Status Update

Hierarchical Inference: PET and sMRI

 \bullet using PlutoUI \checkmark , Plots \checkmark , Distributions \checkmark , StatsPlots \checkmark

We infer a coupled model of FKPP and atrophy:

we inter a coupled model of PRPP and autophy:
$$rac{dc_i}{dt} = -
ho \sum_{j=1}^N L_{ij} c_i + lpha c_i (1-c_i)$$
 $rac{\mathrm{d}q_i}{\mathrm{d}t} = G_c c_i (1-q_i)$

Inference Results

We use hierarchical priors on all model parameters, ρ, α, G_c . We have the following model structure: $\sigma_t \sim \Gamma^{-1}(2,3)$ $\sigma_a \sim \Gamma^{-1}(2,3)$ $\rho_\mu \sim \mathcal{N}^+(0,1)$ $\rho_\sigma \sim \mathcal{N}^+(0,1)$ $\alpha_\mu \sim \mathcal{N}(0,1)$ $\alpha_\sigma \sim \mathcal{N}^+(0,1)$ $\beta_\mu \sim \mathcal{N}^+(0,1)$ $\beta_\mu \sim \mathcal{N}^+(0,1)$ $\beta_\sigma \sim \mathcal{N}^+(0,1)$ $\rho_i \sim \mathcal{N}^+(\rho_\mu, \rho_\sigma)$ $\alpha_i \sim \mathcal{N}(\alpha_\mu, \alpha_\sigma)$ $\beta_i \sim \mathcal{N}^+(\beta_\mu, \beta_\sigma)$ $y_i^{tau} \sim \mathcal{N}(f(\mathbf{u},t,\{\rho_i,\alpha_i,\beta_i\}),\sigma_t)$ $y_i^{atr} \sim \mathcal{N}(f(\mathbf{u},t,\{\rho_i,\alpha_i,\beta_i\}),\sigma_a)$ for $i \in 1 \dots N$ subjects. Notice that we assume the same noise distribution across all subjects. Initial

tests with independent noise for each subject showed poor convergence. Identical noise for each

Given some data from $t_n = t_{0+n}$, can we infer initial conditions at $t = t_0$? Does parameter identifiability vary given connectome topology?

I first explore identification of 10% seeding in bilateral EC. Synthetic data is generated using FKPP

1.0

Problems:

- simulations on the FSL and PIT connectomes, with parameters ho=0.5 and lpha=1.5. I test 5 time intervals for $n\in\{1,3,5,7,10\}$, shown by the dashed lines. For each n, FKPP solutions at each node
- are saved at $t_n, t_{n+1} ext{ and } t_{n+2}$, giving 83 imes 3 data points per test case.

Additionally, for each value of n, we test identifiability at 4 noise levels, given by the generative process: $y=f(\mathbf{u},t,\mathbf{p})+\mathcal{N}(0,\sigma)$ for $\sigma\in\{0,0.02,0.05,0.1\}$.

FKPP with FSL Connectome

Concentration 0 50 -Braak 1 Braak 2 Braak 3 ■Braak 4 ■Braak 5 ■Braak 6 0.0 10 5 FKPP with PIT Connectome 1.0 Concentration 0. ■Braak 1 -Braak 2 -Braak 3 -Braak 4 ■Braak 5 ■Braak 6 0.0

10

Inference Results

20

• seeds
0.8- Inoise-10

noise-5 noise-2 noise-0

seeds

noise-0

 0.4^{-}

0.2-

 0.4^{-1}

0.2-

process is then defined as:

 $egin{aligned} u_i &= \omega_i * (au * \lambda_i) \ y &\sim \mathcal{N}(\mathbf{f}(\mathbf{u},t, heta)|_{t_{0+n}},\sigma) \end{aligned}$

 $\sigma \sim \Gamma^{-1}(2,3)$

 $au \sim \mathcal{C}^+(0,0.1)$

 $\omega_i \sim \mathcal{N}(0,1,[0,1])$

 $\lambda_i \sim \mathcal{C}^+(0,1)$

 $\rho \sim \mathcal{N}^+(0,1)$

 $\alpha \sim \mathcal{N}^+(0,1)$

FSL and PIT connectomes. However, in both cases, posteriors are broader for the PIT connectome than the FSL connectome at higher noise levels (0.05 and 0.1). $t_{n=1}$

FSL: tn = 1

PIT: tn = 1

For n=1 and n=3, the locations of the initial conditions are identified for all noise levels using the

