Outfoxing Rabies: Capturing the Spatiotemporal Dynamics of Fox Rabies in Eastern Germany

<u>Laurie Baker</u>^{1*}, Thomas Müller ², Conrad Freuling², Patrick Wysocki², Ronald Schröder², Håvard Rue³, Elias Krainski⁴, Jason Matthiopoulos¹ & Katie Hampson¹

¹Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow ²Friedrich Loeffler Institut, Germany ³King Abdullah University of Science and Technology, Saudi Arabia ⁴UniversidadeFederal do Paraná *Email: I.baker.2@research.gla.ac.uk, Twitter: Ilbaker1707

Introduction

Rabies is a Deadly and Terrifying Disease

- Over 50,000 human deaths worldwide
- Red fox is primary reservoir in Europe

- Result of spill-over from dogs to foxes in 1940s
- Rapidly spread throughout Europe

Oral Rabies Vaccination (ORV)

- Introduced in 1978 to combat the disease
- 3 decades and 2.36 mil vaccine-baited km² later, rabies eliminated from 9 countries!!!

What Can We Learn From Fox Rabies Elimination?

- Understand patterns in persistence
- Gain insights for ongoing ORV in Europe and vaccination elsewhere
- Apply advanced spatiotemporal modelling techniques to develop spatially targeted vaccination

References

- Rue et al. 2009, J. R. Stat Soc.; Simpson et al. 2016, Biometrika; Krainski 2018, NTNU PhD Thesis.

Methods

CRDT triangulated mesh

- Modeled infected individuals
 I from space-time locations
 of rabies cases in Eastern
 Germany (1982-2006) using
 space-time SPDE model in
 INLA (Rue et al. 2009).
- Used a log-Gaussian Cox space-time point process (Simpson et al. 2016) with likelihood:

$$\pi(I|\lambda) = \prod_{i} \lambda(s_i, t_i) \exp(|\Omega||L| - \int_{\Omega, L} \lambda(s, t) \partial s \partial t)$$
 (1)

where $\lambda(s,t)$ = intensity function, Ω = spatial domain; L = time domain, (s_i,t_i) = space-time coordinates of cases, i.

Results

Estimated true infected individuals in space and time. Rabies incidence: dots (cases), red (high), gray (low), and blue (none).

Findings and Future Directions

- Rabies cases clustered within 5km, decaying to 20km
- Captures spatiotemporal dynamics of disease incidence
- Provides a close fit to regional case data.
- Expedient approach for modelling disease spread
- Next steps, explore the effectiveness of different spatial vaccination configurations on disease elimination.