Devoir à la maison n° 05

À rendre le 19 octobre

I. Dénombrabilité de \mathbb{Z} et des \mathbb{N}^p

On se propose dans ce problème de montrer qu'il y a « autant d'éléments » dans \mathbb{N} que dans \mathbb{Z} , et même mieux : « autant d'éléments » dans \mathbb{N} que dans \mathbb{N}^p pour tout $p \in \mathbb{N}^*$. On dit que \mathbb{Z} ainsi que les \mathbb{N}^p sont dénombrables.

On rappelle que deux ensembles « ont le même nombre d'éléments » s'il existe une bijection entre ces deux ensembles.

On pourra utiliser sans démonstration le fait qu'un entier est pair ou impair, mais ne peut être pair et impair simultanément.

- 1) Questions préliminaires.
 - a) Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $k, \ell \in \mathbb{N}$ tel que $n = 2^k (2\ell + 1)$.
 - b) Montrer que, si $n \in \mathbb{N}^*$, de tels entiers k, ℓ sont uniques. On dit alors que 2^k est la plus grande puissance de 2 divisant n.
- **2)** On considère l'application $f: \begin{cases} \mathbb{N} \to \mathbb{Z} \\ n \mapsto \frac{(-1)^n}{4} \times (2n+1-(-1)^n) \end{cases}$. On veut montrer que f est une bijection.
 - a) Pour $k \in \mathbb{N}$, calculer f(2k), et pour $k \in \mathbb{N}^*$, calculer f(2k-1).
 - b) En déduire un antécédent de $p \in \mathbb{Z}$ par f, en distinguant les cas p positif ou négatif.
 - c) En déduire une fonction $\tilde{f}: \mathbb{Z} \to \mathbb{N}$ telle que $\tilde{f} \circ f = \mathrm{Id}_{\mathbb{N}}$ et $f \circ \tilde{f} = \mathrm{Id}_{\mathbb{Z}}$.
 - d) Conclure.
- **3)** On veut montrer que l'application $g: \left\{ \begin{array}{ll} \mathbb{N} \times \mathbb{N} & \to & \mathbb{N} \\ (m,n) & \mapsto & 2^m(2n+1)-1 \end{array} \right.$ est une bijection.
 - a) Montrer que g est injective.
 - b) Montrer que g est surjective.
- 4) On souhaite montrer par récurrence l'existence d'une bijection de \mathbb{N}^p sur \mathbb{N} pour tout $p \in \mathbb{N}^*$. Le cas p=1 est immédiat ; le cas p=2 vient d'être traité. On suppose donc que pour un certain $p \in \mathbb{N}^*$, il existe une bijection φ_p de \mathbb{N}^p sur \mathbb{N} . On définit alors une application $\varphi_{p+1}: \mathbb{N}^{p+1} \to \mathbb{N}$ de la façon suivante :

$$\forall (n_1, n_2, \dots, n_{p+1}) \in \mathbb{N}^{p+1}, \ \varphi_{p+1}(n_1, n_2, \dots, n_{p+1}) = g\left(\varphi_p(n_1, n_2, \dots, n_p), n_{p+1}\right).$$

Montrer que φ_{p+1} est une bijection de \mathbb{N}^{p+1} sur \mathbb{N} .

II. Une étude de fonction

Étudier (ensemble de définition, ensemble de dérivabilité, dérivée, tableau de variation, courbe représentative) la fonction f définie par $f(x) = \operatorname{Arccos}\left(\frac{1-x^2}{1+x^2}\right)$, et en donner une expression plus simple.