Interest Rate Shock Model

Alain LeBel

16 February 2017

What is the *Interest Rate Shock Model*?

"The fools are certain and the intelligent full of doubt." — Bertrand Russell

Start with multi factor model with only two factors, being the benchmark equity index (B) and the bond index (F) for fixed income):

$$r_t = \alpha + \beta_B r_{B,t} + \beta_F r_{F,t} + \theta_t$$

For every stock, I run a **multilinear regression** using three years of weekly historic data to determine the values of α and the two β 's. The result is a simple linear model: plug in returns of the two factors to get an estimated return of the stock.

To build a complete *Interest Rate Shock Model*, we use simpler 1-factor models to estimate how yield changes affect the benchmark and bond returns, then plug those estimates into the above equation.

The factors and the shock parameter

For the benchmark, use the MSCI AC World total return index.

For the yield, use the $U.S.\ 10y\ Treasury\ Yield$. When I shock the yield (by increasing it by 100 bp), I actually compute the log return of the latest yield:

$$log(3.5\%) - log(2.5\%) = 0.337$$

is the "return of the yield" shock. I use this to estimate the shocked returns of the benchmark and bond index.

For the bond, use Citigroup US Broad Investment-Grade Treasury Bond Index. It measures "the total rate of return performance for bond markets with a remaining maturity of at least one year" and is "composed of US Treasuries excluding Federal Reserve purchases, inflation-indexed securities and STRIPS" (?). Northfield tends to use Citigroup fixed-income indices, and for this yield I find the correlation to be very good (see next page).

How yield affects bond index returns

Returns of the yield are highly correlated to bonds: saying "The (return of the) yield is +x%" is almost the same as saying "The bond index goes down -0.097x%":

How yield affects benchmark returns

"All models are wrong but some are useful" — George Box

Don't forget correlation: If the bond changes, then the benchmark will change, too:

Equities vs fixed income

Disclaimer: benchmarks and bonds now have low correlation (remember: $correlation^2 = R^2$) and are inversely related ($\beta < 0$)

Why 3 years weekly?

We tried all timespans from six months to five years, with daily, weekly and monthly frequencies:

Now the results:

I computed this model for each stock in the global portfolios (GLUF and Global Pensions). Then I shock the 10Y U.S. Treasury Yield by \pm 100 bps and calculate the estimated return of your portfolio based on latest weights in the database. I find:

- PCGLUF estimated return = 3.34%.
- benchmark estimated return = 4.27%.
- ► Therefore, we estimate PCGLUF would underperform by -0.94% in this scenario.

Similarly, PCGPEN estimated return is 2.52%, or -1.75% relative the MSCI AC World Total Return Index.

How the results changed through history

TO DO: Draw a chart of the benchmark and portfolio estimated shocks through history.

How does this compare to Barra?

I also computed the model over the same timeframe which Barra did for us a couple of months ago (October 2013 to October 2016). I find:

- ▶ PCGLUF estimated return is +3.0%, while Barra computed +6.4%
- ▶ the benchmark estimated returns +4.2%, while Barra computed +8.0%
- ▶ My model says -1.2% underperformance, while Barra say -1.6%

Why so different from other risk models?

The two main differences with a true risk model (by Northfield, Barra or UBS) are:

- 1. Most risk models use "exponentially decay weighted" observations. This means history has a half-life, and the model puts more emphasis on recent data than older data.
- 2. Other risk models have more factors, including:
 - Sectors (GICS or otherwise)
 - Regions or countries
 - Currencies
 - Oil prices
 - ► The usual quant signals (size, Value/Growth, etc)
 - ► Some economic signals (IP, Slope of the Term Structure, etc)