Lab-session about λ -calculus

31st of March, 2016

Syntax

The grammar of λ -terms is defined as follows. The set of λ -terms is

$$\Lambda := \mathcal{V} \mid (\Lambda) \Lambda \mid \lambda \mathcal{V}.\Lambda$$

where \mathcal{V} is a denumerable set of *variables*.

Syntax

The grammar of $\lambda\text{-terms}$ is defined as follows. The set of $\lambda\text{-terms}$ is

$$\Lambda := \mathcal{V} \mid (\Lambda) \Lambda \mid \lambda \mathcal{V}.\Lambda$$

where \mathcal{V} is a denumerable set of *variables*.

The β -reduction is the contextual closure of: $(\lambda x.v)u\beta v[u/x]$

Redexes

We set $I = \lambda y.y$.

1) How many occurrences of redexes has the following λ -term? $\lambda x.(x)III$

Redexes

We set $I = \lambda y.y$.

- 1) How many occurrences of redexes has the following λ -term? $\lambda x.(x)III$
- 2) How many occurrences of redexes has the following λ -term? $\lambda x.(x)(I)(I)I$

We set $I = \lambda y.y$.

1) How many occurrences of redexes has the following $\lambda\text{-term?}$ $\lambda x.(x) \emph{III}$

```
We set I = \lambda y.y.
```

- 1) How many occurrences of redexes has the following λ -term? $\lambda x.(x)III$
- 0: it is a normal λ -term

```
We set I = \lambda y.y.
```

- 1) How many occurrences of redexes has the following λ -term? $\lambda x.(x)$ ///
- 0: it is a normal λ -term
- 2) How many occurrences of redexes has the following λ -term? $\lambda x.(x)(I)(I)I$

```
We set I = \lambda y.y.
```

- 1) How many occurrences of redexes has the following λ -term? $\lambda x.(x)$ ///
- 0: it is a normal λ -term
- 2) How many occurrences of redexes has the following λ -term? $\lambda x.(x)(I)(I)I$
- 2:

We set $I = \lambda y.y$.

- 1) How many occurrences of redexes has the following λ -term? $\lambda x.(x)III$
- 0: it is a normal λ -term
- 2) How many occurrences of redexes has the following λ -term? $\lambda x.(x)(I)(I)I$
- 2:

$$\lambda x.(x)\underbrace{(I)(I)I}$$

We set $I = \lambda y.y$.

- 1) How many occurrences of redexes has the following λ -term? $\lambda x.(x)III$
- 0: it is a normal λ -term
- 2) How many occurrences of redexes has the following λ -term? $\lambda x.(x)(I)(I)I$
- 2:

$$\lambda x.(x)\underbrace{(I)(I)I}_{\lambda x.(x)(I)\underbrace{(I)I}_{\underbrace{(I)I}}$$

Computation

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$
$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$\underbrace{(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x}_{\beta \lambda f.\lambda x.((\lambda f.\lambda x.(f)(f)x)f)(f)x}$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$\beta \lambda f.\lambda x.((\lambda f.\lambda x.(f)(f)x)f)(f)x$$

$$\lambda f.\lambda x.((\lambda f.\lambda x.(f)(f)x)f)(f)x$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$\beta \lambda f.\lambda x.((\lambda f.\lambda x.(f)(f)x)f)(f)x$$

$$\lambda f.\lambda x.((\lambda f.\lambda x.(f)(f)x)f)(f)x \beta \lambda f.\lambda x.(\lambda y.(f)(f)y)(f)x$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$\beta \lambda f.\lambda x.((\lambda f.\lambda x.(f)(f)x)f)(f)x$$

$$\lambda f.\lambda x.((\lambda f.\lambda x.(f)(f)x)f)(f)x \beta \lambda f.\lambda x.(\lambda y.(f)(f)y)(f)x$$

$$\lambda f.\lambda x.((\lambda y.(f)(f)y)(f)x$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$(\lambda n.\lambda f.\lambda x.((n)f)(f)x)\lambda f.\lambda x.(f)(f)x$$

$$\beta \lambda f.\lambda x.((\lambda f.\lambda x.(f)(f)x)f)(f)x$$

$$\lambda f.\lambda x.((\lambda f.\lambda x.(f)(f)x)f)(f)x \beta \lambda f.\lambda x.(\lambda y.(f)(f)y)(f)x$$

$$\lambda f.\lambda x.(\lambda y.(f)(f)y)(f)x \beta \lambda f.\lambda x.(f)(f)(f)x$$

Drawing reduction graphs

1) Draw the reduction graph of (I)I(I)II.

Drawing reduction graphs (solution)

1) Draw the reduction graph of (I)I(I)II.

1) Find a λ -term with the following reduction graph:

- 1) Find a λ -term with the following reduction graph:
- 2) Find a λ -term with the following reduction graph:

- 1) Find a λ -term with the following reduction graph:
- 2) Find a λ -term with the following reduction graph:

3) Find a λ -term with the following reduction graph:

- 1) Find a λ -term with the following reduction graph:
- 2) Find a λ -term with the following reduction graph:

3) Find a λ -term with the following reduction graph:

Solution for 1)

1) Find a $\lambda\text{-term}$ with the following reduction graph:

Solution for 1)

1) Find a λ -term with the following reduction graph: One can take $(\lambda x.I)(\lambda y.(y)y)\lambda z.(z)z$

Solution for 1)

1) Find a λ -term with the following reduction graph: One can take $(\lambda x.I)(\lambda y.(y)y)\lambda z.(z)z$

1) Does there exist any non-normalizable λ -term?

1) Does there exist any non-normalizable λ -term?

2) Does there exist a term with a non-finite reduction graph?

1) Does there exist any non-normalizable λ -term?

2) Does there exist a term with a non-finite reduction graph?

3) If yes, does it imply that this term is non-normalizable?

1) Does there exist any non-normalizable λ -term?

2) Does there exist a term with a non-finite reduction graph?

3) If yes, does it imply that this term is non-normalizable?

4) Is a λ -term with a finite reduction graph necessarily normalizable?

We encode the natural integer n as follows:

$$\lceil n \rceil = \lambda f. \lambda x. \underbrace{(f) \dots (f)}_{n \text{ times}} x$$

We encode the natural integer n as follows:

$$\lceil n \rceil = \lambda f. \lambda x. \underbrace{(f) \dots (f)}_{n \text{ times}} x$$

1) Find some normal λ -term that computes the addition, i.e. find some normal λ -term t such that, for any $n,m\in\mathbb{N}$, we have $(t)^{\lceil}m^{\rceil}^{\lceil}n^{\rceil}\beta^{*}^{\lceil}m+n^{\rceil}$.

We encode the natural integer n as follows:

$$\lceil n \rceil = \lambda f. \lambda x. \underbrace{(f) \dots (f)}_{n \text{ times}} x$$

- 1) Find some normal λ -term that computes the addition, i.e. find some normal λ -term t such that, for any $n, m \in \mathbb{N}$, we have $(t)^{\lceil} m^{\rceil} \lceil n^{\rceil} \beta^{*} \lceil m + n^{\rceil}$.
- 2) Find some normal λ -term that computes the multiplication, i.e. find some normal λ -term t such that, for any $n, m \in \mathbb{N}$, we have $(t)^{\lceil} m^{\rceil \lceil} n^{\rceil} \beta^{* \lceil} m n^{\rceil}$.

We encode the natural integer n as follows:

$$\lceil n \rceil = \lambda f. \lambda x. \underbrace{(f) \dots (f)}_{n \text{ times}} x$$

- 1) Find some normal λ -term that computes the addition, i.e. find some normal λ -term t such that, for any $n, m \in \mathbb{N}$, we have $(t)^{\lceil} m^{\rceil} \lceil n^{\rceil} \beta^{*} \lceil m + n^{\rceil}$.
- 2) Find some normal λ -term that computes the multiplication, i.e. find some normal λ -term t such that, for any $n, m \in \mathbb{N}$, we have $(t)^{\lceil} m^{\rceil \lceil} n^{\rceil} \beta^{* \lceil} m n^{\rceil}$.
- 3) Find some normal λ -term that computes the square, i.e. find some normal λ -term t such that, for any $n \in \mathbb{N}$, we have $(t)^{\Gamma} n^{\Gamma} \beta^{*\Gamma} n^{2\Gamma}$.