Agent conversationnel et chatbot

Utilisation de Large Language Models pour publier une base de connaissances

Partie 3

Nicolas Debeissat nicolas.debeissat@mail-formateur.net

Plan du module

Pourquoi faire un agent conversationnel?

Comment défendre votre projet en entreprise ?

Principes de base des LLMs

Ce qui va faire qu'il va donner des bons résultats, ou non

Entraînement - Fine Tuning

Comment adapter ses réponses

Retrieval Augmented Generation

Répondre à partir de vos données

Intégration dans une application

Créer une API à partir de votre modèle

Evaluation

Entraıner votre IA à faire votre évaluation

Entraînement - Fine Tuning

Comment adapter ses réponses

Principaux LLMs

Entraînement

Boucle d'entraînement :

```
def train_one_epoch(epoch_index, tb_writer):
 running_loss = 0.
 last loss = 0.
 for i, data in enumerate(training_loader):
    # Every data instance is an input + label pair
    inputs, labels = data
    # Zero your gradients for every batch!
    optimizer.zero_grad()
    # Make predictions for this batch
    outputs = model(inputs)
    # Compute the loss and its gradients
    loss = loss_fn(outputs, labels)
    loss.backward()
    # Adjust learning weights
    optimizer.step()
    # Gather data and report
    running_loss += loss.item()
    if i % 1000 == 999:
      last_loss = running_loss / 1000 # loss per batch
      print(' batch {} loss: {}'.format(i + 1, last_loss))
      tb_x = epoch_index * len(training_loader) + i + 1
      tb_writer.add_scalar('Loss/train', last_loss, tb_x)
      running_loss = 0.
 return last_loss
```

Ajustement des poids (descente de gradient)

Besoin en matériel et en temps

- T5-Base, possible sur CPU: 5 Go RAM
- Mistral (Llama like)
 - Sans quantization
 - batch 1: 32 Go VRAM ~ 20h
 - batch 2 : > 32Go VRAM
 - 4b
 - batch 1: 5Go VRAM ~ 20h
 - batch 2 : 8Go VRAM ~ 15h
 - batch 4 : 10Go VRAM ~ 12h
 - batch 16 : 26 Go VRAM
 - 8b
 - batch 1: 20 Go VRAM
 - batch 2:22 Go VRAM

Fine-Tuning avec Lora (Low-Rank Adaptation)

https://github.com/huggingface/peft/blob/1fec23152ac82011c2b5924e3220381ae8a3ae78/src/peft/tuners/lora/bnb.py

Seule une partie du modèle est ré-entraînée, en ajoutant de nouveaux poids aux paramètres originaux.

Après l'entraînement, les poids peuvent être fusionnés dans le modèle original.

Quantization avec QLoRA

La précision des poids est réduite de 16 bits à 4 bits. Régulièrement, les gradients accumulés sont déplacés vers le CPU.

Figure 1: Different finetuning methods and their memory requirements. QLoRA improves over LoRA by quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

K-fold cross validation

Permet à l'entraînement de parcourir tous les exemples, lorsque l'on en a peu. Moins fiable car on teste le modèle sur des valeurs qu'il a déjà vu dans les précédents entraînements.

Suivi de l'entraînement

Il est difficile de prédire combien de temps va prendre l'entraînement. Il faut surveiller et attendre le moment où le modèle n'apprend plus pour éviter le sur-entraînement.

Sur-entraînement

The goal is to avoid over-fitting when choosing the model or the model parameters:

TD3-1: Entraînement T5

Répondre au quizz et affiner les réponses :

- Charger le fichier quizz.csv dans un DataFrame
- Charger le modèle flan-t5-base et demandez-lui de répondre aux 10 questions
- Fine-tuner le modèle sur 9 questions d'entraînement et 1 question de test
- Visualiser l'évolution des métriques d'entraînement avec tensorboard
- Redemandez-lui les réponses aux 10 questions
- Fine-tuner le modèle sur les 10 questions avec un algo k-fold K=10
- Redemandez-lui les réponses aux 10 questions

TD3-2: Evaluation Rouge

Evaluer la performance du modèle

- Calculer la différence entre une réponse T5 originale et une réponse après fine-tune
- Calculer la différence rouge entre "modàle pré-entraîné" et "modèle pré-entraîné"
- Calculer la différence entre un groupe nominal au singulier et un groupe nominal au pluriel

TD3-3: Entraînement Mistral

Répondre au quizz et affiner les réponses :

- Charger le fichier quizz.csv dans un DataFrame
- Charger le modèle Mistral-7B-Instruct et demandez-lui de répondre aux 10 questions
- Demandez-lui de répondre aux 10 questions avec les 10 questions en "few-shot"
- Fine-tuner le modèle
- Redemandez-lui les réponses aux 10 questions