frequentist vs. bayesian inference

Dr. Mine Çetinkaya-Rundel

M&Ms

- we have a population of M&Ms
- percentage of yellow M&Ms is either 10% or 20%
- you have been hired as a statistical consultant to decide whether the true percentage of yellow M&Ms is 10%
- you are being asked to make a decision, and there are associated payoff/losses that you should consider

payoffs / losses

	TRUE STATE OF THE POPULATION		
DECISION	% yellow = 10%	%yellow = 20%	
% yellow = 10%	Your boss gives you a bonus :)	You lose your job :(
%yellow = 20%	You lose your job :(Your boss gives you a bonus :)	

data

- you can "buy" a random sample from the population
- you pay \$200 for each M&M, and you must buy in \$1,000 increments (5 M&Ms at a time)
- you have a total of \$4,000 to spend (you may buy 5, 10, 15, or 20 M&Ms)

frequentist inference

hypotheses

Ho: 10% yellow M&Ms

H_A: >10% yellow M&Ms

sig. level

$$\alpha = 0.05$$

sample

RGYBO

obs. data

$$k = 1, n = 5$$

p-value

$$P(K \ge 1 \mid n = 5, p = 0.10)$$

= $1 - P(k = 0 \mid n = 5, p = 0.10)$
= $1 - 0.90^5 \approx 0.41 \rightarrow \text{Fail to reject H}_0$

bayesian inference

hypotheses

H_I: 10% yellow M&Ms

H₂: 20% yellow M&Ms

prior

 $P(H_1) = 0.5$

 $P(H_2) = 0.5$

sample

RGYBO

obs. data

k = 1, n = 5

likelihood

$$P(k=1 \mid H_1) = {5 \choose 1} 0.10 \times 0.90^4 \approx 0.33$$

$$P(k=1 \mid H_2) = {5 \choose 1} 0.20 \times 0.80^4 \approx 0.41$$

posterior

$$P(H_1 \mid k = 1) = \frac{P(H_1) \times P(k = 1 \mid H_1)}{P(k = 1)}$$
$$= \frac{0.5 \times 0.33}{0.5 \times 0.33 + 0.5 \times 0.41}$$
$$\approx 0.45$$

$$P(H_2 \mid k = 1)$$

= 1 - 0.45 = 0.55

bayesian vs. frequentist inference

	FREQUENTIST	BAYESIAN	
obs. data	P(k or more 10% yellow)	P(I0% yellow n,k)	P(20% yellow n,k)
n = 5, k = 1	0.41	0.45	0.55
n = 10, k = 2	0.26	0.39	0.61
n = 15, k = 3	0.18	0.34	0.66
n = 20, k = 4	0.13	0.29	0.71