

Решение задачи о многомерном рюкзаке с использованием генетического алгоритма

Докладчик Островский Сергей Витальевич

Научный руководитель старший преподаватель кафедры ВМиУМФ Лукач Юрий Саулович

Постановка задачи

Пусть существует N предметов, каждый из которых имеет стоимость c_i и размеры s_{ij} , где

$$i \in \{1,2,\ldots,N\}, j \in \{1,2,\ldots,M\}.$$

Пусть также существует рюкзак с ограничениями по вместимости по измерениям r_i . Требуется максимизировать сумму

$$\sum_{i=1}^{N} c_i x_i$$

где $x_i \in \{0,1\}$ при условии

$$\sum_{i=1}^{N} s_{ij} x_i < r_j$$

для всех $j \in \{1, 2, ..., M\}$.

Цель и задачи

Цель работы – решение задачи о многомерном рюкзаке применением генетического алгоритма

Задачи:

- Исследовать генетические алгоритмы
- Реализовать алгоритм с использованием одного из языков программирования
- Провести оценку эффективности генетического алгоритма в решении поставленной задачи

Актуальность

Многие прикладные проблемы могут быть реализованы в виде рассматриваемой задачи.

Например:

- размещение процессоров и баз данных в системе распределенных вычислений
- погрузка груза
- контроль бюджета
- задачи раскройки

Описание работы алгоритма

- Создается пул генотипов с использованием заданного алгоритма начального приближения
- Запускается итерационный процесс
 - Случайным образом выбирается часть пула, которая подвергнется мутации
 - Выбранная часть пула генотипов мутируется
 - Мутировавшие генотипы замещают собой исходные в пуле
 - Из пула генотипов выбираются пары для скрещивания
 - Производится скрещивание
 - Из результатов скрещивания выбираются лучшие
 - Если выполнено условие останова, то итерационный процесс завершается, в противном случае начинается следующая итерация.
- Результат итерационного процесса отдается пользователю

Выбор параметров

Кодирование генотипа – упорядоченная бинарная последовательность индикаторов вхождения предметов в рюкзак.

Оценка генотипа – сумма стоимостей всех предметов, входящих в описанный генотипом рюкзак

Начальное приближение – жадный алгоритм

Мутации

Одноточечная

Половинная

Выбор параметров - скрещивание

Одноточечное

Двухточечное

Побитовое

Введенные модификации

- Проверка корректности генотипов
- Пул лучших конфигураций и возврат к нему
- Сброс алгоритма при попадании в локальный максимум

Параметры тестов

Первый набор тестов взят из книги C.C.Petersen:

"Computational experience with variants of the Balas algorithm applied to the selection of R&D projects", запускался без модификаций.

Второй набор тестов взят из статьи P.C.Chu and J.E.Beasley "A genetic algorithm for the multidimensional knapsack problem" и содержит в себе 30 задач с одинаковыми параметрами: размерность рюкзака равна **5**, рассматривается **100** различных предметов.

№ теста	Число предметов	Размерность рюкзака		
1	6	10		
2	10	10		
3	15	10		
4	20	10		
5	28	10		
6	39	5		
7	50	5		

Конфигурация оборудования

- Процессор: Intel(R) Core(TM) i5-3230M
 CPU @ 2.60GHz (4 CPUs), ~2.6GHz
- Количество оперативной памяти: 6144МВ RAM
- Фреймворк: .NET Framework 4.5.2

Результаты на 1 наборе тестов

Точечная мутация				Половинная мутация		
	Одноточечное скрещивание	Двухточечное скрещивание	Побитовое скрещивание	Одноточечное скрещивание	Двухточечное скрещивание	Побитовое скрещивание
№ теста	Время, с	Время, с	Время, с	Время, с	Время, с	Время, с
1	0,008	0,009	0,009	0,006	0,01	0,01
2	2,694	1,697	33,017	0,002	0,001	0,001
3	0,018	0,022	0,049	0,002	0,019	0,052
4	0,092	0,067	0,219	0,560	0,422	12,189
5	0,097	0,095	0,074	-	-	-
6	13,481	8,181	10,013	-	-	-
7	396,644	199,461	13,940	-	-	-

Результаты на 2 наборе текстов

- Задача была решена успешно решена в **13 из 30(43,3%)** случаев.
- Среднее время решениия 5 минут 25 секунд, лучшее время 5 секунд, худшее 12,5 минут.
- Для задач, где оптимальное решение не было найдено, расхождение найденного решения с максимальным не превышает **0,21%**

Заключение

- Все поставленные задачи были выполнены
- Полученный алгоритм можно использовать для точного решения относительно простых задач(50 предметов и менее)
- Также алгоритм может быть использован для приближенного решения с высокой точностью для более сложных задач(100 предметов)

Спасибо за внимание!