Sensitivity Analysis in Linear Programming

Optimization Techniques (ENGG*6140)

School of Engineering, University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh Winter 2023

Consider \underline{n} variables and \underline{m} constraints (excluding the constraints for $x_1, \ldots, x_n \ge 0$). After having slack variables, we can have:

Example:

maximize
$$c = 60x_1 + 30x_2 + 20x_3$$

subject to $8x_1 + 6x_2 + x_3 \le 48$, $4x_1 + 2x_2 + 1.5x_3 \le 20$, $2x_1 + 1.5x_2 + 0.5x_3 \le 8$, $x_1, x_2, x_3 \ge 0$.

It is converted to:

maximize
$$c = 60x_1 + 30x_2 + 20x_3$$

subject to $8x_1 + 6x_2 + x_3 + (s_1) = 48$, $4x_1 + 2x_2 + 1.5x_3 + (s_2) = 20$, $2x_1 + 1.5x_2 + 0.5x_3 + (s_3) = 8$, $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$.

$$\begin{array}{ll} \underset{x_1,x_2,x_3,s_1,s_2,s_3}{\text{maximize}} & c = 60x_1 + 30x_2 + 20x_3 \\ \text{subject to} & 8x_1 + 6x_2 + 6x_3 + 5x_1 = 48, \\ 4x_1 + 2x_2 + 6x_3 + 6x_2 + 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 + 6x_3 = 20, \\ 2x_1 + 6x_2 + 6x_3 = 20, \\$$

Assume we solve it until the end and at the end, the basic variables are s_1, x_3, x_1 and the non-basic variables $are(x_2, s_2, s_3)$

• basic and non-basic variables:

$$\mathbf{x}_b := [s_1, x_3, x_1]^{\top}, [\mathbf{x}_n] := [x_2, s_2, s_3]^{\top}$$

• the coefficients of basic and non-basic variables in the objective function:

$$(c_b) := [0, 20, 60]^\top, c_n := [30, 0, 0]^\top$$

• the coefficients of the variables in the constraints:

basic and non-basic variables:

les:

$$\mathbf{x}_b := [\overset{\downarrow}{\mathbf{x}_1},\overset{\downarrow}{\mathbf{x}_3},\overset{\downarrow}{\mathbf{x}_1}]^{\top}, \mathbf{x}_n := [\overset{\downarrow}{\mathbf{x}_2},\overset{\downarrow}{\mathbf{s}_2},\overset{\downarrow}{\mathbf{s}_3}]^{\top}$$

the coefficients of the variables in the constraints:

$$egin{align*} oldsymbol{a}_{x_1} := [8,4,2]^{ op}, & oldsymbol{a}_{x_2} := [6,2,1.5]^{ op}, & oldsymbol{a}_{x_3} := [1,1.5,0.5]^{ op}, \\ oldsymbol{a}_{s_1} := [1,0,0]^{ op}, & oldsymbol{a}_{s_2} := [0,1,0]^{ op}, & oldsymbol{a}_{s_3} := [0,0,1]^{ op} & oldsymbol{a}_{s_3} := [0,0,0]^{ op}, & oldsymbol{a}_{s_3} := [0,0]^{ op$$

• the matrices of coefficients of the variables in the constraints, for basic and non-basic variables: $B \in \mathbb{R}^{m \times m}$ $N \in \mathbb{R}^{m \times (n-m)}$

$$B := \begin{bmatrix} \widehat{a}_{3}, \widehat{b}_{3} \\ \widehat{a}_{3} \end{bmatrix} = \begin{bmatrix} \widehat{1} \\ 0 \\ 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$$

$$N := \begin{bmatrix} A \\ A \\ A \end{bmatrix} \begin{bmatrix} A \\ A \\$$

$$\begin{bmatrix} \mathbf{x}_b := [\mathbf{s}_1, \mathbf{x}_3, \mathbf{x}_1]^\top, \mathbf{x}_n := [\mathbf{x}_2, \mathbf{s}_2, \mathbf{s}_3]^\top, \mathbf{c}_b := [0, 20, 60]^\top, \mathbf{c}_n := [30, 0, 0]^\top \\ \mathbf{a}_{\mathbf{x}_1} := [\mathbf{8}, \mathbf{4}, 2]^\top, \mathbf{a}_{\mathbf{x}_2} := [\mathbf{6}, 2, 1.5]^\top, \mathbf{a}_{\mathbf{x}_3} := [1, 1.5, 0.5]^\top, \\ \mathbf{a}_{\mathbf{s}_1} := [1, 0, 0]^\top, \mathbf{a}_{\mathbf{s}_2} := [0, 1, 0]^\top, \mathbf{a}_{\mathbf{s}_3} := [0, 0, 1]^\top, \mathbf{b} := [48, 20, 8]^\top, \\ \mathbf{B} := [\mathbf{a}_{\mathbf{s}_1}, \mathbf{a}_{\mathbf{x}_3}, \mathbf{a}_{\mathbf{x}_1}] = \begin{bmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{bmatrix}, \mathbf{N} := [\mathbf{a}_{\mathbf{x}_2}, \mathbf{a}_{\mathbf{s}_2}, \mathbf{a}_{\mathbf{s}_3}] = \begin{bmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 8 \\
0 & 1.5 & 4 \\
0 & 0.5 & 2
\end{bmatrix}^{-1} = \begin{bmatrix}
1 & 2 & -8 \\
0 & 2 & -4 \\
0 & -0.5 & 1.5
\end{bmatrix},
\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix}
1 & 2 & -8 \\
0 & 2 & -4 \\
0 & -0.5 & 1.5
\end{bmatrix} \begin{bmatrix}
48 \\
20 \\
8\end{bmatrix} = \begin{bmatrix}
24 \\
8 \\
2\end{bmatrix}$$

(GOXZ)

Cases for Sensitivity Analysis

- Sensitivity analysis analyzes <u>how much effect</u> some change in something has on the optimization.
- We can have different cases of change in linear programming:
 - 1 change in coefficient of a variable (basic or nonbasic) in the objective function
 - * 1-1 change for **nonbasic** variable * 1-2: change for **basic** variable
- → ¢j
- ② change in **coefficient** of a variable (<u>basic</u> or <u>nonbasic</u>) in the **constraint(s)**
 - ★ 2-1: change for **nonbasic** variable
 - ★ 2-2: change for basic variable
- 3 adding a new variable to optimization

adding a new constraint to optimization

Vaij

Note: we can have a combination of changes, too!

Case 1-1 of Change

* Change in coefficient of a nonbasic variable in the objective function.

Example: The company has profits \$60, \$30, and \$20 for the first, second, and third products. The resources for these products have the following restrictions: $8x_1 + 6x_2 + x_3 \le 48 , $4x_1 + 2x_2 + 1.5x_3 \le 20 , and $2x_1 + 1.5x_2 + 0.5x_3 \le 8 .

\$20, and
$$2x_1 + 1.5x_2 + 0.5x_3 \le \$8$$
.

maximize $c = 60x_1 + (30x_2 + 20x_3)$
subject to $8x_1 + 6x_2 + x_3 + s_1 = 48$, $4x_1 + 2x_2 + 1.5x_3 + s_2 = 20$, $2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 8$, $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$.

The company is able to increase the profit of the second product x_2 to (a) \$32 and (b) \$36. Do you recommend this change to the manager?

* Change in coefficient of a nonbasic variable in the objective function.

$$\mathbf{x}_b := [\mathbf{s}_1, \mathbf{x}_3, \mathbf{x}_1]^{\top}, \mathbf{x}_n := [\mathbf{x}_2, \mathbf{s}_2, \mathbf{s}_3]^{\top}, \mathbf{c}_b := [0, 20, 60]^{\top}, \mathbf{c}_n := [30, 0, 0]^{\top}.$$

 x_2 is a nonbasic variable. We have change in (c_{x_2}) in c_n so:

$$c_{b}^{\top} = \begin{bmatrix} c_{1} & c_{2} \\ c_{2} & c_{3} \end{bmatrix} - \begin{bmatrix} c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} - \begin{bmatrix} c_{3} & c_{4} \\ c_{5} & c_{4} \end{bmatrix} = \begin{bmatrix} c_{1} & c_{2} \\ c_{3} & c_{4} \end{bmatrix} - \begin{bmatrix} c_{1} & c_{2} \\ c_{3} & c_{4} \end{bmatrix} = \begin{bmatrix} c_{1} & c_{2} \\ c_{3} & c_{4} \end{bmatrix} = \begin{bmatrix} c_{1} & c_{2} \\ c_{3} & c_{4} \end{bmatrix} + \begin{bmatrix} c_{1} & c_{2} \\ c_{3}$$

For not having change in optimization:

$$5 - \delta \ge 0 \longrightarrow \delta \le 5 \longrightarrow c_{x_2, \text{new}} = 30 + \delta \le 35.$$

30 3 30 31

- For not having change in optimization: $5 \delta \ge 0 \implies c_{x_2,\text{new}} = 30 + \delta \le 35$.
- Therefore, if profit of x_2 is $32 \le 35$, we do not recommend it as it does <u>not change</u> the previous optimal solution for production of the company.
- If profit of x_2 is \$36 > \$35, we should continue the optimization:

Case 1-2 of Change

* Change in **coefficient** of a **basic** variable in the **objective function**.

Example: The company has profits \$60, \$30, and \$20 for the first, second, and third products. The resources for these products have the following restrictions: $8x_1 + 6x_2 + x_3 \le 48 , $4x_1 + 2x_2 + 1.5x_3 \le 20 , and $2x_1 + 1.5x_2 + 0.5x_3 \le 8 .

$$\label{eq:continuous_subject} \begin{array}{ll} \underset{x_1, x_2, x_3, s_1, s_2, s_3}{\text{maximize}} & c = \boxed{60} x_1 + 30 x_2 + 20 x_3 \\ \text{subject to} & 8 x_1 + 6 x_2 + x_3 + s_1 = 48, \\ & 4 x_1 + 2 x_2 + 1.5 x_3 + s_2 = 20, \\ & 2 x_1 + 1.5 x_2 + 0.5 x_3 + s_3 = 8, \\ & x_1, x_2, x_3, s_1, s_2, s_3 \geq 0. \end{array}$$

The company is decreasing the profit of the first product, x_1 , to (a) \$58 and (b) \$30. Do you recommend this change to the manager?

$$\mathbf{x}_b := [\mathbf{s}_1, \mathbf{x}_3, \mathbf{x}_1]^\top, \mathbf{x}_n := [\mathbf{x}_2, \mathbf{s}_2, \mathbf{s}_3]^\top, \mathbf{c}_b := [0, 20, 60]^\top, \mathbf{c}_n := [30, 0, 0]^\top.$$

 x_1 is a basic variable. We have change in c_{x_1} in c_b so:

$$\mathbf{C}_{n}^{\uparrow} \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{n}^{\top} = \begin{bmatrix} 0, 20, 60 + \delta \end{bmatrix} \begin{bmatrix} -2 & 2 & -8 \\ -2 & 2 & -4 \\ 5/4 & -1/2 & 3/2 \end{bmatrix} - \begin{bmatrix} 30, 0, 0 \end{bmatrix} \\
= \begin{bmatrix} 5 + 1.25\delta, 10 - 0.5\delta, 10 + 1.5\delta \end{bmatrix}$$

For not having change in optimization:

$$(5+1.25\delta \ge 0) \Longrightarrow \delta \ge -4, \quad 10-0.5\delta \ge 0 \Longrightarrow \delta \le 20, \quad 10+1.5\delta \ge 0 \Longrightarrow \delta \ge -6.6, \quad 10+1.5\delta \ge -6.6, \quad 10+1.5$$

- For not having change in optimization: $56 \le c_{x_1} \le 80$.
- Therefore, if profit of x_1 decreases to $58 \in [56, 80]$, this decrease does not change the overall profit and it can be recommended.
- If profit of x_1 is decreased to \$30 \times \$56, we should continue the optimization:

$$\begin{bmatrix}
\boldsymbol{c}_{b}^{\top} \boldsymbol{B}^{-1} \boldsymbol{N} - \boldsymbol{c}_{n}^{\top} \\
\end{bmatrix} = \begin{bmatrix} 0, 20 & 30 \end{bmatrix} \begin{bmatrix} -2 & 2 & -8 \\ -2 & 2 & -4 \\ 5/4 & -1/2 & 3/2 \end{bmatrix} - \begin{bmatrix} 30, 0, 0 \end{bmatrix} = \underbrace{\begin{bmatrix} -32.5, 25, -35 \end{bmatrix}},$$

$$\swarrow \quad \begin{pmatrix} \boldsymbol{c}_{b}^{\top} \boldsymbol{B}^{-1} \boldsymbol{b} = \begin{bmatrix} 0, 20, 30 \end{bmatrix} \begin{bmatrix} 24 \\ 8 \\ 2 \end{bmatrix} = \underbrace{\begin{pmatrix} 220 \\ 220 \end{pmatrix}}$$

$$\frac{\chi_{n}^{T}}{\chi_{g}} = \frac{\chi_{g}^{T}}{RHS}$$

$$\frac{\chi_{g}^{T}}{\chi_{g}} = \frac{\chi_{g}^{T}}{RHS}$$

$$\frac{\chi_{g}^{T}}{\chi_{g}}$$

So, changing profit of x_1 to \$30 decreases the total profit to \$272 from \$280.

Case 2-1 of Change

* change in **coefficient** of a **nonbasic** variable in the **constraint(s)**.

Example: The company has profits \$60, \$30, and \$20 for the first, second, and third products. The resources for these products have the following restrictions: $8x_1 + 6x_2 + x_3 \le 48 ,

$$4x_1 + 2x_2 + 1.5x_3 \le \$20, \text{ and } 2x_1 + 1.5x_2 + 0.5x_3 \le \$8.$$

$$\max_{x_1, x_2, x_3, s_1, s_2, s_3} c = 60x_1 + \cancel{30}x_2 + 20x_3$$

$$\text{subject to} \qquad 8x_1 + 6x_2 + x_3 + s_1 = 48,$$

$$4x_1 + 2x_2 + 1.5x_3 + s_2 = 20,$$

$$2x_1 + \cancel{1.5}x_2 + 0.5x_3 + s_3 = 8,$$

$$x_1, x_2, x_3, s_1, s_2, s_3 > 0.$$

The company is changing the resources for x_2 as $8x_1 + (5)x_2 + x_3 \le 48 , $4x_1 + 2x_2 + 1.5x_3 \le 20 , and $2x_1 + (4)x_2 + 0.5x_3 \le 8) Also, the company is changing the profit of that product to 50. What is your recommendation to the manager?

Combination of changes after

 x_2 is a nonbasic variable. We have change in a_{x_2} in N, and a change in c_{x_2} so:

$$c_b^{\top} B^{-1} a_{x_2} - c_{x_2} = \begin{bmatrix} 0, 20, 60 \end{bmatrix} \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_{A_{0}} - \underbrace{ \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}}_$$

It does not change the optimal solution so it does not change the total profit. If that would become negative, we should have continued the table!

Case 2-2 of Change

* change in coefficient of a basic variable in the constraint(s).

Example: The company has profits \$60, \$30, and \$20 for the first, second, and third products. The resources for these products have the following restrictions: $8x_1 + 6x_2 + x_3 \le 48 , $4x_1 + 2x_2 + 1.5x_3 \le 20 , and $2x_1 + 1.5x_2 + 0.5x_3 \le 8 .

maximize
$$c = 60x_1 + 30x_2 + 20x_3$$

subject to
$$\begin{cases} 8x_1 + 6x_2 + x_3 + s_1 = 48, \\ 4x_1 + 2x_2 + 1.5x_3 + s_2 = 20, \\ 2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 8, \\ x_1, x_2, x_3, s_1, s_2, s_3 \ge 0. \end{cases}$$

The company is changing the resources for x_1 as $5x_1 + 6x_2 + x_3 \le \$48$, $9x_1 + 2x_2 + 1.5x_3 \le \20 , and $9x_1 + 1.5x_2 + 0.5x_3 \le \8 . What is your recommendation to the manager?

Sensitivity Analysis in Linear Programming

$$x_{b} := [s_{1}, x_{3}]^{\top}, x_{n} := [x_{2}, s_{2}, s_{3}]^{\top}, c_{b} := [0, 20, 60]^{\top}, c_{n} := [30, 0, 0]^{\top}.$$

$$x_{b} := [s_{1}, x_{3}]^{\top}, x_{n} := [s_{2}, s_{2}, s_{3}]^{\top}, c_{b} := [0, 20, 60]^{\top}, c_{n} := [30, 0, 0]^{\top}.$$

$$x_{b} := [s_{1}, x_{3}]^{\top}, x_{n} := [s_{2}, s_{2}, s_{3}]^{\top}, c_{b} := [0, 20, 60]^{\top}, c_{n} := [30, 0, 0]^{\top}.$$

$$x_{1} := [s_{1}, x_{3}]^{\top}, x_{2} := [s_{2}, s_{2}, s_{3}]^{\top}, c_{3} := [s_{2}, s_{2}, s_{3}]^{\top}, c_{4} := [s_{2}, s_{2}, s_{3}]^{\top}.$$

$$x_{1} := [s_{2}, s_{2}, s_{3}]^{\top}, c_{2} := [s_{2}, s_{2}, s_{3}]^{\top}, c_{3} := [s_{2}, s_{2}, s_{3}]^{\top}.$$

$$x_{1} := [s_{2}, s_{2}, s_{3}]^{\top}, c_{3} := [s_{2}, s_{2}, s_{3}]^{\top}, c_{4} := [s_{2}, s_{2}, s_{3}]^{\top}.$$

$$x_{2} := [s_{2}, s_{2}, s_{3}]^{\top}, c_{3} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{4} := [s_{2}, s_{3}, s_{3}]^{\top}.$$

$$x_{2} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}.$$

$$x_{1} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}.$$

$$x_{2} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}.$$

$$x_{2} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}.$$

$$x_{3} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}.$$

$$x_{3} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}.$$

$$x_{4} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{2}, s_{3}, s_{3}]^{\top}.$$

$$x_{5} := [s_{5}, s_{3}, s_{3}]^{\top}, c_{5} := [s_{5}, s_{3}]^{\top}, c_{5} := [s_{5}, s_{3}]^{\top}, c_{5} := [s_{5}, s_{3}]^{\top}, c_{5} := [s_{5}, s_{5}]^{\top}, c_{5} :=$$

We compute it. If any of the <u>values becomes negative</u>, we should continue the table; otherwise, the total profit does not change.

Case 3 of Change

* adding a new variable to optimization.

Example: The company has profits \$60, \$30, and \$20 for the first, second, and third products. The resources for these products have the following restrictions: $8x_1 + 6x_2 + x_3 \le \$48$, $4x_1 + 2x_2 + 1.5x_3 \le \20 , and $2x_1 + 1.5x_2 + 0.5x_3 \le \8 .

$$\begin{array}{ll} \underset{x_1,x_2,x_3,s_1,s_2,s_3}{\text{maximize}} & c = 60x_1 + 30x_2 + 20x_3 \\ \text{subject to} & 8x_1 + 6x_2 + x_3 + s_1 = 48, \\ & 4x_1 + 2x_2 + 1.5x_3 + s_2 = 20, \\ & 2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 8, \\ & x_1,x_2,x_3,s_1,s_2,s_3 \geq 0. \end{array}$$

The company is adding a new product x_4 with profit (a) \$15 or (b) \$25, and the constraint coefficients $a = [1, 1, 1]^{\top}$. What is your recommendation to the manager?

$$\mathbf{x}_b := [\mathbf{s}_1, \mathbf{x}_3, \mathbf{x}_1]^\top, \mathbf{x}_n := [\mathbf{x}_2, \mathbf{s}_2, \mathbf{s}_3]^\top, \mathbf{c}_b := [0, 20, 60]^\top, \mathbf{c}_n := [30, 0, 0]^\top.$$

 x_4 is a nonbasic variable. We calculate its value in the last row of the table (if $c_{x_4} = 15$):

$$\boldsymbol{c}_b^{\top} \boldsymbol{B}^{-1} \boldsymbol{a}_{x_4} - c_{x_4} = [0, 20, 60] \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 15 = 5 \ge 0.$$

It does not change the optimal solution so it does not change the total profit.

$$\mathbf{x}_b := [\mathbf{s}_1, x_3, x_1]^\top, \mathbf{x}_n := [x_2, \mathbf{s}_2, \mathbf{s}_3]^\top, \mathbf{c}_b := [0, 20, 60]^\top, \mathbf{c}_n := [30, 0, 0]^\top.$$

 x_4 is a nonbasic variable. We calculate its value in the last row of the table (if $c_{x_4} = 25$):

$$\boldsymbol{c}_b^{\top} \boldsymbol{B}^{-1} \boldsymbol{a}_{x_4} - c_{x_4} = [0, 20, 60] \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 25 = -5 < 0.$$

We should continue the table.

So, the optimum objective function has increased and this addition of variable in beneficial.

Case 4 of Change

* adding a new constraint to optimization.

This can result in three sub-cases:

- 4-1: The current optimal solution satisfies the new constraint.
- 4-2: The current optimal solution doesn't satisfy the new constraint but linear programming still has a feasible solution.
- 4-3: The current optimal solution doesn't satisfy the new constraint and linear programming doesn't have a feasible solution.

Question: Can adding a constraint improve the optimum value of objective function?

Example: The company has profits \$60, \$30, and \$20 for the first, second, and third products. The resources for these products have the following restrictions: $8x_1 + 6x_2 + x_3 \le \$48$, $4x_1 + 2x_2 + 1.5x_3 \le \20 , and $2x_1 + 1.5x_2 + 0.5x_3 \le \8 .

$$\begin{array}{ll} \underset{x_1,x_2,x_3,s_1,s_2,s_3}{\text{maximize}} & c = 60x_1 + 30x_2 + 20x_3 \\ \text{subject to} & 8x_1 + 6x_2 + x_3 + s_1 = 48, \\ & 4x_1 + 2x_2 + 1.5x_3 + s_2 = 20, \\ & 2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 8, \\ & x_1,x_2,x_3,s_1,s_2,s_3 \geq 0. \end{array}$$

We saw in the table (see slide 8) that the solution is: $x_1^* = 2, x_2^* = 0, x_3^* = 8$. The company is adding a new resource constraint:

$$x_1 + x_2 + x_3 \le 11$$
.

It satisfies the current solution:

$$2+0+8=10 \le 11$$
 $\sqrt{}$

We saw in the table (see slide 8) that the solution is: $x_1^* = 2, x_2^* = 0, x_3^* = 8$.

The company is adding a new resource constraint: $x_2 \ge 1$. It doesn't satisfy the current solution: $0 \ge 1$.

The new constraint:

$$x_2 \ge 1 \implies -x_2 \le -1 \implies -x_2 + s_4 = -1.$$

Note: we have used the dual simplex method above.

We saw in the table (see slide 8) that the solution is: $x_1^* = 2, x_2^* = 0, x_3^* = 8$.

The company is adding a new resource constraint: $x_1 + x_2 \ge 12$. It doesn't satisfy the current solution: $2 \ge 12$.

The new constraint:

$$x_1 + x_2 \ge 12 \implies -x_1 - x_2 \le -12 \implies -x_1 - x_2 + s_4 = -12.$$

Note: we have used the dual simplex method above.

Therefore, it does not have a feasible solution!

Acknowledgment

This lecture is inspired by the lectures of Prof. Shokoufeh Mirzaei on sensitivity analysis in linear programming: [Link]