WHAT IS CLAIMED IS:

5

10

15

20

1. compounds of Formula I

$$Ar^{1}_{-}(X)_{\overline{m}} \xrightarrow{(C)_{\overline{q}}} (Y)_{\overline{n}} \xrightarrow{(C)_{\overline{r}}} (Z)_{p} \xrightarrow{|I|} (O)_{t} - R^{5}$$

$$I \qquad \qquad Ar^{2}$$

and the pharmaceutically acceptable salts and esters thereof, wherein

Ar1 and Ar2 are independently selected from the group consisting of aryl and R4 -substituted aryl;

X, Y and Z are independently selected from the group consisting of -CH2-, -CH(C1-6alkyl)- and -C(C1-6alkyl)2-;

R is selected from the group consisting of -OR6, -O(CO)R⁶, -O(CO)OR⁹,

-O(CO)NR⁶R⁷, a sugar residue, a disugar residue, a trisugar residue and a tetrasugar residue;

R1 is selected from the group consisting of hydrogen, C1-6alkyl and aryl or R and R1 together are oxo;

R² is selected from the group consisting of -OR⁶, -O(CO)R⁶, -O(CO)OR⁹ and -O(CO)NR⁶R⁷;

R3 is selected from the group consisting of hydrogen, -C1-6alkyl and aryl or R2 and R3 together are oxo;

q, r and t are each independently selected from 0 and 1; m, n and p are each independently selected from 0, 1, 2, 3 and 4; provided that at least one of q and r is 1, and the sum of m, n, p, q are r is 1, 2, 3, 4, 5 or

6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4, or 5;

 R^4 is 1-5 substituents independently selected at each occurrence from the group consisting of: $-OR^6$, $-O(CO)R^6$, $-O(CO)OR^9$, $-O-C_{1-5}$ alkyl $-OR^6$, $-O(CO)NR^6R^7$, $-NR^6R^7$, $-NR^6(CO)R^7$,

 $NR^6(CO)OR^9$, $-NR^6(CO)NR^7R^8$, $-NR^6SO_2R^9$, $-COOR^6$, $-CONR^6R^7$, $-COR^6$, $-SO_2NR^6R^7$, $-COR^6$, $-SO_2NR^6$, $-SO_2NR$

 $S(O)_{0\text{--}2}R^9,\, \text{-O-C}_{1\text{--}10}\text{alkyl-COOR}^6,\, \text{-O-C}_{1\text{--}10}\text{alkyl-CONR}^6R^7$ and fluoro;

R6, R7 and R8 are independently selected at each occurrence from the group consisting of hydrogen, C1 – 6alkyl, aryl and aryl-substituted C1-6alkyl;

25 R⁹ is independently selected from the group consisting of C₁₋₆alkyl, aryl and aryl-substituted C₁₋₆alkyl; R⁵ is selected from

5

15

20

25

(a) -R10-R11, wherein R10 is selected from the group consisting of -S-, -S(O)-, -SO₂- and -C₁₋₆ n-alkyl- substituted with one to three substituents selected from the group consisting of -C₁₋₆ 6alkyl, -O(C₁₋₆alkyl), -CF₃,

-OCF3, -NR6R7 and -F;

- (b) -R12-R13, wherein R12 is selected from (i) a bond and (ii) a member selected from the group consisting of -S-, -S(O)-, -SO₂-, -C₁-6 n-alkyl-, and -C₁-6 n-alkyl-N(R⁶)-, wherein the alkyl group is unsubstituted or substituted with one to three substituents selected from the group consisting of -OH, oxo, -C₁-6alkyl, -O(C₁-6alkyl), -CF₃, -OCF₃, -NR⁶R⁷ and -F, and provided that when R¹² is a bond then t is 1;
- 10 R11 is selected from the group consisting of a sugar residue, disugar residue, trisugar residue and tetrasugar residue;
 - R13 is selected from the group consisting of:
 - (a) a thiosugar residue selected from the group consisting of:

(i)
$$R^{14}$$
 R^{14} R^{14}

wherein R¹⁴ is independently selected at each occurrence from (i) a linking bond and (ii) a member of the group consisting of –F, -H, -C₁-6alkyl, -OC₁-6alkyl, -OCF₃, -OH, -O-PG, -OR¹¹ and -OR¹³, and provided that: (A) one and only one occurrence of R¹⁴ is a linking bond, (B) an R¹⁴ adjacent to a carbonyl is not –F, and (C) no more than one occurrence of R¹⁴ is selected from -OR¹¹ and -OR¹³;

(b) a fluorosugar residue selected from the group consisting of:

(i)
$$R^{14}$$
 R^{14} R^{14}

wherein R¹⁴ is independently selected at each occurrence from (i) a linking bond and (ii) a member of the group consisting of -F, -H, -C₁-6alkyl, -OC₁-6alkyl, -OCF₃, -OH, -O-PG, -O-R¹¹ and -OR¹³, and provided that: (A) one and only one occurrence of R¹⁴ is a linking bond, (B)

WO 2005/044256 PCT/US2004/035845

at least one occurrence of R^{14} is -F, (C) an R^{14} adjacent to a carbonyl is not -F, and (D) no more than one occurrence of R^{14} is selected from -OR¹¹ and -OR¹³;

(c)
$$R^{15}$$
 (d) R^{15} (e) R^{15} (f) R^{15} $R^{$

- wherein R15 is independently selected at each occurrence from (i) a linking bond and (ii) a member of the group consisting of –H, -C₁₋₆alkyl, -OC₁₋₆alkyl, -OCF₃, –OH, -O-PG, -OR¹¹, -OR¹³, -SR¹¹, -SR¹³, -NR⁶R¹¹ and -NR⁶R¹³, and provided that: (A) one and only one occurrence of R¹⁵ is a linking bond and (B) no more than one occurrence of R¹⁵ is selected from -OR¹¹, -OR¹³, -SR¹¹, -SR¹³, -NR⁶R¹¹ and -NR⁶R¹³;
- R16 is independently selected at each occurrence from the group consisting of -H and -F;
 PG is a hydroxyl protecting group;
 - and provided that R⁵ is comprised of no more than four of any combination of sugar residues and members within the definition of R¹³ linked together, and
- R17 is selected from the group consisting of -H, -OH, -C₁-6alkyl, -OC₁-6alkyl, -CF₃, -CN, -NR⁶R⁷ and halogen.

- 2. The compound of claim 1 wherein the $-(O)_{t}$ R^{5} moiety is attached to the phenyl ring para to the azetidinone, and the R^{5} group is comprised of either $-R^{10}$ or $-R^{12}$ and one or two of a combination of sugar residues and members within the definition of R^{13} linked together.
 - 3. The compound of claim 1 of Formula Ia:

$$R^{17}$$
 (O)t- R_5

and the pharmaceutically acceptable salts and esters thereof.

- 4. The compound of claim 3 wherein the R⁵ group is comprised of one or two of a combination of sugar residues and members within the definition of R¹³ linked together.
 - 5. The compound of claim 2 wherein t is one, R⁵ is -R¹²-R¹³, and R¹² is a bond.
 - 6. The compound of claim 5 wherein R¹³ is a thiosugar.
 - 7. The compound of claim 5 wherein R^{13} is

R¹⁵ at position 1 is a linking bond.

5

15

- 20 8. The compound of claim 7 selected from that wherein (a) all the remaining R¹⁵ groups are -OH; and (b) R¹⁵ at position 4 is -OR¹¹ and the remaining R¹⁵ groups are -OH.
 - 9. The compound of claim 2 wherein t is zero and R5 is

 $_{R}10_{R}11$

5

15

- 10. The compound of claim 9 wherein R11 is a sugar residue or a disugar residue.
- 11. The compound of claim 10 wherein R¹⁰ is selected from -S- and -CF₂-.
- 12. A method of reducing plasma cholesterol levels comprising administering a therapeutically effective amount of a compound of claim 1 to a patient in need of such treatment.
- 13. A method of treating hypercholesterolemia comprising administering a therapeutically effective amount of a compound of claim 1 to a patient in need of such treatment.
 - 14. A method of treating atherosclerosis comprising administering a therapeutically effective amount of a compound of claim 1 to a patient in need of such treatment.
 - 15. A method of reducing the risk for atheroscler osis comprising administering a prophylactically effective amount of a compound of claim 1 to a patient in need of such treatment.
- 16. A method of reducing the risk for having an atherosclerotic disease event comprising administering a prophylactically effective amount of a compound of claim 1 to a patient in at risk for such an event.
 - 17. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.