Video 4: The non-normality of the return distribution

Volatility describes "normal" risk

Non-normality of the return distribution

The portfolio return semideviation

Standard deviation of portfolio returns

Take the **full sample** of returns $R_1, R_2, ..., R_T$

$$StdDev = \sqrt{\frac{(R_1 - \hat{\mu})^2 + (R_2 - \hat{\mu})^2 + \dots + (R_T - \hat{\mu})^2}{T - 1}}$$

Take the subset of returns below the mean and denote them $Z_1, Z_2, ..., Z_n$

SemiDev =
$$\sqrt{\frac{(Z_1 - \hat{\mu})^2 + (Z_2 - \hat{\mu})^2 + \dots + (Z_n - \hat{\mu})^2}{n}}$$

Semideviation of portfolio returns

The portfolio return Value-at-Risk and Expected Shortfall

Distribution of Daily Returns NASDAQ 100 - Ticker: QQQ

The 5% most extreme negative returns are between -4% and – 8%:

- The 5% VaR is -4%: there is a 5% chance of an equally or more negative return
- The 5% ES is around -5%: it is the average of all the 5% most extreme negative returns

Source: http://www.investopedia.com/articles/04/092904.asp

Shape of the distribution

- Is it symmetric?
 - → Check the skewness

- Are the tails fatter than those of the normal
 - → Check the excess kurtosis

Skewness

Excess kurtosis

 The distribution is fat-tailed when the excess kurtosis > 0

Source: http://www.fattails.ca/distribution.html