In the Claims:

1. (currently amended) A silicon single crystal wafer for a particle monitor, wherein said wafer is prepared by slicing a silicon single crystal ingot grown by the Czochralski method or slicing the silicon single crystal ingot and cleaning the wafer,

wherein said wafer <u>has a wafer surface formed by said slicing of the silicon single</u> <u>crystal or by said slicing and cleaning, the wafer surface including</u> [[includes]] an area in which crystal originated particles are generated,

wherein a surface density of particles having a particle size of not less than 0.12 μm on the wafer surface is not more than 15 counts/cm², even after repeating a Standard Cleaning -1, which is made using alkaline chemical liquid mainly containing NH<sub>4</sub>OH, H<sub>2</sub>O<sub>2</sub>, and H<sub>2</sub>O.

- 2. (original) A silicon single crystal wafer for a particle monitor according to Claim 1, wherein said wafer has an oxygen concentration of not more than  $13 \times 10^{17}$  atoms/cm<sup>3</sup> (old ASTM).
- 3. (currently amended) A silicon single crystal wafer for a particle monitor, wherein said wafer is prepared by slicing a silicon single crystal ingot grown by the Czochralski method,

wherein said wafer has a wafer surface formed by said slicing of the silicon single crystal or by said slicing and cleaning, the wafer surface including [[includes]] an area in which crystal originated particles are generated, and further said silicon single crystal ingot has a nitrogen concentration of  $1 \times 10^{13} - 1 \times 10^{15}$  atoms/cm<sup>3</sup>,

wherein a surface density of particles having a particle size of not less than 0.12  $\mu m$  on the wafer surface is not more than 1 count/cm<sup>2</sup>, even after repeating a Standard Cleaning -1, which is made using alkaline chemical liquid mainly containing NH<sub>4</sub>OH, H<sub>2</sub>O<sub>2</sub>, and H<sub>2</sub>O.

- 4. (original) A silicon single crystal wafer for a particle monitor according to Claim 3, wherein said wafer has an oxygen concentration of not more than  $13 \times 10^{17}$  atoms/cm<sup>3</sup> (old ASTM).
- 5. (currently amended) A silicon single crystal wafer for a particle monitor, wherein said wafer is prepared by slicing a silicon single crystal ingot grown by the Czochralski method,

wherein said wafer has a wafer surface formed by said slicing of the silicon single crystal or by said slicing and cleaning, forming of the ingot [[includes,]] in said Czochralski method, including controlling a [[the]] time period of passing [[the]] a temperature range from 1150°C to 1070°C [[is]] to be within 20 min and controlling a [[the]] time period of passing [[the]] a temperature range from 900°C to 800°C [[is]] to be within 40 min,

wherein a surface density of particles having a particle size of not less than 0.12 μm on the wafer surface is not more than 15 counts/cm², even after repeating a Standard Cleaning -1, which is made using alkaline chemical liquid mainly containing NH<sub>4</sub>OH, H<sub>2</sub>O<sub>2</sub>, and H<sub>2</sub>O.

6. (original) A silicon single crystal wafer for a particle monitor according to Claim 5, wherein said wafer has an oxygen concentration of not more than  $13 \times 10^{17}$  atoms/cm<sup>3</sup> (old ASTM).

7. (currently amended) A silicon single crystal wafer for a particle monitor, wherein said wafer is prepared by slicing a silicon single crystal ingot grown by the Czochralski method,

wherein in said Czochralski method, <u>a</u> [[the]] time period of passing [[the]] <u>a</u> temperature range from 1150°C to 1070°C is within 20 min and <u>a</u> [[the]] time period of passing [[the]] a temperature range from 900°C to 800°C is within 40 min,

wherein said silicon single crystal ingot has a nitrogen concentration of  $1 \times 10^{13}$  –  $1 \times 10^{15}$  atoms/cm<sup>3</sup>,

wherein a surface density of particles having a particle size of not less than 0.12  $\mu m$  on the wafer surface is not more than 1 count/cm<sup>2</sup>, even after repeating a Standard Cleaning -1, which is made using alkaline chemical liquid mainly containing NH<sub>4</sub>OH, H<sub>2</sub>O<sub>2</sub>, and H<sub>2</sub>O.

- 8. (original) A silicon single crystal wafer for a particle monitor according to Claim 7, wherein said wafer has an oxygen concentration of not more than  $13 \times 10^{17}$  atoms/cm<sup>3</sup> (old ASTM).
- 9. (previously presented) A silicon single crystal wafer for a particle monitor according to Claim 1, wherein, in said Standard Cleaning 1, a chemical component of

a used solution is  $H_2O_2$ :  $NH_4OH$ :  $H_2O = 1$ : 1:5, the cleaning is repeated six times, and each cleaning is carried out for 10 min.

- 10. (previously presented) A silicon single crystal wafer for a particle monitor according to Claim 3, wherein, in said Standard Cleaning 1, a chemical component of a used solution is  $H_2O_2$ :  $NH_4OH$ :  $H_2O = 1$ : 1:5, the cleaning is repeated six times, and each cleaning is carried out for 10 min.
- 11. (previously presented) A silicon single crystal wafer for a particle monitor according to Claim 5, wherein, in said Standard Cleaning 1, a chemical component of a used solution is  $H_2O_2$ :  $NH_4OH$ :  $H_2O$  = 1 : 1 :5, the cleaning is repeated six times, and each cleaning is carried out for 10 min.
- 12. (previously presented) A silicon single crystal wafer for a particle monitor according to Claim 7, wherein, in said Standard Cleaning 1, a chemical component of a used solution is  $H_2O_2$ :  $NH_4OH$ :  $H_2O = 1$ : 1:5, the cleaning is repeated six times, and each cleaning is carried out for 10 min.
- 13. (new) A silicon single crystal wafer for a particle monitor according to claim 5, wherein said wafer surface is either a sliced wafer surface formed as a result of said slicing of the silicon single crystal or a sliced and cleaned wafer surface formed as a result of said slicing of the silicon single crystal and cleaning thereof.

14. (new) A silicon single crystal wafer for a particle monitor according to claim 7, wherein said wafer surface is either a sliced wafer surface formed as a result of said slicing of the silicon single crystal or a sliced and cleaned wafer surface formed as a result of said slicing of the silicon single crystal and cleaning thereof.