III-BOB. TAQQOSLAMALAR NAZARIYASI ELEMENTLARI

1-§. Taqqoslamalar va ularning asosiy xossalari

Agar ikkita butun a va b sonni $m \in N$ ga bo'lganda hosil bo'lgan qoldiqlar o'zaro teng bo'lsa, a va b sonlar m moduli bo'yicha teng qoldiqli yoki taqqoslanuvchi sonlar deyiladi va $a \equiv b \pmod{m}$ ko'rinishda belgilanadi. m modul bo'yicha taqqoslanuvchi sonlarning ayirmasi shu modulga qoldiqsiz bo'linadi.

Agar a=b+mt bo'lib, b ni m ga bo'lgandagi qoldiq r bo'lsa, a ni ham m ga bo'lgandagi qoldiq r ga teng bo'ladi. Agar a=mq+r bo'lsa, $a \equiv r \pmod{m}$ deb yozish mumkin. Agar a:m bo'lsa, $a \equiv 0 \pmod{m}$ bo'ladi.

Taqqoslamalar quyidagi asosiy xossalarga ega:

- 1. Har bir butun son ixtiyoriy modul bo'yicha o'z-o'zi bilan taqqoslanadi.
- 2. Taqqoslamaning ikkala tomonini o'zaro almashtirish mumkin(simmetriklik).
- 3. Taqqoslamalar tranzitivlik xossasiga ega.
- 4. Bir xil modulli taqqoslamalarni hadlab qo'shish (ayirish), hadlab ko'paytirish mumkin.
- 5. Taqqoslamaning ikkala tomonini modul bilan o'zaro tub bo'lgan ularning umumiy bo'luvchisiga bo'lish mumkin.
- 6. Taqqoslamaning ikkala qismi va modulini bir xil songa bo'lish (ko'paytirish) mumkin.
- 7. Agar taqqoslama biror m modul bo'yicha o'rinli bo'lsa, u shu modulning ixtiyoriy bo'luvchisi m_1 moduli bo'yicha ham o'rinli bo'ladi.
- 8. Agar taqqoslama bir necha modul bo'yicha o'rinli bo'lsa, u shu modullarning eng kichik umumiy karralisi bo'yicha ham o'rinli bo'ladi.
 - **159.** Qanday modul bo'yicha barcha butun sonlar o'zi bilan taqqoslanadi.
 - 160. 8 modul bo'yicha taqqoslanuvchi butun sonlarga misollar keltiring.
 - **161.** Quyidagi taqqoslamalardan qaysilari o'rinli:
 - a) $1 \equiv -5 \pmod{6}$, b) $546 \equiv 0 \pmod{13}$, c) $2^3 \equiv 1 \pmod{4}$,
 - $d) 3m \equiv -1 \pmod{m}$.
 - **162.**Quyidagi taqqoslamalarning o'rinli ekanligini isbotlang:
 - $a)121 \equiv 13145 \pmod{2}$, $b) 121347 \equiv 92817 \pmod{10}$,
 - c) $31 \equiv -9 \pmod{10}$, d) $(m-1)^2 \equiv 1 \pmod{m}$,
 - e) $2m + 1 \equiv (m + 1)^2 \pmod{m}$.
 - 163. Quyidagi taqqoslamalarning o'rinli emasligini isbotlang.
 - a) $5^{1812} \equiv 1964 (mod\ 25)$, b) $7^{103} \equiv 3 (mod\ 87)$,

- c) $4^{1965} \equiv 25 \pmod{10}$, d) $30 \cdot 17 \equiv 81 \cdot 19 \pmod{6}$,
- e) $(2n+1)(2m+1) \equiv 2k \pmod{6}$, bu yerda n, m va k –butun sonlar.
- **164.** Har bir butun son berilgan modul bo'yicha o'zining qoldig'i bilan taqqoslanishini isbotlang.
- **165.** x soni $x \equiv 2 \pmod{10}$ shartni qanoatlantiradi. Bu shartni parametrik tenglama ko'rinishida yozing va x ning bir nechta qiymatini toping.
- **166.** Quyidagi taqqoslamalarni qanoatlantiruvchi x ning barcha qiymatlarini toping: a) $x \equiv 0 \pmod{3}$, b) $x \equiv 1 \pmod{2}$.
- **167.** a) $20 \equiv 8 \pmod{m}$ b) $3p + 1 \equiv p + 1 \pmod{m}$ shartni qanoatlantiruvchi m ning qiymatini toping.
- **168.** Agar x = 13 soni $x \equiv 5 \pmod{m}$ taqqoslamani qanoatlantirishi ma'lum bo'lsa, bu taqqoslamada modulning mumkin bo'lgan qiymatlarini toping.
- **169.** 10 modul bo'yicha taqqoslanuvchi butun sonlarga misollar keltiring.
- 170. Quyidagi taqqoslamalardan qaysilari o'rinli: a) $1 \equiv -11 \pmod{6}$,
- b) $3n \equiv n^2 \pmod{n}$, c) $2^6 \equiv 1 \pmod{7}$, d) $3m \equiv 1 \pmod{m}$.
- **171.** $x \equiv 7 \pmod{5}$ taqqoslamani qanoatlantiruvchi x ning barcha qiymatlarini toping.
- 172. Butun koeffitsiyentli $F(x, y, z) = ax^3 + bx^2y + cxyz + dz$ ko'phad argumentlarining qiymatlari berilgan modul bo'yicha taqqoslanuvchi bo'lsa, u holda ko'phad qiymatlari ham shu modul bo'yicha taqqoslanuvchi bo'lishini isbotlang.
- **173.** Agar $3^n \equiv -1 \pmod{10}$ bo'lsa, unda $3^{n+4} \equiv -1 \pmod{10}$ bo'lishini isbotlang, bu yerda n natural son.
 - **174.** $2^{5n} 1$ soni 31 ga bo'linishini isbotlang, bu yerda n –natural son.
- **175.** Agar x = 3n + 1, n = 0,1,2, ...bo'lsa, $1 + 3^x + 9^x$ soni 13 ga bo'linishini isbotlang.
- **176.** $(a+b)^p \equiv a^p + b^p \pmod{p}$ o'rinli bo'lishini isbotlang.
- 177. Agar $a \equiv b \pmod{p^n}$ bo'lsa, $a^p \equiv b^p \pmod{p^{n+1}}$ ekanligini isbotlang.
- **178.** Agar ax $\equiv bx(modm)$ bo'lsa, u holda $a \equiv b \left(mod \frac{m}{(x,m)}\right)$ ekanligini isbotlang.
- 179. $a_{i+1} = 0$ bo'lganda $\overline{a_{i+1}a_i} = a_i$ deb hisoblab, agar $\overline{a_4a_3a_2a_1} \equiv 0 \pmod{33}$ bo'lsa, u holda $a_4 + \overline{a_3a_2} + \overline{a_1a_0} \equiv 0 \pmod{33}$ ekanligini isbotlang.
 - **180.** $p i \equiv -i \pmod{p}$, (bu yerda i = 1, 2, ..., n ekanligidan foydalanib.
 - 1) $C_{p-1}^n \equiv (-1)^n \pmod{p}$; 2) $C_{p-2}^n \equiv (-1)^n (n+1) \pmod{p}$
 - o'rinli ekanligini isbotlang.
 - **181.** 1) 9⁹⁹ 2) 7⁹⁹⁹ sonlarning oxirgi ikki raqamini toping.
- 182. $p^{p+2} + (p+2)^p \equiv 0 \pmod{2p+2}$ taqqoslama o'rinli ekanligini isbotlang, bu yerda p > 2.

- **183.** $-\frac{p-1}{2}$, $-\frac{p-3}{2}$, ..., -1, 0, 1, ..., $\frac{p-3}{2}$, $\frac{p-1}{2}$ sonlarning p>2 modul bo'yicha o'zaro taqqoslanmasligini isbotlang.
- **184.** $i \equiv i m \pmod{m}$ ekanligidan foydalanib $\sum_{i=1}^{m} i^n \equiv 0 \pmod{m}$ o'rinli ekanligini isbotlang, bu yerda n va m lar toq sonlar.
- 185. $2^{3^n} \equiv -1 \pmod{3^{n+1}}$ taqqoslama o'rinli ekanligini isbotlang, bu yerda $n = 1, 2, 3, \dots$
- **186.** 185-masaladagi taqqoslamadan foydalanib $2^m + 1 \equiv 0 \pmod{m}$ shartni qanoatlantiruvchi cheksiz ko'p m>1 natural sonlarning mavjudligini isbotlang.
- 187. m > 1-toq son va n –natural son uchun $(m-1)^{m^n} \equiv -1 \pmod{m^{n+1}}$ ekanligini isbotlang.
- **188.** 187-masaladagi taqqoslama yordamida $2^{2x} + 1 \equiv 0 \pmod{x}$ shartni qanoatlantiruvchi natural x sonlarning cheksiz to'plami mavjudligini isbotlang.
- **189.** $N = 3^{2^{4n+1}} + 2$ va $M = 2^{3^{4n+1}} + 3$, (bunda n = 1,2,3,...) ko'rinishdagi sonlarning murakkab son ekanligini isbotlang.
- 190. $2^x + 7^y = 19^z$ va $2^x + 5^y = 19^z$ tenglamalarning natural sonlarda yechimga ega emasligini isbotlang.
- 191. Agar $\frac{11a+2b}{19}$ ko'rinishdagi sonlarning butun ekanligi ma'lum bo'lsa, (a, b –butun sonlar) $\frac{18a+5b}{19}$ ko'rinishdagi son ham butun son ekanligini isbotlang.
 - **192.** Agar *n* toq son bo'lsa, $n^2 1 \equiv 0 \pmod{8}$ ning o'rinli ekanligini isbotlang.
 - **193.** $2^{11\cdot 31} \equiv 2 \pmod{11\cdot 31}$ ning o'rinli ekanligini ko'rsating.
- **194.** Agar p>2 tub son bo'lsa, $1^{2k+1} + 2^{2k+1} + 3^{2k+1} + \dots + (p-1)^{2k+1} \equiv 0 \pmod{p}$ ning o'rinli ekanligini ko'rsating.