Privacy risk assessment for mobility data

What's the meaning of privacy?

Privacy has many connotations:

A series of principles
Right to be let alone, to limit access to information etc.

Data privacy
Regulated by national and international laws. Protect an individual's privacy and their personally identifiable information

Why privacy for mobility data is a concern?

- Mobility is a *sensitive* type of information Depending on the location visited, one could infer religious preferences, daily habits, health problems.
- Mobility data is abundant and readily available Location based services, social media access etc.

K-anonymity

- Hide individuals amongst k-1 others
 - Generalization
 - Suppression
- Privacy vs Utility Tradeoff
- NP-Hard
- Vulnerabilities: I-diversity and t-closeness

Key Attribute Quasi-Identifier Sensive Attribute

Name	Birthday	Sex	ZIP	Disease
Andre	1/21/76	Male	53715	Heart Disease
Beth	4/13/86	Female	53715	Hepatitis
Carol	2/28/76	Male	53703	Brochitis
Dan	1/21/76	Male	53703	Broken Arm
Ellen	4/13/86	Female	53706	Flu
Eric	2/28/76	Female	53706	Hang Nail

Structure of an attack

Individual record

UserId	Age	Weight	Heart rate	Pressure	Disease
u ₁	>40	95 kg	110 bpm	150	Arrhythmia

Assumed adversary knowledge

Age	Weight	Heart rate	Pressure
>40	95 kg	110 bpm	150

Removing ids may not be enough

For mobility data

Trajectory example

- Day
$$T = \langle (l_1, t_1), (l_2, t_2), (l_3, t_3) \rangle$$

- Month
$$T = \langle (l_1, t_1), (l_2, t_2), (l_3, t_3), \dots, (l_n, t_n) \rangle$$

- Worst case scenario approach
 - We assume that the adversary knows everything

PRUDEnce privacy framework

Pellungrini et al., A Data Mining Approach to Assess Privacy Risk in Human Mobility Data, ACM TIST 2018

Pratesi et al., PRUDEnce: a System for Assessing Privacy Risk vs Utility in Data Sharing Ecosystems, Transactions on Data Privacy 2018.

Risk definition

- Background knowledge $B=B_1,B_2,...,B_k$
- Background knowledge instance $b \in B_k$
- Probability of re-identification $PR_D(d=u|b) = \frac{1}{|M(D,b)|}$
- Privacy risk $Risk(u,D)=max(PR_D(d=u|t))$

$$M(D,b)=\{d\in D|matching(d,B)=True\}$$

Matching

$$M(D,b)=\{d\in D|matching(d,B)=True\}$$

Location attack

$$matching(d,B) = \begin{cases} true & b \subseteq L(T_u) \\ false & otherwise \end{cases}$$

Frequency attack

$$matching(d,B) = \begin{cases} true & \forall (l_i,wi) \in b, \exists (l_i^d,w_i^d) \in W | l_i = l_i^d \land w_i \leq w_i^d \\ false & \text{otherwise} \end{cases}$$

Defining attacks

- Trajectories
 - Location
 - Sequence
 - Location + time
- Derived structures: frequency and probability vectors
 - Unique locations
 - Frequency
 - Probability
 - Proportion
 - Home and work

Pellungrini et al., Analyzing Privacy Risk in Human Mobility Data, STAF Workshops 2018

An example of real results

 Location attack performed on real gps data from the city of Florence

Computational complexity

- For each individual compute all possible instances of background knowledge
 - For each instance, scan the data
 - Determine match between instance and individuals in the data

• Complexity:
$$O(\binom{len}{k}N*matching)$$

Further extensions

- New attacks
- Anonymization techniques
- Dataset matching algorithms

Coming soon...