2. DESIGN FOR STATIC LOADING

LOAD: anything externally acting on the component produces deformation in the component is said to be load.

CLASSIFICATION OF LOAD:

BASED ON LOADING WITH RESPECT TO TIME				
Static loading (Constant w.r.t. time)	Dynamic loading (Varying w.r.t. time)			

	BASED ON RATE OF LOADING		
Gradually applied loading	Sudden loading	Impact loading	

Draw Graphs of above loading.

BASED ON LOADING ON SURFACE						
NORMAL LOADING SHEAR LOADING						
Component of force perpendicular to the surface	Component of force parallel to the surface					
Eg. liner deformation	Eg. Angular deformation					

BASED ON DIRECTION OF LOADING							
AXIA	L LOADING	LONGITUDINAL LOADING RADIAL LOAI			LOADING		
AXIAL	ECCENTRIC AXIAL						
LOA of force passing through axis of member	LOA of force doesn't pass through axis of member	Only Axial load	Axial load + Twisting				
Only Axial load	Bending + Axial load						

Normal Principle Stress: When there is no shear stress.

Plane Stress condition: All Stresses are present in only one plane. Eg. only XY/ YZ/ ZX plane. **Plane Strain condition:** All Strains are present in only one plane. Eg. only XY/ YZ/ ZX plane.

(Machine > Component > Particle => All need to be safe)

Normal Stress: It's normal load acting on the smallest particle of the component.

Normal Strain: It's the linear deformation experienced by smallest particle in the component.

Due to Normal load, Changes in Size and Shape. Hook's Law: Normal Stress $\sigma \propto$ Normal Strain δ

Shear Stress: It's load acting on the surface of particle which is perpendicular to the surface.

Shear Strain: It's the angular deformation experienced two perpendicular surfaces of particle. $\gamma = \sum \theta$

Hook's Law: Shear Stress $\tau \propto$ Normal Strain γ

Bending: Rotation of member about axis parallel to the cross section.

Twisting: Rotation of member about axis perpendicular to the cross section.

Stress And Strain Representation:

X-plane: The plane whose surface normal vector is in X- direction.

Stress: 2nd order tensor.

$\sigma_{ij} = Plane$	$ \begin{array}{c cccc} Direction \\ \begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{array} $	Plane Stress Condition: Stresses are only in one plane. $\sigma_{zz} = \tau_{xz} = \tau_{yz} = 0$	Plane $\begin{bmatrix} \sigma_{xx} & \tau_{xy} & 0 \\ \tau_{yx} & \sigma_{yy} & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$ \varepsilon_{ij} = Plane $	Direction $\begin{bmatrix} \varepsilon_{xx} & \gamma_{xy}/2 & \gamma_{xz}/2 \\ \gamma_{yx}/2 & \varepsilon_{yy} & \gamma_{yz}/2 \\ \gamma_{zx}/2 & \gamma_{zy}/2 & \sigma_{zz} \end{bmatrix}$	Plane Stress Condition: Strains are only in one plane. $\varepsilon_{zz} = \gamma_{xz}/2 = \gamma_{yz}/2 = 0$	Plane $\begin{bmatrix} \varepsilon_{xx} & \gamma_{xy}/2 & 0 \\ \gamma_{yx}/2 & \varepsilon_{yy} & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Poisson's Ratio:

Deformation in perpendicular direction ∝ Deformation in direction of load

$$\varepsilon_{x} = \frac{\sigma_{x}}{F} - \mu \left(\frac{\sigma_{y}}{F} + \frac{\sigma_{z}}{F} \right)$$

Principle Stress and Maximum Shear Stress:

$$\sigma = C \pm R$$
, $\tau = R = \frac{\sigma_1 - \sigma_2}{2}$

Where
$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 And $C = \frac{\sigma_x + \sigma_y}{2}$

And
$$C = \frac{\sigma_x + \sigma_y}{2}$$

Principle Strain and Maximum Shear Strain:

$$\varepsilon = C \pm R$$
, $\gamma/2 = R = \frac{\varepsilon_1 - \varepsilon_2}{2}$

Principle Strain and Maximum Shear Strain:
$$\varepsilon = C \pm R \;, \qquad \gamma/2 = R = \frac{\varepsilon_1 - \varepsilon_2}{2} \qquad \text{Where } R = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + (\gamma_{xy}/2)^2} \qquad \text{And} \qquad C = \frac{\varepsilon_x + \varepsilon_y}{2}$$

And
$$C = \frac{\varepsilon_x + \varepsilon_y}{2}$$

Combined Bending and Twisting:

$$M_{eq} = \frac{1}{2} \left[M + \sqrt{M^2 + T^2} \right], \quad T_{eq} = \sqrt{M^2 + T^2}$$

Hydrostatic loading (Change in Size, No change in Shape):

$$\varepsilon_{Vh} = \frac{3\sigma_h}{E} [1 - 2\mu]$$
 Where, $\sigma_h = \frac{\sigma_x + \sigma_y + \sigma_z}{3} (\sigma_h = Bulk \ modulus * \varepsilon_{Vh})$, Hooks law)

DESIGN OF MACHINE ELEMENT UNDER STATIC LOADING: ASSUMPTIONS FOR DESIGNING:

- 1) Material is homogeneous and isotropic.
- 2) Gradual loading (Unidirectional). And loading is in the elastic region.
- 3) Material is linear elastic.

		
FAILING	Ductile Material	Brittle Material
Tension test	Yield Strength in tension σ_{yt}	Ultimate Strength in tension σ_{ut}
Compressive test Yield Strength in compression $\sigma_{yc} \cong \sigma_{yt}$		Ultimate Compression Strength σ_{uc}
Shear Test	Shear Yield Strength τ _{yt}	Shear Ultimate Strength τ_{ut}

Factor of Safety	At Component level: (Force)	At Particle level: (Stress)
	FOS = Design Capacity / Allowable force	FOS = Design Stress / Allowable Stress

DESIGN OF COMPONENTS SUBJECTED TO UNI-AXIAL LOADING:

Normal Stress in Component	F/A	My_{max}/I
Shear Stress in Component		Tr_{max}/I

2. DESIGN OF COMPONENT SUBJECTED TO BI-AXIAL AND TRI-AXIAL LOADING:

There is no direct way to find safe load so scientists have converted combined loading to Uni-axial loading.

		8 8					
THEORIES OF FAILURE CLASSIFICATION AS PER FAILURE CRITERIA							
STRESS STRAIN ENERGY							
1) Maximum normal stress theory 1) Principle Strain Theory 1) Detorsion energy theory (Shear							
(Principle Stress theory) Strain Energy theory)							
2) Maximum Shear stress theory		2) Total Strain Energy theory					

COMPLEX STATE OF STRESS SIMPLE (UNI-AXIAL) STATE OF STRESS Here, $\sigma_z = \tau_{xz} = \tau_{yz} = 0$ Here, $\sigma_y = \sigma_z = \tau_{xz} = \tau_{xy} = \tau_{yz} = 0$ From the maximum principle stress plane, From the maximum principle stress plane, We can find σ_1 and σ_2 . We can find σ_1 and σ_2 . We can find σ_1 and σ_2 . Here, $\sigma_y = \tau_{xy} = 0$ Hence, $\sigma_1 = \sigma_2 = \sigma_x$ $\tau_{max} = \max \left| 0, \frac{\sigma_1}{2}, \frac{\sigma_2}{2} \right| = \frac{\sigma_x}{2}$ $\sigma = C \pm R$

MAXIMUM NORMAL STRESS/ PRINCIPLE STRESS/ RANKINE'S THEORY:

Statement: The failure of a component subjected to complex stress occurs when the "Maximum Principle Stress" at any point in the body reaches the "Maximum Principle Stress" of a material in simple tension test when failure occurs.

$$\sigma_{MPST} < (\sigma_{yt} \text{ or } \sigma_{ut})/FOS$$
, where $\sigma_{MPST} = \max(|\sigma_1|, |\sigma_2|)$

It's Used for Brittle Materials: Because brittle materials fail in normal stress (Not in shear stress) and this theory considers maximum normal stress in the analysis. Whereas Ductile materials are weak in shear so it's used to design using shear failure criteria.

Note:

- This theory is neither accurate nor conservative. Because by experiment $\sigma_{MPST} < 0.57 \sigma_{yt}$ 1.
- This theory considers normal stress as failure stress hence, change in shape & size is considered. 2.
- 3. This theory can't use for hydrostatic loading & pure shear loading.

MAXIMUM SHEAR STRESS/ GUEST & TRESCA'S THEORY:

Statement: The failure of a component subjected to complex stress occurs when the "Maximum Shear Stress" at any point in the body reaches the "Maximum Shear Stress" of a material in simple tension test when failure occurs.

$$\tau_{MSST} < (\sigma_{yt} \text{ or } \sigma_{ut})/2 \text{ FOS}$$
 , Where $\tau_{MSST} = \tau_{max}$

It's Used for Ductile Materials: Ductile materials are weak in shear so it's used to design using shear failure criteria. Note:

- This theory considers Shear stress as failure stress hence, change in shape & size is not considered. 1.
- 2. This theory can't use for hydrostatic loading.
- 3. This theory can used for pure shear loading.
- This theory is conservative and accurate than MPST (It can be used for Brittle material but it's not cost effective). 4.

DISTORTION ENERGY/ VON MISES AND HENCKY'S THEORY:

$U_T = U_v + U_d$, He	$nce\ U_d = U_T - U_v$
$U_T = \sum \frac{1}{2} \sigma_i \varepsilon_i$	$\varepsilon_{x} = \frac{\sigma_{x}}{E} - \mu \left(\frac{\sigma_{y}}{E} + \frac{\sigma_{z}}{E} \right)$
$\varepsilon_v = \frac{3\sigma_v}{E} [1 - 2\mu]$	$\varepsilon_v = \frac{\sum \sigma_{id}}{E} [1 - 2\mu] = 0$
Here, $\sigma_i = \sigma_{id} + \sigma_v$	

 σ_i =Principle Stress,

 ε_{ν} = Volumetric Strain,

 U_T = Total Energy,

 σ_{id} =Stress Responsible to change the Shape,

 U_{ν} = Energy Used to change the Size, U_d = Energy Used to change the Shape,

$$U_T = \frac{1}{2E} \left[\left(\sum \sigma_i^2 \right) - 2\vartheta \left(\sum \sigma_i \sigma_j \right) \right], Where i < j$$

$$U_{T} = \frac{1}{2E} \left[\left(\sum \sigma_{i}^{2} \right) - 2\vartheta \left(\sum \sigma_{i}\sigma_{j} \right) \right], Where \ i < j$$

$$U_{U} = \frac{1}{6E} \left[\left(\sum \sigma_{i}^{2} \right) - 2\vartheta \left(\sum \sigma_{i}\sigma_{j} \right) \right], Where \ i < j$$

$$U_{U} = \frac{1 + \vartheta}{6E} \left[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right]$$

$$= \frac{1 + \vartheta}{6E} \left[(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{2} + 6(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2}) \right]$$

For our condition: $\sigma_3 = 0$

$$D. E. T: U_d = \frac{1+\vartheta}{3E} \left[(\sigma_1)^2 + (\sigma_2)^2 - \sigma_1 \sigma_2 \right] = \frac{1+\vartheta}{3E} \left[(\sigma_x)^2 + (\sigma_y)^2 - \sigma_x \sigma_y + 3(\tau_{xy}^2) \right]$$

Statement: The failure of a component subjected to complex stress occurs when the "DE/Unit Volume" at any point in the body reaches the "DE/Unit Volume" of a material in simple tension test when failure occurs.

$$\sigma_{Van} < \sigma_{yt} \text{ or } \sigma_{ut}/FOS$$
, Where $(\sigma_{Van})^2 = (\sigma_1)^2 + (\sigma_2)^2 - \sigma_1\sigma_2 = (\sigma_x)^2 + (\sigma_y)^2 - \sigma_x\sigma_y + 3(\tau_{xy}^2)$
UATION OF ELLIPSE:

Semi Minor Axis = $\sqrt{2/3} a$

EQUATION OF ELLIPSE: Semi Minor Axis=
$$\sqrt{2/3} \ a$$

 $x^2 + y^2 - xy = a^2$ Semi Major Axis= $\sqrt{2} \ a$

Note:

- 1. This theory is more accurate but not conservative than MSST.
- 2. This theory considers only shape deformation at failure. hence, change in shape & size is not considered.
- 3. This theory can't use for hydrostatic loading & pure shear loading.

COMPARISON OF THEORIES OF FAILURE:

$ROS_{MPST} > ROS_{DET} > ROS_{MSST}$	$ROS \propto \frac{1}{Safety} \propto \frac{1}{Size} \propto \frac{1}{Cost}$
Most Economic Theory: MPPT	Most Conservative Theory: MSST
Most Safe: MSST	Most Accurate Theory: DET

	CHOOSING THEORY OF FAILURES									
	Based on Material Type of loading									
Brittle	Brittle Ductile				1D		2D	3D (1	Hydrostati	c)
MPST	DET	MSST	Easy	in	ALL	DET	MSST Easy in	MPST	TSET	MPStT
	Accurate	calculat	ion		TOF Accurate calculation					
	Don't Use: MSST & DET					DET				

Default: MSST

TOTAL STRAIN ENERGY/ HAIGH'S THEORY:

Statement: The failure of a component subjected to complex stress occurs when the "TSE/ Unit Volume" at any point in the body reaches the "TSE/ Unit Volume" of a material in simple tension test when failure occurs.

$$\sigma_{TStET} < \sigma_{yt} \ or \ \sigma_{ut} / FOS \ , Where \ (\sigma_{TStET})^2 = \left[\left(\sum \sigma_i^2 \right) - 2\vartheta \left(\sum \sigma_i \sigma_j \right) \right] \ , Where \ i < j$$

Note: This theory is neither accurate nor conservative. Because by experiment $\tau_{MStET} = 0.6\sigma_{yt}$

MAXIMUM PRINCIPLE STRAIN/ ST. VENANT'S THEORY:

Statement: The failure of a component subjected to complex stress occurs when the "Maximum Principle Strain" at any point in the body reaches the "Maximum Principle Strain" of a material in simple tension test when failure occurs.

$$\sigma_{MPStT} < \sigma_{yt}$$
 or σ_{ut}/FOS , Where $\sigma_{MPStT} = \sigma_1 - \vartheta \sigma_2$

Safety region is rhombus.

Note:

- 1. This theory is neither accurate nor conservative. Because by experiment $\tau_{MPStT} > \tau_{yt\ experiment}$
- 2. This theory considers normal stress as failure stress hence, change in shape & size is considered.
- 3. This theory can't use for hydrostatic loading & pure shear loading.

ALL THEORIES AT ONE PLACE			
THEORY	COMPONENT	TENSILE TEST	DESIGN CONDITION
Maximum Normal Stress/ Principle Stress/ Rankine's Theory	$\sigma_{max} = \max(\sigma_1, \sigma_2, \sigma_3)$ Let, $\sigma_{max} = \sigma_1$	$(\sigma_{max})_{T.T.} = \sigma_{yt}$	$\sigma_1 = \frac{\sigma_{yt}}{FOS}$
Maximum Shear Stress/ Guest & Tresca's Theory	$\tau_{max} = \max(\tau_{12}, \tau_{23}, \tau_{31})$ Let, $\tau_{max} = \tau_{12}$	$(\tau_{max})_{T.T.} = \frac{\sigma_{yt}}{2}$	$\sigma_1 - \sigma_2 = \frac{\sigma_{yt}}{FOS}$
Maximum Principle Strain/ St. Venant's Theory	$\varepsilon_{max} = \max(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ $\varepsilon = \frac{\sigma_1}{E} - \mu \frac{\sigma_2}{E}$	$(\varepsilon_{max})_{T.T.} = \frac{\sigma_{yt}}{E}$	$\sigma_1 - \mu \sigma_2 = \frac{\sigma_{yt}}{FOS}$
Total Strain Energy/ Haigh's Theory	$U_T = rac{1}{2E} \Big[\Big(\sum \sigma_i^2 \Big) - 2 artheta \Big(\sum_j \sigma_i \sigma_j \Big) \Big],$ Where $i < j$	$(U_T)_{T.T.} = \frac{\left(\sigma_{yt}\right)^2}{E}$	$\sigma_1^2 + \sigma_2^2 - 2\vartheta\sigma_1\sigma_2$ $= \frac{\left(\sigma_{yt}\right)^2}{FOS}$
Distortion Energy/ Von Mises And Hencky's Theory	$U_d = \frac{1+\vartheta}{3E} \left[\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2\right]$	$ (U_d)_{T.T.} = \frac{1+\vartheta}{3E} (\sigma_{yt})^2 $	$\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2 = \frac{\left(\sigma_{yt}\right)^2}{FOS}$