Основы машинного обучения

Лекция 10

Логистическая регрессия и метод опорных векторов

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2024

Логистическая регрессия: простое объяснение

Логистическая регрессия

• Решаем задачу бинарной классификации: $\mathbb{Y} = \{-1, +1\}$

• Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Кредитный скоринг
- Стратегия: выдавать кредит только клиентам с b(x) > 0.9
- 10% невозвращённых кредитов нормально

- Баннерная реклама
- b(x) вероятность, что пользователь кликнет по рекламе
- c(x) прибыль в случае клика
- c(x)b(x)— хотим оптимизировать

- Прогнозирование оттока клиентов
- Медицинская диагностика
- Поисковое ранжирование (насколько веб-страница соответствует запросу?)

Будем говорить, что модель b(x) предсказывает вероятности, если среди объектов с b(x) = p доля положительных равна p.

Линейный классификатор

$$a(x) = sign \langle w, x \rangle$$

• Обучим как-нибудь — например, на логистическую функцию потерь:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• Может, $\langle w, x \rangle$ сойдёт за оценку?

Линейный классификатор

- Переведём выход модели на отрезок [0, 1]
- Например, с помощью сигмоиды:

$$\sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

Сигмоида

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

• Как обучать?

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

- Как обучать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

- Как обучать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$
- То есть задача сделать отступы на всех объектах максимальными

$$y_i\langle w, x_i\rangle \to \max_w$$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} \rightarrow \min_{w}$$

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен 1
- Если $y_i=+1$, то заменить $\sigma(\langle w,x_i\rangle)=1$ на $\sigma(\langle w,x_i\rangle)=0.5$ так же плохо, как заменить $\sigma(\langle w,x_i\rangle)=0.5$ на $\sigma(\langle w,x_i\rangle)=0$
- Надо строже!

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен $-\log 0 = +\infty$
- Достаточно строго
- Функция потерь называется **log-loss**

$$L(y,z) = -[y = 1] \log z - [y = -1] \log(1 - z)$$

Логистическая регрессия

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(1 - \frac{1}{1 + \exp(-\langle w, x \rangle)} \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(\frac{1}{1 + \exp(\langle w, x \rangle)} \right) \right\} =$$

$$\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log (1 + \exp(-\langle w, x \rangle)) + [y_i = -1] \log (1 + \exp(\langle w, x \rangle)) \right\} =$$

$$\sum_{i=1}^{\ell} \log (1 + \exp(-y_i \langle w, x_i \rangle))$$

Метод опорных векторов

Hinge loss

• Решаем задачу бинарной классификации: $\mathbb{Y} = \{-1, +1\}$

• Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \max(0, 1 - y_i \langle w, x_i \rangle) \to \min_{w}$$

Какой классификатор лучше?

Отступ классификатора

• Будем максимизировать отступ классификатора — расстояние от гиперплоскости до ближайшего объекта

Отступ классификатора

Отступ классификатора

- Будем максимизировать отступ классификатора расстояние от гиперплоскости до ближайшего объекта
- При этом будет стараться сделать поменьше ошибок
- По сути, делаем как можно меньше предположений о модели, и верим, что это понизит вероятность переобучения

Простой случай

- Будем считать, что выборка линейно разделима
- Существует линейный классификатор, не допускающий ни одной ошибки

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

• При условии, что $\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| = 1$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

- При условии, что $|\langle w, x_i \rangle + w_0| \ge 1$
- И мы минимизируем $\|w\|$ тогда где-то модуль отступа будет равен 1

Метод опорных векторов (SVM)

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 \end{cases}$$

• Любой линейный классификатор допускает хотя бы одну ошибку

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 \end{cases}$$

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - 10^{1000} \end{cases}$$

Отступ классификатора

Метод опорных векторов

$$\begin{cases} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

Метод опорных векторов

$$\begin{cases} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

• Объединим ограничения:

$$\xi_i \ge \max(0, 1 - y_i(\langle w, x_i \rangle + w_0))$$

Метод опорных векторов

$$C\sum_{i=1}^{\ell} \max(0, 1 - y_i(\langle w, x_i \rangle + w_0)) + ||w||^2 \to \min_{w, w_0}$$

• Функция потерь (hinge loss) + регуляризация

Сравнение логистической регрессии и SVM

Резюме

- Логистическая регрессия обучение модели так, что на объектах с близкими прогнозами эти прогнозы стремятся к доле положительных объектов
- Метод опорных векторов основан на идее максимизации отступа классификатора