Efficient Nonlinear Model Predictive Control Algorithms

Mark Cannon

Department of Engineering Science, University of Oxford
mark.cannon@eng.ox.ac.uk

Nonlinear Predictive Control Workshop CDC03

NMPC Workshop Efficient Algorithms - 1

NMPC development

NMPC can guarantee/quantify:

- Stability, feasibility regions
- Robustness
- Optimality

but

High computational complexity implies:

- Slow take-up by industry
- Impractical for fast dynamics
 - e.g. aerospace, robotics, electromechanical applications

NMPC Workshop Efficient Algorithms - 2

NMPC development

NMPC Workshop Efficient Algorithms - 3

Efficient NMPC survey

- 1. Direct optimization methods
 - SQP : sequential & simultaneous
 - successive linearization
- 2. Optimal control approaches
 - Euler-Lagrange formulation
 - Approximate HJB solution
- 3. Cost and constraint modifications
 - Feasible sets & cost bounds determined offline
 - State-space partitioning
- 4. Re-parameterization of degrees of freedom in predictions
 - Reduced dimension optimization

NMPC Workshop Efficient Algorithms - 4

Problem formulation

Plant model

$$x(k+1) = f(x(k), u(k))$$
$$u(k) \in \mathcal{U}, \quad x(k) \in \mathcal{X}$$

constraint sets \mathcal{U}, \mathcal{X} polytopic

Quadratic cost

$$J(\mathbf{x}(k), \mathbf{u}(k)) = \sum_{i=0}^{N-1} ||x(k+i|k)||_{Q}^{2} + ||u(k+i|k)||_{R}^{2} + ||x(k+N|k)||_{\overline{Q}}^{2}$$

$$Q, R > 0$$

· Receding horizon optimization

$$\begin{aligned} & \underset{\mathbf{u}(k),\mathbf{x}(k)}{\min} & J(\mathbf{x}(k),\mathbf{u}(k)) \\ & \text{s.t.} & x(k+i\,|\,k) \in \mathcal{X}, & u(k+i\,|\,k) \in \mathcal{U} \\ & x(k+i\,+1|\,k) = f\left(x(k+i\,|\,k),u(k+i\,|\,k)\right), & i = 0,...,N-1 \\ & x(k+N\,|\,k) \in \Omega_T \end{aligned}$$

terminal weight \overline{Q} and constraint set Ω_{τ}

NMPC Workshop Efficient Algorithms - 5

1. Direct optimization

Methods based on Successive Quadratic Programming (SQP)

- successive local approximations: quadratic cost, linear constraints
- QP problem solved at each iteration

e.g. $\min_{\mathbf{z}} f(\mathbf{z})$ (unconstrained):

SQP

MPC optimization: $\min_{z} J(z)$

s.t.
$$c_E(\mathbf{z}) = 0$$
, $c_I(\mathbf{z}) \le 0$

predicted state/input trajectory: $\mathbf{z}(k) = \begin{bmatrix} \mathbf{x}(k) \\ \mathbf{u}(k) \end{bmatrix}$

• Lagrangian: $\mathcal{L}(\mathbf{z}, \lambda, s) = J(\mathbf{z}) + \lambda^T \begin{bmatrix} c_E(\mathbf{z}) \\ c_I(\mathbf{z}) + s \end{bmatrix}$

Lagrange multipliers: $\lambda = \begin{bmatrix} \lambda_E \\ \lambda_I \end{bmatrix}$ slack variables: s

KT conditions at solution:

$$\nabla \mathcal{L}(\mathbf{z}^*, \lambda^*, s^*) = 0, \quad s^* \ge 0, \quad \lambda_I^* \ge 0, \quad \lambda_I^{*T} s^* = 0 \qquad \qquad \nabla = \begin{bmatrix} \nabla_{\mathbf{z}} \\ \nabla_{\lambda} \end{bmatrix}$$

SQP solves $\nabla \mathcal{L} = 0$ for $\mathbf{z}^*, \lambda^*, s^*$ s.t. non-negativity & complementarity

NMPC Workshop

Efficient Algorithms - 7

SQP iteration

Newton's method applied to $\nabla \mathcal{L}(\mathbf{z}, \lambda, s) = 0$

- kth iteration:
 - (i). solve for $d^{(k)}, \delta^{(k)}$ satisfying

$$\nabla^{2} \mathcal{L}(\mathbf{z}^{(k)}, \lambda^{(k)}, s^{(k+1)}) \begin{bmatrix} d^{(k)} \\ \delta^{(k)} \end{bmatrix} = -\nabla \mathcal{L}(\mathbf{z}^{(k)}, \lambda^{(k)}, s^{(k+1)})$$

$$s^{(k+1)} \ge 0, \quad \lambda^{(k)} + \delta^{(k)} \ge 0, \quad (\lambda^{(k)} + \delta^{(k)})^{T} s^{(k+1)} = 0$$

(ii). set
$$\mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} + d^{(k)}$$
, $\lambda^{(k+1)} = \lambda^{(k)} + \delta^{(k)}$

• Uses quadratic approximation of $\mathcal{L}(\mathbf{z}, \lambda, s)$

reduce step size $d^{(k)}, \delta^{(k)}$ to limit approximation error

SQP iteration

• Equivalent QP subproblem:

$$d^{(k)} = \underset{d}{\operatorname{arg\,min}} \quad \nabla_{z} J(\mathbf{z}^{(k)})^{T} d + \frac{1}{2} d^{T} B(z^{(k)}, \lambda^{(k)}) d$$
s.t.
$$\nabla_{z} c_{E}(\mathbf{z}^{(k)})^{T} d + c_{E}(\mathbf{z}^{(k)}) = 0$$

$$\nabla_{z} c_{I}(\mathbf{z}^{(k)})^{T} d + c_{I}(\mathbf{z}^{(k)}) \leq 0$$

- $d^{(k)} =$ search direction at kth iteration $\mathbf{z}^{(k+1)}, \, \lambda^{(k+1)}$ determined e.g. via line search
- $\begin{array}{ccc} \bullet & B(\mathbf{z},\lambda) = \nabla_{\mathbf{z}}^2 \mathcal{L}(\mathbf{z},\lambda) \\ & = \nabla_{\mathbf{z}}^2 J(\mathbf{z}) + \sum_i \lambda_i \nabla_z^2 c_i(\mathbf{z},\lambda) \end{array} \Rightarrow \begin{array}{c} \text{quadratic local convergence rate} \\ & (\mathbf{z}^{(k)},\lambda^{(k)}) \to (\mathbf{z}^*,\lambda^*) \end{array}$

$$B(\mathbf{z}, \lambda) = \text{p.d. approximation}$$
 slower convergence but convex QP

NMPC Workshop

Efficient Algorithms - 9

Nonconvexity

Nonconvex NMPC optimization

no guarantee of:

(i). convergence to global optimum

monotonicity of predicted cost – closed-loop stability?

(ii). number of iterations for given solution accuracy

computational complexity - implementable?

SQP customization

- Warm starting:
 - initialize solver at solution computed at previous sampling instant
 - Reduces computational complexity
 - Allows for monotonic cost guarantee
- Early termination:

terminate solver at suboptimal feasible point

- Allows for stability with only a single iteration at each sample
- Exploitation of subproblem structure:
 use efficient routines to factorize ∇²£
 - Reduces computational complexity of each iteration

NMPC Workshop Efficient Algorithms - 11

SQP solution methods

Sequential approach:

eliminate $c_E(\mathbf{z})$: simulate model dynamics at each iteration

feasible trajectory x available at each iteration

- ⇒ warm starting & early termination possible
- Simultaneous methods:

retain $c_{\scriptscriptstyle E}({\bf z})$: solve model dynamics for ${\bf x}$ & optimize ${\bf u}$ concurrently

 $\nabla^2 \mathcal{L}$ almost block diagonal

⇒ sparse factorization routines possible

numerical discretization of continuous time dynamics incorporated efficiently

Successive linearization

For $B(\mathbf{z}) = \nabla_{\mathbf{z}}^2 J(\mathbf{z})$ sequential SQP is equivalent to successive linearization:

- kth iteration
 - (i). linearize model dynamics about trajectory $(\mathbf{x}^{(k)}, \mathbf{u}^{(k)})$
 - (ii). update $\mathbf{u}^{(k+1)}$ using search direction:

$$d_{\mathbf{u}}^{(k)} = \underset{d_{\mathbf{u}}}{\operatorname{arg\,min}} \ J_{LIN}(d_{\mathbf{u}}) \ \text{ s.t. } \ c_{LIN}(d_{\mathbf{u}}) \leq 0$$

- · Linear uncertain MPC optimization at each iteration
- Need to account for linearization errors to ensure
 - sufficient cost reduction: $J(\mathbf{z}(k)) J(\mathbf{z}(k+1))$
 - constraint satisfaction: $c_I(\mathbf{z}(k)) \le 0$, $c_E(z(k)) = 0$

NMPC Workshop

Efficient Algorithms - 13

Handling linearization errors

• Variable trajectory bounds: $t \ge |x^{(k+1)} - x^{(k)}|$

[Lee et al. 2003]

cost & constraint upper bounds

$$\begin{split} J_{LIN}\left(d_{\mathbf{u}},t\right) &\geq J(d_{\mathbf{u}}), \quad c_{LIN}(d_{\mathbf{u}},t) \geq c_{I}(d_{\mathbf{u}}) \\ t &= 0 \implies J_{LIN} = J, \ c_{LIN} = c \end{split}$$

- SQP iteration: $\mathbf{u}^{(k+1)} = \mathbf{u}^{(k)} + d_{\mathbf{u}}^{(k)}$ $(d_{\mathbf{u}}^{(k)}, t^*) = \underset{d_{\mathbf{u}}, t}{\operatorname{arg \, min}} \quad J_{LIN}(d_{\mathbf{u}}, t)$

s.t.
$$c_{LIN}(d_{\mathbf{u}}, t) \le 0$$

 $|d_{\mathbf{v}}| \le t$

Single SQP iteration → closed-loop stability & convergence

NMPC Workshop Efficient Algorithms - 14

SQP Summary

	sequential	simultaneous
warm starting & early termination	✓	×
continuous-time models	×	✓
Large-scale problems	×	✓

NMPC Workshop Efficient Algorithms - 15

2. Optimal control approaches

- Aim: avoid optimality vs. computational efficiency trade-off
 - optimal control law incorporated in predictions
 - increased offline pre-processing
- Euler-Lagrange formulation
 - solve approximately for optimal control law online
- Hamilton-Jacobi-Bellman formulation
 - solve HJB equation for optimal cost offline

Problem formulation

Continuous-time model dynamics

$$\dot{x}(t) = f(x(t), u(t))$$
$$u(t) \in \mathcal{U}$$

Predicted performance index at time t:

$$J(t) = \int_0^T l(x(\tau,t), u(\tau,t)) \ d\tau \ + \ \phi(x(T,t))$$

$$x(\tau,t), u(\tau,t) = \text{ predicted } x(t+\tau), \ u(t+\tau)$$
 at time t

MPC optimization:

$$\min_{u(\tau,t), \ \tau \in [0,T]} J(t)$$
s.t.
$$\frac{\partial}{\partial \tau} x(\tau,t) = f(x(\tau,t), u(\tau,t))$$

$$c(u(\tau,t)) \le 0$$

$$c(u) \le 0 \iff u \in \mathcal{U}$$

NMPC Workshop

Efficient Algorithms - 17

Euler-Lagrange approach

• Hamiltonian: $\mathcal{H}(x,u,\lambda,\mu) = l(x,u) + \lambda^T f(x,u) + \mu^T c(u)$

 $\lambda(\tau,t)$: costate

 $\mu(\tau,t)$: multiplier for $c(u) \le 0$

Conditions for optimality (E-L eqn.s)

$$\frac{\partial}{\partial \tau} x(\tau, t) = \nabla_{\lambda} \mathcal{H} \qquad x(0, t) = x(t)$$

$$\frac{\partial}{\partial \tau} \lambda(\tau, t) = -\nabla_{x} \mathcal{H} \qquad \lambda(T, t) = \nabla_{x} \phi(x(T, t))$$

$$\nabla_{u} \mathcal{H} = 0 \qquad \qquad \mu(\tau, t) \begin{cases} = 0 & \text{if } c(u(\tau, t)) \le 0 \\ \ge 0 & \text{if } c(u(\tau, t)) = 0 \end{cases}$$

- \perp
- $u^*(\tau,t)$ obtained by simulation if $\lambda^*(0,t)$ known
- $\lambda^*(0,t)$ unknown \Rightarrow two-point boundary value problem (difficult)

Continuation

Terminal condition on λ:

$$\lambda(T,t) - \nabla_x \phi(x(T,t)) = F(\lambda(0,t), x(t), T) = 0$$

• Compute $\lambda(0,t)$ satisfying F=0 by continuation [Ohtsuka & Fujii, 1997]

Summary of method

T = T(t): time-varying horizon

$$\begin{array}{ll} \text{at} & t = t_0 & : & F(\lambda(0, t_0), x(t_0), T(t_0)) = 0 \\ \forall t \in [t_0, t_1] & : & \frac{d}{dt} F(\lambda(0, t), x(t), T(t)) = 0 \end{array} \right\} \Rightarrow F(\lambda(0, t_1), x(t_1), T(t_1)) = 0$$

Initialize with T(0) = 0:

$$F(\lambda(0,0), x(0), 0) = 0 \implies \lambda(0,0) = \nabla_{x}\phi(x(0))$$

(trivial solution)

NMPC Workshop

Efficient Algorithms - 19

Euler-Lagrange approach

• Offline – Construct smooth T(t):

$$T(0) = 0$$

$$T(t) \rightarrow T_f \quad \text{as } t \rightarrow \infty$$

- Online
 - (i). E-L eqn.s \longrightarrow evaluate x(T,t), $\lambda(T,t)$, $\frac{\partial x(T,t)}{\partial x(0,t)}$, $\frac{\partial \lambda(T,t)}{\partial \lambda(0,t)}$...
 - (ii). Update $\lambda(0,t)$:

$$\frac{dF}{dt} = 0 \implies \frac{d}{dt}\lambda(0,t) = -(\nabla_{\lambda}F)^{-1} \left[\nabla_{x}F\frac{d}{dt}x(t) + \frac{\partial F}{\partial T}\frac{d}{dt}T(t) + \zeta F\right]$$

(iii). E-L eqn.s
$$\longrightarrow u(t) = u(0,t)$$

Euler-Lagrange approach

Disadvantages:

- No terminal state constraint
- Increasing T(t) incompatible with state/input constraints

No stability/convergence guarantees

NMPC Workshop

Efficient Algorithms - 21

HJB approach

• Cost-to-go at $t + \tau$ along $(x(\tau,t), u(\tau,t))$:

$$\hat{J}(x(\tau,t),\tau) = \int_{\tau}^{T} l(x(s,t),u(s,t)) ds + \phi(x(T,t))$$

• Optimal cost: $J^*(x) = \hat{J}^*(x,0)$ satisfies HJB eqn

$$\min_{u \in \mathcal{U}} \left\{ \nabla_{x} \hat{J}^{*}(x, \tau)^{T} f(x, u) + l(x, u) \right\} = -\frac{\partial}{\partial \tau} \hat{J}^{*}(x, \tau)$$

Nonlinear PDE

 $x(T,t) \in \Omega_T$ incorporated via B.C.s

• Offline – solve for $J^*(x)$ (difficult)

Online -u(t) = minimizing argument

Iterative HJB solution method

[Saridis & Lee 1979]

- Initialize with $u = u^{(0)}(x)$ stabilizing for $x \in \Omega$
- For k = 0,1,...:
 - (i). solve for $J^{(k+1)}(x)$:

$$\nabla_{x} J^{(k+1)}(x) f(x, u^{(k)}(x)) + l(x, u^{(k)}(x)) = 0 \quad \forall x \in \Omega$$

(ii). compute $u^{(k+1)}(x)$:

$$u^{(k+1)}(x) = \underset{u \in \mathcal{U}}{\operatorname{arg\,min}} \left\{ \nabla_{x} J^{(k+1)}(x) f(x, u) + l(x, u) \right\} \quad \forall x \in \Omega$$

Linear PDE solved at each iteration

$$J^{(k+1)}(x) = \text{I.H. cost under } u = u^{(k)}(x)$$

$$J^{(k+1)}(x) \le J^{(k)}(x) \quad \forall x \in \Omega$$

$$u^{(k)}(x) \text{ stabilizing for } x \in \Omega$$

$$(J^{(k)}, u^{(k)}) \to (J^*, u^*)$$

NMPC Workshop

Efficient Algorithms - 23

HJB approach

Disadvantages:

- PDE solved at each iteration of offline procedure
- · High storage requirements for RH control law

Computation & storage prohibitive

3. Cost and constraint approximation

• Sampling interval: $T_{\text{samp}} \sim O(10^{-3}) \text{ sec}$

Online computation \leq small LP or convex QP

- Suboptimal MPC formulation
 - Approximate constraints using invariant or reachable sets
 - Approximate dynamics using ADI

NMPC Workshop Efficient Algorithms - 25

Invariant sets

• Ω is invariant under $\begin{cases} x(k+1) = f(x(k), u(k)) & \text{iff } f(x, K(x)) \in \Omega \quad \forall x \in \Omega \\ u(k) = K(x(k)) \end{cases}$

• $x(k) \in \Omega \implies x(k+i) \in \Omega \quad i = 1, 2, ...$

Invariant sets

• Ω is feasible w.r.t. $x \in \mathcal{X}$ if $\Omega \subseteq \mathcal{X}$

e.g.
$$\mathcal{X} = \{ x : |Kx| \le \overline{u} \}$$
:

• $x(k) \in \Omega \implies |Kx(k+i)| \le \overline{u} \quad i = 1, 2, ...$

NMPC Workshop

Efficient Algorithms - 27

Affine difference inclusion

• Local model representation as uncertain time-varying affine system:

$$f(x,u) \in Co\{ f_0 + A_i x + B_i u, i = 1, \dots p \} \quad \forall x \in \Pi_x, u \in \Pi_u$$

$$f_{0} + A_{1}x(k) + B_{1}u(k)$$

$$x(k+1)$$

$$f_{0} + A_{3}x(k) + B_{2}u(k)$$

$$f_{0} + A_{3}x(k) + B_{3}u(k)$$

- Can construct ADI if f continuously differentiable
- $x(k+1) \in$ ellipsoid or polytope \leftarrow linear or quadratic constraints on x(k), u(k)

Implicit prediction horizon

• Nonlinear prediction dynamics ⇒ nonconvex cost and constraints

- Constraint approximation under u(k+i|k) = Kx(k+i|k):
- Use ADI $f(x,Kx) \in Co\{(A_i + B_iK)x\}$ to compute online:

$$(K(k),\Omega(k)) = \underset{K,\Omega}{\operatorname{arg\,min}} \ \overline{J}(x(k))$$
 s.t. invariance, feasibility [e.g. Kothare 96] convex SDP

NMPC Workshop

Efficient Algorithms - 29

Implicit prediction horizon

Formulate d.o.f. as state of dynamic feedback law [Cannon, Kouvaritakis, 01]

SDP transferred to offline computation

• Optimization variables: $\{c(i | k), i = 0,...N-1\}$

$$u(k+i|k) = \begin{cases} \kappa(x(k+i|k)) + c(i|k), & i = 0,..., N-1 \\ \kappa(x(k+i|k)), & i \ge N \end{cases}$$

r fixed, stabilizing/optimal for no constraints

• Autonomous prediction dynamics:

$$z(k+1|k) = \begin{bmatrix} f(x(k), \kappa(x(k)) + c(0|k)) \\ M\mathbf{c}(k) \end{bmatrix}, \quad z(k) = \begin{bmatrix} x(k) \\ \mathbf{c}(k) \end{bmatrix}$$

Implicit prediction horizon

• Offline – use ADI to compute $\Omega = \{z : z^T Pz \le 1\}$ via $\max_{p} vol(\Omega_x) \quad \text{s.t. invariance, feasibility} \quad \longleftarrow \text{convex SDP}$

• Online
$$-\mathbf{c}(k) = \underset{\mathbf{c}}{\operatorname{arg\,min}} \|c\|_{W} \quad \text{s.t.} \begin{bmatrix} x(k) \\ \mathbf{c} \end{bmatrix} \in \Omega$$

- Univariate online optimization, O(N) N-R iteration
- Asymptotically stabilizing
- Finite-time convergence $u(k) \rightarrow \kappa(x(k))$

NMPC Workshop Efficient Algorithms - 31

Polytopic invariant sets

- Ellipsoidal constraint approximation ⇒ conservative region of attraction
- · Reduce conservativeness through:
 - Polytopic invariant set: $\Omega = \{ x : Vx \le 1 \}$ vertices: $\{ x_i, i = 1,...,m \}$, m arbitrary, fixed
 - Nonlinear feedback law in invariance condition e.g. $\kappa(x) = \sum_{i=1}^{m} \alpha_i u_i$, $\{u_i, i=1,...m\}$ = "controls at vertices"
 - Local ADI, Π_x , Π_u computed simultaneously with Ω

Polytopic invariant sets

• Sequence of reachable sets $\Omega^{(1)},...,\Omega^{(N)}$:

[Cannon 03]

 $\Omega^{(N)}$ invariant

$$\begin{cases} f(x, \kappa(x)) \in \Omega^{(k+1)} \\ \kappa(x) \in \mathcal{U} \end{cases} \forall x \in \Omega^{(k)} \longleftarrow \text{ linear constraints on } \{(x_i^{(k)}, u_i^{(k)})\}$$

 $\max vol(\Omega^{(k)})$ determined by sequence of LP's

- Offline compute $\Omega^{(1)},...,\Omega^{(N)}$
- Online minimize cost bound:

$$\alpha^* = \underset{\alpha}{\operatorname{arg\,min}} \sum \alpha_i \quad \text{s.t.} \quad x(k) = \sum \alpha_i x_i^{(k)}, \quad \alpha_i \ge 0$$

or

- incorporate $\kappa(x)$, $\bigcup_{k=1}^{N} \Omega^{(k)}$ in NMPC as terminal feedback & region

NMPC Workshop

Efficient Algorithms - 33

State space partitioning

[Bacic 03]

- Improve cost approximation through offline dynamic programming
- Partition operating region into simplexes $\{S_i\}$ optimized sequentially:

$$\max_{S_i} vol(S_i) - \lambda \max_{x \in S_i, u \in \mathcal{U}} \{ \|f(x, u)\|_{\mathcal{Q}}^2 + \|u\|_{\mathcal{R}}^2 \quad \text{s.t.} \quad f(x, u) \in \Omega^{(i)} \}$$

$$|\text{local ADI} \implies \text{QP problem}$$

• Form weighted directed graph $G = \langle \{S_i\}, \{T_{ij}\} \rangle$ weights $\{w_{ij}\}, w_{ij} = \text{stage cost of transition } T_{ij}$

optimal path T_{ii}^* from S_i determined by Floyd's algorithm

State space partitioning

- Offline -
 - (i). Partition operating region
 - (ii). Construct weighted graph
 - (iii). Compute optimal path from each simplex

NMPC Workshop Efficient Algorithms - 35

State space partitioning

• Online – if $x(k) \in S_i$ and optimal transition is T_{ij}^* , then solve

$$u(k) = \underset{u \in \mathcal{U}}{\operatorname{arg\,min}} \ ||f(x,u)||_{Q}^{2} + ||u||_{R}^{2} \quad \text{s.t.} \ f(x,u) \in S_{j}$$

- Single stage cost in online optimization
- Approximate solution of HJB equation
- Trade-off: performance vs. complexity of partition stability guarantee retained

NMPC Workshop Efficient Algorithms - 36

4. Prediction parameterization

• Conventional MPC formulation: d.o.f. = { $u(k \mid k),...,u(k+N-1 \mid k)$ }

```
∫ large stabilizable set \
good performance ∫

↑
long horizon
```

high online computational load

· Re-parameterize predictions to avoid trade-off

NMPC Workshop Efficient Algorithms - 37

Interpolation MPC

Univariate predictions:

[Kouvaritakis, 98]

$$u(k+i|k) = (1-c(k))\kappa^{o}(x(k+i|k)) + c(k)\kappa^{f}(x(k+i|k))$$

- c(k): d.o.f. at time k
- K^o: optimal for no constraints
- κ^f : large stabilizable set, poor performance

• Prediction class inherits: optimality of κ^{ρ} + stabilizable set of κ^{f}

Interpolation MPC

Online optimization:

$$c(k) = \underset{c}{\operatorname{arg\,min}} \ J(k) \quad \text{s.t.} \ u(k \mid k) \in \mathcal{U}$$

$$x(k+1 \mid k) \in \Omega_{T}$$

$$\Psi(x(k+1 \mid k)) - \Psi(x(k)) \leq -l(x(k), u(k))$$

- Objective: $J(k) = \sum_{i=0}^{N-1} l(x(k+i|k), u(k+i|k)) + \Psi(x(k+N|k))$
- Or use objective: $\min_{c} c$ reduced computation
- Stability constraints:
 - recursion of feasibility
 - closed-loop convergence l(x(k),u(k)) → 0

NMPC Workshop

Efficient Algorithms - 39

2-dimensional formulation

• Interpolate over κ^{o} , κ^{f} , u^{t}

[Kouvaritakis, 00]

Tail trajectory:

$$u^{t}(k+i|k) = \begin{cases} u(k+i|k-1) & i = 0,...,N-2\\ \kappa^{f}(x(k+i|k)) & i = N-1 \end{cases}$$

implement as feedback law using c(k-1)

Conventional cost and constraints:

$$c(k) = \underset{c}{\operatorname{arg\,min}} J(k) \quad \text{s.t.} \quad u(k+i \mid k) \in \mathcal{U}, \quad x(k+i \mid k) \in \mathcal{X}, \quad i = 0, ..., N-1$$
$$x(k+N \mid k) \in \Omega_{T}$$

explicit prediction horizon $N \ge 2$

Higher dimensional formulation

Input predictions:

[Magni, 01]

{
$$u(k \mid k),...,u(k + N_c - 1 \mid k), \kappa^f(x(k + N_c \mid k)),...,\kappa^f(x(k + N - 1 \mid k))$$
 } d.o.f.

Conventional cost and constraints:

$$\mathbf{u}(k) = \underset{\mathbf{u}}{\operatorname{arg\,min}} \ J(k) \quad \text{s.t.} \ u(k+i \mid k) \in \mathcal{U}, \ x(k+i \mid k) \in \mathcal{X}, \ i = 0, ..., N-1$$
$$x(k+N \mid k) \in \Omega_{T}$$

- Stabilizable set increases with N
- Large N is computationally cheap if N is small

NMPC Workshop

Efficient Algorithms - 41

Summary

- 1. Direct optimization methods SQP
- 2. Optimal control approaches E-L, HJB
- 3. Cost and constraint approximations invariant sets, ADI
- 4. Re-parameterization of degrees of freedom in predictions interpolation

Summary

- Direct optimization: $T_{samp} > 1$ sec
- Univariate algorithms: $T_{samp} > 10^{-3}$ sec

• For fast dynamics need

explicit prediction horizon $N \ge 1$ and $T_{samp} < 10^{-3}$ sec