Výsledky testu 1

test 1a
skupina 3 (25. 11., 11:30)

 $(9.8 \pm 3.4) \text{ bodů}$

test 1b skupina 1 (24. 11., 14:50)

 (10.4 ± 3.7) bodů

test 1c
skupina 2 (24. 11., 16:30)

 (9.4 ± 5.2) bodů

Příklad 1 – výsledky testu 1b

- test 1b skupina 1 (24. 11., 14:50)
- *N* = 26 studentů
- x očekávaná hodnota počtu bodů

$$\hat{\mu} = 7.4 \qquad \hat{\sigma} = 3.8$$

histogram hodnot x

$$f(x) = \frac{N}{\sqrt{2\pi\hat{\sigma}^2}} \exp\left(\frac{(x-\hat{\mu})^2}{2\hat{\sigma}^2}\right)$$

momenty rozdělení

očekávaná hodnota
$$\hat{\mu} = 7.4 \pm 0.8$$

$$\hat{\sigma} = 3.8 \pm 0.8$$

$$\hat{\gamma}_3 = -0.4 \pm 0.5$$

$$\hat{\gamma}_4 = -0.6 \pm 0.9$$

odhad výsledků testu 1b

Příklad 1 – výsledky testu 1b

- test 1b skupina 1 (24. 11., 14:50)
- N = 26 studentů
- x očekávaná hodnota počtu bodů

$$\hat{\mu} = 7.4$$
 $\hat{\sigma} = 3.8$

histogram hodnot x

$$f(x) = \frac{N}{\sqrt{2\pi\hat{\sigma}^2}} \exp\left(\frac{(x-\hat{\mu})^2}{2\hat{\sigma}^2}\right)$$

průměrný výsledek

$$x_{exp} = 10.4 \pm 3.7$$

odhad výsledků testu 1b

Příklad 1 – výsledky testu 1b

- test 1b skupina 1 (24. 11., 14:50)
- testovací statistika

$$f(x) = \frac{1}{\sqrt{2\pi\hat{\sigma}^2}} \exp\left(\frac{(x-\hat{\mu})^2}{2\hat{\sigma}^2}\right)$$

• nulová hypotéza H_0

"Bodování bylo spravedlivé."

- t-hodnota průměrný počet bodů $x_{exp} = 10.4$
- pravděpodobnost

$$P(x \ge x_{exp}) = 1 - F(x_{exp}|\hat{\mu}, \hat{\sigma}) = 1 - \frac{1}{2} \left[1 + \text{erf}\left(\frac{x_{exp} - \hat{\mu}}{\hat{\sigma}\sqrt{2}}\right) \right]$$
$$P(|x - \hat{\mu}| \ge |x_{exp} - \hat{\mu}|) = 2P(x \ge x_{exp}) = 43.0 \%$$

Příklad 2 – výsledky testu 1c

- test 1c skupina 2 (24. 11., 16:30)
- N = 13 studentů
- x počet bodů z testu (výsledek)

$$\hat{\mu}_x = 9.4 \qquad \hat{\sigma}_x = 5.2$$

• *y* – počet bodů z testu (odhad)

$$\hat{\mu}_y = 8.2 \qquad \hat{\sigma}_y = 4.5$$

• z – výška studenta/studentky

$$\hat{\mu}_z = 180 \text{ cm}$$
 $\hat{\sigma}_z = 10 \text{ cm}$

Příklad 2 – výsledky testu 1c

- test 1c skupina 2 (24. 11., 16:30)
- *N* = 13 studentů
- x počet bodů z testu (výsledek)

$$\hat{\mu}_x = 9.4 \qquad \hat{\sigma}_x = 5.2$$

• *y* – počet bodů z testu (odhad)

$$\hat{\mu}_y = 8.2 \qquad \hat{\sigma}_y = 4.5$$

• z – výška studenta/studentky

$$\hat{\mu}_z = 180 \text{ cm}$$
 $\hat{\sigma}_z = 10 \text{ cm}$

• korelace x a y $\hat{\rho}_{xy} = 0.62 \pm 0.18$ \rightarrow závislé

Fisher $\hat{t}_{xy} = 2.30$ P = 0.02 < 0.05

student $\hat{t}_{xy} = 2.63$ P = 0.02 < 0.05

• korelace x a z $\hat{\rho}_{xz} = 0.1 \pm 0.3$ \rightarrow nezávislé

Fisher $\hat{t}_{xz} = 0.30$ P = 0.77 > 0.05

student $\hat{t}_{xz} = 0.31$ P = 0.76 > 0.05

• korelace y a z $\hat{\rho}_{yz} = 0.0 \pm 0.3$ \rightarrow nezávislé

Fisher $\hat{t}_{yz} = -0.07$ P = 0.94 > 0.05

student $\hat{t}_{yz} = -0.07$ P = 0.94 > 0.05