LME Problem

* Safety

If a process is executing its critical section, then none of its neighbors is executing its critical section simultaneously.

* Liveness

If a process requests to enter its critical section, then it will eventually execute its critical section.

LME Algorithm

Concurrency

Best (expected) case

Worst case

Question

Could we increase concurrency?

Answer

Yes!
Local Resource Allocation!

* Statement

Neighboring Processes share *m* resources with compatibility criteria

* Compatibility

Two resources X and Y are said to be compatible, denoted $X \leftrightarrow Y$,

if two neighboring processes can access X and Y concurrently

* Safety

If two neighboring processes p and q (p<>q) are executing their critical section concurrently using X and Y, respectively, then X \leftrightarrow Y.

* Liveness

If a process requests to enter its critical section, then it will eventually execute its critical section.

3 resources

 \longleftrightarrow

 \bigcirc \longleftrightarrow \bigcirc

 $\bigcirc \longleftrightarrow \bigcirc$

3 resources

 \longleftrightarrow

 \bigcirc \longleftrightarrow \bigcirc

 $\bigcirc \longleftrightarrow \bigcirc$

3 resources

$$\bigcirc$$
 \longleftrightarrow \bigcirc

 $\bigcirc \longleftrightarrow \bigcirc$

3 resources

 \bigcirc \longleftrightarrow \bigcirc

 $\bigcirc \longleftrightarrow \bigcirc$

$$\longleftrightarrow$$

$$\bigcirc$$
 \longleftrightarrow \bigcirc

$$\bigcirc \longleftrightarrow \bigcirc$$

$${\color{red}\bullet}\longleftrightarrow{\color{red}\bullet}$$

$$\bigcirc \longleftrightarrow \bigcirc$$

Relation With Other Resource Allocation Problems?

Dinning Philosophers [Dijkstra, EWD 625, 1978]
 (Local Mutual Exclusion)

One Resource Shared in Exclusive Access by Neighbor Processes

Concurrency = 1 process in the neighborhood

Drinking Philosophers [Chandy and Misra, TOPLAS 1984]

Several Resources Shared in Exclusive Access by Neighbor Processes

Concurrency = 1 process in the neighborhood for each resource Neighbors are allowed to use resources simultaneously provided that they are using different resources

LRA solves Drinking Philosophers Problem

Drinking Philosophers [Chandy and Misra, TOPLAS 1984]

Several Resources Shared in Exclusive Access by Neighbor Processes

Concurrency = 1 process in the neighborhood for each resource Neighbors are allowed to use resources simultaneously provided that they are using different resources

LRA solves Drinking Philosophers Problem

* Group Mutual Exclusion [Joung, DISC 1998]

M Exclusive Resources Shared in Concurrent Access

Concurrency = n processes

... but exclusive resource access

* Local Group Mutual Exclusion

M Local Exclusive Resources Shared in Concurrent Access

Concurrency = Δ +1 processes in the neighborhood

... but exclusive resource access

* Local Group Mutual Exclusion

M Local Exclusive Resources Shared in Concurrent Access

Concurrency = Δ +1 processes in the neighborhood

... but exclusive resource access

Does LRA solves the (Local) GME Problem?

Yes!

* Local Group Mutual Exclusion

M Local Exclusive Resources Shared in Concurrent Access

Concurrency = Δ +1 processes in the neighborhood

... but exclusive resource access

* Local Group Mutual Exclusion

M Local Exclusive Resources Shared in Concurrent Access

Concurrency = Δ +1 processes in the neighborhood

... but exclusive resource access

LRA is a generalisation of

- * Local Mutual Exclusion
- Dining and Drinking Philosophers
- Local Group Mutual Exclusion
 (and then Local Readers/Writers)

An SS LRA Algorithm

Each process p maintains

- A compatibility graph CG = (R, C)
 - R = Resources accessed by p
 - C = Compatibility Edges
- * Request $\in R \cup \{\bot\}$ (upper layer)
- * Grant: Boolean (LRA layer)
- * c: integer, a Lamport's timestamp (LRA layer)

An SS LRA Algorithm

Entry Section

- Each time a process p requests to access the critical section with Resource X (Upper Layer):
 - p sets Request to X (Upper Layer)
 - p updates its timestamp c (LRA Layer)
- Then, p waits for one of the two following conditions to become true (Grant to true by the LRA Layer):
 - p has the maximum timestamp in its neighborhood, or
 - Request (X) is compatible with its neighbors

Exit Section

 \star presets Request to \perp , Grant to false, and c to 0 (LRA Layer)

The Upper Layer Algorithm

•

```
REQ: (Request = \bot) \land \neg G rant \land (X \in R requested) \rightarrow Request := X CS: (Request \ne \bot) \land Grant \rightarrow «CS»; Request := \bot
```

No request ⇒ No action ⇒ Silent Algorithm

Self-stabilizing LRA using Unison

```
p \lessdot q \equiv (c \lessdot c_q) \lor ((c \equiv c_q) \land (p \lessdot q))

Ready \equiv \forall q \in \mathbb{N}: (c_q \gt 0) \Rightarrow ((p \lessdot q) \lor ((Request_q \ne \bot) \Rightarrow (Request \leftrightarrow Request_q)))
```

```
A1: (Request \neq \bot) \land \neg G rant \land (c = 0) \rightarrow c := max { c_q \in \mathbb{N}} + 1
```

A2: (Request $\neq \perp$) $\land \neg Grant \land (c > 0) \land Ready \rightarrow Grant := true$

A3: $(Request = \bot) \land (Grant \lor (c \gt 0)) \rightarrow Grant := false; c := 0$

Self-Stabilizing LRA Scheme

```
REQ: (Request = \bot) \land \neg Grant \land (X \in R requested) \rightarrow Request := X

CS: (Request \neq \bot) \land Grant \rightarrow «CS»; Request := \bot

A1: (Request \neq \bot) \land \neg Grant \land (c = 0) \rightarrow c := \max \{ c_q \in \mathbb{N} \} + 1

A2: (Request \neq \bot) \land \neg Grant \land (c > 0) \land Ready \rightarrow Grant := true

A3: (Request = \bot) \land (Grant \lor (c > 0)) \rightarrow Grant := false; c := 0
```


Lamport's Clock

Drawback

* c: infinite integer

Is there any possibility to use a finite clock?

Yes!

UNISON

The LRA Layer Algorithm

```
C \in \{0..2n\}
p \lessdot q \equiv (c \lessdot c_q) \lor ((c \equiv c_q) \land (p \lessdot q))
DoNotStop \equiv (\exists q \in N: (c_q \neq c_p))
Ready \equiv DoNotStop \Rightarrow ((p \lessdot q) \lor ((Request_q \neq \bot) \Rightarrow (Request \Leftrightarrow Request_q)))
A1: \quad (DoNotStop \lor Request \neq \bot) \land \neg Grant \Rightarrow c := \varphi(r_p)
A2: \quad (Request \neq \bot) \land \neg Grant \land Ready \Rightarrow Grant := true
```

(Request = \bot) \land (Grant \lor (c \gt 0)) \rightarrow Grant := false

A3:

References

 Sébastien Catarel, Ajoy K. Datta, Franck Petit.
 Self-Stabilizing Atomicity Refinement Allowing Neighborhood Concurrecy.
 SSS 2003: 102-112

Christian Boulinier, Franck Petit, Vincent Villain.
 When graph theory helps self-stabilization. PODC 2004: 150-159