Algèbre de Lie-Jordan Rapport de stage

Léo Reynaud

Centre de Physique Théorique Université d'Aix Marseille

juin-juillet 2021

sous la direction de Mr Michel Vittot

Produit de Lie

Crochet de Lie : [x,y]

Loi de composition interne bilinéaire, antisymétrique et qui vérifie la relation de Jacobi.

$$\{\{f,g\}h\} + \{\{g,h\}f\} + \{\{h,f\}g\} = 0$$

Exemple

Produit vectoriel $f \times g$

Commutateur [v, w] = vw - wv

Crochet de poisson $\{f,g\}_{\pi}$

Notation

 $v \equiv [v, \cdot]$ le produit de Lie avec v

Produit de Jordan

Définition

La multiplication de Jordan $(x \cdot y)$ est une mutliplication interne munie de deux propriétés :

- -Elle est commutative $\rightarrow x \cdot y = y \cdot x$
- -Elle vérifie l'identité de Jordan $\to (x \cdot y) \cdot (x \cdot x) = x \cdot (y \cdot (x \cdot x))$

Exemple

Symétrisation du produit matricielle : $x \cdot y = \frac{xy + yx}{2}$

Notation

$$v \equiv v \cdot \dots$$
 le produit de Jordan avec v

Algèbre de Lie Jordan

Soit un espace vectoriel $\mathbb V$ muni des multiplications de Lie et Jordan $\overset{\ \ \, }{\underset{\ \ \, }{}}$ et $\overset{\ \ \, }{\underset{\ \ \, }{}}$. Pour construire notre algèbre il nous faut en plus trois hypothèses.

$$\text{Hypoth\`ese 1 : Lie-Jordan} \quad \left[\begin{matrix} v \\ - \end{matrix}, \begin{matrix} w \\ + \end{matrix} \right] = \begin{matrix} v \\ - \end{matrix} \\ \begin{matrix} w \\ + \end{matrix}$$

Hypothèse 2 : Jacobi pour Lie
$$[\underbrace{v}, \underbrace{w}] = \underbrace{vw}_{-}$$

Hypothèse 3 : Jacobi pour Jordan
$$\begin{bmatrix} v, w \\ + \end{bmatrix} = -\hbar^2 \begin{bmatrix} v, w \end{bmatrix}$$

avec \hbar une constante "quelconque".

Algèbre de Lie Jordan dans le cas quantique

Soit $\mathbb V$ notre algèbre des observables et $H\in \mathbb V$ notre hamiltonien. Pour $v\in \mathbb V$ une observable quelconque nous avons comme définition de produit de Lie et de Jordan :

Produit de Lie avec H :
$$\frac{HV = \frac{H \cdot V - V \cdot H}{2i\hbar} }{HV = \frac{H \cdot V + V \cdot H}{2} }$$
 Produit de Jordan avec H :
$$\frac{HV = \frac{H \cdot V + V \cdot H}{2} }{HV = \frac{H \cdot V + V \cdot H}{2} }$$

Nouvelle définition de la dérivé.

On ne sort pas de l'espace des observable.

Flot dynamique

Une fois le produit de Lie et de Jordan défini, il est plutôt facile de calculer le flot d'une observable.

Flot d'une observable v

$$V = e^{t \cdot H} V_0$$

$$\dot{V} = HV$$

$$\dot{V} = \frac{[H,V]}{2i\hbar}$$

Oscillateur harmonique quantique

$$H = \frac{p^2}{2m} + \frac{1}{2}mw^2x^2$$

$$x = e^{t \cdot H} x_0$$

$$\dot{x} = Hx$$

$$\dot{x} = \frac{\left[H, x\right]}{2i\hbar}$$
 avec $\left[H, x\right] = -\frac{i\hbar}{m}p$

$$\dot{x} = -\frac{p}{2m}$$

Les États

Soit un $\mathbb V$ un \hbar -Lie-Jordan espace vectoriel.

$$\forall \sigma \in \mathbb{V}^* \to \sigma(V) \in \mathbb{R}$$
$$\tilde{\sigma}(V, W) \equiv \sigma(VW) - (\sigma V) \cdot (\sigma W)$$

Les états sont donc des covecteurs normés et définis positifs :

Définition d'un etat

$$\mathbb{S} \equiv \{ \sigma \in \mathbb{V}^* \quad tq \quad \tilde{\sigma}(V,V) + \tilde{\sigma}(W,W) \geq 2\hbar \mid \sigma(\underset{-}{V}W) \mid \}$$

Théorème Heisenberg-Schrodinger

$$\tilde{\sigma}(A,A) \cdot \tilde{\sigma}(B,B) \ge \hbar^2 \sigma(AB)^2 + \tilde{\sigma}(A,B)^2$$

État pur, État mixte

Théorème

L'ensemble des états $\mathbb S$ est convexe dans $\mathbb V^*$.

$$\forall \sigma, \tau \in \mathbb{S}, \forall \lambda \in [0, 1] \Rightarrow \mu \equiv \lambda \sigma + (1 - \lambda)\tau \in \mathbb{S}$$

Les Extremaux d'un convexe sont les σ non strictement inclus dans un segment. On les notes : $\partial \mathbb{S}$. Ce sont les états pures. Et $\mathbb{S} \setminus \partial \mathbb{S}$ sont les états mixtes.

Théorème de Krein Milman

Tout convexe est formé des barycentres des Extremaux :

$$\forall \sigma \in \mathbb{S}, \exists \tau_1, \tau_2, \dots \tau_n \in \partial \mathbb{S}, \exists \lambda_1, \lambda_2 \dots \lambda_n \in [0, 1]$$

tel que
$$\sum_{j=1}^{n} \lambda_j = 1$$
 et $\sigma = \sum_{n} \lambda_n \cdot \tau_n$

Qubit et sphère de Bloch

On cherche les états purs, i.e les éléments extrémaux du convexe

$$E = \left\{ \sigma(V) \in \mathbb{V}^* | \tilde{\sigma}(V, V) = \sigma(\underset{+}{V}V) - (\sigma V)^2 \ge 0; \sigma = \sum_n \lambda_n \cdot \tau_n \right\}$$

$$\sigma(V) = \begin{pmatrix} x & u - iv \\ u + iv & y \end{pmatrix} \Rightarrow \lambda_{\pm} = \frac{x + y \pm \sqrt{(x - y)^2 + 4(u^2 + v^2)}}{2}$$

Or
$$\sigma \in \mathbb{S} \ \Rightarrow \ 0 \le \sqrt{(x-y)^2 + 4(u^2 + v^2)} \le x + y$$

On a donc
$$\sigma(V)$$
 un état si et seulement si :
$$\begin{cases} x,y \geq 0 \\ x+y=1 \\ u^2+v^2 \leq xy \end{cases}$$
 donc l'ensemble des états peut s'écrire

 $E = \left\{ (x, u, v) \in \mathbb{R}^3 | u^2 + v^2 + (x - \frac{1}{2})^2 \le \frac{1}{4} \right\}$ E est une boule de rayon 1/2 centrée en (0, 0, 1/2). Les états purs correspondent alors au bord de cette boule.

Preuve Heisenberg-Schrodinger

Théorème: Heisenberg-Schrodinger.

$$\tilde{\sigma}(A,A) \cdot \tilde{\sigma}(B,B) \geq \hbar^2 \sigma(AB)^2 + \tilde{\sigma}(A,B)^2$$

Preuve:

Prenons $V=A+\lambda\cdot B$, $W=\mu\cdot B$ avec $\lambda,\mu\geq 0$ et injectons dans l'équation d'un état.

$$\tilde{\sigma}(V,V) + \tilde{\sigma}(W,W) \ge 2\hbar \mid \sigma(VW) \mid
\Rightarrow \tilde{\sigma}(A+\lambda \cdot B, A+\lambda \cdot B) + \tilde{\sigma}(\mu \cdot B, \mu \cdot B) \ge 2\hbar\sigma(A+\lambda \cdot B\mu \cdot B)
\Rightarrow \tilde{\sigma}(A,A) + \tilde{\sigma}(\lambda B, \lambda B) + 2\tilde{\sigma}(A,\lambda B) + \tilde{\sigma}(\mu B, \mu B)
\ge 2\hbar \left[\sigma(A,\mu B) + \sigma(\lambda B,\mu B)\right]
\Rightarrow \tilde{\sigma}(A,A) + \lambda^2 \tilde{\sigma}(B,B) + 2\lambda \tilde{\sigma}(A,B) + \mu^2 \tilde{\sigma}(B,B) \ge 2\hbar\mu\sigma(A,B)$$

$$\Rightarrow \lambda = -\frac{\tilde{\sigma}(A, B)}{\tilde{\sigma}(B, B)}$$
$$\frac{\partial}{\partial \mu} \Rightarrow 2\mu \tilde{\sigma}(B, B) = 2\hbar \sigma(A, B)$$

Cherchons maintenant les $\lambda = \lambda_{min}$ et $\mu = \mu_{min}$ pour optimiser l'inégalité.

 $\frac{\partial}{\partial \lambda} \Rightarrow 2\lambda \tilde{\sigma}(B,B) + 2\tilde{\sigma}(A,B) = 0$

Injectons dans l'équation précédente

$$ilde{\sigma}(A,A) + rac{ ilde{\sigma}(A,B)^2}{ ilde{\sigma}(B,B)} - 2rac{ ilde{\sigma}(A,B)^2}{ ilde{\sigma}(B,B)} + \hbar^2rac{ ilde{\sigma}(B,B)}{ ilde{\sigma}(B,B)} \geq 2\hbar^2rac{\sigma(A,B)^2}{ ilde{\sigma}(B,B)} \ \Rightarrow ilde{\sigma}(A,A) \cdot ilde{\sigma}(B,B) \geq \hbar^2\sigma(A,B)^2 + ilde{\sigma}(A,B)^2$$

 $\Rightarrow \mu = \hbar \frac{\sigma(A,B)}{\tilde{\sigma}(B,B)}$

Nous retrouvons bien notre théorème.