1/14

SEQUENCE LISTING

<110> Takeda Pharmaceutical Company Limited <120> Metastin Derivatives And Its Use <130> G05-0018 <150> PCT/JP2003/016978 <151> 2003-12-26 <150> JP 2002-377179 <151> 2002-12-26 <160> 22 <210> 1 <211> 54 <212> PRT <213> Homo sapiens <400> 1 Gly Thr Ser Leu Ser Pro Pro Pro Glu Ser Ser Gly Ser Arg Gln Gln 10 Pro Gly Leu Ser Ala Pro His Ser Arg Gln Ile Pro Ala Pro Gln Gly 20 25 30 Ala Val Leu Val Gln Arg Glu Lys Asp Leu Pro Asn Tyr Asn Trp Asn 35 40 45 Ser Phe Gly Leu Arg Phe 50 <210> 2 <211> 162 <212> DNA <213> Homo sapiens <400> 2

60

120

162

ggtacttete tgteteegee geeggaatet tetggttete gteageagee gggtetgtet gctccgcact ctcgtcagat cccggctccg cagggtgctg ttctggttca gcgtgaaaaa gacctgccga actacaactg gaactctttc ggtctgcgtt tc <210> 3 <211> 152 <212> PRT <213> Mus musculus <400> 3 Met Tyr Leu Arg Phe Gly Val Asp Val Cys Ser Leu Ser Pro Trp Lys 5 10 15 Glu Thr Val Asp Leu Pro Leu Pro Pro Arg Met Ile Ser Met Ala Ser 25 Trp Gln Leu Leu Leu Leu Cys Val Ala Thr Tyr Gly Glu Pro Leu 35 40 45 Ala Lys Val Ala Pro Gly Ser Thr Gly Gln Gln Ser Gly Pro Gln Glu 55 Leu Val Asn Ala Trp Glu Lys Glu Ser Arg Tyr Ala Glu Ser Lys Pro 65 70 75 Gly Ser Ala Gly Leu Arg Ala Arg Arg Ser Ser Pro Cys Pro Pro Val 85 90 95 Glu Gly Pro Ala Gly Arg Gln Arg Pro Leu Cys Ala Ser Arg Ser Arg 105 Leu Ile Pro Ala Pro Arg Gly Ala Val Leu Val Gln Arg Glu Lys Asp 115 120 125 Leu Ser Thr Tyr Asn Trp Asn Ser Phe Gly Leu Arg Tyr Gly Arg Arg 130 135 140 Gln Ala Ala Arg Ala Ala Arg Gly 145 150 <210> 4 <211> 456

<400> 4

<212> DNA

<213> Mus musculus

atgtatctga gatttggcgt tgatgtctgc agcctgagtc cctggaagga gactgtagac 60 ctgccccttc ctcccagaat gatctcaatg gcttcttggc agctgctgct tctcctctgt 120 gtcgccacct atggggagcc gctggcaaaa gtgaagcctg gatccacagg ccagcagtcc 180 ggaccccagg aactcgttaa tgcctgggaa aaggaatcgc ggtatgcaga gagcaagcct 240 gggtctgcag ggctgcggc tcgtaggtcg tcgccatgcc cgccggttga gggccccgcg 300 gggcgccagc ggccctgtg tgcctcccgc agtcgctga tccctgcgc ccgcggagcg 360 gtgctggtgc agcgggagaa ggacctgtcc acctacaact ggaactcctt cggcctgcg 420 tacggcagga ggcaggcgg gcgggcagca cgggc

<210> 5

<211> 156

<212> PRT

<213> Mus musculus

<400> 5

Met Tyr Leu Arg Phe Gly Val Asp Val Cys Ser Leu Ser Pro Trp Lys
5 10 . 15

Glu Thr Val Asp Leu Pro Leu Pro Pro Arg Met Ile Ser Met Ala Ser
20 25 30

Trp Gln Leu Leu Leu Leu Cys Val Ala Thr Tyr Gly Glu Pro Leu
35 40 45

Ala Lys Val Ala Pro Leu Val Lys Pro Gly Ser Thr Gly Gln Gln Ser
50 .55 60

Gly Pro Gln Glu Leu Val Asn Ala Trp Glu Lys Glu Ser Arg Tyr Ala 65 70 75 80

Glu Ser Lys Pro Gly Ser Ala Gly Leu Arg Ala Arg Arg Ser Ser Pro 85 90 95

Cys Pro Pro Val Glu Gly Pro Ala Gly Arg Gln Arg Pro Leu Cys Ala 100 105 110

Ser Arg Ser Arg Leu Ile Pro Ala Pro Arg Gly Ala Val Leu Val Gln 115 120 125

Arg Glu Lys Asp Leu Ser Thr Tyr Asn Trp Asn Ser Phe Gly Leu Arg 130 135 140

Tyr Gly Arg Arg Gln Ala Ala Arg Ala Ala Arg Gly
145 150 155

<210> 6

60

180

300

360420

468

<211> 468 <212> DNA

```
<213> Mus musculus
<400> 6
atgtatctga gatttggcgt tgatgtctgc agcctgagtc cctggaagga gactgtagac
ctgccccttc ctcccagaat gatctcaatg gcttcttggc agctgctgct tctcctctgt
gtcgccacct atggggagcc gctggcaaaa gtggcacctt tggtgaagcc tggatccaca
ggccagcagt ccggacccca ggaactcgtt aatgcctggg aaaaggaatc gcggtatgca
gagagcaagc ctgggtctgc agggctgcgc gctcgtaggt cgtcgccatg cccgccggtt
gagggccccg cggggcgcca gcggcccctg tgtgcctccc gcagtcgcct gatccctgcg
ccccgcggag cggtgctggt gcagcgggag aaggacctgt ccacctacaa ctggaactcc
ttcggcctgc gctacggcag gaggcaggcg gcgcgggcag cacggggc
<210> 7
<211> 130
<212> PRT
<213> Rattus sp.
<400> 7
Met Thr Ser Leu Ala Ser Trp Gln Leu Leu Leu Leu Cys Val Ala
                 5
                                     10
Ser Phe Gly Glu Pro Leu Ala Lys Met Ala Pro Val Val Asn Pro Glu
                                 25
Pro Thr Gly Gln Gln Ser Gly Pro Gln Glu Leu Val Asn Ala Trp Gln
         35
                             40
                                                 45
Lys Gly Pro Arg Tyr Ala Glu Ser Lys Pro Gly Ala Ala Gly Leu Arg
                         55
Ala Arg Arg Thr Ser Pro Cys Pro Pro Val Glu Asn Pro Thr Gly His
                     70
                                         75
                                                              80
Gln Arg Pro Pro Cys Ala Thr Arg Ser Arg Leu Ile Pro Ala Pro Arg
                                     90
                 85
Gly Ser Val Leu Val Gln Arg Glu Lys Asp Met Ser Ala Tyr Asn Trp
                                105
            100
Asn Ser Phe Gly Leu Arg Tyr Gly Arg Arg Gln Val Ala Arg Ala Ala
        115
                                                125
                            120
Arg Gly
```

130

<210> 8

<211> 390

<212> DNA

<213> Rattus sp.

<400> 8

atgacctcgc tggcttcttg gcagctgctg cttctcctct gtgtggcctc ttttggggag 60 ccactggcaa aaatggcacc tgtggtgaac cctgaaccca caggccaaca gtccggaccc 120 caggaactcg ttaatgcctg gcaaaagggc ccgcggtatg cagagagcaa gcctggggct 180 gcaggactgc gcgctcgccg aacatcgcca tgccgccgg tggagaaccc cacggggcac 240 cagcggcccc cgtgtgccac ccgcagtcgc ctgatccctg cgccccgcgg atcggtgctg 300 gtgcagcgcg agaaggacat gtcagcctac aactggaact cctttggcct gcgctacggc 360 aggaggcagg tggcgcggc ggcacggggc

<210> 9

<211> 398

<212> PRT

<213> Homo sapiens

<400> 9

Met His Thr Val Ala Thr Ser Gly Pro Asn Ala Ser Trp Gly Ala Pro
5 10 15

Ala Asn Ala Ser Gly Cys Pro Gly Cys Gly Ala Asn Ala Ser Asp Gly
20 25 30

Pro Val Pro Ser Pro Arg Ala Val Asp Ala Trp Leu Val Pro Leu Phe
35 40 45

Phe Ala Ala Leu Met Leu Leu Gly Leu Val Gly Asn Ser Leu Val Ile 50 55 60

Tyr Val Ile Cys Arg His Lys Pro Met Arg Thr Val Thr Asn Phe Tyr 65 70 75 80

Ile Ala Asn Leu Ala Ala Thr Asp Val Thr Phe Leu Leu Cys Cys Val 85 90 95

Pro Phe Thr Ala Leu Leu Tyr Pro Leu Pro Gly Trp Val Leu Gly Asp 100 105 110

Phe Met Cys Lys Phe Val Asn Tyr Ile Gln Gln Val Ser Val Gln Ala

		115					120					125			
Thr	Cys	Ala	Thr	Leu	Thr	Ala	Met	Ser	Val	Asp	Arg	Trp	Tyr	Val	Thr
	130					135					140				
Val	Phe	Pro	Leu	Arg	Ala	Leu	His	Arg	Arg	Thr	Pro	Arg	Leu	Ala	Leu
145					150				•	155					160
Ala	Val	Ser	Leu	Ser	Ile	Trp	Val	Gly	Ser	Ala	Ala	Val	Ser	Ala	Pro
				165					170					175	
Val	Leu	Ala	Leu	His	Arg	Leu	Ser	Pro	Gly	Pro	Arg	Ala	Tyr	Cys	Ser
			180					185					190		
Glu	Ala	Phe	Pro	Ser	Arg	Ala	Leu	Glu	Arg	Ala	Phe	Ala	Leu	Tyr	Asn
		195					200					205			
Leu	Leu	Ala	Leu	Tyr	Leu	Leu	Pro	Leu	Leu	Ala	Thr	Cys	Ala	Cys	Tyr
	210					215					220				
Ala	Ala	Met	Leu	Arg	His	Leu	Gly	Arg	Val	Ala	Val	Arg	Pro	Ala	Pro
225					230					235					240
Ala	Asp	Ser	Ala	Leu	Gln	Gly	Gln	Val	Leu	Ala	Glu	Arg	Ala	Gly	Ala
				245					250					255	
Val	Arg	Ala	Lys	Val	Ser	Arg	Leu	Val	Ala	Ala	Val	Val	Leu	Leu	Phe
			260					265					270		
Ala	Ala	Cys	Trp	Gly	Pro	Ile	Gln	Leu	Phe	Leu	Val	Leu	Gln	Ala	Leu
		275					280					285			
Gly	Pro	Ala	Gly	Ser	Trp	His	Pro	Arg	Ser	Tyr	Ala	Ala	Tyr	Ala	Leu
	290					295					300				
Lys	Thr	Trp	Ala	His	Cys	Met	Ser	Tyr	Ser	Asn	Ser	Ala	Leu	Asn	
305					310					315					320
Leu	Leu	Tyr	Ala			Gly	Ser	His			Gln	Ala	Phe	Arg	
				325					330					335	
Val	Cys	Pro		Ala	Pro	Arg	Arg		Arg	Arg	Pro	Arg		Pro	Gly
			340					345					350		_
Pro	Ser		Pro	Ala	Ala	Pro		Ala	Glu	Leu	His		Leu	Gly	Ser
		355					360					365			
His	Pro	Ala	Pro	Ala	Arg		Gln	Lys	Pro	Gly		Ser	Gly	Leu	Ala
	370					375	_				380				
	Arg	Gly	Leu	Cys		Leu	Gly	Glu	Asp		Ala	Pro	Leu		
385					390					395					

<211> 1194

<212> DNA

<213> Homo sapiens

<400> 10

atgcacaccg	tggctacgtc	cggacccaac	gcgtcctggg	gggcaccggc	caacgcctcc	60
ggctgcccgg	gctgtggcgc	caacgcctcg	gacggcccag	tcccttcgcc	gcgggccgtg	120
gacgcctggc	tcgtgccgct	cttcttcgcg	gcgctgatgc	tgctgggcct	ggtggggaac	180
tcgctggtca	tctacgtcat	ctgccgccac	aagccgatgc	ggaccgtgac	caacttctac	240
atcgccaacc	tggcggccac	ggacgtgacc	ttcctcctgt	gctgcgtccc	cttcacggcc	300
ctgctgtacc	cgctgcccgg	ctgggtgctg	ggcgacttca	tgtgcaagtt	cgtcaactac	360
atccagcagg	tctcggtgca	ggccacgtgt	gccactctga	ccgccatgag	tgtggaccgc	420
tggtacgtga	cggtgttccc	gttgcgcgcc	ctgcaccgcc	gcacgccccg	cctggcgctg	480
gctgtcagcc	tcagcatctg	ggtaggctct	gcggcggtgt	ctgcgccggt	gctcgccctg	540
caccgcctgt	cacccgggcc	gcgcgcctac	tgcagtgagg	ccttccccag	ccgcgccctg	600
gagcgcgcct	tcgcactgta	caacctgctg	gcgctgtacc	tgctgccgct	gctcgccacc	660
tgcgcctgct	atgcggccat	gctgcgccac	ctgggccggg	tcgccgtgcg	cccgcgccc	720
gccgatagcg	ccctgcaggg	gcaggtgctg	gcagagcgcg	caggcgccgt	gcgggccaag	780
gtctcgcggc	tggtggcggc	cgtggtcctg	ctcttcgccg	cctgctgggg	ccccatccag	840
ctgttcctgg	tgctgcaggc	gctgggcccc	gcgggctcct	ggcacccacg	cagctacgcc	900
gcctacgcgc	ttaagacctg	ggctcactgc	atgtcctaca	gcaactccgc	gctgaacccg	960
ctgctctacg	ccttcctggg	ctcgcacttc	cgacaggcct	tccgccgcgt	ctgcccctgc	1020
gcgccgcgcc	gccccgccg	ccccgccgg	cccggaccct	cggaccccgc	agccccacac	1080
gcggagctgc	accgcctggg	gtcccacccg	gccccgcca	gggcgcagaa	gccagggagc	1140
agtgggctgg	ccgcgcgcgg	gctgtgcgtc	ctgggggagg	acaacgcccc	tctc	1194

<210> 11

<211> 396

<212> PRT

 $\langle 213 \rangle$ Rattus sp.

<400> 11

Met Ala Ala Glu Ala Thr Leu Gly Pro Asn Val Ser Trp Trp Ala Pro
5 10 . 15

Ser Asn Ala Ser Gly Cys Pro Gly Cys Gly Val Asn Ala Ser Asp Gly 20 25 30

Pro Gly Ser Ala Pro Arg Pro Leu Asp Ala Trp Leu Val Pro Leu Phe

		35					40					45			
Phe	Ala	Ala	Leu	Met	Leu	Leu	Gly	Leu	Val	Gly	Asn	Ser	Leu	Val	Ile
	50					55					60				
Phe	Val	Ile	Cys	Arg	His	Lys	His	Met	Gln	Thr	Val	Thr	Asn	Phe	Tyr
65					70					75					80
Ile	Ala	Asn	Leu	Ala	Ala	Thr	Asp	Val	Thr	Phe	Leu	Leu	Cys	Cys	Val
				85					90					95	
Pro	Phe	Thr	Ala	Leu	Leu	Tyr	Pro	Leu	Pro	Thr	Trp	Val	Leu	Gly	Asp
			100					105					110		
Phe	Met	Cys	Lys	Phe	Val	Asn	Tyr	Ile	Gln	Gln	Val	Ser	Val	Gln	Ala
		115					120					125			
Thr	Cys	Ala	Thr	Leu	Thr	Ala	Met	Ser	Val	Asp	Arg	Trp	Tyr	Val	Thr
	130					135					140				
Val	Phe	Pro	Leu	Arg	Ala	Leu	His	Arg	Arg	Thr	Pro	Arg	Leu	Ala	Leu
145					150					155					160
Thr	Val	Ser	Leu	Ser	Ile	Trp	Val	Gly	Ser	Ala	Ala	Val	Ser	Ala	Pro
				165					170					175	
Val	Leu	Ala	Leu	His	Arg	Leu	Ser	Pro	Gly	Pro	His	Thr	Tyr	Cys	Ser
			180					185					190		
Glu	Ala	Phe	Pro	Ser	Arg	Ala	Leu	Glu	Arg	Ala	Phe		Leu	Tyr	Asn
		195					200					205		_	_
Leu		Ala	Leu	Tyr	Leu			Leu	Leu	Ala		Cys	Ala	Cys	Tyr
	210					215					220		ъ	. 1	Б
	Ala	Met	Leu	Arg		Leu	Gly	Arg	Ala		Val	Arg	Pro	Ala	
225	_				230	0.1	01			235	01	۸.	A 1 -	C1	240
Thr	Asp	Gly	Ala	Leu		Gly	GIn	Leu				Arg	АГА		Ala
., 1		T)	,	245		A	1	V - 1		۸۱۵		Vol.	Lou	255	Dho
Val	Arg	Inr			Ser	Arg	Leu		АТА	мта	vai	vai	270		Phe
	. 1		260		D	т1.	C1	265	Dha	Lou	Vol.	Lou			Lou
Ala	Ala		ırp	Gly	Pro	116			rne	Leu	vai	285		піа	Leu
C1	D	275	C1	. 41.	Т	u; ~	280 Pro		San	Tur	۸10			Δ1a	Leu
GIY			GIY	Ala	пр	295		AIG	361	1 9 1	300		1 9 1	MIG	Leu
1	290		۸1.	u; o	Cva			Tur	Sor	Acn			ا ام أ	Acn	Pro
	116	ırp	мта	His	310		261	1 y 1	261	315		та	Leu	11311	320
305	1	Т	۸1.	Pho			Sor	Hic	Pho			Ala	Pha	Cve	Arg
Leu	Leu	ıyı	ліа	225		оту	261	1113	330		0111	,,, a	1 110	335	

Val Cys Pro Cys Gly Pro Gln Arg Gln Arg Arg Pro His Ala Ser Ala 345 350 340 His Ser Asp Arg Ala Ala Pro His Ser Val Pro His Ser Arg Ala Ala 365 355 360 His Pro Val Arg Val Arg Thr Pro Glu Pro Gly Asn Pro Val Val Arg 370 375 380 Ser Pro Ser Val Gln Asp Glu His Thr Ala Pro Leu 390 395 385

<210> 12 <211> 1188 <212> DNA <213> Rattus sp.

<400> 12

60 atggccgcag aggcgacgtt gggtccgaac gtgagctggt gggctccgtc caacgcttcg ggatgcccgg gctgcggtgt caatgcctcg gatggcccag gctccgcgcc aaggcccctg 120 180 gatgcctggc tggtgcccct gtttttcgct gccctaatgt tgctggggct agtcgggaac tcactggtca tcttcgttat ctgccgccac aagcacatgc agaccgtcac caatttctac 240 300 atcgctaacc tggcggccac agatgtcact ttccttctgt gctgcgtacc cttcaccgcg ctcctctatc cgctgcccac ctgggtgctg ggagacttca tgtgcaaatt cgtcaactac 360 420 atccagcagg tctcggtgca agccacatgt gccactttga cagccatgag tgtggaccgc 480 tggtacgtga ctgtgttccc gctgcgtgca cttcaccgcc gcactccgcg cctggccctg actgtcagcc ttagcatctg ggtgggttcc gcagctgttt ccgccccggt gctggctctg 540 600 caccgcctgt cgcccgggcc tcacacctac tgcagtgagg cgtttcccag ccgtgccctg 660 gagegeett tegegeteta caacetgetg gecetataee tgetgeeget getegeeaee 720 tgcgcctgct acggtgccat gctgcgccac ctgggccgcg ccgctgtacg ccccgcaccc 780 actgatggcg ccctgcaggg gcagctgcta gcacagcgcg ctggagcagt gcgcaccaag 840 gtctcccggc tggtggccgc tgtcgtcctg ctcttcgccg cctgctgggg cccgatccag 900 ctgttcctgg tgcttcaagc cctgggcccc tcgggggcct ggcaccctcg aagctatgcc 960 gcctacgcgc tcaagatctg ggctcactgc atgtcctaca gcaattctgc gctcaacccg 1020 ctgctctatg ccttcctggg ttcccacttc agacaggcct tctgccgcgt gtgcccctgc ggcccgcaac gccagcgtcg gccccacgcg tcagcgcact cggaccgagc cgcaccccat 1080 agtgtgccgc acagccgggc tgcgcaccct gtccgggtca ggacccccga gcctgggaac 1140 cctgtggtgc gctcgccctc tgttcaggat gaacacactg ccccactc 1188

<211	> 39	96													
<212	2> PF	RT													
<213	3> Mu	ıs mı	ıscu]	lus											
<400)> 13	3													
Met	Ala	Thr	Glu	Ala	Thr	Leu	Ala	Pro	Asn	Val	Thr	Trp	Trp	Ala	Pro
1				5					10					15	
Ser	Asn	Ala	Ser	Gly	Cys	Pro	Gly	Cys	Gly	Val	Asn	Ala	Ser	Asp	Asp
			20					25					30		
Pro	Gly	Ser	Ala	Pro	Arg	Pro	Leu	Asp	Ala	Trp	Leu	Val	Pro	Leu	Phe
		35					40					45			
Phe	Ala	Thr	Leu	Met	Leu	Leu	Gly	Leu	Val	Gly	Asn	Ser	Leu	Val	Ile
	50					55					60				
Tyr	Val	Ile	Cys	Arg	His	Lys	His	Met	Gln	Thr	Val	Thr	Asn	Phe	Tyr
65					70					75					80
Ile	Ala	Asn	Leu	Ala	Ala	Thr	Asp	Val	Thr	Phe	Leu	Leu	Cys	Cys	Val
				85					90					95	
Pro	Phe	Thr	Ala	Leu	Leu	Tyr	Pro	Leu	Pro	Ala	Trp	Val	Leu	Gly	Asp
			100					105					110		
Phe	Met	Cys	Lys	Phe	Val	Asn	Tyr	Ile	Gln	Gln	Val	Ser	Val	Gln	Ala
		115					120					125			
Thr		Ala	Thr	Leu	Thr	Ala	Met	Ser	Val	Asp	Arg	Trp	Tyr	Val	Thr
	130					135					140				
	Phe	Pro	Leu	Arg	Ala	Leu	His	Arg	Arg		Pro	Arg	Leu	Ala	Leu
145					150					155					160
Ala	Val	Ser	Leu	Ser	Ile	Trp	Val	Gly	Ser	Ala	Ala	Val	Ser	Ala	Pro
				165										175	
Val	Leu	Ala	Leu	His	Arg	Leu	Ser		Gly	Pro	Arg	Thr		Cys	Ser
			180					185					190		
Glu	Ala		Pro	Ser	Arg	Ala		Glu	Arg	Ala	Phe		Leu	Tyr	Asn
		195					200					205			
Leu	Leu	Ala	Leu	Tyr	Leu		Pro	Leu	Leu	Ala		Cys	Ala	Cys	Tyr
	210					215					220				
	Ala	Met	Leu	Arg		Leu	Gly	Arg	Ala		Val	Arg	Pro	Ala	
225					230					235					240

Thr Asp Gly Ala Leu Gln Gly Gln Leu Leu Ala Gln Arg Ala Gly Ala

250

255

245

Val Arg Thr Lys V	al Ser Arg Leu	Val Ala Ala Val	Val Leu Leu Phe
260		265	270
Ala Ala Cys Trp G	Gly Pro Ile Gln	Leu Phe Leu Val	Leu Gln Ala Leu
275	280		285
Gly Pro Ser Gly A	ala Trp His Pro	Arg Ser Tyr Ala	Ala Tyr Ala Val
290	295	300	
Lys Ile Trp Ala H	lis Cys Met Ser	Tyr Ser Asn Ser	Ala Leu Asn Pro
305	310	315	320
Leu Leu Tyr Ala P	he Leu Gly Ser	His Phe Arg Gln	Ala Phe Cys Arg
3	325	330	335
Val Cys Pro Cys C	Cys Arg Gln Arg	Gln Arg Arg Pro	His Thr Ser Ala
340		345	350
His Ser Asp Arg A	la Ala Thr His	Thr Val Pro His	Ser Arg Ala Ala
355	360		365
His Pro Val Arg I	le Arg Ser Pro	Glu Pro Gly Asn	Pro Val Val Arg
370	375	380	
Ser Pro Cys Ala G	Gln Ser Glu Arg	Thr Ala Ser Leu	
385	390	395	

<210> 14

<211> 1188

<212> DNA

<213> Mus musculus

<400> 14

atggccaccg agg	cgacatt ggctccca	at gtgacctggt	gggctccgtc	caacgcttca	60
ggatgcccag gct	gcggtgt caacgcct	cg gatgacccag	gctctgcgcc	aaggcccctg	120
gatgcctggc tgg	ttcccct gtttttcg	ct acactcatgt	tgcttgggct	ggtcggaaac	180
tcattggtca tct	acgttat ctgccgcc	ac aagcacatgc	agacagttac	caacttctac	240
atcgctaacc tgg	ctgccac agacgtca	ct ttcctactgt	gctgcgtgcc	cttcaccgca	300
ctcctctacc cgc	tgcccgc ctgggtgc	tg ggagacttca	tgtgcaaatt	cgtcaactac	360
atccagcagg tct	cggtgca agccacat	gt gccactctga	cggccatgag	tgtggaccgc	420
tggtatgtga ctg	tgttccc gctgcgtg	ca cttcaccgcc	gcactccgcg	cctggccctg	480
gctgtcagcc tcag	gcatctg ggtggggt	ca gcagctgtgt	ccgccccggt	gctggccctg	540
caccgcctgt cgc	cagggcc tcgcacct	ac tgcagcgagg	cgtttcccag	ccgcgccctg	600
gagcgccct tcg	cgctcta caacctgc	tg gctctatatc	tgctgccgct	gctcgccacc	660
tgcgcctgct acg	gcgccat gctgcgcc	ac ctgggccgtg	cggctgtacg	ccccgcaccc	720

```
actgacggcg ccctgcaggg acagctgcta gcacagcgcg ccggagcagt gcgcaccaag 780
gtctcccggc tggtggccgc tgtcgtcctg ctcttcgccg cctgctgggg cccgatccag 840
ctgttcctgg tgcttcaagc cctgggcccc tcgggggcct ggcaccctcg aagctatgcc 900
gcctacgcgg tcaagatctg ggctcactgc atgtcctaca gcaactcggc gctcaatccg 960
ctgctctatg ccttcctggg ttcacacttc agacaggcct tctgccgcgt gtgcccctgc 1020
tgccggcaac gccagcgccg gcccacacg tcagcgcact cggaccgagc tgcaactcac 1080
actgtgccgc acagccgtgc tgcgcaccct gtgcggatca ggagcccgga gcctgggaac 1140
                                                                  1188
cctgtggtgc gctcgccctg cgctcagagt gaacgcactg cctcactc
<210> 15
<211> 15
<212> PRT
<213> Artificial
<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form
<400> 15
Lys Asp Leu Pro Asn Tyr Asn Trp Asn Ser Phe Gly Leu Arg Phe
                  5
                                     10
                                                         15
<210> 16
<211> 10
<212> PRT
<213> Artificial
<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form
<400> 16
Tyr Asn Trp Asn Ser Phe Gly Leu Arg Phe
                 5
1
                                     10
<210> 17
<211> 9
<212> PRT
<213> Artificial
```

```
<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form
<400> 17
Asn Trp Asn Ser Phe Gly Leu Arg Phe
                  5
1
<210> 18
<211> 8
<212> PRT
<213> Artificial
<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form
<400> 18
Trp Asn Ser Phe Gly Leu Arg Phe
                  5
<210> 19
<211> 45
<212> DNA
<213> Homo sapiens
<400> 19
aaggacctgc cgaactacaa ctggaactcc ttcggcctgc gcttc
                                                                   45
<210> 20
<211> 30
<212> DNA
<213> Homo sapiens
<400> 20
                                                                     30
tacaactgga actccttcgg cctgcgcttc
```

<210> 21

⟨211⟩ 27	
<212> DNA	
<213> Homo sapiens	
<400> 21	
aactggaact ccttcggcct gcgcttc	27
<210> 22	
<211> 24 ·	
<212> DNA	
<213> Homo sapiens	
<400> 22	
tggaactcct tcggcctgcg cttc	24