

Lecture Content

- 1 AlexNet
- 2 VGGNet
- 3 GoogLeNet
- 4 ResNet
- 5 Inception
- 6 Transfer Learning

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

■ 강의 자료

- Papers
 - ImageNet Classification with Deep Convolutional Neural Networks
 - VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION
 - Going deeper with convolutions
 - Deep Residual Learning for Image Recognition
 - Rethinking the Inception Architecture for Computer Vision

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

1. AlexNet

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

AlexNet

- "ImageNet Classification with Deep Convolutional Neural Networks"
- Alex Krizhevsky et al.
- ILSVRC 2012 1st

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

Imagenet

- 그러던 중 2009년 Imagenet Dataset이 등장함
 - 총 1.6천만개의 데이터
 - 100,000개의 Class로 이루어진 이미지들
 - 응급차, 달마시안, 이집트고양이 등등
- Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
 - 1백만개의 이미지
 - 1000개의 Class

AlexNet

• 2012년 이후 딥러닝 방식이 ILSVRC 최우수 팀으로 선정됨

ImageNet Challenge

IM GENET

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - o 100k test.

2

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

AlexNet

■ **Input**: 227 × 227 RGB

Preprocessing: subtracting the mean RGB Value

Data Augmentation : Crop, Rescaling, Flip / PCA

• **Optimizer** : SGD with Momentum 0.9

• **Activation** : Relu

• Conv: 5×5 , 3×3

Pooling: Max pooling 2×2 , stride 2

• **Dropout** : 50%

AlexNet

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

AlexNet

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

2. VGGNet

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

VGGNet

- "Very Deep Convolutional Networks For Large-Scale Image Recognition"
- Karen Simonyan & Andrew Zisserman
- ILSVRC 2014 2nd

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

VGGNet

■ **Input**: 224 × 224 RGB

Preprocessing: subtracting the mean RGB Value

Data Augmentation : Crop, Rescaling

• **Optimizer**: SGD with Momentum 0.9

• **Activation** : Relu

Conv: 3×3

Pooling : Max pooling 2×2 , stride 2

• **Dropout** : 50%

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

VGGNet

- Feature : 3×3 v.s. 7×7
- 두 필터를 적용했을 때, 결과는 똑같다
- 하지만 두 연산에 필요한 변수의 개수는 다르다

$$3 \times 3 \times 3 = 27$$

v.s.

$$7 \times 7 = 49$$

AlexNet

VGGNet

VGGNet

GoogLeNet

ResNet

Inception

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

VGGNet

- 네트워크의 깊이가 성능을 향상시키는 데에 매우 중요한 결정 요소
- VGG-16과 VGG-19가 주로 사용
- 매우 간단

■ 하지만 많은 메모리 사용 (144M)

		ConvNet C	onfiguration					
A	A-LRN	В	С	D E				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
input (224 × 224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64 conv3-				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
			pool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
			pool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
			pool					
·	<u> </u>		4096		·			
			4096					
			1000					
		soft-	-max					

Table 2: **Number of parameters** (in millions).

Net	work	A,A-LRN	В	C	D	E
Nu	mber of parameters	133	133	134	138	144

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

3. GoogLeNet

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

GoogLeNet

- "Going Deeper with Convolutions"
- Szegedy et al.
- ILSVRC 2014 1st

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

GoogLeNet

■ **Input**: 224 × 224 RGB

Preprocessing: subtracting the mean RGB Value

Data Augmentation: Crop, Rescaling

• **Optimizer**: SGD with Momentum 0.9

Activation : Relu

• Conv: $7 \times 7, 3 \times 3$, Inception

■ **Pooling :** Max pooling 3×3 , stride 2 / Average Pooling 7×7 , stride 1

■ **Dropout** : 40%

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

GoogLeNet

- **Feature** : Inception Module
- 신경망은 깊을수록 좋지만, 깊으면 학습이 어려워짐 (Overfitting, Gradient Vanishing)
- 따라서 Sparce한 신경망을 위해 Channel을 줄임
- 1 × 1을 통해 이를 달성, 계산량도 대폭 감소 (5M)

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

GoogLeNet

- **Feature** : Inception Module
- 신경망은 깊을수록 좋지만, 깊으면 학습이 어려워짐 (Overfitting, Gradient Vanishing)
- 따라서 Sparce한 신경망을 위해 Channel을 줄임
- 1 × 1을 통해 이를 달성, 계산량도 대폭 감소 (5M)

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

GoogLeNet

■ 이 외에도 Gradient Vanishing 방지를 위한 Auxiliary 도입 등 다양한 시도

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

GoogLeNet

■ 총 19개의 Layer

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

4. ResNet

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

ResNet

- "Deep Residual Learning for Image Recognition"
- Kaiming He et al.
- ILSVRC 2015 1st

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

ResNet

■ **Input**: 224 × 224 RGB

Preprocessing: subtracting the mean RGB Value

Data Augmentation : Crop, Rescaling, Flip

• **Optimizer**: SGD with Momentum 0.9

• **Activation** : Relu

• Conv: 7×7 , 3×3

Pooling : Max pooling 3×3 , stride 2 / Average Pooling 7×7 , stride 1

Dropout: Not used

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

ResNet

- **Feature** : Residual Network
- 깊게 쌓으면 좋아지는데, 여태까지는 고작 수십개가 한계
- 깊으면 Overfitting으로 인해 안 좋아질 것 같았지만...
- 실제로는 Degradation (정확도가 멈춰있는 상태)이 주요 원인

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

ResNet

- **Feature** : Residual Network
- 이는 원래 값이 전달이 잘 되지 않기 때문 (특성을 너무 많이 잃어버림)
- 따라서 특성을 더 잘 전달해주기 위해, 레이어를 건너뛰어 전달

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

ResNet

- 이외에도...
- 모든 Convolution Layer 뒤에 Batch Nomalization 사용
- Xaiver/2 초기화
- 매우 좋은 성능 도출

■ 하지만, Residual Network에서의 두 차원이 동일해야 함

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

5. Inception

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

Inception v3

- "Rethinking the Inception Architecture for Computer Vision"
- Szegedy et al.

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

Inception v2

Features : Increasing Conv

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

Inception v2

Features: Inception v.s. Pooling

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

Inception v3

Optimizer : RMSProp

■ Label Smoothing: [0, 0, 1]의 Label을 [0.0001, 0.0001, 0.9998]과 같이 변환

Batch Normalization : Last FC layer

type	patch size/stride or remarks	input size		
conv	$3\times3/2$	299×299×3		
conv	$3\times3/1$	$149 \times 149 \times 32$		
conv padded	$3\times3/1$	$147 \times 147 \times 32$		
pool	$3\times3/2$	$147 \times 147 \times 64$		
conv	$3\times3/1$	73×73×64		
conv	$3\times3/2$	$71 \times 71 \times 80$		
conv	$3\times3/1$	$35\times35\times192$		
3×Inception	As in figure 4	$35\times35\times288$		
5×Inception	As in figure 5	17×17×768		
$2 \times Inception$	As in figure 6	8×8×1280		
pool	8 × 8	$8 \times 8 \times 2048$		
linear	logits	$1 \times 1 \times 2048$		
softmax	classifier	$1 \times 1 \times 1000$		

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

Inception v3

▪ 다른 모델에 비해서 성능이 개선됨

Network	Crops	Top-1	Top-5
Network	Evaluated	Error	Error
GoogLeNet [20]	10	-	9.15%
GoogLeNet [20]	144	-	7.89%
VGG [18]	-	24.4%	6.8%
BN-Inception [7]	144	22%	5.82%
PReLU [6]	10	24.27%	7.38%
PReLU [6]	-	21.59%	5.71%
Inception-v3	12.	19.47%	4.48%
Inception-v3	144	18.77%	4.2%

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

- 앞선 모델들을 처음부터 학습시키는 것
- = 오랜 시간 소요
- = 많은 자원 소모

- 그렇다면 이미 잘 훈련된 모델을 활용해 유사한 문제를 해결할 수는 없을까?
- = Transfer Learning

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

- 훈련된 모델(Pre-trained Model)의 의의
 - Feature Extractor : 마지막 Layer를 제거하고 보면, 특성을 추출한다고 생각 가능
 - 추출된 특성 = CNN codes
 - 마지막에서 2번째 Layer가 4096차원이면
 - 4096-D codes
 - 이를 활용해 머신러닝 등 가능
 - Fine-tuning : 좋은 초기 가중치를 가지고 있는 모델이라 생각 가능
 - 가중치를 바탕으로 다른 데이터에 대해 학습
 - 좋은 가중치를 가지고 있으므로 좋은 결과로 다가갈 가능성 높음
 - 모든 Layer를 학습시키거나, 특정 Layer만 학습시킬 수 있음

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

- 훈련된 모델을 통한 새로운 학습
 - 데이터 유사시
 - 데이터가 적다면, 최종 FC layer만 학습 (Overfitting 방지)
 - 데이터가 많다면, 전체 네트워크를 학습
 - 데이터 다를 시
 - 데이터가 적다면, 앞단 Layer와 FC layer를 학습 (Data Manipulation & Overfitting 방지)
 - 데이터가 많다면, 전체 네트워크를 학습

AlexNet

VGGNet

GoogLeNet

ResNet

Inception

Transfer Learning

- import torchvision.models as models
- resnet18 = models.resnet18(pretrained=True)
- alexnet = models.alexnet(pretrained=True)
- squeezenet = models.squeezenet1_0(pretrained=True)
- vgg16 = models.vgg16(pretrained=True)
- densenet = models.densenet161(pretrained=True)
- inception = models.inception_v3(pretrained=True)

VGGNet

GoogLeNet

ResNet

Inception

