Identifying Pneumonia in Chest X-rays

Deep Learning Module Project

Introduction

- QUESTION: Can deep learning be used to identify pneumonia in chest x-rays?
- OBJECTIVE: To build a classification model to identify chest x-ray images with pneumonia that will help doctors to quickly confirm suspected cases of pneumonia.

Data

• Kaggle dataset with over **5,000 unique images** of patients with and without pneumonia. The grayscale JPEG images were resized to a resolution of 256 x 256 before modeling.

Algorithms

- Data consisted of a training set, validation set, and test set.
- Python Libraries
 - Tensorflow
 - Keras
 - Scikit-learn
 - Mathplotlib
 - Seaborn

Results

- Recall was used to rate models with a high true positive and low false negative rate for both classes.
- CNN model was the best performing and selected for tuning.

	Logistic Regression	Simple NN	CNN
Normal	0.36	0.46	0.46
Pneumonia	0.99	0.98	0.99

Results

- **Dropout** layers with values of 0.05 were added between the top section layers. The **recall** of normal class increased significantly (~40%).
- **Epochs:** higher epochs increased accuracy of model but did not improve **recall**. The epoch was decreased from 20 to 15 in the final model.

	CNN	Tuned CNN
Normal	0.46	0.65
Pneumonia	0.99	0.96

Results - CNN

• The CNN model has a recall score of **0.99** for the pneumonia class, and an overall test accuracy of 0.79.

Results-Tuned CNN

• The tuned CNN model has a recall score of 0.96 for the pneumonia class, and an overall test accuracy of **0.85**.

Conclusions

- A CNN model can be used to confirm suspected cases of pneumonia.
- The tuned CNN model will need a doctor to root out false positives (patients without pneumonia).

Future Work

- Expanding the **tuned CNN** model to extract more features in the convolutional layers.
- Exploring different pre-processing techniques to improve resolution of images and to focus on the main of area of pneumonia diagnosis in chest x-rays.

Appendix

• Slideshow pictures from https://unsplash.com