Московский физико-технический институт (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчет о выполнении лабораторной работы №2.2.1

Исследование взаимной диффузии газов

Выполнил студент группы Б03-405 Тимохин Даниил

1. Аннотация

В данной работе исследуется диффузия бинарных смесей. А также подтверждаются формулы Фика для одномерного случая.

2. Теоретическая справка

Диффузия - процесс самопроизвольного взаимное проникновения веществ друг в друга. В нашем "одномерном" случае можно описать процесс с помощью формулы Фика.

$$j_{He} = -D\frac{dn_{He}}{dx}$$
 $j_{O_2} = -D\frac{dn_{O_2}}{dx},$ (1)

где D - коэффициент диффузии. В эксперименте предполагаются, что P,T=const. а значит и суммарная концентрация сохраняется. Тогда получаем, что $\Delta n_{He} = -\Delta n_{O_2}$. Поэтому будем рассматривать только поток гелия.

С учётом того, что за счёт меньшей массы и концентрации атомы гелия движутся намного быстрее, чем молекулы кислорода, то мы можем сказать что этот процесс приближённо описывается смешиванием маленьких частиц с большими стационарными. В данном случае можно использовать оценку для коэффициента диффузии

$$D = \frac{1}{3}\lambda \bar{v} \propto \frac{1}{P} \tag{2}$$

Примем упрощение, что диффузия происходит только в самой трубке. Тогда в трубке $j=-D\frac{\partial n}{\partial x}=const$ Тогда распределение концентрации в гелии $n(x) = \frac{\Delta n}{L}x$

При этом $\Delta n = n_2 - n_1$ и $N_1 = n_1 V$, $N_2 = n_2 V$. С условием, что у нас постоянная площадь S.

$$\frac{dN_1}{dt} = jS \qquad \qquad \frac{dN_2}{dt} = -jS \tag{3}$$

Находим

$$\frac{d(\Delta n)}{dt} = \frac{\Delta n}{\tau} \tag{4}$$

$$\tau = \frac{1}{D} \frac{VL}{2S} \tag{5}$$

Получаем

$$\Delta n = \Delta n_0 e^{-\frac{t}{\tau}} \tag{6}$$

Для измерений мы воспользуемся тем, ,что $\kappa \sim n$ для небольших изменений n. Поэтому $U = U_0 e^{-\frac{t}{\tau}}$

4. Результаты измерений и обработка данных

3.Оборудование

Экспериментальный стенд

Проведем замеры скорости диффузии при различных давлениях. В качестве показателя возьмём теплопроводность, а точнее напряжение на электродах. Из теории предположительная зависимость экспоненциальная. поэтому построим логарифм напряжения от времени.

Рис. 1. Схема смешивания

Рис. 2. График экспериментальных данных с логарифмической шкалой

давление, торр	коэффициент	характерное	Коэффициент	ε
	наклона, 1/с	время	диффузии,	
		диффузии, с	cM^2/c	
37.5	-0.0059	169.0	12.15	0.0003
67.5	-0.0035	282.8	7.26	0.0002
101.3	-0.0021	469.4	4.37	0.001
131.3	-0.0018	528.0	3.89	0.001

Таблица 1. Обработанные данные

Получаем различные коэффициенты наклона с очень хорошей точностью. Из них находим коэффициент диффузии по формуле 5. и Построим зависимость D от P^{-1} .

Рис. 3. График зависимости $D(P^{-1})$

Коэффициенты для линейной зависимости $D=k\cdot P^{-1}+b$: $k=0.0445\frac{M^2\cdot\Pi a}{c}$ и $\varepsilon_k=0.03,\ b=3.6\cdot 10^{-5}\frac{M^2}{c}$ и $\varepsilon_k=0.35$ Из полученных значений получаем коэффициент диффузии для гелия а воздухе при атмосферном давлении равным $D_{760}=9.5\cdot 10^{-1}\frac{cM^2}{c}$ и $\varepsilon_{D_{760}}=0.14$.

Тогда для первого эксперимента проведем оценку. Используем оценку 2.

$$\bar{v} = \sqrt{\frac{8RT}{\pi\mu}} \qquad \qquad \lambda = \frac{3D}{\bar{v}} \tag{7}$$

Температура в комнате примерно была равна $21.5C^{o}$ что равно 294.5K. Получаем $\lambda =$ $2.9 \cdot 10^{-6} M$.

$$\sigma = \frac{1}{\lambda n_0} \qquad \qquad n_0 = \frac{N_a P}{RT} \tag{8}$$

Подставляя данные, получим $\sigma = 2.8 \cdot 10^{-19} {\it M}^2$ и газо-кинетический диаметр молекул $d = 3 \cdot 10^{-10} M$

5. Обсуждение результатов и выводы

Мы смогли с хорошей точностью определить коэффициент диффузии гелия в воздухе при атмосферном давлении. Он примерно равен $D_{760} = 9.5 \cdot 10^{-1} \frac{c M^2}{c}$ и $\varepsilon_{D_{760}} = 0.14$. Также были оценены длина свободного пробега и эффекстивное сечение столкновений:

 $\lambda = 2.9 \cdot 10^{-6} M$ и $\sigma = 2.8 \cdot 10^{-19} M^2$.

Было подтверждено, что коэффициент диффузии падает с ростом давления в бинарной смеси.