Import Important Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Load Dataset

```
df = pd.read_csv("student_scores.csv")
```

Let's Analyze Dataset

Analyze attributes

```
df.head(3)
   Unnamed: 0
               Gender EthnicGroup
                                            ParentEduc LunchType
TestPrep \
               female
                               NaN
                                    bachelor's degree standard
none
               female
                           group C
                                          some college standard
1
NaN
               female
                           group B
                                      master's degree standard
2
none
  ParentMaritalStatus PracticeSport IsFirstChild NrSiblings
TransportMeans
              married
                           regularly
                                               yes
                                                            3.0
school_bus
1
                           sometimes
                                                            0.0
              married
                                               yes
NaN
               single
                           sometimes
                                                            4.0
                                               yes
school bus
                              ReadingScore
                                             WritingScore
  WklyStudyHours
                  MathScore
0
             < 5
                                                       74
                          71
                                         71
          5 - 10
                          69
                                         90
                                                       88
1
2
                          87
                                         93
                                                       91
             < 5
df.tail()
       Unnamed: 0 Gender EthnicGroup
                                                 ParentEduc
LunchType
                                                high school
30636
              816
                    female
                               group D
standard
30637
              890
                      male
                               group E
                                                high school
```

standard						
30638	911	female	NaN	hi	gh school	
free/red						
30639	934	female	group D	associate	's degree	
standard						
30640	960	male	group B	som	e college	
standard						
	T	L NA	L-161-1	D		
	•	arentmari	taistatus	PracticeSpo	rt IsFirstCh	1110
NrSiblin 30636	gs \ none		single	sometim	0.5	no
2.0	Hone		Single	Sometim	c 5	110
30637	none		single	regular	l v	no
1.0	Hone		Single	regular	c y	110
	ompleted		married	sometim	es	no
1.0						
30639 c	ompleted		married	regular	ly	no
3.0						
30640			married	nev	er	no
1.0						
т				MathCasas	D = = = = = = = = = = = = = = = = = = =	
	ansportMea	ns wktyst	uayHours	MathScore	ReadingScore	
WritingS 30636	school b	ıc	5 - 10	59	61	
65	361100 €_0	u J	5 - 10	33	01	
30637	priva [.]	te	5 - 10	58	53	
51	p : = 7 v					
30638	priva [.]	te	5 - 10	61	70	
67						
30639	school_b	us	5 - 10	82	90	
93						
30640	school_b	US	5 - 10	64	60	
58						

Check how many rows and columns are present in dataset

df.shape (30641, 15)

Get info of dataset

```
0
    Unnamed: 0
                        30641 non-null
                                       int64
1
    Gender
                        30641 non-null
                                       object
2
    EthnicGroup
                        28801 non-null object
3
    ParentEduc
                        28796 non-null object
4
    LunchType
                        30641 non-null object
5
    TestPrep
                        28811 non-null object
6
    ParentMaritalStatus 29451 non-null object
7
                        30010 non-null
                                       object
                        29737 non-null object
8
9
    NrSiblings
                        29069 non-null float64
10 TransportMeans
                        27507 non-null
                                       object
11 WklyStudyHours
                        29686 non-null
                                       object
12 MathScore
                        30641 non-null
                                       int64
13 ReadingScore
                        30641 non-null int64
14 WritingScore
                        30641 non-null
                                       int64
dtypes: float64(1), int64(4), object(10)
memory usage: 3.5+ MB
```

Analyze columns one by one

We see that their are some missing values present in EthnicGroup column

Describe data

```
df.describe()
                        NrSiblings
                                                   ReadingScore
         Unnamed: 0
                                        MathScore
WritingScore
                      29069.000000
count 30641.000000
                                     30641.000000
                                                    30641.000000
30641.000000
         499.556607
                          2.145894
                                        66.558402
                                                       69.377533
mean
68.418622
         288.747894
                          1.458242
                                        15.361616
                                                       14.758952
std
15.443525
                          0.000000
           0.000000
                                         0.00000
                                                       10.000000
min
4.000000
         249.000000
25%
                          1.000000
                                        56.000000
                                                       59.000000
58.000000
         500.000000
                          2,000000
                                        67.000000
                                                       70.000000
50%
69.000000
75%
         750,000000
                          3,000000
                                        78.000000
                                                       80,000000
79.000000
         999.000000
                          7.000000
                                       100.000000
                                                      100.000000
max
100.000000
df.isna().sum() ## Check how many values are null
Unnamed: 0
                           0
                           0
Gender
EthnicGroup
                        1840
ParentEduc
                        1845
LunchType
TestPrep
                        1830
ParentMaritalStatus
                        1190
PracticeSport
                         631
IsFirstChild
                         904
NrSiblings
                        1572
TransportMeans
                        3134
WklyStudyHours
                         955
MathScore
                           0
                           0
ReadingScore
WritingScore
                           0
dtype: int64
```

Heatmap of missing values

```
plt.figure(figsize=(12, 8))
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
```

```
plt.title('Missing Data Heatmap')
plt.show()
```


Let's fill and drop values

```
plt.figure(figsize=(10,3))
sns.countplot(x=df['ParentEduc'])
plt.title("Count Plot of Parent's Education")
plt.show()
```



```
df['ParentEduc'].value_counts()
ParentEduc
some college
                      6633
high school
                      5687
associate's degree
                      5550
some high school
                      5517
bachelor's degree
                      3386
master's degree
                      2023
Name: count, dtype: int64
## Let's check degree on the basis of Parent Marital Status
plt.figure(figsize=(10,3))
sns.countplot(x=df['ParentEduc'], hue=df['ParentMaritalStatus'])
plt.title("Analyze Parent Education on the Base of their Marital
Status")
plt.show()
```



```
## Analyze education on the base of transport means
plt.figure(figsize=(10,3))
sns.countplot(x=df['ParentEduc'], hue=df['TransportMeans'])
```

plt.title("Analyze Parent Education on the Base of Student's Transport
Means")
plt.show()

As,.I don't found any specific trend in Parent Educ with other, so the better option is dropna values from it

```
df.dropna(subset=['ParentEduc'], inplace=True)
df.isna().sum()
Unnamed: 0
                            0
Gender
                            0
                        1726
EthnicGroup
ParentEduc
                            0
LunchType
                            0
TestPrep
                        1722
ParentMaritalStatus
                        1116
PracticeSport
                         581
IsFirstChild
                         844
NrSiblings
                        1477
TransportMeans
                        2933
                         893
WklyStudyHours
MathScore
                            0
ReadingScore
                            0
WritingScore
                            0
dtype: int64
```

Let's first drop UnNamed Column from our dataset b/c it makes no sense

df.head(1)

```
Unnamed: 0 Gender EthnicGroup
                                    ParentEduc LunchType
TestPrep \
          0 female
                          NaN bachelor's degree standard
none
 ParentMaritalStatus PracticeSport IsFirstChild NrSiblings
TransportMeans \
            married regularly
                                       ves
                                                 3.0
school bus
 WklyStudyHours MathScore ReadingScore WritingScore
0 < 5 71
                        71 74
df.drop('Unnamed: 0', axis=1, inplace=True)
# Axis = 1 specifies that i want to drop column, not row
df.head(1)
  Gender EthnicGroup
                          ParentEduc LunchType TestPrep \
0 female NaN bachelor's degree standard none
 ParentMaritalStatus PracticeSport IsFirstChild NrSiblings
TransportMeans \
            married regularly
                                                 3.0
                                       ves
school bus
 WklyStudyHours MathScore ReadingScore WritingScore
 < 5
                     71
                                 71
```

Analyze no. of siblings

```
df['NrSiblings'].unique()
array([ 3., 0., 4., 1., nan, 2., 5., 7., 6.])
sns.histplot(df['NrSiblings'], kde=True, color='blue')
plt.title('Distribution of NrSiblings Before Imputation')
plt.xlabel('Number of Siblings')
plt.ylabel('Frequency')
plt.show()
```



```
## Fill Missing value with mean
df filled = df.copy() # Create a copy to compare before and after
df filled['NrSiblings'].fillna(df['NrSiblings'].mode())
         3.0
0
1
         0.0
2
         4.0
3
         1.0
4
         0.0
30636
         2.0
30637
         1.0
30638
         1.0
30639
         3.0
30640
         1.0
Name: NrSiblings, Length: 28796, dtype: float64
sns.histplot(df_filled['NrSiblings'], kde=True, color='green')
plt.title('Distribution of NrSiblings After Imputation')
plt.xlabel('Number of Siblings')
plt.ylabel('Frequency')
plt.show()
```


0

```
sns.histplot(df['NrSiblings'], kde=True, color='blue', label='Before
Imputation')
sns.histplot(df_filled['NrSiblings'], kde=True, color='green',
label='After Imputation', alpha=0.5)
plt.title('Comparison of NrSiblings Before and After Imputation')
plt.xlabel('Number of Siblings')
plt.ylabel('Frequency')
plt.legend()
plt.show()
```

Number of Siblings

5

As we see that it does not affect our data, if we fill no of sibbling with mode, so we fill it in our original dataset

```
df.isna().sum()
Gender
                            0
EthnicGroup
                        1726
ParentEduc
                           0
LunchType
                            0
TestPrep
                        1722
ParentMaritalStatus
                        1116
                         581
PracticeSport
IsFirstChild
                         844
                        1477
NrSiblings
TransportMeans
                        2933
WklyStudyHours
                         893
MathScore
                           0
ReadingScore
                            0
                            0
WritingScore
dtype: int64
# Compute the mode of 'NrSiblings' (mode returns a Series, take the
first value)
```

```
mode value = df['NrSiblings'].mode()[0]
# Fill missing values with the mode
df['NrSiblings'] = df['NrSiblings'].fillna(mode value)
df.isna().sum()
Gender
EthnicGroup
                       1726
ParentEduc
                          0
LunchType
                          0
TestPrep
                       1722
ParentMaritalStatus
                       1116
PracticeSport
                        581
IsFirstChild
                        844
NrSiblings
TransportMeans
                       2933
                        893
WklyStudyHours
MathScore
                          0
ReadingScore
                          0
WritingScore
                          0
dtype: int64
df['NrSiblings'].unique()
array([3., 0., 4., 1., 2., 5., 7., 6.])
```

Compute the correlation matrix

```
corr = df[['MathScore', 'ReadingScore', 'WritingScore']].corr()

# Create a heatmap of the correlation matrix
plt.figure(figsize=(8, 6))
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Matrix of Scores')
plt.show()
```


Distribution of Score

```
plt.figure(figsize=(18, 6))

# Histogram for MathScore
plt.subplot(1, 3, 1)
sns.histplot(df['MathScore'], kde=True, color='blue')
plt.title('Distribution of Math Scores')
plt.xlabel('Math Score')
plt.ylabel('Frequency')

# Histogram for ReadingScore
plt.subplot(1, 3, 2)
sns.histplot(df['ReadingScore'], kde=True, color='green')
plt.title('Distribution of Reading Scores')
```

```
plt.xlabel('Reading Score')
plt.ylabel('Frequency')

# Histogram for WritingScore
plt.subplot(1, 3, 3)
sns.histplot(df['WritingScore'], kde=True, color='red')
plt.title('Distribution of Writing Scores')
plt.xlabel('Writing Score')
plt.ylabel('Frequency')

plt.tight_layout()
plt.show()
```


Box plot for lunch type

```
# Box plot for MathScore by LunchType
plt.figure(figsize=(12, 6))
sns.boxplot(x='LunchType', y='MathScore', data=df)
plt.title('Math Score by Lunch Type')
plt.xlabel('Lunch Type')
plt.ylabel('Math Score')
plt.show()
```


Analyze Ethnic Group

Analyze Ethnic Group on the base of gender

```
plt.figure(figsize=(5,3))
sns.countplot(x=df['EthnicGroup'], hue=df['Gender'])
plt.title("Count Plot Of Ethnic Group on the base of Gender")
plt.show()
```


Let's Analyze it with practice sport

```
plt.figure(figsize=(5,3))
sns.countplot(x=df['EthnicGroup'], hue=df['PracticeSport'])
plt.title("Count Plot of Ethnic Group on the base of Practice Sport")
plt.show()
```

Count Plot of Ethnic Group on the base of Practice Sport

It follow no trend, lets dropna

```
df.dropna(subset=['EthnicGroup'], inplace=True)
df.isna().sum()
Gender
                           0
                           0
EthnicGroup
ParentEduc
                           0
LunchType
                           0
TestPrep
                        1611
ParentMaritalStatus
                        1038
PracticeSport
                         535
IsFirstChild
                         796
NrSiblings
                           0
TransportMeans
                        2763
WklyStudyHours
                         829
MathScore
                           0
ReadingScore
                           0
WritingScore
                           0
dtype: int64
```

Lets drop all null values

```
df.dropna(inplace=True)
df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 20266 entries, 2 to 30640
Data columns (total 14 columns):
#
                          Non-Null Count
     Column
                                          Dtvpe
_ _ _
 0
     Gender
                          20266 non-null
                                          object
 1
     EthnicGroup
                          20266 non-null
                                          object
 2
     ParentEduc
                          20266 non-null
                                          object
 3
    LunchType
                          20266 non-null
                                          object
 4
    TestPrep
                          20266 non-null
                                          object
 5
     ParentMaritalStatus
                         20266 non-null
                                          object
 6
    PracticeSport
                          20266 non-null
                                          object
 7
    IsFirstChild
                          20266 non-null
                                          object
 8
    NrSiblings
                          20266 non-null float64
 9
    TransportMeans
                          20266 non-null
                                          object
 10 WklyStudyHours
                          20266 non-null
                                          obiect
 11 MathScore
                          20266 non-null
                                          int64
12
    ReadingScore
                          20266 non-null
                                          int64
 13
    WritingScore
                          20266 non-null
                                          int64
dtypes: float64(1), int64(3), object(10)
memory usage: 2.3+ MB
```

Analyze Gender distribution

```
plt.figure(figsize=(5,4))
ax = sns.countplot(x=df['Gender'])
ax.bar_label(ax.containers[0])
plt.title("Analyze Gender Distribution in School")
plt.show()
```



```
df['Gender'].value_counts()

Gender
female 10294
male 9972
Name: count, dtype: int64
```

Analysis

From the above chart, we analyze that no of female in a school is greater than no. on male students

Parent Education Impact on scores of Student

```
## We find the aggregate/estimate of parent education on student score
gb =
df.groupby('ParentEduc').agg({'MathScore':'mean','ReadingScore':'mean'
,'WritingScore':'mean'})
gb

MathScore ReadingScore WritingScore
ParentEduc
associate's degree 68.483472 71.302296 70.496089
```

We use heatmap for this type of data analysis

```
plt.figure(figsize=(5,4))
sns.heatmap(gb, annot=True)
plt.title("Affect of Parents Education on Students Score")
plt.show()
```


Parents education impacts alot on their children scores

Parent Marital Status Impact on scores of Student

```
## We find the aggregate/estimate of parent education on student score
gb =
df.groupby('ParentMaritalStatus').agg({'MathScore':'mean','ReadingScore':'mean','WritingScore':'mean'})
gb

MathScore ReadingScore WritingScore
ParentMaritalStatus
```

```
divorced
                     66.619941
                                    69.742522
                                                  68.872434
married
                     66.675799
                                    69.447144
                                                  68.455070
single
                     66.357481
                                    69.428689
                                                  68.569665
widowed
                     67.966667
                                    70.594872
                                                  69.543590
plt.figure(figsize=(5,4))
sns.heatmap(gb, annot=True)
plt.title("Effect of Parents Marital Status on Students Score")
plt.show()
```

Effect of Parents Marital Status on Students Score

From the above chart we have concluded that there is no/negliable impact on students score due to their parents merital status

Lets detect outlier in scores

```
plt.figure(figsize=(4,3))
sns.boxplot(x=df['MathScore'])
plt.title("Students Math Score")
plt.show()
```

Students Math Score


```
plt.figure(figsize=(4,3))
sns.boxplot(x=df['ReadingScore'])
plt.title("Students Reading Score")
plt.show()
```

Students Reading Score


```
plt.figure(figsize=(4,3))
sns.boxplot(x=df['WritingScore'])
plt.title("Students Writing Score")
plt.show()
```


Ethnics Group Distribution

```
values_count = df['EthnicGroup'].value_counts()

plt.figure(figsize=(5,3))
plt.title("Distribution Of Ethnic Group")
plt.pie(values_count, labels=values_count.keys(),autopct='%.2f%%')
plt.show()
```

Distribution Of Ethnic Group

values_count

```
EthnicGroup
group C
           6484
group D
           5252
group B
           4116
group E
           2862
group A
           1552
Name: count, dtype: int64
values_count.keys()
Index(['group C', 'group D', 'group B', 'group E', 'group A'],
dtype='object', name='EthnicGroup')
# Box plot for MathScore by EthnicGroup
plt.figure(figsize=(12, 6))
sns.boxplot(x='EthnicGroup', y='MathScore', data=df)
plt.title('Math Score by Ethnic Group')
plt.xlabel('Ethnic Group')
plt.ylabel('Math Score')
plt.show()
```


Effect of Gender on Score

Math Score

```
plt.figure(figsize=(12, 6))

# Box plot for MathScore by Gender
sns.boxplot(x='Gender', y='MathScore', data=df)
plt.title('Distribution of Math Scores by Gender')
plt.xlabel('Gender')
plt.ylabel('Math Score')
plt.show()
```



```
plt.figure(figsize=(12, 6))

# Violin plot for MathScore by Gender
sns.violinplot(x='Gender', y='MathScore', data=df)
plt.title('Distribution of Math Scores by Gender')
plt.xlabel('Gender')
plt.ylabel('Math Score')
plt.show()
```



```
# Summary statistics for MathScore by Gender
summary = df.groupby('Gender')['MathScore'].agg(['mean', 'median', 'std', 'count'])
print(summary)

mean median std count
Gender
female 64.234991 64.0 15.142134 10294
male 69.071701 69.0 15.230742 9972
```

Reading Score

```
plt.figure(figsize=(12, 6))

# Box plot for Reading by Gender
sns.boxplot(x='Gender', y='ReadingScore', data=df)
plt.title('Distribution of Reading Scores by Gender')
plt.xlabel('Gender')
plt.ylabel('Math Score')
plt.show()
```



```
# Summary statistics for Reading by Gender
summary = df.groupby('Gender')['ReadingScore'].agg(['mean', 'median',
'std', 'count'])
print(summary)
              mean median
                                   std count
Gender
female
        73.052943
                      73.0
                            14.153673
                                         10294
        65.861813
                      66.0
                            14.550282
                                          9972
male
```

Writing Score

```
plt.figure(figsize=(12, 6))

# Box plot for Writing by Gender
sns.boxplot(x='Gender', y='WritingScore', data=df)
plt.title('Distribution of Writing Scores by Gender')
plt.xlabel('Gender')
plt.ylabel('Math Score')
plt.show()
```



```
# Summary statistics for Writing by Gender
summary = df.groupby('Gender')['WritingScore'].agg(['mean', 'median',
'std', 'count'])
print(summary)
                    median
                                    std
                                         count
              mean
Gender
                             14.572488
female
        73.046338
                       73.0
                                         10294
                       64.0
male
        63.956679
                             15.041557
                                          9972
```

Effect of Weekly Study Hours on Student Score

```
# Set the size of the plots
plt.figure(figsize=(19, 6))

# Plot MathScore by TransportMeans
plt.subplot(1, 3, 1)
sns.boxplot(x='TransportMeans', y='MathScore', data=df)
plt.title('Math Score by Transport Means')
plt.xlabel('Transport Means')
plt.ylabel('Math Score')
plt.ylabel('Math Score')
plt.xticks(rotation=45)

# Plot ReadingScore by TransportMeans
```

```
plt.subplot(1, 3, 2)
sns.boxplot(x='TransportMeans', y='ReadingScore', data=df)
plt.title('Reading Score by Transport Means')
plt.xlabel('Transport Means')
plt.ylabel('Reading Score')
plt.xticks(rotation=45)

# Plot WritingScore by TransportMeans
plt.subplot(1, 3, 3)
sns.boxplot(x='TransportMeans', y='WritingScore', data=df)
plt.title('Writing Score by Transport Means')
plt.xlabel('Transport Means')
plt.ylabel('Writing Score')
plt.xticks(rotation=45)

plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(18, 6))

# Plot MathScore by TransportMeans
plt.subplot(1, 3, 1)
sns.violinplot(x='TransportMeans', y='MathScore', data=df)
plt.title('Math Score by Transport Means')
plt.xlabel('Transport Means')
plt.ylabel('Math Score')
plt.xticks(rotation=45)

# Plot ReadingScore by TransportMeans
plt.subplot(1, 3, 2)
sns.violinplot(x='TransportMeans', y='ReadingScore', data=df)
plt.title('Reading Score by Transport Means')
plt.xlabel('Transport Means')
plt.ylabel('Reading Score')
plt.xticks(rotation=45)
```

```
# Plot WritingScore by TransportMeans
plt.subplot(1, 3, 3)
sns.violinplot(x='TransportMeans', y='WritingScore', data=df)
plt.title('Writing Score by Transport Means')
plt.xlabel('Transport Means')
plt.ylabel('Writing Score')
plt.ylabel('Writing Score')
plt.xticks(rotation=45)

plt.tight_layout()
plt.show()
```



```
# Summary statistics for MathScore by TransportMeans
summary math = df.groupby('TransportMeans')['MathScore'].agg(['mean',
'median', 'std', 'count'])
print("Math Score Summary by Transport Means:\n", summary math)
# Summary statistics for ReadingScore by TransportMeans
summary reading = df.groupby('TransportMeans')
['ReadingScore'].agg(['mean', 'median', 'std', 'count'])
print("Reading Score Summary by Transport Means:\n", summary reading)
# Summary statistics for WritingScore by TransportMeans
summary writing = df.groupby('TransportMeans')
['WritingScore'].agg(['mean', 'median', 'std', 'count'])
print("Writing Score Summary by Transport Means:\n", summary writing)
Math Score Summary by Transport Means:
                      mean median
                                          std count
TransportMeans
private
                66.570783
                             67.0
                                   15.608412
                                               8406
school bus
                66.646206
                             67.0
                                  15.210997
                                              11860
Reading Score Summary by Transport Means:
                      mean median
                                          std count
TransportMeans
```

```
private
               69.564478
                            70.0
                                  14.951528
                                              8406
school bus
               69.479089
                            70.0 14.680749
                                             11860
Writing Score Summary by Transport Means:
                     mean median
                                         std count
TransportMeans
private
               68.629550
                            69.0 15.671928
                                              8406
               68.534148
                            69.0 15.354334
school bus
                                             11860
```

Effect of Test Preperation

```
# Box plot for MathScore by TestPrep
plt.figure(figsize=(12, 6))
sns.boxplot(x='TestPrep', y='MathScore', data=df)
plt.title('Math Score by Test Preparation')
plt.xlabel('Test Prep')
plt.ylabel('Math Score')
plt.show()
```

