Advanced MOSFETs and Novel Devices

Dr.-Ing. Josef Biba

2. Tutorial & Exercise

Band Diagrams

Exercise #2

1 Tutorial: Band Diagrams

2 Band structure: n – MOSFET

Band Diagrams - Overview

- 1 Tutorial: Band Diagrams
- 2 Band structure: n MOSFET

Electron Energy Levels

T = 0 K means that there is no thermal excitation energy.

is between the valence band and the

Fermi Energy is the energy of the highest occupied state at T = 0 K. All states above the Fermi Energy are unoccupied at T = 0 K. Conduction Band At T = 0 K there is no thermal excitation energy. E_{F} Fermi Energy Valence Band The Fermi level of an intrinsic semiconductor

conduction band.

n - Doping

$$E_F = E_i + k_B T \ln \left(\frac{n}{n_i}\right)$$

n: Concentration of free electrons.

Can move freely in crystal → fast.

n_i: Intrinsic carrier concentration.

E_i: Fermi energy in semiconductor without impurities.

$$E_F = E_i - k_B T \ln \left(\frac{p}{n_i}\right)$$

p: Concentration of free holes.
Holes move from bond to bond → slow.

n_i: Intrinsic carrier concentration.

E_i: Fermi energy in semiconductor without impurities.

Electrons and Holes

- Holes are quasiparticles for a missing electrons.
- Electrons move to lower unoccupied states.
- Holes move to higher occupied states.
- "Lowest" energy state for a hole is the valence band edge.

-
$$E_e = E_h$$

Holes act in E – and B – fields like positive charged electrons.

- N-doped wafer
- Band diagram exist for the whole wafer
- In this case x = 300 mm

Band Diagrams - Overview

- 1 Tutorial: Band Diagrams
- 2 Band structure: n MOSFET

- 1. Create the 1 D band structure of a n MOSFET in thermal equilibrium from source to drain (see next slide).
- 2. How does the band structure change when a positive voltage is applied to the gate?
- 3. Which voltage has to be applied to the drain to turn the MOSFET on?

The picture shows the cross section of a n – MOSFET. Draw the band diagram along the black cutline.

- Band diagrams for each region in the ground state and separated from each other.
- The next step is to get the regions in contact to each other and align Fermi levels.

- Then connect band edges with S shaped lines.
- Discontinuities exist only in heterostructures (semiconductor – oxide, III – V semiconductors).

• For band diagrams it is necessary to solve Poisson & Maxwell equations.

• Electrons can not cross the barrier in the conduction band. No electron current flows.

- When all free bonds got an electron, there are only negative charged, immobile acceptors left (negative charged boron atoms).
- Positive voltage lowers bands, negative voltage rises bands.
- When barrier is low enough, electrons can get over the barrier by thermal energy.

• Electrons can move from source to drain.

