Ответы:

4) нету

8) 1

1) 1

5) 1

9) 1

2) 2

6) 2

10) 2

3) нету

7) 3

1. Какие правила обязательно нужно выполнить, чтобы правильно измерить диффузионную длину?

- а. Измерить не менее 8–10 точек.
- б. Измерить не менее 2^5 точек.
- в. Измерить не более 8 точек.
- г. Добиться уменьшения амплитуды импульса в е раз.
- д. Добиться уменьшения амлитуды импульса в π раз.

2. Какую осциллограмму нужно использовать для измерения времени жизни?

a.

б.

В.

Γ.

5. Выберите верное утверждение:

- б. Если продолжить график зависимости ln (U) от расстояния x до пересечения с горизонтальной осью, то можно получить значение диффузионной длины носителей заряда.
- в. Диффузионную длину можно определить по наклону прямой (тангенс) графика зависимости ln (U) от расстояния x.
- г. Если продолжить график зависимости ln (U) от расстояния x до пересечения с вертикальной осью, то можно получить значение диффузионной длины носителей заряда.

- 7. По экспериментальным данным определите время жизни неосновных носителей. Оно составляет:
 - a. $\approx 21...23$ MC
 - б. $\approx 21...23$ с
 - в. $\approx 21...23$ мкс
 - г. ≈ 21...23 нс
- 8. В момент времени t_I = 10^{-4} с после выключения равномерной по объему генерации электронно-дырочных пар неравновесная концентрация носителей заряда оказалась в 10 раз больше, чем в момент времени t_2 = 10^{-3} с. Время жизни носителей заряда (если уровень возбуждения мал) составляет:
 - a. $\approx 4.10^{-4} \text{ c}$
 - б. $\approx 4.10^{-12}$ с
 - B. ≈4 c
 - г. ≈4 мкс
- 9. В однородный полубесконечный электронный полупроводник на поверхности стационарно инжектируются дырки. В направлении вглубь образца приложено электрическое поле E=10 B/cм. Определить, на каком расстоянии от поверхности образца концентрация неравновесных дырок уменьшится в 1,5 раза. Диффузионная длина дырок L_p =0.1 см.
 - а. ≈1.6 см
 - б. ≈1.6 нм
 - в. ≈160 мкм
 - г. ≈1.6 м
- 10. В невырожденном германии при температуре T = 300 K, время жизни электронов составляет $\tau_n = 10^{-4}$ c, а их подвижность $\mu_n = 3800$ см²/В·с. Тогда диффузионная длина электронов составляет:
 - а. ≈0.9 нм
 - б. ≈0.9 мм
 - в. ≈0.9 м
 - г. ≈1 км