(c) If U is any subspace supplementary to rad(E), so that

$$E = \operatorname{rad}(E) \oplus U$$
,

then U is nondegenerate, and rad(E) and U are orthogonal.

Proof. (a) If U and V are orthogonal, then $U \subseteq V^{\perp}$ and $V \subseteq U^{\perp}$. We get

$$\operatorname{rad}(U+V) = (U+V) \cap (U+V)^{\perp}$$

$$= (U+V) \cap U^{\perp} \cap V^{\perp}$$

$$= U \cap U^{\perp} \cap V^{\perp} + V \cap U^{\perp} \cap V^{\perp}$$

$$= U \cap U^{\perp} + V \cap V^{\perp}$$

$$= \operatorname{rad}(U) + \operatorname{rad}(V).$$

(b) By definition, $rad(E) = E^{\perp}$, and obviously $E = E^{\perp}$, so we get

$$\operatorname{rad}(\operatorname{rad}(E)) = E^{\perp} \cap E^{\perp \perp} = E^{\perp} \cap E = E^{\perp} = \operatorname{rad}(E).$$

(c) If $E = \text{rad}(E) \oplus U$, by definition of rad(E), the subspaces rad(E) and U are orthogonal. From (a) and (b), we get

$$rad(E) = rad(E) + rad(U).$$

Since $\operatorname{rad}(U) = U \cap U^{\perp} \subseteq U$ and since $\operatorname{rad}(E) \oplus U$ is a direct sum, we have a direct sum

$$rad(E) = rad(E) \oplus rad(U),$$

which implies that rad(U) = (0); that is, U is nondegenerate.

Proposition 29.19(c) shows that the restriction of φ to any supplement U of rad(E) is nondegenerate and φ is zero on rad(U), so we may restrict our attention to nondegenerate forms.

The following is also a key result.

Proposition 29.20. Given an ϵ -Hermitian form $\varphi \colon E \times E \to K$ on E, if U is a finite-dimensional nondegenerate subspace of E, then $E = U \oplus U^{\perp}$.

Proof. By hypothesis, the restriction φ_U of φ to U is nondegenerate, so the semilinear map $r_{\varphi_U}: U \to U^*$ is injective. Since U is finite-dimensional, r_{φ_U} is actually bijective, so for every $v \in E$, if we consider the linear form in U^* given by $u \mapsto \varphi(u,v)$ $(u \in U)$, there is a unique $v_0 \in U$ such that

$$\varphi(u, v_0) = \varphi(u, v)$$
 for all $u \in U$;

that is, $\varphi(u, v - v_0) = 0$ for all $u \in U$, so $v - v_0 \in U^{\perp}$. It follows that $v = v_0 + v - v_0$, with $v_0 \in U$ and $v_0 - v \in U^{\perp}$, and since U is nondegenerate $U \cap U^{\perp} = (0)$, and $E = U \oplus U^{\perp}$. \square

As a corollary of Proposition 29.20, we get the following result.