TABLE 9.2 LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

	T	 	T
Transform pair	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	u(t)	$\frac{1}{s}$	$\Re e\{s\} > 0$
3	-u(-t)	$\frac{1}{s}$	Re{s} < 0
4	$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	(Re{s} > 0
5	$-\frac{t^{n-1}}{(n'-1)!}u(-t)$	$\frac{1}{s^n}$	$\Re e\{s\} < 0$
6	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re\{s\} > -\alpha$
7	$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re\{s\} < -\alpha$
8	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re\{s\} > -\alpha$
9	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re\{s\} < -\alpha$
10	$\delta(t-T)$	e^{-sT}	All s
11	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\Re e\{s\} > 0$
12	$[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\Re\{s\}>0$
13	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re\{s\} > -\alpha$
14 .	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re\{s\} > -\alpha$
15	$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s ⁿ	All s
16-	$u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{}$	$\frac{1}{s^n}$	$\Re \{s\} > 0$
	n times		

TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM

Section	Property,	Signal	Laplace Transform	ROC
		x(t)	X(s)	R
		$x_1(t)$	$X_1(s)$	R_1
		$x_2(t)$	$X_2(s)$	R_2
9.5.1	Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
9.5.2	Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
9.5.3	Shifting in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)
9.5.4	Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)
9.5.5	Conjugation	x*(t)	X*(s*)	R
9.5.6	Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
9.5.7	Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R
9.5.8	Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R
9.5.9	Integration in the Time Domain	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re e\{s\} > 0\}$

Initial- and Final-Value Theorems

9.5.10 If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t = 0, then $x(0^+) = \lim sX(s)$

If x(t) = 0 for t < 0 and x(t) has a finite limit as $t \longrightarrow \infty$, then $\lim_{t \to \infty} x(t) = \lim_{s \to \infty} sX(s)$

TABLE 9.3 PROPERTIES OF THE UNILATERAL LAPLACE TRANSFORM

Property	Signal	Unilateral Laplace Transform	
	$x(t) \\ x_1(t) \\ x_2(t)$	$\mathfrak{X}(s)$ $\mathfrak{X}_1(s)$ $\mathfrak{X}_2(s)$	
Linearity	$ax_1(t) + bx_2(t)$	$a\mathfrak{X}_1(s) + b\mathfrak{X}_2(s)$	
Shifting in the s-domain	$e^{s_0t}x(t)$	$\mathfrak{X}(s-s_0)$	
Time scaling	x(at), a > 0	$\frac{1}{a} \mathfrak{X} \left(\frac{s}{a} \right)$	
Conjugation	x * (t)	**(s*)	
Convolution (assuming that $x_1(t)$ and $x_2(t)$ are identically zero for $t < 0$)	$x_1(t) * x_2(t)$	$\mathfrak{X}_1(s)\mathfrak{X}_2(s)$	
Differentiation in the time domain	$\frac{d}{dt}x(t)$	$s\mathfrak{X}(s) - x(0^-)$	
Differentiation in the s-domain	-tx(t)	$\frac{d}{ds}\mathfrak{X}(s)$	
Integration in the time domain	$\int_{0}^{t} x(\tau) d\tau$	$\frac{1}{s} \mathfrak{X}(s)$	

Initial- and Final-Value Theorems

If x(t) contains no impulses or higher-order singularities at t = 0, then

$$x(0^+) = \lim_{s \to \infty} s \, \mathfrak{X}(s)$$
$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} s \, \mathfrak{X}(s)$$