1- Étude de la transmission d'un signal rectangulaire

3) Le bloc Throttle sert à exécuter le diagramme de flux à la vitesse indiqué dans le bloc variable.

5) Il y a 3 pics de fréquence entre deux amplitudes.

6) Le signal est bien coupé à 10kHz, car le filtre laisse pas passer au-delà de 10kHz

7) Pour 8 kHz:

Pour 6 kHz:

Pour 4 kHz:

Pour 2 kHz:

8) On peut voir que plus la bande passante est faible plus la fidélité du signal est faible. Par exemple, pour une bande passante de 2 kHz le signal ressemble plus à un carré mais à une sinusoïdal.

2- Réalisation d'un synthétiseur universel de signaux

1) Ce diagramme de flux réalise un addition d'un signal sinus et un signal cosinus.

6) Signal triangle

3- Étude de la transmission d'un signal rectangulaire