Московский физико-технический институт

# Лабораторная работа 1.2.4 ОПРЕДЕЛЕНИЕ ГЛАВНЫХ МОМЕНТОВ ИНЕРЦИИ ТВЕРДЫХ ТЕЛ С ПОМОЩЬЮ КРУТИЛЬНЫХ КОЛЕБАНИЙ

Отчет студента группы Б02-303 Долговой Екатерины

## Лаборатораная работа 1.2.4

## Определение главных моментов инерции твердых тел с помощью крутильных колебаний

Цель работы: измерить периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела, проверить теоретическую зависимость между периодами крутильных колебаний тела относительно различных осей, определить моменты инерции относительно нескольких осей для каждого тела, по ним найти главные моменты инерции тел и построить эллипсоид инерции.

В работе используются: установка для получения крутильных колебаний (жесткая рамка, имеющая винты для закрепления в ней твердых тел, подвешенная на натянутой вертикально проволоке), набор исследуемых твердых тел, секундомер.

### Теоретические сведения

**Тензор инерции**  $\hat{I}$  — матрица, связывающая величину момента импульса  $\vec{L}$  с угловой скоростью  $\vec{\omega}$ .

Эллипсоид инерции — поверхность, характеризующая величины моментов инерции твердого тела относительно множества возможных осей вращения, проходящих через одну точку О. Если точка О совпадает с центром масс, то эллипсоид называется центральным.

Зная эллипсоид инерции, можно определить момент инерции относительно любой оси. Для этого достаточно задать радиус вектор  $\vec{r}$  вдоль нее, тогда





Рис. 1: Эллипсоиды инерции параллелепипеда, диска и куба

В главных осях эллипсоид инерции принимает вид:

$$1 = I_x x^2 + I_y y^2 + I_z z^2. (2)$$

В данной работе используется устройство, изображённое на схеме (см. рис. 2). Рамка 1 жестко соединена с проволокой 2, закрепленной вертикально в специальных зажимах 3, позволяющих сообщить начальное закручивание для возбуждения крутильных колебаний вокруг вертикальной оси. В рамке с помощью планки 4, гаек 5 и винта 6 закрепляется твердое тело 7. На теле имеются специальные выемки, позволяющие его закрепить так, чтобы ось вращения проходила в теле под различными углами через центр масс.



Рис. 2: Схема установки

Уравнение крутильных колебаний рамки с телом:

$$(I_{\text{тела}} + I_{\text{рамки}})\frac{d^2\varphi}{dt^2} + f\varphi = 0, \tag{3}$$

где  $I_{\text{тела}}$  и  $I_{\text{рамки}}$  — моменты инерции тела и рамки относительно оси,  $\varphi$  — угол поворота рамки, f — модуль кручения проволоки.

Период крутильных колебаний:

$$T = 2\pi \sqrt{\frac{I_{\text{тела}} + I_{\text{рамки}}}{f}}.$$
 (4)

Рассмотрим прямоугольный параллелепипед (см. рис. 3). В нем оси AA', BB' и CC' являются главными. При вращении относительно диагонали DD' момент инерции  $I_d$  будет равен

$$I_d = I_x \frac{a^2}{d^2} + I_y \frac{b^2}{d^2} + I_z \frac{c^2}{d^2}.$$
 (5)

Из (5) следует

$$I_d(a^2 + b^2 + c^2) = I_x a^2 + I_y b^2 + I_z c^2.$$
 (6)

Используя (4), получим



Рис. 3: Оси вращения прямоугольного параллелепипеда

$$T_d^2(a^2 + b^2 + c^2) = T_x^2 a^2 + T_y^2 b^2 + T_z^2 c^2.$$

Аналогично получим такие формулы:

$$T_e^2(b^2+c^2) = T_y^2b^2 + T_z^2c^2; (8)$$

$$T_p^2(a^2+c^2) = T_x^2a^2 + T_z^2c^2; (9)$$

$$T_m^2(a^2 + b^2) = T_x^2 a^2 + T_y^2 b^2. (10)$$

Эти соотношения будем проверять экспериментально.

## Ход работы

(7)

- 1. Ознакомимся с установкой для получения крутильных колебаний. Проверим: 1) хорошо ли натянута проволока, 2) жестко ли закреплена на ней рамка, 3) нормально ли работает устройство для возбуждения крутильных колебаний, 4) не возникает ли колебаний в вертикальной плоскости.
- 2. Научимся закреплять тела в рамке.
- 3. Перед каждой серией измерений будем брать такую амплитуду, что при уменьшении ее в 2 раза период остается тем же. Амплитуда 10° вполне подходит, поэтому будем использовать ее.

4. Для пустой рамки и всех тел при различных их положениях относительно оси колебаний определим период колебаний по времени 10-15 колебаний, повторяя каждое измерение не менее, чем 3 раза. Занесем данные в таблицу 1.

$$t$$
 — время  $N=10$  колебаний  $T$  — период колебаний Расчетная формула:  $ar{T}=rac{ar{t}}{N}$ 

$$\begin{split} \sigma_t^{\text{приб}} &= 0,03 \text{ c} \\ \sigma_t^{\text{случ}} &= \sqrt{\frac{1}{2 \cdot 3} \sum_i (t_i - \bar{t})} \\ \sigma_t &= \sqrt{(\sigma_t^{\text{случ}})^2 + (\sigma_t^{\text{приб}})^2} \\ \varepsilon_{T_{\text{рамки}}} &= \varepsilon_{t_{\text{рамки}}} = \frac{\sigma_{t_{\text{рамки}}}}{\bar{t}_{\text{рамки}}} \end{split}$$

| № опыта | $t_{\text{рамки}}$ , с | $t_x$ , c | $t_y$ , c | $t_z$ , c | $t_d$ , c | $t_e$ , c | $t_p, c$ | $t_m$ , c |                       |
|---------|------------------------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------------------|
| 1       | 12,62                  | 41,09     | 38,09     | 32,50     | 34,84     | 34,44     | 33,65    | 39,06     | $\Big]_{\mathrm{Ta}}$ |
| 2       | 12,72                  | 41,07     | 38,16     | 32,75     | 35,04     | 34,37     | 33,85    | 38,87     | ] 10                  |
| 3       | 12,90                  | 41,17     | 38,21     | 32,63     | 34,96     | 34,50     | 33,72    | 38,82     |                       |

аблица 1

$$t_{\text{рамки}} = (12, 8 \pm 0, 3) \text{ c}$$
  
 $T_{\text{рамки}} = (2, 56 \pm 0, 06) \text{ c}$ 

| ось | $\bar{t}$ , c | $\sigma_t$ , c | $\bar{T}$ , c | $\sigma_T$ , c | $\bar{I}$ , $\Gamma \cdot M^2$ | $\sigma_I$ , $\Gamma \cdot M^2$ | $\bar{r}, c^{-1}$ | $\sigma_r,  \mathrm{c}^{-1}$ |
|-----|---------------|----------------|---------------|----------------|--------------------------------|---------------------------------|-------------------|------------------------------|
| X   | 41,1          | 0,3            | 4,11          | 0,03           | 5,70                           | 0,02                            | 0,310             | 0,001                        |
| У   | 38,2          | 0,3            | 3,82          | 0,03           | 4,38                           | 0,02                            | 0,352             | 0,002                        |
| Z   | 32,6          | 0,3            | 3,26          | 0,03           | 2,20                           | 0,02                            | 0,491             | 0,005                        |
| DD' | 34,9          | 0,3            | 3,49          | 0,03           | 3,08                           | 0,03                            | 0,418             | 0,003                        |
| EE' | 34,4          | 0,3            | 3,44          | 0,03           | 2,87                           | 0,03                            | 0,432             | 0,003                        |
| PP' | 33,7          | 0,3            | 3,37          | 0,03           | 2,55                           | 0,03                            | 0,452             | 0,004                        |
| MM' | 38,9          | 0,3            | 3,89          | 0,03           | 4,65                           | 0,04                            | 0,340             | 0,002                        |

Таблица 2

Вычислим период колебаний относительно главных осей. Также измерим периоды относительно DD', EE', PP' и MM'. Данные занесем в таблицу 2.

5. Штангенциркулем измерим размеры прямоугольного параллелепипеда:

$$a = (50, 5 \pm 0, 1) \text{ mm}$$
  $b = (100, 6 \pm 0, 1) \text{ mm}$   $c = (150, 7 \pm 0, 1) \text{ mm}$ 

С помощью весов измерим его массу:

$$m_{\pi} = (2082, 0 \pm 0, 3) \ \Gamma$$

Выведем главные моменты инерции: Для  $I_x$ :

$$I_x = \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} \int_{-c/2}^{c/2} r^2 dm, \quad dm = \rho dz dy dx$$



$$\begin{split} I_x &= \rho \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} \int_{-c/2}^{c/2} (z^2 + y^2) dz dy dx = \rho a \int_{-b/2}^{b/2} \int_{-c/2}^{c/2} (z^2 + y^2) dz dy = \\ &= \rho a \int_{-b/2}^{b/2} (\frac{c^3}{12} + cy^2) dy = \frac{\rho a b c}{12} (b^2 + c^2) = \frac{m}{12} (b^2 + c^2) \end{split}$$

Аналогично получим

$$I_y = \frac{m}{12}(a^2 + c^2)$$

$$I_z = \frac{m}{12}(a^2 + b^2)$$

Подставим в выведенные формулы значения массы и размеров. Занесём данные в таблицу 2.

По полученным в п.4 данным проверим справедливость формул (7) - (10). Видим, что с учётом погрешности получается верное соотношение.

Поэтому найдем оставшиеся моменты инерции и запишем их в таблицу 2.

6. Нарисуем сечения эллипсоида инерции главными плоскостями. Для этого по каждой оси отложим величину  $r=\frac{1}{\sqrt{T^2-T_{\mathrm{pamku}}^2}}$  от центра масс вдоль соответствующей оси.

Проведём эллипсы с полуосями, равными ранее отложенным величинам.

Найдем проекции r на главные плоскости (см. табл. 3).

| ось | X     | У     | Z     | плоскость |           |
|-----|-------|-------|-------|-----------|-----------|
| EE' | _     | 0,239 | 0,359 | yOz       | Таблица 3 |
| PP' | 0,144 |       | 0,429 | xOz       | таолица э |
| MM' | 0,153 | 0,304 | _     | xOy       |           |

Найдём отношение главных моментов инерции:

$$\frac{I_x}{I_y} \approx 1.3$$
  $\frac{I_x}{I_z} \approx 2.6$   $\frac{I_y}{I_z} \approx 2.0$ 



Рис. 4: Сечения эллипсоида инерции параллелепипеда

## 7. Сравним значения $\chi^2$ и s:

 $T_{obs}$  — измеренные экспериментально значения,

 $T_{th}$  - полученные косвенно по формулам (7) - (10).

| ось | $T_{obs}$ , c | $\sigma_{T_{obs}}$ , c | $T_{th}$ , c | $\sigma_{T_{th}}$ , c | s   |           |
|-----|---------------|------------------------|--------------|-----------------------|-----|-----------|
| DD' | 3,49          | 0,03                   | 3,48         | 0,04                  | 0,2 |           |
| EE' | 3,44          | 0,03                   | 3,43         | 0,03                  | 0,2 | Таблица 4 |
| PP' | 3,37          | 0,03                   | 3,34         | 0,03                  | 0,7 |           |
| MM' | 3,89          | 0,03                   | 3,87         | 0,03                  | 0,5 |           |

$$\chi^2(\alpha = 0.05, n = 3) = 7.8,$$

где  $\alpha$  — уровень значимости критерия, или же вероятность выхода за пределы  $2\sigma$  в нашем случае, n — число степеней свободы, равно количеству измерений минус один. Расчетная формула s:

$$s = \frac{|T_{obs} - T_{th}|}{\sqrt{\sigma_{T_{obs}}^2 + \sigma_{T_{th}}^2}}$$

Видим, что  $\chi^2>s$  для всех четырех случаев, поэтому результаты, полученные экспе-

риментально и выведенные из формул косвенно (согласно нулевой гипотезе о их примерном равенстве) достоверны.

8. Проделаем всё то же самое для куба:

$$a = (92, 6 \pm 0, 1) \text{ mm}$$
 
$$b = (92, 7 \pm 0, 1) \text{ mm}$$
 
$$c = (92, 7 \pm 0, 1) \text{ mm}$$

Видим, что с большой точностью a = b = c.

$$m_{\rm k} = (1090, 5 \pm 0, 3)$$
 г

| № опыта | $t_{\text{рамки}}, c$ | $t_x$ , c | $t_d$ , c |   |
|---------|-----------------------|-----------|-----------|---|
| 1       | 12,62                 | 30,91     | 31,10     | ١ |
| 2       | 12,72                 | 30,93     | 31,07     |   |
| 3       | 12,90                 | 31,04     | 30,88     |   |

Таблица 5

Из равенства a=b=c и формул (7) - (10) следует, что любые T между собой равны. Проверим это на примере  $T_d$  (проверочной оси):

$$\bar{t}_x = (31, 0 \pm 0, 3) \text{ c}, \ \bar{t}_d = (31, 0 \pm 0, 3) \text{ c}$$

Видим, что они равны в пределах погрешности. Поэтому период T будет единым для куба:

$$T = (3, 10 \pm 0, 03) \text{ c}$$

Момент инерции найдем из момента инерции параллелепипеда с равными ребрами:

$$I = \frac{m}{12}(a^2 + a^2) = \frac{ma^2}{6}$$

Найдем значение момента инерции куба относительно любой его оси:

$$I = (1, 56 \pm 0, 02) \ \text{f} \cdot \text{m}^2$$

$$\frac{I_x}{I_y} = \frac{I_x}{I_z} = \frac{I_y}{I_z} = 1$$

9. И двух цилиндров:

$$m_1 = (1569, 5 \pm 0, 3)$$
 г

$$m_2 = (2263, 7 \pm 0, 3)$$
 г

Первый:

$$r = (6, 225 \pm 0, 005)$$
 см

$$h = (1,68 \pm 0,01)$$
 см

Второй:

$$R = (4,410 \pm 0,005)$$
 см  $H = (4,95 \pm 0,01)$  см

Осями х и у будем обозначать оси в плоскостях, проходящих через центр масс, параллельно основаниям цилиндров, z — вдоль оси цилиндров. В силу симметрии будем измерять периоды и считать моменты инерции только по 1 из осей в плоскости основания, например, по оси х.

|   | № опыта | $t_{\text{рамки}}, c$ | $t_{z1}, c$ | $t_{x1}, c$ | $t_{z2}$ , c | $t_{x2}, c$ |           |
|---|---------|-----------------------|-------------|-------------|--------------|-------------|-----------|
|   | 1       | 12,62                 | 34,93       | 30,78       | 32,68        | 30,91       | Таблица 6 |
| ĺ | 2       | 12,72                 | 34,91       | 30,85       | 32,60        | 30,72       | таолица о |
| ĺ | 3       | 12,90                 | 34,82       | 30,73       | 32,75        | 30,77       |           |

Выведем момент инерции для цилиндра:

$$I_z = \int_0^R r^2 dm = \frac{m}{\pi R^2} \int_0^R r^2 2\pi r dr = \frac{mR^2}{2}$$

$$I_x = 2 \int_0^{H/2} (r^2 + \frac{R^2}{4}) dm = \frac{2m}{\pi R^2 H} \int_0^{H/2} (r^2 + \frac{R^2}{4}) \pi R^2 dr = \frac{mR^2}{4} + \frac{mH^2}{12}$$

| ОСР | $\bar{t}$ , c | $\sigma_t$ , c | $\bar{T}$ , c | $\sigma_T$ , c | $\bar{I}$ , $\Gamma \cdot M^2$ | $\sigma_I$ , $\Gamma \cdot M^2$ | $\bar{r}, c^{-1}$ | $\sigma_r, c^{-1}$ |           |
|-----|---------------|----------------|---------------|----------------|--------------------------------|---------------------------------|-------------------|--------------------|-----------|
| x1  | 30,8          | 0,3            | 3,08          | 0,03           | 1,56                           | 0,01                            | 0,579             | 0,008              |           |
| z1  | 34,9          | 0,3            | 3,49          | 0,03           | 3,04                           | 0,02                            | 0,420             | 0,003              | Таблица 7 |
| x2  | 30,8          | 0,3            | 3,08          | 0,03           | 1,56                           | 0,01                            | 0,579             | 0,008              |           |
| z2  | 32,7          | 0,3            | 3,27          | 0,03           | 2,20                           | 0,01                            | 0,489             | 0,005              |           |

10. Также построим график зависимости  $T^2(I)$  для всех ранее найденных T и I. Прямую аппроксимируем методом наименьших квадратов.

Как видим, в координатах  $T^2(I)$  он имеет линейный вид:

$$T^2(I) = \frac{4\pi^2}{f}(I + I_{\text{рамки}})$$

Для рамки  $T^2 = T_{\mathrm{рамки}}^2 = \frac{4\pi^2 I_{\mathrm{рамки}}}{f}$ , поэтому зависимость  $T^2(I)$  можно описать несколько иначе:

$$T^2(I) = \frac{4\pi^2}{f}I + T_{\text{рамки}}^2$$

Коэффициент наклона k такой зависимости будет равен  $\frac{4\pi^2}{f}$ , откуда мы легко найдем модуль кручения f. Обозначим  $y = T^2, x = I$ 

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = 1,799 \frac{c^2}{r \cdot m^2} \rightarrow \overline{f} = \frac{4\pi^2}{k} = 21,9 \frac{r \cdot m^2}{c^2}$$

$$b = \langle y \rangle - k \langle x \rangle = 6,75 \text{ c}^2$$



Рис. 5: Сечения эллипсоида инерции куба и двух цилиндров

$$\begin{split} \sigma_k^{\text{MHK}} &= \frac{1}{\sqrt{12}} \sqrt{\frac{< y^2 > - < y >^2}{< x^2 > - < x >^2}} - k^2 = 0,016 \; \frac{\text{c}^2}{\text{r} \cdot \text{m}^2} \\ \sigma_b^{\text{MHK}} &= \sigma_k^{\text{MHK}} \sqrt{< x^2 > - < x >^2} = 0,04 \; \text{c}^2 \\ \varepsilon_k^{\text{MHK}} &= \frac{\sigma_k^{\text{MHK}}}{k} = 0,009 \\ \varepsilon_k^{\text{KOCB}} &= \varepsilon_b^{\text{KOCB}} = \sqrt{(2\varepsilon_T)^2 + (\varepsilon_I)^2} = 0,019 \\ \varepsilon_b^{\text{MHK}} &= \frac{\sigma_b^{\text{MHK}}}{b} = 0,006 \\ \varepsilon_f &\approx \varepsilon_k = \sqrt{(\varepsilon_k^{\text{MHK}})^2 + (\varepsilon_k^{\text{KOCB}})^2} \approx 0,02 \rightarrow \sigma_f = \varepsilon_f \overline{f} = 0,4 \; \frac{\text{r} \cdot \text{m}^2}{\text{c}^2} \\ \varepsilon_b &= \sqrt{(\varepsilon_b^{\text{MHK}})^2 + (\varepsilon_b^{\text{KOCB}})^2} \approx 0,02 \end{split}$$



Окончательный результат:

$$f = (21, 9 \pm 0, 4) \frac{\Gamma \cdot M^2}{c^2}$$

Зная f, можно найти  $I_{\text{рамки}}$ :

$$b = T_{
m pamku}^2 = \frac{4\pi^2}{f} I_{
m pamku} o I_{
m pamku} = 3,74 \ {
m r} \cdot {
m m}^2$$

$$\varepsilon_{I_{\mathrm{pamku}}} = \sqrt{(\varepsilon_f)^2 + (\varepsilon_b)^2} = 0,03 \to \sigma_{I_{\mathrm{pamku}}} = 0,11 \ \mathrm{f} \cdot \mathrm{m}^2$$

Окончательный результат:

$$I_{\text{рамки}} = (3,74 \pm 0,11) \ \Gamma \cdot \text{м}^2$$

#### Вывод

Нами были измерены периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела, проверена теоретическая зависимость между периодами крутильных колебаний тела относительно различных осей, определены моменты инерции относительно нескольких осей для каждого тела, по ним найдены главные моменты инерции тел и построены эллипсоиды инерции.