

Global United Technology Services Co., Ltd.

Report No.: GTSE15040054301

FCC Report

Shenzhen Spreadview Century Technology Co., Ltd Applicant:

13-A1, Shijihaoting Mansion, Chegongmiao, Futian District, **Address of Applicant:**

Shenzhen, 518040, China

Equipment Under Test (EUT)

Product Name: Pico projector

P95 Model No.:

FCC ID: 2ACZZP95

Applicable standards: FCC CFR Title 47 Part 15 Subpart B:2014

April 27, 2015 Date of sample receipt:

April 28, 2015 Date of Test:

Date of report issue: April 28, 2015

Test Result: PASS *

Authorized Signature:

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	April 28, 2015	Original

Prepared By:	Edward. Pan	Date:	April 28, 2015
	Project Engineer		
Check By:	hank. yan	Date:	April 28, 2015
	Reviewer	_	

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	TEST FACILITY	6
	5.5	TEST LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	8
	7.1	CONDUCTED EMISSIONS	8
	7.2	RADIATED EMISSION	
8	TES	T SETUP PHOTO	17
9	FUT	CONSTRUCTIONAL DETAILS	10

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part15.107	PASS
Radiated Emissions	Part15.109	PASS

PASS: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Spreadview Century Technology Co., Ltd
Address of Applicant:	13-A1, Shijihaoting Mansion, Chegongmiao, Futian District, Shenzhen, 518040 , China
Manufacturer:	Shenzhen Spreadview Century Technology Co., Ltd
Address of Manufacturer:	13-A1, Shijihaoting Mansion, Chegongmiao, Futian District, Shenzhen, 518040 , China
Factory:	Shenzhen Shenbaiqiang Electronics Co., Ltd.
Address of Factory:	3F No.2 Building SangTai Science& technology Park, LiuXian Dong, LiuXian Road, Xili ,NanShan District, Shenzhen 518055,P.R.C

5.2 General Description of EUT

Product Name:	Pico projector
Model No.:	P95
Power supply:	Model No.: SK21G-0500200U
	Input: AC 100-240V, 50/60Hz, 0.4A MAX
	Output: DC 5.0V, 2A
	DC 3.7V Li-ion Battery

5.3 Test mode

Test mode:		
PC mode	Keep the EUT in exchanging data mode.	
USB charging for mobile phone mode	Keep the EUT in USB charging for mobile phone mode.	
USB playing mode	Keep the EUT in USB playing mode.	

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Apple	PC	A1278	C1MN99ERDTY3	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.7 Deviation from Standards

Biconical, log.per. antenna and horn antenna were used instead of dipole antenna. Semi-anechoic Chamber was used as alternation of open air test sites, and all test suites were performed with radiated method in it.

5.8 Abnormalities from Standard Conditions

None

5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	Mar. 27 2015	Mar. 26 2016
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	July 01 2014	June 30 2015
4	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	July 01 2014	June 30 2015
5	Double -ridged waveguide horn	SCHWARZBECK	9120D	GTS208	June 27 2014	June 26 2015
6	RF Amplifier	HP	8347A	GTS204	July 01 2014	June 30 2015
7	Preamplifier	HP	8349B	GTS206	July 01 2014	June 30 2015
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016

Con	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2013	Sep. 06 2015
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	July 01 2014	June 30 2015
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	July 01 2014	June 30 2015
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July 01 2014	June 30 2015
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	July 01 2014	June 30 2015
6	Coaxial Cable	GTS	N/A	GTS227	July 01 2014	June 30 2015
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015	

7 Test Results and Measurement Data

7.1 Conducted Emissions

Test Method:	
Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN 40cm 80cm LISN Filter AC power AC power AC power Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Limit (dBuV) Quasi-peak Average Average 0.15-0.5 66 to 56* 56 to 46* 60 50 50 (dasi-peak Ac power Ac	
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN 40cm 80cm LISN Filter AC power AC power Plane P	
Limit: Frequency range (MHz) Quasi-peak Average	
Prequency range (MHZ) Quasi-peak Average	
O.15-0.5 66 to 56* 56 to 46*	
Test setup: O.5-5 56 46 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN 40cm 80cm Filter AC power	
Test setup: Test setup: Reference Plane LISN 40cm 80cm Filter AC power	
* Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN 40cm 80cm Filter AC power	
Test setup: Reference Plane LISN 40cm 80cm Filter AC power	
LISN 40cm 80cm Filter AC power	
Test table/Insulation plane Remark: E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISM: Line Impedence Stabilization Network Test table height=0.8m Test procedure: 1. The E.U.T and simulators are connected to the main power throughts.	gh a
line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power thre LISN that provides a 50ohm/50uH coupling impedance with 50oh termination. (Please refer to the block diagram of the test setup a photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be characteristic.	m nd
Test Instruments: Refer to section 6 for details	
Test mode: Refer to section 5.3 for details	
Test results: Pass	

Measurement Data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0543RF Test mode : PC mode Test Engineer: Qing

	Freq		LISN Factor					Remark
	MHz	dBuV	d₿	d₿	dBuV	dBuV	dB	
1 2 3 4 5 6	0. 195 0. 262 0. 396 0. 984	45.52 41.48 35.58	0.14 0.11	0.13 0.11 0.11 0.13	50.01 45.74 41.70 35.85	63.80 61.38 57.95 56.00	-13.79 -15.64 -16.25 -20.15	QP QP QP QP

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0543RF Test mode : PC mode Test Engineer: Qing

est	Engineer:	Read	LISN	Cable		Limit	Over		
	Freq		Factor					Remark	
	MHz	dBuV	dB	dB	dBuV	dBuV	dB		
1 2 3 4 5 6	0.150 0.197 0.256 0.529 3.840 6.488	45.15 39.97 36.60	0.07 0.07 0.06 0.07 0.14 0.17	0.11 0.11 0.15	47. 23 45. 32 40. 15 36. 89	63.76 61.56 56.00 56.00	-16.53 -16.24 -15.85 -19.11	QP QP QP QP	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.2 Radiated Emission

 Naulateu Lillission							
Test Requirement:	FCC Part15 B Section 15.109						
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	30MHz to 6GHz						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:		_					
	Frequency	Detector	RBW	VBW	Remark		
	30MHz- 1GHz	Quasi-pea		300kHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		Peak	1MHz	10Hz	Average Value		
Limit:	F		Linit (JD A)	(@ 0)	D		
	Freque	•	Limit (dBuV		Remark		
	30MHz-8		40.0		Quasi-peak Value		
	88MHz-2		43.5		Quasi-peak Value		
	216MHz-9		46.0		Quasi-peak Value		
	960MHz-	-1GHz	54.0		Quasi-peak Value		
	Above 1	IGHz	54.0		Average Value		
			74.0	0	Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving 						
	antenna, whi tower.	ch was mour	nted on the top	of a variab	ole-height antenna		
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.						
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test setup:	Below 1GHz						

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Measurement Data

Below 1GHz

Horizontal:

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M HORIZONTAL : 0543RF

Job No, Test Mode Test Engi : PC mode

Tribarioor.	CILCIL							
	Read	Intenna	Cable	Preamp		Limit	Over	
Frea	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MIL.	dB ₁₁ V	dB/	dB	dB	dBuV/m	dBuV/m	dB	
JILLIZ	and v	ш/лі	ш	ш	and 4/ III	and 47 lif	ш	
110 050	46 40	40.40		00 57	20 20	40 50		ΔD
119.856	46.12	12.48	1.36	29.57	30.39	43.50	-13.11	QP
239.987	55.72	14.09	2.07	29.56	42.32	46.00	-3.68	QP
300.367	54.39	15.06	2.36	29.99	41.82	46.00	-4.18	QP
383, 932	50.81	16, 68						
601.427	43.74	20.46	3.73	29.30	38.63	46.00	-7.37	QP
	Freq MHz 119.856 239.987 300.367 383.932 467.235	Read/ Freq Level MHz dBuV 119.856 46.12 239.987 55.72 300.367 54.39 383.932 50.81 467.235 49.23	ReadAntenna Freq Level Factor MHz dBuV dB/m 119.856 46.12 12.48 239.987 55.72 14.09 300.367 54.39 15.06 383.932 50.81 16.68 467.235 49.23 17.77	Freq Level Factor Loss MHz dBuV dB/m dB 119.856 46.12 12.48 1.36 239.987 55.72 14.09 2.07 300.367 54.39 15.06 2.36 383.932 50.81 16.68 2.78 467.235 49.23 17.77 3.17	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 119.856 46.12 12.48 1.36 29.57 239.987 55.72 14.09 2.07 29.56 300.367 54.39 15.06 2.36 29.99 383.932 50.81 16.68 2.78 29.57 467.235 49.23 17.77 3.17 29.36	ReadAntenna Cable Preamp Level Factor Loss Factor Level	ReadAntenna Cable Preamp Limit Level Factor Loss Factor Level Line Line	ReadAntenna Cable Preamp Limit Over Level Factor Loss Factor Level Line Limit

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M VERTICAL : 0543RF Condition

Job No, Test Mode : PC mode Test Engineer: Chen

	Freq	ReadAntenna Level Factor			_			Over Limit	Remark
	MHz	dBu₹	<u>dB</u> /m		<u>d</u> B	dBuV/m	dBuV/m	<u>db</u>	
1 2 3 4	44.275 239.987 383.932 451.135	53.82 49.66	14.09 16.68	2.07 2.78	29.56 29.57	24.39 40.42 39.55 41.94	46.00 46.00	-5.58 -6.45	QP QP
5	520.888 601.427	47.54	19.00	3.39	29.30	40.63	46.00	-5.37	QP

Above 1GHz

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) HORIZONTAL : 0543RF Condition

Job No. Test Mode : PC mode Test Engineer: Chen

	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2 3 4 5	1195.000 2165.000 3195.000 4295.000 5135.000 5670.000	40.16 39.26 34.84 33.54	28.73 30.71 32.06	5.15 6.35 8.15 8.97	33.10 31.84 32.25	38.71 41.24 41.86 42.32	74.00 74.00 74.00 74.00	-35.29 -32.76 -32.14 -31.68	Peak Peak Peak Peak

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) VERTICAL Condition

: 0543RF Job No. Test Mode : PC mode Test Engineer: Chen

000	THE THOUL .	CITCIL							
	_		Antenna					Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	1225.000	41.73	25.45	4.49	33.13	38.54	74.00	-35.46	Peak
2	2160.000	40.32	27.62	5.14	34.29	38.79	74.00	-35.21	Peak
3	3210.000	40.26	28.68	6.39		42.25			
4	4295.000	34.89	30.71		31.84				
5	5035.000	34.37	31.98	8.81	32.20	42.96	74.00	-31.04	Peak
6	5825.000	32.13	32.68	9.97	32.23	42.55	74.00	-31.45	Peak

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Page 22 of 25

----- end-----