Probability and Statistics Based on lectures by Dr. Angshuman Bhattacharya

Notes taken by Rwik Dutta

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. 1

Contents

1	Pro	bability Space 2			
	1.1	Event space			
	1.2	Probability measure			
2	IIn:	form Probability Spaces			
4	Om	form Frobability Spaces			
3	Con	ditional Probability			
	3.1	Baye's Rule			
	3.2	Independence			
	C				
4		nbinatorial Analysis Permutations			
	4.1				
	4.2	Combinations			
5	Discrete Random Variable				
	5.1	Discrete Density			
	5.2	Joint Density			
	5.3	Independence			
	5.4	Sum			
	5.5	Conditional Density			
	5.6	Probability Generating Function			
	5.7	Expectation			
	5.8	Variance			
	5.9	Covariance and Correlation			
		Schwartz and Chebyshev's Inequalities			
	0.10	Schwarz and Chebyshev s inequanties			
6	Important Discrete Densities				
	6.1	Uniform			
	6.2	Bernoulli			
	6.3	Binomial			
	6.4	Geometric			
	6.5	Negative binomial			
	6.6	Hypergeometric			
	6.7	Poisson			
	6.8	Multinomial			
7	Con	atinuous Random Variable			
1	7.1	Continuous Distribution			
	7.2	Continuous Density			
	7.3	Change of Variable			
	7.4	Joint distribution			
	$7.4 \\ 7.5$	Joint Density			
	7.6				
		•			
	7.7	Sum			
	7.8	Conditional Density			
	7.9	Expectation			
	ι .10	Moments			

 $^{^{1}}$ This is how Dexter Chua describes his lecture notes from Cambridge. I could not have described mine in any better way.

8	Imp	portant Continuous Densities	6
	8.1	Symmetric	Ç
	8.2	Standard Normal	Ç
	8.3	Normal	Ç
	8.4	Exponential	Ç
	8.5	Gamma	10
		Cauchy	
	8.7	Standard Bivariate Normal	10
9	Cen	tral Limit Theorem	10

1 Probability Space

1.1 Event space

Definition 1 (σ -field). Let \mathscr{A} be a collection of subsets of $\Omega(A \in \mathscr{A} \Rightarrow A \subset \Omega)$. \mathscr{A} is called a σ -algebra(or, σ -field) of subsets of Ω if

- 1. \mathscr{A} is non-empty.
- 2. $A \in \mathcal{A} \Rightarrow A^C \in \mathcal{A}$
- 3. If $A, B \in \mathcal{A}$, $A \cup B \in \mathcal{A}$ and $A \cap B \in \mathcal{A}$.

Theorem 1. A σ -algebra \mathscr{A} of subsets of Ω contains Ω and \varnothing .

Theorem 2. The power set of $\Omega(\Omega \neq \emptyset)$ forms a σ -algebra of subsets of Ω .

This will be assumed to be the event space, unless mentioned otherwise.

Definition 2 (Event space, sample space). An event space \mathscr{A} of Ω is a σ -algebra of subsets of Ω . The elements of \mathscr{A} are called events. Ω is called the sample space.

1.2 Probability measure

Definition 3. Let \mathscr{A} be an event space of Ω . $P:\mathscr{A}\to\mathbb{R}$ is called a probability measure of \mathscr{A} if

- 1. $P(A) \ge 0, \ \forall A \in \mathscr{A}$
- 2. $P(\Omega) = 1$
- 3. Let $A, B \in \mathcal{A}$. If $A \cap B = \emptyset$,

$$P(A \cup B) = P(A) + P(B)$$

Theorem 3. $P(A) \leq 1$, $\forall A \in \mathcal{A}$. Hence, range of P is [0,1].

Theorem 4. $P(A^C) = 1 - P(A)$

Corollary 4.1.

$$\underbrace{P\left(\bigcup_{i=1}^{\infty} A_i\right)} = 1 - \underbrace{P\left(\bigcap_{i=1}^{\infty} A_i^C\right)}$$

at least one of the events occurs

none of the events occur

Theorem 5. $A \subset B \implies P(A) \leq P(B)$

Theorem 6. $P(A \cup B) \leq P(A) + P(B)$

Theorem 7.

1. If
$$A_1 \subset A_2 \subset A_3 \subset \cdots$$
 and $A = \bigcup_{n \geq 1} A_n$,

$$P(A) = \lim_{n \to \infty} P(A_n)$$

2. If
$$A_1 \supset A_2 \supset A_3 \supset \cdots$$
 and $A = \bigcap_{n \geq 1} A_n$,

$$P(A) = \lim_{n \to \infty} P(A_n)$$

Definition 4 (Probability space). If Ω is a sample space, \mathscr{A} is an event space of Ω and P is a probability measure of \mathscr{A} , (Ω, \mathscr{A}, P) is called a probability space.

2 Uniform Probability Spaces

Definition 5 (Symmetric probability space). (Ω, \mathcal{A}, P) (where Ω is a finite set) is called a symmetric probability space if P(A) = P(B) for all singleton sets $A, B \in \mathcal{A}$.

Theorem 8.
$$P(\{x\}) = \frac{1}{|\Omega|}, \ \forall x \in \Omega. \ \text{Also,} \ P(A) = \frac{|A|}{|\Omega|}, \ \forall A \subset \Omega.$$

Definition 6 (Cardinality of uncountable set). If $A \subset \mathbb{R}^n$, |A| denotes the *n*-dimensional volume of the region A.

Definition 7 (Uniform probability space). Let $\Omega \subset \mathbb{R}^n$ where $|\Omega|$ is finite. $(\Omega, \mathcal{P}(\Omega), P)$ is called an uniform probability space if $P(A) = \frac{|A|}{|\Omega|}$, $\forall A \subset \Omega$.

3 Conditional Probability

Definition 8 (Conditional probability). Let A, B be two events such that $P(A) \neq 0$. The conditional probability of B given A denoted by P(B|A) is

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

Theorem 9 (Principle of total probability). Let $A_k, 1 \leq k \leq n$ be mutually disjoint events in Ω such that $\bigcup_{k=1}^n A_k = \Omega$ and $P(A_k) \neq 0, \forall 1 \leq k \leq n$.

$$P(B) = \sum_{k=1}^{n} P(A_k)P(B|A_k), \ \forall B \in \mathscr{A}$$

3.1 Baye's Rule

Theorem 10 (Baye's rule). Let $A_k, 1 \le k \le n$ be mutually disjoint events in Ω such that $\bigcup_{k=1}^n A_k = \Omega$ and $P(A_k) \ne 0, \forall 1 \le k \le n$. If $B \in \mathscr{A}$ such that $P(B) \ne 0$,

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{k=1}^{n} P(A_k)P(B|A_k)}$$

3.2 Independence

Definition 9. Two events A and B are independent iff $P(A \cap B) = P(A)P(B)$.

Theorem 11. If P(A) > 0, A, B are independent iff P(B|A) = P(B).

4 Combinatorial Analysis

Definition 10. (Ordered sample) A random sample of size r from population S is the r-tuple $(x_1, x_2, \dots, x_r), x_i \in S$

It is called a random sample without replacement if $x_i = x_j \Rightarrow i = j(r \leq |S|)$. Otherwise, it is a random sampling with replacement.

Theorem 12. The number of possible random samples with replacement of size r from a population of size n is n^r .

It is the number of ways in which r balls can be picked from n distinct balls, with replacement, where the order of picking matters.

4.1 Permutations

Theorem 13 (Permutation). The number of possible random samples without replacement of size r from a population of size n is

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

It is the number of ways in which r balls can be picked from n distinct balls, where the order of picking matters.

4.2 Combinations

Theorem 14 (Combinations). The number of ways in which r balls can be picked from n distinct balls, where the order of picking does not matter is

$${}^{n}C_{r} = \frac{n!}{(n-r)! \ r!}$$

Theorem 15. The number of r-tuples $(x_1, x_2, \dots, x_r), x_i \in \mathbb{N} \cup \{0\}$ that satisfy $(n \in \mathbb{N})$

$$x_1 + x_2 + \dots + x_r = n$$

is $\binom{n+r-1}{r-1}$. If $x_i \in \mathbb{N}$, we have $\binom{n-1}{r-1}$ solutions.

5 Discrete Random Variable

Definition 11 (Discrete random variable). A discrete real-valued random variable X on a probability space (Ω, \mathscr{A}, P) is a function X with domain Ω and range a finite or countably infinite subset $\{x_1, x_2, \dots\}$ of \mathbb{R} such that $\{\omega : X(\omega) = x_i\}$ is an event for all i.

5.1 Discrete Density

Definition 12 (Discrete density). $f_X : \mathbb{R} \to [0, 1]$,

$$f_X(x) = P(X = x)$$

is the discrete density of random variable X.

5.2 Joint Density

Definition 13 (Discrete random vector). A discrete real-valued random vector \mathbf{X} on a probability space (Ω, \mathcal{A}, P) is a function \mathbf{X} with domain Ω and range a finite or countably infinite subset $\{\mathbf{x}_1, \mathbf{x}_2, \cdots\}$ of \mathbb{R}^r such that $\{\omega : \mathbf{X}(\omega) = \mathbf{x}_i\}$ is an event for all i.

The density is the function $f(\mathbf{x}) = P(\mathbf{X} = \mathbf{x})$ or

$$f_{X_1,X_2,\cdots X_r}(x_1,x_2,\cdots,x_r) = P(X_1 = x_1,X_2 = x_2,\cdots,X_r = x_r)$$

where X_i are components of **X**. $f_{X_1,X_2,\cdots X_r}$ is called the **joint density** of the random variables $X_1,X_2,\cdots X_r$.

5.3 Independence

Definition 14 (Independent random variables). Two random variables X, Y are independent iff

$$f_{X,Y}(x,y) = f_X(x)f_Y(y), \forall x, y \in \mathbb{R}$$

5.4 Sum

Theorem 16 (Sum of random variables).

$$f_{X+Y}(z) = P(X = x, Y = z - x) = \sum_{x} f_{X,Y}(x, z - x)$$

5.5 Conditional Density

Definition 15 (Conditional density). $P(Y = y|X = x) = \frac{P(X = x, Y = y)}{P(X = x)} = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$

$$f_{Y|X}(y|x) := \begin{cases} \frac{f_{X,Y}(x,y)}{f_X(x)}, & f_X(x) \neq 0\\ 0, & f_X(x) = 0 \end{cases}$$

is called the conditional density of Y given X.

5.6 Probability Generating Function

Definition 16 (Probability generating function). $\Phi_X : [-1, 1] \to \mathbb{R}$,

$$\Phi_X(t) = \sum_{x=0}^{\infty} f_X(x)t^x$$

5.7 Expectation

Definition 17 (Expectation of discrete random variable). Let the range of X be $\{x_1, x_2, \dots\}$. The expectation of X is

$$E(X) = \sum_{i=1}^{\infty} x_i f_X(x_i)$$

Theorem 17. Let φ be defined on the range of X and $Z = \varphi(X)$.

$$E(Z) = \sum_{i} \varphi(x_i) f_X(x_i)$$

Definition 18 (Conditional expectation). The conditional expectation of Y, given X is

$$E(Y|X=x) = \sum_{i} y_i f(y|x)$$

Theorem 18 (Linearity of expectation).

$$E(cX) = cE(X)$$
$$E(X + Y) = E(X) + E(Y)$$

Theorem 19. $P(X \ge Y) = 1 \implies E(X) \ge E(Y)$. Moreover, $E(X) = E(Y) \iff P(X = Y) = 1$.

Theorem 20. $|E(X)| \le E(|X|)$

Lemma 20.1. $P(|X| \le M) = 1 \implies |E(X)| \le M$

Lemma 20.2. $P(|X - Y| \le M) = 1 \implies |E(X) - E(Y)| \le M$

Theorem 21. If X, Y are independent, E(XY) = E(X)E(Y)

5.8 Variance

Definition 19 (Moment). Let X be a random variable with expectation μ . The r^{th} moment of X is $E(X^r)$ and the r^{th} central moment is $E((X - \mu)^r)$

Definition 20 (Variance). The 2^{nd} central moment.

$$V(X) = E((X - \mu)^2) = E(X^2) - \mu^2$$

V(X) is denoted by σ^2 , where $\sigma \geq 0$ is called the **standard deviation** of the X.

Theorem 22.

$$V(X + b) = V(x)$$
$$V(aX) = a^{2}V(X)$$

Theorem 23.

$$\mu = \Phi_X'(1)$$

$$E(X^2) = \Phi_X''(1) + \Phi_X'(1)$$

5.9 Covariance and Correlation

Theorem 24 (Variance of sum).

$$V(X + Y) = V(X) + V(Y) + 2E[(X - E(X))(Y - E(Y))]$$

Definition 21 (Covariance). The covariance of X, Y is given by

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

Theorem 25. X, Y are independent $\implies Cov(X, Y) = 0$

Definition 22 (Correlation coefficient). The correlation coefficient of X, Y is

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$$

5.10 Schwartz and Chebyshev's Inequalities

Theorem 26 (Schwartz inequality). $[E(XY)]^2 \le E(X^2)E(Y^2)$

Corollary 26.1. $[Cov(X,Y)]^2 \leq V(X)V(Y)$. This means $|\rho(X,Y)| \leq 1$.

Theorem 27 (Chebyshev's inequality).

$$P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}, \forall t > 0$$

6 Important Discrete Densities

6.1 Uniform

Discrete
Unif
$$(a,b) \sim f(x) = \begin{cases} \frac{1}{b-a+1}, & a \leq x \in \mathbb{Z} \leq b \\ 0, & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}$$

$$\sigma^2 = \frac{(a+b-1)^2-1}{12}$$

6.2 Bernoulli

$$Ber(p) \sim f(x) = \begin{cases} p, & x = 1\\ 1 - p, & x = 0\\ 0, & \text{otherwise} \end{cases}$$

$$\mu = p$$

$$\sigma^2 = p - p^2$$

6.3 Binomial

$$\mbox{Binom}(n;p) \sim f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x=0,1,\cdots,n\\ 0, & \mbox{otherwise} \end{cases}$$

$$\mu = np$$

$$\sigma^2 = np(p-1)$$

6.4 Geometric

$$\mathrm{Geom}(p) \sim f(x) = \begin{cases} p(1-p)^x, & x=0,1,\cdots,n\\ 0, & \text{otherwise} \end{cases}$$

$$\mu = \frac{1-p}{p}$$

$$\sigma^2 = \frac{1-p}{p^2}$$

6.5 Negative binomial

NegBinom
$$(\alpha; p) \sim f(x) = \begin{cases} \binom{\alpha+x-1}{x} p^{\alpha} (1-p)^x, & x=0,1,\cdots,n \\ 0, & \text{otherwise} \end{cases}$$

$$\mu = \frac{p\alpha}{1-p}$$

$$\sigma^2 = \frac{p\alpha}{(1-p)^2}$$

6.6 Hypergeometric

HyperGeom
$$(r, r_1; n) \sim f(x) = \begin{cases} \frac{\binom{r_1}{x}\binom{r_{-r_1}}{n-x}}{\binom{r}{n}}, & x = 0, 1, \dots, n \\ 0, & \text{otherwise} \end{cases}$$

$$\mu = \frac{nr_1}{r}$$

$$\sigma^2 = \frac{nr_1(r - r_1)(r - n)}{r^2(r - 1)}$$

Consider a population of r objects, of which r_1 are of one type and $r_2 = r - r_1$ are of a second type. Suppose a random sample of size n is drawn from the pouplation. Let X be the number of objects of the first type in the sample.

6.7 Poisson

$$\operatorname{Poisson}(\lambda) \sim f(x) = \begin{cases} \frac{\lambda^x e^{-\lambda}}{x!}, & x = 0, 1, \cdots, n \\ 0, & \text{otherwise} \end{cases}$$

$$\mu = \lambda$$

$$\sigma^2 = \lambda$$

$$\Phi(z) = e^{\lambda(z-1)}$$

6.8 Multinomial

$$\text{Multinom}(n; p_1, p_2, \cdots, p_n) \sim f(x_1, x_2, \cdots, x_n) \begin{cases} \frac{n!}{x_1!} p_1^{x_1} p_2^{x_2} \cdots p_n^{x_n}, & x_i \in \mathbb{N} \cup \{0\}, \ x_1 + x_2 + \cdots + x_r = n \\ 0, & \text{otherwise} \end{cases}$$

We have, $X_i \sim \text{Binom}(n; p_i)$.

Theorem 28. Let X_1, X_2, \dots, X_r be pair-wise independent. Let $Y = X_1 + X_2 + \dots + X_r$.

- $X_i \sim \text{Binom}(n_i; p) \implies Y \sim \text{Binom}(\sum_i n_i; p)$
- $X_i \sim \text{NegBinom}(\alpha_i; p) \implies Y \sim \text{NegBinom}(\sum_i \alpha_i; p)$
- $X_i \sim \text{Poisson}(\lambda) \implies Y \sim \text{Poisson}(\sum_i \lambda_i)$
- $X_i \sim \text{Geom}(p) \implies Y \sim \text{NegBinom}(r; p)$.

7 Continuous Random Variable

Definition 23 (Continuous random variable). A continuous random variable X on a probability space (Ω, \mathcal{A}, P) is a real-valued function $X : \Omega \to \mathbb{R}$ such that for $x \in \mathbb{R}$, $\{\omega | X(\omega) \le x\}$ is an event.

$$P(X=x) = 0, \forall x$$

7.1 Continuous Distribution

Definition 24 (Continuous distribution). $F_X : \mathbb{R} \to [0,1]$

$$F_X(x) = P(X \le x)$$

is called the distribution of continuous random varibale X.

Theorem 29. A continuous distribution is right-continuous and non-decreasing.

Corollary 29.1. If F is a continuous distribution,

$$\lim_{x \to -\infty} F(x) = 0$$

$$\lim_{x \to +\infty} F(x) = 1$$

7.2 Continuous Density

Definition 25 (Continuous density function). $f_X : \mathbb{R} \to \mathbb{R}$

$$\int_{-\infty}^{\infty} f_X(x) \ dx = 1$$

$$F(x) = \int_{-\infty}^{x} f(t) \ dt, \ \forall x \in \mathbb{R}$$

If such a density f_X exists, X and F_X are called absolutely continuous.

Theorem 30. If F_X is continuously differentiable (or, f is continuous) at x_0 ,

$$f(x_0) = F'(x_0)$$

7.3 Change of Variable

Theorem 31 (Change of variable). Let $Y = \varphi(X)$, where φ is differentiable and strictly increasing or decreasing in an interval I. Let $f_X(x) = 0, \forall x \notin I$.

$$f_Y(y) = \begin{cases} f\left(\varphi^{-1}(y)\right) \left| \frac{d}{dy} \left(\varphi^{-1}(y)\right) \right|, & \forall y \in \varphi(I) \\ 0, & \text{otherwise} \end{cases}$$

7.4 Joint distribution

Definition 26 (Joint distribution). $F: \mathbb{R}^2 \to [0, 1]$

$$F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

Theorem 32. Probability in a rectangular region is given by

$$P(a < X \le b, c < Y \le d) = F(b, d) - F(a, d) - F(b, c) + F(a, c)$$

7.5 Joint Density

Definition 27 (Joint density). $f: \mathbb{R}^2 \to \mathbb{R}$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \ dx \ dy = 1$$

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \ dv \ du$$

Theorem 33. If f is continuous at (x_0, y_0) ,

$$f(x_0, y_0) = F_{xy}(x_0, y_0)$$

7.6 Independence

Definition 28 (Independence). X, Y are independent iff

$$F(x,y) = F_X(x)F_y(y), \forall x, y \in \mathbb{R}$$

or,

$$f(x,y) = f_X(x)f_Y(y), \forall x, y \in \mathbb{R}$$

Theorem 34. Let X_1, X_2, \dots, X_n be pair-wise independent. Suppose, $Y = \varphi(X_1, X_2, \dots, X_n)$ and $Z = \psi(X_{m+1}, X_{m+2}, \dots, X_n)$ where $1 \le m < n$. Y, Z are independent.

7.7 Sum

Theorem 35 (Sum of continuous random variables).

$$F_{X+Y}(z) = \int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{X,Y}(x, v - x) dx dv$$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_{X,Y}(x, z - x) \ dx = f_X(z) * f_Y(z)$$

7.8 Conditional Density

Definition 29 (Conditional density). The conditional density of Y given X is defined as

$$f_{Y|X}(y|x) := \begin{cases} \frac{f_{X,Y}(x,y)}{f_X(x)}, & 0 < f_X(x) < \infty \\ 0, & \text{otherwise} \end{cases}$$

$$P(a \le Y \le b|X = x) = \int_a^b f_{Y|X}(y|x) \ dy$$

Theorem 36 (Baye's rule).

$$f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{\int_{-\infty}^{\infty} f_X(x)f_{Y|X}(y|x) \ dx}$$

7.9 Expectation

Definition 30 (Expectation of continuous random variable).

$$E(X) = \int_{-\infty}^{\infty} x f(x) \ dx$$

Theorem 37. Let X_1, X_2, \dots, X_n have joint density f and $Z = \varphi(X_1, \dots, X_n)$.

$$E(Z) = \int \varphi(x_1, \dots, x_n) f(x_1, \dots, x_n) d\mathbf{x}$$

Definition 31 (Conditional expectation).

$$E[Y|X=x] = \int_{-\infty}^{\infty} y f(y|x) \ dy = \frac{\int_{-\infty}^{\infty} y f(x,y) \ dy}{f_X(x)}$$

is called the conditional expectation of Y given X or the regression function of Y on X.

7.10 Moments

Moments, variance, covariance, correlation are defined like the discrete case.

8 Important Continuous Densities

8.1 Symmetric

f is symmetric if $f(-x) = f(x), \forall x$. If X and -X have the same distribution, X is called a symmetric random variable.

8.2 Standard Normal

$$\Phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

$$\mu = 0$$

$$\sigma^2 = 1$$

 Φ is symmetric. The density and distribution have the same function.

8.3 Normal

For $\sigma > 0$,

$$n(\mu, \sigma^2) \sim f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$F(x) = \Phi\left(\frac{y-\mu}{\sigma}\right)$$

 $X \sim \Phi \implies \mu + \sigma X \sim n(\mu, \sigma^2)$

8.4 Exponential

$$\operatorname{Exp}(\lambda) \sim f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}$$
$$\sigma^2 = \frac{1}{\lambda^2}$$

8.5 Gamma

$$\Gamma(\alpha, \lambda) \sim f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

where $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, x > 0.$

$$\mu = \frac{\alpha}{\lambda}$$
$$\sigma^2 = \frac{\alpha}{\gamma^2}$$

 $\text{Exp}(\lambda) \sim \gamma(1, \lambda)$

8.6 Cauchy

Cauchy
$$(\alpha, \gamma) \sim f(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - \alpha}{\gamma}\right)^2\right]}$$
$$F(x) = \frac{1}{\pi} \tan^{-1} \left(\frac{x - \alpha}{\gamma}\right) + \frac{1}{2}$$

8.7 Standard Bivariate Normal

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}}$$

Theorem 38. Let $X \sim \text{Exp}(\lambda)$ and $a, b \geq 0$.

1.
$$P(X > a + b) = P(X > a)P(X > b)$$

2.
$$P(X > a + b|X > a) = P(x > b)$$

Both these statements are equivalent. If they hold for some X, X is either exponentially distributed or P(X > 0) = 0.

Theorem 39. $X \sim n(0, \sigma^2) \implies X^2 \sim \Gamma\left(\frac{1}{2}, \frac{1}{2\sigma^2}\right)$

Theorem 40. $X_i \sim \Gamma(\alpha_i, \lambda) \implies \sum_i X_i \sim \Gamma(\sum_i \alpha_i, \lambda)$

Theorem 41. $X_i \sim n(\mu_i, \sigma_i^2) \implies \sum_i X_i \sim n(\sum_i \mu_i, \sum_i \sigma_i^2)$

Theorem 42. Here are some important results that may be useful in computations:

$$\bullet \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

•
$$\int_0^\infty x^{\alpha-1} e^{-\lambda x} dx = \frac{\Gamma(\alpha)}{\lambda^{\alpha}}$$

•
$$\Gamma(x+1) = x\Gamma(x)$$

•
$$\Gamma(1) = 1$$
, $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

•
$$\Gamma(n) = (n-1)!, \ \forall n \in \mathbb{N}$$

•
$$\Gamma\left(\frac{n}{2}\right) = \frac{\sqrt{\pi}(n-1)!}{2^{n-1}\left(\frac{n-1}{2}\right)!}, \forall \text{ odd natural number } n$$

9 Central Limit Theorem

Theorem 43 (Central limit theorem). Let X_1, X_2, \cdots be independent, identically distributed random variables with mean μ and variance σ^2 . Let $S_n = \sum_i X_i$.

$$\lim_{n \to \infty} P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right) = \Phi(x), \ \forall x \in \mathbb{R}$$

11

Corollary 43.1. For very large n, $\frac{S_n - n\mu}{\sigma\sqrt{n}} \sim \Phi$.