

DeepSpeed

DL Training Optimization Library Towards Speed & Scale

Microsoft DeepSpeed Team

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Arash Ashari, Elton Zheng, Jing Zhao, Minjia Zhang, Niranjan Uma Naresh, Reza Yazdani Aminabadi, Shaden Smith, Yuxiong He

Outline

- Overview
 - Why & What
 - Highlights of results / techniques
 - Software architecture
- How to use DeepSpeed
- Example 1: Turing NLG 17B
 - Result summary, key techniques (ZeRO, flexible combination of parallelism)
- Example 2: RScan
 - Result summary, key techniques (sparse gradients, advanced HP tuning)
- Upcoming features

DL Training: Challenges and Capability

Challenges

- Too slow to train high-quality models on massive data
- More hardware ≠ higher throughput, bigger model
- Higher throughput ≠ better accuracy, faster convergence
- Better techniques ≠ handy to use

Desired Capability of DeepSpeed

- Efficiency: Efficient use of hardware for high throughput and scalability
- Effectiveness: High accuracy and fast convergence, lowering cost
- Easy to use: Improve development productivity of model scientists

DL Training Optimization: DeepSpeed

Bert - Original

```
# Construct distributed model
model = BertMultiTask(...)
model = DistributedDataParallel(model)
...

# Construct FP16 optimizer
optimizer = FusedAdam(model_parameters, ...)
optimizer = FP16_Optimizer(optimizer, ...)
```

```
# Forward pass
loss = model(batch)

# Backward pass
optimizer.backward(loss)

# Parameter update
optimizer.step()
```

Bert – w. DeepSpeed

```
# Construct Bert model
model = BertMultiTask(...)

# Wrap to get distributed model and FP16 optimizer
model, optimizer, _, _ = deepspeed.initialize(
    args=args,
    model=model,
    model_parameters=model_parameters,
    ...
)
```

```
# Forward pass
loss = model(batch)

# Backward pass
model.backward(loss)

# Paramter update
model.step()
```

DL Models

Training Optimization (DeepSpeed)

Training Framework (e.g., PyTorch, Tensorflow)

Training Infrastructure (e.g., AML, DL workspace, MPI-based platforms)

Hardware (e.g., GPU/CPU Clusters)

Scale

- 100B parameter
- 10X bigger

Speed

• Up to 5X faster

Cost

• Up to 5X cheaper

Usability

Minimal code change

Nvidia Google Microsoft
Megatron T5 Turing NLG
8B 11B 17B

DeepSpeed System Capability:

ZeRO Stage 1 ZeRO Stage 2 ZeRO Stage 3 100B 200B 1T

Scale

- 100B parameter
- 10X bigger

Speed

• Up to 5X faster

Cost

• Up to 5X cheaper

Usability

• Minimal code change

Megatron-LM

Tensor-slicing model parallelism

DeepSpeed

- ZeRO-powered data parallelism
- Tensor slicing of Megatron-LM

Scale

- 100B parameter
- 10X bigger

Speed

• Up to 5X faster

Cost

Up to 5X cheaper

Usability

• Minimal code change

Scale

- 100B parameter
- 10X bigger

Speed

• Up to 5X faster

Cost

• Up to 5X cheaper

Usability

• Minimal code change

Highlights of Techniques and Features

Efficiency features

- Memory: Zero Redundancy Optimizer (ZeRO)
- Communication: sparse gradient
- Compute: HPC kernels
- Parallelism: ZeRO-powered data parallelism, flexible combination of data + model parallelism

Effectiveness features

- Adaptive hyperparameter tuning
- Optimizers for large-batch training

Usability features

- Distributed training with mixed precision, gradient accumulation, etc.
- IO: simplified data loader with auto batch creation
- Training agnostic checkpoint / recompute
- Performance profiling

DeepSpeed Software Architecture

- deepspeed.initialize
- parameter JSON

- Deploy training job across distributed devices
- Data partitioning
- Model partitioning
- System optimizations
- Tuning for effectiveness
- Utility, e.g., failure detection and checkpointing.

- C++ / CUDA ops
- Low-level kernels for
 - computation
 - communication

- 1. Optimizations on top of training framework vs closely coupled
- 2. Agnostic of training infrastructure

Outline

- Overview
 - Why & What
 - Highlights of results / techniques
 - Software architecture
- How to use DeepSpeed
- Example 1: Turing NLG 17B
 - Result summary, key techniques (ZeRO, flexible combination of parallelism)
- Example 2: RScan
 - Result summary, key techniques (sparse gradients, advanced HP tuning)
- Upcoming features

DeepSpeed – PyTorch example

- Existing user code
 - Model written using torch.nn.Module
- User code modifications
 - 1. deepspeed.initialize(...) to wrap
 - Model (required)
 - Optimizer (optional)
 - LR scheduler (optional)
 - Dataset using torch.utils.data (optional)
 - 2. Add config_arguments to python argument parsing
 - a) parser = deepspeed.add_config_arguments(parser)
 - 3. Use wrapped model for forward, backward, and parameter update

```
CLASS torch.nn.Module
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. Ye regular attributes:

```
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

DeepSpeed – PyTorch example

Train model via:

- deepspeed
 <cli>client_entry.py>
 <client args>
 --deepspeed_config ds_config.json
- Example
 - deepspeed cifar10.py--deepspeed_config ds_config.json

- Deploys training job across all distributed nodes
- Handles environment propagation, data partitioning
- Seamlessly incorporates all system efficiency optimizations

DeepSpeed Models: BERT

Before

```
# Construct distributed model
model = BertMultiTask(...)
model = DistributedDataParallel(model)
...

# Construct FP16 optimizer
optimizer = FusedAdam(model_parameters, ...)
optimizer = FP16_Optimizer(optimizer, ...)
```

```
# Forward pass
loss = model(batch)

# Backward pass
optimizer.backward(loss)

# Parameter update
optimizer.step()
```

After

```
# Construct Bert model
model = BertMultiTask(...)

...

# Wrap to get distributed model and FP16 optimizer
model, optimizer, _, _ = deepspeed.initialize(
    args=args,
    model=model,
    model_parameters=model_parameters,
    ...
)
```

```
# Forward pass
loss = model(batch)

# Backward pass
model.backward(loss)

# Paramter update
model.step()
```

For more details see: https://aka.ms/deepspeed-bert

DeepSpeed Models: BERT JSON config

- DeepSpeed parameters for BERT
 - Batch size config
 - Optimizer (e.g., Lamb)
 - Mixed precision

```
"train_batch_size": 16384.
"train_micro_batch_size_per_gpu": 64,
"optimizer": {
  "type": "Lamb",
  "params": {
    "lr": 4e-3,
    "max_grad_norm": 1.0,
    "weight_decay": 0.01,
    "bias_correction": false.
    "max_coeff": 0.5,
    "min_coeff": 0.08
},
"fp16": {
  "enabled": true,
  "loss_scale": 0
```

For more details see: https://aka.ms/deepspeed-bert

DeepSpeed Models: GPT2

Before

```
# Construct FP16, distributed, GPT2 model
model = GPT2Model(num_layers=args.num_layers, ...)
model = FP16_Module(model)
model = DistributedDataParallel(model, ...)

...

# Construct FP16 Adam optimizer
optimizer = Adam(param_groups, ...)
optimizer = FP16_Optimizer(optimizer, ...)
```

```
# Forward pass
output = model(tokens, ...)

# Backward pass
optimizer.backward(loss)

# Parameter update
optimizer.step()
```

For more details see: https://aka.ms/deepspeed-gpt2

After

```
# Construct GPT2 model
model = GPT2Model(num_layers=args.num_layers, ...)

# Construct Adam optimizer
optimizer = Adam(param_groups, ...)

# Wrap model, optimizer, and lr scheduler
model, optimizer, lr_scheduler, _ = deepspeed.initialize(
    args=args,
    model=model,
    optimizer=optimizer,
    lr_scheduler=lr_scheduler,
    mpu=mpu
)
```

```
# Forward pass
output = model(tokens, ...)

# Backward pass
model.backward(loss)

# Parameter update
model.step()
```

DeepSpeed Models: GPT2 JSON config

- DeepSpeed parameters for BERT
 - Batch size config
 - Adam optimizer
 - Mixed precision
 - Enable ZeRO optimization

```
"train_batch_size": 512.
"train_micro_batch_size_per_gpu": 16,
"optimizer": {
 "type": "Adam",
 "params": {
   "lr": 0.00015,
    "max_grad_norm": 1.0
"fp16": {
 "enabled": true,
 "loss_scale": 0,
 "loss_scale_window": 1000,
 "hysteresis": 2,
 "min loss_scale": 1
"zero_optimization": true
```

For more details see: https://aka.ms/deepspeed-gpt2

Outline

- Overview
 - Why & What
 - Highlights of results / techniques
 - Software architecture
- How to use DeepSpeed
- Example 1: Turing NLG 17B
 - Result summary, key techniques (ZeRO, flexible combination of parallelism)
- Example 2: RScan
 - Result summary, key techniques (sparse gradients, advanced HP tuning)
- Upcoming features

Example 1: Turing NLG 17B

- DeepSpeed + Megatron powered new state-of-the art LM
 - 10.21 perplexity
 - Infeasible to Train to Practically Possible
 - Over 3x throughput gain over Megatron alone

			Turing
	Bert-Large	GPT-2	17.2 NLG
Parameters	0.32B	1.5B	17.2B
Layers	24	48	78
Hidden Dimension	1024	1600	4256
Relative Computation	1x	10x	112x
Memory Footprint	5.12GB	24GB	275GB

Example 1: Turing NLG 17B

- Zero Redundancy Optimizer (ZeRO) in DeepSpeed
- Less model parallelism and more batch size
- Over 3x throughput gain over Megatron alone on DGX-2 cluster

		With ZeRO and
	With Megatron	Megatron
Model Parallelism	16	4
Batch Size per Node	8	32
#GPUs (for batch 512)	1024	256
Throughput per GPU	9 Tflops	28 TFlops
Status	Infeasible to Train	Possible to Train

Distributed Data Parallel Training Overview

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

- Stage 1
- Compute gradients on different data
- Average Gradients
- Each GPU update only the parameter it owns

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

- Stage 1
- Compute gradients on different data
- Average Gradients
- Each GPU update only the parameter it owns
- All-gather the parameters

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

- Stage 1
- Compute gradients on different data
- Average Gradients
- Each GPU update only the parameter it owns
- All-gather the parameters

A 16-layer transformer model like or Turning NLR or $BERT_{large}$ is shown. $\blacksquare = 1$ layer

Each cell represents GPU memory used by its corresponding transformer layer

• FP16 parameter

- FP16 parameter
- FP16 Gradients

- FP16 parameter
- FP16 Gradients
- FP32 Optimizer States
 - Gradients, Variance, Momentum Parameters

- FP16 parameter
- FP16 Gradients
- FP32 Optimizer States
 - Gradients, Variance, Momentum Parameters
- FP16 Activations

ZeRO Stage 1

- ZeRO Stage 1
- Partitions optimizer states across GPUs

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights
- All Gather the FP16 weights to complete the iteration

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights
- All Gather the FP16 weights to complete the iteration

- ZeRO has three different stages
- Progressive memory savings and Communication Volume
- Turning NLR 17.2B is powered by Stage 1 and Megatron

DeepSpeed, ZeRO and Model Parallelism

- ZeRO is model parallelism agnostic
- Can work with any form of model parallelism
 - Tensor Slicing (Megatron)
 - Pipeline Parallelism (Gpipe, PipeDream)

DeepSpeed, ZeRO and Model Parallelism

- ZeRO is model parallelism agnostic
- Can work with any form of model parallelism
 - Tensor Slicing (Megatron)
 - Pipeline Parallelism (Gpipe, PipeDream)
- Model Parallel Unit (mpu)
 - get_data_parallel_group()
 - get_model_parallel_group()

```
# Wrap model, optimizer, and lr scheduler
model, optimizer, lr_scheduler, _ = deepspeed.initialize(
    args=args,
    model=model,
    optimizer=optimizer,
    lr_scheduler=lr_scheduler,
    mpu=mpu
)
```

Example 1: Turing NLG 17B

- DeepSpeed powered new state-of-the art LM
 - 10.21 perplexity
 - Infeasible to Train to Practically Possible
 - Over 3x throughput gain over Megatron alone

Outline

- Overview
 - Why & What
 - Highlights of results / techniques
 - Software architecture
- How to use DeepSpeed
- Example 1: Turing NLG 17B
 - Result summary, key techniques (ZeRO, flexible combination of parallelism)
- Example 2: RScan
 - Result summary, key techniques (sparse gradients, advanced HP tuning)
- Upcoming features

Example 2: RScan

- Used in Bing production to measure query/passage similarity
- Based on Bidirectional RNNs

Example 2: RScan

- DeepSpeed enables faster convergence to target AUC score
 - 15.6X speedup on 8 GPUs relative to 1 GPU baseline

	Speedup Relative to 1-GPU baseline			
	Efficiency (Samples/Second)	Effectiveness (AUC/Samples)	Wall clock (AUC/Second)	
Baseline (1-GPU)	1x	1x	1x	Target AUC not
Baseline (8-GPU)	5.8X	0x	0x <	achieved
DeepSpeed (8-GPU)	8.7x	1.8x	15.6x	

RScan Breakdown: 15.6X faster convergence

Efficiency: 8.7x

- Communication: 6.77x, Sparse gradients + Custom AllReduce
- Compute: 1.29x, CuDNN on 1-GPU

More efficient communication

0.24 2.19	es
0.00	es
0.98 0.45 Index Slices Index Slices with Duplicates Unique Index Slices	
0.00 0.00	
2.48 -3.03 Index Values Index Values Index Values	
0.00 0.00 0 0.24 2.19 0 0.24 2.19 0 12.67 -22	1.27
3.97 -6.51 1 0.98 0.45 1 0.98 0.45 1 14.9 -26	6.49
0.00 0.00 → 3 2.48 -3.03 0 2.48 -3.03 5 3.97 -6	6.51
5.47 -9.99 5 3.97 -6.51 5 3.97 -6.51	
0.00 0.00 7 5.47 -9.99 1 5.47 -9.99	
0.00 0.00 11 8.45 -16.95 1 8.45 -16.95	
0.00 0.00 13 9.95 -20.43 0 9.95 -20.43	
8.45 -16.95	
0.00	
9.95 -20.43	

RScan Breakdown: 15.6X faster convergence

Effectiveness: 1.8x

Challenge: Slow Convergence of Batch Scaling

- Less frequent model updates
 - 8-GPU updates = $\frac{1}{8}$ 1-GPU updates
- Small batch hyperparameters not optimal for large batch
- LR linear scaling does not work
 - Slow convergence, or
 - Model divergence

RScan Breakdown: 15.6X faster convergence

Effectiveness: 1.8x

- Adaptive Hyperparameter tuning: 1.8x
 - 1Cycle & Decay schedules: LR, momentum, ..., etc.

RScan Breakdown: 15.6x faster convergence

Efficiency: 8.7x

Communication: 6.77x

Compute: 1.29x

Effectiveness: 1.8x

Hyperparameter tuning

Upcoming Features

- Reduce Scatter for ZeRO stage 1
 - Partition-aware approach instead of global collective (all-reduce)
 - Total communication volume reduction 1.5x \rightarrow 1x of data parallelism
 - Up to 2x reduction in communication time compared to all-reduce
- Zero Stage 2
 - Reduce memory footprint of gradients
 - Train larger models: e.g., 10B parameters on 32GPUs without model parallelism
 - Train larger batch sizes
- For more new and exciting features
 - Repo: https://github.com/microsoft/DeepSpeed
 - Breaking news page and documentation: https://www.deepspeed.ai/

DeepSpeed + ZeRO

https://github.com/microsoft/DeepSpeed

Scale

- 100B parameter
- 10X bigger

Speed

Up to 5X faster

Cost

Up to 5X cheaper

Usability

Minimal code change