Course Introduction

EPD 30.114 ADVANCED FEEDBACK & CONTROL

Advanced Feedback & Control

- Analysis and understanding of multi-state dynamic systems with possibly unknown or unobservable states with the goal of stabilizing and/or improving performance using modern digital controllers and components.
 - Majority of controllers are implemented using digital systems today.

What you learnt in 30.101

- All states are known and can be 'observed'
- Focused on SISO (Transfer Functions)
- Analog/Continuous-time Systems
- Systems described by differential equations

Extending your knowledge in 30.114

- Not all states are known or 'observed'
- Extension to MIMO (State-Space)
- Optimal controllers
- Digital/Discrete-time Systems
- Systems described by difference equations

Course Information

- Extending control theory and applications to include periodic signals and discrete-time systems. Mathematical modelling and analysis of discrete time systems in various disciplines using state-space, pulse transfer function and z-transform. Relating controllability and observability and their canonical forms to synthesize and design advanced continuous and discrete-time controllers. Introduction of pole-placement based controller design and formulation of state observers.
- Class structure (DSIS 2.313/2.314)
 - Monday (2.5 hr): Active Learning + Design Experience (1D/3D)
 - Tuesday (2.5 hr): Active Learning + Design Experience (1D/3D)

All handouts and supplements will be available on eDimension.

All assignments (homework, labs) will be submitted electronically via eDimension.

- Software integration
 - MATLAB and Control System Toolbox
 - LabVIEW and Control Design Toolkit plus Quanser QNETs
 - C Programming and Ubuntu (Virtual Machine)

Applications

Raffaello D'Andrea (2016): Meet the dazzling flying machines of the future https://www.ted.com/talks/raffaello_d_andrea_meet_the_dazzling_flying_machines_of_the_future

Design & Control Research @ SUTD

- Nature-Inspired Aerial Crafts
 - Derived from Maple Seed (Singapore: Angsana Seed) Nature's Helicopters
 - Mechanically simple, robust and energy efficient platforms for achieving sustained flight
 - Capable of VTOL operations but operate on the same efficient principles of fixed wing flight
 - Inherently stable due to rotary dynamics
 - Motor failure is not catastrophic as it can perform autorotation
 - Realized using rapid digital fabrication

Dual Wing Transformable Prototype

J. E. Low, L. S. T. Win, C. H. Tan, D. S. B. Shaiful, G. S. Soh, S. Foong, "Design and Dynamic Analysis of a Transformable HOvering Rotorcraft (THOR)", 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 6389-6396. doi: 10.1109/ICRA.2017.7989755

Controlled Autorotation

S. K. H. Win, T. H. Goh, J. E. Low, D. S. B. Shaiful, L. T. S. Win, G. S. Soh and S. Foong, "Direction Controlled Descent of Samara Autorotating Wings (SAW) with n-Wings," 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, 2018, pp. 6553-6559. doi: 10.1109/ICRA.2018.8463145

Advanced Controllers via Learning

D. S. B. Shaiful, L. T. S. Win, S. K. H. Win, G. S. Soh and S. Foong, "A Reinforcement Learning Approach for Control of a Nature-Inspired Aerial Vehicle," To be presented at *2019 IEEE International Conference on Robotics and Automation (ICRA)*, Montreal, Canada, 2019.

Course Map

LINEAR
SYSTEMS
THEORY &
STATE SPACE
APPROACH

- Vector-Matrix Algebra
- State Space Method
- Canonical Forms
- Linear Transformation
- State Non-uniqueness
- •Solving LTI State-Space Systems
- State Transition Matrix
- Eigenvalues & Eigenvectors

CONTROL DESIGN APPLICATIONS

Advanced Vehicular Suspension

Launch & Recovery of Rockets

Micro-UAV Swarming

ADVANCED
CONTROL
SYSTEMS
DESIGN IN
CONTINOUSTIME DOMAIN

- Laplace Transform (Differential Equations)
- Controllability
- Observability
- State Observers & Reduced Order Observers
- Pole Placement & State Feedback
- Servoing and Integral Control
- LQR Controller
- Estimation + Kalman Filter
- •Intelligent Control

ADVANCED
CONTROL
SYSTEMS
DESIGN IN
DISCRETE-TIME
DOMAIN

- Quantization & Digital Systems
- z Transform (Difference Equations)
- Pulse Transfer Function & its Matrix
- Mapping between z-plane and splane
- Discretization of Continuous-time
 Systems
- Controllability & Observability
- Pole Placement and Observer Design

1-D **DESIGN** Experience (State Space Control for Magnetic Suspension, Digital Control of Inverted Pendulum)

3-D Immersive **DESIGN** Experience (State-Space Modelling, Control Design and Scenario Implementation on Mini-UAV)

Projected Detailed Schedule (Subject to Change)

LESSON	TOPIC	VENUE	LESSON	TOPIC	VENUE
1	Course Introduction & Map	DSIS	13	Discrete-Time & Digital Systems	DSIS
11 Sep 23	Controls Recap	2.313	30 Oct 23	z Transform	2.313
	State-Space Method			Inverse z Transform	
	Canonical Forms				
2	Canonical Forms	DSIS	14	Inverse z Transform	DSIS
12 Sep 23	Vector-Matrix Algebra	2.313	31 Oct 23	Solving Difference Equations	2.313
3	Solution of Homogenous State Equations	DSIS	15	Mapping Between s & z Planes DS	
18 Sep 23	Computing Matrix Exponentials	2.313	6 Nov 23	lov 23 Stability in z Plane	
				Impulse Sampling & Data Hold	
4	Computing Matrix Exponentials	DSIS	16	Pulse Transfer Function	DSIS
19 Sep 23	Solution of Nonhomogenous State Equations	2.313	7 Nov 23	Discrete-Time Control System Design	2.313
5	Controllability & Observability	DSIS	-	Deepavali	
25 Sep 23	Pole-Placement Controller Design	2.313	13 Nov 23		
6	Pole-Placement Controller Design	DSIS	17	State-Space in the Discrete Domain	DSIS
26 Sep 23	State-Space System Stability	2.313	14 Nov 23	Solving Discrete State Equations	2.313
7	Servo Systems & Integral Control	DSIS	18	Controllability & Observability in Discrete Systems	DSIS
2 Oct 23	State Observers	2.313	20 Nov 23	Discrete-Time Pole Placement 2.313	
				State Observers for Discrete Systems	
8	State Observers	DSIS	19	Discretization of Continuous-Time State Equations	DSIS
3 Oct 23	Observed State Feedback Control	2.313	21 Nov 23	Estimation, Kalman Filter	
9	Linear Quadratic Regulator	DSIS	20	Controller Design Experience #2A (3D)	
9 Oct 23		2.313	27 Nov 23	Digital Control of Inverted Pendulum	
10	Reduced-Order Observers	DSIS	21	Kalman Filter	DSIS
10 Oct 23		2.313	28 Nov 23	Intelligent Control	
11	Controller Design Experience #1 (1D)	DSIS	22	Controller Design Experience #2B (3D)	DSIS
16 Oct 23	Intermediary MATLAB for Control System Design	2.313	4 Dec 23	Control of Multirotor UAV	2.313
	[Magnetic Suspension]				
12	Controller Design Experience #1 (1D)	DSIS	23	Controller Design Experience #2B (3D)	DSIS
17 Oct 23	Intermediary MATLAB for Control System Design	2.313	5 Dec 23	Control of Multirotor UAV	2.313
	[Magnetic Suspension]				
Mid-Term	Mid-Term (Wednesday)	TBC	Finals	Finals (Friday)	TBC
18 Oct 23	2:30 pm – 4:30 pm		15 Dec 23	1:00 pm – 3:00 pm	

Grading Policy

Finals (15 December 2023, Friday, 2 hours) - 259	Finals	(15 December	· 2023,	Friday, 2 hou	rs) - 25 %
--	--------	--------------	---------	---------------	-------------------

- Mid-term (18 October 2023, Wednesday, 2 hours) 25%
- 1D / 3D Design Experience Projects 23%
- In-class Assignments & Homework 17%
- Instructor Prerogative 10%

Late submissions will be penalized

Course Team

- Instructor:
 - Associate Professor Foong Shaohui, <u>foongshaohui@sutd.edu.sg</u> <u>https://t.me/SUTD_controls</u>
- Graduate TA:
 - PhD Student Cai Xinyu, xinyu cai@mymail.sutd.edu.sg
 - MS Student Liu Jingmin, jingmin liu@mymail.sutd.edu.sg
- Dyson-SUTD Innovation Studios:
 - Ms Chu Wenjing, wenjing chu@sutd.edu.sg
 - Mr Eric Tan, eric2 tan@sutd.edu.sg
 - Mr Hilmi Bin Mohamed Yusoff, hilmi my@sutd.edu.sg

https://t.me/+pJpdG7Bsi6ZiYjUx