Intelligent Learning (IL)

Dr Yonghuai Liu

Department of Computer Science

The University of Wales, Aberystwyth

Tel: 01970 621688

Office: B52

Email: yyl@aber.ac.uk

Outline

- 1. Introduction
- 2. Concept Learning
- 3. Decision Tree Learning
- 4. Artificial Neural Networks
- 5. Bayesian Learning
- 6. Genetic Algorithms
- 7. Reinforcement Learning

Introduction

- Why is it necessary and possible to develop intelligent learning algorithms?
- How to define a learning problem?
- How to measure the performance of a learning algorithm?

Objective of Intelligent Learning

- Reflect ourselves
- Explain ourselves
- Help ourselves
- Plan ourselves

The Necessity to Develop IL Systems

- Understand and improve human learning efficiency
 - ▶ Medical records → medical knowledge

- Some applications where we can't program by hand
 - ► Autonomous Driving at 70mph on a highway

- Self Customizing Programs
 - ▶ Newsreader that can learn your interests

The Possibility for Machine to Learn

- Recent progress in algorithms and theory
- Growing flood of online data
- Computational power is available
- Budding industry

Learning IL Module?

DISCUSS: On what conditions do you like or dislike learn *IL* module?

What Does Learning mean?

- Learning = Improving performance P with Experience E at some Tasks T
- The goal of a learning system is prediction on new cases.
- The learning process is to approximate the training examples.
- The learning process is to extract the common characteristics from the training examples.

How to Define A Learning Problem?

Learning Task T: what to be learned?

How to Define A Learning Problem?

- Learning Task T: what to be learned?
- With respect to Performance Measurement P: how to measure whether it is learned?

How to Define A Learning Problem?

- Learning Task T: what to be learned?
- With respect to Performance Measurement P: how to measure whether it is learned?
- Based on Experience E: from where to learn?

E.g., Learn to Play TicTacToe Game

T: Play TicTacToe game

E.g., Learn to Play TicTacToe Game

- T: Play TicTacToe game
- P: % of games won in the world tournament

E.g., Learn to Play TicTacToe Game

- T: Play TicTacToe game
- P: % of games won in the world tournament
- E: Opportunity to play against itself

Type of Training Experience

Training experience consists of a pattern of observations (also called features, attributes, constraints, ...) and the corresponding correct classification or prediction.

Direct or Indirect: <input, output>?

Type of Training Experience

Training experience consists of a pattern of observations (also called features, attributes, constraints, ...) and the corresponding correct classification or prediction.

- Direct or Indirect: <input, output>?
- Teacher or not: How to control the sequence of examples to be used for learning?

Type of Training Experience

Training experience consists of a pattern of observations (also called features, attributes, constraints, ...) and the corresponding correct classification or prediction.

- Direct or Indirect: <input, output>?
- Teacher or not: How to control the sequence of examples to be used for learning?
- Problem: Is the training experience representative of test experience for performance measurement? Lecturing contents and examination questions

What to learn? The Target Function?

Target function represents the relationship between the learning inputs and outputs.

- A set of rules
- Neural networks
- Polynomial function of a number of feature values

• . . .

• Given experience: $\langle Input_i, Output_i \rangle (i = 1, 2, \cdots),$

- Given experience: $\langle Input_i, Output_i \rangle (i = 1, 2, \cdots),$
- Define target function $V: Input \rightarrow Output$,

- Given experience: $\langle Input_i, Output_i \rangle (i = 1, 2, \cdots),$
- Define target function V : Input → Output,
- Choose learning criterion: The target function should best fit the experience,

- Given experience: $\langle Input_i, Output_i \rangle (i = 1, 2, \cdots),$
- Define target function V : Input → Output,
- Choose learning criterion: The target function should best fit the experience,
- Optimise objective function: $\sum_{i} (Output_{i} Output_{i})^{2}$.

Performance Measurement

Error Rate=
$$\frac{Number\ of\ errors}{Number\ of\ Examples}$$

Apparent error rate: based on training examples

Performance Measurement

Error Rate=
$$\frac{Number\ of\ errors}{Number\ of\ Examples}$$

- Apparent error rate: based on training examples
- Test sample error rate: based on test examples

Performance Measurement

Error Rate=
$$\frac{Number\ of\ errors}{Number\ of\ Examples}$$

- Apparent error rate: based on training examples
- Test sample error rate: based on test examples
- True error rate: based on new examples

Designing Choice

Relative Disciplines

- Artificial Intelligence
- Bayesian Methods
- Computational complexity theory
- Control theory
- Information theory
- Statistics
- Psychology and neurobiology
- Philosophy

 What algorithms exist for learning general target functions from specific training examples?

- What algorithms exist for learning general target functions from specific training examples?
- How much training data is sufficient for learning?

- What algorithms exist for learning general target functions from specific training examples?
- How much training data is sufficient for learning?
- When and how can the prior knowledge held by the learner guide the learning process?

- What algorithms exist for learning general target functions from specific training examples?
- How much training data is sufficient for learning?
- When and how can the prior knowledge held by the learner guide the learning process?
- What is a best strategy to choose the next training example?

- What algorithms exist for learning general target functions from specific training examples?
- How much training data is sufficient for learning?
- When and how can the prior knowledge held by the learner guide the learning process?
- What is a best strategy to choose the next training example?
- What is the best way to reduce a learning task to one or more function approximation problems?

- What algorithms exist for learning general target functions from specific training examples?
- How much training data is sufficient for learning?
- When and how can the prior knowledge held by the learner guide the learning process?
- What is a best strategy to choose the next training example?
- What is the best way to reduce a learning task to one or more function approximation problems?
- How can the learning algorithm automatically change its representation to improve its ability to represent and learn the target function?

Questions?

- Use your experience to explain what "learning" means?
- Why is it necessary and possible to develop learning algorithms?
- How to define a learning algorithm?
- List and explain three methods for the performance measurement of learning algorithms.