Lecture - 10

Combinational Array Multiplier

- Composed of arrays of simple combinational elements, each of which implements an add/sub and shift operation for small slices of the multiplicand operands.
- * $X = x_{n-1}x_{n-2}.....x_1x_0$ and $Y = y_{n-1}y_{n-2}......y_1y_0$ where beth which can be rewritten as $P = \sum_{i=0}^{n-1} 2^i \prod_{j=0}^{n-1} x_i y_j 2^j$ which can be rewritten as $P = \sum_{j=0}^{n-1} 2^j \prod_{j=0}^{n-1} x_j y_j 2^j$
- It requires n × n array of 2-input AND gate.
- The product terms are summed by an array of n(n-1) 1bit full adders.

Multiplication

$$1000 \text{ Multiplicand Y}$$

$$1001 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$100 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$100 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

$$1000 \text{ Multiplier } X = x_3 x x \cancel{x}$$

- If multiplicand = n bits and multiplier = m bits then product = n + m bits.
- Two rules:
- Place a copy of multiplicand in the proper place if multiplier bit=1.
- Place 0 in the proper place if multiplier bit = 0.

Sequential Multiplication Algorithm

Sequential Multiplication Hardware

Sequential Multiplication Example

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: $1 \Rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: $1 \Rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: $0 \Rightarrow No operation$	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Refined Version of Multiplication Hardware

AND Array for 4 X 4 bit Unsigned Multiplication

Full Adder Array for 4 X 4 bit Unsigned Multiplication

Division

 $\begin{array}{c|c} 1001_{\rm ten} & {\rm Quotient} \\ {\rm Divisor} \ 1000_{\rm ten} & {\rm I001010_{\rm ten}} & {\rm Dividend} \\ \hline 10 \\ 10 \\ 101 \\ 1010 \\ \hline 10_{\rm ten} & {\rm Remainder} \end{array}$

Division Hardware

Division Algorithm

Division Example

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	①110 0111
	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	1111 0111
	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	①111 1111
	2b: Rem $< 0 \implies$ +Div, sII Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	0000 0011
4	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	0000 0001
	2a: Rem $\geq 0 \implies$ sII Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001