ToonCrafter: Generative Cartoon Interpolation

2024.10.15

Introduction

- 최근 live-action video frame interpolation methods들도 어느 정도 수준이 올라왔지만 <u>여전히 Cartoon animation의</u> <u>결과는 좋지 못 함</u>. 이는 **sparsity** 와 **texture richness** 때문이라고 볼 수 있음
 - Sparsity : cartoon은 frame과 frame 사이를 사람이 직접 그리기 때문에, 움직임의 연결이 크고 따라서 두 프레임 사이의 움직임을 표현하는 정보가 부족함
 - Texture richness : 비슷한 이유로 cartoon은 텍스처가 없는 영역이 많을 확률이 높음

Video Frame Interpolation

- 이전의 연구들은 주로 움직임이 단순하다고 가정하는 linear interpolation에 중점
 - phase-based methods (위상 기반): 이미지의 픽셀 정보를 주파수 영역에서 분석하여 움직임을 보간하는 방식
 - kernel-based methods (커널 기반): 각 픽셀 주변의 정보를 바탕으로 커널(즉, 필터)을 사용해 보간을 수행하는 방식
 - optical/feature flow-based methods : 가장 많이 사용되는 방법으로 두 frames 간의 correspondence를 flow를 사용해서 식별한 후, warping과 fusion을 수행

ToonCrafter!

• large dataset 의 사용으로 generative cartoon interpolation도 많은 연구들과 발전이 진행되고 있는데, 여전히 좋은 성능은 아니며 아래 세 가지를 그 이유로 볼 수 있음

Issues

- 1. Domain gap
- 2. Highly compressed latent spaces
- 3. Lack of control

Suggestions

- 1. Toon rectification learning
- 2. Dual reference-based 3D decoder
- 3. Sketch encoder

Method 1: Toon rectification learning

- DynamiCrafter interpolation model을 fine tuning 진행
- 이때 cartoon data를 바로 fine tuning 하게 되면, catastrophic forgetting으로 인해 기존 정보들을 많이 잊게 되는 문제가 존재하여 Image-Context projector, Spatial Layers, Temporal layers사용

Image-Context projector (Toon rectification learning)

- 모델이 input frames의 context를 이해하도록 돕는 부분
- cartoon 장면의 context를 더 잘 이해할 수 있게 fine tuning 되어야 함

Spatial layers (Toon rectification learning)

- Sharing the same architecture as StableDiffusion v2.1
- Video frames의 appearance distribution을 학습
- Real-world frame 이 생성되는 것을 방지하고, cartoon frame 을 생성할 수 있도록 fine tuning

Temporal layers (Toon rectification learning)

- Video frames 간의 **motion dynamics를 포착**
- video frames간의 motion dynamics를 잘 포착하고, real-world motion prior를 유지하기 위해 frozen 시킴

Method 2: Dual reference-based 3D decoder (1)

• 대부분의 diffusion models은 highly compressed latent spaces를 사용하고, 이때문에 디테일한 그림의 생성이 어려움

Method 2: Dual reference-based 3D decoder

Method 3: Sketch encoder

- 생성되는 frames를 더 control 하기 위해 sketch-based control 이용
- ControlNet과 동일한 전략으로 학습

Figure 4. Examples of different patterns of sketch-guidance: (top) bisection (n=1) and (bottom) random position.

Quantitative Comparisons

- Fre´chet Video Distance (FVD), Kernel Video Distance (KVD): evaluate the quality and temporal motion dynamics of generated videos
- LPIPS: generated video frames와 ground-truth videos 간의 perceptual similarity
- CLIP: text 와 generated video frames, 실제 frame과 generated video frames 간의 유사성 평가

Metric	AnimeInterp	EISAI	FILM	SEINE	Ours
FVD↓ KVD↓	196.66 8.44	146.65 5.55	189.88 8.01	98.96 2.93	43.92 1.52
LPIPS ↓	0.1890	0.1729	0.1702	0.2519	0.1733
$\text{CLIP}_{\text{img}} \uparrow$	0.8866	0.9083	0.9006	0.8531	0.9221
$CLIP_{txt} \uparrow$	0.3069	0.3097	0.3083	0.2962	0.3129
CPBD ↑	0.5974	0.6413	0.6317	0.6630	0.6723

Qualitative Comparisons

Ablation Study: Toon rectification learning

- I: directly using the pre-trained backbone model
- II: fine-tuning the imagecontext projector (ICP) and entire denoising U-Net (Spatial+Temporal layers)
- III: fine-tuning ICP and spatial layers while bypassing temporal layers in forwarding during training
- IV (Ours): fine-tuning ICP and spatial layers while keeping temporal layers frozen
- V : fine-tuning only ICP

Variant*	ICP	Spa.	Temp.	Bypass Temp.	FVD↓	$\overline{\text{CLIP}_{img}\uparrow}$
I (DCinterp)					86.62	0.8637
II	✓	/	1		70.73	0.8978
III	✓	/		✓	291.45	0.7997
IV (Ours)	1	1			52.73	0.9096
V	✓				81.45	0.8875

Dual-reference-based 3D VAE decoder

Variant	Ref.	Temp.	PSNR ↑	SSIM ↑	LPIPS ↓
Ours	1	1	33.83	0.9450	0.0204
Ours _{w/o P3D}	1	X	32.51	0.9270	0.0326
Ours _{w/o HAR & P3D}	X	×	29.49	0.8670	0.0426

Sparse sketch guidance

Q&A

Thank you