Тема 1. Кинематика материальной точки и твердого тела

- 1. Определите скорость υ и полное ускорение a точки в момент времени t=2 с, если она движется по окружности радиусом R=1 м согласно уравнению $s=At+Bt^3$, где A=8 м/с; B=-1 м/с³; s- криволинейная, т. е. дуговая координата, отсчитанная вдоль дуги окружности от некоторой точки на траектории, принятой за начальную.
- 2. По прямой линии движутся две материальные точки согласно уравнениям: $x_1 = A_1 + B_1t + C_1t^2$ и $x_2 = A_2 + B_2t + C_2t^2$, где $A_1 = 10$ м; $B_1 = 1$ м/c; $C_1 = 2$ м/c²; $A_2 = 3$ м; $B_2 = 2$ м/c; $C_2 = 1$ м/c². В какой момент времени τ скорости этих точек будут одинаковы? Найдите ускорения a_1 и a_2 этих точек.
- 3. Точка движется по окружности радиусом R=9 м. В некоторый момент времени нормальное ускорение a_n точки равно 4 м/с², вектор полного ускорения \vec{a} образует в этот момент с вектором нормального ускорения \vec{a}_n угол $\alpha=60^\circ$. Найдите скорость ν и тангенциальное ускорение a_τ точки.
- 4. Точка движется по прямой согласно уравнению $x = At + Bt^3$, где A = 6 м/c; B = -0.125 м/c³. Определите среднюю путевую скорость $\langle \upsilon_{\rm cp} \rangle$ точки в интервале времени от $t_1 = 2$ с до $t_2 = 6$ с.
- 5. Материальная точка движется прямолинейно. Уравнение движения имеет вид $x = At + Bt^3$, где A = 3 м/с; B = 0.06 м/с³. Найдите скорость υ и ускорение a точки в моменты времени $t_1 = 0$ и $t_2 = 3$ с. Каковы средние значения скорости $\langle \upsilon_{cp} \rangle$ и ускорения $\langle a_{cp} \rangle$ за первые 3 с движения?
- 6. Диск радиусом R = 0.2 м вращается согласно уравнению $\varphi = A + Bt + Ct^3$, где A = 3 рад; B = -1 рад/с; C = 0.1 рад/с³. Определите тангенциальное a_{τ} , нормальное a_n и полное a ускорения точек на ободе диска для момента времени $t_1 = 10$ с.
- 7. Скорость точки, движущейся по окружности радиусом 4 м, изменяется по закону $\upsilon = At + +Bt^2$, где A=1 м/с²; B=3 м/с³. Найдите тангенциальное и полное ускорения точки в момент времени $t_1=1$ с.
- 8. Найдите линейную скорость и нормальное ускорение точек поверхности Земли в ее суточном вращении на широте Минска ($\varphi = 54^{\circ}$). Радиус Земли принять равным 6400 км.
- 9. Свободно падающее тело в последнюю секунду движения проходит половину всего пути. С какой высоты падает тело, и каково время t_1 его падения?
- 10. Найдите угловое ускорение ε колеса, если известно, что через время $t_1 = 2$ с после начала движения вектор полного ускорения точки, лежащей на ободе, составляет угол $\alpha = 60^{\circ}$ с вектором ее линейной скорости.
- 11. Студент проехал половину пути на велосипеде со скоростью $\upsilon_1=16$ км/ч. Далее половину оставшегося времени он ехал со скоростью $\upsilon_2=12$ км/ч, а затем до конца пути шел пешком со скоростью $\upsilon_3=5$ км/ч. Определите среднюю скорость студента на всем пути.
- 12. Двигаясь с постоянным ускорением в одном направлении, тело за два последовательных промежутка времени величиной по t=2 с каждый проходит отрезки пути $s_1=16$ м и $S_2=8$ м. Найдите скорость тела в начале первого отрезка?
- 13. Самолет летит на высоте h = 180 м со скоростью $\upsilon_1 = 180$ км/ч. С самолета надо сбросить пакет на катер, который движется со скоростью $\upsilon_2 = 21,3$ км/ч навстречу самолету. На каком расстоянии от катера нужно сбросить пакет?
- 14. Колесо автомашины вращается равнозамедленно. За время t=2 мин оно изменило частоту вращения от $n_1=240$ об/мин до $n_2=60$ об/мин. Определите угловое ускорение колеса и число полных оборотов.
- 15. Три четверти пути автомобиль прошел со скоростью $\upsilon_1 = 60$ км/ч, оставшуюся часть пути со скоростью $\upsilon_2 = 80$ км/ч. Какова средняя скорость автомобиля?
- 16. Тело движется из состояния покоя равноускоренно и в течение пятой секунды от начала движения прошло путь s = 27 м. С каким ускорением двигалось тело?

- 17. В мишень с расстояния l=50 м сделали два выстрела в горизонтальном направлении при одинаковой наводке винтовки. Скорость первой пули $\upsilon_1=320$ м/с, второй $-\upsilon_2=350$ м/с. Определите расстояние между пробоинами.
- 18. Трамвай начал двигаться равноускоренно по закругленному участку пути и, пройдя расстояние $s=250\,$ м, развил скорость $\upsilon=36\,$ км/ч. Найдите тангенциальное, нормальное и полное ускорения трамвая через время $t=40\,$ с после начала движения. Радиус закругления $R=200\,$ м.
- 19. Расстояние между двумя светофорами машина прошла на первом участке, равном 0,1 всей его длины, равноускоренно и набрала скорость $\upsilon = 20$ м/с. Затем она шла равномерно с этой скоростью и на последнем участке, равном по длине первому, тормозила с постоянным ускорением. Какова средняя скорость автомашины?
- 20. Свободно падающее тело последние h=196 м прошло за время t=4 с. С какой высоты и сколько времени падало тело?
- 21. С башни высотой h=30 м в горизонтальном направлении брошено тело с начальной скоростью $\upsilon_0=10$ м/с. Определите уравнение траектории тела и скорость тела в момент падения на Землю.
- 22. Якорь электродвигателя, имеющий частоту вращения n=50 об/с после выключения тока, сделав N=628 оборотов, остановился. Определите угловое ускорение якоря.
- 23. Расстояние между двумя станциями, равное S=36 км, поезд прошел со средней скоростью $\upsilon_{\rm cp}=54$ км/ч. На разгон он тратил время $t_1=2$ мин, на снижение скорости $-t_3=1$ мин, а остальное время поезд двигался с постоянной скоростью. Определите наибольшую скорость $\upsilon_{\rm max}$.
- 24. Тело движется из состояния покоя равноускоренно. Во сколько раз путь, пройденный за вторую секунду, больше пути, пройденного за первую секунду?
- 25. Диск радиусом R=10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением $\upsilon = At + Bt^2$, где A=0,3 м/с², B=0,1 м/с³. Определите угол α , который образует вектор полного ускорения с радиусом диска через время $t_2=2$ с от начала движения.
- 26. Из пункта A в пункт B пароход идет по течению реки $t_1 = 5$ сут, а обратно $-t_2 = 7$ сут. Как долго будет плыть плот от пункта A до пункта B?
- 27. Автомобиль, двигаясь равноускоренно, через время t = 5 с после начала движения достиг скорости $\upsilon = 36$ км/ч. Какой путь прошел автомобиль за третью секунду движения?
- 28. Тело брошено горизонтально со скоростью $\upsilon_0=15$ м/с. Пренебрегая сопротивлением воздуха, определите радиус кривизны R траектории тела через время t=2 с после начала движения.
- 29. С какой высоты падало тело без начальной скорости, если путь, пройденный за последнюю секунду, в n=7 раз больше пути, пройденного за первую секунду.
- 30. Колесо вращается с постоянным угловым ускорением $\varepsilon = 3$ рад/ c^2 . Определите радиус колеса, если через время t = 1 с после начала движения полное ускорение колеса составляло a = 7.5 м/ c^2 .
- 31. Точка движется по окружности радиусом R=30 см с постоянным угловым ускорением ϵ . Определить тангенциальное ускорение a_{τ} точки, если известно, что за время t=4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение a_n =2,7 м/c².
- 32. Материальная точка движется по окружности постоянной угловой скоростью $\omega = \pi/6$ рад/с. Во сколько раз путь ΔS , пройденный точкой за время $t\!=\!4$ с, будет больше модуля ее перемещения Δr ?

Тема 2. Динамика материальной точки и поступательного движения твердого тела

- 1. С высоты h=2 м на стальную плиту свободно падает шарик массой m=200 г и подпрыгивает на высоту $h_1=0,5$ м. Определите изменение Δp импульса шарика при ударе, а также среднюю силу, полученную стенкой при ударе, если длительность удара $\Delta t=0,01$ с.
- 2. Определите импульс $\Delta \vec{p}$, полученный стенкой при ударе о нее шарика массой m=300 г, а также среднюю силу удара, если шарик двигался со скоростью $\upsilon_0=8$ м/с под углом $\alpha=60^\circ$ к плоскости стенки. Удар о стенку считать упругим. Длительность удара $\Delta t=0.02$ с.
- 3. Через блок, укрепленный на конце стола, перекинута нерастяжимая нить, к концам которой прикреплены грузы, один из которых ($m_1 = 400 \, \Gamma$) движется по поверхности стола, а другой ($m_2 = 600 \, \Gamma$) вдоль вертикали вниз. Коэффициент трения f груза о стол равен 0,1. Считая нить и блок невесомыми, определите: 1) ускорение a; 2) силу натяжения T нити.

- 4. Два груза ($m_1 = 0.5$ кг и $m_2 = 0.7$ кг), связанные невесомой и нерастяжимой нитью, лежат на шероховатой горизонтальной поверхности (рис. 1). К грузу m_1 приложена горизонтально направленная сила F = 6 Н. Коэффициент трения грузов о поверхность f = 0.1. Определите: 1) ускорение a грузов; 2) силу натяжения T нити.
- 5. Наклонная плоскость, образующая угол $\varphi = 25^{\circ}$ с горизонтом, имеет длину l = 2 м. Тело соскользнуло с этой плоскости за $t_1 = 2$ с. Определите коэффициент трения f тела о плоскость.
- 6. Тело скользит по наклонной плоскости, составляющей с горизонтом угол $\alpha=45^\circ$. Зависимость пройденного телом пути от времени описывают уравнением $s=ct^2$, где c=1,73 м/с². Определите коэффициент трения f тела о плоскость.

- 7. Под действием некоторой силы \vec{F} материальная точка массой m=2 кг движется прямолинейно согласно уравнению $x=2+5t+t^2-0.2t^3$. Найдите значение этой силы в моменты времени $t_1=2$ с и $t_2=5$ с. В какой момент времени t_3 сила равна нулю?
- 8. Два тела массами $m_1=4$ кг и $m_2=6$ кг связаны нитью, выдерживающей натяжение T=16 H (рис. 2). К телам приложены

силы $F_1 = 2kt$ и $F_2 = kt$ (коэффициент k = 0,1 H/c; t - время). Определите, в какой момент времени нить порвется. Трением пренебречь.

- 9. В установке угол α наклона плоскости с горизонтом равен 30°, массы тел одинаковы и равны m=1 кг (рис. 3). Считая нить и блок невесомыми и пренебрегая трением в оси блока, определите силу давления на ось, если коэффициент трения f между наклонной плоскостью и движущимся по ней телом равен 0,1.
- 10. К пружинным весам подвешен блок. Через блок перекинут шнур, к концам которого привязаны грузы $m_1 = 1,5$ кг и $m_2 = 3$ кг. Каково будет показание T весов во время движения грузов? Массой блока и шнура пренебречь.
- 11. Найдите удлинение стальной пружины длиной l = 50 см, к концу которой прикреплен шарик массой m = 100 г, если он при вращении делает n = 60 об/мин. Жесткость пружины k = 10 кН/м.
- 12. Груз массой m=100 кг перемещают равноускоренно по горизонтальной поверхности, прилагая силу F=200 H, направленную под углом $\alpha=30^\circ$ к горизонту. С каким ускорением движется тело, если коэффициент трения равен f=0,1? Начальная скорость равна нулю.
- 13. На дне шахтной клети лежит груз массой m=100 кг. Каков будет вес этого груза, если клеть: а) поднимается с ускорением a=0,3 м/с² вертикально вверх; б) движется равномерно; в) опускается с ускорением a=0,4 м/с²; г) свободно падает?
- 14. Ящик массой m=20 кг тянут с силой F=120 Н по горизонтальной поверхности. Если эта сила приложена под углом $\alpha_1=60^\circ$ к горизонту, то ящик движется равномерно. С каким ускорением будет двигаться ящик, если ту же силу приложить под углом $\alpha_2=30^\circ$ к горизонту?
- 15. С горы высотой h=2 м и основанием b=5 м съезжают санки, которые останавливаются, пройдя горизонтально путь s=35 м от основания горы. Найдите коэффициент трения, считая его постоянным на всем пути.
 - 16. На длинной нити, перекинутой через блок, подвешены на одном уровне одинаковые грузы.

От одного из грузов отделяется часть, масса которой равна 1/5 массы груза, и через время t=1 с падает на землю. Через какое время после этого достигнет земли другой груз?

- 17. Автомобиль массой m=1 т едет по выпуклому мосту, радиус кривизны которого R=250 м, со скоростью $\upsilon=72$ км/ч. С какой силой F давит автомобиль на мост в точке, направление на которую из центра кривизны моста составляет угол $\alpha=30^\circ$ с вертикалью?
- 18. Вес некоторого тела на полюсе Земли на $\Delta P=313,6$ мН больше, чем его вес на экваторе. Чему равна масса этого тела? Угловая скорость вращения Земли вокруг своей оси $\omega=79$ мкрад/с, радиус Земли $R_3=6400$ км.
- 19. На какой высоте над поверхностью Земли ускорение свободного падения в 16 раз меньше, чем на земной поверхности? Радиус Земли $R_3 = 6400$ км.
- 20. Брусок массой m=2,8 кг перемещают вверх вдоль вертикальной стены с помощью силы, равной F=70 Н и направленной под углом α к вертикали. Найдите ускорение бруска, если известно, что $\sin\alpha=0,6$, а коэффициент трения между стеной и бруском $\mu=0,4$.
- 21. Через блок перекинута нить, к одному концу которой прикреплен груз массой $m_1 = 30$ г. Другой конец нити соединен с невесомой пружиной, к концу которой прикреплен груз массой $m_2 = 50$ г. При движении грузов длина пружины равна l = 17,5 см. Какова длина пружины в нерастянутом состоянии, если под действием силы в F = 1 Н пружина удлиняется на $\Delta l = 0,2$ м?
- 22. Радиус некоторой планеты в 10 раз больше, чем радиус Земли, а средняя плотность вещества планеты в 2 раза меньше средней плотности Земли. Во сколько раз ускорение свободного падения на поверхности планеты больше, чем на поверхности Земли?
- 23. Деревянный брусок массой $m_1 = 400$ г лежит на столе. К нему привязана нить, перекинутая через неподвижный блок, укрепленный на конце стола. К свободному концу нити подвешен груз массой $m_2 = 100$ г, вследствие чего брусок приходит в движение и проходит из состояния покоя путь s=8 см за время t=2 с. Найдите коэффициент трения.
- 24. Лыжник спускается с горы высотой h=12 м и длиной l=36 м, а затем движется по горизонтальному пути до полной остановки. Определите длину горизонтального пути, если коэффициент трения f=0.05.
- 25. Какой угол с вертикалью образует нить конического маятника (тело, подвешено на нити, которая при движении описывает коническую поверхность) длиной $l=1,2\,$ м, если его период обращения $T=2\,$ с?
- $26.\ \mathrm{C}$ какой минимальной скоростью должен ехать мотоциклист по внутренней поверхности вертикального цилиндра радиусом R=10 м, чтобы все время оставаться в одной горизонтальной плоскости? Коэффициент трения между шинами мотоцикла и поверхностью цилиндра равен f=0.25.
- 27. Расстояние между центрами Земли и Луны равно 60 земным радиусам. Масса Луны в 81 раз меньше массы Земли. На каком расстоянии от поверхности Земли находится точка, в которой тело притягивается Землей и Луной с одинаковой силой?
- 28. Гирька массой m=100 г, привязанная к резиновому шнуру, вращается с угловой скоростью $\omega=10$ рад/с по окружности в горизонтальной плоскости так, что шнур составляет угол $\alpha=60^\circ$ с вертикалью. Найдите длину нерастянутого шнура, если его жесткость k=40 Н/м.
- 29. Для равномерного подъема груза массой m=100 кг по наклонной плоскости с углом наклона $\alpha=30^\circ$ надо прилагать силу F=600 Н. С каким ускорением будет двигаться груз вниз, если его отпустить?
- 30. Груз массой 20 кг перемещается вверх по наклонной плоскости с углом наклона 30° и коэффициентом трения 0.05 под действием силы 500 H, направленной горизонтально. За сколько времени тело из состояния покоя пройдет путь 2 м и какую скорость приобретет в конце этого пути?
- 31. Небольшой шарик массой 250 г, прикрепленный к концу нити, равномерно вращают в вертикальной плоскости. На сколько сила натяжения нити в нижней точке траектории больше, чем в верхней?
- 32. Два бруска, связанные нитью, поднимают вверх вдоль наклонной плоскости, прикладывая к верхнему бруску массой 2 кг силу 30 H, параллельную плоскости. Коэффициенты трения между брусками и плоскостью одинаковы. Найдите силу натяжения нити, если масса нижнего бруска 4 кг.

Тема 3. Импульс, работа, мощность, энергия

- 1. Снаряд, летевший горизонтально со скоростью $\upsilon_0 = 400$ м/с, разорвался на два осколка. Меньший осколок, масса которого составляет 40% от массы снаряда, полетел в противоположном направлении со скоростью $\upsilon_1 = 200$ м/с. Определите скорость υ_2 большого осколка.
- 2. В подвешенный на нити длиной l=1,8 м деревянный шар массой $m_1=8$ кг попадает горизонтально летящая пуля массой $m_2=4$ г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол $\alpha=3^{\circ}$? Размером шара пренебречь. Удар пули считать прямым, центральным.
- 3. На подножку вагонетки массой m_0 , которая движется прямолинейно со скоростью υ_0 , прыгает человек массой m в направлении, перпендикулярном ходу вагонетки. Определите скорость вагонетки вместе с человеком.
- 4. Шар массой m=1 кг, катящийся без скольжения по сильно шероховатой поверхности, ударяется о стену и отскакивает от нее. Скорость центра шара до удара $\upsilon_1 = 10$ м/с, после удара $-\upsilon_2 = 8$ м/с. Найдите количество теплоты, выделившееся при ударе.
- 5. Снаряд массой $m_1 = 29$ кг, летевший горизонтально, попадает в платформу с песком массой $m_2 = 10~000$ кг и застревает в песке. С какой скоростью летел снаряд, если платформа начала двигаться со скоростью $\upsilon_2 = 1~\text{m/c}$?
- 6. При горизонтальном полете со скоростью $\upsilon_0 = 250$ м/с снаряд массой m=8 кг разорвался на две части. Большая часть массой $m_1=6$ кг получила скорость $\upsilon_1=400$ м/с в направлении полета снаряда. Определите абсолютное значение и направление скорости $\vec{\upsilon}_2$ меньшей части снаряда.
- 7. Шар массой $m_1 = 4$ кг движется со скоростью $\upsilon_1 = 5$ м/с и сталкивается с шаром массой $m_2 = 6$ кг, который движется ему навстречу со скоростью $\upsilon_2 = 2$ м/с. Считая удар прямым центральным, а шары однородными абсолютно упругими, найдите проекции их скоростей после удара на ось x, направленную вдоль вектора $\vec{\upsilon}_1$.
- 8. Вагон массой m=30 т движется на упор (стенку) со скоростью $\upsilon_0=0,2$ м/с. При полном торможении вагона (в момент его остановки) буферные пружины вагона сжимаются на $\Delta l=12$ см. Определите максимальную силу $F_{\rm max}$ сжатия пружин.
- 9. Шар массой $m_1 = 5$ кг движется со скоростью $\upsilon_1 = 1$ м/с и сталкивается с покоящимся шаром массой $m_2 = 3$ кг. Определите скорости u_1 и u_2 шаров после удара. Шары считать однородными, абсолютно упругими, удар прямым центральным.
- 10. Стальная пуля массой m=10 г, имеющая скорость υ_0 , пробивает подвешенный на тонкой нити свинцовый шар массой M=0,1 кг, в результате чего скорость пули уменьшается вдвое. Какая часть начальной кинетической энергии пули пошла на нагревание?
- 11. Тележка двигается с постоянной скоростью. Человек, скорость которого в 2 раза больше, догоняет тележку, вскакивает на нее и остается на ней, в результате чего скорость тележки увеличивается на 20%. Во сколько раз масса тележки больше массы человека?
- 12. Определите мощность подъемника, который равномерно поднимает вверх по наклонной плоскости с углом наклона $\alpha=30^\circ$ груз, импульс которого $p=3\cdot 10^3$ кг·м/с. Коэффициент трения равен $\mu=0,2$.
- 13. С башни высотой h=30 м горизонтально брошен камень. Найдите потенциальную энергию камня через время t=2 с после начала движения. Масса камня m=0,2 кг. На поверхности земли потенциальная энергия равна нулю.
- 14. Тело массой $m_1=0.5$ кг падает с некоторой высоты на плиту массой $m_2=1$ кг, укрепленную на пружине жесткостью k=4 кН/м. Определите, на какую длину сожмется пружина, если в момент удара скорость груза $\upsilon=5$ м/с. Удар считать неупругим.
- 15. В воде с глубины h=5 м поднимают равномерно до поверхности камень объемом V=0.6 м³. Плотность камня $\rho=2500$ кг/м³. Найдите работу по подъему камня. Плотность воды $\rho_{\rm B}=10^3$ кг/м³.
- 16. В результате взрыва ракета разлетается на три части. Два куска летят под прямым углом друг к другу. Кусок массой $m_1 = 1$ кг со скоростью $\upsilon_1 = 12$ м/с, кусок массой $m_2 = 2$ кг со скоростью $\upsilon_2 = 8$ м/с. Третий кусок отлетает со скоростью $\upsilon_3 = 40$ м/с. Какова его масса? 2 семестр 2024-2025 уч.г., ФИТ, 1 курс, Тульев В.В.

- 17. Две пружины одинаковой длины, имеющие жесткости k_1 и k_2 , соединены между собой одним концом последовательно. Какую работу надо совершить, чтобы растянуть пружины на x см?
- 18. Если акробат стоит неподвижно на сетке, то она прогибается на $\Delta l = 5$ см. На сколько прогнется эта сетка, если акробат прыгнет на нее с высоты h = 10 м?
- 19. Неупругие шары массами $m_1=1$ кг и $m_2=2$ кг движутся навстречу друг другу со скоростями соответственно $\upsilon_1=1$ и $\upsilon_2=2$ м/с. Найдите изменение кинетической энергии системы при ударе.
- 20. Тело массой m=1 кг свободно падает с высоты h=20 м на вертикально стоящую пружину. При ударе пружина сжимается на $\Delta l=0,1$ м. Определите жесткость пружины.
- 21. Шар массой m=4 кг, имевший скорость $\upsilon_1=5$ м/с, сталкивается с покоящимся шаром такой же массы. После абсолютно неупругого столкновения шары двигаются с одинаковыми скоростями. Сколько теплоты выделилось при столкновении?
- 22. Груз массой $m_1=2$ кг соскальзывает без трения с наклонной доски на неподвижную платформу массой $m_2=18$ кг. С какой скоростью начнет двигаться платформа, когда груз упадет на нее? Угол наклона доски к горизонту $\alpha=60^\circ$, высота начального положения груза над уровнем платформы h=1,8 м.
- 23. Человек массой $m_1 = 60$ кг, стоя на коньках, горизонтально бросает перед собой груз массой $m_2 = 2$ кг со скоростью $\upsilon = 3$ м/с, а сам откатывается назад. Через сколько секунд после броска человек остановится, если коэффициент трения коньков о лед $\mu = 0.01$?
- 24. Падающим с высоты h=1,2 м грузом забивают сваю, которая от удара уходит в землю на $\Delta x=2$ см. Определите среднюю силу удара и его продолжительность, если масса груза m=500 кг, а масса сваи значительно меньше массы груза.
- 25. Пуля, летящая горизонтально, попадает в шар, подвешенный на легком жестком стержне. Масса пули в 1000 раз меньше массы шара. Расстояние от точки подвеса стержня до центра шара равно l=1 м. Найдите скорость пули, если стержень с шаром от удара пули отклонится на угол $\alpha=10^\circ$ от вертикали.
- 26. Летевший снаряд разорвался на два осколка с равными массами. Скорости осколков равны $\upsilon_1=300$ м/с и $\upsilon_2=400$ м/с, угол между векторами скоростей равен $\alpha=90^\circ$. Найдите скорость снаряда до разрыва.
- 27. Мяч, летевший со скоростью $\upsilon_1=15\,$ м/с, отбрасывается ударом ракетки в противоположное направление со скоростью $\upsilon_2=20\,$ м/с. Чему равно изменение импульса мяча, если изменение его кинетической энергии при этом составляет $\Delta K=8,75\,$ Дж?
- 28. Вагон массой $m_1 = 50$ т движется со скоростью $\upsilon = 12$ км/ч и встречает стоящую на пути платформу массой $m_2 = 30$ т. Вычислите расстояние, пройденное платформой и вагоном после сцепления, если коэффициент трения равен $\mu = 0.05$.
- 29. Санки с седоком общей массой m=100 кг съезжают с горы высотой h=8 м и длиной l=100 м. Какова средняя сила сопротивления движению санок, если в конце горы они достигли скорости $\upsilon=10$ м/с, а начальная скорость равна нулю.
- 30. Груз массой m=5 кг падает с высоты h=5 м и проникает в грунт на $\Delta x=5$ см. Определите среднюю силу сопротивления грунта.
- 31. Шар массой m_1 =4 кг движется со скоростью v_1 =5 м/с и сталкивается с шаром массой m_2 =6 кг, который движется ему навстречу со скоростью v_2 =2 м/с. Определить скорости u_1 и u_2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.
- 32. Налетев на пружинный буфер, вагон массой m=16 т, двигавшийся со скоростью $\nu=0,6$ м/с, остановился, сжав пружину на $\Delta l=8$ см. Найти общую жесткость k пружин буфера.

Тема 4. Динамика поступательного и вращательного движений твердого тела.

- 1. На обод маховика диаметром d=60 см намотан шнур, к концу которого привязан груз массой m=2 кг. Определите осевой момент инерции I_x маховика, если он, вращаясь равноускоренно под действием силы тяжести груза, за время $t_1=3$ с приобрел угловую скорость $\omega_1=9$ рад/с.
- 2. Нить с привязанными к ее концам грузами массой $m_1 = 50$ г и $m_2 = 60$ г перекинута через блок диаметром d = 4 см. Определите осевой момент инерции блока, если он вращается с угловым ускорением $\varepsilon = 1,5$ рад/ c^2 .
- 3. Стержень массой m=0,3 кг и длиной l=40 см вращается вокруг оси, проходящей через его середину согласно уравнению $\varphi=At+Bt^3$, где B=0,2 рад/с 3 . Определите вращающий момент M, действующий на стержень в момент времени $t_1=2$ с.
- 4. Горизонтальная платформа массой $m_1 = 120$ кг вращается с частотой $n_1 = 6$ об/мин. Человек массой $m_2 = 80$ кг стоит на краю платформы. С какой частотой n_2 начнет вращаться платформа, если человек перейдет в ее центр? Платформу принять за однородный диск, а человека считайте материальной точкой.
- 5. Определите момент силы M, который необходимо приложить к блоку, вращающемуся с частотой $n_0 = 12$ с⁻¹, чтобы он при равнозамедленном торможении остановился в течение времени $\Delta t = 8$ с. Диаметр блока d = 30 см. Массу блока m = 6 кг считать равномерно распределенной по ободу.
- 6. Блок, имеющий форму диска массой m=0,4 кг, вращается под действием сил натяжения нити, к концам которой подвешены грузы массами $m_1=0,3$ кг и $m_2=0,7$ кг. Определите силы T_1 и T_2 натяжения нити по обе стороны блока.
- 7. К ободу однородного сплошного диска массой m=10 кг, насаженного на ось, приложена касательная сила F=30 Н. Определите радиус R диска, если через время $t_1=4$ с после начала действия силы угловая скорость ω_1 стала равной 240 рад/с.
- 8. К ободу однородного сплошного диска радиусом R=0.5 м приложена постоянная касательная сила F=100 Н. При вращении диска на него действует момент сил трения $M_{\rm Tp}=2$ Н·м. Определите массу m диска, если известно, что его угловое ускорение ε постоянно и равно $\varepsilon=16$ рад/ ${\rm c}^2$.
- 9. На барабан радиусом R = 0.5 м намотан шнур, к концу которого привязан груз массой m = 10 кг. Найдите осевой момент инерции барабана, если известно, что груз опускается с ускорением a = 2.04 м/с².
- 10. Вертикально расположенный стержень массой m=2 кг и длиной l=1 м может вращаться вокруг горизонтальной оси, проходящей через его середину перпендикулярно стержню. В конец стержня попадает пуля массой $m_2=10$ г, летящая перпендикулярно оси и стержню со скоростью $\upsilon=500$ м/с. Определите угловую скорость, с которой начнет вращаться стержень, если пуля застрянет в нем.
- 11. Маховик в виде сплошного диска, момент инерции которого I = 1,5 кг·м², вращаясь при торможении равнозамедленно за промежуток времени t = 1 мин уменьшил частоту своего вращения с $n_1 = 240$ об/мин до $n_2 = 120$ об/мин. Определите угловое ускорение маховика, момент силы торможения и работу торможения.
- 12. На однородный сплошной цилиндрический вал радиусом R=50 см намотана легкая нить, к концу которой прикреплен груз массой m=6,4 кг. Груз, разматывая нить, опускается с ускорением a=2 м/с². Определите момент инерции вала.
- 13. Человек массой $m_1 = 60$ кг, стоящий на краю горизонтальной платформы массой $m_2 = 120$ кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой $n_1 = 10$ об/мин, переходит к ее центру. Считая платформу круглым однородным диском, а человека точечной массой, определите, с какой частотой будет вращаться платформа.
- 14. К ободу однородного сплошного диска массой m=10 кг, насаженного на ось, приложена постоянная касательная сила F=30 Н. Определите кинетическую энергию через время t=4 с после начала действия силы.
- 15. На однородный сплошной цилиндрический вал радиусом R=20 см, момент инерции которого $I=0,15~\rm kr\cdot m^2$, намотана легкая нить, к концу которой прикреплен груз массой $m=0,5~\rm kr$. До начала вращения барабана высота груза над полом составляла $h=2,3~\rm m$. Определите время спуска груза до пола.
- 16. Вентилятор вращается с частотой n=600 об/мин. После выключения он начал вращаться равнозамедленно и, сделав N=50 оборотов, остановился. Работа сил торможения равна $A=31.4~\rm Дж$. Определите момент сил торможения и момент инерции вентилятора.

- 17. Через неподвижный блок в виде однородного сплошного цилиндра массой m=0,2 кг перекинута невесомая нить, к концам которой прикреплены тела массой $m_1=0,35$ кг и $m_2=0,55$ кг. Пренебрегая трением в оси блока, определите ускорение грузов.
- 18. К ободу однородного сплошного диска радиусом R = 50 см приложена постоянная касательная сила F = 100 Н. При вращении диска на него действует момент сил трения $M_{\rm rp} = 2$ Н·м. Определите массу диска, если известно, что его угловое ускорение постоянно и равно $\varepsilon = 16$ рад/с².
- 19. К ободу однородного диска радиусом R = 0.2 м приложена касательная сила F = 98.1 Н. При вращении на диск действует момент сил трения $M_{\rm Tp} = 4.9$ Н·м. Найти массу m диска, если известно, что диск вращается с угловым ускорением $\varepsilon = 100$ рад/с³.
- 20. Шар массой m=1 кг, катящийся без скольжения, ударяется о стенку и откатывается от нее. Скорость шара до удара о стенку $\upsilon=10$ см/с, после удара u=8 см/с. Найти количество теплоты Q, выделившееся при ударе шара о стенку.
- 21. Однородный диск радиусом R=0.2 м и массой m=5 кг вращается вокруг оси, проходящей через его центр перпендикулярно к его плоскости. Зависимость угловой скорости ω вращения диска от времени t дается уравнением ($\omega=A+Bt$, где B=8 рад/ c^2). Найти касательную силу F, приложенную к ободу диска. Трением пренебречь.
- 22. Маховик, момент инерции которого I = 63,6 кг-м², вращается с угловой скоростью $\omega = 31,4$ рад/с. Найти момент сил торможения M, под действием которого маховик останавливается через время t = 20 с. Маховик считать однородным диском.
- 23. К ободу колеса радиусом R = 0.6 м и массой m = 50 кг приложена касательная сила F = 98.1 Н. Найти угловое ускорение ε колеса. Через какое время t после начала действия силы колесо будет иметь частоту вращения n = 100 об/с? Колесо считать однородным диском. Трением пренебречь.
- 24. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой $n_1 = 8$ мин⁻¹, стоит человек массой $m_1 = 70$ кг. Когда человек перешел в центр платформы, она стала вращаться с частотой $n_2 = 10$ мин⁻¹. Определите массу m_2 платформы. Момент инерции человека рассчитывать как для материальной точки.
- 25. Две гири с массами m_1 =2 кг и m_2 = 1 кг соединены нитью, перекинутой через блок массой m =1 кг. Найти ускорение a, с которым движутся гири, и силы натяжения T_1 и T_2 нитей, к которым подвешены гири. Блок считать однородным диском. Трением пренебречь.
- 26. На барабан массой $m_0 = 9$ кг намотан шнур, к концу которого привязан груз массой m = 2 кг. Найти ускорение a груза. Барабан считать однородным цилиндром. Трением пренебречь.
- 27. Колесо радиусом R=30 см и массой m=3 кг скатывается без трения по наклонной плоскости длиной l=5 м и углом наклона $\alpha=25^\circ$. Определите момент инерции колеса, если его скорость в конце движения составляла $\upsilon=4,6$ м/с.
- 28. Человек находится на платформе и держит в руках стержень длиной 2.4 м и массой 8 кг, расположенный вертикально по оси вращения платформы. Платформа с человеком вращается с частотой 1 $\rm c^{-1}$. С какой частотой будет вращаться платформа с человеком, если он повернёт стержень в горизонтальное положение. Суммарный момент инерции человека и платформы 6 кг·м²..
- 29. Горизонтально расположенный деревянный стержень массой $m_1 = 0.8$ кг и длиной l = 1.8 м может вращаться вокруг перпендикулярной к нему вертикальной оси, проходящей через его середину. В конец стержня попадает и застревает в нем пуля массой $m_2 = 3$ г, летящая перпендикулярно к оси и к стержню со скоростью $\upsilon_2 = 50$ м/с. Определите угловую скорость ω , с которой начинает вращаться стержень.
- 30. Блок массой m=1 кг укреплен на конце стола. Гири 1 и 2 одинаковой массы $m_1=m_2=1$ кг соединены нитью, перекинутой через блок. Коэффициент трения гири 2 о стол f=0,1. Найти ускорение a, с которым движутся гири, и силы натяжения T_1 и T_2 нитей. Блок считать однородным диском. Трением в блоке пренебречь.
- 31. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой $n_1 = 8$ мин $^{-1}$, стоит человек массой $m_1 = 70$ кг. Когда человек перешел в центр платформы, она стала вращаться с частотой $n_2 = 10$ мин $^{-1}$. Определите массу m_2 платформы. Момент инерции человека рассчитывать как для материальной точки.
- 32. Колесо радиусом R=30 см и массой m=3 кг скатывается без трения по наклонной плоскости длиной l=5 м и углом наклона $\alpha=25^\circ$. Определите момент инерции колеса, если его скорость в конце движения составляла $\upsilon=4,6$ м/с.

Тема 5. Термодинамические процессы. Внутренняя энергия идеального газа

- 1. Вычислите удельные теплоемкости c_V и c_p смеси неона и водорода, если массовые доли неона и водорода соответственно равны 80% и 20%. Газы считать идеальными.
- 2. Определите суммарную кинетическую энергию поступательного движения всех молекул идеального газа, находящегося в сосуде вместимостью V=3 л под давлением p=540 кПа.
- 3. Для одного моля ($\nu=1$ моль) некоторого двухатомного газа внутренняя энергия U=6,02 кДж/моль. Определите среднюю кинетическую энергию вращательного движения одной молекулы этого газа. Газ считать идеальным.
- 4. Определите молярную массу M двухатомного идеального газа и его удельные теплоемкости, если известно, что разность удельных теплоемкостей этого газа равна $c_p c_V = 260$ Дж/(кг·К).
- 5. Определите показатель адиабаты идеального газа, который при температуре T = 350 K и давлении $p = 0.4 \text{ M}\Pi$ а занимает объем V = 300 л, а его теплоемкость $C_V = 857 \text{ Дж/K}$.
- 6. Определите молярные теплоемкости идеального газа, если его удельные теплоемкости $c_V = 10.4 \text{ кДж/(кг·K)}$ и $c_p = 14.6 \text{ кДж/(кг·K)}$.
- 7. Трехатомный идеальный газ под давлением $p=240\,$ кПа и температуре $t=20\,^{\circ}\mathrm{C}$ занимает объем $V=10\,$ л. Определите теплоемкость C_{p} этого газа при постоянном давлении.
- 8. Углекислый газ массой m=88 г занимает при температуре T=290 К объем V=1000 см³. Рассчитайте его внутреннюю энергию, если газ идеальный.
- 9. Определите показатель адиабаты (C_p/C_V) для смеси газов, содержащей гелий массой $m_1 = 8$ г и водород массой $m_2 = 2$ г. Газы считать идеальными.
- 10. Чему равна степень диссоциации молекул азота, если известно, что отношение $C_p/C_V = 1.47?$ Газ считать идеальным.
- 11. Определите количество теплоты Q, которое надо сообщить кислороду объемом V=50 л при его изохорном нагревании, чтобы давление газа повысилось на $\Delta p=0.5$ МПа. Газ считать идеальным.
- 12. Азот массой m=280 г занимает объем $V_1=100$ л и находится под давлением $p_1=100$ кПа. При нагревании газ расширился при постоянном давлении до объема $V_2=500$ л, а затем его давление возросло до $p_3=300$ кПа при неизменном объеме. Найдите изменение внутренней энергии ΔU газа, совершенную газом работу A и теплоту Q, переданную газу. Постройте график процесса. Газ считать идеальным.
- 13. При изотермическом расширении азота при температуре $T=280~{\rm K}$ его объем увеличился в 2 раза. Масса азота $m=0,2~{\rm kr}$. Определите: 1) совершенную при расширении работу A; 2) изменение ΔU внутренней энергии; 3) количество теплоты Q, полученное газом. Газ считать идеальным.
- 14. Кислород массой m=200 г занимает объем $V_1=100$ л и находится под давлением $p_1=200$ кПа. При нагревании газ расширился при постоянном давлении до объема $V_2=300$ л, а затем его давление возросло до $p_3=500$ кПа при неизменном объеме. Найдите изменение внутренней энергии ΔU газа, совершенную газом работу A и теплоту Q, переданную газу. Постройте график процесса. Газ считать идеальным.
- 15. При изобарном нагревании некоторого идеального газа ($\nu=2$ моль) на $\Delta T=90$ К ему было сообщено количество теплоты Q=5,25 кДж. Определите: 1) работу, совершенную газом; 2) изменение внутренней энергии; 3) величину $\gamma=C_p/C_V$.
- 16. Азот массой m=280 г расширяется в результате изобарного процесса при давлении $p=1\,$ МПа. Определите: 1) работу расширения; 2) конечный объем газа, если на расширение затрачена теплота $Q=5\,$ кДж, а начальная температура азота $T_1=290\,$ К. Газ считать идеальным.
- 17. Идеальный газ занимал объем $0.01~{\rm m}^3$ и находился под давлением $100~{\rm k}$ Па при температуре $300~{\rm K}$. Затем газ был нагрет без изменения объема до температуры $320~{\rm K}$, а после этого нагрет при постоянном давлении до $350~{\rm K}$. Найдите работу, совершенную газом при переходе из начального в конечное состояние.

- 18. Азот массой m=0,1 кг был изобарно нагрет от температуры $T_1=200$ К до температуры $T_2=400$ К. Определите работу A, совершенную газом, полученную им теплоту Q и изменение ΔU внутренней энергии азота. Газ считать идеальным.
- 19. Определите работу A, которую совершит двухатомный идеальный газ, если ему при постоянном давлении сообщить количество теплоты Q=21 кДж. Найдите также изменение ΔU внутренней энергии этого газа.
- 20. Кислород объемом V=1 л находится под давлением p=1 МПа. Определите, какое количество теплоты необходимо сообщить газу, чтобы: 1) увеличить его объем вдвое в результате изобарного процесса; 2) увеличить его давление вдвое в результате изохорного процесса. Газ считать идеальным.
- 21. Некоторый газ массой m=5 г расширяется изотермически от объема V_1 до объема $V_2=2V_1$. Работа расширения A=1 кДж. Считая газ идеальным, определите среднюю квадратичную скорость молекул газа.
- 22. Кислород в количестве v=1 моля (идеальный газ), занимавший при $T_1=400$ К объем $V_1=1$ л, расширяется изотермически до $V_2=2V_1$. Определите работу при расширении, количество сообщенной теплоты и изменение внутренней энергии.
- 23. Азот массой m=14 г сжимают изотермически при температуре T=300 К от давления $p_1=100$ кПа до давления $p_2=500$ кПа. Определите: 1) изменение внутренней энергии газа; 2) работу сжатия; 3) количество выделившейся теплоты. Газ считать идеальным.
- 24. Во сколько раз увеличится объем водорода, содержащий количество вещества $\nu=0,4$ моль при изотермическом расширении, если при этом газ получит количество теплоты Q=800 Дж? Температура водорода T=300 К. Газ считать идеальным.
- 25. Определите работу A, которую совершит трехатомный идеальный газ, если ему при постоянном давлении сообщить количество теплоты Q=21 кДж. Найдите также изменение ΔU внутренней энергии этого газа.
- 26. Работа расширения некоторого двухатомного идеального газа A = 2 кДж. Определите количество подводимой теплоты, если процесс протекал: 1) изотермически; 2) изобарно.
- 27. При адиабатном расширении кислорода (v = 2 моля), находящегося при нормальных условиях, его объем увеличился в 3 раза. Определите: 1) изменение внутренней энергии газа; 2) работу расширения газа. Газ считать идеальным.
- 28. Азот массой m=1 кг занимает при температуре $T_1=300$ К объем $V_1=0.5$ м³. В результате адиабатного сжатия давление газа увеличилось в 3 раза. Определите: 1) конечный объем газа; 2) конечную температуру: 3) изменение внутренней энергии газа. Газ считать идеальным.
- 29. Кислород, занимающий при давлении $p_1 = 0.5$ МПа объем $V_1 = 5$ л расширяется так, что объем увеличивается в 3 раза. Определите конечное значение давления и работу, совершенную газом, если процесс протекал адиабатически. Газ считать идеальным.
- 30. Азот, находившийся при температуре $T_1 = 400$ K, подвергли адиабатному расширению. В результате расширения объем увеличился в 5 раз, а внутренняя энергия уменьшилась на 4 кДж. Определите массу азота. Газ считать идеальным.
- 31. Давление газа 30 кПа, его плотность 1 кг/м 3 . Чему равна средняя квадратичная скорость молекул газа?
- 32. В баллоне находится газ массой 2 кг при температуре 27° С и давлении $2 \cdot 10^{5}$ Па. Когда часть газа была выпущена, а оставшаяся часть нагрета до 627° С, то давление возросло до $3 \cdot 10^{5}$ Па. Какова будет плотность оставшейся части газа, если объем баллона 1 м^{3} ?