X ₁	X ₂	у
1	1	1
1	0	0
0	1	0
0	0	0

Implement AND function using McCulloch-Pitts Neuron

- The McCulloch–Pitts neuron was the earliest neural network discovered in 1943.
- · It is usually called as M-P neuron.
- Since the firing of the output neuron is based upon the threshold, the activation function here is defined as

$$f(y_{in}) = \begin{cases} 1 & \text{if} \quad y_{in} \ge \theta \\ 0 & \text{if} \quad y_{in} < \theta \end{cases}$$

The threshold value should satisfy the following condition: θ > nw - p

- · Consider the truth table for AND function
- · The M-P neuron has no particular training algorithm
- · In M-Pneuron, only analysis is being performed.
- Hence, assume the weights be w1 = 1 and w2 = 1.

$$(1, 1), y_{in} = x_1 w_1 + x_2 w_2 = 1 \times 1 + 1 \times 1 = 2$$

$$(1, 0), y_{in} = x_1 w_1 + x_2 w_2 = 1 \times 1 + 0 \times 1 = 1$$

$$(0, 1), y_{ii} = x_1 w_1 + x_2 w_2 = 0 \times 1 + 1 \times 1 = 1$$

$$(0, 0), y_{in} = x_1 w_1 + x_2 w_2 = 0 \times 1 + 0 \times 1 = 0$$

Threshold value is set equal to 2

1

0

Implement AND function using McCulloch-Pitts Neuron

· This can also be obtained by

$$\theta \ge nw - p$$

- Here, n = 2, w = 1 (excitatory weights) and p = 0 (no inhibitory weights).
- Substituting these values in the above-mentioned equation we get $\theta \ge 2 \times 1 0 \Rightarrow \theta \ge 2$
- · Thus, the output of neuron Y can be written

$$y = f(y_m) = \begin{cases} 1 & \text{if } y_m \ge 2\\ 0 & \text{if } y_m < 2 \end{cases}$$

X ₁	X ₂	y
1	1	1
1	0	0
0	1	0
0	0	0

X ₁	X ₂	у	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Implement XOR function using McCulloch-Pitts Neuron

- · Consider the truth table for XOR function
- The M–P neuron has no particular training algorithm
- · In M-P neuron, only analysis is being performed.
- XOR function cannot be represented by simple and single logic function; it is represented as

$$y = x_1 \overline{x_2} + \overline{x_1} x_2$$

$y = x_1 x_2 + x_1 x_2$			X ₁	X ₂	у
$y = z_1 + z_2$			0	0	0
30.			0	1	1
where			1	0	1
$z_1 = x_1 \overline{x_2}$	(function 1)		1	1	0
$z_2 = \overline{x_1} x_2$	(function 2)	xi X	Wii 7		
$y = z_1 \text{ (OR) } z_2$	(function 3)	WI WI	, / (5)	N1	VX
A single-layer net is no	ot sufficient to represent		/		XV)—
the XOR function. We	need to add an	1	__/	V2	
intermediate layer is r	necessary.	X2 X2	(Z ₂)		

Implement XOR function using McCulloch-Pitts Neuron

9=1,2

- First function $z_1 = x_1 \overline{x_2}$
- . The truth table for function z1
- · Assume the weights are initialized to

$$w_{11} = w_{21} = 1 \checkmark$$

· Calculate the net inputs,

$$(0, 0), z_{1in} = 0 \times 1 + 0 \times 1 = 0$$

$$(0, 1), z_{tin} = 0 \times 1 + 1 \times 1 = 1$$

$$(1, 0), z_{1in} = 1 \times 1 + 0 \times 1 = 1$$

$$(1, 1), z_{lin} = 1 \times 1 + 1 \times (=2^{\checkmark})$$

· Hence, it is not possible to obtain function z1 using these weights.

0 0

 $f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge \theta \\ 0 & \text{if } y_{in} < \theta \end{cases}$

- First function $z_1 = x_1 \overline{x_2}$
- . The truth table for function z1
- · Assume the weights are initialized to

$$w_{11} = 1;$$
 $w_{21} = -1$

· Calculate the net inputs,

$$(0, 0), z_{1in} = 0 \times 1 + 0 \times -1 = 0$$

$$(0, 1), z_{\text{lin}} = 0 \times 1 + 1 \times -1 = -1$$

$$(1, 0), z_{lin} = 1 \times 1 + 0 \times -1 = 1$$

$$(1, 1), z_{1in} = 1 \times 1 + 1 \times -1 = 0 \times$$

- If the θ =1 then the neuron fires.
- Hence $w_{11} = 1$; $w_{21} = -1$

Z,

0

Implement XOR function using McCulloch-Pitts Neuron

- Second function $z_2 = \overline{x_1}x_2$
- . The truth table for function z₂
- · Assume the weights are initialized to

$$W_{12} = W_{22} = 1$$

· Calculate the net inputs,

$$(0,0), z_{2in} = 0 \times 1 + 0 \times 1 = 0$$

$$(0,1), z_{2in} = 0 \times 1 + 1 \times 1 = 1$$

$$(1,0), z_{2in} = 1 \times 1 + 0 \times 1 = 1$$

$$(1,1), z_{2in} = 1 \times 1 + 1 \times 1 = 2$$

 Hence, it is not possible to obtain function z₂ using these weights.

	X,	X 2	Z ₂
9=1,1	0	0	0
S 98	V ₀	1	1
$f(y_{is}) = \begin{cases} 1 & \text{if} y_{is} \ge \theta \\ 0 & \text{if} y_{is} < \theta \end{cases}$	1	0	0
$0 \text{ if } y_{m} < \theta$	1	1	0

- Second function $z_2 = \overline{x_1}x_2$
- . The truth table for function z₂
- · Assume the weights are initialized to

9=1

- · Calculate the net inputs,
 - $(0, 0), z_{2in} = 0 \times -1 + 0 \times 1 = 0$

$$(0,1), z_{2m} = 0 \times -1 + 1 \times 1 = 1$$

$$(1, 0), z_{2m} = 1 \times -1 + 0 \times 1 = -1$$
 X

$$(1, 1), z_{2m} = 1 \times -1 + 1 \times 1 = 0$$

- If the θ=1 then the neuron fires.
- Hence $w_{12} = -1$; $w_{22} = 1$

Implement XOR function using McCulloch-Pitts Neuron

- Third function $y = z_1$ (OR) z_2
- · The truth table for function y

$$y_{in} = z_1 v_1 + z_2 v_2$$

· Assume the weights are initialized to

9	-	0,	1
V			

1

0	0
0	1
1	0
0	0

- $v_1 = v_2 = 1$ Calculate the net inputs, $f(y_n) = \begin{cases} 1 & \text{if } y_m \ge \theta \\ 0 & \text{if } y_n < \theta \end{cases}$
 - $(0, 0), y_{in} = 0 \times 1 + 0 \times 1 = 0$

(0,1), $y_{in} = 0 \times 1 + 1 \times 1 = 1$ If the $0 \neq 1$ then the neuron fires.

(1, 0),
$$y_{in} = 1 \times 1 + 0 \times 1 = 1$$
 Hence $v_1 = v_2 = 1$ (0, 0), $v_{in} = 0 \times 1 + 0 \times 1 = 0$

$$w_{12} = -1; \quad w_{22} = 1$$

$$v_{\scriptscriptstyle 1}=v_{\scriptscriptstyle 2}=1$$

