

Escola Prof. Reynaldo dos Santos

Vila Franca de Xira

Biologia e Geologia - 11º ano - Teste de Avaliação Outubro 2017

Tema 6 Biologia: DNA, Síntese de Proteínas, Ciclo celular, Mitose, Diferenciação

Leia atentamente os textos e as questões que se seguem e indique a letra da opção correta no local indicado na folha de respostas no final.

- A figura ao lado representa esquematicamente uma porção de molécula de DNA.
 - **1.1.** X, Y e Z correspondem respetivamente a...
 - a) Guanina, Ribose, Fosfato
 - b) Citosina, Ribose, Fosfato
 - c) Fosfato, Desoxirribose, Citosina
 - d) Guanina, Desoxirribose, Fosfato
 - **1.2.** Durante a fase S do ciclo celular em N atua uma enzima denominada...
 - a) RNA polimerase
 - b) Primase
 - c) DNA polimerase
 - d) Helicase

- a) AeB
- **b)** A e C
- c) BeD
- d) BeC
- 1.4. O que representa o número 1 da figura ao lado?
- 1.5. O número 2 da figura representa...
 - a) Nucleótidos de RNA complementares à cadeia original de DNA
 - b) Nucleótidos de DNA complementares à cadeia original de DNA
 - c) A enzima helicase
 - d) A RNA polimerase
- **2.** A figura ao lado mostra um esquema do processo de síntese de um péptido numa célula eucariótica.
 - **2.1.** A moléculas identificadas na figura pelas letras H e F ...
 - a) Diferem na sua composição apenas na pentose que as integra.
 - b) Diferem na sua composição apenas numa base azotada.
 - c) Não diferem na sua composição química tendo apenas bases complementares
 - d) Diferem na sua composição na pentose e numa base azotada.

- **2.2.** Os processos X e Y correspondem respetivamente a...
 - a) Processamento e tradução
 - b) Replicação e tradução
 - c) Replicação e processamento
 - d) Transcrição e tradução
- **2.3.** Identifique as estruturas referenciadas pelas letras A, B, D e E da figura.
- **2.4.** Aos aminoácidos **Leu** e **His** correspondem respetivamente os anticodões...
 - a) AAC e GUA
 - b) UUG e CAU
 - c) AAC e GTA
 - d) UUC e GAU
- **2.5.** Ordene as expressões identificadas pelas letras de A a E, de modo a reconstituir a sequência de acontecimentos necessários à síntese de uma proteína num eucarionte.
 - A. Separação das subunidades do ribossoma.
 - B. Formação de um polímero de ribonucleótidos contendo intrões.
 - C. Produção de uma molécula de mRNA maduro.
 - **D.** Ligação da RNA polimerase a desoxirribonucleótidos.
 - **E.** Transporte de aminoácidos pelo tRNA, para o local de síntese.
- **3.** Para comprovar o modelo de replicação do DNA foi efetuada uma experiência usando bactérias *E. coli* como sistema modelo. Começou-se cultivando *E. coli* num meio de cultura 1, com nucleótidos de timina marcados radioactivamente com trítio (H³). Quando cultivadas nesse meio, as bactérias assimilaram a timina radioativa e utilizaram-na para sintetizar novas moléculas biológicas, incluindo o DNA. Após muitas gerações crescendo em meio com H³ as bactérias foram trocadas para meio de cultura 2 contendo um isótopo normal de Hidrogénio leve não radioativo e o crescimento foi mantido por várias gerações. O DNA produzido após a mudança teria que ser composto por timina incorporando hidrogénio normal.
 - **3.1.** Selecione a única opção que apresenta a distribuição dos nucleótidos radioativos e não radioativos em duas moléculas de DNA, provenientes da replicação de uma molécula de DNA sem elementos radioativos, após incubação num meio com timina radioativa, representada por .

- **3.2.** Por ter atingido a máxima espiralização dos seus cromossomas, uma célula do meio de cultura 2 permite identificar a...
 - a) metafase, possuindo cada cromatídeo uma cadeia polinucleotídica radioativa.
 - b) anafase, possuindo cada cromossoma uma cadeia polinucleotídica radioativa.
 - c) metafase, possuindo cada cromatídeo duas cadeias polinucleotídicas radioativas.
 - d) anafase, possuindo cada cromossoma duas cadeias polinucleotídicas radioativas.
- **3.3.** Se um gene responsável pela síntese duma enzima que intervém na replicação do DNA for constituído por 510 pares de nucleótidos entre eles 180 com Guanina como base nitrogenada, o número de Timinas no DNA deste gene é de...
 - a) 330
 - **b)** 75
 - c) 180
 - d) 150
- 4. O estudo do ciclo celular tem implicações práticas no campo da saúde humana. O cancro, por exemplo, é uma doença que resulta, entre outros aspetos, do facto de a célula perder o controlo da sua divisão. As células possuem diversos mecanismos de regulação e de controlo do ciclo celular. A figura ao lado representa esquematicamente um ciclo celular, cujos mecanismos de regulação estão relacionados com determinados genes e com complexos proteicos citoplasmáticos, formados pela ligação de dois tipos de proteínas: as CDK e as ciclinas. Em todas as células eucarióticas, a progressão do ciclo celular é controlada pelas sucessivas ativação e inativação de diferentes complexos ciclina-CDK. A ativação e a inativação destes complexos estão dependentes da transcrição e da proteólise (lise proteica), respetivamente.

Nota – As letras X, Y e Z representam fases do ciclo celular e os números de 1 a 4 identificam células.

4.1. No ciclo representado, se a quantidade de

DNA na fase X for Q, então as quantidades de DNA no núcleo da célula, na fase Z, e no núcleo de cada uma das células, no final da fase mitótica, serão, respetivamente,

- a) Q e 2Q.
- **b)** Q/2 e Q.
- c) 2Q e Q.
- **d)** Q e Q/2.
- **4.2.** Na fase assinalada com a letra
 - a) Z, ocorre a replicação conservativa do DNA.
 - **b)** Z, ocorre a replicação semiconservativa do DNA.
 - c) Y, ocorre a replicação conservativa do DNA.
 - d) Y, ocorre a replicação semiconservativa do DNA.

- **4.3.** Refira a fase da mitose em que se encontra cada uma das células identificadas com os números 1 e 2 na figura.
- 4.4. Durante a transcrição da informação genética ocorre
 - a) a intervenção da RNA polimerase.
 - b) a formação de péptidos simples.
 - c) a intervenção dos ribossomas.
 - d) a adição de nucleótidos de timina.
- **4.5.** As ciclinas são proteínas que determinam a progressão do ciclo celular. A ciclina B promove o desenvolvimento da fase mitótica, nomeadamente a desorganização do invólucro nuclear e a condensação dos cromossomas. Caso a proteólise da ciclina B de determinada célula não aconteça, é de prever que
 - a) a célula não consiga completar a mitose.
 - b) se verifique uma paragem do ciclo celular no período S.
 - c) não aconteça a Prófase.
 - d) ocorra a reorganização do invólucro nuclear.
- **4.6.** Ordene as expressões identificadas pelas letras de A a E, de modo a reconstituir a sequência de acontecimentos na mitose.
 - A. Divisão dos centrómeros.
 - **B.** Desagregação da membrana nuclear.
 - C. Centrómeros na placa equatorial.
 - **D.** Citocinése.
 - **E.** Cromatídeos separam-se para polos opostos.
- **5.** A cada um dos acontecimentos que de seguida se enunciam, faça corresponder a uma das letras das fases do ciclo celular existentes na chave seguinte:

Chave: \mathbf{A} – Metáfase; \mathbf{B} – Fase G1; \mathbf{C} – Anáfase; \mathbf{D} – Prófase; \mathbf{E} – Telófase; \mathbf{F} – Fase S

- **5.1.** Cromossomas só com um cromatídeo puxados pelo fuso mitótico
- 5.2. Divisão do centrómero
- **5.3.** Centrómeros na placa equatorial
- **5.4.** Desaparecimento dos nucléolos
- 5.5. Replicação do DNA
- **5.6.** Síntese de proteínas
- 5.7. Descondensação da cromatina
- **6.** Considere o código genético expresso na tabela ao lado e a sequência de bases da cadeia de DNA que se segue.

O tripleto assinalado é responsável pela ligação de um aminoácido _____ mas uma mutação por substituição da base do meio pode levar à ligação neste local de um

- a) ...Asn ...Arg
- **b)** ...Ser ...Arg
- c) ...Asn ...Thr
- d) ...Val ...Asn

Segunda base do codão											
base do codão		J	C	Α	G						
	U	UUU Phe UUC Phe UUA Leu UUG Leu	UCU Ser UCC Ser UCA Ser UCG Ser	UGU Cys UGC Cys UGA STOP UGG Trp	UCAG	ão					
	С	CUU Leu CUC Leu CUA Leu CUG Leu	CCU Pro CCC Pro CCA Pro CCG pro	CAU His CAC His CAA GIn CAG GIn	CGU Arg CGC Arg CGA Arg CGG Arg	$\supset \cup \lessdot G$	ise do codão				
Primeira ba	Α	AUU lle AUC lle AUA lle AUG Met	ACU Thr ACC Thr ACA Thr ACG Thr	AAU Asn AAC Asn AAA Lys AAG Lys	AGU Ser AGC Ser AGA Arg AGG Arg	UCAG	Terceira base				
	G	GUU Val GUC Val GUA Val GUC Val	GCU Ala GCC Ala GCA Ala GCG Ala	GAU Asp GAC Asp GAA Glu GAG Glu	GGU Gly GGC Gly GGA Gly GGG Gly	UCAG					

Escola Prof. Reynaldo dos Santos

Vila Franca de Xira

Biologia e Geologia • 11º ano • Teste de Avaliação

Tema 6 Biologia: DNA, Síntese de Proteínas, Ciclo celular, Mitose, Diferenciação

Outubro 2017

Classificação:

ЛЕ:									r	าº		turma	:	
					Folha	a de P	rova							
Cot.	Iten	Respost	а											
0,8	1.1.	D												
0,8	1.2.	D												
0,8	1.3.	D												
0,7	1.4.	Fragmento de Okazaki												
0,8	1.5.	Α												
0,8	2.1.	D												
0,8	2.2.	D												
	2.3.	A – Ligaç	ão p	eptídi	са									
		B – Mem	bran	a Nuc	lear									
1,6		D – Subu	nida	de pe	quena	do r	iboss	oma						
		E – RNA d	de tr	ansfe	rência									
0,8	2.4.	Α												
1,2	2.5.	D – B –	C – E	- A										
0,8	3.1.	В												
0,8	3.2.	Α												
0,8	3.3.	Α												
0,8	4.1.	С												
0,8	4.2.	D												
1,2	4.3.	1 - Metáf				2	- Ar	náfase						
0,8	4.4.	Α												
0,8	4.5.	Α												
1,2	4.6.	B – C – A	– E -	D										
2,1	5.	5.1. C	5.2	. C	5.3.	Α	5.4.	D	5.5.	F	5.6.	В	5.7.	Ε
0,8	6.	С			1				1					