

Índice

1	Agradecimientos	3
2	Axiomas de los números reales 2.1 Teoría 2.2 Ejercicios	
3	Funciones de variable real 3.1 Teoría 3.2 Ejercicios	
4	Límites 4.1 Teoría	
	Aplicaciones de la derivada 5 1 Ejercicios	26

1 Agradecimientos

Este documento no hubiera sido posible sin el apoyo de un gran conjunto de personas provenientes de distintas partes de la Universidad de Santiago de Chile.

Agradecemos a Pedro Marín, director del departamento de Matemática y Ciencia de la Computación, por su amabilidad y disposición al ponernos en contacto con las distintas coordinaciones de su departamento.

Agradecemos a Mauricio Bravo, José Ramírez y Julio Rincón, coordinadores de los cursos de Cálculo I, Cálculo II y Cálculo III, respectivamente, por su excelente disposición a cooperar con el equipo de PAIEP en todo aquello que se les solicitó.

Agradecemos particularmente a Claudio González, Christian Droguett, José Luis Muñoz y Esteban Gutiérrez, profesionales del equipo de Matemática de PAIEP encargados de la construcción, implementación y posterior escritura de las clases que se convertirían en este documento.

Myriam Vera Directora del departamento PAIEP

2 Axiomas de los números reales

2.1 Teoría

Consideraremos la existencia de un conjunto no vacío \mathbb{R} , llamado conjunto de los números reales. En este conjunto usaremos la relación de igualdad (=) y las operaciones de adición y multiplicación que satisfacen ciertas propiedades denominadas axiomas.

De la relación de igualdad, se satisfacen las siguientes propiedades:

- a) Axioma 1: Reflexividad: $\forall a \in \mathbb{R}, a = a$.
- b) Axioma 2: Simetría: $\forall a, b \in \mathbb{R}, a = b \Rightarrow b = a$.
- c) Axioma 3: Transitividad: $\forall a, b, c \in \mathbb{R}, a = b \text{ y } b = c \Rightarrow a = c.$

De acuerdo a las operaciones definidas en \mathbb{R} , adición y multiplicación, tenemos que:

- a) La adición asocia a cada par de elementos $a, b \in \mathbb{R}$ un único $c \in \mathbb{R}$, llamado **Suma** de a y b, esto es c = a + b.
- b) La multiplicación asocia a cada par de elementos $a, b \in \mathbb{R}$ un único $d \in \mathbb{R}$, llamado **Producto de** a y b, esto es $d = a \cdot b = ab$

Axiomas de cuerpo: Sean $a, b y c \in \mathbb{R}$, entonces:

1. Axiomas para la adición:

- a) Conmutatividad: a + b = b + a.
- b) Asociatividad: a + (b + c) = (a + b) + c.
- c) Elemento neutro: $a + 0 = 0 + a = a; 0 \in \mathbb{R}$.
- d) Elemento inverso: $\forall a \in \mathbb{R}, \exists ! (-a) \in \mathbb{R} \text{ tal que } a + (-a) = (-a) + a = 0.$

2. Axiomas para la multiplicación

- a) Conmutatividad: $a \cdot b = b \cdot a$.
- b) Asociatividad: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- c) Elemento neutro: $a \cdot 1 = 1 \cdot a = a, 1 \in \mathbb{R}$
- d) Elemento inverso: $\forall a \in \mathbb{R} \text{ y } a \neq 0$, existe un único real $\frac{1}{a} = a^{-1}$ tal que:

$$a \cdot \left(\frac{1}{a}\right) = \left(\frac{1}{a}\right) \cdot a = 1.$$

e) Distributividad: $a \cdot (b+c) = ab + ac$ y $(a+b) \cdot c = ac + bc$.

Para los siguientes axiomas considere \mathbb{R}^+ .

- a) Ley de clausura para la suma: Si $a, b \in \mathbb{R}^+ \Rightarrow (a+b) \in \mathbb{R}^+$.
- b) Ley de clausura para el producto: Si $a, b \in \mathbb{R}^+ \Rightarrow (a \cdot b) \in \mathbb{R}^+$.
- c) Ley de tricotomía: Si $a \in \mathbb{R} \Leftrightarrow a \in \mathbb{R}^+ \lor a = 0 \lor a \in \mathbb{R}^-$.

Definición 2.1. Sean $a, b \in \mathbb{R}$, se tiene que:

- 1. $a < b \Leftrightarrow (b a) \in \mathbb{R}^+$.
- $2. \ a > b \Leftrightarrow (a b) \in \mathbb{R}^+.$

Definición 2.2 (Valor absoluto). Se llamará valor absoluto del número $a \in \mathbb{R}$, denotado por |a|, al número:

$$|a| = \begin{cases} a & \text{si } a \ge 0 \\ -a & \text{si } a < 0 \end{cases}$$

Observación 2.3. De la definición se sigue que si $a,b\in\mathbb{R}$

- a) $|a| = b \Leftrightarrow a = \pm b$.
- b) |-a| = |a|.
- c) $|a \cdot b| = |a| \cdot |b|$.
- d) $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}, b \neq 0.$
- e) Si $b \ge 0$, $|a| \le b \Leftrightarrow -b \le a \le b$.
- f) Si $b \ge 0$, $|a| \ge b \Leftrightarrow a \ge b \lor a \le -b$.

2.2 Ejercicios

Ejercicio 2.1. Resuelve los siguientes ejercicios en el conjunto de los números reales.

- 1. Considera la expresión $A = |x| \cdot |x-2| + x \cdot |x+3|, x \in \mathbb{R}$.
 - a) Escribir A por tramos y simplificada, indicando los intervalos resultantes para cada expresión que obtengas.
 - b) Obtener, el conjunto solución de la inecuación $A \geq 3$.

Solución:

a) Por definición de valor absoluto.

$$|x| = \begin{cases} x, & \text{si } x \ge 0 \\ -x, & \text{si } x < 0 \end{cases}$$

$$|x-2| = \begin{cases} x-2 & \text{, si } x \ge 2\\ -x+2 & \text{, si } x < 2 \end{cases}$$

$$|x+3| = \begin{cases} x+3 & \text{, si } x \ge -3 \\ -x-3 & \text{, si } x < -3 \end{cases}$$

Puntos críticos: x = -3, x = 0, x = 2.

Luego,

• Si
$$x \in]-\infty, -3] \Rightarrow A = (-x)(-x+2) + x(-x-3) = -5x$$

• Si
$$x \in]-3,0] \Rightarrow A = (-x)(-x+2) + x(x+3) = 2x^2 + x$$

• Si
$$x \in (0, 2] \Rightarrow A = (x)(-x+2) + x(x+3) = 5x$$

• Si
$$x \in]2, +\infty [\Rightarrow A = (x)(x-2) + x(x+3) = 2x^2 + x$$

Finalmente,

$$A = \begin{cases} -5x & \text{, si } x \le -3\\ 2x^2 + x & \text{, si } -3 < x \le 0\\ 5x & \text{, si } 0 < x \le 2\\ 2x^2 + x & \text{, si } x > 2 \end{cases}$$

b) Utilizando la información del ítem anterior,

i) Caso 1:
$$x \in]-\infty, -3]$$

$$-5x \ge 3 \Leftrightarrow x \le -\frac{3}{5}$$

$$S_1 =]-\infty, -3] \cap \left[-\infty, -\frac{3}{5}\right] =]-\infty, -3]$$

ii) Caso 2: $x \in]-3,0]$

$$2x^{2} + x \ge 3 \Leftrightarrow 2x^{2} + x - 3 \ge 0 \Leftrightarrow (2x + 3)(x - 1) \ge 0$$

Puntos críticos: $x = -\frac{3}{2}$, x = 1

	$\left \ \right] - \infty, -\frac{3}{2} \right]$	$\left[\begin{array}{c} -\frac{3}{2},1 \end{array}\right]$	$]1,+\infty[$
2x+3	_	+	+
x-1	_	_	+
(2x+3)(x-1)	+	_	+

$$S_2 =]-3,0] \cap \left(\left[-\infty, -\frac{3}{2} \right] \cup \left[1, +\infty \right[\right] \right) = \left[-3, -\frac{3}{2} \right]$$

iii) Caso 3: $x \in]0, 2]$

$$5x \ge 3 \Leftrightarrow x \ge \frac{3}{5}$$

$$S_3 =]0, 2] \cap \left[\frac{3}{5}, +\infty\right[= \left[\frac{3}{5}, 2\right].$$

iv) Caso 4: $x \in]2, +\infty[$

$$2x^2 + x \ge 3 \Leftrightarrow 2x^2 + x - 3 \ge 0 \Leftrightarrow (2x+3)(x-1) \ge 0$$

Puntos críticos: $x = -\frac{3}{2}$, x = 1.

Luego, la solución final es la unión de todas las soluciones calculadas, es decir:

$$S_f = S_1 \cup S_2 \cup S_3 \cup S_4$$

$$S_f = \left[-\infty, -3 \right] \quad \cup \quad \left[-3, -\frac{3}{2} \right] \quad \cup \quad \left[\frac{3}{5}, 2 \right] \quad \cup \quad \left[2, +\infty \right[$$

$$S_f = \left[-\infty, -\frac{3}{2} \right] \cup \left[\frac{3}{5}, +\infty \right[$$

Ejercicio 2.2. Determinar si las siguientes afirmaciones son verdaderas o falsas. Justifica tus respuestas.

a) Considera el conjunto

$$A = \{x \in [-4, +\infty[\text{ tal que } |3x + 2| \le x + 4\}.$$

Entonces el conjunto A corresponde al intervalo $\left[-\frac{3}{2},1\right]$. Es decir, $A=\left[-\frac{3}{2},1\right]$.

b) La expresión
$$\frac{x^2-7x+12}{x-1}>0$$
 para todo $x\in]-\infty,1[\cup]4,+\infty[$.

c) Si
$$x \in]-\infty, -2[$$
, entonces

$$\left|\frac{x+2}{x-1}\right| = \frac{x+2}{x-1}$$

Solución:

a) La condición de que $x \in [-4, +\infty[$ se puede representar como $x > -4 \Leftrightarrow x + 4 > 0$. Así, utilizando la propiedad 5) de valor absoluto, se tiene:

$$|3x + 2| \le x + 4 \Leftrightarrow -(x + 4) \le 3x + 2 \le x + 4.$$

$$\Leftrightarrow -(x + 4) \le (3x + 2) \land (3x + 2) \le (x + 4)$$

$$\Leftrightarrow -\frac{3}{2} \le x \land x \le 1$$

$$\Leftrightarrow -\frac{3}{2} \le x \le 1$$

Luego, $A = \left[-\frac{3}{2}, 1 \right]$. Por lo tanto, la afirmación es verdadera.

b) De la expresión,

$$\frac{x^2 - 7x + 12}{x - 1} > 0 \Leftrightarrow \frac{(x - 3)(x - 4)}{x - 1} > 0$$

Del cual, los puntos críticos asociados son: x = 3, x = 4 y x = 1.

La tabla de signos asociada a tales puntos está dada por,

	$]-\infty,1[$]1,3[]3,4[$]4,+\infty[$
(x-3)	_	_	+	+
$\overline{(x-4)}$	_	_	_	+
(x-3)(x-4)	+	+	_	+
x-1	_	+	+	+
$\frac{(x-3)(x-4)}{x-1}$	_	+	_	+

Luego, la solución final es $S =]1, 3[\cup]4, +\infty[$

Por lo tanto, la afirmación es falsa.

c) La condición de que $x \in]-\infty, -2[$ se puede representar como $x < -2 \Leftrightarrow x + 2 < 0.$

Por otra parte, utilizando la propiedad 4), la expresión dada se puede reescribir de la siguiente forma:

$$\left|\frac{x+2}{x-1}\right| = \frac{|x+2|}{|x-1|}$$

Así, para x < -2, $|x-1| \Rightarrow x-1 < 0$.

Luego, $\frac{x+2}{x-1} > 0$. Por lo tanto la afirmación es verdadera.

3 Funciones de variable real

3.1 Teoría

A continuación se definirán algunos conceptos escenciales para el estudio de las funciones.

Definición 3.1 (Función). Dados dos conjuntos A y B y una relación $f: A \to B$, tal que $\forall x \in A, \exists ! \in B$ tal que f(x) = y (Se lee: Para todo x en A, existe un único y en B tal que f(x) = y).

Lo anterior queda representado graficamente como:

Ejemplo: Determinar si las siguientes representaciones sagitales son o no funciones.

Solución:

- a) R si es una función, ya que todos los elementos del conjunto A tienen una única correspondencia con los elementos del conjunto B.
- b) S no es una función, porque para $a \in A$ no tiene un elemento asociado en B.
- c) T no es una función, ya que el elemento c tiene una doble correspondencia, es decir, T(c) = h y T(c) = l.

Definición 3.2 (Dominio). Sean A y B dos conjuntos y $f:A\to B$ una función, se define dominio de una función al conjunto dado por:

$$Dom(f) = \{x \in A, \exists y \in B : (x, y) \in f\}$$

Definición 3.3 (Codominio). Si consideramos a la función $f: A \to B$, el codominio de una función es el conjunto de llegada, es decir, Codom(f) = B.

Definición 3.4 (Recorrido-Rango-Imagen). Sean A y B dos conjuntos y $f:A\to B$ una función, se define recorrido de una función al conjunto dado por:

$$Rec(f) = \{ y \in B, \exists \ x \in A : (x, y) \in f \}$$

Ejemplo: En la siguiente representación, determinar dominio recorrido y codominio.

Solución:

- El dominio de f, está dado por: Dom(f) = A
- El codominio de f, está dado por: Codom(f) = B
- El recorrido de f, está dado por: $Rec(f) = \{3, 4, 5, 6\}$

Definición 3.5 (Características de las funciones). Sea $f:A\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ una función e $I\subseteq A$ un intervalo. Diremos que:

- a) $x_0 \in A$ es un cero de f si $f(x_0) = 0$
- b) f es positiva en I si f(x) > 0 para todo $x \in I$
- c) f es negativa en I si f(x) < 0 para todo $x \in I$
- d) f es estrictamente creciente en I si para cualquier $x_1, x_2 \in I$ se satisface

$$x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$$

e) f es estrictamente decreciente en I si para cualquier $x_1, x_2 \in I$ se satisface

$$x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$$

f) f es monótona si f es creciente o decreciente en A.

Definición 3.6. Sea $f:A\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ una función. Diremos que f es una función:

- a) **Par**, si f(-x) = f(x) para cualquier $x \in A$
- b) **Impar**, si f(-x) = -f(x) para cualquier $x \in A$

Observación 3.7. Note que hay funciones que no son ni pares ni impares. Considere por ejemplo la función f(x) = x + 1 y note que

$$f(-1) = 0 \neq -2 = -f(1)$$
 y $f(-1) = 0 \neq 2 = f(1)$.

Definición 3.8 (Clasificación de funciones). Sean $A, B \subseteq \mathbb{R}$ y considere la función $f: A \to B$, entonces se dice que:

a) f es inyectiva o simplemente 1-1 (uno a uno), si y sólo si, cada elemento imagen tiene una única pre-imagen en A por f, es decir:

$$\forall x_1, x_2 \in A : f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

b) f es sobreyectiva o simplemente epiyectiva, si y sólo si, Rec(f) = B, es decir:

$$\forall y \in B, \quad \exists x \in A : y = f(x)$$

c) f es biyectiva, si y sólo si, f es sobreyectiva e inyectiva.

Observación 3.9. En relación a la definición anterior, considerar:

- Si f es una función par, su gráfico es simétrico respecto del eje OY.
- ullet Si f es una función impar, su gráfico es simétrico respecto del origen.
- Una función puede no ser par ni impar.

Tipos de funciones

Definición 3.10 (Función lineal). Corresponde a una función de la forma f(x) = mx + b con $m, b \in \mathbb{R}$, donde m se le denomina pendiente de la recta y b el coeficiente de posición o punto de intercepto con el eje OY.

En la literatura matemática a esta función se le llama también función afín, dejando la palabra "lineal" exclusivamente para el caso en que b=0.

Observación 3.11. En relación a la definición anterior, considerar:

• Si m > 0, la función es creciente y gráficamente se presenta por:

 $\bullet\,$ Si m<0, la función es decreciente y graficamente se presenta por:

• Si m=0, la función es constante y es paralela al eje X:

Definición 3.12 (Función cuadrática). Corresponde a una función de la forma $f(x) = ax^2 + bx + c$ con $a, b, c \in \mathbb{R}$ y $a \neq 0$, cuyo gráfico es una parábola como se muestra a continuación,

La parábola se dice cóncava hacia arriba cuando a > 0 y cóncava hacia abajo en el caso a < 0. Además se desprende de ambos gráficos que, para cualquier $a \neq 0$, se tiene $Dom(f) = \mathbb{R}$

Definición 3.13 (Función exponencial). Sea a cualquier número real positivo distinto de uno. Entonces la función,

$$f: \mathbb{R} \to \mathbb{R}^+$$

definida por

$$x \mapsto f(x) = a^x$$

la llamaremos función exponencial de base a.

Graficamente, la función exponencial se representa según el valor que pueda tomar a.

Observación 3.14. A partir de las definición anterior, se tiene que:

- 1. Para 0 < a < 1, satisface:
 - a) El valor de a^x tiende a cero cuando x se hace más grande recorriendo los valores positivos. Se concluye que el eje X (recta y=0) es una asíntota horizontal de la función.
 - b) La función es decreciente, es decir, si $x_1 < x_2 \Rightarrow a^{x_1} > a^{x_2}$
- 2. Para a > 1, satisface:
 - a) El valor de a^x tiende a cero cuando x decrece recorriendo los valores negativos. Se concluye que el eje X (recta y=0) es una asíntota horizontal de la función.
 - b) La función es creciente, es decir, si $x_1 < x_2 \Rightarrow a^{x_1} < a^{x_2}$.

3.2 Ejercicios

Ejercicio 3.1. Resuelve los siguientes problemas:

1. Sea $f:[0,1[\to \mathbb{R} \ \text{tal que } f(x)=\frac{1}{\sqrt{1-x^2}},$ determine $\mathrm{Rec}(f).$

Solución: Despejando x,

$$y = \frac{1}{\sqrt{1 - x^2}}$$

$$y^2 = \frac{1}{1 - x^2}$$

$$y^2 - x^2 y^2 = 1$$

$$x^2 = \frac{y^2 - 1}{y^2}$$

$$x = \sqrt{\frac{y^2 - 1}{y^2}}$$

Como $x \in [0, 1[$, entonces:

$$0 \le \sqrt{\frac{y^2 - 1}{y^2}} < 1$$
$$0 \le \frac{y^2 - 1}{y^2} < 1$$
$$0 \le y^2 - 1 < y^2$$

De donde

$$y^2 \ge 1$$

Se puede observar de la función original que y>0, para cualquier valor de x en el dominio, luego

$$y \ge 1$$

Por lo tanto

$$\operatorname{Rec}(f) = [1, +\infty[$$

Ejercicio 3.2. Considere la función $f:[0,+\infty[\to\mathbb{R}]]$ definida por $f(x)=\frac{x+1}{\sqrt{x^2+1}}$

- a) Determine el signo de f
- b) Determine Rec (f)

Solución:

- a) Dado que $x \in [0, +\infty[$, tenemos que la función es siempre positiva, entonces $y > 0, \forall x \in Dom(f)$.
- b) Despejando x,

$$y = \frac{x+1}{\sqrt{x^2+1}}$$

$$y^2 = \frac{(x+1)^2}{x^2+1}$$

$$x^2y^2 + y^2 = x^2 + 2x + 1$$

$$x^{2}(y^{2}-1) - 2x + (y^{2}-1) = 0$$

Entonces,

$$x = \frac{2 \pm \sqrt{4 - 4(y^2 - 1)^2}}{2(y^2 - 1)}$$
$$x = \frac{2 \pm 2\sqrt{1 - (y^2 - 1)^2}}{2(y^2 - 1)}$$

Luego, tenemos que $y \neq \{-1, 1\}$, además

$$\begin{array}{ccc}
 1 - (y^2 - 1)^2 & \geq & 0 \\
 |y^2 - 1| & \leq & 1 \\
 -1 \leq y^2 - 1 & \leq 1
 \end{array}$$

De donde se desprenden dos inecuaciones, las cuales son

$$y^2 \ge 0$$

$$y^2 - 2 \le 0$$

De la seguna inecuación, se obtiene como solución

$$S = [-\sqrt{2}, \sqrt{2}]$$

Como sabemos que y > 0 (relación obtenida en la pregunta anterior) y considerando todas las restricciones, sigue que

$$\operatorname{Rec}(f) =]0, \sqrt{2}]$$

Ejercicio 3.3. Sean $A, B \subseteq \mathbb{R}$. Considere la función $f: A \to B$ definida por

$$f(x) = -3^{|x-1|-3} + \frac{1}{3}$$

- a) Determine el conjunto $C = \{x \in \mathbb{R} : f(x) = 0\}.$
- b) Escribe la función f por tramos.

Solución:

a) Notar que,

$$f(x) = 0 \Leftrightarrow -3^{|x-1|-3} + \frac{1}{3} = 0$$

Usando inverso aditivo tenemos que $3^{-1} = 3^{|x-1|-3}$.

Además, como la función exponencial con base 3 es una función inyectiva se tiene que |x-1|-3=-1, es decir, |x-1|=2.

Usando definición del valor absoluto se concluye que, las soluciones son x = -1 y x = 3.

Por lo tanto $C = \{-1, 3\}.$

b) Por definición del valor absoluto se tiene que,

$$si x < 1, |x - 1| = -x + 1$$

$$y \text{ si } x > 1, |x - 1| = x - 1$$

Por lo que la función f corresponde a

$$f(x) = \begin{cases} -3^{-x+1-3} + \frac{1}{3} & \text{si } x < 1 \\ -3^{x-1-3} + \frac{1}{3} & \text{si } x \ge 1 \end{cases} = \begin{cases} -3^{-2-x} + \frac{1}{3} & \text{si } x < 1 \\ -3^{x-4} + \frac{1}{3} & \text{si } x \ge 1 \end{cases}$$

4 Limites

4.1 Teoría

A continuación se presentan algunas propiedades y definiciones a considerar para la realización de los siguientes ejercicios.

Productos notables:

a)
$$a^2 - b^2 = (a - b)(a + b)$$

b)
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

c)
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

Identidades trigonométricas:

a)
$$sen^2(\alpha) + cos^2(\alpha) = 1$$

b)
$$sen(\alpha \pm \beta) = sen(\alpha) cos(\beta) \pm sen(\beta) cos(\alpha)$$

c)
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

Definición 4.1 (Límite). Sea $f: I \to \mathbb{R}$, una función definida en un intervalo abierto I alrededor de x_0 . Decimos que el límite de f(x) cuando x se aproxima a x_0 es el número L y escribimos:

$$\lim_{x \to x_0} f(x) = L$$

Observación 4.2. Álgebra de límites:

Sean $\lim_{x\to x_0} f(x) = L$ y $\lim_{x\to x_0} g(x) = M$, donde L, M y x_0 son números reales, entonces se verifican las siguientes propiedades:

1. Regla de la suma y diferencia:

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = L \pm M$$

2. Regla de la multiplicación:

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = L \cdot M$$

3. Regla del cociente:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{L}{M}, M \neq 0$$

Definición 4.3 (Existencia del límite). Sea $f: I \to \mathbb{R}$ definida en un intervalo abierto I. El $\lim_{x \to x_0} f(x)$ existe, si y sólamente si, $\lim_{x \to x_0^+} f(x)$ y $\lim_{x \to x_0^-} f(x)$ existen y son iguales.

Definición 4.4 (Continuidad de funciones). Sea $f:I\subset\mathbb{R}\to\mathbb{R}$ definida en un intervalo I. Diremos que f es continua en el punto $c\in I$ si se cumplen las siguientes condiciones:

- 1. f(c) está definida.
- 2. $\lim_{x \to c} f(x)$ existe.
- $3. \lim_{x \to c} f(x) = f(c).$

Límites a considerar:

$$\bullet \lim_{x \to 0} \frac{(e^x - 1)}{x} = 1$$

$$\bullet \lim_{x \to 0} \frac{\operatorname{sen}(x)}{x} = 1$$

$$\bullet \lim_{x \to 0} \frac{(1 - \cos(x))}{x} = 0$$

$$\bullet \lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

4.2 Ejercicios

Ejercicio 4.1. Determinar el valor de los siguientes límites algebraicos.

1.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[4]{x} - 1}$$

Solución: Al evaluar el límite anterior, resulta una indeterminación de la forma $\frac{0}{0}$

Si a la expresión anterior la multiplicamos por *unos convenientes*, creados a partir de los productos notables establecidos anteriormente, se obtiene:

$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[4]{x} - 1} \implies \lim_{x \to 1} \frac{(\sqrt[3]{x} - 1)}{(\sqrt[4]{x} - 1)} \cdot \frac{(\sqrt[3]{x^2} + \sqrt[3]{x} + 1)}{(\sqrt[3]{x^2} + \sqrt[3]{x} + 1)} \cdot \frac{(\sqrt[4]{x} + 1)}{(\sqrt[4]{x} + 1)}$$

$$= \lim_{x \to 1} \frac{(x - 1)}{(\sqrt{x} - 1)} \cdot \frac{(\sqrt[4]{x} + 1)}{(\sqrt[3]{x^2} + \sqrt[3]{x} + 1)} \cdot \frac{(\sqrt{x} + 1)}{(\sqrt{x} + 1)}$$

$$= \lim_{x \to 1} \frac{(\sqrt[4]{x} + 1)}{(\sqrt[4]{x} - 1)} \cdot \frac{(\sqrt[4]{x} + 1)}{(\sqrt[3]{x^2} + \sqrt[3]{x} + 1)} \cdot \frac{(\sqrt{x} + 1)}{1}$$

$$= \lim_{x \to 1} \frac{(\sqrt[4]{x} + 1) \cdot (\sqrt{x} + 1)}{(\sqrt[3]{x^2} + \sqrt[3]{x} + 1)}$$

$$= \frac{4}{3}$$

Ejercicio 4.2.
$$\lim_{x\to 5} \frac{x^2 - 3x - 10}{25 - x^2}$$

Solución:

Al evaluar el límite anterior, resulta una indeterminación de la forma $\frac{0}{0}$.

$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{25 - x^2} \implies \lim_{x \to 5} \frac{(x - 5)(x + 2)}{(5 - x)(5 + x)}$$

$$= \lim_{x \to 5} \frac{\cancel{(x - 5)}(x + 2)}{-\cancel{(x - 5)}(5 + x)}$$

$$= \lim_{x \to 5} \frac{(x + 2)}{-(5 + x)}$$

$$= -\frac{7}{10}$$

Ejercicio 4.3.
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

Solución: Al evaluar el límite anterior, resulta una indeterminación de la forma $\frac{0}{0}$

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \implies \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \cdot \frac{(\sqrt{1+x} + \sqrt{1-x})}{(\sqrt{1+x} + \sqrt{1-x})}$$

$$= \lim_{x \to 0} \frac{(1+x) - (1-x)}{x \cdot (\sqrt{1+x} + \sqrt{1-x})}$$

$$= \lim_{x \to 0} \frac{2x}{x \cdot (\sqrt{1+x} + \sqrt{1-x})}$$

$$= \lim_{x \to 0} \frac{2}{(\sqrt{1+x} + \sqrt{1-x})}$$

$$= \frac{2}{2} = 1$$

Ejercicio 4.4. Si $\lim_{u\to 0} \frac{e^u-1}{u}=1$, entonces determine el valor del siguiente límite: $\lim_{x\to 0} \frac{e^{bx}-e^{ax}}{x(b-a)}$

Solución: Al evaluar el límite anterior, resulta una indeterminación de la forma $\frac{0}{0}$

$$\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x(b - a)} \implies \lim_{x \to 0} \frac{e^{bx} - e^{ax} + 1 - 1}{x(b - a)}$$

$$= \lim_{x \to 0} \frac{(e^{bx} - 1) - (e^{ax} - 1)}{x(b - a)}$$

$$= \frac{1}{(b - a)} \cdot \lim_{x \to 0} \frac{(e^{bx} - 1) - (e^{ax} - 1)}{x}$$

$$= \frac{1}{(b - a)} \cdot \left[b \cdot \lim_{x \to 0} \frac{(e^{bx} - 1)}{bx} - a \cdot \lim_{x \to 0} \frac{(e^{ax} - 1)}{ax} \right]$$

$$= \frac{1}{(b - a)} \cdot [b \cdot 1 - a \cdot 1]$$

$$= 1$$

Ejercicio 4.5.
$$\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$$

Solución:

Al evaluar el límite anterior, resulta una indeterminación de la forma $\frac{0}{0}$.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} \quad \Rightarrow \quad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} \cdot \frac{(1 + \cos(x))}{(1 + \cos(x))}$$

$$= \quad \lim_{x \to 0} \frac{1 - \cos^2(x)}{x^2 \cdot (1 + \cos(x))}$$

Usando la identidad fundamental, $sen^2(x) + cos^2(x) = 1 \Rightarrow sen^2(x) = 1 - cos^2(x)$, se obtiene:

$$= \lim_{x \to 0} \frac{\sin^2(x)}{x^2 \cdot (1 + \cos(x))}$$

$$= \lim_{x \to 0} \frac{\sin^2(x)}{x^2} \cdot \lim_{x \to 0} \frac{1}{(1 + \cos(x))}$$

$$= \lim_{x \to 0} \left(\frac{\sin(x)}{x}\right)^2 \cdot \lim_{x \to 0} \frac{1}{(1 + \cos(x))}$$

$$= 1 \cdot \lim_{x \to 0} \frac{1}{(1 + \cos(x))}$$

$$= \frac{1}{1 + 1}$$

$$= \frac{1}{2}$$

Ejercicio 4.6.
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos(x)}{\left(x - \frac{\pi}{2}\right)}$$

Solución: Al evaluar el límite anterior, resulta una indeterminación de la forma $\frac{0}{0}$

Para solucionar este problema, usaremos el cambio de variable.

Sea
$$u = \left(x - \frac{\pi}{2}\right) \Rightarrow x = \left(u + \frac{\pi}{2}\right)$$

Por otro lado, si $x \to \frac{\pi}{2}$ entonces $u \to 0$.

Así, al reescribir el límite usando la variable u, tenemos:

$$\lim_{x \to \pi/2} \frac{\cos(x)}{(x - \pi/2)} \implies \lim_{u \to 0} \frac{\cos(u + \pi/2)}{u}$$

$$= \lim_{u \to 0} \frac{\cos(u)\cos(\pi/2)}{u} - \sin(u)\sin(\pi/2)$$

$$= \lim_{u \to 0} \frac{-\sin(u)}{u}$$

$$= -1$$

Ejercicio 4.7. Sea $f(x) = 5x^2 - 1$. Utilizando la derivada por definición, determine su valor cuando x = 3.

Solución:

Si
$$f(x) = 5x^2 - 1 \implies f'(x) = \lim_{h \to 0} \frac{(5(x+h)^2 - 1) - (5x^2 - 1)}{h}$$

$$= \lim_{h \to 0} \frac{5x^2 + 10xh + 5h^2 - 1 - 5x^2 + 1}{h}$$

$$= \lim_{h \to 0} \frac{\cancel{K}(5h + 10x)}{\cancel{K}}$$

$$= \lim_{h \to 0} (5h + 10x)$$

$$= 10x$$

Así, f'(x) = 10x y para x = 3, entonces f'(3) = 30.

Ejercicio 4.8.
$$\lim_{x\to 0} \frac{x-\sin(2x)}{x+\sin(3x)}$$

Solución:

Al evaluar el límite anterior, resulta una indeterminación de la forma $\frac{0}{0}$.

$$\lim_{x \to 0} \frac{x - \sec(2x)}{x + \sec(3x)} \implies \lim_{x \to 0} \frac{(x - \sec(2x))}{(x + \sec(3x))} \cdot \frac{\left(\frac{1}{3x} \cdot \frac{1}{2x}\right)}{\left(\frac{1}{3x} \cdot \frac{1}{2x}\right)}$$

$$= \lim_{x \to 0} \frac{\left(\frac{x - \sin(2x)}{2x}\right) \cdot \frac{1}{3x}}{\left(\frac{x + \sin(3x)}{3x}\right) \cdot \frac{1}{2x}}$$

$$= \lim_{x \to 0} \frac{\left(\frac{1}{2} - \frac{\operatorname{sen}(2x)}{2x}\right) \cdot \frac{1}{3x}}{\left(\frac{1}{3} + \frac{\operatorname{sen}(3x)}{3x}\right) \cdot \frac{1}{2x}}$$

$$= \frac{\frac{1}{3} \cdot \left(\frac{1}{2} - 1\right)}{\frac{1}{2} \cdot \left(\frac{1}{3} + 1\right)}$$

$$= \frac{2}{3} \cdot \frac{-\frac{1}{2}}{\frac{4}{3}}$$

$$= -\frac{1}{4}$$

5 Aplicaciones de la derivada

5.1 Ejercicios

Ejercicio 5.1. Una barra de acero tiene una longitud de 20 m, determinar las dimensiones en que debe doblarse de manera que forme un rectángulo de área máxima.

Solución: En primer lugar, se realizará la representación gráfica del problema:

El área a maximizar será dada por el rectángulo, $A_{max} = x \cdot u$.

Si el largo de la barra L es de 20 m, el perímetro del rectángulo es L=2x+2u.

Así,
$$20 = 2x + 2u \Rightarrow 10 = x + u$$
.

Despejamos u, u = 10 - x y reemplazamos en el área a máximizar.

$$A_{max} = x \cdot (10 - x) = 10x - x^2$$

Derivamos e igualamos a cero para obtener su punto crítico.

$$A'_{max} = 0 \Rightarrow 10 - 2x = 0 \Rightarrow x = 5.$$

Si x = 5 entonces u = 5.

Por lo tanto, el área máxima tendrá lados de 5 y 5 cm.

Ejercicio 5.2. Un herrero precisa fabricar marcos metálicos para retratos. Uno debe ser cuadrado y el otro circular, pero sólo dispone de una barra de longitud $L=8\ m$. De qué manera debería cortar la barra para que el área del cuadrado y del círculo sea mínima.

Solución: En primer lugar, se realizará la representación gráfica del problema:

El área a minimizar corresponde a la suma de las áreas de cada figura,

$$A_{min} = A_{cuadrado} + A_{circulo}.$$

Las respectivas áreas están dadas por:

$$A_{cuadrado} = s^2, A_{circulo} = \pi \cdot r^2$$
 y $L = x + u.$

Por otra parte, los perímetros de las figuras están dados por:

$$P_{cuadrado} = 4s = x \text{ y } P_{circulo} = 2\pi r = u.$$

Entonces,
$$s = \frac{x}{4}$$
 y $r = \frac{u}{2\pi}$.
Así,

$$A_{min} = A_{cuadrado} + A_{circulo} = s^2 + \pi \cdot r^2$$

$$= \left(\frac{x}{4}\right)^2 + \pi \cdot \left(\frac{u}{2\pi}\right)^2$$

$$= \frac{x^2}{16} + \pi \cdot \frac{u^2}{4\pi^2}$$

$$= \frac{x^2}{16} + \frac{u^2}{4\pi}$$

Por lo tanto,

$$A_{min} = \frac{x^2}{16} + \frac{u^2}{4\pi}$$

De $L = x + u \Rightarrow u = L - x$. Así, tenemos:

$$A_{min} = \frac{x^2}{16} + \frac{(L-x)^2}{4\pi} = \frac{x^2}{16} + \frac{L^2 - 2Lx + x^2}{4\pi} = \frac{\pi x^2 + 4L^2 - 8Lx + 4x^2}{16\pi}$$

Derivando e igualando a cero, tenemos:

$$A'_{min} = 0 \Rightarrow \frac{1}{16\pi} \cdot (2\pi x - 8L + 8x) = 0 \Rightarrow 2\pi x - 8L + 8x = 0$$
$$\Rightarrow 2\pi x + 8x = 8L$$
$$\Rightarrow 2x(\pi + 4) = 8L$$
$$x = \frac{8L}{2(\pi + 4)} = \frac{4L}{\pi + 4}$$

Por lo tanto, si
$$L=8$$
 y $\pi\approx 3,14, x=\frac{4.8}{3,14+4}=\frac{32}{7,14}\approx 4,48$ y $u=8-4,48\approx 3,51$.

Por lo tanto, el herrero debe cortar la barra cuando alcanza aproximadamente los $4{,}48~\mathrm{m}$ de $8~\mathrm{m}.$

Ejercicio 5.3. Hallar las dimensiones del cilindro de máximo volumen, que se inscribe en una esfera de radio R = 4 cm.

Solución: En primer lugar, se realizará la representación gráfica del problema:

Se debe maximizar el volumen del cilindro, que está dado por:

$$V_{max} = \pi \cdot r^2 \cdot h$$

Notar que el cilindro cuyo radio r, el radio de la esfera R y la mitad de la altura $\frac{h}{2}$, forman un triángulo rectángulo de hipotenusa R.

Con el triángulo rectángulo y utilizando el teorema de Pitágoras, se tiene que:

$$R^2 = r^2 + \left(\frac{h}{2}\right)^2 \Rightarrow r^2 = R^2 - \frac{h^2}{4}.$$

Así, reemplazando en el volumen,

$$V_{max} = \pi \cdot \left(R^2 - \frac{h^2}{4}\right) \cdot h = \pi \cdot R^2 \cdot h - \frac{\pi}{4}h^3$$

Derivando e igualando a cero,

$$V'_{max} = 0 \Rightarrow \pi \cdot R^2 - \frac{3\pi}{4}h^2 = 0 \Rightarrow h^2 = \frac{\pi \cdot R^2}{\frac{3}{4}\pi} = \frac{4R^2}{3}$$

Finalmente,

$$h^2 = \frac{4}{3}R^2 \Rightarrow h = \sqrt{\frac{4}{3}R^2} = \frac{2}{\sqrt{3}}R.$$

Si R=4, entonces

$$h = \frac{2}{\sqrt{3}} \cdot 4 = \frac{8}{\sqrt{3}} \quad \text{y} \quad r^2 = (4)^2 - \frac{\left(\frac{8}{\sqrt{3}}\right)^2}{4} = 16 - \frac{\frac{64}{3}}{4} = 16 - \frac{16 \cdot \cancel{4}}{3 \cdot \cancel{4}} = \frac{48 - 16}{3} = \frac{32}{3}.$$

Luego,
$$r^2 = \frac{32}{3} \Rightarrow r = \sqrt{\frac{32}{3}}$$
.

Por lo tanto, el cilindro tiene una altura de $h = \frac{8}{\sqrt{3}}$ cm y $r = \sqrt{\frac{32}{3}}$ cm.

Ejercicio 5.4. Hallar las dimensiones del cono de volumen máximo, que se inscribe en una esfera de radio $R=4\ cm$

Solución: En primer lugar, se realizará la representación gráfica del problema:

Se debe maximizar el vólumen del cono,

$$V_{max} = \frac{\pi \cdot r^2 \cdot h}{3}$$

Por tro lado, en la parte inferior de la figura, se forma un triángulo rectángulo de hipotenusa R y utilizando el teorema de Pitágoras, se tiene que $r^2 + x^2 = R^2$. Además, la altura h se forma de R y u, concluyendo que h = u + R.

De
$$h = u + R \Rightarrow u = h - R$$
 y de $r^2 + u^2 = R^2 \Rightarrow r^2 = R^2 - u^2$

Así, utilizando lo anterior

$$r^{2} = R^{2} - (h - R)^{2} = R^{2} - (h^{2} - 2hR + R^{2})$$

$$= R^{2} - h^{2} + 2hR - R^{2}$$

$$= 2hR - h^{2}$$

Reemplazando r^2 en el volumen a maximizar, resulta:

$$V_{max} = \frac{\pi \cdot r^2 \cdot h}{3} \Rightarrow V_{max} = \frac{\pi \cdot (2hR - h^2) \cdot h}{3} = \frac{2\pi Rh^2 - \pi h^3}{3}$$

Derivando e igualando a cero,

$$V'_{max} = 0 \implies \frac{2\pi R \cdot (2h) - \pi (3h^2)}{3} = 0$$

$$\Rightarrow \frac{h(4\pi R - 3\pi h)}{3} = 0$$

$$\Rightarrow h(4\pi R - 3\pi h) = 0$$

$$\Rightarrow h = 0 \text{ ó } 4\pi R - 3\pi h = 0$$

$$\Rightarrow h = \frac{4\pi R}{3\pi} = \frac{4}{3}R.$$

De los resultados de h, se descarta h = 0.

Finalmente, si $R=4~{\rm cm}h=\frac{4}{3}\cdot 4=\frac{16}{3}$ y ree
emplanzando en $r^2,$

$$r^{2} = 2 \cdot hR - h^{2} \Rightarrow r^{2} = 2 \cdot \frac{16}{3} \cdot 4 - \left(\frac{16}{3}\right)^{2}$$

$$= \frac{128}{3} - \frac{256}{9}$$

$$= \frac{128}{9}$$

$$\Rightarrow r = \sqrt{\frac{128}{9}} = \frac{8\sqrt{2}}{3}$$

Por lo tanto, las medidas del cono de volunen máximo serán $h = \frac{16}{3}$ cm y $r = \frac{8\sqrt{2}}{3}$ cm.

Ejercicio 5.5. Hallar el cono de volumen mínimo, circunscrito en una esfera de radio R = 5 cm Solución: En primer lugar, se realizará la representación gráfica del problema:

Se debe minimizar el volumen del cono,

$$V_{min} = \frac{\pi \cdot r^2 \cdot h}{3}$$

El cono tiene como variables la altura h, el radop r y su generatriz u. Con estos datos y utilizando el teorema de pitágoras, tenemos que: $u^2 = h^2 + r^2$.

Consideremos las siguientes figuras para la semejanza de triángulos y su posterior relación,

Triángulo formado por h, r y u.

A partir del triángulo anterior se forma:

Así,

$$\frac{u}{r} = \frac{h - R}{R}$$

Si $u^2 = h^2 + r^2 \Rightarrow u = \sqrt{h^2 + r^2}$ la expresión anterior resulta,

$$\frac{\sqrt{h^2 + r^2}}{r} = \frac{h - R}{R}$$
 Se eleva al cuadrado.

$$\frac{h^2 + r^2}{r^2} = \frac{(h - R)^2}{R^2}$$

$$\Rightarrow R^2 \cdot (h^2 + r^2) = r^2 \cdot (h^2 - 2hR + R^2)$$
 Se distribuye R^2 y r^2 .

$$R^2h^2 + R^2r^2 = r^2h^2 - 2hRr^2 + r^2R^2$$

$$R^2h^2 = r^2h^2 - 2hRr^2$$

$$R^2h^2 = r^2(h^2 - 2hR)$$

$$\Rightarrow r^2 = \frac{R^2h^2}{h^2 - 2hR}$$

Así, reemplazando r^2 en el volumen, resulta.

$$V_{\min} = \frac{\pi \cdot r^2 \cdot h}{3} \Rightarrow V_{\min} = \pi \cdot \left(\frac{R^2 h^2}{h^2 - 2hR}\right) \cdot h = \frac{\pi R^2 \cancel{k}^8}{\cancel{k}(h-2R)} = \frac{\pi R^2 h^2}{(h-2R)}$$

Derivando e igualando a cero,

$$V'_{\min} = 0 \implies \frac{(2\pi R^2 h) (h - 2R) - (\pi R^2 h^2) \cdot (1)}{(h - 2R)^2} = 0$$

$$\Rightarrow 2\pi R^2 h \cdot (h - 2R) - \pi R^2 h^2 = 0$$

$$\Rightarrow 2\pi R^2 h^2 - 4\pi R^3 h - \pi R^2 h^2 = 0$$

$$\Rightarrow \pi R^2 h^2 - 4\pi R^3 h = 0$$

$$\Rightarrow h (\pi R^2 h - 4\pi R^3) = 0$$

$$\Rightarrow h = 0 \circ \pi R^2 h - 4\pi R^3 = 0$$

$$\Rightarrow h = \frac{4\pi R^3}{\pi R^2} = 4R.$$

Así, h = 4R.

Finalmente si R = 5, h = 4.5 = 20 y,

$$r^{2} = \frac{R^{2}h^{2}}{h^{2} - 2hR} \implies r^{2} = \frac{(5)^{2} \cdot (20)^{2}}{(20)^{2} - 2 \cdot (20) \cdot 5} = \frac{10000}{200} = 50.$$

$$\Rightarrow r^{2} = 50$$

$$\Rightarrow r = 5\sqrt{2}$$

$$y u = \frac{r \cdot (h - R)}{R} \Rightarrow u = \frac{5\sqrt{2} \cdot (20 - 5)}{5} = 15\sqrt{2}.$$

Por lo tanto, las medidas del cono son $h=20~{\rm cm}, r=5\sqrt{2}~{\rm cm}$ y $u=15\sqrt{2}~{\rm cm}.$

