In this tests we will consider this two attempts: In this test we will consider:

Figure 1: Old attempt.

Figure 2: New attempt.

- $\psi(x) = \exp(x)$
- $\psi_l = 1$;
- $\psi_{11} = 1$;
- $\psi_{\rm r} = 1$;
- $\psi_{rr} = 1$;
- $g(x) = -\exp(x)$.

Table 1: Test of 01_01 with d and d+1 (exp(x) — constant mesh).

			$\omega =$	1 1		$\omega =$	1 3		
	I	E ₁	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}	E_1	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}
	50	1.09E-05	_	1.72E-05		8.41E-06		1.36E-05	
\mathbb{P}_3	100	1.34E-06	3.02	2.10E-06	3.03	1.02E-06	3.04	1.65E-06	3.04
IF 3	150	3.84E-07	3.08	5.99E-07	3.09	2.92E-07	3.10	4.68E-07	3.11
	200	1.57E-07	3.12	2.43E-07	3.14	1.17E-07	3.16	1.88E-07	3.16
	50	2.46E-06	_	3.97E-06	_	1.55E-06	_	2.39E-06	
TD /TD (a1.1)	100	2.55E-07	3.27	4.01E-07	3.31	1.57E-07	3.31	2.20E-07	3.44
$\mathbb{P}_3/\mathbb{P}_4$ (old)	150	6.01E-08	3.56	9.68E - 08	3.51	3.33E-08	3.82	4.71E-08	3.80
	200	1.91E-08	3.99	3.38E-08	3.65	8.23E-09	4.86	1.53E-08	3.91
	50	3.38E-06		6.75E-06		1.31E-06		2.11E-06	
ID /ID (maxx)	100	6.77E - 07	2.32	1.22E-06	2.47	1.43E-07	3.19	2.23E-07	3.24
$\mathbb{P}_3/\mathbb{P}_4$ (new)	150	2.40E-07	2.56	4.14E-07	2.67	3.09E-08	3.77	5.31E-08	3.54
	200	1.10E-07	2.71	1.85E-07	2.79	7.66E-09	4.85	1.84E-08	3.69
	50	3.85E-07	_	7.68E-07	_	3.08E-07	_	6.06E-07	_
TD	100	1.11E-07	1.79	2.10E-07	1.87	9.29E-08	1.73	1.76E-07	1.78
\mathbb{P}_4	150	5.07E - 08	1.93	9.53E-08	1.95	4.28E-08	1.91	8.06E-08	1.93
	200	2.88E-08	1.97	5.42E-08	1.96	2.44E-08	1.95	4.59E-08	1.95
	50	4.20E-07	_	8.21E-07	_	3.66E-07	_	6.95E-07	
TD /TD (ald)	100	1.14E-07	1.88	2.14E-07	1.94	9.70E-08	1.92	1.82E-07	1.93
$\mathbb{P}_4/\mathbb{P}_5$ (old)	150	5.10E-08	1.98	9.59E-08	1.99	4.36E-08	1.97	8.19E-08	1.98
	200	2.89E-08	1.97	5.44E-08	1.97	2.46E-08	2.00	4.61E-08	2.00
	50	4.32E-07		8.31E-07		3.75E-07		7.09E-07	
$\mathbb{P}_4/\mathbb{P}_5$ (new)	100	1.14E-07	1.92	2.15E-07	1.95	9.76E-08	1.94	1.83E-07	1.95
1 4/11 5 (Hew)	150	5.14E-08	1.97	9.64E-08	1.98	4.37E-08	1.98	8.21E-08	1.98
	200	2.90E-08	1.99	5.44E-08	1.99	2.46E-08	2.00	4.62E-08	2.00
	50	1.51E-09		2.16E-09		9.32E-10	_	1.46E-09	
\mathbb{P}_5	100	3.51E-11	5.42	5.35E-11	5.34	2.82E-11	5.05	4.55E-11	5.00
1 5	150	1.03E-12	8.69	2.29E-12	7.77	4.31E-12	4.64	8.16E-12	4.24
	200	7.66E-12	<u> </u>	1.72E-11	<u> </u>	1.27E-11	<u> </u>	2.52E-11	<u></u>
	50	7.22E-10	_	9.92E-10		6.77E-10	_	1.02E-09	
$\mathbb{P}_5/\mathbb{P}_6$ (old)	100	2.13E-11	5.09	3.29E-11	4.92	2.12E-11	4.99	3.32E-11	4.94
1 5/1 6 (OIU)	150	1.51E-12	6.52	3.26E-12	5.70	5.91E-12	3.16	1.34E-11	2.24
	200	3.63E-12	<u></u>	7.61E-12	<u></u>	1.02E-11	<u> </u>	1.79E-11	<u></u>
	50	1.59E-09	_	2.43E-09		5.19E-10	_	8.43E-10	_
$\mathbb{P}_5/\mathbb{P}_6$ (new)	100	2.91E-11	5.78	4.46E-11	5.77	1.53E-11	5.08	2.45E-11	5.10
п 5/ п 6 (ПС W)	150	4.40E-12	4.66	7.42E-12	4.42	2.38E-12	4.59	5.77E-12	3.57
	200	6.46E-12	1	1.27E-11	↑	6.74E-12	↑	1.58E-11	<u> </u>

Table 2: Test of 01_01 with d and d+1 (exp(x) — non-constant mesh).

		01 01 01		: 1 1			ω =	1 3	
	I	E_1	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}	E_1	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}
	50	1.14E-05		1.79E-05		7.04E-06		1.05E-05	
\mathbb{P}_3	100	1.30E-06	3.13	2.02E-06	3.15	6.72E-07	3.39	9.69E-07	3.44
ш 3	150	3.35E-07	3.35	5.18E-07	3.35	1.30E-07	4.05	2.12E-07	3.75
	200	1.18E-07	3.62	1.88E-07	3.53	2.65E-08	5.53	6.98E-08	3.85
	50	1.95E-06	_	3.29E-06	_	1.14E-06	_	2.34E-06	_
$\mathbb{P}_3/\mathbb{P}_4$ (old)	100	7.65E-08	4.67	2.33E-07	3.82	1.40E-07	3.03	3.01E-07	2.96
1 3/1 4 (Old)	150	5.94E-08	0.62	1.34E-07	1.37	1.03E-07	0.75	2.21E-07	0.76
	200	4.77E-08	0.77	1.03E-07	0.91	7.27E-08	1.22	1.50E-07	1.35
	50	1.40E-06	_	2.30E-06	_	3.20E-07	_	8.76E-07	
ID. /ID. (now)	100	2.42E-07	2.53	4.06E-07	2.50	2.10E-07	0.61	4.63E-07	0.92
$\mathbb{P}_3/\mathbb{P}_4$ (new)	150	6.95E - 08	3.08	1.36E-07	2.70	1.28E-07	1.22	2.66E-07	1.37
	200	2.25E-08	3.91	6.02E-08	2.83	8.32E-08	1.49	1.68E-07	1.60
	50	7.17E-08	_	1.61E-07	_	7.74E-08	_	1.31E-07	_
\mathbb{P}_4	100	3.09E-08	1.22	6.13E-08	1.39	2.80E-08	1.46	5.46E - 08	1.26
n 4	150	1.64E-08	1.55	3.16E-08	1.64	1.44E-08	1.65	2.75E-08	1.70
	200	1.01E-08	1.68	1.96E-08	1.66	8.52E-09	1.82	1.61E-08	1.84
	50	1.50E-07		3.32E-07	_	7.32E-08		1.47E-07	_
$\mathbb{P}_4/\mathbb{P}_5$ (old)	100	3.93E-08	1.94	7.45E-08	2.16	3.03E-08	1.27	5.84E-08	1.33
1 4/ 11 5 (Old)	150	1.69E-08	2.08	3.24E-08	2.05	1.49E-08	1.75	2.83E-08	1.78
	200	1.46E-08	0.51	2.67E-08	0.68	8.69E-09	1.87	1.64E-08	1.89
	50	9.44E-08	_	2.11E-07	_	1.04E-07	_	2.05E-07	_
$\mathbb{P}_4/\mathbb{P}_5$ (new)	100	3.74E-08	1.34	7.21E-08	1.55	3.29E-08	1.66	6.27E - 08	1.71
1 4/ 11 5 (11evv)	150	1.82E-08	1.77	3.44E-08	1.82	1.54E-08	1.87	2.92E-08	1.89
	200	1.02E-08	2.00	1.94E-08	1.98	8.86E-09	1.93	1.67E-08	1.94
	50	2.80E-09	_	4.63E-09	_	2.25E-09		3.76E-09	_
\mathbb{P}_5	100	1.17E-10	4.59	2.01E-10	4.53	1.07E-10	4.40	1.87E-10	4.33
m 5	150	1.88E-11	4.50	3.31E-11	4.44	1.94E-11	4.20	3.49E-11	4.14
	200	4.60E-12	4.89	8.42E-12	4.76	7.54E-12	3.29	1.35E-11	3.29
	50	2.33E-09		3.90E-09		2.37E-09		4.00E-09	
$\mathbb{P}_5/\mathbb{P}_6$ (old)	100	9.65E-11	4.59	1.68E-10	4.53	1.08E-10	4.46	1.89E-10	4.40
1 5/1 6 (Old)	150	1.44E-11	4.69	2.57E-11	4.64	1.74E-11	4.49	3.10E-11	4.47
	200	5.38E-12	3.42	9.70E-12	3.39	6.21E-12	3.58	1.08E-11	3.66
	50	5.59E-10		1.10E-09		2.00E-10		4.56E-10	
$\mathbb{P}_5/\mathbb{P}_6$ (new)	100	1.42E-11	5.30	2.71E-11	5.34	3.09E-11	2.69	6.53E-11	2.80
- 5/ - 0 (11C +)	150	5.27E-12	2.45	1.12E-11	2.17	9.05E-12	3.03	1.83E-11	3.13
	200	1.76E-12	3.82	3.66E-12	3.89	1.26E-11	<u> </u>	2.47E-11	<u> </u>

In this test we will consider:

- $\psi(x) = -\exp(x) + \mathbb{P}_3$
- $\psi_{l} = 0$;
- $\psi_{ll}=0$;
- $\psi_{\rm r}=0$;
- $\psi_{\rm rr}=0$;
- $g(x) = \exp(x)$.

Table 3: Test of 01_01 with d and d+1 (exp(x) + \mathbb{P}_3 — constant mesh).

			ω =	: 1 1			ω =	1 3	
	I	E_1	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}	$\overline{E_1}$	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}
	50	1.09E-05	_	1.72E-05	_	8.41E-06	_	1.36E-05	
TD.	100	1.34E-06	3.02	2.10E-06	3.03	1.02E-06	3.04	1.65E-06	3.04
\mathbb{P}_3	150	3.84E-07	3.08	5.99E-07	3.09	2.92E-07	3.10	4.68E-07	3.11
	200	1.56E-07	3.12	2.43E-07	3.14	1.17E-07	3.16	1.88E-07	3.16
	50	2.46E-06		3.97E-06	_	1.55E-06		2.39E-06	
$\mathbb{P}_3/\mathbb{P}_4$ (old)	100	2.55E-07	3.27	4.01E-07	3.31	1.57E-07	3.31	2.20E-07	3.44
1 3/1 4 (Old)	150	6.01E-08	3.56	9.68E - 08	3.51	3.33E-08	3.82	4.71E-08	3.80
	200	1.91E-08	3.99	3.38E-08	3.65	8.23E-09	4.86	1.53E-08	3.91
	50	3.38E-06		6.75E-06	_	1.31E-06		2.11E-06	_
$\mathbb{P}_3/\mathbb{P}_4$ (new)	100	6.77E - 07	2.32	1.22E-06	2.47	1.43E-07	3.19	2.23E-07	3.24
1 3/11 4 (11ew)	150	2.40E-07	2.56	4.14E-07	2.67	3.09E-08	3.77	5.31E-08	3.54
	200	1.10E-07	2.71	1.85E-07	2.79	7.65E-09	4.86	1.84E-08	3.69
	50	3.85E-07	_	7.68E-07	_	3.08E-07	_	6.06E-07	_
\mathbb{P}_4	100	1.11E-07	1.79	2.10E-07	1.87	9.29E-08	1.73	1.76E-07	1.78
1 4	150	5.07E - 08	1.93	9.53E - 08	1.95	4.28E-08	1.91	8.06E-08	1.93
	200	2.88E-08	1.97	5.42E-08	1.96	2.44E-08	1.96	4.58E-08	1.96
	50	4.20E-07	_	8.21E-07	_	3.66E-07	_	6.95E-07	_
$\mathbb{P}_4/\mathbb{P}_5$ (old)	100	1.14E-07	1.88	2.14E-07	1.94	9.70E-08	1.92	1.82E-07	1.93
1 4/ 11 5 (Old)	150	5.10E-08	1.98	9.59E - 08	1.99	4.36E-08	1.97	8.19E-08	1.98
	200	2.89E-08	1.97	5.44E-08	1.97	2.46E-08	1.99	4.62E-08	1.99
	50	4.32E-07		8.31E-07	_	3.75E-07		7.09E-07	
$\mathbb{P}_4/\mathbb{P}_5$ (new)	100	1.14E-07	1.92	2.15E-07	1.95	9.76E - 08	1.94	1.83E-07	1.95
± 4/ ± 5 (11e + +)	150	5.14E-08	1.97	9.65E - 08	1.98	4.37E-08	1.98	8.21E-08	1.98
	200	2.90E-08	1.99	5.44E-08	1.99	2.47E-08	1.99	4.63E-08	1.99
	50	1.51E-09	_	2.16E-09	_	9.32E-10	_	1.46E-09	_
\mathbb{P}_5	100	3.58E-11	5.40	5.45E-11	5.31	2.95E-11	4.98	4.73E-11	4.94
- 5	150	5.37E-12	4.68	8.57E-12	4.56	3.40E-12	5.34	5.39E-12	5.36
	200	4.18E-12	0.87	7.61E-12	0.41	1.79E-12	2.22	3.01E-12	2.03
	50	7.22E-10		9.92E-10		6.77E-10		1.02E-09	_
$\mathbb{P}_5/\mathbb{P}_6$ (old)	100	1.88E-11	5.27	2.85E-11	5.12	2.08E-11	5.02	3.24E-11	4.98
1 5/ 1 6 (Old)	150	2.91E-12	4.60	4.68E-12	4.45	3.15E-12	4.66	5.10E-12	4.56
	200	2.57E-12	0.43	4.65E-12	0.02	6.22E-13	5.64	1.04E-12	5.52
	50	1.59E-09		2.43E-09		5.20E-10		8.44E-10	
$\mathbb{P}_5/\mathbb{P}_6$ (new)	100	2.90E-11	5.78	4.43E-11	5.77	1.65E-11	4.97	2.61E-11	5.01
и 5/и 6 (пеw)	150	3.01E-12	5.59	4.50E-12	5.64	1.32E-12	6.24	2.14E-12	6.17
	200	1.59E-12	2.23	3.04E-12	1.36	5.35E-12	<u> </u>	9.87E-12	<u> </u>

Table 4: Test of 01_01 with d and d+1 (exp(x) + \mathbb{P}_3 — non-constant mesh).

		t 01 01_01 v	ω =	,		ω =	1 3		
	I	E_1	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}	$\overline{E_1}$	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}
	50	1.14E-05	_	1.79E-05	_	7.04E-06		1.05E-05	
\mathbb{P}_3	100	1.30E-06	3.13	2.02E-06	3.15	6.72E-07	3.39	9.69E-07	3.44
IF 3	150	3.35E-07	3.35	5.18E-07	3.35	1.30E-07	4.05	2.12E-07	3.75
	200	1.18E-07	3.62	1.88E-07	3.53	2.65E-08	5.53	6.98E-08	3.85
	50	1.95E-06	_	3.29E-06	_	1.14E-06	_	2.34E-06	
$\mathbb{P}_3/\mathbb{P}_4$ (old)	100	7.65E-08	4.67	2.33E-07	3.82	1.40E-07	3.03	3.01E-07	2.96
1 3/11 4 (OIQ)	150	5.94E-08	0.62	1.34E-07	1.37	1.03E-07	0.75	2.21E-07	0.76
	200	4.77E-08	0.77	1.03E-07	0.91	7.27E-08	1.22	1.50E-07	1.35
	50	1.40E-06		2.30E-06	_	3.20E-07		8.76E-07	_
$\mathbb{P}_3/\mathbb{P}_4$ (new)	100	2.42E-07	2.53	4.06E-07	2.50	2.10E-07	0.61	4.63E-07	0.92
1 3/1 4 (Hew)	150	6.95E-08	3.08	1.36E-07	2.70	1.28E-07	1.22	2.66E-07	1.37
	200	2.25E-08	3.91	6.02E-08	2.83	8.32E-08	1.49	1.68E-07	1.60
	50	7.17E-08	_	1.61E-07	_	7.74E-08		1.31E-07	_
\mathbb{P}_4	100	3.09E-08	1.22	6.13E-08	1.39	2.80E-08	1.46	5.46E - 08	1.26
n 4	150	1.64E-08	1.55	3.16E-08	1.64	1.44E-08	1.65	2.75E-08	1.70
	200	1.01E-08	1.68	1.96E-08	1.66	8.52E-09	1.82	1.61E-08	1.85
	50	1.50E-07	_	3.32E-07	_	7.32E-08	_	1.47E-07	_
$\mathbb{P}_4/\mathbb{P}_5$ (old)	100	3.93E-08	1.94	7.45E-08	2.16	3.03E-08	1.27	5.84E-08	1.33
1 4/ 1 5 (Old)	150	1.69E-08	2.08	3.24E-08	2.05	1.49E-08	1.75	2.83E-08	1.78
	200	1.46E-08	0.51	2.67E-08	0.68	8.69E-09	1.87	1.64E-08	1.89
	50	9.44E-08		2.11E-07		1.04E-07		2.05E-07	
$\mathbb{P}_4/\mathbb{P}_5$ (new)	100	3.74E-08	1.34	7.21E-08	1.55	3.29E-08	1.66	6.27E - 08	1.71
4/11/3 (11611)	150	1.82E-08	1.77	3.44E-08	1.82	1.54E-08	1.87	2.92E-08	1.88
	200	1.02E-08	2.00	1.94E-08	1.98	8.86E-09	1.93	1.67E-08	1.94
	50	2.80E-09		4.63E-09	—	2.25E-09		3.76E-09	_
\mathbb{P}_5	100	1.17E-10	4.58	2.02E-10	4.52	1.07E-10	4.40	1.87E-10	4.33
- 5	150	1.87E-11	4.53	3.28E-11	4.48	1.90E-11	4.25	3.39E-11	4.20
	200	6.09E-12	3.89	1.08E-11	3.85	4.71E-12	4.85	8.46E-12	4.83
	50	2.33E-09		3.90E-09	—	2.37E-09		4.00E-09	—
$\mathbb{P}_5/\mathbb{P}_6$ (old)	100	9.59E-11	4.60	1.67E-10	4.54	1.07E-10	4.47	1.89E-10	4.41
1 5/1 6 (Old)	150	1.61E-11	4.39	2.89E-11	4.33	1.84E-11	4.35	3.29E-11	4.31
	200	4.05E-12	4.81	7.24E-12	4.81	6.05E-12	3.86	1.10E-11	3.82
	50	5.59E-10	_	1.10E-09		2.00E-10		4.56E-10	
$\mathbb{P}_5/\mathbb{P}_6$ (new)	100	1.37E-11	5.35	2.55E-11	5.43	3.11E-11	2.69	6.57E-11	2.79
1 5/ 11 6 (11CVV)	150	5.58E-12	2.21	1.19E-11	1.88	7.36E-12	3.55	1.50E-11	3.64
	200	1.15E-12	5.49	2.30E-12	5.71	6.08E-12	0.66	1.17E-11	0.86

In this test we will consider:

- $\psi(x) = \sin(x)$
- $\psi_{l} = 0$;
- $\psi_{ll} = 1$;
- $\psi_{\rm r} = \sin(1)$;
- $\psi_{\rm rr} = \cos(1)$;
- $g(x) = -\sin(x)$.

Table 5: Test of 01_01 with d and d+1 ($\sin(x)$ — constant mesh).

			$\omega =$	1 1		$\omega =$	•		
	I	E ₁	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}	$\overline{E_1}$	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}
	50	2.73E-06		4.84E-06		2.30E-06		4.05E-06	
TD.	100	3.57E-07	2.94	6.30E-07	2.94	3.03E-07	2.92	5.34E-07	2.92
\mathbb{P}_3	150	1.10E-07	2.91	1.93E-07	2.91	9.42E-08	2.89	1.65E-07	2.89
	200	4.80E-08	2.87	8.44E-08	2.88	4.15E-08	2.85	7.28E-08	2.86
	50	7.68E-07	_	1.39E-06	_	4.76E-07	_	8.59E-07	
TD /TD (a1d)	100	1.08E-07	2.83	1.91E-07	2.86	7.47E-08	2.67	1.33E-07	2.69
$\mathbb{P}_3/\mathbb{P}_4$ (old)	150	3.57E-08	2.73	6.29E-08	2.74	2.63E-08	2.57	4.68E-08	2.57
	200	1.67E-08	2.64	2.94E-08	2.64	1.28E-08	2.50	2.29E-08	2.49
	50	1.05E-06	_	2.41E-06	_	4.78E-07	_	8.80E-07	
ID /ID (now)	100	2.09E-07	2.33	4.35E-07	2.47	7.92E-08	2.59	1.42E-07	2.63
$\mathbb{P}_3/\mathbb{P}_4$ (new)	150	7.75E-08	2.44	1.53E-07	2.58	2.81E-08	2.55	5.01E-08	2.57
	200	3.76E-08	2.51	7.19E-08	2.62	1.37E-08	2.50	2.44E-08	2.50
	50	1.11E-07	_	2.30E-07	_	1.03E-07	_	2.05E-07	
TD.	100	3.12E-08	1.83	5.98E-08	1.94	2.71E-08	1.93	5.17E-08	1.99
\mathbb{P}_4	150	1.42E-08	1.94	2.70E-08	1.96	1.22E-08	1.97	2.31E-08	1.98
	200	8.08E-09	1.97	1.53E-08	1.97	6.92E-09	1.97	1.31E-08	1.98
	50	1.19E-07	_	2.44E-07	_	9.83E-08	_	1.94E-07	
$\mathbb{P}_4/\mathbb{P}_5$ (old)	100	3.20E-08	1.90	6.09E-08	2.00	2.69E-08	1.87	5.13E-08	1.92
1 4/11 5 (OIU)	150	1.43E-08	1.98	2.71E-08	1.99	1.22E-08	1.96	2.31E-08	1.97
	200	8.12E-09	1.97	1.54E-08	1.96	6.91E-09	1.97	1.31E-08	1.98
	50	1.22E-07		2.40E-07	_	1.03E-07		2.00E-07	
$\mathbb{P}_4/\mathbb{P}_5$ (new)	100	3.21E-08	1.93	6.08E-08	1.98	2.73E-08	1.92	5.17E-08	1.95
1 4/11 5 (11CW)	150	1.44E-08	1.97	2.73E-08	1.98	1.22E-08	1.97	2.31E-08	1.98
	200	8.14E-09	1.99	1.54E-08	1.99	6.86E-09	2.01	1.29E-08	2.02
	50	3.37E-10	_	5.16E-10	_	2.20E-10	_	3.75E-10	_
\mathbb{P}_5	100	6.59E-12	5.68	1.09E-11	5.56	6.92E-12	4.99	1.17E-11	5.01
m 5	150	1.13E-12	4.35	1.90E-12	4.31	1.08E-12	4.59	1.90E-12	4.47
	200	6.04E-13	2.18	1.45E-12	0.94	4.82E-12	<u> </u>	1.18E-11	<u></u>
	50	1.49E-10	_	2.39E-10		1.41E-10	_	2.37E-10	
$\mathbb{P}_5/\mathbb{P}_6$ (old)	100	2.88E-12	5.69	5.23E-12	5.52	3.53E-12	5.32	6.26E-12	5.24
11 5/11 6 (OIQ)	150	4.39E-13	4.64	8.58E-13	4.46	1.17E-12	2.73	2.50E-12	2.27
	200	3.73E-13	0.57	5.76E-13	1.38	1.14E-12	0.09	2.11E-12	0.59
	50	4.06E-10	_	6.44E-10	_	1.46E-10	_	2.60E-10	_
$\mathbb{P}_5/\mathbb{P}_6$ (new)	100	8.36E-12	5.60	1.39E-11	5.53	5.27E-12	4.79	9.29E-12	4.81
1 5/ 11 6 (11C VV)	150	7.76E-13	5.86	1.23E-12	5.97	3.87E-13	6.44	7.53E-13	6.20
	200	2.47E-12	<u> </u>	4.43E-12	↑	5.13E-12	↑	9.48E-12	<u> </u>

Table 6: Test of $01_{-}01$ with d and d+1 ($\sin(x)$ — non-constant mesh).

			$\omega =$	1 1	$\omega = 1 3$				
	I	E_1	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}	$\overline{E_1}$	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}
	50	1.99E-06	_	3.18E-06	_	1.66E-06	_	2.69E-06	
TD.	100	2.87E - 07	2.79	4.71E-07	2.75	2.57E-07	2.69	4.26E-07	2.66
\mathbb{P}_3	150	1.00E-07	2.59	1.68E-07	2.54	9.33E-08	2.50	1.58E-07	2.45
	200	4.93E-08	2.47	8.39E-08	2.41	4.69E-08	2.39	8.06E-08	2.34
	50	8.43E-07	_	1.44E-06	_	7.38E-07	_	1.31E-06	
$\mathbb{P}_3/\mathbb{P}_4$ (old)	100	1.59E-07	2.41	2.82E-07	2.35	1.50E-07	2.30	2.73E-07	2.26
13/11 ² 4 (OIU)	150	6.44E - 08	2.23	1.16E-07	2.19	6.26E - 08	2.16	1.15E-07	2.13
	200	3.46E-08	2.16	6.30E-08	2.13	3.41E-08	2.11	6.32E-08	2.08
	50	1.27E-06		2.25E-06	_	7.26E-07	_	1.28E-06	_
$\mathbb{P}_3/\mathbb{P}_4$ (new)	100	2.46E-07	2.37	4.21E-07	2.42	1.53E-07	2.25	2.76E-07	2.22
1 3/1 4 (Hew)	150	9.37E - 08	2.38	1.61E-07	2.38	6.35E-08	2.16	1.16E-07	2.13
	200	4.78E-08	2.34	8.23E-08	2.32	3.45E-08	2.12	6.38E-08	2.09
	50	3.03E-07		6.50E-07	_	2.79E-07		5.61E-07	_
\mathbb{P}_4	100	1.08E-07	1.48	2.08E-07	1.65	9.37E-08	1.57	1.79E-07	1.65
n 4	150	5.15E-08	1.83	9.74E-08	1.87	4.41E-08	1.86	8.33E-08	1.88
	200	2.99E-08	1.89	5.66E-08	1.88	2.54E-08	1.93	4.77E-08	1.94
	50	4.29E-07		8.48E-07	_	3.23E-07		6.31E-07	
$\mathbb{P}_4/\mathbb{P}_5$ (old)	100	1.18E-07	1.86	2.22E-07	1.93	9.73E-08	1.73	1.84E-07	1.78
1 4/ 1 5 (OIG)	150	5.22E-08	2.01	9.85E - 08	2.01	4.49E-08	1.91	8.45E - 08	1.92
	200	3.41E-08	1.47	6.30E-08	1.55	2.56E-08	1.95	4.81E-08	1.96
	50	3.98E-07		7.89E-07		3.65E-07		7.00E-07	—
$\mathbb{P}_4/\mathbb{P}_5$ (new)	100	1.16E-07	1.77	2.20E-07	1.84	1.00E-07	1.87	1.89E-07	1.89
4/11/5 (11611)	150	5.35E - 08	1.92	1.01E-07	1.93	4.55E-08	1.95	8.55E-08	1.96
	200	3.02E-08	1.99	5.67E-08	1.99	2.58E-08	1.97	4.84E-08	1.98
	50	2.20E-10	_	3.18E-10	_	1.69E-10	_	2.60E-10	_
\mathbb{P}_5	100	3.96E-12	5.79	6.72E-12	5.57	4.98E-12	5.08	9.47E-12	4.78
– 5	150	7.33E-13	4.16	1.72E-12	3.36	2.48E-12	1.72	4.76E-12	1.70
	200	5.79E-12	<u> </u>	1.10E-11	<u> </u>	5.93E-12	<u> </u>	1.29E-11	<u> </u>
	50	1.55E-10	_	2.23E-10		1.60E-10		2.45E-10	
$\mathbb{P}_5/\mathbb{P}_6$ (old)	100	2.00E-12	6.28	4.15E-12	5.75	2.26E-12	6.15	4.67E-12	5.71
1 3/ 1 6 (OIC)	150	3.96E-13	4.00	9.29E-13	3.69	5.67E-12	1	1.13E-11	1
	200	4.07E-12	<u> </u>	7.61E-12	<u> </u>	3.66E-12	1.52	7.71E-12	1.33
	50	1.49E-10	_	2.48E-10	_	7.00E-11		1.35E-10	_
$\mathbb{P}_5/\mathbb{P}_6$ (new)	100	3.89E-12	5.26	7.28E-12	5.09	1.40E-12	5.65	3.62E-12	5.22
J' = 0 (110 · · ·)	150	1.78E-12	1.93	3.17E-12	2.05	2.82E-12	↑	5.65E-12	↑
	200	4.48E-12	<u> </u>	8.97E-12	<u> </u>	1.37E-11	<u> </u>	2.69E-11	<u> </u>

In this test we will consider:

- $\psi(x) = x^4$
- $\psi_{l} = 0$;
- $\psi_{ll}=0$;
- $\psi_{\rm r} = 1$;
- $\psi_{\rm rr}=4$;
- g(x) = -24.

Table 7: Test of $01_{-}01$ with d and d+1 (x^4 — constant mesh).

		7,7,1000,01	$\omega =$		— constan	$\omega =$,		
	I	E_1	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}	$\overline{E_1}$	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}
	50	1.47E-04	_	2.22E-04		1.08E-04	_	1.65E-04	
TD	100	1.86E-05	2.98	2.80E-05	2.99	1.36E-05	2.98	2.07E-05	2.99
\mathbb{P}_3	150	5.54E-06	2.99	8.33E-06	2.99	4.06E-06	2.99	6.15E-06	3.00
	200	2.34E-06	2.99	3.52E-06	3.00	1.72E-06	2.99	2.60E-06	3.00
	50	3.71E-05	_	5.71E-05	_	2.92E-05	_	4.67E-05	_
TD /TD (ald)	100	4.56E-06	3.02	6.92E-06	3.04	3.81E-06	2.94	5.97E-06	2.97
$\mathbb{P}_3/\mathbb{P}_4$ (old)	150	1.34E-06	3.03	2.02E-06	3.04	1.15E-06	2.97	1.78E-06	2.98
	200	5.61E-07	3.02	8.46E-07	3.03	4.87E-07	2.98	7.54E-07	2.99
	50	4.90E-05	_	8.07E-05	_	2.34E-05	_	3.71E-05	_
ID /ID (nov.)	100	1.01E-05	2.28	1.59E-05	2.34	3.28E-06	2.84	5.05E-06	2.87
$\mathbb{P}_3/\mathbb{P}_4$ (new)	150	3.68E-06	2.49	5.72E-06	2.53	1.01E-06	2.91	1.54E-06	2.93
	200	1.74E-06	2.60	2.68E-06	2.63	4.33E-07	2.94	6.60E-07	2.95
	50	2.53E-14	_	7.51E-14	_	9.54E-14	_	2.50E-13	_
\mathbb{P}_4	100	3.36E-13	\uparrow	8.20E-13	\uparrow	1.37E-11	\uparrow	2.54E-11	\uparrow
1 4	150	2.57E-12	\uparrow	5.02E-12	\uparrow	7.51E-12	1.49	1.85E-11	0.78
	200	5.60E-12	1	1.16E-11	1	3.18E-10	↑	6.12E-10	<u> </u>
	50	9.08E-14	_	1.83E-13	_	4.22E-13	_	8.47E-13	_
$\mathbb{P}_4/\mathbb{P}_5$ (old)	100	2.42E-12	\uparrow	4.59E-12	\uparrow	1.56E-11	\uparrow	3.01E-11	\uparrow
1 4/ 1 5 (Old)	150	4.54E-12	\uparrow	8.92E-12	\uparrow	5.89E-12	2.41	1.48E-11	1.74
	200	1.50E-11	<u> </u>	2.85E-11	<u></u>	4.64E-11	<u> </u>	1.01E-10	<u></u>
	50	1.14E-13		2.18E-13		5.82E-13		1.25E-12	_
$\mathbb{P}_4/\mathbb{P}_5$ (new)	100	2.60E-13	↑	5.00E-13	\uparrow	1.54E-11	↑	2.95E-11	↑
= 4/ = 5 (11e ···)	150	3.38E-12	↑	7.08E-12	\uparrow	6.94E-11	↑	1.34E-10	\uparrow
	200	8.20E-12	<u> </u>	1.42E-11	<u></u>	9.51E-11	<u> </u>	2.00E-10	<u></u>
	50	3.22E-13	_	5.87E-13	_	5.88E-13	_	1.13E-12	_
\mathbb{P}_5	100	1.38E-12	↑	2.58E-12	\uparrow	8.40E-12	\uparrow	1.55E-11	\uparrow
- 5	150	2.86E-12	↑	7.08E-12	\uparrow	8.22E-12	0.05	1.91E-11	\uparrow
	200	9.51E-12	<u> </u>	1.67E-11	<u></u>	2.18E-11	<u> </u>	4.34E-11	<u></u>
	50	4.43E-13	_	8.42E-13		1.45E-13	_	3.63E-13	_
$\mathbb{P}_5/\mathbb{P}_6$ (old)	100	1.48E-12	↑	2.93E-12	\uparrow	2.75E-13	\uparrow	5.41E-13	\uparrow
1 5/1 6 (Old)	150	5.15E-12	\uparrow	1.13E-11	\uparrow	7.38E-12	\uparrow	1.84E-11	\uparrow
-	200	2.05E-12	3.20	4.53E-12	3.18	1.98E-11	<u> </u>	3.85E-11	<u></u>
	50	4.29E-13		7.83E-13		4.75E-13	_	9.54E-13	
$\mathbb{P}_5/\mathbb{P}_6$ (new)	100	2.86E-13	0.59	5.58E-13	0.49	1.00E-12	\uparrow	2.38E-12	\uparrow
- 5/ - 6 (116 11)	150	6.52E-12	1	1.34E-11	\uparrow	6.25E-12	\uparrow	1.42E-11	\uparrow
	200	1.01E-11	<u> </u>	2.54E-11	<u> </u>	8.59E-11	<u> </u>	1.62E-10	<u> </u>

Table 8: Test of 01_01 with d and d+1 (x^4 — non-constant mesh).

			$\omega =$: 1 1	$\frac{1011 \text{ constant mesh}}{\omega = 1 3}$				
	I	$\overline{E_1}$	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}	$\overline{}$ E_1	\mathcal{O}_1	E_{∞}	\mathcal{O}_{∞}
	50	1.96E-04	_	3.38E-04	_	1.02E-04	_	1.73E-04	_
TD.	100	2.03E-05	3.27	3.66E-05	3.20	5.90E-06	4.11	1.52E-05	3.51
\mathbb{P}_3	150	4.32E-06	3.82	9.03E-06	3.45	1.85E-06	2.86	3.41E-06	3.69
	200	1.08E-06	4.83	3.20E-06	3.61	1.50E-06	0.73	3.21E-06	0.21
	50	1.74E-05	_	5.22E-05		1.38E-05		3.48E-05	
TD /TD (a1.1)	100	5.05E-06	1.79	1.11E-05	2.23	7.80E-06	0.82	1.65E-05	1.08
$\mathbb{P}_3/\mathbb{P}_4$ (old)	150	3.31E-06	1.04	6.89E-06	1.17	4.55E-06	1.33	9.22E-06	1.44
	200	2.20E-06	1.42	4.44E-06	1.53	2.90E-06	1.57	5.74E-06	1.65
	50	2.59E-05		5.48E-05		2.66E-05		5.84E-05	
ID /ID (maxx)	100	5.02E-06	2.37	1.06E-05	2.37	1.02E-05	1.38	2.07E-05	1.50
$\mathbb{P}_3/\mathbb{P}_4$ (new)	150	2.28E-06	1.95	4.82E-06	1.95	5.26E-06	1.64	1.04E-05	1.71
	200	1.38E-06	1.74	2.93E-06	1.74	3.19E-06	1.74	6.21E-06	1.79
	50	9.79E-14	_	1.86E-13	_	3.31E-13		6.33E-13	
TD	100	2.92E-13	\uparrow	5.95E-13	\uparrow	1.49E-12	\uparrow	2.86E-12	\uparrow
\mathbb{P}_4	150	6.92E-13	\uparrow	1.74E-12	\uparrow	6.43E-12	\uparrow	1.28E-11	\uparrow
	200	2.41E-12	\uparrow	5.94E-12	\uparrow	1.15E-11	\uparrow	2.73E-11	\uparrow
	50	5.64E-14		1.23E-13		6.20E-14		1.15E-13	
$\mathbb{P}_4/\mathbb{P}_5$ (old)	100	6.94E-13	\uparrow	1.34E-12	\uparrow	2.13E-12	\uparrow	4.26E-12	\uparrow
1 4/11 5 (Old)	150	1.60E-12	\uparrow	3.41E-12	\uparrow	5.21E-12	\uparrow	1.12E-11	\uparrow
	200	2.39E-12	↑	4.90E-12	\uparrow	2.72E-11	1	5.53E-11	\uparrow
	50	2.23E-13	_	4.42E-13		5.35E-13	_	1.01E-12	_
$\mathbb{P}_4/\mathbb{P}_5$ (new)	100	2.84E-13	\uparrow	5.32E-13	\uparrow	9.65E-13	\uparrow	2.16E-12	\uparrow
1 4/11 5 (11CW)	150	2.74E-12	\uparrow	5.22E-12	\uparrow	1.58E-12	\uparrow	3.40E-12	\uparrow
	200	2.92E-12	<u> </u>	6.70E-12	<u></u>	3.81E-11	<u></u>	7.19E-11	<u> </u>
	50	9.79E-14	_	1.57E-13	_	2.35E-13	_	4.91E-13	_
\mathbb{P}_5	100	2.09E-12	\uparrow	4.13E-12	\uparrow	4.17E-12	\uparrow	8.43E-12	\uparrow
m 5	150	2.94E-12	\uparrow	5.22E-12	\uparrow	6.53E-12	\uparrow	1.34E-11	\uparrow
	200	1.15E-11	<u> </u>	2.48E-11	<u> </u>	2.09E-11	<u> </u>	4.12E-11	<u> </u>
	50	9.42E-14	_	1.69E-13	_	6.24E-13	_	1.21E-12	_
$\mathbb{P}_5/\mathbb{P}_6$ (old)	100	2.25E-12	\uparrow	4.30E-12	\uparrow	3.95E-12	\uparrow	7.44E-12	\uparrow
1 5/1 6 (OIQ)	150	5.83E-13	3.33	1.60E-12	2.44	1.37E-11	\uparrow	2.71E-11	\uparrow
	200	2.71E-12	<u> </u>	6.11E-12	<u> </u>	1.97E-11	<u> </u>	4.26E-11	<u> </u>
	50	2.46E-13	_	4.75E-13	_	1.79E-13	_	3.42E-13	_
$\mathbb{P}_5/\mathbb{P}_6$ (new)	100	2.47E-12	\uparrow	4.67E-12	\uparrow	2.24E-12	\uparrow	4.56E-12	\uparrow
п 5/ п 6 (ПС W)	150	4.09E-13	4.44	8.24E-13	4.28	9.28E-12	\uparrow	1.83E-11	\uparrow
	200	6.53E-12	1	1.52E-11	1	3.62E-11	1	6.77E-11	<u></u>