Raccolta di esercizi per gli studenti di Matematica Discreta (A-L)- Cdl Informatica, Bari

A. Lotta

A.A. 2022-23

Alcuni dei seguenti esercizi sono tratti da prove d'esame assegnate negli anni passati presso diversi corsi di Laurea erogati dal Dipartimento di Informatica di Bari.

Legenda: TA (Cdl Informatica e Comunicazione Digitale, sede di Taranto), BR (Informatica, Sede di Brindisi), INF (Informatica), ITPS (Laurea Triennale in Informatica e Tecnologie per la Produzione del Software).

1. Stabilire che esattamente uno dei seguenti insiemi è una funzione da \mathbb{Z} in \mathbb{Z} :

$$f = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | x - y = 5\}, \ g = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | x + 3y = 5\}.$$

 $[f \ endarrow \ una funzione, g \ no]$

2. Stabilire che la seguente funzione $f: \mathbb{Z} \to \mathbb{Z}$ è ben definita:

$$f(x) := \frac{(x+1)(x+2)}{2}.$$

Tale funzione è ingettiva? È surgettiva?

[Nè ingettiva, nè surgettiva]

3. (TA2006) Posto $X = \{x \in \mathbb{Q} | x \neq 3\}$, stabilire se l'applicazione $f: X \to \mathbb{Q}$ tale che

$$f(x) = \frac{x}{x - 3}$$

è ingettiva e se è surgettiva.

[Ingettiva, non surgettiva]

4. Stabilire che l'applicazione $f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q}$ tale che

$$f(x,y) = (x+y, x-y)$$

è bigettiva.

5. (INF2003) Posto $\mathbb{Q}^*:=\{q\in\mathbb{Q}\mid q\neq 0\}$, si considerino le applicazioni $f:\mathbb{N}\to\mathbb{Q}^*$ e

 $g:\mathbb{Q}-\{1\}\to\mathbb{Q}^*$ definite da:

$$\forall n \in \mathbb{N} \quad f(n) = \frac{n+1}{n+3}, \quad \forall x \in \mathbb{Q} - \{1\} \quad g(x) = \frac{1}{x-1}.$$

1) Stabilire se f è ingettiva e/o surgettiva;

- 2) Mostrare che g è bigettiva;
- 3) Calcolare $g^{-1} \circ f$.

[fingettiva, non surgettiva. $(g^{-1}\circ f)(n)=\frac{2n+4}{n+1}]$

6. Si consideri una funzione $f:\mathbb{Q}\to\mathbb{Q}$ tale che per ogni $x\in\mathbb{Q}$ risulti:

$$f^2(x) = 4x,$$

dove f^2 denota la funzione composta $f\circ f.$ Verificare che f è bigettiva.

7. Provare per induzione che per ogni $n \in \mathbb{N}$ si ha:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

- 8. (BR 2013) Provare per induzione che per ogni $n\in\mathbb{N}$ si ha che
 4^n+2 è multiplo di 3.
- 9. (BR 2013) Dimostrare col principio di induzione che per ogni $n \in \mathbb{N}$ si ha:

$$\frac{1}{2}\sum_{i=0}^{n} 3^{i} = \frac{3^{n+1} - 1}{4}.$$

10. Provare che per ogni $n \in \mathbb{N}$, $n \geq 2$, si ha:

$$\left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \cdots \left(1 - \frac{1}{n}\right) = \frac{1}{n}.$$

11. (INF 2018) Stabilire, usando il principio di induzione, se è vero che, per ogni $n\in\mathbb{N}$ si ha

$$6\sum_{i=-1}^{n} \left(\frac{1}{7}\right)^{i} = 49 - \left(\frac{1}{7}\right)^{n}.$$

12. (INF 2019) Stabilire, usando il principio di induzione, se è vero che, per ogni $n \in \mathbb{N}$ si ha

$$\frac{1}{6} \sum_{k=0}^{n+1} \left(\frac{6}{7}\right)^i = \frac{7}{6} - \left(\frac{6}{7}\right)^{n+1}.$$

13. Dimostrare per induzione che per ogni intero $n \geq 5$ si ha

$$n^2 > 11n - 30.$$

14. Dimostrare che per ogni intero $n \ge 1$ si ha:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

- 15. Dimostrare che dato un insieme finito A, ogni sottoinsieme proprio B di A $(B \subset A \in B \neq A)$ è anch'esso finito e |B| < |A|, ragionando per induzione sulla cardinalità di A.
- 16. Al bar del Campus entrano 50 docenti. Di questi, 33 ordinano un caffè, 15 un cornetto e 8 prendono sia il caffè che il cornetto. In quanti non hanno preso nulla?

[10]

- 17. Su 25 studenti, 15 hanno superato l'esame di Matematica, 12 quello di Chimica e 5 hanno superato entrambi gli esami. Quanti studenti hanno superato almeno un esame? Quanti studenti hanno fallito entrambi gli esami?

 [22, 3]
- 18. In un gruppo di 100 persone, ve ne sono 70 che possiedono un abbonamento a Netflix e 50 che possiedono un abbonamento ad Amazon Prime. Verificare che almeno 20 persone possiedono entrambi gli abbonamenti.
- 19. Si sa che tra 1000 persone ci sono 400 maschi, 200 bambini maschi e 300 tra bambini e bambine. Quante sono le donne adulte?
 [500]
- 20. Supponiamo che in una libreria ci siano 200 libri, e tra questi 70 in francese e 100 di argomento matematico. Quanti sono i libri non scritti in francese e di argomento diverso dalla matematica se ci sono 30 libri francesi di matematica? [60]
- 21. Il pubblico di una conferenza è costituito da 100 studenti, tutti iscritti a Matematica o Informatica. I maschi sono 80, gli informatici sono 20 e i maschi informatici sono 9. Quante sono le ragazze matematiche?

 [9]
- 22. In un gruppo di amici tutti hanno visto almeno uno dei film x,y,z: 8 hanno visto il film x, 12 il film y e 9 il film z. Inoltre 6 hanno visto x e y, 4 hanno visto x e z, 7 hanno visto y e z e soltanto uno di essi ha assistito alle tre proiezioni. Da quante persone è formato il gruppo?
- 23. Dire qual è il numero totale di informazioni possibili rappresentabili mediante un byte.

- 24. Calcolare il numero di targhe diverse possibili, assumendo che ogni targa sia del formato: AB-XYZ-CD con A,B,C,D lettere qualsiasi dell'alfabeto anglosassone (26 caratteri), e X, Y, Z cifre da 0 a 9.
- 25. Quante stringhe di 5 lettere si possono formare utilizzando un alfabeto di 26 lettere (con possibili ripetizioni) in modo che ogni parola cominci oppure finisca con una vocale?
- 26. Quanti numeri interi di 4 cifre hanno almeno una cifra dispari?
- 27. Quante partite vengono disputate nel corso del Campionato di Calcio di Serie A (20 squadre)?
- 28. (TA 2006) Si ponga $X := \{a, b, c\}, Y = \{1, 2, ..., 6\}$. Dire, giustificando la risposta, quante sono le applicazioni ingettive $f: X \to Y$ tali che

$$f(c) = 1, f(a) < 4.$$

- 29. (BR 2012) Ci sono 6 amici.
 - a) In quanti modi diversi si possono formare delle coppie?
 - b) In quanti modi diversi si possono regalare un libro, una penna e un cappello (a persone diverse)?
 - c) In quanti modi diversi si possono formare 2 gruppi di 3 amici?
 - d) In quanti modi diversi si possono formare 3 gruppi di 2 amici?
- 30. (ITPS 2022) Quanti sono i numeri naturali minori di 5000, composti da quattro cifre tutte pari? Quanti, tra essi, hanno le cifre tutte a due a due distinte?
- 31. (ITPS 2022) Quante stringhe binarie di lunghezza 10 contengono:
 - (1) esattamente quattro 1?
 - (2) al più quattro 1?
 - (3) almeno quattro 1?
 - (4) lo stesso numero di 1 e 0?
- 32. Ad una gara partecipano 30 atleti, di cui 10 italiani.
 - 1) Quante sono i possibili podi (oro, argento, bronzo)?
 - 2) Quanti sono i possibili podi con un italiano medaglia d'oro?
 - 3) Quanti sono i possibili podi con esattamente due italiani premiati?

- 33. (INF 2018) Consideriamo 7 Danesi, 8 Estoni e 9 Turchi. I Danesi sono tutte Donne, tra i Turchi ci sono 4 Donne e tra gli Estoni ci sono 5 Uomini.
 - a) In quanti modi diversi si può formare un comitato di 9 persone?
 - b) In quanti modi diversi possiamo formare un comitato di 3 persone con un rappresentante per ogni nazionalità?
 - c) In quanti modi diversi possiamo formare un comitato di 3 persone con un rappresentante per ogni nazionalità ed esattamente un uomo?
 - d) In quanti modi diversi possiamo formare un comitato di 3 persone con un rappresentante per ogni nazionalità ed almeno un uomo?
- 34. Una pasticceria produce 5 tipi diversi di paste. In quanti modi diversi si può confezionare un vassoio con 8 di queste paste?
- 35. (ITPS 2021) In quanti modi possiamo distribuire 44 caramelle a 4 bambini? In quanti modi possiamo distribuire 45 caramelle a 5 bambini, dandone almeno una a ciascun bambino?
- 36. (ITPS 2022) In quanti modi possiamo disporre in una fila 7 marziani e 5 gioviani, sapendo che non possiamo far stare due gioviani uno accanto all'altro?
- 37. Stabilire in quanti modi possono essere confezionati dei sacchetti contenenti 16 monete da 2 euro, 1 euro o 50 centesimi, facendo sì che ogni sacchetto contenga o esattamente 3 monete da 2 euro, o esattamente 3 monete da 1 euro, oppure esattamente 3 monete da 50 centesimi.
- 38. (TA 2007) Si ponga $X = \{1, 2, 3, 4, 5, 6\}$ e $Y = \{a, b, c, d\}$. Calcolare il numero delle applicazioni surgettive $f: X \to Y$ verificanti la condizione seguente:

$$f(1) = f(2) = a.$$

39. Calcolare il quoziente e il resto della divisione euclidea di a per b nei casi seguenti:

$$a = -36, b = 5$$

 $a = -7, b = 49.$
 $a = 132, b = -19.$

40. Determinare il massimo comun divisore positivo d tra 212 e 148 ed una identità di Bézout

$$d = s(212) + t(148), \quad s, t \in \mathbb{Z}.$$

41. Determinare d = MCD(300, -368) e due interi s, t tali che

$$d = s \cdot 300 + t(-368).$$

42. (INF 2017) Se possibile, risolvere la seguente equazione diofantea indicandone tutte le soluzioni:

$$62x + 150y = 12.$$

[(-174+75t,72-31t)]

43. Determinare una soluzione dell'equazione diofantea

$$14x + 26y = -64$$
.

Stablire poi che, se (x, y) è una soluzione con x pari, allora anche y è pari.

44. Determinare tutte le soluzioni (x, y) dell'equazione diofantea

$$3x + 2y = 28$$

tali che x > 0 e y > 0.

45. Determinare tutte le soluzioni (x, y) dell'equazione diofantea

$$385x + 33y = 143.$$

$$[(-13+3t,156-35t)]$$

46. Se possibile, risolvere la seguente equazione diofantea indicandone tutte le soluzioni:

$$20x + 144y = 99.$$

[Non vi sono soluzioni]

47. Determinare tutte le soluzioni (x, y) dell'equazione diofantea

$$21x + 12y = 15$$
.

$$[(-5+4t,10-7t)]$$

48. Dire se la seguente congruenza

$$87x \equiv 27 \pmod{12}$$

ammette soluzione ed in caso affermativo trovare la più piccola soluzione positiva ed un un insieme di soluzioni incongrue modulo 12 di cardinalità massima. $[1, \{1,5,9\}]$

49. Dire se la seguente congruenza

$$4x \equiv 3 \pmod{319}$$

ammette soluzione ed in caso affermativo trovare la più piccola soluzione positiva e la più grande soluzione negativa.

$$[240, -79]$$

- 50. Per ciascuna delle seguenti congruenze, determinare un insieme di soluzioni incongrue di cardinalità massima.
 - 1) $3x \equiv 7 \pmod{19}$. [{15}]
 - 2) $21x \equiv 18 \pmod{12}$. $[\{2, 6, 12\}]$
 - 3) $8x \equiv 12 \pmod{28}$. [{5, 12, 19, 26}].
- 51. (TA 2006) Determinare la più piccola soluzione positiva della congruenza lineare

$$792x \equiv -81 \mod 135.$$

[12]

52. (TA 2006) Risolvere la congruenza

$$31x \equiv 7 \pmod{19}$$

e determinarne la più piccola soluzione positiva.

[18]

53. (TA 2006) Risolvere il sistema di congruenze lineari

$$\begin{cases} x \equiv 15 \mod 81 \\ x \equiv 0 \mod 7 \end{cases}$$

Determinare inoltre una soluzione pari x_o e una soluzione dispari x_1 . [420, 987]

54. (ITPS 2021) Risolvere, se possibile, il sistema di congruenze lineari

$$\begin{cases} 37x \equiv 2 \mod 6 \\ 27x \equiv 16 \mod 5 \\ 5x \equiv 40 \mod 35 \end{cases}$$

55. (BR 2012) Risolvere, se possibile, il sistema di congruenze lineari

$$\begin{cases} 3x \equiv 6 \mod 33 \\ 7x \equiv 21 \mod 5 \\ 5x \equiv 5 \mod 30 \end{cases}$$

[13]

56. (TA 2005) Determinare la più grande soluzione negativa del sistema di congruenze

$$\begin{cases} 5x \equiv 40 \mod 10 \\ x \equiv 50 \mod 7 \end{cases}$$

[-6]

- 57. Dimostrare per induzione che se m, m_1, \ldots, m_k sono interi, con $k \geq 1$, e m è primo con ciascuno degli m_i , allora m è primo anche con il prodotto $m_1 \cdots m_k$.
- 58. Verificare che la struttura algebrica ($\mathbb{Z}, *$), la cui operazione * è definita da:

$$x * y := x + 3y$$

non ha l'elemento neutro.

59. (BR 2013) Sia assegnata sull'insieme $A=\mathbb{Z}\times\mathbb{Z},$ la seguente operazione * : $A\times A\to A,$ tale che

$$\forall (a, b), (x, y) \in A \quad (a, b) * (x, y) = (2ax, 3 + b + y).$$

- (1)Stabilire se l'operazione \ast verifica la proprietà associativa e commutativa.
- (2) Determinare, se esiste, l'elemento neutro.
- (3) Determinare, se esistono, gli elementi invertibili.

 $[\mbox{$\star$}$ è sia associativa che commutativa. Elemento neutro assente. Quindi non vi sono elementi invertibili.]

60. (TA 2005) Si consideri la struttura algebrica ($\mathbb{Z},*$) dove

$$\forall m, n \in \mathbb{Z} \quad m * n := -2mn$$

Stabilire se $(\mathbb{Z}, *)$ è un monoide.

[No]

61. Si verifichi che la struttura algebrica ($\mathbb{Z},*$) la cui operazione è

$$x * y := x + y + 1$$

è un gruppo.

[L'el neutro è -1. L'inverso di x è -x-2.]

62. (TA 2006) Si consideri la struttura algebrica (\mathbb{Q} , *) la cui operazione interna * è definita nel modo seguente:

$$a * b = a + b + \frac{1}{2}ab.$$

- a) Stabilire che $(\mathbb{Q}, *)$ è un monoide;
- b) Mostrare $che(\mathbb{Q}, *)$ non è un gruppo.

[L'el. neutro è 0. -2 non è invertibile.]

- 63. Calcolare $(-2)^{125} \mod 5 e 11^{48} \mod 104$. [3; 1]
- 64. (TA 2006) Risolvere la congruenza:

$$5x \equiv (54321)^{33} \pmod{11}$$
.

[Una soluzione è 1].

65. (TA 2005) Stabilire, giustificando la risposta, che esattamente uno tra i seguenti sottoinsiemi di \mathbb{Z}_{10} è un sottogruppo:

$$H_1 = \{[0], [1], [2], [3]\}, H_2 = \{[0], [2], [4], [6], [8]\}, H_3 = \{[0], [3], [5], [7], [9]\}.$$

66. Verificare che

$$H = \{3m - 5n | m, n \in \mathbb{Z}\}\$$

è un sottogruppo di \mathbb{Z} .

- 67. Si consideri il gruppo moltiplicativo $U(\mathbb{Z}_{11}) = \mathbb{Z}_{11}^*$. Si dica quali dei seguenti sottoinsiemi di \mathbb{Z}_{11}^* sono sottogruppi $H_1 = \{1, 3, 4, 5, 9\}$; $H_2 = \{1, 3, 5, 7, 8\}$; $H_3 = \{3, 5, 8\}$; $H_4 = \{1, 10\}$; $H_5 = \{1, 3, 10\}$ (i numeri indicati denotano le corrispondenti classi modulo 11).
- 68. Considerato il sottogruppo H di $(\mathbb{Z}, +)$ costituito dai numeri pari, dire quali sono i suoi laterali.
- 69. Determinare tutti i laterali del sottogruppo $H = \{[0]_6, [3]_6\}$ di \mathbb{Z}_6 .
- 70. Determinare tutti gli elementi di Z₁₂ aventi periodo 4. Vi sono elementi di periodo 5?[[3],[9]. No]
- 71. Determinare tutti i generatori di \mathbb{Z}_9 e tutti i suoi sottogruppi.
- 72. Determinare esplicitamente il sottogruppo K di \mathbb{Z}_{90} di ordine 6, tutti i generatori di K e tutti i sottogruppi di K.

- 73. (TA 2005) Determinare un elemento primitivo del campo $(\mathbb{Z}_5, +, \cdot)$ e trovare tutti gli elementi di periodo 2 del gruppo (\mathbb{Z}_5^*, \cdot) . Calcolare infine l'inverso di [3].
- 74. Determinare tutti i sottogruppi di $(\mathbb{Z}_7^*.\cdot)$.
- 75. (TA2006) Si consideri il campo $\mathbb{K} = (\mathbb{Z}_{11}, +, \cdot)$ e si ponga $a := [9]_{11}$.
 - a) Calcolare l'inverso di a;
 - b) Calcolare il periodo di a nel gruppo (\mathbb{K}^* , ·).

$$[a^{-1} = [5]; 5]$$

- 76. Determinare esplicitamente un isomorfismo di gruppi $f: \mathbb{Z}_6 \to \mathbb{Z}_7^*$.
- 77. Determinare esplicitamente un isomorfismo di gruppi $f: \mathbb{Z}_{10} \to \mathbb{Z}_2 \times \mathbb{Z}_5$.
- 78. Stabilire se il gruppo $\mathbb{Z}_2 \times \mathbb{Z}_2$ è ciclico.
- 79. (TA2006) a) Determinare tutti i sottogruppi di \mathbb{Z}_{15} ;
 - b) Determinare l'omomorfismo $f: \mathbb{Z} \to \mathbb{Z}_{15}$ tale che

$$f(7) = [6]_{15}$$

e stabilire se è surgettivo.

- [a) $\{0\}, \mathbb{Z}_{15}, \{0, [5], [10]\}, \{0, [3], [6], [9], [12]\}; b)$ $f(n) = [3n]_{15}$, non surgettivo.]
- 80. (TA2006) a) Determinare il sottogruppo H di \mathbb{Z}_{18} di ordine 6 e tutti i generatori di H;
 - b) Stabilire quanti sono, se esistono, gli omomorfismi surgettivi $\mathbb{Z}_{18} \to \mathbb{Z}_9$ e gli omomorfismi surgettivi $\mathbb{Z}_{18} \to \mathbb{Z}_8$.
 - [b) Gli omomorfismi surgettivi $\mathbb{Z}_{18} \to \mathbb{Z}_9$ sono 8; non esistono omomorfismi surgettivi $\mathbb{Z}_{18} \to \mathbb{Z}_8$.]
- 81. (TA2006)
 - a) Determinare tutti i generatori e tutti i sottogruppi di \mathbb{Z}_{16} ;
 - b) Detto K il sottogruppo di \mathbb{Z}_{16} di ordine 4 ed H il sottogruppo di \mathbb{Z}_8 avente lo stesso ordine, determinare tutti gli isomorfismi $K \to H$.
 - [b) $K = \{[0]_{16}, [4]_{16}, [8]_{16}, [12]_{16}\}$ e $H = \{[0]_8, [2]_8, [4]_8, [6]_8\}$. Gli isomorfismi sono due: $f([4n]_{16}) = [2n]_8$ e $g([4n]_{16}) = [6n]_8$.]
- 82. (TA2005) Determinare tutti gli omomorfismi $\mathbb{Z}_2 \to \mathbb{Z}_4$ e tutti gli omomorfismi $\mathbb{Z}_2 \to \mathbb{Z}_3$.

- 83. (TA2006) a) Determinare tutti i sottogruppi e tutti i generatori di \mathbb{Z}_{25} .
 - b) Stabilire quanti sono gli omomorfismi $\mathbb{Z}_2 \to \mathbb{Z}_{25}$.
- 84. (TA2006) a) Determinare tutti i sottogruppi di \mathbb{Z}_{15} ;
 - b) Determinare l'omomorfismo $f: \mathbb{Z} \to \mathbb{Z}_{15}$ tale che

$$f(7) = [6]_{15}$$

e stabilire se è surgettivo.

- [a) $\{0\}, \mathbb{Z}_{15}, \{0, [5], [10]\}, \{0, [3], [6], [9], [12]\}; b)$ $f(n) = [3n]_{15}$
- 85. (TA2006) a) Determinare tutti i sottogruppi e tutti i generatori di \mathbb{Z}_{25} .
 - b) Stabilire quanti sono gli omomorfismi $\mathbb{Z}_5 \to \mathbb{Z}_{25}$
- 86. (TA2006) a) Determinare il sottogruppo H di \mathbb{Z}_{18} di ordine 6 e tutti i generatori di H;
 - b) Stabilire quanti sono, se esistono, gli omomorfismi surgettivi $\mathbb{Z}_{18} \to \mathbb{Z}_9$ e gli omomorfismi surgettivi $\mathbb{Z}_{18} \to \mathbb{Z}_8$.
- 87. (INF 2003) Data la permutazione

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 6 & 5 & 4 & 7 & 3 \end{pmatrix}$$

determinarne il periodo quale elemento del gruppo S_7 e trovare tutti i generatori del sottogruppo $\langle f \rangle \subset S_7$.

[6; i generatori sono f e $f^5 = (1\,2)(3\,7\,6)(4\,5)$.]

- 88. (TA2006) Si considerino le permutazioni $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 2 & 1 & 6 \end{pmatrix}$ e g = (243)(56).
 - 1) Calcolare il periodo di f e di $f \circ g$.
 - 2) Posto $H = \langle g \rangle$, stabilire quanti sono gli omomorfismi $F : \mathbb{Z}_3 \to H$. [5; 4; gli omomorfismi sono 3].
- 89. (TA2005) Si considerino le permutazioni $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 1 & 6 \end{pmatrix}$ e g = (153)(26).
 - 1) Calcolare il periodo di f e di $f \circ g$.
 - 2) Posto H=< f>, determinare tutti i generatori di H.

3) Determinare, se esiste, un omomorfismo $F: \mathbb{Z} \to H$ la cui immagine Im(F) sia un sottogruppo di H di ordine 3, e tale che

$$F(2) = (153).$$

- [3) È l'omomorfismo $F(n) = (135)^n$.]
- 90. (INF 2004) Si consideri la permutazione $f \in S_8$:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 4 & 2 & 7 & 1 & 5 & 3 & 8 \end{pmatrix}.$$

- 1) Determinare il periodo di f;
- 2) Determinare gli elementi del gruppo G = < f > aventi periodo 4;
- 3) Determinare tutti gli omomorfismi ingettivi $\mathbb{Z}_4 \to G$.
- 91. (TA2005) a) Determinare il sottogruppo H di \mathbb{Z}_{12} di ordine 4 e tutti i generatori di H.
 - b) Data la permutazione

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 5 & 1 & 7 & 6 \end{pmatrix},$$

dire se H e < f > sono gruppi isomorfi.

- [b) Si]
- 92. Date le matrici

$$A = \begin{pmatrix} 2 & 1 & 0 \\ \frac{1}{2} & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

dire quale dei due prodotti AB e BA ha senso, ed effettuarlo esplicitamente.

93. Si considerino le seguenti matrici $A \in M_{3,2}(\mathbb{Z}_2), B \in M_{2,3}(\mathbb{Z}_2)$ e $C \in M_{3,3}(\mathbb{Z}_2)$:

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, B = \begin{pmatrix} \frac{0}{2} & \frac{0}{2} & \frac{1}{2} \\ \frac{0}{2} & \frac{1}{2} & \frac{0}{2} \end{pmatrix}, C = \begin{pmatrix} \frac{1}{2} & \frac{0}{2} & \frac{0}{2} \\ \frac{0}{2} & \frac{0}{2} & \frac{1}{2} \\ \frac{0}{2} & \frac{0}{2} & \frac{0}{2} \end{pmatrix},$$

dire quali delle operazioni A-BC e AB-C ha senso, ed effettuarla esplicitamente.

94. Stabilire se esiste un albero con 10 vertici, dei quali: uno di grado 5, uno di grado 3, due di grado 2, e i restanti di grado 1. In caso affermativo, disegnare un tale albero.

- 95. Stabilire se esiste un albero con 18 vertici, dei quali: 1 di grado 5, 2 di grado 4, 1 di grado 3, 4 di grado 2 e nessuno di grado maggiore. In caso affermativo, disegnare un tale albero.
- 96. (TA2005) Un albero ha 6 vertici, di cui uno di grado 5 e i rimanenti tutti di grado $x \ge 1$. Calcolare x.
- 97. (INF 2019) Si consideri il grafo G:

- 1) Stabilire se G è planare.
- 2) Stabilire se G contiene cammini e/o circuiti Euleriani, e in caso affermativo determinarne uno.
- 3) Stabilire se esiste un albero con lo stesso numero di vertici e gli stessi gradi.
- 98. (BR 2013) (1) Stabilire se esiste un grafo con 9 vertici, dei quali 1 di ordine 5, 1 di ordine 4, 3 di ordine 3, 2 di ordine 2 e i restanti di ordine 1. Se esiste disegnare un grafico di un tale grafo.
 - (2) Stabilire se esiste un albero con 9 vertici, dei quali 1 di ordine 5, 1 di ordine 4, 3 di ordine 3, 2 di ordine 2 e i restanti di ordine 1. Se esiste disegnare un grafico di un tale albero.
- 99. (INF 2016) È dato il grafo G:

- 1) Stabilire se G è planare.
- 2) Stabilire se G contiene cammini e/o circuiti Euleriani, e in caso affermativo determinarne uno.
- 3) Stabilire se esiste un albero con lo stesso numero di vertici e gli stessi gradi.