Exercise 70.2:

Suppose that i_2 is surjective.

(a) We want to show that j_1 induces an epimorphism $h: \pi_1(U, x_0)/M \to \pi_1(X, x_0)$ where M is the least normal subgroup of $\pi_1(U, x_0)$ containing $i_1(\ker(i_2))$.

Name: James Wang

We first use the hint and show j_1 is surjective, and for now we only focus on the left half of the classic Seifert-van Kampen diagram.

Since i_2 is surjective, for all $v \in \pi_1(V, x_0)$, there exists $y \in \pi_1(U \cap V, x_0)$ such that $i_2(y) = v$. By commutativity, for all $v \in \pi_1(V, x_0)$, we have

$$j_2(v) = j_2 \circ i_2(y) = i_*(y) = j_1 \circ i_1(y)$$
 for some $y \in \pi_1(U \cap V, x_0)$.

Hence $\operatorname{im}(j_2) \subseteq \operatorname{im}(j_1)$. The Seifert-van Kampen Theorem tells us that the homomorphism $j: \pi_1(U, x_0) * \pi_1(V, x_0) \to \pi_1(X, x_0)$ of the free product that extends j_1 and j_2 is surjective, which means images of j_1 and j_2 generate $\pi_1(X, x_0)$. We can then conclude that $\operatorname{im}(j_1)$ alone generates $\pi_1(X, x_0)$. This proves that $j_1: \pi_1(U, x_0) \to \pi_1(X, x_0)$ is surjective.

Recall that $M = \langle i_1(\ker(i_2)) \rangle$. Now to show $h : \pi_1(U, x_0)/M \to \pi_1(X, x_0)$ is surjective, it suffices to show $M \subseteq \ker(j_1)$. Take arbitrary $g \in \ker(i_2)$. This result follows quickly from commutativity:

$$j_1 \circ i_1(g) = i_*(g) = j_2 \circ i_2(g) = j_2(e) = e.$$

$$QED$$

(b) We want to show that h is an isomorphism.

We update our diagram based on the results and hints.

Let $\phi_1: \pi_1(U, x_0) \to \pi_1(U, x_0)/M$ be the projection. We first define the map $\phi_2: \pi_1(V, x_0) \to \pi_1(U, x_0)$ $\pi_1(U,x_0)/M$. Since i_2 is surjective, we know for every $v \in \pi_1(V,x_0)$, there exists at least one $y \in \pi_1(U \cap V, x_0)$ such that $i_2(y) = v$. We define the map $f : \pi_1(V, x_0) \to \pi_1(U \cap V, x_0)$ by $v \mapsto y$. Note that even if there are multiple elements in $\pi_1(U \cap V, x_0)$ that get mapped to v, we just choose one of them and make it y.

We define $\phi_2: \pi_1(V, x_0) \to \pi_1(U, x_0)/M$ by $v \mapsto \phi_1 \circ i_1 \circ f(v)$. We then have to show that ϕ_2 is well-defined. Suppose for some $v \in \pi_1(V, x_0)$, there are two elements $y_1, y_2 \in \pi_1(U \cap V, x_0)$ such that $i_2(y_1) = i_2(y_2) = v$, it suffices to show that defining $f(v) = y_1$ or $f(v) = y_2$ does not affect the output $\phi_2(v)$, that $(i_1(y_1))M = (i_1(y_2))M$. Recall by group theory we know $i_2(y_1) = i_2(y_2)$ implies $y_1y_2^{-1} \in \ker(i_2)$. Chasing through the map i_1 , we have the output $i_1(y_1y_2^{-1})$. Since by definition $M = \langle i_1(\ker(i_2)) \rangle$, we know $i_1(y_1y_2^{-1}) \in M$, which is equivalent to $i_1(y_1)i_1(y_2^{-1}) \in M$ because i_1 is a homomorphism. By the Coset Recognition Lemma, we have $(i_1(y_1))M = (i_1(y_2))M$. This shows the map ϕ_2 is well-defined.

We also need to verify that ϕ_2 is indeed a homomorphism. Since for any $v \in \pi_1(V, x_0)$, we can choose any $y \in i_2^{-1}(v)$ and define f(v) = y, if $f(v_1) = y_1$ and $f(v_2) = y_2$, we can define $f(v_1v_2) = y_1y_2$, because i_2 is a homomorphism and $i_2(y_1y_2) = i_2(y_1)i_2(y_2) = v_1v_2$. Then

$$\phi_{2}(v_{1}v_{2}) = \phi_{1} \circ i_{1} \circ f(v_{1}v_{2})
= \phi_{1} \circ i_{1}(y_{1}y_{2})
= \phi_{1}(i_{1}(y_{1})i_{1}(y_{2}))
= \phi_{1}(i_{1}(y_{1}))\phi_{1}(i_{1}(y_{2}))
= (\phi_{1} \circ i_{1} \circ f(v_{1}))(\phi_{1} \circ i_{1} \circ f(v_{2}))
= \phi_{2}(v_{1})\phi_{2}(v_{2}),$$
(1)

which shows that ϕ_2 is a homomorphism.

Since we have shown ϕ_2 is well-defined and we use $\phi_1 \circ i_1$ in our definition of ϕ_2 , for all $y \in \pi_1(U \cap V, x_0)$, we can define $f \circ i_2(y) = y$. This way,

$$\phi_2 \circ i_2(y) = \phi_1 \circ i_1 \circ f \circ i_2(y) = \phi_1 \circ i_1(y)$$
 for all $y \in \pi_1(U \cap V, x_0)$,

so we have everything to invoke Theorem 70.1. We then get a unique homomorphism Φ : $\pi_1(X, x_0) \to \pi_1(U, x_0)/M$. By commutativity, we have

$$\Phi \circ h \circ \phi_1 = \Phi \circ j_1 = \phi_1$$

which shows that $\Phi \circ h$ is the identity map on $\pi_1(U, x_0)/M$. Hence $h : \pi_1(U, x_0)/M \to \pi_1(X, x_0)$ has a left inverse, so it must be injective. Recall we have proved h is also surjective in part (a). Together we have h is an isomorphism.

QED

Hatcher:

Let X be the union of n lines through the origin in \mathbb{R}^3 . We want to compute the fundamental group of $\mathbb{R}^3 - X$.

Consider the deformation retraction of the space $\mathbb{R}^3 - X$ to $S^2 \cap (\mathbb{R}^3 - X)$, which can be interpreted as a 2-sphere with 2n holes (intersections of the surface of S^2 and 2 ends of each line). Since a 2-sphere with one hole is homotopic equivalent to the interior of the unit disk B^2 , a 2-sphere with 2n holes must be homotopic equivalent to a unit disk B^2 with 2n-1 holes. Hence $\pi_1(\mathbb{R}^3 - X)$ is the free group on 2n-1 generators.

QED

Exercise 70.1:

Suppose that the homomorphism i_* induced by inclusion $i:U\cap V\to X$ is trivial.

(a) Show that j_1 and j_2 induce an epimorphism $h: (\pi_1(U, x_0)/N_1) * (\pi_1(V, x_0)/N_2) \to \pi_1(X, x_0)$ where N_1 is the least normal subgroup of $\pi_1(U, x_0)$ containing image i_1 , and N_2 is the least normal subgroup of $\pi_1(V, x_0)$ containing image i_2 .

We modify the classic Seifert-van Kampen diagram.

We first define the projection maps

$$\varphi_1: \pi_1(U, x_0) \to \pi_1(U, x_0)/N_1$$
 and $\varphi_2: \pi_1(V, x_0) \to \pi_1(V, x_0)/N_2$.

By commutativity, we know $j_1 \circ i_1 = j_2 \circ i_2 = i_*$. Since i_* is trivial, we have $\operatorname{im}(i_1) \subseteq \ker(j_1)$ and $\operatorname{im}(i_2) \subseteq \ker(j_2)$. Together with our definition of the least normal subgroups, this means $N_1 = \langle \operatorname{im}(i_1) \rangle \subseteq \ker(j_1)$ and $N_2 = \langle \operatorname{im}(i_2) \rangle \subseteq \ker(j_2)$. By the Very Useful Lemma from Algebra, we get unique induced homomorphisms

$$\lambda_1: \pi_1(U, x_0)/N_1 \to \pi_1(X, x_0)$$
 satisfying $\lambda_1(uN_1) = j_1(u)$

$$\lambda_2: \pi_1(V, x_0)/N_2 \to \pi_1(X, x_0)$$
 satisfying $\lambda_2(uN_2) = j_2(u)$

This means $\operatorname{im}(j_1) = \operatorname{im}(\lambda_1)$ and $\operatorname{im}(j_2) = \operatorname{im}(\lambda_2)$.

Since $\operatorname{im}(j_1)$ and $\operatorname{im}(j_2)$ generate $\pi_1(X, x_0)$, it must be that $\operatorname{im}(\lambda_1)$ and $\operatorname{im}(\lambda_2)$ also generate $\pi_1(X, x_0)$. Note that the map $h: (\pi_1(U, x_0)/N_1) * (\pi_1(V, x_0)/N_2) \to \pi_1(X, x_0)$ is a homomorphism of the free product that extends the homomorphisms λ_1 and λ_2 . Hence h must be surjective.

QED