TAX EVASION ON A SOCIAL NETWORK

Duccio Gamannossi degl'Innocenti ¹ Matthew Rablen ²

¹University of Exeter

²University of Sheffield

CONTENT

- 1. Introduction
- 2. Model
- 3. Optimal Evasion
- 4. Responses to Intervention
- 5. Conclusions

COMPLIANCE AND REFERENCE DEPENDENCE

- → We relate non compliant behaviour to a body of evidence on the importance of positional concerns (keeping up with the Jones)
- → Tax evasion may be used to improve agents' relative standing
- → The choice of how much to evade is affected by social interaction and depends on reference income
- → New project studying tax evasion that builds on a previous TARC project on tax avoidance

→ Tax evasion causes significant losses of public revenues (4.4 bn. £ in UK)

→ Growing interest by tax agencies on understanding evasion so to design efficient deterrence measures

Rich literature using different approaches to study evasion decision and optimal policies

RELATED LITERATURE

- → Kahneman and Tversky 1979 Reference dependence of utility
- → Gali 1994 "Keeping up with the Jones"
- → Myles and Naylor 1996
 Tax evasion and group conformity
- → Ballester, Calvo, Zenou 2006 Network game with local payoff complementarities
- → Quah 2007 Monotone comparative statics on network games

Introduction Model Optimal Evasion Responses to Intervention Conclusions

MODELLING FEATURES

Provide a model where:

- → Agents differ in income, reference group and probability of detection
- → Taxpayers may engage in risky tax evasion
- → **Self** and **social** comparison shape the **reference income**
- → Social comparison depends on agents' social network

RESEARCH QUESTIONS

- → Our analysis has focused on **three** questions:
 - Is it possible to characterize optimal evasion and how do changes in the exogenous parameters (income, risk aversion, etc.) affect it?
 - 2. Is it possible to characterize the direct and indirect **revenue effects** of interventions?
 - 3. How much does the **availability of more information** (especially related to social network) improves the capacity of a tax authority to **infer revenue effects**?

MODELLING OF EVASION

- \rightarrow We define evasion E_{it} as the **liabilities under-declarerd** by taxpayer i at time t
- → Evasion is a **risky** activity:
 - → The tax agency may detect evasion
 - ightarrow If evasion is detected, a **fine** f proportional to the evaded tax debt is also imposed

REFERENCE INCOME

- \rightarrow Taxpayers determine their reference R_{it} income based on **Social**-related and **Self**-related considerations
 - → Social:

The (weighted) **average consumption** of taxpayer's **reference group**

→ Self:

Their habit consumption $h_{it} = f(C_{it-1} \dots C_{it-T})$

$$\max_{E_i} \mathbb{E}\left(U_{it}\right) \equiv \left[1 - p_i\right] U\left(C_{it}^n - R_{it}\right) + p_i \left[U\left(C_{it}^a - R_{it}\right)\right]$$

After-tax income if not audited

$$C_{it}^n \equiv X_i + E_{it}$$

After-tax income if audited

$$C_{it}^a \equiv C_{it}^n - (1+f)E_{it}$$

Utility is linear-quadratic

$$U(z) = z[b - \frac{az}{2}]$$

Optimal Evasion at an interior solution is:

$$E_{it}^* = \frac{1 - p_i f}{a \zeta_i} \{ a[\mathbf{R}_{it} - X_i] + b \}, \zeta_i > 0$$

Taxpayer interaction through the reference income leads to the rise of a game

$$\begin{array}{ccc}
A & B & C \\
A & 0 & .5 & .5 \\
B & 1 & 0 & 0 \\
C & 1 & 0 & 0
\end{array}$$

$$\begin{cases} E_{A}^{*} &= \frac{1-p_{i}f}{a\zeta_{A}} \{a[R_{A}(h_{A}; E_{B}^{*}, E_{C}^{*}) - X_{A}] + b\} \\ E_{B}^{*} &= \frac{1-p_{i}f}{a\zeta_{B}} \{a[R_{B}(h_{B}; E_{A}^{*}) - X_{B}] + b\} \\ E_{C}^{*} &= \frac{1-p_{i}f}{a\zeta_{C}} \{a[R_{C}(h_{C}; E_{A}^{*}) - X_{C}] + b\} \end{cases}$$

Taxpayer i expected after-tax income when evading E_{it} is:

$$q_{it} = X_i + [1 - p_i f] E_{it}$$

We can then define:

$$Z_{it} = \iota_h h_{it} + \iota_s \mathbf{g}_i \mathbf{q}_t$$

And reference income:

$$R_{it} = R_{it}(h_{it}; \mathbf{q}_t(\mathbf{E}_t)) = R_{i,t-1} + \varsigma_R [Z_{it} - R_{i,t-1}]$$

where:

 $X_i = (1-t)W_i$ Honest after-tax income

Self and social comparison parameters ι_h, ι_s

Weights of i's reference group \mathbf{g}_i

 $\varsigma_R \in (0,1)$ Reference consumption reactiveness

Quadratic utility leads to linear best response

Positive slope of best response functions follows from strategic complementarity in E_{it} , E_{it}

WEIGHTED BONACICH CENTRALITY AND EVASION

Expanding E_{it}^* using the definitions of R_{it} , Z_{it} and q_{it} we can rewrite:

$$\begin{cases} E_A^* &= \eta_i \{ a[R_A(h_A; E_B^*, E_C^*) - X_A] + b \} \\ E_B^* &= \eta_i \{ a[R_B(h_B; E_A^*) - X_B] + b \} \\ E_C^* &= \eta_i \{ a[R_C(h_C; E_B^*) - X_C] + b \} \end{cases}$$

$$\mathbf{E}_t = \boldsymbol{\alpha}_t + \mathbf{M}\boldsymbol{\beta}\mathbf{E}$$

And solve à la Cournot-Nash:

$$\mathbf{E}_t = [\mathbf{I} - \mathbf{M}\boldsymbol{\beta}]^{-1} \boldsymbol{\alpha}_t = b(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\alpha}_t)$$

Where $b(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\alpha}_t)$ is the weighted Bonacich centrality measure:

Introduction Model Optimal Evasion Responses to Intervention Conclusions

OPTIMAL EVASION

- → Key theoretical result is that evasion is closely related to the concept of "Bonacich" Network Centrality
 - → More "central" taxpayers evade more
- → Network centrality is a concept developed in sociology
 - → Measures the amount of influence/power players have within a network

Corollary 2

In a steady state of the model consumption satisfies

$$\mathbf{C}^{SS} = \mathbf{C}^{n,SS} = \mathbf{X} + \mathbf{E}^{SS}.$$

Steady state evasion \mathbf{E}^{SS} , is then given by the vector of Bonacich centralities, $\mathbf{b}(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\alpha}^{SS})$, with

$$\alpha_i^{SS} = \frac{1 - p_i f}{a\zeta_i} \left\{ b - a \left[X_i - R \left(h_i^{SS}, \mathbf{X} \right) \right] \right\}$$

A **permanent** marginal parameter change entails **contemporaneous** and **delayed effects** on steady state evasion:

- 1. The contemporaneous effect $\frac{\partial E_{a}^{SS}}{\partial z}$ is not accounting for delayed effects
- 2. The **full effect** $\frac{dE_i^{SS}}{dz}$ **includes** also the **delayed effect** caused by adjustments of habit consumption

tent Introduction Model Optimal Evasion Responses to Intervention Conclusions

MONOTONE COMPARATIVE STATICS RESULTS

Habit consumption	+	Other's Income	+/0
Own comparison	+	Social comparison	+/0
Own audit prob.	_	Others audit prob.	-/0
Risk Aversion	_	Tax rate	+
Fine	_		

Monotone comparative statics for interior E_i^*

These results apply both to contemporaneous and full effects

- → In the case of income, contemporary and delayed effects have opposite signs
- → The contemporaneous effect causes evasion to fall due to the increased income, i.e. $\frac{\partial E_i^{SS}}{\partial X_{\cdot}} < 0$
- → However, the delayed effect causes an increase in habit **consumption** $\frac{dC_{i}^{SS}}{dX_{i}} < 0$ that as a positive effect on evasion.

This allows our model to replicate the observed behaviour

of evasion increasing in income $\frac{dE_i^{SS}}{dX}>0$

EVASION VS. CONCERN FOR HABIT

The higher a taxpayer's concern for habit i_h the more evasion increases in income

Introduction Model Optimal Evasion Responses to Intervention Cond

INTERVENTION REVENUE EFFECTS

How does an audit to a taxpayer affect the steady-state evasion of the model?

- 1. Direct effect \mathbf{E}_{i}^{SS}
 - On targeted taxpayer, by averting attempted evasion
- 2. Indirect effects I_{ij}

Expected additional revenue that arises from future changes in evasion behaviour (negative externality)

- $\rightarrow I_{ii}$ from the audited tapayer
- $\rightarrow I_{ii}$ from non-audited taxpayers
 - o $oldsymbol{\Sigma}_i = \sum_{i \in \mathcal{N} \setminus i} I_{ij}$ aggregate cross indirect effect
- → Indirect effects 2X-6X direct ones

TAX AGENCY'S INFERENCE PROBLEM

- ightarrow Tax authorities engage in inferring both **direct effects** \mathbf{E}^{SS} and aggregate gross indirect effects Σ
 - → Taxpayers usually ranked by discriminant function and audited sequentially until budget is exhausted
- \rightarrow Crucial information for tax authorities is correct rank of \mathbf{E}^{SS} and Σ
 - → Optimal audit targeting if tax authorities were able to exactly infer rankings of direct and indirect effects.

Tax authorities require measures that are ordinally equivalent to direct and indirect effects

$$\mathbf{A} \sim \mathbf{B} \iff A_{i1} \geqslant A_{j1} \Leftrightarrow B_{i1} \geqslant B_{j1} \forall i, j$$

Responses to Intervention

The indirect revenue effects of conducting a single audit of isatisfy:

$$\mathbf{I}_i \sim \mathbf{E}_i^{SS} \mathbf{b}(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\rho}_i^{SS})$$

where \mathbf{E}_i^{SS} is an n imes n diagonal matrix and $m{
ho}_i^{SS} = rac{\partial m{lpha}^{SS}}{\partial C^{SS}}$

Sizes of the **own** and **cross indirect** effects are **ordinally equivalent** to the product of the steady state level of evasion and a new measure of **Bonacich centrality**

Introduction Model Optimal Evasion Responses to Intervention Conclusions

INFERENCE OF REVENUE EFFECTS

- \rightarrow When there is full observability \mathcal{F} it is possible to exactly determine direct (\mathbf{E}^{SS}) and cross indirect ($\mathbf{\Sigma}$) effects
- → Tax agencies infer revenue effects under limited observability

How valuable is **network information**?

- → Two cases considered:
 - 1. Partial observability (\mathcal{P}) : The tax agency observes the reference groups of taxpayers but has no information on the comparison intensity
 - 2. **No observability** (\emptyset): Everybody attaches equal importance to all the other taxpayers
- ightarrow We assess the role of network information in prediction using a the **Spearman rank correlation coefficient**, i.e. $ho_{{f FP},{f E}\emptyset}^S$

- → We generate a static network using the Bianconi-Barabási fitness model
 - → Taxpayers with **higher wealth** have a higher probability of making new connections
 - → Taxpayers already **heavily connected** have a higher probability of making new connections (sublinear preferential attachment, $\phi < 1$)

Formally:

$$\Pi_i = \frac{W_i[d^{in}(i)]^{\phi}}{\sum_{j \in \mathcal{N}} W_j[d^{in}(j)]^{\phi}}$$

The resulting **static** social networks used in our simulations resembles the ones observed empirically

INFERENCE ACCURACY AND PREFERENTIAL ATTACHMENT

- Accuracy improves significantly from the no network observability ∅ to partial observability \mathcal{P}
- → Stronger preferential attachment ϕ decreases accuracy

CONCLUDING REMARKS

- → Social interaction may heavily affect evasion behaviour
- → Different Bonacich measures of centrality characterize optimal evasion and revenues effects from auditing
- → Social network information improve significantly the prediction of revenues effects from interventions

FURTHER RESEARCH

- → Quantify the importance of network information in terms of **revenue recovered**
- → Extend the analysis to **crime** as a whole
- → Analyse how adding or removing taxpayers (detention) may affect compliance

Thank You!

Questions?

tent Introduction Model Optimal Evasion Responses to Intervention Conclusions

SOCIAL NETWORK AND MATRIX REPRESENTATION

Undirected Network Weighted Network Directed Network

SOCIAL NETWORK AS AN ADJACENCY MATRIX

Matrix form of a weighted directed network

Directed Network

ACCOUNTING FOR SOCIAL NETWORK

Expanding E_{it}^* using the definitions of R_{it} , Z_{it} and q_{it} we solve à la **Cournot-Nash**:

$$E_{it} = \alpha_{it} + \varsigma_R \iota_s \sum_{j \neq i} m_{ij} E_{jt} =$$

$$\mathbf{E} = \boldsymbol{\alpha}_t + \mathbf{M} \boldsymbol{\beta} \mathbf{E}$$

Where:

$$m_{ij} = \frac{[1 - p_i f][1 - p_j f]}{\zeta_i} g_{ij}$$
$$\beta_{ii} = \zeta_R \iota_s$$
$$\alpha_{i1,t} = \frac{1 - p_i f}{a\zeta_i} \{b - a[X_i - R(h_{it}, \mathbf{X})]\}$$

Expanding E_{it}^* using the definitions of R_{it} , Z_{it} and q_{it} we can rewrite we solve à la **Cournot-Nash**:

$$\mathbf{E_t} = [\mathbf{I} - \mathbf{M}\boldsymbol{\beta}]^{-1} \boldsymbol{\alpha}_t = b(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\alpha}_t)$$

 $b(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\alpha}_t)$ is the weighted Bonacich centrality defined on:

 \mathbf{M} Edge weights scaled by relative ER of E_i

 $oldsymbol{eta}$ Scales weight of longer paths

 α_t Weights centrality by agent characteristics

For an **arbitrary** twice differentiable **utility function** considering the FO linear approximation around a Nash equilibrium to the set of FOC. it is:

$$\mathbf{E}_t = \mathbf{J}\mathbf{E}_t + \widehat{\boldsymbol{lpha}}_t = [\mathbf{I} - \mathbf{J}]^{-1}\,\widehat{\boldsymbol{lpha}}_t = \left[\sum_{k=0}^{\infty} \mathbf{J}^k
ight]\widehat{\boldsymbol{lpha}}_t$$

Where ${f J}$ is a matrix of coefficients measuring actions' interactions

A solution is a again in the form of a weighted Bonacich centrality measure

TAXPAYERS' INTERACTION AS A GAME

The game arising from taxpayers interaction is:

Smooth Supermodular Game (Milgrom and Roberts 1990)

Bounds on strategies

Differentiability

Strategic Complements

$$E_{it} \in (0, tW_i)$$

$$\mathbb{E}[U_i]$$
 is of class C^2

$$\frac{\partial^2 \mathbb{E}[U]_i}{\partial E_{it} \partial E_{it}} \ge 0$$

MONOTONE COMPARATIVE STATICS

Smooth Supermodular Games can be analyzed using Monotone comparative statics

Following Quah (2007) we exploit the **weaker** condition of **local supermodularity** around the Nash equilibrium point:

Then, for a given parameter z, it holds:

$$\left. \frac{\partial^2 \mathbb{E}[U]_i}{\partial E_i \partial z} \right|_{E_i = E_i^*} \ge 0 \Leftrightarrow \left. \frac{\partial E_i^*}{\partial z} \right|_{E_i = E_i^*} > 0$$

$$\ge 0 \text{ if } \left. \frac{\partial^2 \mathbb{E}[U]_i}{\partial E_i \partial z} \right|_{E_i = E_i^*} > 0$$

$$\ge 0 \text{ if } \left. \frac{\partial^2 \mathbb{E}[U]_i}{\partial E_i \partial z} \right|_{E_i = E_i^*} = 0$$

MONOTONE COMPARATIVE STATICS IN TIME

A marginal parameter change entails contemporaneous and delayed effects on the steady state of the model:

- 1. The contemporaneous effect $\frac{\partial E_i^{SS}}{\partial z}$ is not accounting for delayed effects
- 2. The full effect $\frac{dE_i^{SS}}{dz}$ includes also the delayed effect caused by adjustments of habit consumption

Lemma 1

$$\text{if} \ \ \frac{\partial X_i}{\partial z} \frac{\partial E_i^{SS}}{\partial z} \geq 0 \quad \text{then} \quad sign\left(\frac{dE_i^{SS}}{dz}\right) = sign\left(\frac{\partial E_i^{SS}}{\partial z}\right)$$

It is sufficient to have same sign for $\partial E_i^{SS}/\partial z$, and steady state consumption, $\partial C_i^{SS}/\partial z$

MONOTONE COMPARATIVE STATICS

	E_i^*		E_i^*
h_{it}	+	X_j	+/0
ι_h	+	ι_s	+/0
p_i	_	p_j	-/0
f	_	t	+
\underline{a}	_	b	+

Monotone comparative statics for interior E_i^*

These results apply in the short and long run

Understanding why:

$$\mathbf{I}_i \sim \mathbf{E}_i^{SS} \mathbf{b}(\mathbf{M}, \boldsymbol{eta}, oldsymbol{
ho}_i^{SS})$$

- \rightarrow The size of the indirect effect I_{ii} is ordinally equivalent to the size of the initial deviation
 - → convergence of evasion back to its steady state value is at a uniform rate for all affected taxpayers
- → Initial effect can be decomposed linearly as the product of:
 - → marginal effect of a change in i's consumption on i's evasion $\partial E_i^{SS}/\partial C_i^{SS} = b_{i1}(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\rho}_i^{SS})$
 - \rightarrow change in i's consumption $C_i^{n,SS} C_i^{a,SS} = [1 + f] E_i^{SS}$

Corollary 3

$$\Sigma \sim \chi$$
 where $\chi_{i1} = \sum_{k \in \mathcal{N}} b_{k1}(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\rho}_i^{SS}) E_i^{SS}$

Introduction Model Optimal Evasion Responses to Intervention Conclusions

DYNAMIC RESPONSE TO LEGAL INTERVENTION

- → Empirical evidence shows a persistent dynamic behavioural response to interventions
- → The literature argued that belief updating may be driving this evidence
- → We show that self-comparison is able to replicate the same dynamic
- \rightarrow Calibrating the persistence ς_R it is possible to **closely match** the behaviour observed in reality

RESPONSE TO LEGAL INTERVENTION VS. PERSISTENCE

- → Here periods interpreted as years
- → Deterrence is maximal after the intervention and slowly fades
- → With high levels of persistence the dynamic behavioural response lasts
 ≈ 4 years

