Integrate the Gaussian $y = e^{-x^2}$

$$A = \int e^{-x^2} dx = \int e^{-y^2} dy$$
$$A^2 = \iint e^{-(x^2 + y^2)} dx dy$$

Swap for polar coordinates

 $x = r \cos \theta$, $y = r \sin \theta$

Jacobian

	dr	$d\theta$
dx	$\cos heta$	$-r\sin\theta$
dy	$\sin heta$	$r\cos\theta$

Determinant of Jacobian

$$|J| = r\cos^2\theta - (-r\sin^2\theta) = r(\cos^2\theta + \sin^2\theta) = r$$

$$A^{2} = \int_{0}^{r=\infty} \int_{0}^{\theta=2\pi} e^{-r^{2}} r \, dr d\theta = 2\pi \int_{0}^{r=\infty} e^{-r^{2}} r \, dr$$

Substitute

$$s = -r^2$$
, $ds = -2rdr$

$$A^{2} = 2\pi \int_{0}^{s=-\infty} e^{s} \frac{ds}{-2} = -\pi \int_{0}^{s=-\infty} e^{s} ds = -\pi [e^{-\infty} - e^{0}] = \pi$$
$$\int e^{-x^{2}} dx = \sqrt{\pi}$$