Diskretna matematika Zadaća 1

Vedad Fejzagić

Oktobar 22, 2017

Zadatak 1

Ako označimo tablete T1, T2 i T3 kao x, y i z respektivno, problem svodimo na rješavanje sljedeće diofantove jednačine sa 3 nepoznate:

$$15x + 33y + 27z = 162$$

Očigledno je da vrijedi:

$$NZD(15, 33, 27) = 3$$

Dokažimo koristeći Euklidov algoritam:

$$NZD(15, 33, 27) = NZD(NZD(15, 33), 27) =$$

= $NZD(3, 27) = NZD(27, 3) = 3$

Dalje, s obzirom da je $NZD(15, 33, 27) = 3, 3 \mid 162$, zadana diofantova jednačina je rješiva.

$$15x + 33y + 27z = 162$$
$$5x + 11y + 9z = 54$$
$$5x + 11y = 54 - 9z$$

Pošto je NZD(5,11)=1, rješenja za x i y će postojati akko je $1\mid (54-9z)$ tj. ako postoji $k\in Z$ takav da vrijedi 54-9z=k. Ovo je diofantova jednačina, dakle $NZD(9,1)=1,1\mid 54$, te je potrebno izraziti NZD(9,1)=1kao linearnu kombinaciju 9 i 1:

$$9 = 1 \cdot 8 + 1 \implies 1 = 9 - 1 \cdot 8$$

Jedno rješenje je:

$$z^* = 54$$
$$k^* = -8 \cdot 54 = -432$$

Opće rješenje za z(k nas ne interesuje za konkretan problem):

$$z = 54 + t, t \in Z$$

Vraćamo u početnu jednačinu:

$$5x + 11y = 54 - 9(54 + t)$$
$$5x + 11y = -432 - 9t$$

Dobivena jednačina je diofantova. Očigledno je NZD(15,11)=1, potrebno je izraziti NZD(15,11)=1 preko linearne kombinacije 15 i 11:

$$11 = 2 \cdot 5 + 1 \implies 1 = 11 - 2 \cdot 5 = -2 \cdot 5 + 11$$

Pa su opća rješenja:

$$x = 864 + 18t + 11s$$
$$y = -432 - 9t - 5s$$
$$z = 54 + t$$
$$t, s \in Z$$

uz ograničenja $x,y,z>0\,$

Pristupamo rješavanju sistema nejednačina:

$$x = 864 + 18t + 11s > 0 \tag{1}$$

$$y = -432 - 9t - 5s \implies y = 432 + 9t - 5s < 0$$
 (2)
 $z = 54 + t > 0 \implies t > -54$

Iz (2):

$$s < \frac{-9t - 432}{5} \tag{A}$$

Iz (1):

$$s > \frac{-864 - 18t}{11} \tag{B}$$

Možemo zaključiti:

$$(1) \land (2) \implies \frac{-9t - 432}{5} > s > \frac{-864 - 18t}{11} \implies$$

$$\implies (-9t - 432) \cdot 11 > (-864 - 18t) \cdot 5$$

$$-9t - 432 > 0$$

$$t < \frac{-432}{9}$$

$$t < -48$$

Rješenja za t:

$$(t > -54) \land (t < -48) \implies t \in (-48, -54)$$

tj.

$$t\in[-49,-53],t\in Z$$

Dalje, računamo vrijednost s
, $\forall t \in [-49, -53] \land t \in Z$ koristeći nejednakosti A i B. Lahko se pokaže da vrijednosti
t = -49, t = -50 i t = -53 ne daju vrijednost $s \in Z$, dakle te vrijednosti odbacujemo.

Za t = -51:

$$(A) \implies s < \frac{27}{5} (= 5.4)$$

$$(B) \implies s > \frac{54}{11} (\sim 4.9)$$

$$s \in (\frac{54}{11}, \frac{27}{5})$$

Pa jedina vrijednost u skupu Z na dobivenom intervalu je s=5. Tu vrijednost i uzimamo.

Za t = -52:

Na sličan način kao i na prethodnom primjeru dobijamo vrijednost s=7.

Zaključujemo da postoje dva rješenja, te ih uvrštavamo u opšta:

Za $t = -51 \wedge s = 5$

$$x = 1, y = 2, z = 3$$

$$Provjera: 1 \cdot 15 + 2 \cdot 33 + 3 \cdot 27 = 162$$

Za $t = -52 \wedge s = 7$

$$x = 5, y = 1, z = 2$$

$$Provjera: 5 \cdot 15 + 1 \cdot 33 + 2 \cdot 27 = 162$$

Dakle, postoje dva načina realizacije terapije; prvi način je jedna tableta T1, dvije tablete T2 i 3 tablete T3; drugi način je pet tableta T1, jedna tableta T2 i dvije tablete T3.

Zadatak 2

Zadani problem možemo predstaviti u obliku sistema linearnih kongruencija, gdje je x traženi minimalni broj banana:

$$x \equiv 8 \pmod{9} \rightarrow NZD(1,9) = 1$$

$$x \equiv 2 \pmod{10} \rightarrow NZD(1,10) = 1$$

$$x \equiv 0 \pmod{17} \rightarrow NZD(1,17) = 1$$

Dakle, sistem linearnih kongruencija je rješiv što slijedi upravo iz rješivosti svih kongruencija pojedinačno. Rješavamo koristeći kinesku teoremu o ostacima. Najprije provjeramo da li je možemo primjeniti:

$$NZD(9, 10) = 1$$

 $NZD(9, 17) = 1$
 $NZD(10, 17) = 1$

Očigledno je da kinesku teoremu o ostacima možemo primjeniti.

$$n1 \cdot n2 \cdot n3 = 9 \cdot 10 \cdot 17 = 1530$$

$$\lambda 1 = \frac{1530}{9} = 170$$

$$\lambda 2 = \frac{1530}{10} = 153$$

$$\lambda 3 = \frac{1530}{17} = 90$$

Rješenje možemo predstaviti u obliku:

$$x = 170x_1 + 153x_2 + 90x_3 \pmod{1530}$$

Pri čemu su x_1, x_2, x_3 ma koja rješenja sistema linearnih kongruencija:

$$170x_1 \equiv 8 \pmod{9} \tag{A}$$

$$153x_2 \equiv 2 \pmod{10}$$

$$90x_3 \equiv 0 \pmod{17}$$
(B)

 x_3 je očigledno bilo koji cijeli broj, dakle $x_3=0$

Kongruencije (A) i (B) možemo jednostavno skratiti, te ih izraziti kao diofantove jednačine pa naći potrebnu vrijednost za x_1 i x_2 :

Prvo skraćujemo kongruencije:

$$(A) \to 170 > 9 \to mod(170, 9) = 8 \implies 8x_1 \equiv 8 \pmod{9}$$

 $(B) \to 153 > 10 \to mod(153, 10) = 3 \implies 3x_2 \equiv 2 \pmod{10}$

Odgovarajuće diofantove jednačine:

$$(A) \rightarrow 8x_1 + 9y = 8 \rightarrow NZD(8,9) = 1,1 \mid 8$$

 $(B) \rightarrow 3x_2 + 10y = 2 \rightarrow NZD(3,10) = 1,1 \mid 2$

Nalazimo x_1 i x_2 tako da $y \in \mathbb{Z}$, pri čemu ne moramo rješavati diofantove jednačine, već pogađamo vrijednosti. Dobijamo:

$$x_1 = 1$$

$$x_2 = 4$$

Također $x_3 = 0$

Pa je opće rješenje:

$$x \equiv 170 \cdot 1 + 153 \cdot 4 + 90 \cdot 0 \pmod{1530}$$

 $x \equiv 782 \pmod{1530}$

Možemo pisati:

$$x = 782 + 1530t, t \in \mathbb{Z}$$

Nalazimo tipično rješenje za koje vrijedi $0 \le x < 1530$

$$0 \le 782 + 1530t < 1530$$

$$t \ge -\frac{782}{1530} \quad \land \quad t < \frac{748}{1530}$$

$$t \ge -0.51 \quad \land \quad t < 0.488$$

$$t \in [-0.51, 0.488) \land t \in Z \implies \underline{t = 0}$$

Uvrštavanjem u x = 782 + 1530t, se dobije:

$$x = 782$$

Zaključujemo da ne samo da je 782 minimalan broj banana potreban da se jednako rasporede u odgovarajuće gomile, već je to i jedini broj za koji može to da se uradi. Provjeriti ćemo rezultat vračajući x u početne jednačine sistema:

$$782 \equiv 8 \pmod{9} \implies 782 + 9y = 8 \implies y \in Z$$

 $782 \equiv 2 \pmod{10} \implies 782 + 10y = 2 \implies y \in Z$
 $782 \equiv 0 \pmod{17} \implies 782 + 17y = 0 \implies y \in Z$

Minimalan(i jedini) broj banana potrebnih da bi se jednako raspodijelili je 782.

Zadatak 4

a) $8x + 10y + 17z \equiv 64 \pmod{93} \tag{1}$

$$12x + 9y + 19z \equiv 3 \pmod{93} \tag{2}$$

$$7x + 14y + 15z \equiv 68 \pmod{93} \tag{3}$$

Množimo kongruenciju 1 sa 12 i kongruenciju 2 sa -8, te ih sabiramo. To ima smisla uraditi jer je $NZD(93,12) = 1 \land NZD(93,8) = 1$. Dakle dobijamo:

$$48y + 52z \equiv 744 \pmod{93}$$

Pošto $744 > 93 \implies mod(744, 93) = 0$, kongruencija se svede na:

$$48y + 52z \equiv 0 \pmod{93}$$

Dalje, množimo kongruenciju 2 sa 7 i kongruenciju 3 sa -12, te ih sabiramo. NZD u oba slučaja je 1. Dobijamo:

$$105y + 47z \equiv 795 \pmod{93}$$

Daljim skraćivanjem se dobije:

$$12y + 47z \equiv 51 \pmod{93}$$

Sistem smo sveli na sljedeće tri kongruencije:

$$48y + 52z \equiv 0 \pmod{93}$$

 $12y + 47z \equiv 51 \pmod{93}$
 $7x + 14y + 15z \equiv 68 \pmod{93}$

Množimo prvu kongruenciju sa -47 i drugu kongruenciju sa 52, sabiramo ih, skratimo, te dobijemo kongruenciju sa jednom nepoznatom:

$$-51y \equiv 48 \pmod{93}$$

Odgovarajuća diofantova jednačina je -51y+93k=48 gdje je k parametar, $k\in Z$. Pošto je $NZD(93,51)=3\wedge 3\mid 48$, diofantova jednačina je rješiva, te očekujemo 3 tipična rješenja. Proširenim euklidovim algoritmom se dobije:

$$1 = 11 \cdot 17 - 6 \cdot 31$$

Interesuje nas rješenje po promjenjivoj y:

$$y = -176 + 31t$$

Za tipična rješenja mora vrijediti: $0 \le y \le 92 \to t \in [6,8]$. Dakle dobili smo 3 tipična rješenja koja glase:

$$y = 10, y = 41, y = 72$$

Za y=10 kongruencija ima najmanje tipično rješenje, pa opće rješenje možemo pisati u obliku $y\equiv 10\pmod{31}$. Da ne bi razmatrali svaki od tipičnih rješenja zasebno, možemo na sljedeći način napisati opće rješenje:

$$y = 10 + 31t, t \in Z$$

Dobiveno opće rješenje vraćamo u prvu kongruenciju:

$$48(10+31t) + 52z = 0 \pmod{93}$$

Tj. skraćivanjem:

$$52z = -15 \pmod{93}$$

Pa je odgovarajuća diofantova jednačina $52z+93k=-15, k\in Z.$ $NZD(93,520)=1 \land 1 \mid 15$, dakle diofantova jednačina je rješiva te očekujemo jedinstveno tipično rješenje. Dobije se $z=-510+93t, t\in Z.$ Pa je tipično rješenje:

$$z = 48 \to z \equiv 48 \pmod{93}$$

Uvrštavamo z=48 i $y=10+31t, t\in Z$ u kongruenciju 3. Dobije se:

$$7x = -48 - 62t \pmod{93}, t \in \mathbb{Z}$$

Odgovarajuća diofantova jednačina: $7x + 93k = -48 - 62t, t, k \in Z$. Diofantova jednačina je rješiva, te očekujemo jedno tipično rješenje za svaki cijeli broj t, $NZD(93,7) = 1 \wedge 1 \mid -48 - 62t$. Dobije se $x = -672 - 868t + 93s, t, s \in Z$. Pa je $s = 8 + \frac{868}{93} \cdot t, t \in Z$. Tipično rješenje je jedinstveno i ono glasi:

$$x = 72 - 868t, t \in Z \to x \equiv 72 - 31t \pmod{93}$$

Dakle, rješenja sistema su:

$$x \equiv 72 - 31t \pmod{93}, t \in Z$$
$$y \equiv 10 \pmod{31}$$
$$z \equiv 48 \pmod{93}$$

Pri čemu svako tipično rješenje koje smo dobili za y odgovara da bude rješenje sistema. Dakle, ovaj sistem ima 3 tipična rješenja:

$$x = 310, y = 10, z = 48$$

 $x = 1271, y = 41, z = 48$
 $x = 2232, y = 72, z = 48$

b)
$$24x + 27y \equiv 9 \pmod{78} \tag{1}$$

$$10x + 12y \equiv 16 \pmod{78} \tag{2}$$

Ne možemo množiti kongruencije odgovarajućim brojevima jer njihovi odgovarajući $NZD \neq 1$. Dakle, moramo postepeno smanjivati koeficijent uz neku nepoznatu u nekoj kongruenciji, dok ne nestane potpuno. Uradit ćemo sljedeće korake, kako bi nepoznatu x izbacili iz druge kongruencije:

- 1.) Množimo kongruenciju 2 sa -1 i dodajemo kongruenciji 1. Ovaj korak uradimo 2 puta uzastopno.
- 2.) Množimo kongruenciju 1 sa -1 i dodajemo kongruenciji 2. Ovaj korak uradimo 2 puta uzastopno također.
 - 3.) Uradimo 1. ponovno, ali ovaj put samo jednom.
 - 4.) Uradimo 2. ponovno, ali ovaj put samo jednom.

Dobili smo sistem:

$$2x - 3y \equiv -85 \pmod{78}$$
$$9y \equiv 147 \pmod{78}$$

Sistem sa jednom nepoznatom svodimo na diofantovu jednačinu 9y+78k=147, gdje je k parametar. $NZD(78,9)=3 \land 3 \mid 69$. Zaključujemo da je diofantova jednačina rješiva, i očekujemo 3 tipična rješenja. Podijelimo diofantovu jednačinu sa 3, dobijamo 3y+26k=23. Proširenim euklidovim algoritmom dobijemo $1=9\cdot 3-1\cdot 26$. Pa je $y=207+26t, t\in Z$. Za t=-7, t=-6, t=-5 dobijamo tipična rješenja ove kongruencije:

$$y = 25, y = 51, y = 77$$

Najmanje tipično rješenje je y = 25, pa možemo također pisati:

$$y \equiv 25 \pmod{26}$$

Da ne bi morali za svako tipično rješenje računati sistem, pišemo općenito $y=25+26t, t\in Z$. Isti izraz vraćamo u prvu kongruenciju tj.

$$2x - 3y \equiv -85 \pmod{78} \rightarrow 2x \equiv -10 + 78t \pmod{78}$$

 $2x \equiv -10 \pmod{78}$

Odgovarajuća diofantova jednačina je 2x+78k=-10, gdje je k parametar. $NZD(78,2)=2 \wedge 2 \mid 10$, dakle diofantova jednačina je rješiva i očekujemo 2 tipična rješenja. Rješenje diofantove jednačine je $x=-5+39t, t \in Z$. Iz rješenja slijedi da za $t=1 \wedge t=2$ imamo tipična rješenja:

$$x = 34, x = 73$$

Najmanje tipično rješenje je x = 34, pa možemo također pisati:

$$x \equiv 34 \pmod{39}$$

Zaključujemo da je rješenje sistema:

$$x \equiv 34 \pmod{39}$$

$$y \equiv 25 \pmod{26}$$

Ili zapisano u vidu tipičnih rješenja; ovaj sistem ima 6 tipičnih rješenja:

$$x = 34$$
, $y = 25$; $x = 34$, $y = 51$; $x = 34$, $y = 77$

$$x = 73, y = 25; x = 73, y = 51; x = 73, y = 77$$