Regression Discontinuity Design

May 2025

Reading this week

- MixTape chapter on Regression Discontinuity
- Applied paper:
 - Card et al. The Impact of Nearly Universal Insurance Coverage on Health Care Utilization: Evidence from Medicare

Regression Discontinuity Design (RDD)

- Goal: Estimate some causal effect of a treatment D on some outcome Y
- Cannot compare treated and untreated directly because of selfselection (selection bias)
- What if treatment assignment is based on meeting some threshold?
 - Under some assumptions can identify causal effects
 - RDD formalized this

Example from Card et al.

- Research Question: What is the effect of universal insurance coverage (D) on health care utilization (Y)?
 - Our "treatment": Universal insurance coverage (Medicare)
 - Our outcome Y: Health care Utilization
- Cannot compare those with and without insurance directly:
 - Insurance coverage is "endogenous" (e.g., healthier individuals more likely to have insurance, which affects utilization) Selection bias!
- Age threshold creates an objective change in insurance status that is not influenced by confounding factors ("credible source of exogenous variation")
 - When an individual turns 65, they become eligible for Medicare a change that occurs independently of individual's circumstances

At 65

Two indicators for health insurance coverage:

- Overall coverage increase from at age 65
- Coverage generosity: Proportion with 2 or more insurance policies increased
- The "treatment" assignment (Medicare eligibility) suddenly changes right at the cutoff
- We expect that there will be a discontinuity (a jump) in the outcome right at the cutoff

Changes in "treatment" (insurance coverage) at 65

FIGURE 1. COVERAGE BY ANY INSURANCE AND BY TWO OR MORE POLICIES, BY AGE AND DEMOGRAPHIC GROUP

Discontinuity of outcome (admissions) at cutoff

FIGURE 3. HOSPITAL ADMISSION RATES BY RACE/ETHNICITY

First, terminology

Switching Equation

- 1. Potential outcomes: Y_i^1 , Y_i^0
 - Hypotheticals in worlds with or without treatment
- 2. One of these two is chosen when a treatment, D_i, is chosen according to the switching equation:

$$Y_i = D_i Y_i^1 + (1 - D_i) Y_i^0$$

Y_i is the **observed outcomes**

**we are moving from potential outcomes to observed outcomes based on treatment assignment

Sharp RDD

- Treatment is a deterministic and discontinuous function of running variable, X.
- Example: Medicare Coverage at 65

$$D_i = \begin{cases} 1 & \text{if } X_i \ge c_0 \\ 0 & \text{if } X_i < c_0 \end{cases}$$

Sharp RDD

 Common support problems: there will NEVER be a unit of treatment and control across the running variable

- Requires extrapolation (prediction beyond data support) using models like regression and nonparametric methods by comparing units just below and above the cutoff
 - !! Sensitive to trends, bandwidths, and number of observations
 - !! Model functional form is important

Definition of treatment effect

The treatment effect parameter, δ , is the discontinuity in the conditional expectation function:

$$\delta = \lim_{X_i \to c_0} E[Y_i^1 | X_i = c_0] - \lim_{c_0 \leftarrow X_i} E[Y_i^0 | X_i = c_0]$$
$$= \lim_{X_i \to c_0} E[Y_i | X_i = c_0] - \lim_{c_0 \leftarrow X_i} E[Y_i | X_i = c_0]$$

The sharp RDD estimation is interpreted as an average causal effect (LATE) of the treatment (D) at the discontinuity (c_0)

$$\delta_{SRD} = E[Y_i^1 - Y_i^0 | X_i = c_0]$$

Identifying Assumption: Smoothness (continuity)

- Smoothness of conditional expected potential outcome functions through the cutoff
- Potential outcomes E(Y¹) and E(Y⁰) are on average smoothly changing across the threshold
- Implies that <u>the confounders are also</u> <u>evolving smoothly across the cutoff</u>

Smoothness permits extrapolation

- Smoothness justifies the use of regression models to extrapolate missing potential outcomes from one side of the cutoff to the other
 - NOTE: smoothness does not imply linear
- Average causal effect is defined at the cutoff
- Estimation uses data left and right around the cutoff

Back to the Medicare example...

- Is the smoothness (continuity) assumption valid?
- What else is changing at age 65 other than Medicare eligibility?
 - Retirement change in employment change in utilization
- Need to check if any potential confounders (e.g. employment) is evolving smoothly across the threshold

Test for discontinuities at age 65 for confounding variables (e.g. employment)

Employment Rates of Men by Age and Demographic Group

Notes about evaluating smoothness

Can only check jumps in observable covariables

Other possible violations of the smoothness assumption:

- Assignment rule is known in advance
- Agents are interested in adjusting
- Agents have time to adjust
 - Individuals can sort themselves on the running variable (manipulation)
 - Example: people move just on the other side of the cutoff to be eligible to treatment
 - Solution: density test
- Nonrandom heaping along the running variable
 - Rounding to the nearest integer
 - Solution: donut hole RDD

Estimation

Two ways to estimate the treatment effect at $X = c_0$

- **1. Global/local parametric strategy**: borrow information from observations for from the threshold to estimate the average outcome for observations near the threshold Sensitive to the functional forms
 - Pick the model to fit the data
- 2. Nonparametric kernel methods and local linear regressions less sensitive to functional forms

Potential outcome and nonlinear running variable

- Potential outcomes may not be linear
 higher order
- The non-linearities may be different for E[Y¹] and E[Y⁰]
- Require saturated models in which you include them both individually and interacting them with D

$$E[Y_i^0|X_i] = \alpha + \beta_{01}\tilde{X}_i + \beta_{02}\tilde{X}_i^2 + \dots + \beta_{0p}\tilde{X}_i^p$$

$$E[Y_i^1|X_i] = \alpha + \delta + \beta_{11}\tilde{X}_i + \beta_{12}\tilde{X}_i^2 + \dots + \beta_{1p}\tilde{X}_i^p$$

where X_i is the centered running variable (i.e., $X_i - c_0$).

The switching equation:

$$E[Y \mid X] = E[Y^0 \mid X] + (E[Y^1 \mid X] - E[Y^0 \mid X])D$$

Regression model you estimate is:

$$Y_i = \alpha + \beta_{01}\tilde{x}_i + \beta_{02}\tilde{x}_i^2 + \dots + \beta_{0p}\tilde{x}_i^p$$

+\delta D_i + \beta_1^* D_i\tilde{x}_i + \beta_2^* D_i\tilde{x}_i^2 + \dots + \beta_p^* D_i\tilde{x}_i^p + \varepsilon_i

where
$$\beta_1^* = \beta_{11} - \beta_{01}$$
, $\beta_2^* = \beta_{21} - \beta_{21}$ and $\beta_p^* = \beta_{1p} - \beta_{0p}$

• The parameter of interest, the treatment effect, is the coefficient at c_0 or $\frac{\delta}{\delta}$

Potential problems

- Overfitting with higher order polynomial series → difficult to ensure that the functional form is specified correctly over a large range of data → increased potential for bias (Gelman and Imbens, 2019)
 - Use local linear regressions if possible
- Data intensive

Nonparametric Kernel Methods

- Local linear nonparametric regressions:
 - Weighted regression restricted to a window ("Bandwidth h")
 - Kernel provides the weights
 - Pick the right data to fit a given model

Kernels

- Choose bandwidth h: the neighborhood around the cutoff that will be used to fit the model
- The kernel function assigns non-negative weights to each re-centered observation based on the distance between each observation's running variable score Xi and the cutoff c
- Different kinds of kernel weights:
 - Rectangular: uniform weights equivalent to E[Y] at a given bin on X
 - Triangular draws a straight line from the threshold to the edge of the bandwidth and weights along the line
 - Weights are maximized at the cutoff
 - Epanechnikov is similar but is more like a parabola

Figure: From Cattaneo, et al. (2019)

Challenges

- Sensitive to the choice of bandwidth
 - Need to balance between bias and variance
 - Larger bandwidth: better precision (more data pts), but increased potential for bias

Choose the bandwidth that minimize the mean square error

$$MSE(\widehat{\delta}) = Bias^2(\widehat{\delta}) + Variance(\widehat{\delta})$$

Fuzzy RDD

- Discontinuous "jump" in the probability of treatment when $X > c_0$.
- Not entirely deterministic treatment assignment probabilities nonzero below threshold, and < 1 above.
- Cutoff is used as an instrumental variable for treatment.

Example of fuzzy RDD

• Incentives to participate in a job training program may change discontinuously at the income-eligibility cutoff but are not powerful enough to move everyone from non-participation to participation.

Pros of RDD

- Viewed as very credible among observational designs
 - Credible exogeneity of the treatment at threshold

 With larger dataset, possible to use shorter window (small bandwidth) for estimation → lower bias and lower variance

Cons

- Generalizability: The average causal effect is for those who flipped over to treatment because their X > threshold near the threshold
 - If their treatment effects are profoundly different than anywhere else (even opposing sign), your ability to infer treatment effects elsewhere is limited
- Smoothness assumption
- Manipulation of the running variable
- Sensitivity to sample size and functional form