第一章 向量

1.1 知识体系

1.2 线性表示的判定与计算

线性表示的判定与计算

(题型一判断)

(I) 线性表示的定义 $\beta = k_1\alpha_1 + k_2\alpha_2 + \ldots + k_s\alpha_s$

(II)
$$\underline{\mathfrak{R}} r(\alpha_1,\ldots,\alpha_s) = r(\alpha_1,\ldots,\alpha_s \mid \beta)$$

(题型二 计算)

$$(\alpha_1,\ldots,\alpha_s,|\beta) \xrightarrow{\text{初等行变换}}$$
 行最简型

(题型三向量组等价)

- (I) 向量组等价的定义 向量组 I,II 可以相互线性表示
- (II) <u>三</u>秩相等 r(I) = r(I, II) = r(II)
- 1. 设向量组 α, β, γ 与数 k, l, m 满足 $k\alpha + l\beta + m\gamma = 0$ $(km \neq 0)$, 则
 - (A) $\alpha, \beta 与 \alpha, \gamma$ 等价
 - (B) $\alpha, \beta 与 \beta, \gamma$ 等价
 - (C) $\alpha, \gamma 与 \beta, \gamma$ 等价
 - (D) α 与 γ 等价

1.2 线性表示的判定与计算

3

Solution

由于
$$km \neq 0$$
 则有
$$\begin{cases} \alpha = -\frac{1}{k} (l\beta + m\gamma) \\ \gamma = -\frac{1}{k} (l\beta + k\alpha) \end{cases} \implies \begin{cases} \beta, \gamma \to \alpha \\ \beta, \alpha \to \gamma \end{cases}$$
 又因为 $(\beta, \gamma) \to \beta$ 是显然的, 故 $(\alpha, \beta) \to (\beta, \gamma)$

- 2. (2004, 数三) 设 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$ 。 当 a,b 为何值时,
 - (I) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示
 - (II) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一地线性表示, 并求出表示式;
 - (III) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 但表示式不唯一, 并求出表示式。

Solution

数字矩阵多半带参数, 关键就是讨论这个参数的范围. 记 $A = (\alpha_1, \alpha_2, \alpha_3)$ 联立有

$$(A \mid \beta) \to \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & a & -b & 1 \\ 0 & 0 & a - b & 0 \end{pmatrix}$$

(1) 当 $a \neq 0$ 的时候

$$(A \mid \beta) = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

此时 $r(A) < r(A \mid \beta)$ 即 β 不可以有 α_i 表示

(2) 当 $a \neq 0$ 且 $a \neq b$ 时有

$$(A \mid \beta) = \begin{pmatrix} 1 - \frac{1}{a} \\ E & \frac{1}{a} \\ 0 \end{pmatrix}$$

此时 $r(A) = r(A \mid \beta)$ 故 β 可由 α_i 唯一表示即

$$\beta = (1 - \frac{1}{a})\alpha_1 + \frac{1}{a}\alpha_2$$

(3) 当 $a \neq 0, a \neq b$ 时有

$$(A \mid \beta) = \begin{pmatrix} 1 & 0 & 0 & 1 - \frac{1}{a} \\ 0 & 1 & -1 & \frac{1}{a} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

此时 β 可由 α_i 无穷多表示,即

$$\beta = (1 - \frac{1}{a})\alpha_1 + (k + \frac{1}{a})\alpha_2 + k\alpha_3, k \in \mathbb{R}$$

3. (2019, 数二、三) 设向量组 (I) $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$; 向量组 (II) $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$ 。若向量组 (I) 与 (II) 等价, 求 a 的值,并将 β_3 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

Solution

数字矩阵直接用三秩相等即可 r(I)=r(I,II)=r(II) 要分两部分令 $A=(\alpha_1,\alpha_2,\alpha_3),B=(\beta_1,\beta_2,\beta_3)$

$$(A \mid B) \to \begin{pmatrix} 1 & 0 & -2 & 1 & 2 & 3 \\ 0 & 1 & -1 & 0 & -2 & -2 \\ 0 & 0 & a^2 - 1 & a - 1 & 1 - a & a^2 - 1 \end{pmatrix} B \to \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a^2 - 1 \end{pmatrix}$$

当 a=1 的时候 r(I)=r(I,II)=r(II)=2 此时线性组等价

$$(A \mid \beta_3) \rightarrow \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\mathbb{P} \beta_3 = (3 - 2k)\alpha_1 + (k - 2)\alpha_2 + k\alpha_3$

当 $a^2 \neq 1$ 的时候 r(I) = r(I, II) = r(II) = 3 此时线性组等价

$$(A \mid \beta_3) \to \begin{pmatrix} & 1 \\ E & -1 \\ & 1 \end{pmatrix}$$

此时 $\beta_3 = \alpha_1 - \alpha_2 + \alpha_3$

线性相关与线性无关的判定 1.3

相关/无关的判定

(方法一用定义)

(方法二 用秩)

- 1. (2014, 数一、二、三) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量,则对任意常数 $k, l, \alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3$ 线性无关是 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的
 - (A) 必要非充分条件
 - (B) 充分非必要条件
 - (C) 充分必要条件
 - (D) 既非充分又非必要条件

Solution

证明充分性, 取 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (0,1,0)^T$, $\alpha_3 = O$ 显然证明不了 α_i 无关 证明必要性

(方法一 用定义证明) 由线性无关的定义, 只需证明 $\forall k, l, \exists k_1, k_2$

$$k_1(\alpha_1 + k\alpha_3) + k_2(\alpha_2 + l\alpha_3) = 0$$

即

$$k_1 \alpha_1 + k_2 \alpha_2 + (k_1 k + l) \alpha_3 = 0$$

由
$$\alpha_i$$
 线性无关有
$$\begin{cases} k_1=0 \\ k_2=0 \\ k_1k+l=0 \end{cases}$$

(方法二 用秩)

$$(\alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ k & l \end{pmatrix}$$

(方法二 用秩)
$$(\alpha_1+k\alpha_3,\alpha_2+l\alpha_3)=(\alpha_1,\alpha_2,\alpha_3)\begin{pmatrix} 1 & 0\\ 0 & 1\\ k & l \end{pmatrix}$$
 记 $C=\begin{pmatrix} 1 & 0\\ 0 & 1\\ k & l \end{pmatrix}$ 又 $(\alpha_1,\alpha_2,\alpha_3)$ 线性无关,故 $r(\alpha_1+k\alpha_3,\alpha_2+l\alpha_3)=r(C)=2$

2. 设 A 为 n 阶矩阵, $\alpha_1, \alpha_2, \alpha_3$ 均为 n 维列向量,满足 $A^2\alpha_1 = A\alpha_1 \neq 0$, $A^2\alpha_2 = \alpha_1 + A\alpha_2$, $A^2\alpha_3 = \alpha_2 + A\alpha_3$,证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

Solution

有题设有

$$\begin{cases} (A^2 - A)\alpha_1 = O \\ (A^2 - A)\alpha_2 = \alpha_1 \\ (A^2 - A)\alpha_3 = \alpha_2 \end{cases}$$

(用定义证明) 假设存在 k_1, k_2, k_3 使得

$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = O \tag{*}$$

 (\star) 式两端同时左乘以 $(A^2 - A)$ 有

$$k_2\alpha_1 + k_3\alpha_3 = O \tag{**}$$

同理将上式两端同乘 $A^2 - A$ 有

$$k_3\alpha_1=0$$

由于 $A\alpha_1 \neq O \implies \alpha_1 \neq O$ 可知 $k_3 = 0$ 代回 (***) 可知 $k_2 = 0$; 将 $k_3 = k_2 = 0$ 代回 ** 可知 $k_1 = k_2 = k_3 = 0$ 故由线性无关的定义可知 α_i 线性无关.

3. 设 4 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,与 4 维列向量 β_1, β_2 两两正交,证明 β_1, β_2 线性相关。

Solution

由题设可知 $\forall \alpha_i^T \beta_j = 0$ 即 $\begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \alpha_3^T \end{pmatrix} \beta_i = O \implies (\beta_1, \beta_2)$ 为方程 AX = 0 的解, 因而有

 $r(\beta_1,\beta_2) \le 4 - r(A)$ 又因为 (α_i) 线性无关可知 r(A) = 3 故而 $r(\beta_1,\beta_2) \le 4 - 3 = 1$ 从而 β_1,β_2 线性相关.

1.4 极大线性无关组的判定与计算

1.4 极大线性无关组的判定与计算

抽象与数字矩阵

对于抽象矩阵: 使用定义

对于具体数字矩阵: 初等行变换转换为行阶梯形

- - (I) 当 a 为何值时, 该向量组线性相关, 并求其一个极大线性无关组;
 - (II) 当 a 为何值时,该向量组线性无关,并将 $\alpha = (4,1,6,10)^T$ 由其线性表示。

Solution

(1) 联立 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, |, \alpha)$ 化简为行阶梯形有

$$\begin{pmatrix}
1 & -1 & 3 & -2 & 4 \\
0 & 2 & 1 & 4 & 3 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & a-2 & 1-a
\end{pmatrix}$$

- (1) 当 a=2 的时候 r(A)=3-4 此时极大无关组为 $(\alpha_1,\alpha_2,\alpha_3)$
- (2) 当 $a \neq 2$ 的时候 r(A) = 4 该向量组线性无关
- (2) 当 $a \neq 2$ 将 $(A \mid \alpha)$ 转换为行最简型有

$$\begin{pmatrix}
2 \\
3a-4 \\
a-2 \\
1 \\
\frac{1-a}{a-2}
\end{pmatrix}$$

$$\alpha = 2\alpha_1 + \frac{3a-4}{a-2}\alpha_2 + \alpha_3 + \frac{1-a}{a-2}\alpha_4$$

- 2. 证明:
 - (I) 设A, B为 $m \times n$ 矩阵,则 $r(A+B) \le r(A) + r(B)$;
 - (II) 设 A 为 $m \times n$ 矩阵,B 为 $n \times s$ 矩阵,则 $r(AB) \le \min\{r(A), r(B)\}$ 。

Solution

1.5 向量空间(数一专题)

向量空间

过度矩阵

由基 (极大线性无关组) $\alpha_1, \alpha_2, \dots, \alpha_n$ 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵为 $(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)C$ 即 $C = (\alpha_1, \alpha_2, \dots, \alpha_n)^{-1}(\beta_1, \beta_2, \dots, \beta_n)$

坐标转换公式

设向量 γ 在基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 中的坐标为 $x = (x_1, x_2, \ldots, x_n)^T$, 在基 $\beta_1, \beta_2, \ldots, \beta_n$ 中的坐标为 $y = (y_1, y_2, \ldots, y_n)^T$ 则坐标转换公式为 x = Cy

$$\gamma = (\alpha_1, \dots, \alpha_n) X$$

$$= (\beta_1, \dots, \beta_n) Y$$

$$= (\alpha_1, \dots, \alpha_n) CY \implies x = Cy$$

- 1. (2015, 数一) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为 R^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 。
 - (I) 证明向量组 $\beta_1, \beta_2, \beta_3$ 为 R^3 的一个基:
 - (II) 当 k 为何值时,存在非零向量 ξ 在基 $\alpha_1,\alpha_2,\alpha_3$ 与基 β_1,β_2,β_3 下的坐标相同,并求 所有的 ξ 。

Solution

(1) 有题设有

$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k+1 \end{pmatrix}$$

又因为
$$\begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k+1 \end{vmatrix} = 4 \neq 0$$
 从而 β_i 线性无关, 因此 β_i 为 \mathbb{R}^3 的一个基.

(2) 设 ξ 在基 (α_i) 和 (β_i) 下的坐标为 x, 则

$$\xi = (\alpha_i)x = (\beta_i)x = (\alpha_i)Cx$$

得齐次方程 (C-E)x = O 有非零解, 对其做初等初等行变换, 有

$$(C - E) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{pmatrix}$$

当 k=0 的时候, 方程组有非零解, 所有非零解为 $x=k(-1,0,1)^T$, k 为任意常数, 此时在两个基下坐标相同的所有非零向量为

$$\xi = k(\alpha_i)(-1, 0, 1)^T = k(\alpha_3 - \alpha_1)$$