

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ "ИУ, Информатика и системы управления"

КАФЕДРА "ИУ7, Программное обеспечение ЭВМ и информационные технологии"

# Лабораторная работа №2 по дисциплине "Архитектура ЭВМ"

**Тема:** <u>Изучение принципов работы микропроцессорного ядра RISCV</u>

Студент: Андреев А.А.

Группа: ИУ7-54Б

Преподаватель: Попов А.Ю.

# Оглавление

| Оглавление                                                                               | 1 |
|------------------------------------------------------------------------------------------|---|
| 1. Функциональная схема разрабатываемой системы на кристалле                             | 2 |
| 2. Копия экрана готового модуля в системе проектирования систем на кристалле Altera Qsys | 2 |
| 3. Таблица распределение адресов модулей в системе на кристалле                          | 3 |
| 4. Код программного проекта Nios II Software Build Tools for Eclipse                     | 3 |
| 5. Результаты тестирования PSoC на отладочной плате                                      | 4 |

## Задание 1.

Были выполнены все подготовительные операции:

- создан каталог для хранения файлов *C://User/Andreev*
- открыт терминал в данном каталоге
- получена копия репозитория при помощи команды git clone <a href="https://gitlab.com/sibragimov/riscv-lab.git">https://gitlab.com/sibragimov/riscv-lab.git</a>

В результате в каталоге был создан подкаталог riscv-lab, внутри него taiga и src;

В процессе выполнения задания были выполнены следующие действия:

- Ознакомление с теоретической частью и ознакомление с примерами
- Переход в подкаталог src командой *cd riscv-lab/src*
- Выполнена сборка при помощи команды *cmake*. Создан файл test.hex, содержащий шестнадцатеричное представление программы, а в окне терминала отображается дизассемблированный листинг.
- Создан новый файл, содержащий текст программы по варианту 3. Помещен в *src*. Текст программы сохранен в файл с расширением .s.
- Изучен текст программы по 3 варианту. Помещен в отчет код программы (Листинг 1).
- Изменен makefile с адресом на файл программы.
- Выполнена компиляция gmake и получен .hex файл.

## Листинг 1: Код программы, Часть 1

```
.section .text
1.
2.
         .globl start;
3.
        len = 8 #Размер массива
4. enroll = 1 #Количество обрабатываемых элементов за
одну итерацию
5. elem sz = 4 #Размер одного элемента массива
6.
7. _start:
8. la x1, x
        addi x20, x1, elem sz^* (len-1) #Адрес последнего
 элемента
10. lp:
           lw x2, 0(x1)
11.
12.
          add x31, x31, x2 #!
13.
14.
15.
13.
          addi x1, x1, elem sz*enroll
          bne x1, x20, lp
           addi x31, x31, 1
15.
16. lp2: j lp2
```

# Листинг 1: Код программы, Часть 2

```
17.
               .section .data
                .4byte 0x1
18.
      _x:
19.
               .4byte 0x2
               .4byte 0x3
20.
               .4byte 0x4
21.
              .4byte 0x5 .4byte 0x6
22.
23.
              .4byte 0x7
.4byte 0x8
24.
25.
```

# Задание 2.

В ходе выполнения задания:

- был открыт проект в Quartus, запущен
- выполнен синтез проекта
- запущена симуляция в modelsim при помощи *run 460us (*см. Рисунок 2.3)
- Изучен список сигналов в окне wave
- Получен снимок экрана, содержащий временную диаграмму выполнения стадий выборки и диспетчеризации команды с адресом 8000014 (см. Рисунок 2.2), 1-я для третьего варианта (см. Рисунок 2.1).

| Вариант  | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8   |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
| Адрес    |           |           |           |           |           |           |           |     |
| команды, | 8000000c, | 80000010, | 80000014, | 80000018, | 8000001c, | 80000020, | 80000024, | 80  |
| номер    | 1-я       | 1-5 |
| итерации |           |           |           |           |           |           |           |     |
| Вариант  | 10        | 11        | 12        | 13        | 14        | 15        | 16        | 17  |
| Адрес    |           |           |           |           |           |           |           |     |
| команды, | 80000030, | 80000034, | 8000000c, | 80000010, | 80000014, | 80000018, | 8000001c, | 80  |
| номер    | 1-я       | 1-я       | 2-я       | 2-я       | 2-я       | 2-я       | 2-я       | 2-  |
| итерации |           |           |           |           |           |           |           |     |
| Вариант  | 19        | 20        | 21        | 22        | 23        | -         | -         | -   |
| Адрес    |           |           |           |           |           |           |           |     |
| команды, | 80000028, | 8000002c, | 80000030, | 80000034, | 80000038, | -         | -         |     |
| номер    | 2-я       | 2-я       | 2-я       | 2-я       | 2-я       |           |           | -   |
| итерации |           |           |           |           |           |           |           |     |

Рисунок 2.1: Распределение вариантов и адресов



Рисунок 2.2: Снимок экрана с адресом 80000014



Рисунок 2.3: run 460us

# Задание 3.

В ходе выполнения задания:

- В соответствии с таблицей (см. Рисунок 3.1) получен снимок экрана, содержащий стадии декодирования и планирования на выполнение команды с указанным адресом варианта 3 (см. Рисунок 3.2 и Рисунок 3.3).

| Вариант           | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8  |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----|
| Адрес             |           |           |           |           |           |           |           |    |
| команды,          | 80000018, | 8000001c, | 80000020, | 80000024, | 80000028, | 8000002c, | 80000030, | 86 |
| номер             | 1-я       | 1- |
| итерации          |           |           |           |           |           |           |           |    |
| Вариант           | 10        | 11        | 12        | 13        | 14        | 15        | 16        | 17 |
| Адрес             |           |           |           |           |           |           |           |    |
| команды,          | 80000010, | 80000014, | 80000018, | 8000001c, | 80000020, | 80000024, | 80000028, | 80 |
| номер<br>итерации | 2-я       | 2- |
| Вариант           | 19        | 20        | 21        | 22        | 23        | 24        | 25        | 26 |
| Адрес             |           |           |           |           |           |           |           |    |
| команды,          | 80000034, | 80000038, | См.       | См.       | См.       | См.       | См.       | CN |
| номер             | 2-я       | 2-я       | вариант 1 | вариант 2 | вариант 3 | вариант 4 | вариант 5 | ва |
| итерации          |           |           |           |           |           |           |           |    |

Рисунок 3.1: Таблица вариантов



Рисунок 3.2: Снимок экрана со стадиями декодирования по третьему варианту, Часть 1



Рисунок 3.3: Снимок экрана со стадиями декодирования по третьему варианту, Часть 2

# Задание 4.

В ходе выполнения задания:

- В соответствии с таблицей (см. Рисунок 4.1) получен снимок экрана, содержащий временную диаграмму выполнения команды с указанным адресом варианта 3 (см. Рисунок 4.2).

| Вариант                                | 1                | 2                | 3                | 4                | 5                | 6                | 7                | 8  |
|----------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----|
| Адрес<br>команды,<br>номер<br>итерации | 80000000         | 80000004         | 80000008         | 8000000с,<br>1-я | 80000010,<br>1-я | 80000014,<br>1-я | 80000018,<br>1-я | 80 |
| Вариант                                | 10               | 11               | 12               | 13               | 14               | 15               | 16               | 17 |
| Адрес<br>команды,<br>номер<br>итерации | 80000024,<br>1-я | 80000028,<br>1-я | 8000002c,<br>1-я | 80000030,<br>1-я | 8000000с,<br>2-я | 80000010,<br>2-я | 80000014,<br>2-я | 80 |
| Вариант                                | 19               | 20               | 21               | 22               | 23               | 24               | 25               | 26 |
| Адрес<br>команды,<br>номер<br>итерации | 80000020,<br>2-я | 80000024,<br>2-я | 80000028,<br>2-я | 8000002c,<br>2-я | 80000030,<br>2-я | 80000038,<br>2-я | См.<br>вариант 1 | См |

Рисунок 3.1: Таблица вариантов



Рисунок 3.2: Снимок экрана со стадиями декодирования по третьему варианту

## Задание 5.

В ходе выполнения задания:

- Исправлена 76-я строка файла *taiga/examples/zedboard/taiga\_wrapper.sv* так, чтобы там был указан путь к файлу .hex, соответствующему программе по индивидуальному варианту.
- Перекомпилировал исправленный файл.
- Введен в командной строке Modelsim команду restart; run 460us для перезапуска симуляции.
- Получена временную диаграмму сигналов выполнения программы третьего варианта (см. Рисунок 5.1 и Рисунок 5.2). 1d=29



Рисунок 5.1: Временная диаграмма сигналов выполнения программы, Часть 1



Рисунок 5.2: Временная диаграмма сигналов выполнения программы, Часть 2

- Сравнены значения регистров x31 на момент окончания с з.1. Получен снимок экрана, содержащий временные диаграммы сигналов, соответствующих в тексте программы #1 (см. Рисунок 5.3, Рисунок 5.4, Рисунок 5.5)

```
| Section | Sect
```

Рисунок 5.3: Отмечены #1



Рисунок 5.4: add x31, x31, x2 #!. В дизасемблере.



Рисунок 5.5: Временная диаграмма сигналов выполнения программы

- Выполнена трасса программы



Рисунок 5.6: Выполненная трасса программа

# - Оптимизированная трасса программы



Рисунок 5.7: Оптимизированная трасса программа