Таблица неопределенных интегралов. Из определения интеграла следует, что всякая формула для производной конкретной функции, т. е. формула вида

$$F'(x) = f(x),$$

может быть записана в виде интегральной формулы:

$$\int f(x) dx = F(x) + C.$$

Используя это соображение и таблицу производных, составим таблицу неопределенных интегралов.

1.
$$\int 0 dx = C$$
, C —константа.

2.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \quad \alpha \neq -1.$$

$$3. \int \frac{dx}{x} = \ln|x| + C. \quad V$$

4.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
, $a > 0$, $a \ne 1$.

B частности,
$$\int e^x dx = e^x + C$$
.

5.
$$\int \cos x \, dx = \sin x + C.$$

6.
$$\int \sin x \, dx = -\cos x + C.$$

7.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C.$$

8.
$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C. \quad \checkmark$$

9.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C, \quad a \neq 0.$$

10.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$
, $a \neq 0$.

11.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{|a|} + C, \quad a \neq 0. \quad V$$

12.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + C, \quad a \neq 0.$$

13.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln|x + \sqrt{x^2 - a^2}| + C, \quad a \neq 0.$$

Каждая из формул 1—13 справедлива на каждом промежутке, принадлежащем области определения подинтегральной функции. Справедливость каждой из приведенных формул можно установить дифференцированием.

Метод непосредственного интегрирования. Непосредственным интегрированием называется такой метод вычисления интегралов, при котором они сводятся к таб-

личным путем применения к ним основных свойств неопределенных интегралов. При этом подынтегральную функцию обычно предварительно соответствующим образом преобразуют.

Пример 1. Найти $\int (1+\sqrt{x})^2 dx$.

Решоние: △Преобразовав подынтегральную функцию и воспользовавшись свойствами 4 и 3 интеграла, находим

$$\int (1 + \sqrt{x})^2 dx = \int (1 + 2\sqrt{x} + x) dx =$$

$$= \int dx + 2 \int \sqrt{x} dx + \int x dx = x + \frac{4x\sqrt{x}}{3} + \frac{x^2}{2} + C.$$

Последнее равенство получено с помощью табличного интеграла 2 соответственно при $\alpha=0,\ \alpha=\frac{1}{2}$ и $\alpha=1.$ \blacktriangle

Пример 2. Найти $\int \frac{2+x^4}{x} dx$.

Penchul: 5(x)= 2+x = 2 + x = 2 + x = 2 + x =

 \triangle Интеграл сводится к табличным интегралам 3 и 2 ($\alpha = 3$):

$$\int \frac{2+x^4}{x} \, dx = 2 \int \frac{dx}{x} + \int x^3 \, dx = 2 \ln|x| + \frac{x^4}{4} + C. \, \triangle$$

$$5\frac{2+x^4}{x}dx = 2\ln|x| + \frac{x^4}{4} + C$$

Пример 3. Найти $\int 3^{x} \cdot 4^{2x} dx$.

 \triangle Преобразовав подынтегральную функцию, приводим интеграл к табличному интегралу 4 (a=48):

$$\int 3^x \cdot 4^{2x} \, dx = \int 3^x \underline{16^x} \, dx = \int 48^x \, dx = \frac{48^x}{\ln 48} + C. \, \blacktriangle$$

$$4^{2x} = (4^{1})^{x} = 16^{x}$$
 $a^{x} \cdot b^{x} = (ab)^{x}$

Пример 4. Найти $\int \cos^2 \frac{x}{2} dx$.

$$\triangle$$
 Так как $2\cos^2\frac{x}{2}=1+\cos x$, то

$$\int \cos^2 \frac{x}{3} \, dx = \frac{1}{2} \int (1 + \cos x) \, dx = \frac{1}{2} (x + \sin x) + C. \, \triangle$$

ロカルイ= ロップ イー コルイー 1 - 2 sin 元 1 - sin 元 1 - cos 元 2 cos 元 = 1 + cos 元 =

Пример 5. Найти $\int \frac{dx}{25+4x^2}$.

 \triangle Путем простых преобразований подынтегральной функции приходим к табличному интегралу 9 $\left(a=\frac{5}{2}\right)$:

$$\int \frac{dx}{25 + 4x^2} = \int \frac{dx}{4\left(\frac{25}{4} + x^2\right)} = \frac{1}{4} \int \frac{dx}{\left(\frac{5}{2}\right)^2 + x^2} = \frac{1}{4} \cdot \frac{1}{\frac{5}{2}} \operatorname{arctg} \frac{x}{\frac{5}{2}} + C = \frac{1}{10} \operatorname{arctg} \frac{2x}{5} + C. \blacktriangle$$

$$\int_{x^2+a^2}^{dx} = \frac{1}{a} \operatorname{aucty} \frac{x}{a} + C$$

Пример 6. Найти $\int \frac{x^2 dx}{3+x^2}$. \triangle Интеграл приводится к табличному интегралу 9 $(a = \sqrt{3})$: $\int \frac{x^2 dx}{3+x^2} = \int \frac{3+x^2-3}{3+x^2} dx = \int \frac{3+x^2}{3+x^2} dx + \int \frac{-3 dx}{3+x^2} =$ $= \int dx - 3 \int \frac{dx}{3+x^2} = x - 3 \cdot \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{x}{\sqrt{3}} + C =$ $= x - \sqrt{3} \operatorname{arctg} \frac{x}{\sqrt{3}} + C$.

Пример 7. Найти $\int \frac{dx}{3x^2-5}$.

Пример 8. Найти
$$\int \frac{dx}{\sqrt{1-9x^2}}$$
.

△Сводим интеграл к табличному интегралу 11

$$\int \frac{dx}{\sqrt{1-9x^2}} = \int \frac{dx}{\sqrt{9\left(\frac{1}{9}-x^2\right)}} = \int \frac{dx}{3\sqrt{\frac{4}{9}-x^2}} = \frac{1}{3\sqrt{\frac{4}{9}-x^2}} = \frac{1}{3\sqrt{\frac{4}{9}-x^2}}$$

$$= \frac{1}{3} \int \frac{dx}{\sqrt{\left(\frac{1}{3}\right)^2 - x^2}} = \frac{1}{3} \arcsin \frac{x}{\frac{1}{3}} + C = \frac{1}{3} \arcsin 3x + C. \blacktriangle$$

Пример 9. Найти
$$\int \frac{\sqrt{x^2+4}-4\sqrt{x^2-4}}{\sqrt{x^4-16}} dx$$
.

 \triangle Данный интеграл сводится к табличным интегралам 12 и 13 (a=2):

$$\int \frac{\sqrt{x^2 + 4} - 4\sqrt{x^2 - 4}}{\sqrt{x^4 - 16}} dx = \int \frac{dx}{\sqrt{x^2 - 4}} - 4\int \frac{dx}{\sqrt{x^2 + 4}} =$$

$$= \ln|x + \sqrt{x^2 - 4}| - 4\ln(x + \sqrt{x^2 + 4}) + C. \blacktriangle$$

Пример 10. Найти $\int \frac{dx}{\sin^2 x \cos^2 x}$.

$$\triangle$$
 Так как $\sin^2 x + \cos^2 x = 1$, то

$$\frac{1}{\sin^2 x \cos^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}.$$

Таким образом, интеграл сводится к табличным интегралам 7 и 8:

$$\int \frac{dx}{\sin^2 x \cos^2 x} = \int \frac{dx}{\cos^2 x} + \int \frac{dx}{\sin^2 x} = \operatorname{tg} x - \operatorname{ctg} x + C. \blacktriangle \checkmark$$

Интегрирование методом замены переменной (метод подстановки). В основе метода подстановки (или метода замены переменной) вычисления неопределенных интегралов лежит следующая формула, являющаяся простым следствием правила дифференцирования сложной функции:

$$\int f(g(x)) g'(x) dx = F(g(x)) + C, \tag{1}$$

где $F\left(t\right)$ — какая-либо первообразная функции $f\left(t\right)$, $t=g\left(x\right)$. Действительно, согласно этому правилу получаем

$$(F(g(x)) + C)' = F'(g(x))g'(x) = f(g(x))g'(x).$$

Правую часть формулы (1) обычно записывают в виде

$$\int f(t) dt, \qquad (2)$$

где t = g(x).

Из формулы (1) следует, что если подынтегральное выражение имеет вид

$$f(g(x))g'(x)dx = f(g(x))dg(x)$$
 (3)

или приводится к этому виду, то интеграл

$$\int f(g(x))g'(x)\,dx$$

можно свести к интегралу (2) с помощью замены переменной, положив $t=g\left(x\right)$.

Пример 1. Найти $\int \cos(5x+3) dx$.

△ Подынтегральное выражение приводится к виду (3):

$$\cos (5x+3) dx = \frac{1}{5} \cos (5x+3) d (5x+3)$$

(здесь $f(x) = \cos(5x+3)$, g(x) = 5x+3). Сделав замену переменной t = 5x+3, получим

$$\int \cos(5x+3) \, dx = \frac{1}{5} \int \cos t \, dt = \frac{\sin t}{5} + C = \frac{\sin(5x+3)}{5} + C. \, \, \blacktriangle$$

$$dt = g(x)dx = dg(x)$$

Пример 2. Найти
$$\int (2x+1)^{10} dx$$
. \triangle Так как
$$(2x+1)^{10} dx = \frac{1}{2} (2x+1)^{10} d (2x+1),$$
 то, положив $t=2x+1$, получим
$$\int (2x+1)^{10} dx = \frac{1}{2} \int (2x+1)^{10} d (2x+1) = \frac{1}{2} \int t^{10} dt = \frac{t^{11}}{22} + C = \frac{(2x+1)^{11}}{22} + C$$

$$\int t^{10} dt = \frac{11}{L_{\parallel}} + C$$

$$\Pi$$
 р и м е р 3. Найти $\int xe^{x^2} dx$. \triangle Положив $t = x^2$, находим

$$\int xe^{x^2} dx = \frac{1}{2} \int e^{x^2} dx^2 = \frac{1}{2} \int e^t dt = \frac{1}{2} e^t + C = \frac{1}{2} e^{x^2} + C. \blacktriangle$$

Пример 4. Найти
$$\int \frac{x^2 dx}{4 + 3x^3}$$
.

Пример 4. Найти
$$\int \frac{x^2 dx}{4+3x^3}$$
. $\chi^2 d\chi = \frac{1}{3} d\chi^3 = \frac{1}{3} (4+3\chi^3) = \frac{1}{3} (4+3\chi^3)$

△ Подынтегральное выражение приводится к виду

$$\frac{1}{9} \cdot \frac{d(4+3x^3)}{4+3x^3}$$
.

$$= \frac{1}{9}d(4+3x^{2})$$

Положив $t = 4 + 3x^3$, получим

$$\int \frac{x^2 dx}{4 + 3x^3} - \frac{1}{9} \int \frac{d(4 + 3x^3)}{4 + 3x^3} = \frac{1}{9} \int \frac{dt}{t} =$$

$$= \frac{1}{9} \ln|t| + C = \frac{1}{9} \ln|4 + 3x^3| + C. \triangle V$$

Пример 5. Найти
$$\int \frac{1}{x^2} e^{1/x} dx$$

Пример 5. Найти
$$\int \frac{1}{x^2} e^{1/x} dx$$
.
$$d\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right) dx = -\frac{1}{x} dx$$

 \triangle Положим $t=\frac{1}{x}$, тогда $x=\frac{1}{t}$ и $dx=-\frac{dt}{t^2}$. Таким образом,

$$\int \frac{1}{x^{2}} e^{t/x} dx = \int t^{2} e^{t} \left(-\frac{dt}{t^{2}} \right) = -\int e^{t} dt =$$

$$= -e^{t} + C = -e^{1/x} + C. \blacktriangle \checkmark$$

Пример 6. Найти
$$\int \frac{dx}{\sqrt{11+10x-x_2^2}}$$
.

 \triangle Так как $11 + 10x - x^2 = 36 - (x - 5)^2$, то с помощью замены переменной t=x-5 интеграл сводится к табличному интегралу:

$$\int \frac{dx}{\sqrt{11-10x-x^2}} = \int \frac{dx}{\sqrt{36-(x-5)^2}} = \int \frac{d(x-5)}{\sqrt{6^2-(x-5)^2}} = \int \frac{d(x-5)}{\sqrt{$$

Пример 7. Найти $\int x \sqrt{1-x^2} dx = \int \sqrt{1-x^2} dx = \frac{1}{2}$ Од- x^2 о (1-x) = 0 Сделаем подстановку $t = 1-x^2$, тогда dt = -2x dx, е. $x dx = -\frac{dt}{2}$. Поэтому

т. е. $x dx = -\frac{dt}{2}$. Поэтому

$$\int x \sqrt{1-x^2} \, dx = \int \sqrt{\frac{t}{t}} \left(-\frac{dt}{2}\right) = -\frac{1}{2} \int \sqrt{\frac{t}{t}} \, dt =$$

$$= -\frac{1}{2} \cdot \frac{2}{3} t^{3/2} + C = -\frac{1}{3} (1-x^2)^{3/2} + C. \blacktriangle \nu$$

$$-x^{2}+10x+11=-\left(x^{2}-10x-11\right)=-\left(x^{2}-10x+25-25-11\right)=$$

$$=-\left((x-5)^{2}-36\right)=36-(x-5)^{2}$$

Пример 8. Найти $\sqrt{\sin x \cos^7 x \, dx}$.

 \triangle Положим $t = \cos x$, тогда $dt = -\sin x \, dx$. Следовательно.

$$\int \sin x \cos^7 x \, dx = -\int t^7 \, dt = -\frac{t^8}{8} + C = -\frac{\cos^8 x}{8} + C. \, \triangle$$

Пример 9. Найти $\int \frac{dx}{\sin x}$.

△Первый способ. Преобразовав подынтегральное выражение

$$\frac{dx}{\sin x} = \frac{\sin x \, dx}{\sin^2 x} = \frac{-d \cos x}{1 - \cos^2 x}$$

и положив $t = \cos x$, приходим к табличному интегралу 10:

$$\int_{0}^{\infty} \frac{dx}{\sin x} = \int_{0}^{\infty} \frac{dt}{t^{2} - 1} = \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right| + C = \frac{1}{2} \ln \frac{1 - \cos x}{1 + \cos x} + C.$$

Второй способ. Преобразуем подынтегральное выражение следующим образом:

$$\frac{dx}{\sin x} = \frac{d\frac{x}{2}}{\sin x} = \frac{1}{\tan^{-x}} \cdot \frac{d\frac{x}{2}}{\cos^{2}x} = \frac{d \lg \frac{x}{2}}{\tan^{-x}}$$

SIII - COS - 18 - COS - 18 -

и положим $u=\operatorname{tg}\frac{x}{2}$. Тогда получим

$$\int \frac{dx}{\sin x} = \int \frac{du}{u} = \ln|u| + C = \ln|\operatorname{tg}\frac{x}{2}| + C. \blacktriangle$$

Пример 10. Найти
$$\int \frac{\arcsin^2 x}{\sqrt{1-x^2}} dx$$
.

 \triangle Положим $t = \arcsin x$, тогда $dt = \frac{dx}{\sqrt{1-x^2}}$. Таким образом,

$$\int \frac{\arcsin^2 x}{\sqrt{1-x^2}} \, dx = \int t^2 \, dt = \frac{t^3}{3} + C = \frac{(\arcsin x)^3}{3} + C. \, \triangle$$

Пример II. Найти $\int \frac{dx}{1+\sqrt{x}}$.

 \triangle Сделаем замену переменной, положив $x=t^{z},\ t\geqslant 0.$ Тогда, так как $dx=2t\ dt,$ получим

$$\int \frac{dx}{1+\sqrt{x}} = 2 \int \frac{t \, dt}{1+t} = 2 \int \frac{1+t-1}{1+t} \, dt =$$

$$= 2 \int dt - 2 \int \frac{dt}{1+t} = 2t - 2 \ln(1+t) + C =$$

$$= 2 \sqrt{x} - 2 \ln(1+\sqrt{x}) + C. \triangle$$

Пример 12. Найти
$$\int \frac{dx}{\sqrt{e^x-1}}$$
.

 \triangle Положим $e^x-1=t^2$, t>0, тогда

$$e^x dx = 2t dt$$
, $dx = \frac{2t dt}{t^2 + 1}$.

Следовательно,

$$\int \frac{dx}{\sqrt{e^x - 1}} = 2 \int \frac{dt}{t^2 + 1} = 2 \arctan t + C =$$

$$= 2 \arctan \sqrt{e^x - 1} + C. \blacktriangle$$

Пример 13. Найти $\int \sqrt{4-x^2} \, dx$.

 \triangle Положим $x=2\sin t$, $|t|\leqslant \frac{\pi}{2}$, тогда $dx=2\cos t\,dt$

$$t = \arcsin \frac{x}{2}$$
. Следовательно,
$$\sqrt{4 - x^2} = \sqrt{4 - 4\sin^2 t} = 2\sqrt{1 - \sin^2 t} = 2\cos t.$$

Таким образом,

(accsinx)= 1 1×141