Математика для Data Science. Теория вероятностей. Шпаргалка

Содержание

Пятая неделя. Статистика	
Арифметика случайных величин и нормальное распределение	
Нормальное распределение	
Статистический тест	
ЗБЧ и ЦПТ	

Пятая неделя. Статистика

Арифметика случайных величин и нормальное распределение

Следующие формулы выполнены как для дискретных, так и для непрерывных случайных величин:

Математическое ожидание суммы. Математическое ожидание суммы двух случайных величин это сумма их математических ожиданий. То есть

$$E[X + Y] = E[X] + E[Y].$$

Дисперсия суммы. Если две случайных величины независимы, то дисперсия их суммы это сумма дисперсий. То есть

$$Var(X + Y) = Var(X) + Var(Y).$$

Сложение с константой. Для любой случайной величины X и любого числа $c \in \mathbb{R}$ выполнено

$$E[X+c] = E[X] + c$$

И

$$Var(X+c) = Var(X).$$

Умножение на константу. Для любой случайной величины X и любого числа $c \in \mathbb{R}$ выполнено

$$E[cX] = cE[X]$$

И

$$Var(cX) = c^2 Var(X).$$

Нормальное распределение

Нормальное распределение с математическим ожиданием 0 и дисперсией 1 обозначается N(0,1). Оно имеет такую функцию плотности распределения:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{1}{2} x^2\right)}$$

Нормальное распределение с математическим ожиданием μ и дисперсией σ^2 обозначается $N(\mu, \sigma^2)$. У него такая функция плотности распределения:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Случайная величина, имеющая распределение $N(\mu, \sigma^2)$ для каких-то μ и σ , называется нормально распределенией.

Правило двух и трех сигм. Пусть случайная величина ξ имеет нормальное распределение со средним μ и дисперсией σ^2 . Тогда:

- $P(\mu \sigma < \xi < \mu + \sigma) = 0.682 \dots \approx 0.68$
- $P(\mu 2\sigma < \xi < \mu + 2\sigma) = 0.954 \cdots \approx 0.95$. Другими словами, вероятность получить результат, отклоняющийся от μ хотя бы на 2σ , меньше 0.05.
- $P(\mu 3\sigma < \xi < \mu + 3\sigma) = 0.997 \cdots \approx 0.99$. Другими словами, вероятность получить результат, отклоняющийся от μ хотя бы на 3σ , меньше 0.01.

Утверждение. Сумма нескольких совместно независимых нормально распределённых случайных величин – это тоже нормально распределенная случайная величина.

Статистический тест

 $Peanusauus\ cлучайной\ величины\ -$ это конкретное число, которым стала эта случайная величина после измерения.

Шаблон статистических тестов

- 1. **Выборка.** Выборка это реализация набора случайных величин x_1, \ldots, x_n , то есть это n чисел. Обычно предполагают, что случайные величины x_1, \ldots, x_n совместно независимы и имеют одинаковое распределение.
- 2. **Гипотезы и предположения.** Выбор гипотез H_0 и H_1 , то есть сформулировать свой вопрос на языке теории вероятностей.
- 3. Статистика. Нам нужно как-то объединить величины x_1, \ldots, x_n , в одну случайную величину $T(x_1, \ldots, x_n)$. Эту величину называют *статистикой*. При условии что H_0 выполнена, нужно найти распределение случайной величины $T(x_1, \ldots, x_n)$.
- 4. **Уровень значимости.** Уровень значимости это число α отвечающее за вероятность ошибки первого рода. То есть за вероятность отвергнуть H_0 в случае, когда H_0 выполнена. Обычно берут $\alpha = 0.05$.
- 5. **Критическое множество.** Случайная величина $T(x_1, ..., x_n)$ принимает значения в \mathbb{R} . Нужно выделить подмножество $C_{\alpha} \subset \mathbb{R}$, по которому мы будем решать, принимать или отвергать H_0 . Вероятность попадания T в множество C_{α} должна быть равна α . Обычно в качестве C_{α} берут множества вида:
 - $[a, +\infty)$ если отклонение статистики T вверх свидетельствует в пользу H_1 .
 - $(-\infty,b]$ если отклонение статистики T вниз свидетельствует в пользу $H_1.$
 - $(-\infty, b] \cup [a, +\infty)$ если отклонение статистики T от какого-то значения в любую сторону свидетельствует в пользу H_1 .
- 6. Статистический критерий. Если реализация T не попала в множество C_{α} , то мы принимаем H_0 . Если T попала в множество C_{α} , то мы отвергаем H_0 и принимаем H_1 .

Ошибка первого рода (принять H_1 при верной H_0). Вероятность допустить ошибку первого рода всегда равна уровню значимости α . Это следует из нашего построения множества C_{α} .

Ошибка второго рода (принять H_0 при верной H_1). Найдём распределение T при условии, что выполнена H_1 . Вероятность того, что так распределённая T не попала в критическое множество, это и есть вероятность ошибки второго рода. Другими словами $\beta = P(T \notin C_{\alpha}|H_1)$. Действительно, условие $T \notin C_{\alpha}$ как раз соответствует тому, что мы приняли H_0 и отвергли H_1 .

Число $(1 - \beta)$ называют *мощностью* статистического критерия.

ЗБЧ и ЦПТ

Теорема [ЗБЧ]. Пусть $\xi_1, \xi_2, \dots, \xi_n, \dots$ — бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное мат.ожидание μ . Обозначим среднее арифметическое первых n случайных величин $\xi_1, \xi_2, \dots, \xi_n$ так:

$$\bar{\xi}_n = \frac{1}{n} \sum_{i=1}^n \xi_i.$$

Тогда

$$\bar{\xi}_n \xrightarrow{\text{по вероятности}} \mu.$$

То есть $\forall \varepsilon > 0$ выполнено

$$\lim_{n \to +\infty} P(|\bar{\xi}_n - \mu| > \varepsilon) = 0$$

Теорема [ЦПТ]. Пусть $\xi_1, \xi_2, \dots, \xi_n, \dots$ — бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное мат.ожидание μ и дисперсию σ^2 .

Тогда

$$\frac{\bar{\xi}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow[n \to +\infty]{\text{по распределению}} N(0,1)$$

где $N\left(0,1\right)$ — нормальное распределение со средним 0 и дисперсией 1.

Обозначение. (неформально) Стрелка

$$\eta_n \xrightarrow{\text{по распределению}} F$$

означает, что при n стремящемся к плюс бесконечности распределение случайной величины η_n близко к распределению F.

Неформально ЦПТ можно сформулировать так:

$$\bar{\xi}_n$$
 в неформальном смысле $N\left(\mu, \frac{\sigma^2}{n}\right)$.