
DESCRIPTIVE STATISTICS

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Covariance

<u>Covariance</u> is a statistical measure that quantifies the <u>relationship</u> between two random variables (*X*, *Y*).

Scatter Plot:

Covariance is a statistical measure that quantifies the **relationship** between two random variables (*X*, *Y*).

Population Covariance:

$$\sigma_{xy} = \frac{\sum_{i=1}^{N} (x_i - \mu_x) (y_i - \mu_y)}{N}$$

Sample Covariance:

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

EXERCISE

The given dataset contains five observations of current (A) and corresponding power (W) measurements. Does **current** and **power** consumption have a positive, negative, or no linear relationship?

Device

Current	Power
2	100
3.5	200
1.8	90
4.2	210
2.7	110

Solution:

LABORATORY

