Indian Institute of Technology Jodhpur MAL1010, Dec'21 Assignment Sheet-2

1. Use the comparision test to determine the convergence or divergence of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n^2 - \sin^2 n}$$
 (b) $\sum_{n=1}^{\infty} \frac{e^{-n}}{n + \cos^2 n}$ (c) $\sum_{n=1}^{\infty} \frac{n^{2.5} - 2}{n^4 + 6}$

(b)
$$\sum_{n=1}^{\infty} \frac{e^{-n}}{n + \cos^2 n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^{2.5}-2}{n^4+6}$$

(d)
$$\sum_{n=1}^{\infty} \frac{3^{(-1/n)}}{n^3}$$
 (e) $\sum_{n=1}^{\infty} \frac{2^{(1/n)}}{5n}$

(e)
$$\sum_{n=1}^{\infty} \frac{2^{(1/n)}}{5n}$$

2. Use the D'Alembert's ratio test to determine the convergence or divergence of the following series.

(a)
$$\sum_{n=3}^{\infty} \frac{e^{4n}}{(n-2)!}$$

(a)
$$\sum_{n=3}^{\infty} \frac{e^{4n}}{(n-2)!}$$
 (b) $\sum_{n=2}^{\infty} \frac{(-2)^{1+3n}(n+1)}{n^2 \cdot 3^{(1+n)}}$ (c) $\sum_{n=1}^{\infty} \frac{4^{(1-2n)}}{n^2+1}$

(c)
$$\sum_{n=1}^{\infty} \frac{4^{(1-2n)}}{n^2+1}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(2n-1)}{3n!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(2n-1)!}{3n!}$$
 (e) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} 2^n$

3. Use the Cauchy's n^{th} root test to determie the convergence or divergence of the following series.

(a)
$$\sum_{n=1}^{\infty} \left(\frac{3n+1}{4-\sqrt{3}n}\right)^{2n}$$
 (b) $\sum_{n=0}^{\infty} \frac{n^{(1-4n)}}{6^{2n}}$ (c) $\sum_{n=4}^{\infty} \frac{(-5)^{1+3n}}{(2)^{7n-2}}$

(b)
$$\sum_{n=0}^{\infty} \frac{n^{(1-4n)}}{6^{2n}}$$

(c)
$$\sum_{n=4}^{\infty} \frac{(-5)^{1+3n}}{(2)^{7n-2}}$$

(d)
$$\sum_{n=2}^{\infty} \left(\frac{5n^2 - 2n + 1}{3n^2 + n - 3} \right)^{-n}$$
 (e) $\sum_{n=1}^{\infty} \left(\frac{5 - 2n}{7 + 3n} \right)^{n/3}$

(e)
$$\sum_{n=1}^{\infty} \left(\frac{5-2n}{7+3n} \right)^{n/3}$$

4. Discuss the convergence of the following alternative series.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+3}}{n^3+4n+1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{(-2)^n (6n+1)}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n-2}}{3^n + 3n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n} \frac{n}{1}$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+3}}{n^3 + 4n + 1}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{(-2)^n (6n+1)}$ (c) $\sum_{n=0}^{\infty} \frac{(-1)^{n-2}}{3^n + 3n}$ (d) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2n-1}$ (e) $\frac{1}{1^2} - \frac{1}{1} + \frac{1}{2^2} - \frac{1}{2} + \frac{1}{3^2} - \frac{1}{3} + \cdots$

 $\sum_{n=0}^{\infty} a_n$, where

$$a_n := \begin{cases} \frac{-1}{n}, & n \text{ is odd} \\ 2^{-n}, & n \text{ is even} \end{cases}$$

5. Define a function f(x) such that

$$f(x) := \begin{cases} 2x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Show that f is continuous at 0 using the $\epsilon - \delta$ definition and sequential characterization.

1

6. Show that the following function is not continuous at x = 0, using sequential characterization.

$$f(x) := \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

7. Show that the following function is continuous only at x = 0.

$$f(x) := \begin{cases} 0, & x \in \mathbf{Q} \\ x, & x \in \mathbf{R} \setminus \mathbf{Q} \end{cases}$$

- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be such that for every $x, y \in \mathbb{R}$, we have $|f(x) f(y)| \le |x y|$. Show that f is continuous.
- 9. Let $f: \mathbb{R} \to \mathbb{R}$ satisfy f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f is continuous at 0, show that f is continuous at every point $c \in \mathbb{R}$.