Teoría de las comunicaciones

Práctica 4: Internetworking

Temas

Redes de Circuitos Virtuales, Redes de Datagramas, Forwarding, IP: Direccionamiento y Subnetting.

Definiciones

Formato paquete IPv4:

Tabla de forwarding (o ruteo):

Network (Red)	Next hop (Próximo salto)		
Red destino	 interface de salida, si la red destino se encuentra directamente conectada a esa interface; o bien dirección IP del próximo salto, si la red destino es una red remota 		

Ejercicio 1

Tanto para redes de circuitos virtuales como para redes de datagramas, compare:

- a. ¿Qué información es necesaria (en términos de la información en los headers y las tablas de forwarding)?
- b. ¿Qué sucede con los flujos de datos entre los hosts ante la caída de un elemento de la red (nodo o enlace)?

Ejercicio 2

Considere la red de circuitos virtuales de la figura, con las respectivas tablas de forwarding. ¿Cuántas conexiones hay?.

S1		S2		S3	
IN (PORT,VCI)	OUT (PORT,VCI)	IN (PORT,VCI)	OUT (PORT,VCI)	IN (PORT,VCI)	OUT (PORT,VCI)
1,2	3,1	1,1	3,3	1,3	2,1
1,1	2,3	1,2	3,2	1,2	3,1
2,1	3,2				

Ejercicio 3

Sobre los paquetes IP

- 1. ¿Cuál es el problema de poner el número de versión en otro lugar que no sea el principio del header?
- 2. ¿Que campos del header IP pueden ser modificados por un router? ; y Cuáles deberían ser modificados?
- 3. ¿Cual es el rendimiento de un paquete IP sin opciones y de tamaño máximo en Ethernet 802.3 (MTU=1500 bytes)? ¿Y en WiFi 802.11 (MTU=2312 bytes)?

Ejercicio 4

Dado un router que presenta la siguiente tabla de forwarding

Red	Próximo Salto
$\overline{135.46.56.0/25}$	Interface0
135.46.60.0/25	Interface1
192.53.40.0/23	Interface1

Describir qué hace el router cuando recibe un paquete con destino a las siguientes direcciones:

200.11.120.5; 135.46.63.10; 192.53.256.1; 135.46.56.130; 192.53.40.7; 135.46.56.100

Ejercicio 5

Dado un router con 2 interfaces: Interface0 e Interface1, presenta las siguientes tablas ARP y de forwarding

Tabla de Forwarding		Tabla ARP		
Red	Próximo Salto	Dirección IP	Dirección MAC	Interface
$\overline{135.46.56.0/22}$	Interface0	135.46.60.78	00:D0:B7:6C:F6:17	Interface1
135.46.60.0/22	Interface1	135.46.56.16	00:12:3F:ED:3F:2C	Interface0
192.53.40.0/23	135.46.60.50	135.46.56.55	00:03:FF:5B:F1:C8	Interface0
192.53.40.0/24	135.46.60.100	135.46.59.5	00:60:08:C0:E3:38	Interface0
Default	135.46.62.100	135.46.57.14	00:10:4B:C6:F6:92	Interface0

Describir qué hace el router cuando recibe un paquete con destino a las siguientes direcciones:

135.46.57.14; 135.46.63.10; 135.46.52.2; 208.70.188.15; 135.46.62.62; 192.53.40.7; 192.53.56.7

Ejercicio 6

¿Cuál de las opciones corresponde a la dirección broadcast de la subred 131.108.1.128/25?

131.108.1.127; 131.108.1.128; 131.108.1.255; 131.108.1.0

Dadas las siguientes redes IP indicar para cada una: dirección de subred, cantidad máxima de hosts y dirección broadcast.

172.16.5.0/25; 172.16.5.128/26; 192.168.1.192/27

Ejercicio 7

Dada la red de la figura, asigne direcciones a todos los dispositivos (dirección/mascara) y muestre las tablas de forwarding de los routers y de las computadoras sabiendo que deben poder comunicarse todos los nodos de la red.

Ejercicio 8

- a. Dado el esquema de red de la figura, indicar una posible numeración IP para todos los segmentos de red presentes utilizando la red 172.16.5.0/24.
- b. Analice qué relación existe entre la cantidad de subredes y la cantidad de direcciones IP disponibles para hosts.

Ejercicio 9

Supongamos que a una red de la facultad le fue asignada la dirección 157.92.26.0/24.

- a. ¿Cuantos hosts pueden direccionarse con ese espacio de direcciones?
- b. ¿ Y si se desean usar 2 redes distintas del mismo tamaño separadas por un router? ¿Y con 4 redes? ¿Y con 8?
- c. ¿En a lo sumo cuántas redes podrían separarse 80 hosts?

Ejercicios de Parcial

Ejercicio 10

Un usuario en la PC Web browser (192.168.2.90) realiza un ping al Server WWW (172.16.5.88) resultando que este no responde debido a que la configuración de la red (interfaces de routers o hosts, tablas de forwarding) tiene errores.

- a. ¿En qué lugar de la red se pierde el paquete del ping? Explique.
- b. Enumere y describa todos los errores que encuentre. Justifique.

Ejercicio 11

Dado el siguiente esquema de red:

- a. Indicar una posible numeración IP para los segmentos de red vacantes utilizando la red 172.18.51.0/25. ¿Cuál es la cantidad máxima de direcciones IP disponibles para ser asignadas a interfaces de dispositivos en la LAN B? ¿Y en la LAN D?
- b. Indicar las rutas estáticas que deben ser configuradas en los routers R1 y R2 para obtener conectividad total entre todas las subredes del esquema.

Ejercicio 12

La tabla de encaminamiento del router R es la siguiente:

Network	Gateway	Mask	Interface
192.168.1.0	0.0.0.0	255.255.255.0	eth1
172.16.236.0	192.168.1.3	255.255.255.0	eth1
158.42.180.0	0.0.0.0	255.255.254.0	eth0
139.254.0.0	0.0.0.0	255.255.0.0	eth2
127.0.0.0	0.0.0.0	255.0.0.0	lo
0.0.0.0	158.42.181.250	0.0.0.0	eth0

- a. Dibuje la topología de las redes más próximas a R (todas las que puedan obtenerse a partir de la tabla mostrada), indicando para cada una de ellas su dirección de red, máscara y direcciones conocidas de los routers.
- b. El router R tiene que enviar datagramas a los siguientes destinos IP: **158.42.196.11**, **172.16.236.45**, **158.42.181.12**, **127.0.0.1**. Indique la entrada de la tabla de forwarding que se utilizaría para forwardear cada uno de estos datagramas. Asimismo indique la dirección IP del dispositivo (host o router) que recibe el datagrama en el próximo salto.

Ejercicio 13

Un usuario en la PC1 (192.168.2.90) ejecuta el siguiente comando:

- \$ traceroute 172.16.5.88
- a. Describa el trayecto y contenido relevante (ip-origen, ip-destino, protocolo, etc.) de todos los paquetes IP que genera el comando hasta su finalización.
- b. Muestre la salida del comando desde el punto de vista del usuario que lo ejecuta.

Bibliografía

Computer Networks: A systems approach. 3ra Edición. Peterson & Davie. Capítulo 4: Internetworking (Secciones 4.1, 4.3.1 y 4.3.2).

Computer Networks, Fifth Edition. Andrew S. Tanenbaum & David J. Wetherall. Capítulo 5: The Network Layer (Secciones 5.1, 5.6 y 5.7).