CS-540: Intro to Artificial Intelligence

Informed Search II + Local Search

Lecturer: Erin Winter

A-Search

Use evaluation function

$$f(n) = g(n) + h(n)$$

where g(n) is minimum cost path from start to current node n (as defined in Dijkstra's)

- Nodes in the frontier are sorted by increasing f(n) value
- Think of it as a "first half" g(n) + "second half" h(n) computation

$$g(n)$$
 $h(n)$ $goal$

A-Search alone doesn't suffice

•With an arbitrarily bad heuristic function, A-Search isn't **optimal** or **complete**.

A-Search: A,C,G

Cost: 100

Optimal: A,B,C,G

Cost: 3

- •We can do better by constraining the heuristic to be admissible.
- •An admissible heuristic h(n) for all nodes n will never **overestimate** the *true minimum cost path from n to the goal.*

A-Search + Admissible (or Consistent) Heuristic =

A* Search

effective and used in practice

A* Search Practice

Is h is admissible and/or consistent? It is consistent.

$$f(n) = g(n) + h(n)$$

of nodes tested: 0, expanded: 0

expnd. node	Frontier
	{S:0+8}

To test for admissibility, check that h(n) never overestimates the true cost to the goal.

To check for consistency, check h(n) is consistent AND $h(n) \le c(n, n') + h(n')$ for all successor nodes n'.

f(n) = g(n) + h(n)

of nodes tested: 1, expanded: 1

expnd. node	Frontier		
	{S:8}		
S not goal	{A:1+8,B:5+4,C:8+3}		

f(n) = g(n) + h(n)

of nodes tested: 2, expanded: 2

expnd. node	Frontier
	{S:8}
S	{A:9,B:9,C:11}
A not goal	{B:9,G:1+9+0,C:11,
	D:1+3+∞,E:1+7+∞}

f(n) = g(n) + h(n)

of nodes tested: 3, expanded: 3

expnd. node	Frontier
	{S:8}
S	{A:9,B:9,C:11}
Α	{B:9,G:10,C:11,D:∞,E:∞}
B not goal	{G:5+4+0,G:10,C:11,
	D:∞,E:∞} replace

f(n) = g(n) + h(n)

of nodes tested: 4, expanded: 3

expnd. node	Frontier
	{S:8}
S	{A:9,B:9,C:11}
A	{B:9,G:10,C:11,D:∞,E:∞}
В	{G:9,C:11,D:∞,E:∞}
G goal	{C:11,D:∞,E:∞}
	not expanded

f(n) = g(n) + h(n)

of nodes tested: 4, expanded: 3

expnd. node	Frontier
	{S:8}
S	{A:9,B:9,C:11}
A	{B:9,G:10,C:11,D:∞,E:∞}
В	{G:9,C:11,D:∞,E:∞}
G	{C:11,D:∞,E:∞}

Fast, optimal, complete under same graph conditions as Dijkstra's

path: S,B,G

cost: 9

A* performance in Practice

[from Russell and Norvig, Fig 3.29]

... 4 steps

Example State

Goal State

1		5
2	6	3
7	4	8

1	2	3
4	5	6
7	8	

For 8-puzzle, average number of states expanded over 100 randomly chosen problems in which optimal path is length ...

... 8 steps

... 12 steps

Depth-First Iterative Deepening (IDS)	112	6,300	3.6 x 10 ⁶
A* search using "number of misplaced tiles" as the heuristic	13	39	227
A* using "Sum of City-Block distances" as the heuristic	12	25	73

Heuristics and A* Performance

- •If $h(n) = h^*(n)$ for all n,
- only nodes on optimal solution path are expanded
- no unnecessary work is performed
- •If h(n) = 0 for all n,
- the heuristic is admissible
- A* performs exactly is Dijkstra's

The closer h is to h^* ,

the fewer extra nodes that will be expanded

How to come up with admissible/consistent heuristics?

Heuristics are often defined by relaxing the problem, i.e., computing the exact cost of a solution to a simplified version of problem

remove constraints

8-puzzle: Each tile moves independently

simplify problem

8-puzzle: A tile can move to any adjacent position \rightarrow Number of moves to get a tile to its goal position = City-Block distance (aka Manhattan distance or L₁ distance)

Map navigation: Use distance formula from n to goal state as h(n), which will always be optimistic because straight line distance is best case, reality has obstacles

An admissible heuristic is always optimistic. Ex: in this roadmap, $h^*(n)$ from Oradea to Bucharest can't be less than the **straight line distance** from Oradest to Bucharest. Hence, h(n) = straight line distance from Bucharest is admissible.

A* and Heuristics

For an admissible heuristic

- ullet Outside of certain problem domains, h is frequently very simple
- therefore search resorts to (almost) Dijkstra's through parts of the search space
- A* often suffers because it cannot venture down a single path unless it is almost continuously having success (i.e., h is decreasing); any failure to decrease h will cause the search to switch to another path

The Bad News About A*

- •A* uses a lot of memory, ie. O(number of states)
- •For some search problems, A* will fill the available system memory before finding a solution

How do we use less memory?

- 1. Sacrifice optimality beam search
- 2. Sacrifice some time iterative deepening A*

Beam Search

Use an evaluation function f(n) = h(n) as in Greedy Best-First search, and restrict the maximum size of the Frontier to a constant, k

- •Only keep *k* best nodes as candidates for expansion, and throw away the rest
- •More space efficient than Greedy Best-First Search, but may throw away a node on a solution path. Space complexity **O(km)**.
- Not complete
- Not optimal/admissible

Iterating Deepening A*

- Iterative-deepening A*
- •Cutoff based on f(n) = g(n) + h(n) value rather than depth
- •At each iteration do loop-avoiding DFS, not expanding any node with *f*-value that exceeds current threshold
- •At each iteration increase the *f*-value threshold by setting it to the smallest *f*-value of any node that exceeded the cutoff in the previous iteration
- Complete
- Optimal / Admissible
- Linear space required

Informed and Uninformed Search

These methods are for search problems in the following form:

- A directed graph of states S
- Start state(s) / ⊆S
- Goal state(s) $G \subseteq S$
- A successor function suc(n) that returns all neighbors of state n
- A cost function c(n, n') that returns the cost of moving from state n to state n'*

^{*}This information can be implied through the structure and labels on a graph

Informed and Uninformed Search

• These methods are **systematic**, they search for a **path** from start state to a goal state, then "execute" solution path's sequence of operators

- Effective on small search spaces
- not okay for NP-Hard problems requiring exponential time to find the (optimal) solution

Example NP-Hard Problem: Traveling Salesman

A salesperson wants to visit a list of cities

- stopping in each city only once
- (sometimes also must return to the first city)
- goal is to find an ordering of cities that minimizes total distance traveled

Example NP-Hard Problem: Traveling Salesman

A solution is a permutation of cities, called a **tour**

e.g.
$$A - B - C - D - E$$

assume tours can start at any city and do not return home

	Α	В	С	D	Ε
Α	0	5	8	9	7
В	5	0	6	5	5
С	8	6	0	2	3
D	9	5	2	0	4
Ε	7	5	3	4	0

Example NP-Hard Problem: Traveling Salesman

Classic NP-Hard problem

How many solutions exist?

n! where n = # of cities

n = 5 results in 120 tours

n = 10 results in 3,628,800 tours

 $n = 20 \text{ results in } \sim 2.4*10^{18} \text{ tours}$

	Α	В	С	D	Ε
Α	0	5	8	9	7
В	5	0	6	5	5
С	8	6	0	2	3
D	9	5	2	0	4
Е	7	5	3	4	0

Solving Hard Problems

- Hard problems can be solved in polynomial time by using either an:
- approximate model: find an exact solution to a simpler version of the problem
- approximate solution: find a non-optimal solution to the original hard problem
- We'll explore means to search through a solution space by iteratively improving solutions until one is found that is optimal or near optimal

What if we don't want or need a path? What if just we want a sufficiently **good** state?

Local Search

Local Search

- •Each state n has a **score** f(n) that we can compute
- The goal is to find the **state** (not path) with the highest score, or a reasonably high score
- •This is an optimization problem
- Enumerating entire state space is intractable
- Previous search algorithms are too expensive

Local Search

Local searching: every node is a solution

Operators/actions go from one solution to another

Allows you to stop at any time and have a valid solution

Goal: search is to find a better/best solution

- No longer searching state space for a solution path and then executing the steps of the solution path
- •A* *isn't* a local search since it considers different partial solutions by looking at the estimated cost of a *solution path*

Local Searching

An *operator/action* is needed to transform one solution to another

- •TSP: 2-swap operator
- take two cities and swap their positions in the tour
- A-B-C-D-E with swap(A,D) yields D-B-C-A-E
- possible since graph is fully connected
- •TSP: 2-interchange operator (aka 2-opt swap)
- reverse the path between two cities
- A-B-C-D-E with interchange(A,D) yields D-C-B-A-E

Neighbors: TSP

state: A-B-C-D-E-F-G-H-A

f = length of tour

2-interchange

Local Searching

Those solutions that can be reached with one application of an operator are in the current solution's *neighborhood* (aka "*move set*")

Local search considers next only those solutions in the neighborhood

•The neighborhood should be much smaller than the size of the search space (otherwise the search degenerates)

Examples of Neighborhoods

N-queens: Move queen in rightmost, most-conflicting column to a different position in that column

SAT: Flip the assignment of one Boolean variable

Local Searching

An evaluation function, f, is used to map each solution/state to a number corresponding to the quality/cost of that solution

- •TSP: Use the length of the tour; A better solution has a shorter tour length
- •Maximize f: called **hill-climbing** (gradient ascent if continuous)
- •Minimize *f*: called or **valley-finding** (gradient descent if continuous

Hill-Climbing (HC)

What's a neighbor?

- Problem spaces tend to have structure. A *small change* produces a neighboring state
- The size of the neighborhood must be small enough for efficiency
- Designing the neighborhood is critical; This is the real ingenuity not the decision to use hill-climbing

Pick which neighbor? The best one (greedy)

What if no neighbor is better than the current state? **Stop**

Hill-Climbing Algorithm

- 1. Pick initial state s
- 2. Pick *t* in neighbors(*s*) with the largest *f*(*t*)
- 3. if $f(t) \le f(s)$ then stop and return s
- 4. s = t. **Goto** Step 2.

Simple

Greedy

Stops at a *local* maximum

Bonus Section: Proof of A* Optimality

Proof of A* Optimality (by Contradiction)

•Let

G be the goal in the optimal solution

G2 be a *sub-optimal* goal found using A* where f(n) = g(n) + h(n), and h(n) is admissible

 f^* be the cost of the **optimal path** from Start to G

Hence $g(G2) > f^*$

That is, A* found a sub-optimal path (which it shouldn't)

Proof of A* Optimality (by Contradiction)

•Let n be some node on the *optimal* path but not on the path to G2

•
$$f(n) \le f^*$$

by admissibility, since f(n) never overestimates the cost to the goal it must be \leq the cost of the optimal path

•
$$f(G2) \le f(n)$$

G2 was chosen over n for the sub-optimal goal to be found

•
$$f(G2) \le f^*$$

combining equations

Proof of A* Optimality (by Contradiction)

- • $f(G2) \le f^*$ • $g(G2) + h(G2) \le f^*$ substituting the definition of f
- • $g(G2) \le f^*$ because h(G2) = 0 since G2 is a goal node
- •This contradicts the assumption that G2 was sub-optimal, $g(G2) > f^*$

Therefore, A* is optimal with respect to path cost; A* search never finds a sub-optimal goal