Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{0}^{\#1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	$\frac{1}{2}\left(\alpha_0-4\beta_1\right)$	$f_{0+}^{\#1}$ $-\frac{i(\alpha_{0}-4\beta_{1})k}{\sqrt{2}}$	0	0
$f_{0+}^{#1} \dagger$ $f_{0+}^{#2} \dagger$ $\omega_{0-}^{#1} \dagger$	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$f_{0+}^{#2}$ †	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	$\frac{\alpha_0}{2} - 2 \beta_1 + \alpha_3 k^2$
1				
	$ \tau_{\alpha\beta\chi}^{-\frac{1}{2}}\alpha_{0}\left(\omega_{\alpha\chi\beta}\omega^{\alpha\beta\chi}+\omega^{\alpha\beta}\omega_{\alpha}^{X}+2f^{\alpha\beta}\partial_{\beta}\omega_{\alpha}^{X}-2\partial_{\beta}\omega^{\alpha\beta}-2f^{\alpha\beta}\partial_{\chi}\omega_{\alpha}^{X}+2f^{\alpha}\partial_{\chi}\omega^{\beta\chi}\right)+ $	$\omega^{\alpha\beta}_{\alpha} \omega_{\beta}^{X} \times -4 \omega_{\alpha}^{X} \partial_{\beta} f^{\alpha\beta} + 4 \omega_{\beta}^{X} \partial^{\beta} f^{\alpha}_{\alpha} -$ $2 \partial_{\beta} f^{X} \partial^{\beta} f^{\alpha}_{\alpha} - 2 \partial_{\beta} f^{\alpha\beta} \partial_{\chi} f^{X}_{\alpha} + 4 \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\chi} f^{X}_{\beta} -$ $2 \partial_{\beta} f^{X} \partial^{\beta} f^{\alpha}_{\alpha} - 2 \partial_{\beta} f^{\alpha\beta} \partial_{\chi} f^{X}_{\alpha} + 4 \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\chi} f^{X}_{\beta} -$	$\partial x f^{\alpha \beta} + \partial x f^{\alpha} = \partial x f^{\alpha \beta} + \partial x f^{\alpha \beta} = \partial x f^{\alpha \beta} + \partial x f^{\alpha \beta} + \partial x f^{\alpha \beta} + \partial x f^{\alpha \beta} = \partial x f^{\alpha \beta} + \partial $	$(4 \partial_{\beta} \omega_{\alpha\chi\delta} - 2 \partial_{\beta} \omega_{\alpha\delta\chi} + 2 \partial_{\beta} \omega_{\chi\delta\alpha} - \partial_{\chi} \omega_{\alpha\beta\delta} + \partial_{\delta} \omega_{\alpha\xi\chi} - 2 \partial_{\delta} \omega_{\alpha\chi\beta}) \partial^{\delta} \omega^{\alpha\beta\chi})[t, x, y, z] dz dy dx dt$

		$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_0^{\#2}$	$\sigma_0^{\sharp 1}$
	$\sigma_{0}^{\#1}$ †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
	$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
	$\tau_{0}^{\#2}$ †	0	0	0	0
2	$\sigma_{0}^{#1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4\beta_1 + 2\alpha_3 k^2}$

ties

	_	$\omega_{2}^{\#1}$	αβ	$f_{2+a}^{#1}$	β	$\omega_2^{\#1}{}_{\alpha\beta}$	X
$\omega_2^{\sharp 1}$ †	$\alpha \beta$	$-\frac{\alpha_0}{4}$ +	$-\beta_1$	$\frac{i(\alpha_0-4\beta)}{2\sqrt{2}}$		0	
$f_{2}^{#1}$ †	αβ	$-\frac{i(\alpha_0-4)}{2}$		2 β ₁ β	²	0	
$\omega_{2}^{#1}$ †°	αβχ	0		0	-	$-\frac{\alpha_0}{4}+\beta$	β_1
Г) 4			
#2 1 α	0	0	0	0 - 4 β_1) k	0	0	0

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicit
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2 i k \sigma_{1}^{\#2}{}^{\alpha} == 0$	$t_1^{\#^2\alpha} + 2ik \sigma_1^{\#^2\alpha} = 0 \partial_\chi \partial_\beta \partial^\alpha t^{\beta\chi} = \partial_\chi \partial^\chi \partial_\beta t^{\alpha\beta} + 2 \partial_\delta \partial^\delta \partial_\chi \partial_\beta \sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	Э
$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$t_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0 \left \partial_{\chi} \partial^{\alpha} t^{\beta\chi} + \partial_{\chi} \partial^{\beta} t^{\chi\alpha} + \partial_{\chi} \partial^{\chi} t^{\alpha\beta} + \right $	8
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{eta lpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{eta} \sigma^{lpha \chi \delta}$	
Total constraints/gauge generators:	ige generators:	10

	$\omega_1^{\#1}{}_+\alpha\beta$	$\omega_1^{\#_2}$	$\omega_1^{\#2}{}_+ \alpha_eta f_1^{\#1}{}_+ lpha_eta$	$\omega_{1^{^{-}}\alpha}^{\#1}$	$\omega_{1}^{\#2}{}_{lpha}$ $f_{1}^{\#1}{}_{lpha}$	$f_{1^-}^{\#1}{}_{\alpha}$	$f_1^{\#}$
$\omega_1^{#1} + \alpha \beta$		$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0)
$\omega_1^{\#2} + \alpha^{eta}$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	0	0)
$f_{1+}^{#1} + \alpha \beta$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0)
$\omega_1^{\#1} +^{lpha}$	0	0	0	$\frac{1}{4} (\alpha_0 - 4 \beta_1)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$-rac{1}{2}$ $ar{I}$ ($lpha_0$
$\omega_1^{\#2} +^{lpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0)
$f_{1}^{\#1} \dagger^{lpha}$	0	0	0	0	0	0)
$f_1^{\#2} + \alpha$	0	0	0	$\frac{1}{2}$ \bar{l} (α_0 - 4 β_1) k	0	0)

0

 $\tau_2^{\#1} + \alpha\beta$

 $\frac{2i\sqrt{2}}{\alpha_0 k}$

Massive and massless spectra

Massive particle

Pole residue:
$$-\frac{1}{\alpha_3} > 0$$

Polarisations: 1

Square mass: $-\frac{\alpha_0 - 4\beta_1}{2\alpha_3} > 0$

Spin: 0

Parity: Odd

Quadratic (free) action S ==

9		
, ,	Quadratic pole	2
?	Pole residue:	$\left \frac{1}{-\alpha_0+4\beta_1}>0\right $
	Polarisations:	2

Quadratic pole	<u> </u>
Pole residue:	α_0
Polarisations:	2

 $\frac{1}{3} \alpha_3 (4 \partial_\beta \omega_{\alpha\chi\delta} - 2 \partial_\beta \omega_{\alpha\delta\chi} + 2 \partial_\beta \omega_{\chi\delta\alpha} - \partial_\chi \omega_{\alpha\beta\delta} +$

Unitarity conditions

(Unitarity is demonstrably impossible)