Ensemble Methods

Principle of ensemble classifier

- Ask experts for their opinion and choose the option with majority vote
- Let's say we have a set of m experts:

$$H = \{f1, f2, ..., fm\} \ fi(x) \in \{P, N\}$$

The majority vote decision will be:

$$F(x) = sign\left(\frac{1}{m}\sum_{i=1}^{m}fi(x)\right)$$

Diversity of the expert a key point of this approach

Better performance

Assume that $\forall i, p(f_i(x) \neq y) \leq \mu < 0.5$ Classifiers are independent then the probability of wrong classification by the ensemble

$$p(F(x) \neq y) = 1 - pr\left(k \leq \frac{M}{2}\right)$$

where pr is the cumulative binomial distribution

The upper bound is much better than the original error rate

• For 10 classifiers with 30% of error

For 100 classifiers with 30% of error

number of classifiers in error

10 classifiers

From: T. G. Diettrich, Ensemble Methods in Machine Learning, Lecture Notes in Computer Science, Vol. 1857, pages: 1-15, 2000.

From: T. G. Diettrich, Ensemble Methods in Machine Learning, Lecture Notes in Computer Science, Vol. 1857, pages: 1-15, 2000.

From: T. G. Diettrich, Ensemble Methods in Machine Learning, Lecture Notes in Computer Science, Vol. 1857, pages: 1-15, 2000.

How to use ensemble methods

- Set of weak classifiers $p(f(x) \neq y) < 0.5$
 - Train diverse set of models on the same datasets: decision tree, KNN, linear discriminant (generally the simplest, the better).
 - Train different models by using diversity in datasets, parameters, initial conditions.
- Aggregation
 - Bagging
 - Boosting

Bagging

- Create bootstraped training sets, each containing examples drawn randomly with replacement from the original dataset.
- Train a classifier for each bootstrap dataset
- The final decision is a vote of all classifiers
- Originally developed to reduce the variance of the classifier

Results

Error rate

Data Set	$ar{e}_{\mathcal{S}}$	$ar{e}_{B}$	Decrease
waveform	29.0	19.4	33%
heart	10.0	5.3	47%
breast cancer	6.0	4.2	30%
ionosphere	11.2	8.6	23%
diabetes	23.4	18.8	20%
glass	32.0	24.9	22%
soybean	14.5	10.6	27%

Bias-Variance decomposition

- The error rate can be decomposed into a bias and variance term
- Reduction of the variance
- Example : heart dataset

	unaggregated	aggregated
variance	47.64	4.66
bias	1.51	1.97

Adaboost - Adaptive Boosting

- The examples are weighted
 - Each example has a weigth representing its importance in the classification problem.
- AdaBoost is an algorithm constructing complex classifier from a combination of simple and weak classifiers.
- The final decision is based on a weighted vote of weak classifiers.

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

Natural

Not Natural

Principle

Discrete Adaboost Algorithm

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialise
$$D_1(i) = \frac{1}{m}$$
.

For t = 1, ..., T:

- Find the classifier $h_t:X\to\{-1,+1\}$ that minimizes the error with respect to the distribution D_t : $h_t=\arg\min_{h_j\in\mathcal{H}}\epsilon_j$, where $\epsilon_j=\sum_{i=1}^mD_t(i)[y_i\neq h_j(x_i)]$
- Prerequisite: ε_t < 0.5, otherwise stop.
- Choose $\alpha_t \in \mathbf{R}$, typically $\alpha_t = \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$ where ϵ_t is the weighted error rate of classifier h_t .
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalisation factor (chosen so that D_{t+1} will be a distribution).

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Find the Weak Classifier

Loop step: Call WeakLearn, providing it with the distribution D_t ; get back weak classifier $h_t: \mathcal{X} \to \{-1,1\}$ from $\mathcal{H} = \{h(x)\}$

- Select a weak classifier with the smallest weighted error $h_t = \arg\min_{h_i \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- Prerequisite: $\epsilon_t < 1/2$ (otherwise stop)
- WeakLearn examples:
 - Decision tree builder, perceptron learning rule \mathcal{H} infinite
 - Selecting the best one from given finite set H

Demonstration example

Training set

Weak classifier = perceptron

•
$$\sim N(0,1)$$

Find the Weak Classifier

Loop step: Call WeakLearn, providing it with the distribution D_t ; get back weak classifier $h_t: \mathcal{X} \to \{-1,1\}$ from $\mathcal{H} = \{h(x)\}$

- Select a weak classifier with the smallest weighted error $h_t = \arg\min_{h_i \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- Prerequisite: $\epsilon_t < 1/2$ (otherwise stop)
- WeakLearn examples:
 - Decision tree builder, perceptron learning rule \mathcal{H} infinite
 - Selecting the best one from given finite set H

Demonstration example

Training set

Weak classifier = perceptron

$$\sim N(0,1)$$

•
$$\sim N(0,1)$$
 • $\sim \frac{1}{2\pi}e^{-1/2(r-4)^2}$

Reweighting

Effect on the training set

Reweighting formula:

$$\begin{split} D_{t+1}(i) &= \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} = \frac{exp(-y_i \sum_{q=1}^t \alpha_q h_q(x_i))}{m \prod_{\substack{t \in Z \\ \mathbf{y} * \ \mathbf{h}(\mathbf{x}) = 1}} \\ exp(-\alpha_t y_i h_t(x_i)) \left\{ \begin{array}{cc} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{array} \right. \mathbf{y} * \mathbf{h}(\mathbf{x}) = -1 \end{split}$$

⇒ Increase (decrease) weight of wrongly (correctly) classified examples

Algorithm recapitulation

t = 1

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm recapitulation, t=1

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm recapitulation t=2

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} \int_{0.3}^{\infty} dx$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm recapitulation_{t=3}

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm recapitation

t = 4

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm recapitulation

t = 5

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

 $D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} \int_{0.3}^{0.3} e^{-ixt} dt$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm recapitulation t=7

$$t = 7$$

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm recapitulation t = 40

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_i \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Advantages and Drawbacks

Advantages

- Simple to use and implement
- Good performance in generalization

Drawbacks

- Not optimal solution
- Sensitive to noise
- High computing time

Package R

- Ada: ada()
- Adabag: adaboost.M1()
- Bst: bst()
- Mboost: glmboost()
- wSVM: wsvm()