# Lecture 13 Heaps and priority queues

**EECS-214** 

#### Queues

- Simplified sequence data structure
  - Insertions only at the end ("tail")
  - Deletions only from the beginning ("head")
- First-in, first out
  - Objects are dequeued in the order they were enqueued
- Simple API
  - Enqueue: add item to the end of the queue
  - Dequeue: remove item from the front



#### Priority queues

- Like normal queues
  - Objects wait in line to be processed
- However, items have an associated numeric priority
  - Priority specified when added to queue
  - Objects removed from queue in order of priority
- Slightly different API
  - Insert(object, priority)
    - Adds object with specified priority
  - ExtractMax()
    - Returns highest priority object



#### Priority queues

- Like normal queues
  - Objects wait in line to be processed
- However, items have an associated numeric priority
  - Priority specified when added to queue
  - Objects removed from queue in order of priority
- Slightly different API
  - Insert(object, priority)
    - Adds object with specified priority
  - ExtractMin()
    - Returns **lowest** priority object



## Implementing priority queues

- We can use a balanced tree (e.g. a red/black tree) as a priority queue
  - Insert using the normal RBT insert
    - $O(\log n)$  time
  - Extract max is
    - Get the maximum element
      - $O(\log n)$
    - Delete it
      - Also  $O(\log n)$



•  $O(\log n)$  time

## Implementing priority queues

 Unfortunately, red/black trees are pretty complicated

> They go to a lot of work to keep all the items perfectly sorted

 Is there something simpler we could do?



#### Heaps



- Heaps are a simple tree structure for implementing priority queues
- Rather than requiring their inorder traversal to be sorted
  - We just require that parent nodes
     be larger than their child nodes
  - Or smaller, if it's a min heap
- There are lots of exotic types of heaps
  - We'll focus on binary heaps
  - Which are complete binary trees with the heap property
  - We'll get to the completeness thing in a minute...

#### Heaps



**Proposition:** the largest element of a heap is always its root

#### **Proof:**

- Suppose some other element is the largest element
- Since it isn't the root, it must have a parent
- Since it's the largest element, it must be larger than its parent
- But that contradicts the definition of a heap
- So the largest element must be the root

#### ExtractMax (version 1)

- We know the root is the maximal element
- So we want to delete it and return it
- But we need to replace it with its largest child
  - So we find the largest child
  - And recursively delete it from its subtree



#### ExtractMax (version 1)

- We know the root is the maximal element
- So we want to delete it and return it
- But we need to replace it with its largest child
  - So we find the largest child
  - And recursively delete it from its subtree



However, this is going to turn out to not to be the most convenient algorithm

#### ExtractMax (verison 2)

- Replace the root with a leaf node
  - Getting to a leaf will turn out to be easy
- The leaf node is probably too small
- So move it downward in the tree to make it be a proper heap again



#### ExtractMax(heap)

result = root of heap replace root with leaf Heapify(heap) return result



```
Heapify(root)
  if root > children
    done
  else if left child > root and
        left child > right child
    swap root and left child
    Heapify(left child)
  else
    swap root and right child
    Heapify(right child)
```



• Starting configuration



- Replace root with leaf
  - Violates heap property



- Replace root with leaf
- Swap with largest child
  - Still violates heap property



- Replace root with leaf
- Swap with largest child
- Swap with largest child again
  - Still violates heap property



- Replace root with leaf
- Swap with largest child
- Swap with largest child again
- Swap with largest child again
  - Now a proper heap



#### Insert(item)

- Add item as a leaf
  - Again, trust us, this will turn out to be easy
- While item > its parent
  - Swap with parent
  - Compare it to the next level up



## **Analysis**

- Both algorithms
  - Move nodes up/down tree
  - Perform a constant amount of work at each level
- So their execution time is
   O(h)
  - Where h is the tree's height
- Again, this is good, if the tree is balanced, bad otherwise



#### Complete binary trees

- A complete binary tree is a binary tree in which
  - Every level of the tree is full,
     except possibly the last
    - Can't add anymore nodes
  - Every node is shifted as far to the left as possible



 Complete trees are optimally balanced

### Binary heaps

- A binary heap is a
  - Complete binary tree
  - That satisfies the heap property
- Great!
- How do we ensure that the heap is a complete binary tree?



#### Embedding in an array

- It turns out that any complete binary tree can be embedded an array in a particularly cleaver way
- We can compute
  - The position of its parent in the array,
  - and the positions of its children,
  - directly from its own position



## Embedding in an array

- Store the root in the first element (element 0)
- For any node
  - Let i be its position in the array (for the root, i = 0)
  - Store its **left child** at position 2i + 1
  - Store its **right child** at position 2i + 2
  - Its parent can be found at position  $\lfloor (i-1)/2 \rfloor$
- Trust me that this works :-)





## Why is this a good representation?

- Very fast
  - Can just allocate a big array and then never have to call new again
- Last element is always a leaf
  - Remember our algorithms needed to add/remove leaves?





#### Representing a heap using an array

- Assume we have an extra field for the array to keep track of the size of the heap
- Define the following utility procedures:

```
Parent(int i)
  return (i-1)/2
Left(int i)
  return 2*i+1
Right(int i)
  return 2*i+2
```



## Heap insertion using the array representation

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





#### Inserting 10

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





## Check parent

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





Parent(i) = 
$$(5-1)/2 = 2$$

## 8 < 10, so A[Parent(i)] < key

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





#### Copy parent down

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





#### And move up tree

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





## Check parent

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





Parent(i) = 
$$(2-1)/2 = 0$$

(remember int arithmetic rounds down)

#### 9 < 10, so A[Parent(i)] < key

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





Parent(i) = 
$$(2-1)/2 = 0$$

(remember int arithmetic rounds down)

#### Copy parent down

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





Parent(i) = 
$$(2-1)/2 = 0$$

(remember int arithmetic rounds down)

#### Move up

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





#### Can't move farther

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





### Store the new key

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```





#### Done!

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```



Notice that this is once again a valid heap

### Extracting an element

#### **HeapExtractMax**(A)

max = A[0]

A[0] = A[A.size]

A.size--

Heapify(A,0)





### Extracting an element

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





#### Here we go!

#### **HeapExtractMax**(A)

max = A[0]

A[0] = A[A.size]

A.size--

Heapify(A,0)





#### Remember the max (the root)

HeapExtractMax(A)

max = A[0]

A[0] = A[A.size]

A.size--

Heapify(A,0)





#### Move the last leaf to the root

HeapExtractMax(A)

max = A[0]

A[0] = A[A.size]

A.size--

Heapify(A,0)





#### Move the last leaf to the root

HeapExtractMax(A)

max = A[0]

A[0] = A[A.size]

A.size--

Heapify(A,0)





# Re-heapify

HeapExtractMax(A)

max = A[0]

A[0] = A[A.size]

A.size--

Heapify(A,0)





## Re-heapify

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





# Find the left- and right-children

```
Heapify(A, i)
 I = Left(i)
  r = Right(i)
  if I≤A.size and A[I]>A[i]
   largest = 1
  else
   largest = i
  if r \le A.size and A[r] > A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





# A[I] not > A[i]

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





# So largest = i

```
Heapify(A, i)
 I = Left(i)
  r = Right(i)
  if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
  if r \le A.size and A[r] > A[largest]
   largest = r
  if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





# A[r] > A[largest]

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





## So update largest

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





# largest isn't i

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





### So swap with i

```
Heapify(A, i)
 I = Left(i)
  r = Right(i)
  if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
  if r \le A.size and A[r] > A[largest]
   largest = r
  if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





#### And recurse

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





#### Find children

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





## I is off the end of the heap

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





# So largest is i

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





### r is also off the end of the heap

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





# largest=i

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





#### So we're done

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```





next time: applications of binary heaps