Linguagem L_d

Linguagem L_d

$$L_d = \{w_i \in \{0,1\}^* | w_i \notin L(M_i)\}$$

- Contém as cadeias que, quando consideradas como codificações de Máquinas de Turing, são tais que elas não são aceitas pelas respectivas Máquinas de Turing que elas representam;
- Linguagem da "diagonalização".

Linguagem \mathcal{L}_d

Diagonalização e a linguagem \mathcal{L}_d

Para cada par linha/coluna (i, j), a tabela indica se M_i aceita w_j :

	w_I	w_2	W_3	W_4	
$< M_I > = w_I$	0	1	1	0	
$< M_2 > = w_2$	1	1	0	0	
$< M_3 > = w_3$	0	0	1	1	
$< M_4 > = w_4$	0	1	0	1	
					:

1 indica aceitação, 0 indica rejeição ou loop (os valores apresentados são hipotéticos).

Diagonalização e a linguagem \mathcal{L}_d

- ▶ Vetor característico: 0, 1, 1, 1, ...;
- ► Complemento do vetor característico: 1,0,0,0,...;
- $w_1 \in L_d$, $w_2 \notin L_d$, $w_3 \notin L_d$, $w_4 \notin L_d$ etc;
- ▶ Portanto, $L_d = \{w_1, ...\};$
- ► $L_d = \{w_i | w_i \notin L(M_i)\};$

Linguagem L_d

Diagonalização e a linguagem \mathcal{L}_d

- $ightharpoonup L_d$ não é aceita por nenhuma Máquina de Turing, pois o vetor característico dela difere em pelo menos uma posição do vetor característico de todas as linguagens aceitas por todas as Máquinas de Turing que existem;
- ▶ Em outras palavras, existe pelo menos uma cadeia que difere L_d de $L(M_i), \forall i \geq 1$;
- $ightharpoonup L_d$ não é uma linguagem recursivamente enumerável;
- Não existe nenhuma Máquina de Turing que aceite L_d .

Linguagem L_d

Teorema 1

 L_d não é recursivamente enumerável

Teorema:

A linguagem L_d não é recursivamente enumerável.

Prova:

- Suponha que L_d seja recursivamente enumerável. Então deve existir uma Máquina de Turing M que aceita L_d . Logo, $M=M_i$ para algum valor de i. Considere, portanto, que M_i aceita L_d e considere a cadeia w_i :
 - ▶ Se $w_i \in L_d$, então M_i aceita w_i . Mas, por definição, se M_i aceita w_i então w_i não pode pertencer à L_d ;
 - ▶ Se $w_i \notin L_d$, então M_i não aceita w_i . Mas, por definição, se M_i não aceita w_i então w_i deve pertencer à L_d .
- Qualquer que seja o caso, há uma contradição;
- ▶ Logo, a hipótese é falsa e não existe M_i que aceite L_d .

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● か९○

Marcus Ramos (UNIVASF)

Decidibilidade

1 de julho de 2016

57 / 269

Exercício:

Provar que Ld' (complemento de Ld) é turing reconhecível