Lexical Analyzer

- Lexical Analyzer reads the source program character by character to produce tokens.
- Normally a lexical analyzer doesn't return a list of tokens at one shot, it returns a token when the parser asks a token from it.

Token

- Token represents a set of strings described by a pattern.
 - Identifier represents a set of strings which start with a letter continues with letters and digits
 - The actual string (newval) is called as *lexeme*.
 - Tokens: identifier, number, addop, delimeter, ...
- Since a token can represent more than one lexeme, additional information should be held for that specific lexeme. This additional information is called as the attribute of the token.
- For simplicity, a token may have a single attribute which holds the required information for that token.
 - For identifiers, this attribute a pointer to the symbol table, and the symbol table holds the actual attributes for that token.
- Some attributes:
 - <id,attr> where attr is pointer to the symbol table
 - <assgop,_> no attribute is needed (if there is only one assignment operator)
 - <num,val> where val is the actual value of the number.
- Token type and its attribute uniquely identifies a lexeme.
- Regular expressions are widely used to specify patterns.

Terminology of Languages

- Alphabet: a finite set of symbols (ASCII characters)
- String:
 - Finite sequence of symbols on an alphabet
 - Sentence and word are also used in terms of string
 - ϵ is the empty string
 - |s| is the length of string s.
- Language: sets of strings over some fixed alphabet
 - \emptyset the empty set is a language.
 - { ε } the set containing empty string is a language
 - The set of well-formed C programs is a language
 - The set of all possible identifiers is a language.

Operators on Strings:

- Concatenation: xy represents the concatenation of strings x and y. $s \varepsilon = s = s$
- $s^n = s s s ... s (n times) s^0 = \varepsilon$

P K Singh TCS 502 Compiler Design 3

Operations on Languages

- Concatenation:
 - $L_1L_2 = \{ s_1s_2 | s_1 \in L_1 \text{ and } s_2 \in L_2 \}$
- Union

-
$$L_1 \cup L_2 = \{ s \mid s \in L_1 \text{ or } s \in L_2 \}$$

Exponentiation:

$$- \quad L^0 = \{\epsilon\} \qquad \quad L^1 = L \qquad \qquad L^2 = LL$$

• Kleene Closure

$$- L^* = \bigcup_{i=0}^{\infty} L^i$$

Positive Closure

$$- L^+ = \bigcup_{i=1}^{\infty} L^i$$

Example

•
$$L_1 = \{a,b,c,d\}$$
 $L_2 = \{1,2\}$

- $L_1L_2 = \{a1,a2,b1,b2,c1,c2,d1,d2\}$
- $L_1 \cup L_2 = \{a,b,c,d,1,2\}$
- L_1^3 = all strings with length three (using a,b,c,d)
- L₁* = all strings using letters a,b,c,d and empty string
- L_1^+ = doesn't include the empty string

Regular Expressions

- We use regular expressions to describe tokens of a programming language.
- A regular expression is built up of simpler regular expressions (using defining rules)
- Each regular expression denotes a language.
- A language denoted by a regular expression is called as a regular set.

Regular Expressions (Rules)

Regular expressions over alphabet Σ

Language it denotes
{3}
{a}
$L(r_1) \cup L(r_2)$
$L(r_1) L(r_2)$
$(L(r))^*$
L(r)

- $(r)^+ = (r)(r)^*$
- (r)? = $(r) | \epsilon$

Regular Expressions (cont.)

We may remove parentheses by using precedence rules.

```
 * highest - concatenation next - | lowest
```

• $ab^*|c$ means $(a(b)^*)|(c)$

Ex:

```
- \Sigma = \{0,1\}
- 0|1 => \{0,1\}
- (0|1)(0|1) => \{00,01,10,11\}
- 0^* => \{\epsilon,0,00,000,0000,....\}
```

 $-(0|1)^* =>$ all strings with 0 and 1, including the empty string

Regular Definitions

- To write regular expression for some languages can be difficult, because their regular expressions can be quite complex. In those cases, we may use regular definitions.
- We can give names to regular expressions, and we can use these names as symbols to define other regular expressions.

A regular definition is a sequence of the definitions of the form:

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

where d_i is a distinct name and

$$r_i$$
 is a regular expression over symbols in $\Sigma \cup \{d_1, d_2, ..., d_{i-1}\}$

previously defined names

Regular Definitions (cont.)

Ex: Identifiers in Pascal

```
letter \rightarrow A | B | ... | Z | a | b | ... | z
digit \rightarrow 0 | 1 | ... | 9
id \rightarrow letter (letter | digit ) *
```

 If we try to write the regular expression representing identifiers without using regular definitions, that regular expression will be complex.

```
(A|...|Z|a|...|z) ( (A|...|Z|a|...|z) | (0|...|9) )^*
```

Ex: Unsigned numbers in Pascal

```
\begin{split} &\text{digit} \rightarrow \ 0 \ | \ 1 \ | \ ... \ | \ 9 \\ &\text{digits} \rightarrow \text{digit} \ ^+ \\ &\text{opt-fraction} \rightarrow ( \ . \ \text{digits} \ ) \ ? \\ &\text{opt-exponent} \rightarrow ( \ E \ (+|-)? \ \text{digits} \ ) \ ? \\ &\text{unsigned-num} \rightarrow \text{digits opt-fraction opt-exponent} \end{split}
```

Finite Automata

- A recognizer for a language is a program that takes a string x, and answers "yes" if x is a sentence of that language, and "no" otherwise.
- We call the recognizer of the tokens as a finite automaton.
- A finite automaton can be: deterministic(DFA) or nondeterministic (NFA)
- This means that we may use a deterministic or non-deterministic automaton as a lexical analyzer.
- Both deterministic and non-deterministic finite automaton recognize regular sets.

11

Finite Automata

- Which one?
 - deterministic faster recognizer, but it may take more space
 - non-deterministic slower, but it may take less space
 - Deterministic automatons are widely used lexical analyzers.
- First, we define regular expressions for tokens; Then we convert them into a DFA to get a lexical analyzer for our tokens.
 - Algorithm1: Regular Expression → NFA → DFA (two steps: first to NFA, then to DFA)
 - Algorithm2: Regular Expression → DFA (directly convert a regular expression into a DFA)

Non-Deterministic Finite Automaton (NFA)

- A non-deterministic finite automaton (NFA) is a mathematical model that consists of:
 - S a set of states
 - $-\Sigma$ a set of input symbols (alphabet)
 - move a transition function move to map state-symbol pairs to sets of states.
 - $-s_0$ a start (initial) state
 - F a set of accepting states (final states)

Non-Deterministic Finite Automaton (NFA)

- ε- transitions are allowed in NFAs. In other words, we can move from one state to another one without consuming any symbol.
- A NFA accepts a string x, if and only if there is a path from the starting state to one of accepting states such that edge labels along this path spell out x.

P K Singh TCS 502 Compiler Design Lex-14

NFA (Example)

Transition graph of the NFA

0 is the start state s_0 {2} is the set of final states F $\Sigma = \{a,b\}$ $S = \{0,1,2\}$

The language recognized by this NFA is (a|b)* a b

Deterministic Finite Automaton (DFA)

- A Deterministic Finite Automaton (DFA) is a special form of a NFA.
 - no state has ε- transition
 - for each symbol a and state s, there is at most one labeled edge a leaving s.
 i.e. transition function is from pair of state-symbol to state (not set of states)

The language recognized by

this DFA is also $(a|b)^*$ a b

Implementing a DFA

 Le us assume that the end of a string is marked with a special symbol (say eos). The algorithm for recognition will be as follows: (an efficient implementation)

```
s ← s<sub>0</sub> { start from the initial state }
c ← nextchar { get the next character from the input string }
while (c!= eos) do { do until the en dof the string }
begin
s ← move(s,c) { transition function }
c ← nextchar
end
if (s in F) then { if s is an accepting state }
return "yes"
```

Implementing a NFA

```
S \leftarrow \varepsilon\text{-closure}(\{s_0\})
c \leftarrow \text{nextchar} \qquad \{ \text{ set all of states can be accessible from } s_0 \text{ by } \varepsilon\text{-transitions} \}
\text{while } (c != \text{eos}) \{ \\ \text{begin} \\ \text{s} \leftarrow \varepsilon\text{-closure}(\text{move}(S,c)) \qquad \{ \text{ set of all states can be accessible from a state} \\ \text{in } S \text{ by a transition on } c \} \\ \text{c} \leftarrow \text{nextchar} \\ \text{end}
\text{if } (S \cap F != \Phi) \text{ then} \qquad \{ \text{ if } S \text{ contains an accepting state} \} \\ \text{return "yes"}
\text{else}
\text{return "no"}
```

This algorithm is not efficient.

Converting A Regular Expression into A NFA (Thomson's Construction)

- This is one way to convert a regular expression into a NFA.
- There can be other ways (much efficient) for the conversion.
- Thomson's Construction is simple and systematic method.
 It guarantees that the resulting NFA will have exactly one final state, and one start state.
- Construction starts from simplest parts (alphabet symbols).
 To create a NFA for a complex regular expression, NFAs of its sub-expressions are combined to create its NFA,

Thomson's Construction (cont.)

• To recognize an empty string ε

ullet To recognize a symbol a in the alphabet Σ

- If $N(r_1)$ and $N(r_2)$ are NFAs for regular expressions r_1 and r_2
 - For regular expression $r_1 | r_2$

NFA for $r_1 | r_2$

Thomson's Construction (cont.)

• For regular expression $r_1 r_2$

Final state of $N(r_2)$ become final state of $N(r_1r_2)$

NFA for $r_1 r_2$

• For regular expression r*

Thomson's Construction (Example - (a|b) * a)

Converting a NFA into a DFA (subset construction)

```
put \varepsilon-closure(\{s_0\}) as an unmarked state into the set of DFA (DS)
while (there is one unmarked S₁ in DS) do
                                                             \varepsilon-closure(\{s_0\}) is the set of all states can be accessible
   begin
                                                            from s_0 by \varepsilon-transition.
       mark S₁
       for each input symbol a do
                                                        set of states to which there is a transition on
           begin
                                                         a from a state s in S_1
              S_2 \leftarrow \varepsilon-closure(move(S_1,a))
              if (S_2 \text{ is not in DS}) then
                  add S<sub>2</sub> into DS as an unmarked state
              transfunc[S_1,a] \leftarrow S_2
           end
      end
```

- a state S in DS is an accepting state of DFA if a state in S is an accepting state of NFA
- the start state of DFA is ε-closure({s₀})

Converting a NFA into a DFA (Example)

$$\begin{split} S_0 &= \epsilon\text{-closure}(\{0\}) = \{0,1,2,4,7\} & S_0 \text{ into DS as an unmarked state} \\ & \underset{mark}{ } S_0 \\ \epsilon\text{-closure}(move(S_0,a)) = \epsilon\text{-closure}(\{3,8\}) = \{1,2,3,4,6,7,8\} = S_1 & S_1 \text{ into DS } \\ \epsilon\text{-closure}(move(S_0,b)) = \epsilon\text{-closure}(\{5\}) = \{1,2,4,5,6,7\} = S_2 & S_2 \text{ into DS } \\ \text{transfunc}[S_0,a] & \underset{mark}{ } S_1 & \text{transfunc}[S_0,b] & \underset{s}{ } S_2 \\ & \underset{s}{ } \text{unto DS } \\ \text{s-closure}(move(S_1,a)) = \epsilon\text{-closure}(\{3,8\}) = \{1,2,3,4,6,7,8\} = S_1 \\ \text{\epsilon-closure}(move(S_1,b)) = \epsilon\text{-closure}(\{5\}) = \{1,2,4,5,6,7\} = S_2 \\ & \underset{s}{ } \text{transfunc}[S_1,a] & \underset{s}{ } \text{Transfunc}[S_1,b] & \underset{s}{ } \text{S_2 } \\ \text{transfunc}(move(S_2,a)) = \epsilon\text{-closure}(\{3,8\}) = \{1,2,3,4,6,7,8\} = S_1 \\ \text{\epsilon-closure}(move(S_2,b)) = \epsilon\text{-closure}(\{5\}) = \{1,2,4,5,6,7\} = S_2 \\ & \underset{s}{ } \text{transfunc}[S_2,a] & \underset{s}{ } \text{S_1 } \text{transfunc}[S_2,b] & \underset{s}{ } \text{S_2 } \end{split}$$

P K Singh TCS 502 Compiler Design 24

Converting a NFA into a DFA (Example - cont.)

 S_0 is the start state of DFA since 0 is a member of $S_0 = \{0,1,2,4,7\}$

 S_1 is an accepting state of DFA since 8 is a member of $S_1 = \{1,2,3,4,6,7,8\}$

Converting Regular Expressions Directly to DFAs

- We may convert a regular expression into a DFA (without creating a NFA first).
- First we augment the given regular expression by concatenating it with a special symbol #.
 - r → (r)# augmented regular expression
- Then, we create a syntax tree for this augmented regular expression.
- In this syntax tree, all alphabet symbols (plus # and the empty string) in the augmented regular expression will be on the leaves, and all inner nodes will be the operators in that augmented regular expression.
- Then each alphabet symbol (plus #) will be numbered (position numbers).

Regular Expression -> DFA (cont.)

$$(a|b)^* a \rightarrow (a|b)^* a #$$

augmented regular expression

Syntax tree of (a|b) * a #

- each symbol is numbered (positions)
- each symbol is at a leave
- inner nodes are operators

followpos

Then we define the function **followpos** for the positions (positions assigned to leaves).

followpos(i) -- is the set of positions which can follow the position i in the strings generated by the augmented regular expression.

```
For example, (a | b)^* a \#
1 2 3 4
followpos(1) = \{1,2,3\}
followpos(2) = \{1,2,3\}
followpos(3) = \{4\}
followpos(4) = \{\}
```

firstpos, lastpos, nullable

- To evaluate followpos, we need three more functions to be defined for the nodes (not just for leaves) of the syntax tree.
- firstpos(n) -- the set of the positions of the first symbols of strings generated by the sub-expression rooted by n.
- lastpos(n) -- the set of the positions of the last symbols of strings generated by the sub-expression rooted by n.
- nullable(n) -- true if the empty string is a member of strings generated by the sub-expression rooted by n false otherwise

How to evaluate firstpos, lastpos, nullable

<u>n</u>	nullable(n)	<u>firstpos(n)</u>	<u>lastpos(n)</u>
leaf labeled ε	true	Φ	Φ
leaf labeled with position i	false	{i}	{i}
c_1 c_2	nullable(c ₁) or nullable(c ₂)	$firstpos(c_1) \cup firstpos(c_2)$	$lastpos(c_1) \cup lastpos(c_2)$
c_1 c_2	nullable(c_1) and nullable(c_2)	if $(\text{nullable}(c_1))$ firstpos $(c_1) \cup \text{firstpos}(c_2)$ else firstpos (c_1)	if $(nullable(c_2))$ $lastpos(c_1) \cup lastpos(c_2)$ $else \ lastpos(c_2)$
* c ₁	true	firstpos(c ₁)	lastpos(c ₁)

How to evaluate followpos

- Two-rules define the function followpos:
- If n is concatenation-node with left child c₁ and right child c₂, and i is a position in lastpos(c₁), then all positions in firstpos(c₂) are in followpos(i).
- 2. If **n** is a star-node, and **i** is a position in **lastpos(n)**, then all positions in **firstpos(n)** are in **followpos(i)**.
- If firstpos and lastpos have been computed for each node, followpos of each position can be computed by making one depth-first traversal of the syntax tree.

Example -- (a | b) * a


```
red – firstpos
blue – lastpos
```

Then we can calculate followpos

```
followpos(1) = \{1,2,3\}
followpos(2) = \{1,2,3\}
followpos(3) = \{4\}
followpos(4) = \{\}
```

• After we calculate follow positions, we are ready to create DFA for the regular expression.

Algorithm (RE → DFA)

- Create the syntax tree of (r) #
- Calculate the functions: followpos, firstpos, lastpos, nullable
- Put firstpos(root) into the states of DFA as an unmarked state.
- while (there is an unmarked state S in the states of DFA) do
 - mark S
 - for each input symbol a do
 - let s₁,...,s_n are positions in S and symbols in those positions are a
 - S' \leftarrow followpos(s₁) $\cup ... \cup$ followpos(s_n)
 - move(S,a) ← S'
 - if (S' is not empty and not in the states of DFA)
 - put S' into the states of DFA as an unmarked state.
- the start state of DFA is firstpos(root)
- the accepting states of DFA are all states containing the position of #

Example -- $(a_1 | b_2)^* a_3 #$

 $followpos(1)=\{1,2,3\}$ $followpos(2)=\{1,2,3\}$ $followpos(3)=\{4\}$ $followpos(4)=\{\}$

$$S_1$$
=firstpos(root)={1,2,3}
 \downarrow mark S_1

a: followpos(1)
$$\cup$$
 followpos(3)={1,2,3,4}=S₂

b: followpos(2)=
$$\{1,2,3\}=S_1$$

$$\Downarrow$$
 mark S_2

a: followpos(1)
$$\cup$$
 followpos(3)={1,2,3,4}= S_2

b: followpos(2)=
$$\{1,2,3\}=S_1$$

$$move(S_1,a)=S_2$$

$$move(S_1,b)=S_1$$

$$move(S_2,a)=S_2$$

$$move(S_2,b)=S_1$$

start state: S₁

accepting states: {S₂}

Example -- (a | ε) b c* # 1 234

 $followpos(1)=\{2\}$ $followpos(2)=\{3,4\}$ $followpos(3)=\{3,4\}$ $followpos(4)=\{\}$

 S_1 =firstpos(root)={1,2}

 \bigvee mark S_1

a: followpos(1)= $\{2\}$ = S_2

 $move(S_1,a)=S_2$

b: followpos(2)= $\{3,4\}=S_3$

 $move(S_1,b)=S_3$

 $\downarrow \text{ mark } S_2$

b: followpos(2)= $\{3,4\}=S_3$

 $move(S_2,b)=S_3$

 \bigvee mark S_3

c: followpos(3)= $\{3,4\}=S_3$

 $move(S_3,c)=S_3$

start state: S₁

accepting states: $\{S_3\}$

Minimizing Number of States of a DFA

- partition the set of states into two groups:
 - G₁: set of accepting states
 - G₂: set of non-accepting states
- For each new group G
 - partition G into subgroups such that states s₁ and s₂ are in the same group iff for all input symbols a, states s₁ and s₂ have transitions to states in the same group.
- Start state of the minimized DFA is the group containing the start state of the original DFA.
- Accepting states of the minimized DFA are the groups containing the accepting states of the original DFA.

Minimizing DFA - Example

$$G_1 = \{2\}$$

 $G_2 = \{1,3\}$

G₂ cannot be partitioned because

move(1,a)=2 move(1,b)=3

move(3,a)=2 move(2,b)=3

So, the minimized DFA (with minimum states)

Minimizing DFA - Another Example

So, the minimized DFA

Some Other Issues in Lexical Analyzer

- The lexical analyzer has to recognize the longest possible string.
 - Ex: identifier newval -- n ne new newv newva newval
- What is the end of a token? Is there any character which marks the end of a token?
 - It is normally not defined.
 - If the number of characters in a token is fixed, in that case no problem: + -
 - But < → < or <> (in Pascal)
 - The end of an identifier: the characters cannot be in an identifier can mark the end of token.
 - We may need a lookhead
 - In Prolog: p:- X is 1. p:- X is 1.5.
 The dot followed by a white space character can mark the end of a number.
 But if that is not the case, the dot must be treated as a part of the number.

Some Other Issues in Lexical Analyzer (cont.)

Skipping comments

- Normally we don't return a comment as a token.
- We skip a comment, and return the next token (which is not a comment) to the parser.
- So, the comments are only processed by the lexical analyzer, and the don't complicate the syntax of the language.

Symbol table interface

- symbol table holds information about tokens (at least lexeme of identifiers)
- how to implement the symbol table, and what kind of operations.
 - hash table open addressing, chaining
 - putting into the hash table, finding the position of a token from its lexeme.
- Positions of the tokens in the file (for the error handling).