameter	$(MPa)^{1/2}$	1 atm, 20°C	16.5	(15)	
Theta temperature Θ	K	Toluene Ethyl hexanoate Benzene	260 330 296	(14, 16) (14, 17) (14, 17–19)	
Interaction parameter χ	_	Cyclohexane, 25°C	0.44	(20)	
Second virial coefficient A_2	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	Cyclohexane, 23°C	$(6.9 \times 10^3) M_{\rm w}^{0.2}$	(19)	
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Cyclohexane, 25°C)	K = 0.0135, a = 0.74	(19)	
		Benzene, 25°C	K = 0.10, a = 0.504		
Huggins constant k'	_	Cyclohexane, 25°C	$0.233M_{\rm w}^{0.095}$	(19)	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio $\langle r^2 \rangle_0/nl^2$	_	SANS, bulk polymer Benzene, 24°C	6.9 6.6	(21) (14)
Space group	_	Orthorhombic	$P2_12_12_1$	(22)
Chain conformation $(\rho_n \text{ of helix})$	-	-	2*8/3	(22)
Unit cell dimensions	Å	20°C, 1 atm	a = 6.94 b = 11.96 c = 18.63	(22)
Number of repeat units	_	_	16	(22)
Heat of fusion	$\operatorname{cal} g^{-1}$	At the melting temperature, 1 atm	52	(22)
Density (crystalline)	$g\mathrm{cm}^{-3}$	1 atm, 20°C	0.964	(22)
Glass transition temperature	K	1 atm, DSC	202, 208	(2, 14, 23)
Melting point	K	1 atm, depends on annealing conditions	275 317	(2, 14) (22)
Mesomeric transition temperatures	None of signif	icance		
Sub- T_g transition temperatures	None of signif	icance, but see reference; $T_{ m g}$ behavi	or is complex	(24)
Heat capacity, $C_p = (dH/dT)_P$	$kJK^{-1}mol^{-1}$	1 atm, 27°C	0.110	(14, 25)
Deflection temperature	K	_	<210	_
Polymers with which miscible	Butene, LCST	ne copolymers from 52 to 78 wt% from 25 to 120°C polypropylene, LCST = 180°C		(12)
Tensile modulus	MPa	Depends on compounding ingredients, temperature, strain rate	0.5–50	(26)
Bulk modulus	MPa	Depends on compounding ingredients, temperature, strain rate	2,000	(14)
Shear modulus	MPa	Depends on compounding ingredients, temperature, strain rate	0.3–20	(14, 26)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Storage modulus	MPa	Depends on compounding ingredients, temperature, strain rate	0.3	(14, 23, 27, 28)
Loss modulus, $\tan\delta$	-	1 atm, 20°C, 1 Hz, uncross- linked, high molecular weight	0.3	(14, 23)
Tensile strength	MPa	Depends on compounding ingredients, temperature, strain rate	0.5–50	(26)
Maximum extensibility $(L/L_0)_r$	-	Depends on compounding ingredients, temperature, strain rate	8	(26)
Hardness	Shore A	Depends on compounding ingredients, temperature, strain rate	5–100	(27, 28)
Poisson's ratio	_	20°C	0.49	(14)
Plateau modulus	MPa	75 and 250°C, high M	0.032	(23)
Entanglement molecular weight	$g \text{mol}^{-1}$	75 and 250°C	7,100	(23)
WLF parameters: C_1 and C_2	$C_1 = \text{None}$ $C_2 = K$	Uncross-linked PIB	$C_1 = 7.5$ $C_2 = 190$	(23)
Index of refraction n	None	1 atm, 25°C, $n_{\rm D}$	1.5092-13.9/M _n	(13)
Refractive index increment dn/dc	$ml g^{-1}$	1 atm, THF, 27°C	$0.115 (1 - 22/M_{\rm n})$	(13)
Dielectric constant ε'	_	1 atm, 20°C, 1 kHz	2.4	(14, 29)
Dielectric loss ε''	_	1 atm 20°C, 1 kHz	0.003	(14, 29)
Segment anisotropy	$10^{25}\mathrm{cm}^3$	Benzene, xylene	45-59	(14, 30)
Electronic conductivity	$(ohm cm)^{-1}$	20°C, gum vulcanizate	10^{-14}	(25, 31)
Resistivity	log R, ohms	20°C, depends on carbon black, all 0.2 volume fraction	1.6-11.0	(31, 32)
Stress-optical coefficient	-	Data for a range of conditions	_	(24, 27)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Surface tension	$\rm mNm^{-1}$	1 atm, 20°C 150°C	33.6 25.3	(14)	
Interfacial tension	$\rm nMm^{-1}$	With PDMS, 20°C With PVA	4.0	(33) (34)	
		20°C	9.9	()	
		100°C	8.3		
Permeability coefficient	[m ³][cm]	H ₂ , 250°C	5.43×10^{-17}	(35, 36)	
remeability coefficient	$[S][m^2][Pa]$	He, 25°C	6.37×10^{-17}	(33, 30)	
		N ₂ , 25°C	0.243×10^{-17}		
	_	Miscellaneous organic	0.243 × 10	(37, 38)	
		solvents		(07,00)	
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	1 atm, 20°C, gum	0.13	(25, 39)	
		vulcanizate		(==, ==,	
		50 phr carbon black	0.23		
Melt viscosity	poise	Newtonian, 25°C	$(4.3 \times 10^7)[\eta]^{4.66}$ $(4.7 \times 10^{-11})M^{3.43}$	(23)	
		Newtonian, 175°C	$(2.14 \times 10^4)[\eta]^{4.74}$ [η] in cyclohexane at 25°C		
Coefficient of sliding friction μ	_	20°C, compounded vulcanizate, sliding on emery paper at	1.6	(40)	
		10^{-1} to 10^3 cm s ⁻¹			
Pyrolyzability, nature of product	Pure PIB is com	pletely combustible		(41)	
Biodegradability, effective microorganisms	Inert				
Maximum use temperature	Up to 150°C con compounding	tinuous service (see manut information)	acturers for	(41)	
Decomposition temperature	50% volatile for	30 min at 320°C		(41)	
Cross-linking, quantum yield	radicals or wit	PIB or IIR cross-link very poorly with chemically generated radicals or with radiation, these processes are not used commercially for those rubbers but see Cl, Br IIR below			
Scission		25°C, γ radiation, PIB			
G(s) factor	$mol J^{-1}$	-, ,	6.2×10^{-5}	(42)	
G(x)	events/100 eV		4	(14)	
()	adsorbed			` /	

⁶⁰ Co irradiation at 77 K	Radicals	Cross-linking	Scission	Gas	Reference
	G (R)	G (x)	G (s)	G(isobutene)	
PIB	2.3	0.0	3.7	0.62	(10)
Cliir	4.3	3.6	1.7	0.03	(10)
BrIIR	3.7	3.7	0.44	0.03	(10)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Water absorption	ppm	Pure polymer, 20°C, total immersion, compounding increases	<200	(36)
Cost	US $\$$ kg $^{-1}$	_	2.2	_
Availability	_	_	ktons	_
Suppliers	_	_	Exxon; Bayer	_

REFERENCES

- D1418-94 Rubber and Rubber Latices: Nomenclature. American Society for Testing and Materials, Philadelphia.
- 2. Kresge, E., R. Schatz, and H.-C. Wang. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1987, vol. 8.
- 3. Boyd, R. H., and P. V. K. Pant. Macromolecules 24 (1991): 6,325.
- 4. Odian, G. Principles of Polymerization. John Wiley and Sons, New York, 1991.
- 5. Deak, G., T. Pernecker, and J. P. Kennedy. Polym. Bull. 33 (1994): 259.
- 6. Malanga, M., and O. Vogl. Polym. Bull 7 (1983): 236.
- 7. Hummel/Scholl, D. Atlas of Polymer and Plastics Analysis, 2d ed. C. Hauser Verlag, Germany, 1978, vol. 1, p. 25.
- 8. DePierri, W., Exxon Chemical Co., Baton Rouge. Personal communication.
- 9. Chu, C. Y., K. N. Watson, and R. Vokov. Rubber Chem. and Tech. 60 (1987): 636.
- 10. Hill, D. J. T., et al. Polymer 36 (1995): 4,185.
- 11. Cheng, D. M., et al. Rubber Chem. and Tech. 63 (1990): 265.
- 12. Krishnamoorti, R., et al. *Macromolecules* 28 (1995): 1,252–1,259.
- 13. Chance, R., et al. Int. J. Polymer Analysis and Characterization 1 (1995): 3-34.
- Brandrup, J., and E. Immergut, eds. *Polymer Handbook*, 3d. ed. John Wiley and Sons, New York, 1989, VI, p. 413, #26.
- 15. Olabisi, O., L. Robeson, and M. Shaw. *Polymer–Polymer Miscibility*. Academic Press, New York, 1979, p. 54.
- 16. Fox, T., and P. J. Flory. J. Am. Chem. Soc. 73 (1951): 1,909.
- 17. Carpenter, D. ACS Preprints 13 (1972): 981.
- 18. Tsuji, T., and H. Fujita. Polymer J. 4 (1973): 409.
- 19. Fetters, L. J., et al. Macromolecules 24 (1991): 3,127.
- 20. Eichinger, B. E., and P. J. Flory. Trans. Faraday Soc. 64 (1968): 2,061.
- 21. Krishnamoorti, R. PhD Thesis. Princeton University, New Jersey.
- 22. Wunderlich, B. Macromolecular Physics, Academic Press, New York, 1973, vol. 1.
- 23. Fetters, L. J., W. W. Graessley, and A. D. Kiss. Macromolecules 24 (1991): 3,136.
- 24. Inoue, T., and K. Osaki. Macromolecules 29 (1996): 1,595.
- 25. Nasr, G. M., et al. Polym. Degradation Stab. 48 (1995): 237.
- 26. Smith, T. L. In Rheology, edited by F. Eirich. Academic Press, New York, 1969, vol. 5.
- 27. Trexler, H. E., and M. C. H. Lee. J. Appl. Polym. Sci. 32 (1986): 3,899.

- 28. Dutta, N. K., and D. K. Tripathy. J. Appl. Polym. Sci. 44 (1992): 1,635.
- 29. Caps, R. N., and J. Burns. J. Non-Cryst. Solids (Part 2) 131 (1991): 877.
- 30. Frisman, E. V., and A. Dadivananyan. J. Polym. Sci. C16 (1967): 1,001.
- 31. Medalia, A. I. Rubber Chem. and Tech., Rubber Reviews 59 (1986): 432.
- 32. Aminabhari, T. M., P. E. Cassidy, and C. M. Thompson. Rubber Chem. and Tech., Rubber Reviews 63 (1990): 451.
- 33. Wagner, M., and B. A. Wolf. Macromolecules 26 (1993): 6,498.
- 34. Wu, S. Polymer Interface and Adhesion. Marcel Dekker, New York, 1982.
- 35. Van Amerongen, G. J. J. Polym. Sci. 5 (1950): 307.
- 36. Crank, J., and G. Park. Diffusion in Polymers. Academic Press, New York, 1968.
- 37. Guo, C. J., D. deKee, and A. Harrison. J. Appl. Polym. Sci. 56 (1995): 823.
- 38. Aminabhari, T. M., Khinnavar, and S. Rajashekhar. Polymer 34 (1993): 4,280.
- Goldsmith, T. E. Waterman, and J. Hirschborn, eds. Handbook of Thermoproperties and Solid Materials. Macmillan, New York, 1961, vol. IV.
- 40. Grosch, K. A., and A. Schallamach. Rubber Chem. and Tech., Rubber Reviews, 49 (1976): 862.
- 41. Fabris, H. J., and J. G. Sommer. Rubber Chem. and Tech. 50 (1977): 523.
- 42. Charlesby, A., and B. J. Bridges. Radiation Phys. Chem. 20 (1982): 359.
- 43. Veith, A. G. Rubber Chem. and Tech., Rubber Reviews 65 (1992): 601.
- 44. Bohm, G. G. A., and J. O. Tveekrem. Rubber Chem. and Tech., Rubber Reviews 55 (1982): 675.
- 45. Medalia, A. I. Rubber Reviews 64 (1991): 481.
- 46. Mark, H. F., et al., eds. *Encyclopedia of Polymer Science and Engineering*, 2nd ed. John Wiley and Sons, New York, 1985, vol. 1, p. 147 (acoustic properties).
- 47. Schuster, R. H., H. M. Issel, and V. Peterseim. Rubber Chem. and Tech. 69 (1996): 769.
- 48. Thompson, C. M., and J. S. Allen. Rubber Chem. and Tech. 62 (1994): 107.
- 49. Cassidy, P. E., T. M. Aminabhavi, and C. M. Thompson. Rubber Chem. and Tech., Rubber Reviews 56 (1983): 594.
- 50. Hess, W. M., C. R. Herd, and P. C. Vegvani. Rubber Chem. and Tech., Rubber Reviews 66 (1993): 329.
- D3958 Rubber-Evaluation of BIIR, CIIR. D3188-91 Rubber-Evaluation of IIR. American Society for Testing and Materials.
- 52. Exxon Chemical Co., Houston.
- 53. See Rubber World, rubber Blue and Red Books issued on a regular basis.
- 54. Gursky, L. J., et al. Kautchuk and Gummi. Kunststoffe 43 (1990): 692.
- 55. Gursky, L. J., et al. Rubber World 41 (1990): 202.

cis-1,4-Polyisoprene

RUZHI ZHANG

ACRONYMS, ALTERNATIVE NAMES, TRADE NAMES cis-PIP, CPI, IR, natural rubber (NR, NK), Hevea, cis-1,4-poly(2-methylbutadiene) (PMBD), Natsyn, Cariflex, Ebonite⁽¹⁻³⁾

CLASS Diene elastomers

STRUCTURE
$$-CH_2$$
 CH_2 $C=C$ CH_3 H

MAJOR APPLICATIONS *cis*-1,4-Polyisoprene is used in tires and tire products, foam rubber, rubber sheeting, rubber bands, hoses, gaskets, belts, molded and mechanical goods, footwear and sporting goods, gloves, sealants, adhesives, bottle nipple, caulking, and other typical elastomer applications.

PROPERTIES OF SPECIAL INTEREST High degree of stereoregularity in structure, presence of the reactive double bonds (unsaturation), strain-induced crystallization, high gum tensile strength, superior building tack, green stock strength, better processing, high strength in nonblack formulations, hot tear resistance, retention of strength at elevated temperatures, high resilience, low hysteresis (heat build-up), excellent dynamic properties, and general fatigue resistance.

NATURAL SOURCES Natural rubber occurs in over 200 species of plants. However, only one tree source, *Hevea Brasiliensis*, is of commercial importance, and it accounts for over 99 percent of the world's natural rubber production. (4–5)

PREPARATIVE METHODS *cis*-1,4-Polyisoprene is made by coordination, anionic, free-radical, or cationic polymerization of isoprene through the use of coordination catalysts, alkali metal catalysts, Alfin catalysts, organoalkani catalysts, or conventional Lewis acids. ⁽⁶⁾

CHEMICAL MODIFICATION The following chemical modifications of *cis-*1,4-polyisoprene are employed as a convenient way of altering physical and mechanical properties: hydrohalogenation, halogenation, oxidation, ozonolysis, hydrogenation, carbene addition, cyclization. ⁽⁶⁾

Typical composition (%) of natural rubber latex $^{(7,8)}$

Total solid content	36
Dry rubber content	33
Proteineous substances	1-1.5
Resinous substances	1-2.5
Ash	< 1
Sugars	1
Water	60

cis-1,4-Polyisoprene

Physical constants of cis-1,4-polyisoprene (unvulcanized, CAS number [9003-31-0])

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	$ 0^{\circ}$ C 20° C Temp. range: 0-25 $^{\circ}$ C, T in $^{\circ}$ C, densities as a function of temp. (measured above $T_{\rm g}$)	0.913 0.9283 0.9162 0.9283-6.10 (×10 ⁻⁴)T	(9) (10) (10) (10)
Thermal expansion coefficients	K^{-1}	0°C 20°C	$6.6 \times 10^{-4} \\ 6.6 \times 10^{-4}$	(10)
Tait equation parameters: C , b_0 , and b_1	C = None $b_0 = \text{bar}$ $b_1 = {}^{\circ}\text{C}^{-1}$	0–25°C, 0–500 bar, densities as a function of pressure 0–25°C, 0–500 bar 0–25°C, 0–500 bar	$C = 0.0894$ $b_0 = 1,937$ $b_1 = 0.00517$	(10)
Isothemal compressibility	bar ⁻¹	0°C, atmospheric pressure 20°C, atmospheric pressure	$4.6 \times 10^{-5} \\ 5.0 \times 10^{-5}$	(10)
Thermal conductivity k	$W m^{-1} K^{-1}$	_	0.13	(9, 11, 12)
Specific heat C_p	$J kg^{-1} K^{-1}$	_	1.905×10^3	(13, 14)
$\partial C_p/\partial T$	$J kg^{-1} K^{-2}$	_	3.54	(13, 14)
Glass transition temperature	K	-	201 199–204	(15) (15, 16)
Melting point	K		308.6	(17, 18)
Heat of fusion ΔH_u	$kJ mol^{-1}$	Determined by use of diluent equation	4.393	(17, 18)
$\Delta H_u/M_o$	$\mathrm{J}\mathrm{g}^{-1}$	Determined by use of diluent equation	64.6	(17, 18)
Entropy of fusion ΔS_u	$\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$	Determined by use of diluent equation	14.2	(17, 18)
Heat of combustion	kJg^{-1}	_	45.2	(9)
Temperature of most rapid crystallization	K	_	248	(19)
Refractive index n_D	_	_	1.5191	(20)
$\partial n_D/\partial T$	K^{-1}	_	-0.0037	(20)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric constant	_	1 kHz	2.37-2.45	(9, 21)
Dissipation factor	_	1 kHz	0.001-0.003	(21)
Conductivity	$\mathrm{S}\mathrm{m}^{-1}$	60 s	2.57×10^{-15}	(9, 21)
Bulk modulus	Pa	Isothermal K Adiabatic K_a	$1,940 \times 10^6$ $2,270 \times 10^6$	(10)
Bulk wave velocity V_b	ms^{-1}	Longitudinal wave	1,580	(10)
$\partial V_b/\partial T$	${\rm ms^{-1}K^{-1}}$	_	-3	(10)
Storage modulus <i>G'</i>	log Pa	Values of $\log G'$	5.61 (5.53–5.75)	(22)
Loss modulus G"	log Pa	Values of $\log G''$	4.46 (4.43-4.65)	(22)
Loss tangent G''/G'	_	_	0.09 (0.07-0.13)	(22)
Resilience	%	Rebound	75–77	(23, 24)
Unperturbed dimension $r_{0f}/M^{1/2}$	$nm mol^{1/2} g^{-1/2}$	Calculated unperturbed dimensions of freely rotating chains	$0.402/M_{\rm u}^{1/2} \ 0.201/m^{1/2}$	(25)
Surface tension	mNm^{-1}	Contact angle	32	(26)

Physical constants of cis-1,4-polyisoprene (pure-gum vulcanizate)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	$ 0^{\circ}$ C 20° C Temp. range: 0 – 25° C, T in $^{\circ}$ C, densities as a function of temp. (measured above $T_{\rm g}$)	$0.970 \\ 0.9211 \\ 0.9093 \\ 0.9210-5.86 \\ (\times 10^{-4})T$	(27, 28) (10) (10) (10)
Thermal expansion coefficients	K^{-1}	0°C 20°C 20°C	$6.5 \times 10^{-4} \\ 6.4 \times 10^{-4} \\ 6.7 \times 10^{-4}$	(10) (10) (29)
Tait equation parameters: C , b_0 , and b_1	C = None $b_0 = \text{bar}$ $b_1 = {}^{\circ}\text{C}^{-1}$	0–25°C, 0–500 bar, densities as a function of pressure 0–25°C, 0–500 bar 0–25°C, 0–500 bar	$C = 0.0894$ $b_0 = 1,916$ $b_1 = 0.00425$	(10)

cic 1	,4-Pol	vica	nrono
C/3- I	,4-P UI	y 150	prene

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Isothemal compressibility	bar ⁻¹	0°C, atmospheric pressure 20°C, atmospheric pressure 20°C, atmospheric pressure	4.6×10^{-5} 5.0×10^{-5} 5.3×10^{-5}	(10) (10) (29)
Thermal conductivity k	$W m^{-1} K^{-1}$	-	0.153	(30, 31)
$(\partial k/k)/\partial T$	% K ⁻¹	_	$0 \\ -0.1$	(32) (30)
Specific heat C_p	$J kg^{-1} K^{-1}$	-	1.828×10^3	(33)
Glass transition temperature	K	-	210 201–212	(34)
Melting point	K	-	313	(35)
Heat of combustion	kJg^{-1}	_	44.4	(9)
Refractive index n_D	_	_	1.5264	(9)
$\partial n_D/\partial T$	K^{-1}	-	-0.0037	(9)
Dielectric constant	_	1 kHz	2.68 2.5–3.0	(21) (9, 21)
Dissipation factor	_	1 kHz	0.002-0.04	(21)
Conductivity	$\mathrm{S}~\mathrm{m}^{-1}$	60 s	$2 - 100 \times 10^{-15}$	(9, 21)
Bulk modulus	Pa	Isothermal K Adiabatic K_a	$1,950 \times 10^6$ $2,260 \times 10^6$	(10)
Bulk wave velocity V_b	ms^{-1}	Longitudinal wave	1,580 1,500–1,580	(10) (10, 36, 37)
$\partial V_b/\partial T$	$ms^{-1}\;K^{-1}$	-	-3	(10)
Strip velocity ν_1	$\mathrm{m}\;\mathrm{s}^{-1}$	Longitudinal wave, 1 kHz	45 35–51	(36) (9, 36, 38)
$\partial \nu_1/\partial T$	${\rm m}\;{\rm s}^{-1}\;{\rm K}^{-1}$	_	-0.2	(9)
Ultimate elongation	%	-	750-850	(23, 39)
Tensile strength	MPa	_	17-25	(23, 39)
Initial slope of stress-strain curve, Young's modulus, <i>E</i>	MPa	60 s	1.3 1.0-2.0	(40, 41) (23, 34, 40, 41)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Shear modulus G	MPa	60 s	0.43 0.3–0.7	(34, 41) (34, 42)
Shear compliance J	$(MPa)^{-1}$	60 s	2.3 1.5–3.5	(34, 41) (34, 42)
Creep rate $(1/J)(\partial J/\partial \log t)$	% (unit log t) ⁻¹	_	2 1-3	(34, 40) (34, 40, 41, 43-45)
Poisson's ratio μ	_	Calculated as $0.5 - (1/6)(E/K)$	0.49989	(10, 46, 47)
E/G	_	Calculated as $3 - (1/3)(E/K)$	2.9978	(10, 46, 47)
Storage modulus <i>G'</i>	log Pa	Values of log G'	5.61 (5.49-5.78)	(48)
Loss modulus G"	log Pa	Values of $\log G''$	3.80 (3.72-4.48)	(48)
Loss tangent G''/G'	_	_	0.016 (0.01-0.05)	(48)
Resilience	%	Rebound	75-84	(24, 49)

Unit cell dimensions

Lattice	Space	•		nsion (Å)		Cell angles	Reference
	group	per unit cell	а	b	с	γ	
Mono	C_{2h}^5	8	12.46	8.89	8.10	92°	(50)
Ortho	_	16	8.97	8.20	25.2	_	(51)
Mono	D_{2h}^{15}	16	26.3	8.15	8.9	109.5°	(52)
Ortho	_	8	12.4	8.15	8.9	_	(52, 53)

Permeability and diffusion data of cis-1,4-polyisoprene

Permeant	T (°C)	$\emph{P} imes 10^{13}$	$\emph{D} imes 10^6$	$\emph{S} imes \emph{10}^{\emph{6}}$	Temp. range (°C)	$P_o imes 10^7$	E _P	E _D	E _S	Reference
$\overline{N_2}$	25	7.11	1.17	0.608	20-50	12.2	35.6	33.5	2.1	(54, 55)
CH_4	25	22.7	0.89	2.55	20-50	6.08	31.0	36.4	-5.4	(54)
C_2H_6	25	_	0.40	_	_	_	_	42.7	_	(54)
C_3H_6	25	154	0.31	49.7	20-50	17.7	28.9	42.7	-13.8	(54)
C_3H_8	25	126	0.21	60.0	20-50	1.34	23.0	46.5	-23.5	(54, 55)
SF_6	25	2.70	0.115	2.35	20-50	4.62	35.6	50.2	-14.6	(54)
C_2H_2	25	74.5	0.467	16.0	25-50	17.0	30.6	39.8	-9.2	(55)
n - C_4H_{10}	50	526	_	_	_	_	_	_	_	(56)
$n-C_5H_{12}$	50	1240	_	_	_	_	_	_	_	(56)
H_2O	25	1720	_	_	_	_	_	_	_	(57)

cis-1,4-Polyisoprene

Polymer pairs compatible in the amorphous state at room temperature (cis-1,4-polyisoprene is Polymer I) $^{(58)}$

Polymer II	Method	Comments
Styrene	Single dynamic mechanical loss peak	I was natural rubber; II had $M_{\rm w} \leq$ 350; two peaks when II had $M_{\rm w} \geq$ 600
Vinyl cyclohexane	Single dynamic mechanical loss peak	I was natural rubber; II had $M_{\rm w} \le 375$; two peaks when II had $M_{\rm w} \ge 650$

Infrared absorption (59-63)

Frequency (cm ⁻¹)	Assignment	
836	Trisubstituted olefin out-of-plane CH wag*	
1,129	CH₃rock	
1,300	CH ₂ wag	
1,376	CH ₃ symmetric (umbrella) deformation	
1,450	CH ₂ symmetric (scissors) and CH ₃ asymmetric deformation	
1,664	C=C stretch	
2,720	Overtone of CH ₂ umbrella	
~2,850	CH ₂ and CH ₃ symmetric stretch	
2,920	CH ₂ asymmetric stretch	
2,962	CH ₃ asymmetric stretch	
3,030	Olefin CH stretch	

^{*} Intensity increases with crystallinity.

Radiation resistance

Property	Half-value dose (MGy) in air at different dose rates (Gy h ⁻¹)							
	≥10 ⁵	Reference	10 ⁴	Reference	5	Reference		
$\sigma_{ m R}$	3	(64)	>1 1	(65) (66)	0.1	(65)		
ε	1-1.5	(64)	>1 >1 1.5	(65) (66)	0.07	(65)		

 $[\]sigma_R$: Tensile strength at break (ultimate strength).

Solvents and nonsolvents for \emph{cis} -1,4-polyisoprene $^{(67-69)}$

Solvents	Nonsolvents
Hydrocarbons, THF, higher ketones,	Alcohol, lower ketones and esters, nitromethane, propionitrile,
higher aliphatic esters	water, dilute acids, dilute alkalies, hypochlorite solutions

 $[\]varepsilon_R$: Elongation at break (ultimate elongation).

Fractionation of *cis*-1,4-polyisoprene⁽⁷⁰⁾

Method of fractionation	Solvent or solvent/nonsolvent mixture	Remarks
Fractional precipitation	Benzene/acetone	Havea
	Benzene/ <i>n</i> -butanol	_
	Benzene/isopropanol	Low temperature
	Benzene/methanol	Low temperature
	Chloroform/acetone	Pale crepe
	Dichloroethane/2-butanone	_ •
	Toluene/ <i>n</i> -butanol	30°C
	Toluene/boiling methanol	Chlorinated natural rubber
	Toluene/methanol	_
Fractional solution	Acetone	Havea, extraction
	Acetone, <i>n</i> -hexane	Guayule, extraction
	Benzene/methanol	25°C, column extraction, natural rubber
Chromatography	Benzene/methanol	Precipitation chromatography
0 1 7	Chloroform	30°C, GPC, styragel
	Cyclohexane	GPC
	Cyclohexanone	Partition on paper
	o-Dichlorobenzene	GPC, 135°C
	Dichloromethane	GPC, μ-styragel
	Toluene	Preparative GPC, styragel
	Toluene/isopropyl alcohol	Precipitation chromatography

Solubility parameter

Polyisoprene	δ [(MPa) $^{1/2}$]	δ [(cal cm $^{-3}$) $^{1/2}$]	Method	T (°C)	Reference
1,4-cis	15.18	7.42	Calculated	25	(71)
	20.46	10.0	Swelling	35	(72)
	16.57	8.10	Average	35	(72)
	16.47	8.05	Swelling	35	(72)
	16.68	8.15	Calculated	35	(72)
	16.68	8.15	Calculated	25	(73)
	16.2	7.9	Observed	25	(73)
	17.09	8.35	Observed	25	(73)
Natural rubber	17.0	8.3	Observed	25	(74)
	16.6	8.1	Observed	25	(75)
	17.09	8.35	Observed	25	(76)
	16.33	7.98	Observed	25	(77)
	16.49-16.42	8.06-8.12	Observed	25	(78)

Anisotropy of segments and monomer units of cis-1,4-polyisoprene

Solvent	$(\alpha_{\text{1}}-\alpha_{\text{2}})\times \text{10}^{\text{25}}\text{cm}^{\text{3}}$	$(lpha_{ }-lpha_{\perp}) imes 10^{25} ext{cm}^3$	Reference
Benzene	+48	+30.5	(79)
Squalene sw. p.	+53.1	_	(80)

cis-1,4-Polyisoprene

Unperturbed dimensions of linear cis-1,4-polyisoprene

Property	Units	Value	Temp. (°C)	Remarks	Reference
$S_{0z}/M_w^{1/2} \times 10^4$	nm	0.76	22	Diisopropyl ether; 100% cis	(81)
$K_0 \times 10^3$	$\mathrm{ml}\;\mathrm{g}^{-1}$	130 ± 20	20	Benzene; 2-pentanone; 100% cis	(82, 83)
	_	119	14.5	2-Pentanone; 100% cis	(84)
		126	35	Cyclohexane; dioxane; 4-methyl-2-pentanone; toluene; 71% <i>cis</i> , 22% <i>trans</i> , 7% 3,4	(85)
$r_0/M^{1/2} \times 10^4$	nm	810 ± 45	20	Benzene; 2-pentanone; 100% cis	(82, 83)
		847	22	Diisopropyl ether; 100% cis	(81)
		766	35	Cyclohexane; dioxane; 4-methyl-2-pentanone; toluene; 71% <i>cis</i> , 22% <i>trans</i> , 7% 3,4	(85)
$r_{0f}/M^{1/2} \times 10^4$	nm	485	20	Benzene; 2-pentanone; 100% cis	(82, 83)
· ·		485	22	Diisopropyl ether; 100% cis	(81)
$\sigma = r_0/r_{0f}$		1.67 ± 0.09	20	Benzene; 2-pentanone; 100% cis	(82, 83)
-		1.74	22	Diisopropyl ether; 100% cis	(81)
$C_{\infty} = r_0^2/nl^2$		5.0	20	Benzene; 2-pentanone; 100% cis	(82, 83)
		5.5	22	Diisopropyl ether; 100% cis	(81)
		4.7	14.5	2-Pentanone; 100% cis	(84)
$dln r_0^2/dT$	Deg^{-1}	0.41×10^{-3}	$-10 \sim 70$	Undiluted; 100% cis	(84)
		0.56×10^{-3}	$30 \sim 70$	Undiluted; 100% cis	(84)

Mark-Houwink parameters: K and a (viscosity-molecular weight relationships, $[\eta] = KM^a$)

Polyisoprene	Solvent	T (°C)	$K imes 10^2$ (ml g $^{-1}$)	a	Mol. wt. range $M \times 10^{-5}$	Method	Reference
Natural rubber	Benzene	30	1.85	0.74	0.8-2.8	OS	(83)
	Cyclohexane	27	3.0	0.70	18.5	LS, SD	(86)
	4-Methyl-2-pentanone	35	6.07	0.57	0.5 - 10	LS	(87)
	2-Pentanone	14.5	11.9	0.50	0.8 - 2.8	OS	(83)
	Toluene	25	5.02	0.667	0.7-10.0	OS	(88)
Synthetic cis	Hexane	20	6.84	0.58	0.5 - 8.0	SD	(89)
	Toluene	30	0.851	0.77	2.0-10.0	LS	(90)

Huggins coefficients for natural rubber $^{(91)}$

Solvent	<i>T</i> (°C)	$[\eta]$	k ′
Benzene	30	354	0.32
<i>n</i> -Hexane	30	170	0.35

Dipole moment of cis-1,4-polyisoprene in solution⁽⁹²⁾

Solvent	T (°C)	P _n	$(\mu^2/\textit{N})^{1/2}~(\textit{D})$	φ	Remarks
Benzene	25.0	13,762	0.28	0.70	$u_o = 0.34D$ (2-methyl-2-butene in benzene)

Heat of solution⁽⁹³⁾

Solvent	Heat of solution (J g^{-1} polymer)	Remarks
Benzene	12	16°C , $4 \times 10^{3}\text{g mol}^{-1}$

Second virial coefficient (A_2)

Polyisoprene	Solvent	Temp. (°C)	$M imes 10^{-6}$ (g mol $^{-1}$)	$A_2 imes 10^4 \ ext{(mol cm}^3 ext{ g}^{-2} ext{)}$	Reference
Cis	Cyclohexane	20	1.6	6.5	(94)
	•	25	0.62	5.0	(95)
Natural rubber		7	1.7	14.2	(86)
		27	1.7	14.3	(86)
		7	1.3	11.7	(96)
		27	1.3	12.7	(96)
		25	0.3	6.2	(95)

Sedimentation coefficients, diffusion coefficients, and frictional ratios for polyisoprene in solution

Polyisoprene	Solvent	Temp. (°C)	$M \times 10^{-3}$ (g mol ⁻¹)		$D_o imes 10^7 ext{ (cm}^2 ext{ s)}$		Reference
Linear	Carbon tetrachloride	50	5	_	$D_o = 10^{-7.73 \pm 0.08} \\ \times M^{-0.54 \pm 0.04}$	_	(97)
Natural rubber, crepe	Chloroform	20	270	15.5	2.24	3.32	(98)
-			485	15.5	1.26	5.10	
			930	27.5	1.16	5.26	
			125	27.5	2.63	3.82	(98)
			275	27.5	1.64	4.71	
			450	27.5	1.41	4.64	
			760	27.5	1.44	3.82	
	Cyclohexane	20	1,600	4.6	0.48	3.82	
	•		1,750	4.76	0.46	3.82	
			1,800	4.35	0.41	3.82	
			1,600	4.6	0.48	3.82	(94)
Natural rubber	Hexane	20	270	9	3	3.82	(98)
			1,660	21	1.01	3.82	

Polymer-solvent interaction parameter χ

Solvent	Temp. (°C)	Volume fraction ϕ_{2}	χ	Reference
Acetone	0	1	2.1	(99)
	25	0.8-1	1.27-1.8	(99)
Benzene	10	0.6-0.8	0.42 - 0.43	(100)
	25	0-1	0.40 - 0.43	(100-102)
	25-55	1	0.46 - 0.43	(103)
	40	0.8-1	0.41 - 0.44	(100)
2-Butanone	25	0.6-1	0.86 - 1.43	(99)
	45	0.6-1	0.83-1.2	(99)

cis-1,4-Polyisoprene

Solvent	Temp. (°C)	Volume fraction ϕ_{2}	χ	Reference
Ethyl acetate	25	0.4-1	0.69-1.24	(99, 104)
•	50	0.4-1	0.68 - 1.0	(99, 104)
Ethylbenzene	25-55	1	0.34 - 0.30	(103)
<i>n</i> -Heptane	25-55	1	0.51 - 0.49	(103)
<i>n</i> -Hexane	25-55	1	0.54 - 0.50	(103)
2-Methylheptane	25-55	1	0.50 - 0.47	(103)
2-Methylhexane	25-55	1	0.52 - 0.50	(103)
2-Methylpentane	25-55	1	0.56 - 0.52	(103)
<i>n</i> -Octane	25-55	1	0.49 - 0.46	(103)
<i>n</i> -Pentane	25-55	1	0.61 - 0.53	(103)
Toluene	25-55	1	0.36-0.32	(103)
2,2,4-Trimethylpentane	25-55	1	0.49-0.46	(103)
<i>p</i> -Xylene	25–55	1	0.28-0.26	(103)

Theta temperature

Polyisoprene	$\emph{M}_{ m w} imes 10^{-4}$	Solvent	Theta temp. (°C)	$K_{ heta} imes 10^4 \ [ext{dl g}^{-1} (ext{g mol wt})^{-1/2}]$	Reference
Cis	5-100	<i>n</i> -Hexane/isopropanol (50/50)	21.0	16.6	(105)
Cis (96%)	6.9-75	Dioxane	31.2	13.4	(106)
Cis (94%) linear	9.4	Methyl isobutyl ketone	16.5	_	(107)
	_	Methyl propyl ketone	33.0	_	(107)
3 branches	5.7 (Br: 1.75)	Methyl propyl ketone	33.0	_	(107)
11 branches	18 (Br: 1.6)	Methyl propyl ketone	27.8	_	(107)
22 branches	34.2 (Br: 1.6)	Methyl propyl ketone	23.5	_	(107)
		Methyl isobutyl ketone	15.0	_	(107)

Specific refractive index increment in dilute solution, dn/dc (ml g⁻¹)

Polyisoprene	Solvent	$\lambda_{0}=436\mathbf{nm}$	$\lambda_{0}=546\mathbf{nm}$	T (°C)	Reference
Cis-1,4	Tetrahydrofuran	_	0.128	20	(108)
	Tetrahydrofuran	0.160 (calc.)	_	19-21	(109)
Chlorinated	Methyl ethyl ketone	0.131	_	35	(110)
Synthetic, high cis	Chloroform	0.104	0.100	25	(111)
Natural Hevea	Chloroform	0.106	0.104	25	(111)
Natural Guayule	Chloroform	0.108	0.101	25	(111)
,	Cyclohexane	0.117	_	35	(112)
Synthetic, high cis	<i>n</i> -Hexane	0.192	0.191	25	(111)
Natural Hevea	<i>n</i> -Hexane	0.200	0.198	25	(111)
Natural Guayule	<i>n</i> -Hexane	0.198	0.193	25	(111)
Synthetic, high cis	THF	0.153	0.148	25	(111)
Natural Hevea	THF	0.160	0.156	25	(111)
Natural Guayule	THF	0.157	0.153	25	(111)
Synthetic	Toluene	0.030	0.028	25	(111)
Natural Hevea	Toluene	0.034	0.032	25	(111)
Natural Guayule	Toluene	0.033	0.030	25	(111)

REFERENCES

- 1. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3rd ed. John Wiley and Sons, New York, 1989.
- Mark, H. F., et al., eds. Encyclopedia of Polymer Science and Engineering, 2d ed. John Wiley and Sons, New York, 1989.
- 3. Salamone, J. C., ed. Polymeric Materials Encyclopedia. CRC Press, New York, 1996.
- 4. Brown, H. Rubber: Its Source, Cultivation, and Preparation. John Murray, London, 1918.
- 5. Martin, G. IRI Trans. 19 (1943): 38.
- Senyek, M. L. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 8.
- 7. St. Cyr, D. R. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 14.
- 8. Hourston, D. J., and J. O. Tabe. In *Polymeric Materials Encyclopedia*, edited by J. C. Salamone. CRC Press, New York, 1996, vol. 8.
- 9. Wood, L. A. In *Proceedings of the Rubber Technology Conference*. Institution of the Rubber Industry, London, 1938, p. 933; *Rubber Chem. Technol.* 12 (1939): 130.
- Wood, L. A., and G. M. Martin. J. Res. Nat. Bur. Stds. 68A (1964): 259; Rubber Chem. Technol. 37 (1964): 850.
- 11. Thompson, E. V. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1985, vol. 16, pp. 711–737.
- Mark, H. F., et al. eds. Encyclopedia of Chemical Technology, 3rd ed. Wiley-Interscience, New York, 1978.
- 13. Chang, S. S., and A. B. Bestul. J. Res. Nat. Bur. Stds. 75A (1971): 113.
- 14. Wood, L. A., and N. Bekkedahl. J. Polym. Sci., Part B, Polym. Lett., 5 (1967): 169.
- Wood, L. A. In Natl. Bur. Std. Circ. C 427 (1940); Rubber Chem. Tech. 13 (1940): 861;
 India Rubber World 102(4) (1940): 33.
- 16. Dannis, M. L. J. Appl. Polym. Sci. 1 (1959): 121.
- 17. Dalai, E. N., K. D. Taylor, and P. J. Phillips. Polymer 24 (1983): 1,623.
- 18. Roberts, D. E., and L. Mandelkern. J. Am. Chem. Soc. 77 (1955): 781.
- Wood, L. A., and N. Bekkedahl. J. Res. Natl. Bur. Stds. 36 (1946): 489; RP 1,718; J. Appl. Phys. 17 (1946): 362; Rubber Chem. Technol. 19 (1946): 1,145.
- Wood, L. A., and L. W. Tilton. Proc. 2nd Rubber Technology Conference. Institution of the Rubber Industry, London, 1948, p. 142; J. Res. Natl. Bur. Stds. 43 (1949): 57, RP 2,004.
- 21. McPherson, A. T. Rubber Chem. Technol. (Rubber Rev.) 36 (1963): 1,230.
- Zapas, L. J., S. L. Shufler, and T. W. deWitt. J. Polym. Sci. 18 (1955): 245; Rubber Chem. Technol. 29 (1956): 725.
- 23. Boonstra, B. B. S. T. In *Elastomers: Their Chemistry, Physics and Technology*, edited by R. Houwink. Elsevier, New York, 1948, vol. III, chap. 4.
- Boonstra, B. B. S. T. Rev. Gen. Caoutchouc 27 (1950): 409. Translated in Rubber Chem. Technol. 24 (1951): 199.
- 25. Benoit, H. J. Polym. Sci. 3 (1948): 376.
- 26. Lee, L. H. J. Polym. Sci., Part A-2, 5 (1967): 1,103.
- 27. Wood, L. A. In *Polymer Handbook*, 3rd ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989.
- 28. Wildschut, A. J. Technological and Physical Investigations on Natural and Synthetic Rubbers. Elsevier, New York, 1946.
- 29. Allen, G., et al. Polymer 1 (1960): 467.
- Carwile, L. C., and H. J. Hoge. In Advances in Thermophysical Properties at Extreme Temperatures and Pressures. American Society of Mechanical Engineers, New York, 1965; Rubber Chem. Technol. 39 (1966): 126.
- 31. Pillsworth, M. N., Jr., H. J. Hoge, and H. E. Robinson. J. Mater. 7(4) (1972): 550.
- 32. Hands, D. Rubber Chem. Technol. (Rubber Rev.) 50 (1977): 480.
- Hamill, W. H., B. A. Mrowca, and R. L. Anthony. Ind. Eng. Chem. 38 (1946): 106; Rubber Chem. Technol. 19 (1946): 622.

- Wood, L. A., and F. L. Roth. Proceedings of the Fourth Rubber Technology Conference, (London, 1962). Institution of the Rubber Industry, London, 1963, p. 328; Rubber Chem. Technol. 36 (1963): 611.
- 35. Furukawa, G. T., and M. L. Reilly. J. Res. Nat. Bur. Stds. 56 (1956): 285; RP 2676.
- Cramer, W. S., and I. Silver. NSVORD Report 1778. U. S. Naval Ordnance Laboratory, White Oak, Md., February 1951.
- Ivey, D. G., B. A. Mrowca, and E. Guth. J. Appl. Phys. 20 (1949): 486; Rubber Chem. Technol. 23 (1950): 172.
- 38. Payne, A. R., and J. R. Scott. Engineering Design with Rubber. Interscience, New York, 1960.
- 39. Ball, J. M., and G. C. Maassen. *Symposium on the Applications of Synthetic Rubbers*, 2 March 1944. American Society for Testing Materials, p. 27.
- Martin, G. M., F. L. Roth, and R. D. Stiehler. Trans. Inst. Rubber Ind. 32 (1956): 189;
 Rubber Chem. Technol. 30 (1957): 876.
- Roth, F. L., G. W. Bullman, and L. A. Wood. J. Res. Natl. Bur. Stds. 69A (1965): 347;
 Rubber Chem. Technol. 39 (1966): 397.
- 42. Philipoff, W. J. Appl. Phys. 24 (1953): 685.
- 43. Chasset, R., and P. Thirion. *Proc. Int. Conf. Non-Crystalline Solids*, (Delft, 1964), edited by J. A. Prins. North Holland, Amsterdam, Interscience, New York, p. 345; *Rubber Chem. Technol.* 39 (1966): 870; *Rev. Gen. Caoutchouc* 44 (1967): 1,041.
- Wood, L. A. J. Rubber Res. Inst. Malaysia 23(3) (1969): 309; Rubber Chem. Technol. 43 (1970): 1,482.
- 45. Wood, L. A. G. W. Bullman, J. Polym. Sci. A-2 (1972): 1,043.
- 46. Holownia, B. P. J. Inst. Rubber Ind. 8 (1974): 157; Rubber Chem. Technol. 48 (1975): 246.
- 47. Rightmire. G. K. Am. Soc. Mech. End. Trans. Series F, J. Lubrication Technol., 381 (July 1970).
- 48. Perry, J. D., et al. J. Phys. Chem. 68 (1964): 3,414.
- Dillon, J. H., I. B. Prettyman, and G. L. Hall. J. Appl. Phys. 15 (1944): 309; Rubber Chem. Technol. 17 (1944): 597.
- 50. Bunn, C. W. Proc. R. Soc. London, Ser. A, 180 (1942): 40.
- 51. Meyer, K. H. Natural and Synthetic High Polymers. Interscience, New York, 1950.
- 52. Morss, H. A., Jr. J. Am. Chem. Soc. 60 (1938): 237.
- 53. Natta, G., and P. Corradin. Angew. Chem. 68 (1956): 615; Nuovo Cimento, Suppl., 15 (1960): 111.
- 54. Michaels, A. S., and H. J. Bixler. J. Polym. Sci. 50 (1961): 413.
- 55. Amerongen, G. J. J. Polym. Sci. 5 (1950): 307.
- 56. Kenbishi, H. Int. Polym. Sci. Technol. 8(4) (1981).
- 57. Taylor, R. L., D. B. Hermann, and A. R. Kemp. Ind. Eng. Chem. Int. Ed. 28 (1936): 1,255.
- 58. Class, J. B., and S. G. Chu. J. Appl. Polym. Sci. 30 (1985): 815.
- 59. Colthup, N. B., L. H. Daly, and S. E. Wiberley. *Introduction to Infrared and Raman Spectroscopy*, 2d ed. Academic Press, New York, 1975.
- The Infrared Spectra Atlas of Monomers and Polymers. Sadtler Research Laboratories, Philadelphia, 1980.
- 61. Jasse, B., and J. L. Koenig. J. Makromol. Sci.-Rev. Macromol. Chem., C17 (1979): 61.
- 62. Shindo, Y., B. E. Read, and R. S. Stein. Makromol. Chem. 118 (1968): 272.
- 63. Gotoh, R., T. Takenaka, and N. Hayama. Kolloid Z. 205 (1965): 18.
- 64. Collins, G. C., and V. P. Calkins. APEX-261, 1956.
- 65. Wuckel, L., and W. Koch. Isotopenpraxis 8 (1972): 1.
- 66. Wundrich, K. In *Polymer Handbook*, 3rd ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989.
- 67. Dexheimer, H., and O. Fuchs. In *Struktur und Physikalisches Verhalten der Kunststoffe*, edited by R. Nitsche and K. A. Wolf. Springer Verlag, Berlin, 1961, vol. 1.
- 68. Kurata, M., and W. H. Stockmayer. *Adv. Polym. Sci.* Springer Verlag, Berlin, 1963, vol. 3, p.196.
- 69. Roff, W. J. Fibers, Plastics, and Rubbers. Academic Press, New York, 1956.
- Bello, A., J. M. Barrales-Rienda, and G. M. Guzman. In *Polymer Handbook*, 3rd ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989.
- 71. DiBenedetto, A. T. J. Polym. Sci. A1 (1963): 3,459.

- 72. Mangaraj, D., S. K. Bhatnagar, and S. B. Rath. Makromol. Chem. 67 (1963): 75.
- 73. Small, P. A. J. Appl. Chem. 3 (1953): 71.
- 74. Vocks, F. J. Polym. Sci. A2 (1964): 5,319.
- Tobolsky, A. V. Properties and Structure of Polymers. John Wiley and Sons, New York, 1960, pp. 64–66.
- Mark, H., and A. V. Tobolsky. *Physical Chemistry of High Polymers*. Interscience, New York, 1950, p. 263.
- 77. Gee, G. Trans. Inst. Rubber Ind. 18 (1943): 266.
- 78. Bristow, G. M., and W. F. Watson. Trans. Faraday Soc. 54 (1958): 1,731.
- 79. Poddubnyi, I. Y., E. G. Erenburg, and M. A. Eryomina. Vysokomol. Soedin. 10A (1968): 1,381.
- 80. Treloar, L. R. G. Trans. Faraday Soc. 43 (1947): 234.
- 81. Kratky, O., and H. Sand. Kolloid-Z. 172 (1960): 18.
- 82. Kurata, M., and W. H. Stockmayer. Fortschr. Hochpolymer. Forsch. 3 (1963): 196.
- 83. Wagner, H. L., and P. J. Flory. J. Am. Chem. Soc. 74 (1952): 195.
- 84. Mark, J. E. J. Am. Chem. Soc. 88 (1966): 4,354.
- 85. Prud'homme, J., J. E. L. Roovers, and S. Bywater. Eur. Polym. J. 8 (1972): 901.
- 86. Altgelt, K., and G. V. Schulz. Makromol. Chem. 36 (1960): 209.
- 87. Corbin, N., and J. Prud'homme. J. Polym. Sci., Polym. Phys. Ed., 15 (1977): 1,937.
- 88. Carter, W. C., R. L. Scott, and M. Magat. J. Am. Chem. Soc. 68 (1946): 1,480.
- Poddubnyi, I. Y., V. A. Grechanovskii, and A. V. Podalinskii. Vysokomol. Soedin. 5 (1964): 1,588.
- Abe, M., M. Iwama, and T. Homma. Kogyo Kagaku Zasshi (J. Chem. Soc. Jpn. Ind. Chem. Sec.) 72 (1969): 2,313.
- 91. Kapur, S. L., and S. Gundiah. Makromol. Chem. 26 (1958): 119.
- 92. Le Fèvre, R. J. W., and K. M. S. Sundaram. J. Chem. Soc. (1963): 3,547.
- 93. Gee, G., and W. J. C. Orr. Trans. Faraday Soc. 42 (1946): 507.
- 94. Altgelt, K., and G. V. Schulz. Makromol. Chem. 32 (1959): 66.
- 95. Ng, T. S., and G. V. Schulz. Makromol. Chem. 127 (1969): 165.
- 96. Schulz, G. V., K. Altgelt, and H.-J. Cantow. Makromol. Chem. 21 (1956): 13.
- 97. Xuexin, C., et al. Macromolecules 17 (1984): 1,343.
- 98. Bywater, S., and P. Johnson. Trans. Faraday Soc. 47 (1951): 195.
- 99. Booth, C., et al. Polymer 5 (1964): 343.
- 100. Eichinger, B. E., and P. J. Flory. Trans. Faraday Soc. 64 (1968): 2,035.
- 101. Gee, G. J. Chem. Soc. (1947): 280.
- 102. Gee, G., J. B. M. Herbert, and R. C. Robert. Polymer 6 (1965): 541.
- 103. Tewari, Y. B., and H. P. Schreiber. Macromolecules 5 (1972): 329.
- 104. Booth, C., G. Gee, and G. R. Williamson. J. Polym. Sci. 23 (1957): 3.
- 105. Poddubnyi, I. Y., V. A. Grechanovskii, and A. V. Podalinskii. *J. Polym. Sci., Part C*, 16 (1968): 3,109.
- 106. Ansorena, F. J., et. al. Eur. Polym. J. 18 (1982): 19.
- 107. Candau, F., C. Strazielle, and H. Benoit. Makromol. Chem. 170 (1973): 165.
- 108. Vavra, J. J. Polym. Sci., Part C, 16 (1967): 1,103.
- 109. Bristow, G. M., and B. Westall. Polymer 8 (1967): 609.
- 110. Rao, S. P., and M. Santappa. J. Polym. Sci., Part A-1, 6 (1968): 95.
- 111. Angulo-Sanchez, J. L., et al. Polymer 18 (1977): 922.
- 112. Toporowski, P. M., and J. Roovers. Macromolecules 11 (1978): 365.

trans-1,4-Polyisoprene

GURU SANKAR RAJAN

асконум, alternative names, trade name $^{(1-4)}$ trans-PIP, gutta percha, balata, TP 301

CLASS Diene elastomers

STRUCTURE (1-5)
$$CH_3$$
 $CH_2 \xrightarrow{}_n$ $C = C$

GENERAL INFORMATION Gutta percha from Malaysia (Palaquim gutta and Dichopsis gutta), balata from Brazil (Bolle tree); hard, crystalline thermoplastic material; synthetic *trans*-1,4-polyisoprene (TP 301: Kuraray Co., Ltd., Japan). (4,6)

MAJOR APPLICATIONS Used mainly in high-quality golf ball covers and orthopedic devices and splints; in transmission belts, cable coverings, and adhesives; and in prosthetics, braces, casts, and attachments for artificial limbs. (4,5)

PROPERTIES OF SPECIAL INTEREST The polymer resists abrasion, scuffing, and cutting; it is a tough, rigid, durable, and lightweight polymer at room temperature; it softens in hot water and does not crystallize immediately when cooled; it can be extruded, calendered, injection molded, and compression molded; it can be compounded with fillers and used in blends with other polymers; resistant to ozone, alkalies, fats, oils, and some concentrated acids except nitric acid and sulfuric acid.^(4,5)

Preparative technique^(4,7,8)

Catalysts	% trans-1,4
AlR_3 or $AlR_2Cl + VCl_3$	≥99
$AlR_3 + supported VCl_3$	≥98
$AlR_3-VCl_3-Ti(OR)_4$	≥99
Allylsodium-sodium isoperoxide-sodium chloride	52
Sodium or potassium metals in <i>n</i> -heptane	48-58
Polymerization	
Anionic: sec-C ₄ H ₉ Li (initiator), THF, 30°C	69 ± 2
Cationic: BF ₃ , SnCl ₄ , or AlCl ₃ in pentane, chloroform, or ethylbenzene, -78 to 30°C	90%
Free-radical: water, isoprene, potassium fatty acid soap, potassium chloride, initiator-potassium persulfate, <i>tert</i> -dodecyl mercaptan, 50°C, 15 h	71.9%
Free-radical: initiator-cumene hydroperoxide, 5°C In solution (alkali metals) or emulsion (free-radical)	86.2

PROPERTY	UNITS	CONDITIONS		VALUE		REFERENCE
Average molecular weight	g mol ⁻¹	TP-301 $M_{\rm w}$ $M_{\rm n}$		1.4×10^5 7.0×10^4		(9)
Density	$\rm gcm^{-3}$	TP-301		0.96		(4)
Mooney viscosity	-	ML $1+4$, 100° C TP-301 Natural balata		30 25–33		(4)
Melting temperature	K	TP-301 Natural balata Synthetic		340 340 333		(4) (4) (10)
Glass transition temperature	K	Gutta percha Balata Synthetic Synthetic		205 204 203 213		(11) (11) (11) (10)
Mark-Houwink parameters: K and a	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$		MW range $(M \times 10^{-4})$	$K \times 10^3$	а	(12, 13)
		Synthetic <i>trans</i> , benzene, 32°C	8-140	43.7	0.65	
		Synthetic <i>trans</i> (98%), benzene, 30°C	14-77	18.1	0.72	
		Synthetic <i>trans</i> (98%), cyclohexane, 30°C	14-77	16.2	0.74	
		Synthetic <i>trans</i> (98%), hexane, 30°C	14-77	13.8	0.71	
		Synthetic <i>trans</i> (98%), toluene, 30°C	14-77	17.6	0.73	
		Gutta percha, benzene, 25°C	0.2-5	35.5	0.71	
		Gutta percha, dioxane, 47.7°C	0.2-5	191	0.50	
		Gutta percha, propyl acetate, 60°C	10-20	232	0.50	
Refractive index <i>n</i>	-	Gutta percha (β) Gutta percha (α)		1.509 1.514		(14)
Specific refractive index increment dn/dc	mlg^{-1}	$\lambda_0 = 436\mathrm{nm}$		0.117		(13)
Surface tension γ	mNm^{-1}	20°C, contact angle		31		(15)
Solubility parameter δ	$(MPa)^{1/2}$	Calculated		16.6		(15)

trans-1,4-Polyisoprene

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dipole moment per monomer unit $(\mu^2 N^{-1})^{1/2}$	D	Benzene, 25°C, number-average degree of polymerization = 3,125	0.31	(16)
Intrinsic segmental anisotropy $(\alpha_1 - \alpha_2) \times 10^{25}$	cm ³	Benzene	+49	(17)
Solvents	_	For gutta percha	Hot petroleum ether, benzene, chloroform	(18)
Nonsolvents	_	For gutta percha	Alcohol, water	(18)

Theta temperatures (19)

Solvent	Theta temp. (K)	$K_{ heta} imes 10^4 ext{ (dl g} - 1 ext{ (g mol. wt.)}^{-1/2} ext{)}$
n-Propyl acetate*	333	_
Toluene/i-propanol		
(68.4/31.6)	298	22.2
(67.6/32.4)	303	21.9
(66.5/33.5)	308	21.7
(65.8/34.2)	313	21.4
(64.5/35.5)	318	21.3
(63.8/36.2)	323	21.1
Dioxane	320.7	19.1

^{*}For gutta percha; rest of data for other 96% trans-polymer.

Unperturbed dimensions of 100% $\textit{trans}\text{-polyisoprene}^{*(20)}$

Solvent	$\mathit{K}_0 imes 10^3 (\text{ml g}^{-1})$	$r_0/M^{1/2} imes 10^4$ (nm)	$r_{ m 0f}/M^{1/2} imes 10^4$ (nm)	$s=r_0/r_{0\mathrm{f}}$	$C_{\infty}=r_0^2/nl^2$
Propyl acetate (60°C)	232	970	703	1.38	7.2
Dioxane (47.7°C)	191	910	703	1.30	6.35

^{*}Calculated values of $r_{0\rm f}/M^{1/2} \times 10^4$, nm mol $^{1/2}$ g $^{-1/2}$: $0.580/M_{\rm u1/2}$ and $0.290/m_{1/2}$, where r_0 is the unperturbed root mean-square end-to-end distance, $r_{0\rm f}$ is the unperturbed root mean-square end-to-end distance of the freely-rotating chain, s is the effect of steric hindrance on the average chain dimension, C_{∞} is the characteristic ratio, $M_{\rm u}$ is the molecular weight of the repeating unit, and m is the average molecular weight per skeletal link.

Crystallization constants for gutta percha⁽²¹⁾

Isothermal crystallization temperature T_c (K)	Half-time of crystallization $t_{1/2}$ (s)
308	768
313	1,260
318	6,780
320	11,700
322	19,800
326	64,500
330	291,000

Growth kinetics coefficients (22)

trans-PIP	Fold surface free energy $\sigma_{\rm e}$ (J m $^{-2}$)		Work done by the chain to form a fold $\theta \times 10^{-5}$ (J mol ⁻¹)	Activation energy for polymer diffusion U^* (J mol ⁻¹)	Growth rate constant G_0 (cm s ⁻¹)	Nucleation rate constant $K_{\rm g} \times 10^5$ (K ²)
A^*	109×10^{-3}	_	0.31	6,280	1.10×10^{3}	2.17
B^{\dagger}	4.92×10^3 (J mol ⁻¹)	1,193	1.22	_	_	_

^{*} $M_{\rm w} = 170,000$; $T_{\rm g} = -62.2$ °C; $T_{\rm m}^0 = 87$ °C; $a_0 = 5.87$ Å; $b_0 = 3.95$ Å.

Unit cell dimensions*(23)

Isomer Lattice	Lattice	Monomers	Cell dime	nsion (Å)	
	per unit cell	а	b	с	
α form β form	Monoclinic, P2 ₁ /c Orthorhombic, P2 ₁ 2 ₁ 2 ₁	4 4	7.98 7.78	6.29 11.78	8.77 4.72

 $^{^*\}beta = 102^{\circ}$.

REFERENCES

- 1. Brydson, J. A. Plastics Materials, 6th ed. Butterworth-Heinemann, Oxford, 1995, p. 844.
- Miles, D. C., and J. H. Briston. *Polymer Technology*. Chemical Publishing, New York, 1979, p. 447.
- Dean, J. N. In Chemistry and Technology of Rubber, edited by C. C. Davis. Reinhold Publishing, New York, 1937, pp. 705–719.
- 4. Senyek, M. L. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., edited by M. Howe-Grant. John Wiley and Sons, New York, 1994, vol. 9, pp. 1–14.
- Senyek, M. L. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 8, p. 499.
- Sperling, L. H., and C. E. Carraher. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 12, p. 668.
- 7. Pasquon, I., and U. Giannini. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark. John Wiley and Sons, New York, 1989, vol. 15, p. 674.
- 8. Senyek, M. L. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 8, p. 516.
- 9. Boochathum, P., Y. Tanaka, and K. Okuyama. Polymer 34 (1993): 3,694.
- Senyek, M. L. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 8, p. 550.
- 11. Senyek, M. L. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 8, p. 506.
- 12. Chaturvedi, P. N., and C. K. Patel. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 1,255.
- 13. Cooper, W., D. E. Eaves, and G. Vaughan. J. Polym. Sci. 59 (1962): 241.
- 14. Seferis, J. C. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI 455.
- 15. Lee, L.-H. J. Poly. Sci., Part A-2, 5 (1967): 1,103.
- 16. Fevre, R. J. W., and K. M. S. Sundaram. J. Chem. Soc. (1963): 3,547.
- 17. Tsvetkov, V. N., and L. N. Andreeva. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons. New York, 1989, p. VII 578.
- Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons. New York, 1989, p. VII 399.

 $^{^{\}dagger}M_{\rm w} = 390,000; \ T_{\rm m}^0 = 74^{\circ}\text{C}; M_{\rm n} = 165,000; \ T_{\rm g} = -59^{\circ}\text{C}.$

trans-1,4-Polyisoprene

- 19. Ansorena, F. J., L. M. Revuelta, G. M. Guzman, and J. J. Iruin, European Polymer Journal 18, 19 (1982).
- 20. Kurata, M., and Y. Tsunashima. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons. New York, 1989, pp. VII 32–33.
- 21. Magill, J. H. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons. New York, 1989, p. VI 320.
- 22. Mezghani, K., and P. J. Phillips. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, p. 424.
- 23. Patterson, D. J., and J. L. Koenig. Polymer 29 (1988): 240.

Poly(N-isopropyl acrylamide)

NICHOLAS A. PEPPAS

ACRONYMS PNIPA, PNIPAAm

CLASS Vinyl polymers

STRUCTURE
$$-[CH_2-CH]_n$$
 $C=O$ NH CH_3 CH_3 CH_3

MAJOR APPLICATIONS Membranes, chromatographic resins, size exclusion particles, drug delivery systems.

PROPERTIES OF SPECIAL INTEREST Exhibition of low critical solubility temperature in water at 32°C provides for interesting applications in separation science.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density, ρ	$g \text{cm}^{-3}$	Dry state	1.386	(1)
Polymer-water interaction	_	Varying pressures, P (in MPa)	$0.505 - 1.39 \times 10^{-3} P$	(2)
parameter χ_1		20°C	0.51	(1)
-		40°C	0.95	(1)
		25°C	0.518	(3)
Lower critical solution	K	Hydrogels	303-308	(4)
temperature $T_{\rm c}$		Aqueous solution	304	(5, 6)
Intrinsic viscosity $[\eta]$	dLg^{-1}	Aqueous solution at		(5)
y = 1-	Ü	$T = 15^{\circ}$ C	2.74	. ,
		$T = 25^{\circ}\text{C}$	1.70	
		$T = 33^{\circ}\text{C}$	1.44	
Mark-Houwink	_	Solution in water at		(7)
coefficient a		$T=15^{\circ}\text{C}$	0.93	()
		$T=25^{\circ}\mathrm{C}$	0.97	
		Solution in methanol at $T = 25^{\circ}$ C	0.64	
Refractive index <i>n</i>	_	Dry polymer	1.5	(8)
		Swollen polymer	1.36	. ,

Poly(N-isopropyl acrylamide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Storage modulus E' (compressive)	MPa	Polymer gel at $T = 30^{\circ}\text{C}$ $T = 60^{\circ}\text{C}$	0.1 1.3	(9)
Loss modulus E'' (compressive)	MPa	Polymer gel at $T = 30^{\circ}$ C $T = 60^{\circ}$ C	0.005 1.05	(9)

REFERENCES

- 1. Bae, Y. H., T. Okano, and S. W. Kim. J. Polym. Sci., Polym. Phys. 28 (1990): 923.
- 2. Nakamoto, C., T. Kitada, and E. Kato. Polym. Gels and Networks 4 (1996): 17.
- 3. Hirotsu, S. J. Chem. Phys. 94 (1991): 3,949.
- 4. Shibayama, M., S. Mizutani, and S. Nomura. Macromolecules 29 (1996): 2,019.
- 5. Heskins, M., and J. E. Guillet. J. Macromol. Sci., Chem. A2 (1968): 1,441.
- 6. Pelton, R. H., H. M. Pelton, A. Morphesis, and R. L. Rowell. Langmuir 5 (1989): 816.
- 7. O. Chiantore, M. Guaita, and L. Trossarelli. Makromol. Chem. 180 (1979): 969.
- 8. Zhou, S., and C. Wu. Macromolecules 29 (1996): 4,998.
- 9. Shibayama, M., M. Morimoto, and S. Nomura. Macromolecules 27 (1994): 5,060.

LICHUN LU AND ANTONIOS G. MIKOS

ACRONYM PLA

CLASS Poly(α -hydroxy esters)

STRUCTURE
$$\begin{array}{c|c} H & O \\ & & \parallel \\ +O-C-C \\ & \end{array}$$

MAJOR APPLICATIONS L-PLA is used as sutures and dental, orthopedic, and drug delivery devices. D,L-PLA is used mainly for drug delivery. Both are of interest in the area of tissue engineering.

PROPERTIES OF SPECIAL INTEREST Good biocompatibility; biodegradable mainly by simple hydrolysis; bioresorbable; very good processability; a wide range of degradation rates, physical, mechanical, and other properties can be achieved by PLA of various molecular weights and its copolymers.

PREPARATIVE TECHNIQUES Practically useful high molecular weight PLA can be synthesized by a cationic ring opening polymerization of lactide using antimony, zinc, lead, or tin as catalyst and alcohol as molecular weight and reaction rate control agent at high temperature and low pressure.

IR of 1% w/v D,L-PLA in chloroform⁽¹⁾

Structure	Absorption frequency (cm ⁻¹)
OH, alcohol and carboxylic acid	3,700-3,450
C=O	1,750-1,735
COO	1,600-1,580
C-O	1,200-1,000
CH	950–700

 1 H NMR of 10% w/v D,L-PLA in deuteriochloroform $^{(1)}$

Structure	Chemical shift (ppm) and peak multiplicity
ОН	7.30, s
$CH-CH_3$	5.20, m
$\overline{CH} - \overline{CH}_3$	1.55, d

 13 C NMR of 10% w/v D,L-PLA in deuteriochloroform $^{(1)}$

Structure	Chemical shift (ppm)
C=O	169.3
C-O	69.0
CH_3	16.7

Unit cell dimensions of L-PLA

Lattice	Monomers	Cell dimension (Å)		Cell angles*	Chain conformation	Reference	
	per unit cell	а	b	c (fiber axis)	γ (degree)	$ ho_{n}$ of helix	
Hexagonal	_	5.9	5.9	_	120	_	(2)
Orthorhombic	_	10.31	18.21	9.00	90	31	(3)
Pseudo-orthorhombic	20	10.34	5.97	_	90	10_{3}	(2)
Pseudo-orthorhombic	20	10.6	6.1	28.8	90	10_{3}	(3)
Pseudo-orthorhombic	20	10.7	6.45	27.8	90	10_{3}	(4)

^{*}Cell angles $\alpha = \beta = 90^{\circ}$.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Degree of crystalline X_c	%	D-PLA	Semicrystalline	(5)
		L-PLA	0-37	(6)
		D,L-PLA	Amorphous	(6)
Density ρ	$g\mathrm{cm}^{-3}$	P(L-co-DL)LA		(7)
<i>y</i> .	O	Amorphous	1.248	` ,
		Single crystal	1.290	
Heat of fusion ΔH_{f}	kJ mol ⁻¹	L-PLA complete crystalline L-PLA fiber	146	(8) (9)
		As extruded	2.5	
		After hot-drawing	6.4	
Heat capacity C _p	$J K^{-1} g^{-1}$	L-PLA of		(10)
r		$M_{\rm v} = 5{,}300$	0.60	•
		$M_{\rm v} = (0.2 \text{-} 6.91) \times 10^5$	0.54	
Glass transition temperature $T_{\rm g}$	K	L-PLA of various molecular weights	326–337	(5, 6, 8, 10, 11 (12)
- 0		L-PLA with dichloromethane	_	(1, 5, 8)
		D,L-PLA of various molecular weights	323-330	(12)
		D,L-PLA with dichloromethane	_	
Melting point $T_{\rm m}$	K	D-PLA injection-molded, $M_{\rm v} = 21,000$	444.4	(13)
		L-PLA of various molecular weights	418–459	(5, 6, 8, 10, 11

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Equilibrium melting point	K	L-PLA of $M_{\rm v}=550{,}000$ L-PLA	488 480	(2) (14)
Secondary relaxation temperature	K	β -relaxation at 1 Hz (95% L-isomer)	228	(15)
Decomposition temperature $T_{\rm d}$	K	L-PLA of $M_{\rm w} = (0.53) \times 10^5$ D,L-PLA of $M_{\rm w} = (0.215.5) \times 10^5$	508–528 528	(5)

Mark-Houwink parameters: K and a

Isoform	Solvent	Temp. (°C)	Conditions	$K imes 10^3 \; (ml g^{-1})$	а	Reference
Atactic	Benzene	30	For $M_{\rm v}$	2.27	0.75	(16)
Atactic	Chloroform	25	For $M_{\rm n}$	6.60	0.67	(1)
Atactic	Chloroform	25	For $M_{\rm w}$	6.06	0.64	(1)
Atactic	Chloroform	25	For $M_{\rm v}$	1.33	0.79	(12)
Atactic	Chloroform	30	For $M_{\rm v}$	2.21	0.77	(16)
Atactic	Ethyl acetate	25	For M_n	1.58	0.78	(1)
Atactic	Ethyl acetate	25	For $M_{\rm w}$	1.63	0.73	(1)
Isotactic	Benzene	30	For $M_{\rm v}$	5.72	0.72	(16)
Isotactic	Chloroform	25	For $M_{\rm v}$	2.48	0.77	(12)
Isotactic	Chloroform	30	For $M_{\rm v}$	5.45	0.73	(16)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solvents	Acetone	(17)		
	Benzene	at $T=30^{\circ}\text{C}^{\text{T}}$		(16)
	Bromobe	nzene at $T=85^{\circ}\text{C}$		(18)
	Chlorofo	(12)		
	m-Cresol	(18)		
	Dichloroa	(18)		
	Dichloro		(9)	
	Dioxane	(12)		
	Dimethyl	(17)		
	Ethyl ace	(1)		
	Isoamyl a	(2)		
	N-methy	(12)		
	Toluene			(19)
	Tetrahyd	rofuran		(1)
		methane at $T = 25^{\circ}\text{C}$		(9)
	<i>p</i> -Xylene			(2)
Equilibrium dissolution temperature	K	L-PLA in <i>p</i> -xylene	399.5	(2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Cloud point temperature	K	D,L-PLA in dioxane/water mixture	_	(12)
Interaction parameter χ	-	L- or D,L-PLA in dioxane or chloroform at $T = 25^{\circ}$ C	0.1-0.3	(12)
Swelling	%	L- or D,L-PLA in methanol or water L-PLA film in 0.2 M pH7 buffer		(12) (6)
Second virial coefficient A_2	$mol cm^3 g^{-2}$	L-PLA in bromobenzene at 85°C, $M_{\rm w} = (0.84.9) \times 10^5$	$3.5 3.2 \times 10^{-4}$	(18)
Huggins constant	_	Atactic or isotactic in benzene	0.33-0.41	(16)
Steric hindrance parameter	-	Atactic in benzene or chloroform Isotactic in benzene or chloroform	1.98 2.69	(16)
Characteristic ratio $\langle r^2 \rangle_0 / n l^2$	-	L-PLA in bromobenzene at 85°C	2.0	(18)
Intrinsic viscosity $[\eta]$	dlg^{-1}	L-PLA In chloroform at $T = 25^{\circ}\text{C}$ In chloroform at $T = 30^{\circ}\text{C}$ In bromobenzene at $T = 85^{\circ}\text{C}$ In chloroform In dioxane In N-methyl pyrrolidone L- or D,L-PLA in mixture of Chloroform/methanol Dioxane/water D,L-PLA in chloroform at $T = 25^{\circ}\text{C}$	3.8-8.2 2.63 1.38 4.2 3.2 2.3 - 0.1-1.5	(19) (18) (18) (12) (12) (12) (12) (12) (1)
Nucleation constant $K_{\rm g}$	_	L-PLA crystallized from melt Isothermal Nonisothermal	2.44×10^5 2.69×10^5	(14) (20)
Fold surface energy $\sigma_{\rm e}$	$\mathrm{J}\mathrm{m}^{-2}$	L-PLA crystallized from melt L-PLA single crystals in <i>p</i> -xylene	$60.89 \times 10^{-3} $ 75×10^{-3}	(14) (2)
Lateral surface energy σ	$\mathrm{J}\mathrm{m}^{-2}$	L-PLA crystallized from melt Isothermal Nonisothermal	12.03×10^{-3} 13.6×10^{-3}	(14) (20)
Refractive index increment dn/dc	mlg^{-1}	L-PLA In bromobenzene at $T=85^{\circ}\text{C}$ In tetrahydrofuran	-0.06 0.0558	(18) (21)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Optical rotation $[\alpha]_D$	Degrees	L-PLA at $T = 25^{\circ}$ C		_
	Ü	In chloroform	-151	(18)
		In chloroform at $\lambda = 589 \text{nm}$	-161	(19)
		In dichloromethane	-162.8	(16)
		In chloroform/methanol mixture	-158 to -173	(12)
		In dioxane/water mixture	-165	(12)
		L-PLA in <i>p</i> -dioxane at $\lambda = 365 \mathrm{nm}$	-443	(7)
Degradation rate	_	In vitro, L-PLA	_	(17, 22, 23)
		In vitro, D,L-PLA	_	(17)
		In vivo, D-PLA	_	(13)
		In vivo, L-PLA	_	(13, 17)
		In vivo, D,L-PLA	_	(13, 17)
		Mechanism	_	(24)

L-PLA ([η] = 16 cm 3 g $^{-1}$ in benzene at $T=30^{\circ}$ C) under 60 Co radiation $^{(25)}$

Atmosphere	Dose (M Gy)	Chain scission G factor	Cross-linking G factor
$\overline{N_2}$	Low (<2.5)	26.5	4.5
N_2	Pregel region (>2.5)	40.5	11.0
Air	Low (<2.5)	14.5	0.4
Air	Pregel region (>2.5)	23.0	6.5

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	L-PLA film or disk, $M_{\rm w} = (0.53) \times 10^5$	28-50	(5)
· ·		L-PLA melt-spun fiber	Up to 870	(26)
		L-PLA solution-spun fiber from		
		Toluene	Up to 1000	(19)
		Trichloromethane	Up to 1200	(9)
		Chloroform/toluene mixture	Up to 2300	(3)
		D,L-PLA film or disk, $M_{\rm w} = (1.07 – 5.5) \times 10^5$	29–35	(5)
Tensile modulus	MPa	L-PLA film or disk, $M_{\rm w} = (0.53) \times 10^5$	1,200-3,000	(5)
		L-PLA melt-spun fiber	Up to 9200	(26)
		L-PLA solution-spun fiber from		
		Toluene	Up to 10,000	(19)
		Trichloromethane	12,000-15,000	(9)
		Chloroform/toluene mixture	Up to 16,000	(3)
		D,L-PLA film or disk, $M_{\rm w} = (1.07-5.5) \times 10^5$	1,900-2,400	(5)

Poly(lactic acid)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile storage modulus E'	MPa	L-PLA varies with temperature Melt-spun monofilament at 1 Hz Injection-molded bar at 3 Hz D,L-PLA varies with temperature	_	(27) (10)
		Film at 110 Hz Film at 11 Hz	_	(8) (8)
Tensile loss modulus E''	MPa	L-PLA varies with temperature Melt-spun monofilament at 1Hz Film or injection-molded bar at various frequencies	- -	(27) (10)
		D,L-PLA varies with temperature Film at 110 Hz Film at 11 Hz	_ _	(8) (8)
Flexural storage modulus	MPa	L-PLA film or disk $M_{\rm w}=(0.53)\times10^5$ D,L-PLA film or disk, $M_{\rm w}=(1.075.5)\times10^5$	1,400–3,250 1,950–2,350	(5)
Shear strength	MPa	L-PLA pin	54.5	(28)
Shear modulus	MPa	L-PLA melt-spun monofilament	1,210-1,430	(27)
Bending strength	MPa	L-PLA pin	132	(28)
Bending modulus	MPa	L-PLA pin	2,800	(28)
Elongation at yield	%	L-PLA film or disk, $M_{\rm w}=(0.53)\times10^5$ D,L-PLA film or disk, $M_{\rm w}=(1.075.5)\times10^5$	3.7-1.8 4.0-3.5	(5) (5)
Elongation at break	%	L-PLA film or disk, $M_{\rm w}=(0.53)\times10^5$ L-PLA fiber spun from toluene L-PLA melt-spun fiber, $M_{\rm v}=1.8\times10^5$ D,L-PLA film or disk, $M_{\rm w}=(1.075.5)\times10^5$	6.0-2.0 12-26 25 6.0-5.0	(5) (19) (19) (5)

- 1. Rak, J., J. L. Ford, C. Rostron, and V. Walters. Pharm. Acta Helv. 60 (1985): 162.
- 2. Kalb, B., and A. J. Pennings. Polymer 21 (1980): 607.
- 3. Hoogsteen, W., et al. Macromolecules 23 (1990): 634.
- 4. De Santis, P., and A. J. Kovacs. Biopolymers 6 (1968): 299.
- 5. Engelberg, I., and J. Kohn. Biomaterials 12 (1991): 292.
- 6. Gilding, D. K., and A. M. Reed. Polymer 20 (1979): 1,459.
- 7. Fischer, E. W., H. J. Sterzel, and G. Wegner. Kolloid-Z. u. Z. Polymere 251 (1973): 980.
- 8. Jamshidi, K., S.-H. Hyon, and Y. Ikada. Polymer 29 (1988): 2,229.
- 9. Gogolewski, S., and A. J. Pennings. J. Appl. Polym. Sci. 28 (1983): 1,045.
- 10. Celli, A., and M. Scandola. Polymer 33 (1992): 2,699.
- 11. Cohn, D., H. Younes, and G. Marom. Polymer 28 (1987): 2,018.
- 12. Van De Witte, P., P. J. Dijkstra, J. W. A. Van Den Berg, and J. Feijen. *J. Polym. Sci., Polym. Phys.* B34 (1996): 2,553.

- 13. Gogolewski, S., et al. J. Biomed. Mater. Res. 27 (1993): 1,135.
- 14. Vasanthakumari, R., and A. J. Pennings. Polymer 24 (1983): 175.
- 15. Starkweather, H. W. Jr., P. Avakian, J. J. Fontanella, and M. C. Wintersgill. *Macromolecules* 26 (1993): 5,084.
- 16. Schindler, A., and D. Harper. J. Polym. Sci., Polym. Chem. Ed. 17 (1979): 2,593.
- 17. Suggs, L. J., and A. G. Mikos. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. American Institute of Physics Press, Woodbury, N.Y., 1996, pp. 615–624.
- 18. Tonelli, A. E., and P. J. Flory. Macromolecules 2 (1969): 225.
- 19. Eling, B., S. Gogolewski, and A. J. Pennings. Polymer 23 (1982): 1,587.
- 20. Kishore, K., and R. Vasanthakumari. Colloid Polym. Sci. 266 (1988): 999.
- 21. Sosnowski, S., M. Gadzinowski, and S. Slomkowski. Macromolecules 29 (1996): 4,556.
- 22. Cam, D., S.-H. Hyon, and Y. Ikada. Biomaterials 16 (1995): 833.
- 23. Vert, M., S. M. Li, and H. Garreau. J. Biomater. Sci. Polym. Ed. 6 (1994): 639.
- 24. Göpferich, A. Biomaterials 17 (1996): 103.
- 25. Gupta, M. C., and V. G. Deshmukh. Polymer 24 (1983): 827.
- 26. Fambri, L., et al. Polymer 38 (1997): 79.
- 27. Agrawal, C. M., K. F. Haas, D. A. Leopold, and H. G. Clark. Biomaterials 13 (1992): 176.
- 28. Gogolewski, S., and P. Mainil-Varlet. Biomaterials 17 (1996): 523.

Polymeric selenium

STEPHEN J. CLARSON

CLASS Inorganic and semi-inorganic polymers

STRUCTURE $-[Se]_n$

INTRODUCTION Selenium derives its name from the Greek name for the moon (selene)—in part due to its silvery appearance. The most stable form of this element is gray selenium (metallic), which has a melting point of 494 K. This trigonal gray selenium consists of parallel spiral chains of Se atoms which repeat after three atoms. Red, crystalline selenium Se $_8$ rings (Se $_{alpha}$ and Se $_{beta}$) can be obtained by crystallization from a carbon disulfide solution of black selenium. Black selenium is formed by pouring molten selenium in water. Detailed calculations on the conformations of polymeric selenium chains and on their ringchain equilibration distributions have been described by Semlyen. In the gas phase above the boiling point the dominant species is Se $_2$.

MAJOR APPLICATIONS Gray selenium has an electrical conductivity that increases with temperature and thus exhibits a semiconducting behavior. Selenium has also been demonstrated to be a photoconductor and hence finds applications as selenium photocells used for the measurement of the intensity of light.

PROPERTIES OF SPECIAL INTEREST Semiconductor and photoconductor.

Selected properties

PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Preparative techniques	-	_	-	(4)
Atomic number	_	_	34	_
Atomic mass	$\rm gmol^{-1}$	_	78.96	_
Bond length	Å	$l_{\mathrm{Se-Se}}$	2.34	(5)
Bond energy	$kJ mol^{-1}$	Se-Se Se=Se	172 290	(4)
Bond angle	Degrees	Se-Se-Se in Se ₈ ring	106	(4)
van der Walls radius	Å	_	1.90	(5)
Melting point	K	Gray Se	494	(4)
Density	$\rm gcm^{-3}$	220°C	4.06	(4)
Crystal structure	Å	Hexagonal	a = 4.3640 $c = 4.9594$	(4)

			Polymeri	c selenium
PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Standard entropy of cyclization	cal deg ⁻¹ mol ⁻¹	Polymeric selenium to cyclooctaselenium	-5.5	(4)
Enthalpy change	$kcal mol^{-1}$	For the formation of cyclooctaselenium	-2.3	(4)
Boiling point	K	Se	953	(4)

- 1. Atkins, P. W. The Periodic Kingdom. Basic Books, New York, 1995.
- 2. Semlyen, J. A. Trans. Faraday Soc. 63 (1967): 743.
- 3. Semlyen, J. A. Trans. Faraday Soc. 63 (1967): 2,342.
- 4. Cotton, F. A., and G. Wilkinson. *Advanced Inorganic Chemistry*, 5th ed. John Wiley and Sons, New York, 1988, pp. 496–497 (and references therein).
- 5. Flory, P. J. Statistical Mechanics of Chain Molecules. Hanser/Oxford University Press, New York, 1988, pp. 157–159.
- 6. Astakhov, K. V., N. A. Penin, and E. I. Dobkina. Chem. Abstr. 42 (1948): 11.
- 7. Massey, A. J. The Typical Elements. Penguin Books, New York, 1972, pp. 220–223.
- 8. Powell, P., and P. L. Timms. *The Chemistry of the Non-Metals*. Chapman and Hall, London, 1974, pp. 148–150, 182.
- 9. Steudel, R., and E.-M. Strauss. Adv. Inorg. Chem. Radiochem 28 (1984): 135.

Polymeric sulfur

STEPHEN J. CLARSON

CLASS Inorganic and semi-inorganic polymers

STRUCTURE $-[S]_n$

INTRODUCTION Elemental sulfur has been studied throughout history—according to Kelly, $^{(1)}$ there are fifteen references to the element in the Bible. Sulfur is abundant in nature both in its elemental form and also as H_2S , SO_2 , sulfide minerals, and various sulfates. It can exist as a large variety of allotropes, which depend on the temperature and pressure of the system. These consist of linear and cyclic $-[S]_n$ —species commonly from n=2 to 20 for the rings and even much higher for the chains (species as long as 8×10^5 have been reported). The most stable form of sulfur at $25^{\circ}C$ is the S_8 ring. When sulfur is poured onto ice water in the molten state plastic sulfur or catenasulfur is produced. Unlike the other sulfur allotropes, catenasulfur is insoluble in carbon disulfide (CS_2). Sulfur fibers can be produced that have helical conformations with approximately $3.5\,S$ atoms per turn. Detailed calculations on the conformations of polymeric sulfur chains and on their ring-chain equilibration distributions have been described in a series of articles by Semlyen. $^{(2-6)}$

MAJOR APPLICATIONS Although sulfur has many industrial applications in the area of organic and inorganic synthesis, in the field of polymer science and engineering it is probably best known for it use in the vulcanization of natural rubber and related unsaturated polymer chains (see Coran⁽⁷⁾ and pertinent references cited therein). In this application, sulfur forms shorts chains, which link the polymer network precursor chains together by covalent bonding between the carbon containing chains at the sites of unsaturation. Another important area worth mentioning is the chemical reaction seen in proteins between two cysteine (S–H) units either on the same or on different chains to give covalent disulfide linkages (cystine units) (see Creighton⁽⁸⁾ and pertinent references cited therein).

Selected properties

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Atomic number	_	_	16	_
Atomic mass	$g mol^1$	_	32.06	(9-11)
Bond length	Å	l_{S-S}	2.06 ± 0.02	(12)
Bond energy	$kJ mol^1$	S-S	265	(10)
Bond angle	Degrees	S-S-S in S ₈ ring	108	(10)
van der Walls radius	Å	_	1.80	(12)

			Polyn	neric sulfur
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Standard entropy of cyclization	cal deg ⁻¹ mol ⁻¹	Polymeric sulphur to cyclooctasulfur	-4.63	(12)
S_{alpha} (orthorhombic) to S_{beta} (monoclinic) transition temperature	K	_	368.5	(10)
Melting point	K	S _{alpha} S _{beta}	385.8 392	(10)
Boiling point S	K	_	717.6	(10)
$S_8 \rightarrow polymer\ critical$ polymerization temperature	K	-	432	(10)
Enthalpy $S_8 \rightarrow polymer$	kJ mol ¹	At 159°C	13.4	(10)
Temperature of maximum melt viscosity	K	_	~473	(10)

- 1. Kelly, P. Chemistry in Britain 33 (1997): 25-27.
- 2. Semlyen, J. A. Trans. Faraday Soc. 63 (1967): 743.
- 3. Semlyen, J. A. Trans. Faraday Soc. 63 (1967): 2,342.
- 4. Semlyen, J. A. Trans. Faraday Soc. 64 (1968): 1,396.
- 5. Semlyen, J. A. Polymer 12 (1971): 383.
- Semlyen, J. A. In Cyclic Polymers, edited by J. A. Semlyen. Elsevier, New York, 1986, pp. 33–37.
- 7. Coran, A. Y. In *Science and Technology of Rubber*, 2d ed., edited by J. E. Mark, B. E. Erman, and F. R. Eirich. Academic Press, San Diego, 1994, pp. 339–366.
- 8. Creighton, T. E. Proteins: Structure and Molecular Properties. Freeman, New York, 1984.
- 9. Puddephatt, R. J. The Periodic Table of the Elements. Oxford University Press, Oxford, 1972.
- Cotton, F. A., and G. Wilkinson. Advanced Inorganic Chemistry, 5th ed. John Wiley and Sons, New York, 1988, pp. 491–543.
- 11. Atkins, P. W. The Periodic Kingdom. Basic Books, New York, 1995.
- Flory, P. J. Statistical Mechanics of Chain Molecules. Hanser/Oxford University Press, New York, 1988, pp. 157–159.
- 13. Abrahams, S. C. Quart. Rev. 10 (1956): 407.
- 14. Tobolsky, A. V., and A. Eisenberg. J. Am. Chem. Soc. 81 (1959): 780.
- 15. Tobolsky, A. V., and A. Eisenberg. J. Am. Chem. Soc. 81 (1959): 2,803.
- 16. Tobolsky, A. V., and A. Eisenberg. J. Am. Chem. Soc. 82 (1960): 289.
- Pauling, L. The Nature of the Chemical Bond, 3d ed. Cornell University Press, Ithaca, N.Y., 1960, pp. 134–136.
- Tobolsky, A. V., and W. J. MacKnight. In *Polymeric Sulfur and Related Polymers*, edited by H. F. Mark and E. H. Immergut. Wiley-Interscience, New York, 1965.
- 19. Semlyen, J. A. Chemistry in Britain 18 (1982): 704.
- 20. Steudel, R., et al. Angew. Chem. Int. Ed. Engl. 20 (1981): 394.
- 21. Meyer, B. Elemental Sulphur: Chemistry and Physics. Interscience, New York, 1985.
- 22. Haiduc, I., and R. B. King. In *Large Ring Molecules*, edited by J. A. Semlyen. John Wiley and Sons, New York, 1997, pp. 350–352.

Poly(methacrylic acid)

JIANYE WEN

ACRONYM PMAA, PMA

CLASS Vinylidene polymers

STRUCTURE H CH_3 [-C-C-]

Н СООН

MAJOR APPLICATIONS Various applications in the fields of mining, textile manufacture, cosmetics, oil recovery, agriculture, and water clarification as thickening agent for lattices and adhesives, ion-exchange resins, adhesives, binders, dispersants, and flocculating agents.

PROPERTIES OF SPECIAL INTEREST Weak acid, brittle solid that cannot be molded, crosslink on heating, decomposes without softening at high temperature, too water sensitive to be plastics, generation of viscosity and thixotropy at low concentrations, interaction with counter-ions or charged particulate matter, inverse solubility-temperature behavior.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	86.09	_
Density	$\rm gcm^{-3}$	25°C	1.285	(1)
Glass-transition temperature $T_{\rm g}$	K	-	403 458	(2) (3)
Heat capacity	$KJK^{-1} mol^{-1}$	100 K 200 K 300 K	0.0452 0.0814 0.1125	(4)

Mark-Houwink parameters: K and a

Solvent	Temp. (°C)	Mol. wt. range ($M \times 10^{-4}$)	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	a	Reference
Methanol	26	-20	242	0.51	(5)
Aqueous HCl (0.002 M)	30	-90	66	0.50	(6)
Aqueous NaNO ₃ (2 M)	25	-70	44.9	0.65	(7)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Properties of monomer				(8)
Melting point	K	_	287	
Boiling point	K	_	432-436	
Index of refraction	_	_	1.4288	
Specific gravity	_	_	1.015	
Heat capacity	$KJ K^{-1} mol^{-1}$	_	$(2.1-2.3)\times10^{-3}$	
Dissociation constant pK	_	_	4.66	
Heat of polymerization	$kJ mol^{-1}$	_	56.5	
Solubility parameter	$(MPa)^{1/2}$	Isobutyl ester, 140°C	14.7	(9)
J P	(' ' ' ' '	Ethyl ester	18.31	(10)
		Methyl ester, 25°C	18.58	(11)
		Poor solvent hydrogen bonding	0	(12)
		Moderate	20.3	(12)
		Strong	26.0-29.7	(12)
Solvents	Ethanol, metha	anol, water, dioxane, dimethylform	amide	(13)
	Alcohols, aque	eous hydrogen chloride (0.002 M, al ous sodium hydroxide		(14, 15)
Nonsolvents	Acetone, diethyl ether, benzene, aliphatic hydrocarbons Ketones, carboxylic acids, esters		(13) (14, 15)	
Sound speed	ms^{-1}	Longitudinal	3,350	(1)

$Tacticity^{(16,\,17)}$

Polymerization condition	Product
Free-radical polymerization in methyl ethyl ketone at 60°C Hydrolysis of poly(methacrylic anhydride) at 40°C Hydrolysis of esters having appropriate configurations	57% syndiotactic triads Atactic Syndiotactic

- Kroschwitz, J. I. ed. Kirk-Othmer Encyclopedia of Chemical Technology, 3d ed. John Wiley and Sons, New York, 1995, Vol. 1, p. 147.
- 2. Odajima, A., A. E. Woodward, and J. A. Sauer. J. Polym. Sci. 55 (1961): 181.
- 3. Greenwald, H. L., and L. S. Luskin. In *Handbook of Water Soluble Gums and Resins*, edited by R. L. Davison. McGraw-Hill, New York, 1980, Chapter 17, pp. 1–19.
- 4. Gaur, U., et al. J. Phys. Chem. Ref. Data 11 (1982): 1,065.
- 5. Weiderhorn, N. M., and A. R. Brown. J. Polym. Sci. 8 (1952): 651.
- 6. Katchalsky, A., and H. Eisenberg. J. Polym. Sci. 6 (1951): 145.
- 7. Arnold, R., and S. R. Caplan. Trans. Faraday Soc. 51 (1955): 857.
- 8. Kine, B. B., and R. W. Novak. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1987, Vol. 1, p. 241.
- 9. DiPaola-Baranavi, G. Macromolecules 15 (1982): 622.
- 10. Mangaraj, D., S. Patra, and S. Rashid. Makromol. Chem. 65 (1963): 39.
- 11. Bristow, G. M., and W. F. Watson. Trans. Faraday Soc. 54 (1958): 1,731 and 1,742.

Poly(methacrylic acid)

- 12. Grulke, E. A. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, pp. VII-519.
- 13. Hughes, L. J., and G. E. Britt. J. Appl. Polym. Sci. 5 (1961): 337.
- 14. Dexheimer, H., and O. Fuchs. In *Strukur und Physikalisches Verhalten der Kunststoffe*, Vol. 1, edited by R. Nitsche and K. A. Wolf. Springer Verlag, Berlin, 1961.
- 15. Kurata, M., and W. H. Stockmayer. *Adv. Polym. Sci.* Springer Verlag, Berlin, 1963, Vol. 3, p. 196.
- 16. Loebl, E. M., and J. J. O'Neill. J. Polym. Sci., Polym. Lett. Ed. 1 (1963): 27.
- 17. Greber, G., and G. Egle. Makromol. Chem. 40 (1960): 1.
- 18. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 19. Daniels, W. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1987, Vol. 17, p. 402.
- 20. Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, Woodbury, N.Y., 1996.

JIANYE WEN

ACRONYM PMA

CLASS Vinyl polymers

$$\begin{array}{cc} \textbf{STRUCTURE} & [-CH_2 - CH -] \\ & & COOCH_3 \end{array}$$

MAJOR APPLICATIONS Coatings, textile finishing, paper saturants, and leather finishing.

PROPERTIES OF SPECIAL INTEREST A tough, rubbery, and moderately hard polymer with little or no tack at room temperature; superior resistance to degradation and remarkable retention of its original properties under use conditions.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	25°C	1.22	(1-3)
Glass transition temperature	K	– Conventional Head to tail Head to head	279 283, 284 279 304	(1, 4) (5-9) (10-14) (15-20)
Heat capacity	$KJ K^{-1} mol^{-1}$	-173°C -73°C 27°C 227°C ΔC _p	0.0529 0.0844 0.1518 0.1843 3.638/7.404	(21)
Interaction parameter χ		Butane, 70–90°C Hexane, 70–110°C Heptane, 70–110°C Decane, 70–110°C Cyclohexane, 70–110°C Benzene, 70–110°C Toluene, 70–100°C Chloroform, 70–110°C Carbon tetrachloride, 70–110°C Acetone, 70–110°C Methyl ethyl ketone, 70–110°C Tetrahydrofuran, 70–100°C Dioxane, 70–100°C Methyl acetate, 70–110°C Ethyl acetate, 70–110°C Butanone, 100°C	2.392-1.753 2.731-1.885 2.808-1.983 3.107-2.434 2.316-1.460 0.471-0.359 0.624-0.511 -0.222 to -0.075 0.986-0.658 0.482-0.384 0.459-0.388 0.425-0.316 0.205-0.198 0.396-0.375 0.471-0.428 0.40	(22) (22) (22) (22) (22) (22) (22) (22)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Interaction parameter χ	_	Ethanol, 100°C n-Octane, 90–100°C 1-Propanol, 100°C	1.01 2.4-2.2 0.82	(23) (23, 24) (23)
Interfacial tension	$\mathrm{mN}\mathrm{m}^{-1}$	Poly(<i>n</i> -butyl acrylate), 20°C PE, 20°C	4.0 10.6	(25)

Mark-Houwink parameters: K and a

Solvent	Temp. (°C)	Mol. wt. range ($M \times 10_4$)	$ extit{K} imes extsf{10}_3 ext{ (ml g}^{-1} extsf{)}$	а	Reference
Acetone	25	-160	5.5	0.77	(26)
	30	-45	28.2	0.52	(26)
Benzene	25	-130	2.58	0.85	(26)
	30	-160	4.5	0.78	(26)
Butanone	20	-240	3.5	0.81	(26)
	25	-68	14.1	0.67	(27)
	30	-190	3.97	0.772	(28)
Diethyl malonate	30	-190	3.51	0.793	(28)
Ethyl acetate	35	-148	11	0.69	(29)
Toluene	30	-190	7.79	0.697	(28)
	35	-69	21	0.60	(29)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	-	6.9	(30, 31)
Elongation at break	%	-	750	(30, 31)
Index of refraction $n_{25}^{\rm D}$	_	-	1.479	(32)
Second virial coefficient A_2	10 ⁴ (mol cm ² g ⁻²)	Acetone, 20° C, $M \times 10^{-3} = 77-880$ Acetone, 25° C, $M \times 10^{-3} = 280-2,500$ Ethyl acetate, 35° C, $M \times 10^{-3} = 362-1,480$ Butanone/isopropanol $58/42$, 20° C, $M \times 10^{-3} = 290-1,720$	4.5-2.8 4.2-2.4 1.92 0.1-0.06	(33) (34, 35) (29) (34)
Solvents	Aromatic hydrocarbons, chlorinated hydrocarbons, tetrahydrofuran, esters, ketones, glycolic ester ethers, and phosphorus trichloride			
Nonsolvents	Aliphatic hydrocarbalcohols, and carbon	ons, hydrogenated naphthalenes, diethyl n tetrachloride	ether,	(36)
Solubility parameter	$(MPa)^{1/2}$	1.479	20.7	(37)

PROPERTY	UNITS	CONDITIONS	VALUE REFERENCE
Surface tension	${ m mN}{ m m}^{-1}$ ${ m mN}{ m m}^{-1}{ m K}^{-1}$ ${\chi}^{ m p}$	$M_{ m w} = 25,000$ $20^{\circ}{ m C}$ $150^{\circ}{ m C}$ $200^{\circ}{ m C}$ $-d\gamma/dT$ Polarity	(38) 41.0 31.0 27.2 0.070 0.248

Unperturbed dimension*

Conditions	$r_0/M^{1/2} imes 10^4$ (nm)	$r_{0f}/M^{1/2} imes 10^4$ (nm)	$\sigma = r_0/r_0^2$	$C_{\infty}=r_0^2/nl^2$	Reference
Various solvents, 30°C Butanone/2-propanol, 42/58 vol., 20°C		332 332	2.05 ± 0.10 2.05	8.4 8.4	(39) (34, 35)
50/50 vol., 30°C	665 $d \ln r_0^2 / dT = -0.2 \times 10^{-3} \text{ [deg}^{-1}\text{]}$	332	2.00	8.0	(28) (40)

^{*}See reference (32) for details.

- 1. Van Krevelen, D. W. Properties of Polymers. Elsevier Publishing, Amsterdam, 1976.
- 2. Shetter, J. L. J. Polym. Sci. Part B, 1 (1963): 209.
- 3. Kine, B. B., and R. W. Novak. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1987, Vol. 1, p. 257.
- 4. Crawford, J. W. C. J. Soc. Chem. Ind. London 68 (1949): 201.
- Boyer, R. F., and R. S. Spercer. Advance in Colloid Science. Wiley-Interscience, New York, 1946, Vol. 2, p. 1.
- 6. Wiley, R. H., and G. M. Brauer. J. Polym. Sci. 3 (1948): 455.
- 7. Wiley, R. H., and G. M. Brauer, J. Polym. Sci. 3 (1948): 647.
- 8. Riddle, E. H. Monomeric Acrylic Esters. Reinhold, New York, 1954, p. 59.
- 9. Aida, H., and H. Senda. Fukui Daigaku Kogakubu Kenkyu Hokoku 28 (1980): 95.
- 10. Gerke, R. H. J. Polym. Sci. 13 (1954): 295.
- 11. Utracki, L. A., and R. Simha. Makromol. Chem. 117 (1968): 94.
- 12. Hughes, L. J., and G. L. Brown. J. Appl. Polym. Sci. 5 (1961): 580.
- 13. Jenckel, E., and K. Ueberriter. Z. Physik. Chem. (Leipzig) A182 (1938): 361.
- 14. Wuerstlin, F., and H. Thurn. In *Die Physik der Hochpolymeren*, edited by H. A. Stuart. Springer-Verlag, Berlin, 1956.
- 15. Rehberg, C. E., and C. H. Fisher. Ind. Eng. Chem. 40 (1948): 1,429.
- 16. Shetter, J. A. J. Polym. Sci., Part A-1, 4 (1966): 2,381.
- 17. McCurdy, R. M., and J. H. Prager. J. Polym. Sci., Part A, 2 (1964): 1,885.
- Wuerstlin, F. In Die Physik der Hochpolymeren, edited by H. A. Stuart. Springer-Verlag, Berlin, 1955, Chapter 11.
- 19. Haldon, R. A., and R. Simha. J. Appl. Phys. 39 (1968): 1,890.
- 20. Otsu, T., S. Aoki, and R. Nakatani. Makromol. Chem. 134 (1970): 331.
- 21. Gaur, U., et al. J. Phys. Chem. Ref. Data. 11 (1982): 1,065.
- 22. Tian, M., and P. Munk. J. Chem. Eng. Data 39 (1994): 742.
- 23. Munk, P., et al. J. Appl. Polym. Sci.: Appl. Polym. Symp. 45 (1990): 289.
- 24. DiPaola-Baranyi, G., and J. E. Guillet. Macromolecules 11 (1978): 228.

- 25. Wu, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. VI-411.
- 26. Krause, S. Dilute Solution Properties of Acrylic and Methacrylic Polymers, Part 1, Revison 1, Rohm & Haas, Philadelphia, Penn., 1961.
- 27. Kotera, A., T. Saito, Y. Watanabe, and M. Ohama. Makromol. Chem. 87 (1965): 195.
- 28. H. Matsuda, K. Yamano, H. Inagaki. J. Polym. Sci., Part A-2, 7 (1969): 609.
- 29. Karunakaran, K., and M. Santappa. J. Polym. Sci., Part A-2, 6 (1968): 713.
- 30. Brendley, W. H. Jr. Paint Varn. Prod. 63 (1973): 19.
- 31. Craemer, A. S. Kunststoffe 30 (1940): 337.
- 32. Kine, B. B., and R. W. Novak. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1987, Vol. 1, p. 234.
- 33. Wunderlich, W., Angew. Makromol. Chem. 11 (1970): 189.
- 34. Trossarelli, L., and G. Saini. Atti Accad. Sci. Torino: Classe Sci. Fix. Mat. Nat. 90 (1955–1956): 419.
- 35. Saini, G., and L. Trossarelli. Atti Accad. Sci. Torino: Classe Sci. Fix. Mat. Nat. 90 (1955–1956): 431.
- 36. Fuchs O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. VII-379.
- 37. Gardon, J. L. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1965, Vol. 3, p. 833.
- 38. Partington, J. R. An Advanced Treatise of Physical Chemistry: Physico-Chemical Optics. Longmans, Green and Co., London, Vol. 4, 1960.
- 39. Kurata, M., and W. H. Stockmayer. Fortschr. Hochpolymer. Forsch. 3 (1963): 196.
- 40. Tobolsky, A. V., D. Carlson, and N. Indictor. J. Polym. Sci. 54 (1961): 175.
- Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 42. Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, Woodbury, N.Y., 1996.

Poly(methacrylonitrile)

J. R. FRIED

ACRONYM PMAN

CLASS Polynitriles

$$\begin{array}{c} CH_3 \\ \mid \\ CH_2 - C + \\ \mid \\ C \equiv N \end{array}$$

MAJOR APPLICATIONS Films, coatings, elastomers, packaging, photoresists.

PROPERTIES OF SPECIAL INTEREST Good resistance to many solvents, acids, and water, but attacked by polar solvents and decomposed by concentrated alkali and hot dilute alkali.

TYPES OF POLYMERIZATION Free-radical or ionic polymerization of methacrylonitrile (2-cyanopropylene) in bulk, emulsion, or solution; group-transfer polymerization also has been used. Ionic polymerization in inert solvents can produce either amorphous poly(methacrylonitrile) (by use of anionic catalysts such as *n*-butyllithium) or primarily isotactic poly(methacrylonitrile) (by use of coordination catalysts such as ethylberyllium or diethylmagnesium).

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE			
Molecular weight (of repeat unit)	g mol ⁻¹	_	67.09	_			
Typical comonomers	Butadiene, s	utadiene, styrene, a-methylstyrene, methacrylic acid					
Solvents	benzaldel N,N-dime acid, N-m	Trifluoroacetic acid, acetone, acetonitrile, acrylonitrile, aniline, benzaldehyde, <i>m</i> -cresol, cyclohexanone, N,N-dimethyl acetamide, N,N-dimethyl formamide, dimethyl sulfoxide, ethanol amine, formic acid, N-methyl-2-pyrolidone, nitrobenzene, propylene carbonate, pyridine, triethyl phosphate					
Nonsolvents	cyclohexa acetate, 2- n-octyl alo	Acetic acid, benzene, 1-butanone, <i>n</i> -butyl acetate, chlorobenzene, cyclohexane, diethyl ether, diethylene glycol, diisobutyl ketone, ethyl acetate, 2-ethyl hexanol, <i>n</i> -heptane, isoamyl alcohol, isopropyl alcohol, <i>n</i> -octyl alcohol, 1-propanol propylene glycol, styrene, tetralin, 1,1,1-trichloroethane, toluene					
Ceiling temperature	K	In benzonitrile	418	(2)			
Density	$\rm gcm^{-3}$	Amorphous	1.13	(3)			

Poly	(methacry	/lonitrile)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric constant ε' (D150)	_	60 Hz 1 kHz 1 MHz	4.14 3.83 3.30	(3)
Dissipation factor (D150)	_	60 Hz 1 kHz 1 MHz	0.046 0.038 0.025	(3)
Maximum extensibility $(L/L_0)_r$	%	D638	2–3	(3)
Flexural modulus	GPa	D790	3.86-4.48	(3)
Flexural strength	MPa	D790	83-97	(3)
Glass transition temperature	K	Amorphous (free-radical polymerization)	285	(4)
Hardness	M scale	Rockwell (D785)	95	(3)
Heat deflection temperature	K	D648 (1.8 MPa)	370-373	(3)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	Notched Izod (D256)	21	(3)
Index of refraction <i>n</i>		At 20°C	1.5932	(3)
Solubility parameter	$(MPa)^{1/2}$	_	21.925.4	(5)(1)
Tensile strength	MPa	D638	55-69	(3)
Volume resistivity	ohm cm	_	1.14×10^{16}	(3)
Water absorption	%	144 h at ambient temperature	0.24	(3)
Infrared spectrum (principal absorptions)	cm^{-1}	Assignment CH_3 stretching $C\equiv N$ stretching	Wavenumber 2,990 2,234.5	(6)
Permeability coefficient	m ³ (STP) m s ⁻¹ m ⁻² Pa ^{-1s}	At 25°C O ₂ CO ₂ H ₂ O	$9 \times 10^{-21} \\ 2.4 \times 10^{-20} \\ 3.10 \times 10^{-15}$	(7)

Unit cell dimensions⁽³⁾

		Cell dimension (Å)		Cell a	ngles		
Lattice	Monomers per unit cell	а	b	c *	α	β	γ
Pseudohexagonal (modification I)	_	9.03	_	6.87	_	_	_
Monoclinic (modification II)	8	13.5	7.71	7.62	_	$97^{\circ}49'$	_

^{*}Fiber identity period.

- 1. Ho, B.-C., W.-K. Chin, and Y.-D. Lee. J. Appl. Polym. Sci. 42 (1991): 99.
- 2. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 2d ed. John Wiley and Sons, New York, 1989, p. II-439.
- 3. Ball, L. E., and B. S. Curatolo. In *Encyclopedia of Polymer Science and Engineering*, edited by J. Kroschwitz. John Wiley and Sons, New York, 1990, Vol. 9, pp. 669-705.
- Nielson, L. E. Mechanical Properties of Polymers. Reinhold Publishing Company, Stamford, Conn., 1962, p. 19.
- 5. Small, P. A. J. Appl. Chem. 3 (1953): 71.
- 6. Nagata, A., K. Ohta, and R. Iwamoto. Macromol. Chem. Phys. 197 (1996): 1,959.
- 7. Salame, M. J. Polym. Sci. Symp. 41 (1973): 1.

Poly(N-methylcyclodisilazane)

DONNA M. NARSAVAGE-HEALD

ALTERNATIVE NAMES Poly(1,3-dimethyl-2,2,4,4-tetramethylcyclodisilazane); poly(hexamethylcyclodisilazane)

CLASS Polysilazanes

repeat unit $-[Me_2Si-NMe]-$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Preparative techniques	_	Anionic ring opening MeLi/THF n-BuLi/THF n-BuLi/hexane t-BuLi/THF PhLi/THF MeLi/Me ₃ CONa/THF n-BuLi/Me ₃ CONa/THF Naphthalene-Na α-MeStyNa Cationic ring opening CF ₃ SO ₃ Me CF ₃ SO ₃ SiMe ₃	_	(1, 2) (1) (2) (2) (1) (1) (1) (2) (2) (2)
Molecular weight (of repeat unit)	g mol ⁻¹	_	87	_
Molecular weight (M_n)	g mol ⁻¹	MeLi/THF MeLi/THF n-BuLi/THF n-BuLi/hexane t-BuLi/THF PhLi/THF MeLi/Me ₃ CONa/THF Naphthalene-Na α-MeStyNa CF ₃ SO ₃ Me CF ₃ SO ₃ SiMe ₃	3,000 4,400 1,500 1,020 4,200 4,200 1,500 16,000 4,000 16,800 18,000	(1) (2) (1) (1) (2) (2) (1) (2) (2) (2) (2)
Typical polydispersity index (M_w/M_n)	_	-	1.2	(2)
NMR	ppm	¹ H ¹³ C ²⁹ Si ¹⁵ N	0.12 (SiMe), 2.39 (NMe) 1.94 (SiMe), 30.25 (NMe) -2.2 -361	(1, 2) (1, 2) (1, 2) (2)

Poly(N-methylcyclodisilazane) **PROPERTY** UNITS CONDITIONS VALUE REFERENCE K Glass transition temperature DSC 235 (2)(2) Melting temperature K DSC 500 Phase transition K DSC 428 (2) TGA, argon flow, 10°C min⁻¹ Pyrolyzability, amount of product 2.85% (1)

- 1. Seyferth, D., J. M. Schwark, and R. M. Stewart. Organometallics 8 (1989): 1,980-1,986.
- 2. Duguet, E., M. Schappacher, and A. Soum. Macromolecules 25(19) (1992): 4,835-4,839.

Poly(methylene oxide)

ALLAN S. HAY AND YONG DING

ALTERNATIVE NAMES, **TRADE NAMES** Polyacetal, polyoxymethylene, acetal, Delrin[®], Celcon[®] (copolymer), Ultraform[®] (copolymer)

CLASS Polyether engineering thermoplastics

STRUCTURE $[-CH_2-O-]$

MAJOR APPLICATIONS Poly(methylene oxide) resin has been widely used in mechanical, automotive, plumbing, appliance, industrial, and electrical conponents along with its copolymer resins. It is continuing to replace die-cast zinc, brass, aluminum, steel, and other metals in the various end-use industries.

PROPERTIES OF SPECIAL INTEREST Poly(methylene oxide) resin, like other polyacetal resins, is a highly crystalline polymer characterized by its metallic qualities of hardness, strength, and stiffness. It also has good lubricity properties under a wide variety of environmental conditions of moisture and heat, good fatigue resistance, a low coefficient of friction, and springiness. In addition, it has good chemical resistance to most solvents. It cannot, however, be flameproofed.

PREPARATIVE TECHNIQUES The homopolymer is prepared by anionic polymerization of purified formaldehyde with the addition of an initiator such as an amine, phosphine, or metal alcohol. The copolymers are manufactured commercially by copolymerization of trioxane, the cyclic trimer of formaldehyde, with small amounts of a comonomer. Typically, acetal copolymer reisns have 95% or more oxymethylene units.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight of repeat unit	g mol ⁻¹	-	30.03	_
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	_	2-9 × 104	-
IR (characteristic absorption frequencies)				
NMR				(3, 4)
Thermal expansion coefficients	K^{-1}	233-303 K	7.5×10^{-5}	(5)
Density (amorphous)	g cm ⁻³	D792 Homopolymer Copolymer	1.42 1.41	(6)

Solvents⁽⁵⁾

Solvent	Gel Temp. (K)	Dissolving Temp. (K)
m-Chlorophenol	328	362
Phenol	331	382
<i>p</i> -Chlorophenol	333	371
3,4-Xylenol	361	401
Aniline	375	403
γ -Butyrolactone	385	407
N,N-Dimethylformamide	388	408
Pentachloroethane	390	413
Ethylene carbonate	390	418
Benzyl alcohol	392	405
Styrene oxide	398	419
Formamide	403	423
Nitrobenzene	407	421
Cyclohexanol	413	423
Propionic anhydride	417	428

Mark-Houwink parameters: *K* and *a*

Solvent	Temp. (K)	$\emph{M}_{ m w} imes 10^{-3} \ ({ m g mol^{-1}})$	$ extit{K} imes 102 ext{ (ml g}^{-1} ext{)}$	а	Reference
<i>p</i> -Chlorophenol	403	_	5.43	0.66	(7)
<i>p</i> -Chlorophenol, 2% α -pinene	333	62-129	4.13	0.724	(8)
1H,1H,5Ĥ-octafluoropentanol-1	383	62-129	1.33	0.81	(8)
Phenol-tetrachloroethane (25–75 wt.)/2% α -pinene	363	1.1-92	1.216	0.64	(9)
Phenol	363	_	1.13	0.76	(10)
Dimethylformamide	423	89-285	4.4	0.66	(11)
Dimethylformamide	403	1.5-15	2.24	0.71	(12)
Hexafluoroacetone-sesquihydrate + triethylamine	298	1.5-15	4.60	0.74	(12)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Lattice	_	_	TRIG	ORTH	(13)
Space group	_	_	P3 ₁ or P3 ₂	P2 ₁ 2 ₁ 2 ₁	(13)
Chain conformation	_	_	2 * 9/5	2 * 2/1	(13)
Unit cell dimensions	Å	_	a = 4.471 $b = 4.471$ $c = 17.39$	a = 4.767 b = 7.660 c = 3.563	(13)
Unit cell contents (number	of repeat units	5)	9	4	(13)
Density (crystalline)	$\rm gcm^{-3}$	_	1.491	1.533	(13)

Poly(methylene oxide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion (of repeat units)	kJ mol ⁻¹	_	9.79 —	(14)
Entropy of fusion (of	$kJK^{-1}mol^{-1}$	Constant pressure	8.21×10^{-3}	(15)
repeat units)		Constant volume	4.98×10^{-3}	(15)
		Equilibrium value	10.70×10^{-3}	(16)
Degree of crystallinity	%	Homopolymer		
		293 K (density)	64-69	(17)
		298 K (x-ray)	77	(18)
		408 K (x-ray)	75	(18)
		413 K (x-ray)	73.0	(19)
		418 K (x-ray)	73.1	(19)
		423 K (x-ray)	75.4	(19)
		428 K (x-ray)	76.9	(19)
		430 K (x-ray)	67	(18)
		433 K (x-ray)	80.0	(19)
		440 K (x-ray)	95.5	(19)
		Copolymer, Hostaform C 2520, $M_{\rm w}=80{,}000$, 298 K (density)	56–59	(17)
		Copolymer, Hostaform C9020, $M_{\rm w}=58,000$, 298 K (density)	56.6	(17)
Glass transition temperature	K	_	198	(18)
Melting point	K	Delrin 500, ASTM D2133	448	(6)
81		Celcon M90, ASTM D2133	438	(1)
Heat capacity (of repeat	$J K^{-1} mol^{-1}$	Homopolymer		(20)
units)	,	0 K	0	()
,		50 K	9.94	
		100 K	16.69	
		200 K	28.82	
		300 K	42.79	
		Copolymer		(20)
		0 K	0	` '
		50 K	9.97	
		100 K	16.40	
		200 K	26.56	
		300 K	41.11	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
		Crystalline polymer		(21)
		0 K	0	
		50 K	10.10	
		100 K	16.68	
		200 K	27.15	
		300 K	38.52	
Deflection temperature	K	Delrin 500		(6)
•		ASTM D648, 1.82 Mpa	409	. ,
		ASTM D648, 0.45 Mpa	445	
		Celcon M90		(6)
		ASTM D648, 1.82 Mpa	383	(-)
		ASTM D648, 0.45 MPa	431	
T:1 dl	MD-	20/1/ ACTM D/20		(E)
Tensile modulus	MPa	296 K, ASTM D638	0.100	(5)
		Homopolymer	3,100	
		Copolymer	2,825	
Tensile strength	MPa	296 K, ASTM D638		(5)
		Homopolymer	68.9	
		Copolymer	60.6	
Maximum extensibility	%	296 K, ASTM D638		(5)
$(L/L_0)_r$	70	Homopolymer	23-75	(0)
$(L/L_0)_r$		Copolymer	40-75	
		Сорогуппет	40-73	
Flexural modulus	MPa	296 K, ASTM D790		(5)
		Homopolymer	2,830	
		Copolymer	2,584	
Flexural strength	MPa	296 K, ASTM D790		(5)
O		Homopolymer	97.1	()
		Copolymer	89.6	
Impact strength	J m-1	296 K, notched,		(5)
impact strength	, 111 1	3.175 mm, ASTM D256		(0)
		Homopolymer	69-122	
		Copolymer	53-80	
			<i>33-</i> 60	
		233 K, notched, 3.175 mm, ASTM D256		
			E2 0E	
		Homopolymer	53-95	
		Copolymer	43-64	
Hardness	_	Rockwell hardness,		(5)
		ASTM D785		
		Homopolymer	94	
		Copolymer	80	

Poly(methylene oxide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Shear stress	MPa	296 K, ASTM D732		(5)
		Homopolymer	65	• •
		Copolymer	53	
Dielectric constant ε'	_	102-106 Hz, ASTM D1	50	(5)
		Homopolymer	3.7	· /
		Copolymer	3.7	
Dielectric loss ε''	_	Copolymer, ASTM D1	50	(5)
		102 Hz	0.0010	• •
		103 Hz	0.0010	
		104 Hz	0.0015	
		106 Hz	0.006	

- 1. Novak, A., and E. Whalley. Trans. Faraday Soc. 55 (1959): 1,484.
- 2. Mucha, M. Colloid Polym. Sci. 162 (1972): 103.
- 3. Fleischer, D., and R. C. Schulz. Makromol. Chem. 162 (1972): 103.
- 4. Yamashita, Y., T. Asakura, M. Okada, and K. Ito. Makromol. Chem. 129 (1969): 1.
- Dolce, T. J., and J. A. Grates. In *Encyclopedia of Polymer Science Engineering*, edited by H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges. John Wiley and Sons, New York, Vol. 1, p. 42.
- Serle, A. G. In Engineering Thermoplastics: Properties and Application, edited by J. M. Margolis. Marcel Dekker, New York, 1985, p. 151.
- 7. Tanaka, A., S. Uemura, and Y. Ishida. J. Polym. Sci., Part A-2, 8 (1970): 1,585.
- 8. Wagner, H. L., and K. F. Wissbrun. Makromol. Chem. 81 (1965): 14.
- 9. Doerffel, K., H. Friedrich, H. Grohn, and D. Wimmers. Plaste-Kautschuk 12 (1965): 524.
- 10. Thuemmler, W. Plaste-Kautschuk 12 (1965): 582.
- 11. Bel'govskii, I. M., N. S. Enikolopyan, and L. S. Sakhonenka. Polym. Sci. (USSR) 4 (1963): 367.
- 12. Hoehr, L., et al. Makromol. Chem. 103 (1967): 279.
- 13. Wunderlich, B. Macromolecular Physics: Vol. 1. Crystal Structure, Morphology, Defects. Academic Press, New York, 1973, p. 118.
- 14. Uchida, T., and H. Tadokoro. J. Polym. Sci., Part A-2, 5 (1967): 63.
- 15. Starkweather, H. W., and R. H. Boyd. J. Phys. Chem. 64 (1960): 410.
- Wunderlich, B. Macromolecular Physics: Vol. 3, Crystal Melting. Academic Press, New York, 1980, p. 64.
- 17. Wilski, H. Makromol. Chem. 150 (1971): 209.
- 18. Aoki, Y., A. Nobuta, A. Chiba, and M. Kaneko. Polymer J. 2 (1971): 502.
- 19. Salaris, F., A. Turturro, U. Bianchi, and E. Matruscelli. Polymer 19 (1978): 1,163.
- 20. Dainton, F. S., D. M. Evans, F. E. Hoare, and T. P. Melia. Polymer 3 (1962): 263.
- 21. Gaur, U., and B. Wunderlich, J. Phys. Chem. Ref. Data 10 (1981): 1,005.

SHAW LING HSU

ACRONYM, TRADE NAMES PMMA, Plexiglas, Lucite

CLASS Vinylidene polymers; acrylics

STRUCTURE $-[CH_2-C(CH_3)(COOCH_3)]-$

CHEMICAL REGISTRY NUMBER 9011-14-7

PROPERTIES OF SPECIAL INTEREST Optically clear (92% transmission, theoretical limit for normal incidence, in the visible region) through the visible wavelength range; very little ultraviolet absorption until 260 nm. Good mechanical properties. Extremely high weatherability. Commercial materials are usually atactic polymers (\sim 75% syndiotactic), although isotactic and syndiotactic polymers have been synthesized. High sensitivity to electron radiation.

MAJOR APPLICATIONS Replacement for glass. Can be used as one-component-deep UV, electron-beam, or ion-beam resists in the manufacture of microelectronics chips. $^{(1,2)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tacticity		cial grade materials generally have $50-70\%$ actic, and $<10\%$ isotactic dyads	syndiotactic,	(3)
IR (characteristic absorption frequencies)	cm^{-1}	Methylene stretching vibrations, assigned to asymmetric and symmetric CH ₂ stretching vibrations	2,958 and 2,933	(4)
		Ester methyl stretching vibrations	2,995, 2,948, and 3,025	
		Carbonyl vibration	1,733	
NMR	ppm	Atactic, vs. TMS	1.9	(5)
		Syndiotactic	_	, ,
		Isotactic, pair of doublets, vs. TMS	1.5-2.5	
Effects of radiation	$\mathrm{C}~\mathrm{cm}^{-2}$	Sensitivity to electron beam at an electron-beam energy of 25 keV	10^{-5}	(6)
		Main chain scission (0.5 J cm ⁻² at 26 keV)	0.46	(6)
	Å	UV		(7)
		50%	2,000	(*)
		57%	2,200	
		78%	2,400	
		78%	2,600	
		78%	3,000	
		Main chain scission (4–6 eV, 0.6 J cm ⁻²)	0.22	(6)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Effects of radiation	_	Ion beam (0.48 J cm ⁻² ; 300 keV)	0.75	(6)
	%	Effective visible range		_
		Transmission	92	
		Haze	2	
Density	$\rm gcm^{-3}$	_	1.17-1.20	(8)
Glass transition	K	Atactic polymer	379	(8)
temperature			387.3	(9)
-			386	(10)
		Isotactic polymer	318	(1, 10)
		1 7	324	(11)
		Syndiotactic polymer	120 ->140°C	(1, 10, 11)
Heat deflection temperature	K	1.82 MPa	341.3–371.9	(8)
Dielectric constants	_	50 Hz, 25°C	3.5-3.7	(12–14)
		1,000 Hz	3.3	(14)
		$1.0 \times 10^6 \text{Hz}$	2.2-2.5	(14)
Water absorption	%	1/8 in bar, 24 h	0.3-0.4	(8)
water absorption	/0	1/0 Ht bar, 24 H	2	(13)
			0.1-0.3	(14)
Thermal expansion			$6 \times 10^{-4} > T_{\rm g}$	(12)
coefficient	_	_	$0 \times 10^{-2} > T_{\rm g}$ $2-3 \times 10^{-4} < T_{\rm g}$	(12)
Currentelline eturne			Isotactic PMMA	
Crystalline structures for PMMA	_	Only in crystalline phase when complexed with various solvents	Syndiotactic PMMA	(15, 16)
YY	2	-	20.00 1 42.06	(4.7)
Unit cell parameters	Å	Isotactic isomer	a = 20.98, b = 12.06, c (fiber axis) = 10.40	(17)
		With chloroacetone	a = 25.8, b = 35.1,	(16)
		Irrespective of the type of solvent	c = 35.4 (fiber repeat)	(16)
Index of refraction	_	_	1.49	(8, 12)
Tensile strength	MPa	_	48-76	(1, 8)
rensite strength			40-70	(1, 0)
Fracture toughness	$MPa m^{1/2}$	23°C, air	1.21	(9)
		37°C, water	1.76	
Elongation	%	_	2–10	(8)
Tensile modulus	MPa	_	3,100	(8)
	1.11 4	23°C, air	3,180	(9, 14)
		37°C, water	2,700	(9, 14)
		or c, water	2,100	(2, 14)

			Poly(methyl met	thacrylate)
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Poisson's ratio	_	-	0.35	(14)
Flexural modulus	MPa	_	2,900-3,100	(1)
Melt flow rate	_	Low heat-resistance material High heat-resistance material	20–30 2–4	(1)
Notched impact strength	$\mathrm{J}\mathrm{m}^{-1}$	_	16-27	(8)
Continuous use temperature	K	_	364-382	(1)
Typical solvents		sopropanol, methyl ethyl ketone, formic hol solution containing 10% alcohol may		(14)
Typical nonsolvent		ne, carbon tetrachloride, butylene glycol, banol ether, <i>m</i> -cresol	diethyl ether,	_
Suppliers	DuPont,	Rohm and Haas, Continental		

- 1. Thompson, L. F., C. G. Willson, and J. M. J. Frechet., eds. *Materials for Microlithography: Radiation-Sensitive Polymers*. American Chemical Society, Washington, D.C., 1984, vol. 266.
- 2. Htoo, M. S., ed. Microelectronic Polymers. Marcel Dekker, New York, 1989.
- 3. Salamone, J. C., ed. Polymeric Materials Encyclopedia. CRC Press, New York, 1996.
- 4. Lipschitz, I. Polym-Plast Technol Eng. 19 (1982): 53.
- 5. Schilling, F. C., et al. Macromolecules 18 (1985): 1,418.
- Clough, R. L., and S. W. Shalaby, eds. Radiation Effects on Polymers. American Chemical Society, Washington, D.C., 1991, vol. 475.
- 7. Lin, B. J. J. Vac. Sci. Technol. 12 (1975): 1,317.
- 8. Billmeyer, F. W. J. Textbook of Polymer Science. John Wiley and Sons, New York, 1984.
- 9. Johnson, J. A., and D. W. Jones. J. Mat. Sci. 29 (1994): 870.
- 10. John, E., and T. Ree. J. Polym. Sci., Part A, 28 (1990): 385-398.
- 11. Kitayama, T., et al. Polymer Bulletin 23 (1990): 279-286.
- 12. Wunderlich, W., ed. *Physical Constants of Poly(methyl methacrylate)*, 2d ed. John Wiley and Sons, New York, 1975.
- 13. Mazur, K. Journal of Physics D: Applied Physics 30 (1997): 1,383-1,398.
- 14. Rohm and Haas General Information on PMMA.
- 15. Fox, T. G., et al. J. Am. Chem. Soc. 80 (1958): 1,768.
- 16. Kusuyama, H., et al. Polymer Communications 24 (1983): 119-122.
- 17. Tadokoro, H. Structures of Crystalline Polymers. John Wiley and Sons, New York, 1979.

D. R. PANSE AND PAUL J. PHILLIPS

ACRONYMS, ALTERNATIVE NAME, TRADE NAME PMP, P4MPE, polymethylpentene, TPX, Crystalor

CLASS Poly(α -olefins)

Structure of repeat unit
$$\begin{array}{cc} [-CH_2-CH-] \\ CH_2CH(CH_3)_2 \end{array}$$

MAJOR APPLICATIONS Hypodermic syringes, needle hubs, blood collection and transfusion equipment, pacemaker parts, cells for spectroscopic and optical analysis, laboratory ware, light covers, automotive components.

PROPERTIES OF SPECIAL INTEREST High optical transparency, excellent dielectric properties, high thermal stability, chemical resistance, crystalline density lower than amorphous density.

PREPARATIVE TECHNIQUES (a) Coordination polymerization: catalytic systems used = α - and δ -TiCl₃ in combination with Al(C₂H₅)₃ and Al(C₂H₅)₂Cl, VCl₃-Al(i-C₄H₉)₃, modified supported catalysts such as TiCl₄/MgCl₂-Al(C₂H₅)₃ modified by aromatic acid esters, diesters. Temperature = 30-70°C. (1,2)

(b) Cationic polymerization: catalysts = $AlCl_3$, $AlBr_3$, $AlC_2H_5Cl_2$ and cocatalysts RCl with R = CH_3 , C_2H_5 , C_6H_5 , etc.⁽¹⁾

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Typical comonomers used	-	_	1-Hexene, 1-pentene, 1-octene, 1-decene, 1-octadecene	_
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	84.16	_
Stereoregularity	% isotactic	Catalyst system d-TiCl ₃ -Al(i -C ₄ H ₉) ₃ δ -TiCl ₃ -Al(C ₂ H ₅) ₂ Cl	60 90	(3) (4)
Typical molecular weight range	$g \text{mol}^{-1}$	Cationic polymerization	2,000-250,000	(1)
Polydispersity index	-	Cationic polymerization at: -78°C -50°C $+5^{\circ}\text{C}$	2.76 2.85 4.11	(1)
Thermal expansion coefficient	K^{-1}	ASTM D696	1.17×10^{-4}	(1, 5)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Reducing temperature	K	Temperature range = 235–320°C	11,481	(6)
Reducing pressure	Pa	Pressure range = 0-200 MPa	453×10^6	(6)
Reducing volume	${\rm cm}^3~{\rm g}^{-1}$	None given	1.2303	(6)
Amorphous density	${\rm g~cm}^{-3}$	None given	0.838	(7)
Solvents	_	Above 100°C	Cyclohexane, tetralin, decalin, xylenes, chlorobenzene	(7)
Nonsolvents	_	At 20°C	Any organic solvent	(7)
Solubility parameter	$(MPa)^{1/2}$	None given	15.14–16.36	(8)
Theta temperature Θ	K	90–94% isotactic polymer Solvent/method Diphenyl/PE, VM Diphenyl ether/PE, VM Diphenyl methane/PE, VM	467.6 483 449.6	(9)

Mark-Houwink parameters: K and $a^{(9)}$

Solvent/method	Temperature (°C)	Mol. wt. \times 10 ⁻⁴	$K \times 10^3$ (ml g ⁻¹)	а
Biphenyl/OS	$194.6 = \Theta^*$	30	152	0.5
Decalin/OS	130	30	19.5	0.75
Diphenyl ether/OS	$210 = \Theta^*$	30	158	0.5
Diphenyl methane/OS	$176.6 = \Theta^*$	30	160	0.5

^{*}Theta temperature.

Crystalline state properties $^{(10)}$

Crystal property	Units	Isotactic	Syndiotactic
Lattice	-	Tetragonal	Not given
Unit cell dimensions	Å	a = 18.6 - 18.7	_
		b = 18.6 - 18.7	
		c = 13.8	
Unit cell angles	Degree	$\alpha = \beta = \gamma = 90$	Not given
Monomers per unit cell	_	28	Not given
Space group	_	S4-1	Not given
Helix conformation	_	7_2	24_{7}
Crystalline density at 23°C	$\mathrm{g~cm}^{-3}$	0.814	Not given

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Degree of crystallinity	%	Annealed Strongly oriented fiber Moldings	70 85 55–60	(11)
Heat of fusion	kJ mol ⁻¹	– Clapeyron equation	5.297 5.205	(12) (11)
Entropy of fusion	$kJK^{-1}mol^{-1}$	– Clapeyron equation	$10.1 \times 10^{-3} \\ 10.3 \times 10^{-3}$	(12) (11)
Glass transition temperature	K	DSC	323 303	(13) (14)
Melting point	K	Isotactic polymer	518	(1)
Sub- $T_{\rm g}$ transition temperatures	K	Not given	153–123 23	(1, 7)
Crystalline phase disordering temperature	K	Not given	403-453	(7)
Heat capacity	$kJ K^{-1} mol^{-1}$	Temperature (K) 80 180 250 300	0.0472 0.0917 0.121 0.145	(14)
Deflection temperature	K	Under flexural load: 0.46 MPa 1.82 MPa	353–363 321–323	(1)
Tensile modulus	MPa	ASTM D638	1,500-2,000	(1)
Bulk modulus	MPa	Not given	2,670	(1)
Tensile strength	MPa	ASTM D638 At yield At break	23–28 17–20	(1)
Elongation at break	%	Not given	10-25	(1)
Flexural strength	MPa	ASTM D790	25-35	(1)
Flexural modulus	MPa	ASTM D790	1,300-1,800	(1)
Notched Izod impact strength	$kJ m^{-1}$	ASTM D256	100-200	(1)
Rockwell hardness	_	None given	L80-90	(5)

Poly	(4-metl	hyl i	penter	ne-1)
------	---------	-------	--------	------	---

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Poisson ratio	_	At RT and ambient pressure	0.34 0.43	(15) (16)
Shear modulus	MPa	At RT and ambient pressure	970	(1)
Index of refraction <i>n</i>	_	Isotactic polymer	1.463	(7)
Haze	%	ASTM D1003	1.2-1.5	(7)
Optical transparency	%	ASTM D1003	90-92	(7)
Dielectric constant	_	25°C, 102-106 Hz	2.12	(1)
Dielectric loss factor	_	At 20°C Frequency range 50 Hz 1 kHz 1 MHz	60×10^{-6} $(35-140) \times 10^{-6}$ $(25-50) \times 10^{-6}$	(5)
Dielectric breakdown voltage	$kV \text{ mm}^{-1}$	None given	42–65	(5)
Volume resistivity	Ohms cm	None given	>1,016	(5)
Surface tension	$mN m^{-1}$	At 20°C, contact angle method	25	(5)
Thermal conductivity	$W \ m^{-1} \ K^{-1}$	ASTM C177	0.167	(5)
Permeability coefficient	m ³ (STP) m s ⁻¹ m ⁻¹ Pa ⁻¹ (×10 ⁻¹⁶)	Film thickness = $78 \mu m$ Permeant O_2 N_2 He H_2 CO_2	317.2 74 1020 1342 960	(17)
Gas separation factor	_	Gas $1/Gas 2$ O_2/N_2 H_2/N_2 CO_2/N_2 CO_2/O_2 H_2/O_2 H_2/CO_2	4.1 16.5 8.6 2.1 4.1 1.9	(18)
Melt index	g (10 min) ⁻¹	At 260°C, 5 kg load	20	(5)
Speed of sound	${\rm m~s^{-1}}$	Longitudinal Shear	2,180 1,080	(15)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Pyrolyzability,	%	Name of product		(19)
amount of product		Propene	0.8	
		Propane	33.9	
		2-Methylpropene	55.6	
		2-Methylpropane	3.5	
		2-Methylbutene	2.0	
		Pentane	0.3	
		4-Methyl 1-pentene	2.2	
		2,3-Dimethylbutane	1.0	
		Others	0.7	
Vicat softening point	K	ASTM D1525	446	(5)
Degradation temperature	K	_	553	(1)
Radiation <i>G</i> (product)	_	Per 100 eV of absorbed radiation	0.3	(20)
G(S)/G(X)	_	Irradiated in air	0.6	(20)
Water absorption	%	Saturation	0.01	(1)
Flammability, flame propagation rate	cm min ⁻¹	ASTM D635	2.5	(5)

Suppliers and quantities produced

Supplier	Trade Name	Amount (tons per year)
Mitsui Petrochemical Industries (Japan)	TPX	~22,700
Phillips 66 (USA)	Crystalor	_
British Petroleum Co.	_	~25,000

- 1. Kissin, Y. V. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1985, vol. 9.
- Gaylord, N. G., and H. F. Mark. Linear and Stereoregular Addition Polymers. Interscience Publishers, New York, 1959.
- 3. Kissin, Y. V. Isospecific Polymerization of Olefins with Heterogeneous Ziegler-Natta Catalysts. Springer-Verlag, New York, 1985.
- Tait, P. J. T. In Coordination Polymerization, edited by J. C. W. Chien. Academic Press, New York, 1975.
- Heggs, T. G. Ullmann's Encyclopedia of Industrial Chemistry. VCH Publishers, New York, 1992, vol. A21.
- 6. Zoller. P. J. Polym. Sci., Polym. Phys. Ed., 16 (1978): 1,491.
- Kissin, Y. V. "Olefin Polymers (Higher Olefins)." In Kirk-Othmer Encyclopedia of Chemical Technology, edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1996.
- 8. Fedors. R. F. Polym. Eng. Sci. 14 (1974): 147.
- 9. Tani, S., F. Hamada, and A. Nakajima. Polym. J. 5 (1973): 86.
- 10. Frank, F. C., A. Keller, and A. O'Connor. Philos. Mag. 4 (1959): 200.

- Zoller, P., H. W. Starkweather, and G. A. Jones. J. Polym. Sci., Polym. Phys. Ed., 24 (1986): 1,451.
- 12. Charlet, G., and G. Delmas. J. Polym. Sci., Polym. Phys. Ed., 26 (1988): 1,111.
- 13. Brydson, J. A. Plastic Material, 4th ed. Butterworth and Co., Kent, U.K., 1982.
- 14. Gaur, U., B. B. Wunderlich, and B. Wunderlich. J. Phys. Chem., Ref. Data, 12 (1983): 29.
- 15. Hartmann, B. J. Appl. Phys. 51 (1980): 310.
- 16. Warfield, R. W., and F. R. Barnet. Die. Angew. Makromol. Chem. 27 (1972): 215.
- 17. Yasuda, H., and K. J. Rosengren. J. Appl. Polym. Sci. 14 (1970): 2,839.
- 18. Levasalmi, J.-M., and T. J. McCarthy. Macromolecules 28 (1995): 1,733.
- 19. Regianto. L. Makromol. Chem. 132 (1970): 113.
- 20. Soboleva, N. S., S. S. Leshchenko, and V. L. Karpov. Polym. Sci. USSR 25 (1983): 446.

Poly(methylphenylsiloxane)

ALEX C. M. KUO

ACRONYM, ALTERNATE NAMES, TRADE NAMES PMPS; poly[oxy(methylphenylsilylene)]; methylphenyl silicone oil; Dow Corning[®] 710 Fluid

CLASS Polysiloxanes

STRUCTURE $-[(CH_3)(C_6H_5)Si-O-]_n$

CAS REGISTRY NUMBER [9005-12-3]

MAJOR APPLICATIONS Heat exchange fluids; high temperature lubricating oil for instruments, bearings, and timers; glass sizing agents; greases; hydraulic fluids.

PROPERTIES OF SPECIAL INTEREST Thermal stability. Oxidative stability. Wide serviceable temperature (-70 to 260 °C) and minimal temperature effect. Good resistance to UV radiation. Good damping behavior. Excellent antifriction and lubricity, and good dielectric strength.

PREPARATIVE TECHNIQUES Monomer: dichloromethylphenylsilane, methylphenylsiloxane diol, methylphenylcyclotrisiloxane, methlyphenylcyclotetrasiloxane. Polymerization: hydrolysis, polycondensation, ring-opening polymerization.⁽¹⁾

²⁹Si NMR spectroscopy for typical structural building units in polymethylphenylsiloxanes ^(2,3)

Structure	Notation*	Chemical shifts (ppm down-field from TMS)
$-\text{Si}(\text{CH}_3)_2 - (\text{C}_6\text{H}_5)$	M^{ph}	-1
$-\text{Si}(\text{C}_6\text{H}_5)_2 - (\text{CH}_3)$	$\mathbf{M}^{ ext{ph}_2}$	-11
$-\mathrm{Si}(\mathrm{C}_6\mathrm{H}_5)_3$	M^{ph_3}	-21
$-[O-Si(CH_3)(C_6H_5)]-$	D^{ph}	-31 to -35
$[O-Si(CH_3)(C_6H_5)-]_3$	D _{3.} ; cyclic trimer	-21
$[O-Si(CH_3)(C_6H_5)-]_4$	D ₄ ^{ph} ; cyclic tetramer T ^{ph}	-30.5
$(-O_{0.5}-)_3Si-C_6H_5$	T^{ph}	-77 to -82
$(-O_{0.5}-)_4$ Si	Q	-105 to -115

^{*}See shorthand notation for siloxane polymer unit in the *Polydimethylsiloxane* entry in this handbook.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Infrared absorption	cm ⁻¹	$\begin{array}{c} \text{Si-O-Si} \\ \text{Si-}(\text{C}_6\text{H}_5) \\ \text{Si-}(\text{CH}_3) \\ \text{Si-H} \\ \text{Si-OH} \\ \text{Si-CH=CH}_2 \end{array}$	1,000–1,130 3,020–3,080; 1,590; 1,430; 1,120; 700; 730 760–845; 1,245–1,275 2,100–2,300; 760–910 3,200–3,695; 810–960 1,590–1,610; 990–1,020; 980–940	(4, 5)
Ultraviolet (UV) absorption	nm	$Si-(C_6H_5)$	270; 264; 259	(6)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	PMPS (102 cs) at 20°C PMPS (500 cs) at 25°C PMPS ($M_{\rm w} = 3.27 \times 10^5$) at 25°C	1.0787 1.11 1.115	(7) (8) (9)
Density-molecular weight-temperature relationship	$g \text{cm}^{-3}$	Material: trimethylsiloxy-ended PMPS at 0-60°C	$1/\rho = 0.7303 + \\ (4.4893 \times 10^{-4})T + \\ (0.1814T + 16.3684)/M$	(10)
Solvents	Toluene, chlo	proform, diethyl ether, ethyl acetat	e, acetone (hot)	(11, 12)
Nonsolvents	Methanol, etl ethylene gl	nanol, <i>n</i> -propanol, perfluoro meth	ylcyclohexane,	(11, 12)
Solubility parameter δ	$(MPa)^{1/2}$	Silica filled PMPS elastomer measured by swelling	18.4	(12)
Theta temperature Θ	K	Diisobutylamine	303.4	(13)
Second virial coefficients A_2	$mol cm^3 g^{-2}$	PMPS ($M_n = 4.06 \times 10^5$) in cyclohexane at 25°C	1.52×10^{-4}	(13)
Characteristic ratio, $C_{\infty} = \langle r^2 \rangle / n l^2$	-	Undiluted PMPS with 100 bonds equilibrated at 383 K	10.7	(14)
Root-mean-square end-to-end chain length, $(\langle r^2 \rangle/M)^{1/2}$	$nm \ mol^{1/2} \\ g^{-1/2}$	PMPS at 25°C Value calculated for $l=1.65\text{Å}$, $\theta_1=110^\circ$, $\theta_2=143^\circ$	5.65×10^{-2} 3.63×10^{-2}	(13)
Z-average radius of gyration $\langle s^2 \rangle_z$	_	PMPS in benzene-d ₆ at 293 K ($M_z = 3,890$)	11.9	(15)
Sylution \5 /z		PMPS in benzene-d ₆ at 293 K ($M_z = 8,500$)	18.6	(15)
		PMPS in benzene-d ₆ at 293 K ($M_z = 21,130$)	26.7	(15)

Mark-Houwink parameters: K and a

Solvents	Temp. (°C)	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	а	Reference
Toluene	25°C	3.90	0.78	(13)
Diisobutylamine	30.4°C	51.5	0.50	(13)
Cyclohexane	25°C	5.52	0.72	(13)
Cyclohexane	25°C	27.3	0.60	(16)
Cyclohexane	50°C	15.6	0.65	(16)
Methylcyclohexane	20°C	30.6	0.58	(16)
THF	25°C	16.5	0.69	(16)
Toluene	25°C	12.3	0.684	(17)
Toluene	25°C	6.7	0.78	(18)
Benzene	20°C	110.6	0.57	(18)

Poly(methylphenylsiloxane)

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Interaction	_	Compound pair	Temp. (K)	Method		
parameter χ_{12}		PMPS network/toluene	298	Swelling	0.485	(6)
		PMPS network/benzene	298	Swelling	0.489	(6)
		PMPS network/ chloroform	298	Swelling	0.496	(6)
		PMPS network/ cyclohexane	298	Swelling	0.632	(6)
		PMPS network/hexane	298	Swelling	0.891	(6)
		$MD_{28}^{ph}M/MD_{13}M$	Critical point, $T_c = 518$	Light scattering	0.112	(19)
		$MD_{23}^{ph}M/MD_{13}M$	Critical point, $T_c = 458$	Light scattering	0.122	(19)
		$MD_{23}^{ph}M/M^{OH}D_{15}M^{OH}$	Critical point, $T_c = 446$	Light scattering	0.111	(20)
		$MD_{23}^{ph}M/PDMS$ ($M = 1,420$; cyclic)	Critical point, $T_c = 442$	Light scattering	0.095	(21)
		MD ₃ ^{ph} M/PDMS network	298	Swelling	0.345	(22)
		MD ₂ ^{ph} M/PDMS network	298	Swelling	0.438	(22)
		MD ^{ph} M/PDMS network	298	Swelling	0.356	(22)
Enthalpy of fusion ΔH_{u}	Jg^{-1}	Semicrystalline PMPS			4.5	(17)
Viscosity	_	$MD_3^{ph}M$			0.692	(10)
temperature		PMPS (500 cs)			0.79	(8)
coefficient		PMPS (482 cs)			0.88	(23)
(VTC)		Copolymer of 50% pheny siloxane (115 cs)	lmethyl and 509	% dimethyl	0.78	(23)
Activation energies for viscous flow $\Delta E_{ m visc}$	kJ mol ⁻¹	PMPS polymer PMPS polymer			50.2 49.8	(24) (25)
Coefficients of cubical expansion α	K^{-1}	102 cs PMPS at 20°C 500 cs PMPS (273–428 K) PMPS rubber from –20 to Peroxide cure PMPS rubb Copolymer of 35% methy siloxane at 20°C	per from 30-90°		7.1×10^{-4} 7.7×10^{-4} 4.69×10^{-4} 8.52×10^{-4} 7.6×10^{-4}	(12) (7) (26) (27) (28)

Poly(methylphenylsiloxane)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature $T_{\rm g}$	K	PMPS $(M \to \infty)$ PMPS $(M_n = 27,300)$ PMPS $(M_n = 93,000)$	251.3 247 240.5	(17) (29) (30)
Melting point $T_{\rm m}$	K	Semicrystalline PMPS	308	(17)
Coefficient of isothermal compressibility β	atm ⁻¹	Copolymer of 35% methylphenyl and 65% dimethyl siloxane at 20°C	7.1×10^{-5}	(28)

$Compressibility^{(8)} \\$

Pressure (psi)	Material	Compressibility (%)	Bulk modulus, secant method (psi)
1,000	PMPS (500 cs)	0.4	250,000
5,000	PMPS (500 cs)	1.7	294,000
10,000	PMPS (500 cs)	3.15	317,000
20,000	PMPS (500 cs)	5.5	364,000

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Water contact angle θ	Degrees	PMPS film on soda-lime glass, after 15 min treatment at:		(31)
		100°C	77	
		200°C	81	
		300°C	83	
		400°C	81	
		450°C	60	
		475°C	0	
Surface tension γ	${ m mNm^{-1}}$	102 cs PMPS at 20°C	26.1	(7)
,		500 cs PMPS at 25°C	28.5	(8)
Temperature coefficient of surface tension $-d\gamma/dT$	$\mathrm{mN}\mathrm{m}^{-1}\mathrm{K}^{-1}$	PMPS (50-102 cs) at 20°C	0.11	(7)
Flash point	K	500 cs PMPS	575	(8)
Pour point, open cup	K	500 cs PMPS	251	(8)
Refractive index $n_{\rm D}^{25}$	_	MD ₂ ^{ph} M at 25°C	1.4744	(10)
		$MD_3^{ph}M$ at $25^{\circ}C$	1.4889	(10)
		PMPS (500 cs) at 25°C	1.533	(8)
		PMPS $(M = 4 \times 10^4)$	1.550	(32)
Thermal conductivity	$W m^{-1} K^{-1}$	500 cs PMPS at 50°C	0.147	(8)

Poly(methylphenylsiloxane)

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
Specific heat at 100°C	$kJ kg^{-1} K^{-1}$	500 cs PMPS at 40°C	1.52			(8)
		500 cs PMPS at 100°C	1.901			
		500 cs PMPS at 200°C	2.115			
Radiation resistance	rads	500 cs PMPS	2.0 × 1	0^{8}		(8)
Diamagnetic susceptibility $X_{\rm m}$	$\mathrm{cm}^3\mathrm{g}^{-1}$	PMPS fluid	0.597 ×	< 10 ⁻⁶		(33)
Sound velocity	${\rm ms}^{-1}$	s ⁻¹ At 25°C, 500 cs PMPS 1,372				(8)
X-ray diffraction pattern	Å	Semi-crystalline PMPS	8.33, 7.	69, 4.83,	4.40, 3.8	(17)
Color	APHA	500 cs PMPS	40			(8)
Gas solubility coefficient <i>S</i>	cm ⁻³ (STP)/cr	cm ⁻³ (STP)/cm ³ polym. atm		35°C	55°C	(34)
		CO_2	1.19	0.81	0.76	
		CH ₄	0.3	0.25	0.20	
		C_3H_8	8.57	3.79	2.65	

Gas permeability coefficient of silica filled PMPS membrane, at $35^{\circ}C^{(35,36)}$

Gas	$\textit{Pr} imes 10^8$ (cm 3 (STP) cm/s cm 2 cm Hg)	Gas	$Pr \times 10^8$ (cm 3 (STP) cm/s cm 2 cm Hg)
NH ₃	10.97	CH_4	0.36
H_2S	8.73	O_2	0.32
C_3H_8	1.39	N_2	0.103
C_2H_6	0.91	H_2	1.15
CO_2	2.26	He	0.35
C_2H_4	0.93	_	_

WLF parameters for PMPS

M _n	T ₀ (K)	C ₁	C ₂ /K	<i>T</i> _g (K)	$a_{T,lpha}$ method	Reference
5,000	181.2	20.4	56.76	223.3	Photon correlation spectroscopy	(37, 38)
12,000	237.4	23.96	48.8	237.4	Dynamic mechanical measurement	(37, 39)
12,000	258.4	7.32	32.5	237.4	Data from dielectric relaxation	(37, 39)
27,300	273.2	14.8	66.4	247.2	Photon correlation spectroscopy	(29)
27,300	248.2	14.8	55.9	248.2	Photon correlation spectroscopy	(29)
27,300	273.2	11.8	67.9	247.2	Data from dielectric relaxation	(29)
130,000	243.2	17.69	34.71	243.2	Dynamic mechanical measurement	(37, 39)
130,000	261.8	7.47	36.1	243.2	Data from dielectric relaxation	(37, 39)

Dielectric constant and dissipation factor of PMPS (500 cs) at $25^{\circ}C^{(40)}$

Property	Frequency (Hz)								
	1 × 10 ²	1 × 10 ³	1 × 10 ⁴	1 × 10 ⁵	1 × 10 ⁶	1 × 10 ⁷	3 × 10 ⁸	3 × 10 ⁹	1 × 10 ¹⁰
Dielectric constant Dissipation factor $(\tan \delta \times 10^4)$	2.98 13	2.98 1.6	2.98 0.7	2.98 3	2.98 10	2.97 50	2.93 200	2.79 140	2.60 170

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Lubricity	mm	Shell four-ball test (wear scar) Steel on steel, PMPS-co-PDMS (25 mol% phenyl) at 1 h/600 rpm/	4.18	(1)
		50 kg load/ambient temperature Steel on bronze, PMPS-co-PDMS (25 mol% phenyl) at 1 h/600 rpm/ 10 kg load/ambient temperature	2.53	
		Steel on steel, PMPS-co-PDMS (40 mol% phenyl) at 1 h/600 rpm/50 kg load/ambient temperature	4.13	
		Steel on bronze, PMPS-co-PDMS (40 mol% phenyl) at 1 h/600 rpm/ 10 kg load/ambient temperature	0.42	
Dielectric strength	$kV cm^{-1}$	500 cs PMPS	137.8	(8)
Volume resistivity	$\rm ohmcm^{-1}$	500 cs PMPS	1.0×10^{13}	(8)
Optical configuration parameter Δa	cm ³	PMPS ($M = 4 \times 10^4$) in benzene solution	-17×10^{-25}	(32)
•		PMPS ($M = 6 \times 10^4$) with 50 % substitution of dimethlysiloxane in benzene	-5.1×10^{-25}	(32)
		Peroxide cure PMPS network at 25°C Peroxide cure PMPS network at 50°C	$-1.21 \times 10^{-25} \\ -1.27 \times 10^{-25}$	(9)
		Peroxide cure PMPS swelled in decalin at 25°C	-1.27×10 -0.85×10^{-25}	(9) (9)
		Theoretical value for PMPS	-1.16×10^{-25}	(9)
Stress-optical coefficient C	$m^2\;N^{-1}$	PMPS network at 25°C	5.73×10^{-9}	(9)
Root-mean square dipole moment ratio $\langle \mu^2 \rangle_0/nm^2$	_	PMPS ($M_{\rm w}=1.2\times10^5$) in cyclohexane at 25°C	0.31	(41)
Decomposition products	Mixture of stereoisomeric cyclic trimers and tetramers with small amount of pentamer, benzene, and two more complex oligomers (conditions: random scission at $T > 300^{\circ}\text{C}$)			

Poly(methylphenylsiloxane)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Thermal decomposition point	K	500 cs PMPS	644	(8)
Spontaneous ignition temperature	K	500 cs PMPS	760	(8)
Activation energy of depolymerization	$kJ mol^{-1}$	Trimethylsiloxy end-blocked PMPS	180	(43)
Fire parameters (cone calorimeter test) Peak rate of heat release Yield of carbon monoxide Specific extinction area	$kW m^{-2}$ $kg kg^{-1}$ $m^2 kg^{-1}$	External heat flux $60\mathrm{kW}\mathrm{m}^{-2}$	90 0.016 1800	(44)

- 1. Meals, R. N., and F. M. Lewis. Silicone. Reinhold Publishing, New York, 1959, chap. 2.
- 2. Taylor, R. B., B. Parbhooand, and D. M. Fillmore. In *Analysis of Silicone*, 2d ed., edited by A. L. Smith. John Wiley and Sons, New York, 1991, chap. 12.
- 3. Williams, E. A. In *Annual Reports on NMR Spectroscopy*, edited by G. A. Webb. Academic Press, London, 1983, Vol. 15, p. 235.
- 4. Anderson, D. R. In *Analysis of Silicone*, edited by A. L. Smith. John Wiley and Sons, New York, 1974, chap. 10.
- 5. Mayhan, K. G., L. F. Thompson, and C. F. Magdalin. J. Paint Tech. 44 (1972): 85.
- 6. Kuo, C. M. Ph.D. Dissertation, University of Cincinnati, 1991.
- 7. Fox, H. W., P. W. Taylor, and W. A Zisman. Ind. Eng. Chem. 39 (1947): 1,401.
- 8. *Dow Corning* 710 *Fluid.* Information about Dow Corning Silicone Fluid, Dow Corning Corp., Midland, Mich., Form No. 22-281A-76 and 24-298A-90.
- 9. Llorente, M. A., I. F. de Pierola, and E. Saiz. Macromolecules 18 (1985): 2,663.
- 10. Nagy, J., T. Gabor, and K. Becker-Palossy. J. Organometal. Chem. 6 (1966): 603.
- 11. Kiselov, B. A., I. A. Stepina, and Z. P. Ablekova. Soviet Plastics. 1970, p. 13.
- 12. Yerrick, K. B., and H. N. Beck. Rubber Chem. Technol. 37 (1964): 261.
- 13. Buch, R. R., H. M. Klimisch, and O. K. Johnanson. J. Polym. Sci.: Part A-2, 8 (1970): 541.
- 14. Beevers, M. S., and J. A. Semlyen. Polymer 12 (1971): 373.
- 15. Clarson, S. J., K. Dodgson, and J. A. Semlyen. Polymer 28 (1987): 189.
- 16. Salom, C., J. J. Freire, and I. Hernandez-Fuentes. Polymer 30 (1989): 615.
- 17. Momper, B., et al. Polymer Commu. 31 (1990): 186.
- 18. Andrianov, K. A., et al. Vysokomol. Soedin A14 (1972): 1,816.
- 19. Kuo, C. M., and S. J. Clarson. Macromolecules 25 (1992): 2,192.
- 20. Kuo, C. M., and S. J. Clarson. Eur. Polym. J. 29 (1993): 661.
- 21. Kuo, C. M., and S. J. Clarson, and J. A. Semlyen. *Polymer* 35 (1994): 4,623.
- 22. Clarson, S. J., V. Galiatsatos, and J. E. Mark. Macromolecules 23 (1990): 1,504.
- 23. Barry, A. J., and H. N. Beck. In *Silicone Polymer*, edited by F. G. A. Stone and W. A. G. Graham. Academic Press, New York, 1962.
- 24. Polmanteer, K. E. J. Elastoplas. 2 (1970): 165.
- 25. Polmanteer, K. E. Rubber Chem. and Technol. 61 (1987): 470.
- 26. Polmanteer, K. E., and M. J. Hunter. J. Appl. Polym. Sci. 1 (1959): 3.
- 27. de Candia, F., and A. Turturro. J. Macromol. Sci. Chem. A6 (1972): 1,417.
- 28. Allen, G., et al. Polymer 1 (1960): 467.
- 29. Boese, D., et al. Macromolecules 22 (1989): 4,416.
- 30. Clarson, S. J., J. A. Semlyen, and K. Dodgson. Polymer 32 (1991): 2,823.
- 31. Hunter, M. J., et al. Ind. Eng. Chem. 39 (1947): 1,389.
- 32. Tsvetkov, V. N., et al. Vysokomol. Soyed. 9A (1967): 3.
- 33. Bondi, A. J. Phys. Coll. Chem. 55 (1951): 1,355.
- 34. Shah, V. M., B. J. Hardy, and S. A. Stern. J. Polym. Sci.: Part B, Polym. Phys., 24 (1986): 2,033.

Poly(methylphenylsiloxane)

- 35. Stern, S. A., V. M. Shan, and B. J. Hardy. J. Polym. Sci.: Part B: Polym. Phys., 25 (1987): 1,263.
- 36. Bhide, B. D., and S. A. Stern. J. Appl. Polym. Sci. 42 (1991): 2,397.
- 37. Ngai, K. L., and D. J. Plazek. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, chap. 25.
- 38. Plazek, D. J., et al. Colloid Polym. Sci. 272 (1994): 1,430.
- 39. Santangelo, P. G., et al. J. Non-cryst. Solids 172-174 (1994): 1,084.
- 40. *Table of Dielectric Materials*. Laboratory for Insulation Research, MIT, Cambridge, Mass., 1953, Vol. 4, p. 67.
- 41. Salom, C., J. J. Freire, and I. Hernanez-Fuentes. Polymer J. 20 (1988): 1,109.
- 42. Grassie, N., I. G. Macfarlane, and K. F. Francey. Eur. Polym. J. 15 (1979): 415.
- 43. Thomas, T. H., and T. C. Kendrick. J. Polym. Sci.: Part A-2, 8 (1970): 1,823.
- 44. Buch, R. R. Fire Safety Journal 17 (1991): 1.

Poly(methylphenylsilylene)

ROBERT WEST

ACRONYM, **ALTERNATIVE NAME** PMPS, polymethylphenylsilane

CLASS Polysilanes

 $\begin{array}{ll} \textbf{STRUCTURE} & [-CH_3SiC_6H_5-] \end{array}$

MAJOR APPLICATIONS Hole transport agent in electrophotography, light-emitting diodes, display devices, and printing processes.

PROPERTIES OF SPECIAL INTEREST Good film-forming characteristics and efficient hole conductor.

GENERAL INFORMATION Polysilanes, or poly(silylene)s, are polymers in which the entire main chain is made up of silicon atoms. This structure permits delocalization of the σ -electrons, giving the polysilanes unique electronic properties. Polysilanes have strong UV absorption bands in the near UV region (\sim 300–400 nm). The excitation energy depends on the polymer chain conformation, which may change with temperature, so many polysilanes are thermochromic. Polysilanes undergo photodegradation with UV light; they can be patterned in photolithographic processes and used as free-radical photoinitiators. They are excellent hole conductors, and display nonlinear optical behavior. For an overview of polysilanes, see references (1, 2, 3).

Preparative techniques

REACTANTS	TEMP. (°C)	YIELD (%)	$M_{ m w} imes 10^{-3}$	REFERENCE
PhMeSiCl ₂ , Na, toluene	110	41	200, 6	(4)
PhMeSiCl ₂ , Na, Et ₂ O, 15-crown-5	35	88	66	(5)
PhMeSiCl ₂ , Na, toluene (15% heptane), 15-crown-5	65	40	10.2	(6)
PhMeSiCl ₂ , Na, toluene, ultrasound	110	55	107, 3.3	(7)
PhMeSiCl ₂ , Na, toluene, 2% EtOAc	110	16	431, 11.6	(8)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Repeat unit	$g \text{mol}^{-1}$	C ₆ H ₅ SiCH ₃	120	_
Molecular weight	Varies greatly d	epending on polymerization condition	s	
Polydispersity	Varies greatly d	epending on polymerization condition	s	
Glass transition temperature $T_{\rm g}$	K	Polymer is ordinarily atactic and amorphous	~393	_

Poly(methylphenylsilylene)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Melting temperature, $T_{\rm m}$	K	Polymer is	ordinarily atactic orphous	~493	_
Infrared spectrum	cm^{-1}	_		3,030, 2,960, 2,870, 2,000- 1,660, 1,600, 1,530, 1,430, 1,100, 1,265, 830-650, 430	(7)
UV absorption	nm	$M_{\rm w} = 10^6$ $M_{\rm w} = 10^4$; $M_{\rm w} = 10^3$	9,300 (ε = repeat)	342 341 332	(9) (5, 9) (9)
Emission spectrum	nm	2-MeTHF $\tau = 0.02$	solution, $\phi = 0.75$,	353	(1)
		Solid, 77 K Solid, 298	. ⁻	350, 480 365, 530	(10) (11)
NMR spectra	δ (ppm)	Nucleus 29Si 13C 13C 13C 14H 1H	$\begin{array}{c} \text{Condition} \\ \\ C_6D_6 \\ C_6D_6 \\ C_6D_6 \\ C_6D_6 \\ C_6D_6 \\ C_6D_6 \end{array}$	-39.2, -39.9, -41.2 -6.7 to -5.4 127.6-129.3 135.0-136.3 0.5-1.0, b, CH ₃ 6.0-7.5, b, C ₆ H ₅	(4, 7) (7) (7) (7) (7) (7)
Solvents	THF, toluene	, CH ₂ Cl ₂ , he	exane, 25°C		
Nonsolvents	Ethanol, 2-pro	opanol			
Properties from light so $M_{\rm w}$ $M_{\rm w}/M_{\rm n}$ $10^4~A_2$ $R_{\rm g}$ $R_{\rm g'}^{\rm g}$ w C_{∞}	cattering study g mol ⁻¹ mol cm ³ g ⁻² nm nm	THF soluti	ion	$46,000$ 4.2 3.6 ± 0.5 21 15 64 ± 20	(12)
Electrical conductivity	Scm^{-1}	Doped wit	h SbF ₅	2×10^{-4}	(13)
Hole drift mobility	$cm^2 V^{-1} s^{-1}$	•		2×10^{-4} 7×10^{-5}	(14)
Surface tension	$\mathrm{mN}\mathrm{m}^{-1}$	_		43.3, 44.1	(15)

Poly(methylphenylsilylene)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Scission, quantum yield, $\phi_{\rm s}$	mol Einstein ⁻¹	THF solution, $\lambda = 313 \text{nm}$ Solid, $\lambda = 313 \text{nm}$	0.97 0.015	(1)
Cross-linking, quantum yield, $\phi_{\rm x}$	mol Einstein ⁻¹	THF solution, $\lambda = 313 \text{nm}$ Solid, $\lambda = 313 \text{nm}$	0.12 0.002	(1)
Suppliers	Nippon Soda Co. Ltd., 2-1, Ohtemachi 2-chome, Chiyoda-ku, Tokyo 100, Japa Gelest Inc., 612 William Leigh Drive, Tullytown, PA 19007-6308, USA			

Nonlinear optical properties⁽¹⁶⁾

$M_{\rm w}$ (g mol ⁻¹)	Temp. (°C)	λ (nm)	Lp (nm)	X ¹³¹ (esu)
>300,000	23	1,064	120	7.2×10^{-12}
_	23	1,907	120	4.2×10^{-12}
_	23	1,907	1,200	1.9×10^{-12}

- 1. Miller, R. D., and J. Michl. J. Chem. Rev. 89 (1989): 1,359.
- 2. West, R. In *Inorganic Polymers*, edited by J. E. Mark, H. R. Allcock, and R. West. Prentice Hall, Englewood Cliffs, N.J., 1992, chap. 5.
- 3. West, R. In *Comprehensive Organometallic Chemistry II*, Vol. 2, edited by A. G. Davies. Pergamon Press, Oxford, 1995, chap. 3.
- 4. West, R., and P. Trefonas. Inorg. Synth. 25 (1988): 58.
- Cragg, R. H., R. G. Jones, A. C. Swain, and S. J. Webb. J. Chem. Soc., Chem. Commun., (1990): 1,147.
- 6. Miller, R. D., D. Thompson, R. Sooriyakumaran, and G. N. Fickes. J. Polym. Sci., Polym. Chem. Ed., 29 (1991): 813.
- 7. Matyjaszewski, K., D. Greszka, J. S. Hrkach, and H. K. Kim. Macromolecules 28 (1995): 59.
- 8. Miller, R. D., and P. K. Jenkner. Macromolecules 27 (1994): 5,921.
- 9. DeMahiu, A. F., D. Daoust, J. Devaux, and M. de Valete. Eur. Polym. J. 28 (1992): 685.
- 10. Kagawa, T., M. Fujino, K. Takeda, and N. Matsumoto. Solid State Commun. 57 (1986): 635.
- 11. Nakayama, Y., et al. J. Non-Cryst. Solids (1992): 198.
- 12. Cotts, P. M., et al. Macromolecules 20 (1987): 1,046.
- 13. Hayashi, T., Y. Uchimaru, P. Reddy, and M. Tanaka. Chem. Letters (1992): 647.
- 14. Dohmaru, T., et al. Phil. Mag. B 71 (1995): 1,069.
- 15. Fujisaka, T., R. West, and C. Murray. J. Organometal. Chem. 449 (1993): 105.
- 16. Baumert, J. C., et al. Appl. Phys. Lett. 53 (1988): 1,147.

Poly(methylsilmethylene)

Q. H. SHEN AND L. V. INTERRANTE

ACRONYMS PC, PCS

CLASS Polycarbosilanes

STRUCTURE Si(Me)HCH₂ (branched, partially x-linked)

PREPARATIVE TECHNIQUES The polycarbosilane* employed to make commercial Nicalon SiC ceramic fiber is prepared via thermally induced rearrangement reaction of poly(dimethylsilane) or dodecamethylcyclohexasilane.

MAJOR APPLICATION Precursor for the commercial NicalonTM fiber, SiC composites. The polymer itself is no longer available for sale in the United States and Canada.

PROPERTIES OF SPECIAL INTEREST Relatively low cost. High yield for SiC ceramic. Fuseable solid, soluble in hydrocarbons. Poor resistance to base and oxidation by air.

PROPERTY	UNITS	CONDITION	ıs		VALUE	REFERENCE
Molecular	$g \text{mol}^{-1}$	Polymer	Starting materials	Reaction temp. (°C)		
weight, $M_{\rm n}$		PC-450	Polydimethylsilane	450	1,250	(1)
		PC-460	Polydimethylsilane	460	1,450	(1)
		PC-470	Polydimethylsilane	470	1,750	(1)
		PC-B5.5	Polydimethylsilane	320	1,312	(2)
			Borodiphenylsiloxane	_	_	_
		PC-B3.2	Polydimethylsilane	280	1,730	(2)
			Borodiphenylsiloxane	_	_	_
IR (characteristic absorption frequencies)	cm^{-1}	For SiCH For Si-H	-		1,050, 1,350, 2,100	(1)
NMR spectra	ppm	¹³ C NMR, solution ²⁹ Si NMR, solution		4.4, 0.2, -0.3 3 -0.75 to 0.5; -17.5 to -16.01	(1) (3) (2) (3, 4, 5)	
Density	$g ml^{-1}$	25°C			1.116	(6)

^{*}Polycarbosilanes with the [SiMeHCH₂]_n formula can also be prepared via the Grignard coupling reaction of Cl₂(Me)SiCH₂Cl, followed by reduction with LiAlH₄, or via ROP of 1,3-dichloro-1,3-dimethyl-1,3-disilacyclobutane, followed by LiAlH₄ reduction, or via chlorination of poly(dimethylsilylenemethylene), followed by reduction with LiAlH₄. The products of these latter reactions differ considerably in structure and properties from the "PCS" obtained from [Me₂Si]_n, have lower yields as SiC precursors, and are not widely used for this purpose.

Poly(methylsilmethylene)

PROPERTY	UNITS	CONDITIONS	VAL	UE REFERENCE
Decomposition temperatures	K	For cured PC fibers in N_2 Starting decomp. temp. Ending decomp. temp.	~67 ~1,	

Pyrolyzability

CONDITIONS	PYROLYSIS TEMP. (K)	VALUE	REFERENCE
Nature of the product (under N ₂);		Empirical formula for pyrolyzed SiC	(2)
PC precursors		fibers (amorphous)	
PC-TMS	1,573	$SiC_{1.79}H_{0.037}O_{0.191}$	
PC-470	1,573	$SiC_{1.40}H_{0.046}O_{0.038}$	
PC-B3.2	1,573	$SiC_{1.48}H_{0.139}O_{0.145}$	
PC-B5.5	1,573	$SiC_{1.57}H_{0.051}O_{0.145}B_{0.006}$	
Amount of product (under N ₂);		Ceramic yield (%)	(2)
PC precursors			
PC-470	1,573	54	
PC-TMS	1,573	76	
PC-B-5.5	1,573	61	
PC-B3.2	1,573	64	
Impurities remaining (under N_2)	1,573	Solid impurities Free C, SiO ₂	(8, 9)
Gaseous products	673-873	H_2 , C_nH_{2n+2}	(2)
(under vacuum or N ₂)*	873-1.273	H ₂ , CH ₄	()
(1,273–1,573	H ₂	
	>1,773	CO	
Gaseous products (under He)	873	CH ₄	(10)
from PCS precursors	973	CH ₄ , C ₂ H ₆ , Me ₂ SiH ₂ , Me ₃ SiH, Me ₄ Si	` '
1	1,073	CH ₄ , C ₂ H ₆ , Me ₃ SiH, Me ₄ Si	
	1,273	CH ₄ , C ₂ H ₆ , CO, C ₂ H ₄ Me ₃ SiH, Me ₄ Si	

^{*}From PC-470 and PC-B precursors.

- 1. Yajima, S., Y. Hasegawa, J. Hayashi, and M. Imura. J. Mater. Sci. 13 (1978): 2,569.
- 2. Hasegawa, Y., and K. Okamura. J. Mater. Sci. 18 (1983): 3,633.
- 3. Soraru, G. D., F. Babonneau, and J. D. Mackenzie. J. Mater. Sci. 25 (1990): 3,886.
- 4. Taki, T., et al. J. Mater. Sci. Lett. 6 (1987): 826.
- 5. Taki, T., K. Okamura, and M. Sato. J. Mater. Sci. 24 (1989): 1,263.
- 6. Ichikawa, H., F. Machino, H. Teranishi, and T. Ishikawa. Silicon-based Polymer Science, Advances in Chemistry Series, 224 (1990): 619.
- 7. Hasegawa, Y., M. Iimura, and S. Yajima. J. Mater. Sci. 15 (1980): 720.
- 8. Yajima, S. et al. Nature 279 (1979): 706.
- 9. Okamura, K., M. Sato, and Y. Hasegawa. J. Mater. Sci. lett 2 (1983): 769.
- 10. Bouillon, E., et al. J. Mater. Sci. 26 (1991): 1,333.

Poly(methylsilsesquioxane)

RONALD H. BANEY

ACRONYM, ALTERNATIVE NAME, TRADE NAME Methyl-T, PMSQ, Glass Resin[®] (Owens Illinois/Showa Denko)

CLASS Polysiloxanes (siloxane ladder polymers)

STRUCTURE The structure has not been reported in the literature but probably depends upon the method of preparation. Structural studies on methylsilsesquioxane are virtually nonexistent though the term ladder structure is frequently used.⁽¹⁾

MAJOR APPLICATIONS Interlayer dielectrics, high-temperature resins, and organic antireflective coatings.

PROPERTIES OF INTEREST Very high thermal stability ($>500^{\circ}$ C) and good dielectric properties.

RELATED POLYMERS Poly(alkylsilsesquioxane) and poly-*co*-silsesquioxanes: There are many references to these classes of materials, ⁽¹⁾ but they are generally poorly characterized. Thus, they are not included in this handbook.

Preparation

Acronym*	Process	Molecular weight (g mol ⁻¹)	Reference
PMSQ-1	H_2O to MeSiCl ₃ in THF and/or MIBK + Et ₃ N at 0° C then heat to 110° C	$M_{\rm w}=10^5$	(2, 3)
PMSQ-2	Same as PMSQ-1 at 3,000 Pa N ₂	$M_{\rm w} = 10^6$	(4)
PMSQ-3	Two layer system of sodium acetate in H_2O and toluene with 2-propanol	$M_{\rm w} = 5 \times 10^3$	(58)
PMSQ-4	MeSiCl ₃ + ethylenediamine (2:1) then hydrolysis in acetone-water-HCl, dried solid heated in xylene at 35°C	$M_{\rm w} = 10^5 10^6$	(6)
PMSQ-5	MeSi(OMe) ₃ at interface of aqueous ammonia	Insoluble spheres	(7, 8)
PMSQ-6	Partial hydrolysis and condensation of MeSi(OMe) ₃	_	(9)
PMSQ-7	MeSiOAc(OMe) ₂ reacted with NaHCO ₃ suspended in MIBK at 100°C gave prepolymer which was then heated with 1 wt% KOH	$M_{\rm n}=1.4\times10^5$	(9)
PMSQ- Insoluble	Direct hydrolysis of MeSiCl ₃ with no solvent	Insoluble gel	(6)

^{*}See reference (1).

Poly(methylsilsesquioxane)

Characteristic IR bands (Si-O-Si stretch) for "ladder" structure*

PMSQ-	Characteristic IR (cm ⁻¹)	<i>d</i> spacing (Å)	²⁹ Si NMR (ppm)	Reference
1	1,180, 1,020	_	_	(2)
2	1,130, 1,035	_	_	(4)
3	1,125, 1,040	_	_	(5)
4	1,120, 1,030	8.7, 3.6	-55.3, -64.8	(6)
7	1,125, 1,040	_	_	(10)

^{*}Not definitive.

Thermal stability

Material	Conditions		Temp. (°C)	
		Air	N ₂	
MeSiCl ₃ hydrolyzed with "organic solvent" and condensed with Et ₃ N catalyst	Onset, decomposition	460	_	(11)
PMSQ-3	Onset, decomposition	400	660	(5)
PMSQ-4	5% N ₂ , 9% air	400	400	(6)

Applications

Application	Reference
Resists	(12)
Electrical insulation	(2-5)
Additives for cosmetics	(13)
Additives for toughening plastics	(14, 15)
Cladding for glass fiber	(16)
Ceramic binder	(17)
Si-C-O ceramic precursor	(18)

- 1. Baney, R. H., M. Itoh, A. Sakakibara, and T. Suzuki, T. Chem. Rev. 95(5) (1995): 1,409.
- Suminoe, T., Y. Matsumura, and O. Tomomitsu. Japanese Patent Kokoku-S-60-17214 (1985) [Kokai-S-53-88099 (1978)]; Chem. Abstr. 89 (1978): 180824.
- 3. Matsumura, Y., et al. U.S. Patent 4,399,266 (1983); Chem. Abstr. 99 (1983): 159059.
- 4. Fukuyama, S., et al. European Patent 0 406 911 A1 (1985); Chem. Abstr. 105 (1986): 115551.
- 5. Nakashima, H. Japanese Patent Kokai-H-3-227321 (1991); Chem. Abstr. 116 (1992): 60775.
- 6. Xie, Z., Z. He, D. Dai, and R. Zhang. Chinese J. Polym. Sci. 7(2) (1989): 183.
- Nishida, M., T. Takahashi, and H. Kimura. *Japanese Patent* Kokai-H-1-242625 (1989); Chem. Abstr. 112 (1990): 99962.
- Terae, N., Y. Iguchi, T. Okamoto, and M. Sudo. *Japanese Patent* Kokai-H-2-209927 (1990); Chem. Abstr. 114 (1991): 43819.
- 9. Abe, Y., et al. J. Polym. Sci., Part A, Polym. Chem. 33 (1996): 751.
- Morimoto, N., and H. Yoshioka. *Japanese Patent* Kokai-H-3-20331 (1991); Chem. Abstr. 115 (1991): 30554.
- 11. Adachi, H., E. Adachi, O. Hayashi, and K. Okahashi. Rep. Prog. Polym. Phys. Japan 29 (1986): 257.
- 12. Gozdz, A. S. Polym. Adv. Technol. 5 (1994): 70.

Poly(methylsilsesquioxane)

- 13. Hase, N., and T. Tokunaga. *Japanese Patent* Kokai-H-5-43420 (1993); *Chem. Abstr.* 119 (1993): 34107.
- 14. Kugimiya, Y., and T. Ishibashi. *Japanese Patent* Kokai-H-1-135840 (1989); *Chem. Abstr.* 111 (1989): 215766.
- Dote, T., K. Ishiguro, M. Ohtaki, and Y. Shinbo. *Japanese Patent* Kokai-H-2-194058 (1990); Chem. Abstr. 113 (1990): 213397.
- Honjo, M., and T. Yamanishi. *Japanese Patent* Kokai-H-3-240002 (1991); Chem. Abstr. 116 (1992): 107865.
- 17. Mine, T., and S. Komasaki. *Japanese Patent* Kokai-S-60-210569 (1985); *Chem. Abstr.* 104 (1986): 154451
- 18. Laine, R. M., et al. Chem. Mater. 2 (1990): 464.

LISALEIGH KANE AND RICHARD J. SPONTAK

ACRONYMS $P\alpha MS$, PAMS

CLASS Vinyl polymers

STRUCTURE

$$CH_3$$
 $+C-CH_2$

MAJOR APPLICATION Copolymer with styrene for improved heat resistance.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	$\mathrm{g~cm}^{-3}$	_	1.07	(1)
Glass transition temperature $T_{\rm g}$	K	$\overline{M}_{ m w} =$		
ı g		700,000	435	(2)
		400,000	444	(2)
		113,000	441	(2)
		76,500	447.3	(3)
		61,000	443	(4)
		55,000	442, 453	(5, 6)
		50,000	453	(1)
		25,000	439.5	(3)
		19,500	442	(6)
		6,700	433	(6)
		3,500	414	(6)
		2,510	366.3	(3)
Heat capacity C_p	$\mathrm{JK}^{-1}\mathrm{mol}^{-1}$	$300\mathrm{K}$ to T_g	$29.42 + 0.4498T - (1.280 \times 10^6)T^{-2}$	(7)
		$T_{\rm g}$ to 490 K	-6.43 + 0.5758T	
Ceiling temperature	K	_	334	(8, 9)
Depolymerization temperature	K	_	563	(10)
Activation energy for pyrolysis	kJ (per repeat unit)	_	188-243	(11)

			Poly(α -meth	ylstyrene)
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Half-life temperature	K	Polymer loses 50% by weight in 40-50 min	560	(10)
Volatilization (per minute)	%	350°C	230	(10)
Dielectric constant	_	_	2.58	(12)
NMR spectroscopy	Solven Solven	t = d -chloroform, $T = 30^{\circ}$ C, conc. = 10% (w/v) t = chlorobenzene, $T = 120^{\circ}$ C, conc. = 20% (w/v) t = o -dichlorobenzene, $T = 100^{\circ}$ C, conc. = 10 wt% t = chlorobenzene-d5, $T = 30$, 70° C, conc. = 7.5% t = methylene chloride, $T = -78^{\circ}$ C	(w/v)	(13) (14) (15) (16) (17)
		$t = d$ -chloroform, $T = 25^{\circ}C$		(18)
Flory-Huggins interaction parameter χ	-	Homopolystyrene	0.0323 0.047	(19) (1)
		Tetrahydrofuran, $T = 30^{\circ}$ C α -Chloronaphthalene $T = 30^{\circ}$ C	0.462 0.440	(20) (20)
		$T=45.5^{\circ}\text{C}$ Toluene	0.428	(20)
		$T = 30^{\circ}C$ $T = 25^{\circ}C$	0.463-0.465 0.466	(2.0)
		Trans-decalin $T = 10^{\circ}C$ $T = 30^{\circ}C$	0.500 0.473	(20)
		1-Chlorobutane $T = 5^{\circ}\text{C}$	0.492	(20)
		T = 25°C T = 50°C Cyclohexane	0.490 0.489	(20)
		T = 46°C T = 39°C T = 38.6°C	0.496 0.499 0.500	` ,
		T = 36°C T = 35°C	0.500 0.500	
		T = 32°C T = 28°C T = 24°C	0.503 0.506 0.508	
		T = 20°C p-Xylene, $T = 30$ °C Nitrobenzene, $T = 30$ °C	0.509 0.459 0.481	(20) (20)
		Chlorobenzene, $T = 30^{\circ}$ C Tetralin, $T = 50^{\circ}$ C	0.455 0.427	(20) (20)
		<i>p</i> -Dioxane, $T = 30^{\circ}$ C 2-Hexanone, $T = 30^{\circ}$ C <i>n</i> -Butyl acetate, $T = 30^{\circ}$ C	0.463 0.532 0.526	(20) (20) (20)
		Dimethly formamide, $T = 30^{\circ}$ C	0.525	(20)

Polv(lpha-methy	/lstv	/rene

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solubility parameter	$(MPa)^{1/2}$	-	18.6	(21)
Interaction energy $(P^*)^{1/2}$	$(MPa)^{1/2}$	-	20.7	(21)
Interaction pair $(\delta_i \text{-} \delta_j)^2$	MPa	Polyacrylonitrile Poly(methyl methacrylate) Tetramethylbisphenol A polycarbonate Poly(vinyl chloride) Poly(2,6-dimethyl-1,4- phenylene oxide) Poly(ε-caprolactone)	93.72 0.00 0.88 0.293 2.18	(22)
Second virial coefficient A_2	$\operatorname{mol}\operatorname{cm}^3\operatorname{g}^{-2}$	$n ext{-Butyl chloride, } \overline{M}_{\mathrm{w}} = 6,900-3,540,000 \mathrm{g mol}^{-1}, T = 25^{\circ}\mathrm{C}$ Cyclohexane, $\overline{M}_{\mathrm{w}} = 5,900-341,000 \mathrm{g mol}^{-1}$ $T = 30^{\circ}\mathrm{C}$ $T = 24^{\circ}\mathrm{C}$ $T = 20^{\circ}\mathrm{C}$ Toluene, $\overline{M}_{\mathrm{w}} = 3,000-804,000 \mathrm{g mol}^{-1}, T = 25^{\circ}\mathrm{C}$	$(3.11\times 10^{-3})\overline{M}_{w}^{-0.255}$ $(5.5\times 10^{-10})\overline{M}_{w}^{0.84}$ $(6.0\times 10^{-9})\overline{M}_{w}^{0.72}$ $(2.4\times 10^{-7})\overline{M}_{w}^{0.50}$ $(2.45\times 10^{-2})\overline{M}_{w}^{-0.32}$	(23) (24) (25)
Radius of gyration $R_{\rm g}$	nm	n -Butyl chloride, $\overline{M}_{\rm w} = 6,900$ – $3,540,000~{\rm g~mol}^{-1}$, $T = 25^{\circ}{\rm C}$ Cyclohexane, $\overline{M}_{\rm w} = 5,900$ – $341,000~{\rm g~mol}^{-1}$ $T = 36.2^{\circ}{\rm C}$ $T = 28^{\circ}{\rm C}$ $T = 24^{\circ}{\rm C}$ $T = 20^{\circ}{\rm C}$	$\begin{split} &(2.10\times 10^{-2})\overline{M}_{w}^{0.526}\\ &(2.82\times 10^{-2})\overline{M}_{w}^{0.499}\\ &(4.08\times 10^{-2})\overline{M}_{w}^{0.463}\\ &(4.65\times 10^{-2})\overline{M}_{w}^{0.450}\\ &(6.54\times 10^{-2})\overline{M}_{w}^{0.414} \end{split}$	(23) (24)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ $a = \text{None}$	$n ext{-Butyl chloride, } \overline{M}_{\rm w} = 6,900 ext{-} 3,540,000 {\rm g mol}^{-1}$ $T = 25^{\circ}{\rm C}$ $T = 50^{\circ}{\rm C}$ $T = 5^{\circ}{\rm C}$ Toluene, $\overline{M}_{\rm w} = 26,000 ext{-}603,000 {\rm g mol}^{-1}$, $T = 25^{\circ}{\rm C}$ Toluene, $\overline{M}_{\rm w} = 3,000 ext{-}804,000 {\rm g mol}^{-1}$, $T = 25^{\circ}{\rm C}$	$\begin{array}{cccc} K & a \\ \hline 2.70 \times 10^{-2} & 0.590 \\ 2.65 \times 10^{-2} & 0.594 \\ 3.36 \times 10^{-2} & 0.570 \\ 7.81 \times 10^{-5} & 0.73 \\ \hline 1.1 \times 10^{-4} & 0.71 \\ \hline \end{array}$	(23) (26) (25)
Sedimentation constant S	-	Toluene, $\overline{M}_{\rm w} = 26,000-603,000$ g mol ⁻¹ , $T = 25^{\circ}{\rm C}$	$(1.72 \times 10^{-2}) \overline{M}_{\rm w}^{0.49}$	(26)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solvent	_	_	α -Chlorophthalene	(20)
			lpha-Methyl naphthalene	(10)
			Benzene	(20)
			1-Chlorobutane	(20)
			Chlorobenzene	(14, 20)
			Chloroform	(27, 28)
			Cyclohexane	(20, 26)
			Decalin	(20, 29)
			1,2-Dichloroethane	(30)
			Dichloromethane	(30)
			Dimethylformamide	(20)
			9,10-Dihydroanthracene	(29)
			Diphenylamine	(29)
			Diphenyl ether	(10)
			2-Hexanone	(20)
			Chloride	` '
			1-Methylnaphthalene	(29)
			2-Naphthol	(29)
			n-Butyl acetate	(20)
			<i>n</i> -Butyl chloride	(23)
			<i>n</i> -Hexane	(27)
			Phenol	(29)
			<i>p</i> -Xylene	(20)
			p-Dioxane	(20)
			Sulfur dioxide (l)	(30)
			Tetralin	(20, 29)
			Tetrahydrofuran	(20, 26, 32,
			T-1	33)
			Toluene	(10, 20, 34)
			Triphenylmethane	(29)
			1,4-Trichlorobenzene	(10)
Nonsolvent	_	_	Methanol	(28, 32, 35)
Theta temperature $\boldsymbol{\Theta}$	K	Cyclohexane	309.2	(24, 36)
Heat of polymerization ΔH°	$\mathrm{J}\mathrm{mol}^{-1}$	Anionic polymerization, sodium naphthalene complex initiator, THF solution	-25.9	(8)
Entropy of polymerization ΔS°	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	Anionic polymerization, sodium naphthalene complex initiator, THF solution	-103.8	(8)
Rate of depolymerization $d[M]/dt = 2k_iN[P]$	$\operatorname{mol} \operatorname{l}^{-1}\operatorname{h}^{-1}$	$T=236.5^{\circ}\mathrm{C}$ lpha-Methyl naphthalene Diphenyl ether Trichlorobenzene	$k_i = 0.19 \times 10^{-4}$ $k_i = 0.24 \times 10^{-4}$ $k_i = 0.66 \times 10^{-4}$	(10)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
UCST and LCST	K	For $\overline{M}_{\rm w}=114,000~{\rm g~mol^{-1}};$ Solvent =	$T_{ m UCST}$	(37)	
		Cyclopentane Cyclohexane Trans-decalin n-Butyl acetate n-Pentyl acetate n-Hexyl acetate	298.7 286.5 266.6 — 312.2 303.2	417.6 481.3 - 452.9 475.8 500.9	

Thermal degradation (at 275°C)

Solvent	Boiling point (°C)	% Conversion	Reference
2-Naphthol	286	33.1	(29)
Phenol	182	41.9	(29)
1-Methylnaphthalene	242	35.7	(29)
Decalin	187	23.9	(38)
Diphenylamine	302	30.2	(29)
Tetralin	207	33.8	(29)
Triphenylmethane	360	_	(29)
9,10-Dihydroanthracene	312	30.3	(29)

Heats of solution for $P\alpha MS/PS$ solutions and blends at $60^{\circ}C^{(34)}$

P $lpha$ MS/PS (w/w)	$\Delta H_{\rm soln}$ (J g $^{-1}$)	$\Delta H_{ m blend}$ (J g $^{-1}$)
100/0	_	-15.5 ± 0.3
80/20	-16.5 ± 0.6	-7.4 ± 0.3
50/50	-9.2 ± 0.2	-8.0 ± 0.2
20/80	-8.5 ± 0.5	-7.4 ± 0.5
0/100	_	-6.8 ± 0.3

Polymerization

Initiator	Solvent	<i>T</i> (°C)	$\overline{\textit{M}}_{w}/\overline{\textit{M}}_{n}$	Reference
Sodium naphthalide	Tetrahydrofuran	_	_	(26, 33, 38, 39)
n-C ₄ H ₉ Li	Tetrahydrofuran	-78	<1.1	(32)
	Methylcyclohexane	_	_	(33)
Anionic				
Sodium naphthalene	Tetrahydrofuran	_	1.00-1.03	(8, 26)
sec-Butyllitĥium	Tetrahydrofuran	-78	1.15	(24)
TiCl ₄	Methylene chloride	-78	3.54	(40)
$BF_3 \cdot OEt_2$	Hexane/chloroform	-78	_	(40)
BF_3	Hexane/chloroform	-78	_	(40)
BF_3	Toluene	-78	_	(40)
BF_3	Hexane	-78	_	(40)

Initiator	Solvent	<i>T</i> (°C)	$\overline{\textit{\textbf{M}}}_{w}/\overline{\textit{\textbf{M}}}_{n}$	Reference
Cationic				
<i>p</i> -Methoxybenzyl chloride	Liquid sulfur dioxide	_	1.02-2.33	(30)
Iodine	Liquid sulfur dioxide	-60	_	(41)
SnCl ₄ and SnBr ₄	Methylene chloride	-78	1.93	(31)
	Methylene chloride	-78	1.14	(17)
SnBr ₄ with chloride-vinyl ether adduct	Methylene chloride	-78	_	(42)
ZnCl ₂ and SnBr ₄	Methylene chloride	-78	1.57	(17)
AlCl ₃	Chloroform	-78, -103	_	(28)
	Toluene	-78, -103	_	(28)
	Toluene	-78	_	(14)
	Carbon disulfide	-50	_	(29)
$B(C_6F_5)_3$	Toluene, dichloromethane	-78, 22	_	(43)

Syndiospecific polymerization

Catalyst system (cationic)	Solvent	<i>T</i> (°C)	Reference
$\overline{\mathrm{BF_3}\cdot\mathrm{O}(\mathrm{C_2H_5})_2}$	Toluene	−78 and −30	(14, 27)
	Methylene chloride	_	(27)
	Toluene/methylcyclohexane	-78 and -30	(14)
	Methylcyclohexane	-78 and -30	(14)
	Methylene chloride	-78	(26)
	Methylene chloride/nitroethane	-78	(27)
AlCl ₃	Toluene	-75, -78	(14)
	Carbon disulfide	-50	(29)
	Toluene/methylcyclohexane	-78	(14)
AlBr ₃ ·trichloroacetic acid	Toluene	-78	(27)
	Methylene chloride	-78	(27)
TiCl ₄	Toluene	-75, -78	(14, 27)
	Toluene/methylcyclohexane	-78	(14)
	Methylcyclohexane	-78	(14)
	Methylene chloride	-78	(27)
SnCl ₄	Toluene	-75	(14)
	Toluene/methylcyclohexane	-78	(14)
	Methylcyclohexane	-78	(14)
SnCl ₄ ·trichloroacetic acid	Toluene	-78	(27)
	Methylene chloride	-78	(27)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Permeability coefficient P	cm ³ (STP) cm (cm ² s cm Hg) ⁻¹	35° C, 1 atm He CH_4 O_2 N_2 CO_2	14.5×10^{-10} 0.14×10^{-11} 0.82×10^{-11} 0.15×10^{-11} 3.0×10^{-10}	(44)
Selectivity P_1/P_2	_	35° C, 1 atm He/CH_4 O_2/N_2 CO_2/CH_4	100 5.4 20.8	(44)
Diffusion coefficient D	$cm^2 s^{-1}$	35° C, 1 atm CH_4 O_2 N_2 CO_2	1.6×10^{-9} 2.1×10^{-8} 4.0×10^{-9} 7.4×10^{-9}	(44)
Selectivity D_1/D_2	-	35° C, 1 atm O_2/N_2 CO_2/CH_4	4.6 4.9	(44)
Solubility coefficient	cm ³ (STP) cm (cm ³ atm) ⁻¹	35° C, 1 atm CH_4 O_2 N_2 CO_2	0.72 0.30 0.26 3.0	(44)
Selectivity S_1/S_2	_	35° C, 1 atm O_2/N_2 CO_2/CH_4	1.2 4.2	(44)
Suppliers	Aldrich, P.O. Box 355, Pressure Chemical Co USA. Polymer Laboratories Amherst, Massachu Polysciences, Inc., 400 Scientific Polymer Pro 14519, USA.	., 3419 Smallman Stre Inc., Amherst Fields Isetts 01002, USA. Valley Road, Warrii	et, Pittsburgh, Penns Research Park, 60 Ol ngton, Pennsylvania	ld Farm Road, 18976, USA.

- 1. Yang, H., S. Ricci, and M. Collin. Macromolecules 24 (1991): 5,218.
- 2. Cowie, J. M. G., M. D. Fernandez, M. J. Fernandez, and I. J. McEwen. *Polymer* 33 (1992): 2,744.
- 3. Schneider, H. A., and P. Dilger. Polym. Bull. 21 (1989): 265.
- 4. Maier, R.-D., et al. Macromolecules 29 (1996): 1,490.
- 5. Priddy, D. B., T. D. Traugott, and R. H. Seiss. J. Appl. Polym. Sci. 41 (1990): 383.
- 6. Callaghan, T. A., and D. R. Paul. Macromolecules 26 (1993): 2,439.

- 7. Judovits, L. H., R. C. Bopp, and U. Gaur. J. Polym. Sci. B: Polym. Phys. 24 (1986): 2,725.
- 8. McCormick, H. W. J. Polym. Sci. 25 (1957): 488.
- 9. Li, D., S. Hadjikyriacou, and R. Faust. Macromolecules 29 (1996): 6,061.
- 10. Bywater, S., and P. E. Black. J. Phys. Chem. 69 (1965): 2,967.
- 11. Brown, D. W., and L. A. Wall. J. Phys. Chem. 62 (1958): 848.
- 12. Irvine, J. D., and R. N. Work. J. Polym. Sci.: Polym. Phys. Ed. 11 (1973): 175.
- 13. Lauprêter, F., C. Noël, and L. Monnerie. J. Polym. Sci.: Polym. Phys. Ed. 15 (1977): 2,143.
- 14. Kunitake, T., and C. Aso. J. Polym. Sci.: Part A-1 8 (1970): 665.
- 15. Malhotra, S. L., C. Baillet, L. Minh, and L. P. Blanchard. J. Macromol. Sci.: Chem. A12 (1978): 129.
- 16. Berger, P. A., J. J. Kotyk, and E. E. Remsen. Macromolecules 25 (1992): 7,227.
- 17. Higashimura, T., et al. *Macromolecules* 26 (1993): 2,670.
- 18. Kishore, K., S. Paramasiva, and T. E. Sandhya. Macromolecules 29 (1996): 6,973.
- 19. Small, P. A. J. Appl. Chem. Feb. (1953): 71.
- 20. Chee, K. K., and S. C. Ng. J. Appl. Polym. Sci. 50 (1993): 1,115.
- 21. Gan, P. P., D. R. Paul, and A. R. Padwa. Polymer 35 (1994): 1,487.
- 22. Coleman, M. M., J. F. Graf, and P. C. Painter. Specific Interactions and the Miscibility of Polymer Blends. Technomic, Lancaster, Penn., 1991.
- 23. Mays, J. W., S. Nan, and M. E. Lewis. Macromolecules 24 (1991): 4,857.
- 24. Li, J., S. Harville, and J. W. Mays. Macromolecules 30 (1997): 466.
- 25. Burge, D. E., and D. B. Bruss. J. Polym. Sci: Part A 1 (1963): 1,927.
- 26. McCormick, H. W. J. Polym. Sci. 41 (1959): 327.
- 27. Ohsumi, Y., T. Higashimura, and S. Okamura. J. Polym. Sci.: Part A-1 4 (1966): 923.
- 28. Okamura, S., T. Higashimura, and Y. Imanishi. J. Polym. Sci. 33 (1958): 491.
- 29. Murakata, T., et al. Polymer 34 (1993): 1,436.
- 30. Rueda, J. C., A. S. Gomes, and B. G. Soares. Polym. Bull. 33 (1994): 405.
- 31. Sawamoto, M., T. Hasebe, M. Kamigaito, and T. Higashimura. J. Macromol. Sci.: Pure Appl. Chem. A3 (1994): 937.
- 32. Roestamsjah, L. A. Wall, and R. E. Florin. J. Polym. Sci.: Poly. Phys. Ed. 13 (1975): 1,783.
- 33. Zheng, K. M., L. R. Corrales, and J. Ruiz-Garcia. J. Chem. Phys. 98 (1993): 9,873.
- 34. Brunacci, A., E. Pedemonte, J. M. G. Cowie, and I. J. McEwen. *Polymer* 35 (1994): 2,893.
- 35. Yagci, Y., M. H. Acar, and A. Ledwith. Eur. Polym. J. 28 (1992): 717.
- 36. Hadjichristidis, N., J. S. Lindner, J. W. Mays, and W. W. Wilson. *Macromolecules* 24 (1991): 6,725.
- 37. Pfohl, O., T. Hino, and J. M. Prausnitz. Polymer 36 (1995): 2,065.
- 38. Grant, D. H., E. Vance, and S. Bywater. Trans. Faraday Soc. 56 (1960): 1,697.
- 39. Andrews, A. P., et al. Macromolecules 27 (1994): 3,902.
- 40. Lenz, R. W. J. Macromol. Sci.: Chem. A9 (1975) 945.
- 41. da Silva, A., A. S. Gomes, and B. G. Soares. Poly. Bull. 30 (1993): 133.
- 42. Fukui, H., T. Deguchi, M. Sawamoto, and T. Higashimura. Macromolecules 29 (1996): 1,131.
- 43. Wang, Q. Y., et al. Organometallics 15 (1996): 693.
- 44. Puleo, A. C., N. Muruganandam, and D. R. Paul. J. Polym. Sci.: B: Poly. Phys. 27 (1989): 2,385.

ARCHIE P. SMITH AND RICHARD J. SPONTAK

ACRONYMS PpMS, PMS, P4MS, MST, pMS, P-pMS, PPMS, 4MS, PpMeS

CLASS Vinyl polymers

CAS NUMBER 24936-41-2

CAS NAME Benzene, 1-ethenyl-4-methyl homopolymer

STRUCTURE

$$+CH-CH_2)_n$$
 CH_3

MAJOR APPLICATIONS Similar to polystyrene (PS) (e.g., molded objects, foam drinking cups, and packaging materials). Has a slightly higher deformation temperature and flame resistance than PS.

POLYMERIZATION METHOD	CONDITIONS	REFERENCE
Cationic photopolymerization	Cationic polymerization using phosphonium and arsonium salts as initiators. Illuminated with Xenon Arc lamp at $25^{\circ}\mathrm{C}$	(1)
Living carbocationic	Polymerization in methyl chloride/methyl cyclohexane solution at $-80^{\circ}\mathrm{C}$ without initiator and with TiCl ₄ as initiator	(2)
Radical polymerization	Bulk polymerization using azobisisobutyronitrile as initiator at $50^{\circ}\mathrm{C}$	(3)
Cationic polymerization by radiation	Polymerization of both wet and dry monomers by exposure to $^{60}\mathrm{Co}~\gamma\text{-ray}$ radiation	(4)
Cationic polymerization	Polymerization conducted in various solvents with acetyl perchlorate or iodine at 0°C	(5)
Cationic polymerization	Emulsion polymerization performed with hydrogen iodide/ zinc halide initiators in toluene or methylene chloride at various temperatures	(6)
Radical polymerization	Isothermal solution polymerization in cyclohexane with AIBN initiator	(7)
Radical polymerization	Solution polymerization in benzene using azobisisobutyronitrile as initiator at $50^{\circ}\mathrm{C}$	(8)

Propagation and termination constants

К _р	$ extit{K}_{ extsf{t}} imes 10^{-6}$	$\textit{K}_p/\textit{K}_t \times 10^6$	<i>T</i> (°C)	Method*	Reference
84	66	1.28	30	A	(9)
103	_	_	40	В	(10)
135	_	_	50	В	(10)
188	_	_	60	В	(10)
266	_	_	70	В	(10)

 $^{^{\}ast}A=$ intermittent photoionization via flashing light; B= Smith-Ewart volume in emulsion polymerization.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Transfer constants to solvents $C_{\rm s}$	-	Solvent ($T = 60^{\circ}$ C) p-Isopropyl anisole p-Diisopropyl benzene p-Isopropyl benzonitrile Cumene p-Bromocumene p-Chlorocumene	3.27×10^{-4} 7.34×10^{-4} 26.0×10^{-4} 4.12×10^{-4} 9.23×10^{-4} 7.67×10^{-4}	(11)
Free radical copolymerization reactivity ratios: r_1 and r_2	-	Comonomer Acrylate, methyl Methacrylate, methyl N,N Divinylaniline p-Chlorostyrene Vinyl methyl sulfoxide	$egin{array}{cccc} r_1 & r_2 \\ \hline 1.540 & 0.170 \\ 0.440 & 0.400 \\ 11.8 & 0.05 \\ 0.610 & 1.150 \\ 2.730 & 0.010 \\ \hline \end{array}$	(12) (13) (14) (13) (15)
Typical comonomers	-		p-Bromostyrene p-Chlorostyrene Isobutylene Methacrylonitrile Methyl acrylate Methyl methacrylate Styrene Tetranitromethane	(16) (17) (2, 18-21) (22) (12) (13) (13, 23-28) (29)
Molecular weight	$g \text{mol}^{-1}$	Monomer Polymer range $(\overline{M}_{\mathrm{w}})$	$118.18 \\ 0.15 - 10 \times 10^5$	_
Polydispersity	-	Depends on polymerization route	1.03-4.2	_
Infrared spectroscopy (peak positions)	cm^{-1}	Peak assignments Aromatic ν_{CH} Aromatic ν_{CH_3} Aromatic ν_{CH_2} Phenyl ring	3,100, 3,080, 3,040, 3,010 2,910 2,840 1,495	(30) (30) (30) (30)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Infrared spectroscopy (peak positions)	cm ⁻¹	$\begin{array}{c} \text{Peak assignments} \\ \delta_{\text{CH}_3}, \delta_{\text{CH}_2} \\ \text{Helical chain structure} \\ \delta_{\text{CH}_3} \\ \text{Stereoregular chain structure} \\ \text{Chain conformational regularity} \\ \text{In-plane CH bending of phenyl ring} \\ \text{Chain conformational regularity} \\ \text{Out-of-plane CH bending of phenyl ring} \\ \end{array}$	1,430, 1,390 1,363, 1,314, 1,290 1,360 1,346, 1,093 1,334, 1,304, 1,224, 1,191 1,160, 1,090, 1,000 977, 861, 749, 738 790	(30) (31) (30) (31) (31) (30) (31) (30)
NMR spectroscopy	Cros 15-2 Solut 10% ¹ H s	rement conditions s-polarization/magic angle spinning 0% (w/v) solution in CDCl ₃ at 30°C tion in CCl ₄ at 75°C solution in CDCl ₃ at 24°C pin echo at 60 MHz of 10% (w/w) solutio tt 25 MHz of 10% (w/v) solution in CDCl nd ¹³ C spectra in o-dichlorobenzene at 13	l_2	(32) (22) (30) (33) (34) (34) (31)
Thermal expansion coefficient α	K^{-1}	Below T_g 150 K $<$ T $<$ T_g Above T_g $T_g <$ T $<$ 440 K	3.15×10^{-4} 7.1×10^{-5} 6.31×10^{-4} 16×10^{-5}	(35) (36) (35) (36)
Density	$g cm^{-3}$	20°C 23°C 25°C	1.022 1.016 1.011	(35) (33, 37) (36)
Solvents	_	Strength Good Good — Intermediate Intermediate Theta Intermediate — Good	Benzene Butyl acetate Carbon tetrachloride Cyclohexane Dichloroethane Diethyl succinate Methyl ethyl ketone Tetrahydrofuran Toluene	(38) (38) (30) (38, 39) (39) (38, 39) (38, 39) (30) (38–40)
Theta temperature	K	Solvent: diethyl succinate	289.4	(39)
Flory-Huggins interaction parameter χ	-	Volume fraction polymer in toluene at 22°C 0.20 0.24 0.28 0.32 0.36 0.40	0.378 0.401 0.413 0.412 0.404 0.382	(16)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Flory-Huggins interaction parameter χ	_	Volume fraction polymer in toluene at 22°C			(16)
1		0.44	0.364		
		0.48	0.356		
		0.52	0.355		
		0.56	0.352		
		0.60	0.341		
		0.64	0.322		
Mark-Houwink parameters:		$\overline{M}_{\mathrm{w}} \text{ range} = (20155) \times 10^4$	$K \times 10^5$	а	(41)
K and a	a = None	Cyclohexane at 30°C	8.07	0.72	
		Methyl ethyl ketone at 30°C	10.3	0.68	
		Toluene at 30°C	6.88	0.76	
Second virial coefficient A_2	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	_	See table	below	(39)
Mean square radius $\langle r^2 \rangle$	cm^2	_	See table	below	(39)
Intrinsic viscosity $[\eta]$	$\mathrm{dl}\mathrm{g}^{-1}$	_	See table	below	(39)

Solvent	$\overline{\textit{M}}_{\textrm{W}} imes 10^{-4}$	T (°C)	$\textit{A}^{2}\times 10^{4}$	$\langle \textit{r}^{2} \rangle \times 10^{12}$	$[\eta]$
Cyclohexane	84.7	30	1.56	12.4	1.25
Dichloroethane	118	30	1.70	18.9	1.83
Diethyl succinate	197	60	0.58	23.9	1.34
•		40	0.41	20.8	1.16
		20	0.09	17.0	0.89
		18	0.03	16.1	0.85
		16	-0.02	15.5	0.79
	89.6	60	0.81	11.5	1.05
		40	0.60	10.4	0.94
		20	0.20	8.85	0.75
		18	0.11	8.54	0.72
		16	0.00	8.00	0.69
	76.2	60	0.90	9.25	0.95
		40	0.70	8.55	0.85
		20	0.17	7.37	0.70
		18	0.12	6.94	0.67
		16	-0.01	6.50	0.64
	68.4	60	0.83	8.18	0.90
		40	0.61	7.55	0.79
		20	0.12	6.37	0.65
		18	0.06	6.15	0.62
		16	-0.04	5.85	0.60
Methyl ethyl ketone	121	30	1.00	17.3	1.40
Toluene	180	30	2.18	36.9	3.72
	81.3	30	3.08	15.4	2.20
	47.6	30	3.41	8.70	1.36
	19.2	30	4.37	3.00	0.73

Crystalline unit cell⁽⁴²⁾

Isomer	Lattice	Monomers	Cell dimensions (Å)			Cell angles		
		per unit Cell	а	b	с	α	β	γ
Syndiotactic (>95%) Form III	Pnam	6	13.36	23.21	5.12	90	90	90

Crystalline polymorphs

Polymorph	Description	Reference
Syndiotactic Form I	Chains have helical s(2/1)2 conformation, repeat distance of 7.8 Å, $T_{\rm m}=178^{\circ}{\rm C}$	(43, 44)
Syndiotactic Form II	Chains have helical s(2/1)2 conformation, repeat distance of 7.8 Å, $T_{\rm m} = 201$ °C	(43, 44)
Syndiotactic Form III	Chains have <i>trans</i> planar conformation, repeat distance of 5.1 Å, $T_{\rm m} = 224$ °C	(43, 44)
Syndiotactic Form IV	Chains have <i>trans</i> planar conformation, repeat distance of 5.1 Å, $T_{\rm m}=194^{\circ}{\rm C}$	(43, 44)
Syndiotactic Form V Syndiotactic clathrates	Chains have trans planar conformation, repeat distance of 5.1Å Chains have helical s(2/1)2 conformation, repeat distance of 7.8Å	(44) (43, 44)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Crystalline density	$g cm^{-3}$	25°C	1.00	(42)
Glass transition	K	_	356	(35)
temperature $T_{\rm g}$		Creep tests	361	(45)
- 0		Dynamic thermal analysis (DTA)	366	(46)
		Stress relaxation	366	(45)
		Differential scanning calorimetry (DSC)	374	(45)
		DSC	380	(47)
		DSC	383	(33)
		DSC	384	(48)
		DSC, extrapolated to $\overline{M}_{\rm w}^{\infty}$	384	(30)
		Dynamic mechanical analysis (DMA)	385	(45)
		Dielectric analysis (DEA)	391	(45)
		$T_{\rm g}$ dependence on $\overline{M}_{\rm n}$	$384 - (2.56 \times 10^5) / \overline{M}_{\rm n}$	(30)
Sub- T_g transitions	K	β transition, DMA at 1 Hz, $E_a = 71 \text{ kJ mol}^{-1}$	313	(45)
		γ transition, DMA at 1 Hz, $E_a = 29 \mathrm{kJ} \mathrm{mol}^{-1}$	244	(45)
		δ transition, resonance electrostatic method at 9,700 Hz	92	(49)
Heat capacity C_p	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	$300 \mathrm{K}$ to T_{g} T_{g} to $500 \mathrm{K}$	-3.54 + 0.5138T 90.85 + 0.3564T	(47)

Poly(p-methylstyrene)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Deflection temperature	K	ASTM Test D-264 under 1.8 MPa load	365	(50)
Tensile modulus	MPa	ASTM Test D-638	2,206	(50)
Dynamic storage modulus	MPa	DMA, 1 Hz, 20°C	3,400	(45)
Dynamic loss modulus	MPa	DMA, 1 Hz, 20°C	640	(45)
Tensile strength	MPa	ASTM test D-638	49.6	(50)
Yield strain	%	ASTM test D-638	3.0	(50)
Flexural modulus	MPa	ASTM test D-790	2,992	(50)
Flexural strength	MPa	ASTM test D-790	79.3	(50)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	ASTM test D-256, 73°C, notched 3.175-mm thick specimen	16	(50)
Hardness	80	ASTM test D-785, Rockwell M scale	80	(50)
Resonance frequency	Hz	Mechanical damping measurements of polymer disks	9,700	(49)
Index of refraction	_	20°C	1.5766	(35)
		20°C	1.58	(37)
Dielectric constant	_	Dielectric spectroscopy, 1 kHz and 23°C	2.86	(48)
		Dielectric spectroscopy, 1 kHz and 25°C	2.476	(36)
		Dielectric spectroscopy at 10 kHz, varies linearly with temperature		(51)
		−196°C 70°C	2.62 2.53	
Permeability coefficient P	m^{3} (STP)m $m^{-2} s^{-1} Pa^{-1}$ $(\times 10^{-12})$	CH ₄ at 1 atm and 35°C CO ₂ at 1 atm and 35°C CO ₂ at 200 mm Hg pressure and 25 °C He at 1 atm and 35°C N_2 at 1 atm and 35°C	2.29 39.6 12.0 49.3 2.00	(52) (52) (53) (52) (52)
		O ₂ at 1 atm and 35°C O ₂ at 200 mm Hg pressure and 25°C	9.6 1.2	(52) (53)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Diffusion coefficient D	$m^2 s^{-1} \times 10^{-12})$	CH ₄ at 1 atm and 35°C CO ₂ at 1 atm and 35°C CO ₂ at 200 mm Hg pressure and 25°C N ₂ at 1 atm and 35°C O ₂ at 1 atm and 35°C O ₂ at 200 mm Hg pressure and 25°C		4.0 13.7 5.8 10.4 28.1 10.2	(52) (52) (53) (52) (52) (52) (53)
Degradation properties	Experimental conditions Degradation				
	Irradiation v	vith 284 nm UV	C-H cleavage, pol degradation	ymer	(40)
	1		Weight loss between 1 and 75% due to random scission and depolymerization; above 330°C cross-linking occurs		(30)
Maximum thermal decomposition temperature	K	-		490	(54)
G value of scission	$\operatorname{mol} \operatorname{J}^{-1}$	γ radiation at 130 $^\circ$	С	4.43×10^{-9}	(55)
G value of cross-linking	$\operatorname{mol} \operatorname{J}^{-1}$	γ radiation at 65°C γ radiation at 98°C		$6.28 \times 10^{-9} \\ 2.27 \times 10^{-9}$	(55)
G value of gas evolution $G(H)$	$\operatorname{mol} \operatorname{J}^{-1}$	γ radiation at -190 γ radiation at -80 γ radiation at 25°C γ radiation at 65°C γ radiation at 130°	°C	3.30×10^{-9} 3.71×10^{-9} 4.43×10^{-9} 4.84×10^{-9} 6.18×10^{-9}	(55)

- 1. Abu-Abdoun, I., and A. Ali. Eur. Polym. J. 29 (1993): 1,439.
- 2. Fodor, Z., and R. Faust. J. Macromol. Sci. Pure Appl. Chem. A31 (1994): 1,985.
- 3. Gyongyhalmi, I., T. Foldes-Berezsnich, and F. Tudos. Eur. Polym. J. 29 (1993): 219.
- 4. Hayashi, K., and D. C. Pepper. *Polymer J.* 8 (1976): 1.
- 5. Higashimura, T., O. Kishiro, and T. Takeda. J. Polym. Sci.: Polym. Chem. Ed. 14 (1976): 1,089.
- Kojima, K., M. Sawamoto, and T. Higashimura. J. Polym. Sci., A: Polym. Chem. 28 (1990): 3,007.
- 7. Mutschler, H., et al. Polymer 26 (1985): 935.
- Gyongyhalmi, I., A. Nagy, T. Foldes-Berezsnich, and F. Tudos. Makromol. Chem. 194 (1993): 3,357.
- 9. Imoto, M., M. Kinoshita, and M. Nishigaki. Makromol. Chem. 86 (1965): 217.
- 10. Paoletti, K. P., and F. W. Billmeyer, Jr. J. Polym. Sci.: Part A 2 (1964): 2,049.
- 11. Yamamoto, T., and T. Otsu. Polym. Lett. 4 (1966): 1,039.
- 12. Faber, J. W. H., and W. F. Fowler, Jr. J. Polym. Sci. A1 8 (1970): 1777.
- 13. Walling, C., E. R. Briggs, K. B. Wolfstirn, and F. R. Mayo. J. Amer. Chem. Soc. 70 (1948): 1,537.
- 14. Chang, E. Y. C., and C. C. Price. J. Amer. Chem. Soc. 83 (1961): 4,650.
- 15. Fujihara, H., T. Shindo, M. Yoshihara, and T. Maeshima. J. Macromol. Sci. Pure Appl. Chem. A14 (1980): 1,029.

- 16. Corneliussen, R., S. A. Rice, and H. Yamakawa. J. Chem. Phys. 38 (1963): 1,768.
- 17. Mashimo, S., and R. Nozaki. J. Non-Cryst. Solids 131-133 (1991): 1,158.
- 18. Lubnin, A. V., I. Orszagh, and J. P. Kennedy. J. Macromol. Sci. Pure Appl. Chem. A32 (1995): 1,809.
- 19. Kuwamoto, K. Int. Polym. Process. 9 (1994): 319.
- 20. Fodor, Z., and R. Faust. J. Macromol. Sci. Pure Appl. Chem. A32 (1995): 575.
- Steinke, J. H. G., S. A. Haque, J. M. J. Frechet, and H. C. Wang. *Macromolecules* 29 (1996): 6.081.
- 22. Chen, J., S. H. Goh, S. Y. Lee, and K. S. Snow. J. Polym. Sci. A: Polym. Chem. 32 (1994): 1,263.
- 23. Oh, J., S. Kang, O. Kwon, and S. Choi. Macromolecules 28 (1995): 3,015.
- 24. Stroeks, A., R. Paquaij, and E. Nies. Polymer 32 (1991): 2,653.
- 25. Miller, P., and E. J. Kramer. J. Mater. Sci. 25 (1990): 1,751.
- 26. Nyquist, R. A., and M. Malanga. Appl. Spectrosc. 43 (1989): 442.
- 27. Grassi, A., P. Longo, A. Proto, and A. Zambelli. Macromolecules 22 (1989): 104.
- 28. Cardi, N., et al. Macromol. Symp. 102 (1996): 123.
- 29. Mathew, L., B. Varghese, and S. Sankararaman. J. Chem. Soc. Perkin Trans. 2 (1993): 2,399.
- Malhotra, S. L., P. Lessard, L. Minh, and L. P. Blanchard. J. Macromol. Sci. Pure Appl. Chem. A14 (1980): 517.
- 31. Abis, L., et al. Makromol. Chem., Rapid Commun. 9 (1988): 209.
- 32. Guerra, G., et al. Polym. Commun. 32 (1991): 430.
- 33. Gehlsen, M. D., et al. J. Polym. Sci. B: Polym. Phys. 33 (1995): 1,527.
- 34. Laupretre, F., C. Nöel, and L. Monnerie. J. Polym. Sci.: Polym. Phys. Ed. 15 (1977): 2,143.
- 35. Kennedy, G. T., and F. Morton. J. Chem. Soc. (1949): 2,383.
- 36. Corrado, L. C. J. Chem. Phys. 50 (1969): 2,260.
- 37. Kozorezov, Y., and I. Y. Shilyaeva. Int. Polym. Sci. Tech. 22 (1995): T58.
- 38. Ono, K., et al. Macromolecules 27 (1994): 6,482.
- 39. Tanaka, G., S. Imai, and H. Yamakawa. J. Chem. Phys. 52 (1970): 2,639.
- 40. Tamai, T., et al. Polymer 37 (1996): 5,525.
- 41. Kuwahara, N., et al. J. Polym. Sci.: Part A A3 (1965): 985.
- 42. Rosa, C. D., et al. Macromolecules 28 (1995): 5,507.
- 43. Iuliano, M., et al. New Polym. Mater. 3 (1992): 133.
- 44. Rosa, C. D., V. Petraccone, G. Guerra, and C. Manfredi. Polymer 37 (1996): 5,247.
- 45. Gao, H., and J. P. Harmon. Thermochim. Acta 284 (1996): 85.
- 46. Dunham, K. R., J. W. H. Faber. J. Vandenberghe, and W. F. Fowler, Jr. J. Appl. Polym. Sci. 7 (1963): 897.
- Judovits, L. H., R. C. Bopp, U. Gaur, and B. Wunderlich. J. Polym. Sci. B: Polym. Phys. 24 (1986): 2,725.
- 48. Gustafsson, A., G. Wiberg, and U. W. Gedde. Polym. Eng. Sci. 33 (1993): 549.
- 49. Baccaredda, M., E. Butta, V. Frosini, and S. D. Petris. Mater. Sci. Eng. 3 (1968): 157.
- 50. Kaeding, W. K., and G. C. Barile. In *New Monomers and Polymers*, edited by B. M. Culbertson and C. U. Pittman. Plenum Press, New York, 1984, p. 223.
- 51. Nozaki, M., K. Shimada, and S. Okamoto. J. Appl. Phys. (Japan) 10 (1971): 179.
- 52. Puleo, A. C., N. Muruganandam, and D. R. Paul. J. Polym. Sci. B: Polym. Phys. 27 (1989): 2,385.
- 53. Greenwood, R., and N. Weir. Makromol. Chem. 176 (1975): 2,041.
- 54. Fares, M. M., et al. Analyst 119 (1994): 693.
- 55. Burlant, W., J. Neerman, and V. Serment. J. Polym. Sci. 58 (1962): 491.

Poly(methyltrifluoropropylsiloxane)

MICHAEL J. OWEN

ACRONYMS, TRADE NAMES LS "Low swell", FS "Fluorosilicone"

CLASS Polysiloxanes

 $\begin{array}{ll} \textbf{STRUCTURE} & [CH_3(CF_3CH_2CH_2)SiO] \end{array}$

MAJOR APPLICATIONS Antifoam fluids, lubricants, protective gels, and elastomers and sealants in applications exposed to hydrocarbon fuels and oils and organic solvents in the automotive and aerospace industries. Longer fluorocarbon sidechain fluorosilicones are available with developing use as release coatings for silicone-based adhesives.

PROPERTIES OF SPECIAL INTEREST Excellent solvent resistance combined with good thermal stability. Widest hardness range and broadest operating service temperature range of any fuel resistant elastomer. General ease of fabrication. Retention of many properties (e.g., electrical) in harsh environments. Surface energy comparable to methylsiloxanes (higher liquid values, lower or similar solid values). More highly fluorinated fluorosilicones have significantly lower surface energy.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	$g \text{cm}^{-3}$	MW = 14,000 25°C	1.30 1.292	(1) (2)
Solubility parameter	$(MPa)^{1/2}$	Not given	17.88	(2)
Theta temperatures	K	Cyclohexyl acetate Methyl hexanoate	298 345.8	(3)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ a = None	Methyl hexanoate, 72.8°C Cyclohexyl acetate, 25°C Ethyl acetate, 25°C		(3)
Glass transition temperature	K	Atactic, DSC Made from <i>trans</i> trimer isomer (100%), DSC	203 204.2	(4) (5)
		Made from <i>cis</i> trimer isomer (96%), DSC	207.2	(5)
Melting temperature	K	Made from <i>trans</i> trimer isomer (100%), DSC	268.6	(5)
		Made from <i>cis</i> trimer isomer (96%), DSC	321	

Poly(methyltrifluoropropylsiloxane)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	Range for typical filled commercial elastomers		(6)
		22°C	5.5-11.7	
		204°C	2.4-4.1	
Maximum extensibility	%	Range for typical filled commercial elastomers		(6)
		22°C	100-600	
		204°C	90-300	
Index of refraction	_	MW = 14,000	1.383	(1)
Dielectric constant	_	100 Hz	6.85	(7)
Loss factor	_	100 Hz	0.109	(7)
Surface tension	$\mathrm{mN}\mathrm{m}^{-1}$	Liquid, 25°C, "infinite" MW	24.4	(8)
		Solid, Owens and Wendt method	13.6	(9)
		Critical surface tension of wetting	21.4	(9)
Permeability coefficient	$m^{3}(STP) m$ $s^{-1} m^{-2} Pa^{-1}$	He, 100 psi, 35°C O ₂ , 100 psi, 35°C	$1.85 \times 10^{-15} 1.63 \times 10^{-15}$	(4)
		CO ₂ , 100 psi, 35°C	1.04×10^{-14}	
		CH ₄ , 100 psi, 35°C	1.51×10^{-15}	

- 1. Larsen, G. L., and C. Smith. *Silicon Compounds: Register and Review*, 5th ed. Huls America Inc., Piscataway, N.J., 1987, p. 275.
- 2. Stern, S. A., and B. D. Bhide. J. Appl. Polym. Sci. 38 (1989): 2,131.
- 3. Buch, R. R., H. M. Klimisch, and O. K. Johannson. J. Polym. Sci., Part A-2, 7 (1969): 563.
- 4. Stern, S. A., V. M. Shah, and B. J. Hardy. J. Polym. Sci., Part B, 25 (1987): 1,263.
- 5. Kuo, C.-M., J. C. Saam, and R. B. Taylor. Polymer International 33 (1994): 187.
- 6. Maxson, M. T. Gummi Fasern Kunststoffe 12 (1995): 873.
- 7. Ku, C. C., and R. Liepens. *Electrical Properties of Polymers*. Hanser Publishers, Munich, 1987, p. 326.
- 8. Kobayashi, H., and M. J. Owen. Makromol. Chem. 194 (1993): 1,785.
- 9. Owen, M. J. J. Appl. Polym. Sci. 35 (1988): 895.

Poly(norbornene)

VASSILIOS GALIATSATOS

ALTERNATIVE NAME, TRADE NAMES Poly(1,3-cyclopentylenevinylene), Norsorex $^{\mathbb{R}}$, Telene (copolymer)

CLASS Diene elastomers

MAJOR APPLICATIONS The rubbery polymers are useful as vibration and noise damping materials. Also for oil spill recovery, sound barrier materials, and for soft seals and gaskets.

PREPARATION The polymer obtained by ring-opening polymerization of norbornene. Both *cis* and *trans* structures may result. Polymer is typically free of oligomers and macrocycles. Cross-linking can occur by conventional accelerated sulfur vulcanization. (1,2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Typical molecular weight of polymer	g mol ⁻¹	_	$2-3 \times 10^6$	_
Typical appearance	_	_	White powder	_
Glass transitions temperature $T_{\rm g}$	K	Commercial product Incorporation of a mineral oil extender, which gives useful rubbery properties, including very soft compositions 20% <i>cis</i> content polymer, which is totally amorphous	308-318 228-213	(3)
Crystalline melting temperature	K	Hydrogenated polynorbornene	413.8	(3)
Heat of fusion	kJg^{-1}	Hydrogenated polynorbornene	58.7×10^{-3}	(3)
Decomposition temperature	K	_	>673	(3)
Density	$\rm gcm^{-3}$	_	0.30	(3)
Index of refraction	_	_	1.534	(3)
Hardness	Shore A	Cured for 10 min at 320°F	40	(3)
100% modulus	MPa	Cured for 10 min at 320°F	0.552	(3)

Poly(norbornene)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
300% modulus	MPa	Cured for 10 min at 320°F	2.24	(3)
Tensile strength	MPa	Cured for 10 min at 320°F	15.1	(3)
Elongation	%	Cured for 10 min at 320°F	560	(3)
FTIR spectrum	cm^{-1}	Cis absorption Trans out of plane =C-H bending Cis in plane =C-H bending	740 960 1,404	(4)
Supercritical fluid behavior	behavior Polynorbornene, molecular weight = 2×10^6 , 25° C, pressure = 19.0 MPa			_

Force field parameters for bond stretching⁽⁵⁾

Bond	Bond length (Å)	Force constant (kJ Å ⁻¹)
C2-C3	1.551	2,358
C1-C2	1.560	2,975
C1-C&	1.545	3,050
CH (averaged)	1.086	3,248

Force field for angle bending⁽⁵⁾

Angle	Angle (degrees)	Force constant (kJ Å ⁻²)
(C7)H2	109.4	565
(C1-6)H2	107.8	573
C1-C7-C4	96.1	688
C2-C1-C6	108.3	1122
C2-C1-C7	101.6	426
C1-C2-C3	103.2	506

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio	_	Calculated —	12.1 11.4	(5)
Entanglement molecular weight	$g \text{mol}^{-1}$	-	41,000	(5)
Van der Waals volume	$cm^3 mol^{-1}$	Calculated Experimental	108 149.9	(5)
Intrinsic viscosity	$\mathrm{dl}\mathrm{g}^{-1}$	In benzene at 30° C (at a strain rate = 100% min ⁻¹ at 25° C)	3.4, 4.3, 5.0, 9.0	(6)

Poly(norbornene)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Trans/cis	_	Deduced from the ratio of optical ratios at 10.35 and 13.8 μ m (at a strain rate = 100% min ⁻¹ at 25°C)	3, 4, 4.2, 4.3	(6)
Tensile strength	psi (×10³)	At a strain rate = $100\% \text{ min}^{-1}$ at 25°C	3, 4.2, 4.8, 6.5	(6)
Ultimate elongation	%	At a strain rate = $100\% \text{ min}^{-1}$ at 25°C	16, 80, 85, 300	(6)
Young's modulus	MPa	At a strain rate = $100\% \text{ min}^{-1}$ at 25°C	90, 70, 50, 20	(6)
Crystallographic ident	tity period	2 repeat units per unit cell, 1.18 nm		(7)

Suppliers

Trade name	Supplier
Norsorex	Atochem North America, Inc., Philadelphia, Pennsylvania, USA Atochem Deutschland GmbH, Düsseldorf, Germany
Telene (copolymer)	BF Goodrich Company, Specialty Polymers Division, Brecksville, Ohio, USA

- 1. Makovetskii, K. L. Polymer Sci. Ser. A. 36(10) (1994): 1,433.
- 2. Ivin, K. J. Olefin Methathesis. Academic Press, London, 1983, p. 249.
- 3. Ohm, R. F. Chem. Tech. 10 (1980): 183.
- 4. Cataldo, F. Polymer International 34 (1994): 49.
- 5. Haselwander, T. F. A., et al. Macromol. Chem. Phys. 197 (1996): 3,435.
- 6. Galperin, I., J. H. Carter, and P. R. Hein. J. Appl. Polym. Sci. 12 (1968): 1,751.
- 7. Truett, W. L., et al. J. Am. Chem. Soc. 82 (1960): 2,337.

Polyoctenamer

VASSILIOS GALIATSATOS

ACRONYM, ALTERNATIVE NAME, TRADE NAME TOR, poly(1-octenylene), Vestenamer (Hüls)

CLASS Diene elastomers

STRUCTURE $(CH=CH(CH_2)_6)_n$

SYNTHESIS Ring-opening polymerization of cyclooctene in the presence of Ziegler-Natta catalysts.

FRACTIONATION METHODS Gel permeation chromatography employing THF as a solvent. $^{(1)}$

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Molar absorptivities of IR bands attributed to <i>trans</i> and <i>cis</i> units	(mol cm) ¹	$arepsilon_{trans}~(10.35~\mu ext{m}) \ arepsilon_{cis}~(7.12~\mu ext{m})$		135 8.7	(2)	
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	40–50% trans content at 30°C in toluene			$K = 8.0 \times 10^4$ $a = 0.63$	(3)
Glass transition temperature	K	Cis-polyoctenamer, DSC			165	(4)
Crystalline melting	K	Trans % DH (J g ¹) Technique				
temperatures T_m		290 75–85 100 (extrapolated) 100 (extrapolated) 100 (extrapolated)		– X-ray Diluent Dilatometry Diluent	37.6 335, 340 350 346 333	(5) (6) (7) (8) (8)
Crystallographic information	Monoclinic, 1 repeat unit in unit cell, 0.99 nm identity period Triclinic, 1 repeat unit in unit cell, 0.97 nm identity period				(9) (10)	

- 1. Arlie, J. P., et al. Makromol. Chem. 175 (1974): 861.
- 2. Tosi, C., F. Ciampelli, and G. Dall'Asta. J. Polym. Sci., Polym. Phys. Ed., 11 (1973): 529.
- 3. Glenz, V. W., et al. Angew. Makromol. Chem. 37 (1974): 97.
- 4. Dall'Asta, G. Pure Appl. Chem. (additional publ.) 1 (1974): 133.
- 5. Dall'Asta, G. Pure Appl. Chem. 1 (1974): 133.
- 6. Natta, G., et al. Makromol. Chem. 91 (1966): 87.
- 7. Gianotti, G., and A. Capizzi. Eur. Polym. J. 6 (1970): 743.
- 8. Calderon, N., and M. C. Morris. J. Polym. Sci., Part A-2, 5 (1967); 1,283.
- 9. Natta, G., I. W. Bassi, and C. Fagherazzi. Eur. Polym. J. 3 (1967): 339.
- 10. Bassi, I.W., and G. Fagherazzi. Eur. Polym. J. 4 (1968): 123.

Polypentenamer

VASSILIOS GALIATSATOS

ALTERNATIVE NAME Poly(1-pentenylene)

CLASS Diene elastomers

STRUCTURE $(CH=CH(CH_2)_3)_n$

SYNTHESIS Ring-opening polymerization of cyclopentene. *Trans*-polypentenamer is produced by Ziegler-Natta polymerization employing a catalyst based on aluminum triethyl/tungsten hexachloride compound. Aluminum diethylchloride/molybdenum pentachloride compounds may be employed to produce the *cis* isomer. Both macrocycles and linear chains are produced during polymerization.

FRACTIONATION METHODS Fractional precipitation in toluene/methanol (solvent/nonsolvent) mixtures at $40/20^{\circ}$ C. (1,2)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Gel permeation chromatography	-	Using THF as the solvent	-		(3)
Molar absorptivities of IR bands attributed to <i>trans</i> and <i>cis</i> units	(mol cm) ⁻¹	$arepsilon_{trans}$ (10.35 μ m) $arepsilon_{cis}$ (7.12 μ m)	152 5.0		(4)
Mark-Houwnink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Trans-polypentenamer (~85% trans content) Toluene, 30°C	$\frac{K \times 10^4}{5.21}$	a 0.69	(5)
		Cyclohexane, 30°C i -Amyl acetate (θ solvent), 38°C	5.69 23.4	0.68 0.63	
Specific refractive index increment	-	n-Hexane (dilute solution at 25°C) 436 nm 546 nm	0.175 0.171		(6)
Glass transition temperature $T_{\rm g}$	K	Cis-polypentenamer DTA TBA Trans-polypentenamer	159 163		(7) (8)
		DTA DTA DSC TBA DSC	176 183 178 180 182		(9) (10) (11) (8) (12)

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Crystalline melting	K	Trans (%)	$\Delta H (J g^{-1})$	Technique		
temperature $T_{\rm m}$		1	_	DTA	232	(7)
		85	_	DTA	291	(9)
		100 (extrapolated)	Diluent	176.6	_	(13)
		100 (extrapolated)	_	DSC	317	(12)
Effect of microstructure on	hours	Trans (%) at 0°C				(14)
crystallization rate of		93 (85 based on 1	0.3	` /		
<i>trans</i> -polypentenamer $(T_{1/2})$		90 (82 based on IR analysis)			0.8	
		89 (81 based on 1	IR analysis)		13	
		87 (79 based on IR analysis)			45	
Crystallographic information	Orthor	ombic, 2 repeat unit	s in unit cell,	1.19 nm ider	ntity period	(15)
Unperturbed dimensions $r_0/M^{1/2}$	nm	nm At 38°C, utilizing the Flory-Fox theory of viscosity vs. molecular weight in a θ solvent			9.91×10^6	_
Relaxation behavior	K	By DMA, for 82% at $(M_n = 94,400 \text{ g m})$ $M_w = 172,300 \text{ g m}$	rol^{-1} ,	Hz		-
		α relaxation	,		353	
		β relaxation			273	
		γ relaxation			158, 153	

- 1. Gianotti, G., U. Bonicelli, and D. Borghi. Makromol. Chem. 166 (1973): 235.
- 2. Witte, J., and M. Hoffman. Makromol. Chem. 179 (1978): 641.
- 3. Arlie, J. P., et al. Makromol. Chem. 175 (1974): 861.
- 4. Tosi, C., F. Ciampelli, and G. Dall'Asta. J. Polym. Sci., Polym. Phys. Ed., 11 (1973): 529.
- 5. Gianotti, G., U. Bonicelli, and D. Borghi. Makromol. Chem. 166 (1973): 235.
- 6. Izyumnikov, A. L., G. R. Polyakova, and A. R. Gantmakher. Polym. Sci. USSR 25 (1983): 2,721.
- 7. Dall'Asta, G., and P. Scaglione. Rubber Chem. Technol. 42 (1969): 1,235.
- 8. Gillam, J. K., and J. A. Benci. J. Appl. Polym. Sci. 18 (1974): 3,775.
- 9. Dall'Asta, G., and G. Motroni. Angew. Makromol. Chem. 16-17 (1971): 51.
- 10. Gunther, G., et al. Angew. Makromol. Chem. 14 (1970): 82.
- 11. Minchak, J., and H. Tucker. ACS Symp. Ser. 193 (1982): 155.
- 12. Wilkes, G. E., M. J. Pelko, and R. J. Minchak. J. Polym. Sci., Polym. Symp., 43 (1973): 97.
- 13. Capizzi, A., and G. Gianotti. Makromol. Chem. 157 (1972): 123.
- 14. Haas, F., and D. Theisen. Kaut. Gummi Kunstst. 23 (1970): 502.
- 15. Natta, G., and I. Bassi. J. Polym. Sci., Part C, 16 (1967): 2,551.

Poly(1,4-phenylene)

JACEK SWIATKIEWICZ AND PARAS N. PRASAD

ACRONYM, ALTERNATIVE NAME PPP, poly(*p*-phenylene)

CLASS Polyaromatics

STRUCTURE $[-C_6H_4-]$

PROPERTIES OF SPECIAL INTEREST Electroactive and electroluminescent material. Electrical properties can be tuned by choice of doping and preparation procedure. Insoluble and infusible material, sustains high-temperature treatment.

PREPARATIVE TECHNIQUES Various aryl coupling reactions, pyrolysis of the polymer precursors, anodic polymerization. $^{(1-4)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	Amorphous Semi-crystalline Highly crystalline, annealed	1.11 ± 0.02 1.228 1.39	(3) (3) (2)

Unit cell dimensions

Lattice	Monomers per unit cell	Cell dimensions (nm)			Cell angles			Reference
		а	b	с	α	β	γ	
Monoclinic	2	0.779	0.562	0.426	_	79°	_	(2)
Monoclinic	2	0.806	0.555	0.430	_	100°	_	(5)
Orthorhombic	2	0.781	0.553	0.420	_	_	_	(5)
Orthorhombic	2	0.780	0.556	0.420	_	_	_	(5)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR (characteristic absorption frequencies)	cm^{-1}	_	3,027	(3)
			3,030	(4, 6)
			1,603	(3)
			1,600	(4, 6)
			1,482	(3)
			1,460	(4, 6)
			1,003	(3)
			1,000	(4, 6)
			808	(3)
			803	(4, 6)
			765	(3)
			760	(4, 6)
			509	(3)
			500	(4, 6)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Raman (characteristic frequencies)	cm ⁻¹	-	1,600 1,598 1,280 1,276 1,220	(7) (8) (7) (8) (7, 8)
Wavelength at maximum of the band	nm	UV-Vis absorption Photo-excitation	362 333–338 350 400	(2) (3) (9) (9)
Emission band	nm	Photo-luminescence	500 460	(9) (10)
Electronic conductivity	Scm^{-1}	$T=298\mathrm{K}$	$1.6 \times 10^{-13} \\ 3.3 \times 10^{-13}$	(11) (9)
Energy gap	eV	-	2.7 2.8	(10) (12)
Electroluminescence emission peak	nm	_	460	(10)

- Feast, W. J. In Handbook of Conducting Polymers, edited by T. A. Skotheim. Marcel Dekker, New York, 1986, p. 1.
- 2. Elsenbaumer, R. L., and L.W. Shacklette. In *Handbook of Conducting Polymers*, edited by T. A. Skotheim. Marcel Dekker, New York, 1986, p. 213.
- 3. Gin, D. L., J. K. Avlyanov, and A. G. MacDiarmid. Synth. Met. 66 (1994): 169.
- 4. Goldenberg, L. M., and P. C. Lacaze. Synth. Met. 58 (1993): 271.
- 5. Brandrup, J., and E. H Immergut, eds. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 6. Goldenberg, L. M., et al. Synth. Met. 36 (1990): 217.
- 7. Krichene, S., J. P. Buisson, and S. Lefrant. Synth. Met. 17 (1987): 589.
- 8. Buisson, J. P., S. Krichene, and S. Lefrant. Synth. Met. 29 (1989): E13.
- 9. Miyashita, K., and M. Kaneko. Synth. Met. 68 (1995): 161.
- 10. Grem, G., and G. Leising. Synth. Met. 55-57 (1993): 4,105.
- 11. Edwards, G., and G. Goldfinger. J. Polym. Sci. 16 (1955): 589.
- 12. Froyer, G., Y. Pelous, and G. Olivier. Springer Ser. Solid State Sci. 76 (1987): 303.

ZHENGCAI PU

TRADE NAMES Nomex, Teijinconex, Fenilin

CLASS Aromatic polyamides

MAJOR APPLICATIONS Heat-resistant and flame-retardant apparel; (high-voltage) electrical insulation; low-, medium-, and high-density pressboard; honeycomb structure composite.

PROPERTIES OF SPECIAL INTEREST High extensibility relative to other aromatic polyamide, high degradation and glass transition temperature, excellent dielectric property, and good spinnability.

PRODUCERS AND/OR SUPPLIERS Du Pont (Nomex); Teijin Ltd., Japan (Teijinconex); Russia (Fenilin)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Anistropy of segment	cm ⁻³	Sulfuric acid $lpha_1-lpha_2 \ lpha_{\parallel}-a_{\perp}$	$3.6 \times 10^{23} \\ 1.0 \times 10^{23}$	(2)
Coefficient of linear thermal expansion	K^{-1}	294-477 K	6.2×10^6	(3)
Solvents		d sulfuric acid, methanesulfonic acid, dimethylsulfoxide, DMF, N-methy	•	(3)
Nonsolvents	Hexamethyl	phosphoramide, <i>m</i> -cresol, formic ac	id	(3)
Density ρ	$\rm g~cm^{-3}$	_	1.38	(3, 4)
Dielectric constant	_	60 Hz	1.6-2.9	(3)
Dielectric loss	_	60 Hz, 50% relative humidity	0.006	(3)
Dielectric strength	kVm^{-1}	23°C, 50% relative humidity	$2.0-3.9~(\times 10^4)$	(3)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Diffusion coefficient	$m^2 s^{-1}$	$M_{\rm w} = 4.3 112 {\rm kg mol^{-1}},$ 3% LiCl in DMF, 298 K	6.19-0.82 (×10 ¹¹)	(2)
Glass transition temperature	K	Heating rate = $2 \mathrm{K} \mathrm{min}^{-1}$	553	(2, 3, 5)
Heat capacity	$kJK^{-1}mol^{-1}$	_	0.29	(3)
Inherent viscosity $\eta_{\rm inh}$	$dl g^{-1}$	30°C, in 0.5 g fiber/100 ml sulfuric acid solution	1.86-2.11	(6)
Limiting oxygen index (LOI)	%	_	28	(3, 4, 7)
Mark-Houwink parameters: K and a	$K = \text{ml g}^{-1}$ $a = \text{None}$	_	$K = 3.7 \times 10^{-4}$ a = 0.73	(3)
Melting point	K	DTA transition	708	(3, 5)
Initial tension modulus	MPa	-	1.37×10^4	(8)
Flexure modulus	MPa	3.2 mm thick pressboard	2.55-3.60	(3)
Dynamic storage modulus	MPa	10% fiber in DMAc/LiCl, $\omega=1\mathrm{s}^{-1}$	2×10^5	(3)
Refractive index increment dn/dc	$\mathrm{ml}~\mathrm{g}^{-1}$	DMA DMA + LiCl room temperature, $\lambda_0 = 546 \mathrm{nm}$	0.245 0.219-0.200	(2)

Resistance to chemicals $^{(3)}$

Chemical	Effect on bre	Effect on breaking strength							
	None			Appreciable	Appreciable				
	Conc. (%)	Temp. (K)	Time (h)	Conc. (%)	Temp. (K)	Time (h)			
Hydrochloric acid	35	294	10	10	368	8			
Nitric acid	10	294	100	70	294	100			
Sulfuric acid	10	294	100	70	368	8			
Acetic acid	100	294-366	10-1,000	_	_	_			
Benzenesulfonic acid	_	_	_	100	366	10			
Formic acid	91	294	1,000	_	_	_			
Ammonium hydroxide	28	294	100	_	_	_			
Sodium hydroxide	10	294	100	50	333	100			
Acetone	100	294	1,000	_	_	_			
Benzene	100	294	1,000	_	_	_			
m-Cresol	100	294	1,000	_	_	_			
Ethyl alcohol	100	294	1,000	_	_	_			
Gasoline (leaded)	100	294	1,000	_	_	_			
Nitrobenzene	100	294	1,000	_	_	_			
<i>m</i> -Xylene	100	343	168	_	_	_			

Resistance to radiation $(\beta$ -ray)*(3)

Dose [†] (Mgrads)	Retained tensile strength (%)	Retained elongation (%)	Dielectric strength (kV m ⁻¹)	Dielectric constant [‡]	Dissipation factor [‡]
0	100	100	3.4×10^{4}	3.1-2.9	0.0083-0.0183
100	100	92	3.4×10^{4}	3.0 - 2.9	0.0135-0.0205
200	99	91	3.3×10^{4}	3.0 - 2.9	0.0104-0.0198
400	99	88	3.3×10^{4}	3.0 - 2.9	0.0120-0.0199
800	97	82	3.3×10^{4}	3.0-2.8	0.0089-0.0185
1,600	86	47	3.4×10^{4}	3.1-3.0	0.0137-0.0195
3,200	81	27	3.5×10^{4}	2.3-2.2	0.0071-0.0148
6,400	69	16	3.1×10^{4}	2.5-2.4	0.0095-0.0174

^{*0.25} mm Nomex Type 410 paper, cross direction.

Resistance to radiation (X-ray)⁽³⁾

X-ray (kV)	Irradiation time (h)	Breaking strength retained (%)
50	50	85
50	100	73
50	250	49

Resistance to temperature $^{(3)}$

Temperature (K)	Breaking tenacity (MPa)	Initial modulus (MPa)	Breaking elongation (%)
223	738	1.76×10^{4}	19.4
311	614	1.46×10^{4}	21.3
422	521	1.15×10^{4}	23.7
533	346	0.80×10^4	26.0

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Resistivity	ohm cm	50% relative humidity	1016	(3)
Secondary-relaxation	K	Torsion pendulum, 1 Hz $T_{\rm b}$ $T_{\rm g}$	550 352	(7)
Temperature	K	Begin to degrade 10% weight loss	573 731	(3)
Thermal conductivity	${\rm W} {\rm m}^{-1} {\rm K}^{-1}$	_	0.13	(3)
Tenacity at break	N/tex	_	0.39-0.49	(6)
Tensile strength at break	MPa	_	54-68	(6)

[†]2 MeV electrons.

 $^{^{\}ddagger}60\,Hz$ to $10\,kHz$.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Elongation at break	%	_	20-30	(3, 6, 9)
Flexure strength	MPa	3.2 mm thick pressboard	0.08-0.09	(3)
Shear strength	N	_	31,000	(3)
Upper use temperature	K	In air	643	(10)
Upper use voltage	$kV \ m^{-1}$	23°C, 50% relative humidity	1.6×10^3	(3)
Water uptake	% (w/w)	20°C, 65% relative humidity	6.5-9.3	(6, 11)
Zero-strength temperature	K	_	713	(12)

Sedimentation coefficient at zero concentration⁽²⁾

Solvent	Temperature (K)	$M_{\rm w}$ (kg mol ⁻¹)	S ₀ (s)
DMF	298	30.2–156	$(1.9 \times 10^{15})M^{0.44}$
LiCl (2.5 g l ⁻¹ + 96% H ₂ SO ₄) in DMF	298	20.7–142	$(2.8 \times 10^{15})M^{0.39}$
3% LiCl in DMF	298	4.3–112	$0.33-1.15(\times 10^{13})$

Unit cell data

Crystallographic system	Triclinic ⁽³⁾	Ortho ⁽²⁾	Ortho ⁽²⁾
Space group	P1-C ₁ ¹	-	_
Cell dimension			
a_0 (Å)	5.27	6.7	5.1
b_0 (Å)	5.25	4.71	5.0
c_0 (Å)	11.3	11.0	23.2
α (°)	111.5	_	_
β (°)	111.4	_	_
γ (°)	88	_	_
Repeat unit per unit cell	1	1	2

- 1. Ulrich, H. Introduction to Industrial Polymers, 2d ed. Hanser Publishers, Munich, 1993.
- 2. Brandrup, J., and E. H. Immergut. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989
- 3. Lewin, M., and J. Preston, eds. *Handbook of Fiber Science and Technology*. Marcel Dekker, New York, 1983, vol. 3.
- 4. Elias, H.-G., and F. Vohwinkel. *New Commercial Polymers*. Gordon and Breach Science Publishers, New York, 1986, vol. 2.
- 5. Yang, H. H. Aromatic High-Strength Fibers. John Wiley and Sons, New York, 1989.

- 6. Mark, H. F., et al. *Encyclopedia of Polymer Science and Engineering*. John Wiley and Sons, New York, 1996, vol. 6.
- 7. Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, New York, 1996.
- 8. Wortmann, F.-J. Polymer 35 (1994): 2,108.
- 9. Dyson, R. W., ed. Specialty Polymers. Blackie and Son Limited, London, 1987.
- 10. Warner, S. B. Fiber Science. Prentice-Hall, Englewood Cliffs, N.J., 1995.
- 11. Salamone, J. C. Polymer Materials Encyclopedia. CRC Press, Boca Raton, Fla., 1996, vol. 8.
- 12. Mark, H. F., S. M. Atlas, and E. Cernia, eds. *Man-Made Fibers Science and Technology*. Interscience Publishers, New York, 1968, vol. 2.

Poly(p-phenylene oxide)

ALLAN S. HAY AND YONG DING

ACRONYMS PPO, PPE

CLASS Polyether thermoplastics

PROPERTIES OF SPECIAL INTEREST Highly crystalline polymer, excellent chemical and solvent resistance. Not commercially available.

PREPARATIVE TECHNIQUES Poly(p-phenylene oxide) is prepared from mono p-bromoor p-chloro-phenolate at 170–200°C in the presence of cuprous salt as catalyst. (1-3)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE		
Molecular weight of repeat unit	g mol ⁻¹	_	92.03	_		
IR (characteristic absorption	frequencies)			(3)		
Thermal expansion coefficients	K^{-1}	Amorphous sample, DSC Above $T_{\rm g}$	249×10^{-6}	(4)		
		Below $T_{\rm g}$ Crystalline sample, DSC $0.7T_{\rm m} < T < 0.95T_{\rm m}$	62×10^{-6} 93×10^{-6}	(4)		
Density (amorphous)	$\rm gcm^{-3}$	_	1.27	(5)		
Solvents	N-methylpy	Boiling nitrobenzene, benzophenone, diphenyl ether, N-methylpyrrolidinone, tetralin, naphthalene, and hexamethylphosphoric acid triamide				
Nonsolvents		Room temperature: acetone, alcohols, tetrahydrofuran, halogenated solvents				
Lattice	_	_	ORTH	(5)		
Space group	_	-	Pbcn	(5)		
Chain conformation	_	_	7 * 2/1	(5)		
Unit cell dimensions	Å	Compression-molded or uniaxially oriented	a = 8.07 b = 5.54 c = 9.72	(5)		

Poly(p-phenylene oxide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Unit cell contents (number o	f repeat units)		4	(5)
Degree of crystallinity*	%	Hold at 230°C for 1 h, cooling rate > 1,000°C min ⁻¹ , x-ray	0	(4)
		Hold at 230°C for 1h, cooling rate 100°C min ⁻¹ , x-ray	42	
		Hold at 230°C for 1h, cooling rate 1°C min ⁻¹ , x-ray	45	
		Hold at 230°C for 1h, cooling rate 0.1°C min ⁻¹ , x-ray	70	
		Hold at 112°C for 1h, cooling rate 0.1°C min ⁻¹ , x-ray	58	
		25°C, 0.2% nitrobenzene solution quenched with alcohol, x-ray	15	
Heat of fusion (of repeat units)	kJ mol ⁻¹	DSC	7.835 ± 0.419	(4)
Entropy of fusion (of repeat units)	$kJ K^{-1} mol^{-1}$	DSC	0.015 ± 0.003	(4)
Density (crystalline)	$\rm gcm^{-3}$	_	1.407 ± 0.01	(5)
Glass transition temperature	K	DSC	363	(4)
Melting point	K	DSC	535 ± 10	(4)
Heat capacity (of repeat units)	$kJK^{-1}mol^{-1}$	300-358 K	$C_p = (0.337T + 7.95) \times 10^{-3}$	
anto		358-620 K	$C_p = (0.1425T + 99.01) \times 10^{-3}$	(6)
Dielectric constant ε'	_	100 Hz, 296 K 100 Hz, 348 K 100 Hz, 398 K 100 Hz, 448 K 100 Hz, 498 K 100 Hz, 523 K 100 Hz, 548 K 100 Hz, 573 K 1000 Hz, 296 K 1000 Hz, 348 K 1000 Hz, 348 K	4.76 4.72 4.73 4.76 4.60 4.59 4.78 7.01 4.76 4.71 4.71	(2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
		1000 Hz, 448 K	4.75	
		1000 Hz, 498 K	4.58	
		1000 Hz, 523 K	4.53	
		1000 Hz, 548 K	4.50	
		1000 Hz, 573 K	4.51	
		$1 \times 10^5 \text{Hz}$, 296 K	4.76	
		$1 \times 10^5 \text{Hz}$, 348 K	4.71	
		$1 \times 10^5 \text{Hz}$, 398 K	4.68	
		$1 \times 10^5 \text{Hz}$, 448 K	4.71	
		$1 \times 10^5 \text{Hz}$, 498 K	4.54	
		$1 \times 10^5 \text{Hz}$, 523 K	4.50	
		$1 \times 10^5 \text{Hz}$, 548 K	4.47	
		$1 \times 10^5 \text{Hz}$, 573 K	4.42	
Dielectric loss ε''	_	100 Hz, 296 K	0.0005	(2)
		100 Hz, 348 K	0.0005	. ,
		100 Hz, 398 K	0.0047	
		100 Hz, 448 K	0.0079	
		100 Hz, 498 K	0.0311	
		100 Hz, 523 K	0.1745	
		100 Hz, 548 K	0.4417	
		100 Hz, 573 K	1.2085	
		1000 Hz, 296 K	0.0005	
		1000 Hz, 348 K	0.0007	
		1000 Hz, 398 K	0.0024	
		1000 Hz, 448 K	0.0027	
		1000 Hz, 498 K	0.0051	
		1000 Hz, 523 K	0.0180	
		1000 Hz, 548 K	0.0462	
		1000 Hz, 573 K	0.1876	
		$1 \times 10^5 \text{Hz}$, 296 K	0.0013	
		$1 \times 10^5 \text{Hz}$, 348 K	0.0006	
		$1 \times 10^5 \text{Hz}$, 398 K	0.0016	
		$1 \times 10^5 \text{Hz}, 448 \text{K}$	0.0027	
		$1 \times 10^5 \text{Hz}, 498 \text{K}$	0.0092	
		$1 \times 10^5 \text{Hz}, 523 \text{K}$	0.0023	
		$1 \times 10^5 \text{Hz}, 548 \text{K}$	0.0023	
		$1 \times 10^5 \text{Hz}$, 573 K	0.0026	

^{*}Sample thickness: ca. 10 µm.

- 1. Stamatoff, G. S. U.S. Patent 3,228,910 (to E. I. du Pont), 1966.
- 2. Taylor, C. W., S. P. Park, and S. P. Davis. U.S. Patent 3,491,085 (to 3M), 1970.
- 3. vanDort, H. M., et al. Europ. Polym. J. 4 (1968): 275.
- 4. Wrasidlo, W. J. Polym. Sci., Part A-2, 10 (1972): 1,719.
- 5. Boon, J., and E. P. Magré. Makromol. Chem. 126 (1969): 130.
- 6. Gaur, U., and B. Wunderlich. J. Phys. Chem. Ref. Data 10 (1981): 1,005.

Poly(p-phenylene sulfide)

JUNZO MASAMOTO

ACRONYM, TRADE NAMES PPS, Ryton, Fortron, Torelina, Tohprene, DIC-PPS

CLASS Polysulfides

STRUCTURE
$$-S$$

MAJOR APPLICATIONS Poly(*p*-phenylene sulfide) (PPS) is mainly used in the reinforced form with glass fiber or mineral fillers as a high-performance thermoplastic. It is used for electrical and electronic parts (e.g., plugs and multipoint connectors, bobbins, relays, switches, encapsulation of electronic component, etc.), automobile parts (air intake systems, pumps, valves, gaskets, components for exhaust gas recirculation systems, etc.), and as components for mechanical and precision engineering. Nonfiller PPS is used for fiber, film, sheet, nonwoven fabric, etc.

PROPERTIES OF SPECIAL INTEREST PPS is a semicrystalline thermoplastic. PPS reinforced with glass fiber or mineral fillers shows excellent mechanical properties, high thermal stability, excellent chemical resistance, excellent flame retardance, good electrical and electronic properties, and good mold precision. Recently developed linear type PPS additionally shows improved properties of elongation and toughness and opens the new route for the use of a neat polymer.

PREPARATIVE TECHNIQUE Condensation polymerization: Reaction between *p*-dichlorobenzene and sodium sulfide is accomplished in the presence of a polar solvent (e.g., N-methyl pyroridone). Polymer formation is accompanied by the production of sodium chloride as a byproduct. Medium-low molecular weight solid PPS powder is heated to below its melting point (448–553 K) in the presence of air. Several important properties of PPS change when the polymer is cured: (1) molecular weight increased; (2) toughness increased; (3) melt viscosity increased; (4) the color of the polymer changes from off-white to tan/brown. Modified high molecular weight linear polymer is directly obtained during polymerization by Phillips Petroleum using alkali metal carboxylate as a polymerization modifier. Kureha Chemical developed a modified process for obtaining linear type PPS, adding water during the last stage of polymerization. (1,2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	_	109	-
Typical molecular weight range of polymer	g mol ⁻¹	Dilute solution light scattering and gel permeation chromatographic studies (performed in 1-chloronaphthalene at 220°C), and the inherent viscosity (performed in 1-chloronaphthalene at 206°C) is 0.16. The polymer is as polymerized, just before the curing step	18,000	(6, 7)
		The linear type of modified high molecular weight PPS by the Phillips modified process	35,000	(6)
Typical polydispersity index (M_w/M_n)	_	_	1.7	(8-10)
IR (characteristic absorption frequencies)	cm^{-1}	Skeletal benzene Skeletal benzene Out-of-plane C-H bending Out-of-plane C-H bending Skeletal benzene Phenylene sulfur stretching In-plane C-H bending In-plane C-H bending Skeletal benzene C-H stretching	480 556 724 818 960 1,011 1,096 1,178 1,235 1,390 1,471 1,571 1,652 1,906 2,299 3,065	(11, 12)
Thermal expansion coefficients	K^{-1}	Unfilled 40 wt% glass fiber-filled Glass fiber and mineral-filled	4.9×10^5 4×10^5 2.8×10^5	(10)
Solvents	_	>200°C >200°C	1-Chloronaphthalene Biphenyl, 3-chlorobiphenyl, <i>o</i> -terphenyl	(1) (13)

Poly(p-phenylene sulfide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Nonsolvents	_	<200°C	Almost insoluble in organic and inorganic solvents	(10)
Mark-Houwink parameter: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	1-Chloronaphthalene, at 208°C	$K = 8.91 \times 10^{-5}$ $a = 0.747$	(14)
Lattice	_	_	Orthorhombic	(15, 16)
Space group	_	_	D2H-14	(15, 16)
Chain conformation	(C-S-C boinclined at	formation defined by the plane of ond angle 110°), while the phenyl t + and -45° to the plane.	rings are successively	- (17)
	(C-S-C bo nearly cop	and angle $103-107^{\circ}$), while alternational planar with the C-S-C plane, and aclined to 60° C.	te phenyl rings are	(27)
Unit cell dimensions	Å	-	a = 8.67, b = 5.61, c = 10.26 (fiber identity period)	(15)
			a = 8.68, b = 5.61, c = 10.26 (fiber identity period)	(16)
Unit cell contents	Monomeric units	-	4	(15, 16)
Degree of crystallinity	%	X-ray diffraction method for fully crystalline PPS	65	(18)
Heat of fusion	$kJ mol^{-1}$	Typical heat of fusion of crystalline PPS	4.6-5.5	(19)
		100% crystalline material, by extrapolation	8.7	(16, 18)
Density	$\rm g~cm^{-3}$	Theoretical density for PPS crystalline	1.440 1.425	(15) (16)
		Observed density		(20)
		For PPS neat 40% glass reinforced Glass and mineral filled	1.35 1.6 1.6–1.8	
Glass transition temperature	K	DSC $M_{\rm w} = 51,000$, DSC, heating	358 357	(2) (16)
,r		$rate = 20^{\circ} \text{C min}^{-1}$		(/

			, , ,	
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting point	K	DSC	558	(2)
		Equilibrium malting tomograture DCC	568	(15)
		Equilibrium melting temperature, DSC determined from the relationships		(21)
		between $T_{\rm m}$ and $T_{\rm c}$, 5°C min ⁻¹		
		$M_{\rm w} = 15,000$	576	
		$M_{\rm w} = 51,000$	588	
Heat capacity	$kJ K^{-1} mol^{-1}$	Unfilled, cured feed stock	0.112	(10)
rieur cupucity	1911 11101	Chimed, cured reed steen	0.112	(10)
Deflection temperature	K	Unfilled, cured feed stock, sample annealed at 260°C for 4 h, ASTM D648	408	(20)
		40% glass fiber reinforced PPS	>533	(20)
		Glass and mineral filled PPS	>533	(20)
		Unfilled, linear type PPS, ASTM D648 at	388	
		1.82 MPa	300	(22)
		40% glass fiber reinforced linear type PPS	538	(22)
		Glass and mineral filled linear type PPS	538	(22)
Tensile modulus	MPa	Biaxally oriented PPS film	2,600-3,900	(6)
		PPS fiber, draw ratio 3.8, 25.5 tex	3,500-4,700	()
Tensile strength	MPa	Unfilled, cured feed stock, ASTM D638	65	(20)
8		40% glass fiber reinforced	120	(20)
		Glass and mineral filled PPS	74	(20)
		Unfilled, linear type, ASTM D638	86	(22)
		40% glass fiber reinforced linear type	172	(22)
		Glass and mineral filled linear type	113	(22)
		Biaxially oriented PPS film	125-190	(6)
		PPS fiber, draw ratio 3.8, 25.5 tex	300	(6)
		PPS fiber	480	(22)
Yield stress	MPa	Unfilled, linear type	80	(23)
Yield strain $(L/L_0)_{\rm v}$	%	Unfilled, linear type	5	(23)
		• •		
Maximum extensibility	%	Unfilled, cured feed stock, ASTM D638	1.6	(20)
		40% glass fiber reinforced	1.2	(20)
		Glass and mineral filled	0.54	(20)
		Unfilled, linear type	12	(23)
		Unfilled, cured feed stock	2	(23)
		Unfilled, linear type, ASTM D638	3–6	(19)
		40% glass fiber reinforced linear type	1.7	(19)
		Glass and mineral filled linear type	1.0	(19)
		Unfilled, cured PPS	1.1	(6)
		Unfilled, linear type	21	(6)
		40% glass fiber reinforced cured PPS	0.5	(6)
		40% glass fiber reinforced linear type PPS	0.8	(6)

Poly(p-phenylene sulfide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Maximum extensibility	%	Biaxially oriented PPS film	40-70	(6)
_		PPS fiber, draw ratio 3.8, 25.5 tex	25-35	(6)
		PPS fiber	25-40	(22)
Flexural modulus	MPa	Unfilled, cured feed stock	3,860	(20)
		40% glass fiber reinforced	11,700	(20)
		Glass and mineral filled	15,200	(20)
		Unfilled, linear type	3,400	(23)
		Unfilled, linear type, ASTM D790	4,130	(22)
		40% glass fiber reinforced linear type	13,100	(22)
		Glass and mineral filled linear type	16,500	(22)
		Unfilled, cured PPS	3,845	(6)
		Unfilled, linear type	3,4041	(6)
		40% glass fiber reinforced cured PPS	1,5001	(6)
		40% glass fiber reinforced linear type PPS	1,800	(6)
Flexural strength	MPa	Unfilled, cured feed stock	96	(20)
		40% glass fiber reinforced	180	(20)
		Glass and mineral filled	100	(20)
		Unfilled, linear type	110	(23)
		Unfilled, linear type, ASTM D790	145	(22)
		40% glass fiber reinforced linear type	241	(22)
		Glass and mineral filled linear type	182	(22)
		Unfilled, cured PPS	104	(6)
		Unfilled, linear type	147	(6)
		40% glass fiber reinforced cured PPS	153	(6)
		40% glass fiber reinforced linear type	180	(6)
Impact strength, notched	$J m^{-1}$	ASTM D256		
		Unfilled, cured feed stock	16	(20)
		40% glass fiber reinforced PPS	69	(20)
		Glass and mineral filled	32	(20)
		Unfilled, linear type, ASTM D256	26	(20)
		40% glass fiber reinforced linear type	85	(22)
		Glass and mineral filled linear type	64	(22)
		Unfilled, cured PPS	10.7	(6)
		Unfilled, linear type	16.7	(6)
		40% glass fiber reinforced cured PPS	48.2	(6)
		40% glass fiber reinforced linear type	58.9 500	(6)
		Elastomer toughened PPS 40% glass fiber reinforced elastomer toughened PPS	500 220	(24) (24)
	- -1			,
Impact strength, unnotched	$J m^{-1}$	ASTM D256 Unfilled, cured feed stock	101	(20)
amounce		40% glass fiber reinforced PPS	240	(20)
		Glass and mineral filled	101	(20)
		Unfilled, linear type	900	(23)
		Unfilled, cured feed stock	60	(23)
		Unfilled, linear type	320-640	(23)
		, · · · · · · · · · · · · · · · · · · ·		(-)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Impact strength, unnotched	J m ⁻¹	40% glass fiber reinforced linear type Glass and mineral filled linear type	590 250	(23) (23)
di ilio terro di		Unfilled, cured PPS	80.3	(6)
		Unfilled, linear type	578	(6)
		40% glass fiber reinforced cured PPS	139	(6)
		40% glass fiber reinforced linear type	241	(6)
Compressive strength	MPa	Unfilled, cured feed stock	110	(20)
		40% glass fiber reinforced PPS	145	
		Glass and mineral filled	110	
Rockwell hardness	_	Unfilled, cured feedstock	R-120	(20)
		40% glass fiber reinforced PPS	R-123	
		Glass and mineral filled	R-121	
Entanglement molecular weight	$g \text{mol}^{-1}$	-	20,000	(8)
Dielectric strength	kV mm ⁻¹	40% glass fiber filled, ASTM D149, transformer oil, rate of increase $= 500 \mathrm{V s^{-1}}$, 1.6–3.2 mm thickness	17.7	(10)
		Glass fiber and mineral filled	13.4-15.7	
Dielectric constant	_	40% glass fiber filled, 1MHz, ASTM D150	3.8	(20)
		Glass fiber and mineral filled	4.6	` ,
Dissipation factor	_	40% glass fiber filled, 1MHz, ASTM D150	0.0013	(20)
		Glass fiber and mineral filled	0.016	
Volume resitivity	ohm cm	40% glass fiber filled, 2 min, ASTM D257	4.5×10^{16}	(20)
, and the second		Glass fiber and mineral filled	2.0×10^{16}	(20)
		Biaxially oriented PPS film	10^{17}	(6)
Arc resistance	S	40% glass fiber filled, ASTM D 495	35	(20)
		Glass fiber and mineral filled	200	,
Comparative tracking	V	40% glass fiber filled, UL 746 A	180	(20)
index		Glass fiber and mineral filled	235	,
Insulation resistance	ohm	40% glass fiber filled	10^{11}	(20)
		Glass fiber and mineral filled	10^9	,
Thermal conductivity	$W\ m^{-1}K^{-1}$	At 20°C	0.29	(25)
Melt index (melt flow values)	g (10 min) ⁻¹	Uncured PPS (before curing steps) Powder coating PPS PPS for mineral glass filled compounds PPS for glass fiber filled compounds Compression molding	3,000-8,000 1,000 600 60 0	(19)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Maximum use temperature	K	UL temperature index for long- term use, for PPS resin	493	(26)
		PPS fiber for long-term use	505	(27)
		, and the second	463	(28)
			>473	(29)
Decomposition	K	Start of decomposition	698	(10)
temperature		20% loss, thermogravimetric analyses of polymer, 10°C min ⁻¹	823	
Water absorption	%	40% glass fiber reinforced PPS, 24 h immersion in water	0.03	(22)
		Glass and mineral filled PPS	0.03	
Oxygen index	_	Unfilled PPS, ASTM D2863	44	(10)
		40% glass fiber reinforced PPS	46.5	(10)
		Glass and mineral filled	53	(10)
		PPS fiber	34	(28)
			49	(29)
Flammability	_	Unfilled PPS, UL 94	V-0	(10)
·		40% glass fiber reinforced PPS	V-0/5V	
		Glass and mineral filled	V-0/5V	
Flame spread index	mm	ASTM E 162	50.8	(20)
Autoignition temperature	K	_	813	(19)
Smoke density	min	Obscuration time, smoldering	15.5	(30)
		Obscuration time	3.2	
Important patents	U.S. Paten	t 3,354,129		(1)
imperium paterio	U.S. Paten			(31)
		t 3,717,620		(3)
	U.S. Paten			(4)
		t 4,645,826		(5)
Availability	kg	_	26,850,000	(32)
Suppliers	Phillips Pe	etroleum, Borger,Texas, USA		
		nemical, Tokyo, Japan		
	Toray, Tol			
		elanese, Chatam, New Jersey, USA		

Properties of special interest

- Heat deflection temperature for glass fiber reinforced engineering plastics over 500 K: Poly(ether ether ketone) (PEEK), Nylon 6,6, poly(ethylene terephthalate), poly(butylene terephthalate)
- UL temperature indices for long-term use over 450 K: Poly(ether ether ketone) (PEEK), poly(etherimide), poly(ether sulfone)
- Flame resistance UL 94 V-O: Poly(ether ether ketone) (PEEK), poly(etherimide), poly(ether sulfone), polysulfone
- Electrical conducting by the addition of dopants: Polyacetylene, poly(p-phenylene), polypyrrole⁽³³⁾

- 1. Edmonds, J., and H. W. Hill, Jr. U.S. Patent 3,354,129 (1967), assigned to Phillips Petroleum.
- 2. Brady, D. G. J. Appl. Polym. Sci., Appl. Polym. Symp., 36 (1981): 231.
- 3. Rohlfing, R. G. U.S. Patent 3,717,620 (1973), assigned to Phillips Petroleum.
- 4. Campbell, R. W. U.S. Patent 3,919,177 (1975), assigned to Phillips Petroleum.
- 5. Iizuka, Y., et al. U.S. Patent 4,645,826 (1987), assigned to Kureha Chemical.
- 6. Hill, H. W. Jr. Ind. Eng. Chem. Prod. Res. Dev. 18 (1979): 252.
- 7. Stacy, C. J. Polym. Prepr. 26(1) (1985): 180.
- Kraus, G., and W. M. White. IUPAC 28th Macromolecular Symposium, Amherst, Mass., 12 July 1982 (Chem. Abstr. 99 (1983) 123 454c).
- 9. Kinugawa, A. Jpn. J. Polym. Sci. Technol. 44 (1987): 139.
- Hill, H. W. Jr., and D. G. Brady. In Encyclopedia of Polymer Science and Technology, 2d ed., edited by H. F. Mark. Wiley-Interscience, New York, 1988, vol. 11, p. 531.
- 11. Piaggio, P., et al. Spectrochim. Acta 45A (1989): 347.
- 12. Zhang, G., and Q. Wang. Spectrochim. Acta 47A (1991): 737.
- 13. Frey, D. A. U.S. Patent 3,380,951 (1968), assigned to Phillips Petroleum.
- 14. Stacy, C. J. J. Appl. Polym. Sci. 32 (1986): 3,959.
- 15. Tabor, B. J., E. P. Magre, and J. Boon. Eur. Polym. J. 7 (1971): 1,127.
- 16. Lovinger, A. J., F. J. Padden, Jr., and D. D. Davis. Polymer 29 (1988): 229.
- 17. Garbarczk, J. Polymer Commun. 27 (1986): 335.
- 18. Brady, D. J. J. Appl. Polym. Sci. 20 (1976): 2,541.
- 19. Hill, H. W. Jr., and D. J. Brady. In *Kirk-Othmer Encyclopedia of Chemical Technology*, 3d ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1982, vol. 18, p. 793.
- 20. Geibel, J. F., and R. W. Campbell. In *Comprehensive Polymer Science*, edited by S. G. Allen. Pergoman Press, London, 1989, vol. 5, p. 543.
- 21. Lovinger, A. J., D. D. Davis, and F. J. Padden, Jr. Bull. Am. Phys. Soc. 30 (1985): 433.
- 22. Fortron Polyphenylene Sulfide (PPS). Catalogue from Hoechst Celanese.
- 23. Yamada, J., and O. Hashimoto. Plastics 38(4) (1987): 109.
- 24. Masamoto, J., and K. Kubo. Polym. Eng. Sci. 36 (1996): 265.
- Thompson, E. V. In Encyclopedia of Polymer Science and Technologies, 2d ed., edited by H. F. Mark. Wiley-Interscience, New York, 1988, vol. 16, p. 711.
- 26. Shue, R. S. Dev. Plast. Technol. 2 (1985): 259.
- Rebenteld, L. In Encyclopedia of Polymer Science and Technologies, 2d ed., edited by H. F. Mark. Wiley-Interscience, New York, 1988, vol. 6, p. 647.
- 28. Catalogue in PPS fiber. Toray, Tokyo, Japan.
- 29. Catalogue in Fortron KPS. Kureha Chemical, Tokyo, Japan.
- 30. Hiado, C. J. Flammability Handbook for Plastics, 2d ed. Technomic Publishing, Westport, Conn., 1974, p. 60.
- 31. Edmonds, J., and H. W. Hill, Jr. U.S. Patent 3,524,835 (1970), assigned to Phillips Petroleum.
- 32. Tsukiji, A., and T. Suzuki. Plastics 48(1) (1997): 89.
- 33. Rabolt, J. F., et al. J. Chem. Commun. (1980): 347.

Poly(1,4-phenylene vinylene)

JACEK SWIATKIEWICZ AND PARAS N. PRASAD

ACRONYM, ALTERNATIVE NAME PPV, poly(p-phenylene vinylene)⁽¹⁾

CLASS Polyaromatics

STRUCTURE $[-C_6H_4-CH=CH-]$

PROPERTIES OF SPECIAL INTEREST Electroactive and electroluminescent material. Electrical and electrooptical properties can be tuned by choice of doping and preparation procedure. Large third-order nonlinear optical susceptibility. Insoluble and infusible material, sustains high temperature treatment.

PREPARATIVE TECHNIQUES Thermal conversion of a soluble precursor polymer in oxygen free atmosphere. ⁽²⁾ Uniaxial stretch during thermal process yields highly anisotropic PPV films. ⁽³⁾

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	$g \text{cm}^{-3}$	Flotation method Unit cell dimensions	1.24 1.283	(4)

Unit cell dimensions

Lattice	Monomers per unit cell	Cell dim	Cell dimensions (nm)		Cell angles			Setting angle * $\phi_{ m s}$	Reference
		а	b	с	α	β	γ		
Monoclinic	2	0.790	0.605	0.658	123°	_	_	56-68°	(4)
Monoclinic	2	0.815	0.607	0.66	123°	_	_	_	(5)
Monoclinic	2	0.805	0.591	0.66	122°	_	_	56-68°	(6)
Monoclinic	2	0.80	0.60	0.66	123°	_	_	$50^{\circ}\pm2^{\circ}$	(7)

^{*}Position of projected molecular major axis with respect to the *a*-axis direction.

PROPERTY	UNITS	CONDITIONS	VAL	UE	REFERENCE
Characteristic frequencies	meV (cm ⁻¹)	Inelastic incoherent neutron scattering (IINS)	2.5 7 15 25 37 40 51 60 68 80	(20) (57) (121) (202) (2990) (3230) (4120) (4850) (5500) (6470)	(8)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR (characteristic absorption frequencies)	cm ⁻¹	_	3,024 1,594 1,519 1,423 965 837 784	(9)
Raman (characteristic absorption frequencies)	cm^{-1}	_	1,628 1,586 1,550 1,330 1,304 1,174 966	(10)
Onset of the optical absorption band	eV	_	2.49 2.4 2.34	(11) (12) (13)
Wavelength at maximum of the band	nm	UV-Vis absorption 80 K	200 244.8 402 511.9	(11) (11) (11) (14)
Lowest even parity excited singlet state	eV	Two-photon fluorescence Two-photon absorption	2.95 3.58	(15) (16)
Emission band	nm	Photo-luminescence 80 K 80 K 77 K 77 K 77 K 25 K 25 K	550 522 529 531.5 570.4 615.3 522 562 529	(17) (12) (14) (13) (13) (13) (18) (18) (19)
Tensile strength	MPa	Unoriented Oriented (draw ratio 6), in the machine direction Oriented (draw ratio 5), transverse to the machine direction	41.2 500 31.7	(20)
Young's modulus	MPa	Unstretched Oriented	3,200 37,000	_

Poly(1,4-phenylene vinylene)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Elastic constants	MPa	Oriented (draw ratio 10) along 3 axis (draw direction)		(21)
		c_{11}	8,440	
		c_{13}	3,620	
		c_{33}	46,600	
		C_{44}	2,540	
Dielectric constant ε'	_	0.5 MHz	3.2	(22)
Index of refraction	_	3–25 μm, paralleI*	2.1 ± 0.2	(9)
		3–25 μm, perpendicular* (oriented film)	1.5 ± 0.2	(9)
		1.064 µm, parallel	1.968	(23)
		1.064 µm, perpendicular	1.584	(23)
		(unoriented)	1.001	(23)
		0.633 μm, parallel	2.085	(23)
		0.633 µm, perpendicular	1.610	(23)
		0.633 µm, parallel	2.20	(24)
		0.602 µm, parallel	2.89(1)	(25)
		0.602 μm, perpendicular	1.63(1)	(25)
		(oriented film)	1.00(1)	(23)
Nonlinear refraction coefficient (DFWM)	$\mathrm{cm}^2\mathrm{W}^{-1}$	0.800 μm, parallel (unoriented)	10^{-11}	(26)
Nonlinear absorption coefficient	${\rm cm}{\rm W}^{-1}$	_	8.0×10^{-8}	_
coefficient		0.700 (probe), 0.620 (pump)	5.0×10^{-9}	(27)
		0.531 (probe), 1.064 (pump)	5.0×10^{-8}	(16)
$\chi^{(3)}$, DFWM	esu	0.580 μm	1.6×10^{-10}	(28)
,		0.620 μm (unoriented)	1×10^{-10}	(28)
		0.602 μm, parallel	1.1×10^{-9}	(25)
		0.602 μm, perpendicular (oriented film)	5.8×10^{-11}	(25)
$\chi^{(3)}$, THG	esu	1.064/0.355 µm, parallel (oriented fim)	2×10^{-11}	(24)
		(oriented fiff) 1.064/0.355 μm, parallel (unoriented film)	7.5×10^{-11}	(29)
Electronic conductivity	${\rm S~cm^{-1}}$	$T = 298 \mathrm{K}$	10^{-11}	(30)
			2.2×10^{-14}	(31)
Electroluminescence	nm	ITO/PPV/AuAl/PPV/Au	562	(32)
emission peak	11111	110/11 //110/11/11 //110	550	(33)
cimosion peak			550	(00)
Quantum efficiency	%	ITO/PPV/Au	0.01	(32)
		Al/PPV/Au	0.01-0.1	(33)

^{*} Light polarization orientation vs. polymer chain direction.

- 1. Poly(1,4-phenylene-1,2-ethenediyl), CAS.
- Gangon, D. R., et al. Polymer 28 (1987): 567; Bradley, D. D. C. J. Phys D: Appl. Phys. 20 (1987): 1,389; Holiday, D. A., et al. Synth. Met. 55-57 (1993): 954.
- 3. Machado, J. M., et al. New Polym. Mater. 1 (1989): 189.
- 4. Granier, T., et al. J. Polym. Sci. Phys. B24 (1986): 2,793
- 5. Moon, Y. B., et al. Synth. Met. 29 (1989): E79.
- 6. Martens, J. H. F., et al. Synth. Met. 41 (1991): 301.
- 7. Chen, D., M. J. Winokur, M. A. Masse, and F. E. Karasz. Polymer 33 (1992): 3,116.
- 8. Papanek, P., et al. Phys. Rev. B50 (1994): 15,668.
- 9. Bradley, D. D. C., R. H. Friend, H. Lindenberger, and S. Roth. Polymer 27 (1986): 1,709.
- 10. Lefrant, S., et al. Synth. Met. 29 (1989): E91.
- 11. Obrzut, J., F. E. Karasz. J. Chem. Phys. 87 (1987): 2,349.
- 12. Colaneri, N. F., et al. Phys. Rev. B42 (1990): 11,670.
- 13. Bullot, J., B. V. Dulieu, and S. Lefrant. Synth. Met. 61 (1993): 211.
- 14. Pichler, K., et al. Synth. Met. 55-57 (1993): 230.
- 15. Baker, C. J., O. M. Gelsen, and D. D. C. Bradley. Chem. Phys. Lett. 201 (1993): 127.
- 16. Yang, J.-P. Chem. Phys. Lett. 243 (1995): 129.
- 17. Hayes, G. R., I. D. W. Samuel, and R. T. Phillips. Phys. Rev. B52 (1995): R-11,569.
- 18. Lec, G. J., et al. Synth. Met. 69 (1995): 431.
- 19. Ramscher, U., H. Bassler, D. D. C. Bradley, and M. Hennecke. Phys. Rev. B42 (1990): 9,830.
- 20. Machado, J. M., M. J. A. Masse, and F. E. Karasz. Polymer 30 (1989): 1,992.
- 21. Cui, Y., D. N. Rao, and P. N. Prasad. J. Phys. Chem. 96 (1992): 5,617.
- 22. Nguyen, T. P., V. H. Tran, and S. Lefrant. Synth. Met. 69 (1995): 443.
- 23. Burzynski, R., P. N. Prasad, and F. E. Karasz. Polymer 31 (1990): 627.
- 24. McBranch, D., et al. Synth. Met. 29 (1989): E90.
- 25. Swiatkiewicz, J., P. N. Prasad, and F. E. Karasz. J. Appl. Phys. 74 (1993): 525.
- 26. Samoc, A., M. Samoc, M. Woodruff, and B. Luther-Davies. Opt. Lett. 20 (1995): 1,241.
- 27. Lemmer, U., et al. Chem. Phys. Lett. 203 (1993): 29.
- 28. Bubeck, C., A. Kaltbeitzel, A. Gramd, and M. LeClerc. Chem. Phys. 154 (1991): 343.
- 29. Bradley, D. D. C., and Y. Mori. Jpn. J. Appl. Phys. Part I 28 (1989): 174.
- 30. Ueno, H., and K. Yoshino. Phys. Rev. B34 (1986): 7,158.
- 31. Kossmehl, G. A. In *Handbook of Conducting Polymers*, edited by T. A. Skotheim. Marcel Dekker, New York, 1986, p. 351.
- 32. Burroughed, J. H., et al. Nature 347 (1990): 539.
- 33. Cimrova, V., and D. Neher. Synth. Met. 76 (1996): 125.

CHANDIMA KUMUDINIE, JAGATH K. PREMACHANDRA, AND JAMES E. MARK

CLASS Poly(isocyanides); poly(iminoethylene); poly(isonitrile)

$$\begin{array}{ccc} \textbf{STRUCTURE} & + C \rightarrow_n \\ & \parallel & \\ N & CH - CH_3 \\ & & C_6H_5 \end{array}$$

MAJOR APPLICATIONS Potential applications in mimicking biological macromolecules and applications in the areas of liquid crystals, coatings, column chromatographic supports, and polymer supported chiral catalysts. (1,2)

PROPERTIES OF SPECIAL INTEREST Chiral-helical rigid-rod structure and yields liquid crystals in solution. (1) Potentially useful as models for the understanding of the structure and properties of biological molecules. (3) Unreactive toward hydrogenation at ambient temperature and pressure and resistant toward acid hydrolysis. (4) One of the few soluble polyisocyanides of high molecular weight. (1)

OTHER POLYMERS SHOWING THIS SPECIAL PROPERTY Chiral helical structure: poly(t-butyl isocyanide) and poly(σ -tolyl isocyanide). Rigid-rod molecule: poly(n-hexyl isocyanate) and poly(n-butyl isocyanate).

Preparative techniques*

Conditions	Yield (%)	Reference
No initiator or solvent; temp.: 25°C	Small yield	(3, 5, 6)
Initiator: Ni(acetylacetonate) ₂ ; solvent: ethanol; temp.: 25°C	80	(3)
Initiator: NaHSO ₄ , O ₂ , glass dibenzoyl peroxide; solvent: <i>n</i> -heptane; temp.: 50°C	60	(7)
Poly(l- α -phenylethyl isocyanide); initiator: H ₂ SO ₄ , O ₂ , glass dibenzoyl peroxide; solvent: n -heptane; temp.: 27°C	32	(7)
Poly(d- α -phenylethyl isocyanide); initiator: H ₂ SO ₄ , O ₂ , glass dibenzoyl peroxide; solvent: <i>n</i> -heptane; temp.: 27°C	23	(7)
Catalyst: NiCl ₂ .6H ₂ O, (R)-(+)- α -phenylethyl isocyanide	_	(8)
Concentrated H ₂ SO ₄ at 40°C in air for 43 h	24	(9)
H ₂ SO ₄ as a fine droplet dispersion in heptane, 25–100°C	_	(3)
H ₂ SO ₄ acid, coated on powdered glass	_	(6, 9)
At room temperature, 0.1–5 mol% NiCl $_2 \cdot 6H_2O$, in methanol and with no solvent	60-95	(10, 11)

^{*}For preparation of monomer see references (9, 10, and 12)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE		
Typical comonomers	Sec-butyl	l isocyanide, methyl α -isocyanopro	ppionate	(3)		
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	-	131	-		
Typical molecular weight range of polymer	$g \text{mol}^{-1}$	Osmometry $ (RS)-poly(\alpha-phenylethyl) $	$M_{\rm n} = (0.3-1.3) \times 10^5$ $M_{\rm n} = (0.25-2.7) \times 10^5$ $M_{\rm w} = (0.5-2) \times 10^5$ $M_{\rm w} = 3.4 \times 10^4$	(3, 5) (12) (9) (8)		
		isocyanide), light scattering (R)-poly(α -phenylethyl isocyanide), light scattering	$M_{\rm w} = 1.07 \times 10^5$	(8)		
		– isocyanide), fight scattering	Strongly depends on amount of catalyst	(10)		
		Light scattering in toluene at 35°C	$M_{\rm w} = 1.2 \text{ and}$ $1.5 (\times 10^5)$	(6)		
		Osmometry in toluene at 37°C	$M_{\rm n} = 5.49 \text{ and}$ $7.55 (\times 10^4)$	(6)		
Degree of polymerization	_	(R)-poly(α -phenylethyl isocyanide), light scattering	817	(8)		
		(RS)-poly(α -phenylethyl isocyanide), light scattering	260			
Typical polydispersity index	-	Fractionated samples — Polymerization: ground-glass- sulfuric acid catalyst system	1.6-2.8 1.1-1.3 1.7-2.0	(3, 5) (3) (6) (9)		
		_	1.6-3.1			
IR (characteristic absorption frequencies)	cm^{-1}	N=C stretching Conjugated amine Nonconjugated amine	1,620–1,650 1,625 1,660	(10) (4) (4)		
NMR		, in CDCl $_3$ and CCl $_4$ C, (R)-(+)-poly($lpha$ -phenylethyl isocy	anide) at 23°C, in CDCl ₃ ,	(13) (8)		
	d-Poly(α-	-phenylethyl isocyanide) , in tetrachloroethylene, at 25°C ar	nd solid-state NMR	(3, 7) (7, 9)		
Solvents	Soluble in Copolym	n more than 40 solvents n apolar solvents (chloroform, ben ters with sec-butyl isocyanide is sp		(3, 9) (10) (3)		
	Copolym	common solvents Copolymers with methyl α -isocyanopropionate have solubilities suitable for conventional solution characterization methods				
Nonsolvents	Insoluble	e in polar solvents (alcohols, water)	(10)		

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Second virial coefficient	mol cm ³ g ⁻²	In toluene, $M_n = 20,000-123,000$ In toluene at 22°C, light scattering	Nearly invariant 0.2×10^{-4}	(8) (14)
		In benzene at 22°C, light scattering	10^{-5} -10^{-6}	(14)
		_	2.86×10^{-4}	(15)
		_	5.87×10^{-4}	(15)
Solubility parameters	(MPa) ^{1/2}	$\begin{split} \delta_{\rm d} &= \text{due to dispersion forces,} \\ \delta_{\rm p} &= \text{due to permanent dipoledipole forces,} \ \delta_{\rm h} &= \text{due to hydrogen-bonding forces} \end{split}$	$\delta_{\mathrm{d}}=19.68,\delta_{\mathrm{p}}=2.41,$ $\delta_{\mathrm{h}}=5.15$	(9)
Cohesive energy density	$(MPa)^{1/2}$	-	9.56	(9)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Unfractionated poly(d, l- α -phenylethyl isocyanide), in toluene at 30°C	$K = 1.1 \times 10^{-2},$ $a = 0.8$	(3, 16)
K anu u		Fractionated poly(d, l-α- phenylethyl isocyanide), in toluene at 30°C	$K = 3.8 \times 10^{-5},$ $a = 1.30$	(3, 16, 17)
		In toluene at 30°C	$K = 1.9 \times 10^{-5},$ a = 1.36	(9)
		In tetrahydrofuran at 30°C	$K = 2.769 \times 10^{-5},$ $a = 1.35$	(16)
Huggins constant	_	For some fractions of $M_n > 38,000$ and for the	0.59	(9)
		unfractionated sample For some fractions of $M_{\rm n} < 32{,}000$	1.24	
Radius of gyration	Å	X-ray scattering, in toluene	Not proportional to the mol. wt.	(3, 14)
		$M_{ m w} = 13,000$	28	(3)
		$M_{\rm w} = 45,800$	55	(3)
		$M_{\rm w} = 91,500$	80	(3)
Hydrodynamic radius	Å	(R)-poly(α -phenylethyl isocyanate), light scattering	51	(8)
radius		(RS)-poly(α-phenylethyl isocyanate), light scattering	23	
Monomer projection	Å	Calculated using	1.0	(1, 4)
length		density = 1.12 g cm ⁻³ Using second virial coefficient of osmotic pressure data	1.02-1.04	(1)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Chain diameter	Å	X-ray scattering	15 18 15.1	(9) (3) (4)
Persistance length	Å	(R)-poly(α -phenylethyl isocyanide), in tetrahydrofuran, \sim room temperature	32	(8)
		(RS)-poly(α -phenylethyl isocyanide), in toluene, \sim room temperature, $M_{\rm w}=18,000{\rm g/mol}, R_{\rm g}=28{\rm \AA}$	27	
		(RS)-poly(α -phenylethyl isocyanide), in toluene, \sim room temperature,	32	
		$M_{\rm w}=15,800~{\rm g/mol},~R_{\rm g}=55~{\rm A}$ (RS)-poly(α -phenylethyl isocyanide), in toluene, \sim room temperature,	30	
		$M_{\rm w}=91{,}500{\rm g/mol},R_{\rm g}=80{\rm \AA}$ (RS)-poly($lpha$ -phenylethyl isocyanide), $M_{\rm w}=91{,}500{\rm g/mol},{\rm by}{\rm Ni}^{\rm II}$ initiation	21	
Chain conformation	Nearly rigid studies	rod like helix, by circular dichorism and op	tical rotatory	(3)
		nd helix with an overall shape of a cylindric ter, 4_1 helix, by X-ray data	al rod of about	
Unit cell dimensions				(1, 3)
Lattice	_	_	Pseudo- hexagonal triclinic	
Cell dimensions	Å	_	a = b = 14.92,	
Cell angles	Degrees	_	c = 10.33 $\alpha = 93.4$, $\beta = 90.5$, $\gamma = 118.2$	
Density	$\rm gcm^{-3}$	_	1.12	(1)
Optical activity, molar specific	$\deg \operatorname{cm}^2 \operatorname{g}^{-1}$	d- and l-poly(α -phenylethyl isocyanide), at 27°C in toluene	~500	(1, 7, 9)
rotation, $[M]_d$		In chloroform, poly(d- α -phenylethyl isocyanide)	-458	(10, 11)
Electrical conductivity	ohm m	At 1,000 psi pressure	10 ¹⁰	(1)
Intrinsic viscosity	dlg^{-1}	$M_{ m w}=$ 107,000, in chloroform at 25°C	0.57	(8)
		In toluene at 30°C In benzene at 25°C	0.94 0.760	(9)
		In toluene at 50°C	0.204	(3) (3)
		In toluene at 27°C	1.94, 1.26	(3)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Decomposition temperature	K	Heating rate $=10^{\circ}\mathrm{min}^{-1}$ In N_2 or Ar atmosphere In Ar atmosphere	543 513	(9) (3)

Circular dichoric measurements⁽¹⁾

λ (nm)	Film thickness (mm)	Solvent	Molar CD ellipticity (degree cm ² dmol ⁻¹)
550-700	5.0	Methylenechloride	-560
480-500	5.0	Methylenechloride	+43,750
280-320	5.0	Methylenechloride	+257,320
550-700	3.0	Chloroform	-1,580
480-500	3.0	Chloroform	+23,830
280-320	3.0	Chloroform	+79,420
550-700	5.0	Dioxane	-13,230
480-500	5.0	Dioxane	-20,840
280-320	5.0	Dioxane	-1,620
550-700	10.0	Benzene	-39,000
480-500	10.0	Benzene	-50,180
280-320	10.0	Benzene	-14,280

Pyrolyzability⁽³⁾

	Conditions	Observation
Nature of product	IR spectroscopy	Pyrolysis at 500° C produces an intense broad infrared absorption band $\sim 3,300 \mathrm{cm}^{-1}$, associated with N–H bonds Pyrolysates at 700° C reveal nitrile absorption at $2,270 \mathrm{cm}^{-1}$ Nitrile absorption at $2,270 \mathrm{cm}^{-1}$ becomes more intense in pyrolysates produced up to $1,300^{\circ}$ C

- 1. Millich, F. J. Polym. Sci., Macromol. Rev., 15 (1980): 207.
- 2. King, R. B. Polym. News 12 (1987): 166.
- 3. Millich, F. Adv. Polym. Sci. 19 (1975): 141.
- 4. Millich, F., and R. G. Sinclair. J. Polym. Sci., Part C, 22 (1968): 33.
- 5. Millich, F., and R. G. Sinclair. Polym. Prepr, Am. Chem. Soc., Div. Polym. Chem., 6 (1965): 736.
- 6. Millich, F., and R. G. Sinclair. J. Polym. Sci., Part A-1, 6 (1968): 1,417.
- 7. Millich, F., and G. K. Baker. Macromolecules 2 (1969): 122.
- 8. Green, M. M., et al. Macromolecules 21 (1988): 1,839.
- 9. Millich, F. Chem. Rev. 72 (1972): 101.
- 10. van Beijnen, A. J. M., et al. Macromolecules 16 (1983): 1,679.
- 11. Nolte, R. J. M. Chem. Soc. Rev. 23(1) (1994): 11.
- 12. Millich, F. In Encyclopedia of Polymer Science and Engineering, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1987, Vol. 12, pp. 383–399.
- 13. Kamer, P. C. J., W. Drenth, and R. J. M. Nolte. Polym. Prepr., Polym. Chem., 30(2) (1989): 418.

- 14. Huang, S. Y., and E. W. Hellmuth. *Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem.*, 15 (1974): 499
- 15. Huang, S. Y., and E. W. Hellmuth. *Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem.*, 15 (1974): 505
- 16. Millich, F. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, N. G. Gaylord, and N. M. Bikales. Wiley-Interscience, New York, 1971, Vol. 15, p. 395.
- 17. Millich, F., E. W. Hellmuth, and S. Y. Huang. J. Polym. Sci., Polym. Chem., 13 (1975): 2,143.

Poly(phenylmethylsiloxanes), cyclic

STEPHEN J. CLARSON

ACRONYM Cyclic PPMS

CLASS Cyclic polymers

STRUCTURE $-[(C_6H_5)(CH_3)SiO]_r$

INTRODUCTION The molar cyclization constants from ring-chain equilibration reactions of poly(phenylmethylsiloxane) (PPMS) in both the bulk state and in solution were investigated in detail by Beevers and Semlyen. (1) Based upon these studies Clarson and Semlyen have described scaling up such reactions to successfully isolate cyclic poly(phenylmethylsiloxanes), that is, $-[(C_6H_5)(CH_3)SiO]_x$, from ring-chain equilibration reactions carried out in toluene solution at $383 \, \text{K}$. (2) Following fractionation, a variety of investigations of the physical properties of these cyclic polymers have be carried out and have also been compared with their linear polymer analogs. It should be noted that the large rings are atactic due to the equilibration used in their preparation. It is possible to obtain the stereoisomers of the small rings for this system, however. Although a rotational isomeric state model has been developed for the PPMS system by Mark and Ko, (3) no detailed calculations of the properties of the rings using this model have been described so far.

MAJOR APPLICATIONS Ring-opening polymerization of small rings to give linear PPMS high polymers. Copolymerization with other siloxane small rings to give copolymers of controlled composition.

PROPERTIES OF SPECIAL INTEREST Viscous fluids having good thermal stabilities. Certain stereoisomers when highly pure $^{(1,2,4)}$ are solids at room temperature.

PREPARATIVE TECHNIQUES Ring-chain equilibration reactions. (1,2,5,6)

Selected properties of cyclic poly(phenylmethylsiloxanes) (r) compared to linear poly(phenylmethylsiloxanes) (I)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio $\langle r^2 \rangle/nl^2$	_	Derived from molar cyclization equilibrium constants		(1, 5)
		Bulk state at 383 K	10.7	
		Toluene at 383 K	10.4	- 0
		Derived from GPC; toluene at 292 K	8.8	(2, 6)
Critical dilution point	%Volume polymer	Toluene at 383 K	52	(1, 5)
Glass transition temperature $T_{\mathrm{g}}(\infty)$	K	DSC	244.9	(6, 7)
Means square radius of gyration $\langle s^2 \rangle_{\rm z,l}/\langle s^2 \rangle_{\rm z,r}$	-	In benzene d ₆ at 292 K	2.0	(6, 8)

Poly(phenylmethylsiloxanes), cyclic

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dipole moment μ^2	Cm	x = 5	5.01×10^{-31}	(9)
Number-average molar masses of PDMS rings and chains	_	With the same GPC retention values $M_{\rm r}/M_{\rm l}$; toluene at 292 K	1.25 ± 0.05	(2, 6)
Enthalpy change	kJ mol ⁻¹	For the formation of the <i>cis</i> -trimer For the formation of the <i>trans</i> -trimer For the formation of the <i>cis</i> -tetramer	27 22 8	(1, 5)

- 1. Beevers, M. S., and J. A. Semlyen. Polymer 12 (1971): 373-382.
- 2. Clarson, S. J., and J. A. Semlyen. Polymer 27 (1986): 1,633-1,636.
- 3. Mark, J. E., and J. H. Ko. J. Polym. Sci., Polym. Phys. Ed., 13 (1975): 2,221.
- 4. Hickton, H. J., et al. J. Chem. Soc. (C) (1966): 149.
- 5. Beevers, M. S. Ph.D. Thesis. University of York, 1972.
- 6. Clarson, S. J. Ph.D. Thesis. University of York, 1985.
- 7. Clarson, S. J., J. A. Semlyen, and K. Dodgson. *Polymer* 32 (1991): 2,823–2,827.
- 8. Clarson, S. J., K. Dodgson, and J. A Semlyen. Polymer 28 (1987): 189-192.
- 9. Goodwin, A. A., et al. Polymer 37(13) (1996): 2,597-2,602.
- 10. Semlyen, J. A. Makromol. Chem., Macromol. Symp., 6 (1986): 155-163.
- Clarson, S. J., and J. A. Semlyen, eds. Siloxane Polymers. Prentice Hall, Englewood Cliffs, N.J., 1993.

Poly(phenylsilsesquioxane)

RONALD H. BANEY

ACRONYMS, ALTERNATIVE NAMES, TRADE NAMES Phenyl-T, PPSQ, PPS, PLOS, CLPHS, phenyl silicobenzoic anhydryde, cyclolinear poly(phenylsiloxane), phenyl siliconic anhydride, Ladder Coat[®] (Mitsubishi Electric), Glass Resin[®] (Owens Illinois/Showa Denko)

CLASS Polysiloxanes (siloxane ladder polymers)

STRUCTURES The structure of poly(phenylsilsesquioxane) probably depends upon the method of preparation. There is much debate still in the literature about its structure. All of the structural types or combinations of the types shown may exist. The first table below summarizes the proposed structures and the evidence for such structures.

MAJOR APPLICATIONS Interlayer dielectrics, high-temperature resins, and organic antireflective coatings.

PROPERTIES OF INTEREST Very high thermal stability (>500°C) and good dielectric properties.

RELATED POLYMERS Poly(alkylsilsesquioxane) and poly(*co*-silsesquioxanes): There are many references to these classes of materials, ⁽¹⁾ but they are generally poorly characterized. Thus, they are not included in this handbook.

Structure, process, and molecular weight

PROPOSED STRUCTURE	PROCESS CONDITIONS	ACRONYM*	STRUCTURAL EVIDENCE	POLYMER $M_{\rm w} \times 10^{-3}$ (g mol ⁻¹)	REFERENCE
Cage and oligomers	PhSiCl ₃ , H ₂ O, ether benzene and KOH	T-8	XRD	0.992	(2, 3)
Cis-syndiotactic double chain	Equilibration method PhSiCl ₃ + H_2O at 50% toluene to hydrolysate 0.1% KOH + 30% toluene at ~100°C to give "prepolymer" (I) or T-12 cage at ~250°C/90% solids in high boiling solvents	PPSQ-1	XRD, IR, UV Hypochroism, bond angle calculations, Mark– Houwink equation	4,100	(4, 5) (6)

PROPOSED STRUCTURE	PROCESS CONDITIONS	ACRONYM*	STRUCTURAL EVIDENCE	$\begin{aligned} & \text{POLYMER} \\ & \textit{M}_{\text{w}} \times 10^{-3} \\ & \text{(g mol}^{-1}) \end{aligned}$	REFERENCE
Rigid chain polymers	Same as PPSQ-1 except final equilibration at 100% solids	PPSQ-2	High Kuhn segment Dynamo-optical (high negative segmental anisotropy)		(7, 8) (9, 10)
Linked partial cages	_	PPSQ-1	Curvature in the Mark- Houwink equation Gelation at various temperatures, solvent types and concentrations	1,000	(11)
Cis-syndiotactic double chain	(1) PhSiCl $_3$ + H $_2$ O in MIBK \sim 10°C to hydrolysate (2) 0.1% KOH + 50 wt% solids in xylene reflux	PPSQ-3	IR	165	(12)
Cis-syndiotactic double chain	Fluoride ion catalyzed equilibration of hydrolyzate	PPSQ-4	-	1,200	(14)
''Branched'' ladder	PhSiCl ₃ + H ₂ O in ether or toluene to hydrolyzate to give "prepolymer" (I) with 30% dicyclohexyl- carboimide in xylene, 44% solids, 13 h, reflux	PPSQ-5a	FTIR, ¹ H-NMR, ²⁹ Si-NMR	12	(15, 16)
"Branched" ladder	(I) with 0.5% KOH in toluene, 44% solids, 13 h, reflux	PPSQ-5b	FTIR, ¹ H-NMR, ²⁹ Si-NMR	12	(15, 16)
Gel	(I) in toluene with 5% KOH, 44% solids, 13 h, reflux	PPSQ-5c	FTIR, ¹ H-NMR, ²⁹ Si-NMR	Gel	(15, 16)
Ladder	(I) in toluene and 8% diphenyl ether with 5% KOH, 40% solids, 13 h, 260°C	PPSQ-5d	FTIR, ¹ H-NMR, ²⁹ Si-NMR	26	(15, 16)
Ladder	(I) in 1:1 toluene and diphenyl ether, 0.005% KOH, 230°C, 5 h	PPSQ-5e	FTIR, ¹ H-NMR, ²⁹ Si-NMR	550	(15, 16)

Poly(phenylsilsesquioxane)

PROPOSED STRUCTURE	PROCESS CONDITIONS	ACRONYM*	STRUCTURAL EVIDENCE	$\begin{aligned} & \text{POLYMER} \\ & \textit{M}_{\text{w}} \times 10^{-3} \\ & \text{(g mol}^{-1} \text{)} \end{aligned}$	REFERENCE
Cis-isotactic double chain	(I) in 2:1:1:2 benzene- toluene-xylene- diphenyl ether with $10^{-4}\%$ KOH, 7 h	PPSQ-5f	Eximer fluorescence	340	(17, 18)
"Ladder like"	PhSi(OEt) ₃ in MIBK 20% solids with Et ₄ NOH, reflux, 12 h	PPSQ-6	Elemental analysis and molecular weight	5	(19)
Linked partial cages	Condensation of (PhOHSiO) ₄	PPSQ-7	Insoluble amorphous gels	90	(20)
Cis-syndiotactic double chain	Condensation of PhSi(OK) ₃	PPSQ-8	IR, XRD	72	(21)

^{*}See reference (1).

Mark–Houwink parameter, *a*, for selected poly(phenylsilsesquioxanes)

PPSQ-	а	Molecular weight	Reference
1	0.92	$1.4 \times 10^4 \ (M_{\rm n})$	(4)
2	1.10	2×10^5	(8)
2	0.90	0.6×10^{3}	(8)
2	0.9	$(2.5-3) \times 10^5$	(9, 10)
1	0.898	$(0.26-4.88) \times 10^5 (M_n)$	(22, 23)
2	0.70	3×10^{5}	(8)
1	0.54	2×10^5	(6)

Solution properties

PPSQ-	Soluble at room temperature	Insoluble at room temperature	Theta solvent	Reference
Oligomers	Benzene, chloroform, THF	Acetone , hexane, cyclohexane, ether, carbon tetrachloride, MIBK, isobutyl ether		(3)
1	Benzene, THF, methylene chloride	_		(4, 5)
2	Benzene, bromoform	-	Benzene/butylacetate (60:40)	(24)
5a,b,d,e,f	Benzene, toluene, THF	_		(15, 16)
8	Benzene, chloroform, ether, toluene, THF, methyl ethyl ketone, carbon tetrachloride, MIBK	Acetone, methanol, ethanol	_	(21)

Mechanical properties

PPSQ-	Temp. (°C)	Tensile strength (MPa)	Elongation (%)	Reference
1	Room temp.	27.6-41.5	3-10	(25)
2	100	39	25	(10)
4	Room temp.	18-30	_	(14)
3	Room temp.	800	0.4	(13)
3	250	400	2.7	(13)
3	250	559	2.6	(1)

Persistence length

PPSQ-	Persistence length (Å)	Method	Reference
1	80	Yamakawa, Fujii method*	(27)
5f	64	Yamakawa, Fujii method*	(27)
2	100	diffusion in butyl acetate	(8)
2	89	$M[\eta]$ in bromoform	(8)
2	68	$M[\eta]$ in benzene	(8)

^{*}See reference (26).

IR characteristic frequencies $^{(15)}$

PPSQ-	Characteristic frequencies (cm ⁻¹)
1	1,130, Vs Si-Ar
1 with "defects"	1,045, Vas Si-O-Si 1,137

XRD

PPSQ-	d spacing (Å)	Reference
1	5.0, 12.5	(4)
1	4.6, 12.3	(10)

Thermal stability

PPSQ-	Thermolysis conditions	Temp. (°C)	Reference
1	Thermal balance in air-onset	525	(28)
3	TGA air, 10°C, min-onset	500	(29)
4	TGA air	505	(30)

Poly(phenylsilsesquioxane)

Other properties

PPSQ-	Specific dielectric constant	Thermal expansion coecient (ppm)	Pencil harness	Reference
3	_	(110-140) below 250°C	_	(13)
3	_	90 above 220°C	_	(13)
3	3.2 (1 kHz)	_	_	(31)
3		_	5H	(32)

Patented uses

Uses	Reference
Photoresists	(33-39)
Interlayer dielectric and protective coatings	(40-45)
Liquid crystal display elements	(46, 47)
Magnetic recording media	(48, 49)
Optical fiber coatings	(50, 51)
Gas separation membranes	(52)
Binders for ceramics	(53)
Carsinostatic drugs	(54)

- 1. Baney, R. H., M. Itoh, A. Sakakibara, and T. Suzuki, T. Chem. Rev. 95(5) (1995): 1,409.
- 2. Barry, A. J., W. H. Daudt, J. J. Domicone, and J. W. Gilkey. J. Am. Chem. Soc. 77 (1955): 4,248.
- 3. Sprung, M. M., and F. O. Guenther. J. Poly. Sci. 28 (1958): 17.
- 4. Brown, J. F., et al. J. Am. Chem. Soc. 82(23) (1960): 6,194.
- 5. Brown, J. F. Jr. J. Poly. Sci. 1 (1964): 83.
- 6. Brown, J. F. Jr., and P. L. Prescott. J. Am. Chem. Soc. 86 (1964): 1,402.
- 7. Andrianov, K. A., G. A. Kurakov, F. F. Suschentsova, and V. A. Miagkov. *Vysokomolek. Soedin.* 7 (1965): 1,477.
- 8. Tsvetkov, V. N., K. A. Andrianov, G. I. Okhrimenko, and M. G. Vitovskaya. Eur. Polym. J. 7 (1971): 1,215.
- 9. Tsvetkov, V. N., et al. Eur. Polym. J. 9 (1973): 27.
- 10. Andrianov, K. A., A. A. Zhdanov, and V. Yu. Levin. *Ann. Rev. Mater. Sci.* 8 (1978): 313 (and references therein).
- 11. Frye, C. L., and J. M. Klosowski. J. Am. Chem. Soc. 93 (1971): 4,599.
- 12. Adachi, H., E. Adachi, O. Hayashi, K. Okahashi. Rep. Prog. Polym. Phys. Japan 28 (1985): 261.
- 13. Adachi, H., E. Adachi, S. Yamamoto, and H. Kanegae. Mat. Res. Soc. Symp. Proc. 227 (1991): 95.
- Hata, H., and S. Komasaki. Japanese Patent Kokai-S-59-108033 (1984); Chem. Abstr. 101 (1984): 172654.
- 15. Zhang, X., S. Chen, and L. Shi. Chinese J. Polym. Sci. 5 (1987): 162.
- 16. Zhang, X., and L. Shi. Chinese J. Polym. Sci. 5 (1987): 197.
- 17. Huang, C., G. Xu, X. Zhang, and L. Shi. Chinese J. Polym. Sci. 5 (1987): 347.
- 18. Zhang, X., L. Shi, and C. Huang. Chinese J. Polym. Sci. 5 (1987): 353.
- 19. Sprung, M. M., and F. O. Guenther. J. Polym. Sci. 28 (1958): 17.
- 20. Brown, J. F. Jr. J. Am. Chem. Soc. 87 (1965): 4,317.
- 21. Takiguchi, T., E. Fujikawa, Y. Yamamoto, and M. Ueda. Nihon Kagakukaishi (1974): 108.
- 22. Heminiak, T. E., C. L. Benner, and W. E. Gibbs. ACS Polym. Prepr. 8 (1967): 284.
- 23. Helminiak, T. E., and G. C. Berry. J. Polmy. Sci. 65 (1978): 107.
- 24. Tsvetkov, V. N., et al. J. Polym. Sci, Part C, 23 (1968): 385.
- 25. Brown, J. F. Jr. J. Polym. Sci., Part C 1 (1963): 83.

- 26. Yamakawa, H., and M. Fujii. Macromolecules 7 (1974): 128
- 27. Shi, L., et al. Chinese J. Polym. Sci. 5 (1987): 359.
- 28. Brown, J. F. Jr. J. Polym. Sci., Part C, 1 (1963): 83.
- Adachi, H., E. Adachi, O. Hayashi, and K. Okahashi. Rep. Prog. Polym. Phys. Japan 29 (1986):
- 30. Zhang, X., L. Shi, S. Li, and Y. Lin. Polym. Degrad. Stab. 20 (1988): 157.
- 31. Trade literature on "Ladder Coat". Ryoden Kasei Co. Ltd., Sanda City, Japan.
- 32. Matsui, F. Kobunshi Kako 39 (1990): 299.
- Yoneda, Y., T. Kitamura, J. Naito, and T. Kitakohji. *Japanese Patent* Kokai-S-57-168246 (1982);
 Chem. Abstr. 100 (1984): 43074.
- 34. Uchimura, S., M. Sato, and D. Makino. *Japanese Patent* Kokai-S-58-96654 (1983); *Chem. Abstr.* 100 (1984): 35302.
- 35. Yoneda, Y., et al. Japanese Patent Kokai-S-57-168247 (1982); Chem. Abstr. 100 (1984): 43075.
- Uchimura, S., M. Sato, and D. Makino. *Japanese Patent* Kokai-S-58-96654 (1983); *Chem. Abstr.* 100 (1984): 35302.
- Adachi, H., O. Hayashi, and K. Okahashi. *Japanese Patent* Kokoku-H-2-15863 (1990) [Kokai-S-60-108839 (1985)]; Chem. Abstr. 104 (1986): 120003.
- 38. Adachi, H., O. Hayashi, and K. Okahashi. *Japanese Patent* Kokai-S-60-108841 (1985); *Chem. Abstr.* 104 (1986): 43184.
- 39. Adachi, H., E. Adachi, O. Hayashi, and K. Okahashi. *Japanese Patent* Kokoku-H-4-56975 (1992) [Kokai-S-61-279852 (1986)]; *Chem. Abstr.* 106 (1987): 224512.
- 40. Shoji, F., K. Takemoto, R. Sudo, and T. Watanabe. Japanese Patent Kokai-S-55-111148 (1980).
- Adachi, E., Y. Aiba, and H. Adachi. *Japanese Patent* Kokai-H-2-277255 (1990); Chem. Abstr. 114 (1991): 124250.
- Aiba, Y., E. Adachi, and H. Adachi. *Japanese Patent* Kokai-H-3-6845 (1991); Chem. Abstr. 114 (1991): 155372.
- 43. Adachi, E., H. Adachi, O. Hayashi, and K. Okahashi. *Japanese Patent* Kokai-H-1-185924 (1989); *Chem. Abstr.* 112 (1990): 170346.
- 44. Hayashide, Y., A. Ishii, H. Adachi, and E. Adachi. *Japanese Patent* Kokai-H-5-102315 (1993); *Chem. Abstr.* 120 (1994): 180306.
- Adachi, E., H. Adachi, H. Kanegae, and H. Mochizuki. German Patent 4202 290 (1992); Chem. Abstr. 117(1992): 193364.
- 46. Shoji, F. K., R. Sudo, and T. Watanabe. *Japanese Patent* Kokai-S-56-146120 (1981); *Chem. Abstr.* 96 (1982): 208471.
- Azuma, K., Y. Shindo, and S. Ishimura. *Japanese Patent* Kokai-S-57-56820 (1982); Chem. Abstr. 97 (1982): 227612.
- 48. Imai, E., H. Takeno. Japanese Patent Kokai-S-59-129939(1984); Chem. Abstr. 101 (1984): 221241.
- 49. Yanagisawa, M. Japanese Patent Kokai-S-62-89228 (1987).
- Mishima, T., and H. Nishimoto. *Japanese Patent* Kokai-H-4-247406 (1992); Chem. Abstr. 118 (1993): 256243.
- 51. Mishima, T., and H. Nishimoto. *Japanese Patent* Kokai-H-4-271306 (1992); *Chem. Abstr.* 118 (1993): 256251.
- Saito, Y., M. Tsuchiya, and Y. Itoh. *Japanese Patent* Kokai-S-58-14928 (1983); Chem. Abstr. 98 (1983): 180758.
- Mine, T., and S. Komasaki. *Japanese Patent* Kokai-S-60-210570 (1985); Chem. Abstr. 104 (1986) 154450.
- Tsutsui, M., and S. Kato. *Japanese Patent* Kokoku-S-63-20210 (1988) [Kokai-S-56-97230 (1981)];
 Chem. Abstr. 95 (1981): 192394.

Poly(phenyl/tolylsiloxane)

DALE J. MEIER

ACRONYM PP/TS

CLASS Polysiloxanes

REPEAT TRIAD STRUCTURES
$$-PPP-$$
, $-PPP'-$, $-PPP'P'-$, $-P'P'P'-$, $-PPP''-$

MAJOR APPLICATIONS The various PP/TS polymers are not commercial.

PROPERTIES OF SPECIAL INTEREST Highly crystalline, high melting point, excellent thermal stability, mesomophic state at high temperatures.

PREPARATIVE TECHNIQUES	CONDITIONS	REFERENCE
Anionic	Initiators for cyclic trimers Li alkyl, solution $KO-[Si(Ph/Tol)-O]_n-K$, solution, bulk	(1, 6, 7) (2-5)

PROPERTY	UNITS	POLYMER	CONDITIONS	VALUE	REFERENCE
Solvents	K	−PPP− −P"P"P"−	Diphenyl ether c1-Chloronaphalene 1,2,4-Trichlorobenzene	>420	(1-3, 8)
		-PPP -P"P"P"-	Quenched from solution	315	(7)
		-PPP'- -PPP'- -PPP"- -P"P"- -PPM"- -PM"M"- -M"M"M"-	Toluene Chloroform	300	(1-4)

Poly(phenyl/tolylsiloxane)

PROPERTY	UNITS	POLYMER	CONDITIONS	VALUE	REFERENCE
Mark-Houwink parameters:			Chloroform, 40°C	$K \times 10^{-3}$ a	(10)
K and a	a = None	-PPP'-		2.1 0.83	•
		-PPP''-		2.6 0.83	
		-P'P'P'-		2.4 0.83	
NMR chemical shifts	ppm	-PPP'-	²⁹ Si	-46.16, -45.83	(1)
	11	-PPP''-	²⁹ Si	-45.66, -56.99	()
		-P'P'P'-	²⁹ Si	-46.49	(1)
		$-M^{\prime\prime}M^{\prime\prime}M^{\prime\prime}-$	¹³ C	20.87 (CH ₃)	(5)
Tensile strength	MPa	-PPP'-	Films from toluene or	< 0.2	(4)
Ö		-PPP''-	chloroform	< 0.2	()
		-PPM'-		< 0.2	
		-PPM''-		< 0.2	
		-PM''M''-		2.5	
		$-M^{\prime\prime}M^{\prime\prime}M^{\prime\prime}-$		3.5	
Elongation at break	%	-PM''M''-	Films from toluene or	130	(4)
		$-M^{\prime\prime}M^{\prime\prime}M^{\prime\prime}-$	chloroform	13	` '

Crystalline state properties⁽³⁾

Polymer	Lattice	Cell dime	nsions (nm)		Monomer per c	ell
	а	b	с			
-PPP'-	Rhombic	2.106	1.053	1.036	2	
	d-spacings (nm)	Layer line	number	Electron o	diffraction	X-ray diffraction
		0		1.053		1.052
				0.940		0.940
				0.526		_
				0.476		0.467
				0.421		0.429
				0.391		0.393
		2		0.492		0.498
				0.464		0.467
				0.450		0.448
				0.425		_
				0.367		0.363
		3		0.326		_
				0.324		0.325
		4		0.259		_
-P'P'P'-	Rhombic	2.104	1.086	0.997	2	

Poly(phenyl/tolylsiloxane)

d-spacings (nm)	Layer line number	Electron diffraction	X-ray diffraction
	0	1.052	1.053
		0.960	0.960
		0.520	_
		_	0.526
		0.455	0.468
	1	_	0.757
		_	0.468
	2	0.483	_
		0.455	_
		0.445	0.443
		0.420	0.423
	3	0.335	_
		0.317	_
		0.249	_

PROPERTY	UNITS	POLYMER	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	−PPP′− −P′P′P′−	From experimental From unit cell From experimental From unit cell	1.12 1.17 1.13 1.24	(3)
Melting temperature	K	-PPPPPP'PPP"P'P'P'P"P"P"M"M"M"-	To mesomorphic state To isotropic state To isotropic state To mesomorphic state To mesomorphic state To isotropic state To isotropic state To isotropic state To mesomorphic state	538, 545 813 458 733 413 703 433 723 573 >753 (decomp.) 404 803	(1, 8) (1) (1) (1) (1) (1) (1) (1) (1) (6) (6)
Glass transition temperature	K	-PPP- -PPP'- -PPP"- -P'P'P'- -P"P"P"- -M"M"M"-	From DSC	313, 322 313 313 323 323 268	(1, 9) (1) (1) (1) (1) (1) (6)
Thermal stability	K	-PPP'- -PPP"- -P'P'P'- -P"P"P"- -M"M"M"-	TGA, 10% weight loss, 10° min ⁻¹ under N_2	756 727 742 789 731	(1) (1) (1) (1) (6)

- 1. Lee, M. K., and D. J. Meier. Polymer 34 (1993): 4,882.
- 2. Korshak, V. V., et al. Vysokomol. Soyed. B27 (1985): 300.
- 3. Babchinitser, T. M., et al. Polymer 26 (1985): 1,527.
- Vasilenko, N. G., et al. Vysokomol. Soyed. A31 (1989): 1,585; Poly. Sci. USSR (English translation) 31 (1989): 1,737.
- Vasilenko, N. G., et al. Vysokomol. Soyed. A31 (1989): 2,026. Poly. Sci. USSR (English translation) 31 (1989): 2,225.
- 6. Lee, M. K., and D. J. Meier. Polymer 35 (1994): 4,197.
- 7. Ibemesi, J., et al. In *Polymer Based Molecular Composites*, edited by J. E. Mark and D. W. Schaefer. Materials Research Society, Pittsburgh, 1989.
- 8. Govodsky, Y. K., and V. S. Papkov. Adv. Poly. Sci. 88 (1989): 129.
- 9. Buzin, M. I., et al. Vysokomol. Soedin. 34, Series B (1992): 66.
- 10. Lee, M. K., and D. J. Meier. Polymer 35 (1994): 3,282.

Polyphosphates

BRUCE M. FOXMAN

CLASS Inorganic and semi-inorganic polymers

MAJOR APPLICATIONS *Acids:* Intermediate in fertilizer production. Catalysts for alkylation, dehydrogenation, polymerization, and isomerization. Dehydrating agent in dye and pigment production. *Salts:* Builders in detergent and cleaning formulations. Consistency control agents in foods. Deflocculants in clays, dyes, and ink. Anticalculus agents in toothpaste and mouthwash. Dispersants for solids in clay processing, drilling mud, and pigments. Flame retardation. Models for natural biopolymers. $^{(1-3)}$

PREPARATIVE TECHNIQUES Principal synthetic routes: condensation and addition reactions. A useful survey is available.⁽¹⁾

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Theta temperatures Θ	K	Lithium polyphosphate in LiCl (0.4 M)/H ₂ O	293.2	(4)*
•		Lithium polyphosphate in LiBr (1.80 M)/H ₂ O	298.2	(5)
		Sodium polyphosphate in NaBr (0.415 M)/H ₂ O	298.2	(6)
Glass transition	K	Hydrogen polyphosphate	263	$(7, 8^{\dagger})$
temperature		Lithium polyphosphate	608	(, ,
1		Sodium polyphosphate	553	
		Calcium polyphosphate	793	
		Strontium polyphosphate	758	
		Barium polyphosphate	743	
		Zinc polyphosphate	793	
		Cadmium polyphosphate	723	
Characteristic ratio $\langle r^2 \rangle_{\rm o}/nl^2$	-	Sodium polyphosphate (aqueous NaBr, 0.35–0.415 M) 25°C	6.6	(6)
		Cesium polyphosphate (aqueous CsCl, 0.96 M) 30°C	7.1	(9, 10)

 $^{^*}$ Strauss and Anders (1962) suggested that the results obtained for the theta temperature of lithium polyphosphate in $0.4~\mathrm{M}$ LiCl should be "regarded with caution."

[†]In Eisenberg and Sasada (1965), glass transition temperatures were measured by using an automatic device which measured the length of the polymer sample as a function of temperature.

Percentage composition of the strong phosphoric acids*(11)

P ₂ O ₅ (wt. %)	[P ₂ O ₅]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	HIGH-POLY
	[H ₂ O]				_											
67.4	0.263	100.0														_
68.7	0.279	99.7	0.33													
70.4	0.302	96.2	3.85													
71.7	0.321	91.0	8.86													
73.5	0.352	77.1	22.1	0.79												
73.9	0.360	73.6	25.1	1.34												
75.7	0.394	53.9	40.7	4.86	0.46											
77.5	0.438	33.5	50.6	11.5	2.68	0.74										
79.1	0.481	22.1	46.3	20.3	7.82	2.26	1.02	0.34								
80.5	0.523	13.8	38.2	21.0	13.0	6.86	3.38	1.67	1.03	0.22						
81.0	0.542	12.2	34.0	22.7	14.6	8.42	4.36	2.27	1.41	0.56						
81.2	0.549	10.9	32.9	22.3	15.0	9.36	5.41	2.85	1.75	0.97	0.36	0.05				
82.4	0.594	7.32	23.0	19.3	15.9	12.3	8.21	5.73	3.89	2.52	1.36	0.91	0.14			
84.0	0.667	3.92	11.8	12.7	12.0	10.5	8.97	7.99	6.62	5.63	4.54	3.72	3.03	2.46	1.68	6.63
85.0	0.717	2.28	6.36	7.32	8.01	8.17	7.67	7.22	6.93	6.42	5.89	5.27	4.69	3.99	3.83	16.9
85.3	0.736	1.87	4.73	6.33	6.58	6.66	6.71	6.36	6.11	5.88	5.46	5.07	4.90	4.64	4.38	25.6
86.1	0.787	1.46	2.81	3.74	4.43	4.52	4.77	4.79	4.93	4.67	4.54	4.67	4.63	4.38	4.17	43.5
87.1	0.860	0.83	1.81	2.17	2.53	3.09	3.39	3.46	3.33	3.55	3.47	3.45	3.52	3.26	3.24	61.1
87.9	0.920	0.50	0.82	1.56	1.76	1.72	2.03	2.13	2.26	2.07	2.26	2.06	2.20	1.99	2.30	76.4
89.4	1.066	1.88	1.52	0.77	0.61	0.62	0.68	0.54	0.71	0.86	1.03	0.98	1.16	1.23	1.37	86.8

^{*}For total % $P_2O_5 \ge 86.1$, small amounts of trimeta- and tetrametaphosphoric acid were also detected. 1 = ortho-, 2 = pyro-, 3 = tri-, 4 = tetra-phosphate, etc. Highpoly = higher-molecular-weight material including 15-phosphoric acid. (Source: Jameson 1959. Reprinted with permission from the Royal Society of Chemistry.)

- 1. Kroschwitz, J., ed. *Encyclopedia of Polymer Science and Engineering*. Wiley-Interscience, New York, 1988, vol. 11, pp. 96–126.
- 2. Kroschwitz, J., and M. Howe-Grant, eds. *Encyclopedia of Chemical Technology*. Wiley-Interscience, New York, 1993, vol. 10, pp. 976–998.
- 3. Kroschwitz, J., and M. Howe-Grant, eds. *Encyclopedia of Chemical Technology*. Wiley-Interscience, New York, 1996, vol. 18, pp. 669–718.
- 4. Saini, G., and L. Trossarelli. J. Polym. Sci. 23 (1957): 563.
- 5. Strauss, U. P., and P. Ander. J. Phys. Chem. 66 (1962): 2,235.
- 6. Strauss, U. P., and P. L. Wineman. J. Am. Chem. Soc. 80 (1958): 2,366.
- 7. Eisenberg, A., H. Farb, and L. G. Cool. J. Polym. Sci. A-2, 4 (1966): 855.
- 8. Eisenberg, A., and T. Sasada. In *Physics of Non-crystalline Solids*, edited by J. A. Prins. North-Holland, 1965, pp. 99–116.
- 9. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*. Wiley, New York, 1989, pp. VII/27, 43.
- 10. Peterson, J. K. Thesis. Ohio State University, Columbus, 1961.
- 11. Jameson, R. F. J. Chem. Soc. (1959): 752-759.

Poly(phosphazene), bioerodible*

JOSEPH H. MAGILL

ACRONYM PPHOS

CLASS Polyphosphazene

STRUCTURES Poly[(*p*-methylphenoxy)-co-(ethylglycinto)phosphazene] (50/50: mole ratio)

MAJOR APPLICATIONS Polymers have shown promise as bioerodible materials capable of (controlled degradation and sustained drug delivery for therapeutic and other related uses. (1–14) Polyphosphazenes have been evaluated for approximately two decades, but research has become more focused in recent years.

PROPERTIES OF SPECIAL INTEREST In general, tailored side groups (see the section on polyphosphazene synthesis below) enable a wide variety of hydrolytic properties to be designed into selected polymers for applications in biological environments for sustained drug administration without the release of harmful degradation products at physiological concentrations. $^{(1,3,6-9)}$ Limited modeling studies have been conducted. $^{(14)}$

SYNTHESIS TECHNIQUES AND TYPES OF POLYMERS Polymer with specific poly(phosphazene) structures that are susceptible to hydrolytic degradation under physiological conditions. Examples with glucosyl, amino acid ester, imidazolyl, glycerol side groups have been synthesized. ⁽⁹⁾ Besides this, side groups have also been grafted (through direct γ irradiation) onto PBFP polymers particularly for bicompatibility enhancement. ^(11, 12)

In vitro evaluations have been made. Bioerodible poly(phosphazenes) have the advantage that the degradation products are biocompatible. The majority of bioerodible poly(phosphazenes) have been synthesized by the classical thermal procedure of Allcock et al. (1965)—reference (15). The copolymer in question is described. (1,3) In vivo performances in clinically relevant conditions are planned for PPHOS matrices.

^{*}There is a paucity of tabulated release data on bioerodible polymers. Thus, the author has presented some results interpolated from graphical plots of controlled release for matrices at different Inulin, that is, $(C_6H_{10}O_5)_x$ loadings. Different drug loadings and release rates were monitored in vitro and modulated through changes in pH. Surface inspections of the matrices were conducted by using surface-scanning electron microscopy techniques to characterize changes in texture. (1)

Poly(phosphazene), bioerodible

Chemical structure and properties

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular mass (of repeat units)	g mol ⁻¹	For the basic unit illustrated above	254.2	_
Typical molecular weight	$g \text{mol}^{-1}$	Variable for the same reasons; $M_{\rm w} \sim 1 \times 10^6$ by GPC		_
Typical polydispersity $M_{ m w}/M_{ m n}$	-	Variable but usually broad for kinetic evaluations made to date on account of synthesis procedures that were employed		(2)

Release rates for 50/50 polyphosphazene copolymer⁽¹⁾

CONDITIONS	TIME (days)	VALUE (% mass loss day ⁻¹)	TIME (days)	VALUE (%mass loss day ⁻¹)
Inulin loadings at 40% in copolymer at	0.0	0.0	5.1	96.4
$pH = 2.0$; S.D. ± 3 ; error $< 10\%$	0.07	9.0	7.1	98.8
•	0.1	25.4	9.0	98.9
	0.3	49.0	12.0	99.5
	1.0	68.6	15.0	99.6
	3.0	85.5	25.0	100.0
	4.0	89.4		
Ditto (at 10% loading)	0.0	0.0	7.2	37.8
(0)	0.1	0.6	10.2	43.5
	0.5	4.8	13.1	47.3
	1.1	10.4	17.1	51.4
	2.2	18.3	21.1	54.5
	4.0	27.0	24.0	57.4
Ditto (at 1% loading)	0.2	0.84	10.2	29.3
()	0.5	8.2	14.1	34.3
	1.1	11.9	18.0	38.8
	3.1	17.7	22.0	40.7
	6.2	23.9	24.0	42.3
Inulin loadings at 40% in copolymer at	0.0	0.01	9.1	77.8
$pH = 7.4$; S.D. ± 3 ; error $< 10\%$	0.1	0.5	12.0	78.6
1	0.2	25.5	15.0	79.4
	0.5	42.1	18.0	79.9
	2.1	62.7	22.0	79.7
	4.2	70.5	24.0	79.5
	6.2	77.3		

Poly(phosphazene), bioerodible

CONDITIONS	TIME (days)	VALUE (% mass loss day ⁻¹)	TIME (days)	VALUE (%mass loss day ⁻¹)
Ditto (at 10% loading)	0.0	0.0	9.0	26.7
,	0.2	4.4	12.0	28.7
	0.5	10.1	14.0	30.0
	1.0	14.4	17.0	32.0
	2.0	18.3	20.0	33.6
	4.2	21.5	24.0	35.0
	6.2	24.8		
Ditto (at 1% loading)	0.0	0.0	10.1	22.5
	0.6	7.9	13.1	23.9
	1.0	9.6	16.0	25.4
	2.1	13.0	20.1	27.9
	4.2	16.0	22.1	28.7
	6.2	18.5	24.0	30.0
	8.1	20.7		
Inulin loadings at 40% in copolymer at	0.0	0.0	7.1	88.1
$pH = 10$; S.D. ± 3 ; error $< 10\%$	0.1	13.5	9.1	88.4
	0.4	43.0	13.1	88.7
	1.1	60.6	17.1	88.8
	3.0	77.8	24.1	89.2
	5.0	83.6		
Ditto (at 10% loading)	0.0	0.0	7.0	36.4
(0.5	8.9	10.1	38.4
	2.1	21.3	13.0	40.5
	2.1	29.3	16.0	42.5
	4.1	34.0	23.0	43.3
Ditto (at 1% loading)	0.0	0.0	11.0	33.6
	0.5	13.7	14.0	34.8
	2.2	18.0	17.1	35.7
	5.1	24.5	22.0	36.2
	8.1	29.4	24.0	36.2

- 1. Ibim, S. M., et al. J. of Controlled Release 40 (1996): 31.
- 2. Davies, B. K. Experiments 28 (1972): 348; Langer, R., and J. Folkman. Nature 261 (1976): 797.
- 3. Allcock, H. R., et al. Macromolecules 10 (1977): 824.
- 4. Laurencin, C. T., et al. J. Biomed. Mater. Res. 21 (1987): 1,231.
- 5. Heller, J. In *Polymeric Materials Encyclopedia*, edited by J. H. Salamone. CRC Press, Boca Raton, Fla., 1996, vol. 1, p. 600.
- 6. Heller, J. J. Ad. Drug Deliv. Revs. 10 (1993): 163.
- 7. Chasin, M., and R. Langer. *Biodegradable Polymers as Drug Delivery Systems*. Marcel Dekker, New York, 1990.
- 8. Cohen, S., et al. J. Amer. Chem. Soc. 112 (1990): 7,832.
- 9. See for example: Allcock, H. R. In *Macromolecular Design of Polymeric Materials*, edited by K. Hatada, T. Katayama, and O. Vogel. Marcel Dekker, New York, 1997.

Poly(phosphazene), bioerodible

- 10. Calciti, P., et al. Il Farmaco 49 (1994): 69.
- 11. Lora, S., et al. Biomaterials 15 (1994): 937.
- 12. Carenja, M., et al. Radiation, Phys. Chem. 48 (1996): 231.
- 13. Grommen, J. H. L., E. H. Schacht, and E. H. G. Mense. Biomaterials 13 (1992): 601.
- 14. Grolleman, C. W. J., et al. J. of Controlled Release 4 (1986): 119.
- 15. Allcock, H. R., and R. L. Kugel. J. Amer. Chem. Soc. 87 (1965): 4,216.

Poly(phosphazene) elastomer

JOSEPH H. MAGILL

ACRONYM, TRADE NAME PNF elastomer, EYPEL-F

CLASS Polyphosphazenes

STRUCTURE
$$-[-N=P-(OCH_2CF_3)(OCH_2(CF_2)CH_yF_x)-]_n-(y=0, F=3, or y=1, F=2)$$

MAJOR APPLICATIONS Developmental quantities of PNF and EYPEL-F and other elastomers were manufactured in quantity for high-performance seals, collapsible storage tanks, O-rings, and vibration shock absorption mounts in military and other devices. The service life of these items is claimed to be relatively long and reliable.

PROPERTIES OF SPECIAL INTEREST High-cost items for commercialization, but this is less critical where they have potential applications as biomaterials such as soft denture liners, blood-compatible parts (prostheses), drug-related release agents and the like. Other more mundane uses encompass fire-resistant paint additives, agrichemicals, and herbicides, proofing of textiles of diverse kinds, lubricants, and fire-resistant fluids (as low molecular weight and cyclic compounds), and many more possibilities.

SYNTHETIC TECHNIQUES AND TYPES OF SYNTHESIS (a) Thermal two-stage polymerization (ring-opening of hexachlorocyclotriphosphazene followed by nucleophilic substitution). (b) Mixed nucleophiles have also produced useful elastomers (2–8) using the same two-step procedure. (c) Now better defined block and random polymers with elastomeric properties have been developed and characterized. $^{(9,10)}$

PROPERTY	VALUE	REFERENCE
Molecular mass of repeat unit	Variable, depending upon the side groups copolymer type and composition	_
Typical molecular weight	Variable, depending upon the side groups, copolymer type, and composition	_
Typical polydispersity index $M_{\rm w}/M_{\rm n}$	Variable (usually high and broad in thermal synthesis)	_
Solvents	Methyl isobutyl ketone, methyl ethyl ketone, acetone, dimethylformamide, tetrahydrofuran, 1-methyl-2-pyrrolidine, acetonitrile and related polar solvents	(6, 8, 11)
	Freon and freon ether type solvents are best for the more heavily fluorinated polymers	(8)
Nonsolvents	Hydrocarbons (aliphatic and aromatic) petroleum products, hydraulic fluids, water-glycol, aqueous ammonia, acetic acid, and the like	(6)

Mechanical properties

PROPERTY	UNITS	CONDITIONS*	VALUE		REFERENCE
Tensile modulus (100%)	MPa	_	1.4-10.5		(4, 6)
			Below $T_{\rm g}$	Above $T_{\rm g}$	
Dynamic modulus Storage modulus Loss modulus	– MPa MPa	PNF elastomer, radiation vulcanized, unfilled; 110 Hz	(193 K) 1,590 1,580	(353 K) 0.401 0.396	(12)
Dynamic modulus Storage modulus Loss modulus	— МРа —	PNF elastomer, peroxide vulcanized, (30 pph of FEP carbon black)		0.0515 4.56 62.2 86.8	(12)
Dynamic modulus Storage modulus Loss modulus	MPa _ _	PNF elastomer, peroxide vulcanized (30 pph Silanox 101 silica)	2,080 2,080 —	3.46 3.40 0.620	(12)
Yield strain L/L_o	%	_	100-350		(4, 6)
Hardness	Shore D	_	40-90		(4, 6)
Tear strength	kNm^{-1}	_	7.0-17.5		(4)
Compression set	%	70 h at 423 K, in air	20-50		(4)
Flexible modulus	MPa	At 273 K At 233 K At 200 K	17.2 44.8 222		(4)
Flexural Gehman freeze point	K	ASTM D-1053	205		(4)

^{*}Aging changes in mechanical behavior of PNF elastomers were reported with time, temperature, degree of cross-linking (radiation and chemical), and fluid and other environmental conditions for in-service evaluations ASTM and other practical tests were employed. Property changes and conditions are detailed in several references. (4,5,11)

Rheological measurements are expressed graphically as loss moduli G' and storage moduli G' versus shear rate respectively.^(4,6) Dynamic torsional braid analysis (TBA) spectra over a wide range of temperatures and several frequencies depicted significant transitional behavior in the region of $T_{\rm g}$, T, T, and beyond. T

Poly(phosphazene) elastomer

Solution properties

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Theta temperature Θ	K	Methyl isobutyl ketone	298	(8)
Interaction parameter χ	_	MIBK, 298 K	0.49	(8)
Second virial coefficient	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	DMF at 298 K; $M_{\rm w} = 23-126 \; (\times 10^5);$ $M_{\rm n} = 3.2-6.7 \; (\times 10^5)$	2.8-11.0 $[A_2 = (1.1 \times 10^{-3}) M_{\rm w}^{-0.35}]$	(8)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	_	$K = 2.62 \times 10^{-3}$ $a = 0.52$	(8)
Huggins constants: k' and k''	_	MIBK; 298 K	$k' \times 10^2$ $k'' \times 10^2$	(8)
		THF MEK Acetone Acetonitrile DMF	1.09 -2.08 1.47 -4.06 0.89 -0.91 0.77 -0.98 0.46 -0.16 0.87 -0.28	
Characteristic ratio $\langle r^2 \rangle_0 / n l^2$	-	MIKB; 298 K	25–35	(8)
Persistence length	Å	MIKB; 298 K	42-64	(8)
Radius of gyration $\langle S^2 \rangle_z^{1/2}$	Å	DMF; 298 K; $M_{\rm w} = 23-126 \ (\times 10^5);$ $M_{\rm n} = 3.2-6.7 \ (\times 10^5)$	340-890	(3, 8)
		Solvent E2* (9.09% acetone) at 295 K; $M_n = 15.5 \times 10^4$; $MW = 6.8 \times 10^6$	870	(3)
		Solvent E2 at 295 K; $MW = 42.8 \times 10^4$; $MW = 10.0 \times 10^6$	930	(3)

^{*}Solvent E2 is F-(CFCF₃CF₂O)₂CHFCF₃, manufactured by DuPont Freon Products Division, Wilmington, Deleware, USA.

Anomalous changes are frequently noted for fractions across the broad molecular weight distribution(s). For example, $k'+k''\neq 0.5$ —see references (3) and (4). Intrinsic viscosity parameters as a function of percent acetone in E2 solvent are plotted in figure 3 of reference (3) for several PNF fractions. Many other values are tabulated by Hagnauer and Schneider in this reference along with many other solution parameters. Recently, the solution properties of polyphosphazenes have been critically reviewed. Besides polymer quality, there have been problems with "tailing" in the fractionation of fluorinated polyphosphazenes as pointed out in reference (15). The quality polymers synthesized since the 1990s (9, 10, 16) should circumvent these problems that have been encountered with dilute solution and other kinds of characterization.

Stabilities: Flammability properties

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
Oxygen index:* LOI =	%	PNF sheet , mole %: Percent trifluoroethoxy/ fluoroalkoxy (65/35)	UF (Radiation vulcanized)	30 phr C (peroxide vulcanized)	30 phr silica (Peroxide vulcanized)	
$100[O_2]/[O_2] + [N_2]$	%		48 48	65 —	47 —	(17) (18)
Burn velocity †	mms^{-1}	In 75% oxygen	1.65	0.05	0.7	(17)
Smoke density	Relative	Optical cell	~1	\sim 2.5	~0.7	(17)
Average residue	Relative	At 773 K Air N_2	4 6.5	26 28.5	26 29	(17)
Residue	K	Temperature for 10% loss At 10 K min ⁻¹				(17)
		Air N_2 For 50% loss	650 659	669 659	693 690	
		Air N ₂	701 710	717 712	735 735	
Activation energy (degradation)	kcal mol ⁻¹	Air Nitrogen	30.5 31.5	35.4 33.9	23.3 14.5	(17)
Glass transition temperature	K	DSC	484	482	483	(17)

^{*}Test = ASTM D2863.

- Allcock, H. R., and R. L. Kugel. J. Amer. Chem. Soc. 87 (1965): 4,216; Allcock, H. R., R. L. Kugel, and K. Valan. J. Inorg. Chem. 5 (1966): 1,709.
- 2. Rose, S. H. J. Polym. Sci., Polymer Letters, 6 (1968): 837.
- 3. Hagnauer, G. L., and N. S. Schneider. J. Polym. Sci., Part A2, 10 (1972): 699.
- 4. Kyker, G. S., and T. A. Antkowiak. Rubber Chem. Technol. 47 (1974): 32.
- 5. Singler, R. E., G. L. Hagnauer, and R. W. Sicka. ACS Symp. Series 193 (1982): 229.
- Tate, D. P. J. Polym. Sci., Symp. 48 (1974): 33; Tate, D. P., and T. A. Antkowiak. In Kirk-Othmer Encyclopedia of Chemical Technology, 3d ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, vol. 10, p. 936, 1980.
- 7. Vicic, J. C., and K. A. Reynard. J. Appl. Polym. Sci. 21 (1977): 3,185.
- 8. Carlson, D. W., et al. J. Polym. Sci, Polym. Chem. Edn, 14 (1976): 1,379.
- 9. White, M. L., and K. Matyjaszewski. Macromol. Chem. Phys. 198 (1997): 665.
- Matyjaszewski, K., and M. L. White. Polym. Mat. Encyl., edited by J. C. Salamone. CRC Press, New York, vol. 9. p. 6,556, 1996.
- 11. Singler, R. E., N. S. Schneider, and G. L. Hagnauer. Polym. Eng. Sci. 15 (1975): 321.
- 12. Choy, I. C., and J. H. Magill. J. Polym. Sci., Polym. Chem. Ed., 19 (1981): 2,495.

[†]During burning, dripping may distort the result. These values fall sharply with increasing incident radiation (heat flux) on the specimen.

Poly(phosphazene) elastomer

- 13. Connolly, T. M. Jr., and J. K. Gillham. J. Appl. Polym. Sci. 19 (1975): 2,461.
- 14. Tarazona, M. P. Polymer 35 (1994): 819.
- 15. Neilson, R. H., et al. Macromolecules 20 (1987): 910.
- 16. Allcock, H. R., et al. Macromolecules 30 (1997): 50.
- 17. Peddada, S. V., and J. H. Magill. J. Fire and Flamm. 11 (1980): 63.
- 18. Lawson, D. F., and T. C. Cheng. Fire Research 1 (1977–1978): 223.

JOSEPH H. MAGILL

ACRONYMS, ALTERNATIVE NAME PBFP, PTFP, PBTFP, PFPN, PF, poly[(2,2,2,-trifluoroethoxy)phosphazene]

CLASS Polyphosphazenes

STRUCTURE $-[N=P(OCH_2CF_3)_2]_x$

MAJOR APPLICATIONS Produced for many years in developmental quantities for evaluation in research and limited use in commercial tests and military applications; nonflammable fibers and films. Under evaluation for controlled drug delivery systems, hydrogels, implants, and membranes.

PROPERTIES OF SPECIAL INTEREST Low-temperature flexibility and high-temperature stability, high oxygen index and low flame spread rate, hydrophobic (low surface tension), good carbon solvent resistance, biocompatibility, mesophase formation, and polymorphism.

SYNTHESIS TECHNIQUES (a) Stokes⁽¹⁾ thermally polymerized hexachlorocyclotriphosphazene via a ring-opening process to provide a cross-linked elastomer, but it was not until 1965 that a high molecular poly(dichlorophosphazene) was isolated and subsequently transformed, via nucleophilic substitution, into thermally stable semicrystalline homopolymers.⁽²⁻⁴⁾ This procedure was used widely to synthesize a variety until a few years ago, but it suffered from relatively low conversions (<70% so as to avoid cross-linking), unknown chain-end groups and lack of molecular weight control of the product. These difficulties obstructed its commercialization.

- (b) Other thermally induced polymerization techniques have been developed employing Lewis acid catalysed solution polymerization $^{(5-7)}$ of the hexachlorocyclic monomer as well as by polycondensation of $\text{Cl}_3\text{P=N-P(O)Cl}_2^{(8)}$ and the thermal polymerization of phosphoranimines $^{(9,10)}$ to provide many alkyl and aryl substituted phosphazenes, but this procedure also has processing disadvantages.
- (c) Still, well-defined poly(phosphazenes) with high conversions, known end-groups, and molecular weight control were first prepared less than ten years ago by employing the anionically initiated polymerization of phosphoranimines to produce well-defined homo, block, and random copolymers. (11–14)
- (d) Recently, a living cationic polymerization of phosphoranimines with molecular weight control has been developed to produce polyphosphazenes of of similar quality to (c). $^{(15-17)}$

Now that polymerization control has been established, these techniques may lead to cost-effective and new developments/applications in this interesting class of polymers. Some physical properties that are sensitive to structure and chain conformations may require further investigation. Some of these polyphosphazenes are to be found among the polymers that follow.

PROPERTY	UNITS	CONDITIONS	VALUE
Molecular mass of repeat unit	$g \text{mol}^{-1}$	_	243.04
Typical molecular weight	$g mol^{-1}$	Daltons	$< 2 \times 10^3 \text{ to } 3 \times 10^7$
Typical polydispersity index $(M_w/M_n)^*$	_	_	~1.2-20

^{*}Low polydispersity polyphosphazenes (P.I. between 1 and 2) are novel and were first synthesized less than a decade ago.

Morphology⁽¹⁸⁾

PROPERTY	UNITS	CONDITIONS	VALUE
Birefringence (spherulites and mesophase moieties)*	_	Relative values measured on stepwise (a) heating/(b) cooling of thin solution-crystallized negative spherulites: (a) Heating; orthorhombic (folded chains)	
		293 K	1.064
		318 K	1.121
		325 K	1.179
		328 K	1.250
		333 K	1.267
		338 K	1.297
		Mesophase (2-dimensional chain, extended)	
		393 K	3.298
		413 K	3.078
		433 K	3.500
		(b) Cooling; (2-dimensional chain, extended)	
		413 K	3.540
		402 K	3.345
		393 K	3.148
		373 K	3.308
		353 K	3.314
		(b) Orthorhombic (3-dimensional chain, extended)	
		332 K	2.783
		322 K	2.640
		313 K	2.756
		293 K	2.540

^{*}The pattern observed here is analogous to that encountered in dilatometry measurements (see phase transitions in the tables on *Transition temperatures* below). The birefringence is always negative in sign but increases in magnitude as the morphology changes from the solution cast chain-folded to the columnar chain-extended pseudohexagonal form (see the table on *Crystalline-state properties* below). The birefringence stabilizes upon cycling (heating/cooling) and subsequently follows a set pattern after a few cycles. Hereafter, the pathway is reversible between orthorhombic to/from the mesophase during heating and cooling. Crystallization directly from the melt produces smectic and batonnet morphologies of high crystallinity, not classical spherulites (of 35–50% crystallinity) that only grow from moderately concentrated polymer solutions.

Properties of unique block and random methoxyethoxy (MEO)/(trifluoroethoxy) (TFO) phosphazene copolymers*(19)

Random	m	$ extit{M}_{ m W} imes 10^{-3}$	$M_{\rm w}/M_{\rm n}$	<i>T</i> _g (K) ^(a)	$ au_{(1)}$ (K) $^{(b)}$	$\Delta H_{T_{(1)}} \; (\mathrm{J} \mathrm{g}^{-1})^{(c)}$	\textit{T}_{m} (K) $^{(d)}$	Density (g cm ⁻³) ^(e)
Mole fraction	0.000	99.0	1.46	_	356	47.0	495	_
"m" of MEO	0.028	94.7	1.78	215	344	40.5	480	1.690
	0.053	77.0	1,92	212	335	36.0	464	1.612
Block								
Mole fraction	0.126	65.8	1.60	_	315	21.9	446	1.431
"m" of MEO	0.047	173.7	1.36	220	353	46.2	493	1.690
	0.080	178.2	1.56	211	341	38.8	478	1.664
	0.126	<i>7</i> 7.1	1.57	_	339	27.0	455	1.591
	0.134	62.2	1.34	211	321	21.7	421	1.583

^{*}Side group placement and composition of methoxyethoxy produces a wide variety of properties that range from crystalline low "m" (<0.126) with morphologies akin to the PBFP homopolymer, to higher "m" (>0.134) where these crystalline transformations cease to exist. All polymer exhibit thermotropic behavior. Anionically initiated polymerization of (CH₃OCH₂CO)₂P=NSi(CH₃)₃ followed by the addition of (CF₃CH₂O)₃P=NSi(CH₃)₃, except for random copolymers where each of two polymerizations were conducted concomitantly.

Spectroscopic properties

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
UV (characteristic absorption frequencies)	μm	Electronic spectra absorption	220; 400 weak 270–280 diffuse	(20, 21)
IR (characteristic frequencies)	cm^{-1}	FT-IR P-O-C P-N P-O-P Stretching and bending vibrations (for cross-linking) -P=N- stretching	1,420; 965; 880 1,280 870-1,000 1,250-1,330	(22, 23)
FT-IR (Nicolet 5DXB)	cm^{-1}	Solid (well-defined) PBFP polymer by KBr Aliphatic CH CH P-O-C P=N (br) P=O C-O	2,981 1,462 1,427 1,271-1,308 1,173; 963 1,089	(24)

 $^{{}^{(}a)}T_{g} = glass transition temperature.$

 $T_{(1)}^{(b)} = \text{mesophase transition temperature}$

 $[\]overset{\text{(c)}}{\sim} \overset{\text{(c)}}{\sim} \overset{\text{(c)}}{H_{T_{(1)}}} = \text{enthalpy of } T_{(1)} \text{ transition.}$

 $^{^{(}d)}T_{\rm m}$ = melting temperature; values were determined optically.

⁽e) At 25°C via flotation in CsCl solution.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
NMR (Solution)	ppm	³¹ P Dipolar- ¹ H	7.5 -6.9	(25)
(Brüker AM 500) 202 MHz for ³¹ P and 125 MHz for		Decoupled ¹³ C ¹⁹ F (3 atoms)	120.7-127.3	
¹³ C measurements		¹ H dipolar-coupled ¹³ C (reference peak)	64.3	
		TMSi (reference 0 ppm)	-6.9	

PROPERTY	CONDITIONS	VALUE	REFERENCE
NMR (solid state); ¹ H dipolar decoupled; ¹³ C (MAS at 2–4 kHz); no decoupling for ³¹ P spectra; reference H ₃ PO ₄ (0 ppm); Brüker MSL 300; analysis made at 121.5 MHz for ³¹ P and 75.5 MHz for ¹³ C	Solution crystallized sample: $M_{\rm w}=300,\!000;$ $M_{\rm w}/M_{\rm n}=2.3;$ $T_{\rm m}=515$ K, $T_{\rm g}=207$ K; heating/cooling spectra recorded/10 K stepwise from 293–373 K (i.e., through $T_{(1)}$ mesomorphic transition)	Two peaks (mobile/ immobile) in the 31 P spectra below $T_{(1)}$ and one mobile narrower peak about this transition, where side groups and chains are all mobile; above $T_{(1)}$ the phase is 2-D pseudohexagonal; below $T_{(1)}$ a 3-D highly crystalline form exists	(26)
NMR (wide line)	1 H, 13 C, and 19 F nuclei studied under stepwise heating/cooling; $T_{(1)} = 353$ K; $T_{\rm m} = 513$ K; intrinsic viscosity = 1.06 dl g $^{-1}$ in THF, 298 K	Rotating backbone in a hexagonal lattice above $T_{(1)}$ and enhanced side group motions; single narrow line ~ 0.4 Oe for 19 F; ~ 0.6 Oe for 1 H; 31 P narrows to 1.1 Oe as compared to 2.4 Oe at 20° C indicating rigidity	(27)
Spin-lattice ¹ H NMR relaxation times	Semicrystalline sample; $M_{\rm w}=2\times10^5$; $M_{\rm w}/M_{\rm n}=1.75$; $T_{(1)}$ of cast film from THF = 348 K; measurement range = 303-443 K	The 13 C measurements made through $T_{(1)}$ for CH ₂ and CF ₃ side groups are 1.75 and 3.55 respectively with activation energies of \sim 17.3 and 13.7 kJ mol $^{-1}$ obtained from $\ln \tau$ versus T (K $^{-1}$)	(25)
NMR (solid echo), 90 MHz	Semicrystalline sample; $M_{\rm w}/M_{\rm n}=1.75$; film cast from THF at 348 K; range of measurement = 303–443 K	Molecular motions above and below $T_{(1)}$ fitted with Weibull functions using τ_2 relaxation values below and above the $T_{(1)}$ transition	(28)

Equations of state

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Thermal expansion coefficient	K ⁻¹ (×10 ⁴)	X-ray (i) Solution cast film (ii) Melt cast film a-axis expansion (linear)	1.74 2.7 1.8	(29-31)
		Dilatometry: semicrystalline crystalline orthorhombic phase (volume)	$\alpha_{\rm c} = 2.48$	(31)
		Mesophase $(T_{(1)} \text{ to } T_{\text{m}})$ (volume) Isotropic ($\geq T_{\text{m}}$)	$\alpha_{t} = 6.99$ $\alpha_{t} = 6.24$ $\alpha_{l} = 9.25$	(32) (32) (31)
		(volume) Monoclinic (initially below $T_{(1)}$) (volume)	$\alpha_{\rm l} = 8.67$ $\alpha_{\rm m} = 6.83$	(32) (25)
Volume change in transition regions	$\Delta V\%$	Dilatometry $T_{(1)}$ transition (orthorhombic to mesophase) $T_{\rm m}$ transition (mesophase to isotropic) $T_{(1)}$ transition (monoclinic to mesophase)	~6 ~5-6 ~3	(25, 31)
Thermo-mechanical analysis (TMA)	$\Delta V\%$	$T_{(1)}$ transition $T_{\rm m}$ transition	~5 ~6	(31-33)
Thermal (volume) expansion coefficient	$K^{-1} (\times 10^{-4})$	Solution cast α -form,* (monoclinic) below $T_{(1)}$	7.5	(25)
Density*	$\rm gcm^{-3}$	α-form 303 K 311 K 321 K 331 K 334 K 338 K	1.665 1.655 1.643 1.632 1.629 1.621	(25)

^{*}Densities are also presented graphically for the δ -hexagonal (columnar) phase and the chain-extended γ -orthorhombic form of high crystallinity and the isotropic phase above $T_{\rm m}$ under conditions of heating and cooling. See the corresponding birefringence and transitional data under corresponding temperatures in the table on *Morphology* above.

Pressure properties

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Compressibility coefficient β	bar ⁻¹ (×10 ⁻⁴)	From P-V-T data* Pressure (MPa)	< <i>T</i> ₍₁₎ (at 298 K)	>T ₍₁₎ (at 498 K)	(34)
		0.1 50 100	0.46 0.42 0.37	1.12 0.95 0.71	
		200 300 400 650	0.33 0.25 0.21 0.19	0.59 0.37 0.28 0.22	
Thermal expansion coefficient α	$K^{-1} (\times 10^{-4})$	0^{-4}) Graphs for pressures = 0.1- <700 MPa; 298-460 K As (approximate) >		' .0	(34)
Gruneisen parameter	_	At 303 and 220 K	4.6		(34)
Density	$\rm gcm^{-3}$	As a function of pressure and temperature	Data represented graphically		(34)
Compression modulus $K_{\rm v}$	bar or (GPa)	Pressure dependence of compression modulus	Plotted as function of pressure up to 600 MPa through $T_{(1)}$ transitions		(34)

 $^{^*}M_{\rm w} \sim 1 \times 10^6$; $M_{\rm w}/M_{\rm n} \sim 1.2$; solid, mesophase, and liquid states at various pressures and temperatures (interpolated).

Solution properties*

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Theta Θ temperature	K	Tetrahydrofuran	298	(20)
Interaction parameter χ_1	_	In graphical form	Estimates	(36)
Second virial coefficient	$\operatorname{mol}\operatorname{cm}^3\operatorname{g}^{-2}$	THF, 298 K, $M_{\rm w} = 1.48 \times 10^6$ Acetone, 298 K, $M_{\rm w} = 1.54 \times 10^6$ Cyclohexanone, 298 K, $M_{\rm w} = 1.42 \times 10^6$ Cyclohexanone, 298 K, $M_{\rm w} = 2.92 \times 10^{-5}$, $M_{\rm n} = 1.3 \times 10^5$	1.0×10^{-3} 5.1×10^{-4} 6.7×10^{-5} 4.7×10^{-5}	(23) (23) (23) (37)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	THF (details not given since coefficients change across the MW distribution)	K = 620 $a = 0.85$	(37)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Huggins constant $k_{\rm H}$	-	THF, 298 K, $M_{\rm w} = 1.48 \times 10^6$ Acetone, 298 K, $M_{\rm w} = 1.54 \times 10^6$ Cyclohexanone, 298 K, $M_{\rm w} = 1.42 \times 10^6$	~0.02 0.30 0.42	(23)
Intrinsic viscosity $[\eta]$	_	Fractions in methyl isobutyl ketone (MIBK)	(4.89×10^{-3})	(37)

^{*}Anomalous behavior is noted among some of the solution properties since polymers are not always well-defined.

$Crystalline\text{-state properties}^{*(29,30,38)}$

Comments [†] Lattice		Monomers Unit cell dimensions		Cell angles			Crystal density		
		per unit cell	а	b	с	α	β	γ	(g cm ⁻³)
Form α	Orthorhombic	2	10.14	9.35	4.86	_	_	_	1.748
Form β	Monoclinic	2	10.03	9.37	4.86	_	91°	_	1.767
Form γ	Orthorhombic	4	20.60	9.40	4.86	_	_	_	1.715
Form δ	Hexagonal	(?)	$d(100)\gamma$	10.3(200°C)		_	_	_	1.354 (estimate

^{*}Crystalline modifications (semicrystalline polymorphic states and mesophase). See the expansion coefficient as a function of temperature in the table on *Equations of state* above.

[†]Form α = chain-folded from THF solution; Form β = low molecular weight from pseudohexagonal (columnar) mesophase; Form γ = melt quench from isotropic melt 250°C to room temperature as chain-extended orthorhombic form; Form δ = low molecular weight from pseudohexagonal (columnar) mesophase.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Crystallization kinetics	-	Isothermal growth rate and form depend upon undercooling measured by DSC and polarized light transmission method (also known as the DLI technique)	See reference for details	(39)
Avrami exponent	_	Transformations kinetics for: (1) Isotropic to (2-D) mesophase; that is, sub- $T_{\rm m}$ (K) (2) 2-D mesophase to orthorhombic (3-D); that is, sub- $T_{(1)}$ (K)	2	(39)

Transition temperatures*

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperature $T_{\rm g}$	K	Differential scanning calorimetry Dynamical mechanical Torsional braid analysis	207 _ 220	(3, 25, 33, 36, 40–42) (43) (44)
Mesophase phase transition $T_{(1)}$	K	Dilatometry DSC and TMA DSC	338–365 365 339–363	(24, 30, 47) (33, 36, 40) (44–46)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Mesophase phase transition $T_{(1)}$	K	Dielectric analysis	(See graphed data in appropel below)	oriate section
(1)		Torsional braid analysis Creep compliance DLI (transmitted light)	~331 338-343 -	(44) (30) (39, 46)
$T_{(1)}$ relationship equilibrium $T_{(1)}^0$	K	Best fit to data (estimated)	$T_{(1)} = 371 - (1,288)M_{\rm w}^{-0.37}$ $T_{(1)}^{0} = 371$	(41)
Melting (isotropization) transition $(T_{\rm m})$	K	DSC	515 513–515 519, 522	(All of the above and more)
Melting temperature $(T_{\rm m} \equiv T_{\rm i})$	K	"Fit" to relevant experimental data	$T_{\rm m} = 539 - 1,904 \ M_{\rm w}^{-0.39}$	(41)
Equilibrium melting temperature	K	_	$T_{\rm m}^0=539$	(44)
$T_{\rm g}$, $T_{(1)}$, and $T_{\rm m}$ interrelationship	K	"Fitted" to oxy-type polymers from a linear plot of $(T_{\rm m}-T_{\rm g})/(T_{\rm m}-T_{(1)})$ vs. $T_{(1)}/T_{\rm m}$	$3.2(T_{\rm m})^2 - [T_{\rm g} + 8.2T_{(1)}]T_{\rm m} + 6[T_{(1)}]^2 = 0$	(25, 40)
		For all data including trifluoroethoxy/alkoxy copolymers	$2.4(T_{\rm m})^2 - [T_{\rm g} + 6.2T_{(1)}]T_{\rm m} + 4.7[T_{(1)}]^2 = 0$	(41)

^{*}All transition temperatures depend on factors such as sample MW and conditions of measurement. Note that α - , β -, and mesophase transition values depend upon the measurement method, molecular weight, and specimen history. Consult references for the techniques employed. For example, some authors claim (with good reason) that dynamical techniques are only related to classical dilatometry (1^0 min $^{-1}$) results. Logically, all comparisons should be on similar time scales.

Mechanical properties

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
Tensile modulus	MPa	$M_{\eta} = 2.97 \times 10^6$; $M_{\rm w}/M_{\rm n} < 1.4$	Unlisted	f		(48)
Tensile strength	MPa	Solution cast film	196			(48)
Elongation at break	%	Solution cast film	700			(48)
Some typical values in the transition regions †			<t<sub>g (165 K)</t<sub>	< <i>T</i> ₍₁₎ (312 K)	>T ₍₁₎ (380 K)	(43)
Dynamic modulus (E)*	MPa	Unoriented cast film; $d = 1.695 \mathrm{g cm^{-3}}; M_{\rm w} > 10^6; 110 \mathrm{Hz}$	1,170	130	11.8	
Storage modulus E'	MPa	$u = 1.05 \mathrm{gcm}^{-1}$, $M_{\rm w} > 10^{\circ}$, $110 \mathrm{Hz}$ Unoriented cast film; $d = 1.695 \mathrm{gcm}^{-3}$; $M_{\rm w} > 10^6$; $110 \mathrm{Hz}$	1,170	130	11.8	

			Poly(ph	osphaze	ne), semi	crystalline
PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
Some typical values in	the trans	sition regions [†]	<t<sub>g (165 K)</t<sub>	< <i>T</i> ₍₁₎ (312 K)	>T ₍₁₎ (380 K)	(43)
Loss modulus E"	MPa	Unoriented cast film; $d = 1.695 \mathrm{g cm^{-3}}; M_{\rm w} > 10^6; 110 \mathrm{Hz}$	29.0	19.1	0.89	
Dynamic modulus E^*	MPa	Same film oriented \times 9; $d = 1.692$; $110 \mathrm{Hz}$	8,670	455	76.8	
Storage modulus E'	MPa	Same film oriented \times 9; $d = 1.692$; $110 \mathrm{Hz}$	8,670	455	57.7	
Loss modulus E"	MPa	Same film oriented \times 9; $d = 1.692$; $110 \mathrm{Hz}$	971	12.9	9.28	

 $^{^{\}dagger}$ Thermo-mechanical spectra have been measured from 153 to 413 K at 3.5 and 110 Hz respectively; only selected values are presented here.

Electrooptical and magnetic properties

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Index of refraction <i>n</i>	_	PBFP in ethyl acetate solution; $M_{\rm w}=18\times10^6$; $[\eta]_{\rm THF}=410$	1.37	(49)
Refractive index increment dn/dc	$g \text{mol}^{-1}$	PBFP in ethyl acetate solution; $M_{ m w}=18\times10^6$; $[\eta]_{ m THF}=410$	0.004	(49)
Dielectric constant ε'	-	ε' plots from 100 Hz to 100 kHz in the range 78–393 K	See graphs	(50, 51)
Dielectric loss ε''	_	ε'' plots from 100 Hz to 100 kHz in the range ${\sim}78{\text -}393\mathrm{K}$	See graphs	_
Dielectric strength	$V mil^{-1}$	-	360	(52)
Dipole moment of monomer unit μ_{110}	Debye	_	9.0	(49)
Optical anisotropy (segmental) $(\alpha_1 - \alpha_2)$	cm ³	Cis-trans conformation (assumed)	160×10^{-2}	(49)
Kerr constant	$cm^5 g^{-1}$ $(300 V)^{-1}$	Electric birefringence in EtOAc solution	7.0	(49)
Shear optical coefficient $[n]/[\eta]$	$\mathrm{cm}^3\mathrm{g}^{-1}$	Dynamic birefringence in solution	12	(49)
Relaxation time $ au$	S	_	2-9 (×10 ⁻⁴)	(49)

Surface and interfacial properties

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Surface tension	$\mathrm{mN}\mathrm{m}^{-1}$	Contact angle (microscopy) Zisman plots Contact angle (degradation after prolonged UV irradiation)	16 16.5 16.5–14.4	(53) (53) (54)
Interfacial free energy	$\mathrm{erg}^2\mathrm{cm}^{-4}$ $\mathrm{erg}\mathrm{cm}^{-2}$	From isothermal crystallization studies At (2-D to 3-D) interface	30 ∼10 (estimate)	(39)

Optical properties

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Refractive index	mlg^{-1}	Tetrahydrofuran at 298 K			(55)
increment dn/dc		·	0.0233		(41)
			0.0232		(23)
		Cyclohexanone at 298 K	0.053		(23)
		Acetone at 298 K	0.019^{*}		(23)
		Freon* E-2/acetone: 10/1 (v/v)	0.048		(56)
Refractive index <i>n</i>	_	Tetrahydrofuran at 298 K			(23)
		Acetone at 298 K	1.360		, ,
		Cyclohexanone at 313 K	1.448		
Intrinsic viscosity $[\eta]$	$(dl g^{-1})$	Acetone with TBAN † at 298 K TBAN (mol)	$[\eta]$	k'	(23)
		0.0	3.70	0.03	
		0.01	2.02	0.29	
		0.02	2.04	0.19	
		0.05	2.07	0.18	
Radius of gyration	Å	$MW = 3.0 \times 10^6$	~660		_
Power factor	_	$Frequency = 10^2 - 10^6 Hz$	$10^{-3} t$	0.40×10^{-3}	(42, 52)

^{*}Freon E2 is $-(CFCF_2O)_2-CHFCF_2$, from DuPont Freon Products Division, Wilmington, Deleware, USA.

[†]Tetrabutyl ammonium nitrate used as an "aggregate breaker." Other salts have been employed to prevent "tailing" in GPC analysis. (55)

Degradation stabilities

PROPERTY	CONDITIONS	VALUE	REFERENCE
Thermal degradation:* poly(tri-fluoroethoxy- phosphazene) (homopolymers)	Polymer made by ring- opening thermal synthesis: polymerization (MW uncontrolled, chain- ends unknown)	Depolymerization to cyclics, followed by chain scission at weak points (i.e., defects in the backbone) followed by rapid depolymerization to cyclic oligomers	(57)
		Random chain scission followed by partial unzipping of fragments to cyclic oligomers	(58)
		Depolymerization by chain scission and subsequently partial unzipping with some chain end initiation; reaction order of 0.8 proposed	(59)
		Initiation occurs at chain ends with subsequent depolymerization and chain transfer; some chain scission occurs at weak points in the backbone	(60)
		Two stage initiation, followed by backbone rearrangement and subsequently chain scission at resultant weak links within the backbone	(61)
Homo- and copolymers [†]	Polymer made by anionically initiated polymerization with MW, chain-end and chain- sequence control with defect-free chains	Depolymerization with chain end initiation followed by complete unzipping to cyclic trimer by a cationic mechanism; stability of the copolymers decreases by incorporating and increasing alkoxyalkoxy side group	(62)

^{*}Phosphazene polymers with halogenated side chains give rise to toxic gaseous products, based upon "overall hazard rating," ALH, involving thermal stability, flammability, and toxicity parameters (RD_{50} and LC_{50}). Halogen-free polyphosphazenes are preferred over halogen-containing polymers for high-temperature applications. For example, see reference (64) for graphical details and analysis.

[†]The results represent the first thermal degradation study that has been conducted on well-defined polyphosphazenes. They also provide an unambiguous answer to the actual mechanism of degradation in these polymers.

Transport properties

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Permeability P*: (sorption and time- lag techniques)	$cm^{3}(STP)cm cm^{-1} s^{-1}$ $Pa^{-1} (\times 10^{12})$	Semicrystalline film: $T_{\rm g} = 198 {\rm K};$ $T_{\rm m} = 491 {\rm K};$ $T_{(1)} = 343 {\rm K};$ $\alpha = 6.24 \times 10^{-4} {\rm K}^{-1}.$		(63)
		Permeant gas (298 K)		
		He	7.10	
		Ne	3.15	
		Ar	2.05	
		Kr	1.93	
		Xe	1.75	
		H_2	4.74	
		O_2	2.66	
		N_2	1.10	
		CO_2	1.47	
		N_2O	1.62	
		CH_4	1.43	
		C_2H_6	1.47	
		C_2H_4	2.69	
		C_3H_8	1.25	
		Permeant gas (300 K)		
		O_2	1.50	
		N_2	1.21	
	$cm^{3}(STP)cm cm^{-1} s^{-1}$ $Pa^{-1} (\times 10^{11})$	Mesophase, above $T_{(1)}$; $\alpha = 8.67 \times 10^{-4}$ (K).		(32)
		Permeant gas (348 K)		
		He	3.93	
		Ne	2.09	
		Ar	1.97	
		Kr	2.04	
		Xe	2.11	
		H_2	3.48	
		O_2	2.26	
		N_2	1.25	
		CO_2	8.78	
		CH_4	1.64	
		C_2H_6	1.68	
		C_2H_4	2.68	
		C_3H_8	1.44	

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Permeability coefficient		Semicrystalline solution cast film;			(48)
P	$cm^{-1} Pa^{-1} (\times 10^6)$	$M_{\rm n} \sim 3 \times 10^7$; $M_{\rm w}/M_{\rm n} < 1.4$.			
		Permeant gas	Activation energy $(kJ mo1^{-1})$		
		He [†]	15.8	17.2	
		Xe^{\dagger}	24.8	3.45	
		${\rm O_2}^\dagger$	21.5	5.40	
		N_2^{\dagger}	24.3	2.33	
		CO_2^{\dagger}	13.1	27.7	
		$\mathrm{CH_4}^\dagger$	25.4	2.7	
		He [‡]	15.7	68.6	
		Xe [‡]	15.2	31.6	
		O_2^{\ddagger}	16.3	37.5	
		N_2^{\ddagger} .	19.3	21.3	
		CO_2^{\ddagger}	11.2	108.6	
		CH₄ [‡]	16.3	28.1	
Diffusivity coefficient <i>D</i> : (sorption and time-lag techniques)	$cm^2 s^{-1} (\times 10^7)$	$T_{ m g} = 198 { m K};$ $lpha = 6.24 \times 1$			(63)
		Diffusant ga He	IS (290 K)	343.0	
		Ne		438.5	
		Ar		21.61	
		Kr		10.52	
		Xe		4.46	
		H ₂		161.8	
		O_2		27.83	
		N_2		17.15	
		CO_2		12.66	
		N_2O		13.42	
		$\widetilde{CH_4}$		11.30	
		C_2H_6		3.61	
		C_2H_4		5.91	
		C_3H_8		1.29	
		Mesophase ab	ove $T_{(1)}$ transition;		(32)
		$\alpha = 8.67 \times 1$			
		Diffusant ga	is (348 K)	==4.0	
		He		771.0	
		Ne		338.0	
		Ar		130.0	
		Kr		54.6	
		Xe		50.8 540.0	
		H_2		154.0	
		O_2		122.0	
		N_2		97.3	
		CO_2 CH_4		97.3 97.9	
				97.9 47.4	
		C_2H_6		47.4	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Diffusivity coefficient <i>D</i> : (sorption and time-lag techniques)	cm ² s ⁻¹ (×10 ⁷)	Mesophase above $T_{(1)}$ transition; $\alpha=8.67\times10^{-4}$ (K). Diffusant gas (348 K) C_2H_4 C_3H_8	66.5 25.1	
Solubility coefficient S	$cm^{3}(STP) cm^{-3}$ $Pa^{-1} (\times 10^{7})$	Semicrystalline film; $d = 1.707 \mathrm{g cm^{-3}}$; $T_{\rm g} = 198 \mathrm{K}$; $T_{\rm m} = 491 \mathrm{K}$; $T_{(1)} = 343 \mathrm{K}$; $\alpha = 6.24 \times 10^{-4} \mathrm{(K)}$.		(63)
		Solubilant gas (298 K) He	2.07	
		Ne	2.72	
		Ar	9.47	
		Kr	18.36	
		Xe	39.2	
		H ₂	2.93	
		O_2	9.55	
		N_2	6.44	
		CO_2	11.63	
		N_2	12.07	
		$\overset{\circ}{\operatorname{CH}_4}$	12.62	
		C_2H_5	40.85	
		C_2H_4	45.4	
		C_3H_8	97.0	
		Mesophase above $T_{(1)}$ transition.		(32)
		Solubilant gas (348 K)		
		He	5.10	
		Ne	6.20	
		Ar	15.15	
		Kr	37.35	
		Xe	41.4	
		H_2	6.44	
		O_2	14.7	
		N_2	10.2	
		CO_2	90.0	
		CH_4	16.65	
		C_2H_6	35.40	
		C_2H_4	40.20	
		C_3H_8	57	

^{*}Measurements have also been reported – reference (48) – for some of these same gaseous permeants in the range 293–403 K for an HMW polymer (\sim 10⁷ Daltons). †Permeant gas, above $T_{(1)}$, K > 350. ‡Permeant gas, below $T_{(1)}$, K < 350.

- 1. Stokes, H. N. Amer. Chem. J. 19 (1897): 782.
- 2. Allcock, H. R., and R. L. Kugel. J. Amer. Chem. Soc. 87 (1965): 4,216.
- 3. Allcock, H. R., R. L. Kugel, and K. Valan. J. Inorg. Chem. 5 (1966): 1,709.
- 4. For an overview of the field, see for example: Allcock, H. R., in *Inorganic Polymers*, edited by J. E. Mark, H. R. Allcock, and R. West. Prentice Hall, Englewood Cliffs, N.J., 1992, chap. 3.
- 5. Mujumdar, A. N., et al. Macromolecules 23 (1990): 14.
- 6. Lee, D. C., et al. Macromolecules 19 (1986): 1,856.
- 7. Sennett, S., et al. *Macromolecules* 19 (1986): 959.
- 8. D'Hallium, G., et al. Macromolecules 25 (1992): 1,254.
- 9. Neilson, R. H., and P. Wisian-Neilson. J. Macromol. Sci.-Chem. A16 (1981): 425.
- 10. Neilson, R. H., and P. Wisian-Neilson. Chem. Rev. 88 (1988): 541.
- 11. Montague, R. A., F. Burkus II, and K. Matyjaszewski. ACS Polym. Prepr. 34(1) (1993): 316.
- White, M. L., and K. Matyjaszewski. J. Polym. Sci., Part A: Chemistry 34 (1996): 277; Makromol. Chem. Phys. 190 (1977): 665.
- 13. White, M. L., and K. Matyjaszewski. J.M.S.: Pure Appl. Chem. A32(6) (1995): 1,115.
- 14. Matyjaszewski, K. J. Amer. Chem. Soc. 112 (1990): 6,721.
- 15. Honeyman, C. H., et al. J. Amer. Chem. Soc. 117 (1995): 7,035.
- 16. Allcock, H. R., et al. Macromolecules 29 (1996): 7,740.
- 17. Allcock, H. R., et al. Macromolecules 30 (1997): 50.
- 18. Magill, J. H., J. Petermann, and U. Reick. Colloid and Polym. Sci. 264 (1986): 570.
- 19. Kojima, M., et al. Macromol. Chem. Phys. 195 (1994): 1,823.
- 20. Allcock, H. R. Phosphorus-Nitrogen Compounds. Academic Press, New York, 1972, p. 21.
- 21. Hiraoka, H., et al. Macromolecules 12 (1979): 753.
- 22. Ferrar, W. T., A. S. Marshall, and T. Whitefeld. Macromolecules 20 (1987): 357.
- 23. Mourey, T. H., et al. Macromolecules 22 (1989): 4,286.
- 24. Montague, R. A., J. B. Green, and K. Matyjaszewski. J.M.S.: Pure Applied Chem. A32 (1997): 497.
- 25. Young, S. G., et al. *Macromolecules, Polymer* 15 (1992): 3,215.
- 26. Young, S. G., J. H. Magill. Macromolecules 22 (1989): 2,549.
- 27. Alexander, M., et al. Macromolecules 10 (1977): 721.
- 28. Saito, K., and T. Masuko. Polym. Comm. 27 (1986): 299.
- 29. Desper, C. R., R. E. Singler, and N. S. Schneider. *IUPAC Symposium*, Amherst, Mass., 12–16 July 1982, p. 682.
- 30. Kojima, M., and J. H. Magill. Makromol. Chem. 186 (1985): 649.
- 31. Masuko, T., et al. Macromolecules 17 (1984): 2,857.
- 32. Mizoguchi, K., Y. Kamiya, and T. Hirose. J. Polym. Sci., Part B, Polym. Phys. 29 (1991): 695.
- 33. Desper, N. S., et al. In *Organometallic Materials*, edited by C. E. Carraher, Jr., J. E. Sheats, and C. U. Pittman, Jr. Academic Press, New York, 1978.
- 34. Dreval, V. E., et al. Polym. Sci. Ser. A 37 (1995): 179.
- 35. Aharoni, S. M. Polym. Preprints, Amer. Chem. Soc. 22(1) (1981): 116.
- 36. Allen, G., C. J. Lewis, and M. Todd. Polymer 11 (1970): 44.
- 37. Tate, D. P. J. Polym. Sci. Symp. 48 (1974): 33.
- 38. Kuptsov, S. A., et al. J. Polym. Sci. 35(5) (1993): 635.
- 39. Ciora, R. J. Jr., and J. H. Magill. Macromolecules 23 (1990): 2,350.
- 40. Zadorin, A. N., et al. Polym. Sci., Series A, 75 (1994).
- 41. White, M. L. Ph.D. Thesis in Chemistry. Carnegie Mellon University, August 1994.
- 42. Singler, R. E., N. S. Schneider, and G. L. Hagnauer. Polym. Eng. Sci. 15 (1975): 321.
- 43. Choy, I. C., and J. H. Magill. J. Polym. Sci., Polym. Chem. Ed., 19 (1981): 2,495.
- 44. Connelly, T. M. Jr., and J. K. Gillham. J. Applied Polym. Sci. 20 (1976): 473.
- 45. Sun, D. C., and J. H. Magill. Polymer 28 (1987): 1,243.
- 46. Schneider, N. S., C. R. Desper, and J. J. Beres. In *Liquid Crystalline Order in Polymers*. Academic Press, New York, 1978, chap. 9, p. 299.
- 47. Masuko, T., et al. Macromolecules 22 (1989): 4,636.
- 48. Starannikova, L. E., et al. Vysokomolekulyarnye-Soedineniya, Ser. A & B, 36(11) (1994): 1,906.
- 49. Rjumtsev, E. I., et al. Eur. Polym. J. 28 (1992): 1,031.

- 50. Uzaki, S., K. Adachi, and T. Kotaki. Polym. Journal 20 (1988): 221.
- 51. Murakami, I., et al. J. Inorg. and Organometallic Polym. 2 (1992): 255.
- 52. Reynard, K. A., A. H. Gerber, and S. H. Rose. *Synthesis of Polynitrilic Elastomers for Marine Applications*. Horizons Inc., Cleveland, Naval Ship Engineering Center, AMMRC CTR, 72-29, December 1972, (AD 755188).
- 53. Allcock, H. R., and D. E. Smith. Chem. Mat. 7 (1995): 1,469.
- 54. Reichert, W. M., F. E. Filisko, and S. A. Barenberg. J. Biomed. Mat. Sci. 16 (1982): 301.
- 55. Neilson, R. H., et.al. Macromolecules 22 (1989): 4,286.
- 56. Hagnauer, G. L., and N. S. Schneider. J. Polym. Sci., Part A2, 10 (1972): 699.
- 57. Allcock, H. R., and W. J. Cook. Macromolecules 7 (1974): 284.
- 58. MacCallum, J. R., and J. R. Tanner. J. Macromol. Sci. Chem. A4(2) (1970): 481.
- 59. Zeldin, M., W. H. Jo, and E. M. Pearce. *Macromolecules* 13 (1980): 1,163.
- 60. Peddada, S. V., and J. H. Magill. Macromolecules 16 (1983): 1,258.
- 61. Papkov, V. S., et al. J. Polym. Sci. USSR 31(11) (1989): 2,509.
- 62. White, M. L., and K. Matyjaszewski. J.M.S.: Pure Appl. Chem. A32(6) (1995): 1,115.
- 63. Hirose, T., Y. Kamiya, and K. Mizouchi. J. Applied Polym. 38 (1989): 809.
- 64. Lieu, P. J., J. H. Magill, and Y. C. Alarie. J. Fire and Flammability 11 (1980): 167.

Poly(phosphonates)

BRUCE M. FOXMAN

CLASS Inorganic and semi-inorganic polymers

STRUCTURE
$$-[P(O)(R')-O-R-O]_n$$

MAJOR APPLICATIONS Flame retardation. Corrosion-resistant and improved adhesion coatings. Prevention of gingivitis and dental caries. Adjuvants and thickeners in textile dyeing. Scale inhibitors. Molding resins. (1,2)

PREPARATIVE TECHNIQUES Principal synthetic routes: condensation and addition reactions. A useful survey is available. $^{(1)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition temperatures	K	R = 4, 4'-biphenol; $R' = phenyl$	393	(3)*
•		R = 3-(4-hydroxyphenyl)-1,1,3-trimethyl-5-indanol; R' = phenyl	401	(3)
		R = 9,9-bis(4-hydroxyphenyl)fluorene; R' = phenyl	438	(3)
		R = 4.4'-sulfonyldiphenyl; $R' = phenyl$	419	$(4)^{\dagger}$
		R = 4.4'-thiodiphenyl; $R' = phenyl$	362	(4)
Decomposition temperatures	K	R = 4, 4'-biphenol; $R' = phenyl$	668	(3)
•		R = 3-(4-hydroxyphenyl)-1,1,3-trimethyl-5-indanol; R' = phenyl	633	(3)
		R = 9.9-bis(4-hydroxyphenyl)fluorene; R' = phenyl	683	(3)
		R = 4,4'-sulfonyldiphenyl; $R' = phenyl$	738	(4)
		R = 4,4'-thiodiphenyl; $R' = phenyl$	738	(4)

^{*}In Imai et al. (1983), glass transition temperatures were determined from DTA and TMA curves. Also, decomposition temperatures were determined as the temperature at which 10% weight loss occurred, as determined by TGA.

- Kroschwitz, J., ed. Encyclopedia of Polymer Science and Engineering. Wiley-Interscience, New York, 1988, vol. 11, pp. 96–126.
- 2. Kroschwitz, J., and M. Howe-Grant, eds. *Encyclopedia of Chemical Technology*. Wiley-Interscience, New York, 1993, vol. 10, pp. 976–998.
- 3. Imai, Y., H. Kamata, M.-A. Kakimoto. J. Polym. Sci. 22 (1983): 1,259.
- 4. Kim, K.-S. J. Appl. Polym. Sci. 28 (1983): 1,119.

[†]In Kim (1983), glass transition temperatures were determined by using DSC results; the midpoint in the baseline shift was taken as the glass transition temperature. Also, decomposition temperatures are quoted as the temperature at which 10% weight loss occurred, as determined by TGA.

Polypropylene, atactic

CHARLES L. MYERS

ACRONYM, TRADE NAMES a-PP, AFAX®, REXTAC®, EASTOFLEX®

CLASS Poly(α -olefins)

 $\begin{array}{ll} \textbf{STRUCTURE} & -[CH_2CHCH_3] - \end{array}$

MAJOR APPLICATIONS Low molecular weight atactic polypropylene is used as a component of hot melt adhesives and sealants. Atactic polypropylene which is produced as a by-product of isotactic PP production is not ideally atactic or completely amorphous. Atactic polypropylene has been prepared by hydrogenation of poly(2-methyl-1,3-pentadiene), that is, poly(1,3-dimethyl-1-butenylene) or PDMB. Accently, directly synthesized atactic polypropylene and other amorphous poly(α-olephins) (APAO or APO) have been developed. Lower molecular weight versions are commercial products. High molecular weight versions are being evaluated as elastomers and as blend components for modification of isotactic polypropylene. (2,3,5,6)

PROPERTIES OF SPECIAL INTEREST Tensile strength, extensibility, recovery, softening temperature, hardness, melt viscosity, and compatibility with other polyolefins and adhesive formula components.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	(a) Nonmetallocene a-PP (b, c) Metallocene a-PP		(2)
		(a) $M_{\rm w} = 29,000, M_{\rm w}/M_{\rm n} = 6$	0.8626	
		(b) $M_{\rm w} = 200,000, M_{\rm w}/M_{\rm n} = 3.3$	0.8606	
		(c) $M_{\rm w} = 490,000, M_{\rm w}/M_{\rm n} = 2.3$	0.8550	
		Hydrogenated PDMB, $M_{\rm w}=23{,}300$, $M_{\rm w}/M_{\rm n}=1.03$	0.8542	(8)
		Temperature dependence, $80-120^{\circ}$ C, $x = (-0.19 \times 10^{-4})t - (3.05 \times 10^{-6})t^2$	0.848 - x	(9, 10)
Thermal expansion coefficient	K^{-1}	80–120°C	$(6.1-9.3)\times10^{-4}$	(9, 10)
Crystallinity	%	DSC, XRD (a) $M_{\rm w} = 29,000$, $M_{\rm w}/M_{\rm n} = 6$ (c) $M_{\rm w} = 490,000$, $M_{\rm w}/M_{\rm n} = 2.3$	Some None detected	(2)
Refractive index increment dn/dc	$\mathrm{ml}\mathrm{g}^{-1}$	Hydrogenated PMBD, cyclohexane 30°C 20°C	0.0989 0.0844	(4) (8)

			7.1 . 7.	
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Head-to-head content	%	NMR (metallocene a-PP) (Bernoullian statistics)	None detected	(3)
		NMR (hydrogenated PDMB) (Bernoullian statistics)	None detected	(4)
Glass transition	K	DSC, hydrogenated PDMB		
temperature		$M_{\rm w} = 23{,}300$	268	(8)
		$M_{\rm w}=40,\!800$	266.9	(4)
		$M_{\rm w} = 33,400$	270.6	(4)
		Hercules AFAX TM 600 HL-5	255	(4)
		Fractionated a-PP	265.5	(4)
		Average a-PP	260	(4, 11)
		Commercial APAO homopolymer, DSC	200	(1) 11)
		Rexene Rextac TM 2115	252	(1)
		Eastoflex TM P1010 and P1023		
		Eastoriex P1010 and P1023	263	(7)
Radius of gyration,	$\text{Å}\text{mol}^{0.5g^{-0.5}}$	Hydrogenated PDMB, 298 K, SANS	0.336	(8)
$R_{\rm G}/M^{1/2}$		Several a-PP citations, Theta, IV	0.333	
Chain dimension	K^{-1}	Hydrogenated PDMB, melt, SANS	-0.1×10^{3}	(8)
temperature coefficient $d \ln \langle R^2 \rangle_0 / dT$		Theta, IV several a-PP citations	$(-1.0 \text{ to } -3.0) \times 10^{-3}$	``
Charactaristic ratio		Hydrogeneted DDMP 200 V CANC	6.1	(0)
Characteristic ratio, $(R^2/N_L)^{-1/2}$	_	Hydrogenated PDMB, 298 K, SANS		(8)
$6R_{\rm G}^2/N_{\rm w}nl^2$		Several a-PP citations, 298 K, Theta, IV	6.2	(8)
		311 K	5.8–5.9	(4)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Decalin 135°C	$K = 1.066 \times 10^{-4}$ $a = 0.804$	(8)
Tt untu v				
Theta temperature	K	2-Octanol, hydrogenated PDMB	310.6	(4, 12)
_		1-Octanol	350	(12, 13)
		Biphenyl	402	(12, 14)
Entanglement	$g \text{mol}^{-1}$	413 K, measured	4,600	(15)
molecular weight	811101	413 K, calculated	5,400	(13)
molecular weight		298 K, measured	3,500	
		298 K, calculated	4,100	
Tensile strength	MPa	Compression molded, ASTM D412		(2)
		(a) $M_{\rm w} = 29,000, M_{\rm w}/M_{\rm n} = 6$	1	
		(b) $M_{\rm w} = 200,000, M_{\rm w}/M_{\rm n} = 3.3$	1	
		(c) $M_{\rm w} = 490,000, M_{\rm w}/M_{\rm p} = 2.3$	2	
		APAO, Eastoflex TM P1010 and P1023	1.38	(7)
		•		. ,

Polypropylene, atactic

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Maximum extensibility	%	Compression molded, ASTM D412 (a) $M_w = 29,000$, $M_w/M_n = 6$ (b) $M_w = 200,000$, $M_w/M_n = 3.3$ (c) $M_w = 490,000$, $M_w/M_n = 2.3$ APAO, Eastoflex TM P1010 APAO, Eastoflex TM P1023	110 1,400 2,000 200	(2)
Tensile set	%	APAO, Eastoflex TM P1023 300% elongation, 20 cm min^{-1} , 10 min hold under stress, 10 min relax (a) $M_{\rm w} = 29,000$, $M_{\rm w}/M_{\rm n} = 6$ (c) $M_{\rm w} = 490,000$, $M_{\rm w}/M_{\rm n} = 2.3$ (a) 100% elongation (c) 100% elongation	100 Break 76 45 14	(7) (2)
Flexural modulus	MPa	Compression molded, ASTM D5023 (a) $M_{\rm w}=29{,}000,M_{\rm w}/M_{\rm n}=6$ (b) $M_{\rm w}=200{,}000,M_{\rm w}/M_{\rm n}=3.3$ (c) $M_{\rm w}=490{,}000,M_{\rm w}/M_{\rm n}=2.3$	10 8 5	(2)
Hardness	°Shore	Shore A, compression molded (a) $M_{\rm w}=29,000$, $M_{\rm w}/M_{\rm n}=6$ (b) $M_{\rm w}=200,000$, $M_{\rm w}/M_{\rm n}=3.3$ (c) $M_{\rm w}=490,000$, $M_{\rm w}/M_{\rm n}=2.3$	67 50 55	(2)
Hardness	dmm	Penetration, ASTM D-5, APAO Homopolymers: Rextac TM 2115 Eastoflex TM P1010 and P1023	5 20	(1) (7)
Softening point	K	Ring and ball, ASTM E-28, APAO Homopolymers: Rextac TM 2115 Eastoflex TM P1010 and P1023	426 423, 428	(1) (7)
Melt viscosity	Pa s	Brookfield, 190°C, ASTM D-3236, APAO Homopolymers: Rextac TM 2115 Eastoflex TM P1010 and P1023	1.425 1.0, 2.3	(1) (7)

- 1. Sustic, A., and B. Pellon. Adhesives Age Nov. (1991): 17.
- 2. Silvestri, R., L. Resconi, and A. Pelliconi. In *Metallocenes '95 (Brussels) Conference Proceedings*. Schotland Business Research, Skillman, N.J., 1995, p. 207.
- 3. Resconi, L., R. L. Jones, A. L. Rheingold, and G. P. A. Yap. Organometallics 15 (1996): 998.
- 4. Zhongde, X., et al. Macromolecules 18 (1985): 2,560.
- 5. Canich, J. M., H. W. Yang, and G. F. Licciardi. U.S. Patent 5,516,848 (1996).
- 6. Robe, G. R. Adhesives Age Feb. (1993): 26.
- Eastman Chemical Company Publication WA-4D. EastoflexTM Amorphous Polyolefins. Nov., 1995.
- 8. Zirkel, A., et al. Macromolecules 25 (1992): 6,148.
- 9. Orwoll, R. A. *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, Ch. 7, p. 82.

- 10. Rogers, P. A. J. Appl. Polym. Sci. 48 (1993): 1,061.
- 11. Gaur, U., and B. Wunderlich. J. Phys. Chem. Ref. Data 10 (1981): 1,051.
- 12. Sundararajan, P. R. *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, Ch. 15, p. 203.
- 13. Mays, J. W., and L. J. Fetters. Macromolecules 22 (1989): 921.
- 14. Moraglio, G., G. Gianotti, and U. Bonicelli. Eur. Polym. J. 9 (1973): 623.
- Fetters, L. J., D. J. Lohse, and R. H. Colby. *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, p. 335.

CHARLES L. MYERS

ACRONYMS, TRADE NAMES ELPP, elPP, REXFLEX®, SUPERSOFTPP®

CLASS Poly(α -olefins)

STRUCTURE $-[CH_2CHCH_3]-$

MAJOR APPLICATIONS The polymers referred to in this chapter include those families of homopolymers of propylene which are known to have elastomeric recovery properties at reasonable molecular weight and for which properties have been attributed to a crystallizable-noncrystallizable (e.g., isotactic-atactic) stereoblock structure, or to a major component with a stereoblock structure, whether or not the compositions are homogeneous by solvent fractionation tests. Copolymers and blends are not deliberately included in the data presented, but are described in some of the references. (See also some of the closely related elastomeric polymers presented in the entry on *Polypropylene*, *atactic* in this handbook.) The criterion of multiple crystallizable blocks per polymer chain may be met in significant fractions of low-tacticity, low-stereoregularity polymers of very high molecular weight.

Elastomeric polypropylenes are being actively studied in academic and industrial laboratories. Some materials are in the pilot developmental stage. Some flexible polyolefins, with moderate elastomeric recovery, are currently being evaluated on a larger scale. ⁽¹⁾ Potential applications include fiber, film, and extruded goods.

PROPERTIES OF SPECIAL INTEREST Strength, modulus/flexibility, recovery, degree of thermal resistance, and solubility/extractability. Mechanical properties in the following table are intended to represent best published examples of the respective types.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	Buoyancy method, calculated from data in reference (2) for 19–31% crystallinity	0.8683-0.8787	(2)
		_	< 0.9	(3)
		_	0.88-0.89	(1)
Glass transition temperature	K	DSC	262.9–261.5 265	(2) (4)
Melting temperature	K	DSC peak endotherms (broad temperature range)		(5)
•		16% mmmm	325, 352	
		28% mmmm, peak range	398-418	
		DSC several examples, broad range, peak endotherm	417-418	(2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting temperature	K	DSC, 45-54% mmmm, dual endotherm peaks ranges	323–327, 352–346	(6)
•		DSC, broad range, dual endotherm peaks	316.5, 338	(4)
		DSC, dual endotherm peaks		(7)
		35% mmmm	324, 339	
		40% mmmm	326, 337	
		DSC endotherm peak range	427–433	(1)
Heat of fusion	$kJ mol^{-1}$	DSC, $>$ 20 polymers (10–70 J g ⁻¹)	0.4-2.9	(2)
(experimental)		DSC, 45-54% mmmm (31-40 J g ⁻¹)	1.3-1.7	(6)
,		DSC, 40% mmmm (14 J g ⁻¹)	0.59	(7)
Crystallinity	%	DSC		(6)
		54% mmmm	19.1	, ,
		45% mmmm	14.8	
		52% mmmm	16.7	
		DSC (ELPP type of reference (8))	13	(4)
		XRD	16	(4)
		Annealed, XRD, 30°C, 35-40% mmmm	26-27	(9)
		XRD, density methods, fractionated ELPP		(10)
		Whole ELPP, IV = 2.7dl g^{-1} , XRD (density)	21 (19)	
		Ether soluble, $0.73 \mathrm{dl}\mathrm{g}^{-1}$	8 (0)	
		Hexane soluble, $2.56 \mathrm{dl}\mathrm{g}^{-1}$	14 (17)	
		Hexane insoluble, $4.16 \mathrm{dl}\mathrm{g}^{-1}$	29 (44)	
		Whole ELPP, IV = $12.1 \mathrm{dl}\mathrm{g}^{-1}$	17 (24)	
		Ether soluble, $3.42 \mathrm{dl}\mathrm{g}^{-1}$	9 (9)	
		Hexane soluble, $7.80 \mathrm{dl}\mathrm{g}^{-1}$	15 (25)	
		Hexane insoluble NA	22 (29)	
Equilibrium	MPa	50°C, 0.5% strain, stress relaxed 10 ⁴ s	0.56	(7)
modulus		(2 examples)	1.47	()
Segment length	Daltons	$M_{\rm n}$ of amorphous segments between physical	2,100	(7, 9)
between virtual		cross-links, estimated from	4,400	
cross-links		$M_{\rm n,a} = {\rm density} \times RT/G_{\rm eq}$ (2 examples)		
		Mechanical rheometry, 25°C	940	(11)
Tensile strength	MPa	51 cm min ⁻¹ , ASTM D-412	5-8	(2)
· ·		$51\mathrm{cmmin}^{-1}$	3.2	(5)
		25.5cm min^{-1}	16-39	(6)
		$20\mathrm{cm}\mathrm{min}^{-1}$	4-12	(7, 9, 12)
		10 mm min ⁻¹ , some necking	22	(13)
		$51\mathrm{cmmin}^{-1}$	11.7-14.8	(14)
		51 cm min ⁻¹ , syndiotactic ELPP	11	(15)
		, - ,		(-)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Maximum extensibility	%	51 cm min ⁻¹ 51 cm min ⁻¹ 25.5 cm min ⁻¹ 20 cm min ⁻¹ 10 mm min ⁻¹ , some necking 51 cm min ⁻¹ 51 cm min ⁻¹ , syndiotactic ELPP Not specified	>1,000 1,200 800 525-1,260 700 814-863 750-908 >1,000	(2) (5) (6) (7, 9, 12) (13) (14) (15) (1)
Tensile modulus	МРа	DIN 53457, 23°C Not specified 51 in min ⁻¹	23–28 69–359 1.7	(3) (1) (5)
Impact strength	$kJ m^{-2}$	Tensile impact, ISO 8256, 23°C Flexural impact, ISO 179 1 eu, −20°C	270–300 14–22	(3)
Hardness	°Shore	Shore A	77–83 81–96	(3) (1)
Tensile set %		300% extension, 51 cm min ⁻¹ , ASTM D412, 23°C, no hold at extension	80 93 60–130 50 82–93 22–28	(3) (2) (16) (5) (14) (15)
		300% extension, 20 cm min ⁻¹ , no hold at extension	24	(7, 9, 12)
		300%, conditions not specified 400% extension, 51 cm min ⁻¹ , no hold at extension	100 - 200 65 - 110	(1) (15)
Tensile recovery	%	100% extension, 25.5 cm min ⁻¹ No hold at extension, 2 min recovery after extension	92-97 97	(6) (7, 9, 12)
		200% extension, 25.5 cm min ⁻¹ No hold at extension, 2 min recovery after extension	90 - 97 96	(6) (7, 9, 12)

REFERENCES

- 1. Pellon, B. J. In *SPO '93 (Houston, Texas) Conference Proceedings*. Schotland Business Research, Skillman, N.J., 1993, p. 399.
- 2. Collette, J. W., et al. Macromolecules 22 (1989): 3,851.
- 3. Gahleitner, M., et al. In SPO '96 (Houston, Texas) Conference Proceedings. Schotland Business Research, Skillman, N.J., 1996, p. 281.
- 4. Canevarolo, S., and F. DeCandia. J. Appl. Poym. Sci. 54 (1994): 2,013.
- 5. Coates, G.W., and R. M. Waymouth. Science 267 (1995): 217.
- 6. Gauthier, W. J., J. F. Corrigan, N. J. Taylor, and S. Collins. Macromolecules 28 (1995): 3,771.
- 7. Mallin, D. T., et al. J. Am. Chem. Soc. 112 (1990): 2,030.

- 8. Ewen, J. A. J. Am. Chem. Soc. 106 (1984): 6,355.
- 9. Llinas, H. L., et al. Macromolecules 25 (1992): 1,242.
- 10. Collette, J. W., D. W. Ovenall, W. H. Buck, and R. C. Ferguson. *Macromolecules* 22 (1989): 3,858.
- 11. Carlson, E. D., et al. In 68th Annual Society of Rheology Meeting. Society of Rheology, Galveston, Tex., February 1997.
- 12. Chien, J. C. W., et al. J. Am. Chem. Soc. 113 (1991): 8,569.
- 13. Canevarolo, S.V., F. DeCandia, and R. Russo. J. Appl. Polm. Sci. 55 (1995): 387.
- 14. Wilson, S. E., and R. C. Job. U.S. Patent 4,971,936 (1990).
- 15. Job, R. C. U.S. Patent 5,270,276 (1993).
- 16. Tullock, C. W., et al. J. Poly. Sci.: Part A: Polym. Chem. 27 (1989): 3,063.
- 17. Gauthier, W. J., and W. J. Collins. Macromolecules 28 (1995): 3,779.

DAVID V. HOWE

 $\begin{array}{lll} \textbf{ACRONYM} & PP \\ \textbf{CLASS} & Poly(\alpha\text{-olefins}) \\ \\ \textbf{STRUCTURE} & CH_3 \\ [-CH_2CH-] \end{array}$

MAJOR APPLICATIONS Fiber, slit tape, cast and biaxially oriented film, containers and closures, automotive interior trim, appliance housings and components, component in elastomeric blends with polyethylene and olefinic rubbers.

PROPERTIES OF SPECIAL INTEREST Low cost; easily processed by injection molding, extrusion, and spinning; can be oriented; excellent resistance to chemicals; low color; can be stabilized to provide good thermal aging stability; moderate strength and stiffness; good toughness when impact modified either in the reactor or by compounding; excellent flexural fatigue resistance; modest clarity.

PREPARATIVE TECHNIQUES Ziegler-Natta polymerization with titanium halide/ aluminum alkyl catalyst and, optionally, ether, ester, or silane activator. Catalyst may be deposited on a magnesium chloride support. Slurry and gas phase processes are used. Catalyst systems based on metallocenes are under development. Typical comonomers are ethylene and 1-butene.

Isotacticity

Polymerization Conditions	Isotacticity				Reference
	Isotactic index (% heptane insolubles)	Xylene insolubles	% mmmm	% mm	
MgCl ₂ /TiCl ₄ /DIBP* catalyst modified with TMPIP* and AlEt ₃ prepared at 140°C	-	94	89.3	_	(1)
MgCl ₂ /TiCl ₄ /DIBP* catalyst modified with (<i>i</i> -Bu) ₂ Si(OMe) ₂) and AlEt3	97	_	_	-	(2)
MgCl ₂ /TiCl ₄ /DE* catalyst modified with AlEt ₃	95–99	_	-	_	(3)
Various MgCl ₂ or TiCl ₃ supported Ziegler-Natta catalysts	_	_	_	92.2-94.9	(4)

^{*}DIBP = Diisobutyl phthalate; TMPIP = 2,2,6,6-tetramethylpiperidine; DE = 1,3-diether.

Molecular weight (M_w) and polydispersity index (M_w/M_n)

Polymerization conditions	$M_{\rm w}$ (g mol ⁻¹)	$M_{\rm w}/M_{\rm n}$	Reference
MgCl ₂ /TiCl ₄ /DIBP catalyst modified with (<i>i</i> -Bu) ₂ Si(OMe) ₂)			(2)
and AlEt ₃			
H_2 concentration = 0 mol I^{-1}	560,000	3.8	
H_2 concentration = 6.9×10^{-3} mol l^{-1}	382,000	6.1	
Typical range (extrapolated from melt flow rates of commercial products)	<100,000->600,000	5–12	(5, 6)
Borealis VC20 82C (MFR: 20 g/10 min)	265,000	4.3	(7)
Typical for controlled rheology (chemically cracked products)	_	< 5	(8, 9)
Single site catalyst	_	~2	(10)
Melt flow index			(5)
0.63	646,000	_	()
2.9	412,000	_	
11.9	297,000	_	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight of repeat unit	g mol ⁻¹	-CH ₂ -CH(CH ₃)-	42.07	
Morphology (blends, 'impact copolymer')	-	Elastomer content <~60% Elastomer content >~60% (depends upon processing conditions)	Dispersed phase Dispersed or co- continuous phase	(11)
IR (characteristic absorption frequencies)	cm^{-1}	CH ₃ , CH ₂ , CH stretching	2956 (s), 2951 (s), 2925 (sh), 2907 (sh), 2880 (s), 2868 (s), 2843 (s)	(12, 13)
		CH_3 antisymmetric bending, CH_2 bending	1459 (sh), 1454 (s)	
		Various CH ₃ , CH ₂ , and CH bending, wagging, twisting, C-C stretching	1377 (s), 1359 (m), 1329 (w), 1305 (w), 1297 (w), 1257 (w), 1219 (w)	
		Various CH ₃ , CH ₂ , and CH bending, wagging, twisting, and rocking, C-C stretching	1167 (s), 1153 (sh), 997 (s), 973 (s), 841 (s), 809 (m)	
NMR		¹ H NMR ¹³ C NMR		(14-17) (18, 19)
Coefficient of linear thermal expansion	K^{-1}	ASTM Method D696 From 243 to 273 K From 273 to 303 K From 303 to 330 K	6.5×10^{-5} 1.05×10^{-4} 1.40×10^{-4}	(20)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Coefficient of thermal expansion (volume, melt)	K^{-1}	From 448 to 573 K From 453 to 503 K	$6.6 \times 10^{-4} \\ 6.7 \times 10^{-4}$	(21) (22)
Isothermal compressibility	bar ⁻¹	453 K 493 K 533 K	$\begin{array}{c} 1.27\times10^{-4} \\ 1.5\times10^{-4} \\ 1.78\times10^{-4} \end{array}$	(22, 23)
Density	$g \text{cm}^{-3}$	298 K, α -crystalline phase 298 K, amorphous phase 298 K, typical commercial material	0.936-0.946 0.850-0.855 0.90-0.91	(24, 25, 26)
Solvents		Room temperature	No common solvents	(27)
Solubility parameter	$(MPa)^{1/2}$	Inverse phase gas chromatography	18.8	(28)
		Montell Profax 6701	17.3	(29)
Theta temperature	K	$M_{ m w}=28,000$ –564,000 p -tert-amylphenol dibenzyl ether biphenyl n -butanol	414 456 398 420	(30, 31)
Lattice	_	$lpha_{1},lpha_{2} ext{-forms} \ eta ext{-form} \ \gamma ext{-form}$	Monoclinic Hexagonal Orthorhombic	(24, 32) (32) (32, 33, 34)

Form	Space group	Chain	Unit cel			Unit cell angle	Conditions	Reference
		conformation	а	b	с	(degrees)		
$\overline{\alpha_1}$	C ₁ /c	Helix (3/1)	6.67	20.8	6.50	98.67	Oriented, annealed 413 K	(35)
α_2	$P2_1/c$	Helix (3/1)	6.65	20.73	6.50	98.67	Oriented, annealed 443 K	(35)
β	P3 ₁ 21	Helix (3/1)	11.03	11.03	6.49	_	_	(32)
γ	Fddd	Helix (3/1)	8.54	9.93	42.41	_	_	(32, 33, 34)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion	$J g^{-1}$	DSC, α -crystalline material (100%)	165	(25)
Degree of crystallinity	%	DSC, density depends upon tacticity and crystallization conditions	50-70	(4, 7, 26)
Glass transition temperature	K	DMA 30 Hz 1 Hz	283.7 275.5	(7)
Melting point	K	100% crystalline	~459	(36)

Commonly reported mechanical properties*

PROPERTY	UNITS	CONDITIONS	POLYME	POLYMER TYPE				
			IPP ^(a)	RCP ^(b)	IPC-L ^(c)	ICP-H ^(c)		
Yield stress	MPa	ASTM D638	34.5	27.6	26.2	22.0		
Yield strain $(L/L_0)_y$	%	ASTM D638	10	14	12	14		
Flexural modulus	MPa	ASTM D790	1,389	1,035	1,210	1,000		
$Izod\ impact\ strength^{(d)}$	$\mathrm{J} \; \mathrm{m}^{-1}$	ASTM D256	27	55	130	No break		
Hardness	Rockwell	ASTM D785	R90	R80	R80	R60		
Deflection temperature	K	ASTM D648, 0.45 MPa outer fiber stress	380	360	360	345		

^{*} These are typical properties for the classes of materials based on the range of properties reported in references (37) and (38). (a) IPP = isotactic propylene homopolymer.

⁽d) Impact strength is very dependent upon the molecular weight of the polymer as well as the rubber content of the material. These data are for typical injection molding grade materials.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Storage modulus	MPa	293 K, Homopolymer, 30 Hz	1,400	(7)
Tan δ	_	293 K, Homopolymer, 30 Hz	0.086	(7)
Poisson ratio	_	296 K	0.38	_
Index of refraction n_D	_	293 K, density 0.9075 g cm^{-3}	1.5030	(39)
Refractive index Increment dn/dc	-	1-Chloronaphthalene and 1,2,4-trichlorobenzene solvents	(see reference)	(40)
Dielectric constant ε'	_	At 1 KHz (D150) At 1 MHz	2.2-2.3 2.1-2.3	(26) (41)
Dielectric strength	${ m V~cm^{-1}}$	298 K (D149) 298 K 393 K	240,000 217,000–300,000 170,000	(26) (41) (26)
Dissipation factor	_	60 Hz-100 MHz (D510) 1 MHz	$0.3-1 \; (\times 10^{-3}) \\ 1-3 \; (\times 10^{-4})$	(26) (41)

⁽b) RCP = ethylene-propylene random copolymer with an ethylene content of about 3%.

⁽c) ICP = blends of isotactic propylene homopolymer with ethylene-propylene rubber. These materials are commonly called "impact copolymers," "heterophasic copolymers," or, incorrectly, "block copolymers." These are typically prepared during the polymerization process using a series of reactors. L = low rubber (less than about 15% rubber by weight; typically with an ethylene content of less than about 10%). H = high rubber content blends (greater than about 15% rubber by weight; typically with an ethylene content of at least 7%).

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Volume resistivity	ohms cm	ASTM D257	10^{16} – 10^{17}	(26, 41)
Surface tension γ	mN m ⁻¹	438 K 473 K 495 K	22.5 21.2 20.2	(42) (43) (42)
Surface free energy	$mJ m^{-2}$	298 K (calculated from advancing contact angles)	29.0	(43)
Contact angle	degrees	H ₂ O; advancing, 298 K CH ₂ I ₂ ; advancing, 298 K	116 64	(43)
Permeability coefficient	m ³ (STP) m s ⁻¹ m ⁻² Pa ⁻¹	H ₂ O, 298 K O ₂ , 298 K (isotropic, all presures) O ₂ , 298 K (12.5:1 draw ratio) CO ₂ , 298 K (<1 atm) CO ₂ , 298 K (50 atm)	3.83×10^{-16} 7.73×10^{-18} 2.12×10^{-18} 2.37×10^{-17} 7.50×10^{-17}	(44) (45) (45) (46) (46)
Thermal conductivity	$W\ m^{-1}K^{-1}$	293 K	0.12 0.22	(47)
Melt flow rate	g (10 min) $^{-1}$	ASTM D1238, 503 K, 2.16 kg	0.2->500	_
Speed of sound	$\mathrm{m}~\mathrm{s}^{-1}$	Unoriented 298 K 398 K Oriented Long. dir. 298 K Trans. dir. 298 K	2.5×10^{3} 125×10^{3} 3.3×10^{3} 2.1×10^{3}	(48) (49)
Decomposition temperature	K	TGA in helium, Montell Profax 6501	623	(50)
Ignition temperature	K	Calculated from critical heat flux data	736	(51)
Oxygen index	%	ASTM D2863, Montell Profax 6505	17.4	(52)
Scission, G factor	-	γ irradiation Initial At doses above gel point	1.2 0.27	(53, 54)
Cross-linking, G factor	_	γ irradiation	0.07-0.30	(53, 54)
Producers	_	Worldwide in 1994 (see table below for examples)	~117	(55)
Capacity	ktons	Worldwide in 1994 (see table below for examples)	20,492	(55)

Some producers and capacities (from 1996)⁽⁵⁶⁾

Producer	Capacity (ktons)
Montell, Hoofddrop, The Netherlands	3,034
Targor, Mainz, Germany	1,370
Amoco, Chicago, USA	1,183
Japan Polychem, Tokyo, Japan	1,103
Fina, Brussels, Belgium	1,030

REFERENCES

- 1. Chadwick, J. C., et al. Makromol. Chem. 193 (1992): 1,463-1,468.
- 2. Proto, A., et al. Macromolecules 23 (1990): 2,904-2,907.
- 3. Moore, E. P., Jr. *Polypropylene Handbook*. Hanser/Gardner Publications, Cincinnati, 1996, pp. 37.
- 4. Paukkeri, R., and A. Lehtinen. Polymer 34 (1993): 4,075-4,082.
- 5. Bremner, T., A. Rudin, and D. G. Cook. J. Appl. Poly. Sci. 41 (1990): 1,617-1,627.
- 6. Aggarwal, S. L. In *Polymer Handbook*, 2d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1975, pp. V-23–V-28.
- 7. Järvelä, P., L. Shucai, and P. Järvelä. J. Applied Polymer Sci. 62 (1996): 813-826.
- Moore, E. P., Jr. Polypropylene Handbook. Hanser/Gardner Publications, Cincinnati, 1996, pp. 192–193.
- 9. Tzoganakis, C., J. Vlachopoulos, and A. E. Hamielec. Polym. Eng. and Sci. 28 (1988): 170-179.
- Moore, E. P., Jr. Polypropylene Handbook. Hanser/Gardner Publications, Cincinnati, 1996, pp. 52.
- Moore, E. P., Jr. Polypropylene Handbook. Hanser/Gardner Publications, Cincinnati, 1996, pp. 150ff.
- 12. Painter, P. C., M. M. Coleman, and J. L. Koenig. *The Theory of Vibrational Spectroscopy and Its Application to Polymeric Materials*. John Wiley and Sons, New York, 1982, pp. 379–389.
- 13. McDonald, M. P., and I. M. Ward. Polymer 2 (1961): 341-355.
- 14. Ferguson, R. C. Macromolecules 4 (1971): 324-329.
- 15. Ferguson, R. C. Trans. N.Y. Acad. Sci. 29 (1967): 495-501.
- 16. Heatley, F., and A. Zambelli. Macromolecules 2 (1969): 618-619.
- 17. Heatley, F., R. Salovey, and F. A. Bovey. Macromolecules 2 (1969): 619-623.
- 18. Tonelli, A. E., and F. C. Schilling. Accts. Chem. Res. 14 (1981): 233-238.
- 19. Wehrli, F. W., and T. Wirthlin. *Interpretation of Carbon-13 NMR Spectra*. Heyden and Son Ltd., London, 1980, p. 218.
- Crespi, G., and L. Luciana. In Kirk-Othmer Encyclopedia of Chemical Technology, 3d ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1981, vol. 16, pp. 453–469.
- 21. Wang, Y. Z., et al. J. Appl. Polym. Sci. 44 (1992): 1,731–1,736.
- 22. Zoller, P. J. Appl. Polym. Sci. 23 (1979): 1,057-1,061.
- 23. Orwoll, R. A. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, p. 87.
- 24. Natta, G., and P. Corradini. del Nuovo Cimento XV (1960): 40-51.
- 25. Wunderlich, B. Macromolecular Physics. Academic Press, New York, 1980, vol. 3, pp. 61-64.
- Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989, p. V-27ff.
- Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 2d ed. John Wiley and Sons, New York, 1975, p. IV-243.
- 28. Abe, M., M. Iwama, and T. Homma. Kogyo Kagaku Zasshi (J. Chem. Soc. Jpn. Ind. Chem. Sec.) 72 (1969): 2,313–2,318.
- 29. Barton, A. F. M. CRC Handbook of Solubility Parameters and Other Cohesive Parameters, 2d ed. CRC Press, Boca Raton, Fla., 1991, p. 445.
- 30. Nakajima, A., and A. Saijyo. J. Polym. Sci., Part A-2, 6 (1968): 723-733.

- 31. Nakajima, A., and A. Saijyo. J. Polym. Sci., Part A-2, 6 (1968): 735-744.
- 32. Phillips, P. J., and K. Mezghani. In *Polymeric Materials Encyclopedia*, edited by J. C. Salamone. CRC Press, Boca Raton, Fla., 1996, vol. 9, pp. 6,637–6,649.
- 33. Brückner, S., and S. V. Meille. Nature 340 (1989): 455-457.
- 34. Campbell, R. A., P. J. Phillips, and J. S. Lin. Polymer 34 (1993): 4,809-4,816.
- 35. Hikosaka, M., and T. Seto. Polym. J. 5 (1973): 111-127.
- 36. Mezghani, K., R. A. Campbell, and P. J. Phillips. Macromolecules 27 (1994): 997-1002.
- 37. Manufacturing Handbook and Buyers' Guide: Plastics Technology, 1997-1998. Bill Communications, New York, pp. 601-621.
- Moore, E. P., Jr. Polypropylene Handbook. Hanser/Gardner Publications, Cincinnati, 1996, pp. 238.
- 39. Brandrup, J., E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, 1989, p. VI-455.
- 40. Horská, J., J. Stejskal, and P. Kratochvil. J. Appl. Polym. Sci. 28 (1983): 3,873-3,874.
- Johnson, L. R., ed. *International Plastics Selector*, 17. D.A.T.A Business Publishing, Englewood, Colo., 1996, vol. 2, 1,193–1,453.
- 42. Schonhorn, H., and L. H. Sharpe. J. Polymer Sci. B 3 (1965): 235-237.
- 43. Sauer, B. B., and N. V. Diapaolo. J. Colloid Interface Sci. 144 (1991): 527-537.
- 44. Myers, A. W., V. Stannett, and M. Szwarc. J. Polymer Sci. 35 (1959): 185-288.
- 45. Taraiya, A. K., G. A. J. Orchard, and I. M. Ward. J. Appl. Polym. Sci. 41 (1990): 1,659-1,671.
- 46. Naito, Y., et al. J. Polym. Sci.: B, Polymer Physics, 29 (1991): 457-462.
- 47. Thompson, E. V.. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1985, vol. 16, pp. 711–747.
- 48. Bikales, N. M., ed. *Encyclopedia of Polymer Science and Technology*. John Wiley and Sons, New York, 1970, vol. 12, p. 702.
- 49. Price, H. L. SPE Journal 24(2) (1968): 54-59.
- Chien, J.W., and J. Kiang. In Stabilization and Degradation of Polymers, edited by D. L. A. and W. L. Hawkins. Advances in Chemistry Series, vol. 169. American Chemical Society, Washington, D.C., 1978, pp. 175–197.
- 51. Tewarson, A. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, p. 584.
- 52. Cullis, C. F., and M. M. Hirschler. *The Combustion of Organic Polymers*. Clarendon Press, Oxford, 1981, pp. 53.
- 53. Schnabel, W., and M. Dole. J. Phys. Chem. 67 (1963): 295-300.
- 54. Keyser, R. W., B. Clegg, and M. Dole. J. Phys. Chem. 67 (1963): 300-303.
- Moore, E. P., Jr. Polypropylene Handbook. Hanser/Gardner Publications, Cincinnati, 1996, pp. 257ff.
- 56. Polypropylene Annual Report: 1997. Phillip Townsend Associates, Houston, p. 4-4.

QINGWEN WENDY YUAN

ACRONYM PPO

CLASS Polyethers

STRUCTURE $[-CH_2-CH(CH_3)-O-]$

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE	
Molecular weight (of repeat unit)	g mol ⁻¹	_			59	_	
Polymerization	_	_			Ring-opening	(1)	
Typical copolymers	Ethylene oxi	de-propylen	e oxide c	opolymer		(2)	
Solvents	Benzene, eth acetone	nanol, dioxar	nol, dioxane, chloroform, tetrahydrofuran, methanol (hot),				
Nonsolvent	,	\ /·	r (sw), 2-aminoethanol, ethyl acetate (sw), thylacetamide				
Theta temperature	K	Iso-octane,	virial coe	efficients	323.5	(3, 4)	
Second virial coefficient	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	Solvent	Temp. (°C)	Mol. wt. $(g \text{ mol}^{-1})$			
		Acetone	25	0.067×10^{-3} 0.125×10^{-3} $(0.45-3.85) \times 10^{-3}$	-90×10^{-4} 0 $\sim 15.2 \times 10^{-4}$	(3, 5) (3, 5) (3, 5)	
		Hexane	46	$(783-901) \times 10^{-3}$ $(34.2-4,410) \times 10^{-3}$	$(0.46-4.50) \times 10^{-4}$ $(3.16-0.523) \times 10^{-4}$	(3, 4) (3, 6)	
		Methanol Iso-octane	20 48-85 50-89	$(0.535-3.31) \times 10^{-3}$ 901×10^{-3} 783×10^{-3}	$(10.75-0.95) \times 10^{-7}$ $(0-1.58) \times 10^{-4}$ (-0.25 to $1.72) \times 10^{-4}$	(3, 7) (3, 4) (3, 4)	

PROPERTY	UNITS	CONDITIONS			VALUE		REFERENCE
Mark-Houwink parameter:	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Solvent	Temp. (°C)	Mol. wt. $(g \text{ mol}^{-1})$	$K (\times 10^{-3})$) а	
K and a		Acetone Benzene	25 20 25	$ \begin{array}{l} (0.1 0.4) \times 10^4 \\ (0.07 0.33) \times 10^4 \\ (3 70) \times 10^4 \\ - \end{array} $	75.5 11.1 11.2 14	0.56 0.79 0.77 0.8	(3, 8) (3, 9) (3, 6) (3)
		Isotactic: Benzene	25	$(0.5-92) \times 10^4$ $(1-8) \times 10^4$ $(0.05-0.4) \times 10^4$	38.5 41.3 41.5	0.73 0.64 0.65	(3, 10) (3, 11) (3, 8)
		Hexane Methanol	46 20 25	$(3.4-367) \times 10^4$ $(0.05-0.33) \times 10^4$ $(1-7) \times 10^4$	19.7 40.6 76.9	0.67 0.64 0.55	(3, 6) (3, 9) (3, 11)
		Tetrahydrofuran	20 25	$(0.05-0.33) \times 10^4$ $(3-70) \times 10^4$	55.0 12.9	0.62 0.75	(3, 9) (3, 9)
		Toluene/2,2,4- trimethylpentane (5/7 vol) Oligomer:	39.5	$(1-7) \times 10^4$	107.5	0.50	(3, 6)
		Acetone Benzene	20 20	$(0.10.4) \times 10^4$ $(0.040.4) \times 10^4$	75.5 41.5	0.56 0.65	(3, 12) (3, 12)
Heat of solution	$\mathrm{J}\mathrm{g}^{-1}$	Above glass transi Carbon tetrachlori Chloroform, 30°C, Methyl alcohol, 27	de, 30°C, 6 × 10 ⁴ g	gmol^{-1}	-20 -100 -7		(3)
Glass transition temperature	K	Conflicting data Amorphous, atacti Method: dynamic PPO cross-linked quantities of t thiophosphate $M_c = 452 \mathrm{g}$ mo	mechaniond with stris(p-isoce)		198 201.5		(3) (2) (13)
	$M_{\rm c} = 725 { m g \ mo}$ $M_{\rm c} = 1,025 { m g \ i}$ $M_{\rm c} = 2,000 { m g \ i}$ $M_{\rm c} = 3,000 { m g \ i}$ PPO cross-linked	$M_{\rm c} = 725 {\rm g mol}^{-1}$ $M_{\rm c} = 1,025 {\rm g mol}^{-1}$ $M_{\rm c} = 2,000 {\rm g mol}^{-1}$ $M_{\rm c} = 3,000 {\rm g mol}^{-1}$ PPO cross-linked with stoichiometric quantities of an aromatic triisocyanate					
		$M_{\rm c} = 425 {\rm g mc}$ $M_{\rm c} = 725 {\rm g mc}$ $M_{\rm c} = 1,025 {\rm g rc}$	ol^{-1} ol^{-1}	y	321.1 277.6 265.8		
Melting temperature	K	Isotactic			348.5		(2)

PROPERTY	UNITS	CONDITIONS			VALUE		REFERENC
Heat capacity	$kJ K^{-1} mol^{-1}$	Temp. (K)			Solid	Melt	(3, 13)
	$(\times 10^{-3})$	80			31.21	_	
		90			34.33	_	
		100			37.37	_	
		110			40.34	_	
		120			43.22	_	
		130			46.03	_	
		140			48.76	_	
		150			51.41	_	
		160			53.98	_	
		170			56.48	_	
		180			58.89	_	
		190			61.23	_	
		200			_	95.46	
		210			_	97.04	
		220			_	98.61	
		230			_	100.19	
		240			_	101.77	
		250			_	103.35	
		260			_	104.92	
		270			_	106.50	
		280			_	108.08	
		290			_	109.65	
		300			_	111.23	
		310			_	112.81	
		320			_	114.38	
		330			_	115.96	
		340			_	117.54	
		350			_	119.12	
		360			_	120.69	
		370			_	122.27	
ndex of refraction	-	_			1.4495		(3)
Specific refractive	${\rm ml}~{\rm g}^{-1}$	Solvent	Temp. (°C)	Mol. wt. $(g \text{ mol}^{-1})$	$\lambda_0 = 436\mathrm{nm}$	$\lambda_0 = 546 \mathrm{nm}$	
index		Acetone	25	67	0.085	_	(5)
increment				125	0.0915	_	(5)
dn/dc				450	0.096	_	(5)
				1,100	0.099	_	(5)
				1,200	0.099	_	(5)
				2,100	0.100	_	(5)
				3,270	0.100	_	(5)
				3,850	0.101	_	(5)
		Benzene	25	<u>_</u>	-0.0530	-0.0448	(6)
		Chlorobenzene	25		-0.0658	0.0638	(6)

Po	lν(propy	/lene	oxide)
	- 74	DI OP	,	OAIGC

PROPERTY	UNITS	CONDITIONS	S			VALUE				REFERENCE
Specific refractive	ml g ⁻¹	Solvent	Tem (°C)		Mol. wt. (g mol ⁻¹)	$\lambda_0 = 43$	86 nm	λ_0	= 546 nm	
index		n-Hexane	25		_	0.0775		0.0	775	(6)
increment			40		_	0.0460			460	(6)
dn/dc			46		9.6×10^{5}	0.0887			887	(6)
					2.0×10^{5}	0.0895		0.0	895	(6)
			57		9.6×10^{5}	0.101		0.1	01	(6)
			57		2.0×10^{5}	0.0104			104	(6)
		Feron 113	25		_	0.118		0.1	15	(6)
		Iso-octane	35		_	0.0655		0.0	655	(6)
		Methanol	24		_	0.137		0.1	35	(3)
			25		12.2×10^{5}	0.118		0.1	18	(6)
					12.5×10^{5}	0.115		0.1		(6)
Dipole moment	D	Benzene,	$T=25^{\circ}\text{C}$, P _n :	= 6.6-69.0	1.40-1.0	02			(3, 14)
Surface tension	$\mathrm{mN}\mathrm{m}^{-1}$					20°C	150°	C	200°C	(3)
		Diol, $M =$	2 025 gr	nol-	1	31.5	21.1		17.1	
		Diol, $M =$		1101		31.7	20.6		16.4	
		Diol, $M =$		nol-	1	31.2	20.9		17.0	
		Diol, $M =$				31.1	21.6		17.9	
		Poly(oxyp		e)-dir	nethylether,	30.7	18.3		13.6	
Diffusion coefficient	$cm^2 s^{-1}$ $(\times 10^{-7})$	Solvent	Temp. (°C)		l. wt. nol ⁻¹)					(3)
		Acetone	20		074–3.375) (10 ³	$D_0 = K$	$_{\rm s} \times M^{\rm c}$	-0.52		
		Benzene	20	(0.1)	$(34-3.375)$ (10^3)	$D_0 = K$	$_{\rm s} \times M^{\circ}$	-0.55		
		Water	25		< 10 ³	3.73				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			× 10 ³	2.09				
					$\times 10^3$	1.66				
					$\times 10^3$	1.72				
					$\times 10^3$	1.07				
			15		$\times 10^3$	1.73				
			34	_	-	2.47				
			43	_		2.88				
			30.3	_		2.72				
						3.08				
			33.4	_		5.00				
			35.4 40.5	_		3.25				

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Permeability coefficient	${ m m^3~m~s^{-1}m^{-2}~Pa^{-1}}\ (imes 10^{-19})$	PPO cross-linked with stoichiometric quantities of tris(<i>p</i> -isocyanatophenylthiophosphate)	H ₂	CO	(3, 15, 16)
		$M_{\rm c} = 425$	2.86	0.0608	
		$M_{\rm c} = 725$	7.26	0.65	
		$M_{\rm c} = 1,025$	18.80	2.93	
		$M_{\rm c} = 2,000$	28.73	7.65	
		$M_{\rm c} = 3,000$	44.10	12.60	

Crystalline-state properties⁽³⁾

Lattice	Space group	Unit cell parameters (Å)			Monomers	Density	Heat of Fusion
		а	b	с	per unit cell	(g cm ⁻³)	(kJ mol ⁻¹)
Orthorhombic	C2V-9 or D2-4	10.52	4.67	7.16	4	1.097	8.4
Orthorhombic	D2-4	10.51	4.69	7.09	4	1.104	
Orthorhombic	D2-4	10.52	4.68	7.10	4	1.104	
Orthorhombic	D2-4	10.40	4.64	6.92	4	1.155	
Orthorhombic	D2-4	10.46	4.66	7.03	4	1.126	

REFERENCES

- 1. Rodriguez, F. *Principles of Polymer Systems*, 4th ed. Taylor and Francis Publishers, New York, 1996
- Mark, H. S., et. al., eds. Encyclopedia of Polymer Science and Engineering, Vol. 6. Wiley-Interscience, New York, 1986.
- 3. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 4. Allen, G., C. Booth, and C. Orice. Polymer 7 (1966): 167.
- 5. Meyerhoff, G., and U. Moritz. Makromol. Chem. 109 (1968): 143.
- 6. Allen, G., C. Booth, and M. N. Jones. Polymer (London) 5 (1964): 195.
- 7. Scholtan, W., and S. Y. Lie. Makromol. Chem. 108 (1967): 315.
- 8. Meyerhoff, G., and U. Moritz. Makromol. Chem. 109 (1967): 143.
- 9. Scholtan, W., and S. Y. Lie. Makromol. Chem. 108 (1967): 104.
- 10. Valles, R. J. Makromol. Chem. 113 (1968): 147.
- 11. Moacanin, J. J. Appl. Polym. Sci. 1 (1959): 272.
- 12. Meyerhoff, G. Makromol. Chem. 145 (1971): 189.
- 13. Guar, U., and B. Wunderlich. J. Phys. Chem. Ref. Data 10(4) (1981): 1,033.
- 14. Loveluck, G. D. J. Chem. Soc. (1961): 4,729.
- 15. Andrady, A. L., and M. D. Sefcik. J. Polym. Sci. 21 (1983): 2,453.
- 16. Andrady, A. L., and M. D. Sefcik. J. Polym. Sci. 22 (1984): 237.

Poly(propylene sulfide)

JUNZO MASAMOTO

ACRONYM PPS

CLASS Polysulfides

STRUCTURE $+CH(CH_3)S+_n$

MAJOR APPLICATIONS Poly(propylene sulfide) is an elastic material that compares with styrene-butadiene rubbers. However, this polymer has not yet achieved commercial production, although the PPS elastomer offers a combination of good solvent and weather resistance. Low molecular weight functional PPS is suitable for use in sealants, adhesive, etc.⁽¹⁾

PROPERTIES OF SPECIAL INTEREST Poly(propylene sulfide) is an elastic material with an excellent combination of good solvent- and weather-resistance with an acceptable level of physical and dynamic properties. It also gives both types of crystalline stereoregular polymer and amorphous atactic polymer depending on the initiator. By using an optically active coordination initiator, an isotactic optically active polymer can be obtained. (3–7)

OTHER POLYMERS SHOWING THESE SPECIAL PROPERTIES Solvent resistance: polysulfide rubbers; second order transition temperature: styrene-butadiene rubbers; weather and ozone resistance: polychloroprene rubbers.

PREPARATIVE TECHNIQUE Poly(propylene sulfide) can be prepared by ring-opening polymerization, using anionic, cationic, and coordinate catalyst. Anionic and cationic systems give an amorphous atactic polymer, while coordinate catalytic system, such as cadmium salts, give an isotactic or crystalline polymer. (2,8)

The monomer undergoes polymerization by an anionic mechanism with basic initiators.⁽¹⁾

(Anionic)
$$-CH_2CHS^-$$

Me

(Cationic) $-SCHCH_2S^+$
 CH_2

Me

(Coordinate) $-Zn^+$
 CH_2CHS^-

Me

 $CH_2CHS^ CH_2CHS^ CH$

The cationic polymerization by initiators such as boronfluoride, etherate, probably involves the intermediary of sulphonium ions:⁽¹⁾ In polymerization initiated by zinc or cadmium compounds, the metal-sulfur bond will be predominantly covalent, and it is possible that the monomer is coordinated to the metal atom before insertion into the growing chain.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-	74	_
Tacticity (stereoregularity)	%	Coordination polymerization, cadmium thiolate catalyst	Isotactic: 90-100 meso dyads	(6, 9–11)
		Anionic polymerization, sodium thiolate active center	Atactic	(10)
		Zinc N-substituted porphyrins	Atactic	(12)
Typical molecular weight range of polymer	g mol ⁻¹	Anionic polymerization, active center: sodium thiolates; determined by osmotic pressure method	$M_{\rm n}$: 1-6 × 10 ⁵	(13)
		For amorphous PPS, in toluene solution at 35°C	Intrinsic viscosity 0.5–3.0	(8)
		In benzene solution at 25°C, ZnEt ₂ /H ₂ O, cadmium tartrate initiator	Intrinsic viscosity 2.0–4.0	(14)
		For crystalline PPS, in toluene solution at 35°C	Intrinsic viscosity 0.5–2.5	(8)
		KSCN initiator with a cryptate Rare earth coordination catalyst	$M_{\rm w}$: 1.7×10^7 $M_{\rm w}$: $1-5 \times 10^6$	(15) (16)
		Initiator: zinc N-substituted porphyrins	$M_{\rm n}$: 1–27 × 10 ³	(12)
		Initiator: cadmium thiolate	$M_{\rm n}$: 3–15 × 10 ⁴	(7)
Typical polydispersity index (M_w/M_n)	-	Anionic polymerization; active center: sodium thiolates, tetrahydrofuran solvent	1.1-1.2	(13)
		Anionic polymerization; initiator: sodium naphthalene, tetrahydrofuran solvent	<1.1	(17)
		Initiator: zinc N-substituted porphyrins	1.05	(11)
		Initiator: cadmium crotyl mercaptide, $M_{\rm w}$: $(1.1 \sim 15.8) \times 10^4$	1.7 ~ 2.3	(18)

Polv	propy	lene	sulfide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR (characteristic absorption frequencies)	cm	-CH ₂ - deformation Symmetrical -CH ₃ deformation Asymmetrical -C-S- stretching vibration	1,449 1,379 735	(8)
		Symmetrical –C–S– stretching vibration	684	
NMR	tetrachlori			(19)
	¹³ C NMR, o ₁ (90/10) at 16	perating at 25 MHz in CCl_4 – $60^{\circ}C$ or at $60^{\circ}C$	C_6D_6	(9) (12)
Thermal expansion coefficients	K^{-1}	Atactic PPS, $M_{\rm w} = 5 \times 10^5$	0.59×10^{-3}	(20)
Density (amorphous)	g cm ⁻³	At 25°C, by pyconometry measurement	1.0340 1.130	(20) (8)
Solvents		oylene sulfide rahydrofuran, toluene, carbo benzene	on tetrachloride,	(20) (8)
Nonsolvents	_	For atactic PPS For crystalline PPS	Methyl ethyl ketone Heptane, cyclohexane, dibutylphthalate, aqueous hydrochloric acid, aqueous sodium hydroxide	(21) (8)
Solubility parameter	MPa	-	17.9	(21)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ a = None	Benzene, 20°C Benzene, 31°C Tetrahydrofuran, 25°C	$K = 3.3 \times 10^{-5}$; $a = 0.86$ $K = 5.036 \times 10^{-5}$; a = 0.78 $K = 2.58 \times 10^{-4}$; a = 0.656	(23) (18) (24)
Characteristic ratio $\langle r^2 \rangle / n l^2$	_	Atactic PPS	4.0	(25)
Lattice	_	_	Orthorhombic	(21)
Space group	_	_	P2 ₁ 2 ₁ -D ₂ 4	(21)
Chain conformation	_	_	Planar zigzag (but not fully extended)	(21, 24)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Unit cell dimensions	Å	X-ray photograph of oriented samples of both types of optical active and racemic PPS; both: isotactic	a = 9.95, b = 4.89, c = 8.20 (fiber axis)	(21)
Unit cell contents	-	-	4 monomeric units per unit cell (2 molecular chains)	-
Degree of crystallinity	%	Initiator: Zn/H ₂ O, DTA and X-ray diffraction	60	(14)
		Initiator: cadmium tartrate, DTA and X-ray diffraction	85	
Density	${\rm g~cm}^{-3}$	Theoretical density for crystalline PPS	1.24	(21)
		Observed density for crystalline PPS	1.152	(21)
		_	1.16	(8)
Glass transition	K	_	220.5	(27, 28)
temperature		Amorphous and crystalline PPS	225	(8)
•		1	233	(29)
		Sulfur-vulcanized carbon black filled propylene sulfide-allyl thioglycidil ether copolymer prepared by coordination catalyst	233	(2)
		Viscoelastic measurement	234.6	(29)
		Calorimetric	236	(31)
Melting point	K	Isotactic PPS	313–314 325	(8) (9)
		Calorimetric, Et ₂ Zn-S catalyst	326	(30)
		Isotacticity: >90%	331	(7, 14)
Tensile strength	MPa	Sulfur-vulcanized PPS-allyl thioglycidyl ether copolymer filled with carbon black	11	(2)
		Sulfur-vulcanized ethylene sulfide (28 mol%), propylene sulfide (69 mol%), allyloxymethyl thiarne (3 mol%), terpolymer filled with carbon black	15.9	(8)
		PPS homopolymer filled with carbon black	13	(1)
		PPS homopolymer, cured without carbon black	1.2	(1)

Poly(propylene sulfide)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Maximum extensibility (elongation)	%	Sulfur-vulcanized PPS-allyl thioglycidyl ether copolymer filled with carbon black	225	(2)
(Sulfur-vulcanized ethylene sulfide propylene sulfide allyloxymethyl thiarne terpolymer filled with carbon black	360	(8)
		PPS filled with carbon black	205	(1)
		PPS cured without carbon black	325	(1)
Hardness	Shore A	Sulfur-vulcanized PPS-allyl thioglycidyl ether copolymer filled with carbon black	80	(2)
		Sulfur-vulcanized ethylene sulfide propylene sulfide allyloxymethyl thiarne terpolymer filled with carbon black	81	(8)
		PPS filled with carbon black	76-70	(1)
		PPS cured without carbon black	38-30	(1)
Modulus	MPa	Modulus at glassy state: viscoelastic method	2200	(31)
		Modulus at rubbery state: viscoelastic method	4.3	(31)
		At 300% elongation, sulfur-vulcanized ethylene sulfide propylene sulfideallyloxymethyl thiarne terpolymer filled with carbon black	13.8	(8)
		At 100% elongation, PPS filled with carbon black	5.8	(1)
		At 100% elongation, PPS cured without carbon black	0.55	(1)
Rebound	%	PPS filled with carbon black	54	(1)
Entanglement molecular weight	g mol ⁻¹	$M_{\rm w}$: $0.3-86 \times 10^4$	2×10^4	(18)
Index of refraction	_	_	1.596-1.597	(30)
		At 23°C	1.594	(18)
Refractive index increment dn/dc	mlg^{-1}	_	8.095×10^{-2}	_
Dipole moment ratio	_	In benzene at 25°C, isotactic PPS	0.39	(10)
$\langle \mu^2 \rangle / nm^2$		In benzene at 25°C, atactic PPS	0.44	
		In carbon tetrachloride at 25°C, isotactic PPS	0.33	
		In carbon tetrachloride at 25°C, atactic PPS	0.37	
Melt viscosity	Pa s	For $M_{\rm w} =$		(18)
·		7,000 at 30°C	0.006	
		15,000	0.03	
		29,000	0.2	
		60,000 118,000	1.6 15.8	
		158,000	54.7	
		100,000	OT./	

			Poly(propyle	ne sulfide)
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Weathering test	_	In Toronto, one year's exposure; sulfur- vulcanized ethylene sulfide propylene sulfide allyloxymethyl thiarne terpolymer filled with carbon black	No outward change	(8)
Solvent resistance	% volume swell	7 days at room temperature; sulfur-vulcanized propylene sulfide-allyl thioglycidyl ether copolymer filled with carbon black		(2)
		Ethyl acetate	<i>7</i> 5	
		Methyl ethyl ketone	101	
		Hexane	10	
		Toluene	173	

REFERENCES

Availability

- 1. Cooper, W. Br. Polym. J. 3 (1971): 28-35.
- 2. Gobran, R. H. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. Interscience, New York, 1969, vol. 10, pp. 324–336.

No commercial production

- 3. Dumas, Ph., Ph. Guerin, and P. Sigwalt. Nouv. J. Chim. 4 (1980): 95-99.
- 4. Sigwalt, P. Makromol. Chem., Suppl., 3 (1979): 69-83.
- 5. Guerin, Ph., S. Boileau, and P. Sigwalt. Eur. Polym. J. 16 (1980): 129-133.
- 6. Dumas, Ph., P. Sigwalt, and Ph. Guerin. Makromol. Chem. 182 (1981): 2,225-2,231.
- 7. Dumas, Ph., and P. Sigwalt. Chirality 3 (1991): 484-491.
- 8. Adamek, S., B. B. J. Wood, and R. T. Woodhams. Rubb. Plast. Age 46(1) (1965): 56-62.
- 9. Guerin, P., et al. E. Polym. J. 11 (1975): 337-339.
- 10. Riande, E., et al. Macromolecules 12 (1979): 702-704.
- 11. Palacios, J. Rev. Soc. Quim. Mex. 40 (1996): 147-154.
- 12. Aida, T., K. Kawaguchi, and S. Inoue. Macromolecules 23 (1990): 3,887-3,892.
- 13. Sigwalt, P. IUPAC Internat. Symp. Macromol. Chem., Budapest, 1969, pp. 251-280.
- 14. Marchetti, M., et al. Makromol. Chem. 180 (1979): 1,305-1,312.
- 15. Boileau, S., et al. J. Polym. Sci., Polym. Lett. Ed., 12 (1974): 217-224.
- 16. Zhi-quan, S., et al. Sci. China (B) 33 (1990): 553-561.
- 17. Nevin, R. S., and E. M. Pearce. J. Polym. Sci., Part B, 3 (1965): 491.
- 18. Stokes, A. Eur. Polym. Sci. 6 (1970): 719-723.
- 19. Sepulchre, M., et al. J. Polym. Sci., Polym. Chem. Ed., 12 (1974): 1,683-1,693.
- 20. Rahalkar, R. R., et al. J. Polym. Sci., Polym. Phys. Ed., 17 (1979): 1,623-1,625.
- 21. Sakakihara, H., et al. *Macromolecules* 2 (1969): 515–520.
- 22. Chiro, A., and E. Raggi. Chim. Indust. 55 (1973): 512-513.
- 23. Eskin, V. E., and A. E. Nesterov. Vysokomolek. Soedin 8(1) (1966): 141-145.
- 24. Nash, D. W., and D. C. Pepper. Polymer 16 (1975): 105-109.
- 25. Abe, A. Polym. Prep. 20(1) (1979): 460-462.
- 26. Abe, A. Macromolecules 13 (1980): 541-546.
- 27. Woodhams, R. T. Rep. Prog. Appl. Chem. 50 (1965): 480-484.
- 28. Adamek, S., B. B. J. Wood, and R. T. Woodhams. Rubber Age 96 (1965): 581-585.
- 29. Nevin, R. S., and E. M. Pearce. J. Polym. Sci. Part B, 3 (1965): 487.
- 30. Lal, J., and G. S. Trick. J. Polym. Sci., Part A-1, 8 (1970): 2,339-2,350.
- Takahashi, M. Proc. 5th Int. Congr. Rheol., edited by Onogi. University of Tokyo Press, Tokyo, 1970, 3, pp. 399–407.

CHARLES L. MYERS

ACRONYMS s-PP, sPP

CLASS Poly(α -olefins)

STRUCTURE $-[CH_2CHCH_3]-$

MAJOR APPLICATIONS Produced for several years in developmental quantities and in commercial scale tests. Being evaluated in various forms (homopolymer, impact copolymer) for molding and film applications. See references (1, 2, 3, 4).

PROPERTIES OF SPECIAL INTEREST Transparency, flexibility, toughness, heat seal temperature, radiation stability, and low extractables.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	Unit cell, 100% crystalline (obsolete cell interpretation)	0.93	(5)
		25°C, experimental sample not defined	0.989-0.91	(5)
		25°C, amorphous, extrapolated from melt temperature	0.856	(5)
		Three s-PP (Fina) % r % rrrr % crystallinity XRD		(2, 6)
		91.4 76.5 21	0.87	
		91.9 78.0 22	0.87	
		96.5 91.1 29	0.89	
		Two s-PP (Hoechst)		(3)
		G1 ′	0.887	()
		G 2, 83.6% rrrr, 27% crystalinity	0.885	
Melting temperature	K	rrrr = 72%	392	(7)
0 1		rrrr = 82%	413	,
		Three s-PP (Fina) % r % rrrr % crystallinity		(2, 6)
		91.4 76.5 21	398	
		91.9 78.0 22	399	
		96.5 91.1 29	421	
		G 2 (Hoechst), 83.6% rrrr	406	(3)
Melting temperature	K	rrrr = 92-95%	433-459	(8)
(equilibrium values,		$r = 94\%$, $rrrr = 86\%$, $M_n > 40,000$	433	(9)
Hoffmann-Weeks)		$r = 96.8\%$, $rrrr = 92.1\%$, $M_w = 164,000$	439	(10)
,		r = 91.9-98.0%, $rrrr = 81.4-94.5%$	408-459	(10)
		_	424-428	(11)
		Extrapolated to 100% syndiotacticity	487	(10)
		_	493	(12)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion (equilibrium values, for 100% crystallinity)	kJ mol ⁻¹	rrrr = 92-95% r = 94%, rrrr = 86%, M _n > 40,000 r = 96.8%, rrrr = 92.1%, M _w = 164,000 -	4.4-8.2 8.0 6.9 8.4	(8) (9) (10) (11)
Entropy of fusion	$\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$	DSC, density	18.8	(13, 14)
Theta temperature	K	$M_{ m w}=$ 11,700, cyclohexane	309	(15, 16)
Infrared absorption	cm ⁻¹	Attributed to Helix Helix Regularity	866, 867 977 962	(2, 5)
Flexural modulus	MPa	Three s-PP (Fina) % r % rrrr % crystallinity 91.4 76.5 21 91.9 78.0 22 96.5 91.1 29 Homopolymer Clear, impact grades Two s-PP (Hoechst) G 1 G 2, 83.6% rrrr	380 415 760 359 88–250 790 600	(2, 6) (1) (1) (3)
Tensile modulus	MPa	Homopolymer Clear impact grades	483 211-244	(1)
Tensile elongation, yield	%	Homopolymer	10.8	(1)
Tensile elongation, break	%	Homopolymer	180	(1)

Unit cell information

Comments	Lattice	Packing	Momomers	Cell dimensions (Å)		Space group	Crystal density	Reference	
			per unit cell	а	b	c			
Type III High order	Orthorhombic	Helical Antichiral	16	14.5	11.2	7.4	Ibca	_	(9, 17-20)
Type II Disorder	Orthorhombic	Helical Antichiral	8	14.5	5.6	7.4	Pca2 ₁	_	(9, 17-19)
Type I Annealed fiber (high order structure in older literature)	Orthorhombic	Helical Isochiral	8	14.5	5.6	7.4	C222 ₁	0.93 0.90	(5, 9, 17–19)
Quenched, cold drawn, unstable	Orthorhombic	Planar Zigzag	4	5.22	11.17	5.06	P2 ₁ cn	0.945	(5, 9, 20, 21)
Unstable	Triclinic	Deformed helix or intermediate	6	5.72	7.64	11.6	_	0.939	(9, 22)

REFERENCES

- 1. Shamshoum, E., S. Kim, A. Hanyu, and B. R. Reddy. In *Metallocenes '96, Proceedings of the 2nd International Conference on Metallocene Polymers* (Düsseldorf, Germany). Schotland Business Research, Skillman, N.J., 1996, p. 259.
- 2. Shamshoum, E., L. Sun, B. R. Reddy, and D. Turner. *MetCon '94 (Houston, Tex.)*. Catalyst Consultants, Spring House, Penn., 1994.
- 3. Antberg, M., et al. Makromol. Chem., Macromol. Symp., 48/49 (1991): 333.
- 4. Plastics Technology 38 (March 1992): 29-31.
- 5. Quirk, R. P., and M. A. A. Alsamarraie. *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Imergut. John Wiley and Sons, New York, 1989, Vols. 27–31. (Note: Considerable new information regarding s-PP crystalline polymorphs is available since 1989.)
- Moore, E. P., Jr., ed. Polypropylene Handbook. Hanser Publishers, New York, 1996, chap. 12, p. 406.
- 7. Ewen, J. A., et al. Makromol. Chem., Macromol. Symp., 48/49 (1991): 253.
- 8. Phillips, R. A., and M. D. Wolkowicz. In *Polypropylene Handbook*, edited by E. P. Moore, Jr. Hanser Publishers, New York, 1996, chap. 3.4, pp. 144–149.
- Rodriguez-Arnold, J., et al. Polymer 35(9) (1994): 1,884. (Includes review of s-PP polymorphs.)
- 10. Balbontin, G., D. Dainelli, M. Galimberti, and G. Paganetto. Makromol. Chem. 193 (1992): 693.
- 11. Haftka, S., and K. Koennecke. *J. Macromol. Sci., Phys.,* B30(4) (1991): 319. (Compares s-PP to i-PP of same sequence distribution.)
- 12. Miller, R. L., and E. G. Seely. J. Polymer Sci., Polym. Phys. Ed., 20 (1982): 2,297.
- Galambos, A., M. Wolkowicz, R. Zeigler, and M. Galimberti. ACS Preprints, PMSE Div., April 1991.
- Mandelkern, L., and R. G. Alamo. *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, chap. 11, p. 132.
- 15. Sundararajan, P. R. *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, chap. 15, p. 202.

- 16. Hirao, T., et al. Polym. J. 23 (1991): 925.
- 17. Lovinger, A. J., B. Lotz, D. D. Davis, and F. J. Padden, Jr. Macromolecules 26 (1993): 3,494.
- 18. DeRosa, C., and P. Corradini. Macromolecules 26 (1993): 5,711.
- 19. Lovinger, A. J., B. Lotz, D. D. Davis, and M. Schumacher. Macromolecules 27 (1994): 6,603.
- 20. DeRosa, C., A. Finizia, and P. Corradini. *Macromolecules* 29 (1996): 7,452. (Note: Nomenclature is suggested in which Forms I, II, III, and IV are used for types III/II, I, planar zigzag, and triclinic polymorphs, respectively.)
- 21. Chatani, Y., et al. J. Poly. Sci., Part C, 28 (1990): 393.
- 22. Chatani, Y., H. Maruyama, T. Asanuma, and T. Shiomura. *J. Poly. Sci., Poly. Phys.*, 29 (1991): 1,649.

LOON-SENG TAN

ACRONYMS, TRADE NAMES ODA-PMDA, PMDA-ODA, Kapton[®], Vespel[®], Apical[®]
CLASS Polyimides; high-performance polymers

STRUCTURE

$$\begin{bmatrix}
0 & 0 \\
N & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}$$

SYNTHESIS Poly(pyromellitimide-1,4-diphenyl ether) is generally prepared from polycondensation of pyromellitic dianhydride and 4,4'-oxydianiline followed by either thermal or chemical (in the presence of acetic anhydride and triethylamine) cyclodehydration of the polyamic acid precursor.

MAJOR APPLICATIONS Kapton films are used as wire and cable wrap, formed coil wrap, motor-slot liners, substrates for flexible printed circuit boards, magnetic-wire insulation, and in transformers and capacitors. (1) Vespel molded parts are used in automobiles, large on-and-off-road vehicles, farm equipment, business machines, electronic equipment, etc.: rotary seal rings, thrust washers and discs, bushings, flanges bearings, printer platen bars, plungers, printer wireguides, stripper fingers, spline couplings, wear strips, locknut inserts, valve seats, check valve balls, thermal and electrical insulators. (2)

PROPERTIES OF SPECIAL INTEREST Kapton films have excellent thermal stability in air or inert atmosphere, useful mechanical properties over very broad temperature range, outstanding electrical properties and stability of these electrical properties over wide range of relative humidity, insensitive to solvents, excellent radiation resistance; considerable variation in hydrolytic sensitivity, poor hydrolytic resistance in 10% NaOH.⁽³⁾ Vespel direct-formed parts are resistant to thermally harsh environment, creep, impact, and wear, and friction at high pressures and velocities.⁽⁴⁾

PRODUCT NAMES	PRODUCT DESCRIPTIONS	SUPPLIER
Kapton	Polyimide films available in three types: 1. HN film 2. VN films 3. FN films Both HN and VN films are all-polyimide films, but FN films are coated on one or both sides with Teflon FEP fluoropolymer resin	DuPont High Performance Films, U.S. Route 23 and DuPont Road, P.O. Box 89, Circleville, Ohio 43113, USA DuPont de Nemours (Luxembourg S.A.) Contern, L-2984 Luxembourg, Grand Duchy of Luxembourg DuPont Kabushi Kaisha, Arco Tower, 8-1, Shimomeguro 1-chrome, Meguro-ku, Tokyo 153, Japan

PRODUCT NAMES	PRODUCT DESCRIPTIONS	SUPPLIER
Vespel	Available in 5 compositions: 1. SP-1, unfilled based resin 2. SP-21, 15% by wt. graphite filler 3. SP-22, 40% by wt. graphite filler 4. SP-211, 15% by wt. graphite and 10% by wt. Teflon fluorocarbon resin fillers 5. SP-3, 15% by wt. molybdenum disulfide (for lubrication)	Du Pont Engineering Polymers, Pencader Site, Newark, Delaware 19714-6100, USA Du Pont de Nemours (Belgium) N. V., Du Pont Engineering Polymers, Antoon Spinoystraat 6, B-2800 Mechelen, Belgium Du Pont Japan Limited, Specialty Polymers, VESPEL, Marketing, 19-2, Kiyohara, Kogyo Danchi, Utsunomiya, Tochigi, 321-32, Japan
Apical	Polyimide films	Kanegafuchi Chemical Industry Company Ltd., Japan

Mechanical properties of Kapton HN film (25 μm)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Ultimate tensile strength	MPa	ASTM D-882		(1, 5)
		Method A; film size, 25×150 mm; 23° C	231	
		200°C	139	
Yield point at 3%	MPa	ASTM D-882		(1, 5)
•		23°C	69	
		200°C	41	
Stress to produce 5% elongation	MPa	ASTM D-882,		(1, 5)
		23°C	90	
		200°C	61	
Ultimate elongation	%	ASTM D-882		(5)
C .		−195°C	2	
		23°C	72	(1, 5)
		200°C	83	(1, 5)
Tensile modulus	MPa	ASTM D-882		
		−195°C	3,500	(5)
		23°C	2,500	(1, 5)
		200°C	2,000	(1, 5)
Folding endurance (MIT)	cycles	ASTM D-2176; 23°C	285,000	(1, 5)
Tear strength-propagating (Elmendorf)	N	ASTM D-1922; 23°C	0.07	(1, 5)
Tear strength-initial (Graves)	N	ASTM D-1004; 23°C	7.2	(1, 5)
Poisson's ratio	-	Average of 3 samples elongated at 5%, 7%, and 10%	0.34	(1, 5)

Thermal properties of Kapton HN film (25 μ m)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting point	K	ASTM E-794	_	(1, 5)
Thermal coefficient of linear expansion	10^{-6} K^{-1}	ASTM D-696; −14 to 38°C	20	(1, 5)
Coefficient of thermal conductivity	$Wm^{-1}K^{-1}$	ASTM F-433, 296 K	0.12	(1)
Specific heat	$J g^{-1} K^{-1}$	Differential calorimetry	1.09	(1)
Flammability	_	UL-94	94V-0	(1)
Shrinkage	%	IPC TM 650, method 2,2.4A; 30 min at 150°C	0.17	(1)
		IPC TM 650, method 2,2.4A; 30 min at 250°C	0.3	(5)
		ASTM D-5214; 120 min at 400°C	1.25	(1)
Smoke generation	_	NFPA-258; NBS smoke chamber	$DM \leq 1$	(1)
Glass transition temperature	K	_	633-683	(1)
Cut-through temperature	K	$25\mu m$ thickness; at $25^{\circ}C$ $50-125\mu m$ thickness; at $25^{\circ}C$	708 798	(1, 5) (1, 5)

Optical properties of Kapton film (25 μ m)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Refractive index	_	Visible range	1.70-1.80	(6, 7)

Electrical properties of Kapton HN film (25 μ m)

PROPERTIES	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric strength	$V \mu m^{-1}$	ASTM D-149; 23°C, 50% RH, 60 Hz, $1/4$ in electrodes, 500 V s ⁻¹ rise	303	(1, 5)
Dielectric constant	-	ASTM D-150; 23°C, 50% RH, 10 ³ Hz, 23°C, 50% RH ASTM D-150; 23°C, 50% RH 10 ³ Hz, 200°C, 50% RH	3.4 3.0	(1, 5) (1, 5)
Dissipation factor	_	ASTM D-150 23°C, 50% RH, 10 ³ Hz, 23°C, 50% RH 23°C, 50% RH, 10 ³ Hz, 200°C, 50% RH	0.003 0.002	(1, 5)

PROPERTIES	UNITS	CONDITIONS	VALUE	REFERENCE
Volume resistivity	ohm cm	ASTM D-257; 23°C, 50% RH ASTM D-150; 200°C, 50% RH	$10^{18} \\ 10^{14}$	(1, 5)
Corona start voltage	volts	At 50% RH, 25°C	465	(1, 5)
Surface resistivity	ohm	25°C	10^{16}	(1, 5)
Loss tangent: $\tan \delta$	_	60 Hz 1 KHz 1 MHz	0.003 0.0025 0.011	(7)
Dielectric breakdown voltage (D.C.)	${ m Vcm}^{-1}$	_ 60 Hz	$1.2 \times 10^{5} \\ 2.76 \times 10^{6}$	(7)

Permeability of Kapton film $(25\,\mu\text{m})^{(1,5)}$

Gas	Units	Conditions	Value
He	$ml m^{-2} day^{-1} MPa^{-1}$	ASTM D-1434-82; 23°C, 50% RH	63,080
CO_2	$\mathrm{ml}\mathrm{m}^{-2}\mathrm{day}^{-1}\mathrm{MPa}^{-1}$	ASTM D-1434-82; 23°C, 50% RH	6,840
H_2	$\mathrm{ml}\mathrm{m}^{-2}\mathrm{day}^{-1}\mathrm{MPa}^{-1}$	ASTM D-1434-82; 23°C, 50% RH	38,000
N_2	$\mathrm{ml}\mathrm{m}^{-2}\mathrm{day}^{-1}\mathrm{MPa}^{-1}$	ASTM D-1434-82; 23°C, 50% RH	910
O_2	$\mathrm{ml}\mathrm{m}^{-2}\mathrm{day}^{-1}\mathrm{MPa}^{-1}$	ASTM D-1434-82; 23°C, 50% RH	3,800
Vapor			
H ₂ O	$\mathrm{gm}^{-2}\mathrm{day}^{-1}\mathrm{MPa}^{-1}$	ASTM E-96-92; 23°C	54

Other physical properties of Kapton film (25 μ m)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Limiting oxygen Index	%	ASTM D-2863-87	37	(1, 5)
Surface tension	$\rm mNm^{-1}$	20°C	37.7	(8)
Hygroscopic coefficient of expansion	ppm (%RH) ⁻¹	23°F, 20-80% RH	22	(1, 5)
Moisture absorption	%	50% RH, 23°C Immersion 24 h at 23°C	1.8 2.8	(1, 5)
Density	$\rm gcm^{-3}$	ASTM D-1505-90	1.42	(1)
Coefficient of friction	_	Kinetic (film-to-film)	0.48	(1)
Coefficient of friction	_	Static (film-to-film)	0.63	(1)

Mechanical properties of Vespel (SP-1 polyimide resin)

PROPERTIES	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength, ultimate	MPa	ASTM-D 1708 23°C 260°C	86.2 41.4	(4, 9)
Elongation, ultimate	%	ASTM-D 1708 23°C 260°C	7.5 6.0	(4, 9)
Flexural strength, ultimate	МРа	ASTM-D 790 23°C 260°C	110.3 62.1	(4, 9)
Flexural modulus	MPa	ASTM-D 790 23°C 260°C	3,102 1,724	(4, 9) (4)
Compressive stress	МРа	ASTM-D 695 23°C, at 1% strain 23°C, at 10% strain 23°C, at 0.1% offset	24.8 133.1 51.0	(4)
Compressive modulus	MPa	ASTM-D 695; 23°C,	2413	(4)
Axial fatigue endurance limit	MPa	At 10 ³ cycles and 23°C At 10 ³ cycles and 260°C At 10 ³ cycles and 23°C At 10 ⁷ cycles and 260°C	55.8 42.1 55.8 16.5	(4) (4, 9) (4, 9) (4, 9)
Flexural fatigue endurance limit	MPa	At 10 ³ cycles and 23°C At 10 ⁷ cycles and 23°C	65.5 44.8	(4, 9)
Shear strength	MPa	ASTM-D 732; 23°C	89.6	(4, 9)
Impact strength, notched Izod	$\mathrm{J}\mathrm{m}^{-1}$	ASTM-D 256; 23°C	42.7	(4, 9)
Impact strength, unnotched Izod	$\mathrm{J}\mathrm{m}^{-1}$	ASTM-D 256; 23°C	747	(4, 9)
Poisson's ratio	_	23°C	0.41	(4, 9)

Wear and friction properties of Vespel (SP-1 polyimide resin)

PROPERTIES	UNITS	CONDITIONS	VALUE	REFERENCE
Friction coefficient	_	Steady state, unlubricated in air $(PV = 0.875 \text{MPa}\text{m}\text{s}^{-1})$	0.29	(4, 9)
		Static in air	0.35	
Wear rate	cm (1,000 h) ⁻¹	Unlubricated in air	0.64-3.0	(9)

Thermal properties of Vespel (SP-1 polyimide resin)

PROPERTIES	UNITS	CONDITIONS	VALUE	REFERENCE
Coefficient of linear expansion	$10^{-6} \mathrm{K}^{-1}$	ASTM-D 696 23–300°C (m/m) –62 to 23°C	54 45	(4, 9)
Thermal conductivity	$Wm^{-1}K^{-1}$	40°C	0.35	(4, 9)
Specific heat	$\rm JKg^{-1}K^{-1}$	_	1,130	(4)
Deformation	%	ASTM-D 621; under 2,000 psi load	0.14	(4, 9)
Deflection temperature	K	ASTM-D 648; at 264 psi	~633	(4, 9)

Electrical properties of Vespel (SP-1 polyimide $\operatorname{resin})^{(4,9)}$

PROPERTIES	UNITS	CONDITIONS	VALUE
Dielectric constant	_	ASTM-D 150	
		At 10 ² Hz, 23°C	3.62
		At 10 ⁴ Hz, 23°C	3.64
		At 10 ⁶ Hz, 23°C	3.55
Dissipation factor	_	ASTM-D 150	
•		$10^2 \text{Hz}, 23^{\circ} \text{C}$	0.0018
		10 ⁴ Hz, 23°C	0.0036
		10 ⁶ Hz, 23°C	0.0034
Dielectric strength	MVm^{-1}	ASTM-D 149; short time, 0.002 m thick	22
Volume resistivity	ohm m	ASTM-D 257; 23°C	10^{14} – 10^{-15}
Surface resistivity	ohm	ASTM-D 257; 23°C	10^{15} – 10^{-16}

Other physical properties of Vespel (SP-1 polyimide resin)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Water absorption	%	ASTM-D 570; 24 h at 23°C Immersion 48 h at 50°C	0.24 0.72	(4, 9)
Equilibrium	_	50% RH	1.0-1.3	(4, 9)
Specific gravity	_	ASTM-D 792	1.43	(4, 9)
Hardness	Rockwell E Rockwell M	ASTM-D 785 ASTM-D 785	45–60 92–102	(4, 9) (9)
Limiting oxygen index	%	ASTM-D 2863	53	(4, 9)

Fiber properties of poly(pyromellitimide-1,4-diphenyl ether) $^{*(10)}$

PROPERTIES	UNITS	CONDITIONS	VALUE
Tenacity	MPa (×10 ³)	Heat treated under tension at 525–575°C	0.45-0.72
Elongation	%	Heat treated under tension at 525-575°C	9.0-11.7
Modulus	MPa $(\times 10^3)$	Heat treated under tension at 525-575°C	6.4-9.9

^{*}Fibers were spun from poly(amic acid)/dimethylacetamide solutions and the resultant poly(amic acid) fibers were then thermally converted to polyimide fibers under sufficient tension. The polyimide fiber was finally heat treated at 525–575°C.

Transition temperatures of poly(pyromellitimide-1,4-diphenyl ether)

Test Method/Conditions	$T_{\rm g}$ (K)	T _m (K)	Reference
DSC, 20°C/min; film sample	693	_	(11)
DSC; film thickness ~ 12.5 mm	683	_	(12)
DSC; film sample	673	_	(13)
Thermomechanical technique	650		(14)
Thermomechanical technique; film thickness $\sim 20\text{mm}$	-	870	(14, 15)

Secondary-relaxation temperatures of poly(pyromellitimide-1,4-diphenyl ether)

Test Method/Conditions	T_{β} (K)	E _a (kJ mol ⁻¹)	T_{γ} (K)	$E_{\rm a}$ (kJ mol ⁻¹)	Reference
Resonance electrostatic method; 15,000 Hz	400	84-105	250	66	(17)
Resonance electrostatic method; 14,000 Hz	405	_	_	_	(18)
Torsion pendulum; 1Hz	_	_	185	317	(19)

^{*}Adapted from reference (16).

Unit cell dimensions

Lattice	Monomer	Cell dimension (Å)			Cell angles (degrees)			Reference
	per unit cell	а	b	c (chain axis)	α	β	γ	
Orthorhombic	2	6.35	4.05	32.6	90	90	90	(20)
Orthorhombic	2	6.31	3.97	32	90	90	90	(21)
Monoclinic	2	4.66	32.9	5.96 15.9	90	100	90	(22)

Structural parameters of poly(pyromellitimide-1,4-diphenyl ether)

PROPERTY	UNIT	CONDITIONS	VALUE	REFERENCE
Repeat distance	Å	X-ray diffraction	16	(21)
Mean interchain d-spacing	Å	X-ray diffraction	4.45	(13)
Persistent length	Å	Theoretical calculation	36	(23)
Kuhn segment	Å	Theoretical calculation	72	(23)

REFERENCES

- 1. Kapton Polyimide Film. Product Bulletin H-38492-1, E. I. du Pont and Company.
- 2. Vespel Polyimide Parts and Shapes. Product Bulletin H-36046-1, E. I. du Pont and Company.
- 3. Sroog, C. E. Prog. Polym. Sci. 16 (1991): 561-694.
- 4. Properties of DuPont Vespel Parts. Product Bulletin H-15724-1, E. I. du Pont and Company.
- Sroog, C. E. In *Polyimides*, edited by D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother. Chapman and Hall, New York, 1990, p. 254.
- 6. Varma, I. K., G. M. Fohlen, and J. A. Parker. U.S. Patent 4,276,344 (1981).
- 7. Cassidy, P. E., and T. M. Aminabhavi. Polym. News 14 (1989): 362.
- 8. Sacher, E. J. Appl. Polym. Sci. 22 (1978): 2,137.
- Sroog, C. E. In *Polyimides*, edited by D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother. Chapman and Hall, New York, 1990, pp. 262–263.
- 10. Irwin, R. S. U. S. Patent 3,415,782 (E. I. du Pont and Company, 1968)
- 11. Okamoto, K., et al. J. Polym. Sci.: Part B, Polym. Phys., 27 (1989): 2,621.
- 12. Hachisuka, H., et al. J. Polym. Sci.: Part B, Polym. Phys., 29 (1991): 11.
- 13. Stern , S. A., et al. J. Polym. Sci., Part B, 27 (1989): 1,887.
- 14. St. Clair, T. L. In *Polyimides*, edited by D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother. Chapman and Hall, New York, 1990, chap. 3, pp. 62–69.
- (a). Bessonov, M. I., et. al. Polyimides: Thermally Stable Polymers. Plenum Publishing, New York, 1987; (b) Bessonov, M. I., N. P. Kuznetsov, and M. M. Koton. Vysokomol. Soedin, A20(2) (1978): 347; (c) Bessonov, M. I., N. P. Kuznetsov, and M. M. Koton. Polym. Sci. U.S.S.R. (Engl. Transl.) 20 (1978): 391–400.
- 16. Fried, J. R. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, chap. 13, pp. 166–167.
- 17. Butta, E., S. de Petris, and M. Pasquini. J. Appl. Polym. Sci. 13 (1969): 1,073.
- 18. Baccaredda, M., et al. Mater. Sci. Eng. 3 (1969): 157.
- 19. Lim, T., et al. Polym. Eng. Sci 13 (1973): 51.
- (a) Kazaryan, L. G., Ye. G. Lur'e, and L. A. Igonin. Vysokomol. Soedin., Ser, B., 11 (1969): 779;
 (b) Lur'e, Ye. G., et al. Vysokomol. Soedin., Ser, A, 13 (1971): 603;
 (c) Lur'e, Ye. G., et al. Polym. Sci. U.S.S.R. (Engl. Transl.) 13 (1971): 685.
- (a) Kazaryan, L. G., et al. Vysokomol. Soedin., Ser, A, 14 (1972): 1,199; (b) Polym. Sci. U.S.S.R. (Engl. Transl.) 14 (1972): 1,344.
- Ginsburg, B. M., et al. Vysokomol. Soedin., Ser, A, 20 (1978): 900; (b) Polym. Sci. U.S.S.R. (Engl. Transl.) 20 (1978): 1,017.
- (a) Birshtein, T. M., and A. N. Goryunov. Vysokomol. Soedin, Ser A, 21 (1979): 1,990; (b) Polym. Sci. U.S.S.R. (Engl. Transl.) 21 (1979): 2,196.

Polypyrrole

SHRISH RANE AND GREG BEAUCAGE

ACRONYM PPy

CLASS Polyheterocyclics; conjugated conducting polymers

STRUCTURE The pyrrole rings are mainly linked in the α,α' positions giving a planar geometry. There is evidence of other bonding observed through NMR and IR analysis. $^{(1,2,3)}$

MAJOR APPLICATIONS At present there are no commercial applications for polypyrrole. It does show potential for use in display devices, chemical sensors, electrodes in batteries, drug carriers, heating fabrics, deionizers, and as a catalyst.

PROPERTIES OF SPECIAL INTEREST Presence of an extended π -bonding system, which imparts electrical properties to the polymer. Doping either p or n can enhance these properties. Polypyrrole is stable in air at room temperature as well as at temperatures as high as 250° C in its doped state. Also, polypyrrole can be synthesized in a doped state. It changes color when switched from its conducting to insulating state.

PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Chemical synthesis	Oxidative polymerization in either solution or vapor phase Polymerization on colloidal cerium oxide particles In the presence of ammonium persulfate (oxidant) and dodecylbenzene sulfonic acid (dopant)			(2, 4)
Electrochemical synthesis	Electrodes: anode (platinum, <i>n</i> -type silicon, conducting glass, stainless steel, gold/glassy Carlson); cathode (copper) Electrolytes: copper sulfate, acetonitrile + <i>p</i> -toluenesulfonoc acid (HTSO), lithium perchlorate, sodium perchlorate, sulfuric acid			(1, 5–7)
Conductivity σ	$\mathrm{S}\mathrm{cm}^{-1}$	Measured Orienting the film by mechanical methods improves the measured value	100 ∼1,000	(1, 8)
Optical properties	change	s coated on electrodes undergo a color when they switch from an oxidized to a d state and vice-versa		(1, 9, 10)

				Polypyrrole
PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Solubility	In its d	I PPy is by and large insoluble oped state it is soluble in chloroform, DMSO, esol, and NMP		(1, 11)
Thermal stability	K	In air	523	(1)
UV-Vis spectroscopy	nm	Strong absorption band in doped state on a platinum electrode	272 368 and 381	(1, 12, 13)
		Neighboring shoulder peaks	300 and 381	

Polymer	Peak (eV)
Oxidised PPy	1.0
-do-	3.0
Neutral PPy	1.3
-do-	3.2

$^{13}C\ NMR^{(14)}$

Polymer	Shift from TMS (ppm)	Conditions
Neutral PPy	~123	α carbon
	~ 105	β carbon
	\sim 135	Non- α - α' linkages or chain end groups

PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
IR properties	cm^{-1}	PPy electropolymerized under oxygen free conditions		(1, 13, 15)
1 1		O-H stretch	2,930-2,800	,
		C-O stretch	1,750-1,650	
		C-O-C asymmetrical stretch	1,099	
		Electropolymerized PPy-perchlorate first		
		electropolymerized and then reduced to its neutral		
		state		
		Neutral Ppy		
		NH band	3,400	
		CH band	3,100	
		C-H stretching	2,870-2,960	
		Pyrrole bands	<1,800	
		Ppy-perchlorate		
		NH band	Absent*	
		CH band	Absent	
		C-H stretching	_	
		Pyrrole bands	<1,800	

^{*}Masked by the tail of the 1-eV peak.

Polypyrrole

 $Crystallinity^{*(2)}$

Lattice	Unit cell dimensions (nm)			Cell angles (degrees)		
	а	b	с	α	β	γ
Monoclinic	0.82	0.735	0.682	90	90	117

^{*}PPy shows very low crystallinity.

PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Density	g cm ⁻³	-	1.47	(2)
Molecular weight	insolub Indirect r units a	cult to measure the molecular weight of PPy because it ole. nethods on substituted PPs has yielded the number of n s being between 100 and 1,000, contingent upon the erization method.		(1, 3)
Morphology	aggreg used. I to a sm solvent STM ima	dies on electropolymerized PPy show globular particle ates. The surface morphology is influenced by the elect appearance ranges from a rough dendritic surface in noother surface in low amounts of water and other hydres. ges of p-toluenesulfonate doped PPy show small island neeted by 1.5–2 nm wide fibrils.	CH ₃ CN roxylic	(1, 13, 14, 16)

Mechanical properties of PPy-toluenesul fonate $\mathrm{films}^{*(17,18)}$

Electrolyte	Elongation at break (%)	Young's modulus (MPA)	Applied voltage (V)
NaNO ₃	4-10	$2,386 \sim 1,930$	+0.4 to -0.8
$Mg(NO_3)_2$	3–8	$2,014 \sim 2,176$	+0.4 to -0.8
KCL	5–14	$3,415 \sim 1,415$	0 to -0.5
LiCL	7-21	$3,666 \sim 2,650$	0 to -0.5
NaCL	5-21	$3,621 \sim 2,193$	0 to -0.5
$MgCL_2$	6–7	$2,611 \sim 3,609$	0 to -0.5
H_2O	9	2,914	0 to -0.5

^{*}Samples: 30 mm long, 5 mm wide, dumb-bell shaped.

Cosolvent	Ratio	Young's modulus (Pa)	Elongation at break (%)
H ₂ O-ACN	1:99	2,413.2	4
-do-	1:99	827.4	17
-do-	25:75	482.6	4
EG-ACN	25:75	1,103.2	5
-do-	50-50	896.3	8
H ₂ O-EG-CAN	1:1:98	1,379	8
-do-	2:5:93	1,034.2	8
-do-	5:5:90	896.3	14
-do-	12.5:12.5:75	827.4	7
-do-	25:25:50	1,034.2	6
H ₂ O-EG	50:50	344.7	6
G-ACN	1:99	1,310	8
G-H ₂ O	50:50	1,654.7	6

^{*15-35} µm thick in various ACN-Co-solvent systems.

- 1. Skotheim, T. A., ed. Handbook of Conducting Polymers. Marcel Dekker, New York, 1986, vol. 1.
- 2. Geiss, H., et al. IBM J. Res. Dev. 27(4) (1983): 321.
- 3. Street, G. B., et al. Mol. Cryst. Lig. Cryst. 118 (1985): 137.
- 4. Galembeck, A., and O. L. Alves. Synth. Met. 84 (1997): 151.
- 5. Turcu, M. Brie, et al. Synth. Met. 84 (1997): 825.
- 6. Pickup, G., and R. A. Osteryoung. J. Am. Chem. Soc. 106 (1984): 2,294.
- 7. Wainright, S., and C. A. Zorman. J. Electrochem. Soc. 142(2) (1995): 384.
- 8. Funahashi, K., and K. Iwata. Mol. Cryst. Liq. Cryst. 118 (1985): 159.
- 9. Yoneyama, H., K. Wakamoto, and H. Tamura. J. Electrochem. Soc. 132(10) (1985): 2,414.
- 10. Street, B., et al. Mol. Cryst. Lig. Cryst. 83 (1982): 253.
- 11. Oh, J., et al. Synth. Met. 84 (1997): 147.
- 12. Park, S., and Y. B. Shim. J. Electrochem. Soc. 140(3) (1993): 609.
- 13. Diaz, F., and B. Hall. IBM J. Res. Dev. 27(4) (1983): 342.
- 14. Clark, C., J. C. Scott, and G. B. Street. IBM J. Res. Dev. 27(4) (1983): 313.
- 15. Satoh, M., et al. Synth. Met. 84 (1997): 167.
- 16. Diaz, A. Chemica Scr. 17 (1981): 145.
- 17. Murray, P., et al. Synth. Met. 84 (1997): 847.
- 18. Diaz, A., and B. Hall. IBM J. Res. Dev. 27(4) (1983): 342.
- 19. Wainright, S., and C. A. Zorman. J. Electrochem. Soc. 142(2) (1995): 384.
- 20. Murao, K., and K. Suzuki. J. Electrochem. Soc. 135(6) (1988): 1,415.
- 21. Yang, R., et al. J. Phys. Chem. 93 (1989): 511.
- 22. Lee, J. Y., et al. Synth. Met. 84 (1997): 137.
- 23. Keiji Kanazawa, K., et al. Synth. Met. 1 (1979-1980): 329.
- 24. Lei, J., and C. R. Martin. Synth. Met. 48 (1992): 331.

Polyquinoline

SHRISH RANE AND GREG BEAUCAGE

ACRONYM PQ

CLASS Polyheterocyclics; polyaromatics

STRUCTURE The structure of PQ can vary from a semirigid to a rigid-rod one depending on the synthesis conditions.

MAJOR APPLICATIONS Polyquinolines can be processed into films and fibers and can be spin coated. An ideal choice for high-performance films, electronic coatings, as a matrix for high-performance composites, and as an interlayer dielectric substrate in multichip modules.

PROPERTIES OF SPECIAL INTEREST The structure of polyquinolines can be altered from a semirigid chain to a rigid one during the synthesis. Although largely an amorphous polymer, some substituted rigid-rod members exhibit crystallinity in low amounts. Polyquinolines are found to posses excellent thermal and oxidative stability, good mechanical properties, low dielectric constants, low values of moisture absorption, and low thermal expansion coefficients.

${\bf SYNTHESIS}^{(1-4)}$

- (a) Acid or base catalyzed Friedlander synthesis.
- (b) Catalytic dehydrogenative polycondensation of nonsubstituted quinoline oligomers from 1,2,3,4,-tetrahydroquinoline in the presence of transition metal catalysts.
- (c) Condensation reaction of 3,3'-dibenzoylbenzidine with diacetyl and diphenyl compounds.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Ionization potential	eV	Calculated on PQ using the Valence Effective Hamiltonian Technique (VEH)		(5-8)
		Gas phase	7.89	
		Solid phase	~6.0	
Dielectric constant	-	Range; measured on $28 \mu \mathrm{m}$ PQ100 (thermoplastic PQ) film	2.5-2.6	(5-8)
Band-gap	eV	Calculated on PQ using the Valence Effective Hamiltonian Technique (VEH)	3.2	(5-8)
Electrooptic coefficient (r_{33}) wavelength	mm	Measured on a 20% wt. RT-9800/PQ film poled at $0.8\mathrm{MVcm}^{-1}$	1.3	(7)

			Po	olyquinoline	
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Conductivity	Scm ⁻¹	Vapor phase thermolysed PQ film	400	(1, 2, 9)	
		CVD deposited PQ film	$695 \sim 920$		
Thermal stability	TGA wt. loss	$\begin{array}{c} \text{Air} \\ \text{N}_2 \end{array}$	500-600 ~800	(1, 4, 10, 11)	
Glass transition temperature $T_{\rm g}$	K	_	523-663	(1, 4, 10, 11)	
Crystallization temperature T_c	K	In case for the rigid-rod varieties of polyquinoline	688–703	(1, 4, 10, 11)	
Melting temperature $T_{\rm m}$	K	In case for the rigid-rod varieties of polyquinoline	721–823	(1, 4, 10, 11)	
Solubility	Generally it	The solubility of PQ is dependent upon its molecular architecture. Generally it is soluble in a variety of organic solvents (e.g., CHCl ₃ , m -cresol, THF, H ₂ SO ₄ , and TCE).			
Tensile strength	MPa	-	97	(1, 4, 11)	
Tensile modulus	MPa	_	2,680	(1, 4, 11)	
Elongation at break	%	_	6.2	(1, 4, 11)	
Young's modulus	MPa	Rigid-rod PQ Semirigid PQ	4,800 1,900	(1, 4, 11)	
Morphology	without any TEM on the	n PQ films show a smooth surface of distinguishing characteristics like semirigid PQs reveal an amorphorout any ordered structure.	fibrils or filaments.	(9)	
Crystallinity	%	_	20-65	(1, 3, 4)	
PQ fiber crystalline <i>d</i> spacings	Å	_	10.23, 10.30, 10.31	(4)	

Solution properties $^{*(13)}$

Properties/Parameters	η (ml g $^{-1}$) †	k ^{∕†}	<i>M</i> _w (g mol ^{−1}) [‡]	$R_{\mathrm{g}}^2 imes 10^{10}$ (cm ²) [‡]	$\begin{array}{l} \text{A}_2 \times 10^4 \\ \text{(ml mol g}^{-1})^{\ddagger} \end{array}$	$M_{\rm e}~({\rm g~mol}^{-1})^{\ddagger}$
Values	$28\sim61$	$0.38 \sim 0.72$	$17,000 \sim 60,000$	$0.2 \sim 0.19$	3 ~ 18	23,000 ~ 110,000

^{*}Solvents used were *m*-cresol, chloroform, and THF.

[†]From intrinsic viscosity measurements.

[‡]From light scattering measurements. For a complete description of the samples, see reference (2).

- 1. Stille, J. K. Macromol. 14 (1981): 870.
- 2. Chiang, L. Y., et al. Synth. Met. 41-43 (1991): 1,425.
- 3. Agarwal, A. K., and S. A. Jenekhe. Macromol. 26 (1993): 895.
- 4. Sybert, P. D., W. H. Beever, and J. K. Stille. Macromol. 14 (1981): 493.
- 5. Hendricks, N. H., et al. Thirty-Six International SAMPE Symposium, 1991, p. 42.
- 6. Thémans, B., J. M. André, and J. L. Brédas. Solid State Comm. 50(12) (1984): 1,047.
- 7. Kai, Y. M., and A. K.-Y. Jen. App. Phys. Lett. 67(3) (1995): 299.
- 8. Stille, J. K. In *Contemporary Topics in Polymer Science*. Plenum Press, New York, 1984, vol. 5, p. 209.
- 9. Chiang, L. Y., et al. Synth. Met. 29 (1989): E483.
- 10. Wrasidlo, W., and J. K. Stille. Macromol. 9(3) (1976): 505.
- 11. Wrasidlo, W., et al. Macromol. 9(3) (1976): 512.
- 12. Norris, S. O., and J. K. Stille. Macromol. 9(3) (1976): 496.
- 13. Metzger Cotts, P., and G. C. Berry. J. Poly. Sci., Part B, Polymer Phys., 24(7) (1986): 1,493.

AKIRA HARADA

ACRONYMS, ALTERNATIVE NAME PR, MN, molecular necklace

CLASS Cyclic polymers

 $\begin{array}{ll} \textbf{STRUCTURE} & (NO_2)_2 - C_6H_3 - NH - (CH_2CH_2O)_n - CH_2CH_2NH - C_6H_3 - (NO_2)_2 + m(C_6H_{10}O_5)_6 \end{array}$

MAJOR APPLICATIONS Starting materials for tubular polymers. Potential use for curing of PEG.

PROPERTIES OF SPECIAL INTEREST Stable under ambient conditions. Relatively low cost.

PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Decomposing point	K	MN-1450	593	(1)
		MN-2000	593	(1)
		MN-3350	603	(2)
Molecular weight	${\rm g\ mol^{-1}}$	MN-1450	16,500	(1)
O		MN-2000	20,000	(1)
		MN-3350	23,500	(2)
		MN-1248	13,244	(3)
		MN-8500	44,000	(4)
Molecular weight	g mol ⁻¹	MN-1450	1,375	(1)
(of repeat unit)	0	MN-2000	1,111	(1)
(or repeat unit)		MN-3350	1,175	(2)
		MN-1248	1,060	(3)
Number of cyclodextrins	_	MN-1450	15	(1)
ý		MN-2000	18	(1)
		MN-3350	23	(2)
		MN-1248	12	(3)
		MN-8500	36	(4)
IR (characteristic absorption	cm^{-1}	MN-1450	3,386	(1)
frequencies)			2,923	()
			1,153	
			1,077	
			1,029	
UV (characteristic	nm	MN-1450	360	(1)
absorption frequencies)	ε , $1 \mathrm{mol}^{-1} \mathrm{cm}^{-1}$		17,950	` /

PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
¹ H-NMR	ppm	MN-1450, (DMSO-d6), 270 MHz Phenyl Cyclo-dextrin PEG	7.27–8.88 3.2–5.45 3.52	(1)
¹³ C-NMR	ppm	MN-1450, (DMSO-d6), 125.65 MHz Cyclo-dextrin PEG	71.46–101.90 69.35	(1)
Specific rotation	degrees unit ⁻¹	MN-1450, DMSO, 25°C, 589 nm	160	(1)
Solvent	DMSO 0.1N NaOH			(1) (5)
Nonsolvent	Organic solvent (be	enzene, hexane, acetone, chloroform), H_2O		(1)
Water content	w/w%	_	>10	_

- 1. Harada, A., et al. J. Org. Chem. 58 (1993): 7,524-7,528.
- 2. Harada, A., J. Li, and M. Kamachi. Nature 356 (1992): 325-327.
- 3. Harada, A., J. Li, and M. Kamachi. J. Am. Chem. Soc. 116 (1994): 3,192-3,196.
- 4. Harada, A. Supramol. Sci. 3 (1996): 19-23.
- 5. Harada, A. In *Large Ring Molecules*, edited by J. A. Semlyen. John Wiley and Sons, Chichester, 1996, p. 407.

AKIRA HARADA

ACRONYM, ALTERNATIVE NAME PR, molecular bracelet

CLASS Cyclic polymers

STRUCTURE*

 $\begin{array}{l} (RC_6H_4)_3 - CH_2CH_2O(CO - (CH_2)_m - CO - O - (CH_2CH_2O)_nCH_2CH_2O)_x - \\ CO - (CH_2)_8 - CO - O - (R - C_6H_4)_3 + 30 \text{-crown-} \\ 10[(CH_2CH_2O)_{10}], \text{ or } \\ 42 \text{-crown-} \\ 44 - CO - O - (R - C_6H_4)_3 - (CH_2CH_2O)_{20}] \end{array}$

MAJOR APPLICATIONS Potential use for curing of polyesters.

PROPERTIES OF SPECIAL INTEREST Stable under ambient conditions. Soluble in organic solvents.

PROPERTY	UNITS	CONDITIONS*	VALUES	REFERENCE
Molecular weight	$g \text{mol}^{-1}$	8,10,3-crown-10	4,000	(1)
, and the second		8,4,3-crown-10	8,700	
		8,2,3-crown-10	12,200	
		8,2,3-crown-10	24,000	
m/n	_	8,10,3-crown-10	0.15	(1)
		8,4,3-crown-10	0.028	, ,
		8,2,3-crown-10	0.24	
		8,2,3-crown-10	0.31	
Molecular weight	$g \text{mol}^{-1}$	8,10,3-crown-10	440m + 307n	(2)
(of repeat unit)	Ü	8,4,3-crown-10	440m + 168n	()
• •		8,2,3-crown-10	440m + 268n	
$[\eta]$	$\mathrm{dl}\mathrm{g}^{-1}$	8,2,3-crown-10	0.28	(1)
Mass % cyclic	_	8,10,3-crown-10	16	(1)
•		8,4,3-crown-10	5.5	
		8,2,3-crown-10	24	
		8,2,3-crown-10	30	
Melting temperature $T_{\rm m}$	K	8,2,3-crown-10	278, 291	(1)
		8,2,3-crown-10	282, 286	()
T_c	K	8,2,3-crown-10	264	(1)
		8,2,3-crown-10	265	()
Glass transition temperature $T_{\rm g}$	K	8,2,3-crown-10	219	(1)
1 g		8,2,3-crown-10	217.3	()
Solvents	_	8,2,3-crown-10	Acetone, THF, CH ₂ Cl ₂	(1)

^{*}*m,n,*3-crown-10.

- 1. Gibson, H. W., et al. J. Am. Chem. Soc. 117 (1995): 852.
- 2. Gibson, H. W. In *Large Ring Molecules*, edited by J. A. Semlyen. John Wiley and Sons, Chichester, 1996, p. 191.
- 3. Gong, C., and H. W. Gibson. Macromolecules 29 (1996): 7,029.
- 4. Gong, C., et al. Macromolecules 30 (1997): 4,807.
- 5. Gong, C., and H. W. Gibson. J. Am. Chem. Soc. 119 (1997): 5,862.

MICHAEL J. OWEN AND PETAR R. DVORNIC

ALTERNATIVE NAMES, TRADE NAMES Silphenylenes, silarylene-siloxane polymers

CLASS In-chain modified polysiloxanes

STRUCTURE

$$\begin{bmatrix} CH_3 & CH_3 & R_1 \\ Si & Si - O + Si - O \\ CH_3 & CH_3 & R_2 \end{bmatrix}$$

MAJOR APPLICATIONS Precursors for elastomers having increased thermal and thermo-oxidative stability while retaining low glass transition temperatures (i.e., gaskets, sealants, O-rings). Established method of building chain stiffness into polysiloxanes. Gas semipermeable membranes with increased separation ability retained high permeability (relative to polysiloxanes). Have been used as laminate impregnating resins in electrical insulation applications where heat resistance is required.

PROPERTIES OF SPECIAL INTEREST Partial replacement of siloxane units in polysiloxanes with silphenylene groups increases polymer chain stiffness, glass transition temperature, viscosity, crystallinity, thermal, thermo-oxidative, and solvent resistance. Many mechanical properties also improved although low-temperature elasticity is somewhat diminished. The best combination of properties is obtained for x=1 in the above structure (the so-called "exactly alternating silphenylenesiloxane polymers") although derivatives with x=0 through x=4 are also known. Many different homologues with various siloxanylene side groups (R_1 and R_2 in the formula above) have been reported, as well as meta-silphenylenes, although a good method for the synthesis of meta-phenylene containing monomer(s) has not been developed as yet.

Preparative techniques

Type of polymerization	Conditions	Polymer molecular weight (g mol ⁻¹)	Typical polydispersity index $(\overline{M}_{\rm w}/\overline{M}_{\rm n})$	References
(a) Self condensation of phenylenedisilanols	In melt or in refluxing solvent. Catalysts: NaOH; KOH; LiOH; K ₂ O. Solvents: benzene, toluene.	1,000-100,000	2-6	(1, 2, 3)
(b) Solution polycondensation of phenylenedisilanols and dichlorosilanes	In nitrogen. Solvents: THF, toluene or chlorobenzene. Room temperature or below.	30,000-50,000	1,6-2,2	(1, 4, 5, 6)
(c) Solution polycondensation of phenylenedisilanes and diaminosilanes	In nitrogen. Solvents: refluxing toluene or benzene.	50,000-500,000	1,8-2,2	(1, 4, 7–9, 22)

Type of polymerization	Conditions	Polymer molecular weight (g mol ^{–1})	Typical polydispersity index $(\overline{M}_{\rm w}/\overline{M}_{\rm n})$	References
(d) Solution polycondensation of phenylenedisilanols and diacetoxysilanes	In nitrogen. Solvents: refluxing toluene. Catalysts: triethylamine; <i>n</i> -hexylamine; 2,4,6-trimethylpyridine.	30,000-80,000	1,8-2,2	(1, 4, 10)
(e) Solution polycondensation of phenylenedisilanols and <i>bis</i> ureidosilanes	In nitrogen. Solvent: chlorobenzene. Temperature: -20°C to room temperature	100,000-800,000	1,8–2,2	(1, 4, 11)
Typical comonomers P -phenylenedisilanols (a-e) + dichlorosilanes (b); diaminosilanes (c); diacetoxysilanes (d); bisureidosilanes (e)				

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	$x = 1 \text{ and } R_1 = R_2 = CH_3$	283	_
Typical molecular weight range of polymer $(\overline{M}_{\mathrm{w}})$	$g \text{mol}^{-1}$	For most preparative procedures (a-e) (see above table)	30,000-150,000	_
Typical polydispersity index $(\overline{M}_w/\overline{M}_n)$	-	-	1.8-2.3	-
Density	$g cm^{-3}$	$x = 0$; $R_1 = R_2 = CH_3$; room temperature	1.102 1.103	(19) (3)
Unit cell dimensions	Å	$x = 0$; $R_1 = R_2 = CH_3$; tetragonal	a = 9.08, b = 9.08, c = 15.38 a = 9.02, b = 9.02, c = 15.43	(19)
Unit cell contents	-	$x = 0$; $R_1 = R_2 = CH_3$; tetragonal	4 4	(19) (21)
Heat of fusion (of repeat unit)	kJ mol ⁻¹	$x = 0$; $R_1 = R_2 = CH_3$; depression of T_m in mixtures	18.2	(3)
Solvents	-	_	THF, toluene, chlorobenzene	(1)
Nonsolvents	_	_	Methanol	(1)

Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ a = None	$x = 0$; $R_1 = R_2 = CH_3$; toluene/ 25°C; $\overline{M}_w = 70,000-400,000$ $x = 1$; $R_1 = R_2 = CH_3$; THF/30°C,	$K = 1.12 \times 10^{-4},$ $a = 0.75$	(3)
•				
		$\overline{M}_{\rm w} = 30,000-109,000$	$K = 7.86 \times 10^{-5},$ $a = 0.757$	(9)
		$x = 1$; $R_1 = CH_3$; $R_1 = C_6H_5$; $THF/30^{\circ}C$, $\overline{M}_w = 38,000-245,000$	$K = 5.34 \times 10^{-5},$ $a = 0.749$	(9)
		$x = 1$; $R_1 = R_2 = C_6H_5$; THF/30°C, $\overline{M}_w = 76,000-240,000$	$K = 3.28 \times 10^{-5},$ $a = 0.821$	(9)
Glass transition	K	x = 0		
temperature		TBA	248	(9, 12)
		Dlatometry $x = 1$; $R_1 = R_2 = CH_3$	256	(13)
		TBA	212	(9)
		DSC $(20^{\circ} \text{min}^{-1})$	211	(12, 14)
		DSC $(5^{\circ} \text{ min}^{-1})'$ $x = 2$; $R_1 = R_2 = CH_3$	209	(12, 14)
		DTA	210	(7)
		TBA	185	(9)
		$x = 3$; $R_1 = R_2 = CH_3$		· /
		DTA	201	(7)
		TBA $x = 4$; $R_1 = R_2 = CH_3$	171	(9)
		DTA	193	(7)
		TBA $x = 1$; $R_1 = CH_3$; $R_1 = C_6H_5$	164	(9)
		TBA	248	(9)
		DSC	241	(9)
		$x = 1$; $R_1 = CH_3$; $R_1 = (CH_2)_2CN$; DSC	236	(12, 16)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2)_3CN$; DSC	236	(12, 16)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2)_2CF_3$; DSC	222	(12, 15)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2)_2(CF_2)_5CF_2$; DSC	218	(12, 15)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2)_2CH_3$; DSC	208	(12, 16)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2CH = CH_2)$; DSC	207	(12, 16)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH = CH_2)$;	204	(12, 14)
		DSC	198	(12, 14)
		$x = 1$; $R_1 = R_2 = C_6 H_5$	-	(,,
		TBA	274	(9)
		DSC	269	(9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition	K	$x = 1$; $R_1 = C_6H_5$; $R_2 = (CH=CH_2)$; DSC	242	(12)
temperature		$x = 1$; $R_1 = C_6H_5$; $R_2 = (CH_2CH = CH_2)$; DSC	235	(12)
		$x = 1$; $R_1 = R_2 = (CH_2)_3 CN$; DSC	243	(12, 16)
		$x = 1$; $R_1 = H$; $R_2 = (CH_2)_2 CF_3$; DSC	236	(12, 15)
Melting point	K	$x = 0$; $R_1 = R_2 = CH_3$	421	(3)
			425	(19)
Thermal stability in	K	$x = 1$; $R_1 = R_2 = CH_3$; $TGA (10^{\circ} min^{-1})$	673	(1, 17)
nitrogen*		$x = 1$; $R_1 = H$; $R_2 = CH_3$; $TGA (10^{\circ} min^{-1})$	463	(1)
O		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2)_2(CF_2)_5CF_3$; TGA (10° min ⁻¹)	423	(1, 18)
		$x = 1; R_1 = CH_3; R_2 = (CH = CH_2)$	752	(1 17)
		TGA $(10^{\circ} \text{ min}^{-1})$	753	(1, 17)
		TGA (15° min ⁻¹)	820	(22)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2)_2 CH_3$; TGA (15° min ⁻¹)	818	(1, 16)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2CH = CH_2)$; TGA (15° min ⁻¹)	778	(1, 16)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2)_2 CN$; TGA	768	(1, 16)
		$(15^{\circ} \text{ min}^{-1})$ $x = 1; R_1 = \text{CH}_3; R_2 = (\text{CH}_2)_3 \text{CN}; \text{TGA}$	798	(1, 16)
		$(15^{\circ} \text{ min}^{-1})$ $x = 1$; $R_1 = CH_3$; $R_2 = C_6H_5$; $TGA (15^{\circ} \text{ min}^{-1})$	668	(22)
		$x = 1$; $R_1 = C13$; $R_2 = C_6 R_5$; $R_3 = R_1 = R_2 = (CH_2)_3 CN$; $R_4 = R_2 = (CH_2)_3 CN$; $R_5 = R_5 R_5$; $R_5 = R_5$; $R_5 =$	783	(1, 16)
		$x = 1$; $R_1 = R_2 = (CH_2/3CH_2, TGH_1)$; $R_1 = R_2 = (CH_2/3CH_2, TGH_2)$; $R_2 = (CH_2/3CH_2, TGH_2)$; $R_3 = (15^{\circ} \text{ min}^{-1})$	807	(1, 16)
		(15 mm)		
Thermo-oxidative	K	$x = 1$; $R_1 = R_2 = CH_3$; TGA $(10^{\circ} \text{ min}^{-1})$	618	(1, 17)
stability in air*		$x = 1$; $R_1 = H$; $R_2 = CH_3$; $TGA (10^{\circ} min^{-1})$	453	(1)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH_2)_2(CF_2)_5CF_3$	423	(1, 18)
		$x = 1$; $R_1 = CH_3$; $R_2 = (CH=CH_2)$; TGA (15° min ⁻¹)	704	(22)
		$x = 1$; $R_1 = CH_3$; $R_1 = C_6H_5$; $TGA (15^{\circ} min^{-1})$	669	(22)
Tensile modules	MPa	$x = 1$; $R_1 = R_2 = CH_3$; 20–30% wt. silica filler; <3% cross-linking agent; <3 ppm antioxidant	1.5-3.8	(1, 8, 20)
Tensile strength	MPa	$x = 1$; $R_1 = CH_3$; $R_2 = C_6H_5$; 20–50% wt. silica	28.6-31.4	(1, 8)
(ultimate)		filler; 10–15% dibutyltin diacetate $x = 1$; $R_1 = R_2 = CH_3$; 20–30% wt. silica filler; <3% cross-linking agent; <3 ppm antioxidant	93.8-112.4	(1, 8, 20)
Tensile strength	MPa	$x = 1$; $R_1 = CH_3$; $R_2 = C_6H_5$; 20–50% wt. silica	3.9-5.9	(1, 8)
(nominal)		filler; 10–15% dibutyltin diacetate $x = 1$; $R_1 = R_2 = CH_3$; 20–30% wt. silica filler; <3% cross-linking agent; <3 ppm antioxidant	3.5-13.0	(1, 8, 20)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Elongation at break	%	$x = 1$; $R_1 = R_2 = CH_3$; 20–30% wt. silica filler; <3% cross-linking agent; <3 ppm antioxidant	,	(1, 8)
		$x = 1$; $R_1 = CH_3$; $R_2 = C_6H_5$; 20–50% wt. silica filler; 10–15% dibutyltin diacetate	530–740	

^{*}Onset of weight loss in dynamic TGA.

- 1. Dvornic, P. R., and R. W. Lenz. *High Temperature Siloxane Elastomers*. Hüthig and Wepf, Bazel-Heidelberg-New York, 1990.
- 2. Sweda, M. U. S. Patents 2,561,429 and 2,562,000 (1951).
- 3. Merker, R. L., and M. J. Scott. J. Polym. Sci., Part A, 2 (1964): 15.
- 4. Dvornic, P. R. Polym. Bulletin 28 (1992): 339.
- 5. Lai, Y.-C., P. R. Dvornic, and R. W. Lenz. J. Polym. Sci., Polym. Chem. Ed., 20 (1982): 2,277.
- 6. Wu, T. C. U. S. Patent 3,325,530 (1967).
- 7. Breed, L. W., R. L. Elliott, and M. E. Whitehead. J. Polym. Sci., Part A-1, 5 (1967): 2,745.
- 8. Burks, R. E., Jr., et al. J. Polym. Sci., Polym. Chem. Ed., 11 (1973): 319.
- Pittman, C. U., Jr., W. J. Patterson, and S. P. McManus. J. Polym. Sci., Polym. Chem. Ed., 14 (1976): 1,715.
- 10. Rosenberg, H., and B. D. Nahlovsky. Polym. Preprints 19(2) (1978): 625.
- 11. Dvornic, P. R., and R. W. Lenz. J. Polym. Sci., Polym. Chem. Ed. 20 (1982): 951.
- 12. Dvornic, P. R., and R. W. Lenz. Macromolecules 25 (1992): 3,769.
- 13. Magill, J. H. J. Appl. Phys. 35 (1964): 3,249.
- 14. Dvornic, P. R., and R. W. Lenz. J. Polym. Sci., Polym. Chem. Ed., 20 (1982): 593.
- 15. Dvornic, P. R., and R. W. Lenz. Macromolecules 27 (1994): 5,833.
- Hani, R., and R. W. Lenz. In Silicon-Based Polymer Science, edited by J. M. Ziegler and F. W. G. Fearon. ACS Advances in Chemistry Series, vol. 224, p. 741, American Chemical Society, Washington, D.C., 1990.
- 17. Dvornic, P. R., and R. W. Lenz. Polymer 24 (1983): 763.
- 18. Dvornic, P. R., et al. J. Polym. Sci., Part A: Polym. Chem., 27 (1989): 3,503.
- 19. Magill, J. H. J. Polym. Sci., Part A-2, 5 (1967): 89.
- 20. Livingston, M. E., P. R. Dvornic, and R. W. Lenz. J. Appl. Polym. Sci. 27 (1982): 3,239.
- 21. Gardner, K. H., J. H. Magill, and E. D. T. Atkins. Polymer 19 (1978): 370.
- 22. Zhu, H. D., S. W. Kantor, and W. J. MacKnight. Macromolecules 31 (1998): 850.

Poly(silylenemethylene)

Q. H. SHEN AND L. V. INTERRANTE

ACRONYMS, TRADE NAMES, ALTERNATIVE NAMES PSM, PSE (I), HPCS, HBPSE (II), poly(silylenemethylene) (I), poly(silaethylene) (I), hydridopolycarbosilane (II)

CLASS Polycarbosilanes

STRUCTURE SiH₂CH₂

PREPARATIVE TECHNIQUES The approaches used to make poly(silylenemethylene) include ring opening polymerization (ROP) of 1,1,3,3-tetrachloro-1,3-disilacyclobutanes, followed by reduction of the Si—Cl groups with LiAlH₄, or a Grignard coupling reaction of Cl₃SiCH₂Cl by reduction with LiAlH₄. The ROP route yields a high molecular weight linear polymer (labeled **I**). The Grignard coupling gives a relatively low molecular weight polymer with a hyperbranched structure (labeled **II**).

MAJOR APPLICATIONS Precursors for SiC ceramic and SiC-matrix composites.

PROPERTIES OF SPECIAL INTEREST Relatively high cost. Very high yield for stoichiometric SiC ceramic. Viscous liquid, miscible with hydrocarbons; moderately stable in air at room temperature. Poor resistance to base and to oxidation by air at elevated temperatures (>100°C) or after a long time (several weeks) at room temperature. (These properties apply to both **I** and **II**.)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Molecular weight	$g \text{mol}^{-1}$		$M_{\rm n}$	$M_{ m w}$	
		Polymer I, gpc, PS standards Polymer I, NMR Polymer II, po/gpc	24,000 11,400 740	68,000 - 1,330	(1, 2) (2) (3, 4)
IR (characteristic absorption frequencies)	cm ⁻¹	For linear poly(silylenemethylene) (I)	2,130; 1,353;	921; 1,881; 2,126; 1,406; 1,250; 1,036; 25; 856; 840;	(5)
		For branched poly(silylenemethylene) (II)	2,140;	920; 2,870; 1,450; 1,350; 1,040; 930; 60	(3)
Raman (characteristic absorption frequencies)	cm ⁻¹	For I	2,120; 1,030;	875; 2,125; 1,528; 1,356; 983; 946; 789; 06; 686; 600; 72	(5)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
NMR spectra	ppm	For I; solution (C ₆ D ₆) ¹ H NMR ¹³ C NMR ²⁹ Si NMR For II; solution ¹ H NMR ¹³ C NMR ²⁹ Si NMR	-0.15, 4.10 -9.2 -34.4 -0.4 to 1.15; 3.55 to 4.3 -12 to 9; 12.5 to 26 -66 to -53; -39 to -26; -14 to -8; 0.0 to 5	(1, 5)
Monoclinic cell dimensions	Å	For I	a = 5.70, b = 8.75, c = 3.25, $\gamma = 97.5$	(5)
Heat of fusion	$\mathrm{J}\mathrm{g}^{-1}$	Linear PSM	15.2	(5)
Glass transition temperature	K	Linear PSM	133–138	(6)
Melting transition temperature	K	Linear PSM	251–298	(6)
Degree of crystallinity	_	Linear PSM	70	(6)
Degree of branching	_	Linear PSM (I); methyl branching unit Branched PSM (II); Branching units Si(CH ₂ -) ₄ SiH(CH ₂ -) ₃ SiH ₂ (CH ₂ -) ₂ SiH ₃ (CH ₂ -)	0.5% Ratio of branching units 2 8 20 11	(2) (4)
Decomposition temperatures	K	In N_2 (for both I and II) Starting decomp. temp. Ending decomp. temp.	~473 ~873	(7)
Important patents	_	Branched PSM (II) Linear PSM (I)	_	(8) (9)
Cost	_	Branched PSM (II)	Quoted on request from supplier	_
Availability/Supplier	g to Kg	(II)	Starfire Systems, Inc., Watervliet, New York	_

Poly(silylenemethylene)

Pyrolyzability

CONDITIONS	PYROLYSIS TEMP. (K)	STRUCTURE OF CERAMIC FORMED	REFERENCE
Nature of product from linear and branched PSMs	~873 to ~1,673 ~1,673 to ~1,873	Amorphous SiC β -SiC	(7)
Amount of product under N_2 Linear PSM (I) Branched PSM (II)	1,273 1,273	PYROLYSIS PRODUCT (SIC) 87% 60–80%	(7)
Purity of SiC Linear PSM (I) Branched PSM (II)	1,273 1,273	PYROLYSIS PRODUCT (SiC) 1:1 stoichiometric Si to C SiC with slight excess of C	(2, 7)
Gaseous products under N_2 Linear PSM Deuterated PSM	473–673 473–673	SUBSTANCES OTHER THAN DESIRED CERAMIC H_2 and C_2 hydrocarbons D_2 and HD	(7)

- 1. Tsao, M. W., et al. Macromolecules 29 (1996): 7,130.
- 2. Wu, H. J., and L. V. Interrante. Macromolecules 25 (1992): 1,840.
- 3. Whitmarsh, C. K., and L. V. Interrante. Organometallics 10 (1991): 1,336.
- 4. Interrante, L. V., et al. J. Am. Chem Soc. 116 (1994): 12,086.
- 5. Shen, Q., and L. V. Interrante. Macromolecules 29 (1996): 5,788.
- 6. Rushkin, I., Q. Shen, E. Lehman, and L. V. Interrante. Macromolecules 30 (1997): 3,141.
- 7. Interrante, L. V., C. K. Whitmarsh, W. Sherwood, and H. J. Wu. MRS Symposium Proc. 346 (1994): 593.
- 8. Whitmarsh, C. K., and L. V. Interrante. U.S. Patent 5,153,295 (6 Oct. 1992).
- 9. Smith, T. L. U.S. Patent 4,631,179 (23 Dec. 1986).

Polystyrene

ZHENGCAI PU

ACRONYM, ALTERNATIVE NAME PS, styrofoam

CLASS Vinyl polymers

$$\begin{array}{cc} \text{STRUCTURE} & \{ CH - CH_2 \} \\ & C_6H_5 \end{array}$$

MAJOR APPLICATIONS One of the most widely used plastics, having applications in industries of packaging, appliances, construction, automobiles, electronics, furniture, toys, housewares, and luggage.

PROPERTIES OF SPECIAL INTEREST Crystal clear thermoplastic, hard, rigid, free of odor and taste, ease of heat fabrication, thermal stability, low specific gravity, excellent thermal and electrical properties for insulating purpose, and low cost.

MAJOR PRODUCERS AND/OR SUPPLIERS Dow Chemical USA; Huntsman Chemical Corporation; BASF Corporation; Fina Oil and Chemical Company; American Polymers, Inc.; American Polystyrene Corporation; Amoco Chemicals; Arco Chemical Company; Bayer Corporation; Chevron Chemical Company; StyroChem International, Inc.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE		
Abrasion loss factor	mg	DIN 53516	640	(5)		
Birefringence dispersion	-	$\frac{\Delta n(\lambda)}{\Delta n(546\mathrm{nm})}$	$A + B/\lambda^{2} + C/\lambda^{4}$ $A = 0.8905$ $B = 0.275 \times 10^{-9} \text{cm}^{2}$ $C = 0.153 \times 10 - 18 \text{ cm}^{4}$	(1, 4)		
Ceiling temperature	K	Gas to gas Liquid to amorphous	550 670	(5)		
Characteristic ratio $\langle r^2 \rangle_0/nl^2$		$T \sim 300$ K, various solvents	9.85	(1)		
Cohesive energy	$kJ mol^{-1}$	_	29.6-35.4	(5)		
Solvents	phthala methyl	Benzene, carbon disulfide, cyclohexane, cyclohexanone, dimethyl phthalate, dioxane, ethyl acetate, ethylbenzene, glycol formal, methyl ethyl ketone, 1-nitropropane, phosphorus trichloride, tetrahydrofuran, tributyl phosphate				
Nonsolvents	chloroh	cetic acid, alcohols, diethyl eth ydrin, glycol ethers, isobutyl ph d hydrocarbons, trichloroethyl ate	nthalate, phenol,	(1)		

Pol	ysty	/ren	e
-----	------	------	---

PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Compressibility coefficient	bar ⁻¹	$298 \mathrm{K} - T_{\mathrm{g}}$ $T_{\mathrm{g}} - 593 \mathrm{K}$			$2.7-4.9(\times10^{-5})$ $5.3-11.3(\times10^{-5})$	(2)
Critical heat flux, combustion	kW m ²	_			13	(2)
Density ρ	$g cm^{-3}$ $g cm^{-3}$ $g cm^{-3} K^{-1}$	Amorphous Crystalline $d\rho/dT$ $< T_{\rm g}$ $> T_{\rm g}$			$1.04-1.065$ $1.111-1.127$ -2.65×10^{-4} -6.05×10^{-4}	(1, 4, 5)
Dielectric constant	-	At 1kHz Amorphous Crystalline			2.49-2.55 2.61	(1, 4, 5) (1, 4)
Dielectric loss	-	At 1kHz Amorphous Crystalline			$15 \times 10^{-4} \\ 3 \times 10^{-4}$	(5)
Diffusion coefficient D_0	$cm^2 s^{-1} \times 10^{-7}$	Acetone Benzene Butanone Carbon tetrachloride Cyclohexane Cyclohexanone Dioxane Ethyl acetate Ethyl benzene Tetrahydrofuran Toluene	293 298 293 300 303 298 303 293 300	M.W. (kg mol ⁻¹) 1,200-2,450 1.32-3.9 180-5,500 82-1,100 90 200 79.8 117-596 770 198-570 140-2,850	1.18-0.80 27.9-17.2 6.4-0.81 4.43-1.04 4.0 5.2 3.10 6.23-2.45 0.96 13.41-8.02 4.30-0.74	(1)
Enthalpy of fusion	$kJ mol^{-1}$	_			8.37-10	(1, 2, 4)
Entropy of fusion	$kJK^{-1}mol^{-1}$	_			0.0153-0.0168	(2)
Friction coefficient	_	_			0.38	(5)
G factor	$\begin{array}{c} \text{mol } \text{J}^{-1} \\ (\times 10^{-8}) \end{array}$	Cross-linking $G(S)$	<i>X</i>)		7.14–19.2 3.53–7.14	(10)
Glass transition temperature	K	_			373	(2, 4, 5)

						Polystyrene
PROPERTY	UNITS	CONDITIONS			VALUE	REFERENCE
Hardness						(5, 9)
Rockwell hardness	_	R scale			130	
		M scale			75	
Ball indention hardness	MPa	_			110	
Bierbaum scratch hardness	_	_			10.3	
Heat capacity C_p	$kJK^{-1}mol^{-1}$	$T = 100 \mathrm{K}$			0.04737	(2)
		$T = 300 \mathrm{K}$			0.12738	(2)
		T 400 K			0.13258	(2)
		$T = 400 \mathrm{K}$ $T = 600 \mathrm{K}$			0.20124 0.25430	(2)
dC_{p}/dT	$kJ K^{-2} mol^{-1}$				4.21×10^{-4}	(2) (1, 4)
uC_{p}/uT	K) K IIIOI	I = 323 K			4.21 × 10	(1, 4)
Heat conductivity	$Js^{-1}m^{-1}K^{-1}$	Amorphous			0.13	(5)
Heat of combustion	$kJ mol^{-1}$	_			-4.33×10^3	(1, 4)
Ignition temperature	K	_			675	(2)
Impact strength (Izod)	$\mathrm{J}\mathrm{m}^{-1}$	ASTM D256			19.7	(5)
Interaction parameter	_	Solvent	Temp. (K)	Volume fraction		(1)
χ		-		of polymer		
		Acetone	298	0.6-1	0.81 - 1.1	
		Benzene	298	0.8-0.2	0.26 - 0.42	
		Chloroform	298	0.8 - 0.2	0.17 - 0.52	
		Cyclohexane	307	0-0.8	0.50-0.93	
		Methylcyclo- hexane	349	0-0.4	0.49-0.67	
		Methyl ethyl ketone	298	0.4-0.8	0.63-0.77	
		Propyl acetate	298	0.4-0.8	0.66	
		Toluene	298	1-0.2	0.16-0.37	

Interfacial tension ${\gamma_{12}}^{(2)}$

Polymer pair	Temp. (K)	$\gamma_{ m 12}$ (mN m $^{-1}$)	$-d\gamma_{12}/dT$ (mN m $^{-1}$ K $^{-1}$)
Polystyrene/polychloroprene	413	0.5	_
Polystyrene/poly(methyl methacrylate)	293	3.2	0.013
Polystyrene/poly(vinyl acetate)	293	4.2	0.004
Polystyrene/polyethylene	493	4.4	_
Polystyrene/poly(dimethylsiloxane)	293	6.1	$\sim \! 0$
Polystyrene/polyethylene, linear	293	8.3	0.020

Polystyrene

Mark-Houwink parameters: K and $a^{(1)}$

Solvent	$K imes 10^3 ext{ (ml g}^{-1} ext{)}$	а	Temp. (K)	M.W. range (kg mol ⁻¹)
Benzene	11.3	0.73	298	70-1,800
Butyl chloride	15.1	0.659	314	290-1,060
Chlorobenzene	7.4	0.749	299	620-4,240
Chloroform	7.16	0.76	298	120-2,800
Cyclohexane	82	0.50	307	10-700
Dimethylformamide	31.8	0.603	308	4-870
Dioxane	15.0	0.694	307	80-800
Ethylbenzene	17.6	0.68	298	70-1,500
Tetrahydrofuran	11.0	0.725	298	10-1,000
Toluene	12.0	0.71	303	400-3,700

Melt viscosity: molecular weight relationship constant $\boldsymbol{k}^{(4)}$

	Temperature (K)	Molecular weight range (kg mol ⁻¹)	k
Atactic	490	≥38	13.04
Isotactic	554	100-600	14.42

Melt viscosity: temperature relationship constants $^{(4)}$

*	<i>T</i> _R = 411 K	$T_{ m R}=$ 373 K	Universal value
C_1^R	6.99	13.35	17.4
C_2^R	81.8	42.00	51.6

 $^{^*}M_{\rm n} = 40,700\,{\rm g\,mol}^{-1},\,M_{\rm w}/M_{\rm n} = 2.2.$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Limiting oxygen index (LOI)	%	_	17.8	(11)
Melting point	K	-	513	(1, 4, 5)
Tensile modulus <i>E</i>	MPa	Unoriented Oriented monofilament	3,200–3,400 4,200	(1, 5, 9)
dE/dT	$\mathrm{MPa}\mathrm{K}^{-1}$	Unoriented	-4.48	(1)
Compressive modulus	MPa	_	3,000	(4)
Shear modulus G	МРа	_	1,200	(5)
Bulk modulus	MPa	_	3,000	(5)
Flexural modulus	MPa	_	3,100	(5)

				Polystyrene
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Optical dispersion $\eta_{\rm F} - \eta_{\rm C}$	_	$\lambda = 486.1 \text{nm}$ $\lambda = 656.3 \text{nm}$	1.92×10^{-2}	(4, 12)
Permeability coefficient	m^{3} (STP) $m s^{-1}$ $m^{-2} Pa^{-1}$	$T = 298 \mathrm{K}; \mathrm{permeant} = H_2$ He N_2 O_2 H_2O CO_2	17.0×10^{-4} 14.0×10^{-4} 0.59×10^{-4} 2.0×10^{-4} 840×10^{-4} 7.9×10^{-4}	(1)
Poisson ratio	_	_	0.325-0.33	(1, 4, 5)
Refractive index n dn/dT	K^{-1}	$\lambda = 589.3 \mathrm{nm}$	$1.59 - 1.60 \\ -1.42 \times 10^{-4}$	(1, 4)
Refractive index increment dn/dc	$\mathrm{ml}~\mathrm{g}^{-1}$	Various solvents	0.103-0.225	(1)
Resistivity	ohm cm		10^{20} – 10^{22}	(1, 4)
Scattering length density $r_{\rm n}$	cm^{-2}	Neutron	1.415×10^{10}	(2)

Second virial coefficient $A_2^{(1)}$

Solvent	$\begin{array}{l} \textbf{A_2} \times \textbf{10^4} \\ (\textbf{mol cm^3 g}^{-\textbf{2}}) \end{array}$	Temp. (K)	Molecular weight (kg mol ^{–1})
Benzene	3.3-3.6	293	7,100-1,330
Bromobenzene	2.15-6.38	293	1,750-35.5
Butanone	0.0127	293	150
Carbontetrachloride	3.58	293	150
Chloroform	6.56	_	_
Dioxane	2.75	_	_
Methyl acetate	-0.235	303	179.3
1-Phenyldecane	-3.22	295	390
Toluene	1.37-2.32	293	40,200-12,300

Polystyrene

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Solubility parameter	$(MPa)^{1/2}$	Various solvents	15.6-21.1	(1, 5, 13)
Sound absorption, longitudinal	$\mathrm{dB}\;\mathrm{cm}^{-1}$	RT, 2MHz	1.4	(14)
Speed of sound Longitudinal C_L $-dC_L/dT$ $dC_L/d\log f$ $d\ln C_L/dP$ Shear C_S $-dC_S/dT$ $d\ln C_S/dP$	$m s^{-1}$ $m s^{-1} K^{-1}$ $m s^{-1} dec^{-1}$ GPa^{-1} $m s^{-1}$ $m s^{-1} K^{-1}$ GPa^{-1}	RT, 1 MHz	2,400 1.5 1.4 0.9 1,150 4.4 0.5	(2)
Stress-optical coefficient (brewsters)	_	Monofilament Extruded sheet Compression molded	10.1 9.5 8.3–8.7	(1, 4)

Surface tension $\gamma \, (\text{mN m}^{-1})^{(1)}$

Molecular weight	Temperatu	$-d\gamma/dT \ (ext{mN m}^{-1} ext{ K}^{-1})$		
(g mol ⁻¹)	293	423	473	(mN m ⁻¹ K ⁻¹)
$M_{\rm v} = 44,000$	40.7	31.4	27.8	0.072
$M_{\rm n} = 9.300$	39.4	31.0	27.7	0.065
$M_{\rm n} = 1,700$	39.3	29.2	25.4	0.077

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Thermal conductivity	${ m W}{ m m}^{-1}{ m K}^{-1}$	$T = 273 \mathrm{K}$	0.105	(1, 2, 4)
•		$T = 323 \mathrm{K}$	0.116	(1, 2, 4)
		$T = 373 \mathrm{K}$	0.128	(1, 2, 4)
		$T = 473 \mathrm{K}$	0.13	(2)
		$T = 573 \mathrm{K}$	0.14	(2)
		$T = 673 \mathrm{K}$	0.160	(2)
Thermal decomposition	K	Initial temperature	573	(2)
•		Half decomposition temperature	637	, ,
Thermal expansion	K^{-1}	Linear		(1, 4)
coefficient		$<$ $T_{ m g}$	$6-8 \ (\times 10^{-5})$	(,)
		Volume		
		$<$ $T_{ m g}$ $>$ $T_{ m g}$	$1.7-2.1 (\times 10^{-4})$ $5.1-6.0 (\times 10^{-4})$	
		$>T_{\rm g}$	$5.1 - 6.0 \ (\times 10^{-4})$	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Theta temperature Θ	K	Solvent i-Butyl acetate n-Butyl formate 1-Chlorodecane 1-Chloroundecane 1-Chloroundecane Cyclohexane Cyclohexanol Cyclopentane Decalin Diethyl malonate Diethyl oxalate Ethyl acetoacetate Ethylcyclohexane Methylcyclohexane 3-Methylcyclohexanol 1-Phenyldecane	227 264 279 332 306 307–308 352–361 293 285–304 304–309 325–333 381 343 333–343 371 301-304	(1)
Tensile strength at break	MPa	_	30-60	(2)
Elongation at break	%	_	1-4	(2)
Flexural strength	MPa	_	95	(5)
Compressive strength	MPa	_	95	(5)
Unit cell Crystallographic system Space group Cell dimension Repeat unit per unit cell	_ _ Å	Isotactic	Rhombohedral D3D-6 $a_0 = 21.9-22.1$ $b_0 = 21.9-22.1$ $c_0 = 6.65-6.63$ 18	(1, 4)
Upper use temperature	K	_	333	(2)
Vicat softening point	K	_	373	(4)
Zisman critical surface tension	$\mathrm{mN}\mathrm{m}^{-1}$	_	32.8	(15)

- Brandrup, J., and E. H. Immergut. Polymer Handbook, 3d ed. Wiley-Interscience, New York, 1989.
- Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, Woodbury, New York, 1996.
- 3. Windholz, M. *The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals,* 10th ed. Merck and Co., Rahway, N.J., 1983.

Polystyrene

- 4. Boyer, R. F. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1970, vol. 13.
- 5. Van Krevelen, D. W., and P. J. Hoftyzer. *Properties of Polymers: Correlations with Chemical Structure*. Elsevier Publishing Company, Amsterdam, 1972.
- 6. Ulrich, H. Introduction to Industrial Polymers, 2d ed. Hanser Publishers, Munich, 1993.
- 7. Directory of Chemical Producers, United States of America. SRI International, Menlo Park, Calif., 1996.
- 8. Chem Sources-U.S.A. Chemical Sources International, Pendleton, S.C., 1997.
- "Styrene Plastics" In Technical Data on Plastics. U.S. Manufacturing Chemists' Association, Washington, D.C., 1957.
- 10. Parkinson, W. W., and R. M. Keyser. *The Radiation Chemistry of Macromolecules*, vol. II, edited by M. Dole. Academic Press, New York, 1973.
- Cullis, C. F., and M. M. Hirschler. The Combustion of Organic Polymers. Clarendon Press, Oxford, 1981.
- 12. Boundy, R. H., and R. F. Boyer, eds. In *Styrene: Its Polymers, Copolymers and Derivatives*. Reinhold Publishing, New York, 1952.
- 13. Mangaraj, D., S. K. Bhatnagar, and S. B. Rath. Makromol. Chem. 67 (1963): 75.
- 14. Wada, Y., and K. Yamamoto. J. Phys. Soc. Jpn. 11 (1956): 887.
- 15. Ellison, A. H., and W. A. Zisman. J. Phys. Chem. 58 (1954): 503.

Polystyrene, head-to-head

MICHAEL. T. MALANGA

ACRONYMS H-H PS, H-H polystyrene

CLASS Chemical copolymers

STRUCTURE $[-CH_2-CH(C_6H_5)-CH(C_6H_5)-CH_2-]$

$$\begin{array}{c|c}
-H_2C - C - C - CH_2
\end{array}$$

PREPARATIVE TECHNIQUE H-H polystyrene has never been obtained directly from styrene monomer. It is synthesized by the selective hydrogenation of 1,4-poly(2,3-diphenyl-1,3-butadiene) (PDPB) using potassium/ethanol. PDPB is prepared by the free radical polymerization of 2,3-diphenyl-1,3-butadiene to give a 45% *cis*, 55% *trans* structure. H-H PS is then given in the same ratio of erythro and threo linkages after the chemical reduction of the internal double bond of the PDPB. (1,2)

MAJOR APPLICATIONS This polymer is not manufactured commercially by any company in the world at this time. It has only been prepared in laboratory scale quantities. The primary reason for this is that the cost of preparing H-H polystyrene would be very high for the perceived value of its properties. There are no published reports of the mechanical properties of H-H polystyrene at this time. However, given its measured glass transition temperature and backbone structure it may be anticipated to have similar tensile, modulus, and other mechanical properties to commercial H-T polystyrene.

PROPERTIES OF SPECIAL INTEREST H-H PS is completely miscible with poly(2,6-dimethyl phenylene oxide) in the same way that H-T PS is miscible with that polymer. (3) The $T_{\rm g}$ of the blends are then intermediate between the two polymers. The thermal stability and glass transition temperature of H-H PS are very similar to those of atactic H-T PS despite the structural differences. (1) Although the H-H linkage has been suggested as a possible "weak link" in the commonly manufactured H-T polystyrene, the thermal stability evidence suggests that this is not the case. (4)

Polystyrene, head-to-head

PROPERTY	UNIT	CONDITIONS	VALUE	REFERENCE			
Preparation (see above) hydrogenation of 1,4-poly (2,3-diphenyl- 1,3-butadiene)	chemical red	Radical polymerization of 2,3-diphenyl-1,3-butadiene followed by chemical reduction of the internal double bond yields the H-H polystyrene structure					
Structural analysis: ¹³ C NMR	Chemical shift in ppm relative to TMS	30% solution in chlorobenzene at 90°C Phenyl 1 carbon Methine backbone carbon Methylene backbone carbon	144.3 49.7 28.9	(1, 5)			
Glass transition temperature	K	DSC with heating rate of 10°C min ⁻¹	370	(1)			
Thermal decomposition temperature	K	DTG onset of degradation, 10°C heating rate, under nitrogen	620	(1)			
Theta temperature	K	Cyclohexane solvent	292	(6)			
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	THF solvent at 25°C	$K = 5.3 \times 10^{-2}$ $a = 0.61$	(6)			
Second virial coefficient A_2	mol cm ³ g ⁻²	Cyclohexane solvent at 35°C, 82,800 weight average molecular weight	2.3×10^{-4}	(6)			
Interaction parameter	-	THF solvent at 25°C Cyclohexane at 35°C	0.464 0.471	(6)			
Crystallinity	The polymer sh amorphous.	nows no crystallinity. It is considered co	mpletely	(4)			

- 1. Inoue, H., M. Helbig, and O. Vogl. Macromolecules 10(6) (1977): 1,331.
- 2. Foldes, E., et al. Eur Polym. J. 29(2-3) (1993): 321.
- 3. Kryszewski, M., et al. Polymer 23 (1982): 271.
- 4. Vogl, O., M. Malanga, and W. Berger. Contemporary Topics in Polymer Science. Plenum Press, New York, 4 (1984): 35.
- 5. Bangerter, F., S. Serafini, and P. Pino. Makromol. Chem., Rapid Commun., 2 (1981): 109.
- 6. Strazielle, C., H. Benoit, and O. Vogl. Eur. Polym. J. 14(5) (1978): 331.

Poly(sulfur nitride)

J. F. RUBINSON AND HARRY B. MARK, JR.

ACRONYM, ALTERNATIVE NAME $(SN)_x$, polythiazyl

CLASS Inorganic and semi-inorganic polymers

STRUCTURE [::: S ::: N :::]

MAJOR APPLICATIONS Electrode fabrication in crystalline, film, or paste form. Electrodes are useful in both aqueous and some nonaqueous solvents. Ion-selective electrode. Contact with semiconductors yields high-voltage junction. Photocell fabrication.

PROPERTIES OF SPECIAL INTEREST A number of the intermediates in its synthesis as well as the dry polymer are explosive under certain conditions. A thorough literature survey of its properties should be undertaken before synthesis or use. (1,2) Intrinsic metallic conductor. Undoped polymer is a superconductor at 0.3 K, while doped forms have been made with higher $T_{\rm c}$.

PROPERTY	UNITS	CONDITIONS	VALUES					REFERENCE
Electrochemical	V vs. SCE	,	Et NCIO	I :C1O	M- NCIO	I : C1		(3)
breakdown potential		Solvent	Et ₄ NCIO ₄	LICIO ₄	Me ₄ NClO ₄	LiCl	_	
$(i \ge 0.02\mathrm{mAcm}^{-2})$		Ethanol	_	_	-0.51	-0.57		
		Propylene carbonate	-0.48	-0.81	_	_		
		Acetonitrile	-0.40	-0.74	_	_		
		Solvent	Et ₄ NClO ₄	LiClO ₄	Me ₄ NClO ₄	LiCl		
		Ethanol	_	_	+0.80	+0.82	_	
		Propylene carbonate	+0.87	+0.80	_	_		
		Acetonitrile	+0.95	+0.96	_	-		
Electrochemical	V vs. SCE	0.1 M electrolyte:						(4)
breakdown potential $(i \ge 1.0 \mathrm{mA cm^{-2}})$		Breakdown type	LiCl	NaCl	KClO ₄	KPF_6	Et_4NClO_4	. ,
		Cathodic breakdown	-3.6	-3.6	-3.6	-3.6	-3.3	_
		Anodic breakdown	2.2	2.2	2.2	3.2	2.1	

Poly(sulfur nitride)

Preparative techniques

Technique	Conditions	Reference
Plasma	He plasma, S ₄ N ₄ vapor	(5)
Solution phase	$N_3^- + S_a N_b Cl_c$ in acetonitrile (-258 K)	(6)
Solution phase	$N_3^- + S_2 NAsF_6$ in liquid SO_2 (-20°C)	(6)
Vapor phase	S_4N_4 sublimation over Ag wool; S_2N_2 trapped at 77 K, then 273 K; polymerization at temperature	(7)
Solution phase	$(NSCI)_3 + Me_3SiN_3$ in liquid SO_3 (-18°C)	(8)
Electrochemical	S ₅ N ₅ Cl in liquid SO ₂	(9)
Photopolymerization	S_4N_4 decomposition products, irradiated with γ up to visible range	(10)

IR (characteristic absorption frequencies)

	Waveler	ngth (cm ⁻¹)									Reference
KBr pellet	1,400	1,225		1,010	930	690		600			(5)
Nujol mull	1,400	1,225	1,047	1,015		685	657	600			(11)
Nujol mull					1,000	693	635		500	285	(8)
Film on KBr					1,002	685	625		500, 467	283	(8)

Unit cell dimensions $^{(12)}$

Lattice	Monomers	Cell dimen	sions (Å)	Cell angle (degrees)	
	per units cell	a	b (chain axis)	С	$oldsymbol{eta}$
Monoclinic (P2 ₁ /c)	4 (N-S)	4.153	4.439	7.637	109.7

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Electrical conductivity σ	S cm ⁻¹	b -axis, 300 K \perp to b -axis, 300 K	2,000 40	(12)
$\sigma_{\parallel}/\sigma_{\perp}$	-	Room temperature 20 K	50 500–1,000	(1)
Electronegativity	_	_	2.9	(12)
Decomposition temperature	K	_	513	(1)
Enthalpy of vaporization	$kJ mol^{-1}$	_	135.9	(1)
Entropy of vaporization	$kJK^{-1}mol^{-1}$	_	0.3388	(1)
Conduction bandwidth	eV	_	2–3	(1)
Young's modulus	MPa	Crystal	3×10^{-16}	(1)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Yield stress	MPa	Crystal	1.450×10^{2}	(1)
Breaking stress	MPa	Crystal	3.660×10^2	(1)
Specific heat	-	<3.2 K 4-20 K >20 K	$C/T = \text{constant} \times T^3$ $C/T = \text{constant} \times T^{2.7}$ $C = \text{constant} \times T$	(1)
Magnetic susceptibility	emu g ⁻¹	Crystal	$(0.2 \times 0.1) \times 10^{-6}$	(1)
Paramagnetic susceptibility	$\mathrm{emu}\mathrm{mol}^{-1}$	Crystal	$(5.5-1.0) \times 10^{-6}$	(1)
Drude edge ($R_{ }$ vs. $\nu \times 10^{-3}$)	cm^{-1}	Oriented film or crystal	20,000	(13)
Density	gcm^{-3}	Crystal	2.3	(1)

- 1. Labes, M. M., P. Love, and L. J. Nichols. Chem. Rev. 79 (1979): 1.
- 2. Rawson, J. J., and J. J. Longridge. Chem. Soc. Rev. 26 (1997): 53.
- 3. Nowak, R. J., C. L. Joyal, and D. C. Weber. J. Electroanal. Chem. 143 (1983): 413.
- 4. Tarby, C., C. Bernard, and G. Robert. Electrochimica Acta 26 (1981): 663.
- 5. Witt, M. W., W. I. Bailey, Jr., and R. J. Lagow. J. Am. Chem. Soc. 105 (1983): 1,668.
- 6. Kennett, F. A., et al. J. Chem. Soc. Dalton Trans. (1982): 851.
- 7. Rubinson, J. F., T. D. Behymer, and H. B. Mark, Jr. J. Am. Chem. Soc. 104 (1982): 1,224.
- 8. Banister, A. J., et al. J. Chem. Soc. Dalton Trans. 1986 (1982): 2,371.
- 9. Banister, A. J., Z. V. Hauptman, and A. G. Kendrick. J. Chem. Soc., Chem. Commun., (1983): 1,016.
- 10. Love, P., and M. M. Labes. U.S. Patent 4,170,477 (1979).
- 11. Banister, A. J., and N. R. M. Smith. J. Chem. Soc. Dalton Trans. (1980): 937.
- 12. Love, P. Polymer News 7 (1981): 200.
- 13. Bright, A. A., et al. Appl. Phys. Lett. 26 (1975): 612.

D. L. KERBOW

ACRONYM, TRADE NAMES PTFE, Teflon, Hostaflon, Fluon, Algoflon, Halon, Polyflon, Fluoroplast

CLASS Poly(α -olefins)

STRUCTURE $[-CF_2-CF_2-]$

MAJOR APPLICATIONS Granular and fine powder forms are used in electrical wire insulation, seals, and gaskets, and in valve and pipe fittings and linings for harsh chemical applications. Fine powders are also prepared in fiber, filament, and porous fabric forms. Dispersions are used in glass cloth coatings to provide weather protection, mechanical strength, and chemical resistance. Micropowders are used as additives to inks, lubricants, and plastics to provide lubricity, antiburning, and nonstick properties.

PROPERTIES OF SPECIAL INTEREST Three major forms of PTFE exist: granular, fine powder, and micropowders. Granular is produced by suspension polymerization in the absence of a surfactant. It is a spongy, porous form of irregular particle shape as polymerized, and it is typically ground to a particle size to suit fabrication and end-use needs. Fine powder is coagulated from dispersion which is polymerized in the presence of an emulsifying agent. It can be supplied as the dispersion or in a coagulated form. It is extremely sensitive to mechanical shear. Micropowder can be produced as a low molecular weight form of fine powder or by scission of fine powder products by gamma or electron beam irradiation. It is typically a waxy or friable powder.

CRYSTALLINE REPEAT UNIT The polymer chain in the crystalline matrix exists as a helix, with successive CF_2 units rotated slightly by the steric interference of adjacent fluorine atoms. The repeat distance of the helix is $19.5 \, \text{Å}$ (15 CF_2 units) at temperatures above $19^{\circ}C$, or $16.9 \, \text{Å}$ (13 CF_2 units) below $19^{\circ}C$.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	50.01	_
Tacticity	_	_	None	_
Degree of branching	_	_	None	_
Typical molecular weight range	g mol ⁻¹	Polymer form Fine powder Granular Micropowder	$1-5 \times 10^7$ 10^7 $2-25 \times 10^4$	(1)

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
IR (characteristic absorbances	cm ⁻¹	Assignment Strength			
frequencies)		Overtone (1,152 + 1,213): used analytically as a "thickness band"	Very strong	2,367	(2) (Ch. 21)
		– CF ₂ stretch Crystallinity: used analytically to determine % C as	Very strong Very strong Very strong Weak	1,213	(2) (2) (2) (3)
		noted below C-C-F bend	Strong	638	(2)
		CF ₂ bend C-C-F bend	Strong Strong	553 516	(2) (2)
Coefficient of linear thermal expansion (average)	$K^{-1}\times 10^{-6}$	298-83 K 298-173 K 298-273 K 296-333 K (ASTM D6 298-373 K 298-473 K 298-573 K	96)	86 112 200 120 124 151 218	(4)
Compressibility	bar^{-1}	Calculated		28.8×10^{-18}	(4)
Solubility parameter	$(MPa)^{1/2}$	Calculated		12.7	(2) (Ch. 16)
Solvents	_	>573 K		Perfluorinated materials	(4)
Crystalline state properties	and therm electrical, crystallini of propert history, it	in multiple forms that nal history. In turn, thes and processing proper ty and specific gravity ties, and since these pa is very important to sp s. In equations below, %	e forms signifities of the poly have been four rameters are it pecify precise	cantly influence to mer. Particularly nd to relate to a la nfluenced by pro sample preparati	the physical, , the percent arge number accessing on

Crystal lattice

Crystalline form	Conditions	Unit cell o	λ (degrees)		
		а	b	С	
Form I	Above 30°C	0.567	0.567	>1.950	_
Form II	Below 19°C	0.559	0.559	1.688	119.3
Form III	High pressure	0.873	0.569	0.262	_
Form IV	19-30°C	0.566	0.566	1.950	_

Crystal lattice $(continued)^{(5)}$

Crystalline form	Chain conformation	Space group	Crystal density
Form I	15/7	Trigonal (P3 ₁ or P3 ₂)	2.35
Form II	13/6	Triclinic (pseudohexagonal)	2.30
Form III	2/1	Orthorhombic (Pnam)	2.55
Form IV	15/7	Trigonal (P3 ₁ or P3 ₃)	2.74

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Entropy of fusion	$kJ K^{-1} mol^{-1}$	D4591 (ASTM method)		0.477	(4)
Degree of crystallinity	$\rm gcm^{-3}$	-		762.5-(1,524.5/ ρ)	(4)
Heat of fusion	$kJ kg^{-1}$	D4591 (ASTM method)		82	(4)
Density	g cm ⁻³	Crystal state Completely amorphous, 298 K Triclinic, < 292 K Hexagonal, 298 K As polymerized, 298 K Melt, 653 K		2.0 (calculated) 2.344 2.302 2.280–2.290 1.46	(4) (4) (4) (4) (2) (Ch. 24)
Melting point	K		Polymer form		(4)
		Irreversible Reversible	As polymerized Second (and subsequent) melting	608–618 600	
		_	Equilibrium	586.9	
		Irreversible	Extended chain	658	
Transition temperature	K		Type of transition		(4)
		_	Alpha (glass I)	399	
		Crystalline, crystal disordering relaxation	Beta	292	
		Crystal disordering	Beta II	303	
		–	Amorphous 2nd order	243	
		Onset of rotation around C-C bond	Gamma (glass II)	193	

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE	
Heat capacity	$kJ kg^{-1} K^{-1}$		Crystalline	Amorphous	(4)	
		DSC, 10 K	1.228			
		100 K	19.37	19.37		
		300 K	45.09	51.42		
		500 K	61.62	66.05		
		605 K (melting point)	67.88	69.54		
		700 K	73.30	72.69		
Deflection temperature	K	Deflection force (MPa -	Deflection force (MPa - D648)			
		0.455	405			
		1.82	333			
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	C177	(4.86×10^{-4})	T + 0.253	(4)	
Tensile modulus	MPa	22 K (ASTM D638)	4,100		(4)	
		77 K	3,400			
		144 K	2,500			
		200 K	1,800			
		296 K	340			
		373 K	69			
Tensile strength	MPa		Granular	Fine powder		
		298 K	7-28	17.5-24.5	(1)	
		298 K	_	270–0.39 (% C) – 99.3 <i>ρ</i>	(4)	
Yield stress	MPa	22 K (ASTM D638)	131		(4)	
		77 K	110		(-)	
		144 K	79			
		200 K	53			
		296 K	10			
		413 K	5.5			
		523 K	3.4			
Modulus type		ASTM D 695			(4)	
Compressive	MPa	After 100 h at	186		()	
		6.895 MPa, 23°C				
Tensile		_	61	(0/ 0) . 2 010		
Flexural		_	2,814 - 158.5 (% C) + 2.919 $(\% C)^2 - 0.1638 (\% C)^3$			
Maximum	%	ASTM D638	Granular	Fine powder		
extensibility		22 K		2	(4)	
		77 K	_	6	(4)	
		144 K	_	90	(4)	
		200 K	_	160	(4)	
		296 K	100-200	200-600	(1)	
		27010	100-200	200-000	(1)	

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Flexural modulus	MPa	ASTM D790	Granular	Fine powder	
		22 K	_	5,200	(4)
		77 K	_	5,000	(4)
		144 K	_	3,200	(4)
		296 K	350-630	280-630	(1)
		328 K	_	400	(4)
		373 K	_	190	(4)
Flexural strength	MPa	D790	No break		(4)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	n ⁻¹ D256 (notched Izod impa		act)	
		216 K	107		
		276 K	187		
		350 K	>320		
Hardness	Shore D	D2240	42 + 0.2 (% C)		(4)
Plateau modulus	MPa	653 K	1.7		(2) (Ch. 24)
Entanglement molecular weight	$g \text{mol}^{-1}$	_	3.7×10^3		(2) (Ch. 24)
Index of refraction	_	$\eta_{ m D}^{25}$	1.376		(4)
Dielectric constant ε	_	D150	2.1		(4)
Dielectric strength	${ m V}{ m mm}^{-1}$	D149	2.36×10^4		(1)
Dissipation factor	_	D150 (60 Hz to 2 GHz)	$< 3 \times 10^{-4}$		(4)
Resistivity, surface	ohms sq^{-1}	D257 (100% RH)	3.6×10^6		(4)
Resistivity, volume	ohms cm	D257 (50% RH)	10 ¹⁹		(4)
Surface tension	mNm^{-1}	293 K	25.6		(2) (Ch. 48)
Thermal conductivity	$W \ m^{-1} K^{-1}$	298 K	0.25		(2) (Ch. 10)
Coefficient of sliding friction	_	D 1894	$0.244 \text{ W}^{0.163}$ (W = load in grams)		(4)
Static coefficient of friction	_	Against polished steel	0.05-0.08		(1)
Speed of sound	$m sec^{-1}$	1 MHz, 298 K Longitudinal Shear	1,410 730		(2) (Ch. 49)
Ignition temperature	K	_	767		(2) (Ch. 42)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Weight loss in air	% h ⁻¹		Granular	Fine powder	(4)
		505 K 533 K 589 K 644 K	$ \begin{array}{c} 1-5 \times 10^{-5} \\ 1-2 \times 10^{-4} \\ 5 \times 10^{-4} \\ 4 \times 10^{-3} \end{array} $	$ \begin{array}{c} 1 \times 10^{-4} \\ 6 \times 10^{-4} \\ 5 \times 10^{-3} \\ 3 \times 10^{-2} \end{array} $	
Pyrolysis products	mol %	Vacuum at 783 K CF_4 C_2F_4 C_3F_6 cyclo- C_4F_8	0.86 93.97 2.55 0.73		(6)
Maximum use temperature	K	In air	533		(1)
Depolymerization rate	$g \mathrm{sec}^{-1}$	Vacuum pyrolysis	$3 \times 10^{-19} \mathrm{M}^{(-8)}$	33,000/RT)	(7)
Water absorption	%	D570	0.0		(4)
Flammability	- %	UL 94 D2863 (Limiting oxygen index)	VE-0 >95		(4) (4)
Cost	US $\$$ kg $^{-1}$	_	11-35		
Availability	37,000 metric	tons in 1994			
Suppliers	Asahi Glass,	Ausimont, CIS, Daikin Kyc	go, DuPont, an	d Hoechst	

- Gangal, S. V. In Kirk-Othmer Encyclopedia of Chemical Technology, 3d ed., Vol. 11, edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1994.
- 2. Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, Woodbury, N.Y., 1996.
- 3. Moynihan, R. E. J. Am. Chem. Soc. 81 (1959): 1,045.
- 4. Sperati, C. A. In *Polymer Handbook*, 3 ed., Vol. 35, edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989.
- 5. Tadokoro, H. Structure of Crystalline Polymers. John Wiley and Sons, New York, 1979, p. 354.
- 6. Siegle, J. C., L. T. Muus, T. Lin, and H. A. Larsen. J. Poly. Sci., Part A, 2 (1964): 391-404.
- 7. Settlege, P. H., and J. C. Siegle. *Phys. Chem. Aerodyn. Space Flight.* Conference Proceedings, Philadelphia, 1959, Pergamon Press, New York, 1961, pp. 73–81.

QINGWEN WENDY YUAN

ACRONYM PTHF
CLASS Polyethers

STRUCTURE $[-CH_2-CH_2-CH_2-CH_2-O-]$

PROPERTY	UNITS	CONDITIONS		VALUES	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-		72	_
Polymerization	-	-		Cationic ring- opening living polymerization	(1-3)
Solvents	Benzene,	ethanol, tetrahydrofuran, chloroforr	n		(4-6)
Nonsolvents	Petroleur	m ether, hexane, methanol, water			(4-6)
Theta temperature	K	Solvent*	Method [†]		
		Acetonitrile/benzene (61.5/38.5)	СР	298.5	(6, 7)
		Acetonitrile/butanone (38.3/61.7)	CP	298.5	(6, 7)
		Acetonitrile/carbon tetrachloride (50.2/49.8)	CP	298.5	(6, 7)
		Acetonitrile/chlorobenzene (60.1/39.9)	CP	298.5	(6, 7)
		Acetonitrile/tetrahydrofuran (58.7/41/3)	CP	298.5	(6, 7)
		Acetonitrile/toluene (61/39)	CP	298.5	(6, 7)
		<i>n</i> -Butanol	PE	278.5	(1, 6)
		Butanone	VM	298.5	(6)
		Chlorobenzene	VM	298.5	(6)
		Chlorobenzene/n-octane			
		(25.0/75.0)	A, CP	283.5	(6, 8)
		(21.5/78.5)	A, CP	299.3	(6, 8)
		(14.5/85.5)	A, CP	319.5	(6, 8)
		(13.0/87.0)	A, CP	336.5	(6, 8)
		(10.9/89.1)	A, CP	353.5	(6, 8)
		Cyclohexane/n-heptane	_	299.5	(6)
		Diethyl malonate	PE	307.0	(6, 9)
		Ethyl acetate/n-hexane (22.7/77.3)	PE	303.9	(6, 9)
			A	306.5	(6, 10)
		<i>i</i> -Propanol	PE	318.1	(6, 9)
		Toluene	A	301.8	(6, 11)

PROPERTY	UNITS	CONDITIONS	VALUES		REFERENCE
Second virial coefficient	$mol cm^{3} g^{-2}$ $(\times 10^{-4})$	Ethyl acetate, $T = 30^{\circ}$ C, $M_{\rm w} \times 10^{-3} = 34.61,030 \mathrm{g mol^{-1}}$	6.14-2.47		(6, 10)
Mark-Houwink parameter:	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Mol. wt. = (3.5×10^4) to (1.1×10^6) g mol ⁻¹	K	а	
K and a		Benzene, 30°C	131×10^{-3}	0.60	(6, 10)
		Cyclohexane, 30°C	176×10^{-3}	0.54	(6, 10)
		Ethyl acetate, 30°C	422×10^{-4}	0.65	(6, 10)
		Ethyl acetate/ <i>n</i> -hexane (22.7/77.3 by weight), 31.8°C	343×10^{-3}	0.45	(6, 10)
		Toluene, 28° C, $(3-12)\times10^{4}$ g mol ⁻¹	25.1×10^{-3}	0.78	(6, 11)
Density	$g cm^{-3}$	Amorphous at 25°C	0.975		(12)
J	O	Amorphous	0.982		(6, 13)
		Crystalline at 25°C	1.07-1.08		(12)
		Crystalline	1.157		(6)
		Crystalline	1.112		(6, 14)
		Crystalline	1.116		(6, 13)
		Crystalline	1.238		(6)
		Crystalline	1.095		(6, 15)
Avrami exponent	-	IR DSC	2.2 2.4		(16)
Glass transition	K	_	187.5		(12)
temperature			189		(6, 17, 18)
temperature			189.5		(19)
Melting	K	_	316.5		(12, 19)
temperature			331.5-333.5		(12)
Heat capacity	$kJ K^{-1} mol^{-1}$	Temp. (K)	Solid	Melt	(6, 20, 21)
	$(\times 10^{-3})$	10	1.47	_	
		20	6.59	_	
		30	12.42	_	
		40	18.32	_	
		50	24.63	_	
		60	29.74	_	
		70	34.61	_	
		80	39.41	_	
		90	43.67	_	
		100	47.27	_	
		110	50.72	_	
		120	54.70	_	
		130	57.99	_	
		140	61.12	_	
		140 150	61.12 64.46	_	

PROPERTY	UNITS	CONDITIONS	VALUES		REFERENCE
Heat capacity	kJ K ⁻¹ mol ⁻¹	Temp. (K)	Solid	Melt	(6, 20, 21)
	$(\times 10^{-3})$	170	71.20	_	
		180	74.52	_	
		190	_	124.20	
		200	_	125.92	
		210	_	127.64	
		220	_	129.36	
		230	_	131.09	
		240	_	132.81	
		250	_	134.53	
		260	_	136.26	
		270	_	137.98	
		280 290	_	139.70 141.42	
		300	_	143.15	
		310	_	143.13	
		320	_	146.59	
		330	_	148.32	
		340	_	150.04	
Tensile strength	MPa	High molecular weight	29.0		(12)
rensile stierigtii	wii a	Low to high molecular weight	27.6–41.4		(12)
		Cured	16.8–38.3		
		Cured plasticized high molecular weight			
Elongation	%	High molecular weight	820		(12)
		Low to high molecular weight	300-600		()
		Cured	400-740		
		Cured plasticized high molecular weight	450-735		
Modulus of elasticity	MPa	_	97.0		12)
Engineering	MPa	Elongation = 300%			(12)
modulus	IVII a	Low to high molecular weight	1.6-4.3		(12)
modulus		Cured plasticized high molecular	13.7–19.0		
		weight	10.7 17.0		
Hardness	Shore A	_	95		(12)
		(4 /11) (C17 /CT)	(4.7) 40	-4	
Thermal expansion coefficient	K^{-1}	$\alpha = (1/V)(\delta V/\delta T)_{\rm p}$	$(4-7) \times 10$, -	(12)
Compressibility	kPa ⁻¹	$\beta = (1/V)(\delta V/\delta p)_{\mathrm{T}}$	$(4-10) \times 1$	0^{-7}	(12)
Internal pressure	MPa	_	281		(12)
Coefficient of	$cm^3g^{-1}K^{-1}$	-	7.3×10^{-4}		(12)
expansion $dV_{\rm s}/dT$					
Index of refraction	_	20°C	1.48		(12)
Dielectric constant ε	_	20°C	5.0		(12)

PROPERTY	UNITS	CONDITIONS		VALUES			REFERENCE
Specific refractive	mlg^{-1}	Solvent	Temp. (°C)	$\lambda_0 = 430$	$6 \mathrm{nm} \ \lambda_0 =$	= 546 nm	(6)
index increment		Chlorobenzene	_	0.070	_		•
dn/dc		Ethyl acetate	25	0.110	_		
			30	0.114	_		
		Ethyl acetate/ <i>n</i> -hexane (22.7/77.3 wt)	31.8	0.114	_		
		Isopropanol	46	0.108	_		
		Isopropyl acetate	22.5	0.098	_		
		MÉK	30	0.102	_		
			25	0.091	_		
				0.095	_		
		Methyl acetate	25	0.101	_		
		3-Methyl-2-heptanone	25	0.056	_		
		2-Pentanone	25	0.084	_		
		THF	25	0.0625	0.06	25	
				0.064	_		
Surface tension	mNm^{-1}			20°C	150°C	200°C	
		$M = 43,000 \mathrm{g}\mathrm{mol}^{-1}$		31.9	24.0	20.9	(6, 22, 23)
		$M = 43,000 \mathrm{g} \mathrm{mol}^{-1}$ $M = 2,500 \mathrm{g} \mathrm{mol}^{-1}$		38.2	27.9	24.0	(6)

^{*}Numbers in parenthesis are compositions in volume/volume.

Fractionation⁽⁶⁾

Method	Solvent	Nonsolvent
Fractional precipitation	Acetone Benzene Benzene Toluene, methanol	– n-Hexane Methanol –
Tribidimetric titration	Ethanol	Water
Distribution between immiscible liquids	Cyclohexane-toluene (9:1)	Water-methanol
Extraction	Water Isopropanol	Acetone Water
Fractional solution	2-Butanone Isopropanol Ethyl ether	– Water Petroleum ether
Chromatography	Acetone 2-Butanone Dimethylformamide Methanol-water mixture Tetrahydrofuran Toluene	Water
Sedimentation velocity	Ethyl acetate-n-hexane (22.3/77.7)	_

 $^{^{\}dagger}$ CP = cloud point titration; PE = phase equilibria; \overrightarrow{VM} = intrinsic viscosity/molar mass; A = virial coefficient.

Crystalline-state properties

Lattice	Space group	Unit cell parameters (Å)		Angles	Monomers	Reference	
		а	b	с	(degrees)	per unit cell	
Monoclinic	C2H-6	5.48	8.73	12.07	B = 134.2	4	(1)
Monoclinic	C2H-6	5.59	8.90	12.07	B = 134.2	4	(1, 14)
Monoclinic	_	_	8.89	12.15	_	_	(1, 13)
Orthohombic	D2-4	12.2	8.75	7.22	_	8	(1)
Monoclinic	C2H-6	5.61	8.92	12.25	B = 134.5	4	(1, 15)
Monoclinic	_	5.48-5.61	8.73-8.92	12.97-12.25	B = 134.2 - 134.5	_	(12)

- 1. Dreyfuss, P., and M. P. Dreyfuss. Adv. Polym. Sci. 4 (1967): 526.
- Furukawa, J., and T. Saegusa. Polymerization of Aldehydes and Oxides. Wiley-Interscience, New York, 1963.
- 3. Dreyfuss, P. Polytetrahydrofuran. Gordon and Breach Science Publishers, New York, 1982.
- 4. Weissermel, K., and E. Noelken. Makromol. Chem. 68 (1963): 140.
- 5. Schelz, R. C., and R. Wolf. Makromol. Chem. 99 (1966): 76.
- Brandrup, J., and E. H. Immergut. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 7. Elias, H-G., and G. Adank. Makromol. Chem. 69 (1963): 241.
- 8. Evans, J. M., and M. B. Huglin. Europ. Polym. J. 6 (1970): 1,161.
- 9. Evans, J. M., and M. B. Huglin. Makromol. Chem. 127 (1969): 141.
- 10. Kurata, M. H., and K. K. Utiyama. Makromol. Chem. 88 (1965): 281.
- 11. Ali, S. M., and M. B. Huglin. Makromol. Chem. 84 (1965): 117.
- 12. Mark, H. S., et. al., eds. *Encyclopedia of Polymer Science and Engineering*, Vol. 16. Wiley-Interscience, 1989.
- 13. Bowman, I., D. S. Brown, and Wetten. Polymer 10 (1969): 715.
- 14. Tadokoro, H. J. Polym. Sci., Part C, 15 (1966): 1.
- 15. Cesari, M., G. Perego, and A. Mazzei. Makromol. Chem. 83 (1965): 196.
- 16. Shibayama, M., et al. Polymer 35(14) (1994): 2,944.
- 17. Faucher, J. A., and J. V. Koleske. *Polymer* 9 (1968): 44.
- 18. Miller, W. G., and J. H. Saunders. J. Appl. Polym. Sci. 13 (1969): 1,277.
- 19. Rodriguez, F. *Principles of Polymer Systems*, 4th ed. Taylor and Francis Publishers, New York, 1996.
- 20. Guar, U., and B. Wunderlich. J. Phys. Chem. Ref. Data 10(4) (1981): 1,023.
- 21. Suzuki, H., and B. Wunderlich. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 1,671.
- 22. Wu, S. J. Polym. Sci. C34 (1971): 19.
- 23. Roe, R. J. J. Colloid Interface Sci. 31 (1969): 228.

Polythiophene

SHRISH RANE AND GREG BEAUCAGE

ACRONYM PT

CLASS Polyheterocyclics; conjugated conducting polymers

STRUCTURE Polythiophene exists in two structures:

(Aromatic)

$$\left(\begin{array}{c} S \\ S \end{array} \right)$$

(Quinoid)

MAJOR APPLICATIONS Polythiophenes and the substituted polythiophenes are utilized in a variety of applications where their conducting properties pose an advantage. They are presently used as antistatic coatings and films. Research is being done to explore their use in electrochromic and electroluminescent devices. They have also shown some promise as material for biosensors and storage batteries. Used in making Schottky barrier diodes and field effect transistors.

PROPERTIES OF SPECIAL INTEREST Presence of an extended π -bonding system, which imparts electrical properties to the polymer. Doping either p or n can enhance these properties. First among their class to be stable to moisture and oxygen in both their doped and undoped states. They also exhibit other interesting properties such as electrochromism, thermochromism, and pressure induced color change.

PROPERTY	CONDITIONS	REFERENCE
Chemical synthesis	Polycondensation reaction of di-functional thiophene in presence of Ni catalysts Oxidative coupling reaction of bi-thiophene in presence of ferric chloride using AlCl ₃ , CuCl ₃ and organic solvents Plasma polymerization from 3-methyl thiophene or thiophene	(1-6)
Electrochemical synthesis	Electrodes (platinum, gold, and Au coated Ni) Electrolytes (acetonitrile in tetra-alkylammonium, iodide salts, fluoroborate salts, Bu_4N^+ , Et_4N^+ , and quaternary ammonium salts	(1, 2, 7–11)

Dal	v.+hi		hon	_
POI	vthi	OD	nen	ш

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Conductivity	Scm ⁻¹	Iodine doped FeCl ₃ doped NOSbF ₆ doped NOPF ₆ doped SO ₃ CF ₃ doped	$6-8$ 0.5 9×10^{-5} 2×10^{-5} $50-100$	(4, 11) (11) (12) (12, 13) (14, 15)

PROPERTY	CONDITIONS	REFERENCE
Chromisms		
Thermochromism	Two types:	
	An abrupt shift from planar back-bone to a twisted form at high temperatures	(16)
	A continuous modification in the back-bone with increasing temperature	(17, 18)
Electrochromism	The vis-spectra shows a change during the doping/ dedoping process	(19)
Solvatochromism	Chain conformation changes from nonplaner in solid state to coplaner in solution	(20–22)
Ionochromism	Polymer displays an absorption shift with K ⁺ , Na ⁺ , Li ⁺	(23-26)
Pressure, light, and electricity induced color changes	PT and its derivatives show different molecular forms under the influence of pressure, light, and electricity	(17, 28)
Optical properties	PT and its derivatives display photoluminescence and electroluminescence	(29, 31)
Magnetic properties	PTs show variation in their magnetic properties. In the doped state they undergo transition from a paramagnetic state at high temperature to an ordered phase at low temperatures.	(32, 33)
Solubility	PT by itself is insoluble and infusible. Substitution of alkyl units in the 3-position and copolymers of PT increase the solubility and ease of processability, the penalty being some decrease in its conductivity.	(1, 2, 14, 34)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Thermal stability	K	In air In inert atmosphere or vacuum	523 1,173	(1)
UV-Vis spectroscopy	nm	Strong absorption band in doped state	480	(1, 14)
IR properties	cm ⁻¹	C=C stretch Chemical synthesis PT Electrochemical synthesis PT	1,494 1,490	(1, 2, 14)

PROPERTY	UNITS	CONDITIONS VALUE	REFERENCE
IR properties	cm^{-1}	C–H (in-plane bend)	
		Chemical synthesis PT 1,052	
		Electrochemical synthesis PT 1,058	
		C–H (out-of-plane bend)	
		Chemical synthesis PT 788	
		Electrochemical synthesis PT 785	
		C_{γ} –H	
		Chemical synthesis PT 690	
		Electrochemical synthesis PT 690	
		u cycle	
		Chemical synthesis PT 1,400	
		Electrochemical synthesis PT 1,408	
		ν cycle	
		Chemical synthesis PT 1,230	
		Electrochemical synthesis PT 1,226	
Crystallinity		ear completely amorphous under XRD scans. Substituted y partial degrees of crystallinity ($<5\%$)	PTs –
Hexagonal lattice	Å	- $a = 9.5, c =$	= 12.2 (1)
Density	$\rm gcm^{-3}$	– 1.4-1.6	(1)
Morphology	thickn TEM im	termining parameters are monomer structure, dopant, and ess of film ages of PT films display fibrillar, "noodle-like" structure. diameter increases with doping level	, ,

- 1. Skotheim, T. A. Handbook of Conducting Polymers, Vol. 1. Marcel Dekker, New York, 1986.
- Schopf, G., and G. Kobmehl. In Advances in Polymer Science. Springer-Verlag, Berlin, 1997, p. 129.
- 3. Diaz, A. F., et al. J. Phys. Chem. 88 (1984): 3,333.
- 4. Yamamoto, T., et al. Polym. J., Tokyo, 22 (1990): 187.
- 5. Ruckenstein, E., and J. S. Park. Synth. Met. 44 (1991): 293.
- 6. Pomerantz, M., et al. Synth. Met. 41 (1991): 825.
- 7. Koßmehl, G., D. Fechler, and W. Plieth. Acta Poly. 43 (1992): 65.
- 8. Plieth, W., et al. J. Electroanal. Chem. 274 (1989): 213.
- 9. Rasch, B., P. Novak, and W. Vielstich. Synth. Met. 43 (1991): 2,963.
- 10. Bukowska, J. J. Mol. Struct. 275 (1992): 151.
- 11. Yamamoto, T., et al. Syn. Met. 41 (1991): 345.
- 12. Koßmehl, G., and G. Chatzitheodorou. Makro. Chem. Rapid Comm. 4 (1983): 639.
- 13. Heffner, G. W., and D. S. Pearson. Synth. Met. 44 (1991): 341.
- 14. Patil, A. O., A. J. Heeger, and F. Wudl. Chem Rev. 88 (1988): 183-200.
- 15. Yamamoto, T., K. Sanachika, and A. Yamamoto. Bull. Chem. Soc. Jpn. 56 (1983): 1,497.
- 16. Robitaille, L., and M. Leclerc. Macromol. 27 (1994): 27.
- 17. Roux, C., and M. Leclerc. Chem. Mater. 6 (1994): 620.
- 18. Roux, C., M. Leclerc, and K. Faid. Makromol. Chem., Rapid Comm., 14 (1993): 461.

Polythiophene

- 19. Collombdunandsauthier, M. N., S. Langlois, and E. Genies. J. Appl. Electrochem. 24 (1994): 72.
- 20. Leclerc, M., and G. Daoust. J. Chem. Soc., Chem. Commun., 3 (1990): 273.
- 21. Guay, J., et al. J. Electroanal. Chem. 361 (1993): 85.
- 22. Barbarella, G., et al. Adv. Mater. 5 (1993): 834.
- 23. Marsella, M. J., and T. M. Swagger. J. Am. Chem. Soc. 115 (1993): 12,214.
- 24. Miyazaki, Y., and T. Yamamoto. Chem. Lett. 1 (1993): 41.
- 25. Swagger, T. M., and M. J. Marsella. Adv. Mat. 6 (1994): 595.
- 26. Baeuerle, P., and S. Scheib. Adv. Mater. 5 (1993): 848.
- 27. Coghlan, A., and C. Arthur. New Scientist 1927 (1994): 22.
- 28. Iwasaki, K., H. Fujimoto, and S. Matsuzaki. Synth. Met. 63 (1994): 101.
- 29. Chosrovian, H., et al. *Synth. Met.*, 60 (1993): 23.
- 30. Berggren, M., et al. Appl. Phy. Lett. 65 (1994): 1,489.
- 31. Dyreklev, P., et al. Adv. Mater. 7 (1995): 43.
- 32. Barta, P., et al. Phys. Rev. B48 (1993): 243.
- 33. Barta, P., et al. Phys. Rev. B50 (1994): 3,016.
- 34. Feldhues, M., et al. Synth. Met. 28 (1989): c487.
- 35. Toulon, G., and F. Garner. J. Poly. Sci., Poly. Phys. Ed., 22 (1984): 33-34.
- 36. Onada, M., et al. Jpn. J. Appl. Phy., Part 1, 31 (1992): 2,265.
- 37. Miyazakai, Y., et al. Chem. Lett. 3 (1993): 415.
- 38. Fujita, W., N. Teramae, and H. Haraguchi. Chem. Lett. 3 (1994): 511.

DONALD A. TOMALIA AND MARGARET ROOKMAKER

ALTERNATIVE NAME, ACRONYM, TRADE NAME Polypropylenimine (POPAM) dendrimers, Astramol[®] dendrimers

CLASS Dendritic polymers; dendrimers

$$Core \qquad Branch \qquad Terminal \\ Cells \qquad Groups \\ \hline \\ Core \qquad CH_2-CH_2-CH_2-N \\ \hline \\ CH_2-CH_2 \qquad Z \\ \hline \\ N_c \\ \hline \\ Where \qquad Core \\ = N+CH_2 - N$$
 where $COre = N+CH_2 - N$

DSM uses its own designation to describe these dendritic products, wherein the three architectural components are noted as follows:

$$\bigcirc$$
 Core \bigcirc — Dendri — $[$ Surface Groups $]_Z$

where the core is diaminobutane (DAB) (i.e., 1,4-diaminobutane); *dendri* indicates the interior dendritic branch cell; and the last component defines the type and number of surface groups, Z. The DSM generation (G') designation counts the number of iteration steps rather than the branch cell formation stages. Therefore, compared to the literature notation used here, G' = G - 1.

PREPARATIVE TECHNIQUES POPAM dendrimers are synthesized by the divergent method starting from 1,4-diaminobutane (DAB) ($N_c=4$). They are amplified by progressing through a reiterative sequence consisting of (a) a double Michael addition of acrylonitrile to the primary amino groups followed by (b) hydrogenation under pressure in the presence of Raney cobalt. Products are produced up to generation = 4 (literature); generation = 5 (DSM) nomenclature (Z=64). (1)

PROPERTIES OF SPECIAL INTEREST Unique dendrimer properties not found in traditional macromolecular architecture include: (1) a distinct parabolic intrinsic viscosity curve with a maximum as a function of molecular weight; (2) very monodispersed sizes and shapes (i.e., $\overline{M}_{\rm w}/\overline{M}_{\rm n}$ routinely below 1.1 even at high molecular

weights);⁽²⁾ (3) *exo* presentation of exponentially larger numbers of surface functional groups as a function of generation (i.e., up to several thousand); and (4) typical Newtonian-type rheology. This dendrimer family exhibits excellent hydrolytic and thermal stability.

MAJOR APPLICATIONS Used as templates for initiation of caprolactam polymerization to produce injection moldable star-like-Nylon-6 products.⁽³⁾ This dendrimer family has been used in a variety of metal chelation, coatings, and lubrication-type applications.⁽⁴⁾

SUPPLIER DSM, Het Overloon 1, Heerlen, P.O. Box 6500, 6401 JH Heelen, The Netherlands.

Data for amine terminated polypropylenimine dendrimer DAB-dendri-(NH₂)_x

Generati		DSM	Molecular	Number of	[η]25°C		R_η (Å)	R _g (SANS)	Modelin	g (Å)
Literatur	re DSM	designation	weight (g mol ⁻¹)*	surface groups	D₂O (dl g¯¹)			(D ₂ O) (A)	R _g (cvff)	R _g (cvffrep)
0	1	DAB-dendri-(NH ₂) ₄	317	4	0.045	948	6.1	4.4	4.9	5.0
1	2	DAB-dendri-(NH ₂) ₈	773	8	0.055	2,824	8.8	6.9	6.0	7.6
2	3	DAB-dendri-(NH ₂) ₁₆	1,687	16	0.062	6,947	11.8	9.3	7.4	10.1
3	4	DAB-dendri-(NH ₂) ₃₂	3,514	32	0.068	15,872	15.6	11.6	10.0	12.9
4	5	DAB-dendri-(NH ₂) ₆₄	7,168	64	0.068	32,367	19.8	13.9	12.5	15.9

^{*} Theoretical values.

Data for nitrile terminated polypropylenimine dendrimer DAB-dendri-(CN)x

Generation	1	DSM	Molecular	Number of	$[\eta]^{25^{\circ}C}$ (acetone)	V_{η} ($\mathring{\mathbb{A}}^3$)	$ extbf{\emph{R}}_{\eta}$ (Å)	R _g (SANS)
Literature	DSM	designation	weight (g mol ⁻¹)*	surface groups	(dl g ⁻¹)			(acetone- d_6) (A)
0	1	DAB-dendri-(CN) ₄	300	4	0.024	478	4.9	_
1	2	DAB-dendri-(CN) ₈	741	8	0.030	1,477	7.1	6.0
2	3	DAB-dendri-(CN) ₁₆	1,622	16	0.034	3,663	9.6	8.0
3	4	DAB-dendri-(CN) ₃₂	3,385	32	0.035	7,869	12.3	10.1
4	5	DAB-dendri-(CN) ₆₄	6,910	64	0.036	16,523	15.8	12.2

^{*}Theoretical values.

	_					
DSM DESIGNATION	UNITS	DAB/ACN4	DAB/ACN8	DAB/ACN16	DAB/ACN32	DAB/ACN64
Generation	_					
DSM		1	2	3	4	5
Literature		0	1	2	3	4
End groups	_	4*CN	8*CN	16*CN	32*CN	64*CN
Molecular weight	$g \text{mol}^{-1}$	300	741	1,622	3,385	6,910
Diameter	nm	1.4	1.9	2.6	3.3	4.3
Radius of gyration (acetone- d_4)	Å	_	6	8	10.1	12.2
Density	$\rm gcm^{-3}$	_	1.0600	1.0582	_	_
Appearance	_	White powder	Sl. yellow vis. liq.	_	_	_
Melting point	K	326	_	_	_	_
Viscosity, bij 50°C	Pa s	_	2.6	10.3	15	50
Intrinsic viscosity	$d g^{-1}$					
25°C/acetone	_	0.026	0.031	0.035	0.038	0.038
25°C/THF		-0.028	-0.034	-0.042	-0.045	-0.045
$T_{\rm g}$ onset	K	213.5	218.8	225.8	227.8	232.9

DSM DESIGNATION	UNITS	DAB/ACN4	DAB/ACN8	DAB/ACN16	DAB/ACN32	DAB/ACN64
$T_{\rm g}$ A maximum, 20°C min ⁻¹	K	603	603	603	603	603
Thermal stability	K	483	483	483	483	483
Vapor pressure	_	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Safety data						
Flash point	K	375	442	_	_	_
Autoignition	K	692	658	_	_	_
Ames test	_	Not carcinogen	Not carcinogen	Not carcinogen	Not carcinogen	Not carcinogen
Irritation	_	Mild irritating	_	Not irritating	_	_
Labeling by irritation	_	None	_	None	_	_
LD50 test	${\rm mg~kg^{-1}}$	>5,000	_	_	4,000	_
Labeling by LD50 test	_	None	_	_	None	_

DSM DESIGNATION	UNITS	DAB/PA4	DAB/PA8	DAB/PA16	DAB/PA32	DAB/PA64
Generation	_					
DSM		1	2	3	4	5
Literature		0	1	2	3	4
End groups	_	4*NH ₂	8*NH ₂	16*NH ₂	32*NH ₂	64*NH ₂
Molecular weight	$g \text{ mol}^{-1}$	317	773	1,687	3,514	7,166
Diameter	nm	1.5	1.9	2.7	3.4	4.4
Radius of gyration (D_2O)	Å	4.4	6.9	9.3	11.6	13.9
Density	$\rm g~cm^{-3}$	0.9578	0.9785	0.989	1.0097	
Appearance	_	Light yellow oil	Light yellow oil	Light yellow oil	Light yellow oil	Light yellow oil
Melting point	K	~298				
Viscosity, bij 50°C	Pa s	0.028	0.28	1.1	2.5	6.7
Intrinsic viscosity						
25°C/D2O	dg^{-1}	0.045	0.055	0.062	0.068	0.068
25°C/THF	0	0.026	0.036	0.04	_	_
25°C/MeOH		0.046	0.055	0.061	0.064	0.059
$T_{\rm g}$ onset	K	166	176	183	186	189
$T_{\rm g}$ A maximum, 20°C min ⁻¹	K	~623	~718	~718	~718	~718
Thermal stability	K	tot 573	tot 573	>573	>573	>573
Vapor pressure	_	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Safety Data						
Flash point	K	406	_	_	_	_
Autoignition	K	597	_	_	_	_
Ames test	_	Not carcinogen	Not carcinogen	Not carcinogen	Not carcinogen	Not carcinogen
Irritation	_	Strong	_	Strong	Strong	_
Labeling by irritation	_	Corrosion, R41	_	Corrosion, R41	Corrosion, R41	_
LD50 test	$mg kg^{-1}$	977	_	1,373	_	_
Labeling by LD50 test		Harmful	_	Harmful	_	_

- 1. de Brabander-van den Berg, E. W. Meijer. Angew. Chem. Int. Ed. Engl. 32(9) (1993): 1,308.
- 2. Hummelen, J. C., J. L. J. van Dongen, and E. W. Meijer. Chem. Eur. J. 3(9) (1997): 1,489.
- 3. Grinthal, W. Chemical Engineering 51 (1993).
- 4. "Dendrimer Breakthrough at DSM Could Pave the Way for Commercialisation." *Process Eng.* 74 (November 1993): 22.

Poly(trimethylene oxide)

QINGWEN WENDY YUAN

ACRONYM PTMO

CLASS Polyethers

STRUCTURE $[-CH_2-CH_2-CH_2-O-]$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-	58	_
Polymerization	_	_	Ring-opening	(1)
Theta temperature	K	Cyclohexane, phase equilibria	299.5	(2, 3)
Mark-Houwink parameter: <i>K</i> and <i>a</i>	$K = \text{ml g}^{-1}$ a = None	Acetone, 30°C, $(2.8-20) \times 10^4 \mathrm{g \ mol^{-1}}$ Benzene, 30°C, $(2.8-30) \times 10^4 \mathrm{g \ mol^{-1}}$ Carbon tetrachloride, 30°C, $(2.8-25) \times 10^{-4} \mathrm{g \ mol^{-1}}$	$ \begin{array}{c cc} K (\times 10^{-3}) & a \\ \hline 76 & 0.59 \\ 21.9 & 0.78 \\ 26.7 & 0.75 \end{array} $	
Solubility parameter	$(MPa)^{1/2}$	Method: viscosity, 25°C	19.2	(2, 5)
Glass transition temperature	K	-	195	(2, 6-8)
Melting temperature	K	_	308	(2)
Heat capacity	$kJ K^{-1} mol^{-1} (\times 10^{-3})$	Temp. (K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	Solid Melt 0.86 - 4.68 - 9.31 - 13.65 - 17.64 - 21.37 - 25.82 - 29.59 - 32.90 - 35.87 - 38.58 - 41.11 - 43.51 - 45.83 - 48.11 -	(2, 9)

Poly(trimethylene oxide)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Heat capacity	kJ K ⁻¹ mol ⁻¹	Temp. (K)	Solid	Melt	(2, 9)
	$(\times 10^{-3})$	160	50.37	_	
		170	52.65	_	
		180	54.97	_	
		190	57.33	_	
		200	59.01	109.24	
		210	61.08	110.25	
		220	63.15	111.26	
		230	65.23	112.27	
		240	67.30	113.28	
		250	69.37	114.29	
		260	71.44	115.30	
		270	73.51	116.31	
		280	75.59	117.32	
		290	77.66	118.33	
		300	79.73	119.34	
		310		120.35	
		320		121.36	
		330		122.37	
Specific refractive index increment dn/dc	$\mathrm{ml}\mathrm{g}^{-1}$	Solvent: MEK	0.0946		(2, 10)
Fractionation		Fractional precipitation	Acetone/	'water	(2)

Crystalline-state properties⁽²⁾

Lattice	Space group	Unit cell	parameters	(Å)	Angles (degrees)	Monomers	Density
		а	b	с		per unit cell	(g cm ⁻³)
Monoclinic	C2H-3	12.3	7.27	4.80	$\beta = 91$	4	1.178
Rhombohedral	C3V-6	14.13	14.13	8.41	_	18	1.941
Orthohombic	D2-5	9.23	4.82	7.21	_	4	1.203
				4.79	_	_	_

- 1. Odian, G. Principles of Polymerization, 3d ed. Wiley-Interscience, New York, 1991.
- 2. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 3. Chiu, D. S., Y. Takahashi, and J. E. Mark. Polymer 17 (1976): 670.
- 4. Yamamoto, K., A. Teramoto, and H. Fujita. Polymer 7 (1966): 267.
- 5. DiPaola-Baranayi, G. Macromolecules 15 (1982): 622.
- 6. Faucher, J. A., and J. V. Koleske. Polymer 9 (1968): 44.
- 7. Willbourn, A. H. Trans. Faraday Soc. 54 (1958): 717.
- 8. Saba, R. G., J. A. Sauer, and A. E. Woodward. J. Polym. Sci. Part A, 1 (1963): 1,483.
- 9. Gaur, U., and B. Wunderlich. J. Phys. Chem. Ref. Data 10(4) (1981): 1,015.
- 10. Yamamoto, K., A. Teramoto, and H. Fujita. Polymer 7 (1966): 267.

Poly[1-(trimethylsilyl)-1-propyne]

TAREK M. MADKOUR

ACRONYM PTMSP

CLASS Conjugated and other unsaturated polymers

SYNTHESIS Polyaddition

STRUCTURE

$$\begin{array}{c|c}
 & C & C \\
 & & \\
 & & \\
 & CH_3 & Si \\
 & CH_3 & CH_3
\end{array}$$

MAJOR APPLICATIONS Potential applications involve oxygen enrichment applicable to combustion furnaces, car engines, and respiration-aiding apparatuses. Also in the transport of oxygen dissolved in water applied to contact lenses and artificial lungs. In liquid mixture separation associated with ethanol concentration of fermented biomass. Furthermore, in polymer degradation related to resist materials for microlithography.

PROPERTIES OF SPECIAL INTEREST Glassy ductile polymer with high permeability and low selectivity. A white amorphous silicon containing acetylene stable to air and soluble in nonpolar solvents such as toluene, cyclohexane, and carbon tetrachloride. Thus, it allows for tough film formation by solution casting.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	112.25	(1)
Typical molecular weight range	$\mathrm{g}\mathrm{mol}^{-1}$	_	$1.3-6.1~(\times 10^5)$	(1)
Typical polydispersity range $(M_{\rm w}/M_{\rm n})$	_	_	1.4-2.4	(1)
Characteristic infrared bands	cm ⁻¹	Group assignments SiC-H deformation C-Si stretching	1,240 820, 740	(2)
UV absorption maximum (λ_{max})	cm (×10 ⁷)	_	273	(3)
UV molar extinction coefficient $(\varepsilon_{\rm max})$	$\mathrm{mol}^{-1}\mathrm{cm}^{-1}$	-	120	(3, 4)
Density	$\rm gcm^{-3}$	Measured at 21°C	0.964	(5)

Poly[1-(trimethylsilyl)-1-propyne]

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Geometric density	g cm ⁻³	Geometric density refers to that of thin membranes (usually of lower value than real density)	0.7-0.77	(5)
Mark-Houwink parameter: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	-	4.45×10^6 $a = 1.04$	(3)
Glass transition temperature	K	_	503	(6)
Softening point	K	_	613	(3)
Young's modulus	MPa	_	630	(3)
Tensile strength	MPa	_	40	(3)
Elongation at break	%	_	73	(3)
Electrical conductivity	scm^{-1}	_	1×10^{-17}	(1)
Permeability coefficients	m ³ (STP) m s ⁻¹ m ⁻² Pa ⁻¹	Gas (at 25° C) He H ₂ O ₂ N ₂ CO ₂ CH ₄	4.65×10^{-14} 1.24×10^{-13} 6.6×10^{-14} 4.8×10^{-14} 2.64×10^{-13} 1.27×10^{-13}	(7)
Diffusion coefficients	$m^2 s^{-1} (\times 10^{12})$	Gas (at 25° C) N_2 Ar CH_4 CO_2	3,600 3,900 3,200 3,000	(7)

$Dual\text{-}mode\ parameters^{(7)}$

Gas (at 25°C)	Sorption parameters		Diffusion coefficients		
	$k_{\rm D} \ [{\rm m}^3 \ ({\rm STP}) \ {\rm m}^{-3} \ {\rm atm}^{-1}]$	C'_{H} [m ³ (STP) m ⁻³]	<i>b</i> (atm ⁻¹)	$D_D imes 10^9 \ ({ m m^2 \ s^{-1}})$	$D_H imes 10^9 \ ({ m m^2 \ s^{-1}})$
CO ₂	1.0667	111.7	0.0688	16.2	1.95
CH_4	0.6328	58.87	0.0577	_	_
Ar	0.8313	24.23	0.0325	_	_
N_2	0.7103	16.10	0.0394	5.23	3.46

Poly[1-(trimethylsilyl)-1-propyne]

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Void volume fraction	_	Gas/Temp. (°C) $N_2/-195$ $CO_2/25$ $SF_6/25$	0.26 0.24 0.23	(7)
Interchain gap	Å	_	3.3	(7)
Intrinsic viscosity $[\eta]$	$dl g^{-1}$	Polymerized at 80°C and measured in toluene at 30°C Catalyst NbCl ₅ NbBr ₅ TaCl ₅ TaBr ₅	0.99 0.63 5.43 3.60	(1)
Time required for 2% weight loss	min	TGA measurement in air 145°C 161°C 176°C 186°C 198°C 206°C	860 430 225 100 76 51	(8)

- 1. Masuda, T., et al. J. Am. Chem. Soc. 105 (1983): 7,473.
- 2. Masuda, T., E. Isobe, and T. Higashimura. Macromolecules 18 (1985): 841.
- 3. Masuda, T., and T. Higashimura. Adv. Polym. Sci. 81 (1987): 121.
- 4. Izumikawa, H., T. Masuda, and T. Higashimura. Polym. Bull. (Berlin) 27 (1991): 193.
- 5. Plate, N., et al. J. Membr. Sci. 60 (1991): 13.
- 6. Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, Woodbury, N.Y., 1996.
- 7. Srinivasan, R., S. Auvil, and P. Burban. J. Membr. Sci. 86 (1994): 67.
- 8. Langsam, M., and L. Robeson. Polym. Eng. Sci. 29 (1989): 44.

Polyurea

L. S. RAMANATHAN, S. SIVARAM, AND MUNMAYA K. MISHRA

ACRONYMS PU, PUR

CLASS Polyureas

STRUCTURE

R = isocyanate unitR' = diamine unit

MAJOR APPLICATIONS The most important practical applications of polyurea elastomers are in the production of automobile parts. High-modulus RIM (reaction-injection molded) and RRIM (reinforced reaction-injection molded) polyureas are suitable for producing high-impact external body panels. It is also useful in the forming microporous films for artificial leather. Ultrathin membranes of polyurea are used in water desalination by reverse osmosis. Polyureas are effective in making lubricant greases, medical equipment and artificial organs. Polyurea is also applied as a wall material for encapsulating drugs, pesticides, catalysts, and other products.

PROPERTIES OF SPECIAL INTEREST Polyurea fibres have high melting points, low specific gravity, excellent dyeability, and good acid and alkaline resistance. Polyurea coatings have lower solvent and better water resistance compared to polyurethanes. They have good blood compatibility.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	1,9-Nonane diamine (NDA)/ethylene bis chloroformate (EBC)	1.175	(1)
		1,10-Decane diamine (DDA)/EBC	1.75	(1)
		Polyisocyanate/polyetheramine/diethyl toluene diamine (DETDA)	1.1	(2)
		Aliphatic-aromatic copolyureas	1.012-1.214	(3)

Unit cell dimensions

Sample	mple Lattice		Cell dimensions (Å)			Cell angles (degrees)		
		а	b	с	α	β	γ	
4,4'-Dicyclohexyl methane diisocyanate (CHMDI)/1,10 DDA	_	9.30	6.06	45	-	_	_	(4)
4,4'-diphenyl methane diisocyanate (MDI)/1,4-butane diamine (BDA)	Triclinic	4.63	5.83	25.23	90.7	91.58	102.9	(5)

Refractive indices of polyurea before $poling^{(6)}$

System	Wavelength (μm)	RI		
		ⁿ TE	ⁿ TM	
MDI/4,4'-methylene bis(cyclohexyl amine)	0.532	1.6052	1.5834	
	0.6328	1.5962	1.5761	
	1.064	1.5762	1.5644	
MDI/1,4-diaminocyclohexane	0.532	1.6152	1.6012	
•	0.6328	1.6089	1.5949	
	1.064	1.5838	1.5762	
MDI/2,2-dimethyl-1,3-propane diamine	0.532	1.6223	1.6127	
	0.6328	1.6091	1.5995	
	1.064	1.5919	1.5833	
MDI/4,4'-diaminodimethyl sulfone	0.532	1.7088	1.6715	
,	0.6328	1.6872	1.6564	
	1.064	1.6577	1.6340	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Piezoelectric 'e' constant	$mC m^{-2}$	MDI/4,4'-diaminodiphenylmethane (MDA)	15	(7)
Heat capacity	_	MDI/polyether amine/DETDA	0.41	(8)
Glass transition	K	1,9-NDA/EBC	277	(1)
temperature		1,10-DDA/EBC	333.8	(1)
•		Octafluoro hexamethylene-1,6-diamine (OFHMDA)/1,6-hexamethylene bis(chlorocarbonate) [HMCC]	278	(9)
		Hexamethylene diamine (HMDA)/HMCC	271	(9)
		MDI/polyether amine/DETDA	215	(10)
		Amino terminated polysilanes/MDI/DETDA	186	(11)
		Amino terminated polysilanes/MDI+HMDI/ 1,3-propane sulfonate	180	(11)
		Amino terminated polysilanes/MDI+HMDI/ ethylene diamine (EDA)	176	(11)
Melting temperature	K	4,4'-methylenebis[N-methyl aniline]/2,2-dimethyl-1,3-propanediol bis(chloroformate)	443-463	(12)
		4,4'-methylenebis[N-methyl aniline]/COCl ₂	523-553	(12)
		CICON(CH ₃)C ₆ H ₄ CH ₂ C ₆ H ₄ N(CH ₃)COCI/ HN(CH ₃)(CH ₂) ₆ (CH ₃)NH	383-453	(12)
		4,4'-diamino-1,3-diphynyl propane/EBC	480	(1)
		4,4'-diamino-1,3-diphynyl butane/EBC	547	(1)
		1,9-NDA/EBC	441	(1)
		1,10-DDA/EBC	447	(1)
		OFHMDA/HMCC	457	(9)
		HMDA/HMCC	443	(9)

Polyurea

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Water absorption	%	MDI based polyurea at 25°C, 7 days	2.13	_
Solubility parameter	$(MPa)^{1/2}$	MDI/EDA	24.9	(13)
		MDI/DETDA	23.9	
		MDI/methylene bis(2,6-isopropyl aniline) (MMIPA)	21.6	
		MDI/methylene bis(2-methyl-6-isopropyl aniline) [MDIPA]	20.4	
Tensile strength	MPa	Aminopropyl terminated poly(dimethyl siloxane) [ATPDMS]/MDI	16.6	(14)
		ATPDMS/TDI	10.0	(14)
		ATPDMS/HMDI	9.0	(14)
		MDI/polyether amine/DETDA	4.61	(10)
		MDI/polyether amine/DETDA	15.9	(8)
		Amino terminated polysilanes/MDI/DETDA	9.1	(11)
		Amino terminated polysilanes/MDI+HMDI/ 1,3- propane sulfonate	22.4	(11)
		Amino terminated polysilanes/MDI+HMDI/ED	16.1	(11)
Elongation	%	ATPDMS/MDI	430	(14)
		ATPDMS/TDI	520	(14)
		ATPDMS/HMDI	950	(14)
		MDI/polyether amine/DETDA	276	(8)
		MDI/ polyether amine/DETDA	250	(10)
		Amino terminated polysilanes/MDI/DETDA	426	(11)
		Amino terminated polysilanes/MDI+HMDI/ 1,3-propane sulfonate	335	(11)
		Amino terminated polysilanes/MDI+HMDI/EDA	332	(11)
Shore D hardness		Polyisocyanate/polyether amine/DETDA	75	(2)
Tear strength	$N m^{-1}$	IPDI based polyurea Tetramethyl xylene diisocyanate (TMXDI) based polyurea	70×10^3 45×10^3	(15)

- 1. Lyman, J., J. Heller, and M. Barlow. Makromol. Chemie. 84 (1965): 64.
- 2. Harris, R. F., R. M. Anderson, and D. M. Shannon. J. Appl. Polym. Sci. 46 (1992): 1,547.
- 3. Ibrahim, A. M., V. Mahadevan, and M. Srinivasan. Eur. Polym. J. 25 (1989): 427.
- 4. Barton, R. Jr. Bull. Am. Phys. Soc. 32(3) KU10 (1987): 701.
- 5. Born, L., and H. Hespe. Colloid Polym. Sci. 263 (1985): 335 [CA; 103: 7586z].
- 6. Tao, H. T., et al. Macromolecules 28 (1995): 2,637.
- 7. Takahashi, Y., et al. J. Appl. Phys. 70 (1991): 6,983.
- 8. Rayan, A. J., J. L.Stanford, and N. Wilkinson. Polym. Bull. 18 (1987): 517.
- 9. Malichenko, B. F., Y. V. Sheludko, and Y. Y. Kercha. Polym. Sci. USSR 9 (1967): 2,808.
- 10. Willkokomm, W. R., Z. S. Chen, and C. W. Macosko. Polm. Eng. Sci. 28 (1988): 888.
- 11. Yang, C. Z., C. Li, and S. L. Cooper. J. Polym. Sci., Polym. Phys. Ed., 29 (1991): 75.

- 12. Foti, S., P. Maravigna, and G. Mantaudo. Macromolecules 15 (1982): 883.
- 13. Rayan, A. J., J. L. Stanford, and R. H. Still. Polym. Commun. 29 (1988): 196.
- 14. Tyagi, D., et al. Polymer 25 (1984): 1,807.
- 15. Dominguez, R. J. G., D. M. Rice, and R. A. Grigsby. Plas. Eng. 43(11) (1987): 41.

Polyurethane

L. S. RAMANATHAN, S. SIVARAM, AND MUNMAYA K. MISHRA

ACRONYMS PU, PUR
CLASS Polyurethanes

STRUCTURE
$$\begin{matrix} O & O \\ -O \\ \hline (-R')_x O - C - NH - R - NH - C - O \\ \hline)_n \end{matrix}$$

R = isocyanate unitR' = polyol segment

MAJOR APPLICATIONS Polyurethane flexible foams find applications in protective packaging, gaskets, textile laminates, protective cushioning in automobiles, and two component injection-grouting resins. Rigid polyurethane foams are used as thermal insulating materials in refrigerators, freezers, and water heaters. It is also used as a roof proofing material.

PROPERTIES OF SPECIAL INTEREST Excellent dampening property, good mechanical and physical properties even at low temperatures, high combustion resistance, and low thermal conductivity.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	4,4'-Diphenylmethane diisocyanate (MDI)/1,4-butane diol (BD)	1.297	(1)
Flory-Huggins polymer solvent interaction parameter	-	TDI/1,4-BD (DMF)	0.122	(2)

Unit cell dimensions

Sample	Lattice	Cell dimensions (Å)			Cell angles (degrees)			Reference
		а	b	С	α	β	γ	
Hexamethylene diisocyanate (HMDI)/ Ethylene glycol (EG)	Triclinic	4.59	5.14	13.9	90	90	119	(3)
HMDI/1,3-propane diol (PD)	Monoclinic	4.70	8.36	33.9	_	_	115	(3)
HMDI/BD	Triclinic	4.98	4.71	19.4	116	105	109	(3)
HMDI/1,5-pentane diol (PtD)	Monoclinic	4.70	8.36	39.0	_	_	115	(3)
HMDI/1,6-hexane diol (HD)	Triclinic	5.05	4.54	21.9	112	108	108	(3)
Trimethylene diisocyanate (TMDI)/BD	Triclinic	5.06	5.04	30.1	112	113	110	(4)
TMDI/HD	Triclinic	5.04	5.04	34.6	111	111	111	(4)
MDI/BD	Triclinic	5.2	4.8	35	115	121	85	(5, 6)
MDI/BD	Triclinic	4.92	5.66	38.4	124	104	86	(7)

Conformational characteristics

Sample	Solvent	Mark-Houwinck para	ameters	$[\langle \textit{R}^2\rangle/\textit{M}]^{1/2}\times 10^9$	Reference
		$K \times 10^{-4} \text{ (ml g}^{-1}\text{)}$	а		
Toluene diisocyanate (TDI)/BD	_	5.4	0.74	_	(2)
MDI/EG	100 DMF	3.64	0.71	10.11	(8)
	95/5 DMF/acetone	6.29	0.65	10.19	(8)
	90/10 DMF/acetone	7.19	0.63	10.25	(8)
	85/15 DMF/acetone	10.02	0.59	10.04	(8)
	79/21 DMF/acetone	14.19	0.56	9.97	(8)
	71/29 DMF/acetone	30	0.50	_	(8)
MDI/BD	DMA (at 25°C)	870	1.43	_	(9)

Refractive index gradient

Sample	Condition			dn/dc (ml g ⁻¹)	Second virial	Reference
	Solvent	λ (nm)	Temp (°C)		coefficient $A_2 \times 10^4$	
TDI/BD	DMF	546	_	0.14	_	(2)
MDI/1,6-HD	DMF/acetone	_	_	$0.159 - 0.203^*$	$3.0-4.5^*$	(10)
	DMF/toluene	_	_	$0.123 - 0.154^*$	2.3-8.0*	(10)

^{*}Variable with respect to DMF volume fraction.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion	kJ mol ⁻¹	MDI/BD	5.3	(9)
Heat capacity	$\operatorname{cal} g^{-1} \circ C^{-1}$	HMDI/BD -50 to 10°C 45-120°C 195-210°C HMDI/DEG -50 to -5°C 50-100°C 140-160°C	0.422 0.495 0.665 0.422 0.512 0.623	(11)
Crystallization half time	min	HMDI/BD HMDI/diethylene glycol (DEG)	6 10.5	(12)
Crystallization enthalpy	cal cm ⁻³	HMDI/BD HMDI/DEG	40 45	(12)
Glass transition temperature	K	HMDI/BD HMDI/DEG HMDI/octafluoro1,6-hexane diol (OFHD) MDI/EG Desmodur/1,6-HD Desmodur/cyclohexane dimethanol (CHDM)	295 272 271 363 322 302	(12) (12) (13) (14) (15) (15)

Polyurethane

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting temperature	K	HMDI/BD HMDI/DEG HMDI/OFHD TDI/EG MDI/EG	476 396 399 453 498	(12) (12) (13) (14) (14)

Optical properties

System	Temp. (°C)	Solvent	Optical rotation $[\infty]_{\text{D}}$	Reference
MDI/(1S,2S)-diphenyl propane diol	25	DMSO	-71.6	(16)
HMDI/(1S,2S)-diphenyl propane diol	25	DMSO	-14.7	(16)
HMDI/(2R,4R)-pentanediol	25	DMSO	-80.6	(16)
MDI/(1S,2S)-(+)-2-acetamido-1-phenyl-1,3-propanediol	25	DMF	-24.6	(17)
TDI/(1S,2S)-(+)-2-acetamido-1-phenyl-1,3-propanediol	25	DMF	-20.6	(17)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Photoconductivity	ohms ⁻¹ cm ⁻¹	Polyurethane with pendant chromophore	1.3×10^{-13}	(18)
Refractive index	_	Polyurethane with pendant chromophore At 532 nm At 690 nm At 1,064 nm	1.879 1.812 1.763	(18)
Water vapor absorption	%	MDI/EG	2.5	(14)
Solubility parameter	$(MPa)^{1/2}$	MDI/BD MDI/EG	27 21	(1) (19)
Elongation	%	MDI/EG	36	(14)
Adhesion strength	psi	Desmodur/1,6-HD Desmodur/CHDM	220 220	(15)

- 1. Camberlin, Y., and J. P. Pascaut. J. Polym. Sci., Polym. Phys. Ed. 22 (1984): 1,835.
- 2. Malichenko, B. F., et al. Polym. Sci. USSR 9 (1967): 2,975.
- 3. Sato, Y., S. Nansai, and S. Kinoshita. Polym. J. 3 (1972): 113.
- 4. Sato, Y., K. Hara, and S. Kinoshita. Polym. J. 14 (1982): 19.
- 5. Blackwell, J., and K. H. Gardner. Polymer 20 (1979): 13.
- 6. Blackwell, J., and M. Ross. J. Polym. Sci., Polym. Lett. Ed., 17 (1979): 447.
- 7. Born, L., et al. J. Polym. Sci., Polym. Phys. Ed., 22 (1984): 163.
- 8. Beachell, H. C., and J. C. Peterson. J. Polym. Sci., Part A-1, 7 (1969): 2,021.

- 9. Hwang, K. K. S., et al. J. Polym. Sci., Polym. Chem. Ed., 22 (1984): 1,677.
- 10. Tuzar, Z., and H. C. Beachell. J. Polym. Sci., Polym. Lett. Ed., 9 (1971): 37.
- 11. Godovskii, Y. K., and Y. S. Lipatov. Polym. Sci. USSR 10 (1968): 34.
- 12. Godovskii, Y. K., and G. C. Slomimsky. J. Polym. Sci., Polym. Phys. Ed., 12 (1974): 1,053.
- 13. Malichenko, B. F., Y. V. Sheludks, and Y. Y. Kercha. Polym. Sci. USSR 9 (1967): 2,808.
- 14. Lyman, D. J. J. Polym. Sci. 45 (1960): 49.
- 15. Chung, F. H. J. Appl. Polym. Sci. 42 (1991): 1,319.
- 16. Kobayashi, T., M. Kakimoto, and Y. Imai. Polym. J. 25 (1993): 969.
- 17. Chen, Y., and J. Tsay. Polym. J. 24 (1992): 263.
- 18. Chen, M., et al. Appl. Phys. Lett. 64 (1994): 1,195.
- 19. Nishimura, H., et al. Polym. Eng. and Sci. 26 (1986): 585.

Polyurethane elastomers

L. S. RAMANATHAN, S. SIVARAM, AND MUNMAYA K. MISHRA

ACRONYMS PU, PUR

CLASS Polyurethanes

STRUCTURE

$$\begin{array}{c} O & O \\ \parallel \\ (-R'')_{\overline{x}}O \\ -(-R')_{\overline{y}} -(-R')_{\overline{y}} \\$$

R = isocyanate unit

R' = polyol segment

R'' = diol segment

MAJOR APPLICATIONS Polyurethane elastomers find applications in adhesives, laminates for textiles, covering of conveyor and drive belts, welded bodies, roof underlay sheeting, magnetic tape coatings, water line tubing, and ski boot manufacture. Elastomeric RIM polyurethanes are useful in making automotive parts such as bumpers and fascia. Reinforced RIM polyurethane has been used for car windows door panels and wind shields. Foamed elastomeric polyurethanes are also used in making automotive parts such as arm rests, steering wheels, and rear deck air domes.

PROPERTIES OF SPECIAL INTEREST Excellent toughness and wear resistance with a broad temperature range for use. Polyurethane has good blood and tissue compatibility.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	$g\mathrm{cm}^{-3}$	Oxyester/toluene diisocyanate (TDI)/1,4-butane diol(BD)	1.240	(1)
	_	Oxyester/4,4'-diphenylmethane diisocyanate (MDI)/BD	1.213	(1)
		Oxyester/hexamethylene diisocyanate (HDI)/BD	1.163	(1)
		Oxyester/Isophorone diisocyanate (IPDI)/BD	1.160	(1)
		Poly(oxyethylene) (PEO) diol/MDI/BD	0.986	(2)
		Poly(tetramethyleneoxide) PTMO/MDI/BD	1.004	(2)
		Poly(propyleneoxide) PPO/MDI/BD	0.976	(2)

Unit cell dimensions

Sample	Lattice	Cell dimensions (Å)		Cell angles (degrees)			Reference	
		а	b	с	α	β	γ	
PTMO/MDI/BD	Triclinic	5.05	4.67	37.9	116	116	83.5	(3)
PTMO/MDI/Hexane diol (HD)	Triclinic	4.99	_	41.5	114.5	113.8	84.3	(4)
Poly(tetramethyleneadipate) [PTMA]/MDI/HD	Triclinic	5.1	5.1	41.6	116	116	85	(5)

Polyurethane elastomers PROPERTY UNITS CONDITIONS VALUE REFERENCE Flory-Huggins interaction PE0/MDI/BD -0.27(2)parameter PTMO/MDI/BD -0.33PPO/MDI/BD -0.08Flory-Huggins polymer solvent Chloroform 0.228 (6) interaction parameter Benzene 0.333 MEK 0.417 Dibutyl ether 0.521 Acetonitrile 0.606 Cyclohexane 0.660

Conformational characteristics $^{(7)}$

Sample	Mark-Houwink	parameters	<i>K</i> ₀	\overline{R}_0^2	
	K (ml g ⁻¹)	а	$(g^{-3/2} \text{ mol}^{1/2} \text{ cm}^3)$	$(\mathring{A}^2 \text{ mol } g^{-1})$	
Poly (caprolactone) diol (PCL)/MDI/BD	0.257	0.54	0.25	1.0	
PTMA/MDI/BD	0.043	0.70	0.20	0.84	

Refractive index gradient^(7,8)

Sample	Conditions	dn/dc (ml g ⁻¹)		
	Solvent	λ (nm)	Temp (°C)	
PCL/MDI/BD	DMF	546	25	0.102
PTMA/MDI/(BD)	DMF	546	25	0.110
TDI/poly (propylene) glycol (PPG)	Benzene	435.8	_	0.031
TDI/PPG	Butanone	435.8	_	0.094
TDI/PPG	Methanol	435.8	_	0.148

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of fusion	kJ mol ⁻¹	PEO/MDI/BD PEO/MDI/BD	197 155	(9)
Glass transition	K	PPG/MDI/BD	222	(10)
temperature		PCL/MDI/BD Poly(ethyleneadipate)[PEA]/MDI/BD	250 230	(11) (12)
		Hydroxy terminated poly(butadiene) [HTPB]/TDI/BD	246	(13)
		PTMO/2,4-TDI/BD PTMO/2,6-TDI/BD	208 200	(14) (14)
N. 10.	17	, , ,		
Melting temperature	K	PCL/MDI/BD PPG/MDI/BD PTMG/poly (dimethylsiloxane) [PDMS]/MDI/EG	358; 426 462; 468 505	(11) (10) (15)

Polyurethane elastomers

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric loss	_	PEA/MDI PPO/MDI/BD (at 12.5C)	0.8 2.2	(16) (9)
Bulk DC conductivity	$\mathrm{ohm}^{-1}\mathrm{cm}^{-1}$	PPO/MDI/BD (at 12.5°C)	22×10^{12}	(9)
Surface resistivity	ohm	Oxyester/MDI/BD	1.8×10^{12}	(1)
Volume resistivity	ohm cm	Oxyester/MDI/BD	6.9×10^{11}	(1)
Contact angle	degrees	Water Water/propanol lpha-Br napthalein	89 69 25	(17)
Surface free energy	${\rm ergcm^{-2}}$	Estane 5714 FI (BF Goodrich)	21	(17)
Permeation rate	mg cm ⁻¹ day ⁻¹	At 25°C Water LiCl NaCl KCl CsCl	0.33 0.27 0.24 0.32 0.28	(18)
Solubility parameter	$(MPa)^{1/2}$	PPG(1000)/MDI/BD PPG(2000)/MDI/BD PPG(3000)/MDI/BD	23 23 23	(10)
Loss factor $\tan \delta$	_	PTMO/MDI/BD	0.072	(19)
Activation energy	$kJ mol^{-1}$	PEA/MDI/BD PTMO/MDI/BD	152.5 224	(16) (19)
Tensile strength	MPa	PTMO/MDI/BD PTMO/MDI/BD (NCO/OH = 2/1) PTMO/MDI/BD (NCO/OH = 4/1)	45 20.16 37.59	(18) (20) (20)
Elongation	%	PTMO/MDI/BD PTMO/MDI/BD (NCO/OH = $2/1$) PTMO/MDI/BD (NCO/OH = $4/1$)	850 1,100 649.2	(21) (20) (20)
Shore A hardness	_	Poly(butyleneadipate) [PBA]/MDI/BD	85	(22)
Thermal expansion coefficient	K^{-1}		280	(23)

- 1. Pandya, M. V., D. D. Deshpande, and D. G. Hundiwale. J. Appl. Polym. Sci. 32 (1986): 4,959.
- 2. Hwang, K. K. S., D. J. Hemker, and S. L. Cooper. Macromolecules 17 (1984): 307.
- 3. Blackwell, J., and M. Ross. J. Polym. Sci., Polym. Let. Ed., 17 (1979): 447.
- 4. Blackwell, J., M. R. Nagarajan, and T. B. Hoitinic. Polymer 23 (1982): 950.
- 5. Blackwell, J., C. D. Lee. J. Polym. Sci., Polym. Phys., 22 (1984): 759.
- 6. Oberth, A. E. Rubber Chem. and Technol. 63 (1990): 56.
- 7. Simek, L., Z. Tuzar, and M. Bondanecky. Macromol. Chem. Rapid Commun. 1 (1980): 215.
- 8. Moacanin, J. J. Appl. Polym. Sci. 1 (1959): 272.
- 9. North, A. M., and J. C. Reid. Europ. Polym. J. 8 (1972): 1,129.
- 10. Petrovic, Z., Soda-So, and I. Javani. J. Polym. Sci., Polym. Phys., 27 (1989): 545.
- 11. Russo, R., and E. L. Thomas. J. Macromol. Sci. Phys. B 22 (1983): 533.
- 12. VanBogart, J. W. C., D. A. Bluemke, and S. L. Cooper. Polymer 22 (1981): 1,428.
- 13. Bengtson, B., et al. Polymer 26 (1985): 895.
- 14. Schneider, N. S., and C. S. Paik Sung. Polym. Eng. and Sci. 17 (1977): 73.
- 15. Shibayama, M., et al. Polymer 31 (1990): 749.
- 16. Dieldes, C., and R. A. Pethrick. Europ. Polym. J. 17 (1981): 675.
- 17. Busscher, H. J., et al. J. Colloidal and Interface Sci. 95 (1983): 23.
- 18. Wells, L. A., et al. Rubber Chem. and Technol. 63 (1990): 66.
- 19. Petrovic, Z. S., et al. J. Appl. Polym. Sci. 38 (1989): 1,929.
- 20. Bajsic, E. G., et al. Polym. Deg. Stab. 52 (1996): 223.
- 21. Petrovic, Z. S., and J. B. Simendic. Rubber Chem. and Technol. 58 (1985): 701.
- 22. Nagoshi, K. In *International Progress in Urethanes*, edited by K. Ashida and K. C. Frish. Technomic Publishing, Westport, Conn., 1981, vol. 3, pp. 193.
- 23. Theocaris, P. S., and A. G. Varias. J. Appl. Polym. Sci. 30 (1985): 2,979.

Polyurethane urea

L. S. RAMANATHAN, S. SIVARAM, AND MUNMAYA K. MISHRA

ACRONYMS PU, PUU

CLASS Polyurethanes

R' =soft segment; R'' =amine unit

MAJOR APPLICATIONS Polyurethane urea is useful in making interior automobile parts like armrests, head rests, gear shifts, knee protection pad, etc. Rigid integral PU foams are used in electronic and construction fields.

PROPERTIES OF SPECIAL INTEREST High compressive strength, less weight, good weatherability, and excellent properties of electrical insulation.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	4,4'-Diphenylmethane diisocyanate (MDI)/polyether polyol/4,4'-diaminodiphenyl methane (MDA) MDI/polyether polyol/diethyl toluene diamine (DETDA) MDI/polyether polyol/3-chloro-3'methoxy-4,4'diamino	0.96 0.98 0.94	(1)
		diphenylmethane (CMOMDA)		

Unit cell dimensions⁽²⁾

Sample	Lattice Cell dimensions (Å)		Cell angles (degre			rees)	
		а	b	с	α	β	γ
MDI/poly(tetramethylene oxide) (PTMO)/MDA	Monoclinic	4.72	11.33	11.64	_	-	116.5

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Electron density (mean square fluctuation)	mol electron cm ⁻³	2,4-Toluenediisocyanate (TDI)/PTMO/ ethylenediamine (EDA)	7.14×10^{-3}	(3)
Bragg spacing	Å	2,4-TDI/PTMO/EDA	140	(3)
Flory-Huggins polymer solvent interaction parameter	-	MDI/polycaprolactone diol (PCL) $M_{\rm n}=1,300/{\rm EDA}$ (dimethylacetamide) MDI/PCL(1,300)/EDA (dimethylformamide) MDI/PCL(1,300)/EDA (dimethylsulfoxide) MDI/PCL(2,800)/EDA (dimethylformamide)	0.45	(4)

			Polyure	thane urea
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Partial specific volume	_	At 25°C in DMF MDI/PCL(1300)/EDA	0.848	(4)
		MDI/PCL(2800)/EDA	0.875	
Heat of fusion	$\mathrm{J}\mathrm{g}^{-1}$	MDI/ polyether polyol /MDA	26.4	(1)
		MDI/polyether polyol/DETDA	11.9	(1)
		MDI/ polyether polyol /CMOMDA	18.6	(1)
		MDI/PTMG/1,2-propylenediamine (PDA)	21.49	(5)
Heat capacity	$Jg^{-1}K$	MDI/hydroxy terminated polybutadiene (HTPB)/4,4′methyleme bis(2-chloroaniline (MOCA)	0.4	(6)
		MDI/HTPB/1,4-butanediamine (BDA)	0.389	(6)
		IPDI/PTMO/methylene bis(2-methyl-6-ethyl aniline) [MBMEA]	0.44	(7)
		IPDI/PTMO/methylene bis(2-methyl-6-isopropyl aniline) [MMIPA]	0.45	(7)
		Trimethyl hexamethylene diisocyanate/PTMO/ MBMEA	0.513	(7)
Glass transition	K	MDI/polyether polyol/MDA	215.9	(1)
temperature		MDI/polyether polyol /DETDA	220.9	(1)
		MDI/polyether polyol /CMOMDA	232.8	(1)
		MDI/PTMO/EDA	200	(8)
		MDI/PTMO/MDA	199	(8)
		MDI/PTMO/1,6-hexanediamine (HDA)	200	(8)
		TDI/PTMO/EDA	201	(8)
		2,4-TDI/PTMO(1000)/EDA	220	(9)
		2,4-TDI/PTMO(2000)/EDA	199	(9)
		2,4-TDI/PTMO/EDA	199	(3)
		MDI/PTMO/EDA	225	(10)
		MDI/aminopropyl terminated polycyanoethylmethylsiloxane (ATPCEMS)/ 1,4-butanediol (BD)	194.1	(11)
		Lysinediisocyanate (LDI)/PCL/1,4-BDA	220.9	(12)
		1,4-butanediisocyanate (BDI)/PCL/1,4-BDA	216.3	(12)
		1,6-hexanediisocyanate (HDI)/PCL/1,4-BDA	222	(12)
		Tetramethyl xylene diisocyanate (TMXDI)/PCL/ DETDA	221.7	(13)
		TMXDI/HTPB/DETDA	198.8	(13)
Melting temperature	K	MDI/PTMO/EDA	564	(10)
		MDI/PTMG/1,2-PDA	547	(5)
Melting enthalpy	$\mathrm{J}\mathrm{g}^{-1}$	MDI/PEG(400)/EDA	60	(14)
		MDI/PEG(1500)/EDA	29	
Dielectric loss	_	TMXDI/PCL/DETDA	0.3	(13)
		TMXDI/HTPB/DETDA	0.04	

Polyurethane urea

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric permitivity	_	TMXDI/PCL/DETDA TMXDI/HTPB/DETDA	6.8 3.0	(13)
		IWADI/IIII D/ DEIDA	5.0	
Activation energy	$kJ mol^{-1}$	TDI/POLYESTERDIOL/MOCA	42.7	(15)
		TDI/POLYETHERDIOL/MOCA	66.8	
Tensile strength	MPa	MDI/polyetherdiol/MDA	Brittle	(1)
		MDI/polyetherdiol/DETDA	14.3	(1)
		MDI/polyetherdiol/CMOMDA	10	(1)
		MDI/ATPCEMS/BD	6.65	(11)
		LDI/PCL/1,4-BDA	17	(12)
		BDI/PCL/1,4-BDA	29	(12)
		HDI/PCL/1,4-BDA	38	(12)
		MDI/PPO/DETDA	9.33	(16)
		MDI/PBA/DETDA	14.75	(16)
Elongation	%	MDI/polyetherdiol/MDA	_	(1)
O .		MDI/polyetherdiol/DETDA	194	(1)
		MDI/polyetherdiol/CMOMDA	103	(1)
		MDI/PTMG/1,2-PDA	360	(5)
		MDI/ATPCEMS/1,4-BD	256	(11)
		MDI/PPO/DETDA	150	(16)
		MDI/PBA/DETDA	267	(16)
Shore A hardness	_	LDI/PCL/1,4-BDA	800	(12)
		BDI/PCL/1,4-BDA	1042	()
		HDI/PCL/1,4-BDA	1168	
Shore D hardness	_	2,4-TDI/PTMG/dimethylthio-2,4-toluenediamine (DM-2,4-TDA)	45	(17)
		2,4-TDI/PTMG/trimethylthio- <i>m</i> -	36	
		phenylenediamine (TM-m-PDA)	50	
Tearing energy	kg m ²	LDI/PCL/1,4-BDA	36	(12)
	<u> </u>	BDI/PCL/1,4-BDA	161	
		HDI/PCL/1,4-BDA	137	
Resilience	_	2,4-TDI/PTMG/DM-2,4-TDA	46	(17)
		2,4-TDI/PTMG/TM-m-PDA	37	•

- 1. Gao, Y., et al. J. Appl. Polym. Sci. 53 (1994): 23.
- 2. Ishihara, H., I. Kimura, and N. Yoshihara. J. Macromol. Sci. Phys. B 22 (1983–1984): 713.
- 3. Wilkes, G. L., and S. Abouzahr. Macromolecules 14 (1981): 456.
- 4. Sato, H. Bull. Chem. Soc. Japan 39 (1966): 2,335.
- 5. Shibayama, M., et al. Polym. J. 18 (1986): 719.
- 6. Camberlin, Y., and J. Pascault. J. Polym. Sci., Polym. Chem. Ed., 21 (1983): 415.
- 7. Knaub, P., and Y. Camberlin. J. Appl. Polym. Sci. 32 (1986): 5,627.

- 8. Hu, C.B., and R. S. Ward, Jr. J. Appl. Polym. Sci. 27 (1982): 2,167.
- 9. Sung, C. S. P., and C. B. Hu. Macromolecules 14 (1981): 212.
- 10. Sung, C. S. P., and S. L. Cooper. Macromolecules 16 (1983): 775.
- 11. Li, C., et al. J. Polym. Sci., Polym. Phys. Ed., 26 (1988): 315.
- 12. de Groot, J. H., et al. Polym. Bull. 38 (1997): 211.
- 13. Capps, R. N., et al. J. Appl. Polym. Sci. 45 (1992): 1,175.
- 14. Gustafson, I., and P. Flodin. J. Macromol. Sci. Chem. A 27 (1990): 1,469.
- 15. Xiaolie, L., L. Jin, and M. Dezhu. J. Appl. Polym. Sci. 57 (1995): 467.
- 16. Yiu, Y., et al. J. Appl. Polym. Sci. 48 (1993): 867.
- 17. Davis, R. L., and C. J. Nalepa. J. Polym. Sci., Polym. Chem. Ed., 28 (1990): 3,701.

Poly(vinyl acetate)

JIANYE WEN

ACRONYM PVAC

CLASS Vinyl polymers

$$\begin{array}{ll} \textbf{STRUCTURE} & [-CH_2 - CH -] \\ & OCOCH_3 \end{array}$$

MAJOR APPLICATIONS Adhesive applications in packaging and wood gluing; chewing-gum bases; PVAC emulsions and resins are used as binders in coatings for paper and as textile finishes.

PROPERTIES OF SPECIAL INTEREST Tasteless, odorless, and nontoxic.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Absorption of water	%	20°C for 24-144 h	3-6	(1)
		23°C	4	(2, 3)
		70°C	6	(2, 3)
Coefficient of thermal	$10^{-4} \mathrm{K}^{-1}$	0°C	2.8	(4)
expansion		20°C	2.8	
1		40°C	7.13	
		60°C	7.17	
		80°C	7.20	
		100°C	7.23	
Cohesive energy density	$(MJm^{-3})^{1/2}$	_	18.6-19.09	(5)
Compressibility	$bar^{-1}(\times 10^{-5})$	Glassy state, 0°C	2.9	(4, 6)
1	,	Glassy state, 20°C	3.0	(4, 6)
		40°C	5.2	(4, 6)
		60°C	5.7	(4, 6)
		80°C	6.2	(4, 6)
		100°C	6.7	(4, 6)
		120°C	7.1	(7)
Decomposition temperature	K	_	423	(8)
Thermal degradation $T^{1/2}$	K	Temperature at which the polymer looses 50% of its weight if heated in vacuum for 30 min	542	(9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Degree of crystallinity	%	Mol. wt., Annealing temp. 2,236, 0.623 (40°C) 4,042, 0.514 5,246, 0.508 7,568, 0.504 16,856, 0.487	0.701 (160°C) 0.623 0.562 0.615 0.587	(10)
Density	g cm ⁻³	0°C 20°C 25°C 50°C 120°C 200°C T _m 35–100°C	1.196* 1.89* 1.19 1.17 1.11 1.05 1.28 1.2124 – $(8.62 \times 10^{-4})T$ + $(0.223 \times 10^{-6})T^2$ 35–100°C	(4) (4) (11) (11) (11) (11) (11) (4)
Dielectric constant	_	2 MHz 50°C 150°C	3.3 8.3	(12)
Dielectric loss factor Tan δ	_	2 MHz 50°C 120°C	150 260	(12)
Dielectric strength	$\mathrm{V}\mathrm{cm}^{-1}$	30°C 60°C	$\begin{array}{c} 3.94 \times 10^5 \\ 3.07 \times 10^5 \end{array}$	(13)
Diffusion coefficients D	$10^{-8}\mathrm{cm^2s^{-1}}$	Vinyl acetate, 25°C Styrene, 25°C	26.8 15.4	(14)
Dipole moment	eSU (per monomer unit)	20°C 150°C	2.3×10^{-18} 1.77×10^{-18}	(15, 16)
Emulsion specifications of PVAC	wt% cP - % max mm - g cm ⁻³ -	Solids Viscosity pH Residual monomer Particle size Particle charge Density at 25°C Stability to borax Mechanical stability	48-55 200-4,500 4-6 0.5 0.1-3.0 Neutral or negative 0.92 Stable or unstable Good or excellent	(5)
Gas solubility	cm ³ (STP) cm ⁻³ bar ⁻¹	25°C N ₂ O ₂ H ₂	0.02 0.04 0.023	(5)

Poly(vinyl acetate)	Polv	(vinv	acetate
---------------------	------	-------	---------

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass-transition	K	_	301-304	(5)
temperature $T_{\rm g}$		Atactic, $M_n = 3,922$	296.6	. ,
		Atactic, $M_{\rm n} = 1.66 \times 10^5$	304.4	
		Isotactic, $M_{\rm n} = 105$	298.8	
Hardness	Shore units	20°C	80-85	(5)
Heat capacity	$\mathrm{KJ}\mathrm{K}^{-1}\mathrm{mol}^{-1}$	−193°C	0.0278	(17)
		27°C	0.1017	(17)
		47°C	0.1583	(17)
		97°C	0.1632	(17)
		ΔC_p	0.010	(18)
Heat conductivity	$Js^{-1}m^{-1}K^{-1}$	_	0.159	(5)
Heat distortion point	K	_	323	(5)
Heat of polymerization	$kJ mol^{-1}$	_	87.5	(5)
Huggins coefficients $k_{\rm H}$	_	Acetone, 25°C	0.37	(19)
		Chlorobenzene, 32°C	0.43	
		Chloroform, 25°C	0.31	
		Methanol, 18°C	0.61	
		Toluene, 25°C	0.55	
		Benzene, 30°C	0.37	
		Dioxane, 25°C	0.29	
Index of refraction n_D	_	20.7°C	1.4669	(5)
		30.8°C	1.4657	(*)
		52.1°C	1.4600	
		80°C	1.4480	
		142°C	1.4317	
Interfacial tension	$\mathrm{mN}\mathrm{m}^{-1}$	20°C		(5)
		With PE	14.5	()
		With PDMS	8.4	
		With PIB	9.9	
		With PS	4.2	
Internal pressure	${ m MJm}^{-3}$	0°C	255	(5)
1	,	20°C	284.7	(- /
		28°C	397.8	
		40°C	431.3	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Interaction parameter χ	_	Acetone, 30–50°C	0.31-0.39	(20)
•		Acetone, 100-140°C	0.32-0.21	(20)
		Benzene, 20°C	0.42	(21)
		Benzene, 30-50°C	0.30-0.26	(20)
		Benzene, 80–140°C	0.44-0.25	(20)
		n -Butane, 100° C	1.97	(20)
		Butanone, 25°C	0.44	(21)
		Chloroform, 80-135°C	-0.17 to -0.09	(20)
		Cyclohexane, 100°C	1.18	(20)
		Ethanol, 100°C	0.80	(20)
		<i>n</i> -Hexane, 100−120°C	2.06-1.71	(20)
		<i>n</i> -Octane, 90−120°C	2.3-1.94	(20)
		1-Propanol, 30-50°C	1.3-1.0	(20)
		Vinyl acetate, 30°C	0.41-0.22	(20)
		Water, 40°C	2.5	(20)

^{*} Glassy state.

Mark-Houwink parameters: K and a

Solvent	Temp. (°C)	Mol. wt. range ($M \times 10^{-4}$)	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	а	Reference
Acetone	20	-72	15.8	0.69	(22)
	25	-1.3	14.6	0.72	(23)
	_	_	21.4	0.68	(21)
	30	-68	17.4	0.70	(24)
	46	-34	13.8	0.71	(25)
Acetonitrile	25	-215	16.2	0.71	(26)
	30	-153	41.5	0.62	(27)
Benzene	30	-86	56.3	0.62	(28, 29)
	35	-40	21.6	0.675	(30)
Butanone	25	-346	13.4	0.71	(31)
	25	-120	42	0.62	(32)
	30	-120	10.7	0.71	(33)
Chlorobenzene	25	-7	110	0.50	(34)
	53	-34	53.7	0.60	(35)
Chloroform	20	-68	15.8	0.74	(24)
	25	-34	20.3	0.72	(35)
	53	-34	14.7	0.74	(35)
Dioxane	25	-34	11.4	0.74	(36)
Ethanol	56.9 (q)	-150	90	0.50	(25)
Methanol	6	-150	_	10.1	(37, 38)
	25	-22	38.0	0.59	(36)
	30	-120	31.4	0.60	(39)
MEK	25	_	15.4	0.71	(21)
Tetrahydrofuran	25	-50	16	0.70	(40)
•	35	-117	15.6	0.708	(41)
Toluene	25	-15	108	0.53	(36)
	67	-15	156	0.49	(36)

Poly	vinv	l acetate
	WILLIAM STREET	i acctate

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Modulus of elasticity	MPa	_	$1.275 - 2.256 \times 10^3$	(5)
Notched impact strength	$\mathrm{J}\mathrm{m}^{-1}$	_	102.4	(5)
Elongation at break	%	20°C, % RH	10-20	(5)
Rubbery shear modulus	${\rm N}{\rm mm}^{-2}$	_	13	(5)
Tensile strength	MPa	_	29.4-49.0	(5)
Young's modulus	MPa	_	600	(5)
Melting temperature $T_{\rm m}$	K	_	448	(11)
Molar volume	$\mathrm{cm}^3\mathrm{mol}^{-1}$	25°C	74.25	(5)

Permeability and diffusion coefficients

Permeant	Temp. (°C)	$\emph{P} imes 10^{13}~^{*}$	$ extcolor{black}{D} imes 10^6 ^*$	$ extbf{S} imes extbf{10}^6$ *	Reference
Не	10	4.95	6.46	0.0784	(42)
	30	9.44	9.55	0.101	(42)
H_2	10	2.99	1.32	0.237	(42)
	30	6.84	2.63	0.254	(42)
Ne	10	0.838	0.794	0.106	(42)
	30	1.97	1.66	0.118	(42)
O2	10	0.136	0.0178	0.766	(42)
	30	0.367	0.0562	0.637	(42)
	73	0.27	_	_	(5)
Ar	10	0.0569	0.00479	1.11	(42)
	30	0.143	0.0162	0.943	(42)
Kr	10	0.0172	0.000602	2.78	(43)
	30	0.0582	0.00295	1.96	(43)
CH_4	25	0.0237	0.0017	1.39	(43)
N_2 , below T_g	_	0.066	_	_	(5)
N_2 , above T_g	-	0.05	_	_	(5)

^{*}Units are: P in cm³ (273.15 K; 1.013 × 10⁵ Pa) cm cm⁻² s⁻¹ Pa^{-1} ; D in cm² s⁻¹; S in cm³ (273.15 K; 1.013 × 10⁵ Pa) cm⁻² Pa⁻¹.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Softening temperature	K	_	308-323	(5)
Specific volume	$L kg^{-1}$	$T = 100-200^{\circ}$ C $T = 28^{\circ}$ C ($T_{\rm g}$)	$0.823 + (6.4 \times 10^{-4})t$ 0.84	(5)
Solubility parameter	(MPa) ^{1/2}	- 25°C 50°C 125°C ∂_d , dispersion forces contribution ∂_p , polar forces contribution ∂_h , hydrogen bonding contribution ∂ , $(\partial_d^2 = \partial_p^2 + \partial_h^2)^{1/2}$	18.6-19.9 21.07 19.4 17.9 19.0 10.2 8.2	(5)
Surface resistance	$\Omega~{ m cm}^{-1}$	_	5×10^{11}	(5)
Surface tension	$mN m^{-1}$ $mN m^{-1} K^{-1}$ χ^p	20°C 140°C 150°C 180°C d_{ds} , dispersive γ_{os} , polar γ_{solid} , total $-d\gamma/dT$ Polarity	36.5 28.6 27.9 25.9 27.4 15.4 42.85 0.066 0.329	(44, 45)
Thermal conductivity	$W m^{-1} K^{-1}$	_	0.159	(5)
Second virial coefficient A_2	$10^4 (\text{mol cm}^3 \text{g}^{-2})$	Acetone, 25° C, $M \times 10^{-4} = 13.71$ Acetone, 30° C, $M \times 10 - 3 = 27-845$ Acetone, 30° C, $M \times 10^{-3} = 343-722$ Acetone, 30° C, $M \times 10^{-3} = 78-660$ Methanol, 25° C, $M \times 10^{-3} = 2,360-422,900$	6.957 8.80-3.34 3.66-3.50 6.5-2.5 7.50-0.172	(21) (46) (47) (48) (49)
Theta solvent	°C	Acetone/isopropanol (23/77) Butanone/isopropanol (73.2/26.8) Cetyl alcohol Di-i-butyl ketone Ethanol Ethanol/methanol (80/20)	30 25 123 136.5 19	(50) (51) (52) (53) (54) (55)

Poly(vinyl acetate)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Theta solvent	°C	Ethanol/methanol (60/40)	26.5	(55)
		Ethanol/methanol (50/50)	34	(50)
		Ethanol/methanol (40/60)	36	(55)
		Heptanone	29	(56)
		Methanol	6	(55)

Unperturbed dimension

Conditions	$r_{ m o}/{\it M}^{1/2} imes 10^4$ (nm)	$r_{ m of}/\emph{M}^{1/2} imes 10^4$ (nm)	$\sigma = r_{\sf o}/r_{\sf of}$	$ extstyle C_{\infty} = extstyle r_{ m o}^2/ extstyle n extstyle I^2$	Reference
3-Heptanone, 26.8°C	670	332	2.02	8.15	(57)
Methanol, 6°C	720	332	2.17	9.4	(57)
Ethanol, 56.9°C	690	332	2.08	8.65	(57)
Tetrahydrofuran, 35°C	774 ± 20	_	_	_	(58)

PROPERTY	VALUE	REFERENCE
Solvents	Esters, ketones, aromatics, halogenated hydrocarbons, carboxylic acids, alcohols, benzene, toluene, chlorform, carbon tetrachloride/ethanol, chlorobenzene, dichloroethylene/ethanol (20:80), methanol, ethanol/water, allyl alcohol, 2,4-dimethyl-3-pentanol, benzyl alcohol, THF, tetrahydrofurfuryl alcohol, dioxane, glycol ethers, acetone, glycol ether esters, acetic acid, lower aliphatic esters, acetonitrile, nitromethane, DMF, DMSO (chloroform and chlorobenzene for syndiotactic polymers)	(59)
Nonsolvents	Saturated hydrocarbons, mesitylene, carbon tetrachloride (sw), ethanol (anhydrous, sw), ethylene glycol, cyclohexanol, diethyl ether (anhydrous, alcohol free), higher esters $(C > 5)$, carbon disulfide, water (sw), dilute acids, dilute alkalies, (benzene and acetone for syndiotactic polymers)	(59)

REFERENCES

- 1. Schildknecht, C. E. Vinyl and Related Polymers. Wiley, New York, 1952, p. 336.
- 2. Miyagi, Z., and K. Tanaka. Colloid Polym. Sci. 257 (1979): 259.
- 3. Johnson, G. E., H. E. Bair, S. Matsuoka, and J. E. Scott. ACS Symp. Ser. (Water-Soluble Polym.) 127 (1980): 451.
- 4. McKinney, J. E., and M. Goldstein. J. Res. Nat. Bur. Stand. 78A (1974): 331.
- 5. Daniels, W. In *Encyclopedia of Polymer Science and Technology*, Vol. 17, edited by H. F. Mark, et al.Wiley-Interscience, New York, 1987, p. 402.
- 6. McKinney, J. E., and R. Simha. Macromolecules 7 (1974): 894.
- 7. Beret, S., and J. M. Prausnitz. Macromolecules 8 (1975): 536.
- 8. Mowilith. Polyvinylacetat. Farbwerke Hoechst AG, Frankfurt, 1969, p. 214-215.
- 9. Van Krevelen, D. W. Properties of Polymers. Elsevier, New York, 1976.
- 10. Sato, T., and T. Okaya. Polym. J. 24 (1992): 849.
- 11. Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 12. Thurn, H., and K. Wolf, Kolloid Z. 148 (1956): 16.

- Shaw, T. P. G. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 14., edited by J. I. Kroschwitz. Wiley-Interscience, New York, 1955, p. 692.
- 14. Hornig, K., et al. Acta Polymerica 42 (1991): 601.
- 15. Meed, D. J., and R. M. Fuoss. J. Am. Chem. Soc. 63 (1941): 2,839.
- 16. Broens, O., and F. H. Mueller. Kolloid Z. 141 (1955): 20.
- 17. Gaur, U., S. F. Lau, and B. B. Wunderlich. J. Phys. Chem. Ref. Data 12 (1983): 29.
- 18. Boyer, R. F. J. Macromol. Sci., Phys. B7 (1973): 487.
- 19. Stickler, M., and N. Sutterlin. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. VII1-91.
- Orwoll, R. A., and P. A. Arnold. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., 1996, Ch. 14.
- 21. Qian, J. W., and A. Rudin. Eur. Polym. J. 28 (1992): 725.
- 22. Tsvetkov, V. N., and S. Ya. Kotlyar. Zh. Fiz. Khim. 30 (1956): 1,100.
- 23. Misra, G. S., and V. P. Gupta. Makromol. Chem. 71 (1964): 110.
- 24. Fattakhov, K. Z., E. S. Pisarenko, and L. N. Verkotina. Kolloidn. Zh. 18 (1956): 101.
- 25. Ueda, M., and K. Kajitani. Makromol. Chem. 108 (1967): 138.
- 26. Bevak. Thesis. MIT, Cambridge, Mass., 1955.
- 27. Kalpagam, V., and R. Rao. J. Polym. Sci. A1 (1963): 233.
- 28. Nakajima, A. Kobunshi Kagaku 11 (1954): 142.
- 29. Varadiah, V. V. J. Polym. Sci. 19 (1956): 477.
- 30. Berry, G. C., L. M. Hobbs, and V. V. Long. *Polymer* 5 (1964): 31.
- 31. Schulz, A. R. J. Am. Chem. Soc. 76 (1954): 3,423.
- 32. Elias, H. G., F. Patat. Makromol. Chem. 25 (1957): 13.
- 33. Abe, M., and H. Fujita. J. Phys. Chem. 69 (1965): 3,263.
- 34. Patrone, E., and E. Bianchi. Makromol. Chem. 94 (1966): 52.
- 35. Ueda, M., and K. Kajitani. Makromol. Chem. 108 (1967): 138.
- 36. Moore, W. R., and M. Murphy. J. Polym. Sci. 56 (1962): 519.
- 37. Ueda, M., and K. Kajitani. Makromol. Chem. 108 (1967): 138.
- 38. Naito, R., and K. Kagaku. Chem. High. Polym. (Tokyo) 16 (1959): 7.
- 39. Matsumoto, M., and Y. Ohyanagi. J. Polym. Sci. 46: 441.
- 40. Cane, F., and T. Capaccioli. Eur. Polym. J. 14 (1978): 185.
- 41. Atkinson, C. M. L., and R. Dietz. Eur. Polym. J. 15 (1979): 21.
- 42. Mears, P. J. Am. Chem. Soc. 76 (1954): 3,415.
- 43. Mears, P. Trans. Faraday Soc. 53 (1957): 101.
- 44. Wu, S. J. Colloid Interface Sci. 31 (1969): 153.
- 45. Roe, R. J. J. Colloid Interface Sci. 31 (1969): 228.
- 46. Matsumoto, M., and Y. Ohyanagi. J. Polym. Sci. 46 (1960): 441.
- 47. Ohyanagi, Y., and M. Matsumoto. Chem. High Polym. (Japan) 16 (1959): 296.
- 48. Chinai, S. N., P. C. Scherer, and D. W. Lewi. J. Polym. Sci. 17 (1955): 117.
- 49. Schmidt, M., D. Nerger, and W. Burchard. Polymer 20 (1979): 582.
- 50. Tsuchiya, S., Y. Sakaguchi, and I. Sakurada. Chem. High Polym. (Japan) 18 (1961): 346.
- 51. Schultz, A. R. J. Am. Chem. Soc. 76 (1954): 3,422.
- 52. Berry, G. C., H. Nakayasu, and T. G. Fox. J. Polym. Sci., Polym. Phys. Ed. 17 (1979): 1,825.
- 53. Horii, F., Y. Ikada, and I. Sakurada. J. Polym. Sci., Polym. Chem. Ed. 12 (1974): 323.
- 54. Candau, F., C. Strazielle, and H. Benoit. Makromol. Chem. 170 (1973): 165.
- 55. Naito, R. Chem. High Polym. (Japan) 16 (1959): 7.
- 56. Matsumoto, M., and Y. Ohyanagi. J. Polym. Sci. 50 (1961): S1.
- 57. Ueda, M., and K. Kajitani. Makromol. Chem. 108 (1967): 138.
- 58. Atkinson, C. M. L., and R. Dietz. Eur. Polym. J. 14 (1978): 867.
- 59. Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. VII-379.
- 60. Mark, J. E., ed. Physical Properties of Polymers Handbook. AIP Press, Woodbury, N.Y., 1996.

P. R. SUNDARARAJAN

ACRONYM, TRADE NAMES PVA, Vinol, Airvol[®] (Air Products and Chemicals), Elvanol[®] (du Pont), Gelvatol[®] (Monsanto), Mowiol[®] (Hoechst), Poval[®] (Kuraray, Japan), Gohsenol[®] (Nippon Gohsei, Japan), CCP (Chang Chun, Taiwan).

CLASS Vinyl polymers

STRUCTURE CH₃CHOH(CH₂-CHOH)_n

MAJOR APPLICATIONS Paper and textile sizing, oxygen resistant films, adhesives, emulcifiers, colloid stabilizers, base/coatings for photographic films, food wrappings, desalination membranes, electroluminescent devices, and cement coatings.

GENERAL INFORMATION Commercial poly(vinyl alcohol) is derived from poly(vinyl acetate). Typical commercial molecular weight ranges for different viscosity grades are: $M_n = 25,000$ (low, 5–7 cP), 40,000 (intermediate, 13–16 cP), 60,000 (medium, 28–32 cP) and 100,000 (high, 55–65 cP). (Viscosities correspond to 4% aqueous solution.)⁽¹⁾

World-wide production >500,000 tons yr⁻¹, two-thirds in Japan, China and Taiwan. Price \$2.65 kg⁻¹(1995). (2)

PROPERTIES OF SPECIAL INTEREST Water soluble; resistant to solvents, oil, and grease; exceptional adhesion to cellulosic and other hydrophilic surfaces.

Synthetic Aspects

STEREOREGULARITY	PARENT POLYMER	SYNTHETIC CONDITIONS	METHOD OF CHARACTERIZATION	CHARACTERISTICS*	REFERENCE
Atactic	PVAc	Free radical, BEt ₃ /air or AIBN/ $h\nu$, -78 to 90°C, amyl acetate or MEK solvent	NMR	_	(3)
Syndiotactic	Poly(vinyl trifluoroacetate)	n -Bu ₃ B/air, -78° C, heptane Benzyl peroxide, 60° C	NMR IR, X-ray diffraction	m: 39%, r: 61% –	(4) (5)
Syndiotactic	Poly(vinyl pivalate)	Radical polymeriation of VP at -40°C; <i>n</i> -hexane	NMR, DSC	r: 69%	(6)
Isotactic	Poly(vinyl <i>t</i> -butyl ether)	BF_3 etherate, -78° C, toluene	NMR	m: 67-76%, r: 33-24%	(4)
	,	BF_3 etherate, $-78^{\circ}C$, toluene	IR, X-ray diffraction	_	(5)
Isotactic	Poly(vinyl benzyl ether)	Cationic polymerization with BF_3 etherate at $-78^{\circ}C$			
		In <i>n</i> -heptane/toluene mixture	X-ray diffraction, IR	_	(7)
		In toluene	NMR	m: 93%, r: 7%	(8)
		In nitroethane	NMR	m: 76%, r: 24%	(8)

STEREOREGULARITY	PARENT POLYMER	SYNTHETIC CONDITIONS	METHOD OF CHARACTERIZATION	CHARACTERISTICS*	REFERENCE
Isotactic	Poly(t-butyl vinyl ether)	BF ₃ etherate, in toluene, at -78° C	NMR, X-ray	i: 79.1, h: 18.9, s: 2.0; DP: 3,540 i: 77.8, h: 19.6, s: 2.6, DP: 23,800	(9)
Isotactic	None. Direct polymerization of vinyl alcohol monomer	Vinyl alcohol was formed through acid catalyzed hydrolysis of ketene methyl vinyl acetal. Kinetics of tautomerization to acetaldehyde was controlled to extend the half life of vinyl alcohol to enable polymerization. Also copolymerization with maleic anhydride and acrylonitrile.			(10)
Head-to-head	PVAc	Benzyl peroxide, 25–110°C, $M_{\rm w} = 16.5 \times 10^4 - 4.07 \times 10^4$	1,2 diol content	1.23-1.95 mol %	(11)
		Free radical, BEt ₃ /air or AIBN/ <i>hv</i> , -78 to 90°C	1,2 diol content	1.16-1.98%	(3)

^{*}m: meso diad; r: racemic diad; i: isotactic triad; h: heterotactic triad; s: syndiotactic triad

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat of polymerization	kJ mol ⁻¹	Polymerization of acetaldehyde (at 298.15 K)	64.5	(12)
Density	$g\mathrm{cm}^{-3}$	% Acetate content		(13)
,	O	0	1.329	,
		10	1.316	
		20	1.301	
		30	1.288	
		40	1.274	
		50	1.260	
		60	1.246	
		70	1.232	
Specific gravity	_	Gelvatol	1.19-1.27	(14)
		Airvol	1.27-1.31	(15)
Index of refraction $n_{\rm D}^{20}$	_	% Acetate content	1.557	(13)
2		0	1.548	,
		10	1.539	
		20	1.530	
		30	1.521	
		40	1.512	
		50	1.503	
		60 70	1.494	
		Airvol	1.55	(1, 15)
Coefficient of linear		Elvanol	$0.7 1.2 \times 10^4$	(13)
expansion		Gelvatol, plasticized	1×10^{-4}	(14)

Polv(viny	lalo	coh	iol)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	Airvol	0.2	(1, 15)
Specific heat	$Jg^{-1}K^{-1}$	Airvol	1.5 1.67	(1, 15) (2)
Glass transition temperature $T_{\rm g}$	K	– Airvol 87–89% hydrolyzed	358 348–358 Empirical formula (°C): $58 - (2.0 \times 10^{-3}/DP)$	(16) (1, 15) (2)
Heat capacity	$JK^{-1}mol^{-1}$	250 K 270 K 290 K 300 K	52.21 57.95 64.50 68.11	(17)
Solubility parameter	$(MPa)^{1/2}$	-	25.78	(18, 19)
Interaction parameter	-	Water, 30°C Water, 267°C Glycerol, 228°C Water, 40°C, crystallinity >28% Water, 40°C, crystallinity 28%	0.494 -0.49 -0.16 0.30 0.18	(20) (21) (21) (22) (22)
Sedimentation coefficient	S	Water, 20°C, $M_{\rm w}=13{,}000$ Water, 20°C	0.96×10^{-13} Empirical formula: $s_0\approx 4.4\times 10^{-15}\times M^{0.32}$	(23)
Diffusion coefficient	$cm^2 s^{-1}$	Water, 20°C, $M_{\rm w}=13{,}000;$ Water, 20°C, $M_{\rm w}=90{,}000$ $o\text{-Positronium}$	$7.46 \times 10^{-7} \\ 2.16 \times 10^{-7} \\ 0.5 \times 10^{-6}$	(23) (23) (24)
Second virial coefficient	$\mathrm{mol}\mathrm{cm}^3\mathrm{g}^{-2}$	Water, 30°C, $M_{\rm w}=18.0\times10^4$ Water, 30°C, $M_{\rm w}=19.6\times10^4$ Water, 73.5°C, $M_{\rm w}=24.5\times10^4$	3.9×10^{-4} 5.2×10^{-4} 1.12×10^{-4}	(23, 25)
Theta temperature θ	K	Water t-Butanol/water (32/68 w/w) Ethanol/water (41.5/58.5 w/w) Methanol/water (41.7/58.3 w/w) i-Propanol/water (39.4/60.6 w/w) n-Propanol/water (35.1/64.9 w/w)	370 298 298 298 298 298	(26, 27) (26, 27) (27, 28) (27, 28) (27, 28) (27, 28)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio $(C_{\infty} = r_{\theta}^2/nl^2)$	_	Water, 30°C	8.3	(29)
$d(\ln C)/dT$	deg ⁻¹	Thermoelastic method DP 2300, 20–80°C, water or 18%(vol) glycol/water as diluent	0.0	(30)
		Du Pont PA-5 (DP 1600), 20-90°C, water as diluent	-3.6×10^{-3}	(31)
		Elvanol 71/30 (DP 1830), 20-90°C, water as diluent	0.7×10^{-3}	(31)
		Atactic, DP 3100 Syndiotactic, DP 3135 Isotactic, DP 4470	$-1.7 \times 10^{-3} -0.6 \times 10^{-3} -2.3 \times 10^{-3}$	(32) (32) (32)

Aqueous salt solutions

Salt	Maximum salt concentration in which PVA is soluble (% in water)*		Reference
	98% hydrolyzed	88% hydrolyzed	
Na_2SO_4	5	$\frac{1}{4}$	$(1)^{\dagger}$
$(NH_4)_2SO_4$	6	5	. ,
NaHCO ₃	9	7	
NaCl:KCl	14	10	
$NaNO_3$	24	20	

 $^{^*}$ By adding a 10% solution of PVA to 50 ml of the salt solution at incremental concentration until precipitation is observed.

Solvents and nonsolvents

CONDITION	SOLVENT	NONSOLVENT	REFERENCE
_	Glycols (hot), glycerol (hot), piperazine, formamide, dimethyl formamide, DMSO (hot), water	Hydrocarbons, chlorinated hydrocarbons, lower alcohols, tetrahydrafuran, ketones, carboxylic acids, esters, concentrated aq. salt solutions	(34)
Syndiotactic	Water (above 160°C, as a diluent), 1,3-propandiol (above 160°C)	_	(34)
Syndiotactic, $r = 60-64\%$	N-methylmorpholine-N-Oxide/ water (70:30), 100°C	_	(35)

[†]See reference (1) for other salts. Also see reference (33).

CONDITION	SOLVENT	NONSOLVENT	REFERENCE
12% Acetyl	Water	Hydrocarbons, halogenated hydrocarbons, ketones, carboxylic acids, esters, hot water	(34)
30% Acetyl	Water, alcohols, aqueous solution of various salts	Water above 24°C	(36)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric constant ε'	-	Room temperature, $f = 8.6 \times 10^9$ cps 5% water content (wt), room temperature, $f = 8.6 \times 10^9$ cps	2.6 3.0	(37) (37)
		$f = 8.0 \times 10^{\circ} \text{ cps}$ 25°C, $0.12 \times 10^{6} \text{ Hz}$	5.9	(13)
Loss factor $(\tan \delta)$	_	Room temperature, $f = 8.6 \times 10^9$ cps 5% water content (wt), room temperature, $f = 8.6 \times 10^9$ cps	$40 \times 10^{-3} \\ 56 \times 10^{-3}$	(37)
Tensile strength	MPa	Increases with degree of crystallinity and $M_{\rm w}$; decreases with increasing RH Extruded, 25°C Partially hydrolyzed, 22°C, 50% RH Fully hydrolyzed, 22°C, 50% RH 98-99% hydrolyzed 87-89% hydrolyzed	36 42 53 67–110 24–79	(13) (1) (1) (2) (2)
Elongation at break	%	Extruded, 25°C Pressed, 25°C	225 445	(13)
Young's modulus	GPa	Gel-spun fibers; draw ratio 22 at 200°C; syndiotactic; DP 1150; gel from N- methylmorpholine-N-Oxide/water (70:30)	45	(35)
		Gel drawn (ethylene glycol) films; draw ratio 15 at 0°C; atactic; DP 12,000	37	(38)
Poisson's ratio	_	Gel With DMSO/water With ethanol Hydrogel	0.455-0.485 0.338 0.426-0.447	(39)
Peel strength	$N m^{-1}$	On polyester film, Vinol WS-53, partially hydrolyzed, 80% RH On polyester film, Vinol WS-53, fully hydrolyzed, 80% RH	30 12	(1)
Electrical resistivity	ohm cm	Airvol	$(3.1-3.8) \times 10^7$	(1, 15)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Gas permeability coefficient	$\begin{array}{c} cm~(STP)\times cm/\\ (cm^2\times sec\times\\ cmHg) \end{array}$	50% relative humidity, 25°C, atmospheric pressure Oxygen CO ₂ Water Hydrogen Acetylene	0.72×10^{-10} 1.20×10^{-10} $(2,900-14,900) \times 10^{-10}$ 2.14×10^{-10} 3.56×10^{-10}	(13)
Surface tension	$\mathrm{mN}\mathrm{m}^{-1}$	1.5% solution concentration, 20° C, $M_{\rm w}=88{,}000$, 90% hydrolysis	50	(1, 2)
Interfacial tension	mN m^{-1}	Gelvatol, $M_{\rm w}=96,000$; 3% solids, one minute aging; with vinyl acetate	3.3	(14)
Frictional force	volts	Dip coated PVA film on mica Friction force microscopy at 5% RH Friction force microscopy at 75% RH	0.25 1.0-1.25	(40)

Contact angle (θ) and wetting energy ($\gamma \cos \theta$) (erg cm⁻²)* to various polymer films^{†(33)}

Polymer	θ Water	98% Hydr	olyzed	88% Hydr	olyzed
		$\overline{\theta}$	$\gamma \cos \theta$	$\overline{\theta}$	$\gamma \cos \theta$
PTFE	109.2	104	-15.1	95.0	-4.4
Polypropylene	102.0	95.0	-5.5	89.5	0.5
Polyethylene	96.8	93.2	-2.4	84.8	4.5
Polystyrene	96.1	86.5	3.8	76.0	12.1
Nylon 6	54.6	44.3	44.5	42.4	37.4

 $^{^*\}gamma$ for 98% hydrolyzed: 62.4 mN m $^{-1}$; γ for 88% hydrolyzed: 49.9 mN m $^{-1}$. $^\dagger 3\%$ aqueous solution, DP 1700.

Resistance to organic solvents*(41)

Solvent	Swelling % (weight) [†]			
	98-99% Hydrolyzed	87-89% Hydrolyzed	98-99% Hydrolyzed	87-89% Hydrolyzed
Benzene	-0.6	-1.3	-1.6	-2.4
Iso-octane	-0.5	-1.1	-2.6	-2.3
Carbon tetrachloride	-0.5	-1.1	-2.0	-0.9
Soya bean oil	-0.4	-0.6	-1.2	-1.0

^{*}DP of PVA: 1750.

[†]Negative signs here denote shrinking, due probably to dehydration.

Mark-Houwink parameters: *K* and *a*

Solvent	Temperature (K)	$M imes 10^{-4}$	$ extit{K} imes 10^3 ext{ (ml g}^{-1} ext{)}$	а	Reference
Water	298	2.1	20	0.76	(11)
	298	7	140	0.60	(26, 29)
	303 (syndiotactic rich)	12	73.4	0.63	(42)
	353	46	94	0.56	(25, 29)
Phenol/water (85/15 vol)	303	12	24.6	0.8	(43)
Water	298	_	_	_	(44)
	86.8% hydrolyzed	_	80	0.58	
	93.5% hydrolyzed	25.3	74	0.6	
	96.4% hydrolyzed	24.7	69	0.61	

SPECTROSCOPY	FREQUENCY (cm ⁻¹)	INTENSITY	ASSIGNMENT	DICHROISM	REFERENCES
Infrared	916	Medium	C-O syndiotactic	1	(8, 45, 46)
	1,144	Medium, variable	C-O of doubly hydrogen bonded OH in crystalline domains	Τ	(8, 45, 46)
	1,650	Variable	Adsorbed water	_	(8, 45, 46)
	1,740; 1,265	Variable	Residual acetyl group	_	(8, 45, 46)
	2,910	Strong	CH ₂ stretch (Syndio)	\perp	(8, 45, 46)
	2,942	Strong	CH ₂ stretch (Atactic)	\perp	(8, 45, 46)
	3,340	Very strong	OH stretching	\perp	(8, 45, 46)
	D916/D849		Tacticity		
		Ratio = 0	90% meso	_	(8, 46, 47)
		Ratio $= 1.2$	75% racemic	_	(8, 46, 47)
IR of dueterated	PVA				(45)
IR of dehydrated	d PVA				(48)
IR of semicrysta	lline network				(49)
Positron annihila	ation				(24)

		Poly	y(vinyl alcohol)
SPECTROSCOPY	CONDITION	CHEMICAL SHIFTS (δ, PPM)*	REFERENCES
NMR			(8, 46 [†] , 50, 51) (Reviews)
¹ H (60, 100 and 220 MHz) spectra	PVA from Kuraray Co., in DMSO-d ₆ , 20-100°C; tacticity analysis; hexamethyldisiloxane as internal standard	OH proton at 50°C: <i>i</i> : 4.52, <i>h</i> : 4.33; <i>s</i> : 4.10 J(H-O-C-H) (Hz): <i>i</i> : 3.1; <i>h</i> : 4.3; <i>s</i> : 5.3	(52)
¹ H spectra	Gelvatol 2/75 in DMSO-d ₆ , at 35°C; tacticity analysis; TMS as standard	OH proton: i: 4.63; h: 4.45; s: 4.22	(53)
¹³ C (22.63 MHz) and ¹ H (220 MHz) spectra	Atactic and isotactic PVA ¹³ C in DMSO-d ₆ , D ₂ O and hexafluoroisopropyl alcohol; TMS standard ¹ H in DMSO-d ₆ ; hexamethyldisiloxane standard	13 C: CH ₂ peaks:	(54)
¹³ C (22.6 and 67.9 MHz) spectra	Pentad tacticity analysis; atactic and isotactic PVA; in DMSO-d ₆ at 80°C; TMS standard	<i>rmmr</i> : 68.01; <i>mrrm</i> : 64.26 (see reference (55) for others)	(55)
¹³ C (100 MHz) spectra	Heptad and hexad sequence analysis; atactic and isotactic PVA; in DMSO-d ₆ and D ₂ O at 50°C; TMS standard	Atactic: DMSO-d ₆ D ₂ O Methine rrrr: 64.48 65.53 mrrm: 64.18 65.21 Methylene mrrrm: 45.92 45.07 rrrrr: 45.81 44.95 (see reference (56) for others)	(56)
¹ H (360 MHz), 2D NMR	$M_{\rm w} = 14,000; 70^{\circ}\text{C}; \text{ sodium}$ 3-trimethylsilyl [2,2,3,3]	rr: 4.062; mr: 4.037; mm: 3.985; mmm: 1.769, 1.675; rrr: 1.647	(57)

propionate as standard

SPECTROSCOPY	CONDITION	CHEMICAL SHIFTS (δ , PPM)*	REFERENCES
¹ H (500 MHz) and ¹³ C (125 MHz); 2D NMR	$M_{\rm w}$ < 4,400; in D ₂ O at 80°C; 13 C assignments to pentadhexad level	¹ H spectra: CH group: 3.957 (rr); 3.930 (mr); 3.879 (mm) CH ₂ group: 1.660 (mmm); 1.539 (rrr) ¹³ C spectra: CH group: 68.18 (rmmr); 65.22 (mrrm) CH ₂ group: 44.85 (mrrm); 44.74 (rrrrr) (see reference (58) for others)	(58)
¹ H (80, 300, and 400 MHz); ¹³ C (100.6 MHz) spectra	$M_{\rm w}=50{,}000$; in water at 5–87°C; spin-lattice relaxation times; local chain dynamics; TMS standard	¹³ C spectra at 60°C: CH group: 64.8–65.5 (<i>rr</i>); 66.1-66.9 (<i>mr</i>); 67.7–68.4 (<i>mm</i>) CH ₂ group: 43.4–43.9 (<i>mmm</i> + <i>mrm</i>); 44.7–45.1 (<i>rrr</i>)	(59)
¹³ C (50 MHz) VT/ MAS solid state spectra	DP 1700, 7600 and 15,500 (Kuraray Co.); phase structure of single crystals from triethylene glycol; TMS standard	CH resonance splits into four peaks at 77.5 (two intra H-bonds); 71.5 (one intra h.bond); 65.0 (no intra H-bond); and 62.4 (intermolecular H-bond); fraction of OH groups with intra H-bond is 0.35 for crystalline domains; decreases from 0.66 (DP 1700) to 0.44 (DP 15,500) in noncrystalline regions	(60)
¹³ C (67.8 MHz) CP/ MAS solid state spectra	DP 1700 (Kuraray Co.); study of hydrogen bonding in aqueous gels	_	(61)

^{*}*m*: meso diad; *r*: racemic diad; *i*: isotactic triad; *h*: heterotactic triad; *s*: syndiotactic triad.

Unit cell dimensions

Tacticity Lattice				Cell dimensions (Å)		Cell angles (degrees)		References	
		(per unit cell)	а	b *	С	α	β	γ	
Atactic	Monoclinic, P2 ₁ /m	2	7.81	2.51	5.51	90	97.7	90	(8, 62)
Atactic	Monoclinic, P2 ₁ /m (X-ray and neutron diffraction)	2	7.81	2.52	5.51	90	91.7	90	(63)
Isotactic	_	2	_	2.51	_	_	_	_	(7, 8)

^{*}Chain axis.

[†]References (8, 46, 50, 51) are reviews. Reference (46) presents a chronological review of proton and ¹³C NMR analysis of PVA and spectral assignments.

Crystal features

PROPERTY	UNITS	CONDITIONS	VALUE/STRUCTURE	REFERENCE
Crystalline conformation	_	_	Planar zig zag	(45, 62)
Crystal density	$\rm gcm^{-3}$	-	1.35	(45, 62)
Melting temperature	K	 69% syndiotactic 64% syndiotactic, gel drawn fiber, draw ratio 22 at 220°C Dried gel film, atactic 	538 531 540.1	(62)* (6) (35)
		Dried gel film, syndiotactic	521.5	(38)
Heat of fusion	$kJ mol^{-1}$	– 69% syndiotactic	7.11 7.5	(6, 62, 64)
Entropy of fusion	$JK^{-1}mol^{-1}$	518 K	13.1	(13, 64)
Chain folding	-	Single crystals from 0.03-3% solution of triethylene glycol at 353-443 K	Parallelogram-shaped lamellae, 100-Å thick, long side, 1 μm along {101}; short side, 0.25 μm along {100}	(65, 66)
Crystallinity	%	Solution crystallized from 1,3-propanediol, ethylene glycol or triethylene glycol (values depend on solvent and crystallization temperature)	Syndiotactic: 25–35 Atactic: 43–60 Isotactic: 18–24	(4)
		Solution cast films (annealing at 90-210°C)	Syndiotactic: 40–53 Atactic: 30–60 Isotactic: 20–24	(47)
		Cross-linked hydrogel of Elvanol R73-125G (depends on annealing temperature, time, and cross-link density; improved mechanical properties with crystallinity)	20–70	(67)
		Cross-linked hydrogel of Elvanol R73-125G, slow drying at 25°C (rate of crystallization depends on rate of drying, controlled by different drying agents)	Final crystallinity: 45–70	(49, 67)

PROPERTY	UNITS	CONDITIONS	VALUE/STRUCTURE	REFERENCE
Crystallinity	%	Dry films	Crystallization kinetics. Avrami exponent $n = 0.67$ –0.71 for $T_c = 142$ –182°C; 1.53 for $T_c = 192$ °C	(68)
Crystallite size	Å	X-ray diffraction of drawn fibers Draw ratio 4 Draw ratio 19.8	34 121	(69)
Long spacing	Å	X-ray diffraction of drawn fibers Draw ratio 4 Draw ratio 19.8	85 182	(69)
		Single crystals, SAXS DP 1700 DP 15,500	116 125	(60)

^{*}See also references (6, 8, and 64). Reference (8), p. 501–512, reviews the effect of tacticity and parent polymer on the crystallinity, $T_{\rm m}$, $T_{\rm g}$, and solubility in water.

Isomorphous copolymers

COPOLYMER	COMPOSITION	TYPE OF ISOMORPHISM*	CHAIN CONFORMATION	REFERENCE
	Entire stereo composition 100-0 mol % of ethylene 100-0 mol % of ethylene	Type 1 Isodimorphism Isodimorphism	Planar zig-zag Planar zig-zag Discussion of lattice constants, elastic modulii as a function of composition	(62) (70, 71) (71)

^{*}See references (62 and 70) for definition of types of isomorphism.

Random copolymers of ethylene-vinyl alcohol (72)*

PROPERTY	UNITS	CONDITIONS/ETHYLENE MOL %	VALUE
PROPERTY	UNIIS	CONDITIONS/ETHYLENE MOL %	VALUE
Short branching	mol %	Solution polymerization, 31%	
G		CH_3	1.67
		CH ₂ OAc	0.12
		1,2-Glycol	0.35
		1,4-Glycol	0.96
Short branching	mol %	Suspension polymerization, 32%	
		$\dot{\text{CH}}_3$	0.61
		CH ₂ OAc	0.21
		1,2-Glycol	0.27
		1,4-Glycol	4.5

PROPERTY	UNITS	CONDITIONS/ETHYLENE MOL %	VALUE
Density	g cm ⁻³	EVAL®, 27% 47%	1.20 1.12
Melting temperature	K	27% 47%	464 429
Glass transition temperature	K	27% 47%	345 321
Diffusion coefficient of water	$\mathrm{cm}^2\mathrm{s}^{-1}$	32%, 20°C 32%, 60°C 44%, 20°C 44%, 60°C	6.63×10^{-9} 99.0×10^{-9} 0.74×10^{-9} 34.9×10^{-9}

^{*}See also the entry on *ethylene-vinyl alcohol* in this handbook.

Block copolymers⁽⁷³⁾

BLOCK COPOLYMER	FRACTION OF OTHER MONOMER	PROPERTY/APPLICATION
PVA-PEO-PVA	25–34 wt%	Low surface tension. Segments crystallize independently
PVA-PPO-PVA	12%	_
PVA-polyacrylic acid	20%	Transparent film with gelatin blends (0-100% blend composition range)
PVA–polyacrylamide- polyacrylic acid	100-95/5	Transparent films with starch (up to 40% (wt) of starch)
Propyl to octadecyl alkanes	_	Prepared by end group modification of PVAc in the presence of Mercaptan of the alkanes; modifier for surface tension and wetting property; protective colloid

Compatible polymers in aqueous solutions $^{*(74)}$

Polymer	Interaction Parameter † $lpha_{23}$ (ml $^{-1}$)
Carboxy methyl cellulose	0.059
Methyl cellulose	0.128
Hydroxy ethyl cellulose	0.177
Dextrine	0.290
Poly(methyl acrylate) (20% hydrolyzed)	0.006
Poly(ethyl acrylate) (20% hydrolyzed)	0.074

^{*}DP of PVA: 550-1750, concentration of polymers 10-30%; 88% hydrolyzed.

[†]Smaller value indicates better compatibility.

Blends*

OTHER POLYMER	CONDITIONS	CHARACTERIZATION METHOD	MORPHOLOGICAL PROPERTIES	REFERENCE
Poly(N-vinyl-2-pyrrolidone)	PVA $M_{\rm w}=25,000,98.5\%$ hydrolyzed; PVPy $M_{\rm w}=360,000;$ films cast from aqueous solutions	¹³ C CP/MAS NMR (100 MHz) and DSC	Miscible over entire composition range; single $T_{\rm g}$ increasing from 73.1°C (0% PVPy) to 158.9°C (80% PVPy); $T_{\rm m}$ of PVA depressed from 218.7°C (0% PVPy) to 186.3°C (80% PVPy); chemical shift changes with composition given; intermolecular hydrogen bond between PVA and PVPy	(75, 76)
Polypyrrole	$ \begin{array}{l} {\rm PVA} \; M_{\rm w} = 86,\!000,100\% \\ {\rm hydrolyzed; \; in \; situ} \\ {\rm polymerization \; of \; Ppy \; in} \\ {\rm PVA \; matrix} \end{array} $	FTIR, X-ray, TGA, DSC, SEM	Miscible over entire composition range; no PVA crystallinity with Ppy >20%	(77)
Cellulose	PVA: Mowiol 8-88, blend film cast from N-methyl-2-pyrrolidinone/3 wt% LiCl	X-ray, dielectric and dynamic mechanical measurements ¹³ C NMR	homogeneous with >60 wt% of cellulose, no crystallinity	(78) (79)
Poly (3-hydroxybutyric acid)	P(3HB) $M_{\rm w}=380,000$; atactic PVA: DP 2000; syndiotactic PVA: DP 1690; isotactic PVA: DP 7250; films cast from solutions of hexafluoroisopropyl alcohol	FT-IR	Suppression of P(3HB) crystallization is more with syn-PVA than with a-PVA. i-PVA has no influence.	(80)
Starch	Poly(ethylene-vinylalcohol) copolymer, 56% VA; waxy maize, native corn and high- amylose starches; extrusion- blended	X-ray, DSC, SEM, TEM	Phase separated starch domains. Oriented droplets, $0.05-5\mu m$ in length (waxy maize), $0.05-1.2\mu m$ domains (native corn), $<0.25\mu m$ (high amylose)	(81)
Nylon 4,6	Poly(ethylene-vinylalcohol) copolymer, 27 mol% ethylene, 13 mol% vinyl acetate; nylon 4/nylon 6: 69/ 31 mol%; films cast from formic acid	FT-IR, X-ray, DSC, tensile tests	Miscible when nylon 4,6 $<$ 35 wt%. C $-$ O \cdots N $-$ H hydrogen bond between nylon and EVOH. Increase in tensile strength from 4 for 15/85 wt% nylon/EVOH to 331 kg cm $^{-2}$ for 100/0 blend	(82)
Copolyamide (random 1:1:1 nylon 6/nylon 6,6/nylon 6,10 units)	$M_{ m w}$ of PVA: 24,000; solution cast from N,N-dimethyl formamide	FT-IR, DSC	Miscible in the amorphous state; two phases when quenched after DSC scan; blends exhibit LCST behavior; both components show mutual $T_{\rm m}$ depression	(83)

^{*}See also gels below for gelation with blends.

Gels

GELLING AGENT	CONDITIONS	FEATURES	REFERENCES
Ethylene glycol	Syndiotactic ($r = 57\%$) and atactic ($r = 50\%$)	$T_{\rm m}$ of wet gel: 131°C for a-PVA and 144°C for s-PVA; $T_{\rm m}$ of dry gel: a-PVA: 231°C (quick cool), 238.5 °C (gradual); s-PVA: 247.5°C (quick cool), 248.5°C (gradual)	(38)
Ethylene glycol/ water	DP of PVA: 1700, 99.9% hydrolyzed	Maximum elastic modulus with 35 mol% of EG	(84)
Water	PVA blended with poly(styrene sulfonic acid) sodium salt	Dried, drawn blend hydrogels; physical cross-links due to interpolymer complex increasing the Young's modulus with NaPSS content; contraction upon absorbing water, with nonideal rubber elasticity	(85)
Water	PVA blended with poly(styrene sulfonic acid) sodium salt; high water content	Three dimensional honey-comb structure, with bundles or tapes (0.1–0.2 μ m); highly transparent; permeability similar to that of commercial soft contact lens	(86)
DMSO/water	DMSO/water: 100/0 to 50/50	_	(87)
Water	Telechelic PVA was used to cross- link with chitosan or PVA	Firm network	(88)
Water	Gel prepared by chemical cross- linking with glutaraldehyde, annealing and then hydrated, or low temperature crystallization from aqueous mixtures of glycerol, ethylene glycol, or DMSO	_	(89)
Borax	0.1% solution wt	Thermally irreversible, bisdiol complex formed	(1)*
Boric acid	Full gelation above pH 6	_	(1)
Congo red	3% (w/w) with fully hydrolyzed PVA DP 1800, 99.96% hydrolyzed	Colored gel Sol-gel transitions	(13) (22, 93-95)

Poly(vinyl alcohol)			
GELLING AGENT	CONDITIONS	FEATURES	REFERENCES
Resorcinol, 2,4- dihydroxybenzoic acid	-	Colorless, thermoreversible gel	(13)
Water, glycerine, glycol	Moviol (Hoechst) $M_{\rm n}=48{,}000;$ 2% actetate content	Crystalline gels; crystallinity: PVA (initial): 21.5% Water gel: 21.5% Glycerine gel: 34% Glycol gel: 42%	(96)

^{*}See references (90-92) for DP and concentration effects.

Comonomers and plasticizers

ADDITIVE/OTHER MONOMER	FUNCTION	CONDITIONS	PROPERTY	REFERENCES
Maleic, fumaric or Itaconic acid	Copolymer with PVA	PVA from solution polymerization of vinyl acetate with comonomers	Increased water solubility in the range of 50–100% hydrolysis, controlling flocculation/dispersion of clay, compatibilization with starch	(97)
Catioinic acrylamide or methacrylamide	Copolymer with PVA	_	Adsorption to pulp surface, protective colloid for emulsion polymerization, affinity to acidic dyestuff (e.g., in ink-jet printing)	(97, 98)
Acrylonitrile, vinylidene chloride, ethylenimine, acrylic esters, vinyl chloride, alkali cellulose	Graft copolymer	In solution, free radical, or ionic catalysts	Reduced water sensitivity, film, and coating applications	(13)
Methyl methacrylate	Graft copolymer	PMMA wt% 23-72	Lamellar phase separated morphology; $T_{\rm g}$ of PMMA <i>increased</i> by 20 K; $T_{\rm m}$ of PVA decreased with increasing PMMA wt fraction	(99)

ADDITIVE/OTHER MONOMER	FUNCTION	CONDITIONS	PROPERTY	REFERENCES
N-Succinimido (N) thiocarbonyl acrylamide; acrylamide	Graft copolymer	Grafting using a potassium bromate-thiourea redox system	Grafting efficiency up to 45% with STAA; up to 80% with acrylamide	(100)
Styrene	Graft copolymer	Dispersion polymerization of styrene in the presence of PVA- CuCl ₂ complex	Narrowing of particle size distribution with increased grafting	(101)
		Living polystyrene with vinylsilane end group grafted to PVAc and subsequently saponified	_	(102)
Iodine	Complexing agent	Partially hydrolyzed PVA	Iodine coloring increases with blockiness of acetyl groups (0.05-0.41, arb. units); gold colloid stability increases in parallel	(90)
		Atactic, syndiotactic	Linear polyiodide intercalaction	(103)
		Partially formalized PVA, DP 560	Polyiodide complexation (SAXS); number of iodine atoms per chain increases from 4.2 to 24.9 in the I_2 conc. range 4.0×10^{-4} to 3.1×10^{-3} mol l^{-1}	(104)
Glycerol	Plasticizer	0 wt% in PVA 12% 20% 60%	$T_{\rm m}$ of PVA = 508 K 497 K 488 K 468 K	(41)
Dipropylene glycol, ethylene glycol	Plasticizers	_	_	(41)
Glyoxal, urea- formaldehydes, trimethylolmelamine	Cross-linking agents	Acid catalysts	-	(1)
Isobutanol, <i>n</i> -butanol, phenol, Ca(SCN) ₂ , NaSCN, NH ₄ SCN	Viscosity stabilizers for aqueous solutions	_	_	(33)

Po	lv/	vin	νI	ماد	-01	ha	n
ru	w	VIIII	VI.	aıç	.OI	ıυ	ı,

PROPERTY	CONDITIONS	VALUE	REFERENCE
Flammability	_	Burns similar to paper	(2)
Thermal stability	_	Gradual discoloration above 100°C; darkens rapidly above 150°C; rapid decomposition above 200°C	(2)
Half decomposition temperature	Temperature at which the polymer loses half its weight, if heated in a vacuum for 30 min	268°C	(105)
Initial decomposition temperature	-	240°C	(105)
Thermal decompositon products	240°C, 4 h Water CO CO ₂ Acetaldehyde Acetone Ethanol Others	33.4% 0.12 0.18 1.17 0.38 0.29	(21, 106)
	98% hydrolyzed, 400–500°C Water Methanol Acetone Ethanol Acetic acid Others As a function of hydrolysis	73.88% 0.56% 0.85% 1.25% 6.98% —	(2)
Biodegradation	_	Degradation products: water, CO ₂ Varieties of microorganism (at least 55 known) degrade PVA (e.g., Acinetobacter, E. coli, Pseudomonas (19 species), Saccharomyces, Lipomyces etc.) Degradable in activated sludge, soil landfills, septic systems	(2, 108)

REFERENCES

- Cincera, D. L. In Kirk-Othmer Encyclopedia of Chemical Technology, 3d ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, Vol. 23, 1978, p. 848.
- Marten, F. L. In Kirk-Othmer Encylopedia of Chemical Technology, 4th ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, Vol. 24, 1997, p. 980; and Marten, F. L. In Encyclopedia of Polymer Science and Engineering, edited by H. F. Mark, et al. Wiley-Interscience, New York, Vol. 17, 1989, p.167.
- 3. Friedlander, H. N., H. E. Harris, and J. G. Pritchard. J. Polym. Sci., Part A-1, 4 (1966): 649.
- 4. Harris, H. E., et al. J. Polym. Sci., Part A-1, 4 (1966): 665.
- 5. Fujii, K., et al. J. Polym. Sci., Part A, 2 (1964): 2,327.
- 6. Fukae, R., et al. Polym. J. 29 (1997): 293.
- 7. Murahashi, S., et al. J. Polym. Sci. 62 (1962): S77.
- 8. Fujii, K. J. Polym. Sci., Part D, Macromol. Rev., 5 (1971): 431.
- 9. Ohgi, H., and T. Sato. Macromolecules 26 (1993): 559.
- Novak, B. M., and A. K. Cederstav. *Polym. Preprints* 36(1) (1995): 548; and Cederstav, A. K., and Novak, B. M. J. Am. Chem. Soc. 116 (1994): 4,073.
- 11. Flory, P. J., and F. S. Leutner. J. Polym. Sci. 3 (1948): 880.
- Wunderlich, B., S. Z. D. Cheng, and K. Loufakis. In Encyclopedia of Polymer Science and Engineering, edited by H. F. Mark, et al. John Wiley and Sons, New York, Vol. 16, 1989, p. 799.
- Leeds, M. In Kirk-Othmer Encylopedia of Chemical Technology, 2d ed., edited by J. I. Kroschwitz. Wiley-Interscience, New York, Vol. 21, 1963, p. 353.
- 14. Gelvatol Polyvinyl Alcohol Resin. Monsanto Technical Bulletin 6082F.
- 15. Airvol Polyvinyl Alcohol. Air Products and Chemicals, Inc. Product Bulletin 152-9312-A.
- Peyser, P. In Polymer Handbook, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI-221.
- 17. Pan, R., M. Y. Cao, and B. Wunderlich. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p VI-387.
- 18. Shvarts, A. G. Kolloid Z. 18 (1956): 755.
- 19. Grulke, E. A. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII-554.
- Orwoll, R. A., and P. A. Arnold. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. American Institute of Physics Press, Woodbury, N.Y., 1996, p. 195.
- Tubbs, R. K., and T. K. Wu. In *Polyvinyl Alcohol: Properties and Applications*, edited by C. A. Finch. Wiley-Interscience, U.K., 1973, Ch. 8.
- 22. Perrin, L., Q. T. Nguyen, R. Clement, and J. Neel. Polym. Intl. 39 (1996): 251.
- 23. Lechner, M. D., and D. G. Steinmeier. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII-61.
- Mohamed, H. F. M., Y. Ito, A. M. A. El-Sayed, and E. E. Abdel-Hady. *Polymer* 37 (1996): 1,529.
- 25. Matsuo, T., and H. Inagaki. Makromol. Chem. 55 (1962): 150.
- 26. Dieu, H. J. Polym. Sci. 12 (1954): 417.
- Sundararajan, P. R. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. American Institute of Physics Press, Woodbury, N.Y., 1996, p. 205.
- 28. Wolfram, E. Kolloid Z. 227 (1968): 86.
- 29. Kurata, M., and Y. Tsunashima. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, pp. VII-12-36.
- 30. Nakajima, A., and H. Yanagawa. J. Phys. Chem. 67 (1963): 654.
- 31. Abe, H., and W. Prins. J. Polym. Sci., Part C, 2 (1963): 527.
- 32. Sakurada, I., A. Nakajima, and K. Shibatani. Makromol. Chem. 87 (1965): 103.
- 33. Toyoshima, K. In *Polyvinyl Alcohol: Properties and Applications*, edited by C. A. Finch. Wiley-Interscience, U.K., 1973, Ch. 2.
- 34. Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VII-384.
- 35. Nagashima, N., S. Matsuzawa, and M. Okazaki. J. Appl. Polym. Sci. 62 (1996): 1,551.
- 36. Saito, S. J. Polym. Sci., Part A-1, 7 (1969): 1,789.

- 37. Frosini, V., E. Butta, and M. Calamia. J. Appl. Polym. Sci. 11 (1967): 527.
- 38. Yamamura, K., H. Kitahara, and T. Tanigami. J. Appl. Polym. Sci. 64 (1997): 1,283.
- 39. Urayama, K., T. Takigawa, and T. Masuda. Macromolecules 26 (1993): 3,092.
- 40. Hammerschmidt, J. A., et al. Macromolecules 29 (1996): 8,996.
- Toyoshima, K. In Polyvinyl Alcohol: Properties and Applications, edited by C. A. Finch. Wiley-Interscience, U.K., 1973, Ch. 14
- 42. Yamaura, K., K. Hirata, S. Tamura, and S. Matsuzawa. *J. Polym. Sci., Polym. Phys. Ed.*, 23 (1985): 1,703.
- 43. Matsumoto, M., and K. Imai. J. Polym. Sci. 24 (1957): 125.
- 44. Beresniewicz, A. J. Polym. Sci. 39 (1959): 63.
- 45. Tadokoro, H. Structure of Crystalline Polymers. John Wiley and Sons, New York, 1979.
- 46. Dunn, A. S. In *Polyvinyl Alcohol: Developments*, edited by C. A. Finch. John Wiley and Sons, U.K., 1992, Ch. 10.
- 47. Kenney, J. F., and G. W. Willcockson. J. Polym. Sci., Part A-1, 4 (1966): 679.
- 48. Nakanishi, Y. J. Polym. Sci., Polym. Chem. Ed., 13 (1975): 1,223.
- 49. Peppas, N. A. Makromol. Chem. 178 (1977): 595.
- 50. Murahashi, S., et al. J. Polym. Sci., Polym. Letters, 4 (1966): 65.
- Finch, C. A., ed. Polyvinyl Alcohol: Properties and Applications. Wiley-Interscience, U.K., 1973, Ch. 10.
- 52. Morotani, T., I. Kuruma, K. Shibatani, and Y. Fujiwara. Macromolecules 5 (1972): 577.
- 53. DeMember, J. R., H. C. Haas, and R. L. MacDonald. *J. Polym. Sci., Polym. Letters Ed.*, 10 (1972): 385.
- 54. Wu, T. K., and D. W. Ovenall. Macromolecules 6 (1973): 582.
- 55. Wu, T. K., and M. L. Sheer. Macromolecules 10 (1977): 529.
- 56. Ovenall, D. W. Macromolecules 17 (1984): 1,458.
- 57. Gippert, G. P., and L. R. Brown. Polym. Bulletin 11 (1984): 585.
- 58. Hikichi, K., and M. Yasuda. Polym. J. 19 (1987): 1,003.
- 59. Petit, J.-M., and X. X. Zhu. Macromolecules 29 (1996): 2,075.
- 60. Hu, S., M. Tsuji, and F. Horii. Polymer 35 (1994): 2,516.
- 61. Kobayashi, M., I. Ando, T. Ishii, and S. Amiya. Macromolecules 28 (1995): 6,677.
- 62. Wunderlich, B. Macromolecular Physics, Vol. 1. Academic Press, New York, 1973, Chs. 2, 4.
- 63. Takahashi, Y. J. Polym. Sci., Polym. Phys. Ed., 35 (1997): 193.
- 64. Tubbs, R. K. J. Polym. Sci., Part A, 3 (1965): 4,181.
- 65. Kenney, J. F., and V. F. Holland. J. Polym. Sci., Part A-1, 4 (1966): 699.
- 66. Tsuboi, K., and T. Mochizuki. J. Polym. Sci., Polym. Letters Ed., 1 (1963): 531.
- Peppas, N. A., and E. W. Merrill. J. Polym. Sci., Polym. Chem. Ed., 14 (1976): 441; J. Appl. Polym. Sci. 20 (1976): 1,457; Eur. Polym. J. 12 (1976): 495.
- 68. Peppas, N. A., and P. J. Hansen. J. Appl. Polym. Sci. 27 (1982): 4,787.
- 69. Hong, Po-Da, and K. Miyasaka. Polymer 35 (1994): 1,369.
- 70. Allegra, G., S. V. Meille, and W. Porzio. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. John Wiley and Sons, New York, 1989, p. VI-341.
- 71. Nakamae, K., M. Kameyama, and T. Matsumoto. Polym. Eng. Sci. 19 (1979): 572.
- Okaya, T., and K. Ikari. In *Polyvinyl Alcohol: Developments*, edited by C. A. Finch. John Wiley and Sons, U.K., 1992, Ch. 8.
- Okaya, T., and T. Sato. In *Polyvinyl Alcohol: Developments*, edited by C. A. Finch. John Wiley and Sons, U.K., 1992, Ch. 5.
- Toyoshima, K. In *Polyvinyl Alcohol: Properties and Applications*, edited by C. A. Finch. Wiley-Interscience, U.K., 1973, pp. 535.
- 75. Ping, Z.-H., Q. T. Nguyen, and J. Neel. Makromol. Chem. 189 (1988): 437.
- 76. Feng, H., Z. Feng, and L. Shen. Polymer 34 (1993): 2,516.
- 77. Wang, H.-L., and J. E. Fernandez. *Macromolecules* 26 (1993): 3,336.
- 78. Schartel, B., J. Wendling, and J. H. Wendorff. Macromolecules 29 (1996): 1,521.
- 79. Radloff, D., C. Boeffel, and H. W. Spiess. Macromolecules 29 (1996): 1,528.
- 80. Ikejima, T., N. Yoshie, and Y. Inoue. Macromol. Chem. Phys. 197 (1996): 869.
- 81. Simmons, S., and E. L. Thomas. J. Appl. Polym. Sci. 58 (1995): 2,259.
- 82. Ha, C-S., M.-G. Ko, and W.-J. Cho. Polymer 38 (1997): 1,243.

- 83. Zheng, S., et al. Eur. Polym. J. 32 (1996): 757.
- 84. Nishinari, K., and M. Watase. Polym. J. 25 (1993): 463.
- 85. Nagura, M., et al.. Polym J. 25 (1993): 833.
- 86. Nagura, M., et al. Polym. J. 26 (1994): 675.
- 87. Sawatari, C., Y. Yamamoto, N. Yanagida, and M. Matsuo. Polymer 34 (1993): 956.
- 88. Paradossi, G., R. Lisi, M. Paci, and V. Crescenzi, J. Polym. Sci., Polym. Chem. Ed., 34 (1996): 3.417.
- 89. Cha, W-I., S.-H. Hyon, and Y. Ikada. Makromol. Chem. 194 (1993): 2,433.
- Okaya, T. In *Polyvinyl Alcohol: Developments*, edited by C. A. Finch. John Wiley and Sons, U.K., 1992, Ch. 1.
- 91. Koike, A., N. Nemoto, T. Inoue, and K. Osaki. Macromolecules 28 (1995): 2,339.
- 92. Nemoto, N., A. Koike, and K. Osaki. Macromolecules 29 (1996): 1,445.
- 93. Shibayama, M., F. Ikkai, R. Moriwaki, and S. Nomura. Macromolecules 27 (1994): 1,738.
- 94. Shibayama, M., F. Ikkai, and S. Nomura. Macromolecules 27 (1994): 6,383.
- Ikkai, F., M. Shibayama, S. Nomura, and C. C. Han. J. Polym. Sci., Polym. Phys. Ed., 34 (1996): 939.
- 96. Halboth, H., and G. Rehage. Makromol. Chem. 38 (1974): 111.
- 97. Okaya, T. In *Polyvinyl Alcohol: Developments*, edited by C. A. Finch. John Wiley and Sons, U.K., 1992, Ch. 4.
- 98. Sato, T., K. Terada, J. Yamauchi, and T. Okaya. Makromol. Chem. 194 (1993): 175.
- 99. Yao, Y., et al. Polymer 35 (1994): 3,122.
- 100. Devarajan, R., V. Arunachalam, E. Jayakumar, and P. Selvi. J. Appl. Polym. Sci. 48 (1993): 921.
- 101. Nigam, S., R. Bandopadhyay, A. Joshi, and A. Kumar. Polymer 34 (1993): 4,213.
- 102. Tezuka, Y., and A. Araki. Makromol. Chem. 194 (1993): 2,827.
- 103. Choi, Y.-S., and K. Miyasaka. J. Appl. Polym. Sci. 48(1993): 313.
- 104. Hirai, M., T. Hirai, and T. Ueki. Makromol. Chem. 194 (1993): 2,885.
- 105. Welsh, W. J. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. American Institute of Physics Press, Woodbury, N.Y., 1996, pp. 605.
- 106. Tsuchiya, Y., and K. Sumi. J. Polym. Sci., Part A-1, 7 (1969): 3,151.
- Vasile, C., L. Odochian, S. F. Patachia, and M. Popoutanu. J. Polym. Sci., Polym. Phys. Ed., 23 (1985): 2,579.
- 108. Finch, C. A., ed. Polyvinyl Alcohol: Developments. John Wiley and Sons, U.K., 1992, pp. 767.

Dedicated to the memory of my son, Anand.

P. R. SUNDARARAJAN

ACRONYMS, TRADE NAMES PVB, Butvar[®] (Monsanto), Butacite[®] (Du Pont), Vinylite XYHL[®] (Union carbide), Rhovinal[®] B (Rhone-Poulenc), Movital[®] (Hoechst), S'Lec[®] (Shekisui), Saflex[®] (Monsanto), Trosofoil (Hüls).

CLASS Polyvinyl

STRUCTURE

This schematic should not be construed as a block structure.

MAJOR APPLICATIONS The significant use is in lamination of safety glass (automotive windshields). Others are structural adhesives, binders for rocket propellants, ceramics, in metallized brake linings, lithographic and offset printing plates, magnetic tapes, powder coatings; binder matrix in photoactive, electrooptic and electronic devices, protective coatings for glass, metal, wood, and ceramics; in wash primers for protecting metal surfaces (e.g., naval vessels); adhesion promoter in inks; dispersions used in textile industry to improve abrasion resistance and reduce color crocking. (1–3)

PROPERTIES OF SPECIAL INTEREST Resistance to penetration by natural wood oils, film clarity, heat sealability, adhesion to a variety of surfaces, chemical and solvent resistance, physical toughness.

GENERAL INFORMATION Poly(vinyl butyral) (PVB) is a member of the class of poly(vinyl acetal) resins. It is derived by condensing poly(vinyl alcohol) (PVA) with butyraldehyde in the presence of a strong acid. PVA reacts with the aldehyde, to form six-membered rings primarily between adjacent, intramolecular hydroxyl groups, leading to the structure shown above.

An example of the compositions of a commercial resin (Butvar) is as follows: (1,4)

Resin type	Molecular weight $(\textit{M}_{\rm w}) \times 10^{-3}$	Vinyl alcohol content (wt%)	Vinyl acetate content (wt%)
Butvar B-72	170-250	17-20	0-2.5
Butvar B-76	90-120	11-13	0-1.5

PVB is plasticized for specific applications. Saflex contains 32 phr (parts per hundred resin) of di-*n*-hexyl adipate. Butacite is PVB plasticized with 38.5 phr tetraethylene glycol di-*n*-heptanoate.

COMMERCIAL PRODUCTION Worldwide unplasticized PVB production was 68,000 tons in 1994. Of this, 66,000 tons were plasticized and extruded for safety glass application. Major interlayer lamination producers are Monsanto (Saflex), Du Pont (Butacite), Shekisui (S'Lec), and Hüls (Trosofoil). (1,5)

Synthetic Aspects

POLYMER	SYNTHETIC CONDITIONS	METHOD OF CHARACTERIZATION	CHARACTERISTICS	REFERENCE
Poly(vinyl butyral)	From PVA, 99% hydrolyzed; condensation of butyraldehyde with PVA in ethanol; H ₂ SO ₄ as catalyst; 53–100 g aldehyde to 100 g PVA; 5–7 h at 75–77°C	-	M = 70,000; residual PVA decreasing from 25.4–12%, with increasing aldehyde addition	(6)
Poly(vinyl formal)*	From PVA, DP 1000; <i>i</i> : 56%, <i>h</i> : 32%, <i>s</i> : 12%; formalization in 0.1 N HCl aqueous solution at 60°C	¹ H NMR	Formalization: 84 mol% Cis^{\dagger} ring: 70% $Trans^{\dagger}$ ring: 14% Rate constant: $8.8 \times 10^{-2} \mathrm{L} \mathrm{mol}^{-1} \mathrm{h}^{-1}$	(7)
	From PVA, DP 1000; <i>i</i> : 23%, <i>h</i> : 47%, <i>s</i> : 30%; formalization in 0.1 N HCl aqueous solution at 60°C	¹ H NMR	Formalization: 87 mol% Cis^{\dagger} ring: 59% $Trans^{\dagger}$ ring: 28% Rate constant: $6.6 \times 10^{-2} \text{L mol}^{-1} \text{h}^{-1}$	
	From PVA, DP 1000; <i>i</i> : 17%, <i>h</i> : 46%, <i>s</i> : 37%; formalization in 0.1 N HCl aqueous solution at 60°C	¹ H NMR	Formalization: 87 mol% Cis^{\dagger} ring: 50% $Trans^{\dagger}$ ring: 37% Rate constant: $6.2 \times 10^{-2} \mathrm{L} \mathrm{mol}^{-1} \mathrm{h}^{-1}$	
Poly(vinyl butyral)	Reaction at 10 and 70°C; up to 1,000 h		At 10°C, cis/trans ratio is \sim 5, no significant change with time; at 70°C, ratio decreases from \sim 5 to \sim 3 up to 1 h, then increases with time to \sim 7 after 100 h	(8)
Poly(vinyl butyral)	PVA DP: 1600; 97.5–99.5% hydrolyzed; reaction at 10– 60°C, in water, H ₂ SO ₄ or HCl as catalyst (method I); catalyst and aldehyde added to PVA suspension in MEK (method II); aldehyde added in one step or in stages	NMR	Degree of acetalization: 75% (10°C, 3.5 h, method I) 45% (temperature ramp from 18– 60°C, 2 h, method I) 85% (30°C, 2 h, method II)	(9)

POLYMER	SYNTHETIC CONDITIONS	METHOD OF CHARACTERIZATION	CHARACTERISTICS	REFERENCE
PVB-g-PDMS	PVB as above, with 45% acetalization	NMR	$M_{\rm w}$: 690 × 10 ³ ; degree of grafting: 42%	(9)
PVB-g- PEO	PVB as above, with 45% acetalization	NMR	$M_{\rm w}$: 920 × 10 ³ ; degree of grafting: 35%	(9)
PVB-linear hemiacetal	Acid treatment (1 N HCl) of PVB in methanol solution (4% w/v)	NMR	Acid hydrolysis of <i>trans</i> rings leads to stable, linear hemiacetal; <i>cis</i> rings are not affected; slow conversion to PVB at room temperature over 12 months	(10)
Ionomeric PVB: poly(vinyl butyral-co-vinyl benzal sodium (or potassium) sulfonate)	PVA DP 550, 1275, and 1800; Na-salt of <i>o</i> -benzaldehyde sulfonic acid (BSNA) reacted with PVA. Nitric acid catalyst, 19-22°C; followed by reaction with butyraldehyde. BSNA- PVA reaction hindered above 60°C	NMR, DSC, viscosity, rheology	1–15 mol% ionomer groups; $T_{\rm g}$ increases with ionomer content from 73–106°C (0–15%); 18–20% residual PVA	(11)

^{*}This polymer is included here to illustrate the effect of parent PVA tacticity on the ring conformation of the acetal.

General Properties

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Specific gravity	_	Butvar		(1, 2, 4)
		B-72	1.1	, ,
		B-76	1.083	
		Butacite	1.07	(12)
Refractive index	$n_{\rm D}^{23}$	Butvar		(1, 2, 4)
		B-72	1.49	, ,
		B-76	1.485	
		Butacite	1.47-1.50	(12)
Density	$\rm gcm^{-3}$	_	1.091	(14)
·		28% triethylene glycol-di-(2-ethylbutyrate) plasticizer	1.078	, ,
Tensile yield strength	MPa	Butvar	47-54	(1, 2)
		B-72 B-76	40–47	

[†]The *cis* is also referred to as the "meso" ring, and *trans* as the "racemic" ring in the literature.

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENC
Tensile strength	МРа	Films from Butvar BR aqueous dispersion No plasticizer 40-50 phr plasticizer	41–48 14	(3)
		18% hydroxyl content; $M_{\rm w} \approx 70,000$; plasticized	14	(6) [†]
		with dibutyl phthalate		(-)
		0 phr DBP	56	
		15 phr DBP	36	
		37.2 phr DBP	38	
Elastic modulus	$MPa \times 10^3$	Butvar		(1, 2)
		B-72	2.28-2.34	
		B-76	1.93-2.0	
Storage modulus	MPa	PVB with 32 phr di-n-hexyladipate (Monsanto	3.98×10^{2}	(15)
Storage modulus	IVII U	Saflex); 1 Hz	0.70 × 10	(10)
		Above, neat resin	1.86×10^3	
Elongation at break	%	Butvar		(1)
Eloligation at break	70	B-72	70	(1)
		B-76	110	
		Butacite	>200	(12)
Elongation at yield	%	Butvar		(1)
Elongation at yield	70	B-72	8	(1)
		B-76	8	
		18% hydroxyl content; $M_{\rm w} \approx$ 70,000; plasticized with dibutyl phthalate		(6) [†]
		0 phr DBP	9	
		15 phr DBP	10	
		37.2 phr DBP	380	
Flexural strength	MPa	Butvar		(1, 2)
riexarar strength	1111 (4	B-72	83-90	(1) =)
		B-76	72-79	
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	Izod, notched, 1.25×1.25 cm, Butvar		(1, 2)
impact suchgui) III	B-72	58.7	(1, 4)
		B-76	42.7	
Glass transition	K	Butvar		(1 2)
temperature	IX.	B-72	345-351	(1, 2)
amperature		B-76	335-345	
		Triethylene glycol-di-(2-ethylbutyrate)	300 010	(14)
		plasticizer		()
		0%	332.3	
		28%	272	

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Glass transition	K	Butvar with di-n-hexyl adipate		(16)
temperature		0%	353	
		10 phr	333	
		32 phr (from mechanical loss	302	
		spectroscopy at 1 Hz)	246	(11)
		18–20% (wt) hydroxyl content	346	(11)
		As above, 5% ionomer As above, 15% ionomer	358 379	
		118 deove, 1870 fortoliter		
Softening temperature	K	With 25% residual PVA	338	(6) [†]
		As above, with 30 phr dibutyl phthalate	303	
		With 12.1% residual PVA	321	
		As above, with 30 phr dibutyl phthalate	291	
Specific heat	$J(gK)^{-1}$	Triethylene glycol-di-(2-ethylbutyrate) plasticizer		(14)
		0%	1.36	
		28%	1.90	
Thermal conductivity	$W (m K)^{-1}$	Butvar with di- <i>n</i> -hexyl adipate		(16)
	,	0%	0.236	(-)
		10 phr	0.275	
		32 phr	0.272	
Heat sealing	K	Butyar		(1)
_	K	B-72	493	(1)
temperature		B-72 B-76	473	
			17.0	
Dielectric constant	_	Butvar		(2)
		B-72 50 Hz	3.2	
		B-72 10 MHz	2.7	
		B-76 50 Hz	2.7	
		B-76 10 MHz	2.5	
Dissipation factor	_	Butvar		(2)
1		B-72 50 Hz	6.4×10^{-3}	()
		B-72 10 MHz	31×10^{-3}	
		B-76 50 Hz	5.0×10^{-3}	
		B-76 10 MHz	15×10^{-3}	
Relaxation	K	DMA and DSC analysis; PVB with 32 phr	226 (β); 285	(17)
temperatures	10	di- <i>n</i> -hexyladipate (Monsanto Saflex)	(α_2) ; 304 (α_1)	(17)
-	1	,		
Surface tension	$mN m^{-1}$	_	38	(18)
Critical surface	$\mathrm{mN}\mathrm{m}^{-1}$	PVB with 12 or 30% hydroxyl content, with	24-25	(5, 19)
tension		polyhydric alcohols		

PROPERTY	UNITS	CONDITIONS*	VALUE	REFERENCE
Partial specific volume	$\mathrm{cm}^3\mathrm{g}^{-1}$	Amyl alcohol, 20° C; $[\eta] = 122 \mathrm{cm}^3 \mathrm{g}^{-1}$	0.883	(20)
Second virial coefficient	o w		$9.45-12.2 \times 10^{-4}$ $9.15-11.3 \times 10^{-4}$ $5.53-10.3 \times 10^{-4}$ 10.4×10^{-4} 7.9×10^{-4} 3.6×10^{-4} 1.6×10^{-4}	(20)
Solubility parameter —		Theoretical estimate of dispersion (δ_d) , polar (δ_p) and hydrogen bonding (δ_h) contributions to solubility parameter: δ_d δ_p δ_h δ_{total}	7.72 2.90 3.26 8.87	(23)
		Low hydrogen bonding solvents: Hydroxyl content 9–13% Hydroxyl content 17–21%	9.0-9.8 Insoluble	(1)
		Medium hydrogen bonding solvents: Hydroxyl content 9–13% Hydroxyl content 17–21%	8.4–12.9 9.9–12.9	(1)
		High hydrogen bonding solvents: Hydroxyl content 9–13% Hydroxyl content 17–21%	9.7–12.9 9.7–14.3	(1)

Solvents and Nonsolvents

CONDITIONS	SOLVENTS	NONSOLVENTS	PARTIALLY SOLUBLE IN	REFERENCE
Butvar B-72	Acetic acid (glacial), butanol, cyclohexane, dioxane, ethyl Cellosolve, ethylene chloride, methanol, toluene/ethanol (60:40 wt), xylene/ butanol (60:40 wt)	Acetone, butyl acetate, carbon tetrachloride, diisobutyl ketone, hexane, methyl ethyl ketone, methyl isobutyl ketone, nitropropane, toluene, xylene	Diacetone alcohol, isophorone, methylene chloride	(1, 3)

 $^{^*}$ phr = parts per hundred resin. † Reference (6) discusses the effect of plasticizers on various acetals.

CONDITIONS	SOLVENTS	NONSOLVENTS	PARTIALLY SOLUBLE IN	REFERENCE
Butvar B-76	Acetic acid (glacial), acetone, butanol, butyl acetate, cyclohexane, dioxane, ethyl Cellosolve, ethylene chloride, methyl acetate, methyl isobutyl ketone, toluene	Carbon tetrachloride, hexane, methanol, nitropropane, xylene	_	(1, 3)
PVB, 20% hydroxyl content	Acetic acid	Methanol	_	(21, 22)*
70% acetylation	Alcohols, cyclohexane, ethyl lactate, ethyl glycol acetate	Hydrocarbons, methylene chloride, aliphatic ketones	_	(24)
83% acetylation	Methylene chloride, alcohols, ketones, lower esters	Hydrocarbons, methanol, higher esters	_	(24)

^{*}The effect of temperature and solvent on solubility and aggregation is discussed in references (17) and (18).

Mark-Houwink parameters: K and $a^{(25)}$

Solvent	Temp. (°C)	$M \times 10^{-4}$	$ extit{K} imes 10^4 ext{ (ml g}^{-1} ext{)}$	а
Tetrahydrafuran	25	5.8-17 (20% hydroxyl content)	2.89	0.72
Tetrahydrafuran	25	12 (10% hydroxyl content)	2.52	0.72

Spectroscopy

SPECTROSCOPY	FREQUENCY (cm ⁻¹)	INTENSITY	ASSIGNMENT	OBSERVATIONS	REFERENCE
Infrared	1,383, 1,136, 1,111, 1,052, 1,000, 971	_	1,136 and $1,000$ cm ^{-1} bands to cyclic acetal	_	(5)
	3,448	Weak	Vinyl alcohol	_	(5)
	_	_	_	_	(26)

SPECTROSCOPY	CONDITIONS	CHEMICAL SHIFTS (D, PPM)/ OBSERVATIONS	REFERENCE
Numbering scheme	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	This numbering scheme is used here to refer to the chemical shifts	
¹ H (100 MHz) spectra	Study of the effect of PVA tacticity on the <i>cis</i> and <i>trans</i> configuration in poly(vinyl formal): close cousin of PVB; DMSO as solvent; TMS standard	O-CH ₂ -O resonance as a quartet at 4.55 and 4.85 ppm for <i>cis</i> ring; singlet at 4.7 ppm for <i>trans</i> ring; <i>i</i> -PVA leads to high <i>cis</i> formal	(7, 27)
¹³ C (75 MHz) and ¹ H (300 MHz) 2-D NMR spectra	DMSO-d ₆ as solvent/standard, at 100°C, interpretation and spectral assignments	¹³ C spectra: C ₂ : 16 C ₃ : 36 ppm; C ₄ : 100.2 (<i>cis</i> ring), 93.5 (<i>trans</i> ring) ¹ H spectra: H(C ₄) 4.51, 4.49, 4.47 (<i>cis</i>); 4.79, 4.77, 4.75 (<i>trans</i>)*	(28)
¹³ C (100 MHz) and ¹ H (400 MHz) spectra	$M_{\rm w}=200,\!000;18.5\%$ (wt) residual PVA; <i>d</i> -benzene or methanol as solvent, 25°C	 C spectra: C₄: 102.7 ppm (cis ring); 95.9 (trans) Acetal ring conformations are related to the rotational isomeric states of meso and racemic diads of parent PVA 	(29)
¹³ C (22.6 and 62.9 MHz) spectra	PVB with 35% (mol) acetalation, in acetone- d_6 ; hexamethyldisiloxane standard	C ₁ , C ₂ , C ₃ , C ₄ at 14, 18, 36, and 102 ppm, respectively; microdynamics of side chain motion discussed	(30)
¹³ C CP/MAS (15 MHz) spectra	Butvar and with 32 phr di- <i>n</i> -hexyladipate (Monsanto Saflex)	C_4 at 103 ppm; $T_1\rho$ (C) decreases from 21 ms to 7 ms with 0–32 phr plasticizer. Two phase character: soft regions of the sample are associated with liquid plasticizer containing mobile polymer; hard regions contain solid polymer with immobilized plasticizer	(16)

SPECTROSCOPY	CONDITIONS	CHEMICAL SHIFTS (D, PPM)/ OBSERVATIONS	REFERENCE
¹³ C (100 MHz) CP/MAS NMR	PVB with 32 phr di- <i>n</i> -hexyladipate (Monsanto Saflex); 25–115°C	C ₁ , C ₂ , C ₃ , C ₄ at 15, 18, 38, and 102 ppm, respectively; peak width variations with temperature are related to glass transition and chain mobility	(17)
¹³ C (100.6 MHz) CP/MAS spectra	PVB with 32 phr di- <i>n</i> -hexyladipate (Monsanto Saflex), and neat resin; 23°C	C_4 at 102 ppm; $T_1\rho$ (H) decreases from 3.5 ms (neat resin) to 1.4 ms with 32 phr DHA; microheterogeneous phase structures discussed. Estimated rigid fraction is 0.61 for neat PVB, 0.45 for PVB/DHA	(15, 31)
¹³ C (75 MHz) CP/MAS spectra	$M_{\rm w}=100,000;$ 14% PVA; composite films with tributyl citrate and alumina; 20% (wt) TBC; films from 55/45 (wt) toluene/ethanol; Alocoa alumina, 5 μ m particles, 88% (wt) alumina, 12% polymer	C ₄ at 102 ppm; $T_1\rho$ (H): 2.3 (neat), 4.6 (with alumina), 1.3 (with TBC), 2.6 ms (with alumina/ TBC) C ₁ at 15 ppm; $T_1\rho$ (H): 4.2 (neat), 5.5 (with alumina), 0.96 (with TBC), 2.4 ms (with alumina/ TBC)*	(32)

^{*}See reference for others.

Optical and electrical properties (film dip-coated from cyclohexane solution)⁽³³⁾

CONDITION	UV-VIS ABSORPTION MAXIMUM (nm)	ABSORPTION	OPTICAL BAND GAP ENERGY (eV)	ACTIVATION ENERGY (eV)	CONDUCTIVITY AT 315 K, $\times 10^{-12}$ (S m ⁻¹)
PVB	338	0.590	3.27	0.83	0.114
$PVB + 5\% \ I_2$	366	0.425	2.57	0.79	2.239
$PVB + 10\% \ I_2$	_	_	2.40	0.74	6.310
$PVB + 15\% \ I_2$	_	_	2.00	0.65	9.016

Plasticizers/Fillers

PLASTICIZER/FILLER	CONDITION	OBSERVATIONS	REFERENCE
Dibutyl phthalate, butyl benzyl phthalate, phosphates, dihexyl adipate	-	-	(2)
Dibutyl phthalate	-	$T_{ m g}$ reduced by 1.3°C phr of plasticizer	(1)
Di- <i>n</i> -hexyladipate	Butvar with various concentrations of plasticizer	Solid state ¹³ C NMR studies, DMA and SANS	(16)
Di-n-hexyladipate	_	Solid state ¹³ C NMR studies	(15, 17)
Di-n-hexyl adipate	Butvar	Known compatibility limit: 3:1	(4)
Dioctyl adipate	Butvar	Known compatibility limit: 4:1	(4)
Phosphates	Butvar	Known compatibility limit: 1:1	(4)
Phenolics, ureas, melamines, epoxies	_	Cross-linking with PVB, either as a host or guest	(2, 3)
Alumina	_	Solid state ¹³ C NMR study of chain mobility	(32)
Tributyl citrate	_	Solid state ¹³ C NMR study of chain mobility	(32)
Tri-propyleneglycol dibenzoate	$M_{ m w}$ of PVB: 200,000; 18.2% hydroxyl content	2.5% (wt) solution of polymer in plasticizer. Precipitation temperature $T_p = 60^{\circ}\text{C}$ (used to determine critical miscibility parameter for polymer/plasticizer)	(34)
Di-propyleneglycol dibenzoate	As above	As above, $T_p = 47^{\circ}\text{C}$	(34)
Di-tetrahydro furural adipate	As above	As above, $T_p = 68^{\circ}\text{C}$	(34)
Di-isoheptyl phthalate	As above	As above, $T_p = 98^{\circ}\text{C}$	(34)

Poly(vinyl butyral)

Blends

OTHER POLYMER	CONDITIONS	TECHNIQUES USED	FEATURES	REFERENCE
Poly(ε-caprolactone) and carbon black	M _w (PVB): 100,000; M _w (PCL): 35,000; Vulcan XC-72 conductive carbon black (5 vol%); CB roll-mixed; blend films from THF solutions; crystallization temperature of 41°C	Optical and atomic force microscopy	Growth rate of PCL spherulites decreased with increasing PVB content; large spherulites (10 mm); CB had no influence on nucleation or growth rate	(35)
	As above and also with fullerene (5 vol%)	Optical microscopy, DSC, electrical resistivity	Spherulites with twisted lamellae; resistivity increased with PVB content; I _{PTC} values*: 0% PVB: 12 1% PVB: 324 5% PVB: 673.1	(36)
Poly (ε -caprolactone)	M _w of PCL: 33,000; M _w of PVB: 116,000	Optical microscopy, X-ray diffraction, SAXS	Nucleation density reduced by addition of PVB; large banded spherulites	(37)
Poly(ethylene sebacate)	$M_{\rm w}$ of PESEB: 19,000; $M_{\rm w}$ of PVB: 116,000	Optical microscopy, X-ray diffraction, SAXS	_	(37)
Poly(N-vinyl-2- pyrrolidone)	PVB: Mowital B6OHH), 16% hydroxyl content. solution cast films from chloroform	DSC	Single phase with PVP <50 wt% $T_{\rm g}$ (K) for PVB/PVP ratio (wt%): $0/100:436$ $50/50:377$ $70/30:362.5$ $100/0:341$	(38)
Polypropylene/mica	Ethylene-propylene block copolymer; PVB and plasticized PVB; 30% (wt) mica	DMA, impact strength, SEM	Addition of up to 14% (wt) of PVB had no effect on tensile strength or modulus. Impact strength decreased with increasing PVB content	(39)

OTHER POLYMER	CONDITIONS	TECHNIQUES USED	FEATURES	REFERENCE
Polyurethane	M _w of PVB: 170,000; 18.5% hydroxyl content. PU: Tecoflex EG-85A (from methylene bis cyclohexyl diurethane and polytetramethylene ether glycol). Extrusion blended	DMA, DSC, TEM	Miscible over entire composition range, due to interaction of PVB with hard segment. Single T_g , decreasing with PU content. Model compounds of the hard segment are also miscible	(23)
Polyaniline	Solution or melt processing	-	Self-assembled network morphology, onset of electrical conductivity with 1% (vol) of PANI	(40)
Ionomeric PVB: poly(vinyl butyral- co-vinyl benzal sodium (or potassium) sulfonate)	Blends up to 50% IPVB; 3% or 5% ion content	NMR, DMA	Storage modulus G' $(N \text{ m}^{-2})$ at 25°C increases from 4.2×10^7 to 8.6×10^7 (0-50% IPVB) with $3%ion content$	(41)
Polyacetylene	Synthesized in dilute solutions of PVB	-	40–50% <i>trans</i> form of polyacetylene; low defect content	(42)

 $^{^*}I_{PTC}$: Intensity of positive temperature coefficient, defined as the resistivity ratio ρ_{max}/ρ_{min} ; ρ_{max} is the maximum in the temperature-resistivity curve and ρ_{min} is the resistivity at room temperature.

Resins Compatibility with PVB

PVB TYPE	COMPATIBLE	PARTIALLY COMPATIBLE	INCOMPATIBLE	REFERENCE
Butvar B-2	Nitrocellulose, epoxy (Epi-Rez 540-C, Araldite 6069), isocyanate, phenolic, shellac	Alkyd, cellulose acetate butyrate, ethyl cellulose, rosin derivatives, silicone, urea formaldehyde	Acrylate, cellulose acetate, chlorinated rubber	(4)*
Butvar B-76	Nitrocellulose, epoxy, phenolic, shellac, silicone	Alkyd, cellulose acetate butyrate, urea formaldehyde, vinyl chloride copolymer	Acrylate, cellulose acetate, chlorinated rubber	(4)*

Poly(vinyl butyral)

PVB TYPE	COMPATIBLE	PARTIALLY COMPATIBLE	INCOMPATIBLE	REFERENCE
Shekisui BM-2	Poly (vinylpyrrolidone), poly (vinyl acetate-co-N- vinylpyrrolidone), poly (styrene-co-maleic acid), poly (styrene-co-maleic acid ester) (conditional)	_	Poly(vinylidene chloride), chlorosulfonated polyethylene, polyester, poly(ethylene-co-vinyl acetate), poly(butadiene-co-styrene), poly-(butadiene-co-acrylonitrile), poly(vinyl chloride-co-vinyl acetate), poly(vinyl chloride-co-vinyl propionate)	(43)

^{*}Consult reference (4) for the trade names of the resins applicable to the entries in this table.

PVB as binder polymer in optoelectronic/photoactive devices

DEVICE	GUEST MOLECULE	APPLICATION	REFERENCE
Xerographic photoreceptor	Squaraine	Dispersion of squaraine in the charge generating layer	(44)
Electrode/ electrolyte tape	Nickel powder	Molten carbonate fuel cells	(45)
Ceramics	Al ₂ O ₃ powder	Ceramic processing aid	(46)
Holograms	Cresyl violet	Hologram recording by spectral hole burning	(47)
Holograms	Chlorin (2,3-dihydroporphyrin)	Holographic recording/storage media	(48)
Optical memory	Anthraquinone derivatives	Spectral hole burning	(49)
Optical memory	Perylene	Spectral hole burning	(50)
Optical memory	Chlorin (2,3-dihydroporphyrin)	Holographic recording	(51)
Optical memory	Chlorophyll A	_	(52)
Optical memory	Porphyrin and phthalocyanine derivatives	Spectral hole burning	(53)
Optical memory	_	Holographic recording	(54)
Electrochromic device	LiCl in PVB gel	_	(55)
Fuel cell	_	Interconnect plate for a planar solid oxide fuel cell	(56)
Photochromism	Spirooxazines	_	(57)

Thermal Degradation

TEMP. (K)	METHOD	MACHANISM	PRODUCTS/PERCENTA	AGE	REFERENCE
553-583	TGA, FTIR	Oxidation of copolymer	7%		(58)
583-673	-	PVB thermal oxidation	Butanal, C ₄ hydr and water (71%	_	(58)
673-733	-	Oxidation of cyclic and cross-linked compounds	9%		(58)
733-823	_	Oxidation of residual carbon	13%		(58)
773	Pyr-GC/mass spectrometry		CO, CO ₂ Acetaldehyde Acetone Butanal H ₂ O Benzene Alkyl aromatics Butenal Acetic acid	10.2% 4.5 1.0 60.8 1.1 1.2 0.1 9.3 2.9	(59)*

^{*}See reference (59) for the effects of silica, mullite, α -alumina and γ -alumina on the thermal degradation of PVB.

- Knapczyk, J. W. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., edited by J. I. Kruschwitz. John Wiley and Sons, New York, 1997, Vol. 24, p. 924.
- 2. Blomstrom, T. P. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, Vol. 17, p.136.
- 3. Lavin, E., and J. A. Snelgrove. In *Kirk-Othmer Encyclopedia of Chemical Technology*, 3d ed., edited by J. I. Kruschwitz. John Wiley and Sons, New York, 1983, Vol. 23, p. 798.
- 4. Butvar Polyvinyl Butyral Resin. Monsanto Technical Bulletin 8084A, 1991.
- 5. Lindemann, M. K. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1971, Vol. 14, p. 208.
- 6. Fitzhugh, A. F., and R. N. Crozier. J. Polym. Sci. 8 1952: 225 (errata in J. Polym. Sci. 9 (1952): 96).
- 7. Shibatani, K., et al. J. Polym. Sci., Part C, 23 (1968): 647.
- 8. Asahina, K. In *Polyvinyl Alcohol: Developments*, edited by C. A. Finch. John Wiley and Sons, U.K., 1992, Ch. 19.
- 9. Toncheva, V. D., S. D. Ivanova, and R. S. Velichkova. Eur. Polym. J. 28 (1992): 191.
- 10. Berger, P. A., J. R. Garbow, A. M. DasGupta, and E. E. Remsen. *Macromolecules* 30 (1997): 5,178.
- 11. Dasgupta, A. M., D. J. David, and A. Misra. J. Appl. Polym. Sci. 44 (1992): 1,213.
- 12. Butacite Polyvinyl Butyral Resin Sheeting. DuPont Technical Bulletin.
- Seferis, J. C. In Polymer Handbook, 3d ed., edited by J. Brandrup and E. Immergut. John Wiley and Sons, New York, 1989, p. VI-451.
- 14. Wilski, H. Angew. Makromol. Chem. 6 (1969): 101.
- 15. Parker, A. A., et al. J. Appl. Polym. Sci. 40 (1990): 1,717.
- 16. Schaefer, J., J. R. Garbow, E. O. Stejskal, and J. A. Lefelar. Macromolecules 20 (1987): 1,271.
- 17. Parker, A. A., D. P. Hedrick, and W. M. Ritchey. J. Appl. Polym. Sci. 46 (1992): 295.
- 18. Wu, S. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. Immergut. John Wiley and Sons, New York, 1989, p. VI-411.

- 19. Newman, S. J. Colloid Interface Sci. 25 (1967): 341.
- Lechner, M. D., and D. G. Steinmeier. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. Immergut. John Wiley and Sons, New York, 1989, p. VII-61.
- 21. Paul, C. W., and P. M. Cotts. Macromolecules 19 (1986): 692.
- 22. Paul, C. W., and P. M. Cotts. Macromolecules 20 (1987): 1,986.
- 23. Sincock, T. F., and D. J. David. Polymer 33 (1992): 4,515.
- Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. Immergut. John Wiley and Sons, New York, 1989, p. VII-379.
- 25. Cotts, P. M., and A. C. Ouano. In *Microdomains in Polymer Solutions*, edited by P. Dubin. Plenum Press, New York, 1985, p. 101.
- 26. Stolov, A. A., D. I. Kamalova, A. B. Remizov, and O. E. Zgadzai. Polymer 35 (1994): 2,591.
- 27. Fujii, K., et al. J. Polym. Sci., Polym. Letters Ed., 4 (1966): 787.
- 28. Bruch, M. D., and Jo-Anne K. Bonesteel. Macromolecules 19 (1986): 1,622.
- 29. Berger, P. A., E. E. Remsen, G. C. Leo, and D. J. David. Macromolecules 24 (1991): 2,189.
- 30. Lebek, B., et al. Polymer 32 (1991): 2,335.
- 31. Parker, A. A., et al. Polym. Bulletin 21 (1989): 229.
- 32. Parker, A. A., et al. J. Appl. Polym. Sci. 48 (1993): 1,701.
- 33. Gopalakrishnan, R., B. Muralikrishna, V. V. R. Narasimha Rao, and B. Subba Rao. *Polimery* (*Warsaw*) 37 (1992): 461.
- 34. David, D. J., N. A. Rotstein, and T. F. Sincock. Polym. Bulletin 33 (1994): 725.
- 35. Lee, J.-C., K. Nakajima, T. Ikehara, and T. Nishi. J. Appl. Polym. Sci. 64 (1997): 797.
- 36. Lee, J.-C., K. Nakajima, T. Ikehara, and T. Nishi. J. Appl. Polym. Sci. 65 (1997): 409.
- 37. Keith, H. D., F. J. Padden, Jr., and T. P. Russel. Macromolecules 22 (1989): 666.
- Eguiazabal, J. I., J. J. Iruin, M. Cortazar, and G. M. Guzmán. *Makromol. Chem.* 185 (1984): 1,761.
- 39. Järvelä, P. A., L. Shucai, and P. K. Järvelä. J. Appl. Polym. Sci. 65 (1997): 2,003.
- 40. Heeger, A. J. Trends in Polym. Sci. 3 (1995): 39.
- 41. Dasgupta, A. M., D. J. David, and A. Misra. Polym. Bulletin 25 (1991): 657.
- 42. Kobryanskii, V. M. Synth. Met. 55 (1993): 797.
- 43. Krause, S. In *Polymer Blends*, edited by D. R. Paul and S. Newman. Academic Press, New York, 1978, Vol. 1, Ch. 2.
- 44. Law, K. Y. J. Imaging Sci. 34 (1990): 38.
- 45. Niikura, J., et al. J. Appl. Electrochem. 20 (1990): 606.
- 46. Howard, K. E., C. D. E. Lakeman, and D. A. Payne. J. Am. Ceram. Soc. 73 (1990): 2,543.
- 47. Renn, A., A. J. Meixner, and U. P. Wild. J. Chem. Phys. 93 (1990): 2,299.
- 48. Wild, U. P., and A. Renn. Makromol. Chem., Macromol. Symp., 50 (1991): 89.
- 49. Yoshimura, M., T. Nishimura, E. Yagyu, and N. Tsukada. Polymer 33 (1992): 5,143.
- 50. Kanaan, Y., T. Attenberger, U. Bogner, and M. Maier. Appl. Phys. B 51 (1990): 336.
- 51. De Caro, C., A. Renn, and U. P. Wild. Appl. Opt. 30 (1991): 2,890.
- 52. Altmann, R. B., D. Haarer, and I. Renge. Chem. Phys. Lett. 216 (1993): 281.
- 53. Schwoerer, H., D. Erni, A. Rebane, and U. P. Wild. Adv. Mater. 7 (1995): 457.
- 54. Monroe, B. M., et al. J. Imaging Sci. 35 (1991): 19.
- 55. Ozer, N., F. Tepehan, and N. Bozkurt. Thin Solid Films 219 (1992): 193.
- Sammes, N. M., M. S. Brown, and R. Ratnaraj. J. Mater. Sci. Lett. 13 (1994): 1124; Sammes,
 N. M., and R. Ratnaraj. J. Mater. Sci. Lett. 13 (1994): 678.
- 57. Kojima, K., N. Hayashi, and M. Toriumi. J. Photopolym. Sci. Technol. 8 (1995): 47.
- 58. Liau, L. C. K., T. C. K. Yang, and D. S. Viswanath. Polym. Eng. Sci. 36 (1996): 2,589.
- 59. Nair, A., and R. L. White. J. Appl. Polym. Sci. 60 (1996): 1,901.

Dedicated to the memory of my son, Anand.

Poly(N-vinyl carbazole)

JOHN H. KO

TRADE NAMES PVK (Polysciences, Inc.), Luvican® (BASF Corp.)

CLASS Vinyl polymers; homopolymers

MAJOR APPLICATION Photoconductor

PROPERTIES OF SPECIAL INTEREST High heat distortion temperature and outstanding dielectric properties for electrical uses. High refractive index for optical uses.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile modulus	MPa	_	$(2.5-4.2) \times 10^3$	(1-7)
Tensile strength	MPa	– Oriented	14 140	(1–7)
Flexural strength	MPa	-	35-55	(1-7)
Compressive strength	MPa	-	30-35	(1-7)
Shear strength	MPa	-	20-30	(1-7)
Modulus of elasticity	MPa	Tensile test	3,700	(1-7)
Impact strength	$\mathrm{J}\mathrm{m}^{-1}$	DIN 53453	$(5-10) \times 10^5$	(1-7)
Vicat softening temperature	K	_	$\sim \!\! 468$	(1-7)
Elongation	%	Amorphous Oriented	≪ 1 1	(1–7)
Hardness	MPa	Ball indentation	100	(1-7)
Index of refraction n_D	_	At 20°C	1.69	(1-7)
Density	$g cm^{-3}$	Amorphous Oriented	1.184 1.191	(1-7)
Glass transition temperature	K	Amorphous Syndiotactic Isotactic	500 549 399	(1-7)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Heat capacity (of repeat units)	$kJ K^{-1} mol^{-1}$	-	3.47×10^{-2}	(1-7)
Linear coefficient of thermal expansion	K	293-373 K	5×10^{-5}	(1-7)
Thermal conductivity	$\mathrm{W}~\mathrm{cm}^{-1}~\mathrm{K}^{-1}$	20°C 170°C	$1.26 \times 10^{-3} \\ 1.68 \times 10^{-3}$	(1-7)
Specific heat	$Jg^{-1}{}^{\circ}C^{-1}$	_	1.26	(1-7)
Water absorption	%	_	<0.1	(1-7)
WLF parameters: C_1 and C_2	_	Reference temp. = 220° C	$C_1 = 11.4 C_2 = 226.0$	(6)
Solvents		ocarbons, chlorofom, chlorobe l tetrahydrofuran	nzene, methylene	(8, 9)
Nonsolvents	Alcohols, esters	s, ketones, carbon tetrachloride s	e, and aliphatic	(8, 9)
Dielectric strength	$\mathrm{mV}\mathrm{cm}^{-1}$	25-150°C	1.1-0.86	(1-5)
Resistivity	ohm cm	DIN 57303 25-150°C	$10^{16} - 10^{17} (0.05 - 8) \times 10^{15}$	(1-5)
Loss factor	_	$10^3 - 3 \times 10^8 \text{Hz}$	$< 10^{-3}$	(1-5)

 $10^4 \, \mathrm{Hz}$ 10^3 Hz, 200° C

104 Hz

20°C, 50 Hz 1 MHz

210-235°C

Birefrigence/unit strain at

REFERENCES

 $kV\,mm^{-1}$

1. Mark, H. F., et al., eds. Encyclopedia Polymer Science and Engineering, John Wiley and Sons, New York, 1989, Vol. 17, p. 272.

Polysciences, Inc., 400 Valley Road, Warrington, PA 18976, USA (PVK) BASF Corp., 36 Riverside Avenue, Rensselaer, NY 12144, USA (Luvican®)

- 2. Klopffer, W. Kunstoffe 61 (1971): 533.
- 3. Cornish, E. H. Plastics 28 (1963): 61.

Permittivity

Dielectric constant

Optical coefficient

Suppliers

Breakdown field strength

(1-5)

(1-5)

(1-5)

(6)

 $(2-6) \times 10^{-4}$ 50×10^{-4}

 -5.5×10^{-2}

3

3

50

Poly(N-vinyl carbazole)

- 4. Pearson, J. M., and M. Stolka. *Polymer Monographs*, Vol. 6. Gordon and Breach, New York, 1981.
- 5. Jacobi, H. Kunstoffe 43 (1959): 381.
- 6. Penwell, R., B. Ganugly, and T. Smith. J. Polym. Sci., Macromol. Rev., 13 (1978): 63.
- 7. Davidge, H. J. Appl. Chem. 9 (1959): 553.
- 8. Data Sheet No. 263, Poly (N-vinylcarbazole). Polysciences, Inc., Warrington, Penn., May 1990.
- 9. BASF Data sheet, *Polyvinylcarbazole Luvican*®. March 1971.

Poly(vinyl chloride)

ANTHONY L. ANDRADY

ACRONYM, TRADE NAMES PVC, Geon (Goodrich), Vinoflex (BASF), Vestolite (Hüls), Airco (Air Products), SCC (Stauffer)

CLASS Vinyl polymers

STRUCTURE $[-CH_2CHCl-]$

MAJOR APPLICATIONS Poly(vinyl chloride) is used in building applications as rigid formulations in water and sewage pipes, siding, gutters, and downspouts, conduits, and cable coverings. Pipe and conduit application are by far the major use of PVC. It is also used as a plasticized material in membrane roofing, and flooring applications. PVC films are used in packaging of consumer goods.

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE		
Suspension polymerization	AIBN used as	Diacetyl peroxide, peroxydicarbonates, alkyl peroxyesters and AIBN used as initiator Cellulose derivatives used as protective colloid					
Bulk polymerization	Two-stage reaction	on process			(2)		
Emulsion polymerization			(1)				
Typical comonomers	Vinyl acetate (VA	AM), ∼10-15%			_		
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_		62.5	-		
Typical molecular weight range of polymer M_n	g mol ⁻¹	Polymerization 50 57 64 71	n temperature (°C)	67×10^{-3} 54×10^{-3} 44×10^{-3} 33×10^{-3}	(1)		
Polydispersity index $(M_{\rm w}/M_{\rm n})$	_	suspension- Temp. (°C)	y GPC for ordinary polymerized PVC $M_n \times 10^{-3}$	2.44	(3)		
		43 55	58 44	2.44 2.08			
		<i>7</i> 5	26	2.01			
Tacticity	Fraction, <i>f</i> , of syndiotactic dyads	Polymerization 55 25 0 -30 -50	n temperature (°C)	0.55 0.57 0.60 0.64 0.66	(4)		
		-76		0.68			

PROPERTY	UNITS	CONDITIONS	VALUES				REFERENCE
Degree of branching	%	Polymerization temperature (°C) 45 55 65 80	-CH- CH ₂ C 3.9 4.2 4.6 4.9	-CCl- l CH ₂ CH ₂ C <0.1 0.2 0.2 0.3	-CCl- Cl CH ₂ CHCl(CH ₂) ₂ C 0.5 0.6 0.8 1.3	H/Cl 1 -C-C-C C <0.1 0.2 0.3 0.3	(5)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Head-to-head and other irregular structures	Per 1,000 repeat units (VC)	Head to head groups In-chain double bonds Chloromethyl branches	0.2 0.1-0.2 4	(6)
		2-Chloroethyl branches 2,4, Dichlorobutyl branches Tertiery chlorine Long branches	0.5 1 0.5–1.5 1	
	Per molecule	Total unsaturation	1	
IR (characteristic absorption frequencies)	cm ⁻¹ band	Planar syndiotactic sequences C-Cl units in isotactic sequences Discussion of C-Cl region and curve fitting	603, 638 690 —	(7) (7) (8)
UV (characteristic absorption frequencies)		the absorption bands for polyene sequences from for $n=4$ sequences. Assignment		(9)
¹³ C NMR	_	PVC solution in trichlorobenzene, 380 K	_	(10)
		PVC solution in <i>o</i> -dichlorobenzene, 373 K	-	(11)
		Copolymers with vinyidene chloride	_	(12)
Thermal expansion coefficient	K^{-1}	100°C 120°C 140°C	4.7×10^{-4} 5.5×10^{-4} 6.2×10^{-4}	(1)
Compressibility	bar ⁻¹	100°C 140°C	$5.2 \times 10^{-5} \\ 6.4 \times 10^{-5}$	(1)
Density	$g cm^{-3}$	100°C 120°C 140°C	1.352 1.338 1.332	(13)

O, aceto	l ketone, cyclohexanone, DMI one/carbon disulfide drocarbons, acetone, nonoxid Cyclohexanone, 20°C Tetrahydrofurane, 20°C	dizing acids $\frac{(K \times 10^3)^{\dagger}}{13.7}$	<i>a</i>	(14-16) (14-16) (17)
$\mathrm{ml}\mathrm{g}^{-1}$	Cyclohexanone, 20°C	$\frac{(K \times 10^3)^{\dagger}}{13.7}$	1.0	,
		13.7	1.0	(17)
None				(17)
	Tetrahydrofurane, 20°C	2 (2		
	retraining enfortenence, =0 C	3.63	0.92	(18)
	Cyclohexanone, 20-60°C	$18.74 - (4.85 \times 10^{-4})T$		(19)
	Cyclopentanone, 20-60°C	$0.091 - (1.55 \times 10^{-4})T$		(19)
	Tetrahydrofurane, 20–50°C	$10.87 - (1.67 \times 10^{-4})T$	0.851	(19)
	$M_{\rm n} = (0.31.9) \times 10^5$	K	а	
	Chlorobenzene, 30°C	0.0712	0.59	(20)
	Cyclohexane, 25°C	0.0138	0.78	(21)
	Tetrahydrofuran, 25°C	0.0163	0.78	(22)
		$M_{\rm n}=(0.31.9)\times 10^5$ Chlorobenzene, 30°C Cyclohexane, 25°C Tetrahydrofuran, 25°C	$M_{\rm n} = (0.31.9) \times 10^5$ K Chlorobenzene, 30°C 0.0712 Cyclohexane, 25°C 0.0138	$M_{\rm n} = (0.31.9) \times 10^5$ K a Chlorobenzene, 30°C 0.0712 0.59 Cyclohexane, 25°C 0.0138 0.78 Tetrahydrofuran, 25°C 0.0163 0.78

Theta temperature Θ	K	Cyclohexanone Dimethylformamide Benzyl alcohol	324 309.5 428.4	(26) (27) (27)
Unit cell dimensions	nm	Orthorhombic unit cell	a = 1.06, b = 0.54, c = 0.51	(28)
Heat of fusion	kJ mol ⁻¹	-	11.3 3.28 3.59	(29) (30) (31)

 $M_{\rm n} = 118,000$

Toluene, 125-140°C

2-Propanol, 125-140°C

Methanol, 125-140°C

Acetone, 125–140°C

Carbon tetrachloride

Benzene, 120°C

Dichloromethane

Chloroform

Interaction parameter χ

0.45 - 0.41

1.10 - 0.97

1.42 - 1.24

0.77 - 0.53

0.75

1.14

0.91

1.63

(24)

(24)

(24)

(24)

(25)

(25)

(25)

(25)

[†]*K* values can be calculated from expression given for last three entries.

Degree of crystallinity and density From density measurements⁽⁴⁾

Polymerization temp. (°C)	Crystallinity (%)	$M_{\rm n}~({\rm g~mol}^{-1})$	Density at 20°C (g cm ³)	
90	11.3	23,750	1.391	
55-60	11.3	75,000	1.391	
50	13.2	91,250	1.392	
20	15.0	172,250	1.393	
-15	57.3	106,300	1.416	
-75	84.2	105,300	1.431	

From calrimetric measurements $^{(32)}$

Polymerization temp. (°C)	Crystallinity (%)	$M_{\rm n}~({\rm g~mol}^{-1})$
75	18.4	23,2000
65	15.5	38,700
52	15.3	53,500
52	14.4	66,700
25	11.9	136,000
25	11.8	155.000

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Glass transition temperature	K	Effects of tacticity and molecular weight	_		(33)
1		Dilatometry	344		(34)
		DSC, 20°C min ⁻¹	371		(35)
		By DSC, 32°C min ⁻¹			(36)
		Polymerization temp. (°C)	$[\eta] (\text{ml g}^{-1})^*$		
		90		353	
		50	80	358	
		0	108	370	
		-20	103	373	
		-30	125	373	
		-50	_	378	
		-60	90	380	
Melting	K	Calorimetry		485-583	(31)
transition				473-573	(-)
temperature				(decomposition)	
$\begin{array}{c} {\rm Sub}\text{-}T_{\rm g} \\ {\rm transition} \\ {\rm temperature} \end{array}$	K	Dynamic mechanical		223	(37)

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
Heat capacity	$kJ K^{-1}$	100°C	0.0268			(38)
	mol^{-1}	300°C	0.0594			
		360°C	0.0911			
		380°C	0.0981			
Tensile	MPa	As a function of polymerization temp. (°C)				
modulus		-196	7,584			(39)
		-120	5,171			(39)
		-75	3,861			(39)
		20	2,964			(39)
		30	3,000			(40)
		40	2,930			(40)
		50	2,427			(40)
		60	1,551			(40)
		70	276			(40)
Tensile strength	MPa	Unplasticized	56.6			(41)
		With 10% dioctylphthalate	55.5			
Elongation	%	Unplasticized	85			(41)
		With 10% dioctylphthalate	104			
Dielectric constant ε'	_		60 Hz	1 kHz	10 kHz	(42, 43)
		25°C	3.50	3.39	3.29	
		40°C	3.51	3.40	3.34	
		60°C	3.70	3.61	3.45	
		80°C	4.25	4.09	3.89	
		90°C	6.30	5.05	4.45	
		100°C	10.30		5.77	
Dielectric loss	_		60 Hz	1 kHz	10 kHz	(42,43)
factor ε''		25°C	0.110	0.081	0.058	
		40°C		0.081	0.058	
		60°C		0.080	0.050	
		80°C	0.172	0.120	0.110	
		90°C		0.500	0.920	
		100°C	1.20	1.415		
Permeability	m ³ (STP)m	Unplasticized film, 25°C				
coefficient P	$s^{-1} m^{-2}$	H ₂	1.3			(44)
	$Pa^{-1} \times 10^{-9}$	N_2^2	0.0089			(44)
		O_2	0.034			(44)
		Ar	0.0086			(44)
		CH ₄	0.000			(44)
		NH ₃	3.7			(45)
		H_2S	0.14			(45)
		CO ₂	0.15			(44)
		H_2O				\ <i>)</i>

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Permeability coefficient P	$m^{3}(STP)m$ $s^{-1}m^{-2}$	Plasticized with tricresyl triphosphate (TCP), 27°C		(46)
	$Pa^{-1} \times 10^{-9}$	5% TCP, H ₂	1.4	
		20% TCP, N ₂	1.6	
		31% TCP, O ₂	2.1	
		40% TCP, Ar	2.7	
Pyrolyzability	_	Dehydrochlorination rate in N ₂	_	(47, 48)
<i>y y y</i>		Polyene propagation on degradation	_	(48)
Weathering	_	Change in molecular weight during weathering	_	(49)

^{*}In cyclohexanone at 25°C.

- Smallwood, P. V. In Encyclopedia of Polymer Science and Engineering, 2d ed., edited by H. F. Mark, N. M. Bikkales, C.G. Overberger, and G. Menges. John Wiley and Sons, New York, 1987, Vol. 17, p. 303.
- 2. Fitch, R. M. Br. Polym. J. 5 (1973): 467.
- 3. Sörvik, E. M. J. Appl. Polym. Sci. 21 (1977): 2,769.
- 4. Pham, Q. T., J. Millan, and E. L. Madruga. Makromol. Chem. 175 (1974): 945.
- 5. Hjertber, T., and E. M. Sörvik. ACS Symposium Series: Polymer Stabilization, Vol. 280, 1985.
- 6. Guyot, A. Pure. Appl. Chem. 57 (1985): 833.
- 7. Shimanouchi, T., and M. Tasumi. Spectrochim. Acta 17 (1961): 755.
- 8. Baruya, A., et al. J. Polym. Sci., Polym. Lett. Ed., 14 (1976): 329.
- 9. Braun, D., and M. Thallmaier. *Makromol. Chem.* 99 (1966): 59.
- 10. Schilling, F. C. Macromolecules 11 (1981): 1,290.
- Heatley, F. In NMR Spectroscopy of Polymers, edited by R. N. Ibbett. Blackie Academic and Professional, Chapman and Hall, London, 1993, p. 37.
- 12. Komoroski, R. A., and J. P. Shockcor. Macromolecules 16 (1983): 1,539.
- 13. Rogers, P. A. J. Appl. Polym. Sci. 48 (1993): 1,061.
- 14. Thinius, K. Analytische Chemie der Plaste. Springer-Verlag, Berlin, 1963.
- 15. Nitsche, R., and K. A. Wolf. Struktur und Physikalisches Verhalten der Kunstoffe, Vol. 1. Springer-Verlag, Berlin, 1961.
- 16. Kurata, M., and W. H. Stockmeyer. Adv. Polymer Sci. 3 (1963): 196.
- 17. Bier, C., and H. Kramer. Makromol. Chem. 18-19 (1955): 151.
- 18. Batzer, H., and A. Nisch. Makromol. Chem. 22 (1957): 131.
- 19. Marron, S. H., and M. S. Lee. J. Macromol. Sci. B7(1) (1973): 29, 47, 61.
- Du, Y., Y. Xue, and H. L. Frisch. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. American Institute of Physics Press, Woodbury, N.Y., 1996, p. 248.
- 21. Ciampa, G., and H. Schwindt. Makromol. Chem. 21 (1954): 169.
- 22. Freeman, M., and P. P. Manning. J. Polymer Sci. A2 (1964): 2,017.
- 23. Petrus, V. Collection Czech. Chem. Commun. 33 (1969): 119.
- 24. Merk, W., R. N. Lichtenthaler, and J. M. Parutsnitz. J. Phys. Chem. 84 (1980): 1,694.
- 25. Riedl, B., and R. E. Prud'homme. J. Polym. Sci., Part B: Polym. Phys., 24 (1986): 2,565.
- 26. Adamski, P. Polym. Sci. USSR 13 (1971): 803.
- 27. Sato, M., Y. Koshiishi, and M. Asahina. J. Polym. Sci., Polym. Letters, 1 (1963): 233.
- 28. Natta, G., and P. Corradini. J. Polym. Sci. 20 (1956): 215.
- 29. Kockott, D. Kolloid Z, -Z. Polym. 198 (1964): 17.
- 30. Nakajima, A., H. Hamada, and S. Hayashi. Makromol. Chem. 95 (1966): 40.

Poly(vinyl chloride)

- 31. Park, H. C., and E. M. Mount. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, N. M. Bikkales, C. G. Overberger, and G. Menges. John Wiley and Sons, New York, 1987, Vol. 7, p. 89.
- 32. Maron, S. H., and F. E. Filisko. J. Macromol. Sci. B6(2) (1972): 413.
- 33. Daniels, C. A., and E. A. Collins. Polym. Eng. Sci. 19 (1979): 8.
- 34. Greiner, G., and F. R. Schwarzl. Rheol. Acta 23 (1984): 378.
- 35. Singh, P., and J. Lyngaae-Joergensen. J. Macromol. Sci. Phys. B19(2) (1981): 177.
- 36. Ceccorulli, G., M. Pizzoli, and G. Pezzin. J. Macromol. Sci. Phys. B14(4) (1977): 499.
- 37. Stephenson, R. C., and P. V. Smallwood. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, N. M. Bikkales, C. G. Overberger, and G. Menges. John Wiley and Sons, New York, 1987, Vol. S, p. 858.
- 38. Gaur, U., S. F. Lau, and B. B. Wunderlich. J. Phys. Chem. Ref. Data 12 (1983): 29.
- 39. Diment, J., and H. Ziebland. J. Appl. Chem. 8 (1958): 203.
- Orgorkiewics, R.M. Engineering Properties of Thermoplastics. John Wiley and Sons, New York, 1970, p. 251.
- Lutz, J. T. In Degradation and Stabilization of PVC, edited by E. D. Owen. Elsevier Applied Science Publishers, New York, 1984, p. 264.
- 42. Brandup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. John Wiley and Sons, New York, 1989.
- 43. Schildknecht, C. E. Vinyl and Related Polymers. John Wiley and Sons, New York, 1952.
- 44. Tikhomirov, B. P., H. B. Hopfenberg, V. T. Stannett, and J. L. Williams. *Makromol. Chem.* 118 (1968): 177.
- 45. Braunisch, V., and H. Lenhart. Kolloid-Z. 177 (1961): 24.
- 46. Sefcik, M., J. Schafer, F. May, and D. Raucher. J. Polym. Sci. 21 (1983): 1,041.
- 47. Hjertberg, T., and E. M. Sörvik. Polymer 24 (1983): 673, 685.
- 48. Hjertberg, T., and E. M. Sörvik. In *Degradation and Stabilization of PVC*, edited by E. D. Owen. Elsevier Applied Science Publishers, New York, 1984, p. 41.
- 49. Matsumoto, S., H. Oshima, and Y. Hosuda. J. Polym. Sci., Polym. Chem. Ed., 22 (1984): 869.

Poly(vinyl chloride), head-to-head

MEIFANG QIN

ACRONYMS, TRADE NAMES H-H PVC, HH PVC, Cl-cis-PBD, Cl-trans-PBD, chlorinated PBD rubber

CLASS Chemical copolymers

STRUCTURE $[-CH_2-CHCl-CHCl-CH_2-]$

MAJOR APPLICATION H-H PVC is mostly studied in academic field to understand its structure/property relationship, thermal degradation behavior, and mechanism. Its properties are compared to those of commercial head-to-tail PVC. Pure H-H PVC has no significant industrial applications. H-H PVCs containing 40–65 wt% of Cl, also called chlorinated polybutadiene rubber-resins, are used for coating, paint-based applications and the preparation of threads, tires, tubings, and films, etc.

PROPERTIES OF SPECIAL INTEREST Preparation methods. Toughness and durability. Good compatibility with other polymers and plasticizers. Tacticity and spectrum properties.

PREPARATIVE TECHNIQUE Chlorination of 1,4-polybutadiene solution at room temperature with molecular chlorine, using solvents that favor ionic reaction such as dichloromethane and chloroform. Pure H-H PVC is made by 1,4-PBD with high cis content. $^{(1-8)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Tacticity	-	Chlorinated-trans-PBD (Cl-trans-PBD) Chlorinated-cis-PBD (Cl-cis-PBD)	Diisotactic poly(<i>erythro</i> -1,2-dichloro butamer) Disyndiotactic poly(<i>threo</i> -1,2-dichloro butamer)	(6, 10)	
Infrared absorption at	cm^{-1}		Wavenumbers		
fingerprint region		Cl- <i>ci</i> s-PB Cl- <i>trans</i> -PB	795 725 680 650 590 795 686 650	(2, 7, 8, 12) (8, 12)	
NMR	ppm		CH ₂ CHCl		
		¹³ C ¹ H	32.9, 33.3 65.7, 66.1 8.0 5.8	(2, 7, 9) (2, 7)	

Transition temperature of partially chlorinated cis-1,4-PBD measured by DMA⁽²⁾

Degree of chlorination (%)	eta low (K)		lpha low (K)		eta high (K)	
	E "	$ an \delta$	E"	$ an \delta$	E "	$ an \delta$
40	176	178	276	275	321	344
58	173	173	294	294	324	348

Poly(vinyl chloride), head-to-head

Thermal transition temperature of chlorinated cis-1,4-PBD measured by DSC

Weight percent of	Temperature	Temperature (K)					
-CH ₂ -CHCl-CHCl-CH ₂ - units	T _g (low)	$T_{\rm cr}$ (low)*	T_{m} (low) †	T _g (high)			
0	165	203	270	_	(2)		
0.40	166	201	267	_	(2)		
0.61	165	202	266	324	(2)		
0.63	164	209	267	322	(2)		
0.72	166	201	266	314	(2)		
0.81	162	204	266	337	(2)		
0.89	_	_	_	324	(2)		
0.91	207	_	_	329	(2)		
0.93	_	_	_	326	(2)		
1.00	_	_	_	347	(2)		
1.00^{\ddagger}	_	_	_	336	(3)		

 $^{^*}T_{cr}$ (low) = crystallization temperature of PB domain.

Unit cell dimensions $^{(10)}$

Polymer	Crystal system	Repeat unit	Cell dimensions (Å)			Cal. Density	Cell angle	Space
		per unit cell	а	b	с	(g cm ⁻³)	(degrees)	group
Cl-trans-PBD Cl-cis-PBD	Monoclinic Monoclinic	2 2	7.05 7.37	8.05 5.30	5.10 10.10	1.46 1.46	100 134	P2 ₁ /a P2/c

Unperturbed molecular dimension, K, and conformational parameter, σ , in different solvents⁽¹²⁾

Sample	Solvent	$ extit{K} imes 10^3$	σ
Cl-cis-PBD	Tetrahydrofuran	1.5	2.3
	Methyl ethyl ketone	2.1	2.5
Cl-trans-PBD	Tetrahydrofuran	1.9	2.5
	Dichloroethane	1.6	2.3
PVC	Tetrahydrofuran	3.2	2.9

Conformational population in the chlorinated part of H-HPVC(12)

Sample form	Solvent	Chlorination of trans-PBD		Chlorination of cis-PBD	
		trans	gauche	trans	gauche
Solution	Tetrahydrofuran	64	35	49	51
Solution	Cyclohexanone	45	55	56	44
Unstretched film	None	63	37	62	38
Stretched film	None	_	_	68	32

 $^{^{\}dagger}T_{\rm m}$ (low) = melting temperature of PB domain.

^{*}Sample made by chlorination of *trans-1,4-PBD*.

Mark-Houwink parameters: K and $a^{(13)}$

Polymer	Solvent	Temperature (°C)	$ extit{K} imes 10^4 ext{ (ml g}^{-1} ext{)}$	а
Cl-cis-PBD	Tetrahydrofuran	30	2.53	0.71
	Methyl ethyl ketone	30	9.46	0.57
Cl-trans-PBD	Tetrahydrofuran	30	6.21	0.61
	Dichloroethane	30	9.64	0.54

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Second virial coefficient A_2	mol cm ³ g ⁻²	Polymer/Solvent Cl-cis-PBD/tetrahydrofuran Cl-cis-PBD/methyl ethyl ketone Cl-trans-PBD/tetrahydrofuran	1.0×10^{-3} 0.5×10^{-3} 1.1×10^{-3}	(13)
Stabilities Initial decomposition temperature	K	_	463	(4, 11, 14)
Degradation product by thermal volatilization analysis	_	_	HCl, ethylene, propylene, benzene, methane	
Activation energy for dehydrochlorination	kcal mol ⁻¹	-	23	

Pyrolysis product in helium at 500° C

Pyrolysis product	Percentage ratio of each pe	ak height to the summation of all peak heights
	100% chlorinated 98% <i>cis</i> -1,4-PBD	100% chlorinated 59% <i>trans</i> -1,4, 23% 1,2-, 18% <i>cis</i> -1,4-PBD
Aliphatic hydrocarbons	7.40	24.5
Benzene	32.48	34.5
Toluene	6.31	8.6
Ethylbenzene	1.34	3.3
o-Xylene	1.01	1.15
Monochlorobenzene	31.48	3.2
Styrene	2.33	3.1
Vinyltoluene	2.61	0.9
<i>p</i> -Dichlorobenzene	2.12	0.1
o-Dichlorobenzene	3.7	1.7
1,3,5-Trichlorobenzene	0.84	1.13
1,2,4-Trichlorobenzene	0.65	1.65
Naphthalene	3.35	4.3
α -Methylnaphthalene	0.42	2.35
β -Methylnaphthalene	_	1.5

Poly(vinyl chloride), head-to-head

- 1. Bailey, F. E. Jr., et al. J. Polym. Sci., Part B, 2 (1964): 447.
- 2. Kawaguchi, H., et al. Polymer 23 (1982): 1,805.
- 3. Dall'Asta, G., P. Meneghini, and U. Gennaro. Die Makromolekulare Chemie 154 (1972): 279.
- 4. Crawley, S., and I. C. McNeill. J. Polym. Sci., Part A, 16 (1978): 2,593.
- 5. Uelzmann, H., and C. Falls. U.S. Patent 3,392,161 (1968).
- 6. Horhold, H.-H., et al. Die Makromolekulare Chemie 122 (1961): 145.
- 7. Qin, M. F. Head to Head Vinyl Polymers: Head to Head Poly(vinyl halides) and Chiral Crystallization. Dissertation, Polytechnic University, 1995.
- 8. Murayama, N., and Y. Amagi. J. Polym. Sci., Part B, 4 (1966): 119.
- 9. Dreyfuss, M. P., M. R. Nevius, and P. R. Manninen. J. Polym. Sci., Part C, 25 (1987): 99.
- 10. Bassi, I. W., and R. Scordamaglia. Die Makromolekulare Chemie 166 (1973): 283.
- 11. Mitani, K., et al. J. Polym. Sci., Part A, 13 (1975): 2,813.
- 12. Kondo, S., and M. Takeda. Polym. Eng. Sci. 25(16) (1985): 1,026.
- 13. Takeda, M., R. Endo, and Y. Matsuura. J. Polym. Sci., Part C, 23 (1968): 487.
- 14. Iida, T., M. Nakanishi, and K. Goto. J. Polym. Sci., Part A, 13 (1975): 1,381.

Poly(vinylferrocene)

IAN MANNERS

CLASS Inorganic and semi-inorganic polymers

STRUCTURE $[CH_2CH\{(C_5H_4)Fe(C_5H_5)\}]_n$

PROPERTIES OF SPECIAL INTEREST Interesting electrical properties.

SYNTHESIS The synthesis of poly(vinylferrocene) can be achieved via the radical induced polymerization of vinylferrocene, $(\eta-C_5H_4(CH=CH_2))Fe(\eta-C_5H_5)$. Other routes to poly(vinylferrocene) include cationic and anionic initiation, as well as Ziegler–Natta polymerization. (2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
UV-vis absorption, λ_{\max}	nm	CH ₂ Cl ₂ solution	440	(4)
UV-vis absorption coefficient, ε	$\mathrm{M}^{-1}\mathrm{cm}^{-1}$	CH ₂ Cl ₂ solution	109	(4)
Glass transition temperature	K	DSC experiment	463	(4)
Melting temperature	K	DSC experiment	554-558	(4)

- 1. Arimoto, F. S., and A. C. Haven. J. Am. Chem. Soc. 77 (1955): 6,295.
- 2. Aso, C., T. Kunitake, and T. Nakashima. Makromol. Chem. 124 (1969): 232.
- 3. Nuyken, O., V. Burkhardt, T. Pohlmann, and M. Herberhold. *Makromol. Chem., Macromol. Symp.*, 44 (1991): 195.
- 4. Sasaki, Y., L. L. Walker, E. L. Hurst, and C. U. J. Pittman. J. of Polym. Sci., Polym. Chem. Ed., 11 (1973): 1,213.

Poly(vinyl fluoride)

RONALD E. USCHOLD

MAJOR APPLICATIONS As a protective surfacing material for: aircraft interior wall and ceiling panels, architectural fabrics, exterior building panels, wall coverings, reinforced vinyl sheeting for signs and awnings, automotive tubing, thermoformed plastic laminates, truck body panels, solar panels, and greenhouse glazing. As a release sheet for curing: epoxy circuit boards and composite panels.

PROPERTIES OF SPECIAL INTEREST Weathering resistance, antisoiling properties, chemical resistance, UV resistance, and durability.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Preparative techniques	fluor Suspens	on: 4.0-100 MPa, 46-250°C, water soluinated surfactant sion: 2.5-10 MPa, 25-100°C, monome ator, water soluble suspending agen	er soluble radical	(1, 2, 3) (4, 5)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	CH ₂ =CHF	46.04	_
Head-to-head sequences	%	-CH ₂ CHFCH ₂ CHF-	87-89*	(6, 7)
Monomer inversions	%	−CH ₂ CHFCHFCH ₂ −	11-13*	(6, 7)
Branch points	%	-CH ₂ CFCH ₂ CHF- CH ₂ CHF-	0.5-0.7 [†]	(7)
End group	%	−CH ₂ CH ₂ F	$0.2 0.5^{\dagger}$	(7)
Tacticity	_	Atactic, Bernoullian distribution	$P_{\rm m} = 0.43$	(8)
Typical polymer $M_{\rm w}$ range	$g mol^{-1}$	_	1.43 – $6.54~(\times 10^5)$	(9)
Typical polydispersity index (M_w/M_n)	_	_	2.5-5.6	(9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR absorption frequencies	cm ⁻¹	_	2,940 1,710 1,415	(13)
			1,370 1,235 1,140 1,090	
			1,025 890 830 460	
UV/VIS absorption frequencies	cm ⁻¹	Transmittance (%) <10 >80	<44,000 42,000-25,000	(13)
		>90	25,000-7,000	
NMR signals	ppm	Structure -CH ₂ CHFCH ₂ CH ₂ CHFCHFCH ₂ - 3°F at branch -CH ₂ F end group	Chemical Shift -174 to -184 -188 to -200 -147 -220	(6, 7, 10) (6, 7, 10) (7) (7)
Thermal expansion coefficient	K^{-1}	20–100°C, TMA	9×10^{-5}	(13)
Density	$\rm gcm^{-3}$	Crystallinity (%)		
		Amorphous	1.36	(10)
		20	1.368	(10)
		22	1.370	(10)
		28	1.375	(10)
		32	1.379	(10)
		37	1.383	(10)
		50	1.395	(10)
		61	1.405	(10)
		100	1.44	(11)
Solvents (above 120°C)	Dimethylaceta γ -butyrolac	amide, dimethylformamide, N- tone	methyl pyrrolidone,	(13)
Nonsolvents	Alcohols, keto	ones, esters, ethers, aliphatics, a	romatics	(13)
Solubility parameter	$(Pa)^{1/2}$	_	~25	(13)
Mark-Houwink parameters: K and a	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	DMF at 90°C	$K = 6.52 \times 10^{-5}$ $a = 0.8$	(9)

Poly(vinyl fluoride)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Crystalline state properties Lattice Unit cell dimensions Unit cell angles Degree of crystallinity	– Å Degrees %	_ _ _ _ Drawn at 90°C, annealed at 140°C	Hexagonal $a = b = 4.93, c = 2.53$ $\alpha = \beta = 90, \gamma = 120$ 37	(11)
Glass transition temperature	K	DMA, 1Hz	337	(13)
Melting point (DSC)	K	Commercial resin 37% crystallinity 45% crystallinity 50% crystallinity	463-466 470-478 491-498 498-508	(13) (12) (12) (12)
Softening point	K	DMA, 1Hz	398-403	(13)
Tensile modulus	MPa	ASTM D882-80 Unoriented, unpigmented film Oriented, unpigmented film	1,170 2,300	(14)
Tensile strength	MPa	ASTM D882-80 Unoriented, unpigmented film Oriented, unpigmented film	34 83	(14)
Ultimate elongation	%	ASTM D882-80 Unoriented, unpigmented film Oriented, unpigmented film	175 100	(14)
Yield strain	%	ASTM D882-80 Unoriented, unpigmented film Oriented, unpigmented film	4 2	(14)
Yield stress	MPa	ASTM D882-80 Unoriented, unpigmented film Oriented, unpigmented film	23 48	(14)
Storage modulus	MPa	Unoriented, unpigmented film 25°C, 1 Hz 75°C, 1 Hz 150°C, 1 Hz	2,000 400 50	(13)
Loss modulus	MPa	Unoriented, unpigmented film 25°C, 1Hz 75°C, 1Hz 150°C, 1Hz	16 60 100	(13)
Index of refraction	_	_	1.46	(14)
Dielectric constant	_	1 kHz at 22°C	8.5	(14)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Dielectric strength	$V \mu m^{-1}$	60 Hz	135	(14)
Corona endurance	h	$60Hz,40~V~\mu m^{-1}$	2.5-6	(14)
Dissipation factor	%	1,000 Hz, 22°C	1.6	(14)
-		1,000 Hz, 70°C	2.7	
		10 kHz, 22°C	4.2	
		10 kHz, 70°C	2.1	
Volume resistivity	ohm cm	22°C	4×10^{13}	(14)
Ž		100°C	2×10^{10}	,
Surface tension	mNm^{-1}	Contact angle	38	(13)
Coefficient of friction	_	PVF to PVF, 23°C	0.24	(13)
		PVF to steel, 23°C	0.13	()
Maximum use	K	Continuous	380	(14)
temperature		1-2 h	475	,
Decomposition temperature	K	Air	525	(14)
Chemical resistance	_	Acids, bases, solvents 1 yr, 25°C Acids, bases, solvents 2 h boiling Soil burial, 5 yr	No visible effect No visible effect No visible effect	(14)
Weatherability	-	5 yr Florida exposure facing south, 45° from horizontal	Excellent	(14)
Gas permeability	$\rm nmolm^{-1}s^{-1}$	25 mm film, 23°C, 98 kPa		(14)
-	GPa^{-1}	Carbon dioxide	22.4	
		Helium	302	
		Hydrogen	117	
		Nitrogen	0.5	
		Oxygen	6.6	
Vapor permeability	$nmolm^{-2}s^{-1}$	Solvent partial pressure at 23°C		(14)
		Acetic acid	4.9	
		Acetone	1,570	
		Benzene	13	
		Carbon tetrachloride	3.9	
		Ethyl acetate	138	
		Hexane	10	
		Water (39.5°C)	22	

Poly(vinyl fluoride)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Availability	_	Standard and custom colors	12–75 μm film up to 3 m wide	_
Cost	US\$ m ⁻²	Depends on type and color; \$5,000 minimum order	1-5	_
Supplier	DuPont Co	o., 1007 Market Street, Wilmington, D	elaware 19898. (800) 441-7515	_

^{*}Percent monomer units.

- 1. Frelink, J. G. British Patent 1,161,958 (1969) to Deutsche Solvay Werke Gesellschaft.
- 2. Hecht, J. L. U.S. Patent 3,265,678 (1966) to E. I. DuPont de Nemours and Co.
- 3. Uschold, R. E. U.S. Patent 5,229,480 (1993) to E. I. DuPont de Nemours and Co.
- 4. Johnston, F. L. U.S. Patent 2,510,783 (1950) to E. I. DuPont de Nemours and Co.
- 5. James, V. E. U.S. Patent 3,129,207 (1964) to E. I. DuPont de Nemours and Co.
- 6. Cais, R. E., and J. M. Kometani. Polymer 29 (1988): 168.
- 7. Ovenall, D. W., and R. E. Uschold. Macromolecules 24 (1991): 3,235.
- 8. Tonelli, A. E., et al. Macromolecules 15 (1982): 849.
- 9. Wallach, M. L., and M. A. Kabayama. J. Polym. Sci., Part A-1, 4 (1966): 2,667.
- 10. Goerlitz, M., et al. Angew. Makromol. Chem. 29/30 (1973): 137.
- 11. Golike, R. C. J. Polym. Sci. 42 (1960): 583.
- 12. Sianesi, D., and G. Caporiccio. J. Polym. Sci., Part A, 6 (1968): 335.
- 13. Uschold, R. E. Unpublished data.
- 14. DuPont Co. Tedlar® PVF Film technical bulletins.

[†]Percent fluorine atoms.

ANTHONY L. ANDRADY

ACRONYM, TRADE NAME PVDC, Saran (copolymer)

CLASS Vinylidene polymers

STRUCTURE $[-CH_2CCl_2-]$

MAJOR APPLICATIONS Homopolymer and copolymers—usually with vinyl chloride (VC), or methyl acrylate (MA)—used in solvent-based or latex barrier coatings on cellophane, paperboard, plastic film, and rigid food containers. Films of copolymer used as household cling wrap. Also used with other polymers in multilayer barrier films or containers mostly in packaging applications. Also used in fibers and adhesives.

PROPERTIES OF SPECIAL INTEREST Exceptional barrier properties with very low oxygen and water vapor permeability.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Preparative techniques	Photocl Aqueou	olymerization: nemical initiation with UV lamp as emulsion (redox initiators), 32°C sion (peroxide initiators)		(1) (2) (3)
Typical comonomers	Vinyl chlo	oride (5-40%)		(4)
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	_	96.95	_
Head-to-head content	%	_	> 1	(5, 6)
Molecular weight range	${\rm gmol}^{-1}$	_	DP = 100-10,000	(7)
Polydispersity	_	_	1.5-2.0	(8)
NMR	15% solut	ion in hexamethylphosphoramide, 40)°C	(9)
Solvents	THF (hot), tetralin (hot), trichloroethane 1,2 dichlorobenzene, dioxane, DMF, cyclohexanone, butyl acetate, cycloheptanone cyclooctanone, N-acetylpiperidine, N-methyl pyrolidinone, trimethylene sulfide			
Nonsolvents	Hydrocar disulfic	bons, chloroform, alcohols, phenol, T le	HF, carbon	_

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \text{ml } g^{-1}$ $a = \text{None}$	1-Methyl-2-pyrrolidinone, 25°C Tetramethylene sulfoxide, 25°C Hexamethylenephosphoramide, 25°C		(15) (15) (16)
Unit cell dimensions	Å	Mono	a = 13.69, b = 4.67, c = 6.296 a = 22.54, b = 4.68, c = 12.53	, ,
Heat of fusion	kJ mol ⁻¹	At melting point	5.623 4.60–7.95	(19) (16)
Entropy of fusion	$kJ mol^{-1}$	_	0.0120	_
Density (crystalline)	g cm ³	Volumetry during polymerization	1.97 1.80–1.97 1.948 1.958	(20) (16) (17) (18)
Density (amorphous)	g cm ³	– Molding resin grade	1.775 1.65–1.72	(16)
Glass transition temperature	K	Dynamic-mechanical Dilatometry Calorimetry	255 255–258 255	(19, 21) (2, 21) (22)
Melting transition temperature	K	Calorimetry	468 471–478 473–508	(23) (24) (22)
Sub- $T_{\rm g}$ transitions	K	β transition	285	(25)
Heat capacity	$kJ K^{-1} mol^{-1}$	100°C 200°C 250°C	0.0363 0.0575 0.0690	(26)
Tensile modulus	MPa	Machine direction Transverse direction	483 34.5	(27)
Yield strength	MPa	Machine direction VD-VC molding resin grade	69 19.3–36.2	(27) (16)
Tensile strength	MPa	Machine direction VD-VC molding resin grade Transverse direction	73 24.1–34.5 110	(27) (26) —

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Elongation	%	Machine directi Transverse dire VD-VC molding	ction	55 35 160–240	(27) - (16)
Impact strength, Izod	$\mathrm{J}\mathrm{m}^{-1}$	VD-VC molding (of notch)	g resin grade	21.35-53.38	(16)
Hardness	Rockwell M	_		50-65	(16)
Permeability coefficient P	$m^{3}(STP)m s^{-1} m^{-2}$ $Pa^{-1} (\times 10^{-9})$	Temp (°C)	Gas		
	Pa ⁻¹ (×10 ⁻⁹)	30 30 30 25	N ₂ O ₂ CO ₂ H ₂ O	0.000706 0.00383 0.0218 7.0	(28) (28) (28) (29)
Pyrolyzability	-	120-190°C		Only HCL given off (up to 60% available Cl)	(30)

- 1. Burnett, J. D., and H. W. Melville. Trans. Faraday Soc. 46 (1950): 976.
- 2. Saito, S., and T. Nakajima. J. Polym. Sci. 37 (1959): 229.
- 3. Heller, J., and D. J. Lyman. Polym. Lett. 1 (1963): 317.
- 4. Gabbwtt, J. F., and W. M. Smith. In *Copolymerization*, edited by G. Ham. Interscience, New York, 1964, chap. V.
- 5. Johnsen, U., Kolloid-Z. Z. Polym. 210 (1966): 1.
- 6. Fisher, T., J. B. Kinsinger, and C. W. Wilson. Polym. Letters 5 (1967): 285.
- 7. Matsuo, K., and W. H. Stockmeyer. Macromolecules 8 (1975): 660.
- 8. Wallach, M. L. ACS Polymer Div. Preprints 10 (1969): 1,248.
- 9. Matsuo, K., and W. H. Stockmeyer. Macromolecules 14 (1981): 544.
- 10. Thinius, K. Analytische Chemie der Plaste. Springer Verlag, Berlin, 1963.
- 11. Nitsche, R., and K. A. Wolf. Struktur und Physikalisches Verhalten der Kunststoffe. Springer Verlag, Berlin, 1961, vol. 1.
- 12. Roff, W. J., Fibers, Plastics and Rubbers. Academic Press, New York, 1956.
- 13. Wessling, R. A. J. Appl. Polym. Sci. 14 (1970): 1,531.
- 14. Wessling, R. A. J. Appl. Polym. Sci. 14 (1970): 2,263.
- 15. Matsuo, K., and W. H. Stockmeyer. Macromolecules 8 (1975): 660.
- 16. Wessling, R. A., et al. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1987, vol. 17, p. 492.
- 17. Reinhardt, R. C. Ind. Eng. Chem. 35 (1943): 422.
- 18. Narita, S., and K. Okuda. *J. Polym. Sci.* 38 (1959): 270.
- 19. Gaur, U., and B. Wunderlich. J. Phys. Chem. Ref. Data 12 (1983): 29.
- 20. Arlman, E. J., and W. M Wagner. Trans. Faraday Soc. 49 (1953): 832.
- 21. Boyer, R. F., and R. S. Spencer. J. Appl. Phys. 15 (1944): 398.
- 22. Park, H. C., and E. M. Mount. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1987, vol. 7, p. 89.
- 23. Okuda, K. J. Polym. Sci., Polym. Chem. Ed., 2 (1964): 1,749.
- 24. Wessling, R. A., J. H. Oswald, and I. R. Harrison. J. Polym. Sci., Phys., 11 (1973): 875.
- 25. Schmeider, K., and K. Wolf. Kolloid-Z. Z. Polym. 134 (1953): 149.

- 26. Gaur, U., S. F. Lau, and B. B. Wunderlich. J. Phys. Chem. Ref. Data 12 (1983): 29.
- 27. Jack, J. Brit. Plastics 34 (1961): 391.
- 28. Waack, R., et al. Ind. Eng. Chem. 47 (1955): 2,524.
- 29. Myers, A. W., et al. TAPPI 44 (1961): 58.
- 30. Bohme, R. D., and R. A. Westling. J. Appl. Polym. Sci. 16 (1972): 1,761.

JERRY I. SCHEINBEIM

ACRONYMS, TRADE NAMES PVDF, PVF2, Kynar, Solef, Neoflon, Foraflon, KF, Soltex

CLASS Vinylidene polymers

STRUCTURE $-(CH_2CF_2)_n$

MAJOR APPLICATIONS Wire and cable insulation, tubing, piping, sheet and melt-cast films for electrical and electronics, binder for high-quality metal finishes for building components used on exterior wall panels, roofing shingles, and on industrial, commercial and residential buildings, used in fluid handling systems for solid and lined pipes, fittings, valves, and pumps, in manufacture of microporous and ultrafiltration membranes, chemical-tank lining, telephone headset, infrared sensing, hydrophones, keyboards and, printers.

PROPERTIES OF SPECIAL INTEREST Excellent mechanical properties and resistance to severe environmental stress, good chemical resistance, good piezoelectric and pyroelectric properties

PREPARATIVE TECHNIQUES Emulsion polymerization: (a) 300-800 psig, perfluorinated surfactant initiator, $65-85^{\circ}$ C, 2-6 h;⁽¹⁾ (b) 200 lb in², $50-110^{\circ}$ C, fluorinated surfactant, 17-21 h, iron powder.⁽²⁾

Suspension polymerization: suspending agent, reaction accelerator, water soluble initiator, 300–1,000 psig, 35–100°C. (3)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Monomer and molecular weight	$g \text{mol}^{-1}$	CH ₂ =CF ₂	64.034	_
Head-to-head sequences	%	CF ₂ -CF ₂ -CH ₂ -CH ₂	3.5-6	(4-6)
Typical molecular weight range	$\mathrm{g}\mathrm{mol}^{-1}$	-	$3.4 40 \times 10^4$	(7)
Typical polydispersity index	_	-	1.62-2.14	(7)
Tacticity	% Isoregic	-	95–97	(8)
Morphology (crystal forms)	_	_	α , β , γ , δ	_
IR (characteristic absorption frequency)	cm ⁻¹	lpha form	530 615 764 796	(9, 10) (9) (9) (9)
		eta form	442 470 484 510	(9) (9) (9) (9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
IR (characteristic absorption frequency)	cm ⁻¹	γ form	430 481	(9) (9)
NMR	_	_	_	(11-15)
Crystal form/density	$g cm^{-3}$	lpha form eta form Amorphous	1.92 1.8 1.68	(8, 16) (8) (16)
Density (crystalline)	g cm ⁻³	Molded at 170°C (quenched to 0°C) Molded at 170°C (quenched to room temperature) Molded at 170°C (quenched to 0°C) Annealed at 120°C for one day	1.75-1.78 (47%) 1.779 (60%) 1.768 (65%) 1.769 (69%)	(17) (18) (18) (18)
Thermal coefficient of linear expansion	K^{-1}	–	$0.7-1.5 \ (\times 10^{-4})$	(19)
Thermal conductivity	${\rm W}{\rm m}^{-1}{\rm K}^{-1}$	25-160°C	0.17-0.19	(19)
Compressive strength	MPa	At 25°C	55-90	(19)
Solvents	_	_	Acetone, benzaldehyde, DMF, THF	(20)
		Above 60°C 25°C 150-190°C	Acetophenone DMA Benzophenone	(7) (7) (7)
Nonsolvents	-	-	Acetic acid, benzyl alcohol, 1,2- dibromoethane, ethanol	(21)
Solubility parameters	MPa	DMA DMF DMSO	16.8 17.4 18.4	(21)
Mark-Houwink	$K = \operatorname{ml} g^{-1}$	DMA	$K = 17.8 \times 10^{-6}$	(22)
parameters: K and a	a = None	DMF	$a = -0.74$ $K = 31.7 \times 10^{-6},$	(22)
		NMP	$a = -0.70$ $K = 48.8 \times 10^{-6},$	(22)
		Acetophenone, 85°C	$a = -0.68$ $K = 2.13 \times 10^{-4},$	(7)
		Benzophenone, 165°C	$a = 0.62$ $K = 13.6 \times 10^{-4}$	(7)
		Benzophenone, 180°C	$a = 0.44$ $K = 7.54 \times 10^{-4}$, $a = 0.49$	(7)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Second virial coefficient	$\mathrm{cm}^3\mathrm{g}^{-2}\mathrm{mol}$	Acetophenone, 85°C	$0.3 7.6 \ (\times 10^{-4})$	(7)
Root-mean-square radius of gyration	_	DMA DMF NMP	$29.5M_{\rm w}^{0.55} \ 813M_{\rm w}^{0.51} \ 28.2M_{\rm w}^{0.45}$	(22)
Unit cell dimensions			Unit cell angles	(16, 23)
Form I (β)	Å	Lattice = orthorhombic; space group = Cm2m- $C_{2\nu}^{14}$	a = 8.58, b = 4.91, c = 2.56	
Form II (α)	Å	Lattice = monoclinic; space group = $P2_1/c-C_{2h}^5$	a = 4.96, b = 9.64, c = 4.62	
	Degrees	0 1 5 <u>2</u>	$\beta = 90$	
Form III (γ)	Å	Lattice = orthorhombic; space group = C2cm	a = 4.97, b = 9.66, c = 9.66	(24, 25)
	Degrees	-	$\gamma = 91$	
Form IV (δ)	Å	Lattice = orthorhombic; space group = P2cn	a = 4.96, b = 9.64, c = 4.62	(24, 25)
Degree of crystallinity	%	_	50	(16, 20)
Heat of fusion	Jg^{-1}	– Draw ratio of 4	30.5 41.4	(9)

Avrami exponent⁽²⁶⁾

Crystallization temp. (K)	Avrami exponent	Kinetic rate constant (min ^{-3.94})	Half-time of conversion $t^{1/2}$ (min)
407	3.82	0.49	1.09
409	4.62	0.03	2.15
412	3.62	0.02	2.6
414	4.6	87×10^{-5}	5.45
417	3.3	44×10^{-6}	11.60
419	4.35	46×10^{-7}	20.60
420	2.99	10×10^{-7}	30.00
422	4.23	15×10^{-8}	49.00

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting point	K	Depends on polymorph	443-473	(8)
		Oriented PVF2 film (β crystal)	451 (DSC) 439	(23) (23)
Glass transition temperature	K	_	238	(23)
Other transition temperatures (DMS, DSC) (relaxation)	K	(α_2) (α_1) (β) (γ)	323 373 235 203	(27)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Elastic modulus	$\rm GNm^{-3}$	β phase	1-3	(8)
Acoustic impedance	$Ggm^{-2}s^{-1}$	β phase	2-3	(8)
Tensile strength (ultimate elongation)	(%)	190kg mm^{-2} fiber, 59% crystallization, crystal melting point = 184 °C	22	(28)
		42–58 MPa (homopolymer) (25°C) 34.5 MPa (100°C)	50-300 200-500	(19) (19)
Tensile yield strength	MPa	Commercial grade	42.8	(29)
Ultimate tensile strength	MPa	Commercial grade	43.8	(29)
Tensile modulus	MPa	Commercial grade	1,194.4	(29)
Elongation at break	%	Commercial grade	43	(29)
Yield point	MPa	At 25°C At 100°C	38–52 17	(19)
Elastic modulus	$MPa \times 10^3$	At 25°C Tensile modulus Flexure modulus Compression modulus	1.0-2.3 1.1-2.5 1.0-2.3	(19)
Abrasion resistance	_	Tabor CS-17, $0.5 \mathrm{kg}$ load, mg (1,000 cycles) $^{-1}$	17.6	(19)
Index of refraction	_	_	1.42	(19)
Dielectric constant	_	At 25°C 60 Hz 103 Hz 106 Hz 109 Hz	9-10 8-9 8-9 3-4	(19)
Dissipation factor	%	_	3-5 5-2 3-5 9-11	(19)
Volume resistivity	_	_	2×10^{12}	(19)
Dielectric strength	$V/(2.54 \times 10^{-5})$	0.003175 m thickness 0.000203 m thickness	260 1,300	(19)

	Poly(vinyliden			ne fluoride)
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Piezoelectric coefficient	cgs esu	α phase, 38% crystallinity poled at 140°C	0.32×10^{-7}	(30)
	pC/N pC/N	β phase δ phase	20–30 2–3	(8) (8)
Pyroelectric coefficient	μCkm^{-2}	β phase	30-40	(8)
Optical transmittance	_	Visible/UV	_	(17)
Specular transmittance	%	At 0.5° cone	85–90	(17)
Coefficient of friction	_	PVF2 to steel	0.14-0.17	(19)
Contact angle	Degrees	Water Methylene oxide Formaldehyde α -Bromonaphthalene Glycerol Tricresyl phosphate	82 63 59 42 75 28	(31)
Solid surface tension	_	Harmonic means Geometric means Critical surface tension Equation of state	37.4 36.2 36.5 25	(31)
Thermal decomposition	Degrees	_ Charring	390 480	(19)
Chemical resistance	_	Inorganic acids Halogens Oxidants Weak bases Aliphatic, aromatic and chlorinated solvents Strong bases Amines, esters, and ketones Acetone (30 min at room temperature)	No effect No effect No effect No effect No effect Softening Swelling and dissolution Etching	(19) (19) (19) (19) (19) (19) (19) (32)
Water absorption	%	_	0.04	(19)
Flammability	_	_	Low to none	_
Flame propagation rate	ft (20 min) ⁻¹	Maximum flame spread	2.0	(33)
Intrinsic viscosity	_	Commercial grade, 35% crystallinity, melting point 160°C	1.40-1.43	(29)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Viscosity	$\mathrm{dl}\mathrm{g}^{-1}$	DMA NMP DMF DMSO	1.29 1.28 1.17 1.05	(21)
Melt viscosity	poise	Commercial grade, 250° C, shear rate = 10^3 s ⁻¹	62×10^2	(29)
Moisture vapor permeability	$\mathrm{g}\mathrm{day}^{-1}\mathrm{m}^{-2}$	1 mm thickness	2.5×10^{-2}	(19)
Gas permeability	cm ³ (STP)/ (cm s mmHg)	Argon, 25°C, 5.21×10^{-3} cm thickness	$2\times10^{-1}2$	(34)
Diffusivity	$\mathrm{cm^2s^{-1}}$	Argon, 25°C, 5.21×10^{-3} cm thickness	4×10^{-9}	(34)
Cost	$\begin{array}{c} kg^{-1} \\ m^{-3} \end{array}$	_ _	14.05–14.09 25,270–25,520	_
Suppliers and trademarks		Atochem, France Daikin Kogyo Co., Japan Kureha Chemical Co., Japan Pennwalt Corporation, USA Solvay and Cie, Belgium	Foraflon Neoflon KF Kynar Solef/Vidar	(19)

- 1. McCain, G. C., J. R. Semancik, and J. J. Dietrich. *U.S. Patent* 3,475,396 (1969), to Diamond Shamrock Corporation.
- 2. Iserson, H. U.S. Patent 3,245,971 (1966), to Pennwalt Chemical Corporation.
- 3. Dohany, J. U.S. Patent 3,778,1265 (1973), to Pennwalt Corporation.
- 4. Bachmann, M. A., et al. *J. Appl. Phys.* 50 (1979): 6,106.
- 5. Mattern, D. E., L. Fu-Tyan, and D. M. Hercules. Anal. Chem. 56 (1984): 2,762-2,769.
- 6. Lovinger, A. J., et al. Polymer 28 (1987): 617-626.
- 7. Welch, G. J. Polymer 15 (1974): 429.
- 8. Lovinger, A. Science 220 (1983): 1,115.
- 9. Mead, W. T., et al. Macromolecules 12(3) (1979): 473.
- 10. Liepins, R., et al. J. Polym. Sci, Polym. Chem. Ed., 16 (1978).
- 11. Katoh, E., K. Ogura, and I. Ando. *Polym. J.* 26(12) (1994): 1,352.
- 12. Cais, R. E., and J. M. Kometani. Macromolecules 18 (1985): 1,357.
- McBrierty, V. J., D. C. Douglass, and T. A. Weber. J. Polym. Sci., Polym. Phys. Ed., 14 (1976): 1,271.
- 14. Clements, J., G. R. Davies, and I. M. Ward. Polymer 26(2) (1985); 208.
- 15. Lin, F. J. Macromol. Sci. A26(1) (1989): 1-16.
- 16. Nagakawa, K., and Y. Ishida. Kolloid Z.Z. Poly. 251 (1973): 1,003.
- 17. Plastic Film Performance Improvement for Heliostats. Report SAND 79-8185, Sandia National Laboratories, Albuquerque, July 1980.
- 18. Enns, J.B., and R. Simha. J. Macromol. Sci.-Phys. B13(1) (1977): 11-24.
- 19. Dohany, J. E., and J. S. Humphrey. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 17, p. 532.

Poly(vinylidene fluoride)

- 20. Pae, K. D., S. K. Bhateja, and J. R. Gilbert. J. Polym. Sci., Part B: Polym. Phys., 25 (1987): 717.
- 11. Botlino, A., et al. J. Polym. Sci., Part B: Polym. Phys., 26 (1988): 785.
- 22. Ali, S., and A. K. Raina. Makromol. Chem. 179 (1978): 2,925.
- 23. Kobayashi, M., K. Tashiro, and H. Tadokoro. Macromolecules 8(2) (1975): 158.
- 24. Weinhold, S., M. H. Litt, and J. B. Lando. Macromolecules 13(5) (1980): 1,178.
- 25. Bachmann, M.A., et al. J. Appl. Phys. 51(10) (1980): 5,095.
- 26. Mancarella, C., and E. Martuscelli. Polymer 18 (1977): 1,240-1,242.
- 27. Lovinger, A., and T.T. Wang. Polymer 20 (1979): 725.
- 28. Mizuno, T., and N. Murayama. *U.S. Patent* 4,546,158 (1985), to Kureha Kagaku Kogyo Kabushiki Kaisha Chemical Company, Tokyo.
- 29. Stallings, J. P. U.S. Patent 3,780,007 (1973), to Diamond Shamrock Corporation.
- 30. Murayama, N., et al. J. Polym. Sci., Polym. Phys. Ed., 13 (1975): 1,033.
- 31. Dalal, E. N. Langmuir 3 (1987): 1,009.
- 32. Bretz, P. E., R. W. Hertzberg, and J. A. Manson. Polymer 22 (1981): 1,272.
- 33. Odhner, O. R., and J. W. Michaud. U.S. Patent 4,401,845 (1983), to Pennwalt Corporation.
- 34. Fujii, M., V. Stannett, and H.B. Hopfenberg. J. Macromol. Sci.-Phys. B15(3) (1978): 421.

Poly(vinyl methyl ether)

JIANYE WEN

ACRONYMS, TRADE NAMES PVME, PVM, Lutonal M, Gantrez M

CLASS Vinyl polymers

$$\begin{array}{cc} \textbf{STRUCTURE} & [-CH_2 - CH -] \\ & OCH_2 \end{array}$$

MAJOR APPLICATIONS Plasticizer for coatings; aqueous tackifier; adhesion promoter of nonadhering materials to glass, metal, and plastics; copolymers used in pharmaceuticals; lens arrays for optical device (as thermographic copying material).

PROPERTIES OF SPECIAL INTEREST Viscous and balsamlike; high adhesion to high and low surface-energy free substrates.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Bulk density	g cm ⁻³	Gantrez M-154 [†]	1.03	(1)
,	O	Gantrez M-574 [†]	0.96	(1)
		Gantrez M-555†	0.94	(1)
		Gantrez M-550 [†]	0.94	(1)
		20°C	1.0580	(2)
		40°C	1.0436	(2)
		60°C	1.0294	(2)
		80°C	1.0152	(2)
		100°C	1.0011	(2)
		120°C	0.9871	(2)
		25–120°C	$1.725 - (7.259 \times 10^{-4})T + (0.116 \times 10^{-6})T^2$	(2)
Coefficient of thermal expansion	$K^{-1} (\times 10^{-4})$	40°C	6.87	(2)
1	,	60°C	6.92	()
		80°C	6.96	
		100°C	7.01	
		120°C	7.06	

Crystallographic data^(3,4)

		Unit cell parameter				
System	Crystal space group	а	b	с	Density (g cm ⁻³)	Chain conf. N^*P/Q
RHO	D3D-6	16.20	16.20	6.50	1.175	2*3/1
RHO	D3D-6	16.25	16.25	6.50	1.168	2*3/1

Poly(vinyl methyl ether)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Flash point	K	Gantrez M-154 [†] Gantrez M-574 [†] Gantrez M-555 [†] Gantrez M-550 [†]		(1)
Glass transition temperature $T_{\rm g}$	K	_	239 242	(5) (6)
Isothermal compressibilities	bar ⁻¹ (×10 ⁻⁵)	20°C 40°C 60°C 80°C 100°C 120°C	5.3 5.8 6.4 7.2 8.1 9.2	(7)

Mark-Houwink parameters: K and $a^{(8)}$

Solvent	Temp. (°C)	Mol. wt. range $(\textit{M} \times 10^4)$	$\textit{K} \times 10^3 \; (\textrm{ml g}^{-1})$	а
Benzene	30	-45	76	0.60
Butanone	30	-45	137	0.56

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Melting temperature $T_{\rm m}$	K	_	417 417–387	(5) (3)
Refractive index n_D	_	30°C, isotactic	1.4700	(9)
Solvent		e, halogenated hydrocarbons, benzene, <i>n-</i> butar ketone, ethanol, acetone, ethylacetate, water (o		(1, 10)
Nonsolvents	1 ,	vlene glycol, ethyl ether, water (hot), (methano crystalline polymer)	ol, acetone,	(10)
Specific viscosity $\eta_{\rm sp}$	1 g in 100 ml	Gantrez M-154 [†] Gantrez M-555 [†] Lutonal M [‡]	0.47 0.77 0.68	(1)
Surface tension	$mN m^{-1}$ $mN m^{-1} K^{-1}$	$M_{\rm n} = 46,500, M_{\rm w} = 99,000$ 20° C 150° C 200° C $-d\gamma/dT$	31.8 22.1 18.3 0.075	(11)
Viscosity	p	Gantrez M-555 [†] Gantrez M-574 [†] Gantrez M-154 [†]	~15 ~30 ~40	(1)

[†]Product of GAF Corp. ‡Product of BASF Corp.

Poly(vinyl methyl ether)

Unperturbed dimension*(12,13)

Conditions	$r_{ m o}/{\it M}^{1/2} imes 10^4$ (nm)	$r_{\mathrm{of}}/\emph{M}^{1/2} imes 10^4$ (nm)	$\sigma = r_{ m o}/r_{ m of}$	${ m C}_{\infty} = { m \emph{r}}_{ m o2}/{ m \emph{nl}}^{ m 2}$
Benzene; butanone; 30°C	900 ± 30	404	2.23 ± 0.13	9.95

^{*}See reference (12) for details.

- 1. Gantrez, M. Tech. Bull. 8,740. GAF Corp., 1970.
- Orwoll, R. A. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. AIP Press, Woodbury, N.Y., Ch. 7, 1996.
- 3. Bassi, I. W. Atti. Accad. Nazl. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 29 (1960): 193.
- 4. Corradini, P., and I. W. Bassi. J. Polym. Sci. part C. 16 (1968): 3,233.
- 5. Field, N. D., and D. H. Lorenz. In *Vinyl and Diene Monomers*, Part 1, edited by E. C. Leonard. Wiley-Interscience, New York, 1970, p. 365.
- 6. Nielson, L. E. Mechanical Properties of Polymers, Reinhold, New York, 1962.
- 7. Shiomi, T., et al. Macromolecules 23 (1990): 229.
- 8. Manson, J. A., and G. J. Arquette. Makromol. Chem. 37 (1960): 187.
- 9. Seferis, J. C. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. VI-461.
- 10. Fuchs, O. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. VII-379.
- Koberstein, J. T. (Chemical Engineering Department, Princeton Univiversity, New Jersey). Private communication, 1986.
- 12. Kurata, M., and Y. Tsunashima. In *Polymer Handbook*, 3d ed., edited by J. Brandrup and E. H. Immergut. Wiley-Interscience, New York, 1989, p. VII-1.
- 13. Kurata, M., and W. H. Stockmayer. Fortschr. Hochpolymer. Forsch. 3 (1963): 196.
- Brandrup, J., and E. H. Immergut, eds. *Polymer Handbook*, 3d ed. Wiley-Interscience, New York, 1989.
- 15. Biswas, M., A. Mazumdar, and P. Mitra. In *Encyclopedia of Polymer Science and Technology*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1987, Vol. 17, p. 447.
- 16. Mark, J. E., ed. Physical Properties of Polymers Handbook, AIP Press, Woodbury, N.Y., 1996.

Poly(vinylmethylsiloxanes), cyclic

STEPHEN J. CLARSON

ACRONYM Cyclic PVMS

CLASS Cyclic polymers

STRUCTURE $-[(CH_2=CH)(CH_3)SiO]_x-$

INTRODUCTION Cyclic poly(vinylmethylsiloxanes) are an interesting cyclic polymer system because they contain a reactive pendent group. Thus, possible chemistries include hydrogenation, which yields cyclic poly(ethylmethylsiloxane), that is, $-[(CH_3CH_2)(CH_3)SiO]_x$ —. This route has also been used to deuterate the rings for neutron scattering investigations, that is, $-[(CH_3CHD)(CH_2D)SiO]_x$ —. Other useful reactions are with molecules containing terminal or pendent Si–H groups, which can readily be attached by hydrosilation chemistry. This functional ring system also shows that one can directly prepare elastomeric network structures having none of the usual network defects (e.g., dangling chain ends, etc.). Although there are a limited number of studies of these novel functional rings to date, the large rings have been successfully isolated from ring-chain equilibration reactions carried out in solution. Following fractionation, some investigations of the physical properties of these cyclic polymers have be carried out and have also been compared with their linear polymer analogs.

MAJOR APPLICATIONS Ring-opening polymerization of small rings to give linear PVMS high polymers. Copolymerization with other siloxane small rings to give copolymers of controlled composition. Both the homopolymer and copolymers are widely used for preparing silicone elastomers.

PROPERTIES OF SPECIAL INTEREST Viscous fluids having good thermal stability.

PREPARATIVE TECHNIQUES Ring-chain equilibration reactions. (1,2)

Selected properties of the cyclic polymers (r) compared to linear poly(vinylmethylsiloxanes) (I)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Characteristic ratio $\langle r^2 \rangle / n l^2$	_	Derived from molar cyclization equilibrium constants in 50% toluene solution at 383 K	7.8	(2)
Intrinsic viscosities $[\eta]_{\rm r}/[\eta]_{\rm l}$	_	In toluene at 298 K	0.69	(1-3)
Density	$kg m^{-3}$	At 298 K; $M_{\rm n} = 5{,}430{\rm gmol}^{-1}$; and $M_{\rm w}/M_{\rm n} = 1.06$	1,006.0	(1, 2)
Refractive index	-	589.3 nm $M_{\rm n} = 5{,}430 {\rm g mol^1}; M_{\rm w}/M_{\rm n} = 1.06$ At 298 K At 303 K At 313 K	1.4458 1.4421 1.4380	(1, 2)

Poly(vinylmethylsiloxanes), cyclic

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Refractive index	_	589.3 nm $M_{\rm n} = 11,440 \text{ g mol}^1; M_{\rm w}/M_{\rm n} = 1.14$		(1, 2)
		At 298 K	1.4465	
		At 303 K	1.4427	
		At 313 K	1.4385	
Glass transition temperature $T_{\rm g}$	K	$M_{\rm n} = 5{,}430 {\rm g mol}^1; M_{\rm w}/M_{\rm n} = 1.06$ $M_{\rm n} = 11{,}440 {\rm g mol}^1; M_{\rm w}/M_{\rm n} = 1.14$	144.5 144.7	(1, 2)
Melt viscosity	$kgm^{-1}s^{-1}$	$10^{3} \eta$ at 298 K; $M_{\rm n} = 5{,}430 {\rm g mol}^{1}$; $M_{\rm w}/M_{\rm n} = 1.06$	75.9	(1, 2)
Activation energy	kJ	For viscous flow; $M_{\rm n}=5{,}430{\rm gmol}^1;$ $M_{\rm w}/M_{\rm n}=1.06$	16.75	(1, 2)

- 1. Formoy, T. R. Ph.D. Thesis. University of York, 1985.
- 2. Formoy, T. R., and J. A. Semlyen. Polymer Comm. 30 (1989): 86-89.
- 3. Semlyen, J. A. Makromol. Chem., Macromol. Symp., 6 (1986): 155-163.
- 4. Kantor, S. W., R. C. Osthoff, and D. T. J. Hurd. J. Am. Chem. Soc. 77 (1955): 1,685.
- 5. Hampton, J. F. U.S. Patent 3.465.016.
- Semlyen, J. A. In Siloxane Polymers, edited by S. J. Clarson and J. A. Semlyen. Prentice Hall, Englewood Cliffs, N.J., 1993.

Poly(4-vinyl pyridine)

JOHN H. KO

ACRONYMS, TRADE NAME PVP, P4VP, Reillex®

CLASS Vinyl polymers; homopolymers

STRUCTURE
$$(-\text{CHCH}_2-)_n$$

MAJOR APPLICATIONS Poly (4-vinylpyridine) (P4VP) with its nucleophilic and weakly basic ring nitrogen has found uses in the areas of metal recovery (complex), and pollution control for removal of acidic and neutral materials. It is also used as an acid scavenger and catalyst and catalyst support. Commercial resin beads are mostly prepared by suspension polymerization with cross-linker such as divinylbenzene. (1,2)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Basicity, pKa	_	45% ethanol/55% water	3.25	(3)	
Glass transition temperature	K	P4VP P2VP	~ 415 357	(4)	
Density	$\rm gcm^{-3}$	At 20°C	1.114	(4)	
Melting point	K	DSC, isotactic P2VP crystallized at 130°C	450, 472.5 (two peaks)	(5)	
Heat of fusion	$kJ mol^{-1}$	Isotactic P2VP	02.07	(5)	
Dielectric constant	_	10 kHz, 50 K	2.88	(6)	
Suppliers	Aldrich Chemical Co., 1001 West St. Paul Avenue, Milwaukee, WI 53233, USA Poly(4-vinylpyridine), 2% or 25% cross-linked Reilly Chemicals, SA, Rue Defacqz 115, Boite 19, B-1050 Brussels, Belgium Reillex® cross-linked poly(4-vinylpyridine) polymers				

- 1. Frechet, J., and M. Vivas de Meftahi. Br. Polym. J. 16 (1984): 193.
- 2. Sugii, A., N. Ogawa, Y. Iinuma, and H. Yamamure. Talanta 28 (1981): 551.
- 3. Kirsh, Y., O. Komarova, and G. Lukovkin. Eur. Polym. J. 9 (1973): 1,405.
- 4. Frosini, V., and S. Petris. Chim. Ind. 49 (1967): 1,178.
- 5. Aberda van Ekenstein, G., Y. Tan, and G. Challa. Polymer 28 (1985): 283.
- 6. Shimizu, K., O. Yano, and Y. Wada. J. Polym. Sci. 13 (1975): 2,357.

Poly(N-vinyl pyrrolidone)

JOHN H. KO

ACRONYM, ALTERNATE NAMES, TRADE NAMES PVP, povidone, crospovidone, Luviskol $^{\mathbb{R}}$, Kollidon $^{\mathbb{R}}$, Divergan $^{\mathbb{R}}$, Plasdone $^{\mathbb{R}}$, Biodone $^{\mathbb{R}}$, Polyclar $^{\mathbb{R}}$, Albigen $^{\mathbb{R}}$, Peregal $^{\mathbb{R}}$

CLASS Vinyl polymers; homopolymers

STRUCTURE

MAJOR APPLICATIONS Additives (clarifying agent, stabilizing agent, viscosity modifier); adhesives; agriculture; coatings (paints and surface coatings, inks, paper, printing); cosmetics (detergent, soap, hair spraying agent, dye); medical devices (ophthalmic, lubricious coating, biocompatibility coating, complex); pharmaceuticals (control release, binder, stabilizer for polymerization, thickener); photography.

PROPERTIES OF SPECIAL INTEREST PVP powder is white, stable, hygroscopic and water soluble. Forms complexes with many substances. $^{(1,2,3)}$ Coated PVP solution forms brittle, clear, and glassy films.

PROPERTY	UNITS	CONDITIONS	VALUE			REFERENCE
Solubility	%	Soluble Insoluble	>10 <1			(4)
Solvents	Water, alcohol (methanol, ethanol, propanol, butanol, glycol); ester alcohol (ethylene glycol monoethylether, diethylene glycol, polyethylene glycol, 1,4-butanediol); chlorinated hydrocarbon (dichloromethane, chloroform); amine (butylamine, ethylenediamine); acid (formic, acetic, propionic); dilute acid, base, low salt solutions					
Nonsolvents	Hydrocarbons (benzene, hexane, pentane, cyclohexane, toluene, xylene, mineral oil); ethers (dioxane, diethyl ether, ethyl vinylether); ketones (acetone, cyclohexanone); esters (ethyl acetate, methyl acetate); chlorinated hydrocarbons (carbon tetrachloride, chlorobenzene)					
K-value	_		$M_{ m w}$		$M_{ m v}$	(4, 5)
		17 30 60 80 90	3.5×10^5 9×10^5	2.5×10^{3} 1×10^{4} 9×10^{4} 2.85×10^{5} 3.6×10^{5}	3×10^5 6×10^5	

			Poly(N-vinyl p	yrrolidone)
PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Coil dimension (end-to-end	nm	In 0.9% NaCl		(5)
distance)		K = 12	2.2	. ,
,		K = 17	5	
		K = 20	7	
		K = 90	100	
рН	_	5% in water	3-7	(3, 4)
Theta temperature	K	$M_{\rm n}=3.26\times10^5$		(6)
•		0.55M Na ₂ SO ₄ /water	301	. ,
		Water	297	
		2-Propanol	297	
Second virial coefficient	$mol cm^3 g^{-2}$	Osmotic pressure in 2-propanol		(6)
	O	$M_{\rm n} = 3.26 \times 10^{5*}$	0.58	()
		$M_{\rm n} = 1.68 \times 10^5$	0.63	
		$M_{\rm n} = 0.99 \times 10^5$	0.78	
Mark-Houwink parameter: a	_	Water	0.82	(6)
Heat of solution	$kJ mol^{-1}$	Water	-16.6	(6)
	,	0.2 molal Na ₂ SO ₄ /water	-11.6	()
Glass transition temperature	K	DSC, $M_{\rm w} = {\rm light\ scattering}$		(4)
1		$M_{\rm w} = 9 \times 10^{3*}$	382	. ,
		$M_{\rm w} = 4.5 \times 10^4$	448	
		$M_{\rm w} = 3.5 \times 10^5$	449	
		$M_{\rm w} = 9 \times 10^{5}$	452	
		$M_{_{ m W}}=1.2\times 10^6$	452	
		$M_{ m w}^{''} = 1.2 \times 10^6 \ M_{ m v} = 7.5 \times 10^{5 *}$		(7, 8)
		Water content		
		0%	448	
		2%	427	
		8%	368	
		16%	318	
		Cross-linked PVP	463-468	(5)
		(Crospovidone)		· /
Density	$\rm gcm^{-3}$	25°C	1.25	(9)
Diffusion coefficient	$\mathrm{cm}^2\mathrm{s}^{-1}$	Electrophoresis	4.81×10^{-7}	(10)

At $25^{\circ}C$

(9)

1.53

Index of refraction n_D

Poly(N-vinyl pyrrolidone)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE	
Index of refraction <i>n</i>	-	Ultrasonic at 30° C Concentration (in water) $0.000875 \text{ mol } l^{-1}$ $0.001500 \text{ mol } l^{-1}$ $0.004000 \text{ mol } l^{-1}$	1.339 1.343 1.357	(11)	
Suppliers		BASF Corp., 100 Cherry Hill Road, Parsippany, NJ 07054, USA ISP, 1361 Alps Road, Wayne, NJ 07470, USA			

^{*} $M_{\rm w}$: light scattering; $M_{\rm n}$: osmometry; $M_{\rm v}$: viscometer.

- 1. Blecher, L., et al. In *Handbook of Water-Soluble Gums and Resins*. McGraw-Hill, New York, 1980
- Gargallo, L., and D. Radic. In Polymeric Materials Encyclopedia, Vol. 9. CRC Press, Boca Raton, Fla., 1996.
- 3. Hort, E., and B. Waxman. In *Kirk-Othmer Encyclopedia of Chemical Technology*, 3d ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1983, Vol 23, p. 960.
- 4. BASF product literature: Luviskol® PVP Polymers and Kollidon® PVP Polymers. 1993.
- 5. Haaf, F., A. Sanner, and F. Straub. Polymer J. 17(1) (1985): 143.
- 6. Meza, R., and L. Gargallo. Eur. Polym. J. 13 (1977): 235.
- 7. Tan, Y., and G. Challa. Polymer 17 (1976): 739.
- 8. del Pilar Buera, M., G. Levi, and M. Karel. Glass Transition in PVP: Effect of Molecular Weight and Diluents. ACS and AICE, 1982, p. 144148.
- 9. Schildknecht, C. Vinyl and Related Polymers. John Wiley and Sons, New York, 1952.
- 10. Miller, L., and F. Hamm. J. Phys Chem 57 (1953): 110.
- 11. Rajulu, A., et al. Acustica 75 (1991): 213.

Poly(p-xylylene)

SHRISH RANE AND GREG BEAUCAGE

ACRONYM, TRADE NAME PPX, Parylene N (Union Carbide)

CLASS Polyaromatics

STRUCTURE

$$-CH_2$$

MAJOR APPLICATIONS Films and coatings on electronic components; insulating applications.

SPECIAL PROPERTIES High thermal stability; excellent barrier and dielectric properties; high resistance to electronic irradiation.

SYNTHESIS (1-5)

- (a) Pyrolitic decomposition polymerization of cyclic di-p-xylylene.
- (b) Plasma decomposition of cyclic di-p-xylylene.
- (c) Vapor phase pyrolysis of di-*p*-xylylene or diesters of α , α' -dihydroxy-1,4-xylylenes or α , α' -dibromo-1,4-xylylenes in the presence of Zn/Cu.
- (d) Electrochemical polymerization of α , α' -dibromo-1,4-xylylene in DMF and tetraethyl-ammonium-bromide (TEAB) as the electrolyte.
- (e) By the "Wessling Process": heating high molecular weight water soluble precursor polyelectrolyte (α , α' -bis-tetrahydrothiophenium chloride)-pxylylene with NaOH.

IR properties^(5,6)

Values of ν (cm $^{-1}$)	Types of vibrations
3,150; 3,110; 3,060; 3,030; 2,995	C–H stretch of aromatic ring
2,950; 2,935; 2,870	Asymmetrical and symmetrical C-H stretch of -CH ₂ -
1,900; 1,795	Characteristic bands for a 1,4, substituted aromatic ring
1,497; 1,350	Deformation of C–H from –CH ₂ –
1,210; 1,142; 1,080; 1,021	Planar vibration of C–H from aromatic ring
820	Extra planar vibration of C-H from aromatic ring
540	Extra planar vibration of C-C from aromatic ring

Poly(p-xylylene)

 $\overline{Morphology}^{(1,3,7,8)}$

PPX	Morphology	Lamellar width (nm)	Lamellar thickness (nm)	Comments
Fiber	Main fiber is made of secondary fibrils	~500 (fibril width)	\sim 10 (fibril thickness)	Low-magnification electron microscopy
Fiber	Shish-Kebab	~100	~25	High-magnification electron microscopy
Melt cryst. films	Spherulitic	_	~8	_
Soln. grown	Lamellae	_	~12	_

Crystal structure

Unit cell type	Unit cell dimensions (nm)					
	a	b	c (fiber axis)			
α -Monoclinic	0.592	1.064	0.655	$\beta = 134.7^{\circ}$		
β -Trigonal	2.052	2.052	0.655	$\gamma=120^\circ$		

 $[\]alpha \xrightarrow{231^{\circ}\text{C}} \beta_1 \text{ condis crystal } \xrightarrow{287^{\circ}\text{C}} \beta_2 \text{ condis crystal } \xrightarrow{427^{\circ}\text{C}} \text{Melt}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Degree of crystallinity X_c	%	_	35 ~ 66	_
Chains per unit cell	_	_	2	_
Packing density ρ	$\rm gcm^{-3}$	_	0.705	_
Solubility	Generall Pheny found CHCl	(5)		
Dielectric loss, $\tan\delta$	_	At 1 KHz	1.5×10^{-4}	(9)
Glass transition temperature $T_{\rm g}$	K	_	286	(8, 10)
Crystalline melting temperature $T_{\rm m}$	K	_	700	(8, 10)
Young's modulus E	MPa	Isotropic film Oriented film Fibers	600–1,400 90,000–100,000 102,000	(1, 4, 8, 10)
Tensile stress σ	MPa	Isotropic film Oriented film Fibers	25–62 1,800 3,000	(1, 4, 8, 10)
Elongation at break	%	Isotropic film Oriented film Fibers	18-330 _ _	(1, 4, 8, 10)

- 1. Mailyan, K. A., et al. Poly. Sci. 33 (1991): 1,420.
- 2. Krasovsky, A. M., E. M. Tolstopyatov, and P. N. Grakovich. J. Appl. Poly. Sci. 57 (1995): 117.
- 3. Li, H., A. Moshonov, and J. Muzzy. In ANTEC Conference Proc. (Brookfield, Conn.), 1991, vol. 37, p. 2,023.
- 4. Liu, D., et al. J. Appl. Poly. Sci. 40 (1990): 1,795.
- 5. Schäfer, O., and A. Greiner. Macromol. 29 (1996): 6,074.
- 6. Sochilin, V. A., et al. Poly. Sci. 33 (1991): 1,426.
- 7. Van Der Werf, H., et al. J. Mat. Sci. Lett. 8 (1989): 1,231.
- 8. Van Der Werf, H., and A. J. Pennings. Polym. Bull. 19 (1988): 587.
- 9. Mori, T., T. Mizutani, and M. Ieda. J. Phys. D. Appl. Phys. 22 (1989): 1,518.
- 10. Mailyan, K. A., et al. Poly. Sci., Ser. A, 39(5) (1997): 538.

Silicon (germanium) oxo hemiporphyrazine polymers

MARTEL ZELDIN AND YULI ZHANG

CLASS Cofacial polymers

STRUCTURE

 $[M(hp)O]_n$:

SYNTHESIS Preparation of $[Si(hp)O]_n$ and $[Ge(hp)O]_n$. (1)

$$M(hp)(OH)_2 \xrightarrow{Heat} M(hp)(O)_n$$

Silicon (germanium) oxo hemiporphyrazine polymers

Infrared spectroscopy $^{(1)}$

COMPOUND	IR SPECTRAL DATA (cm ⁻¹)*
[Si(hp)O] _n	3092(vw), 3042(w), 1684(m), 1640(s), 1589(vs), 1553(m/s), 1437(s), 1323(m), 1293(m), 1264(m), 1209(m), 1170(w), 1160, 1152(w), 1105(s), 990(m-s), 909(w), 811(vs), 771(m), 744(w), 710(vs), 703(vs), 681(m), 503(m), 485(m), 406(w/m)
$[Ge(hp)O]_n$	3080(vw), 3040(vw), 1672(m), 1629(s), 1603(vs), 1582(vs), 1549(s), 1433(vs), 1318(s), 1290(w), 1256(m), 1206(m), 1190(vw), 1153(w), 1110(vs), 1004(vw), 900(m), 808(vs), 768(w), 734(vw), 700(vs), 678(w), 485(vw), 472(vw)

^{*}Peaks not readily assigned to M(hp) moiety; s = strong, m = medium, w = weak, v = very.

Densities⁽¹⁾

POLYMER	у	DENSITY (g cm ⁻³)
$[Si(hp)O]_n$	Nondoped	1.63
$[Ge(hp)O]_n$	Nondoped	1.62

REFERENCE

1. Dirk, C. W., and T. J. Marks. Inorg. Chem. 23(25) (1984): 4,325-4,332.

Silk protein

STEPHEN A. FOSSEY AND DAVID L. KAPLAN

ALTERNATIVE NAMES Silk, fibroin, spidroin

CLASS Polypeptides and protein

STRUCTURE R
[-NH-CH-COO-],

 $(R = H, CH_3, or CH_2OH in crystalline domains)$

MAJOR APPLICATIONS Clothing, sutures.

PROPERTIES OF SPECIAL INTEREST Natural fibers with high strength and compliance, high energy absorption before failure, durable fibers with high luster, resistant to proteolysis.

PREPARATIVE TECHNIQUES Type of polymerization: biosynthesis (enzymatic), ambient conditions of temperature and pressure.

PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Molecular weight (of repeat unit)	$g \text{mol}^{-1}$	-	~64	_
Tacticity	_	Enzymatic polymerization (all L-amino acids)	100% isotactic	-
Degree of branching	%	Linear protein	None	_
Molecular weight	$g \text{mol}^{-1}$	_	350,000	(1)
Polydispersity index $M_{\rm w}/M_{\rm n}$	_	Monodisperse due to genetic controls	1.0	_
Morphology in multiphase systems	_	Crystalline blocks with amorphous blocks	Block copolymers	(2)
IR (characteristic absorption frequencies)	cm ⁻¹	Amide I Amide II Amide III	1,624 1,522 1,258	(3)
UV (characteristic absorption frequencies)	nm	Tyrosine	280	-
NMR	_	¹³ C NMR ² H NMR ¹⁵ N NMR		(4, 5) (6) (7)

				Silk protein			
PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE			
Coefficient of linear thermal expansion	K^{-1}	For dry film range 50–150°C	0.461×10^{-4}	(8)			
Solvents	$0.28 \mathrm{g} \mathrm{mol}^{-1} \mathrm{s}$ $0.1 \mathrm{g} \mathrm{ml}^{-1} N.$	$0.06\mathrm{gml}^{-1}$ silkworm silk in 9.3 M LiBr in H2O $0.28\mathrm{gmol}^{-1}$ silkworm silk in 75% wt/wt Ca(NO ₃) ₂ /MeOH $0.1\mathrm{gml}^{-1}$ N. clavipes dragline silk in hexafluoroisopropanol (highest reported solubility, but probably higher)					
Nonsolvents	Methanol, eth	nanol, nonpolar hydrocarbons		(12)			
Second viral coefficient	$mol cm^3 g^{-2}$	Nephila clavipes spider dragline silk in hexafluoroisopropanol with 10 mM trifluoroacetic acid	3.0×10^{-3}	(13)			
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	-	$K = 1.8 \times 10^{-4}$ a = 0.81	(13)			

Lattice and unit cell dimensions

	Lattice	Unit cell	dimension	ns (nm)		Reference
		а	b	c (chain axis)		
Silk I	Orthorhombic	0.896	1.126	0.646	4 residues	(14)
Silk II	Orthorhombic	0.944	0.920	0.695	4 residues	(15, 16)
Silk III	Hexagonal	0.456	0.456	0.867	3 residues	(17)

PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Degree of crystallinity	%	Silkworm silk Spider silk	~38-66 ~20-45	(18) (19)
Density (crystalline)	$\rm gcm^{-3}$	Fiber in benzene In water	1.351 1.421	(20)
Crystallite size (typical)	nm	Silkworm silk N. clavipes dragline	$1.0-2.5$ $2 \times 5 \times 7$	(18) (21)
Glass transition temperature $T_{\rm g}$	K	0% RH at 23–26°C, absorbed moisture = 0 g/100 g silk 75% RH at 23-26°C, absorbed moisture = 21 g/100 g silk	451 312	(22)
Melting point	_	Degrades prior to melting		
Mesomeric transition	_	Room temperature	Lyotropic	(23)

Silk protein				
PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Heat capacity	$Jg^{-1}K^{-1}$	Specific heat	1.38	(24)
Polymers with which compatible	-	_	Nylon	_
Thermal stability	-	Spider dragline silk (<i>N. clavipes</i>)	5% weight loss to 234°C	(25)
		Silkworm silk (B. mori)	5% weight loss to 250°C	(26)
Tensile strength	MPa	Silkworm (Bombyx mori) silk	513	(24)
Maximum extensibility	%	Silkworm (Bombyx mori) silk	23.4	(24)
Work to rupture	MPa	Silkworm (Bombyx mori) silk	80.6	(24)
Tensile modulus	MPa	Silkworm (Bombyx mori) silk	9,860	(24)
Yield stress	MPa	Silkworm (Bombyx mori) silk	211	(24)
Yield strain	%	Silkworm (Bombyx mori) silk	3.3	(24)
Storage modulus	MPa	Silkworm (Bombyx mori) silk, for $80^{\circ}\text{C} < T < 160^{\circ}\text{C}$	70,000	(27)
Loss modulus	MPa	Silkworm (Bombyx mori) silk,	1,600	(27)

Spider dragline silks

	Tensile strength (GPa)	Initial tensile modulus (GPa)	Ultimate elongation (%)	Shear modulus (GPa)	Transverse comp. modulus (GPa)	Reference
Nephila clavipes	1.1	22	9	_	_	(25)
Nephila clavipes	0.85	12.7	20	3.58	0.58	(28)
Argiope aurantia Araneus sericatus	0.5-1.3 1.0	6-24 10	18.3 - 21.5 30		_ _	(29) (29)

for 80° C < T < 160° C

			S	ilk protein
PROPERTY	UNITS	CONDITIONS	VALUES	REFERENCE
Index of refraction n	_	Parallel to fiber Perpendicular to fiber	1.591 1.538	(24) (24)
Piezoelectric coefficient	pN/C	$1/d'_{14}$	3.3	(30)
Speed of sound	$m\ s^{-1}$	_	540	(31)
Biodegradability	Ubiquitou	as microorganisms, proteases, soil, water		
Maximum use temperature	K	N. clavipes dragline silk B. mori silkworm silk	443 443	(25) (26)
Decomposition temperature	K	N. clavipes dragline silk B. mori silkworm silk	507 523	(25) (26)
Water absorption	Some spic	der silks supercontract \sim 50% in water		(32)
Scission	_	UV light		(33)

REFERENCES

Important patents

- 1. Tashiro, Y., E. Otsuki, and T. Shimadau. Biochim. Biophys. Acta 257 (1972): 198-209.
- 2. Gosline, J. M., M. E. DeMont, and M. W. Denny. Endeavor 10 (1986): 37-43.
- 3. Yoshimizu, H., and T. Asakura. J. Appl. Polym. Sci. 40 (1990): 127–134.
- 4. Asakura, T., et al. *Macromolecules* 18 (1985): 1,841–1,845.
- 5. Ishida, M., et al. Macromolecules 23 (1990): 88-94.
- 6. Simmons, A. H., C. A. Michal, and L. W. Jelinski. Science 271 (1996): 84-87.
- 7. Nicholson, L. K., et al. Biopolymers 33 (1993): 847-861.
- 8. Mogoshi, J., et al. J. Polymer Sci., Polym. Phys. Ed., 15 (1977): 1,675-1,683.
- 9. Yamura, K., et al. J. Appl. Polym. Sci.: Appl. Polym. Symp. 41 (1985): 205.
- Bagga, A. Masters Thesis. Department of Textile Chemistry, North Carolina State University, 1995.
- 11. Jackson, C., and J. P. O'Brien. Macromolecules 28 (1995): 5,975–5,980.
- 12. Kaplan, D. L., et al., eds. In *Silk Polymers: Materials Science and Biotechnology*. American Chemical Society Symposium Series, 1994, vol. 544, pp. 1–358.
- 13. Jackson, C., and J. P. O'Brien. *Macromolecules* 29 (1995): 5,975–5,977.
- 14. Fossey, S. A., et al. *Biopolymers* 31 (1991): 1,529–1,591.
- 15. Takahashi, Y., M. Gehoh, and K. Yuzuriha. J. Polym. Sci., Polym. Phys. Ed., 29 (1991): 889-891.
- 16. Marsh, R. E., R. B. Corey, and L. Pauling. Biochim. Biophys. Acta 16 (1955): 1-34.
- 17. Valluzzi, R., et al. Macromolecules 29 (1996): 8,606-8,614.
- 18. Bhat, N. V., and G. S. Nadiger. J. Appl. Polym. Sci. 25 (1980): 921-932.
- 19. Warwicker, J. O. J. Mol. Biol. 2 (1960): 350-362.
- 20. Lucas, F., J. T. Shaw, and S. G. Smith. J. Textile Institute 46 (1955): T440-452.
- 21. Grubb, D. T., and L. W. Jelinksi. *Macromolecules* 30 (1997): 2,860-2,867.
- 22. Agarwal, N., D. A. Hoagland, and R. J. Farris. J. Appl. Polym. Sci. 63 (1997): 401-407.
- 23. Willcox, P. J., et al. Macromolecules 29 (1996): 5,106-5,110.
- 24. Robson, R. M. In *Fiber Chemistry Handbook of Science and Technology*, edited by M. Lewin and E. Pearce. Marcel Dekker, New York, 1970, vol. IV, pp. 647–700.
- 25. Cunniff, P. M., et al. Polym. Adv. Technol. 5 (1994): 401-410.

(34)

Silk protein

- Nakamura, S., J. Magoshi, and Y. Magoshi. In Silk Polymers: Materials Science and Biotechnology. American Chemical Society Symposium Series, 1994, vol. 544, pp. 292–310.
- Tsukada, M., G. Freddi, and N. Kasai. J. Polym. Sci.: Part B: Polym. Phys., 32 (1994): 1,175– 1,182.
- 28. Kawabata, S., et al. In Proc. 11th Internatl. Conf. Composite Matls., Australia, July 1997.
- 29. Kaplan, D. L., et al. In *Biomaterials*, edited by D. Byrom. Stockton Press, New York, 1991, pp. 3–52.
- 30. Ando, Y., et al. Reports Prog. Polym. Phys. Japan 23 (1980): 775-778.
- 31. Laible, R. C. In *Ballistic Materials and Penetration Mechanics*, edited by R. C. Laible. Elsevier, Amsterdam, 1980, pp. 73–115.
- 32. Work, R. Tex. Res. J. 47 (1985): 650-662.
- Becker, M. A., and N. Tuross. In Silk Polymers: Materials Science and Biotechnology, edited by D. L. Kaplan, et al. American Chemical Society Symposium Series, 1994, vol. 544, pp. 270–282.
- 34. Ferrari, F. A., et al. U.S. Patent 5243038 (1992).

Starch

W. BROOKE ZHAO

CLASS Carbohydrate polymers

STRUCTURE See *Amylose* and *Amylopectin* constituents in the entries by the same names in this handbook.

MAJOR APPLICATIONS Food industries, adhesives, paper and textile industries, chemicals, reinforcement in rubber, polyelectrolyte applications, and biodegradable blends and composites.

PROPERTIES OF SPECIAL INTEREST The α -glucopyranose linkage in starch is more susceptible to hydrolysis or enzyme attack than the β -glucopyranose linkage in cellulose, thus making starch more attractive for biodegradation applications than cellulose.

PREPARATIVE TECHNIQUE Commercial starch is produced mainly from maize. Limited amounts of starch are also produced from potatoes and wheat. Other plant sources include rice, tapioca, sago, arrowroot, etc.

PRODUCTION LEVEL AND COST The total production level is more than 230 billion pounds annually. The price of commercial starch is around \$0.15–0.18 per pound.

PROPERTIES	UNITS	CONDITIONS	VALUES	REFERENCE
Size of granules	μm	Source and Shape		(1)
		Corn, polygonal or round	5-25 (avg. 15)	. ,
		Maize, polygonal or round	5-25 (avg. 15)	
		Potato, oval or egg-shaped	15-100	
		Rice, polygonal	3-8	
		Tapioca, rounded, truncated at one end	20, 15–25	
		Wheat, flat, round, or elliptical	2–10, 20-35	
Gelatinization temperature	K	Source		(1)
•		Corn	335-345	. ,
		Sorghum	341.5-348	
		Wheat	325-336	
		Rice	334-350.5	
		Waxy maize	336-345	
		Tapioca	331.5-343	
		Potato	329–339	

Starch

PROPERTIES	UNITS	CONDITIONS	VALUES		REFERENCE
Enthalpy of gelatinization	kJ mol ⁻¹	Corn, A (X-ray pattern)	2.8-3.3		(2)
$(-\Delta H_{ m G})$		Wheat, A (X-ray pattern)	2.0		
,		Rice, A (X-ray pattern)	2.3-2.6		
		Dasheen, A (X-ray pattern)	2.9		
		Waxy maize, A (X-ray pattern)	3.2		
		Compacted corn, A (X-ray pattern)	1.5		
		High amylose corn, B (X-ray pattern)	4.5		
		Potato, B (X-ray pattern)	3.0		
		Arrowroot, C (X-ray pattern)	3.1		
		Tapioca, C (X-ray pattern)	2.7		
Density	$\rm gcm^{-3}$	Maize			
,	O	Pycnometric	1.637		(3)
		Buoyant	1.50		(3)
		Potato			. ,
		Pycnometric	1.617		(3)
		Perfect evacuation	1.594		(3)
		Wheat			. ,
		Pycnometric	1.650		(4)
		Corn	1.5		(5)
		Sorghum	1.5		(5)
		Rice, nonwaxy			. ,
		Xylene displacement	1.49 - 1.51		(6)
		Rice, waxy			
		Xylene displacement	1.48 - 1.50		(6)
		Perfect evacuation	1.646		(4)
Molecular weight	$g \text{mol}^{-1}$	Exclusion chromatography	$M_{\rm n}$	$M_{ m w}$	(7)
(of repeat unit)		Regular dent corn starch	2.14×10^{5}	1.45×10^{7}	
		Waxy maize	1.48×10^{5}	2.18×10^{7}	
		Amylomaize (70–75%	4.8×10^4	3.96×10^6	
		amylose)			
		Amylomaize (52% amylose)	5.4×10^4	5.75×10^6	
Polydispersity index	_	Regular dent corn starch	68		(7)
$(M_{ m w}/M_{ m n})$		Waxy maize	147		(7)
		Amylomaize (70-75% amylose)	82		(7)
		Amylomaize (52% amylose) in DMSO solution, GPC	106		(7)
		$M_{\rm w} = 7.11 \times 10^6;$ $M_{\rm n} = 1.35 \times 10^6$	5.27		(8)

PROPERTIES	UNITS	CONDITIONS	VALUES	REFERENCE
Polymorphs	-	Cereal grain starches, such as from maize, wheat, and rice Tuber, fruit, and stem starches, such as from	A B	(3)
		potato, sago, and banana Mixture of A- and B-type crystallites	С	
NMR (¹³ C chemical shift)	ppm	Solid state CP/MAS A polymorph	102.3 (0.3), 101.5(0.4), 100.3(0.4) (t) (C-1) 62.8(0.2) (C-6) 101.4(0.4), (C-1), 100.4(0.4) (d) (C-1)	(9)
		B polymorph	62.1(0.2) (C-6)	
Glass transition temperature $T_{\rm g}$	K	Corn starch	496	(10)
Heat capacity increment at $T_{\rm g}$ ($\Delta C_{\rm p}$)	$kJ K^{-1} \\ mol^{-1}$	Corn starch	0.47	(10)
Melting temperature $T_{\rm m}$	K	A + B polymorphs Maize, A Wheat, A Waxy maize, A Potato, B	530 460 454 470 441	(10) (3) (3) (3) (3)
Enthalpy of melting ΔH_{m}	kJ mol ⁻¹	Maize, A Wheat, A Waxy maize, A Potato, B	57.7 52.7 61.1 59.8	(3)
Heat of hydration	Jg^{-1}	Potato Wheat Maize Rice	116.7 105.4 103.3 101.7	(3)
Activation energy for hydration	kJg^{-1}	Wheat starch Dielectric absorption	42.3	(3)
Flory-Huggins interaction parameter χ	_	_	0.5	(10)
Birefringence	-	In water and alcohol In aldehydes In hydrophobic liquids	0.0131-0.0139 0.0135-0.0143 0.0134-0.0135	(3)
Refractive indexes	_	Potato starch, 25° C, $\lambda = 589 \mathrm{nm}$	1.523, 1.535	(3)

Starch

PROPERTIES	UNITS	CONDITIONS	VALUES	REFERENCE
Surface area	$m^2 g^{-1}$	Dasheen		(3)
	· ·	N ₂ adsorption	2.62	. ,
		Photomicrographic	2.64	
		Corn		
		N ₂ adsorption	0.70	
		Photomicrographic	0.48	
		Tapioca		
		N ₂ adsorption	0.28	
		Photomicrographic	0.25	
		Potato		
		N ₂ adsorption	0.11	
		Photomicrographic	0.15	
Surface tension	$dynes cm^{-1}$	Corn starch	39	(11)
Tensile strength	MPa ($\times 10^{-3}$)	Waxy maize	34.9	(12)
Ŭ	, ,	Tapioca	44.0	` ,
		Potato	44.2	
		Wheat	46.3	
		Corn (A)	46.1	
		Corn (B)	46.7	
		High-amylose corn	50.3	
		15-F acid-modified	44.7	
		34-F acid modified	44.5	
		50-F acid modified	49.4	
		71-F acid modified	45.7	
		89-F acid modified	45.8	
		Hypochlorite-oxidized	48.7	
		Hypocholorite-oxidized	45.0	
		0.05-D.S. hydroxyethyl corn	47.4	
		0.05-D.S. hydroxyethyl,	41.8	
		acid-modified corn		
Elongation at break	%	Waxy maize	1.7	(12)
Ü		Tapioca	3.4	, ,
		Potato	3.1	
		Wheat	2.9	
		Corn (A)	2.5	
		Corn (B)	3.2	
		High-amylose corn	2.5	
		15-F acid-modified	2.7	
		34-F acid modified	2.6	
		50-F acid modified	2.7	
		71-F acid modified	2.9	
		89-F acid modified	2.2	
		Hypochlorite-oxidized	3.0	
		Hypocholorite-oxidized	2.3	
		0.05-D.S. hydroxyethyl corn	2.5	

				Starch
PROPERTIES	UNITS	CONDITIONS	VALUES	REFERENCE

PROPERTIES	UNITS	CONDITIONS	VALUES	REFERENCE
Elongation at break	%	0.05-D.S. hydroxyethyl, acid-modified corn	2.6	
Biodegradation	_	Films obtained after extrusion of native potato starch and glycerol Enzymatic test Head-space test	100% weight loss after 24 h 100% CO ₂ evolution after 50 days	(13)
		Compost test	100% weight loss after 49 days	

- 1. Wurzburg, O. B., ed. *Modified Starches: Property and Uses*. CRC Press, Boca Raton, Fla. 1986, p. 4.
- Zobel, H. F. In Starch: Chemistry and Technology, 2d ed, edited by R. L. Whistler, J. N. Bemiller, and E. F. Paschall. Academic Press, Orlando, Fla. 1984.
- 3. French, D. In *Starch: Chemistry and Technology*, 2d ed, edited by R. L. Whistler, J. N. Bemiller, and E. F. Paschall. Academic Press, Orlando, Fla. 1984.
- 4. Takei, B. Mem. Coll. Sci. Kyoto Imp. Univ. A18 (1935): 169.
- 5. Watson, S. A. In *Starch: Chemistry and Technology*, 2d ed, edited by R. L. Whistler, J. N. Bemiller, and E. F. Paschall. Academic Press, Orlando, Fla., 1984.
- 6. Juliano, B. O. In *Starch: Chemistry and Technology*, 2d ed, edited by R. L. Whistler, J. N. Bemiller, and E. F. Paschall. Academic Press, Orlando, Fla., 1984.
- 7. Young, A. H. In *Starch: Chemistry and Technology*, 2d ed, edited by R. L. Whistler, J. N. Bemiller, and E. F. Paschall. Academic Press, Orlando, Fla., 1984 (and references therein).
- 8. Salemis, P., and M. Rinaudo. Polym. Bull. 11 (1984): 397.
- Veregin, R. P., C. A. Fyfe, R. H. Marchessault, and M. G. Taylor. Macromolecules 19 (1986): 1,030.
- 10. Whittman, M. A., T. R. Neol, and S. G. Ring. In *Food Polymers, Gels and Colloids (Spec. Publ. No. 82*), edited by E. Dickson. The Royal Chemical Society, Cambridge, U.K., 1991.
- 11. Ray, B. R., J. R. Anderson, and J. J. Scholz. J. Phys. Chem. 62 (1958): 1,220.
- 12. Lloyd, N., and L. C. Kirst. Cereal Chem. 40 (1963): 155.
- 13. Vikman, M., M. Itavaara, and K. Poutanen. In *Degradable Polymers, Recycling and Plastics Waste Management*, edited by A. Albertsson and S. J. Huang. Marcel Dekker, New York, 1995.

Styrene-acrylonitrile

SHUHONG WANG

ACRONYM, TRADE NAMES SAN, Lustran® (Monsanto), Tyril® (Dow)

CLASS Chemical copolymers

STRUCTURE
$$-[CH-CH_2]_m - [CH-CH_2]_n - [CH$$

TYPICAL COMONOMERS Styrene, acrylonitrile

POLYMERIZATION Emulsion, suspension, and continuous processes.

MAJOR APPLICATIONS Incorporated in acrylonitrile-butadiene-styrene (ABS) (≥80%). Appliances, housewares, packing materials, automotive features, industrial applications, and custom molding products.

PROPERTIES OF SPECIAL INTEREST Rigidity, resistance to heat and chemicals (acids, alkalies, fat, grease, oil, gasoline, alcohol, and some solvents), and high optical clarity.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	_	1.07-1.09	(1)
Glass transition temperature $T_{\rm g}$	K	20 mol% acrylonitrile (AN) 40 mol% AN 50 mol% AN 75 mol% AN	~376 ~381 ~383 ~382	(2)
Rockwell Hardness	-	Lustran-35, ASTM D785 Tyril-880, ASTM D785	83 80	(3) (4)
Tensile strength	MPa	5.5% AN 9.8% AN 14.0% AN 21.0% AN 27.0% AN Lustran-35, ASTM D638 Tyril-880, ASTM D638	42.27 54.61 57.37 63.68 72.47 79.4 82.1	(2) (2) (2) (2) (2) (2) (3) (4)
Elongation	%	5.5% AN 9.8% AN 14.0% AN 21.0% AN 27.0% AN Lustran-35, ASTM D638 Tyril-880, ASTM D638	1.6 2.1 2.2 2.5 3.2 3.0 3.0	(2) (2) (2) (2) (2) (2) (3) (4)

Stv	rene-acr	vlon	itrile	
JLV	riene-aci		יו נו ווכ	a

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Impact strength	$\mathrm{J}~\mathrm{m}^{-1}$	5.5% AN, notch	26.6	(2)
		9.8% AN, notch	26.0	
		14.0% AN, notch	27.1	
		21.0% AN, notch	27.1	
		27.0% AN, notch	27.1	
Izod impact strength	$\mathrm{J} \; \mathrm{m}^{-1}$	Lustran-35, ASTM D256	24.0	(3)
		Tyril-880, ASTM D256	26.7	(4)
Heat distortion	K	5.5% AN	345	(2)
		9.8% AN	355	
		14.0% AN	357	
		21.0% AN	361	
		27.0% AN	361	
Deflection temperature	K	Lustran-35, ASTM D648	377.6	(3)
_		Tyril-880, ASTM D648	376.5	(4)
Vicat softening point	K	Lustran-35, ASTM D1525	384	(3)
		Tyril-880, ASTM D1525	384	(4)
Melt-flow rate	g (10 min) ⁻¹	Lustran-35, ASTM D1238	7.0	(3)
		Tyril-880, ASTM D1238	3.0	(4)
Coefficient of linear thermal	$cm (cm K)^{-1}$	Lustran-35, ASTM D696	6.8×10^{-5}	(3)
expansion		Tyril-880, ASTM D696	6.6×10^{-5}	(4)
Flammability	$mm\ s^{-1}$	Tyril-880, ASTM D635	0.333	(4)
Specific heat	${\rm J} \; {\rm g}^{-1} {\rm K}^{-1}$	Tyril-880, Dow Test	1.30	(4)
Dielectric constant	_	Tyril-880, ASTM D150	3.18	(4)
Dissipation factor	kHz	Tyril-880, ASTM D150	0.007	(4)
Index of refraction n_D	_	Lustran-35, ASTM D542	1.57	(3)
		Tyril-880, ASTM D542	1.57	(4)
Water absorption	%	Lustran-35, ASTM D570(24 h)	0.25	(3)
-		Tyril-880, ASTM D570 (24 h)	0.35	(4)
Solution viscosity	mPa s	5.5% AN, 10% in MEK	11.1	(2)
-		9.8% AN, 10% in MEK	10.7	
		14.0% AN, 10% in MEK	13.0	
		21.0% AN, 10% in MEK	16.5	
		27.0% AN, 10% in MEK	25.7	

Styrene-acrylonitrile

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Specific gravity	_	Lustran-35, ASTM D792 Tyril-880, ASTM D792	1.07 1.08	(3) (4)
Mold shrinkage	cm cm ⁻¹	Lustran-35 Tyril-880	0.003-0.004 0.003-0.007	(3) (4)
Thermal conductivity	$W\ m^{-1}\ K^{-1}$	33% glass fiber	0.28	(5)
Theta temperature θ	K	51% AN, ethyl acetate	316.2	(6)

- 1. Mark, J. E., ed. *Physical Properties of Polymers Handbook*. American Institute of Physics Press, Woodbury, N.Y., 1996.
- 2. Johnston, N. W. Am. Chem. Soc. Div. Polym. Chem. Prepr. 14 (1973): 46.
- 3. Monsanto product data sheets.
- 4. Dow product data sheets.
- Harper, C. A., ed. Handbook of Plastics, Elastomers, and Composites. McGraw-Hill, New York, 192.
- 6. Mangalam, P. V., and V. Kalpagam. J. Polym. Sci., Polym. Phys. Ed., 20 (1982): 773.

Styrene-butadiene elastomers

SHUHONG WANG

ACRONYMS, TRADE NAMES SBR, SB; Ameripol®, Synpol® (Ameripol Synpol); Copo®, Carbomix® (DSM Copolymer); Darex® (W.R. Grace); Duradene®, Srereon® (Firestone); Gentro® (Diversitech General); Humex® (Hules Mexicanos, S.A.); JSR (Japan Synthetic Rubber Co.); NIPOL (Nippon Zeon Co.); Plioflex®, Pliolite® (Goodyear Tire & Rubber); Polysar SS®, Polysar S® (Bayer AG); Solprene® (Negromex, S.A.); Tylac® (Reichhold Chemicals)

CLASS Chemical copolymers

STRUCTURE
$$-[CH_2-CH=CH-CH_2]_m-[CH_2-CH]_n-[CH_2-CH]_m-[CH_2-CH]_m$$

TYPICAL COMONOMERS Styrene and butadiene.

MAJOR APPLICATIONS Tires (\sim 75%), shoes and other footware, mechanical goods, sponge and foamed products, waterproofed materials, hose, belting, adhesives, etc.

PROPERTIES OF SPECIAL INTEREST Standard emulsion SBR is a general purpose rubber. Most widely used synthetic rubber in the world. Better tire tread-wear and aging properties than natural rubber. Good abrasion resistance and crack initiation resistance. Poor in tack and heat build-up. Physical properties are poor without reinforcing fillers. Solution SBR is a speciality rubber and more expensive than emulsion SBR. Solution SBR with high vinyl and styrene levels is used in high performance tire treads to improve wet traction. Also used as impact modifier in plastics and as thermoplastic elastomers.

EMULSION POLYMERIZATION Used for standard SBR. Monomer is emulsified in water with emulsifying agents. Polymerization is initiated by either decomposition of a peroxide or a peroxydisulfate. Hot SBR is initiated by free radicals generated by thermal decomposition of initiators at 50° C or higher. Cold SBR is initiated by oxidation-reduction reactions (redox) at temperatures as low as -40° C. Styrene content normally is 23%. Copolymer is randomly distributed. Structure of butadiene contents is about 18% *cis*-1,4, 65% *trans*-1,4, and 15-20% vinyl.

Typical polymerization conditions

Туре	Hot	Cold
Monomer ratio (S:B)	71:9	71:29
Water: monomer	2:1	2:1
Emulsifier	Fatty acid	Rosin acid
Coagulation	Acid/amine	Acid/amine
Temperature (°C)	50	5
Conversion (%)	72	60-65
Styrene content	24	24
Mooney at 100°C	48	46-58

Styrene-butadiene elastomers

Commercial grades (IISRP* numbering system)

1,000	Hot SBR
1,500	Cold SBR
1,600	Cold SBR black masterbatch with 14 or less phr oil
1,700	Cold SBR oil-masterbatch
1,800	Cold oil-black masterbatch with more than 14 phr oil
1,900	Miscellaneous resin rubber masterbatches
2,000	Hot latexes
2,100	Cold latexes

^{*} International Institute of Synthetic Rubber Products.

SOLUTION POLYMERIZATION Solution SBR typically made in hydrocarbon solution with alkyl lithium-based initiator. In this stereo-specific catalyst system, in principle, every polymer molecule remains live until a deactivator or some other agent capable of reacting with the anion intervenes. Able to control molecular weight, molecular weight distribution, and branching. Able to make random and block copolymers with designed chain sequence. Able to make copolymer with controlled styrene content. Able to control the butadiene structure of vinyl/*cis/trans*. Higher purity due to no addition of soap.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	Emulsion SBR, 23–25% styrene Solution SBR, 8–77% vinyl, 13–27% styrene	0.93 0.92-0.95	(1) (2)
Mark-Houwink parameters: <i>K</i> and <i>a</i>	$K = \operatorname{ml} g^{-1}$ $a = \operatorname{None}$	Emulsion hot SBR measured in toluene at 30°C	$K = 5.4 \times 10^{-4}$ $a = 0.66$	(3)
Refractive index	_	Solution SBR, block copolymer, 30% styrene	1.53	(4)
Service temperature (maximum)	K	Emulsion SBR , 23% styrene Solution SBR, block copolymer, S:B = 1:100	343 338	(5)
Solubility parameter	$(MPa)^{1/2}$	Emulsion SBR, 15% styrene	17.39	(1)
Thermal conductivity	$W\ m^{-1}\ K^{-1}$	33% carbon black loaded	0.300	(1)
Theta temperature θ	K	Emulsion SBR, 23.9% styrene in methyl <i>n</i> -propyl ketone	294	(1)
		Emulsion SBR, 23.9% styrene in methyl isobutyl ketone	319	
		Emulsion SBR, 25% styrene in <i>n</i> -octane	294	

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Glass transition	K	Emulsion SBR, 23% styrene	221	(3)
temperature $T_{\rm g}$		Emulsion SBR, 36% styrene	235	(3)
- 0		Emulsion SBR 53% styrene	259	(3)
		Emulsion SBR, 75% styrene	286	(3)
		Solution SBR, block copolymer, S:B = 1:100	203, 363	(3)
		Solution SBR, 8–77% vinyl, 13–27% styrene	238–266	(2)
		Emulsion SBR at 50°C	$\frac{[(-85+135S)/(1-0.5S)]+}{273^*}$	(6)
		Emulsion SBR at 5°C	$\frac{[(-78+128S)/(1-0.5S)]+}{273^*}$	(6)
		Solution SBR, assume $T_{\rm g}$ of styrene as $100^{\circ}{\rm C}$, $T_{\rm g}$ of polybutadiene as $-100^{\circ}{\rm C}$, and $T_{\rm g}$ of all-vinyl polybutadiene as $0^{\circ}{\rm C}$	$ \begin{bmatrix} 1/(0.00578 - 0.0031S - \\ 0.00212V + 0.00212VS) \end{bmatrix} + \\ 273^* $	(6)
Tensile strength	MPa	Unfilled vulcanizate, emulsion hot SBR, 23–25% styrene	1.4-2.8	(1)
		1006 in ASTM 3185 1A (see also tables below)	21.4	(7)
		1500 in ASTM 3185 1A (see also tables below)	23.5	(7)
		1605 in ASTM 3186 (see also tables below)	19.3	(7)
		1721 in ASTM 3185 2B (see also tables below)	19.0	(7)
		1805 in ASTM 3186 (see also tables below)	18.6	(7)
Elongation	%	Unfilled vulcanizate, emulsion hot SBR, 23–25% styrene	450-600	(1)
		1006 in ASTM 3185 1A (see also tables below)	325	(7)
		1500 in ASTM 3185 1A (see also tables below)	450	(7)
		1605 in ASTM 3186 (see also tables below)	350	(7)
		1721 in ASTM 3185 2B (see also tables below)	525	(7)
		1805 in ASTM 3186 (see also tables below)	350	(7)

Styrene-butadiene elastomers

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Modulus	MPa	Unfilled vulcanite, emulsion hot SBR, 23–25% styrene	1-2	(1)
		1006 in ASTM 3185 1A (see also tables below)	13.8-17.9	(7)
		1500 in ASTM 3185 1A (see also tables below)	10.4-14.5	(7)
		1605 in ASTM 3186 (see also tables below)	13.5-17.6	(7)
		1721 in ASTM 3185 2B (see also tables below)	6.2 - 10.4	(7)
		1805 in ASTM 3186 (see also tables below)	9.0-13.1	(7)

^{*}S = wt. fraction of styrene in the polymer. $V = (\% \text{ vinyl in total polymer} \times 100)/(\% \text{ butadiene in polymer})$.

Conditions

SBR Type	Styrene	Mooney	Carbon black	phr	Oil	phr
1006A	23.5	49	_	_	_	_
1500	23.5	52	_	_	_	_
1605	23.5	62	N550	50	_	_
1721	23.5	55	_	_	Aromatic	37.5
1805	23.5	58	N330	75	Naphthenic	37.5

SBR test compounds

ASTM	Polymer	Furnace black	Stearic acid	Zinc oxide	Sulfur	TBBS
3185 1A	100 phr	50	1	3	1.75	1
3185 2B	137.5 phr	68.75	1	3	1.75	1.38
3186	162 phr	_	1.5	3	1.75	1.25

- 1. Mark, J. E., ed. *Physical Properties of Polymers Handbook*. American Institute of Physics Press, Woodbury, N.Y., 1996.
- 2. Manual for the Rubber Industry, 2d ed. Bayer AG, Akron, Ohio, 1993.
- 3. Hibbs, J. In *The Vanderbilt Rubber Handbook*, 3d ed. R. T. Vanderbilt Co., Norwalk, Conn., 1990.
- 4. Product Bulletin #301-665-687. Dow Chemical Company, Midland, Mich.
- 5. Ohm, R. F. In *The Vanderbilt Rubber Handbook*. 3d ed. R. T. Vanderbilt Co., Norwalk, Conn., 1990.
- Henderson, J. N. In Rubber Technology, 3d ed., edited by M. Morton. Van Nostrand Reinhold, New York, 1987.
- 7. Products data sheets. Ameripol Synpol Corporation, Akron, Ohio, 1996.

Styrene-methylmethacrylate copolymer

SHUHONG WANG

ACRONYM SMMA

CLASS Chemical copolymers

STRUCTURE
$$CH_3\\ -[CH_2-CH]_m-[CH_2-C]_n-\\ |\\ C_6H_5 COOCH_3$$

TYPICAL COMONOMERS Styrene and methylmethacrylate.

MAJOR APPLICATIONS Blends with other polymers to produce a variety of products. Blends normally have both transparency and impact resistance and perform well in appliance and food-packing applications.

PROPERTIES OF SPECIAL INTEREST Properties fall between those of the individual homopolymers. Better weatherability and solvent resistance compared to polystyrene homopolymer.

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Tensile strength	MPa	ASTM D638 P-205 UVA extrusion grade NAS injection-molding grade	68.2 57.2	(1)
Tensile elongation	%	ASTM D638 P-205 UVA extrusion grade NAS injection-molding grade	5.0 2.0	(1)
Tensile modulus	MPa	ASTM D638 P-205 UVA extrusion grade NAS injection-molding grade	3,300 3,500	(1)
Flexural strength	MPa	ASTM D790 P-205 UVA extrusion grade NAS injection-molding grade	116 103	(1)
Flexural modulus	MPa	ASTM D790 P-205 UVA extrusion grade NAS injection-molding grade	3,300 3,500	(1)
Izod impact strength	J m ⁻¹	ASTM D256 P-205 UVA extrusion grade NAS injection-molding grade	20 20	(1)

Styrene-methylmethacrylate copolymer

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Specific gravity	_	ASTM D792 P-205 UVA extrusion grade NAS injection-molding grade	1.13 1.09	(1)
Rockwell hardness	-	ASTM D785 P-205 UVA extrusion grade NAS injection-molding grade	80 64	(1)
Deflection temperature	K	ASTM D648 P-205 UVA extrusion grade NAS injection-molding grade	372 371	(1)
Water absorption	%	ASTM D570, 24 h P-205 UVA extrusion grade NAS injection-molding grade	0.17 0.15	(1)
Light transmission	%	P-205 UVA extrusion grade NAS injection-molding grade	90 90	(1)
Haze	%	P-205 UVA extrusion grade	2	(1)
Index of refraction n_D	-	ASTM D542 P-205 UVA extrusion grade NAS injection-molding grade	1.53 1.56	(1)
Melt flow rate	g (10 min) ⁻¹	ASTM D1238 P-205 UVA extrusion grade, 190°C/10 kg NAS injection-molding grade, 190°C/10 kg P-205 UVA extrusion grade, 230°C/3.8 kg P-205 UVA extrusion grade, 230°C/1.2 kg	0.2 4.3 0.7 0.13	(1)
Theta temperature θ	K	29.3% styrene, $M_{\rm n}=4.7$ –59.2 2-Ethoxy ethanol Cyclohexanol 56.2% styrene, $M_{\rm n}=3.4$ –50 2-Ethoxy ethanol Cyclohexanol 70.2% styrene, $M_{\rm n}=4.0$ –43 2-Ethoxy ethanol Cyclohexanol 76.3% styrene Benzene/ n -hexane = 44/56 Benzene/isopropanol = 57/43 n-Hexane/3-methyl butanone = 40/60 58.1% styrene Benzene/ n -hexane = 51/49 Benzene/isopropanol = 51/49 n-Hexane/3-methyl butanone = 34/66	313.2 341.2 331.6 334.5 346.8 336.2 293.2 293.2 293.2 293.2 293.2 293.2	(2)

Styrene-methylmethacrylate copolymer

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Theta temperature θ	K	42.3% styrene		
-		Benzene/ n -hexane = $59/41$	293.2	
		Benzene/isopropanol = 48/52	293.2	
		n-Hexane/3-methyl butanone = 29/71	293.2	
		26.1% styrene		
		Benzene/ n -hexane = $62/38$	293.2	
		Benzene/isopropanol = 41/59	293.2	
		n-Hexane/3-methyl butanone = $24/76$	293.2	

- 1. Traugott, T. D. In *Encyclopedia of Polymer Science and Engineering*, edited by H. F. Mark, et al. Wiley-Interscience, New York, 1989.
- 2. Sundararajan, P. R. In *Physical Properties of Polymers Handbook*, edited by J. E. Mark. American Institute of Physics Press, New York, 1996.

Sulfo-ethylene-propylene-diene monomer ionomers

RUSKIN LONGWORTH

ALTERNATIVE NAME, TRADE NAME Sulfo-EPDM ionomers, Vistalon[®] derivative (Exxon Chemical Co.)

CLASS Chemical copolymers; EPDM rubber derivatives

GENERAL INFORMATION These polymers consist of sulfonated derivatives of ethylene-propylene-diene terpolymers. The ionic associations induced by the sulfonate groups are significantly stronger than is the case with the carboxylated products. For a detailed comparison, see reference (2). Even after several years of active development, sustainable commercial uses have not emerged. Thus, these products are no longer being produced even though they are of considerable technical interest.

MAJOR APPLICATIONS Drilling mud additives.

Preparative techniques⁽¹⁾

Sulfonation of rubber	Acetyl sulfate added to cold solution of rubber in hydrocarbon solvent
Neutralization of sulfo-EPDM	Addition of excess solution of metal acetate in water/methanol solvent
Comonomer	Ethylidene norbornene

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-	44	(1)
Tacticity	_	_	Slightly nonrandom	(1)
Molecular weight (of ionomer)	$g \text{mol}^{-1}$	Mooney viscosity, ML, H8, 373 K	20	(1)

Sulfo-ethylene-propylene-diene monomer ionomers

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Solvents	_	Sulfo-EPDM, 273 K	Toluene/methanol (95/5)		(1)
		EPDM, 273 K		Hexane	
Crystalline state properties	EPDM and	sulfo-derivatives are amorphous			
Tensile strength	MPa (×10 ⁻³)	(a) Effect of neutralizing ion (base polymer: sulfo-EPDM, 2.7% sulfonic acid; 100% neutralized) Ion: Mg Co Pb Zn	2.21 8.13 11.03 10.20		(1)
		(b) Effect of plasticizer (base polymer: sulfo-EPDM, 3.8% zinc sulfonate)	298 K	343 K	(3)
		Zinc stearate (%): 0 16 27 36	6.76 21.0 25.2 22.4	1.72 4.48 6.41 7.93	
Elongation	%	Effect of neutralizing ion (base polymer: sulfo-EPDM, 2.7% sulfonic acid; 100% neutralized) Ion: Mg Co Pb Zn	70 290 480 400		(1)
Melt viscosity	Pas (×10 ⁻³)	(a) Effect of cation on melt viscosity (base polymer: sulfo-EPDM, 2.7% sulfonic acid) Ion: Ca Li Na Pb Zn	5.32 5.15 5.06 3.28 1.20		(1)
	gs^{-1} (×10 ⁻³)	(b) Effect of stearic acid on melt viscosity (base polymer: sulfo- EPDM, 3.8% zinc sulfonate)	Viscosity as melt index at 463 K, 1.72 kPa		(3)
		Stearic acid (%): 0 16 27 36	<0.1 0.50 1.60 5.00		

Sulfo-ethylene-propylene-diene monomer ionomers

PROPERTY	UNITS	CONDITIONS		VALUE	REFERENCE
Melt viscosity	$g s^{-1}$ (×10 ⁻³)	(c) Effect of zinc stears viscosity (base polyn EPDM, 3.8% zinc su	mer: sulfo-	Viscosity as melt index at 463 K, 1.72 kPa	(3)
		Zinc stearate (%):	0 16 27 36	<0.1 0.50 2.3 6.3	
Water absorption (gain)	%	(a) Base polymer: sulfor zinc sulfonate; at 323 24 h 72 h 144 h 310 h		5 7 8 11	(2)
		(b) Plasticized compos EPDM, 3.8% zinc su plasticized with 36% 323 K for: 24 h 72 h 144 h	lfonate	3.3 4.1 4.9	(3)
Important patents	Res Cante Res	search and Engineering Cer, N. H., and D. J. Buckl search and Engineering Cer, N. H. U.S. Patent 3,642	Co. ey, Sr. <i>U.S. Pater</i> Co.	5.4 3,836,511 (1972), assigned at 3,847,854 (1974), assigned ned to Esso Research and E	d to Esso
Cost and availabil	ity –	_		Unavailable	_

REFERENCES

- 1. Makowski, H. S., et al. In *Advances in Chemistry, No. 187. Ions in Polymers*, edited by A. Eisenberg. American Chemical Society, Washington, D.C., 1980.
- 2. Lundberg, R. D., and H. S. Makowski. In *Advances in Chemistry*, *No. 187*. *Ions in Polymers*, edited by A. Eisenberg. American Chemical Society, Washington, D.C., 1980.
- 3. Makowski, H. S., and R. D. Lundberg. In *Advances in Chemistry, No. 187. Ions in Polymers*, edited by A. Eisenberg. American Chemical Society, Washington, D.C., 1980.

The author gratefully acknowledges Dr. R. D. Lundberg for his assistance in preparing this entry.

JUNZO MASAMOTO AND TAKASHI IWAMOTO

ACRONYM, TRADE NAME SPS, XAREC (Idemitsu Petro Chemicals)

CLASS Vinyl polymers

STRUCTURE $[-CH_2CH(C_6H_5)]$

MAJOR APPLICATIONS Thermoplastics as an engineering plastic, usually reinforced with glass fiber, and used for automobile parts, electrical and electronic parts. SPS neat resin film is available for sheet and tape.

PROPERTIES OF SPECIAL INTEREST Crystalline engineering plastics starting from a commodity monomeric material of styrene. Quite different properties compared to conventional amorphous polystyrene. High melting point (463 K) and good solvent resistance. Excellent electrical properties with low dielectric loss. High heat deflection temperature, low water absorption and hydrolytic resistance. Excellent dimensional precision during injection molding because of equal density of amorphous and crystalline parts.

PREPARATIVE TECHNIQUE Metallocene polymerization: Combination of $Cp^*Ti(OiPr)_3$ [pentamethyl cyclopentadienyl titanium triisopropoxide] and MAO [methyl almoxane], or combination of $Cp^*Ti(Me)_3$ [pentamethyl cyclopentadienyl titanium trimethyl] and $B(C_6F_5)_3$ [tris-(pentafluorophenyl) borane] usually polymerized around 70–90°C, under bulk polymerization conditions. $^{(1-3)}$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Molecular weight (of repeat unit)	g mol ⁻¹	-	104	_
Tacticity (stereo regularity)	%, pentad, syndiotacticity	Metallocene polymerization	>98	(4)
Typical molecular weight range of polymer $M_{ m w}$	g mol ⁻¹	Metallocene polymerization: combination of $Cp^*Ti(OMe)_3$ [pentamethyl cyclopentadienyl titanium trimethoxide] and MAO [methyl almoxane], or combination of $Cp^*Ti(Me)_3$ [pentamethyl cyclopentadienyl titanium trimethyl] and $B(C_6F_5)_3$ [tris-(pentafluorophenyl)borane] usually polymerized around 70–90°C, under bulk polymerization conditions	2-5 (×10 ⁵)	(1-3)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE		
Typical polydipersity index (M_w/M_n)	_	_	2	(1-3)		
IR (characteristic absorption frequencies)	cm^{-1}	Planar zigzag conformation (T4) Helex conformation (TTGG)	1,224 935	(5)		
NMR	JNM The 27	The 67.8 MHz ¹³ C-NMR: 1,2,4-trichrolobenzene at 130°C with JNMGX-270 spectrometer The 270 MHz ¹ H-NMR: 1,2,4-trichrolobenzene at 130°C with JNMGX-270 spectrometer				
Thermal expansion coefficients	K^{-1}	Neat SPS 30% glass fiber filled SPS	$9.2 \times 10^{-5} \\ 2.5 \times 10^{-5}$	(6)		
Solvent	_	130°C	Trichlorobenzene	(4)		
Nonsolvents	_	At its boiling point	Methanol, methyl ethyl ketone	(4)		

Unit cell dimensions

	Lattice	Polymer chain	Cell dimension (Å)		Cell angles		Reference		
	per unit cell	а	b	c (chain axis)	α	β	γ		
l	Hexagonal	18	26.25	_	5.045	_	_	_	(7)
	Orthorhombic	4	8.81	28.82	5.06	_	_	_	(8)
	Monoclinic	2	_	_	_	_	_	_	(9)
ì	Monoclinic	2	17.58	13.26	7.71	_	_	121.2	(9)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Space group	_	_	α P62C β Pbnm δ P2 ₁ /a	(7) (8) (9)
Chain conformation	_	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	(T_4) (T_4) $(TTGG)_2$ $(TTGG)_2$	(7) (8) (9) (9)
Degree of crysatallinity	%	Quenched from 320°C in ice water Injection molded sample at the mold temperature of 140°C	~0 50	(10)
Heat of fusion	$kJ mol^{-1}$ $mJ mg^{-1}$	_	5.8 53	(11) (10)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Density	g cm ⁻³	Neat SPS α crystal β crystal δ crystal (molecular compound with toluene)	1.05 1.033 1.08 1.11	(12) (7) (8) (9)
Polymorphs	_	_	α crystal (T ₄) β crystal (T ₄) γ crystal (TTGG) ₂ δ crystal (TTGG) ₂	(7) (8) (9) (9)
Glass transition temperature	K	-	373	(1)
Melting point	K	DSC, 20°C min ⁻¹	543	(2)
Equilibrium melting point	K	Crystallization temperature vs. polymer melting point Lammela thickness vs. polymer melting point	548 558 583	(13) (14) (15)
Mesomeric transition temperature	K	From helix $(TTGG)_2$ to planar zigzag (T_4)	463	(16)
Heat capacity	$kJK^{-1}mol^{-1}$	_	0.140	(17)
Deflection temperature	K	Neat SPS, 18.3 kg cm ⁻² 30% glass fiber filled SPS, 18.3 kg cm ⁻²	372 522	(12)
Polymer with which compatible	-	SPS, $M_{\rm w} = 680,000$	Poly(2,6-dimethyl-1,4- phenyleneoxide)	(18)
Tensile modulus	MPa	Neat SPS 30% glass fiber filled SPS	3,440 10,000	(12)
Tensile strength	MPa	Neat SPS 30% glass fiber filled SPS	41 121	(12)
Yield stress	MPa	Neat SPS 30% glass fiber filled SPS	41 121	(12)
Yield strain	%	Neat SPS 30% glass fiber filled SPS	1.0 1.5	(12)
Flexural modulus	MPa	Neat SP S30% glass fiber filled SPS	39 97	(12)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Flexural strength	MPa	Neat SP S30% glass fiber filled SPS	71 166	(12)
Izod impact	$kJ m^{-1}$	Neat SPS 30% glass fiber filled SPS	11 96	(12) (19)
Dielectric constant	_	Neat SPS [1 MHz] 30% glass fiber filled SPS	2.6 2.9	(20)
Dielectric loss	_	Neat SPS 30% glass fiber filled SPS	<0.001 <0.001	(20)
Breakdown strength	$kV mm^{-1}$	Neat SPS 30% glass fiber filled SPS	66 48	(21)
Resitivity	ohm cm	Neat SPS, ASTM D 257 30% glass fiber filled SPS, ASTM D 257	$>10^{16}$ $>10^{16}$	(6)
Maximum use temperature (long term)	K	_	400	(6)
Water absorption	%	Neat SPS, 24 h equilibrium, ASTM D 570 30% glass fiber filled SPS, 24 h equilibrium ASTM D 570	0.04 0.05	(6)
Important patent	U.S. Patent U.S. Patent			
Availability	$kg yr^{-1}$	_	5×10^6	_
Suppliers	Idemitsu Pe $(5 \times 10^6 \mathrm{k})$	etro Chemicals, 3-1-1, Marunouchi, Chiyoda-k $\operatorname{g}\operatorname{yr}^{-1})$	au, Tokyo 1	100, Japan

REFERENCES

- 1. Ishihara, N., M. Kuramoto, and M. Uoi. Macromolecules 21 (1988): 3,356.
- 2. Campbell, R. E., T. H. Newman, and M. T. Malanga. Macromol. Sym. 97 (1995): 151.
- 3. Pellecchia, C., P. Longo, A. Proto, and A. Zambelli. *Makromol. Chem. Rapid Commun.* 13 (1992): 265.
- 4. Ishihara, N., T. Seimiya, M. Kuramoto, and M. Uoi. Macromolecules 19 (1986): 2,465.
- 5. Kobayashi, M., T. Nakaoki, and N. Ishihara. Macromolecules 22 (1989): 4,377.
- 6. Uoi, M. Seikei Kako (Polymer Processing, Jpn) 8 (1996): 167.
- 7. Greis, O., Y. Xu, T. Asano, and J. Petermann. Polymer 30 (1989): 590.
- 8. Chatani, Y., Y. Shimane, T. Ijitsu, and T. Yukinari. Polymer 34 (1993): 1,625.
- 9. Chatani, Y., et al. Polymer 34 (1993): 1,620.
- 10. Krzystowczyk, D. H., X. Niu, R. D. Wesson, and J. R. Collier. Polym. Bull. 33 (1994): 109.
- 11. de Candia, F., A. R. Filho, and V. Vittoria. Colloid Polym. Sci. 269 (1991): 650.
- 12. Newmann, T. H., R. E. Campbell, and M. T. Malanga. In *Metcon* 93, 26-28 May 1993, Houston, Tex.
- 13. Cimmino, S., E. D. Pace, E. Martuscelli, and C. Silvestre. Polymer 32 (1991): 1,080.

- 14. Arnaunts, J., and H. Berghmans. Polym. Commun. 31 (1990): 343.
- 15. Abe, T. Polym. Prep. Jpn. 42 (1993): 4,309.
- 16. Doherty, D. C., and A. J. Hopfinger. Comput. Polym. Sci. 1 (1991): 107.
- 17. Liu, T. M., et al. J. Appl. Polym. Sci. 62 (1996): 1,807.
- 18. Guerra, G., C. R. Rosa, and V. Petracone. Networks Blends 2 (1992): 1,145.
- 19. Bank, D., and R. Brentin. SPS Crystalline Polymer: A New Material for Automotive Interconnect Systems. SAE 970305, 1997, p. 71.
- 20. Ishihara, N., and M. Kuramoto. Stud. Surf. Sci. Catal. 89 (1994): 339.
- 21. Yamato, H. In Styrenics '93, Session 1, 6-8 December 1993.

RAHUL D. PATIL

ACRONYMS, ALTERNATIVE NAMES, TRADE NAMES Poly(vinylidene fluoride-cohexafluoropropylene), poly(vdf-hfp), Dai-el, Fluorel, Tecnoflon, $Viton^{(1,2)}$

CLASS Chemical copolymers; fluoroelastomers

CAS REGISTRY NUMBER [9011-17-0]

MAJOR APPLICATIONS Poly(vdf-hfp) is a synthetic, noncrystalline polymer that exhibits elastomeric properties when cross-linked. Known to be chemically inert, it is designed for demanding service applications in hostile environments and commonly used as a sealant in hot and corrosive environments. (1,3)

COMMERCIAL USE Poly(vdf-hfp) has found its niche in industry. Once considered exotic and too expensive, it has proven to be the most cost-effective answer to modern sealing needs. Commonly used as a sealant in hot and corrosive environments.⁽³⁾

PROPERTIES OF SPECIAL INTEREST Poly(vdf-hfp) contains approximately 30–40 mol% hexafluoropropylene. When the copolymer contains less than 30 mol% hexafluoropropylene it tends to become nonelastic; at less than 15 mol% the copolymer has thermoplastic properties. (2-7)

Preparative technique⁽⁶⁾

Polymerization type	Emulsion
Process	Batch or continuous
Temperature	80-120°C
Pressure	1.72-10.34 MPa
Comonomers	Vinylidene fluoride and hexafluoropropylene
Initiator	Ammonium persulphate
Catalyst	Sodium bisulphate

¹⁹F NMR*(8)

Group	Microstucture sequence [†]	Peak (ppm)
CF ₃	НТХТХ	71.4
	ТТХТН	75.9
CF_2	ТНТНТ	91.9
	ННТНТ	95.7
	THTXT	103.7
	ТНТТН	114.0
	НТТНН	116.3
	НТТХН	118.9
CF	НТХТН	182.3
	TTXHT	184.9

 $^{^*}$ In 50% acetone at 30°C. $^{\dagger}H=-CH_2-;\,T=-CF_2-;\,X=-CF(CF_3)-.$

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Average molecular weight $M_{\rm w}$	g mol ⁻¹	_	85,000	(9)
Mooney viscosity	ML 1 + 10	At 121°C	22	(7)
Molar ratio of comonomers	-	Vinylidene fluoride/hexafluoro- propylene	3.5	(7)
Total fluorine content	%	Viton A	66	(7)
Specific gravity	g cm ⁻¹	Gumstock Viton A	1.54-1.88 1.82	(1) (7)
Solubility parameters	(MPa) ^{1/2}	Total Nonpolar Polar Hydrogen-bonding	17.8 15.3 7.2 5.3	(10)
Solubility	-	In carbon dioxide, at 100° C and $1,000$ bar In C_3F_3 , at 163° C and $2,750$ bar In CCIF $_3$, at 230° C and $1,500$ bar In CHF $_3$, at 30° C and $1,500$ bar	Soluble Soluble Soluble	(9) (11) (11) (11)
Intrinsic viscosity $[\eta]$	$dl g^{-1}$	For various compositions at 30°C in methyl ethyl ketone 11 mol% of HFP 16.3 mol% of HFP 22.6 mol% of HFP 27.8 mol% of HFP	1.5 1.7 1.3 1.0	(12)

PROPERTY	UNITS	CONDITIONS	VALUE		REFERENCE
Parameters for Flory- Rehner equation describing sorption isotherms	-	At 25°C in acetone χ_0 χ_1 χ_2 K	1.596 -3.319 1.514 -0.033		(3)
Glass transition temperatures $T_{\rm g}$	K	Mol% of HFP 11 16.3 22.6 27.8 33.8 40.7	240.5 244.0 250.0 255.5 261.3 267.8		(12)
Relaxation processes	K	Mol% of HFP 19.2 -87.8 24.2 26.0 30.3 34.7 39.0 39.2	β process (T_{β}) 185.35 185.35 183.65 183.65 189.15 189.15 192.15 189.15	$\alpha_{\rm L}$ process $(T_{\alpha,\rm L})$ 256.15 257.15 258.15 260.15 266.15 268.15 271.15	(13)
Change in volume	%	At room temperature after 72 h of immersion in water and various alcohols* Solvent Water Methanol Ethanol n-Propanol n-Butanol n-Pentanol n-Hexanol n-Hexanol n-Octanol	-1 89 0.5 0.7 0.4 0.1 0.1 0.2		(14)

PROPERTY	UNITS	CONDITIONS	VALUE	REFERENCE
Change in volume	%	After exposure to methanol at various temperatures* Temperature (K) 233.15 253.15 273.15 294.15 303.15 308.15 313.15 323.15 323.15 328.15	172 149 121 84 76 68 58 54 39	(14)

^{*} Sample used in reference (14) is Viton A, cross-linked and reinforced with carbon black filler. The description of the cross-linking method is given in detail in the same reference.

Effect on mechanical properties $^{*(14)^{\dagger}}$

Alcohol	% Alcohol	Tensile strength (MPa)	Elongation (%)	Modulus at 100% elongation (MPa)
None	Original properties	16.8	200	5.7
Methanol	0	15.8	232	5.3
	2	12.1	199	4.5
	5	11.7	219	4.0
	10	8.7	178	3.7
	25	5.3	127	3.9
	50	5.6	116	4.6
	75	4.8	96	_
	100	4.3	87	_
Ethanol	0	15.2	153	9.5
	5	12.7	153	6.3
	10	12.3	153	5.8
	15	12.7	150	7.0
	25	12.3	150	6.2
	50	13.0	158	6.3
	75	12.9	152	6.7
	100	14.6	160	7.1

^{*} After 72 h of immersion in mixtures of methanol/indolene and ethanol/indolene at room temperature.

[†] Sample used in reference (14) is Viton A, cross-linked and reinforced with carbon black filler. The description of the cross-linking method is given in detail in the same reference.

Mechanical properties⁽⁶⁾

PROPERTY	UNITS	CONDITIONS	TEMPERATURE (K)	VALUE
Tensile strength at break	MPa	Dry*	350	11.79
		Dry*, after 72 h	478	10.27
		Wet [†]	298	16.20
		_	343	12.76
		_	373	7.23
Elongation at break	%	Wet [†]	298	390
O		Dry^*	350	625
		Dry*, after 72 h	478	615
		_ , ,	343	490
		_	373	500
Modulus-300%	MPa	Dry*	350	3.44
		Dry*, after 72 h	478	2.90
		Wet [†]	298	10.00
		_	343	5.52
		_	373	3.27

 $^{^*}$ The sample used in the dry tests was compounded with dibasic lead phosphite and cured for one hour at 120–150°C. See reference (6) for details.

Thermal degradation⁽¹⁵⁾

Type of elastomer	Atmosphere	Temperature (K)	Final total				
		Initial weight loss	1% weight loss	Intial F yield	1% F yield	yield of <i>F</i> (%)	
Viton A	Air	613	668	416	704	54.2	
	Nitrogen	543	623	409	730	12.9	
Viton A-HV	Air	653	693	468	690	54.7	
	Nitrogen	623	683	414	703	13.2	
Viton A cross-linked	Air	473	633	493	656	56.2	
	Nitrogen	443	593	461	634	28.5	

Suppliers

Trade name	Supplier
Viton	DuPont Dow Elastomers, 300 Bellevue Parkway, Suite 300, Wilmington, Delaware 19809, USA
Fluorel	Dyneon, 3M-Hoechst Enterprise, 6744 33rd Sreet North, Oakdale, Minnesota 55128, USA

[†] The sample used in the wet tests was compounded with silica and cured for one hour at 120°C. See reference (6) for details.

REFERENCES

- 1. Grootaert, W. M., G. H. Millet, and A. T. Worm. In *Kirk-Othmer Encyclopedia of Chemical Technology*, 4th ed., edited by J. I. Kroschwitz. John Wiley and Sons, New York, 1989, vol. 8.
- 2. Dohany, J. E., and J. S. Humphrey. In *Encyclopedia of Polymer Science and Engineering*, 2d ed., edited by H. F. Mark, et al. John Wiley and Sons, New York, 1989, vol. 17.
- 3. Wang, P., and N. Sung. Polym. Mater. Sci. Eng. 69 (1993): 372.
- 4. Worm, A. T. Machine Design 62 (1990): 46.
- 5. Elleithy, R., H. Aglan, and A. Letton. J. Elasto. Plast. 28 (1996): 199.
- 6. Rexford, D. R. U.S. Patent 3,051,677 (1962).
- 7. Theodore, A. N., M. Zinbo, and R. O. Carter III. J. Appl. Polym. Sci. 61 (1996): 2,065.
- 8. Ferguson, R. C. Kaut. Gummi 18 (1965): 723.
- 9. Rindfleisch, F., T. P. DiNoia, and M. A. McHugh. J. Phys. Chem. 100 (1996): 15,581.
- 10. Beerbower, A., and J. R. Dickey. ASLE Trans. 12 (1969): 1.
- 11. Mertdogan, C. A., T. P. DiNoia, and M. A. McHugh. Macromolecules 30 (1997): 7,511.
- 12. Bonardelli, P., and G. Moggi. Polymer 27 (1986): 906.
- 13. Ajroldi, G., et al. Polymer 30 (1989): 2,180.
- 14. Myers, M. E., and I. A. Abu-Isa. J. Appl. Polym. Sci. 32 (1986): 3,515.
- 15. Knight, G. J., and W. W. Wright. J. Appl. Polym. Sci. 16 (1972): 683.

Poly(vinylmethylsiloxanes), cyclic

Rufina G. Alamo

Associate Professor of Chemical Engineering, Florida Agricultural and Mechanical University/Florida State University College of Engineering, Tallahassee Polyethylene, linear high-density

Anthony L. Andrady

Senior Research Scientist, Research Triangle Institute,
Durham, North Carolina
Poly(acrylonitrile)
Poly(chlorotrifluoroethylene)
Poly(vinyl chloride)

Poly(vinylidene chloride)

George Apgar

Technical Manager, Technical Polymers Research and Development, Elf Atochem North America, Inc., King of Prussia, Pennsylvania Nylon 11

R. K. Arisman

Principal Engineer, GE Silicones, Waterford, New York Carborane-containing polymers

Ronald H. Baney

Courtesy Visiting Scientist, Department of Materials Science and Engineering, University of Florida, Gainesville

Poly(hydridosilsesquioxane) Poly(methylsilsesquioxane)

Poly(phenylsilsesquioxane)

Greg Beaucage

Department of Materials Science and Engineering, University of Cincinnati, Ohio

Polypyrrole Polyquinoline Polythiophene

Poly(*p*-xylylene)

Yong S. Chong

Graduate Student in Chemistry, University of South Carolina, Columbia Polyacrylamide Poly(acrylic acid)

Stephen J. Clarson

Assistant Dean of the College of Engineering, and
Director of the Polymer Research Center, University
of Cincinnati, Ohio
Poly(dimethylsiloxanes), cyclic
Polymeric selenium
Polymeric sulfur
Poly(phenylmethylsiloxanes), cyclic

Yong Ding

C. S. Marrel Laboratories, Department of Chemistry, University of Arizona, Tucson Poly(2,6-dimethyl-1,4-phenylene oxide) Poly(methylene oxide) Poly(p-phenylene oxide)

Abraham J. Domb

Professor, Hebrew University of Jerusalem, School of Pharmacy, Faculty of Medicine, Israel
Poly(1,3-bis-p-carboxyphenoxypropane anhydride)
Poly(erucic acid dimer anhydride)

Petar R. Dvornic

Professor of Polymer Chemistry, and Research Scientist, Michigan Molecular Institute, Midland Poly(amidoamine) dendrimers Poly(silphenylene-siloxanes)

Richard E. Fernandez

Technology Associate, Du Pont Fluoroproducts, Wilmington, Delaware Perfluorinated ionomers

Warren T. Ford

Professor of Chemistry, Oklahoma State University, Stillwater, Oklahoma Fullerene-containing polymers

Stephen A. Fossey

Textile Engineer, U.S. Army Natick Research, Development and Engineering Center, Massachusetts Silk protein

Bruce M. Foxman

Professor of Chemistry, Brandeis University, Waltham, Massachusetts

Polyphosphates

Poly(phosphonate)

J. R. Fried

Professor of Chemical Engineering, and Director of the Ohio Molecular Computation and Simulation Network and Center for Computer-Aided Molecular Design, University of Cincinnati

Poly(ether ether ketone)

Poly(ether ketone)

Poly(methylacrylonitrile)

Paul G. Galanty

Plastics Industry Consultant, West Orange, New *Jersey*

Nylon 6

Vassilios Galiatsatos

Staff Scientist, Huntsman Corporation, Odessa, Texas

Polychloroprene

Poly(norbornene)

Polyoctenamer

Polypentenamer

Yuli K. Godovsky

Professor of Polymer Science, Karpov Institute of Physical Chemistry, Moscow, Russia

Poly(di-*n*-butylsiloxane)

Poly(diethylsiloxane)

Poly(di-*n*-hexylsiloxane)

Poly(di-n-pentylsiloxane)

Poly(di-n-propylsiloxane)

Douglas G. Gold

Senior Research Chemist, 3M Company, St. Paul, Minnesota

Poly(L-alanine)

Poly(γ -benzyl-L-glutamate)

Polyglycine

Richard V. Gregory

Director, School of Textiles, Fiber and Polymer Science, and Center for Advanced Engineering Fibers and Films, Clemson University, South Carolina

Polyaniline

Julio Guzmán

Professor, Instituto de Ciencia y Technologiá de Polímeros, Madrid, Spain

Poly(1,3-dioxepane)

Poly(1,3-dioxolane)

Akira Harada

Professor of Polymer Science, Osaka University, Japan Poly(rotaxane), example 1 Poly(rotaxane), example 2

Stephen S. Hardaker

School of Textiles, Fiber and Polymer Science, and Center for Advanced Engineering Fibers and Films, Clemson University, South Carolina

Polyaniline

Allan S. Hay

Tomlinson Chair in Chemistry, McGill University, Montreal, Ouebec, Canada

Poly(2,6-dimethyl-1,4-phenylene oxide)

Poly(methylene oxide)

Poly(p-phenylene oxide)

David V. Howe

Senior Research Scientist, Amoco Polymers, Inc., Alpharetta, Georgia

Polypropylene, isotactic

Shaw Ling Hsu

Professor of Polymer Science and Engineering, University of Massachusetts, Amherst

Nylon 6 copolymer

Nylon 6,6 copolymer

Poly(methyl methacrylate)

L. V. Interrante

Professor of Chemistry, Rensselaer Polytechnic Institute, Troy, New York Poly(methylsilmethylene)

Poly(silylenemethylene)

Jude O. Iroh

Associate Professor of Materials Science (Polymers),

University of Cincinnati, Ohio

Poly(butylene terephthalate)

 $Poly(\varepsilon$ -caprolactone)

Poly(ethylene-2,6-naphthalate)

Poly(ethylene terephthalate)

Takashi Iwamoto

Polymer Development Laboratory, Asahi Chemical Industry Company, Ltd., Kurashiki, Japan Syndiotactic polystyrene

Lisaleigh Kane

Graduate Research Assistant, Department of Materials Science and Engineering, North Carolina State University, Raleigh $Poly(\alpha$ -methylstyrene)

David L. Kaplan

Director of the Biotechnology Center, and Associate Professor, Department of Chemical Engineering, Tufts University, Medford, Massachusetts Silk protein

D. L. Kerbow

Technology Fellow, Du Pont de Nemours and Company, Wilmington, Delaware Poly(tetrafluoroethylene)

Iohn H. Ko

Product Development Specialist, 3M Company, St. Paul, Minnesota Poly(N-vinyl carbazole) Poly(4-vinyl pyridine) Poly(N-vinyl pyrrolidone)

Melvin I. Kohan

Engineering Thermoplastics Consultant, MIK Associates, Wilmington, Delaware Nylon 6,10

Chandima Kumudinie

Department of Chemistry and the Polymer Research Center, University of Cincinnati, Ohio

Collagen

Poly(*n*-butyl isocyanate)

Polychloral

Poly(*n*-hexyl isocyanate)

Poly(α -phenylethyl isocyanide)

Chung Mien Kuo

Development Specialist, Dow Corning Corporation, Midland, Michigan Poly(dimethylsiloxane) Poly(methylphenylsiloxane)

Robert Langer

Germeshausen Professor of Chemical and Biomedical Engineering, Massachusetts Institute of Technology, Cambridge

Poly(1,3-bis-p-carboxyphenoxypropane anhvdride)

Poly(erucic acid dimer anhydride)

Alanta Lary

Graduate Student, Oklahoma State University, Stillwater

Fullerene-containing polymers

Jonathan H. Laurer

Graduate Research Assistant, Department of Materials Science and Engineering, North Carolina State University, Raleigh

Poly(*p*-chlorostyrene)

David J. Lohse

Senior Staff Engineer, Exxon Research and Engineering Company, Annandale, New Jersey Ethylene-propylene-diene monomer elastomers Poly(isobutylene), butyl rubber, halobutyl rubber

Ruskin Longworth

DuPont Company (retired); and Teixido-Longworth Enterprises, Greenville, Delaware

Carboxylated ethylene copolymers, metal salts (ionomers)

Sulfo-ethylene-propylene-diene monomer ionomers

Chi-Hao Luan

Research Assistant Professor, Center for Macromolecular Crystallography, University of Alabama at Birmingham

Elastic, plastic, and hydrogel-forming proteinbased polymers

Lichun Lu

Research Assistant, Department of Chemical Engineering, Rice University, Houston, Texas Poly(glycolic acid) Poly(lactic acid)

Tarek M. Madkour

Assistant Professor of Physical Chemistry, Helwan University, Cairo, Egypt

Bisphenol-A polysulfone

Polycarbonate

Poly(ether sulfone)

Poly(ethylene imine)

Poly(4-hydroxy benzoic acid)

Poly[1-(trimethylsilyl)-1-propyne]

Joseph H. Magill

Professor Emeritus, Material Science and Engineering Department, University of Pittsburgh, Pennsylvania

Poly(aryloxy)thionylphosphazenes

Poly(phosphazene), bioerodible

Poly(phosphazene) elastomer

Poly(phosphazene), semicrystalline

Michael T. Malanga

Scientist, Dow Chemical Company, Midland, Michigan

Polystyrene, head-to-head

Leo Mandelkern

R. O. Lawton Distinguished Professor of Chemistry Emeritus, Department of Chemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee

Polyethylene, linear high-density

Ian Manners

Professor of Chemistry, University of Toronto, Ontario, Canada

Poly[(*n*-butylamino)thionylphosphazene]

Poly(dimethylferrocenylethylene)

Poly(ferrocenyldimethylsilane)

Poly(vinylferrocene)

Rachel Mansencal

Senior Research Chemist, J. M. Huber Corporation, Havre de Grace, Maryland

Cellulose

Chitin

Glycogen

Robert H. Marchessault

E. B. Eddy Professor of Chemistry, McGill University, Montreal, Quebec, Canada

Poly(hydroxybutyrate)

Harry B. Mark, Jr.

Professor of Chemistry, University of Cincinnati, Ohio Poly(sulfur nitride)

James E. Mark

Professor of Chemistry, University of Cincinnati, Ohio Poly(α -phenylethyl isocyanide)

Junzo Masamoto

Visiting Professor of Polymer Science and Technology, Kyoto Institute of Technology, Japan

Nylon 3

Polychloral

Poly(ethylene sulfide)

Poly(*n*-hexyl isocyanate)

Poly(*p*-phenylene sulfide)

Poly(propylene sulfide)

Syndiotactic polystyrene

Dale J. Meier

Professor, Michigan Molecular Institute, Midland

Poly(diphenylsiloxane)

Poly(phenyl/tolylsiloxane)

Antonios G. Mikos

Associate Professor of Chemical Engineering, Rice University, Houston, Texas

Poly(glycolic acid)

Poly(lactic acid)

Wilmer G. Miller

Professor, Department of Chemistry, University of Minnesota, Minneapolis

Poly(L-alanine)

Poly(γ -benzyl-L-glutamate)

Polyglycine

Munmaya K. Mishra

Advisor, Ethyl Corporation Research and Development, Richmond, Virginia

Polyurea

Polyurethane

Polyurethane elastomers

Polyurethane urea

Akira Mivamoto

Senior Advisor, Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan

Nylon MXD6

Charles L. Myers

Research Associate, Amoco Chemical Company, Naperville, Illinois

Polypropylene, atactic

Polypropylene, elastomeric (stereoblock)

Polypropylene, syndiotactic

Donna M. Narsavage-Heald

Assistant Professor of Chemistry, University of Scranton, Pennsylvania

Hydridopolysilazane

Poly(N-methylcyclodisilazane)

Isao Noda

Research Fellow, Corporate Research Division, The Procter and Gamble Company, Cincinnati, Ohio Poly(hydroxybutyrate)

Robert A. Orwoll

Professor of Chemistry, College of William and Mary, Williamsburg, Virginia

Polyacrylamide

Poly(acrylic acid)

Michael J. Owen

Senior Research Scientist, Dow Corning Corporation, Midland, Michigan

Poly(methyltrifluoropropylsiloxane)

Poly(silphenylene-siloxanes)

D. R. Panse

Graduate Student in Materials Science and Engineering, University of Tennessee, Knoxville

Poly(butene-1)

Poly(hexene-1)

Poly(4-methyl pentene-1)

Vladimir S. Papkov

Professor of Polymer Chemistry, Institute of Organo-Element Compounds, Russian Academy of Sciences, Moscow

Poly(di-n-butylsiloxane)

Poly(diethylsiloxane)

Poly(di-*n*-hexylsiloxane)

Poly(di-n-pentylsiloxane)

Poly(di-n-propylsiloxane)

Rahul D. Patil

Department of Chemistry, University of Cincinnati, Ohio

1,2-Polybutadiene

Vinylidene fluoridehexafluoropropylene elastomers

Dinesh V. Patwardhan

Senior Polymer Chemist, Chromatix Separation Sciences, Inc., Sutter Creek, California Nylon 4,6

Nicholas A. Peppas

Showalter Distinguished Professor, Purdue University, West Lafayette, Indiana Poly(2-hydroxyethyl methacrylate) Poly(N-isopropyl acrylamide)

Edward N. Peters

Principal Scientist, GE Plastics, Selkirk, New York Carborane-containing polymers

Gus G. Peterson

Advisory Scientist, IBM Corporation, San Jose, California

Nylon 6,12

Paul J. Phillips

Professor of Materials Science and Engineering, University of Tennessee, Knoxville

Poly(butene-1)

Poly(hexene-1)

Poly(4-methyl pentene-1)

A. Prasad

Senior Research Specialist, Equistar Chemicals, LP, Cincinnati, Ohio

Polyethylene, elastomeric (very highly branched)

Polyethylene, linear low-density

Polyethylene, low-density

Polyethylene, metallocene linear low-density

Paras N. Prasad

Photonics Science Professor of Chemistry, and Director of the Photonics Research Laboratory, State University of New York, Buffalo

Poly(1,4-phenylene)

Poly(1,4-phenylene vinylene)

Jagath K. Premachandra

Department of Materials Science and Engineering, University of Cincinnati, Ohio

Collagen

Poly(*n*-butyl isocyanate)

Polychloral

Poly(*n*-hexyl isocyanate)

Poly(α -phenylethyl isocyanide)

Zhengcai Pu

Research Chemist, Rutgers University, Piscataway, New Iersey

Thew jersey

trans-1,4-Polybutadiene

Poly(*m*-phenylene isophthalamide)

Polystyrene

Meifang Qin

Senior Research Scientist, AlliedSignal, Inc., Morristown, New Jersey Poly(vinyl chloride), head-to-head

L. S. Ramanathan

National Chemical Laboratory, Division of Polymer Chemistry, Pune, India

Polyurea

Polyurethane

Polyurethane elastomers

Polyurethane urea

Shrish Rane

Department of Materials Science and Engineering, University of Cincinnati, Ohio

Polypyrrole

Polyquinoline

Polythiophene

Poly(p-xylylene)

Evaristo Riande

Professor, Instituto de Ciencia y Technologiá de

Polímeros, Madrid, Spain

Poly(1,3-dioxepane)

Poly(1,3-dioxolane)

H. Ulf W. Rohde-Liebenau

Hüls AG. (retired), Marl, Germany Nylon 12

C. M. Roland

Head of the Polymer and Composite Properties Section, Naval Research Laboratory, Washington, DC

Kraton D1100 SBS

Kraton G1600 SEBS

Margaret Rookmaker

DSM, Heerlen, The Netherlands Poly(1,3-trimethyleneimine) dendrimers

J. F. Rubinson

Visiting Scholar in Chemistry, University of Cincinnati, Ohio

Poly(sulfur nitride)

Guru Sankar Rajan

Research Assistant, Polymer Research Center, Department of Chemistry, University of Cincinnati, Ohio

Poly(p-benzamide)

trans-1,4-Polyisoprene

Jerry I. Scheinbeim

Pofessor and Director, Polymer Electroprocessing Laboratory, Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey Poly(vinylidene fluoride)

M. A. Sharaf

Professor of Chemistry, Cairo University at Beni-Suef, Egypt

cis-1,4-Polybutadiene

Mee Y. Shelley

Visiting Assistant Professor, Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio

Alkyd resins

Epoxy resins

Polyesters, unsaturated

Q. H. Shen

Research Chemist, Starfire Systems, Inc., Watervliet, New York

Poly(methylsilmethylene)

Poly(silylenemethylene)

S. Sivaram

Head of the Division of Polymer Chemistry, National Chemical Laboratory, Pune, India

Polyurea

Polyurethane

Polyurethane elastomers

Polyurethane urea

Archie P. Smith

Graduate Research Assistant, Department of Materials Science and Engineering, North Carolina State University, Raleigh Poly(p-methylstyrene)

Milind Sohoni

Business Analyst, Nutraceutical Department, Cargill, Minneapolis, Minnesota

Amino resins

Phenolic resins

Richard J. Spontak

Associate Professor of Chemical Engineering and Materials Science and Engineering, North Carolina State University, Raleigh

Poly(*p*-chlorostyrene)

Poly(α -methylstyrene)

Poly(*p*-methylstyrene)

P. R. Sundararajan

Principal Scientist, Xerox Research Centre of Canada, Mississauga, Ontario

Poly(vinyl alcohol)

Poly(vinyl butyral)

Jacek Swiatkiewicz

Senior Research Scientist, Photonics Research Laboratory, State University of New York, Buffalo Poly(1,4-phenylene) Poly(1,4-phenylene vinylene)

Loon-Seng Tan

Polymer Research Group Leader, U.S. Air Force Wright Laboratory, Wright-Patterson Air Force Base. Ohio

Poly(amide imide)

Poly(bis maleimide)

Poly(ether imide)

Poly(pyromellitimide-1,4-diphenyl ether)

Mikio Terada

Research Chemist, Rengo Company Ltd., Osaka, Japan Poly(hydroxybutyrate)

Donald A. Tomalia

Vice President of Technology, and Professor and Director of Nanoscopic Chemistry and Architecture, Michigan Molecular Institute, Midland; and Director of the Center for Biologic Nanotechnology, University of Michigan, Ann Arbor Poly(amidoamine) dendrimers Poly(1,3-trimethyleneimine) dendrimers

Dan W. Urry

Professor, Department of Chemical Engineering and Materials Science, Biological Process Technology Institute, University of Minnesota, St. Paul Elastic, plastic, and hydrogel-forming proteinbased polymers

Ronald E. Uschold

Research Fellow, DuPont Fluoroproducts, Wilmington, Delaware Poly(vinyl fluoride)

Gary W. Ver Strate

Senior Research Associate, Exxon Chemical Company, Linden, New Jersey

Ethylene-propylene-diene monomer elastomers Poly(isobutylene), butyl rubber, halobutyl rubber

Brent D. Viers

Post Doctoral Research Associate, Polymer Division, National Institute of Standards and Technology, Gaithersburg, Maryland

Kevlar

Nylon 6,6

Shuhong Wang

Division Chemist, DuPont Dow Elastomers L.L.C., Newark, Delaware

Acrylonitrile-butadiene elastomers

Polvacetylene

Styrene-acrylonitrile

Styrene-butadiene elastomers

Styrene-methylmethacrylate copolymer

William J. Welsh

Professor of Chemistry, University of Missouri, St. Louis

Poly(benzimidazole)

Poly(benzobisoxazole)

Poly(benzobisthiazole)

Jianye Wen

Senior Research Chemist, Cabot Corporation, Tuscola, Illinois

Poly(cyclohexyl methacrylate)

Poly(ethyl acrylate)

Poly(methacrylic acid)

Poly(methyl acrylate)

Poly(vinyl acetate)

Poly(vinyl methyl ether)

Robert West

Eugene G. Rochow Professor of Chemistry, University of Wisconsin, Madison

Poly(di-*n*-hexylsilylene)

Poly(dimethylsilylene)

Poly(dimethylsilylene-co-phenylmethylsilylene)

Polygermanes

Poly(methylphenylsilylene)

Ping Xu

Polymer Scientist, W. L. Gore and Associates, Inc., Elkton, Maryland

Ethylene-vinyl acetate copolymer

Ethylene-vinyl alcohol copolymer

Polyacetylene

Yong Yang

Research Chemist, Benjamin Moore and Company,

Flanders, New Jersey

Cellulose acetate

Cellulose butyrate

Cellulose nitrate

Ethylcellulose

Hydroxypropylcellulose

Qingwen Wendy Yuan

Project Supervisor, National Starch and Chemical Company, Bridgewater, New Jersey

Poly(epichlorohydrin)

Poly(ethylene oxide)

Poly(propylene oxide)

Poly(tetrahydrofuran)

Poly(trimethylene oxide)

Martel Zeldin

Professor of Chemistry, and Dean of Science and Technology, College of Staten Island, City University of New York

Metallophthalocyanine polymers

Silicon (germanium) oxo hemiporphyrazine polymers

Ruzhi Zhang

Department of Chemistry, University of Cincinnati, Ohio

cis-1,4-Polyisoprene

Yuli Zhang

Research Assistant, Department of Chemistry, College of Staten Island, City University of New York Metallophthalocyanine polymers Silicon (germanium) oxo hemiporphyrazine polymers

W. Brooke Zhao

Research Scientist, HMT Technology Corporation, Fremont, California

Amylopectin

Amylose

Gelatin

Nylon 6,12

Starch