Liver Disease Prediction Content This data set contains 416 liver patient records and 167 non liver patient records collected from North East of Andhra Pradesh, India. The "Dataset" column is a class label used to divide groups into liver patient (liver disease) or not (no disease). This data set contains 441 male patient records and 142 female patient records. Any patient whose age exceeded 89 is listed as being of age "90". Columns: Age of the patient Gender of the patient **Total Bilirubin** Direct Bilirubin Alkaline Phosphotase Alamine Aminotransferase Aspartate Aminotransferase **Total Protiens** Albumin Albumin and Globulin Ratio Dataset: field used to split the data into two sets (patient with liver disease, or no disease) **Importing Libraries** # Importing Libraries:

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

for displaying all feature from dataset:

pd.pandas.set_option('display.max_columns', None)

Read The DataSet

Reading Dataset:

dataset = pd.read_csv("https://raw.githubusercontent.com/IBM-EPBL/IBM-Project-7380-1658854276/main/project/Dataset/indian_liver_patient.csv")

Top 5 records:

dataset.head()

Age	Gende	r Total_I	Bilirubin	Alamine_Aminotransferase							
	Aspartate_Aminotransferase Total_Protiens Albumin							Album	Albumin_and_Globulin_Ratio		
	Dataset										
0	65	Female	e 0.7	0.1	187	16	18	6.8	3.3	0.90	1
1	62	Male	10.9	5.5	699	64	100	7.5	3.2	0.74	1
2	62	Male	7.3	4.1	490	60	68	7.0	3.3	0.89	1
3	58	Male	1.0	0.4	182	14	20	6.8	3.4	1.00	1
4	72	Male	3.9	2.0	195	27	59	7.3	2.4	0.40	1

Last 5 records:

dataset.tail()

Age	Gender Total_Bilirubin									Alamine_Aminotransferase		
	Aspart	ate_Ami	inotrans	ferase	Total_Protiens Albumin				Albumin_and_Globulin_Ratio			
	Dataset											
578	60	Male	0.5	0.1	500	20	34	5.9	1.6	0.37	2	
579	40	Male	0.6	0.1	98	35	31	6.0	3.2	1.10	1	
580	52	Male	0.8	0.2	245	48	49	6.4	3.2	1.00	1	

```
581
       31
               Male
                      1.3
                              0.5
                                      184
                                             29
                                                     32
                                                            6.8
                                                                    3.4
                                                                            1.00
582
       38
               Male
                      1.0
                              0.3
                                      216
                                             21
                                                     24
                                                            7.3
                                                                    4.4
                                                                            1.50
# Shape of dataset:
dataset.shape
(583, 11)
Cheaking Missing (NaN) Values
# Cheaking Missing (NaN) Values:
dataset.isnull().sum()
Age
                 0
Gender
                   0
Total_Bilirubin
                     0
Direct_Bilirubin
                      0
Alkaline_Phosphotase
                         0
Alamine_Aminotransferase
Aspartate_Aminotransferase 0
Total_Protiens
                      0
Albumin
                   0
Albumin_and_Globulin_Ratio 4
                   0
Dataset
dtype: int64
'Albumin_and_Globulin_Ratio' feature contain 4 NaN values.
# Mean & Median of "Albumin_and_Globulin_Ratio" feature:
print(dataset['Albumin_and_Globulin_Ratio'].median())
print(dataset['Albumin_and_Globulin_Ratio'].mean())
```

1

2

```
0.9470639032815197
```

Filling NaN Values of "Albumin_and_Globulin_Ratio" feature with Median :

dataset['Albumin and Globulin Ratio'] =

dataset['Albumin and Globulin Ratio'].fillna(dataset['Albumin and Globulin Ratio'].median())

Datatypes:

dataset.dtypes

Age int64

Gender object

Total_Bilirubin float64

Direct_Bilirubin float64

Alkaline_Phosphotase int64

Alamine_Aminotransferase int64

Aspartate_Aminotransferase int64

Total_Protiens float64

Albumin float64

Albumin_and_Globulin_Ratio float64

Dataset int64

dtype: object

Description:

dataset.describe()

Age Total_Bilirubin Direct_Bilirubin Alkaline_Phosphotase Alamine_Aminotransferase

Aspartate_Aminotransferase Total_Protiens Albumin Albumin_and_Globulin_Ratio

Dataset

count 583.000000 583.000000 583.000000 583.000000 583.000000 583.000000

583.000000 583.000000 583.000000 583.000000

mean	44.746141 6.483190	3.298799 3.141852	1.486106 0.946947	290.576329 1.286449	80.713551	109.910806
std	16.189833 1.085451	6.209522 0.795519	2.808498 0.318495	242.937989 0.452490	182.620356	288.918529
min	4.000000 2.700000	0.400000 0.900000	0.100000 0.300000	63.000000 1.000000	10.000000	10.000000
25%	33.000000 5.800000	0.800000 2.600000	0.200000 0.700000	175.500000 1.000000	23.000000	25.000000
50%	45.00000 6.600000	1.000000 3.100000	0.300000 0.930000	208.000000 1.000000	35.000000	42.000000
75%	58.00000 7.200000	2.600000 3.800000	1.300000 1.100000	298.000000 2.000000	60.500000	87.000000
max	90.000000 9.600000	75.000000 5.500000	19.700000 2.800000	2110.000000 2.000000	2000.000000	4929.000000

Data Visualization

Target feature:

```
print("Liver Disease Patients :", dataset['Dataset'].value_counts()[1])
print("Non Liver Disease Patients :", dataset['Dataset'].value_counts()[2])
```

Visualization:

sns.countplot(dataset['Dataset'])

plt.show()

Liver Disease Patients : 416

Non Liver Disease Patients: 167

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

```
# Histrogram of Age:
plt.figure(figsize=(8,5))
sns.histplot(dataset['Age'], kde=True)
plt.title('Age', fontsize=20)
plt.show()
```

dataset.head()

Age	Gender Total_Bilirubin Direct_Bilirubin Alkaline_Phosphot Aspartate_Aminotransferase Total_Protiens Albumin Dataset								Alamine_Aminotransferase Albumin_and_Globulin_Ratio		
0	65	Female	e 0.7	0.1	187	16	18	6.8	3.3	0.90	1
1	62	Male	10.9	5.5	699	64	100	7.5	3.2	0.74	1
2	62	Male	7.3	4.1	490	60	68	7.0	3.3	0.89	1
3	58	Male	1.0	0.4	182	14	20	6.8	3.4	1.00	1
4	72	Male	3.9	2.0	195	27	59	7.3	2.4	0.40	1

Gender feature:

print("Total Male :", dataset['Gender'].value_counts()[0])
print("Total Female :", dataset['Gender'].value_counts()[1])

Visualization:

sns.countplot(dataset['Gender'])

plt.show()

Total Male: 441

Total Female: 142

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Printing How many Unique values present in each feature:

for feature in dataset.columns:

print(feature,":", len(dataset[feature].unique()))

Age: 72

Gender: 2

Total_Bilirubin: 113

Direct_Bilirubin: 80

Alkaline_Phosphotase: 263

Alamine_Aminotransferase: 152

Aspartate_Aminotransferase: 177

Total Protiens: 58

Albumin: 40

Albumin_and_Globulin_Ratio: 69

Dataset: 2

Label Encoding

dataset['Gender'] = np.where(dataset['Gender']=='Male', 1,0)

dataset.head()

Age	Aspart	ate_Am		Direct_ ferase	-		_ '		Albumin_and_Globulin_Ratio		
0	Datase	et O	0.7	0.1	197	16	18	6.8	3.3	0.90	1
1				5.5		64				0.90	_

2	62	1	7.3	4.1	490	60	68	7.0	3.3	0.89	1
3	58	1	1.0	0.4	182	14	20	6.8	3.4	1.00	1
4	72	1	3.9	2.0	195	27	59	7.3	2.4	0.40	1

Correlation using Heatmap:

```
plt.figure(figsize=(12,8))
sns.heatmap(dataset.corr(), annot=True, cmap='YlGnBu')
plt.show()
```

There is Multi-Collinearity found on our dataset.

dataset.columns

Multicollinearity betwwen 'Total_Bilirubin' and 'Direct_Bilirubin' is 0.87%

Multicollinearity betwwen 'Alamine_Aminotransferase' and 'Aspartate_Aminotransferase' is 0.79%

Multicollinearity betwwen 'Total_Protiens' and 'Albumin' is 0.78%

Multicollinearity betwwen 'Albumin' and 'Albumin_and_Globulin_Ratio' is 0.69%

Usually we drop that feature which has above 0.85% multicollinearity between two independent feature. Here we have only 'Total_Bilirubin' and 'Direct_Bilirubin' feature which has 0.87% multicollinearity. So we drop one of the feature from them and other independent feature has less multicollinearity, less than 0.80% So we keep that feature.

```
# Droping 'Direct_Bilirubin' feature:
dataset = dataset.drop('Direct_Bilirubin', axis=1)
dataset.columns
```

```
Index(['Age', 'Gender', 'Total_Bilirubin', 'Alkaline_Phosphotase',
    'Alamine_Aminotransferase', 'Aspartate_Aminotransferase',
   'Total_Protiens', 'Albumin', 'Albumin_and_Globulin_Ratio', 'Dataset'],
   dtype='object')
sns.distplot(dataset['Albumin'])
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a
deprecated function and will be removed in a future version. Please adapt your code to use either
'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for
histograms).
warnings.warn(msg, FutureWarning)
# Calculate the boundaries of Total_Protiens feature which differentiates the outliers:
uppper_boundary=dataset['Total_Protiens'].mean() + 3* dataset['Total_Protiens'].std()
lower_boundary=dataset['Total_Protiens'].mean() - 3* dataset['Total_Protiens'].std()
print(dataset['Total_Protiens'].mean())
print(lower_boundary)
print(uppper_boundary)
6.483190394511149
3.2268359424407516
9.739544846581545
##### Calculate the boundaries of Albumin feature which differentiates the outliers:
uppper boundary=dataset['Albumin'].mean() + 3* dataset['Albumin'].std()
lower boundary=dataset['Albumin'].mean() - 3* dataset['Albumin'].std()
print(dataset['Albumin'].mean())
print(lower_boundary)
```

```
print(uppper_boundary)
3.141852487135506
0.7552960692434296
5.528408905027582
# Lets compute the Interquantile range of Total_Bilirubin feature to calculate the boundaries:
IQR = dataset.Total_Bilirubin.quantile(0.75)-dataset.Total_Bilirubin.quantile(0.25)
# Extreme outliers
lower_bridge = dataset['Total_Bilirubin'].quantile(0.25) - (IQR*3)
upper_bridge = dataset['Total_Bilirubin'].quantile(0.75) + (IQR*3)
print(lower_bridge)
print(upper_bridge)
# if value greater than upper bridge, we replace that value with upper bridge value:
dataset.loc[dataset['Total_Bilirubin'] >= upper_bridge, 'Total_Bilirubin'] = upper_bridge
-4.6000000000000005
8.0
# Lets compute the Interquantile range of Alkaline_Phosphotase feature to calculate the boundaries:
IQR = dataset.Alkaline Phosphotase.quantile(0.75) - dataset.Alkaline Phosphotase.quantile(0.25)
# Extreme outliers
lower bridge = dataset['Alkaline Phosphotase'].quantile(0.25) - (IQR*3)
upper_bridge = dataset['Alkaline_Phosphotase'].quantile(0.75) + (IQR*3)
```

```
print(lower_bridge)
print(upper_bridge)
# if value greater than upper bridge, we replace that value with upper bridge value:
dataset.loc[dataset['Alkaline_Phosphotase'] >= upper_bridge, 'Alkaline_Phosphotase'] = upper_bridge
-192.0
665.5
# Lets compute the Interquantile range of Alamine_Aminotransferase feature to calculate the
boundaries:
IQR = dataset.Alamine_Aminotransferase.quantile(0.75) -
dataset.Alamine_Aminotransferase.quantile(0.25)
# Extreme outliers
lower_bridge = dataset['Alamine_Aminotransferase'].quantile(0.25) - (IQR*3)
upper_bridge = dataset['Alamine_Aminotransferase'].quantile(0.75) + (IQR*3)
print(lower_bridge)
print(upper_bridge)
# if value greater than upper bridge, we replace that value with upper_bridge value:
dataset.loc[dataset['Alamine Aminotransferase'] >= upper bridge, 'Alamine Aminotransferase'] =
upper_bridge
-89.5
173.0
# Lets compute the Interquantile range of Aspartate_Aminotransferase feature to calculate the
boundaries:
```

```
IQR = dataset.Aspartate_Aminotransferase.quantile(0.75) -
dataset. Aspartate Aminotransferase. quantile (0.25)
# Extreme outliers
lower bridge = dataset['Aspartate Aminotransferase'].quantile(0.25) - (IQR*3)
upper_bridge = dataset['Aspartate_Aminotransferase'].quantile(0.75) + (IQR*3)
print(lower_bridge)
print(upper_bridge)
# if value greater than upper bridge, we replace that value with upper_bridge value:
dataset.loc[dataset['Aspartate Aminotransferase'] >= upper bridge, 'Aspartate Aminotransferase'] =
upper_bridge
-161.0
273.0
# Lets compute the Interquantile range of Albumin_and_Globulin_Ratio feature to calculate the
boundaries
IQR = dataset.Albumin_and_Globulin_Ratio.quantile(0.75) -
dataset.Albumin_and_Globulin_Ratio.quantile(0.25)
# Extreme outliers
lower_bridge = dataset['Albumin_and_Globulin_Ratio'].quantile(0.25) - (IQR*3)
upper_bridge = dataset['Albumin_and_Globulin_Ratio'].quantile(0.75) + (IQR*3)
print(lower_bridge)
print(upper_bridge)
```

if value greater than upper bridge, we replace that value with upper_bridge value:

dataset.loc[dataset['Albumin_and_Globulin_Ratio'] >= upper_bridge, 'Albumin_and_Globulin_Ratio'] = upper_bridge

-0.50000000000000004

2.3000000000000007

Top 5 records:

dataset.head()

Age	Gender Total_Bilirubin Alkaline_Phosphotase						Alamine_Aminotransferase				
	Asparta Datase	tate_Aminotransferase Total_Protiens Alb et		Albumi	in	Albumin_and_Globu					
0	65	0	0.7	187.0	16	18	6.8	3.3	0.90	1	
1	62	1	8.0	665.5	64	100	7.5	3.2	0.74	1	
2	62	1	7.3	490.0	60	68	7.0	3.3	0.89	1	
3	58	1	1.0	182.0	14	20	6.8	3.4	1.00	1	
4	72	1	3.9	195.0	27	59	7.3	2.4	0.40	1	

[#] Description after deal with outliers by IQR:

dataset.describe()

Age	Gender Total_	Bilirubin Alkalin	e_Phosphotase	Alamine_Aminotransferase				
	Aspartate_Am	inotransferase	Total_Protiens	Albumin	Albumin_and_	Globulin_Ratio		
	Dataset							
count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000		
	583.000000	583.000000	583.000000	583.000000				
mean	44.746141	0.756432	2.249400	266.389365	53.399657	73.041166		
	6.483190	3.141852	0.945403	1.286449				
std	16.189833	0.429603	2.382344	145.665460	46.059536	73.549864		
	1.085451	0.795519	0.310942	0.452490				
min	4.000000	0.000000	0.400000	63.000000	10.000000	10.000000		
	2.700000	0.900000	0.300000	1.000000				

25%	33.000000	1.000000	0.800000	175.500000	23.000000	25.000000
	5.800000	2.600000	0.700000	1.000000		
50%	45.000000	1.000000	1.000000	208.000000	35.000000	42.000000
	6.600000	3.100000	0.930000	1.000000		
75%	58.000000	1.000000	2.600000	298.000000	60.500000	87.000000
	7.200000	3.800000	1.100000	2.000000		
max	90.000000	1.000000	8.000000	665.500000	173.000000	273.000000
	9.600000	5.500000	2.300000	2.000000		

Independent and Dependent Split

Independent and Dependent Feature:

X = dataset.iloc[:, :-1]

y = dataset.iloc[:, -1]

top 5 records of Independent features:

X.head()

Age	Gender Total_Bilirubin Alkali				e_Phosphotase		Alamine_Aminotransferase			
	Asparta	Aspartate_Aminotransferase Total_		Total_F	Protiens	ns Albumin		Albumin_and_Globulin_Ratio		
0	65	0	0.7	187.0	16	18	6.8	3.3	0.90	
1	62	1	8.0	665.5	64	100	7.5	3.2	0.74	
2	62	1	7.3	490.0	60	68	7.0	3.3	0.89	
3	58	1	1.0	182.0	14	20	6.8	3.4	1.00	
4	72	1	3.9	195.0	27	59	7.3	2.4	0.40	

top 5 records of dependent features:

y.head()

0 1

1 1

2 1

```
4 1
Name: Dataset, dtype: int64
# SMOTE Technique:
from imblearn.combine import SMOTETomek
smote = SMOTETomek()
X_smote, y_smote = smote.fit_resample(X,y)
# Counting before and after SMOTE:
from collections import Counter
print('Before SMOTE : ', Counter(y))
print('After SMOTE : ', Counter(y_smote))
Before SMOTE: Counter({1: 416, 2: 167})
After SMOTE: Counter({1: 396, 2: 396})
Train Test Split
# Train Test Split:
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_smote,y_smote, test_size=0.3, random_state=33)
print(X_train.shape)
print(X_test.shape)
(554, 9)
(238, 9)
# Feature Importance:
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
```

3 1

```
### Apply SelectKBest Algorithm
ordered_rank_features=SelectKBest(score_func=chi2,k=9)
ordered_feature=ordered_rank_features.fit(X,y)
dfscores=pd.DataFrame(ordered_feature.scores_,columns=["Score"])
dfcolumns=pd.DataFrame(X.columns)
features_rank=pd.concat([dfcolumns,dfscores],axis=1)
features_rank.columns=['Features','Score']
features_rank.nlargest(9, 'Score')
              Score
Features
5
       Aspartate_Aminotransferase
                                     3368.743077
3
       Alkaline_Phosphotase 2385.790640
4
       Alamine_Aminotransferase
                                     1717.348297
2
       Total_Bilirubin 127.476411
0
       Age
              64.315174
7
       Albumin
                      3.053371
8
       Albumin_and_Globulin_Ratio 1.704602
1
       Gender 0.964518
6
       Total_Protiens 0.129627
Classification Algorithm And Run model
```

Importing Performance Metrics:

```
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# RandomForestClassifier:
from sklearn.ensemble import RandomForestClassifier
RandomForest = RandomForestClassifier()
RandomForest = RandomForest.fit(X_train,y_train)
# Predictions:
y_pred = RandomForest.predict(X_test)
# Performance:
print('Accuracy:', accuracy_score(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
Accuracy: 0.8109243697478992
[[ 87 35]
[ 10 106]]
       precision recall f1-score support
          0.90 0.71 0.79
     1
                                122
     2
          0.75
                0.91 0.82
                                116
                        0.81
                                238
  accuracy
 macro avg
              0.82
                      0.81
                             0.81
                                     238
weighted avg
                0.83
                       0.81
                              0.81
                                      238
```

```
# AdaBoostClassifier:
from sklearn.ensemble import AdaBoostClassifier
AdaBoost = AdaBoostClassifier()
AdaBoost = AdaBoost.fit(X_train,y_train)
# Predictions:
y_pred = AdaBoost.predict(X_test)
# Performance:
print('Accuracy:', accuracy_score(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
Accuracy: 0.7857142857142857
[[ 86 36]
[ 15 101]]
       precision recall f1-score support
     1
          0.85 0.70 0.77
                                122
     2
          0.74 0.87 0.80
                                116
  accuracy
                        0.79
                               238
 macro avg
             0.79
                     0.79
                            0.78
                                    238
weighted avg
               0.80
                       0.79
                              0.78
                                      238
```

GradientBoostingClassifier:

```
from sklearn.ensemble import GradientBoostingClassifier
GradientBoost = GradientBoostingClassifier()
GradientBoost = GradientBoost.fit(X_train,y_train)
# Predictions:
y_pred = GradientBoost.predict(X_test)
# Performance:
print('Accuracy:', accuracy_score(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
Accuracy: 0.7605042016806722
[[89 33]
[24 92]]
       precision recall f1-score support
          0.79 0.73 0.76
                                122
     2
          0.74 0.79 0.76
                                116
  accuracy
                        0.76
                               238
 macro avg
              0.76 0.76
                            0.76
                                    238
weighted avg
               0.76
                       0.76
                              0.76
                                      238
```

RandomizedSearchCV

Importing RandomizedSearchCV:

```
from sklearn.model_selection import RandomizedSearchCV
# Number of trees in random forest:
n_{estimators} = [int(x) for x in np.linspace(start = 100, stop = 2000, num = 20)]
# Number of features to consider at every split:
max_features = ['auto', 'sqrt','log2']
# Maximum number of levels in tree:
max depth = [int(x) for x in np.linspace(100, 100,20)]
# Minimum number of samples required to split a node:
min_samples_split = [1,2,3,4,5,6,7,8,9,10,12,14,16,18,20]
# Minimum number of samples required at each leaf node:
min_samples_leaf = [1,2,3,4,5,6,7,8,9,10,12,14,16,18,20]
# Create the random grid:
random_grid = {'n_estimators': n_estimators,
       'max_features': max_features,
       'max_depth': max_depth,
       'min_samples_split': min_samples_split,
       'min_samples_leaf': min_samples_leaf,
       'criterion':['entropy','gini']}
print(random grid)
{'n_estimators': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600,
1700, 1800, 1900, 2000], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth': [100, 100, 100, 100, 100,
```

```
4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20], 'min_samples_leaf': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20],
'criterion': ['entropy', 'gini']}
rf = RandomForestClassifier()
rf randomcv = RandomizedSearchCV(estimator = rf, param distributions = random grid, n iter = 100,
cv = 5, verbose = 2,
                 random_state = 0, n_jobs = -1)
# fit the randomized model:
rf_randomcv.fit(X_train,y_train)
Fitting 5 folds for each of 100 candidates, totalling 500 fits
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_validation.py:372: FitFailedWarning:
40 fits failed out of a total of 500.
The score on these train-test partitions for these parameters will be set to nan.
If these failures are not expected, you can try to debug them by setting error_score='raise'.
Below are more details about the failures:
40 fits failed with the following error:
Traceback (most recent call last):
 File "/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_validation.py", line 680, in
_fit_and_score
  estimator.fit(X train, y train, **fit params)
 File "/usr/local/lib/python3.7/dist-packages/sklearn/ensemble/_forest.py", line 467, in fit
  for i, t in enumerate(trees)
 File "/usr/local/lib/python3.7/dist-packages/joblib/parallel.py", line 1085, in __call__
  if self.dispatch_one_batch(iterator):
 File "/usr/local/lib/python3.7/dist-packages/joblib/parallel.py", line 901, in dispatch_one_batch
```

```
self._dispatch(tasks)
 File "/usr/local/lib/python3.7/dist-packages/joblib/parallel.py", line 819, in _dispatch
  job = self._backend.apply_async(batch, callback=cb)
 File "/usr/local/lib/python3.7/dist-packages/joblib/ parallel backends.py", line 208, in apply async
  result = ImmediateResult(func)
 File "/usr/local/lib/python3.7/dist-packages/joblib/_parallel_backends.py", line 597, in __init__
  self.results = batch()
 File "/usr/local/lib/python3.7/dist-packages/joblib/parallel.py", line 289, in __call__
  for func, args, kwargs in self.items]
 File "/usr/local/lib/python3.7/dist-packages/joblib/parallel.py", line 289, in
  for func, args, kwargs in self.items]
 File "/usr/local/lib/python3.7/dist-packages/sklearn/utils/fixes.py", line 216, in call
  return self.function(*args, **kwargs)
 File "/usr/local/lib/python3.7/dist-packages/sklearn/ensemble/_forest.py", line 185, in
_parallel_build_trees
  tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
 File "/usr/local/lib/python3.7/dist-packages/sklearn/tree/ classes.py", line 942, in fit
  X idx sorted=X idx sorted,
 File "/usr/local/lib/python3.7/dist-packages/sklearn/tree/ classes.py", line 254, in fit
  % self.min_samples_split
ValueError: min_samples_split must be an integer greater than 1 or a float in (0.0, 1.0]; got the integer 1
warnings.warn(some_fits_failed_message, FitFailedWarning)
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_search.py:972: UserWarning: One or
more of the test scores are non-finite: [
                                         nan 0.6950041 0.74733825 0.68958231 0.68599509
0.71847666
0.73829648\ 0.7040131\ 0.73290745\ 0.72029484\ 0.69320229\ 0.72209664
```

```
0.72211302 0.75094185
                          nan 0.71665848 0.74194922 0.71667486
0.70044226 0.69678952 0.72026208 0.71665848 0.74552007 0.71846028
               nan 0.72208026 0.72568387 0.69316953 0.72568387
0.69138411
0.72027846\ 0.75099099\ 0.74552007\ 0.73467649\ 0.71665848\ 0.69140049
0.69682228 0.70042588 0.68782965 0.73112203
                                                 nan 0.70584767
    nan 0.72748567 0.71667486 0.6968059 0.70763309 0.72750205
0.71847666 0.74735463 0.75276003 0.73290745 0.6968059 0.72748567
0.71485667 0.71841114 0.68781327 0.72031122 0.75276003 0.6968059
0.73289107 0.72208026 0.73108927 0.7004095
                                                nan 0.73829648
0.7040131 0.72751843 0.73651106 0.72751843 0.72568387 0.72209664
0.70583129 0.68963145 0.73651106 0.69502048 0.72209664
0.68959869\ 0.74915643\ 0.72930385\ 0.74917281\ 0.73108927\ 0.74191646
0.74191646 0.74373464
                          nan 0.73290745 0.6968059 0.68959869
0.71667486 0.69498771 0.73832924 0.71305487
category=UserWarning,
RandomizedSearchCV(cv=5, estimator=RandomForestClassifier(), n iter=100,
         n jobs=-1,
         param_distributions={'criterion': ['entropy', 'gini'],
                    'max depth': [100, 100, 100, 100, 100,
                           100, 100, 100, 100, 100,
                           100, 100, 100, 100, 100,
                           100, 100, 100, 100, 100],
                    'max_features': ['auto', 'sqrt',
                             'log2'],
```

0.6950041 0.69141687 0.6986077 0.73113841 0.68781327 0.74733825

```
'min_samples_leaf': [1, 2, 3, 4, 5, 6,
                                 7, 8, 9, 10, 12,
                                 14, 16, 18, 20],
                     'min_samples_split': [1, 2, 3, 4, 5, 6,
                                 7, 8, 9, 10, 12,
                                  14, 16, 18, 20],
                     'n_estimators': [100, 200, 300, 400,
                               500, 600, 700, 800,
                               900, 1000, 1100, 1200,
                               1300, 1400, 1500, 1600,
                               1700, 1800, 1900,
                               2000]},
          random_state=0, verbose=2)
# Best parameter of RandomizedSearchCV:
rf_randomcv.best_params_
{'n_estimators': 2000,
'min_samples_split': 3,
'min_samples_leaf': 2,
'max_features': 'log2',
'max_depth': 100,
'criterion': 'entropy'}
# Creating model using best parameter of RandomizedSearchCV:
RandomForest_RandomCV = RandomForestClassifier(criterion = 'entropy', n_estimators = 2000,
max_depth = 100, max_features = 'log2',
                         min_samples_split = 3, min_samples_leaf = 2)
RandomForest_RandomCV = RandomForest_RandomCV.fit(X_train,y_train)
```

```
y_pred = RandomForest_RandomCV.predict(X_test)
# Performance:
print('Accuracy:', accuracy_score(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
Accuracy: 0.8067226890756303
[[ 86 36]
[ 10 106]]
       precision recall f1-score support
          0.90
                 0.70 0.79
     1
                                122
     2
               0.91 0.82
          0.75
                                116
                        0.81
                               238
  accuracy
 macro avg
              0.82
                      0.81
                             0.81
                                     238
weighted avg
               0.82
                       0.81
                              0.80
                                      238
GridSearchCV
# Importing GridSearchCV:
from \ sklearn.model\_selection \ import \ Grid Search CV
# Best parameter:
rf_randomcv.best_params_
```

Predictions:

```
{'n_estimators': 2000,
'min_samples_split': 3,
'min_samples_leaf': 2,
'max features': 'log2',
'max_depth': 100,
'criterion': 'entropy'}
param grid = {
  'criterion': [rf_randomcv.best_params_['criterion']],
  'max features': [rf randomcv.best params ['max features']],
  'max_depth': [rf_randomcv.best_params_['max_depth']-50,
         rf_randomcv.best_params_['max_depth'],
         rf_randomcv.best_params_['max_depth']+50],
  'min_samples_leaf': [rf_randomcv.best_params_['min_samples_leaf']-1,
             rf_randomcv.best_params_['min_samples_leaf'],
             rf randomcv.best params ['min samples leaf']+1],
  'min_samples_split': [rf_randomcv.best_params_['min_samples_split'] - 1,
              rf_randomcv.best_params_['min_samples_split'],
              rf_randomcv.best_params_['min_samples_split'] +1],
  'n_estimators': [rf_randomcv.best_params_['n_estimators'] - 50,
           rf randomcv.best params ['n estimators'],
           rf_randomcv.best_params_['n_estimators'] + 50]
}
print(param_grid)
{'criterion': ['entropy'], 'max_features': ['log2'], 'max_depth': [50, 100, 150], 'min_samples_leaf': [1, 2, 3],
'min_samples_split': [2, 3, 4], 'n_estimators': [1950, 2000, 2050]}
```

```
# Fit the grid_search to the data:
rf = RandomForestClassifier()
grid_search = GridSearchCV(estimator = rf, param_grid = param_grid, cv=5 , n_jobs = -1, verbose = 2)
grid_search.fit(X_train,y_train)
Fitting 5 folds for each of 81 candidates, totalling 405 fits
GridSearchCV(cv=5, estimator=RandomForestClassifier(), n_jobs=-1,
       param grid={'criterion': ['entropy'], 'max depth': [50, 100, 150],
              'max_features': ['log2'],
              'min_samples_leaf': [1, 2, 3],
              'min_samples_split': [2, 3, 4],
              'n_estimators': [1950, 2000, 2050]},
       verbose=2)
# Best Parameter of GridSearchCV:
grid_search.best_params_
{'criterion': 'entropy',
'max_depth': 50,
'max_features': 'log2',
'min_samples_leaf': 2,
'min_samples_split': 2,
'n estimators': 2050}
# Creating model using best parameter of GridSearchCV:
RandomForest_gridCV = RandomForestClassifier(criterion='entropy', n_estimators=1950,
max_depth=150, max_features='log2',
                        min_samples_split=2, min_samples_leaf=1)
RandomForest_gridCv = RandomForest_gridCV.fit(X_train,y_train)
```

```
y_pred = RandomForest_gridCV.predict(X_test)
# Performance:
print('Accuracy:', accuracy_score(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
Accuracy: 0.8025210084033614
[[ 85 37]
[ 10 106]]
       precision recall f1-score support
                0.70 0.78
     1
          0.89
                                122
     2
          0.74
                 0.91
                        0.82
                                116
                                238
  accuracy
                        0.80
                             0.80
                                     238
 macro avg
              0.82
                      0.81
weighted avg
                0.82
                       0.80
                              0.80
                                      238
Save Model
# Creating a pickle file for the classifier
import pickle
filename = 'Liver.pkl'
pickle.dump(RandomForestClassifier, open(filename, 'wb'))
```

Predictions: