

\mathcal{C} ycle \mathcal{P} réparatoire

Deuxième année Module : Algèbre 3

2016/17

Examen $N^{o}1$

Questions de cours 3 points

I. Soit $A \in \mathbb{M}_n(\mathbb{K})$ et λ une valeur propre de A, montrer que λ^2 est une valeur propre de A^2 .

II. Soit $A \in M_3(\mathbb{R})$ dont le polynôme caractéristique est $P_A(X) = X(X-1)(2-X)$. A est-elle diagonalisable? inversible? (Justifier votre réponse).

Réponse:

I. λ est une valeur propre de A, alors il existe $V \neq 0$ tel que $AV = \lambda V$ cependant

$$A^2V = A(AV) = A(\lambda V) = \lambda(AV) = \lambda(\lambda V) = \lambda^2 V.$$
 1 point

Donc λ^2 est une valeur propre de A^2 .

II. — A admet 3 valeurs propres simples 0, 1, 2, alors A est diagonalisable. 1 point

— A n'est pas inversible car $det(A) = 0 \times 1 \times 2 = 0$. **1 point**

Exercice 1. 6 points Calculer les déterminants suivants

$$D_{1} = \begin{vmatrix} a & a & b & 0 \\ a & a & 0 & b \\ c & 0 & a & a \\ 0 & c & a & a \end{vmatrix}; D_{2} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & \cos c & \cos b \\ 1 & \cos c & 1 & \cos a \\ 1 & \cos b & \cos a & 1 \end{vmatrix}; D_{3} = \begin{vmatrix} 7 & 1 & 0 & 0 & 0 \\ 3 & -4 & 0 & 0 & 0 \\ 0 & 0 & -3 & -3 & -2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 4 & 7 & 1 \end{vmatrix}$$

Réponse:

$$D_1 = \begin{array}{c|cccc} \ell_1 & a & a & b & 0 \\ \ell_2 & a & a & 0 & b \\ \ell_3 & c & 0 & a & a \\ \ell_4 & 0 & c & a & a \end{array} \bigg| = \begin{array}{c|ccccc} \ell_2 - \ell_1 & a & a & b & 0 \\ 0 & 0 & -b & b \\ c & 0 & a & a \\ \ell_4 - \ell_3 & -c & c & 0 & 0 \end{array} \bigg|$$

On fait ensuite les opérations sur les colonnes pour obtenir une dernière ligne facile à développer

1

$$D_1 = \begin{vmatrix} C_1 & C_2 & C_3 & C_4 \\ a & a & b & 0 \\ 0 & 0 & -b & b \\ c & 0 & a & a \\ -c & c & 0 & 0 \end{vmatrix} = \begin{vmatrix} a & 2a & b & 0 \\ 0 & 0 & -2b & b \\ c & c & 0 & a \\ -c & 0 & 0 & 0 \end{vmatrix} = +c \times \begin{vmatrix} 2a & b & 0 \\ 0 & -2b & b \\ c & 0 & a \end{vmatrix} = bc(bc - 4a^2).$$

2 points

$$D_2 = \begin{vmatrix} C_1 & C_2 & C_3 & C_4 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & \cos c & \cos b \\ 1 & \cos c & 1 & \cos a \\ 1 & \cos b & \cos a & 1 \end{vmatrix} = \begin{vmatrix} C_1 & C_2 - C_1 & C_3 - C_1 & C_4 - C_1 \\ 1 & 0 & 0 & 0 \\ 1 & \cos c - 1 & \cos b - 1 \\ 1 & \cos c - 1 & 0 & \cos a - 1 \\ 1 & \cos b - 1 & \cos a - 1 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & \cos c - 1 & \cos b - 1 \\ \cos c - 1 & 0 & \cos a - 1 \\ \cos b - 1 & \cos a - 1 & 0 \end{vmatrix} = 2(\cos a - 1)(\cos b - 1)(\cos c - 1).$$
 2 points

$$D_{3} = \begin{vmatrix} 7 & 1 & 0 & 0 & 0 \\ 3 & -4 & 0 & 0 & 0 \\ 0 & 0 & -3 & -3 & -2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 4 & 7 & 1 \end{vmatrix} = \begin{vmatrix} 7 & 1 \\ 3 & -4 \end{vmatrix} \times \begin{vmatrix} -3 & -3 & -2 \\ 1 & 1 & 0 \\ 4 & 7 & 1 \end{vmatrix} = (-31)(-6) = 186.$$

Exercice 2. 6 points Soit(S) le système linéaire défini sur R par

$$\begin{cases} x + y + 2z = 1 \\ x + 2y + z = 2 \\ 3x + 4y + 5z = a \\ 2x + 3y + 3z = b \end{cases}$$

- 1. Déterminer le rang du système (S).
- 2. Déterminer les inconnues et les équations principales du système.
- 3. Donner une condition nécessaire et suffisante sur a et b pour que le système soit compatible.
- 4. Résoudre le système (S) dans le cas où il est compatible.

Réponse :

1. Le rang du système (S).

Posons
$$C_1 = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 2 \end{pmatrix}$$
, $C_2 = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 3 \end{pmatrix}$, $C_3 = \begin{pmatrix} 2 \\ 1 \\ 5 \\ 3 \end{pmatrix}$. On a $rg(\mathcal{S}) = rg(C_1, C_2, C_3)$.

Il est clair que $C_2 + C_3 = 3C_1$, ce qui implique que la famille $\{C_1, C_2, C_3\}$ est liée.

Donc
$$rg(S) < 3$$
. 1 point

On a le déterminant de la matrice extraite M de la matrice du système $|M|=\left|\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right|=1\neq 0.$

Et par suite rg(S) = 2. 1 point

- 2. Si on prend $M = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ comme matrice principale du système, cependant les inconnues principales sont x et y et les équations principales sont la première (x + y + 2z = 1) et la deuxième (x + 2y + z = 2) équation du système.
- 3. Condition nécessaire et suffisante de compatibilité.

Le système
$$(S)$$
 est compatible si et seulement si $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 3 & 4 & a \end{vmatrix} = 0$ et $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & b \end{vmatrix} = 0$.

On a

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 3 & 4 & a \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 3 & 4 & a - 4 \end{vmatrix} = a - 4,$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & b \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & b - 3 \end{vmatrix} = b - 3.$$

La condition nécessaire et suffisante pour que le système soit compatible est a=4 et b=3.

4. Si a = 4 et b = 3, le système (\mathcal{S}) est équivalent un système de Cramer d'ordre 2 de matrice M.

$$(S) \begin{cases} x + y + 2z = 1 \\ x + 2y + z = 2 \\ 3x + 4y + 5z = a \\ 2x + 3y + 3z = b \end{cases} \iff \begin{cases} x + y = 1 - 2z \\ x + 2y = 2 - z \end{cases}$$

Les formules de Cramer donnent $x = \frac{\begin{vmatrix} 1 - 2z & 1 \\ 2 - z & 2 \end{vmatrix}}{|M|} = -3z$ et $y = \frac{\begin{vmatrix} 1 & 1 - 2z \\ 1 & 2 - z \end{vmatrix}}{|M|} = 1 + z$.

Exercice 3. 5 points Soit $\alpha \in \mathbb{R}$. Donner une matrice échelonnée équivalente à M_{α} et préciser le rang de M_{α}

$$\mathbf{M}_{\alpha} = \left(\begin{array}{cccc} 1 & 1 & -1 & 1 \\ 2 & 3 & \alpha & 3 \\ 1 & \alpha & 3 & -3 \end{array} \right)$$

Réponse:

$$M_{\alpha} = \ell_{2} \begin{pmatrix} \boxed{1} & 1 & -1 & 1 \\ \boxed{2} & 3 & \alpha & 3 \\ 1 & \alpha & 3 & -3 \end{pmatrix}$$

$$\ell_2 \longrightarrow \ell_2 - 2\ell_1$$

$$\begin{pmatrix}
\boxed{1} & 1 & -1 & 1 \\
0 & 1 & \alpha + 2 & 1 \\
\boxed{1} & \alpha & 3 & -3
\end{pmatrix}$$
1 point

 $\ell_3 \longrightarrow \ell_3 - \ell_1$

$$\begin{pmatrix}
1 & 1 & -1 & 1 \\
0 & 1 & \alpha + 2 & 1 \\
0 & \alpha - 1 & 4 & -4
\end{pmatrix}$$
1 point

 $\ell_3 \longrightarrow \ell_3 - (\alpha - 1)\ell_2$

$$\begin{pmatrix}
\boxed{1} & 1 & -1 & 1 \\
0 & \boxed{1} & \alpha + 2 & 1 \\
0 & 0 & \underbrace{4 - (\alpha - 1)(\alpha + 2)}_{=(3+\alpha)(2-\alpha)} & -(\alpha + 3)
\end{pmatrix}$$
1.5 point

Si $\alpha = -3$, M_{α} est équivalente à

$$\begin{pmatrix} \boxed{1} & 1 & -1 & 1 \\ 0 & \boxed{1} & \alpha + 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Le rang de M_{α} =nombre des $\boxed{1}$ directeurs = 2.

 $0.5 \, \mathrm{point}$

Si $\alpha=2,\,{\rm M}_{\alpha}$ est équivalente à

$$\begin{pmatrix} \boxed{1} & 1 & -1 & 1 \\ 0 & \boxed{1} & \alpha + 2 & 1 \\ 0 & 0 & 0 & \boxed{1} \end{pmatrix}.$$

Le rang dans ce cas est égale à 3.

 $0.5\,\mathrm{point}$

Si $\alpha \neq -3$ et $\alpha \neq 2,\, {\rm M}_{\alpha}$ est équivalente à

$$\begin{pmatrix} \boxed{1} & 1 & -1 & 1 \\ 0 & \boxed{1} & \alpha + 2 & 1 \\ 0 & 0 & \boxed{1} & \frac{1}{\alpha - 2} \end{pmatrix}.$$

$$rg(M_{\alpha}) = 3.$$
 0.5 point