Master Presentation Marius Hobbhahn

Start: 14:30

Fast Predictive Uncertainty for Classification with Bayesian Deep Networks

> Marius Hobbhahn 30 June 2020

EBERHARD KARLS
UNIVERSITÄT
TÜBINGEN

Faculty of Science
Department of Computer Science
Chair for the Methods of Machine Learning

Motivation

Why do we need fast uncertainty in neural networks?

- * safety-critical applications e.g. self-driving cars
- + trade-off between accuracy and speed
- + out-of-distribution detection

Context

What's our new contribution?

Let \mathbf{x} be an n-dimensional continuous random variable with joint density function $p_{\mathbf{x}}$. If $\mathbf{y} = g(\mathbf{x})$, where g is a differentiable function, then \mathbf{y} has density $p_{\mathbf{y}}$:

$$p_{\mathbf{y}}(\mathbf{y}) = p_{\mathbf{x}} \left(g^{-1}(\mathbf{y}) \right) \left| \det \left[\frac{dg^{-1}(\mathbf{y})}{d\mathbf{y}} \right] \right|$$
 (1)

where the differential is the Jacobian of the inverse of g evaluated at \mathbf{y} .

+

$$Dir(\boldsymbol{\pi}|\boldsymbol{\alpha}) := \frac{1}{B(\alpha)} \prod_{k=1}^{K} \pi_k^{\alpha_k - 1}$$
 (2)

+

$$\pi_k(\mathbf{z}) := \frac{\exp(z_k)}{\sum_{l=1}^K \exp(z_l)},\tag{3}$$

+

$$\operatorname{Dir}_{\mathbf{z}}(\boldsymbol{\pi}(\mathbf{z})|\boldsymbol{\alpha}) := \frac{1}{B(\alpha)} \prod_{k=1}^{K} \pi_k(\mathbf{z})^{\alpha_k}, \qquad (4)$$

Building the Bridge

Linking Dirichlet and Gaussian via the Laplace approximation

$$\alpha_k = \frac{1}{\Sigma_{kk}} \left(1 - \frac{2}{K} + \frac{e^{\mu_k}}{K^2} \sum_{l}^{K} e^{-\mu_l} \right)$$
 (5)

$$\mu_k = \log \alpha_k - \frac{1}{K} \sum_{l=1}^K \log \alpha_l \tag{6}$$

$$\Sigma_{kl} = \delta_{kl} \frac{1}{\alpha_k} - \frac{1}{K} \left[\frac{1}{\alpha_k} + \frac{1}{\alpha_l} - \frac{1}{K} \sum_{u=1}^K \frac{1}{\alpha_u} \right]$$
 (7)

The Laplace Bridge

Summary

- + The Dirichlet in the inverse softmax basis approximates a Gaussian
- + Via the Laplace approximation in the transformed basis we can create a closed-form transformation $\alpha \to (\mu, \Sigma)$.
- + We can also construct an inverse of this transformation $(\mu,\Sigma) \to \alpha$
- In total, we have a fast way to transform between the parameters of a Dirichlet and a Gaussian

The Laplace Bridge

Application to Neural Networks

A sanity check

Samples from a 3D Gaussian + Softmax vs. Dirichlet

MNIST

Train on 0,1,2; test on 0-9

Speedtest - I

KL divergence vs. number of sample

Speedtest - II

KL divergence vs. wall-clock time

Imagenet

Using the properties of the Dirichlet - The marginal of a Dirichlet is a Dirichlet

We can use the overlap of the distributions to create an uncertainty-aware top-k ranking.

- + The original top-1 accuracy of DenseNet on ImageNet is 0.744 and top-5 accuracy is 0.919
- + The uncertainty-aware top-k accuracy is 0.797, where k is on average 1.688

Out-of-distribution Detection

Looking at the numbers

		Diag Sampling		Diag LB		KFAC Sampling		KFAC LB		Time in s ↓	
Train	Test	MMC ↓	AUROC ↑	MMC ↓	AUROC ↑	MMC↓	AUROC ↑	$MMC\downarrow$	AUROC ↑	Sampling	LB
MNIST	MNIST	0.942 ± 0.007	-	0.987 ± 0.000	-	l -	-	-	-	26.8	0.062
MNIST	FMNIST	0.397 ± 0.001	0.992 ± 0.000	0.363 ± 0.000	0.996 ± 0.000	-	-	-	-	26.8	0.063
MNIST	notMNIST	0.543 ± 0.000	0.960 ± 0.000	0.649 ± 0.000	0.961 ± 0.000	-	-	-	-	50.3	0.11
MNIST	KMNIST	0.513 ± 0.001	0.974 ± 0.000	0.637 ± 0.000	0.973 ± 0.000	-	-	-	-	26.9	0.062
CIFAR-10	CIFAR-10	0.948 ± 0.000	-	0.966 ± 0.000	-	0.857 ± 0.003	-	0.966 ± 0.000	-	6.58	0.01
CIFAR-10	CIFAR-100	0.708 ± 0.000	0.889 ± 0.000	0.742 ± 0.000	0.866 ± 0.000	0.562 ± 0.003	0.880 ± 0.012	0.741 ± 0.000	0.866 ± 0.000	6.59	0.01
CIFAR-10	SVHN	0.643 ± 0.000	0.933 ± 0.000	0.647 ± 0.000	$\textbf{0.934}\pm0.000$	0.484 ± 0.004	$\textbf{0.939}\pm0.001$	0.648 ± 0.003	0.934 ± 0.001	17.0	0.04
SVHN	SVHN	0.986 ± 0.000	-	0.993 ± 0.000	-	0.947 ± 0.002	-	0.993 ± 0.000	-	17.1	0.042
SVHN	CIFAR-100	0.595 ± 0.000	0.984 ± 0.000	0.526 ± 0.000	0.985 ± 0.000	0.460 ± 0.004	0.986 ± 0.001	0.527 ± 0.002	0.985 ± 0.000	6.62	0.01
SVHN	CIFAR-10	0.593 ± 0.000	0.984 ± 0.000	$\textbf{0.520}\pm0.000$	$\textbf{0.987}\pm0.000$	0.458 ± 0.004	0.986 ± 0.001	0.520 ± 0.002	$\textbf{0.987}\pm0.000$	6.62	0.01
CIFAR-100	CIFAR-100	0.762 ± 0.000	-	0.590 ± 0.000	-	0.404 ± 0.000	-	0.593 ± 0.000	-	6.76	0.01
CIFAR-100	CIFAR-10	0.467 ± 0.000	0.788 ± 0.000	0.206 ± 0.000	0.791 ± 0.000	0.213 ± 0.000	0.788 ± 0.000	0.209 ± 0.000	0.791 ± 0.000	6.71	0.01
CIFAR-100	SVHN	0.461 ± 0.000	0.795 ± 0.000	0.170 ± 0.000	0.815 ± 0.000	0.180 ± 0.001	0.838 ± 0.001	0.173 ± 0.000	0.815 ± 0.000	17.3	0.04

- + The Laplace Bridge seems to be have better MMC and AUROC compared to sampling from a diagonal Gaussian approximation
- + The Laplace Bridge is as good as a KFAC approximation
- + The Laplace Bridge is around 400 times faster on average

Conclusions

What can or can't the Laplace Bridge achieve in the context of BNNs?

- + The Laplace Bridge improves an important part of Bayesian Neural Network inference for classification (fast & non-invasive)
- + The Dirichlet distribution has some additional interesting use cases (e.g. the top-k ranking)
- + It will not revolutionize BNNs; it is just one piece in the larger puzzle

The generalized Laplace Bridge

Looking at the larger pattern

- + Similar "Bridges" can be found for all exponential families.
- + Develop a general theoretically grounded framework for the general Laplace Bridge
- + Compute KL-divergences in the different basis

The generalized Laplace Bridge

So what?

Implications: (with a small error)

- + All exponential families can be transformed to Gaussians
- + All exponential families can be transformed to each other
- + All exponential families are conjugate priors for each other

$$p(c|x) = \mathcal{N}(x; f(x, w_{MAP}), J(x)^T H^{-1} J(x))$$
 (8)

- + $f(x; w_{\text{MAP}})$ is the network output induced by the MAP estimate w_{MAP} .
- + $J(x) = \frac{\partial f(x, w_{\text{MAP}})}{\partial w} \in \mathbb{R}^{K \times P}$ is the Jacobian of the network
- + $H_{ij} = \frac{\partial^2 \mathcal{L}(f(x),y)}{\partial w_i \partial w_j} \in \mathbb{R}^{P \times P}$ its Hessian.
- + K,P are the number of classes and parameters of the network respectively.

Proposition

Let $\mathrm{Dir}(\pi|\alpha)$ be obtained via the Laplace Bridge from a Gaussian distribution $\mathcal{N}(\mathbf{z}|\boldsymbol{\mu},\boldsymbol{\Sigma})$ over \mathbb{R}^K . Then, for each $k=1,\ldots,K$, letting $\alpha_{\neq k}:=\sum_{l\neq k}\alpha_l$, if

$$\alpha_k > \frac{1}{4} \left(\sqrt{9\alpha_{\neq k}^2 + 10\alpha_{\neq k} + 1} - \alpha_{\neq k} - 1 \right) ,$$

then the variance $Var(\pi_k|\alpha)$ of the k-th component of π is increasing in Σ_{kk} .

Backup

Computing the Hessian

First, we consider the special case where π is confined to a I-1 dimensional subspace satisfying $\sum_i \pi_i = c$. In this subspace we can represent π by an I-1 dimensional vector $\mathbf a$ such that

$$\pi_i = a_i \quad i, ..., I - 1 \tag{9}$$

$$\pi_I = c - \sum_{i}^{I-1} a_i \tag{10}$$

and similarly we can represent z by an I-1 dimensional vector ϱ :

$$z_i = \varrho_i \quad i, ..., I - 1 \tag{11}$$

$$z_I = 1 - \sum_{i}^{I-1} \varrho_i \tag{12}$$

then we can find the density over ϱ (which is proportional to the required density over z) from the density over π (which is proportional to the given density over π) by finding the determinant of the $(I-1)\times (I-1)$ Jacobian J given by

$$J_{ik} = \frac{\partial \varrho_i}{\partial a_i} = \sum_{j}^{I} \frac{\partial z_i}{\partial \pi_j} \frac{\partial \pi_j}{\partial a_k}$$
 (13)

$$= \delta_{ik} \mathbf{z}_i - \mathbf{z}_i \mathbf{z}_k + \mathbf{z}_i \mathbf{z}_I = \mathbf{z}_i (\delta_{ik} - (\mathbf{z}_k - \mathbf{z}_I))$$
(14)

We define two additional I-1 dimensional helper vectors $\mathbf{z}_k^+ := \mathbf{z}_k - \mathbf{z}_I$ and $n_k := 1$, and use $\det(I - xy^T) = 1 - x \cdot y$ from linear algebra. It follows that

$$\det J = \prod_{i=1}^{I-1} \mathbf{z}_i \times \det[I - n\mathbf{z}^{+T}]$$
(15)

$$= \prod_{i=1}^{I-1} \mathbf{z}_i \times (1 - n \cdot \mathbf{z}^+) \tag{16}$$

$$= \prod_{i=1}^{I-1} \mathbf{z}_i \times \left(1 - \sum_k \mathbf{z}_k^+\right) = I \prod_{i=1}^{I} \mathbf{z}_i$$
 (17)