Week_5_assignment_starter

March 2, 2024

1 DS Automation Assignment

Using our prepared churn data from week 2: - use pycaret to find an ML algorithm that performs best on the data - Choose a metric you think is best to use for finding the best model; by default, it is accuracy but it could be AUC, precision, recall, etc. The week 3 FTE has some information on these different metrics. - save the model to disk - create a Python script/file/module with a function that takes a pandas dataframe as an input and returns the probability of churn for each row in the dataframe - your Python file/function should print out the predictions for new data (new_churn_data.csv) - the true values for the new data are [1, 0, 0, 1, 0] if you're interested - test your Python module and function with the new data, new_churn_data.csv - write a short summary of the process and results at the end of this notebook - upload this Jupyter Notebook and Python file to a Github repository, and turn in a link to the repository in the week 5 assignment dropbox

Optional challenges: - return the probability of churn for each new prediction, and the percentile where that prediction is in the distribution of probability predictions from the training dataset (e.g. a high probability of churn like 0.78 might be at the 90th percentile) - use other autoML packages, such as TPOT, H2O, MLBox, etc, and compare performance and features with pycaret - create a class in your Python module to hold the functions that you created - accept user input to specify a file using a tool such as Python's input() function, the click package for command-line arguments, or a GUI - Use the unmodified churn data (new_unmodified_churn_data.csv) in your Python script. This will require adding the same preprocessing steps from week 2 since this data is like the original unmodified dataset from week 1.

```
[1]: #Import all the required modules

import pandas as pd
from pycaret.classification import *
import pickle

[2]: # Import the churn dataset

df = pd.read_csv('churn_data.csv')
df
```

	2	3668-QPYBK	2	Yes	Month-to-	month			
	3	7795-CFOCW	45	No	One	year			
	4	9237-HQITU	2	Yes	Month-to-	month			
		•••			•••				
	7038	6840-RESVB	24	Yes	One	year			
	7039	2234-XADUH	72	Yes	One	year			
	7040	4801-JZAZL	11	No	Month-to-	month			
	7041	8361-LTMKD	4	Yes	Month-to-	month			
	7042	3186-AJIEK	66	Yes	Two	year			
			${\tt PaymentMethod}$	Month	lyCharges	Total	Charges	Churn	
	0	El	ectronic check		29.85		29.85	No	
	1		Mailed check		56.95		1889.50	No	
	2		Mailed check		53.85		108.15	Yes	
	3	Bank transf	er (automatic)		42.30		1840.75	No	
	4	El	ectronic check		70.70		151.65	Yes	
			***		•••				
	7038		Mailed check		84.80		1990.50	No	
	7039	Credit ca	rd (automatic)		103.20		7362.90	No	
	7040	E1	ectronic check		29.60		346.45	No	
	7041		Mailed check		74.40		306.60	Yes	
	7042	Bank transf	er (automatic)		105.65		6844.50	No	
	Γ7043	rows x 8 co	lumnsl						
:	# dro	p the record	ls with null va	lues					
		/· -							
		opna(inplace	e=True)						
	df								
:		customerID	tenure PhoneSe	ervice	Con	tract	\		
	0	7590-VHVEG	1		Month-to-		•		
	1	5575-GNVDE	34	Yes		year			
	2	3668-QPYBK	2	Yes	Month-to-	•			
	3	7795-CFOCW	45	No		year			
	4	9237-HQITU	2	Yes	Month-to-	•			
	•••	•••	•••		•••				
	7038	6840-RESVB	24	Yes	One	year			
	7039	2234-XADUH	72	Yes		year			
	7040	4801-JZAZL	11	No	Month-to-	•			
	7041	8361-LTMKD	4	Yes	Month-to-				
	7042	3186-AJIEK	66	Yes		year			
	-				20	J			
			PaymentMethod	Month	lyCharges	Total	Charges	Churn	
	^	P1			00.05		00.05	NT -	

[3]

[3]

0

1

2

29.85

56.95

53.85

29.85

1889.50

108.15

No

No

Yes

Electronic check

Mailed check

Mailed check

Bank transfer (automatic)	42.30	1840.75	No
Electronic check	70.70	151.65	Yes
•••	•••		
Mailed check	84.80	1990.50	No
Credit card (automatic)	103.20	7362.90	No
Electronic check	29.60	346.45	No
Mailed check	74.40	306.60	Yes
Bank transfer (automatic)	105.65	6844.50	No
	Electronic check Mailed check Credit card (automatic) Electronic check Mailed check	Electronic check 70.70 Mailed check 84.80 Credit card (automatic) 103.20 Electronic check 29.60 Mailed check 74.40	Electronic check 70.70 151.65 Mailed check 84.80 1990.50 Credit card (automatic) 103.20 7362.90 Electronic check 29.60 346.45 Mailed check 74.40 306.60

[7032 rows x 8 columns]

[4]: # drop the customerID and PhoneService columns
df.drop(columns=['customerID', 'PhoneService'], inplace = True)
df

[4]:	tenure	Contract	${\tt PaymentMethod}$	MonthlyCharges	\
0	1	Month-to-month	Electronic check	29.85	
1	34	One year	Mailed check	56.95	
2	2	Month-to-month	Mailed check	53.85	
3	45	One year	Bank transfer (automatic)	42.30	
4	2	Month-to-month	Electronic check	70.70	
•••	•••	•••		•••	
7038	24	One year	Mailed check	84.80	
7039	72	One year	Credit card (automatic)	103.20	
7040	11	Month-to-month	Electronic check	29.60	
7041	4	Month-to-month	Mailed check	74.40	
7042	66	Two year	Bank transfer (automatic)	105.65	

	TotalCharges	Churn
0	29.85	No
1	1889.50	No
2	108.15	Yes
3	1840.75	No
4	151.65	Yes
7038	1990.50	No
7039	7362.90	No
7040	346.45	No
7041	306.60	Yes
7042	6844.50	No

[7032 rows x 6 columns]

[5]: df

[5]: tenure Contract PaymentMethod MonthlyCharges \
0 1 Month-to-month Electronic check 29.85

1		34	One year	Mailed check	56.95
2		2	Month-to-month	Mailed check	53.85
3		45	One year	Bank transfer (automatic)	42.30
4		2	Month-to-month	Electronic check	70.70
•••	•••		•••	•••	•••
7038		24	One year	Mailed check	84.80
7039		72	One year	Credit card (automatic)	103.20
7040		11	Month-to-month	Electronic check	29.60
7041		4	Month-to-month	Mailed check	74.40
7042		66	Two year	Bank transfer (automatic)	105.65

TotalCharges Churn 0 29.85 No 1 1889.50 No 2 108.15 Yes 3 1840.75 No 4 151.65 Yes 7038 1990.50 No 7039 7362.90 No 7040 346.45 No 7041 306.60 Yes 7042 6844.50 No

[7032 rows x 6 columns]

```
[6]: # Set up the PyCaret environment
clf_setup = setup(data=df, target='Churn',session_id = 2209)
```

<pandas.io.formats.style.Styler at 0x22f85a1d460>

```
[7]: # Compare models and choose the best one best_model = compare_models()
```

<IPython.core.display.HTML object>

<pandas.io.formats.style.Styler at 0x22f85c35ee0>

```
Processing: 0%| | 0/61 [00:00<?, ?it/s]
```

The ada boost classifier model was the best model with an accuracy of 0.7850 and recall of 0.7850. It was the second best when ranked on F1 and Kappa metrics too. This makes it undoubtedly the best model for the churn percentage prediction.

```
[8]: # save the model as ML_model.pickle
with open('ML_model.pickle', 'wb') as ml_file:
    pickle.dump(best_model, ml_file)
```

```
[9]: # Load in the new_churn_data.csv file that contains the data to be predicted.
new_churn_data = pd.read_csv('new_churn_data.csv')

# Remove the 'customerID' and 'PhoneService' columns
new_churn_data.drop(columns=['customerID','PhoneService'], inplace = True)
new_churn_data
```

```
[9]:
                                                            MonthlyCharges
                                             PaymentMethod
        tenure
                       Contract
     0
            22
                Month-to-month
                                         Electronic check
                                                                      97.40
     1
             8
                                             Mailed check
                                                                      77.30
                       One year
     2
            28
                Month-to-month
                                  Credit card (automatic)
                                                                      28.25
     3
            62
                Month-to-month
                                         Electronic check
                                                                     101.70
     4
            10
                                  Credit card (automatic)
                       Two year
                                                                      51.15
        TotalCharges
     0
              811.70
     1
             1701.95
```

```
0 811.70
1 1701.95
2 250.90
3 3106.56
4 3440.97
```

<IPython.core.display.HTML object>

[10]: [1, 0, 0, 1, 0]

2 Summary

I used pycaret to find the best ML model to predict the probability of churn. I saved the model and used the saved model to predict new data's probability of churn.

I began by importing all the modules I'll use in this project; pandas, pycaret and pikle to save the ML model. I read in the churn_data.csv that contained the data that will be used for training and testing the models. I removed all the records with null values, and removed the customerID and PhoneService columns since they have very little correlation with the churn probability. I then set up the PyCaret environment specifying the data, target which is the churn column and the session_id.

I compared the models using the compare_models() method and choose the best one. The ada boost classifier model was the best model with an accuracy of 0.7850 and recall of 0.7850. It was the second best when ranked on F1 and Kappa metrics too. This makes it undoubtedly the best model for the churn percentage prediction. I proceeded to use the pickle.dump() method to savethe model as a pickle file.

I created a new python file function.py with a python function probability_of_churn() that takes in a dataframe and uses the saved model to make predictions for the probability of churn. I imported the function and used it to make predictions of the records in new_churn_data.csv. The predictions made were accurate.

[]: