Relevant information.

Theorem 4.1 ([Rud76, Thm. 5.8]). If $f : [a,b] \to \mathbb{R}$ has a local maximum or minimum at $c \in (a,b)$ and f'(c) exists, then f'(c) = 0.

Theorem 4.2 (Mean value theorem / [Rud76, Thms. 5.9,10]). If f is a real valued function which is continuous on [a,b] and differentiable on (a,b), then there exists a point $\xi \in (a,b)$ so that

$$\frac{f(b) - f(a)}{b - a} = f'(\xi).$$

Theorem 4.3 (Taylor's Theorem / [Rud76, Thm. 5.15], [KRD10, Thm. 10.1.3]). Suppose $f:[a,b] \to \mathbb{R}$ is n times continuously differentiable on [a,b], $f^{(n+1)}$ exists on (a,b), and $c \in [a,b]$. Then, for any $x \in [a,b]$ with $x \neq c$ there exists some ξ between c and x so that

$$f(x) = \underbrace{f(c) + f'(c)(x - c) + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n}_{P_n(x)} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!}(x - c)^{n+1}}_{(n+1)!}.$$

In particular, if $|f^{(n+1)}(x)| \leq M$ on [a,b] then

$$|f(x) - P_n(x)| \le \frac{M|x - c|^{n+1}}{(n+1)!}$$

for all $x \in [a, b]$.

Warm-up problems.

- 1) (June 1999 #10) Show that if f is differentiable on (a, b) with f'(x) = 0 on (a, b), then f is constant on (a, b).
- 2) ([Rud76, Exercise 5.1]) If $f: \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) f(y)| \le (x y)^2$ for all x, y, then f is constant.
- 3) ([KRD10, Exercise 6.2.B]) If $f:(a,b)\to\mathbb{R}$ is continuously differentiable and $f'(x_0)\neq 0$ for some $x_0\in(a,b)$, then f is injective on some interval (c,d) containing x_0 .

Problems.

- 4) (June 2005 #1a) Use the definition of the derivative to prove that if f and g are differentiable at x, then fg is differentiable at x.
- 5) (January 2006 #2b) Assume that f is differentiable at a. Evaluate

$$\lim_{x\to a}\frac{a^nf(x)-x^nf(a)}{x-a},\quad n\in\mathbb{N}.$$

- 6) (June 2007 #3a) Suppose that $f, g : \mathbb{R} \to \mathbb{R}$ are differentiable, that $f(x) \leq g(x)$ for all $x \in \mathbb{R}$, and that $f(x_0) = g(x_0)$ for some x_0 . Prove that $f'(x_0) = g'(x_0)$.
- 7) (June 2008 #3a) Prove that if f' exists and is bounded on (a, b], then $\lim_{x\to a^+} f(x)$ exists.
- 8) (January 2012 #4b, extended) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with $f' \in C(\mathbb{R})$. Assume that there are $a, b \in \mathbb{R}$ with $\lim_{x \to \infty} f(x) = a$ and $\lim_{x \to \infty} f'(x) = b$. Prove that b = 0. Then, find a counterexample to show that the assumption $\lim_{x \to \infty} f'(x)$ exists is necessary.

9) (June 2012 #1a) Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies f(0) = 0. Prove that f is differentiable at x = 0 if and only if there is a function $g: \mathbb{R} \to \mathbb{R}$ which is continuous at x = 0 and satisfies f(x) = xg(x) for all $x \in \mathbb{R}$.

More problems.

10) (January 2005 #6) Suppose that $f:[0,1] \to \mathbb{R}$ is a differentiable function with f(0)=0 and that there exists some K>0 so that $|f'(x)| \le K|f(x)|$ for all $x \in [0,1]$. Prove that f(x)=0 on [0,1].

Note: See [Rud76, Chap 5, #26] for a significant hint.

- 11) Assume that $f:[0,1]\to\mathbb{R}$ is continuous on [0,1] and differentiable on (0,1) with f(0)=f(1)=0 and f(c)=1 for some $c\in(0,1)$. Prove that there exists some $s\in(0,1)$ such that |f'(s)|>2.
- 12) (January 2010 #4) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}$. If $\{x_n\}$ is an increasing sequence of real numbers converging to a and $\{y_n\}$ is a decreasing sequence of real numbers converging to a, prove that

$$\lim_{n \to \infty} \frac{f(y_n) - f(x_n)}{y_n - x_n} = f'(a).$$

13) Prove Theorem 4.1.

References

[KRD10] Allan P. Donsig Kenneth R. Davidson. Real analysis and applications. Springer, 2010.
[Rud76] Walter Rudin. Principles of mathematical analysis. McGraw-Hill, Inc., USA, third edition, 1976.