Pour tous les exercices prendre $g = 10m.s^{-2}$

EXERCICE 1

L'équation horaire du mouvement d'un mobile M sur un axe (OX) est $x = 4t^2 - 2t + 5$.

- 1. Trouver les expressions de vitesse v(t) et de son accélération a(t).
- 2. à quelle date t_1 et en quel point M_1 le mouvement change de sens ?
- 3. Quelle est la nature du mouvement du point M? accélérée retardé.... et sur quel intervalle ?)
- 4. Déterminer la date du passage du mobile par le point de départ? quelle est alors la valeur de sa vitesse?
- 5. Quelle distance parcourt-t-il quand sa vitesse passe de $V_1 = -1m/s$ à $V_2 = 1m/s$.

EXERCICE 2

Au moment où le bus démarre sur une voie rectiligne à l'accélération de $a = 2m.s^{-2}$, Driss qui se trouve à $d_0 = 10m$ derrière décide de courir à la vitesse constante de V = 6m/s. rattrapera -t-il son bus? sinon quelle set la distance minimale qui le sépare de son bus?

EXERCICE 3

Un mobile part de l'origine d'espace à la date t=0s où il se meut sur une trajectoire rectiligne (OX)

- 1. Déterminer graphiquement l'accélération du mouvement
- 2. En déduire l'équation horaire de la vitesse
- 3. Trouver la date de changement de sens du mouvement
- 4. Quelle est la nature du mouvement
- 5. Écrire l'équation horaire de la position . Quel est la position du point de changement de sens du mouvement?
- 6. Calculer la distance parcourue par le mobile entre les instants t=0s et $t_2=1,5s$.

EXERCICE 4

un bus part de l'origine du repère (O,X) sur une voie rectiligne avec une accélération constante $a_1 = 0, 5m.s^{-2}m/s$ et quand il atteint le point A il lève le pied pour que son mouvement soit rectiligne uniforme pendant 1min arrivé au point B il freine avec une accélération constante $a' = -2m.s^{-2}$ et il s'arrête au point C parcourant la distance totaleOC = 500m.

- 1. La vitesse du point A
- 2. La durée du mouvement accéléré et la distance OA
- 3. Calculer la vitesse moyenne le long du trajet OC?

EXERCICE 5

l'équation horaire d'un M.R.U.V est $x=\frac{1}{2}at^2$ montrer que les espaces parcourus pendant des intervalles de temps succéssifs égaux à $\tau=40ms$ forment une suite arithmétique de raison $r=a.\tau^2$ calculer a sachant que la raison est $r=5.88\times 10^{-3}m$.

Un automobiliste se déplace à la vitesse de $V_i=16m/s$ au moment où le feu vert qui se trouve en face de lui à la distance D=200m s'allume, il reste allumé pendant 11s. Cet instant sera pris comme origine du temps t=0s, et la position de la voiture à cette date comme origine de l'axe du mouvement (OX). L'automobiliste impose à sa voiture une accélération constante pendant une durée t_1 , sa vitesse passe à $V_1=21m/s$ après un parcourt de $x_1=100m$.

- 1. Déterminer
 - 1.1) L'accélération a_1
 - 1.2) La date t_1
 - 1.3) Écrire l'équation horaire de la position x(t).
- 2. jugeant qu'il peu passer , l'automobiliste maintient sa vitesse constante V_1 à partir de la date t_1
 - 2.1) Écrire l'équation horaire du mouvement après la date t_1 .
 - 2.1) La voiture passera-t-elle devant le feu quant il est vert?
- 3. Le chauffeur juge qu'il ne peut pas passer, à la date t_1 il freine d'un mouvement uniformément retardé d'accélération $a_2 = -2m/s^2$.
 - 3.1) Calculer la distance parcourue par la voiture pendant le freinage jusqu'à l'arrêt complet
 - 3.1) à quel instant t_2 et avec quelle vitesse v_2 la voiture passe devant le feu rouge?

EXERCICE 7

Les équations horaire du mouvement d'un mobile dans le repère (O, X, Y) est donnée par

$$\vec{OM} = (2t - 2)\vec{i} + (-2t^2 + 4t)\vec{j}$$

- 1. Exprimer les vecteur vitesse \vec{V} et accélération \vec{a} . et en déduire leurs expressions en fonction du temps .
- 2. Quelle est la nature du mouvement sur chaque axe
- 3. Trouver l'équation de la trajectoire , quelle est sa nature .
- 4. soit (S) le sommet de la trajectoire. Trouver ses coordonnées et montrer qu'en ce point $\vec{v} \times \vec{a} = 0$
- 5. on considère la date $t_1 = 2s$
 - 4.1) Trouver les coordonnées de la position M_1 du mobile à cette date
 - 4.2) Représenter le vecteur vitesse V_1
 - 4.3) Tracer le repère de Frenet
 - 4.3) Tracer le vecteur accélération à la date t_1 .
 - 4.4) Tracer les composantes a_T et a_N du vecteur accélération \vec{a} dans la base de Frenet et déterminer graphiquement leur valeurs

Les équations horaire du mouvement d'un mobile dans le repère (O, X, Y) est donnée par

$$\vec{OM} = 2t\vec{i} + (-5t^2 + 6t)\vec{j}$$

- 1. Trouver l'équation de la trajectoire , quelle est sa nature .
- 2. Exprimer les vecteur vitesse \vec{V} et accélération \vec{a} . et en déduire leurs expressions en fonction du temps .
- 3. (pour SM)
 - 3.1) Déterminer l'expression de l'accélération tangentielle a_T en fonction du temps .
 - 3.2) Déterminer l'expression de l'accélération normale a_N en fonction du temps .
 - 3.3) En déduire l'expression du rayon de courbure ρ en fonction du temps . Calculer sa valeur à la date t=1s.

EXERCICE 9

Un point matériel est lancé de l'origine d'un repère R(0,X,Y) avec une vitesse $\vec{V_0}$ qui fait l'angle α avec l'horizontale (0X). par pointage et en utilisant un mlogiciel approprié on a pu tracer les courbes qui représentent les variations les composantes du vecteur vitesse V_X et V_Y en fonction du temps comme le montre la figure ci-contre.

- 1. Trouver graphiquement les équations horaires $V_X(t)$ et $V_Y(t)$.
- 2. Calculer la valeur de la vitesse initiale $\|\vec{V_0}\|$ ainsi que la valeur de l'angle $\alpha.$
- valeur de l'angle α .

 3. En déduire les coordonnées du vecteur accélération
- 4. Quelle est la nature du mouvement sur chaque axe
- 5. trouver les équations horaires du mobile dans le repère R(0,X,Y) x(t) et y(t).

7. Calculer l'angle que fait l'accélération avec la normale dans la base de Frenet aux dates $t_1=1s$ et $t_2=1,5s$.

EXERCICE 10

Un corps ponctuel tombe en chute libre à partir d'un point O, origine du repère (OZ) orienté vers le bas, où il part sans vitesse initiale à la date t=0s

- 1. Définir la chute libre
- 2. appliquer la deuxième loi de Newton pour trouver l'accélération a du mouvement.
- 3. Quelle est la nature du mouvement ?
- 4. Écrire les équation horaires de la vitesse v(t) et de la position z(t)
- 5. Calculer la vitesse V_1 du mobile et trouver son abscisse z_1 à la date $t_1=2s$

EXERCICE 11

Du même point on lance vers verticalement vers le haut deux billes; la bille A d'abords à la date t=0s et la bille B après une seconde. les deux billes ont la même vitesse initiale $V_0=10m/s$ et sont considérés en chute libre . quand et où? vont elle se rencontrer?

Une bille abandonnée sans vitesse initiale parcourt le dixième de sa hauteur totale $\frac{h}{10}$ dans sa dernière seconde de chute

- 1. Calculer la durée de chute et la hauteur parcourue pendant la dernière seconde
- 2. Calculer la vitesse d'arrivée au sol

EXERCICE 13

Un projectile est lancé verticalement de la surface du sol. Un système de détection enclenche un chronomètre l'instant de départ et enregistre les dates t_1 et t_2 de passage du projectile dans le plan horizontal d'altitude h.

- 1. A quelle date et avec quelle vitesse le projectile retombe-t-il sur le sol ?
- 2. Déterminer la vitesse de lancement et l'altitude h en fonction des dates t_1 et t_2 . A.N : $t_1 = 0,875s$, $t_2 = 9,329s$.

EXERCICE 14

Une caisse (C) glisse sans frottement le long d'un plan incliné depuis le point O vers le point A loin de $x_A = 10m$ en bas . voir figure

- 1. Reproduire le schémas sur votre copie et représenter sans échelle les forces qui agissent sur (C).
- 2. Déterminer les coordonnées du poids \vec{P} et en fonction de m, g et α et celle du vecteur \vec{R} , dans le repère (0,X,Y) .
- 3. appliquer la deuxième loi de Newton pour trouver l'accélération a du mouvement. Quelle est la nature du mouvement ?
- 4. Sachant que l'accélération $a = 5m/s^2$ calculer la valeur de l'angle α
- 5. Écrire v(t) et x(t).
- 6. Calculer la date de passage par le point A. Quelle est la valeur de la vitesse V_A en A .
- 7. On refait l'expérience en lançant le corps (C) , sur le plan incliné , vers le haut à la vitesse $V_0=6m/s$.
 - 7.1) L'accélération du mobile change -t-elle?
 - 7.2) écrire les nouvelle expressions de la vitesse v(t) et de la position x(t)
 - 7.3) A quelle date le mouvement du mobile change de sens ? quelle est alors sa position
 - 7.4) à quelle date le mobile passe par O de nouveau?
 - 7.5) Calculer la vitesse de passage du mobile par le point A.

Sur un plan incliné d'un angle α par rapport à l'horizontale , on lance vers le haut un solide (S) ponctuel. Le diagramme des vitesse d'un mobile sur une voie rectiligne est représenté sur la figure ci-contre

- 2. le mouvement change de sens au point H ? calculer t_H
- 3. le mobile passe par l'origine des espaces à la date $t=2s_{-5}$ Trouver la position x_0 du mobile à la date t=0s. et trouver la position x_H du point H

EXERCICE 16

un solide (C) glisse avec le long d'un plan incliné d'un angle $\theta=30^\circ$ avec l'horizontale, depuis le point O vers le point A loin de $x_A=10m$ en bas . voir figure . on note $k=\tan\varphi$ le coefficient de frottement et φ l'angle de frottement

- 1. Reproduire le schémas sur votre copie et représenter sans échelle les forces qui agissent sur (C).
- $2. \ \, \text{En appliquant la deuxième loi de Newton montrer que l'expression de l'accélération a du mouvement est donnée par :}$

$$a = g(\sin\theta - k\cos\theta)$$

- . Quelle est la nature du mouvement ?
- 3. Écrire v(t) et x(t).
- 4. la vitesse de passage par le point A est $V_A = 8m/s$, calculer l'accélération a
- 5. En déduire la valeur du coefficient de frottement k et la valeur de l'angle de frottement.

EXERCICE 17

On lance vers le haut un solide ponctuelle sur un plan inclnée de l'angle $\alpha = 30^{\circ}$ à la vitesse $\vec{V_0}$ de l'origine du repère (O,X,Y). il repasse par le point A située la distance d plus bas à la vitesse $\vec{V_A} = -\vec{V_0}$. sachant que le coefficient de frottement K = 0, 2 est le même pendant la montée et pendant la descente, calculer V_0 , la durée du mouvement ainsi que la vitesse moyenne du parcourt. Prendre $q = 10m.s^{-2}$

On considère un véhicule de masse m=1000K en mouvement sur une piste inclinée d'un angle $\alpha=30^\circ$ par rapport au plan horizontal.

Au cours de son mouvement, le véhicule est constamment soumis à des forces de frottement dont la résultante \vec{f} est dirigée dans le sens contraire au vecteur vitesse et a pour valeur f = 400N.

Lorsque le véhicule se déplace, son centre d'inertie G décrit la ligne de plus grande pente représenté par l'axe XX'

1. Sous l'effet d'une force motrice \vec{F} F, développée par le moteur et de même direction que la ligne de plus grande pente, le véhicule quitte la position A avec une vitesse nulle et atteint la position B avec une vitesse de valeur $V_B = 20m/s1$. La distance entre A et B est AB = 10m. Montrer que l'expression de la force motrice est :

$$F = mg\sin\alpha + f + \frac{m.v_B^2}{2.AB}$$

Calculer F

2. Lorsque le véhicule passe en B, la force F est supprimée. Le véhicule continue son mouvement jusqu'à la position C où sa vitesse s'annule. Monter que:

$$BC = \frac{mV_B^2}{2(f + mg\sin\alpha)}$$

Calculer BC.

3. Quelle doit être la nouvelle valeur de F pour que le véhicule atteint le point D avec une vitesse nulle. On donne BD = AB.

Sur un plan inclinée d'un angle $\alpha=30^\circ$ par rapport à l'horizontale ,on lance une solide ponctuel de masse m=400g vers le haut avec une vitesse $\vec{V_0}$. soit k le coefficient de frottement l'étude est faite dans une référentielle terrestre supposé Galiléen au quel on associe le repère (O,X,Y): (OX) étant confondu avec la ligne du plus grande pente du plan incliné orienté vers le haut Le corps est considérée en chute libre. La courbe ci-contre représente le diagramme des espaces x=f(t) et la tangente à cette courbe à la date t=0s

- 1. Appliquer la deuxième lois de newton pour trouver l'expression de l'accélération du mobile
- 2. Déterminer la vitesse initiale?
- 3. à quelle date le mouvement change de sens ?
- 4. En déduire l'accélération du mouvement
- 5. Calculer alors , l'intensité f de la force de frottement \vec{f} et le coefficient de frottement k
- 6. Montrer que l'expression de l'intensité R' de la force $\vec{R'}$ exercée par le solide sur le plan inclinée est donnée est : $R' = f\sqrt{1 + \frac{1}{k^2}}$ et Calculer sa valeur

EXERCICE 20

Un point matériel (S) est astreint à se mouvoir sans frottement sur un quart d'une sphère de rayon r. il part du sommet A avec une vitesse A initiale négligeable. Déterminer la position où (S) quitte la sphère.

Indication:

- Trouver l'expression de la vitesse en M par une méthode de votre choix (théorème de l'énergie cinétique ou conservation de l'énergie mécanique)
- Au point où (S) quitte la trajectoire il n'y a plus de réaction \vec{R}

Une petite sphère S, de rayon négligeable, de massem=200g est accrochée à un fil de masse négligeable, inextensible, de longueur l=1m. L'autre extrémité du fil est attachée un point fixe.

On écarte S de sa position d'équilibre verticale. Le fil tendu fait un angle θ_m avec la verticale. On lâche la sphère sans vitesse initiale.

- 1. Donner l'expression de la vitesse de S en fonction de l'angle que fait le fil avec la verticale. Calculer cette vitesse au passage à la position verticale.
- 2. Exprimer l'accélération normale en fonction de θ . Calculer sa valeur pour $\theta = 0^{\circ}$.
- 3. Donner l'expression de la valeur de la tension du fil en fonction de θ . Calculer sa valeur maximale.
- 4. Exprimer l'accélération tangentielle en fonction de θ . Vérifier qu'elle s'annule lorsque la valeur de la tension est maximale

EXERCICE 22

Une bille assimilable un corps ponctuel peut glisser sans frottement à l'intérieur d'un cerceau vertical, de rayon r et de centre O.

- 1. Exprimer l'intensité R de la réaction du cerceau en fonction de V_0 , de g, de r et de m(masse de la bille) lorsque la bille est au point B diamétralement opposé à A.
- 2. En déduire la valeur minimale de V_0 pour que la bille reste en contact avec la gouttière durant toute trajectoire circulaire.

EXERCICE 23

Une bille assimilable à un point matériel B, de masse m, est reliée par deux fils de masse négligeable à deux points A et C d'un axe zz. On note : AB=BC=l et AC=d.

- 1. La bille B tourne à vitesse angulaire ω constante autour de l'axezz. Les fils restent constamment tendus. Calculer les valeurs des tensions des fils en fonction de ω .
- 2. Montrer que le fil BCn'est tendu qu'à partir d'une certaine valeur $\omega_0 {\rm de}$ la vitesse angulaire.
- 3. Calculer ω_0 et les valeurs des tensions pour $\omega_1 = 8rad.s^{-1}$ et $\omega_2 = 4rad.s^{-1}$ Données:m = 0, 6kg; l = 0, 7m; d = 1m.

un solide ponctuel se déplace sur un trajet ABCD comme le montre la figure ci dessous . le mobile part du point A. on suppose que la vitesse garde sa valeur quand elle passe par le point B et par le point C. la vitesse du mobile s'annule en D. On a représenté la courbe qui donne les variations de l'accélération a en fonction du temps voir figure ci contre

2. Appliquer la deuxième loi de Newton pour déterminer l'expression de l'accélération a en fonction de g α et le coefficient de frottement K.

- 4. Calculer la distance CD
- 5. Calculer la distance BC
- 6. Calculer la vitesse initiale en A ainsi que la distance AB

EXERCICE 22