Deep Neural Networks

Week 3

Content

```
Deep Neural Networks - Shallow M//s

Neural Network Notation

Forward Propagation

Backward Propagation

Hyperparameters
```

Universal Approximation Theorem

Deep Neural Networks

- Shallow neural networks is a term used to describe NN that usually have only one hidden layer while the term deep neural networks is used to describe NN that have several hidden layers.
- The deep NN with the right architectures achieve better results than shallow ones that have the same computational power.

Deep neural network

Neural Network Notations

q: action further in logic l 2 = W 4 (0) + 6 (4)

8 = 9 (2 (1)) Forward Propagation (2) = 2 (2) (5 (2))

(2) = 2 (2) (5 (2)) A (1) = 9 (2(1)) Sci)

X) . Shape = $\begin{pmatrix} n^{(1)}, & n^{(1)} \end{pmatrix}$ $b^{(1)}$. shape = $\begin{pmatrix} n^{(2)}, & 1 \end{pmatrix}$ $e^{(2)}$. shape = $e^{(3)}$.

Forward Propagation

L[U] = Uth unit in Log L

Backward Propagation

Backward Propagation

Backward Propagation

Hyperparameters

Hyperparameters

Hyperparameters effect parameters

Hyperparameter examples:

- Learning Rate
- #Units
- #Iterations
- #Layers
- Batch size

We can select hyperparameters using several methods

Hyperparameter Tuning

Universal Approximation Theorem

The Universal Approximation Theorem tells us that Neural Networks has a kind of universality no matter what f(x) is, there is a network that can approximately approach the result.

inzva: *brings the AI fellows

together*

inzva:

