Ex. No.: 10 Date: 10/11/24

<u>A PYTHON PROGRAM TO IMPLEMENT DIMENSIONALITY REDUCTION</u> <u>USING PCA</u>

Aim:

To implement Dimensionality Reduction using PCA in a python program.

Algorithm:

Step 1: Import Libraries

Import necessary libraries, including pandas, numpy, matplotlib.pyplot, and sklearn.decomposition.PCA.

Step 2: Load the Dataset (iris dataset)

Load your dataset into a pandas DataFrame.

Step 3: Standardize the Data

Standardize the features of the dataset using StandardScaler from sklearn.preprocessing.

Step 4: Apply PCA

- Create an instance of PCA with the desired number of components.
- Fit PCA to the standardized data.
- Transform the data to its principal components using transform.

Step 5: Explained Variance Ratio

- Calculate the explained variance ratio for each principal component.
- Plot a scree plot to visualize the explained variance ratio.

Step 6: Choose the Number of Components

Based on the scree plot, choose the number of principal components that explain a significant amount of variance.

Step 7: Apply PCA with Chosen Components

Apply PCA again with the chosen number of components.

Step 8: Visualize the Reduced Data

• Transform the original data to the reduced dimension using the fitted PCA.

231501074 A123331-FOML

• Visualize the reduced data using a scatter plot.

Step 9: Interpretation

Interpret the results, considering the trade-offs between dimensionality reduction and information loss.

PROGRAM:

from sklearn import datasets import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import seaborn as sns iris = datasets.load_iris() df = pd.DataFrame(iris['data'], columns = iris['feature names']) df.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

scalar = StandardScaler()
scaled_data = pd.DataFrame(scalar.fit _transform(df)) #scaling the data scaled_data
sns.heatmap(scaled_data.corr())

	0	1	2	3
0	-0.900681	1.019004	-1.340227	-1.315444
1	-1.143017	-0.131979	-1.340227	-1.315444
2	-1.385353	0.328414	-1.397064	-1.315444
3	-1.506521	0.098217	-1.283389	-1.315444
4	-1.021849	1.249201	-1.340227	-1.315444
***	3225	0220	1.000	1200
145	1.038005	-0.131979	0.819596	1.448832
146	0.553333	-1.282963	0.705921	0.922303
147	0.795669	-0.131979	0.819596	1.053935
148	0.432165	0.788808	0.933271	1.448832
149	0.068662	-0.131979	0.762758	0.790671

<AxesSubplot:>

	PC1	PC2	PC3
0	-2.264703	0.480027	-0.127706
1	-2.080961	-0.674134	-0.234609
2	-2.364229	-0.341908	0.044201
3	-2.299384	-0.597395	0.091290
4	-2.389842	0.646835	0.015738

 $sns.heatmap(data_pca.corr())$

231501074 A123331-FOML

<AxesSubplot:>

RESULT:-Thus Dimensionality Reduction has been implemented using PCA in a python program successfully and the results have been analyzed.

231501074 A123331-FOML