Homework 4

Due March 6, 2017

Exercise 1 (Convex projection). Let C be a convex subset of $L_2(\Omega, \mathcal{F}, P)$ (so that $X, Y \in C$ and $a \in [0, 1]$ implies $aX + (1 - 1)^n$ $a)Y \in C$). Suppose also that C is closed. Let $Y \in L_2(\Omega, \mathcal{F}, P)$. Generalize the Projection Theorem by showing that there exists an almost surely unique member of C, denoted $\mathcal{P}_C Y$, such that

$$||Y - \mathcal{P}_C Y||_2 = \inf_{X \in C} ||Y - X||_2.$$
 (1)

Also show that $\mathcal{P}_C Y$ is characterized by the condition that $\mathcal{P}_C Y \in C \ and$

$$\langle Y - \mathcal{P}_C Y, X - \mathcal{P}_C Y \rangle \le 0 \text{ for all } X \in C.$$
 (2)

Exercise 2. Let X_1, X_2, \ldots be an infinite sequence of real random variables on (Ω, \mathcal{A}) such that $\mathcal{A} := \sigma \langle X_n : n \geq 1 \rangle$. Let P and Q be probability measures on (Ω, A) with the following properties: under P the $X_n \stackrel{iid}{\sim} \mathcal{N}(0,1)$, while under Q the $X_n \stackrel{iid}{\sim} \mathcal{N}(\theta_n, 1)$. The goal of this exercise is to show that

$$Q \perp P \iff \lim_{n \to \infty} \tau_n = \infty \tag{3}$$

$$Q \perp P \iff \lim_{n} \tau_{n} = \infty$$

$$Q \ll P \iff \lim_{n} \tau_{n} < \infty$$
(3)

where $\tau_n := \sum_{k=1}^n \theta_k^2$.

(a) Let $A_n := \sigma(X_1, \ldots, X_n)$ and let $P_n = P|_{A_n}$ and $Q_n =$ $Q|_{\mathcal{A}_n}$ be the restrictions of P and Q to \mathcal{A}_n . Show that

$$\frac{dQ_n}{dP_n} = e^{S_n}$$

serves as a density of Q_n with respect to P_n over A_n where $S_n := Y_1 + \cdots + Y_n \text{ with } Y_k := \theta_k X_k - \theta_k^2 / 2.$

- (b) What is the distribution of S_n under P and under Q. Draw a rough sketch of these two distributions for $\tau_n^2 = 25$.
- (c) Suppose $\lim_n \tau_n = \infty$ and show that $Q \perp P$. Hint: Find A-sets A_1, A_2, \dots such that $\lim_n P(A_n^c) = \lim_n Q(A_n) = 0$ and invoke an exercise from STAT235A.
- (d) Suppose $\tau := \lim_n \tau_n < \infty$. Show that under $P, S_n \xrightarrow{P} S$ where S is some random variable with $S \sim \mathcal{N}(-\frac{1}{2}\tau, \tau)$.
- (e) Suppose $\tau := \lim_n \tau_n < \infty$. Show that $\frac{dQ_n}{dP_n} \xrightarrow{L_1(P)} e^S$.
- (f) Suppose $\tau := \lim_n \tau_n < \infty$. Show that $Q \ll P$ with $\frac{dQ}{dP} :=$ e^{S} . Hint: first show that $Q(A) = \int_{A} e^{S_n} dP$ for all $A \in \mathcal{A}_m$ and all $m \leq n$.
- (f) Show (3) and (4).