Билет 13

Автор1,, АвторN
20 июня 2020 г.

Содержание

0.1	T - 19		1
U. I	Билет 13:	ткрытые множества: определение и свойства	ı

Билет 13

СОДЕРЖАНИЕ

0.1. Билет 13: Открытые множества: определение и свойства.

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

Точка $a \in A$ называется внутренней если $\exists r > 0 \quad B_r(a) \subset A$.

Множество внутренних точек называется внутренностью множества, и обозначается $\operatorname{Int} A$.

Определение 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

А называется открытым, если все его точки внутренние.

Свойства.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

2. Объединение любого количества открытых множеств открыто

Доказательство.

Пусть $\forall \alpha \in I \quad A_{\alpha}$ - открытое множество. $A := \bigcup_{\alpha \in I} A_{\alpha}$. Возьмём точку $a, \exists \beta \in I \quad a \in A_{\beta}$.

Так-как A_{β} открытое, $\exists r > 0 \quad B_r(a) \subset A_{\beta} \subset A$.

3. Пересечение конечного количества открытых множеств открыто

Доказательство.

Пусть $I=[1;n],\, \forall k\in I\quad a\in A_k,\, A_k$ - открытое.

Тогда $\forall k \in I \quad \exists r_k > 0 \quad B_{r_k}(a) \subset A_k.$

Пусть $r = \min_{k} r_k > 0$.

Тогда $\forall k \in I \quad B_r(a) \subset B_{r_k}(a) \subset A_k \implies B_r(a) \subset \bigcap_{k=1}^n A_k.$

4. $\forall a \in X \quad \forall r \in \mathbb{R} \quad B_r(a)$ - открытое множество.

Доказательство.

Пусть $x \in B_r(a)$, $\tilde{r} = r - \rho(x, a)$.

Покажем что $B_{\tilde{r}}(x) \subset B_r(a)$:

$$y \in B_{\tilde{r}}(x) \implies \rho(y, x) < \tilde{r}$$

$$\implies \rho(y, x) < r - \rho(x, a)$$

$$\implies \rho(y, x) + \rho(x, a) < r$$

$$\stackrel{\triangle}{\implies} \rho(y, a) < r$$

$$\implies y \in B_r(a)$$

