Informations Visualisierung SoSe 19

Benedikt Lüken-Winkels

May 16, 2019

Contents

1	1. Lecture 2		
	1.1	Orga	2
	1.2	Visualisation-Basics	
2	2. Lecture		
	2.1	Diagrams	3
	2.2	Metaphors and Symbols	3
	2.3	Symbols	3
	2.4	Infographics	
3	3. Lecture		
	3.1	Visual Memory	3
	3.2	Visula Information Processing	4
	3.3	Color Perception	4
	3.4	Preattentive vision	5
	3.5	Pattern Recognition	5
	3.6	Motion recognition	
4	Lect	ture	5
	4.1	Layouting algorithms	6
	4.2	Matrix visualization of Graphs	
5	Lecture		
	5.1	Visualization of dynamic graphs	7
	5.2	Multivariate data and time series	
		5.2.1 Dimensionality Reduction	

1 1. Lecture

1.1 Orga

- Website: st.uni-trier.de/lectures/S19/IV/
- Tutorial: TBD (beginning: 22.-26.04.)
- Final exam: Do, 11.07. (elfths of July) 12-14 (H12)

1.2 Visualisation-Basics

- Combine different kinds of information in one graphic (geographical, temporal, historical, numeric, etc.)
- Sharing and visualising abstract data, without physical representation
- Visualisation is not:
 - scientific visualisation (non-abstract data)
 - computer graphics
 - graphic design

• Example Treemap

- representation of a hierarchy of a filesystem
- no border used for a square (compression)
- light effect shows curvature, indicating where the squares/areas end
- \Rightarrow only 4 pixels needed instead of 9
- Several drawbacks (alternative: tree view)

Abstract Data

- Text, table
- Hierarchy
- Composed data (Multivariate data): Example Napoleon (Slide 1)
- Time series: multivariate data with time as a dimension

Definition: Visualisation comprehend and extract data, visualisation produced automatically (not manually by humans)

Visualisation process

- graphical user interface
- interaction to create and manipulate the visualisation (Visual steering)

2 2. Lecture

2.1 Diagrams

Pie charts

- applicable to part-whole relation
- Several issues
 - hard to compare values
 - hard to compare different pie charts

Other Diagrams

- Timelines
- Sparklines: Reduction to show trend and the change of values over time

2.2 Metaphors and Symbols

Make constructs/concepts more accessible/imaginable

2.3 Symbols

highly simplified representation of objects and acitvities

Isotype Present quantity/value by number of pictograms

2.4 Infographics

- Eyecatcher to get people interested in the presented data
- Contain few text
- Self-explanatory
- Should tell a **story** \Rightarrow express an opinion

3 3. Lecture

3.1 Visual Memory

- The brain fills empty gaps
- Distraction by environment (contrast/structure)
- \Rightarrow visual perception is selective

3.2 Visula Information Processing

- 3 Phases of processing
 - 1. Simple patterns and colors are recognized
 - 2. Action system: reflexes
 - 3. Visual working meomry/visual query

Human Eye

Usage of the properties of visual perception (Anticipation, pattern recognition)

• Eye Tracking (works by measuring the reflection form the eye's curvature)

3.3 Color Perception

3-Color-Theory

• Each color consists of rgb

Opponent-Color-Theory

- After image effect: color-receptors are getting exhausted, so white cannot be 'produced'
- three chemical processes with two opponent colors each
- Color is perceived by the difference between the opponent colors
- \Rightarrow Color and brightness are relative

Design Recommendations

- Emphasize with color
- Differences with brightness
- \bullet Coding of categories: max 6 to 12 different colors
- Color scales should vary in color and brighntess
- Color perception depends on culture
- Motion to grap attention/indicate a relation
- Strong colors/contrast can cause interta (ghost images)

3.4 Preattentive vision

- Detect patterns before an eye movement
- Motion is preattentive
- \bullet \Rightarrow Use preattentive patterns to encode information (spot an outlier)

3.5 Pattern Recognition

- Edge detection
- Simple patterns (detect small distortions)
- Complex patterns
- Object recognition (compare observation with learned patterns to recognise an object)

3.6 Motion recognition

Different elements perform similar motions

- Recognize patterns to identify object
- Recognize change after each frame
- Movements seem related, when they are in synch
- \bullet \Rightarrow Indicate a relation with a synchronous animation
- Motion can induce causality

4 Lecture

Visualization of Graphs: Graph drawing

Application

- Map-drawing: indicate multiple data sets in one map (London Underground)
- Ego(-centric) network: graph with personal connections

Visual Encoding

- Thickness, color of edges
- Color of nodes

Asthetic Criteria Readability does not induce asthetic

- min edge crossings
- min drawing
- min edge length
- min number of bends
- max symmetry
- uncover clusters
- max continuity amongst paths

4.1 Layouting algorithms

Radial Layout

- fair node weight, every node's representation is equal
- lots of edge crossings
- applicable, if there is no further info about the data

Force-Directed Layout

- force edges to a certain length
- reorder nodes
- try to find equilibrium, where the forces cancel out each other

Hierarchical Layout

- for cyclic structures: flip the edges that close the cycle while drawing the graph
- depth first search provides a topological ordering of the nodes
- sort nodes on the lower layer until the bottom is reached, then go back to start
- to have a clean layout, put in dummy nodes as a spacer

Orthogonal Layout

- edges follow grid (orthogonal paths)
- shape metrics
 - describe the path the edges take by turns
 - evaluate the paths

Edge Bundling

- structured radial layout
- bundle edges with the same direction

4.2 Matrix visualization of Graphs

Adjacency Matrix

- indicate an edge in a matrix
- uncovering clusters is hard

Layouting

Compound graphs

5 Lecture

5.1 Visualization of dynamic graphs

Dynamic graph: sequence of graph states

Animation see difference between layout and data changes to preserve the mental map of the graph. Examples:

- TimeLine, horizontal development of the graph, vertical orientation of the graph
- TimeSpiderTrees, cirular layout, each ring is one graph
- TimeRadarTrees, cicular layout, outer circles are a representation of the inner. The inner circle shows incoming edges, the outer shows outgoing

5.2 Multivariate data and time series

Boxplots box showing 50 percent of data, outer borders not standardized

Fan Chart wide part shows the mean (similar to the box plot)

Histogram bar represents a range of values (value ragne split into intervals)

5.2.1 Dimensionality Reduction