Rotação

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

26 de Junho de 2020

Sumário

- As variáveis de rotação
- Movimento circular
- Torque, trabalho e energia cinética
- Segunda lei de Newton para rotações
- 5 Apêndice

As variáveis de rotação

Na mecânica podemos dizer que existem dois tipos de movimentos distintos:

- ✓ Translação ou retilíneo: Os objetos se movem ao longo de linhas retas ou curvas;
- ✓ Rotação: Os objetos giram em torno de um eixo.

Movimentos de rotação e translação da Terra.

Corollary

O movimento mais geral de um corpo rígido se compõe de uma translação e uma rotação.

Posição angular

As variáveis de rotação

A posição angular de uma reta é o ângulo que a reta faz com uma direção fixa, em relação a posição angular zero. Na figura ao lado, a posição angular θ é medida em relação ao eixo x. De acordo com a figura podemos ver que

$$\theta = \frac{s}{r},$$

onde s é o comprimento de um arco de raio r.

Rotação em torno do eixo z.

Corollary

A unidade de medida da posição angular é o radiano (rad).

Posição angular e sua relação com grandezas vetoriais

A posição angular não pode ser considerada grandeza vetorial pois não obedece a propriedade vetorial de comutatividade, ou seja, $\vec{\theta_1} + \vec{\theta_2} \neq \vec{\theta_2} + \vec{\theta_1}$.

Propriedade comutativa $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.

Violação da propriedade comutativa em rotações.

Prof. Flaviano W. Fernandes

As variáveis de rotação ○○●○○○○

Deslocamento angular

Se o corpo gira em torno do eixo de rotação variando o seu ângulo de θ_1 para θ_2 nos instante t_1 e t_2 respectivamente, o corpo sofre um deslocamento angular $\Delta\theta$, dado por

$$\Delta \theta = \theta_2 - \theta_1$$
.

Corollary

Por convenção adotamos que um deslocamento angular no sentido anti-horário é positivo, e um deslocamento no sentido horário é negativo.

Deslocamento angular em torno do eixo de rotação z.

Velocidade angular

As variáveis de rotação 0000000

> Considerando que o deslocamento ocorre em um intervalo infitesimal ($\Delta t \rightarrow dt$), temos após aplicar a definição de derivada

$$\omega(t) = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta(t)}{dt}.$$

Se conhecemos a função que determina a posição angular, podemos calcular a velocidade angular por derivação.

Vetor velocidade angular.

Corollary

A unidade de medida da velocidade angular é radiano o por segundo (rad/s).

Aceleração angular

As variáveis de rotação

0000000

Assim como no movimento linear, se a velocidade anqular do objeto em rotação não for constante, esse objeto possui uma aceleração angular α dado por

$$\alpha(t) = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega(t)}{dt}.$$

Assim como na velocidade angular, se conhecemos a função que determina a velocidade angular podemos calcular a aceleração angular por derivação.

Vetor aceleração angular.

Corollary

A unidade de medida da aceleração angular é o radiano por segundo ao quadrado.

Em rotações, no caso onde a aceleração angular α for constante, podemos escrever as funções horárias do movimento angular de maneira análoga ao movimento retilíneo.

Equações de movimento para aceleração linear constante e angular também constante.

Equação	Variável que falta	Equação	Variável que falta
$v = v_0 + at$	Δx	$\omega = \omega_0 + \alpha t$	$\Delta \theta$
$\Delta x = v_0 t + \frac{1}{2} a t^2$	V	$\Delta\theta = \omega_0 t + \frac{1}{2}\alpha t^2$	ω
$v^2 = v_0^2 + 2\bar{a}\Delta x$	t	$\omega^2 = \omega_0^2 + 2\alpha \Delta\theta$	t
$\Delta x = \frac{1}{2} \left(v_0 + v \right) t$	а	$\Delta\theta = \frac{1}{2}(\omega_0 + \omega)t$	α
$\Delta x = vt - \frac{1}{2}at^2$	v_0	$\Delta\theta = \bar{\omega}t - \frac{1}{2}\alpha t^2$	ω_0

Prof. Flaviano W. Fernandes IFPR-Irati

As variáveis de rotação

0000000

Relações entre as variáveis lineares e angulares

Sabemos que uma partícula girando em torno de um eixo com raio r realiza um arco s dado por $s = \theta r$. Se ela realiza um movimento circular. onde r = cte, derivando no tempo temos

$$\frac{ds}{dt} = \frac{d(r\theta)}{dt}$$
$$\frac{ds}{dt} = r\frac{d\theta}{dt}.$$

Pela figura podemos ver que $\frac{ds}{dt} = v$, portanto

$$\mathbf{v} = \omega \mathbf{r}$$
.

Velocidade tangencial \vec{v} no MCU.

Prof. Flaviano W. Fernandes

IFPR-Irati

Período de revolução

Se $\omega = cte$, podemos dizer que o período de revolução T (definido como o tempo gasto para a partícula percorrer uma volta completa) é dado pelo caminho percorrido pela partícula (que corresponde exatamente o comprimento s da circunferência de raio r). Portanto

$$T=\frac{2\pi r}{v}$$

v é conhecido como a velocidade tangencial realizado pela partícula.

Sabendo que $v = \omega r$, temos

$$T=rac{2\pi \chi}{\omega \chi}=rac{2\pi}{\omega}.$$

Definindo a frequência ν como o número de voltas por tempo, temos que

$$u = \frac{1}{T},$$

$$\nu = \frac{\omega}{2\pi}.$$

Acelerações radial e tangencial

Derivando a função $v = \omega r$ encontramos

$$\frac{dv}{dt} = \frac{d\omega r}{dt},$$

$$\frac{dv}{dt} = r\frac{d\omega}{dt},$$

$$a_t = \alpha r.$$

Sabendo que a aceleração radial ar corresponde a aceleração centrípeta *a_{cpt}*, temos portanto

$$a_r = \frac{v^2}{r} = \omega^2 r.$$

Acelerações radial \vec{a}_r e tangencial \vec{a}_t .

Prof. Flaviano W. Fernandes

IFPR-Irati

Energia cinética de rotação

Considere uma partículas girando em torno de um eixo, mantendo a sua distância r até o eixo constante ao longo do tempo. Sua energia cinética é dada por $K=\frac{1}{2}mv^2$, onde \vec{v} é a sua velocidade tangencial. Sabendo que $v=\omega r$ temos

$$K = \frac{1}{2}mv^2,$$

$$K = \frac{1}{2}m(\omega r)^2,$$

Definimos $I = mr^2$ como o momento de

inércia da partícula, onde para um conjunto de N partículas girando em torno de um eixo comum teremos

$$I = \sum_{i}^{N} m_i r_i^2.$$

Podemos dizer que a energia cinética de rotação desse conjunto equivale a

$$K=\frac{1}{2}I\omega^2.$$

Torque

Considere uma força \vec{F} no ponto P de um objeto à uma distância r do ponto onde esse objeto irá girar. Essa força será responsável por fazê-lo girar em torno do eixo de rotação nessas condições. No entanto podemos decompô-la em

- \checkmark \vec{F}_r na direção do raio de giro;
- \checkmark \vec{F}_t perpendicular ao raio de giro.

Percebe-se que somente \vec{F}_t irá contribuir para a rotação, onde

$$F_t = F \sin \phi$$
.

Rotação no ponto P devido a força \vec{F}_t .

IFPR-Irati

Representação vetorial do torque

A capacidade de \vec{F} de fazer o objeto girar não depende apenas de \vec{F}_t , mas também da distância entre o ponto de aplicação P e o ponto O. Para levar em conta os dois fatores definimos uma grandeza chamada torque τ , onde

$$\tau = (r)(F\sin\phi).$$

Porém, o torque é uma grandeza vetorial, pois a força aplicada em sentido contrário, ou se o ponto O estiver do lado oposto, o objeto poderá girar no sentido horário ou antihorário. Portanto, é conveniente definir o torque na forma

$$\vec{\tau} = \vec{r} \times \vec{F}$$
.

Representação do torque $\vec{\tau}$.

Trabalho em rotações

A expressão do trabalho dW realizado por uma força \vec{F} ao longo do caminho infinitesimal ds é dado por $dW = \vec{F} \cdot d\vec{s}$. No entanto, no caso do movimento de rotação, percebemos que somente a componente \vec{F}_t realiza efetivamente algum trabalho sobre a partícula, portanto temos um percurso ao longo do caminho c

$$W = \int_{c} F_{t} \cos \theta ds,$$
 $W = \int_{c} F \sin \phi ds.$

Rotação no ponto P devido a força \vec{F}_t .

Trabalho e potência em rotações (continuação)

Sabemos que o comprimento de um arco s é dado por $s=r\theta$. Considerando que o caminho infinitesimal ds percorrido pela partícula, temos que $ds=rd\theta$. Fazendo uma substituição de variáveis

$$dW = F \sin \phi r d\theta$$
.

Porém, pela definição de torque $\tau = rF \sin \phi$, portanto

$$dW = \tau d\theta$$
.

Integrando ao longo do caminho c temos

$$W = \int_{ heta_1}^{ heta_2} au d heta.$$

A potência pode ser determinada através da expressão $P=\frac{dW}{dt}$. Considerando uma rotação onde $\tau=cte$ teremos

$$P = rac{ au d heta}{dt} = au \omega.$$

Momento angular

No movimento linear, temos de acordo com a segunda lei de Newton $\vec{F} = \frac{d\vec{p}}{dt}$. Substituindo na definição do torque

$$ec{ au} = ec{r} imes ec{ au}, \ ec{ au} = ec{r} imes rac{dec{
ho}}{dt}.$$

No entanto, podemos perceber pela propriedade do produto vetorial

$$\frac{d(\vec{r} \times \vec{p})}{dt} = \vec{r} \times \frac{d\vec{p}}{dt} + \frac{d\vec{r}}{dt} \times \vec{p},$$

onde

$$\vec{r} \times \frac{d\vec{p}}{dt} = \frac{d(\vec{r} \times \vec{p})}{dt} - \frac{d\vec{r}}{dt} \times \vec{p}.$$

Substituindo na expressão do torque

$$ec{ au} = rac{d(ec{r} imes ec{
ho})}{dt} - rac{ec{d}ec{r}}{dt} imes ec{
ho},
onumber \ ec{ au} = rac{d(ec{r} imes ec{
ho})}{dt} - ec{v} imes m ec{v}.$$

onde sabemos que $\vec{v} = \frac{d\vec{r}}{dt}$ e $\vec{p} = m\vec{v}$.

Momento angular (continuação)

Porém, pela regra do produto vetorial, temos que $\vec{v} \times m\vec{v} = \vec{0}$, pois o produto de dois vetores com a mesma orientação é igual a zero no produto vetorial, portanto

$$ec{ au} = rac{d(ec{r} imes ec{
ho})}{dt} - rac{ec{v} imes m ec{v}}{o}, \ ec{ au} = rac{d(ec{r} imes ec{
ho})}{dt}, \ ec{ au} = rac{dec{l}}{dt}.$$

A equação acima nos fornece uma nova grandeza física associado a rotação chamado momento angular \vec{l} , onde

$$\vec{l} = \vec{r} \times \vec{p}$$
.

Considerando um movimento circular onde r=cte, o módulo de \vec{l} é dado por l=mrv, porém $v=\omega r$, substituindo

$$I = mr \overset{\omega r}{\nabla} = mr^2 \omega = I\omega,$$
 $\vec{l} = I\vec{\omega}.$

Momento angular total de um sistema de partículas

Considerando um sistema de partículas, o momento angular total \vec{L} é a soma vetorial dos momentos angulares \vec{l} de cada partícula do sistema,

$$\vec{L} = \vec{l}_1 + \vec{l}_2 + \cdots + \vec{l}_n = \sum_{i=1}^{N} \vec{l}_i.$$

Derivando no tempo temos

$$\frac{d\vec{L}}{dt} = \frac{d}{dt} \sum_{i=1}^{N} \vec{l}_i = \sum_{i=1}^{N} \frac{d\vec{l}_i}{dt}.$$

Sistema de duas partículas girando em torno do eixo z.

Conservação do momento angular

Aplicando a definição de torque teremos

$$\frac{d\vec{L}}{dt} = \sum_{i=1}^{N} \frac{d\vec{l}_i}{dt},$$

$$rac{dec{\mathcal{L}}}{dt} = \sum_{i=1}^{N} ec{ au}_i = ec{ au}_{\mathsf{res}}$$

No caso especial onde o torque externo resultante atuando sobre as partículas for zero, o momento angular total \vec{L} do sistema é conservado,

$$\vec{L} = \text{constante}.$$

Lei da conservação do momento angular

Se a somatória dos torques externos atuando sobre um sistema de partículas é zero, o momento angular total desse sistema não pode variar.

Resumo

Correspondência entre os movimentos de translação e rotação.

Translação		Rotação	
Grandeza	Fórmula	Grandeza	Fórmula
Deslocamento	Δx	Deslocamento angular	$\Delta \theta$
Velocidade	$ec{m{v}}=rac{dec{r}}{dt}\ ec{m{a}}=rac{dec{r}}{dt}$	Velocidade angular	$\omega=rac{d heta}{dt}$
Aceleração	$ec{\pmb{a}} = rac{ec{a}ec{r}}{dt}$	Aceleração angular	$\alpha = \frac{d\omega}{dt}$
Massa	m	Momento de inércia	$I=mr^2$
Momento linear	$ec{ ho}=mec{v}$	Momento angular	$ec{\it l}=ec{\it r} imesec{\it p}$
Força	$ec{ extbf{\emph{F}}} = mec{ extbf{\emph{a}}}$	Torque	$ec{ au} = ec{ extbf{r}} imes ec{ extbf{F}}$
Energia cinética	$K = \frac{1}{2}mv^2$	Energia cinética	$\mathcal{K}=rac{1}{2}I\omega^2$
Trabalho	$W=ar{\int}ec{F}\cdot dec{r}$	Trabalho	$ extbf{ extit{W}} = ar{\int} au extbf{ extit{d}} heta$
Lei de conservação	$\vec{P}={\sf cte}\;{\sf se}\;\vec{F}_{\sf res}=0$	Lei de conservação	$ec{\mathcal{L}}=cte\;se\;ec{ au}_res=0$

D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Mecânica, v.1, 10. ed., Rio de Janeiro, LTC (2016)

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.