

IN THE CLAIMS:

Please cancel claims 3, 19, 48, and 49. Please amend claims 1, 5, 9, 11, 13, 17, 18, 20, and 25 - 27, as follows.

1. (currently amended) An apparatus for converting an input voice signal into an output voice signal according to a reference voice signal, the apparatus comprising:

extracting means for extracting only deterministic components from the input voice signal, the deterministic components including a plurality of sinusoidal wave components, wherein the input voice signal includes the deterministic components and residual components;

separating means for separating the sinusoidal wave components into frequency value coordinates and amplitude value coordinates which are numbered sequentially;

memory means for memorizing reference pitch information representative of a pitch of the reference voice signal, and reference amplitude information representative of reference amplitude[[s]] value coordinates, which are numbered sequentially, of the sinusoidal wave components contained in the reference voice signal;

first modulating means for modulating the frequency value coordinates of the sinusoidal wave components of the input voice signal according to the reference pitch information retrieved from the memory means, to generate modulated frequency value coordinates;

second modulating means for modulating the amplitude value coordinates of the sinusoidal wave components of the input voice signal according to the reference amplitude information representative of the reference amplitude value coordinates

which are numbered correspondingly to the amplitude value coordinates of the input voice signal, retrieved from the memory means;

combining means for combining the modulated frequency value coordinates and the modulated amplitude value coordinates to synthesize sinusoidal wave components of the output voice signal having an output pitch and an output timbre different from an input pitch and an input timbre[[,]] of the input voice signal, and influenced by a reference pitch and a reference timbre[[,]] of the reference voice signal; and

mixing means for mixing the synthesized sinusoidal wave components having the modulated frequency value coordinates to synthesize the output voice signal having a pitch different from that of the input voice signal and influenced by [[that]] the pitch of the reference voice signal.

2. (Original) The apparatus as claimed in claim 1, further comprising control means for setting a control parameter effective to control a degree of modulation of the frequency of each sinusoidal wave component by the modulating means so that a degree of influence of the pitch of the reference voice signal to the pitch of the output voice signal is determined according to the control parameter.

Claim 3. (cancelled).

4. (Original) The apparatus as claimed in claim 1, further comprising detecting means for detecting a pitch of the input voice signal based on results of extraction of the sinusoidal wave components, and switch means operative when the detecting means does not detect the pitch from the input voice signal for outputting an original of the input voice signal in place of the synthesized output voice signal.

5. (currently amended) The apparatus as claimed in claim 1, wherein the

mixing means mixes the plurality of the sinusoidal wave components having the modulated amplitudes to synthesize the output voice signal having a timbre different from that of the input voice signal and influenced by [[that]] the timbre of the reference voice signal.

6. (Original) The apparatus as claimed in claim 5, further comprising means for setting a control parameter effective to control a degree of modulation of the amplitude of each sinusoidal wave component by the modulating means so that a degree of influence of the timbre of the reference voice signal to the timbre of the output voice signal is determined according to the control parameter.

7. (Original) The apparatus as claimed in claim 1, further comprising means for memorizing volume information representative of a volume variation of the reference voice signal, and means for varying a volume of the output voice signal according to the volume information so that the output voice signal emulates the volume variation of the reference voice signal.

8. (Original) The apparatus as claimed in claim 1, further comprising means for separating a residual component from the input voice signal after extraction of the sinusoidal wave components, and means for adding the residual component to the output voice signal.

9. (currently amended) An apparatus for converting an input voice signal into an output voice signal according to a reference voice signal, the apparatus comprising:

extracting means for extracting only deterministic components from the input voice signal, the deterministic components including a plurality of sinusoidal wave

components, wherein the input voice signal includes the deterministic components and residual components;

memory means for memorizing, as memorized amplitude value coordinates, reference amplitude information representative of reference amplitude[[s]] value coordinates of the sinusoidal wave components contained in the reference voice signal;

modulating means for modulating the amplitude value coordinates of the sinusoidal wave components of the input voice signal extracted from the input voice signal according to the reference amplitude information representative of the reference amplitude value coordinates which are numbered correspondingly to the amplitude value coordinates of the input voice signal, retrieved from the memory means; and

mixing means for mixing the plurality of the sinusoidal wave components having the modulated amplitude value coordinates to synthesize the output voice signal having a timbre different from that of the input voice signal and influenced by [[that]] the timbre of the reference voice signal,

wherein the modulating means comprises

normalizing means for normalizing the amplitude value coordinates of the sinusoidal wave components of the input voice signal by a mean amplitude of the input voice signal, to generate normalized amplitude value coordinates,

a second mixing means for mixing the normalized amplitude value coordinates of the input voice signal and the memorized amplitude value coordinates of the reference voice signal with one another by a predetermined ratio to produce mixed amplitude value coordinates, and

multiplying means for multiplying the normalized amplitude value

coordinates of the sinusoidal wave components of the input voice signal with the mean amplitude of the input voice signal.

10. (Original) The apparatus as claimed in claim 9, further comprising control means for setting a control parameter effective to control a degree of modulation of the amplitude of each sinusoidal wave component by the modulating means so that a degree of influence of the timbre of the reference voice signal to the timbre of the output voice signal is determined according to the control parameter.

11. (currently amended) The apparatus as claimed in claim 9, wherein the memory means further memorizes pitch information representative of a pitch of the reference voice signal, and the modulating means further modulates a frequency of each sinusoidal wave component of the input voice signal according to the pitch information, so that the mixing means mixes the plurality of the sinusoidal wave components having the modulated frequencies to synthesize the output voice signal having a pitch different from that of the input voice signal and influenced by [[that]] the pitch of the reference voice signal.

12. (Original) The apparatus as claimed in claim 11, further comprising means for setting a control parameter effective to control a degree of modulation of the frequency of each sinusoidal wave component by the modulating means so that a degree of influence of the pitch of the reference voice signal to the pitch of the output voice signal is determined according to the control parameter.

13. (currently amended) An apparatus for converting an input voice signal into an output voice signal according to a reference voice signal, the apparatus comprising:

extracting means for extracting only deterministic components from the input voice signal, the deterministic components including a plurality of sinusoidal wave components, wherein the input voice signal includes the deterministic components and residual components;

memory means for memorizing reference amplitude information representative of reference amplitude[[s]] value coordinates which are numbered sequentially of the sinusoidal wave components contained in the reference voice signal, wherein the memory means comprises memorization means for memorizing primary pitch information representative of a discrete pitch matching a music scale, and secondary pitch information representative of a fractional pitch fluctuating relative to the discrete pitch;

modulating means for modulating the amplitude value coordinates of the sinusoidal wave components of the input voice signal extracted from the input voice signal according to the reference amplitude information representative of the reference amplitude value coordinates which are numbered correspondingly to the amplitude value coordinates of the input voice signal, retrieved from the memory means, wherein the modulating means comprises second modulating means for modulating a frequency of each sinusoidal wave component according to both of the primary pitch information and the secondary pitch information; and

mixing means for mixing the plurality of the sinusoidal wave components having the modulated amplitude value coordinates to synthesize the output voice signal having a timbre different from that of the input voice signal and influenced by [[that]] the timbre of the reference voice signal,

wherein the memory means further memorizes pitch information representative of a pitch of the reference voice signal, and the modulating means further modulates the frequency of each sinusoidal wave component of the input voice signal according to the pitch information, so that the mixing means mixes the plurality of the sinusoidal wave components having the modulated frequencies to synthesize the output voice signal having a pitch different from an input voice signal pitch of the input voice signal and influenced by a reference voice signal pitch of the reference voice signal.

f
14. (Original) The apparatus as claimed in claim 9, further comprising detecting means for detecting a pitch of the input voice signal based on results of extraction of the sinusoidal wave components, and switch means operative when the detecting means does not detect the pitch from the input voice signal for outputting an original of the input voice signal in place of the synthesized output voice signal.

15. (Original) The apparatus as claimed in claim 9, further comprising means for memorizing volume information representative of a volume variation of the reference voice signal, and means for varying a volume of the output voice signal according to the volume information so that the output voice signal emulates the volume variation of the reference voice signal.

16. (Original) The apparatus as claimed in claim 9, further comprising means for separating a residual component from the input voice signal after extraction of the sinusoidal wave components, and means for adding the residual component to the output voice signal.

17. (currently amended) An apparatus for synthesizing an output voice signal from an input voice signal and a reference voice signal, the apparatus comprising:

an analyzer device that analyzes only deterministic components contained in the input voice signal to derive a parameter set of an original frequency and an original amplitude, the deterministic components including a plurality of sinusoidal wave components, wherein the input voice signal includes the deterministic components and residual components;

a separating device to separate the sinusoidal wave components into frequency value coordinates and amplitude value coordinates, which are numbered sequentially;

a source device that provides reference information characteristic of the reference voice signal, the reference information being reference amplitude information representative of reference amplitude value coordinates, which are numbered sequentially;

a modulator device that modulates the parameter set of the sinusoidal wave components according to the reference information representative of the reference amplitude value coordinates which are numbered correspondingly to the amplitude value coordinates of the input voice signal, to generate modulated amplitude value coordinates;

a regenerator device that operates according to each of the parameter sets as modulated to regenerate each of the sinusoidal wave components so that at least one of the frequency and the amplitude of each sinusoidal wave component as regenerated varies from the original one, and that mixes the regenerated sinusoidal wave components together to synthesize the output voice signal;

a second modulator device to modulate the amplitude value coordinates of the sinusoidal wave components of the input voice signal according to reference amplitude

information, representative of amplitudes of the sinusoidal wave components contained in the reference voice signal, to generate modulated amplitude value coordinates;

a combining device to combine the modulated frequency value coordinates and the modulated amplitude value coordinates to synthesize sinusoidal wave components of the output voice signal having an output pitch and an output timbre different from an input pitch and an input timbre[[,]] of the input voice signal, and influenced by a reference pitch and a reference timbre[[,]] of the reference voice signal.

18. (currently amended) The apparatus as claimed in claim 17, wherein the source device provides the reference information characteristic of a pitch of the reference voice signal, and wherein the modulator device modulates the parameter set of each sinusoidal wave component according to the reference information so that the frequency of each sinusoidal wave component as regenerated varies from the original frequency, thereby the pitch of the output voice signal being synthesized according to the pitch of the reference voice signal.

19. (cancelled).

20. (currently amended) The apparatus as claimed in claim 17, wherein the source device provides the reference information characteristic of a timbre of the reference voice signal, and wherein the modulator device modulates the parameter set of each sinusoidal wave component according to the reference information so that the amplitude of each sinusoidal wave component as regenerated varies from the original amplitude, thereby the timbre of the output voice signal being synthesized according to the timbre of the reference voice signal.

21. (Original) The apparatus as claimed in claim 17, further comprising a

control device that provides a control parameter effective to control the modulator device so that a degree of modulation of the parameter set is variably determined according to the control parameter.

22. (Original) The apparatus as claimed in claim 17, further comprising a detector device that detects a pitch of the input voice signal based on analysis of the sinusoidal wave components by the analyzer device, and a switch device operative when the detector device does not detect the pitch from the input voice signal for outputting an original of the input voice signal in place of the synthesized output voice signal.

23. (Original) The apparatus as claimed in claim 17, further comprising a memory device that memorizes volume information representative of a volume variation of the reference voice signal, and a volume device that varies a volume of the output voice signal according to the volume information so that the output voice signal emulates the volume variation of the reference voice signal.

24. (Original) The apparatus as claimed in claim 17, further comprising a separator device that separates a residual component other than the sinusoidal wave components from the input voice signal, and an adder device that adds the residual component to the output voice signal.

25. (currently amended) A method of converting an input voice signal into an output voice signal according to a reference voice signal, the method comprising the steps of:

extracting only deterministic components from the input voice signal, the deterministic components including a plurality of sinusoidal wave components, wherein

the input voice signal includes the deterministic components and residual components;

separating the sinusoidal wave components into frequency value coordinates and amplitude value coordinates, which are numbered sequentially;

memorizing referencing pitch information representative of a pitch of the reference voice signal and reference amplitude information representative of reference amplitude[[s]] value coordinates, which are numbered sequentially, of the sinusoidal wave components contained in the reference voice signal;

modulating the frequency value coordinates of the sinusoidal wave components of the input voice signal according to the reference pitch information, to generate modulated amplitude value coordinates;

mixing the plurality of the sinusoidal wave components having the modulated frequency value coordinates to synthesize the output voice signal having a pitch different from that of the input voice signal and influenced by that of the reference voice signal;

modulating the amplitude value coordinates of the sinusoidal wave components of the input voice signal according to the reference amplitude information representative of the reference amplitude value coordinates which are numbered correspondingly to the amplitude value coordinates of the input voice signal, retrieved from the memory means; and

combining the modulated frequency value coordinates and the modulated amplitude value coordinates to synthesize sinusoidal wave components of the output voice signal having an output pitch and an output timbre different from an input pitch and an input timbre[[,]] of the input voice signal, and influenced by a reference pitch and

a reference timbre[[,]] of the reference voice signal.

26. (currently amended) A method of converting an input voice signal into an output voice signal according to a reference voice signal, the method comprising the steps of:

extracting only deterministic components from the input voice signal, the deterministic components including a plurality of sinusoidal wave components, wherein the input voice signal includes the deterministic components and residual components;

memorizing, as memorized amplitude value coordinates, reference amplitude information representative of reference amplitude[[s]] value coordinates, which are numbered sequentially, of the sinusoidal wave components contained in the reference voice signal;

modulating the amplitude value coordinates of the sinusoidal wave components of the input voice signal extracted from the input voice signal according to the reference amplitude information representative of the reference amplitude value coordinates which are numbered correspondingly to the amplitude value coordinates of the input voice signal, retrieved from the memory means; and

mixing the plurality of the sinusoidal wave components having the modulated amplitude value coordinates to synthesize the output voice signal having a timbre different from that of the input voice signal and influenced by [[that]] the timbre of the reference voice signal;

normalizing the amplitude value coordinates of the sinusoidal wave components of the input voice signal by a mean amplitude of the input voice signal, to generate normalized amplitude value coordinates;

mixing the normalized amplitude value coordinates of the input voice signal and the memorized amplitude value coordinates of the reference voice signal with one another by a predetermined ratio to produce mixed amplitude value coordinates; and multiplying the normalized amplitude value coordinates of the sinusoidal wave components of the input voice signal with the mean amplitude of the input voice signal.

27. (currently amended) A machine readable medium used in a computer machine having a CPU for synthesizing an output voice signal from an input voice signal, the medium containing program instructions executed by the CPU for causing the computer machine to perform the method comprising the steps of:

analyzing only deterministic components contained in the input voice signal to derive a parameter set of an original frequency and an original amplitude, the deterministic components including a plurality of sinusoidal wave components, wherein the input voice signal includes the deterministic components and residual components; providing reference information characteristic of the reference voice signal; modulating the parameter set of the sinusoidal wave components according to the reference information, to generate modulated amplitude value coordinates; regenerating each of the sinusoidal wave components according to each of the modulated parameter sets so that at least one of the frequency and the amplitude of each regenerated sinusoidal wave components varies from the original one, and mixing the regenerated sinusoidal wave components together to synthesize the output voice signal;

separating the sinusoidal wave components into frequency value coordinates and amplitude value coordinates, which are numbered sequentially;

modulating the amplitude value coordinates of the sinusoidal wave components of the input voice signal according to the reference amplitude information, representative of reference amplitude[[s]] value coordinates which are numbered correspondingly to the amplitude value coordinates of the input voice signal, of the sinusoidal wave components contained in the reference voice signal, to generate modulated amplitude value coordinates; and

combining the modulated frequency value coordinates and the modulated amplitude value coordinates to synthesize sinusoidal wave components of the output voice signal having an output pitch and an output timbre different from an input pitch and an input timbre[[,]] of the input voice signal, and influenced by a reference pitch and a reference timbre[[,]] of the reference voice signal.

28. (Original) The apparatus as claimed in claim 17, wherein the parameter set is in the form of a plurality of frequency value and amplitude value coordinates, the frequency value coordinates representing the original frequency and the amplitude value coordinates representing the original amplitude.

29. (Original) The machine readable medium as claimed in claim 27, wherein the parameter set is in the form of a plurality of frequency value and amplitude value coordinates, the frequency value coordinates representing the original frequency and the amplitude value coordinates representing the original amplitude.

30. (Original) The apparatus as claimed in claim 1, wherein the extracting means utilizes Fast Fourier Transform and a peak detecting means to extract the plurality of sinusoidal components from the input voice signal, the Fast Fourier Transform being carried in prescribed frame units to create a frequency spectrum

successively for each frame of the input voice signal, the peak detecting means detecting peaks in the frequency spectrum to extract the frequency value coordinates.

31. (Original) The apparatus as claimed in claim 9, wherein the extracting means utilizes Fast Fourier Transform and a peak detecting means to extract the plurality of sinusoidal components from the input voice signal, the Fast Fourier Transform being carried in prescribed frame units to create a frequency spectrum successively for each frame of the input voice signal, the peak detecting means detecting peaks in the frequency spectrum to extract the amplitude value coordinates.

32. (Original) The apparatus as claimed in claim 17, wherein the analyzer device utilizes Fast Fourier Transform and a peak detecting means to derive the parameter set representing the corresponding sinusoidal wave component, the Fast Fourier Transform being carried in prescribed frame units to create a frequency spectrum successively for each frame of the input voice signal, the peak detecting means detecting peaks in the frequency spectrum to extract the parameter set.

33. (Original) The method as claimed in claim 25, wherein the extracting step involves utilizing Fast Fourier Transform and peak detection to extract the plurality of sinusoidal components from the input voice signal, the Fast Fourier Transform being carried in prescribed frame units to create a frequency spectrum successively for each frame of the input voice signal, the peak detection detecting peaks in the frequency spectrum to extract the frequency value coordinates.

34. (Original) The method as claimed in claim 26, wherein the extracting step involves utilizing Fast Fourier Transform and peak detection to extract the plurality of sinusoidal components from the input voice signal, the Fast Fourier Transform being

carried in prescribed frame units to create a frequency spectrum successively for each frame of the input voice signal, the peak detection detecting peaks in the frequency spectrum to extract the amplitude value coordinates.

35. (Original) The machine readable medium as claimed in claim 27, wherein the analyzing step involves utilizing Fast Fourier Transform and peak detection to derive the parameter set representing the corresponding sinusoidal wave component, the Fast Fourier Transform being carried in prescribed frame units to create a frequency spectrum successively for each frame of the input voice signal, the peak detection detecting peaks in the frequency spectrum to extract the parameter set.

36. (Original) The apparatus according to claim 1, wherein the deterministic components include peak values of the input voice signal in a frequency spectrum.

37. (Original) The apparatus according to claim 1, wherein the residual components include deviation components between a synthetic voice signal and the input voice signal.

38. (Original) The apparatus according to claim 9, wherein the deterministic components include peak values of the input voice signal in a frequency spectrum.

39. (Original) The apparatus according to claim 9, wherein the residual components include deviation components between a synthetic voice signal and the input voice signal.

40. (Original) The apparatus according to claim 17, wherein the deterministic components include peak values of the input voice signal in a frequency

spectrum.

41. (Original) The apparatus according to claim 17, wherein the residual components include deviation components between a synthetic voice signal and the input voice signal.

42. (Original) The method according to claim 25, wherein the deterministic components include peak values of the input voice signal in a frequency spectrum.

43. (Original) The method according to claim 25, wherein the residual components include deviation components between a synthetic voice signal and the input voice signal.

44. (Original) The method according to claim 26, wherein the deterministic components include peak values of the input voice signal in a frequency spectrum.

45. (Original) The method according to claim 26, wherein the residual components include deviation components between a synthetic voice signal and the input voice signal.

46. (Original) The machine-readable medium according to claim 27, wherein the deterministic components include peak values of the input voice signal in a frequency spectrum.

47. (Original) The machine-readable medium according to claim 27, wherein the residual components include deviation components between a synthetic voice signal and the input voice signal.

Claims 48 and 49 (cancelled).