NAM	E ;	•••••	••••		••••		••••	• • • • • •	•••••	• • • • • •	•••••	STR	EAN	1		•••	
P525/2 CHEN Paper 2 ³ / ₄ ho	MISTI 1	RY															
INSTI Answe Any e All qu The Po Illusti Molar Molar	er all quatra que estions eriodic rate you gas co	uesticestices muse Table our ar	ons in ansy t be a with a with a with a with a with a swer	PRENIO 2h section swered in relations with the section of the sec	RE - I R SE P nours on A will red in tive a h equ 4 Jmo	MOC X CH APE 45 m and s not be the s tomic lation	K EXEMINATE TO THE PROPERTY OF	estion ked. prov ses wi	INAT Y as in s ided ll be	FION ection	is n B.						
				For	Exar	niner	s Use	Only									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
(1) (a) accord					TUS	(A No	inswe	ON A er all t	he qu	estion	ns)	o giv	e eler	nents	X and	d Y	
254 102 Comp	No —																
(b) A j	_	amoui	nt of l	oismu	th-20	9 dec	ayed	by 75	5% in	40 ye	ars. I	Detern	nine t	he ha	lf life	of	
														($(3^1/_2)$	mark	s)

(2) State what would be observed and write equation for the reaction that occurs magnesium powder is added to aqueous solution of;(a) copper (II) sulphate	when
Observation	
	(1 mark)
Equation	
	$(1^1/_2 \text{ marks})$
(b) Aluminium chloride	
Observation	
	(1 mark)
Equation	
	$(1^1/_2 \text{ marks})$
(3) Complete the following organic reactions and outline the reaction mechanism	ı .
(a) \sim CH=C(CH ₃) ₂ HI	
Mechanism	
	(4 marks)
(b) (CH ₃ CH ₂ OCH ₃ COO) ₂ O + CH ₃ CH ₂ NH ₂	
Mechanism	
(4 marks)	
(

(4) A compound Q contains by mass 34.46% by mass iron and the rest chlorine. Compound Q has vapour density of 81.25.	
(a) Determine;	
(i) the empirical formula of Q.	
	$(1^1/_2 \text{ marks})$
(ii) the molecular formula of Q	
	(2 marks)
(b) State what will be observed and write equation for the reaction that takes place hydroxide solution is added drop wise until in excess to an aqueous solution of co-Observation	
	(1 mark)
Equation(s)	
	(1 mark)
(5) (a) Write equation for the complete combustion of ethanol (CH ₃ CH ₂ OH)	
	(1 mark)
(b) The enthalpies of combustion of carbon, hydrogen and ethanol are -394,-286 a mol ⁻¹ respectively. Calculate the enthalpy of formation of ethanol.	and -1187 KJ

($2^{1}/_{2}$	marks)
`	- 12	mans

(6) Name the reagent(s) that can be used to distinguish between the following pair of compounds. In each case state the observations made.

(a)
$$\begin{array}{c} CH_3 \\ -CHCH_2OH \end{array} \quad \text{and} \quad \begin{array}{c} OH \\ -CHCH_3 \end{array}$$

Reagent

(1 mark)

Observation

(2 marks)

(b) and
$$\bigcirc$$
-CH₂CH₂C

Reagent

(1 mark)

Observation

(2 marks)

(7) Complete the table given below;

Element	Formula of the chloride	Type of bonding	Type of solid structure
Aluminium			
Silicon			
Sodium			
Magnesium			

(6 marks)

(b) Water was added to each of the chlorides formed by aluminium and so Write equation for the reaction that took place. Aluminium chloride	dium respectively.
Equation	
	(1 mark)
Sodium chloride	
Equation	
	(1 mark)
 (8) A 0.01M aqueous solution of phenol has a PH of 5.95 at 25°C. (a) Write an equation for dissociation of phenol in water. 	
	(1 mark)
(b) Calculate the acid dissociation constant K _a for phenol	(
	$(2^1/_2 \text{ marks})$
(c) Determine the degree of dissociation for phenol.	
	(2 marks)
(9) Compare the reaction of beryllium and barium with cold water.	
	(3 marks)

SECTION B (54 marks)

(Answer **six** questions)

(10) (a) State Raoults law

	$(1^{1}/_{2} \text{ marks})$
(b) An ideal solution that contains two liquids A and B has a total vapour pressure $2.9 \times 10^4 \text{Nm}^{-2}$ at 20^0C . The vapour pressures of pure liquids A and B at 20^0C are results $1.50 \times 10^4 \text{ Nm}^{-2}$ and $3.5 \times 10^4 \text{ Nm}^{-2}$ at 20^0C . (i) Explain what is meant by the term an ideal solution.	
	(1 mark)
(ii) Determine the percentage composition of liquids A and B in the liquid mixtur	e.
	$(3^{1}/_{2} \text{ marks})$
(c) A mixture of ethanoic acid and water form liquid mixture that deviates negative	vely from
Raoults law (i) State any two characteristic properties for this liquid mixture.	
	(1 mark)
(ii) Explain why the above liquid mixture exhibits the mentioned property	

(11) Write equations to show how the following synthesis can be carried out. In reagents and conditions necessary.	(2 marks) each state the
(a) \bigcirc SO ₃ H from methyl benzene	
(b) CH ₃ CH ₂ COOH from 2- Bromo propane	(3 marks)
	(A montes)
	(4 marks)

(2 marks)

(c) CH₃COCH₃ from propene

(12) (a) Name the shape and draw the structure for each of the species given in the table below. In each case state whether the pH of aqueous solution containing each of the above given species will be equal to, less or greater than 7.

Species	Structure	Shape	pH of the aqueous solution
$\mathrm{NH_4}^+$			
NH ₃			
NH ₂			(6 montro)

(6 marks)

/1 \	α	1 1 1	.1 . 1 .	• . •	C .1	1 1 1	C .1	1 .	•
(h)	State at	nd avnlam	the trand in	variation	ot the	hand analas	ot the	OBOVA GIVA	ncnaciae
1111	State at	nu exinain	the trend in	variation	OI LIIC	DOING angles	S OI LIIC	and ve give	II SDECIES.
(-,									~F

(3 marks)

- (13) 2-Bromo-2-Methyl propane reacts with aqueous sodium hydroxide to form 2-methylpropan-2-ol.
- (a) Write the rate equation for the reaction.

(1 mark)

(b) Draw the energy diagram for the reaction.

		$(3^1/_2 \text{ marks})$
(c) Write a mechanism for the reac	etion.	
		$(2^1/_2 \text{ marks})$
(d) Write equations to show how 2-Methylpropane.	-Methylpropan-2-ol can be converted to 2-	-Brormo-2-
		(2 marks)
(14) The following half cell reaction	ons are given; E ⁰ /V	
$I_{2(s)}/2I^{\text{-}}_{(aq)}$	+0.54	
$MnO_{2 (s)}/H^{+}_{(aq)}/Mn^{2+}_{(aq)}$ (a) Write equations for the half reac	+1.23 ctions that takes place at the cathode and a	node. In each case
state the observations made.	•	
(i) At the cathode Equation		
•		(1 mark)
Observation		` '

	(1 mark)
(ii) At the anode.	
Equation	
	(1 mark)
Observation	
	(1 mark)
(b) Write the cell convention for the cell made by combining the above given two	half cells.
	(2 montro)
(c) Calculate the e.m.f for the cell in (b) above.	(2 marks)
	$(1^1/_2 \text{ marks})$
(d) State whether the reaction is possible or not. Give reason(s) for your answer.	
(a) State whether the reaction is possible of not. Give reason(s) for your unswer.	
	$(1^1/_2 \text{ marks})$
 (15) Calcium fluoride is a sparingly soluble in water. The solubility product (K_{SP}) of calcium fluoride is 4.0x10⁻¹¹ mol³dm⁻⁹ at 25⁰C. (a) Write the expression for the solubility product K_{SP} of calcium fluoride. 	
	2 marks)
(b) Calculate the solubility of calcium fluoride in;	
(i) Water	
	(2 marks)

(ii) 0.01M solution of sodium fluoride.	
	(2 ¹ / ₂ marks)
(c) Comment on your answer in (b) i and ii above.	
	(2 marks)
(d) State any two applications of solubility product.	
(16) (a) (i) Explain what is meant by the term primary standard.	(1 mark)
(ii) Give reasons why potassium dichromate is usually preferred to potassium per volumetric titration.	(1 mark) manganate in

(2	marks)
(2	marks)

(b) 0.55g of a metal dichromate with the formula (M ₂ Cr ₂ O ₇) was dissolved in water and the
solution made up to 250cm ³ with distilled water. 25cm ³ of the solution was removed acidified
with1M sulphuric acid then followed by excess of potassium iodide solution. The liberated
iodine required 12.60 cm ³ of a solution containing 24.78g of sodium thiosulphate pentahydrate
per litre. One the equation for the reaction involved is;
$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2^{-}}_{(aq)} + 14\operatorname{H}^{+}_{(aq)} + 6\operatorname{I}_{(aq)} \longrightarrow 2\operatorname{Cr}^{3^{+}}_{(aq)} + 7\operatorname{H}_{2}\operatorname{O}_{(l)} + 3\operatorname{I}_{2(aq)}$

(i) Calculate the number of moles of the metal dichromate that reacted.

 $(3^1/_2 \text{ marks})$

(ii) Determine the relative atomic mass M in the formula of the metal dichromate

 $(2^1/_2 \text{ marks})$

- (17) (a) During extraction of aluminium the ore is first roasted in air ,crushed and then heated strongly with sodium hydroxide solution.

(ii) State the purpose of sodium hydroxide solution in the reaction above.

(Use equation(s) where necessary to illustrate your answer) ${\bf r}$

(4 marks) (b) Write equation(s) to show how the pure ore is obtained from the solution formed after heating the impure ore with sodium hydroxide.
(2 marks) (c) (i) Name the process by which pure aluminium metal is obtained the ore in (b) above.
(ii) Name the compound added to the ore before the process mentioned in (c) i $$ is carried out. State the use of the compound.
($1^{1}/_{2}$ marks