Trabajo Práctico 1

Análisis de lenguajes de programación

LCC

Manuel Spreutels Augusto Rabbia

Septiembre, 2024

WWERSIA THE STATE OF THE STATE

Spreutels - Rabbia

1 Soluciones

1.1 Ejercicio 1

Se agregan las siguiente reglas:

$$intexp ::= var - -$$

$$|var + +$$
Sintaxis abstracta

$$intexp ::= var '--'$$

$$|var '++'|$$
Sintaxis concreta

1.2 Ejercicio 2

Se agregaron en el archivo AST.hs los siguientes constructores:

 \bullet Var
Inc :: Variable \to Exp Int

1.3 Ejercicio 3

En el archivo Parser.hs

1.4 Ejercicio 4

Se agregan a la semántica operacional Big-Step para expresiones las siguientes reglas:

$$\frac{x \in dom \ \sigma \quad \langle x, \sigma \rangle \Downarrow_{exp} \langle n, \sigma \rangle}{\langle x - -, \sigma \rangle \Downarrow_{exp} \langle n - 1, [\sigma | x : n - 1] \rangle} \text{EVARDEC}$$

$$\frac{x \in dom \ \sigma \qquad \langle x, \sigma \rangle \Downarrow_{exp} \langle n, \sigma \rangle}{\langle x + +, \sigma \rangle \Downarrow_{exp} \langle n + 1, [\sigma | x : n + 1] \rangle} \text{ EVARINC}$$

1.5 Ejercicio 5

Suponemos $\alpha \leadsto \beta$ y $\alpha \leadsto \gamma$. Hacemos inducción sobre $\alpha \leadsto \beta$. Supongamos que la última regla utilizada fue:

• **ASS**.

Luego, sabemos:

a)
$$\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$$

Spreutels - Rabbia

b)
$$\alpha = \langle v = e, \sigma \rangle$$

c)
$$\beta = \langle \mathbf{skip}, [\sigma' | v : n] \rangle$$

Analizamos $\alpha \rightsquigarrow \gamma$:

La regla aplicada debe ser **ASS** por la forma de α . Es decir, $\alpha \leadsto \gamma$ tiene la forma

$$\frac{\langle e, \sigma \rangle \Downarrow_{exp} \langle n', \sigma'' \rangle}{\langle v = e, \sigma \rangle \leadsto \langle \mathbf{skip}, [\sigma'' | v : n] \rangle} \text{ASS}$$

Luego, como \Downarrow es determinista, se tiene $\langle n, \sigma' \rangle = \langle n', \sigma'' \rangle$ y por lo tanto, $\gamma = \langle \mathbf{skip}, [\sigma'' | v : n'] \rangle = \langle \mathbf{skip}, [\sigma' | v : n] \rangle = \beta$

• SEQ1.

Sabemos:

a)
$$\alpha = \langle \mathbf{skip}; c_1, \sigma \rangle$$

b)
$$\beta = \langle c_1, \sigma \rangle$$

Analizamos $\alpha \rightsquigarrow \gamma$: la regla aplicada debe ser **SEQ1** puesto que **skip** es el primer comando de la secuencia en α . Es decir, $\alpha \rightsquigarrow \gamma$ tiene la forma

$$\frac{}{\langle \mathbf{skip}; c_1, \sigma \rangle \rightsquigarrow \langle c_1, \sigma \rangle}$$
 SEQ1

Luego, $\gamma = \langle c_1, \sigma \rangle = \beta$.

• IF1.

Se tiene:

a)
$$\langle b, \sigma \rangle \Downarrow \langle \mathbf{true}, \sigma' \rangle$$

b)
$$\alpha = \langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle$$

c)
$$\beta = \langle c_0, \sigma' \rangle$$

Analizamos $\alpha \rightsquigarrow \gamma$: observemos que por la forma de α , solo pueden aplicarse las reglas **IF1** e **IF2** para derivar $\alpha \rightsquigarrow \gamma$. Supongamos que se aplicó **IF2**:

$$\frac{\langle b, \sigma \rangle \Downarrow \langle \mathbf{false}, \sigma'' \rangle}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \leadsto \langle c_1, \sigma'' \rangle} \text{IF2}$$

Se deduce que $\langle b, \sigma \rangle \Downarrow \langle \mathbf{false}, \sigma'' \rangle$, pero \Downarrow es determinista $\stackrel{\mathbf{a})}{\Longrightarrow}$ absurdo. Luego, debió aplicarse $\mathbf{IF1}$ para $\alpha \leadsto \gamma$:

TP 1 ALP

Spreutels - Rabbia

$$\frac{\langle b, \sigma \rangle \Downarrow \langle \mathbf{true}, \sigma'' \rangle}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \leadsto \langle c_0, \sigma'' \rangle} \text{ IF1}$$

Pero como \Downarrow es determinista, así que $\sigma'' = \sigma'$, y por tanto $\gamma = \langle c_0, \sigma'' \rangle = \langle c_0, \sigma' \rangle = \beta$

• IF2.

Análogo al caso IF1

• REPEAT.

Se tiene:

- a) $\alpha = \langle \mathbf{repeat} \ c \ \mathbf{until} \ b, \sigma \rangle$
- b) $\beta = \langle c; \text{ if } b \text{ then skip else repeat } c \text{ until } b, \sigma \rangle$

Analizamos $\alpha \leadsto \gamma$: la regla aplicada debe ser **REPEAT** por la forma de α . Es decir, $\alpha \leadsto \gamma$ tiene la forma

$$\overline{\langle \mathbf{repeat}\ c\ \mathbf{until}\ b, \sigma \rangle} \rightsquigarrow \langle c; \ \mathbf{if}\ b\ \mathbf{then}\ \mathbf{skip}\ \mathbf{else}\ \mathbf{repeat}\ c\ \mathbf{until}\ b, \sigma \rangle \xrightarrow{\mathrm{REPEAT}}$$

Luego, $\gamma = \langle c; \text{ if } b \text{ then skip else repeat } c \text{ until } b, \sigma \rangle = \beta.$

• SEQ2.

Sabemos entonces:

- a) $\langle c_0, \sigma \rangle \rightsquigarrow \langle c'_0, \sigma' \rangle$
- b) $\alpha = \langle c_0; c_1, \sigma \rangle$
- c) $\beta = \langle c_0'; c_1, \sigma' \rangle$

HI: Suponemos que para toda subderivación de $\alpha \leadsto \beta$, de la forma $\alpha' \leadsto \beta'$, si $\alpha' \leadsto \beta'$ y $\alpha' \leadsto \beta''$, entonces $\beta' = \beta''$.

Por a), sabemos que $c_0 \neq \mathbf{skip}$, pues dadas las reglas de evaluación small-step que se tienen, $\nexists c'_0/\langle \mathbf{skip}, \sigma \rangle \rightsquigarrow \langle c'_0, \sigma' \rangle$. Esto, junto con la forma de α , nos lleva a concluir que sólo $\mathbf{SEQ2}$ pudo aplicarse para la derivación de $\alpha \rightsquigarrow \gamma$. Conocemos entonces la forma de esta derivación:

$$\frac{\langle c_0, \sigma \rangle \leadsto \langle c_0'', \sigma'' \rangle}{\langle c_0; c_1, \sigma \rangle \leadsto \langle c_0''; c_1, \sigma'' \rangle} \operatorname{SEQ2}$$

Luego,
$$\gamma = \langle c_0''; c_1, \sigma'' \rangle \stackrel{\text{(HI)}}{=} \langle c_0'; c_1, \sigma' \rangle = \beta.$$

WERSIO * CHARLES OF STANKING O

Spreutels - Rabbia

1.6 Ejercicio 6

Lo probamos desarrollando sus árboles de derivación. Para cualquier estado σ tal que $x \in dom \ \sigma$, para el primer programa se tiene :

• Paso 1.

$$\operatorname{PLUS} \frac{\frac{x \in \operatorname{dom} \, \sigma}{\langle x, \sigma \rangle \, \Downarrow_{\operatorname{exp}} \, \langle \sigma \, x, \sigma \rangle} \operatorname{Var} \quad \overline{\langle 1, \sigma \rangle \, \Downarrow_{\operatorname{exp}} \, \langle 1, \sigma \rangle}}{\langle x + 1, \sigma \rangle \, \Downarrow_{\operatorname{exp}} \, \langle \sigma \, x + 1, \sigma \rangle} \operatorname{NVAL}}{\langle x = x + 1; y = x, \sigma \rangle \leadsto \langle \operatorname{\mathbf{skip}}; y = x, [\sigma | x : \sigma \, x + 1] \rangle} \operatorname{ASS}$$

• Paso 2.

$$\langle \mathbf{skip}; y = x, [\sigma | x : \sigma x + 1] \rangle \leadsto \langle y = x, [\sigma | x : \sigma x + 1] \rangle$$
 SEQ1

• Paso 3.

$$\frac{x \in dom \ [\sigma|x : \sigma \ x+1]}{\langle x, [\sigma|x : \sigma \ x+1] \rangle \ \underset{exp}{\Downarrow_{exp}} \langle \sigma \ x+1, [\sigma|x : \sigma \ x+1] \rangle} \text{Var}}{\langle y = x, [\sigma|x : \sigma \ x+1] \rangle \leadsto \langle \mathbf{skip}, [\sigma|x : \sigma \ x+1, y : \sigma \ x+1] \rangle} \text{ ASS}$$

Ahora, hacemos lo mismo para el segundo programa:

• Paso 1.

$$\frac{x \in dom \ \sigma}{\langle x, \sigma \rangle \Downarrow_{exp} \langle \sigma \ x, \sigma \rangle} \text{Var} \frac{x \in dom \ \sigma}{\langle x + +, \sigma \rangle \Downarrow_{exp} \langle \sigma \ x + 1, [\sigma | x : \sigma \ x + 1] \rangle} \text{EVARINC} \frac{\langle x + +, \sigma \rangle \Downarrow_{exp} \langle \sigma \ x + 1, [\sigma | x : \sigma \ x + 1] \rangle}{\langle y = x + +, \sigma \rangle \leadsto \langle \mathbf{skip}, [\sigma | x : \sigma \ x + 1, y : \sigma \ x + 1] \rangle} \text{ASS}$$

Por lo tanto, vemos que $\langle x=x+1;y=x,\sigma\rangle \rightsquigarrow^* \langle \mathbf{skip}, [\sigma|x:\sigma x+1,y:\sigma x+1]\rangle$ y $\langle y=x++,\sigma\rangle \rightsquigarrow^* \langle \mathbf{skip}, [\sigma|x:\sigma x+1,y:\sigma x+1]\rangle$ para cualquier σ tal que $x\in dom\ \sigma$, y por lo tanto ambos programas son equivalentes.

1.7 Ejercicio 7

En el archivo Eval1.hs

TP 1 ALP

Spreutels - Rabbia

1.8 Ejercicio 8

En el archivo Eval2.hs

1.9 Ejercicio 9

En el archivo Eval3.hs