

Informacja o produktach ILM-4

**FOOD** 

# Indukcyjny miernik przewodności ILM



#### Zakres zastosowania / przeznaczenie

- · Indukcyjny pomiar przewodności w mediach płynnych w zakresie 0...999 mS/cm.
- Zastosowanie w aplikacjach higienicznych przemysłu spożywczego, napojów i farmaceutycznego.

#### Przykłady zastosowań

- · Sterowanie procesami CIP (np. separacja faz środek czyszczący / woda)
- · Pomiar koncentracji (np. wzmacnianie środków czyszczących CIP)
- · Monitoring produktu, Zapewnianie jakości

## Higieniczna budowa / przyłącze procesowe

- Za pomocą systemu zabudowy CLEANadapt firmy Negele uzyskiwana jest możliwość zabudowy odpowiadająca wymogom higienicznym, bezszczelinowa wzgl. wolna od przestrzeni martwej i łatwa w sterylizacji.
- Przyłącze procesowe G1" higieniczne lub Tri-Clamp, adapter do przyłącza mleczarskiego (DIN 11851), Varivent, DRD, ... dostępne (patrz informacja o produktach CLEANadapt)
- · Proces czyszczenia CIP-/SIP do 150 °C / maksymalnie 60 minut
- · Wszystkie elementy mające kontakt z medium spełniają wymagania FDA
- Czujnik wykonany w całości ze stali nierdzewnej, korpus zanurzeniowy wykonany z PEEK
- · Zgodność ze standardem 3-A

#### Cechy szczególne / zalety

- · Indukcyjna metoda pomiaru nie powodująca zużywania się elementów miernika
- · W przeciwieństwie do przewodnościowych metod pomiaru brak problemów związanych z ze zmianą struktury elektrod lub polaryzacją.
- · Dokładny pomiar dzięki kompensacji oddziaływania temperatury.
- Wysoka odtwarzalność na poziomie ≤ 1% od wartości pomiarowej.
- · Seryjne wyjścia analogowe dla przewodności i temperatury.
- Dowolnie ustawiane wyjścia analogowe dla przewodności, temperatury lub koncentracji.
- · Krótki czas reakcji na zmiany temperatury T<sub>90</sub> 15...60 s
- · Możliwość montażu w rurach o średnicy od DN 40.

#### Opcje / akcesoria

- Przyłącze elektryczne ze złączami M12
- Wykonanie z przedłużonym korpusem zanurzeniowym dla instalacji rurowych ≥ DN 65 albo dla montażu w trójniku.
- Konfekcjonowany wstępnie kabel do wtyków M12

#### Atesty





#### ILM-4/L20



#### ILM-4 / L50 z Tri-Clamp



| Dane techniczne                       |                                                                                                                      |                                                                                                             |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Przyłącze procesowe                   | Gwint G1"<br>Tri-Clamp<br>Varivent                                                                                   | CLEANadapt gwint G1" higieniczny<br>1½", 2", 2½", 3"<br>DN 25 (typ F), DN 40/50 (typ N)                     |
| Materiały                             | Głowica przyłączeniowa<br>Króciec gwintowany<br>Korpus zanurzeniowy<br>Pokrywa z tworzywa sztucz-<br>nego / Wziernik | Stal nierdzewna 1.4308<br>Stal nierdzewna 1.4305, SW 36 mm<br>PEEK, numer FDA (21CFR177.2415)<br>Poliwęglan |
| Zakresy temperatury                   | Otoczenie<br>Proces<br>Czyszczenie CIP/SIP                                                                           | -10+70 °C<br>-10+130 °C<br>do 150 °C maks. 60 min.                                                          |
| Ciśnienie robocze                     |                                                                                                                      | maks. 16 barów                                                                                              |
| Stopień ochrony                       |                                                                                                                      | IP 69 K (zdławnicą PG tylko przy zastosowaniu odpowied-<br>niego kabla)                                     |
| Odtwarzalność                         | przewodności                                                                                                         | ≤ 1% od wartości pomiarowej                                                                                 |
| Rozdzielczość                         | Zakres pomiarowy<br>< 10 mS/cm<br>10100 mS/cm<br>100999 mS/cm                                                        | 1 μS/cm<br>10 μS/cm<br>100 μS/cm                                                                            |
| Dokładność                            | Nachylenie<br>Offset                                                                                                 | ±2 % od wartości pomiarowej<br>±20 µS/cm                                                                    |
| Stabilność długotrwała                |                                                                                                                      | ±0,5 % od wartości krańcowej zakresu pomiarowego                                                            |
| Dokładność wyjścia<br>temperaturowego | ≤ 100 °C<br>100150 °C                                                                                                | maks. 0,5 °C<br>maks. 1,0 °C                                                                                |
| Przył. elektr.                        | Dławnica kablowa<br>Przyłącze kablowe<br>Napięcie pomocnicze                                                         | 2 x M16 x 1,5<br>2 x Wtyk złącza M12 1.4305<br>1836 V DC maks. 190 mA                                       |
| Wejścia                               | Przełączanie zakresów                                                                                                | Wejście E1 (24 V DC) odseparowane galwanicznie                                                              |
| Wyjścia                               | 2 wyjścia dowolnie<br>konfigurowalne                                                                                 | analogowe 420 mA odporne na zwarcia                                                                         |
| Wyświetlacz LCD                       | zpodświetleniem                                                                                                      | 5 wierszy                                                                                                   |
| Zasada pomiaru                        | nie ulegający zużyciu                                                                                                | indukcyjny                                                                                                  |

# Zasada działania indykcyjnego miernika przewodności

Przepływający przez cewkę pierwotną (nadajnik) prąd przemienny generuje elektromagnetyczne pole przemienne, indukujące prąd do otaczającego go medium. Przepływ prądu w medium generuje z kolei pole elektromagnetyczne, które w cewce wtórnej (odbiornik) czujnika indukuje napięcie, a tym samym przepływ prądu. Zmierzona wartość elektryczna w cewce wtórnej jest przy tym miarą przewodności medium.

Z uwagi na to, że przewodność płynów w znacznym stopniu zależy od temperatury, za pomocą dodatkowego czujnika temperatury w ostrzu czujnika (Pt1000) stale rejestrowana jest temperatura medium. Wpływ temperatury kompensowany jest przez ustawiony w układzie elektronicznym współczynnik temperaturowy (wartość TK).



# Rysunek wymiarowy Gwint G1" w położeniu poziomym



# Rysunek wymiarowy Gwint G1" w położeniu pionowym



## Rysunek wymiarowy Tri-Clamp



| Długość zanurzenia |       |  |
|--------------------|-------|--|
| Тур                | L     |  |
| ILM-4 / L20        | 20 mm |  |
| ILM-4/L50          | 50 mm |  |

| Wymiar Tri-Clamp |         |  |
|------------------|---------|--|
| Тур              | Ø A     |  |
| TC1              | 50,5 mm |  |
| TC2              | 64 mm   |  |
| T25              | 77,5 mm |  |
| TC3              | 91 mm   |  |

#### Przyłącze mechaniczne / informacje montażowe



- Urządzenie montować w taki sposób, aby korpus zanurzeniowy był całkowicie pokryty medium i aby w pobliżu czujników nie mogły powstawać pęcherze powietrza.
- · Dlatego zaleca się montaż we wznoszących się przewodach rurowych.
- · Urządzenie ustawić tak, aby opis "FLOW" z dołu urządzenia był skierowany w kierunku przepływu.
- · Ekstremalnie silne drgania mogą powodować nieprawidłowe pomiary (np. w przypadku montażu w bezpośrednim sąsiedztwie pompy).
- · Zastosować system Negele CLEANadapt, aby zagwarantować bezpieczne działanie punktu pomiarowego.
- · Podczas montażu przestrzegać maks. momentu dokręcania 20 Nm!
- Dla zapewnienia prawidłowego montażu muf wspawanych CLEANadapt stosować odpowiedni trzpień wspawany.
   Przestrzegać w tym celu zaleceń dotyczących wspawania i montażu w informacji o produkcie CLEANadapt.

#### Warunki dla punktu pomiaru według standardu 3-A 74-06



- · Miernik przewodności ILM-4 jest seryjnie zgodny ze standardem 3-A.
- · Czujniki są przystosowane do czyszczenia CIP/SIP. Maksymalnie 150°C / 60 minut.
- · Atestowane tylko w połączeniu z systemem do zabudowy **CLEANadapt** (EMZ-351, EMK-351, EHG..., adapter AMC-351 i AMV-351).
- · W przypadku stosowania muf do wspawania EMZ i EMK miejsce spawania musi być zgodne z wymaganiami obowiązującego standardu 3-A.
- · Pozycja montażowa: Należy przestrzegać odpowiednich instrukcji według obowiązującego standardu 3-A dla pozycji montażowej i samoczynnego opróżniania oraz dla pozycji otworu przeciekowego.

#### Przyłącze elektryczne



- 1: Napięcie pomocnicze +24 V DC
- 2: Napięcie pomocnicze -
- 3: Wejście cyfrowe E1
- 4: Wyjście 1 +
- 5: Wyjście 1 -
- 6: Wyjście 2 +
- 7: Wyjście 2 -

## Parametryzacja

Z zasady czujnik przewodności ILM-4 jest ustawiony w taki sposób, aby mógł działać bez specjalnego dostosowania. W razie ewentualnej konieczności parametryzacji może ona zostać przeprowadzona za pomocą działającego na bazie komputera PC adaptera programującego MPI-200 albo z zastosowaniem prostego interfejsu użytkownika. W trybie ustawień, bezpośrednio na miejscu lub biurze w symulacji na sucho można ustawić następujące parametry:

#### Wyświetlacz:

· Język i kontrast Konsola obsługowa

#### Pomiar przewodności:

- · Przewodność 1:
- Kompensacja temperatury 1 i wartość krańcowa zakresu pomiarowego 1
- Koncentracja:
  - Kompensacja temperatury C, zakres koncentracji medium i wartość krańcowa zakresu pomiarowego C
- Przewodność 2:
- Kompensacja temperatury 2 i wartość krańcowa zakresu pomiarowego 2

#### Ustawienia za pomocą adaptera programującego MPI-200

Adapter programujący MPI-200 podłączany jest poprzez zewnętrzny adapter MPI-200-F do czujnika przewodności ILM-4. Należy pamiętać, że w trakcie ustawiania parametrów czujnik przewodności ILM-4 musi być zawsze podłączony do napięcia zasilania.

## Ze złączem M12

Wtyk złącza M12 górny (4-stykowy)

- 1: Wyjście 1 +
- 2: Wyjście 2 +
- 3: Wyjście 2 -
- 4: Wyjście 1 -



#### Wtyk złącza M12 dolny (5-stykowy)

- 1: Napięcie pomocnicze +24 V DC
- 2: nieprzyporządkowane
- 3: nieprzyporządkowane
- 4: Napięcie pomocnicze -
- 5: Wejście cyfrowe E1



#### Przyporządkowanie wtyku złącza M12



Standardowe przyporządkowanie wtyku złącza M12 jest kompatybilne z wcześniejszym modelem ILM-2.

#### Podłączenie adaptera programującego MPI-200-F



Wtyczka przyłączeniowa do adaptera MPI-200-F jako przejściówka pomiędzy układem elektronicznym konduktometru ILM-4 a przyłączem MPI-200 3 (patrz następny rysunek).

# Podłączenie adaptera programującego MPI-200

- Przyłącze na wtyk złącza M12
- Por USB do podłączenia do komputera PC
- 3: Kabel podłączeniowy do adaptera ILM-4



Obsługa FOOD

#### Ustawienia za pomocą prostego interfejsu użytkownika

5

Struktura oprogramowania prostego interfejsu użytkownika jest podobna do wersji na komputer PC. Obsługa odbywa się za pomocą dwóch przycisków znajdujących się po lewej i prawej stronie wyświetlacza. Takie rozwiązanie umożliwia łatwe klikanie aż do znalezienia żądanego parametru. Zasada działania przycisków jest następująca:

| Przycisk              | krótkie naciśnięcie                      | długie naciśnięcie                                                                                              |
|-----------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| P (prawa strona)      | Przejście do następnego węzła, parametry | Edycja węzła, parametry                                                                                         |
| L (lewa strona)       | Powrót do poprzedniego węzła, parametry  | Wyjście z trybu edycji bez zapisywania, z powrotem do następnego wyższego poziomu                               |
| P/L                   | Przewijanie w górę lub w dół             |                                                                                                                 |
| P i L<br>jednocześnie |                                          | Nacisnąć oba przyciski i przytrzymać przez 10<br>sekund, przejść do początku menu<br>(Uwaga, to nie jest reset) |

Oprócz ustawiania parametrów prostym klikaniem przez menu można dokonywać ich zmian również za pomocą kodu ID. W tym celu w menu przy zapytaniu czujnika "ID-Search No" należy nacisnąć i długo przytrzymać prawy przycisk. W ten sposób czujnik przejdzie na stronę "ID-Search", na której można bezpośrednio wprowadzać wymagane kody ID.

W trybie ustawień możliwe jest ustawienie następujących parametrów za pomocą kodu ID:

| Parametr / nazwa parametru | Dostęp / tryb ustawień<br>(musi być ustawiony<br>przed wprowadzeniem<br>zmiany) | Numer wyszuki-<br>wania<br>(numer ID) | Węzeł / moduł | Nazwa wartości |
|----------------------------|---------------------------------------------------------------------------------|---------------------------------------|---------------|----------------|
| Display                    |                                                                                 |                                       |               |                |
| Language                   | 1 Adjust                                                                        | 451010                                | 4 Display     | (#)            |
| Contrast User Interface    | 1 Adjust                                                                        | 451020                                | 4 Display     | (#)            |
| Conductivity Measurement   |                                                                                 |                                       |               |                |
| Conductivity 1:            |                                                                                 |                                       |               |                |
| Temp. Comp. 1              | 1 Adjust                                                                        | 013031                                | 0 Measure     | Conducty 1     |
| Upper Range Value 1        | 1 Adjust                                                                        | 013091                                | 0 Measure     | Conducty 1     |
| Conductivity 2:            |                                                                                 |                                       |               |                |
| Temp. Comp. 2              | 1 Adjust                                                                        | 013033                                | 0 Measure     | Conducty 2     |
| Upper Range Value 2        | 1 Adjust                                                                        | 013093                                | 0 Measure     | Conducty 2     |
| Concentration C:           |                                                                                 |                                       |               |                |
| Temp. Compensation C       | 1 Adjust                                                                        | 013032                                | 0 Measure     | Concentr C     |
| Media Concentr. Range      | 1 Adjust                                                                        | 013061                                | 0 Measure     | Concentr C     |
| Upper Range Value C        | 1 Adjust                                                                        | 013092                                | 0 Measure     | Concentr C     |

# Informacja



Jeżeli w procesie występuje wiele mediów o różnych wartościach przewodności (np. proces CIP), aby wykonać dokładny pomiar danej przewodności, należy przełączyć się na odpowiedni zakres pomiarowy!

#### Określanie współczynnika temperaturowego medium

Stan dostawy: TK = 2 %/K

- 1. Ustawić "TK" na 0%/K.
- 2. Zanurzyć urządzenie w medium pomiarowym o temperaturze 25°C.
- 3. Odczekać aż wartość pomiarowa przestanie się zmieniać.
- 4. Odczytać przewodność ze wskaźnika i zanotować wartość.
- Ogrzać medium pomiarowe do min. 60°C. Powoduje to zmianę wartości przewodności na wskaźniku.
- 6. Odczekać aż wartość pomiarowa przestanie się zmieniać.
- 7. Wybrać parametr "Komp. temp." i wstawić wyznaczoną wartość TK.

#### Czyszczenie / konserwacja



 Przy czyszczeniu zewnętrznym myjkami ciśnieniowymi nigdy nie kierować strumienia wody bezpośrednio na przyłącza elektryczne!

#### Informacja na temat zgodności



Obowiązujące dyrektywy:

- · Kompatybilność elektromagnetyczna 2004/108/WE
- Zgodność z obowiązującymi dyrektywami UE jest potwierdzona oznakowaniem produktu znakiem CE.
- Za dotrzymanie dyrektyw obowiązujących dla całości instalacji odpowiada użytkownik.

#### Utylizacja



- Niniejsze urządzenie nie podlega dyrektywie WEEE 2002/96/WE i odpowiednim ustawom krajowym.
- Przekazać urządzenie bezpośrednio do wyspecjalizowanego zakładu recyklingowego. Nie korzystać z komunalnych punktów zbiorczych.

#### Transport / przechowywanie



- · Nie przechowywać na wolnym powietrzu
- · Przechować w miejscu suchym i wolnym od pyłu
- · Nie wystawiać na działanie agresywnych mediów
- Chronić przed bezpośrednim nasłonecznieniem
- · Unikać wstrząsów mechanicznych
- · Temperatura składu 0...40°C
- · Wilgotność względna powietrza maks. 80%

# Wysyłka powrotna



- Upewnić się, że czujniki i adaptacja procesu są wolne od pozostałości mediów i / lub pasty termoprzewodzącej i nie występuje skażenie niebezpiecznymi mediami! W tym celu przestrzegać informacji dotyczących czyszczenia!
- Transporty wykonywać wyłącznie w odpowiednim opakowaniu, aby uniknąć uszkodzeń urządzenia!

#### Akcesoria

## Kabel PCW ze złączem M12 z 1.4305, IP 69 K, nieekranowany

M12-PVC / 4-5 mKabel PCW 4-stykowy, długość 5 mM12-PVC / 4-10 mKabel PCW 4-stykowy, długość 10 mM12-PVC / 4-25 mKabel PCW 4-stykowy, długość 25 m

M12-PVC / 5-5 mKabel PCW 5-stykowy, długość 5 mM12-PVC / 5-10 mKabel PCW 5-stykowy, długość 10 mM12-PVC / 5-25 mKabel PCW 5-stykowy, długość 25 m

#### Kabel PCW ze złączem M12, mosiądz niklowany, IP 67, ekranowany

M12-PVC / 4G-5 mKabel PCW 4-stykowy, długość 5 mM12-PVC / 4G-10 mKabel PCW 4-stykowy, długość 10 mM12-PVC / 4G-25 mKabel PCW 4-stykowy, długość 25 m

M12-PVC / 5G-5 mKabel PCW 5-stykowy, długość 5 mM12-PVC / 5G-10 mKabel PCW 5-stykowy, długość 10 mM12-PVC / 5G-25 mKabel PCW 5-stykowy, długość 25 m

M12-EVK M12 pokrywa ze stali nierdzewnej

(1.4305) z o-ringiem, do ochrony przed przenikającymi do środka wilgocią i zabrudzeniami

CERT / 2.2 Certyfikat zakładowej kontroli

produkcji 2.2 według EN10204 (tylko w kontakcie z produktem)

CAL / ILM Fabryczne potwierdzenie kalibracji ILM

# Kabel PCW ze złączem M12



7

# **Wybór dodatkowych potencjalnych przyłączy procesowych** (adaptery trzeba zamawiać osobno!) Kompletne zestawienie wszystkich dostępnych adapterów można znaleźć w informacji o produktach **CLEANadapt.**

ILM-4









| Przyłącze<br>procesowe | Rura EHG<br>(DIN 11850 rząd 2) |
|------------------------|--------------------------------|
| DN40                   | EHG-DIN2-40/1"                 |
| DN50                   | EHG-DIN2-50/1"                 |
| DN65                   | EHG-DIN2-65/1"                 |
| DN80                   | EHG-DIN2-80/1"                 |
| DN100                  | EHG-DIN2-100/1"                |

| Mufa wspawan<br>Negele                        |
|-----------------------------------------------|
| EMZ-352                                       |
| przystosowane<br>do zabudowy w<br>zbiornikach |

kontrolnym

EMZ-351

do pojemników z monitoringiem nieszczelności

Mufa cylindrycz-

na z otworem

na kołnierzem zgrzewanym

EMS-352

do rur do nakładania na kryzę

Mufa cylindrycz-

Tri-Clamp

AMC-352/1"-1,5"

AMC-352/2"

AMC-352/3"

AMC-352/80

AMC-352/100

# Wybór dodatkowych potencjalnych przyłączy procesowych (adaptery trzeba zamawiać osobno!)

| ILM-4                  |                                         |          |            |                                                  |                                                                  |
|------------------------|-----------------------------------------|----------|------------|--------------------------------------------------|------------------------------------------------------------------|
| Przyłącze<br>procesowe | Przyłącze<br>mleczarskie<br>(DIN 11851) | Varivent | APV-Inline | Adapter<br>G1½" na G1"                           | Króciec<br>zaślepiający                                          |
| DN40                   | AMK-352/40                              | AMV-352  | AMA-352    | AMG-352                                          | BST-350<br>do zamknięcia ist-<br>niejącego punktu<br>pomiarowego |
| DN50                   | AMK-352/50                              | AMV-352  | AMA-352    | Dostosowane<br>do istniejącego<br>przyłącza G1½" |                                                                  |
| DN65                   | AMK-352/65                              | AMV-352  | AMA-352    |                                                  |                                                                  |
| DN80                   | AMK-352/80                              | AMV-352  | AMA-352    |                                                  |                                                                  |
| DN100                  | AMK-352/100                             | -        | AMA-352    |                                                  |                                                                  |

#### Oznaczenie zamówienia ILM-4 (Indukcyjny miernik przewodności) Długość zanurzenia L20 (20 mm) **L50** (50 mm) Przyłącze procesowe (inne przyłącza procesowe na zamówienie) (Standard, CLEANadapt G1" higieniczne) TC1 (Tri-Clamp 1½") TC2 (Tri-Clamp 2") **T25** (Tri-Clamp 21/2") TC3 (Tri-Clamp 3") **V25** (Varivent typ F, DN 25) **V40** (Varivent typ N, DN 40/50) Pozycja głowicy (Pozycja głowicy pozioma) (Pozycja głowicy pionowa) Wyjście A42 (1x 4...20 mA tylko przewodność, wyświetlacz przygotowany) A62 (2x 4...20 mA możliwość wyboru przewodność/temperatura, brak zewnętrznego przełączania zakresów, wyświetlacz przygotowany) **A63** (2x 4...20 mA możliwość wyboru przewodność/temperatura, zewnętrzne przełączanie zakresów, wyświetlacz przygotowany) Przyłącze elektryczne (Dławnica kablowa M16×1,5) D (2x dławnica kablowa M16×1,5) М (1x wtyk złącza M12 5-stykowy) N (2x wtyk złącza M12, standard) (2x wtyk złącza M12, 4-stykowy napięcie pomocnicze/wyjście, 5-stykowy wyjście/wejście) Interfejs / wyświetlacz X (Bez interfejsu) S (Prosty interfejs użytkownika z małym wyświetlaczem) Χ (Pokrywa z tworzywa sztucznego bez wziernika) (Pokrywa z tworzywa sztucznego z wziernikiem) (Pokrywa ze stali nierdzewnej bez wziernika) М (Pokrywa ze stali nierdzewnej z wziernikiem) Konfiguracja parametrów (Standard) X S (Szczegóły należy podać tekstem zwykłym) D/ **P**/ **ILM-4/** L20/ S01/ **V**/ A63/ S/ X