Лабораторная работа № 6 по курсу дискретного анализа: Калькулятор

Выполнил студент группы 08-208 МАИ Скворцов Александр.

Условие

Необходимо разработать программную библиотеку на языке C или C++, реализующую простейшие арифметические действия и проверку условий над целыми неотрицательными числами. На основании этой библиотеки, нужно составить программу, выполняющую вычисления над парами десятичных чисел и выводящую результат на стандартный файл вывода.

Метод решения

Поскольку в длинной арифметике числа могут быть неограниченно большими, для их представления следует воспользоваться вектором, каждый элемент которого предствляет один разряд. Система счисления может быть произвольной, но для удобства вводавывода я выбрал основание, равное 10000.

Сами алгоритмы сложения, вычитания, умножения и деления полностью соответствуют школьным, которые изучаются в начальных классах. Например, сложение начинается с соответствующих младших разрядов с переносом остатка на следущую итерацию. Операции сравнения начинаются со старших чисел до первого несовпадения. Единственную сложность в работе представлют возведение в степень и деление.

Так сушествует быстрый бинарный алгоритм возведения числа в степень, основанный на представлении самой степени n в двоичном виде $(m_k m_{k-1}...m_1)_2$. Тогда $x^n = x^{m_k \cdot 2^k} x^{m_{k-1} \cdot 2^{k-1}}...x^{m_1}$. То есть количество уможений равно $log_2 n$, где на каждой итерации i вычисляется $x^{2^i} = x^{2^{i-1}} x^{2^{i-1}}$.

В школьном алгоритме деления присутствует элемент угадывания разрядов результата, этот процесс нужно как-то формализовать. Узнать частное при делении $(u_n...u_1)$ на $(v_{n-1}...v_1)$ можно с помощью $\hat{q} = \left\lfloor \frac{u_n*b+u_{n-1}}{v_{n-1}} \right\rfloor$, которое больше истинного q не больше, чем на 3. Однако при этом v_{n-1} должно быть больше или равно $\lfloor b/2 \rfloor$, но мы всегда можем этого добиться, умножив каждое из чисел на $\lfloor b/(v_{n-1}+1) \rfloor$.

Описание программы

Для начала стоит отметить, что записывать числа удобно в вектор слева направо от младшего разряда с старшему, так как при добавении нового разряда легче его дописать, а не сдвигать другие числа.

Сама библиотека предоставляет новый класс TBigInt с перегруженными для него операциями ввода-вывода и арифметическими операторами, и представлена интерфейсным файлом bigint.h и файлом с реализацией bigint.cpp.

- 1. main.cpp считывает операнды и операторы, после чего выполняет заданные действия
- 2. bigint.h интерфейс класса TBigInt
- 3. bigint.cpp реализация класса TBigInt
 - std::vector num вектор, хранящий длинное число.
 - \bullet inline int& operator[](int k) возвращает элемент, находящицся на k-ой позиции вектора num.
 - \bullet inline int operator [(int k) const константная версия предыдущего метода.
 - inline size t size() const возвращает размер вектора num.
 - TBigInt& Minus(const TBigInt& i2, int l, int r) вычитает из данного числа i2 в позициях с l по r.
 - TBigInt& Plus(const TBigInt& i2, int l, int r) складывает i2 с данным числом в позициях с l по r.
 - bool LessThen(const TBigInt& i2, int l, int r) проверяет, меншье ли данное число, чем i2, в позициях с l по r.
 - TBigInt() конструктор по-умолчанию;
 - TBigInt(int i) конструирует длинное число из короткого;
 - int ToInt() приводит, данное длинное число к короткому, если это возможно, иначе возвращает MAX INT.
 - friend std::istream& operator»(std::istream& is, TBigInt& i) вводит TBigInt из потока is.
 - friend std::ostream& operator«(std::ostream& os, const TBigInt& i) выводит число і в поток os.
 - friend bool operator==(const TBigInt& i1, const TBigInt& i2) сравнивает два длинных числа.
 - friend bool operator>(const TBigInt& i1, const TBigInt& i2) проверяет, больше ли i1, чем i2.
 - friend bool operator<(const TBigInt& i1, const TBigInt& i2) проверяет, больше ли i2, чем i1.
 - friend TBigInt operator+(const TBigInt& i1, const TBigInt& i2) возвращает результат скложения двух длинных чисел.

- friend TBigInt operator-(const TBigInt& i1, const TBigInt& i2) возвращает результат вычитания двух длинных чисел.
- friend TBigInt operator*(const TBigInt& i1, const TBigInt& i2) возвращает результат умножения двух длинных чисел.
- friend TBigInt operator/(TBigInt i1, TBigInt i2) возвращает результат деления двух длинных чисел.
- friend TBigInt pow(TBigInt val, int power) возводит число val в степень power.

Дневник отладки

$N_{\overline{0}}$	Ответ чекера	Причина ошибки
1, 2	Wrong answer at test 2plus.t	программа корректно складывала большее
		число с меньшим, но не наоборот
3	Wrong answer at test 5div.t	Метод LessThen, возвращал неправильный
		ответ при равентсве чисел
4	Unknown file extension	Неаправильно упакованный архив
5-8	Wrong answer at test 8div.t	Некорректное деление при равном количестве
		разрядов или при $u/v>b$

Тест производительности

Очевидно, что операции сравнения, а также сложения и вычитания работают за O(n), так как в теле каждой функции присутствует всего один цикл for с постоянным количеством действий за итерацию. Протестируем лучше умножение и деление.

1. Умножение n * m

кол-во разрядов n	кол-во разрядов n	Время работы в мс
5000	1000	160
10000	2000	578
300000	4000	3410

Т.е. при увеличении входных данных в 2 раза время увеличивается в 4 раза. При увеличении первого множителя в 3 раза, а второго в 2 время возрастает в 6 раз. Таким образом сложность умножения O(mn).

2. Деление n/m

Всего выполняется n-m итераций, на каждой из которых производится постоянное количество вычитаний и умножений длинного на коротокое, т.е. работа на итерации O(n). Тогда общая сложность O((n-m)m).

Пусть $m \sim n$, тогда сложность O(m).

кол-во разрядов n	кол-во разрядов n	Время работы в мс
40004	40000	20
80008	80000	42
160016	160000	80

Пусть $n \sim m^2$, тогда сложность $O(m^3)$.

кол-во разрядов n	кол-во разрядов n	Время работы в мс
10000	100	124
40000	200	914
90000	300	7002

Выводы

Длинная арифметика позволяет работать с большими числами, длина которых ограничена только оперативной памятью компьютера, и, очевидно, находит свое применение в различных областях математики. Эффективность работы с ними завистит не только от выбранного алгоритма, но и от системы счисления. Чем она больше, тем меньше элементарных операций нужно выполнить. Обычно основание системы ограничено одним машинным словом. Для убонобства организации ввода-вывода она может быть ограничено степенью 10.

Сложность программирования данных "школьных" алгоритмов невилика, однако лично мне потребовалось некотрое время, что понять принцип и теорию деления. Стоит отметить, что существуют также и другие более эффективные алгоритмы умножения и деления, но реализвоть их не так просто.