Definitions

Area of region between curves. Suppose $f(x) \geq g(x)$ for all $x \in [a, b]$. Let \mathcal{C}_1 be the graph of f, let \mathcal{C}_2 be the graph of g, and let \mathcal{R} be the region between \mathcal{C}_1 and \mathcal{C}_2 lying over the interval [a, b] on the x-axis. We define the area of \mathcal{R} to be the integral of f - g over [a, b]: i.e.,

$$\operatorname{area}(\mathcal{R}) = \int_{a}^{b} f(x) - g(x) \, dx.$$

Similarly, suppose x = p(y) and x = p(q) are two functions of y satisfying $p(y) \ge q(y)$ for all $y \in [c, d]$. Let \mathcal{C}_1 be the graph of p, let \mathcal{C}_2 be the graph of q, and let \mathcal{R} be the region between \mathcal{C}_1 and \mathcal{C}_2 lying over the interval [c, d] on the y-axis. We define the area of \mathcal{R} to be the integral of p - q over [c, d]: i.e.,

$$\operatorname{area}(\mathcal{R}) = \int_{a}^{d} p(y) - q(y) \, dy.$$

Comment. Observe that the definition only applies when $f(x) \geq g(x)$ for all x in the given interval. This ensures that the area of \mathcal{R} , as defined, is at least nonnegative.

Theory

Graphical argument in support of area definition. Suppose $f(x) \geq g(x)$ for all $x \in [a, b]$. Let C_1 be the graph of f, let C_2 be the graph of g, and R be the region between C_1 and C_2 over the interval [a, b] on the x-axis.

1. Suppose we also have $f(x) \ge g(x) \ge 0$ for all $x \in [a, b]$. Then we have

$$\operatorname{area}(\mathcal{R}) = \int_{a}^{b} f(x) - g(x) dx$$
$$= \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$
$$= \operatorname{area}(\mathcal{R}_{1}) - \operatorname{area}(\mathcal{R}_{2}),$$

where \mathcal{R}_i is the region lying between \mathcal{C}_i and the x-axis over the interval [a, b]. Intuitively, this difference of areas should indeed be the area between the two curves.

2. To reduce the general case $f(x) \geq g(x)$ to the case above, simply shift both functions (and hence also \mathcal{R}) up by a large enough constant C so that $f(x) \geq g(x) \geq 0$. This operation does not affect the area of \mathcal{R} , and the C gets canceled in the integral computation thanks to the difference operator!

Procedures

Regions between intertwined curves. Suppose f and g are continuous on the interval [a, b] and intersect one another finitely many times. Let \mathcal{R} be the region between the graphs of f and g lying over the interval [a, b]. To compute the area of \mathcal{R} , proceed as follows:

- 1. Parition [a, b] into subintervals for which one of the functions is always greater than or equal to the other.
- 2. On each such subinterval compute the area of the corresponding region by integrating the appropriate difference.
- 3. Sum up the areas you compute in (2).

Examples

- 1. Let \mathcal{R} be the region between the parabola $x+y^2=4$ and the line 2x+y=2 lying in the first quadrant. Compute the are of \mathcal{R} .
 - You may do this either by thinking of the curves as graphs of functions of x, or graphs of functions of y. Which approach is easier?
- 2. Compute the area of the region between the parabolas $y = -x^2 2x$ and $y = x^2 4$ lying within the lines x = -3 and x = 2.