Théorèmes Limites

Exercice 1 (Premier as). Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes et identiquement distribuées suivant la loi uniforme sur $\{1,\ldots,6\}$. On note

$$T = \inf\{n \ge 1 : X_n = 1\}.$$

- 1. Décrire les événements $\{T = k\}$ et $\{T > k\}$.
- 2. Déterminer la loi de T ainsi que son espérance.
- 3. Calculer, pour tout $r \in \mathbf{Z}$, $\mathbb{P}(T > \mathbb{E}[T] + r)$.
- 4. Calculer la moyenne de la variable aléatoire $\sum_{i=1}^{T} X_i$.

Exercice 2. Soit X le nombre aléatoire d'avions arrivant en une heure sur un aéroport. On a estimé $\mathbb{E}[X] = 16$ et $\mathbb{V}[X] = 16$.

- 1. À l'aide de l'inégalité de Bienaymé-Tchebychev, donner une minoration de $\mathbb{P}(10 < X < 22)$.
- 2. Comparer le résultat avec celui obtenu en supposant que X a pour loi $\mathcal{P}(16)$.

Exercice 3. En utilisant l'inégalité de Bienaymé–Tchebychev, combien de fois doit-on lancer une pièce de monnaie pour que l'on ait une probabilité supérieure à 0,9 que le nombre de « pile » sur le nombre de lancers soit compris entre 0,4 et 0,6?

Exercice 4. 1. Soit X_1, \ldots, X_n des variables aléatoires indépendantes et identiquement distribuées suivant la loi de Bernoulli de paramètre 1/2. On note $S_n = X_1 + \cdots + X_n$. Soit r > 0.

- (a) Calculer, pour tout réel λ , $\mathbb{E}\left[e^{\lambda X_1}\right]$ et $e\left[e^{\lambda S_n}\right]$.
- (b) En remarquant que, pour $\lambda > 0$, $\{S_n/n \ge 1/2 + r\} = \{e^{\lambda S_n} \ge e^{n\lambda(1/2+r)}\}$, montrer que

$$\mathbb{P}\left(\frac{S_n}{n} \ge \frac{1}{2} + r\right) \le \left(\operatorname{ch}\left(\frac{\lambda}{2}\right)e^{-\lambda r}\right)^n.$$

(c) En remarquant que, pour $\lambda > 0$, $\{S_n/n \le 1/2 - r\} = \{e^{-\lambda S_n} \ge e^{-n\lambda(1/2 - r)}\}$, montrer que

$$\mathbb{P}\left(\frac{S_n}{n} \le \frac{1}{2} - r\right) \le \left(\operatorname{ch}\left(\frac{\lambda}{2}\right)e^{-\lambda r}\right)^n.$$

(d) En déduire, en utilisant l'inégalité ch $x \leq e^{x^2/2},$ que

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \frac{1}{2}\right| \ge r\right) \le 2e^{-2nr^2}.$$

2. En utilisant cette dernière inégalité, combien de fois doit-on lancer une pièce de monnaie pour que l'on ait une probabilité supérieure à 0,9 que le nombre de « pile » sur le nombre de lancers soit compris entre 0,4 et 0,6?

Exercice 5. Soient X et Y deux variables aléatoires indépendantes de loi gaussienne $\mathcal{N}(0,1)$.

- 1. Déterminer la densité de la variable aléatoire $Z=e^X$.
- 2. On définit U = X + Y et V = X Y.
 - (a) Quelle est la loi de U?
 - (b) Calculer Cov(U, V).
 - (c) Soient $(U_i)_{i>1}$ une suite de variables i.i.d de même loi que U. Calculer la limite suivante :

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} U_i^2 e^{-\frac{U_i^2}{4}}$$

Exercice 6. 1. Soient $x \in [0,1]$, $\xi_n(x)$ une v.a. de loi binomiale $\mathcal{B}(n,x)$ et $f:[0,1] \longrightarrow \mathbf{R}$ une application continue. On pose,

$$\forall n \in \mathbf{N}^*, \quad \forall x \in [0, 1], \qquad \mathbf{B}_n(x) = \mathbb{E}\Big[f(n^{-1}\xi_n(x))\Big].$$

- (a) Montrer que B_n est un polynôme. Ce sont les polynômes de Bernstein.
- (b) En utilisant l'inégalité de de Bienaymé-Tchebychev, montrer que,

$$\forall x \in [0,1], \quad \forall \eta > 0, \qquad \mathbb{P}\left(\left|n^{-1}\xi_n(x) - x\right| \ge \eta\right) \le \frac{x(1-x)}{n\eta^2} \le \frac{1}{4n\eta^2}.$$

(c) En remarquant, que, pour $x \in [0, 1]$,

$$\left| \mathbf{B}_n(x) - f(x) \right| = \left| \mathbb{E} \left[f\left(n^{-1}\xi_n(x)\right) \right] - \mathbb{E} \left[f(x) \right] \right| \le \mathbb{E} \left[\left| f\left(n^{-1}\xi_n(x)\right) - f(x) \right| \right],$$

montrer que $(B_n)_{n\in\mathbb{N}^*}$ converge vers f uniformément sur [0,1]. On pourra utiliser la partition suivante : $|n^{-1}\xi_n(x)-x|<\eta, \, |n^{-1}\xi_n(x)-x|\geq \eta$ et utiliser l'uniforme continuité de f.

2. Soit $(U_i)_{i \in \mathbb{N}^*}$ une suite de v.a. indépendantes de même loi uniforme sur [0,1]. Pour $x \in [0,1]$, quelle est la loi de $S_n = n^{-1} \sum_{i=1}^n \mathbf{1}_{U_i \leq x}$?

Exercice 7. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de v.a. indépendantes de loi uniforme sur [-1/2, 1/2]. On pose, pour $n \in \mathbb{N}^*$, $Y_n = n + X_n$. Trouver la limite en loi de la suite $\left(n^{-2} \sum_{i=1}^n Y_i\right)_{n \in \mathbb{N}^*}$.

Exercice 8. Soit X_n une v.a. de loi $\mathcal{N}(\mu_n, \sigma_n)$ où μ_n converge vers μ et σ_n converge vers σ . Quelle est la limite en loi de X_n ?

Exercice 9. Refaire l'exercice 3 en utilisant le théorème limite central.

Exercice 10. Un serveur informatique est relié à n ordinateurs. Chaque ordinateur envoie une requête sur le serveur avec une probabilité $p \in]0,1[$. Quelle capacité doit avoir le serveur pour que la probabilité qu'il soit saturé soit inférieure à 2,5%?

Exercice 11. Un central téléphonique est construit pour 5000 abonnés. Chaque jour, les abonnés téléphonent à l'heure de pointe avec une probabilité égale à 0,02.

Déterminer la capacité du central téléphonique pour qu'il puisse transmettre des communications indépendantes pendant un an sans être saturé avec une probabilité supérieure ou égale à 0,9.

Exercice 12. Un restaurateur peut servir 75 repas, uniquement sur réservation. La pratique montre que 20% des clients ayant réservé ne viennent pas.

Combien le restaurateur doit-il accepter de réservations pour avoir une probabilité supérieure ou égale à 0,9 de pouvoir servir tous les clients qui se présenteront?

Exercice 13. On observe des particules dont la durée de vie X est une v.a. de loi $\mathcal{E}(\theta)$, $\theta > 0$.

- 1. Calculer la probabilité pour qu'une particule déterminée n'existe plus à l'instant t > 0.
- 2. Une enceinte close contient n particules ; leurs durées de vie sont indépendantes et de même loi $\mathcal{E}(\theta)$. N_t désigne le nombre de particules qui ne sont pas désintégrées à l'instant t. Quelle est la loi de N_t ? Calculer la moyenne et la variance de N_t . Étudier $\mathbb{V}[N_t]$ en fonction de t.
- 3. Démontrer que, si n est assez grand, pour tout α de]0,1[,

$$\mathbb{P}(N_t > \alpha n) \simeq \mathbb{P}(\xi > A(\alpha, t)\sqrt{n}),$$

où ξ suit la loi $\mathcal{N}(0,1)$ et A est une fonction à déterminer.

4. Étudier $\lim_{n\to\infty} \mathbb{P}(N_t > \alpha n)$. Si $t_0 = \ln(2)/\theta$, calculer $A(\alpha, t_0)$ et $\lim_{n\to\infty} \mathbb{P}(N_{t_0} > n/2)$.