

Case study: Did itaewon class cause โคชูจัง?

Granger Causality with Google Trend

Time Series Data

• 'itaewon class' and 'โคชูจัง' are a time series data that are collected from google trend since 2020-01-01 to 2020-04-30.

Non-stationary Vs. Stationary

• Time series data that can be used for forecasting must be stationary time series.

Mean: $E(Y_1) = \mu$

Variance: $Var(Y_t) = E(Y_t - \mu)^2 = \sigma^2$

Covariance: $E[(Y_t - \mu)(Y_{t+k} - \mu)] = \gamma_k$

- Stationary time series has the properties as mean, variance and covariance are constant (same value) across time.
- Normally, time series data is a non-stationary.
- In statistics, using non-stationary time series for analysis can cause spurious regression and assumptions for analysis not being valid.

Examples of Non-Stationary Time Series

Examples of Stationary Time Series

Source: https://drsifu.wordpress.com/2012/11/27/time-series-econometrics/

What is Spurious regression?

- Spurious regression is a problem that arises when regression analysis indicates a strong relationship between two or more variables but in fact they are totally unrelated.
- Regression characteristics expected to be Spurious Regression.
 - R² is typically very high.
 - t-statistic value most often is significant.
 - Durbin-Watson statistic (DW) is low.
 - R² of the regression is greater than the Durbin-Watson Statistic.

Unit Root Test

- Therefore, it needs to check whether Time series is stationary.
- Hypothesis:
 - Null Hypothesis (H_0) : time series has a unit root, meaning it is non-stationary.
 - Alternate Hypothesis (H₁): time series does not have a unit root, meaning it is stationary.
- Unit Root Test is a test for checking stationary of data that are various methods:
 - Dickey Fuller (DF)
 - Augmented Dickey and Fuller (ADF)
 - Etc.

```
Augmented Dickey-Fuller Test on "โคชูจัง"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic = -0.3921
No. Lags Chosen = 5
Critical value 1\% = -3.489
Critical value 5\% = -2.887
Critical value 10\% = -2.58
=> P-Value = 0.9114. Weak evidence to reject the Null Hypothesis.
=> "โคชูจัง" is Non-Stationary.
Augmented Dickey-Fuller Test on "itaewon class"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level
                   = 0.05
Test Statistic = -1.2427
No. Lags Chosen
                    = 7
Critical value 1\% = -3.49
Critical value 5\% = -2.887
Critical value 10\% = -2.581
=> P-Value = 0.6549. Weak evidence to reject the Null Hypothesis.
```

=> "itaewon class" is Non-Stationary.

- p-value > 0.05: Fail to reject the null hypothesis (H₀).
- So, "โคชูจัง" and "itaewon class" have a unit root. They are non-stationary.

Unit Root problem

- Unit Root problem can solve by taking different.
- After taking different at level(1), can plot graph as following graph.


```
Augmented Dickey-Fuller Test on "โคทูจัง"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic
                    = -8.9465
No. Lags Chosen = 4
Critical value 1\% = -3.489
Critical value 5\% = -2.887
Critical value 10\% = -2.58
=> P-Value = 0.0. Rejecting Null Hypothesis.
=> Series is Stationary.
Augmented Dickey-Fuller Test on "itaewon class"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic = -5.4473
No. Lags Chosen = 6
Critical value 1\% = -3.49
Critical value 5\% = -2.887
                    = -2.581
Critical value 10%
=> P-Value = 0.0. Rejecting Null Hypothesis.
=> Series is Stationary.
```

- p-value \leq 0.05: Reject the Null hypothesis (H₀).
- So, "โคชูจัง" and "itaewon class" have no unit root. They are Stationary.

Lag length

- A time lag is a delay between an economic action and a consequence.
- Very often, the dependent variable responds to an independent variable with a lapse of time.
- For Granger causality test, it needs to define an optimal lag for testing.
- The optimal lag is selected from considering p-value of following criterias:
 - ssr based F test (ssr_ftest)
 - ssr based chi2 test (ssr_chi2test)
 - likelihood ratio test (Irtest)
 - parameter F test (params_ftest)

Optimal lag

Granger causality

- Granger causality is a statistical concept of causality that is based on a prediction.
- Granger's Causality test on time-series data gives evidence that variable A Granger-causes B.
- If A Granger-causes B, then past values of A should contain information that helps predict B above and beyond the information contained in past values of B alone.
- Type of causality
 - Uni Directional Causality
 - A →B
 - Bi-directional Causality
 - A ↔ B
 - No directional Causality

Granger causality - Step

- 1. Develop a base case, autoregressive model, using a dependent variable and its lagged values as an independent variable.
- 2. Develop a test case, multivariate model, by adding a second lagged independent variable that you want to test.
- 3. Calculate the R-Square (the square of resident error) for two models and run F-test and t-test to check if the residuals are significantly lower when you added tested the second variable.
- 4. Redo step 1 to 3, but reverse the direction. By comparing the tests significance or p-value, you can see if A Granger-causes B more than B Granger-causes A.

Granger causality - Interpret result

- Hypothesis:
 - H_0 : $\beta_1 = \beta_2 = \dots = \beta_m = 0$: no relation
 - H₁: at least one non-zero : have relation
- p-value > 0.05: Accept the null hypothesis (H_0) , A does not Granger-causes B.
- p-value <= 0.05: Reject the null hypothesis (H₀), A Granger-causes B.

Granger causality results

	โคชูจัง_x	itaewon clas	s_x	test
โคชูจัง_y	1.0000	0.0	229	ssr_ftest
itaewon class_y	0.0253	1.0	000	ssr_ftest
โคชูจัง_y	1.0000	0.0	000	ssr_chi2test
itaewon class_y	0.0000	1.0	000	ssr_chi2test
โคชูจัง_y	1.0000	0.0	007	Irtest
itaewon class_y	0.0004	1.0	000	Irtest
โคชูจัง_y	0.0000	0.0	229	params_ftest
itaewon class_y	0.0253	0.0	000	params_ftest

- p-value <= 0.05: Reject the Null hypothesis (H₀)
- "itaewon class" causes
 "โคชูจัง" and "โคชูจัง"
 causes "itaewon class"
- So,"itaewon class" and "โคชูจัง" are Bi-directional Causality