1. Consider an iid sample $\{y_i, x_i\}$ i = 1, ..., n where x_i is $k \times 1$. Assume the linear conditional expectation model

$$y_i = x_i'\beta + e_i$$

$$E(e_i \mid x_i) = 0$$

Assume that $n^{-1}X'X = I_k$ (orthogonal regressors). Consider the OLS estimator $\widehat{\beta}$ for β .

- (a) Find $V_{\widehat{\beta}} = \operatorname{var}(\widehat{\beta})$
- (b) In general, are $\hat{\beta}_j$ and $\hat{\beta}_\ell$ for $j \neq \ell$ correlated or uncorrelated?
- (c) Find a sufficient condition so that $\widehat{\beta}_j$ and $\widehat{\beta}_\ell$ for $j \neq \ell$ are uncorrelated.
- 2. Consider an iid sample $\{y_i, x_i\}$ i = 1, ..., n where y_i and x_i are scalar. Consider the reverse projection model

$$x_i = y_i \gamma + u_i$$

$$E(y_i u_i) = 0$$

and define the parameter of interest as $\theta = 1/\gamma$

- (a) Propose an estimator $\hat{\gamma}$ of γ . (You do not need to appeal to an efficiency justification.)
- (b) Propose an estimator $\hat{\theta}$ of θ . (You do not need to appeal to an efficiency justification.)
- (c) Find the asymptotic distribution of $\widehat{\theta}$.
- (d) Find an asymptotic standard error for $\widehat{\theta}$.
- 3. Suppose you have two independent samples

$$y_{1i} = x'_{1i}\beta_1 + e_{1i}$$

and

$$y_{2i} = x'_{2i}\beta_2 + e_{2i}$$

both of sample size n, and both x_{1i} and x_{2i} are $k \times 1$. You estimate β_1 and β_2 by OLS, $\widehat{\beta}_1$ and $\widehat{\beta}_2$, say, with asymptotic covariance matrix estimators \widehat{V}_{β_1} and \widehat{V}_{β_2} (which are consistent for the asymptotic covariance matrices V_{β_1} and V_{β_2}). Consider efficient minimimum distance estimation under the restriction $\beta_1 = \beta_2$.

- (a) Find the estimator $\widetilde{\beta}$ of $\beta = \beta_1 = \beta_2$
- (b) Find the asymptotic distribution of $\widetilde{\beta}$.
- (c) Extra and Very Optional: (Only attempt if you have time.) How would you approach the problem if the sample sizes are different, say n_1 and n_2 ?