Latent Topic Modeling on Twitter Data

Method: CA

Correspondence Analysis (CA) is a multivariate graphical technique designed to explore relationships among categorical variables. The outcome from correspondence analysis is a graphical display of the rows and columns of a contingency table that is designed to permit visualization of the salient relationships among the variable responses in a low-dimensional space. Such a representation reveals a more global picture of the relationships among row-column pairs which would otherwise not be detected through a pairwise analysis.

Calculate CA:

- Step 1: Compute row and column averages
- Step 2: Compute the expected values
- Step 3: Compute the residuals
- Step 4: Plotting labels with similar residuals close together
- Step 5: Interpreting the relationship between row and column labels

How to Interpret Correspondence Analysis Plots

Correspondence analysis does not show us which rows have the highest numbers, nor which columns have the highest numbers. It instead shows us the relativities.

- The further things are from the origin, the more discriminating they are.
- Look at the length of the line connecting the row label to the origin. Longer lines indicate that the row label is highly associated with some of the column labels (i.e., it has at least one high residual).
- Look at the length of the label connecting the column label to the origin. Longer lines again indicate a high association between the column label and one or more row labels.
- Look at the angle formed between these two lines. Really small angles indicate association. 90 degree angles indicate no relationship. Angles near 180 degrees indicate negative associations.

Dataset

##		9	10	11	12	13	14	15	16
##	#bitcoin	50383	229333	245775	245612	195730	190175	255195	157049
##	#blockchain	9196	113169	54362	134326	124176	108986	133629	86186
##	#btc	21335	63269	85576	0	28262	0	0	0
##	<pre>#cambridgeanalytica</pre>	0	0	0	13947	0	0	0	0
##	#crypto	8461	41888	44723	44898	0	29718	50492	23863
##	#cryptocurr	10076	49910	57015	60767	40541	37868	65620	91314
##	#eth	24771	74637	99115	77422	87220	71144	73107	58282
##	#ethereum	37892	153520	172861	168796	158829	148538	171729	127553
##	#facebook	949	50748	41961	130670	86932	76678	128772	63718
##	#ico	17204	0	80290	75305	76068	68794	70205	0
##	#instagram	153	7778	5601	0	0	7760	0	7887
##	#twitter	160	8199	6384	0	9690	8526	0	8848
##	#zuckerberg	0	0	0	0	0	0	18855	0
##	data	0	0	0	13700	8052	0	11498	0
##	de	113	6790	5513	21954	13265	12369	19778	10902
##	en	120	5497	0	0	0	0	0	7677
##	facebook	0	0	4555	15673	10760	8853	15829	0
##		17	7 18						

##	#bitcoin	170079	79636
##	#blockchain	103272	50301
##	#btc	0	0
##	#cambridgeanalytica	0	0
##	#crypto	91095	43452
##	#cryptocurr	37879	17766
##	#eth	67597	32730
##	#ethereum	132309	65283
##	#facebook	57189	32773
##	#ico	0	0
##	#instagram	7987	3791
##	#twitter	8827	3895
##	#zuckerberg	0	0
##	data	0	0
##	de	8529	5478
##	en	6994	0
##	facebook	0	3817

- Research Question
 - Do we see new words appearing on a particular week

Analysis

Heatmap

Scree Plot

Gives amount of information explained by corresponding component. Gives an intuition to decide which components best represent data in order to answer the research question.

P.S. The most contribution component may not always be most useful for a given research question.

SCREE Plot

Factor Scores

Asymmetric Plot

```
#### Asymmetric Plot

map.IJ.asym <- asymMap$baseMap + asymMap$J_labels +
   asymMap$J_points + labels4CA #+ legend$zeMap_dots + legend$zeMap_text
print(map.IJ.asym)</pre>
```



```
#### Asymmetric Plot

map.IJ.asym <- asymMap$baseMap + asymMap$I_labels +
   asymMap$I_points + labels4CA #+ legend$zeMap_dots + legend$zeMap_text
print(map.IJ.asym)</pre>
```



```
#### Asymmetric Plot

map.IJ.asym <- asymMap$baseMap + asymMap$I_labels +
   asymMap$I_points + asymMap$J_labels +
   asymMap$J_points + labels4CA #+ legend$zeMap_dots + legend$zeMap_text
print(map.IJ.asym)</pre>
```


Symmetric Plot

Most Contributing Variables

