

PS 211: Introduction to Experimental Design

Fall 2025 · Section C1

Lecture 4: Central Tendency & Variability

Updates and reminders

- Homework 1 is due (via Blackboard) on Monday, September 15 at 11:59 PM.
 - Homework 1 mostly covers material from Lectures 1 3, with a small amount of material from today's lecture.
 - Please check today to make sure you know how to use R Markdown and that you can successfully knit your homework to an html file.
 - You must submit an html file to Blackboard. Do not submit a .Rmd file or any other file type.
 - Late homework will be penalized 3 points per day.
 - I have additional office hours tomorrow (Friday) from 10 11 a.m.
 - We may not be available to help you resolve last-minute technical issues.

Updates and reminders (continued)

- Exam 1 is scheduled for Thursday, September 25 during our regular class time.
 - Exam 1 will cover material from Lectures 1 5 and consist of multiple choice questions.
 - After Lecture 5, I will post a review sheet on Slack that has all the topics that will be covered on the exam.
 - The exam will be closed book/notes, but you may print the provided review sheet (and write on it with your own notes) or you may bring one 8.5" x 11" sheet of paper with handwritten notes (both sides).
 - No calculator is needed.
- We will have a review session for Exam 1 on Tuesday, September 23 during our regular class time. Please bring your questions!

Central Tendency

- The central tendency describes the "center" of a dataset.
- It identifies the value that scores cluster around.
- The three common measures of central tendency are mean, median, and mode.

These are descriptive statistics.

Mean, median, and mode

Mean: The arithmetic average

Median: The middle score

Mode: The most common score

The Mean: The Arithmetic Average

Warning: Equation incoming!

The formula for the mean is:

$$M = rac{\sum_{i=1}^{N} X_i}{N}$$

Let's break this down:

M = the mean. This is what we are trying to calculate.

 \sum = the summation symbol. This means "add up all the following values."

 $\sum_{i=1}^{N}$ = this tells us to start with the first score (i=1) and continue adding scores until we reach the Nth score (the last score).

 X_i = the value of the ith score.

Calculating the mean

$$M = \frac{\sum_{i=1}^{N} X_i}{N}$$

- 1. Add up all the scores.
- 2. Count the total number of scores.
- 3. Divide the sum of the scores by the total number of scores.

Some people like to think of the mean as a fulcrum balancing the two sides of a distribution.

The mean: Practice

$$M = rac{\sum_{i=1}^{N} X_i}{N}$$

Five students take an exam and receive the following scores: 80, 85, 90, 95, 100. What is the mean exam score?

Answer: 90.80 + 85 + 90 + 95 + 100 = 450. There are 5 scores, so 450 / 5 = 90.

A sixth student takes the exam and receives a score of 80. You compute the mean again:

$$90 + 80 = 170$$

 $170 / 2 = 85$

Is the mean now 85?

Answer: No. The new mean is 86.7:

$$80 + 85 + 90 + 95 + 100 + 80 = 520$$

$$520/6 = 86.7$$

The mean: Symbols

- The mean of a sample is a **statistic**.
- The mean of a population is an estimated parameter.
- Typically:
 - Symbols are *italicized*. Numbers are not.
 - Latin letters are used for statistics (numbers calculated from samples).
 - Greek letters are used for parameters (numbers estimated for populations).
- ullet The mean of a sample is denoted by M or X (X-bar).
- The mean of a population is denoted by μ (the Greek letter "mu").

The mean: Symbols

Sample Mean (but capitalize it!)

Can be calculated directly.

Population Mean

Usually estimated.

The Median

- The median is the middle score when all scores are ordered from lowest to highest (ascending).
- If there is an odd number of scores, the median is the middle score.
- If there is an even number of scores, the median is the mean of the two middle scores.
- The median represents the 50th percentile of the data.

The Median

Five students take an exam and receive the following scores: 92, 85, 90, 95, 100. What is the median exam score?

Answer: 92.

First, we order the scores: 85, 90, 92, 95, 100.

The middle score is 92.

A sixth student takes the exam and receives a score of 0. What is the median exam score now?

Answer: 91. The ordered scores are now: 0, 85, 90, 92, 95, 100. The two middle scores are 90 and 92, and their mean is 91.

The Mode

- The mode is the most common score in the dataset.
- A distribution may be unimodal (one mode), bimodal (two modes), or multimodal (many modes).
- The mode is not always useful if many values occur with the same frequency.

The Mode

- A **unimodal** distribution has one mode.
- A bimodal distribution has two modes.
- A **multimodal** distribution has multiple modes.

Example: Bimodal distribution

In bimodal and multimodal distributions, the mean and median are not representative of the data.

Mean, median, and mode

If a distribution is positively skewed, which measure of central tendency will be the largest? Which will be the smallest?

Answer: The mean will be the largest, and the mode will be the smallest.

Comparing Mean, Median, and Mode

- In a normal distribution, the mean, median, and mode are equal!
- In a negatively skewed distribution, the mean is less than the median, which is less than the mode.
- In a positively skewed distribution, the mode is less than the median, which is less than the mean.

Outliers

- Outliers are extreme values that differ greatly from the rest of the data.
- Outliers can distort the mean, making it less representative of the dataset.
- The median is less affected by outliers and can be a better measure of central tendency in skewed data.

Visualizing outliers

Which exam was harder?

Which exam was harder?

Visualizing outliers (continued)

Variability

- Besides a dataset's center or central tendency, we also often want to know how spread out the values are.
- Variability describes the spread of a distribution.
- Distributions with higher variability show greater spread between scores.

How could we measure spread?

Variability

How could we measure spread?

Three main **descriptive statistics** are used to measure variability:

- 1. Range: the difference between the highest and lowest score
- 2. Variance: average square deviation from the mean
- 3. Standard deviation: the square root of the variance

Range

Equation time!

$$Range = X_{max} - X_{min}$$

- The range is the difference between the highest and lowest score.
- For example, if the highest quiz score is 90 and the lowest is 70, the range is 20.
- The range is simple to compute, but it only depends on two scores and can be distorted by outliers.

Interquartile Range

- The interquartile range (IQR) measures the distance between the 25th percentile (Q1) and 75th percentile (Q3).
- The IQR represents the middle 50% of the data.
- Because it is less influenced by outliers, the IQR is often a more robust measure of variability.

Practice: Computing the interquartile Range

- The following are the scores of 9 students on an exam: 55, 60, 65, 70, 75, 80, 85, 90, 95. What is the interquartile range (IQR) of these scores?
- 1. Order the scores (they are already ordered).
- 2. Find the median (75).
- 3. Split the data into two halves: lower half (55, 60, 65, 70) and upper half (80, 85, 90, 95).
- 4. Find Q1 (the median of the lower half) = (60 + 65) / 2 = 62.5.
- 5. Find Q3 (the median of the upper half) = (85 + 90) / 2 = 87.5.
- 6. Compute the IQR: IQR = Q3 Q1 = 87.5 62.5 = 25.

Boxplots revisited

- Boxplots visually represent the median,
 quartiles, and potential outliers in a dataset.
- The box represents the interquartile range (IQR), with a line at the median.
- "Whiskers" extend to the smallest and largest values within 1.5 * IQR from the quartiles.
- Points outside this range are considered potential outliers.

```
#make list of exam scores
exam_scores <- c(55, 60, 65, 70, 75, 80, 85, 90, 95)

#put in dataframe
exam_scores_df <- data.frame(exam_scores)
exam_scores_df$exam <- factor(1) #add variable for x axis

#use ggplot to make boxplot
ggplot(exam_scores_df, aes(x = exam, y = exam_scores)) +
    geom_boxplot() +
    labs(title = "Boxplot of Exam Scores", y = "Scores")</pre>
```


Variance

What if we want a measure of spread influenced by ALL scores?

- We can compute the distance each score is from the mean (the deviation), and take the average of that.
- But... if we add up all the deviations, they will always equal zero!

Example

Scores: 70, 80, 90

■ Mean: 80; Deviations: -10, 0, +10

■ Sum of deviations: -10 + 0 + 10 = 0

To solve this, we square each deviation (to make them positive) before summing them!

Variance (continued)

Variance (continued)

Sample Variance

Things are about to get tricky...

The formula for the variance of a SAMPLE is:

$$s^2 = rac{\sum_{i=1}^{N} (X_i - M)^2}{N-1}$$

What changed?

- 1. We use M (the sample mean) instead of μ (the population mean).
- 2. We divide by N-1 instead of N.
- 3. We use s^2 (the sample variance) instead of σ^2 (the population variance).

Why do we divide by N-1 instead of N?

Why N-1?

Why do we divide by N-1 instead of N?

- When we use the sample mean (M) instead of the population mean (μ) , we are using an estimate that is **based on the sample data**.
- The sample mean tends to be closer to the sample scores than the true population mean would be.
- This can lead to an underestimation of the true population variance.
- Dividing by N-1 instead of N provides a better estimate of the population variance, especially for small sample sizes.

Why N-1? (Continued)

Suppose we have a population with the following scores: 70, 75, 80, 85, 90.

- 1. Compute the population mean.
- 2. Compute the population variance.

Now imagine we take a sample of 3 scores from this population: 70, 75, 85.

- 3. Compute the sample mean.
- 4. Compute the sample variance using N in the denominator.
- 5. Compute the sample variance using N-1 in the denominator.

Code to the rescue!

```
# Population data
population_scores <- c(70, 75, 80, 85, 90)
population_mean <- mean(population_scores)
population_variance <- sum((population_scores - population_mean)^2) / length(population_scores)

# Sample data
sample_scores <- c(70, 75, 85)
sample_mean <- mean(sample_scores)
sample_variance_N <- sum((sample_scores - sample_mean)^2) / length(sample_scores)
sample_variance_N_minus_1 <- sum((sample_scores - sample_mean)^2) / (length(sample_scores) - 1)</pre>
```

Population Variance: 50

Sample Variance (N): 38.89

■ Sample Variance (N-1): 58.33

Standard Deviation

- The standard deviation is the square root of the variance.
- The formula for the standard deviation of a population is:

$$\sigma = \sqrt{rac{\sum_{i=1}^{N}(X_i - \mu)^2}{N}}$$

The formula for the standard deviation of a sample is:

$$s=\sqrt{rac{\sum_{i=1}^{N}(X_i-M)^2}{N-1}}$$

- It represents the typical amount that each score deviates from the mean.
- Larger standard deviations indicate greater spread, while smaller ones indicate that scores cluster more closely around the mean.

Standard deviation vs. variance

- The standard deviation is often more interpretable than the variance because it is in the same units as the original data.
- For example, if exam scores are measured in points, the standard deviation will also be in points, while the variance will be in points squared.
- Both the variance and standard deviation provide valuable information about the spread of a dataset, but the standard deviation is often preferred for its interpretability.

Variability in R

R actually has built-in functions to compute variance and standard deviation.

```
# Sample data
scores <- c(70, 75, 80, 85, 90)

# Compute sample variance
sample_variance <- var(scores)

# Compute sample standard deviation
sample_sd <- sd(scores)</pre>
```

Note: The var() function in R computes the sample variance (dividing by N-1), and the sd() function computes the sample standard deviation.

Variability in R

Thought question: Why would the built in 'var' and 'sd' functions compute the sample variance and standard deviation instead of the population versions?

Answer: In practice, we often work with samples rather than entire populations. Therefore, R's built-in functions are designed to compute sample statistics by default.

Variability: Practice

Answer: The histogram on the left has higher variance because the scores are more spread out from the mean.

Which measure of variability would be most affected by an outlier?

Variability: Practice (Continued)

Answer: The "Violet" distribution likely has a greater standard deviation because its scores are more spread out from the mean.

That's all for today!

Remember, Homework 1 is due Monday at 11:59 PM.