

For individuals

Primary360 (For adults aged 18 2 and above)

Subscription-based service with a primary care physician

Expert Medical Opinions

Get connected or referred to leading medical specialists for consultations on specific health issues

General and Mental Health

Provides access to consultation with board-certified doctors via phone or video call for non-emergency concerns

In A Heartbeat

Prediction of Heart Disease Risk for Early Detection

DSI-SG-42 | Group 3 Amoz Kuang | Jayme Zhang | Timothy Chan

\\\\-

01

Introduction

- Context
- Problem Statement

04

Cost-Benefit Analysis

- Tangible/ Intangible
- Direct/ Indirect

Agenda

02

Data Findings

Exploratory Data Analysis

05

Conclusion

- Limitations
- Recommendations

03

Data Modeling

- Classifications models
- Model Comparison

Leading cause of death in US

Number of people who died from heart disease

695,547 *******

Every 33 seconds, 1 person dies from heart disease

Average age of first heart attack

Every 40 seconds, 1 person will have a heart attack

More than half of U.S. adults don't know heart disease is leading cause of death, despite 100-year reign

Heart disease remains the leading cause of death in U.S., according to a new report from the American Heart Association; yet fewer than half of survey respondents knew that

Get Healthy Sleep

Stop Smoking

Manage Blood Pressure

Manage Cholesterol

Eat Better

Get Active

Manage Blood Sugar

Maintain a Healthy Weight The first step toward reducing any risk factor for cardiovascular disease is awareness.

—Joseph C. Wu, M.D., Ph.D., FAHA,

volunteer president of the AHA, Director and Professor at Stanford School of Medicine

John Patterson, 57, semi-retired

Attitudes & Behaviours

- •Started using Teladoc since 2020, for the occasional flu and fever
- •Enjoys fine dining and occasional drinking, leads a sedentary lifestyle
- •On long-term medication for high cholesterol and high blood pressure

Scenario

- Started having chest pains on left side
- Felt better after resting
- •Happened 3 times within the past 2 months

Pain points

- •Fishing buddy, 51, had a 'silent' heart attack recently
- •Got diagnosed when he visited the doctor for unrelated issues
- •Long-term medication to lower risk of future heart attack

Motivation

- •First grandchild arriving in 3 months
- •To be independent and mobile
- •Enjoying his golden years with family and friends

Problem Statement

Despite being the **leading cause of death** in the US for a century, many heart disease risk factors are **controllable**, and can be identified if we take a proactive approach to our health. **Early detection** is crucial, as it allows for intervention and risk reduction strategies to be implemented.

How can we develop and integrate a data-driven feature that provides Teladoc end-users with a rigorous prediction of their risk for heart disease to facilitate early detection?

Data Process

Exploratory Data Data Cleaning Data Modeling Data Acquisition Analysis Data obtained Imputation of Distribution of **XGBoost** from the Centers missing values the variables Logistic for Disease Regression Control and Random Forest Prevention 2022 **Decision Trees Neural Networks**

Data Acquisition

Sample size

~ 450,000 respondents

Demographics

Sex
Age
Income
Education
Race/ Ethnicity
Health Insurance

Body Measurements

Height Weight BMI

Lifestyle

Smoker status
No. of years smoked
No. of packs per day
E-cigarette
Binge drinking
Heavy drinking
No. of sleep hours
Exercise in past 30 days

Medical History

Heart disease Stroke Cancer Kidney disease Asthma

Frequency of Check-ups

Last visit to doctor
Last visit to dentist
Colonoscopy/ Sigmoidoscopy

Demographics of Respondents

Distribution of Medical Information

Lifestyle Choices

Personal Health Status

_

Base Model Comparison

Model	Train	Test	Cross-Validation	Processing Time (sec)
XGBoost	0.9136	0.9112	0.9122	12
Logistic Regression	0.9112	0.9117	0.9112	10
Random Forest	0.9998	0.9109	0.9101	48
Decision Trees	0.9999	0.8553	0.8543	40

Model Comparison

Model	Train	Test	ROC AUC	Sensitivity	Processing Time (sec)
Logistic Regression (Base)	0.9112	0.9117	NA	NA	10
Logistic Regression (Hypertuned)	0.7434	0.7434	0.8395	0.7874	662
Keras FNN (Deep Learning)	0.6907	0.6903	0.8424	0.8526	163

ROC AUC: 0.8379

Sensitivity: 0.7874

To the layman...

- The model has <u>close to</u> 84% chance of distinguishing the group of people with and without heart diseases
- Out of 100 people with heart disease, the model will identify 79 of them

_

ROC AUC: 0.8424

Sensitivity: 0.8526

To the layman...

- The model has more than 84% chance of distinguishing the group of people with and without heart diseases
- Out of 100 people with heart disease, the model will identify 85 of them

ROC AUC: 0.8424

ROC AUC: 0.8379

Sensitivity: **0.7874** Sensitivity: **0.8526**

John Patterson, 57, semi-retired

Heart Disease Risk Predictor

Your heart disease risk is:

0.65

How to interpret the result?

Below 0.3: Low risk

0.3 to 0.5: Moderate risk

0.5 to 0.7: High risk

Above 0.7: Very high risk

Based on our assessment, we've identified some areas where we can work together to prioritize your heart health. Remember, taking proactive measures now can *significantly* lower your risk. We are committed to providing you the support and guidance you need.

Tell me more

Cost and Benefit Analysis

Cost

- With insurance, General Medical visits can be as low as \$0 per visit
- Without insurance, General Medical is \$89 per visit
- Purchase of household medical equipment (eg. blood pressure machine) for regular self-monitoring

Benefits

- Medical costs averted
- Improved quality of life

Annual healthcare premiums and out-of-pocket

- Without heart diseases and other chronic conditions: \$2,558
- With heart diseases: \$4,124

Hospitalisation and surgery

- ~5.3 days of stay in hospital: \$21,500
- Cardiac bypass: \$56,000
- Open-heart surgery: \$137,000

Medication

 From less than \$10 to more than \$500 per month

Others

- Physical rehabilitation
- Loss of income and career opportunities
- Mental health costs

What does this mean for the country?

2035: \$1.1 trillion

Direct Medical Costs

- Hospitalizations and procedures
- Drugs and medical supplies
- Physician visits
- Diagnostics tests

Indirect Costs

- Loss of productivity from patients and caregivers
- Increased dependence on social security benefits or disability insurance
- Increase in caregiving needs
- Long-term societal impacts

2016: \$555 billion

Source: https://www.heart.org/-/media/Files/About-Us/Policy-Research/Fact-Sheets/Public-Health-Advocacy-and-Research/CVD-A-Costly-Burden-for-America-Projections-Through-

__

05 Conclusion

Limitations

Limited resources

 Require better resources to shorten computation runtime and improve efficiency in modeling process

Completeness of Data

 Sizeable proportion of missing data from survey respondents

Heart-Related Variables

- Dietary consumption
- Family medical history
- Health statistics (blood pressure, cholesterol level, heart rate etc.)

Recommendations

Follow-up with at-risk users

Integrate easy access measures for users to reach out to reduce their risk

Frequent Training & Monitoring

Update once a month to improve the model's prediction

User Interface

- Outline the caveat use of the risk predictor to end user
- Easy use of inputting user data

Benefits far outweigh the costs for early detection

Immense impact to end-users and population

Increased usage of Teladoc services and user base

Positive branding through CSR initiatives

Q&A

Appendix

Demographics of Respondents

Lifestyle Choices

Lifestyle Choices

Distribution of Medical Info

