Empirical Risk Minimization

Fabrice Rossi

SAMM Université Paris 1 Panthéon Sorbonne

Outline

Introduction

PAC learning

ERM in practice

General setting

Data

- $ightharpoonup \mathcal{X}$ the "input" space and \mathcal{Y} the "output" space
- ▶ *D* a fixed and unknown distribution on $X \times Y$

Loss function

A loss function / is

- ▶ a function from $\mathcal{Y} \times \mathcal{Y}$ to \mathbb{R}^+
- ▶ such that $\forall \mathbf{Y} \in \mathcal{Y}$, $I(\mathbf{Y}, \mathbf{Y}) = 0$

Model, loss and risk

- ightharpoonup a model g is a function from $\mathcal X$ to $\mathcal Y$
- ightharpoonup given a loss function I the risk of g is $R_I(g) = \mathbb{E}_{(\mathbf{X},\mathbf{Y})\sim D}(I(g(\mathbf{X}),\mathbf{Y}))$
- ▶ optimal risk $R_l^* = \inf_g R_l(g)$

Supervised learning

Data set

- $\triangleright \mathcal{D} = ((\mathbf{X}_i, \mathbf{Y}_i))_{1 < i < N}$
- ightharpoonup ($\mathbf{X}_i, \mathbf{Y}_i$) $\sim D$ (i.i.d.)
- $ightharpoonup \mathcal{D} \sim \mathcal{D}^N$ (product distribution)

General problem

- lacktriangle a learning algorithm creates from ${\cal D}$ a model $g_{\cal D}$
- ▶ does $R_l(g_D)$ reaches R_l^* when |D| goes to infinity?
- ▶ if so, how quickly?

Empirical risk minimization

Empirical risk

$$\widehat{R}_{l}(g,\mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} I(g(\mathbf{X}_{i}), \mathbf{Y}_{i}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} I(g(\mathbf{x}), \mathbf{y})$$

ERM algorithm

- choose a class of functions \mathcal{G} from \mathcal{X} to \mathcal{Y}
- define

$$g_{ extit{ERM}, l, \mathcal{G}, \mathcal{D}} = rg \min_{g \in \mathcal{G}} \widehat{R}_l(g, \mathcal{D})$$

is ERM a "good" machine learning algorithm?

Three distinct problems

- 1. an optimization problem
 - given I and G how difficult is finding $\arg \min_{g \in G} \widehat{R}_I(g, D)$?
 - ▶ given limited computational resources, how close can we get to $\arg\min_{g \in \mathcal{G}} \widehat{R}_l(g, \mathcal{D})$?
- 2. an estimation problem
 - ▶ given \mathcal{G} a class of function, define $R_{l,\mathcal{G}}^* = \inf_{g \in \mathcal{G}} R_l(g)$
 - ► can we bound $R_l(g_D) R_{l,G}^*$?
- 3. an approximation problem
 - ► can be bound $R_{l,G}^* R_l^*$?
 - in a way that is compatible with estimation?

Three distinct problems

- 1. an optimization problem
 - given I and G how difficult is finding $\arg \min_{g \in G} \widehat{R}_I(g, D)$?
 - ▶ given limited computational resources, how close can we get to $\arg\min_{g \in \mathcal{G}} \widehat{R}_l(g, \mathcal{D})$?
- 2. an estimation problem
 - given \mathcal{G} a class of function, define $R_{l,\mathcal{G}}^* = \inf_{g \in \mathcal{G}} R_l(g)$
 - can we bound $R_l(g_D) R_{l,G}^*$?
- 3. an approximation problem
 - ightharpoonup can be bound $R_{l,G}^* R_l^*$?
 - ▶ in a way that is compatible with estimation?

Focus of this course

- ▶ the estimation problem
- and then the approximation problem
- with a few words about the optimization problem

Outline

Introduction

PAC learning

ERM in practice

A simplified case

Learning concepts

- ▶ a concept *c* is a mapping from \mathcal{X} to $\mathcal{Y} = \{0, 1\}$
- ▶ in concept learning, the loss function l_b with $l_b(p,t) = \mathbf{1}_{p\neq t}$
- we consider only a distribution $D_{\mathcal{X}}$ over \mathcal{X}
- risk and empirical risk definitions are adapted to this setting:
 - ightharpoonup risk: $R(g) = \mathbb{E}_{\mathbf{X} \sim D_{\mathcal{X}}}(\mathbf{1}_{q(\mathbf{X}) \neq c(\mathbf{X})})$
 - empirical risk: $\widehat{R}(g, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{g(\mathbf{X}_i) \neq c(\mathbf{X}_i)}$
- ▶ in essence the pair $(D_{\mathcal{X}}, c)$ replaces D: this corresponds to a noise free situation
- ▶ as a consequence a data set is $\mathcal{D} = \{\mathbf{X}_1, \dots, \mathbf{X}_N\}$ and has to complemented by a concept to learn

В

PAC learning

Notations

If $\mathcal A$ is a learning algorithm, then $\mathcal A(\mathcal D)$ is the model produced by running $\mathcal A$ on the data set $\mathcal D$

Definition

A concept class C (i.e. a set of concepts) is PAC-learnable if there is an algorithm $\mathcal A$ and a function $\mathcal N_C$ from $[0,1]^2$ to $\mathbb N$ such that: for any $1>\epsilon>0$ and any $1>\delta>0$, for any distribution $D_{\mathcal X}$ and any concept $c\in C$, if $N\geq \mathcal N_C(\epsilon,\delta)$ then

$$\mathbb{P}_{\mathcal{D} \sim \mathcal{D}_{\mathcal{X}}^{N}}\left\{R\left(\mathcal{A}(\mathcal{D})\right) \leq \epsilon\right\} \geq 1 - \delta$$

- ▶ probably $\geq 1 \delta$
- ▶ approximately correct $\leq \epsilon$

Concept learning and ERM

Remark

- ▶ the concept to learn *c* is in *C*
- ▶ thus $R_G^* = 0$
- ▶ in addition, for any \mathcal{D} , $\widehat{R}(g_{ERM,\mathcal{G},\mathcal{D}},\mathcal{D}) = 0$
- ▶ then *ERM* provides PAC-learnability if for any $g \in C$ such that $\widehat{R}(g, \mathcal{D}) = 0$, $\mathbb{P}_{\mathcal{D} \sim \mathcal{D}_{\mathcal{X}}^{N}} \left\{ R(g) \leq \epsilon \right\} \geq 1 \delta$

Theorem

Let C be a finite concept class and let \mathcal{A} be an algorithm that outputs $\mathcal{A}(\mathcal{D})$ such that $\widehat{R}(\mathcal{A}(\mathcal{D}),\mathcal{D})=0$. Then when $N\geq \left\lceil \frac{1}{\epsilon}\log\frac{|\mathcal{C}|}{\delta} \right\rceil$, $\mathbb{P}_{\mathcal{D}\sim \mathcal{D}_{\mathcal{X}}^{N}}\left\{ R\left(\mathcal{A}(\mathcal{D})\right)\leq \epsilon \right\} \geq 1-\delta$

Proof

1. we consider ways to break the AC part, i.e. having both $\widehat{R}(g,\mathcal{D})=0$ and $R(g)>\epsilon$. We have

$$Q=\mathbb{P}(\exists g\in C, \widehat{R}(g,\mathcal{D})=0 ext{ and } R(g)>\epsilon)=$$

$$\mathbb{P}\left(\bigcup_{g\in C}\left(\widehat{R}(g,\mathcal{D})=0 ext{ and } R(g)>\epsilon
ight)
ight)$$

- 2. union bound $Q \leq \sum_{g \in C} \mathbb{P}(\widehat{R}(g, \mathcal{D})) = 0$ and $R(g) > \epsilon$
- 3. then we have

$$\begin{split} \mathbb{P}(\widehat{R}(g,\mathcal{D}) = 0 \text{ and } R(g) > \epsilon) &= \mathbb{P}(\widehat{R}(g,\mathcal{D}) = 0 | R(g) > \epsilon) \mathbb{P}(R(g) > \epsilon) \\ &\leq \mathbb{P}(\widehat{R}(g,\mathcal{D}) = 0 | R(g) > \epsilon) \end{split}$$

Proof cont.

- ▶ notice that $R(g) = \mathbb{P}_{\mathbf{X} \sim D_{\mathcal{X}}}(g(\mathbf{X}) \neq c(\mathbf{X}))$
- ▶ thus $\mathbb{P}_{\mathbf{X} \sim D_{\mathcal{X}}}(g(\mathbf{X}) = c(\mathbf{X})|R(g) > \epsilon) \leq 1 \epsilon$
- ▶ as the observations are i.i.d, $\mathbb{P}(\widehat{R}(g,\mathcal{D}) = 0 | R(g) > \epsilon) \le (1 \epsilon)^N \le e^{-N\epsilon}$
- finally

$$\mathbb{P}(\exists g \in C, \widehat{R}(g, \mathcal{D}) = 0 \text{ and } R(g) > \epsilon) \leq |C| e^{-N\epsilon}$$

- $\blacktriangleright \text{ then if } \widehat{R}(\mathcal{A}(\mathcal{D}),\mathcal{D}) = 0, \, \mathbb{P}_{\mathcal{D} \sim \mathcal{D}_{\mathcal{Y}}^{N}} \left\{ R\left(\mathcal{A}(\mathcal{D})\right) \leq \epsilon \right\} \geq 1 |\mathcal{C}| \, e^{-N\epsilon}$
- we want $|C|e^{-N\epsilon} \le \delta$, which happens when $N \ge \frac{1}{\epsilon}\log\frac{|C|}{\delta}$

PAC concept learning

ERM

- ERM provides PAC-learnability for finite concept classes
- ▶ optimization computational cost in $\Theta(N|C|)$

Data consumption

- the data needed to reach some PAC level grows with the logarithm of the concept class
- ▶ a finite set C can be encoded with $log_2 |C|$ bits (by numbering the elements)
- each observation X fixes one bit of the solution

Generalization

Concept learning is too limited

- no noise
- fixed loss function

Agnostic PAC learnability

A class of models $\mathcal G$ (functions from $\mathcal X$ to $\mathcal Y$) is PAC-learnable with respect to a loss function I if there is an algorithm $\mathcal A$ and a function $\mathcal N_{\mathcal G}$ from $[0,1]^2$ to $\mathbb N$ such that: for any $1>\epsilon>0$ and any $1>\delta>0$, for any distribution D on $\mathcal X\times\mathcal Y$ if $N\geq \mathcal N_{\mathcal G}(\epsilon,\delta)$ then

$$\mathbb{P}_{\mathcal{D} \sim D^{N}}\left\{R_{l}\left(\mathcal{A}(\mathcal{D})\right) \leq R_{l,\mathcal{G}}^{*} + \epsilon\right\} \geq 1 - \delta$$

Main questions

- does ERM provide agnostic PAC learnability?
- does that apply to infinite classes of models?

Uniform approximation

Lemma

Controlling the ERM can be done by ensuring the empirical risk is uniformly a good approximation of the true risk:

$$\left|R_{l}(g_{\mathit{ERM},l,\mathcal{G},\mathcal{D}}) - R_{l,\mathcal{G}}^{*} \leq 2 \sup_{g \in \mathcal{G}} \left|R_{l}(g) - \widehat{R}_{l}(g,\mathcal{D})
ight|$$

Uniform approximation

Lemma

Controlling the ERM can be done by ensuring the empirical risk is uniformly a good approximation of the true risk:

$$\left|R_{l}(g_{\mathit{ERM},l,\mathcal{G},\mathcal{D}}) - R_{l,\mathcal{G}}^{*} \leq 2 \sup_{g \in \mathcal{G}} \left|R_{l}(g) - \widehat{R}_{l}(g,\mathcal{D})
ight|$$

Proof.

for any $g \in \mathcal{G}$, we have

$$\begin{split} R_{l}(g_{\text{ERM},l,\mathcal{G},\mathcal{D}}) - R_{l}(g) &= R_{l}(g_{\text{ERM},l,\mathcal{G},\mathcal{D}}) - \widehat{R}_{l}(g_{\text{ERM},l,\mathcal{G},\mathcal{D}},\mathcal{D}) + \widehat{R}_{l}(g_{\text{ERM},l,\mathcal{G},\mathcal{D}},\mathcal{D}) - R_{l}(g), \\ &\leq R_{l}(g_{\text{ERM},l,\mathcal{G},\mathcal{D}}) - \widehat{R}_{l}(g_{\text{ERM},l,\mathcal{G},\mathcal{D}},\mathcal{D}) + \widehat{R}_{l}(g,\mathcal{D}) - R_{l}(g), \\ &\leq \left| R_{l}(g_{\text{ERM},l,\mathcal{G},\mathcal{D}}) - \widehat{R}_{l}(g_{\text{ERM},l,\mathcal{G},\mathcal{D}},\mathcal{D}) \right| + \left| \widehat{R}_{l}(g,\mathcal{D}) - R_{l}(g) \right|, \\ &\leq 2 \sup_{g \in \mathcal{G}} \left| R_{l}(g) - \widehat{R}_{l}(g,\mathcal{D}) \right|, \end{split}$$

which leads to the conclusion.

Finite classes

Theorem

If
$$|\mathcal{G}| < \infty$$
 and if $l \in [a, b]$ them when $N \ge \left\lceil \frac{\log\left(\frac{2|\mathcal{G}|}{\delta}\right)(b-a)^2}{2\epsilon^2} \right\rceil$

$$\mathbb{P}_{\mathcal{D} \sim \mathcal{D}_{\mathcal{X}}^{N}} \left\{ \sup_{g \in \mathcal{G}} \left| R_{l}(g) - \widehat{R}_{l}(g, \mathcal{D})
ight| \geq \epsilon
ight\} \leq 1 - \delta$$

Proof.

very rough sketch

- 1. we use the union technique to focus on a single model g
- then we use the Hoeffding inequality to bound the difference between an empirical average and an expectation. In our context it says

$$\mathbb{P}_{\mathcal{D} \sim \mathcal{D}_{\mathcal{X}}^{N}} \left\{ \left| R_{l}(g) - \widehat{R}_{l}(g, \mathcal{D}) \right| \geq \epsilon \right\} \leq 2 \exp \left(-2N \frac{\epsilon^{2}}{(b-a)^{2}} \right)$$

the conclusion is obtained as in the simple case of concept learning

Finite classes

Theorem

If $|\mathcal{G}| < \infty$ and if $I \in [0,1]$ the ERM provides agnostic PAC-learnability with $\mathcal{N}_{\mathcal{G}}(\epsilon,\delta) = \left\lceil \frac{2\log\left(\frac{2|\mathcal{G}|}{\delta}\right)(b-a)^2}{\epsilon^2} \right\rceil$

Discussion

- obvious consequence of the uniform approximation result
- ▶ the limitation $l \in [a, b]$ can be lifted but only asymptotically
- ▶ the dependency of the data size to the quality (i.e. to ϵ) is far less satisfactory than in the simple case: this is a consequence of allowing noise

Infinite classes

Restriction

- we keep the noise but move back to a simple case
- ▶ $\mathcal{Y} = \{0, 1\}$ and $I = I_b$

Growth function

ightharpoonup if $\{v_1,\ldots,v_m\}$ is a finite subset of \mathcal{X}

$$G_{\{v_1,...,v_m\}} = \{(g(v_1),...,g(v_m)) \mid g \in G\} \subset \{0,1\}^m$$

ightharpoonup the growth function of \mathcal{G} is

$$\mathcal{S}_{\mathcal{G}}(\textit{m}) = \sup_{\{\textit{v}_1,...,\textit{v}_m\} \subset \mathcal{X}} \left| \mathcal{G}_{\{\textit{v}_1,...,\textit{v}_m\}} \right|$$

Interpretation

Going back to finite things

- ▶ $|\mathcal{G}_{\{v_1,...,v_m\}}|$ gives the number of models as seen by the inputs $\{v_1,...,v_m\}$
- it corresponds to the number of possible classification decisions (a.k.a. binary labelling) of those inputs
- ▶ the growth function corresponds to the worst case analysis: the set of inputs that can be labelled in the largest number of different ways

Vocabulary

- if $|\mathcal{G}_{\{v_1,\dots,v_m\}}|=2^m$ then $\{v_1,\dots,v_m\}$ is said to be *shattered* by \mathcal{G}
- $ightharpoonup \mathcal{S}_{\mathcal{G}}(m)$ is the *m*-th shatter coefficient of \mathcal{G}

Uniform approximation

Theorem

For any 1 $> \epsilon > 0$ and any 1 $> \delta > 0$ and for any distribution D

$$\mathbb{P}_{\mathcal{D} \sim \mathcal{D}_{\mathcal{X}}^{N}} \left\{ \sup_{g \in \mathcal{G}} \left| R_{l_{b}}(g) - \widehat{R}_{l_{b}}(g, \mathcal{D}) \right| \geq \frac{4 + \sqrt{\log(\mathcal{S}_{\mathcal{G}}(2N))}}{\delta \sqrt{2N}} \right\} \leq 1 - \delta$$

Consequences

- strong link between the growth function and uniform approximation
- useful only if $\frac{\log(S_{\mathcal{G}}(2m))}{m}$ goes to zero when $m \to \infty$
- ▶ if \mathcal{G} shatters sets of arbitrary sizes $\log(\mathcal{S}_{\mathcal{G}}(2m)) = 2m \log 2$

Vapnik Chervonenkis dimension

VC-dimension

$$VCdim(\mathcal{G}) = \sup \{ m \in \mathbb{N} \mid \mathcal{S}_{\mathcal{G}}(m) = 2^m \}$$

Characterization

 $VCdim(\mathcal{G}) = m$ if and only if

- 1. there is **a** set of *m* points $\{v_1, \ldots, v_m\}$ that is shattered by \mathcal{G}
- 2. **no** set of m+1 points $\{v_1, \ldots, v_{m+1}\}$ is shattered by \mathcal{G}

Lemma (Sauer)

If $VCdim(\mathcal{G}) < \infty$, for all $m \mathcal{S}_{\mathcal{G}}(m) \leq \sum_{k=0}^{VCdim(\mathcal{G})} {m \choose k}$. In particular when $m \geq VCdim(\mathcal{G})$

$$\mathcal{S}_{\mathcal{G}}(m) \leq \left(rac{\textit{em}}{\textit{VCdim}(\mathcal{G})}
ight)^{\textit{VCdim}(\mathcal{G})}$$

Finite VC-dimension

Consequences

If $VCdim(\mathcal{G}) = d < \infty$, for any $1 > \epsilon > 0$ and any $1 > \delta > 0$ and for any distribution D, if $N \ge d$ then

$$\left| \mathbb{P}_{\mathcal{D} \sim \mathcal{D}_{\mathcal{X}}^{N}} \left\{ \sup_{g \in \mathcal{G}} \left| R_{l_b}(g) - \widehat{R}_{l_b}(g, \mathcal{D}) \right| \geq \frac{4 + \sqrt{\log(\frac{2eN}{d})}}{\delta \sqrt{2N}} \right\} \leq 1 - \delta$$

Learnability

- a finite VC-dimension ensures agnostic PAC-learnability of the ERM
- lacksquare it can be shown that $\mathcal{N}_{\mathcal{G}}(\epsilon,\delta) = \Theta\left(rac{VCdim(\mathcal{G}) + \log rac{1}{\delta}}{\epsilon^2}
 ight)$

VC-dimension

VC-dimension calculation is very difficult! A useful result:

Theorem

Let $\mathcal F$ be a vector space of functions from $\mathcal X$ to $\mathbb R$ of dimension p. Let $\mathcal G$ be the class of models given by

$$\mathcal{G} = \left\{g: \mathcal{X} \rightarrow \{0,1\} \mid \exists f \in \mathcal{F}, \forall \boldsymbol{X} \in \mathcal{X} \ g(\boldsymbol{X}) = \boldsymbol{1}_{f(\boldsymbol{X}) > 0}\right\}.$$

Then $VCdim(\mathcal{G}) \leq p$.

Is a finite VC-dimension needed?

Theorem

Let $\mathcal G$ be a class of models from $\mathcal X$ to $\mathcal Y=\{0,1\}.$ Then the following properties are equivalent:

- 1. G is agnostic PAC-learnable with the binary loss I_b
- 2. ERM provides agnostic PAC-learnable with the binary loss I_b for G
- 3. $VCdim(\mathcal{G}) < \infty$

Interpretation

- learnability in the PAC sense is therefore uniquely characterized by the VC-dimension of the class of models
- no algorithmic tricks can be used to circumvent this fact!
- but this applies only to a fix class!

Beyond binary classification

- numerous extensions are available
 - to the regression setting (with quadratic or absolute loss)
 - to classification with more than two classes
- refined complexity measures are available
 - Rademacher complexity
 - Covering numbers
- better bounds are also available
 - in general
 - in the noise free situation

But the overall message remains the same: learnability is only possible in classes of bounded complexity.

Outline

Introduction

PAC learning

ERM in practice

ERM in practice

Empirical risk minimization

$$g_{\mathit{ERM},l,\mathcal{G},\mathcal{D}} = rg \min_{g \in \mathcal{G}} \widehat{R}_l(g,\mathcal{D})$$

Implementation?

- \blacktriangleright what class \mathcal{G} should we use?
 - potential candidates?
 - how to chose among them?
- how to implement the minimization part
 - complexity?
 - approximate solutions?

Model classes

Some examples

• fixed "basis" models, e.g. for $\mathcal{Y} = \{-1, 1\}$

$$\mathcal{G} = \left\{ \mathbf{X} \mapsto \operatorname{sign} \left(\sum_{k=1}^K \alpha_k f_k(\mathbf{X}) \right) \right\},$$

where the f_k are fixed functions from \mathcal{X} to \mathbb{R}

parametric "basis" models

$$\mathcal{G} = \left\{ \mathbf{X} \mapsto \operatorname{sign} \left(\sum_{k=1}^K \alpha_k f_k(\mathbf{w}_k, \mathbf{X}) \right) \right\},$$

where the $f_k(w_k,.)$ are fixed functions from \mathcal{X} to \mathbb{R} and the w_k are parameters that enable tuning the f_k

• useful also for $\mathcal{Y} = \mathbb{R}$ (remove the indicator function)

Examples

Linear models

- $\triangleright \mathcal{X} = \mathbb{R}^P$
- ightharpoonup the linearity is with respect to lpha
- ▶ basic model
 - $ightharpoonup f_k(\mathbf{X}) = X_k$

$$\triangleright \sum_{k=1}^{P} \alpha_k f_k(\mathbf{X}) = \boldsymbol{\alpha}^T \mathbf{X}$$

- ► general models
 - ▶ $f_k(\mathbf{X})$ can be any polynomial function on \mathbb{R}^P or more generally a function from \mathbb{R}^P to \mathbb{R}
 - e.g. $f_k(\mathbf{X}) = X_1 X_2^2$, $f_k(\mathbf{X}) = \log X_3$, etc.

Examples

Nonlinear models

- Radial Basis Function (RBF) neural networks:
 - $\triangleright \mathcal{X} = \mathbb{R}^P$

$$f_k((\beta, \mathbf{w}_k), \mathbf{X}) = \exp(-\beta \|\mathbf{X} - \mathbf{w}_k\|^2)$$

- one hidden layer perceptron:
 - $\triangleright \mathcal{X} = \mathbb{R}^P$
 - $f_k((\beta, \mathbf{w}_k), \mathbf{X}) = \frac{1}{1 + \exp(-\beta \mathbf{w}_k^T \mathbf{X})}$

More complex outputs

- ▶ if $|\mathcal{Y}| < \infty$, write $\mathcal{Y} = \{y_1, \dots, y_L\}$
- possible class

$$\mathcal{G} = \left\{ \mathbf{X} \mapsto y_{t(\mathbf{X})}, \text{ with } t(\mathbf{X}) = \arg \max_{l} \left(\exp \left(-\sum_{k=1}^{K} \alpha_{kl} f_{kl}(\mathbf{w}_{kl}, \mathbf{X}) \right) \right) \right\}$$

(Meta)Parameters

Parametric view

- previous classes are described by parameters
- ERM is defined at the model level but can equivalently be considered at the parameter level
- ▶ if e.g. $\mathcal{G} = \left\{ \mathbf{X} \mapsto \operatorname{sign}(\sum_{k=1}^K \alpha_k f_k(\mathbf{X})) \right\}$ solving $\min_{g \in \mathcal{G}} \widehat{R}_{l_b}(g, \mathcal{D})$ is equivalent to solving $\min_{\alpha \in \mathbb{R}^K} \widehat{R}_{l_b}(g_\alpha, \mathcal{D})$, where g_α is the model associated to α

(Meta)Parameters

Parametric view

- previous classes are described by parameters
- ERM is defined at the model level but can equivalently be considered at the parameter level
- ▶ if e.g. $\mathcal{G} = \left\{ \mathbf{X} \mapsto \operatorname{sign}(\sum_{k=1}^K \alpha_k f_k(\mathbf{X})) \right\}$ solving $\min_{g \in \mathcal{G}} \widehat{R}_{l_b}(g, \mathcal{D})$ is equivalent to solving $\min_{\alpha \in \mathbb{R}^K} \widehat{R}_{l_b}(g_\alpha, \mathcal{D})$, where g_α is the model associated to α

Meta-parameters

- to avoid confusion, we use the term "meta-parameters" to refer to parameters of the machine learning algorithm
- \blacktriangleright in ERM, those are class level parameters (\mathcal{G} itself):
 - ▶ K
 - \blacktriangleright the f_k functions
 - the parametric form of $f_k(w_k, .)$

ERM and optimization

Standard optimization problem

- lacktriangledown computing $\arg\min_{g\in\mathcal{G}}\widehat{R}_l(g,\mathcal{D})$ is a classical optimization problem
- no closed-form solution in general
- ► ERM relies on standard algorithms: gradient based algorithms if possible, combinatorial optimization tools if needed

Very different complexities

- from easy cases: linear models with quadratic loss
- ▶ to NP-hard ones: binary loss even with super simple models

Linear regression

ERM version of linear regression

class of models

$$\mathcal{G} = \left\{g: \mathbb{R}^{\textit{P}} \rightarrow \mathbb{R} \mid \exists (\beta_0, \boldsymbol{\beta}), \forall \boldsymbol{\mathsf{X}} \in \mathbb{R}^{\textit{P}} \, g_{\beta_0, \boldsymbol{\beta}}(\boldsymbol{\mathsf{x}}) = \beta_0 + \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\mathsf{x}} \right\}$$

- ► loss: $I(p, t) = (p t)^2$
- ▶ empirical risk: $\widehat{R}_{l}(g_{\beta_{0},\beta},\mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \left(Y_{i} \beta_{0} \beta^{T} \mathbf{X}_{i}\right)^{2}$
- ▶ standard solution $(\beta_0^*, \beta^*)^T = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$ with

$$\mathbb{X} = \left(\begin{array}{cc} 1 & \boldsymbol{X}_1^T \\ \cdots & \cdots \\ 1 & \boldsymbol{X}_N^T \end{array} \right) \quad \mathbb{Y} = \left(\begin{array}{c} \boldsymbol{Y}_1^T \\ \cdots \\ \boldsymbol{Y}_N^T \end{array} \right)$$

ightharpoonup computational cost in $\Theta\left(\textit{NP}^2\right)$

Linear classification

Linear model with binary loss

class of models

$$\mathcal{G} = \left\{g: \mathbb{R}^P \rightarrow \{0,1\} \mid \exists (\beta_0, \boldsymbol{\beta}), \forall \boldsymbol{\mathsf{X}} \in \mathbb{R}^P \, g_{\beta_0, \boldsymbol{\beta}}(\boldsymbol{\mathsf{x}}) = \mathsf{sign}(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{\mathsf{x}})\right\}$$

- ▶ loss: $l_b(p, t) = \mathbf{1}_{p \neq t}$
- empirical risk: misclassification rate
- in this context ERM is NP-hard and tight approximations are also NP-hard
- notice that the input dimension is the source of complexity

Noise

- if the optimal model makes zero error, then ERM is polynomial!
- complexity comes from both noise and the binary loss

Gradient descent

Smooth functions

- $ightharpoonup \mathcal{Y} = \mathbb{R}$
- ▶ parametric case $\mathcal{G} = \{\mathbf{X} \mapsto F(\mathbf{w}, \mathbf{X})\}$
- assume the loss function I and the models in the class G are differentiable (can be extended to subgradients)
- gradient of the empirical loss

$$\nabla_{\mathbf{w}}\widehat{R}_{l}(\mathbf{w}, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial I}{\partial p} (F(\mathbf{w}, \mathbf{X}_{i}), Y_{i}) \nabla_{\mathbf{w}} F(\mathbf{w}, \mathbf{X}_{i})$$

 ERM through standard gradient based algorithms, such as gradient descent

$$\mathbf{w}^t = \mathbf{w}^{t-1} - \gamma^t \nabla_{\mathbf{w}} \widehat{R}_l(\mathbf{w}^{t-1}, \mathcal{D})$$

Stochastic gradient descent

Finite sum

- ▶ leverage the structure of $\widehat{R}_{l}(\mathbf{w}, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} l(F(\mathbf{w}, \mathbf{X}_{i}), Y_{i})$
- what about updating according to only one example?
- stochastic gradient descent
 - 1. start with a random w⁰
 - 2. iterate
 - 2.1 select i^t randomly uniformly in $\{1,\ldots,N\}$ 2.2 $\mathbf{w}^t = \mathbf{w}^{t-1} - \gamma^t \frac{\partial l}{\partial p} (F(\mathbf{w}^{t-1},\mathbf{X}_{i^t}),Y_{i^t}) \nabla_{\mathbf{w}} F(\mathbf{w}^{t-1},\mathbf{X}_{i^t})$
- practical tips:
 - ▶ use the Polyak-Ruppert averaging: $\overline{\mathbf{w}}^m = \frac{1}{m} \sum_{t=0}^{m-1} \mathbf{w}^t$
 - $\gamma^t = (\gamma^0 + t)^{-\kappa}, \, \kappa \in]0.5, 1], \, \gamma^0 \ge 0$
 - numerous acceleration techniques such as momentum ("averaged" gradients)

Ad hoc methods

Heuristics

- numerous heuristics have been proposed for ERM and related problems
- one of the main tools is alternate/separate optimization: optimize with respect to some parameters while holding the other constants

Radial basis function

- $\blacktriangleright \mathcal{G} = \left\{ \mathbf{X} \mapsto \sum_{k=1}^{K} \alpha_k \exp\left(-\beta \|\mathbf{X} \mathbf{w}_k\|^2\right) \right\}$
- \blacktriangleright set β heuristically, e.g. to the inverse of the smallest squared distance between two **X** in the data set
- ▶ set the \mathbf{w}_k via a unsupervised method applied to the $(\mathbf{X}_i)_{1 \leq i \leq N}$ only (for instance the K-means algorithm)
- consider β and the \mathbf{w}_k fixed and apply standard ERM to the α_k , e.g. linear regression if the loss function is quadratic and $\mathcal{Y} = \mathbb{R}$

ERM and statistics

Maximum likelihood

- the classical way of estimating parameters in statistics consists in maximizing the likelihood function
- ▶ this is empirical risk minimization in disguise
- learnability results apply!

Linear regression

- ▶ in linear regression one assumes that the following conditional distribution: $Y_i | \mathbf{X}_i = \mathbf{x} \sim \mathcal{N}(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}, \sigma^2)$
- ▶ the MLE estimate of β_0 and β is obtained as

$$\widehat{(eta_0,oldsymbol{eta})}_{MLE} = \arg\min_{eta_0,oldsymbol{eta}} \sum_{i=1}^N \left(Y_i - eta_0 - oldsymbol{eta}^T \mathbf{X}_i \right)^2$$

MLE=ERM here

Logistic Regression

MLE

▶ in logistic regression one assumes that (with $\mathcal{Y} = \{0, 1\}$)

$$\mathbb{P}(Y_i = 1 | \mathbf{X}_i = \mathbf{x}) = \frac{1}{1 + \exp(-\beta_0 - \boldsymbol{\beta}^T \mathbf{x})} = h_{\beta_0, \boldsymbol{\beta}}(\mathbf{x})$$

▶ the MLE estimate is obtained by maximizing over (β_0, β) the following function

$$\sum_{i=1}^{N} \left(Y_i \log h_{\beta_0,\boldsymbol{\beta}}(\mathbf{X}_i) + (1-Y_i) \log (1-h_{\beta_0,\boldsymbol{\beta}}(\mathbf{X}_i)) \right)$$

ERM version

Machine learning view

- ightharpoonup assume $\mathcal{Y} = \mathbb{R}$
- use again the class of linear models
- ► the loss is given by

$$I(p, t) = t \log(1 + \exp(-p)) + (1 - t) \log(1 + \exp(p))$$

Extended ML framework

- ▶ the standard ML approach consists in looking for g in the set of functions from \mathcal{X} to \mathcal{Y}
- the logistic regression does not model directly the link between X and Y but rather a probabilistic link
- ▶ the ML version is based on a new ML paradigm where the loss function is defined on $\mathcal{Y}' \times \mathcal{Y}$ and g is a function from \mathcal{X} to \mathcal{Y}'

Relaxation

Simplifying the ERM

- ERM with binary loss is complex: non convex loss with no meaningful gradient
- goal: keep the binary decision but remove the binary loss
- solution:
 - ask to the model a score rather than a binary decision
 - build a loss function that compares a score to the binary decision
 - use a decision technique consistent with the score
 - \blacktriangleright generally simpler to formulate with $\mathcal{Y}=\{-1,1\}$ and the sign function
- this a relaxation as we do not look anymore for a crisp 0/1 solution but for a continuous one

Examples

Numerous possible solutions

$$\mathcal{Y} = \{-1, 1\}$$
 with decision based on $sign(p)$

- logistic loss: $l_{logi}(p, t) = \log(1 + \exp(-pt))$
- ▶ perceptron loss: $I_{per}(p, t) = \max(0, -pt)$
- ▶ hinge loss (Support Vector Machine): $I_{hinge}(p, t) = \max(0, 1 pt)$
- exponential loss (Ada boost): $l_{exp}(p, t) = \exp(-pt)$
- quadratic loss: $l_2(p, t) = (p t)^2$

Beyond ERM

This is not ERM anymore!

- ▶ sign $\circ g$ is a model in the original sense (a function from \mathcal{X} to \mathcal{Y})
- ▶ but $I_{relax}(g(\mathbf{X}), Y) \neq I_b(\operatorname{sign}(g(\mathbf{X})), \mathbf{Y})$
- surrogate loss minimization
 - some theoretical results are available
 - but in general no guarantee to find the best model with a surrogate loss

Are there other reasons to avoid ERM?

Negative results (binary classification)

$$VCdim(\mathcal{G}) = \infty$$

- consider a fixed ML algorithm that picks up a classifier in G with infinite VC dimension (using whatever criterion)
- for all $\epsilon > 0$ and all N, there is D such that $R_G^* = 0$ and

$$\mathbb{E}_{\mathcal{D} \sim \mathcal{D}^N}(R(g_{\mathcal{D}})) \geq rac{1}{2e} - \epsilon$$

$VCdim(\mathcal{G}) < \infty$

ightharpoonup for all $\epsilon > 0$, there is D such that

$$R_{\mathcal{G}}^* - R^* > \frac{1}{2} - \epsilon$$

Conclusion

Summary

The empirical risk minimization framework seems appealing at first but it has several limitations

- the binary loss is associated to practical difficulties:
 - implementation is difficult (because of the lack of smoothness)
 - complexity can be high in the case of noisy data
- learnability is guaranteed but
 - only for model classes with finite VC dimension
 - which are strictly limited!

Beyond ERM

- surrogate loss function
- data adaptive model class

Licence

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2018-06-06

By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)

Git hash: 1b39c1bacfc1b07f96d689db230b2586549a62d4