Custom LaTeX Commands

SIZE ADAPTIVE MATH

 (x)	parantheses
 [x]	brackets

\bc{..}[x]brackets\absv{..}|x|absolute value

\absvsq{..} $|x|^2$ absolute value squared

Bra Ket Notation

 $\langle x $	bra
 $ x\rangle$	ket

\braket{\cdots}{\cdots} \quad \x|y\rangle \quad \text{scalar product} \\ \text{ketbra}{\cdots}{\cdots} \quad \x|y|z \rangle \quad \text{matrix element} \\ \text{braketop}(3 \text{ arguments}) \quad \x|y|z\rangle \quad \text{matrix element} \\ \quad \quad \x|y|z \rangle \quad \text{matrix element} \\ \quad \quad \quad \quad \x|y|z \rangle \quad \qquad \quad \quad \quad

\smallbraketop(3 arguments) $\langle x|y|z\rangle$ small matrix element

SPECIAL FUNCTIONS

 $\verb| deltaf{..}| \qquad \qquad \delta(x) \qquad \text{delta function}$

\thetaf{..} $\theta(x)$ theta function

 $\begin{array}{lll} \texttt{expf\{..\}} & & \exp(x) & \text{exponential function} \\ \texttt{e}^x & & \exp(x) & \text{exponential function} \\ \end{array}$

 $\operatorname{Re}\{\ldots\}$ Re(x) real part

 $\operatorname{Im}(x)$ imaginary part

NAMED STATES

\ketPsi $|\Psi
angle$

\ketpsi $|\psi\rangle$ \ketphi $|\varphi\rangle$ \ketup spin up $|\uparrow\rangle$ spin down \ketdo $|\downarrow\rangle$ \ketzero $|0\rangle$ $|1\rangle$ \ketone \ketg $|g\rangle$ ground state \kete $|e\rangle$ excited state $|vac\rangle$ \vac vacuum

VECTORS

\vecr \mathbf{r} \vecrone $\mathbf{r_1}$ \vecrtwo $\mathbf{r_2}$ \vecrn $\mathbf{r}_{\mathbf{N}}$ \vecri $\mathbf{r_{i}}$ \vecrj $\mathbf{r_{j}}$ \vecx \mathbf{X} \vecy \mathbf{y} \vecz \mathbf{Z} \vecxi $\mathbf{x_i}$ \vecxj $\mathbf{x_{j}}$ \veck \mathbf{k} \vecq \mathbf{q} \vecp \mathbf{p}

DIFFERENTIATION

\partiald{..} $\frac{\partial}{\partial x}$ partial differentiation

\laplace $abla^2$ laplace operator

INTEGRATION

\integral{..} $\int dx \qquad integral$

\integralb(3 arguments) $\int_{0}^{y} dz$ integral with boundaries

\integralf{..}{..} $\int \frac{dx}{y}$ integral with fraction

\intvol $\int d^3r$ integral over r space \intvolp $\int d^3r'$ integral over r' space

\intvold $\int d^3r \int d^3r'$ double integral over space

\intk $\int d^3k$ integral over k space \intkp $\int d^3k'$ integral over k' space

\intkn $\int \frac{\mathrm{d}^3k}{(2\pi)^3}$ normalized integral over k space \intkpn $\int \frac{\mathrm{d}^3k'}{(2\pi)^3}$ normalized integral over k' space

SPECIAL SYMBOLS

\hc h.c. hermitian conjugate
\hamil \hamil Hamilton operator

\hastobe $\stackrel{!}{=}$ has to be

 $\begin{tabular}{lll} &=& corresponds to, is equivalent \\ \end{tabular}$

SECOND QUANTIZATION

\aopaannihilation operator

\aopd a^{\dagger} creation operator

b annihilation operator

\bopd b^{\dagger} creation operator

ackslash c annihilation operator

\copd c^{\dagger} creation operator

\nop $n \qquad \text{number operator} \\ \text{\psiop} \qquad \hat{\psi} \qquad \text{field operator} \\ \text{\psiopd} \qquad \hat{\psi}^{\dagger} \\ \text{\psiOpd} \qquad \hat{\Psi} \\ \text{\psiOpd} \qquad \hat{\Psi}^{\dagger}$

DIFFERENCES

\Dx Δx \Dy Δy \Dz Δz \Dt Δt

FIGURES

\igopt{..}{..}
\ig{..}{..}
\figopt(4 arguments)
\fig(3 arguments)
\doublefigopt(8 arguments)
\doublefig(7 arguments)
\figref{..}