4. Základy síťové komunikace, ISO/OSI a TCP/IP model, síťové protokoly, síťové standardy (ethernet, fastethernet, gigabitethernet), bezdrátové technologie (standardy 802.11, WIFI přístupové body, technologie bluetooth)

ISO/OSI a TCP/IP model

- MODEL ISO/OSI
 - Teoretický model
 - o ISO vytváří standardy, organizace pro standardy
 - o OSI otevřený systém
 - o 7 vrstev každá vyšší vrstva je složitější
 - 7 Aplikační data zabývá se zpracováním dat
 - Umožňuje aplikacím na obou stranách přenosu spolupracovat
 - Síťové aplikace
 - 6 Prezenční data zabývá se zpracováním dat
 - Kódování (převod z 1 formy do 2.)
 - Komprese (kódování, ale za účelem rychlejšího a snazšího přenosu)
 - Šifrování (kódování, ale za účelem zabezpečení)
 - 5 Relační data zabývá se zpracováním dat
 - Zajišťuje a synchronizuje přeno mezi relačními vrstvami obou stran
 - Vytváří a ukončuje relaci
 - Účastníci si skáčou do "řeči"
 - 4 Transportní segmenty spojka mezi vrstvami
 - Funkce:
 - o Zajišťuje komunikaci mezi příjemcem a odesílatelem
 - Skládá a rozkládá zprávu do segmentu
 - Obsahuje údaje o cílovém portu, čímž je umožněno více současných přenosů, port = identifikátor procesu
 - Z nespolehlivých služeb vytváří spolehlivé a z nespojovaných služby spojované
 - o Segmenty = skupina seřazených paketů
 - Transportní vrstva může komunikovat s každou vrstvou, jiné nikoliv
 - 3 Síťová pakety zabývá se fyz. přenosem
 - Funkce zajišťuje přenos dat mezi uzly bez přímého spojení, tzn. mezi oddělenými sítěmi
 - Provádí směrování (routing) = hledání cesty v sítích
 - Pracuje spolehlivě (= všechny pakety stejnou trasou a ta je předem vytyčena) a nespolehlivě (= každý paket jde jinou cestou)
 - Na úrovni Internetu
 - Router složitější, důležitější než switch

- 2 Linková rámce zabývá se fyz. přenosem
 - Organizuje bity do rámců (adresa odesílatele/příjemce, flag oddělení rámců, CRC – bezpečnostní kód)
 - Obsahuje MAC adresu zdroj. a cílového zařízení v síti LAN
 - LLS vytváření rámců
 - Zajišťuje přenos rámců v oblasti lokální sítě
 - Tvoří intranet, komunikace na úrovni intranetu, vnitřní síť
 - Switch (pracuje s fám i; vytvoří si tab lk lk kd má zapsa fé
 MAC adresy), bridge
- 1 Fyzická bity zabývá se fyz. přenosem
 - Funkce:
 - Modulace (A/D D/A převodníky)
 - Navazování a ukončování spojení s komunikačním médiem
 - o synchronizace a časování bitů
 - Repeater, hub

- ARCHITEKTURA TCP/IP

- o 4 vrstvy
 - 4 Aplikační vrstva
 - Zajišťuje koncové zobrazení dat uživateli spolu s kódováním
 - 3 Transportní vrstva
 - Zajišťuje komunikace vzdálených zařízení napříč sítí a spolehlivý přenos dat
 - 2 Síťová vrstva (Network)
 - Zajišťuje nejlepší cestu dat k cíli
 - Spolehlivost = zpětná vazba
 - Vnější síť a dál
 - 1 Vrstva síť. rozhraní (Network Interface)
 - Zajišťuje přístup dat na síť, kontroluje zařízení a síťová média v síti
 - Využívá existující technologii např. Ethernet
 - Vše, co se rozum LAN síť (přenos dat, HW)
 - Pasiv. / Aktiv.

SÍŤOVÉ PROTOKOLY

- TCP/IP protokoly
- L2:
 - o RIP (Routing Information Protocol) pomocí něho se směruje
 - Tolik se nepoužívá
 - Max. 20 hopů
 - Microsoft
 - o OSPF
 - Omezen hopama
 - Náročný na konfiguraci
 - o IP (Internet Protocol)
 - Identifikátor PC sítě
 - IPv4 x IPv6
 - Důležitý protokol
 - Adresování a identifikování serverů
 - o ARP (Adress Resolution Protocol)
 - Propojuje identifikátory sítí IP adresy s MAC adresy
 - o ICMP
 - Příkaz PING zjištění konektivity
 - o IGMP (Internet Group Management)
- L3:
 - o TCP vs. UDP
 - Spolehlivý vs. Nespolehlivý (u UDP nedostaneme zprávu o tom, že došla data)
 - Spojovaný vs. Nespojovaný
 - Pomalý vs. Rychlý
 - Zabezpečení vs. Hodí se tam, kde není potřeba spolehlivost
- L4:
 - o NTP (Network Time Protocol) PORT 123
 - Synchronizace vnitřních hodin PC po paketové síti s proměnným zpožděním
 - Zajištění stejného a přesného času pro všechny PC v síti
 - o DNS (Domain Name Systém) PORT 53
 - Vzájemná překlad domén a IP adres
 - XXX.XXX.XXX.XXX -> www.---.com
 - o DHCP (Dynamic Host Configuration Protocol) PORT 67
 - Automatické přidělování IP adres
 - Řády domén, FQDN (Full Qualified Domain Name) -> řetězec.přípona
 - 1. řád = TLD (Top Level Domain): .cz
 - 2. řád: něco.cz
 - 3. řád: www.něco.cz

- o SSH (Secure Shell) PORT 22
 - Zabezpečený komunikační protokol v PC síti
 - Vzdálený přístup skrze terminál
- o NFS (Network File System) PORT 2049
 - Vzdálený přístup k souborům přes PC síť
- o HTTP (Hypertext Transfer Protocol) PORT 80
 - Komunikace s www serverů
 - Přenos hypertext. Dokumentů ve formátu HTML, XML, ...
- o HTTPS (HTTP Secure) PORT 443
 - Komunikace web. prohlížeče s web. serverem
 - Zajištění autentizace, důvěrnosti přenášených dat a jejich integritu
 - Víc safe než http
- o FTP (File Transfer Protocol) PORT 21 & 20; FTPS šifrovaný
 - přenos souborů mezi PC pomocí PC sítě
 - může být používán nezávisle na použitém OS
 - FTP nešifrovaný, nedoporučuje se
 - Data podle módu
 - Passive
 - o Dotazy a odpovědi port 21
 - o Data dohodnutý vysoký port, např. 2024
 - Server má nakonfigurovaný rozsah portů pro data a sdělí klientovi port pro data
 - o Může mít problém s překladem adres na routeru
 - Active port 20 nebo 989
 - o Dotazy a odpovědi port 21
 - o Data port 20

- Mailové:

- o SMTP(s) (Simple Mail Transfer Protocol; (s) = $\check{\text{sif}}\Box$) PORT 25; $\check{\text{sif}}\Box$ 465, 587
 - Přenos zpráv el. pošty mezi přepravci el. pošty
 - Odesílání z klienta, posílá mezi servery
- o POP3(s) (Post Office Protocol; (s) = $\check{s}if\square$) PORT 110; $\check{s}if\square$ 995
 - Stahování e-mail. zpráv ze vzdál. serveru klienta
 - Příjem do office klienta
- o IMAP(s) (Internet Message Access Protocol; (s) = šif□) PORT 143; šif□ 993
 - Umožnění přístupu k emailu odkudkoli z libovolného zařízení
 - Vzdálený přístup k emailové schránce prostřednictvím email. Klienta
 - Transparentní pohled na schránku na serveru

SÍŤOVÉ STANDARDY

- Ethernet

- Souhrn technologií pro sítě LAN, WAN
- Standard IEEE 802.3, propojuje různá zařízení
- Stal se dominantní technologií pro drát. sítě
 - Kroucená dvojlinka, koax, optika
- o Výhody:
 - Snadné zavedení, údržba, snaha přizpůsobovat se novým technologiím
 - Spolehlivost, nízká cena
 - Je schopný přenášet odlišnými rychlostmi od Mbit/s po Gbit/s

- Ethernet a CSMA/CD

- o Funguje na síťovém rozhraní architektury TCP/IP
- Pro přístup na sdílené médium používá CSMA/CD, detekuje vysílání včetně kolizí
 - Carrier Sense Multiple Access with Collision Detection
- o Princip CSMA/CD
 - Naslouchá, zda je médium volné
 - Zahájí vysílání a současně naslouchá pomocí signálu JAM
 - V případě, že zachytí signál kolizi, celý proces se opakuje

- Standardy

- o 10Mbit Ethernet
 - 10BASE5 (10Mbit/s; základ. pásmo; imp da □□50ohm) tlustý koax/ethernet
 - 10BASE2 tenký koax/ethernet
 - 10BASE-T kroucená dvojlinka cat3 (pouze 2 páry vodičů)
- o 100Mbit Ethernet
 - 100BASE-TX 100Mbit/s ethernet označován jako <u>Fast Ethernet</u> (2 páry UTP, STP cat5)
 - 100BASE-T2/T4 UTP cat 3, 4, 5 (T2 2páry, T4 4 páry)
 - 100BASE-FX Fast ethernet pomocí opt. vláken
- o 1000Mbit Ethernet
 - <u>1000BASE-T Gbitový ethernet</u>, 4 páry vodičů UTP cat5e
- o 10Gbit Ethernet
 - <u>10GBASE-T Gbitový ethernet</u>, UTP cat6e, cat7

BEZDRÁTOVÉ TECHNOLOGIE

- Bezdrátová komunikace

- o Nositelem informace je atmosféra a nosičem je signál
- Nosné médium
 - Opt. komunikace (infrared spoje, světel. paprsek, IrDA, Ronja) rámce
 - Rádiová komunikace/mikrovln. spoje (vysílačky, TV přenos, periferie PC, WiFi, WiMax)
 - Sonická komunikace (ultrazvuk ponorky)

- Standard IEEE 802.11

- o Standardem pro WiFi, Wireless LAN
- Komunikace je zajišťována na linkové vrstvě
 - Přenáší zapouzdřené ethernetové rámce, využívá CSMA/CA
 - CSMA/CA zabraňuje kolizím
- o Standard zahrnuje:
 - Jsou značena písmenem
 - Druh modulace (překódování)
 - Přenos. pásmo
 - Max. přenos. rychlost
 - Rok vydání

- Licencované přenosové pásmo

- o Rádiové vysílání může být ovlivněno vodou, objekty či jiným zařízením
- O Vysílání probíhá na určité frekvenci a jejich počet (frekvencí) je omezen
- Stát pronajímá přenosová pásma
- o U nás zastřešuje český telekomunikační úřad
- o Komerčně nevyužitá pásma 2,4 a 5 GHz

- Bezlicenční pásma

- o 2,4 GHz
 - Nižší přenosová rychlost
 - Lepší propustnost
 - Má větší tendenci se zarušovat
 - Děleno na kanály
- o 5 GHz
 - Vyšší přenosová rychlost
 - Horší propustnost

- WiFi kanály

- o IEEE dělá pásma do kanálu podobně jako u TV vysílání
- o V ČR je jich 13
- o Ideální rozdělení je 1, 7, 13

- Metody přístupu

- Ovlivňuje přenosovou rychlost daného standardu
- o CSMA/CA (... with Collision Avoidance)
 - oproti CSMA/CD nezjišťuje vznik kolizí, ale zabraňuje jim
- o Průběh
 - Naslouchá
 - Využívá RTS (Request To Send dotaz na vysílání) a CTS (Clear To Send – volno k vysílání)

Registrace do WiFi

- o Identifikátor SSID (Serive Set Identifier) fungující jako broadcst
- o Ad-hoc sítě spojení 2 si rovných klientů (peer-to-peer)
- Infrastrukturní sítě
 - Obsahuje 1 nebo více přístupových bodů (AP Access Point), které vysílají SSID

- Zabezpečení WiFi

- Zablokování SSID
- o Kontrola MAC adres klientů (blacklist & whitelist)
- o Šifrování (WEP, WPA, WPA2, WPA3)
 - Autorizace probíhá v šifrované formě pomocí klíčů
 - Dnes používáno WPA2, WPA3
- Pojmy
 - Šifrování = zabezpečení přenášených dat před odposlechem
 - Autorizace = řízení přístupu oprávněných uživatelů

Bluetooth – IEEE 802.15

- Bezdrátová rádiová technologie určená pro nasazení na krátkou vzdálenost (PAN)
- o Bezlicenční pásmo 2,4 GHz
- o Rozděleno na 79 frekvenčních kanálů o šířce 1MHz
- o FHSS (Frequency Hopping Spread Spectrum) => (1600 přeskoků/sekunudu)
- o Point to point, point to multiple

- Architektura Bluetooth

- o Piconet
 - Nejmenší síť soustava uzlů, které se sjednotily na stejné posloupnosti přeskakování frekvencí
 - Uzel v roli Master určuje posloupnost přeskoků
 - Max 7 uzlů a jeden Slave
- Scatternet
 - Propojení více piconetů

Bluetooth – komunikace

- o Fáze:
 - 1. párování (výměna klíčů, šifrování, autentizace)
 - 2. navázání spojení (rozhodnutí kdo je Master, kdo je Slave)
 - Výměna dat (skutečná výměna dat včetně profilu)

- Bluetooth

- o Class: udává výkon a dosah
- o Verze: BT 4.0, 5.0, 5.2
 - Snaha zvýšit přenosovou rychlost a snížit energetickou náročnost
- o Profily:
 - Každý profil definuje 1 činnost
 - Celkem 36, SYNCH, VDP, ...

- WPA (Wifi Protected Access)

- o Vznikl jako rychlá náhrada za WEP, 256bit klíč
- o Využívá TKIP (Temporal Key Integrity Protocol)
 - Klíče jsou dynamicky měněný
 - Každý paket používá jiný klíč
- o WPA bylo překonáno a nahrazeno WPA2, WPA3
 - WPA2 nahradilo TKIP protokolem CCMD a šifr. algoritmem AES