

Artificial Neural Networks: Basis

人工智能引论第10课

主讲人: 刘家瑛

2019年4月8日

Slides Credit

- Slides modified from Geoffrey Hinton and Feifei Li.
- http://www.cs.toronto.edu/~hinton/coursera_slides.html
- http://cs231n.stanford.edu/

Research Group

STRUCT

智能影像计算

北京大学 计算机科学技术研究所

视频信息处理研究组

Spatial and Temporal **Restoration**, **Understanding** and **Compression** Team

• PI: 刘家瑛

● 邮箱: <u>liujiaying@pku.edu.cn</u>

网页: http://www.icst.pku.edu.cn/struct/

Outline

- General ANN
- CNN Network
- RNN Network and Gated Network
- Beyond CNN and RNN

≡ Q TECHNOLOGY Che New York Cimes SUBSCRIBE NOW LOG IN

Three Pioneers in Artificial Intelligence Win Turing Award

From left, Yann LeCun, Geoffrey Hinton and Yoshua Bengio. The researchers worked on key developments for

Source: https://www.nytimes.com/2019/03/27/technology/turing-award-hinton-lecun-bengio.html

General ANN

ANN — Artificial Neural Network

- Biological Basis
- Perceptron
- Activation Function
- Multi-Layer Perceptrons
- Back-Propagation
- Loss Functions

A Typical Cortical Neuron

Physical structure:

- one axon that branches
- a dendritic tree that collects input from other neurons
- Axons typically contact dendritic trees at synapses
 - A spike of activity in the axon causes charge to be injected into the post-synaptic neuron

Spike generation:

 There is an axon hillock that generates outgoing spikes whenever enough charge has flowed in at synapses to depolarize the cell membrane

Synapses

- When a spike of activity travels along an axon and arrives at a synapse it causes vesicles of transmitter chemical to be released.
 - There are several kinds of transmitter.
- The transmitter molecules diffuse across the synaptic cleft and bind to receptor molecules in the membrane of the post-synaptic neuron thus changing their shape.
 - This opens up holes that allow specific ions in or out.

How the brain works

- Each neuron receives inputs from other neurons
 - A few neurons also connect to receptors.
 - Cortical neurons use spikes to communicate.

- The weights can be positive or negative.
- The synaptic weights adapt so that the whole network learns to perform useful computations
 - Recognizing objects, understanding language, making plans, controlling the body.
- You have about 10^{11} neurons each with about 10^4 weights.
 - A huge number of weights can affect the computation in a very short time. Much better bandwidth than a workstation.

Modularity and the brain

- Different bits of the cortex do different things.
 - Local damage to the brain has specific effects.
 - Specific tasks increase the blood flow to specific regions.
- But cortex looks pretty much the same all over.
 - Early brain damage makes functions relocate.
- Cortex is made of general purpose stuff that has the ability to turn into special purpose hardware in response to experience.
 - This gives rapid parallel computation plus flexibility.
 - Conventional computers get flexibility by having stored sequential programs, but this requires very fast central processors to perform long sequential computations.

Biological and Mathematical

Comparing the biological Vs. the mathematical structure

Binary Threshold Neurons

McCulloch-Pitts [1943]:

proposition!"

- Compute a weighted sum of the inputs
- Send out a fixed size spike of activity,
 if the weighted sum exceeds a threshold
- McCulloch and Pitts thought that
 "Each spike is like the truth value of a proposition,
 and each neuron combines truth values to compute the truth value of another

Linear Neurons

- These are simple but computationally limited
 - If we can make them learn, we may get insight into more complicated neurons.

$$z = \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 \text{ if } z \ge \theta \\ 0 \text{ otherwise} \end{cases}$$

$$y = b + \sum_{i} x_{i} w_{i}$$
 output index over input connections weight on ith input input connections

$$z = b + \mathop{\mathop{a}}_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 \text{ if } z^{3} 0 \\ 0 \text{ otherwise} \end{cases}$$

Rectified Linear Neurons

- Sometimes called linear threshold neurons
- They compute a linear weighted sum of their inputs.
- The output is a non-linear function of the total input.

$$z = b + \mathop{\aa}_{i} x_{i} w_{i}$$

$$y = \begin{cases} z & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid Neurons

- These give a real-valued output that is a smooth and bounded function of their total input.
 - Typically they use the logistic function
 - They have nice derivatives which make learning easy

Biological and Mathematical

Comparing the biological and the mathematical structure

What binary neurons can do

A binary neuron can be used as a simple classifier

http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html

What binary neurons cannot do

- The XOR problem
- A binary threshold output unit cannot even tell if two single bit features are the same!

Positive cases (same):
$$(1,1) \rightarrow 1$$
; $(0,0) \rightarrow 1$
Negative cases (different): $(1,0) \rightarrow 0$; $(0,1) \rightarrow 0$

 The four input-output pairs give four inequalities that are impossible to satisfy:

$$\begin{aligned} w_1 + w_2 &\geq \theta, & 0 \geq \theta \\ w_1 &< \theta, & w_2 &< \theta \end{aligned}$$

A geometric view

- Imagine "data-space" in which the axes correspond to components of an input vector.
- Each input vector is a point in this space.
- A weight vector defines a plane in data-space.

• The weight plane is perpendicular to the weight vector and misses the origin by a distance equal to the threshold.

The positive and negative cases cannot be separated by a plane

Learning with hidden units

- Networks without hidden units are very limited in the input-output mappings they can learn to model.
 - More layers of linear units do not help. Its still linear.
 - Fixed output non-linearities are not enough.
- We need multiple layers of adaptive, non-linear hidden units. But how can we train such nets?
 - We need an efficient way of adapting all the weights, not just the last layer. This is hard.
 - Learning the weights going into hidden units is equivalent to learning features.
 - This is difficult because nobody is telling us directly what the hidden units should do.

Optimization Landscape

Gradient Descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Example of Gradients

$$f(x,y) = xy \qquad \qquad o \qquad rac{\partial f}{\partial x} = y \qquad \qquad rac{\partial f}{\partial y} = x$$

Example: x = 4, y = -3 = f(x,y) = -12

$$rac{\partial f}{\partial x} = -3$$

$$rac{\partial f}{\partial y}=4$$

partial derivatives

 $abla f = [rac{\partial f}{\partial x}\,,rac{\partial f}{\partial y}]$

Compound Expressions:

Example of Gradients

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f(x, y, z) = (x + y)z$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Compound Expressions:

Example of Gradients

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f(x,y,z) = (x+y)z$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \, \frac{\partial q}{\partial x}$$

Compound Expressions:

Example of Gradients

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f(x,y,z) = (x+y)z$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \, \frac{\partial q}{\partial x}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$egin{aligned} f(x) &= e^x & \qquad & \qquad & rac{df}{dx} &= e^x & \qquad & f(x) &= rac{1}{x} & \qquad &
ightarrow & rac{df}{dx} &= -1/x^2 \ f_a(x) &= ax & \qquad &
ightarrow & rac{df}{dx} &= a & \qquad & f_c(x) &= c + x & \qquad &
ightarrow & rac{df}{dx} &= 1 \end{aligned}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

Neural Networks: Architectures

Loss function: Squared Error

$$\mathcal{L}_{MSE} = \sum \left(y_i - \tilde{y}_i \right)^2$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2y$$

$$\frac{\partial^2 \mathcal{L}}{\partial y^2} = 2 > 0$$

• Decrease as y_i get closer to the ground truth

Problems with Squared Error

- The squared error measure has some drawbacks:
 - If the desired output is 1 and the actual output is 0.0000001 there is almost no gradient for a logistic unit to fix up the error.
 - If we are trying to assign probabilities to mutually exclusive class labels, we know that the outputs should sum to 1, but we are depriving the network of this knowledge.
- Is there a different cost function that works better?
 - Yes: Force the outputs to represent a probability distribution across discrete alternatives.

Softmax

• The output units in a softmax group use a non-local non-linearity:

$$y_i = \frac{e^{z_i}}{\overset{\circ}{\text{a}} e^{z_j}}$$

$$j \mid group$$

$$\frac{\P y_i}{\P z_i} = y_i \left(1 - y_i\right)$$

Cross-entropy: right cost function to use with softmax

- The right cost function is the negative log probability of the right answer.
- C has a very big gradient when the target value is 1 and the output is almost 0.
 - A value of 0.000001 is much better than 0.00000001
 - The steepness of dC/dy exactly balances the flatness of dy/dz

$$\frac{\P C}{\P z_i} = \mathop{\tilde{\bigcirc}}_j \frac{\P C}{\P y_j} \frac{\P y_j}{\P z_i} = y_i - t_i$$

What kinds of functions can a NN represent

[http://neuralnetworksanddeeplearning.com/chap4.html]

What kinds of functions can a NN represent

[http://neuralnetworksanddeeplearning.com/chap4.html]

What kinds of functions can a NN represent

Overfitting: The downside of using powerful models

- The training data contains information about the regularities in the mapping from input to output. But it also contains two types of noise.
 - The target values may be unreliable (usually only a minor worry).
 - There is sampling error. There will be accidental regularities just because of the particular training cases that were chosen.
- When we fit the model, it cannot tell which regularities are real and which are caused by sampling error.
 - So it fits both kinds of regularity.
 - If the model is very flexible it can model the sampling error really well. This is a disaster.

Simple Example of Overfitting

- Which model do you trust?
 - The complicated model fits the data better.
 - But it is not economical.
- A model is convincing when it fits a lot of data surprisingly well.
 - It is not surprising that a complicated model can fit a small amount of data well.

Which output value should you predict for this test input?

Use Regularization

Where we are right now...

- A multi-layer network
 - Approximating a wide range of functions
 - Loss function
 - Gradient Descent
 - Back-Propagation

Outline

- General ANN
- CNN Network
- RNN Network and Gated Network
- Beyond CNN and RNN

A bit of History

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

A bit of History

 Topographical mapping in the cortex: nearby cells in cortex represented nearby regions in the visual field.

A bit of History

Gradient-based learning applied to document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

[Goodfellow 2014]

[Krizhevsky 2012]

Retrieval

Classification

[Taigman et al. 2014]

[Simonyan et al. 2014]

[Toshev, Szegedy 2014]

[Mnih 2013]

[Ciresan et al. 2013]

[Sermanet et al. 2011] [Ciresan et al.]

Convolutional Neural Network

before:

now:

Convolutional Neural Network

All Neural Net activations arranged in 3 dimensions:

For example, a CIFAR-10 image is a 32x32x3 volume 32 width, 32 height, 3 depth (RGB channels)

Local connectivity

Fully Connected Layer:

32x32x3 image -> stretch to 3072 x 1

Convolutional Layer:

Convolutional Layer:

activation map

Convolutional Layer:

consider a second, green filter

Depth Dimension

Multiple neurons all looking at the same region of the input volume, stacked along depth.

Feature maps

These form a single [1 x 1 x depth] "depth column" in the output volume

 ConvNet is a sequence of Convolution Layers, interspersed with activation functions

7x7 input assume 3x3 connectivity, stride 1

⇒5x5 output

7x7 input assume 3x3 connectivity, stride 1

 \Rightarrow 5x5 output

what about stride 2?

7x7 input assume 3x3 connectivity, stride 2

⇒3x3 output

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

(in each channel)
e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border

what is the output?

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

(in each channel)
e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border

what is the output?

7x7 => preserved size!

Example

Input volume: 32x32x3
10 5x5 filters with stride 1,
pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

We'd like to be able to learn different things at different spatial positions

one filter = one depth slice (or activation map)

5x5 filters

Can call the neurons "filters"

We call the layer convolutional because it is related to convolution of two signals (kind of):

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum o a filter and the signal (image) = np.dot(w,x) + b

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

[From recent Yann LeCun slides]

Pool Layers

- Convenience layer: makes the representations smaller and more manageable without losing too much information
- Computes MAX operation (most common)

MAX Pooling

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Pool Layers

