

PHYC90045 Introduction to Quantum Computing Quantum search — Grover's problem	MELBOARDE
Given an black box (oracle), U_p which computes the function: $f:\{0,1\}^n \to \{0,1\}$	
Find an x s.t. $f(x) = 1$	

PHYC90045 Introduction to Quantum Computing The marked state	PER CONTRACT OF MELEONIENE		
Initially in Grover's algorithm, we will be searching for a <i>single (integer)</i> solution, m . In that case the effect of the oracle on the control register is:			
$I-2\leftert m ight angle \left\langle m ightert$ (in decimal	ket notation)		
As a matrix: $ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $ -1 in the minor of the	th position		
Here, as in future slides, we are only writing out the control qubits (in qubits only).	this case 2		

PHYC90045 Introduction to Quantum Computing Inversion about the mean		
Consider a general state. The resulting amplitude from the "Inversion about the mean" step is:		
$\sum_i a_i \ket{i} o \sum_i (a_i - 2A) \ket{i}$ Original amplitude Average amplitude		
In practice on the QUI		

PHYC90045 Introduction to Quantum Computing Interactive Example	MELECURAL
https://codepen.io/samtonetto/full/BVOGmW	

PHYC90045 Introduction to Quantum C	Equal superposition	MILEOUENE
0)	nversion H H H H H H H H H H H H H H H H H H H	
Equal superposition state:	$\begin{split} \Phi\rangle &= \frac{1}{\sqrt{N}} \sum_i i\rangle \\ &= \frac{1}{\sqrt{N}} a\rangle + \frac{\sqrt{N-1}}{\sqrt{N}} b\rangle \end{split}$	
a angle =	$ b\rangle = \frac{1}{\sqrt{N-1}} \sum_{i \notin \text{solutions}} i\rangle$	

PHYC90045 Introduction to Quantum Computing	T
How many iterations required?	MELIOUENE
$\sin\theta = \frac{1}{\sqrt{N}}$ For small angles, $\theta \approx \frac{1}{\sqrt{N}}$	
After n iterations, we rotate to have only marked solutions: $(2n+1)\theta=\frac{\pi}{2}$ $n\approx\frac{\pi}{4}\sqrt{N}$	
The number of steps, n, required scales as O(VN), and not with N as it would classically.	
This is a "polynomial" rather than an "exponential" speedup.	

PHYC90045 Introduction to Quantum Computing How many iterations required?	MELECURA
$\sin heta = rac{\sqrt{M}}{\sqrt{N}}$ For small angles, $ heta pprox rac{\sqrt{M}}{\sqrt{N}}$	
After n iterations, we rotate to have only marked solutions: $(2n+1)\theta=\frac{\pi}{2}$ $n\approx\frac{\pi\sqrt{N}}{4\sqrt{M}}$	
Having multiple solutions is faster than searching for a single marked solution.	

