Table des matières

Résumé

Plan:

- 1. Courbes (plan + espace)
 - étude local
 - étude global
- 2. surfaces dans \mathbb{R}^3

1 Courbes

Lesson 1

Définition 1.1. Courbe et Courbe Régulière

1. Une courbe paramètre dans R^3 est une function $c: I \to R^n$ où I est un intervalle de R et c est lisse = infiniment différentielle (C^{∞}) .

$$I \ni t \mapsto c(t) \in \mathbb{R}^3$$
,

t – paramètre.

2. Une courbe paramétrée est régulièrement si

$$\dot{c}(t) = \frac{d}{dt}c(t) \neq 0,$$

pour tout $t \in I$.

Si une courbe est régulière, $c(t) \neq const.$ $\dot{c}(t)$ ¡diuge la tangente à la courbe en c(t).

Chaque régulière courbe est tangente à la ligne.

Définition 1.2. La trace d'une courbe paramètre $I \ni t \mapsto c(t) \in \mathbb{R}^n$ est image :

$$\{c(t) \mid t \in I\} \subset \mathbb{R}^n$$
.

Une cure paramètre est plus une sa trace.

La courbe

$$R\ni t\mapsto \left(\begin{array}{c}t^3\\0\end{array}\right)\in R^2,$$

 $trace = \{ \begin{pmatrix} x \\ 0 \end{pmatrix} \mid x \in R \}$. Et la courbe

$$R\ni t\mapsto \left(\begin{array}{c}t\\0\end{array}\right)\in R^2$$

a la même trace!

$$\dot{c}_1(t) = \begin{pmatrix} 3t^2 \\ 0 \end{pmatrix}, \ mais \ \dot{c}_2(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Définition 1.3. Si $I \ni t \mapsto c(t) \in R$ est une courbe paramètre, $J \subset R$ – une intervalle et $\varphi : J \to I$ une function lisse t.q. $\varphi^{-1} : J \to I$ est également lisse, on disque(?):

$$J \ni t \mapsto c^2(t) = c \circ \varphi(t) \in \mathbb{R}^n$$
,

est une reparametrisation de c.

Remarque : $\dot{\tilde{c}}(t) = \dot{c} \circ \varphi(t) * \dot{\varphi}(t)$. Donc, \tilde{c} - régulière $\iff c$ est régulière.

$$\frac{d}{ds}\varphi^{-1}(s) = \frac{1}{\dot{\varphi} \circ \varphi^{-1}(s)} \neq 0$$

 $\varphi: J \to I$ est un diffeompr
phisme comme $\dot{\varphi} \neq 0$, on a

$$\left\{ \begin{array}{ll} \mathrm{soit}\ \dot{\varphi}(t)>0, & \mathrm{pour\ tout}\ t\in J\\ \mathrm{soit}\ \dot{\varphi}(t)<0, & \mathrm{pour\ tout}\ t\in J \end{array} \right.,$$

$$\left\{ \begin{array}{c} \varphi \text{ est } \nearrow \\ \varphi \text{ est } \searrow \end{array} \right..$$

Si φ est \nearrow on dit une la reparametrisation conserve le sens de parcours (l'orientation). Si φ est \searrow , la reparam inverse le sens de parours.

Définition 1.4. 1. Une courbe est une classe d'equivalence de courbes parametrie pour la selation :

$$c \sim \tilde{c} \iff \tilde{c}$$
 est une reparemetrisation de c

2. Une courbe on entee est une classe d'equivalence des courbes parametrie pour :

 $c \sim \tilde{c} \Longleftrightarrow \tilde{c}$ est une reparemetrisation puser vantle sense le parours de c

Définition 1.5. Si c est une courbe paramètre t.q. $|\dot{c}(t)| = 1$ pour tout $t \in I$. On dit que c'est paramitee pur sa louger d'arc.

Proposition 1.1. Si $I \ni t \mapsto c(t) \in R^n$ est une courbe param reguliere il existe une reparametrisation de c par ca long d'arc :

$$J\ni s\mapsto \tilde{c}(s)=c\circ\varphi(s)\in R^n$$

$$|\dot{\tilde{c}}(s)|=1\ pour\ tout\ s\in J.$$

Lemme 1.1. Si $J_1 \ni s \mapsto \tilde{c_1}(s)$, et $J_2 \ni s \mapsto \tilde{c_2}(s)$ sont 2 parametr de par long d'arc de la meme courbe $|\dot{c_1}(s)| = 1 = |\dot{c_2}(s)|$. alors $c_2(s) = c_1(s_0 \pm s)$, pour un $s_0 \in R$ et si c_1 et c_2 ont un pos le meme suis de parcours. Si $c: [a, b] \to R^n$ est une courbe parametre sa longen est :

$$L[c] = \int_{a}^{b} |\dot{c}(t)| dt$$

$$l = \int_0^t |\dot{c}(u)| du = t$$