Visualización de datos 01

Resumen lectura y Plataformas de visualización

- La visualización de datos facilita la compresión de la información.
- Las imágenes permiten identificar patrones y relaciones más fácil que los textos y tablas.
- Los científicos no dedican tiempo a esta parte, y generan visualizaciones erróneas y engañosas.
- Según estudios, hay gráficas más intuitivas que otras.
- Una buena visualización se basa en saber escoger la gráfica según lo que se quiere mostrar.
- Tableau Public: visualizaciones de datos curiosos de cualquier tipo.
- World Bank Open Data: amplia colección de datos sobre desarrollo global.
- Our World in Data: visualizaciones interactivas sobre una variedad de temas relacionados con el bienestar global.
- Information is beautiful: presenta proyectos personalizados con un diseño brillante y minimalista.

Diagrama

Herramientas y visualizaciones

- Python 3
- Pandas: para carga y manipulación de datos.
- Matplotlib: para visualizaciones.
- abc(abstract base classes): definición de interfaces
- Jupyter Notebook: entorno presentación.
- Patrón de diseño
- Mermaid para diagrama

https://github.com/Ainoalglesias/ADM 24-25

Visualización de datos 02

Conclusiones lectura Why scientists need to be better at data visualization

- El uso de escalas de colores es clave.
- Errores comunes:
 - Escala arcoiris
 - Demasiados colores
 - Contraste simultáneo
- Causas que prolongan estos errores:
 - Falta formación
 - Software
 - o Revistas, blogs...

- Tener en cuenta:
 - Resaltar solo lo importante
 - Escalas de color como viridis o cividis

Herramientas y visualizaciones

- Python 3
- Pandas: para manipulación de datos.
- Matplotlib / Seaborn / Plotly: para visualizaciones.
- Jupyter Notebook: entorno presentación.
- Patrón de diseño
- ipywidgets

Visualización de datos 03

Diagrama

Nuevas visualizaciones

- Histograma
- Correlograma
- Boxplot
- Python 3
- Pandas
- Matplotlib / Seaborn / Plotly
- Jupyter Notebook
- Mermaid
- Flask

Servidor y cliente

- Servidor: Flask
- Cliente 1: Jupyter
- Cliente 2: Streamlit

```
strategies = {
    "Barra":
                   BarChartStrategy(),
    "Línea":
                   LineChartStrategy(),
   "Histograma": HistogramStrategy(),
    "Boxplot":
    "Correlograma": CorrelogramaStrategy(),
    "Scatter":
                   ScatterStrategy(),
@app.route("/graficar", methods=["POST"])
def graficar():
    data = request.get json() or {}
   tipo = data.get("tipo")
   strat = strategies.get(tipo)
   if strat is None:
       return jsonify(error=f"Tipo '{tipo}' no soportado"), 400
    # Cogemos copia para no modificar el global
   d = df.copy()
    # Parámetros comunes
          = data.get("grupo")
```

```
# IProcessor
     @app.route("/columns", methods=["GET"])
80
     def get columns():
82
         return jsonify(columns=processor.get columns(df))
83
84
     @app.route("/dtypes", methods=["GET"])
     def get dtypes():
86
         return jsonify(dtypes=processor.get dtypes(df))
88
     @app.route("/info", methods=["GET"])
89
     def get info():
         return jsonify(info=processor.get_info(df))
```

Visualización de datos 04

Diagrama actualizado

Servidor Actualizado

```
@app.route("/train_model", methods=["POST"])

def train_model():
    data = request.get_json() or {}
    name = data.get("model_name")
    features = data.get("features", [])
    target = data.get("target")
```

```
@app.route("/evaluate_model", methods=["POST"])
def evaluate_model():
    data = request.get_json() or {}
    name = data.get("model_name")
```

```
@app.route("/predict_model", methods=["POST"])
def predict_model():
    data = request.get_json() or {}
    name = data.get("model_name")
```

Funcionalidad

Clustering Metrics: {'inertia': 2707.9749586203966, 'silhouette': np.float64(0.41513574968840117)}

Proyecto Final - Caso de uso

Dataset - Accidentes de tráfico en EEUU entre 2016 y 2023 Entender los factores de riesgo para mejorar la seguridad vial

1. Objetivos

- Exploración y visualización
 - Analizar tendencias temporales de accidentes (hora, día, mes)
 - o Estudiar distribuciones de variables meteorológicas y de visibilidad
- Clasificación de gravedad
 - o Predecir si un accidente será grave o leve
 - Comparar Naive Bayes, Árbol de Decisión y k-NN
 - Priorizar recall para no dejar escapar casos graves
- Clustering de condiciones
 - Agrupar accidentes según clima y visibilidad (K-means, jerárquico, DBSCAN)
 - o Identificar perfiles de riesgo (días lluviosos, ventosos, etc.)

2. Carga y análisis de datos

Tipos de dato detectados: dtype Airport Code object Amenity bool Astronomical_Twilight object Bump bool City object Civil Twilight object County object Crossing bool Description object float64 Distance(mi) End Lat float64 End Lng float64 End_Time datetime64[ns] Give Way bool float64 Hour Humidity(%) float64 ID object Junction bool Month float64 Nautical_Twilight object No Exit bool Precipitation(in) float64 Pressure(in) float64 Railway bool

Log de limpieza aplicado:

- · Eliminadas 2 columnas vacías o constantes.
- · 'End_Lat' imputada con media.
- · 'End_Lng' imputada con media.
- · 'Description' imputada con 'Desconocido'.
- · 'Street' imputada con 'Desconocido'.
- · 'City' imputada con 'Desconocido'.
- · 'Zipcode' imputada con 'Desconocido'.
- · 'Timezone' imputada con 'Desconocido'.
- · 'Airport_Code' imputada con 'Desconocido'.
- 'Weather_Timestamp' imputada con 'Desconocido'.
- · 'Temperature(F)' imputada con media.
- · 'Wind_Chill(F)' imputada con media.
- 'Humidity(%)' imputada con media.
- 'Pressure(in)' imputada con media.
- · 'Visibility(mi)' imputada con media.
- 'Wind_Direction' imputada con 'Desconocido'.
- · 'Wind_Speed(mph)' imputada con media.
- · 'Precipitation(in)' imputada con media.
- "Weather_Condition' imputada con 'Desconocido'.
- 10 1 0 11 10 11 1

2. Análisis de datos

2. Análisis de datos

Humidity(%)

3. Modelos

- Clasificación
 - Naive Bayes
 - Árbol de Decisión
 - o k-NN
- Prioriza recall
- Agrupación
 - KMeans
 - Jerárquico
 - DBSCAN
 - Silhoutte

	Distance(mi)	Temperature(F)	Humio	dity(%)	Pressure(in	Visibil	ity(mi)
-1	0.026646	-0.077320	-0.	.005435	-0.033842	2 -0	.036231
	-0.273165	1.173575	-0.	.365455	0.358321	. 0	.396421
	-0.286960	1.159135	-0.	.079422	0.328900	9 0	.393021
	-0.274831	1.227832	-0.	.350862	0.330046	5 0	.395140
	-0.286706	1.062859	-0.	.011171	0.369558	3 0	.393425
98	-0.327822	1.144226	-1.	.058200	0.42494	. 0	.396421
99	-0.278181	0.046370	-0.	231548	0.641434	9	.396421
100	-0.265590	1.313271	0.	.047653	0.608204	. 0	.396421
101	-0.271474	0.793613	-0.	.550895	-0.193046	9	.396421
102	-0.325225	0.769509	0.	.441818	0.511316	9 0	.396421
	Wind Speed(mph)) Precipitatio	n(in)	Hou	r Weekday	Month	
	0.014400	0.0	08651	0.00409	3 0.026268	-0.021278	
	0.17413	-0.6	93864	0.47840	7 0.732645	0.264436	
	0.102888	-0.0	95066	0.07095	0.186079	0.179185	
	0.253641	L -0.0	94383	0.62394	1 -1.453620	0.403866	
	0.04892	-0.0	92903	0.10400	2 -0.360487	0.237439	
98	-0.05778	-0.0	95607	-0.21882	1 0.732645	-0.157014	
99	-0.395429	-0.0	95607	0.90259	0 -0.360487	1.129609	
100	0.296521	L -0.0	87095	0.08460	7 1.279211	0.090226	
101	0.325903	L -0.6	95607	0.98428	2 0.732645	-0.430279	
102	0.985846	-0.0	80712	-0.38963	2 0.732645	-0.544139	

*	/ 6m 17.7s			
	Algoritmo	Clusters	Silhouette	
0	KMeans (k=4)	4	0.145529	
1	Agglomerative (k=4)	4	0.205806	
2	DBSCAN (ε=0.5, min=10)	103	-0.132325	

7. Conclusiones

- Framework visualizaciones
- Servidor
- Clientes
- Carga y análisis
- Visualizaciones básicas
- Visualizaciones temporales
- Modelos comparador: naive bayes vs. knn vs árbol
- Clustering

- Mayor concentración de accidentes
 - Meses invierno
 - o Entre semana
 - 7-8 de la mañana y 5-6 de tarde
- No hay un claro
- Clasificación: Knn mejor predictor accidentes graves
- Agrupación: Jerárquico tiene mejor sithoutte
- 4 clusters
 - alta temperatura + buena visibilidad + poca distancia + horas puntas y entre semana
 - T° muy muy alta, baja humedad, horas muy concretas + lunes/martes
 - distancia media + humedad neutra + alta presión + ligera precipitación y viento + primeras horas
 - durante el dia + fin de semana + verano + alta presión + ligera lluvia