CLAIMS

What is claimed is:

1	1. A method for de-screening a halftone image, comprising:
2	performing a screen conversion filter upon a scanned
3	representation of said halftone image to produce an
4	intermediate image; and
5	performing a line smoothing filter upon said intermediate image
6	to produce an output image.

- 1 2. The method of claim 1, wherein said screen conversion
- $2\quad \ \ filter \ utilizes \ a\ 3\ by\ 3\ coefficient\ matrix.$
- 1 3. The method of claim 2, wherein said coefficient matrix is
- 2 diagonal along the lower right to upper left direction.
- 1 4. The method of claim 3, wherein coefficients $c_{(-1, 1)} = c_{(1, -1)} =$
- 2 1, and coefficient $c_{(0, 0)} = 2$.
- 1 5. The method of claim 2, wherein said coefficient matrix is
- 2 diagonal along the lower left to upper right direction.

- 1 6. The method of claim 3, wherein coefficients $c_{(-1,-1)} = c_{(1,-1)} =$
- 2 1, and coefficient $c_{(0,0)} = 2$.
- 1 7. The method of claim 1, wherein said line smoothing filter
- 2 utilizes a 3 by 3 coefficient matrix.
- 1 8. The method of claim 7, wherein said coefficient matrix is
- 2 diagonal along the lower right to upper left direction.
- 1 9. The method of claim 8, wherein coefficients $c_{(-1, 1)} = c_{(1, -1)} =$
- 2 1, and coefficient $c_{(0,0)} = 2$.
- 1 10. The method of claim 9, wherein said coefficient matrix is
- 2 diagonal along the lower left to upper right direction.
- 1 11. The method of claim 10, wherein coefficients $c_{(-1,-1)} = c_{(1,-1)} =$
- 2 1, and coefficient $c_{(0,0)} = 2$.
- 1 12. The method of claim 1, wherein said screen conversion
- 2 filter passes low-frequencies, passes high-frequencies along a diagonal
- 3 line from lower left to upper right, and attenuates high-frequencies
- 4 away from said diagonal line.

3

4

from said diagonal line.

1	13. The method of claim 1, wherein said screen conversion
2	filter passes low-frequencies, passes high-frequencies along a diagonal
3	line from lower right to upper left, and attenuates high-frequencies
4	away from said diagonal line.
1	14. The method of claim 1, wherein said line smoothing filter
2	passes low-frequencies, passes high-frequencies along a diagonal line

from lower left to upper right, and attenuates high-frequencies away

- 1 15. The method of claim 1, wherein said line smoothing filter
 2 passes low-frequencies, passes high-frequencies along a diagonal line
 3 from lower right to upper left, and attenuates high-frequencies away
 4 from said diagonal line.
- 1 16. A method for de-screening a halftone image, comprising:
 2 performing a single convolution filter upon a scanned
 3 representation of said halftone image to produce an
 4 output image, wherein said single convolution filter equals
 5 the resulting convolution of a screen conversion filter and a
 6 line smoothing filter.

- 1 17. The method of claim 16, wherein said single convolution
- 2 filter passes low-frequencies, passes high-frequencies at a central area,
- 3 and attenuates high-frequencies along a horizontal axis and a vertical
- 4 axis.
- 1 18. A computer-readable medium having stored thereon
- 2 sequences of instructions, the sequences of instructions including
- 3 instructions which, when executed by a processor, causes the processor
- 4 to perform various processing, the sequences of instructions
- 5 comprising:
- a first sequence to perform a screen conversion filter upon a
- 7 scanned representation of a halftone image to produce an intermediate
- 8 image; and
- 9 a second sequence to perform a line smoothing filter upon said
- 10 intermediate image to produce an output image.
 - 1 19. A computer-readable medium having stored thereon
- 2 sequences of instructions, the sequences of instructions including
- 3 instructions which, when executed by a processor, causes the processor
- 4 to perform various processing, the sequences of instructions
- 5 comprising:

1

2

3

4

5

6

1

 $\mathbf{2}$

3

4

5

6	a first sequence to perform a single convolution filter upon a
7	scanned representation of a halftone image to produce an output image,
8	wherein said single convolution filter equals the resulting convolution of
9	a screen conversion filter and a line smoothing filter.

- 20. A system for de-screening a halftone image, comprising: a memory to store an input image from a halftone print; and a processor to perform a screen conversion filter upon said input image and create an intermediate image, and to perform a line smoothing filter upon said intermediate image and create an output image.
- 21. A method for de-screening a halftone image, comprising:

 converting dots of said halftone image into parallel lines of an

 intermediate image; and

 smoothing said parallel lines of said intermediate image into a

 final image.
- 1 22. The method of claim 21, wherein said parallel lines are at 2 an approximately 45 degree angle with respect to a side of said 3 intermediate image.