Entropy

정보, 정보량 그리고 불확실성

- ✓ 어떤 일이 일어날 확률이 높다면, 그 일이 일어나는 것은 확실
- ✓ 어떤 일이 일어날 확률이 낮다면, 그 일이 일어나는 것은 불확실
- ✓ 확실한 정보 vs 확실하다고 말하는 정보
 - 내일 아침 태양이 동쪽에서 뜰 겁니다. ==> 당연!
 - 이건 확실한 정보인데요, 내일 아침 태양이 서쪽에서 뜰 겁니다. ==> 뭔소리야?
 - 근데 만약 확실하다고 말하는 정보가 진짜라면, 완전 대박 고급정보!
- \checkmark 그래서, 정보는 확률에 반비례 합니다. $\frac{1}{p(x)}$

정보, 정보량 그리고 불확실성

✓ 그리고 정보를 량으로 수치화 하면,

정보량 =
$$\log \frac{1}{p(x)} = -\log p(x)$$

- ✓ 확률에 Log 계산을 한다는 것은..
 - 확률 0~1==>∞~0으로 변환 0에서 1사이의 값을 무한대~0사이의 값으로 변환
 - 정보량이 크다(확률이 적다) → ∞
 - 정보량이 적다(확률이 크다) → 0
- ✓ 불확실성이 큰 상황에서 주어지는 정보가 고급정보!
 - 정보량이 크다 = 일어날 확률이 적다 = 불확실성이 크다.

평균 정보량 = 엔트로피

- ✓ 만약 주머니에 공이 10개고, 하나를 뽑으려 할 때,
 - Case ①: 빨간공 1개, 검은공 9개 → 왠만하면 검은공이 뽑힘. (불확실성 낮음)
 - Case② : 빨간공 5개, 검은공 5개 → 검은공 빨간공 어떤 게 뽑힐지 불확실. (불확실성이 높음)

평균 정보량 = 엔트로피

✓ 얼마나 불확실 한거야?

$$H(x) = \sum_{i=1}^n p(x_i) \left(-log p(x_i)
ight)$$

- 검은 공의 비율: 9/10 = 0.9
- 빨간 공의 비율: 1/10 = 0.1
- 엔트로피 = -(0.9 · log 0.9 + 0.1 · log 0.1) = 0.325 가중치·검은 공 정보량 + 가중치·빨간 공 정보량

- 검은 공의 비율 : 5/10 = 0.5
- 빨간 공의 비율: 5/10 = 0.5
- 엔트로피 = -(0.5 · log 0.5 + 0.5 · log 0.5) = 0.693

평균 정보량 = 엔트로피

- \checkmark 얼마나 불확실 한거야? $H(x) = \sum_{i=1}^{n} p(x_i) \left(-logp(x_i)\right)$
- ✓ 이 값을 다른 말로 엔트로피 불순도(Impurity) 라고 부릅니다.
 - 의사결정나무에서는
 - 전체적으로 이 값을 떨어뜨려 가는 것이 모델링의 목표 입니다.
 - 그래서 split 시 불순도를 가장 많이 떨어뜨려주는 변수와 값으로 기준을 결정합니다.
 - 부모의 불순도에서 자식의 불순도를 뺀 것이 Information Gain(정보 이득) 입니다.

Cross Entropy

분류 모델에 대한 loss function

예측결과와 실제값의 차이가 클수록 오차(정 보량)이 크다. 이를 낮추는 방향으로 학습이 되어야함.

- ✓ 예측결과와 실제 값에 대한 오차를 어떻게 계산하면 좋을까요?
 - y 가 1이라면,

- = 정보량
- \hat{y} 이 1에 가까울 수록 오차가 0에 가깝고
- ŷ이 0에 가까울 수록 오차가 ∞ 에 가깝도록 만드는 방법이 있습니다.
- 그렇다면 y 가 0일 때는 어떻게 계산하는 것이 좋을까요?
 - ŷ이 1에 가까울 수록 오차가 ∞ 에 가깝고
 - \hat{y} 이 0에 가까울 수록 오차가 0 에 가깝도록 만들려면

y	ŷ	$-\log \widehat{\mathbf{y}}_{1}$	$-\log(1-\widehat{y}_0)$
1	0.9	0.11	
0	0.3		0.36
0	0.4		0.51
1	0.7	0.36	
0	0.5		0.69
0	0.7		1.2
1	0.5	0.69	

err_1	=	_	log	\hat{y}_1
			\mathcal{L}	

$$err_0 = -log(\mathbf{1} - \widehat{\mathbf{y}}_0)$$

분류 모델에 대한 loss function

- ✓ 이 오차의 식을 일반화 시키고(err_1 과 err_0 을 하나의 식으로 합치고)
- ✓ 평균을 계산한 오차식 : Log Loss, 혹은 Cross Entropy 입니다.

$$-\frac{1}{n}\sum(y\cdot\log\widehat{y}+(1-y)\cdot\log(1-\widehat{y})) \qquad err_1 = -\log\widehat{y}_1 \\ err_0 = -\log(1-\widehat{y}_0)$$

y	$\widehat{\mathbf{y}}$	-	$-\log \widehat{oldsymbol{y}}_{oldsymbol{1}}$	$-\log(1-\widehat{y}_0)$
1	0.9		0.11	
0	0.3			0.36
0	0.4			0.51
1	0.7		0.36	
0	0.5			0.69
0	0.7			1.2
1	0.5		0.69	

