SAPIENZA Università di Roma – MSc. in Engineering in Computer Science

Formal Methods - July 19, 2021

(Time to complete the test: 2 hours)

Exercise 1. Express the following UML class diagram in FOL:

Exercise 2. Consider the above UML class diagram and the following (partial) instantiation:

- 1. Check whether the above instantiation, once completed, is correct, and explain why it is or it is not.
- 2. Express in FOL the following queries, and evaluate them over the completed instantiation:
 - (a) Return patients who have been prescribed at least two medicines.
 - (b) Return risky patients who have been prescribed medicines by the doctor who supervises them.
 - (c) Check that risky patients have medicines prescribed only by the doctor who supervises them.
 - (d) Return doctors who have prescribed some medicine to all patients who they supervise.

Exercise 3. Model check the Mu-Calculus formula $\nu X.\mu Y.((a \wedge [next]X) \vee (b \wedge \langle next \rangle Y))$ and the CTL formula $AF(EG(a \supset AXEX \neg a))$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 4. Check whether the following FOL formula is valid, by using tableaux:

$$(\forall x.(P(x) \not\equiv (\exists y.Q(y)))) \supset ((\forall x.P(x)) \lor (\forall x.\neg P(x)))$$

Exercise 5. Consider the transition system TS below. Model check the LTL formula $\Box \Diamond a$, by considering that the Büchi automaton BA for $\neg\Box \Diamond a$ (i.e., $\Diamond\Box \neg a$) is the one below:

