Deformations of Harmonic Maps

Ross Ogilvie

School of Mathematics and Statistics University of Sydney

July 2015

The spaces

► A torus is a doughnut.

▶ A 3-sphere \mathbb{S}^4 is unit sphere in \mathbb{R}^4 or \mathbb{C}^2 . For us, we will think of it as SU(2), which looks like

$$egin{pmatrix} lpha & -ar{eta} \ eta & ar{lpha} \end{pmatrix}, ext{ with } lphaar{lpha} + etaar{eta} = 1$$

Harmonic Map

- ▶ Let $f: T^2 \to SU(2)$. Use f to pull pack the connection on SU(2) to get a connection A. Automatically we have $d_A(df) = 0$.
- A harmonic map is one that minimises the energy. It must satisfy $d_A^*(df) = 0$.
- ► Translate the values of df so it is a map to the Lie algebra, and split it up as $\frac{1}{2}f^{-1}df = \Phi \Phi^*$.
- ▶ We can then rearrange our two equations to be about A and Φ .

$$d_A^{"}\Phi=0, \qquad \qquad F_A=[\Phi,\Phi^*]$$

Φ is called the Higgs field.

Family of Flat Connections

▶ Given a pair (Φ, A) , we can make a family of connections in the following way. Let $\zeta \in \mathbb{C}^{\times}$ and define

$$\nabla_{\zeta} := \nabla_{A} + \zeta^{-1} \Phi - \zeta \Phi^{*}$$

▶ Every connection in this family is flat (zero curvature) since

$$F = (d_A + \zeta^{-1}\Phi - \zeta\Phi^*)^2 = d_A^2 - [\Phi, \Phi^*] = 0$$

▶ The connections are $SL(2,\mathbb{C})$ valued. When $\zeta = 1,-1$ the result is the left and right connections on SU(2)

Holonomy

- ▶ Because the connections are flat, we can define holonomy for them. Pick a base point, and take two loops around the torus.
- ▶ Parallel translating a vector with ∇_{ζ} around one loop gives a linear map the vector space at the base point. Call this $H(\zeta)$. Around the other loop call the transformation $\tilde{H}(\zeta)$.
- ▶ With some analysis and the fact that these two matrices commute (because the fundamental group of the torus is abelian), one can show that $(\operatorname{tr} H)^2 4$ (a function in ζ) vanishes to odd order only finitely many times.

Spectral Curve

▶ The eigenvalues of $H(\zeta)$ are $\mu(\zeta)$, $\mu(\zeta)^{-1}$. The characteristic polynomial is

$$\mu^2 - (\operatorname{tr} H)\mu + 1 = 0$$

- ▶ What we want to do is to build a curve over $\zeta \in \mathbb{C}^{\times}$ where μ is single valued.
- ▶ We can use the characteristic equation to define a two sheeted cover of \mathbb{C}^{\times} with finite branching.
- ▶ Looking at the behaviour of μ as $\zeta \to 0$ (ditto $\zeta \to \infty$), we can fill in the missing points to make a two sheeted cover Σ of $\mathbb{C}\mathsf{P}^1$, called the spectral curve.
- ▶ It is an algebraic curve, with several nice additional structures.

The Differentials

- ► The spectral curve provides a natural setting to talk about the eigenvalues, but they are not so nice themselves.
- ▶ However, $\log \mu$, $\log \tilde{\mu}$ are holomorphic on \mathbb{C}^{\times} , have simple poles above $\zeta = 0, \infty$ and nowhere else, but are only locally defined.
- ▶ $d \log \mu$ removes the additive ambiguity of log. Thus we consider a pair of meromorphic differentials $\Theta = d \log \mu$, $\tilde{\Theta} = \log \tilde{\mu}$, which have residue free double poles over $\zeta = 0, \infty$.
- ▶ In order for the eigenvalues to be well defined, one requires that the periods of the differentials lie in $2\pi i\mathbb{Z}$.

Spectral Data

- We now have a curve Σ and a pair of differentials $\Theta, \tilde{\Theta}$. There is one more piece of information needed: a line bundle.
- ► Then a theorem of Hitchin gives conditions for such data to correspond to a harmonic map.
- ▶ An important part of this result is that for fixed $(\Sigma, \Theta, \tilde{\Theta})$ we can choose from many line bundles. These are called isospectral deformations.

Genus Zero example

▶ Take the spectral curve to be genus zero. By the various symmetric constraints, its two branch points must be a pair $\alpha, \overline{\alpha}^{-1}$, with $\alpha \in D$

$$\eta^2 = P(\zeta) = (\zeta - \alpha)(1 - \bar{\alpha}\zeta)$$

 \blacktriangleright All differentials on it are exact, and for the Θ 's to have the right poles they must be of the form

$$\log \mu = (b\zeta^{-1} - \bar{b})\eta, \qquad b \in \mathbb{C}$$

▶ The constraints to be a harmonic map further imply that

$$b = \frac{\pi}{2} \left(\frac{n}{|1 + \alpha|} + i \frac{m}{|1 - \alpha|} \right), \quad n, m \in \mathbb{Z}$$

Genus Zero Example

Moduli Space

- ▶ In general, Σ of genus g curve can be described by g+1 pair of conjugate inverse points.
- ► The differentials become much harder to pin down. However they must be of the form

$$\Theta = \frac{d\zeta}{\zeta^2\eta}b(\zeta)$$

for some polynomials of degree g+3. If you just require symmetries and imaginary periods, there is a plane of differentials.

▶ Whitham deformations tell us that the space of $(\Sigma, \Theta, \tilde{\Theta})$ is 2-dimensional.

Genus One

▶ Spectral curves have two pairs of branch points $\alpha, \beta, \overline{\alpha}^{-1}, \overline{\beta}^{-1}$, $(\alpha, \beta) \in D \times D \setminus \Delta$.

▶ Period conditions mean that there are a collection of lines of differentials, one for each $2\pi i\mathbb{Z}$.

▶ Period conditions mean that there are a collection of lines of differentials, one for each $2\pi i\mathbb{Z}$.

- ▶ Not every spectral curve has differentials that meet all the conditions.
- As one traverses around the diagonal, the lattice shifts.

ightharpoonup On the exterior boundary, where one branch point lies in \mathbb{S}^1 , normalisation of the spectral curve correspond to genus zero spectral data.

