Σχεδιάζουμε αλγόριθμο δυναμικού προγραμματισμού σε προβλήματα που έχουν τα εξής χαρακτηριστικά:

- Ιδιότητα των Βέλτιστων Επιμέρους Δομών: Οτί για να λύσουμε το πρόβλημα αρκεί να υπολογίσουμε την βέλτιστη λύση σε κάποια υποπροβλήματα, συνήθως με αναδρομή.
- Μικρός Αριθμός Υποπροβλημάτων: Το πλήθος των υποπροβλημάτων που πρέπει να λύσουμε είναι μικρό (δηλαδή πολυωνυμικό ως προς το μέγεθος του προβλήματος)
- Επικαλυπτόμενα Επιμέρους Προβλήματα: Ότι λύνουμε πολλές φορές τα ίδια υποπροβλήματα με αποτέλεσμα να χάνουμε χρόνο

Βήματα Σχεδίασης Αλγόριθμου Δυναμικού Προγ/μού

- Περιγράφουμε έναν αναδρομικό αλγόριθμο που λύνει το πρόβλημα
- 2. Δίνουμε την αναδρομική σχέση που υπολογίζει την βέλτιστη λύση (επίλυση από πάνω προς τα κάτω)
- Διαπιστώνουμε ότι ισχύουν οι τρεις συνθήκες για την κατασκευή του αλγορίθμου δυναμικού προγραμματισμού.
- Με βάση την αναδρομική σχέση, κατασκευάζουμε την διαδικασία επίλυσης από τα μικρά προβλήματα σε όλο και μεγαλύτερα (επίλυση από κάτω προς τα
- Δίνουμε τον επαναληπτικό αλγόριθμο που κάνει την επίλυσή του προβλήματος
- Υπολογίζουμε την πολυπλοκότητα του επαναληπτικού αλγορίθμου

Αλγόριθμοι Δυναμικού Προγραμματισμού:

- Υπολογισμός Αριθμού Fibonacci. Πολυπλοκότητα: O(n)
- Αλυσιδωτός Πολλαπλασιασμός Πινάκων. Πολυπλοκότητα O(n3)
- Μέγιστη Κοινή Υπακολουθία. Πολυπλοκότητα: Θ(nm).
- **Συντομότερο Μονοπάτι σε Άκυκλο Κατευθυνόμενο Γράφημα (DAG)**. Πολυπλοκότητα: O(n²).

ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΑΝΑΔΡΟΜΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ: $\Theta(1)$, n=1 $\acute{\eta}$ n=2 $T(n-1)+T(n-2)+\Theta(1)$ Κάτω Φράγμα: $K(n) = 2K(n-2) + \Theta(1)$... Μέθοδος Επανάληψης

ΑΛΥΣΙΔΩΤΟΣ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΙΝΑΚΩΝ

ΕΙΣΟΔΟΣ: Α₁,Α₂,...,Α_n όπου ο πίνακας Α_i είναι διάστασης d_{i-1} x d_i. ΕΞΟΔΟΣ: Η σειρά που πολλαπλασιασμών του γινομένου $A_1 \times A_2 \times ... \times A_n$

ΑΝΑΔΡΟΜΙΚΗ ΣΧΕΣΗ (υπολογισμού της βέλτιστης λύσης): 0. $M[i,j] = {\min\{M[i,k] + M[k+1,j] + d_{i-1}d_kd_j\}, i < j}$

ΠΑΡΑΔΕΙΓΜΑ ΕΚΤΕΛΕΣΗΣ: για τον πολλαπλασιασμό πινάκων $A_1A_2A_3A_4$, όταν A₁: 6x3, A₂: 3x4, A₃: 4x8, A₄:8x2, A₆: 2x3

	1	2	3	4
5				
4				A4 o
3			A3 0	A3A4 4x8x2=64
2		A2 0	A2A3 3x4x8=96	A2A3A4 (A2A3)A4=96+3x8x2=96+48=144 A2(A3A4)=64+3x4x2=64+24=88 88
1	A1 0	A1A2 5x3x4=60	A1A2A3 (A1A2)A3=60+5x4x8=220 A1(A2A3)=96+5x3x8=216 216	A1A2A3A4 A1(A2A3A4):88+5x3x2-88+30=118 (A1A2)(A3A4):60+64+5x4x2=164 (A1A2A3)A4:216+5x8x2=296 118

ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ www.psounis.gr

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ: Υπολόγισε την αναδρομή επαναληπτικά με βάση τη σειρά σύμφωνα με το ακόλουθο σχήμα:

ΨΕΥΔΟΚΩΔΙΚΑΣ (ΜΕ ΕΠΑΝΑΛΗΨΗ)

procedure DP MatMult(A₁, A₂,..., A_n) for i=1 to n m[i,i] = 0end for for p=2 to n for i=2 to n-p+1j=i+p-1 $m[i,j]=+\infty$ for k=1 to j-1 q=M[i,k]+M[k+1,j]+d[i-1]*d[k]*d[j]if (q>M[i,j]) then M[i,j]=q, s[i,j]=k end for end for end for return M[1,n] end procedure

ΠΟΛΥΠΛΟΚΟΤΗΤΑ Αλγόριθμου Δ.Π.: $T(n)=O(n^3)$

ΕΙΣΟΔΟΣ: Δίδονται ακολουθίες χαρακτήρων $X=x_1x_2x_3...x_n$ kai $Y=y_1y_2...y_m$

ΜΕΓΙΣΤΗ ΚΟΙΝΗ ΥΠΑΚΟΛΟΥΘΙΑ

ΕΞΟΔΟΣ: Το μέγιστο μήκος κοινής τους υπακολουθίας

ΑΝΑΔΡΟΜΙΚΗ ΣΧΕΣΗ (υπολογισμού της βέλτιστης λύσης):

$$f_{n} = \begin{cases} 0, & i = 0 \text{ } \acute{\eta} \text{ } j = 0 \\ c[i-1,j-1]+1, & i,j > 0 \text{ } \kappa \alpha t \text{ } x_{i} = y_{j} \\ \max\{c[i,j-1],c[i-1,j]\}, & i,j > 0 \text{ } \kappa \alpha t \text{ } x_{i} \neq y_{i} \end{cases}$$

ΠΑΡΑΔΕΙΓΜΑ ΕΚΤΕΛΕΣΗΣ: για τις συμβολοσειρές X=abcdf και Y=dbdaf

	1	2	3	4	5
5	X=abcdf	X=abcdf	X=abcdf	X=abcdf	X=abcd f
	Y=d	Y=db	Y=dbd	Y=dbda	Y=dbda f
	c=1	c=1	c=2	c=2	c=3
4	X=abcd	X=abcd	X=abc d	X=abcd	X=abcd
	Y=d	Y=db	Y=db d	Y=dbda	Y=dbdaf
	c=1	c=1	c=2	c=2	c=2
3	X=abc	X=abc	X=abc	X=abc	X=abc
	Y=d	Y=db	Y=dbd	Y=dbda	Y=dbdaf
	c=0	c=1	c=1	c=1	c=1
2	X=ab	X=a b	X=ab	X=ab	X=ab
	Y=d	Y=d b	Y=dbd	Y=dbda	Y=dbdaf
	c=0	c=1	c=1	c=1	c=1
1	X=a	X=a	X=a	X=a	X=a
	Y=d	Y=db	Y=dbd	Y=dbda	Y=dbdaf
	c=0	c=0	c=0	c=1	c=1

ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ www.psounis.gr

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ:

ακόλουθο σχήμα:

με βάση τη σειρά σύμφωνα με το

 $A(n) = 2A(n-1) + \Theta(1)$

... Μέθοδος Επανάληψης

ΨΕΥΔΟΚΩΔΙΚΑΣ (ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ)

procedure LCS(X,Y) for i=1 to n : c[i,0]=0 for j=1 to m : c[0,j]=0for i=1 to n for j=1 to m if $x_i=y_i$ then c[i,j]=c[i-1,j-1]+1else if (c[i-1,j]>c[i,j-1]) then c[i,j]=c[i-1,j]c[i,j]=c[i,j-1] end if end if end for end for return c[n,m] end procedure

ΠΟΛΥΠΛΟΚΟΤΗΤΑ Αλγόριθμου Δ.Π.: T(n)=O(nm)

ΣΥΝΤΟΜΟΤΕΡΟ ΜΟΝΟΠΑΤΙ ΣΕ ΑΚΥΚΛΟ ΓΡΑΦΗΜΑ ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ www.psounis.gr

ΕΞΟΔΟΣ: Το συντομότερο μονοπάτι από την αφετηρία στον προορισμό

ΑΝΑΔΡΟΜΙΚΗ ΣΧΕΣΗ (προϋποθέτει τοπολογική ταξινόμηση των κόμβων 1,2,...,n):

$$OPT[n] = \begin{cases} 0, & n = 1\\ min\{OPT[j] + W[j,n] \mid (j,n) \in E\} & n > 1 \end{cases}$$

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ:

- Αφού πρώτα γίνει μία ταξινόμηση των κόμβων ώστε στην διάταξη τους κάθε ακμή να είναι (ν_νν_j) με i<j (τοπολογική ταξινόμηση)
- Ο δυναμικός προγραμματισμός υπολογίζει επαναληπτικά την αναδρομική σχέση για i=1,...,n.

ΠΟΛΥΠΛΟΚΟΤΗΤΑ Αλγόριθμου Δ.Π.:

T(n)=O(n+m)

