

Generadores de números pseudoaleatorios

750098M Simulación computacional

Contenido

- 1 Introducción
- 2 Pruebas de bondad
- Secuencia en otras distribuciones
- 4 Práctica

Qué es un número aleatorio?

Es un número generado por un proceso sistemático, cuya salida es impredecible y que no puede ser reproducido

Una secuencia es aleatoria si la cantidad de información que contiene, de acuerdo a la teoría información de Shannon, es también finita.

http://www.randomnumbers.info/content/Random.htm

Aparición en la naturaleza

- 1 Ruido blanco
- Movimiento de esporas de helecho
- **Lanzar dados**

Existe el azar?

Lanzar dados es aleatorio? https://www.youtube.com/watch?

Una definición

Algo es aleatorio si es algorítmicamente incompresible o irreducible.

Exploring RANDOMNESS G J Chaitin, IBM Research Published by Springer-Verlag London, 2001, ISBN 1-85233-4⁴⁷⁻⁷

Aplicaciones

- Simulación
- Muestreo
- Análisis numérico
- Programación computacional
- Toma de decisiones

Diferencias

Números aleatorios	Números pseudoaleatorios
Son datos continuos	Puede resultar en datos discretos (si
	son generados en el computador, siem-
	pre son discretos)
Siguen distribución	Si se divide el intervalo [0,1] en subintervalos iguales
uniforme U(0,1)	pueden resultar intervalos donde caen significativamente
	más o menos datos que el número esperado
media 1/2	media por encima o por debajo de 1/2
varianza 1/12	varianza por encima o por debajo de 1/12
Los datos son	Se pueden presentar regularidades como:
independientes: una	periodicidad
observación no depende	autocorrelación
de las observaciones	patrones de crecimiento-decrecimiento
anteriores; no hay	patrones de valores encima o por de bajo de la media
ninguna clase de patrón	y muchos más

Qué es un número pseudoaleatorio?

- Es un número generado por una distribución uniforme.
- •Un verdadero número aleatorio necesita una fuente impredecible y no reproducible.
- Una estrategia es usar algoritmos matemáticos para generar cadenas de números aleatorios.
- Estos algoritmos reproducen números de una forma determinística, dependiendo de la semilla

Características

- Uniformemente distribuido
- Dependencia estadística
- Reproducible
- No se repite ningún número en una longitud dada
- Usan una semilla

Consideraciones

- Uniformidad: en cualquier punto del tiempo, la ocurrencia de 0 o no 0 es igual de probable
- Escalabilidad: Si una secuencia es aleatoria, cualquier subsecuencia debe ser aleatoria
- Consistencia: El comportamiento del generador debe ser bueno con varias semillas

Método Von Neumann

Es conocido como método de los números cuadrados medios

Preocupaciones

Generadores de números pseudoaleatorios

- Produce números enteros X_i uniformemente en $(0,X_{MAX})$
- Se normalizan (0-1) mediante: $u_i = x_i / x_{MAX}$
- Su periodo es hasta que se repite un número (por qué?)
- Un periodo completo es igual a x_{MAX}(por qué?)

Método Congruencia Lineal

Dada una semilla dada X₀ y unos enteros a,c y m:

1 $X_{n+1} = (a*x_n + c) MOD m$

Repite $X_n = X_{n+1}$ las veces que sean necesarias

Método Congruencia Lineal

Por ejemplo para $X_0=7$, a=1, c=7 y m=10:

$$1 \quad \widehat{X}_1 = (1*7 + .7) \mod 10 = 4$$

$$X_2 = (1*4 + 7) \mod 10 = 1$$

$$X_3 = (1 + 7) \mod 10 = 8$$

$$X_4 = (1*8 + 7) \mod 10 = 5$$

$$X_{5}=(5+7)$$
 mod 10
 $X_{5}=2$
 $X_{5}=9$
 $X_{5}=3$
 $X_{5}=3$
 $X_{5}=3$

Ahora para x_0 =4, a=1, c=3 y m=5 haga los 6 primeros pasos

$$(9 \times 1)$$
 (9×1) $(9 \times$

1)
$$a = 3$$
 $c = 2$ $m = 10$, $Xo = 3$
 $xo = 3$, $x1 = 1$, $x2 = 5$, $x3 = 7$,
 $x4 = 3$

2)
$$a = 5$$
 $c = 6$ $m = 8$, $xo = 4$

Teorico (0 7) 8

$$x0 = 4$$
, $x1 = 2$, $x2 = 0$, $x3 = 6$, $x4 = 4$

Método general de congruencia

La expresión general es: $x_{i+1} = f(x_i, x_{i-1}) \pmod{m}$

Donde f() es una función de los números previamente generados

mod m

Seleccionar el m

- La secuencia de números es finita
- La secuencia es máximo m-> m debe ser grande
- Se recomienda que o debe ser un número primo
- Se recomienda que m sea una potencia de 2

3-20000011 Short 5-2000001

Otras selecciones

- 0.01 m < a < 0.99 m
- Que pasa cuando c=0? (más rápido, periodo corto)
- ¿Cómo escoger el x₀? reloj, ultimo valor, etc
- ¿Que pasa si selecciono un mismo valor de x₀?

Ejemplos, Cuál es mejor?

100 Datos

Ejemplos, Cuál es mejor?

$$X_0 = 5$$
 $a = 255$
 $c = 100$
 $m = 1032$

$$X_0 = 5$$
 $a = 255$
 $c = 100$
 $m = 1031$

10000 Datos

Un excelente generador

$$a = 106$$

$$c = 1283$$

$$m = 6075$$

$$X_0 = 5$$

Generador estándar mínimo (GEM)

- Cumple con las exigencias para ser un buen generador
- Se debe garantizar que no se use 0 como semilla
- Su periodo es m -1

Generador estándar mínimo (GEM)

Histograma con 10000 puntos del generador de estándar mínimo

Generador Fibonacci (LFG)

La secuencia Fibonacci es 0,1,1,2,3,5,8,13,21,...

$$X_n = X_{n-1} + X_{n-2}$$

El generador se puede expresar entonces en:

$$X_n = X_{n-j} Op X_{n-k} \mod m$$

Donde 0 < j < k y OP es sumar o multiplicar

$$(X_{n-1}OPX_{n-2})modm$$

LFG Aditivo vs Multiplicativo

Aditivo

$$X_n = X_{n-k} + X_{n-k} \mod m$$
Multiplicativo

$$X_n = X_{n-k} \times X_{n-k} \mod m$$

Un periodo m^k -1 si m es primo m es por lo general 2³² o 2⁶⁴

1)
$$m = 10$$
, $Xo = 3$, $X1 = 6$ $xn = xn-1OP xn-2 mod 10$ Aditivo

$$x2 = 9$$

$$x3 = 5$$

$$x4 = 4$$

$$x5 = 9$$

$$x6 = 3$$

$$x12 = 1$$

$$x14 = 1$$

$$x16 = 2$$

$$x18 = 5$$

$$x7 = 2$$

$$x8 = 5$$

$$x9 = 7$$

$$x10 = 2$$

$$x11 = 9$$

$$x13 = 0$$

$$x15 = 1$$

$$x17 = 3$$

$$x19 = 8$$

$$x20 = 3$$

$$x21 = 1$$

$$x22 = 4$$

$$x23 = 5$$

$$x24 = 9$$