Course	Course	Name of Course	L	T	P	Credit
Type	MCI101	Mathematics-I	3	1	0	11

Course Objective

The objective of the course is to present an introduction to basic concepts of calculus of one variable and several variables and analytical geometry.

Learning Outcomes

Upon successful completion of this course, students will:

- have a broad understanding of calculus of one and several variables.
- be able to use the techniques of integrations for solving variety of problems arising in science and engineering.
- learn and use the vector calculus and analytical geometry in multiple dimensions.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome		
1	Taylor's theorem and Taylor Series, Maclaurin series	3	This unit will help students to visualize the graph of curves and their nature and to write the series		
	Convexity and Concavity of a curve	1			
	Asymptotes, Curvature	2	expansions of differentiable functions.		
	Curve tracing	2			
2	Improper integral of first and second kind, Convergence of improper integrals	4	This unit will help students to understand the basic idea of		
	Beta and gamma functions	2	improper integrals and thei convergence.		
3	Functions of several variables, Limit and continuity, Partial and total derivatives	4	Students will be able to understand the calculus of several		
	Jacobian, Chain rule, Taylor's theorem	2	variables.		
	Maxima and minima, Method of Lagrange multipliers	2			
4	Double and triple integration, Change of order, Change of variables	5	This unit will help students to apply the ideas of double and		
	Applications of double and triple integration such as area, volume, mass, centre of gravity, moment of inertia	3	triple integrals to solve problems of practical nature.		
5	Parameterization of curves and surfaces, Vector fields, Gradient, Directional derivatives, Divergence and curl	3	Students will be able tunderstand the vector calculus an		
	Line integrals, Green's theorem, Surface integral, Volume integral	3	its applications to solve a variet of problems arising in engineerin and sciences.		
	Gauss and Stokes' theorems with applications	3			

Text Books:

 G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry (9th Edition), ISE Reprint, Addison-Wesley, 2010.

Reference Books:

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics (5th Edition), Narosa (2018).
- 2. T. M. Apostol, Calculus, Volumes 1 and 2 (2nd Edition), Wiley Eastern 1980.

Evaluation Plan:

- 1. There will be two quizzes. Each quiz will be of 30 minutes duration and will carry 10% weightage. The first quiz will be held on **September 06, 2019 at 5:45 PM**. The second quiz will be held on **November 08, 2019** at 5:45 PM.
- 2. The Mid-Semester examination, scheduled to be held during the week of September 16-21, 2019 will be of 32% weightage.
- 3. The End-Semester Examination, scheduled to be held during November 16-25, 2019 will be of 48% weightage.