CSCE 611 Lab 2

ALU Testbench Design Due Date: 9/30 (by midnight)

Objective

In this lab you will design a self-checking testbench for your MIPS ALU. Create a hexadecimal test vector file containing the inputs and expected outputs for your testbench. For each test vector, you can add a comment that describes its intended behavior.

Your testbench should test each of the cases described in the table below. Make sure the test cases appear in the same order as shown in the table.

Maintain a 32-bit error counter.

ALU Operation	Test Case	Inputs	Expected Outputs
bitwise AND	non-zero output	a=0F0F0F0F	lo=0F0F0F0F
		b=FFFFFFF	hi=00000000
		shamt=don't care	zero=0
	all zero output	a=0F0F0F0F	lo=00000000
		b=F0F0F0F0	hi=00000000
		shamt=don't care	zero=1
	all one output	a=FFFFFFFF	
		b=FFFFFFF	
		shamt=don't care	
bitwise OR	all one output	a=0F0F0F0F	
		b=F0F0F0F0	
		shamt=don't care	
	non-zero output	a=0F0F0F0F	
		b=00000000	
		shamt=don't care	
	all zero output		
bitwise XOR	invert bits of a by		
	setting b to all		
	ones, non-zero		
	output		
	all one output		
	all zero output		
bitwise NOR	invert bits of a by		
	setting b to all		

	zeros, non-zero		
	output		
	all one output		
	all zero output		
Shift left logical	shift by non-zero		
Sinit icit iogicai	number of bits		
	shift by zero bits		
Shift right logical	shift by non-zero		
Silit fight logical	number of bits		
	shift by zero bits		
Shift right	•		
arithmetic	shift positive value by non-zero		
arumenc	number of bits		
	shift negative		
	value by non-zero number of bits		
Set on less than		a la manitima	1. 0000001
Set on less than	a < b	a, b positive	lo = 00000001
	a = b	a, b positive	lo = 00000000
	a > b	a, b positive	
	a < b	a, b negative	
	a > b	a, b negative	
	a < b	a negative, b positive	
	a > b	a positive, b negative	
Set on less than	a = b		
unsigned	a < b	a[31] = 0, b[31] = 0	
	a < b	a[31] = 0, b[31] = 1	
	a > b	a[31] = 0, b[31] = 0	
	a > b	a[31] = 1, b[31] = 0	
add	$0 < a + b \le 2^{31} - 1$		zero = 0
	a > 0		lo = sum of a and b
	b > 0		
	a + b = 0		
	$-2^{31} \le a + b < 0$		
	$a + b < -2^{31}$		
	$a + b > 2^{31}-1$		
Subtract	$0 < a - b \le 2^{31} - 1$		
	a > 0		
	b > 0		
	a - b = 0		
	$-2^{31} \le a - b < 0$		
	$a - b < -2^{31}$		
	$a - b > 2^{31} - 1$		
Multiply	$a * b < 2^{32}$	a, b positive	
r J	$a * b = 2^{32}$	a, b positive	
	$a * b > 2^{32}$	a, b positive	
L	<u> </u>		<u> </u>

	a positive, b negative
	a, b negative
Multiply unsigned	a is non-zero, a[31]
	= 0, b is non-zero,
	b[31] = 0
	a[31] = 1, b is non-
	zero, $b[31] = 0$
	a is non-zero, a[31]
	= 0, b[31] = 1
	a[31] = 1, b[31] = 1

Submit your projects through the course Moodle site [http://dropbox.cse.sc.edu]. Upload your Verilog test bench design and your test vector file.

Demo Requirements

Demo your project running on the FPGA to the TA within a week of submission.

For the demo, make the following changes:

- Replace the testbench clock with the onboard 50 MHz clock.
- Add SignalTap probes to all the ALU inputs and outputs.
- Connect your error counter to all eight 7-segment displays (allowing for the display of an error counter up to FFFF FFFF₁₆.
- Remove the calls to \$display() and any other non-synthesizable code.
- The TA will ask you to trigger on specific tests to show the operation of the ALU on the FPGA.