2×2 Fiber Coupler Components in Communication and Sensing

Basic structure

All-fiber Components

- o The necessary function of signal processing/ manipulation is performed whilst the signal is still guided by fiber
- o Components can be readily spliced to signal carrying circuit with a common fiber handling tool
- o Components realized from fiber in the from of fiber
- o No significant insertion loss due to geometry mismatch or mismatch in overlap of modal fields

Major Devices

o Fused Fiber Couplers: FFC

o Fiber Amplifier: EDFA

o Fiber Bragg Grating: FBG

Fused Fiber Coupler

A 2×2 fused biconical tapered (FBT) coupler

- o A 4-port device: 2 input ports P_I & output ports P_T & P_C
- o Light injected into one of the input
- appears at either of the out ports or some ratio
- o Power splitting ratio depends on design parameters: operating wavelength and this is the key to realise many devices

P_R and 2

ports both in

Principle of Coupling: Overlap of modes

Fused tapered waist

Coupling is due

- to cladding-mode coupling

- to supermodes' beating

Power transfer

 $P_T = P_1 \cos^2(\kappa l)$ $\kappa =$ Coupling Coefficient

 $P_C = P_I \sin^2(\kappa l)$ l = Length of Interaction

Coupling of Modes

- depends on \emph{I} at an operating wavelength λ
- varies with λ for a given coupler of length l

Measured Characteristics of Fabricated Splitters/ WDMs (Some Typical Results)

Characteristics of Power Splitters

	4		
Characteristics	SMF @ 1310	SMF @ 1550	SMF @ 632.8 nm
	nm	nm	SIVII @ 032.0 11111
Splitting Ratio	10% – 90%	10% – 90%	20% – 80%
Excess Loss	0.1dB - 0.3dB	0.1dB - 0.5dB	0.6dB - 1.1dB
Return Loss	40dB – 60dB	40dB – 60dB	50dB - 60dB

A typical WDM @ 1310/1550 nm

Characteristics	@ 1310 nm	@ 1550 nm
Wavelength Isolation	16.4dB	14.7dB
16dB Isolation Bandwidth	60nm	50nm
Excess Loss	0.61dB	0.37dB

- o Beam Splitter/Combiners
 - 3-dB Couplers
 - Tap/Access Couplers
 - Tree Couplers
- o Classical Wavelength Division Multiplexer/Demultiplexer (WDM/WDDM)
- o Wavelength Interleaver
- o Fiber Loop Mirror Reflector

3-dB Couplers

Tree Coupler

Classical WDM/WDDM

Wavelength Interleaver

$$P_T = P_1(\lambda_1)\sin^2\frac{\Delta\varphi(\lambda_1)}{2} + P_2(\lambda_2)\cos^2\frac{\Delta\varphi(\lambda_2)}{2}$$

$$P_C = P_1(\lambda_1) \cos^2 \frac{\Delta \phi(\lambda_1)}{2} + P_2(\lambda_2) \sin^2 \frac{\Delta \phi(\lambda_2)}{2}$$

- o if $\Delta \varphi(\lambda_1) = 2\pi$ & $\Delta \varphi(\lambda_2) = \pi$, then $P_T = 0$ and $P_C = P_1(\lambda_1) + P_2(\lambda_2)$ *i.e.*, power at both wavelengths now appear at the coupled port
- o $\Delta \phi$ satisfies the condition that $\Delta \phi(\lambda_1)$ $\Delta \phi(\lambda_2)$ = π , both wavelengths can be combined into the coupled arm
- o in reverse direction thus it separates these wavelengths
- o in practice a flattop response needed; obtained by cascading MZs

Fiber MACH-ZEHNDER

a phase shift of $\pi/2$ across DCs

$$E_{1} = \frac{1}{2}E_{0}\left[\exp(i\varphi_{a}) + \exp(i\varphi_{b} + \pi)\right]$$

$$E_{2} = \frac{1}{2}E_{0}\left[\exp\left(i\varphi_{a} + \frac{\pi}{2}\right) + \exp\left(i\varphi_{b} + \frac{\pi}{2}\right)\right]$$

$$I_{1} = \frac{1}{2}I_{0}\left[1 - \cos\left(\varphi_{a} - \varphi_{b}\right)\right]$$

$$I_{2} = \frac{1}{2}I_{0}\left[1 + \cos\left(\varphi_{a} - \varphi_{b}\right)\right]$$

Fiber Loop Mirror

- o resonator cavity in fiber laser
- o passive fiber based FP devices
- o duplex transmission using single light source at one end
- o non-linear loop mirror, add-drop/switch

INTERFERROMETERS

Two-beam Interferometer: Fiber MACH-ZEHNDER

Transfer Function

$$I_1 = \frac{1}{2}I_0 \left[1 - \cos\left(\varphi_a - \varphi_b\right)\right]$$

$$I_2 = \frac{1}{2}I_0 \left[1 + \cos\left(\varphi_a - \varphi_b\right)\right]$$

Two-beam Interferometer: Fiber MICHELSON

Transfer Function

$$I_{1} = \frac{1}{2} I_{0} [1 - \cos(\varphi_{a} - \varphi_{b})]$$

$$I_{2} = \frac{1}{2} I_{0} [1 + \cos(\varphi_{a} - \varphi_{b})]$$

Sagnac Interferometer

Assume Circular Cavity

$$au = 2\pi r/c$$
 $au = propagation time$
 $au = cavity radius$

$$\Delta au = (2\pi + \Omega au)(r/c) - (2\pi - \Omega au)(r/c)$$

$$\Omega = rotation per au$$

$$\Delta au = 4\pi r^2 \Omega/c^2$$
 $for au, ext{ } ex$

Fresnel-Fizeau Drag Effect

$$t_{\pm} \ = \ \frac{2\pi r \pm r \ \Omega_{\rm rot} t_{\pm}}{\rm v}$$

$$t_{\pm} \left(\frac{\mathbf{v} \mp r \ \Omega_{\mathrm{rot}}}{\mathbf{v}} \right) = \frac{2\pi r}{\mathbf{v}}$$
 $t_{\pm} = \frac{2\pi r}{\mathbf{v} \mp r \ \Omega_{\mathrm{rot}}}$

$$t_{\pm} = \frac{2\pi r}{v \mp r \Omega_{\rm rot}}$$

$$\begin{array}{rcl} \delta t & = & t_{+} - t_{-} \; , \\ & = & \frac{2\pi r}{\mathrm{v} - r \; \Omega_{\mathrm{rot}}} - \frac{2\pi r}{\mathrm{v} + r \; \Omega_{\mathrm{rot}}} \\ \\ \delta t & = & \frac{4\pi r^{2} \; \Omega_{\mathrm{rot}}}{\mathrm{v}^{2} - \left(r \; \Omega_{\mathrm{rot}}\right)^{2}} \; . \end{array}$$

$$\Delta\phi = \frac{4A\cdot\Omega_{\rm rot}}{\lambda_0{\rm v}}$$

Closed Cavity Defined by Optical Fiber

loop rotated in its plane with angular velocity Ω

phase shift between the two counter propagating beams

$$\varphi_{\Omega} = 4\Omega\omega A/c^2$$