COMP 2711 Discrete Math Tools for Computer Science $2022 \ {\rm Fall \ Semester \ - \ Homework \ 4}$

Question 1: Answer the questions below:

- (a) Find all positive integers n such that $n^2 + 1$ is divisible by n + 1.
- (b) Find all integers $x \neq 1$ such that $x 1 \mid x^3 3$.
- (c) Prove that if for integers a and b we have $7\mid a^2+b^2,$ then $7\mid a$ and $7\mid b$
- (d) Prove that if for some integers a, b, c, we have $9 \mid a^3 + b^3 + c^3$, then at least one of the numbers a, b, c is divisible by 3.
- (e) Prove that if for integer a and b the congruence $ax + b = 0 \pmod{m}$ has a solution for every positive integer modulus m, then the equation ax + b = 0 has an integer solution.

Question 2: Solve each of these congruences. Please write down the process of finding multiplicative inverses. If you just write down the answer, you will get 0 point even if the answer is correct.

- (a) $2011x \equiv 123 \pmod{2711}$
- (b) $3675x \equiv 291 \pmod{4409}$
- (c) $777x \equiv 896 \pmod{2311}$

Question 3: Solve this system of linear congruences. If you just write down the answer, you will get 0 point even if the answer is correct.

 $x \equiv 2 \pmod{7}$ $x \equiv 3 \pmod{17}$ $x \equiv 15 \pmod{23}$ $x \equiv 14 \pmod{27}$

- **Question 4:** Consider the following simplified version of the RSA algorithm for public cryptography:
 - (i) Bob's public key is a pair (n, e), where n is a prime number and e is a positive integer that is smaller than n and is relatively prime with n-1
 - (ii) Bob's private key is $d = e^{-1} \mod (n-1)$.
 - (iii) Alice encrypts a message m(0 < m < n 1) by calculating $c = m^e \mod n$, and sends the ciphertext c to Bob.
 - (iv) Bob decrypts the ciphertext c by calculating $c^d \mod n$.

Suppose n = 251 and e = 137.

- (a) Calculate d using the extended GCD algorithm. Show the computational steps.
- (b) Suppose m = 200. Calculate $c = m^e \mod n$ using repeated squaring. Show the computational steps.
- (c) Is the system secure? Explain why or why not.