Given, $f(x) = 2x^3 + 2x^2 + 10x - 20 = 0$. the function is a continuous and polynomial function. Date: 120 Using intermediate theorem, Checking. & Ine equ has solution in interval (1,2]. $f(1)=1^3+2(1)^2+10(1)-20=-7$ $f(2) = 2^3 + 2(2)^3 + 10(2) - 20 = I6$ since f(1) f(2) < 0, there exists a Assuming it has 2 real roots in the intereval mand [1,2], and real rooks a, 6 Such that fla= f(b)=0. As Per volle's theorem, if a function f is Continous. on the closed interval [a,b) and differentiable on interval (a, b), such that if car = f(b), then, . f (a) = 0, for some a thus, if the given function for, eqn () has more than one real roots, in interval [1,2] then f(x)=0. in the given interval f(a) = 3x2+4x+10

then the flas has to be zero for some value on the interval [1,2], However, flow will never be zero, always greaten them zero for the given interval [1,2].

Hence, the for = 23+2x2+10x-20 has exactly one seal root in [1,2].

Exercise 4:

Assume function f is a real-valued, defined and continous function on a bounded closed interval [a, b],

then, f is said to be contraction on [9,6] if esuists a constant L, suchthat 0 < L < 1

19(x)-g(y) 1 ≤ L(x-y) where x, y ∈ Ca, b]

Given function,.

960 = 20 $x^2 + 2x + 10$

Since, the denominator is always greater than zero g can never be less than or equal to zero.

Date :	/ /			Subject:	
D	ifteren	tioning	g(01)		
	<u>clg(2)</u>	= 20	d (20	+2x+10)	-)
	dx		dd	$\frac{1}{2} \left(\frac{dx^{n}}{dx} \right)$	= m 3c^()
		Z -20	[2x+2	-) (x+10)2	
	g (Ge)	= - 40	2 (2+1) 2+2×+10	0)2	
⇒ g!	(x) is alo	ways te ner be	nthan Zero,	Zer08.	hence!
EN	aluati-	ng g'a) at 1	& 2,	ar of Kings
		-40 ((12+2)			14
- 1 1 1	5	1 1	1-1-52	12.16	
	g(2)=	-40	(2+1) (*2+10)2		34
	-	0.47 <	g1(x) <	-0.3 H	
		1 g/cx)	< 0. ∪	14	•
	4	0		. In water	2011

from contraction mapping sheorem

[g(x)-g(y)] < L[x-y], xy E[1,2]

19(a) - g(y) | < L , xy & [1,2]

19 (ov) < L

L> 0.47

thus

1 g (x) - g (y) | < 0.47 | x - y | where x, y & [1,2]