```
mirror_object
 peration == "MIRROR_X":
mlrror_mod.use_x = True
mirror_mod.use_y = False
"Irror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
 irror_mod.use_y = True
 irror_mod.use_z = False
 _operation == "MIRROR_Z"
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
 election at the end -add
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modification
   irror ob.select = 0
 bpy.context.selected_obj
  lata.objects[one.name].sel
  int("please select exaction
  -- OPERATOR CLASSES ----
   X mirror to the selected
    vpes.Operator):
  ject.mirror_mirror_x"
  Pror X"
```

IBM Data Science Capstone Project

Predict the Accident severity for vehicle GPS

Introduction

- Increasing demand for GPS navigation
- GPS to predict accident severity and find safest route
- Use machine learning to build prediction model

Data

- Collision data in Seattle
- Target: Severity code
- Independent: Location, road condition, weather, junction type, etc.

ArcGIS Metadata Form

Collisions—All Years

Data Set Summary

Collisions—All Years							
All collisions provided by SPD and recorded by Traffic Records.							
This includes all types of collisions. Collisions will display at the intersection or mid-block of a segment. Timeframe: 2004 to Present.							
Weekly							
SDOT, Seattle, Transportation, Accidents, Bicycle, Car, Collisions, Pedestrian,							
Traffic, Vehicle							
Contact Information							
Organization SDOT Traffic Management Division, Traffic Records Group							
act Person SDOT GIS Analyst							
DOT_IT_GIS@seattle.gov							

Data Seattle collisions

• Frequent collisions along the highway

Methodology Dataset preparation

	SEVERITYCODE	PERSONCOUNT	VEHCOUNT	ROADCOND	WEATHER	JUNCTIONTYPE	SPEEDING	LIGHTCOND
0	2	2	2	Wet	Overcast	At Intersection (intersection related)	NaN	Daylight
1	1	2	2	Wet	Raining	Mid-Block (not related to intersection)	NaN	Dark - Street Lights On
2	1	4	3	Dry	Overcast	Mid-Block (not related to intersection)	NaN	Daylight
3	1	3	3	Dry	Clear	Mid-Block (not related to intersection)	NaN	Daylight
4	2	2	2	Wet	Raining	At Intersection (intersection related)	NaN	Daylight

Methodology Data analysis

Analysis numerical independent variables: vehicle count, person count

Methodology Data analysis

Deal with categorical variables

Model and Evaluation

Logistic Regression

Model and Evaluation

Random Forest

Conclusion

- Developed machine learning models to predict the accident severity and the corresponding possibility
- More potentials to be explored further
- Consider weights on type II errors