1

Assignment 1

Dishank Jain - AI20BTECH11011

Download all python codes from

https://github.com/Dishank422/AI1103-Probability		
-and-random-variables/blob/main/		
Assignment_2/codes		

and latex-tikz codes from

https://github.com/Dishank422/AI1103-Probability -and-random-variables/blob/main/ Assignment_2/main.tex

1 Problem

(Gate 11)The probability that a given positive number lying between 1 and 100 (both inclusive) is NOT divisible by 2, 3 or 5 is......

2 Solution

Let $X \in \{1, 2, ..., 100\}$ be the random variable representing the outcome for random selection of a number in $\{1, ..., 100\}$.

Since X has a uniform distribution, the probability mass function (pmf) is represented as

$$\Pr(X = n) = \begin{cases} \frac{1}{100} & 1 \le n \le 100\\ 0 & otherwise \end{cases}$$
 (2.0.1)

Let A represent the event that the number is divisible by 2. Let B represent the event that the number is divisible by 3. Let C represent the event that the number is divisible by 5.

We need to find the probability that the number is not divisible by 2, 3 or 5. Thus we need to find 1 - Pr(A + B + C)

We know

$$Pr(A + B + C) = Pr(A) + Pr(B) + Pr(C)$$
$$-Pr(AB) - Pr(BC)$$
$$-Pr(AC) + Pr(ABC) \quad (2.0.2)$$

Event	Interpretation	Probability
A	n is divisible by 2	$\frac{50}{100}$
В	n is divisible by 3	$\frac{33}{100}$
С	n is divisible by 5	$\frac{20}{100}$
AB	n is divisible by 6	$\frac{16}{100}$
BC	n is divisible by 15	$\frac{6}{100}$
AC	n is divisible by 10	$\frac{10}{100}$
ABC	n is divisible by 30	$\frac{3}{100}$

Substituting in (2.0.2), we get

$$\Pr(A + B + C) = \frac{50}{100} + \frac{33}{100} + \frac{20}{100} - \frac{16}{100} - \frac{6}{100} - \frac{10}{100} + \frac{3}{100} \quad (2.0.3)$$

Thus,

$$\Pr(A+B+C) = \frac{74}{100} \tag{2.0.4}$$

Thus required probability =

$$1 - \Pr(A + B + C) = \frac{26}{100}$$
 (2.0.5)