

Min Gyu Choi

Kwangwoon University

Data Points for Torus

- ☐ Generate torus by revolving a circle around the y-axis
 - position p[36][18];
 - 18 curve points for the circle
 - 36 steps for sweeping around the y-axis

□ Use 'GL_POINTS' to draw 36 x 18 points

- Use 'GL_QUADS' to draw all the quads
- □ Turn on wireframe mode
 - glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
 - The color of the wireframe is black.
- □ Turn off wireframe mode
 - glPolygonMode(GL FRONT AND BACK, GL FILL)
 - The color of the quads is blue.
- Draw the torus with the quads and wireframe
 - Offsetting is required.

- ☐ Two-sided constant shading
 - Blue for outside
 - Red for inside
- ☐ How?
 - n: normal vector at each polygon
 - v: vector from the center of a polygon to COP
 - What is $(\mathbf{n} \cdot \mathbf{v})$?

- □ The program should be able to control the sweep angle using keyboard inputs.
 - 'a' key: increase the sweep angle by 10° around the y-axis
 - 's' key: decrease the sweep angle by -10° around the y-axis

- The program should be able to control the sweep angle using keyboard inputs.
 - 'j' key: increase the sweep angle by 20° around the z-axis
 - 'k' key: increase the sweep angle by -20° around the z-axis

Requirements

- □ Drawing the torus
 - Draw 36x18 data points using 'GL_POINTS': '1' key
 - Draw the normal vectors of the polygons: toggle with '6' key
 - Draw the normal vectors of the points: toggle with '7' key
 - Draw the wireframe only: '2' key
 - Draw the quads only: '3' key
 - Draw the quads and the wireframe: '4' key
- □ Two-sided constant shading
 - Two-sided constant shading with the wireframe: '5' key
- □ Sweep angle control around 2 different axes
 - Around the y-axis with the 'a', 's' keys
 - Around the z-axis with the 'j', 'k' keys