From Paraphrase Database to Compositional Paraphrase Model and Back

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu *Transactions of the Association for Computational Linguistics*, vol. 3, pp. 345-358, 2015.

(To be presented at EMNLP 2015)

橋本和真

東京大学・鶴岡研究室 博士課程1年

この論文の特徴

- 二つの言い換えデータセットの構築
 - Annotated-PPDB
 - 言い換えデータベースPPDBの一部にアノテーション
 - ML-Paraphrase
 - バイグラムの意味的類似度を測るデータセットに再 アノテーション
- 言い換えデータセットでの意味構成モデルの学習と評価
 - 先行研究の手法を上回る結果
- なぜこの論文か?
 - 今後の研究の役に立ちそうだから

Paraphrase Database: PPDB

- 大規模なパラレルコーパスから自動構築された言い換え データベース (Ganitkevitch et al., 2013)
 - 特定のフレーズがデータベースに無いと利用できない
 - 扱いたいフレーズの数だけパラメータが増加する
 - 自動構築なので必ずしも質が良いとは限らない

PPDBの一部にアノテーションして、 質の高い言い換えデータセットを構築 & 意味構成のモデルを学習・評価

データセット1: Annotated-PPDB

- PPDBの一部を人手でアノテーション (具体的な手順は論文を参照)
 - 単語の重複度などでフィルタリング
 - フレーズの長さの制限
 - Amazon Mechanical Turkによるアノテーション

データセット2: ML-Paraphrase

- MLデータセット (Mitchell and Lapata, 2010)
 - 形容詞-名詞、動詞-目的語、名詞-名詞からなるバイグ ラムの意味的類似度をアノテーションしたもの
- このデータセットでの意味的類似度とは?
 - 同じ意味 (言い換え) だけでなく、トピック的な類似性
 - 例) television set と television programme
 - 例) older man と elderly woman

「言い換え」に着目した類似度スコア を著者の二人が改めて付与

言い換えモデル:意味構成関数

- Recursive Neural Networks (RNNs) (Socher et al., 2012)
 - フレーズを句構造解析 (二分木構造)
 - リーフノード (単語) は単語ベクトル
 - それ以外は子ノードのベクトルから再帰的に計算:

重み行列 バイアス項
$$g(p) = f(W[g(c_1);g(c_2)] + b)$$
 親ノードのベクトル 子ノードのベクトル

学習パラメータ: RNNの重み行列とバイアス、単語ベクトル

言い換えモデル:目的関数と学習

- 言い換えデータベースを用いた言い換えモデルの学習
 - ミニバッチAdaGrad (Duchi et al., 2011) で学習

言い換えモデル: 負例サンプリング

ミニバッチ中に存在するフレーズの中で、対象フレーズと 最も類似度が高いフレーズを負例として選択

$$\min_{W,b,W_w} \frac{1}{|X|} \left(\sum_{\langle x_1, x_2 \rangle \in X} \\
\max(0, \delta - g(x_1) \cdot g(x_2) + g(x_1) \cdot g(t_1)) \\
+ \max(0, \delta - g(x_1) \cdot g(x_2) + g(x_2) \cdot g(t_2)) \right) \\
+ \lambda_W(\|W\|^2 + \|b\|^2) + \lambda_{W_w} \|W_{w_{initial}} - W_w\|^2$$

単語ベクトルの事前学習

- 全ての実験において、Skip-gram (Mikolov et al., 2013) を English Wikipediaで学習した単語ベクトルを使用
- Skip-gramベクトルの再学習
 - PPDBのXLサイズから抽出した単語レベルの言い換え データを用いて再学習
 - PARAGRAMベクトル

PARAGRAMベクトルで初期化して以降の意味構成関数の学習を行う

実験1:バイグラム言い換えの評価

- PPDBのXLサイズから学習データを抽出
 - 形容詞-名詞 (JN): 133,997ペア
 - 動詞-目的語 (VN): 62,640ペア
 - 名詞-名詞 (NN): 35,601ペア
- 単語・フレーズのベクトルの次元: 25
- 評価
 - MLとML-Paraphrase
 - ・人手でフレーズペアにつけた意味的類似度・言い換え度合のスコアと、フレーズベクトルの類似度スコアのスピアマン相関係数

実験1:バイグラム言い換えの評価

- 自身の手法 (Hashimoto et al., 2014) との比較
 - MLでは同程度の性能
 - ML-ParaphraseではPARAGRAMが高性能
 - 言い換えタスクでは、言い換えの教師データが有効
 - Hashimoto et al. (2014) ではラベル無しコーパス のみ利用

Model			Mitchell and Lapata (2010) Bigrams				ML-Paraphrase			
word vectors	n	comp.	JN	NN	VN	Avg	JN	NN	VN	Avg
skip-gram	25	+	0.36	0.44	0.36	0.39	0.32	0.35	0.42	0.36
PARAGRAM	25	+	0.44*	0.34	0.48*	0.42	0.50*	0.29	0.58*‡	0.46
PARAGRAM	25	RNN	0.51*†	0.40†	0.50*‡	0.47	0.57*‡	0.44†	0.55*	0.52
Hashimoto et al. (2014)			0.49	0.45	0.46	0.47	0.38	0.39	0.45	0.41
Mitchell and Lapata (2010)			0.46	0.49	0.38	0.44	-	-	-	-
Human				5.	-	170	0.87	0.64	0.73	0.75

実験2: Annotated-PPDBでの評価

- PPDB中のデータの質の判別をするタスク
 - PPDBで学習した言い換えモデルは、質の良い言い換えペアとそうでないペアを判別できるか?
 - Annotated-PPDBのスコアとの相関が高いか?
- PPDBのXLサイズから学習データを抽出
 - 長さ3, 4, 5以上のフレーズを各20,000ペアずつ

Mo	del			
word vectors	n	comp.	Annotated-PPDB	
skip-gram	25	+	0.20	
PARAGRAM	25	+	0.32*	
PARAGRAM	25	RNN	0.40*†‡	
Ganitkevitch	et al.	0.25		
word overlap	(stric	0.26		
word overlap	0.20			
PPDB+SVR		0.33		

まとめ

- PPDBを利用して短いフレーズの言い換え表現を意味構成モデルにより学習
 - PPDBの有効性を確認

- 今後の方向性
 - フレーズベクトルの距離尺度の再考
 - フレーズ構造のほかに係り受け構造の利用
 - より長い文のタスクにおける短い言い換え表現モデルの活用