Dependent Type Theory for Absolute Beginners

Created with the help of GPT-5 Pro

Kimon Fountoulakis

October 14, 2025

1 Types and universes

Types

In dependent type theory, all objects we manipulate are terms, and each term has a type. For example, a natural number 0 has type Nat, and a boolean value true has type Bool. We use the colon notation a:A to mean that a is a term of the type A. For example:

0: Nat, false: Bool, "hello world": String.

Universes

But what about Nat and Bool themselves? They too are objects in the theory and therefore must have a type. The type to which all ordinary types belong is called the *universe of types* and is written Type. Thus we write

Nat : Type, Bool : Type, String : Type.

Intuitively, Type is "the type of all types." However, if we were to write Type: Type, we would obtain an inconsistency (Girard's paradox). To avoid this, type theory introduces an infinite hierarchy of universes:

$$\mathsf{Type}_0$$
, Type_1 , Type_2 , ...

Each universe is itself a type in the next one, forming a cumulative hierarchy:

$$\mathsf{Type}_m : \mathsf{Type}_n \quad \text{for } m < n.$$

Intuitively, Type₀ is the universe of "small" types (such as Nat, Bool, etc.), Type₁ is the universe of "types of small types," and so on. "In practice," we often omit universe indices and simply write Type when the specific level is irrelevant.

2 Introduction to the notation $\lambda x:A.t$

The expression

$$\lambda x : A.t$$

is called a *lambda abstraction* or *function definition*. It denotes a function that takes an input x of type A and returns the term t as its output.

Structure

The components of the expression are as follows:

- λ (the "lambda" symbol introducing a function);
- x (the variable name of the function argument);
- : A (the type annotation for the variable);
- . (a separator between the argument and the function body);
- t (the function body, possibly depending on x).

Hence, the expression

$$\lambda x : A. t$$

should be read as

"the function that takes an argument x of type A and returns t."

Examples

Identity function.

$$\lambda x$$
: Nat. x

This denotes the function that takes a natural number x and returns x itself. Its type is $\mathsf{Nat} \to \mathsf{Nat}$.

Constant function.

$$\lambda x$$
: Nat. 0

This function ignores its input and always returns 0. Type: Nat \rightarrow Nat.

Boolean negation.

$$\lambda b$$
: Bool. case(b , λ_{-} . false, λ_{-} . true)

This represents the Boolean negation function, of type $\mathsf{Bool} \to \mathsf{Bool}$. The expression

$$case(b, \lambda_{-}. false, \lambda_{-}. true)$$

is the eliminator (or destructor) for the boolean type. It performs a case distinction depending on whether b is true or false:

$$\mathsf{case}(b,\ \lambda_{-}.\ t_{1},\ \lambda_{-}.\ t_{2})\ \mathrm{means}\ \begin{cases} t_{1} & \text{if}\ b = \mathsf{true},\\ t_{2} & \text{if}\ b = \mathsf{false}. \end{cases}$$

The underscore " $_$ " denotes an *ignored argument*; for instance, λ $_$. false is the function that always returns false regardless of its input. Hence

$$\lambda b$$
: Bool. case(b , λ_- false, λ_- true)

defines the boolean negation function, i.e. a function that returns ${\sf false}$ when b is true and ${\sf true}$ when b is false.

Function application and computation

If f is a lambda abstraction and a is an argument of the appropriate type, we apply $f \equiv \lambda x : A.t$ to a by writing

fa.

The result is obtained by substituting a for all free occurrences of x in the body t:

$$(\lambda x : A.t) a \equiv t[a/x].$$

This is called the *beta reduction* (β -reduction), and it formalizes the usual idea of function application.

Example.

$$(\lambda x : Nat. x + 1) 3 \equiv 3 + 1 \equiv 4.$$

Intuitively, the lambda abstraction defines a function, and applying it "plugs in" the argument.

Relation to ordinary mathematics

The notation

$$\lambda x : A. t$$

corresponds to the mathematical function expression

$$x \mapsto t(x)$$
.

The lambda notation, however, treats functions as *first-class terms*—they can be passed as arguments, returned as results, and manipulated like any other expression.

3 Contexts

The empty context

The symbol \cdot , often written simply as \cdot , denotes the *empty context*. It represents the starting point of all contexts—a situation with no assumptions.

General contexts

First, some terminology, x:A is a called a *variable declaration*. A context is simply a finite list of typed variable declarations. For example:

$$\cdot$$
, $x : \mathsf{Nat}$, $x : \mathsf{Nat}$, $y : \mathsf{Bool}$, $x : \mathsf{Nat}$, $y : \mathsf{Bool}$, $z : \mathsf{String}$.

These are four different contexts. The first, i.e., \cdot , denotes the empty context. The second includes only one declaration, the third includes two declarations and the forth includes three declarations. Each larger context is obtained from a smaller one by adding one more declaration.

Extension of a context

Let Γ be a context, then $\Gamma, x : A$ is the *extension* of Γ with a new declaration.

Example of construction.

$$\Gamma_0 = \cdot, \qquad \Gamma_1 = \Gamma_0, x : \mathsf{Nat}, \qquad \Gamma_2 = \Gamma_1, y : \mathsf{Bool}, \qquad \Gamma_3 = \Gamma_2, z : \mathsf{String}.$$

Hence

$$\Gamma_3 = x : \mathsf{Nat}, \ y : \mathsf{Bool}, \ z : \mathsf{String}.$$

This shows how a recursive definition generates all finite contexts.

Inductive definition of contexts

Formally, we define the syntax of contexts using the notation

$$\Gamma ::= \cdot \mid \Gamma, x : A.$$

The symbol ::= is read as "is defined as," and the vertical bar "|" means "or." Thus, this definition should be read as:

A context Γ is either the empty context \cdot , or an existing context extended by a new variable declaration x:A.

This is a recursive or inductive definition:

- The base case says that the empty context \cdot is a valid context.
- The *inductive case* says that if Γ is a valid context and A is a type, then $\Gamma, x : A$ is also a valid context.

The domain of a context Γ is denoted by $dom(\Gamma)$, and it is the set of variables declared in Γ .

4 Judgments

A *judgment* is a basic assertion of the form we can derive in the theory. We will use the following judgment forms throughout:

 $\Gamma \vdash t : A$, reads "under context Γ , the term t has type A.

and

 $\Gamma \vdash a \equiv b : A$, reads "under context Γ , the terms a and b are judgementally equal at type A,

and

 $\Gamma \vdash \mathsf{ctx}$, reads "context Γ is well-formed.

Judgements are derived using inference rules, which we will discuss later. For now, let's explain judgementally equivalent means and what a well-formed context means.

Definition (judgmental/definitional equality).

The judgment $\Gamma \vdash a \equiv b : A$ means that a and b are judgmentally equal at type A. The equality holds by computation and definitional unfolding.

Example. Let

$$f :\equiv \lambda x : \mathsf{Nat}. \, x + 1.$$

Then by definition,

$$f\,2 \; \equiv \; (\lambda x \!:\! \mathsf{Nat}.\, x + 1)\,2 \; \equiv \; 2 + 1 \; \equiv \; 3.$$

Hence we can write the judgment

$$\cdot \vdash f 2 \equiv 3 : \mathsf{Nat},$$

which reads: "in the empty context, $f\,2$ and 3 are judgmentally equal at type Nat."

Well-formed contexts $(\Gamma \vdash \mathsf{ctx})$

We write the well-formedness judgment

$$\Gamma \vdash \mathsf{ctx}$$

and read it as " Γ is a well-formed context." The symbol ctx is a fixed tag (a nullary predicate) used only on the right of \vdash to denote this judgment; it is not a type.

What does it mean for a context to be well-formed? Intuitively, a context Γ is well-formed if every declaration inside it makes sense: each type appearing in a declaration is itself already a valid type in the smaller context preceding it. Formally, recall that a context is a sequence of variable declarations:

$$\Gamma :\equiv x_1 : A_1, x_2 : A_2, \dots, x_n : A_n.$$

We say that such a context is well-formed, written

$$\Gamma \vdash \mathsf{ctx}$$
,

if and only if the following recursive conditions hold:

• The empty context is well-formed:

$$\cdot \vdash \mathsf{ctx}.$$

• If $\Gamma \vdash \mathsf{ctx}$ and the type A is well-formed under Γ , i.e. $\Gamma \vdash A : \mathsf{Type}$, and the variable x is fresh $(x \notin \mathsf{dom}(\Gamma))$, then the extended context $\Gamma, x : A$ is well-formed:

$$\Gamma$$
, $x : A \vdash \mathsf{ctx}$.

Intuitively, this means that the declarations in a context must be arranged so that each type depends only on variables that have been declared earlier.

Example.

$$x : \mathsf{Nat}, \ y : \mathsf{Bool}, \ z : \mathsf{String} \vdash \mathsf{ctx}$$

is well-formed, since each type (Nat, Bool, String) is already a valid type in the previous context.

Dependent example.

$$x: \mathsf{Nat}, \, y: (\mathsf{Bool}, x) \vdash \mathsf{ctx}$$

is also well-formed, because (Bool, x) is a type depending on x, and x has already been declared.

Non-example.

$$y : (\mathsf{Bool}, x), \, x : \mathsf{Nat} \not\vdash \mathsf{ctx},$$

because y's type refers to x, but x has not yet been declared at that point.

In summary. A context is well-formed precisely when every variable declaration in it is meaningful in the smaller context built from the declarations before it. This ensures that type dependencies are acyclic and well-scoped.

5 Reading inference rules and the rule bar

An inference rule has the schematic form

$$\frac{premise_1 \quad \cdots \quad premise_n}{conclusion} \ \text{Name}$$

The long *horizontal rule bar* separates premises (above) from the conclusion (below). If there are no premises, the rule is an *axiom* (always available). The inference rule is used to derive judgements.

Derivation of the empty context

Empty context.

$$\frac{}{\cdot \vdash \mathsf{ctx}} \ ^{\mathsf{CTX-EMPTY}}$$

Derivation of an extension

First, we provide one useful definition.

Domain and freshness. The set of variables declared in Γ is its *domain*, written $dom(\Gamma)$. It is defined inductively by

$$dom(\cdot) :\equiv \emptyset, \qquad dom(\Gamma, x : A) :\equiv dom(\Gamma) \cup \{x\}.$$

We write $x \notin \mathsf{dom}(\Gamma)$ to express that x is fresh for Γ . We use the usual membership notation $(x:A) \in \Gamma$ to mean that the declaration x:A occurs somewhere in Γ .

Extension.

$$\frac{\Gamma \vdash \mathsf{ctx} \quad \Gamma \vdash A : \mathsf{Type} \quad x \not\in \mathsf{dom}(\Gamma)}{\Gamma, x : A \vdash \mathsf{ctx}} \ \mathsf{Ctx}\text{-}\mathsf{Ext}$$

The side condition $x \notin \mathsf{dom}(\Gamma)$ enforces that variable names in a context are pairwise distinct. Sometimes, the side condition is not mentioned explicitly as a premise.

Derivation of variables

From $\Gamma \vdash \mathsf{ctx}$ and $(x : A) \in \Gamma$ we may derive the trivial variable rule:

$$\frac{\Gamma \vdash \mathsf{ctx} \quad (x : A) \in \Gamma}{\Gamma \vdash x : A} \text{ Var}$$

Derivation of judgements

A derivation of a judgment is a tree built from inference rules, with the judgment we want to justify placed at the root. Each node of the tree is an application of a rule whose premises appear above it and whose conclusion appears below the horizontal line. For example, using the rules defined so far, we can derive the judgment

$$\cdot \vdash x : \mathbf{1},$$

where **1** is the *unit type*. The unit type, written **1** : Type_0 , is a type with exactly one term, commonly written \star :

$$1 : \mathsf{Type}_0, \quad \star : 1.$$

The full derivation tree is:

This tree reads bottom-up as follows:

- By CTX-EMPTY, the empty context is well-formed.
- By 1-FORM, the unit type 1 is a type in the lowest universe Type₀.
- By CTX-EXT, extending the empty context with $x: \mathbf{1}$ gives a well-formed context $x: \mathbf{1} \vdash \mathsf{ctx}$.
- By VAR, from $x : \mathbf{1} \vdash \mathsf{ctx}$ we can derive $x : \mathbf{1} \vdash x : \mathbf{1}$.

Hence the complete derivation establishes

$$\cdot \vdash r \cdot \mathbf{1}$$

Derivation of well-formedness

We illustrate how to apply the context rules

$$\frac{}{\cdot \vdash \mathsf{ctx}} \overset{\text{Ctx-Empty}}{} \quad \frac{\Gamma \vdash \mathsf{ctx} \quad \Gamma \vdash A : \mathsf{Type} \quad x \notin \mathsf{dom}(\Gamma)}{\Gamma, x : A \vdash \mathsf{ctx}} \overset{\text{Ctx-Ext}}{}$$

to derive a well-formed context.

Comment. Often, $\Gamma \vdash \mathsf{ctx}$ is not added as a premise, because we already assume $\Gamma \vdash A$: Type in the premise list; and for this premise to be valid, it must already be the case that $\Gamma \vdash \mathsf{ctx}$.

Let's now proceed to a few examples. Throughout, assume the base types are available in the empty context:

$$\cdot \vdash \mathsf{Nat} : \mathsf{Type}, \qquad \cdot \vdash \mathsf{Bool} : \mathsf{Type}, \qquad \cdot \vdash \mathsf{String} : \mathsf{Type}.$$

Example 1 (non-dependent). Check $x : Nat, y : Bool \vdash ctx$.

$$\frac{ \cdot \vdash \mathsf{ctx}\,\mathsf{Ctx}\text{-}\mathsf{Empty} \qquad \cdot \vdash \mathsf{Nat}:\mathsf{Type} \qquad x \notin \mathsf{dom}(\cdot)}{x:\mathsf{Nat}\vdash \mathsf{ctx}} \\ \frac{x:\mathsf{Nat}\vdash \mathsf{ctx} \qquad \qquad x:\mathsf{Nat}\vdash \mathsf{Bool}:\mathsf{Type} \qquad y \notin \mathsf{dom}(x:\mathsf{Nat})}{x:\mathsf{Nat},\ y:\mathsf{Bool}\vdash \mathsf{ctx}} \\ \\ \frac{x:\mathsf{Nat}\vdash \mathsf{Bool}:\mathsf{Type} \qquad y \notin \mathsf{dom}(x:\mathsf{Nat})}{x:\mathsf{Nat}\vdash \mathsf{Dool}:\mathsf{Type}} \\ \\ \frac{x:\mathsf{Nat}\vdash \mathsf{Dool}:\mathsf{Type}}{x:\mathsf{Nat}\vdash \mathsf{Dool}:\mathsf{Type}} \\ \\ \frac{x:\mathsf{Nat}\vdash \mathsf{Dool}:\mathsf{Dool}$$

Reading bottom-up: start with \cdot via CTX-EMPTY; extend by x: Nat using $\cdot \vdash$ Nat : Type; then extend by y: Bool using x: Nat \vdash Bool : Type and freshness.

Non-example (dependency out of order). Consider $y:(\mathsf{Bool},x), x:\mathsf{Nat}.$ Attempting CTX-EXT on the first declaration requires $\cdot \vdash (\mathsf{Bool},x):\mathsf{Type}.$ But in \cdot there is no variable $x:\mathsf{Nat},$ so we cannot derive $\cdot \vdash x:\mathsf{Nat},$ hence $\cdot \vdash (\mathsf{Bool},x):\mathsf{Type}$ fails. Therefore

$$y : (\mathsf{Bool}, x), \, x : \mathsf{Nat} \not\vdash \mathsf{ctx}.$$

Non-example (duplicate name). Consider $x : \mathsf{Nat}, x : \mathsf{Bool}$. The second extension violates freshness since $x \in \mathsf{dom}(x : \mathsf{Nat})$. Thus the side condition $x \notin \mathsf{dom}(\Gamma)$ fails and

$$x : \mathsf{Nat}, \, x : \mathsf{Bool} \not\vdash \mathsf{ctx}.$$

These derivations show that checking $\Gamma \vdash \mathsf{ctx}$ reduces *recursively* to (i) checking the smaller prefix is well-formed, (ii) checking the new declaration's type is a type in that prefix, and (iii) enforcing freshness.

6 Structural rules and judgmental equality

Capture-avoiding substitution

When we write a substitution t[a/x], we mean the process of replacing all free occurrences of the variable x in the term t by the term a. However, care must be taken when t contains binders (such as $\lambda y. u$ or a context declaration y:B) that introduce new variables.

The problem: variable capture. If we substitute naively, a free variable of a might become accidentally bound by one of these binders. This error is called variable capture.

Example (the bad case). Consider:

$$t = \lambda y. x + y, \qquad a = y.$$

A naive substitution t[a/x] would yield

$$\lambda y. y + y,$$

but now the free y from a has been captured by the binder λy , changing its meaning completely. Originally, the inner y in a referred to some outer variable, but after substitution it refers to the bound parameter of the lambda.

The solution: capture-avoidance. Before performing substitution, we re- $name\ bound\ variables$ in t so that they do not clash with the free variables of a.

This is called capture-avoiding substitution.

In the example above, we first rename the bound variable y in t to a fresh variable y':

$$t' :\equiv \lambda u' \cdot x + u'$$
.

Now we can safely substitute a for x:

$$t'[a/x] = \lambda y'. y + y'.$$

No variable has been captured, and the meaning is preserved.

Summary.

- Variable capture occurs when a free variable in the substituting term becomes bound by a binder in the target expression.
- Capture-avoiding substitution prevents this by systematically renaming bound variables before substitution.
- This ensures that substitution preserves the intended meaning of terms.

Preliminaries: explanation of Δ notation and substitution brackets $\lceil\,\cdot\,/\,\cdot\,\rceil$

In what follows we write contexts of the form

$$\Gamma, x: A, \Delta.$$

Here:

- Γ is the initial prefix of the context.
- x:A is the current variable declaration we are focusing on.
- Δ denotes the remainder of the context after x:A. It may contain additional declarations types that can depend on x. Formally, if

$$\Delta :\equiv y_1 : B_1, y_2 : B_2, \dots, y_k : B_k,$$

then the complete context is

$$\Gamma, x: A, y_1: B_1, y_2: B_2, \ldots, y_k: B_k.$$

Substitution brackets. The notation t[a/x] means capture-avoiding substitution of the term a for the variable x in the expression t. It replaces all free occurrences of x in t by a, renaming bound variables when necessary to avoid name capture.

Similarly, for contexts we write $\Delta[a/x]$ to mean "substitute a for x in every type declared in Δ ". If

$$\Delta :\equiv y_1 : B_1, y_2 : B_2, \ldots, y_k : B_k,$$

then

$$\Delta[a/x] :\equiv y_1 : B_1[a/x], y_2 : B_2[a/x], \dots, y_k : B_k[a/x].$$

Properties.

- If x does not occur free in Δ , then $\Delta[a/x] = \Delta$.
- Substitution respects binding and avoids variable capture (by α -conversion if necessary).

If $\Gamma, x : A, \Delta \vdash b : B$, then b[a/x] denotes the term obtained by substituting a for x in b.

Thus, in the substitution rules, Δ represents the *tail of the context*, and the square brackets [a/x] represent standard, capture-avoiding substitution applied to terms, types, or all declarations within Δ .

Variable, substitution, and weakening

The following *structural* principles are admissible (provable by induction on derivations) and may be used freely.

Variable. From a well-formed context, any declared variable has its declared type.

$$\frac{\Gamma \vdash \mathsf{ctx} \quad (x : A) \in \Gamma}{\Gamma \vdash x : A} \text{ Var}$$

Substitution (typing). If a:A is derivable in Γ and, under an extended context $\Gamma, x:A, \Delta$, a judgment $\cdot \vdash b:B$ is derivable, then we may substitute a for x.

$$\frac{\Gamma \vdash a : A \quad \Gamma, x \colon\! A, \ \Delta \vdash b \colon\! B}{\Gamma, \ \Delta[a/x] \vdash b[a/x] \ \colon B[a/x]} \text{ Subst}_1$$

Weakening (typing). If A is a type in Γ and some judgment holds in Γ , Δ , we may insert a fresh, unused declaration x:A anywhere between Γ and Δ .

$$\frac{\Gamma \vdash A : \mathsf{Type}_i \quad \Gamma, \ \Delta \vdash b : B}{\Gamma, \ x \colon A, \ \Delta \vdash b : B} \ \mathsf{WKG}_1$$

Substitution (judgmental equality).

$$\frac{\Gamma \vdash a : A \quad \Gamma, x \colon\! A, \, \Delta \vdash b \equiv c : B}{\Gamma, \, \Delta[a/x] \vdash \, b[a/x] \, \equiv \, c[a/x] \, : \, B[a/x]} \text{ Subst}_2$$

Weakening (judgmental equality).

$$\frac{\Gamma \vdash A : \mathsf{Type}_i \quad \Gamma, \ \Delta \vdash b \equiv c : B}{\Gamma, \ x \colon A, \ \Delta \vdash b \equiv c : B} \ \mathsf{WKG}_2$$

As usual, side conditions ensure $x \notin dom(\Gamma)$ when extending a context.

Judgmental equality: laws and conversion

We assume judgmental equality $\Gamma \vdash a \equiv b : A$ is an *equivalence relation* and is respected by typing. Concretely, we use the following admissible rules.

Equivalence laws (at a fixed type).

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \equiv a : A} \text{ Refl} \qquad \frac{\Gamma \vdash a \equiv b : A}{\Gamma \vdash b \equiv a : A} \text{ Sym} \qquad \frac{\Gamma \vdash a \equiv b : A \ \Gamma \vdash b \equiv c : A}{\Gamma \vdash a \equiv c : A} \text{ Trans}$$

Conversion (type equality transports typing).

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash A \equiv B : \mathsf{Type}_i}{\Gamma \vdash a : B} \cdot \mathsf{Conv-Ty} \qquad \frac{\Gamma \vdash a \equiv b : A \quad \Gamma \vdash A \equiv B : \mathsf{Type}_i}{\Gamma \vdash a \equiv b : B} \cdot \mathsf{Conv-Eq}$$

7 Type universes (re-visited)

We postulate an infinite hierarchy of universes of types:

$$\mathsf{Type}_0$$
, Type_1 , Type_2 , ...

Each universe is contained in the next one, and any type in Type_i is also a type in Type_{i+1} . Formally, we have the following rules:

$$\frac{\Gamma \vdash \mathsf{ctx}}{\Gamma \vdash \mathsf{Type}_i : \mathsf{Type}_{i+1}} \ \mathsf{Type\text{-}Intro} \qquad \frac{\Gamma \vdash A : \mathsf{Type}_i}{\Gamma \vdash A : \mathsf{Type}_{i+1}} \ \mathsf{Type\text{-}Cumul}$$

Explanation.

- The first rule (Type-Intro) states that each universe Type_i itself has a type in the next higher universe Type_{i+1} .
- ullet The second rule (Type-Cumul) expresses *cumulativity*: if a type A belongs to some universe Type_i, it is also regarded as a type in every higher universe.

Remarks. We set up the rules of the type theory so that whenever a typing judgment $\Gamma \vdash a : A$ holds, it follows that $\Gamma \vdash A : \mathsf{Type}_i$ for some universe index i. In other words, every type A always lives in some universe Type_i .

Furthermore, judgmental equality preserves typing: if $\Gamma \vdash a \equiv b : A$ then both a and b have type A, i.e.

$$\Gamma \vdash a \equiv b : A \implies \Gamma \vdash a : A \text{ and } \Gamma \vdash b : A.$$

8 Rules associated with a type

Each type in dependent type theory is characterized by a collection of rules that specify how it can be formed, inhabited, used, and reasoned about:

- Formation rule, stating when the type former can be applied;
- Introduction rules, stating how to inhabit the type;
- Elimination rules, or an induction principle, stating how to use an element of the type;
- Computation rules, which are judgmental equalities explaining what happens when elimination rules are applied to results of introduction rules;
- (optional) **Uniqueness principles**, which are judgmental equalities explaining how every element of the type is uniquely determined by the results of elimination rules applied to it.

9 Functions and the arrow type $(A \rightarrow B)$

A function from a type A to a type B is a term of the function type $A \to B$. Intuitively, a function transforms any input a:A into an output b:B. In type theory, functions are introduced by lambda abstraction and used by application.

Rules for the arrow type

We present the usual four rules: formation, introduction (lambda), elimination (application), and computation (β -reduction).

Formation. If A and B are types, then $A \to B$ is a type:

$$\frac{\Gamma \vdash A : \mathsf{Type} \quad \Gamma \vdash B : \mathsf{Type}}{\Gamma \vdash A \to B : \mathsf{Type}} \to \mathsf{-Form}$$

Introduction (lambda abstraction). If under the assumption x:A we can build a term t:B, then $\lambda x.t$ is a function $A\to B$:

$$\frac{\Gamma, \ x \colon\! A \vdash t : B}{\Gamma \vdash \lambda x \ldotp t : A \to B} \to \text{-Intro}$$

We often write $\lambda x : A.t$ to annotate the parameter type explicitly.

Elimination (application). Given a function $f: A \to B$ and an argument a: A, we may apply f to a:

$$\frac{\Gamma \vdash f : A \to B \quad \Gamma \vdash a : A}{\Gamma \vdash f : a : B} \to \text{-Elim}$$

Computation (β -reduction). Applying a lambda to an argument computes by capture-avoiding substitution:

$$\frac{\Gamma, \ x \colon\! A \vdash t \colon\! B \quad \Gamma \vdash a \colon\! A}{\Gamma \vdash (\lambda x \colon\! t) \, a \equiv t[a/x] \colon\! B} \to \text{-Comp-}\beta$$

Here t[a/x] denotes capture-avoiding substitution of a for x in t.

Difference between elimination and computation. It is important to distinguish the *elimination* rule from the *computation* rule.

• Elimination rule. The elimination rule specifies how to use or consume a term of a given type. It allows us to produce something else from a value of that type. For function types, the elimination rule is function application:

$$\frac{\Gamma \vdash f : A \to B \quad \Gamma \vdash a : A}{\Gamma \vdash f a : B} \to \text{-Elim}$$

This rule does not specify what f a evaluates to; it only states that such a term is well-typed.

• Computation rule. The computation rule (often called the β -rule) specifies what happens when an elimination acts on an introduction. It defines how the expression reduces or computes. For function types:

$$(\lambda x. t) a \equiv t[a/x].$$

That is, applying a function introduced by a λ -abstraction to an argument a yields the function body with a substituted for x.

Elimination rules describe how we may use a term of a type, while computation rules describe what happens when we use it. In the case of functions, elimination is application, and computation expresses how application and λ -abstraction interact:

Introduction (λ) + Elimination (application) \Rightarrow Computation (β) .

Examples

Identity and constant functions.

$$\mathsf{id}_A :\equiv \lambda x : A \cdot x : A \to A, \quad \mathsf{const}_{A,B}(a) :\equiv \lambda_- : B \cdot a : B \to A.$$

The identity can be computed as $id_A a \equiv a$.

Conditional function. We define the higher-order conditional operator

$$\mathsf{if}_A \ :\equiv \ (\lambda b : \mathsf{Bool}. \ (\lambda t : A. \ (\lambda f : A. \ \mathsf{case}(b, \ \lambda_{-}. \ t, \ \lambda_{-}. \ f)))) \ : \ \mathsf{Bool} \to (A \to (A \to A)).$$

That is, if A is a curried function taking three arguments: a boolean b: Bool, and two values t, f : A. Its behavior is given by

$$if_A b t f :\equiv case(b, \lambda_{-}, t, \lambda_{-}, f),$$

so that

$$if_A true t f \equiv t, \quad if_A false t f \equiv f.$$

Composition. Given $f: B \to C$ and $g: A \to B$, define

$$f \circ g :\equiv \lambda x : A \cdot f(gx) : A \to C$$
.

10 Sum types and the inl and inr constructors

Given two types A: Type and B: Type, their sum type is written

$$A+B$$
: Type.

But how is A+B constructed? We first need to introduce the constructors of the type A+B. For two types A,B: Type, the sum type A+B has two constructors:

$$\frac{a:A}{\mathsf{inl}(a):A+B} \qquad \text{and} \qquad \frac{b:B}{\mathsf{inr}(b):A+B}.$$

The first constructor in injects values into A+B from the left component A, and the second constructor in injects values into A+B from the right component B. These two rules fully describe the canonical forms of elements of A+B.

Intuition. Constructors are the primitive building blocks of each type. For instance, every term of A + B is either $\mathsf{inl}(a)$ for some a : A, or $\mathsf{inr}(b)$ for some b : B; there are no other canonical ways to obtain a term of this type.

Reminder. At this stage, the expression in should be understood *purely syntactically*: it describes how to *form* a new term from existing ones using a constructor symbol in. The parentheses indicate syntactic application of a constructor to its arguments, not functional application. We have not yet introduced functions, so in does not denote a function being applied to arguments, but simply the construction of a new term according to the formation rule of the type.

Example: How A+B looks like? To make the idea of a sum type concrete, let us take two small finite types:

$$A :\equiv \{ \text{red}, \text{ green} \}, \qquad B :\equiv \{0, 1\}.$$

Then the sum type A + B consists of all elements of A tagged by inl, and all elements of B tagged by inr:

$$A + B = \{ inl(red), inl(green), inr(0), inr(1) \}.$$

Intuitively, $\mathsf{inl}(a)$ means "a value coming from A, left side of the sum," and $\mathsf{inr}(b)$ means "a value coming from B, right side of the sum.".

This can be illustrated in tabular form:

Element of A	Constructor	Element of $A + B$
red	inl	inl(red)
green	inl	inl(green)
0	inr	inr(0)
1	inr	inr(1)

In general, every element of A+B is either of the form $\mathsf{inl}(a)$ for some a:A, or $\mathsf{inr}(b)$ for some b:B. If desired, we can also represent the injections diagrammatically:

This expresses that both A and B "feed into" the coproduct A+B using the constructors inl and inr.

Rules for the sum type A + B.

Formation.

$$\frac{\Gamma \vdash A : \mathsf{Type} \quad \Gamma \vdash B : \mathsf{Type}}{\Gamma \vdash A + B : \mathsf{Type}} \; \mathsf{FORM}$$

Introduction.

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash \mathsf{inl}(a) : A + B} \text{ Introl} \qquad \frac{\Gamma \vdash b : B}{\Gamma \vdash \mathsf{inr}(b) : A + B} \text{ Introl}$$

Elimination (case analysis).

$$\frac{\Gamma \vdash s : A + B \quad \Gamma \vdash f : A \to C \quad \Gamma \vdash g : B \to C}{\Gamma \vdash \mathsf{case}(s, \, f, \, g) : C} \to \mathsf{ELIM}$$

Computation.

$$\Gamma \vdash \mathsf{case}(\mathsf{inl}(a), \, f, \, g) \equiv f \, a : C \qquad \qquad \Gamma \vdash \mathsf{case}(\mathsf{inr}(b), \, f, \, g) \equiv g \, b : C$$