Chapter 28

Risk Analysis

Slide Set to accompany

Software Engineering: A Practitioner's Approach, 7/e

by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction with *Software Engineering: A Practitioner's Approach*, 7/e. Any other reproduction or use is prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student use.

- Reactive Risks vs Proactive Risks
- Risk Strategies
- Software Risks
- Risk Identification
- Risk projection
- Risk refinement
- RMMM

Project Risks

Reactive Risk Management

- project team reacts to risks when they occur
- mitigation—plan for additional resources in anticipation of fire fighting
- fix on failure—resource are found and applied when the risk strikes
- crisis management—failure does not respond to applied resources and project is in jeopardy

Proactive Risk Management

- formal risk analysis is performed
- organization corrects the root causes of risk
 - TQM concepts and statistical SQA
 - examining risk sources that lie beyond the bounds of the software
 - developing the skill to manage change

Software Risks

- Project Risks
- Technical Risks
- Business Risks
- Known Risks
- Predictable Risks
- Unpredictable Risks

Risk Identification

- Product size—risks associated with the overall size of the software to be built or modified.
- **Business impact**—risks associated with constraints imposed by management or the marketplace.
- Customer characteristics—risks associated with the sophistication of the customer and the developer's ability to communicate with the customer in a timely manner.
- *Process definition*—risks associated with the degree to which the software process has been defined and is followed by the development organization.
- **Development environment**—risks associated with the availability and quality of the tools to be used to build the product.
- *Technology to be built*—risks associated with the complexity of the system to be built and the "newness" of the technology that is packaged by the system.
- Staff size and experience—risks associated with the overall technical and project experience of the software engineers who will do the work.

Assessing Project Risk-I

- Have top software and customer managers formally committed to support the project?
- Are end-users enthusiastically committed to the project and the system/product to be built?
- Are requirements fully understood by the software engineering team and their customers?
- Have customers been involved fully in the definition of requirements?
- Do end-users have realistic expectations?

Assessing Project Risk-II

- Is project scope stable?
- Does the software engineering team have the right mix of skills?
- Are project requirements stable?
- Does the project team have experience with the technology to be implemented?
- Is the number of people on the project team adequate to do the job?
- Do all customer/user constituencies agree on the importance of the project and on the requirements for the system/product to be built?

Risk Components

- *performance risk*—the degree of uncertainty that the product will meet its requirements and be fit for its intended use.
- *cost risk*—the degree of uncertainty that the project budget will be maintained.
- support risk—the degree of uncertainty that the resultant software will be easy to correct, adapt, and enhance.
- *schedule risk*—the degree of uncertainty that the project schedule will be maintained and that the product will be delivered on time.

Risk Projection

- Risk projection, also called risk estimation, attempts to rate each risk in two ways
 - the likelihood or probability that the risk is real
 - the consequences of the problems associated with the risk, should it occur.
- The are four risk projection steps:
 - establish a scale that reflects the perceived likelihood of a risk
 - delineate the consequences of the risk
 - estimate the impact of the risk on the project and the product,
 - note the overall accuracy of the risk projection so that there will be no misunderstandings.

Building a Risk Table

Risk	Probability	Impact	RMM M
			Risk Mitigation Monitoring & Management

Building the Risk Table

- Estimate the probability of occurrence
- Estimate the impact on the project on a scale of 1 to 5, where
 - \blacksquare 1 = low impact on project success
 - 5 = catastrophic impact on project success
- sort the table by probability and impact

Risk Exposure (Impact)

The overall *risk exposure*, RE, is determined using the following relationship [Hal98]:

$$RE = P \times C$$

where

P is the probability of occurrence for a risk, andC is the cost to the project should the risk occur.

Risk Exposure Example

- **Risk identification.** Only 70 percent of the software components scheduled for reuse will, in fact, be integrated into the application. The remaining functionality will have to be custom developed.
- **Risk probability.** 80% (likely).
- **Risk impact.** 60 reusable software components were planned. If only 70 percent can be used, 18 components would have to be developed from scratch (in addition to other custom software that has been scheduled for development). Since the average component is 100 LOC and local data indicate that the software engineering cost for each LOC is \$14.00, the overall cost (impact) to develop the components would be 18 x 100 x 14 = \$25,200.
- **Risk exposure.** RE = $0.80 \times 25,200 \sim $20,200$.

Risk Mitigation, Monitoring, and Management

- mitigation—how can we avoid the risk?
- monitoring—what factors can we track that will enable us to determine if the risk is becoming more or less likely?
- management—what contingency plans do we have if the risk becomes a reality?

pisk information sheet

Risk information sheet

Risk ID: P02-4-32

Date: 5/9/09

Prob: 80%

Impact: high

Description:

Only 70 percent of the software components scheduled for reuse will, in fact, be integrated into the application. The remaining functionality will have to be custom

Refinement/context:

Subcondition 1: Certain reusable components were developed by a third party with no knowledge of internal design standards.

Subcondition 2: The design standard for component interfaces has not been solidified and may not conform to certain existing reusable components. Subcondition 3: Certain reusable components have been implemented in a language that is not supported on the target environment.

Mitigation/monitoring:

- 1. Contact third party to determine conformance with design standards.
- 2. Press for interface standards completion; consider component structure when deciding on interface protocol.
- 3. Check to determine number of components in subcondition 3 category; check to determine if language support can be acquired.

Management/contingency plan/trigger:

RE computed to be \$20,200. Allocate this amount within project contingency cost. Develop revised schedule assuming that 18 additional components will have to be custom built; allocate staff accordingly.

Trigger: Mitigation steps unproductive as of 7/1/09.

Current status:

5/12/09: Mitigation steps initiated.

Assigned: These slides are designed to accompany Software Engineering: A Practitioner's Approach 74

B. Laster

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.