Theory of Automata

Transducers

Dr. Sabina Akhtar

Revision

FINITE STATE AUTOMATA WITH OUTPUT/ TRANSDUCERS

Transducer

- The only output that we have seen finite automata produce so far is a yes/no at the end of processing.
- It is a generalisation of FSAs with an input/output pair on each arc. Its called a Finite State Transducer.
- There are two types of finite state machines that generate output:
 - Mealy Machine
 - Moore machine

Finite State Machines with Output (Mealy and Moore Machines)

- Finite automata are like computers in that they receive input and process the input by changing states.
- We will now look at two models of finite automata that produce more output than a yes/no.

Moore machine

- Basically a Moore machine is just a FA with two extras.
 - 1. It has two alphabets, an input and output alphabet.
 - 2. It has an output letter associated with each state. The machine writes the appropriate output letter as it enters each state.

Formal definition

- Machine M can be described by a 6 tuple (Q, Σ , λ , Δ , δ , q_0) where:
 - Q: A nonempty finite set of states in M.
 - $-\Sigma$: A nonempty finite set of input symbols.
 - $-\lambda$: A nonempty finite set of outputs.
 - $-\delta$: It is a transition function that takes two arguments input state and input symbol.
 - Δ : It is a mapping function which maps $\,$ Q to λ giving output associated with each transition.
 - $-q_0$: intial state

Example

What is the output for abab?

Example

- What is the output for aabaabb?
- Output: 10101000

Formal definition

- Previous machine can be described by a 6 tuple $(Q, \Sigma, \lambda, \Delta, \delta, q_0)$ as:
 - $-Q: \{q_{0}, q_{1}, q_{2}, q_{3}\}.$
 - $-\Sigma : \{a, b\}.$
 - $-\lambda : \{0, 1\}.$
 - $-\delta$: It is a transition function that takes two arguments input state and input symbol.
 - $-\Delta$: It is a mapping function which maps Q to λ giving output associated with each transition.
 - Initial state : q₀

Transition and mapping function

Draw transition table for the previous example

Present	Inp	Output	
state	а	b	
q_0			
q_1			
q_2			
q_3			

Transition and mapping function

Draw transition table for the previous example

Present	Input		Output
state	а	b	
q_0	q_1	q ₃	1
q_1	q ₃	q_1	0
q_2	q ₀	q ₃	0
q_3	q ₃	q_2	1

Class Activity

- Design a moore machine that outputs 1 each time it encounters a and 0 for b. In other words it counts the occurrences of a's.
- Design a moore machine that counts the occurrences of 'aab' in the input string.

- e.g., aaababaaab
- Output: 00001000001

Solution

Input: babaababaab Output: 000000100001

Mealy Machine

 A Mealy Machine is an FSM whose output depends on the present state as well as the present input.

Mealy machine

Transitions are labelled i/o where

- i is a character in the input alphabet and
- o is a character in the output alphabet.
- Mealy machines are complete in the sense that there is a transition for each character in the input alphabet leaving every state.
- There are no accept states in a Mealy machine because it is not a language recogniser, it is an output producer. Its output will be the same length as its input.

Mealy Machine: Formal definition

- Machine M can be described by a 6 tuple (Q, Σ , λ , Δ , δ , q_0) where:
 - Q: A nonempty finite set of states in M.
 - $-\Sigma$: A nonempty finite set of input symbols.
 - $-\lambda$: A nonempty finite set of outputs.
 - $-\delta$: It is a transition function that takes two arguments input state and input symbol.
 - Δ : It is a mapping function which maps $\, \, Q^* \Sigma \,$ to $\, \lambda \,$ giving output associated with each transition.
 - $-q_0$: intial state

Example

Input: aaabb

Output:

What is the output for aaabb?

Example

Input: aaabb Output: 01110

What is the output for abbbaaab?

Mealy Machine: Formal definition

- Previous machine can be described by a 6 tuple $(Q, \Sigma, \lambda, \Delta, \delta, q_0)$ as:
 - $-Q: \{0, 1, 2, 3\}$
 - $-\Sigma : \{a, b\}$
 - $-\lambda : \{0, 1\}$
 - $-\ \delta$: It is a transition function that takes two arguments input state and input symbol.
 - $-\Delta$: It is a mapping function which maps $\,Q^*\Sigma$ to λ giving output associated with each transition.
 - Initial state: 0

Transition and mapping function

Draw transition table for the previous example

Present state	Input a		Input b	
	state	output	state	output
0				
1				
2				
3				

Transition and mapping function

Draw transition table for the previous example

Present state	Input a		Input b	
	state	output	state	output
0	1	0	3	0
1	3	1	2	1
2	3	0	3	1
3	3	1	0	1

Class activity

 Design a mealy machine that takes the one's complement of its binary input. In other words, it flips each digit from a 0 to a 1 or from a 1 to a 0.

- Provide six-tuple values.
- Draw the transition table.

Solution

Input: 010110

Output: 101001

Class Activity

•
$$Q = \{q_0, q_1\},$$

•
$$\Sigma = \{0,1\},$$

• O = {a,b,c},
$$\delta$$
, θ ,

•
$$q_0$$
 = initial state

$$\delta(q_0, 0) = q_1, \quad \delta(q_0, 1) = q_0,$$
 $\delta(q_1, 0) = q_0, \quad \delta(q_1, 1) = q_1,$
 $\theta(q_0, 0) = a, \quad \theta(q_0, 1) = c,$
 $\theta(q_1, 0) = b, \quad \theta(q_1, 1) = a$

- Design the mealy machine for the above specifications.
- Provide the transition table.

Solution

Class Activity

• Construct a mealy machine M that takes as input strings of 0's and 1's. Its output is to be a string of 0's until the first 1 occurs in the input, at which time it will switch to print 1's. This is to continue until the next 1 in encountered in the input, when the output reverts to 0. The alternation continues everytime a 1 is encountered.

For example:

– Input : 0010010

– Output : 0011100

Class Activity

Construct a Moore machine

Solution

Solution 2

References

 Book: An introduction to formal languages and automata, fifth edition by Peter Linz

 Lectures by Ralf Möller, Hamburg Univ. of Technology