1602 AUTOMATON

# 5.238 longest\_increasing\_sequence

#### DESCRIPTION LINKS AUTOMATON

Origin constraint on sequences

Constraint longest\_increasing\_sequence(L, VARIABLES)

Synonym size\_longest\_increasing\_sequence.

Arguments L : dvar

VARIABLES : collection(var-dvar)

**Restrictions**  $L \ge 0$ 

L <range(VARIABLES.var)
required(VARIABLES, var)</pre>

L is the largest difference between the first and the last value of the maximum increasing sequences of the collection VARIABLES.

A sequence of consecutive variables  $X_i, X_{i+1}, \ldots, X_j$   $(1 \le i \le j \le |VARIABLES|)$  of the collection of variables VARIABLES is a *maximum increasing sequence* if all the following conditions simultaneously apply:

- $X_i \leq X_{i+1} \leq \cdots \leq X_i$ ,
- $i = 1 \text{ or } X_{i-1} > X_i$ ,
- $i = |VARIABLES| \text{ or } X_j > X_{j+1}$ .

Example

**Purpose** 

 $(7, \langle 10, 8, 8, 6, 4, 9, 11, 8 \rangle)$  $(0, \langle 10, 8, 7, 5, 4, 3, 1, 0 \rangle)$ 

Figure 5.526 gives a graphical representation of the first example of the **Example** slot with its two maximum increasing sequences in red of respective size 0 and 7. The corresponding longest\_increasing\_sequence constraint holds since its first argument L is fixed to the maximum size 7.

Typical

$$\begin{split} \mathbf{L} &> 0 \\ |\mathtt{VARIABLES}| &> 1 \\ \mathtt{nval}(\mathtt{VARIABLES.var}) &> 2 \end{split}$$

**Symmetry** 

One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

Functional dependency: L determined by VARIABLES.

Counting

20121124 1603



Figure 5.526: Illustration of the first example of the **Example** slot: a sequence of eight variables  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ ,  $V_5$ ,  $V_6$ ,  $V_7$ ,  $V_8$  respectively fixed to values 10, 8, 8, 6, 4, 9, 11, 8 and its two maximum increasing sequences in red of respective size 8-8=0 and 11-4=7.

| Length (n) | 2 | 3  | 4   | 5    | 6      | 7       | 8        |
|------------|---|----|-----|------|--------|---------|----------|
| Solutions  | 9 | 64 | 625 | 7776 | 117649 | 2097152 | 43046721 |

Number of solutions for longest\_increasing\_sequence: domains 0..n

## $Solution\ density\ for\ {\tt longest\_increasing\_sequence}$



1604 AUTOMATON



| Length (n)         |   | 2 | 3  | 4   | 5    | 6      | 7       | 8        |
|--------------------|---|---|----|-----|------|--------|---------|----------|
| Total              |   | 9 | 64 | 625 | 7776 | 117649 | 2097152 | 43046721 |
| Parameter<br>value | 0 | 6 | 20 | 70  | 252  | 924    | 3432    | 12870    |
|                    | 1 | 2 | 18 | 122 | 750  | 4412   | 25382   | 144314   |
|                    | 2 | 1 | 16 | 161 | 1398 | 11361  | 89132   | 685090   |
|                    | 3 | - | 10 | 162 | 1942 | 20816  | 211106  | 2074365  |
|                    | 4 | - | -  | 110 | 2024 | 28930  | 375084  | 4603682  |
|                    | 5 | - | -  | -   | 1410 | 30134  | 506766  | 7792840  |
|                    | 6 | - | -  | -   | -    | 21072  | 522648  | 10197174 |
|                    | 7 | - | -  | -   | -    | -      | 363602  | 10379696 |
|                    | 8 | - | -  | -   | -    | -      | -       | 7156690  |

Solution count for longest\_increasing\_sequence: domains 0..n

20121124 1605

#### $Solution\ density\ for\ {\tt longest\_increasing\_sequence}$



### Solution density for longest\_increasing\_sequence



See also

common keyword:
min\_dist\_between\_inflexion(sequence).

longest\_decreasing\_sequence,

1606 AUTOMATON

**Keywords** characteristic of a constraint:

automaton,

automaton with counters,

automaton with same input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

filtering: glue matrix.

modelling: functional dependency.

20121124 1607

#### Automaton

Figure 5.527 depicts the automaton associated with the longest\_increasing\_sequence constraint.



Figure 5.527: Automaton of the longest\_increasing\_sequence constraint and its glue matrix (note that the reverse of the longest\_increasing\_sequence constraint is the longest\_decreasing\_sequence constraint)



Figure 5.528: Hypergraph of the reformulation corresponding to the automaton of the longest\_increasing\_sequence constraint