Х

reviewer4@nptel.iitm.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Data Science for Engineers (course)

Announcements (announcements) About the Course (https://swayam.gov.in/nd1_noc20_cs28/preview)

Ask a Question (forum) Progress (student/home) Mentor (student/mentor)

Unit 6 - Week 4

outime	
How does	s an
NPTEL or	nline
course w	ork?
Week 0	
Week 1	
Week 2	

Course

Optimization for Data Science (unit? unit=30&lesson=31)

Week 3

Week 4

 Unconstrained Multivariate
 Optimization (unit?
 unit=30&lesson=32)

Unconstrained
Multivariate
Optimization (
Continued)
(unit?
unit=30&lesson=33)

Assignment 4

The due date for submitting this assignment has passed. Due on 2020-02-26, 23:59 IST. As per our records you have not submitted this assignment.

1) Consider f(x), if x is the decision variable and f is a function to be minimized, then the type **1** point of optimization problem is

Constrained optimization

Unconstrained optimization

Discrete optimization

None of the above

No, the answer is incorrect.

Score: 0

Accepted Answers:

Unconstrained optimization

2) Match the following

1 point

I. $\min_{ar{x}} f(ar{x})$	a. Equality constraints
II. $s.t h(\bar{x}) = 0$	b. Objective function
III. $g(\bar{x}) > 0$	c. Inequality constraints

□ I - a, II - b , III - c

Gradient (○ I - b , II - a , III - c	
Steepest) Descent (OR)	○ I - a, II - c , III - b	
Learning Rule	○ I - c, II - a , III - b	
(unit? unit=30&lesson=34)	No, the answer is incorrect. Score: 0	
FAQ (unit? unit=30&lesson=35)	Accepted Answers: <i>I - b , II - a , III - c</i>	
	3) In univariate unconstrained optimization the decision variables can be	1 point
Quiz : PracticeAssignment 4		•
(assessment?	Continuous	
name=93)	Integral	
O Quiz :	Continuous or Integral	
Assignment 4	Not defined	
(assessment? name=113)	No, the answer is incorrect. Score: 0	
○ Week 4	Accepted Answers:	
Feedback (unit? unit=30&lesson=117)	Continuous or Integral	
	4) State whether the following statements are true or false with respect to Linear programming	1 point
Solution - Assignment 4	problem	
(unit?	Decision variables are continuous	
unit=30&lesson=122)	II. Objective function is linear	
Week 5	III. Constraints are nonlinear	
	I - True , II - True , III - False	
Week 6	I - True , II - True , III - True	
Week 7	I - False , II - False , III - False	
	I - False , II - True , III - True	
Week 8	No, the answer is incorrect. Score: 0	
Text Transcripts	Accepted Answers: I - True , II - True , III - False	
Download Videos	5) If $f(\bar{x})$ is QUADRATIC function of \bar{x} and $g(\bar{x})$, $h(\bar{x})$ are LINEAR functions of \bar{x} , then the	1 point
	type of optimization problem is	r point
	odual linear programming	
	linear programing	
	quadratic programming	
	none of the above	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	quadratic programming	
	6) The maximization of a function $f(ar{x})$ is equal to the minimization of the function	1 point
	$-f(\bar{x})$	
	$f'(\bar{x})$	
	$f''(\bar{x})$	

 $-f''(\bar{x})$

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $-f(\bar{x})$

7) For an unconstrained optimization problem given below,

1 point

$$\min_{x} f(x)$$

for x^* , to be the minimizer of f(x), the second order necessary condition is

$$f'(x) > 0$$

$$f''(x) < 0$$

$$f''(x) > 0$$

$$f'(x) = 1$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$f''(x) > 0$$

8) If $f(x) = 3x^4 + 2x^3 + 3x^2 + 3$, then the first order necessary condition for either maxima **1** point or minima of f(x) is

$$12x^3 + 6x^2 + 3x = 0$$

$$12x^3 + 6x^2 + 6x = 0$$

$$3x^4 + 2x^3 + 3x^2 = 0$$

$$8x^3 - 18x^2 - 24x = 0$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$12x^3 + 6x^2 + 6x = 0$$

9) For a function $f(x) = x^3 - 12x^2 + 48x - 64 = 0$, which of the following numbers is a **1 point** stationary point of f(x)

2

4

0 1

_ -1

No, the answer is incorrect.

Score: 0

Accepted Answers:

4

10)f a function is strictly increasing what is the minima value?	1 point
O 0	
O -1	
∞	
© 1	
No, the answer is incorrect. Score: 0	
Accepted Answers: -∞	
11) If the derivative of the objective function is a polynomial of order 'N' and has roots which are repeated thrice, then how many stationary points exist for the objective function?	1 point
○ N-1	
○ N-3	
○ N-2	
○ N	
No, the answer is incorrect. Score: 0	
Accepted Answers: N-2	
12For any two points x_1 and x_2 in $[a,b]$ and any λ where $0<\lambda<1$ the convex function is given by	1 point
$f[\lambda x_1 + (1 - \lambda)x_2] \le \lambda f(x_1) + (1 - \lambda)f(x_2)$	
$f[\lambda x_1 + (1 - \lambda)x_2] \ge \lambda f(x_1) + (1 - \lambda)f(x_2)$	
$f[\lambda x_1 + (\lambda)x_2] \ge \lambda f(x_1) + (1 - \lambda)f(x_2)$	
$f[\lambda x_1 + (1 - \lambda)x_2] \le \lambda f(x_1) + (1 + \lambda)f(x_2)$	
No, the answer is incorrect. Score: 0	
Accepted Answers: $f[\lambda x_1 + (1 - \lambda)x_2] \le \lambda f(x_1) + (1 - \lambda)f(x_2)$	
13)Consider a univariate optimization function $f(x)$. If the function satisfies the first order condition and gives an output of the minimum value -5 and the second-order condition gives an output of the minimum value -7. In this where the following value would be considered as a global minimum of $f(x)$	1 point
O -5	
○ -7	
O -12	
© 2	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
	1 point
14)	ι μοιπί

Which of the following statements are true in the univariate optimization?
I. The function f has only one decision variable II. x is a vector variable
Only I is true
Only II is true
Both I and II is true
O None of the above
No, the answer is incorrect. Score: 0 Accepted Answers: Only I is true 15 For a function $f(x) = x^4 - 3x^3 + x^2 + 23$, stationary points which are qualified to be 1 point
minimizers of $f(x)$ are
0,2
0,-2.5
0.25,2
2,-2.5
No, the answer is incorrect. Score: 0 Accepted Answers: 0,2