

LSTM을 활용한 이상행동탐지

수상하 조 (평일 오후 3조) **권태윤 배선용 한지은**

CONTENT

주제 선정

Part 1 프로젝트 주제

실내 이상행동(절도) 탐지 모델 개발

주제 선정 배경

2 데이터 전처리

데이터 소개 Part 2

실내(편의점, 매장) 사람 이상행동 데이터

출처: AI - Hub

Part 2

데이터 전처리(1) - Clip 추출

평균 재생시간 : 1분 (180 fps)

NORMAL : 10초 (30 fps)

ABNORMAL: 10초 (30 fps)

NORMAL: 10초 (30 fps)

ABNORMAL: 10초 (30 fps)

NORMAL: 10초 (30 fps)

ABNORMAL: 10초 (30 fps)

데이터 추출 비율

NORMAL: ABNORMAL

50:50

데이터 전처리(1) - Clip 추출

001_normal_30

타입: 정상 행동

재생시간: 10초

총 프레임 수: 30

001_abnormal_30

타입:절도

재생시간: 10초

총 프레임 수: 30

Part 2

데이터 전처리(2) - 추출한 Clip 병합

NORMAL 10초 (30 fps)

NORMAL 10초 (30 fps)

NORMAL 10초 (30 fps)

ABNORMAL 10초 (30 fps)

ABNORMAL 10초 (30 fps)

ABNORMAL 10초 (30 fps)

데이터 전처리(3) - MediaPipe

Pose landmark detection

데이터 전처리(3) - MediaPipe

적용 전

적용 후

3 모델링

모델 선정 - LSTM(Long Short-Term Memory)

시간 순서에 따른 패턴 학습을 위한 순환신경망 필요

순환 신경망의 종류:

Simple RNN

모델 설계 - Input size, Loss function, Optimizer

하이퍼파라미터 (Hyperparameter)

```
class skeleton LSTM(nn.Module):
                                                                                                def forward(self, x) :
    def init (self):
                                                                                                    x, \underline{} = self.lstm1(x)
        super(skeleton LSTM, self). init ()
                                                                                                    x, _= self. lstm2(x)
        self.lstm1 = nn.LSTM(input_size=36, hidden size=128, num_layers=1, batch_first=True)
                                                                                                    x, \underline{} = self.lstm3(x)
        self.lstm2 = nn.LSTM(input_size=128, hidden_size=256, num_layers=1, batch_first=True)
                                                                                                    x = self.dropout1(x)
        self.lstm3 = nn.LSTM(input_size=256, hidden_size=512, num_layers=1, batch_first=True)
                                                                                                    x, = self.lstm4(x)
        self.dropout1 = nn.Dropout(0.1)
                                                                                                    x, \underline{} = self.lstm5(x)
        self.lstm4 = nn.LSTM(input size=512, hidden size=256, num lavers=1, batch first=True)
                                                                                                    x, = self.lstm6(x)
        self.lstm5 = nn.LSTM(input_size=256, hidden_size=128, num_layers=1, batch_first=True)
                                                                                                    x = self.dropout2(x)
        self.lstm6 = nn.LSTM(input_size=128, hidden_size=64, num_layers=1, batch_first=True)
                                                                                                    x, = self.lstm7(x)
        self.dropout2 = nn.Dropout(0.1)
                                                                                                    x = self.fc(x[:,-1,:])
        self.lstm7 = nn.LSTM(input_size=64, hidden_size=32, num_layers=1, batch_first=True)
                                                                                                    return x
        self.fc = nn.Linear(32,2)
```


Loss function : CrossEntropyLoss

Optimizer: Adam

모델 설계 - Num layers

Num layers = 1로 설정한 이유

Epoch	Train_Loss	Train_Acc	Valid_Loss	Valid_Acc
700	0.693	0.508	0.695	0.433

결과

Part 4

단계별 결과 비교 분석

Part 4

단계별 결과 비교 분석 - 결과 1

Part 4

결과 1 - 몸 vs 몸 + 얼굴

Epoch 700 | Batch size 6 | Learning rate 0.0001

Train_Loss	Train_Acc	
0.084	0.959	
Valid_Loss	Valid_Acc	
0.322	0.833	

<u> 몸 + 얼굴</u>

Train_Loss	Train_Acc	
0.096	0.943	
Valid_Loss	Valid_Acc	

결과 1 - 몸 vs 몸 + 얼굴

몸

몸 + 얼굴

Part 4

단계별 결과 비교 분석 - 결과 2

Part 4

결과 2 - 시퀀스별 vs 시퀀스 묶음별

Batch size 5 | Learning rate 0.0001

Epoch 500 Train_Loss Train_Acc 0.293 0.87 Valid_Loss Valid_Acc 0.47 0.8

시퀀스 묶음별 학습

Epoch 300

Train_Loss	Train_Acc	
0.256	0.869	
	Valid_Acc	
Valid_Loss	Valid_Acc	

결과 2 - 시퀀스별 vs 시퀀스 묶음별 (편의점)

시퀀스별 학습

시퀀스 묶음별 학습

결과 2 - 시퀀스별 vs 시퀀스 묶음별 (무인점포)

시퀀스별 학습

시퀀스 묶음별 학습

Part 4

단계별 결과 비교 · 분석

Part 4

결과 3 - Yolo 로 객체 탐지 후 이상탐지

결과 3 - Yolo 로 객체 탐지 후 이상탐지 (편의점)

Yolo 미적용

Yolo 적용

결과 3 - Yolo 로 객체 탐지 후 이상탐지 (무인점포 1)

Yolo 미적용

Yolo 적용

결과 3 - Yolo 로 객체 탐지 후 이상탐지 (무인점포 2)

Yolo 미적용

Yolo 적용

 Part 4
 최종 결과

기대효과

기대 효과

탐지 자동화로 보안 강화

실시간 탐지로 신속한 조치

보안 인력 최소화로 비용 절감

매장 이용에 대한 서비스 품질 향상

학습량 누적에 따라 탐지 성능 향상

아쉬운점

아쉬운 점 1

GRU

순환 신경망(RNN) 계열 다른 모델(예. GRU)과 추가로 비교 분석했다면 더욱 다양한 결과 도출 가능

아쉬운 점 2

다중 객체 탐지 한계

단일 객체의 이상행동 데이터를 기준으로 모델 개발 다중 객체의 이상행동을 탐지하려면 한계 존재

감사합니다