Chapter 6: Correlation

Contents

1	Starting example: Temperature data	1					
2 Pearson correlation coefficient							
	2.1 Definition	9					
	2.2 Properties	4					
	2.3 Population correlation coefficient	Ę					
	2.4 Correlation coefficients in R	(
3	Spearman correlation coefficient	E					

1 Starting example: Temperature data

${\bf Example}\ \textit{Temperature}$

Import the data set $temp_warm.txt$ as temperature.

We are interested in the relationship between annual temperature (annual) on the one hand and Latitude and Longitude on the other hand.

head(temperature[15:19])

шш		. لـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	T - 4 - 4 - 4 - 4 - 4	T	۸	
##		Ampiitude	Latitude	Longitude	Area	annuar
##	1	14.6	52.2	4.5	West	9.9
##	2	18.3	37.6	23.5	South	17.8
##	3	18.5	52.3	13.2	West	9.1
##	4	14.4	50.5	4.2	West	10.3
##	5	23.1	47.3	19.0	East	10.9
##	6	17.5	55.4	12.3	North	7.8

- We want to know if there is a linear relationship between annual temperature (annual) and Latitude and between annual temperature (annual) and Longitude.
- If such a relationship exists, how can we express it? How can we model this?
- And if we can model it, can we also use it for prediction?

We start by simply making a scatter plot, which visualizes the relationship between annual temperature (annual) and the variables Latitude and Longitude.

```
annual <- temperature$annual
lat <- temperature$Latitude
long <- temperature$Longitude
combine <- data.frame(annual, lat, long)
pairs(combine)</pre>
```


- There seems to be a decreasing trend between annual temperature and latitude.
- There seems to be a trend between annual temperature and longitude, but this is not so clear.

A first possibility to express a linear relationship between continuous variables, is to use the **correlation** coefficient.

2 Pearson correlation coefficient

2.1 Definition

The **Pearson correlation coefficient** is expressed by

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{S_X} \cdot \frac{Y_i - \overline{Y}}{S_Y} \right).$$

It gives an **indication if there is a** *linear* **relationship** between two continuous variables X and Y and it expresses how strong this linear relationship is. n is the total number of observations and S is the sample standard deviation.

r always has a value between -1 and +1.

The correlation coefficient r takes the value -1 or 1 if the pairs (x, y) are on a straight line: +1 if it is an increasing straight line and -1 if the line decreases.

Some extra graphs:

2.2 Properties

- $-1 \le r \le 1$ r < 0: negative linear trend between the x_i and y_i r > 0: positive linear trend between the x_i and y_i

- r = -1: points (x_i, y_i) are on a decreasing straight line
- r = +1: points (x_i, y_i) are on an increasing straight line
- r = 0 does not mean that there is no relation between x_i and y_i . It means that there is no LINEAR relation between x_i and y_i .

2.3 Population correlation coefficient

The sample correlation coefficient r is an estimate of the population correlation coefficient ρ , which is expressed by

$$\rho = E\left(\frac{X - \mu_X}{\sigma_X} \cdot \frac{Y - \mu_Y}{\sigma_Y}\right)$$

Hypothesis test:

Step 1

Often, we are interested in the following hypothesis about ρ :

$$H_0: \rho = 0$$
 versus $H_1: \rho \neq 0$

Step 2

We usually take $\alpha = 0.05$.

Step 3

We use the following test statistic:

$$T = \sqrt{n-2} \cdot \frac{r}{\sqrt{1-r^2}} \approx t_{n-2}$$

This test statistic T follows a t-distribution (also called student distribution) with n-2 degrees of freedom if H_0 holds and if X and Y are normally distributed.

Step 4

Compute the test statistic and the p-value.

Step 5

Based on the corresponding p-value, we formulate the appropriate conclusion.

2.4 Correlation coefficients in R

Let's compute the correlation coefficients in R.

In R

```
cor(combine)
##
              annual
                            lat
                                       long
## annual 1.0000000 -0.9027853 -0.4769927
          -0.9027853
                      1.0000000
                                 0.3154657
          -0.4769927
                      0.3154657
                                 1.0000000
## long
cor.test(annual, lat)
   Pearson's product-moment correlation
##
##
## data: annual and lat
## t = -12.058, df = 33, p-value = 1.226e-13
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
  -0.9501724 -0.8146160
## sample estimates:
##
          cor
## -0.9027853
cor.test(annual, long)
##
##
   Pearson's product-moment correlation
##
## data: annual and long
## t = -3.1176, df = 33, p-value = 0.003765
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6991112 -0.1709140
## sample estimates:
##
## -0.4769927
```

Remark:

In case the distribution of the variables is not normal, then Spearman correlations should be used.

3 Spearman correlation coefficient

The **Spearman correlation coefficient** r_S is a non-parametric alternative to the Pearson correlation coefficient which should be used when the distribution of the variables is not normal. The Spearman rank correlation coefficient (r_S) is an ordinary correlation coefficient based on the ranks (r_{ij}) of the data. It is expressed by

$$r_S = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{r_{Xi} - \overline{r}_X}{S_{r_X}} \cdot \frac{r_{Yi} - \overline{r}_Y}{S_{r_Y}} \right)$$

 ${\bf Example:} \ \, {\it Temperature}$

1. Check the normality of the variables

```
shapiro.test(annual)
```

##

```
Shapiro-Wilk normality test
##
## data: annual
## W = 0.93475, p-value = 0.03879
Normality is rejected for the variable annual.
  2. Compute Spearman correlations
cor(combine, method = "spearman")
              annual
                                      long
## annual 1.0000000 -0.8668488 -0.5276026
## lat
         -0.8668488 1.0000000 0.2670403
## long -0.5276026 0.2670403 1.0000000
cor.test(annual, lat, method = "spearman")
## Warning in cor.test.default(annual, lat, method = "spearman"): Cannot compute
## exact p-value with ties
##
##
   Spearman's rank correlation rho
##
## data: annual and lat
## S = 13329, p-value = 1.669e-11
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
          rho
## -0.8668488
cor.test(annual, long, method = "spearman")
## Warning in cor.test.default(annual, long, method = "spearman"): Cannot compute
## exact p-value with ties
##
   Spearman's rank correlation rho
##
##
## data: annual and long
## S = 10907, p-value = 0.001126
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
          rho
## -0.5276026
```