CS 663 - Fundamentals of Digital Image Processing Assignment 05

Gagan Jain - 180100043 Hitesh Kandala - 180070023

November 16, 2020

1 Implementation Results

1.1 On images without noise

Figure 1: Image I is obtained by translation of rectangle in image I by $(t_x = -30, t_y = 70)$

Figure 2: Logarithm of the Fourier magnitude of the cross-power spectrum (This is constant)

Figure 3: Shift needed on Image J for Restoration

1.2 On images with noise

Figure 4: Images I and J with gaussian noise of zero mean and variance=20

Figure 5: Logarithm of the Fourier magnitude of the cross-power spectrum (This is constant)

Figure 6: Shift needed on Noisy Image J for Restoration

2 Verification of result produced

- 1. Figure 3 shows a spike at (31.231), which could be interpreted as (31,-71) on applying a wrap-around on the image of size 300 × 300 while translation. This clearly is the translation to restore Image J back to Image I since the initial translation applied was (-30, 70).
- 2. Similar to the previous case, figure 6 shows a spike at (31, 231), which could be interpreted as as (31, -71) on applying a wrap-around on the image of size 300 × 300 while translation. But this time, due to the noise present, the spike is not a clean spike, but surrounded by other frequencies of non-zero magnitude. Moreover, the relative magnitude of the spike w.r.t. surrounding region is not as high as the previous case compared.
- 3. We also see that the plots of logarithm of the Fourier magnitudes is a constant of value = log(2) because the result of the cross-power spectrum is a compex number of unit magnitude always.

3 Time Complexity Analysis

- 1. For an Image of size $N \times N$, using the cross-power spectrum to predict translation required for restoration involves the calculation of Fourier transforms using FFT [each being of $O(N \log(N))$] followed by a conjugation O(N) we vectorized pointwise multiplication & division O(N). Thus, overall time complexity is $O(N \log N)$.
- 2. If we use pixel-wise image comparison for an $N \times N$ image, the time complexity of predicting the translation would be $O(N^2)$.

4 Approach for Correcting Rotation between Images

Note: Here in the analysis, we consider correction of pure rotation of the image and ignore any translation or scaling.

If $f_2(x, y)$ is a rotated version of $f_1(x, y)$ [with a rotation of θ_0], doing a Fourier Transform in the cartesian coordinates would yield $F_2(u, v) = F_1(u\cos(\theta_0) + v\sin(\theta_0), -u\sin(\theta_0) + v\cos(\theta_0))$. Clearly, their magnitudes are the same. So, we can use the same concept of cross-power spectrum as before by converting the rotation by θ_0 into a translation. This can be achieved by converting the images into polar coordinates and taking their Fourier Transform:

$$f_2(r,\theta) = f_1(r,\theta - \theta_0) \tag{1}$$

$$F_2(m,n) = \exp{-2\pi j(n\theta_0)} * F_1(m,n)$$
(2)

Thus, cross-power spectrum of $F_1(m,n)$ and $F_2(m,n)$ would yield $exp(2\pi j(n\theta_0))$, using which we can calculate the rotation.

Any translation in x and y would lead to a change in r by r_o , such that the cross power spectrum would yield $exp(2\pi j(m.r_0 + n\theta_0))$. Hence, displacement and rotation can be figured out. The exact (x, y) translations can be figured out using the original cross-power spectrum in the cartesian coordinates.