# 1 数论初步

1.1

证明.

(1) 
$$\forall x | a, x | b \begin{cases} x > 0 & \xrightarrow{a > 0, x | a} x \le a \\ x < 0 & \xrightarrow{a > 0} x < a \end{cases} \Rightarrow x < a \xrightarrow{a | a, a | b} (a, b) = a.$$

(2) 
$$\begin{cases} (a,b)|(a,b),\ (a,b)|b \\ \forall \ x|(a,b),\ x|b,\ \bar{n}x \leq (a,b). \end{cases} \Rightarrow ((a,b),b) = (a,b).$$

1.2

证明.

(1) 不妨假设  $\exists n > 0, (n, n+1) = d > 1$ 

$$(n, n+1) = d \Rightarrow \exists x, y \in \mathbb{Z}, \ n = xd, n+1 = yd$$
  
  $\Rightarrow 1 = (n+1) - n = (y-x)d > 0$   
  $\Rightarrow y > x, \ (y-x)d \ge d > 1$   
  $\Rightarrow$ 矛盾,假设不成立.

(2) 可取 (n,k), 证明如下

由推论 2.3, 取
$$x = 1$$
,  $a = n$ ,  $b = k$ , 有 $(n, k) = (n, n + k)$ .

# 1.3

(1) (314,159) = 1,有解。由辗转相除法

$$314 = 159 \cdot 1 + 155$$
$$159 = 155 \cdot 1 + 4$$
$$155 = 4 \cdot 38 + 3$$
$$4 = 3 \cdot 1 + 1$$

即

$$1 = 4 - 3 \cdot 1$$

$$= 4 - (155 - 4 \cdot 38) \cdot 1$$

$$= (159 - 155 \cdot 1) \cdot 39 - 155$$

$$= 159 \cdot 39 - 155 \cdot 40$$

$$= 159 \cdot 39 - (314 - 159 \cdot 1) \cdot 40$$

$$= 159 \cdot 79 - 314 \cdot 40.$$

 $\mathbb{P} x = -40, y = 79.$ 

(2) (3141,1592) = 1,有解。由辗转相除法

$$3141 = 1592 \cdot 1 + 1549$$
  
 $1592 = 1549 \cdot 1 + 43$   
 $1549 = 43 \cdot 36 + 1$ 

即

$$1 = 1549 - 43 \cdot 36$$

$$= 1549 - (1592 - 1549 \cdot 1) \cdot 36$$

$$= 1549 \cdot 37 - 1592 \cdot 36$$

$$= (3141 - 1592 \cdot 1) \cdot 37 - 1592 \cdot 36$$

$$= 3141 \cdot 37 - 1592 \cdot 73.$$

 $\mathbb{P} x = 37, y = -73.$ 

#### 1.4

证明.

(0) 
$$n = 1, n^3 - n = 0$$
,  $f(0) = 6 \cdot 0, 6 | (n^3 - n)$ .

(1) 
$$n=2, n^3-n=0$$
,  $f = 6 \cdot 1, 6 | (n^3-n)$ .

(2) 假设  $n = k, k \in \mathbb{N}$  时,有  $6|(k^3 - k)$ ,则 n = k + 1 时有

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 2k$$
  
=  $(k^3 - k) + 3k(k+1)$ 

显然有  $6|(k^3-k)$ , 下证 6|3k(k+1)

$$1^{\circ}$$
  $k = 1, 3k(k+1) = 6$ ,有  $6 = 6 \cdot 1, 6 \mid 3k(k+1) \mid$ 

 $2^{\circ}$  若 6|3k(k+1),则

$$3(k+1)(k+2) = 3k(k+1) + 6(k+1) \implies 6|3(k+1)(k+2)|$$

即证

$$\forall k \in \mathbb{N} \ 6|3k(k+1) \implies 6|(k+1)^3 - (k+1)$$

综上, 即证

$$\forall n > 0, 6 | (n^3 - n).$$

## 1.5

证明.

$$\begin{cases} 3^4 \equiv 1 \pmod{10} & \Rightarrow 3^{4n} \equiv 1 \pmod{10} \\ & \Rightarrow 3^{m+4n} \equiv (-1) \pmod{10}. \end{cases}$$
$$10|(3^m+1) \qquad \Rightarrow 3^m \equiv (-1) \pmod{10}$$

即证

$$10|(3^{m+4n}+1)$$

1.6

(1)

$$2345 = 5 \cdot 7 \cdot 67$$

(2)

$$3456 = 2 \cdot 3 \cdot 3 \cdot 3$$

1.7

证明. 不妨假设  $\exists n > 0$ , 使得  $n(n+1) = d^2$  为平方数,则有

$$n^{2} < n(n+1) = d^{2} < (n+1)^{2} \implies n < d < n+1$$

不存在相邻整数间的整数, d 不存在, 假设不成立, 即证.

1.8

证明.  $n = 5! + 1 = 2 \cdot 3 \cdot 4 \cdot 5 + 1$ .

(1)

$$n+1 = 2 \cdot 3 \cdot 4 \cdot 5 + 2 = 2 \cdot (3 \cdot 4 \cdot 5 + 1)$$

(2)

$$n+2=2\cdot 3\cdot 4\cdot 5+3=3\cdot (2\cdot 4\cdot 5+1)$$

(3)

$$n+3=2\cdot 3\cdot 4\cdot 5+4=4\cdot (2\cdot 3\cdot 5+1)$$

(4)

$$n+4=2\cdot 3\cdot 4\cdot 5+5=5\cdot (2\cdot 3\cdot 4+1)$$

1.9

(1) (1,1)=1 | 2, 方程有解,  $x_0=0,y_0=2$  为一组特解, 故通解为

$$\begin{cases} x = t & (t \in \mathbb{Z}) \\ y = 2 - t \end{cases}$$

(2) (2,1)=1 |2,方程有解, $x_0=0,y_0=2$  为一组特解,故通解为

$$\begin{cases} x = t & (t \in \mathbb{Z}) \\ y = 2 - 2t \end{cases}$$

(3) (15,16) = 1|17,方程有解, $x_0 = -17, y_0 = 17$  为一组特解,故通解为

$$\begin{cases} x = 16t - 17 & (t \in \mathbb{Z}) \\ y = 17 - 15t \end{cases}$$

#### 1.10

(1) (6,-15) = 3|51,方程有解, $x_0 = 11, y_0 = 1$  为一组特解,故通解为

$$\begin{cases} x = 11 - 5t & (t \in \mathbb{Z}) \\ y = 1 - 2t \end{cases}$$

又要求负整数解,故 $x,y<0,t\geq3$ ,即所以负整数解为

$$\begin{cases} x = 11 - 5t & (t \in \mathbb{Z}, t \ge 3) \\ y = 1 - 2t \end{cases}$$

(2) (6,15) = 3|51,方程有解, $x_0 = 6, y_0 = 1$  为一组特解,故通解为

$$\begin{cases} x = 6 + 5t & (t \in \mathbb{Z}) \\ y = 1 - 2t \end{cases}$$

又要求负整数解,故x,y < 0, t 无解,即无负整数解.

#### 1.11

## 1.11.1 必须要用 30 张

设需要 x 张 5 分, y 张 1 角, z = (30 - x - y) 张 2 角五分. 有

$$0.05x + 0.1y + 0.25(30 - x - y) = 5 \Leftrightarrow x + 2y + 5(30 - x - y) = 100$$
$$\Leftrightarrow 4x + 3y = 50$$

(4,3)=1|50, 方程有解,  $x_0=2,y_0=14$  为一组特解, 故通解为

$$\begin{cases} x = 2 + 3t & (t \in \mathbb{Z}) \\ y = 14 - 4t \end{cases}$$

又  $x, y, z \in \mathbb{N}$ ,即

$$\begin{cases} 2+3t & \geq 0 \\ 14-4t & \geq 0 \xrightarrow{t \in \mathbb{Z}} t = 0, 1, 2, 3. \\ 14+t & \geq 0 \end{cases}$$

即有4种方案,记x张5分,y张1角,z张2角五分,则方案为

$$\begin{cases} x = 2 \\ y = 14 \\ z = 14 \end{cases} \begin{cases} x = 5 \\ y = 10 \\ z = 15 \end{cases} \begin{cases} x = 8 \\ y = 6 \\ z = 16 \end{cases} \begin{cases} x = 11 \\ y = 2 \\ z = 17 \end{cases}$$

## 1.11.2 不多于 30 张

即求  $a, b, c \in \mathbb{N}, 0.05a + 0.1b + 0.25c = 5$ , 且  $a + b + c \le 30$ . 即解

$$\begin{cases} a+2b+5c = 100\\ (a+b+c) \le 30\\ a,b,c \in \mathbb{N} \end{cases}$$

(1)  $c \le 13$ 

$$a + 2b + 5c < 2 \cdot (30 - c) + 5c = 3c + 60 \le 99 < 100$$
,  $\pi$ .

(2) c > 20

$$a + 2b + 5c > 5c > 100$$
,  $\Xi$ 解.

(3) 由 (1)(2) 可知  $14 \le c \le 20$ 

$$a + 2b = 100 - 5c$$
,  $(1, 2) = 1|100 - 5c \Rightarrow$  方程存在解.

又 a = 100 - 5c, b = 0 为一组特解, 故通解为

$$\begin{cases} a = 100 - 5c - 2t; \\ b = t. \ (t \in \mathbb{N}) \end{cases}$$

$$\begin{cases} a+b+c = 100 - 4k - t & \leq 30 \\ a = 100 - 5c - 2t & \geq 0 \end{cases} \Rightarrow \begin{cases} t \geq 70 - 4k \\ t \leq \left[\frac{100 - 5k}{2}\right] \end{cases}$$

即解的组数为

$$\begin{cases} \left[ \frac{100 - 5k}{2} \right] - (70 - 4k) + 1; & (70 - 4k \ge 0) \\ \left[ \frac{100 - 5k}{2} \right] + 1. & (70 - 4k < 0) \end{cases}$$

(a) 
$$(c = 14)$$
 解的组数为  $\left[\frac{100 - 5 \times 14}{2}\right] - (70 - 4 \times 14) + 1 = 2$ 

(b) 
$$(c = 15)$$
 解的组数为  $\left[\frac{100 - 5 \times 15}{2}\right] - (70 - 4 \times 15) + 1 = 3$ 

(c) 
$$(c = 16)$$
 解的组数为  $\left[\frac{100 - 5 \times 16}{2}\right] - (70 - 4 \times 16) + 1 = 5$ 

(d) 
$$(c = 17)$$
 解的组数为  $\left[\frac{100 - 5 \times 17}{2}\right] - (70 - 4 \times 17) + 1 = 6$ 

(e) 
$$(c = 18)$$
 解的组数为  $\left[\frac{100 - 5 \times 18}{2}\right] + 1 = 6$   
(f)  $(c = 19)$  解的组数为  $\left[\frac{100 - 5 \times 19}{2}\right] + 1 = 3$ 

(f) 
$$(c = 19)$$
 解的组数为  $\left[\frac{100 - 5 \times 19}{2}\right] + 1 = 3$ 

(g) 
$$(c=20)$$
 解的组数为  $\left[\frac{100-5\times20}{2}\right]+1=1$ 

即共有 2+3+5+6+6+3+1=26 种兑换方法.

#### 1.12

设买了x个苹果,12-x个橘子,每个苹果y分钱,每个橘子y-3分钱,则有

$$\begin{cases} 0 \ge 12 - x < x \\ xy + (12 - x)(y - 3) = 99 \end{cases} \Leftrightarrow \begin{cases} 6 < x \le 12 \\ x + 4y = 45 \end{cases}$$

(1,4)=1|45,方程有解, $x_0=9,y_0=9$ 为一组特解,故通解为

$$\begin{cases} x = 9 + 4t & (t \in \mathbb{Z}) \\ y = 9 - t \end{cases}$$

又 6 < x < 12,即 t = 0,x = 9,12 - x = 3,买了 9 个苹果和 3 个橘子.

1.13

$$6k + 5 \equiv 6k + 1 \pmod{4}$$

又  $6k \equiv 6 \pmod{4}$ ,有

$$6k + 5 \equiv 7 \pmod{4}$$
$$\equiv 3 \pmod{4}$$

## 1.14

证明.

- (1) 分情况讨论 6k, 6k + 2, 6k + 3, 6k + 4 ( $k \ge 1$ ) 即可,不再赘述.
- (2) 记素数为 p, p > 3.
  - (a) p < 6, 则 p = 5, 成立.
  - (b) p > 6, 有 (6, p) = 1, 故 p 属于 6 的缩系, 故 p 模 6 或与 1 或 5 同余.

1.15

证明.

不妨设这两个连续的立方数为  $k^3$  与  $(k+1)^3$ .

$$(k+1)^3 - k^3 \equiv 3k^2 + 3k + 1 \pmod{3}$$
  
 $\equiv 1 \pmod{3}$ 

1.16

证明.

设该数为  $A = \overline{a_n a_{n-1} \dots a_1 a_0}$ , 则

$$A = \sum_{i=0}^{i=n} a_i \cdot 10^i, \quad \sum_{i=0}^{i=n} a_i \equiv 0 \pmod{3}$$

又  $\forall k \in \mathbb{N}, 10^i \equiv 1 \pmod{3}$ ,故

$$A \equiv \sum_{i=0}^{i=n} a_i \cdot 10^i \pmod{3}$$
$$\equiv \sum_{i=0}^{i=n} a_i \pmod{3}$$
$$\equiv 0 \pmod{3}$$

1.17

证明.

(1)

$$10 \equiv -1 \pmod{11} \implies 10^k \equiv (-1)^k \pmod{11}$$

(2) 设数为  $A = \overline{a_n a_{n-1} \dots a_1 a_0}$ ,则

$$A \equiv 0 \pmod{11} \iff \sum_{i=0}^{n} (-1)^{i} \cdot a_{i} \equiv 0 \pmod{11}$$

即偶数位之和与奇数位之和的差能被 11 整除等价于该数也能被 11 整除.

1.18

(1)

$$2x \equiv 1 \pmod{17} \xrightarrow{(2,17)=1} x \equiv 9 \pmod{17}$$
$$\equiv 18 \pmod{17}$$

(2) (3,18) = 3|6, 故有 3 组解由  $x \equiv 2 \pmod{6}$  得原方程解为

$$x \equiv 2 + 6t \pmod{18} \quad (0 \le t \le 2).$$

即

$$x \equiv 2, 8, 14 \pmod{18}$$
.

(3) (4,18) = 2|6,故有 2 组解解  $2x \equiv 3 \pmod{9}$ 

$$2x \equiv 3 \pmod{9} \xrightarrow{(2,9)=1} x \equiv 6 \pmod{9}.$$

即原方程解为

$$x \equiv 6 + 9t \pmod{18}$$
  $(t = 0, 1) \Rightarrow x \equiv 6, 15 \pmod{18}$ .

(4)  $3x \equiv 1 \pmod{17} \xrightarrow[\equiv 18 \pmod{17}]{(3,17)=1} x \equiv 6 \pmod{17}.$ 

## 1.19

(1) (2,3) = 1,有解。本题中

$$M = 2 \cdot 3 = 6, M_1 = 3, M_2 = 2.$$

由

$$\begin{cases} 3b_1 & \equiv 1 \pmod{2} \\ 2b_2 & \equiv 1 \pmod{3} \end{cases} \Rightarrow \begin{cases} b_1 & = 1 \\ b_2 & = 2 \end{cases}$$

从而

$$y = 3 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot 2$$
  
= 7  $\Rightarrow y \equiv 1 \pmod{6}$ .

(2) (41,26) = 1,有解。原式等价于

$$\begin{cases} x \equiv 31 \pmod{41} \\ x \equiv 7 \pmod{26} \end{cases}$$

本题中

$$M = 41 \cdot 26, M_1 = 26, M_2 = 41.$$

由

$$\begin{cases} 26b_1 & \equiv 1 \pmod{41} \\ 41b_2 & \equiv 1 \pmod{26} \end{cases} \Rightarrow \begin{cases} b_1 & = 30 \\ b_2 & = 7 \end{cases}$$

从而

$$y = 26 \cdot 31 \cdot 30 + 41 \cdot 7 \cdot 7$$
  
= 26819  $\Rightarrow y \equiv 605 \pmod{1066}$ .

(3) (2,3) = (2,7) = (3,7) = 1,有解。本题中

$$M = 2 \cdot 3 \cdot 7 = 42, M_1 = 21, M_2 = 14, M_3 = 6.$$

由

$$\begin{cases} 21b_1 & \equiv 1 \pmod{2} \\ 14b_2 & \equiv 1 \pmod{3} \end{cases} \Rightarrow \begin{cases} b_1 & = 1 \\ b_2 & = 2 \\ b_3 & = 6 \end{cases}$$

从而

$$y = 21 \cdot 1 \cdot 1 + 14 \cdot 1 \cdot 2 + 6 \cdot 6 \cdot 6$$
  
= 265.  $\Rightarrow y \equiv 13 \pmod{42}$ .

(4) 原式等价于

$$\begin{cases} x \equiv 3 \pmod{5} \\ x \equiv 3 \pmod{7} \\ x \equiv 3 \pmod{11} \end{cases}$$

$$(5,7)=(5,11)=(7,11)=1$$
,有解。本题中

$$M = 5 \cdot 7 \cdot 11 = 385, M_1 = 77, M_2 = 55, M_3 = 35$$

由

$$\begin{cases} 77b_1 \equiv 1 \pmod{5} \\ 55b_2 \equiv 1 \pmod{7} \\ 35b_3 \equiv 1 \pmod{11} \end{cases} \Rightarrow \begin{cases} b_1 = 3 \\ b_2 = 6 \\ b_3 = 6 \end{cases}$$

从而

$$y = 77 \cdot 3 \cdot 3 + 55 \cdot 3 \cdot 6 + 35 \cdot 3 \cdot 6$$
  
= 2313. 
$$\Rightarrow y \equiv 3 \pmod{385}.$$

#### 1.20

设

$$\begin{cases}
3x \equiv m - 1 & \pmod{20} \\
5y \equiv m & \pmod{20} & (1 \le m \le 18) \\
7z \equiv m + 1 & \pmod{20}.
\end{cases}$$

则

$$\begin{cases} 3x = 20(m-1) + (m-1) \\ 5y = 20m + m \\ 7z = 20(m+1) + (m+1). \end{cases} \Rightarrow \begin{cases} x = 7m - 7 \\ y = \frac{21m}{5} \Rightarrow 5|m, m \in \{5, 10, 15\} \\ z = 3m + 3. \end{cases}$$

即

$$\begin{cases} x = 28 \\ y = 21 \\ z = 18; \end{cases} \begin{cases} x = 63 \\ y = 42 \\ z = 33; \end{cases} \begin{cases} x = 98 \\ y = 63 \\ z = 48. \end{cases}$$

#### 1.21

由题意有

$$\begin{cases} n & \equiv 0 \pmod{2} \\ n+1 & \equiv 0 \pmod{3} \\ n+2 & \equiv 0 \pmod{4} \Leftrightarrow \end{cases} \begin{cases} n & \equiv 0 \pmod{2} \\ n & \equiv 2 \pmod{3} \\ n & \equiv 2 \pmod{4} \\ n+3 & \equiv 0 \pmod{5} \\ n+4 & \equiv 0 \pmod{6} \end{cases} \end{cases}$$

由 n=2 为一个特解,有模 [2,3,4,5,6]=60 唯一解

$$n \equiv 2 \pmod{60}$$

故所求最小整数 n(n > 2) 为

$$n = 62.$$

## 1.22

(1) 
$$\phi(42) = \phi(2 \cdot 3 \cdot 7) = \phi(2) \cdot \phi(3) \cdot \phi(7) = 1 \cdot 2 \cdot 6 = 12.$$

(2) 
$$\phi(420) = \phi(2^2 \cdot 3 \cdot 5 \cdot 7) = \phi(2^2) \cdot \phi(3) \cdot \phi(5) \cdot \phi(7) = 2 \cdot 2 \cdot 4 \cdot 6 = 96.$$

(3) 
$$\phi(4200) = \phi(2^3 \cdot 3 \cdot 5^2 \cdot 7) = \phi(2^3) \cdot \phi(3) \cdot \phi(5^2) \cdot \phi(7) = 4 \cdot 2 \cdot 20 \cdot 6 = 960.$$

# 1.23

(1) 小于 18 且与 18 互素的正整数有

(2) 
$$1 \cdot 5 \equiv 5 \pmod{18} \qquad 5 \cdot 5 \equiv 25 \pmod{18}$$
$$\equiv 7 \pmod{18}$$
$$7 \cdot 5 \equiv 35 \pmod{18} \qquad 11 \cdot 5 \equiv 55 \pmod{18}$$
$$\equiv 17 \pmod{18} \qquad \equiv 1 \pmod{18}$$
$$13 \cdot 5 \equiv 65 \pmod{18} \qquad 17 \cdot 5 \equiv 85 \pmod{18}$$
$$\equiv 11 \pmod{18} \qquad \equiv 13 \pmod{18}$$

仍为缩系,引理 2.1 成立.

## 1.24

设m,n有素数分解

$$m = m_1^{k_1} m_2^{k_2} \cdots m_x^{k_x} \cdot p^M, \quad n = n_1^{l_1} n_2^{l_2} \cdots n_y^{l_y} \cdot p^N$$

且

$$\forall 1 \le i \le x, 1 \le j \le y,$$
有 $m_i \ne n_j$ .  $(m_i, n_j$ 均为素数)

$$\begin{split} \phi(mn) &= \phi \left( p^{M+N} \cdot \prod_{i=1}^x m_i^{k_i} \cdot \prod_{j=1}^y n_j^{l_j} \right) \\ &= \phi(p^{M+N}) \cdot \prod_{i=1}^x \phi(m_i^{k_i}) \cdot \prod_{j=1}^y \phi(n_j^{l_j}) \\ &= p^{M+N} \cdot (1 - \frac{1}{p}) \cdot \prod_{i=1}^x m_i^{k_i} (1 - \frac{1}{m_i}) \cdot \prod_{j=1}^y n_j^{l_j} (1 - \frac{1}{n_j}) \\ &= mn \cdot (1 - \frac{1}{p}) \cdot \prod_{i=1}^x (1 - \frac{1}{m_i}) \cdot \prod_{j=1}^y (1 - \frac{1}{n_j}) \end{split}$$

$$\begin{split} \phi(m)\phi(n) &= \phi\left(p^{M} \cdot \prod_{i=1}^{x} m_{i}^{k_{i}}\right) \cdot \phi\left(p^{N} \cdot \prod_{j=1}^{y} n_{j}^{l_{j}}\right) \\ &= \phi(p^{M}) \cdot \phi(p^{N}) \cdot \prod_{i=1}^{x} \phi(m_{i}^{k_{i}}) \cdot \prod_{j=1}^{y} \phi(n_{j}^{l_{j}}) \\ &= p^{M} \cdot (1 - \frac{1}{p}) \cdot p^{N} \cdot (1 - \frac{1}{p}) \cdot \prod_{i=1}^{x} m_{i}^{k_{i}} (1 - \frac{1}{m_{i}}) \cdot \prod_{j=1}^{y} n_{j}^{l_{j}} (1 - \frac{1}{n_{j}}) \\ &= mn \cdot (1 - \frac{1}{p})^{2} \cdot \prod_{i=1}^{x} (1 - \frac{1}{m_{i}}) \cdot \prod_{j=1}^{y} (1 - \frac{1}{n_{j}}) \end{split}$$

即

$$\phi(m)\phi(n) = (1 - \frac{1}{p}) \cdot \phi(mn)$$

## 1.25

证明.

显然有  $n \ge 0$ , 否则  $\phi(n) \ge 0 > n$ , 问题无意义.

(1) 6|n 即 2|n,3|n,不妨记 n 有素数分解

$$n = 2^p \cdot 3^q \cdot n_1^{k_1} n_2^{k_2} \cdots n_N^{k_N}. \quad (p, q \ge 1)$$

则

$$\begin{split} \phi(n) &= \phi(2^p \cdot 3^q \cdot n_1^{k_1} n_2^{k_2} \cdots n_N^{k_N}) \\ &= \phi(2^p) \cdot \phi(3^q) \cdot \prod_{i=1}^N \phi(n_i^{k_i}) \\ &= n \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) \cdot \prod_{i=1}^N \left(1 - \frac{1}{n_i}\right) \\ &= \frac{n}{3} \cdot \prod_{i=1}^N \left(1 - \frac{1}{n_i}\right) \\ &\leq \frac{n}{3} \end{split}$$

即证,且当且仅当 N=0 时等号成立.

(2) 由 T14 可知

$$n-1 \equiv 5 \pmod{6}$$
;  $n+1 \equiv 1 \pmod{6}$ ;  $n \equiv 0 \pmod{6}$ 

即 6|n,由(1)即证.

1.26

1.27

$$314^{159} \equiv (7 \cdot 45 - 1)^{159} \pmod{7}$$
$$\equiv (-1)^{159} \pmod{7}$$
$$\equiv (-1) \pmod{7}$$
$$\equiv 6 \pmod{7}$$

## 1.28

(1) 求末位即求模 10 余数

$$7^{355} \equiv (7^4)^{88} \cdot 7^3 \pmod{10}$$
$$\equiv (2400 + 1)^{88} \cdot (340 + 3) \pmod{10}$$
$$\equiv 3 \pmod{10}$$

即末位为 3. 用欧拉定理  $7^{\phi(10)} \equiv 1 \pmod{10}$  亦可.

(2) 求末两位即求模 100 余数

$$7^{355} \equiv (7^4)^{88} \cdot 7^3 \pmod{100}$$
$$\equiv (2400 + 1)^{88} \cdot (300 + 43) \pmod{100}$$
$$\equiv 43 \pmod{100}$$

即末两位为 43. 用欧拉定理  $7^{\phi(100)} \equiv 1 \pmod{100}$  亦可.

## 1.29

证明.

(1)

$$(k+1)^{p} - k^{p} \equiv 1 \pmod{p} \iff p \mid (k+1)^{p} - k^{p} - 1$$
$$\iff p \mid \sum_{i=1}^{p-1} C_{p}^{i} \cdot k^{p-i}$$

有

$$C_p^i = \frac{p(p-1)\dots(p-i+1)}{i!} \in \mathbb{N}, \implies i! \mid p(p-1)\dots(p-i+1). \quad (1 \le i \le p-1)$$

又  $\forall 1 \le i \le p-1, (p,i) = 1$ , 故 (p,i!) = 1, 即

$$i! \mid (p-1)\dots(p-i+1) \implies \frac{(p-1)\dots(p-i+1)}{i!} \in \mathbb{N}, \ p \mid C_p^i.$$

故有

$$p \mid C_p^i \implies p \mid \sum_{i=1}^{p-1} C_p^i \cdot k^{p-i} \implies (k+1)^p - k^p \equiv 1 \pmod{p}.$$

(2) 对于任意素数 p 有  $p \nmid a$ ,则

$$a^{p} \equiv \sum_{k=0}^{a-1} ((k+1)^{p} - k^{p}) \pmod{p}$$
$$\equiv \sum_{k=0}^{a-1} 1 \pmod{p}$$
$$\equiv a \pmod{p}$$

又  $(a^p, a) = a, (p, a) = 1$ ,故有

$$a^{p-1} \equiv 1 \pmod{p}$$
.

1.30

证明.

(1)  $\forall \ 1 \le k \le p-1, \ (k,p) = 1 \boxplus p \mid k \ \Rightarrow \ k^{p-1} \equiv 1 \pmod{p}$ 

故

$$\sum_{i=1}^{p-1} i^{p-1} \equiv \sum_{i=1}^{p-1} 1 \pmod{p}$$
$$\equiv p-1 \pmod{p}.$$
$$\equiv -1 \pmod{p}.$$

(2)

$$\forall \ 1 \le k \le p-1, \ (k,p) = 1 \, \exists p \mid k \Rightarrow k^{p-1} \equiv 1 \pmod{p}$$
$$\Rightarrow k^p \equiv k \pmod{p}$$

故

$$\sum_{i=1}^{p-1} i^{p-1} \equiv \sum_{i=1}^{p-1} i \pmod{p}$$
$$\equiv \frac{p(p-1)}{2} \pmod{p}$$
$$\equiv 0 \pmod{p}. \qquad (2|p-1)$$

1.31

$$d(42) = d(2 \cdot 3 \cdot 7) \qquad d(420) = d(2^{2} \cdot 3 \cdot 5 \cdot 7) \qquad d(4200) = d(2^{3} \cdot 3 \cdot 5^{2} \cdot 7)$$

$$= 2^{3} \qquad = 3 \cdot 2^{3} \qquad = 4 \cdot 3 \cdot 2^{2}$$

$$= 8. \qquad = 24. \qquad = 48.$$

$$\begin{split} \sigma(42) &= \sigma(2 \cdot 3 \cdot 7) \\ &= \frac{2^2 - 1}{2 - 1} \cdot \frac{3^2 - 1}{3 - 1} \cdot \frac{7^2 - 1}{7 - 1} \\ &= 96. \end{split} \qquad \begin{aligned} \sigma(420) &= \sigma(2^2 \cdot 3 \cdot 5 \cdot 7) \\ &= \frac{2^3 - 1}{2 - 1} \cdot \frac{3^2 - 1}{3 - 1} \cdot \frac{5^2 - 1}{5 - 1} \cdot \frac{7^2 - 1}{7 - 1} \\ &= 1344. \end{aligned}$$

$$\sigma(4200) = \sigma(2^3 \cdot 3 \cdot 5^2 \cdot 7)$$

$$= \frac{2^4 - 1}{2 - 1} \cdot \frac{3^2 - 1}{3 - 1} \cdot \frac{5^3 - 1}{5 - 1} \cdot \frac{7^2 - 1}{7 - 1}$$

$$= 14880.$$

#### 1.32

不妨设 n 有素数分解

$$n = n_1^{k_1} n_2^{k_2} \cdots n_x^{k_x} \Rightarrow \sigma(n) = (k_1 + 1)(k_2 + 1) \dots (k_x + 1) = 60$$

又

$$\left[\log_2(10^4)\right] = 13 \implies k_1 + k_2 + \dots + k_x \le 13$$

$$n = 2^4 \cdot 3^2 \cdot 5 \cdot 7 = 5040 \qquad \vec{\boxtimes} \qquad n = 2^4 \cdot 5^2 \cdot 3 \cdot 7 = 8400$$

1.33

证明.

设  $d_1, d_2, \ldots, d_k$  为 n 的全部因子 (相同因子算两遍),则

$$\forall 1 \leq i \leq k, \exists ! 1 \leq j \leq k, d_i = n/d_i$$

不妨取一个排列使得 i + j = k + 1.

$$\sum_{d|n} \frac{1}{d} = \frac{1}{n} \sum_{i=1}^{k} \frac{n}{d_i}$$

$$= \frac{1}{n} \sum_{i=1}^{k} d_{k+1-i}$$

$$= \frac{1}{n} \sum_{i=1}^{k} d_i$$

$$= \frac{1}{n} \sigma(n).$$

1.34

证明.

不妨记偶完全数为

$$n = 2^{p-1} \cdot (2^p - 1)$$
  $(p, 2^p - 1$ 均为素数)

由题意可得

$$2^{p-1} \cdot (2^p - 1) \equiv 6 \pmod{10} \quad \vec{\boxtimes} \quad 2^{p-1} \cdot (2^p - 1) \equiv 8 \pmod{10}$$

等价于

$$2^{p-2} \cdot (2^p - 1) \equiv 3 \pmod{5}$$
 或  $2^{p-2} \cdot (2^p - 1) \equiv 4 \pmod{5}$ 

$$\begin{cases} (2^{p-2}, 5) &= 1 \\ (2^p - 1, 5) &= 1 \end{cases} \Rightarrow \begin{cases} 2^{p-2} &\equiv a \pmod{5} & (a \in \{1, 2, 3, 4\}) \\ 2^p - 1 &\equiv b \pmod{5} & (b \in \{1, 2, 3, 4\}) \end{cases}$$

 $(1) 2^{p-2} \equiv 1 \pmod{5}$ 

$$2^{p} - 1 \equiv 2^{2} \cdot 1 - 1 \pmod{5}$$

$$\equiv 3 \pmod{5}$$

$$\equiv 3 \pmod{5}$$

$$2^{p-2} \cdot (2^{p} - 1) \equiv 3 \cdot 1 \pmod{5}$$

$$\equiv 3 \pmod{5}$$

(2)  $2^{p-2} \equiv 2 \pmod{5}$ 

$$2^{p} - 1 \equiv 2^{2} \cdot 2 - 1 \pmod{5}$$

$$\equiv 2 \pmod{5}$$

$$\equiv 2 \pmod{5}$$

$$2^{p-2} \cdot (2^{p} - 1) \equiv 2 \cdot 2 \pmod{5}$$

$$\equiv 4 \pmod{5}$$

(3)  $2^{p-2} \equiv 3 \pmod{5}$ 

$$2^{p} - 1 \equiv 2^{2} \cdot 3 - 1 \pmod{5} \qquad \Rightarrow \qquad 2^{p-2} \cdot (2^{p} - 1) \equiv 3 \cdot 1 \pmod{5}$$
  
$$\equiv 1 \pmod{5} \qquad \qquad \equiv 3 \pmod{5}$$

(4)  $2^{p-2} \equiv 4 \pmod{5}$ 

$$2^p - 1 \equiv 2^2 \cdot 4 - 1 \pmod{5}$$
  $\Rightarrow 0 \notin \{1, 2, 3, 4\},$  该情况不存在.

综上,即证

$$2^{p-1} \cdot (2^p - 1) \equiv 6 \pmod{10}$$
  $\vec{\boxtimes}$   $2^{p-1} \cdot (2^p - 1) \equiv 8 \pmod{10}$ 

1.35

证明.

由题意可得

$$n = 2^{p-1} \cdot (2^p - 1)$$
  $(p, 2^p - 1)$  为素数)

又 n > 6, 故 p > 2, 2|p-1, 不妨记 p-1 = 2k  $(k \in \mathbb{Z}^*)$ , 有

$$n = 2^{2k} \cdot (2^{2k+1} - 1) = 4^k \cdot (2 \cdot 4^k - 1)$$

又

 $(1) \ 4^k \equiv 4 \pmod{9}$ 

$$2 \cdot 4^k - 1 \equiv 2 \cdot 4 - 1 \pmod{9}$$

$$\equiv 7 \pmod{9}$$

$$\Rightarrow 4^k \cdot (2 \cdot 4^k - 1) \equiv 4 \cdot 7 \pmod{9}$$

$$\equiv 1 \pmod{9}$$

 $(2) \ 4^k \equiv 7 \ (\bmod \ 9)$ 

$$2 \cdot 4^k - 1 \equiv 2 \cdot 7 - 1 \pmod{9}$$

$$\equiv 4 \pmod{9}$$

$$\Rightarrow 4^k \cdot (2 \cdot 4^k - 1) \equiv 7 \cdot 4 \pmod{9}$$

$$\equiv 1 \pmod{9}$$

 $(3) \ 4^k \equiv 1 \pmod{9}$ 

$$2 \cdot 4^k - 1 \equiv 2 \cdot 1 - 1 \pmod{9} \qquad \Rightarrow \qquad 4^k \cdot (2 \cdot 4^k - 1) \equiv 1 \cdot 1 \pmod{9}$$
$$\equiv 1 \pmod{9} \qquad \qquad \equiv 1 \pmod{9}$$

综上,即证

$$n \equiv 1 \pmod{9}$$
.

1.36

证明.

1.37

1.38

1.39

1.40

1.41

1.42