Gandaki University

Manju Subedi

Bachelor of Information Technology

BSM 101

Exercise 2

Derivative

1. Find the dervatives of the following function by definition approach:

(a)
$$f(x) = \sqrt{x}$$

(b)
$$f(x) = x^2$$

2. Find $\frac{dy}{dx}$ of the following functions.

a)
$$y = 5x^7 - 3\sqrt{x} + 1$$

a)
$$y = 5x^7 - 3\sqrt{x} + 1$$
 b) $y = \frac{5}{x^2} + x^{3/2} + \frac{1}{2\sqrt{x}} + \frac{x^4}{4} + 8x + \frac{x+3}{7}$ c) $y = (x^2 + 5)(2 - 7x)$

1

c)
$$y = (x^2 + 5)(2 - 7x)$$

d)
$$y = \frac{2x^2 - 3}{5x^2 + 4}$$

e)
$$y = (3x^2 + 5)^{2/3}$$

d)
$$y = \frac{2x^2 - 3}{5x^2 + 4}$$
 e) $y = (3x^2 + 5)^{2/3}$ f) $y = (2x + 4)^{3/2}(5 - 3x)$ g) $y = \frac{x}{\sqrt{x^2 + 1}}$

$$g) y = \frac{x}{\sqrt{x^2 + 1}}$$

3. Find $\frac{dy}{dx}$ from the following

a)
$$y = (u^2 + 5)^2$$
 and $u = x^2 + 3$
b) $y = z^3 + 2z + 1$ and $z = x^2 + 2$
c) $y = \frac{t - 2}{3t}$ and $t = \sqrt{x + 1}$

b)
$$y = z^3 + 2z + 1$$
 and $z = x^2 + 2$

c)
$$y = \frac{t-2}{3t}$$
 and $t = \sqrt{x+1}$

d)
$$y = \sqrt[3t]{x^2 + 1}$$
 and $x = \sqrt{t^2 + 1}$

e)
$$y = \ln(5u - 3)$$
 and $u = 4x^3 - 3x^2$

f)
$$x(t) = t^2 - 3$$
, $y(t) = 2t - 1$,

g)
$$x(t) = 2t + 1$$
, $y(t) = t^3 - 3t + 4$

h)
$$x(t) = 5\cos t$$
, $y(t) = 5\sin t$,

4. By implicit differentiation find $\frac{dy}{dx}$

(a)
$$v^2 - 12x^3 = 8v$$

(b)
$$y^7 + x^{10} = y^{-2} - 6x^3 + 2$$

(c)
$$y^{-3} + 4x^{-1} = 8y^{-1}$$

(d)
$$y^2(4-x^2) = y^7 + 9x$$

(e)
$$x^3 + x^2y + xy^2 + y^2$$

(f)
$$8xy + 2x^4y^{-3} = x^3$$

$$(g) \ \frac{x}{y^3} = 1$$

5. Differentiate

(a)
$$y = z^5 - e^z \ln(z)$$
.

- (b) $y = ln(\cos x)$
- (c) $y = e^{x^4}$
- (d) $y = e^x ln(x)$
- (e) $f(t) = \frac{1 + 5t}{\ln(t)}$
- (f) $h(t) = 6^t 4e^t$ (g) $f(t) = (t^2 6t + 3)e^t$