User's Guide

DIESEL-MR-CI

by

Michael Hanrath and Bernd Engels

 $\begin{array}{c} \mathbf{V} \ \mathbf{1.11} \\ \text{for DIESEL-MR-CI V 1.11} \end{array}$

April 2000

User's Guide written by Michael Hanrath

> Wegeler Straße 12 53115 Bonn Germany

CONTENTS i

Contents

Li	\mathbf{st} of	tables		iii
Li	st of	figures	S	iii
Li	st of	listing	S	iii
1	The		am package	1
	1.1		am parts	1
	1.2		low	1
	1.3		nput	3
		1.3.1	Philosophy	3
	- 4	1.3.2	Structure of input description	4
	1.4		of verbosity	5
	1.5		ory Structure	5
		1.5.1	Some thoughts concerning organization	5
		1.5.2	The diesel directory structure	5
2	Mai	n Prog	grams	8
	2.1	Comm	on Input Keywords	8
	2.2	Driver		8
		2.2.1	Invocation	8
		2.2.2	Command Line Arguments	8
		2.2.3	Files	9
		2.2.4	User Input and Keywords	9
		2.2.5	Input Example	10
	2.3	Refere	nce Selection	11
		2.3.1	Invocation	11
		2.3.2	Command Line Arguments	11
		2.3.3	Files	11
		2.3.4	User Input and Keywords	11
	2.4	Selecto	-	12
		2.4.1	Invocation	12
		2.4.2	Command Line Arguments	12
		2.4.3	Files	12
		2.4.4	User Input and Keywords	12
		2.4.5	Automatic Initial Reference Space Guess	15
	~ -	2.4.6	Input Examples	15
	2.5		nalisator	17
		2.5.1	Invocation	17
		2.5.2	Command Line Arguments	$\frac{17}{17}$
		2.5.3	Files	17
	0.0	2.5.4	User Input and Keywords	18
	2.6		erturbation Theory	20
		2.6.1	Invocation	20
		2.6.2	Files	21
		2.6.3 $2.6.4$	User Input and Keywords	$\frac{21}{21}$
		7.114	THERE EXAMENE	<i>-</i> /

CONTENTS ii

3	Exa	mples	23
	3.1	C ₆ with automatic reference generation and property calculation	23
	3.2	C_6 with active space references and root homing	28
	3.3	Using natural orbitals	31
	3.4	Specialities	34
		3.4.1 Distinct number of roots in each irrep/multiplicity	34
4	Too	l Programs	35
	4.1	Diesel Results (dr)	35
	4.2	Getting Project Information (getDirInfo)	35
	4.3	Grepping the Dominating Configurations (grepImp)	35
	4.4	Calculation of excitation statistics (confStat)	35
	4.5	Symmetrization of selected configurations (symTree)	36
	4.6	Symmetrization of references (refsym) (obsolete)	36
	4.7	Listing the Configuration Tree (lstconfs)	36
	4.8	Set Operations (setops)	36
	4.9	Fort.31 File Format Conversion (f31endian)	37
	4.10	One Electron Density Matrices (dens)	37
	4.11	Natural Orbitals (natorb)	37
	4.12	Properties (prop)	38
		4.12.1 Driver to calculate and nicely print several Properties	
		(prettyProp)	38
\mathbf{A}	Syta	ax Rules	39
	A.1	Common	39
	A.2	Selector	40
	A.3	Diagonalisator	40
	A.4	Reference Selection	40
\mathbf{B}	Cita	ation	41

LIST OF TABLES

List	of Tables	
1 2 3 4 5	Main programs of DIESEL-CI	1 3 6 27 33
List	of Figures	
$\begin{matrix} 1 \\ 2 \\ 3 \end{matrix}$	Programs and flow of data	2 7 16
List	of Listings	
1.1 1.2 3.1	Project info by getDirInfo	$7 \\ 7 \\ 23$
3.2	g g	23 24
3.3		25
$3.4 \\ 3.5$	v	26 27
3.6		21
3.7	trons using active space references	28 28
3.8	•	28
3.9	Report output (stdout)	3 0
3.1		31
	1 Protocol output	32
3.1	2 Recursive directory contents for natural orbital calculation	33

1 The program package

The following section discusses aspects common to all programs of the program package.

1.1 Program parts

The DIESEL-CI consists out of the main programs selector ("sel"), diagonalisator ("diag") and Multi-Reference Perturbation Theory ("mrpt"). Table 1 shows a short description of these programs. In addition there are several tools to calculate density matrices or properties and the like. They are summarized in table 2.

The program "diesel" is the central point of control and automization within the package. It improves user friendlyness and simplifies the task of an individually selected MR-CI calculation.

purpose	name of program	former ^a name	description
excitation and selection	sel	parkwa, parkeu	performs excitation from reference space and selects configurations with respect to several criterions
diagonalisation	diag	adler, condox	solving the eigenvalue problem (generation of the Hamilton Matrix and diagonalisation by a multi root Davidson algorithm)
MR-MP perturbation theory	mrpt	_	calculation of multi referenz perturba- tion theory (generation of the Hamilton Matrix and the inhomogenity, solving the linear equation system)

 $[^]a$ These are the names within the old MRDCI package.

Table 1: Main programs of DIESEL-CI

1.2 Data flow

Figure 1 shows the flow of data in a DIESEL-CI calculation. For reasons of completeness the relevant MOLCAS programs and files required to generate the MO based integrals are also shown. The "form31"-program transforms the "TRAONE" and "TRAINT" files into the STONEY-format¹. This file contains symmetry information, one- and two-electron intergrals with double and single precision respectively.

Figure 1 is especially useful if you are carring out a property or natural orbital calculation.

¹It was originally used by the Hondo-package.

Figure 1: Programs and flow of data

purpose	name of program	former ^a name	description
control programm	diesel	1	automization of a MR-CI Rechnung: generation of space, perform selection of several thresholds, calculation of den- sity matrices and properties, use of nat- ural orbitals
density matrix calculation	dens	jackal	calculation of one-particle density matrices
natural orbitals	natorb	_	calculation of natural orbitals from one- particle density matrices, output to MOLCAS-format
properties	prop	wolf	calculation of properties from one- particle density matrices and one- electron integrals
set operations	setops	_	calculation of a set intersection, union, and difference
symmetrization	symTree	_	symmetrization of selected configura- tions with respect to MO equivalences
exciatation statistics	confStat	_	calculation of excitation levels in selected configuration with respect to a set of reference configurations
format conversion	f31endian	_	conversion of STONEY MO integral file between little- and big-endian architectures

 $[^]a$ These are the names within the old MRDCI package.

Table 2: Tool programs of DIESEL-CI

1.3 User Input

There are two possible ways to supply the programs with input:

- 1. command line arguments
- 2. separate input files

Depending of the degree of complexity either method is chosen.

1.3.1 Philosophy

The input is designed on a "keyword $= \dots$ " philosophy.

Keywords are not case sensitive. The input is freely formatted. For a more precise input syntax rule specification see appendix A.

In order to improve readability the keywords described in the following sections are chosen to be quite long. As users tend to copy input files and successively

change parameters in them there should be no real drawback from the lack of abbreviation of the keywords.

The input in its completed form is repeated in the output. So one can check the "reasonability" of certain default parameters.

1.3.2 Structure of input description

The following sections describe the user input for selection, diagonalisation and MRPT programs. These sections are organized in the following way:

- 1. **invocation:** the name of program and how to call it
- 2. **command line arguments:** optional arguments to be given on the command line
- 3. files: input and output files with meaning and type (binary/ASCII)

4. keywords:

The keywords are listed in a table consisting of 4 columns: keyword, status, argument type and description. The status and argument type need to be explained in more detail:

- (a) The status column:
 - required:

A miss of this statement will cause an error.

• optional/checked:

If this statement is missing the appropriate value will be taken from the remaining input. If the statement is given the input will be checked if it complains. In other words the specification of this statement produces some kind of redundancy.

• optional:

The program will set some reasonable default values if this statement is missing.

- (b) The argument type:
 - num: natural number
 - floatnum: floating point number
 - numSet: set of natural numbers, written: $\{i_1 \dots i_n\}$
 - confSet: set of configurations, written: $\{\text{conf}_1 \dots \text{conf}_n\}$ A configuration is a sequence of natural numbers representing the MO numbers. This sequence consists of three parts and is

$$n_{\text{open}} = \underbrace{s_1 \dots s_{n_{\text{open}}}}_{\text{open}} \underbrace{d_1 \dots d_{n_{\text{closed}}}}_{\text{closed open}}$$
 $n_{\text{open}} = \underbrace{s_1 \dots s_{n_{\text{open}}}}_{\text{open}} \underbrace{d_1 \dots d_{n_{\text{closed}}}}_{\text{closed shells}}$

example: 1 4 1 2 3 15 16

structured as follows:

(meaning: one open shell "4" and five closed shells "1 2 3 15 16") The number of closed shells $n_{\rm closed}$ is not explicitly given. Therefore to make this way of specification unique a configuration must be terminated by a separator.

• bool: "yes" or "no"

5. input example

1.4 Levels of verbosity

Table 3 shows the available levels of verbosity. All information is written to the standard output.

1.5 Directory Structure

In order not to end up in chaos the diesel driver program creates a specific directory structure. Before presenting it there should be some general thoughts about organization.

1.5.1 Some thoughts concerning organization

There are lots of data involved with carrying out some quantum chemical project. The natural organization form is some kind of a matrix with several dimensions (e.g. geometry, basis, multiplicity, irreducible representation). Now there is a contradiction between this structure and the tools given by most operating systems which offer a hierarchical structure made up of directories. As a consequence there are many different opinions and personal preferences of how to manage and organize such a problem.

As the hierarchical filesystem does not fit the problem structure one possibility is simply to ignore it and create a naming scheme like the following: "1_2" or somewhat more explicit "Mult=1_IrRep=2". The first one has the drawback of being not quite intuitive and the second one repeats some redundant information with every file. Both tend to become rather complex and ugly for problems described by matrices of higher dimensions.

A second possibility is to try to map the matrix problem to the hierarchical tree of directories. In such a scheme each level in the tree corresponds to one dimension in the matrix problem and every directory contains information on that dimension only. As a consequence without tricks you do not see any information from the higher levels of the tree. You may print the whole working directory path but in this case you would see again only "1_2..." or somewhat confusing and long "Mult=1_IrRep=2...". To get rid of these drawbacks one may put a tag into each directory describing the name of the dimension contained and use a shell script to evaluate the path. This method is described in the following section. As a partial drawback there is again a repetition of the names of a dimension in the distinct branches of the tree.

1.5.2 The diesel directory structure

The diesel directory structure consists mainly of the levels multiplicity and irreducible representation. Figure 2 shows an example. The dashed parts are optional and are only created if a calculation involving natural orbitals² or density matrices is carried out. Listing 1.1 shows the directory contents on the level of irreducible representations of some example.

²For details on how to do a calculation with natural orbitals see section ??

keyword	de- fault	av sel	ailable v diag	with mrpt	description
Input	•	•	•	•	The input in its with default values completed form is echoed to the standard output.
Integrals	_	•	•	•	Information on the number of one- and two-electron integrals is printed to the standard output.
MOs	_	•	•	•	The following information is printed to the output:
					MO-mapping to continuous space within each irreducible representation
					• number of total MOs
					MOs per irreducible representation (total/internal/external)
					• product table
					• list of internal/external MOs
					• share of internal MOs in percent
RefGuess	•	•	_	_	Details on the reference configuration first guess are printed.
SGA	_	•	•	•	Output from the SGA table initialisation is printed.
RefMat	_	•	•	•	The reference matrix is printed. Attention: probably quite large!
RefMatEigenValues	•	•	_	_	The eigenvalues of the reference matrix are printed.
RefMatEigenVectors	_	•	_	_	The first $1.5 * n_{\text{roots}}$ reference vectors are written to the standard output.
IterationBlocks	•	_	•	_	The progress of one hamilton matrix generation and multiplication including
WaveFunction	•	_	•	_	The dominant configurations of the resultant wavefunction are printed out.
${\bf Selection Per Root}$	_	•	_	_	
CacheStatistics	_	•	•	•	The cache statistics are printed.
DegenGuess	•	•	_	_	Details on the MO degeneration guess are printed.
DiagHist	_	•	_	_	A histogram of the diagonal elements is printed.

Table 3: Verbosity levels, default values and availability

Figure 2: Directory structure

Listing 1.1 Listing of a directory on the level of irreducible representations user@machine>ls 0/ 5/ dens.out.1e-3 fort.31 prop.out.1e-7 1/ 6/ dens.out.1e-4 prop.out.1e-4 2/ 7/ dens.out.1e-6 prop.out.1e-5 4/ Densities/ dens.out.1e-7

Listing 1.2 shows the output of the shell script getDirInfo in a directory of some imaginary project:

```
Listing 1.2 Project info by getDirInfo

user@machine>getDirInfo

Project = c8

Geometry = linear

Basis = C.DUN...5S3P1D

ReferenceType = CI.RefActive

Multiplicity = 3

Irrep = 3
```

8

2 Main Programs

2.1 Common Input Keywords

keyword	sta- tus	de- fault	argument type	description
Roots	opt.	selector input	numSet	set of roots to be used in the diagonalisation procedure
MOIntegral- Filename	opt.	"fort.31" / "ftn31"	name	name of MO integral file
MOIntegral- FileFormat	opt.	"auto"	MOFile- $Format$	file format of MO integral file
Verbosity	opt.	app. de- pendent	verbosity- Set	

2.2 Driver

The diesel-driver was designed to simplify the application of an individually selecting MR-CI calculation. It handles the following tasks:

- ${\bf 1.}\ \ {\bf management}\ {\bf of}\ {\bf calculation}\ {\bf of}\ {\bf several}\ {\bf multiplicities}\ {\bf and}\ {\bf irreps}\ {\bf within}\ {\bf a}\ {\bf well}$ defined directory structure
- 2. iterative generation of the MR-CI space (selection of References)
- 3. run selector and diagonalisator automatically on given thresholds
- 4. calculation of density matrices and properties
- 5. prepare results in a condensed form.

2.2.1 Invocation

diesel

2.2.2 Command Line Arguments

• none

2.2.3 Files

status	name	type	content
in	stdin	ASCII	user input
in	"\$MOLCASRootDir- /fort.31"	binary	integrals in MO basis (AO→MO transformation performed), point symmetry, number of orbitals in certain irreducible representation
out	stderr	ASCII	protocol output, progress indication
out	stdout	ASCII	results (wave function, energies,)

2.2.4 User Input and Keywords

keyword	sta- tus	de- fault	argument type	description
Multiplicities	req.	_	numSet	multiplicities to be calculated
IrReps	req.	_	numSet	irreducible representations to be calculated
fullMRCI- Extrapolation	req.		Extrapola- tionSet	methods to be used for extrapolation
useNatural- Orbitals	req.	no	boolean	
NaturalOrbital- Selection- Threshold	opt.	_	floatNum	selection threshold to be used in natural orbital calculation
averagedNatural- Orbitals	opt.	no	boolean	use state averaged natural orbitals
property- Thresholds	opt.	{}	float Set	thresholds to be used in property calculation
orbitalFile	req.		$oxed{name}$	use state averaged natural orbitals

Additionally the following keywords are passed to the called subprograms. They are grouped by the subprograms.

• Selector:

 ${\tt SelectionThresholds}, {\tt NumberOfElectrons}, {\tt ExcitationLevel}, {\tt selectInternal}, \\ {\tt selectNthExcitation}, {\tt MORestrictions}, {\tt MOEquivalence}, {\tt Roots}, {\tt SelectionEstimationMode}, \\ {\tt selectNthExcitation}, {\tt MORestrictions}, {\tt MOEquivalence}, {\tt Roots}, {\tt SelectionEstimationMode}, \\ {\tt selectNthExcitation}, {\tt MORestrictions}, {\tt MOEquivalence}, {\tt Roots}, {\tt SelectionEstimationMode}, \\ {\tt Moether}, {\tt Moether$

Diagonalisator:

 $\label{lem:convergenceEnergyChange} ReferenceThreshold, ConvergenceEnergyChange, \\ ConvergenceEigenvectorChange, \\ MaxIters, \\ Roots, \\ MaxHamiltonStorageMem$

• MR-PT:

MRPTInhomogenityThreshold, MRPTSelectionThresholds

• Reference Selection:

MOEquivalence, ReferenceThreshold, RefSelMode Roots, Irreps

For further information on these keywords please see sections 2.4.4, 2.5.4 and 2.6.3 respectively.

2.2.5 Input Example

```
# MO integral file
MOIntegralFilename
                               = fort.31
MOIntegralFileFormat
                               = New
{\tt MOLCASRootDir}
                               = /XYZ
# MOs
MORestrictions
                               = none
MOEquivalence
                               = auto
# electrons / state
NumberOfElectrons
                               = 24
Multiplicities
                               = { 1 3 }
                               = { 0 1 2 3 4 5 6 7 }
IrReps
Roots
                               = { 1 2 3 4 5 6 7 8 }
# selection
                               = no
selectInternal
selectInternal
selectNthExcitation
                               = { }
ExcitationLevel
                               = 2
# reference generation
ReferenceThreshold
                               = 0.004
maxRefGenIters
# diagonalization / convergence
                               = 40
{\tt MaxDavidsonIters}
ConvergenceEnergyChange
                               = 1
ConvergenceEigenvectorChange
                               = 1
# natural orbitals
#useNaturalOrbitals
                                = yes
#NaturalOrbitalSelectionThreshold = 1e-6
#averagedNaturalOrbitals
                               = no
# extrapolation
#MRPTInhomogenityThreshold = { EpsteinNesbet }

#MRPTSelectionThresholds = 1e-4

## 10-2 1
                               = { 1e-3 1e-4 1e-5 1e-6 }
```

properties

propertyThresholds = { 1e-3 1e-4 1e-5 1e-6 }

orbitalFile = RASORB

MaxHamiltonStorageMem = 300MB

2.3 Reference Selection

2.3.1 Invocation

refsel arguments

2.3.2 Command Line Arguments

none.

2.3.3 Files

status	name	type	content	
in	stdin	ASCII	user input (roots, reference selection threshold, etc.), see 2.5.4	
in	"ConfTree.dat.ref"	ASCII	tree of selected configurations	
in	"fort.31"	binary	integrals in MO basis (AO→MO transformation performed), point symmetry, number of orbitals in certain irreducible representation	
out	stdout	ASCII	program output (containing protocol, recommended references, etc., depending on verbosity level)	
out	irrep/"refs.out"	ASCII	recommended references	

2.3.4 User Input and Keywords

keyword	sta- tus	de- fault	argument type	description
MOEquivalence	opt.	none	MOEqui- valence	equivalent (degenerated) MO list; if a selected configuration contains an equivalent MO the same configuration with equivalent MOs substituted is selected also

Reference- Threshold	opt.	0.004	float num	threshold for automatic reference space generation
Roots	req.	_	numSet	set of roots
Irreps	req.	_	numSet	set of irreps
RefSelMode	opt.	ConfThresl	n RefSelMode	confThresh: all symmetry blocks of references with c^2 above ReferenceThreshold are selected, typical values: $0.001-0.01$ SumThresh: all symmetry blocks of references ordered by c^2 and summing up to ReferenceThreshold are selected, typical values: $0.8-0.9$

2.4 Selector

2.4.1 Invocation

sel arguments

2.4.2 Command Line Arguments

 \bullet -r : recalculation mode: perform the perturbation estimation on a given MR-CI tree (useful after an applied merge operation).

2.4.3 Files

status	name	type	content
in	stdin	ASCII	user input (reference configurations, selection thresholds, etc.), see 2.4.4
in	"fort.31"	binary	integrals in MO basis (AO→MO transformation performed), point symmetry, number of orbitals in certain irreducible representation
out	stdout	ASCII	program output (containing protocol, eigenvalues, statistics, etc., depending on verbosity level)
out	"ConfTree.dat"	ASCII	tree of selected configurations

2.4.4 User Input and Keywords

keyword	sta- tus	de- fault	argument type	description
Multiplicity	req.	_	num	multiplicity of state (= $2S + 1$, S : spin quantum number)
Selection- Thresholds	req.	_	${\it floatSet}$	a set of thresholds in Hartree for selection procedure
RefConfs	req.	_	confSet	set of configurations spanning the multi reference space (used as basis for excitations)
NumberOf- Electrons	opt.	conf. in- put	num	
ExcitationLevel	opt.	2	num	maximum excitation level used in MR-CI
selectInternal	opt.	no	bool	completely select internal space
selectNth- Excitation	opt.	{}	numSet	set of excitation levels to be completely selected
AnnihilatorSpace	opt.	inactive	numSet	orbitals from which electrons may be excited

CreatorSpace	opt.	inactive	numSet	orbitals to which electrons may be excited
ActiveSpace- ExcitationLevel	opt.	1	num	excitation level to generate references
maxRefOpenShells	opt.	4	num	maximum number of open shells for references
FirstGuessConfs	opt.	3	num	number of configurations increased by the number of ordered roots to be used from the first guess
MORestrictions	opt.	none	MO- Restrict	restrictions on the MO occupa- tion pattern to be applied on the generated configuration space
MOEquivalence	opt.	none	MOEqui- valence	equivalent (degenerated) MO list; if a selected configuration contains an equivalent MO the same configuration with equivalent MOs substituted is selected also

MOStatistics	opt.	no	boolean	print out MO statistics
EstimationMode	opt.	Epstein- Nesbet	Estima- tionMode	determines the method to esti- mate the energy contribution of a certain configuration
StorePTEnergy	opt.	no	bool	flag if perturbational energies are stored in configuration tree
StorePTCoef	opt.	no	bool	flag if perturbational CI coefficients are stored in configuration tree
PTRefConfs	opt.	RefConfs	confSet	set of configurations to be used as zero order wave function by perturbation theory

If the reference configurations are given explicitly they are checked for consistency among each other and the IrRep-keyword becomes optional. Any specified number of electrons or irreducible representation is checked against the given references.

2.4.5 Automatic Initial Reference Space Guess

Figure 3 shows the procedure that is used to generate a first reference configuration guess. It works pretty well for different irreducible representations and several roots. This feature is very useful as it saves one from the error intensive handling with the MO numbers. This procedure is quite reliable. There may be problems if many roots are ordered and the wave function is "diffuse". In that case the selection due to the diagonal element may be not really optimal.

2.4.6 Input Examples

first example:

```
# this is a comment
VerbosityLevel
                        = { RefGuess RefMatEigenValues IterationBlocks WaveFunction }
MORestrictions
                        = { 21-24>0 30,31=1 25<2 50,51,52<=2 }
MOIntegralFilename
                        = fort.31
MOIntegralFileFormat
                        = auto
NumberOfElectrons
                        = 19
Multiplicity
                        = 2
IrRep
                        = 2
ExcitationLevel
                        = 2
SelectionThresholds
                        = \{ 0.5 \}
                        = { 1 2 5 }
Roots
selectInternal
                        = no
selectNthExcitation
                        = { }
                        = {
RefConfs
```


Figure 3: steps to generate first reference space guess

```
1 20 1 2 3 4 5 6 7 8 9
# another comment
1 21 1 2 3 4 5 6 7 8 9
3 10 15 25 1 2 3 4 5 6 7 8
}
```

second example:

```
#this works too!
MULTIPLICITY = 2;excitationlevel=2
NumberOfElectrons = 19
SelectionThresholds= { 0.5 }
RefConfs = auto
```

Note that the starting configurations are generated automatically so there is no need to worry about the sophisticated process of MO-renumbering.

The reference configuration guess is performed by the following scheme:

- 1. The closed shell ground state occupation pattern is calculated. This is done by calculating the diagonal elements of the Hamilton Matrix whith any possible occupation pattern matching the irreducible representations and the given number of electrons. The configuration lowest in energy is selected as a base for the following step. If the number of given electrons is odd the calculation is done with the positive ion.
- 2. A certain set of MOs is chosen to be active. This set consists of the HOMO...HOMO-3 and the LUMO...LUMO+5 in every irreducible representation.

3. Within the active space single, double, triple, and quadruple excitations are performed and the diagonal hamilton matrix elements are calculated. The 3+number of roots configurations lowest in energy are chosen to be the reference configuration set.

This scheme is rather reliable especially for ground state occupation patterns. There may be problems if there are many roots ordered which can be described properly by several configurations only. Usually the following iterative space generation process is able to handle this problem.

2.5 Diagonalisator

2.5.1 Invocation

diag arguments

2.5.2 Command Line Arguments

- -p procs: number of parallel processes to be used in Davidson diagonalisation
- -i: read input from standard input (otherwise no user input is read)
- -s thresh: read start vectors from a previous smaller calculation at threshold thresh. This depends on the existence of the files "ConfTree.dat.thresh" and "Eigenvectors.dat.thresh"
- -r: restart a previously aborted calculation. This depends on the existence of the files "Davidson_b.dat" and "Davidson_Ab.dat".
- -w: write Hamilton matrix to file "MatrixStorageWrite.dat". No Davidson iteration is performed.

2.5.3 Files

status	name	type	content
in	stdin	ASCII	user input (roots, reference selection threshold, etc.), see 2.5.4
in	"ConfTree.dat"	ASCII	tree of selected configurations
in	"fort.31"	binary	integrals in MO basis (AO→MO transformation performed), point symmetry, number of orbitals in certain irreducible representation
out	stdout	ASCII	program output (containing protocol, eigenvalues, etc., depending on verbosity level)
out	"Eigenvectors.dat"	binary	eigenvectors of ci-matrix
temporary temporary	"Davidson_b.dat" "Davidson_Ab.dat"	binary binary	basis vectors in Davidson diagonalisation mapped basis vectors

18

2.5.4 User Input and Keywords

keyword	sta- tus	de- fault	argument type	description
Reference- Threshold	opt.	0.004	floatnum	threshold for automatic reference space generation
PTReference- Threshold	opt.	0.004	floatnum	threshold for automatic generation of 0th-order wave function used in perturbation theory
Convergence- EnergyChange	opt.	1e-5	floatnum	energy change that is sufficient for convergence of a certain root
Convergence- EigenvectorChange	opt.	1	floatnum	eigenvector change that is suffi- cient for convergence of a certain root
MaxIters	opt.	20	intnum	maximum number of iterations
Roots	opt.	selector output	numSet	set of roots to be used in the diagonalisation procedure
RootHoming	opt.	no	boolean	freeze roots to characters given by the reference space
StorePTEnergy	opt.	no	bool	flag if perturbational energies are stored in configuration tree
	l			

StorePTCoef	opt.	no	bool	flag if perturbational CI coefficients are stored in configuration tree
MaxHamilton- StorageMem	opt.	0	intnum {GB, MB, KB}	maximum amount of memory available to store Hamilton Ma- trix; if there is not enough mem- ory calculation falls back to di- rect mode
Precision	opt.	double	"float", "double"	precision of matrix elements and vectors (float: 32 bit ³ , double: 64 bit ⁴), using 32 bit-precision will result in less memory consumption (especially when using stored Hamilton Matrices), and slightly faster execution, but may cause convergence problems.
IterationMode	opt.	"CI"	"CF", "ACPF", "AQCC"	iteration mode

Since all input keywords are optional, the input may be missing completely. Therefore by default no input is read. To make the program read any user input from stdin an explicit flag (-i) must be specified.

2.6 MR Perturbation Theory

2.6.1 Invocation

mrpt

2.6.2 Files

status	name	type	content
in	stdin	ASCII	user input (selection thresholds, roots, etc.), see 2.6.3
in	"fort.31"	binary	integrals in MO basis (AO→MO transformation performed), point symmetry, number of orbitals in certain irreducible representation
in	"ConfTree.dat.thresh"	ASCII	tree of selected configurations
in	"Eigenvectors.dat.thresh"	binary	state eigenvectors
out	stdout	ASCII	program output (containing protocol, perturbation energies, etc., depending on verbosity level)

2.6.3 User Input and Keywords

keyword	sta- tus	de- fault	argument type	description
Selection- Thresholds	req.	_	floatSet	a set of thresholds in Hartree for selection procedure
Roots	opt.	{1}	numSet	set of roots to be used in the selection
ProjectionMode	opt.	"no0"	"no0", "0Com- plement"	
Inhomogenity	opt.	"Psi0" (0\))	floatnum, "Psi0"	inhomogenity in system of linear equations
calcMP3	opt.	no	boolean	flag if MP3 energies should be calculated

2.6.4 Input Example

Roots = { 1 2 3 4 } SelectionThresholds = { 0.001 0.0001 1e-05 1e-06 }

ProjectionMode = no0 Inhomogenity calcMP3 = Psi0 = no

This input may result in the following output:

2 MAIN PROGRAMS

22

MR-MP2 Results:

threshold/mH	sel. conf.	sel. CSFs	energy sum/mH root #1	energy sum/mH root #2	energy sum/mH root #3	energy sum/mH root #4
1.000000e+00	108	145	6.704442e+01	1.689585e+02	1.971939e+02	2.060199e+02
1.000000e-01	671	1130	1.981235e+01	8.135658e+01	6.852698e+01	7.491947e+01
1.000000e-02	2772	5563	4.856928e+00	2.998879e+01	2.144414e+01	2.325910e+01
1.00000e-03	7913	18094	1.303418e+00	8.178762e+00	5.088133e+00	6.088736e+00

3 Examples

3.1 C₆ with automatic reference generation and property calculation

Listing 3.1 Listing of a simple diesel driver job file for C_6 with 20 core electrons using automatic reference generation

```
#!/bin/bash
export DIESEL_EXE_DIR=somepath export MOLCAS_EXE_DIR=somepath cd whereEver
cat <<! >diesel.in
# MO integral file
MOIntegralFileFormat
MOLCASRootDir
                                                        = New
= 'pwd'/..
# MOs
MOEquivalence
                                                        = auto
# electrons / state
NumberOfElectrons
Multiplicities
IrReps
Roots
                                                        = 16
= { 1 3 }
= { 0 1 3 }
= { 1 2 3 4 }
# references
RefConfs
                                                        = auto
#selection
SelectionThresholds
                                                        = { 1e-3 1e-4 1e-5 }
#properties
propertyThresholds
orbitalFile
                                                        = { 1e-3 1e-4 1e-5 }
= INPORB
                                                        = 500MB
MaxHamiltonStorageMem
$DIESEL_EXE_DIR/diesel <diesel.in 1>diesel.out 2>diesel.prot.out
```

Listing 3.2 Protocol output (stderr)

```
diesel protocol
multiplicity=1
     irrep=0 creating reference space:
                iteration #1
iteration #2
iteration #3
                 iteration #4
                 iteration #5
           reference space generation completed
performing selection on given thresholds
diagonalization steps
threshold 1e-3
                threshold 1e-4
threshold 1e-5
           diagonalization finished
    iteration #2
iteration #3
reference space generation completed
performing selection on given thresholds
diagonalization steps
                 threshold 1e-3
threshold 1e-4
           threshold 1e-5
diagonalization finished
    reference space generation completed
performing selection on given thresholds
diagonalization steps
                 threshold 1e-3
threshold 1e-4
           threshold 1e-5
diagonalization finished
     irrep=3
irrep=3
irrep=3
calculating properties
property calculation finished
threshold=1e-4
           threshold=1e-4
iirrep=0
jirrep=1
jirrep=3
iirrep=3
iirrep=3
calculating properties
property calculation finished
threshold=1e-5
iirrep=0
                iirrep=0
jirrep=1
jirrep=3
                iirrep=1
jirrep=3
     irrep=3
irrep=3
calculating properties
property calculation finished
one particle density matrices calculation finished
```

Listing 3.3 Protocol output (stderr, continued)

```
multiplicity=3
irrep=0
                      creating reference space:
   iteration #1
   iteration #2
   iteration #3
                     reference space generation completed
performing selection on given thresholds
diagonalization steps
threshold 1e-3
threshold 1e-4
threshold 1e-5
                      diagonalization finished
         irrep=1
creating reference space:
iteration #1
iteration #3
                                iteration #4
                     reference space generation completed performing selection on given thresholds diagonalization steps
threshold 1e-3
threshold 1e-4
                     threshold 1e-5
diagonalization finished
          irrep=3
                     ep=3
creating reference space:
iteration #1
iteration #2
iteration #3
                     reference space generation completed performing selection on given thresholds diagonalization steps threshold 1e-3 threshold 1e-4 threshold 1e-5 diagonalization finished
                      diagonalization finished
         calculating one particle density matrices
threshold=1e-3
iirrep=0
jirrep=1
jirrep=3
iirrep=3
iirrep=3
calculating properties
property calculation finished
threshold=1e-4
iirre=0
                               iirrep=0
jirrep=1
jirrep=3
                     iirrep=3
iirrep=3
calculating properties
property calculation finished
threshold=1e-5
iirrep=0
                               iirrep=0
jirrep=1
jirrep=3
          jirrep=3
iirrep=1
jirrep=3
iirrep=3
calculating properties
property calculation finished
one particle density matrices calculation finished
```

Listing 3.4 Recursive directory contents user@machine>ls -R =Multiplicity diesel.in diesel.prot.out 3 CI.job diesel.out 1: 0 3 =Irrep Densities dens.out.1e-4 fort.31 prop.out.1e-4 dens.out.1e-3 prop.out.1e-5 prop.out.1e-3 prop.out.1e-5 1/0: ConfTree.dat ConfTree.dat.0.001 Eigenvectors.dat.1e-5 genspace.0 sel.in.2 diag.in.RefGen diag.out.1e-3 diag.out.1e-4 diag.out.1e-5 fort.31 genspace.1 genspace.2 sel.in.3 ConfTree.dat.1e-3 ConfTree.dat.1e-4 sel.in.4 sel.in.all genspace.3 ConfTree.dat.1e-5 Eigenvectors.dat.1e-3 genspace.4 sel.in.0 sel.out.all Eigenvectors.dat.1e-4 sel.in.1 1/1: ConfTree.dat Eigenvectors.dat.1e-4 diag.out.1e-5 ConfTree.dat.0.001 ConfTree.dat.1e-3 ConfTree.dat.1e-4 ConfTree.dat.1e-5 Eigenvectors.dat.1e-5 diag.in fort.31 genspace.0 sel.in.2 sel.in.all ConfTree.dat.1e-4 diag.in.RefGen
ConfTree.dat.1e-5 diag.out.1e-3
Eigenvectors.dat.1e-3 diag.out.1e-4 genspace.1 genspace.2 sel.out.all sel.in.0 1/3: ConfTree.dat Eigenvectors.dat.1e-4 diag.out.1e-5 sel.in.1 ConfTree.dat.0.001 ConfTree.dat.1e-3 ConfTree.dat.1e-4 Eigenvectors.dat.1e-5 diag.in fort.31 genspace.0 sel.in.2 sel.in.all diag.in.RefGen genspace.1 sel.out.all ConfTree.dat.1e-5 diag.out.1e-3 Eigenvectors.dat.1e-3 diag.out.1e-4 genspace.2 sel.in.0 1/Densities: Density.dat.IOR1_IOR1.1e-3 Density.dat.IOR3_I1R2.1e-3 Density.dat.I1R2_I1R4.1e-3 3: Densities dens.out.1e-4 fort.31 prop.out.1e-4 dens.out.1e-5 prop.out.1e-3 prop.out.1e-5 0 1 3 =Irrep 3/0: ConfTree.dat ConfTree.dat.0.001 Eigenvectors.dat.1e-4
Eigenvectors.dat.1e-5 diag.out.1e=5
fort.31 sel.in.1 sel.in.2 diag.in.RefGen diag.out.1e-3 diag.out.1e-4 ConfTree.dat.1e-3 ConfTree.dat.1e-4 genspace.0 sel.in.all genspace.1 genspace.2 sel.in.0 sel.out.all ConfTree.dat.1e-5 Eigenvectors.dat.1e-3 3/1: ConfTree.dat Eigenvectors.dat.1e-4 diag.out.1e-5 Eigenvectors.dat.1e-5 fort.31 sel.in.O ConfTree.dat.0.001 sel.in.1 sel.in.2 diag.in diag.in.RefGen diag.out.1e-3 diag.out.1e-4 genspace.0 ConfTree.dat.1e-3 ConfTree.dat.1e-4 genspace.1 genspace.2 genspace.3 ConfTree.dat.1e-5 sel.in.all Eigenvectors.dat.1e-3 sel.out.all 3/3: ConfTree.dat Eigenvectors.dat.1e-4 diag.out.1e-5 Eigenvectors.dat.1e-5 fort.31 sel.in.1 ConfTree.dat.0.001 genspace.0 ConfTree.dat.1e-3 diag.in sel.in.all ConfTree.dat.1e-4 diag.in.RefGen genspace.1 sel.out.all ConfTree.dat.1e-5 diag.out.1e-3 diag.out.1e-4 genspace.2 sel.in.0

The property output is written to the files prop.out.thresh.

3/Densities:
Density.dat.IOR1_IOR1.1e-3 Density.dat.IOR3_IIR2.1e-3 Density.dat.IIR2_IIR4.1e-3

Eigenvectors.dat.1e-3

programs	motra form31	
read files	motra form31	
written files	motra form31	

```
Table 4: MOLCAS-dependencies
Listing 3.5 Report output (stdout)
                       Project = c6
            Project = c6
Geometry = linear
Basis = C.DUN...5S3P1D
Orbitals = 2.2.CAS
Core = 20e
ReferenceType = RefIter
Multiplicity = 1
Irrep = 0
reference configurations: 0 1-2 23-24 35-36 50 72
                                                      # 1
 4 35-36 84-85 1-2 23-24 50 72 # 32
number of configurations: 32 dimension of ci matrix : 42
selected roots within reference space:
root #1: -226.910979
root #2: -226.901841
root #3: -226.725320
root #4: -226.721146
 total generated configurations/CSFs:
                            confs.
352
23423
 intern-0:
                                                      603
 intern-1:
                            531645
                                                2215655
 intern-2:
                            555420
                                                2286640
 total :
 +++++++
 root #1:
root #1:
reference energy: -226.91098
character (at threshold 1.00e-02 mH, ci^2>0.01):
0.0126213162 -0.1123446312: ref.
                                                                                         0 1-2 23-24 35-36 50 72 # 1
0 1-2 23-24 35-36 50 84 # 2
0 1-2 23-24 35 50 72 84 # 4
0 1-2 23 35-36 50 72 84 # 10
              0.0120907020
0.4144999165
0.3989897564
                                                                             ref.
ref.
ref.
                                                 0.1099577283:
0.6438166793:
                                                -0.6316563594:
                                               sel. CSFs CI energy
                                                                                                                                         PT(EN) PT(EN)
/mH weighted/mH
     threshold sel. confs /mH
                                                                                           ref ci^2
                                                                                                                   overlap
                                                                                                                        max
                                                                                       0.97464208 0.99998533
0.90646824 0.99992052
0.87097902 0.99995333
                                                                                                                                     -434.763 -434.76363
-299.391 -299.39962
-100.904 -100.90425
                                                      28 -226.9351
1014 -227.04893
14719 -227.19895
                                      18
              0.\overline{1} \\ 0.01
                                   648
8279
extrapolation to full MRCI (all Energies in H):
     threshold _____E(1=1)
              1 -227.36987 --- ---
0.1 -227.34833 0.84093363 -227.30071
0.01 -227.29985 0.75575772 -227.27521
extrapolation to full CI (all Energies in H):
                         Davidson 1 _____ Davidson 2 ____
E(l=1) E(l) E(l=1) E(l)
             1 -227.3815 --- -227.38181 ---
0.1 -227.38924 -227.33716 -227.39346 -227.34092
0.01 -227.35003 -227.3222 -227.35746 -227.32916
```

3.2 C₆ with active space references and root homing

Listing 3.6 Listing of a simple diesel driver job file for C_6 with 20 core electrons using active space references

```
#!/bin/bash
export DIESEL_EXE_DIR=somepath export MOLCAS_EXE_DIR=somepath cd whereEver
cat <<! >diesel.in
# MO integral file
MOIntegralFileFormat
MOLCASRootDir
                                                       = New
= 'pwd'/..
 # MOs
MOEquivalence
                                                       = auto
# electrons / state
NumberOfElectrons
                                                       = { 1 3 }
= { 0 1 3 }
= { 1 2 3 4 }
Multiplicities
Roots
# references
# reterences
RefConfs
0 1-2 23-24 35 50 72 84
0 1-2 23 35-36 50 72 84
2 24 36 1-2 23 35 50 72 84
1
                                                      = { 2 23 24 35 36 50 72 84 }
= { 23 24 35 36 72 73 84 85 }
= 2
AnnihilatorSpace
CreatorSpace
activeSpaceExcitationLevel
maxRefOpenShells
RootHoming
#selection
SelectionThresholds
                                                       = { 1e-3 1e-4 1e-5 }
MaxHamiltonStorageMem
                                                       = 500MB
$DIESEL_EXE_DIR/diesel <diesel.in 1>diesel.out 2>diesel.prot.out
```

If you later decide you need one more threshold simply add it in the input (s. Listing 3.7) and restart.

```
Listing 3.7 Input for an additional threshold

SelectionThresholds = { 1e-3 1e-4 5e-5 1e-5 }
```

As you see in Listing 3.8 only the necessary steps are executed.

```
Listing 3.8 Protocol output (stderr)

multiplicity=1
    irrep=0
    using active space references
    performing selection on given thresholds
    diagonalization steps
    threshold 1e-3: already done
    threshold 1e-4: already done
    threshold 5e-5
    threshold 1e-5: already done
    diagonalization finished
.
.
```

The same way you may append additional irreducible representations or multiplicities. The output of results will contain all information as if you originally

started with the whole set of parameters (s. Listing 3.9). If you want to change something different from that described above (e. g. different fort.31-file, reference configurations, convergence criterions, ...) please delete the calculation tree before restarting the calculation in order to get what you want.

Listing 3.9 Report output (stdout)

Project = c6
Geometry = linear
Basis = C.DUN...5S3P1D
Orbitals = 2_2.CAS
Core = 20e
ReferenceType = RefActive
Multiplicity = 1
Irrep = 0

```
reference configurations: 0 1-2 23-24 35-36 50 72
                                          # 1
4 72-73 84-85 1-2 23 35-36 50 # 72
```

number of configurations: 72 dimension of ci matrix : 100

selected roots within reference space: root #1: -226.926197 root #2: -226.917450 root #3: -226.743097 root #4: -226.738563

total generated configurations/CSFs:

confs. CSFs 412 41684 1133336 751 133864 5392979 intern-0: intern-1: intern-2: total : 1175432 5527594

0 1-2 23-24 35-36 50 72 # 1 0 1-2 23-24 35-36 50 84 # 2 0 1-2 23-24 35 50 72 84 # 5 0 1-2 23 35-36 50 72 84 # 15

 threshold /mH	sel. confs	sel. CSFs	CI energy /H	ref ci^2	overlap max	PT(EN) /mH	PT(EN) weighted/mH	
 1	10	1/	-226.93881	0.98552683	0.99987399	-427.22	-427,22388	•••
<u> </u>	10	14	-220.93001	0.90002000	0.00001300	-421.22	-421 • ZZ300	
0.1	603	953	- 227 . 04791	0.91783744	0.99999991	- 301.27	- 301.27001	
0.05	1501	2383	-227.09915	0.90225781	0.99994973	-235.914	-235.92348	
0.01	8088	14344	-227.19816	0.88045173	0.99997603	-106.048	-106.05273	

extrapolation to full MRCI (all Energies in H):

					LN	_						
]	E(:	1=1)				1	-			Ε(1)
27	.36	660	3								_	
27	.34	491	8	0.	866	24	541		-22	7.3	308	89
27	.33	350	8	0.	784	10	956	;	-22	7.2	284	14
27	.30	042	2	0.	762	37	506	;	-22	7.2	279	02
27 27 27 27		30	3660 3491 3350	33508	.36603 .34918 0.:	E(1=1) .36603 .34918 0.866 .33508 0.784	.36603 .34918 0.86624 .33508 0.78410	.36603 .34918 0.86624541 .33508 0.78410956	.36603 .34918 0.86624541 .33508 0.78410956	36603 34918 0.86624541 -22: 33508 0.78410956 -22:	36603 .34918	E(1=1) 1 E(

extrapolation to full CI (all Energies in H):

/mH		E	N			
threshold	David	son 1	Davidson 2			
	E(1=1)	E(1)	E(1=1)	E(1)		
1	-227.3724		- 227 . 37249			
0.1	-227.38394	-227.34033	-227.38705	-227.34315		
0.05	-227.37504	-227.31913	-227.37937	-227.32292		
0.01	- 227.34941	- 227.32119	-227.35554	-227.32692		
+++++++						
•						

3.3 Using natural orbitals

Listing 3.10 Natural orbital calculation

```
# MD integral file
#MOIntegralFilename
MOIntegralFileFormat
MOICASRootDir
# MDs
#MORestrictions
                                                = fort.31
= New #test
= 'pwd'/..
                                                 = none
{\tt MOEquivalence}
                                                = auto
# electrons / state
NumberOfElectrons
                                               = 16
= { 3 }
= { 3 }
= { 1 2 3 4 }
Multiplicities
IrReps
Roots
RefConfs
                                                = auto
RootHoming
                                                = yes
# selection
{\tt SelectionThresholds}
                                                = { 1e-3 1e-4 1e-5 }
{\tt MaxHamiltonStorageMem}
                                                = 500MB
```

Be careful to set the orbitalFile = XXXORB keyword. This has to be the orbital file you previously generated the STONEY file with.

Listing 3.11 Protocol output

```
diesel protocol
 multiplicity=3
irrep=3
creating natural orbitals
creating reference space:
iteration #1
                              iteration #2
                    iteration #2
iteration #3
reference space generation completed
performing selection on given thresholds
diagonalization steps
threshold 1e-5
                   threshold 1e-5
diagonalization finished
calculating density matrices
calculating natural orbitals
performing MO transformation for root #1
performing MO transformation for root #2
performing MO transformation for root #3
performing MO transformation for root #4
performing MR-CI calculation with natural orbitals for root #1
creating reference space:
    iteration #1
    iteration #2
    iteration #3
    iteration #4
                              iteration #4
                    reference space generation completed performing selection on given thresholds diagonalization steps
threshold 1e-3
threshold 1e-4
                    threshold 1e-4
threshold 1e-5
diagonalization finished
performing MR-CI calculation with natural orbitals for root #2
creating reference space:
    iteration #1
    iteration #2
    iteration #3
                              iteration #3
                    reference space generation completed
performing selection on given thresholds
diagonalization steps
threshold 1e-3
                              threshold 1e-4
                              threshold 1e-5
                    diagonalization finished
performing MR-CI calculation with natural orbitals for root #3
creating reference space:
   iteration #1
                              iteration #2
iteration #3
                    reference space generation completed
performing selection on given thresholds
diagonalization steps
threshold 1e-3
                              threshold 1e-4
threshold 1e-5
                    diagonalization finished performing MR-CI calculation with natural orbitals for root \#4
                     creating reference space:
iteration #1
                             iteration #2
iteration #3
iteration #4
iteration #5
                    iteration #6
reference space generation completed
performing selection on given thresholds
diagonalization steps
                              threshold 1e-3
threshold 1e-4
threshold 1e-5
                     diagonalization finished
```

programs	motra form31	
read files	ONEINT ORDINT STONEY	
written files	${ t STONEY.NatOrb.} n$	

Table 5: MOLCAS-dependencies

33

Listing 3.12 Recursive directory contents for natural orbital calculation								
user@machine>ls -R								
3 CI.job diesel.out =Multiplicity diesel.in diesel.prot.out								
3: 3 =Irrep								
3/3: 1 2	3 4	=NatOrbRoot Nat	tOrb					
3/3/1: ConfTree.dat ConfTree.dat.0.001 ConfTree.dat.1e-3 ConfTree.dat.1e-4 ConfTree.dat.1e-5 Eigenvectors.dat.1e-3	Eigenvectors.dat.1e-4 Eigenvectors.dat.1e-5 diag.in diag.in.RefGen diag.out.1e-3 diag.out.1e-4	diag.out.1e-5 fort.31 genspace.0 genspace.1 genspace.2 genspace.3	sel.in.0 sel.in.1 sel.in.2 sel.in.3 sel.in.all sel.out.all					
3/3/2: ConfTree.dat ConfTree.dat.0.001 ConfTree.dat.1e-3 ConfTree.dat.1e-4 ConfTree.dat.1e-5 Eigenvectors.dat.1e-3	Eigenvectors.dat.1e-4 Eigenvectors.dat.1e-5 diag.in diag.in.RefGen diag.out.1e-3 diag.out.1e-4	diag.out.1e-5 fort.31 genspace.0 genspace.1 genspace.2 sel.in.0	sel.in.1 sel.in.2 sel.in.all sel.out.all					
3/3/3: ConfTree.dat ConfTree.dat.0.001 ConfTree.dat.1e-3 ConfTree.dat.1e-4 ConfTree.dat.1e-5 Eigenvectors.dat.1e-3	Eigenvectors.dat.1e-4 Eigenvectors.dat.1e-5 diag.in diag.in.RefGen diag.out.1e-3 diag.out.1e-4	diag.out.1e-5 fort.31 genspace.0 genspace.1 genspace.2 sel.in.0	sel.in.1 sel.in.2 sel.in.all sel.out.all					
3/3/4: ConfTree.dat.0.001 ConfTree.dat.1e-3 ConfTree.dat.1e-4 ConfTree.dat.1e-5 Eigenvectors.dat.1e-3 Eigenvectors.dat.1e-4		genspace.0 genspace.1 genspace.2 genspace.3 genspace.4 genspace.5 sel.in.0	sel.in.1 sel.in.2 sel.in.3 sel.in.4 sel.in.5 sel.in.5lin.all					
3/3/NatOrb: ConfTree.dat. ConfTree.dat.0.001 ConfTree.dat.1e-5 Density.dat.I.R1_I.R1 Density.dat.I.R1_I.R2 Density.dat.I.R1_I.R3 Density.dat.I.R1_I.R4 Density.dat.I.R2_I.R2 Density.dat.I.R2_I.R2	.1e-5 Eigenvectors.dat. .1e-5 dens.out .1e-5 diag.in .1e-5 diag.in.RefGen	I.R3.1e-5 genspace.0 I.R4.1e-5 genspace.1 I.R4.1e-5 genspace.2						

3.4 Specialities

3.4.1 Distinct number of roots in each irrep/multiplicity

If you want to calculate a different number of roots in each irrep or multiplicity you will have to calculate each irrep/multiplicity seperately. If want to get properties from a stepwise calculation you are on your own. You have to call the "dens" and the "prop" programs manually.

4 Tool Programs

Most of the following tool programs are called from within the diesel main driver program. So you usually do not need to interact with them directly.

4.1 Diesel Results (dr)

This program collects the energy results of the calculation within one irrep, performs several extrapolation schemes, and prints the results.

command line: dr [-R=n] [-T=t] [-C=r,c] [-h] [-w]

- 1. -R: restrict output to root n
- 2. -T: restrict output to threshold t
- 3. -C: print row r and column c for each root block only
- 4. -h: surpress table headers
- 5. -w: surpress wave function output

These options are especially useful to grep a certain number out of the output in order to generate a potential surface for example.

4.2 Getting Project Information (getDirInfo)

 ${\tt getDirInfo}$ evaluates the directory structure of a calculation and prints information about it.

For example:

```
Project = c6
Geometry = linear
Basis = C.DUN...5S3P1D
Multiplicity = 3
IrRep = 3
```

4.3 Grepping the Dominating Configurations (grepImp)

command line: grepImp threshold <diag.out.thresh

Print the configurations in the wave function having a

Print the configurations in the wave function having a coefficient greater than threshold.

4.4 Calculation of excitation statistics (confStat)

```
command line: confStat ConfTree.dat ref
Print the excitation levels in tree "ConfTree.dat" relative to configuration in file ref.
```

4.5 Symmetrization of selected configurations (symTree)

command line: symTree "equivalence" ["fort.31"-file]

4.6 Symmetrization of references (refsym) (obsolete)

```
command line: refsym <equivalences irrep sel.in.all-files The file "equivalences" contains equivalent MOs per line. For example if 1 2 3 were \sigma- and (10,20), (11,21) were \pi-orbitals this file would look like: 1 2 3 10 20 11 21
```

The references in "sel.in.all" are transformed to the representation of the degenerated point group. By transforming this orbital representation back to the original non degenerated point group the program completes or discards whole classes of configurations with respect to the full point group.

4.7 Listing the Configuration Tree (1stconfs)

```
command line: lstconfs ConfTree.dat
For example:
lstconfs (Part of DIESEL-MR-CI), Version 1.08pre, 22. Jan 1999
intern-0: 125
intern-1: 10
intern-2: 3
number of reference configurations
                                            : 112
number of CSFs from reference configurations: 216
total number of configurations
                                            : 138
total number of CSFs
                                             : 254
         2 38 58 1-3 39-40 59-60 83-85 121-122 141-142
  ref.
         2 38 58 1-3 39-40 59 83-85 121-123 141-142
  ref.
 ref.
         2 38 58 1-3 39-40 59 83-85 121-122 141-143
 ref.
         2 38 58 1-3 39 59-60 83-85 121-123 141-142
         2 38 58 1-3 39 59-60 83-85 121-122 141-143
```

4.8 Set Operations (setops)

The program calculates merge, intersection or difference sets of given configurations and writes them to the standard output in tree format.

```
command line: setops -c|s|t -m|i|d file1 file2 ...
```

- 1. -c: configurations in plain format
- 2. -s: configurations to be read from selector input
- 3. -t: configurations in tree format (as produced by the selector)
- 1. -m: perform merge
- 2. -i: perform intersection
- 3. -d: perform difference

4.9 Fort.31 File Format Conversion (f31endian)

The program tt f31endian is capable of converting the "fort.31" integral file format between little (e. g. Intel, Transputer, VAX) and big endian (e. g. RISC, HP, IBM, Sun) notation.

command line: f31endian 12b|b21 old|new|tradpt input-filename output-filename

- 1. l2b: little \rightarrow big endian conversion
- 2. b2l: big \rightarrow little endian conversion
- 1. old: fort.31 format from the HONDO program suite
- 2. new: fort.31 format from the MOLCAS program suite
- 3. tradpt: fort.31 format from the TRADPT program

4.10 One Electron Density Matrices (dens)

The program dens calculates the (transition) one electron density matrices. It depends on the configuration tree and the eigenvector files from a previous MR-CI calculation.

command line:

dens motra-input-file Thresh

#Lstate1[-#LstateN], all Ldir [#Rstate1[-#RstateM], all [Rdir]] state means the nth state calculated in an MR-CI calculation. Arguments in square brackets are optional. If missing they default to corresponding arguments given first. The output is written to a file "Density.dat".

4.11 Natural Orbitals (natorb)

The program natorb calculates natural orbitals from one electron density matrices.

command line:

natorb DensityMatrix1... [-weight w1...] <InputOrbitals >OutputOrbitals Several density matrices may be weighted by the option *weight*. The input and output orbitals are in MOLCAS format.

4.12 Properties (prop)

The program prop calculates one electron operator properties based on the one electron density matrices generated with the program described in 4.10 and on the one electron integral file (ONEINT) generated by the MOLCAS program package. The result is written to stdout.

command line:

 $\begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10$

```
operator: { "Mltpl1", "Kinetic", "OneHam" }
component: { 1, 2, ... }
IntegralPath: path to MOLCAS ONEINT File
OrbitalPath: path to MOLCAS orbitals file (e.g. "SCFORB", "RASORB")
DensityPath: path to CI density matrix(ces) (generated with "dens")
```

4.12.1 Driver to calculate and nicely print several Properties (prettyProp)

The program prettyProp is a driver for the prop-program. calculates one electron operator properties based on the one electron density matrices generated with the program described in 4.10 and on the one electron integral file (ONEINT) generated by the MOLCAS program package. The result is written to stdout.

command line:

A SYTAX RULES 39

A Sytax Rules

Keywords are not case sensitive.

A.1 Common

```
statement
              ::=
                    comment | assignment | separator;
   comment
                    # text newline;
                    ws = ws;
          eq
              ::=
     confSet
              ::=
                   \{ [conf \dots conf] \};
                    { floatnum ... floatnum };
    floatSet
              ::=
                    { numEnum };
    numSet
              ::=
verbositySet
              ::=
                    { [verbosityKey ... verbosityKey] };
                    numEnum separator;
       conf
              ::=
  numEnum
                    [numRange \ [(ws\ numRange) \dots (ws\ numRange)];
              ::=
 numRange
                    num [-num];
                    ; | newline;
   separator
              ::=
    newline
                    n;
              ::=
                    char ... char;
        text
              ::=
                    alpha [alphanum ... alphanum];
      name
       char
              ::=
                    any printable character;
                    [+|-| [digit ... digit] . [digit ... digit] [e|E [-|+] num];
   floatnum
              ::=
       num
              ::=
                    digit [\dots digit];
  alphanum
              ::=
                    alpha \mid digit;
                    A | ... | Z | a | ... | z;
       alpha
              ::=
                    0 | ... | 9;
       digit
              ::=
                    yes | no;
        bool
         ws
              ::=
                    blank [... blank];
       blank
                    ::=
                    Input | Integrals | MOs | RefGuess SGA | | IterationBlocks |
verbosityKey
              ::=
                      RefMat | RefMatEigenValues | RefMatEigenVectors |
                      IterationBlocks | WaveFunction | SelectionPerRoot |
                      CacheStatistics;
```

A SYTAX RULES 40

A.2 Selector

 $Selector ext{-}Input$::=statement ... statement; as signment $nameAssign \mid keyAssign \mid boolAssign$::= $\mid numAssign \mid floatAssign \mid setAssign;$ numSetAssign | confSetAssign; setAssign::=nameAssignKeywords eq name separator; nameAssign::=keyAssignFileFormatAssign; ::=boolAssignboolAssignKeywords eq bool separator; ::=numAssignnumAssignKeywords eq num separator; ::=floatAssignKeywords eq foatnum separator; floatAssign::= $MOIntegralFileFormatAssign\ eq$ FileFormatAssign::= $Fort31 Record Format New \mid Fort31 Record Format Old$ separator; numSetAssignKeywords eq numSet separator; numSetAssign::=ConfSetAssignnumSetAssignKeywords eq confSet separator; ::=bool As sign KeywordsselectInternal; ::= NumberOfElectrons | ExcitationLevel | Multiplicity | IrRep; numAssignKeywordsfloat Assign KeywordsSelectionThreshold; ::=MOIntegralFilename; name Assign Keywords::=MOIntegral File Format AssignMOIntegralFileFormat; ::=Roots | selectNthExcitation; numSetAssignKeywords::=confSetAssignKeywordsRefConfs | PTRefConfs; ::=

A.3 Diagonalisator

diag Verb ::= Input | MOs | Spin | Integrals |
RefMat | RefEigs | RefVectors |
IterBlocks | Wave | NewConfs;

A.4 Reference Selection

RefSelMode ConfThresh | ConfSum

B CITATION 41

Citation \mathbf{B}

Please cite this program package as: M. Hanrath, B. Engels: "New algorithms for an individually selecting MR-CI program", Chemical Physics, **255** (1997), 192-202.