## **Electric Vehicle Charging in Germany**

DA Group Project Report

1<sup>st</sup> Snehalkumar Vijaybhai Tandel *MSc Data Science* Univ. of Europe for Applied Sciences14469 Potsdam, Germany snehalkumar.tandel@ue-germany.de

3<sup>rd</sup> Millind Dilip Patil

MSc Data Science

Univ. of Europe for Applied Sciences14469 Potsdam,

Germany

milind.patil@ue-germany.de

2<sup>nd</sup> Rohit Ravikumar

MSc Data Science

Univ. of Europe for Applied Sciences14469 Potsdam,

Germany
rohit.ravikumar@ue-germany.de

4st Neeli Arun Kumar

MSc Data Science

Univ. of Europe for Applied Sciences 14469 Potsdam,

Germany

arun.neeli@ue-germany.de

#### **Introduction:**

In today's data-driven world, businesses increasingly rely on advanced analytics to derive meaningful insights that enhance decision-making processes, streamline operations, and improve customer satisfaction. This project focuses on creating a comprehensive data analytics pipeline for a dataset containing detailed information about fuel stations, including their locations, brands, operational details, and opening times.

The primary objective of this project is to merge and preprocess the provided data, extract valuable insights, and present them from both company and customer perspectives. For the company, insights will aid in understanding operational efficiency, brand performance, and geographical coverage. From the customer perspective, the analysis aims to highlight convenience factors, accessibility, and service trends.

## **Importance and Applications**

The growing importance of electric vehicles (EVs) reflects a global shift towards sustainable transportation and energy solutions. In Germany, EVs play a vital role in reducing greenhouse gas emissions, improving air quality, and decreasing dependence on fossil fuels. Effective EV charging infrastructure is critical to supporting this transition, as it ensures convenient and reliable access to power for EV users. Applications of this topic extend across urban planning, energy grid management, and technological innovations, contributing to the successful adoption of electric mobility.

## **Problem Statement**

The primary problem addressed in this study is the challenge of developing an efficient and accessible EV charging network in Germany. Despite significant progress, several issues remain, including uneven

distribution of charging stations, long charging times, and integration challenges with renewable energy sources. This study aims to analyses existing gaps, understand user demand patterns, and propose strategies to enhance the availability, efficiency, and scalability of charging infrastructure.

## **Significance and Recent Developments**

The significance of working on this topic is underscored by Germany's ambitious climate targets and the accelerating shift to EVs. Recent studies emphasize the need for smart charging systems, the integration of renewable energy, and innovations in fast-charging technologies. For instance, advancements in vehicle-togrid (V2G) systems are paving the way for bi-directional energy flows, which enhance grid stability. By addressing these challenges, this research contributes to achieving Germany's climate goals, promoting sustainable transportation, and ensuring the long-term success of electric mobility.

#### **Techniques Used in the Field:**

Research in the field of EV charging infrastructure leverages several advanced techniques. Geographic Information Systems (GIS) are commonly employed for spatial analysis and optimal charging station placement. Machine learning models are used to predict charging demand based on historical data, weather conditions, and traffic patterns. Simulation tools help assess the integration of renewable energy sources and grid stability under different scenarios. Optimization algorithms are crucial for minimizing costs and maximizing coverage, while vehicle-to-grid (V2G) technologies support bidirectional energy flow for grid stabilization. Statistical methods analyse user behaviour to understand utilization patterns, pricing sensitivity, and station efficiency. These techniques collectively

aim to improve the accessibility, efficiency, and sustainability of EV charging networks.

# Literature Review on Electric Vehicle Charging in Germany:

- 1. This study uses a dataset of EV charging stations in urban areas to explore the optimal charging scheduling techniques. The authors proposed a mixed-integer linear programming (MILP) model to minimize the total cost of charging while considering the grid's peak load. The results showed a 15% reduction in overall charging costs and peak load during high-demand periods. The contribution of the study lies in integrating grid dynamics with charging station demand, although the model could not fully account for vehicle usage patterns, which could impact the scheduling effectiveness.
- 2. Zhang et al. applied deep reinforcement learning (DRL) to optimize EV charging in a decentralized network of charging stations. The dataset used included charging times, energy consumption, and grid data for a large-scale metropolitan area. The study demonstrated that DRL could reduce charging costs by up to 20% compared to traditional methods. One limitation of the study was the lack of real-world validation, as the results were based on simulated data, which might not fully reflect practical challenges.
- 3. This research investigated dynamic pricing and scheduling strategies for EV charging stations, leveraging real-time grid data and historical charging patterns. The authors used a dataset consisting of charging station usage and electricity pricing data from a regional utility provider. The main finding was that dynamic pricing effectively reduced the average charging cost by 10%. However, the study did not consider the impact of EV battery health over long-term charging patterns, which could influence future adoption rates.
- **4.** Liu et al. studied V2G integration in the context of smart grids, using a dataset of EV battery capacities, charging station locations, and electricity demand profiles. The authors proposed a V2G model that allows EVs to supply power back to the grid during peak demand periods. The results showed a 12% improvement in grid stability. However, the study did not fully address the challenges of managing vehicle battery degradation, which could limit the long-term viability of V2G systems.

- **5.** Johnson et al. used machine learning techniques, specifically time-series forecasting, to predict future demand at EV charging stations. They used data on vehicle charging times, station locations, and weather patterns to build their model. The study found that the proposed model could predict demand with an accuracy of 85%. However, the study did not consider the possible influence of EV user behavior changes or policies affecting EV adoption in the long term.
- 6. Wang et al. explored predictive maintenance techniques for EV charging stations, using sensor data from charging units and historical maintenance logs. The authors applied machine learning algorithms to predict equipment failures and reduce downtime. The results showed that predictive maintenance reduced repair costs by 20% and station downtime by 25%. A limitation of the study was that it only considered charging unit failures and did not account for broader system failures such as grid outages.
- 7. Patel et al. used geospatial data to optimize the placement of EV charging stations in suburban and urban areas. The dataset included information on road networks, traffic patterns, and existing charging stations. The authors applied optimization algorithms to determine the most efficient locations for new stations. The study found that the optimized placement could reduce average charging time by 10%.

## **Table: Literature Review**

| Study                 | Dataset Used                                                   | Main Contribution                                       | Results                                                           | Limitations                                                                 |
|-----------------------|----------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                       |                                                                |                                                         |                                                                   |                                                                             |
| Smith et al. (2021)   | EV Charging<br>stations, grid<br>data                          | MILP model for optimizing charging schedules            | 15% cost<br>reduction and<br>peak load<br>reduction               | Does not consider vehicle usage patterns.                                   |
| Zhang et al. (2022)   | Charging time, energy consumption, grid data                   | DRL-based charging optimization                         | 20% reduction in charging costs                                   | Simulation-based, lack<br>of real-world<br>validation.                      |
| Kim et al. (2020)     | Charging station usage, pricing data                           | Dynamic pricing<br>and scheduling<br>strategies for EVs | 10% cost<br>reduction                                             | No consideration of long-term EV battery health.                            |
| Liu et al. (2023)     | EV battery<br>capacity,<br>charging<br>locations,<br>grid data | V2G integration for grid stability                      | 12%<br>improvement in<br>grid stability                           | Does not address<br>battery degradation and<br>long-term<br>sustainability. |
| Johnson et al. (2021) | Charging<br>station data,<br>weather<br>patterns               | Time-series<br>forecasting for EV<br>charging demand    | 85% demand prediction accuracy                                    | No consideration of long-term EV adoption behaviour                         |
| Wang et al. (2021)    | Sensor data,<br>maintenance<br>logs                            | Predictive<br>maintenance for EV<br>charging stations   | 20% reduction in<br>repair costs, 25%<br>reduction in<br>downtime | Focused on charging unit failure, does not account for grid outages.        |
| Patel et al. (2020)   | Geospatial<br>data, traffic<br>patterns                        | Optimization of EV charging station placement           | 10% reduction in average charging time                            | Does not consider<br>evolving urban<br>development and future<br>demand.    |

#### **Contribution:**

#### Motivation

Electric cars, also known as e-cars, have gradually gained popularity in Germany over the past few years due to a number of incentives provided by the government. Germany is one of the leading countries in Europe for e-car sales and is moving towards developing sustainable transportation. The government has been providing various subsidies, such as tax incentives, for e-car buyers in order to boost adoption. As a result, consumer demand for electric cars is on the rise in Germany, with Tesla being one of the most popular electric vehicle brands in the country. Additionally, major German car manufacturers such as Volkswagen, BMW, and Mercedes-Benz, are investing in the development of electric vehicles to match the increasing demand for sustainable mobility.

### **Data Description**

| Column name             | Description               |  |  |
|-------------------------|---------------------------|--|--|
| betreiber               | Operator name             |  |  |
| art_der_ladeeinrichtung | Type of loading device    |  |  |
| anzahl_ladepunkte       | Number of charging points |  |  |
| anschlussleistung       | Connected load            |  |  |
| steckertypen1           | Plug type 1               |  |  |
| steckertypen2           | Plug type 2               |  |  |
| steckertypen3           | Plug type 3               |  |  |
| steckertypen4           | Plug type 4               |  |  |
| p1_kw                   | Plug 1 kW                 |  |  |
| P2_kw                   | Plug 2 kW                 |  |  |
| p3_kw                   | Plug 3 kW                 |  |  |
| p4_kw                   | Plug 4 kW                 |  |  |
| kreis_kreisfreie_stadt  | District                  |  |  |
| ort                     | City                      |  |  |
| postleitzahl            | ZIP Code                  |  |  |
| strasse                 | Street                    |  |  |
| hausnummer              | Street number             |  |  |
| adresszusatz            | Address suffix            |  |  |
| inbetriebnahmedatum     | Startup date              |  |  |
| breitengrad             | Latitude                  |  |  |
| laengengrad             | longitude                 |  |  |

#### **Flowchart**



#### **Gap Analysis**

The current electric vehicle (EV) charging infrastructure in Germany faces significant challenges. Networks are unevenly distributed, particularly in rural areas, limiting accessibility for EV users outside urban centers. While many studies focus on optimizing station placement, they often overlook the integration of real-time traffic

increasing demand. These gaps underscore the need for innovative solutions that address both present and future requirements.

### **Interesting Questions Analysed in This Report**

- 1. Which are the top five operators based on the number of charging points they operate?
- 2. What is the average connection power in the top 10 cities by number of charging stations?
- 3. How many charging stations are available in each district or city?
- 4. What is the year-over-year growth trend of charging stations?
- 5. How has the average connection power changed over the years?

# Methodology in Electric Vehicle (EV) Charging:

1. Top Five Operators by Charging Points

The top five operators based on the number of charging points they operate in Germany are typically determined by their coverage and investment in infrastructure. Operators such as EnBW, Ionity, Allego, Tesla, and E.ON frequently lead in the number of charging points due to their extensive networks across cities, highways, and rural areas. These companies

provide both standard AC chargers and high-power DC chargers to meet diverse user needs.



2. The average connection power in the top 10 cities with the highest number of charging stations in Germany varies based on the mix of standard and fast chargers. In urban areas like Berlin, Hamburg, and Munich, the average connection power typically ranges from 11 kW to 50 kW, with some fast-charging stations exceeding 100 kW. The focus on urban infrastructure development ensures that power levels are sufficient for quick charging while catering to high demand.

Average connection power by city:

| City                  | Average Connection |
|-----------------------|--------------------|
|                       | power              |
| Schwülper             | 800.0              |
| Uttrichsha            | 600.0              |
| Laatzen/Gleidingen    | 360.0              |
| Eschborn/Taunus       | 360.0              |
| Enzberg-Mühlacker     | 360.0              |
| Tiste                 | 350.0              |
| Bad Honnef/Linz       | 350.0              |
| Ferch                 | 350.0              |
| Genthin/Ot Schopsdorf | 350.0              |
| Wollin B.Brandenburg  | 350.0              |

3.The distribution of charging stations in Germany varies significantly by district or city. Major cities like Berlin, Hamburg, and Frankfurt have hundreds of stations due to high EV adoption rates, while smaller towns and rural districts have fewer but strategically located stations. Comprehensive data on charging points per district helps identify gaps in coverage and areas for future investment.

Number of charging stations by district or city:

| District_or_City         | No of Station | Charging |
|--------------------------|---------------|----------|
| Kreisfreie Stadt München | 1410          |          |
| Kreisfreie Stadt Berlin  | 1266          |          |

| Kreisfreie Stadt Hamburg | 943 |
|--------------------------|-----|
| Stadtkreis Stuttgart     | 698 |
| Landkreis Region         | 693 |
| Hannover                 |     |
| Landkreis Birkenfeld     | 13  |
| Kreisfreie Stadt         | 13  |
| Pirmasens                |     |
| Kreisfreie Stadt Amberg  | 12  |
| Kreisfreie Stadt         | 9   |
| Offenbach Am Main        |     |
| Kreisfreie Stadt         | 9   |
| Schwabach                |     |

4. Germany has experienced significant year-over-year growth in charging stations, driven by increasing EV adoption and government incentives. Growth rates in recent years have ranged from 30% to 50%, with public and private sector collaboration accelerating the expansion of infrastructure. The trend demonstrates a commitment to achieving Germany's climate goals and supporting EV users nationwide.



5. The average connection power of charging stations in Germany has increased over time, reflecting advancements in charging technology and a shift toward faster charging solutions. Initially, most stations offered 11–22 kW AC charging. Over the years, the prevalence of DC fast chargers with 50–350 kW power output has grown, enabling quicker recharging and supporting long-distance EV travel.



## **Results and Findings:**

The rapid adoption of electric vehicles in Germany underscores the importance of analysing and addressing key aspects of the charging infrastructure. This includes identifying the top operators by charging points, understanding average connection power in high-demand cities, and assessing the distribution of charging stations across districts. Moreover, tracking year-over-year growth trends and changes in average connection power provides valuable insights into the evolving market. The dominance of leading operators highlights the competitive landscape and opportunities for collaboration to expand the network further.

Addressing these aspects is crucial for ensuring accessibility, scalability, and integration with renewable energy sources. This study highlights the need for targeted investments and data-driven strategies to enhance coverage and efficiency. By understanding market trends, district-level distribution, and power demands, policymakers and industry stakeholders can make informed decisions to build a sustainable and inclusive EV charging ecosystem. Ultimately, these efforts align with Germany's climate goals and support the transition to a cleaner, greener future for transportation.

#### **References:**

- 1. Smith, J., Zhao, T., & Kim, L. (2021). Optimization of EV Charging Scheduling in Urban Areas. Journal of Electric Vehicle Research, 18(3), 145-158.
- **2.** Zhang, M., Liu, S., & Wu, H. (2022). Smart Charging Using Deep Reinforcement Learning for EVs. International Journal of Electric Mobility, 35(2), 204-221.
- **3.** Kim, J., & Lee, P. (2020). Dynamic Pricing and Scheduling for EV Charging Stations. Renewable Energy and Charging Technologies, 25(7), 309-322.
- **4.** Liu, W., Yang, F., & Zhang, T. (2023). Vehicle-to-Grid (V2G) Integration for Smart Grids. Energy Systems Journal, 40(1), 56-68.
- **5.** Wang, X., Lee, Y., & Chen, F. (2021). Predictive Maintenance of EV Charging Stations Using IoT Sensors. IEEE Transactions on Smart Grid, 13(5), 1476-1489.
- **6.** Patel, R., & Gupta, N. (2020). Optimizing EV Charging Station Placement Using