

Credit Card Dataset

Income	Limit	Rating	Cards	Age	Balance
14.89	1 3606	283	2	34	333
106.02	5 6645	483	3	82	903
104.59	3 7075	514	4	71	580
148.92	4 9504	681	3	36	964
55.88	2 4897	357	2	68	331
80.1	8 8047	569	4	77	1151
20.99	6 3388	259	2	37	203
71.40	8 7114	512	2	87	872
15.12	5 3300	266	5	66	279
71.06	1 6819	491	3	41	1350
63.09	5 8117	589	4	30	1407

Questions set

- How to predict card balance using the Income of customer?
- How to choose class of function for predicting the balance using the income ?
- What happens when we work with complex class of functions?
- How to control the complexity of a given class of function for accurate prediction?

Task

Income (hundred thousand dollar)	Balance (thousand dollar)
0.550798	5.651202
0.708148	7.321263
0.290905	5.167304
0.510828	5.609367
0.892947	9.406379
0.896293	9.379439
0.125585	2.734997
0.207243	4.876649
0.051467	3.584138
0.44081	5.437239

Training data

Task

	Balance
Income (hundred	,
thousand dollar)	(thousand dollar)
0.550798	5.651202
0.708148	7.321263
0.290905	5.167304
0.510828	5.609367
0.892947	9.406379
0.896293	9.379439
0.125585	2.734997
0.207243	4.876649
0.051467	3.584138
0.44081	5.437239

Training data

Income (x) (hundred thousand dollar)	Balance (y) (thousand dollar)
0.96703	9.675083
0.547232	6.293266
0.972684	9.730614
0.714816	7.474346
0.697729	7.342933
0.216089	4.619033
0.976274	9.765597
0.00623	4.012784
0.252982	4.762698
0.434792	5.626166
0.779383	7.989045
0.197685	
0.862993	
0.983401	
0.163842	4.43522
0.597334	6.622444
0.008986	
0.386571	
0.04416	
0.956653	9.574695

Testing Data

Task

Income (hundred	Balance
thousand dollar)	(thousand dollar)
x ₁ = 0.550798	y ₁ = 5.651202
x ₂ =0.708148	y ₂ = 7.321263
$x_3 = 0.290905$	y ₃ = 5.167304
$x_4 = 0.510828$	$y_4 = 5.609367$
x ₅ =0.892947	y ₅ = 9.406379
$x_6 = 0.896293$	$y_6 = 9.379439$
x ₇ =0.125585	y ₇ = 2.734997
x ₈ =0.207243	y ₈ = 4.876649
$x_9 = 0.051467$	y ₉ = 3.584138
x ₁₀ =0.44081	$y_{10} = 5.437239$

Random Relation

$$y_i = E(y_i | x) + E_i$$

$$y_i = E(y_i|x) + E_i$$

$$\uparrow$$

$$f(x) E(E_i) = 0$$

Income (hundred	
thousand dollar)	(thousand dollar)
x ₁ = 0.550798	y ₁ = 5.651202
x ₂ =0.708148	y ₂ = 7.321263
$x_3 = 0.290905$	y ₃ = 5.167304
x ₄ =0.510828	$y_4 = 5.609367$
$x_5 = 0.892947$	y ₅ = 9.406379
$x_6 = 0.896293$	$y_6 = 9.379439$
x ₇ =0.125585	y ₇ = 2.734997
x ₈ =0.207243	y ₈ = 4.876649
$x_9 = 0.051467$	y ₉ = 3.584138
$x_{10} = 0.44081$	y ₁₀ = 5.437239

Income (hundred	Balance
thousand dollar)	(thousand dollar)
x ₁ = 0.550798	y ₁ = 5.651202
x ₂ =0.708148	$y_2 = 7.321263$
$x_3 = 0.290905$	y ₃ = 5.167304
$x_4 = 0.510828$	$y_4 = 5.609367$
$x_5 = 0.892947$	y ₅ = 9.406379
$x_6 = 0.896293$	$y_6 = 9.379439$
$x_7 = 0.125585$	y ₇ = 2.734997
x ₈ =0.207243	y ₈ = 4.876649
$x_9 = 0.051467$	$y_9 = 3.584138$
x ₁₀ =0.44081	y ₁₀ = 5.437239

Income (hundred	Balance
thousand dollar)	(thousand dollar)
x ₁ = 0.550798	y ₁ = 5.651202
x ₂ =0.708148	y ₂ = 7.321263
$x_3 = 0.290905$	y ₃ = 5.167304
x ₄ =0.510828	y ₄ = 5.609367
x ₅ =0.892947	y ₅ = 9.406379
$x_6 = 0.896293$	y ₆ = 9.379439
$x_7 = 0.125585$	y ₇ = 2.734997
x ₈ =0.207243	y ₈ = 4.876649
$x_9 = 0.051467$	$y_9 = 3.584138$
x ₁₀ =0.44081	y ₁₀ = 5.437239

Error (thousand
dollar)
$(y_1 - (\beta_0 + \beta_1 x_1))^2$
$(y_2 - (\beta_0 + \beta_1 x_2))^2$
$(y_3 - (\beta_0 + \beta_1 x_3))^2$
$(y_4 - (\beta_0 + \beta_1 x_4))^2$
$(y_5 - (\beta_0 + \beta_1 x_5))^2$
$(y_6 - (\beta_0 + \beta_1 x_6))^2$
$(y_7 - (\beta_0 + \beta_1 x_7))^2$
$(y_8 - (\beta_0 + \beta_1 x_8))^2$
$(y_9 - (\beta_0 + \beta_1 x_9))^2$
$(y_{10}^{-}(\beta_0 + \beta_1 x_{10}))^2$

$$\frac{(y_9 - (\beta_0 + \beta_1 x_9))^2}{(y_{10} - (\beta_0 + \beta_1 x_{10}))^2}$$

$$\frac{1}{10} \sum_{i=1}^{10} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Balance

$$f(x) = \beta_0 + \beta_1 x$$

For given Training Set $T = \{ (x_1, y_1), (x_2, y_2),, (x_n, y_n) \}$, we need to solve

(Y-A4) (Y-A4)

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we need to solve

$$Min_{(\beta_1,\beta_0)}$$
 $J(\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i))^2$

$$\mathbf{u} = \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_4 & 1 \\ x_5 & 1 \\ x_6 & 1 \\ x_7 & 1 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_n \end{bmatrix}$$

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we need to solve

$$Min_{(\beta_1,\beta_0)}$$
 $J(\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i))^2$ (1)

$$\mathbf{u} = \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_4 & 1 \\ x_5 & 1 \\ x_6 & 1 \\ x_7 & 1 \end{bmatrix} Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix}$$

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)(Y - Au)$

(IT582) Foundation of Machine Learning

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we need to solve

$$Min_{(\beta_1,\beta_0)}$$
 $J(\beta_1,\beta_0) = \sum_{i=1}^{n} (yi-(\beta_0 + \beta_1 x_i))^2$ (1)

2=(7-44)

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)^T (Y - Au)$ $2(Y - Ay)$

Setting the gradient for J(u) = 0

$$\nabla \mathbf{u} J(\mathbf{u}) = 0$$

$$A^{T} (Y - Au) = 0$$

$$u = \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix} = (A^T A)^{-1} A^T Y$$

$$A = \begin{bmatrix} a_{11} & a_{1L} & a_{1K} \\ a_{21} & a_{2L} & a_{2L} \\ a_{m_1} & a_{m_L} & a_{m_K} \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{1L}x_2 + ... + a_{2L}x_1 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_1 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11}x_1 + a_{2L}x_2 + ... + a_{2L}x_2 \\ a_{21}x_1 + ... + a_{2L}x_2 + ... + a_{2L}x_2 \end{bmatrix}$$

(Y-AY) (Y-AY). Ty (Y-AY)

2(Y-AY)

-2 DT(Y-AY)= 0

Best Fitting Line

Best Fitting Line

Training Error:-

$$\frac{1}{10}\sum_{i=1}^{10} (yi - (\beta_0 + \beta_1 x_i))^2 = 0.3537$$

Training RMSE =

$$\sqrt{\frac{1}{10}\sum_{i=1}^{10} (\text{yi-}(\beta_0 + \beta_1 x_i))^2}$$

= 0.5947

Best Fitting Line

$$f(x) = 2.6 + 6.9 x$$

Income (x) (thousand dollar)	Balance (y) (thousand dollar)	Estimated f(x) (thousand dollar)
0.96703	9.675083	9.41205399
0.547232	6.293266	6.47467789
0.972684	9.730614	9.45161938
0.714816	7.474346	7.64728226
0.697729	7.342933	7.5277212
0.216089	4.619033	4.15763074
0.976274	9.765597	9.47673972
0.00623	4.012784	2.68921946
0.252982	4.762698	4.41577473
0.434792	5.626166	5.68791617
0.779383	7.989045	8.09906511
0.197685	4.552625	4.02885271
0.862993	8.705537	8.6840969
0.983401	9.835217	9.52660279
0.163842		3.79205019
0.597334		6.8252457
0.008986		2.70850244
0.386571	5.37153	5.35051307
0.04416		2.95461902
0.956653	9.574695	9.33944573

Income (x) (thousand dollar)	Balance (y) (thousand dollar)	Estimated f(x) (thousand dollar)
0.96703	9.675083	9.41205399
0.547232	6.293266	6.47467789
0.972684	9.730614	9.45161938
0.714816	7.474346	7.64728226
0.697729	7.342933	7.5277212
0.216089	4.619033	4.15763074
0.976274	9.765597	9.47673972
0.00623	4.012784	2.68921946
0.252982	4.762698	4.41577473
0.434792	5.626166	5.68791617
0.779383	7.989045	8.09906511
0.197685	4.552625	4.02885271
0.862993	8.705537	8.6840969
0.983401	9.835217	9.52660279
0.163842	4.43522	3.79205019
0.597334	6.622444	6.8252457
0.008986	4.01882	2.70850244
0.386571	5.37153	5.35051307
0.04416	4.096522	2.95461902
0.956653	9.574695	9.33944573

Test
$$RMSE = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (yi - f(xi))^2} = 0.9426$$

Training $RMSE =$
$\sqrt{\frac{1}{n}\sum_{i=1}^{k}(yi-f(xi))^2} = 0.5947$

Testing RMSE =	$\sqrt{\frac{1}{k}\sum_{i=1}^{k}(yi-f(xi))^2} =$
0.9426	•

Income (x) (thousand dollar)	Balance (y) (thousand dollar)	Estimated f(x) (thousand dollar)
0.96703	9.675083	9.41205399
0.547232	6.293266	6.47467789
0.972684	9.730614	9.45161938
0.714816	7.474346	7.64728226
0.697729	7.342933	7.5277212
0.216089	4.619033	4.15763074
0.976274	9.765597	9.47673972
0.00623	4.012784	2.68921946
0.252982	4.762698	4.41577473
0.434792	5.626166	5.68791617
0.779383	7.989045	8.09906511
0.197685	4.552625	4.02885271
0.862993	8.705537	8.6840969
0.983401	9.835217	9.52660279
0.163842	4.43522	3.79205019
0.597334	6.622444	6.8252457
0.008986	4.01882	2.70850244
0.386571	5.37153	5.35051307
0.04416	4.096522	2.95461902
0.956653	9.574695	9.33944573

Quadratic Fitting

Quadratic Fitting

For given Training Set $T = \{ (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \}$, we need to solve

$$Min_{(\beta_2,\beta_1,\beta_0)}$$
 $J(\beta_2,\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i + \beta_2 x_i^2)^2$ (2)

$$\mathbf{u} = \begin{bmatrix} \beta_2 \\ \beta_1 \\ \beta_0 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} (x_1)^2 & x_1 & 1 \\ (x_2)^2 & x_2 & 1 \\ (x_3)^2 & x_3 & 1 \\ (x_4)^2 & x_4 & 1 \\ (x_5)^2 & x_5 & 1 \\ (x_6)^2 & x_6 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} \qquad \text{The Least Square problem (2) reduces to} \\ Min_{(u)} \quad J(\mathbf{u}) = \quad (Y - Au)^T (Y - Au) \\ \mathbf{u} = \begin{bmatrix} \beta_2 \\ \beta_1 \\ \beta_0 \end{bmatrix} = (A^T A)^{-1} \quad A^T \mathbf{Y} \end{bmatrix}$$

Quadratic Fitting

Fitting with fourth order polynomial

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we need to solve

$$Min_{(\beta_4,\beta_3,\beta_2,\beta_1,\beta_0)} J(\beta_4,\beta_3,\beta_2,\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4))^2 \qquad ...(3)$$

Fitting with fourth order polynomial

Fitting with seven order polynomial

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7$$

$$= 11.89 - 283.034 x + 3015 x^2 - 14643.7x^3 + 38006.62x^4 - 54565.9x^5 + 40844.5x^6 - 12458.5x^7$$

Training
$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(yi - f(xi))}2 = 0.1186$$

Fitting with eight order polynomial

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7 + \beta_8 x^8$$

$$= 18.14 - 527.837 x + 6379 x^2 - 37080.8 x^3 +$$

$$120518.8 x^4 - 230990 x^5 + 256860.2 x^6 - 154208 x^7 +$$

$$38542 x^8$$

https://colab.research.google.com/drive/1APfTBXi3U 1ADX1PmLkJ8DyhVCQBe gtE?usp=sharing

0.6

18.14

37080

38542.75

0.8

Improving the prediction for M=7

$$Min \left\{ \frac{1}{n} \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i + \beta_2 x_i + \beta_3 x_i + \beta_4 x_i + \beta_5 x_i + \beta_6 x_i + \beta_7 x_i))^2 \right\}$$

$$\left\{ + \frac{\lambda}{2} (\beta_0^2 + \beta_1^2 + \beta_2^2 + \beta_3^2 + \beta_4^2 + \beta_5^2 + \beta_6^2 + \beta_7^2) \right\}$$
User defined parameter

Estimation with regularization

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \\ \beta_7 \\ \end{bmatrix} \begin{bmatrix} 3.51 \\ 2.75 \\ 1.60 \\ 1.05 \\ 0.78 \\ 0.61 \\ 0.50 \\ 0.41 \end{bmatrix}$$

Estimation with regularization

Train RMSE = 0.4989

Test RMSE = 0.8646

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \\ \beta_7 \end{bmatrix} = \begin{bmatrix} 3.51 \\ 2.75 \\ 1.60 \\ 1.05 \\ 0.78 \\ 0.61 \\ 0.50 \\ 0.41 \end{bmatrix}$$

Estimation with regularization

Train RMSE = 0.4989

Test RMSE = 0.8646 which was 3.90

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \\ \beta_7 \end{bmatrix} = \begin{bmatrix} 3.51 \\ 2.75 \\ 1.60 \\ 1.05 \\ 0.78 \\ 0.61 \\ 0.50 \\ 0.41 \end{bmatrix}$$

Age	Income (hundred thousand dollar)	Balance (thousand dollar)
32	0.550798	5.651202
22	0.708148	7.321263
45	0.290905	5.167304
78	0.510828	5.609367
54	0.892947	9.406379
39	0.896293	9.379439
42	0.125585	2.734997
51	0.207243	4.876649
21	0.051467	3.584138
19	0.44081	5.437239

Credit Card Dataset

Income	Limit	Rating	Cards	Age	Balance
14.89	1 3606	283	2	34	333
106.02	5 6645	483	3	82	903
104.59	3 7075	514	4	71	580
148.92	4 9504	681	3	36	964
55.88	2 4897	357	2	68	331
80.1	8 8047	569	4	77	1151
20.99	6 3388	259	2	37	203
71.40	8 7114	512	2	87	872
15.12	5 3300	266	5	66	279
71.06	1 6819	491	3	41	1350
63.09	5 8117	589	4	30	1407