Floer Talk

D. Zack Garza

Monday 13th April, 2020

Contents

1	8.3:	The Space of Perturbations of H	1
	1.1	8.4: Linearizing the Floer equation: The Differential of \mathcal{F}	2
$G_{\mathcal{C}}$	als:		

- 8.3: Overview and big picture
- 8.4: Formula for linearization of \mathcal{F} .

What is \mathcal{F} ?

We started with the unadorned Floer map:

$$\mathcal{F}: \mathcal{C}^{\infty}\left(\mathbf{R} \times S^{1}; W\right) \longrightarrow \mathcal{C}^{\infty}\left(\mathbf{R} \times S^{1}; TW\right)$$
$$u \longmapsto \frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} + \operatorname{grad}_{u}\left(H_{t}\right)$$

and promoted this to a map of Banach spaces

$$\mathcal{F}: \mathcal{P}^{1,p}(x,y) \longrightarrow \mathcal{L}^p(x,y)$$
$$\mathcal{F}(u) = \frac{\partial u}{\partial s} + J(u) \frac{\partial u}{\partial t} + \operatorname{grad} H_t(u).$$

What is the LHS? It is the space of maps

$$\mathcal{P}^{1,p}(x,y):?\longrightarrow?$$
 $(s,t)\mapsto \exp_{w(s,t)}Y(s,t).$

where $Y \in W^{1,p}(w^*TW)$ and $w \in C^{\infty}_{\searrow}(x,y)$.

1 8.3: The Space of Perturbations of \boldsymbol{H}

Goal: given a fixed Hamiltonian H, perturb (without modifying the periodic orbits) so that $\mathcal{M}(x,y)$ are manifolds of the right dimension.

Start by construction $C_{\varepsilon}^{\infty}(H) \subset C^{\infty}$, the space of perturbations of H. Idea: define a norm $\|\cdot\|_{\varepsilon}$ and take the subspace of finite-norm elements.

$$||h||_{\varepsilon} = \sum_{k \ge 0} \varepsilon k \sup_{(x,t) \in W \times S^1} \left| d^k h(x,t) \right|$$
$$= \sum_{k \ge 0} \varepsilon k \sup_{(x,t) \in W \times S^1} \sup_{i,z \in B(0,1)} \left| d^k (h \circ \Psi_i^{-1})(z) \right|.$$

Where $\{\varepsilon_k\} \subset \mathbb{R}$ is chosen such that $C_{\varepsilon}^{\infty} \hookrightarrow C^{\infty}(W \times S^1)$ is dense for the C^{∞} topology, and the $\Psi_i : B_i \longrightarrow \overline{B(0,1)}$ is a fixed finite sequence of diffeomorphisms where $\bigcup_i B_i^{\circ} = W \times S^1$.

Note that we'll only use density for the C^1 topology in our case.

Proposition 1.1.

Such a sequence $\{\varepsilon_k\}$ can be chosen.

Proof .

Show that $C^{\infty}(W \times S^1)$ is separable, yielding a sequence $(f_n) \subset C^{\infty}(W \times S^1)$ that is dense in the C^1 topology, then

$$\varepsilon_n = \frac{1}{2^n \max_{k \le n} \|f_k\| C^n(W \times S^1)}$$

where the diffeomorphisms Ψ_i are used to compute these norms.

Go on to show that for $||h||_{\varepsilon} \ll 1$, the $Per(H_0 + h) = Per(H_0)$ and are nondegenerate.

1.1 8.4: Linearizing the Floer equation: The Differential of \mathcal{F}

Embed $TW \hookrightarrow \mathbb{R}^m \times \mathbb{R}^m$ to identify tangent vectors (such as Z_i , tangents to W along u or in a neighborhood B of u) with actual vectors in \mathbb{R}^m .

Why? Bypasses differentiating vector fields and the Levi-Cevita connection.

We can then identify im $\mathcal{F} = C^{\infty}(\mathbb{R} \times S^1; \mathbb{R}^m)$ or $L^p(\mathbb{R} \times S^1; W)$, and we seek to compute its differential $d\mathcal{F}$.

We've just replaced the target spaces here.

Recall that x, y are contractible loops in W that are nondegenerate critical points of the action functional \mathcal{A}_H (i.e. solutions to the Floer equation), and $C_{\searrow}(x, y)$ was the set of maps $u : \mathbb{R} \times S^1 \longrightarrow W$ satisfying some conditions.

Fix a solution $u \in \mathcal{M}(x,y) \subset C^{\infty}_{\text{Loc}}(\mathbb{R} \times S^1; W)$.

We lift each map to $\tilde{u}: S^2 \longrightarrow W$ in the following way: the loops x, y are contractible, so they bound discs. So we extend according to:

Recall assumption 6.22: every smooth map $w: S^2 \longrightarrow W$ yields a symplectic trivialization of w^*TW (e.g. when $\pi_2(W) = 0$, so every map from S^2 extends to B^3).

Trivialize the symplectic fiber bundle \tilde{u}^*TW to obtain an orthonormal unitary frame $\{Z_i\}_{i=1}^{2n} \subset T_{u(s,t)}W$ depending smoothly on $(s,t) \in S^2$, where $\lim_{s \to \infty} Z_i$ exists for each i. We also require that $\partial_s Z_i, \partial_s^2 Z_i, \partial_s \partial_t Z_i \overset{s \to \pm \infty}{\longrightarrow} 0$ for each i.

This frame defines a chart about u of $\mathcal{P}^{1,p}(x,y)$ given by

$$\iota: W^{1,p}\left(\mathbb{R} \times S^1; \mathbb{R}^{2n}\right) \longrightarrow \mathcal{P}^{1,p}(x,y)$$

$$\mathbf{y} = (y_1, \dots, y_{2n}) \longmapsto \exp_u\left(\sum y_i Z_i\right).$$

Since $(d \exp)_0 = id$, we have $(d\iota)_0(\mathbf{y}) = \sum_i y_i Z_i$.

We'll now consider and compute the differential of

$$\mathcal{F}: \mathcal{P}^{1,p}(x,y) \xrightarrow{\mathcal{F}} L^p\left(\mathbb{R} \times S^1; TW\right) \longrightarrow L^p\left(\mathbb{R} \times S^1; \mathbb{R}^m\right)$$
$$u \longmapsto \frac{\partial u}{\partial s} + J(u) \left(\frac{\partial u}{\partial t} - X_t(u)\right).$$

Take the vector $Y(s,t) := (y_1(s,t), \cdots) \in \mathbb{R}^{2n} \subset \mathbb{R}^m$, where we view Y as a vector in \mathbb{R}^m tangent to W, given by $Y = \sum y_i Z_i$.

We write

$$\mathcal{F}(u+Y) = \frac{\partial(u+Y)}{\partial s} + J(u+Y)\frac{\partial(u+Y)}{\partial t} - J(u+Y)X_t(u+Y)$$

and extract the part that is linear in Y:

$$(d\mathcal{F})_{u}(Y) = \frac{\partial Y}{\partial s} + (dJ)_{u}(Y)\frac{\partial u}{\partial t} + J(u)\frac{\partial Y}{\partial t} - (dJ)_{u}(Y)X_{t} - J(u)(dX_{t})_{u}(Y).$$

Lemma 1.2 (Acting by Derivation).

For any $J \longrightarrow \operatorname{End}(\mathbb{R}^m)$ and $Y, v :? \longrightarrow \mathbb{R}^m$ we have

$$(dj)(Y) \cdot v = d(Jv)(Y) - Jdv(Y).$$

There is a proof.

For every such smooth map $u: \mathbb{R} \times S^1 \longrightarrow W$, $(d\mathcal{F})_u(Y) = O_1 + O_0$ where O_i are differential operators of order i, and in fact O_1 can be chosen to be a Cauchy-Riemann operator. In this specific chart, we can in fact decompose $(d\mathcal{F})_u(Y) = \bar{\partial}Y + SY$ where $S: \mathbb{R} \times S^1 \longrightarrow \operatorname{End}(\mathbb{R}^n)$ is linear of order 0, and in fact we have

Proposition 1.3.

If u solves Floer's equation, then $(d\mathcal{F})_u = \bar{\partial} + S(s,t)$ where S is linear, tends to a symmetric operator as $s \longrightarrow \pm \infty$, and $\lim \partial_t S = 0$ uniformly in t.

There is a very long computational proof.

Denote the order 0 part of $(d\mathcal{F})_u$ as $Y \mapsto S \cdot Y$ so $S : \mathbb{R} \times S^1 \longrightarrow \operatorname{End}(\mathbb{R}^m)$ and define $S^{\pm} := \lim_{s \longrightarrow \pm \infty} S(s, \cdot)$.

Proposition 1.4.

The equation $\partial_t Y = J_0 S^{\pm} Y$ linearizes Hamilton's equation $\dot{z} = X_t(z)$ at $x = \lim_{s \to \pm \infty} u$ for S^+ and S^- respectively.

Proof: uses previous proposition.

Given a solution u, the product

$$u \cdot s :? \longrightarrow ?$$

 $(\sigma, t) \mapsto u(\sigma + s, t)$

is also a solution and $\mathcal{F}(u \cdot s) = 0$ for all s.

Punchline:

Thus $\frac{\partial u}{\partial s}$ is a solution of the linearized equation, since

$$0 = \frac{\partial}{\partial s} \mathcal{F}(u \cdot s) = (d\mathcal{F})_u \left(\frac{\partial u}{\partial s}\right).$$

Along any nonconstant solution connecting x and y, dim $\ker(d_{\mathcal{F}})_u \geq 1$.