Práctico 2: Rectas y Planos

- 1. Dados v = (-1, 2, 0), w = (2, -3, -1) y u = (1, -1, 1), calcular:
 - (a) 2v + 3w 5u,
 - (b) 5(v+w),
 - (c) 5v + 5w (y verificar que es igual al vector de arriba).
- 2. Calcular los siguientes productos escalares:
 - (a) $\langle (-1,2,0), (2,-3,-1) \rangle$,
 - (b) $\langle (4,-1), (-1,2) \rangle$.
- 3. Dados v = (-1, 2, 0), w = (2, -3, -1) y u = (1, -1, 1), verificar que:

$$\langle 2v + 3w, -u \rangle = -2\langle v, u \rangle - 3\langle w, u \rangle$$

- 4. Demostrar que:
 - (a) (2,3,-1) y (1,-2,-4) son ortogonales.
 - (b) (2,-1) y (1,2) son ortogonales. Dibujar en el plano.
- 5. Encontrar:
 - (a) un vector no nulo ortogonal a (3, -4),
 - (b) un vector no nulo ortogonal a (2, -1, 4),
- 6. Encontrar la longitud de los vectores.

(b)
$$(t, t^2), t \in \mathbb{R}$$
,

(c)
$$(\cos \phi, \sin \phi), \phi \in \mathbb{R}$$
.

7. Calcular $\langle v, w \rangle$ y el ángulo entre v y w para los siguientes vectores.

(a)
$$v = (2, 2), w = (1, 0),$$

(b)
$$v = (-5, 3, 1), w = (2, -4, -7).$$

- 8. Sean $e_1 = (1,0,0), \ e_2 = (0,1,0)$ y $e_3 = (0,0,1)$ los vectores de la base canónica de \mathbb{R}^3 . Sea $v = (x_1,x_2,x_3) \in \mathbb{R}^3$. Verificar que $v = \langle v,e_1 \rangle e_1 + \langle v,e_2 \rangle e_2 + \langle v,e_3 \rangle e_3$.
- 9. Probar, usando sólo las propiedades del producto escalar, que dados $u, v, w \in \mathbb{R}^n$ y $\lambda_1, \lambda_2 \in \mathbb{R}$,
 - (a) se cumple que :

$$\langle \lambda_1 v + \lambda_2 w, u \rangle = \lambda_1 \langle v, u \rangle + \lambda_2 \langle w, u \rangle.$$

(b) Si $\langle v, w \rangle = 0$, es decir si v y w son ortogonales, entonces

$$\langle \lambda_1 v + \lambda_2 w, \lambda_1 v + \lambda_2 w \rangle = \lambda_1^2 \langle v, v \rangle + \lambda_2^2 \langle w, w \rangle.$$

- 10. En cada uno de los siguientes casos determinar si los vectores \overrightarrow{PQ} y \overrightarrow{RS} son equivalentes y/o paralelos.
 - (a) P = (1, -1), Q = (4, 3), R = (-1, 5), S = (5, 2).
 - (b) P = (1, -1, 5), Q = (-2, 3, -4), R = (3, 1, 1), S = (-3, 9, -17).
- 11. Se
aL la recta en \mathbb{R}^2 descripta por la ecuación
 2x-y=1. Dar la representación paramétrica de
 L
- 12. Determinar **todos** los vectores en \mathbb{R}^2 que son perpendiculares a la recta cuya ecuación es x = 2y + 7.

13. Decidir si las rectas que están definidas por las ecuaciones

$$2x - y = 0, \qquad \frac{y}{2} - x = 1$$

son o no paralelas.

- 14. Dar la ecuación paramétrica de las dos rectas del ejercicio anterior.
- 15. Sea R_1 la recta que pasa por $p_1 = (2,0)$ y es ortogonal a (1,3).
 - (a) Dar la descripción paramétrica e implícita de R_1 .
 - (b) Graficar en el plano a R_1 .
 - (c) Dar un punto p por el que pase R_1 distinto a p_1 .
 - (d) Verificar si $p + p_1$ y -p pertenecen a R_1
- 16. Repetir el ejercicio anterior con las siguientes rectas.
 - (a) R_2 : recta que pasa por $p_2 = (0,0)$ y es ortogonal a (1,3).
 - (b) R_3 : recta que pasa por $p_3 = (1,0)$ y es paralela al vector (1,3).
- 17. Calcular, numérica y graficamente, las intersecciones $R_1 \cap R_2$ y $R_1 \cap R_3$.
- 18. Sea $L = \{(x,y) \in \mathbb{R}^2 : ax + by = c\}$ una recta en \mathbb{R}^2 . Sean $p \neq q$ dos puntos por los que pasa L.
 - (a) ¿Para qué valores de c puede asegurar que $(0,0) \in L$?
 - (b) ¿Para qué valores de c puede asegurar que $\lambda q \in L$? donde $\lambda \in \mathbb{R}$.
 - (c) ¿Para qué valores de c puede asegurar que $p + q \in L$?
- 19. Sea L una recta en \mathbb{R}^2 . Probar que L pasa por (0,0) si y sólo si pasa por $p + \lambda q$ para todo par de puntos p y q de L y para todo $\lambda \in \mathbb{R}$.
- 20. Sea $v_0 = (2, -1, 1)$.
 - (a) Describir paramétricamente el conjunto $P_1 = \{w \in \mathbb{R}^3 : \langle v_0, w \rangle = 0\}.$
 - (b) Describir paramétricamente el conjunto $P_2 = \{w \in \mathbb{R}^3 : \langle v_0, w \rangle = 1\}.$
 - (c) ¿Qué relación hay entre P_1 y P_2 ?
- 21. Dar la ecuación paramétrica de la recta L, en \mathbb{R}^3 , que pasa por el punto (0,1,-1) y es perpendicular al plano cuya ecuación es x+y-z=1.
- 22. Escribir la ecuación paramétrica y la ecuación normal de los siguientes planos.
 - (a) π_1 : el plano que pasa por (0,0,0), (1,1,0), (1,-2,0).
 - (b) π_2 : el plano que pasa por (1,2,-2) y es perpendicular a la recta que pasa por (2,1,-1), (3,-2,1).
 - (c) $\pi_3 = \{ w \in \mathbb{R}^3 : w = s(1,2,0) + t(2,0,1) + (1,0,0); s, t \in \mathbb{R} \}.$
- 23. ¿Cuáles de las siguientes rectas cortan al plano π_3 del ejercicio (22c)? Describir la intersección en cada caso.
 - (a) $\{w: w = (3,2,1) + t(1,1,1), t \in \mathbb{R}\},\$ (b) $\{w: w = (1,-1,1) + t(1,2,-1), t \in \mathbb{R}\},\$
 - (c) $\{w: w = (-1, 0, -1) + t(1, 2, -1), t \in \mathbb{R}\},\$ (d) $\{w: w = (1, -2, 1) + t(2, -1, 1), t \in \mathbb{R}\}.$

Definición. Sean $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, con $\mathbf{x} = (x_1, x_2, x_3), \mathbf{y} = (y_1, y_2, y_3)$. Se define el producto vectorial entre \mathbf{x} , \mathbf{y} por:

$$\mathbf{x} \times \mathbf{y} := (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

- 24. Sean $\mathbf{x}, \mathbf{y}, \mathbf{z}$ vectores en \mathbb{R}^3 y $k \in \mathbb{R}$. Demostrar las siguientes afirmaciones:
 - (a) $\mathbf{x} \cdot (\mathbf{x} \times \mathbf{y}) = 0$, $\mathbf{y} \cdot (\mathbf{x} \times \mathbf{y}) = 0$ (i.e. el vector $\mathbf{x} \times \mathbf{y}$ es perpendicular a \mathbf{x} cómo a \mathbf{y}).
 - (b) $\mathbf{x} \times \mathbf{y} = -\mathbf{y} \times \mathbf{x}$.
 - (c) $\mathbf{x} \times (\mathbf{y} + \mathbf{z}) = \mathbf{x} \times \mathbf{y} + \mathbf{x} \times \mathbf{z}$.

- (d) $k(\mathbf{x} \times \mathbf{y}) = k\mathbf{x} \times \mathbf{y} = \mathbf{x} \times k\mathbf{y}$.
- (e) $\mathbf{x} \times \mathbf{0} = \mathbf{0}$ y $\mathbf{x} \times \mathbf{x} = \mathbf{0}$.
- (f) $||\mathbf{x} \times \mathbf{y}||^2 = ||\mathbf{x}||^2 ||\mathbf{y}||^2 (\mathbf{x} \cdot \mathbf{y})^2$.
- (g) $||\mathbf{x} \times \mathbf{y}|| = ||\mathbf{x}|| \, ||\mathbf{y}|| \, \sin(\theta)$, donde θ es el ángulo entre $\overline{\mathbf{0}} \, \mathbf{x} \, \mathbf{y} \, \overline{\mathbf{0}} \, \mathbf{y}$.
- (h) $\mathbf{x} \times \mathbf{y} = \mathbf{0}$ si y sólo si \mathbf{x} e \mathbf{y} son paralelos.
- 25. Usar el producto vectorial para encontrar:
 - (a) La ecuación normal e implícita de los siguientes planos:

$$\pi_1 = \{(1+s, 2+t, 3+s+t) \in \mathbb{R}^3 : s, t \in \mathbb{R}\} \quad \mathbf{y} \quad \pi_2 = \{(s+t, s+2t, s+t) \in \mathbb{R}^3 : s, t \in \mathbb{R}\}$$

(b) La intersección entre los planos

$$\pi_3 = \{(x, y, z) : 2x + 3y + z = 0\}$$
 y $\pi_4 = \{(x, y, z) : x + y + z = 1\}.$

Observación: El Ejercicio (19) nos dice que las rectas que pasan por el origen son cerradas por la suma y la multiplicación por escalares. Los subconjuntos que satisfacen esta propiedad se llaman "subespacios vectoriales" y serán nuestro objeto de estudio más adelante.

Ejercicios de repaso

Si ya hizo los ejercicios anteriores continue a la siguiente guía. Los ejercicios que siguen son similares a los anteriores y le pueden servir para practicar antes de los exámenes.

26. (a) Encontrar un vector $(x, y, z) \in \mathbb{R}^3$ no nulo que sea ortogonal a los vectores

$$u = (4, -1, 1), \quad v = (2, 1, 1) \quad y \quad w = (1, 2, 1).$$

¿Hay un único vector con esta propiedad? En caso de que no, ¿Cómo describiría a todos los vectores que satisfacen dicha propiedad?

(b) Decidir si existe un vector $(x, y, z) \in \mathbb{R}^3$ que pertenezca a la intersección de los planos

$$\pi_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 4x - y + z = 1\},$$

$$\pi_2 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y + z = 2\},$$

$$\pi_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = -1\}.$$

27. Dados $v, w \in \mathbb{R}^n$, probar que si $\langle v, w \rangle = 0$, es decir si v y w son ortogonales, entonces

$$||v + w||^2 = ||v||^2 + ||w||^2.$$

¿Cuál es el nombre con que se conoce este resultado en \mathbb{R}^2 ?

28. (Ver ayuda) Sean $v, w \in \mathbb{R}^2$, probar usando solo la definición explícita del producto escalar en \mathbb{R}^2 que

$$|\langle v, w \rangle| \le ||v|| \, ||w||$$
 (Designaldad de Cauchy-Schwarz).

29. Demostrar que si $v, w \in \mathbb{R}^n$ vale

$$||v+w|| \le ||v|| + ||w||$$
 (Designaldad triangular).

Ayudas

(28) Elevar al cuadrado y aplicar la definición.