Devoir Maison n°1

Exercice 1.

a) Calculer la limite de la suite

$$\sum_{m>1} \frac{n}{m} \sin(\frac{1}{nm}) \ .$$

b) Calculer la limite de la suite

$$\int_{\mathbb{R}} \frac{e^{-x^2}}{2\cos(\frac{x}{n}) - 1} \, \mathbb{1}_{\{3|\cos(\frac{x}{n})| \ge 2\}} \, dx \, .$$

c) Ré-exprimer l'intégrale suivante sous la forme d'une série "simple"

$$\int_0^\infty \frac{\sin(ax)}{e^x - 1} dx \ .$$

d) Calculer la limite de la suite

$$\int_0^{+\infty} \frac{\sin(nx^n)}{nx^{n+1/2}} dx \ .$$

Solution de l'exercice 1.

- a) On applique le théorème de convergence dominée dans l'espace mesuré $(\mathbb{N},\mathcal{P}(\mathbb{N}),\mu)$ où μ est la mesure de comptage. Pour $n,m\in\mathbb{N}^*$, soit $f_n(m)=\frac{n}{m}\sin(\frac{1}{nm})$. Cette suite de fonctions mesurables satisfait les hypothèses du théorème de convergence dominée. En effet $|f_n(m)|\leq \frac{1}{m^2}$, le membre de droite est une fonction positive intégrable (d'intégrale $\frac{\pi^2}{6}$) et pour tout $m\geq 1$ $f_n(m)\to_{n\to\infty}\frac{1}{m^2}$. On en déduit $\sum_{m\geq 1}\frac{n}{m}\sin(\frac{1}{nm})=\int_{\mathbb{N}^*}f_nd\mu\to\sum_{m\geq 1}\frac{1}{m^2}=\frac{\pi^2}{6}$.
- b) Soit f_n la fonction à intégrer, et $g_n(x)=\mathbbm{1}_{\{3|\cos(\frac{x}{n})|\geq 2\}}e^{-x^2}$. Ces fonctions boréliennes vérifient pour tout $x\in\mathbb{R}, |f_n(x)|\leq 3g_n(x)\leq 3e^{-x^2}$. La fonction $x\mapsto 3e^{-x^2}$ est intégrable et pour tout $x\in\mathbb{R}$ $f_n(x)\to e^{-x^2}$ quand $n\to\infty$. Par convergence dominée on conclut que $\lim_{n\to\infty}\int_{\mathbb{R}} f_n d\lambda = \int_{\mathbb{R}} e^{-x^2} dx$.
- c) On a

$$\frac{1}{e^x - 1} = e^{-x} \frac{1}{1 - e^{-x}} = e^{-x} \sum_{k \ge 0} e^{-xk} = \sum_{k \ge 1} e^{-xk} .$$

Or
$$\int_0^\infty |\sin(ax)e^{-xk}| dx \leq \int_0^\infty |a|xe^{-xk} dx = |a|\frac{1}{k^2} \; .$$

On peut donc appliquer le théorème de Fubini à la fonction $(k,x)\mapsto \sin(ax)e^{-xk}$ sur l'espace $(\mathbb{N}^*\times(0,\infty),\mathcal{P}(\mathbb{N}^*)\otimes\mathcal{B}((0,\infty)),\mu\otimes\lambda)$ où μ est la mesure de comptage et λ la mesure de Lebesgue :

$$\int_0^\infty \frac{\sin(ax)}{e^x - 1} dx = \sum_{k \ge 1} \int_0^\infty \sin(ax) e^{-xk} dx .$$

Or

$$\int_0^\infty \sin(ax)e^{-xk}dx = \text{Im}\left(\int_0^\infty e^{iax}e^{-xk}dx\right) = \text{Im}\left(\frac{1}{k - ia}\right) = \frac{a}{k^2 + a^2}.$$

D'où

$$\int_0^\infty \frac{\sin ax}{e^x - 1} dx = \sum_{k \ge 1} \frac{a}{k^2 + a^2} .$$

d) En utilisant l'inégalité $|\sin x| \le |x| \land 1$, on obtient la domination

$$\forall x > 0, \forall n \ge 1, |f_n(x)| \le \frac{1}{\sqrt{x}} \mathbb{1}_{\{x < 1\}} + \frac{1}{x^{3/2}} \mathbb{1}_{\{x \ge 1\}}.$$

Ainsi les fonctions f_n sont dominées par une fonction intégrable. Par ailleurs si $x \ge 1$,

$$|f_n(x)| \le \left| \frac{1}{nx^{n+1/2}} \right| \underset{n \to +\infty}{\longrightarrow} 0$$

et si 0 < x < 1, $f_n(x) \xrightarrow[n \to +\infty]{1} \frac{1}{\sqrt{x}}$. Par le théorème de convergence dominée,

$$\lim_{n \to \infty} I_n = \int_0^1 \frac{dx}{\sqrt{x}} = 2.$$

Exercice 2. On souhaite prouver que les fonctions continues à support compact sont denses dans $L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ où λ désigne la mesure de Lebesgue. On admettra le fait suivant : pour tout $A \in \mathcal{B}(\mathbb{R})$

$$\lambda(A) = \inf\{\lambda(O) : O \text{ ouvert }, A \subset O\}$$
$$= \sup\{\lambda(K) : K \text{ compact }, K \subset A\}$$

Dans tout l'exercice, on travaille sur \mathbb{R} .

- a) Soient K un compact et O un ouvert tels que $K \subset O$. Montrer par l'absurde que la distance de K à O^c est strictement positive, c'est-à-dire, $\inf\{|x-y|:x\in K,y\in O^c\}>0$.
- b) Montrer que pour tout compact K et tout ouvert O tels que $K \subset O$ il existe une fonction φ continue à support compact telle que $\mathbf{1}_K \leq \varphi \leq \mathbf{1}_O$.
- c) En déduire que pour tout borélien A de mesure de Lebesgue finie, la fonction $\mathbf{1}_A$ est la limite dans L^1 d'une suite de fonctions continues à support compact.
- d) Montrer que pour toute fonction $f \in L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, il existe une suite de fonctions étagées f_n telles que $||f f_n||_{L^1} \to 0$.

e) En déduire que pour toute fonction $f \in L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, il existe une suite de fonctions continues à support compact φ_n telle que $||f - \varphi_n||_{L^1} \to 0$.

Solution de l'exercice 2.

- a) On suppose que $\inf\{|x-y|:x\in K,y\in O^c\}=0$. Soit $(x_n,y_n)_n$ une suite de points tels que $|x_n-y_n|\to 0$. Comme $(x_n)_n$ appartient au compact K, on peut extraire une sous-suite $(x_{n_k})_k$ qui converge vers $x\in K$. Nécessairement $(y_{n_k})_k$ converge également vers x. Or cette suite appartient au fermé O^c donc $x\in O^c$. Or $K\cap O^c=\emptyset$ d'où la contradiction.
- b) Soit $d(x, O^c)$ la distance entre x et O^c . On peut considérer la fonction

$$x \mapsto (1 - \frac{d(x,K)}{\varepsilon})_+$$

Cette fonction est positive, à support compact et vaut 1 sur K, donc est minorée par $\mathbf{1}_K$. Dès que $\varepsilon < d(K, O^c)$, on voit que cette fonction s'annule sur O^c . Comme elle est bornée par 1, on en déduit que pour de tels ϵ elle est majorée par $\mathbf{1}_O$.

c) Soit A un borélien de mesure de Lebesgue finie. Le fait admis dans l'énoncé assure qu'on peut trouver une suite d'ouverts O_n et une suite de compacts K_n tels que $K_n \subset A \subset O_n$ et $\lambda(O_n \backslash K_n) \leq 1/n$. Par la question précédente, on peut trouver φ_n continue à support compact telle que $\mathbf{1}_{K_n} \leq \varphi_n \leq \mathbf{1}_{O_n}$. Ainsi

$$-\mathbf{1}_{O_n\setminus K_n} \leq -\mathbf{1}_{A\setminus K_n} = \mathbf{1}_{K_n} - \mathbf{1}_A \leq \varphi_n - \mathbf{1}_A \leq \mathbf{1}_{O_n} - \mathbf{1}_A = \mathbf{1}_{O_n\setminus A} \leq \mathbf{1}_{O_n\setminus K_n}.$$

On en déduit que

$$\|\varphi_n - \mathbf{1}_A\|_1 \le \|\mathbf{1}_{O_n \setminus K_n}\|_1 = \mu(O_n \setminus K_n) \le 1/n$$
,

et le résultat s'en suit.

d) On écrit $f = f_+ - f_-$ avec $f_+ := \max(0, f)$ et $f_- = -\max(0, -f)$. On sait qu'il existe deux suites croissantes de fonctions étagées positives g_n et h_n telles que

$$g_n \uparrow f_+$$
, $h_n \uparrow f_-$.

Comme $f \in L^1$, f_+ et f_- sont également dans L^1 , et nécessairement g_n et h_n y sont aussi. Ainsi en posant $f_n := g_n - h_n$ on trouve

$$||f - f_n||_1 < ||f_+ - g_n||_1 + ||f_- - h_n||_1$$

et ces deux termes convergent vers 0 par convergence monotone.

e) Par la question précédente il existe une suite de fonctions étagées f_n convergeant vers f dans L^1 . Pour tout n, f_n est une fonction étagée dans L^1 , c'est donc une combinaison linéaire d'indicatrices de Boréliens dont les mesures de Lebesgue sont *finies*. Ainsi on peut trouver une fonction continue à support compact φ_n telle que $\|f_n - \varphi_n\|_1 \le 1/n$. Ainsi

$$||f - \varphi_n||_1 \le ||f - f_n||_1 + ||f_n - \varphi_n||_1 \le ||f - f_n||_1 + 1/n$$

et le résultat s'en suit.

Exercice 3. On se donne (E,\mathcal{A},μ) un espace mesuré, avec $\mu(E)<+\infty$, f une fonction mesurable de E dans \mathbb{R} , ainsi qu'une suite de fonctions mesurables $(f_n)_{n\geq 1}$ convergeant vers f μ -presque partout. On souhaite prouver le résultat suivant, appelé Théorème d'Egoroff : pour tout $\delta>0$, on peut trouver un ensemble mesurable, dont le complémentaire est de mesure au plus δ , et sur lequel la suite $(f_n)_{n\geq 1}$ converge uniformément vers f.

- a) Soit $\varepsilon > 0$. On définit, pour $n \ge 1$, $A_n^{\varepsilon} = \{x \in E : |f_n(x) f(x)| > \varepsilon\}$. Que vaut $\mu (\limsup_{n \to \infty} A_n^{\varepsilon})$?
- b) En déduire que pour tout $\delta > 0$, il existe $A \in \mathcal{A}$ tel que $\mu(A^c) \leq \delta$ et $N \in \mathbb{N}^*$ tels que

$$\forall n \ge N \quad \forall x \in A \quad |f_n(x) - f(x)| \le \varepsilon.$$

c) En déduire que pour tout $\delta > 0$ il existe $B \in \mathcal{A}$ vérifiant $\mu(B^c) \leq \delta$ et $(f_n)_{n \geq 1}$ converge uniformément vers f sur B.

On remarquera que ce théorème a pour conséquence le fait suivant. Soient a < b deux réels, et $f:]a,b[\to \mathbb{R}$ mesurable. Pour tout $\delta>0$, il existe $A\in \mathcal{B}(]a,b[)$ vérifiant $\lambda(A^c)\leq \delta$ (λ désignant la mesure de Lebesgue) et tel que $f_{|A}$ soit continue. En effet, toute fonction mesurable est limite λ -presque partout d'une suite de fonctions continues à support compact, et l'on peut utiliser le théorème d'Egoroff.

Solution de l'exercice 3.

- a) Soit $x \in \limsup_{n \to \infty} A_n^{\varepsilon}$. Par définition, pour une infinité de $n \geq 1$, $|f_n(x) f(x)| > \varepsilon$ et ainsi $(f_n(x))_{n \geq 1}$ ne converge pas vers f(x), et donc x appartient à l'ensemble C de mesure nulle sur lequel f_n ne converge pas vers f. On a donc prouvé que $\limsup_{n \to \infty} A_n^{\varepsilon} \subset C$ et donc μ ($\limsup_{n \to \infty} A_n^{\varepsilon} = 0$).
- b) Soit $\delta > 0$, il existe $N \ge 1$ tel que $\mu\left(\bigcup_{k \ge N} A_k^{\varepsilon}\right) < \delta$. Ainsi l'ensemble $A := \left(\bigcup_{k \ge N} A_k^{\varepsilon}\right)^c$ vérifie $\mu(A^c) < \delta$ et pour tout $x \in A$, pour tout $n \ge N$

$$|f_n(x) - f(x)| \le \varepsilon.$$

c) Soit $\delta > 0$. Pour tout $k \ge 1$, par la question précédente on peut trouver $A(k) \in \mathcal{A}$ et N(k) > 1 tels que $\mu(A(k)^c) < \delta 2^{-k}$ et

$$\forall n \ge N(k) \quad \forall x \in A(k) \quad |f_n(x) - f(x)| \le 2^{-k}.$$

On pose alors $B := \bigcap_k A(k)$. On remarque que $\mu(B^c) \leq \sum_k \mu(A(k)^c) \leq \delta$. Par ailleurs, pour tout $k \geq 1$ et pour tout $n \geq N(k)$

$$\sup_{x \in B} |f_n(x) - f(x)| < 2^{-k} ,$$

ainsi

$$\lim_{n \to \infty} \sup_{x \in B} |f_n(x) - f(x)| = 0.$$