

Dipartimento di Ingegneria e Scienza dell'Informazione

Corso di Laurea in Ingegneria Informatica, delle Comunicazioni ed Elettronica

Presentazione elaborato finale

Modellazione di Minacce Informatiche in Ambiente Smart Grid Cloud-Native

Supervisore Prof. Domenico Siracusa Laureando Cristiano Berardo - 234428

Smart Grid: Introduzione e Architettura

Generazione di energia distribuita

Flussi bidirezionali

Smart Grid è l'evoluzione dell'infrastruttura energetica tradizionale: sensoristica, comunicazione e controllo

Smart Grid: Dominio del Consumatore

Rappresenta l'interfaccia diretta tra la rete e il consumatore

Smart Grid: Dominio Operazionale

Qui operano sistemi di controllo critici utilizzati degli operatori per regolare in tempo reale domanda e offerta di elettricità

Smart Grid: l'evoluzione e lo stato dell'arte attuale

Hardware specifico

Funzioni logiche su hardware generico: il cloud

Approccio a logica di microservizi

Aumenta esponenzialmente la superficie di attacco

Smart Grid: introduzione all'architettura cloud proposta

Microservizi per software complesso

Gestione attraverso Docker container e orchestratore Kubernetes

Smart Grid: L'architettura Cloud-Native proposta

Federazione di cluster Kubernetes indipendenti

Uno per ogni dominio funzionale per garantire:

- Robustezza
- Sicurezza
- Autonomia operativa

Threat Modeling: il framework STRIDE e le sue quattro fasi

Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of Privilege⁸

Threat Modeling: Modellazione del sistema

Threat Modeling: Identificazione delle minacce

Information Disclosure	Vulnerabilità presenti nei software open source come ad esempio OpenEMS o librerie.
D enial of Service	Accedendo alle cabine secondarie l'attaccante individua il servizio SCADA. Usando hping può lanciare un attacco DoS verso il canale causando latenza.

Threat Modeling: Mitigazione delle minacce

Information Disclosure	Code review e utilizzo delle best practise di sicurezza e implementative
D enial of Service	Il router è il punto debole della comunicazione con il servizio SCADA. Utilizzando regole di firewall appropriate si impedisce di intaccare il servizio [1]

[1] Filip Holik, Lars Halvdan Flå, Martin Gilje Jaatun, Sule Yildirim Yayilgan, and Jørn Foros. Threat modeling of a smart grid secondary substation. Electronics, 11(6), 2022.

Conclusioni e sviluppi futuri

L'ecosistema Smart Grid presenta numerose sfide e complessità

La rete elettrica è essenziale per qualsiasi servizio dall'azienda al privato cittadino e bisogna garantire la sua resilienza

Sviluppi futuri: testare l'architettura presentata e validare le mitigazioni proposte