EXCEL COLLEGE OF ENGINEERING(AUTONOMOUS)

NH-544, Salem Main Road, Sankari West, Pallakkapalayam, Pin:637 303. Komarapalayam Namakkal Dt. Tamilnadu.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING.

WEB PHISHING DETECTION (ASSIGNMENT 2)

DATE : 26-09-2022

PROBLEM: PERFORM TASKS ACCORDINGLY

NAME: ABHINASH KUMAR

OUTPUT:

SCREENSHOTS:

1.Download the Dataset

2.Load the dataset

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn

Matplotlib is building the font cache; this may take a moment.

In [2]: data = pd.read_csv(r"C:\Users\hariharan\Downloads\(IBM-Assignment-2)\Churn_Modelling.csv")
```

3.Perform below visualizations

Univariate analysis

In [3]: sns.distplot(data['Age'])

D:\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be re moved in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[3]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [4]: sns.histplot(data['Age'])

Out[4]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [5]: sns.boxplot(data['Age'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will r esult in an error or misinterpretation.
warnings.warn(

Out[5]: <AxesSubplot:xlabel='Age'>

Bi-Variate Analysis

In [6]: sns.lineplot(data['Age'],data['Tenure'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Fr om version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword wil 1 result in an error or misinterpretation.

warnings.warn(

Out[6]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [7]: sns.barplot(data['Age'],data['Tenure'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Fr om version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword wil 1 result in an error or misinterpretation.

warnings.warn(

Out[7]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [8]: sns.scatterplot(data['Age'],data['Tenure'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Fr om version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword wil 1 result in an error or misinterpretation.

warnings.warn(

Out[8]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

Multi-Variate Analysis

In [9]: sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Fr om version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[9]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

4.Perform the descriptive statistics on the dataset

In [11]: data.mean()

C:\Users\hariharan\AppData\Local\Temp\ipykernel_4496\531903386.py:1: FutureWarning: Dropping of nuisance columns in DataFrame r eductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns b efore calling the reduction.

Out[11]: RowNumber

5.000500e+03 CustomerId 1.569094e+07 CreditScore 6.505288e+02 3.892180e+01 Age 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01 dtype: float64

In [12]: data.median()

C:\Users\hariharan\AppData\Local\Temp\ipykernel_4496\4184645713.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.median()

Out[12]: RowNumber

5.000500e+03 CustomerId 1.569074e+07 CreditScore 6.520000e+02 Age Tenure 3.7000000+01 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary Exited 0.000000e+00 dtype: float64

:	RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Sala
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0	1,0	24924.9
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
242	444		440	200	4.0	2.0	100	(222)	24	34.			
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na

5. Handle the missing values

```
In [14]: data.isnull().any()
Out[14]: RowNumber
                               False
          CustomerId
                               False
          Surname
                               False
          CreditScore
                               False
          Geography
                               False
          Gender
                               False
          Age
Tenure
                               False
                               False
          Balance
                               False
          NumOfProducts
HasCrCard
IsActiveMember
                               False
                               False
                               False
          EstimatedSalary
          Exited
                               False
          dtype: bool
In [15]: data.isnull().sum()
Out[15]: RowNumber
          CustomerId
          Surname
CreditScore
          Geography
Gender
          Age
Tenure
                               0
           Balance
                               0
          NumOfProducts
HasCrCard
IsActiveMember
           EstimatedSalary
           Exited
          dtype: int64
```

There are no missing values

6. Find the outliers and replace the outliers

	RowNumber	Customerid	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
1	1000.9	15591167.1	521.0	27.0	1.0	0.0	1.0	0.0	0.0	20273.58	0.0
ata	.quantile([0.1,0.5])									
	RowNumber	Customerld	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
0.1	1000.9	15591167.1	521.0	27.0	1.0	0.00	1.0	0.0	0.0	20273.580	0.0
0.5	5000.5	15690738.0	652.0	27.0	F.0	97198.54	1.0	1.0	1.0	100193.915	0.0

7. Check for Categorical columns and perform encoding

8. Split the data into dependent and independent variables (X and Y)


```
Out[27]: 0
                     0.00
                 83807.86
         1
                159660.80
         2
         4
                125510.82
                  0.00
         9995
         9996
                 57369.61
         9997
                     0.00
                75075.31
         9999
                130142.79
         Name: Balance, Length: 10000, dtype: float64
```

9. Scale the independent variables

10. Split the data into train and test

```
In [10]: from sklearn.model_selection import train_test_split
          x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)
In [11]: x_train
Out[11]: array([[ 0.92889885],
                 [ 1.39655257],
[-0.4532777 ],
                 [-0.60119484],
                  [ 1.67853045],
                  [-0.78548505]])
In [12]: x_train.shape
Out[12]: (7000, 1)
In [13]: y_train
Out[13]: 7681
                146193.60
         9031
                      0.00
                160979.68
         3691
         202
                      0.00
         5625
                 143262.04
                 120074.97
         9225
         4859
                 114440.24
         3264
                161274.05
         9845
                      9.99
                 108076.33
         2732
         Name: Balance, Length: 7000, dtype: float64
```