timeserieslab7-rohramehak-251524

April 17, 2024

```
[12]: import datetime
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
```

1 Correlations in AR models

An autoregressive model of order p is defined as $yt = c + phi1 yt-1 + phi2 yt-2 + ... + phi_p yt-p + t$,

Write a function that calculates the values of AR(p) model. The function must have a parameter burnin that determines how many initial values are discarded.

```
[21]: def ar_model(p, ar_coeffs, c, n_samples, burnin=10):
    et = np.random.normal(size=n_samples)
    ar_values = np.zeros_like(et, dtype=float)
    for t in range(p, n_samples):
        ar_values[t] = c + np.sum(ar_coeffs[::-1] * ar_values[t-p:t]) + et[t]
    return ar_values[burnin:]
```

Calculate n = 5000 values of the AR(1) model yt = 18 - 0.6yt-1 + t.

```
[97]: order = 1 coefficients = [-0.6] num_samples = 5000 c = 18
```

```
[98]: ar_values = ar_model(order, coefficients, c, num_samples, burnin=70)
```

```
[99]: plt.plot(ar_values)
   plt.title("sample Time series AR(1)")
   plt.show()
```


• Calculate the autocorrelation (ACF) and partial autocorrelation (PACF) function for this time series.

```
[100]: fig, axs = plt.subplots(1, 2, figsize=(10, 4))
    plot_acf(ar_values, lags=30, zero=False, ax=axs[0])
    plot_pacf(ar_values, lags=30, zero=False, ax=axs[1])
    plt.show()
```


• Repeat the calculations for phi_1 = -0.7, -0.8, -0.9.

```
[101]: order = 1
    coefficients = [-0.7]
    num_samples = 5000
    c = 18
    ar_values = ar_model(order, coefficients, c, num_samples, burnin=500)
    fig, axs = plt.subplots(1, 2, figsize=(10, 4))
    plt.suptitle("Correlations for phi = -0.7")
    plot_acf(ar_values, lags=50, zero=False, ax=axs[0])
    plot_pacf(ar_values, lags=50, zero=False, ax=axs[1])
    plt.show()
```



```
[102]: order = 1
    coefficients = [-0.8]
    num_samples = 5000
    c = 18
    ar_values = ar_model(order, coefficients, c, num_samples, burnin=500)
    fig, axs = plt.subplots(1, 2, figsize=(10, 4))
    plt.suptitle("Correlations for phi = -0.8")
    plot_acf(ar_values, lags=50, zero=False, ax=axs[0])
    plot_pacf(ar_values, lags=50, zero=False, ax=axs[1])
    plt.show()
```



```
corder = 1
coefficients = [-0.9]
num_samples = 5000
c = 18
ar_values = ar_model(order, coefficients, c, num_samples, burnin=500)
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
plt.suptitle("Correlations for phi = -0.9")
plot_acf(ar_values, lags=50, zero=False, ax=axs[0])
plot_pacf(ar_values, lags=50, zero=False, ax=axs[1])
plt.show()
```


What happens when |1| > 1

```
[]: order = 1
    coefficients = [-1.9]
    num_samples = 5000
    c = 18
    ar_values = ar_model(order, coefficients, c, num_samples, burnin=500)
    ar_values
<ipython-input-125-25dd3f363950>:4: RuntimeWarning: overflow encountered in
```

```
multiply
ar_values[t] = c + np.sum(ar_coeffs[::-1] * ar_values[t-p:t]) +
np.random.normal()

array([-1, 27835765e+140, 2, 42887954e+140, -4, 61487112e+140,
```

[]: array([-1.27835765e+140, 2.42887954e+140, -4.61487112e+140, ..., inf, -inf, inf])

If we set |phi| > 1, our time series goes to infinity

2 AR(2)

Calculate n = 5000 values of the AR(2) model yt = 8 + 1.3yt - 1 - 0.7yt - 2 + t. Compare the structure of PACFs for AR(1) and AR(2) models.

```
[104]: order = 2
    coefficients = [1.3, -0.7]
    num_samples = 5000
    c = 8
    ar_values = ar_model(order, coefficients, c, num_samples, burnin=500)
```

```
[105]: plt.plot(ar_values)
   plt.title("sample Time series AR(2)")
   plt.show()
```



```
[106]: fig, axs = plt.subplots(1, 2, figsize=(10, 4))
  plt.suptitle("Correlations for ar(2), phi = 1.3, -0.7")
  plot_acf(ar_values, lags=20, zero=False, ax=axs[0])
  plot_pacf(ar_values, lags=20, zero=False, ax=axs[1])
  plt.show()
```


For an AR(1) model, the PACF will have a sharp drop after lag 1 because it directly measures the correlation between a variable and its lagged values, and after the first lag, all other lags are indirectly related through the first lag. So, the PACF will be significant at lag 1 and then drop to approximately zero for all other lags.

For an AR(2) model, the PACF will be significant at lags 1 and 2 because the variable is directly related to its first and second lagged values

3 MOVING AVERAGES

```
[107]: def ma_model(q, ma_coeffs, c, n_samples, burnin=10):
    ma_values = np.zeros(n_samples)
    et_values = np.random.normal(size=n_samples)
    for t in range(q, n_samples):
        ma_values[t] = c + np.dot(ma_coeffs[::-1], et_values[t-q:t]) +__
    et_values[t]
    return ma_values[burnin:]
[108]: q = 1
    coefficients = [0.8]
    num_samples = 5000
    c = 20
    ma_values = ma_model(q, coefficients, c, num_samples, burnin=100)
```

```
[109]: plt.plot(ma_values)
   plt.title("example range MA(1) model with theta = 0.8")
   plt.show()
```



```
[111]: fig, axs = plt.subplots(1, 2, figsize=(10, 4))
   plt.suptitle("Corelations in MA(1) model with theta = 0.8")
   plot_acf(ma_values, lags=30, zero=False, ax=axs[0])
   plot_pacf(ma_values, lags=30, zero=False, ax=axs[1])
   plt.show()
```



```
[113]: fig, axs = plt.subplots(1, 2, figsize=(10, 4))
  plt.suptitle("Corelations in MA(2) model with theta =-1, 0.8")
  plot_acf(ma_values, lags=20, zero=False, ax=axs[0])
  plot_pacf(ma_values, lags=20, zero=False, ax=axs[1])
  plt.show()
```


In acf:

- 1. for AR model : Slowly decaying. It will show significant autocorrelation values for several lags.
- 2. for MA Model: Sharp drop after the lag corresponding to the order of the MA model. All subsequent lags should be approximately zero.

in Pacf:

- 1. for AR model: Sharp drop after the lag corresponding to the order of the AR model. All subsequent lags should be approximately zero
- 2. for MA model: Slowly decaying. It will show significant partial autocorrelation values for several lags.

4 AR(p) model fitting

[60]: order = 2

```
coefficients = [1.3, -0.7]
    num_samples = 5000
    c = 8
    ar2_values = ar_model(order, coefficients, c, num_samples, burnin=20)
[61]: from statsmodels.tsa.arima.model import ARIMA
    aic_values= []
    models = \Pi
    p_{values} = [1, 2, 3, 4]
    for p in p_values:
        model = ARIMA(ar2_values, order=(p, 0, 0))
        model fit = model.fit()
        models.append(model_fit)
        estimated_params = model_fit.params
        print(f"\n-----\n")
        print(model_fit.summary())
        aic_values.append(model_fit.aic)
     -----Model AR(1)------
                             SARIMAX Results
    ______
    Dep. Variable:
                                    No. Observations:
                                                                4980
                       ARIMA(1, 0, 0) Log Likelihood
    Model:
                                                            -8735.110
    Date:
                     Wed, 17 Apr 2024
                                   AIC
                                                            17476.219
    Time:
                           15:45:29
                                   BIC
                                                            17495.759
    Sample:
                                 O HQIC
                                                            17483.069
                             - 4980
    Covariance Type:
                               opg
    ______
                                           P>|z|
                  coef
                        std err
                                                     [0.025
              20.0188
                          0.086 233.468
                                            0.000
                                                     19.851
                                                              20.187
    const
               0.7691
                          0.009
                                 84.789
                                            0.000
                                                     0.751
                                                               0.787
    ar.L1
               1.9544
                          0.039
                                  50.211
                                            0.000
                                                     1.878
                                                               2.031
    sigma2
    Ljung-Box (L1) (Q):
                               1444.84
                                        Jarque-Bera (JB):
    0.73
    Prob(Q):
                                   0.00
                                        Prob(JB):
    0.69
    Heteroskedasticity (H):
                                   0.87
                                        Skew:
    0.03
```

Prob(H) 3.03	(two-sided):		0	.00	Kurtosis:		
===							
step).					outer product	of gradient	s (complex-
	1100		ARIMAX				
Dep. Var: Model: Date: Time: Sample: Covariance	iable: ce Type:	ARIMA(2, 0 Wed, 17 Apr 15:4	y 2024 45:31 0 4980 opg	No. Log AIC BIC HQIC			4980 -7055.698 14119.395 14145.448 14128.528
	coei	f std err		z	P> z	[0.025	0.975]
const ar.L1 ar.L2	20.0192 1.3080 -0.7004	0.036 0.010 4 0.010	554 128 -68	.918 .986 .718	0.000 0.000 0.000 0.000	19.949 1.288	20.090 1.328 -0.680
0.36 Prob(Q): 0.83 Heterosko	x (L1) (Q): edasticity (I		0	.30 .99	Jarque-Bera Prob(JB): Skew: Kurtosis:		
Warnings [1] Covar		c calculated	using	the o	outer product	of gradient	s (complex-
	Мос	del AR(3)					
		SA	ARIMAX	Resul	lts		

Dep. Variable Model: Date: Time: Sample: Covariance Ty	W	ARIMA(3, 0, ed, 17 Apr 20 15:45: - 49 o	0) Log 24 AIC 34 BIC 0 HQIC	Observations: Likelihood	:	4980 -7054.577 14119.155 14151.721 14130.571
========	coef			P> z	[0.025	
ar.L3	-0.7282 0.0212	0.037 0.015 0.021 0.014 0.020	91.121 -34.101 1.486	0.000 0.000 0.137	1.294 -0.770 -0.007	1.351 -0.686 0.049
=======================================						=======
Ljung-Box (L:	1) (Q):		0.00	Jarque-Bera	(JB):	
0.41 Prob(Q): 0.82			1.00	Prob(JB):		
Heteroskedast	ticity (H)	:	0.99	Skew:		
-0.01 Prob(H) (two- 3.04	-sided):		0.80	Kurtosis:		
=======================================		========				=======
Warnings: [1] Covariand step).	ce matrix	calculated us	ing the d	outer product	of gradient	s (complex-
	Mode	l AR(4)				
		SARI	MAX Resul			
Dep. Variable Model: Date: Time: Sample:		ARIMA(4, 0, ed, 17 Apr 20 15:45:	0) Log 24 AIC	Observations: Likelihood	:	4980 -7054.546 14121.091 14160.170 14134.790

Covarianc	e Type:		opg			
	coef	std err	z	P> z	[0.025	0.975]
const ar.L1	20.0192 1.3229	0.037 0.015	545.025 91.108	0.000	19.947 1.294	20.091 1.351

- 4980

```
ar.L2
           -0.7308
                      0.024
                              -30.806
                                         0.000
                                                  -0.777
                                                            -0.684
ar.L3
            0.0260
                      0.024
                               1.104
                                         0.270
                                                  -0.020
                                                             0.072
ar.L4
           -0.0036
                      0.014
                               -0.253
                                         0.800
                                                  -0.031
                                                             0.024
sigma2
            0.9948
                      0.020
                               50.339
                                         0.000
                                                   0.956
                                                             1.034
Ljung-Box (L1) (Q):
                                      Jarque-Bera (JB):
                                0.00
0.41
Prob(Q):
                                0.99
                                     Prob(JB):
0.81
Heteroskedasticity (H):
                                0.99
                                      Skew:
-0.01
Prob(H) (two-sided):
                                0.80
                                     Kurtosis:
______
```

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
[62]: plt.plot(p_values, aic_values)
   plt.xlabel("order param p")
   plt.ylabel("AIC values")
   plt.title("order vs aic values for AR models")
   plt.show()
```


since the aic values of ar(2), ar(3) and ar(4) are very close. we can do llr test to determine the better one

```
[58]: from scipy.stats.distributions import chi2
```

```
[73]: def LLR_test(m1,m2,DF=1):
    L1=m1.llf
    L2=m2.llf
    LR=2*(L2-L1)
    p=chi2.sf(LR,DF).round(3)
    return p
```

in or models list,

- 1. model[0] is ar(1),
- 2. model[1] is ar(2)
- 3. model[2] is ar(3) and
- 4. model[3] is ar(4)

[96]: LLR_test(models[2], models[1])

```
[96]: 1.0
```

since p_values > 0.05, we cant say that ar(2) is much better than ar(1)

```
[75]: LLR_test(models[2], models[3])
```

[75]: 0.801

5 MA(q) Fitting

we fit MA(2) time series to our model

```
[69]: q = 2
    coefficients = [-1, 0.8]
    num_samples = 5000
    c = 0
    ma_values = ma_model(q, coefficients, c, num_samples, burnin=100)
```

-----Model MA(1)-----

SARIMAX Results

4900 Dep. Variable: No. Observations: Model: ARIMA(0, 0, 1)Log Likelihood -8114.474 Date: Wed, 17 Apr 2024 AIC 16234.947 Time: 16:05:31 16254.438 BIC Sample: HQIC 16241.785

- 4900

Covariance Type: opg

========						
	coef	std err	Z	P> z	[0.025	0.975]
const	0.0090	0.008	1.144	0.253	-0.006	0.024

	-0.5681 1.6065			0.000 0.000	-0.591 1.543	-0.546 1.670
=======================================	=======			========		========
Ljung-Box (L1) (Q):		365.52	Jarque-Bera	(JB):	
1.39 Prob(Q): 0.50			0.00	Prob(JB):		
Heteroskedast	icity (H):		1.09	Skew:		
Prob(H) (two- 2.99	sided):		0.09	Kurtosis:		
=======================================	========					
Warnings: [1] Covariance step).	e matrix ca	alculated u	sing the c	outer product	of gradien	ts (complex-
	Model	MA(2)				
			IMAX Resul			
Dep. Variable Model: Date: Time: Sample:): 1	ARIMA(0, 0, 1, 17 Apr 2 16:05	y No. 2) Log	Observations: Likelihood		4900 -6974.524 13957.048 13983.036 13966.165
Covariance Ty	pe:		opg			
		std err	z	P> z		0.975]
const ma.L1 ma.L2 sigma2	0.0091 -1.0006 0.7772 1.0084	0.011 0.009 0.009 0.020	0.813 -110.031 86.185 49.225	0.416 0.000 0.000 0.000	-0.013 -1.018 0.760 0.968	0.031 -0.983 0.795 1.049
======================================		-=====	0.05	Jarque-Bera		
0.67 Prob(Q):			0.83	Prob(JB):		
0.72 Heteroskedast -0.03	icity (H):		1.05	Skew:		
Prob(H) (two- 2.98	sided):		0.35	Kurtosis:		

===

T 7					
Warn	٦	n	ø	S	1

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

-----Model MA(3)-----

SARIMAX Results

Dep. Variable:	У	No. Observations:	4900
Model:	ARIMA(0, 0, 3)	Log Likelihood	-6974.485
Date:	Wed, 17 Apr 2024	AIC	13958.970
Time	16.05.36	RTC	13991 455

Sample: 0 HQIC 13970.367

- 4900

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
const	0.0091	0.011	0.816	0.414	-0.013	0.031
ma.L1	-1.0037	0.014	-71.307	0.000	-1.031	-0.976
ma.L2	0.7812	0.017	46.708	0.000	0.748	0.814
ma.L3	-0.0040	0.014	-0.281	0.779	-0.032	0.024
sigma2	1.0084	0.020	49.222	0.000	0.968	1.049

===

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB):

0.67

Prob(Q): 1.00 Prob(JB):

0.72

Heteroskedasticity (H): 1.05 Skew:

-0.03

Prob(H) (two-sided): 0.36 Kurtosis:

2.98

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

-----Model MA(4)-----

SARIMAX Results

Dep. Variable: y No. Observations: 4900 Model: ARIMA(0, 0, 4) Log Likelihood -6973.995

 Date:
 Wed, 17 Apr 2024
 AIC
 13959.989

 Time:
 16:05:41
 BIC
 13998.971

 Sample:
 0
 HQIC
 13973.666

- 4900

Covariance Type: opg

const 0.0091 0.011 0.828 0.408 -0.012 ma.L1 -1.0035 0.014 -71.237 0.000 -1.031 ma.L2 0.7691 0.020 39.140 0.000 0.731 ma.L3 0.0116 0.020 0.588 0.556 -0.027 ma.L4 -0.0148 0.014 -1.059 0.289 -0.042 sigma? 1.0082 0.021 49.108 0.000 0.968		coef	std err	z	P> z	[0.025	0.975]
ma.L2 0.7691 0.020 39.140 0.000 0.731 ma.L3 0.0116 0.020 0.588 0.556 -0.027 ma.L4 -0.0148 0.014 -1.059 0.289 -0.042	const	0.0091	0.011	0.828	0.408	-0.012	0.031
ma.L3 0.0116 0.020 0.588 0.556 -0.027 ma.L4 -0.0148 0.014 -1.059 0.289 -0.042	ma.L1	-1.0035	0.014	-71.237	0.000	-1.031	-0.976
ma.L4 -0.0148 0.014 -1.059 0.289 -0.042	ma.L2	0.7691	0.020	39.140	0.000	0.731	0.808
	ma.L3	0.0116	0.020	0.588	0.556	-0.027	0.050
sigma? 1 0082 0 021 49 108 0 000 0 968	ma.L4	-0.0148	0.014	-1.059	0.289	-0.042	0.013
51gma2 1.0002 0.021 49.100 0.000 0.900	sigma2	1.0082	0.021	49.108	0.000	0.968	1.048

===

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB):

0.74

Prob(Q): 0.99 Prob(JB):

0.69

Heteroskedasticity (H): 1.05 Skew:

-0.03

Prob(H) (two-sided): 0.36 Kurtosis:

2.98

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
[72]: plt.plot(q_values, aic_values)
   plt.xlabel("ma param q")
   plt.ylabel("AIC values")
   plt.title("order (q) vs aic values for MA(q) models")
   plt.show()
```


THE AIC value of model[1] that is MA(2) is slighlty lower than MA(3) and MA(4).But we cannot certainly say that MA(2) is definitely better than MA(3)