Auxiliar #1 - Análisis de señales

Erik Saez A.

Department of Electrical Engineering Universidad de Chile

August 17, 2025

Contenidos

- 1 Motivación
- 2 Aspectos Generales del curso
- 3 Unidad 1: Introducción
- 4 Pregunta 1
- 5 Pregunta 2
- 6 Pregunta 3
- 7 Pregunta 4

Fig.: Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile.

Motivación

- ¿Por qué vale la pena tomar este ramo?
- ¿Qué me puede aportar si no pienso dedicarme al área de Telecomunicaciones?
- ¿Es realmente importante ir a clases?
- ¿Qué cosas interesantes voy a aprender aquí?
- ¿Cómo se relaciona con sistemas de comunicación modernos?

Continuidad del ramo

- \blacksquare Análisis de señales \to Principios de Comunicaciones / Fundamentos de control de Sistemas
- ¡Atrasa! pero no es crítico (¡Si para los del área de Telecomunicaciones, cuidado!)
- Base fundamental para: modulación, codificación, filtrado digital, etc.

Fig.: Continuidad del ramo

Evaluaciones del ramo

Tipos de Evaluación

Descripción
Actividades semanales
Proyectos de desarrollo
Evaluaciones

Recomendaciones

- Controles: Harta matemática y teoría
- Los ejercicios no dejarlos para último momento
- Proyectos son largos, por lo que prepararlos con anticipación

¿Alguna duda?

Señales: Definición Formal

Concepto

- Una **señal** es una función de tiempo.
- Tiempo continuo: $x(t) : \mathbb{R} \to \mathbb{R}^{\alpha}$.
- Tiempo discreto: $x[n]: \mathbb{Z} \to \mathbb{R}^{\alpha}$.

Definición

Un **sistema** es un operador que transforma una señal de entrada en una señal de salida.

$$T_c: \mathcal{S}(\mathbb{R}, \mathbb{R}^{\alpha}) \to \mathcal{S}(\mathbb{R}, \mathbb{R}^q), \qquad y(t) = (T_c\{x\})(t),$$

$$T_d: \ \mathcal{S}(\mathbb{Z}, \mathbb{R}^{\alpha}) \to \mathcal{S}(\mathbb{Z}, \mathbb{R}^q), \qquad y[n] = (T_d\{x\})(n).$$

Fig.: Señal/sistema en tiempo continuo, discreto y digital (con cuantización).

Frecuencia: continua vs. discreta

Senoidal continua

$$x(t) = A\cos(\omega t + \theta),$$

 $\omega = 2\pi f \text{ (rad/s)}$

- **Periodo**: $T = \frac{1}{f}$ (siempre periódica).
- **Fase** θ : desplaza la onda sin cambiar T.
- Unidades: f en Hz; ω en rad/s.

Senoidal discreta

$$x_f[n] = A\cos(2\pi f n + \theta),$$

 $\omega_d = 2\pi f \text{ (rad/muestra)}$

- Periodicidad: $x[n] = x[n + N] \Leftrightarrow f \in \mathbb{Q}$.
- **Periodo fundamental**: si $f = \frac{p}{q}$ (irreducible) $\Rightarrow N_{\min} = q$.
- **Extremos**: f = 0 (constante), $|f| = \frac{1}{2}$ (máx. oscilación, $N_{\min} = 2$).

Periodicidad en discreto: resultado central

Proposición y esbozo

Afirmación: $x_f[n]$ es periódica $\Leftrightarrow f \in \mathbb{Q}$. (\Rightarrow) Si $x_f[n]$ es N-periódica:

$$x_f[n] = x_f[n+N]$$

$$\Rightarrow \cos(2\pi f n + \theta) = \cos(2\pi f (n+N) + \theta)$$

$$\Rightarrow 2\pi f N = 2\pi k \ (k \in \mathbb{Z})$$

$$\Rightarrow f = \frac{k}{N} \in \mathbb{Q}.$$

 (\Leftarrow) Si $f = \frac{k}{N}$ (irreducible), entonces

$$x_f[n+N] = A\cos\left(2\pi\frac{k}{N}(n+N) + \theta\right) = A\cos\left(2\pi\frac{k}{N}n + 2\pi k + \theta\right) = x_f[n],$$

luego $x_f[n]$ es N-periódica.

Periodo fundamental

Si $f = \frac{p}{q}$ en forma irreducible, entonces $N_{\min} = q$. Si $f \notin \mathbb{Q}$, no existe N finito (aperiódica).

Resultados en discreto: periodicidad, aliasing y definiciones

Proposición 1 — Periodicidad

Sea $x_f[n] = A\cos(2\pi f n + \theta)$. Entonces

$$x_f[n]$$
 es periódica $\iff f \in \mathbb{Q}$.

Proposición 2 — Período fundamental

Si $x_f[n]$ es periódica y $f = \frac{p}{q}$ en forma irreducible $(p, q \in \mathbb{Z}, \gcd(p, q) = 1)$, entonces

$$N(x_f) = q$$
.

Definición — Período fundamental

Para una secuencia x[n],

$$N(x) \triangleq \min\{ N \in \mathbb{N} : x[n] = x[n+N] \ \forall n \},$$

si existe; en caso contrario, $N(x) = \infty$ (no periódica).

Proposición 3 — Aliasing (redundancia)

Para todo $k \in \mathbb{Z}$,

$$x_{f+k}[n] = A\cos(2\pi(f+k)n+\theta) = A\cos(2\pi f n+\theta) = x_f[n].$$

Corolario 1 — Rango de frecuencias fundamentales

Toda familia $\{x_f[n]: f\in \mathbb{R}\}$ admite representantes con

$$f\in\left(-rac{1}{2},\,rac{1}{2}
ight]$$
 (equiv. $\omega_d=2\pi f\in(-\pi,\pi]$).

Basta restringir el análisis a ese intervalo.

Definición — Frecuencia de máxima oscilación

En $f \in (-\frac{1}{2}, \frac{1}{2}]$, la máxima oscilación ocurre en

$$f^* = \pm \frac{1}{2} \ \Rightarrow \ x_{f^*}[n] = A\cos(\pi n + \theta), \quad N(x_{f^*}) = 2.$$

Enunciado Pregunta #1

Responda lo siguiente:

1 Demuestre que una señal coseno discreta es periódica si y sólo si la frecuencia es racional:

$$(x(n))_{n\in\mathbb{Z}} = (A\cos(2\pi f \, n + \varphi))_{n\in\mathbb{Z}} \iff f \in \mathbb{Q}. \tag{1}$$

Considere la siguiente familia de señales exponenciales:

$$(s_k(n))_{n\in\mathbb{Z}} = \left(e^{j\frac{2\pi k}{N}n}\right)_{n\in\mathbb{Z}}, \qquad k = 0, 1, 2, \dots$$
 (2)

Muestre que su período fundamental está dado por

$$N_p = \frac{N}{\gcd(k, N)},\tag{3}$$

donde $gcd(\cdot, \cdot)$ denota el máximo común divisor.

Enunciado Pregunta #2

Determine si las siguientes señales son periódicas. Si corresponde, especifique su período fundamental.

1
$$x_a(t) = 6\cos(9t + \frac{\pi}{3}).$$

$$(2) x(n) = 6 \cos (9n + \frac{\pi}{3}).$$

$$3 x(n) = \cos(\frac{n}{8}) \cos(\frac{\pi n}{8}).$$

$$x(n) = 2 e^{j\left(\frac{\pi}{7}n-3\right)}.$$

Enunciado Pregunta #3

Considere la siguiente señal sinusoidal a tiempo continuo:

$$x_{\mathsf{a}}(t) = \frac{7}{2}\sin(200\pi t), \qquad t \in \mathbb{R}. \tag{4}$$

- 1 Bosqueje $x_a(t)$ para $0 \le t \le 30$ ms.
- 2 La señal $x_a(t)$ es muestreada a una tasa de $F_s = 300\,\mathrm{Hz}$. Determine la frecuencia de la señal a tiempo discreto $x[n] = x_a(nT_s)$, donde $T_s = 1/F_s$. Muestre que x[n] es periódica y determine su período fundamental.
- Bosqueje la señal x[n] en el mismo diagrama donde bosquejó $x_a(t)$. ¿Cuál es el equivalente en milisegundos del período de x[n]?

Bosquejo de señal continua

Bosquejo de señal discreta

Bosquejo de señal discretizada

Enunciado Pregunta #4

Considere una señal continua $x_a(t)$ periódica con período fundamental T_a (en segundos).

I Si se muestrea la señal $x_a(t)$ a una tasa constante de F_s muestras por segundo, es decir, se induce la señal discreta

$$x[n] = x_a \left(\frac{n}{F_s}\right), \qquad \forall n \in \mathbb{Z}, \tag{5}$$

encuentre la(s) condición(es) que garantice(n) que x[n] sea periódica y, con ello, determine su período fundamental.

2 Con base en el punto anterior, justifique la siguiente afirmación: si x[n] es periódica, entonces su período fundamental (equivalente en **segundos**) es un múltiplo de T_a .