

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

ОТЧЕТ *К ЛАБОРАТОРНОЙ РАБОТЕ НА ТЕМУ*:

Методы решения нелинейных уравнений Вариант 1

Студент	ФН2-51Б		Н.О. Акиньшин	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Студент	ФН2-51Б		А.С. Джагарян	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	

ОГЛАВЛЕНИЕ 2

Оглавление

1.	Контрольные вопросы	3
2.	Результаты	6

1. Контрольные вопросы

1) Можно ли использовать методы бисекции и Ньютона для нахождения кратных корней уравнения f(x) = 0 (т. е. тех, в которых одна или несколько первых производных функций f(x) равны нулю)? Обоснуйте ответ.

Ответ. Рассмотрим метод бисекции. Если корень имеет четную кратность, то метод бисекции окажется неприменим, т.к. $f(x_1)f(x_2) > 0$. То есть на границах локализации значения функции имеют один знак. Однако если корень имеет нечётную кратность, то такое свойство не выполняется, поэтому можно использовать метод бисекции.

Рассмотрим метод Ньютона:

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}.$$

Пусть корень уравнения f(x) = 0 кратности m в точке x_0 , т.е.

$$f'(x_0) = f''(x_0) = \dots = f^{(m-1)}(x_0) = 0$$

Тогда при $x^k \to x_0$

$$x^{k+1} = x_0 - \lim_{x^k \to x_0} \frac{f(x^k)}{f'(x^k)}$$

Рассмотрим отдельно

$$\lim_{x^k \to x_0} \frac{f(x^k)}{f'(x^k)} = \lim_{x^k \to x_0} \frac{f'(x^k)}{f''(x^k)} = \dots = \lim_{x^k \to x_0} \frac{f^{(m-1)}(x^k)}{f^{(m)}(x^k)} = 0$$

Значит если $x^k \approx x_0$, то $x^{(k+1)} \to x_0$ при $k \to \infty$.

2) При каких условиях можно применять метод Ньютона для поиска корней уравнения $f(x) = 0, \ x \in [a,b]$? При каких ограничениях на функцию f(x) метод Ньютона обладает квадратичной скоростью сходимости? В каких случаях можно применять метод Ньютона для решения систем нелинейных уравне- ний?

Ответ. Теорема. Пусть функция F(x) липшиц-непрерывна с постоянной $q \in (0;1)$ на отрезке $[c-\delta;c+\delta]$ т.е. верно $\forall x',x'' \in [c-\delta;c+\delta]\,|F(x')-F(x'')| \leqslant q|x'-x''|$ и верно $|F(c)-c \leqslant (1-q)\delta|$ Тогда уравнение x=F(x) имеет единственное решение x_*

Следствие. Если вместо условия липшиц-непрерывности функции F(x) верно неравенство $|F'(x)| \leq q < 1$ на $[c - \delta; c + \delta]$, то уравнение x = F(x) имеет единственное решение x_* .

Метод Ньютона для решения уравнения можно применять, если метод сходиться. Рассмотрим условия, при которых метод сходиться. Метод Ньютона имеет вид $x^{k+1}=x^k-f(x^k)/f'(x^k)$. F(x)=x-f(x)/f'(x). Тогда $F'(x)=f*f''/(f')^2$. Пусть на отрезке [a,b] выполнено $|f'(x)|\geqslant m>0, |f''(x)|\leqslant M$. Тогда существует ε окрестность корня x_* , что если начально приближение лежит в этой окрестности, то итерационный процесс сходится к корню т.к верна оценка $|F'(x)|=|\frac{ff''}{(f')^2}|\leqslant \frac{|f|}{m^2}M$. Из непрерывности функции f(x) следует, что для любого q найдется окрестность корня, в которой справедливо $|f(x)|\leqslant qm^2/M$. Следовательно $|F'(x)|=q\leqslant 1$ т.е выполнены условия следствия поэтому метод Ньютона сходится при выборе начального приближения из соответствующей окрестности.

Оценим погрешность метода Ньютона. По формуле Тейлора.

$$f(x_*) = f(x^k) + f'(x^k)(x_* - x^k) + \frac{1}{2}f''(\xi)(x^k - x_*)^2 = 0$$

Тогда

$$x^{k+1} = x^k - f(x^k)/f'(x^k) = x^k - \frac{f(x^k) - f(x_*)}{f'(x^k)} = x_* + \frac{1}{2} \frac{f''(\xi)}{f'(x^k)(x^k - x_*)^2}$$

Следовательно верно $|x^{k+1}-x_*| \leqslant \frac{M}{2m}|x^k-x_*|^2$. Таким образом Метод Ньютона имеет квадратичную скорость сходимости, если $f'(x) \neq 0$. В противном случае скорость сходимости снижается до линейной.

Метод Ньютона для решения системы нелинейных уравнений имеет вид $F'(x^k)(x^{k+1}-x^k)+F(x^k)=0$. Таким образом аналогично одномерному случаю нужно чтобы существовала обратная матрица к $F'(x^k)$.

3) Каким образом можно найти начальное приближение?

Ответ. Начальное приближение корня можно найти используя метод вилки для локализации корней. Тогда для каждого корня x_k^* будут найдены границы $[x_k^{(1)},\,x_k^{(2)}]$. И начальное приближение $x_k^{(0)}$ можно выбирать как $x_k^{(0)}=\frac{x_k^{(2)}+x_k^{(1)}}{2}$. Этот способ требует некоторого количества итераций.

Если у уравнения f(x) = 0 имеется 1 корень нечетной кратности на отрезке [a, b], то начальное приближение можно найти за O(1), используя метод хорд:

$$x^{(0)} = \frac{f(a) \cdot b - f(b) \cdot a}{f(a) - f(b)}$$

Данная точка получена путём пересечения прямой, соединяющей точки (a, f(a)) и (b, f(b)).

4) Можно ли использовать метод Ньютона для решения СЛАУ?

Ответ. Метод Ньютона для решения системы нелинейных уравнений имеет вид $F'(x^k)(x^{k+1}-x^k)+F(x^k)=0$. Пусть СЛАУ имеет вид Ax=f. Тогда F(x)=Ax-f. Заметим, что F'(x)=A в силу линейности. Тогда метод Ньютона имеет вид $A(x^{k+1}-x^k)+Ax^k-f$ т.е $Ax^{k+1}=f$ т.е решение СЛАУ на прямую каким либо методом и с помощью метода Ньютона это одно и то же. Следовательно особого смысла использовать метод Ньютона при решении СЛАУ нет.

5) Предложите альтернативный критерий окончания итераций в методе бисекции, в котором учитывалась бы возможность попадания очередного приближения в очень малую окрестность корня уравнения.

Ответ. Новый критерий будет выглядеть следующим образом: $|x^{k+1}-x^k|<\varepsilon$ OR $|f(x^{k+1})|<\varepsilon_0$ OR iters< MAXITER

 Предложите различные варианты модификаций метода Ньютона. Укажите их достоинства и недостатки.

Ответ. Рассмотрим различные модификации метода Ньютона в одномерном случаи. 1) Для вычисления производной функции в точке требуется 2 вычисления значения функции, если функция сложная, то имеет смысл в методе Ньютона выбрать точку и на каждой итерации производную считать в ней. Также данный способ хорош тем, что в процессе метода не получиться выйти за исследуемую область т.к. производная берется на каждой итерации одна и та же 2) Также можно рассмотреть следующую модификацию имеющую 3ей порядок сходимости

$$x^{k+1} = x^k - f(x^k)/f'(x^k) - \frac{f(x^k - f(x^k)f'(x^k)^{-1})}{f'(x^k)}$$

Модификации метода Ньютона в многомерном случаи. Классический метод Ньютона имеет вид $F'(x^k)(x^{k+1}-x^k)+F(x^k)=0$ 1)Аналогично одномерному случаи можно зафиксировать точку в которой считается матрица Якоби.

2) Можно ввести параметр в метод Ньютона т.е рассмотреть алгорит
м $F'(x^k)\frac{(x^{k+1}-x^k)}{\tau_{k+1}}$ + $F(x^k) = 0$ 3) Кроме того в процессе метода Ньютона требуется решать СЛАУ, для решения можно применять различные алгоритмы: Гаусса, QR, методом простой итерации, Якоби, Зейделем, релаксацией.

7) Предложите алгоритм для исключения зацикливания метода Ньютона и выхода за пределы области поиска решения?

Ответ. Заметим, что зацикливание метода Ньютона происходит означает, что алгоритм выдаёт одну и ту же последовательность точек x^k с некоторым периодом. То есть

$$x^{k+T+1} = x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)},$$

где $T \in \mathbb{N}$ – период. Это может происходить только в некоторых точках (не более, чем счетном множестве точек) области определения функции f(x), в силу того, что $\{x^k\}_{k=1}^{\infty}$ – счётно. Для борьбы с зацикливанием в формуле следующего приближения x^{k+1} можно всегда добавлять некоторое малое число ε_0 . Тогда формула преобразуется

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} + \varepsilon_0,$$

Из-за этого добавления алгоритм не перестанет сходиться (может увеличиться число итераций) для тех уравнений, в которых нет зацикливания.

Рассмотрим выход за границу поиска решений.

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} \notin [a, b]$$

Тогда в таких случаях будет задавать x^{k+1} в некоторой малой окрестности границ поиска решений, то есть

1: **if** $x^{k+1} < a$ **then**

2:
$$x^{k+1} = a + \varepsilon_0$$

3: end if

4: **if** $x^{k+1} > b$ **then**

5:
$$x^{k+1} = b - \varepsilon_0$$

6: end if

Тогда итоговый алгоритм имеет вид

1: while $(|x^k - x^{k+1}| > \varepsilon)$ and (iterations < MAXITER) do

2: iterations + +;

4:
$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} + \varepsilon_0$$
5: **if** $x^{k+1} < a$ **then**

6:
$$x^{k+1} = a + \varepsilon_0$$

end if 7:

8: **if**
$$x^{k+1} > b$$
 then

9:
$$x^{k+1} = b - \varepsilon_0$$

end if 10:

11: end while

2. Результаты

Таблица 1. Исследование скорости сходимости методом Ньютона примера из варианта с точной производной

n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \left \frac{x^{k+1} - x^*}{x^k - x^*} \right }{\ln \left \frac{x^k - x^*}{x^{k-1} - x^*} \right }$
1	0.115399	0.0698055	-inf
2	0.0537737	0.0160318	1.50771
3	0.0147672	0.00126461	1.72642
4	0.00125545	9.16016e-06	1.94017
5	9.15967e-06	4.87457e-10	1.99713
6	4.87456e-10	1.22125e-15	1.31052

Таблица 2. Исследование скорости сходимости методом Ньютона примера из варианта с численной производной

n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \left \frac{x^{k+1} - x^*}{x^k - x^*} \right }{\ln \left \frac{x^k - x^*}{x^{k-1} - x^*} \right }$
1	0.115399	0.0698055	-inf
2	0.0537737	0.0160318	1.50771
3	0.0147672	0.00126461	1.72642
4	0.00125545	9.16006e-06	1.94018
5	9.15957e-06	4.86101e-10	1.99769
6	4.86099e-10	1.88738e-15	1.26565

Таблица 3. Исследование скорости сходимости методом секущих примера из варианта

1	/ 1	1 /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \left \frac{x^{k+1} - x^*}{x^k - x^*} \right }{\ln \left \frac{x^k - x^*}{x^{k-1} - x^*} \right }$
1	0.268736	0.116468	-1.63339
2	0.0390087	0.0774592	0.340978
3	0.051838	0.0256212	2.7125
4	0.0182839	0.00733733	1.13026
5	0.00641625	0.000921088	1.65955
6	0.000883577	3.75105e-05	1.54249
7	3.73108e-05	1.99651e-07	1.63571
8	1.99608e-07	4.35018e-11	1.61036
9	4.35011e-11	7.21645e-16	1.30543

Таблица 4. Исследование скорости сходимости методом Ньютона y=(x-0.1)(x-0.22)(x-0.55)(x-0.7)(x-0.75);

(- /(/	(** 0.1)(** 0	/ /
n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \frac{x^{k+1}-x^*}{x^k-x^*} }{\ln \frac{x^k-x^*}{x^{k-1}-x^*} }$
1	0.0522861	0.0477139	-inf
2	0.031341	0.0163729	1.4455
3	0.0135728	0.00280008	1.65108
4	0.00269778	0.000102301	1.87402
5	0.000102157	1.43725 e-07	1.98453
6	1.43725e-07	2.84175e-13	1.99974

Таблица 5. Исследование скорости сходимости методом Ньютона с точной производной y = (x - 0.1)(x - 0.22)(x - 0.55)(x - 0.7)(x - 0.75);

\	/ \	() (/ ·
n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \frac{x^{k+1}-x^*}{x^k-x^*} }{\ln \frac{x^k-x^*}{x^{k-1}-x^*} }$
1	0.0522861	0.0477139	-inf
2	0.031341	0.0163729	1.4455
3	0.0135728	0.00280008	1.65108
4	0.00269778	0.000102301	1.87402
5	0.000102157	1.43725e-07	1.98453
6	1.43725e-07	2.84259e-13	1.99969

Таблица 6. Исследование скорости сходимости методом секущих y=(x-0.1)(x-0.22)(x-0.55)(x-0.7)(x-0.75);

\				
n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \frac{x^{k+1}-x^*}{x^k-x^*} }{\ln \frac{x^k-x^*}{x^{k-1}-x^*} }$	
1	0.00968368	0.0153163	0.353429	
2	0.0115289	0.00378744	2.85174	
3	0.00311513	0.000672311	1.23725	
4	0.000638737	3.35742 e-05	1.73363	
5	3.32657e-05	3.08482 e-07	1.56487	
6	3.08339e-07	1.42472e-10	1.63764	
7	1.42472e-10	6.10623e- 16	1.60934	

Таблица 7. Исследование скорости сходимости методом Ньютона с точной производной $y = \sqrt{x+1} - 1$

n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \left \frac{x^{k+1} - x^*}{x^k - x^*} \right }{\ln \left \frac{x^k - x^*}{x^{k-1} - x^*} \right }$
1	0.20911	0.00910977	-inf
2	0.00908893	2.0842 e-05	1.96834
3	2.08419e-05	1.08599e-10	2.00075
4	1.08599e-10	1.11149e-16	1.13379

Таблица 8. Исследование скорости сходимости методом Ньютона с численной производной $y = \sqrt{x+1} - 1$

n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \left \frac{x^{k+1} - x^*}{x^k - x^*} \right }{\ln \left \frac{x^k - x^*}{x^k} \right }$
1	0.20911	0.00910977	$-\inf$
2	0.00908893	2.0842e-05	1.96834
3	2.08418e-05	1.08551e-10	2.00082
4	1.08552e-10	1.17853e-16	1.1289

Таблица 9. Исследование скорости сходимости методом секущих $y = \sqrt{x+1} - 1$

n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \left \frac{x^{k+1} - x^*}{x^k - x^*} \right }{\ln \left \frac{x^k - x^*}{x^{k-1} - x^*} \right }$
1	3.95049	1.54951	-0.743107
2	2.47413	0.924621	0.407567
3	1.35751	0.432888	1.46986
4	0.289951	0.142937	1.4601
5	0.156549	0.0136115	2.12214
6	0.0140833	0.000471769	1.42981
7	0.000470158	1.61068e-06	1.68933
8	1.61087e-06	1.89945e-10	1.59255
9	1.89945e-10	1.58551e-16	1.54732

Таблица 10. Исследование скорости сходимости методом Ньютона с численной производной $y=35x^3-67x^2-3x+3$

J	,	0x + 0		
	n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \left \frac{x^{k+1} - x^*}{x^k - x^*} \right }{\ln \left \frac{x^k - x^*}{x^{k-1} - x^*} \right }$
	1	0.134528	0.0345277	-inf
	2	0.0327142	0.00181346	2.77083
	3	0.0018076	5.85487e-06	1.9466
ĺ	4	5.8548e-06	6.15891e-11	1.99841

Таблица 11. Исследование скорости сходимости методом Ньютона с точной производной $y = 35x^3 - 67x^2 - 3x + 3$

\boldsymbol{x}	x = 3x + 3			
	n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \frac{x^{k+1}-x^*}{x^k-x^*} }{\ln \frac{x^k-x^*}{x^{k-1}-x^*} }$
	1	0.134528	0.0345277	-inf
	2	0.0327142	0.00181346	2.77083
	3	0.0018076	5.85487e-06	1.9466
	4	5.85481e-06	6.1594e-11	1.99839

9

Таблица 12. Исследование скорости сходимости методом секущих $y = 35x^3 - 67x^2 - 3x + 3 =$

n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \left \frac{x^{k+1} - x^*}{x^k - x^*} \right }{\ln \left \frac{x^k - x^*}{x^{k-1} - x^*} \right }$
1	0.391892	0.0918919	-2.91806
2	0.0592447	0.0326472	0.874645
3	0.0404213	0.00777412	1.38663
4	0.00826115	0.000487032	1.93053
5	0.000480353	6.67876e-06	1.54839
6	6.68461e-06	5.85221e-09	1.64123
7	5.85228e-09	7.02494e-14	1.60944

Таблица 13. Исследование скорости сходимости методом Ньютона с точной производной $y=x^2$

. 1100	ледование ско	рости слодимо	Сти методом тъютона с точной производ $\frac{k+1}{k}$
n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \left \frac{x^{k+1} - x^*}{x^k - x^*} \right }{\ln \left \frac{x^k - x^*}{x^{k-1} - x^*} \right }$
1	0.25	0.25	-inf
2	0.125	0.125	1
3	0.0625	0.0625	1
4	0.03125	0.03125	1
5	0.015625	0.015625	1
6	0.0078125	0.0078125	1
7	0.00390625	0.00390625	1
8	0.00195312	0.00195312	1
9	0.000976562	0.000976562	1
10	0.000488281	0.000488281	1
11	0.000244141	0.000244141	1
12	0.00012207	0.00012207	1
13	6.10352e-05	6.10352e-05	1
14	3.05176e-05	3.05176e-05	1
15	1.52588e-05	1.52588e-05	1
16	7.62939e-06	7.62939e-06	1
17	3.8147e-06	3.8147e-06	1
18	1.90735e-06	1.90735e-06	1
19	9.53674e-07	9.53674e-07	1
20	4.76837e-07	4.76837e-07	1

2. Результаты 10

Таблица 14. Исследование скорости сходимости методом Ньютона с численной производной $y=x^2$

n	$ x^{k+1} - x^k $	$ x_k - x* $	Скорость сходимости $p \geqslant \frac{\ln \frac{x^{k+1} - x^*}{x^k - x^*} }{\ln \frac{x^{k-1} - x^*}{x^{k-1} - x^*} }$
1	0.25	0.25	-inf
2	0.125	0.125	1
3	0.0625	0.0625	1
4	0.03125	0.03125	1
5	0.015625	0.015625	1
6	0.0078125	0.0078125	1
7	0.00390625	0.00390625	1
8	0.00195313	0.00195313	1
9	0.000976563	0.000976563	1
10	0.000488281	0.000488281	1
11	0.000244141	0.000244141	1
12	0.00012207	0.00012207	1
13	6.10352e-05	6.10352e-05	1
14	3.05176e-05	3.05176e-05	1
15	1.52588e-05	1.52588e-05	1
16	7.62939e-06	7.62939e-06	1
17	3.8147e-06	3.8147e-06	1
18	1.90735e-06	1.90735e-06	1
19	9.53674e-07	9.53674e-07	1
20	4.76837e-07	4.76837e-07	1