Corso di Architettura degli Elaboratori e Laboratorio (M-Z)

Rappresentazione binaria di dati complessi

Nino Cauli

Dipartimento di Matematica e Informatica

Sistemi di numerazione posizionali

Un sistema di numerazione e definito da:

- Un intero B detto BASE
- Un insieme di B simboli $S_B = \{s_0, ..., s_{B-1}\}$, ognuno dei quali rappresenta le quantità 0,1,2,...,B-1

Un numero a n cifre $p_{(n-1)}p_{(n-2)}...p_1p_0$ con $p_{(i)} \in S_B$ e i=0,...,n-1 può essere rappresentato come **SOMMA DI POTENZE DELLA BASE**:

$$\sum_{i=0}^{n-1} (p_{(i)} \cdot B^i)$$

Numeri interi naturali in binario

$$P = p_{(n-1)}p_{(n-2)}...p_1p_0$$
, $p_{(i)} \in \{0,1\}$ e $i=0,...,n-1$

$$\sum_{i=0}^{n-1} p_{(i)} \cdot 2^i$$

Numero di valori rappresentabili = $[0, 2^n)$

Numeri con segno

Segno:

• Bit più a sinistra = BIT DI SEGNO

Valore assoluto:

- SEGNO E VALORE ASSOLUTO
- COMPLEMENTO A UNO
- COMPLEMENTO A DUE

Somma complemento a due

ADDIZIONE: come quella binaria naturale, ma trascurando il riporto in uscita

SOTTRAZIONE: addizione con il complemento a due del sottraendo

Figura 1.6 (parte) - Operazioni di addizione e sottrazione in complemento a due

Trabocco (overflow)

Il risultato di addizione e sottrazione in complemento a 2 è corretto se è **COMPRESO** nell'intervallo:

$$[-2^{n-1}, 2^{n-1})$$

In caso contrario avviene un evento di TRABOCCO

Il TRABOCCO può avvenire solo se:

- 1) I due addendi sono CONCORDI IN SEGNO
- 2) Il **BIT DI SEGNO** della somma degli addendi è **DIVERSO** da quello degli addendi

Estensione e riduzione del segno

Spesso si presenta la necessità di aumentare o diminuire il numero di bit usati per codificare un numero

Regole molto semplici:

- ESTENSIONE DEL SEGNO: si replica a sinistra il bit del segno tante volte quanto occorre
- RIDUZIONE DEL SEGNO: si rimuove il bit più a sinistra tante volte quante occorre, purché il bit successivo abbia ugual valore

Numeri frazionari

Come rappresentare i numeri frazionari in binario?

Idea semplice:

- Un bit di segno
- Una porzione di bit fissa per la parte intera
- Una porzione di bit fissa per la parte decimale

Chiamiamo questa rappresentazione A VIRGOLA FISSA (FIXED POINT)

Numeri a virgola fissa (fixed point)

Solo bit di segno e parte intera:

Valori rappresentabili: da -2ⁿ⁻¹ a 2ⁿ⁻¹ – 1

Risoluzione: 1

Solo bit di segno e parte decimale:

Valori rappresentabili: da -1 a 1 - 2⁻⁽ⁿ⁻¹⁾

Risoluzione: 2-(n-1)

Intervallo non sufficiente per calcoli scientifici.

Numeri virgola mobile (floating point)

Per aumentare intervallo e risoluzione di valori rappresentabili si potrebbe spostare la posizione della virgola dinamicamente (VIRGOLA MOBILE)

Notazione scientifica decimale, **FORMA NORMALE**:

$$6,0247 \times 10^2 = 602,47$$

$$3,7291 \times 10^{-2} = 0,037291$$

In generale vale per ogni base:

$$1,0011 \times 2^2 = 100,11$$

$$4,2131 \times 5^{-2} = 0,042131$$

Numeri frazionari

Un numero binario in virgola mobile può quindi essere rappresentato:

- Un **SEGNO** s per il numero
- La MANTISSA m (bit significativi escluso il bit più significativo)
- Un **ESPONENTE** *e* con segno in base 2

Valore rappresentato = ± 1 , $m \times 2^e$

Formato precisione singola (32 bit)

Standard IEEE 754 numeri 32 bit

Valori speciali: e' = 0, e' = 255

Intervallo esponente: $-126 \le e \le 127$

Valori rappresentabili nell'intervallo: [2⁻¹²⁶, 2¹²⁷]

Formato precisione doppia (64 bit)

Standard IEEE 754 numeri 64 bit

Valori speciali: e' = 0, e' = 2047

Intervallo esponente: $-1022 \le e \le 1023$

Valori rappresentabili nell'intervallo: [2⁻¹⁰²², 2¹⁰²³]

Valori speciali

Alcuni valori dell'esponente sono speciali:

- e' = 0, m = 0 rappresenta lo 0 esatto
- e' = 255(2047), m = 0 rappresenta l'infinito ∞
- e' = 0, $m \neq 0$ rappresenta la forma non normale: ± 0 , $m \times 2^{-126(-1022)}$
- e' = 255(2047), $m \neq 0$ rappresenta Not a Number NaN

Rappresentazione dei caratteri

Come rappresentare caratteri tramite una sequenza di *n* bit?

Associamo un carattere ad ogni possibile valore binario rappresentabile

Quanti caratteri siamo in grado di rappresentare con *n* bit?

- Una sequenza di *n* bit può rappresentare 2ⁿ permutazioni di 0 e 1
- Si può rappresentare un alfabeto di **2**ⁿ **simboli**

Vediamo gli standard più usati

Codice ASCII

- Codice ASCII (American Standard Code for Information Interchange)
- Rappresenta lettere, cifre decimali, punteggiatura e caratteri speciali
- Definito su 7 bit → alfabeto di 2⁷ =
 128 elementi
- Lettere e numeri con codici in ordine crescente

	Bit 654							
Bit 3210	000	001	010	011	100	101	110	111
0000	NUL	DLE	SPACE	0	@	P	4	р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	С	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	\mathbf{f}	\mathbf{v}
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	x
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K]	k	{
1100	FF	FS	,	<	L	/	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	^	n	-
1111	SI	US	/	?	O	_	0	DEI

Standard per alfabeti con più simboli

Necessità di codici più ricchi per gestire le diverse lingue con caratteri speciali, accenti, etc.

Standard internazionali:

- Famiglia ISO 8859-x: estendono il codice ASCII usando 8 bit (doppio dei simboli)
- ISO/IEC 10646 (UCS): rappresentazione universale di caratteri che estende su più byte la ISO 8859
- Standard di codifica basati su UCS: come ad esempio UNICODE e UTF-8

Codici di controllo e correzione di errore

L'informazione binaria codificata potrebbe essere affetta da errori

Gli errori possono essere causati da:

- Disturbi nei canali di trasmissione
- Alterazione accidentale o dolosa nei dispositivi di memorizzazione

Come si possono individuare e possibilmente correggere gli errori?

• Aggiungendo uno o più bit di controllo alla sequenza originale

Bit di parità

Si aggiunge un bit di controllo (BIT DI PARITÀ) alla sequenza binaria originaria:

- 0 se numero PARI di 1 nella sequenza originaria
- 1 se numero **DISPARI** di 1 nella sequenza originaria

Se il numero di 1 nella **sequenza binaria estesa** con il bit di parità è **DISPARI** sono presenti errori

Rivela solo errori su di 1 bit e non può correggere gli errori rilevati

Distanza di Hamming di un codice

Codici di controllo con informazione necessaria per **correggere** fino a *k* errori sui bit

Si può usare il concetto di **DISTANZA DI HAMMING**

Distanza di Hamming:

- Di due sequenze: numero di bit diversi in posizioni corrispondenti
- Di un insieme di sequenze: la distanza di Hamming minima di coppie di sequenze distinte nell'insieme

Byte di controllo

- Estensione dell'idea di bit di controllo per sequenze di più byte
- 1 byte usato come informazione di controllo
- Ogni bit del byte controllo usato per la parità di sequenze non contigue di bit a distanza 8

Rivela più errori su in uno stesso byte

Somma di controllo, CRC

Checksum: Estensione con sequenze di controllo più lunghe di un byte

- Algoritmi di controllo semplici meno robusti:
 - Somma dei bit
 - Parità di sotto-sequenze
- CRC (codice a ridondanza ciclica):
 - Algoritmi di controllo basati su algebra dei polinomi
 - Permettono di rilevare errori su lunghe sequenze di bit contigui

Codici di correzione di errore

Codici di controllo con informazione necessaria per **correggere** fino a *k* errori sui bit

Si può usare il concetto di DISTANZA DI HAMMING

Distanza di Hamming:

- Di due sequenze: numero di bit diversi in posizioni corrispondenti
- Di un insieme di sequenze: la distanza di Hamming minima di coppie di sequenze distinte nell'insieme

Proprietà distanza di Hamming

Un **codice** *c* a *n* bit che può rappresentare un **alfabeto** A di al più 2ⁿ simboli è una funzione iniettiva:

$$c: a \to \{0, 1\}^n$$

Distanza di Hamming di un codice = distanza di Hamming della sua immagine

Un codice con:

- Distanza di Hamming h può rivelare fino a h 1 errori
- Distanza di Hamming h = 2k + 1 può correggere fino a k errori

Esempio distanza di Hamming

X	4 bit	7 bit	h ₀₁₀₀₀₁₁
0	0000	00 0 0 000	3
1	0001	11 0 1 001	3
2	0010	01 0 1 010	2
3	0011	10 0 0 011	2
4	0100	10 0 1 100	6
5	0101	01 0 0 101	2
6	0110	11 0 0 110	3
7	0111	00 0 1 111	3
8	1000	11 1 0 000	4
9	1001	00 1 1 001	4
Α	1010	10 1 1 010	5
В	1011	01 1 0 011	1
С	1100	01 1 1 100	5
D	1101	10 1 0 101	5
Е	1110	00 1 0 110	4
F	1111	11 1 1 111	4

Tabella A1.1 - Esempio di correzione di errore

Rappresentazione di informazione multimediale

Informazione multimediale è originariamente ANALOGICA

- AUDIO: andamento pressione acustica nel tempo
- IMMAGINI: distribuzione di valori continui di luminanza in uno spazio bidimensionale
- VIDEO: sequenza temporale di immagini

Per essere rappresentata in biniario l'informazione multimediale deve essere DISCRETIZZATA

Discretizzazione nel tempo

La discretizzazione nel tempo è chiamata CAMPIONAMENTO

- Segnale campionato a intervalli di tempo regolari
- Intervallo di tempo detto PERIODO
- FREQUENZA di campionamento è il reciproco del periodo
- La frequenza è espressa in hertz (Hz), campionamenti al secondo

Discretizzazione nell'intensità del segnale

La discretizzazione nell'intensità del segnale è chiamata **QUANTIZZAZIONE**

- Unità di quantizzazione è detta q
- I valori analogici del segnale vengono approssimati al valore multiplo di q più vicino
- Valori quantizzati rappresentati dai coefficienti di q

Rappresentazione Audio

- Intervallo fisiologico di frequenze udibili dall'uomo: da circa 20 Hz a 20 kHz
- Per rappresentare un segnale analogico di frequenza massima f_m , un segnale digitale deve essere campionato con frequenza $f_s > 2f_m$ (Teorema del campionamento di Nyquist-Shannon)

Frequenze di campionamento audio:

- Musica: 44,1 kHz
- Audio: 8 kHz (non necessario frequenze alte)

Unità di quantizzazione solitamente codificata con 16 bit per canale

Rappresentazione Audio

• Spazio occupato da 4 min di audio stereo:

 Codifica MIDI risparmia spazio rappresentando il suono tramite i parametri di un sintetizzatore (strumento emulato)

Rappresentazione Immagini

- Il campionamento avviene nel domino dello spazio
- Una griglia viene applicata ad una regione limitata bidimensionale con elementi detti PIXEL
- Ogni pixel rappresenta la luminanza, un valore per ogni canale (livelli grigio o RGB)
- La RISOLUZIONE rappresenta la precisione di campionamento (numero o densità dei pixel)
- La **PROFONDITÀ DI COLORE** rappresenta i livelli di quantizzazione (spesso **8 byte per canale**)

Rappresentazione Immagini

- Immagine non compressa in formato bitmap
- Esempio di spazio occupato da un immagine a colori

Colonne X righe X canali X bit profondità = 1024 X 768 X 3 X 8 ≈ 2,25 Mbyte

 Rappresentazione vettoriale (i.e. SVG) descrive l'immagine tramite primitive geometriche (più compatta e robusta al ridimensionamento)

Rappresentazione video

- Un video è una sequenza temporale di immagini
- 24 immagini al secondo: frequenza minima per percepire il movimento

24 X **2,25** Mbyte = **54** Mbyte / secondo

Informazione video necessita di essere compressa

Compressione di dati

Rappresentare l'informazione con sequenze binarie più brevi perdendo poca o nessuna informazione

2 FASI NELLA COMPRESSIONE:

Codifica: c(s) = t generazione stringa compressa t da s

• Decodifica: d(t) = s ritorno alla stringa originaria s da t

LA COMPRESSIONE PUÒ ESSERE:

Senza perdita (lossless): d(c(s)) = s

• Con perdita (lossy): $d(c(s)) = s + \varepsilon$

RAPPORTO DI COMPRESSIONE = len(s) / len(c(s))

Tecniche di compressione generiche

RUN-LENGTH

Codificare numero di occorrenze consecutive di ciascun simbolo

DIFFERENZIALE (RELATIVA)

 Spezzare la sequenza in blocchi, codificare il primo e codificare i successivi come differenze dal precedente

VARIABLE-LENGTH

 Lunghezza codifica dei simboli inversamente proporzionale alla probabilità di incontrarli (codici di Huffman)

BASATA SU DIZIONARIO, ADATTIVA

- I codici rappresentano parole di un dizionario
- Adattiva: il dizionario è creato dinamicamente (algoritmo LZW)

Standard di compressione dati multimediali

Audio

- MP3: dati musicali
- OGG/VORBIS: dati musicali (più efficace ma meno usato dell'MP3)
- Speex: compressione del parlato

Immagini

- GIF: Graphical Interchange Format (Lossless)
- PNG: Portable Network Graphics (Lossless)
- JPEG: Joint Photographic Experts Group (Lossy)

Video

- MPEG: Motion Picture Experts Group
 - Compressione video: JPEG + codifica relativa
 - Compressione audio: MP3