

华中科技大学计算机科学与技术学院 XXXX 学期

"算法设计与分析"考试试卷(A卷)

单击或点击此

考试方式	ا ا	闭卷	考试	日期	处输入日	期。	肯试时长	150	分钟
专业班级	菱		学	号		女	生 名	·	
						_		'	
题号	_	11	[11]	四	五	六	七	总分	核对人
分值	20	8	18	12	12	15	15	100	
得分									

分 数	
评卷人	

一、简答题(每小题5分,共20分)。

解 1) 给出渐进记号O的定义。

存在正数c和n0使得对于所有n>=n0来说f(n)满足0<=f(n)<=cg(n),那么f(n)属于0(g(n)),表示f(n)是集合0(g(n))的成员,并通常记作f(n)=0(g(n))。0记号给出的是渐近上界,称为上界函数。(upper bound)

2) 什么是贪心选择性? 简述贪心策略的基本思想。

在每一步做出当前看起来最佳的选择,即局部最优的选择,来构造全局最优解。 利用贪心选择性,如果问题具有最优子结构性质,那么通过这样的选择能够得到全局最优 解。

3) 设一个数组中有 n 个大小不超过 10000 的非负整数 (n<10000), 请给出一个最快的方法来 判断数组中的元素是否互异。

hash思路,用数组,时间复杂度0(n),空间复杂度0(n)

4) 在启发式搜索(LC-检索)中,为什么引入结点成本估计函数?为了找最小成本的答案结点,一般要求结点成本估计函数应具有什么性质?

分 数	
评卷人	

二、求下列递归式的渐近紧确界(8分)。

$$T(n) = 2T(n/4) + n^2$$

0(n^2)

分 数	
评卷人	

三、已知 5 个关键字的搜索概率如下表所示,求其最优二叉搜索树的代价并推导树的结构(18 分)。

i	0	1	2	3	4	5
p_{i}		0.20	0.10	0.05	0.10	0.15
$q_{\rm i}$	0.10	0.05	0.05	0.10	0.05	0.05

这里,

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1 \;, \\ \min_{i \leq r \leq j} \left\{ e[i,r-1] + e[r+1,j] + w(i,j) \right\} & \text{if } i \leq j \;. \end{cases}$$

$$w(i,j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$$
.

1) 请就下面的表 e、w、root 填写计算结果(仅填编号(1) $^{\sim}$ (9)单元的内容),并给出 w[3,3]和 e[3,3]、w[2,4]和 e[2,4]、w[1,5]和 e[1,5]的具体计算过程。

请将以上编号(1)~(9)单元的计算结果填到下表对应的列中(9分)。

编号	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)
е									
W									
root	3								

给出 w[3,3]和 e[3,3]、w[2,4]和 e[2,4]、w[1,5]和 e[1,5]的计算过程 (6分) (1) w[3,3]:

(2) e[3,3]:

(3) wl2,	4]:	
(4) e[2,	4]:	
(5) w[1,!	5]:	
(6) e[1,	5]:	

2) 推导并画出该最优二叉搜索树 (3分):

分 数	
评卷人	

四、用 Ford-Fulkerson 算法求某个流网络 G 的最大流时,某次迭代后得到的流 f 如图所示,边 (u,v)上标注的数字含义是: f(u,v)/c(u,v) (12 分)。

流网络 G 和它当前的流 f

1)请画出由流 f 所诱导的图 G 的残存网络 G_p ,并在其中找出一条增广路径 p (8 分)。

增广路径 p: _______

p的残存容量 $c_f(p) =$

2) 请画出用 p 所定义的 G 中流 f 增加 f 的流量后得到的 G 上的新流 (4 %)。

分 数	
评卷人	

五、分数背包问题是指:已知各有重量(w_1, w_2, \dots, w_n)和效益值(p_1, p_2, \dots, p_n)的 n 件物品,及一个可容纳 M 重量的背包,问怎样装包才能在不超过背包容量 M 的前提下,使得装入背包的物品的总效益最大(这里设所有的 w_i >0,

 $p_i>0$, $1\le i\le n$)。问题的解用向量 (x_1,x_2,\cdots,x_n) 表示,其中, x_i 表示物品 i 被放入背包的比例, $0\le x_i\le 1$ 。当物品 i 的一部分 x_i 放入背包,可得到 p_ix_i 的效益,同时会占用 w_ix_i 的重量 $(12\ \mathcal{H})$ 。

- 1) 证明上述背包问题满足最优子结构性。
- 2)设计一个贪心算法求解分数背包问题,给出算法的伪代码描述,并分析算法的时间复杂度。

六、设在多间教室里安排 n 个活动,每个活动都有一个开始时间 s 和结束时间 t ,活动 i 的活动时间是 $[s_i,t_i)$, $1 \le i \le n$ 。任意活动都可以在任意教室进行,但任何时间任何两个活动不能在同一间教室里同时进行。

现在希望使用最少的教室完成所有活动。请设计一个低时间复杂度的算法求每个活动的安排(即在哪个教室进行)。请给出算法的描述,并分析你所设计的算法的时间复杂度(15分)。

分 数	
评卷人	

七、机器的可靠性问题:设一种机器由 n 个不同的部件组成,每个部件有 m 种不同的选型方案,每种方案又有不同的成本和可靠性。设部件 i 的选型为 j 的方案,成本是 c_{ij} ,故障率性是 q_{ij} $(1 \le i \le n, 1 \le j \le m)$ 。

试设计一个搜索算法求在总成本不超过 C的情况下可靠性最高的机器设计。要求给出限界函数的定义和算法的伪代码描述。(15 分)