大作业——MyPlot 函数绘制工具

〇、声明

本文档旨在说明大作业基本要求。请勿外传。

设置大作业的目的是希望同学们活用课程学到的知识,锻炼解决实际问题的能力,体验团队协作过程,并从过程中学到更多课堂很难涉及的知识。

"程序设计基础"课程教学团队保留对本文档内容的最终解释权。

目录

Ο,	声明	1
– ,	任务描述	3
1.	1、函数绘制	3
	1.1.1、一元函数绘制	3
	1.1.2、参数函数绘制	4
	1.1.3、二元函数绘制	5
1.	2、画布创建	6
	1.2.1、创建二维坐标系画布	6
	1.2.2、创建三维坐标系画布	7
1.	3、画布保存	8
_,	必做任务	9
2.	1、直线函数	9
2.	2、抛物线	9
2.	3、笛卡尔心形线	10
2.	4、其他心形线	10
2.	5、多层心形线	10
2.	6、墨西哥草帽	11
三、	输入输出要求	12
3.	1、输入	12
3.	2、输出	12
四、	组队、提交要求及计分说明	13
4.	1、组队要求	13
4.	2、提交要求	13
4.	3、计分说明	14

一、任务描述

绘制函数图像是帮助我们理解函数性质的重要手段。让我们使用 C/C++语言,编写一个 MyPlot 工具,实现绘制已知函数的图像的功能吧! 具体包括以下功能函数:

1.1、函数绘制

MyPlot 工具支持的函数绘制功能应包括以下三种:

1.1.1、一元函数绘制

已知一元函数方程,绘制函数图像。该功能函数的声明为:

```
void plot2D(
   double (*func)(double),
   double minX, double maxX,
   int color);
```

其中:

func 为 C/C++语言实现的一元函数方程;

minX 和 maxX 表达定义域取值范围;

color 为颜色值。这里,颜色通过红绿蓝三原色的数值表达,每种颜色占用一个字节(即,取值范围 0-255),拼合成一个 int 整数表达一种颜色。例如,0x0000FF表示红色,0x00FF00表示绿色,0xFF0000表示蓝色,0x00FFFF表示黄色,0xFF00FF表示亮紫色,等。

例如:

```
plot2D(func1, -7, 7, 0x00FF00);
```

将使用绿色绘制函数 y = func1(x)、且 x 取值范围[-7, 7]的图

像。这时,如果 func1 的定义如下所示,则绘制的图像见任务 2.1。

```
double func1(double x) {
   return x;
}
```

1.1.2、参数函数绘制

已知一元参数方程,绘制函数图像。该功能函数的声明为:

```
void plotPara(
   double (*funcX)(double), double (*funcY)(double),
   double minT, double maxT,
   int color);
```

其中:

funcX和funcY分别为C/C++语言实现的X和Y的参数方程; minT和maxT表达参数的取值范围;

color 为颜色值。

例如:

```
plotPara(func31, func32, 0, 2 * 3.1416, 0xFF0000);
```

将使用蓝色绘制由 x = func31(t)、y = func32(t)联立形成、且 t 取值范围[0, 2 * 3.1416]时的参数曲线。这时,如果 func31 和 func32 的定义如下所示,则绘制的图像见任务 2.3。

```
double func31(double t) {
    return cos(t) * 2 - cos(t * 2);
}
double func32(double t) {
    return sin(t) * 2 - sin(t * 2);
}
```

1.1.3、二元函数绘制

己知二元函数方程,绘制函数图像(三维)。该功能函数的声明

为:

```
void plot3D(
  double (*func)(double, double),
  double minX, double maxX,
  double minY, double maxY);
```

其中:

func 为 C/C++语言实现的二元函数方程;

minX 和 maxX 表达自变量 X 的取值范围;

minY和 maxY表达自变量 Y的取值范围。

绘制二元函数时,通常不设置颜色值,而是根据函数值的大小设置不同的颜色值。

例如:

```
plot3D(func6, -8, 8, -8, 8);
```

将使用绘制 z = func6(x, y)、且 x 取值范围[-8, 8]、y 取值范围[-8, 8]时的曲面。**绘制曲面可以由绘制多个小四边形实现。**这时,如果 func6 的定义如下所示,则绘制的图像见任务 2.6。

```
double func6(double x, double y) {
    double r = sqrt(x * x + y * y);
    if (r == 0.0)
        return 1.0;
    return sin(r) / r;
}
```

1.2、画布创建

1.2.1、创建二维坐标系画布

```
void createCanvas(
   int width, int height,
   int origX, int origY,
   int ratio,
   bool axis);
```

其中:

width 和 height 分别为输出图像的宽和高;

origX和origY表达坐标原点在图像中的位置,简化起见,我们规定X轴正方向向右,Y轴正方向向上;

ratio 表示坐标单位对应于多少像素:

axis 表示是否绘制坐标轴。

例如:

```
createCanvas(800, 600, 400, 300, 10, true);
```

表示创建了一张 800x600 的图像,以其中的(400,300)位置为坐标原点,每 10 个像素为一个单位,而且绘制坐标轴。即,图像的(410,300)位置对应函数坐标系中的(1,0)点,图像的(400,290)位置对应函数坐标系中的(0,1)点。

1.2.2、创建三维坐标系画布

```
void createCanvas3D(
   int width, int height,
   int origX, int origY,
   double rxx, double rxy,
   double ryx, double ryy,
   double rzx, double rzy);
```

其中:

width 和 height 分别为输出图像的宽和高;

origX 和 origY 表达坐标原点在图像中的位置;

rxx、rxy、ryx、ryy、rzx、rzy分别为三维坐标系的坐标对图像x、y坐标的变换参数。具体参考下面的公式,可以将三维坐标(X,Y,Z)变换为图像中的坐标(imgX, imgY):

```
imgX = origX + rxx * X + ryx * Y + rzx * Z
imgY = origY + rxy * X + ryy * Y + rzy * Z
```

简单起见,三维坐标系画布不绘制坐标轴或坐标平面。

例如:

```
void createCanvas(
800, 600, 400, 300,
24.8438, -5.375, -16.175, -5.3, 0, -145);
```

表示创建了一张 800x600 的图像,以其中的(400,300)位置为坐标原点。坐标变换参数可用来得到任务 2.6 所需的效果。

1.3、画布保存

```
void saveCanvas(char * filename);
```

其中:

filename 表示输出的文件名。

二、必做任务

在完成上述功能函数的基础上,通过在主函数中调用这些函数, 绘制出下列图像,具体的参数可根据审美自行设定。

2.1、直线函数

绘制下面的图形。

2.2、抛物线

绘制下面的图形。

2.3、笛卡尔心形线

绘制下面的图形。提示,调用 plotPara 函数实现。

2.4、其他心形线

绘制下面的图形。提示,可通过多次调用 plot2D 函数实现。

2.5、多层心形线

绘制下面的图形。提示,可多次调用 plot2D 和 plotPara 函数实现。

2.6、墨西哥草帽

绘制下面的图形。提示,调用 plot3D 和实现。

三、输入输出要求

3.1、输入

工具没有输入参数。但工程中应包括 func1.cpp、func2.cpp、func3.cpp、func4.cpp、func5.cpp 和 func6.cpp, 6 个.cpp 文件分别包含了任务 2.1-2.6 所绘制函数的 C/C++语言定义。

3.2、输出

输出为 6 个. bmp 文件(func1. bmp、func2. bmp、func3. bmp、func4. bmp、func5. bmp、func6. bmp),分别对应任务 2. 1-2. 6 的绘制结果。

.bmp 文件格式参见百科资料(课堂上也会简单讲解)。

四、组队、提交要求及计分说明

4.1、组队要求

要求 2-4 人一组组队完成,推荐 3 人一组。每组选出一名队长。

4.2、提交要求

每组由队长在网络学堂提交一个. zip 压缩包。组员可以(但不必须)在网络学堂提交作业时说明队长姓名学号,但不要提交附件。发现组员在网络学堂提交附件的,将单独扣分。

压缩包内应包括但不限于:

- 1)程序源文件。放置在 src 文件夹下,可以有多级目录,应包括全部工程编译所需文件。应包含 3.1 节中描述的 6 个. cpp 文件。
- 2)说明文档。一个 Word 或 Pdf 文档,放置在压缩包根目录下,内容应包括但不限于:小组人员(姓名、学号、班级)、基本功能完成情况、扩展功能说明(可选)、分工情况(注意:这部分将作为小组内同学评分依据)。
- 3) 演示视频。放置在压缩包根目录下,内容应包括但不限于: 小组人员展示、基本功能演示、扩展功能演示(可选)。建议长度不 超过3分钟,大小不超过30MB。

如果上述内容过大无法上传至网络学堂,可分别用一个内含有效链接的.txt 文件代替。

4.3、计分说明

- 1、要求主体使用 C/C++实现。完整实现第一、二、三节规定的全部任务就可以获得 100%的大作业分值。
- 2、允许调用其他库,允许调用其他语言编写的函数。但如这样做,应在说明文档中给出说明,并扣除由此节省的工作量所对等的分值。
- 3、本文档中,扩展功能指本文档中未说明的绘制函数功能(即,扩展本文档第一节内容)、更多的输入输出交互模式(即,扩展本文档第三节内容);扩展任务指本文档中未说明的任务(即,扩展本文档第二节内容)。实现扩展功能或扩展任务有额外加分,分值视重要程度而定。
- 4、"抑制内卷条款":实现扩展功能或扩展任务并不能获得超过 100%的大作业分值,但可以用来补足由于第2条规定导致的扣分。请 各位同学在小组内充分沟通,根据小组同学的兴趣、能力和时间安排, 选择是否实现扩展功能或扩展任务。