

Natural Language Processing

Mehmet Can Yavuz, PhD Adapted from Info 256 - David Bamman, UC Berkeley

Regression

A mapping h from input data x (drawn from instance space x) to a point y in \mathbb{R}

"Star Wars is not a great movie in the sense that it describes the human condition. It is simply a fun picture that will appeal to those who enjoy Buck Rogers-style adventures. What places it a sizable cut above the routine is its spectacular visual effects, the best since 2001: A Space Odyssey." (Siskel, 1977)

Regression problems

task	$\boldsymbol{\mathcal{X}}$	y	
predicting box office revenue	movie reviews	opening box office	
predicting real estate sales prices	real estate description	sales price	
predicting stock movements	all tweets	price of \$GOOG	

\$399000 Stunning skyline views like something from a postcard are yours with this large 2 bed, 2 bath loft in Dearborn Tower! Detailed hrdwd floors throughout the unit compliment an open kitchen and spacious living-room and dining-room /w walk-in closet, steam shower and marble entry. Parking available.

\$13000 4 bedroom, 2 bath 2 story frame home. Property features a large kitchen, living-room and a full basement. This is a Fannie Mae Homepath property.

\$65000 Great short sale opportunity... Brick 2 flat with 3 bdrm each unit. 4 or more cars parking. Easy to show.

Regression

Supervised learning

Given training data in the form of $\langle x, y \rangle$ pairs, learn $\hat{h}(x)$

Regression

Linear regression

$$\hat{y} = \sum_{i=1}^{F} x_i \beta_i$$

$$\beta \in \mathbb{R}^{F}$$

(F-dimensional vector of real numbers)

x = feature vector

β = coefficients

Feature	Value	Feature	β
the	0	the	0.01
and	0	and	0.03
action	1	action	15.3
love	1	love	3.1
animation	0	animation	13.2
audiences	1	audiences	3.4
not	0	not	-3.0
fruit	0	fruit	-0.8
BIAS	1	BIAS	16.4

Linear regression

$$y = \sum_{i=1}^{F} x_i \beta_i + \varepsilon$$

true value y

$$\hat{y} = \sum_{i=1}^{F} x_i \beta_i$$

prediction ŷ

$$\varepsilon = y - \hat{y}$$

ε is the difference between the prediction and true value

Evaluation

Goodness of fit (to training data)

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

sum of square errors

total sum of squares

For most models, R² ranges from 0 (no fit) to 1 (perfect fit)

Experiment design

	training	development	testing
size	80%	10%	10%
purpose	training models	model selection	evaluation; never look at it until the very end

Metrics

 Measure difference between the prediction ŷ and the true y

Mean squared error (MSE)

$$\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Mean absolute error (MAE)

$$\frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$

MSE error penalizes outliers more than MAE

How do we get good values for β?

β = coefficients

Feature	β
follow clinton	-3.1
follow trump	6.8
"benghazi"	1.4
negative sentiment + "benghazi"	3.2
"illegal immigrants"	8.7
"republican" in profile	7.9
"democrat" in profile	-3.0
self-reported location = Berkeley	-1.7

Least squares

$$\beta = \min_{\beta} \sum_{i=1}^{N} \varepsilon^{2}$$

we want to minimize the errors we make

$$\beta = \min_{\beta} \sum_{i=1}^{N} (y - \hat{y})^2$$

$$\beta = \min_{\beta} \sum_{i=1}^{N} \left(y - \sum_{j=1}^{F} x_j \beta_j \right)^2$$

Least squares

$$\beta = \min_{\beta} \sum_{i=1}^{N} \left(y - \sum_{j=1}^{F} x_j \beta_j \right)^2$$

- We can solve this in two ways:
 - Closed form (normal equations)
 - Iteratively (gradient descent)

β = coefficients

Many features that show up rarely may likely only appear (by chance) with one label

More generally, may appear so few times that the noise of randomness dominates

Feature	β	
follow clinton	-3.1	
follow trump + follow NFL + follow bieber	7299302	
"benghazi"	1.4	
negative sentiment + "benghazi"	3.2	
"illegal immigrants"	8.7	
"republican" in profile	7.9	
"democrat" in profile	-3.0	
self-reported location = Berkeley	-1.7	

Ridge regression

$$\beta = \min_{\beta} \sum_{i=1}^{N} (y - \hat{y})^2 + \eta \sum_{i=1}^{F} \beta_i^2$$
error coefficient size

We want both of these to be small!

This corresponds to a prior belief that β should be 0

Ridge regression

$$\beta = \min_{\beta} \sum_{i=1}^{N} (y - \hat{y})^2 + \eta \sum_{i=1}^{F} \beta_i^2$$
error coefficient size

A.K.A.

L2 regularization Penalized least squares

Matt Gerald	\$295,619,605	Computer Animation	\$68,629,803	Adventure	\$6,349,781
Peter Mensah	\$294,475,429	Hugo Weaving	\$39,769,171	Action	\$5,512,359
Lewis Abernathy	\$188,093,808	John Ratzenberger	\$36,342,438	Fantasy	\$5,079,546
Sam Worthington	\$186,193,754	Tom Cruise	\$36,137,757	Family Film	\$4,024,701
CCH Pounder	\$184,946,303	Tom Hanks	\$34,757,574	Thriller	\$3,479,196
Steve Bacic	-\$65,334,914	Western	-\$13,223,795	Western	-\$752,683
Jim Ward	-\$66,096,435	World cinema	-\$13,278,965	Black-and- white	-\$1,389,215
Karley Scott Collins	-\$66,612,154	Crime Thriller	-\$14,138,326	World cinema	-\$1,534,435
Dee Bradley Baker	-\$73,571,884	Anime	-\$14,750,932	Drama	-\$2,432,272
Animals	-\$110,349,541	Indie	-\$21,081,924	Indie	-\$3,040,457

BIAS: \$5,913,648 BIAS: \$13,394,465 BIAS: \$45,044,525

Interpretation

$$\hat{y} = x_0 \beta_0 + x_1 \beta_1$$

$$x_0\beta_0 + (x_1 + 1)\beta_1$$

$$x_0\beta_0 + x_1\beta_1 + \beta_1$$

$$=\hat{y}+\beta_1$$

Let's increase the value of x_1 by 1 (e.g., from $0 \rightarrow 1$)

β represents the degree to which y changes with a 1-unit increase in x

Regularization

 Regularization applies to linear models that are used for both regression and classification.

Feature selection

- We could threshold features by minimum count but that also throws away information
- We can take a probabilistic approach and encode a prior belief that all β should be 0 unless we have strong evidence otherwise

L2 regularization

$$\ell(\beta) = \sum_{i=1}^{N} \log P(y_i \mid x_i, \beta) - \sum_{j=1}^{F} \beta_j^2$$
we want this to be high but we want this to be small

- We can do this by changing the function we're trying to optimize by adding a penalty for having values of β that are high
- This is equivalent to saying that each β element is drawn from a Normal distribution centered on 0.
- η controls how much of a penalty to pay for coefficients that are far from 0 (optimize on development data)

no L2 regularization	some L2 regularization	high L2 regularization	
33.83 Won Bin	2.17 Eddie Murphy	0.41 Family Film	
29.91 Alexander Beyer	1.98 Tom Cruise	0.41 Thriller	
24.78 Bloopers	1.70 Tyler Perry	0.36 Fantasy	
23.01 Daniel Brühl	1.70 Michael Douglas	0.32 Action	
22.11 Ha Jeong-woo	1.66 Robert Redford	0.25 Buddy film	
20.49 Supernatural	1.66 Julia Roberts	0.24 Adventure	
18.91 Kristine DeBell	1.64 Dance	0.20 Comp Animation	
18.61 Eddie Murphy	1.63 Schwarzenegger	0.19 Animation	
18.33 Cher	1.63 Lee Tergesen	0.18 Science Fiction	
18.18 Michael Douglas	1.62 Cher	0.18 Bruce Willis	

L1 regularization

$$\ell(\beta) = \sum_{i=1}^{N} \log P(y_i \mid x_i, \beta) - \sum_{j=1}^{F} |\beta_j|$$
we want this to be high but we want this to be small

- L1 regularization encourages coefficients to be exactly 0.
- η again controls how much of a penalty to pay for coefficients that are far from 0 (optimize on development data)