Hardware Performance of ELmD and ELmD(6,6)

Lilian Bossuet¹, Cuauhtemoc Mancillas-Lopez¹, Nilanjan Datta² and Mridul Nandi²

¹Hubert Curien Laboratory, CNRS 5514. Jean Monnet University, Saint Etienne, France

²Indian Statistical Institute. Kolkata, India

ELmD Authenticated Encryption

$$L := E_K(0)$$

Main Features

- Online.
- Efficient and Fast.
- Online Security in Nonce Repeating Scenario.
- Fully Pipeline Implementable.
- Can Incorporate Intermediate Tags.

Design Rationale

- EME like Structure -
 - To ensure Parallel structure and Fully Pipeline Implementation.
- ▶ Use of Online Linear Mix ρ -
 - Makes the construction online.
 - Incorporate Intermediate Tags.
- Use Decryption in Lower layer-
 - Minimize Enc-Dec combined implementation area.

Design of ELmD

Enc-Dec Combined hardware implementation area is minimized.

ELmD(6,6) Version

- Faster version of ELmD.
- 6 round AES encryption-decryption.
- ▶ $L := E_K(E_K(0))$ To ensure randomness of L.
- Upper layer 6 round provides collision resistance property.
- Combined 12 = (6+6) round encryption provides desired randomness.

Design Decisions

- High performance FPGAs as underlying platform (Virtex 6).
- Pipeline designs.
- Single chip for encryption and decryption (for complete mode).
- Separated AES encryption and decryption cores.
- Shared key generator core for all AES cores.
- High speed oriented optimization.

Basic Blocks

AES-core

Components

Architecture for ELmD

We developed architectures for COPA, OTR and OCB3 using the same design decisions.

Operations in the time

ELmD(10,10)
$$L = E_K(0)$$
 Total number of clock cycles to give tag:
$$36 + d + l + 1$$

$$ELmD(6,6)$$

$$L = E_K(E_K(0))$$

Extra clock cycles are for reset, output synchronization and get the Tag.

Results for AES

Mode	Area			Frequency	Throughput	
	Slices	LUTs	Flip Flops	(MHz)	Gbps	
AES-10 pipelined encryption	2023	7301	2824	315.16	38.47	
AES-10 pipelined decryption	2360	9020	2693	239.34	30.63	
AES-6 pipelined encryption	1635	4523	2329	315.16	38.47	
AES-6 pipelined decryption	1639	5353	2400	239.34	30.63	

Underlying platform xc6vlx240t-2ff1759. The results were taken from post-place and route reports.

Results for Modes

Mode	Area			Frequency	Lantency	Throughput
	Slices	LUTs	Flip Flops	(MHz)	clock cycles	Gbps
ELmD(10,10)	5225	16967	5578	234.64	35 + d	30.03
COPA	10391	32845	8336	230.87	61 + d	29.55
AES-GCM Virtex 5 Abdellatif et al, 2014	4770	-	-	311	-	36.92
OTR	4701	15333	5570	291.80	25 + d	37.35
ELmD(6,6)	3150	10783	4018	238.68	30 + d	30.55
OCB3	5180	16879	5846	234.87	11 + d + Setup +Stretch	30.06
EME2 (Chakraborty et al, 2015)	10970	33350	9931	230.56	-	24.77

d is the number of 128-bit blocks of associated data.

The results were taken from post-place and route reports.

Latency is informative since the cihertext/plaintext must be stored until verification process has been done.

Some Conclusions

- The design optimizations for area in ELmD(10,10) save physical resources in comparison with COPA and EME (combined implementation).
- ELmD(10,10) is competitive in area with GCM but slower. Remember that the security offers by ELmD(10,10) is stronger.
- OCB3 and ELmD(10,10) are comparable in terms of area, but OCB3 needs memory to store precomputed values for masking.
- ► ELmD(6,6) is smaller than OCB3, and their security is comparable.

Thanks for your attention

Questions?