Codility_

Timeline

Test Name: Summary

Check out Codility training tasks

Tasks Details

1. PassingCars Count the number of passing cars on the road.

Task description

A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.

Array A contains only 0s and/or 1s:

- 0 represents a car traveling east.
- 1 represents a car traveling west.

The goal is to count passing cars. We say that a pair of cars (P, Q), where $0 \le P < Q <$ N, is passing when P is traveling to the east and Q is traveling to the west.

For example, consider array A such that:

- A[0] = 0
- A[1] = 1A[2] = 0
- A[3] = 1
- A[4] = 1

We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).

Write a function:

function solution(A);

that, given a non-empty array A of N integers, returns the number of pairs of passing

The function should return -1 if the number of pairs of passing cars exceeds 1,000,000,000.

For example, given:

- A[0] = 0
- A[1] = 1
- A[3] = 1A[4] = 1

the function should return 5, as explained above.

Write an efficient algorithm for the following assumptions:

- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the

Copyright 2009-2022 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Solution

Task timeline

100	de: 12:35:20 UTC, js, final, score: show code in pop-up
1	// you can write to stdout for debugging purposes, e.g.
2	// console.log('this is a debug message');
3	
4	function solution(A) {
5	// write your code in JavaScript (Node.js 8.9.4)
6	<pre>let countOne = 0;</pre>
7	<pre>let arrayLength = A.length;</pre>
8	<pre>for(let i = 0 ; i < arrayLength ; i++)</pre>
9	if(A[i]===1)
10	countOne++;
11	<pre>let result = 0 ;</pre>
12	<pre>for(let i = 0 ; i < arrayLength ; i++) {</pre>
13	if(A[i]===1)
14	countOne;
15	else
16	result += countOne;
17	if(result>1000000000)
18	return -1;
19	}
20	return result;
21	}

Analysis summary

The solution obtained perfect score.

Analysis

random, length = 100	V UN
small_random2 random, length = 1000	∠ OK
expand all	Performance tests
► medium_random random, length = ~10,000	∠ OK
► large_random random, length = ~100,000	∠ OK
► large_big_answer 0011, length = ~100,000	∠ OK
► large_alternate 010101, length = ~100,000	∠ OK
► large_extreme large test with all 1s/0s, length	∨ OK h = ~100,000