

QBUS1040 - Notes:)

Foundations of Business Analytics (University of Sydney)

Scan to open on Studocu

QBUS1040

VEC	CTORS	1
1.1	VECTORS	1
1.2	VECTOR ADDITION	4
1.3	SCALAR - VECTOR MULTIPLICATION	4
	INNER PRODUCT	
1.5	COMPLEXITY OF VECTOR COMPUTATIONS	6
LINE	EAR FUNCTIONS, NORM AND DISTANCE	7
LINE	EAR FUNCTIONS	7
AFFI	INE APPROXIMATION	9
	RESSION MODEL	

VECTORS

1.1 VECTORS

Vectors → An ordered list of numbers

Notation Styles:

OR

Names:

- numbers in a vector → entries/coefficients
- length of vector → size/length/dimension
- numbers → scalars

Examples

- vector of length *n* is called an *n-vector*
- In the vector above has a dimension of 4 and a 3rd-entry value of 3.6

Symbols:

- Symbols that donate vectors:
- Other conventions:

- The ith element of a n-vector *a* is denoted as *a*_i
- · For an n-vector, indices run from

Examples

If a is vector on previous slide,

Two vectors a and b are equal if

Block Vectors

If b, c and d are vectors with sizes m, n, p, the stacked vector or concentration of b, c, and d is:

a has a size of

Zero, Ones and Unit Vectors

- An n-vector with all entries 0 is denoted as
- An n-vector with all entries 1 is denoted by
- Unit Vector: has only one entry 1 and all others 0
- 1's location is denoted by

Examples

Sparsity

A vector is **sparse** is many of its entries are 0

is the number of entries that are non-zero

Examples are zero and unit vectors

Practical Implications

Monochrome (black and white) image grayscale values of $M \times N$ pixels stored as MN-vector (e.g., row-wise) Images & Video Color image: 3MN-vectors with R, G, B values of the MN pixels Video: KMN-vector represents K monochrome images of $M \times N$ pixels **Portfolio Vector** \bullet $\ensuremath{n}\text{-vector}$ represents stock portfolio or investment in \ensuremath{n} assets ullet ith element is amount invested in asset i• elements can be number of shares, dollar values, or fractions of total dollar p = (5000, 2000, 8000, 3000)Resource vector Resource elements of n-vector represent quantities of n resources or commodities Vector • sign indicates whether quantity is held or owed, produced or consumed, ... · example: bill of materials gives quantities needed to create a product **Feature Vectors** contain values of variables or attributes that describe members of a set. · age, weight, blood pressure, gender, ... of patients • size, number of bedrooms, list price, ... of houses in an inventory Area (m²) | Bedrooms | Bathrooms | Cars | Pets | Weekly rental price (\$) 2 1 • vector elements can represent very different quantities, in different units • can contain categorical features (e.g., 0/1 for male/female) • ordering has no particular meaning **Word count** • a short document: **Vectors** Word count vectors are used in computer based document analysis. Each entry of the word count vector is the number of times the associated dictionary word appears in the document. · a small dictionary (left) and word count vector (right) word number horse 0 · dictionaries used in practice are much larger

Polynomials		
A polynomial with the degree of n-1:		
can be represented by an n vector		
Example		
Polynomial form:		
Vector Form:		
1.2 VECTOR ADDITION		
n-vectors a and b can be added, with sum denoted as a + b		
Example:		
Rules of addition:		
Commutative:		
Associative:		
•		
1.3 SCALAR – VECTOR MULTIPLICATION		
Scalar can be multiplied:		
Example:		
Rules of multiplication:		
Associative:		
Left distributive:Right distributive:		

Linear Combinations

For vectors and scalars the linear combination of vectors is:

- The coefficients are:
- For any n-vector b:

1.4 INNER PRODUCT

The inner product of n-vectors a and b is:

Example

Rules of inner product:

- •
- •
- Commutative:
- Associative with scalar multiplication:
- Distributive with vector addition:

_

Simple formulas:

- Inner product with ith unit vector picks out the ith entry:
- Differencing:
- Sum of entries:
- Average of entries:

Example:

- w = vector of weights
- f = vector of features

•

1.5 COMPLEXITY OF VECTOR COMPUTATIONS

Computers store numbers in a *floating point format*

Basic arithmetic operations (+, -, *) are called *floating point operations / flops*

The complexity of an algorithm or operation = the total number of flops needed

Approximation of the time to execute:

Average computers: 1Gflop/ second (10 9 flops / sec)

Complexity

Operation count:

- Total number of operations in an algorithm
- (in linear algebra) a polynomial of the dimensions of the problem

Dominant Term → the highest order term in the flop count:

Vector Operations:

- for addition, subtraction: n flops
- for multiplication: n flops
- for inner product: flops
- (all of order n)

Sub-vectors

Sub Vectors are indicated by subscript:

LINEAR FUNCTIONS, NORM AND DISTANCE

LINEAR FUNCTIONS

- is a function mapping n-vectors to numbers
- If is an n-vector than is scalar
- NOTE: hence

Example:

Su

perposition and Linear Functions		
•	satisfies the superposition property if:	
	For any numbers and any vectors .	
•	A function that satisfies superposition is superposition is linear. IF f is linear than:	
	For any n-vectors and any scalars	
	Example	
	Consider the function:	
	The function satisfies the superposition if applying the above function to is the same as applying it to each of the terms.	
	If	
	Example	
	Does the function satisfy the superposition property?	
	Example	
	Does the function satisfy the superposition?	

The Inner Product Function

with an n-vector, the function:

Is the inner product function

is a weighted sum of the entries of x The inner product of the function is linear: The inner product of the function is linear.
The inner product of the function is linear:
*all linear functions are inner products:
Suppose is linear: Then it can be expressed as for some a
Follows from:
Examples in R ³
is linear: with
is linear : with
is not linear.
Affine function
Affine Function \rightarrow a function that is linear plus a constant is called affine.
General form:
A function is affine ONLY if:
Holds for and all n-vectors
Every affine function can be written as

Problem statement

- You have a function f(x).
- You also know the value of the function at z, i.e. you know f(z).
- You want to know the value of f(x').
- Calculate $\partial f/\partial x'(z)$.
- Estimate $\hat{f}(x')$

2: Linear functions

18/25

Suppose

First Order Taylor approximation of , near point z:

is very close to when are all near

is an affine function of x

You can write this using the inner product as:

n-vector =

= gradient of at

Example with Two Variables

Calculate the Gradient:

First order Taylor approximation around

REGRESSION MODEL

Regression model = affine function of x

- = feature vector
- Elements in are called regressors / independent variables / inputs
- = the vector of **weights** or **coefficients**
- Scalar = the offset / intercept
- Coefficients = **parameters** of the regression model
- = predication of some actual outcome or dependent variable, denoted

Example:

- = selling price of a house in \$1000
- Regressor is:
- Regression model weight vector and offsets are:

NORM AND DISTANCE

Norm

The Euclidian norm / norm of an n-vector is:

- This is used to measure the size or magnitude of a vector
- If reduces to its absolute bracket:
- For any n-vectors and any scalar :
 - o Homogeneity:
 - Triangle inequality:
 - Nonnegativity:
 - Definiteness: only if:

RMS Value

The mean square of n-vector is:

Root-mean-square value is:

- rms(x) gives the typical value of
- e.g., independent of n
- RMS value can be used to compare vectors of different dimensions

Norm of block vectors

- Suppose are vectors:
- HENCE:

Distance

• Euclidean **distance** between n-vectors a and b is

agrees with ordinary distance for n=1,2,3

→ the RMS deviation between a and b

Triangle Inequality:

- Triangle with vertices at positions
- Edges:

i.e., third edge length is no longer than the sum of other two

Feature Distance and Nearest Neighbours

• If are feature vectors for two entities is the feature distance

• If = list of vectors, than is the nearest neighbour of if:

$$||x - z_j|| \le ||x - z_i||, \quad i = 1, \dots, m$$

3. STANDARD DEV, ANGLES

STANDARD DEVIATION

For n-vector x:

De- meaned vector is:

Standard deviation of x is:

gives the typical amount vary from

only if for some

Notation

- Mean =
- Standard Deviation =

Mean Return and risk

- = time series of returns (e.g., with %) on some investment or asset over a period
- = the mean return over the period (return)
- = measures how variable the return is over the period (risk)

Risk-return plot

ANGLE

Cauchy-Schwarz inequality

- For two n-vectors :
- Written in scalar form:

-	Can also be written as
-	To show the triangle inequality:
Proof	of Cauchy-Schwarz inequality
-	Assume , we show that
	With equality only if: With equality only if:
Fo	r general nonzero apply the same argument to the unit norm vectors
Th	e angle between two nonzero vectors defined as:
is	the number inbetween that satisfies:
Co	incides with ordinary and a between vectors in 2D and 2D
Co	incides with ordinary angle between vectors in 2D and 3D
Cla	assification of angles
0.0	
lf:	are orthorganal , written
If: a	are aligned
lf: a	are anti-aligned
lf: ı	make an acute angle
lf: ı	make an obtuse angle
Co	rrelation coefficient
Co	nsider vectors and their demeaned counterparts:

The correlation coefficient (between a and b with)

If: a and be are uncorrelated

I If: a and be are highly correlated

If: a and be are highly anti-correlated

is the average product of the deviations from the mean in standard units:

$$\rho = \frac{1}{n} \sum_{i=1}^{n} \frac{(a_i - \mathbf{avg}(a))}{\mathbf{std}(a)} \frac{(b_i - \mathbf{avg}(b))}{\mathbf{std}(b)}$$

- Highly correlated implies are typically both above (below) their means together

CLUSTERING

Given

Goal: partition (divide, cluster) these vectors into groups (want vectors in the same group to be close to one another)

Clustering Objective

- .
- is group

clustering objective is:

$$J^{\mathsf{clust}} = rac{1}{N} \sum_{i=1}^{N} \left\| x_i - z_{c_i}
ight\|^2$$

Example

- N = Number of Data Points = 7
- k = Number of groups = 2
- G = elements in the group

-

- (order doesn't matter)
- C = which group the point is in
- E.g., because is in Group 1
- C can be displayed as a vector of the groups they are in:

_

- mean square distance from vectors to associated representative
- being small means good clustering
- Goal: choose clustering

ALGORITHM

Partitioning the vectors given representatives.

- If representatives are given, how do we assign vectors to groups (aka, how do we choose?)
- only appears in the term in

Choose so that

i.e. assign each vector to the nearest representative

Choosing representatives given the particition

- given the partition , how do we choose representatives to minimise ?
- splits into a sum of sums one for each :

$$J^{\mathsf{clust}} = J_1 + \dots + J_k, \quad J_j = \frac{1}{N} \sum_{i \in G_j} \|x_i - z_j\|^2$$

- We choose to minimise mean square distance to the points in its partition.
- This is the mean (or average or centroid) of the points in the partition.

$$z_j = \frac{1}{|G_j|} \sum_{i \in G_j} x_i$$

k-means algorithm

- Alternate between updating the partition, then the representatives
- Objective: decreases in each step

Given: and

Repeat:

Update partition: assign to

Update centroids:

Until stops changing

Convergence of k-means algorithm

- goes down in each step until the stop changing.
- The k-means algorithm does not find the partition that minimises generally.
- K-means is a heuristic: it is not guaranteed to find the smallest possible value of
- The final partition and value of can depend on the initial representatives.

Common Approach

- Run the k-means 10 times, with different random initial representatives
- Take as a final partition the one with the smallest value of

LINEAR INDEPENDENCE

A set of n-vectors with is linearly independent if:

Hold for some that are not all zero

- Equivalent to: at least is a linear combination of the others
- We say are linearly independent

Immediate observations:

- is linearly independent only if
- is linearly independent if and only if one is a multiple of the other.
- For more than two vectors, there is no simple way to state a condition

Example

The vectors:
Are linearly independent since
And you can express any of them as a linear combination of the other two, for example
A set of n vectors with is linearly independent if it is not linearly dependent
Holds only when
We say that are linearly independent
No is a linear combination of the others
Linear combinations of linearly independent vectors
Suppose x is linear combination of linearly independent vectors :
The coefficients are unique – if:
Then
This means we can deduce the coefficients from x
Hence:
DACIC

BASIS

Independence Dimension inequality

- A linearly independent set of n-vectors can have at most n elements
- Any set of n+1 of more n-vectors is linearly dependent
- A set of n linearly independent vectors is called a basis
- Any n-vector b can be expressed as a linear combination of them:
- These coefficients are unique
- The above formula is called: an expansion of b in the basis

For example

= basis

= expansion of b

ORTHONORMAL VECTORS

A set of n-vectors are mutually orthogonal if (at right angles/ perpendicular to each other) for

They are normalised if

They are orthonormal if both hold

This can be expressed using inner products:

If = 1, they are normalised

Orthonormal sets of vectors are independent

By independence-dimension inequality, must have

When are an orthonormal basis

Examples of orthonormal bases:

• standard unit n-vectors e_1, \ldots, e_n

• the 3-vectors

$$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

• the 2-vectors shown below

Orthonormal Expansion

If is an orthonormal basis, we have for any n-vector x:

This is called orthonormal expansion of x

To verify the formula, take inner product of both sides with

GRAM-SCHMIDT ALGORITHM

Vector projection

Consider the vectors

Goal: find a vector where and such that we can construct

We can add the vectors

Hence:

Given the vectors

For

- 1. Orthogonalization:
- 2. Test for dependence
- 3. Normalization:

If G-S does NOT stop early in step 2, are linearly independent

If G-S stops early in iteration is a linear combination of (is linearly dependent)

Prove that are orthonormal

• for i=1 we have $\tilde{q}_1=a_1$ and $a_1\neq 0$ (from independence of a_i s), so $q_1=a_1/\|a_1\|$ is normalized

• for i=2 assertion also holds: we have

$$\tilde{q}_{2}^{T} q_{1} = (a_{2} - (q_{1}^{T} a_{2})q_{1})^{T} q_{1}$$

$$= a_{2}^{T} q_{1} - (q_{1}^{T} a_{2})q_{1}^{T} q_{1}$$

$$= 0$$

- ullet assume it's true for i-1
- orthogonalization step ensures that

$$\tilde{q}_i \perp q_1, \dots, \tilde{q}_i \perp q_{i-1}$$

• to see this, take inner product of both sides with q_i , j < i

$$q_j^T \tilde{q}_i = q_j^T a_i - (q_1^T a_i)(q_j^T q_1) - \dots - (q_{i-1}^T a_i)(q_j^T q_{i-1})$$

= $q_j^T a_i - q_j^T a_i = 0$

- so $q_i \bot q_1, \ldots, q_i \bot q_{i-1}$
- ullet normalization step ensures that $\|q_i\|=1$

assuming G-S has not terminated before iteration i

• a_i is a linear combination of q_1, \ldots, q_i :

$$a_i = \|\tilde{q}_i\|q_i + (q_1^T a_i)q_1 + \dots + (q_{i-1}^T a_i)q_{i-1}$$

• q_i is a linear combination of a_1, \ldots, a_i : by induction on i,

$$q_i = (1/\|\tilde{q}_i\|)(a_i - (q_1^T a_i)q_1 - \dots - (q_{i-1}^T a_i)q_{i-1})$$

and (by induction assumption) each q_1,\dots,q_{i-1} is a linear combination of a_1,\dots,a_{i-1}

suppose G-S terminates in iteration j, i.e., $\tilde{q}_j=0$

• from step 1 (orthogonalization):

$$0 = \tilde{q}_j = a_j - (q_1^T a_j)q_1 - \dots - (q_{j-1}^T a_j)q_{j-1}$$

ullet hence a_j is a linear combination of q_1,\ldots,q_{j-1}

$$a_j = (q_1^T a_j)q_1 + \dots + (q_{j-1}^T a_j)q_{j-1}$$

- ullet and each q_1,\ldots,q_{j-1} is a linear combination of a_1,\ldots,a_{j-1}
- so a_j is a linear combination of a_1, \ldots, a_{j-1}

Complexity of the Gram Schmidt Algorithm

Step 1 of iteration requires inner products

Which costs

Each

There are subtractions.

Therefore are needed to compute

In step 3 we compute, which requires to compute

total is

$$\sum_{i=1}^{k} ((4n-1)(i-1)+3n) = (4n-1)\frac{k(k-1)}{2} + 3nk \approx 2nk^{2}$$

using
$$\sum_{i=1}^k (i-1) = k(k-1)/2$$