Booting Linux with U-boot

Jason Kridner

jkridner@beagleboard.org

June 7, 2010

Archived at:

http://beagleboard.org/esc

The five (5) boot phases

- 1. ROM loads x-load (MLO)
- 2. X-load loads u-boot
- 3. U-boot reads commands
- 4. Commands load kernel
- 5. Kernel reads root file system

(1) ROM loads x-load (MLO)

http://www.ti.com/litv/pdf/sprufd6a

- ROM attempts to load boot image
 - Sequence of attempts depends if USER button pressed
- For MMC/SD boot
 - Must have 255 heads and 63 sectors/track
 - First partition is FAT and bootable
 - Must have "MLO" as first file and directory entry
 - "MLO" is x-load.bin.ift renamed
 - Use mkcard.sh
- X-load image must be "signed"
 - signGP app is open source
- There are utilities for USB and serial boot
 - http://beagleboard.org/project/OMAP+U-Boot+Utils/

(2) X-load loads u-boot

http://gitorious.org/beagleboard-validation/x-load

- X-load is a utility derived from u-boot
 - Small enough to fit in internal RAM
 - Configures external RAM
 - Could otherwise be done in configuration header, but doesn't allow for multiple memory types
- Looks first on MMC/SD
 - If it finds u-boot.bin, loads and runs it

Chicago • June 7 - 9, 2010

(3) U-boot reads commands

http://gitorious.org/beagleboard-validation/u-boot

- U-boot version allows interaction over the serial and USB ports
 - Serial cable provided in case you have a laptop
 - USB driver looks like a USB-to-serial converter device
 - Use gserial.inf to install a driver in Windows
- U-boot environment variables read from flash
 - Stored in the third flash partition (mtd2)
 - 'bootcmd' variable stores the commands to execute
 - 'bootdelay' is number of seconds to allow interruption of the boot
- Default 'bootcmd' reads 'boot.scr' auto-script

(4) Commands load kernel

- U-boot loads kernel and passes it 'bootargs'
 - Default environment is used when variables haven't been stored in flash
 - Rev C boards are shipped without variables stored in flash
 - Console can be used to interrupt the boot process and modify variables
 - The Rev B u-boot only supported the console over the serial port
 - The Rev C u-boot adds support for the console over the USB OTG port
 - Future modifications may support USB keyboard/mouse and DVI-D monitor
 - Fourth flash partition (mtd3) is reserved for the kernel
- bootm <RAM addr> executes kernel from RAM

Default bootcmd for Rev C

http://gitorious.org/projects/beagleboard-default-u-boot/repos/jason-clone/blobs/for-khasimrebase/include/configs/omap3_beagle.h

```
bootcmd=
 if mmcinit; then
   if run loadbootscript; then
    run bootscript;
   else
    if run loaduimage; then
     if run loadramdisk; then
       run ramboot;
     else
      run mmcboot;
     fi;
    else run nandboot;
    fi;
 else run nandboot;
```


Default bootcmd for xM Rev A

http://gitorious.org/beagleboard-validation/u-boot/blobs/xm-jason-patches/include/configs/omap3_beagle.h

```
if mmc init ${mmcdev}; then
 if userbutton; then
  setenv bootscr boot.scr:
else
  setenv bootscr user.scr;
fi
 if run loadbootscript; then
  run bootscript;
else
  if run loaduimage; then
   if run loadramdisk; then
    run ramboot;
   else
   run mmcboot:
   fi:
   else run nandboot;
  fi;
 fi:
else run nandboot: fi
```


U-boot command summary

http://www.denx.de/wiki/DULG/Manual

- Basic commands
 - help provide the list of commands (varies by build)
 - printenv lists the contents of the current environment
 - saveenv writes the current environment to the flash
 - setenv <variable> 'string' sets environment variable
 - autoscr <RAM addr> run script from RAM
- MMC/SD
 - mmcinit initializes the MMC/SD card
 - fatls mmc 0 reads FAT directory on the first partition
 - fatload mmc 0 <RAM addr> <filename> load a file into RAM

NAND

- nand unlock enables writing to the NAND
- nandecc <sw|hw> configures ECC mode (OMAP3 specific)
- nand erase <start> <length> erases portion of NAND flash
- nand read <RAM addr> <start> <length> reads into RAM
- nand write <RAM addr> <start> <length> writes from RAM
- Serial
 - loadb <RAM addr> reads into RAM via kermit file send

(5) Kernel reads root file system

- Kernel mounts root file system based on 'bootargs'
 - NAND (JFFS2): root=/dev/mtdblock4 rw rootfstype=jffs2
 - RAMDISK: root=/dev/ram0 rw ramdisk_size=32768 initrd=0x81600000,32M
 - MMC/SD: root=/dev/mmcblk0p2 rw rootwait
 - NFS: root=/dev/nfs rw nfsroot=192.168.123.1:/data/target ip=192.168.123.2::255.255.255.0 nolock,rsize=1024,wsize=1024 rootdelay=2

Configuring the display

http://groups.google.com/group/beagleboard/msg/4c64b2c61462205

- video=omapfb
- vram=10M
- omap-dss.def_disp=lcd
- omapfb.vram=4M,3M,3M
- omapfb.video_mode=1024x768MR

Other bootargs

- nohz=off
 - Power management (dynamic tick)
- mem=88M
 - Reserve memory

Writing our own boot script

Build u-boot and mkimage

- cd ~/u-boot-omap3
- make omap3_beag1e_config
- make

For the xM demo image, look in /usr/share/esc-training/u-boot

Build my.scr

- cd ~/u-boot-omap3
- cp /media/mmcblk0p1/menu/kridner.script my.script
- nano my.script
- ./tools/mkimage -A arm -T script -C none -d my.script my.scr
- Be very careful before executing the next step
 - cp my.scr /media/mmcblk0p1/boot.scr
 - If unsure, run /switchboot now
 - boot

These instructions are not for the xM demo image, instead look at /boot/u-boot-scripts

Edit environment in flash

- make env
- nano /etc/fw_env.config
 - /dev/mtd2 0 0x20000 0x20000
- ./tools/env/fw_printenv
- In -s tools/env/fw_printenv fw_setenv
- ./fw_setenv usbtty 'cdc_acm'
- ./fw_setenv stdout 'serial, usbtty'
- ./fw_setenv stdin 'serial, usbtty'
- ./fw_setenv stderr 'serial, usbtty'
- ./tools/env/fw_printenv

Trying usbtty

- cp ~/gserial.inf /media/mmcblk0p1/
- halt
- Remove power and SD card
- Copy gserial.inf from SD to PC
- Plug USB from Beagle to your PC
 - Select driver
- Start Hyperterminal
 - Newest serial port, max baud, n81, no flow
- Optional
 - nand erase 0x260000 0x20000

These

instructions
are not for the

Creating a ramdisk.gz

- dd if=/dev/zero of=ramdisk bs=1k count=32768
- mkfs.ext2 ramdisk
- mount -o loop ramdisk /mnt
- tar -xvjf fs.tar.bz2 -C /mnt
 - Other methods to copy may be fine
- umount /mnt
- gzip ramdisk

