

Algebraic Topology Worksheet 1 Hand-In

MARIO L. GUTIERREZ ABED

s1685113@sms.ed.ac.uk

Problem 1. Let X be a space. Let Y be the space obtained from X by adding a whisker at $a \in X$ – draw a picture! More formally, Y is the quotient space of the disjoint union $X \coprod I$ in which $a \in X$ is identified with $0 \in I$. Prove that the inclusion $\iota \colon X \hookrightarrow Y$ is a homotopy equivalence.

Proof. The map $\widehat{\pi}$: $Y = (X \coprod I)/\{a \sim 0\} \rightarrow X$ given by

$$\begin{cases} x \mapsto x & \text{for } x \in X, \\ t \mapsto a & \text{for } t \in I, \end{cases}$$

is clearly well-defined and, moreover, it satisfies $\widehat{\pi}\circ\iota=\mathbb{1}_X$ ($\widehat{\pi}\circ\iota$ is not merely homotopic to the identity on X; it is equal to it). Now the map $h\colon Y\times I\to Y$ given by

$$\begin{cases} (x,s) \mapsto x & \text{for } (x,s) \in X \times I, \\ (t,s) \mapsto st & \text{for } (t,s) \in I \times I, \end{cases}$$

is also clearly well-defined and defines a homotopy $h \colon \iota \circ \widehat{\pi} \simeq \mathbb{1}_Y$. Thus we conclude that the inclusion ι is indeed a homotopy equivalence with homotopy inverse $\widehat{\pi}$.

Problem 2. There are four topologies \mathcal{T} on $X = \{0, 1\}$. For which \mathcal{T} is (X, \mathcal{T}) contractible? Give reasons for your answer.

Solution. The four possible topologies for $X = \{0, 1\}$ are given by

Now let $X_i = (X, \mathcal{T}_i)$ for $i = \{1, \dots, 4\}$ and let Y be any other topological space throughout. Then,

 $(X_2 \text{ Case})$ In this case every function $Y \to X_2$ is continuous. The maps f and g given by

$$f \colon X_2 \to \{0\}$$

$$x \mapsto 0$$

$$g \colon \{0\} \to X_2$$

$$0 \mapsto 0$$

are inverse homotopy equivalences with $f\circ g=\mathbb{1}_{\{0\}}.$ Meanwhile, the map

$$h \colon X_2 \times I \to X_2$$

$$(x,t) \mapsto \begin{cases} 0 & \text{if } 0 \le t < 1, \\ x & \text{if } t = 1, \end{cases}$$

defines a homotopy $h\colon g\circ f\simeq \mathbb{1}_{X_2}.$ Hence we conclude that X_2 is contractible.

 $(X_3 \, {\rm Case}) \, \, {\rm A} \, {\rm map} \, \varphi \colon Y o X_3 \, {\rm is} \, {\rm continuous} \, {\rm if} \, {\rm and} \, {\rm only} \, {\rm if} \, \varphi^{-1}(0) \subseteq Y \, {\rm is} \, {\rm open}.$ By a similar construction as above, the maps $f \, {\rm and} \, g$ given by

$$f \colon X_3 \to \{0\}$$
$$x \mapsto 0$$
$$g \colon \{0\} \to X_3$$
$$0 \mapsto 0$$

are inverse homotopy equivalences with $f \circ g = \mathbb{1}_{\{0\}}$. Meanwhile, the map

$$h \colon X_3 \times I \to X_3$$

$$(x,t) \mapsto \begin{cases} 0 & \text{if } 0 \le t < 1, \\ x & \text{if } t = 1, \end{cases}$$

defines a homotopy $h\colon g\circ f\simeq \mathbb{1}_{X_3}.$ Lastly, note that h is continuous, since

$$h^{-1}(0) = X_3 \times [0,1) \cup \{a\} \times I \subset X_3 \times I$$

is open in $X_3 imes I$. Thus we conclude that X_3 is also contractible.

 $(X_4 \, {\sf Case})$ This is identical to the latter case, merely swapping 0 and 1; i.e., X_4 is homeomorphic to X_3 , and thus also contractible.

Problem 3. Let $f, g: X \to \mathbb{S}^1$ be maps such that $f(x) \neq -g(x)$ for all $x \in X$. Construct a homotopy between f and g.

Solution. Consider \mathbb{S}^1 embedded in \mathbb{R}^2 (or \mathbb{C} for that matter...). Then the line segment in \mathbb{R}^2 (or \mathbb{C}) joining f(x) to g(x) cannot pass through the origin because of the imposed condition $f(x) \neq -g(x) \, \forall x \in X$; that is,

$$(1-t)f(x) + tg(x) \neq 0$$
 $\forall x \in X, \forall t \in I = [0,1].$

This shows that the following map, which turns out to be the desired homotopy between f and g, is well-defined:

$$\begin{split} h \colon X \times I &\to \mathbb{S}^1 \\ (x,t) &\mapsto \frac{(1-t)f(x) + tg(x)}{\|(1-t)f(x) + tg(x)\|}, \end{split}$$

where the norm is from \mathbb{R}^2 (or \mathbb{C}).