Санкт-Петербургский политехнический университет Петра Великого

Физико-Механический Институт

Высшая школа прикладной математики и вычислительной физики Кафедра «Прикладной Математики и Информатики»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МЕТОДЫ ОПТИМИЗАЦИИ» «РЕШЕНИЕ ЗАДАЧ РЕШЕНИЕ ЗАДАЧ ТРАНСПОРТНОГО ТИПА»

Выполнили студенты группы 5030102/00101

КУАССИ СИЕМО Т. Г.

Руководитель к. ф.-м. н., доц.

Родионова Елена Александровна

Санкт-Петербург 2023

Содержание

1	Постановка задачи	2				
2	Исследование применимости метода	2				
3	Описание алгоритма					
	3.1 Алгоритм Метод минимального элемента	3				
	3.2 Алгоритм проверки опорного плана на вырожденность	3				
	3.3 Алгоритм метода потенциалов	4				
	3.4 Алгоритм поиска цикла пересчета	4				
	3.5 Алгоритм приведения задачи к закрытому виду	5				
4	Практическое решение задач	5				
	4.1 Результат нахождения плана методом потенциалов для исходной задачи	5				
5	Обоснование результатов	5				
	5.1 Проверка результатов метода потенциалов	5				
6	Выводы	6				

1 Постановка задачи

Пусть имеется n пунктов хранения, в которых сосредоточен однотипный груз, и m пунктов назначения. Также известны:

- a_i количество груза в i-ом пункте хранения
- ullet b_{i} суточная потребность в j-ом пункте назначения
- ullet c_{ij} стоимость перевозки единицы груза из i-ого в j-ый пункт

Необходимо составить план перевозок так, чтобы минимизировать стоимость проекта, то есть $\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} \to min$, где x_{ij} - количество груза, перевезенного из і-ого в ј-ый пункт.

Условие транспортной задачи задано в виде таблицы:

	b_1	b_2	b_3	b_4	
a_1	4	5	6	8	20
a_2	7	6	9	7	15
a_3	3	8	5	6	25
a_4	9	7	4	5	10
	15	10	20	25	

Таблица 1: Транспортная задача

Необходимо:

- 1. Решить закрытую Транспортную задачу (4 поставщика, 4 потребителя) методом потенциалов с выбором начального приближения методом минимального элемента
- 2. Описать алгоритм построения цикла пересчета.

2 Исследование применимости метода

Для того чтобы транспортная задача была поставлена корректно, необходимо выполнение следующих условий:

- $x_{ij} \ge 0$, где $i = \overline{1, n}, j = \overline{1, m}$
- $\bullet \ \sum_{i=1}^n a_i \ge \sum_{j=1}^m b_i$

Для того чтобы применять заданные методы к решению транспортной задачи, она должна быть приведена к закрытому виду.

Проверим эти условия:

- 1. $x_{ij} \geq 0$, где $i = \overline{1,n}, j = \overline{1,m}$, задается в коде программы при определении данных переменных
- 2. $\sum_{i=1}^n a_i = 20+15+25+10=70$ и $\sum_{j=1}^m b_i = 15+10+20+25=70$. Следовательно, задача задана в закрытом виде

Таким образом, заданные методы применимы к данной задаче.

3 Описание алгоритма

3.1 Алгоритм Метод минимального элемента

Вход: Массив значений предложений и потребностей грузов и матрица стоимостей перевозок.

1. Инициализация:

- Создайте пустую матрицу x_{ij} , где i номер поставщика, j номер потребителя.
- Начните с верхнего левого угла (i=1, j=1) матрицы x_{ij} .

2. Пока есть нераспределенные товары:

- (a) Найдите ячейку с минимальной стоимостью перевозки в оставшейся части матрицы.
- (b) Обозначьте это значение как C_{ij} (стоимость перевозки).
- (c) Если $a_i > b_j$ (предложение больше потребности), то заполните x_{ij} значением b_j (потребность) и вычтите b_j из a_i .
- (d) Если $a_i < b_j$ (предложение меньше потребности), то заполните x_{ij} значением a_i (предложение) и вычтите a_i из b_j .
- (е) Если $a_i = b_j$ (предложение равно потребности), то заполните x_{ij} значением a_i (или b_j , так как они равны) и обнулите a_i и b_j .

3. Повторяйте шаг 2, пока не распределены все товары.

4. Полученная матрица x_{ij} представляет начальное опорное решение задачи транспорта.

Этот алгоритм позволяет создать начальный опорный план, учитывая как предложение, так и потребность, а также стоимости перевозок. Важно отметить, что начальное опорное решение не всегда будет оптимальным, и для нахождения оптимального решения может потребоваться дополнительные шаги

3.2 Алгоритм проверки опорного плана на вырожденность

При нахождении опорных планов, в том числе начального, он может оказаться вырожденным. Так как задача рассматривается в закрытом виде, то требуется n+m-1 уравнений для ее решения.

Если матрица имеет заполненных клеток меньше, чем требуется уравнений, то этот опорный план является вырожденным и необходимо добавить фиктивный элемент.

3.3 Алгоритм метода потенциалов

Пусть дана таблица, состоящая из элементов x_{ij} , где $i = \overline{1,n}, j = \overline{1,m}$. Каждой строчке этой таблицы поставим в соответсвие потенциал u_i , а столбцам - v_j .

- 1. Выписать соотношение $v_j u_i = c_{ij}$ для каждой клетки, ввести искуственное ограничение, например, $v_0 = 0$, и решить СЛАУ, поочередно выражая переменные через друг друга
- 2. Вычислить параметр $\alpha_{ij} = v_j u_i$ для ячеек, которые не входят в опорный план. Если $\alpha_{ij} \leq c_{ij}$, то найденный план оптимальный. Иначе пересчитываем план
- 3. Ввести в план перевозок ячейку (i,j) из свободных ячеек, для которой $\max \{\alpha_{ij} c_{ij}\}$
- 4. Построить цикл пересчета в выбранной ячейке (i, j)
- 5. В полученном после пересчета списке ячеек найти минимальное значение объема перевозки в ячейках, помеченных знаком минус
- 6. Обойти все элементы найденного цикла, применяя к текущей ячейке операцию сложения или вычитания с найденым минимумом объема перевозки в зависимости от значения знака в ячейке
- 7. Продолжаем алгоритм с шага 1 после изменения опорного плана

3.4 Алгоритм поиска цикла пересчета

Цикл пересчета - последовательность попеременных горизонтальных и вертикальных перемещений в таблице, начиная и заканчивая в выбранной ячейке (i,j). В заполненных ячейках таблицы происходит смена направления движения.

- 1. Проверить, посещали ли заданную ячейку ранее. Если нет, то пометить ее, чередуя знаки
- 2. Проверить тип ячейки:
 - Если ячейка не базисная, то продолжаем движение в текущем направлении и запускаем процедуру для следующей клетки
 - Если ячейка базисная, то запускаем процедуру для всех ячеек, которые доступны по различным направлениям
 - Если ячейка начальная, то алгоритм прекращает работу, возвращая список ячеек, в которых произошла смена направления

3.5 Алгоритм приведения задачи к закрытому виду

- 1. Вычислить общую сумму запасов и общую сумму потребностей
- 2. Добавить столбец или строку с нулевой стоимостью перевозки:
 - Если превышают запасы, то добавить фиктивного потребителя
 - Если превышают потребности, то добавить фиктивного поставщика

4 Практическое решение задач

4.1 Результат нахождения плана методом потенциалов для исходной задачи

Оптимальный опорный план имеет вид:

	b_1	b_2	b_3	b_4		$ u_i $
a_1	10	10	-	-	20	0
a_2	-	-	-	15	15	0
a_3	5	-	10	10	25	-1
a_4	-	-	10	-	10	-2
	15	10	20	25		
v_j	4	5	6	7		

Таблица 2: Оптимальный опорный план, найденный методом потенциалов

Минимальные затраты при осуществлении данного опорного плана перевозок: F(x)=10*4+5*10+7*15+3*5+5*10+6*10+4*10=360 перевозки.

5 Обоснование результатов

Для того чтобы найденное решение было оптимальным, необходимо выполнение условия $v_j + u_i \le c_{ij}, i = \overline{1,n}, j = \overline{1,m}$ для ячеек, не входящих в оптимальный опорный план.

5.1 Проверка результатов метода потенциалов

Дано:

Матрица стоимости перевозок между пунктами:

$$\begin{pmatrix}
4 & 5 & 6 & 8 \\
7 & 6 & 9 & 7 \\
3 & 8 & 5 & 6 \\
9 & 7 & 4 & 5
\end{pmatrix}$$

	b_1	b_2	b_3	b_4		$ u_i $
a_1	10	10	-	-	20	0
a_2	-	-	-	15	15	0
a_3	5	-	10	10	25	-1
a_4	-	-	10	-	10	-2
	15	10	20	25		
v_j	4	5	6	7		

Таблица 3: Оптимальный опорный план, найденный методом потенциалов

Проверим оптимальность опорного плана. Найдем предварительные потенциалы ui, vj. по занятым клеткам таблицы, в которых ui + vj = cij, полагая, что u1 = 0.

$$\begin{cases} u_1 + v_1 = 4; 0 + v_1 = 4; v_1 = 4 \\ u_3 + v_1 = 3; 4 + u_3 = 3; u_3 = -1 \\ u_3 + v_3 = 5; -1 + v_3 = 5; v_3 = 6 \\ u_4 + v_3 = 4; 6 + u_4 = 4; u_4 = -2 \\ u_3 + v_4 = 6; -1 + v_4 = 6; v_4 = 7 \\ u_2 + v_4 = 7; 7 + u_2 = 7; u_2 = 0 \\ u_1 + v_2 = 5; 0 + v_2 = 5; v_2 = 5 \end{cases}$$
(1)

Таким образом, найденный опорный план действительно является оптимальным.

6 Выводы

Метод минимального элемента (Minimum Cost Method) учитывает стоимости перевозок и ищет минимальные стоимости в не распределенных ячейках матрицы. Метод минимального элемента позволяет создать начальное решение, учитывая как предложение, так и потребность, но оно не всегда будет оптимальным. Он полезен для быстрого получения начального опорного плана, но начальное решение не обязательно является оптимальным.

Метод потенциалов (Modified Distribution Method): базируется на идее вычисления потенциалов (цен) для строк и столбцов матрицы стоимостей. Метод потенциалов применяется для улучшения начального опорного плана, чтобы найти оптимальное решение. Он является инструментом для улучшения начального опорного плана и нахождения оптимального решения задачи транспорта. Вместе эти методы обеспечивают способ нахождения оптимального решения задачи транспорта, учитывая стоимости перевозок, предложение и потребность.

Мы Использовали метод минимального элемента для создания начального опорного плана, а затем применили метод потенциалов для оптимизации этого плана и нахождения оптимального решения.