Zależności między liczbami Strilinga pierwszego i drugiego rodzaju

Zauważmy, że liczba cykli musi być co najmniej równa liczbie podzbiorów, więc mamy

$$\binom{n}{k} \leqslant \binom{n}{k}$$

dla całkowitych nieujemnych n i k.

Zachodzą tzw. wzory inwersji:

Jeżeli $m \neq n$, to

$$\sum_{k=0}^{n} {n \brack k} {k \brack m} (-1)^{n-k} = \sum_{k=0}^{n} {n \brack k} {k \brack m} (-1)^{n-k} = 0$$

Wartości $\binom{n}{k}$ dla małych n i k:

n	0	1	2	3	4	5	6	7	8	9
0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0	0
3	0	1	3	1	0	0	0	0	0	0
4	0	1	7	6	1	0	0	0	0	0
5	0	1	15	25	10	1	0	0	0	0
6	0	1	31	90	65	15	1	0	0	0
7	0	1	63	301	350	140	21	1	0	0
8	0	1	127	966	1701	1050	266	28	1	0
9	0	1	255	3025	7770	6951	2646	462	36	1

Uwaga!

W przypadku, gdy $n\geqslant 0$ i k<0 zakładamy, że $\displaystyle {n\choose k}=0.$

Oblicz wartości wyrażeń

a)
$$x^{1} + x^{2}$$
,

b)
$$x^{1} + 3x^{2} + x^{3}$$
,

c)
$$x^{1} + 7x^{2} + 6x^{3} + x^{4}$$
.

d)
$$x^{1} + 15x^{2} + 25x^{3} + 10x^{4} + x^{5}$$
.

Powyższy przykład pokazuje, że dla małych wartości n wyrażenie x^n można zapisać jako sumę potęg zstępujących ze współczynnikami wynikającymi z tabeli liczb Stirlinga drugiego rodzaju:

$$\begin{split} x^0 &= x^{\underline{0}}, \\ x^1 &= x^{\underline{1}}, \\ x^2 &= x^{\underline{1}} + x^{\underline{2}}, \\ x^3 &= x^{\underline{1}} + 3x^{\underline{2}} + x^{\underline{3}}, \\ x^4 &= x^{\underline{1}} + 7x^{\underline{2}} + 6x^{\underline{3}} + x^{\underline{4}}, \\ x^5 &= x^{\underline{1}} + 15x^{\underline{2}} + 25x^{\underline{3}} + 10x^{\underline{4}} + x^{\underline{5}}. \end{split}$$

Czy prawdziwa jest ogólna zależność?

Wartości $\begin{bmatrix} n \\ k \end{bmatrix}$ dla małych n i k:

n	0	1	2	3	4	5	6	7	8
0	1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0
3	0	2	3	1	0	0	0	0	0
4	0	6	11	6	1	0	0	0	0
5	0	24	50	35	10	1	0	0	0
6	0	120	274	225	85	15	1	0	0
7	0	720	1764	1624	735	175	21	1	0
8	0	5040	13 068	13 132	6769	1960	322	28	1
9	0	40 320	109 584	118 124	67 284	22 449	4536	546	36

Uwaga!

W przypadku, gdy $n\geqslant 0$ i k<0 zakładamy, że ${n\brack k}=0$.

- $5^{\underline{3}} = 5 \cdot 4 \cdot 3 = 60$
- $5^{\overline{3}} = 5 \cdot 6 \cdot 7 = 210$
- $4^{\underline{5}} = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 = 0$

$$n! = n^{\underline{n}} = 1^{\overline{n}}$$

Przykład

- $x^{3} = x(x-1)(x-2) = x^{3} 3x^{2} + 2x$
- $x^{\overline{3}} = x(x+1)(x+2) = x^3 + 3x^2 + 2x$

Zapisz w postaci ogólnej wielomiany $x^{\overline{s}}$ dla s=0,1,2,3,4,5.

$$x^{\overline{0}} = 1 = x^{0},$$

$$x^{\overline{1}} = x = x^{1},$$

$$x^{\overline{2}} = x(x+1) = x^{1} + x^{2},$$

$$x^{\overline{3}} = x(x+1)(x+2) = 2x^{1} + 3x^{2} + x^{3},$$

$$x^{\overline{4}} = x(x+1)(x+2)(x+3) = 6x^{1} + 11x^{2} + 6x^{3} + x^{4},$$

$$x^{\overline{5}} = x(x+1)(x+2)(x+3)(x+4) = 24x^{1} + 50x^{2} + 35x^{3} + 10x^{4} + x^{5}.$$

Jak powinno wygladać uogólnienie zaobserwowanych wyników?

Trójkąt Stirlinga dla cykli:

Trójkąt Stirlinga dla cykli:

Dowód. (2/2)

W drugim przypadku mamy ${n-1\brack k}$ możliwości podziału zbioru $\{a_1, a_2, \dots, a_{k-1}\}$ na cykle C_1, C_2, \dots, C_k . W przypadku każdego takiego podziału element a_n może trafia do jednego z tych cykli. Nietrudno zauważyć, że można go tak umieścić na (n-1) sposobów (cykl długości L można rozszerzyć o jeden element na L sposobów). Zatem w tym przypadku mamy

$$(n-1)\cdot {n-1\brack k}$$
 możliwości.

Ostatecznie

Trójkąt Stirlinga dla podzbiorów:

Trójkąt Stirlinga dla podzbiorów:

Twierdzenie

Dla n > 0 zachodzi zależność rekurencyjna

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \cdot \begin{bmatrix} n-1 \\ k \end{bmatrix}.$$

Poniższy dowód jest modyfikacją wcześniej przedstawionego dowodu zależności rekurencyjnej dla liczb Stirlinga drugiego rodzaju.

Dowód. (1/2)

Niech $S=\{a_1,a_2,\ldots,a_n\}$. Określimy liczbę podziałów S na k cykli C_1,C_2,\ldots,C_k . Zauważmy, że w każdym takim podziale elementy a_1,a_2,\ldots,a_{n-1} można rozmieścić <u>albo</u> w cyklach C_1,C_2,\ldots,C_{k-1} <u>albo</u> w cyklach $C_1,C_2,\ldots,C_{k-1},C_k$.

W pierwszym przypadku mamy $\begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$ możliwości. Zayważmy, że dla każdego takiego podziału element a_n tworzy ostatni, jednoelementowy cykl $C_k = [a_n]$.

Wyznaczyć największy wspólny dzielnik oraz najmniejszą wspólną wielokrotność liczb $48\ {\rm i}\ 180.$

Stosując algorytm Euklidesa otrzymujemy

$$180 = 3 \cdot 48 + 36$$
$$48 = 1 \cdot 36 + 12$$
$$36 = 3 \cdot 12$$

Zatem NWD(48, 180) = 12.

Zatem

$$NWW(48, 180) = \frac{48 \cdot 180}{12} = \frac{4 \cdot 180}{1} = 720.$$

Podstawowe twierdzenie arytmetyki

Każdą liczbę całkowitą dodatnią można przedstawić jako iloczyn liczb pierwszych. Przedstawienie takie jest jednoznaczne z dokładnością do kolejności czynników.

Przykład

$$12 = 2 \cdot 2 \cdot 3 = 2 \cdot 3 \cdot 2 = 3 \cdot 2 \cdot 2$$

Wniosek

Każda większa od 1 liczba naturalna n może być jednoznacznie zapisana w tzw. **postaci kanonicznej**

$$n = q_1^{\alpha_1} \cdot q_2^{\alpha_2} \cdot \ldots \cdot q_k^{\alpha_k},$$

gdzie q_i są liczbami pierwszymi, α_i są liczbami naturalnymi oraz $q_1 < q_2 < \ldots < q_k$.

Przykład

Postacią kanoniczną liczby 12 jest $2^2 \cdot 3$.

Definicja

Dla każdej liczby $n\in\mathbb{N}/\{1\}$ określamy liczbę $\varphi(n)$ jako liczbę dodatnich liczb całkowitych mniejszych od n i względnie pierwszych z n:

$$\varphi(n) = \Big| \{ 1 \leqslant k < n : k \perp n \} \Big|.$$

Funkcję $\varphi = \varphi(n)$ nazywamy funkcją φ -Eulera.

Przykład

Obliczmy NWD(k, 12) dla k mniejszych od 12:

$$\begin{array}{llll} \mathsf{NWD}(1,12) = \mathbf{1}, & \mathsf{NWD}(4,12) = 4, & \mathsf{NWD}(7,12) = \mathbf{1}, & \mathsf{NWD}(10,12) = 2, \\ \mathsf{NWD}(2,12) = 2, & \mathsf{NWD}(5,12) = \mathbf{1}, & \mathsf{NWD}(8,12) = 4, & \mathsf{NWD}(11,12) = \mathbf{1}. \\ \mathsf{NWD}(2,12) = 2, & \mathsf{NWD}(2,12) = 2, & \mathsf{NWD}(2,12) = 2, & \mathsf{NWD}(2,12) = 2. \end{array}$$

$$NWD(3, 12) = 3$$
, $NWD(6, 12) = 6$, $NWD(9, 12) = 3$,

7atem

$$\varphi(12) = |\{1, 5, 7, 11\}| = 4.$$

Poprawność algorytmu Euklidesa

- Algorytm produkuje <u>malejący</u> ciąg liczb całkowitych nieujemnych $r_1 > r_2 > \ldots > r_n$ (jedna liczba w jednym kroku). Zatem algorytm zatrzymuje się po skończonej liczbie kroków (nie większej niż wartość r_1).
- Z własności NWD(a, b) = NWD(a qb, b) otrzymujemy

$$\begin{aligned} \mathsf{NWD}(a,b) &= \mathsf{NWD}(b,r_1) = \mathsf{NWD}(r_1,r_2) = \ldots = \mathsf{NWD}(r_{n-1},r_n) = \\ &= \mathsf{NWD}(r_n,0) = r_n \end{aligned}$$

Twierdzenie

Liczb pierwszych jest nieskończenie wiele.

Dowód.

Załóżmy nie wprost, że teza twierdzenia jest fałszywa, tj. zbiór liczb pierwszych jest skończony. Zatem dla pewnej liczby naturalnej n mamy

$$\mathbb{P} = \{p_1, p_2, \ldots, p_n\}.$$

Niech P będzie następnikiem iloczynu wszystkich elementów powyższego zbioru \mathbb{P} :

$$P = 1 + \prod_{i=1}^{n} p_i.$$

Zauważmy, że liczba P przy dzieleniu przez p_i (dla $i=1,2,\ldots,n$) daje resztę 1, zatem liczba P nie jest podzielna przez żadną liczbę pierwszą — uzyskaliśmy sprzeczność.

Powyższy dowód ma ∼2500 lat (*Elementy* Euklidesa).

Definicja

Liczba $n \in \mathbb{N}$ jest **liczbą pierwszą**, jeżeli n ma dokładnie dwa dodatnie dzielniki.

- 0 nie jest liczbą pierwszą (po pierwsze nie jest liczbą dodatnią, a po drugie ma nieskończenie wiele dzielników).
- 1 nie jest liczbą pierwszą (ma dokładnie jeden dodatni dzielnik).
- Początkowe liczby pierwsze: 2, 3, 5, 7, 11, 13, 17, 19, 23.
- Liczby naturalne większe od 1 dzielimy na liczby pierwsze i liczby złożone (złożone to te, które nie są pierwsze).
- 1 nie jest ani liczbą pierwszą, ani liczbą złożoną.
- ullet Zbiór liczb pierwszych oznaczamy przez ${\mathbb P}.$

Twierdzenie (NWD jako kombinacja liniowa)

Dla $a,b\in\mathbb{Z}$ takich, że co najmniej jedna z nich jest różna od 0, istnieją $u,v\in\mathbb{Z}$ takie, że

$$\mathsf{NWD}(a,b) = u \cdot a + v \cdot b.$$

Ponadto $\mathsf{NWD}(a,b)$ jest najmniejszą możliwą
 <u>dodatnią</u> kombinacją liniową a i b.

Przykład

Wyznaczyć najmniejszą dodatnią kombinację liniową liczb 3 i 7 oraz podać jej przykładowe współczynniki.

$$\begin{aligned} \mathsf{NWD}(3,7) &= 1 = 5 \cdot 3 - 2 \cdot 7 \\ 1 &= (-2) \cdot 3 + 1 \cdot 7 \\ 1 &= (-23) \cdot 3 + 10 \cdot 7 \end{aligned}$$

Słowniczek

```
wartość bezwzględna liczby x
     |x|
NWD(a, b)
                największy wspólny dzielnik liczb a i b
NWW(a, b)
                najmniejsza wspólna wielokrotność liczb a i b
\min\{a,b\}
                niewiększa z liczb a i b
\max\{a,b\}
                niemniejsza z liczb a i b
    a|b
                liczba a jest dzielnikiem liczby b
   a\perp b
                liczby a i b są względnie pierwsze
     \mathbb{N}
                zbiór liczb naturalnych, \mathbb{N} = \{1, 2, 3, \ldots\}
     \mathbb{Z}
                zbiór liczb całkowitych, \mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}
    \mathbb{Z}_n
                zbiór reszt z dzielenia przez n, \mathbb{Z}_n = \{0, 1, \dots, n-1\}
                zbiór liczb pierwszych
                i-ta liczba pierwsza
     p_i
```

Odwrotny algorytm Euklidesa

Algorytm służy wyznaczenia u i v takich, że $a \cdot u + b \cdot v = \mathsf{NWD}(a, b)$.

$$a = q_1 \cdot b + r_1, \quad b = q_2 \cdot r_1 + r_2, \quad r_1 = q_3 \cdot r_2 + r_3, \quad \dots,$$

 $r_{n-3} = q_{n-1} \cdot r_{n-2} + r_{n-1}, \quad r_{n-2} = q_n \cdot r_{n-1} + r_n, \quad r_{n-1} = q_{n+1} \cdot r_n.$

- Z i-tego równania wyznaczamy wartość r_i dla każdego $i=1,2,\ldots,n$ (więc pomijamy ostatnie równanie).
- Wyliczone r_n daje nam równanie $\mathsf{NWD}(a,b) = r_{n-2} q_n \cdot r_{n-1}.$ Do tego równania wstawiamy wyliczoną wartość r_{n-1} (w ten sposób otrzymujemy $\mathsf{NWD}(a,b)$ w kombinacji liniowej r_{n-2} i r_{n-3}).
- ullet Kontynuujemy podstawianie r_{n-2} , r_{n-3} itd. aż do r_1 , po drodze upraszczając współczynniki. W efekcie dostajemy zapis implikujący wartości u i v.

Stwierdzenie

Jeżeli $a \perp b$, to $\varphi(ab) = \varphi(a)\varphi(b)$.

Z dwóch ostatnich stwierdzeń wynika następujące

Twierdzenie

Niech $p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}$ będzie postacią kanoniczną liczby $n \in \mathbb{N}/\{1\}$. Wtedy

$$\varphi(n) = n \cdot \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right).$$