WHAT IS CLAIMED IS:

- 1. An isolated polynucleotide comprising a member selected from the group consisting of
- (a) a polynucleotide encoding the same polypeptide as the polynucleotide of Figure 9;
- (b) a polynucleotide encoding the same mature polypeptide as a human gene having a coding portion which includes DNA having at least a 90% identity to the DNA of one of Figures 1, 3-7 or 11-13;
- (c) a polynucleotide which hybridizes to the polynucleotide of (a) and which has at least a 70% identity thereof; and
- (d) a polynucleotide encoding the same mature polypeptide as a human gene having a coding portion which includes DNA having at least a 90% identity to a DNA included in ATCC Deposit No. 97102.
- 2. The polynucleotide of Claim 1 wherein the human gene includes DNA contained in ATCC Deposit No. 97102.
- 3. The polynucleotide of Claim 1 wherein the member is a polynucleotide encoding the same polypeptide as the polynucleotide of Figure 9.
- 4. A vector containing the polynucleotide of claim 1.
- 5. A host cell transformed or transfected with the vector of Claim 4.
- 6. A process for producing cells capable of expressing a polypeptide comprising genetically engineering cells with the vector of Claim 4.
- 7. A process for producing a polypeptide comprising: expressing from the host cell of Claim 5 the polypeptide encoded by said polynucleotide.
- 8. A polypeptide comprising a member selected from the group consisting of: (i) a polypeptide encoded by a human gene, said human gene having a coding portion whose DNA has at least a 90% identity to the DNA of one of Figures 1, 3-7 or 11-13; (ii) a polypeptide having the deduced amino acid sequence as set forth in Figure 9 and fragments, analogs and derivatives thereof; and (iii) a

polypeptide encoded by the human gene whose coding region includes a DNA having at least a 90% identity to the DNA contained in ATCC Deposit No. 97102 and fragments, analogs and derivatives of said polypeptide.

- 9. The polypeptide of Claim 8 wherein the polypeptide has the deduced amino acid sequence as set forth in Figure 9.
- 10. An antibody against the polypeptide of claim 8.
- 11. A compound which inhibits activation of the polypeptide of claim 8.
- 12. A method for the treatment of a patient having need to inhibit a colon specific gene protein comprising: administering to the patient a therapeutically effective amount of the compound of Claim 11.
- 13. The method of claim 12 wherein the compound is a polypeptide and the therapeutically effective amount of the compound is administered by providing to the patient DNA encoding said polypeptide and expressing said polypeptide in vivo.
- 14. A method for the treatment of a patient having need of a colon specific gene protein comprising: administering to the patient a therapeutically effective amount of the polypeptide of claim 8.
- 15. A process for diagnosing a disorder of the colon in a host comprising:

determining transcription of a human gene in a sample derived from non-colon tissue of a host, said gene having a coding portion which includes DNA having at least 90% identity to DNA selected from the group consisting of the DNA of Figures 1-13, whereby said transcription indicates a disorder of the colon in the host.

- 16. The process of claim 15 wherein transcription is determined by detecting the presence of an altered level of RNA transcribed from said human gene.
- 17. The process of claim 15 wherein transcription is determined by detecting the presence of an altered level

- of DNA complementary to the RNA transcribed from said human gene.
- 18. The process of claim 15 wherein transcription is determined by detecting the presence of an altered level of an expression product of said human gene.