1、本讲提要

概率统计第四讲: 随机变量

史灵生 清华数学系

概率统计第四讲: 随机变量 离散型

2、二点(Bernoulli)分布

考虑一个只有两种可能结果的随机试验,则 $\Omega = \{\omega_1, \omega_2\}$ 。

$$P(\{\omega_1\}) = p, \quad P(\{\omega_2\}) = 1 - p,$$
 $X(\omega) = \begin{cases} 1 & \omega = \omega_1, \\ 0 & \omega = \omega_2. \end{cases}$

它的概率分布是:

$$\begin{array}{c|ccc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

此分布称为二点(Bernoulli)分布,记为 $X \sim b(1,p)$ 。

- 1 随机变量
 - 离散型
 - 连续型
 - 分布函数
- 2 数学期望
 - 定义
 - 函数的期望
 - 性质

概率统计第四讲: 随机变量 离散型

3、二项分布

- Bernoulli试验是指相继独立地重复一个试验,在每一次试验 中,只有两个不同结果,它们出现的概率分别是p与q, p + q = 1。这一概率模型称为Bernoulli概型。
- 连续独立地抛掷一个硬币*n*次。记*N*是正面出现的次数。假 设每次抛掷正面出现的概率是p,则

$$P(\{\omega \in \Omega : N(\omega) = k\}) = \binom{n}{k} p^k (1-p)^{n-k} \quad (k = 0, 1, ..., n).$$

N的概率分布是:

此分布称为二项分布,记为 $N \sim b(n,p)$ 。

注:
$$P\left(\bigcup_{k=0}^n \{\omega : N(\omega) = k\}\right) = \sum_{k=0}^n {n \choose k} p^k (1-p)^{n-k} = 1$$

4、几何分布

- 连续独立地抛掷一个硬币, 直到正面出现为止。假设每次抛 正面出现的概率是p。记M是在正面首次出现时所抛的次数.
- ◆*Ai*: 第*i*次抛掷为正面,则

$$P(\{\omega \in \Omega : M(\omega) = 1\}) = P(A_1) = p,$$

$$P(\{\omega \in \Omega : M(\omega) = k\}) = P\left(\bigcap_{i=1}^{k-1} \bar{A}_i A_k\right)$$

$$= (1-p)^{k-1} p, \quad (k \in \mathbb{N}).$$

• M的概率分布是:

此分布称为几何分布,记为 $M \sim G(p)$ 。

注:
$$P\left(\bigcup_{k=1}^{\infty} \{\omega : M(\omega) = k\}\right) = \sum_{k=1}^{\infty} (1-p)^{k-1} p = \frac{p}{1-(1-p)} = 1$$

离散型

6、离散随机变量

个离散型随机变量X的分布列可以表示成:

$$X \mid x_1 \quad x_2 \quad \dots \quad x_n \quad \dots$$
 $P \mid p_1 \quad p_2 \quad \dots \quad p_n \quad \dots$

注:

- 对于离散型随机变量,如果知道了它的概率分布,也就知道 了该随机变量取值的概率规律。
- 在这个意义上,我们说: 离散型随机变量由它的概率分布 唯一确定。这和我们将要学习的连续型随机变量有本质区 别! (连续型由它的概率密度唯一确定)
- 注意二点分布、二项分布和几何分布的关系。

5、离散随机变量

- 随机变量仅可能取有限或可列个值,则为离散型随机变量.
- 一个离散型随机变量X的分布列可以表示成:

$$X$$
 x_1 x_2 ... x_n ... P p_1 p_2 ... p_n ...

• 或记成

$$X \sim \left(\begin{array}{ccccc} x_1 & x_2 & \dots & x_n & \dots \\ p_1 & p_2 & \dots & p_n & \dots \end{array} \right).$$

分布列的基本性质:

- ① 正性: $P(\{\omega : X(\omega) = x_n\}) = p_n > 0$;
- ② 正则性: $\sum p_n = P\left(\bigcup \{\omega : X(\omega) = x_n\}\right) = P(\Omega) = 1$.

注: $\{x_1, x_2, ..., x_n, ...\}$ 为某个随机变量的分布⇔它满足(1)与(2)。

7、系统的寿命

例

在可靠性理论中,若设备的失效率为常数 $\lambda > 0$ 且将设备的寿命 记为X,则它的统计规律如何?

解:

己知
$$P(X > t) = e^{-\lambda t}$$
,所以,对 $0 \le s < t$,有

$$P(s < X \le t) = P(X > s) - P(X > t)$$

$$= e^{-\lambda s} - e^{-\lambda t}$$

$$= \int_{s}^{t} \lambda e^{-\lambda x} dx.$$

8、连续型随机变量

定义

称随机变量X是连续型的,指存在非负可积函数 $p: \mathbb{R} \to \mathbb{R}$ (即 $\int_{-\infty}^{\infty} p(x) dx$ 收敛)使得

$$P(a < X \le b) = \int_a^b p(x) dx, \quad \forall a < b.$$

这时称p为X的一个概率密度函数(简称密度)。

注: 失效率为常数 λ 的系统的寿命X密度为 $\lambda e^{-\lambda x}I_{[0,\infty)}(x)$ 。

密度的基本性质:

- ① 非负性: $p(x) \ge 0$;
- ② 正则性: $\int_{-\infty}^{\infty} p(x) dx = 1$ 。

史灵生 清华数学系 本讲提要 随机变量 概率统计第四讲:随机变量

10、概率分布函数

定义

- 设 (Ω, \mathcal{F}, P) 是一个概率空间。称函数 $X: \Omega \to \mathbb{R}$ 是一个随机变量($random\ variable$),如果对任何 $x \in \mathbb{R}$, $\{\omega \in \Omega: X(\omega) \le x\}$ (简记为 $\{X \le x\}$ 或 $\{X \in (-\infty, x]\}$)是 \mathcal{F} 中的事件。
- 这时称函数 $F_X: \mathbb{R} \to \mathbb{R}$,

$$F_X(x) = P(X \le x)$$

为随机变量X的概率分布函数(*probability distribution function*,简称分布函数)。

9、连续型随机变量

注:

- 称 $B \subset \mathbb{R}$ 是一个Borel 集,如果它可以由可数多个区间经交、并、补运算得到。
- ② 对连续型随机变量X和任意Borel集 $B \subset \mathbb{R}$,

$$P(X \in B) = \int_{B} p(x) dx.$$

③ 特别地,如果p在a处连续,则

$$P(a < X \le a + \Delta x) = \int_a^{a + \Delta x} p(u) du \approx p(a) \Delta x$$

从而 $P(a < X < a + \Delta x)/\Delta x \rightarrow p(a)$ 。

- 一个连续型随机变量的概率密度函数不唯一,它们可以在个 别处取不同的值。
- **⑤** 对连续型随机变量X,P(X = a) = 0 ($\forall a \in \mathbb{R}$)。

史灵生 清华数学 本讲提 概率统计第四讲: 随机变量

离散型 连续型

11、概率分布函数

注:

- 随机变量X为离散型当且仅当它的分布函数是阶梯函数。且 所有可能跳跃处就是它所有可能取值处,对应的跃度就是取 该值的概率大小。
- ② 当随机变量X为连续型时,有

$$F(x) = P(X \le x) = \int_{-\infty}^{x} p(u) du.$$

故F(x)不仅是连续的而且分段可导;反之,若随机变量的分布函数分段可导则它是连续型的。此时导函数就是密度。

③ 连续型随机变量的分布函数必是连续的,但只具有连续分布函数的随机变量未必是连续型的。(参考Brown运动轨道[1])

12、分布函数的性质

定理

- Fx是单调不减、右连续函数,满足 $F_X(-\infty) = 0 < F_X(x) < 1 = F_X(+\infty);$
- ② 对任何区间 $B \subset \mathbb{R}$, $P(X \in B)$ 可用 F_X 表达。特别是, $P(X = x) = F_X(x) - \lim_{z \to x_-} F_X(z)$, 如果 F_X 在x连续, 则P(X = x) = 0。
- $-\infty < a < b < +\infty$.

$$F_X(b) - F_X(a) = P(a < X \le b) \ge 0.$$

● 因此 F_X 单调不减、有界,所以 F_X 在任何 $X \in \mathbb{R}$ 处有左、右极 限, $在-\infty$ 和 $+\infty$ 有极限。

概率统计第四讲: 随机变量 分布函数

14、分布函数的性质

如果c, d有限,则 $\lim_{a \to c+} F_X(a) = F_X(c), \lim_{b \to d-} F_X(b) = P(X < d).$

- $\forall P(X = b) = F_X(b) P(X < b) = F_X(b) \lim_{a \to b_-} F_X(a);$
- 对任何区间 $B \subset \mathbb{R}$, $P(X \in B)$ 可用 F_X 表达, 比如, $P(a \le X \le b) = F_X(b) - P(X < a) = F_X(b) - \lim_{x \to a-} F_X(x).$

注[2]:

- 如果函数 $F: \mathbb{R} \to \mathbb{R}$ 满足上述命题中的性质(1),则一定存在 随机变量X以F为分布函数。
- 对一个随机变量 $X: \Omega \to \mathbb{R}$ 和任何一个Borel集 $B \subset \mathbb{R}$, $\{X \in B\}$ 是事件,并且 $P(X \in B)$ 的值可由 F_X 计算得到。
- 给定 $X: \Omega \to \mathbb{R}$,那么可以证明 $\{X^{-1}(B): B \subset \mathbb{R} \in \mathbb{R} \}$ 是Ω上的一个事件域, 在此之上构造概率空间, 就可以 使X成为一个随机变量。这是一个常用手法。

13、分布函数的性质

• $\forall t - \infty < c < a < b < d < + \infty$ $F_X(b) - \lim_{a \to c+} F_X(a) = \lim_{a \to c+} P(a < X \le b)$

$$= P\left(\bigcup_{a\to c+} \{a < X \le b\}\right)$$

= $P(c < X \le b),$

• $\lim_{b \to d^-} F_X(b) - F_X(a) = \lim_{b \to d^-} P(a < X \le b)$

$$= P\left(\bigcup_{b \to d-} \{a < X \le b\}\right) = P(a < X < d).$$

• 如果c,d是有限数,则

$$\lim_{a\to c+} F_X(a) = F_X(c), \qquad \lim_{b\to d-} F_X(b) = P(X< d),$$

• 如果 $c = -\infty, d = +\infty,$ 则

$$\lim_{a\to-\infty}F_X(a)=0,\qquad \lim_{b\to+\infty}F_X(b)=1.$$

15、数学期望

定义

设X是一个离散型随机变量,它的分布列为

$$X \mid x_1 \cdots x_n \cdots$$
 $P \mid p_1 \cdots p_n \cdots$

如果级数

$$\sum_{n} x_n p_n$$

绝对收敛,即

$$\sum_{n}|x_{n}|p_{n}<+\infty,$$

则称X有数学期望,并且记 $EX = \sum x_n p_n$,称它是X的数学期望

(expectation) .

16、数学期望的注记

注:

- X的数学期望就是按X的不同取值的概率计算X所有可能取 值的加权平均。
- ② 定义中要求 $\sum x_n p_n$ 绝对收敛,不仅保证了数学期望作为级 数的和是存在的,而且保证了这个和与级数的求和顺序无 关。(这是因为指定 x_n 为第n个取值的作法是人为的,而绝 对收敛就保证了级数的和不依赖于不同的求和方式,从而 EX反映了X的本质属性。)
- ◎ 从上述定义我们不难发现,数学期望是分布的性质,与随机 变量的具体形式无关。
- **⑤** X的数学期望是k阶(原点)矩 $E(X^k)$ 的特例(k=1)。

18、例(快速验血)

为了从人群中筛查某种疾病的患病者,需要对人群做血样检测。 如果按照老办法,需要对每个人进行单独验血。为提高筛查的效 率,有人提出一个新方法:将待检人群分组,每组k个人;对每 组人的混合血样进行一次检查;对检查呈阳性的组,再对该组中 的每个人分别进行单独的血液检验。新方法是否真的提高了验血 的效率呢? (疾病的患病率为0)

解:记M为按新办法一组人的验血次数,则

 $EM = (1-p)^k + kp(1-p)^{k-1} + (k+1)[1-(1-p)^{k-1}]$ $=1-k(1-p)^k+k-p(1-p)^{k-1},$

故 每个人的平均验血次数为 $EM/k = 1/k - (1-p)^k + 1 - p(1-p)^{k-1}/k$

17、数学期望

定义

设X是一个连续型随机变量,它的概率密度函数为p。如果积分 $\int_{-\infty}^{\infty} x p(x) dx$ 绝对收敛,即 $\int_{-\infty}^{\infty} |x| p(x) dx < +\infty$,则称X有数学 期望,并且记 $EX = \int_{-\infty}^{\infty} xp(x) dx$,称它为X的数学期望 (expectation) .

• 连续型随机变量的数学期望的积分表达是基于概率微元 $P(x < X < x + \Delta x) \approx p(x)\Delta x$ 以及如下极限思想

$$\lim_{\max \triangle x_i \to 0} \sum_i x_i P(x_i \le X < x_i + \triangle x_i).$$

• 对一般的(不必是离散型或连续型)随机变量X,我们也可 以利用分布函数来定义数学期望: $EX = \int_{-\infty}^{\infty} x dF(x)$, 但这 里的积分是Lebesgue-Stielties积分[2]。

19、数学期望公式

性质

离散型:
$$EX = \sum_{n=0}^{\infty} P(X > n) - \sum_{n=0}^{\infty} P(X < -n); \quad (X(\Omega) \subset \mathbb{Z})$$
 连续型: $EX = \int_{0}^{+\infty} P(X > x) dx - \int_{-\infty}^{0} P(X < x) dx$ 。

设
$$X(\Omega) \subset \mathbb{N}$$
,则 $EX = \sum_{n=0}^{\infty} np_n = p_1 + 2p_2 + \cdots + np_n + \cdots$ 。
$$P(X > 0) \qquad p_1 \quad p_2 \quad \cdots \quad p_{n+1} \quad \cdots \\ P(X > 1) \qquad p_2 \quad \cdots \quad p_{n+1} \quad \cdots \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ P(X > n) \qquad p_{n+1} \quad \cdots$$

所以,
$$EX = \sum_{n=0}^{\infty} P(X > n)$$
。

20、数学期望公式

性质

离散型:
$$EX = \sum_{n=0}^{\infty} P(X > n) - \sum_{n=0}^{\infty} P(X < -n); \quad (X(\Omega) \subset \mathbb{Z})$$

连续型:
$$EX = \int_0^{+\infty} P(X > x) dx - \int_{-\infty}^0 P(X < x) dx$$
。

$$\int_0^{+\infty} P(X > x) dx - \int_{-\infty}^0 P(X < x) dx$$

$$= \int_{0}^{+\infty} \int_{\mathbb{R}} p(y) I_{y>x>0} dy dx - \int_{-\infty}^{0} \int_{\mathbb{R}} p(y) I_{y

$$= \int_{\mathbb{R}} \int_{0}^{+\infty} p(y) I_{y>x>0} dx dy - \int_{\mathbb{R}} \int_{-\infty}^{0} p(y) I_{y

$$= \int_{\mathbb{R}} y p(y) I_{y>0} dy - \int_{\mathbb{R}} (-y) p(y) I_{y<0} dy = EX.$$$$$$

史灵生 清华数学系 本讲提要 随机变量 数学期望 概率统计第四讲: 随机变量 定义 函数的期望 性质

22、函数的数学期望

定理

设X是连续型随机变量,概率密度为p(x), $g: \mathbb{R} \to \mathbb{R}$ 是Borel函数,Y=g(X)存在数学期望EY,则 $Eg(X)=\int_{-\infty}^{+\infty}g(x)p(x)\mathrm{d}x$.

$$Eg(X) = \int_0^{+\infty} P(g(X) > y) dy - \int_{-\infty}^0 P(g(X) < y) dy$$

$$= \int_0^{+\infty} \int_{\mathbb{R}} p(x) I_{g(x) > y > 0} dx dy - \int_{-\infty}^0 \int_{\mathbb{R}} p(x) I_{g(x) < y < 0} dx dy$$

$$= \int_{\mathbb{R}} \int_0^{+\infty} p(x) I_{g(x) > y > 0} dy dx - \int_{\mathbb{R}} \int_{-\infty}^0 p(x) I_{g(x) < y < 0} dy dx$$

$$= \int_{\mathbb{R}} g(x) p(x) I_{g(x) > 0} dx + \int_{\mathbb{R}} g(x) p(x) I_{g(x) < 0} dx$$

$$= \int_{\mathbb{R}} g(x) p(x) dx.$$

21、随机变量的函数

• 设X是一个离散型随机变量,它的分布为:

● 若 $g: \mathbb{R} \to \mathbb{R}$,则g(X)也是一个离散型随机变量,且

$$P(\{\omega: g(X(\omega)) = y\}) = \sum_{i:g(x_i) = y} p_i, \ y = g(x_1), g(x_2),$$

定理

$$Eg(X) = \sum_{i} g(x_i)p_i.$$

证明:

$$Eg(X) = \sum_{j} y_j P[g(X) = y_j] = \sum_{j} y_j \sum_{i: g(x_i) = y_j} p_i = \sum_{i} g(x_i) p_i \circ$$

史灵生 清华数学; 本讲提 随机变量 数学期望 概率统计第四讲:随机变 定义 函数的期望

23、数学期望的性质

性质

- **2** $|EX| \le E|X|$;
- ③ 若 $a \le X \le b$,则EX存在,且 $a \le EX \le b$;
- **⑤** 若X < Y, EX, EY存在,则EX < EY。

证明:

- **1** $E(aX + b) = \sum_{i} (ax_i + b)p_i = a\sum_{i} x_i p_i + b = aEX + b;$
- $|EX| = |\sum_{i} x_{i} p_{i}| \leq \sum_{i} |x_{i}| p_{i} = E|X|$
- $\leq \sum_{i} p_{i} \max\{|a|,|b|\} = \max\{|a|,|b|\} < \infty;$ 故EX存在且 $a = \sum_{i} ap_{i} \leq \sum_{i} x_{i}p_{i} \leq \sum_{i} bp_{i} = b_{\circ}$
- 提示:由(3)和期望的线性性质可得。

24、参考文献

- 1 Kai Lai Chung and Farid AitSahlia, Elementary probability theory: with stochastic processes and an introduction to mathematical finance, 4th ed. New York: Springer, 2003.
- 2 Erhan Çinlar, Probability and Stochastics, New York, NY: Springer Science+Business Media, LLC, 2011.

史灵生 清华数学系 概率统计第四讲:随机变量

