

CHEMISTRY

10th and 11th class Date: 27-09-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Raman Research Park

Email: ananthak@srmist.edu.in

Phone: 9840154665

18CYB101J-Chemistry

Dr K Ananthanarayanan

Page 1

Determination of Na₂CO₃ and NaOH in a mixture by titration

Expt. No.: 1

9/29/2021

Experiment

□ <u>Aim :</u>

To determine the amount of Na₂CO₃ and NaOH in a mixture using hydrochloric acid.

☐ Apparatus required:

Conical flask, 100 mL standard flask, 20 mL pipette burette, funnel, glass rod.

☐ Chemicals required:

Hydrochloric acid, phenolphthalein indicator, methyl orange indicator, distilled water and mixture solution.

9/29/2021

3

Water standard, IS 10500:2012

Table 1 Organoleptic and Physical Parameters (Foreword and Clause 4)

SI No.	Characteristic	Requirement (Acceptable	Permissible Limit in the Absence of Alternate Source	Method of Test, Ref to Part of	Remarks
		Limit)		IS 3025	
(1)	(2)	(3)	(4)	(5)	(6)
i)	Colour, Hazen units, Max	5	15	Part 4	Extended to 15 only, if toxic substances are not suspected in absence of alternate sources
ii)	Odour	Agreeable	Agreeable	Part 5	a) Test cold and when heated b) Test at several dilutions
iii)	pH value	6.5-8.5	No relaxation	Part 11	
iv)	Taste	Agreeable	Agreeable	Parts 7 and 8	Test to be conducted only after safety has been established
V)	Turbidity, NTU, Max	1	5	Part 10	_
vi)	Total dissolved solids, mg/l, Max	500	2 000	Part 16	_

NOTE — It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned under 'acceptable' render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicated under 'permissible limit in the absence of alternate source' in col 4, above which the sources will have to be rejected.

9/29/2021

Acid-base titration

Α	quant	titat	ive	ana	alysis	_of	acids	and	bases;	through	this
pr	ocess,	an	acio	or	base d	of k	nown	conc	<u>entratio</u>	<u>n</u> neutral	lizes
an	acid o	or ba	ase	of <u>u</u>	nknov	vn	conce	ntrat	ion.		

- ☐ The titration progress can be monitored by visual indicators
- ☐ The reaction's <u>equivalence point</u> is the point at which the titrant has <u>exactly neutralized</u> the acid or base in the unknown analyte; if you know the volume and concentration of the titrant at the equivalence point, <u>you can calculate the concentration of a base or acid in the unknown solution</u>.

5

Acid-base indicators

- □ Acid base indicators (also known as pH indicators) are substances which change color with pH.
- ☐ They are usually weak acids or bases
- ☐ Consider an indicator which is a weak acid, with the formula HI. At equilibrium, the following chemical equation is established

$$HI + H_2O \rightleftharpoons H_3O^+ + I^-$$

- ☐ The acid, HI, and the conjugate base, I⁻, have different colors.
- ☐ Common examples include phenolphthalein and methyl orange.

9/29/2021

Phenolphthalein indicator

colourless (Acid)

pink (Base)

- ☐ Under acidic conditions, the equilibrium is to the left, and the concentration of the anions is too low for the pink colour to be observed. (phthalein class of dye)
- □ However, under alkaline conditions, the equilibrium is to the right, and the concentration of the anion becomes sufficient for the pink colour to be observed. pH range: 8 9.8

Phenolphthalein indicator contd..

□ As an indicator of a solution's pH, phenolphthalein is colorless below pH 8.2 and attains a pink to deep red hue above pH 9.0.

Increasing pH

9/29/2021

Methyl orange indicator

- □ Methyl orange ($C_{14}H_{14}N_3NaO_3S$) is a water soluble **azo dye** that shows color change in the **pH range of 3.1 to 4.4**
- lacktriangle Because it changes color at the pK $_a$ of a mid strength acid, it is usually used in titration for acids
- ☐ Methyl orange has a pK_a of 3.47 in water at 25 °C

Methyl Correct

9/29/202

Methyl orange indicator contd..

■ Methyl orange is a pH indicator frequently used in titration because of its clear and distinct color variance at different pH values. Methyl orange shows red color in acidic medium and yellow color in basic medium

Decreasing pH

9/29/202

Principle (double indicator)	SRM INSTITUTE OF SCHING A TECHNOLOGY (Bleened to be University of 3 of 40.6 on, res.)
☐ The titration of a mixture of NaOH and Na₂CO₃ standardized HCl solution has two equivalence points	
The first equivalence point is due to the conversion of carbonate to bicarbonate and sodium hydroxide to chloride as follows: NaOH + HCl → NaCl + H Na ₂ CO ₃ + HCl → NaHCO ₃ +	sodium
☐ The pH of the resulting solution is around 8 the phenolphthalein could be used as an indicator.	nerefore
☐ At the end point, all the hydroxide ions (OH-) and only the carbonate ions (CO ₃ ²⁻) are reacted with hydrochlori	•
9/29/2021	11

AN1		SRM NITTET OF SOLING A TELEMOLOGY Denned as is Convening up 1 of fice on, resi
	een, when we go on adding mo f the solution keeps on falling.	ore and more of
solution is w	O_3 is converted to NaHCO $_3$, reakly basic due to the presercaker base as compared to Na $_2$ 0	nce of NaHCO ₃
	ant phenolphthalein changes weakly basic solution to change	
· ·	emember that phenolphthalein e weakly basic NaHCO ₃ is prese	•
9/29/2021	2nd paper presentation-Vidya	12

AN1

Ananth Narayanan, 21-04-2021

Principle contd..

☐ The second equivalence point is due to the reaction of the resulting bicarbonate with an excess of HCl solution as follows:

$$NaHCO_3 + HCl \rightarrow NaCl + CO_2 + H_2O$$

- ☐ In this stage methyl orange is used to find the equivalence point because the pH of the solution at this point will be around 3.8
- When the titration is continued with methyl orange indicator, the remaining half of CO₃²⁻ ions will be neutralized with HCl at the end point

9/29/2021 13

Procedure

Titration I: Standardization of HCI

- □ Pipette out <u>20 ml of 0.05 N Na₂CO₃</u> solution into a clean conical flask and add 2-3 drops of methyl orange indicator to the solution.
- ☐ Then titrate the solution against hydrochloric acid taken in the burette.
- □ Record end point (burette reading) when color changes from yellow to orange (orange red).
- ☐ Repeat the titration till the concordant (two consecutive burette readings exactly same) value is obtained.

9/29/2021

Sodium hydroxide NaOH is not used as a *primary standard* solution *Why*?

$$2\text{NaOH} + \text{CO}_2 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O}$$

So, the commercial sample of solid sodium hydroxide ${\rm contains\ a\ quantity\ of\ Na_2CO_3}$

Commercially available NaOH contains impurities of Na_2CO_3 , and also readily absorbs H_2O from the atmosphere

9/29/2021

Procedure

<u>Titration II: Estimation of Na_2CO_3 and NaOH in a given mixture</u>

- □ Dilute the given unknown solution to <u>100 ml</u> in a standard flask using distilled water.
- □ Pipette out <u>20 ml</u> of this made up solution into a clean conical flask. Add 2-3 drops of phenolphthalein indicator to the solution and titrate against standardized HCI.
- □ Record the burette reading as an end point (phenolphthalien end point) of the titration when <u>disappearance of pink color is</u> <u>observed.</u>
- ☐ Consider the burette reading at the end point be 'A' ml.

9/29/2021

Procedure

9/29/2021

<u>Titration II: Estimation of Na₂CO₃ and NaOH in a given mixture</u>

- ☐ To the same solution, add 2-3 drops of methyl orange indicator and continue the titration till the color changes from **yellow to orange**
- □ Note down the burette reading as methyl orange end point. Consider it to be 'X' ml.
- □ Repeat the titration till the concordant (two consecutive burette readings exactly same) value for A and X is obtained.

Calculation (principle) A = all hydroxide ions + half of carbonate ions (Volume of HCI used for NaOH neutralization + Volume of HCI used for half Na₂CO₃ neutralization) B = half the carbonate ions after phenolphthalein end point (Volume of HCI for half neutralization of Na₂CO₃) B = all carbonate ions (Volume of HCI used for total neutralization of Na₂CO₃) A-B = all hydroxide ions (Volume of HCI used for total neutralization of NaOH)

Tabular column

Titration 1 : Standardization of HCI

S.No.	Volume of sodium carbonate solnution (ml)	Burette i Initial	reading Final	Concordant Value	Indicator	
					Methyl orange (2-3 drops)	

9/29/2021

Calculation

Volume of HCl = V_1 ml (end point)

Normality of HCl = ----? N_1

Volume of Na_2CO_3 (V_2) = 20 ml

Normality of Na_2CO_3 (N_2) = 0.1N 0.05 N

Normality of HCl (N_1) = $(20 \times 0.1) / V_1$

= N

9/29/2021

25

Tabular column

Titration II: Estimation of Na₂CO₃ and NaOH in a given mixture.

SI.	Volume of	Burett	e Reading (mL	Concordant Value		
No.		Initial	Vol. consu. Phenolphthal ein end point (A)	Vol. consu. Methyl orange end point (X)	Phenolph thalein	Methyl orange

Vol. consumed for methyl orange end point after phenolphthalein end point B = X-A

9/29/2021

Calculation

I Estimation of the amount of Na2CO3

Volume of $HCl V_1$ = 2B (B is the titre value, after phenolpthalein end point)

Normality of HCl = N_1 (from Titration I)

Volume of mixture V_2 = 20 ml Normality of Na₂CO₃ N₂ = $V_1 N_1 / V_2$

= 2B x N₁/20

Amount of Na_2CO_3 present in whole of the given solution = $N_2 \times 53$ (Eq. wt. of Na_2CO_3)

10

9/29/2021

27

Calculation

II Estimation of amount of NaOH:

Volume of $HCl V_1 = (A-B) ml$

Normality of HCl (N_1) = N_1 (from Titration I)

Volume of mixture V_2 = 20 ml

Normality of NaOH N_2 = $V_1 \times N_1/20$

= (A-B) x N₁/20

Amount of NaOH present in whole of the given solution = $N_2 \times 40$ (Eq. wt. of NaOH)

10

9/29/2021

Table-I

SI.	Volume of pipette solution (mL)	Burette reading (mL)		Concordant Value	Indicator
		Initial	Final		
1	20	0	19.6		
				19.6	Methyl
2	20	0	19.6		orange

29

Table-II

SI.	Volume of	Burett	Burette Reading (mL)			Concordant Value	
No.	pipette solution (mL)	Initial Vol. consu. Phenolphthal ein end point (A) Vol. consu. Methyl orange end point (X)			Phenolph thalein	Methyl orange	
1	20	0	23.9	32.8			
2	20	0	23.9	32.8	23.9	32.8	

- ☐ Phenolphthalein endpoint (Concordant value) = A = 23.9 mL
- ☐ Methyl orange endpoint (Concordant value) = X= 32.8 mL
- □ Vol. consumed for methyl orange end point after phenolphthalein end point after B = X-A =32.8 23.9 = 8.9 mL

Result

- ☐ Normality of the given HCl solution = ------
- ☐ Amount of Na₂CO₃ present in the given solution = -----
- ☐ Amount of NaOH present in the given solution = -----

31

Calculation, standardisation

Volume of Na_2CO_3 solution $V_2 = 20 \text{ mL}$

Normality of Na_2CO_3 solution $N_2 = 0.05 N$ (given in bottle)

Volume of HCl solution $V_1 = 19.6 \text{ mL}$

Normality of HCl solution $N_1 = 0.051 N$

Calculation

Estimation of amount of Na₂CO₃

Volume of HCl solution (2B) $V_1 = 17.8 \text{ mL}$ Normality of HCl solution $N_1 = 0.051 \text{ N}$ Volume of mixture $V_2 = 20 \text{ mL}$

Normality of Na_2CO_3 $N_2 =$

 $= 17.8/20 \times 0.051 = 0.04539 \text{ N}$

Normality of Na_2CO_3 = 0.04539 N

Amount of Na_2CO_3 = 0.2405 g

33

Calculation

Estimation of amount of NaOH

Volume of HCl solution $V_1 = A-B = (23.9 - 8.9) \text{ mL} = 15 \text{ mL}$

Normality of HCl solution $N_1 = 0.051 N$

Volume of mixture $V_2 = 20 \text{ mL}$

Normality of NaOH $N_2 = 0.03825 \text{ N}$

Amount of NaOH = 0.153 g

Thank you all for your attention

Information presented here were collected from various sources – textbooks, articles, manuscripts, internet and newsletters. All the researchers and authors of the above mentioned sources are greatly acknowledged.

Page 35