Chapitre 15 - Modèle du gaz parfait -

1 Description d'un gaz

masse volumique p : plus les molécules sont dispersées et/ou plus leur masse est faible, plus la valeur mesurée de la masse volumique est faible.

pression *P* : plus les chocs des molécules sur les parois sont fréquents, plus la valeur mesurée de la pression est élevée.

température thermodynamique *T* : plus l'agitation microscopique croit, plus la vitesse des particules augmente, plus la valeur mesurée de la température est grande.

2 Le modèle du gaz parfait

Équation d'état du gaz parfait

constante du gaz parfait R = 8,31 ($\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$)

pression $P \cdot V = \mathbf{n} \cdot \mathbf{R} \cdot \mathbf{7} \quad \text{température thermodynamique}$ (en \mathbf{R})

volume (en \mathbf{m}^3) quantité de matière (en \mathbf{mol})

Un gaz pour lequel l'équation d'état du gaz parfait est exactement vérifiée est un gaz parfait.

Limites du modèle

Le gaz parfait est un modèle qui, dans certaines conditions, permet de décrire le comportement d'un gaz réel.

1 Description d'un gaz

	A	В	C
À l'échelle microscopique, la valeur de la pression mesurée d'un gaz dans un récipient est liée :	au degré d'agitation des molécules qui le constituent.	à la fréquence des chocs des molécules sur les parois du récipient.	au nombre et à la masse des molécules qui le constituent.
L'échantillon de gaz qui a la valeur de la pression mesurée la plus faible est :	8-2-8		3 1 7
3 La température thermodynamique <i>T</i> :	traduit le degré d'agitation des molécules d'un système.	est liée à la fréquence des chocs des molécules sur les parois d'un récipient.	s'exprime en ℃.
L'échantillon qui possède la valeur de la masse volumique la plus grande est :	40 mL helium emprisonné	diazote emprisonné	diazote emprisonné

2 Le modèle du gaz parfait

	A	В	С
Dans l'équation d'état du gaz parfait $PV = n \cdot R \cdot T$, P et V désignent respectivement :	le poids et la vitesse des molécules.	la pression mesurée et la vitesse des molécules.	la pression et le volume mesurés.
Dans l'équation d'état du gaz parfait, les unités à utiliser pour exprimer les valeurs des grandeurs P, V et T sont :	• <i>P</i> en Pa • <i>V</i> en L • <i>T</i> en °C	• <i>P</i> en bar • <i>V</i> en m ³ • <i>T</i> en K	• <i>P</i> en Pa • <i>V</i> en m ³ • <i>T</i> en K
Pour une quantité de gaz donné à température constante, l'équation d'état du gaz parfait :	s'écrit : $\frac{P}{T} = \text{constante.}$	s'écrit : P · V = constante.	est nommée loi de Mariotte.
B Le modèle du gaz parfait est :	toujours applicable aux gaz réels.	applicable aux gaz réels seulement pour des pressions inférieures à quelques bars.	applicable aux gaz réels quelle que soit la température du système.
À l'échelle microscopique, dans le modèle du gaz parfait :	les molécules sont très éloignées les unes des autres.	il n'y a aucune interaction entre les molécules.	les molécules sont ponctuelles (leur volume est négligeable devant celui du gaz).
À l'échelle microscopique, le gaz parfait est représenté par :			

11 Du microscopique au macroscopique

- 1. À l'échelle microscopique, à quelle propriété d'un gaz est liée la valeur de :
- a. la température
- b. la pression
- c. la masse volumique
- 2. La modification de la vitesse des constituants microscopiques d'un volume de gaz donné conduit au changement de la valeur de :
- a. la température mesurée
- b. la pression mesurée
- c. la masse volumique mesurée
- 3. On considère un volume constant de gaz. Initialement $\theta = 20$ °C, P = 1 013 hPa et $\rho = 1,2$ kg · m⁻³.

Trois scénarios sont envisagés:

- a. les molécules se déplacent moins vite
- b. les molécules sont plus nombreuses.
- c. les molécules sont remplacées par des particules de masse plus faible.

Associer à chaque scénario, les valeurs des grandeurs macroscopiques mesurées adaptées :

- d. $\theta = 20$ °C, P = 1025 hPa, $\rho = 1.5$ kg · m⁻³
- e. $\theta = 20$ °C, P = 1013 hPa, $\rho = 1.0$ kg · m⁻³
- f. $\theta = 18$ °C, P = 1005 hPa, $\rho = 1.2$ kg · m⁻³

Masse volumique de l'air

Pour de l'air sec sous pression atmosphérique normale (1 013 hPa), la température de fusion $\theta_{fusion} = -216,2\,^{\circ}\text{C}$, la température d'ébullition $\theta_{ebullition} = -194,3\,^{\circ}\text{C}$ et l'évolution de la masse volumique en fonction de la température est modélisée par le graphique suivant.

- 1. a. Déterminer graphiquement la valeur de la masse volumique de l'air à 20 °C.
- b. Pourquoi la courbe ne débute qu'à partir de 78,9 K?
- À l'aide d'un raisonnement à l'échelle microscopique :
- a. expliquer pourquoi l'axe des abcisses ne possède aucune graduation de valeur négative.
- justifier la diminution de la valeur de la masse volumique de l'air en fonction de la température.

```
DONNÉES

M<sub>air</sub> = 28,9 g · mol<sup>-1</sup>; R = 8,314 J · K<sup>-1</sup> · mol<sup>-1</sup>; N_A = 6,02 \times 1023 mol<sup>-1</sup>; 1 atm = 1013 hPa.
```

🔞 Ballon de baudruche

On introduit dans un ballon de baudruche 2,0 L d'hélium à 25 ℃ et à une pression de 1,1 bar.

- 1. Quelle est la quantité de matière d'hélium dans le ballon?
- Le ballon éclate lorsque son volume devient supérieur à 3,0 L.
- a. Placé sous une cloche à vide reliée à une pompe, quelle sera la valeur de la pression mesurée au moment où le ballon éclate ?

- b. À la pression de 1,1 bar, quelle serait la valeur de la température mesurée au moment où le ballon éclate?
- c. Quelle masse d'hélium, à 25 °C et 1,1 bar, faut-il ajouter au ballon pour atteindre ce volume ?

199 Gaz réel – gaz parfait

- 1. Calculer la quantité de matière de diazote contenue dans un récipient d'un litre à la pression de 1,1 bar et à la température de 25 °C.
- 2. En déduire le nombre de molécules puis le volume propre des molécules (le volume d'une molécule de diazote est estimé à 7.0×10^{-28} L).
- 3. Comparer le volume occupé par les molécules à celui occupé par le gaz. Dans ces conditions, le diazote peut-il être assimilé à un gaz parfait ?

Masse volumique d'un gaz parfait

Une masse m d'un gaz parfait de masse molaire M est enfermée à la température T et à la pression P dans un récipient de volume V.

- 1. a. Exprimer la masse volumique ρ du gaz parfait en fonction de M, P et T.
- b. Comment évolue la valeur de la masse volumique d'un gaz parfait lorsque sa température augmente (à pression constante)? lorsque sa pression augmente (à température constante)?
- c. Interpréter ces évolutions à partir des propriétés du gaz à l'échelle microscopique.

- 2. Calculer la valeur de la masse volumique de l'air :
- a. à 20 °C et sous une pression égale à 1,0 bar ;
- au sommet de l'Everest sous 0,3 bar et 40°C.
- 3. Comparer, dans les mêmes conditions de température et de pression, les valeurs de la masse volumique de l'air et de l'hélium.

Gonflage d'un ballon de basket-ball

Au basket-ball, à la température habituelle, la pression de l'air dans le ballon doit être comprise entre 1,52 et 1,59 bar.

On souhaite gonfler un ballon de basket-ball à l'aide d'une petite pompe manuelle (figure ci-contre). L'air est assimilé à un gaz parfait.

Données: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ et Le zéro absolu correspond à 0 K et -273,15 °C.

- 1. a. Comparer les propriétés de l'air contenu dans le ballon et dans le corps de la pompe à l'échelle microscopique.
- **b. Expliquer** pourquoi l'air peut être assimilé à un gaz parfait.

- 2. a. Calculer la quantité de matière d'air qu'il contient.
- b. En déduire le nombre de coups de pompe nécessaire au gonflage.
- 3. L'échauffement du corps de la pompe conduit progressivement à une augmentation de la température de l'air expulsé. Expliquer qualitativement l'effet sur la quantité de matière de gaz contenu dans le volume de la pompe.

24 Réaction explosive

La décomposition explosive de la trinitroglycérine selon l'équation :

 $4 C_3 H_5 N_3 O_9(I) \rightarrow 12 CO_2(g) + 10 H_2 O(g) + 6 N_2(g) + O_2(g)$

produit une quantité de matière de gaz 7 fois plus importante que celle du réactif consommé. On considère la décomposition à 20 °C d'un volume de 10,0 mL de trinitroglycérine constitué de $7,0 \times 10^{-2}$ mol. Le mélange de gaz formé est assimilé à un gaz parfait.

Données : $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. $P_{atm} = 1013 \text{ hPa}$. Le zéro absolu correspond à 0 K et -273,15 °C.

- **1. a.** En considérant la réaction athermique, calculer la valeur de la pression du mélange de gaz produit et confiné dans le volume initial.
- Expliquer l'effet de la variation de pression sur la température du gaz.
- 2. À la pression atmosphérique normale, l'explosion s'accompagne d'une détente du système.
- a. Calculer la valeur du volume total occupé par le mélange gazeux à la pression atmosphérique. La comparer à sa valeur initiale.
- b. Expliquer qualitativement cette variation à l'échelle microscopique.

Danger