COGNOME NOME MATRICOLA......

OGr. 1 Bader (A-G)

Or. 2 Cioffi (H-Z)

Risolvere gli esercizi inserendo le risposte negli spazi predisposti con indicazione dei calcoli effettuati e fornendo spiegazioni chiare ed essenziali. NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

1. Per ciascuno dei seguenti sottoinsiemi, dire (senza dimostrarlo) se è un sottospazio e, in caso affermativo, calcolarne una base:

$$S_1 = \{(x, y) \in \mathbb{R}^2 \mid x = 1\}$$

$$S_2 = \{(x, y) \in \mathbb{R}^2 \mid y = x\}$$

$$S_3 = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$$

$$S_{1} = \{(x, y) \in \mathbb{R}^{2} \mid x = 1\}$$

$$S_{2} = \{(x, y) \in \mathbb{R}^{2} \mid y = x\}$$

$$S_{3} = \{(x, y) \in \mathbb{R}^{2} \mid y = x^{2}\}$$

$$S_{4} = \{(x, y, z, t) \in \mathbb{R}^{4} \mid x = y - 3t = 0\}$$

- **2.** Sia $S = \{v_1, \dots, v_t\}$ un sistema di vettori dello spazio vettoriale V.
- (i) Cosa vuol dire che S è un sistema di vettori linearmente indipendenti?

(ii) Cosa vuol dire che S è un sistema di generatori di V?

3. Nello spazio vettoriale \mathbb{R}^3 , esistono sottospazi di dimensione 2? (se si scrivere un esempio, se no dire perché).

- **4.** Nello spazio vettoriale \mathbb{R}^2 , esistono sottospazi di dimensione 3? (se si scrivere un esempio, se no dire perché).
- 5. Data la matrice $A_t = \begin{pmatrix} 0 & 0 & 0 & \sqrt{2} \\ 1 & 0 & t & 1 \\ 1 & 2 & t^2 & -2 \\ 0 & 2 & 0 & 3 \end{pmatrix}$, calcolarne il determinante e dire per quali valori del parametro reale t essa risulta invertibile

6. Cosa vuol dire che f è un endomorfismo dello spazio vettoriale V? Esiste un endomorfismo f di \mathbb{R}^3 tale che f(1,0,0)=(2,0,1) e f(-1,0,0)=(2,1,-1)? (se si scrivere un esempio, se no dire perché).

7. Siano
$$B = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 e $C = \begin{pmatrix} 1 & 4 & 1 \\ -2 & -1 & 1 \\ 4 & -1 & 1 \end{pmatrix}$. Posto $A = 2B - C^T$ dove C^T indica la trasposta di C ,

- (i) calcolare autovalori ed autospazi di A;
- (ii) dire, giustificando la risposta, se A è diagonalizzabile e, in caso affermativo, scrivere una base di \mathbb{R}^3 formata da autovettori di A.

8. Fissato nel piano della geometria elementare un riferimento cartesiano monometrico ortogonale, si considerino i punti A(1,2) e B(-2,4). Determinare un punto C tale che il triangolo ABC sia rettangolo nel vertice B.

- **9.** Fissato nel piano della geometria elementare un riferimento cartesiano monometrico ortogonale, si considerino le rette (parallele) r:(x,y)=t(1,-2)+(1,0) e s:2x+y+3=0.
 - (i) calcolare la distanza tra $r \in s$;
 - (ii) determinare una circonferenza che sia tangente sia a r sia a s.

- 10. Fissato nello spazio della geometria elementare un riferimento cartesiano monometrico ortogonale, si considerino la retta $r: \left\{ \begin{array}{ll} x+2y-z&=&1\\ x-y+2z&=&2 \end{array} \right.$ ed il piano $\pi:x-z=0.$
 - (i) si dimostri che r ed π sono incidenti calcolando le coordinate del punto P di intersezione di r e π ;
 - (ii) si rappresenti il piano α per P ortogonale a π e parallelo a r.