

Control 3

Pregunta 1 (100 pts)

Un estudio independiente de la bolsa de valores ha medido las variaciones porcentuales de tres indicadores económicos, el BG, el LFT y el VCR representados por las variables X, Y y Z respectivamente. Estos valores se han resumido en tablas de contigencia bivariadas que relacionan las tres variables de a pares, la **Tabla 1** que relaciona las variables X e Y y la **Tabla 2** relaciona las variables X y Z. La idea es poder extraer información de forma individual de cada variables y estudiar si existe o no evidencia de relación entre estas. Se le pide realizar lo siguiente:

1. Para cada una de las tres variables calcule el promedio, la desviación estándar y el índice de simetría de Fisher dado por la ecuación:

$$\gamma_1 = \frac{m_3}{S_n^3}, \quad \text{con } m_3 = \sum_{i=1}^n f_i (\mathcal{M}_i - \bar{X})^3$$

(30 puntos)

- 2. Calcule el coeficiente de variación de cada variable y e indique cuál de ellas es más homogénea. (10 puntos)
- 3. Calcule las covarianzas de las variables aleatorias (Cov(X, Y) y Cov(X, Z)) y luego calcule las correlaciones (Corr(X, Y) y Corr(X, Z)). ¿Qué puede decir sobre los valores de la correlación? (30 puntos)
- 4. Calcule los parámetros de la regresión lineal

$$Y = \beta_0 + \beta_1 X$$

(20 puntos)

1 Solución

1.

	X	Y	Z
Promedio	1,0423	2,0355	2,9659
Desv. Est.	1,2424	0,9395	0,7147
IS	0,0993	0,0716	0,0128

2.

	X	Y	\mathbf{Z}
CV	1,1920	0,4616	0,2410

- 3. $\bullet \text{Cov}(X, Y) = 0,805$
 - Cov(X, Z) = 0,205
 - $corr_{XY} = 0,689$
 - \bullet cor_{XZ} = 0,231

4.
$$Y = 1,3606 + 0,6475X$$