

Master's Degree in Data Analysis, Process Improvement and Decision Support Engineering

Joaquín Martínez-Minaya, 2024-12-09

VAlencia BAyesian Research Group
Statistical Modeling Ecology Group
Grupo de Ingeniería Estadística Multivariante
jmarmin@eio.upv.es

Heart Disease

- The study examines the relationship between:
 - \circ the **myocardial infarction** (MI): y=1 if MI occurrence, or y=0 if No MI occurrence; and
 - \circ **Age60**: Patients aged ≥ 60 (1) versus < 60 (0).
 - \circ Systolic blood pressure (SBP140): SBP ≥ 140 mmHg (1) versus < 140 mmHg (0).

• Objective:

- Evaluate the association of age60 and sbp140 with MI probability.
- Interpret the odds ratio (OR) for both predictors.

Table: Summary of Data from Study

у	age60	sbp140
0	<60	>=140
0	>=60	<140
0	<60	>=140
0	>=60	>=140
0	>=60	<140
1	<60	<140

Bayesian Logistic Regression Model

- Logistic regression is used to model MI's probability based on age60 and sbp140.
- Likelihood

$$y_i \sim \operatorname{Bernoulli}(\pi_i) \,, i = 1, \ldots, 400 \,,$$

using logit link:

$$logit(\pi_i) = eta_0 + eta_1 age 60_i + eta_2 sbp 140_i$$

Prior distributions (weakly-informative):

$$eta_0 \sim \mathcal{N}(0, 10^3), \; eta_1 \; \sim \mathcal{N}(0, 10^3), \; eta_2 \; \sim \mathcal{N}(0, 10^3),$$

Note: There are no conjugate priors available for the logistic regression model.

Table of contents

- 1. Bayesian computation. MCMC methods
- 2. Bayesian Software
- 3. Hierarchical Bayesian models

Monte Carlo Methods

Monte Carlo Simulation

 Draw realizations of a random variable for which only its density function is (fully or partially) known.

$$x \leftarrow \text{rnorm}(1000, \text{mean} = 1, \text{sd} = 2)$$

Monte Carlo Integration

- Computing the mean of a N(1, 2),
 - $ext{\circ} E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$
- Using Monte Carlo integration:
 - Simulate from N(1, 2^2): ϕ^1, \ldots, ϕ^N .
 - \circ Compute the mean of the simulated values: $E(X) pprox rac{1}{N} \sum_{i=1}^N \phi^i$
- Doing summary of the simulation, we compute more measures:

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-5.824	-0.296	1.04	1.031	2.342	9.789

Markov Chain Monte Carlo

- A Markov chain is a **stochastic sequence of numbers** where each value in the sequence depends only upon the last.
- If $\phi^1,\phi^2,\ldots,\phi^N$ is a sequence of numbers, then ϕ^2 is only a function of ϕ^1,ϕ^3 of ϕ^2 , etc.
- Under certain conditions, the distribution over the states of the Markov chain will converge to a stationary distribution.
- The stationary distribution is independent of the initial starting values specified for the chains.
- AIM: construct a Markov chain such that the stationary distribution is equal to the posterior distribution $p(\theta \mid x)$.
- We combine Markov Chain with Monte Carlo simulation --> Markov chain Monte Carlo (MCMC).
- They were proposed by first time in the Statistics area by Gelfand and Smith (1990).

Posterior distribution

Estimating the probability to score a penalty

- Likelihood

$$p(oldsymbol{y} \mid \pi) = \pi^k (1-\pi)^{N-k}$$

- Prior distribution

$$p(\pi) = \pi^{a-1} (1-\pi)^{b-1}$$

- Posterior distribution

$$p(\pi \mid oldsymbol{y}) \propto p(oldsymbol{y} \mid \pi) imes p(\pi) \propto \pi^{k+a-1} (1-\pi)^{N-k+b-1} = p^*(\pi)$$

MCMC: Metropolis-Hastings (MH)

- 1. Starting value $\pi^{(0)}$
- 2. For $t=1,\ldots,T$
 - \circ **We define a proposal distribution** (Usually similar to the objective distribution). In this case, $q(\pi \mid \pi^{(t-1)}) \sim logit N(\pi^{(t-1)}, \sigma = 0.5)$. **Simulate** $\pi^{(prop)}$ from it.
 - Compute probability of acceptance:

$$lpha = \min \left(1, rac{p^*(\pi^{(prop)}) q(\pi^{(t-1)} \mid \pi^{(prop)})}{p^*(\pi^{(t-1)}) q(\pi^{(prop)} \mid \pi^{(t-1)})}
ight)$$

- \circ Generate a **random number** u from the Uniform(0, 1).
 - ullet $\pi^{(t+1)}=\pi^{(prop)}$, if $u\geq lpha$,
 - ullet $\pi^{(t+1)}=\pi^{(t)}$, if u<lpha
- 3. Finally, we obtain $\pi^0, \pi^1, \dots, \pi^T$ which is a simulation of the posterior distribution.

MCMC: Metropolis-Hastings (MH)

Approaching probability of score using MH

Visual Metropolis-Hastings

• Play the video from **minute 4:44**.

Tracing the chain. Is the chain autocorrelated?

MCMC. Burnin and thin

Software

- JAGS
- Stan
 - brms: allow for easy Bayesian
 Inference using Hamiltonian Monte
 Carlo
- INLA (it does not use MCMC methods, but it is a very powerful tool)
 - inlabru : facilitate Bayesian Inference in Spatio-temporal models
- MCMC pack (With this R-package, you can use MCMC methods with similar notation as usually use in R)
- Nimble

Bayesian Logistic Regression using JAGS

Likelihood

$$y_i \sim ext{Bernoulli}(\pi_i)\,, i=1,\ldots,400\,,$$
using logit link: $ext{logit}(\pi_i)=eta_0+eta_1\, ext{age}60_i+eta_2\, ext{sbp}140_i$

 Prior distributions (weaklyinformative):

$$eta_0 \sim \mathcal{N}(0, 10^3),$$
 $eta_1 \sim \mathcal{N}(0, 10^3),$ $eta_2 \sim \mathcal{N}(0, 10^3).$

```
model string ← "
model {
  for (i in 1:N) {
    y[i] \sim dbern(pi[i])
    logit(pi[i]) \leftarrow beta0 +
       beta1 \star age60[i] +
       beta2 \star sbp140[i]
  # Priors for regression coefficients
  beta0 \sim dnorm(0, 0.001)
  beta1 \sim dnorm(0, 0.001)
  beta2 \sim dnorm(0, 0.001)
```

Check S1-JAGS-heart_attack.Rmd for the complete solution

Bayesian Logistic Regression using brms

Likelihood

$$y_i \sim \operatorname{Bernoulli}(\pi_i)\,, i=1,\ldots,400\,,$$
using logit link:

$$\operatorname{logit}(\pi_i) = \beta_0 + \beta_1 \operatorname{age} 60_i + \beta_2 \operatorname{sbp} 140_i$$

• **Prior distributions** (weakly-informative):

$$eta_0 \sim \mathcal{N}(0, 10^3), \ eta_1 \sim \mathcal{N}(0, 10^3), \ eta_2 \sim \mathcal{N}(0, 10^3).$$

```
formula ← bf(y ~ age60 + sbp140, fami

# Fit the model using brms

fit_brms ← brm(formula,
    data = data_hattack,
    prior = priors,
    chains = 3,  # Number of MCMC
    iter = 5000,  # Total number of
    warmup = 1000,  # Number of itera
    thin = 1,  # Thinning interv
    seed = 123,  # Seed for reproce
)
```

Check S1-brms-heart_attack.Rmd for the complete solution

Exercise: Predicting diabetes

older. The dataset, contains diagnostic medical features and an additional zone variable (zona1 to zona30), which categorizes patients geographically (Areas has been simulated).

Aim:

Examine the relationships between medical predictors and the likelihood of diabetes.

The dataset includes features such as:

- **Pregnancies**: Number of pregnancies.
- Glucose: Plasma glucose levels.
- **BloodPressure**: Diastolic blood pressure (mm Hg).
- **SkinThickness**: Triceps skin fold thickness (mm).
- Insulin: 2-hour serum insulin $\mu U/ml$.
- **BMI**: Body mass index kg/m^2 .
- **DiabetesPedigreeFunction**: Family history risk score.
- **Age**: Age in years.
- **Zone**: Zone of residence, from zona1 to zona30.
- Outcome: Indicator of diabetes diagnosis
 (0 = No, 1 = Yes).

Exercise: Predicting diabetes

```
# Load dataset
data_diab ← readxl::read_excel("../data/diabetes.xlsx")
kable(head(data_diab))
```

Pr	egnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
	6.000000	148	72	35.00000	155.5482	33.6	0.627	50
	1.000000	85	66	29.00000	155.5482	26.6	0.351	31
	8.000000	183	64	29.15342	155.5482	23.3	0.672	32
	1.000000	89	66	23.00000	94.0000	28.1	0.167	21
	4.494673	137	40	35.00000	168.0000	43.1	2.288	33
	5.000000	116	74	29.15342	155.5482	25.6	0.201	30

Predicting diabetes: Bayesian GLM

Logistic regression models the probability of diabetes based on selected predictors.

Likelihood

$$y_i \sim \mathrm{Bernoulli}(\pi_i), \quad i = 1, \dots, n,$$

using a logit link:

$$\operatorname{logit}(\pi_i) = eta_0 + eta_1 \operatorname{Glucose}_i + eta_2 \operatorname{BMI}_i + eta_3 \operatorname{Age}_i.$$

• **Prior distributions** (weakly-informative):

$$eta_0 \sim \mathcal{N}(0, 10^3), \; eta_1 \; \sim \mathcal{N}(0, 10^3), \; eta_2 \; \sim \mathcal{N}(0, 10^3), \; eta_3 \; \sim \mathcal{N}(0, 10^3).$$

Example: Scoring penalties Valencia C. F.

• Liga Santander is one of the famous league around the world. In this example, we use data of the last 10 seasons in order to know the chance of success (π) to score a penalty for **Valencia Club de Fútbol**.

Again we talk about football

- We consider same experiment in 10 different teams
- How can we model this situation? and what can we conclude?
- More generally, how can we incorporate random effects?

Three ways to do so

1. All teams have the same characteristics.

- Apply a **joint analysis** to all the teams.
- The probability of score a penalty (π) is the **same in all teams**.
- Observations are independent and identically distributed.

$$y_i \mid \pi \sim \mathrm{Ber}(\pi)$$

 $\pi \sim \mathrm{Beta}(a,b)$, with a and b fixed

Three ways to do so

2. Each team is different and has nothing in common with the others.

- Apply an analysis to each team separately.
- ullet Assume a **different proportion of** $oldsymbol{presence}$ in each one: $\pi_j,\,j=1,\ldots,J.$ In this case, J=10.
- Observations are independent but are distributed differently in each team.
- **Likelihood** is different for each team. For each j

$$y_{ij} \mid \pi_j \sim \mathrm{Ber}(\pi_j)$$

 $\pi_j \sim \operatorname{Beta}(a_j, b_j)$, with a_j and b_j fixed

In view of the two possible modelings

- Is it reasonable to assume **the same proportion of presence** in all teams?
- There are reasons to suggest that **there is variability in those proportions**:
 - The teams do not behave the same way.
 - The observations of the same team are more similar among themselves than when they are from different teams.
- Is it reasonable to think that there is no relationship between the proportions of presence of the different teams?

Although not identical, **teams** are at least **similar**.

Three ways to do so

3. Consider a hierarchical model.

- The parametric vector $\pi = \pi_1, \dots, \pi_J$ is a random sampling from a common distribution that depends on a vector of hyperparameters, α and β , partial or totally unknown.
- The model

Predicting diabetes: Bayesian GLM

Logistic regression models the probability of diabetes based on selected predictors.

Likelihood

$$y_i \sim \mathrm{Bernoulli}(\pi_i), \quad i = 1, \dots, n,$$

using a logit link:

$$\operatorname{logit}(\pi_i) = eta_0 + eta_1 \operatorname{Glucose}_i + eta_2 \operatorname{BMI}_i + eta_3 \operatorname{Age}_i.$$

• **Prior distributions** (weakly-informative):

$$eta_0 \sim \mathcal{N}(0, 10^3), \; eta_1 \; \sim \mathcal{N}(0, 10^3), \; eta_2 \; \sim \mathcal{N}(0, 10^3), \; eta_3 \; \sim \mathcal{N}(0, 10^3).$$

• Geographical zone: Additional variability is captured by including the patient's zone (zona1 to zona30) as a random effect.

Diabetes. Bayesian Mixed GLMs

Logistic regression models the probability of diabetes, including a random effect for geographical zones to account for variability.

Likelihood

$$y_i \sim \mathrm{Bernoulli}(\pi_i), \quad i = 1, \dots, n, \ \mathrm{logit}(\pi_i) = eta_0 + eta_1 \, \mathrm{Glucose}_i + eta_2 \, \mathrm{BMI}_i + eta_3 \, \mathrm{Age}_i + u_{\mathrm{zone}[i]}.$$

Prior distributions (weakly-informative):

$$eta_j \sim \mathcal{N}(0, 10^3), \, j = 0, \dots, 3 \ u_{\mathrm{zone}[i]} \sim \mathcal{N}(0, \sigma_u^2),$$

• **Hyperparameters**: The precision σ_u is modeled to capture the degree of heterogeneity across geographical zones (zona1 to zona30).

$$\sigma_u \sim \mathrm{Cauchy}(0,2).$$

Diabetes using brms

```
# Define formula with a random effect for zone
formula \leftarrow bf(Outcome \sim Glucose + BMI + Age + (1 | zone), family = bernoulli())
# Set priors
priors \leftarrow c(
  prior(normal(0, 1000), class = "b"),  # Priors for fixed effects
  prior(cauchy(0, 2), class = "sd", group = "zone"), # Prior for random effect
  prior(normal(0, 1000), class = "Intercept") # Prior for intercept
# Fit the model using brms
fit brms \leftarrow brm(
  formula = formula,
  data = data_diab,
  prior = priors,
  chains = 4,
  iter = 4000,
 warmup = 1000)
```

What we have learned so far

- The biggest challenge for Bayesian inference has always been the computational power that more complex models require.
- MCMC methods allow computationally estimating posterior distributions that are analytically intractable.
- Today, there are many, many teams of researchers developing computational techniques for computing posterior distributions.

References

Books

- Stan & R: Lambert, B. (2018). A Student's Guide to Bayesian Statistics. SAGE Publications.
- JAGS: Plummer, M. (2019). JAGS User Manual Version 4.3.0.
- **OpenBUGS**: Cowles, M. K. (2013). Applied Bayesian statistics: with R and OpenBUGS examples (Vol. 98). Springer Science & Business Media.
- **WinBUGS**: Ntzoufras, I. (2011). Bayesian modeling using WinBUGS. John Wiley & Sons.
- **Stan**: Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin (2013). Bayesian Data Analysis. Chapman and Hall/CRC
- INLA: Gómez-Rubio, V. (2020). Bayesian inference with INLA. CRC Press.

References

Blogs

- http://wlm.userweb.mwn.de/R/wlmRcoda.htm
- https://rpubs.com/FJRubio/IntroMCMC
- https://darrenjw.wordpress.com/tag/mcmc/
- https://www.tweag.io/blog/2019-10-25-mcmc-intro1/

Master's Degree in Data Analysis, Process Improvement and Decision Support Engineering

Joaquín Martínez-Minaya, 2024-12-09

VAlencia BAyesian Research Group

Statistical Modeling Ecology Group

Grupo de Ingeniería Estadística Multivariante

jmarmin@eio.upv.es

