

石山智明(千葉大学),平野信吾(神奈川大学)

Introduction

- 過去約20年以上に渡り、Pop Ⅲ 形成の物理は非常によく研究されてきた
- 多くは zoom-in 輻射流体シミュレーションによる個々の Pop Ⅲ 形成に着目
- グローバルな描像はどうなっているのか?
 - 初代銀河、超遠方銀河、再電離、 21cm線、AGN などとの関係
- 比較的広めの領域を zoom-in した研究もあるが、一辺約 4 Mpc/h程度 (e.g., Renaissance Simulations: O'Shea et al. 2015; Xu et al. 2016 など)

本研究

- 初代星が形成するミニハローを分解できる高解像度宇宙論的N体シミュレーションと、準解析的初代星形成モデルを組み合わせてグローバルな描像を調べる
- ・比較的大きめの空間体積を追い、LW feedback を self-consistent に計算する
- 空間全体にわたる IMF や SFRD (Star formation rate density) を調べるとともに、 streaming velocity の大きさにどう依存するか調べる

• 将来、より大きい体積のシミュレーション (~ 100 Mpc/h) が実現したときのため の準備としても位置付けられる

Simulation suite

Name	N	$L(h^{-1}\mathrm{Mpc})$	$\varepsilon (h^{-1}pc)$	$m_{\rm p} (h^{-1} {\rm M}_{\odot})$	$z_{\rm fin}$	Zstart,mrgt
Phi-4096	4096^{3}	16.0	60	5.13×10^{3}	0.0	43
M8	2048^{3}	8.0	60	5.13×10^{3}	7.5	31
H3	1536^{3}	3.0	30	6.41×10^{2}	7.5	31
M3	768^{3}	3.0	60	5.13×10^{3}	7.5	31
L3	512^{3}	3.0	90	1.73×10^4	7.5	31

Rockstar halo/subhalo finder (Behroozi+2013) consistent merger trees code (Behroozi+ 2013b)

- Advantage over previous works
 - Cover full box (Only MW halos in Griffen+18 and Magg+18)
 - High mass resolution (L3 resolution in Griffen+18 and Magg+18)
 - Larger volume (2~3.4 Mpc/h in Agarwal+12 and Visbal+18,20)
 - Down to z=0 (terminated at very high-z in Agarwal+12 and Visbal+18,20)

Pristine ★ Pop III ★ Pop II → LW ··· LW substep

準解析的モデル

- PopⅢ形成条件
 - Kulkarni+21 のフィッティングと (z, LW intensity, streaming velocity 依存) + atomic cooling mode (Fernandez+14)
- Pop III mass
 - Hirano+15 (H₂ and HD modes) + Toyouchi+23 (SMS)
- Pop II model
 - Three components model by Agarwal+12 (hot gas, cold gas, star)
 - Pop II formation starts in enriched halos (at least a progenitor is Pop III forming minihalo)
 - Halo mass threshold m_{th}=10⁷ Msun
- LW feedback from Pop III and Pop II
 - Self-consistent model (spatial and time dependent)
 - ・ 近傍は直接計算、遠方はFFT (重力計算における P³M や TreePM のようなもの)
 - Radiation continues during the lifetime of Pop III (Schaerer 2002) and that massive Pop II stars (10 Myr fixed)

Pop III 形成条件

Pop III IMF

- Streaming velocity が 0, 1, 2, 3 σ (σ = 30km/s) の4モデルを比較
- ボックス内でハローがはじめて形成する z=43 から、ボックス全体の merger tree が 作れる z=7.5 まで計算

Pop III IMF

・分裂はモデル化されていないため、IMF というよりハローあたりの総Pop Ⅲ 質量の分布と言うのが正確か

いろいろな相関

- streaming velocity: 上が0、下が3σ
- 2つのピーク: H₂
 cooling と atomic cooling に対応
- Velocity が大きいと Pop III 形成が遅れる ため、second peak がより顕著に

Star formation rate density

- Pop II は velocity の大きさにほとんど依存しない
- Pop III は velocity が大きいと多少 SFRD は上がる。一方、数自体は少ない
- SFRD は second peak (atomic cooling) の違いが顕著

ボックスサイズ依存性

streaming velocity = 1σ

- Second peak は ボックスサイズが 3Mpc/h では見られない
 - rare peak の欠如
 - 大質量銀河の形成抑制よる不十分な LW intensity

まとめ

- 高解像度宇宙論的シミュレーションに基づいた準解析的初代星形成を構築している
- ボリュームが大きいことで、従来の研究では見られなかった効果がいろいる見えてきた

- モデルの拡張
 - Chemical tagging
 - Binary formation
 - Fragmentation
 - Link to BHs and first galaxies