SM41J256M16M型 4Gb DDR3 同步动态随机 存储器

产品用户手册

深圳市国微电子有限公司 二零一六年九月一日

产品手册修改控制页

产品手册: SM41J<u>256M16M</u>

序号	文件更改内容	日期	修改人
1	新制定	2015.12.01	刘慧
2	增加器件说明内容	2016.09.01	王莉莉
3	增加湿度敏感等级	2018.01.10	李丽贞
4	修改交流电特性参数	2018.12.24	庞龙

目 录

→,	产品特性	3
_,	功能描述	3
三、	原理框图	4
四、	封装形式	4
1.	产品名称标示含义	4
2.	封装形式图及封装尺寸	5
五、	引脚描述	6
六、	绝对最大额定值	8
七、	推荐工作条件	8
八、	直流 (DC) 特性表	8
九、	交流(AC)特性表	10
十、	器件说明	13
1.	真值表	13
2.	功能说明	14
+-,	时序图	29
十二、	使用操作规程及注意事项	35
十三、	运输与储存	35
十四、	开箱与检查	35
十五、	质量保障与售后服务	35
十六、	联系方式	36

一、 产品特性

SM41J256M16M 性能指标满足参考 GJB7400-2011 制定的军温塑封级要求,其主要研制指标如下:

- ➤ 工作电压: V_{DD} = 1.5V ±0.075V, V_{DDO} = 1.5V ±0.075V
- ▶ 存储容量: 4Gbit
- ➤ 存储结构: 256Mb x 16 (32 Mb x 16 x 8 banks)
- ▶ 8-bit 预取结构
- ▶ 差分时钟输入: CK 和 CK#, 时钟频率 800MHz
- ▶ 支持 DOS 单端或差分可配置
- ➤ 可编程 CAS 延迟 (CAS Latency)
- ▶ 可编程的 CAS 附加延迟(Additive Latency)
- ➤ 可编程的 CAS 写入延迟 (CWL)
- ▶ 固定突发长度 (BL): 8
- ▶ 4-bit 突发突变 (Burst Chop) 功能
- ▶ 兼容 1.5V I/O 标准(SSTL_15)
- ▶ 封装形式: BGA96:
- ▶ 温度范围: -55℃~+125℃;
- ▶ 湿度敏感等级: 3级
- ▶ 质量等级:参考 GJB 7400-2011《合格制造厂认证用半导体集成电路通用规范》N 级要求。

二、功能描述

SM41J256M16M 型 4Gb DDR3 同步动态随机存储器,是一款采用差分时钟输入(CK 和 CK#)的双倍速率数据架构实现高速运行的同步动态随机存储器,采用8个 bank 结构,每个 bank 大小为 32 Mb x 16。可通过行地址、列地址对内部存储单元进行选择,通过标准指令激活器件后,进行读写操作。各操作指令序列与

MT41J256M16HA-125 兼容。

三、 原理框图

图 1 功能原理图

四、 封装形式

1. 产品名称标示含义

SM41J256M16M 集成电路产品均按照我司程序文件《产品标识和可追溯性控制程序》及《产品电路命名规范》的要求进行标识。同时,如客户有要求时,在不违背产品基本特性的情况下,产品编号的标识可按客户要求进行。

我司目前产品的命名,符合 GJB 7400-2011 及相应产品详细规范规定的质量等级要求。

SM41J256M16M产品型号的编号内容及意义表示如下:

图 2 SM41J256M16M 编号内容及意义表示图

2. 封装形式图及封装尺寸

SM41J256M16M 产品采用 BGA96 塑料封装。封装形式如图 3: 单位为毫米

图 3 封装形式图

五、 引脚描述

SM41J256M16M产品的引出端排列见图 4。具体引出端功能见表 1。

图 4 引出端排列(顶视图) 表 1 引出端功能表

符号	类型	功能描述
		地址输入:
		在激活命令的时候提供 Row 地址; 在读取/写入命令的时候提供 Column
		地址和预充电位(A10);在加载模式寄存器命令的时候提供 op-code。
A[14: 0]	输入	Row 地址: A[14:0]
		Column 地址: A[9:0]
		A12/BC#: 当在模式寄存器中使能后,A12在读取/写入命令的时候决定
		是否执行突发突变(burst chop)功能。
		BANK 地址输入:
BA[2: 0]	输入	在激活、读取、写入或预充电命令操作时,提供 BANK 地址;在加载
		模式寄存器命令的时候,决定设置哪种模式寄存器。
GYV GYVIII	+A >	差分时钟输入:
CK、CK#	输入	所有地址和命令输入信号在 CK 的上升沿和 CK#的下降沿的交叉点锁

		存;输出数据(DQ/DQS/DQS#)参照 CK 和 CK#的交叉点。			
		时钟使能输入:			
CKE	输入	CKE 为高时,使能时钟正常工作;			
		CKE 为低时,使能 Power-down 模式或自刷新功能。			
		芯片选择使能:			
CS#	输入	CS#为高时,芯片不使能,屏蔽外部所有命令;			
		CS#为低时,使能芯片选择,响应外部命令。			
		写入数据掩码:			
LDM、UDM	<i>t</i> ♠)	在写入操作时,如果 DM 信号为高,则写入数据被屏蔽;如果 DM 信号			
	输入	为低,则写入数据正常锁存。			
		LDM 控制 DQ0~DQ7,UDM 控制 DQ8~DQ15。			
		终结电阻控制:			
ODT	输入	ODT 使能 DDR3 内部的终结电阻,当其为高时有效,优化 DQ/DM/DQS			
		的信号质量。			
RAS#,CAS#,	<i>t</i> A.)	命令输入:			
WE#	输入	RAS#,CAS#,WE#定义 DDR3 芯片的操作命令。			
RESET#	输入	复位输入			
DQ[15: 0]	I/O	数据总线			
		低字节数据选通:			
LDQS,		作为输出信号时,与读取的数据同步,Edge-aligned,			
LDQS#	I/O	作为输入信号时,与写入的数据同步,Center-aligned,			
		LDQS#是否使用,需要在模式寄存器中设置。			
		高字节数据选通:			
UDQS,		作为输出信号时,与读取的数据同步,Edge-aligned,			
UDQS#	I/O	作为输入信号时,与写入的数据同步,Center-aligned,			
		UDQS#是否使用,需要在模式寄存器中设置。			
$V_{ m DD}$	电源	供电电源: 1.5V±0.075V			
V_{DDQ}	电源	DQ 供电电源: 1.5V±0.075V			
V _{REFCA}	电源	控制、命令和地址信号的参考电压			
$V_{ m REFDQ}$	电源	数据信号的参考电压			
V_{SS}	地	地			

V _{SSO}	Q	地	DQ地
ZQ			输出驱动校正的外部参考点

六、 绝对最大额定值

SM41J256M16M产品的绝对最大额定值如下:

七、 推荐工作条件

SM41J256M16M产品的推荐工作条件如下:

八、 直流(DC)特性表

SM41J256M16M产品的直流(DC)电特性见下表:

表 2 直流 (DC) 电特性

	符号	除另有规定外,V _{REFCA} =V _{REFDQ} =V _{DD} /2,	极	单	
特性		$V_{DD}=V_{DDQ}=1.5V\pm0.075V, V_{SS}=V_{SSQ}=0V, -55^{\circ}C \le TA \le 125^{\circ}C$	最小值	最大值	位
命令和地址					
DC 输入高电平	V _{IH(DC100)} ^a	_	$V_{REF} + 0.100$	1.5	V
DC 输入低电平	$V_{IL(DC100)}{}^{a} \\$	_	0	V_{REF} -0.100	V
AC 输入高电平	V _{IH(AC175)}	_	V _{REF} +0.175	_	V
AC 输入低电平	V _{IL(AC175)}	_	_	V _{REF} -0.175	V

AC 输入高电平	V _{IH(AC150)}	_	V _{REF} +0.150	_	V
AC 输入低电平	V _{IL(AC150)}	_	_	V _{REF} -0.150	V
数据(DQ and DI	M)	L			
DC 输入高电平	V _{IH(DC100)} ^a	_	V _{REF} +0.100	1.5	V
DC 输入低电平	V _{IL(DC100)} ^a	_	0	V _{REF} -0.100	V
AC 输入高电平	V _{IH(AC150)}	_	V _{REF} +0.150	_	V
AC 输入低电平	V _{IL(AC150)}	_	_	V _{REF} -0.150	V
漏电流参数	l.				l
输入漏电流	I _{IL}	$0V \le V_{IN} \le V_{DD}$	-5	+5	μΑ
输出漏电流	I _{OL}	$0V \le V_{OUT} \le V_{DDO}$	-5	+5	μA
电流参数		1 1 2 1 0012 1 220	_		
电机 参数		时钟正常输入; CKE=1; CL=11, BL=8, AL=0; CS#在			l .
操作单 Bank 激活- 预充电电流	I_{DD0}	 附好正常输入; CKE=1; CL=11, BL=8, AL=0; CS#在 激活命令和预充电命令之间为高; 命令、地址输入部分 01 跳转; 数据端口悬空; DM=0; 某一时刻只激活单 Bank 操作; 使能 DQ 输出和 RTT_Nom; ODT=0 	_	66	mA
操作单 Bank 激活- 读取-预充电电流	I_{DD1}	时钟正常输入; CKE=1; CL=11, BL=8, AL=0; CS#在 激活命令、读取命令、预充电命令之间为高; 命令、地址 输入、数据端口部分 01 跳转; DM=0; 某一时刻只激活单 Bank 操作; 使能 DQ 输出和 RTT_Nom; ODT=0	_	87	mA
预充电 Power-down 电流(slow)	I_{DD2P0}	时钟正常输入; CKE=0; CL=11, BL=8, AL=0; CS#=1; 所有命令和地址输入为 0; 数据端口悬空; DM=0; 关闭 所有 BANK; 使能 DQ 输出和 RTT_Nom; ODT=0; 预充 电 Power-Down 模式: Slow	_	18	mA
预充电 Power-down 电流(fast)	I_{DD2P1}	时钟正常输入; CKE=0; CL=11, BL=8, AL=0; CS#=1; 所有命令和地址输入为 0; 数据端口悬空; DM=0; 关闭 所有 BANK; 使能 DQ 输出和 RTT_Nom; ODT=0; 预充 电 Power-Down 模式: Fast	_	32	mA
预充电 静态待机电流	I_{DD2Q}	时钟正常输入; CKE=1; CL=11, BL=8, AL=0; CS#=1; 所有命令和地址输入为 0; 数据端口悬空; DM=0; 关闭 所有 BANK; 使能 DQ 输出和 RTT_Nom; ODT=0	_	32	mA
预充电待机电流	I_{DD2N}	时钟正常输入; CKE=1; CL=11, BL=8, AL=0; CS#=1; 命令、地址输入部分 01 跳转; 数据端口悬空; DM=0; 关闭所有 BANK; 使能 DQ 输出和 RTT_Nom; ODT=0	_	32	mA
预充电待机 ODT 电流	$I_{ m DD2NT}$	时钟正常输入; CKE=1; CL=11, BL=8, AL=0; CS#=1; 命令、地址输入部分 01 跳转; 数据端口悬空; DM=0; 关闭所有 BANK; 使能 DQ 输出和 RTT_Nom; ODT 信号 01 跳转	_	42	mA
激活 Power-down 电 流	I_{DD3P}	时钟正常输入; CKE=0; CL=11, BL=8, AL=0; CS#=1; 所有命令和地址输入为 0; 数据端口悬空; DM=0; 所有 BANK 打开; 使能 DQ 输出和 RTT_Nom; ODT=0;	_	38	mA
激活待机电流	I_{DD3N}	时钟正常输入; CKE=1; CL=11, BL=8, AL=0; CS#=1; 命令、地址输入部分 01 跳转; 数据端口悬空; DM=0; 所有 BANK 打开; 使能 DQ 输出和 RTT_Nom; ODT=0	_	47	mA
读取操作工作电流	I_{DD4R}	时钟正常输入; CKE=1; CL=11, BL=8, AL=0; CS#在 读取命令之间为 1; 命令、地址输入部分 01 跳转; 突发数 据读取方式; DM=0; 所有 BANK 打开, BANK 之间读取 命令循环, 0, 0, 1, 1, 2, 2, …; 使能 DQ 输出和 RTT_Nom; ODT=0	_	235	mA
写入操作工作电流	$I_{ m DD4W}$	时钟正常输入; CKE=1; CL=11, BL=8, AL=0; CS#在写入命令之间为1; 命令、地址输入部分01 跳转; 突发数据写入方式; DM=0; 所有 BANK 打开, BANK 之间写入	_	171	mA

		命令循环, 0, 0, 1, 1, 2, 2, ···; 使能 DQ 输出和 RTT_Nom; ODT=1			
突发刷新电流	I_{DD5B}	时钟正常输入; CKE=1; CL=11, BL=8, AL=0; CS#在 刷新命令之间为 1; 命令、地址输入部分 01 跳转; 数据端 口悬空; DM=0; 每个 nRFC 周期一次刷新命令; 使能 DQ 输出和 RTT_Nom; ODT=0	_	235	mA
室温自刷新电流	I_{DD6}	自动自刷新功能关闭;正常的自刷新温度范围; CKE=0; 无时钟输入; CK/CK#=0; CL=11, BL=8, AL=0; CS#悬空; 命令、地址输入和数据端口悬空; DM=0; 正常温度自刷新操作; 使能 DQ 输出和 RTT_Nom; ODT 悬空;	_	40	mA
扩展温度自刷新电流	I _{DD6ET}	自动自刷新功能关闭;扩展的自刷新温度范围; CKE=0; 无时钟输入; CK/CK#=0; CL=11, BL=8, AL=0; CS#悬空; 命令、地址输入和数据端口悬空; DM=0; 扩展温度自刷新操作; 使能 DQ 输出和 RTT_Nom; ODT 悬空;		40	mA
Bank interleave read 工作电流	I_{DD7}	时钟正常输入; CKE=1; CL=11, BL=8, AL=CL-1; CS# 在激活和读取加自动预充电为 1; 命令、地址输入部分 01 跳转; 突发数据读取方式; DM=0; BANK 交错激活; 使 能 DQ 输出和 RTT_Nom; ODT=0;	_	243	mA
复位电流	I_{DD8}	RESET=0; CK/CK#=0; CKE 悬空; 无时钟输入; CS#悬空; 命令、地址输入和数据端口悬空; ODT 悬空;	_	34	mA

九、 交流(AC)特性表

SM41J256M16M产品的交流(AC)电特性见下表:

表 3 交流 (AC) 电特性

			条 件	极限	!值	
			除另有规定外,			
特性		符号	$V_{REFCA}=V_{REFDQ}=V_{DD}/2$,			单位
1年		10 9	$V_{DD}=V_{DDQ}=1.5V\pm0.075V$,	最小值	最大值	十四
			$V_{SS}=V_{SSQ}=0V$,			
			-55°C≤T _A ≤125°C			
时钟参数						
时钟周期:DLL disable 模式		^t CK (DLL_DIS)	_	8	_	ns
时钟周期:DLL enable 相	莫式	tCK(avg)	图 18	1.25	1.5	ns
时钟高电平宽度	时钟高电平宽度		图 18	0.47	0.53	tCK(avg)
时钟低电平宽度		tCL(avg)	图 18	0.47	0.53	tCK(avg)
时钟周期抖动	DLL locked	tJITper a	_	-70	70	ps
	DLL locking	^t JITper,lck ^a	_	-60	60	ps
Absolute 时钟周期		tCK(abs) a	_	1180	1570	ps
Absolute 时钟高脉冲宽	度	tCH(abs)a	_	0.43		tCK(avg)
Absolute 时钟低脉冲宽	度	tCL(abs) a	_	0.43		tCK(avg)
周期间抖动	DLL locked	tJITcc a	_		140	ps
/可知问1740	DLL locking	tJITcc,lck a	_		120	ps
	2 周期	tERR2per a	_	-103	103	ps
	3周期	tERR3per a	_	-122	122	ps
累积误差	4 周期	tERR4per a	_	-136	136	ps
	5 周期	^t ERR5per ^a	_	-147	147	ps
	6 周期	^t ERR6per ^a	_	-155	155	ps

	7周期	tERR7per a	_	-163	163	ps
	8周期	tERR8per a	_	-169	169	ps
	9周期	tERR9per a	_	-175	175	ps
	10 周期	tERR10per a	_	-180	180	ps
	11 周期	tERR11per a	_	-184	184	ps
	12 周期	tERR12per a	_	-188	188	ps
	n=13, 1449,	tEDD a		$(1+0.68\ln[n]) \times$	$(1+0.68\ln[n])$	
	50 周期	^t ERRnper ^a	_	^t JITper _{MIN}	×tJITper MAX	ps
DQ 输入时间参数						
DQ/DM 输入建立时间		^t DS _{(base)(AC150)} ^a	图 25	10	_	ps
DQ/DM 输入保持时间		^t DH _{(base)(DC100)} ^a	图 25	45	_	ps
DQ/DM 输入脉冲宽度		^t DIPW ^a	_	360	_	ps
DQ 输出时间参数		I				
DQS,DQS#与 DQ 偏紀	<u></u>	^t DQSQ ^a	图 24	_	100	ps
DQ 输出保持时间	•1	tOH a	图 24	0.38	_	tCK(avg)
DQ Low-Z 时间		tLZDQ a	图 24	-450	225	ps
DQ High-Z 时间		tHZDQ a	图 24	-430	225	-
DOS 输入时间参数		IILDQ		<u> </u>	223	ps
DQS 加入时间参数 DQS,DQS#上升沿到i	H th CV					
DQS,DQS#上开沿到i CK#上升沿	TT CK,	^t DQSS	图 14	-0.27	+0.27	tCK(avg)
DQS,DQS#输入低脉浴	小安	^t DQSL	图 14	-0.45	+0.55	tCK(avg)
DQS,DQS#输入高脉?			图 14 图 14			
	甲	^t DQSH	7 -	-0.45	+0.55	tCK(avg)
DQS,DQS#建立时间		^t DSS ^a	图 14	0.18	_	tCK(avg)
DQS,DQS#保持时间	. 1	^t DSH ^a	图 14	0.18	_	tCK(avg)
DQS,DQS#写前同步F		tWPRE	图 14、28、29	0.9	_	tCK(avg)
DQS,DQS#写后同步时间		^t WPST	图 14、28、29	0.3	_	tCK(avg)
DQS 输出时间参数	1	T		T	1	
DQS,DQS#上升沿输出	出存取时间到	^t DQSCK	图 26	-225	225	ps
时钟 CK,CK#上升沿		-				
DQS,DQS#输出高时间		tQSH a	图 26	0.4	_	tCK(avg)
DQS,DQS#输出低时间		^t QSL ^a	图 26	0.4	—	tCK(avg)
DQS,DQS# Low-Z 时		tLZDQS a	图 26	-450	225	ps
DQS, DQS# High-Z 时		tHZDQS a	图 26		225	ps
DQS,DQS#读前同步的		^t RPRE ^a	图 26	0.9		tCK(avg)
DQS,DQS#读后同步的	付间	tRPST a	图 26	0.3	_	tCK(avg)
命令和地址时间参数						
DLL 锁定时间		^t DLLK ^a	图 9	512	_	tCK(avg)
控制、命令、地址输入强		^t IS _{(base)(AC175)} ^a	图 18	45		ps
控制、命令、地址输入码		^t IS _{(base)(AC150)} ^a	图 18	170		ps
控制、命令、地址输入值	保持时间	tIH _{(base)(DC100)} a	图 18	120	_	ps
控制、命令、地址输入周	永冲宽度	^t IPW ^a	_	560	_	ps
激活到内部读或写延迟	1	^t RCD	图 10	13.75	_	ns
预充电命令周期		^t RP	图 12	13.75	_	ns
激活到预充电命令周期		tRAS a	图 12	35	9×tREFI	ns
激活到激活命令周期		tRC a	<u> </u>	48.75	_	ns
激活到激活最小命令周	期	tRRD a	图 10、27	4	_	tCK(avg)
4 个激活序列周期		tFAW a	图 27	40	_	ns
写恢复时间		tWR a	图 15	15	_	ns
写命令到读命令延迟时	· jai	tWTR a	图 28	7.5		ns
读命令到预充电命令时		tRTP a	图 12	7.5	_	
■	I _H 1		·	4	_	ns tCK(avg)
		tCCD a				
列地址命令延迟时间 自动预充电写恢复+预		tCCD a	图 29	WR+tRP/		CK(avg)

模式寄存器设置命令时	·间	tMRD a	图 9	4	_	tCK(avg)
模式寄存器设置命令更	新延迟	tMOD a	图 9	12	_	ns
多用寄存器恢复时间		tMPRR a	_	1	_	tCK(avg)
校准时间参数		1				
ZQCL 命令:长校准	上电和复位 操作	^t ZQinit ^a	图 9、30	512	_	tCK(avg)
时间	正常操作	^t ZQ _{oper} ^a	图 30	256	_	tCK(avg)
ZQCS 命令: 短校准时	间	tZQCS a	图 30	64	_	tCK(avg)
初始化和复位时间参数		1				
退出复位从 CKE 高到可	可用命令时间	tXPR a	图 21	5	_	tCK(avg)
刷新时间参数		1				
刷新命令周期		^t RFC	图 16	260	70200	ns
最大刷新周期(-55℃≤	(T _A ≤+85°C)	a	_	_	64	ms
最大刷新周期(85℃≤2		a	_	_	32	ms
最大刷新周期(105℃≤		a	_	_	16	ms
最大平均周期刷新						
-55°C ≤TA≤+105°C		tREFI a	_	_	7.8	μs
最大平均周期刷新						
+85°C ≤TA ≤+105°C		tREFI a	_	_	3.9	μs
最大平均周期刷新						
+105°C ≤TA≤+125°C		tREFI a	_	_	1.95	μs
退出自刷新到命令						
不锁定 DLL 时间		^t XS ^a	图 18、31	270	_	ns
退出自刷新到命令锁定	DII 时间	tXSDLL a	图 18	^t DLLK _(min)	_	tCK(avg)
最小 CKE 低脉冲宽度		ASDLL	国 10	DLLK(min)		CK(avg)
到退出时间	八日	tCKESR a	图 18、31	tCKE(min)+1	_	tCK(avg)
自刷新进入/Power_dow						
可用时间	加进八泊町村	tCKSRE a	图 18、31	10	_	ns
自刷新退出/Power_dow						
退出到时钟可用时间	加 赵山/麦型	tCKSRX a	图 18、31	10	_	ns
Power-Down 时序						
		tCVE a	図 10 90	5		
CKE 最小脉冲宽度	1	tCRE(MIN) a	图 19、20 图 19、20	5		ns
命令通过禁止延时时间		tCPDED a		1		tCK(avg)
Power_down 进入到退日		^t PD ^a	图 19、20	^t CKE _(min)	$9 \times t_{REFI}$	ns
Power-Down 进入最小			FLOO	1 .		Ligari
激活命令到 Power-Dow		tACTPDEN a	图 36	1		tCK(avg)
预充电命令到 Power-D		^t PREPDEN ^a	图 37	1		tCK(avg)
刷新命令到 Power-Dow		^t REFPDEN ^a	图 35	1		tCK(avg)
模式寄存器命令到 Pow		tMRSPDEN a	图 37	tMOD _(MIN)		_
读/读加自动预充电命令	>到	^t RDPDEN ^a	图 32	RL+4+1	_	^t CK(avg)
Power-Down 时间		1121221	P. 05	1021111		011(0.18)
	BL8OTF,			WL+4+tWR		
写命令到	BL8MRS,	^t WRPDEN ^a	图 33	/ tCK(avg)	_	tCK(avg)
Power-Down 时间	BC4OTF					
	BC4MRS	tWRPDENa	图 33	WL+2+tWR	_	tCK(avg)
				/tCK(avg)		
写命令加自动预充电	BL8OTF, BL8MRS,	^t WRAPDEN ^a	图 34	WL+4+WR+1		tCK(avg)
到 Power-Down 时间 BC4OTF BC4MRS		WKALDEN	[되 9.4	VY LT4T W N+1		CK(avg)
		tWRAPDENa	图 34	WL+2+WR+1		tCK(avg)
Power-Down 退出时序	DC4MIN	WKALDEN	[되 94	** L⊤∠⊤ ** K +1		CK(avg)
DLL 打开、命令可用时	计间式 DII 子	Γ				
DLL 打开、命令可用的 闭到不需要锁定 DLL a		^t XP ^a	图 20	7.5	_	ns
预充电 Power-down 带		tXPDLL a	图 20	24		
灰兀电 Power-down 审	DLL 大闪到	'APDLL"	闰 40	24		ns

			1	1	, ,
DLL 锁定命令时间					
Write Leveling 时序 ^a					
ODT 时序 a					
RTT 打开时间	^t AON	图 39	-225	225	ps
RTT 关断时间	^t AOF	图 39	0.3	0.7	tCK(avg)
异步 RTT 打开延时	^t AONPD	图 40	2	8.5	ns
异步 RTT 关断延时	^t AOFPD	图 40	2	8.5	ns
ODT 高时间用写命令和 BL8	ODTH8	图 41	6		tCK(avg)
ODT 高时间不用写命令/用写命令和 BC4	ODTH4	图 39	4	_	tCK(avg)
Dynamic ODT 时序 ^a					
RTT 动态改变偏斜	^t ADC	图 41	0.3	0.7	tCK(avg)
写入均衡时序					
写入均衡时序的第一个 DQS, DQS# 脉冲上升沿时间	^t WLMRD	图 42	40	_	tCK(avg)
写入均衡时序的 DQS, DQS#延迟	^t WLDQSEN	图 42	25		tCK(avg)
写入均衡时序建立时间	tWLS	图 42	165		ps
写入均衡时序保持时间	^t WLH	图 42	165	_	ps
写入均衡时序输出延迟时间	^t WLO	图 42	0	7.5	ns
写入均衡时序输出错误时间	^t WLOE	图 42	0	2	ns

^{*}该参数为设计保证参数,不要求测试。

军标中单位为 t_{CK_a} AVG)的参数,测试时取 $t_{CK(min)}=1.25$ ns,做最严测试处理。

十、 器件说明

1. 真值表

表 4 描述的是 DDR3 SDRAM 的命令真值表,可对应查询。

表 4 DDR3 命令真值表

功	能	CKE n-1	CKE n	CS#	RAS#	CAS#	WE#	BA2- BA0	An	A12	A10	A9-A0
模式寄存器	模式寄存器设置(MRS)		Н	L	L	L	L	BA	OP code			
自动刷新(REF)		Н	Н	L	L	L	Н	V	V	V	V	V
进入自刷新	(SRE)	Н	L	L	L	L	Н	V	V	V	V	V
退出自刷新	退出自刷新(SRX)		Н	Н	V	V	V	V	V	V	V	V
~ H H 1/1/1/1				L	Н	Н	Н			•		•
单 BANK 预充电(PRE)		Н	Н	L	L	Н	L	BA	V	V	L	V
所有 BANK (PREA)	预充电	Н	Н	L	L	Н	L	V	V	V	Н	V
BANK 激活(ACT)		Н	Н	L	L	Н	Н	BA	Row address			
写入操作 (WR)	BL8MRS BC4MRS	Н	Н	L	Н	L	L	BA	X	V	L	Column address
(,, , , ,	BC4OTF	Н	Н	L	Н	L	L	BA	X	L	L	Column

												address
	BL8OTF	Н	Н	L	Н	L	L	BA	X	Н	L	Column
				_								address
带自动预	BL8MRS BC4MRS	Н	Н	L	Н	L	L	BA	X	V	Н	Column address
充电写入	DC4WINS											Column
操作	BC4OTF	Н	Н	L	Н	L	L	BA	X	L	Н	address
球行 (WRAP)												Column
(WKAF)	BL8OTF	Н	Н	L	Н	L	L	BA	X	Н	Н	address
	BL8MRS			_		_					_	Column
	BC4MRS	Н	Н	L	Н	L	Н	BA	X	V	L	address
读取操作	BC4OTF	Н	Н	L	Н	L	Н	BA	X	L	L	Column
(RD)				L	п							address
	BL8OTF	Н	Н	L	Н	L	Н	BA	X	Н	L	Column
				_								address
# 4 -1 77	BL8MRS H	Н	L	Н	L	Н	BA	X	V	Н	Column	
带自动预	BC4MRS											address
充电读取	BC4OTF	Н	Н	L	Н	L	Н	BA	X	L	Н	Column
操作												address Column
(RDAP)	BL8OTF	Н	Н	L	Н	L	Н	BA	X	Н	Н	address
不操作(No	OP)	Н	X	L	Н	Н	Н	V	V	V	V	V
器件不使能		H	Н	Н	X	X	X	X	X	X	X	X
# 17 / 1 文化	(DES)	11	11	L	Н	Н	Н	Λ	Λ	Λ	Λ	Λ
进入 Power_down(PDE)		Н	L	H	V	V	V	V	V	V	V	V
退出 Power_down(PDX)		DX) L	Н	L	H	H	H	V	V		V	
				H	V	V	V			V		V
ZQ 长校准(ZQCL)		Н	Н	L	Н	Н	L	X	X	X	Н	X
ZQ 短校准(ZQCS)	Н	Н	L	Н	Н	L	X	X	X	L	X

2. 功能说明

2.1 模式寄存器 (MR)

模式寄存器(MR0-MR3)用来定义 DDR3 SDRAM 的工作模式,利用加载模式寄存器(MRS)命令进行设置,芯片会一直保持所设置的信息直到重新设置、芯片复位或掉电,重新设置模式寄存器不会修改芯片内部所存储的数据。

MR0 模式寄存器用来定义 DDR3 SDRAM 的突发长度(Burst Length)、突发类型(Burst Type)、CAS 延迟(CAS latency)、操作模式、DLL 复位、写恢复和

预充电 Power down 模式,如图 5 所示。

- ① Burst Length (BL): 突发长度。DDR3 的读写操作都是突发类型的,突发长度决定了在读取操作或写入操作中列空间的最大个数,可根据要求设置为 4 (突变模式),8(固定)或利用 A12 管脚在读写命令的时候进行设置(on-the-fly)。
- ② Burst Type: 突发类型。突发类型分为 sequential 或 interleaved, 只在读取操作中有用。由 M3 决定。
- ③ CAS Latency(CL): 列地址选通脉冲时间延迟。指在读取数据时,读取命令到数据输出需要等待的时钟周期数,可设置为 5~11。
 - ④ DLL Reset: DLL 复位设置, 当设置 M8 为 1 时, 激活 DLL 复位功能。
 - ⑤ Write Recovery: 定义写恢复时间, WR= WR/CK, 可设置为 5~12。
- ⑥ Precharge Power-Down 模式: 当 M12 设置为 0 时,在预充电 Power-Down 模式下,DLL关闭,芯片处于待机模式;当 M12 设置为 1 时,在预充电 Power-Down 模式下,DLL 打开,芯片处于快速退出预充电 Power-Down 模式。
- ⑦ Mode Register Definition:模式寄存器定义,由 BA1 和 BA0 决定 LMR 命令所操作的模式寄存器属于哪种模式寄存器。

图 5 模式寄存器 MR0 定义

MR1 模式寄存器定义 DDR3 SDRAM 额外的一些设置,有数据输出使能(Q OFF)、DLL 使能/禁止、ODT 的电阻值、写入均衡控制、CAS 附加延迟设置和输出驱动强度选择等,如图 6 所示。

- ① DLL Enable/Disable: DLL 使能控制。在正常操作时,DLL 必须被使能,在上电初始化的时候进行使能设置。
- ② Output Drive Strength: 输出驱动强度。正常情况下设置为 RZQ/7(34 Ω [NOM]),为了校准输出驱动阻抗,外部需要有 RZQ 电阻(240 Ω ± 10%)连接到 ZQ 管脚上。
 - ③ CAS# Additive Latency(AL): CAS 附加延迟,可设置为 0、CL-1、CL-2。
 - ④ RTT: ODT 电阻的设置和 RZQ 电阻相关,可按需求设置。
 - ⑤ WL: 写入均衡功能使能,通过 MR1[7]设置。
 - ⑥ TDQS 使能控制: 只有在 8bit 模式下才使用。
- ⑦ 数据输出使能控制: M12 设置是否正常输出, M12=0 时正常输出, 否则输出禁止。
- ⑧ Mode Register Definition:模式寄存器定义,由 BA1 和 BA0 决定 LMR 命令所操作的模式寄存器属于哪种模式寄存器。

图 6 模式寄存器 MR1 定义

MR2 模式寄存器定义了 DDR3 SDRAM 的其他一些设置,有 CAS 写入延迟、自动自刷新(ASR)、温度自刷新(SRT)、动态 ODT等,如图 7 所示。

- ① CWL: CAS 写入延迟。定义在写入操作中,在附件延迟(AL)后增加的 CWL 延迟时钟数,可设置为 5~8。
 - ② ASR: 自动自刷新使能。
 - ③ SRT: 自刷新温度范围使能。
- ④ 动态 ODT: 动态 ODT 使能。如果动态 ODT 使能,则在写入操作的时候, DRAM 从正常的 ODT 模式切换到动态 ODT 模式进行工作。
- ⑤ Mode Register Definition: 模式寄存器定义,由 BA1 和 BA0 决定 LMR 命令所操作的模式寄存器属于哪种模式寄存器。

图 7 模式寄存器 MR2 定义

MR3 定义了 MULTIPURPOSE REGISTER (MPR) 功能的控制位,如图 8 所示。

图 8 模式寄存器 MR3 定义

2.2 芯片初始化

DDR3 芯片在上电以后,必须运行初始化时序对芯片进行必要的功能配置后,才能进行正常的读写操作,其初始化时序如图 9 所示。

图 9 芯片初始化时序

2.3 激活操作

激活操作(ACTIVATE)是指在读取或者写入操作之前,芯片需要将要操作的 Bank 和 Row 进行激活,方便后续的操作。激活操作是通过激活命令实现的,在激活命令经过时间 'RCD 后,可以进行读取或写入操作,而在不同 Bank 之间激活命令的间隔时间是 'RRD,如图 10 所示。

图 10 'RCD 和'RRD 时序

2.4 读取操作

突发读取操作是通过读取命令实现的,在读取命令中提供开始读取数据的 Column 和 Bank,然后经过读取延迟(Read Latency)后,连续读出指定数量的 数据。RL 的值由 AL 和 CL 定义,RL=AL+CL。AL 和 CL 的值可通过 MRS 命令进行定义。图 11 展示了 CL=8,AL=0 设置下的 RL 时序。

图 11 读取延迟 (Read Latency)

在读取操作中,DQS/DQS#与输出数据同步,在 DQS/DQS#的上升/下降沿都会读取到数据。DDR3 SDRAM 的突发读取操作不允许中断或者删减。在突发读取操作后,需要添加一个预充电(PRECHARGE)命令,来关闭激活的 Row。根据 A10 管脚的不同,决定了预充电命令需要手动添加还是自动添加。在读取操作时,如果地址线 A10 为高,则在读取操作后自动会加一个预充电命令;而如果地址线 A10 为低,则需要在读取命令之后,按照要求添加一个预充电命令,相应时序波形如图 12 和图 13 所示

图 13 读取操作-带自动预充电

2.5 写入操作

突发写入操作通过写入命令实现,DDR3 利用 WL(Write Latency)来表明 其延迟时间,与读取操作的 RL 功能一致,而 WL=AL+CWL。在写入操作的时候,提供要写入的起始 Column 地址和 Bank 地址,同时是否加入自动预充电命令。如果加入自动预充电命令,则完成突发写入操作以后,就会自动关闭激活的 Row。

在突发写入操作中,第一个可用的输入数据在 WL 延时后的 DQS 的第一个上升沿被锁存,而后续的输入数据在每个 DQS 的上升沿/下降沿被锁存。

在写入命令和 DQS 的第一个上升沿之间的时间为 WL±'DQSS,图 14 中所表示的即为 'DQSS 的值处于正常情况和极限情况下的突发写入操作时序。

图 14 突发写入操作时序

图 15 是当 BL=8 时的写入操作到预充电时序,可以看出,数据写入之后,需要等待 WR 延时后才能加入预充电命令。

图 15 写入操作-预充电时序

2.6 预充电操作 (PRECHARGE)

预充电命令是用来关闭某个 BANK 已经激活的 Row 或者所有 BANK 已经激活的 Row。A10 管脚用来检测是所有激活的 Row 被预充电还是单个 BANK 的 Row 被预充电,当A10 管脚为高时,表明所有激活的 Row 都需要被预充电,BANK 地址无意义;而 A10 管脚为低时,单一 BANK 的 Row 被预充电,这时 BANK 地址所指代的就是需要预充电 Row 的 BANK 地址。

一旦 BANK 被预充电以后,则整个 BANK 的 Row 都被关闭,处于空闲状态,如果后续需要对 Row 进行读写操作,则需要重新激活后才能使用

2.7 刷新操作(REFRESH)

DRAM 需要每隔一段时间执行一次刷新操作,以保证存储数据不丢失。刷新操作时,地址由内部刷新控制器自动产生。刷新操作时序如图 16 所示。

图 16 刷新操作时序

2.8 自刷新操作(SELF REFRESH)

自刷新操作也是用来刷新 DRAM 以保存所存储的数据。在自刷新方式下,为了降低功耗,刷新地址和刷新时间全部由器件内部产生。只有通过 CKE 变低才能激活自刷新方式,其他的任何输入都将不起作用。给出退出自刷新方式命令后必须保持一定节拍的空操作输入,以保证器件完成从自刷新方式的退出。如果在正常工作期间采用集中式自动刷新方式,则在退出自刷新模式后必须进行一遍集中的自动刷新操作,以保证 DRAM 的数据不丢失。自刷新时序图如图 17 所示。

图 17 自刷新进入/退出时序

DDR3 SDRAM 采用了两项新的自刷新设计功能,称为自动自刷新(ASR,Automatic Self-Refresh)和自刷新温度范围(SRT,Self-Refresh Temperature)。 当开始 ASR 之后,将通过一个内置于 DRAM 芯片的温度传感器来控制刷新的频率,因为刷新频率高的话,耗电就大,温度也随之升高,而温度传感器则在保证数据不丢失的情况下,尽量减少刷新频率,降低工作温度。自刷新温度范围(SRT,Self-Refresh Temperature)可通过模式寄存器选择两个温度范围,一个是普通的温度范围(例如 0 \mathbb{C} 至 85 \mathbb{C}),另一个是扩展温度范围,比如最高到 95 \mathbb{C} 。对于DRAM 内部设定的这两种温度范围,DRAM 将以恒定的频率和电流进行刷新操作,其对应的设置和功能说明见表 5 。

		20日柳柳保风心均			
MR2[6]	MR2[7]	 自刷新操作	允许的温度访问		
(ASR)	(SRT)	日型机机木干			
0	0	自刷新模式工作在正常的温度范围内	0℃~85℃		
0	1	自刷新模式工作在正常的温度范围内和扩	0°C~95°C		
		展的温度访问,当 SRT 使能以后,会提高			
		自刷新的功耗			
1	0	自刷新模式工作在正常的温度范围内和扩	0℃~95℃		

表 5 自刷新模式总结

		展的温度访问,自刷新的功耗跟温度相关
1	1	不能设置

2.9 输入时钟频率改变

在 DDR3 初始化以后,外部时钟必须保持稳定,才能保证芯片正常工作。如果需要改变外部输入的时钟频率,只有两种方式:自刷新模式或预充电 Power-down 模式。在自刷新模式下,外部时钟无意义,则可以在退出自刷新模式之前,改变输入的时钟频率。而在预充电 Power-down 模式下,CKE 为低,同样外部时钟不使能,则可以改变输入时钟频率,当在退出预充电 Power-down 模式以后,必须执行一次 MRS 命令,设置复位 DLL,如图 18 所示。

图 18 预充电 Power-down 过程中,改变时钟频率

2.10 Power-Down 模式

当 CKE 拉低后执行 NOP 或 DES 指令,芯片就进入 Power-down 模式。进入 Power-down 模式以后,芯片禁止所有的输入输出信号,包括 CK、CK#、ODT、CKE 和 RESET#。

假如 Power-Down 模式发生的时候,所有 BANK 处于空闲状态,此时的 Power-Down 模式称为预充电 Power-Down,如图 19 所示;而当 Power-Down 模

式发生的时候,有任何 Row 激活在任意 BANK,此 Power-Down 模式称为激活 Power-Down,如图 20 所示。

图 19 预充电 Power-down 过程进入/退出

图 20 激活 Power-down 过程进入/退出

2.11 复位操作

当外部复位管脚 RESET#拉低,保持 100ns 的时间,芯片就执行复位操作。 在此过程中,芯片输出禁止,ODT 关闭,芯片复位。当退出复位操作以后,芯 片必须重新初始化后才能工作,内部计数器也复位,而芯片内部数据也会变化。 复位时序图如图 21 所示。

图 21 复位操作时序

2.12 终端电阻 (ODT) 设置

DRAM 存储控制器利用终端电阻(ODT)功能打开或者关闭 DRAM 芯片某些信号的终端电阻,包括 DQ、DQS、DM 信号,用来提高 DRAM 存储器的信号完整性,其示意图如图 22 所示。

图 22 ODT 功能示意图

终端电阻 R_{TT} 的电阻值在模式寄存器中进行设置。当芯片进入自刷新模式或者在模式寄存器中将 ODT 功能禁止时,外部的 ODT 控制管脚就无意义。ODT 包括普通 ODT 模式和动态 ODT 模式,正常情况下 DRAM 都工作在普通 ODT 模式,此时的 R_{TT} 电阻值为 $R_{TT.nom}$; 当写入命令或者需要 ODT 功能转换的时候,就会用到动态 ODT 模式,此时的电阻值变为 $R_{TT.wR}$, 当完成写入命令以后, R_{TT} 值又回到 $R_{TT.nom}$, 如图 23 所示。

图 23 动态 ODT 操作, BC4

十一、 时序图

图 24 数据输出时序

图 25 数据输入时序

图 26 DQS 时序-读取操作

图 27 'FAW 时序

图 28 写入操作到读取操作时序序 (BL8)

图 29 连续写入操作(BL8)

图 30 ZQ 校准时序((ZQCL and ZQCS)

图 31 DLL Disable 模式到 DLL enable 模式

图 32 读命令/读命令加预充电后进入 Power-Down 时序 (RDAP)

图 33 写命令后进入 Power-Down 时序

图 34 写命令加自动预充电后进入 Power-Down 时序 (WRAP)

图 35 刷新后进入 Power-Down 时序

图 36 激活后进入 Power-Down 时序

图 37 预充电后进入 Power-Down 时序

图 38 模式寄存器设置后进入 Power-Down 时序

图 39 同步 ODT 时序

图 40 异步 ODT 时序

图 41 动态 ODT 时序

图 42 写入均衡时序

十二、使用操作规程及注意事项

器件必须采取防静电措施进行操作。取用芯片时应佩戴防静电手套,防止人体 电荷对芯片的静电冲击,损坏芯片。将芯片插入电路板上的底座时以及将芯片从电 路板上的底座取出时,应注意施力方向以确保芯片管脚均匀受力。不要因为用力过 猛,损坏芯片管脚,导致无法使用。

推荐下列操作措施:

- ◆ 器件应在防静电的工作台上操作,或带指套操作;
- ◆ 试验设备和器具应接地;
- ◆ 不能触摸器件引线;
- ◆ 器件应存放在导电材料制成的容器中(如:集成电路专用盒):
- ◆ 生产、测试、使用以及转运过程中应避免使用引起静电的塑料、橡胶或丝织物。
 - ◆ 相对湿度尽可能保持在 50%±30%。

十三、 运输与储存

芯片存储环境温度是: -65℃到+150℃。

使用指定的防静电包装盒进行产品的包装和运输。在运输过程中,确保芯片不要与外物发生碰撞。

十四、开箱与检查

开箱使用芯片时,请注意观察芯片管壳上的产品标识。确定产品标识清晰,无 污迹,无擦痕。同时,注意检查芯片管壳及引脚。确定管壳无损坏,无伤痕,管脚 整齐,无缺失,无变形。

十五、 质量保障与售后服务

国微公司致力于军用微处理器、军用可编程逻辑器件、军用存储器以及军用高

性能 SOC 的研制、生产及推广应用。公司质量管理体系已通过 GJB 9001B-2009 体系认证。并根据国军标体系要求制定了完善的质量管理工作流程,对产品的设计、生产和销售进行日常的质量管理。产品制定有经过公司内部审核批准的企军标,严格按照行业专家评审通过的依据 GJB 7400-2011《合格制造厂认证用半导体集成电路通用规范》裁剪后的标准进行设计和生产,并按照 GJB 548B-2005《微电子器件试验方法和程序》的要求进行试验和检验。产品兼容性好、可靠性高、系统集成创新程度高,已大量应用于我军多个重点型号的武器装备中。

国微公司拥有一支专业的售后服务队伍,分布在全国各大销售区域。在用户需要时我们可随时前往用户单位提供必要的技术服务。包括帮助用户调试系统板、修改测试向量、进行失效分析等。

十六、联系方式

公司名称:深圳市国微电子有限公司

公司地址:深圳市高新技术产业园南区高新南一道国微大厦

ADD: Shenzhen State Microeletronics Co.,Ltd.SSMEC Bldg.,S.Gaoxin 1st Ave.,South Dist.,Hi-Tech Ind.Park,Shenzhen,P.R.China

电话 Tel: 86-755-26983629

86-755-26983467

86-755-26991361

传真 Fax: 86-755-26991389

邮编 Zip: 518057

网址 Web Site: http://www.ssmec.com

电子邮件 Email: mkt@ssmec.com