Categorías

Rafael Villarroel

2021-02-16 15:30 -0500

Sea Δ_1 un complejo simplicial en X y sea Δ_2 un complejo simplicial en Y. Un mapeo simplicial $f: \Delta_1 \to \Delta_2$ es una función $f: X \to Y$ tal que $f(\sigma) \in \Delta_2$ para $\sigma \in \Delta_1$.

Rafael Villarroel Categorías 2021-02-16 15:30 -0500 2 | 7

Ejemplo

Sea $X = \{1, 2, 3, 4\}$. Sea $\Delta_1 = \{\emptyset, 1, 2, 3, 4, 12, 13, 23, 24, 34, 123, 234\}$. Sea $Y = \{a, b, c\}$. Sea $\Delta_2 = \{\emptyset, a, b, c, ab, ac\}$.

• Sea $f: X \to Y$ tal que f(1) = a, f(2) = b, f(3) = c, f(4) = a. Tenemos que f(23) = bc, el cual no es un elemento de Δ_2 , por lo que f no es un mapeo simplicial

Ejemplo

Sea $X = \{1, 2, 3, 4\}$. Sea $\Delta_1 = \{\emptyset, 1, 2, 3, 4, 12, 13, 23, 24, 34, 123, 234\}$. Sea $Y = \{a, b, c\}$. Sea $\Delta_2 = \{\emptyset, a, b, c, ab, ac\}$.

- Sea $f: X \to Y$ tal que f(1) = a, f(2) = b, f(3) = c, f(4) = a. Tenemos que f(23) = bc, el cual no es un elemento de Δ_2 , por lo que f no es un mapeo simplicial
- Sea $g: X \to Y$ tal que g(1) = a, g(2) = c, g(3) = c, g(4) = a. Entonces g es un mapeo simplicial.

Ejemplo

Sea $X = \{1, 2, 3, 4\}$. Sea $\Delta_1 = \{\emptyset, 1, 2, 3, 4, 12, 13, 23, 24, 34, 123, 234\}$. Sea $Y = \{a, b, c\}$. Sea $\Delta_2 = \{\emptyset, a, b, c, ab, ac\}$.

- Sea $f: X \to Y$ tal que f(1) = a, f(2) = b, f(3) = c, f(4) = a. Tenemos que f(23) = bc, el cual no es un elemento de Δ_2 , por lo que f no es un mapeo simplicial
- Sea $g: X \to Y$ tal que g(1) = a, g(2) = c, g(3) = c, g(4) = a. Entonces g es un mapeo simplicial.
- Sea $h: X \to Y$ tal que h(1) = b, h(2) = a, h(3) = a, h(4) = c. Entonces h es un mapeo simplicial.

Teorema

Un mapeo simplicial $f: \Delta_1 \to \Delta_2$ induce una función continua $|f|: |\Delta_1| \to |\Delta_2|$.

Ejercicio

Demuestra que:

• el mapeo identidad $\Delta \to \Delta$ es un mapeo simplicial.

Ejercicio

Demuestra que:

- el mapeo identidad $\Delta \to \Delta$ es un mapeo simplicial.
- la composición de dos mapeos simpliciales es un mapeo simplicial.

Una categoría C consta de:

• Una clase de objetos obj**C**.

- Una clase de objetos obj**C**.
- Para cada pareja de objetos A, B ∈ objC, un conjunto hom_C(A, B), cuyos elementos se llaman morfismos de A en B. Los morfismos tienen que satisfacer:

- Una clase de objetos obj**C**.
- Para cada pareja de objetos A, B ∈ objC, un conjunto hom_C(A, B), cuyos elementos se llaman morfismos de A en B. Los morfismos tienen que satisfacer:
 - Para cada $A, B, D \in \text{obj} \mathbb{C}$, existe una función $\text{hom}_{\mathbb{C}}(A, B) \times \text{hom}_{\mathbb{C}}(B, D) \to \text{hom}_{\mathbb{C}}(A, D)$ llamada composición, denotada $(f, g) \mapsto g \circ f$.

- Una clase de objetos obj**C**.
- Para cada pareja de objetos A, B ∈ objC, un conjunto hom_C(A, B), cuyos elementos se llaman morfismos de A en B. Los morfismos tienen que satisfacer:
 - Para cada A, B, $D \in \text{obj} \mathbb{C}$, existe una función $\text{hom}_{\mathbb{C}}(A, B) \times \text{hom}_{\mathbb{C}}(B, D) \to \text{hom}_{\mathbb{C}}(A, D)$ llamada composición, denotada $(f, g) \mapsto g \circ f$.
 - Si $f \in \text{hom}_{\mathbf{C}}(A, B)$, $g \in \text{hom}_{\mathbf{C}}(B, D)$, $h \in \text{hom}_{\mathbf{C}}(D, E)$, se tiene que $h \circ (g \circ f) = (h \circ g) \circ f$.

- Una clase de objetos obj**C**.
- Para cada pareja de objetos A, B ∈ objC, un conjunto hom_C(A, B), cuyos elementos se llaman morfismos de A en B. Los morfismos tienen que satisfacer:
 - Para cada A, B, $D \in \text{obj} \mathbb{C}$, existe una función $\text{hom}_{\mathbb{C}}(A, B) \times \text{hom}_{\mathbb{C}}(B, D) \to \text{hom}_{\mathbb{C}}(A, D)$ llamada composición, denotada $(f, g) \mapsto g \circ f$.
 - Si $f \in \text{hom}_{\mathbf{C}}(A, B)$, $g \in \text{hom}_{\mathbf{C}}(B, D)$, $h \in \text{hom}_{\mathbf{C}}(D, E)$, se tiene que $h \circ (g \circ f) = (h \circ g) \circ f$.
 - Para cada $A \in \text{obj} \mathbb{C}$, existe $1_A \in \text{hom}_{\mathbb{C}}(A, A)$ tal que si $A, B \in \text{obj} \mathbb{C}$ y $f \in \text{hom}_{\mathbb{C}}(A, B)$, entonces $1_B \circ f = f \circ 1_A = f$. El morfismo 1_A se llama identidad en A.

Ejemplos

• Consideremos la categoría **SimpComp** cuya clase de objetos es la clase de todos los complejos simpliciales abstractos y si $\Delta_1, \Delta_2 \in \text{obj}$ **SimpComp**, el conjunto hom_{SimpComp}(Δ_1, Δ_2) es el conjunto de los mapeos simpliciales de Δ_1 a Δ_2 .

Ejemplos

- Consideremos la categoría **SimpComp** cuya clase de objetos es la clase de todos los complejos simpliciales abstractos y si $\Delta_1, \Delta_2 \in \text{objSimpComp}$, el conjunto $\text{hom}_{\text{SimpComp}}(\Delta_1, \Delta_2)$ es el conjunto de los mapeos simpliciales de Δ_1 a Δ_2 .
- La categoría Top, cuya clase de objetos es la clase de todos los espacios topológicos y si X, Y son espacios topológicos, el conjunto hom_{Top}(X, Y) es el conjunto de las funciones continuas de X a Y.

Ejemplos

- Consideremos la categoría **SimpComp** cuya clase de objetos es la clase de todos los complejos simpliciales abstractos y si Δ_1 , $\Delta_2 \in \text{objSimpComp}$, el conjunto $\text{hom}_{\text{SimpComp}}(\Delta_1, \Delta_2)$ es el conjunto de los mapeos simpliciales de Δ_1 a Δ_2 .
- La categoría **Top**, cuya clase de objetos es la clase de todos los espacios topológicos y si X, Y son espacios topológicos, el conjunto hom_{Top}(X, Y) es el conjunto de las funciones continuas de X a Y.
- La categoría Set, cuya clase de objetos es la clase de todos los conjuntos y si A, B son conjuntos, el conjunto hom_{Set}(A, B) consta de las funciones de A en B.

- Consideremos la categoría SimpComp cuya clase de objetos es la clase de todos los complejos simpliciales abstractos y si $\Delta_1, \Delta_2 \in \text{obj} \mathbf{SimpComp}$, el conjunto $hom_{SimpComp}(\Delta_1, \Delta_2)$ es el conjunto de los mapeos simpliciales de Δ_1 a Δ_2 .
- La categoría **Top**, cuya clase de objetos es la clase de todos los espacios topológicos y si X, Y son espacios topológicos, el conjunto hom $_{Top}(X, Y)$ es el conjunto de las funciones continuas de X a Y.
- La categoría **Set**, cuya clase de objetos es la clase de todos los conjuntos y si A, B son conjuntos, el conjunto $hom_{Set}(A, B)$ consta de las funciones de A en B.
- La categoría Graph cuya clase de objetos es la clase de todas las gráficas y si G_1 , G_2 son dos gráficas se tiene que $hom_{Graph}(G_1, G_2)$ consta de las funciones $f: V(G_1) \to V(G_2)$ tales que si $v_1 \sim v_2$ en G_1 , entonces

- Consideremos la categoría SimpComp cuya clase de objetos es la clase de todos los complejos simpliciales abstractos y si $\Delta_1, \Delta_2 \in \text{obj} \mathbf{SimpComp}$, el conjunto $hom_{SimpComp}(\Delta_1, \Delta_2)$ es el conjunto de los mapeos simpliciales de Δ_1 a Δ_2 .
- La categoría **Top**, cuya clase de objetos es la clase de todos los espacios topológicos y si X, Y son espacios topológicos, el conjunto hom $_{Top}(X, Y)$ es el conjunto de las funciones continuas de X a Y.
- La categoría **Set**, cuya clase de objetos es la clase de todos los conjuntos y si A, B son conjuntos, el conjunto $hom_{Set}(A, B)$ consta de las funciones de A en B.
- La categoría Graph cuya clase de objetos es la clase de todas las gráficas y si G_1 , G_2 son dos gráficas se tiene que $hom_{Graph}(G_1, G_2)$ consta de las funciones $f: V(G_1) \to V(G_2)$ tales que si $v_1 \sim v_2$ en G_1 , entonces

- Consideremos la categoría SimpComp cuya clase de objetos es la clase de todos los complejos simpliciales abstractos y si $\Delta_1, \Delta_2 \in \text{obj} \mathbf{SimpComp}$, el conjunto $hom_{SimpComp}(\Delta_1, \Delta_2)$ es el conjunto de los mapeos simpliciales de Δ_1 a Δ_2 .
- La categoría **Top**, cuya clase de objetos es la clase de todos los espacios topológicos y si X, Y son espacios topológicos, el conjunto hom $_{Top}(X, Y)$ es el conjunto de las funciones continuas de X a Y.
- La categoría **Set**, cuya clase de objetos es la clase de todos los conjuntos y si A, B son conjuntos, el conjunto $hom_{Set}(A, B)$ consta de las funciones de A en B.
- La categoría Graph cuya clase de objetos es la clase de todas las gráficas y si G_1 , G_2 son dos gráficas se tiene que $hom_{Graph}(G_1, G_2)$ consta de las funciones $f: V(G_1) \to V(G_2)$ tales que si $v_1 \sim v_2$ en G_1 , entonces

- Consideremos la categoría SimpComp cuya clase de objetos es la clase de todos los complejos simpliciales abstractos y si $\Delta_1, \Delta_2 \in \text{obj} \mathbf{SimpComp}$, el conjunto $hom_{SimpComp}(\Delta_1, \Delta_2)$ es el conjunto de los mapeos simpliciales de Δ_1 a Δ_2 .
- La categoría **Top**, cuya clase de objetos es la clase de todos los espacios topológicos y si X, Y son espacios topológicos, el conjunto hom $_{Top}(X, Y)$ es el conjunto de las funciones continuas de X a Y.
- La categoría **Set**, cuya clase de objetos es la clase de todos los conjuntos y si A, B son conjuntos, el conjunto $hom_{Set}(A, B)$ consta de las funciones de A en B.
- La categoría Graph cuya clase de objetos es la clase de todas las gráficas y si G_1 , G_2 son dos gráficas se tiene que $hom_{Graph}(G_1, G_2)$ consta de las funciones $f: V(G_1) \to V(G_2)$ tales que si $v_1 \sim v_2$ en G_1 , entonces

- Consideremos la categoría SimpComp cuya clase de objetos es la clase de todos los complejos simpliciales abstractos y si $\Delta_1, \Delta_2 \in \text{obj} \mathbf{SimpComp}$, el conjunto $hom_{SimpComp}(\Delta_1, \Delta_2)$ es el conjunto de los mapeos simpliciales de Δ_1 a Δ_2 .
- La categoría **Top**, cuya clase de objetos es la clase de todos los espacios topológicos y si X, Y son espacios topológicos, el conjunto hom $_{Top}(X, Y)$ es el conjunto de las funciones continuas de X a Y.
- La categoría **Set**, cuya clase de objetos es la clase de todos los conjuntos y si A, B son conjuntos, el conjunto $hom_{Set}(A, B)$ consta de las funciones de A en B.
- La categoría Graph cuya clase de objetos es la clase de todas las gráficas y si G_1 , G_2 son dos gráficas se tiene que $hom_{Graph}(G_1, G_2)$ consta de las funciones $f: V(G_1) \to V(G_2)$ tales que si $v_1 \sim v_2$ en G_1 , entonces

- Consideremos la categoría SimpComp cuya clase de objetos es la clase de todos los complejos simpliciales abstractos y si $\Delta_1, \Delta_2 \in \text{obj} \mathbf{SimpComp}$, el conjunto $hom_{SimpComp}(\Delta_1, \Delta_2)$ es el conjunto de los mapeos simpliciales de Δ_1 a Δ_2 .
- La categoría **Top**, cuya clase de objetos es la clase de todos los espacios topológicos y si X, Y son espacios topológicos, el conjunto hom $_{Top}(X, Y)$ es el conjunto de las funciones continuas de X a Y.
- La categoría **Set**, cuya clase de objetos es la clase de todos los conjuntos y si A, B son conjuntos, el conjunto $hom_{Set}(A, B)$ consta de las funciones de A en B.
- La categoría Graph cuya clase de objetos es la clase de todas las gráficas y si G_1 , G_2 son dos gráficas se tiene que $hom_{Graph}(G_1, G_2)$ consta de las funciones $f: V(G_1) \to V(G_2)$ tales que si $v_1 \sim v_2$ en G_1 , entonces