Гладкая выпуклая онлайн оптимизация с использованием предсказаний

Рохлин Дмитрий Борисович

Институт математики, механики и компьютерных наук Южного федерального университета и Региональный научно-образовательный математический центр Южного федерального университета

dbrohlin@sfedu.ru

Секция: Теория вероятностей

Рассмотрим последовательность выпуклых L-гладких функций $f_t(w)$, $w \in \mathcal{W}$. Базовая версия задачи онлайн оптимизации состоит отыскании последовательности w_t , обеспечивающей равномерную оценку сожаления $R_T(w) = \sum_{t=1}^T (f_t(w_t) - f_t(w)) = o(T)$. В градиентных методах на каждом шаге алгоритм получает информацию о градиенте $g_t = \nabla f_t(w_t)$ в запрашиваемой точке. В докладе рассматривается случай, когда доступны предсказания \hat{g}_t градиента. Большинство соответствующих оценок сожаления содержат слагаемые вида $\|g_t - \hat{g}_t\|$ и являются неявными, так как точка w_t неизвестна в момент использования предсказания \hat{g}_t . В докладе обсуждаются, в частности, результаты недавней работы [1], где получены явные оценки сожаления в терминах ошибок предсказания градиента. В случае когда $f_t(w) = \ell(w, \mathbf{z}_t)$, где \mathbf{z}_t — эргодический марковский процесс с неизвестным переходным ядром, и ℓ является липшицевой по второму аргументу, данный результат непосредственно приводит к оценке сожаления в терминах $\varepsilon_t = \|z_t - \mathbb{E}(z_t|z_{t-1})\|$. Аппроксимация условного математического ожидания $\mathrm{E}(\mathbf{z}_t|\mathbf{z}_{t-1})$ на основе выборки $\mathbf{z}_1,\ldots,\mathbf{z}_{t-1}$, и оценка математического ожидания ε_t о инвариантной мере также могут быть найдены с использованием онлайн-оптимизации: [2]. Одним из приложений является задача лог-оптимального инвестирования.

- [1] P.Z. Scroccaro, A.S. Kolarijani, P.M. Esfahani, Adaptive composite online optimization: Predictions in static and dynamic environments, IEEE Transactions on Automatic Control, 68 (2023), 2906–2921.
- [2] A. Agarwal, J.C. Duchi, The generalization ability of online algorithms for dependent data, IEEE Transactions on Information Theory, 59 (2012), 573–587.