Linear Algebra

Vectors

在 Linear Algebra 里,Vector 代表的是一个箭头,而这个箭头的尾部是在 Origin 的。

而在二维的时空里,一个 Vector 里会有 2 个号码,代表着这个 Vector 的 Coordinate,也就是 x-axis 与 y-axis。而在三维里,就是 3 个号码代表着 x-axis,y-axis 与 z-axis。

$$Vector \to \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

上面的 Vector Equation 代表着向左 2 步,然后向上 3 步。

把两个 Vector 相加起来,其实就是把一个 Vector 的尾部接到另一个 Vector 的箭头,如上图。

将一个 Vector 乘上一个值,其实就是把这个 Vector 变大,在上图能看出就是这个 Vector 的箭头变长。这个箭头的长度与方向 (目前的方向或者倒转 180 度) 会随着乘上的 Scale 的值不同而改变。

Linear Combinations

一般的情况,在要 Scale 一个 Vector 的时候,x-axis 与 y-axis 会用 $\hat{\imath}$ 和 $\hat{\jmath}$ 来代表。 $\hat{\imath}$ 和 $\hat{\jmath}$ 的专业用词是 Basis Vector of the xy coordinate system。

而这个举动也被称之为 Linear Combination,如上图,就是一个 Vector 被 $\hat{\imath}$ 和 $\hat{\jmath}$ 乘上后的一个新的 Vector。

Span

当 Vector 里的所有值时 0 的时候,也就是在 Origin,再怎么做 Linear Combination,出来的值也时 0。

当两个 Vectors 刚好在同一条线上时,再怎么做 Linear Combination,所有可能的值也只会发生在这条线上。

而当两个 Vector 不在同一条线上时,他的 Linear Combination 可以是在 2-D Plane 上的任何一个点。Span 的意思代表着,在 Plane 上面这两个 Vectors 做 Linear Combination 后能够到达的所有点。

在三维里,如果只有 2 个 Vectors 值的话,那么它的 Span 就是一个 Plane,而不会是三维空间里的每一个点。

当 Vectors 是三维的时候,它就 Span 就可以是三维空间里的任何一个点。

当两个点在同一条线上时,也就是说可以把这个 Vector 拿掉也不会影响这个 Span 的结果,这两个 Vectors 之间的关系可以称之为 Linearly Dependent。

当两个 Vectors 不在同一条线上时,在 Span 里也不能拿掉任何一个 Vector 时,这两个 Vectors 之间的关系称之为 Linearly Independent。

Linear Transformations

Transformations 的意思其实就是一个 Function 拿入一组 Input 然后输出与 Input 不同的 Output。 Linear Transformation 的意思就是 Transform 之后,这个 Plane 的 Origin 与之前一样,和这个 Plane 它还是直线。

上图都是一些不是 Linear Transformation 的列子。

再上图,当给出一个 Vector 的时候,这个 Linear Combination 给出的是 $\vec{v} = -1i + 2j$,而当 Transformation 发生之后,保留着原先的 Vector (黄色) 与 \hat{i} 和 \hat{j} 的方向,可以发现当 Transform 之后, grid size 变了还有原先 Vector, \hat{i} 和 \hat{j} 的方向与原来的不同了。在新的 Plane 要到达 Vector 的方向,就需要 $i \to -1$ (往 Axis 的左边走 1 格) 然后 $j \to 2$ (往 Axis 的右边走 2 格)。

Transformed $\hat{v} = -1$ (Transformed \hat{i}) + 2(Transformed \hat{j})

$$\hat{\imath}$$
 go left one step from $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$

$$\hat{j}$$
 go up one step from $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$

只要知道原先 $\hat{\imath}$ 和 $\hat{\jmath}$ 的位置,Transform 之后找出从 origin 到原先 $\hat{\imath}$ 和 $\hat{\jmath}$ 的位置,就算不看 Transformation 后的样子,还是能够找出 Transform 后 vector 的点。

$$\begin{bmatrix} x \\ y \end{bmatrix} \to x \begin{bmatrix} 1 \\ -2 \end{bmatrix} + y \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1x + 3y \\ -2x + 0y \end{bmatrix}$$

Formula

$$\hat{\imath} \& \hat{\jmath} \to \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$Transformed\ Vector \to \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

Matrix Multiplication as Composition (组成)

上图的一个 Transformation 就是将 Plane Rotate Anticlockwise 90°,然后 Shear 右边一格,也被称之为 Composition of a Rotation and a Shear。

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Shear Rotation Composition

上图这个公式是成立的,左边部分是先算出 Rotation 在算 Shear 的部分,右边的部分是将两个步骤同时一起算出,得到的结果是同样的。

当有 2 个 Transformation M1 和 M2 要做的时候

$$M1 \rightarrow \begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix}$$

$$M2 \rightarrow \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{bmatrix} a \\ c \end{bmatrix} = 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} b \\ d \end{bmatrix} = -2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
e \\
f \\
h
\end{bmatrix} = \begin{bmatrix}
ae + bg & af + bh \\
ce + dg & cf + dh
\end{bmatrix}$$

在这里的解释是 M1 和 M2 是两个 Transformation,而要找出做了 2 次 Transformation 后的位置,就需要先算出 M1 在算 M2。如上,找出 \hat{i} 和 \hat{j} 最终位置需要拆分 M1 乘与 M2 来求。

在这里需要说明,在做 Composition 的时候,先做那个动作那个 Matrix 就要放在右边,后做的就放在最左边,不然算出的结果会不同,这是因为当前的 Plane 已经改变。

Three-Dimensional Linear Transformations

在三维的 Linear Transformation 计算,也是一样,保留当前 $\begin{bmatrix} \hat{\imath} \\ \hat{j} \\ \hat{k} \end{bmatrix}$ 的方向还有原先的 Plane, Transform 之后找出从原先的 Plane 的 Origin 去到当前 $\begin{bmatrix} \hat{\imath} \\ \hat{k} \end{bmatrix}$ 一步的方向,求出一个 Transformation Matrix。

上图是计算出 Transformation 之后, $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ 的 Coordinates。

Determinant

在 Transformation 之前,如果往右一格,往上一个,这时候这个四方形的 Area 会是 Area=1*1=1,当 Transformation 之后这个 Square 的 Area 可能就变了。当知道这个 Square 的 Area 变化了多少,就能准确的算出任何的 Region 与 Space 的变化。

这种算法就叫做 Determinant,就是说在原先的 Area 做了 Transformation 之后的 Area 的变化。如上图,那个 Area 在做了 Transformation 之后,比原先的 Area 大了一倍,所以 Determinant 就是 2。但是如果 Transform 之后 2 个 Vectors 刚好在是在原先 Plane 上的同一条直线上,这时候的 Determinant 将会是 0

这个 Determinant 的值是可以有 Negative 的。如上图,一开始 \hat{j} 是在 \hat{i} 的左边,当 Transformation 之后,整个 Plane 都倒转了,这时候发现 \hat{i} 是在 \hat{j} 的左边,这时候计算出的 Determinant 值就是 Negative 的。

在 3-Dimensional Space 里面,Determinant 是算出 Volume 的变化。当有 2 个 Vector 对上在原先 Plane 的同一条线上,这时候算出的 Determinant 将会是 0。在 3-Dimensional 的时候,可以使用 Right Hand Rule 来确认当前的 Orientation,如果需要用左手才能实现,那么代表这个已经 flip 了,所以算出的 Determinant 应该是 Negative 的。

Formula

$$\det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - bc$$

$$\det \begin{pmatrix} \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \end{pmatrix} = ad - 0 \cdot 0$$

$$\det \begin{pmatrix} \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \end{pmatrix} = ad - 0 * 0$$

当 b 与 c 是 0 的时候,a 就代表了向右边扩展了多少,d 就代表了向上扩展了多少。B 与 d 控制的是这个新的 Area Shear(偏移)了多少。

上图是一个 Determinant 计算的推到。

$$\det\begin{pmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \end{pmatrix} = a \det\begin{pmatrix} \begin{bmatrix} e & f \\ h & i \end{bmatrix} \end{pmatrix}$$
$$-b \det\begin{pmatrix} \begin{bmatrix} d & f \\ g & i \end{bmatrix} \end{pmatrix}$$
$$+c \det\begin{pmatrix} \begin{bmatrix} d & e \\ g & h \end{bmatrix} \end{pmatrix}$$

上图是 3 维 Determinant 的计算方法,降为到 2 为再进行计算。

Inverse Matrices, Column Space and Null Space

"Linear system of equations"
$$2x+5y+3z=-3$$

$$4x+0y+8z=0$$

$$1x+3y+0z=2$$

上图是一个 Linear System of Equations 的列子,3 个 Equations 的 format 都是一样。没有其他总 类比如 x^2 或者 xy。

$$\begin{array}{c|ccccc}
 & A & \overrightarrow{x} & \overrightarrow{v} \\
2x+5y+3z &= -3 \\
4x+0y+8z &= 0 \\
1x+3y+0z &= 2
\end{array}$$

$$\begin{array}{c|ccccc}
 & A & \overrightarrow{x} & \overrightarrow{v} \\
2 & 5 & 3 \\
4 & 0 & 8 \\
1 & 3 & 0
\end{array}$$

$$\begin{array}{c|ccccc}
 & x \\
y \\
z
\end{array}$$

$$\begin{array}{c|ccccc}
 & -3 \\
0 \\
2
\end{array}$$

解决这类 Equations 的方法可以把 x, y 和 z 拆分出来。

$$A\vec{x} = \vec{v}$$

$$\vec{x} = A^{-1}\vec{v} \rightarrow Valid \ when \ \det(A) \neq 0$$

 $A^{-1}A \rightarrow End \ up \ back \ where \ it \ started \ (Do\ Nothing)$

A 其实就是 Transformation, \vec{x} 是一个 Vector, 而 \vec{v} 是 Transformation 后的 Vector。 \vec{v} 是能够找得到 \vec{x} 的,只要做 Inverse Transformation 前提是 Transformation Matrix 的 Determinant 不是 0。

当这个 Output of Transformation 出来是一条直线,也称之为 Rank 1。

当 Transformation 后,Output 是二维的,也称之为 Rank 2。Rank 的意思是 Number of dimensions in the output (Column Space)。当这个 Output Vector 的 Dimension 是它可以有最多的也就是与 Transformation 之前的 Vector 有着同样 Dimension 的 Vector,也可以称之为 Full Rank。

Columns Space 的意思是 Span of columns (All possible output matrix)。

当 Transformation 之后,Output Vector 是 lands on the origin,也可以称之为 Null Space 或者 Kernel of the Matrix。是一个 Space that All Vectors become Null。

Eigenvectors & Eigenvalues

当 Transformation 之后,这个 Vector 的 Span 是没有变化的,只是原先这个 Vector 的 Grid 被 Stretch 长罢了,这个就是 Eigenvectors,