Расчетная работа №1. Реализация передаточной функции

1. Задание. Вариант 10.

$$W(s) = \frac{k(1-as)}{(1+b_1s)(1+b_2s)}$$

$$x(t) = const = 3 \qquad k{=}3 \qquad a{=}2 \qquad b_1{=}0.8 \qquad b_2{=}4$$

2. Применим метод введения дополнительной переменной:

$$W(s) = \frac{k(1-as)}{(1+b_1s)(1+b_2s)} = \frac{y(s)}{x(s)} = \frac{P(s)}{Q(s)}$$

 $W(s) = W_1(s) * W_2(s)$ - при последовательном включении.

В решаемом случае
$$W_1(s) = \frac{1}{Q(s)}, W_2(s) = P(s)$$

$$W_1(s) = \frac{1}{Q(s)} = \frac{u(s)}{x(s)},$$

$$W_2(s) = P(s) = \frac{y(s)}{u(s)}$$

$$\begin{cases} \bar{x}(s) = (1+b_1s)(1+b_2s)\bar{U}(s) \\ \bar{y}(s) = k(1-as)\bar{U}(s) \end{cases}$$

Раскрыв скобки и приведя подобные, получим:

$$\begin{cases} \bar{x}(s) = (1 + b_1 s + b_2 s + b_1 b_2 s) \bar{U}(s) \\ \bar{y}(s) = (k - kas) \bar{U}(s) \end{cases}$$

$$\begin{cases} \bar{x}(s) = (1 + 4.8s + 3.2s^2)\bar{U}(s) \\ \bar{y}(s) = (3 - 6s)\bar{U}(s) \end{cases}$$

Перейдём в вещественную форму:

$$\bar{x}(s) \longrightarrow x(t)$$

$$\bar{y}(s) \longrightarrow y(t)$$
 $S^n \longrightarrow \frac{d^n}{dt^n}$ $\bar{U}(s) \longrightarrow U(t)$

$$\begin{cases} \bar{x}(t) = U(t) + 4.8U'(t) + 3.2U''(t) \\ \bar{y}(t) = 3U(t) - 6U'(t) \end{cases}$$

Выразим из уравнения с x(t) старшую производную:

$$U''(t) = \frac{\bar{x}(t) - U(t) - 4.8U'(t)}{3.2}$$

Подставим x(t) = const=3

$$U''(t) = \frac{3 - U(t) - 4.8U'(t)}{3.2}$$

Чтобы применить метод Эйлера, приведем систему к канонической форме. Обозначим:

$$z_1 = U(t)$$

$$z_2 = U'(t) = z'_1(t)$$

Переписав всё в соответствии с произведенной заменой, получим систему уравнений:

$$z_1' = z_2$$

$$z_2' = \frac{3 - z_1 - 4.8z_2}{3.2}$$

Далее решаем систему явным методом Эйлера (при нулевых начальных условиях), начальные условия: $z_{1,0}=0;\,z_{2,0}=0.$

$$z_{1,n+1} = z_{1,n} + hz_{2,n}$$
$$z_{2,n+1} = z_{2,n} + h\frac{3 - z_1 - 4.8z_2}{3.2}$$

И далее, на каждом шаге, подставив полученные значения, рассчитываем

$$y = 3z_{1.n} - 6z_{2.n}$$

3. Блок-схема для решения методом Эйлера

4. Полученные результаты - таблица значений $\mathbf{Y}(\mathbf{t})$

	t	У		t	у		t	У
0	0.01	0.00000	35	0.36	5.35527	70	0.71	8.97261
1	0.02	0.00000	36	0.37	5.67375	71	0.72	8.97735
2	0.03	-0.05622	37	0.38	5.97288	72	0.73	8.98140
3	0.04	-0.16647	38	0.39	6.25278	73	0.74	8.98470
4	0.05	-0.32517	39	0.40	6.51369	74	0.75	8.98752
5	0.06	-0.52380	40	0.41	6.75606	75	0.76	8.98977
6	0.07	-0.75141	41	0.42	6.98040	76	0.77	8.99172
7	0.08	-0.99513	42	0.43	7.18740	77	0.78	8.99331
8	0.09	-1.24104	43	0.44	7.37769	78	0.79	8.99457
9	0.10	-1.47513	44	0.45	7.55211	79	0.80	8.99562
10	0.11	-1.68381	45	0.46	7.71138	80	0.81	8.99643
11	0.12	-1.85490	46	0.47	7.85634	81	0.82	8.99715
12	0.13	-1.97814	47	0.48	7.98789	82	0.83	8.99772
13	0.14	-2.04567	48	0.49	8.10684	83	0.84	8.99823
14	0.15	-2.05212	49	0.50	8.21400	84	0.85	8.99859
15	0.16	-1.99491	50	0.51	8.31030	85	0.86	8.99892
16	0.17	-1.87392	51	0.52	8.39652	86	0.87	8.99913
17	0.18	-1.69143	52	0.53	8.47350	87	0.88	8.99931
18	0.19	-1.45164	53	0.54	8.54193	88	0.89	8.99946
19	0.20	-1.16031	54	0.55	8.60262	89	0.90	8.99961
20	0.21	-0.82410	55	0.56	8.65626	90	0.91	8.99967
21	0.22	-0.45036	56	0.57	8.70357	91	0.92	8.99979
22	0.23	-0.04674	57	0.58	8.74509	92	0.93	8.99982
23	0.24	0.37935	58	0.59	8.78142	93	0.94	8.99985
24	0.25	0.82080	59	0.60	8.81310	94	0.95	8.99994
25	0.26	1.27128	60	0.61	8.84064	95	0.96	8.99988
26	0.27	1.72494	61	0.62	8.86449	96	0.97	8.99997
27	0.28	2.17683	62	0.63	8.88516	97	0.98	8.99997
28	0.29	2.62266	63	0.64	8.90298	98	0.99	8.99997
29	0.30	3.05892	64	0.65	8.91828	99	1.00	8.99997
30	0.31	3.48285	65	0.66	8.93139	100	1.01	8.99997
31	0.32	3.89214	66	0.67	8.94255	101	1.02	8.99997
32	0.33	4.28511	67	0.68	8.95200			
33	0.34	4.66050	68	0.69	8.96007			
34	0.35	5.01741	69	0.70	8.96688			

5. График Y(t)

Рис. 1: График Y(t)

6. Проверка значения по пределу

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} s * y(s)$$

$$w(s) = \frac{\bar{y}(s)}{\bar{x}(s)} \longrightarrow y(s) = x(s) * W(s)$$

$$x(t) = const = c \longrightarrow L\{x(t)\} = L\{c\} = \frac{c}{s} \longrightarrow x(s) = \frac{c}{s} \longrightarrow y(s) = \frac{c}{s} * W(s)$$

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} s * y(s) = \lim_{s \to 0} s * \frac{c}{s} * W(s) = \lim_{s \to 0} c * W(s) = c * \lim_{s \to 0} W(s)$$

$$c * \lim_{s \to 0} W(s) = c * \lim_{s \to 0} \frac{k(1 - as)}{(1 + b_1 s)(1 + b_2 s)} = c * k$$

7. Вывод о том, на каких значениях заканчивается переходный период для выходных значений

При реализации передаточной функции было установлено, что переходный период для выходных значениях заканчивается при t=0.97 - 1.0.

8. Код программы

```
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd
5 def calc():
      a = 2
6
7
      b_1 = 0.8
8
      b 2 = 4
      k = 3
9
      x = 3
10
      z 1 = [0]
11
     z 2 = [0]
12
      s = 0.01
13
      h = s
14
      t = [h]
15
      y = [0]
16
17
      for i in range(1, 101):
18
           z_1.append(round(z_1[i-1] + h * z_2[i-1], 5))
19
           z_2.append(round(z_2[i-1] + h * ((x - z_1[i-1] - (b_1 + b_2))))
20
              ) * z 2[i-1]) / (b 1 * b 2)), 5))
21
           y.append(round((k * z_1[i-1]) - ((k * a) * z_2[i-1]), 5))
22
           h += s
23
           t.append(round(h, 5))
24
25
      data = \{ 't' : t, 'y' : y \}
26
      df = pd.DataFrame(data)
27
28
       print(df.to string())
29
30
      t values = df['t'].tolist()
31
      y_values = df['y'].tolist()
32
```

```
33
       plt.plot(t_values, y_values, color='red', marker='o',
34
          markeredgecolor='blue')
35
       plt.xlabel('t')
36
       plt.ylabel('y')
37
       plt.title('y(t)')
38
39
       plt.show()
40
41
42 calc()
```