3.2

Droites et plans de l'espace

Maths Spé terminale - JB Duthoit

3.2.1 Règles d'incidence

Propriété

- Par deux points de l'espace, il passe une unique droite
- Par trois points non alignés, il passe un unique plan
- Si deux points distincts A et B appartiennent à un plan P alors la droite (AB) est incluse dans le plan P
- Dans chaque plan de l'espace, toute les règles de la géométrie plane s'appliquent.

3.2.2 Caractérisation vectorielle d'une droite

Définition

Une droite de l'espace est définie :

- soit par la donnée de deux points distincts
- soit par la donnée d'un point et d'un vecteur non nul

Propriété - Caractérisation d'une droite de l'espace

La droite passant par le point A et de vecteur directeur \vec{u} est l'ensemble des points M de l'espace tels que \overrightarrow{AM} et \vec{u} soient colinéaires.

Remarque

l une droite possède une infinité de vecteurs directeurs

3.2.3 Caractérisation vectorielle d'un plan

Définition

Un plan de l'espace est défini :

- soit par trois points non alignées. Le plan s'écrit alors (ABC)
- soit par un point et deux vecteurs non colinéaires. Le plan s'écrit alors (A, \vec{u}, \vec{v})

Définition

On dit que (\vec{u}, \vec{v}) est une base du plan P. Le couple de vecteurs non colinéaires (\vec{u}, \vec{v}) est appelé direction de P.

Propriété - Caractérisation d'un plan de l'espace

Le plan défini par le point A et les vecteurs non colinéaires \vec{u} et \vec{v} est l'ensemble des points M de l'espace tels que \overrightarrow{AM} soit une combinaison linéaire des vecteurs \vec{u} et \vec{v} .

Remarque

- Par trois points de l'espace, non alignés, passe un unique plan.
- Le plan (ABC) est l'ensemble des points M de l'espace tels que $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$ où x et y sont des réels. \overrightarrow{AB} et \overrightarrow{AC} sont alors des vecteurs directeurs du plan (ABC)
- Un plan possède une infinité de couples de vecteurs directeurs

• Exercice 3.40

Dans un cube ABCDEFGH, donner une caractérisation du plan (CEG) à l'aide d'un point et de deux vecteurs non colinéaires puis justifier que le point A appartient à ce plan.

3.2.4 Vecteurs coplanaires

Définition

Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace non colinéaires.

Si \vec{w} est une combinaison linéaire des vecteurs \vec{u} et \vec{v} , cela signifie qu'il existe des réels x, y tels que $\vec{w} = x\vec{u} + y\vec{v}$.

On dit alors que les trois vecteurs \vec{u} , \vec{v} et \vec{w} sont **coplanaires** .

Remarque

- Si deux des vecteurs \vec{u} , \vec{v} et \vec{w} de l'espace sont colinéaires alors ils sont tous trois coplanaires.
- Deux droites de l'espace sont coplanaires si elles appartiennent à un même plan.
- Deux vecteurs sont toujours coplanaires mais deux droites ne le sont pas toujours.

Exercice 3.41

ABCDEFGH est un pavé droit de centre $O.\ I$ et J sont les centres respectifs des faces AEHD et $BFGC.\ K$ est le milieu de [EF] et M celui de $[EK].\ L$ est le symétrique de O par rapport à K.

- 1. Montrer que les points I, M et L sont alignés
- 2. Montrer qu'il existe deux nombres réels a et b tels que $\overrightarrow{CL} = a\overrightarrow{JF} + b\overrightarrow{CI}$.
- 3. Que peut-on en conclure sur les vecteurs \overrightarrow{CL} , \overrightarrow{CI} et \overrightarrow{JF} ?
- 4. Démontrer que les vecteurs \overrightarrow{CL} , \overrightarrow{CI} et \overrightarrow{CJ} sont coplanaires.
- 5. Conclure sur la position des points C, I, L et J.

Savoir-Faire 3.10

SAVOIR MONTRER QUE DES VECTEURS SONT COPLANAIRES

Sur la figure ci-contre, ABCDEFGH est un parallélépipède. R est le milieu de [EF] et S le milieu de [EH].

Les points T et U sont définis par $\overrightarrow{AT} = \frac{2}{3}\overrightarrow{AD}$ et $\overrightarrow{AU} = \frac{1}{3}\overrightarrow{AC}$

- 1. Exprimer \overrightarrow{TU} , \overrightarrow{TR} et \overrightarrow{TS} en fonction de \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE}
- 2. Calculer $9\overrightarrow{TU} + 6\overrightarrow{TS}$
- 3. En déduire que les vecteurs \overrightarrow{TU} , \overrightarrow{TR} et \overrightarrow{TS} sont coplanaires.
- 4. Que peut-on en déduire pour les points T, R, U et S?

On considère le tétraèdre ABCD représenté cicontre. I,J,K et L sont les milieux respectifs de $[AB],\ [AC],\ [AD]$ et [CD]

- 1. Justifier que $\overrightarrow{IJ} = \frac{-1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$
- 2. Justifier que $\overrightarrow{KL} = \frac{1}{2}\overrightarrow{AC}$
- 3. En déduire que \overrightarrow{IJ} , \overrightarrow{KL} et \overrightarrow{AB}