Dimensionality Reduction

Liang Liang

What is dimensionality reduction?

the original data point x is transformed to a new data point y in a lower dimensional space

PCA: forward transform and inverse transform

lecture 3

Connect the PCA algorithm to Python Code: PCA.ipynb

Input: 200 data points $\{x_1, x_2, x_3, \dots, x_{200}\}$ and $x_n \in \mathcal{R}^2$

Python:

Each row of the 2D array X is a data point Index starts from 0

```
print(X)
[[-6.25301618e-01 -1.70063657e-01]
  9.60695033e-01 5.90900597e-01]
 -5.98543385e-01 -4.02593393e-01]
 -2.22805938e+00 -5.32576740e-01]
 -4.61430060e-01 -4.98867244e-01]
 -9.58929028e-01 -2.69331024e-01]
 -6.73079909e-01 -3.38308547e-01]
  1.30501861e+00 5.91357846e-01]
  3.74545597e-01 -9.85442049e-02]
 -1.82628627e+00 -4.06170254e-01]
  6.68262284e-01 3.36877396e-01]
 -5.82646676e-01 -1.77369217e-01]
 -4.18128976e-01 -3.73811389e-01]
  1.72209371e-01 2.64668836e-01]
  3.77116687e-01 1.88442969e-01]
 -6.79396230e-01 -1.31601978e-01]
  1.03148960e+00 4.25550018e-01]
  3.36041799e-01 3.90982721e-02]
  7.05745985e-01
                  4.88730649e-01]
  8.39511547e-01
                   1.52125872e-011
```

Connect the PCA algorithm to Python Code

Step-1: Estimate the mean μ and covariance matrix C from the data

$$\mu = \frac{1}{200} \sum_{n=1}^{200} x_n, \qquad C = \frac{1}{200} \sum_{n=1}^{200} (x_n - \mu) (x_n - \mu)^T$$

Step-2: Compute the eigenvectors $w_1, w_2 \dots$ of C, corresponding to the eigenvalues $\lambda_1, \lambda_2, \dots$ and $\lambda_1 \ge \lambda_2 \dots$

- 1 from sklearn.decomposition import PCA
- pca = PCA(n_components=2, whiten=False)
- 3 pca.fit(X)

when whiten is False, output of the forward transform is β when whiten is True, output of the forward transform is y

Multidimensional Scaling (MDS)

- Input: N data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- Output: N data points $\{y_1, y_2, y_3, ..., y_N\}$ and $y_n \in \mathcal{R}^K$, $K \leq M$
- x_n is transformed to y_n in a lower dimensional space, for n=1 to N

• Objective: find the output to minimize the so-called stress function

$$S(y_1, y_2, y_3, ..., y_N) = \sum_{i \neq j} (d(x_i, x_j) - d(y_i, y_j))^2$$

 $d(x_i, x_j)$ is a distance measure, e.g., Euclidean distance which means if x_i is close to x_j , then y_i is close to y_j x_i and y_i refer to the same object-i; x_i and y_j refer to the same object-j

Multidimensional Scaling (MDS)

• Objective: find the output to minimize the so-called stress function

$$S(y_1, y_2, y_3, ..., y_N) = \sum_{i \neq j} (d(x_i, x_j) - d(y_i, y_j))^2$$

- $d(x_i, x_j)$ is a distance measure, e.g., Euclidean distance
- Input: pairwise distance matrix

$$\begin{bmatrix} 0 & d(x_1, x_2) & \dots & d(x_1, x_N) \\ d(x_2, x_1) & 0 & \dots & d(x_2, x_N) \\ \vdots & \vdots & \vdots & \vdots \\ d(x_N, x_1) & d(x_N, x_2) & \dots & 0 \end{bmatrix}$$

the matrix can be visualized as an image

MDS only needs this matrix as input

The test example "HELLO"

```
def make_hello(N=1000, rseed=42):
    # Make a plot with "HELLO" text; save as PNG
```

```
1  X = make_hello(1000)
2  colorize = dict(c=X[:, 0], cmax
3  plt.scatter(X[:, 0], X[:, 1],
```

Each row of the 2D array **X** is a data point.

The pairwise distance matrix does not change after rotation / translation

Although the data points are in 3D space, they actually live in a 2D plane.

"Hello" in a S-surface in 3D

"Hello" becomes "S" in 2D

MDS can not handle nonlinear spatial distribution

A good algorithm should be able to unwrap the S-surface

Locally linear embedding (LLE)

- For each input data point x_i , we find its *K nearest neighbors*, $\mathcal{N}(i)$, using Euclidean distance.
- Approximate each point x_i by a linear combination of its neighbors

$$\min_{w_{i,j}} ||x_i - \sum_{j \in \mathcal{N}(i)} w_{i,j} x_j|| \text{ where } \sum_{j \in \mathcal{N}(i)} w_{i,j} = 1$$

• Find output data point y_i such that it can also be approximated by its neighbors using the same set of weights $\{w_{i,j}\}$

$$\min_{y} \|y_i - \sum_{j \in \mathcal{N}(i)} w_{i,j} y_j \|$$

• LLE: local neighborhood structure is preserved after the transform $\mathcal{R}^M \to \mathcal{R}^K$

LLE is able to unwrap the S-surface

PCA can not unwrap the S-surface because it is a linear transform But, it can show the major variations of the data in 2D

Graph

- *V* denotes the set of nodes
- E denotes the set of links/edges

Construct an ϵ -Neighbor Graph from a set of data points

Add a link between two data points/nodes if the distance $d(x_i, x_j) \leq \epsilon$ (define two circle)

a link/edge between two nodes

Perform the linking operation for every data point that is the center of a circle

Construct a k-Nearest Neighbor Graph from a set of data points

- Add a link between x_i and x_j if x_i is one of the k-nearest neighbors of x_j
- Perform the linking operation until there are no more links to be added

Graph - adjacency matrix

Sometimes, Adjacency Matrix is also called Affinity Matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Graph - similarity matrix

Yi

a link/edge between two nodes

- $(w_{i,j})$ is the similarity between node-i and node-j, $w_{i,j} = w_{j,i}$
- Usually, $0 \le w_{i,j} \le 1$, set $w_{i,i} = 0$. $w_{i,j} = e^{-\gamma (d(x_i, x_j))^2}$

 $d(x_i, x_j)$ is the distance between node-i and node-j, scalar $\gamma > 0$

- $w_{i,j} = 0$ if the edge(i, j) does not exist e.g. there is not link between node-6 and node-4
- The matrix $W = [w_{i,j}]$ is called similarity affinity matrix

a node represents a data point

a link/edge between two nodes

 $d_{i,j}$ is the 'geodesic distance' between node-i and node-j, which is the length of the shortest path

the red line shows the shortest path from node-1 to node-3

$$d_{1,3} = d_{1,2} + d_{2,3}$$

Graph - degree matrix

a link/edge between two nodes

 d_i is the degree of node-i

$$d_i = \sum_j w_{i,j}$$

Isomap for dimensionality reduction

- Input: N data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- Step-1: build a neighbor graph of the data points
- Step-2: for each pair of nodes, compute $d_{i,j}$, length of the shortest path we now have the new distance measure/between data points
- Step-3: run the Multidimensional Scaling (MDS) algorithm to get the output data points points $\{y_1, y_2, y_3, ..., y_N\}$ and $y_n \in \mathcal{R}^K$, $K \leq M$

isomap does not work for those 3D points (sparse) ...

isomap works for those 3D points (dense) ...

data points/images $\{x_1, x_2, x_3, \dots, x_N\}$ and $x_n \in \mathcal{R}^{2914}$ hypersion!

after transform

Next, we will show images along with the dots in 2D

 $y_n \in \mathcal{R}^2$ isomap 4000 2000 -2000 -4000 -6000 -2000 2000 4000 6000

of the center use will prof the Image

Each image is represented by two numbers/features: the overall darkness or lightness of the image from left to right, and the general orientation of the face from bottom to top.

Isomap can group the data!

Mencife

isomap

$x_n \in \mathcal{R}^{2914}$

data points/images $\{x_1, x_2, x_3, \dots, x_N\}$ and $x_n \in \mathcal{R}^{784}$

22X27 3 3 3 3 4 4 4 4

Spectral Embedding (

- Input: N data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- We can build a neighbor graph of the data points
- Objective: to find N data points $\{y_1, y_2, y_3, ..., y_N\}$ and $y_n \in \mathbb{R}^K$ such that the $\sum_{i,j} ||y_i - y_j||_2^2 \qquad \begin{cases} ||y_i - y_j||_2^2 \\ ||y_i - y_j||_2^2 \end{cases}$ loss function is minimized:

$$\sum_{i,j} ||y_i - y_j||_2^2$$

where $w_{i,j}$ is the similarity between x_i and x_j

So, it means if x_i and x_j are similar to each other, then y_i and y_j should be similar to each other, which means the distance between y_i and y_i should be very small.

Spectral Embedding

- Input: N data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- Step-1: build a neighbor graph of the data points
- Step-2: compute the so-called graph Laplacian L = D A
- Step-3: compute K smallest eigenvalues and corresponding eigenvectors of L the eigenvectors are denoted by $v_1, v_2, ..., v_K$ and put them into a matrix $V = [v_1, v_2, ..., v_K]$, a N-by-K matrix

Output:

 y_n is the n-th row of V

Spectral Embedding

- Input: N data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- Step-1: build a neighbor graph of the data points
- Step-2: compute the so-called graph Laplacian L = D A
- Step-3: compute K smallest eigenvalues and corresponding eigenvectors of L the eigenvectors are denoted by $v_1, v_2, ..., v_K$ and put them into a matrix $V = [v_1, v_2, ..., v_K]$, a N-by-K matrix

Output: y_n is the n-th row of V

Spectral Clustering

run k-means algorithm on output data $\{y_1, y_2, y_3, ..., y_N\}$

t-Distributed Stochastic Neighbor Embedding (t-SNE)

https://lvdmaaten.github.io/tsne/

$$\begin{aligned} p_{j|i} &= \frac{\exp\left(-\|x_i - x_j\|^2 / 2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / 2\sigma_i^2\right)}, \\ \text{Probability} \quad \text{with a work an isometrial of the distribution} \\ q_{j|i} &\triangleq \frac{\exp\left(-\|y_i - y_j\|^2\right)}{\sum_{k \neq i} \exp\left(-\|y_i - y_k\|^2\right)}. \end{aligned}$$

similarity of data point x_i to x_i

$$y_3$$
 y_1 y_2 y_1 y_2 y_1 y_2 y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_7

similarity of data point y_i to y_i

minimize Kullback-Leibler divergence:

the "average distance" between the two sets of similarities/prob-distributions

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}},$$

Why dimensionality reduction? (Wy?)

- The dimension-reduced data can be used for
 - Visualizing, exploring and understanding the data
 - Cleaning the data (assuming data = information +noise)
 - Speeding up subsequent learning task
 - Building simpler models

