CIFAR-10 is a dataset of 32x32 images in 10 categories, collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. It is often used to evaluate machine learning algorithms. You can download this dataset from https://www.cs.toronto.edu/~kriz/cifar.html.

1. For each category, compute the mean image and the first 20 principal components. Plot the error resulting from representing the images of each category using the first 20 principal components against the category.

The errors resulting from representing the images of each category using the first 20 principal components are shown below in the bar chart.

2. Compute the distances between mean images for each pair of classes. Use principal coordinate analysis to make a 2D map of the means of each categories. For this exercise, compute distances by thinking of the images as vectors.

The plot below represents the 2D map of the means of each category. The table below captures the 10 \times 10 distance matrix of the classes.

	airplane	automobile	bird	cat	deer	dog	frog	horse	ship	truck
airplane	0	1683.6354	1605.0243	1905.5353	2148.7634	1965.2215	2445.6797	1663.6459	945.5411	1449.0949
automobile	1683.6354	0	886.23675	1027.6498	1143.0814	1216.0794	1191.192	950.78608	1303.4665	949.99577
bird	1605.0243	886.23675	0	517.3115	601.25034	701.46823	913.74752	418.27631	1557.715	1416.6747
cat	1905.5353	1027.6498	517.3115	0	469.79172	412.18167	677.49197	596.37674	1851.2145	1676.4679
deer	2148.7634	1143.0814	601.25034	469.79172	0	617.69714	460.51093	684.34691	2065.6217	1830.7409
dog	1965.2215	1216.0794	701.46823	412.18167	617.69714	0	828.58105	843.67209	1897.5918	1880.2438
frog	2445.6797	1191.192	913.74752	677.49197	460.51093	828.58105	0	948.70402	2249.1998	1913.2409
horse	1663.6459	950.78608	418.27631	596.37674	684.34691	843.67209	948.70402	0	1660.2681	1347.3341
ship	945.5411	1303.4665	1557.715	1851.2145	2065.6217	1897.5918	2249.1998	1660.2681	0	1066.9416
truck	1449.0949	949.99577	1416.6747	1676.4679	1830.7409	1880.2438	1913.2409	1347.3341	1066.9416	0

3. Here is another measure of the similarity of two classes. For class A and class B, define E(A | B) to be the average error obtained by representing all the images of class A using the mean of class A and the first 20 principal components of class B. Now define the similarity between classes to be (1/2)(E(A | B) + E(B | A)). If A and B are very similar, then this error should be small, because A's principal components should be good at representing B. But if they are very different, then A's principal components should represent B poorly. In turn, the similarity measure should be big. Use principal coordinate analysis to make a 2D map of the classes. Compare this map to the map in the previous exercise? Are they different? Why?

The plot below represents the 2D map of the similarity measures of the categories. The table on the next page captures the 10×10 matrix of the similarity measures of the classes. The 2D map for the similarity measures differs from the 2D mean map but there are also interesting similarities. The 2D similarity map has a larger magnitude than the 2D mean map by almost a factor of 1e4. Both maps of the classes in the same general locations. The animal classes (cat, dog, frog, deer, bird and horse) are clustered toward one side and the vehicle classes (automobile, truck, ship and airplane) are spread out to the periphery. In the 2D similarity map, the clustering seems stronger. One possible explanation for the differences is that the similarity measures captures the differences in the principal components among classes as well as the differences in the means. It also suggests that the principal components capture something about being an animal vs. something about being a vehicle that allows for the stronger distinction in the 2D similarity map. This also suggests that using PCA can be very useful in distinguishing images.

	airplane	automobile	bird	cat	deer	dog	frog	horse	ship	truck
airplane	2620501	13595282	12768810	14084660	13028340	13737048	13914608	12842764	11967642	12625649
automobile	14928135	3950676	13298157	14332403	12823850	14030427	13106859	13484346	13875367	13566760
bird	12595408	11797181	2447698	11615795	9950974	11265150	10479004	10822726	11854234	11775026
cat	14582854	13498352	12284536	3116479	11466418	12555929	11910715	12403594	13877270	13726415
deer	12586563	11052736	9682570	10527976	2180391	10139111	9216540	9893699	11817454	11450180
dog	14348749	13312887	12046555	12671096	11195672	3231113	11645624	12174325	13654472	13672377
frog	13919154	11788717	10662662	11422092	9664474	11041451	2630244	10852800	12918403	12324767
horse	13663107	12975558	11815515	12729618	11154822	12383783	11663702	3441091	13140850	12844540
ship	11786989	12363928	11849065	13203355	12080079	12861193	12729467	12137276	2440635	11404790
truck	14024669	13633722	13348172	14633747	13289868	14463473	13711889	13423791	12983210	4021094

Appendix: Mean Images of the different classes

