Linear regression

We have seen how a linear regression model can be used to fit a dataset of inputs and targets $\mathcal{D} := (\mathbf{x}_i, y_i)_{i=1}^N$

$$f_{\theta}(\mathbf{x}) = \theta^T \phi(\mathbf{x})$$

The parameters heta are chosen to minimise the mean squared error loss

$$L_{MSE}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(\mathbf{x}_i) - y_i)^2$$

It can be shown that the solution to this minimisation problem can be found explicitly, using the **normal equation**:

$$\hat{\theta} = (\Phi_{\mathbf{x}}^T \Phi_{\mathbf{x}})^{-1} \Phi_{\mathbf{x}}^T \mathbf{y}$$

Logistic regression

We can also consider classification problems, where we have a dataset of inputs and targets $\mathcal{D} := (\mathbf{x}_i, y_i)_{i=1}^N$ with $y_i \in \{0, 1\}$

A logistic regression classifier is defined as a model

$$f_{\theta}(\mathbf{x}) = \sigma(\theta^T \phi(\mathbf{x}))$$

where σ is the logistic sigmoid function, given by

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Now, the output of our model is interpreted as $p(y = 1 \mid x)$

The loss function that we wish to minimise is the binary cross entropy:

$$L_{BCE}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \{ y_i \log f_{\theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - f_{\theta}(\mathbf{x}_i)) \}$$

Logistic regression

$$L_{BCE}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \{ y_i \log f_{\theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - f_{\theta}(\mathbf{x}_i)) \}$$

Unlike linear regression, there is no closed-form solution of the logistic regression problem

However, it can be shown that the loss function is convex

To optimise the parameters of the logistic regression model, we need to resort to gradient-based optimisation

Gradient Descent

- Model $f_{ heta}$
- Loss function $L(\theta; \mathcal{D}) = \frac{1}{N} \sum_{x_i, y_i \in \mathcal{D}} l(y_i, f_{\theta}(x_i))$
- Initialise θ_0
- Gradient $\nabla_{\theta}L(\theta_{\theta}; \mathcal{D})$
- Update $\theta_{t+} = \theta_0 \theta_t \eta \nabla V_{\theta} (\theta_0 \theta_t D)$

Stochastic Gradient Descent

- Model f_{θ}
- Initialise θ_0

for t in range(num_iterations):

- Sample a minibatch \mathcal{D}_m
- Loss function $L(\theta_t; \mathcal{D}_m) = \frac{1}{M} \sum_{x_i, y_i \in \mathcal{D}_m} l(y_i, f_{\theta_t}(x_i))$
- Gradient $\nabla_{\theta}L(\theta_t; \mathcal{D}_m)$
- Update $\theta_{t+1} = \theta_t \eta \nabla_{\theta} L(\theta_t; \mathcal{D}_m)$

BGD vs SGD example

Artificial Neuron

Multilayer Perceptron with a Single Hidden Layer

Activation Functions

Tanh activation function

Sigmoid activation function

Softplus activation function

ReLU activation function

Multilayer Perceptron with a Single Hidden Layer

Multilayer Perceptron with Multiple Hidden Layers

$$\mathbf{h}^{(0)} := \mathbf{x}$$

$$\mathbf{h}^{(k)} = \sigma \left(\mathbf{W}^{(k-1)} \mathbf{h}^{(k-1)} + \mathbf{b}^{(k-1)} \right), \quad k = 1, \dots, L$$

$$\hat{y} = \sigma_{out} \left(\mathbf{w}^{(L)} \mathbf{h}^{(L)} + b^{(L)} \right)$$

Multilayer Perceptron with Multiple Outputs

Multilayer Perceptron with Softmax Output

$$\hat{y}_j := \frac{\exp(a_j^{(L+1)})}{\sum_i \exp(a_i^{(L+1)})}$$