生命科学基础 I

第三章物质代谢基础

孔宇

西安交通大学生命科学与技术学院 2020年2月27日

一、内容简介

1.维生素简介

- 定义及分类
- 脂溶性维生素
- 水溶性维生素

2. 辅酶/酶

- ・定义
- ・常见辅酶

维生素(Vitamin)

◇定义:维持生 水体正常生命 活动必不可少 的一类小分子 有机化合物。

- ❖特点
- ❖需要量甚少(mg或 μ g/人.天)
- ❖体内不能合成,或合成量不足, 必须摄入;
- ❖既不是构成细胞组织的原料, 也不是供能的物质;但在代谢调 节、促进生长发育和维持生理功 能等方面却发挥重要的作用;

常见维生素及建议摄入量

,	维生素名 称	建议摄入量 19 [~] 70 岁, 性	男最高摄入量	维生素名称	建议摄入量 19 [~] 70岁, 性	量 男最高摄入量
	Vitamin A	900 μg	3,000 μg	Vitamin B ₉	400 μg	1,000 μg
	Vitamin B ₁	1.2 mg	N/D	Vitamin B ₁₂	2.4 μg	N/D
	Vitamin B ₂	1.3 mg	N/D	Vitamin C	90.0 mg	2,000 mg
	Vitamin B ₃	16.0 mg	35.0 mg	<u>Vitamin D</u>	10 μg	50 μg
	Vitamin B ₅	5.0 mg	N/D	<u>Vitamin E</u>	15.0 mg	1,000 mg
	Vitamin B ₆	1.3–1.7 mg	100 mg	<u>Vitamin K</u>	120 μg	N/D
	Vitamin B ₇	30.0 μg	N/D		(C	西安交通大学

≫ 维生素分类

脂溶性维生素: A、D、E、K 周期性地服用

水溶性维生素: B_1 、 B_2 、PP、 B_6 、泛酸、

生物素、叶酸、B₁₂ 经常少量服用

※ 水溶性维生素举例

- ■B族维生素构成各种辅酶
- ❖维生素B1→TPP→脱羧
- ◆维生素B2→FAD/FMN→脱氢
- ❖维生素B3→NAD+/NADP+→脱氢
- ❖维生素B5→CoA-SH→转酰基
- ◆维生素B6→PLP→转氨
- ❖维生素B7→Biotin→羧化

维生素B1(抗脚气病维生素或硫胺素)

- ❖来源:多数天然食物中均含有VBI
 - ■活性形式: 焦磷酸硫胺素(Thiamine, TPP)

$$H_3C$$
 H $+$ CO_2 H_3C H_3C

❖ TPP: 新催或二脱所羧的化α酸羧以化。
一种解析。
一种。

维生素B₂(核黄素riboflavin)

√化学本质:核醇+6,7-二甲基异咯嗪

✓活性形式: 黄素单核苷酸 (FMN) 和黄素腺嘌呤二核苷酸 (FAD)

N NH NO NH NO OH NH NO OH NO

V_{B2}脱氢示意-

获得

2e+2H+

异咯嗪环 isoalloxazine ring

flavin mononucleotide (FMN)

FAD: 黄素腺嘌呤二核苷酸(Flavin

Adenine Dinucleotide)

FMN: 黄素单核苷酸(Flavin

Mononucleotide)

FAD 和FMN中<mark>异洛嗪环</mark>起递氢体作用,异 洛嗪及核醇部分为VitB2(核黄素)

反应举例

维生素B3 (维生素pp)

- ▶化学本质: 吡啶衍生物-尼克酸及尼克酰胺;
- ▶活性形式:尼克酰胺二核苷酸(NAD+)和尼克酰胺二核苷酸磷酸(NADP+),NAD+和NADP+是多种不需氧脱氢酶的辅酶 ,是氢的传递体

尼克酸,nicotinic acid

$$CONH_2$$

尼克酰胺,nicotinamide

多种重要脱氢酶的辅酶

V_{B3}AMP化: NAD+ /NADP+

烟酰胺-腺嘌呤 磷酸二核

苷酸: 辅酶||

反应特点:

得2e一个氢离子

 $NAD^{+} + H^{+} + 2e^{-} \longrightarrow NADH$

➢ NAD⁺/NADP⁺

≫ 泛酸 (pantothenic acid, V_{B5})

- 广泛存在于动植物组织中, 又称遍多酸。
- 由α, γ-二羟基- β β -二甲基丁酸和β- 丙氨酸缩合而成

西安克通大学 XIAN JIAOTONG UNIVERSITY

活性形式:CoA(辅酶A)

- ◆(乙)酰化酶的辅酶:含泛酸的复合核苷酸。
- ◆生理功能:传递酰基,是形成代谢中间产物的重要辅酶;

CoA-SH的应用举例

维生素B6(吡哆素)

》化学本质: 吡啶衍生物,包括: 吡哆醇、吡哆醛和吡哆胺,活性形式:磷酸吡哆醛和磷酸吡哆胺

活性形式-磷酸吡哆醛和磷酸吡哆胺

磷酸吡哆醛是转氨酶和脱羧酶(α、β)的辅酶

磷酸吡哆醛

磷酸吡哆胺

维生素B6

- ◆ 磷酸吡哆醛通过 Schiff碱与酶蛋白的 Lys-ε-NH2结合
- ◆ 磷酸吡哆醛可参与多 种涉及氨基酸的反应
 - 转氨基作用
 - 氨基酸脱羧
 - 氨基酸消旋
 -
- ◆ B₆广泛地存在于动植物中,肠道细菌可合成,因此不易缺乏。

转氨酶催化的反应

谷丙转氨酶(GPT)和谷草转氨酶(GOT) 丙酮酸、天冬氨酸、谷氨酸

生物素-biotin

- ❖动植物体内广泛分布 ,肠道细菌也能合成 ,不易发生缺乏症;
- ❖化学本质: 噻吩与尿 素相结合的骈环+戊 酸;
- ❖生物素本身是幾化酶 的辅酶,参与体内 CO₂的固定及幾化;

Acetyl-CoA carboxylase -biotin transfers carboxyl groups

Acetyl-CoA carboxylase -biotin

transfers carboxyl groups

辅酶Q

>又称泛醌,广泛存在于动物和细菌的线粒体中。活性部位: 醌环结构,为线粒体呼吸链氧化-还原酶的辅酶,在酶与底物分子之间传递氢。

$$\begin{array}{c|c} & O \\ \text{CH}_3\text{O} & \text{CH}_3 \\ \text{CH}_3\text{O} & \text{(CH}_2\text{CH=C-CH}_2)_n\text{H} \\ O & \text{CH}_3 \\ \\ & n=6\text{-}10 \end{array}$$

辅酶Q的化学结构及其电子的传递功能

小分子有机化合物在催化中的作用

4 6 4 日	小分子有机化合物(辅 酶 或 辅 基)			
转移的基团	名 称	所含的维生素		
氢原子 (质子)	NAD+ (尼克酰胺腺嘌呤二核	尼克酰胺(维生素PP之一)		
	苷酸,辅酶I)			
	NADP+ (尼克酰胺腺嘌呤二核	尼克酰胺(维生素PP之一)		
	苷酸磷酸,辅酶II)			
	FMN (黄素单核苷酸)	维生素B, (核黄素)		
	FAD (黄素腺嘌呤二核苷酸)	维生素B ₂ (核黄素)		
醛基	TPP (焦磷酸硫胺素)	维生素B ₁ (硫胺素)		
酰基	辅酶A (CoA)	泛酸		
	硫辛酸	硫辛酸		
烷基	钴胺素辅酶类	维生素B ₁ ,		
二氧化碳	生物素	生物素 "		
氨基	磷酸吡哆醛	吡哆醛 (维生素B ₆ 之一)		
甲基、甲烯基、	四氢叶酸	叶酸		
甲炔基、甲酰基		Civil - b x 1		
等一碳单位		(金) 西安交通)		

本章重点

1. 熟悉所述维生素的结构部位和功能

丙酮酸转变成乙酰-CoA的四步反应

