Maths Prepa MPSI Chap₁ Ex

30 Octobre, 2023

Lucas Duchet-Annez

Ex 2

- 1) Prouvons par l'absurde $\forall x \in \mathbb{R}$ et x > 2 Supposons que $x \ge 3$ Si x = 2, 1 On a x > 2 et $x \in \mathbb{R}$ Or 2, 1 < 3 donc $x \not\ge 3$ Soit la propriété non vraie pour tout les x appartenant à \mathbb{R}
- 2) $\forall (x,y) \in \left(\mathbb{R}^*\right)^2, x < y$ Posons la fonction f avec $f(x) = \frac{1}{x}$ $f'(x) = -\frac{1}{\sqrt{x}}$ x > 0 ou x < 0 Pour x > 0 f'(x) < 0 x < 0 f'(x) > 0 donc f est croissante sur $]0; +\infty[$ et décroissante sur $]-\infty; 0[$ Donc en composant par f(x) l'égalité devient Pour x > 0 et y > 0 $\frac{1}{x} > \frac{1}{y}$ et pour x < 0 et y < 0 $\frac{1}{x} < \frac{1}{y}$ ce qui est différent de la proposition De plus l'égalité est indéterminable dans les autres cas
- 3) Soit $x \in \mathbb{R}_+$. On a: $x < \sqrt{x}$ $\Leftrightarrow x^2 < x \Leftrightarrow x(x-1) < 0$

On en déduit que : - Si $x \in]0,1[$, alors x(x-1) < 0 et donc $x < \sqrt{x}$. - Si $x \ge 1$, alors $x(x-1) \ge 0$ et donc $x \ge \sqrt{x}$.

Donc l'énoncé « $\exists x \in \mathbb{R}_+$, $x < \sqrt{x}$ » est vrai, puisqu'il existe des réels strictement positifs inférieurs à 1 qui vérifient cette inégalité.

6)
$$\forall x \in \mathbb{R}, \quad x^2 + x \ge 0 \Rightarrow x \ge 0$$

Prenons un contre-exemple Posons $x=-\frac{1}{4}$ alors $x^2+x=\left(-\frac{1}{4}\right)^2-\frac{1}{4}=-\frac{3}{16}<0$ Donc la propriété n'est pas vraie pour tout x dans $\mathbb R$