

Department of Mathematics and Natural Sciences MAT120 Lab - Integral Calculus and Differential Equations

Lab Assignment

Copying codes from any websites or from other classmates will not be tolerated. Plagiarized submissions will receive zero points, regardless of the circumstances. Please create a Google Colab file and rename it as nickname_id_section.ipynb. Insert a text cell at the top of your notebook and include your name, ID, and section. Download your notebook file and submit it via the provided Google Form. (**Total marks** = 20)

Submission deadline: December 04, 2023 (11:59 pm)

1. Consider the following function

$$f(x) = \begin{cases} 2\sin(x + \frac{\pi}{6}), & x \ge 0\\ e^{x\sqrt{3}}, & x \le 0 \end{cases}$$

- (a) Plot both f(x) and f'(x) for $x \in [-1, 1]$. Include enough points so that the curve you plot appears smooth. Use different colors and separate label to represent the function and its derivative respectively. Label the axes x and y, and use grid. You must use Sympy and Matplotlib. Manual differentiation is not allowed.
- (b) Using numerical method (trapezoid or rectangular rule), evaluate the following integral accurate upto 3 decimal points. (You cannot use SymPy or SciPy)

$$\int_{-1}^{1} f(x)dx$$

(5)

(7)

(5)

2. Consider the differential equation:

$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = 0$$

Initial condition: y''(0) = -1, y'(0) = -3, y(0) = 7.

- (a) Solve this differential equation using Euler's method and plot x vs y. (Use of SymPy or SciPy is prohibited. You can use Matplotlib and Numpy)
- (b) Using SymPy solve the differential equation. (3)