Software Systems Research Portfolio Review

Dr. Nelson R. Manohar Alers

nelsonmanohar@yahoo.com nelsonmanohar.sphosting.com/research

Outline of the Talk – Update

- Background [10%]
- Computer-Supported Collaboration [25%]
- Dynamically Customized Web Touring [25%]
- Multimedia Computing Networking [35%]
 - Building Robust Network Performance Indicator
 - Distributed Resource Management for Multimedia
- Wrap-Up [5%]

Distributed Resource Management

Work at IBM T. J. Watson Research Center

By N. R. Manohar, L. Lumelsky, and S. Wood U.S. Patents: 6,516,350; 6,463,454; 6,529,950; 6,377,996; 6,460,082; 6,466,980;

Distributed Resource Management Plane

- <u>From</u>: Ad-Hoc Resource <u>Management</u>

- ad-hoc client-services
 - streaming, metering, etc.
- ad-hoc server-services
 - caching, load-balancing, etc.

To: Resource Management Plane

- distributed management plane
- brokering of clients to servers
- standard plane server-services
 - caching, replication, loadbalancing, dynamic hosting, etc.
- compliant plug-in servers

Motivation and Goals

Evaluation

- Multimedia Computing Networking at Internet2like networking level
 - very high performance Backbone (vBNS 2.4Gbps OC-12)
 - differentiated class services, RSVP, RTCP, RTP, etc.

What could benefit from this?

- <u>large</u> multimedia objects under a value-asset model
- e.g., movies

What could we do now?

distributed resource management

Very Large Multimedia Objects?

internet-perspective

- flow-oriented, end-to-end, distributed QoS/reservation problem
- non-negligible, considerable, replication cost

web-perspective

- extremely large in comparison to dominant web objects
- request characterization of web-servers [MSNBC00]
 - some objects significantly more requested than others
 - small set of objects accounts for majority of requests (Zipf relative frequencies)
- spatial and temporal locality on requests [IBM97]
 - movie is blockbuster, demographic and temporal consequences
- and then, some are exceptions, i.e., statistical outliers
 - for example, fads (30s movies, some-actor movies, etc.)

provisioning-perspective

- value-asset model, digital rights model
- non anahaahla

Distributed Resource Management?

- What else can we do there? again, viewpoint matters
- adapting demand to the network (variable client demand, fixed server capacities)
 - balance client demand presented to the network wrt fixed server capacities found across the network
 - traditional load balancing, i.e., demand shaping
 - that is, "demand-follows-capacity" policy
- adapting the network to demand (variable client) demand, variable server capacity)
 - regulate the allocation of server capacities across the network wrt client demand presented to the network
 - the other side of the coin, i.e., distributed capacity shaping
 - that is, "capacity-follows-demand" policy

Capacity Shaping – Basic Idea

- capacity shaping mechanism
 - object is associated with object replicas
 - object replica <u>specifies</u> (serving) resource requirements (i.e., normalized capacity)
 - <u>allocation</u> of an object replica commits the replica's resource allocation (i.e., normalized capacity allocation)
- distributed dynamic capacity shaping
 - <u>expiration time</u> associated with object replica
 - <u>server placement</u> of object replicas varies over time
 - total number of object replicas varies over time
- thus, <u>allocated object-serving capacity</u> placed over the network shaped over time
 - done for selected objects referred to as hot-objects

Self-Regulated Capacity Shaping

- load balancing and capacity shaping are complementary
- traditionally, throttle control (against fixed capacity) for demand-shaping
- now, selfregulation
 (against
 variable
 capacity) for
 capacity
 shaping
- building block:robust statesignaling

- dynamic capacity shaping for which objects?
 - Zipf relative frequency distribution hot objects
 - then, how is self-regulated capacity shaping implemented?

Capacity Shaping

Implementation

- 1. scarcity check
 - demand/capacity analysis (a)
- 2. replica creation
- 3. replica placement
- 4. replication
- 5. oversupply check
 - demand/capacity analysis (b)
- 6. replica deletion

Management of Remote Capacities

- low overhead on tracking of distributed state
 - server capacity is normalized
 - semaphore-like
 - green, red, yellow regions
 - trigger-management problem
- then, to handle transient changes
 - regions act as buffering regions
 - green
 - safe operating region
 - low management overhead region
 - red
 - critical spare (X%) region
 - non-allocable (safe operating margin)
 - yellow
 - trigger region <u>and</u> buffering region
 - buffers transient state changes

Management of Heterogeneous

Servers

- to handle server heterogeneity
 - regions are server specified
- management goal becomes about
 - handling of red servers
- where
 - forewarning through state signaling
 - capacity spare used to

manage

cionalina

Resource Management at Plane

- Low-overhead StateTracking
 - quantized demand
 - normalized state & capacity
- Object to Demand
 - demand volume
 - object-demand rating
 - interval-tracking
- Object to Replica
 - server placement
 - server capacity
 - expiration time
- Server to Capacity
 - capacity rating
 - utilization state
 - globality

ObjectID	Demand rate req/s	Volume t _(H) req	Volume t _{i-2)} req	Hot Object	Time Stamp
(320)	10	120	60	704	t,
425	5	60	55	(10)	t,
428	5	30	62	ne.	t _o

object 420: hot, large demand

Object_ID Replica		Server	Transient Replica	Time-to-Live	
420	421	1211	NO		
	422	1221	YES	060599-133000	
440	441	1211	NO		

transient replica for 420 at server 1221

Server	IP Address	Capacity Rating	Utilization State	Timestamp	Globality
1211	209.09.9.127	Low	Red	t1	[mg-s]
1221	128.0.0.1	- Hgh	Green	12	in a bil

global server 1221: high capacity, low use

Resource Management at Server

- reservation bins abstraction
 - normalized management of replication and provisioning problems
 - □ storage-bins for replica placement problem
 - □ service-bin for resource reservation problem
- reservation pools abstraction
 - for <u>local resource management</u>
 - local serving resources
 - for global resource management
 - degree-of-freedom resource for the distributed capacityshaning problem

Capacity Shaping Management Layer

- capacity shaping plane brokers object replication between servers
 - dynamically creating capacity for load balancing

- driven by service management layer
 - by demand-capacity analysis resulting in dynamic replica hosting at brokered servers

Contributions

- Distributed Dynamic Capacity Shaping
 - for distributed resource management of large (multimedia) objects over high-bandwidth internet
 - self-regulated distributed capacity shaping
 - integrated load-balancing and dynamic capacity shaping
 - management of global and local replicas wrt server capacities
 - distributed state management
 - red-server avoidance management
 - low-overhead distributed state tracking
 - stability-oriented trigger signaling
 - tradeoff of local capacity to remote state tracking
- complementary to existing technologies
 - multicast, rights, RSVP, grids, etc.
 - but levering high bandwidth internet (e.g., internet2)

Related Work

Dynamic Capacity Virtual Hosting

 server farms (e.g., IBM Global Services) – demand-shaping of capacity at centralized center(s) vs. capacity-shaping of demand through placement of distributed capacities

Distributed Programmable Planes

grid computing (e.g., Globus) – resource management for entirely different problem, small number of large (computations and datasets) objects with low viewership vs. large number of large objects with high and wide viewership

Distributed Replica Management

 edge-caching network (e.g., Akamai) – on-demand caching of relatively small objects vs. valuable asset very large object

Multicast Streaming

 multicast is complementary technology – plane represents the self-regulated placement of the sources of the multicast trees

Brokered Distributed QoS Architectures

 distributed QoS brokering is complementary technology – delivering end-to-end QoS feasibility used for brokering of clients

