CycleGAN Paper

Dr. Alireza Aghamohammadi

Introduction to CycleGAN

- In this lecture, we will discuss the paper titled "Image-to-Image Translation Using Cycle-Consistent Adversarial Networks."
- For many tasks, paired training data is not available.
- CycleGAN captures the unique characteristics of one image collection and translates these characteristics into another image collection, all without any paired training examples.

CycleGAN Building Blocks

Consider unpaired training data consisting of:

- A source set $\{x_i\}_{i=1}^N \ (x_i \in X)$
- A target set $\{y_j\}_{j=1}^M (y_j \in Y)$

with no information provided as to which x_i matches y_j .

We denote the data distribution as:

- $x \sim P_{data}(x)$
- $\diamond y \sim P_{data}(y)$

The model consists of:

- \clubsuit Two generators: G_A and G_B
- \diamond Two discriminators: D_A and D_B
- \bullet G_A generates images for the target set.
- G_B generates images for the source set.

Cycle Consistency: If we translate a sentence from English to French, and then translate it back from French to English, we should arrive back at the original sentence.

$$x_i \to G_A \to y_i \to G_B \to x_i$$

Training CycleGAN

The full objective for CycleGAN is:

$$\min_{G_A,G_B} \max_{D_A,D_B} \mathcal{L}_{GAN}(G_A,D_A,X,Y) + \mathcal{L}_{GAN}(G_B,D_B,Y,X) + \lambda \cdot \mathcal{L}_{CYC}(G_A,G_B)$$

Where \mathcal{L}_{GAN} is the adversarial loss:

$$\mathcal{L}_{GAN}(G_A, D_A, X, Y) = \mathbb{E}_{y \sim P_{data}(y)} \left[\log D_A(y) \right] + \mathbb{E}_{x \sim P_{data}(x)} \left[\log(1 - D_A(G_A(x))) \right]$$

$$\mathcal{L}_{GAN}(G_B, D_B, Y, X) = \mathbb{E}_{x \sim P_{data}(x)} \left[\log D_B(x) \right] + \mathbb{E}_{y \sim P_{data}(y)} \left[\log(1 - D_B(G_B(y))) \right]$$

We introduce two cycle consistency losses to ensure that translating from one domain to the other and back again returns us to the original domain:

$$\mathcal{L}_{CYC}(G_A, G_B) = \mathbb{E}_{x \sim P_{data}(x)} \left[\|G_B(G_A(x)) - x\|_1 \right] + \mathbb{E}_{y \sim P_{data}(y)} \left[\|G_A(G_B(y)) - y\|_1 \right]$$

Sometimes, it can be beneficial to add an identity mapping loss to the objective function:

$$\mathcal{L}_{id}(G_A, G_B) = \mathbb{E}_{x \sim P_{data}(x)} \left[\|G_B(x) - x\|_1 \right] + \mathbb{E}_{y \sim P_{data}(y)} \left[\|G_A(y) - y\|_1 \right]$$