Automata and Reactive Systems

Lecture No. 8

Prof. Dr. Wolfgang Thomas

thomas@informatik.rwth-aachen.de

Lehrstuhl für Informatik VII
RWTH Aachen

4 Deterministic ω -Automata

We have seen:

Deterministic Büchi automata are too weak to recognize the set $L = (a + b)^* a^{\omega}$

How to define deterministic ω -automata which have the same power as nondeterministic Büchi automata?

Idea: To define successful runs, we fix precisely the states which should be visited infinitely often.

For a sequence $\rho \in Q^{\omega}$ define

 $Inf(\rho) = \{q \in Q \mid q \text{ occurs infinitely often in } \rho\}$

Muller automata

A (deterministic) Muller automaton has the form

 $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ where

- Q, Σ, q_0 are as for Büchi automata
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $\mathcal{F} \subseteq 2^Q$, i.e. $\mathcal{F} = \{F_1, \dots, F_k\}$ for certain sets $F_1, \dots, F_k \subseteq Q$

and where a run ρ is called successful if $Inf(\rho) \in \mathcal{F}$ (Muller acceptance)

 ${\mathcal H}$ accepts α if the unique run of ${\mathcal H}$ on α is successful.

$$L(\mathcal{A}) := \{ \alpha \mid \mathcal{A} \text{ accepts } \alpha \}$$

L is Muller recognizable if $L = L(\mathcal{A})$ for a Muller automaton \mathcal{A}

Comparison with Büchi automata

The Büchi acceptance condition (for the run ρ and the set F of final states) means $Inf(\rho) \cap F \neq \emptyset$

The Muller condition (for $\mathcal{F} = \{F_1, \dots, F_k\}$) means $Inf(\rho) = F_i$ for some $i = 1, \dots, k$

Example

 $L=(a+b)^*a^\omega$ is recognized by the following Muller automaton with $\mathcal{F}=\{\{q_1\}\}$

$$\frac{2}{3}$$

Example: Fairness condition

Let L be the set of ω -words over $\{a,b,c\}$ with the property "if a occurs infinitely often, then b occurs infinitely often"

Muller versus deterministic Büchi

4.1 Theorem: The Muller recognizable ω -languages are the boolean combinations of deterministic Büchi recognizable ω -languages.

Proof: First direction from left to right.

Assume $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ recognizes L.

 ${\mathcal H}$ accepts α

iff for some $F \in \mathcal{F}$:

 ${\mathcal H}$ on α visits precisely the F-states infinitely often

iff
$$\bigvee_{F \in \mathcal{F}} \Big(\bigwedge_{q \in F} \exists^{\omega} i : \delta(q_0, \alpha(0) \dots \alpha(i)) = q \Big)$$

 $\bigwedge_{q \in Q \setminus F} \neg \exists^{\omega} i : \delta(q_0, \alpha(0) \dots \alpha(i)) = q \Big)$

Büchi automata as Muller automata

For the other direction show:

Boolean combinations of deterministic Büchi recognizable ω -languages are Muller recognizable.

Remark: Each deterministic Büchi automaton

 $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ can be represented as a Muller automaton

$$\mathcal{A}' = (Q, \Sigma, q_0, \delta, \mathcal{F})$$

with $P \in \mathcal{F} : \Leftrightarrow P \cap F \neq \emptyset$

4.2 Lemma: The class of Muller recognizable ω -languages is closed under boolean operations.

Boolean operations on Muller automata

The class of Muller recognizable ω -languages is closed under boolean operations.

Proof:

Complementation: From $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$

proceed to $\mathcal{A} = (Q, \Sigma, q_0, \delta, 2^Q \setminus \mathcal{F})$

Intersection: Given \mathcal{A}_1 , \mathcal{A}_2 over Q_1 , Q_2 and with acceptance components \mathcal{F}_1 , \mathcal{F}_2 .

Construct the product automaton over $Q_1 \times Q_2$ and define the acceptance component \mathcal{F} as follows:

$$\{(p_1,q_1),\ldots,(p_n,q_n)\}\in\mathcal{F}$$

iff
$$\{p_1,\ldots,p_n\}\in\mathcal{F}_1$$
 and $\{q_1,\ldots,q_n\}\in\mathcal{F}_2$

Overview

We show that the following are equivalent for ω -languages

- being a Boolean combination of deterministic Büchi recognizable ω -languages
- deterministic Muller recognizable
- nondeterministic Büchi recognizable

Büchi automata simulate Muller automata

4.3 Theorem: If L is Muller-recognizable then L is (nondeterministic) Büchi recognizable.

Proof: Assume $\mathcal{M} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ recognizes L, with $\mathcal{F} = \{F_1, \dots, F_k\}$.

Idea for an equivalent Büchi automaton \mathcal{B} :

 \mathcal{B} simulates \mathcal{M} and guesses which set F_i is the correct infinity set and from which point onwards precisely the F_i -states are visited again and again.

Introduce memory for accumulating F_i -states. When F_i is full then reset to \emptyset ("final state").

Implementation

Define the Büchi automaton $\mathcal{B} = (Q', \Sigma, q_0', \Delta, F)$:

- $Q' = Q \cup (Q \times 2^Q \times \{1, \dots, k\})$
- $q_0' = q_0$
- $F = \{(p, \emptyset, j) \mid p \in Q, j \in \{1, \dots, k\}\}$
- Δ contains the following transitions $(j \in \{1, \dots, k\})$:

$$(p,a,q)$$
 and $(p,a,(q,\emptyset,j))$ if $\delta(p,a)=q$
$$((p,P,j),a,(q,P\cup\{q\},j))$$
 if $\delta(p,a)=q$ and $P\cup\{q\}\subsetneq F_j$
$$((p,P,j),a,(q,\emptyset,j))$$
 if $\delta(p,a)=q$ and $P\cup\{q\}=F_j$

McNaughton's Theorem (1966)

4.4 Theorem: If L is Büchi recognizable then L is recognizable by a deterministic Muller automaton.

This is the main theorem of the theory of ω -automata.

Given Büchi automaton $\mathcal{B} = (Q, \Sigma, q_0, \Delta, F)$.

First try: Powerset construction

Determine after each input-prefix w the set of states reachable via w,

and declare as final states the sets which contain an F-state.

Illustration

Safra trees

We present the Safra construction (S. Safra 1988)

Idea: Branch off a separate computation thread starting from final states

To record these different computation branches we use a tree structure.

A Safra tree over Q is an ordered finite tree

- with node names from $\{1, \ldots, 2|Q|\}$,
- where each node is labelled by a nonempty set $R \subseteq Q$, possibly with an extra marker "!"
- where labels of brother nodes are disjoint
- where the union of brother nodes is a proper subset of the parent node

Definition of the Muller automaton

Remark: There are only finitely many possible Safra trees over Q.

For the given Büchi automaton $\mathcal{B} = (Q, \Sigma, q_0, \Delta, F)$

define the Muller automaton $\mathcal{M} = (Q', \Sigma, q_0', \delta, \mathcal{F})$:

- Q' := set of Safra trees over Q.
- q₀' := Safra tree consisting just of root labelled {q₀}
- Define $\delta(s, a)$ (for Safra tree s, input letter a) in four stages as described below
- Declare a set S of Safra trees to be in \mathcal{F} if some node name appears in each tree $s \in S$, and in some tree $s \in S$ the label of this node name carries the marker "!"

A transition of \mathcal{M}

Define $\delta(s, a)$ (for Safra tree s, input letter a) in four stages as follows:

- 1. For each node whose label contains final states, branch off a new son containing these final states. (Take as node name a free number $\leq 2|Q|$)
- 2. To each node label apply the powerset construction via input letter $a: R \to \{r' \mid \exists r \in R : (r, a, r') \in \Delta\}$
- 3. Cancel state q if it occurs also in an older brother node. Cancel a node if it carries label \emptyset (unless it is the root)
- 4. Cancel all sons (and their descendants) if the union of their labels is the parent label, and in this case mark the parent by "!"

Example

