Supplemental handout: evaluation tables

(example numbers refer to the poster)

Computational analysis

(9) Boolean Monadic Recursive Schemes

a. Structure-sensitive tier projection

```
\mathcal{T}_{\mathsf{fr}}(x) :=
                         IF syll(x) THEN
                             IF stem_1(x) THEN \top
                              \rightarrow IF /\dot{\mathbf{i}}, \dot{\mathbf{e}}/(x) THEN \perp
                                 ELSE ⊤
                         ELSE \perp
```

(BMRS; Chandlee & Jardine 2021)

(Mayer & Major 2018, De Santo & Graf 2019)

```
if x is a vowel, then
   if x is also stem-initial, then x projects to \mathcal{T}_{fr};
   otherwise,
                       (i.e. if x is a vowel but not also stem-initial)
      if x is /\bar{\mathbf{i}}, \bar{\mathbf{e}}/, then x does not project to \mathcal{T}_{fr};
      otherwise, x projects to \mathcal{T}_{fr}; (i.e. if x is a V other than /\mathbf{i}, \mathbf{a}/)
otherwise, x does not project to \mathcal{T}_{fr}
                                                         (i.e. if x is not a vowel)
```

b. Spreading and blocking on the projected tier

```
IF stem_1(x) THEN fr(x)
              ELSE
                 IF \phi_{fr}(p(x)) THEN
opacity ---- > IF /\overline{\alpha}/(x) THEN fr(x)
                   ELSE \top
```

ELSE $\phi_{fr}(s(x))$

```
(Nelson & Baković 2025)
if x is stem-initial, then x is faithful;
otherwise,
                                                   (i.e. if x is not stem-initial)
  if x's predecessor is [+fr], then
    if x is also /\overline{\mathbf{a}}/, then x is faithful;
     otherwise, x is also [+fr];
                                                       (i.e. if x is not also /\overline{\mathbf{a}}/)
   otherwise, x agrees with its successor
```

(i.e. if x is not stem-initial, nor $/\overline{\mathbf{a}}/$, nor preceded by a [+fr] V)

Frontness harmony

- (3) Bidirectional spreading of $[\pm fr]$ from the stem displaces potentially conflicting affix vowel specifications
 - a. [+fr] spreads R to suffixes

Input x	å q l •	$-\begin{bmatrix} \mathbf{u} \\ \mathbf{u} \\ \mathbf{y} \end{bmatrix}$
$\begin{array}{c} \mathtt{stem}_1(x) \\ \underline{\mathtt{fr}(x)} \\ /\overline{\mathbf{\alpha}}/(x) \end{array}$	T-\ T-\ L	⊥
$\phi_{\mathtt{fr}}(x)$	T ặ ′′	- →⊤
Output	æ q 1 -	$ \mathbf{\dot{y}}$

'their foot

b. [-fr] spreads R to suffixes

Input	а q	$1 - \mathbf{u} \mathbf{y}$
x	1	2
$\mathtt{stem}_1(x)$	T-,	\perp
fr(x)	<u></u>	
$/\overline{\mathbf{\alpha}}/(x)$	T	\perp
$\phi_{\mathtt{fr}}(x)$	⊥ ા	→⊥
Output	<u>а</u> q	1 - ū

'their intelligence'

c. [+fr] spreads L to prefixes

Input	b	3E - æ q 1
x		1 2
$\mathtt{stem}_1(x)$		⊥ ,-⊤
$\mathtt{fr}(x)$		··· /T
$/\overline{\mathbf{a}}/(x)$		⊥ (′ ⊥
$\phi_{\mathtt{fr}}(x)$		T ∢ -` ` }T
Output	b	ε − æ q 1
		'without (a) foot

without (a) foot

d. [-fr] spreads L to prefixes

Input	b 3ϵ – α q	1
x	1 2	
$stem_1(x)$	⊥ ,-⊤	
$\mathtt{fr}(x)$	··· / ,- <u>\</u>	
$-\bar{\alpha}/(x)$	⊥ (<u>′</u> ⊤	
$\phi_{\mathtt{fr}}(x)$		
Output	b <u>a</u> - <u>a</u> q	1

'without intelligence'

Opacity and non-derived environment blocking

- (7) Opaque (c) and NDE blocking (d) of spreading of [+fr]
 - a. [-fr] spreads R from /α/

	, ,
Input	q a ∫ oø k
x	1 2
$\mathtt{stem}_1(x)$	T-\
$\mathtt{fr}(x)$	<u></u>
$-\bar{\alpha}/(x)$	Т 💢 🛨
$\phi_{ t fr}(x)$	⊥≛ ′_ > ⊥
Output	q a ∫ o k
	'encon

b. [-fr] spreads R from $/æ/{\rightarrow}[a]$

Input	d	- u	m	$\overset{+}{\mathbf{æ}}$	n
x		1		2	
$stem_1(x)$		T-,		\perp	
fr(x)		Ι-,	1	\top	
$/\overline{\mathbf{\alpha}}/(x)$		Τ ,	i i	\perp	
$\phi_{\mathtt{fr}}(x)$		⊥ ≹′_	/ 3	- _	
Output	d	$ar{\mathbf{u}}^-$	m	$\bar{\mathbf{a}}$	n
					'rug'

c. [+fr] fails R spread to /α/

Input	d	+ y ∫ 1	$\begin{array}{ccc} \overline{\mathbf{a}} & \overline{\mathbf{a}} \\ 2 & \end{array}$	n
$\operatorname{stem}_1(x)$		T-		
$\frac{\mathtt{fr}(x)}{/\overline{f lpha}/(x)}$		T-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,-⊥ ',-T	
$\phi_{\mathtt{fr}}(x)$		T≰ ^{//}	\ ▶ ⊥	
Output	d	y 1	$m \bar{a}$	n
			'on	omz,

d. [-fr] fails L spread in NDE

Input	d	y 1	$m \bar{\alpha}$	n
x		1	2	
$\overline{\operatorname{stem}_1(x)}$		T-\	Τ	
$\mathtt{fr}(x)$		T-, \	,-⊥	
$/\overline{\mathbf{\alpha}}/(x)$		1	(T	
$\phi_{\mathtt{fr}}(x)$		T ≼ ′,′	\ ≽⊥	
Output	d	y 1	$m \bar{a}$	n
			'en	emv

Transparency

- (8) Spreading from the stem, but no blocking
 - a. [+fr] spreads from /ə/

			, ,			
Input	1	$^{+}$	bı	- [± oø	Х
x		1			2	
$\operatorname{stem}_1(x)$		Τ-	×,		\perp	
fr(x)		Τ-	1			
$/\overline{\mathbf{\alpha}}/(x)$		\perp	1		Τ	
$\phi_{\mathtt{fr}}(x)$		Τŧ	<u> </u>	>	Т	
Output	1	$^+$	br	_	⁺ ø	X
				'vo	ur to	owel'

b. [-fr] spreads through $/\partial$

Input	т о г ә	$z - \mathbf{o} \mathbf{o} \mathbf{o} \mathbf{x}$
x	1	2
$stem_1(x)$	T- 、	
$\mathtt{fr}(x)$	<u></u>	
$/\overline{\mathbf{\alpha}}/(x)$	1 }}	Τ
$\phi_{\mathtt{fr}}(x)$	⊥ € ′′	▶⊥
Output	- + + + + + + + + + + + + + + + + + + +	z – ō x

'your rooster'

References cited. Chandlee, J. & A. Jardine. 2021. Computational universals in linguistic theory: Using recursive programs for phonological analysis. Language 97. • De Santo, A. & T. Graf. 2019. Structure sensitive tier projection: Applications and formal properties. Formal Grammar 2019. • Mayer, C. & T. Major. 2018. A challenge for tier-based strict locality from Uyghur backness harmony. Formal Grammar 2018. • Nelson, S. & E. Baković. 2025. Feature spreading, redundancy, and blocking. Ms., UIUC and UCSD.