Tarea 2 - Anova

Los Celtics 9 de Abril, 2019

Carga de datos

```
algodon <- read.csv("algodon.csv", header = TRUE, row.names = 1)</pre>
```

Datos Cargados:

kable(algodon)

	Observacion.1	Observacion.2	Observacion.3	Observacion.4	Observacion.5
Porc_15	7	7	15	11	9
Porc_20	12	17	12	18	18
Porc_25	14	18	18	19	19
Porc_30	19	25	22	19	23
Porc_35	7	10	11	15	11

Limpieza de datos

Los datos cargados no cumplen con los estándares de *Tidy Data* https://vita.had.co.nz/papers/tidy-data.pdf para el analisis, por lo que es necesario al menos hacer un cambio - cambiar las observaciones (experimentos) a filas, y mantener las variables independientes a columnas. Afortunadamente, esto lo podemos hacer facilmente haciendo la transpuesta:

```
algodon_t = as.data.frame(t(algodon))
kable(algodon_t)
```

	Porc_15	Porc_20	Porc_25	Porc_30	$Porc_35$
Observacion.1	7	12	14	19	7
Observacion.2	7	17	18	25	10
Observacion.3	15	12	18	22	11
Observacion.4	11	18	19	19	15
Observacion.5	9	18	19	23	11

ANOVA

Calculo de ANOVA:

```
algodon_stacked = stack(algodon_t)
kable(algodon_stacked)
```

values	ind
7	Porc_15
7	Porc_15
15	Porc_15
11	Porc_15
9	Porc_15
12	Porc_20
17	Porc_20
12	Porc_20
18	Porc_20
18	Porc_20
14	Porc_25
18	Porc_25
18	Porc_25
19	Porc_25
19	Porc_25
19	Porc_30
25	Porc_30
22	Porc_30
19	Porc_30
23	Porc_30
7	Porc_35
10	Porc_35
11	Porc_35
15	Porc_35
11	Porc_35

```
anova_algodon <- aov(values ~ ind, data = algodon_stacked)
summary(anova_algodon)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## ind    4 475.8 118.94 14.76 9.13e-06 ***
## Residuals 20 161.2 8.06
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

De aquí podemos decir que:

$$F(4,20) = 14.76$$

у

$$p = 9.13e - 06 < 0.05$$

Al ser p < 0.05, podemos decir que los resultados son significativos, y no fueron obtenidos aleatoriamente.