DEV DAY

모두를 위한 컴퓨터 비전 딥러닝 툴킷, GluonCV 따라하기

2-2. GluonCV Overview

강지양 딥러닝 아키텍트 Amazon Machine Learning Solutions Lab

GluonCV: A Vision Toolkit

- State-of-the-Art Models
- Fast Development
- Easy Deployment
- Official Maintenance

The Best Open-Source Choice

- Pretrained Models with the Best Accuracy
- Most Comprehensive Model Zoo

Classification

Detection

Segmentation

Classification

Model	Ours	Reference
ResNet-50	79.2%	76.2%
ResNet-101	80.5%	77.4%
MobileNet	73.3%	70.9%

Classification

Detection

Model	Ours	Reference
Faster-RCNN	40.1%	39.6%
YOLOv3	37.0%	33.0%

Detection

Segmentation

Model	Ours	Reference
Mask-RCNN	33.1%	32.8%
DeepLab-v3	86.7%	85.7%

- Available
 - Classification
 - Detection
 - Segmentation
 - Re-ID
 - GAN
- In-Development
 - Keypoint detection
 - Depth prediction

Demo

Detection

Segmentation

Demo

• WGAN

• Person Re-ID

Getting Started

- Gluon CV: https://gluon-cv.mxnet.io
- Gluon NLP: https://gluon-nlp.mxnet.io
- MXNet: http://beta.mxnet.io/
- Deep Learning Book: http://diveintodeeplearning.org

Model Zoo

- Pre-trained models
- Can be transferred or directly applied

GluonCV Model Zoo

- Comprehensive selection
 - AlexNet
 - VGG
 - ResNet
 - MobileNet
 - NASNet
 - •
- One of the most accurate open-sourced libraries
- Reproducible

Training Essentials

- Data Preprocessing
- Network architecture definition
- Optimizer
- Loss
- Metric
- GPU Acceleration

Data Preprocessing

Optimizers

- SGD
- Adam
- RMSProp
- •

Advanced Tricks

- Label smoothing
- Learning rate schedule
- Mix-Up
- Knowledge Distillation

Label Smoothing

- One hot: (0, 1, 0, 0, 0)
- Smoothed: (0.01, 0.96, 0.01, 0.01, 0.01)
- Prevent overfitting!

Learning Rate Schedule

- Step
- Cosine
- Poly

Mix-Up

- Linear mapping
- $f(ax_i+bx_j)=af(x_i)+bf(x_j)$

Knowledge Distillation

- Dark Knowledge
 - Dog vs Cat
 - Dog vs Car

cow	dog 1	cat 0	car 0	original hard targets
cow 10 ⁻⁶	dog .9	cat .1	car 10 ⁻⁹	output of geometric ensemble
.05	dog .3	cat .2	.005	softened output of ensemble

Knowledge Distillation

GluonCV Model Zoo

He, Tong, et al. "Bag of Tricks for Image Classification with Convolutional Neural Networks" arXiv preprint arXiv:1812.01187 (2018).

Transfer learning

- Based on a pre-trained model
- Re-define the output layer

Resources:

- Model Zoo: https://gluon-cv.mxnet.io/model_zoo/classification.html
- Tutorials: https://gluon-cv.mxnet.io/build/examples_classification/index.html
- Deep Learning Book: http://diveintodeeplearning.org/

Model Zoo

Paper under review, to be released soon

Advanced Training

- Learning rate schedule
- Mix-up
- Label smoothing

Mix-Up

Elephant-in-the-Room

Resources:

- Model Zoo: https://gluon-cv.mxnet.io/model_zoo/detection.html
- Tutorials: https://gluon-cv.mxnet.io/build/examples_detection/indexa.html
- Deep Learning Book: http://en.diveintodeeplearning.org/

Hands On!

Our Office in E Palo Alto, California

Model Zoo

DeepLab-v3	mIoU on VOC	86.7%	85.7% (paper)
Mask-RCNN	mask AP on COCO	33.1%	32.8% (<u>Detectron</u>)

Advanced Training

- Learning Rate Schedule
- Multi-Transfer Learning
 - MS COCO -> Pascal VOC Augmented -> Pascal VOC

Multi-Transfer Learning

- DeepLab V3
 - MS COCO -> Pascal VOC Augmented -> Pascal VOC

Resources:

- Model Zoo: https://gluon-cv.mxnet.io/model_zoo/segmentation.html
- Tutorials: https://gluon-cv.mxnet.io/build/examples_segmentation/index.html
- Deep Learning Book: http://en.diveintodeeplearning.org/

Hands On!

- Format
- Label
- Directory Structure

- Format: Task Specific
 - Classification: the label
 - Detection: the boxes, and labels
 - Segmentation: the masks, and labels

- Labeling
 - Manual
 - Accurate, Expensive
 - Automatic
 - Somewhat accurate, cheap
 - SageMaker Ground Truth

Labeling

Classification Directory Structure

```
ImageNet-Train/
```

```
    Cat/
```

- 001.jpg
- 002.jpg
- ...
- Dog/
- •

- Detection Directory Structure
 - Pascal VOC/
 - Images
 - 001.jpg
 - 002.jpg
 - ...
 - Annotation
 - 001.xml
 - •

- Segmentation Directory Structure
 - Pascal VOC/
 - Images
 - 001.jpg
 - Object Segmentation
 - 001.jpg
 - Class Segmentation
 - 001.jpg

GluonCV Interface

- DataSet
 - Input: images, labels
 - Output: Arrays of images and labels in memory
- Transformation
 - Data augmentation
- DataLoader
 - Scheduling
 - Multi-threading

DataSet

- Task/Structure Dependent
 - Preset functions for certain structures
- Very flexible
 - Class VisionDataset()
 - Users can override the class

Transformation

- Augmentation
 - Abundant choices
- Flexible interface
 - Stack in sequence

DataLoader

- Load Schedule
 - Pool of threads
 - Pre-fetch
- Training/Testing specific
 - Data Shuffling
 - Batch size

- GluonCV Interface
 - Pipeline
 - File -> Dataset -> Transformation -> DataLoader

Why Transformation?

- Resize to fit model
- Prevent overfitting
- Enrich the dataset

Popular Transformation

- Resize
- Crop
- Flip
- Rotation
- Adding Noise
- Normalization

Advanced Transformation

Mix-Up

- Transformation for Inference
 - Crop
 - Normalization
 - No Randomization

Fast 10 in GluonCV

- Hardware
 - RAM Disk > SSD >> HDD
 - ImageNet dataset: 140GB
 - RAM of p3.16xlarge: 768GB

- Image Format: Raw Image
 - Support any kind of tasks
 - Read through DataLoader
 - Slow
 - Need to unzip on each new machine

- Image Format: RecordIO
 - Support classification and detection
 - Read through DataLoader or ImageRecordIter
 - Fast
 - One-time packing

- Interface: ImageRecordIter
 - One function call for
 - DataSet
 - Transform
 - DataLoader
 - Less flexible
 - Very Fast

- Interface: Nvidia DALI (with nvJPEG)
 - Combination of
 - DataSet
 - Transform
 - DataLoader
 - Flexible
 - Extremely Fast
 - In-Development

Thank you!

여러분의 피드백을 기다립니다!

강연 평가 및 설문 조사 QR 코드를 통해 AWS DEV DAY SEOUL에 대한 여러분의 의견을 공유해주세요. 강연 평가 및 설문 조사에 참여해 주신 분께는 등록데스크에서 특별한 기념품을 드립니다.

강연 영상 AWS DEV DAY SEOUL 강연 영상은 행사 종료 후 메일로 공유드릴 예정입니다.

#AWSDEVDAYSEOUL 소셜미디어에 행사 참여 소감을 공유해주세요!

