Classification as a Machine Learning Problem

Overview

Classification is a canonical problem in Machine Learning

Classifiers can be measured using accuracy, precision and recall

Traditional ML models for classification include SVM and Naive Bayes

Neural networks perform very well on classification problems

Classification and Classifiers

Machine Learning

Work with a huge maze of data

Find patterns

Make intelligent decisions

Machine Learning

Emails on a server

Spam or Ham?

Trash or Inbox

Types of Machine Learning Problems

Classification

Regression

Clustering

Rule-extraction

Types of Machine Learning Problems

Classification

Regression

Clustering

Rule-extraction

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Whales: Fish or Mammals?

ML-based Classifier

Training

Feed in a large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

An algorithm might have high accuracy but still be a poor machine learning model

Its predictions are useless

Accuracy, Precision, Recall

All-is-well Binary Classifier

Here, accuracy for rare cancer may be 99.9999%, but...

Some labels maybe much more common/rare than others

Such a dataset is said to be skewed

Accuracy is a poor evaluation metric here

Confusion Matrix

Dradiotad Labola

		redicted Labels	
Actual Label		Cancer	No Cancer
Actual	Lapel Cancer	10 instances	4 instances
	No Cancer	5 instances	1000 instances

Confusion Matrix

Predicted Labels

Actual Label

Cancer

No Cancer

Cancer	No Cancer	
10	4	
5	1000	

True Positive

True Positive

False Positive

False Positive

True Positive

True Negative

False Negative

False Negative

Confusion Matrix

Predicted Labels

Actual Label

Cancer

Concer

Concer

No Cancer

No Cancer

No Cancer

TO

TO

No Cancer

No Cancer

TO

TO

TO

TO

TO

TO

No Cancer

Predicted Labels

Actual Label

Cancer

IO TP

Cancer

No Cancer

No Cancer

TO TP

No Cancer

TO TN

Accuracy = 99.12%

Classifier gets it right 99.12% of the time

But...

Predicted Labels

People on chemotherapy, radiation when not required

Predicted Labels

Cancer not detected, no treatment prescribed

Accuracy is not a good metric to evaluate whether this model performs well

Precision

Predicted Labels

Actual Label

Cancer

No Cancer

Cancer		No Cancer	
10	TP	4	FN
5	FP	1000	TN

Precision

Predicted Labels

Precision = Accuracy when classifier flags cancer

Precision

Predicted Labels

Actual Label

Cancer

No Cancer

Precision =
$$\frac{10}{7p + Fp} = \frac{10}{15} = 66.67\%$$

Precision

Precision = 66.67%

1 in 3 cancer diagnoses is incorrect

Predicted Labels

Actual Label

Cancer

No Cancer

Cancer		No Cancer	
10	TP	4	FN
5	FP	1000	TN

Predicted Labels

Recall = Accuracy when cancer actually present

Predicted Labels

No Cancer Cancer Actual Label Cancer 1000 No Cancer

Recall =
$$\frac{TP}{TP + FN} = \frac{10}{14} = 71.42\%$$

Recall = 71.42%

2 in 7 cancer cases missed

Choosing a Machine Learning Model

ML-based Binary Classifier

ML-based Binary Classifier

Applying Logistic Regression

Whales: Fish or Mammals?

Choosing Pecision Threshold

Choosing Pecision Threshold

If probability < Pthreshold, it's a mammal

Applying Logistic Regression

If probability > Pthreshold, it's a fish

"Always Negative"

Pthreshold =

- Recall = 0%
- Precision = Infinite
- Classifier too conservative

Precision vs. "Conservativeness"

"Always Positive"

P_{threshold} = 0

Predicted No Cancer

- Recall = 100%
- Precision = 14/1019 = 13.7%
- Classifier not conservative enough

Recall vs. "Conservativeness"

Precision-Recall Tradeoff

Precision-Recall Tradeoff

Heuristics to Choose a Model

FI Score

Harmonic mean of precision and recall

ROC Curve

Plot a curve to maximize true positives, minimize false positives

Heuristics to Choose a Model

FI Score

Harmonic mean of precision and recall

ROC Curve

Olot a curve to maximize true positives, minimize false positives

F₁ Score

$F_1 = 2x$ $\frac{\text{Precision x Recall}}{\text{Precision + Recall}}$

- Harmonic mean of precision, recall
- Closer to lower of two
- Favors even tradeoff

Tweak threshold values

Run training by changing threshold values for each execution

Calculate FI Score

Each training run produces a model, calculate FI score for each model

Calculate precision, recall

Find values for each training run

High Fl score better

Choose threshold which results in the highest Fl score

Heuristics to Choose a Model

FI Score

Harmonic mean of precision and recal

ROC Curve

Plot a curve to maximize true positives, minimize false positives

False Positive Rate

ROC Curve

ROC of Perfect Classifier

ROC of Random Classifier

