KON 426E INTELLIGENT CONTROL SYSTEMS

LECTURE 9 25/04/2022

Membership Functions of Two Dimensions

These are MF's with two inputs, each in a different universe of discourse.

There are two basic operations related with MF's of two dimensions.

Cylindrical Extensions of One-Dimensional MF

If A is a fuzzy set in X, then its **cylindrical extension** in $X \times Y$ is a fuzzy set defined by c(A):

$$c(A) = \int_{X \times Y} \mu_A(x)/(x,y)$$

Figure 2.12. (a) Base set A; (b) its cylindrical extension c(A). (MATLAB file: $cyl_ext.m$)

Projections of Fuzzy Sets

Let R be a two-dimensional fuzzy set on $X \times Y$ Then the projections of R onto X and Y are defined as:

$$R_X = \int_X [\max_y \mu_R(x, y)]/x$$
 $R_Y = \int_Y [\max_x \mu_R(x, y)]/y$

Figure 2.13. (a) Two-dimensional fuzzy set R; (b) R_X (projection of R onto X); and (c) R_Y (projection of R onto Y). (MATLAB file: project.m)

Composite and Noncomposite MF's

If an MF of two dimensions can be expressed as an analytic expression of two MF's of one-dimension, then it is composite. Otherwise, it is noncomposite.

Example:
$$\mu_A(x,y) = \exp\left[-\left(\frac{x-3}{2}\right)^2 - (y-4)^2\right]$$
$$\mu_A(x,y) = \exp\left[-\left(\frac{x-3}{2}\right)^2\right] \exp\left[-\left(\frac{y-4}{1}\right)^2\right]$$
$$= \operatorname{gaussian}(x;3,2) \operatorname{gaussian}(y;4,1)$$

So, this is composite.

Example:

$$\mu_A(x,y) = \frac{1}{1 + |x-3| |y-4|^{2.5}}$$

Figure 2.14. Two-dimensional MFs defined by the min and max operators: (a) $z = \min(trap(x), trap(y))$; (b) $z = \max(trap(x), trap(y))$; (c) $z = \min(bell(x), bell(y))$; (d) $z = \max(bell(x), bell(y))$. (MATLAB file: mf2d.m)

Fuzzy Intersection (T-norm: Triangular norm)

Intersection of two fuzzy sets A and B is specified by a $T:[0,1]\times[0,1]\to[0,1]$ which aggregates two membership grades as follows:

$$\mu_{A \cap B}(x) = T(\mu_A(x), \mu_B(x)) = \mu_A(x) \tilde{*} \mu_B(x).$$

 $\bar{*}$ is a binary operator for fuction T.

T-norm operator is a two-place function T(.,.) satisfying:

$$T(0,0) = 0, \ T(a,1) = T(1,a) = a$$
 (boundary)
 $T(a,b) \le T(c,d) \text{ if } a \le c \text{ and } b \le d$ (monotonicity)
 $T(a,b) = T(b,a)$ (commutativity)
 $T(a,T(b,c)) = T(T(a,b),c)$ (associativity).

Examples: Some frequently used *T*-norms

Minimum: $T_{min}(a,b) = \min(a,b) = a \wedge b$.

Algebraic product: $T_{ap}(a,b) = ab$.

Bounded product: $T_{bp}(a,b) = 0 \lor (a+b-1)$.

Drastic product: $T_{dp}(a,b) = \begin{cases} a, & \text{if } b = 1. \\ b, & \text{if } a = 1. \\ 0, & \text{if } a, b < 1. \end{cases}$

Figure 2.16. (First row) Four T-norm operators $T_{min}(a,b)$, $T_{ap}(a,b)$, $T_{bp}(a,b)$, and $T_{dp}(a,b)$; (second row) the corresponding surfaces for a = trapezoid(x,3,8,12,17) and b = trapezoid(y,3,8,12,17). (MATLAB file: tnorm.m)

Fuzzy Union (S-norm)(T-conorm)

Union of two fuzzy sets A and B is specified by a function $S:[0,1]\times[0,1]\to[0,1]$. which aggregates two membership grades as follows:

$$\mu_{A \cup B}(x) = S(\mu_A(x), \mu_B(x)) = \mu_A(x) + \mu_B(x)$$

S-norm operator is a two-place function S(.,.) satisfying:

$$S(1,1) = 1$$
, $S(0,a) = S(a,0) = a$ (boundary)
 $S(a,b) \le S(c,d)$ if $a \le c$ and $b \le d$ (monotonicity)
 $S(a,b) = S(b,a)$ (commutativity)
 $S(a,S(b,c)) = S(S(a,b),c)$ (associativity).

Examples: Some frequently used *S*-norms

Maximum:
$$S(a, b) = \max(a, b) = a \lor b$$
.

Algebraic sum:
$$S(a,b) = a + b - ab$$
.

Bounded sum:
$$S(a,b) = 1 \land (a+b)$$
.

Drastic sum:
$$S(a,b) = \begin{cases} a, & \text{if } b = 0. \\ b, & \text{if } a = 0. \\ 1, & \text{if } a, b > 0. \end{cases}$$

Figure 2.17. (First row) Four T-conorm operators $S_{min}(a,b)$, $S_{ap}(a,b)$ $S_{bp}(a,b)$ and $S_{dp}(a,b)$; (second row) the corresponding surfaces for a=trapezoid(x,3,8,12,17) and b=trapezoid(y,3,8,12,17). (MATLAB file: tconorm.m)

Fuzzy Complement

A fuzzy complement operator is a continuous function $N:[0,1] \rightarrow [0,1]$ which meets the following aximatic requirements:

$$N(0) = 1$$
 and $N(1) = 0$ (boundary)
 $N(a) \ge N(b)$ if $a \le b$ (monotonicity).

Optional requirement:

$$N(N(a)) = a$$
 (involution)

Example: Sugeno's Complement

$$N_s(a) = \frac{1-a}{1+sa}$$

(s is a parameter greater than -1)

Example: Yager's Complement

$$N_w(a) = (1 - a^w)^{1/w}$$

(w is a positive parameter)

DeMorgan's Laws

For classical sets:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

For fuzzy sets:

T-norms and S-norms are duals which support the generalization of DeMorgan's law:

$$T(a,b) = N(S(N(a), N(b)))$$

$$S(a,b) = N(T(N(a), N(b)))$$

For a given T-norm operator, we can always find a corresponding S-norm and vice versa.

Examples of Parameterized T-norms and S-norms

Yager For q > 0,

$$\begin{cases} T_Y(a,b,q) = 1 - \min\{1, [(1-a)^q + (1-b)^q]^{1/q}\} \\ S_Y(a,b,q) = \min\{1, (a^q + b^q)^{1/q}\} \end{cases}$$

Dubois and Prade For $\alpha \in [0, 1]$,

$$\begin{cases} T_{DP}(a,b,\alpha) = ab/\max\{a,b,\alpha\}, \\ S_{DP}(a,b,\alpha) = [a+b-ab-\min\{a,b,(1-\alpha)\}/\max\{1-a,1-b,\alpha\} \end{cases}$$

Hamacher For $\gamma > 0$,

$$\begin{cases}
T_H(a, b, \gamma) = ab/[\gamma + (1 - \gamma)(a + b - ab)], \\
S_H(a, b, \gamma) = [a + b + (\gamma - 2)ab]/[1 + (\gamma - 1)ab]
\end{cases}$$

For s>0,

$$\begin{cases} T_F(a,b,s) = \log_s[1 + (s^a - 1)(s^b - 1)/(s - 1)] \\ S_F(a,b,s) = 1 - \log_s[1 + (s^{1-a} - 1)(s^{1-b} - 1)/(s - 1)] \end{cases}$$

Sugeno

For $\lambda \geq -1$,

$$\begin{cases} T_S(a, b, \lambda) = \max\{0, (\lambda + 1)(a + b - 1) - \lambda ab\} \\ S_S(a, b, \lambda) = \min\{1, a + b - \lambda ab\} \end{cases}$$

Dombi

For $\lambda > 0$,

$$\begin{cases} T_D(a,b,\lambda) = \frac{1}{1 + \left[(a^{-1} - 1)^{\lambda} + (b^{-1} - 1)^{\lambda} \right]^{1/\lambda}} \\ S_D(a,b,\lambda) = \frac{1}{1 + \left[(a^{-1} - 1)^{-\lambda} + (b^{-1} - 1)^{-\lambda} \right]^{-1/\lambda}} \end{cases}$$

Binary Relations (for crisp sets)

A binary relation between two sets X_1 and X_2 is a subset of $X_1 \times X_2$ (It is a collection of ordered pairs)

Let X_1 and X_2 be two sets.

The Cartesian product (the set of all ordered pairs) is:

$$X_1 \times X_2 = \{(x, y) : x \in X_1, y \in X_2\}$$

Characteristic function is:

$$\varphi_R(x,y) = \begin{cases} 1, & (x,y) \in R \\ 0, & otherwise \end{cases}$$

$$R(X_1, X_2) \subseteq X_1 \times X_2$$

$$R(X_1, X_2, \dots, X_n) \subseteq X_1 \times X_2 \times X_3 \times \dots \times X_n$$

There are three ways to show relations.

- Venn diagrams
- Listing
- Matrix method

Matrix representation:

$$R = \{\langle a, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle, \langle c, 3 \rangle, \langle d, 3 \rangle\} \subseteq \{a, b, c, d\} \times \{1, 2, 3\}$$

Binary Fuzzy Relation

Let X and Y be two universes of discourse. Then:

$$\mathcal{R} = \{ ((x, y), \mu_{\mathcal{R}}(x, y)) \mid (x, y) \in X \times Y \}$$

is a binary fuzzy relation in $X \times Y$

Note that $\mu_{\mathcal{R}}(x,y)$ is a two-dimensional MF.

Example

Let $X = Y = \mathbb{R}^+$ (the positive real line) and $\mathbb{R} = "y$ is much greater than x." The MF of the fuzzy relation \mathbb{R} can be subjectively defined as

$$\mu_{\mathcal{R}}(x,y) = \begin{cases} \frac{y-x}{x+y+2}, & \text{if } y > x. \\ 0, & \text{if } y \leq x. \end{cases}$$

If $X = \{3, 4, 5\}$ and $Y = \{3, 4, 5, 6, 7\}$, then it is convenient to express the fuzzy relation \mathcal{R} as a **relation matrix**:

$$\mathcal{R} = \left[\begin{array}{ccccc} 0 & 0.111 & 0.200 & 0.273 & 0.333 \\ 0 & 0 & 0.091 & 0.167 & 0.231 \\ 0 & 0 & 0 & 0.077 & 0.143 \end{array} \right],$$

where the element at row i and column j is equal to the membership grade between the ith element of X and jth element of Y.

Example

X={New York, Paris}

Y={Pekin, New York, London}

R="city x is distant from city y"

$$R = \begin{bmatrix} 1 & 0 & 0.6 \\ 0.9 & 0.7 & 0.3 \end{bmatrix}$$

Some common examples of binary fuzzy relations

- x is close to y (x and y are numbers)
- x depends on y (x and y are events)
- x and y look alike (x and y are persons, objects, and so on)
- If x is large, then y is small (x is an observed reading and y is a corresponding action).

How are binary fuzzy relations combined?

Let \mathcal{R}_1 and \mathcal{R}_2 be two fuzzy relations defined on $X \times Y$ and $Y \times Z_1$ respectively.

They can be combined in two ways:

Max-min composition (Zadeh)

$$\mathcal{R}_1 \circ \mathcal{R}_2 = \{ [(x, z), \max_{y} \min(\mu_{\mathcal{R}_1}(x, y), \mu_{\mathcal{R}_2}(y, z))] | x \in X, y \in Y, z \in Z \}$$

Or equivalently:

$$\mu_{\mathcal{R}_1 \circ \mathcal{R}_2}(x, z) = \max_{y} \min[\mu_{\mathcal{R}_1}(x, y), \mu_{\mathcal{R}_2}(y, z)]$$
$$= \vee_{y} [\mu_{\mathcal{R}_1}(x, y) \wedge \mu_{\mathcal{R}_2}(y, z)]$$

Max-product composition

$$\mu_{\mathcal{R}_1 \circ \mathcal{R}_2}(x, z) = \max_{y} \left[\mu_{\mathcal{R}_1}(x, y) \mu_{\mathcal{R}_2}(y, z) \right]$$

Example

Let

 $\mathcal{R}_1 = "x \text{ is relevant to } y"$

 \mathcal{R}_2 = "y is relevant to z"

be two fuzzy relations defined on $X \times Y$ and $Y \times Z$, respectively, where $X = \{1, 2, 3\}$, $Y = \{\alpha, \beta, \gamma, \delta\}$, and $Z = \{a, b\}$. Assume that \mathcal{R}_1 and \mathcal{R}_2 can be expressed as the following relation matrices:

$$\mathcal{R}_{1} = \begin{bmatrix} 0.1 & 0.3 & 0.5 & 0.7 \\ 0.4 & 0.2 & 0.8 & 0.9 \\ 0.6 & 0.8 & 0.3 & 0.2 \end{bmatrix}$$

$$\mathcal{R}_{2} = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.3 \\ 0.5 & 0.6 \\ 0.7 & 0.2 \end{bmatrix}.$$

Now we want to find $\mathcal{R}_1 \circ \mathcal{R}_2$, which can be interpreted as a derived fuzzy relation "x is relevant to z" based on \mathcal{R}_1 and \mathcal{R}_2 . For simplicity, suppose that we are only interested in the degree of relevance between $2 \in X$ and $a \in Z$. If we adopt max-min composition, then

Max-min composition:

```
\mu_{\mathcal{R}_1 \circ \mathcal{R}_2}(2, a) = \max(0.4 \land 0.9, 0.2 \land 0.2, 0.8 \land 0.5, 0.9 \land 0.7)

= \max(0.4, 0.2, 0.5, 0.7)

= 0.7 \text{ (by max-min composition).}
```

Max-product composition:

$$\mu_{\mathcal{R}_1 \circ \mathcal{R}_2}(2, a) = \max(0.4 \times 0.9, \ 0.2 \times 0.2, \ 0.8 \times 0.5, \ 0.9 \times 0.7)$$

= $\max(0.36, \ 0.04, \ 0.40, \ 0.63)$
= 0.63 (by max-product composition).

Composition of fuzzy relations

Extension Principle

(Generalizes point-to-point mapping f to a mapping between fuzzy sets)

Suppose f is a function from X to Y and A is a fuzzy set on X defined by:

$$A = \mu_A(x_1)/x_1 + \mu_A(x_2)/x_2 + \cdots + \mu_A(x_n)/x_n$$

The extension principle states that the image of fuzzy set A under the mapping $f(\cdot)$ can be expressed as a fuzzy set B:

$$B = f(A) = \mu_A(x_1)/y_1 + \mu_A(x_2)/y_2 + \dots + \mu_A(x_n)/y_n$$

where $y_i = f(x_i), i = 1, \ldots, n$

If $f(\cdot)$ is a many-to one mapping, there exist $x_1, x_2 \in X, x_1 \neq x_2$ such that $f(x_1) = f(x_2) = y^*, y^* \in Y$

In this case, the membership grade of B at $y=y^*$ is the maximum of the membership grades of A at $x=x_1$ and $x=x_2$ since $f(x)=y^*$ may result from either $x=x_1$ or $x=x_2$. We have:

$$\mu_B(y) = \max_{x=f^{-1}(y)} \mu_A(x)$$

Example:

Let

$$A = 0.1/-2 + 0.4/-1 + 0.8/0 + 0.9/1 + 0.3/2$$

and

$$f(x) = x^2 - 3.$$

Upon applying the extension principle, we have

$$B = 0.1/1 + 0.4/-2 + 0.8/-3 + 0.9/-2 + 0.3/1$$

= 0.8/-3 + (0.4 \times 0.9)/-2 + (0.1 \times 0.3)/1
= 0.8/-3 + 0.9/-2 + 0.3/1,

where V represents max.

Example (continuous universe of discourse)

Let

$$\mu_A(x) = bell(x; 1.5, 2, 0.5)$$

and

$$f(x) = \begin{cases} (x-1)^2 - 1, & \text{if } x \ge 0. \\ x, & \text{if } x \le 0. \end{cases}$$

- \triangleright Upto now, y = f(x) is a single-variable function.
- Now, suppose f is a mapping from an n-dimensional product space $X_1 \times X_2 \times \dots \times X_n \to Y$ such that: $f(x_1, \dots, x_n) = y$
- \triangleright There is a fuzzy set A_i in each X_i , i = 1, ..., n.
- \triangleright Since each element in an input vector (x_1, \dots, x_n) occurs **simultaneously**, this implies an **AND** operation.
- Membership grade $\mu_B(y)$ of fuzzy set B induced by the mapping f should be the minimum of the membership grades of the constituent fuzzy sets A_i , i = 1, ..., n.

Formal Definition of the Extension Principle

Suppose f is a mapping from an n-dimensional Cartesian product space $X_1 \times X_2 \times \cdots \times X_n$ to a one-dimensional universe Y such that $y = f(x_1, \ldots, x_n)$ and suppose that A_1, \ldots, A_n are n fuzzy sets in X_1, \ldots, X_n respectively.

Then the extension principle asserts that the fuzzy set B induced by mapping f is defined by:

$$\mu_B(y) = \left\{ \begin{array}{ll} \max_{(x_1, \dots, x_n), \; (x_1, \dots, x_n) = f^{-1}(y)} [\min_i \; \mu_{A_i}(x_i)], & \text{if } f^{-1}(y) \neq \emptyset. \\ 0, & \text{if } f^{-1}(y) = \emptyset. \end{array} \right.$$

FUZZY IF-THEN RULES

Linguistic Variables

- ➤ Here, the **linguistic variable** is the "age".
- \triangleright It is defined on the **universe of discourse** X=[0,90].
- The **term set** of age is the set of linguistic values or linguistic terms: $T(age) = \{young, middle-aged, old\}$
- **> "age is young":** assignment of a linguistic value to a linguistic variable.

Fuzzy IF-THEN rules

(Fuzzy Rule/Fuzzy Implication/Fuzzy Conditional Statement)

IF x is A THEN y is B antecedent consequence premise conclusion

A and B are linguistic values defined by fuzzy sets on universes of discourses X and Y, respectively.

Examples: IF pressure is high, THEN volume is small

IF road is slippery, **THEN** driving is dangerous

IF a tomato is red, **THEN** it is ripe

IF speed is high, THEN apply the brake a little

Example:

For a basic control application:

Linguistic values:

PS: Positive small NS:Negative small

PM:Positive medium NM:Negative medium

PB: Positive big NB: Negative big

e: tracking error

: derivative of the tracking error

u: control input

IF e is PS and is PM THEN u is PS

IF e is NM and e is NB THEN u is NM

Orthogonality

A term set $T = t_1, \dots, t_n$ of a linguistic variable x on the universe X is orthogonal if it fulfills the following property:

$$\sum_{i=1}^{n} \mu_{t_i}(x) = 1, \ \forall x \in X$$

where the t_i 's are convex and normal fuzzy sets defined on X and these fuzzy sets make up the term set T.

Linguistic Modifiers

Concentration and Dilation of Linguistic Values

If A is a linguistic value, characterized by a fuzzy set with membership function $\mu_A(\cdot)$, then you can modify A as A^k :

$$A^k = \int_X [\mu_A(x)]^k / x$$

Concentration (Applying **VERY** or **TOO**)

$$CON(A) = A^2$$

Dilation (Applying **MORE OR LESS**)

$$DIL(A) = A^{0.5}$$

Example

Let

$$\mu_{\text{young}}(x) = \text{bell}(x, 20, 2, 0) = \frac{1}{1 + (\frac{x}{20})^4},$$

$$\mu_{\mbox{old}}(x) = \mbox{bell}(x, 30, 3, 100) = \frac{1}{1 + (\frac{x - 100}{30})^6},$$

where x is the age of a given person, with the interval [0, 100] as the universe of discourse.

• more or less old = DIL(old) = old^{0.5}

$$= \int_X \sqrt{\frac{1}{1 + (\frac{x - 100}{30})^6}} / x.$$

• not young and not old =
$$\neg young \cap \neg old$$

= $\int_X \left[1 - \frac{1}{1 + (\frac{x}{20})^4} \right] \wedge \left[1 - \frac{1}{1 + (\frac{x-100}{30})^6} \right] / x$.

• young but not too young = young \cap \squaryoung^2 = \int_X \left[\frac{1}{1 + (\frac{x}{20})^4} \right] \left\left[1 - \left(\frac{1}{1 + (\frac{x}{20})^4} \right)^2 \right] \sqrace x.

extremely old

$$= \text{CON}(\text{CON}(\text{CON}(old))) = ((old^2)^2)^2 = \int_X \left[\frac{1}{1 + (\frac{x - 100}{30})^6} \right]^8 / x.$$

