Importance Sampling Tree for Large-scale Empirical Expectation (supplementary material)

Olivier Canévet Cijo Jose François Fleuret OLIVIER.CANEVET@IDIAP.CH CIJO.JOSE@IDIAP.CH FRANCOIS.FLEURET@IDIAP.CH

1. An illustration of the close policy

Figure 1 illustrates the close policy. When the bounds of child 0 and child 1 of a node overlap, the probability of bifurcation is 0.5. As soon as they no longer overlap, the score of the child with higher bounds is its lower one, and the score of the child with smaller bounds is its upper bound.

This policy explores more the tree and this is why it is slower in the end.

C	γ	T	Kernels	#SV	Acc.	Time (s)
0.1	50	100000	265.24	7981	83.95	130.08078
0.5	50	100000	229.703	6213	83.95	125.11008
0.5	15	100000	357.499	4480	84.15	122.91283
0.5	10	100000	437.615	4185	84.25	122.89537
1	5	100000	620.246	3691	84.45	122.06775
5	5	100000	559.196	3217	83.95	120.50157
0.1	20	20000	369.676	7220	84.55	26.14553
0.1	5	20000	766.475	5758	84.75	25.972519
0.1	10	20000	513.464	6203	84.75	25.817479
0.5	50	20000	214.318	6213	83.95	25.072426
0.5	10	20000	396.372	4185	84.25	24.709539
0.1	50	10000	238.635	7981	83.95	13.116903
0.5	20	10000	279.822	4788	83.95	12.406951
0.1	5	5000	673.641	5758	84.15	6.62012
0.1	20	5000	337.403	7220	84.55	6.594196
0.1	10	5000	459.707	6203	84.75	6.57555
2	20	5000	235.904	3836	83.95	6.076082
0.1	5	2000	610.77	5758	84.15	2.746622
0.1	20	2000	314.86	7220	84.55	2.691372
0.1	15	2000	353.546	6766	84.75	2.674636
0.1	5	1000	562.106	5758	84.75	1.451517
0.1	10	1000	395.427	6203	84.25	1.392765
0.1	20	1000	298.203	7220	84.35	1.377687
0.5	15	1000	264.911	4480	84.05	1.30869
0.1	20	500	280.077	7220	84.15	0.736825
0.1	15	500	310.606	6766	84.45	0.729109
0.1	10	200	326.765	6203	84.65	0.347478
0.1	15	200	281.025	6766	83.95	0.334733
0.1	20	100	234.961	7220	84.75	0.197346
0.1	15	50	227.658	6766	84.15	0.128896

Table 1. Cross validation to choose parameters C and γ . T can be reduced for speed-up or increased for accuracy.

Figure 1. Illustration of the close policy

2. Checkerboard synthetic problem

The checkerboard data-set 2 is a 2-class problem made of 2D-Gaussian clouds of points centred at each integer coordinate (from 0 to 10) and of standard deviation 0.3 alternating classes.

Three parameters are involved in the IST SVM evaluation: C and γ , the usual SVM parameters and T, the number of samplings with replacement that are performed in the evaluation. We chose these parameters through cross validation such that the validation accuracy and the actual number of kernel computation are Pareto optimal (see Table 1).

Figure 2. The 10×10 checkerboard toy problem – It is made of 2D-Gaussian clouds centered at each integer coordinate and of standard deviation 0.3 alternating classes.