

MRL 2020 - Day 10 - Part 1

REINFORCE

Organizers

+ info: http://bit.ly/upcrl-2020

https://telecombcn-dl.github.io/mrl-2020/

Xavier Giro-i-Nieto

@DocXavi
xavier.giro@upc.edu

Associate Professor

Universitat Politècnica de Catalunya Barcelona Supercomputing Center

Acknowledgements

Víctor Campos victor.campos@bsc.es

PhD Candidate

Barcelona Supercomputing Center

Policy-based RL

Summary of approaches in RL based on whether we want to learn the value, policy, or the model of the environment.

Policy-based RL

Goals of Reinforcement Learning

Policy-based RL

Policy 兀

Value function

Directly learn the policy by estimating the parameters θ of a stochastic policy:

$$π_{\theta}$$
(a|s)

Our goal:

estimate the probability of taking action a given state s"

Policy Gradient

Figure: OpenAl Spinning Up

Previously: Loss function to compute gradients

Previously: Gradient Descent (GD)

By estimating the gradient of the Loss (∇L) with respect to each parameter in the NN, we use (Stochastic) Gradient Descent and backpropagation to iteratively update them.

Question: What target function should we use to optimize a policy $\pi\theta(a|s)$?

Reminder:

The **optimal policy** is that one capable of achieving the optimal value functions $V_*(s)$ and $Q_*(s,a)$

Optimal policy π_*

$$\pi_* = \arg \max_{\pi} V_{\pi}(s)$$

$$\pi_* = \arg\max_{\pi} Q_{\pi}(s, a)$$

Value functions for policy 兀

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

Question: What target function should we use to optimize a policy $\pi_{\theta}(a|s)$?

Reminder:

The **optimal policy** is that one capable of achieving the optimal value functions $V_*(s)$ and $Q_*(s,a)$

Optimal policy Π_*

$$\pi_* = \arg \max_{\pi} V_{\pi}(s)$$

$$\pi_* = \arg\max_{\pi} Q_{\pi}(s, a)$$

Value functions for policy 兀

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

instead of G!!

Question: How can we estimate the expected return of a policy $\pi_{\alpha}(a|s)$?

Question: Which direction should the update of parameter θ take in RL?

Gradient Ascent

By estimating the gradient of the Expected Return (∇J) with respect to each parameter in the NN, we use (Stochastic) Gradient <u>Ascent</u> and backpropagation to iteratively update them.

Opposite goals in:

- Supervised learning: minimize a loss
 L(θ) function by gradient descent.
- Reinforcement learning: maximize J(θ), the expected return of the policy, by gradient ascent.

Supervised learning: minimize a loss $L(\theta)$ function by gradient descent.

$$abla \mathcal{L} = rac{1}{N} \sum_{i=1}^{N}
abla L(\mathbf{y}_i, \hat{\mathbf{y}}_i)$$

The parameters of the NN, θ , are iteratively updated by assessing the loss function between N pairs of predicted (\hat{y}) and ground truth (v) labels.

Question: What are the equivalent of N pairs (\hat{y},y) in reinforcement learning?

Question: What are the equivalent of N pairs (\hat{y},y) in reinforcement learning?

N <u>complete episodes</u> of our policy $\pi\theta(a|s)$ with the environment.

N <u>complete episodes</u> of our policy $\pi\theta(a|s)$ with the environment.

Question: What are the equivalent of N pairs (\hat{y},y) in reinforcement learning?

N <u>complete episodes</u> of our policy $\mathcal{T}\theta(a|s)$ with the environment, of T interactions:

$$S_1, A_1, R_2, S_2, A_2, ..., S_T$$

Remembering the definition of the return...

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

...but also the (log)-probability of following a specific trajectory...

Expected return of the policy $\pi_{\theta}(a|s)$

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} R_{i,t} ? \log \pi_{\theta}(\mathbf{a}_{i,t}, \mathbf{s}_{i,t}) \right]$$

...and the derivative!

Expected return of the policy $\pi_{\theta}(a|s)$

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} R_{i,t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}, \mathbf{s}_{i,t}) \right]$$

The policy gradient. If we follow it, the action $\mathbf{a}_{i,t}$ will be more likely if the agent ever finds itself again in state $\mathbf{s}_{i,t}$

REINFORCE (Vanilla Policy Gradients - VPN)

the mathematical formulation of 'trial-and-error': try and action, and make it more likely if it resulted in positive reward; otherwise, make it less likely.

28

- 1. Initialize θ at random
- 2. Generate one episode $S_1, A_1, R_2, S_2, A_2, \dots, S_T$
- 3. For t=1, 2, ..., T:
 - Estimate the return G_t since the time step t.

• Compute the gradient
$$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} R_{i,t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}, \mathbf{s}_{i,t}) \right]$$

$$\bullet \quad \theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

Learn more

Learn more

Final Questions

JORGE CHAM @ 2008

Undergradese

What undergrads ask vs. what they're REALLY asking

"Is it going to be an open book exam?"

Translation: "I don't have to actually memorize anything, do I?"

"Hmm, what do you mean by that?"

> Translation: "What's the answer so we can all go home."

"Are you going to have office hours today?"

Translation: "Can I do my homework in your office?"

"Can i get an extension?"

on the test."

WW. PHDCOMICS. COM

