Fondamenti di controlli automatici Un goliardico riassunto

Ollari Dmitri

13 giugno 2023

Indice

	11 0	01101 011	o attivo di un processo	4
	1.1	Gener	alità sul concetto di sistema	4
	1.2	Contro	ollo ad azione diretta e in retroazione	•
		1.2.1	Controllo adazione diretta	
		1.2.2	Controllo in retroazione	•
		1.2.3	Confonto tra feedforward e feedback	
Ι	₄is	sta	delle definizioni	
1	Defi	nizione	di sistema	6
$\frac{1}{2}$			di sistema	6 4 6 4
_	Defi	nizione		6 4 6 4 6 4
2	Defi Defi	nizione nizione	di segnale	6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4
3	Defi Defi Defi	nizione nizione nizione	di segnale	6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4
2 3 4	Defi Defi Defi Defi	nizione nizione nizione nizione	di segnale	
2 3 4 5	Defi Defi Defi Defi Defi	nizione nizione nizione nizione nizione	di segnale	

Capitolo 1

Il controllo attivo di un processo

Questa materia si basa sulal premessa che una variabile controllata deve essere uguale a una variabile di riferimento.

Se il segnale di riferimento è costante, il problema è di **regolazione**, invece, se il segnale di riferimento è variabile, il problema è di **asservimento**.

1.1 Generalità sul concetto di sistema

Teorema (Sistema). Un sistema è un insieme di componenti che interagiscono tra loro, in cui si possono distinguere grandezze soggette a variare nel tempo (variabili).

Teorema (Segnale). Le funzioni che rappresentano l'andamento delle variabili nel tempo si dicono segnali.

Una carrellata di termini:

- Variabili controlate(o regolate)
- Variabili di riferimento
- Variabili manipolabili(o di controllo)
- Variabili non manipolabili
- Variabili osservate(o misurate)

Comunque la distinzione principale che si fa sulle variabili riguarda la lor odipendenza o indipendenza, cioè se sono variabili di ingresso o di uscita.

Teorema (Modello matematico). Si dice modello matematico (o m.m.) la descrizione di un sistema(con equazioni parametriche e parametri) che permette di ottenere le variabili si uscita

dalle variabili d'ingresso e di capire quali siano queste variabili d'ingresso.

Esisiotno due tipi di modelli matematici:

- Sistemi multi-input multi-output (MIMO)
- Sistemi single-input single-output (SISO)

Teorema (Sistema statico). Un sistema è detto statico (o puramente algebrico) se le variabili di uscita dipendono solo dalle variabili di ingresso al medesimo tempo t.

$$[\exists f: \Re \to \Re \ni y(t) = f(u(t)) \quad \forall t \in \Re]$$
(1.1)

Teorema (Sistema dinamico). Un sistema è detto dinamico quando l'uscita al tempo t dipende dal segnale del'ingresso sull'intervallo $]-\infty,t]$.

Quando si parla di sistemi dinamici, si deve introdurre i concetti di:

- Sistema in quiete(o in equilibrio)
- Sistema in condizioni asintotiche(o stazionarie)
- Sistema a regime

Teorema (Insieme dei behaviors). L'insieme dei behaviors di un sistema è l'insieme delle coppie di segnali ingresso-uscita che possono essere ottenute dal sistema.

Teorema (Linearità). Un sistema si dice lineare quando soddisfa la proprietà di sovrapposizione degli effetti:

Teorema (Stazionarietà). Un sistema si dice stazionario (invariante nel tempo) quando la risposta dell'uscita non dipende dal tempo.

1.2 Controllo ad azione diretta e in retroazione

1.2.1 Controllo adazione diretta

Si ricade nel caso di feedfarward quando l'azione di comando dipende da:

- obiettivo perseguito
- informazioni sul modello del sistema controllato
- disturbi

1.2.2 Controllo in retroazione

Il controllo feedback si ha quando l'azione di comando dipende da:

- Obiettivo perseguito
- Informazioni su modello del sistema di controllo
- Disturbi
- Variabili controllate

1.2.3 Confonto tra feedforward e feedback

Figura 1.1: Esempio controllo ad azione diretta

Per ottenere il valore dell'uscita:

$$y = Pu$$

$$= P(C_d r)$$

$$= PC_d r$$

Dall'obiettivo so che:

$$r(t) \equiv y(t) \Rightarrow C_d = \frac{1}{P}$$

Figura 1.2: Esempio controllo in retroazione

In questo caso l'uscita è data da:

$$y = \frac{PC_r}{1 + PC_r} \cdot r$$

Si capisce che l'obiettivo non è raggiungibile e si opta per un obiettivo approssimato:

$$y(t) \cong r(t) \Rightarrow C_r >> \frac{1}{P}$$