Lecture 4

Variable Elimination

Prof. Dahua Lin dhlin@ie.cuhk.edu.hk

Probabilistic Inference

- Given a probabilistic model, inference is to answer queries based on
 - a learned/estimated model
 - other observed evidences
- In a probabilistic context, inference can be formalized as computing conditional probabilities.

$$P(\underbrace{Y}_{query} \mid \underbrace{X=x}_{evidences}; \underbrace{\theta}_{model})$$

Conditional Inference

• **Conditional inference** often refers to the inference *conditioned on* certain *evidences*:

$$P(y|x;\theta) = \frac{P(y,x|\theta)}{P(x|\theta)}$$

with:

$$P(y,x) = \sum_{z} P(y,x,z|\theta)$$
$$P(x) = \sum_{y} P(y,x|\theta)$$

• Here, z indicates those variables that are not directly queried or observed, but can influence the computation. They are often referred to as **latent variables** or **hidden variables**.

Marginal Inference

 Sometimes, one may only concern about marginal probabilities (those not conditioned on any evidences):

$$P(y) = \sum_{z} P(y, z)$$

 On graphical models, conditional inference can be done via two marginal inference steps:

$$P(y, z, x) \implies P(y, x) \implies P(y|x)$$

The first step here can usually be simplified via evidence absorption.

Evidence Absorption: Motivating Example

• Consider a Markov network over (X, Y, Z):

$$p(x, y, z) \propto \psi_x(x)\psi_y(y)\psi_z(z)\phi_{xy}(x, y)\phi_{xz}(x, z)\phi_{yz}(y, z)$$

• The conditional probabilities for p(Y, Z|X = x) can be derived as

$$p(y, z|x) \propto \psi_y(y)\psi_z(z)\phi_{y|x}(y)\phi_{z|x}(z)\phi_{yz}(y, z)$$

where
$$\phi_{y|x}(y) = \phi_{xy}(x,y)$$
 and $\phi_{z|x}(z) = \phi_{xz}(x,z)$.

• Therefore, for p(Y|X=x), we have

$$p(y|x) = \sum_{z} p(y, z|x).$$

Evidence Absorption: Generic Procedure

- The procedure of **evidence absorption** can be summarized as:
 - Factors depend purely on known variables: remove
 - Factors depend partly on known variables: reduce
 - Factors depend purely on unknowns: retain
- As <u>conditional inference</u> can be reduced/decomposed into a series of marginal inference. In following discussion, we primarily focus on marginal inference.

Complexity Analysis

- Given a joint distribution p(Y, Z):
 - Y: the queried variables.
 - ullet Z: the variables to be marginalized out.
- P(Y) is given by

$$p(y) = \sum_{z \in \mathcal{Z}} p(y, z)$$

- Need to compute $|\mathcal{Y}|$ values.
- Each value sums over $|\mathcal{Z}|$ terms.
- Overall complexity: $|\mathcal{Y}| \cdot |\mathcal{Z}|$, the size of the entire sample space.
- Grows exponentially as the number of variables increases.

Basic Ideas to Reduce Complexity

- For Markov networks, computation can be restructured into sum of subexpressions, where each subexpression depends on a small number of variables.
- Subexpressions are <u>reused</u>. By computing these expressions once and caching the results, we can avoid generating them exponentially many times.

Example

Formulation:

$$p(x,y,z,w) = \frac{1}{Z}f(x,y)g(y,z)h(y,w)$$

Naive computation:

$$\begin{split} \tilde{p}(x) &= \sum_{y} \sum_{z} \sum_{w} f(x,y) g(y,z) h(y,w) \\ Z &= \sum_{x} \tilde{p}(x) \\ p(x) &= \frac{1}{Z} \tilde{p}(x) \end{split}$$

• Overall complexity: $O(m_x m_y m_z m_w)$.

Restructured Computation

• Push sums to the right:

$$\tilde{p}(x) = \sum_{y} f(x, y) \sum_{z} g(y, z) \sum_{w} h(y, w)$$

Detailed analysis:

$$g_{\backslash z}(y) = \sum_z g(y,z) \implies \text{complexity } O(m_y m_z)$$

$$h_{\backslash w}(y) = \sum_w h(y,w) \implies \text{complexity } O(m_y m_w)$$

$$\tilde{p}(x) = \sum_{y} f(x,y) g_{\backslash z}(y) h_{\backslash w}(y) \implies \text{complexity } O(m_x m_y)$$

 This can be generalized into a systematic procedure to compute marginals – variable elimination.

Variable Elimination: Problem Setup

- Consider a Markov network over Y_0, Y_1, \dots, Y_n , and we intend to compute $P(Y_0)$.
- Initialize:
 - The set of active factors: $\mathcal{F} \leftarrow \{\phi_1, \dots, \phi_m\}$.
 - The set of active variables: $V = \{X, Y_1, \dots, Y_n\}$.

Variable Elimination: Skeleton

- Given an order π over $\{1,\ldots,n\}$.
- For j = 1, ..., n:
 - let $i = \pi(j)$
 - Eliminate the variable Y_i :

$$\mathcal{F}, \mathcal{V} \leftarrow \mathsf{EliminateVar}(\mathcal{F}, \mathcal{V}, Y_i)$$

Variable Elimination: EliminateVar

- Notations:
 - $\mathcal{F}(Y_i)$: the set of active factors involving Y_i .
 - $\mathcal{V}(\phi)$: the set of active variables involved in ϕ .
 - Neighbors of Y_i : $\mathcal{N}_i = \{V \neq Y_i : \exists \phi \in \mathcal{F}(Y_i) \ V \in \mathcal{V}(\phi)\}.$
- Construct ψ_i on \mathcal{N}_i :

$$\psi_i(\mathbf{z}) = \sum_{y \in \text{dom}(Y_i)} \prod_{\phi \in \mathcal{F}(Y_i)} \phi\left(y, \mathbf{z}|_{\mathcal{V}(\phi)}\right), \quad \forall \mathbf{z} \in \bigotimes_{j \in \mathcal{N}_i} \mathcal{Y}_j$$

- Set $\mathcal{V} \leftarrow \mathcal{V} \backslash Y_i$.
- Set $\mathcal{F} \leftarrow (\mathcal{F} \backslash \mathcal{F}(Y_i)) \cup \{\psi_i\}$.

Variable Elimination: Compute $P(Y_0)$

- After variable elimination, every active factor that remains in \mathcal{F} involves *only* Y_0 .
- ullet Compute unnormalized probabilities on Y_0

$$\tilde{p}(y_0) = \prod_{\phi \in \mathcal{F}} \phi(y_0)$$

Compute normalization constant

$$Z_0 = \sum_{y_0} \tilde{p}(y_0)$$

• Normalize the probability values:

$$p(y_0) = \frac{1}{Z_0}\tilde{p}(y_0)$$

Variable Elimination: Example

$$p(x, y, z, w) = \frac{1}{Z} \psi_x(x) \psi_y(y) \psi_z(z) \psi_w(w)$$
$$\phi_{xy}(x, y) \phi_{xz}(x, z) \phi_{yz}(y, z) \phi_{yw}(y, w) \phi_{zw}(z, w)$$

Complexity Analysis

- At each iteration, when we eliminate Y_i , we introduce a new factor on \mathcal{N}_i .
- This factor involves $\prod_{j \in \mathcal{N}_i} |\mathcal{Y}_j|$ values, and computing each value requires summing up $|\mathcal{Y}_i|$ product terms.
- The complexity depends on the maximal cliques of the induced graphs, which depends strongly on the elimination order.

Complexity Analysis (cont'd)

- Finding the optimal elimination ordering is in general is NP-complete.
- For simple graphs, we can often easily identify a *reasonably good* order of elimination.
- For trees, the optimal ordering is to eliminate from leafs towards the root (i.e. the variable of interest).
- Greedy elimination often works reasonably well in practice.

Questions

Please analyze the complexity of *direct marginal inference* and *variable elimination* for two cases:

• A <u>fully connected Markov network</u> over n discrete variables, each defined on a finite space of cardinality m.

Questions

Please analyze the complexity of *direct marginal inference* and *variable elimination* for two cases:

- A <u>fully connected Markov network</u> over n discrete variables, each defined on a finite space of cardinality m.
- A <u>chain</u> of n discrete variables, each defined on a finite space of cardinality m.

Variable Elimination: Just the first step

- An entire *variable elimination* procedure only computes the probabilities of a single variable (or a small subset of variables).
- ullet Have to re-run the procedure n times if one wants to compute the marginals of all n variables.
- Are there any way to share the computation for all these procedures?