Cuestiones para pensar 9

- 1. Considera un plano vectorial II de IR3 d'orinciden para II las nociones de orientación como espacio vectorial real de dimensión 2 y de orientación como superfície regular?
- 2. Dada cualquier superficie regular S des cierto que para cada p E S existe un entorno abiertoVde p en S que es orientable (como superficie regular)? 3. d'Qué diferencia hay entre superficie regular orientable y superficie regular orientable? d'Cuantas orientaciones tiene ma superficie regular orientable?
- 4. Razona por que una superficie regular que admita una parametrización global es necesariamente orientable. Cuando una superficie regular se recubre por dos entornos coordenados con intersección comexa i ha de ser orientable?
- 5.-Imagina una superficie regular S que admite $N:S \to \mathbb{R}^3$, diferenciable de manera que $N_P \perp T_P S$ y $N_P \neq 0$, para todo $P \in S$ de S Socientable? 6.-Si sobre una superficie regular S hay definida $N:S \to \mathbb{R}^3$, continua de manera que $N_P \perp T_P S$ y $|N_P| = 1$, paratodo $P \in S$ de S Socientable? T.-Considera una superficie regular orientable S y sea $N:S \to \mathbb{R}^3$ un campo de vectores normales unitarios (diferenciable). Si tenemos una parametrización local $X:U \subset \mathbb{R}^2 \to S$ de manera que $\left\langle \frac{3X}{3X}, \frac{3X}{3X}, N \right\rangle < 0$ en todo punto de Se puede modificar X para obtever una nueva parametrización local X de manera que $\left\langle \frac{3X}{3X}, \frac{3X}{3Y}, N \right\rangle > 0$ en todo punto? $S = \delta = \delta = 0$ cierto que sólo tienen aplicación de Gauss las superficies regulares que son orientables?
- 9. Dada aualquier superficie regular des cierto que para cada $p \in S$ existe un entorno abierto V de p en S dotado de aplicación de Gauss $N:V \longrightarrow S^2$?