The 8th HW of Electrodynamics

肖涵薄 31360164

2019年4月21日

Q1

Two particles with magnetic dipole moment m1 and m2 and are placed at locations with distance R

(a)
$$\vec{B} = \frac{\mu_0}{4\pi} \frac{3(\vec{m} \cdot \hat{R})\hat{R} - \vec{m}}{R^3}$$

可知当 $R \perp m_1$, B 与 m_1 方向相反. 平衡时要求 $M = m \times B = 0$, m_2 与 $B(m_1)$ 同向为稳定平衡, 反向时为不稳定平衡, 即 m_1, m_2 方向平行时可以平衡.

- (b) 当 m 与 R 平行, $B = \frac{\mu_0}{4\pi} \frac{2m}{R^3}$. 当 m_1, m_2 同向, 达到稳定平衡, 反向则为不稳定平衡.
- (c) 平衡时 m_1 产生的磁场与 m_2 平行. 则需要 B_1 平行于 m_2 . 设 $\boldsymbol{m}_1 = |m_1|(x_1,y_1,z_1),$ $\boldsymbol{m}_2 = |m_2|(x_2,y_2,z_2).$ 其中 $\sqrt{x^2+y^2+z^2} = 1.$ 由于 m_1 与 B_2 平行. 取 $\hat{R} = (1,0,0).$

$$\begin{split} m_1 \times B_2 &= 0 \\ m_1 \times \Big((m_2 \cdot \widehat{R}) \widehat{R} - m_2 \Big) &= 0 \\ (x_1, y_1, z_1) \times \{ [(x_2, y_2, z_2) \cdot (1, 0, 0)] \, (1, 0, 0) - (x_2, y_2, z_2) \} &= 0 \\ (x_1, y_1, z_1) \times \{ (x_2) (1, 0, 0) - (x_2, y_2, z_2) \} &= 0 \\ (x_1, y_1, z_1) \times (0, y_2, z_2) &= 0 \\ (y_1 z_2 - y_2 z_1, -x_1 z_2, x_1 y_2) &= 0 \end{split}$$

Q2

由对称性, 共有:

$$\begin{cases} y_1 z_2 - y_2 z_1 = 0 \\ x_1 z_2 = x_2 z_1 = 0 \\ x_2 y_1 = x_1 y_2 = 0 \end{cases}$$

有两种情况满足上式,

- 1. 两个偶极子互相平行, 且垂直于 R.
- 2. 两个偶极子均平行于 R 方向.

$\mathbf{Q2}$

设镜像偶极子在 d' 处, 偶极矩大小为 m', 空间距球心 R, 与偶极子距离为 r, 夹角为 θ 的一点 磁势为

$$\varphi = \frac{m\cos\theta}{4\pi r^2} + \frac{m'\cos\theta'}{4\pi r'^2}$$

 $d^2+r^2-R^2=2dr\cos\theta$, 则 $\frac{\mathrm{d}r}{\mathrm{d}R}=\frac{R}{r-d\cos\theta}$

$$\frac{\partial \varphi}{\partial R} = -\frac{m\cos\theta}{2\pi r^3} \frac{R}{r - d\cos\theta} - \frac{m'\cos\theta'}{2\pi r'^3} \frac{R}{r' - d'\cos\theta'}$$

在
$$R = a$$
 处, $B_R = -\frac{\partial \varphi}{\partial R} = 0$

$$0 = -\frac{m\cos\theta}{r^3} \frac{1}{r - d\cos\theta} - \frac{m'\cos\theta'}{r'^3} \frac{1}{r' - d'\cos\theta'}$$
$$\implies m' = -(\frac{a}{d})^3 m, \quad z = d' = \frac{a^2}{d}$$