Graph Convolutions over Constituent Trees for Syntax-Aware Semantic Role Labeling

Diego Marcheggiani¹ and Ivan Titov^{2,3}

¹Amazon ²University of Amsterdam ³University of Edinburgh

• Predicting the predicate-argument structure of a sentence

Investors appeal to the CEO not to limit their access to sales data

- Predicting the predicate-argument structure of a sentence
 - Discover predicates

- Predicting the predicate-argument structure of a sentence
 - Discover predicates
 - Identify arguments and label them with their semantic roles

- Predicting the predicate-argument structure of a sentence
 - Discover predicates
 - Identify arguments and label them with their semantic roles

- Predicting the predicate-argument structure of a sentence
 - Discover predicates
 - Identify arguments and label them with their semantic roles

- Predicting the predicate-argument structure of a sentence
 - Discover predicates
 - Identify arguments and label them with their semantic roles

Motivation-Importance of syntax in SRL

Previous work

- Converted into dependency trees and encoded with self-attention:
 - Strubell et al. (2018)
- Constituency syntax extracted using heuristics:
 - He et al. (2019)
 - Wang et al. (2019)
- Syntax-agnostic models:
 - He et al. (2017)
 - Tan et al. (2018)
 - Ouchi et al. (2018)

Contributions

Span Graph Convolutional Networks (SpanGCN)

- Encode constituent structure:
 - efficiently (in a single pass)
 - at the level of words representation (compatible with seq2seq)
 - general and applicable to other span-based structures
- Syntax remains beneficial for SRL

Graph Convolutions over Constituent Trees

- Graph Convolutional Networks
- SpanGCN
- Semantic Role Labeling Model
- Experiments
- Conclusions

Graph Convolutional Networks

Graph Convolutional Networks

Graph Convolutional Networks

Graph Convolutions over Constituent Trees

- Graph Convolutional Networks
- SpanGCN
- Semantic Role Labeling Model
- Experiments
- Conclusions

SpanGCN Update

$$h_v = ReLU(\sum_{u \in \mathcal{N}(v)} U_{T_c(u,v)} h_u + b_{T_f(u,v)})$$

SpanGCN Update

Messages

$$h_v = ReLU(\sum_{u \in \mathcal{N}(v)} U_{T_c(u,v)} h_u + b_{T_f(u,v)})$$

Marcheggiani and Titov, (2017) Schlichtkrull et al. (2018)

SpanGCN Update

Messages

$$h_v = ReLU(\sum_{u \in \mathcal{N}(v)} U_{T_c(u,v)} h_u + b_{T_f(u,v)})$$

Coarse edge labels

Fine edge labels

SpanGCN Update

Messages

$$h_v = ReLU(\sum_{u \in \mathcal{N}(v)} U_{T_c(u,v)} h_u + b_{T_f(u,v)})$$

labels

- Composition and Decomposition
 - $T_c(u,v)$ distinguishes between start or end token
 - $T_f(u,v)$ specifies syntactic labels of the constituent

Fine edge labels

SpanGCN Update

Messages

 $u \in \mathcal{N}(v)$

Coarse edge labels

Fine edge labels

- Composition and Decomposition
 - $T_c(u,v)$ distinguishes between start or end token
 - $T_f(u,v)$ specifies syntactic labels of the constituent
- Constituent GCN
 - $T_c(u,v)$ specifies message directions (parent to child and vice-versa)
 - $T_f(u,v)$ specifies syntactic labels

Graph Convolutions over Constituent Trees

- Graph Convolutional Networks
- SpanGCN
- Semantic Role Labeling Model
- Experiments
- Conclusions

SRL Model

- Frozen word representation (Glove, ELMo, RoBERTa)
 - with predicate embeddings
- SpanGCN
- Conditional Random Field
 - Minimize negative conditional log likelihood

Baseline: BiLSTM in place of SpanGCN

Pennington et al., (2014)
Peters et al. (2018)
Liu et al., (2019)

Graph Convolutions over Constituent Trees

- SpanGCN
- Semantic Role Labeling Model
- Experiments
- Conclusions

Experiments

- Data
 - PropBank (CoNLL 2005)
 - FrameNet 1.5
- Gold predicates are given
- Syntactic parser of Kitaev and Klein, (2018)
- F1 score as metric
- Hyperparameters are tuned on Dev set of CoNLL 2005

PropBank

Palmer et al., (2005) Carreras and Màrquez, (2005)

FrameNet

Baker et al., (1998)

Predicted vs. Gold Syntax (Dev CoNLL 2005)

Predicted vs. Gold Syntax (Dev CoNLL 2005)

SpanGCN vs. DependencyGCN (Dev CoNLL 2005)

SpanGCN vs. DependencyGCN (Dev CoNLL 2005)

RoBERTa + SpanGCN (Dev CoNLL 2005)

RoBERTa + SpanGCN (Dev CoNLL 2005)

Syntax is still useful with powerful encoders

CoNLL 2005 – WSJ (GloVe)

CoNLL 2005 — WSJ (ELMo-Roberta)

FrameNet (GloVe)

Conclusions

- GCN-based architecture for encoding constituent structure
 - co-reference, semantic structures, entity graphs, discourse, etc.
- Obtained competitive results on SRL
 - PropBank and FrameNet

Conclusions

- GCN-based architecture for encoding constituent structure
 - co-reference, semantic structures, entity graphs, discourse, etc.
- Obtained competitive results on SRL
 - PropBank and FrameNet

FundingERC StG BroadSem 678254
NWO VIDI 639.022.518