

第二届 eBPF开发者大会

www.ebpftravel.com

基于eBPF的应用层负载均衡的优化实践与探索

任玉鑫·华为

中国.西安

Background: micro-service

Characteristics

Long service chain

Layer-7 load balancing

Load balancer co-location

Background: L7 load balancing

Nginx、HAProxy、Envoy

Load distribution

Application awareness

High performance requirement

Background: current practice

Istio user space Microservices L7 Proxies Instances gRPC HTTP kernel space socket socket socket TCP/IP TCP/IP TCP/P ptables

Cilium

Proxy-based solution: more hops, redundant processing

Background: current practice

DPDK Library

Security, Isolation, Compatibility issue

Problem summary

	Sidecar	Kernel Bypass	Library
Duplicated Processing	High	High	Low
System Calls	High	Low	High
Cross-process	High	High	Low
Isolation	High	High	Low
Compatibility	High	Low	Low

Components	Sidecar Proxy	
Protocol parsing	4.5us(5.11%)	
Load balancing	13us(14.78%)	
Connection splicing	22us(25%)	
Socket processing	3.83us(4.35%)	
Kernel protocol	26.9us(30.62%)	
Others	17.7us(20.12%)	

Approach comparison

Overhead breakdown

Design: architecture

Goals

Near-zero unnecessary overhead

Service isolation and security

Operational compatibility

Design: benefits

✓ Intercept complete message contents

✓ Fast message process

✓ Flexible message rewriting

✓ Modular extension

Design: challenges

 Challenge 1: insufficient and inflexible connection management in the kernel.

 Challenge 2: complex application layer states maintenance in the kernel.

Design: eBPF Interposition

implements backend selection in eBPF to execute in the kernel

- Packet parsing: extract packet contents
- Service location: combine message contents with IP
- Routing: match requests with routing rules sequentially, and the last matched rule resolves the destination service
- Instance selection: conventional loading balancing algorithms, such as round-robin, random, and the least request

Design: socket redirection

New socket types

Connection pool

Request map

Evaluation: Scalability

Evaluation: Bookinfo

Istio: 43.2% higher throughput, 33.2% lower

latency

Cilium: 10.2% higher throughput, 13.3%

lower latency

Evaluation: Google BoA

All data are normalized to Istio 5 users result

system	users	throughput	latency	tail atency
Istio	5	1.0	1.0	1.0
	500	13.11	7.59	4.79
Cilium	5	0.96	1.02	0.98
	500	13.27	7.52	3.94
eBPF	5	1.26	0.79	0.84
	500	14.47	6.73	3.66

(c) BoA performance

Future work

- More protocols support
- More L7 functionalities
- Coordinating with user-space customized features
- Online update
- Reliability

Open source

Kmesh: an efficient in-kernel service mesh framework

https://github.com/kmesh-net/kmesh

Will integrate into kmesh!

平滑兼容

- 应用无感的流量治理
- 自动对接Istio等软件

高性能

- 网格转发时延60%↓
- 服务启动性能40%↑

低开销

• 网格底座开销 **70%**↓

安全隔离

- ebpf虚机安全
- cgroup级编排隔 澇

- 端到端指标采集*
- 主流观测平台对 接*

• 支持xDS协议标准

23年12月

Kmesh v0.1版本 • L4~L7流量治理

- ns粒度托管网格数据面
- 镜像发布

Kmesh v0.2版本

24年2月

- helm安装部署
- 支持workload基 础功能

Kmesh v0.3版本预计

24年4月

- 支持waypoint对接

24年6月

熔断限流 mTLS透明加密 数据面运维增强

Kmesh技术交流群

