ITÜ-EEF ANALOG ELECTRONIC CIRCUITS 2015

Prof. Dr. Melih Pazarcı FINAL EXAM

Jan. 11, 2016

1)-

a)- For the given circuit at midband frequencies, v_2/v_g =-50, R_s 10K amplifier input resistance r_i =10k Ω & output resistance r_o =20k Ω . Find the transfer conductance i_2/v_1

- b)- The circuit has three poles and one zero at the low frequencies. What can you say about the amplifier ? If the poles and zeroes are at: f_{k1} =79.58Hz, f_{k2} =28.94Hz, f_{k3} =10.6Hz, and f_0 =2.12Hz, associate each critical frequency with a capacitor.
- c)- For what value of C_2 will this circuit have only two poles? For this value of C_2 , draw the low+mid frequency range Bode diagrams for v_2/v_g .
- d)- If the amplifier has C_{in}=20pF (input C), C_{out}=2pF (output C), and C_r=0,5pF (feedback C), calculate the high frequency poles and the high cutoff frequency of the circuit.
- e)- How would you obtain the frequency response of an amplifier in the lab? How can you determine the low and high frequency cutoffs? Draw a measurement schematic showing the necessary equipment and connections (show the amp. as a 2-port).

- 2)- For the circuit given above:
- a)- Find I_0 to obtain V_{C3} =0V in the quiscent state.
- b)- Design a current mirror using 2 active devices and one resistor to provide I₀. Find the value of this resistor to get the I₀ value that you found in part (a).
- c)- What is the feedback topology? Why? Identify the feedback circuit.
- d)- Find the open loop voltage gain of the circuit including the loading effect of the feedback circuit.
- e)- Find the closed loop voltage gain v, /v,.
- f)- If the voltage gain $v_o/v_g = 7$, find the source resistance of the generator connected to the input.

CONTINUED ON THE BACK- TURN OVER

- 3)- The amplifier in the given oscillator circuit is an ideal operational amplifier.
- a)- Find the transfer function of the passive RL circuit $H(s)=V_B(s)$ / $V_o(s)$
- b)- Write the condition of oscillation. Find the frequency of oscillation in terms of R and L.
- c)- Find the gain condition for sustained constant amplitude oscillations at the output in terms of $\rm R_2$ and $\rm R_1$.

Points: 36+ 36+ 28=100

Time 120".

otes: Closed books & notes. No cellphones. No formula sheets. You may make reasonable engineering approximations. All your approximations, roundings, and assumptions should be clearly visible. Be careful with your units.

ElektronDev2015_Final.wpd