

Course Specialist Test 2 Year 12

Student name:	Teacher name:		
Task type:	Response/Investigation		
Reading time for this test	t: 5 mins		
Working time allowed fo	r this task: 40 mins		
Number of questions:	7		
Materials required:	Upto 3 classpads/calculators		
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters		
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper SINGLE SIDED, and up to three calculators approved for use in the WACE examinations		
Marks available:	40 marks		
Task weighting:	13%		
Formula sheet provided:	no but formulae stated on page 2		
Note: All part questions worth more than 2 marks require working to obtain full marks.			

Useful formulae

Complex numbers

Cartesian form			
z = a + bi	$\bar{z} = a - bi$		
$\text{Mod}(z) = z = \sqrt{a^2 + b^2} = r$	$\operatorname{Arg}(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$		
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$		
$arg(z_1 z_2) = arg(z_1) + arg(z_2)$	$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$		
$z\overline{z}= z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$		
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$		
Polar form			
$z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	$\overline{z} = r \operatorname{cis}(-\theta)$		
$z_1 z_2 = r_1 r_2 cis (\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$		
$cis(\theta_1 + \theta_2) = cis \ \theta_1 \ cis \ \theta_2$	$cis(-\theta) = \frac{1}{cis \theta}$		
De Moivre's theorem			
$z^n = z ^n cis(n\theta)$	$(cis \theta)^n = \cos n\theta + i \sin n\theta$		
$z^{rac{1}{q}} = r^{rac{1}{q}} \left(\cos rac{ heta + 2\pi k}{q} + i \sin rac{ heta + 2\pi k}{q} ight), ext{ for } k ext{ an integer}$			

$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	Length of arc $= r heta$		
$a^2 = b^2 + c^2 - 2bc \cos A$	Area of segment = $\frac{1}{2}r^2(\theta - \sin\theta)$		
$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	Area of sector = $\frac{1}{2} r^2 \theta$		
Identities			
$\cos^2 x + \sin^2 x = 1$	$1 + \tan^2 x = \sec^2 x$		
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\cos 2x = \cos^2 x - \sin^2 x$ $= 2\cos^2 x - 1$ $= 1 - 2\sin^2 x$		
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\sin 2x = 2\sin x \cos x$		
$\tan (x \stackrel{+}{-} y) = \frac{\tan x \stackrel{+}{-} \tan y}{1 \mp \tan x \tan y}$	$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$		
$\cos A \cos B = \frac{1}{2} \left(\cos(A - B) + \cos(A + B) \right)$	$\sin A \cos B = \frac{1}{2} \left(\sin(A+B) + \sin(A-B) \right)$		
$\sin A \sin B = \frac{1}{2} \left(\cos(A - B) - \cos(A + B) \right)$	$\cos A \sin B = \frac{1}{2} \left(\sin(A+B) - \sin(A-B) \right)$		

Q1 (3 marks)

Consider the inequality $|3x - 7| \le a$ which is only true for $b \le x \le 9$ where a & b are constants. Determine the values of a & b.

Q2 (4 marks)

Consider two ships A&B moving with constant velocities and the following noted position vectors.

$$r_{A} = \begin{pmatrix} 2 \\ -18 \end{pmatrix} km \quad v_{A} = \begin{pmatrix} 2 \\ 7 \end{pmatrix} km/h \quad at 11:00am$$

$$r_{B} = \begin{pmatrix} -6 \\ 44 \end{pmatrix} km \quad v_{B} = \begin{pmatrix} 4 \\ -6 \end{pmatrix} km/h \quad at 11:30am$$

Determine if the ships will collide and if they do, determine the time and position of this collision.

Q3 (2, 3 & 3 = 8 marks)

Consider the function y = f(x) below.

a) Sketch |f(x)| on the axes below.

b) Sketch f(-|x|) on the axes below.

c) Sketch $\frac{1}{f(x)}$ on the axes below.

Q4 (2, 3, 1 & 3 =9 marks)

Consider $g(x) = 3x^2 - 12x + 13$ for $x \le 2$ which is plotted below.

- a) Sketch $g^{-1}(x)$ on the axes above.
- b) Determine the rule for $g^{-1}(\chi)$ showing full working and the domain.

Q4 cont-

- c) Determine $g^{-1} \circ g(x)$.
- d) Determine all value(s) of $^{\chi}$ such that $g^{(\chi)}=g^{-1}(\chi)$. Show reasoning for full marks.

Q5 (5 marks)

Consider two moving objects ${}^{P\,\&\,Q}$ which at time ${}^{t\,=0}$ seconds have the following positions and constant velocities.

$$r_p = \begin{pmatrix} -8 \\ 7 \end{pmatrix} m \quad v_p = \begin{pmatrix} 5 \\ -4 \end{pmatrix} m/s$$

$$r_{Q} = \begin{pmatrix} 11 \\ -6 \end{pmatrix} m \quad v_{Q} = \begin{pmatrix} -3 \\ 10 \end{pmatrix} m / s$$

Determine the minimum distance between them **using vectors** and the time that this occurs.

Q6 (5 marks)

$$r = \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 1 \end{pmatrix} \text{ and the circle } \left| r - \begin{pmatrix} 3 \\ \alpha \end{pmatrix} \right| = 9$$
 where α is a constant.

Determine all possible values of $\,^{\it C\!\!\!\!/}$ such that:

- i) The line will be a tangent to the circle.
- ii) The line crosses the circle at two points.
- iii) The line will never meet the circle.

Q7 (2 & 4 = 6 marks)

Consider complex numbers $\ ^{Z}$ $\ ^{\&}$ $\ ^{W}$. It is known that:

$$|z| = 10, Arg(z) = \theta$$
 where $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$

$$w = z + k$$
 such that $Arg(w) = \pi - \theta$ where $Im(k) = 0, k > 0$

a) Represent this information on the Argand Diagram below.

b) Determine a **simplified** expression for k in terms of $^{\theta}$. Justify your answer.

Mathematics Department

Perth Modern

Working out space

Mathematics Department

Perth Modern

Working out space