МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 4.3.3 Исследование разрешающей способности микроскопа методом Аббе

Салтыкова Дарья Б04-105

1 Введение

Цель работы: Определение дифракционного предела разрешения объектива микроскопа методом Аббе.

В работе используются: лазер, кассета с набором сеток разного периода, линзы, щель с микрометрическим винтом, оптический стол с набором рейтеров и крепёжных винтов, экран, линейка.

2 Теоретические сведения

Разрешающей способностью оптического прибора называют минимальное расстояние l_{min} между двумя точками в пространстве предметов, которое прибор может разрешить. При визуальном наблюдении изображения в качестве критерия разрешения применяют так называемый критерий Рэлея.

Для иммерсионного микроскопа (объект находится в иммерсионной среде — жидкости с показателем преломления n) разрешающая способность объектива при некогерентном освещении

$$l_{min} = \frac{0.61\lambda}{n\sin A},$$

где А — апертурный угол объектива микроскопа.

Рассмотрим теперь когерентно освещённый объект, наблюдаемый в микроскоп. Схема образования изображения в объективе микроскопа представлена на рис. 1.

Рис. 1: Образование изображения в объективе микроскопа. P_1 — плоскость предмета, F — задняя фокальная плоскость объектива, P_2 — плоскость, сопряжённая с предметной плоскостью. В плоскости P_2 световые пучки сильно перекрываются

Минимальное разрешаемое объективом расстояние определяется условием

$$l_{min} = \frac{\lambda}{\sin A} \approx \frac{\lambda}{D/2f},$$

где D — диаметр диафрагмы. При этом диафрагма, расположенная симметрично, пропускает нулевой и ± 1 дифракционные максимумы.

3 Экспериментальная установка

Схема модели проекционного микроскопа приведена на рис. 2. Предметом служат сетки, расположенные в кассете. Смена сеток осуществляется поворотом внешнего кольца кассеты.

Рис. 2: Схема экспериментальной установки — модель проекционного микроскопа

4 Ход работы

4.1 Определение периода решёток по их пространственному спектру

Для определения периода решётки измерим расстояния между максимумами разных порядков на экране. Расстояние от сетки до экрана $H=124.4~{\rm cm}.$ Период решётки рассчитывается по формуле

$$d = \frac{\lambda H}{d_m},$$

где $\lambda = 532$ нм.

Получим: $d = (55.2 \pm 1.2)$ мкм.

4.2 Определение периода решеток по изображению, увеличенному с помощью модели микроскопа

Соберём модель проекционного микроскопа, центрируем систему. Увеличение полученной системы вычисляется по формуле

$$\gamma = \frac{b_1 b_2}{a_1 a_2}.$$

a_1 , MM	168
b_1 , мм	355
a_2 , MM	25
b_2 , мм	692
γ	58,5
d_m , mm	3,21
d, MKM	54,95

4.3 Пространственная фильтрация и мультиплицирование

Поворачивая щель относительно оси, добьёмся того, чтобы щель занимала наклонное положение под 45° . Тогда будет осуществляться пространственная фильтрация, то есть выделение из спектра максимумов $m_x = m_y$ (диагональных максимумов). Тогда на экране возникнет изображение решётки, которой нет на самом деле. Полосы располагаются под углом 45° , что видно на рисунке. Период новой решетки равен в $\sqrt{2}$ раз больше периода изображения решётки, определённого стандартным методом (по увеличенному изображению решётки). Это объясняется тем фактом, что расстояние между выделенными максимумами, то есть между вторичными источниками волн, составляет $d\sqrt{2}$. Также наблюдали мультиплицирование, то есть рассечение фурье-образа щели сеткой. Такой эффект создаётся, если в нашей установке поменять местами сетку и щель.

Рис. 3: Пространственная фильтрация

5 Вывод

В ходе работы был измерен период дифракционной решётки двумя способами: по пространственному спектру $(55,2\pm1,2)$ мкм и изображению с микроскопа $(54,9\pm1,4)$ мкм. Результаты измерений практически совпадают.