Responsable du document : Martin ARONDEL

1. INTRODUCTION

a. RAPPELS DU PROJET

L'objectif de projet SCOUTBOT est d'intégrer un système de mapping et de positionning sur le robot pour qu'il puisse par la suite se déplacer dans une pièce de manière autonome.

Afin de réaliser le mapping d'une pièce, on utilise le RPLIDAR A1 de chez SLAMTEC.

Figure 1: RPLIDAR A1 SLAMTEC

b. GENERALITES

Pour que le lidar fonctionne correctement sur la STM32MP157-DK2, le driver de communication port série *CP210x* doit être installé.

SLAMTEC propose un SDK complet avec quelques projets exemples pour utiliser ce lidar.

Lien du SDK: https://github.com/Slamtec/rplidar_sdk

2. INSTALLATION DU DRIVER CP210x SUR LE STM32MP157-DK2

Etape 1 : Accéder au SDK de la STM32MP1

PC \$ cd /home/ «votre home»/STM32MPU_workspace/STM32MP15-Ecosystem-v3.0.0/Developer-Package/stm32mp1-openstlinux-5.10-dunfell-mp1-21-03-31/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.10.10-r0/linux-5.10.10

Etape 2 : Sourcer le SDK pour utiliser le bon compilateur

PC \$ source /home/ «votre home»/STM32MPU_workspace/STM32MP15-Ecosystemv3.0.0/Developer-Package/SDK/environment-setup-cortexa7t2hf-neon-vfpv4-ostl-linux-gnueabi

Etape 3 : Accéder au menu config du Kernel pour activer le driver

PC\$ make arch=ARM menuconfig

Une fois lancé, pour effectuer une recherche faire un « / »


```
config - Linux/x86 5.10.10 Kernel Configuration
> Search (cp210x) 
Symbol: USB_SERIAL_CP210X [=y]
Type : tristate
Defined at drivers/usb/serial/Kconfig:135
Prompt: USB CP210x family of UART Bridge Controllers
Depends on: USB_SUPPORT [=y] && USB [=y] && USB_SERIAL [=y]
Location:
    -> Device Drivers
    -> USB support (USB_SUPPORT [=y])
(1)    -> USB Serial Converter support (USB_SERIAL [=y])
```

On retrouve la location du driver sur le menu config du kernell

Accéder au Device Driver

Accéder à USB support

Appuyer sur « espace » pour changer l'état du dossier (M = module, étoile = built-in) en « étoile »

```
[*] HDMI CEC drivers --->
<M> Multimedia support --->
        Graphics support --->
<M> Sound card support --->
        HID support --->

[*] USB support --->
<*> MMC/SD/SDIO card support --->
<> Sony MemoryStick card support ----
[*] LED Support --->
[ ] Accessibility support ----
```

Accéder à USB Serial Convert support

Mettre aussi une étoile en appuyant sur espace

Puis activer le driver CP210x

```
<> USB Winchiphead CH341 Single Port Serial Driver
<> USB ConnectTech WhiteHEAT Serial Driver
<> USB Digi International AccelePort USB Serial Driver
<*> USB CP210x family of UART Bridge Controllers
<> USB Cypress M8 USB Serial Driver
```

Save et quitter le menuconfig

Etape 4: Save les configurations du menu config

PC \$ make arch=ARM savedefconfig

Etape 5: Build kernel images

PC \$ make arch_ARM ulmage vmlinux LOADADDR=0xc2000040

Etape 5 : Envoyer l'image Linux sur le MP1

PC \$ cp arch/arm/boot/ulmage install_artifact/boot/

PC \$ scp install_artifact/boot/ulmage <u>root@192.168.7.1:/boot/</u>

192.168.7.1 est l'adresse ip du MP1 lorsque qu'il est connecté en USB OCD (ssh par cable)

Etape 6 : Se connecter au MP1 par le minicom via le ST-Link

Via le ST-Link de la carte, s'assurer que le câble micro USB est bien connecté.

PC \$ minicom -D /dev/ttyACM0

Etape 7 : Vérifier si l'image Linux est bien sur le MP1

MP1 \$ cd /boot/ MP1 \$ ls

Etape 7: Synchroniser les partitions

MP1 \$ sync

Etape 8 : Reboot la carte

MP1 \$ systemctl reboot

Vérification de l'installation - Test du Lidar

Etape 1: Brancher le lidar au STM32MP1

Etape 2 : Vérifier si le device ttyUSB0 est reconnue par le STM32MP1

PC \$ cd /dev

PC \$ Is

10 1 20 1							
root@stm32mp1:/dev# ls							
autofs	i2c-2	null	ram7	tty19	tty41	tty7	vcsa1
block	initctl	ptmx	ram8	tty2	tty42	tty8	vcsa2
ous	input	ptp0	ram9	tty20	tty43	tty9	vcsa3
cec0	kmsg	pts	random	tty21	tty44	ttySTM0	vcsa4
char	log	ptyp0	rfkill	tty22	tty45	(ttyUSB0)	vcsa5
console	loop-control	ptyp1	rtc	tty23	tty46	ttyp0	vcsa6
cpu dma latency	loop0	ptyp2	rtc0	tty24	tty47	ttyp1	vcsa7
disk	loop1	ptyp3	serial	tty25	tty48	ttyp2	vcsu
dri	loop2	ptyp4	shm	tty26	tty49	ttyp3	vcsu1
fd	loop3	ptyp5	snd	tty27	tty5	ttyp4	vcsu2
full	loop4	ptyp6	stderr	tty28	tty50	ttyp5	vcsu3
fuse	loop5	ptyp7	stdin	tty29	tty51	ttyp6	vcsu4
gpiochip0	loop6	ram0	stdout	tty3	tty52	ttyp7	vcsu5
gpiochip1	loop7	ram1	tty	tty30	tty53	ubí ctrl	vcsu6
gpiochip2	mem	ram10	tty0	tty31	tty54	uinput	vcsu7
gpiochip3	mmcblk0	ram11	ttý1	tty32	tty55	urandom	watchdog
gpiochip4	mmcblk0p1	ram12	tty10	tty33	tty56	vcs	watchdog0
gpiochip5	mmcblk0p2	ram13	ttý11	tty34	tty57	vcs1	zero
gpiochip6	mmcblk0p3	ram14	ttý12	tty35	ttý58	vcs2	
gpiochip7	mmcblk0p4	ram15	ttý13	ttý36	ttý59	vcs3	
gpiochip8	mmcblk0p5	ram2	tty14	tty37	tty6	vcs4	
gpiochip9	mmcblk0p6	ram3	tty15	tty38	tty60	vcs5	
hwrng	mmcblk0p7	ram4	tty16	tty39	tty61	vcs6	
i2c-0	mqueue	ram5	tty17	tty4	tty62	vcs7	
i2c-1	net	ram6	tty18	tty40	tty63	vcsa	
120 1		- amo	21,10	22,10	22,05	- C5u	

L'activation du driver a fonctionné le lidar est bien reconnu.

3. UTILISATION DU SDK DE SLAMTEC

Télécharger le SDK sur votre linux : https://github.com/Slamtec/rplidar_sdk

Déplacer votre rplidar_sdk-master.zip dans :

/home/ «votre home »/STM32MPU_workspace/STM32MP15-Ecosystem-v3.0.0/Developer-Package/stm32mp1-openstlinux-21-03-31/sources

PC \$ cd /home/ «votre home »/STM32MPU_workspace/STM32MP15-Ecosystem-v3.0.0/Developer-Package/stm32mp1-openstlinux-21-03-31/sources

PC \$ unzip rplidar_sdk-master.zip

PC \$ cd rplidar sdk-master/sdk/

PC \$ source /home/ «votre home»/STM32MPU_workspace/STM32MP15-Ecosystemv3.0.0/Developer-Package/SDK/environment-setup-cortexa7t2hf-neon-vfpv4-ostl-linux-gnueabi

PC \$ \$CC --version

```
arm-ostl-linux-gnueabi-gcc (GCC) 9.3.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
```

PC \$ make

cd output/Linux/Release/

Envoyer sur la mp1 l'éxécutable example du SDK « simple_grabber » ou « ultra_simple »

PC \$ scp ultra_simple root@192.168.7.1:/usr/local

Connecter vous en minicom à la carte comme vu précédemment et exécuter le fichier « ultra_simple » :

MP1 \$ cd /usr /local

MP1 \$./ultra_simple /dev/ttyUSB0

```
theta: 123.34 Dist: 00236.00 Q: 188
theta: 123.72 Dist: 00235.00 Q: 188
theta: 124.07 Dist: 00235.00 Q: 188
theta: 124.50 Dist: 00234.00 Q: 188
theta: 124.85 Dist: 00232.00 Q: 188
theta: 125.28 Dist: 00231.00 Q: 188
theta: 125.64 Dist: 00230.00 Q: 188
theta: 126.06 Dist: 00228.00 Q: 188
theta: 126.48 Dist: 00226.00 Q: 188
theta: 126.90 Dist: 00224.00 Q: 188
```

Votre programme du SDK fonctionne bien sur la stm32MP1!