МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №7

по дисциплине «Машинное обучение»

Тема: Классификация (Байесовские методы, деревья)

Студент гр. 6304	Ковынев М.В.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Цель

Ознакомиться с методами классификации модуля Sklearn

Ход работы

- 1. Загрузить датасет по ссылке: https://archive.ics.uci.edu/ml/datasets/iris . Данные представлены в виде data файла. Данные представляют собой информацию о трех классах цветов
- 2. Создан Python скрипт. Загружны данные в датафрейм
- 3. Выделены данные и их метки
- 4. Преобразованы тексты меток к числам
- 5. Разбили выборку на обучающую и тестовую
- 6. Проведена классификация наблюдений наивный байесовским методов

Рисунок 1 — Точность и количество наблюдений, который были неправильно определены

- class_count_ количество обучающий выборок, наблюдаемых в каждом классе
- class_prior_ вероятность каждого класса
- classes_ метки классов, известные классификатору
- epsilon_ Абсолютная аддитивная величина
- sigma_ дисперсия каждого признака по классу
- theta_ среднее каждого признака по классу
- 7. Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. Размер тестовой выборки изменялся от 0.05 до 0.95 с шагом 0.05. Параметр random_state сделан равным номеру своей зачетной книжки 630408.

Рисунок 2 — GaussianNB

Рисунок 3 — MultinomialNB

Рисунок 4 — ComplementNB

Рисунок 5 — BernoulliNB

MultinominalNB — полиномиальный наивный байесовский классификатор, подходит для классификации с дискретными признаками (например, подсчет слов для классификации текста). MultinominalNB реализует наивный алгоритм Байеса для полиномиально распределенных данных. Распределение для каждого класса параметризируется векторами, содержащими вероятности вхождения признаков в элемент выборки, соответствующий данному классу.

ComplementNB — адаптация MultinominalNB, подходит для несбалансированных наборов данных. В частности, CNB использует статистику из дополнения каждого класса для вычисления весов модели. ComplementNB часто превосходит MultinominalNB в задачах классификации текста.

BernoulluNB – как и MultinominalNB, этот классификатор подходит для дискретных данных. Разница в том, что в то время, как MultinominalNB работает с подсчетом вхождений, BernoulluNB предназначен для двоичных/логических признаков.

- 8. Классификацию при помощи деревьях на тех же данных.
- 9. Используя функцию score() выведена точность классификации
- 10.Выведены характеристики дерева, количество листьев и глубину, используя функции get_n_leaves и get_depth

Wrong classified: 6 Score: 0.92 Num of leaves: 6 Depth: 4

Рисунок 6 — Точность и количество наблюдений, который были неправильно определены

11. Выведено изображение полученного дерева

Рисунок 7 — Дерево

12.Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. Размер тестовой выборки изменялся от 0.05 до 0.95 с шагом 0.05. Параметр random_state сделан равным номеру своей зачетной книжки - 630408.

Рисунок 8 — DecisionTreeClassifier

- 13.Исследована работа классифицирующего дерева при различных параметрах criterion, splitter, max_depth, min_samples_split, min_samples_leaf
- 14.criterion функция измерения качества разбиения. Поддерживается индекс Джини и энтропия.

Рисунок 9 — DecisionTreeClassifier(criterion="entropy")

15.splitter — стратегия, используемая для выбора разбиения на каждом узле. Поддерживается выбор наилучшего разбиения и случайный выбор

Рисунок 10 — DecisionTreeClassifier(splitter="random")

• max_depth — максимальная глубина дерева. Если None, то узлы расширяются до тех пор, пока все листья не станут чистыми или пока все листья не будут содержать менее min_samples_split выборок

max_depth	Wrong classified	Score
1	27	0.64
2	4	0.947
3	2	0.973
4	3	0.96
5	3	0.96

• min_samples_split — минимальное количество выборок, необходимых для разделения внутреннего узла.

min_samples_split	Wrong classified	Score
10	5	0.933
20	5	0.933
30	6	0.92
40	6	0.92

50	29	0.613
60	29	0.613
70	29	0.613
80	53	0.293
90	53	0.293

• min_samples_leaf — Минимальное количество выборок, которое требуется для конечного узла. Точка разделения на любой глубине будет учитываться только в том случае, если она оставляет не менее min_samples_leaf обучающих выборок в каждой из левой и правой ветвей.

min_samples_leaf	Wrong classified	Score
10	3	0.96
20	3	0.96
30	27	0.64
40	51	0.32
50	51	0.32
60	51	0.32
70	51	0.32
80	51	0.32
90	51	0.32

Вывод

В ходе лабораторной работы рассмотрены такие методы классификации модуля Sklearn, как GaussianNB, MultinominalNB, ComplementNB, BernoulluNB и DecisionTreeClassifier