SMARTWIZ

GRADE11 PHYSICAL SCIENCE EXAM

MARKS: 100	MARKS	
TIME: 2 HOURS		
SCHOOL		
CLASS (eg. 4A)		
SURNAME		
NAME		

Instructions for Learners:

- Read all instructions carefully before you begin the exam.
- Write your full name and student number clearly on the answer sheet/book.
- Answer all questions unless otherwise instructed.
- Show all your work/calculations where necessary.
- Write neatly and clearly.
- Use only a blue or black pen. Do not use correction fluid or tape.
- Electronic devices (calculators, cell phones, etc.) are not allowed unless explicitly permitted.
- Raise your hand if you have any questions.
- Do not talk to other learners during the exam.
- Any form of dishonesty will result in immediate disqualification from the exam.

This exam consists of five pages, including the cover page.

SECTION A: MULTIPLE CHOICE

$(10 \times 2 = 20 \text{ marks})$

Circle the correct answer.

- 1. Which of the following is a vector quantity?
 - a) Speed
 - b) Distance
 - c) Displacement
 - d) Time
- 2. The formula for calculating density is:
 - a) Mass × Volume
 - b) Mass ÷ Volume
 - c) Volume ÷ Mass
 - d) Mass + Volume
- 3. What device measures electric current?
 - a) Voltmeter
 - b) Ammeter
 - c) Ohmmeter
 - d) Thermometer
- 4. The unit of frequency is:
 - a) Hertz
 - b) Newton
 - c) Joule
 - d) Watt
- 5. A freely falling object's acceleration is approximately:
 - a) 5 m/s^2
 - b) 9.8 m/s^2
 - c) 12 m/s^2
 - d) 0 m/s^2
- 6. Which physical quantity is represented by the area under a force-displacement graph?

ST PATHWORKS

- a) Power
- b) Work done
- c) Velocity
- d) Momentum
- 7. The acceleration of an object is zero when:
 - a) Speed is zero
 - b) Velocity is constant
 - c) Force is applied
 - d) Mass increases
- 8. A metal wire's resistance will increase if:
 - a) It becomes longer
 - b) Its thickness increases
 - c) Temperature decreases
 - d) It is shortened
- 9. The energy stored in a stretched spring is called:
 - a) Kinetic energy
 - b) Potential energy

- c) Thermal energy
- d) Elastic potential energy
- 10. Which of these is the correct symbol for resistance in a circuit diagram?
 - a) $\triangle \text{triangle} \triangle$
 - b) $\Omega \backslash Omega\Omega$
 - c) A zig-zag line
 - d) A circle

 $(5 \times 4 = 20 \text{ marks})$

SECTION	R :	SHORT	ANSV	VERS
	D.			

Define **speed** and state its unit.

2. What is meant by **refraction** of light?

3. State Newton's Second Law of Motion.

4. Explain the difference between mass and weight.

5. What happens to the resistance if two resistors are connected in parallel?

SECTION C: CALCULATIONS

 $(5 \times 6 = 30 \text{ marks})$

1. A car travels 150 km in 3 hours. Calculate its average speed in km/h and m/s. *Work:*

	km/h
Answer:	m/s
2. A force of 50 Work:	O N moves a box 4 m. Calculate the work done.
Answer:	J
3. A 12 Ω resis Work:	tor has a current of 2 A flowing through it. Find the voltage across the resistor.
Answer:	V V V V V V V V V V V V V V V V V V V
	mass 5 kg is lifted to a height of 10 m. Calculate the potential energy gained. (Use = $9.8 \ m/s^2g=9.8m/s^2$)
Answer:	J
5. A spring stre <i>Work:</i>	etches by 0.02 m when a force of 5 N is applied. Calculate the spring constant kkk.
Answer:	N/m

SECTION D: DIAGRAMS AND APPLICATION

 $(3 \times 10 = 30 \text{ marks})$

1.	Draw a simple diagram of a ray of light passing from air into water showing refraction Label the:	1.
•	Incident ray Refracted ray	
•	Normal line Angle of incidence Angle of refraction	
	MYST PATHWORKS	
2.	A velocity-time graph shows an object starting from rest, accelerating uniformly to 20 m/s in seconds. a) Sketch the graph.	n 4
	h) Calculate the accoloration	
	b) Calculate the acceleration.c) Calculate the distance traveled during this time.	

3.	Draw a simple circuit diagram showing:	
•	A battery (cell) A switch Two resistors in series Label all components and the direction of current flow.	

End of Exam

TOTAL: 100

MEMO

SECTION A: MULTIPLE CHOICE

$(10 \times 2 = 20 \text{ marks})$

Q #	Answer	Explanation (brief)
1	c	Displacement is a vector quantity.
2	b	Density = Mass ÷ Volume
3	b	Ammeter measures current.
4	a	Frequency is measured in Hertz.
5	b	Free fall acceleration $\approx 9.8 \text{ m/s}^2$
6	b	Area under force-displacement = work done
7	b	Zero acceleration means constant velocity
8	a	Resistance increases with length
9	d	Elastic potential energy in springs
10	С	Resistance symbol is a zig-zag line

SECTION B: SHORT ANSWERS

$(5 \times 4 = 20 \text{ marks})$

1. Speed:

- Speed is the distance traveled per unit time.
- Unit: meters per second (m/s) or kilometers per hour (km/h).

2. Refraction:

• Refraction is the bending of light as it passes from one medium to another with different densities.

ST PATHWORKS

3. Newton's Second Law:

- The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.
- Formula: F=maF = maF=ma.

4. Mass vs Weight:

- Mass is the amount of matter in an object (kg), constant everywhere.
- Weight is the force due to gravity on the object (N), varies with gravity.

5. Parallel resistors:

• The total resistance decreases when resistors are connected in parallel.

SECTION C: CALCULATIONS

$(5 \times 6 = 30 \text{ marks})$

- 1. Car speed:
- Average speed = $150 \text{ km} = 50 \text{ km/h} \left(150 \right), \left(\text{km} \right) \left(3 \right) = 50 \right), \left(\text{km/h} \right) = 50 \text{ km/h} \left(\frac{150}{h} \right)$
- Convert km/h to m/s: $50 \times 10003600 = 13.89 \text{ m/s} = 13.89 \text{ km/s} =$
- 2. Work done:
- W= $F \times d = 50 \times 4 = 200 \text{ JW} = F \text{ \times } d = 50 \text{ \times } 4 = 200 \text{ \times } JW = F \times d = 50 \times 4 = 200 \text{ \times } 4 = 200 \text{ \times }$
- 3. Voltage across resistor:
- $V=IR=2\times12=24 \text{ VV} = IR = 2 \text{ \times } 12 = 24 \text{ \times } V=IR=2\times12=24V$
- 4. Potential energy gained:
- PE=mgh= $5 \times 9.8 \times 10 = 490 \text{ JPE} = \text{mgh} = 5 \times 9.8 \times 10 = 490 \text{ JPE} = \text{mgh} = 5 \times 9.8 \times 10 = 490 \text{ JPE} = 3.8 \times$
- 5. Spring constant kkk:
- Hooke's law: $F=kxF=kxF=kx \rightarrow k=Fx=50.02=250 \text{ N/mk} = \frac{F}{x} = \frac{5}{0.02} = 250 \text{ N/mk} = 250 \text{ N/mk} = 250$

SECTION D: DIAGRAMS AND APPLICATION

 $(3 \times 10 = 30 \text{ marks})$

1. Refraction diagram:

- Correct labeling of incident ray, refracted ray, normal, angle of incidence, angle of refraction.
- Ray bends towards the normal going from air (less dense) into water (more dense). (10 marks)
- 2. Velocity-time graph:
- a) Straight line from (0,0) to (4,20)
- b) $a=v-ut=20-04=5 \text{ m/s}2a = \frac{v-u}{t} = \frac{20-0}{4} = 5 \text{ m/s}^2a = tv-u=420-0=5 \text{ m/s}^2$
- c) Distance d=ut+12at2=0+0.5×5×16=40 md = ut + $\frac{1}{2}$ at^2 = 0 + 0.5 \times 5 \times 16 = 40 \, md=ut+21at2=0+0.5×5×16=40 m

3. Circuit diagram:

• Battery symbol, switch symbol, two resistors in series (zig-zag lines), labeled current direction from positive terminal to negative terminal. (10 marks)

Total: 100 Marks

