Домашняя работа 1 BPIC BPIC Авторы: Карибджанов Матвей 2023

# Содержание

| 1 | Ведение                                                                                                                                                                           | : |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | Поиск элементов         2.1       Повороты на $0 \land \frac{\pi}{3} \land \frac{2\pi}{3}$ 2.2       Повороты на $\pi$ 2.3       Отражения         2.4       Дополнение до группы |   |
| 3 | Таблица Келли                                                                                                                                                                     | ţ |
| 4 | Поиск представлений                                                                                                                                                               | ( |
|   | 4.1 Классы сопряженности                                                                                                                                                          | ( |
|   | 4.2 Анализ результатов классов смежности                                                                                                                                          | ( |
|   | 4.3 Двумерное представлене и таблица харектеров                                                                                                                                   | , |
| 5 | Преобразование функций                                                                                                                                                            | 8 |
|   | 5.1       Одномерные пердставления         5.2       Трехмерные передставления                                                                                                    | 8 |
|   | 5.2 Трехмерные передставления                                                                                                                                                     | 8 |
|   | 5.3 Двумерное предствление                                                                                                                                                        | 9 |

## 1. Ведение

Рассмтрим гуппу симметрий тетраидера  $T_d$ . Легко понять что количество элентов этой группы это  $3\dot{4}\dot{2}$  = 24. 3 это количество повротов вокруг вершины, 4 так как все 4 вершины эквиваленты умножаю на 2 так как уичитывам так же отражения.

Ведение

## 2. Поиск элементов

**2.1.** Повороты на 
$$0 \wedge \frac{\pi}{3} \wedge \frac{2\pi}{3}$$

Сначала найдем чевидные элемнты группы это повороты на  $0 \wedge \frac{\pi}{3} \wedge \frac{2\pi}{3}$  вогруг осей проходящих через высоту падающай из произвольной вершины. Таик такую группу повротов мы уже знаем это  $C_3^n$  приэтом заметим что для любой вершины еденичные элемнты будут совпадть поэтому всего повротов будет 4\*3=8. Еслри пронумеровать вершины то можем обозначить элемнты ледующим обзазам

$$C_3^{n\ v},\ n\in[1,2],\ v\in[0,1,3,4]$$
 (2.1)



Рис. 1. Действие элемента  $C_3^{1\ 0}$ 

#### 2.2. Повороты на $\pi$

Такжем можем легко заметить что есть повороты на  $\pi$  вокруг оси соединяющей середины противоположных ребер. Тоесть для всего таких элементов 6/2 = 3, делю на 2 тк для ребрер  $e_1e_2$  и  $e_2e_1$  один и тот же. Обозначим их так:

$$C_2^{e_1 e_2} = C_2^{e_2 e_1} = C_2^{e_1}, \ e_1, e_2 \in (01, 02, 03, 12, 13, 23)$$
 (2.2)



Рис. 2. Действие элемента  $C_2^{01}$ 

## 2.3. Отражения

И самое последнее, что можно легко зметить это отражения относительно плоскости оразуемой ребром и серединой протипротоволежащего ребра. Таким образом всего элементов будет 6 - количество ребер. Введем следующее обозначения:

$$\sigma^{e_1}, e_1 \in (01, 02, 03, 12, 13, 23)$$
 (2.3)

Поиск элементов



Рис. 3. Действие элемента  $\sigma^{01}$ 

## 2.4. Дополнение до группы

Как можно заметить пака что элементов меньше чем требуется, поэтому пред оставлю машине посчитаь за меня оставшиеся элементы. Но перед этим я зметил что группу сииметрий тетраидера и вроде как любой фигуры (для тетраидера и 3Д фигур точно работает), можно задать изоморфизм на подгуппу кос (без учета нахлеста) с количеством нитей равным количеству вершин фигуры. Тоесть можем перписать наши эленты следующи образом:

$$e \rightarrow 0123$$
 (2.4)

$$C_3^{1\ 0} \rightarrow 0231$$
 (2.5)  
 $C_2^{01} \rightarrow 1032$  (2.6)  
 $\sigma^{01} \rightarrow 0132$  (2.7)

$$C_2^{01} \rightarrow 1032$$
 (2.6)

$$\sigma^{01} \rightarrow 0132 \tag{2.7}$$

Думаю изорфизм остальных элементов очевиден. Следствем такого изоморфизма является тот факт, что моя группа э то Гуппа престановок 4 элемнтов  $(S_4)$  Тут же заметим простой факт элементы из  $C_3$  это циклическая перстановка 3 элементов,  $C_2$  - перстановка элентов внутри 2х пар,  $\sigma$  перестановка элемнтов внутри одной пары. Можно леко дополнить группу протой найдя оставшиеся перстаовки, но я написал код так, что омотри код.

В итоге получу полную группу  $T_d$  = (0123, 1032, 2301, 3210, 0231, 0312, 2130, 3102, 1320, 3021, 1203, 2013, 0132,  $0321,\ 0213,\ 3120,\ 2103,\ 1023,\ 1230,\ 1302,\ 2031,\ 3012,\ 2310,\ 3201)$ 

4

## 3. Таблица Келли

А таблица Келли для сответствующего порядка элементов группы

| 0  | 1               | 2               | 3               | 4               | 5                    | 6               | 7               | 8               | 9               | 10 | 11              | 12 | 13            | 14     | 15            | 16     | 17     | 18     | 19 | 20            | 21 | 22            | 23 |
|----|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|-----------------|-----------------|----|-----------------|----|---------------|--------|---------------|--------|--------|--------|----|---------------|----|---------------|----|
| 1  | 0               | 3               | 2               | 8               | 10                   | 9               | 11              | 4               | 6               | 5  | 7               | 17 | 18            | 19     | 20            | 21     | 12     | 13     | 14 | 15            | 16 | 23            | 22 |
| 2  | 3               | 0               | 1               | 11              | 6                    | 5               | 8               | 7               | 10              | 9  | 4               | 22 | 16            | 20     | 19            | 13     | 23     | 21     | 15 | 14            | 18 | 12            | 17 |
| 3  | 2               | 1               | 0               | 7               | 9                    | 10              | 4               | 11              | 5               | 6  | 8               | 23 | 21            | 15     | 14            | 18     | 22     | 16     | 20 | 19            | 13 | 17            | 12 |
| 4  | 11              | 7               | 8               | 5               | 0                    | 3               | 10              | 6               | 1               | 2  | 9               | 14 | 12            | 13     | 18            | 23     | 20     | 22     | 16 | 21            | 17 | 15            | 19 |
| 5  | 9               | 10              | 6               | 0               | 4                    | 8               | 2               | 3               | 11              | 7  | 1               | 13 | 14            | 12     | 22            | 19     | 21     | 15     | 23 | 17            | 20 | 18            | 16 |
| 6  | 10              | 9               | 5               | 2               | 11                   | 7               | 0               | 1               | 4               | 8  | 3               | 16 | 20            | 22     | 12            | 15     | 18     | 19     | 17 | 23            | 14 | 21            | 13 |
| 7  | 8               | 4               | 11              | 9               | 3                    | 0               | 6               | 10              | 2               | 1  | 5               | 15 | 23            | 21     | 16            | 12     | 19     | 17     | 18 | 13            | 22 | 14            | 20 |
| 8  | 7               | 11              | 4               | 10              | 1                    | 2               | 5               | 9               | 0               | 3  | 6               | 19 | 17            | 18     | 13            | 22     | 15     | 23     | 21 | 16            | 12 | 20            | 14 |
| 9  | 5               | 6               | 10              | 3               | 7                    | 11              | 1               | 0               | 8               | 4  | 2               | 21 | 15            | 23     | 17            | 20     | 13     | 14     | 12 | 22            | 19 | 16            | 18 |
| 10 | 6               | 5               | 9               | 1               | 8                    | 4               | 3               | 2               | 7               | 11 | 0               | 18 | 19            | 17     | 23            | 14     | 16     | 20     | 22 | 12            | 15 | 13            | 21 |
| 11 | 4               | 8               | 7               | 6               | $\overset{\circ}{2}$ | 1               | 9               | 5               | 3               | 0  | 10              | 20 | 22            | 16     | 21            | 17     | 14     | 12     | 13 | 18            | 23 | 19            | 15 |
| 12 | 17              | 23              | 22              | 13              | $\overline{14}$      | 15              | 16              | 18              | 20              | 19 | 21              | 0  | 4             | 5      | 6             | 7      | 1      | 8      | 10 | 9             | 11 | 3             | 2  |
| 13 | 21              | 16              | 18              | 14              | 12                   | 22              | 19              | 15              | $\frac{17}{17}$ | 23 | 20              | 5  | 0             | 4      | 8             | 2      | 9      | 3      | 7  | 11            | 1  | 6             | 10 |
| 14 | 20              | 19              | 15              | 12              | 13                   | 18              | 23              | 22              | 21              | 16 | 17              | 4  | 5             | 0      | 3             | 10     | 11     | 6      | 2  | 1             | 9  | 8             | 7  |
| 15 | 19              | 20              | 14              | 23              | 21                   | 16              | $\frac{20}{12}$ | 17              | 13              | 18 | 22              | 7  | 9             | 3      | 0             | 6      | 8      | 10     | 1  | 2             | 5  | 11            | 4  |
| 16 | 18              | 13              | 21              | 20              | $\frac{21}{22}$      | 12              | 15              | 19              | 23              | 17 | 14              | 6  | $\frac{3}{2}$ | 11     | 7             | 0      | 10     | 1      | 8  | $\frac{2}{4}$ | 3  | 5             | 9  |
| 17 | 12              | 22              | 23              | 18              | 19                   | 20              | 21              | 13              | $\frac{25}{15}$ | 14 | 16              | 1  | 8             | 10     | 9             | 11     | 0      | 4      | 5  | 6             | 7  | $\frac{3}{2}$ | 3  |
| 18 | 16              | $\frac{22}{21}$ | $\frac{23}{13}$ | 19              | 17                   | $\frac{20}{23}$ | $\frac{21}{14}$ | 20              | $\frac{13}{12}$ | 22 | 15              | 10 | 1             | 8      | $\frac{3}{4}$ | 3      | 6      | 2      | 11 | 7             | 0  | 9             | 5  |
| 19 | $\frac{10}{15}$ | 14              | 20              | $\frac{19}{17}$ | 18                   | 23<br>13        | 22              | 23              | 16              | 21 | $\frac{13}{12}$ | 8  | 10            | 1      | 2             | 5<br>5 | 7      | 9      | 3  | 0             | 6  | 4             | 11 |
| 20 | 14              | $\frac{14}{15}$ | 19              | 22              | 16                   | 21              | $\frac{22}{17}$ | $\frac{23}{12}$ |                 | 13 | 23              | 11 | 6             | 2      | ∠<br>1        | 9      | •      | 9<br>5 | 0  | 3             | 10 | 7             | 8  |
|    |                 | -               | -               |                 | _                    |                 |                 |                 | 18              | _  | _               |    | -             | 2<br>7 | _             | -      | 4      | -      |    | _             | _  | •             | _  |
| 21 | 13              | 18              | 16              | 15              | 23                   | 17              | 20              | 14              | 22              | 12 | 19              | 9  | 3             | •      | 11            | 1      | 5      | 0      | 4  | 8             | 2  | 10            | 6  |
| 22 | 23              | 17              | 12              | 16              | 20                   | 19              | 13              | 21              | 14              | 15 | 18              | 2  | 11            | 6      | 5             | 8      | 3      | 7      | 9  | 10            | 4  | 1             | 0  |
| 23 | 22              | 12              | 17              | 21              | 15                   | 14              | 18              | 16              | 19              | 20 | 13              | 3  | 7             | 9      | 10            | 4      | $^{2}$ | 11     | 6  | 5             | 8  | 0             | 1  |

Таблица Келли

## 4. Поиск представлений

## 4.1. Классы сопряженности

С помощью простого перебора программой я получил следующий классы:

$$0123$$
  $(4.1)$ 

$$2301, 3210, 1032$$
 (4.2)

$$1203, 2130, 0231, 3102, 1320, 3021, 2013, 0312$$
 (4.3)

$$0132, 1023, 0321, 0213, 2103, 3120$$
 (4.4)

$$1230, 3201, 2031, 1302, 3012, 2310$$
 (4.5)

## 4.2. Анализ результатов классов смежности

Сначала перепишем классы в дркгом виде для простоты объяснения:

$$e$$
 (4.6)

$$eC_2^{01}, C_2^{03}, C_2^{02}$$
 (4.7)

$$C_3^{21}, C_3^{10}, C_3^{13}, C_3^{20}, C_3^{12}, C_3^{11}, C_3^{22}, C_3^{23}$$
 (4.8)

$$s^{13}, s^{01}, s^{12}, s^{23}, s^{03}, s^{02}$$
 (4.9)

$$eC_2^{01}, C_2^{03}, C_2^{02}$$

$$eC_2^{01}, C_2^{03}, C_2^{02}$$

$$(4.7)$$

$$C_3^{21}, C_3^{10}, C_3^{13}, C_3^{20}, C_3^{12}, C_3^{11}, C_3^{22}, C_3^{23}$$

$$s^{13}, s^{01}, s^{12}, s^{23}, s^{03}, s^{02}$$

$$(4.8)$$

$$C_2^{02} * s^{23}, C_2^{02} * s^{01}, C_2^{01} * s^{12}, C_2^{01} * s^{03}, C_2^{01} * s^{02}, C_2^{01} * s^{13}$$

$$(4.10)$$

Как мы видим из не привиалных классов у нас есть 2 Нормальные подгрууппы поворотов на  $\pi$  и  $\frac{2\pi}{3}$  соттветственно. Так же есть подгуппа отражений и произведение отражений и повротов на  $\pi$ .

Как мы знаем всегда есть одно тривиаольное одномерное преодставление. Но есть одно знако переменно порожденной не однозначностью выбора опредлителя при поворотах, я могу с уверенность сказсть это так как группа повротов тераидера являтся подгуппой симмтрий шара тоесть группы SO(3):

|       | e | $C_2$ | $C_3$ | $\sigma$ | $\sigma * C_2$ |
|-------|---|-------|-------|----------|----------------|
| $A_1$ | 1 | 1     | 1     | 1        | 1              |
| $A_2$ | 1 | 1     | 1     | -1       | -1             |

Дальше пользуясь соотношением

$$C = \sum_{i} s_i^2 = 1 + 1 + s_3^2 + s_4^2 + s_5^2$$
(4.11)

Можем нати что оставшиеся 3 предсталения имеют следующие размерности  $s_3 = s_4 = 3, \ s_5 = 2$ . Можно было и рантше воспользоваться этим соотношениеим и порлучить, что всего есть 2 одномерных представления.

#### 3-х Мерные представления

Трех мреные мы всегда хорошо занаем так как у нас группа симмтрий тетраидера составленная из повротов и отражений, то матричные представления это повроты вокруг некотрых осей матри поврота всегда можно передставить в виде:

$$\begin{pmatrix}
\cos \varphi & \sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & \pm 1
\end{pmatrix}$$
(4.12)

Как и в пршлый раз два предсталения это следствие не однозначности выбора определителя.

Получим характеры  $\pm 1 + 2\cos\varphi$ 

|                  | e | $C_2$ | $C_3$ | $\sigma$ | $\sigma * C_2$ |
|------------------|---|-------|-------|----------|----------------|
| $A_1$            | 1 | 1     | 1     | 1        | 1              |
| $\overline{A_2}$ | 1 | 1     | 1     | -1       | -1             |
| $T_1$            | 3 | -1    | 0     | -1       | 1              |
| $T_2$            | 3 | -1    | 0     | 1        | -1             |

Для первых двух классов расчет одинкаов там +1:

$$e: 1 + 2\cos\varphi \mid_{\varphi=0} = 1 + 2 = 3$$
 (4.13)

$$C_2: 1 + 2\cos\varphi \mid_{\varphi=\pi} = 1 - 2 = -1$$
 (4.14)

$$C_3: 1+2\cos\varphi \bigg|_{\varphi=\frac{2\pi}{3}} = 1-2\cdot\frac{1}{2} = 0$$
 (4.15)

Для последнийх двух столбцов отличие в знаке перед единицей, как в одномерных представленийх собственно это они и есть толко записанные как блок трех мерной матрици.

$$\sigma: \pm 1 \mp 2\cos\varphi \mid_{\varphi=0} = \pm 1 \mp 2 = \mp 1$$
 
$$\sigma * C_2: \mp 1 \pm \cos\varphi \mid_{\varphi=0} = \pm 1$$

## 4.3. Двумерное представлене и таблица харектеров

Последнюю строку для двумерного представления найдем из соотношения ортгональности.

$$\begin{pmatrix} 1 & 1 & 3 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \\ x \end{pmatrix} = 1 + 1 - 3 - 3 + 2x = 0 \implies x = 2$$
 (4.16)

$$\begin{pmatrix} 1 & 1 & 0 & 0 & x \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \\ 2 \end{pmatrix} = 1 + 1 + 2x = 0 \implies x = -1$$
 (4.17)

и так далее. В итоге получим:

|                | e | $C_2$ | $C_3$ | $\sigma$ | $\sigma * C_2$ |
|----------------|---|-------|-------|----------|----------------|
| $A_1$          | 1 | 1     | 1     | 1        | 1              |
| $A_2$          | 1 | 1     | 1     | -1       | -1             |
| $T_1$          | 3 | -1    | 0     | -1       | 1              |
| $T_2$          | 3 | -1    | 0     | 1        | -1             |
| $\overline{E}$ | 2 | 2     | -1    | 0        | 0              |

## 5. Преобразование функций

#### 5.1. Одномерные пердставления

Здесь мне повезло тетраидер очень хорошая фигура и если выбирать любой базис то в нем все оси равновыделенны, это мы знаем еще с аналитической механики, когда расчитывали моенты инерции тетраидера, поэтому не побоюсь этим воспользоваться.

Для начала очевидное представление  $A_1$  так как оно единичное то а повороты происходят в различых осях то сответственно только  $x^2 + y^2 + z^2$ .

## 5.2. Трехмерные передставления

Явно я знаю только одно представление, это 4-мерное, при этом оно приводимо. Выглядят преобразования следующим образом:

$$D(1032) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in C_2, \ D(1203) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in C_3, \ D(0132) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in \sigma$$

$$(5.1)$$

Можно по анологии построить остальные матрицы представления. Такие матрицы дейтвуют на пространстве функций:

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ f \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ f \end{pmatrix}$$
 (5.2)

Найдем такую матрицу что будет преобразовывть мои D(g) в:

$$S^{-1}D(g)S = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}; B = 3 \times 3, A = 1 \times 1, C = 1 \times 3$$
 (5.3)

Тут позволю себе отойти от темы. Я говрил вам на паре что матрица иваритного подпространства не всегда должна иметь C = 0. Явно это можно увидеть из следующих сображений.

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} Ax_1 + Bx_2 \\ Bx_2 \end{pmatrix}$$
 (5.4)

То есть  $x_2$  ивариантное подпространство. Я счтаю то это тот самы случай когда это важно, потому что если бы я искал C=0 то боюсь что не нашел бы такого пердставления.

Возварыюсь к теме, иными словами я должен сотавит из функций (a,b,c,f) 4 линейных комбинации котрые будут удовлетворять:

- 1. З из них переходят сами в себя при действии любого элента группы
- 2. 4 должны сотвлять полный базис в протранстве 4-х элментов
- 3. З из первого пункта при перестановке двух элементов любых элементов и циклической должны выржать ся друг через друга так что-бы при не возникало линеных компбинвций этих любых двух функций.
  - 1 требование ивариантности трех мерного пространства.
  - 2 требование не вырожденности преобразований.
- 3 требование позволит обозначить эти три линейные комбинации за x,y,z и тогда при перобразованих будет происходить например следующее  $B(x,y,z) = (\alpha z, \beta x, \gamma z)$ . Кароче говря мы найдем самый трех мерный базис функций. Но может возникнуть вопрос почему я говорю только о одной циклической перестановке и престановке двух элементов, на самом деле этих двух действий достаточно чтобы потсроить любое другое действие группы.

Матрицу S я угадал но надо сказть что она более менее тривильна:

$$S = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
 (5.5)

То-есть функции ы новом базисе

$$\begin{pmatrix} a-b-c+f\\ a+b-c-f\\ a-b+c-f\\ a \end{pmatrix}; \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} a-b-c+f\\ a+b-c-f\\ a-b+c-f \end{pmatrix}$$
 (5.6)

Проверка 2-огг условия происходят явно,  $det(S) \neq 0$ . Проверку 3 условия я не знаю как делать в общем случае, но ее можно сделать явно по перемножать матрици:

$$S^{-1}D(1032)S = \frac{1}{2} \begin{pmatrix} 2 & 2 & -2 & -2\\ 0 & 4 & -2 & -2\\ 0 & 3 & -3 & -1\\ 0 & 3 & -1 & -3 \end{pmatrix}$$
 (5.7)

$$S^{-1}D(1203)S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
 (5.8)

$$S^{-1}D(0132)S = \frac{1}{2} \begin{pmatrix} 2 & -2 & 2 & -2\\ 0 & -1 & 3 & -3\\ 0 & -2 & 4 & -2\\ 0 & -3 & 3 & -1 \end{pmatrix}$$
 (5.9)

С остальными аналогично. Для 3 тоже мож но проверит явно D(1032)(a-b-c+f) = -(a-b+c-f) или D(0132)(a-b+c-f) = (a-b-c+f) или D(1203)(a-b+c-f) = (a+b-c-f) и так далее.

Дальше так же протсо можно понять, что трех мерное представление  $T_2$  в трех мерном пространстве будет преобразовывать (x,y,z) или для квадратичных функций (xy,xz,yz). Возможен вопрос почему не  $T_1$  рассмтрим  $\sigma$ , обычно отражение преводит  $z \to -z$  поэтому рассмтрев обратный элемент  $T_2^{-1}(\sigma)z \to -z$ .

#### 5.3. Двумерное предствление

Пля двумерного представления все сложнее. Надо выбрать какойто ортогональный базис но прижтом сохранить равновыделенност каждой оси. Понятно что для линейных функций такого базиса не сыщешь, а вот для квдратичных функций можно. Еще надо заметить две вещи, первая я немного соврал когда говорил что все оси равно выделенны на самомделе это немного не так, если мы можем повренуть тетраидер и так что одна грань будет лежать например в (Ox,Oy) и тогда у нас x,y будет выделенной плоскостью. Второе, что мне нужно подметить так это, очевидно что вумерное представлени берется из факторизации трехмерного на два одмнорных и однодвумерное. Поэтому надо выбрать такой базис котрый будет ортогонален  $x^2 + y^2 + z^2$ . И такой я знаю например

$$(x^2 - y^2, z^2 - \frac{1}{2}(x^2 + y^2))$$