

Grover's Algorithm in IBM's QISkit OpenQASM 2.0

GEORGE DAVILA, ALI AL KOBAISI, TYRONE THAMES

OUTLINE

- Basics of Software/Hardware
 - Backend
 - Basic examples of circuits on IBMQX4
- Grover's Algorithm:
 - The Problem
 - Conceptual basics
- Grover's Algorithm:
 - Implementation on IBMQX
 - Results

IBMQX4 CHIP

Parameters of the chip

- 5 qubit chip
- ωR_i = Resonant frequency of readout resonator
- ω_i = qubit frequency

and freq of state $0 \rightarrow 1$ transition

• χ = qubit-cavity coupling strength

<u> </u>	$\frac{1}{0}$	31	Ţ	
			· o.	
R _Z IIII				
<u> </u>				50 xutt
i illilli .			$\Box_{oldsymbol{Q}_{o}}$	
Q_{1}				
[B _2		10	
<u> </u>			3 420	
7	7			·v

Qubit	$\omega^R_i/2\pi$ (GHz)	$\omega_i/2\pi~(GHz)$	$\delta_i/2\pi$ (MHz)	χ/2π (kHz)
Q0	6.52396	5.2461	-330.1	410
Q1	6.48078	5.3025	-329.7	512
Q2	6.43875	5.3562	-323.0	408
Q3	6.58036	5.4317	-327.9	434
Q4	6.52698	5.1824	-332.5	458

PHYSICS OF QUBIT-CAVITY SYSTEM

- Described by cavity quantum electrodynamics (cQED)
- Vacuum particles disturb the qubit \rightarrow don't have perfect coherence
- Constitutes a *Hybrid Quantum System* → Dissipates into environment

Qubit

Cavity

PHYSICS OF QUBIT-CAVITY SYSTEM

Keep at low temperature T = 0.021 K to help preserve coherence

(Retrived April 7th appx 15:00)

SIMPLE EXAMPLES OF IMPLEMENTATION

OPENQASM 2.0

```
1 include "qelib1.inc";
2
3 qreg q[5];
4 creg c[5];
5
6 h q[0];
7 x q[2];
8 y q[0];
9 h q[1];
10 h q[2];
11 cx q[2],q[0];
12 h q[2];
13 cx q[2],q[1];
14 measure q[0] -> c[0];
15
```


GROVER'S ALGORITHM QISKIT OPENQASM 2.0 REPRESENTATION

THE PROBLEM

Given a Boolean black box $f:\{0, 1, ..., 2^n-1\} \rightarrow \{0, 1\}$ that indicates whether a given item is marked.

The problem is to find the marked item given that one exists.

GROVER'S ALGORITHM

Starts by preparing the superposition of all bases using Hadamard gates.

$$|s
angle = rac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x
angle$$

Repeat sqrt(N) times:

Apply, f, the black box operation.

Apply reflection across the average.

GEOMETRICALLY

The black box (phase oracle) reflects the current state around the uniform superposition of all unmarked bases.

GROVER'S DIFFUSION OPERATION

After application of the oracle, the state can be pushed towards ω by a reflection around $|s\rangle$.

The operation for this reflection is:

$$V = I - 2|s\rangle\langle s|$$

= $H (I - 2|0\rangle\langle 0|) H$

SUPERPOSITION OF ALL BASES

PHASE ORACLE

f can be written as a reversible operation as:

$$|U|x\rangle = (-1)^{f(x)}|x\rangle = egin{cases} |x
angle & x ext{ is not marked} \ -|x
angle & x ext{ is marked} \end{cases}$$

FIRST OPERATION / REFLECTION

$$|x\rangle \longmapsto (-1)^{f(x)}|x\rangle$$

REFLECTION ACROSS THE AVERAGE

After 2nd reflection: $V = I - 2|s\rangle\langle s|$

$$=U_{\psi^{\perp}}U_f|\psi\rangle$$

IMPLEMENTATION

Prepare the state of superposition of all bases using Hadamard gates.

for i in range(N):
 circuit.h(q_register[i])

IMPLEMENTATION / REFLECTION ABOUT |000...0)

We need operator:

1 - 2|0>(0|

that maps:

$$|0\rangle \mapsto -|0\rangle$$

$$|x\rangle \mapsto |x\rangle$$

Pauli Z gate:

$$|0\rangle \mapsto |0\rangle$$

$$|1\rangle \mapsto -|1\rangle$$

Controlled Z:

$$|00\rangle \mapsto |00\rangle$$

$$|01\rangle \mapsto |01\rangle$$

$$|10\rangle \mapsto |10\rangle$$

$$|11\rangle \mapsto -|11\rangle$$

IMPLEMENTATION / REFLECTION USING CONTROLLED Z

NOT Controlled Z NOT:

 $|00\rangle \mapsto -|00\rangle$ $|01\rangle \mapsto |01\rangle$ $|10\rangle \mapsto |10\rangle$ $|11\rangle \mapsto |11\rangle$

NOT^{⊗n} cⁿ⁻¹z NOT^{⊗n}

Giacomo Nannicini, "An Introduction to Quantum Computing, Without the Physics", 2018

IMPLEMENTATION / CONTROLLED Z USING CNOT

There is no Controlled Z operator in QISKit.

But Z operator is equal to:

$$Z = H NOT H$$

Therefore Controlled Z can be written as:

$$CZ = (I \bigotimes H)$$
 CNOT

IMPLEMENTATION / NCONTROLLED NOT

Adriano Barenco et. al, "Elementary gates for quantum computation", Quantum Physics, 1995, Lemma 7.2.

IMPLEMENTATION / PHASE ORACLE

IMPLEMENTATION / REFLECTION ACROSS AVERAGE

So:

 $I - 2|s\rangle\langle s|$

can be implemented as:

$$_{\mathsf{H}} \otimes \mathsf{n} \underset{\mathsf{NOT}}{\otimes} \mathsf{n} \underset{\mathsf{CZ}}{\otimes} \mathsf{NOT} \otimes \mathsf{n} \underset{\mathsf{H}}{\otimes} \mathsf{n}$$

For 2 qbits:

