

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № 3

Название: Исследование синхронных счетчиков

Дисциплина: Архитектура ЭВМ

 Студент
 ИУ7-42Б (Группа)
 26.04.2021 (Подпись, дата)
 А. А. Зайцева (И.О. Фамилия)

 Преподаватель
 — А. Ю. Попов (Подпись, дата)
 — (И.О. Фамилия)
 Цель работы — изучение принципов построения счетчиков, овладение методом синтеза синхронных счетчиков, экспериментальная оценка динамических параметров счетчиков, изучение способов наращивания разрядности синхронных счетчиков.

- 1. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом на Т триггерах. Проверить работу счётчика
 - от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы

Схема (см. рис. 1):

Рисунок 1

Очередное замыкание ключа счетчик увеличивается на единицу, лампочки - двоичное представление числа счётчика. Счетчик четырехразрядный, поэтому на выходе можно получить числа от 0 до 15.

• от импульсов генератора.

Схема (см. рис. 2):

Рисунок 2

Настройки приборов для выявления задержки (см. рис. 3, 4, 5):

Function gene	erator-XFG1		\times					
Waveforms								
\sim	~~							
Signal options								
Frequency:	1	^	MHz					
Duty cycle:	50		%					
Amplitude:	2.5		Vp					
Offset:	2.5		V					
Set rise/Fall time								
•	Common		Ō					

Рисунок 3

Рисунок 4

Рисунок 5

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Временная диаграмма сигналов на входе и выходах счетчика (см. рис. 6):

Рисунок 6

Время задержки распространения счетчика – 19.809 ns (см. рис. 7)

Рисунок 7

2. Синтезировать двоично-десятичный счётчик с заданной последовательностью состояний (вариант 6: 0,1,2,3,6,9,12,13,14,15). Начертить схему счётчика на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ), синхронных ЈК-триггерах.

Таблица состояний (см. таб. 1):

	Q3	Q2	Q1	Q0	Q3*	Q2*	Q1*	Q0*	Ј3	К3	J2	K2	J1	K1	J0	K0
0	0	0	0	0	0	0	0	1	0	*	0	*	0	*	1	*
1	0	0	0	1	0	0	1	0	0	*	0	*	1	*	*	1
2	0	0	1	0	0	0	1	1	0	*	0	*	*	0	1	*
3	0	0	1	1	0	1	1	0	0	*	1	*	*	0	*	1
4	0	1	0	0	-	_	-	_	-	-	-	-	-	-	-	_
5	0	1	0	1	-	_	_	_	-	-	-	-	-	-	-	_
6	0	1	1	0	1	0	0	1	1	*	*	1	*	1	1	*
7	0	1	1	1	-	-	-	-	-	-	-	-	-	-	-	_
8	1	0	0	0	-	_	_	_	-	-	-	-	-	-	-	_
9	1	0	0	1	1	1	0	0	*	0	1	*	0	*	*	1
10	1	0	1	0		_	_	_	-	_	-	_	-	-	ı	_
11	1	0	1	1		_	_	_	-	_	-	_	-	-	ı	_
12	1	1	0	0	1	1	0	1	*	0	*	0	0	*	1	*
13	1	1	0	1	1	1	1	0	*	0	*	0	1	*	*	1
14	1	1	1	0	1	1	1	1	*	0	*	0	*	0	1	*
15	1	1	1	1	0	0	0	0	*	1	*	1	*	1	*	1

Минимизация:

Карта Карно для J3=Q2 (см. таб. 2):

Таблица 2

Q3Q2/Q1Q0	00	01	11	10
00	0	0	0	0
01	-	-	-	1
11	*	*	*	*
10	-	*	-	-

Карта Карно для K3=Q1Q0 (см. таб. 3):

Q3Q2/Q1Q0	00	01	11	10
00	*	*	*	*
01	-	-	-	*
11	0	0	1	0
10	-	0	-	-

Карта Карно для J2= (Q3 | Q1Q0) (см. таб. 4):

Таблица 4

Q3Q2/Q1Q0	00	01	11	10
00	0	0	1	0
01	-	-	-	*
11	*	*	*	*
10	-	1	-	-

Карта Карно для K2=(!Q3 | Q1Q0) (см. таб. 5):

Таблица 5

Q3Q2/Q1Q0	00	01	11	10
00	*	*	*	*
01	-	-	-	1
11	0	0	1	0
10	-	*	-	-

Карта Карно для $J1=(!Q3Q0 \mid Q2Q0)$ (см. таб. 6):

Таблица 6

Q3Q2/Q1Q0	00	01	11	10
00	0	1	*	*
01	-	-	-	*
11	0	1	*	*
10	-	0	-	-

Карта Карно для K1=(!Q3Q2 | Q3Q0) (см. таб. 7):

Таблица 7

Q3Q2/Q1Q0	00	01	11	10
00	*	*	0	0
01	-	-	-	1
11	*	*	1	0
10	-	*	-	-

Карта Карно для J0=(1) (см. таб. 8):

Таблица 8

Q3Q2/Q1Q0	00	01	11	10
00	1	*	*	1
01	-	-	-	1
11	1	*	*	1
10	-	*	-	-

Карта Карно для К0=(1) (см. таб. 9):

Таблица 9

Q3Q2/Q1Q0	00	01	11	10
00	*	1	1	*
01	-	-	-	*
11	*	1	1	*
10	-	1	-	-

Схема (см. рис. 8)

Рисунок 8

3. Собрать десятичный счётчик, используя элементную базу приложения Multisim или учебного макета. Установить счётчик в начальное состояние, подав на установочные входы R соответствующий сигнал.

Таблица состояний (см. таб. 10):

	Q3	Q2	Q1	Q0	Q3*	Q2*	Q1*	Q0*	J3	K3	J2	K2	J1	K1	J0	K0
0	0	0	0	0	0	0	0	1	0	*	0	*	0	*	1	*
1	0	0	0	1	0	0	1	0	0	*	0	*	1	*	*	1
2	0	0	1	0	0	0	1	1	0	*	0	*	*	0	1	*
3	0	0	1	1	0	1	0	0	0	*	1	*	*	1	*	1
4	0	1	0	0	0	1	0	1	0	*	*	0	0	*	1	*
5	0	1	0	1	0	1	1	0	0	*	*	0	1	*	*	1
6	0	1	1	0	0	1	1	1	0	*	*	0	*	0	1	*
7	0	1	1	1	1	0	0	0	1	*	*	1	*	1	*	1
8	1	0	0	0	1	0	0	1	*	0	0	*	0	*	1	*
9	1	0	0	1	0	0	0	0	*	1	0	*	0	*	*	1
10	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Минимизация:

Карта Карно для J3=Q2Q1Q0 (см. таб. 11):

Таблица 11

Q3Q2/Q1Q0	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	-	-	-	-
10	*	*	-	-

Карта Карно для K3=Q0 (см. таб. 12):

Таблица 12

Q3Q2/Q1Q0	00	01	11	10
00	*	*	*	*
01	*	*	*	*
11	-	-	-	-
10	0	1	-	-

Карта Карно для J2= Q1Q0 (см. таб. 13):

Таблица 13

Q3Q2/Q1Q0	00	01	11	10
00	0	0	1	0
01	*	*	*	*
11	-	-	-	-
10	0	0	-	-

Карта Карно для K2= Q1Q0 (см. таб. 14):

Таблица 14

Q3Q2/Q1Q0	00	01	11	10
00	*	*	*	*
01	0	0	1	0
11	-	-	-	-
10	*	*	-	-

Карта Карно для J1=!Q3Q0 (см. таб. 15):

Таблица 15

Q3Q2/Q1Q0	00	01	11	10
00	0	1	*	*
01	0	1	*	*

11	-	-	-	-
10	0	0	-	-

Карта Карно для K1=Q0 (см. таб. 16):

Таблица 16

Q3Q2/Q1Q0	00	01	11	10
00	*	*	1	0
01	*	*	1	0
11	-	-	-	-
10	*	*	-	-

Карта Карно для J0=(1) (см. таб. 17):

Таблица 17

Q3Q2/Q1Q0	00	01	11	10
00	1	*	*	1
01	1	*	*	1
11	-	-	-	-
10	1	*	-	-

Карта Карно для К0=(1) (см. таб. 18):

Таблица 18

Q3Q2/Q1Q0	00	01	11	10
00	*	1	1	*
01	*	1	1	*
11	-	-	-	-
10	*	1	-	-

Схема (см. рис. 9)

Рисунок 9

- 4. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом. Проверить работу счётчика
 - от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы

Схема (см. рис. 10):

Рисунок 10

• от импульсов генератора.

Схема (см. рис. 11):

Рисунок 11

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Рисунок 12

5. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом ИС К555ИЕ9, аналог ИС 74LS160 (рис. 13).

Проверить работу счётчика

• от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы

Схема (см. рис. 14):

Рисунок 14

• от импульсов генератора.

Схема (см. рис. 15):

Рисунок 15

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Диаграмма (см. рис. 16)

Рисунок 16

6. Исследование схем наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями (рис. 17) и по структуре «быстрого» счета (рис. 18).

Рисунок 17

Схема (см. рис. 19) DCD_HEX_BLUE

Рисунок 19

Вывод: В ходе лабораторной работы были изучены различные виды счетчиков, принципы и способы их построения, способы наращивания разрядности счётчиков, использован метод синтеза синхронных счетчиков.