

Quant Lecture Series 1

Capital Asset Pricing Model (CAPM)

- Premise: If markets are efficient, then an asset's (equity's)
 return is a function of its relative risk to the market
- Formula:

$$E[r_i] = \alpha_i + \beta_i \times E[r_m - r_r] + r_i$$

:= $r_i - r_f = \alpha_i + \beta_i \times E[r_m - r_f]$

Capital Asset Pricing Model (CAPM)

- the expected return of an asset is the sum of its alpha (more on that later), the product of its exposure to market/non-idiosyncratic/systematic risk and the expected return of the market, and the risk-free rate
- Corollary: An asset's expected excess return is the sum of its alpha and the product of its exposure to market risk and the expected return of the market

What is β ?

- β measures an asset's exposure to market risk
 - This is UNDIVERSIFIABLE risk, unlike idiosyncratic risk (more on that in later lectures)
- Formula:

$$\beta_i = \frac{\text{Cov}(r_i, r_m)}{\text{Var}(r_m)}$$

- For those of you who have taken stats, this should look familiar
- What does a positive β mean? What about negative? What is market β ?

What is α ?

- ullet lpha is a measure of unexplained return for an asset
 - It is the return not captured by an asset's exposure to market risk
- This has a lot of implications in the CAPM model and general market efficiency theory, namely:
 - 1. If markets are efficient, α shouldn't exist
 - 2. If α exists, how can we explain it? (Lecture 2)

Calculating β

- Two ways:
- 1. Run a regression
 - A simple OLS regression where we regress r_i on r_m will yield both β and α , which will be the Y-intercept
 - i.e. $Y_i = \beta_i \times r_m + \epsilon \equiv r_i = \beta_i \times r_m + \alpha_i + \epsilon$
- 2. Calculate on a rolling basis (with or without regression)
 - Can run regressions over a rolling time period or use Simple-Moving Average (SMA) method
 - May be more accurate if appropriate window chosen
 - Calculating alpha is less clear

Coding

- We'll look at Nvidia, Microsoft, Enphase, and Northrop Grumman
 - Tickers: NVDA, MSFT, ENPH, NOC
- Then, we'll use regression and examine results, calculating \mathbb{R}^2 values to see the explanatory power of the model
- Next, we'll calculate rolling β and compare the fit with our regression results
- Last, we'll attempt to determine which model fits better, why, and consider what might be missing