Mathematik fürs Informatikstudium und Abitur: Eine Zusammenfassung

Konstantin Lukas

Fassung vom 26. August 2021

Inhaltsverzeichnis

1	Mer	ngen	4
	1.1	Definierte Zahlenmengen	4
2	Eler	nentare Rechengesetze, -verfahren und -notationen	6
	2.1	Brüche dividieren	6
	2.2	Lösungsmenge	6
	2.3	Normalform	6
		2.3.1 p-q-Formel	7
	2.4	Intervalle	7
	2.5	Beträge	7
	2.6	Binomische Formeln	7
	2.7	Euklidischer Algorithmus	7
	2.8	Potenzgesetze	8
	2.9	Wurzelgesetze	9
		2.9.1 Wurzeltherme vereinfachen (Beispiele)	10
	2.10	Logarithmusgesetze	11
3	Vor	einfachungen zum Lösen von Gleichungen	12
J	3.1	8	12
	3.2		12
	5.2		12
		9	13
		9	13
	3.3		13
	ა.ა	Substitution	ΙJ
4	Ung	gleichungen	15
	4.1	Rechenregeln	15
	4.2	Quadratische Ungleichungen	15
	4.3		16
	4.4		16
	4.5		17
5	Line	eare Gleichungssysteme	20
9	5.1	Einsetzungsverfahren	
		<u> </u>	20 21

	5.3	Gauß-Verfahren	
	5.4	LGS mit Parameter	22
c	C		o 4
6			$\frac{24}{24}$
	6.1	O .	24
			24
			24
		,	25
	6.2		25
			25
		6.2.2 Kreis	26
	6.3	Rechnen mit Körpern (Formeln)	26
		6.3.1 Prisma	26
		6.3.2 Pyramide	27
		6.3.3 Zylinder	27
		6.3.4 Kegel	27
7	Vek	torgeometrie	2 8
	7.1	Rechnen mit Vektoren	29
	7.2	Ebenen	30
8	2D-	v	32
	8.1		32
		8.1.1 Monotonie	32
		8.1.2 Besondere Stellen	32
		8.1.3 Symmetrie	33
		8.1.4 Newtonverfahren	33
	8.2	Potenz- und Wurzelfunktionen	35
			35
			37
	8.3		37
	0.0		38
	8.4		40
	0.1		40
			41
		8	$41 \\ 42$
			43
		V	43 44
	0 5	9	$\frac{44}{45}$
	8.5		
	8.6	1	46
	0.7	1 0 0	46
	8.7		47
			47
	8.8		48
	8.9		48
	8.10	Kreisgleichungen	49
9	Diff	erenzialrechnung	50
9	9.1		50
	J.1		50
			51
		J.I.4 DIHUUUHUHUUUHU	υZ

	9.1.3	Extrem- und Wendepunkte	52
9.2	Limes:	Der Grenzwert	53
9.3	B Differe	enzierbarkeit	55
	9.3.1	Stetige Erweiterung	56
9.4	ł Tangei	ntengleichung	57
9.5	Kurvei	ndiskussion	58
	9.5.1	Symmetrie	58
	9.5.2	Nullstellen	58
	9.5.3	Schnittpunkt mit y-Achse	59
	9.5.4	Grenzverhalten	59
	9.5.5	Extrema	60
	9.5.6	Wendepunkte	61
	9.5.7	Tangentengleichungen der Wendepunkte	62
	9.5.8	Flächenberechnung	63
10 In	tegralre	chnung	65
10.	.1 Die St	ammfunktion	66
10.	.2 Integra	ation durch Substitution	67
	_	lle Integration	
10.	4 Die Fl	äche zwischen zwei Graphen	68

1 Mengen

Vereinigung

 $A \cup B := \{x \mid x \in A \ oder \ x \in B\}$

Durchschnitt

$$A \cap B := \{x \mid x \in A \ und \ x \in B\}$$

Differenz

$$A \setminus B := \{x \mid x \in A \ und \ x \notin B\}$$

Symmetrische Differenz

$$A\triangle B := \{x \mid (x \in A) \ \veebar \ (x \in B)\}$$

$$A\triangle B := \{x \mid (x \in A) \ \nleftrightarrow \ (x \in B)\}$$

1.1 Definierte Zahlenmengen

Natürliche Zahlen

$$\mathbb{N} = \{1; 2; 3; ...\}$$

Ganze Zahlen

$$\mathbb{Z} = \{...; -2; -1; 0; 1; 2; 3; ...\}$$

Menge der Natürliche Zahlen

$$\mathbb{N}_0 = \{0; 1; 2; 3; ...\}$$

Irrationale Zahlen

 $\mathbb{R} \setminus \mathbb{Q}$

Reelle Zahlen

Die reellen Zahlen $\mathbb R$ umfassen die rationalen Zahlen und die irrationalen Zahlen.

Rationale Zahlen

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$$

2 Elementare Rechengesetze, -verfahren und -notationen

2.1 Brüche dividieren

Um zwei Brüche zu dividieren bildet man den Kehrwert vom Divisor und multipliziert diesen mit dem Dividend.

$$\frac{p_1}{q_1} : \frac{p_2}{q_2} = \frac{p_1}{q_1} \cdot \frac{q_2}{p_2}$$

$$\frac{\frac{p_1}{q_1}}{\frac{p_2}{q_2}} = \frac{p_1}{q_1} \cdot \frac{q_2}{p_2}$$

2.2 Lösungsmenge

Beispiel 1 (
$$x^2 = -1$$
): $\mathbb{L} = \emptyset$

Beispiel 2
$$(x^2 = 4)$$
: $\mathbb{L} = \{-2, 2\}$

Beispiel 3
$$(sin(x) = 0)$$
:
 $\mathbb{L} = \{...; -2\pi; -\pi; 0; \pi; 2\pi; ...\}$

Beispiel 4
$$(x^2 + y = 5)$$
:
 $\mathbb{L} = \{(x_0; y_0) \in \mathbb{R}^2 \mid x_0^2 + y_0 = 5\} = \{(x_0; 5 - x_0^2) \mid x_0 \in \mathbb{R}^2\}$

In diesem Fall ist die Lösungsmenge die Funktion $y = 5 - x^2$.

2.3 Normalform

Eine Gleichung in der Form $ax^2 + bx + c = 0$ mit $a \neq 0$ und $b, c \in \mathbb{R}$, heißt quadratisch. Spezial bezeichnet man $x^2 + px + q = 0$ mir $p, q \in \mathbb{R}$, als quadratische Gleichung in Normalform.

Man kann eine quadratische Gleichung in die Normalform überführen, indem man durch a teilt: $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$.

6

2.3.1 p-q-Formel

Um die Nullstellen einer quadratischen Gleichung in der Normalform zu finden, kann man die p-q-Formel benutzen: $x_{\pm} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$.

 $D=\left(\frac{p}{2}\right)^2-q$ ist die Diskriminante. Sie gibt Aufschluss über die Lösungsmenge.

 $D>0\Rightarrow$ Es gibt zwei Lösungen

 $D = 0 \Rightarrow \text{Es gibt eine L\"osung}$

 $D < 0 \Rightarrow$ Es gibt keine Lösungen

2.4 Intervalle

Abgeschlossene Intervalle

$$[a; b] := \{ x \in \mathbb{R} \mid a \le x \le b \}$$

Offene Intervalle

$$(a;b) =]a;b[:= \{x \in \mathbb{R} \mid a < x < b\}$$

Halboffene Intervalle

Rechtsoffen

$$[a;b) = [a;b] := \{x \in \mathbb{R} \mid a \le x < b\}$$

Linksoffen

$$(a; b] = [a; b] := \{x \in \mathbb{R} \mid a < x \le b\}$$

2.5 Beträge

$$|a| = \begin{cases} a & a \ge 0 \\ -a & a < 0 \end{cases}$$

$$|-a| = |a|$$

2.6 Binomische Formeln

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

2.7 Euklidischer Algorithmus

Der euklidische Algorithmus findet den größten gemeinsamen Teiler zweier Zahlen. Das eignet sich ausgezeichnet dazu, Brüche zu kürzen. Der vorletzte Rest bevor R=0 eintritt, ist das

7

Ergebnis.

$$2160:2592=0$$
 $R=2160$

$$2592:2160=1$$
 $R=432$

$$2160:432=5$$
 $R=0$

$$\frac{2592}{2160} = \frac{6 \cdot 432}{5 \cdot 432} = \frac{6}{5}$$

2.8 Potenzgesetze

$$a^k \cdot a^m = a^{k+m}$$

$$\frac{b^k}{b^m} = b^{k-m}$$

$$a^k \cdot b^k = (a \cdot b)^k$$

$$\frac{a^k}{b^k} = \left(\frac{a}{b}\right)^k$$

$$(a^k)^m = a^{k \cdot m}$$

Für a>0 und jede rationale Zahl $\frac{p}{q}$ (mit $p,q\in\mathbb{Z}$ und q>0) ist

$$a^{\frac{p}{q}} = \sqrt[q]{a^p} = (\sqrt[q]{a})^p$$

Beispiel: Bestimmen Sie m und n so, dass gilt: $(9x^7)^2 = mx^n$

$$(9x^7)^2 = mx^n$$

$$81x^{14} = mx^n$$

$$m=81$$
 und $n=14$

2.9 Wurzelgesetze

Für $a,b,c\in\mathbb{R}$ mit $a,b\geq 0,c>0$ und $m,n\in\mathbb{N}$ gilt

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{\frac{a}{c}} = \frac{\sqrt[n]{a}}{\sqrt[n]{c}}$$

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n \cdot m]{a}$$

Beispiel 1: Nach der dritten Binomischen Formel gilt für $a,b>0, a\neq b$:

$$\frac{1}{\sqrt{a} + \sqrt{b}} \qquad | \cdot (\sqrt{a} - \sqrt{b})$$

$$= \frac{\sqrt{a} - \sqrt{b}}{(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})}$$

$$= \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a^2} - \sqrt{b}^2}$$

$$= \frac{\sqrt{a} - \sqrt{b}}{a - b}$$

Beispiel 2:

$$\frac{\sqrt{(1+a^2)\cdot(a-b)^2}}{\sqrt[4]{16(1+a^2)^2}}$$

$$=\sqrt{\frac{(1+a)^2\cdot(a-b)^2}{\sqrt{16(1+a^2)^2}}}$$

$$=\sqrt{\frac{(1+a)^2\cdot(a-b)^2}{4(1+a)^2}}$$

$$=\frac{1}{2}\sqrt{(a-b)^2}$$

$$=\frac{|a-b|}{2}$$

2.9.1 Wurzeltherme vereinfachen (Beispiele)

$$\sqrt{2} + \frac{2}{2\sqrt{2} + 3} = \sqrt{2} + \frac{2 \cdot (2\sqrt{2} -])}{(2\sqrt{2} + 3)(2\sqrt{2} - 3)}$$

$$= \sqrt{2} + \frac{4\sqrt{2} - 6}{(2\sqrt{2})^2 - 3^2}$$

$$= \sqrt{2} + \frac{4\sqrt{2} - 6}{-1}$$

$$= \sqrt{2} - 4\sqrt{2} + 6$$

$$= 6 - 3\sqrt{2}$$

$$\frac{1}{\sqrt{1+x^2}-1} - \frac{1}{\sqrt{1+x^2}+1} = \frac{\sqrt{1+x^2}+1}{\left(\sqrt{1+x^2}-1\right)\cdot\left(\sqrt{1+x^2}+1\right)} - \frac{\sqrt{1+x^2}-1}{\left(\sqrt{1+x^2}+1\right)\cdot\left(\sqrt{1+x^2}-1\right)}$$

$$= \frac{\left(\sqrt{1+x^2}+1\right)-\left(\sqrt{1+x^2}-1\right)}{1+x^2-1}$$

$$= \frac{2}{x^2}$$

Beispiel 3: Bestimmen Sie x und y, sodass $\frac{x}{y}$ vollständig gekürzt ist.

$$\frac{2 \cdot 2^{\frac{5}{2}}}{2^{\frac{1}{4}}} = 2^{\frac{x}{y}}$$

$$2 \cdot \frac{2^{\frac{5}{2}}}{2^{\frac{1}{4}}} = 2^{\frac{x}{y}}$$

$$2 \cdot 2^{\frac{5}{2} - \frac{1}{4}} = 2^{\frac{x}{y}}$$

$$2 \cdot 2^{\frac{9}{4}} = 2^{\frac{x}{y}}$$

$$2^{\frac{13}{4}} = 2^{\frac{x}{y}}$$

Damit gilt x = 13 und y = 4.

2.10 Logarithmusgesetze

$$ln(b) := log_e(b)$$

$$lg(b) := log_{10}(b)$$

$$log_b(b) = 1$$

$$log_b(1) = 0$$

$$log_b(u \cdot v) = log_b(u) + log_b(v)$$

$$log_b\left(\frac{u}{v}\right) = log_b(u) - log_b(v)$$

$$log_b(u^v) = v \cdot log_b(u)$$

$$log_b(\sqrt[u]{v}) = \frac{log_b(v)}{u}$$

$$log_a(v) = \frac{log_b(v)}{log_b(a)}$$

3 Vereinfachungen zum Lösen von Gleichungen

3.1 Quadratische Ergänzung

Die äquivalente Umformung der quadratischen Gleichung in Normalform $x^2+px+q=0$ in $\left(x+\frac{p}{2}\right)^2=-q+\left(\frac{p}{2}\right)^2$ wird als quadratische Ergänzung bezeichnet. In anderen Worten fügt man den Term $+\left(\frac{p}{2}\right)^2-\left(\frac{p}{2}\right)^2$ hinzu. Das darf man, da dieser Wert an sich Null ergibt und die Gleichung nicht verändert.

Beispiel:

$$x^{2} + 8x + 7 = 0$$

$$x^{2} + 8x + \left(\frac{8}{2}\right)^{2} - \left(\frac{8}{2}\right)^{2} + 7 = 0$$

$$x^{2} + 8x + 4^{2} - 4^{2} + 7 = 0$$

$$(x+4)^{2} - 4^{2} + 7 = 0$$

$$(x+4)^{2} - 9 = 0 \qquad | +9$$

$$(x+4)^{2} = 9 \qquad | \sqrt{}$$

$$x = \pm \sqrt{9} - 4$$

$$\mathbb{L} = \{-1; -7\}$$

3.2 Faktorisieren

Um die Nullstellen eines Terms zu finden, bietet es sich an, ihn als Produkt einfacher Terme zu schreiben, denn ist ein Faktor 0, ist das Produkt ebenfalls 0. Den Term in so eine Form zu überführen, nennt sich Faktorisieren.

3.2.1 Faktorisierung durch Ausklammern

Beispiel:

$$x^{4} + 2x^{3} + 3x^{2} = 0$$

$$x^{2}(x^{2} + 2x + 3) = 0$$

$$x^{2} = 0 \text{ oder } (x^{2} + 2x + 3) = 0$$

$$\mathbb{L} = \{0\}$$

Für $x^2 + 2x + 3 = 0$ existiert keine reelle Lösung \Rightarrow p-q-Formel (S. 7).

3.2.2 Faktorisierung mit binomischen Formeln

Beispiel:

$$9x^{2} + 30x + 25 = 0$$

$$(3x + 5)^{2} = 0$$

$$3x + 5 = 0 \qquad | -5$$

$$3x = -5 \qquad | : 3$$

$$x = -\frac{5}{3}$$

$$\mathbb{L} = \left\{-\frac{5}{3}\right\}$$

3.2.3 Faktorisierung mit dem Satz von Viëta

Der Satz von Viëta besagt, dass $x^2 + px + q = (x - x_1) \cdot (x - x_2)$ ist. p und q lassen sich auf die Nullstellen zurückführen: $x_1 + x_2 = -p$ und $x_1 \cdot x_2 = q$.

Daraus lässt sich $x_2 = \frac{q}{x_1}$ ableiten. Wenn man also durch Raten eine Nullstelle findet, kann man so die andere Nullstelle auch ganz einfach finden.

Beispiel (eine Nullstelle ist 1, die andere ergibt sich als $\sqrt{2} = \frac{\sqrt{2}}{1}$):

$$x^{2} + (\sqrt{2} - 1)x - \sqrt{2} = 0$$
$$(x - 1) \cdot (x + \sqrt{2}) = 0$$
$$\mathbb{L} = \{1; -\sqrt{2}\}$$

3.3 Substitution

Substitution erlaubt es uns manchmal Gleichungen zu vereinfachen, um leichter mit ihnen rechnen zu können.

Beispiel: $x^8 - 15x^4 - 16 = 0$

Hier bietet es sich an x^4 durch u zu ersetzen.

$$u^{2} - 15u - 16 = 0$$

$$u_{\pm} = \frac{15}{2} \pm \sqrt{\left(\frac{-15}{2}\right)^{2} + 6}$$

Diesen Term wiederum können wir ganz einfach mit der p-q-Formel (S. 7) lösen. Dabei erhalten wir $u_{+} = 16$ und $u_{-} = -1$. Um unsere endgültige Lösungsmenge zu bekommen, müssen wir noch die Resubstitution durchführen.

$$x^4 = u_+ = 16$$
$$x_1 = 2$$
$$x_2 = -2$$

Da es kein x gibt, das $x^4=-1$ erfüllt, haben wir bereits unsere komplette Lösungsmenge: $\mathbb{L}=\{-2;2\}.$

4 Ungleichungen

4.1 Rechenregeln

Wenn man eine Ungleichung mit einer negativen Zahl multipliziert oder durch diese teilt, muss das Vergleichszeichen umgekehrt werden.

Für
$$c < 0$$
 gilt:
$$a < b \iff c \cdot a > c \cdot b$$

$$a < b \iff \frac{a}{c} > \frac{b}{c}$$

4.2 Quadratische Ungleichungen

Um die Lösungsmenge einer quadratischen Ungleichung zu finden, formt man die Ungleichung zunächst so um, dass auf einer Seite 0 steht. Auf der anderen Seite hat man dann optimalerweise eine quadratische Funktion. Schauen wir uns mal das Beispiel $x^2 > 2x + 7$ an.

Wir stellen also zunächst um und erhalten $x^2 - 2x - 7 > 0$. Daraus ergibt sich auch die Funktion oben. An der Grafik erkennt man sehr gut, was wir eigentlich suchen. Denn unsere Lösungsmenge sind alle x, für die f(x) größer als 0 ist. Und wie kriegen wir das raus? Indem wir die Nullstellen berechnen. Das Intervall von Unendlich bis zur linken Nullstelle ist ein Teil unserer Lösung und der andere ist das Intervall von der rechten Nullstelle bis unendlich. Dabei muss man stets verschiedene Fälle beachten. Für eine nach unten geöffnete Funktion $(-x^2)$ suchen wir den Bereich zwischen den Nullstellen. Für eine Funktion oberhalb der x-Achse, die keine Nullstellen hat, sind alle reellen Zahlen unsere Lösungsmenge, wohingegen eine Funktion ohne Nullstellen unterhalb der x-Achse eine leere Lösungsmenge liefern würde. Eine Funktion mit genau einer Nullstelle liefert hingegen eine Lösungsmenge aller reellen Zahlen außer der Nullstelle. Es gibt je nach Art der Funktion und Vergleichszeichen in unserer Ungleichung viele unterschiedliche Szenarien, weshalb es immer ratsam ist eine Skizze anzufertigen. Für das

Beispiel oben können wir die p-q-Formel (S. 7) verwenden, um die Nullstellen zu berechnen.

$$x_{\pm} = -\frac{-2}{2} \pm \sqrt{\left(\frac{-2}{2}\right)^2 + 7}$$

$$x_1 = 1 - 2\sqrt{2}$$

$$x_2 = 1 + 2\sqrt{2}$$

Jetzt, wo wir die Nullstellen haben, ist es nicht schwer die Lösungsmenge anzugeben. Dabei sollte man darauf achten, dass man abgeschlossene und offene Intervalle (S. 7) nicht verwechselt.

$$\mathbb{L} = \mathbb{R} \setminus \left[1 - 2\sqrt{2}; 1 + 2\sqrt{2}\right] = \left(-\infty; 1 - 2\sqrt{2}\right) \cup \left(1 + 2\sqrt{2}\right)$$

4.3 Ungleichungen mit Beträgen

Das Vorgehen bei Betragsungleichungen ist im Grunde genommen dasselbe Prinzip, wie bei den quadratischen. Schauen wir uns das Beispiel |x| - 3 < 0 an.

Wir erkennen die Nullstellen in dem Fall sehr leicht. Das sind -3 und 3. Erkennt man das nicht sofort, muss man eine Fallunterscheidung (S. 37) durchführen. Jetzt können wir aber erst mal unsere Lösungsmenge definieren, denn wir wissen, dass wir alle x suchen für die f(x) < 0 gilt.

$$\mathbb{L} = (-3; 3)$$

Hinweis: Wäre unsere Ausgangsungleichung $|x|-3 \le 0$, sehe unsere Lösungsmenge jetzt so aus:

$$\mathbb{L} = [-3; 3]$$

4.4 Ungleichungen mit Variable im Nenner – Teil I

Aus den vorherigen Erklärungen kann man sich herleiten, wie man das macht. Deshalb ist hier nur noch mal ein erklärendes Beispiel: $2 \le \frac{14}{|2x+5|}$.

Wichtig ist, dass wir zunächst alle x ausschließen, für die im Nenner 0 rauskommt. In diesem Fall ist dass $-\frac{5}{2}$.

$$2 \le \frac{14}{|2x+5|}$$

$$2|2x + 5| \le 14$$

$$|2x + 5| \le 7$$

Fall 1:
$$2x + 5 > 0$$

$$2x + 5 \le 7$$

$$2x \leq 2$$

$$x \leq 1$$

Fall 2:
$$2x + 5 < 0$$

$$-2x - 5 \le 7$$

$$-2x \le 12$$

$$x \ge -6$$

$$\mathbb{L} = \left[-6; -\frac{5}{2} \right) \cup \left(-\frac{5}{2}; 1 \right]$$

4.5 Ungleichungen mit Variable im Nenner – Teil II

Wenn wir uns an die Rechenregeln (S. 15) für Ungleichungen erinnern, könnte man sich fragen, was passiert, wenn der Nenner mit einer Variable sowohl positiv als auch negativ sein kann. Denn wenn wir mit einer negativen Zahl multiplizieren, müssten wir das Vorzeichen umkehren. Hier muss man wieder verschiedene Fälle unterscheiden.

Beispiel: $\frac{1}{x-2} \le -x$

Der Fall x=2 ist aufgrund des x im Nenner wieder auszuschließen. Fall 1: x>2

$$\frac{1}{x-2} \le -x$$

$$1 \le -x(x-2)$$

$$1 \le -x^2 + 2x$$

$$x^2 - 2x + 1 \le 0$$

$$(x-1)^2 \le 0$$

Dieser Fall gilt für x=1. Das widerspricht allerdings der Bedingung x>2 und das Ergebnis ist entsprechend nicht Teil unserer Lösungsmenge.

Fall 2: x < 2

$$\frac{1}{x-2} \le -x$$

$$1 \ge -x(x-2)$$

$$1 \ge -x^2 + 2x$$

$$x^2 - 2x + 1 \ge 0$$

$$(x-1)^2 \ge 0$$

Dieser Fall ist für alle x erfüllt, daher gehören alle x < 2 zur Lösungsmenge.

$$\mathbb{L}=(-\infty;2)$$

Beispiel: $\frac{1}{x-9} \le 8$

Fall 1:
$$x > 9$$

$$\frac{1}{x-9} \le 8$$

$$1 \le 8x - 72$$

$$8x \ge 73$$

$$x \ge \frac{73}{8}$$

Fall 2: x < 9

$$\frac{1}{x-9} \le 8$$

$$1 \ge 8x - 72$$

$$8x \le 73$$

$$x \le \frac{73}{8}$$

$$\mathbb{L} = (-\infty; 9) \cup \left[\frac{73}{8}; \infty\right)$$

5 Lineare Gleichungssysteme

Ein Gleichungssystem ist eine Sammlung an Gleichungen, für die man eine gemeinsame Lösung sucht. Für das Beispiel unten, ist die Lösung x = 2, y = 3, z = -4 oder anders ausgedrückt $\mathbb{L} = \{(2; 3; -4)\}$. Wie man darauf kommt, wird unten erklärt.

$$(I) x + 2y + z = 4$$

$$(II) x - y + \frac{3}{2}z = -7$$

$$(III) -4x + 2y = -2$$

5.1 Einsetzungsverfahren

Eine Möglichkeit hat man, wenn man eine Funktion nach einer beliebigen Variable umstellt und diese dann in einer anderen Funktion einsetzt.

$$-4x + 2y = -2$$
$$-4x = -2 - 2y$$
$$x = \frac{1}{2} + \frac{1}{2}y$$

$$x + 2y + z = 4$$

$$\frac{1}{2} + \frac{1}{2}y + 2y + z = 4$$

$$\frac{1}{2} + \frac{5}{2}y + z = 4$$

$$z = 3, 5 - \frac{5}{2}y$$

$$x - y + \frac{3}{2}z = -7$$

$$\frac{1}{2} + \frac{1}{2}y - y + \frac{3}{2}\left(3, 5 - \frac{5}{2}y\right) = -7$$

$$\frac{1}{2} + \frac{1}{2}y - y + 5, 25 - \frac{15}{4}y = -7$$

$$5, 75 - \frac{1}{2}y - \frac{15}{4}y = -7$$

$$-\frac{17}{4}y = -\frac{51}{4}$$

$$y = 3$$

$$-4x + 2y = -2$$
$$-4x + 2 \cdot 3 = -2$$
$$-4x + 6 = -2$$
$$-4x = -8$$

x = 2

$$x + 2y + z = 4$$
$$2 + 2 \cdot 3 + z = 4$$
$$z = -4$$

5.2 Additionsverfahren

Eine andere Möglichkeit ist es, eine oder mehrere Gleichungen mit einer Zahl zu multiplizieren, sodass eine Variable entfällt, wenn man zwei Gleichungen addiert.

$$(I) - (III)$$

$$5x + z = 6$$
$$z = 6 - 5x$$

$$(I) + 2(II)$$

$$3x + 4z = -10$$
$$3x + 4(6 - 5x) = -10$$
$$3x + 24 - 20x = -10$$
$$-17x = -34$$
$$x = 2$$

$$-4x + 2y = -2$$

$$-4 \cdot 2 + 2y = -2$$

$$-8 + 2y = -2$$

$$2y = 6$$

$$y = 3$$

(I)

$$x + 2y + z = 4$$
$$2 + 2 \cdot 3 + z = 4$$
$$z = -4$$

Hinweis: sind zwei Gleichungen identisch, so gibt es unendlich viele Lösungen und man muss nur die entsprechende Notation für die Lösungsmenge kennen.

$$(I) \qquad -4x - 2y = -14$$

$$(II) 4x + 2y = 14$$

$$\mathbb{L} = \{ (x; 7 - 2x) \mid x \in \mathbb{R} \}$$

5.3 Gauß-Verfahren

Das Gauß-Verfahren ist eine bestimmte Vorgehensweise fürs Additionsverfahrens, bei dem man die Gleichungen so umformt, dass man das LGS in die Stufenform bringt und es einfach lösen kann.

$$(I) x + 2y + z = 4$$

(II)
$$x - y + \frac{3}{2}z = -7 \quad |-\frac{3}{2}(I)|$$

$$(III) -4x + 2y = -2$$

$$(I) x + 2y + z = 4$$

$$(II) -\frac{1}{2}x - 4y = -13$$

(III)
$$-4x + 2y = -2 \qquad | +\frac{1}{2}(II)$$

$$(I) x + 2y + z = 4$$

$$(II) -\frac{1}{2}x - 4y = -13$$

(III)
$$-\frac{17}{4}x = -\frac{17}{2}$$

$$-\frac{17}{4}x = -\frac{17}{2}$$
$$x = 2$$

$$-\frac{1}{2}x - 4y = -13$$
$$-1 - 4y = -13$$
$$-4y = -12$$
$$y = 3$$

$$x + 2y + z = 4$$
$$2 + 6 + z = 4$$
$$z = -4$$

5.4 LGS mit Parameter

Kommt in einem LGS ein Parameter vor, dann muss man eine Fallunterscheidung vornehmen und den Parameter in die Lösungsmenge mit einbeziehen.

$$(I) x - 2y = 0$$

$$(II) y + \frac{1}{3}z = -1$$

$$(III) (a-3)y = 1$$

Wenn a=3, dann kommt bei der letzten Gleichung 0=1 raus. Dadurch können wir schon mal sagen, was die Lösungsmenge für den Fall a=3 ist.

$$\mathbb{L} = \emptyset$$
, falls $a = 3$

Als nächstes schauen wir uns den Fall $a \neq 0$ an.

(III)

$$(a-3)y = 1$$
$$y = \frac{1}{a-3}$$

(II)

$$\frac{1}{a-3} + \frac{1}{3}z = -1$$

$$\frac{1}{3}z = -\frac{1}{a-3} - 1$$

$$z = 3\left(-\frac{1}{a-3} - 1\right)$$

$$z = -\frac{3}{a-3} - \frac{3a-9}{a-3}$$

$$z = \frac{6-3a}{a-3}$$

(I)

$$x - 2y = 0$$
$$x - 2\left(\frac{1}{a - 3}\right) = 0$$
$$x = \frac{2}{a - 3}$$

$$\mathbb{L} = \left\{ \left(\frac{2}{a-3}; \frac{1}{a-3}; \frac{6-3a}{a-3} \right) \right\}, \ falls \ a \neq 3$$

6 Geometrie

6.1 Rechtwinklige Dreiecke

6.1.1 Kathetensatz

Im rechtwinkligen Dreieck ist das Quadrat über einer Kathete flächengleich zu dem Rechteck aus der Hypotenuse und dem der Kathete anliegenden Hypotenusenabschnitt.

$$b^2 = p \cdot c$$

$$a^2 = q \cdot c$$

6.1.2 Höhensatz

Im rechtwinkligen Dreieck ist das Quadrat über der Höhe flächengleich zu dem Rechteck aus den beiden Hypotenusenabschnitten.

$$h^2 = p \cdot q$$

6.1.3 Sinus, Kosinus und Tangens

Sinus, Kosinus und Tangens ordnen einem Winkel im rechtwinkligen Dreieck die Längenverhältnisse der Katheten und Hypotenuse zu.

$$\sin(\alpha) = \frac{a}{c} = \frac{Gegenkathete\ von\ \alpha}{Hypotenuse}$$

$$\cos(\alpha) = \frac{b}{c} = \frac{Ankathete\ von\ \alpha}{Hypothenuse}$$

$$\tan(\alpha) = \frac{a}{b} = \frac{Gegenkathete\ von\ \alpha}{Ankathete\ von\ \alpha} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

Um mit trigonometrischen Funktionen (S. 48) umgehen zu können, hilft es außerdem einige Regeln zu kennen, die beim Vereinfachen und Umformen von trigonometrischen Termen helfen.

Sinus, Kosinus und Tangens Umformen und Vereinfachen

$$\cos(-x) = \cos(-x)$$

$$\sin(-x) = -\sin(x)$$

$$\tan(-x) = -\tan(x)$$

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin(x)$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$$

$$\tan\left(x + \frac{\pi}{2}\right) = \frac{1}{\tan(x)}$$

$$\cos(x+\pi) = -\cos(\pi)$$

$$\sin(x+\pi) = -\sin(x)$$

$$\tan(x+\pi) = \tan(x)$$

6.2 Rechnen mit Flächen (Formeln)

6.2.1 Dreieck

Für ein Dreieck mit der Grundseite c und der Höhe h_c gilt:

$$F = \frac{1}{2} \cdot c \cdot h_c$$

6.2.2 Kreis

Für einen Kreis mit dem Radius r, dem Umfang U und der Fläche F gilt:

$$U = 2\pi r$$

$$F = \pi r^2$$

Für einen Kreissektor mit dem Radius r, der Bogenlänge b, der Fläche F und dem Winkel α gilt:

$$F = \frac{br}{2}$$

Für ein Kreissegment mit dem Radius r, der Bogenlänge b, der Fläche F und dem Winkel α gilt:

$$F = \frac{br}{2} - \frac{1}{2}r^2 \cdot \sin(\alpha)$$

6.3 Rechnen mit Körpern (Formeln)

6.3.1 Prisma

Für ein Prisma mit der Mantelfläche M, der Grundfläche A, dem Grundflächenumfang U, der Oberfläche O, dem Volumen V und der Höhe h gilt:

$$V = A \cdot h$$

$$M = U \cdot h$$

$$O = 2 \cdot A + M$$

6.3.2 Pyramide

Für eine Pyramide mit der Mantelfläche M, der Grundfläche A, der Oberfläche O, dem Volumen V und der Höhe h gilt:

$$V = \frac{1}{3} \cdot A \cdot h$$

$$O = 2 \cdot A + M$$

6.3.3 Zylinder

Für einen Zylinder mit der Grundfläche A, dem Radius der Grundfläche r, der Oberfläche O, dem Volumen V und der Höhe h gilt:

$$V = \pi \cdot r^2 \cdot h$$

Für einen geraden Zylinder gilt außerdem:

$$O = 2\pi r \cdot (r+h)$$

6.3.4 Kegel

Für einen Kegel mit der Grundfläche A, dem Radius der Grundfläche r, der Oberfläche O, dem Volumen V, dem Abstand der Spitze zu einem Punkt der Kreislinie s und der Höhe h gilt:

$$V = \frac{1}{3}\pi \cdot r^2 \cdot h$$

Für einen geraden Kegel gilt außerdem:

$$s = \sqrt{h^2 + r^2}$$

$$O=\pi r\cdot (r+s)$$

7 Vektorgeometrie

Vektoren kommen häufig in der Physik zum Einsatz, denn oftmals interessieren wir uns nicht nur für eine Größe an sich, sondern auch für ihre Richtung. Vektoren werden durch Pfeile gekennzeichnet \vec{v} , ihr Betrag $|\vec{v}|$ gibt uns ihre Länge. Wenn zwei gleichlange Vektoren in genau die entgegengesetzte Richtung zeigen $(\vec{v}$ und $-\vec{v})$, sprechen wir von Gegenvektoren. Ein Vektor mit der Länge Null, wird auch als Nullvektor bezeichnet. Neben Vektoren, sind Pfeile ein wichtiger Begriff. Diese werden definiert durch ihren Anfangspunkt sowie, ihrem Endpunkt bzw. ihrer Länge und Richtung. Alle Pfeile der selben Länge und Richtung können in einer Pfeilklasse zusammengefasst werden. Vektoren können als Pfeilklassen interpretiert werden, denn sie werden nicht durch ihren Anfangspunkt definiert, sondern nur durch Richtung und Länge. Vektoren können jedoch einen festen Anfangspunkt besitzen. In diesem Fall spricht man von gebundenen Vektoren, andernfalls von freien Vektoren. Außerdem existiert eine besondere Art von gebundenen Vektoren, die sogenannten Ortsvektoren, die ihren Anfangspunkt im Koordinatenursprung haben. Der Koordinatenursprung wird mit O = (0;0) bezeichnet.

Vektoren werden folgendermaßen notiert:

2D:
$$\overrightarrow{PQ} = \begin{pmatrix} Q_x - P_x \\ Q_y - P_y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

3D:
$$\overrightarrow{PQ} = \begin{pmatrix} Q_x - P_x \\ Q_y - P_y \\ Q_z - P_z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Diese Notation dient dazu sie von Punkten zu unterscheiden. Man spricht hierbei von Spaltenvektoren.

Die Länge eines Vektors können wir mithilfe des Satz des Pythagoras berechnen, denn wir können einer Vektor auch als Hypotenuse eines rechtwinkligen Dreiecks sehen, bei dem die Katheten die x- und y-Werte sind.

Für die Berechnung der Länge eines Vektors gelten folgende Formeln:

2D:
$$|\vec{v}| = \sqrt{v_x^2 + v_y^2}$$

3D:
$$|\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

7.1 Rechnen mit Vektoren

Wenn wir Vektoren addieren wollen, können wir das ganz einfach tun, indem wir ihre jeweiligen Werte miteinander addieren. Die untere Abbildung zeigt, dass es egal ist, in welcher Reihenfolge wir das tun und auch, dass die Position von Vektoren keine Rolle spielt.

Ebenso können wir Vektoren ganz einfach mit einer Zahl (Skalar) multiplizieren. Dabei spricht man von skalarer Multiplikation. Dabei können sagen, dass zwei Vektoren parallel sind, wenn es ein λ gibt, welches $\lambda \cdot \vec{c} = \vec{w}$ erfüllt. Das gilt jedoch nicht für den Nullvektor.

Neben der Multiplikation mit einer Zahl, können wir auch zwei Vektoren miteinander multiplizieren. Das ist das Skalarprodukt, welches man nicht mit skalarer Multiplikation verwechseln sollte. Das Skalarprodukt kann man benutzen, um die Länge von Vektoren sowie, den Winkel zwischen ihnen zu bestimmen. Insbesondere gilt: Wenn das Skalarprodukt gleich Null ist, dann haben wir einen rechten Winkel und die Vektoren sind orthogonal bzw. liegen senkrecht aufeinander. Das Skalarprodukt heißt übrigens so, weil unser Ergebnis ein Skalar ist.

Wenn das Skalarprodukt nicht Null ist, können wir trotzdem den Winkel bestimmen, es ist nur etwas komplizierter. Dafür rechnet man das Skalarprodukt durch das Produkt der beiden Vektorlängen und erhält damit den Kosinuswert.

Winkelberechnung zwischen Vektoren

$$\cos(\alpha) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| \cdot |\vec{w}|}$$

Nehmen wir dazu das Beispiel $\binom{-8}{3} \cdot \binom{4}{1,5}$.

$$\cos(\alpha) = \frac{\binom{-8}{3} \cdot \binom{4}{1,5}}{\left|\binom{-8}{3}\right| \cdot \left|\binom{4}{1,5}\right|}$$

$$= \frac{-27,5}{\sqrt{73} \cdot \frac{\sqrt{73}}{2}}$$

$$= \frac{-27,5}{\frac{73}{2}}$$

$$= -\frac{55}{73}$$

$$\Rightarrow \alpha \approx 138,9^{\circ}$$

Achtung: Achte darauf, dass du im Taschenrechner das Gradmaß und nicht das Bogenmaß eingestellt hast!

Mit dem Skalarprodukt finden wir alternativ zum Satz des Pythagoras auch die Länge eines Vektors, denn es gilt $\vec{v} \cdot \vec{v} = |\vec{v}|^2$. Wenn wir also das Skalarprodukt eines Vektors mit sich selber bilden und anschließend die Wurzel vom Betrag des Skalarproduktes ziehen, erhalten wir die Länge des Vektors.

Beispiel:

$$\begin{vmatrix} 4 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \end{pmatrix} \begin{vmatrix} 2 \\ -1 \end{vmatrix} = 17$$
$$\Rightarrow \sqrt{17} \approx 4,123$$

Hinweis: All die genannten Rechengesetze, wie z. B. das Skalarprodukt lassen sich im dreidimensionalen Raum genauso anwenden wie im zweidimensionalen.

7.2 Ebenen

Um eine Ebene aufzustellen, braucht man drei Punkte, die paarweise verschieden sind und nicht auf einer Geraden liegen.

Parameterform

Bei dieser Notationsform werden an einen Ortsvektor – genannt Stützvektor – zwei Richtungsvektoren oder auch Spannvektoren angelegt. Diese beiden Vektoren liegen jetzt auf einer Ebene. Da die Länge der Spannvektoren egal ist, nimmt man noch die Skalaren r und s hinzu.

$$E: \overrightarrow{x} = \overrightarrow{OP} + r \cdot \overrightarrow{PQ} + s \cdot \overrightarrow{PR}$$

Normalenform/Koordinatenform

Bei dieser Notationsform braucht man nur zwei Vektoren: Einmal die Stützvektor und einmal den Normalenvektor. Der Normalenvektor ist ein Vektor, der orthogonal zur Ebene liegt. Daher kann dieser die beiden Spannvektoren ersetzen.

$$E: \vec{n} \cdot [\vec{x} - \overrightarrow{OP}] = 0$$
 (Normalenform)
 $E: ax + by + cz = d$ (Koordinatenform)

8 2D-Koordinatensystem

8.1 Allgemeines

8.1.1 Monotonie

Seien x_1 und x_2 zwei Argumente einer Funktion, so gelten folgende Definitionen:

Monoton wachsend

wenn $x_1 \leq x_2$ und $f(x_1) \leq f(x_2)$

Streng monoton wachsend

wenn $x_1 < x_2 \text{ und } f(x_1) < f(x_2)$

Monoton fallend

wenn $x_1 \leq x_2 \text{ und } f(x_1) \geq f(x_2)$

Streng monoton fallend

wenn $x_1 < x_2 \text{ und } f(x_1) > f(x_2)$

Des Weiteren kann man, das Monotonieverhalten einer Funktion mithilfe ihrer Ableitung (S. 50) bestimmen. Ist die Ableitung f' einer Funktion größer oder gleich Null, so ist sie monoton wachsend. Ist sie größer als und ungleich Null, ist sie sogar streng monoton wachsend. Dasselbe gilt umgekehrt für monoton fallende Funktion, wenn ihre Ableitung an der untersuchten Stelle negativ ist.

Monoton wachsend: $f'(x) \ge 0$

Streng monoton wachsend: f'(x) > 0

Monoton fallend: $f'(x) \leq 0$

Streng monoton fallend: f'(x) < 0

8.1.2 Besondere Stellen

Für manche Stellen einer Funktion werden besondere Begriffe benutzt. Hinweis: D_f ist der Definitionsbereich der Funktion und I ein beliebig kleiner offener Intervall, der x_{max} bzw. x_{min} beinhaltet.

Globale Maximalstelle

wenn
$$f(x_{max}) \ge f(x)$$
 aller $x \in D_f$

Lokale Maximalstelle

wenn
$$f(x_{max}) \ge f(x)$$
 aller $x \in D_f \cap I$

Globale Minimalstelle

wenn
$$f(x_{max}) \leq f(x)$$
 aller $x \in D_f$

Lokale Minimalstelle

wenn
$$f(x_{max}) \leq f(x)$$
 aller $x \in D_f \cap I$

Strikte Extrema

Ersetzt man bei den obigen Definitionen das \geq bzw. \leq durch > bzw. <, spricht man von einem strickten Maximum oder Minimum.

Hinweis: Maximal- und Minimalstellen werden auch als Extremalstellen bezeichnet.

8.1.3 Symmetrie

Wenn man Funktionen untersucht, schaut man sich auch oft an, wie deren Symmetrie ist. Ist eine Funktion achsensymmetrisch zur y-Achse, spricht man von gerade und wenn sie punktsymmetrisch zum Nullpunkt ist, von ungerade.

Gerade

$$wenn f(-x) = f(x)$$

Ungerade

$$wenn f(-x) = -f(x)$$

Achtung: Eine Funktion kann nur gerade oder ungerade sein, wenn ihr Definitionsbereich symmetrisch zur Nullpunkt auf der x-Achse ist.

8.1.4 Newtonverfahren

Bei komplizierten Funktion kann es passieren, dass – obwohl welche existieren – man keine Nullstellen findet. Manchmal nicht einmal durch Raten. Eine ganzrationale Funktion zu vereinfachen durch Polynomdivision ist z. B. ebenfalls erst möglich, wenn man eine Nullstelle gefunden hat. Dennoch findet man online viele Rechner, die einem die Nullstellen geben, aber

wie machen die das? In diesem Fall hilft das Newtonverfahren sich einem Wert zu nähern. Hier ist ein Beispiel für so einen Fall.

Als erstes legt man eine Wertetabelle an, um die grobe Positionen der Nullstellen zu finden. Dabei will man wissen, zwischen welchen Stellen das Vorzeichen wechselt.

x	-3	-2	-1	0	1	2	3
f(x)	-7	1	1	-1	1	13	41

Wir untersuchen jetzt einmal die Nullstelle zwischen -1 und 0. Um uns der Nullstelle anzunähern teilen wir die Funktion durch ihre Ableitung an einer der beiden Stellen, zwischen denen unsere gesuchte Nullstelle liegt. Es gilt folgende Formel:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Um diese Formel anzuwenden, brauchen wir als erstes die Ableitung und dann wiederholen wir diesen Prozess solange, bis wir genügend Nachkommastellen oder die tatsächliche Nullstelle gefunden haben.

$$f'(x) = 3x^2 + 4x - 1$$

$$x_{1} = (-1) - \frac{(-1)^{3} + 2(-1)^{2} - (-1) - 1}{3(-1)^{2} + 4(-1) - 1} = -\frac{1}{2}$$

$$x_{2} = (-\frac{1}{2}) - \frac{(-\frac{1}{2})^{3} + 2(-\frac{1}{2})^{2} - (-\frac{1}{2}) - 1}{3(-\frac{1}{2})^{2} + 4(-\frac{1}{2}) - 1} = -\frac{5}{9}$$

$$x_{3} = (-\frac{5}{9}) - \frac{(-\frac{5}{9})^{3} + 2(-\frac{5}{9})^{2} - (-\frac{5}{9}) - 1}{3(-\frac{5}{9})^{2} + 4(-\frac{5}{9}) - 1} = -\frac{929}{1674}$$

$$x_{4} = (-\frac{929}{1674}) - \frac{(-\frac{929}{1674})^{3} + 2(-\frac{929}{1674})^{2} - (-\frac{929}{1674}) - 1}{3(-\frac{929}{1674})^{2} + 4(-\frac{929}{1674}) - 1} = -0,5549581321$$

$$x_{5} = (-0,5549581321) - \frac{(-0,5549581321)^{3} + 2(-0,5549581321)^{2} - (-0,5549581321) - 1}{3(-0,5549581321)^{2} + 4(-0,5549581321) - 1} = -0,5549581321$$

Wenn man zwei Mal den gleich Wert bekommt, weiß man, dass man den endgültigen Wert erreicht hat. Damit haben wir jetzt eine Nullstelle bestimmt, mit der wir z.B. die Polynomdivision anwenden können.

8.2 Potenz- und Wurzelfunktionen

Potenzfunktionen in der Form $f(x) = x^m$ mit $m \in \mathbb{N}_0$ und $D_f = \mathbb{R}$ heißen **Monome** (im Gegensatz zu Polynomen). Potenzfunktionen mit der Form $x^{\frac{m}{n}}$ sind **Wurzelfunktionen**, wenn $n \geq 2$ gilt und der Bruch keine ganze Zahl ist. An der Potenz kann man erkennen, ob eine Funktion gerade (x^{2n}) oder ungerade (x^{2n-1}) ist. Hier sind einige Beispiele für Graphen von Potenz- und Wurzelfunktionen:

8.2.1 Wurzelgleichungen

Bei Wurzelgleichungen wird zuerst der Definitionsbereich bestimmt werden, also die Menge an reellen Zahlen, für die der Radikand positiv oder gleich Null ist. Zur Lösung von Wurzelgleichungen wird die Wurzel auf einer Seite der Gleichung isoliert. Dann werden beide Seiten der Gleichung mit dem Wurzelexponenten (im Falle der Quadratwurzel also mit 2) so lange potenziert, bis alle Wurzeln eliminiert sind. Man bekommt also unter Umständen durch das Quadrieren (das Potenzieren mit einer geraden Zahl ist keine Äquivalenzumformung) neue Lösungen (Scheinlösungen) hinzu, die die ursprüngliche Gleichung nicht hatte. Die Probe ist folglich für Wurzelgleichungen unverzichtbar!

Beispiel
$$(\sqrt{2x+1} = x - 17)$$
:
 $2x + 1 > 0$

$$x \ge -\frac{1}{2}$$

Damit haben wir den Definitionsbereich. Jetzt kann man nach der Lösung suchen.

$$\sqrt{2x+1} = x - 17$$

$$2x+1 = (x-17)^{2}$$

$$2x+1 = x^{2} - 34x + 289$$

$$x^{2} - 36x + 288 = 0$$

$$x_{1} = 12$$

$$x_{2} = 24$$

Jetzt MUSS man das Ergebnis noch überprüfen, indem man die Werte x_1 und x_2 in die ursprüngliche Gleichung einsetzt.

$$\sqrt{2x_1 + 1} = x_1 - 17$$

$$\sqrt{2 \cdot 12 + 1} = 12 - 17$$

$$\sqrt{25} = -5$$

$$5 = -5$$

Das Einsetzen von x_1 liefert keine wahre Aussage und ist somit nicht Teil der Lösungsmenge.

$$\sqrt{2x_2 + 1} = x_2 - 17$$

$$\sqrt{2 \cdot 24 + 1} = 24 - 17$$

$$\sqrt{49} = 7$$

$$7 = 7$$

Da x_2 im Definitionsbereich liegt und beim Einsetzen eine wahre Aussage ergibt, ist es in der Lösungsmenge enthalten.

$$\mathbb{L} = \{24\}$$

Übrigens: Wenn man mehrere Wurzeln in der Gleichung hat, muss man den Definitionsbereich für den Radikanden jeder Wurzel bestimmen.

Mithilfe dieser Graphen kann man das Ergebnis wunderbar visualisieren, denn das Ergebnis ist der x-Wert des Schnittpunkts der beiden Funktionen, die man aus der linken und rechten Seite der Wurzelgleichung entnehmen kann.

8.2.2 Wurzelgleichungen mit mehreren Wurzeln (Beispiel)

$$\sqrt{8x - 14} + \sqrt{5x - 2} = \sqrt{27x - 36}$$

$$(\sqrt{8x - 14} + \sqrt{5x - 2})^2 = 27x - 36$$

$$8x - 14 + 2\sqrt{(8x - 14)(5x - 2)} + 5x - 2 = 27x - 36$$

$$2\sqrt{(8x - 14)(5x - 2)} = 14x - 20$$

$$\sqrt{(8x - 14)(5x - 2)} = 7x - 10$$

$$40x^2 - 86x + 28 = (7x - 10)^2$$

$$40x^2 - 86x + 28 = 49x^2 - 140x + 100$$

$$0 = 9x^2 - 54x + 72$$

$$0 = x^2 - 6x + 8$$

Jetzt kann man die p-q-Formel (S. 7) anwenden und erhält die Lösungsmenge $\mathbb{L} = \{2, 4\}$.

8.3 Betragsfunktionen

Um mit Betragsgleichungen oder auch Betragsfunktionen rechnen zu können muss man mehrere Fälle betrachten. Nämlich einmal den Fall, dass im Betrag ein Wert größer oder gleich 0 entsteht und einmal den Fall, dass das Ergebnis im Betrag kleiner als Null ist. Betrachten wir einmal ein Beispiel, wo man den Schnittpunkt zwischen f(x) = |x+1| und f(x) = x+2 finden soll.

Zunächst setzen wir unsere Funktionen gleich und erhalten eine Betragsgleichung. Dann betrachten wir die verschiedenen Fälle für den Betrag.

$$|x+1| = \begin{cases} x+1 & Fall \ x \ge -1 \\ -(x+1) & Fall \ x < -1 \end{cases}$$

Durch die Fallunterscheidung kann man die Betragsstriche weglassen, indem man jeden Fall einzeln betrachtet. Hinterher muss man aber noch überprüfen, ob das Ergebnis der Bedingung für x in dem Fall entspricht.

Fall
$$x \ge -1$$
 ($x + 1$ ist positiv):

$$x+1 = x+2 \qquad |-x|$$

$$1 = 2$$

Für den Fall $x \ge -1$ gibt es keine Lösung, also weiter zum nächsten Fall.

Fall x < -1 (x + 1 ist negativ):

$$-x - 1 = x + 2$$

$$2x = -3$$

$$x = -\frac{3}{2}$$

Damit haben wir unsere Lösungsmenge, denn wir bekommen für den Fall -(x < -1) ein Ergebnis, welches dem Kriterium x < -1 entspricht.

$$\mathbb{L} = \left\{ -\frac{3}{2} \right\}$$

Durch einsetzen dieser x-Koordinate, finden wir auch den dazugehörigen y-Wert: $P\left(-\frac{3}{2}\mid\frac{1}{2}\right)$:

8.3.1 Betragsgleichungen mit mehreren Beträgen

Haben wir mehrere Beträge in unserer Gleichung, haben wir auch mehrere Fälle zu betrachten. Schon wir uns das an einem Beispiel an, indem wir die Schnittpunkte von f(x) = |x + 1| + 5 und f(x) = |2x - 4| suchen.

Zunächst setzen wir die Funktionen wieder gleich.

$$|x+1| + 5 = |2x-4|$$

Die Fälle müssen wir alle einzeln betrachten. Das heißt, wir haben insgesamt 4 Fälle. Wir schauen uns zunächst die beiden Fälle eines Betrages an und dann innerhalb dieser Fälle betrachten wir die Fälle für den zweiten Betrag.

1. Fall für
$$|x+1|$$
: $x \ge -1$ $(x+1)$ ist positiv)

$$x + 1 + 5 = |2x - 4|$$
$$x + 6 = |2x - 4|$$

Innerhalb dieses ersten Falles unterscheiden wir jetzt noch einmal für den übrigen Betrag.

1. Fall für
$$|2x-4|$$
: $x \ge 2$ $(2x-4$ ist positiv)

$$x + 6 = 2x - 4$$
$$x + 10 = 2x$$
$$10 = x$$

Jetzt müssen wir überprüfen, ob $x \ge 2$ und $x \ge -1$ für x = 10 gelten. Das ist der Fall daher haben wir schon mal einen Teil unserer Lösungsmenge. Auf der Grafik kann man auch sehen, dass sich die beiden Graphen dort schneiden.

2. Fall für
$$|2x - 4|$$
: $x < 2 (2x - 4 \text{ ist negativ})$

$$x+6 = -(2x-4)$$

$$x+6 = -2x+4$$

$$3x+6 = 4$$

$$3x = -2$$

$$x = -\frac{2}{3}$$

Wir überprüfen jetzt wieder, ob x < 2 und $x \ge -1$ für $x = -\frac{2}{3}$ gelten. Da das der Fall ist, können wir auch dieses x zu unserer Lösungsmenge hinzufügen.

2. Fall für |x+1|: x < -1 (x+1) ist negativ)

$$-(x+1) + 5 = |2x - 4|$$
$$-x + 4 = |2x - 4|$$

1. Fall für
$$|2x-4|$$
: $x \ge 2$ $(2x-4$ ist positiv)

In diesem Fall müssen wir gar nicht erst versuchen x auszurechnen, denn es gibt keine Zahl, die sowohl $x \ge 2$, als auch x < -1 erfüllt.

2. Fall für
$$|2x - 4|$$
: $x < 2 (2x - 4 \text{ ist negativ})$

$$-x + 4 = -(2x - 4)$$
$$-x + 4 = -2x + 4$$
$$-x = -2x$$
$$x = 0$$

Wir haben jetzt x=0 als Lösung, jedoch erfüllt dieses Ergebnis nicht die Bedingung x<-1 und ist daher auch nicht in der Lösungsmenge enthalten.

Abschließend können wir feststellen, dass unsere Lösungsmenge $\mathbb{L} = \{10; -\frac{2}{3}\}$ ist. Durch Einsetzen in eine der beiden Funktionen erhalten wir dann unsere Schnittpunkte $P_1(10 \mid 16)$ und $P_2\left(-\frac{2}{3} \mid \frac{16}{3}\right)$.

8.4 Ganzrationale Funktionen

Polynome sind die Summe aus den Vielfachen von Monomen. Eine ganzrationale Funktion oder auch Polynomfunktion genannt mit dem Koeffizienten a_n hat folgende Form:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + 1_0$$

Das Verhalten einer Polynomfunktion hängt für $x \to \infty$ vom Summanden mit der höchsten Potenz und für $x \to 0$ vom Summanden mit der niedrigsten Potenz ab.

Nullstellen

Polynome n-ten Grades haben maximal n Nullstellen.

$$p(x) = a_{2k-1}x^{2k-1} + \dots + a_1x + a_0, \text{ wenn } a_{2k-1} \neq 0$$

Polynome ungeraden Grades haben mindestens eine Nullstelle.

$$p(x) = a_{2k}x^{2k} + \dots + a_2x^2 + a_0$$
, wenn $a_{2k} \ge 0$ und $a_0 > 0$

Polynome geraden Grades besitzen keine Nullstellen.

Symmetrie

Für die Symmetrie der Funktion gilt wie bei Monomen weiterhin, dass bei geraden Potenzen eine gerade Funktion vorliegt und bei ungeraden Potenzen eine ungerade Funktion. Hat ein Polynom jedoch sowohl gerade, wie auch ungerade Exponenten, so kann man beides ausschließen.

8.4.1 Lösen durch Substitution

In diesem Beispiel werden die Nullstellen der Funktion mithilfe von Substitution (S. 13) und anschließendem Anwenden der p-q-Formel (S. 7) ermittelt.

$$p(x) = x^{4} - 5x^{2} + 2$$

$$0 = x^{4} - 5x^{2} + 2$$

$$0 = u^{2} - 5u + 2$$

$$u_{1,2} = \frac{5}{2} \pm \sqrt{\left(-\frac{5}{2}\right)^{2} - 2}$$

$$u_{1} = \frac{5 + \sqrt{17}}{2}$$

$$u_{2} = \frac{5 - \sqrt{17}}{2}$$

$$x_{1,2}^2 = \frac{5 + \sqrt{17}}{2}$$
$$x_{1,2}^2 = \pm 2,135779205$$

$$x_{3,4}^2 = \frac{5 - \sqrt{17}}{2}$$

$$x_{3,4}^2 = 0,6621534469$$

 $\mathbb{L} = \{-2, 135779205; -0, 6621534469; 0, 6621534469; 2, 135779205\}$

8.4.2 Lösen durch Faktorisierung

In diesem Beispiel werden die Nullstellen der Funktion mithilfe von Faktorisierung durch Ausklammern (S. 12) ermittelt.

$$\begin{aligned} p(x) &= x^5 - 3x^3 \\ 0 &= x^5 - 3x^3 \\ 0 &= x^2(x^2 - 3) \\ 0 &= x^2(x^2 - \sqrt{3})(x^2 + \sqrt{3}) \\ \mathbb{L} &= \{-\sqrt{3}; 0; \sqrt{3}\} \end{aligned}$$

8.4.3 Lösen mit binomischen Formeln

In diesem Beispiel wird Funktion mithilfe der binomischen Formeln (S. 7) so vereinfacht, dass man die Nullstellen ganz einfach ablesen kann.

$$p(x) = x^{4} - 4x^{2} + 1$$

$$0 = x^{4} - 4x^{2} + 1$$

$$0 = (x^{2} - 1)^{2}$$

$$x = \pm 1$$

$$\mathbb{L} = \{-1; 1\}$$

8.4.4 Lösen durch Polynomdivision

Wenn alle anderen Stränge reißen, ist man leider gezwungen die Polynomdivision durchzuführen. Um damit beginnen zu können, braucht man aber mindestens eine Nullstelle, die man durch Raten findet. Für das Beispiel unten finden wir so heraus, dass eine Nullstelle $x_1 = 1$ ist. Jetzt stellen wir x = 1 nach 0 um und erhalten 0 = x - 1. Anschließend teilen wir unser Polynom durch x - 1.

$$(2x^3 - 5x^2 - 2x + 5) : (x - 1)$$

Zunächst teilt man den Term mit der höchsten Potenz $2x^3$ durch x und erhält $2x^2$. Das ist der erste Teil unseres Ergebnisses.

$$(2x^3 - 5x^2 - 2x + 5) : (x - 1) = 2x^2...$$

Jetzt muss man zurück multiplizieren, indem man den Term $2x^2$, den wir gerade bekommen haben, mit unserem ursprünglichen Divisor x-1 multiplizieren. Das Ergebnis ziehen wir von unserem Polynom ab und holen anschließend den nächsten Ausdruck runter. Diesen Prozess wiederholen wir jetzt so oft, wie möglich.

$$\left(\begin{array}{c}
2x^3 - 5x^2 - 2x + 5 \\
-2x^3 + 2x^2 \\
\hline
-3x^2 - 2x \\
3x^2 - 3x \\
\hline
-5x + 5 \\
\underline{5x - 5} \\
0
\end{array}\right)$$

Mit der Funktion, die wir jetzt haben, können wir ganz einfach die restlichen Nullstellen errechnen.

$$f(x) = 2x^{2} - 3x - 5$$

$$0 = 2x^{2} - 3x - 5$$

$$0 = x^{2} - 1, 5x - 2, 5$$

$$x_{1,2} = \frac{1,5}{2} \pm \sqrt{\left(-\frac{1,5}{2}\right)^{2} + 2, 5}$$

$$x_{1} = 2, 5$$

$$x_{2} = -1$$

$$\mathbb{L} = \{-1; 1; 2, 5\}$$

8.4.5 Grenzverhalten von ganzrationalen Funktionen

Hat man eine Funktion wie z. B. $f(x) = -x^5 + 2x^3 + 3x^2 + x + 2$ und untersucht, wie sie sich gegen (minus) Unendlich verhält, würde man intuitiv sagen, sie nähert sich (minus) Unendlich an. Hier soll es darum gehen, wie man das auch rechnerisch herausfinden kann und sicher unterscheidet, ob nun plus oder minus Unendlich richtig ist. Der Trick bei Funktionen dieser Form ist es, das x mit dem höchsten Exponenten auszuklammern.

$$\lim_{x \to \infty} -x^5 + 2x^3 + 3x^2 + x + 2$$

$$\lim_{x \to \infty} x^5 \left(\frac{-x^5}{x^5} + \frac{2x^3}{x^5} + \frac{3x^2}{x^5} + \frac{x}{x^5} + \frac{2}{x^5} \right)$$

$$\lim_{x \to \infty} x^5 \left(-1 + \frac{2}{x^2} + \frac{3}{x^3} + \frac{1}{x^4} + \frac{2}{x^5} \right)$$

Wir sehen, dass sich die Brüche in der Klammer alle Null annähern, somit bleibt dort nur noch -1. Währenddessen nähert sich x^5 Unendlich an. Multipliziert mit -1 ergibt das dann minus Unendlich.

$$\infty^{5}(-1 + \frac{2}{\infty^{2}} + \frac{3}{\infty^{3}} + \frac{1}{\infty^{4}} + \frac{2}{\infty^{5}})$$
$$= \infty^{5}(-1 + 0 + 0 + 0 + 0)$$
$$= -\infty$$

Dasselbe kann man jetzt natürlich auch für $x \to -\infty$ testen.

$$-\infty^{5}(-1 - \frac{2}{\infty^{2}} - \frac{3}{\infty^{3}} - \frac{1}{\infty^{4}} - \frac{2}{\infty^{5}})$$

$$= -\infty^{5}(-1 - 0 - 0 - 0 - 0)$$

$$= \infty$$

Hinweis: Wenn man mit $x \to (-)\infty$ arbeitet, setzt man ∞ normalerweise nicht in die Funktion ein. Hier habe ich es einmal gemacht, damit man das Ergebnis besser nachvollziehen kann. Wenn man ausführlicher zu arbeiten will/muss, kann man den Limes von jedem Term einzeln aufstellen, um das Endergebnis zu begründen.

8.5 (Gebrochen)rationale Funktionen

Wenn wir von (gebrochen)rationalen Funktionen reden, meinem wir eine Funktion mit einem Polynom im Nenner eines Bruches. $f(x) = \frac{2}{x^3}$ ist z. B. eine rationale Funktion, $f(x) = \frac{x^3}{2}$ jedoch nicht.

Das Besondere an rationalen Funktionen der Form $f(x) = \frac{g(x)}{h(x)}$ ist, dass wir zum Bestimmen von Nullstellen und Definitionslücken den Zähler und Nenner einzeln betrachten können. Mithilfe des Zählers bestimmen wir ganz einfach Nullstellen der Funktion.

$$g(x) = 0$$

$$0 = 2x^4 - 10$$

$$10 = 2x^4$$

$$5 = x^4$$

$$x = \pm \sqrt[4]{5}$$

$$\mathbb{L} = \{-\sqrt[4]{5}; \sqrt[4]{5}\}$$

Mithilfe des Nenners bestimmen wir Definitionslücken.

$$h(x) = 0$$

$$0 = x^3 - 3$$

$$3 = x^3$$

$$x = \sqrt[3]{3}$$

$$\mathbb{L} = {\sqrt[3]{3}}$$

8.6 Exponentialfunktionen

Eine Funktion der Form $f(x) = a^x$ wird als Exponentialfunktion bezeichnet, denn die Variable x steht im Exponenten. Speziell wird die Funktion $f(x) = e^x$ als natürliche Exponentialfunktion bezeichnet.

8.6.1 Lösen von Exponentialgleichungen

Zum Lösen von Exponentialgleichungen brauchen wir in der Regel den Logarithmus (S. 11). Wie das funktioniert, sehen wir an dem Beispiel hier drunter. Dabei ist die Nullstelle der Funktion zu bestimmen. In diesem Beispiel sollte man sich außerdem nochmal daran erinnern, dass $\sqrt[n]{x}$ dasselbe ist, wie $x^{\frac{1}{n}}$.

$$f(x) = \sqrt[4]{7^x} - 4$$

$$0 = \sqrt[4]{7^x} - 4 \qquad | +4$$

$$4 = 7^{\frac{x}{4}} \qquad | \log_7()$$

$$0,7124143742 = \frac{x}{4} \qquad | \cdot 4$$

$$x = 2,849657497$$

 $\mathbb{L} = \{2, 849657497\}$

8.7 Logarithmusfunktionen

Funktionen wie $f(x) = log_3(x^2)$ werden als Logarithmusfunktionen bezeichnet, da sie einen oder mehrere Logarithmus beinhalten. Speziell bezeichnet man f(x) = ln(x) als natürliche Logarithmusfunktion und f(x) = lg(x) als dekadische Logarithmusfunktion.

8.7.1 Lösen von Logarithmusgleichungen

Gesucht wird hier die Nullstelle einer Logarithmusfunktion gesucht. Hinweis: Um einen Logarithmus aufzulösen musst du beide Seiten der Gleichung als Exponent zur Basis des jeweiligen Logarithmus setzen. Um dort hinzu kommen hilft es enorm, die Gleichung zunächst umzuformen. Wenn du Schwierigkeiten mit den Umformungen in diesem Beispiel hast, schaue dir noch einmal die Potenzgesetze (S. 8) und Logarithmusgesetze (S. 11) an.

$$f(x) = 3 \cdot lg(x^{3}) - 2 \cdot lg(x^{2}) - 4$$

$$0 = 3 \cdot lg(x^{3}) - 2 \cdot lg(x^{2}) - 4$$

$$0 = lg((x^{3})^{3}) - lg((x^{2})^{2}) - 4 \qquad | +4$$

$$lg\left(\frac{x^{9}}{x^{4}}\right) = 4$$

$$lg(x^{5}) = 4 \qquad | 10^{0}$$

$$10^{lg(x^{5})} = 10^{4}$$

$$x^{5} = 10^{4} \qquad | 5 / 7$$

$$x = 6,309573445$$

$$\mathbb{L} = \{6,309573445\}$$

8.8 Trigonometrische Funktionen

Trigonometrische Funktionen oder auch Winkelfunktionen genannt, beinhalten die aus der Geometrie (S. 24) bekannten winkelabhängigen Funktionen, wie Sinus, Kosinus und Tangens. Dabei sind diese Funktionen hier allerdings abhängig von der Variable x und damit im Bogenmaß, nicht im Gradmaß. Beim Taschenrechner muss man darauf achten, dass der richtige Modus eingestellt ist, ansonsten kann es sein, dass man versehentlich im falschen Maß rechnet. Auf dem CASIO fx-86DE PLUS, drückt man Shift, dann Setup und wählt dort die 3:Deg (engl. degree) für Gradmaß oder 4:Rad (engl. radian) fürs Bogenmaß.

Anmerkung: Die Nullstellen des Sinus sind die Extremstellen des Kosinus und umgekehrt. Ebenso haben Sinus und Tanges dieselben Nullstellen.

8.9 Verkettete Funktionen

Verkettungen sind eigentliche keine eigene Funktionsart, sondern eine Möglichkeit Funktionen durch Zusammensetzung zu transformieren. Man schreibt das als $f \circ g$ ("f nach g"). Man spricht hier bei g auch von der inneren Funktion, da sie als Argument in die äußere Funktion f eingesetzt wird.

8.10 Kreisgleichungen

Bei Funktionen ist es so, dass jedem Abszess (x-Achsenwert) genau eine Ordinate (y-Achsenwert) zugeordnet werden kann. Das ist eine Besonderheit von Funktionen und nicht des Koordinatensystems an sich. Im Koordinatensystem können wir noch viele andere Gebilde darstellen, so z. B. auch einen Kreis.

Für die Koordinatenform eines Kreises mit dem Radius r und dem Mittelpunkt $M(x_m \mid y_m)$ gilt folgende Notation:

$$(x - x_m)^2 + (y - y_m)^2 = r^2$$

9 Differenzialrechnung

9.1 Die Ableitung

Die Ableitung einer Funktion gibt Aufschluss über ihr Monotonieverhalten (S. 32) und die Veränderung ihres Anstiegs, denn die Werte der Ableitung f'(x) einer Funktion f(x) entsprechen dem Anstieg einer Tangente an derselben Stelle von f(x). Das kann man auch an dem unten stehenden Beispiel erkennen. Um eine Potenzfunktion abzuleiten, nehmen wir den Exponenten von jedem x und holen ihn hinunter, um ihn vor das jeweilige x zu schreiben. Anschließend reduzieren wir den Exponenten um 1. Dabei ist zu beachten, dass die Ableitung einer reinen Zahl ohne x immer 0 ist und, dass die Ableitung von x = 1 ist, denn x^0 entspricht 1.

Hinweis: Um Fehler zu vermeiden, sollte man zunächst alle Terme so umformen, dass man einfach ableiten kann. Dafür solltest du die wichtigsten Rechengesetze (S. 6) beherrschen.

Ableitungsregeln

Neben der oben genannten Ableitungsregel von Funktionen, gibt es noch einige andere, die einem das Leben erleichtern:

$$x^n o nx^{n-1} \cos(x) o -\sin(x)$$

$$\sqrt{x}$$
 $\rightarrow \frac{1}{2\sqrt{x}}$ $\tan(x)$ $\rightarrow \frac{1}{\cos^2 x}$

$$e^x \rightarrow e^x \qquad u(x) \cdot v(x) \rightarrow u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

$$ln(x) \qquad \rightarrow \frac{1}{x} \qquad \qquad \frac{u(x)}{v(x)} \qquad \rightarrow \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{(v(x))^2}$$

$$a^x(a>0) \rightarrow ln(a \cdot a^x)$$
 $(u \circ v)(x) \rightarrow u'(v(x)) \cdot v'(x)$

$$\frac{1}{x^n} \qquad \rightarrow -\frac{n}{x^{n+1}}$$

Tipp: Solltest du es einmal nicht schaffen, eine Funktion mit den Ableitungsregeln abzuleiten oder diese vergessen haben, kannst du die Ableitung immer noch mithilfe des Differentialquotienten! (S. 52) bestimmen.

9.1.1 Differenzenquotient

Um die Steigung einer Sekante zwischen zwei Punkten zu berechnen, benutzen wir den Differenzenquotient. Dieser Quotient berechnet sich indem man x und y der beiden Punkte jeweils voneinander abzieht und dann y durch x teilt.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Allgemeiner ausgedrückt, gilt die Formel:

$$m = \frac{f(x+h) - f(x)}{x+h-x} = \frac{f(x+h) - f(x)}{h}$$

Dabei ist h eine beliebige Zahl, mit deren Hilfe wir uns jetzt an die genaue Steigung in einem Punkt annähern können. Je kleiner wir den Abstand h wählen, desto genauer kommen wir an die Tangente oder auch Steigung der Stelle x.

9.1.2 Differential quotient

Der Differenzenquotient erlaubt es uns die Steigung einer Funktion an einer bestimmten Stelle zu bestimmen. Im Abschnitt über den Differenzenquotient (S. 51) haben wir schon geklärt, das wir näher an den Anstieg an der Stelle x kommen, wenn wir den Abstand h verringern. Der kleinstmögliche Abstand wäre theoretisch 0. Das geht allerdings nicht, da wir nicht h=0 in die Formel für den Differenzenquotient einsetzen und den Divisor somit gleich 0 setzen dürfen. Um ums zu überlegen, was also für ein minimal kleines h passieren würde, brauchen wir den Limes.

$$\lim_{h \to 0} m = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

Da setzen wir jetzt unsere Funktion $f(x) = x^3 + 2$ ein und formen solange um, bis wir das h aus dem Divisor kriegen, damit wir für h die Zahl 0 einsetzen können. Hinweis: Nachdem du für h die Zahl 0 eingesetzt hast, darfst du nicht mehr Limes davor schreiben!

$$\lim_{h \to 0} \frac{(x+h)^3 + 2 - x^3 - 2}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + 3hx^2 + 2xh^2 + h^3 + 2 - x^3 - 2}{h}$$

$$= \lim_{h \to 0} \frac{3hx^2 + 2xh^2 + h^3}{h}$$

$$= \lim_{h \to 0} (3x^2 + 2xh + h^2)$$

$$= 3x^2$$

Das, was wir jetzt haben ist die erste Ableitung f'(x). Sofern nicht anders gewünscht, kann man diese oft auch wesentlich leichter bestimmen, indem man die Ableitungsregeln (S. 50) kennt.

9.1.3 Extrem- und Wendepunkte

Leitet man die Ableitung einer Funktion noch mal ab, erhält man die zweite Ableitung f''(x). Ebenso verhält es sich mit der dritten Ableitung und allen weiteren. In der folgenden Abbildung sieht man eine Funktion und ihre erste, zweite sowie dritte Ableitung.

Man spricht bei den Bedingungen zur Bestimmung besonderer Punkte von notwendigen Bedingungen. Es existieren zudem weitere Bedingungen, mit deren Hilfe man diese Punkt genauer untersuchen kann, die sogenannten hinreichenden Bedingungen. Die obige Abbildung soll helfen, diese Bedingungen nachzuvollziehen.

Notwendige Bedingungen

Wenn f'(x) = 0 gilt, dann ist bei x ein Extremal- o. Sattelpunkt von f.

Wenn f''(x) = 0 gilt, dann ist bei x ein Wendepunkt von f(x).

Hinreichende Bedingungen

Wenn $f'(x) = 0 \land f''(x) \neq 0$ gilt, besitzt f eine Extremalpunkt bei x.

Wenn $f'(x) = 0 \land f''(x) > 0$ gilt, dann ist bei x ein Minimum von f.

Wenn $f'(x) = 0 \land f''(x) < 0$ gilt, dann ist bei x ein Maximum von f.

Wenn $f''(x) = 0 \land f'(x) = 0$ gilt, besitzt f einen Sattelpunkt bei x.

Wenn $f''(x) = 0 \land f'''(x) < 0$ gilt, dann ist bei x eine Links-Rechts-Krümmung.

Wenn $f''(x) = 0 \land f'''(x) > 0$ gilt, dann ist bei x eine Rechts-Links-Krümmung.

Hinweis: Das Zeichen \wedge bedeutet »und«, während \vee »oder« bedeutet.

9.2 Limes: Der Grenzwert

Für manche Funktionen ist es nicht möglich den Werte einer bestimmten Stelle zu errechnen. Manchmal will man auch das Verhalten einer Funktion wissen, wenn x gegen Unendlich geht.

In u.a. diesen Fällen braucht man dem Limes. Um den Grenzwert einer Funktion für $x \to a$ zu ermitteln muss man den links- und den rechtsseitigen Grenzwert betrachten. Es gilt Folgendes:

Um zu überprüfen, ob für eine Funktion mit x gegen a ein Grenzwert existiert, schaut man sich jeweils den linksseitigen und rechtsseitigen Grenzwert an. Sind diese gleich, so existiert ein Grenzwert. Sind sie unterschiedlich, existiert kein Grenzwert.

Beim Grenzwert setzt man Zahlen ein, die sich in die Richtung von a bewegen. Nehmen wir beispielsweise $f(x) = \frac{1}{x}$. 0 können wir ja nicht für x einsetzen, da wir nicht durch Null teilen dürfen. Was wir aber machen können ist sehr kleine Zahlen einsetzen, um zu schauen, ob wir eine Tendenz feststellen können.

$$f(1) = \frac{1}{1} = 1$$

$$f(0,1) = \frac{1}{0,1} = 10$$

$$f(00,1) = \frac{1}{00,1} = 100$$

$$f(000,1) = \frac{1}{000,1} = 1000$$

$$\lim_{x \to 0} \frac{1}{x} = \infty$$

Wir sehen also, dass sich unsere Funktion für x gegen Null Unendlich nähert. Das, was wir uns jetzt angeguckt haben, ist aber nur der rechtsseitige Grenzwert, da wir Werte größer als 0 eingesetzt haben und uns somit von rechts angenähert haben. Jetzt machen wir das Ganze noch einmal von links.

$$f(-1) = \frac{1}{-1} = -1$$

$$f(-0,1) = \frac{1}{-0,1} = -10$$

$$f(-00,1) = \frac{1}{-00,1} = -100$$

$$f(-000,1) = \frac{1}{-000,1} = -1000$$

$$\lim_{x \to 0} \frac{1}{x} = -\infty$$

Wir sehen, dass $\infty \neq -\infty$ gilt. Somit haben wir keinen Grenzwert für $x \to 0$. Übrigens gibt es für den links- und rechtsseitigen Grenzwert unterschiedliche Notationen. Ich benutze hier, die Variante mit den diagonalen Pfeilen, da ich finde, dass sie gut darstellt, was man bei der Annäherung mit dem x anstellt.

Linksseitiger Grenzwert

Rechtsseitiger Grenzwert

$$\lim_{x \to a^{-}} oder \lim_{x \uparrow a} oder \lim_{x \nearrow a} oder \lim_{\substack{x \to a \\ x < a}}$$

$$\lim_{x \to a^+} oder \lim_{x \downarrow a} oder \lim_{x \searrow a} oder \lim_{\substack{x \to a \\ x > a}}$$

9.3 Differenzierbarkeit

Was uns an dem obigen Beispiel jetzt speziell interessiert, ist die Stelle x=2. Wir wollen wissen, ob f in dieser Stelle stetig bzw. differenzierbar ist. Das heißt quasi, dass wir wissen wollen, ob man die Funktion zeichnen kann, ohne den Stift abzusetzen. Aber Achtung: Das ist keine sehr akkurate Definition, denn es gibt auch Funktionen, die stetig sind, obwohl man sie nicht durchzeichnen kann. Deshalb hier die mathematischen Bedingungen, die erfüllt sein müssen.

Wenn eine Funktion f(x) an der Stelle x_0 folgende Bedingungen erfüllt, so ist sie in dieser Stelle differenzierbar bzw. stetig.

- $1. x_0 \in \mathbb{D}$
- 2. $\lim_{x \to x_0} f(x)$ existiert
- 3. $\lim_{x \to x_0} f(x) = f(x_0)$

Sind die obigen Bedingungen für alle x der Definitionsmenge erfüllt, so spricht man von einer $stetigen\ Funktion$.

Schauen wir uns das einmal für unser Beispiel an. Die erste Bedingung ist erfüllt, denn für x=2 ist x definiert und es gilt $f(2)=\frac{1}{2}(2)^2=2$. Als nächsten prüfen wir die zweite Bedingung.

55

$$\lim_{x \nearrow 2} f(x) = \lim_{x \nearrow 2} x^2 = 2^2 = 4$$

$$\lim_{x \searrow 2} f(x) = \lim_{x \searrow 2} \frac{1}{2} x^2 = \frac{1}{2} \cdot 2^2 = 2$$

Unsere zweite Bedingung ist somit nicht erfüllt. Der linksseitige und der rechtsseitige Grenzwert sind unterschiedlich und somit existiert an dieser Stelle auch kein Grenzwert. Daher brauchen wir die letzte Bedingung gar nicht erst überprüfen und können es sogar nicht, da uns der Grenzwert fehlt.

9.3.1 Stetige Erweiterung

Eine Funktion wie z. B. $f(x) = \frac{1}{x}$ hat zwar keinen Grenzwert für $x \to 0$, allerdings ist sie trotzdem stetig, da ihr Definitionsbereich $\mathbb{D} = \mathbb{R} \setminus \{0\}$ die 0 ausschließt. Das ist wichtig zu wissen bei der Bestimmung der Differenzierbarkeit.

Jetzt kann es aber sein, dass wir gerne die Definitionslücken unserer Funktion definieren wollen. Das geht sogar mithilfe der stetigen Erweiterung, allerdings nicht für jede Lücke. Eine Lücke, die man bestimmen kann, nennt man (be)hebbar. Damit eine Lücke behebbar ist, müssen die Bedingungen für die Differenzierbarkeit gegeben sein, außer der, dass x_0 nicht im Definitionsbereich liegt. Würde x im Definitionsbereich liegen hätten wir natürlich auch keine Lücke. Logisch. Das Kriterium, dass der Grenzwert dem Funktionswert an der Stelle x_0 entspricht entfällt dementsprechend auch.

Ist eine Lücke einer Funktion (be)hebbar, so sind folgende Bedingungen erfüllt:

- $1. x_0 \notin \mathbb{D}$
- 2. $\lim_{x \to x_0} f(x)$ existiert

Für $x \to 0$ bei $f(x) = \frac{1}{x}$ haben wir keinen Grenzwert, somit ist die Funktion an der Stelle x = 0 nicht stetig erweiterbar. Es folgt noch ein Beispiel einer stetig erweiterbaren Lücke.

Diese Funktion verhält sich jetzt wie eine Normalparabel. Leider ist sie für x=0 nicht definiert, da wir nicht durch 0 teilen dürfen, also schauen wir, ob wir sie an dieser Stelle stetig erweitern können. In diesem Fall können wir uns den Test für links- und rechtsseitigen Grenzwert sparen, denn ich denke, man erkennt hier, dass wir einen Grenzwert haben.

$$\lim_{x \to 0} \frac{x^3}{x} - 5 = \lim_{x \to 0} (x^2 - 5)$$
$$= -5$$

Mit dem Grenzwert können wir jetzt eine zusammengesetzte Funktion aufstellen.

$$f(x) = \begin{cases} \frac{x^3}{x}; & x \neq 0 \\ -5; & x = 0 \end{cases}$$

9.4 Tangentengleichung

Wenn man Extremal- und Wendepunkte untersucht, kann es vorkommen, dass man eine Tangenten für diese Punkte aufstellen soll. Das ist nicht schwer, denn man muss nur zwei Konstanten bestimmen. Da eine Tangente eine lineare Funktion ist, hat sie die grundlegende Form T(x) = mx + n. Sagen wir, wir wollen die Tangentengleichung an der Stelle x = 2 der Funktion $f(x) = x^2 + 4$ aufstellen. Um m zu bestimmen brauchen wir den Anstieg an der Stelle x. Diesen können wir mit der ersten Ableitung an der Stelle x ermitteln.

$$f(x) = x^2 + 4$$
$$f'(x) = 2x$$
$$f'(2) = 4$$

Das können wir schon mal in unsere Gleichung einsetzen und erhalten T(x) = 4x + n. Jetzt fehlt uns noch n, welches wir durch Umstellen bestimmen können, nachdem wir x und T(x) eingesetzt haben. Gesucht ist ja die Tangente an der Stelle x = 2. Den x-Wert haben wir also schon mal und f(x) bzw. T(x) (Punkt existiert auf beiden Funktionen) können wir ganz einfach durch Einsetzen in die Funktion berechnen.

$$f(2) = 8 = T(2)$$

$$T(2) = 4 \cdot 2 + n$$

$$8 = 4 \cdot 2 + n$$

$$n = 0$$

Da n=0 ist, können wir es weglassen und haben bereits unsere vollständige Tangentengleichung. Hier nochmal eine Abbildung, um zu zeigen, dass das Ergebnis auch wirklich richtig ist.

9.5 Kurvendiskussion

In einer Kurvendiskussion untersucht man verschiedene Eigenschaften einer Funktion. Wie man diese Eigenschaften jeweils untersucht wird an anderen Stellen erklärt, die auch noch mal genannt werden. Im Folgenden wird einmal eine komplette Kurvendiskussion beispielhaft durchgeführt. Da man normalerweise keine Abbildung zur Verfügung hat, weil man die Funktion selber skizzieren soll, gibt es den Graphen der Funktion erst am Ende. Die zu untersuchende Funktion ist:

$$f(x) = x^5 - 3x^3 + 2x$$

9.5.1 Symmetrie

Für diesen Teil der Kurvendiskussion solltest du wissen, wie man die Symmetrie (S. 33) einer Funktion bestimmt.

Aufgabe:

Bestimme begründet, ob die Funktion gerade, ungerade oder weder noch ist.

Lösung:

Dazu müssen wir f(-x) betrachten. Ist es gleich f(x) haben wir eine gerade Funktion, ist es gleich -f(x) haben wir eine ungerade Funktion, ansonsten haben wir weder noch.

$$f(-x) = (-x)^5 - 3 \cdot (-x)^3 + 2 \cdot (-x)$$

$$f(-x) = -x^5 + 3x^3 - 2x$$

$$-f(x) = -(x^5 - 3x^3 + 2x)$$

$$-f(x) = -x^5 + 3x^3 - 2x$$

Da f(-x) = -f(x) gilt, liegt hier eine ungerade Funktion vor.

9.5.2 Nullstellen

Für diesen Teil der Kurvendiskussion solltest du wissen, wie man Gleichungen (S. 12) lösen kann.

Aufgabe:

Bestimme alle Nullstellen der Funktion.

Lösung:

$$x^{5} - 3x^{3} + 2x = 0 \qquad | \text{Faktorisierung durch Ausklammern von } x$$

$$\Leftrightarrow x(x^{4} - 3x^{2} + 2) = 0$$

$$\Rightarrow x^{4} - 3x^{2} + 2 = 0 \qquad | \text{Substitution: } u = x^{2}$$

$$\Rightarrow u^{2} - 3u + 2 = 0 \qquad | \text{p-q-Formel}$$

$$\Rightarrow u_{1,2} = \frac{3}{2} \pm \sqrt{\left(-\frac{3}{2}\right)^{2} - 2}$$

$$\Rightarrow u_{1} = 2 \qquad | \text{Resubstitution: } u = x^{2}$$

$$\Rightarrow x^{2} = 2$$

$$\Rightarrow x_{1,2} = \pm \sqrt{2}$$

$$\Rightarrow u_{2} = 1 \qquad | \text{Resubstitution: } u = x^{2}$$

$$\Rightarrow x^{2} = 1$$

$$\Rightarrow x_{3,4} = \pm 1$$

$$\mathbb{L} = \left\{ -\sqrt{2}; -1; 0; 1; \sqrt{2} \right\}$$

9.5.3 Schnittpunkt mit y-Achse

Den y-Achsenschnittpunkt zu bestimmen, ist ganz einfach. Man muss nur x=0 einsetzen und das Ergebnis ausrechnen.

Aufgabe:

Bestimme den Schnittpunkt mit der y-Achse der Funktion.

Lösung:

In diesem Fall müssen wir eigentlich gar nicht rechnen, da wir bereits wissen, dass bei x=0 eine Nullstelle vorliegt. Trotzdem ist hier noch einmal der rechnerische Nachweis.

$$f(x) = x^5 - 3x^3 + 2x$$

$$\Rightarrow f(0) = 0^5 - 3 \cdot 0^3 + 2 \cdot 0$$

$$\Leftrightarrow f(0) = 0$$

Damit ist der Schnittpunkt mit der y-Achse der Punkt $S(0 \mid 0)$.

9.5.4 Grenzverhalten

Für diesen Teil der Kurvendiskussion solltest du wissen, wie man den Limes (S. 53) benutzt.

Aufgabe:

Bestimme das Verhalten der Funktion für $x \to \pm \infty$.

Lösung:

Zunächst stellen wir die Funktion so um, dass wir den Grenzwert jedes Terms leicht einzeln betrachten können.

$$f(x) = x^5 - 3x^3 + 2x \qquad | x^5 \text{ ausklammern}$$

$$\Leftrightarrow = x^5 \left(\frac{x^5}{x^5} - \frac{3x^3}{x^5} + \frac{2x}{x^5} \right)$$

$$\Leftrightarrow = x^5 \left(1 - \frac{3}{x^2} + \frac{2}{x^4} \right)$$

Durch das Umstellen ist der Grenzwert der Funktion wesentlich einfacher zu zeigen.

$$\lim_{x \to -\infty} x^5 \left(1 - \frac{3}{x^2} + \frac{2}{x^4} \right) = -\infty$$

$$\lim_{x \to \infty} x^5 \left(1 - \frac{3}{x^2} + \frac{2}{x^4} \right) = \infty$$

9.5.5 Extrema

Für diesen Teil der Kurvendiskussion solltest du wissen, wie man Extrema (S. 52) bestimmt.

Aufgabe:

Bestimme alle Extrempunkte der Funktion und gib an, ob es sich jeweils um Maxima oder Minima handelt.

Lösung:

In den folgenden Abschnitten werden wir die Ableitungen benötigen, daher hier einmal alle Funktionen gesammelt:

$$f(x) = x^5 - 3x^3 + 2x$$

$$\Rightarrow f'(x) = 5x^4 - 9x^2 + 2$$

$$\Rightarrow f''(x) = 20x^3 - 18x$$

$$\Rightarrow f'''(x) = 60x^2 - 18$$

Notwendige Bedingung für Extrempunkte: f'(x) = 0

$$f'(x) = 5x^{4} - 9x^{2} + 2$$

$$\Rightarrow 0 = 5x^{4} - 9x^{2} + 2$$

$$\Rightarrow 0 = 5u^{2} - 9u + 2$$

$$\Leftrightarrow 0 = u^{2} - 1, 8u + 0, 4$$

$$\Rightarrow u_{1,2} = \frac{1, 8}{2} \pm \sqrt{\left(-\frac{1, 8}{2}\right)^{2} - 0, 4}$$

$$\Rightarrow u_{1} = \frac{9 + \sqrt{41}}{10}$$

$$\Rightarrow x^{2} = \frac{9 + \sqrt{41}}{10}$$

$$\Rightarrow x_{1,2} = \pm 1, 241093237$$

$$\Rightarrow u_{2} = \frac{9 - \sqrt{41}}{10}$$

$$\Rightarrow x_{3,4} = \pm 0, 5095955026$$
| Substitution: $u = x^{2}$
| Resubstitution: $u = x^{2}$

Durch Einsetzen der ermittelten x-Werte, bekommen wir auch die y-Werte für die Punkte.

$$\mathbb{L} = \{ (-1, 241093237; 0, 3082564193), (-0, 5095955026; -0, 656550059), (0, 5095955026; -0, 656550059), (1, 241093237; 0, 3082564193) \}$$

Hinreichende Bedingung für Maxima: $f'(x) = 0 \land f''(x) < 0$ Hinreichende Bedingung für Minima: $f'(x) = 0 \land f''(x) > 0$

$$f''(-1, 241093237) = 20 \cdot (-1, 241093237)^3 - 18 \cdot (-1, 241093237) = -15, 89374835 < 0$$
$$f''(-0, 5095955026) = 20 \cdot (-0, 5095955026)^3 - 18 \cdot (-0, 5095955026) = 6, 526006628 > 0$$

Da unsere Funktion ungerade ist, können wir darauf schließen, dass die Extrema auf der anderen Seite der y-Achse genau gegenteilig sind. Daher gilt also:

$$x = -1,241093237 \Rightarrow$$
 Maximalstelle $x = -0,5095955026 \Rightarrow$ Minimalstelle $x = 0,5095955026 \Rightarrow$ Maximalstelle $x = 1,241093237 \Rightarrow$ Minimalstelle

9.5.6 Wendepunkte

Für diesen Teil der Kurvendiskussion solltest du wissen, wie man Wendepunkte (S. 52) bestimmt.

Aufgabe:

Bestimme alle Wendepunkte der Funktion und gib an, ob gib ihr Krümmungsverhalten an.

Lösung:

Notwendige Bedingung für Wendepunkte: f''(x) = 0

$$f''(x) = 20x^{3} - 18x$$

$$\Rightarrow 0 = 20x^{3} - 18x \quad | \text{Faktorisierung durch Ausklammern von } x$$

$$\Rightarrow 0 = x(20x^{2} - 18) \quad | \text{Ein Wendepunkt ist } x_{1} = 0$$

$$\Rightarrow 0 = 20x^{2} - 18 \quad | +18$$

$$\Leftrightarrow 18 = 20x^{2} \quad | : 20$$

$$\Leftrightarrow \frac{9}{10} = x^{2} \quad | \sqrt{}$$

$$\Rightarrow x_{2,3} = \pm \sqrt{\frac{9}{10}}$$

$$\mathbb{L} = \left\{ \left(-\sqrt{\frac{9}{10}}; -0, 1043551628 \right), (0; 0), \left(\sqrt{\frac{9}{10}}; 0, 1043551628 \right) \right\}$$

Hinreichende Bedingung für Links-Rechts-Krümmung: $f'(x) = 0 \land f'''(x) < 0$ Hinreichende Bedingung für Rechts-Links-Krümmung: $f'(x) = 0 \land f'''(x) > 0$

$$f'''\left(-\sqrt{\frac{9}{10}}\right) = 60 \cdot \left(-\sqrt{\frac{9}{10}}\right)^2 - 18 = 36 > 0$$
$$f'''(0) = 60 \cdot (0)^2 - 18 = -18 < 0$$
$$f'''\left(\sqrt{\frac{9}{10}}\right) = 60 \cdot \left(\sqrt{\frac{9}{10}}\right)^2 - 18 = 36 > 0$$

$$x=-\sqrt{\frac{9}{10}} \Rightarrow \text{Rechts-Links-Krümmung}$$
 $x=0 \Rightarrow \text{Links-Rechts-Krümmung}$ $x=\sqrt{\frac{9}{10}} \Rightarrow \text{Rechts-Links-Krümmung}$

9.5.7 Tangentengleichungen der Wendepunkte

Für diesen Teil der Kurvendiskussion solltest du wissen, wie man eine Tangentengleichung (S. 57) aufstellt.

Aufgabe:

Stelle eine Tangentengleichung für die Wendestelle mit dem kleinsten x-Wert auf.

Lösung:

Die Grundgleichung für eine lineare Funktion ist T(x) = mx + n. Wir müssen dafür m und n bestimmen. Den Anstieg m erhalten wir aus der ersten Ableitung an der Wendestelle.

$$f'(x) = 5x^4 - 9x^2 + 2$$

$$\Rightarrow f'\left(-\sqrt{\frac{9}{10}}\right) = 5\left(-\sqrt{\frac{9}{10}}\right)^4 - 9\left(-\sqrt{\frac{9}{10}}\right)^2 + 2$$

$$\Leftrightarrow = -\frac{41}{20}$$

Jetzt, wo wir m bestimmt haben, können wir die Koordinaten von unserem Wendepunkt einsetzen und nach n umstellen.

$$-0,1043551628 = -\frac{41}{20} \cdot \left(-\sqrt{\frac{9}{10}}\right) + n$$

$$\Leftrightarrow -0,1043551628 = 1,944800761 + n \qquad |-1,944800761$$

$$\Leftrightarrow n = -2,049155924$$

Damit ist unsere Tangentengleichung $T(x) = -\frac{41}{20}x - 2.049155924$. Mit den ermittelten Informationen können wir folgende Abbildung zeichnen:

9.5.8 Flächenberechnung

Für diesen Teil der Kurvendiskussion solltest du wissen, wie man Integralrechnung (S. 65) durchführt.

Aufgabe:

Berechne die Fläche, die zwischen den äußersten Nullstellen von Funktion und x-Achse eingeschlossen wird.

Lösung:

Zunächst müssen wir die Stammfunktion bilden. Diese lautet $F(x) = \frac{1}{6}x^6 - \frac{3}{4}x^4 + x^2 + k$. Anschließend bilden wir das Integral mit den Grenzen $-\sqrt{2}$ und -1, sowie mit den Grenzen 0 und 1. Welche Flächen wir damit berechnen, kann man an der obigen Skizze gut erkennen. Da durch die Punktsymmetrie der Funktion zum Nullpunkt diese Flächen jeweils zwei Mal

vorliegen, müssen wir das Ergebnis nur verdoppeln und haben die Gesamtfläche.

$$\int_{-\sqrt{2}}^{-1} (x^5 - 3x^3 + 2x) dx = \left[\frac{1}{6} x^6 - \frac{3}{4} x^4 + x^2 + k \right]_{-\sqrt{2}}^{-1}$$

$$= \frac{1}{6} (-1)^6 - \frac{3}{4} (-1)^4 + (-1)^2 + k - \left(\frac{1}{6} (-\sqrt{2})^6 - \frac{3}{4} (-\sqrt{2})^4 + (-\sqrt{2})^2 + k \right)$$

$$= \frac{5}{12} + k - (0, \overline{3} + k)$$

$$= \frac{5}{12} + k - 0, \overline{3} - k)$$

$$= \frac{1}{12}$$

$$\int_{0}^{1} (x^{5} - 3x^{3} + 2x) dx = \left[\frac{1}{6} x^{6} - \frac{3}{4} x^{4} + x^{2} + k \right]_{0}^{1}$$

$$= \frac{1}{6} (1)^{6} - \frac{3}{4} (1)^{4} + (1)^{2} + k - \left(\frac{1}{6} (0)^{6} - \frac{3}{4} (0)^{4} + (0)^{2} + k \right)$$

$$= \frac{5}{12} + k - (0 + k)$$

$$= \frac{5}{12} + k - 0 - k$$

$$= \frac{5}{12}$$

$$F = 2 \cdot \left(\frac{1}{12} + \frac{5}{12}\right) = 1$$
 Flächeneinheiten

10 Integralrechnung

Ein Integral gibt den Flächeninhalt zwischen einer Funktion und der x-Achse in einem bestimmten Intervall wieder. Dabei ist zu beachten, dass die Flächen unterhalb der x-Achse negativ sind, weshalb man jeden Abschnitt einzeln berechnen und anschließend addieren sollte.

Das unbestimmte Integral ist die Menge der Stammfunktionen einer Funktion f(x):

$$\int f(x)dx = F(x) + k$$

Für das bestimmte Integral mit den Integrationsgrenzen a und b, sowie der Integrationsvariable x und dem Differential dx gilt folgende Notation:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = [F(x)]_{a}^{b}$$

Um das zu verstehen, müssen wir uns erst einmal angucken, was das überhaupt bedeutet. Wenn wir die Fläche unter einer linearen Gleichung berechnen wollten, wäre das ziemlich einfach, da wir schnell ein Drei- oder Viereck konstruieren können, dessen Fläche wir berechnen. Mit anderen Funktionstypen ist das aber nicht so einfach. Wir können die Fläche annähernd berechnen, wenn wir sie mit Formen füllen, deren Flächen wir einfach berechnen können. Dafür nehmen wir Rechtecke. Die breite der Rechtecke nennen wir Δx . Das bedeutet quasi nur $x_2 - x_1$.

Wenn wir unsere Rechtecke schmaler und schmaler machen, dann wird unser Ergebnis immer akkurater. Wenn wir unsere Rechtecke minimal klein machen schreiben wir anstatt Δx jedoch dx.

Genau diese immer kleiner werdenden Rechteck werden durch das Integral dargestellt. Man rechnet die Stammfunktion an der obereren Grenze minus die Stammfunktion an der unteren Grenze. In der Kurvendiskussion gibt es ein rechnerisches Beispiel (S. 63) für die Anwendung des Integrals.

10.1 Die Stammfunktion

Das Gegenteil vom Differenzieren ist das Integrieren. Damit kann man von einer Ableitung auf die nächst niedrigere Ableitung schließen, z. B. von f''(x) auf f'(x). Die Funktion, die man daraus erhält, nennt man Stammfunktion. Auch eine nicht abgeleitete Funktion besitzt eine Stammfunktion. Diese wird mit einem großen F(x) bezeichnet. Da das Integrieren das Gegenteil des Differenzieren ist, gelten dieselben Regeln (S. 50), jedoch umgekehrt. Anstatt z. B. den Exponenten um 1 zu reduzieren und mit ihm zu multiplizieren, wird er um 1 erhöht und durch ihn geteilt. Beim Integrieren fügt man jedoch noch k für eine beliebige Zahl hinzu, denn beim Ableiten geht diese verloren. Daher sind Stammfunktionen nicht eindeutig, wie es die Ableitungen sind. Die Stammfunktion von f(x) = 2x ist beispielsweise $F(x) = x^2 + k$.

Integrationsregeln

Da es manchmal schwierig sein kann, umgekehrt zu denken, hier noch mal die wichtigsten Regeln zur Bildung der Stammfunktion:

$$c \rightarrow c \cdot x + k$$
 $ln(x) \rightarrow -x + x \cdot ln(x) + k$

$$x^n \longrightarrow \frac{1}{n+1}x^{n+1} + k$$
 $\sin(x) \longrightarrow -\cos(x) + k$

$$\frac{1}{x} \longrightarrow \ln|x| + k$$

$$\tan(x) \longrightarrow -\ln|\cos(x)| + k$$

$$\sqrt[n]{x} \longrightarrow \frac{1}{\frac{1}{n}+1}x^{\frac{1}{n}+1} + k \qquad \qquad \frac{f'(x)}{f(x)} \longrightarrow \ln f(x) + k$$

$$e^x \rightarrow e^x$$

Die lineare Substitution

Haben wir eine verkettete Funktion deren innere Funktion eine lineare Funktion ist, so gilt folgende Integrationsregel:

$$\int f(mx+b)dx = \frac{1}{m}F(mx+b) + k$$

10.2 Integration durch Substitution

Möchte man eine verkettete Funktion integrieren, wird es mit den bisherigen Regeln schwierig. Wir müssen hier substituieren, um eine Stammfunktion zu erzeugen. Schauen wir uns das mal an einem Beispiel an.

$$\int_{-1}^{0} \left(\sqrt{1-2x}\right) dx$$

Diesen Term können wir so erst einmal nicht integrieren. Wenn wir jetzt jedoch die innere Funktion mit u substituieren, geht das schon. Wir sagen also, dass u = 1 - 2x gilt.

$$\int \sqrt{u}$$

Das war jedoch nicht alles, denn jetzt, wo wir u in unserer Funktion haben, müssen wir unsere Grenzen und das Differenzial anpassen. Das funktioniert, in dem wir die Ableitung von u bilden.

$$u' = -2 = \frac{du}{dx}$$

Wichtig ist sich zu merken, dass wir sagen können, dass $\frac{du}{dx}$ das Gleiche ist, wie die Ableitung. Jetzt stellen wir nach dx um, damit wir auch das Differenzial ersetzen können.

$$\int \sqrt{u} \cdot \left(-\frac{1}{2}\right) du$$

Letztlich müssen wir nur noch unsere Grenzen anpassen, indem wir x in u einsetzen.

$$\int_{u(-1)}^{u(0)} \sqrt{u} \cdot \left(-\frac{1}{2}\right) du$$

$$= \int_{3}^{1} \sqrt{u} \cdot \left(-\frac{1}{2}\right) du$$

$$= \left[-\frac{1}{3}u^{\frac{3}{2}}\right]$$

$$\approx 1,399$$

Hinweis: Hat man ein unbestimmtes Integral, muss man resubstituieren. Also in dem Fall:

$$\int \left(\sqrt{1-2x}\right) dx = \left[-\frac{1}{3}(1-2x)^{\frac{3}{2}} + k\right]$$

10.3 Partielle Integration

Wenn man ein Produkt integrieren möchte, braucht man die partielle Integration. Abgeleitet aus der Produktregel der Differentialrechnung, ergibt sich folgende Formel:

$$\int f'(x) \cdot g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$

Zum besseren Verständnis noch mal ein Beispiel: $\int x \cdot e^x dx$.

$$\int (x \cdot e^x) dx$$

$$= e^x \cdot x - \int (e^x \cdot 1) dx$$

$$= e^x \cdot x - e^x + k$$

$$= e^x \cdot (x - 1) + k$$

10.4 Die Fläche zwischen zwei Graphen

Wollen wir die Fläche zwischen zwei Funktionen berechnen, bilden wir einfach das Integral der Differenzfunktion dieser zwei Funktionen ermitteln.

$$\int_{a}^{b} |f(x) - g(x)| dx$$

Achtung: Wenn die Differenzfunktion Nullstellen hat, bzw. die Funktionen sich schneiden, muss die Fläche schrittweise ermittelt werden. Dazu ein Beispiel:

Gesucht ist die blau markierte Fläche im Intervall [0, 2]. Wenn wir den gezeichneten Graphen nicht vorliegen hätten, dann müssten wir erst testen, ob eine Nullstelle in diesem Intervall vorliegt. Dazu können wir z. B. eine Wertetabelle anlegen.

x	0	0,5	1	1,5	2
f(x)	-1	-0,375	0,5	0,875	0

Jetzt können wir das Newtonverfahren (S. 33) anwenden, um die Nullstelle zu finden. Dafür brauchen wir die Ableitung der Differenzfunktion $d'(x) = -3x^2 + 4x + \frac{1}{2}$.

$$x_{1} = (0,5) - \frac{-(0,5)^{3} + 2(0,5)^{2} + \frac{1}{2}(0,5) - 1}{-3(0,5)^{2} + 4(0,5) + \frac{1}{2}} = \frac{5}{7}$$

$$x_{2} = \left(\frac{5}{7}\right) - \frac{-(\frac{5}{7})^{3} + 2(\frac{5}{7})^{2} + \frac{1}{2}(\frac{5}{7}) - 1}{-3(\frac{5}{7})^{2} + 4(\frac{5}{7}) + \frac{1}{2}} = \frac{886}{1253}$$

$$x_{3} = \left(\frac{886}{1253}\right) - \frac{-(\frac{886}{1253})^{3} + 2(\frac{886}{1253})^{2} + \frac{1}{2}(\frac{886}{1253}) - 1}{-3(\frac{886}{1253})^{2} + 4(\frac{886}{1253}) + \frac{1}{2}} = 0,7071067812$$

$$x_{4} = (0,7071067812) - \frac{-(0,7071067812)^{3} + 2(0,7071067812)^{2} + \frac{1}{2}(0,7071067812) - 1}{-3(0,7071067812)^{2} + 4(0,7071067812) + \frac{1}{2}}$$

$$= 0,7071067812$$

Der Einfachheit halber kürzen wir die Nullstelle auf $x_0 = 0,707$, bevor die Teilintegrale berechnen.

$$\int_0^{0,707} \left(-x^3 + 2x^2 + \frac{1}{2}x - 1 \right) dx = \left[-\frac{1}{4}x^4 + \frac{2}{3}x^3 + \frac{1}{4}x^2 - x + k \right]_0^{0,707} \approx -0,408$$

$$\int_{0,707}^{2} \left(-x^3 + 2x^2 + \frac{1}{2}x - 1 \right) dx = \left[-\frac{1}{4}x^4 + \frac{2}{3}x^3 + \frac{1}{4}x^2 - x + k \right]_{0,707}^{2} \approx 0,742$$

Damit ist die gesuchte Fläche |-0,408|+0,742 bzw. 1,15 Flächene
inheiten groß.

Stichwortverzeichnis

Abgeschlossenes Intervall, 7, 16

Ableitung, 32, 34, 50, 52, 57, 60, 62, 68, 69

Ableitungsregel, 51, 52

Abstand, 27 Abszess, 49

Achsenschnittpunkt, 59 Achsensymmetrisch, 33 Additionsverfahren, 22 Annähern, 34, 45

Anstieg, 50, 57 Ausklammern, 41, 44

Aussage, 36 Ausschließen, 40

Basis, 47 Behebbar, 56

Bestimmtes Integral, 65

Betrag, 37, 38
Betragsfunktion, 37
Betragsgleichung, 37
Betragsstrich, 37

Betragsungleichung, 16 Binomische Formel, 7, 9, 42

Bogenlänge, 26 Bogenmaß, 48 Bruch, 35, 45

Definitionsbereich, 32, 33, 35, 36, 56

Definitionslücke, 45, 56 Dekadischer Logarithmus, 11 Differentialquotient, 51

Differenz, 4

Differenzenquotient, 51, 52 Differenzfunktion, 68, 69

Differenzierbar, 55 Differenzieren, 66 Diskriminante, 7 Dividend, 6 Divisor, 6, 43, 52 Dreieck, 25

Dritte Ableitung, 52 Durchschnitt, 4

Einsetzen, 36, 39, 57, 59, 61, 63

Ergebnis, 36, 37, 43, 45, 57, 59

Erweiterbar, 56

Euklidischer Algorithmus, 7 Exponent, 40, 44, 47, 50 Exponentialgleichung, 46

Extremalpunkt, 57 Extrempunkt, 60 Extremstelle, 48

Faktor, 12

Faktorisieren, 12, 41 Fall, 18, 23, 37, 38

Fallen, 32

Fallunterscheidung, 16, 22, 37

Fläche, 26, 63, 65

Formel, 34

Freier Vektor, 28

Funktion, 32, 34, 37, 41, 45, 50, 52, 57

Ganze Zahl, 4, 35

Ganzrationale Funktion, 40

Gauß-Verfahren, 22

Gebrochenrationale Funktion, 45

Gebundener Vektor, 28 Gegenvektor, 28

Gekürzt, 10 Geometrie, 48

Gerade, 33, 35, 40, 58 Gerader Kegel, 27 Gerader Zylinder, 27 Gleichsetzen, 37

Gleichung, 12, 13, 22, 23, 58

Gleichungssystem, 20

Global, 33 Gradmaß, 48

Graph, 35, 36, 39, 58 Grenzwert, 54, 56, 57, 59 Grundfläche, 26, 27 Grundflächenumfang, 26

Grundseite, 25

Größter gemeinsamer Teiler, 7

Halboffenes Intervall, 7

Hebbar, 56

Hinreichende Bedingung, 53, 61, 62

Hypotenuse, 24, 25, 28 Hypotenusenabschnitt, 24

Höhe, 25–27

Innere Funktion, 48 Integrieren, 66 Intervall, 15, 32, 69 Irrationale Zahl, 4 Kathete, 24, 25 Kegel, 27

Kehrwert, 6

Koeffizient, 40

Koordinate, 63

Koordinatenform, 49 Koordinatensystem, 49

Koordinatensystem, 49

Koordinatenursprung, 28

Kosinus, 25, 48

Kreis, 26, 49

Kreislinie, 27

Kreissegment, 26

Kreissektor, 26

Krümmungsverhalten, 61

Kurvendiskussion, 58

Kürzen, 7

Limes, 45, 52, 54, 59 Lineare Funktion, 57, 62

Lineare Gleichung, 65

Lineares Gleichungssystem, 22

Links-Rechts-Krümmung, 62

Linksoffen, 7

Linksseitiger Grenzwert, 54, 56

Logarithmus, 11, 46, 47

Logarithmusfunktion, 47

Logarithmusgesetz, 47

Lokal, 33

Lösungsmenge, 6, 13–16, 22, 23, 36, 39

Mantelfläche, 26, 27

Maximalstelle, 33

Menge der natürlichen Zahlen, 4

Mengen, 4

Minimalstelle, 33

Monom, 40

Monoton, 32

Monotonieverhalten, 32, 50

n-ter Grad, 40

Nachkommastelle, 34

Natürliche Zahl, 4

Natürlicher Logarithmus, 11

Negativ, 17, 39

Nenner, 17, 45

Newtonverfahren, 34

Normalenvektor, 31

Normalform, 6, 12

Notation, 11, 21, 54

Notwendige Bedingung, 53, 60, 61

Nullpunkt, 33

Nullstelle, 12, 13, 15, 16, 33, 34, 40, 43, 45, 46,

48, 58, 59, 69

Nullvektor, 28, 29

Oberfläche, 26, 27

Offenes Intervall, 7, 16

Ordinate, 49

Orthogonal, 29, 31

Ortsvektor, 28

p-q-Formel, 7, 13, 16, 37, 40

Parameter, 22

Pfeilklasse, 28

Polynom, 40, 43, 45

Polynomivision, 33, 35, 43

Polynomfunktion, 40

Positiv, 17, 35

Potenz, 35, 40, 43

Potenzfunktion, 35, 50

Potenzgesetz, 8, 47

Potenzieren, 35

Potenzrechnung, 11

Prisma, 26

Probe, 35

Produkt, 12

Produktregel, 68

Punkt, 51, 57, 61

Punktsymmetrisch, 33

Pyramide, 27

Quadrat, 24

Quadratisch, 6

Quadratische Ergänzung, 12

Quadratische Funktion, 15

Quadratische Gleichung, 12

Quadratische Ungleichung, 15

Quotient, 51

Radikand, 35, 36

Radius, 26, 27

Rationale Funktion, 45

Rationale Zahl, 5, 8

Rechengesetz, 50

Rechenregel, 17

Rechteck, 24, 66

Rechts-Links-Krümmung, 62

Rechtsoffen, 7

Rechtsseitger Grenzwert, 54

Rechtsseitiger Grenzwert, 54, 56

Rechtwinkliges Dreieck, 24, 25

Reelle Zahl, 5, 15, 35

Resubstitution, 13

Richtung, 28

Richtungsvektor, 31

Satz des Pythagoras, 30

Satz von Viëta, 13

Scheinlösung, 35

Schnittpunkt, 36–39

Sekante, 51

Sinus, 25, 48

Skalar, 29, 31

skalare Multiplikation, 29

Skalarprodukt, 29

Spaltenvektor, 28

Spannvektor, 31

Stammfunktion, 66

Steigung, 51, 52

Stetig, 55

Stetige Erweiterung, 56

Streng, 32

Strickt, 33

Stufenform, 22

Stützvektor, 31

Substitution, 13, 40

Summand, 40

Symmetrie, 33, 40

Symmetrische Differenz, 4

Tangens, 25, 48

Tangente, 50, 52, 57

Tangentengleichung, 57, 62

Taschenrechner, 48

Term, 11–13, 59

Transformieren, 48

Trigonometrische Funktion, 25, 48

Umfang, 26

Umformen, 47, 50

Umstellen, 15, 20, 57, 59, 63

Unbestimmtes Integral, 65

Unendlich, 15, 44, 45, 53, 54

Ungerade, 33, 35, 40, 58, 61

Ungleichung, 15, 17

Variable, 48

Vereinfachen, 10, 13, 25

Vereinigung, 4

Vergleichszeichen, 15

Verkettung, 48

Volumen, 26, 27

Vorzeichen, 17, 34

Wachsen, 32

Wendepunkt, 57, 61, 63

Wendestelle, 62

Wertetabelle, 34, 69

Winkel, 26

Winkelfunktion, 48

Wurzel, 35, 36

Wurzelexponent, 35

Wurzelfunktion, 35

Wurzelgesetz, 9

Wurzelgleichung, 35, 36

Zusammengesetzte Funktion, 57

Zweite Ableitung, 52

Zylinder, 27

Zähler, 45

Äquivalenzumformung, 12, 35

Äußere Funktion, 48

Überprüfen, 36, 39