Computational searches for TCF binding sites

Approach

Position-weight matrices constructed based on validated lists of TCF binding sites can be used to screen *cis*-regulatory DNA for additional sites (e.g. 109). The efficiency of this approach can be improved by adding multiple sequences bound by TFs (e.g. helper sites in invertebrates; see 69). The functional relevance of binding sites can be verified with reporter assays.

Quickly identifies potentially regulated genes

Advantages

 The identification of binding sites also establishes candidates for mutagenesis to rigorously test their functionality

Disadvantages

- Most effective when the search space is restricted to short stretches of DNA (<20 kb) rather than the whole genome
- Not all consensus TCF sites will be functional
- TCFs and other TFs have degenerate binding sites that could be functional, which could be missed if the calling criteria are too stringent

Transcriptome analyses of Wnt-regulated genes

Microarrays or RNA sequencing can be used to identify genes whose expression changes in Wnt-on and Wnt-off conditions in cell culture (e.g. 74) or embryos (e.g. 30)

- Identifies the full array of genes regulated by Wnt pathway activation
- Many genetic and biochemical reagents are available to manipulate the Wnt pathway
- Does not distinguish between direct and indirect targets of Wnt signaling
- In vivo analyses in animal tissues are limited by the specificity of the genetic drivers used for the manipulations

Chromatin immunoprecipitation sequencing (ChIP-seq) analyses of TCF or $\beta\text{-catenin genomic}$ occupancy

ChIP-seq with TCFs and β -catenin with or without Wnt activation can identify candidate Wnt-regulated enhancers. This approach can be combined with ChIP-seq for other TFs (e.g. 76) or with transcriptome analyses to assign genes to regulatory DNA sequences (e.g. 30).

- Biochemically establishes the presence of Wnt effectors at cis-regulatory elements
- Provides evidence of direct regulation by the Wnt pathway
- Many TCF/β-catenin binding sites have no detectable function
- Quality of the antibody used plays a major role
- While this approach can identify putative Wnt-dependent cis-regulatory elements, identifying which gene the element regulates can be difficult, especially for long-range enhancers