

HOCHSCHULE LUZERN

Technik & Architektur

Abteilung Maschinentechnik Labor für Thermische Energietechnik

EnLab Energie-Labor Entdeckungsreise in die Welt der Energietechnik

Basic Erweiterungsmodul / Postenlauf

Blockheizkraftwerk (BHKW)

Gruppennummer:

Datum des Projektes:

Namen:

Vorbereitungsfragen zum Postenlauf BHKW

	lgenden Fragen zum Po nmenden bearbeitet werd		müssen	vor der Labo	rdurchführung	von allen
1.	Zählen Sie drei Möglic Anlagen aufgebaut sein		welchen	Komponenten	Wärme-Kraft-Ko	opplungs-
2.	Im BHKW des Labors Heizkreislauf in einem Wärmetauscher und be Vergessen Sie nicht, ein	Wärmetauscher z schriften Sie einde	u erwär eutig die	men. Skizziere ein- und austre	n Sie schematis	sch einen
3.	Skizzierend Sie zu den bezeichnen Sie die ein- die prozentualen Leistur	und austretenden				
		Gesamtes				

4. Was versteht man unter dem Gesamtwirkungsgrad einer WKK-Anlage und aus welchen Teilen setzt er sich zusammen?

BHKW

Hintergrundinformation /1/:

Im Jahr 2007 wurden in der Schweiz insgesamt 65'916 GWh Elektrizität erzeugt. Davon stammen 3'244 GWh, also knapp 5 % aus den Generatoren von thermischen Stromerzeugern (Nutzung fossiler oder biogener Energieträger). Werden mindestens 5 % der eingesetzten Energie in Elektrizität umgewandelt und erreicht der Gesamtnutzungsgrad (Wärme und Elektrizität) mindestens 60 %, sprechen wir von Wärmekraftkopplungs-Anlagen (**WKK-Anlagen**).

Technologie-Anteil an der Stromeinspeisung durch WKK-Anlagen in der Schweiz.

Geographische Verteilung der WKK-Anlagen

Leistungsgrössen von BHKWs

Blockheizkraftwerk = Verbrennungsmotor mit Abwärmenutzung

Funktionsprinzip: Nutzung der Wellenleistung zum Antrieb eines Generators und gleichzeitige Nutzung der Abwärmeleistung (oder Speicherung des Warmwassers in einem Behälter für späteren Bezug).

Einsatzmöglichkeit: als Notstromgenerator (in Spitäler, Schulhäuser, Industrie), zur Abdeckung von Spitzenlasten (Stromnetz) in Verbindung mit Speicherung der Heizenergie oder zum Betrieb einer Wärmepumpe /3/.

Daten des Generators: Wirkungsgradkurve des Generators (asynchron 3-Phasen) befindet sich im Anhang

Wärmeübertrager zur Nutzung der Abwärme: Röhrenkessel-Wärmeübertrager mit 1,81 m² Wärmeübertragungsfläche bekannt.

Im Heizwasserkreislauf in der untersuchten Anlage wird anstelle von Wasser ein Wasser/Glykol-Gemisch eingesetzt. Die Dichte ρ und die spezifische Wärmekapazität cp des Wasser/Glykol-Gemischs (bestehend aus 82%v/v Wasser und 18%v/v Propylenglykol) sind abhängig von der Temperatur. Die in dieser Arbeit benötigten Stoffwerte lauten:

Dichte des Gemisches bei 75°C: $\rho_{HW} = 985 \text{ kg/m}^3$

Spez. Wärmekapazität bei 75°C: cp HW = 4110 J/(kg*K)

Der (ideale) Otto-Motor Kreisprozess /4/ + /5/:

Es gibt Zwei- und Vier-Takt-Motoren. Ein Takt besteht jeweils aus einem Kolbenhub bzw. einer halben Kurbelwellenumdrehung. Beim 4-Takt-Ottomotor lassen sich die Zustandsänderungen wie folgt den Arbeitstakten zuordnen (der ideale Motor hat weder Reibungs- noch sonstige Dissipationsverluste):

- 1. Takt = Ansaugen: 0→1
- 2. Takt = Verdichten: (isentrope Kompression) 1→2
- 3. Takt = Arbeitstakt: Wärmezufuhr 2→3 im oberen
 Totpunkt mit anschließender isentroper Expansion 3→4.
 Da sich bei der Wärmezufuhr das Brennraumvolumen
 nicht ändert, handelt es sich um eine isochore Zustandsänderung, daher der Name Gleichraumverbrennung.

idealisierter Vergleichsprozeß ideal cycle for comparison

 4. Takt = Ausblastakt: Durch das Öffnen des Auslassventils expandieren die Abgase im unteren Totpunkt ohne weitere Arbeitsleistung nach außen 4→1 und der Rest wird durch den Kolbenhub 1→0 nach außen geschoben. Dabei wird die im Abgas enthaltene Wärme Q₄₁ (Abgasverlust) an die Umgebung abgegeben.

Der reale Otto-Motor

Luft enthält Stickstoff und ist bei höheren Drücken (ab 10 bar) **kein ideales Gas**. Zudem führt die Verbrennung des Treibstoffes zu einer Veränderung der thermodynamischen Eigenschaften.

Gegenüber dem Vergleichsprozess gibt der reale Prozess im Motor insbesondere deshalb eine geringere Arbeit ab, weil

- das Ansaugen und Ausschieben mit Reibungsverlusten verbunden ist,
- die Verbrennung nicht isochor erfolgt, sondern Zeit erfordert, in der sich die Kurbelwelle weiterdreht. Deshalb erfolgt die Zündung vor dem oberen Totpunkt, und die Verbrennung ist erst nach dem o.T. abgeschlossen. <u>Die Spitze im Diagramm bei 3 wird</u> also nach unten abgerundet.
- ein Teil der durch chemische Reaktion zugeführten Energie ohne Arbeitsleistung durch Wärmeübergang an das Kühlmedium (meist Wasser) abgeführt wird. Der Expansionsverlauf liegt unterhalb des idealen Verlaufes.
- das Auslassventil vor dem unteren Totpunkt geöffnet wird. <u>Die Prozessfläche wird im Punkt 4 nach unten</u> <u>abgerundet.</u>

Das Verhältnis von im Motor freigesetzter zu theoretischer Arbeit des Prozesses wird im Gütegrad ausgedrückt (reale Motoren haben zusätzlich eine mechanische Verlustleistung aus Reibung, Neben- und Hilfsantrieben, die ca. 10 % der Nennleistung betragen kann und den Wirkungsgrad weiter vermindert).

Die Eckdaten des Verbrennungsmotors (MWM Dimag G226 B-4) sind:

Bauart: 4-Takt-Fremdzünder (Otto-Motor) mit Erdgas als Brennstoff

Hubvolumen: $4,156 \ell$

Zylinderzahl: 4

Synchrondrehzahl: 1500 min-1

Regulierung für Lambda = 1

Mech. Nennleistung: 32 kW [Betrieb mit Drosselung für Lebensdauerverlängerung]

Motorkühlung: mit Glykol/Wasser-Gemisch

Einheiten

Bitte rechnen Sie mit den im Symbolverzeichnis angegebenen Einheiten. Wird eine Grösse in einer anderen Einheit erfasst, muss sie umgerechnet werden.

Gebräuchliche Druckeinheiten: $10^5 \text{ N/m}^2 = 1000 \text{ mbar} = 1 \text{ bar}$

 $1 \text{ N/m}^2 = 1 \text{ Pa}$

In den Gasgleichungen **muss immer** die Absoluttemperatur eingesetzt werden:

$$T [in K] = t [in °C] + 273,15$$

Für kalorische (Form von Energie) Grössen wird die Einheit Joule verwendet:

$$1 J = 1 Nm = 1 Ws$$

Symbolverzeichnis

Bezeichnung	Symbol	Einheiten
Elektrische Leistung	P _{elektr}	[W]
Mechanische Leistung (Wellenleistung)	P_{mech} ; P_{Welle}	[W]
Drehzahl der Welle	n	[min-1]
Wärmeleistung	Q	[W]
Umgebungsdruck	p _{umg} ; p _{Barometer}	[mbar=10 ⁻² Pa]
Enthalpiestromänderung	$\dot{m} (h_2 - h_1)$	[W]
Volumenstrom	\dot{V}	[m ³ /s]
Massenstrom	\dot{m}	[kg/s]
Dichte	ρ	[kg/m ³]
Temperatur	t	[°C]
Absoluttemperatur	Т	[K]
Spezifische Wärmekapazität	C _p	[J/(kg*K)]
Wirkungsgrad	η	[-]

Fechnik & Architektur

Lernziele: Sie können

- 1. das Funktionsprinzip eines BHKW erklären und geeignete Anwendungen zuordnen
- 2. Energiebilanzen erstellen, hinsichtlich Quantität und Qualität

Zeitaufwand: 4 Lektionen

Verschaffen Sie sich einen Überblick und teilen Sie sich die zur Verfügung stehende Zeit für folgende Aufgaben gut ein:

<u>Aufgaben</u>:

- 1. Studieren Sie das Anlagenschema, identifizieren Sie die wichtigsten Komponenten und ordnen Sie die für Ihre Untersuchung relevanten Messstellen sowie Messfühler zu.
- 2. Nehmen Sie die Anlage (mit Messdatenerfassung) unter Anleitung in Betrieb und starten Sie die Messung wenn ein stationärer Zustand erreicht ist.
- 4. Erfassen Sie für eine Dauer von mind. 5 min die notwendigen Grössen.
- 5. Werten Sie die Messung sorgfältig aus, stellen Sie ein Energieflussdiagramm zusammen und diskutieren Sie Ihre Ergebnisse mit Ihrem Betreuer.
- 6. Bearbeiten Sie die folgenden Aufgabenblätter so selbstständig wie möglich. Bei Fragen wenden Sie sich an den zuständigen Betreuer.

Abzugeben sind per e-mail (1 x pro Gruppe):

- 1. Ein ausgefülltes Titelblatt
- 2. Beantwortete Vorbereitungsfragen
- 3. Ausgefüllte Arbeitsblätter mit Ihren Messergebnissen

Die Arbeitsblätter werden korrigiert und wenn nötig, bei der Rückgabe, mit Ihnen besprochen.

Literatur:

- /1/ Bundesamt für Energie BFE Sektion Analysen und Perspektiven, September 2008 "Thermische Stromproduktion inklusive Wärmekraftkopplung (WKK) in der Schweiz"
- /2/ Bundesamt für Energie BFE, Abteilung Energieeffizienz und erneuerbare Energien, F. Rognon, November 2008 "Effizientere Nutzung von fossilen Brennstoffen und Reduktion der CO₂-Emissionen bei der Erzeugung von Raumwärme und Elektrizität in der Schweiz"
- /3/ www.bhkw-info.de (Steinborn Innovative Gebäude Energieversorgung)
- /4/ Universität Siegen, Institut für Fluid- und Thermodynamik, Lehrstuhl für Thermodynamik und Verbrennung (www.uni-siegen.de/fb11/thv/lehre/ss08/skript/td2-kreisprozesse2.pdf)
- /5/ www.wikipedia.com Stichwort: Otto Kreisprozess

Arbeitsblätter

<u>Arbeitsblätter</u>

Messprotokoll Blockheizkraftwerk

1 mm Hg = 133,3224 Pa

		Ablesung		Korrekturen		Umrechnung	
Datum	Zeit	p _{Barometer}	t_{Umgebung}	Temp. Korr.	andere Korr.	p _{Barometer}	PBarometer
yyyy.mm.dd	hh.mm	[mm Hg]	[°C]	[mmHg]	[mm Hg]	[mm Hg]	[Pa]
				-	+ 0,33		

Energieflussbild

Stellen Sie die ermittelten Leistungen in einem Energieflussbild massstäblich dar.

Arbeitsblätter

In den Auswertungen verwendete Indizes:

G Gas (Erdgas)

L Luft

N Norm

(a) absolut

(g) relativ

Volumenstrom vom Erdgas (\dot{V}_G)

Durchschnittlicher "Erdgas-Volumenstrom" über die Messperiode:

$$\dot{V}_G =$$

Normvolumenstrom vom Erdgas

$$\begin{split} \dot{V}_{GN} &= \dot{V}_G \cdot \frac{T_N}{T_G} \cdot \frac{p_{G(a)}}{p_N} \\ \text{mit} & p_{G(a)} = p_{G(g)} + p_{Umg} \end{split}$$

Physikalischer Normzustand:

$$T_N = 273,15 K$$

 $p_N = 1,01325 bar(a)$

Normvolumenstrom von angesaugter Luft

Bemerkung: Luftvolumenstrom bei $\lambda = 1$ (Lambda = 1) (d.h. bei einer stöchiometrischer Verbrennung) wird "minimaler Luftbedarf" genannt.

Aus den Erdgasdaten
$$\frac{\dot{V}_{Lmin}}{\dot{V}_{GN}} =$$

Normvolumenstrom von angesaugter Luft:

$$\dot{V}_{\scriptscriptstyle LN} =$$

Leistungs- und Wirkungsgradberechnungen

Mit dem Brennstoff zugeführte Thermische Leistung

(aus Gasvolumenstrom und Brennwert)

$$\dot{H}_{\textit{Brennstoff}} = \dot{V}_{\textit{GN}} \cdot H_{\textit{O},N}$$

mit $H_{O,N}$ aus Erdgasdaten:

Elektrische Generatorleistung

Mittelwert über die Messperiode

$$P_{elektr} =$$

Wellenleistung

(aus elektrischer Leistung und Generatorwirkungsgrad η_{elektr} aus Kennlinie des Generators)

$$P_{Welle} = \frac{P_{elektr}}{\eta_{elektr}}$$

Effektiver Wirkungsgrad des Gasmotors

$$\eta_{Gasmotor} = \frac{P_{Welle}}{\dot{H}_{Brennstoff}}$$

Heizleistung (= Nutzwärme)

(aus Temperaturdifferenz und Durchfluss)

Durchschnittlicher "Heizwasser-Volumenstrom" über die Messperiode:

Mittelwert der Temperatur "Heizwasser-Vorlauf" über die Messperiode:

Mittelwert der Temperatur "Heizwasser-Rücklauf" über die Messperiode:

Dichte ρ_{HW} des Wasserglykols bei mittlerer Heizwassertemperatur:

Spezifische Wärmekapazität $c_{p \text{ HW}}$ des Wasserglykols bei mittlerer Heizwassertemperatur:

Heizleistung

Berechnung gemäss Pkt.2 der Vorbereitungsfragen.

$$\dot{Q}_{\scriptscriptstyle HW} =$$

Wirkungsgrad der Stromerzeugung

$$\eta_{Stromerzeugung} = \frac{P_{elektr}}{\dot{H}_{Brennstoff}}$$

Nutzungsgrad der Anlage

$$\eta_{\mathit{Nutz}} = \frac{\dot{Q}_{\mathit{HW}} + P_{\mathit{elektr}}}{\dot{H}_{\mathit{Brennstoff}}}$$

Bedienungsanleitung für BHKW (Speicher sind leer)

	Hauptschalter rechter Steuerschrank auf I stellen			
	Messtechnik einschalten			
	Computer und Messprogramm starten			
	Hydraulische Schaltung mittels Kugelhahnen einstellen			
	Schalter Speicherladepumpe auf 1 stellen			
	Hauptschalter linker Steuerschrank auf EIN			
	Schalter Kühlwasserpumpe auf HAND stellen			
	Voltmeter auf L1L2 stellen			
	Kugelhahn Ergasversorgung öffnen			
	Störung BHKW (falls erleuchtet) mit der RESET taste quittieren			
	Mit Laufbefehl "Hand" BHKW starten; es vergehen einige Sekunden bis die Maschine startet			
	Während Betrieb relevante Daten regelmässig überwachen			
ВІ	HKW abstellen			
	Daten speichern			
	Messtechnik und Computer abstellen			
	Schalter Laufbefehl auf 0 stellen			
_ ₩2	arten			
	BHKW fährt über einige Minuten auf Leerlauf und stellt bei ca. 3 kW			
	automatisch ab			
	Kugelhahn Ergasversorgung schliessen			
	Motor-Kühlwasserpumpe noch ca. 10 Minuten laufen lassen um Restwärme abzuführen			
	Wenn Versuch definitiv beendet ist, beide Hauptschalter auf 0 stellen.			