MW82: Time Series Analysis

Dr. Giulia Sabbadini

DICE

WS 2023/24

Syllabus

- Time: Friday 12:30 14:00
- Place: Seminarraum 2 (Oeconomicum)
- probably 8 tutorials
- Contact: sabbadini@dice.hhu.de
- everybody on ILIAS?

Time Table

Date	Tutorial	Торіс
Oct 13	1	Introduction
Oct 20	-	No Tutorial
Oct 27	2	AR, ACF
Nov 3	3	MA, PACF
Nov 10	4	ARIMA, Model Selection
Nov 17	-	No Tutorial
Nov 24	5	Forecasting / ARIMA
Dec 1	6	Non-stationarities
Dec 8	-	No Tutorial
Dec 15	7	Multiple Time Series (VAR I)
Dec 22	-	No Tutorial
Jan 12	8	Multiple Time Series (VAR II)

Introduction to Time Series

Introduction

- Three types of datasets studied in econometrics:
 - Cross-sectional: collected at one given time across multiple entities (countries, industries, firms)
 - Time series: any set of data that registers periodically; e.g. yearly GDP for 20 years, monthly firm sales
 - Panel: combination of both
- Time series: use natural one-way ordering of time, values can be expressed as deriving from past value (rather than future values)

Introduction to Time Series

- A set of data ordered by time forms a time series, $\{y_t\}_{t=1}^T$
- This implies special approaches to their analysis
 - time ordering enables estimation as a function of its past values (lags)
 - for example: variable is regressed on its own past values, called autoregressive (AR) process
 - autocorrelation: strenght of the relationship across time of the same random variable

Introduction to Time Series

- A set of data ordered by time forms a time series, $\{y_t\}_{t=1}^T$
- This implies special approaches to their analysis
 - time ordering enables estimation as a function of its past values (lags)
 - for example: variable is regressed on its own past values, called autoregressive (AR) process
 - autocorrelation: strenght of the relationship across time of the same random variable
- Example stochastic process, simple one lag/AR(1) process: $y_t = 0.5y_{t-1} + \varepsilon_t$
- with initial condition $y_0 = 0$, we can say:
 - Random variables of this process: ε_1 , $0.5\varepsilon_1 + \varepsilon_2$, $0.25\varepsilon_1 + 0.5\varepsilon_2 + \varepsilon_3$, ...
- Goal: 'estimate' a time series, i.e. based on the data (concrete realization) we estimate the underlying process

Some definitions

- Time series that show no autocorrelation are called white noise
- White noise
 - uncorrelated random variables (i.i.d.) with zero mean and constant variance
 - for example $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$
 - can not be predicted, is truly random
 - residuals from correctly specified (true) model are white noise
 - Ideally: residuals from our model should be white noise; if not, implies we do not fully capture the non-random/predictable part of process

Example: White Noise

Figure: White Noise from standard Normal distribution

Describing a Time Series

Trend

 A trend exists when there is a long-term increase or decrease in the data. It does not have to be linear.

Seasonal

 A seasonal pattern occurs when a time series is affected by seasonal factors such as the time of the year or the day of the week. Seasonality is always of a fixed and known frequency.

Cyclic

 A cycle occurs when the data exhibit rises and falls that are not of a fixed frequency. These fluctuations are usually due to economic conditions, and are often related to the "business cycle".

Example: Components (1/2)

Figure: Time series components. Source: Forecasting: Principles and Practice

Example: Components (2/2)

- The monthly housing sales (top left) show strong seasonality within each year, as well as some strong cyclic behaviour with a period of about 6–10 years. There is no apparent trend in the data over this period.
- The US treasury bill contracts (top right) show results from the Chicago market for 100 consecutive trading days in 1981. Here there is no seasonality, but an obvious downward trend.
- The Australian quarterly electricity production (bottom left) shows a strong increasing trend, with strong seasonality. There is no evidence of any cyclic behaviour here.
- The daily change in the Google closing stock price (bottom right) has no trend, seasonality or cyclic behaviour. There are only random fluctuations.

Stationarity

- Desirable property of a time series
- important for properties of estimators, forecasting, ...
- A stationary process is identically distributed across time (same mean, same variance, ...)
- If it exhibits "similar" behavior, one can then proceed with the modeling efforts
- If a time series is stationary, then any shock that occurs in time t has a diminishing effect over time and finally disappears
- AR(1) process $y_t = \phi y_{t-1} + \varepsilon_t$ is stationary if $|\phi| < 1$. Intuition? ε_t is multiplied with value below one in all future periods, simply vanishes over time.

Stationarity

Figure: Stationary (black): $y_t = 0.25y_{t-1} + \varepsilon_t$ and non-stationary (blue) $y_t = 1.05y_{t-1} + \varepsilon_t$

Common threats to stationarity

- Trends
- Seasonal patterns
- Level changes
- Changes in Variance

Examples

Figure: The US beverage manufacturer monthly product shipments, unadjusted. Source: Montgomery, Jennings, Kulahci (2015)

How to deal with non-stationary time series?

Transform the data:

- taking logs (works e.g. with exponential growth such as GDP)
- differencing: $\Delta y_t = y_t y_{t-1}$, usually only first difference (observation and information loss)
- detrending: remove trend (linear, quadratic, ...)
- remove seasonal components

Starting tool: Decomposition into components

- series consists of three basic components: trend, seasonal component and irregular component
- $y_t = T_t + S_t + I_t$

Decomposition

Figure: Beverage sales decomposed.

Introduction into R

Introduction

What is R?

- Free, cross platform, open-source software for data analysis
- Used by academics, companies, and governments
- Use command line interface to try to learn by imitation and trial-and-error!
- You can type commands and let R react

Example:

Meaning	R-Syntax	Result
6+3	6 + 3	9
$(2+\sqrt{6+3})\cdot 3$	(2 + sqrt(6 + 3))*3	15

What is RStudio?

• Free, pretty and useful user interface for R.

Important:

- Variables are assigned with <- , i.e. var1 <-5.5 (= also works)
- R is (usually) vectorized!

Types:

- Numeric/Integer: 2.456, sequence of integers 1:10
- String: "Max" or 'Max'
- Logical: TRUE and FALSE
- Factor: Any variable with levels (e.g. high/low)
- List: list("name"="Max", "age"=20)
- Functions: func1 <-function(x){x+1}, call with e.g. func1(5) which yields 6

Storing data:

- Vector: c(1,2,3,4,-2) or c("düsseldorf", "köln")
- Matrix
 - matrix(1:9, ncol=3, byrow=T)
 - rbind(c(1,2,3), c(4,5,6), c(7,8,9))

- data.frame
 - columns (named) and row structure
 - data1 <-read.csv("mydata.csv")</pre>
- access data
 - unnamed (matrix, vector) with: c(-4,5,-6)[2] or matrix1[2,2]
 - named (data.frame, list) with \$: data1\$varname

Other stuff

Set working dictionary

```
setwd('path/to/my/working/directory')
```

Libraries/Packages:

R has a core to which you can add contributed packages. To install and load you can use the GUI or:

```
install.packages('xlsx')
library('xlsx')
```

Use functions of an installed package directly (without loading the entire library):

```
xlsx::read.xlsx()
```

Need help with a function, such as rnorm?

```
?rnorm
help(rnorm)
```

Linear Regressions

Estimating linear models (defaults to OLS):

```
#bivariate lm(y \sim x) #multivariate lm(y \sim x1 + x2 + x3) #without intercept lm(y \sim 0+x) #actual use lmres <- lm(y \sim x) summary (lmres) #results coef(lmres)
```

Here, y and x are previously defined vectors. If you have a data.frame *mydata* with columns *sales* and *advertising*, use:

```
lm(sales \sim advertising, data = mydata)
```

Useful commands

```
Plot something: plot()
Read a CSV file:
       df1 <- read.csv("monthly_gdp.csv")</pre>
Define a ts (time series) object.
        gdpts <- ts(df1$monthly_gdp, start =</pre>
           2002, frequency = 12)
Some things to do to a ts object.
       plot.ts(gdpts)
       monthplot(gdpts)
        diff(gdpts)
        decompose (gdpts)
```

Exercise I

- 1. Generate 200 observations of X, a bivariate normal distribution with zero mean and covariance matrix $\mathbf{K} = \begin{pmatrix} 1 & 0.2 \\ 0.2 & 1 \end{pmatrix}$
- 2. Generate a vector of standard normally distributed random errors ε of length 200
- 3. Assume the true parameters are $\beta_0=2, \beta_1=0.4$ and $\beta_2=-0.8$. Now create the Y variable: $Y=\beta_0+\beta_1X_1+\beta_2X_2+\varepsilon$
- 4. Estimate a linear model with OLS. Interpret your results. What do you observe from the diagnostic plots?
- 5. Repeat the exercise but assume that the error is uniformly distributed between 0 and 1.

¹Hint: Use the *mvrnorm* function from the MASS package

Exercise II

- 1. Load the beverage data set 'bev_data.csv' in R.
- 2. Rename the columns and create a date-month index variable.
- 3. Transform the series into a time series *ts* object and plot the series.
- 4. Do you observe seasonality? Check with a monthly plot.
- 5. First difference the series and plot again.
- Decompose the series into its components and plot your results.
- 7. Estimate a linear trend model via OLS. What do you observe in your diagnostics plots?