This introduction to spatio-temporal hhh4 models implemented in the R package surveillance is based on a publication in the *Journal of Statistical Software* – Meyer, Held, and Höhle (2017, Section 5) – which is the suggested reference if you use the hhh4 implementation in your own work.

hhh4: Endemic-epidemic modeling of areal count time series

Sebastian Meyer* Friedrich-Alexander-Universität

Erlangen-Nürnberg

Leonhard Held University of Zurich Michael Höhle Stockholm University

Abstract

The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The R package surveillance can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of area-level time series of counts using the endemic-epidemic multivariate time-series model "hhh4" described in, e.g., Meyer and Held (2014, Section 3). See vignette("hhh4") for a more general introduction to hhh4 models, including the univariate and non-spatial bivariate case. We first describe the general modeling approach and then exemplify data handling, model fitting, visualization, and simulation methods for weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001–2002.

Keywords: areal time series of counts, endemic-epidemic modeling, infectious disease epidemiology, branching process with immigration.

1. Model class: hhh4

An endemic-epidemic multivariate time-series model for infectious disease counts Y_{it} from units $i=1,\ldots,I$ during periods $t=1,\ldots,T$ was proposed by Held, Höhle, and Hofmann (2005) and was later extended in a series of papers (Paul, Held, and Toschke 2008; Paul and Held 2011; Held and Paul 2012; Meyer and Held 2014). In its most general formulation, this so-called "hhh4" model assumes that, conditional on past observations, Y_{it} has a negative binomial distribution with mean

$$\mu_{it} = e_{it} \, \nu_{it} + \lambda_{it} \, Y_{i,t-1} + \phi_{it} \sum_{j \neq i} w_{ji} \, Y_{j,t-1} \tag{1}$$

and overdispersion parameter $\psi_i > 0$ such that the conditional variance of Y_{it} is $\mu_{it}(1 + \psi_i \mu_{it})$. Shared overdispersion parameters, e.g., $\psi_i \equiv \psi$, are supported as well as replacing the negative binomial by a Poisson distribution, which corresponds to the limit $\psi_i \equiv 0$.

Similar to the point process models in vignette("twinstim") and vignette("twinSIR"), the mean (1) decomposes additively into endemic and epidemic components. The endemic

^{*}Author of correspondence: seb.meyer@fau.de

mean is usually modeled proportional to an offset of expected counts e_{it} . In spatial applications of the multivariate hhh4 model as in this paper, the "unit" i refers to a geographical region and we typically use (the fraction of) the population living in region i as the endemic offset. The observation-driven epidemic component splits up into autoregressive effects, i.e., reproduction of the disease within region i, and neighborhood effects, i.e., transmission from other regions j. Overall, Equation 1 becomes a rich regression model by allowing for log-linear predictors in all three components:

$$\log(\nu_{it}) = \alpha_i^{(\nu)} + \boldsymbol{\beta}^{(\nu)\top} \boldsymbol{z}_{it}^{(\nu)}, \qquad (2)$$

$$\log(\lambda_{it}) = \alpha_i^{(\lambda)} + \boldsymbol{\beta}^{(\lambda)} \boldsymbol{z}_{it}^{(\lambda)}, \qquad (3)$$

$$\log(\phi_{it}) = \alpha_i^{(\phi)} + \boldsymbol{\beta}^{(\phi)} \boldsymbol{z}_{it}^{(\phi)}. \tag{4}$$

The intercepts of these predictors can be assumed identical across units, unit-specific, or random (and possibly correlated). The regression terms often involve sine-cosine effects of time to reflect seasonally varying incidence, but may, e.g., also capture heterogeneous vaccination coverage (Herzog, Paul, and Held 2011). Data on infections imported from outside the study region may enter the endemic component (Geilhufe, Held, Skrøvseth, Simonsen, and Godtliebsen 2014), which generally accounts for cases not directly linked to other observed cases, e.g., due to edge effects.

For a single time series of counts Y_t , hhh4 can be regarded as an extension of glm.nb from package MASS (Ripley 2016) to account for autoregression. See the vignette("hhh4") for examples of modeling univariate and bivariate count time series using hhh4. With multiple regions, spatio-temporal dependence is adopted by the third component in Equation 1 with weights w_{ji} reflecting the flow of infections from region j to region i. These transmission weights may be informed by movement network data (Paul et al. 2008; Geilhufe et al. 2014), but may also be estimated parametrically. A suitable choice to reflect epidemiological coupling between regions (Keeling and Rohani 2008, Chapter 7) is a power-law distance decay $w_{ji} = o_{ji}^{-d}$ defined in terms of the adjacency order o_{ji} in the neighborhood graph of the regions (Meyer and Held 2014). Note that we usually normalize the transmission weights such that $\sum_i w_{ji} = 1$, i.e., the $Y_{j,t-1}$ cases are distributed among the regions proportionally to the jth row vector of the weight matrix (w_{ji}) .

Likelihood inference for the above multivariate time-series model has been established by Paul and Held (2011) with extensions for parametric neighborhood weights by Meyer and Held (2014). Supplied with the analytical score function and Fisher information, the function hhh4 by default uses the quasi-Newton algorithm available through the R function nlminb to maximize the log-likelihood. Convergence is usually fast even for a large number of parameters. If the model contains random effects, the penalized and marginal log-likelihoods are maximized alternately until convergence. Computation of the marginal Fisher information is accelerated using the Matrix package (Bates and Maechler 2017).

2. Data structure: sts

In public health surveillance, routine reports of infections to public health authorities give rise to spatio-temporal data, which are usually made available in the form of aggregated counts by region and period. The Robert Koch Institute (RKI) in Germany, for example, maintains a database of cases of notifiable diseases, which can be queried via the $SurvStat@RKI^1$ online service. To exemplify area-level hhh4 models in the remainder of this manuscript, we use weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001-2002, downloaded from SurvStat@RKI (as of Annual Report 2005) and already used as an example in the original hhh4 model proposal (Held et~al.~2005, Section 3.2). These data are contained in surveillance as data("measlesWeserEms") – an object of the S4-class sts ("surveillance time series") used for data input in hhh4 models and briefly introduced below. See Höhle and Mazick (2010) and Salmon, Schumacher, and Höhle (2016) for more detailed descriptions of this class, which is also used for the prospective aberration detection facilities of the surveillance package.

The epidemic modeling of multivariate count time series essentially involves three data matrices: a $T \times I$ matrix of the observed counts, a corresponding matrix with potentially time-varying population numbers (or fractions), and an $I \times I$ neighborhood matrix quantifying the coupling between the I units. In our example, the latter consists of the adjacency orders o_{ji} between the districts. A map of the districts in the form of a SpatialPolygons object (defined by the sp package of Pebesma and Bivand 2016) can be used to derive the matrix of adjacency orders automatically using the functions poly2adjmat and nb0rder, which wrap functionality of package spdep (Bivand 2017):

```
R> weserems_nbOrder <- nbOrder(poly2adjmat(map), maxlag = 10)</pre>
```

Given the aforementioned ingredients, the sts object measlesWeserEms has been constructed as follows:

Here, start and frequency have the same meaning as for classical time-series objects of class ts, i.e., (year, sample number) of the first observation and the number of observations per year. Note that data("measlesWeserEms") constitutes a corrected version of data("measles.weser") originally analyzed by Held *et al.* (2005). Differences are documented on the associated help page.

We can visualize such sts data in four ways: individual time series, overall time series, map of accumulated counts by district, or animated maps. For instance, the two plots in Figure 1 have been generated by the following code:

The overall time-series plot in Figure 1a reveals strong seasonality in the data with slightly different patterns in the two years. The spatial plot in Figure 1b is a tweaked spplot (package sp) with colors from colorspace (Ihaka, Murrell, Hornik, Fisher, Stauffer, and Zeileis 2016) using /-equidistant cut points handled by package scales (Wickham 2016).

¹https://survstat.rki.de

- (a) Time series of weekly counts.
- (b) Disease incidence (per 100 000 inhabitants).

Figure 1: Measles infections in the Weser-Ems region, 2001–2002.

The default plot type is observed ~ time | unit, which shows the district-specific time series (Figure 2):

R> plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0))

Figure 2: Count time series of the 15 affected districts.

The districts 03401 (SK Delmenhorst) and 03405 (SK Wilhelmshaven) without any reported cases are excluded in Figure 2. Obviously, the districts have been affected by measles to a very heterogeneous extent during these two years.

An animation of the data can be easily produced as well. We recommend to use converters of the **animation** package (Xie 2017), e.g., to watch the series of plots in a web browser. The following code will generate weekly disease maps during the year 2001 with the respective total number of cases shown in a legend and – if package **gridExtra** (Auguie 2016) is available – an evolving time-series plot at the bottom:

```
R> animation::saveHTML(
+ animate(measlesWeserEms, tps = 1:52, total.args = list()),
+ title = "Evolution of the measles epidemic in the Weser-Ems region, 2001",
+ ani.width = 500, ani.height = 600)
```

3. Modeling and inference

For multivariate surveillance time series of counts such as the measlesWeserEms data, the function hhh4 fits models of the form (1) via (penalized) maximum likelihood. We start by modeling the measles counts in the Weser-Ems region by a slightly simplified version of the original negative binomial model used by Held et al. (2005). Instead of district-specific intercepts $\alpha_i^{(\nu)}$ in the endemic component, we first assume a common intercept $\alpha^{(\nu)}$ in order to not be forced to exclude the two districts without any reported cases of measles. After the estimation and illustration of this basic model, we will discuss the following sequential extensions: covariates (district-specific vaccination coverage), estimated transmission weights, and random effects to eventually account for unobserved heterogeneity of the districts.

3.1. Basic model

Our initial model has the following mean structure:

$$\mu_{it} = e_i \nu_t + \lambda Y_{i,t-1} + \phi \sum_{j \neq i} w_{ji} Y_{j,t-1} , \qquad (5)$$

$$\log(\nu_t) = \alpha^{(\nu)} + \beta_t t + \gamma \sin(\omega t) + \delta \cos(\omega t). \tag{6}$$

To account for temporal variation of disease incidence, the endemic log-linear predictor ν_t incorporates an overall trend and a sinusoidal wave of frequency $\omega = 2\pi/52$. As a basic district-specific measure of disease incidence, the population fraction e_i is included as a multiplicative offset. The epidemic parameters $\lambda = \exp(\alpha^{(\lambda)})$ and $\phi = \exp(\alpha^{(\phi)})$ are assumed homogeneous across districts and constant over time. Furthermore, we define $w_{ji} = \mathbb{1}(j \sim i) = \mathbb{1}(o_{ji} = 1)$ for the time being, which means that the epidemic can only arrive from directly adjacent districts. This hhh4 model transforms into the following list of control arguments:

The formulae of the three predictors $\log \nu_t$, $\log \lambda$ and $\log \phi$ are specified as element f of the end, ar, and ne lists, respectively. For the endemic formula we use the convenient function addSeason2formula to generate the sine-cosine terms, and we take the multiplicative offset of population fractions e_i from the measlesWeserEms object. The autoregressive part only consists of the intercept $\alpha^{(\lambda)}$, whereas the neighborhood component specifies the intercept $\alpha^{(\phi)}$ and also the matrix of transmission weights (w_{ji}) to use – here a simple indicator of first-order adjacency. The chosen family corresponds to a negative binomial model with a common overdispersion parameter ψ for all districts. Alternatives are "Poisson", "NegBinM" (ψ_i) , or a factor determining which groups of districts share a common overdispersion parameter. Together with the data, the complete list of control arguments is then fed into the hhh4 function to estimate the model:

```
R> measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic)</pre>
```

The fitted model is summarized below:

```
R> summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE)
```

Call:

hhh4(stsObj = measlesWeserEms, control = measlesModel_basic)

Coefficients:

	Estimate	Std. Error
exp(ar.1)	0.64540	0.07927
exp(ne.1)	0.01581	0.00420
exp(end.1)	1.08025	0.27884
exp(end.t)	1.00119	0.00426
end. $A(2 * pi * t/52)$	1.16423	0.19212
end.s(2 * pi * $t/52$)	-0.63436	0.13350
overdisp	2.01384	0.28544

Epidemic dominant eigenvalue: 0.72

Log-likelihood: -971.7 AIC: 1957 BIC: 1996

Number of units: 17
Number of time points: 103

The idx2Exp argument of the summary method requests the estimates for λ , ϕ , $\alpha^{(\nu)}$ and $\exp(\beta_t)$ instead of their respective internal log-values. For instance, $\exp(\text{end.t})$ represents the seasonality-adjusted factor by which the basic endemic incidence increases per week. The amplitudeShift argument transforms the internal coefficients γ and δ of the sine-cosine terms to the amplitude A and phase shift φ of the corresponding sinusoidal wave $A\sin(\omega t + \varphi)$ in $\log \nu_t$ (Paul et al. 2008). The resulting multiplicative effect of seasonality on ν_t is shown in Figure 3 produced by:

```
R> plot(measlesFit_basic, type = "season", components = "end", main = "")
```


Figure 3: Estimated multiplicative effect of seasonality on the endemic mean.

The epidemic potential of the process as determined by the parameters λ and ϕ is best investigated by a combined measure: the dominant eigenvalue (maxEV) of the matrix Λ which has the entries $(\Lambda)_{ii} = \lambda$ on the diagonal and $(\Lambda)_{ij} = \phi w_{ji}$ for $j \neq i$ (Paul et al. 2008). If the dominant eigenvalue is smaller than 1, it can be interpreted as the epidemic proportion of disease incidence. In the above model, the estimate is 72%. Another way to judge the relative importance of the three model components is via a plot of the fitted mean components along with the observed counts. Figure 4 shows this for the six districts with more than 20 cases:

R> districts2plot <- which(colSums(observed(measlesWeserEms)) > 20)
R> plot(measlesFit_basic, type = "fitted", units = districts2plot, hideOs = TRUE)

Figure 4: Fitted components in the initial model measlesFit_basic for the six districts with more than 20 cases. Dots are only drawn for positive weekly counts.

The largest portion of the fitted mean indeed results from the within-district autoregressive component with very little contribution of cases from adjacent districts and a rather small endemic incidence.

The overdisp parameter from the model summary and its 95% confidence interval

```
R> confint(measlesFit_basic, parm = "overdisp")
```

```
2.5 % 97.5 % overdisp 1.454 2.573
```

suggest that a negative binomial distribution with overdispersion is more adequate than a Poisson model corresponding to $\psi = 0$. We can underpin this finding by an AIC comparison, taking advantage of the convenient update method for hhh4 fits:

```
R> AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson"))
```

```
df AIC
measlesFit_basic 7 1957
update(measlesFit_basic, family = "Poisson") 6 2479
```

Other plot types and methods for fitted hhh4 models as listed in Table 1 will be applied in the course of the following model extensions.

Display E	Extract	Modify	Other
summary c plot f v c c c c t	obs oef ixef anef cov onfint oeflist ogLik esiduals erms ormula	update	predict simulate pit scores calibrationTest all.equal oneStepAhead

Table 1: Generic and non-generic functions applicable to hhh4 objects.

3.2. Covariates

The hhh4 model framework allows for covariate effects on the endemic or epidemic contributions to disease incidence. Covariates may vary over both regions and time and thus obey the same $T \times I$ matrix structure as the observed counts. For infectious disease models, the regional vaccination coverage is an important example of such a covariate, since it reflects the (remaining) susceptible population. In a thorough analysis of measles occurrence in the German federal states, Herzog et al. (2011) found vaccination coverage to be associated with outbreak size. We follow their approach of using the district-specific proportion $1 - v_i$ of unvaccinated children just starting school as a proxy for the susceptible population. As v_i we use the proportion of children vaccinated with at least one dose among the ones presenting their vaccination card at school entry in district i in the year 2004.² This time-constant covariate needs to be transformed to the common matrix structure for incorporation in hhh4:

 $^{^2}$ First year with data for all districts – available from the public health department of Lower Saxony (http://www.nlga.niedersachsen.de/portal/live.php?navigation_id=36791&article_id=135436&_psmand=20).

```
R> Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004,
+    nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE)
R> summary(Sprop[1, ])
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0306 0.0481 0.0581 0.0675 0.0830 0.1400
```

There are several ways to account for the susceptible proportion in our model, among which the simplest is to update the endemic population offset e_i by multiplication with $(1 - v_i)$. Herzog *et al.* (2011) found that the susceptible proportion is best added as a covariate in the autoregressive component in the form

$$\lambda_i Y_{i,t-1} = \exp(\alpha^{(\lambda)} + \beta_s \log(1 - v_i)) Y_{i,t-1} = \exp(\alpha^{(\lambda)}) (1 - v_i)^{\beta_s} Y_{i,t-1}$$

according to the mass action principle (Keeling and Rohani 2008). A higher proportion of susceptibles in district i is expected to boost the generation of new infections, i.e., $\beta_s > 0$. Alternatively, this effect could be assumed as an offset, i.e., $\beta_s \equiv 1$. To choose between endemic and/or autoregressive effects, and multiplicative offset vs. covariate modeling, we perform AIC-based model selection. First, we set up a grid of possible component updates:

```
R> Soptions <- c("unchanged", "Soffset", "Scovar")
R> SmodelGrid <- expand.grid(end = Soptions, ar = Soptions)
R> row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|")))</pre>
```

Then we update the initial model measlesFit_basic according to each row of SmodelGrid:

The resulting object measlesFits_vacc is a list of 9 hhh4 fits, which are named according to the corresponding Soptions used for the endemic and autoregressive components. We construct a call of the function AIC taking all list elements as arguments:

```
`Soffset|Soffset` 7 1937
unchanged|unchanged 7 1957
`unchanged|Scovar` 8 1959
`unchanged|Soffset` 7 1967
```

Hence, AIC increases if the susceptible proportion is only added to the autoregressive component, but we see a remarkable improvement when adding it to the endemic component. The best model is obtained by leaving the autoregressive component unchanged (λ) and adding the term $\beta_s \log(1-v_i)$ to the endemic predictor in Equation 6.

```
R> measlesFit_vacc <- update(measlesFit_basic,
+ end = list(f = update(formula(measlesFit_basic)$end, ~. + log(Sprop))),
+ data = list(Sprop = Sprop))
R> coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ]

Estimate Std. Error
1.7181    0.2877
```

The estimated exponent $\hat{\beta}_s$ is both clearly positive and different from the offset assumption. In other words, if a district's fraction of susceptibles is doubled, the endemic measles incidence is estimated to multiply by $2^{\hat{\beta}_s}$:

```
R> 2^cbind("Estimate" = coef(measlesFit_vacc),
+ confint(measlesFit_vacc))["end.log(Sprop)",]
Estimate 2.5 % 97.5 %
3.290 2.226 4.864
```

3.3. Spatial interaction

Up to now, the model assumed that the epidemic can only arrive from directly adjacent districts $(w_{ji} = \mathbb{1}(j \sim i))$, and that all districts have the same ability ϕ to import cases from neighboring regions. Given that humans travel further and preferrably to metropolitan areas, both assumptions seem overly simplistic and should be tuned toward a "gravity" model for human interaction. First, to reflect commuter-driven spread in our model, we scale the district's susceptibility with respect to its population fraction by multiplying ϕ with $e_i^{\beta_{pop}}$:

```
R> measlesFit_nepop <- update(measlesFit_vacc,
+ ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms)))</pre>
```

As in a similar analyses of influenza (Geilhufe *et al.* 2014; Meyer and Held 2014), we find strong evidence for such an agglomeration effect: AIC decreases from 1917 to 1887 and the estimated exponent $\hat{\beta}_{pop}$ is

```
R> cbind("Estimate" = coef(measlesFit_nepop),
+ confint(measlesFit_nepop))["ne.log(pop)",]

Estimate    2.5 %   97.5 %
    2.852    1.831   3.873
```

Second, to account for long-range transmission of cases, Meyer and Held (2014) proposed to estimate the weights w_{ji} as a function of the adjacency order o_{ji} between the districts. For instance, a power-law model assumes the form $w_{ji} = o_{ji}^{-d}$, for $j \neq i$ and $w_{jj} = 0$, where the decay parameter d is to be estimated. Normalization to $w_{ji}/\sum_k w_{jk}$ is recommended and applied by default when choosing W_powerlaw as weights in the neighborhood component:

```
R> measlesFit_powerlaw <- update(measlesFit_nepop,
+    ne = list(weights = W_powerlaw(maxlag = 5)))</pre>
```

The argument maxlag sets an upper bound for spatial interaction in terms of adjacency order. Here we set no limit since max(neighbourhood(measlesWeserEms)) is 5. The decay parameter d is estimated to be

```
R> cbind("Estimate" = coef(measlesFit_powerlaw),
+ confint(measlesFit_powerlaw))["neweights.d",]
Estimate    2.5 %   97.5 %
    4.102    2.034   6.170
```

which represents a strong decay of spatial interaction for higher-order neighbors. As an alternative to the parametric power law, unconstrained weights up to maxlag can be estimated by using W_np instead of W_powerlaw. For instance, W_np(maxlag = 2) corresponds to a second-order model, i.e., $w_{ji} = 1 \cdot \mathbb{1}(o_{ji} = 1) + e^{\omega_2} \cdot \mathbb{1}(o_{ji} = 2)$, which is also row-normalized by default:

Figure 5b shows both the power-law model $o^{-\hat{d}}$ and the second-order model. Alternatively, the plot type = "neweights" for hhh4 fits can produce a stripplot (Sarkar 2016) of w_{ji} against o_{ji} as shown in Figure 5a for the power-law model:

```
R> library("lattice")
R> plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot,
+ panel = function (...) {panel.stripplot(...); panel.average(...)},
+ jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji]))
```

Note that only horizontal jitter is added in this case. Because of normalization, the weight w_{ji} for transmission from district j to district i is determined not only by the districts' neighborhood o_{ji} but also by the total amount of neighborhood of district j in the form of $\sum_{k\neq j} o_{jk}^{-d}$, which causes some variation of the weights for a specific order of adjacency. The function getNEweights can be used to extract the estimated weight matrix (w_{ji}) .

An AIC comparison of the different models for the transmission weights yields:

R> AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2)

```
df AIC
measlesFit_nepop 9 1887
measlesFit_powerlaw 10 1882
measlesFit_np2 10 1881
```


- (a) Normalized power-law weights.
- (b) Non-normalized weights with 95% CIs.

Figure 5: Estimated weights as a function of adjacency order.

AIC improves when accounting for transmission from higher-order neighbors by a power law or a second-order model. In spite of the latter resulting in a slightly better fit, we will use the power-law model as a basis for further model extensions since the stand-alone second-order effect is not always identifiable in more complex models and is scientifically implausible.

3.4. Random effects

Paul and Held (2011) introduced random effects for hhh4 models, which are useful if the districts exhibit heterogeneous incidence levels not explained by observed covariates, and especially if the number of districts is large. For infectious disease surveillance data, a typical example of unobserved heterogeneity is underreporting. Our measles data even contain two districts without any reported cases, while the district with the smallest population (03402, SK Emden) had the second-largest number of cases reported and the highest overall incidence (see Figures 1b and 2). Hence, allowing for district-specific intercepts in the endemic or epidemic components is expected to improve the model fit. For independent random effects $\alpha_i^{(\nu)} \stackrel{iid}{\sim} N(\alpha^{(\nu)}, \sigma_{\nu}^2)$, $\alpha_i^{(\lambda)} \stackrel{iid}{\sim} N(\alpha^{(\lambda)}, \sigma_{\lambda}^2)$, and $\alpha_i^{(\phi)} \stackrel{iid}{\sim} N(\alpha^{(\phi)}, \sigma_{\phi}^2)$ in all three components, we update the corresponding formulae as follows:

Fixed effects:

```
Estimate Std. Error
ar.ri(iid)
                      -1.61389
                                  0.38197
                       3.42406
                                  1.07722
ne.log(pop)
ne.ri(iid)
                       6.62429
                                  2.81553
end.t
                       0.00578
                                  0.00480
end.A(2 * pi * t/52)
                       1.20359
                                  0.20149
end.s(2 * pi * t/52)
                      -0.47916
                                  0.14205
end.log(Sprop)
                       1.79350
                                  0.69159
end.ri(iid)
                       4.42260
                                  1.94605
neweights.d
                       3.60640
                                  0.77602
                       0.97723
overdisp
                                  0.15132
```

Epidemic dominant eigenvalue: 0.84

Penalized log-likelihood: -868.6 Marginal log-likelihood: -54.2

Number of units: 17 Number of time points: 103

The summary now contains an extra section with the estimated variance components σ_{λ}^2 , σ_{ϕ}^2 , and σ_{ν}^2 . We did not assume correlation between the three random intercepts, but this is possible by specifying ri(corr = "all") in the component formulae. The implementation also supports a conditional autoregressive formulation for spatially correlated intercepts via ri(type = "car"). The estimated random effects can be extracted by the ranef-method:

R> head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3)

```
ar.ri(iid) ne.ri(iid) end.ri(iid)
03401 0.0000 -0.05673 -1.0045
03402 1.2235 0.04312 1.5264
03403 -0.8273 1.55878 -0.6199
```

They can also be visualized in a map by the plot type = "ri" (Figure 6):

For the autoregressive component in Figure 6a, we see a pronounced heterogeneity between the three western districts in blue and the remaining districts. These three districts have been affected by large local outbreaks and are also the ones with the highest overall numbers of cases. In contrast, the city of Oldenburg (03403) is estimated with a relatively low autoregressive factor $\lambda_i = \exp(\alpha^{(\lambda)} + \alpha_i^{(\lambda)}) = 0.0871$, but it seems to import more cases from other districts than explained by its population (Figure 6b). In Figure 6c, the two districts without any reported measles cases (03401 and 03405) appear in dark pink, which means that they

Figure 6: Maps of the estimated random intercepts.

exhibit a relatively low endemic incidence after adjusting for the population and susceptible proportion. Such districts could be suspected of a larger amount of underreporting.

Note that the extra flexibility of the random effects model comes at a price. First, the estimation runtime increases considerably from 0.1 seconds for the previous power-law model measlesFit_powerlaw to 3 seconds with additional random effects. Furthermore, we no longer obtain AIC values in the model summary, since random effects invalidate simple AIC-based model comparisons. Of course we can plot the fitted values and visually compare their quality with the initial fit shown in Figure 4:

R> plot(measlesFit_ri, type = "fitted", units = districts2plot, hideOs = TRUE)

Figure 7: Fitted components in the random effects model measlesFit_ri for the six districts with more than 20 cases. Compare to Figure 4.

For some of these districts, a great amount of cases is now explained via transmission from neighboring regions while others are mainly influenced by the local autoregression. Note that the decomposition of the estimated mean by district can also be seen from the related plot type = "maps" (Figure 8):

```
R> plot(measlesFit_ri, type = "maps",
+ which = c("epi.own", "epi.neighbours", "endemic"),
+ prop = TRUE, labels = list(cex = 0.6))
```


Figure 8: Maps of the fitted component proportions averaged over all weeks.

However, for quantitative comparisons of model performance we have to resort to more sophisticated techniques presented in the next section.

3.5. Predictive model assessment

Paul and Held (2011) suggest to evaluate one-step-ahead forecasts from competing models by proper scoring rules for count data (Czado, Gneiting, and Held 2009). These scores measure the discrepancy between the predictive distribution P from a fitted model and the later observed value y. A well-known example is the squared error score ("ses") $(y - \mu_P)^2$, which is usually averaged over a suitable set of forecasts to obtain the mean squared error. More elaborate scoring rules such as the logarithmic score ("logs") or the ranked probability score ("rps") take into account the whole predictive distribution to assess calibration and sharpness simultaneously. The so-called Dawid-Sebastiani score ("dss") is another option. Lower scores correspond to better predictions.

In the hhh4 framework, predictive model assessment is made available by the functions oneStepAhead, scores, pit, and calibrationTest. We will use the second quarter of 2002 as the test period, and compare the basic model, the power-law model, and the random effects model. First, we use the "final" fits on the complete time series to compute the predictions, which then simply correspond to the fitted values during the test period:

```
R> tp <- c(65, 77)
R> models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri"))
R> measlesPreds1 <- lapply(mget(models2compare), oneStepAhead,
+ tp = tp, type = "final")
```

Note that in this case, the log-score for a model's prediction in district i in week t equals the associated negative log-likelihood contribution. Comparing the mean scores from different models is thus essentially a goodness-of-fit assessment:

All scoring rules claim that the random effects model gives the best fit during the second quarter of 2002. Now we turn to true one-week-ahead predictions of type = "rolling", which means that we always refit the model up to week t to get predictions for week t + 1:

```
R> measlesPreds2 <- lapply(mget(models2compare), oneStepAhead,
+ tp = tp, type = "rolling", which.start = "final")

R> measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE)
R> t(sapply(measlesScores2, colMeans, dims = 2))

logs rps dss ses
measlesFit_basic 1.102 0.7478 1.339 5.404
measlesFit_powerlaw 1.136 0.7654 2.929 5.865
measlesFit_ri 1.110 0.7632 2.349 7.080
```

Thus, the most parsimonious initial model measlesFit_basic gives the best one-week-ahead predictions in terms of overall mean scores. Statistical significance of the differences in mean scores can be investigated by a permutationTest for paired data or a paired t-test:

```
R> set.seed(321)
R> sapply(SCORES, function (score) permutationTest(
    measlesScores2$measlesFit_ri[, , score],
    measlesScores2$measlesFit_basic[, , score],
    nPermutation = 999))
           logs
                    rps
                            dss
                                   ses
diff0bs
           0.007822 0.01541 1.01
                                   1.677
pVal.permut 0.87
                    0.725 0.495 0.185
           0.8541
                    0.7165 0.3737 0.1711
pVal.t
```

Hence, there is no clear evidence for a difference between the basic and the random effects model with regard to predictive performance during the test period.

Whether predictions of a particular model are well calibrated can be formally investigated by calibrationTests for count data as recently proposed by Wei and Held (2014). For example:

```
R> calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps")
```

Calibration Test for Count Data (based on RPS)

```
data: measlesPreds2[["measlesFit_ri"]] z = 0.80671, n = 221, p-value = 0.4198
```

Thus, there is no evidence of miscalibrated predictions from the random effects model. Czado et al. (2009) describe an alternative informal approach to assess calibration: probability integral transform (PIT) histograms for count data (Figure 9).

```
R> for (m in models2compare)
+ pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m))
```


Figure 9: PIT histograms of competing models to check calibration of the one-week-ahead predictions during the second quarter of 2002.

Under the hypothesis of calibration, i.e., $y_{it} \sim P_{it}$ for all predictive distributions P_{it} in the test period, the PIT histogram is uniform. Underdispersed predictions lead to U-shaped histograms, and bias causes skewness. In this aggregate view of the predictions over all districts and weeks of the test period, predictive performance is comparable between the models, and there is no evidence of badly dispersed predictions. However, the right-hand decay in all histograms suggests that all models tend to predict higher counts than observed. This is most likely related to the seasonal shift between the years 2001 and 2002. In 2001, the peak of the epidemic was in the second quarter, while it already occurred in the first quarter in 2002 (cp. Figure 1a).

3.6. Further modeling options

In the previous sections we extended our model for measles in the Weser-Ems region with respect to spatial variation of the counts and their interaction. Temporal variation was only accounted for in the endemic component, which included a long-term trend and a sinusoidal wave on the log-scale. Held and Paul (2012) suggest to also allow seasonal variation of the epidemic force by adding a superposition of S harmonic waves of fundamental frequency ω , $\sum_{s=1}^{S} \{ \gamma_s \sin(s \omega t) + \delta_s \cos(s \omega t) \}$, to the log-linear predictors of the autoregressive and/or neighborhood component – just like for $\log \nu_t$ in Equation 6 with S = 1. However, given only two years of measles surveillance and the apparent shift of seasonality with regard to the

start of the outbreak in 2002 compared to 2001, more complex seasonal models are likely to overfit the data. Concerning the coding in R, sine-cosine terms can be added to the epidemic components without difficulties by again using the convenient function addSeason2formula. Updating a previous model for different numbers of harmonics is even simpler, since the update-method has a corresponding argument S. The plots of type = "season" and type = "maxEV" for hhh4 fits can visualize the estimated component seasonality.

All of our models for the measles surveillance data incorporated an epidemic effect of the counts from the local district and its neighbors. Without further notice, we thereby assumed a lag equal to the observation interval of one week. However, the generation time of measles is around 10 days, which is why Herzog et al. (2011) aggregated their weekly measles surveillance data into biweekly intervals. We can perform a sensitivity analysis by running the whole code of the current section based on aggregate(measlesWeserEms, nfreq = 26). Doing so, the parameter estimates of the various models retain their order of magnitude and conclusions remain the same. However, with the number of time points halved, the complex random effects model would not always be identifiable when calculating one-week-ahead predictions during the test period.

We have shown several options to account for the spatio-temporal dynamics of infectious disease spread. However, for directly transmitted human diseases, the social phenomenon of "like seeks like" results in contact patterns between subgroups of a population, which extend the pure distance decay of interaction. Especially for school children, social contacts are highly age-dependent. A useful epidemic model should therefore be additionally stratified by age group and take the inherent contact structure into account. How this extension can be incorporated in the spatio-temporal endemic-epidemic modeling framework hhh4 has recently been investigated by Meyer and Held (2017).

4. Simulation

Simulation from fitted hhh4 models is enabled by an associated simulate-method. Compared to the point process models described in vignette("twinstim") and vignette("twinsIR"), simulation is less complex since it essentially consists of sequential calls of rnbinom (or rpois). At each time point t, the mean μ_{it} is determined by plugging in the parameter estimates and the counts $Y_{i,t-1}$ simulated at the previous time point. In addition to a model fit, we thus need to specify an initial vector of counts y.start. As an example, we simulate 100 realizations of the evolution of measles during the year 2002 based on the fitted random effects model and the counts of the last week of the year 2001 in the 17 districts:

The simulated counts are returned as a $52 \times 17 \times 100$ array instead of a list of 100 sts objects. We can, e.g., look at the final size distribution of the simulations:

R> summary(colSums(measlesSim, dims = 2))

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 223 326 424 550 582 3970
```

A few large outbreaks have been simulated, but the mean size is below the observed number of sum(observed(measlesWeserEms)[53:104,]) = 779 cases in the year 2002. Using the plot-method associated with such hhh4 simulations, Figure 10 shows the weekly number of observed cases compared to the long-term forecast via a fanplot (Abel 2015):

R > plot(measlesSim, "fan", ylim = c(0, 140), key.args = list())

Figure 10: Simulation-based long-term forecast starting from the last week in 2001 (left-hand dot). The plot shows the weekly counts aggregated over all districts. The fan chart represents the 1% to 99% quantiles of the simulations in each week. The circles correspond to the observed counts.

We refer to help("simulate.hhh4") and help("plot.hhh4sims") for further examples.

References

Abel GJ (2015). fanplot: Visualisation of Sequential Probability Distributions Using Fan Charts. R package version 3.4.1, URL https://CRAN.R-project.org/package=fanplot.

Auguie B (2016). gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version 2.2.1, URL https://CRAN.R-project.org/package=gridExtra.

Bates D, Maechler M (2017). *Matrix: Sparse and Dense Matrix Classes and Methods*. R package version 1.2-8, URL https://CRAN.R-project.org/package=Matrix.

Bivand R (2017). spdep: Spatial Dependence: Weighting Schemes, Statistics and Models. R package version 0.6-13, URL https://CRAN.R-project.org/package=spdep.

- Czado C, Gneiting T, Held L (2009). "Predictive model assessment for count data." *Biometrics*, **65**(4), 1254–1261. doi:10.1111/j.1541-0420.2009.01191.x.
- Geilhufe M, Held L, Skrøvseth SO, Simonsen GS, Godtliebsen F (2014). "Power law approximations of movement network data for modeling infectious disease spread." *Biometrical Journal*, **56**(3), 363–382. doi:10.1002/bimj.201200262.
- Held L, Höhle M, Hofmann M (2005). "A statistical framework for the analysis of multivariate infectious disease surveillance counts." *Statistical Modelling*, **5**(3), 187–199. doi:10.1191/1471082X05st098oa.
- Held L, Paul M (2012). "Modeling seasonality in space-time infectious disease surveillance data." *Biometrical Journal*, **54**(6), 824–843. doi:10.1002/bimj.201200037.
- Herzog SA, Paul M, Held L (2011). "Heterogeneity in vaccination coverage explains the size and occurrence of measles epidemics in German surveillance data." *Epidemiology and Infection*, 139(4), 505–515. doi:10.1017/S0950268810001664.
- Höhle M, Mazick A (2010). "Aberration detection in R illustrated by Danish mortality monitoring." In T Kass-Hout, X Zhang (eds.), *Biosurveillance: Methods and Case Studies*, chapter 12, pp. 215–238. Chapman & Hall/CRC.
- Ihaka R, Murrell P, Hornik K, Fisher JC, Stauffer R, Zeileis A (2016). colorspace: Color Space Manipulation. R package version 1.3-2, URL https://CRAN.R-project.org/package=colorspace.
- Keeling MJ, Rohani P (2008). *Modeling Infectious Diseases in Humans and Animals*. Princeton University Press. URL http://www.modelinginfectiousdiseases.org/.
- Meyer S, Held L (2014). "Power-law models for infectious disease spread." *Annals of Applied Statistics*, 8(3), 1612–1639. doi:10.1214/14-AOAS743. http://arxiv.org/abs/1308.5115.
- Meyer S, Held L (2017). "Incorporating social contact data in spatio-temporal models for infectious disease spread." *Biostatistics*, **18**(2), 338–351. doi:10.1093/biostatistics/kxw051.
- Meyer S, Held L, Höhle M (2017). "Spatio-temporal analysis of epidemic phenomena using the R package surveillance." *Journal of Statistical Software*, **77**(11), 1–55. doi:10.18637/jss.v077.i11.
- Paul M, Held L (2011). "Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts." *Statistics in Medicine*, **30**(10), 1118–1136. doi:10.1002/sim.4177.
- Paul M, Held L, Toschke AM (2008). "Multivariate modelling of infectious disease surveillance data." Statistics in Medicine, 27(29), 6250–6267. doi:10.1002/sim.3440.
- Pebesma E, Bivand R (2016). sp: Classes and Methods for Spatial Data. R package version 1.2-4, URL https://CRAN.R-project.org/package=sp.

- Ripley B (2016). MASS: Support Functions and Datasets for Venables and Ripley's MASS. R package version 7.3-45, URL https://CRAN.R-project.org/package=MASS.
- Salmon M, Schumacher D, Höhle M (2016). "Monitoring count time series in R: Aberration detection in public health surveillance." *Journal of Statistical Software*, **70**(10), 1–35. doi: 10.18637/jss.v070.i10.
- Sarkar D (2016). *lattice: Trellis Graphics for R.* R package version 0.20-34, URL https://CRAN.R-project.org/package=lattice.
- Wei W, Held L (2014). "Calibration tests for count data." *Test*, **23**(4), 787–805. doi: 10.1007/s11749-014-0380-8.
- Wickham H (2016). scales: Scale Functions for Visualization. R package version 0.4.1, URL https://CRAN.R-project.org/package=scales.
- Xie Y (2017). animation: A Gallery of Animations in Statistics and Utilities to Create Animations. R package version 2.5, URL https://CRAN.R-project.org/package=animation.