Classe : Première spécialité mathématiques

Calculatrice :

Durée: 1 heure 20 minutes

Exercice 1 | 5 points

Une association de consommateurs a réalisé une étude de satisfaction auprès des clients de trois fournisseurs internet : Orage, Boggie et Fluide.

- ▶ 70% des clients sont abonnés à Orage et, parmi eux, 80% sont satisfaits.
- ▶ 20% des clients sont abonnés à Boggie et, parmi eux, 90% sont satisfaits.
- ▶ Les autres clients sont abonnés à Fluide et, parmi eux, 60% sont satisfaits.

On choisit un client au hasard.

On considère les évènements O: « Le client est abonné à Orage », B: « Le client est abonné à Boggie », F: « Le client est abonné à Fluide » et S: « Le client est satisfait ».

- **1.** Calculer $\mathbb{P}(S)$.
- 2. Les évènements suivants sont-ils indépendants? Justifier.
 - **a)** O et S.

b) *O* et *B*.

- **c)** *B* et *S*.
- 3. Sachant qu'un client n'est pas satisfait, quelle est la probabilité qu'il soit abonné à Orage?

Correction

- 1. On utilise la formule des probabilités totales : $\mathbb{P}(S) = \mathbb{P}(O) \times \mathbb{P}_O(S) + \mathbb{P}(B) \times \mathbb{P}_B(S) + \mathbb{P}(F) \times \mathbb{P}_F(S) = 0.7 \times 0.8 + 0.2 \times 0.9 + 0.1 \times 0.6 = \boxed{0.8}$.
- 2. a) $\mathbb{P}(O) \times \mathbb{P}(S) = 0.7 \times 0.8 = 0.56$ et $\mathbb{P}(O \cap S) = \mathbb{P}(O) \times \mathbb{P}_O(S) = 0.7 \times 0.8 = 0.56$ Ainsi, $\mathbb{P}(O) \times \mathbb{P}(S) = \mathbb{P}(O \cap S)$ donc O et S sont indépendants.
 - **b)** $\mathbb{P}(O) \times \mathbb{P}(B) = 0.7 \times 0.2 = 0.14 \text{ et } \mathbb{P}(O \cap B) = 0$ Ainsi, $\mathbb{P}(O) \times \mathbb{P}(B) \neq \mathbb{P}(O \cap B)$ donc O et S ne sont pas indépendants.
 - c) $\mathbb{P}(B) \times \mathbb{P}(S) = 0.2 \times 0.8 = 0.16$ et $\mathbb{P}(B \cap S) = \mathbb{P}(B) \times \mathbb{P}_B(S) = 0.2 \times 0.6 = 0.12$ Ainsi, $\mathbb{P}(B) \times \mathbb{P}(S) \neq \mathbb{P}(B \cap S)$ donc B et S ne sont pas indépendants.
- **3.** On calcule $\mathbb{P}_{\overline{S}}(O)$.

Or
$$\mathbb{P}_{\overline{S}}(O) = \frac{\mathbb{P}(O \cap \overline{S})}{\mathbb{P}(\overline{S})} = \frac{0.7 \times 0.2}{0.2} = 0.7.$$

Exercice 2 | 6 points

Dans son rapport du 8 juillet 1999, la Commission Européenne détaille l'évaluation d'un test mis en place pour diagnostiquer la maladie Encéphalopathie Spongiforme Bovine, également appelée « maladie de la vache folle ».

- ► La proportion des réactions positives au test sur des tissus nerveux provenant d'animaux malades est égale à 70%.
- ► La proportion des réactions négatives au test sur des tissus nerveux provenant d'animaux non malades est égale à 90%.

On effectue un dépistage dans un cheptel bovin avec ce test et on choisit un animal au hasard.

On note M: « l'animal est malade » et T: « le test est positif ». Soit x la proportion d'animaux malades dans le cheptel.

- 1. Construire un arbre pondéré traduisant la situation.
- **2.** Exprimer en fonction de *x* la probabilité de l'événement T. Justifier.
- 3. On note $\mathbb{P}_T(M)$ la probabilité que l'animal soit malade sachant que son test est positif. Montrer que $\mathbb{P}_T(M) = \frac{7x}{6x+1}$.
- **4.** Soit f la fonction définie sur l'intervalle [0;1] par :

$$f(x) = \frac{7x}{6x+1}$$

Résoudre sur l'intervalle [0;1] l'inéquation $f(x) \ge 0.9$ et interpréter le résultat dans le contexte de l'exercice.

Correction

1. L'arbre pondéré en question :

2. On utilise la formule des probabilités totales :

$$\begin{split} \mathbb{P}(T) &= \mathbb{P}(M) \times \mathbb{P}_{\overline{M}}(T) + \mathbb{P}(M) \times \mathbb{P}_{\overline{M}}(T) \\ &= x \times 0.7 + (1 - x) \times 0.1 \\ &= 0.7x + 0.1 - 0.1x \\ &= \boxed{0.6x + 0.1} \end{split}$$

3. On revient à la définition de $\mathbb{P}_T(M)$ et on utilise l'arbre pour conclure.

$$\mathbb{P}_T(M) = \frac{\mathbb{P}(M \cap T)}{\mathbb{P}(T)} = \frac{0.7x}{0.6x + 0.1} = \frac{7x}{6x + 1}$$

4. Nous pouvons résoudre graphiquement l'inéquation $f(x) = \frac{7x}{6x+1} \ge 0.9$ ou bien utiliser une méthode algébrique. Notons que sur [0;1], $6x+1 \ge 0$. Ainsi :

$$\frac{7x}{6x+1} \ge 0.9$$

$$\Leftrightarrow 7x \ge 0.9(6x+1)$$

$$\Leftrightarrow 7x \ge 5.4x + 0.9$$

$$\Leftrightarrow 1.6x \ge 0.9$$

$$\Leftrightarrow 16x \ge 9$$

$$\Leftrightarrow x \ge \frac{9}{16} = 0.5625$$

Sur [0;1],
$$f(x) \ge 0.9$$
 a pour solutions l'ensemble $\mathscr{S} = [0.5625;1]$

Dans le contexte du problème, on a $\mathbb{P}_T(M) \ge 0.9$ si et seulement si $x \in [0.5625;1]$, c-à-d, la probabilité d'être malade sachant que le test est positif est supérieure ou égale à 0.9 si et seulement si $0.5625 \le x \le 1$.

Exercice 3 | 9 points

On considère une maladie génétique humaine due à la présence d'un gène spécifique noté M réparti dans la population indépendamment du sexe, et on suppose que seuls les porteurs de la combinaison homozygote MM développent la maladie.

Les porteurs de la combinaison MX (où X désigne un allèle autre que M) sont des porteurs sains (c'est-à-dire qu'ils ne développent pas la maladie).

Par ailleurs, le père et la mère transmettent chacun un allèle à leur enfant de manière équiprobable. Par exemple, si le père et la mère sont porteurs de la combinaison MX, on peut résumer ainsi les possibilités de génotype pour l'enfant :

		Allèle transm	is par le père
		M	X
Allèle transmis	M	MM (malade)	MX (porteur sain)
par la mère	X	MX (porteur sain)	XX (non porteur)

- 1. Dans cette question, on suppose que la maladie est telle que les personnes porteuses de la combinaison homozygote ne peuvent pas avoir d'enfant. On appelle f la proportion de malades et s la proportion de porteurs sains.
 - a) Montrer à l'aide d'un arbre pondéré que f et s vérifient la relation $f = \frac{s^2}{4}$ et en déduire l'expression de s en fonction de f.
 - b) La mucoviscidose est une maladie correspondant approximativement à ce modèle.
 En France, environ 1 enfant sur 2 000 en est atteint. Quelle est la proportion des porteurs sains du gène responsable de cette maladie en France?
- 2. On suppose à présent que les personnes malades peuvent avoir des enfants.
 - a) Montrer à l'aide d'un arbre pondéré que la probabilité qu'un enfant soit malade est égale à $f^2 + fs + \frac{s^2}{4}$.
 - **b)** Expliquer pourquoi on doit avoir $f^2 + fs + \frac{s^2}{4} = f$ et en déduire que $s = 2(\sqrt{f} f)$.
 - c) L'hémochromatose génétique est une maladie correspondant à ce modèle. La fréquence de cette maladie est de $\frac{5}{1\,000}$.

Quelle est la proportion des porteurs sains du gène responsable de cette maladie en France?

Correction

1. a) Les porteurs ne peuvent pas avoir d'enfant. Ainsi, les seuls parents qui peuvent transmettre l'allèle M sont les MX. Un parent MX et un parent XX ne pourront faire un enfant malade.

Donc, on peut construire l'arbre pondéré correspondant à deux parents MX comme dans le tableau donné en exemple. Nous écrirons l'allèle de la mère puis du père.

Ainsi, **sachant que les parents sont MX et MX**, l'enfant a une probabilité de $\frac{1}{4}$ d'être MM. C'est une probabilité conditionnelle : la probabilité d'avoir des parents MX et MX est, elle, de $s \times s = s^2$.

Donc,
$$\mathbb{P}(MM) = s^2 \times \frac{1}{4} = \frac{s^2}{4}$$
.

D'autre part, on sait que la proportion de personnes malades est f, on le retrouve donc chez les enfants et ainsi,

$$\mathbb{P}(MM) = f$$
. C'est-à-dire, $f = \frac{s^2}{4}$ ou $s = \sqrt{4f} = 2\sqrt{f}$.

b) Si
$$f = \frac{1}{2000}$$
, alors $s = 2\sqrt{\frac{1}{2000}} \approx 0.045$.

2. a) Les porteurs peuvent avoir des enfants. Pour construire un arbre complet, on peut considérer successivement les combinaisons de la mère et du père puis de l'enfant.

On calcule à nouveau $\mathbb{P}(MM)$ à partir de l'arbre. 4 chemins amènent à MM.

$$\mathbb{P}(MM) = f \times f \times 1 + f \times s \times \frac{1}{2} + s \times f \times \frac{1}{2} + s \times s \times \frac{1}{4}$$
$$= f^2 + fs + \frac{s^2}{4}$$

b) On sait que la proportion d'enfant malade est f donc $\mathbb{P}(MM) = f$. Donc $f = f^2 + fs + \frac{s^2}{4}$

On reconnaît une équation en s de degré 2, $f = f^2 + fs + \frac{s^2}{4} \Leftrightarrow \frac{1}{4}s^2 + fs + (f^2 - f) = 0$. On peut tester que $s = 2(\sqrt{f} - f)$ est une solution ou résoudre l'équation. Faisons-le :

Le discriminant est $\Delta = f^2 - 4 \times \frac{1}{4} \times (f^2 - f) = f > 0$. La seule solution positive est $s = \frac{-f + \sqrt{f}}{2 \times \frac{1}{4}} = 2(\sqrt{f} - f)$

c) Si
$$f = \frac{5}{1000}$$
, alors $s = 2\left(\sqrt{\frac{5}{1000}} - \frac{5}{1000}\right) \simeq \boxed{0,131}$.