CS450 Xiaowen Lin

ch07 xlin11

7.1

(a) monomial basis: $p_2(t) = x_1 + x_2 t + x_3 t^2$ $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

 $\text{(b)Lagrange basis: } p_2(t) = 1 \times \frac{(t-0)(t-1)}{(-1-0)(-1-1)} + 0 + 1 \times \frac{(t+1)(t-0)}{(1+1)(1-0)} \Rightarrow p_2(t) = t^2$ $\text{(c)Newton basis: } \boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & t_2 - t_1 & 0 \\ 1 & t_3 - t_1 & (t_3 - t_1)(t_3 - t_2) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$

```
function cp06 03
syms x;
x1=0;
x2=3;
% (a)
subplot(2,2,1);
disp('(a)');
f1=@(x)x^4-14*x^3+60*x^2-70*x;
min1=fminbnd(f1,x1,x2);
fplot(f1,[x1 x2]);
title('(a) y=x^4-14*x^3+60*x^2-70*x');
disp('Minimum of function in (a) is ');
                         y');
         X
disp([min1 subs(f1, x, min1)]);
% (b)
subplot(2,2,2);
disp('(b)');
f2=@(x)0.5*x^2-sin(x);
min2=fminbnd(f2,x1,x2);
fplot(f2,[x1 x2]);
title('(b) y=0.5*x^2-\sin(x)');
disp('Minimum of function in (b) is ');
disp(' x
                         y');
disp([min2 subs(f2, x, min2)]);
응(C)
subplot(2,2,3);
disp('(c)');
f3=@(x)x^2+4*cos(x);
min3=fminbnd(f3,x1,x2);
fplot(f3,[x1 x2]);
title('(c)y=x^2+4*cos(x)');
disp('Minimum of function in (c) is ');
disp(' x
                        y');
disp([min3 subs(f3, x, min3)]);
% (d)
subplot(2,2,4);
disp('(d)');
f4=0(x)qamma(x);
min4=fminbnd(f4,x1,x2);
fplot(f4,[x1 x2]);
title('(d)y=gamma(x)');
disp('Minimum of function in (d) is ');
disp(' x
                        y');
disp([min4 subs(f4, x, min4)]);
```


>> cp06_03

(a)

Minimum of function in (a) is

х у 0.7809 -24.3696

(b)

Minimum of function in (b) is

х у 0.7391 -0.4005

(C)

Minimum of function in (c) is

х 1.8955 2.3168

(d)

Minimum of function in (d) is

х у 1.4616 0.8856

>>

```
function cp06 08
syms x y;
f=2*x^2-1.05*x^4+x^6/6+x*y+y^2;
fx=diff(f,x);
fy=diff(f,y);
[xcr, ycr] = solve(fx, fy);
cr=vpa([xcr,ycr],6);
disp('Critical points:');
disp('
                         y');
               Х
disp(cr);
disp('Corresponding Hessian matrixes and eigenvalues are:');
HessM=hessian(f);
for k = 1:5
    Hess=subs(HessM, [x,y], [xcr(k), ycr(k)]);
    disp(vpa(Hess, 6));
    disp('Eigenvalue:');
    disp(vpa(eig(Hess), 6));
end
disp('Non of them is singular.');
disp('If Hessian Matrix is positive definite, then it is local minimum point of f.');
disp('So points');
disp('
                         y');
           X
disp(vpa(cr([1 2 4],1:2),6));
disp('are local minimum of f.');
disp('If Hessian Matrix is indefinite, then it is local minimum point of f.');
disp('And points');
disp('
            X
                         y');
disp(vpa(cr([3 5],1:2),6));
disp('are saddle points of f.');
```

```
>> cp06 08
Critical points:
        Х
         0,
                    0]
[-1.74755,
            0.873776]
[-1.07054, 0.535271]
[ 1.74755, -0.873776]
[ 1.07054, -0.535271]
Corresponding Hessian matrixes and eigenvalues are:
[ 4.0, 1.0]
[ 1.0, 2.0]
Eigenvalue:
1.58579
4.41421
[ 12.1531, 1.0]
[ 1.0, 2.0]
Eigenvalue:
1.90245
12.2506
[-3.87309, 1.0]
[ 1.0, 2.0]
Eigenvalue:
 -4.03869
   2.1656
[ 12.1531, 1.0]
    1.0, 2.0]
Eigenvalue:
1.90245
12.2506
[-3.87309, 1.0]
[ 1.0, 2.0]
Eigenvalue:
-4.03869
   2.1656
Non of them is singular.
If Hessian Matrix is positive definite, then it is local minimum point of f.
So points
         Х
                   У
         0,
[-1.74755, 0.873776]
```

```
[ 1.74755, -0.873776]
are local minimum of f.
If Hessian Matrix is indefinite, then it is local minimum point of f.
And points
            У
       X
[-1.07054, 0.535271]
[ 1.07054, -0.535271]
are saddle points of f.
>>
```

```
function cp07 05
syms x;
X = [0 \ 0.5 \ 1 \ 6 \ 7 \ 9];
Y=[0 1.6 2 2 1.5 0];
응(a)
disp('(a) Monomial basis mathod:');
V = vander(X);
C=V \setminus Y';
f1=poly2sym(c);
disp(f1);
disp('It is about ');
disp(vpa(f1,5));
F=0(x)[x^5 x^4 x^3 x^2 x^1 x^0]*c;
plot(X,Y,'o');
hold all
fplot(F, [0 9]);
hold all
% (b)
disp('(b)');
cs=spline(X, Y);
disp('Coeffeicients of the cubic spline method:');
disp(cs.coefs);
xx=linspace(0,9,101);
plot(xx,ppval(cs,xx),'--');
hold all
% (C)
disp('(c)The cubic spline.');
\operatorname{disp}(\operatorname{'Polynomial\ methods\ have\ n-1\ critical\ points},\ \operatorname{where\ produce\ the\ "wiggles",\ \ldots}\operatorname{which}
may bear no relation to data to be fit. And it may oscillate wildly between data 🗸
points.');
\operatorname{disp}('\operatorname{Piecewise}\ \operatorname{interpolation}\ \operatorname{eliminates}\ \operatorname{excessive}\ \operatorname{oscillation}\ \operatorname{and}\ \operatorname{nonconvergence}.\operatorname{The}^{\encoderive}
physical spline minimizes potential energy subject to the interpolation constraints. The \checkmark
corresponding cubic spline must have a continuous second derivative and satisfy the same \checkmark
interpolation constraints.');
% (d)
disp('(d)');
yy = interpl(X,Y,xx);
plot(xx, yy, ':');
legend('data points', 'polynomial', 'cubic spline', 'linear');
disp('Yes. It avoids the problem of wiggles and non convergence of polynomial method. And \checkmark
there is no enough evidence provided by the data to say that the y value of x in (1,6) \checkmark
should increase or decrease, while piecewise linear interpolation provides simplisity.');
```


This is a Classroom License for instructional use only. Research and commercial use is prohibited.

>> cp07 05

(a) Monomial basis mathod:

It is about

 $0.0056878*x^5 - 0.13479*x^4 + 1.1208*x^3 - 3.8559*x^2 + 4.8643*x$

(b)

Coeffeicients of the cubic spline method:

```
    1.5544
    -4.7315
    5.1772
    0

    1.5544
    -2.4000
    1.6114
    1.6000

    -0.0014
    -0.0685
    0.3772
    2.0000

    0.0015
    -0.0894
    -0.4121
    2.0000

    0.0015
    -0.0849
    -0.5864
    1.5000
```

(c) The cubic spline.

Polynomial methods have n-1 critical points, where produce the "wiggles", ...which may \checkmark bear no relation to data to be fit. And it may oscillate wildly between data points. Piecewise interpolation eliminates excessive oscillation and nonconvergence. The physical \checkmark spline minimizes potential energy subject to the interpolation constraints. The \checkmark corresponding cubic spline must have a continuous second derivative and satisfy the same \checkmark interpolation constraints.

(d)

Yes. It avoids the problem of wiggles and non convergence of polynomial method. And there \checkmark is no enough evidence provided by the data to say that the y value of x in (1,6) should \checkmark increase or decrease, while piecewise linear interpolation provides simplisity.