

Professional, Applied and Continuing Education

INTRODUCTION TO MACHINE LEARNING

DIT 45100

Professional, Applied and Continuing Education

Dimensionality Reduction

What is Dimensionality Reduction?

- Transformation of data from a high-dimensional space into a low-dimensional space such that the low-dimensional representation retains meaningful properties of the original data by
 - Maximizing variance (information)
 - Minimizing information loss

Why to Reduce Data Dimensions?

- Curse of dimensionality
- Data visualization and analysis
- Model performance

Model Performance

Dimensionality Reduction

How do we reduce data dimensions?

- Feature selection
 - Find a subset of the input variables of features
 - Works well for uncorrelated (or weekly-correlated) features
- Feature extraction
 - Features are (highly) correlated
 - Are on the same scale
 - No outliers

Feature Extraction

Big Idea

- The big idea is to find new coordinates that:
 - · capture the maximum variance (information) in the data, and
 - minimize the information loss

Principal Component Analysis (PCA) is a statistical technique which does that

Principal Component Analysis (PCA)

- Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.
- The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.
- Principal component analysis has applications in many fields such as population genetics, microbiome studies, atmospheric sciences, and more.

Combining variables

Cholesterol = Weight + Height

Cholesterol = BMI

$$BMI = \frac{Weight_{kg}}{Height_m^2}$$

Housing Data

Size
Number of rooms
Number of bathrooms
Schools around
Crime rate

Housing Data

Size
Number of rooms
→Size feature
Number of bathrooms

Schools around _______Location feature

Combining variables

Combining variables

Diastolic BP	Systolic BP
78	126
80	128
81	127
82	130
84	130
86	132

$$Y = \alpha_1 X_1 + \alpha_2 X_2$$

$$BP = \alpha_1 DBP + \alpha_2 SBP$$

PCA

Principal component analysis (PCA) is a method to find the linear combination that accounts for as much variability as possible.

$$BP = \alpha_1 DBP + \alpha_2 SBP$$

PCA

Diastolic BP	Systolic BP
78	126
80	128
81	127
82	130
84	130
86	132

$$Eig = \begin{bmatrix} -0.8 \\ -0.6 \end{bmatrix}$$

$$BP = -0.8DBP + (-0.6SBP)$$

Professional, Applied and Continuing Education

Fundamentals

Vectors and Matrices

$$v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

Vectors and Matrices

$$v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

$$Mv = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$

Linear Transformation

Eigenvalues & Eigenvectors

$$Av = \lambda v$$

$$(A - \lambda I)v = 0$$

$$|A - \lambda I| = 0$$

Eigenvalues & Eigenvectors

Eigenvalues

$$A = \begin{bmatrix} 9 & 4 \\ 4 & 3 \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} 9 - \lambda & 4 \\ 4 & 3 - \lambda \end{bmatrix}$$

$$(9 - \lambda)(3 - \lambda) - (4)(4) = \lambda^2 - 12\lambda + 11 = 0$$
 characteristic polynomial

Solving this quadratic, we get

$$\lambda = 11$$
 and $\lambda = 1$

Eigenvectors

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 11 \begin{pmatrix} u \\ v \end{pmatrix} \qquad \begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 1 \begin{pmatrix} u \\ v \end{pmatrix}$$
$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

Class Activity

$$A = \begin{bmatrix} 17 & -6 \\ 45 & -16 \end{bmatrix}$$

Find the eigenvalues and eigenvectors of the matrix A

Solution

$$A = \begin{bmatrix} 17 & -6 \\ 45 & -16 \end{bmatrix} \rightarrow |A - \lambda I| = \begin{vmatrix} 17 - \kappa & -6 \\ 45 & -16 - \kappa \end{vmatrix} = 0$$

$$\kappa^2 - \kappa - 2 = 0 \rightarrow \kappa = 2, -1$$

@
$$\Lambda = 2 \rightarrow$$
 15 -6 $v1 = 2$
45 -18 5

@
$$\lambda = -1 \rightarrow 18 -6 \quad v2 = 1$$
45 -15 3

Computing Eigenvalues / Eigenvectors

- Eigenvalue Decomposition (EVD)
 - Numpy.linalg.eig(data)
- Singular Value Decomposition (SVD)
 - Numpy.linalg.svd(data)

Eigenvalue Decomposition (EVD)

• Eigenvalue decomposition (EVD) of a symmetric matrix A is defined as:

$$AQ = Q\Lambda$$
$$A = Q\Lambda Q^{-1}$$
$$A = Q\Lambda Q^{T}$$

EVD

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \quad \Rightarrow \qquad \Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \qquad Q^T = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Singular Value Decomposition

 Assuming that we are calculating over the field of real numbers, the singular value decomposition (SVD reduced) of an m x n matrix X is defined as:

Professional, Applied and Continuing Education

^{*} denotes the complex conjugate transpose, for real-valued matrices, this is the same as the regular transpose $V^* = V^T$

Singular Value Decomposition

Figure: Illustration of the singular value decomposition $U\Sigma V^*$ of a real 2 × 2 matrix M.

- **Top:** The action of M, indicated by its effect on the unit disc D and the two canonical unit vectors e_1 and e_2 .
- Left: The action of V^* , a rotation, on D, e_1 , and e_2 .
- **Bottom:** The action of Σ , a scaling by the singular values σ_1 horizontally and σ_2 vertically.
- Right: The action of U, another rotation.

* Stands for complex conjugate transpose

Professional, Applied and Continuing Education

Principal Component Analysis (PCA)

How PCA works

PCA

How PCA Works

Mean Centering

PCA Projections

PCA Projections

PCA

- Principal components are linear combinations of the original features:
 - PC1 = $a_1^* x_1 + a_2^* x_2 + \dots + a_n^* x_n$ (first principal component)
 - PC2 = $b_1^* x_1 + b_2^* x_2 + \dots + b_n^* x_n$ (second principal component)

. . .

- PC1, PC2, ... are called PCA sores (or simply scores)
- Coefficients (a's, b's, ...) are called loadings
- Principal components are orthogonal
- PC1 explains the most variance in the data, followed by PC2, PC3, and so on
 - PC1 > PC2 > PC3 > ...