Линейные непрерывные операторы в евклидовом пространстве.

 $\varepsilon_1, \varepsilon_2$ — два евклидовых пространства. $A : \varepsilon_1 \to \varepsilon_2$ — линейный оператор. Иначе говоря $\forall \alpha_{1,2} \ \forall f_{1,2} \in \varepsilon_1 \ A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 A(f_1) + \alpha A(f_2)$.

Определение 1. A непрерывна в $f_0 \in \varepsilon_1 \iff \forall \varepsilon > 0 \ \exists \delta_0(\varepsilon) \ \forall f \in \varepsilon_1 \colon \|f - f_0\| \le \delta_0(\varepsilon) \Rightarrow \|Af - Af_0\| \le \varepsilon$.

Из непрерывность в f_0 следует непрерывность оператора $A \ \forall g \in \varepsilon_1$. Так как $\forall f \in \varepsilon_1 \ \|f - g\| \le \delta_0(\varepsilon)$, то

$$||Af - Ag|| = ||A(f - g) + A(f_0) - A(f_0)|| = ||A(f_0 + (f - g) - A(f_0))|| \le \delta_0(\varepsilon)$$

 \Rightarrow непрерывна в g. В частности при g=0

$$||Af|| \le \varepsilon \quad \forall ||f|| \le \delta_0(\varepsilon)$$

Поэтому δ_0 — универсальное число.

Пусть $\varepsilon_1 = 1$, $\delta_0(1)$. Тогда $\forall f \neq 0$:

$$\left\| \frac{f}{\|f\|} \delta_0(1) \right\| = \delta_0(1)$$

Подставим это выражение под знак оператора.

$$||A(\frac{f}{||f||}\delta_0(1))|| \le 1 \iff \frac{\delta_0(1)}{||f||}||Af|| \le 1$$

⇒ оцениваем норму образа через норму прообраза:

$$\forall f \in \varepsilon_1 \ ||A(f)|| \le \frac{||f||}{\delta_0(1)} \Rightarrow \forall f, g \in \varepsilon_1 ||A(f-g)|| \le \frac{1}{\delta_0(1)} ||f-g||$$

Это липшецевость оператора A на ε_1 с $L=\frac{1}{\delta_0(1)}$. Рассмотрим наименьшую константу Липшеца и назовём её нормой.

Определение 2. $A: \varepsilon_1 \to \varepsilon_2$, такой что $A \neq 0$ — линейный и непрерывный оператор, то

$$||A|| = \inf\{L > 0 \mid ||Af|| \le L||f|| \quad \forall f \in \varepsilon_1\}$$

Очевидно, что это так же равно

$$\sup_{f \in \varepsilon_1, f \neq 0} \frac{\|Af\|}{\|f\|} = L_0, \quad L_0 \le L$$

Пример 1. Линейный разрывный оператор. $\varepsilon_1 = \{f \in C^1[0,1]\}$ со скалярным произведением

$$(f,g) = \int_{0}^{1} f(t)\overline{g(t)}dt$$

Также $\varepsilon_2 = \mathbb{C}$. Пусть $A : \varepsilon_1 \to \varepsilon_2$, $A(f) = f'(0) \ \forall f \in \varepsilon_1$. Конечность нормы — критерий непрерывности. У этого оператора норма бесконечность: возмём, например, $f_n(x) = \sin nx \in \varepsilon_1$

$$A(f_n) = n$$

По норме это будет

$$||A(f_n)|| = |n|$$

Рассмотрим теперь норму f_n :

$$||f_n|| = \sqrt{\int_0^1 \sin^2 nx dx} \le 1 \Rightarrow ||A|| = \infty$$

Иначе говоря

$$||A|| \ge \frac{|n|}{||f_n||} \ge n \to \infty$$

Или по-другому $g_n = \frac{1}{\sqrt{n}} f_n$ по в ε_1 стремится к нулю

$$||g_n||_{\varepsilon_1} \le \frac{1}{\sqrt{n}}$$

Тогда $A(g_n) = \sqrt{n}$, поэтому

$$||Ag_n|| = \sqrt{n} \to \infty$$

Дадим теперь два других определения операторной нормы.

$$||A|| = \sup_{f \neq 0} \frac{||Af||}{||f||} \tag{1}$$

$$||A|| = \sup_{\|f\|=1} ||Af||$$
 (2)

$$||A|| = \sup_{\|f\| \le 1} ||Af|| \tag{3}$$

Покажем их равенство. (1) \geq (2), так как ||f|| = 1 является сужением. С другой стороны $\sup \left\| A \frac{f}{\|f\|} \right\| \leq$ (2) \Rightarrow (1) = (2). (3) \leq (2) так как при $f \neq 0$ и $||f|| \leq 1$ имеем

$$||Af|| = ||f|| \left| \left| A \frac{f}{||f||} \right| \right|$$

где $\left\|A\frac{f}{\|f\|}\right\| \leq \sup_{\|\phi\|=1} \|A\phi\|$. Но (2) \leq (3) так как является сужением, поэтому (2) = (3).

Пример 2. Пусть $\varepsilon_1=\mathbb{C}^n,\ \varepsilon_2=\mathbb{C}^m.\ A:\mathbb{C}^n\to\mathbb{C}^m$ задаётся комплексной матрицей $m\times n.\ Af\in\mathbb{C}^m\ \forall f\in\mathbb{C}^n$ есть умножение матрицы на столбец.

$$||Af||_{\mathbb{C}^m}^2 = \overline{Af}^T Af = \overline{f}^T \overline{A}^T Af$$

где обозначили $M=\overline{A}^TA$. $M^*=\overline{M}^T=M\Rightarrow M\in\mathbb{C}^{n\times n}$. Следовательно $\exists U:\mathbb{C}^n\to\mathbb{C}^n$ — унитарная матрица, то есть сохраняющая норму.

$$U^{-1}MU = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}, \quad \lambda_i \in \mathbb{R}$$

Заметим, что $\overline{f}^T M f = \|Af\|^2 \ge 0$. $\|Uf\| = \|f\|$, поэтому можно перейти к базису из собственных векторов. f = Ug, тогда

$$||Af||^2 = \overline{Ug}^T M U g = \overline{g}^T \overline{U}^T M U g$$

но U — унитарная, следовательно $U^{-1} = U^* = \overline{U}^T \Rightarrow$

$$\overline{U}^T M U = U^{-1} M U = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

 $\Rightarrow \overline{g}^T \overline{U}^T M U g = \sum_{i=1}^n \lambda_i |g_i|^2$. Обозначим теперь $\lambda_{max} = \max \lambda_i$, тогда

$$\sum_{i=1}^{n} \lambda_i |g_i|^2 \le \lambda_{max} \sum_{i=1}^{n} |g_i|^2 = \lambda_{max} ||f||^2$$

Тогда $\|Af\| \le \sqrt{\lambda_{max}} \|f\|$ Обозначим $\tilde{g}_k = \delta_{kk_*}, \ \lambda_{max} = \lambda_{k_*}, \ \tilde{f} = U\tilde{g}$ и из унитарности U получаем $\|\tilde{f}\| = \|\tilde{g}\| = 1$ и

$$\sqrt{\lambda_{max}} = ||A\tilde{f}|| \le ||A|| \le \sqrt{\lambda_{max}} \Rightarrow ||A|| = \sqrt{\lambda_{max}(\overline{A}^T A)}$$

смысловые ошибки и некоторые потери. Актуальная версия по ссылке

Пример 3. $\varepsilon_1 = \varepsilon_2 = L_2(G) = H$ — гильбертово пространство, где $G \in \mathbb{R}^m$ — измеримое множество. Пусть $A: L_2(G) \to L_2(G)$,

$$(Af)(x) = \int_{G} K(t, x) f(t) dt$$

где K(t,x) — интегральное ядро. $K \in L_2(G \times G)$

$$||K||_{L_2G\times G}^2 = \iint_{G\times G} |K|^2 dt dx \le +\infty$$

Рассмотрим норму ||Af||

$$||Af||^2 = \int_G |(Af)(x)|^2 dx = \int_G dx \left| \int_G dt K(t, x) f(t) \right|^2$$

где модуль интеграла по Коши — Буняковскому в L_2 меньше или равен

$$\int_{G} |K(t,x|^{2}dt \int_{G} |f(t)|^{2}dt$$

поэтому

$$||Af||^2 \le \left(\iint_{G \times G} dx dt |K|^2 \right) ||f||^2$$

Итого оценили операторную норму:

$$||Af||_{L_2G} \le ||K||_{L_2(G\times G)} ||f||_{L_2(G)} \quad \forall f \in L_2(G)$$

 \Rightarrow получаем важное соотношение

$$||A|| \le ||K||_{L_2(G \times G)}$$

Свойства операторной нормы, $A, B : \varepsilon_1 \to \varepsilon_2$

- 1. $||A + B|| \le ||A|| + ||B||$
- 2. $\|\alpha A\| = |\alpha| \|A\|$
- 3. $||A|| = 0 \Leftrightarrow Af = 0 \ \forall f \in \varepsilon_1$

Докажем эти свойства.

1.
$$\|(A+B)f\| \le \|A(f)\| + \|B(f)\| \le (\|A\| + \|B\|)\|f\| \Rightarrow \|A+B\| \le \|A\| + \|B\|$$

$$2. \ \|(\alpha A)f\| = \|\alpha A(f)\| = |\alpha| \|A(f)\|, \ \sup_{\|f\|=1} \|(\alpha A)f\| = |\alpha| \sup_{\|f\|=1} \|Af\|$$

3. Очевидно

Также можно выделить как отдельное свойство 4. Пусть заданы два оператора $A: \varepsilon_1 \mapsto \varepsilon_2, B: \varepsilon_2 \mapsto \varepsilon_3$, Обозначим оператор $T=B \bullet A$, действующий как $T(f)=B(A(f)) \ \forall f \in \varepsilon_1$. Тогда

$$||T(f)|| = ||B(A(f))|| \le ||B|| ||A(f)|| \le ||B|| ||A|| ||f|| \Rightarrow \boxed{||T|| \le ||B|| ||A||}$$

Следствие. $A: \varepsilon \to \varepsilon, A$ — линейный непрерывный оператор. Тогда можно формально рассмотреть $A^n f = A(A(\ldots A(f))\ldots)$, где A применён n раз — произведение в пространстве линейный операторов.

Естественно получается $||A^n|| \le ||A||^n$ по индукции из пункта 4.

Наблюдение . $F: H \mapsto \mathbb{C}$ — линейный непрерывный функционал. По теореме Pucca — Фреше $\exists !h \in H \colon F(f) = (f,h) \ \forall f \in H \colon C$ ледовательно $\|F\|_{oператорная} = \|h\|_{H}$. Получаем изометрический (так как сохраняет норму) изоморфизм между гильбертовым пространством и пространством непрерывных линейных операторов. В квантмехе это называют отождествление гильбертового пространства и наблюдателей над ним. Если ввести $H^* = \{\text{все } F: H \mapsto \mathbb{C} \text{ линейные и непрерывные функционалы}\}$, то имеется линейная биекция (изоморфизм) сохраняющая норму по теореме Pucca — Фреше. Норма сохраняется так как

$$||F|| = \sup_{\|f\|=1} |(f,h)| = ||h||$$

в прямую сторону по неравенству Коши — Буняковского, а в обратную если взять вектор $f=\frac{h}{\|h\|}$ при $h\neq 0$, то результат будет не меньше $\|h\|$.

Два типа сходимости для последовательности операторов. $\{A_n\}: \varepsilon_1 \to \varepsilon_2, \{T_n\}: \varepsilon_2 \to \varepsilon_1$ — линейные непрерывные функционалы.

Говорят, что $A_n \to T$ по операторной норме, если $||A_n - T|| \to 0$ $n \to \infty$. Фактически это равномерная сходимость на сфере или на шаре, при чём на любом.

$$||A_n - T|| \to 0 \Leftrightarrow A_n(f) \rightrightarrows T(f) \quad ||f|| < R \,\forall R$$

потому что

$$||A_n(f) - T(f)|| \le ||A_n - T|| ||f||$$

где $||A_n - T|| \to 0$ и $||f|| \le R$. И наоборот, если

$$\forall n \geq N(\varepsilon) \ \forall ||f|| \leq 1 \ ||A_n f - T f|| \leq \varepsilon$$

то $\sup_{\|f\|\leq 1} \|A_n f - T f\| = \|A_n - T\|$, получили сходимость по операторной норме.

В итоге сходимость по норме синоним сходимости на произвольном шаре.

 $A_n \to T$ сходится поточечно, если $||A_n f - T f|| \to 0 \ \forall f \in \varepsilon_1$. Ясно, что если $A_n \to T$ по операторной норме, то очевидно сходится и поточечно. Обратное неверно.

Упражнение 1. Придумать пример, когда $A_n : \varepsilon_1 \to \varepsilon_2$ линейно непрерывный поточечно сходится к разрывному.

Пусть
$$||T|| = \lim_{n \to \infty} ||A_n||$$
 тогда

$$||A_n - A_m|| \le ||A_n - T|| + ||A_m - T||$$

Получается, что

$$||T|| - ||A_n|| \le ||T - A_n|| \to 0$$

если есть сходимость по операторной норме.

Теорема 1 (Банаха — Штейнгаусса). Пусть H — гильбертово пространство, ε — евклидово, $A_n: H \mapsto \varepsilon$, A_n поточечно сходится к T, где $T: H \mapsto \varepsilon$ линейный оператор, тогда T — линейный непрерывный оператор, $\{A_n\}$ — ограниченная числовая последовательность, $\|T\| \leq \underline{\lim}_{n \to \infty} \|A_n\|$. Доказательство. Шаг первый. Если $\forall f \in H \{A_n f\}$ ограничена в ε , тогда

Доказательство. Шаг первый. Если $\forall f \in H \ \{A_n f\}$ ограничена в ε , тогда $\{\|A_n\|\}$ ограничена. Докажем это. Посмотрим на множество $\Gamma_N = \{f \in H \mid \|A_n f\| \leq N \quad \forall n \in \mathbb{N}\}$ $N \in \mathbb{N}$. Так как последовательность $\{\|A_n f\|\}$ ограничена в ε , то такая последовательность не будет превосходить какого-нибудь числа. Следовательно если взять числа N и смотреть на функции, которые отвечают Γ_N , то перебирая все N можно перебрать все функции. $\bigcup_{N=1}^{\infty} \Gamma_N = H$. Теперь, воспользуясь полнотой, попытаемся доказать, что хотя бы в одной из этих множеств попадает шарик. Если $\exists f_0 \in H$ и $\exists N_0$ и $r_0 > 0$ так, что $B_{r_0}(f_0) = \{f \in H \mid \|f - f_0\| \leq r_0\} \subset \Gamma_{N_0}$, тогда $\|A_n f\| \leq N_0$ если $\forall f \mid \|f - f_0\| \leq r_0$. Если взять $\|w\| = 1$ и рассмотреть $\|A_n w\|$, то $f_0 + r_0 w \in B_{r_0}(f_0)$ (к f_0 прибавили вектор единичной длины, умноженный на радиус шара и остались в нём), тогда, учитывая $\|A_n f_0\| \leq R_0$

$$\frac{1}{r_0} \|A_n(f_0 + r_0 w) - A_n f_0\| \le \frac{1}{r_0} (N_0 + \|A_n f_0\|) \le \frac{N_0 + R_0}{r_0}$$

для любого вектора на единичной сфере. Следовательно

$$||A_n|| \le \frac{N_0 + R_0}{r_0}$$

Если удастся в Γ_N впихнуть шарик, то можно оценить любой элемент сферы. Пусть в любое Γ_N нельзя впихнуть никакой шар положительного радиуса. Тогда рассмотрим шар в центре 0 радиуса 1 и рассмотрим Γ_1 , в который нельзя впихнуть какой-либо шар. Рассмотрим разность этого открытого шара и Γ_1 . Получим открытое множество, в нём любая точка входит вместе с окрестностью, а значит можно выбрать шар радиуса $r_1 < \frac{1}{2}$, непересекающий Γ_1 . Рассмотрим теперь этот шар и множество Γ_2 , в которое также нельзя запихнуть ни один шар. Опять смотрим их разность (открытое множество) и выбираем шар $r_2 < \left(\frac{1}{2}\right)^2$ и так далее. Получаем последовательность вложенных шаров $B_{r_1}(f_1) \supset B_{r_2}(f_2)$ и $\forall k \ B_{r_k} \cap \Gamma_k = \varnothing$, а радиусы стремяться к нулю. Центры этих шаров образуют фундаментальную последовательность

$$||f_k - f_{k+p}|| \le \frac{1}{2^k} \le \varepsilon \ \forall k \ge k(\varepsilon)$$

Пользуяся полнотой получаем, что ряд $f_k \to f_*$. сходится в H. Получаем парадокс: $f_{k+p} \in B_{r_k}(f_k)$, при $p \to \infty$ $f_{k+p} \to f_* \Rightarrow f_* \in B_{r_k}(f_k)$ $\forall k$. Но каждый такой шар построен так, что $B_{r_k} \cap \Gamma_k = \emptyset$, следовательно $f_* \notin \Gamma_k \ \forall k$, но всё пространство есть объединение в том числе и f_* , получили противоречие с условием.

Следствие шага 1: Если $\sup_{n \in N} \|A_n\| = \infty, A_n$ — линейный непрерывный оператор, то

$$\exists f_* \in H \colon \sup_{n \in \mathbb{N}} \|A_n f_*\| = \infty$$

Шаг второй. Если есть поточечная сходимость из полного пространства, то тогда поточечный предел — непрерывный ограниченный оператор. $A_n f \to Tf \ \forall f \ \mathbf{B} \ \varepsilon$, следовательно $\{A_n f\}$ ограниченна $\mathbf{B} \ \varepsilon \ \forall f \Rightarrow \mathbf{n}$ опиагу один $\sup_{n \in \mathbb{N}} \|A_n\| < +\infty$. Тогда

$$||Tf + A_n f - A_n f|| \le ||Tf - A_n f|| + ||A_n f||$$

где $||Tf - A_n f|| \le 1$ при $n \ge N(f)$ и $||A_n f|| \le ||A_n|| ||f||$. Пусть ||f|| = 1 (f с единичной сферы, а $||A_n|| \le R$). Следовательно $||Tf|| \le 1 + R$ $\forall ||f|| = 1$ и значит $||T|| \le 1 + R$. Поэтому поточечный предел последовательности будет непрерывным. Во-вторых, $\forall ||f|| = 1$, $\forall \varepsilon > 0$ $\exists N(\varepsilon, f) : \forall n \ge N(\varepsilon, f) ||A_n f - Tf|| \le \varepsilon \Rightarrow$

$$||Tf|| \le \varepsilon + ||A_n|| ||f||$$

Нижний предел последовательности с добавкой превосходит $||A_n||$, начиная с некоторого n:

$$\forall \varepsilon > 0 \ \forall M(\varepsilon) > 0 \ \exists n \ge M(\varepsilon) \ \underline{\lim}_{k \to \infty} \|A_k\| + \varepsilon \ge \|A_n\|$$

Если возмём $M = N(\varepsilon, f)$, то

$$\varepsilon + ||A_n|||f|| \le \underline{\lim}_{k \to \infty} ||A_k|| + 2\varepsilon$$

Отсюда взяв супремум по f получаем, что

$$||T|| \le \underline{\lim}_{k \to \infty} ||A_k|| + 2\varepsilon \quad \varepsilon \to +0$$

Доказательство закончено.

Пример 4. H — гильбертово пространство, $\{e_n\}_{n=1}^{\infty}$ — ортонормированный базис в H. $\forall f \in H$

$$f = \sum_{k=1}^{\infty} (f, e_k) e_k$$

это ни что иное $P_k(f)$ — ортопроектор на линейную оболочку e_k . Очевидно $\|P_k\|=1$. Возникает ряд из проекторов

$$I = \sum_{k=1}^{\infty} P_k$$

где If = f — тождественый оператор из H в H, ||I|| = 1. Это обозначение символизирует собой ряд Фурье:

$$f = \sum_{k=1}^{\infty} P_k(f)$$

Это справедливо для любого f, следовательно получается, что

$$S_n = \sum_{k=1}^n P_k \to I$$

поточечно, потому что

$$S_n(f) = \sum_{k=1}^n (f, e_k) e_k \to f$$
 в H при $n \to \infty$

А сходимости по норме здесь нет. Действительно

$$||I - \sum_{k=1}^{n} P_k|| \ge ||(I - \sum_{k=1}^{n} P_k)e_{n+1}||$$

где e_{n+1} с единичной сферы, а супремум по единичной сфере даёт норму. Но $Ie_{n+1}=e_{n+1},$ а $P_ke_{n+1}=0$ при k< n+1. Получаем

$$||I - \sum_{k=1}^{n} P_k|| = ||e_n|| = 1 \quad \forall n$$

То есть никакой сходимости по норме нет. Но поточечная есть, она из неё следует факт, что последовательность частичных сумм S_n ограничена. Оценивать норму суммой норм проекторов плохо, так как оценка стремится к бесконечности. Лучше воспользоваться теоремой Банаха — Штейнгаусса: S_n по норме меньше некого числа R.

Спектр и резольвентное множество линейного непрерывного оператора в гильбертовом пространстве $A: H \mapsto H$.

Введём оператор $A_{\lambda} = A - \lambda I$, $\lambda \in \mathbb{C}$. Резольвентное множество

$$\rho(A) = \{ \lambda \in \mathbb{C} \mid \exists (A_{\lambda})^{-1} : H \mapsto H \}$$

Замечание. Пусть $\varepsilon_1, \varepsilon_2$ — два евклидовых пространства и линейный оператор $T: \varepsilon_1 \mapsto \varepsilon_2$. Обратный оператор отображает образ $T^{-1}: \operatorname{Im} T \mapsto \varepsilon_1 \Leftrightarrow \ker T = \{0\}$. Тогда существует обратный $T^{-1}: \varepsilon_2 \rho \varepsilon_1 \Leftrightarrow \ker T = \{0\}$ и $\operatorname{Im} T = \varepsilon_2$.

Тогда можно переписать определение резольвентного множества как

$$\rho(A) = \{\lambda \in \mathbb{C} \mid \ker A_{\lambda} = 0 \text{ и Im } A_{\lambda} = H\}$$

Более того в гильбертовом пространстве обратный оператор автоматически непрерывен.

Замечание (Теорема Банаха об обратном операторе). $T: H_1 \mapsto H_2 -$ линейный непрерывный оператор, где $H_{1,2}$ — гильбертовы пространства. Тогда $\exists ! T^{-1}: H_2 \mapsto H_1$ линейный и непрерывный если, и только если $\ker T = 0$ и $\operatorname{Im} T = H_2$.

 $\lambda \in \rho(A) \Leftrightarrow \exists (A_{\lambda})^{-1} : H \mapsto H$ — непрерывный оператор. $(I - \mu A) = -\mu A_{\frac{1}{\mu}}$, то

$$\frac{1}{\mu} \in \rho(A) \Leftrightarrow \exists (I - \mu A)^{-1} = -\frac{1}{\mu} (A_{\frac{1}{\mu}})$$

где обозначим $(I - \mu A)^{-1} = \rho_A(\mu)$ — резольвента.

Определение 3. Спектр оператора $\sigma(A) = \mathbb{C} \setminus \rho(A)$. Пусть $\lambda \in \sigma(A)$. Это эквивалентно одному из двух случаев: либо $\ker A_{\lambda} \neq \{0\}$ — точечный спектр, состоящий из собственных значений $(\sigma_P(A))$ (точечный спектр может образовывать множество мощности континум), либо $\ker A_{\lambda} = \{0\}$, но $\operatorname{Im} A_{\lambda} \neq H$ — непрерывный спектр $(\sigma_C(A))$ (непрерывный спектр может быть из отдельных точек). В случае непрерывного спектра обратный оператор существует A_{λ}^{-1} : $\operatorname{Im} A_{\lambda} \mapsto H$ и даже может оказаться непрерывным, если (и только если) образ его замкнут.

Пример 5. когда обратный оператор непрерывный есть, а точка в спектре. Пусть H с ортонормированным базисом $\{e_k\}$.

$$f = \sum_{k=1}^{\infty} \alpha_k(f) e_k$$

где $\alpha_k(f)=(f,e_k)$. Пусть оператор A производит сдвиг: $Af=\sum_{k=1}^{\infty}\alpha_k(f)e_{k+1}$. Естественно

$$||f|| = ||Af|| = \sqrt{\sum_{k=1}^{\infty} |\alpha_k(f)|^2}$$

что получается из равенства Парсеваля. Для этого оператора $\ker A = \{0\}$, $\operatorname{Im} A = (\operatorname{Lin} e_1)^{\perp}$. Обратный оператор $A^{-1} : (\operatorname{Lin} e_1)^{\perp} \mapsto H$. Пусть $g \in (\operatorname{Lin} e_1)^{\perp}$, тогда

$$g = \sum_{k=2}^{\infty} \underbrace{\beta_k}_{(g,e_k)} e_k$$

отображается в

$$\sum_{k=1}^{\infty} \beta_{k+1} e_k$$

действием оператора A^{-1} . Получается $A^{-1}g = f \Leftrightarrow Af = g$, естественным

образом $||A^{-1}g|| = ||g|| \ \forall g \in (\operatorname{Lin} e_1)^{\perp}$, следовательно $||A^{-1}|| = 1$.

Теорема 2 (фон Неймана). Если $T: H \mapsto H$ — линейный и непрерывный так, что ряд

$$\sum_{n=0}^{\infty} ||T^n||$$

сходится, тогда

$$S_N = \sum_{n=0}^{N} T^n$$

сходится по операторной норме к некоторому оператору S — линейный непрерывный оператор

$$S = \sum_{n=0}^{\infty} T^n$$

причём $S = (I - T)^{-1}$.

Доказательство. Убедимся, что S_N обладает сходимостью. $S_N f$ — фундаментальная последовательность в $H \ \forall f \in H$, так как, учитывая $\|T^n\| \to 0$

$$||S_N f - S_{N+P} f|| = ||\sum_{n=N+1}^{N+P} T^n f|| \le \sum_{n=N+1}^{N+P} ||T^n|| ||f||$$

 $\Rightarrow \|S_N f - S_{N+P} f\| \to 0 \ N \to \infty$ равномерно по P. Раз фундаментальна в гильбертовом, значит сходится

$$S_N f \to S f$$

Тогда

$$||S_f|| = \lim_{N \to \infty} ||S_N f|| \le \lim_{N \to \infty} \sum_{k=1}^N ||T||^k ||f|| \le \sum_{k=1}^\infty ||T^k|| ||f||$$

Следовательно

$$||S|| \le \sum_{k=1}^{\infty} ||T^k||$$

отсюда S — линейный непрерывный оператор.

Теперь покажем, что он обратный. Надо доказать, что

$$\left\{ \begin{array}{l} (I-T)S = I \Rightarrow \operatorname{Im}(I-T) = H \\ S(I-T) = I \Rightarrow \ker(I-T) = 0 \end{array} \right\} \Rightarrow \exists (I-T)^{-1} : H \mapsto H$$

Рассмотрим $\forall f \in H$ действие оператора (I-T)Sf, где I-T — непрерывный

$$(I-T)Sf = (I-T)(\lim_{N\to\infty} S_N f) =$$

$$= \lim_{N\to\infty} ((I-T)S_N f) = \lim_{N\to\infty} ((I-T) \times$$

$$\times \sum_{n=0}^{N} T^k f) = \lim_{N\to\infty} (f - T^{N+1} f)$$

Но

$$||T^{N+1}f|| \le ||T^{N+1}|| ||f|| \to 0$$

Отсюда

$$(I-T)S = I$$

Рассмотрим теперь действие оператора S(I-T)f

$$S(I-T)f = \lim_{N \to \infty} (S_N(I-T)f) = \lim_{N \to \infty} ((I-T^{N+1})f) = f$$

Таким образом теорема фон Неймана доказана.

Следствия . Пусть $A: H \mapsto H$ — линейный и непрерывный, тогда

1. $\forall \lambda \in \mathbb{C}$ такой, что $|\lambda| > \|A\| \Rightarrow \lambda \in \rho(A)$. При этом

$$(A_{\lambda})^{-1} = -\sum_{n=0}^{\infty} \frac{A^k}{\lambda^{k+1}}$$

причём ряд сходиться по операторной норме.

- 2. $\rho(A)$ открыто в \mathbb{C}
- 3. Функция от $\lambda (A_{\lambda})^{-1}$ непрерывна на $\rho(A)$ по операторной норме

4.
$$\forall \lambda \in \rho(A) \; \exists \lim_{\text{по операторной норме}} \frac{(A_{\lambda + \Delta \lambda})^{-1} - (A_{\lambda})^{-1}}{\Delta \lambda} = ((A_{\lambda})^{-1})^2$$