Lesson 6

Chapter 4 Vector Spaces

- ▶ Vector Spaces and Subspaces
- ► Null Spaces, Column Space and Linear Transformations
 - ▶ Linearly Independent Sets; Bases
 - ➤ Coordinate Systems

- ▶ The Dimension of a Vector Space
- → Rank
 - **→** Change of Basis

Vektorrum

A vector space is a nonempty set V of objects, called *vectors*, on which are defined two operations called: *addition* and *multiplication* by scalars (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in V and for all scalars c and d.

- \rightarrow 1. The sum of **u** and **v**, denoted by **u**+**v** is in $V. \rightarrow Closed$ under addition
 - 2. u + v = v + u.
 - 3. (u + v) + w = v + (u + w).
- \rightarrow 4. There is a zero vector in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$. \rightarrow Neutral element
 - 5. For each u in V there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0} \rightarrow Inverse$ element
 - 6. The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V. \rightarrow Closed under multiplication
 - 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
 - 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
 - 9. c(du) = (cd)u.
 - 10. 1u = u. \rightarrow Neutral element

Definition

Underrum

A subspace of a vector space V is a subset H of V that has three properties:

- 1. The zero vector from V is in H.
- 2. H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- 3. H is closed under multiplication by scalars. That is, for each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

A subspace forms a vector space by itself.

Definition

Nul-rum

The null space of a $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Nul
$$A = \{ \mathbf{x} | \mathbf{x} \in \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}$$

Definition

Søjle-rum

The column space of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If

$$A = [\mathbf{a}_1 \dots \mathbf{a}_n]$$
, then

$$Col A = Span\{a_1, ..., a_n\} = \{b | b = Ax, \forall x \in \mathbb{R}^m\}$$

4.3 Linearly Independent Sets; Bases

$$\mathbb{H} = Span\{b_1, b_2, \cdots, b_p\}$$

$$\{\boldsymbol{v}_1,\boldsymbol{v}_2,\cdots,\boldsymbol{v}_p\}\in\mathbb{V}$$
:

Linear independent:

$$c_1 \cdot \boldsymbol{v}_1 + c_2 \cdot \boldsymbol{v}_2 + \dots + c_p \cdot \boldsymbol{v}_p = \boldsymbol{0} \Rightarrow \text{Only trivial solution (all } c_i = 0)$$

Linear dependent:

$$c_1 \cdot v_1 + c_2 \cdot v_2 + \dots + c_p \cdot v_p = 0 \Rightarrow \text{Non-trivial solution exist (at least one } c_i \neq 0)$$

Theorem 4.4

An indexed set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq \mathbf{0}$ is linearly dependent if and only if some \mathbf{v}_j with j > 1 is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots \mathbf{v}_{j-1}$.

<u>Ex 1</u>

$$\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \epsilon \mathbb{R}^2$$

$$\{\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3, \boldsymbol{p}_4\} \in \mathbb{P}$$

$$p_1(t) = 1;$$
 $p_2(t) = t;$ $p_3(t) = 4 - t;$ $p_4(t) = t^2 - t;$

Definition of basis:

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p\}$ in V is a **basis** for H if

- \triangleright B is a linearly independent set, and \rightarrow no unnecessary vectors
- the subspace spanned by \mathcal{B} coincides with H; that is, $H = \operatorname{Span}\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p\}$.
- → Smallest possible spanning set
- > Largest possible linear independent spanning set

or

A basis for V is a linearly independent set of vectors that spans V.

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}; \ \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}; \ \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}; \ \cdots; \ \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

\rightarrow Standard basis for \mathbb{R}^n

$$S = \left\{1, t, t^2, \cdots, t^n\right\}$$

\rightarrow Standard basis for \mathbb{P}_n

FIGURE 1 The standard basis for \mathbb{R}^3 .

FIGURE 2 The standard basis for \mathbb{P}_2 .

$$\underbrace{\mathsf{Ex}\; 2} \quad \left\{ \begin{bmatrix} 3 \\ 0 \\ -6 \end{bmatrix}, \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix} \right\} \text{ basis for } \mathbb{R}^3 ?$$

 \rightarrow Linearly independent? $c_1 \cdot v_1 + c_2 \cdot v_2 + c_3 \cdot v_3 = 0 \Rightarrow Ax = 0$

$$\Rightarrow \begin{bmatrix} 3 & -4 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ -6 & 7 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & -4 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & -4 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

 $\Rightarrow v_1, v_2$ and v_3 linearly independent!

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$$
: $\mathbf{x} = c_1 \cdot \mathbf{v}_1 + c_2 \cdot \mathbf{v}_2 + c_3 \cdot \mathbf{v}_3 \Rightarrow A\mathbf{c} = \mathbf{x} \Rightarrow \mathbf{c} = A^{-1}\mathbf{x}$

A an invertible $n \times n$ matrix: $A = [a_1 \ a_2 \ \cdots \ a_n]$

$$\Rightarrow \{a_1, \, a_2, \cdots, \, a_n\}$$
 is a basis for \mathbb{R}^n

by Theorem 2.8 (Invertible Matrix Theorem):

- a. A is an invertible matrix.
- e. The columns of A form a linearly independent set.
- h. The columns of A span \mathbb{R}^n .

Theorem 4.5, The Spanning Set Theorem

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a set in V, and let $H = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

- ▶ If one of the vectors in S say, \mathbf{v}_k is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- ▶ If $H \neq \{0\}$ some subset of S is a basis for H.

Basis for *Nul A*:

$$Ax = 0 \implies \begin{cases} x_1 - 2x_2 - x_4 + 3x_5 = 0 \\ x_3 + 2x_4 - 2x_5 = 0 \end{cases} \implies \begin{cases} x_1 = 2x_2 + x_4 - 3x_5 \\ x_2 = x_2 \\ x_3 = -2x_4 + 2x_5 \\ x_4 = x_4 \\ x_5 = x_5 \end{cases}$$

$$\Rightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix} = \sum_{x_i free} x_i \cdot v_i$$

$$\implies$$
 Basis for $Nul\ A = \{\boldsymbol{v}_2, \boldsymbol{v}_4, \boldsymbol{v}_5\} = \{\boldsymbol{v}_i\}_{x_i\ free}$

(Linearly independent set)

Basis for *Col A*:

$$A \sim B \Rightarrow Ax = 0$$
 and $Bx = 0$ have equal solutions x

$$x_1 \cdot \boldsymbol{a}_1 + x_2 \cdot \boldsymbol{a}_2 + \dots + x_5 \cdot \boldsymbol{a}_5 = \mathbf{0}$$
 \Rightarrow Same linearly dependent/independent column vectors in A and B $x_1 \cdot \boldsymbol{b}_1 + x_2 \cdot \boldsymbol{b}_2 + \dots + x_5 \cdot \boldsymbol{b}_5 = \mathbf{0}$

$$\{m{b_1},m{b_3}\}$$
 linearly independent (pivot columns); $m{b_2}=-2m{b_1}, \ m{b_4}=-m{b_1}+2m{b_3}, \ m{b_5}=-3m{b_1}-2m{b_3}$ $\{m{a_1},m{a_3}\}$ linearly independent (pivot columns) $m{a_2}=-2m{a_1}, \ m{a_4}=-m{a_1}+2m{a_3}, \ m{a_5}=-3m{a_1}-2m{a_3}$

$$Col\ A = Span\{a_1, a_2, a_3, a_4, a_5\} = Span\{a_1, a_3\} \neq Span\{b_1, b_3\}$$

Basis for
$$Col\ A=\{a_1,a_3\}=\{a_i\}_{pivot\ columns\ in\ A}$$

Basis for *Nul A* (see chap. 4.2 ex.3):

Linearly independent

 $Ax = \mathbf{0} \rightarrow [A \ \mathbf{0}] \rightarrow \text{Reduced echelon form} \rightarrow x = \sum_{free\ variables} \dot{x_i v_i} \in Nul\ A$

 $\rightarrow \{v_i\}$ basis for Nul A

Basis for Col A:

The pivot columns of a matrix A form a basis for Col A.

4.4 Coordinate Systems

Theorem 4.7, The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exist a <u>unique</u> set of scalars c_1, \dots, c_n such that

$$\mathbf{x}=c_1\mathbf{b}_1+\cdots+c_n\mathbf{b}_n.$$

Definition

Suppose $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is a basis for V and \mathbf{x} is in V. The coordinates of \mathbf{x} relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of \mathbf{x}) are the weights $c_1, c_2, \dots c_n$ such that $\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$. Hence

$$\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \longleftarrow \begin{array}{c} \text{Coordinate vector of } \mathbf{x} \\ \text{(relative to } \mathbf{B}) \end{array}$$

Coordinate mapping (koordinat afbilding)

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$

Basis for
$$\mathbb{R}^2$$
: $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ $\mathcal{E} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ \longleftarrow Standard basis for \mathbb{R}^2

$$[x]_{\mathcal{B}} = \begin{bmatrix} -2\\3 \end{bmatrix} \implies x = -2 \cdot b_1 + 3 \cdot b_2 = -2 \begin{bmatrix} 1\\0 \end{bmatrix} + 3 \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 1\\6 \end{bmatrix} = 1 \cdot e_1 + 6 \cdot e_2 = [x]_{\mathcal{E}}$$

$$P_{\mathcal{B}} = \begin{bmatrix} \boldsymbol{b}_1 & \boldsymbol{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \implies \boldsymbol{x} = [\boldsymbol{x}]_{\mathcal{E}} = P_{\mathcal{B}}[\boldsymbol{x}]_{\mathcal{B}} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$$

FIGURE 1 Standard graph paper.

FIGURE 2 \mathcal{B} -graph paper.

Basis for
$$\mathbb{R}^2$$

Ex 6 Basis for
$$\mathbb{R}^2$$
: $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$

$$x = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \Rightarrow [x]_{\mathcal{B}} = ?$$

$$\boldsymbol{x} = c_1 \cdot \boldsymbol{b}_1 + c_2 \cdot \boldsymbol{b}_2$$

$$\Rightarrow \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 4 \\ 1 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\Rightarrow x = 3b_1 + 2b_2$$

$$\Rightarrow [x]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Let $\mathcal{B}=\{\boldsymbol{b_1},\,\boldsymbol{b_2},\cdots,\boldsymbol{b_n}\}$ be a basis of \mathbb{R}^n and $[\boldsymbol{x}]_{\mathcal{B}}=[c_1\ c_2\ \cdots\ c_n]^T$

Change-of-coordinate matrix: $P_{\mathcal{B}} = [\boldsymbol{b}_1 \ \boldsymbol{b}_2 \cdots \boldsymbol{b}_n] \leftarrow \frac{\text{Invertible according to}}{\text{Inverse Matrix Theorem}}$

Change-of-coordinates from \mathcal{B} to standard basis of \mathbb{R}^n :

$$\mathbf{x} = c_1 \cdot \mathbf{b}_1 + c_2 \cdot \mathbf{b}_2 + \dots + c_n \cdot \mathbf{b}_n = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Change-of-coordinates from standard basis of \mathbb{R}^n to \mathcal{B} :

$$x \mapsto P_{\mathcal{B}}^{-1}x = [x]_{\mathcal{B}}$$
 — One-to-one linear transformation from \mathbb{R}^n onto \mathbb{R}^n

Coordinate mapping

Ex 6 revised

Basis for
$$\mathbb{R}^2$$
: $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$

$$x = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \Rightarrow [x]_{\mathcal{B}} = ?$$

$$P_{\mathcal{B}} = \begin{bmatrix} \boldsymbol{b}_1 & \boldsymbol{b}_2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \implies P_{\mathcal{B}}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

$$[x]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}x = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 9 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$x = [x]_{\mathcal{E}} = P_{\mathcal{B}}[x]_{\mathcal{B}} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

Let $\mathcal{B} = \{ \boldsymbol{b_1}, \, \boldsymbol{b_2}, \cdots, \, \boldsymbol{b_n} \}$ be a basis for a vector space V

and x a vector in V:

$$\boldsymbol{x} = c_1 \cdot \boldsymbol{b}_1 + c_2 \cdot \boldsymbol{b}_2 + \dots + c_n \cdot \boldsymbol{b}_n.$$

The coordinate mapping:

$$\boldsymbol{x} \mapsto [x]_{\mathcal{B}} = [c_1 \ c_2 \cdots c_n]^T$$

is a one-to-one linear transformation from V onto \mathbb{R}^n

Isomorphism from vector space V onto vector space W (\mathbb{R}^n)

Calculations in V

Calculations in W

 $\mathcal{B} = \{1, t, t^2, t^3\}$ standard basis of \mathbb{P}_3

$$p(t) = a_0 \cdot 1 + a_1 \cdot t + a_2 \cdot t^2 + a_3 \cdot t^3 \in \mathbb{P}_3$$

$$p(t) \mapsto [p(t)]_{\mathcal{B}} = [a_0 \ a_1 \ a_2 \ a_3]^T \in \mathbb{R}^4$$
 Coordinate mapping / Isomorphism of \mathbb{P}_3 onto \mathbb{R}^4

Todays words and concepts

Isomorphism

Standard basis

Unique Representation

Basis

Coordinates

Coordinate system