RADICACIÓN DE NÚMEROS ENTEROS

REVISIÓN DE RADICACIÓN DE NÚMEROS NATURALES

Actividad 1: Completa los espacios vacíos.

a-.
$$^2 = 9$$

c-.
$$^3 = 8$$

b-.
$$^2 = 25$$

d-.
$$^3 = 27$$

Para resolver la actividad anterior, tenemos que pensar en qué número elevamos a determinado exponente para obtener cierto resultado. Por ejemplo, si tenemos ² = 16 pensamos en qué número elevado al cuadrado nos da 16. También podemos pensar en qué número escribimos dos veces y lo multiplicamos para obtener 16. En este caso sería el 4, porque 4^2 = 16 (es decir, $4 \cdot 4$ = 16).

Este pensamiento que utilizamos en la actividad 1 es el que tenemos que tener para poder resolver las raíces. Por ejemplo, para hallar la $\sqrt[2]{100}$ pensamos en qué número elevado al cuadrado da 100. Con esto obtenemos que $\sqrt[2]{100} = 10$, porque $10^2 = 100$.

Definición: la radicación en la operación inversa de la potenciación. Su símbolo es $\sqrt[n]{a}$, donde n es el índice y a es la base. Por ejemplo: $\sqrt[3]{64} = 4$ porque $4^3 = 64$.

Recordemos que el índice 2 no es necesario que esté escrito. Es decir, $\sqrt[2]{36}$ es lo mismo que $\sqrt{36}$.

Actividad 2: Verifica mentalmente si la justificación de cada operación es correcta.

a.
$$\sqrt{16} = 8 \ porque \ 8^2 = 16$$

a.
$$\sqrt{16} = 8 \ porque \ 8^2 = 16$$
 c. $\sqrt[5]{32} = 2 \ porque \ 2^5 = 32$

b.
$$\sqrt[3]{6} = 2$$
 porque $2^3 = 6$

d-.
$$\sqrt[4]{10.000} = 10 \ porque \ 10^4 = 10.000$$

RADICACIÓN DE NÚMEROS ENTEROS

Actividad 3: Halla las siguientes raíces, siempre que sea posible.

a-.
$$\sqrt{-25}$$

d-.
$$\sqrt[3]{-27}$$

g-.
$$\sqrt{-100}$$

b-.
$$\sqrt[3]{-8}$$

e-.
$$\sqrt[4]{-16}$$

h-.
$$\sqrt[3]{-1}$$

c-.
$$\sqrt{-16}$$

f-.
$$\sqrt{-9}$$

i-.
$$\sqrt[3]{-1000}$$

Importante: Las raíces con base negativa e índice par (por ejemplo, $\sqrt[2]{-4}$ y $\sqrt[4]{-81}$), no tienen solución en el conjunto de los números enteros. Esto sucede porque no existe ningún número que elevado a un número par (al cuadrado, a la cuarta, etc.) de un resultado negativo.

Por ejemplo, si gueremos hallar $\sqrt[4]{-1}$ probamos con dos valores posibles, + 1 y - 1.

$$(-1) \cdot (-1) \cdot (-1) \cdot (-1) = +1$$

Observamos que probando con ambos números (positivo o negativo), siempre da resultado positivo, por lo que sería imposible encontrar llegar encontrar la base − 1.

Actividad 4: Resuelve las siguientes raíces.

a-.
$$\sqrt{81} =$$

d-.
$$\sqrt{121} =$$

g-.
$$\sqrt[3]{1} =$$

b-.
$$\sqrt[3]{-125} =$$

b.
$$\sqrt[3]{-125} =$$
 e. $\sqrt[3]{-64} =$

h-.
$$\sqrt[4]{81} =$$

c-.
$$\sqrt[3]{-216} =$$

f-.
$$\sqrt[5]{-1} =$$

i-.
$$\sqrt{36} =$$

Actividad 5: Resuelve cada operación y arma los pares que tienen los mismos resultados.

a-.
$$\sqrt{25} - \sqrt{121}$$

d-.
$$\sqrt{81} - \sqrt{100}$$

A-.
$$\sqrt[3]{64} + \sqrt{64}$$

D-.
$$\sqrt{49} - \sqrt{144}$$

b-.
$$\sqrt[3]{-1} + \sqrt{144}$$

e.
$$\sqrt{81} - \sqrt[3]{-27}$$

a-.
$$\sqrt{25} - \sqrt{121}$$
d-.
 $\sqrt{81} - \sqrt{100}$
A-.
 $\sqrt[3]{64} + \sqrt{64}$
D-.
 $\sqrt{49} - \sqrt{144}$

b-.
 $\sqrt[3]{-1} + \sqrt{144}$
e-.
 $\sqrt{81} - \sqrt[3]{-27}$
B-.
 $\sqrt{16} - \sqrt[3]{1000}$
E-.
 $\sqrt[5]{-32} - \sqrt[3]{8}$

c-.
 $\sqrt[3]{-1000} + \sqrt{49}$
C-.
 $\sqrt{49} - \sqrt[3]{-64}$
F-.
 $\sqrt[4]{81} + \sqrt[3]{-216}$

E-.
$$\sqrt[5]{-32} - \sqrt[3]{8}$$

c-.
$$\sqrt[3]{-1000} + \sqrt{49}$$

C-.
$$\sqrt{49} - \sqrt[3]{-64}$$

F-.
$$\sqrt[4]{81} + \sqrt[3]{-216}$$

Actividad 6: Resuelve las siguientes raíces.

a-.
$$\sqrt{(-5)^2 - 3 \cdot (-8)} =$$
 c-. $\sqrt[3]{7 \cdot (-4) - 6^2} =$ **b-.** $\sqrt{-3^2 + 10^2 - 10} =$ **d-.** $\sqrt{(-6)^2 + 4^3} =$

c.
$$\sqrt[3]{7 \cdot (-4) - 6^2} =$$

b-.
$$\sqrt{-3^2 + 10^2 - 10} =$$

d-.
$$\sqrt{(-6)^2 + 4^3} =$$

Actividad 7: Completa los espacios en blanco.

a-.
$$(\underline{})^3 = -27$$
 d-. $10^{---} = 1000$

e-.
$$\sqrt{\underline{}} = 5$$

c-.
$$\sqrt[3]{\underline{}} = -2$$

c-.
$$\sqrt[3]{\underline{\hspace{1cm}}} = -2$$
 f-. $\sqrt[3]{\underline{\hspace{1cm}}} = -1$

i-.
$$\sqrt[4]{\underline{}} = 2$$

Actividad 8: En cada caso, coloca el signo <, > ó =, según corresponda.

d-.
$$(-2)^3$$
 2^3 **g-.** $(-4)^2$ $(-4)^3$

b.
$$10^3 \dots (-10)^3$$
 e. $\sqrt{25} \dots \sqrt[3]{-125}$ **h.** $(-2)^3 \dots \sqrt{64}$

h-.
$$(-2)^3 \dots \sqrt{64}$$

c-.
$$\sqrt[3]{-8}$$
 $(-1)^2$

c-.
$$\sqrt[3]{-8}$$
 $(-1)^2$ **f-.** 12^0 $(-12)^0$ **i-.** 1^9 $(-1)^9$

Actividad 9: Resuelve las siguientes raíces y coloca los resultados en una recta numérica.

a-.
$$\sqrt{4} =$$

c-.
$$\sqrt{100} =$$
 e-. $\sqrt[3]{1} =$

e-.
$$\sqrt[3]{1}$$
 =

b-.
$$\sqrt[3]{-8} =$$

d-.
$$\sqrt[3]{-1000} =$$
 f-. $\sqrt[3]{-27} =$

f-.
$$\sqrt[3]{-27} =$$

Actividad 10: Coloca V o F, según corresponda y explica el porqué de tu decisión.

- **a-.** $\sqrt[3]{-8}$ está después que cero.
- **b-.** $\sqrt{100}$ está antes que $\sqrt[3]{-1000}$.
- **c-.** $\sqrt{1}$ está en el mismo lugar que $\sqrt[3]{1}$.
- **d-.** $\sqrt{81}$ tiene el mismo valor que -3^2 .