Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодировани машин Шёнфилла

Частично вычислимые функции

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

7 декабря 2022 г.

Мотивация

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Основная идея доказательства того, что любая функция, вычилимая на машине Шёнфилда, является частично вычислимой, состоит в следующем: мы закодируем все вычисления на машинах Шёнфилда натуральными числами так, что все необходимые операции с полученными кодами (т. е. операции, имитирующие работу машины) можно будет производить с помощью частично вычислимых (даже примитивно рекурсивных) функций. Нам предстоит закодировать натуральными числами команды, программы, наборы входных данных, состояния счётчика команд, состояния регистров и, наконец, вычисления на машинах Шёнфилда.

Последовательности

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые Аункции Определение С2.1.

Кодом последовательности $\langle x_0, x_1, \dots, x_{k-1} \rangle$ натуральных чисел x_0, x_1, \dots, x_{k-1} назовём натуральное число $\operatorname{code}(\langle x_0, x_1, \dots, x_{k-1} \rangle) = p_0^{x_0+1} \cdot p_1^{x_1+1} \cdot \dots \cdot p_{k-1}^{x_{k-1}+1}$. Будем считать, что $\operatorname{code}(\langle \ \rangle) = 1$.

Последовательности

Лекция С2 Машины Шёнфилда и частично вычислимые функции

> Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Определение С2.1.

Кодом последовательности $\langle x_0, x_1, \dots, x_{k-1} \rangle$ натуральных чисел x_0, x_1, \dots, x_{k-1} назовём натуральное число $\operatorname{code}(\langle x_0, x_1, \dots, x_{k-1} \rangle) = p_0^{x_0+1} \cdot p_1^{x_1+1} \cdot \dots \cdot p_{k-1}^{x_{k-1}+1}$. Будем считать, что $\operatorname{code}(\langle \ \rangle) = 1$.

Определение С2.2.

Если x — код последовательности (скажем, $\langle x_0, x_1, \dots, x_{k-1} \rangle$), то примитивно рекурсивные функции $\mathrm{lh}(x) = \mu i \leqslant x.(\mathrm{ex}(i,x) = 0)$ вычисляет длину данной последовательности, а $(x)_i = \mathrm{ex}(i,x) \overset{\bullet}{-} 1$ при $i < \mathrm{lh}(x) - i$ -ую координату x_i .

Последовательности

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Определение С2.1.

Кодом последовательности $\langle x_0, x_1, \dots, x_{k-1} \rangle$ натуральных чисел x_0, x_1, \dots, x_{k-1} назовём натуральное число $\operatorname{code}(\langle x_0, x_1, \dots, x_{k-1} \rangle) = p_0^{x_0+1} \cdot p_1^{x_1+1} \cdot \dots \cdot p_{k-1}^{x_{k-1}+1}$. Будем считать, что $\operatorname{code}(\langle \ \rangle) = 1$.

Определение С2.2.

Если x — код последовательности (скажем, $\langle x_0, x_1, \dots, x_{k-1} \rangle$), то примитивно рекурсивные функции $\mathrm{lh}(x) = \mu i \leqslant x.(\mathrm{ex}(i,x) = 0)$ вычисляет длину данной последовательности, а $(x)_i = \mathrm{ex}(i,x) \overset{\bullet}{-} 1$ при $i < \mathrm{lh}(x) - i$ -ую координату x_i .

Лемма С2.1.

Множество Seq всех кодов последовательностей является примитивно рекурсивным.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Доказательство.

$$\operatorname{Seq}(x) \Longleftrightarrow \\ [(x \neq 0) \land \forall i \leqslant x (\operatorname{ex}(i, x) \neq 0 \to \forall j \leqslant i (\operatorname{ex}(j, x) \neq 0))].$$

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Доказательство.

$$Seq(x) \iff [(x \neq 0) \land \forall i \leqslant x (ex(i, x) \neq 0 \rightarrow \forall j \leqslant i (ex(j, x) \neq 0))].$$

Коды операторов (команд).

$$\operatorname{cd}(\operatorname{INC}[i]) = \operatorname{code}(\langle 0, i \rangle),$$

 $\operatorname{cd}(\operatorname{DEC}[i], j) = \operatorname{code}(\langle 1, i, j \rangle).$

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

$$\operatorname{Seq}(x) \iff$$

$$[(x \neq 0) \land \forall i \leqslant x(\operatorname{ex}(i, x) \neq 0 \to \forall j \leqslant i(\operatorname{ex}(j, x) \neq 0))].$$

Коды операторов (команд).

$$\operatorname{cd}(\operatorname{INC}[i]) = \operatorname{code}(\langle 0, i \rangle),$$

 $\operatorname{cd}(\operatorname{DEC}[i], j) = \operatorname{code}(\langle 1, i, j \rangle).$

Код программы.

Пусть программа P имеет вид:

 $0 : P_0$

 $1 : P_1$

. . .

$$k-1: P_{k-1}$$

Тогда положим $\operatorname{code}(P) = \operatorname{code}(\langle \operatorname{cd}(P_0), \operatorname{cd}(P_1), \dots, \operatorname{cd}(P_{k-1}) \rangle).$

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые Лемма С2.2.

Множество $\mathrm{Com}(x)$ кодов команд примитивно рекурсивно.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Лемма С2.2.

Множество Com(x) кодов команд примитивно рекурсивно.

Доказательство.

$$\begin{array}{l} \operatorname{Com}(x) \Longleftrightarrow [\operatorname{Seq}(x) \wedge ((((x)_0 = 0) \wedge (\operatorname{lh}(x) = 2)) \vee (((x)_0 = 1) \wedge (\operatorname{lh}(x) = 3)))]. \end{array}$$

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Лемма С2.2.

Множество $\mathrm{Com}(x)$ кодов команд примитивно рекурсивно.

Доказательство.

$$\operatorname{Com}(x) \iff [\operatorname{Seq}(x) \wedge ((((x)_0 = 0) \wedge (\operatorname{lh}(x) = 2)) \vee (((x)_0 = 1) \wedge (\operatorname{lh}(x) = 3)))].$$

Лемма С2.3.

Множество $\operatorname{Prog}(x)$ кодов программ является примитивно рекурсивным.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Лемма С2.2.

Множество $\operatorname{Com}(x)$ кодов команд примитивно рекурсивно.

Доказательство.

$$\operatorname{Com}(x) \iff [\operatorname{Seq}(x) \land ((((x)_0 = 0) \land (\operatorname{lh}(x) = 2)) \lor (((x)_0 = 1) \land (\operatorname{lh}(x) = 3)))].$$

Лемма С2.3.

Множество $\operatorname{Prog}(x)$ кодов программ является примитивно рекурсивным.

Доказательство.

 $\operatorname{Prog}(x) \iff \operatorname{Seq}(x) \wedge \forall i < \operatorname{lh}(x)\operatorname{Com}((x)_i).$

Совместная рекурсия

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Предложение С2.1.

Пусть функции $f_0(x_1, x_2, \dots, x_n, y)$, $f_1(x_1, x_2, \dots, x_n, y)$ определены по схеме совместной рекурсии:

$$f_0(x_1, x_2, \dots, x_n, 0) = g_0(x_1, x_2, \dots, x_n),$$

$$f_1(x_1, x_2, \dots, x_n, 0) = g_1(x_1, x_2, \dots, x_n),$$

$$f_0(x_1, x_2, \dots, x_n, y + 1) = h_0(x_1, x_2, \dots, x_n, y, f_0(x_1, x_2, \dots, x_n, y)),$$

$$f_1(x_1, x_2, \dots, x_n, y + 1) = h_1(x_1, x_2, \dots, x_n, y, f_0(x_1, x_2, \dots, x_n, y),$$

$$f_1(x_1, x_2, \dots, x_n, y)).$$

Если функции g_0 , g_1 , h_0 , h_1 примитивно рекурсивны, то и функции f_0 , f_1 также примитивно рекурсивны.

Совместная рекурсия

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Предложение С2.1.

Пусть функции $f_0(x_1,x_2,\ldots,x_n,y)$, $f_1(x_1,x_2,\ldots,x_n,y)$ определены по схеме совместной рекурсии:

$$\begin{cases}
f_0(x_1, x_2, \dots, x_n, 0) = g_0(x_1, x_2, \dots, x_n), \\
f_1(x_1, x_2, \dots, x_n, 0) = g_1(x_1, x_2, \dots, x_n), \\
f_0(x_1, x_2, \dots, x_n, y + 1) = h_0(x_1, x_2, \dots, x_n, y, f_0(x_1, x_2, \dots, x_n, y)), \\
f_1(x_1, x_2, \dots, x_n, y), \\
f_1(x_1, x_2, \dots, x_n, y + 1) = h_1(x_1, x_2, \dots, x_n, y, f_0(x_1, x_2, \dots, x_n, y), \\
f_1(x_1, x_2, \dots, x_n, y).
\end{cases}$$

Если функции g_0 , g_1 , h_0 , h_1 примитивно рекурсивны, то и функции f_0 , f_1 также примитивно рекурсивны.

Доказательство.

Положим
$$F(x_1, x_2, \dots, x_n, y) =$$
 $code(\langle f_0(x_1, x_2, \dots, x_n, y), f_1(x_1, x_2, \dots, x_n, y) \rangle)$. Тогда

Совместная рекурсия

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство (окончание).

$$\begin{bmatrix} F(x_1,x_2,\ldots,x_n,0) = \operatorname{code}(\langle g_0(x_1,x_2,\ldots,x_n),g_1(x_1,x_2,\ldots,x_n)\rangle), \\ F(x_1,x_2,\ldots,x_n,y+1) = \\ = \operatorname{code}(\langle h_0(x_1,x_2,\ldots,x_n,y,f_0(x_1,x_2,\ldots,x_n,y),f_1(x_1,x_2,\ldots,x_n,y)), \\ h_1(x_1,x_2,\ldots,x_n,y,f_0(x_1,x_2,\ldots,x_n,y),f_1(x_1,x_2,\ldots,x_n,y))\rangle) \\ \text{Наконец, } f_0(x_1,x_2,\ldots,x_n,y) = (F(x_1,x_2,\ldots,x_n,y))_1. \end{bmatrix}$$

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Теперь мы введём две важные функции, кодирующие полностью всю информацию о ходе вычисления на машине Шёнфилда. Чтобы целиком охватить поток данных, изменяющихся в ходе такого вычисления, необходимо знать на каждом шаге содержимое счётчика команд и содержимые всех регистров, которые влияют на ход вычислений. Оценим, насколько большим может быть номер регистра, существенно влияющего на ход работы заданной машины Шёнфилда. Для этого заметим, что $(x)_i < x$ для всех x > 0. Действительно, $(x)_i = \operatorname{ex}(x,i) \stackrel{\bullet}{-} 1 \leqslant \operatorname{ex}(x,i) < 2^{\operatorname{ex}(x,i)} \leqslant p_i^{\operatorname{ex}(x,i)} \leqslant x.$ Отсюда следует, что если e — код программы, m — номер упомянутого регистра в этой программе, то e > m. Кроме того, ход вычислений по программе с кодом е зависит от входных данных, которые могут быть записаны в регистрах с 1-го по k-ый, где k, вообще говоря, произвольное натуральное число. Тем самым, вычисления программы с кодом e, вычисляющей k-местную функцию, не используют содержимые регистров с номерами $\geqslant e+k$.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

- $\mathbf{ct}(e,x,n)$ выдаёт содержимое счётчика команд после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$.
- ② $\operatorname{rg}(e,x,n)$ выдаёт код последовательности $\langle r_0,r_1,\ldots,r_{e+k-1}\rangle$ содержимых регистров после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

- \odot ct(e,x,n) выдаёт содержимое счётчика команд после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$.
 - ② $\operatorname{rg}(e,x,n)$ выдаёт код последовательности $\langle r_0,r_1,\ldots,r_{e+k-1}\rangle$ содержимых регистров после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x=\operatorname{code}(\langle x_1,x_2,\ldots,x_k\rangle)$.

Определение С2.3.

 $egin{aligned} y, & ext{если выполняется следующее:} \ (\imath) \ e - \ ext{код программы} \ P, \ (\imath\imath) \ x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle), \end{aligned}$

0 в противном случае.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Определение С2.4.

$$\mathrm{rg}(\textbf{e},\textbf{x},\textbf{n}) = \begin{cases} \mathrm{code}(\langle \textbf{r}_0,\dots,\textbf{r}_{\textbf{e}+k-1}\rangle), & \text{если выполняется следующее:} \\ (\textbf{i}) \ \textbf{e} - \text{код программы} \ \textbf{P}, \\ (\textbf{ii}) \ \textbf{x} = \mathrm{code}(\langle \textbf{x}_1,\textbf{x}_2,\dots,\textbf{x}_k\rangle), \\ (\textbf{iii}) \ \textbf{r}_i - \mathrm{codepжимое} \ \textbf{i-го} \\ \text{регистра после} \ \textbf{n} \ \text{шагов} \\ \text{выполнения} \\ \text{программы} \ \textbf{P}, \ \text{начатой c} \\ \text{содержимыми регистров} \\ 0,\textbf{x}_1,\textbf{x}_2,\dots,\textbf{x}_k,0,\dots,0; \\ 0 \ \text{в противном случае}. \end{cases}$$

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Определение С2.4.

$$\operatorname{rg}(e,x,n) = \begin{cases} \operatorname{code}(\langle r_0,\dots,r_{e+k-1}\rangle), & \operatorname{если } \operatorname{выполняется } \operatorname{следующее:} \\ (\imath) \ e - \operatorname{код} \ \operatorname{программы} \ P, \\ (\imath\imath) \ x = \operatorname{code}(\langle x_1,x_2,\dots,x_k\rangle), \\ (\imath\imath\imath) \ r_i - \operatorname{содержимое} \ i\text{-го} \\ \operatorname{регистра} \ \operatorname{послe} \ n \ \operatorname{шагов} \\ \operatorname{выполнения} \\ \operatorname{программы} \ P, \ \operatorname{начатой} \ \operatorname{c} \\ \operatorname{содержимыми} \ \operatorname{регистров} \\ 0, x_1, x_2, \dots, x_k, 0, \dots, 0; \\ 0 \ & \operatorname{в} \ \operatorname{противном} \ \operatorname{случае}. \end{cases}$$

<u>Ле</u>мма С2.4.

Функции $\operatorname{ct}(e,x,n)$ и $\operatorname{rg}(e,x,n)$ примитивно рекурсивны.

Частично вычислимые функции

Доказательство.

Воспользуемся схемой совместной рекурсии.

$$\operatorname{ct}(e,x,0)=0.$$

Для задания $\operatorname{rg}(e,x,0)$ определим вспомогательную прф:

$$lpha(i,x) = egin{cases} \exp(i \stackrel{ullet}{-} 1, x), & \text{если } 1 \leqslant i \leqslant \mathrm{lh}(x); \\ 0 & \text{в противном случае.} \end{cases}$$

Тогда имеем

$$\operatorname{rg}(e,x,0) = egin{cases} \operatorname{e}^{+(\operatorname{lh}(x) \overset{ullet}{\circ} 1)} p_i^{lpha(i,x)}, & \operatorname{если} \operatorname{Prog}(e) \wedge \operatorname{Seq}(x); \ 0, & \operatorname{если} \operatorname{Prog}(e) \vee \operatorname{Seq}(x). \end{cases}$$

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

Воспользуемся схемой совместной рекурсии.

$$\operatorname{ct}(e,x,0)=0$$

Для задания $\operatorname{rg}(e,x,0)$ определим вспомогательную прф:

$$\alpha(i,x) = egin{cases} \exp(i \stackrel{\bullet}{-} 1, x), & \text{если } 1 \leqslant i \leqslant \mathrm{lh}(x); \\ 0 & \text{в противном случае.} \end{cases}$$

Тогда имеем

$$\operatorname{rg}(e,x,0) = egin{cases} \operatorname{Proj}(e) & \operatorname{Proj}(e) & \operatorname{Seq}(x); \ \prod_{i=0}^{e+(\operatorname{lh}(x) \buildrel -1)} p_i^{lpha(i,x)}, & \operatorname{если} \operatorname{Proj}(e) & \operatorname{Seq}(x); \ 0, & \operatorname{если} \operatorname{Proj}(e) & \operatorname{V} \operatorname{Seq}(x). \end{cases}$$

Предположим, что значения $\mathrm{ct}(e,x,n)$ и $\mathrm{rg}(e,x,n)$ уже заданы.

Лекция С2 Машины Шёнфилда и частично вычислимые финкции

> Вадим Пузаренко

Кодирование Шёнфилда

Доказательство (продолжение).

Сначала дадим неформальное описание ct(e, x, n+1) (здесь $z = \operatorname{ct}(e, x, n)$:

 $\mathrm{ct}(e,x,n+1) = \begin{cases} j, & \mathrm{seq}(x), \text{ и команда c} \\ j, & \mathrm{ecnu} \operatorname{Prog}(e), \mathrm{Seq}(x), \text{ команда c номе,} \\ z \text{ имеет вид } \mathrm{DEC}\left[i\right], j, \text{ и содержимое} \\ [i]\text{-го регистра} > 0 \text{ в момент } n; \\ \mathrm{s}(z), & \mathrm{ecnu} \operatorname{Prog}(e), \mathrm{Seq}(x), \text{ команда c номером } \\ z \text{ имеет вид } \mathrm{DEC}\left[i\right], j, \text{ и содержимое} \\ [i] - \text{го регистра} = 0 \text{ в моме}. \end{cases}$ $z, & \mathrm{ecnu} \operatorname{Prog}(e), \mathrm{Seq}(x) \in \mathbb{R}^{n}$

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

частично вычислимые функции

Доказательство (продолжение).

Формально (снова
$$z=\operatorname{ct}(e,x,n)$$
; к тому же, $v=\operatorname{rg}(e,x,n)$): $\operatorname{ct}(e,x,n+1)=$
$$\begin{cases} \operatorname{s}(z), & \operatorname{eсли} \operatorname{Prog}(e) \wedge \operatorname{Seq}(x) \wedge (z<\operatorname{lh}(e)) \wedge \left((((e)_z)_0=0) \vee \vee ((((e)_z)_0=1) \wedge ((v)_{((e)_z)_1}=0))\right); \\ ((e)_z)_2, & \operatorname{если} \operatorname{Prog}(e) \wedge \operatorname{Seq}(x) \wedge (z<\operatorname{lh}(e)) \wedge \wedge ((((e)_z)_0=1) \wedge ((v)_{((e)_z)_1}>0)); \\ z, & \operatorname{если} \operatorname{Prog}(e) \wedge \operatorname{Seq}(x) \wedge (z\geqslant \operatorname{lh}(e)); \\ 0 & \operatorname{в остальных случаях}. \end{cases}$$

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство (продолжение).

Формально (снова $z=\operatorname{ct}(e,x,n)$; к тому же, $v=\operatorname{rg}(e,x,n)$): $\operatorname{ct}(e,x,n+1)=$ $\begin{cases} \operatorname{s}(z), & \operatorname{eсли} \operatorname{Prog}(e) \wedge \operatorname{Seq}(x) \wedge (z<\operatorname{lh}(e)) \wedge \left((((e)_z)_0=0) \vee \vee ((((e)_z)_0=1) \wedge ((v)_{((e)_z)_1}=0))\right); \\ ((e)_z)_2, & \operatorname{если} \operatorname{Prog}(e) \wedge \operatorname{Seq}(x) \wedge (z<\operatorname{lh}(e)) \wedge \wedge ((((e)_z)_0=1) \wedge ((v)_{((e)_z)_1}>0)); \\ z, & \operatorname{если} \operatorname{Prog}(e) \wedge \operatorname{Seq}(x) \wedge (z\geqslant \operatorname{lh}(e)); \\ 0 & \operatorname{в остальных случаях}. \end{cases}$

 $\operatorname{Prog}(e)$ означает, что e — код программы (скажем, P); $\operatorname{Seq}(x)$ означает, что x — код последовательности (скажем,

 $\langle x_1, x_2, \ldots, x_k \rangle$);

 ${
m ct}(e,x,n)<{
m lh}(e)$ означает, что после шага n вычисления будет исполняться существующая в программе P команда с номером ${
m ct}(e,x,n)$;

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Доказательство (продолжение).

 $(((e)_z)_0=0)$ означает, что выполняется команда вида $\mathrm{INC}\,[i];$ $(((e)_z)_0=1) \wedge ((v)_{((e)_z)_1}=0)$ означает, что выполняется команда вида $\mathrm{DEC}\,[i],j,$ причём содержимое [i]-го регистра равно нулю (в этом случае счётчик команд увеличивается на единицу); $(((e)_z)_0=1) \wedge ((v)_{((e)_z)_1}>0)$ означает, что выполняется команда вида $\mathrm{DEC}\,[i],j,$ причём содержимое [i]-го регистра больше нуля (в этом случае счётчику команд присваивается значение j, т.е. $((e)_z)_2);$

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство (продолжение).

Дадим теперь неформальное описание $\operatorname{rg}(e,x,n+1)$ (как и прежде, пусть z = ct(e, x, n) и $\text{rg}(e, x, n) = \text{code}(\langle r_0, r_1, \dots, r_{e+k-1} \rangle)$: $\operatorname{rg}(e, x, n+1) =$ $code(r_0, ..., r_i + 1, ..., r_{e+k-1}),$ если Prog(e), Seq(x), и команда с номером z имеет вид INC [i]; $\operatorname{code}(r_0,\ldots,r_i-1,\ldots,r_{e+k-1}),$ если Prog(e), Seq(x), команда с номером z имеет вид DEC[i], j, и $r_i > 0$: $code(r_0,\ldots,r_i,\ldots,r_{e+k-1}),$ если Prog(e), Seq(x), команда с номером z имеет вид DEC[i], j, и $r_i = 0$: $code(r_0,\ldots,r_{e+k-1}),$ если Prog(e), Seq(x), и команда с HOMEDOM Z OTCYTCTBYET; в остальных случаях.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

> Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Доказательство (окончание).

Отметим, что второй и третий случаи можно рассмотреть одновременно, поскольку $0=r_i=r_i\overset{ullet}{-}1.$

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство (окончание).

Отметим, что второй и третий случаи можно рассмотреть одновременно, поскольку $0=r_i=r_i-1$.

Введём вспомогательную прф
$$\beta(i,x,y)=\left[rac{x}{p_i^{\mathrm{ex}(i,x)}}
ight]\cdot p_i^{y+1}$$
. Данная

функция удовлетворяет следующему условию: если
$$x = \text{code}(\langle x_0, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_k \rangle)$$
 и $i \leqslant k$, то $\beta(i, x, y) = \text{code}(\langle x_0, \dots, x_{i-1}, y, x_{i+1}, \dots, x_k \rangle)$.

Лекция С2 Машины Шёнфилда и частично вычислимые финкции

Вадим Пузаренко

Кодирование Шёнфилда

Доказательство (окончание).

Отметим, что второй и третий случаи можно рассмотреть одновременно, поскольку $0 = r_i = r_i - 1$.

Введём вспомогательную прф $\beta(i,x,y) = \left| \frac{x}{p_i^{\mathrm{ex}(i,x)}} \right| \cdot p_i^{y+1}$. Данная

функция удовлетворяет следующему условию: если $x = \text{code}(\langle x_0, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_k \rangle)$ и $i \leq k$, то $\beta(i,x,y) = \operatorname{code}(\langle x_0,\ldots,x_{i-1},y,x_{i+1},\ldots,x_k \rangle).$ Формально (снова z = ct(e, x, n), v = rg(e, x, n)): $\operatorname{rg}(e, x, n+1) =$

$$\begin{cases} \beta(((e)_z)_1, v, \mathrm{s}((v)_{((e)_z)_1})), & \text{ если } \mathrm{Prog}(e) \wedge \mathrm{Seq}(x) \wedge (z < \mathrm{lh}(e)) \wedge \\ & \wedge (((e)_z)_0 = 0); \\ \beta(((e)_z)_1, v, (v)_{((e)_z)_1} \overset{\bullet}{-} 1), & \text{ если } \mathrm{Prog}(e) \wedge \mathrm{Seq}(x) \wedge (z < \mathrm{lh}(e)) \wedge \end{cases}$$

$$egin{aligned} eta(((e)_z)_1, v, (v)_{((e)_z)_1} - 1), & ext{ec.ли } \operatorname{Prog}(e) \wedge \operatorname{Seq}(x) \wedge (z < \operatorname{lh}(e)) \wedge \\ & \wedge (((e)_z)_0 = 1); \end{aligned}$$

$$v$$
, ecли $\operatorname{Prog}(e) \wedge \operatorname{Seq}(x) \wedge (z \geqslant \operatorname{lh}(e));$

в остальных случаях.

Предикат остановки

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Определение С2.5.

Определим предикат Stop(e, x, n) как отношение, удовлетворяющее следующим условиям в точности:

- (i) e код некоторой программы (скажем, P);
- (11) $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$
- ($\imath\imath\imath$) программа P, начав работу с содержимым регистров 0, $x_1, x_2, \ldots, x_k, 0, 0, \ldots, 0$, останавливается к шагу n.

Предикат остановки

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Определение С2.5.

Определим предикат Stop(e, x, n) как отношение, удовлетворяющее следующим условиям в точности:

- (i) е код некоторой программы (скажем, P);
- (11) $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$
- ($\imath\imath\imath$) программа P, начав работу с содержимым регистров $0, x_1, x_2, \ldots, x_k, 0, 0, \ldots, 0,$ останавливается к шагу n.

Лемма С2.4.

Отношение Stop(e, x, n) примитивно рекурсивно.

Предикат остановки

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Определение С2.5.

Определим предикат Stop(e, x, n) как отношение, удовлетворяющее следующим условиям в точности:

- (i) e код некоторой программы (скажем, P);
- (11) $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$
- ($\imath\imath\imath$) программа P, начав работу с содержимым регистров 0, $x_1, x_2, \ldots, x_k, 0, 0, \ldots, 0$, останавливается к шагу n.

Лемма С2.4.

Отношение Stop(e, x, n) примитивно рекурсивно.

Доказательство.

В самом деле,

 $\operatorname{Stop}(e, x, n) \iff \operatorname{Prog}(e) \wedge \operatorname{Seq}(x) \wedge (\operatorname{ct}(e, x, n) \geqslant \operatorname{lh}(e)).$

Коды вычислений

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Пусть натуральные числа e, x и n таковы, что $\mathrm{Stop}(e,x,n)$.

Определение С2.6.

Кодом вычисления на машине Шёнфилда с программой P, имеющей код e, и начальной конфигурацией содержимого регистров 0, $(x)_0$, $(x)_1$, ..., $(x)_{\mathrm{lh}(x)-1}$, 0, ..., 0, будем называть $\mathrm{code}(\langle \mathrm{rg}(e,x,0),\mathrm{rg}(e,x,1),\ldots,\mathrm{rg}(e,x,n)\rangle)$.

Коды вычислений

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Пусть натуральные числа e, x и n таковы, что Stop(e,x,n).

Определение С2.6.

Кодом вычисления на машине Шёнфилда с программой P, имеющей код e, и начальной конфигурацией содержимого регистров 0, $(x)_0$, $(x)_1$, ..., $(x)_{\mathrm{lh}(x)-1}$, 0, ..., 0, будем называть $\mathrm{code}(\langle \mathrm{rg}(e,x,0),\mathrm{rg}(e,x,1),\ldots,\mathrm{rg}(e,x,n)\rangle)$.

Определение С2.7.

Если y — код вычисления, то результат вычисления содержится в 0-м регистре заключительного содержимого регистров и, следовательно, вычисляется с помощью прф $U(y) = ((y)_{\text{lh}(y)} \stackrel{\bullet}{=} 1)_0$.

Коды вычислений

Лекция С2 Машины Шёнфилда и частично вычислимые функции

> Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции Пусть натуральные числа e, x и n таковы, что $\mathrm{Stop}(e,x,n)$.

Определение С2.6.

Кодом вычисления на машине Шёнфилда с программой P, имеющей код e, и начальной конфигурацией содержимого регистров 0, $(x)_0$, $(x)_1$, ..., $(x)_{\mathrm{lh}(x)-1}$, 0, ..., 0, будем называть $\mathrm{code}(\langle \mathrm{rg}(e,x,0),\mathrm{rg}(e,x,1),\ldots,\mathrm{rg}(e,x,n)\rangle)$.

Определение С2.7.

Если y — код вычисления, то результат вычисления содержится в 0-м регистре заключительного содержимого регистров и, следовательно, вычисляется с помощью прф $U(y) = ((y)_{\text{lh}(y)} \stackrel{\bullet}{=} 1)_0$.

Если $e, x \in \omega$ не удовлетворяют $\mathrm{Stop}(e, x, n)$ ни для какого $n \in \omega$, то считаем код вычисления не определённым.

Предикат Клини

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Определение С2.8.

Пусть $k\geqslant 1$; определим k+2-арный **предикат Клини** $T_k(e,x_1,x_2,\ldots,x_k,y)$ как отношение, удовлетворяющее в точности следующим условиям:

- e код некоторой программы (скажем, P);
- ② y код вычисления программы P с начальной конфигурацией содержимого регистров $0, x_1, x_2, \ldots, x_k, 0, \ldots, 0$.

Предикат Клини

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Определение С2.8.

Пусть $k\geqslant 1$; определим k+2-арный **предикат Клини** $T_k(e,x_1,x_2,\ldots,x_k,y)$ как отношение, удовлетворяющее в точности следующим условиям:

- ullet e- код некоторой программы (скажем, P);
- ② y код вычисления программы P с начальной конфигурацией содержимого регистров 0, x_1 , x_2 , ..., x_k , 0, ..., 0.

Лемма С2.6.

Для любого $k\geqslant 1$ предикат $T_k(e,x_1,\ldots,x_k,y)$ примитивно рекурсивен.

Предикат Клини

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Определение С2.8.

Пусть $k\geqslant 1$; определим k+2-арный **предикат Клини** $T_k(e,x_1,x_2,\ldots,x_k,y)$ как отношение, удовлетворяющее в точности следующим условиям:

- **1** e код некоторой программы (скажем, P);
- ② y код вычисления программы P с начальной конфигурацией содержимого регистров 0, x_1 , x_2 , ..., x_k , 0, ..., 0.

Лемма С2.6.

Для любого $k\geqslant 1$ предикат $T_k(e,x_1,\ldots,x_k,y)$ примитивно рекурсивен.

Доказательство.

В самом деле,

$$T_k(e, x_1, \dots, x_k, y) \iff \operatorname{Seq}(y) \wedge \operatorname{Stop}(e, \operatorname{code}(\langle x_1, x_2, \dots, x_k \rangle), \operatorname{lh}(y) - 1) \wedge \\ \forall i < \operatorname{lh}(y)[(y)_i = \operatorname{rg}(e, \operatorname{code}(\langle x_1, x_2, \dots, x_k \rangle), i)].$$

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые Функции

Теорема С2.1.

Любая частичная функция, вычислимая на машине Шёнфилда, частично вычислима.

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Теорема С2.1.

Любая частичная функция, вычислимая на машине Шёнфилда, частично вычислима.

Доказательство.

Пусть $f(x_1, x_2, \ldots, x_k)$ — частичная функция, вычислимая на машине Шёнфилда и пусть P — программа этой машины. Пусть также e — код программы P. Возьмём произвольный набор n_1 , n_2 , ..., n_k чисел. Разберём два случая.

 $f(n_1,n_2,\ldots,n_k)$ определено. Тогда программа P с начальной конфигурацией содержимого регистров $0,\ n_1,\ n_2,\ \ldots,\ n_k,\ 0,\ \ldots,\ 0$ останавливается. Следовательно, определён код вычисления y, причём $U(y)=f(n_1,n_2,\ldots,n_k)$. Выберем наименьший код вычисления y_0 ; тогда

$$f(n_1, n_2, \ldots, n_k) = U(y_0) = U(\mu y. T_k(e, n_1, n_2, \ldots, n_k, y)).$$

Частично вычислимые Диперация

Доказательство (окончание).

 $f(n_1, n_2, \ldots, n_k)$ не определено. Тогда программа P с начальной конфигурацией содержимого регистров $0, n_1, n_2, \ldots, n_k, 0, \ldots, 0$ никогда не останавливается. Следовательно, не определён код вычисления y, а вместе с этим $T_k(e, n_1, n_2, \ldots, n_k, y)$ не выполняется ни для какого y. Тем самым, μy . $T_k(e, n_1, n_2, \ldots, n_k, y) \uparrow$ и $U(\mu y$. $T_k(e, n_1, n_2, \ldots, n_k, y)) \uparrow$.

Таким образом, $f(x_1, x_2, \dots, x_k) = U(\mu y. T_k(e, x_1, x_2, \dots, x_k, y))$ и, в частности, $f(x_1, x_2, \dots, x_k)$ — чвф.

$МШ \mapsto ЧВФ$

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство (окончание).

 $f(n_1, n_2, \ldots, n_k)$ не определено. Тогда программа P с начальной конфигурацией содержимого регистров $0, n_1, n_2, \ldots, n_k, 0, \ldots, 0$ никогда не останавливается. Следовательно, не определён код вычисления y, а вместе с этим $T_k(e, n_1, n_2, \ldots, n_k, y)$ не выполняется ни для какого y. Тем самым, μy . $T_k(e, n_1, n_2, \ldots, n_k, y) \uparrow$ и $U(\mu y$. $T_k(e, n_1, n_2, \ldots, n_k, y)) \uparrow$.

Таким образом, $f(x_1, x_2, \dots, x_k) = U(\mu y. T_k(e, x_1, x_2, \dots, x_k, y))$ и, в частности, $f(x_1, x_2, \dots, x_k)$ — чвф.

Теорема С2.2.(Клини о нормальной форме)

Существует примитивно рекурсивная функция U такая, что для любого $k\geqslant 1$ найдётся примитивно рекурсивное отношение $T_k(e,x_1,x_2,\ldots,x_k,y)$, для которого выполняется следующее: для любой k-местной частично вычислимой функции $\varphi(x_1,x_2,\ldots,x_k)$ найдётся e_0 , для которого имеет место $\varphi(x_1,x_2,\ldots,x_k)=U(\mu_Y,T_k(e_0,x_1,x_2,\ldots,x_k,y))$.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодировани машин Шёнфилда

Частично вычислимые функции

Следствие С2.1.

Любая частично вычислимая функция может быть получена с помощью применения операторов S, R и M, причём оператор M используется не более одного раза.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Частично вычислимые

функции

Следствие С2.1.

Любая частично вычислимая функция может быть получена с помощью применения операторов S, R и M, причём оператор M используется не более одного раза.

Определение С2.9.

Пусть $k\geqslant 1$ и пусть $\mathcal{S}-$ семейство k-местных частичных функций. Функция $F(x_0,x_1,\ldots,x_k)$ называется универсальной для семейства $\mathcal{S},$ если $\mathcal{S}=\{\lambda x_1x_2\ldots x_k.F(e,x_1,x_2,\ldots,x_k)|e\in\omega\}$. В случае, когда $\mathcal{S}-$ семейство всех k-местных частично вычислимых функций, то $F(x_0,x_1,\ldots,x_k)$ называется просто универсальной.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Частично вычислимые

функции

Следствие С2.1.

Любая частично вычислимая функция может быть получена с помощью применения операторов S, R и M, причём оператор M используется не более одного раза.

Определение С2.9.

Пусть $k\geqslant 1$ и пусть \mathcal{S} — семейство k-местных частичных функций. Функция $F(x_0,x_1,\ldots,x_k)$ называется универсальной для семейства \mathcal{S} , если $\mathcal{S}=\{\lambda x_1x_2\ldots x_k.F(e,x_1,x_2,\ldots,x_k)|e\in\omega\}$. В случае, когда \mathcal{S} — семейство всех k-местных частично вычислимых функций, то $F(x_0,x_1,\ldots,x_k)$ называется просто универсальной.

Предложение С2.2.

Каково бы ни было $k\geqslant 1$, не существует универсальной частично вычислимой (примитивно рекурсивной) функции семейства всех k-местных вычислимых (примитивно рекурсивных) функций.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодировани машин Шёнфилда

Частично вычислимые функции Доказательство.

Допустим, что $F(x_0,x_1,x_2,\ldots,x_k)$ — соответствующая универсальная функция. Тогда $F(x_1,x_1,x_2,\ldots,x_k)$ является k-местной вычислимой (примитивно рекурсивной) функцией, а вместе с ней и $\mathrm{s}(F(x_1,x_1,x_2,\ldots,x_k))$ (поскольку функция $F(x_1,x_1,x_2,\ldots,x_k)$ всюду определена). Следовательно, существует e_0 такое, что $F(e_0,x_1,x_2,\ldots,x_k)=\mathrm{s}(F(x_1,x_1,x_2,\ldots,x_k))$ для всех натуральных чисел x_1,x_2,\ldots,x_k . В частности, $F(e_0,e_0,\ldots,e_0)=\mathrm{s}(F(e_0,e_0,\ldots,e_0))$, противоречие.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции

Доказательство.

Допустим, что $F(x_0,x_1,x_2,\ldots,x_k)$ — соответствующая универсальная функция. Тогда $F(x_1,x_1,x_2,\ldots,x_k)$ является k-местной вычислимой (примитивно рекурсивной) функцией, а вместе с ней и $\mathrm{s}(F(x_1,x_1,x_2,\ldots,x_k))$ (поскольку функция $F(x_1,x_1,x_2,\ldots,x_k)$ всюду определена). Следовательно, существует e_0 такое, что $F(e_0,x_1,x_2,\ldots,x_k)=\mathrm{s}(F(x_1,x_1,x_2,\ldots,x_k))$ для всех натуральных чисел x_1,x_2,\ldots,x_k . В частности, $F(e_0,e_0,\ldots,e_0)=\mathrm{s}(F(e_0,e_0,\ldots,e_0))$, противоречие.

Предложение С2.3.

Каково бы ни было $k\geqslant 1$, не существует универсальной частично вычислимой (примитивно рекурсивной) функции семейства всех k-местных вычислимых (примитивно рекурсивных) функций, принимающих значения $\subseteq \{0;1\}$.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции Доказательство.

Допустим, что $F(x_0,x_1,x_2,\ldots,x_k)$ — соответствующая универсальная функция. Тогда $F(x_1,x_1,x_2,\ldots,x_k)$ является k-местной вычислимой (примитивно рекурсивной) функцией, а вместе с ней и $\overline{\operatorname{sg}}(F(x_1,x_1,x_2,\ldots,x_k))$ (поскольку функция $F(x_1,x_1,x_2,\ldots,x_k)$ всюду определена). Следовательно, существует e_0 такое, что $F(e_0,x_1,x_2,\ldots,x_k)=\overline{\operatorname{sg}}(F(x_1,x_1,x_2,\ldots,x_k))$ для всех натуральных чисел x_1,x_2,\ldots,x_k . В частности, $F(e_0,e_0,\ldots,e_0)=\overline{\operatorname{sg}}(F(e_0,e_0,\ldots,e_0))$, противоречие.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции

Доказательство.

Допустим, что $F(x_0,x_1,x_2,\ldots,x_k)$ — соответствующая универсальная функция. Тогда $F(x_1,x_1,x_2,\ldots,x_k)$ является k-местной вычислимой (примитивно рекурсивной) функцией, а вместе с ней и $\overline{\operatorname{sg}}(F(x_1,x_1,x_2,\ldots,x_k))$ (поскольку функция $F(x_1,x_1,x_2,\ldots,x_k)$ всюду определена). Следовательно, существует e_0 такое, что $F(e_0,x_1,x_2,\ldots,x_k) = \overline{\operatorname{sg}}(F(x_1,x_1,x_2,\ldots,x_k))$ для всех натуральных чисел x_1,x_2,\ldots,x_k . В частности, $F(e_0,e_0,\ldots,e_0) = \overline{\operatorname{sg}}(F(e_0,e_0,\ldots,e_0))$, противоречие.

Теорема С2.3.

Каково бы ни было $k \geqslant 1$, существует k+1-местная универсальная частично вычислимая функция.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодировани машин

Частично вычислимые функции Доказательство.
В самом деле, таковой функцией является $U(\mu_Y, T_k(x_0, x_1, \dots, x_k, y))$.

Лекция С2 Машины Шёнфилда и ча ст и чно вычислимые финкции

Вадим Пузаренко

Частично вычислимые функции

Доказательство.

В самом деле, таковой функцией является $U(\mu y. T_k(x_0, x_1, ..., x_k, y)).$

Теорема С2.4.

Каково бы ни было $k \geqslant 1$, существует k+1-местная частично вычислимая функция, универсальная для семейства всех k-местных чвф, принимающих значения $\subseteq \{0; 1\}$.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

В самом деле, таковой функцией является $U(\mu y. T_k(x_0, x_1, \dots, x_k, y))$.

Теорема С2.4.

Каково бы ни было $k\geqslant 1$, существует k+1-местная частично вычислимая функция, универсальная для семейства всех k-местных чвф, принимающих значения $\subseteq \{0;1\}$.

Доказательство.

Пусть $F(x_0,x_1,\ldots,x_k)$ — универсальная чвф; покажем, что функция $F'(x_0,x_1,\ldots,x_k)=\mathrm{sg}(F(x_0,x_1,\ldots,x_k))$ удовлетворяет условию теоремы. Действительно, чвф $F'(x_0,x_1,\ldots,x_k)$ принимает значения $\subseteq \{0;1\}$ и, в частности, для любого $e_0 \in \omega$ функция $\lambda x_1 x_2 \ldots x_k . F'(e_0,x_1,x_2,\ldots,x_k)$ принимает значения $\subseteq \{0;1\}$.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство (окончание).

Далее, пусть $\varphi(x_1, x_2, \dots, x_k)$ — чвф, принимающая значения $\subseteq \{0; 1\}$. Тогда сушествует $e_1 \in \omega$ такое, что $\varphi(x_1, x_2, \dots, x_k) = F(e_1, x_1, \dots, x_k) = \operatorname{sg}(F(e_1, x_1, \dots, x_k)) = F'(e_1, x_1, \dots, x_k)$.

Упражнение С2.1.

Докажите, что если $F(x_0,x_1,\ldots,x_k)$ — универсальная частично вычислимая функция, то частично вычислимая функция $F''(x_0,x_1,\ldots,x_k)=\overline{\operatorname{sg}}(F(x_0,x_1,\ldots,x_k))$ универсальна для семейства всех частично вычислимых функций, принимающих значения $\subseteq \{0;1\}$.

Упражнение С2.2.

(Использовать только подход Клини!!!) Используя чвф, универсальную для семейства k-местных чвф, принимающих значения $\subseteq \{0;1\}$, построить k+1-местную универсальную чвф.

Нумерация Кантора ω^2

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодировани машин Шёнфилда

Частично вычислимые функции Определение С2.10.

Определим примитивно рекурсивную функцию $c^2:\omega^2\to\omega$ следующим образом:

$$c^2(x,y) \leftrightharpoons \frac{(x+y)^2 + 3x + y}{2}.$$

Эта функция называется **нумерацией Кантора** и осуществляет биективное отображение $c^2:\omega^2\overset{1:1}{\longrightarrow}\omega$ (упражнение!!!)

Частично вычислимые функции

Определение С2.10.

Определим примитивно рекурсивную функцию $c^2:\omega^2 o \omega$ следующим образом:

$$c^2(x,y) \leftrightharpoons \frac{(x+y)^2 + 3x + y}{2}.$$

Эта функция называется **нумерацией Кантора** и осуществляет биективное отображение $c^2:\omega^2\overset{1:1}{\longrightarrow}\omega$ (упражнение!!!)

Лемма С2.7.

Существуют такие примитивно рекурсивные функции $I:\omega \to \omega$ и $r:\omega \to \omega$, что для всех $x,y\in \omega$

- $c^2(I(x), r(x)) = x$;
- $I(c^2(x,y)) = x$;
- $r(c^2(x,y)) = y$.

Нумерация Кантора ω^n

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции

Определение С2.11.

Для каждого $1\leqslant n\in\omega$ определим нумерацию Кантора $c^n:\omega^n\overset{1:1}{\twoheadrightarrow}\omega$ индукцией по $n:c^1(x)\leftrightarrows x$,

$$c^{n}(x_1,\ldots,x_n) \leftrightharpoons c(c^{n-1}(x_1,x_2,\ldots,x_{n-1}),x_n).$$

Отметим, что для каждого $n \in \omega$ функция c^n является примитивно рекурсивной и осуществляет биекцию $\omega^n \to \omega$ (упражнение!!!)

Нумерация Кантора ω^n

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции

Определение С2.11.

Для каждого $1\leqslant n\in\omega$ определим нумерацию Кантора $c^n:\omega^n\overset{1:1}{\twoheadrightarrow}\omega$ индукцией по $n:c^1(x)\leftrightharpoons x$,

$$c^{n}(x_1,\ldots,x_n) \leftrightharpoons c(c^{n-1}(x_1,x_2,\ldots,x_{n-1}),x_n).$$

Отметим, что для каждого $n\in\omega$ функция c^n является примитивно рекурсивной и осуществляет биекцию $\omega^n\to\omega$ (упражнение!!!)

Лемма С2.8.

Для каждого $1< n\in \omega$ существуют такие примитивно рекурсивные функции $c_{n,i}:\omega\to\omega$, где $1\le i\le n$, что для всех $x_1,\ldots,x_n\in\omega$

- $c^{n}(c_{n,1}(x),...,c_{n,n}(x)) = x;$
- $c_{n,i}(c^n(x_1,\ldots,x_n)) = x_i$ для всех $1 \le i \le n$.

Нумерация Кантора ω^n

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин

Шёнфилда Частично

Частично вычислимые функции

Определение С2.11.

Для каждого $1\leqslant n\in\omega$ определим нумерацию Кантора $c^n:\omega^n\overset{1:1}{\twoheadrightarrow}\omega$ индукцией по $n:c^1(x)\leftrightharpoons x$,

$$c^{n}(x_1,\ldots,x_n) \leftrightharpoons c(c^{n-1}(x_1,x_2,\ldots,x_{n-1}),x_n).$$

Отметим, что для каждого $n\in\omega$ функция c^n является примитивно рекурсивной и осуществляет биекцию $\omega^n\to\omega$ (упражнение!!!)

Лемма С2.8.

Для каждого $1 < n \in \omega$ существуют такие примитивно рекурсивные функции $c_{n,i}:\omega \to \omega$, где $1 \le i \le n$, что для всех $x_1,\ldots,x_n \in \omega$

- $c^{n}(c_{n,1}(x),...,c_{n,n}(x)) = x;$
- $c_{n,i}(c^n(x_1,\ldots,x_n)) = x_i$ для всех $1 \le i \le n$.

Упражнение С2.3.

Докажите леммы С2.7 и С2.8.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Лемма С2.9.

Пусть $\psi-k$ -местная функция и пусть $A\subseteq\omega^k-$ множество. Тогда

- ullet ψ частично вычислима, если и только если $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ частично вычислима;
- Ψ вычислима, если и только если $\psi(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x))$ вычислима;
- ψ примитивно рекурсивна, если и только если $\psi(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x))$ примитивно рекурсивна;
- ullet А вычислимо, если и только если $c^k(A)$ вычислимо;
- ullet А примитивно рекурсивно, если и только если $c^k(A)$ примитивно рекурсивно.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодировани машин

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x_1,x_2,\ldots,x_k)$ — частично вычислимая функция, то и $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x_1, x_2, \dots, x_k)$ — частично вычислимая функция, то и $\psi(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции. (\Leftarrow) Пусть теперь $\psi(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x))$ — чвф; тогда $\psi(x_1, x_2, \dots, x_k) = \psi(c_{k,1}(c^k(x_1, x_2, \dots, x_k)), c_{k,2}(c^k(x_1, x_2, \dots, x_k)), \dots$, $c_{k,k}(c^k(x_1, x_2, \dots, x_k))$) также является чвф.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x_1, x_2, \dots, x_k)$ — частично вычислимая функция, то и $\psi(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x))$ также является чвф, как функция, полученная из частично вычисли мих с помощью оператора суперпозиции.

 (\Leftarrow) Пусть теперь $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ — чвф; тогда

$$\psi(x_1, x_2, \dots, x_k) = \psi(c_{k,1}(c^k(x_1, x_2, \dots, x_k)), c_{k,2}(c^k(x_1, x_2, \dots, x_k)), \dots,$$

 $c_{k,k}(c^k(x_1,x_2,\ldots,x_k)))$ также является чвф.

2,3) Рассматриваются аналогично случаю (1).

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x_1,x_2,\dots,x_k)$ — частично вычислимая функция, то и $\psi(c_{k,1}(x),c_{k,2}(x),\dots,c_{k,k}(x))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

 (\Leftarrow) Пусть теперь $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ — чвф; тогда

$$\psi(x_1, x_2, \ldots, x_k) = \psi(c_{k,1}(c^k(x_1, x_2, \ldots, x_k)), c_{k,2}(c^k(x_1, x_2, \ldots, x_k)), \ldots,$$

 $c_{k,k}(c^k(x_1,x_2,\ldots,x_k)))$ также является чвф.

2,3) Рассматриваются аналогично случаю (1).

4) (\Rightarrow) Пусть A — вычислимое множество. Следовательно, $\chi_A(x_1,x_2,\dots,x_k)$ — вычислимая функция, а вместе с ней и $\chi_{c^k(A)}(x)=\chi_A(c_{k,1}(x),c_{k,2}(x),\dots,c_{k,k}(x))$

также является вф. Таким образом, $c^k(A)$ — вычислимое множество.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x_1,x_2,\dots,x_k)$ — частично вычислимая функция, то и $\psi(c_{k,1}(x),c_{k,2}(x),\dots,c_{k,k}(x))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

 (\Leftarrow) Пусть теперь $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ — чвф; тогда

$$\psi(x_1, x_2, \dots, x_k) = \psi(c_{k,1}(c^k(x_1, x_2, \dots, x_k)), c_{k,2}(c^k(x_1, x_2, \dots, x_k)), \dots,$$

 $c_{k,k}(c^k(x_1,x_2,\ldots,x_k)))$ также является чвф.

2,3) Рассматриваются аналогично случаю (1).

4) (\Rightarrow) Пусть A — вычислимое множество. Следовательно, $\chi_A(x_1,x_2,\dots,x_k)$ — вычислимая функция, а вместе с ней и $\chi_{c^k(A)}(x)=\chi_A(c_{k,1}(x),c_{k,2}(x),\dots,c_{k,k}(x))$

также является вф. Таким образом, $c^k(A)$ — вычислимое множество.

 (\Leftarrow) Пусть $\chi_{c^k(A)}$ — характеристическая функция множества $c^k(A)$. Определим характеристическую функцию для множества A:

$$\chi_A(x_1, x_2, \ldots, x_k) = \chi_{c^k(A)}(c^k(x_1, x_2, \ldots, x_k)).$$

Таким образом, А вычислимо.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x_1,x_2,\ldots,x_k)$ — частично вычислимая функция, то и $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

 (\Leftarrow) Пусть теперь $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ — чвф; тогда

$$\psi(x_1, x_2, \dots, x_k) = \psi(c_{k,1}(c^k(x_1, x_2, \dots, x_k)), c_{k,2}(c^k(x_1, x_2, \dots, x_k)), \dots,$$

 $c_{k,k}(c^k(x_1,x_2,\ldots,x_k)))$ также является чвф.

2,3) Рассматриваются аналогично случаю (1).

4) (\Rightarrow) Пусть A —вычислимое множество. Следовательно, $\chi_A(x_1,x_2,\dots,x_k)$ — вычислимая функция, а вместе с ней и $\chi_{c^k(A)}(x)=\chi_A(c_{k,1}(x),c_{k,2}(x),\dots,c_{k,k}(x))$

также является вф. Таким образом, $c^k(A)$ — вычислимое множество.

 (\Leftarrow) Пусть $\chi_{c^k(A)}$ — характеристическая функция множества $c^k(A)$. Определим характеристическую функцию для множества A:

$$\chi_A(x_1, x_2, \ldots, x_k) = \chi_{c^k(A)}(c^k(x_1, x_2, \ldots, x_k)).$$

Таким образом, А вычислимо.

5) Рассматривается аналогично случаю (4).

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции

Лемма С2.10.

Пусть ψ — унарная функция и пусть $A\subseteq \omega$ — множество. Тогда

- ullet ψ частично вычислима, если и только если $\psi(c^k(x_1,x_2,\ldots,x_k))$ частично вычислима;
- ② ψ вычислима, если и только если $\psi(c^k(x_1, x_2, \dots, x_k))$ вычислима;
- ullet примитивно рекурсивна, если и только если $\psi(c^k(x_1, x_2, \dots, x_k))$ примитивно рекурсивна;
- A вычислимо, если и только если $B = \{\langle c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x) \rangle | x \in A\}$ вычислимо.
- A примитивно рекурсивно, если и только если $B = \{\langle c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x) \rangle | x \in A\}$ примитивно рекурсивно.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодировани машин Шёнфилда

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x)$ — частично вычислимая функция, то и $\psi(c^k(x_1,x_2,\ldots,x_k))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодировани машин Шёнфилда

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x)$ — частично вычислимая функция, то и $\psi(c^k(x_1,x_2,\ldots,x_k))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

 (\Leftarrow) Пусть теперь $\psi(c^k(x_1,x_2,\ldots,x_k))$ — чвф; тогда

 $\psi(x) = \psi(c^k(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)))$ также является чвф.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирования машин

Шёнфилда Частично

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x)$ — частично вычислимая функция, то и $\psi(c^k(x_1,x_2,\ldots,x_k))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

 (\Leftarrow) Пусть теперь $\psi(c^k(x_1,x_2,\ldots,x_k))$ — чвф; тогда

 $\psi(x) = \psi(c^k(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)))$ также является чвф.

2,3) Рассматриваются аналогично случаю (1).

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x)$ — частично вычислимая функция, то и $\psi(c^k(x_1,x_2,\dots,x_k))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

 (\Leftarrow) Пусть теперь $\psi(c^k(x_1,x_2,\ldots,x_k))$ — чвф; тогда

 $\psi(x) = \psi(c^k(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)))$ также является чвф.

2,3) Рассматриваются аналогично случаю (1).

4) (\Rightarrow) Пусть A — вычислимое множество. Следовательно, $\chi_A(x)$ — вычислимая функция, а вместе с ней и $\chi_B(x_1,x_2,\ldots,x_k)=\chi_A(c^k(x_1,x_2,\ldots,x_k))$ также является вф. Таким образом, B — вычислимое отношение.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x)$ — частично вычислимая функция, то и $\psi(c^k(x_1,x_2,\dots,x_k))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

 (\Leftarrow) Пусть теперь $\psi(c^k(x_1,x_2,\ldots,x_k))$ — чвф; тогда

 $\psi(x) = \psi(c^k(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)))$ также является чвф.

2,3) Рассматриваются аналогично случаю (1).

4) (\Rightarrow) Пусть A — вычислимое множество. Следовательно, $\chi_A(x)$ — вычислимая функция, а вместе с ней и $\chi_B(x_1,x_2,\ldots,x_k)=\chi_A(c^k(x_1,x_2,\ldots,x_k))$ также является вф. Таким образом, B — вычислимое отношение.

 (\Leftarrow) Пусть χ_B — характеристическая функция множества B. Тогда

 $\chi_A(x)=\chi_B(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))=\chi_A(c^k(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))).$ Таким образом, A вычислимо.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин

Частично вычислимые функции

Доказательство.

1) (\Rightarrow) В самом деле, если $\psi(x)$ — частично вычислимая функция, то и $\psi(c^k(x_1,x_2,\ldots,x_k))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.

 (\Leftarrow) Пусть теперь $\psi(c^k(x_1,x_2,\ldots,x_k))$ — чвф; тогда

 $\psi(x) = \psi(c^k(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)))$ также является чвф.

2,3) Рассматриваются аналогично случаю (1).

4) (\Rightarrow) Пусть A — вычислимое множество. Следовательно, $\chi_A(x)$ — вычислимая функция, а вместе с ней и $\chi_B(x_1, x_2, \dots, x_k) = \chi_A(c^k(x_1, x_2, \dots, x_k))$ также является

функция, а вместе с неи и $\chi_B(x_1,x_2,\ldots,x_k)=\chi_A(c^*(x_1,x_2,\ldots,x_k))$ также являет вф. Таким образом, B — вычислимое отношение.

 (\Leftarrow) Пусть χ_B — характеристическая функция множества B. Тогда

 $\chi_A(x)=\chi_B(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))=\chi_A(c^k(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))).$ Таким образом, A вычислимо.

5) Рассматривается аналогично случаю (4).

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство.

- 1) (\Rightarrow) В самом деле, если $\psi(x)$ частично вычислимая функция, то и $\psi(c^k(x_1, x_2, \dots, x_k))$ также является чвф, как функция, полученная из частично вычислимых с помощью оператора суперпозиции.
- (\Leftarrow) Пусть теперь $\psi(c^k(x_1,x_2,\ldots,x_k))$ чвф; тогда
- $\psi(x) = \psi(c^k(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)))$ также является чвф.
- 2,3) Рассматриваются аналогично случаю (1).
- 4) (\Rightarrow) Пусть A —вычислимое множество. Следовательно, $\chi_A(x)$ вычислимая функция, а вместе с ней и $\chi_B(x_1, x_2, \dots, x_k) = \chi_A(c^k(x_1, x_2, \dots, x_k))$ также является
- вф. Таким образом, B вычислимое отношение.
- (\Leftarrow) Пусть χ_B характеристическая функция множества B. Тогда
- $\chi_A(x)=\chi_B(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))=\chi_A(c^k(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))).$ Таким образом, A вычислимо.
- 5) Рассматривается аналогично случаю (4).

Замечание С2.1.

Трансформации, описанные в леммах С2.9 и С2.10, взаимно обратны.

K примеру, $\psi_0 \in \operatorname{PCF}_k \overset{\operatorname{C2.9(1)}}{\mapsto} \psi_1 \in \operatorname{PCF}_1 \overset{\operatorname{C2.10(1)}}{\mapsto} \psi_2 \in \operatorname{PCF}_k$ и $\psi_0 \in \operatorname{PCF}_1 \overset{\operatorname{C2.10(1)}}{\mapsto} \psi_1 \in \operatorname{PCF}_k \overset{\operatorname{C2.9(1)}}{\mapsto} \psi_2 \in \operatorname{PCF}_1$ тождественны.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодировани машин Шёнфилла

Частично вычислимые функции Лемма С2.11.

Пусть $\varphi(x_0,x_1)$ — чвф и пусть $k\geqslant 1$. Тогда $\varphi(x_0,x_1)$ — универсальная, если и только если $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ также универсальная.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Лемма С2.11.

Пусть $\varphi(x_0,x_1)$ — чвф и пусть $k\geqslant 1$. Тогда $\varphi(x_0,x_1)$ — универсальная, если и только если $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ также универсальная.

Доказательство.

 $(\Rightarrow) \ \, \mathsf{Пусть}\ \, \varphi(x_0,x_1) \, - \, \mathsf{универсальная}\ \, \mathsf{чвф}; \ \, \mathsf{покажем}, \ \, \mathsf{что} \\ \, \varphi(x_0,c^k(x_1,x_2,\ldots,x_k)) \ \, \mathsf{является}\ \, \mathsf{также}\ \, \mathsf{универсальной}\ \, \mathsf{чвф}. \ \, \mathsf{B} \\ \mathsf{самом}\ \, \mathsf{деле}, \ \, \mathsf{пусть}\ \, \psi(x_1,x_2,\ldots,x_k) \, - \, \mathsf{чвф}; \ \, \mathsf{по}\ \, \mathsf{лемме}\ \, \mathsf{С2.9(1)}, \\ \psi'(x) = \psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x)) \, - \, \mathsf{чвф}\ \, \mathsf{и}, \ \, \mathsf{следовательно}, \\ \varphi(e_0,x) = \psi'(x) \ \, \mathsf{для}\ \, \mathsf{некоторого}\ \, e_0. \ \, \mathsf{Значит}, \\ \varphi(e_0,c^k(x_1,x_2,\ldots,x_k)) = \psi'(c^k(x_1,x_2,\ldots,x_k)) = \\ \psi(c_{k,1}(c^k(x_1,x_2,\ldots,x_k)),c_{k,2}(c^k(x_1,x_2,\ldots,x_k)),\ldots, \\ c_{k,k}(c^k(x_1,x_2,\ldots,x_k))) = \psi(x_1,x_2,\ldots,x_k). \\ \end{cases}$

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции Доказательство (продолжение).

 (\Leftarrow) Пусть $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ — универсальная чвф; покажем, что $\varphi(x_0,x_1)$ также универсальная чвф. Пусть $\theta(x)$ — чвф; по лемме C2.10(1), $\theta'(x_1,x_2,\ldots,x_k) = \theta(c^k(x_1,x_2,\ldots,x_k))$ также является чвф. Следовательно, $\varphi(e_1,c^k(x_1,x_2,\ldots,x_k)) = \theta'(x_1,x_2,\ldots,x_k)$ для некоторого e_1 . Значит, $\varphi(e_1,x) = \varphi(e_1,c^k(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))) = \theta'(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x)) = \theta(c^k(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))) = \theta(c^k(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))) = \theta(x).$

Лекция С2 Машины Шёнфилда и частично вычислимые функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

Доказательство (продолжение).

(\Leftarrow) Пусть $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ — универсальная чвф; покажем, что $\varphi(x_0,x_1)$ также универсальная чвф. Пусть $\theta(x)$ — чвф; по лемме C2.10(1), $\theta'(x_1,x_2,\ldots,x_k)=\theta(c^k(x_1,x_2,\ldots,x_k))$ также является чвф. Следовательно, $\varphi(e_1,c^k(x_1,x_2,\ldots,x_k))=\theta'(x_1,x_2,\ldots,x_k)$ для некоторого e_1 . Значит, $\varphi(e_1,x)=\varphi(e_1,c^k(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x)))=\theta'(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))=\theta(c^k(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x)))=\theta(x)$.

Лемма С2.12.

Пусть $k\geqslant 1$ и пусть $\varphi(x_0,x_1,x_2,\ldots,x_k)$ — чвф. Тогда $\varphi(x_0,x_1,\ldots,x_k)$ — универсальная, если и только если $\varphi(x_0,c_{k,1}(x_1),c_{k,2}(x_1),\ldots,c_{k,k}(x_1))$ также универсальная.

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирование машин Шёнфилда

Частично вычислимые функции

```
Доказательство.
(⇒) Пусть \varphi(x_0, x_1, \dots, x_k) — универсальная чвф; покажем, что
\varphi(x_0, c_{k,1}(x_1), c_{k,2}(x_1), \dots, c_{k,k}(x_1)) также универсальная чвф. Пусть
\psi(x) — чвф; по лемме C2.10(1), \psi'(x_1, x_2, \dots, x_k) = \psi(c^k(x_1, x_2, \dots, x_k))
также является чвф. Тогда \varphi(e_0, x_1, x_2, \dots, x_k) = \psi'(x_1, x_2, \dots, x_k) для
некоторого ео и, следовательно,
\varphi(e_0, c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)) = \psi'(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)) =
\psi(c^k(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x))) = \psi(x).
(\Leftarrow) Пусть \varphi(x_0, c_{k,1}(x_1), c_{k,2}(x_1), \dots, c_{k,k}(x_1)) — универсальная чвф;
покажем, что \varphi(x_0, x_1, \dots, x_k) также универсальная чвф. Пусть
\theta(x_1, x_2, \dots, x_k) — чвф; по лемме C2.9(1),
\theta'(x) = \theta(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)) также является чвф и,
следовательно, \varphi(e_1, c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x)) = \theta'(x) для некоторого
e_1. Значит, \varphi(e_1, c_{k,1}(c^k(x_1, x_2, \dots, x_k)), c_{k,2}(c^k(x_1, x_2, \dots, x_k)), \dots,
c_{k,k}(c^k(x_1,x_2,\ldots,x_k))) = \theta'(c^k(x_1,x_2,\ldots,x_k)) = \theta(c_{k,1}(c^k(x_1,x_2,\ldots,x_k)))
(x_k), c_{k,2}(c^k(x_1, x_2, \dots, x_k)), \dots, c_{k,k}(c^k(x_1, x_2, \dots, x_k))) =
\theta(x_1, x_2, \ldots, x_k).
```

Не-вычислимые функции

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодировани машин Шёнфилда

Частично вычислимые функции

Следствие С2.2.

Каково бы ни было $k\geqslant 1$, существует всюду определённая k-местная функция, принимающая значения $\subseteq\{0;1\}$, не являющаяся вычислимой.

Не-вычислимые функции

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции

Следствие С2.2.

Каково бы ни было $k\geqslant 1$, существует всюду определённая k-местная функция, принимающая значения $\subseteq \{0;1\}$, не являющаяся вычислимой.

Доказательство.

Из леммы C2.10(1) вытекает, что достаточно привести пример одноместной такой функции. Пусть $F(x_0,x_1)$ — чвф, универсальная для семейства всех унарных чвф, принимающих значения $\subseteq \{0;1\}$, и пусть $X_0 = \{e|\lambda x.F(e,x)$ вычислима $\}$. Множество X_0 счётно как бесконечное подмножество счётного множества. Возьмём $f_0:\omega \xrightarrow{1:1} X_0$ и положим $f(x) = F(f_0(I(x)), r(x))$. Отметим, что функция f(x) всюду определена.

Не-вычислимые функции

Лекция С2
Машины
Шёнфилда и
частично
вычислимые
функции

Вадим Пузаренко

Доказательство (окончание).

Кодирование машин Шёнфилда

Частично вычислимые функции Если бы f(x) была вычислимой, то и f(c(x,y)) также была бы вычислимой. Однако в этом случае $f(c(x,y)) = F(f_0(I(c(x,y))), r(c(x,y))) = F(f_0(x),y)$ была бы вычислимой функцией, универсальной для семейства всех одноместных вычислимых функций, принимающих значения $\subseteq \{0;1\}$, противоречие предложению C2.3.

Лекция С2 Машины Шёнфилда и частично вычислимые функции

> Вадим Пузаренко

Кодирования машин Шёнфилда

Частично вычислимые функции Спасибо за внимание.