Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 25. Februar 2020

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
MATRIKELNUMMER	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	Themenbereich	
1	3	19	MODELLE REGULÄRER SPRACHEN	
2	4	16	Untermengen-Konstruktion	
3	5	21	MINIMIERUNG EINES DFA	
4	6	17	GRENZEN REGULÄRER SPRACHEN	
5	7	11	Modelle Kontextfreier Sprachen I	
6	8	16	Modelle Kontextfreier Sprachen II	

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	19	16	21	17	11	16	100
ERREICHT							
Korrektor							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(19 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\},\$ die reguläre Sprache $A_1 \triangleq \{ (ab)^n aab^m \mid n, m \in \mathbb{N} \}$, die reguläre Grammatik $G_2 \triangleq (\{ S, T, U, W \}, \Sigma, P_2, S)$ und der NFA $M_3 \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \Delta_3, \{q_0\}, \{q_3\})$ mit:

a. (**, 5 Punkte) Gib einen DFA M_1 mit $L(M_1) = A_1$ an.

b. (**, 4 Punkte) Gib eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

- c. (*, 3.5 Punkte) Gib die Ableitung des Wortes abbaab in G_2 an.
- d. (**, 2 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- e. (**, 2.5 Punkte) Gib eine Ableitung von bbaa in M_3 an, die zeigt, dass $bbaa \in L(M_3)$.
- f. (***, 2 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

Gegeben sei der NFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma, \Delta, \{q_1, q_3\}, \{q_5\})$ mit $\Sigma \stackrel{\triangle}{=} \{ a, b \} \text{ und } \Delta$:

a. (**, 13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M'zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende (optimierte) Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (graphisch) anzugeben.

b. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(21 Punkte)

Gegeben sei der DFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \Sigma, \delta, q_0, \{q_6\})$ mit $\Sigma \triangleq \{a, b\}$ und δ :

- a. (*, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (**, 9 Punkte) Gib an: Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt. Die zweite Tabelle ist ein Ersatz für Verschreiber.

- c. (**, 4 Punkte) Die Minimierung unterteilt die Menge der Zustände in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben. Hinweis: Die Namen der Klassen in der Form [. . .] genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[\ldots] = \{\ldots\}$, angegeben werden.
- d. (**, 5 Punkte) *Gib* den minimierten DFA *M'* an.

e. (***, 2 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Matrikelnummer:	Name:

Aufgabe 4: Grenzen Regulärer Sprachen

(17 Punkte)

a. **(***, 11 Punkte)** Beweise nur mit Hilfe des Pumping Lemmas, dass die Sprache $A_1 \triangleq \left\{ \ a^j b^k c^l a^m \mid j,k,l,m \in \mathbb{N} \land j+m=2 \land k < l+m \ \right\}$ mit $\Sigma \triangleq \left\{ \ a,\ b,\ c \ \right\}$ nicht regulär ist.

b. **(***, 6 Punkte)** Gib alle Myhill-Nerode Äquivalenzklassen für die Sprache $A_2 \triangleq \{ xa \mid x \in \{ a, b \}^+ \land |xa|_a \leq |xa|_b \}$ über $\Sigma \triangleq \{ a, b \}$ an. Hinweis: Die Namen der Klassen in der Form $[\dots]_{\equiv_{A_2}}$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[\dots]_{\equiv_{A_2}} = \dots$, angegeben werden.

Matrikelnummer: _	Name: .	

Aufgabe 5: Modelle Kontextfreier Sprachen I

(11 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache:

$$A \triangleq \left\{ a^n b^{m+1} xc \mid n, m \in \mathbb{N}^+ \land x \in \left\{ c, \ cab \right\}^* \land |xc|_c - |xc|_b = n \right\}$$

a. (**, 5 Punkte) Gib eine Typ-2 Grammatik G mit L(G)=A an.

b. (**, 6 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(16 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und der PDA $M \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \{\Box, \bullet, +\}, \Box, \Delta, q_0, \{q_0\})$ mit Δ :

- a. (*, 3.5 Punkte) Gib eine Ableitung von cbbbbb in M an, die zeigt, dass $cbbbbb \in L_{End}(M)$.
- b. (**, 2 Punkte) $Gib \ L_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- c. (*, 3 Punkte) Gib eine Ableitung von caca in M an, die zeigt, dass $caca \in L_{Kel}(M)$.
- d. (3.5 Punkte) Gib $L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- e. **(**, 4 Punkte)** Beweise nur mit Hilfe von Abschlusseigenschaften, dass die Sprache $A \triangleq \{ww^R \mid w \in \{a, b\}^*\}$ nicht regulär ist. Hinweis: w^R bezeichnet hier die Umkehrung von w. Für das Wort $ba \in \{a, b\}^*$ gilt zum Beispiel $(ba)^R = ab$. Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e regulär und $B \triangleq \{a^{n+1}b^{2m}a^n \mid n, m \in \mathbb{N}\}$ nicht regulär aber kontextfrei ist. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

Matrikelnummer:	Name:	
Auf dieser Seite löse ic	n einen Teil der Aufgabe <u> </u> :	
Teilaufgabe:		

Matrikelnummer: _	Name:	
Auf dieser Seite lös	se ich einen Teil der Aufgabe — :	
	se ich enten der Aufgabe	
Teilaufgabe:		