DAY 10:

World Dataset

In [1]:

```
#to import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]:
```

df=pd.read_csv(r"C:\Users\user\Downloads\18_world-data-2023.csv")[0:50]
df

Out[2]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Ca (
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	
1	Albania	105	AL	43.10%	28,748	9,000	11.78	3
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	2
3	Andorra	164	AD	40.00%	468	NaN	7.20	3
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	2
5	Antigua and Barbuda	223	AG	20.50%	443	0	15.33	
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	3
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	
9	Austria	109	AT	32.40%	83,871	21,000	9.70	
10	Azerbaijan	123	AZ	57.70%	86,600	82,000	14.00	ξ
11	The Bahamas	39	BS	1.40%	13,880	1,000	13.97	
12	Bahrain	2,239	ВН	11.10%	765	19,000	13.99	ξ
13	Bangladesh	1,265	BD	70.60%	148,460	221,000	18.18	8
14	Barbados	668	ВВ	23.30%	430	1,000	10.65	
15	Belarus	47	BY	42.00%	207,600	155,000	9.90	3
16	Belgium	383	BE	44.60%	30,528	32,000	10.30	
17	Belize	17	BZ	7.00%	22,966	2,000	20.79	Ę
18	Benin	108	BJ	33.30%	112,622	12,000	36.22	2
19	Bhutan	20	ВТ	13.60%	38,394	6,000	17.26	ξ
20	Bolivia	11	ВО	34.80%	1,098,581	71,000	21.75	Ę
21	Bosnia and Herzegovina	64	ВА	43.10%	51,197	11,000	8.11	3
22	Botswana	4	BW	45.60%	581,730	9,000	24.82	2
23	Brazil	25	BR	33.90%	8,515,770	730,000	13.92	
24	Brunei	83	BN	2.70%	5,765	8,000	14.90	6
25	Bulgaria	64	BG	46.30%	110,879	31,000	8.90	3
26	Burkina Faso	76	BF	44.20%	274,200	11,000	37.93	2
27	Burundi	463	ВІ	79.20%	27,830	31,000	39.01	2
28	Ivory Coast	83	CI	64.80%	322,463	27,000	35.74	2
29	Cape Verde	138	CV	19.60%	4,033	1,000	19.49	2
30	Cambodia	95	KH	30.90%	181,035	191,000	22.46	8
31	Cameroon	56	CM	20.60%	475,440	24,000	35.39	2
32	Canada	4	CA	6.90%	9,984,670	72,000	10.10	

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Ca (
33	Central African Republic	8	CF	8.20%	622,984	8,000	35.35	2
34	Chad	13	TD	39.70%	1,284,000	35,000	42.17	2
35	Chile	26	CL	21.20%	756,096	122,000	12.43	
36	China	153	CN	56.20%	9,596,960	2,695,000	10.90	
37	Colombia	46	CO	40.30%	1,138,910	481,000	14.88	
38	Comoros	467	KM	71.50%	2,235	NaN	31.88	2
39	Republic of the Congo	16	NaN	31.10%	342,000	12,000	32.86	2
40	Costa Rica	100	CR	34.50%	51,100	10,000	13.97	ξ
41	Croatia	73	HR	27.60%	56,594	18,000	9.00	3
42	Cuba	106	CU	59.90%	110,860	76,000	10.17	
43	Cyprus	131	CY	12.20%	9,251	16,000	10.46	3
44	Czech Republic	139	CZ	45.20%	78,867	23,000	10.70	4
45	Democratic Republic of the Congo	40	CD	11.60%	2,344,858	134,000	41.18	2
46	Denmark	137	DK	62.00%	43,094	15,000	10.60	
47	Djibouti	43	DJ	73.40%	23,200	13,000	21.47	2
48	Dominica	96	DM	33.30%	751	NaN	12.00	
49	Dominican Republic	225	DO	48.70%	48,670	71,000	19.51	

50 rows × 35 columns

In [3]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 35 columns): Column Non-Null Count Dtype ---------Country 50 non-null object 0 1 Density (P/Km2)50 non-null object 2 Abbreviation 49 non-null object 3 Agricultural Land(%) 50 non-null object 4 Land Area(Km2) 50 non-null object 5 Armed Forces size 47 non-null object 6 Birth Rate 50 non-null float64 7 Calling Code 50 non-null float64 object 8 Capital/Major City 50 non-null 9 Co2-Emissions 50 non-null object 10 CPI 47 non-null object 11 CPI Change (%) 48 non-null object Currency-Code 46 non-null 12 object Fertility Rate 13 50 non-null float64 Forested Area (%) 50 non-null object 15 Gasoline Price 48 non-null object 16 GDP 50 non-null object 17 Gross primary education enrollment (%) 49 non-null object Gross tertiary education enrollment (%) 48 non-null object 19 Infant mortality 50 non-null float64 20 Largest city 49 non-null object Life expectancy float64 21 49 non-null 22 Maternal mortality ratio 48 non-null float64 Minimum wage 42 non-null object Official language 50 non-null object Out of pocket health expenditure 49 non-null object Physicians per thousand float64 26 50 non-null Population 50 non-null object 27 Population: Labor force participation (%) 28 47 non-null object Tax revenue (%) 44 non-null object Total tax rate 30 48 non-null object Unemployment rate 47 non-null object Urban population 32 50 non-null object Latitude 50 non-null float64 33 34 Longitude 50 non-null float64 dtypes: float64(9), object(26)

memory usage: 13.8+ KB

```
In [4]:
```

```
df.columns
Out[4]:
Index(['Country', 'Density\n(P/Km2)', 'Abbreviation', 'Agricultural Land(
       'Land Area(Km2)', 'Armed Forces size', 'Birth Rate', 'Calling Cod
e',
       'Capital/Major City', 'Co2-Emissions', 'CPI', 'CPI Change (%)',
       'Currency-Code', 'Fertility Rate', 'Forested Area (%)',
       'Gasoline Price', 'GDP', 'Gross primary education enrollment (%)',
       'Gross tertiary education enrollment (%)', 'Infant mortality',
       'Largest city', 'Life expectancy', 'Maternal mortality ratio',
       'Minimum wage', 'Official language', 'Out of pocket health expendit
ure',
       'Physicians per thousand', 'Population',
       'Population: Labor force participation (%)', 'Tax revenue (%)',
       'Total tax rate', 'Unemployment rate', 'Urban_population', 'Latitud
е',
       'Longitude'],
      dtype='object')
Linear Regression
In [5]:
x=df[['Calling Code','Latitude']]
y=df[ 'Longitude']
In [6]:
# to split my dataset into test and train data
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [7]:
from sklearn.linear model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[7]:
LinearRegression()
In [8]:
print(lr.score(x_test,y_test))
```

0.18500676994333343

```
In [9]:
```

```
lr.score(x_train,y_train)
```

Out[9]:

0.21245241140834292

Ridge Regression

```
In [10]:
```

```
from sklearn.linear_model import Ridge,Lasso
```

In [11]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
rr.score(x_test,y_test)
```

Out[11]:

0.18505007676969287

Lasso Regression

```
In [12]:
```

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[12]:

Lasso(alpha=10)

In [13]:

```
la.score(x_test,y_test)
```

Out[13]:

0.19227321513320117

Elastic regression

```
In [14]:
```

```
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
```

Out[14]:

ElasticNet()

```
In [15]:
print(en.intercept_)
-25.99053257175749
In [16]:
predict=(en.predict(x_test))
In [17]:
print(en.score(x_test,y_test))
0.1854487250913699
Evalution matrics
In [18]:
from sklearn import metrics
print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,predict))
Mean Absolute Error: 39.30024193646154
In [19]:
print("Mean Square Error:", metrics.mean_squared_error(y_test, predict))
Mean Square Error: 2764.7973906632683
In [20]:
print("Root Mean Square Error:",np.sqrt(metrics.mean_squared_error(y_test,predict)))
Root Mean Square Error: 52.58134070811877
In [ ]:
```