Spark ML Lib

Marco Milanesio

UCA - MSc DATA SCIENCE 2019

The ML problem

- from Data to Real (exploitable) knowledge
 - is this email spam or not?
 - are estate prices related to pollution?
 - is there a face in the picture?
- Problem: knowledge is not concrete
- Solution: mine the data

Knowledge discovery

- Preprocessing
- Data mining
- Result validation

Preprocessing

- Data cleaning
- Data integration
- Data reduction (i.e., sampling)
- Data transformation (i.e., normalization)

Data mining

- Classification and regression (supervised learning)
- Clustering (unsupervised learning)
- Frequent patterns
- Outliers detection

Result validation

- Evaluate the performance of a model
- Depends on application requirements
- Multiple "scores"
 - RMSE
 - R²
 - accuracy
 - ROC
 - ...

Supervised learning

- Right answers are given
- Training data is labeled
- A model is prepared through a training process...
- ... up until a certain level of accuracy

Supervised learning

- *N* training examples: $(x_1, y_1), \ldots, (x_n, y_n)$
- $x_i = (x_{i1}, x_{i2}, \dots, x_{in})$ is the **feature vector** of the i^{th} sample
- y_i is the i^{th} feature vector **label**
- A learning algorithm seeks $y_i = f(X_i)$

Classification vs. Regression

- Classification → labels
- Regression → continuous values

In Spark

- Linear models
- Decision trees
- (Naive Bayes models)

Linear Models

- Training dataset: $(x_1, y_1), \dots, (x_n, y_n)$
- $x_i = (x_{i1}, x_{i2}, \dots, x_{in})$
- Model the target as a function of a linear predictor applied to the input variables: y_i = g(w^Tx_i)

• e.g.,
$$y_i = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_n x_{in}$$

Loss function:

$$f(\mathbf{w}) = \sum_{i=1}^{n} L(g(\mathbf{w}^{T} x_{i}), y_{i})$$

Optimization problem

$$\min_{\mathbf{w}\in R^m} f(\mathbf{w})$$

Linear Regression

•
$$g(\mathbf{w}^T x_i) = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_n x_{in}$$

RMSE:

$$\frac{1}{2}(\mathbf{w}^T x_i - y_i)^2$$

Gradient descent

Classification (Logistic Regression

Binary classification: outputs [0, 1]

•

$$g(\mathbf{w}^T x_i) = \frac{1}{1 + e^{-\mathbf{w}^T x}}$$

- sigmoid function
- if $g(\mathbf{w}^T x_i) > 0.5$ then $y_i = 1$ else $y_i = 0$

Decision Tree

- Recursive binary partitioning of the feature space
- Greedy algorithm:
 - Find the best split condition (impurity measure)
 - how well two classes are separated
 - in Spark: variance (regression); gini and entropy (classification)
 - Stops when no improvement is possible
 - minInfoGain, minInstancesPerNode, maxDepth, ...

Random Forest

- Train a set of decision trees separately
- Training done in parallel
- Inject randomness into training process to diversify all trees

Clustering

- Clustering is a technique for finding similarity groups (clusters)
- It groups similar data in one cluster and different data into different clusters
- No class values denoting an a-priori grouping is given

- K number of clusters (given)
- One mean per cluster
- Initialization: pick K centers at random
- Iteration: assign each point to the nearest mean and move mean to center of its cluster
- Stop: difference to the center.

Model evaluation: Classification

- For each data point:
 - True output
 - model-generated prediction
- Four categories:
 - True positive (TP): label = 1; prediction = 1
 - True negative (TN): label = 0; prediction = 0
 - False positive (FP): label = 0; prediction = 1
 - False negative (FN): *label* = 1; *prediction* = 0

Model evaluation: Classification

- Precision (positive predictive value): the fraction of retrieved instances that are relevant
- Recall (sensitivity): the fraction of relevant instances that are retrieved
- F-measure:

$$(1 + \beta^2) \frac{precision * recall}{\beta^2 * precision + recall}$$

Model evaluation: Regression

- MSE
- RMSE
- MAE
- .