Exploring the TMDB movie database by R

Let's load the packages we need to use.

```
library(tidyverse) # Multiple packages
library(ggthemes) # Visualization themes
library(gridExtra) # Grids for visualizations
library(lubridate) # Working with dates
```

Importing the dataset.

```
setwd("C:\\Users\\USA\\Desktop\\Movie")
train_data <- read_csv('train.csv')
test_data <- read_csv('test.csv')</pre>
```

Let's investigate missing values and condition the data set little bit to carry out our further analysis.

```
train data <- train data %>% mutate(budget = replace(budget, budget == '0', N
train_data$homepage[!is.na(train_data$homepage)] <- "YES"</pre>
train_data$homepage[is.na(train_data$homepage)] <- "NO"</pre>
imdb <- str_replace(train_data$imdb_id, "tt", '')</pre>
train data["imdb id"] <- imdb</pre>
train data$release date <- parse date time2(train data$release date, "mdy",cu
toff 2000 = 20)
train data <- train data %>% separate(release date, c("Year", "Month", "Day")
sum(is.na(train_data$runtime))
## [1] 2
which(is.na(train data$runtime))
## [1] 1336 2303
train data <- train data %>% drop na(runtime)
train data$tagline[!is.na(train data$tagline)] <- "Yes"</pre>
train data$tagline[is.na(train data$tagline)] <- "NO"</pre>
train data$collection name <- str extract(train data$belongs to collection,pa
```

```
ttern = "(?<=name\\'\\:\\s{1}\\').+(?=\\'\\,\\\s{1}\\')poster)")
train_data$Franchise[!is.na(train_data$collection_name)] <- "YES"
train_data$Franchise[is.na(train_data$collection_name)] <- "No"
train_data$prod_country <- str_extract(string = train_data$production_countri
es, pattern = "[:upper:]+")
genres_matching_point <- "Comedy|Horror|Action|Drama|Documentary|Science Fict
ion|Crime|Fantasy|Thriller|Animation|Adventure|Mystery|War|Romance|Music|
Family|Western|History|TV Movie|Foreign"
train_data$main_genre <- str_extract(train_data$genres, genres_matching_point
)
train_data$budget_range[train_data$budget <= 5.10e+06] <- "Low"
train_data$budget_range[train_data$budget > 5.10e+06 & train_data$budget <= 4
.00e+07 ] <- "Med"
train_data$budget_range[train_data$budget > 4.00e+07] <- "Big"</pre>
```

Let's start to explore the data and relations between our variable and find some important features of our dataset. Shall We?

```
train_data$budget_range <- as.factor(train_data$budget_range)
ggplot(train_data, aes(train_data$budget, train_data$revenue, color = train_d
ata$budget_range)) + geom_point() + geom_smooth() + theme_bw()+xlab("Revenue"
)+ylab("Budget")</pre>
```


There are very few Low budget movies, most of them are medium or high budget movies. Budget seems very related with revenue. More budget seems to earn more.

```
train_data$revenue_range[train_data$revenue <= 6.677e+07] <- "Bad"
train_data$revenue_range[train_data$revenue > 6.677e+07] <- "Good"
table(train_data$budget_range, train_data$revenue_range)

## Bad Good
## Big 106 396
## Low 523 24
## Med 818 320</pre>
```

Observations: 1. Out of every 5 Big Budget, 4 will do good. 2. Only 4% Low buget can make the cut-off 3. 30% medium budget movie earning good 4. Money Brings Money

```
ggplot(train_data, aes(train_data$budget, train_data$popularity, color = trai
n_data$revenue_range)) + geom_point()+theme_bw()+xlab("Budget")+ylab("Popular
ity")
```


Popularity also has a positive correlation with budget as expected but not as much as revenue. There is a sweet spot where low budget movie seems to have good revenue and good popularity: These movies will be interesting to study. Maybe some other time.

```
ggplot(train_data, aes(train_data$runtime, train_data$revenue, fill = train_d
ata$budget_range)) + geom_col()+xlab("Run Time")+ylab("Revenue")+theme_bw()+t
heme(legend.position = "top")
```


Observations: 1. Runtime is important, people tend to spend money on movies ranging from 90 min - 145 min. 2. Big budgets and medium budgets movie are clearly aware of this fact. 3. This surely says something about our attention span.

```
Median budget <- train data %>% group by(train data$budget range) %>% summari
se(median revenue=median(revenue))
Median_revenue <- train_data %>% group_by(train_data$budget_range) %>% summar
ise(median budget=median(budget))
Median <- merge(Median_revenue, Median_budget, by = "train_data$budget_range"</pre>
)
train_data %>% filter(budget_range == "Big") %>% arrange(desc(revenue)) %>% s
elect(title, revenue) %>% head(10)
#Top 10 Big Budgets titles based on Revenue
## # A tibble: 10 x 2
##
      title
                                                      revenue
##
      <chr>>
                                                        <dbl>
## 1 The Avengers
                                                   1519557910
```

```
## 2 Furious 7
                                                  1506249360
## 3 Avengers: Age of Ultron
                                                  1405403694
## 4 Beauty and the Beast
                                                  1262886337
## 5 Transformers: Dark of the Moon
                                                  1123746996
## 6 The Dark Knight Rises
                                                  1084939099
## 7 Pirates of the Caribbean: On Stranger Tides 1045713802
## 8 Finding Dory
                                                  1028570889
## 9 Alice in Wonderland
                                                  1025491110
## 10 Zootopia
                                                  1023784195
train data %>% filter(budget range == "Med") %>% arrange(desc(revenue)) %>% s
elect(title, revenue) %>% head(10)
#Top 10 Medium Budget titles based on Revenue
## # A tibble: 10 x 2
     title
##
                                  revenue
##
      <chr>>
                                    <dbl>
## 1 The Passion of the Christ 611899420
## 2 Ghost
                                505000000
## 3 Jaws
                                470654000
## 4 The Hangover
                                459270619
## 5 The Exorcist
                                441306145
## 6 The Intouchables
                                426480871
## 7 Dances with Wolves
                                424208848
## 8 The Bodyguard
                                411006740
## 9 Monster Hunt
                                385284817
## 10 Toy Story
                                373554033
train_data %>% filter(budget_range == "Low") %>% arrange(desc(revenue)) %>% s
elect(title, revenue) %>% head(10)
#Top 10 Low Budgets based on Revenue
## # A tibble: 10 x 2
##
      title
                                 revenue
##
      <chr>>
                                   <dbl>
## 1 My Big Fat Greek Wedding 368744044
## 2 Get Out
                               252434250
## 3 The Blair Witch Project
                               248000000
## 4 Paranormal Activity 3
                               205703818
## 5 Paranormal Activity
                               193355800
## 6 Lights Out
                               148868835
## 7 Paranormal Activity 4
                               142817992
## 8 Animal House
                               141000000
## 9 Love Story
                               136400000
## 10 Porky's
                               125728258
```

Observations:

The top 10 movies by earning for low budget criteria seems very interesting: 6 of them horror, 4 of them commedy.

If you get less money in the movie business, either bring good wit or crazy vison to scare people off. Franchise movies dominate big budget genre.

It Seems like medium budget movie can hold more creativity and experiments.

```
train_data %>% filter(budget_range == "Big") %>% arrange(desc(revenue)) %>% s
elect(title, revenue) %>% tail(10)
#Top 10 Big Budget yet Fails:
## # A tibble: 10 x 2
     title
                                  revenue
##
     <chr>>
                                    <dbl>
## 1 Stay
                                  8342132
## 2 Gigli
                                  7266209
## 3 1492: Conquest of Paradise 7191399
## 4 The Adventures of Pluto Nash 7103973
## 5 The Big Bounce
                                  6808550
## 6 A Sound of Thunder
                                 5989640
## 7 Heaven's Gate
                                  3484331
## 8 Child 44
                                  3324330
## 9 Shadow Conspiracy
                                  2154540
## 10 Lolita
                                  1060056
```

I do keep myself informed with movies at least with thee big hits: Never heard about any of these movies: seems well justified to me.

Moving on.

```
language_number <- train_data %>% group_by(original_language) %>% summarise(c
t = n()) %>% arrange(desc(ct)) %>% head(7)
language_number$original_language <- as.factor(language_number$original_language)
ggplot(language_number, aes(language_number$original_language, language_numbe
r$ct, fill = desc(ct))) + geom_col() + xlab("Language") + ylab("Number of Movies")+theme_bw()</pre>
```


No wonder, there will be monopoly of english language. Other significant languages are french, russian, hindi, spanish and italian.

ggplot(train_data, aes(original_language, fill = revenue_range)) + geom_bar()
+ coord_flip()+xlab("Language") + ylab("Movie Count")+theme_bw()+theme(plot.m
argin = margin(.01,.01,.01,.01, "cm"))

By global standard, other languages other than english are not successful that much except few languages like japanese, hindi, french, tr, zh. Russian language film seems to suffer a lot; Giant land with small population effect, I guess.

ggplot(train_data, aes(revenue, popularity, color = homepage)) + geom_point(s
ize = 1.2)+theme_bw()+xlab("Popularity")+ ylab("Revenue")

The graph might be misleading: seems like having homepage have clear effect on being the movie popular and successful. Most of the successful or popular movies are high budget movies: thereby can afford to build or care about having a homepage. Domain Knowledge!!

```
ggplot(train_data, aes(fct_infreq(train_data$main_genre))) + geom_bar(na.rm=
TRUE) + coord_flip() + ylab("Genre")+xlab("Number of Movies")+theme_bw()
```


ggplot(train_data, aes(fct_infreq(train_data\$main_genre), fill = revenue_ran
ge)) + geom_bar(position = "fill") + coord_flip()+ xlab("Genre")+ylab("Ratio_
Count")+theme_bw()

Drama, comedy, action overwhelms other genres. But Revenue wise Adventure, Science fictions & animation beats everybody. Hollywood stands high in every category.

ggplot(train_data, aes(Franchise, fill = revenue_range)) + geom_bar()+xlab("F
ranchise?")+ylab("Count")+theme_bw()

This is one interesting plot, looks like probability of being a winner is much higher for a franchise movie.