Entropy

Bernoulli:
$$P(x) = \begin{cases} P, & x = 1 \\ 1-P, & x = 0 \end{cases}$$
 $H(x) = \mathbb{E}[T(x)] = -\mathbb{E}[\log_2 P(x)]$
 $= -\sum_{i=0}^{k} P(x_i) \log_2 P(x_i) = -[(1-p)\log_2 (1-p) + p\log_2 p]$

Coin slip:
$$p = 1-p = 0.5$$

 $H(x) = -(0.5 \log(0.5) + 0.5 \log(0.5))$
 $= -(0.5(-1) + 0.5(-1)) = 1$

Enjoys Cilarbro:
$$p = 0.8$$
, $1-p = 0.2$
 $H(x) = -(0.2 \log_2(0.2) + 0.8 \log_2(0.8))$

$$= -(0.2(-2.3219) + 0.8(-0.3219) = 0.72$$

KL Divergence: let
$$P(x) = \text{cilartro}$$
, estimating using $Q(x) = \text{coin } f|_{p}$

$$D_{KL}(P|IG) = E_{KP}[log \frac{P}{Q}] \qquad \text{if } P=Q, log(0)=0$$

$$= P \log \left(\frac{P}{q}\right) + (1-P) \log \left(\frac{1-P}{1-g}\right)$$

$$= 0.2 \log \left(0.2\right) = 0.278$$

$$= 0.8 \log \left(\frac{0.8}{0.5}\right) + 0.2 \log \left(\frac{0.2}{0.5}\right) = 0.278$$