Machine Learning

Lecture 7a

Let's apply the Adaboost algorithm to our data set

```
import pandas as pd
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 %matplotlib inline
 5 from sklearn.metrics import accuracy score, confusion matrix
 6 from sklearn.tree import DecisionTreeClassifier
 7 from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
 8 pd.set option('use inf as na', True)
 9 from collections import Counter
 1 raw data = pd.read pickle(r'C:\Users\niels\data\dataset.pkl')
 data = raw data[raw data['market cap'] > 1000.0]
 3 data.fillna(0.0,inplace=True)
C:\Users\niels\Anaconda3\lib\site-packages\pandas\core\frame.py:3790: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  downcast=downcast, **kwargs)
    def f(x):
        if x > 0.01:
            return 1
        elif x < -0.01:
 4
 5
            return -1
 6
        else:
 7
            return 0
```

class sklearn.ensemble. AdaBoostClassifier (base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None) [source]

An AdaBoost classifier.

An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases.

This class implements the algorithm known as AdaBoost-SAMME [2].

As a base estimator we choose a DecisionTreeClassifier with max_depth = 4

ada_clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=4),n_estimators=25)

It takes a bit of time to train the classifier on the full data set

ada_clf.fit(train_1,y_1)

```
AdaBoostClassifier(algorithm='SAMME.R',
    base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=4,
        max_features=None, max_leaf_nodes=None,
        min_impurity_decrease=0.0, min_impurity_split=None,
        min_samples_leaf=1, min_samples_split=2,
        min_weight_fraction_leaf=0.0, presort=False, random_state=None,
        splitter='best'),
    learning_rate=1.0, n_estimators=25, random_state=None)

## 1 %timeit ada_clf.fit(train_1,y_1)

30.8 s ± 1.96 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

Feature Importances

plot_fi(features);

1 features

	cols	feat_imp
112	gpmq	0.024416
148	short_debtq	0.021091
99	capeiq	0.020853
174	sale_equityq	0.019603
36	nopiq	0.017122
71	dpcy	0.016910
4	cheq	0.016338
155	fcf_csfhdq	0.015632
156	fcf_yield	0.015610
102	oancfy_q	0.014830
152	ocf_lctq	0.014370
111	opmadq	0.014169
66	chechy	0.014123
82	xidoy	0.014021
49	rectq	0.014010
75	miiy	0.013920
120	offtova	0 012225

138	dept_invcapq	U.UUU983
90	book_value_per_share	0.000875
0	actq	0.000767
27	ibcomq	0.000682
165	cash_ratioq	0.000650
540	sic_6799	0.000633
95	evmq	0.000572

153 rows × 2 columns

We cut down to the features that actually have an influence on the classifier

```
1 train 1 = train 1[features['cols'].values]
    valid = valid[features['cols'].values]
      %timeit ada_clf.fit(train_1,y_1)
       ada_clf.score(train_1,y_1)
  24 s \pm 714 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
: 0.5565183580514359
       pred valid = ada clf.predict(valid)
    2 ada clf.score(valid,y valid)
: 0.44457142857142856
       (pred_valid * valid_stock_returns).sum()
  27.26727199999997
      Counter(pred valid)
: Counter({1: 1110, 0: 56, -1: 584})
```

Profit Importance

```
1 def profit_importance(m,df,rets):
         np.random.seed(123)
       profit = []
       for col in df.columns:
           prof = []
           for _ in range(10):
               X = df.copy()
               X[col] = np.random.permutation(X[col].values)
8
9
               prediction = m.predict(X)
10
               prof.append((prediction * rets).sum())
11
           profit.append(np.mean(prof))
12
       return profit
```

```
pi = adaboost_profit_importance(ada_clf,valid,valid_stock_returns)
pi
```

	cols	pi_imp
50	piq	17.245805
6	cheq	17.895002
80	equity_invcapq	22.199241
74	xoprq	22.533351
96	atq	23.067195

Finding the features that optimize the strategy profit on the validation set

```
profits = []
2 feat=[]
4 train = train 1.copy()
5 validation = valid.copy()
   while len(train.columns)>1:
9
        pred_valid = ada_clf.predict(validation)
10
        print((pred_valid * df_valid['next_period_return']).sum())
11
        profits.append((pred valid * df valid['next period return']).sum())
12
13
       feat.append(train.columns)
14
        col_to_drop = pi.iloc[-1]['cols']
15
16
       train.drop(col_to_drop,axis=1,inplace=True)
       validation.drop(col to drop,axis=1,inplace=True)
17
18
19
       ada clf.fit(train,y 1)
        pi = adaboost profit importance(ada clf,validation,df valid['next period return'])
20
21
22
```

One of the interesting things about AdaBoosting is that we do not have to use just trees as base estimators. Here is an example boosting a RandomForest

```
1 rf_clf = RandomForestClassifier(n_estimators=15,min_samples_leaf=2400)
1 ada_clf = AdaBoostClassifier(rf_clf,n_estimators=25)

1 %timeit ada_clf.fit(train_1,y_1)
7.87 s ± 283 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

```
1  optim_feats = feat[n]
2  optim_feats
3
```

Index(['cstkq', 'ibadj12', 'fcf_ocfq', 'cshfdq', 'cash_conversionq', 'cshopq'], dtype='object')

```
1 train_1_optim = train_1[optim_feats]
       valid optim = valid[optim feats]
    2
    3
    4
       ada_clf.fit(train_1_optim,y_1)
    6 print(ada_clf.score(train_1_optim,y_1))
    7 pred_valid_tree = ada_clf.predict(valid_optim)
    8 print(ada clf.score(valid optim,y valid))
      (pred_valid_tree * valid_stock_returns).sum()
   0.5075820696550575
  0.532
119.12096800000003
```

```
1 train_2_tree = train_2[optim_feats]
2 test_tree = test[optim_feats]
3 ada clf.fit(train 2 tree,y 2)
4 pred test tree = ada clf.predict(test tree)
5 (pred_test_tree * test_stock_returns).sum()
```

```
1 train_1_optim = train_1[optim_feats]
       valid optim = valid[optim feats]
    2
    3
    4
       ada_clf.fit(train_1_optim,y_1)
    6 print(ada_clf.score(train_1_optim,y_1))
    7 pred_valid_tree = ada_clf.predict(valid_optim)
    8 print(ada clf.score(valid optim,y valid))
      (pred_valid_tree * valid_stock_returns).sum()
   0.5075820696550575
  0.532
119.12096800000003
```

```
1 train_2_tree = train_2[optim_feats]
2 test_tree = test[optim_feats]
3 ada clf.fit(train 2 tree,y 2)
4 pred test tree = ada clf.predict(test tree)
5 (pred_test_tree * test_stock_returns).sum()
```

```
1 train_1_optim = train_1[optim_feats]
       valid optim = valid[optim feats]
    2
    3
    4
       ada_clf.fit(train_1_optim,y_1)
    6 print(ada_clf.score(train_1_optim,y_1))
    7 pred_valid_tree = ada_clf.predict(valid_optim)
    8 print(ada clf.score(valid optim,y valid))
      (pred_valid_tree * valid_stock_returns).sum()
   0.5075820696550575
  0.532
119.12096800000003
```

```
1 train_2_tree = train_2[optim_feats]
2 test_tree = test[optim_feats]
3 ada clf.fit(train 2 tree,y 2)
4 pred test tree = ada clf.predict(test tree)
5 (pred_test_tree * test_stock_returns).sum()
```

plt.plot(x);

Variable optimal features


```
strategy_mean_ret = (SPY['strategy'] - 1).diff().mean()
strategy_std = (SPY['strategy'] - 1).diff().std()
strategy_sr = strategy_mean_ret/strategy_std
print('Strategy Sharpe Ratio: ',strategy_sr)
```

Strategy Sharpe Ratio: 1.3047801841589615

```
strategy_ret = (SPY['strategy'] - 1).diff().values[1:]
spy_ret = (SPY['spy_cum_ret'] - 1).diff().values[1:]

beta = (np.cov(spy_ret,strategy_ret)/np.var(spy_ret))[1,0]
beta
```

: 0.403773768479095

```
residual_ret = strategy_ret - beta * spy_ret
IR = np.mean(residual_ret)/np.std(residual_ret)
IR
```

: 1.200388421384077

```
1 alpha = np.mean(residual_ret)
2 alpha
```

: 0.16120032434776224