Student Performance Analysis Project

Master's Level Data Science Exercise

Project Overview

Objective

This project aims to analyze student performance using a synthetic dataset that captures complex interactions between individual, academic, and socio-economic characteristics. You will apply advanced statistical modeling techniques to understand the factors influencing academic success and graduation probability.

Dataset

A comprehensive synthetic dataset (student_performance_dataset.csv) is provided, capturing multidimensional aspects of student performance.

Data Dictionary

Student Performance Dataset (student_performance_dataset.csv)

Demographic Variables:

- student_id: Unique identifier for each student
- name: Student's name
- age: Student's age
- gender: Student's gender identity
- major: Academic major
- learning_style: Predominant learning style
- parents_education_level: Highest education level of parents

Academic Performance Variables:

• high_school_gpa: High school academic performance

- study_hours_per_week: Average weekly study time
- english_proficiency: English language skills score
- math_proficiency: Mathematics skills score
- science_proficiency: Scientific reasoning skills score
- final_gpa: Cumulative college GPA
- graduation_within_4_years: Binary indicator of timely graduation
- academic performance description: Qualitative performance assessment

Contextual Variables:

- family_income: Household income
- personal_essay: Student's reflective writing sample

Analysis Tasks

Task 1: Exploratory Data Analysis (20%)

- 1. Comprehensive exploratory analysis
 - Descriptive statistics for numerical variables
 - Distribution analysis of performance metrics
 - Correlation matrix between academic and demographic variables
- 2. Visualization Requirements:
 - Performance variations across majors
 - Study hours and GPA relationship
 - Learning style performance distributions

Task 2: Regression Modeling (40%)

Objective: Develop regression models to predict academic performance

- 1. Linear Regression: Predicting Final GPA
 - Dependent Variable: final_gpa
 - Independent Variables:
 - high_school_gpa
 - study_hours_per_week
 - parents_education_level
 - Subject proficiency scores
 - Demographic factors

Requirements:

- Implement multiple linear regression
- Check and address multicollinearity
- Interpret coefficients and statistical significance

2. Regularized Regression

- Apply Ridge/Lasso regression
- Compare model performance metrics
- Discuss feature importance

Task 3: Binary Outcome Prediction (40%)

Objective: Predict graduation probability

- Dependent Variable: graduation_within_4_years
- Independent Variables:
 - Academic performance metrics
 - Socioeconomic indicators
 - Learning style
 - Subject proficiencies

Requirements:

- Implement both Logit and Probit models
- Compare model performance using:
 - Accuracy
 - AUC-ROC
 - Confusion matrix
- Interpret marginal effects
- Discuss model selection criteria

Submission Requirements

- 1. Comprehensive analysis report (max 15 pages)
- 2. Fully documented code
- 3. Detailed result interpretations
- 4. Discussion of limitations and potential improvements

Evaluation Criteria

- Technical Complexity (40%)
- Statistical Rigor (30%)
- Visualization Quality (15%)
- Interpretation Depth (15%)

Bonus Challenges

- 1. Explore machine learning extensions
- 2. Develop advanced feature engineering techniques
- 3. Create predictive models for academic interventions

References