CPSC 313 Ali Akbari F2020

Assignment #2 30010402

1. Suppose $M=(Q, \Sigma, \delta, q_0, A)$ with extended transition function $\delta^*: Q \times \Sigma^* \to Q$. Prove that for any $q \in Q$ and $x, y \in \Sigma$? that $\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$. Hint: prove by induction on |y|.

Base case:

Let |y| = 0, then $y = \varepsilon$

Left Hand side:

$$\delta^* (q, xy) = \delta^* (q, x\varepsilon) = \delta^* (q, x)$$

Right Hand side:

$$\delta^*$$
 (δ^* (q , x), y) = δ^* (δ^* (q , x), ε) = δ^* (q , x)

$$LHS = RHS = \delta^* (q, x)$$

So this holds for the base case.

Induction Step:

IH: Assume δ^* $(q, xy) = \delta^*$ $(\delta^*$ (q, x), y) holds for an arbitrary y where |y| = n. δ^* $(q, xyw) = \delta^*$ $(\delta^*$ (q, x), yw), where $w \in \Sigma$, then |yw| = n + 1.

$$\delta^* (q, xyw) = \delta (\delta^* (q, xy), w)$$

$$= \delta (\delta^* (\delta^* (q, x), y), w)$$

$$= \delta^* (\delta^* (q, x), yw)$$

Further expansion by IH (Induction Hypothesis)

 $\delta^* (\delta^* (q, x), yw) = \delta^* (q, xyw).$

Thus it holds for the induction step.

2. Prove by induction on n that if L is a language and R is a regular expression such that L = L(R) then there exists a regular expression R_n such that $L(R_n) = L^n$. Be sure to use the fact that if R_1 and R_2 are regular expressions then $L(R_1R_2) = L(R_1) \cdot L(R_2)$.

Base case:

Let
$$n = 1$$
, then
$$L(R_n) = L^n \Rightarrow L(R) = L^1 = L(R) = L$$
When $n = 1$, there is a regular expression R , such that $L(R_n) = L^n$.
So this holds for the base case.

Inductive Hypothesis:

IH: suppose L is language and R_n is regular expression such that L = L(R) then there exists a regular expression R_n such that $L(R_n) = L^n$ for $n \ge 1$.

Induction Step:

Prove this holds true for L^{n+1} .

$$L^{n+1} = L^{n} \cdot L^{1}$$

$$L^{n+1} = L^{n} \cdot L^{1} = L(R_{n}) \cdot L(R)$$

$$L^{n+1} = L^{n} \cdot L^{1} = L(R_{n}) \cdot L(R) = L(R_{n} R)$$
by IH (Induction Hypothesis)
by given fact

The given fact shows that the product of any two regular expressions is also a regular expression. Let the product of the expressions equal $R_m = R_n R$.

Then there exist a regular expression R_m that hold for L^{n+1} . Thus it holds for the induction step. This proves by induction for $n \ge 1$ that if L is a language and R is a regular expression such that L = L(R) then there is a regular expression R_n so that $L(R_n) = L^n$. 3. Every finite-sized language L has a regular expression that accepts it. Informally, the expression for $\{w, x, y\}$ is w + x + y. Prove this is true for all finite-sized languages using induction on the number of words in L. You may need to use these definitions in your proof: (i) if w is a word then w is also a regular expression with $L(w) = \{w\}$, (ii) if R_1 and R_2 are regular expressions then $R_1 + R_2$ is a regular expression, and (iii) $L(R_1 + R_2) = L(R_1) \cup L(R_2)$.

Base case:

Let L be a finite language, and let n be the number of words in L.

Suppose L has no elements, so n = 0

 $L = \emptyset$, and a regular expression for L would be \emptyset , by the definition of a regular language.

A language with no elements, i.e empty set $\{\}$ has a regular expression of \varnothing .

So this holds for the base case.

Induction Step:

IH: Suppose if L is a finite language that has n strings and R is regular expression such that R accepts L so L(R), and, |L(R)| = n.

Now prove that L(R) is true for n + 1 strings.

w is an arbitrary word over Σ that does not already exist in L(R), and |L(w)| = 1. By definition w is also a regular language.

 $L(w) = \{w\}, w \text{ is a regular expression}$ by definition (i) $L(R) \cup L(w) = L(R + w) \text{ is a regular language}$ by definition (iii) Since R and w are regular expressions, so is R + w by definition (ii)

|L(R)| = n and |L(w)| = 1 so, by IH(inductive hypothesis)

|L(R) + w| = n+1

Then there exist a regular expression R+w that accepts the finite language L for string size n+1: Thus it holds for the induction step.

4. Give a generic construction for a finite state machine that accepts a nonempty finite-size language $L = \{w1, \ldots wn\}$. Define all parts of the machine. (You do not need to prove it accepts the language). Hint: do this for a simple language like $\{\varepsilon, a, aa, ba, ab\}$ and then generalize what you did so it can work for any finite language. Hint: if you make $Q \subseteq \Sigma^*$ you can have an easy to describe construction.

A generic construction for a finite state machine that accepts a non-empty language is defined in the following:

 $L = \{w1, \dots wn\}$, since L is finite, L is also a regular language.

Let $M = (Q, \Sigma, \delta, q_0, A)$ be a DFA that accepts a non – empty finite language L.

 $Q = Q \subseteq \Sigma^*$ which is any number of states needed to define a DFA for finite Language L.

 $\Sigma = Sigma$ is the same Σ that comes with the language L.

Let q be a state in Q and let $a \in \Sigma$.

All transitions that lead to cycle or loops with a final state is not a DFA that works for a finite Language.

 $\delta(q, a) = in \ a \ state \ q \ read \ a \ letter \ a \ and \ go \ to \ a \ new \ state, if the letter is an element of the language the new state must be a final state.$

 $\delta(q, a) = in \ a \ state \ q \ read \ a \ letter \ a \ and \ go \ to \ a \ new \ state, if the letter is not an element of the language or, if the letter is not a prequel or an extension to a string from the language set then the new state is not a final state and must be a trap state, i.e sink state <math>q_e$.

 $\delta(q, a) = in \ a \ state \ q \ read \ a \ letter \ a \ and \ go \ to \ a \ new \ state, if the letter is a prequel or an extension to a string from the language set then the new state is not a final state and must be a regular state.$

Assume any non – defined transition leads to a non – accepting state, i.e trap state.

 q_0 is the starting state.

A = The accepted final states.

If the language contains epsilon then q_0 the starting state, must be a final state.

A state is a final state if a sequence of letters, through the transitions starting from the starting state to the current state forms a string which is an element of the language set, then the current state should be a final state. The sink state is not a final state.

5. Suppose L is a regular language, and $M=(Q,\Sigma,\delta,q_0,A)$ is a deterministic finite state machine such that L(M)=L. Prove that if |Q|=2 then at least one of the following hold: $(i) L=\varnothing$ $(ii) \varepsilon\in L$, or $(iii) \exists a\in \Sigma$ such that $a\in L$. Note that different M with |Q|=2 may have a different property that holds. Hint: do a case analysis for configurations of A.

Since the total number of states is 2, and we start with q_0 , then the set of states is $Q = \{q_0, q_1\}$. Then with a case analysis on the set of final states A we get that:

Case 1:

If there is no final state i.e the set of final state $A = \emptyset$ then no language is accepted, so (i) $L = \emptyset$, $L(M) = \emptyset$. So property (i) holds for this case.

Case 2:

If there is one final state and it is q_0 , so $q_0 \in A$, then epsilon must be part of the language, (ii) $\varepsilon \in L$, $L(M) = \varepsilon$. So property (ii) holds for this case.

Case 3:

If there is more than one final states and q_1 is one of them, so $q_1 \in A$ then there is word a (iii) $\exists a \in \Sigma$, that transitions from q_0 to q_1 . $\delta(q_0, a) = q_1$ so this entails that $a \in L$. So property (iii) holds for this case.

Case 4:

If there is one final state and it is q_1 , so $q_1 \in A$ and q_0 is not a final state, $q_0 \notin A$.

Then there must be no transition from q_0 to q_1 , otherwise case 3 would hold, this means that no words/ the language is accepted. since no language transitions to the final state the language of the machine is $L(M) = \varnothing$.

So property (i) holds for this case.