#### PMPP 2015/16



# Design Patterns (2)

#### **Course Schedule**



| 12.10.2015 Introduction to PMPP  13.10.2015 Lecture CUDA Programming 1  19.10.2015 Lecture CUDA Programming 2  20.10.2015 Lecture CUDA Programming 3  26.10.2015 Lecture Parallel Basics, Exercise 1 assigned  27.10.2015 Questions and Answers (Q&A), S3 19, Room 2.8  2.11.2015 Intro Final Proj., Ex. 1 due, Ex. 2 assigned, Lecture PRAM  3.11.2015 Lecture PRAM (2)  9.11.2015 Final Projects assigned, L. Parallel Sort., Exercise 2 due  10.11.2015 Questions and Answers (Q&A)  16.11.2015 Questions and Answers (Q&A)  17.11.2015 Questions and Answers (Q&A)  23.11.2015 1st Status Presentation Final Projects  24.11.2015 1st Status Presentation Final Projects (continued)  30.11.2015 Questions and Answers (Q&A) |            |                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------|
| 19.10.2015 Lecture CUDA Programming 2 20.10.2015 Lecture CUDA Programming 3 26.10.2015 Lecture Parallel Basics, Exercise 1 assigned 27.10.2015 Questions and Answers (Q&A), S3 19, Room 2.8 2.11.2015 Intro Final Proj., Ex. 1 due, Ex. 2 assigned, Lecture PRAM 3.11.2015 Lecture PRAM (2) 9.11.2015 Final Projects assigned, L. Parallel Sort., Exercise 2 due 10.11.2015 Questions and Answers (Q&A) 16.11.2015 Questions and Answers (Q&A) 17.11.2015 Questions and Answers (Q&A) 23.11.2015 1st Status Presentation Final Projects 24.11.2015 1st Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                         | 12.10.2015 | Introduction to PMPP                                           |
| 20.10.2015 Lecture CUDA Programming 3 26.10.2015 Lecture Parallel Basics, Exercise 1 assigned 27.10.2015 Questions and Answers (Q&A), S3 19, Room 2.8 2.11.2015 Intro Final Proj., Ex. 1 due, Ex. 2 assigned, Lecture PRAM 3.11.2015 Lecture PRAM (2) 9.11.2015 Final Projects assigned, L. Parallel Sort., Exercise 2 due 10.11.2015 Questions and Answers (Q&A) 16.11.2015 Questions and Answers (Q&A) 17.11.2015 Questions and Answers (Q&A) 23.11.2015 1st Status Presentation Final Projects 24.11.2015 Lecture Design Patterns                                                                                                                                                                                             | 13.10.2015 | Lecture CUDA Programming 1                                     |
| 26.10.2015 Lecture Parallel Basics, Exercise 1 assigned 27.10.2015 Questions and Answers (Q&A), S3 19, Room 2.8 2.11.2015 Intro Final Proj., Ex. 1 due, Ex. 2 assigned, Lecture PRAM 3.11.2015 Lecture PRAM (2) 9.11.2015 Final Projects assigned, L. Parallel Sort., Exercise 2 due 10.11.2015 Questions and Answers (Q&A) 16.11.2015 Questions and Answers (Q&A) 17.11.2015 Questions and Answers (Q&A) 23.11.2015 1st Status Presentation Final Projects 24.11.2015 1st Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                                                                                                     | 19.10.2015 | Lecture CUDA Programming 2                                     |
| 27.10.2015 Questions and Answers (Q&A), S3 19, Room 2.8  2.11.2015 Intro Final Proj., Ex. 1 due, Ex. 2 assigned, Lecture PRAM  3.11.2015 Lecture PRAM (2)  9.11.2015 Final Projects assigned, L. Parallel Sort., Exercise 2 due  10.11.2015 Questions and Answers (Q&A)  16.11.2015 Questions and Answers (Q&A)  17.11.2015 Questions and Answers (Q&A)  23.11.2015 1st Status Presentation Final Projects  24.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                   | 20.10.2015 | Lecture CUDA Programming 3                                     |
| 2.11.2015 Intro Final Proj., Ex. 1 due, Ex. 2 assigned, Lecture PRAM 3.11.2015 Lecture PRAM (2) 9.11.2015 Final Projects assigned, L. Parallel Sort., Exercise 2 due 10.11.2015 Questions and Answers (Q&A) 16.11.2015 Questions and Answers (Q&A) 17.11.2015 Questions and Answers (Q&A) 23.11.2015 1st Status Presentation Final Projects 24.11.2015 1st Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                     | 26.10.2015 | Lecture Parallel Basics, Exercise 1 assigned                   |
| 3.11.2015 Lecture PRAM (2) 9.11.2015 Final Projects assigned, L. Parallel Sort., Exercise 2 due 10.11.2015 Questions and Answers (Q&A) 16.11.2015 Questions and Answers (Q&A) 17.11.2015 Questions and Answers (Q&A) 23.11.2015 1st Status Presentation Final Projects 24.11.2015 1st Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                                                                                          | 27.10.2015 | Questions and Answers (Q&A), S3 19, Room 2.8                   |
| 9.11.2015 Final Projects assigned, L. Parallel Sort., Exercise 2 due 10.11.2015 Questions and Answers (Q&A) 16.11.2015 Questions and Answers (Q&A) 17.11.2015 Questions and Answers (Q&A) 23.11.2015 1st Status Presentation Final Projects 24.11.2015 1st Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                                                                                                                     | 2.11.2015  | Intro Final Proj., Ex. 1 due, Ex. 2 assigned, Lecture PRAM     |
| 10.11.2015 Questions and Answers (Q&A) 16.11.2015 Questions and Answers (Q&A) 17.11.2015 Questions and Answers (Q&A) 23.11.2015 1st Status Presentation Final Projects 24.11.2015 1st Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.11.2015  | Lecture PRAM (2)                                               |
| 16.11.2015 Questions and Answers (Q&A) 17.11.2015 Questions and Answers (Q&A) 23.11.2015 1st Status Presentation Final Projects 24.11.2015 1st Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.11.2015  | Final Projects assigned, L. Parallel Sort., Exercise 2 due     |
| 17.11.2015 Questions and Answers (Q&A) 23.11.2015 1st Status Presentation Final Projects 24.11.2015 1st Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.11.2015 | Questions and Answers (Q&A)                                    |
| 23.11.2015 1 <sup>st</sup> Status Presentation Final Projects 24.11.2015 1 <sup>st</sup> Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.11.2015 | Questions and Answers (Q&A)                                    |
| 24.11.2015 1st Status Presentation Final Projects (continued) 30.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.11.2015 | Questions and Answers (Q&A)                                    |
| 30.11.2015 Lecture Design Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.11.2015 | 1 <sup>st</sup> Status Presentation Final Projects             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.11.2015 | 1 <sup>st</sup> Status Presentation Final Projects (continued) |
| 1.12.2015 Questions and Answers (Q&A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.11.2015 | Lecture Design Patterns                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.12.2015  | Questions and Answers (Q&A)                                    |



# (Preliminary) Course Schedule



7.12.2015 Lecture Design Patterns (2), Performance Tuning

8.12.2015 Questions and Answers (Q&A)

14.12.2015 Lecture

15.12.2015 Questions and Answers (Q&A)

11.1.2016 2<sup>nd</sup> Status Presentation Final Projects

12.1.2016 2<sup>nd</sup> Status Presentation Final Projects (continued)

18.1.2016

19.1.2016

25.1.2016

26.1.2016

1.2.2016

2.2.2016

8.2.2016 Final Presentation Final Projects

9.2.2016 Final Presentation Final Projects (continued)



## Final Projects – Second Presentation



- second presentation on 11.01.2016 and 12.01.2016
  - present the current status of your project
  - discuss planned next steps
  - discuss open issues
  - DO NOT present the topic and the approach you plan to use once more
  - 7 minutes per group (!)
- slides must be submitted no later than 10 am on 11.01.2016
  - one presentation per group (not per topic)
- everybody should give a portion of the presentation
- mandatory (talk to us if this is a problem)



#### **Written Exam**



- Date for the exam will be 02.03.2016, starting at 2pm
  - do not forget to register in TuCAN!
- Rooms: S101/A1 and S101/A01
- The exam will be in English only
- overlap with exam "Communication Networks 2" will be resolved by an addition exam slot for CN2
  - exceptional, one-time solution only
  - thanks to Prof. Steinmetz and his team



# **Design Spaces**





from Patterns for Parallel Programming by Mattson, Sanders, and Massingill



# **Design Spaces and Design Patterns**



- finding concurrency
  - programmer working in the problem domain to identify available concurrency and expose it in the algorithm design
  - → task decomposition pattern
  - → data decomposition pattern
  - → group tasks pattern
  - →order tasks pattern
  - → data sharing pattern
  - → design evaluation pattern





# **Design Spaces and Design Patterns**



- algorithm structure
  - programmer working with high-level structures for organizing a parallel algorithm
  - →task parallelism pattern
  - → divide and conquer pattern
  - → geometric decomposition pattern
  - → recursive data pattern
  - → pipeline pattern
  - →event-based coordination pattern





# **Design Spaces and Design Patterns**



- supporting structures
  - shift from algorithms to source code
  - organization of parallel program
  - techniques to manage shared data
  - →SPMD pattern
  - → master/worker pattern
  - →loop parallelism pattern
  - →fork/join pattern
  - → shared data pattern
  - → shared queue pattern
  - → distributed array pattern
  - →...





# **Design Spaces (and Design Patterns)**



- implementation mechanisms
  - specific software constructs for implementing a parallel program
  - →UE management
  - → synchronization
  - **→**communication





# **Design Spaces**





# **Finding Concurrency**





- typically an iterative process
- opportunities exist for dependence analysis to play earlier role in decomposition



# **Design Spaces**





#### **Algorithm**



- a step by step procedure that is guaranteed to terminate, such that each step is precisely stated and can be carried out by a computer
  - definiteness: the notion that each step is precisely stated
  - effective computability: each step can be carried out by a computer
  - finiteness: the procedure terminates
- multiple algorithms can be used to solve the same problem
  - some require fewer steps and some exhibit more parallelism



# **Algorithm Structure**



Organize by Tasks

Task Parallelism

Divide and Conquer

Organize by Data

Geometric Decomposition

Recursive Data Decomposition

Organize by Flow

Pipeline

**Event Condition** 

- important to re-evaluate the design
  - especially suitability for the target platform



# **Algorithm Structure – Main Forces**



- efficiency
  - program should run quickly and make good use of resources
- simplicity
  - easy to understand code (develop, debug, verify, modify)
- portability
  - should run on a wide range of computers
  - lifetime of program typically longer than lifetime of computer
  - protects investment in software
- scalability
  - effective for a wide range of processing elements (PE)



## **Algorithm Structure – Main Forces**



- possible conflicts
- efficiency vs. portability
  - using special hardware features yields efficient but not portable code
- efficiency vs. simplicity
  - e.g., task parallelism may require complicated scheduling
- →overall goals
  - →balance between abstraction, portability and
  - → suitability for a particular target platform



#### **Algorithm Structure – Considerations**



- target platform
  - should ideally not be necessary at that point in the development
  - but required to get efficient code
- order of magnitude of UEs
  - e.g., 10s or 1000s
- cost of sharing information between UEs
  - shared memory?
- programming environment
  - often multiple environments available for the platform



#### **Algorithm Structure – Considerations**



- major organizing principle
  - should emerge from the finding concurrency design space
- organization by tasks
  - only one group of tasks active at a time
  - interaction between tasks is major feature
  - e.g., embarrassingly parallel programs
- organization by data decomposition
  - e.g., update of a large data structure as main feature of the program
- organization by flow of data
  - e.g., continuous or discrete flow of data
- or a combination of the above









- organize by task
- execution of tasks best organizing principle
- set of tasks enumerated linear in any number of dimensions
  - task parallelism
- recursive task enumeration
  - divide and conquer







- organize by data decomposition
- data decomposition best organizing principle
- program decomposed into discrete subspaces, solutions computed independently interacting with a small number of neighbors
  - geometric decomposition
- problem defined as following links in a recursive data structure
  - → recursive data







- organize by flow of data
- flow of data imposes an ordering on groups of tasks
- regular, one-way flow of data which doesn't change during execution
  - pipeline
- irregular, dynamic, not predictable flow of data
  - event driven





# **Algorithm Structure**



Organize by Tasks

Task Parallelism

Divide and Conquer

Organize by Data

Geometric Decomposition

Recursive Data Decomposition

Organize by Flow

Pipeline

**Event Condition** 

- important to re-evaluate the design
  - especially suitability for the target platform



# **Supporting Structures**



**Program Models** SPMD Master/Worker Loop Parallelism Fork/Join

Data Models

Shared Data

Shared Queue

Distributed Array

supporting structures not necessarily mutually exclusive



#### **Program Models**



- SPMD (Single Program, Multiple Data)
  - all PE's execute the same program in parallel, but each has its own data
  - each PE uses a unique ID to access its portion of data
  - different PE can follow different paths through the same code
  - essentially the CUDA grid model
  - SIMD/SIMT are special cases, SIMT corresponds to a CUDA warp
- master/worker
  - master creates a set of worker processes/threads and a bag of tasks
  - tasks are processed by the workers



#### **Program Models**



- loop parallelism
  - runtime of serial program dominated by a set of compute-intensive loops
  - different iterations of the loop are executed in parallel
- fork/join
  - main UE forks off other UEs working in parallel
  - often forking UE waits for other UEs to terminate and join
- → master/worker can be implemented using the SPMD or fork/join pattern
- → patterns not exclusive, not unique
- → describe major idioms used by experienced programmers



#### **Data Structures**



- shared data
  - all threads share a major data structure
  - this is what CUDA supports
  - general problem of handling shared data
  - correctness and performance issues
- shared queue
  - all threads see a "thread safe" queue that maintains ordering of data communication
- distributed array
  - decomposed and distributed among threads
  - limited support in CUDA Shared Memory



# **Supporting Structures: Forces**



- clarity of abstraction
  - algorithm clearly apparent from the source code?
- scalability
- efficiency
- maintainability
- environment affinity
  - does the program fit the hardware and programming environment
- sequential equivalence
  - equivalent results to sequential execution if executed on many UEs?
  - relationship sequential/parallel clear?



# **Review: Algorithm Structure**





# Algorithm Structures vs. Coding Styles



|                          | SPMD | loop<br>parallelism | master/<br>worker | fork/join |
|--------------------------|------|---------------------|-------------------|-----------|
| task<br>parallelism      | ©©©© | ©©©©                | ©©©©              |           |
| divide and conquer       | ©©©  | ©©                  |                   | ©©©©      |
| geometric decomposition  | ©©©© |                     | <b>©</b>          |           |
| recursive data           | ©©   |                     |                   |           |
| pipeline                 | ©©©  |                     | <b>©</b>          | 0000      |
| event-based coordination | ©©   |                     | <b>©</b>          | 0000      |

**CUDA** 

Source: Mattson et al.



# **Design Spaces (and Design Patterns)**



- implementation mechanisms
  - specific software constructs for implementing a parallel program
  - →UE management
  - → synchronization
  - **→**communication





## Implementation Mechanisms



- low level operations unique to parallel programming
- only small subset used by most programmers
- UE management
  - how processes and threads are created, managed, destroyed
- synchronization
  - enforce ordering between events
  - correct access to shared data structures
- communication
  - information exchange between UEs
- depends highly on the target platform



#### Implementation Mechanisms



- UE management
  - process: heavyweight object with its own state/context
  - thread: lightweight object, part of a process
  - CUDA threads: extremely lightweight
- device threads handled in CUDA as kernel
- host threads in CUDA using, e.g., cutStartThread
  - maps to native host threads



## Implementation Mechanisms



- synchronization
- memory synchronization for shared memory access
  - ensure that different threads see the same memory content
  - fences
  - CUDA:
    - volatile shared memory
    - syncthreads command (barrier synchronization)
- barrier synchronization
  - all UEs must arrive at this point before proceeding with computation
  - CUDA: e.g., syncthreads command
- mutual exclusion
  - only one UE can process a critical section
  - CUDA: e.g., atomic operations



#### Implementation Mechanism



- communication
- message passing between pairs of UEs
- collective communication
  - broadcast
    - single message sent to all UEs
  - barrier
    - synchronization mechanism that can be implemented using collective communication
  - reduction
    - combine collection of results from multiple UEs



# **Design Spaces**







#### **Recommended Reading**



- Chapters 3, 4, 5, and 6 of Patterns for Parallel Programming by Mattson, Sanders, and Massingill
  - finding concurrency
  - algorithm structure
  - supporting structures
  - implementation mechanisms

