MATE6551-0U1 Prof. Ivan Cardona Torres 13.00 - 14.20 CNL-A-225

Topología Algebraica

Alec Zabel-Mena

Universidad de Puerto Rico, Recinto de Rio Piedras

01.09.2022

Lectura 1: La Teorema de Puntos Fijos de Brouwer.

Empezamos con declara notación Vamos a denotar las siguentes conjuntos:

Definición. Denotamos la *n*-esfera como el conjuno $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ y la *n*-bola como el conjunto $D^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$, donde $||\cdot||$ el la **norma** en \mathbb{R}^n que induca la topología usual de \mathbb{R}^n . Llamamos punto $N = (0, \dots, 0, 1)$ de S^n el **polo norte** de S^n y el punto $S = (0, \dots, -1)$ de S_n el **polo sur** de S^n . Definimos la **ecuador** de una n + 1-esfera S^{n+1} de ser la n-esfera S^n .

Ejemplo 1. (1) S^1 es el circulo unitario en el plano \mathbb{R}^2 , y S^2 es el esfera unitario en el espacio \mathbb{R}^3 .

- (2) Nota que $S^0 = \{-1, 1\}$ es la unica esfera no conexo en \mathbb{R} .
- (3) Toda n-esfera tiene un polo norte y un polo sur. De hecho, el polo norte de S^0 es 1 y el polo sur es -1.
- (4) Nota que el borde de una n-bola es una n-esfera. Es decir $\partial D^n = S^{n-1}$.

Definición. Denotamos una *n*-simplejo estándar de \mathbb{R}^n de ser el conjunto $\Delta^n = \{x \in \mathbb{R}^{n+1} : x_i \geq 0 \text{ y } \sum x_i = 1\}.$

Ejemplo 2. (1) $\Delta^0 = \{1\} \subseteq \mathbb{R}$.

- (2) Δ^1 es una recta entre los puntos (0,1) y (1,0) en \mathbb{R}^2 restrinjido a la primera caudrante.
- (3) Δ^2 es una tetrahedro en la primer octánte de \mathbb{R} con vertices en (0,0,1), (0,1,0), y (1,0,0). Se representa en la figura 1 también.
- (4) Note que $\Delta^0 \subseteq \Delta^1 \leq \Delta^2$.

Figura 1: El 1-simplejo y 2-simplejo estánderes.

(5) Como espacions topologicos, se puede demostrar que los *n*-simplejos estándares son homeomorfo a los *n*-bolas. Es decir $\Delta^n \simeq D^n$.

Definición. Sea $f:A\to A$ una función. Llamamos u punto $x\in A$ un **punto fijo** si f(x)=x.

Teorema 1 (Teorema de Puntos Fijos de Brouwer). Sí $f: D^n \to D^n$ es una función continua, entonces existe un punto fijo en D^n para toda $n \ge 1$.

demostración. Demostramos la teorema para n=1. Es decir, que toda función $f: B^1 \to B^1$ tiene un punto fijo. Sean a=f(-1) y b=f(1). Sí a=-1 o b=1, tenemos puntos fijos y terminamos.

Ahora, considere la gráfica de f, $G_f = \{(x, f(x)) : x \in B^1\}$, la diagonal de B^1 , $\Delta(B^1) = \{(x, x) : x \in B^1\}$, y los medio planos $H_{\Delta}^+ = \{(x, y) : y > x\}$ y $H_{\Delta}^- = \{(x, y) : y < x\}$. Nota que $\Delta(B^1)$ es la grafica de la recta y = x restringido a $B^1 \times B^1$. Ahora, defina conjuntos

$$A = \{(x, f(x)) : f(x) > x\}$$

$$B = \{(x, f(x)) : f(x) < x\}$$

$$C = \{(x, f(x)) : f(x) = x\}$$

Entonces C es el conjunto de puntos fijos de f. Nota que $A \subseteq H_{\Delta}^+$, $B \subseteq H_{\Delta}^-$, y $C \subseteq \Delta(B^1)$. Tambien nota que los medio planos son abiertos en \mathbb{R}^2 . Ahora, como B^1 es compacto, y Hausdorff, se puede demostrar que G_f y $\Delta(B^1)$ son cerrados. Se puede ver la grafica de f en el figura 2

Ahora, not que G_f es conexo ya que es la imagen de la función $i_{B^1} \times f$. Como f y i_{B^1} son continua, entonces $i_{B^1} \times f$ es continua. Entonces como B^1 es conexo, entonces $i_{B^1} \times f(B^1) = B^1 \times B^1$ es conexo. Ahora, nota que $G_f = A \cup B \cup C$. Suponga que $C = \emptyset$. Entonces $G_f = A \cup B$. Pero tenemos que $A \subseteq H_{\Delta}^+$, y $B \subseteq H_{\Delta}^-$, por lo tanto, A y B son conjuntos abiertos, y que A y B son disjuntos. Por lo tanto $A \cup B$ es una separación abierta de G_f , una contradicción. Por lo tanto $C \neq \emptyset$ y existe puntos fijos de f para g = 1.

Para n > 1 no se ha encontrado una demostración general del teorema de puntos fijos. De hecho, es muy dificil para demostrar en general. Pero, se puede usar la maquinaria de la topologiía algebraica para construir un bosquejo de una demostración.

Figura 2: Demostración del teorema de puntos fijos de Brouwer.

Lectura 2: Demostración General del Teorema de Puntos Fijos de Brouwer

Definición. Sea X un subsepacio de un espacio topologico Y. Decimos que X es un **retracto** de Y sí existe una mapa continua $r:Y\to X$ donde r(x)=x para todo $x\in X$. Llamamos a r una **retracción** de Y sobre X.

Es decir que el retracción de Y sobre X lleva sus puntos fijos en todo el X. Podemos ver que r es una mapa sobre, ya que r(X) = X por definición.

Ahora recuerda que las mapas de inclusión y identidad para espacios topológicos son las mapas $i: X \to Y$ (donde X es subespacio de Y), y $1_X: X \to X$ dado por $i: x \to x$ y $1_X: x \to x$ para todo $x \in X$. La definición del retracto entonces se puede ver en la siguiente

Figura 3: Un retracción $r:Y\to X$ de un espacio Y hacía un espacio X.

diagrama, llamado una diagrama "commutativa":

Entonces, según esta diagrama, $r \circ i = 1_X$.

Dado una diagrama commutativa en el "universo" de espacios topologicos, entonces queremos que las mapas sean mapas continuas. En este ejemplo, existe una "meta función" llamado un "functor" \mathcal{F} que lleva las espacios topologicos hacia grupos Abelianos, tal que las diagramas commutativas son preservada; es decir, \mathcal{F} lleva mapas continuas hacia homomorfismos.

Figura 4: Una diagrama commutativa, donde A, B, C son conjuntos cualquieras, y f, g, y h son funciones cualquieras doned $f \circ g = h$.

Lema 2. Sí $n \ge 0$, entonces S^n no es un retracto de D^{n+1} .

demostración. Para n=0,es facil ver
. Si $r:D^1\to S^0$ es un retracto, entonces la siguente diagrama

nos da $r \circ i = 1_{S^0}$ lo cual es imposible, ya que S^0 no es conéxo, y la imagen de D^1 como subsepacio de S^0 si lo es; es decir que $r(D^1) = \{1\}$, ó $r(D^1) = \{-1\}$. Entonces r no puede ser 1–1 y sobre lo cual contradice que $r \circ i = 1_{S^0}$ sea 1–1 y sobre.

Ahora, toma n > 0, entonces suponga que exista una retracción $r: D^{n+1} \to S^n$, con su diagrama de espacios topologicos y mapas continuas.

Entonces $r \circ i = 1_{s^n}$. Aplicando un functor particular llamado H_n , obtemeos una diagrama commutativa de grupos Abelianos y homomorfismos. Las dos diagramas se pueden ver arriba. Entonces tenemos que $H_n(S^n) = \mathbb{Z}$, y $H_n(D^{n+1}) = \langle 0 \rangle$. Ahora tenemos que $H_n(r) \circ H_n(i) = H_n(1_{S^n}) = 1_{\mathbb{Z}}$. Esto es imposible ya que $1_{\mathbb{Z}}$ no se facotriza sobre $\langle 0 \rangle$; i.e. $H_n(r) \circ H_n(i) = 0 \neq 1_{\mathbb{Z}}$. Por lo tanto S^n no puede ser un retracto de D^{n+1} .

Ahora reiteremos la teorema de Brouwer para la demostración para n general.

Teorema 3 (Teorema de Puntos Fijos de Brouwer). Sí $f: D^n \to D^n$ es una función continua, entonces existe un punto fijo en D^n para toda $n \ge 1$.

demostración. Para n > 1, suponga que no hay puntos fijos. Entonces sea $f: D^n \to D^n$ y que $f(x) \neq x$ para todo $x \in D^n$. Defina entonces, la mapa $g: D^n \to S^{n-1}$ dado por la figura 5. Note que g es continua, y que g(x) = x para todo $x \in S^{n-1}$. Puse, vemos que g es una

retracción, lo cual es imposible por el lema 2 Por lo tanto, no existen puntos fijos.

Lectura 3: Categorías y Funtores.

Definición. Definimos una clase de ser una colección de objetos tal que sí T y A son clases, entonces $A \notin T$.

Definición. Una categoría \mathcal{C} es un clase de objetos denotados por obj \mathcal{C} junto a una colección de conjuntos $\operatorname{Hom}(X,Y)$, para cualquieras $X,Y\in\operatorname{obj}\mathcal{C}$, de morfismos de X hacía Y, cuyas elementos estan denotados $f:X\to Y$ ó $X\xrightarrow{f}Y$, y una operación binaria $\circ:\operatorname{Hom}(X,Y)\times\operatorname{Hom}(Y,Z)\to\operatorname{Hom}(X,Z)$ llamado composición tal que si $f:X\to Y$ y $g:Y\to Z$ son morfismos, entonces $g\circ f:X\to Z$ es un morfismo y:

- (1) $\operatorname{Hom}(X, Y)$ y $\operatorname{Hom}(A, B)$ son disjuntas.
- (2) La composición \circ es associativa sí esta definido. Es decir, sy $g \circ (f \circ h)$ ó $(g \circ g) \circ h$ existen en Hom(X,Y), entonces $g \circ (f \circ h) = (g \circ f) \circ g$.
- (3) Hom (X, X) no es vacío y existe al menos un morfismo $1_X : X \to X$, llamado la **identidad** de X, tal que $1_X \circ f = f$ y $g \circ 1_X = g$ para morfismos $f : X \to Y$ y $g : Z \to X$, para cualquieras objetos $X, Y, Z \in \text{obj } \mathcal{C}$

Definición. Sea \mathcal{C} una categoría. Se llama el conjunto $\mathcal{M}_{\mathcal{C}}$ los morfismos de la categoría donde $\mathcal{M}_{\mathcal{C}}$ es la union de todos los conjuntos $\operatorname{Hom}(X,Y)$ para todos $X,Y \in \operatorname{obj} \mathcal{C}$.

Figura 6: Un ejemplo de composición de morfismos de una categoría

Figura 7: Morfismos entre dos objetos X y Y de una categoría incluyendo las identidades de X y Y

- **Ejemplo 3.** (1) Considere la categoría $\mathcal{C} = \text{Conj}$, donde \mathcal{C} es la clase de todo los conjuntos. Los morfismos de \mathcal{C} son funciónes $f: X \to Y$ de un conjunto X hacía un conjunto Y.
 - (2) Sea $\mathcal{C}=$ Top la categoría de espacios topológicos, donde obj \mathcal{C} es la colección de todas las espacios topológicos. Los morfismos de Top son funciónes continuas entre espacios topologicos. Es decir, $\operatorname{Hom}(X,Y)=\{f:f:X\to Y\text{ es continua}\}$. La composición de morfismos es la composicion de funciones usual.
 - (3) Sea C = Grp la categoría de grupos, cuyas objetos son todo los grupos. Entonces los morfismos de Grp estan definido por los conjuntos $\text{Hom}(G, H) = \{\phi : \phi : G \to H \text{ es un homomrfismo}\}$. La composición de morfismos es la composición de funciones usual.

Definición. Sean \mathcal{C} y \mathcal{A} categorías con obj $\mathcal{C} \subseteq$ obj \mathcal{A} . Decimos que \mathcal{C} es una **subcategoría** de \mathcal{A} sí $\operatorname{Hom}_{\mathcal{C}}(X,Y) \subseteq \operatorname{Hom}_{\mathcal{A}}(X,Y)$ para todo $X,Y \in \operatorname{obj}\mathcal{C}$ ty la composición de \mathcal{C} es la misma de \mathcal{A} .

Ejemplo 4. (1) Tenemos que Top y Grp son subcategorías de Conj.

(2) La categoría Top^2 de pares topologicos tiene como objetos son todas pares (X, A), donde X es un espacio topológico y $A \subseteq X$ es subsepacio de X. Los morfismos de

 Top^2 , para pare topologicos (X,Y) y (Y,B), son las funciones continuas $f:X\to Y$ donde $f(A)\subseteq B$ es subespacio de B.

(3) La categoría Top^* de pares topologicos (X, a), donde a es un punto en X es una subcategoría de Top^2 .

Definición. Sea \mathcal{C} una categoría. Una **diagrama** de objetos y morfismos en \mathcal{C} es un grafo dirigido cuya cunjunto de vertices es subconjunto de obj \mathcal{C} y cuyas aristas son morfismos entre esos vertices. Decimos que una diagrama es **commutativo** si para cualquieras vertices A, B, C, D en la diagrama, y cualquier morfismos $f: A \to B, i: C \to D, h: A \to C, y$ $g: B \to D$, tenemos que $g \circ f = i \circ h$.

Ejemplo 5. Las figuras 6 y 7 son ejemplos de diagramas de objetos y morfismos en una categoriía.

Figura 8: Un diagrama commutativa entre objetos y morfismos de una categoría.

Lectura 4: Congruencias y Funtores.

Definición. Una congruencia es una categoría \mathcal{C} junto con una relación de equivalencia \sim sobre morfismos de \mathcal{C} definido tal que si $f \in \text{Hom}(A, B)$, y $f \sim g$, entonces $g \in \text{Hom}(A, B)$, y si $f \sim f'$ y $g \sim g'$, entonces $g \circ f \sim g' \circ f'$.

Definición. Sea \mathcal{C} una congruencia con relación de equivalencia \sim . Definimos la **categoría cociente**, \mathcal{C}/\sim como la categoría cuya objetos son los objetos de \mathcal{C} y morfismos son las clases de equivalencias de \sim . Si $[f]: A \to B$ es ub morfismo de \mathcal{C}/\sim , entonces denotamos su conjunto como $[f] \in [A, B]$.

Teorema 4. Sea C una categoría $y \sim$ una relación de equivalencia entre morfismos de C. Entonces el coategoría cociente C/\sim es una categoría.

Figura 9: Una relación de equvalencia entre morfismos.

demostración. Nota que por definición que obj $\mathcal{C}/\sim = \text{obj}\,\mathcal{C}$, así que por hipotesis, obj $\mathcal{C}/\sim = \text{obj}\,\mathcal{C}$, así que por hipotesis, obj $\mathcal{C}/\sim = \text{obj}\,\mathcal{C}$, así que por hipotesis, obj $\mathcal{C}/\sim = \text{obj}\,\mathcal{C}$, $[A,B] = \{[f]: f \in \text{Hom}\,(A,B)\}$. Como Hom(A,B) es un conjunto para todo A y B, y $\sim = \text{particiona el conjunto de todos los}$. Hom(A,B), entonces resulta que [A,B] tiene que ser un conjunto tambien.

Ahora sean f y g morfismos de \mathcal{C} . Nota que por definición de una congruencia, que como $f \sim f'$ y $g \sim g'$ implica que $g \circ f \sim g' \circ f'$, entonces la comopsición $[g] \circ [f] = [g \circ f]$ esta bien definido, si existe. Ahora sea h un mrofismo. Entonces nota que $([g] \circ [f]) \circ [h] = [g \circ f] \circ [h] = [(g \circ f) \circ h] = [g \circ f \circ h]$ y $[g] \circ ([f] \circ [h]) = [g] \circ [f \circ h] = [g \circ (f \circ h)] = [g \circ f \circ h]$. Entonces tenemos que \circ es associativa si $([g] \circ [f]) \circ [h] \circ [g] \circ ([f] \circ [h])$ esta definida.

Por ultimo, considere la identidad 1_A sobre el objeto A. Entonces nota que $[g] \circ [1_A] = [g \circ 1_A] = [g]$ y $[1_A] \circ [f] = [1_A \circ f] = [f]$; así que $[1_A]$ es la identidad de A en \mathcal{C}_{\sim} . Así que \mathcal{C}_{\sim} es una categoría.

Figura 10: La categoría cociente \mathcal{C}_{\sim} , donde \mathcal{C} es la categoría de la figura 9.

Definición. Sea \mathcal{A} y \mathcal{C} dos categorías. Un funtor covariante $T: \mathcal{A} \to \mathcal{C}$ es una map definido tal que si $A \in \text{obj } \mathcal{A}$, entonces $T(A) \in \text{obj } \mathcal{C}$ y si $f: A \to B$ es un morfismo en

 \mathcal{A} , entonces $T(f): T(A) \to T(B)$ es un morfismo en \mathcal{C} , y que $T(g \circ f) = T(g) \circ T(f)$ y $T(1_A) = 1_{T(A)}$.

Figura 11: Un funtor T covariante entre dos diagramas commutativas bajo las categorías \mathcal{A} y \mathcal{C} .

Definición. Sea \mathcal{A} y \mathcal{C} dos categorías. Un funtor contravariante $S: \mathcal{A} \to \mathcal{C}$ es una map definido tal que si $A \in \text{obj }\mathcal{A}$, entonces $S(A) \in \text{obj }\mathcal{C}$ y si $f: A \to B$ es un morfismo en \mathcal{A} , entonces $S(f): T(B) \to T(A)$ es un morfismo en \mathcal{C} , y que $T(g \circ f) = T(f) \circ T(g)$ y $T(1_A) = 1_{T(A)}$.

Figura 12: Un funtor S contravariante entre dos diagramas commutativas bajo las categorías \mathcal{A} y \mathcal{C} .

- **Ejemplo 6.** (1) Considere el funtor $F: \text{Top} \to \text{Conj}$ tal que sí X es un espacio topológico, entonces T(X) = X como conjunto general y sí $f: X \to Y$ es una mapa continua, entonces $T(f): X \to Y$ es una mapa general. Es decir este funtor lleva los espacios topologicos los funciones continuas a si mismos, pero quitando las nociones de topología. Este funtor es covariante, y se llama el **funtor olvidadizo**.
 - (2) El funtor identidad $J: \mathcal{C} \to \mathcal{C}$ es el funtor que lleva objetos de \mathcal{C} a si mismos, y morfismos de \mathcal{C} a si mismos. Es decir, no cambia la categoría.

(3) Sea M un espacio topológico. Defina $T_m : \text{Top} \to \text{Top}$ definida por $T_M : X \to X \times M$ en el topologia producto, y $T_M : f \to f \times 1_M$, para cualquier mapa continua $f : X \to Y$. Entonces T_m es un funtor covariante.

Definición. Definimos una **equivalencia** de una categoría \mathcal{C} de ser un morfismo $f: A \to B$ para lo cual existe un morfismo $g: B \to A$ tal que $g \circ g = 1_B$ y $g \circ f = 1_A$.

Ejemplo 7. Los equivalencias de la categoría Top son los homeomorfismos, y las equivalencias de Grp son los isomorfismos.

Teorema 5. Sean \mathcal{A} y \mathcal{C} categorías y $T: \mathcal{A} \to \mathcal{C}$ una functor. Entonces sí f es una equivalencia en \mathcal{A} , entonces T(f) es una equivalencia en \mathcal{C} .

$$A \xrightarrow{f} B \qquad S(A) \xrightarrow{S(f)} S(B)$$

demostración. Suponga primero que T es covariante. Es decir que para cualquier morfismo $f:A\to B,\ T(f):T(A)\to T(B)$ lleva a T(A) a T(B), y $T(g\circ f)=T(g)\circ T(f)$. Ahora suponga que $f:A\to B$ es una equivalencia en \mathcal{A} . Entonces existe un morfismo $h:B\to A$ tal que $h\circ f=1_B$ y $f\circ h=1_A$. Entonces $T(h\circ f)=T(h)\circ T(f)=1_{T(B)}$ y $T(f\circ h)=T(f)\circ T(h)=1_{T(A)}$. Entonces por definición, podemos ver que T(f) es una equivalencia en \mathcal{C} .

De igual forma de T se contravariante, la demostración procede el mismo manera, con la diferencia que notamos que $T(f):T(B)\to T(A)$ lleva a T(B) a T(A) para todo $f:A\to B$ y que $T(g\circ f)=T(f)\circ T(g)$.

Lectura 4: Homotopía.

Definición. Sean X y Y espacios topologicos, y sean $f_0: X \to Y$ y $f_1: X \to Y$ mapas continuas. Decimos que f_0 es **homotópico** a f_1 sí existe una mapa continua $F: X \times I \to Y$ tal que $F(x,0) = f_0(x)$ y $F(x,1) = f_1(x)$ para todo $X \in X$. Decimos que f_0 y f_1 son **homotópicos** y escribimos $f_0 \simeq f_1$.

Figura 13: Dos mapas continuas f_0 y f_1 homotópicos.

Teorema 6 (Primer Teorema de Empaste). Sean X y Y espacios topologicos y $f: X \to Y$ una mapa. Entonces:

- (1) Sí $\{U_{\alpha}\}$ es una colección de conjuntos abiertos de X con $X = \bigcup U_{\alpha}$, tal que $f|_{U_{\alpha}}$ es continua, entonces f es continua.
- (2) Sí $\{U_{\alpha}\}$ es una colección de conjuntos cerrados de X con $X = \bigcup U_{\alpha}$, tal que $f|_{U_{\alpha}}$ es continua, entonces f es continua.

Lema 7 (Segundo Teorema de Empaste). Sea X un espacio topologico que es una union finita de conjuntos cerrados en X, $X = \bigcup_{i=1}^{n} X_i$. Sí Y es un espacio $y \{f_i\}_{i=1}^{n}$ una colección de mapas $f_i : X_i \to Y$ continuas que coincidan en la intersección, entonces existe una mapa continua $f : X \to Y$ tal que $f|_{X_i} = f_i$.

demostración. Considere la mapa $f(x) = f_i(x)$ para todo $x \in X_i$. Entonces f coincida en la intersección con todo f_i , así que es bien definida, y es claro que $f|_{X_i} = f_i$.

Ahora sea C un conjunto cerrado en Y. Entonces $f^{-1}(C) = X \cap f^{-1}(C) = \bigcup_{i=1}^n X_i \cap f^{-1}(C) = \bigcup_{i=1}^n (X_i \cap f(C)) = \bigcup (X_i \cap f_i^{-1}(C))$. Ahora, X_i y f_i^{-1} están cerrados así que $X_i \cap f_i^{-1}(X)$ es cerrado. Entonces el union finita de ellos para todo i es cerrado, así que $f^{-1}(C)$ es cerrado en X, lo cual hace f continua.

Lema 8 (Tercer Teorema de Empaste). Sea X un espacio topologico que es una union arbitraria de conjuntos abiertos en X, $X = \bigcup X_{\alpha}$. Sí Y es un espacio $y \{f_{\alpha}\}$ una colección de mapas $f_{\alpha}: X_{\alpha} \to Y$ continuas que coincidan en la intersección, entonces existe una mapa continua $f: X \to Y$ tal que $f|_{X_{\alpha}} = f_{\alpha}$.

Lema 9. La homotopía es una relación de equivalencia sobre mapas continuas.

demostración. Sea X y Y espacios topologicos. Sea $f: X \to Y$ una mapa continua y define $F: X \times I \to Y$ con F(x,t) = f(x) para todo $(x,t) \in X \times I$. Nota que para algún mapa continua $h: X \times I \to X \times I$, que $F = \pi_1 \circ h$ donde π_1 es la proyección de la primer parte.F es continua porque es la composición de mapas continuas. Entonces vemos que $(x,t) \xrightarrow{h} (f(x),t) \xrightarrow{\pi_1} \to f(x)$. Entonces podemos ver que F(x,0) = F(x,1) = f(x), así que $f \simeq f$.

Ahora considere $f: X \to Y$, y $g: Y \to Z$ continuas tal que $f \simeq g$. Sea $F: X \times I \to Y$ la homotopía de esos dos mapas. Entonces F(x,0) = f(x) y F(x,1) = g(x). Defina la mapa $G: X \times I \to Y$ dado por G(x,t) = F(x,1-t). Como G solo transforma coordinadas, G es continua. Entonces vemos que G(x,0) = F(x,1) = g(x) y G(x,1) = F(x,0) = f(x); así que $g \simeq f$.

Por ultimo, sea $f: X \to Y$, $g: X \to Y$ y $h: X \to Y$ maps continuas tales que $f \simeq g$ y $g \simeq h$. Entonces existe homotopias $F: X \times I \to Y$ y $G: X \times I \to Y$ con F(x,0) = f(x), F(x,1) = g(x) y G(x,0) = g(x), G(x,1) = h(x). Considere la mapa $H: X \times I \to Y$ dado por:

$$H(x,t) = \begin{cases} F(x,2t), & \text{si} 0 \le t \le \frac{1}{2} \\ G(x,2t-1), & \text{si} \frac{1}{2} \le t \le 1 \end{cases}$$

Vemos que los dominios de F y H coninciden, y que son continuas. Así que por la teorema del empaste, H es continua. Entonces vemos que H(x,0) = F(x,0) = f(x) y que H(x,1) = G(x,1) = h(X) lo que hace $f \simeq h$.

Definición. Sea X y Y espacios topologicos y $f: X \to Y$ una mapa continua. La **clase de homotopía** de f es el conjunto de todo mapa continua homotopico a f; es decir $[f] = \{g: X \to Y: g \text{ es continua y } g \simeq f\}.$

Teorema 10. Sean X y Y espacios topologicos y sea $f_i: X \to Y$ y $g_i: X \to Y$ mapas continuas para todo $i \in \mathbb{Z}/2\mathbb{Z}$. Sí $f_0 \simeq f_1$ y $g_0 \simeq g_1$, entonces tenemos que $g_0 f_0 \simeq g_1 \circ f_1$.

demostración. Sean $F: X \times I \to Y$ y $G: X \times I \to Y$ homotopias entre f_0, f_1 y g_0, g_1 , respectivamente. Afirmamos que $g_0 \circ f_0 \simeq g_1 \circ f_0$. Sea $H: X \times I \to Y$ la mapa definida como $H = G \circ f_0$. Es decir que $H(x,t) = G(f_0(x),t)$. Nota que como G y f_0 son continuas, entonces H es continua, y que $H(x,0) = G(f_0(x),0) = g_0 \circ f_0(x)$ y $H(x,1) = G(f_0(x),1) = g_1 \circ f_0(x)$. Así que $g_0 \circ f_0 \simeq g_1 \circ f_0$.

Ahora afirmamos que $g_1 \circ f_0 \simeq g_1 \circ f_1$. Considere $K: X \times I \to Y$ dado por $K = g_1 \circ F$. Como g_1 y F son continuas, tenemos K continua. Entonces $K(x,0) = g_1 \circ f_0(x)$ y $K(x,1) = g_1 \circ f_1(x)$. Entonces $g_1 \circ f_0 \simeq g_1 \circ f_1$. Por lo tanto, como homotopia es transitiva, obtenemos que $g_0 \circ f_0 g_1 \circ f_1$.

Figura 14: La equivalencia de Homotopía.

Corolario. Homotoía defina una congruencia en la categoría Top.

Definición. Definimos el **categoría homotópico** de ser la categoría cociente de Top bajo homotopía, y lo denotamos hTop.

Definición. Una mapa continua $f: X \to Y$ es una **equivalencia de homotopía** sí existe un $g: Y \to X$ tal que $g \circ f \simeq 1_X$ y $f \circ g \simeq 1_Y$. Decimos entonces que X es de la misma **tipo de homotopía** que Y.

Ejemplo 8. Un circulo y un disco perforado no son homeomorfos, per sí son del mismo tipo de homotopia.

Figura 15

Definición. Sean X y Y espacios topologicos. Decimos que un mapa $f:X\to Y$ es homotopicamente nula sí es homotopico a una mapa constante en Y.

Teorema 11 (La Teorema Fundamental del Algebra). Todo polinomio con coeficientes complejas tiene al menos una raíz complejo.