МФТИ, ФИВТ

Алгоритмы и структуры данных, весна 2021 Семинар №2. Динамическое программирование (2)

Во всех задачах этого листка, при необходимости, можно считать, что все арифметические операции выполняются за O(1).

- 1. Решите задачу о рюкзаке в следующих модификациях:
 - а) i-й предмет можно брать от 0 до cnt_i раз (разрешается добавить в асимптотику зависимость от значений cnt_i):
 - б) каждый предмет можно брать неограниченное число раз (асимптотика: $O(n \cdot W)$, где W вместимость рюкзака);
 - в) от каждого предмета можно отпилить произвольную часть (то есть увеличить общий вес на $\alpha \cdot w_i$, а к стоимости добавить $\alpha \cdot c_i$, где $\alpha \in [0,1]$). Асимптотика: $O(n \log n)$.
- 2. Дан тетраэдр и муравей, находящийся в одной из его вершин. За один ход нужно переместиться вдоль любого ребра. Для заданного n за $O(\log n)$ определить количество путей длины n, возвращающих муравья в исходную вершину.
- 3. Есть слоистый граф из l слоёв, в каждом по n вершин. Из i-го слоя есть все рёбра в (i+1)-й, причём вес ребра в j-ю вершину большего слоя не зависит от истока этого ребра, и этот вес не меняется от слоя к слою (этот вес задаётся явным образом). Нужно найти количество путей из первого слоя в последний, сумма весов рёбер в которых кратна M. Асимптотика: $O(nM + M^3 \log l)$.
- 4. Задана двумерная целочисленная сетка с неотрицательными координатами. Из (0,0) нужно попасть в (k,0). Ходить из точки (x,y) можно только в точки (x+1,y-1), (x+1,y), (x+1,y+1). Есть nгоризонтальных отрезков с ординатой $\leq Y$, выше которых нельзя подниматься. Их концы (a_i, b_i) по оси Ox таковы, что $a_1=0, b_n=k, a_{i+1}=b_i$. Найти количество валидных путей за $O(n\cdot Y^3\log k)$. **5.** Последовательность $\{a_n\}_{n=0}^{+\infty}$ задана следующими соотношениями: $a_0=13, a_1=8,$ а также $a_n=1$
- $5a_{n-1}+2a_{n-2}+n^2$ для всех $n\geqslant 2$. По заданному k найдите a_k за $O(\log k)$.
- 6. Назовём число гладким, если в его десятичной записи абсолютная разность любых двух рядом стоящих цифр не меньше l и не больше r. Дано число n. Сколько существует гладких натуральных чисел, состоящих из n цифр? Асимптотика: $O(\log n)$.
- 7. Дано подвешенное дерево на n вершинах со взвешенными рёбрами (у каждого ребра есть стоимость). Для каждой вершины v найти самую удалённую вершину в её поддереве. То же для наддерева. Асимптотика: O(n).
- 8. Задан массив чисел a_1, \ldots, a_{nt} длины $n \cdot t$. Известно, что для любого i > n верно, что $a_i = a_{i-n}$. Найдите длину самой длинной неубывающей подпоследовательности заданного массива за $O(n^3 \log t)$.