

UNIVERSITÀ DEGLI STUDI DI PADOVA

The Hough transform

Stefano Ghidoni

Agenda

IAS-LAB

Finding lines in an image

The Hough transform

Generalized Hough transform

Finding lines

IAS-LAB

Q: How to find lines in an image?

- Q: How to find lines in an image?
- A possible approach:
 - Compute edges
 - Consider all couples of edge points and evaluate the line passing through them
 - Count the number of edge points on such line
 - Complexity: $O(n^2)$ couples adding comparisons: $O(n^3)$

Hough transform

IAS-LAB

- Alternative approach: using the Hough transform
- A line passing through (x_i, y_i) :

$$y_i = ax_i + b$$

Now consider the ab-plane and rewrite the equation as

$$b = -x_i a + y_i$$

The ab-plane is called parameter space

Parameter space

IAS-LAB

Bundle of lines passing through a point

Bundle of lines passing through a point

Line through 2 points

Intersection of two lines

What about vertical lines?

Normal representation

IAS-LAB

 Solution to the vertical line issue: normal representation

$$x\cos\theta + y\sin\theta = \rho$$
$$y = \left(-\frac{\cos\theta}{\sin\theta}\right)x + \left(\frac{\rho}{\sin\theta}\right)$$

Parameter space: sinusoidal curve

An example

IAS-LAB

Image

Edges

Hough transform

Accumulation cells

IAS-LAB

• The parameter space is quantized along ρ and θ

large	small
Few Cells	Many Cells
Handle pixels not perfectly aligned	Requires precise alignment
Poor lines localization	Accurate lines localization

Finding lines using Hough

- For each edge pixel:
 - Compute (ρ, θ) pair values (going along the sinusoidal curve)
 - Crossed cells++
- Counter of each cell: # of pixels on that line

Hough – example

FIGURE 10.34 (a) A 502×564 aerial image of an airport. (b) Edge image obtained using Canny's algorithm. (c) Hough parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in the image plane corresponding to the points highlighted by the boxes). (e) Lines superimposed on the original image.

Generalized Hough transform

- The Hough transform works for more complex shapes
- General equation:

$$g(\boldsymbol{v},\boldsymbol{c})=0$$

- Where $oldsymbol{v}$ is a vector of coordinates and $oldsymbol{c}$ a vector of coefficients
- E.g. (circle): $(x c_1)^2 + (y c_2)^2 = c_3^2$
- The parameter space might have high dimensionality

Generalized Hough transform

IAS-LAB

- The Hough transform works for more complex shapes
- General equation:

$$g(\boldsymbol{v},\boldsymbol{c})=0$$

- Where v is a vector of coordinates and c a vector of coefficients
- E.g. (circle):

$$(x - c_1)^2 + (y - c_2)^2 = c_3^2$$

 The parameter space might have high dimensionality

Generalized Hough transform – ex.

UNIVERSITÀ DEGLI STUDI DI PADOVA

Edge detection and the Hough transform

Stefano Ghidoni

