Detecting Malicious Activities using Passive DNS Data

Sean Beck, Lanier Watkins

Problem

- Hackers will hide in DNS traffic
- Hackers use generated names for malware communication
 - Conficker
 - Kraken
 - Torpig
- Hard to stop without black list of some sort

Machine Learning

- Types
 - Supervised, Unsupervised, Semi-supervised

Data

- ~30 MB of DNS traffic from JHUISI
- CSV
- Fields
 - QR, OPCODE, QNAME, QTYPE, QCLS, RRNAME, RRTYPE, RCLS, TTL, RLEN, RDATA, AA, ID,
 QDCNT, ANCNT, NSCNT, ARCNT
- Larger data set to follow (~50 GB)

Tools

- Python!
 - Pandas
 - Scikit-learn
 - Jupyter
 - Matplotlib
 - Numpy
- Virus Total
- Machine Learning
 - Mean Shift
 - Affinity Propagation
 - K-means

Algorithms

Clusters

- Mean Shift and Affinity Propagation decide on own clusters
- K-means requires you specify a desired number of clusters

Mean shift

- Guaranteed convergence
- Not ideal for large data sets because of multiple nearest neighbor calculations
- Discovers blobs by selecting centroid candidates

Affinity propagation

- \circ O(TN²), T = num iterations, N = num samples
- Messages between pairs of samples, selects examplars

K-means

- Works off of sum-of-squares
- Clusters described by mean of the cluster

Experiment

- Data exploration
- Data munging
- Submit names to VT
- Feature extraction
 - Shannon Entropy
- Learning algorithms
- Gather results

Virus Total

- Small data = manageable data
- Extracted all domain names
- Submitted all to VT for analysis
- Recorded scores for each name

Results

- 266 total bad domains (per VT)
- Mean shift performed best
 - Window size 300 (288 rows, 12 anchor seeds)
 - Run time of 1m 18s
 - 11934 "anomalous" domains
 - o 263 of those are known malicious
- K-means with 2 clusters mimics Mean shift
 - Literally almost exactly the same
- Affinity Propagation not so great
 - Window size 200 (192 rows, 8 seeds)
 - 4m 38s
 - o 16722 "anomalous"
 - 237 known malicious

Demo!

A data science project from start to finish