Random Rotation Codes are Good Quantum Error Correcting Codes for Loss

Saurabh Totey

Thesis Advisor: Dr. Josh Combes

Outline of Defense

- Introduction
- Error Correction
 - Classical Error Correction (EC)
 - Quantum Error Correction (QEC)
- Harmonic Oscillator
- Bosonic Rotation Codes
- My Work
 - Random Code Generation
 - Code Comparison
 - Results
- Conclusion

Quantum Computers and the Need for EC

Image from: https://www.engadget.com/2018-01-09-this-is-what-a-50-gubit-guantum-computer-looks-like.html

Exciting Experimental Realizations of Bosonic QEC

Published: 20 July 2016

Extending the lifetime of a quantum bit with error correction in superconducting circuits

Nissim Ofek ⊠, Andrei Petrenko ⊠, Reinier Heeres, Philip Reinhold, Zaki Leghtas, Brian Vlastakis, Yehan Liu, Luigi Frunzio, S. M. Girvin, L. Jiang, Mazyar Mirrahimi, M. H. Devoret & R. J. Schoelkopf ⊠

Nature 536, 441-445 (2016) Cite this article

21k Accesses | 502 Citations | 188 Altmetric | Metrics

Article Open Access Published: 22 March 2023

Beating the break-even point with a discrete-variable-encoded logical qubit

Zhongchu Nj, Sai Li, Xiaowei Deng, Yanyan Cai, Libo Zhang, Weiting Wang, Zhen-Biao Yang, Haifeng Yu, Fei Yan, Song Liu, Chang-Ling Zou, Luyan Sun ⊠, Shi-Biao Zheng ⊠, Yuan Xu ⊠ & Dapeng Yu ⊠

Nature 616, 56-60 (2023) Cite this article

11k Accesses | 1 Citations | 75 Altmetric | Metrics

Article Published: 22 March 2023

Real-time quantum error correction beyond breakeven

V. V. Sivak [™], A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios, S. Ganjam, A. Miano, B. L. Brock, A. Z. Ding, L. Frunzio, S. M. Girvin, R. J. Schoelkopf & M. H. Devoret [™]

Nature 616, 50-55 (2023) Cite this article

8349 Accesses 1 Citations 161 Altmetric Metrics

Classical Error Correction - The Repetition Code

Quantum States & Channels

$$C: H_A \to H_B$$

A channel, C, is a function that takes any state to another state. States live in Hilbert Spaces, denoted in this formula as H_A and H_B .

Quantum Channels - Kraus Representation

$$C(\rho) = \sum_{i} K_{i} \rho K_{i}^{\dagger}$$

 K_i are the Kraus Operators for channel C.

$$B_q(\rho) = q\hat{X}\rho\hat{X} + (1-q)\hat{I}\rho\hat{I}$$

$$\left\{\sqrt{q}\hat{X},\sqrt{1-q}\hat{I}\right\}$$

State Fidelity - Similarity of Two States

$$F(\rho, \sigma) = \left(\text{Tr} \left(\sqrt{\rho} \sigma \sqrt{\rho} \right) \right)^2$$

F is the fidelity (similarity) of two states, ρ and σ , between 0 and 1.

Gate Fidelity - Similarity of Two Channels

$$F(O, M, \rho) = \left(\operatorname{Tr}\left(\sqrt{\sqrt{O(\rho)}M(\rho)\sqrt{O(\rho)}}\right)\right)^{2}$$

O and M are operators and ρ is a state once more.

$$\overline{F}(O, M) = \frac{d + \sum_{i} |\operatorname{Tr}(K_{i}M^{\dagger})|^{2}}{d^{2} + d}$$

d is the dimension of the states that are being considered, and the K_i are the Kraus Operators for O.

Noise Channel Fidelity

$$\overline{F}(O) = \frac{d + \sum_{i} |\text{Tr}(K_i)|^2}{d^2 + d}$$

Optimal Recovery

$$\mathcal{R}^{\star}(\mathcal{E}) = \underset{\mathcal{R}}{\operatorname{arg\,max}} \overline{F}(\mathcal{R} \circ \mathcal{E})$$

 \mathcal{R}^{\star} is the optimal recovery channel to apply after a noise or error channel \mathcal{E} .

Putting It All Together: Code Fidelity

E encodes information into a code, \mathcal{E} is the noise channel, and \mathcal{R} is the recovery.

Specific Code Fidelities Used

Optimal Fidelity

$$\overline{F}(\mathcal{R}^{\star}(\mathcal{E} \circ E) \circ \mathcal{E} \circ \mathcal{E})$$

No Recovery Fidelity

$$\overline{F}(E^{\dagger} \circ \mathcal{E} \circ E)$$

Classical Harmonic Oscillator - Overview

$$\mathbf{F} = -k\mathbf{x} \implies U = \frac{1}{2}k|\mathbf{x}|^2$$

Quantum Harmonic Oscillator - Overview

ENCODING

Wigner Plots

Bosonic Rotation Codes - Overview

N is from hereon used to denote rotation symmetry degree. In this example, N=2.

Bosonic Rotation Codes - Cat Code

Bosonic Rotation Codes - Binomial Code

Methodology - General

- Generate random codes
- Compute their optimal fidelity and their no recovery fidelity
- Compare best random codes against binomial codes and cat codes
 - Codes are only compared if they have the same rotation symmetry degree and underwent the same loss channel

Methodology - Generation of Random Codes

$$|0_L\rangle = \frac{1}{\mathcal{N}_0} \left(\sum_{i=0}^{\infty} |2iN\rangle\langle 2iN| \right) |\psi\rangle$$

$$|1_L\rangle = \frac{1}{\mathcal{N}_1} \left(\sum_{i=0}^{\infty} |(2i+1)N\rangle\langle(2i+1)N| \right) |\psi\rangle$$

haar-random-3,2,12 Wigner Function Plots

Methodology - Comparison of Codes

$$\left| \langle 0_b \mid 0_r \rangle \right|^2 \qquad \left| \langle 1_b \mid 1_r \rangle \right|^2 \qquad \left| \langle +_b \mid +_r \rangle \right|^2$$

Results - Simulation Data

Results - Simulation Data

Comparison - Random Code that is Very Similar

Fidelity difference: 7.89 x 10^{.-5}; Dot products: 0.301, 0.948, 0.450; Under κ = 0.03

Comparison - Random Code that is Very Different

Fidelity difference: 4.19 x 10^{.-5}; Dot products: 0.802, 0.782, 0.020; Under κ = 0.03

Conclusion - Results Interpretation

- Some random codes beat binomial codes
 - Random codes can be better for any rotation symmetry degree, but binomial codes tend to perform better in lower loss regimes
- When random codes won, they had fidelity differences that were on the order of 10⁻⁵ to 10⁻⁴ better
- Winning random codes were generally unlike binomial codes

Further Work

- Check random codes in a setting with dephasing noise in addition to loss
- Use random codes as a benchmark to see how good a bosonic rotation code is
- Check how effective non-optimal recoveries are with random codes
- Use a genetic algorithm to select for the best QEC
- Investigate feasibility of physically implementing specific random codes

Thank You!