Homework 4 for **MATH 574**, Topics in Logic

Due: Wednesday March 16

Problem 1

Let $A, B \subseteq \mathbb{N}$. We say A is many-one reducible to $B, A \leq_m B$, if there exists a computable function f such that

$$f(A) \subseteq B$$
 and $f(\mathbb{N} \setminus A) \subseteq \mathbb{N} \setminus B$, i.e. $x \in A \iff f(x) \in B$.

- (a) Show that if *B* is decidable and $A \leq_m B$, then *A* is dedicable, too.
- (b) Show that the relation $A \equiv_m B$ defined as $A \leq_m B \& B \leq_m A$ is an equivalence relation.
- (c) Let $A \oplus B = \{2n : n \in A\} \cup \{2n+1 : n \in B\}$. Show that $A \oplus B$ is a *least upper bound* of A, B with respect to \leq_m , that is, show that $A \leq_m A \oplus B$ and $B \leq_m A \oplus B$, and if $A \leq_m C$ and $B \leq_m C$, then $A \oplus B \leq_m C$.

Problem 2

Two sets $A, B \subseteq \mathbb{N}$ are called *computably inseperable* if there does not exist a decidable set C such that $A \subseteq C$ and $B \cap C = \emptyset$.

- (a) Show that the sets $A = \{n : M_n(n) \downarrow = 0\}$ and $B = \{n : M_n(n) \downarrow = 1\}$ are computably inseperable.¹
- (b) Use part (a) to show that there exists a partial computable function f with the following property: there does not exist a Turing machine M such that (1) M halts on all inputs, and (2) whenever f(n) is defined, M(n) = f(n). This means there exists a partial computable function that cannot be extended to a (total) computable function.

Problem 3

Prove the characterization of subshifts via forbidden substrings mentioned in Lesson 3-1: A set $S \subseteq A^{\mathbb{N}}$ is a subshift if and only if there exists a set $W \subseteq A^{<\mathbb{N}}$ such that

$$S = \{x \in A^{<\mathbb{N}} : \text{ no } w \in W \text{ appears as a substring in } x\}.$$

Problem 4

Let (X, \mathcal{A}, μ) be a probability space and suppose $T: X \to X$ is measure preserving. Let $E \subseteq X$ be measurable and of positive measure, $\mu E > 0$. Show that there exists a measurable set $F \subseteq E$ with $\mu(E \setminus F) = 0$ such that

$$\forall x \in F \ \exists n \ge 1 \ T^n(x) \in F$$
,

that is, almost every point in *E* returns to *E* at some point.

¹Recall that M_k denotes the partial function computed by the k-th Turing machine, and $M_k(m) \downarrow$ means the k-th machine halts on input m