NP-compleetheid van conjunctive query containment

In deze oefening tonen we aan dat containment van conjunctive queries NP-compleet is. Voor de eenvoud beperken we ons tot booleaanse conjunctive queries: deze hebben een lege head. Een booleaanse conjunctive query Q, toegepast op een database D, geeft als enige antwoordtupel het lege tupel (indien de body van Q matcht in D), ofwel helemaal niets (indien de body niet matcht).

Uit wat we leerden over conjunctive query containment weten we dat voor twee booleaanse conjunctive queries Q_1 en Q_2 geldt: $Q_1 \subseteq Q_2$ als en slechts als er een homomorfisme is van de body van Q_2 naar de body van Q_1 .

Definiëer nu formeel het probleem CONTAINMENT = $\{\langle Q_1, Q_2 \rangle \mid Q_1$ en Q_2 zijn booleaanse conjunctive queries zodat $Q_1 \subseteq Q_2\}$.

CONTAINMENT in NP: Een certificaat voor lidmaatschap van een input $\langle Q_1, Q_2 \rangle$ is een homomorfisme van Q_2 naar Q_1 . Het is inderdaad eenvoudig voor een verifier om na te gaan dat een gegeven mapping van de variabelen van Q_2 naar de variabelen van Q_1 inderdaad een homomorfisme is.

NP-compleet: We reduceren 3SAT naar CONTAINMENT. Zij

$$\phi = (a_1 \vee b_1 \vee c_1) \wedge \cdots \wedge (a_\ell \vee b_\ell \vee c_\ell)$$

een booleaanse 3CNF formule over de variabelen x_1, \ldots, x_k . Beschouw nu volgende twee conjunctive queries Q_{ϕ} en Q_{true} over het database schema bestaande uit een ternaire relatie C en een binaire relatie L:

$$Q_{\phi}() \leftarrow C(a_1, b_1, c_1), \dots, C(a_{\ell}, b_{\ell}, c_{\ell}), L(x_1, \overline{x_1}), \dots, L(x_k, \overline{x_k})$$

$$Q_{\text{true}}() \leftarrow C(0, 0, 1), C(0, 1, 0), C(0, 1, 1), \dots, C(1, 1, 1), L(1, 0), L(0, 1)$$

Merk op dat Q_{true} de subgoal C(0,0,0) niet bevat, maar alle andere zeven mogelijke C-subgoals over de elementen 0 en 1 wel. Merk ook op dat Q_{ϕ} en Q_{true} in polynomiale tijd kunnen geconstrueerd worden vanuit ϕ (Q_{true} hangt tussen haakjes helemaal niet af van ϕ). We tonen nu aan:

$$\phi$$
 satisfiable \Leftrightarrow $Q_{\text{true}} \subseteq Q_{\phi}$

 \Longrightarrow Zij $\alpha: \{x_1, \ldots, x_k\} \to \{0, 1\}$ een waarheidstoekenning die ϕ waarmaakt. Breid α uit naar genegeerde literals door $\alpha(\overline{x}) := 1 - \alpha(x)$. Dan is deze α duidelijk een homomorfisme van Q_{ϕ} naar Q_{true} .

 $h(\overline{x})=1$. We kunnen h dus beschouwen als een consistente waarheidstoekenning op x_1,\ldots,x_k . Omdat h elke subgoal $C(a_1,b_1,c_\ell)$ afbeeldt op een C-subgoal in Q_{true} die altijd minstens één 1 bevat, is elke clause van ϕ voldaan onder h, en is ϕ dus satisfiable.