Structure de groupe

Exercice 1 ★★

Soit $G = \mathbb{R}^* \times \mathbb{R}$. On pose pour tous éléments (x, y) et (x', y') de G:

$$(x, y) * (x', y') = (xx', xy' + y)$$

- 1. Vérifier que * est une loi interne associative sur G.
- **2.** Vérifier que (G, *) est un groupe. Est-il commutatif?
- **3.** Donner une expression de $(x, y)^{*n}$.

Exercice 2 ★★

Soit G =]-1,1[. On pose pour tous éléments x et y de G:

$$x * y = \frac{x + y}{1 + xy}$$

- 1. Vérifier que * est une loi interne associative sur G.
- **2.** Vérifier que (G, *) est un groupe. Est-il commutatif?
- **3.** Donner une expression de x^{*n} .

Exercice 3 ★★

Soit G un groupe d'élément neutre e tel que $\forall x \in G$, $x^2 = e$. Montrer que G est commutatif.

Exercice 4 ★

On munit \mathbb{R} de la loi interne * définie par : $\forall a, b \in \mathbb{R}$, a * b = a + b + ab. (\mathbb{R} , *) est-il un groupe?

Exercice 5 ★

Transport de structures

Soient (G, *) un groupe et H un ensemble. On suppose qu'il existe une bijection f de G sur H. On définit la loi . sur H de la manière suivante :

$$\forall (x, y) \in H^2, \ x.y = f(f^{-1}(x) * f^{-1}(y))$$

Montrer que (H, .) est un groupe.

Exercice 6 ★

Transport de structures

Soient (G, *) un groupe et (H, .) un ensemble muni d'une loi interne. On suppose qu'il existe une surjection de G sur H vérifiant

$$\forall (x, y) \in G^2, f(x * y) = f(x).f(y)$$

Montrer que (H, .) est un groupe. Que peut-on dire de f?

Exercice 7 ★

Soit G un groupe. On définit une relation binaire ~ sur G par

$$\forall (x, y) \in G^2, \ x \sim y \iff \exists g \in G, y = g^{-1}xg$$

Montrer que ~ est une relation d'équivalence.

Exercice 8 ★

Soit H un sous-groupe d'un groupe G. On définit trois relations binaires \sim , \sim_g , \sim_d sur G de la manière suivante :

$$\begin{aligned} &\forall (x,y) \in \mathbf{G}^2, \ x \sim y \iff \exists h \in \mathbf{H}, \ y = h^{-1}xh \\ &\forall (x,y) \in \mathbf{G}^2, \ x \sim_g y \iff \exists h \in \mathbf{H}, \ y = hx \\ &\forall (x,y) \in \mathbf{G}^2, \ x \sim_d y \iff \exists h \in \mathbf{H}, \ y = xh \end{aligned}$$

Montrer que \sim , \sim_g , \sim_d sont des relations d'équivalence sur G.

Exercice 9 ★★

On pose G =] - 1, 1[.

- **1.** Montrer que th induit une bijection de \mathbb{R} sur G.
- 2. Montrer que pour tout $(a,b) \in \mathbb{R}^2$, $\operatorname{th}(a+b) = \frac{\operatorname{th}(a) + \operatorname{th}(b)}{1 + \operatorname{th}(a)\operatorname{th}(b)}$.
- 3. Pour $(x, y) \in G^2$, on pose $x \star y = \frac{x + y}{1 + xy}$. A l'aide des questions précédentes, montrer que (G, \star) est un groupe commutatif.
- **4.** Soit $x \in G$. Montrer que pour tout $n \in \mathbb{Z}$, $x^{\star n} = \frac{(1+x)^n (1-x)^n}{(1+x)^n + (1-x)^n}$.

Sous-groupes

Exercice 10 *

Stabilisateur

Soient E un ensemble et $x \in E$. On pose

$$S(x) = \{ \sigma \in S(E), \sigma(x) = x \}$$

Montrer que S(x) est un sous-groupe de $(S(E), \circ)$.

Exercice 11 ★★

Soient G un groupe et H, K deux sous-groupes de G.

- **1.** Montrer que $H \cap K$ est un sous-groupe de G.
- **2.** Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 12 ★

Centre d'un groupe

Soit G un groupe. On définit le centre de G par

$$Z(G) = \{a \in G, \forall x \in G, ax = xa\}$$

i.e. l'ensemble des éléments de G qui commutent avec tous les éléments de G. Montrer que Z(G) est un sous-groupe de G.

Exercice 13 ★★★

Sous-groupes de $\mathbb R$

Soit G un sous-groupe de $(\mathbb{R}, +)$. On suppose G non trivial i.e. $G \neq \{0\}$.

- **1.** Question préliminaire : soient $\alpha \in \mathbb{R}_+^*$ et $\beta \in \mathbb{R}$. Montrer qu'il existe $n \in \mathbb{Z}$ tel que $n\alpha \le \beta < (n+1)\alpha$.
- **2.** Justifier que $G \cap \mathbb{R}_+^*$ possède une borne inférieure que l'on notera a.
- **3.** On suppose que a > 0.
 - **a.** On suppose que $a \notin G$. Justifier l'existence de deux éléments distincts x et y de G appartenant à l'intervalle]a, 2a[.
 - **b.** Aboutir à une contradiction et en déduire que $a \in G$.
 - **c.** En déduire que $a\mathbb{Z} \subset G$.
 - **d.** Soit $z \in G$. En utilisant la question 1, montrer qu'il existe $n \in \mathbb{Z}$ tel que z = na.
 - **e.** En déduire que $G = a\mathbb{Z}$.
- **4.** On suppose que a = 0.
 - **a.** Soient $t \in \mathbb{R}$ et $\varepsilon > 0$. En utilisant la question 1, montrer qu'il existe $g \in G$ tel que $|g t| < \varepsilon$.
 - **b.** En déduire que G est dense dans \mathbb{R} .

Exercice 14 ★

Soient G un groupe et H un sous-groupe de G. On définit une relation binaire ~ sur G par

$$\forall (x, y) \in G^2, \ x \sim y \iff \exists h \in H, \ y = xh$$

Montrer que ∼ est une relation d'équivalence.

Exercice 15 ★★

Dans cet exercice, on pourra identifier le plan à $\mathbb C$ via un repère orthonormé. On pourra en particulier identifier une transformation du plan à une application de $\mathbb C$ dans $\mathbb C$.

- **1.** On note G l'ensemble des translations et des similitudes directes du plan. Montrer que G muni de la loi de composition est un groupe.
- **2.** On note H l'ensemble des translations et des rotations du plan. Montrer que H est un sous-groupe de G.

Morphismes

Exercice 16 ★

Groupes et complexes

On rappelle que $(\mathbb{R}, +)$, (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) sont des groupes. On note \mathbb{U} l'ensemble des nombres complexes de module 1. Pour $n \in \mathbb{N}^*$, on note \mathbb{U}_n l'ensemble des racines $n^{\text{èmes}}$ de l'unité.

- **1.** Montrer que \mathbb{U} est un sous-groupe de (\mathbb{C}^*, \times) .
- **2.** Soit $n \in \mathbb{N}^*$. Montrer que \mathbb{U}_n est un sous-groupe de (\mathbb{C}^*, \times) .
- **3.** Soit $n \in \mathbb{N}^*$. On pose $f : \begin{cases} \mathbb{C}^* & \longrightarrow & \mathbb{C}^* \\ z & \longmapsto & z^n \end{cases}$.
 - **a.** Montrer que f est un endomorphisme de (\mathbb{C}^*, \times) .
 - **b.** En considérant le noyau de f, retrouver le résultat de la question 2.
 - **c.** *f* est-il injectif?
 - **d.** Déterminer l'image de f. f est-il surjectif?
- **4.** On pose $g: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C}^* \\ \theta & \longmapsto & e^{i\theta} \end{array} \right.$
 - **a.** Montrer que g est un morphisme du groupe $(\mathbb{R}, +)$ dans le groupe (\mathbb{C}^*, \times) .
 - **b.** Déterminer le noyau de g. g est-il injectif?
 - c. En considérant l'image de g, retrouver le résultat de la question 1.
 - **d.** g est-il surjectif?
- **5.** On pose $h: \left\{ \begin{array}{ccc} \mathbb{C}^* & \longrightarrow & \mathbb{R}^* \\ z & \longmapsto & |z| \end{array} \right.$
 - **a.** Montrer que h est un morphisme du groupe (\mathbb{C}^*, \times) dans le groupe (\mathbb{R}^*, \times) .
 - **b.** En considérant le noyau de h, retrouver le résultat de la question 1.
 - **c.** *h* est-il injectif?
 - **d.** Déterminer l'image de *h. h* est-il surjectif?

Exercice 17 ★★

Montrer que les endomorphismes de groupe de $(\mathbb{R}, +)$ continus sont les homothéties i.e. les applications $x \mapsto \lambda x$ avec $\lambda \in \mathbb{R}$.

Exercice 18 **

Soit $\alpha \in \mathbb{R}$. Pour $n \in \mathbb{N}$, on considère l'application $f_n : \begin{cases} \mathbb{Z} & \longrightarrow \mathbb{C}^* \\ p & \longmapsto e^{2i\pi np\alpha} \end{cases}$.

- **1.** Montrer que f_n est un morphisme du groupe $(\mathbb{Z}, +)$ dans le groupe (\mathbb{C}^*, \times) .
- **2.** Montrer que Im $f_n \subset \mathbb{U}$.
- 3. En considérant le noyau de f_n , montrer que f_n est injective si et seulement si $\alpha \notin \mathbb{Q}$.
- **4.** A partir de maintenant, on suppose que $\alpha \in \mathbb{Q}$. On écrit α sous forme de fraction irréductible, c'est-à-dire sous la forme $\alpha = \frac{r}{s}$ avec $r \in \mathbb{Z}$ et $s \in \mathbb{N}^*$ tels que $r \wedge s = 1$.
 - **a.** Montrer que Im $f_1 \subset \mathbb{U}_s$.
 - **b.** En écrivant une relation de Bézout entre r et s, montrer que $e^{\frac{2i\pi}{s}} \in \text{Im } f_1$. En déduire que $\mathbb{U}_s \subset \text{Im } f_1$.
 - **c.** Montrer que Ker $f_1 = s\mathbb{Z}$.
- **5.** On pose $m = \frac{S}{n \wedge S}$.
 - **a.** Justifier que *m* est entier.
 - **b.** Montrer que $nr \wedge s = n \wedge s$.
 - **c.** Montrer que Im $f_n \subset \mathbb{U}_m$.
 - **d.** En écrivant une relation de Bézout entre nr et s, montrer que $e^{\frac{2\pi n}{m}} \in \text{Im } f_n$. En déduire que $\mathbb{U}_m \subset \text{Im } f_n$.
 - **e.** Montrer que Ker $f_n = m\mathbb{Z}$.

Exercice 19 ***

X MP 2010

Soient $m, n \in \mathbb{N}^*$. Déterminer les morphismes de $(GL_n(\mathbb{R}), \times)$ dans $(\mathbb{Z}/m\mathbb{Z}, +)$.

Exercice 20 ★★

Automorphismes intérieurs

Soit G un groupe. Étant donné un élément a de G on définit l'application :

$$\varphi_a: \left\{ \begin{array}{ccc} G & \longrightarrow & G \\ x & \longmapsto & axa^{-1} \end{array} \right.$$

- 1. Soit $a \in G$. Montrer que φ_a est un automorphisme de G.
- **2.** On pose $\mathfrak{F}(G) = \{ \varphi_a, a \in G \}$. Montrer que l'ensemble $\mathfrak{F}(G)$ est un sous-groupe de $(\operatorname{Aut}(G), \circ)$.
- 3. Montrer que $\varphi: \left\{ \begin{array}{ll} G & \longrightarrow & \operatorname{Aut}(G) \\ a & \longmapsto & \varphi_a \end{array} \right.$ est un morphisme de groupes.

Exercice 21 ★★

Soit G un groupe. Montrer que f: $\begin{cases} G & \longrightarrow & G \\ x & \longmapsto & x^{-1} \end{cases}$ est un automorphisme de G si et seulement si G est commutatif.

Exercice 22 ★★

Déterminer les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

Ordre

Exercice 23 ★★★

ENS MP 2019

Soit G un groupe. Montrer que G est fini si et seulement si l'ensemble des sous-groupes de G est fini.

Exercice 24 ★★

Montrer que tout sous-groupe d'un groupe cyclique est cyclique.

Exercice 25 ★★★

Soit G un groupe cyclique d'ordre n. Montrer que pour tout diviseur d de n, il existe un unique sous-groupe de G d'ordre d.

Exercice 26 ★★★

Banque Mines-Ponts MP 2021

Soit G un groupe fini. On suppose que tous les éléments de G sont d'ordre au plus 2. Que peut-on dire du cardinal de G?

Exercice 27 ★★

Montrer que tout groupe d'ordre premier est cyclique.

Exercice 28 ★★★

Ordre d'un produit

Soient x et y deux éléments d'un groupe G d'ordres respectifs p et q. On suppose que x et y commutent et que $p \land q = 1$. Montrer que l'ordre de xy est pq.

Exercice 29 ***

Soit G un groupe et E l'ensemble des éléments d'ordre fini de G. Montrer que si E est fini, alors E est un groupe.

Exercice 30 ★★★

Soit G un groupe ayant un nombre fini de sous-groupes. Montrer que G est fini.