Examen 1 GAL, an I, sem. II, Informatică, Seria 1325.06.2021

Nume și prenume:	
Grupa:	
1. Decideți care dintre următoarele mulțimi sunt subspații vectoriale reale ale lui (1 pun	act)
\mathbb{R}^3 : (a) $W_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - 5z^2 = 0\}$;	(0.
(a) $W_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + 7z^2 = 0\};$ (b) $W_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + 7z^2 = 0\};$	(0.
(c) $W_3 = \{\alpha(1, -1, 4) \mid \alpha \in \mathbb{R}\};$	(0.
(d) $W_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - 3z = 1\};$	(0.
(e) $W_5 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y + 4z = 0\}.$	(0.
Justificați răspunsurile.	`
2. Fie aplicația $f: \mathbb{R}^3 \to \mathbb{R}^3$, (2 punc	ete)
f(x, y, z) = (2x - 2y, -2x + y - 2z, -2y).	
(a) Arătați că f este aplicație liniară și scrieți matricea lui f în baza canonică a lui \mathbb{R}^3 .	(0.
(b) Arătați că f este un endomorfism diagonalizabil.	` (
(c) Determinați o bază în care f are forma diagonală.	(0.
3. În spațiul euclidian $\mathbb{E}^3 = (\mathbb{R}^3, <, >)$ (unde $<, >$ este produsul scalar canonic) (2.5 punc se consideră vectorii $f_1 = (1, -2, -1)$ și $f_2 = (2, 1, 2)$.	te)
(a) Calculați $ f_1 $, $ f_2 $ și unghiul dintre f_1 și f_2 .	(0.
(b) Determinați un vector nenul $f_3 \in \mathbb{E}^3$ astfel încât f_3 să fie perpendicular pe f_1 și f_2 .	(0.
(c) Pentru f_3 obținut la punctul (b), ortonormați sistemul $\{f_1, f_2, f_3\}$ prin procedeul de or normalizare Gram-Schmidt.	rto- (
(d) Determinați coordonatele vectorului $v=(1,2,3)$ în reperul ortonormat obținut la punc (c).	etul (0.
4. Fie $\mathcal{C} \subset \mathbb{R}^2$ conica de ecuație (2 punc	ete)
$C: x^2 + y^2 - 6xy + 6x - 6y + 4 = 0.$	
(a) Să se precizeze natura și genul conicei date.	(0.
(b) Să se reducă $\mathcal C$ la forma canonică, precizându-se schimbarea izometrică de reper efectuată	ă. (
(c) Să se calculeze excentricitatea conicei \mathcal{C} .	(0.
5. În spațiul \mathbb{R}^3 cu structura euclidiană canonică, fie planele (1.5 punc	ete)
$(\pi_1): x_1 + 3x_2 - x_3 - 1 = 0;$	
$(\pi_2): 2x_1 - x_2 - 2x_3 = 0.$	
(a) Decideţi dacă punctul $A=(2,1,1)\in\pi_1\cap\pi_2;$	(0.
(b) Fie $B = (1, 2, -1)$. Determinați planul π ce conține punctul B astfel încât $\pi \ \pi_1$.	(

 $[\]overline{\ \ ^{1}}$ Subiectele 1-5 sunt obligatorii. Se acordă 1 punct din oficiu. Timp de lucru: 2 ore. Baftă!