1. Информационное и лингвистическо е обеспечение

Информационное обеспечение — это процесс сбора, обработки, хранения, передачи и использования данных в системе. Важнейшей задачей информационного обеспечения является обеспечение точности, полноты, актуальности и безопасности информации, что критически важно для успешного функционирования информационных систем.

Пример: В банковских информационных системах важным аспектом информационного обеспечения является точное хранение данных о счетах клиентов и история их транзакций. Для этого используется высоконадежная база данных с механизмами резервного копирования и шифрования.

Лингвистическое обеспечение связано с применением языка для формирования четких инструкций, стандартов, терминов и документации. Это необходимо для того, чтобы все участники разработки и эксплуатации системы (разработчики, пользователи, администраторы) могли эффективно обмениваться информацией.

Пример: В программировании часто используют стандартизированные термины и форматы данных, такие как XML или JSON, что позволяет разработчикам из разных организаций или стран работать с одними и теми же данными.

Зачем это нужно?

- Для эффективной работы информационных систем: для корректной работы ИС важен правильный сбор и передача информации.
- Для унификации процессов: использование стандартных языков и терминов помогает избежать недоразумений и ошибок.

Математическое и методическое о беспечение

Математическое обеспечение ИС включает в себя использование математических моделей, теорий и методов для анализа данных, оптимизации процессов и построения моделей поведения системы.

Пример: В системе прогнозирования спроса на продукцию используется метод линейного программирования для нахождения оптимального распределения товаров по магазинам с учетом ограниченных ресурсов.

Методическое обеспечение связано с определением методов и стандартов для проектирования и разработки ИС, а также с выбором инструментов для управления проектами и контроля качества.

Пример: Методология Agile, которая используется в разработке программного обеспечения, представляет собой один из примеров методического обеспечения. Она предполагает гибкий подход, быстрые итерации и взаимодействие с заказчиком на протяжении всего жизненного цикла разработки.

Зачем это нужно?

- **Для оптимизации процессов**: математические модели помогают повысить эффективность работы ИС.
- Для стандартизации разработки: методические подходы помогают организовать работу команды разработчиков и гарантировать качество конечного продукта.

3. Организационное, правовое, прогр аммное обеспечение

Организационное обеспечение включает в себя все меры, направленные на эффективную организацию процессов разработки, внедрения и эксплуатации ИС.

Пример: В крупной корпорации, которая разрабатывает и внедряет ИС для управления складом, организационное обеспечение будет включать создание проектной группы, распределение ролей и задач, составление графиков и планов внедрения.

Правовое обеспечение связано с соблюдением законодательных требований, таких как защита данных, авторские права, лицензирование и регулирование использования технологий.

Пример: В сфере медицины для ИС, обрабатывающих персональные данные пациентов, необходимо соблюдать законы, такие как GDPR (для Европы) или HIPAA (для США), чтобы защитить личную информацию.

Программное обеспечение — это совокупность программных продуктов, обеспечивающих выполнение задач информационной системы. Это операционные системы, базы данных, приложения и утилиты.

Пример: В банке для обработки транзакций используется специальное программное обеспечение для работы с платежными картами и базами данных.

- Для эффективной работы: организационные меры помогают управлять проектом.
- Для соблюдения закона: правовые нормы защищают права пользователей и разработчиков.
- **Для выполнения функций**: программное обеспечение выполняет непосредственную работу системы.

4. Техническое и эргономическое об еспечение

Техническое обеспечение включает в себя аппаратные средства, такие как серверы, устройства хранения данных, сети и т. д.

Пример: Для работы с большими объемами данных в финансовой системе используются серверы с высокой мощностью обработки и системами резервного копирования.

Эргономическое обеспечение связано с удобством работы пользователя с системой. Это включает проектирование интерфейса, который должен быть удобным, понятным и эффективным для пользователя.

Пример: В приложении для мобильного банкинга важным аспектом эргономики будет являться наличие четкой навигации, простоты ввода данных (например, использование автозаполнения) и наличие инструкций по работе с системой.

Зачем это нужно?

- Для высокой производительности: техническое обеспечение влияет на скорость и надежность работы системы.
- **Для удобства пользователей**: эргономика влияет на комфорт работы с системой, снижает количество ошибок и ускоряет выполнение задач.

5. Понятие жизненного цикла

Жизненный цикл информационной системы (ИС) — это процесс создания, эксплуатации и вывода из эксплуатации системы. Включает этапы проектирования, разработки, тестирования, внедрения, эксплуатации, обновления и завершения работы ИС.

Пример: Жизненный цикл ИС для банка может начинаться с анализа требований, продолжаться разработкой ПО для обработки транзакций и завершаться обновлением программного обеспечения или переходом на новую систему.

Зачем это нужно?

- Для управления проектом: жизненный цикл позволяет четко планировать этапы разработки и оценки системы.
- Для оптимизации ресурсов: знание жизненного цикла помогает лучше планировать использование ресурсов на каждом этапе проекта.

6. Процессы жизненного цикла ИС

Процессы жизненного цикла информационной системы включают:

- 1. Инициация проекта: это начало работы над системой, определение целей и задач.
 - о **Пример**: для создания новой системы автоматизации производства проводится исследование потребностей и возможностей.
- 2. Анализ требований: определение того, что система должна делать.
 - Пример: в медицине разработка системы для мониторинга состояния пациентов с учетом требований к точности и скорости.
- 3. Проектирование системы: создание архитектуры и планирование структуры системы.
 - Пример: создание схемы базы данных и архитектуры программного обеспечения.
- 4. Разработка и тестирование: программирование и проверка системы на ошибки.
 - о Пример: написание кода и тестирование его на реальных данных.
- 5. Внедрение: ввод системы в эксплуатацию.
 - о Пример: внедрение новой системы учета в компании.
- 6. Эксплуатация: использование системы на постоянной основе, ее поддержка.
 - о Пример: обновление ПО для улучшения функциональности.
- 7. **Вывод из эксплуатации**: завершение использования системы, если она устарела или заменена.
 - о Пример: замена старой учетной системы на более современную.

Зачем это нужно?

- **Для упорядочивания работы**: процессы жизненного цикла помогают не упустить важные этапы и системно подходить к разработке и внедрению системы.
- Для улучшения качества: каждый этап жизненного цикла важен для успешного создания и работы системы.

7. Модели жизненного цикла разрабо тки ИС

Модели жизненного цикла разработки информационных систем описывают последовательность шагов, которые необходимо выполнить для создания системы. Каждая модель подходит для разных типов проектов в зависимости от их сложности, требований и масштабов.

Пример:

- **Каскадная модель**: используется для проектов с четкими и фиксированными требованиями. Например, создание системы учета в небольшой компании, где требования понятны и не изменяются на протяжении разработки.
- Итеративная модель: в рамках этой модели разработка идет циклами, каждый из которых уточняет и улучшает систему. Пример разработка сложной корпоративной системы, где требования могут изменяться в процессе, и каждая итерация направлена на уточнение этих требований.
- Спиральная модель: используется в сложных проектах, где важно управление рисками на каждом этапе. Пример создание системы для научных исследований, где необходимо часто пересматривать подходы из-за изменений в технических требованиях.

Зачем это нужно?

- Для оптимизации процесса разработки: каждая модель позволяет адаптировать подход в зависимости от типа проекта.
- **Для управления рисками**: разные модели жизненного цикла позволяют эффективно минимизировать риски, управляя изменениями и непредсказуемыми ситуациями.

8. Классические модели жизненного цикла разработки ПО

Классические модели жизненного цикла разработки программного обеспечения, такие как водопадная, спиральная и итеративная модели, используются для организации разработки в соответствии с этапами, начиная от сбора требований до тестирования и внедрения системы.

Пример:

- **Водопадная модель** (Waterfall) предполагает строгую последовательность этапов: анализ, проектирование, разработка, тестирование. Этапы не могут повторяться, что ограничивает гибкость, но подходит для простых проектов.
- **Итеративная модель**: проект разработки происходит через несколько циклов, каждый из которых включает все стадии разработки. Это позволяет уточнять требования и вносить изменения в процессе работы.
- Спиральная модель: комбинация каскадного и итеративного подходов, ориентирована на управление рисками. Применяется для проектов с высоким уровнем неопределенности.

- Для структурирования процесса разработки: модели жизненного цикла помогают организовать работу команды и следовать заранее определенному плану.
- **Для улучшения качества продукта**: использование разных моделей позволяет минимизировать ошибки и повышать надежность системы.

9. Предметная область ИС

Предметная область информационной системы — это та сфера или область деятельности, для которой разрабатывается система. Важно четко понимать предметную область, чтобы система могла решать задачи пользователей и соответствовать их потребностям.

Пример:

- В медицинской информационной системе предметной областью являются процессы лечения пациентов, учет медицинских услуг, хранение медицинских данных. Система должна решать задачи, связанные с назначением лечения, записью на прием и ведением медицинской документации.
- В **системе управления складом** предметной областью будут процессы учета товаров, управление запасами, логистика и т. д.

Зачем это нужно?

- Для точности и качества работы системы: четкое понимание предметной области помогает точно спроектировать систему и учесть все важные аспекты ее работы.
- **Для удовлетворения потребностей пользователей**: понимание области позволяет создать систему, которая будет максимально полезной и эффективной.

Этапы анализа предметной област

Анализ предметной области включает в себя следующие ключевые этапы:

- 1. Сбор информации: изучение текущих процессов, разговоры с пользователями, анализ документов.
 - Пример: для создания системы учета пациентов анализируются медицинские записи и интервью с врачами.
- 2. **Идентификация проблем**: определение текущих проблем, которые система должна решить.
 - о Пример: выявление недостатков в существующих методах записи пациентов и недочетов в доступности данных.
- 3. **Определение требований**: сбор функциональных и нефункциональных требований от пользователей и других заинтересованных сторон.
 - о Пример: создание списка требований, включая возможность удаленного доступа для врачей и сотрудников медицинских учреждений.
- 4. **Моделирование предметной области**: построение моделей процессов или данных, которые будут поддерживаться системой.
 - о Пример: создание диаграмм потока данных для понимания процессов.

Зачем это нужно?

- Для четкого понимания системы: анализ помогает точно определить требования и разработать систему, отвечающую всем нуждам.
- **Для минимизации рисков**: предварительный анализ позволяет избежать ошибок в проектировании и предусмотреть возможные проблемы.

Методы сбора материалов обследо вания

Существует несколько методов сбора информации для анализа и проектирования информационных систем:

- **Интервью**: общение с пользователями, экспертами и другими заинтересованными сторонами для выявления их потребностей.
 - о Пример: интервью с медицинским персоналом для понимания их потребностей в медицинской системе.
- Анкетирование: сбор информации с помощью анкеты, что позволяет охватить большую аудиторию.
 - Пример: анкета для сотрудников организации для получения обратной связи о текущем ПО.
- Анализ документации: изучение существующих документов и отчетов, чтобы понять, как работает текущая система.
 - о Пример: анализ инструкций по работе с бухгалтерскими системами.
- Наблюдение: анализ процессов непосредственно в ходе их выполнения.
 - Пример: наблюдение за процессом учета пациентов в больнице для выявления узких мест.

Зачем это нужно?

- Для точности данных: методы сбора материалов помогают получить точную и полную информацию для анализа.
- **Для выявления скрытых проблем**: наблюдения и интервью могут выявить проблемы, которые не очевидны на первый взгляд.

12. Функциональный подход

Функциональный подход в разработке информационных систем ориентирован на описание того, что система должна делать — то есть, на ее функциональные возможности. Этот подход включает в себя создание функциональных блоков и описание их взаимодействий.

Пример:

• В системе для учета сотрудников может быть несколько функциональных блоков: учет рабочего времени, расчет заработной платы, ведение базы данных сотрудников. Каждый блок решает свою задачу, но все они взаимодействуют между собой.

Зачем это нужно?

- Для ясности разработки: функциональный подход позволяет четко определить задачи системы и ее компоненты.
- **Для упрощения тестирования**: каждый функциональный блок можно тестировать отдельно, что облегчает контроль качества.

13. Объектно-ориентированный подхо д

Объектно-ориентированный подход (ООП) основан на представлении системы как набора объектов, которые взаимодействуют друг с другом. Каждый объект имеет состояние (атрибуты) и поведение (методы).

Пример:

В системе управления складом объектами могут быть товары, сотрудники, заказы.
Товар может иметь атрибуты (название, цена), а методы (обновить цену, переместить на склад).

Зачем это нужно?

- **Для организации кода**: ООП помогает создавать код, который легко поддерживать и модифицировать.
- Для улучшения масштабируемости: объекты можно легко добавлять и изменять без воздействия на другие части системы.

14. CASE-системы

CASE-системы (Computer-Aided Software Engineering) — это инструменты для автоматизации этапов разработки программного обеспечения, включая проектирование, кодирование, тестирование и документирование.

Пример:

- Rational Rose CASE-система, используемая для разработки объектноориентированных систем с помощью диаграмм UML.
- **Microsoft Visio** средство для создания диаграмм, процессов и схем, используется для проектирования и визуализации архитектуры системы.

- **Для ускорения разработки**: CASE-системы автоматизируют множество задач, таких как создание документации и генерация кода.
- Для повышения качества: автоматизация тестирования и анализа помогает избежать ошибок.

15. Классификация и характеристика CASE-средств

CASE-средства можно классифицировать по различным аспектам:

- **Средства моделирования**: помогают визуализировать структуру системы с помощью диаграмм. Пример создание UML-диаграмм.
- **Средства разработки**: инструменты для написания кода и автоматической генерации кода из моделей. Пример инструменты для кодирования.
- Средства тестирования: предназначены для автоматизации тестирования программного обеспечения. Пример инструменты для автоматического тестирования функциональности.
- Средства управления проектом: помогают управлять временем и ресурсами на всех этапах разработки. Пример инструменты для планирования задач и контроля сроков.

Зачем это нужно?

- Для упрощения разработки: использование различных типов CASE-средств позволяет автоматизировать множество задач, что ускоряет процесс разработки и повышает его качество.
- **Для управления проектами**: CASE-средства управления проектами помогают поддерживать проект в рамках бюджета и сроков.

16. Принципы построения модели IDEF0

Модель IDEF0 используется для функционального моделирования систем и процессов, она основывается на разбиении сложной системы на более простые элементы. Каждая функция описывается через входы, выходы, механизмы и управление.

Пример:

• В модели IDEFO для управления запасами функции могут включать: прием товаров, проверка качества, перемещение товаров на складе. Все эти функции отображаются через входы (товар, проверка качества), выходы (обработанные товары), механизмы (работники склада), и управление (регламент работы склада).

- **Для четкого представления процессов**: модель IDEF0 помогает системно и наглядно описать функции системы и их взаимодействия.
- **Для анализа и улучшения процессов**: позволяет легко увидеть слабые места и области для улучшений в процессе.

Контекстная диаграмма, субъект моделирования, цель и точка зрения

Контекстная диаграмма (или диаграмма уровня 0) — это визуальное представление системы, показывающее, как она взаимодействует с внешними элементами (например, пользователями, другими системами, организациями). Контекстная диаграмма служит для того, чтобы предоставить общее понимание системы и ее окружения.

Пример:

 Для системы управления заказами контекстная диаграмма может показывать взаимодействие с клиентом (ввод данных о заказе), складом (обработка заказов) и бухгалтерией (выставление счетов).

Субъект моделирования — это тот элемент или объект, который моделируется в системе. Он может быть конкретным (например, продукт) или абстрактным (например, процесс).

Цель моделирования — это то, что необходимо достичь с помощью моделирования. Это может быть улучшение процессов, оптимизация взаимодействий или повышение качества обслуживания.

Точка зрения — это взгляд на систему с определенной позиции или интереса. Это может быть взгляд с точки зрения пользователя, администратора, разработчика и так далее.

Зачем это нужно?

- **Для общего представления системы**: контекстная диаграмма помогает всем участникам разработки понять, как система взаимодействует с внешней средой.
- Для уточнения требований: четкое определение субъекта моделирования, цели и точки зрения помогает лучше понять, какие задачи система должна решать.

Диаграммы декомпозиции, диаграм мы дерева узлов

Диаграмма декомпозиции — это инструмент, который позволяет разбить систему или процесс на более мелкие и понятные части, что помогает лучше понять структуру системы и ее компоненты.

Пример:

• Для системы учета товаров диаграмма декомпозиции может показывать, как основной процесс учета товаров делится на подпроцессы, такие как прием товаров, размещение на складе, обработка заказов и т. д.

Диаграмма дерева узлов представляет структуру системы в виде дерева, где каждый узел — это отдельный элемент или компонент системы, а ветви показывают связи между ними.

Пример:

• В системе управления проектом диаграмма дерева узлов может показывать главный проект, который разделяется на задачи, а задачи — на подзадачи.

Зачем это нужно?

- Для структурирования информации: диаграммы помогают четко и логично представить сложные системы, их компоненты и их взаимосвязи.
- **Для упрощения анализа и разработки**: использование диаграмм позволяет легче анализировать систему и выявлять проблемы на ранних этапах.

19. Экспертные системы

Экспертная система — это тип информационной системы, предназначенный для решения сложных задач, которые обычно требуют участия человека-эксперта. Экспертные системы используют базы знаний и правила вывода для принятия решений.

Пример:

• В медицине экспертная система может помогать врачу диагностировать заболевания на основе симптомов, анализируя данные из базы знаний о болезнях и их признаках.

Зачем это нужно?

- Для автоматизации принятия решений: экспертные системы могут помочь ускорить процесс принятия решений, снижая нагрузку на специалистов.
- **Для использования знаний экспертов**: такие системы позволяют использовать знания высококвалифицированных специалистов в ситуациях, когда они недоступны.

20. Системы реального времени

Системы реального времени — это системы, которые должны обеспечивать обработку данных и выполнение задач в строго определенные временные рамки. Эти системы используются в критичных областях, где задержки могут привести к серьезным последствиям.

Пример:

• Система управления полетами в аэропорту, которая должна своевременно обрабатывать данные о движении самолетов, погодных условиях и выдавать соответствующие команды для предотвращения столкновений.

Зачем это нужно?

- **Для обеспечения безопасности и эффективности**: системы реального времени необходимы в сферах, где недопустимы задержки или ошибки в обработке данных.
- **Для обеспечения стабильности**: они важны в приложениях, где необходима гарантированная скорость отклика и высокая точность работы.

21. Оценка экономической эффективн ости ИС

Оценка экономической эффективности информационной системы — это процесс, при котором анализируются затраты на разработку и эксплуатацию системы, а также ее выгоды для организации.

Пример:

• Для внедрения системы учета финансов компании проводят расчет возврата инвестиций (ROI) и сроков окупаемости, анализируя, сколько сэкономит автоматизация работы по сравнению с ручным трудом.

Зачем это нужно?

- Для принятия обоснованных решений: оценка помогает понять, оправдают ли затраты на создание и внедрение ИС предполагаемые выгоды.
- Для эффективного использования ресурсов: экономическая эффективность позволяет оптимизировать расходы на разработку и эксплуатацию системы.

22. Назначение и структура языка UML

UML (Unified Modeling Language) — это стандартизированный язык для моделирования программных систем. Он используется для визуального представления структуры и поведения системы с помощью различных диаграмм.

Пример:

- **Диаграмма классов** в UML отображает классы, их атрибуты и методы, а также отношения между ними. Это важно при проектировании объектно-ориентированных систем
- Диаграмма последовательности показывает взаимодействие объектов в процессе выполнения задачи.

- **Для стандартизации разработки**: UML помогает создать единый подход к моделированию систем, который понятен всем участникам разработки.
- **Для визуализации архитектуры системы**: UML-диаграммы облегчают понимание структуры системы и ее компонентов.

Назначение диаграмм последоват ельности

Диаграмма последовательности в UML описывает взаимодействие объектов системы в процессе выполнения какого-либо сценария. Она показывает, как объекты обмениваются сообщениями и какие действия выполняются в определенной последовательности.

Пример:

• В системе покупки товаров на онлайн-платформе диаграмма последовательности может показать, как клиент выбирает товар, отправляет запрос на его покупку, получает уведомление о статусе и подтверждение о заказе.

Зачем это нужно?

- **Для детализации взаимодействий**: диаграммы последовательности помогают разработчикам и аналитикам понять, как объекты взаимодействуют в системе, что важно для точного проектирования.
- **Для тестирования и проверки работы системы**: диаграмма позволяет увидеть потенциальные проблемы в порядке выполнения операций.

24. Критерии качества

Качество информационной системы может оцениваться по ряду критериев, включая:

- Функциональность: насколько система выполняет заявленные функции.
- Надежность: степень устойчивости системы к сбоям.
- Производительность: скорость выполнения операций и обработки данных.
- **Удобство использования**: насколько легко и интуитивно понятно пользователю взаимодействовать с системой.
- Безопасность: защита данных от несанкционированного доступа.

Пример:

• В банковской системе критерием качества может быть скорость обработки платежей, защита данных пользователей и возможность работать с системой на разных устройствах.

- Для обеспечения удовлетворенности пользователей: высокий уровень качества делает систему эффективной и надежной в долгосрочной перспективе.
- **Для снижения рисков**: соблюдение критериев качества позволяет предотвратить сбои и утечку данных, что критично для безопасности и репутации.

Понятие метрики. Использование метрик

Метрика в контексте разработки ИС — это количественная характеристика, которая используется для оценки различных аспектов системы, таких как ее производительность, качество кода, сложность и т. д.

Пример:

- Метрика производительности может измерять, сколько времени требуется системе для обработки определенного объема данных.
- **Метрика сложности кода** измеряет, насколько сложен программный код, например, через количество строк кода или количество взаимных зависимостей между классами.

Зачем это нужно?

- **Для оценки состояния системы**: метрики помогают разработчикам и администраторам отслеживать производительность, качество и устойчивость системы.
- **Для улучшения разработки**: с помощью метрик можно выявить проблемные области и оптимизировать систему.

26. Национальный стандарт обеспече ния качества АИС

Национальный стандарт обеспечения качества автоматизированных информационных систем (АИС) — это свод требований и рекомендаций, которым должна соответствовать ИС в рамках страны.

Пример:

• В России действует ГОСТ Р 54027-2010, который регулирует требования к качеству программного обеспечения и процессам разработки.

- Для обеспечения высокого качества разработки и эксплуатации ИС: соблюдение стандартов помогает гарантировать, что системы будут работать стабильно и безопасно.
- **Для унификации**: стандарты позволяют унифицировать процессы разработки и тестирования, что упрощает взаимодействие между различными участниками разработки.

Международная система стандарт изации и сертификации качества пр одукции

Международная система стандартизации и сертификации качества продукции включает в себя международные стандарты, такие как ISO, которые устанавливают требования для разных отраслей, включая информационные системы и программное обеспечение.

Пример:

- **ISO 9001** стандарт для систем управления качеством, который включает требования к процессам управления качеством на всех стадиях жизненного цикла продукта.
- **ISO/IEC 27001** стандарт по информационной безопасности, который регламентирует требования для управления безопасностью информации.

Зачем это нужно?

- Для повышения доверия и конкурентоспособности: сертификация по международным стандартам помогает продемонстрировать высокое качество и соответствие мировым требованиям.
- Для обеспечения качества и безопасности: международные стандарты помогают организациям обеспечить высокое качество своей продукции и услуг, а также безопасность информации.

28. Стандарты группы ISO

ISO (International Organization for Standardization) — это международная организация по стандартизации, которая разрабатывает и публикует стандарты для различных отраслей. Стандарты ISO широко применяются в области управления качеством, безопасности, экологической устойчивости и других областях.

Пример:

- ISO 9000 набор стандартов, описывающих систему управления качеством в организации.
- **ISO/IEC 12207** стандарт, который определяет процессы жизненного цикла программного обеспечения, включая проектирование, разработку, тестирование и эксплуатацию.

- Для обеспечения стандартизации процессов: следование стандартам ISO помогает организациям поддерживать высокое качество и соблюдение международных норм.
- Для повышения эффективности: стандарты помогают унифицировать процессы, что способствует улучшению производительности и снижению ошибок.

29. Стандарты управления качеством

Стандарты управления качеством (например, ISO 9001) — это набор требований и рекомендаций, которые помогают организациям достигать высокого уровня качества на всех стадиях разработки и эксплуатации продукции и услуг.

Пример:

• **ISO 9001**: стандарт управления качеством, который устанавливает требования к системам управления качеством на всех этапах — от проектирования до послепродажного обслуживания.

Зачем это нужно?

- Для обеспечения постоянства качества: стандарты помогают гарантировать, что качество продукции или услуги будет соответствовать установленным требованиям, несмотря на изменения в производственном процессе.
- **Для улучшения бизнес-процессов**: стандарты помогают выявить и устранить слабые места в организации, повышая эффективность всех операций.

30. Виды угроз информационной безоп асности

Угрозы информационной безопасности — это потенциальные риски, которые могут повлиять на целостность, конфиденциальность и доступность информации в информационных системах.

Пример:

- Внешние угрозы: атаки хакеров, вирусные инфекции, фишинг.
- **Внутренние угрозы**: несанкционированный доступ сотрудников, ошибки в конфигурации системы.
- Технические угрозы: сбои оборудования, уязвимости программного обеспечения.
- Организационные угрозы: нарушение внутренних процедур безопасности.

- Для защиты информации: понимание угроз помогает разработать эффективные меры защиты для предотвращения утечек данных или повреждения информации.
- **Для минимизации рисков**: своевременное выявление угроз позволяет снизить возможные потери и вред от атак.
- 31. Основы законодательства в облас ти обеспечения информационной без опасности

Законодательство в области информационной безопасности регулирует вопросы защиты информации и установления ответственности за ее нарушение. Эти законы обеспечивают правовые основы для защиты данных и защиты от киберугроз.

Пример:

- Закон о защите персональных данных (например, GDPR в Европе, Закон РФ "О персональных данных") регулирует обработку и хранение личных данных граждан, устанавливая требования для их защиты.
- Закон о кибербезопасности устанавливает правила защиты информации от внешних угроз, включая ответственность за кибератаки.

Зачем это нужно?

- Для обеспечения безопасности данных: соблюдение законодательства гарантирует защиту конфиденциальной информации.
- **Для защиты от правовых последствий**: соблюдение законодательства помогает избежать штрафов и других санкций за несоответствие требованиям защиты данных.

32. Защита информации в информацион ных системах и компьютерных сетях

Защита информации в информационных системах и сетях включает в себя организацию, технологические и программные меры, направленные на предотвращение несанкционированного доступа, утечек данных, уничтожение информации и другие угрозы безопасности.

Пример:

- **Шифрование данных** использование криптографических методов для защиты конфиденциальности данных.
- **Брандмауэры (firewalls)** устройства и программные средства, которые фильтруют трафик и блокируют несанкционированный доступ к сети.

Зачем это нужно?

- **Для защиты от киберугроз**: защитные меры помогают предотвратить утечку данных, кражу информации или саботаж.
- Для обеспечения доверия: защита информации повышает доверие пользователей и клиентов, гарантируя безопасность их данных.

33. Модели систем защиты

Модели систем защиты представляют собой подходы и архитектуры, которые используются для создания эффективных систем защиты информации. Они

описывают, как должна быть организована защита от внешних и внутренних угроз.

Пример:

- **Модель многоуровневой защиты**: включает несколько уровней защиты, таких как защита на уровне сети, серверов, приложений и конечных устройств.
- Модель безопасности "Защита по периметру": включает установку барьеров, таких как брандмауэры, для предотвращения несанкционированного доступа извне.

Зачем это нужно?

- **Для эффективной защиты информации**: использование различных моделей защиты помогает предотвратить различные виды угроз.
- **Для повышения устойчивости системы**: многоуровневая защита обеспечивает дополнительные уровни безопасности, снижая вероятность успешной атаки.

34. Факторы и параметры, влияющие на основные критерии качества

Факторы и параметры, влияющие на основные критерии качества информационной системы, включают в себя такие аспекты, как производительность, надежность, безопасность, удобство использования и соответствие требованиям.

Пример:

- Производительность: скорость работы системы, время отклика на запросы.
- Надежность: процент времени, когда система функционирует без сбоев.
- Безопасность: наличие механизмов защиты от несанкционированного доступа.
- Удобство использования: интерфейс системы, который должен быть интуитивно понятным и простым.

Зачем это нужно?

- **Для оценки качества системы**: понимание факторов, влияющих на качество, позволяет улучшать и оптимизировать систему.
- **Для удовлетворения пользователей**: высокий уровень качества гарантирует удовлетворение потребностей пользователей и уменьшает число ошибок и сбоев.

35. Модернизация в информационных с истемах

Модернизация информационных систем — это процесс улучшения и обновления существующих систем для повышения их эффективности, безопасности или соответствия новым требованиям. Модернизация может

включать замену устаревшего оборудования, обновление программного обеспечения или улучшение функциональных возможностей.

Пример:

• Модернизация старой учетной системы в компании с использованием нового интерфейса и добавлением функций для интеграции с другими корпоративными системами.

Зачем это нужно?

- Для повышения эффективности работы системы: модернизация позволяет системе оставаться актуальной и эффективной.
- Для удовлетворения новых требований: новые бизнес-требования или изменения законодательства могут потребовать модернизации системы.

36. Реинжиниринг бизнес-процессов

Реинжиниринг бизнес-процессов — это радикальное переработка существующих бизнес-процессов с целью повышения их эффективности, сокращения затрат и улучшения качества обслуживания.

Пример:

• Внедрение автоматизированной системы управления запасами в компании, которая ранее использовала ручной учет, для ускорения и упрощения процессов.

Зачем это нужно?

- **Для улучшения бизнес-процессов**: реинжиниринг позволяет значительно улучшить существующие процессы.
- **Для повышения конкурентоспособности**: улучшение процессов может сделать компанию более гибкой и эффективной.

37. Основные этапы реинжиниринга

Реинжиниринг бизнес-процессов состоит из нескольких ключевых этапов, которые включают анализ текущих процессов, проектирование новых, внедрение изменений и мониторинг их эффективности.

Анализ текущих бизнес-процессов: на этом этапе изучаются все процессы, существующие в организации, чтобы понять их слабые места и возможности для улучшения.

 Пример: в производственной компании анализируют процесс заказа материалов и обнаруживают, что задержки возникают из-за ручного ввода данных. **Проектирование новых процессов**: на основе анализа разрабатываются новые, более эффективные процессы.

о Пример: автоматизация процесса заказа материалов с использованием специального ПО для отслеживания запасов в реальном времени.

Реализация изменений: внедрение новых процессов, что может включать в себя как технические изменения (новое ПО), так и организационные (перераспределение обязанностей).

о Пример: сотрудники обучаются работать с новым программным обеспечением для автоматизации процессов.

Оценка и улучшение: после внедрения изменений процесс оценивается на основе определенных метрик, и при необходимости вносятся коррективы.

 Пример: если автоматизация заказа материалов не привела к значительному сокращению времени, возможно, потребуется оптимизация логистики или доработка программного обеспечения.

Зачем это нужно?

- **Для улучшения эффективности**: реинжиниринг помогает значительно повысить продуктивность бизнес-процессов, улучшить их качество и сократить затраты.
- Для адаптации к изменениям: это позволяет быстро адаптироваться к изменениям в рынке или технологии.

38. Требования к разработке пользов ательского интерфейса

Пользовательский интерфейс (UI) — это то, что позволяет пользователю взаимодействовать с информационной системой. Разработка качественного интерфейса важна для того, чтобы система была удобной и эффективной в использовании.

Основные требования к интерфейсу:

Простота и понятность: интерфейс должен быть интуитивно понятным и легким для восприятия, чтобы пользователь мог быстро освоить систему без дополнительных обучающих материалов.

 Пример: кнопки и меню должны быть логично размещены, а их функции понятны с первого взгляда.

Эффективность: интерфейс должен минимизировать количество действий пользователя для достижения целей.

 Пример: в интернет-магазине процесс покупки должен быть максимально быстрым, с минимальным количеством шагов от выбора товара до оформления заказа.

Эстетика и привлекательность: интерфейс должен быть визуально приятным, без перегрузки экранов избыточной информацией.

 Пример: гармония цветов, шрифтов и расположение элементов на экране создают комфортное восприятие.

Отзывчивость и скорость работы: интерфейс должен быстро реагировать на действия пользователя и не вызывать задержек.

 Пример: кнопка отправки формы должна мгновенно активироваться, и пользователь должен увидеть, что данные отправлены.

Зачем это нужно?

- **Для улучшения пользовательского опыта (UX)**: удобный и красивый интерфейс повышает удовлетворенность пользователей.
- **Для повышения производительности**: улучшение интерфейса снижает время на выполнение задач и минимизирует количество ошибок.

39. Разработка «дизайн-макета»

Дизайн-макет — это предварительная визуализация интерфейса информационной системы, которая включает в себя внешний вид экранов, расположение элементов управления и другие аспекты UI-дизайна.

Основные этапы разработки дизайн-макета:

Сбор требований: на основе анализа потребностей пользователей разрабатывается концепция интерфейса.

 Пример: если система используется для обработки заявок, нужно понимать, какие поля и кнопки должны быть на экране.

Создание прототипа: разрабатывается упрощенная версия интерфейса, которая может быть использована для тестирования.

 Пример: создание кликабельного прототипа для проверки расположения элементов.

Разработка финального макета: на основе прототипа создается полноценный макет, который будет использован в процессе разработки.

о Пример: это может быть графическое представление всех экранов с точным размещением кнопок, полей ввода и других элементов.

Тестирование и улучшение: макет тестируется с пользователями, после чего вносятся необходимые изменения.

 Пример: если пользователи жалуются на сложность использования, могут быть переработаны некоторые элементы.

Зачем это нужно?

- **Для визуализации концепции**: дизайн-макет позволяет команде и клиентам увидеть, как будет выглядеть система, еще до ее разработки.
- **Для упрощения коммуникации**: создание макетов помогает разработчикам и дизайнерам точно понимать требования заказчика.

40. Адаптация интерфейса к устройст вам

Адаптация интерфейса заключается в том, чтобы система корректно и удобно отображалась на различных устройствах, таких как компьютеры, планшеты и смартфоны.

Основные аспекты алаптации:

Реактивный дизайн (responsive design): интерфейс автоматически адаптируется под размер экрана устройства, на котором он отображается.

 Пример: элементы интерфейса меняются местами или уменьшаются в размерах, чтобы вписаться в экран мобильного телефона.

Адаптивные элементы: использование элементов, которые изменяют свою форму и функции в зависимости от устройства.

о Пример: кнопки и поля ввода могут быть более крупными и легко доступными на мобильных устройствах, чтобы улучшить пользовательский опыт.

Тестирование на разных устройствах: интерфейс должен быть протестирован на различных типах устройств и браузеров для обеспечения его работоспособности.

Зачем это нужно?

- Для повышения доступности: пользователь должен иметь возможность использовать систему на любом устройстве, независимо от его размера и характеристик.
- **Для улучшения удобства использования**: адаптированные интерфейсы упрощают взаимодействие с системой и повышают удовлетворенность пользователей.

41. Средства визуального проектиро вания

Средства визуального проектирования — это инструменты, которые помогают разработчикам и дизайнерам создавать визуальные элементы интерфейса и прототипы информационных систем. Эти инструменты часто позволяют проектировать интерфейсы без необходимости писать код.

Примеры:

- **Figma**: популярный инструмент для проектирования UI/UX, который позволяет создавать интерфейсы и прототипы с возможностью взаимодействия.
- **Sketch**: еще одно средство для дизайна, ориентированное на создание графических макетов и интерфейсов для мобильных и веб-приложений.
- Adobe XD: инструмент для проектирования и прототипирования интерфейсов, поддерживающий создание интерактивных прототипов.

Зачем это нужно?

- Для упрощения дизайна интерфейсов: использование визуальных средств проектирования позволяет легко создавать и редактировать интерфейсы без глубоких знаний программирования.
- Для улучшения коммуникации в команде: визуальные прототипы помогают разработчикам и дизайнерам работать совместно, согласовывая детали до начала кодирования.

42. Стандарты ЕСПД и ЕСКД

ЕСПД (Единая система проектной документации) и **ЕСКД (Единая система конструкторской документации)** — это системы, устанавливающие стандарты для проектной и конструкторской документации в России.

Пример:

- **ЕСПД**: в этой системе регламентируются требования к оформлению проектной документации для информационных систем и их составных частей.
- **ЕСКД**: стандарты, которые регулируют проектирование и создание технической документации, в том числе чертежей и схем.

Зачем это нужно?

- **Для унификации документации**: стандарты помогают создавать документы в едином формате, что облегчает их использование и обмен между организациями.
- **Для повышения качества и точности**: стандарты обеспечивают высокое качество проектной и конструкторской документации, что важно для надежности систем.

43. Проектная, техническая, пользов ательская, отчетная документация

Проектная документация — это документы, которые описывают процесс разработки системы, ее архитектуру, компоненты и их взаимодействие.

Техническая документация включает в себя инструкции и спецификации для разработки и обслуживания системы.

Пользовательская документация — это инструкции и руководства для конечных пользователей системы.

Отчетная документация используется для записи всех этапов разработки и выполнения проекта, включая планы, отчеты о прогрессе и результаты тестирования.

Зачем это нужно?

- Для управления проектом: документация помогает четко организовать весь процесс разработки и облегчить координацию между участниками проекта.
- **Для пользователей и поддержки**: документация помогает пользователям и техническому персоналу эффективно использовать и обслуживать систему.

44. Принципы документирования разр аботки ИС

Документирование разработки информационных систем (ИС) — это процесс создания, ведения и поддержания документации, которая описывает различные аспекты системы на всех этапах её жизненного цикла, от проектирования до эксплуатации.

Основные принципы:

Полнота: вся информация, необходимая для понимания работы системы, должна быть зафиксирована в документации.

 Пример: каждый модуль системы должен быть детально описан, включая его функциональные характеристики и взаимодействие с другими модулями.

Ясность: документация должна быть написана так, чтобы её можно было легко понять, как техническим, так и нетехническим специалистам.

о Пример: документация для пользователя должна объяснять, как использовать систему, а для разработчиков — как интегрировать новые функции.

Актуальность: документация должна обновляться по мере внесения изменений в систему.

Пример: если в систему добавляется новый функционал, соответствующие разделы документации должны быть обновлены, чтобы отразить эти изменения.

Стандартизированность: документы должны быть оформлены в соответствии с установленными стандартами, что обеспечит их легкость восприятия и использования.

 Пример: использование стандартных форматов для описания архитектуры, функционала и интерфейсов.

Зачем это нужно?

- **Для улучшения качества системы**: правильное документирование помогает избежать ошибок и упрощает процессы разработки.
- Для обеспечения сопровождения и поддержки: документация необходима для эффективного обслуживания системы на всех этапах её эксплуатации.
- **Для сохранения знаний**: документация сохраняет информацию о системе и её изменениях, что важно при передаче проекта между различными командами.

45. Перечень документов на разработ ку ИС

Документы, создаваемые в процессе разработки информационной системы, могут включать в себя следующие виды:

Техническое задание (Т3): основной документ, в котором определяется, что должно быть реализовано в рамках системы, какие требования к функционалу и производительности, какие ограничения и особенности нужно учитывать при разработке.

 Пример: ТЗ может включать описание требуемых функций, таких как создание и редактирование записей, генерация отчетов, интеграция с внешними системами.

Проектная документация: описывает архитектуру системы, её компоненты, взаимодействие между ними и алгоритмы работы.

о Пример: проект системы может включать схемы архитектуры, диаграммы данных и спецификации интерфейсов.

Техническая документация: включает описание разработки программного обеспечения, инструкции по его установке, настройке и эксплуатации.

о Пример: документация для разработчиков и системных администраторов, описывающая настройку серверов, конфигурацию баз данных и API.

Пользовательская документация: предназначена для конечных пользователей, чтобы помочь им эффективно использовать систему.

 Пример: руководство пользователя с пошаговыми инструкциями по работе с интерфейсом системы. **Отчетная документация**: включает в себя отчеты о проделанной работе, тестировании системы, её успешности и анализе ошибок

о Пример: отчет о тестировании, который включает подробности о том, какие тесты были проведены, их результаты и выявленные ошибки.

- **Для систематизации работы**: документация помогает всем участникам проекта понимать свои задачи и цели, а также координировать усилия на всех этапах разработки.
- Для обеспечения прозрачности и контроля: наличие всех необходимых документов позволяет следить за процессом разработки и устранить возможные ошибки на ранней стадии.
- **Для поддержки и обновления**: документация является основой для дальнейшей поддержки и модификации системы в будущем.