Selektive Suche

Seminar: Knowledge Engineering und Lernen in Spielen

Carsten Cibura

Motivation

- Frühe Schachprogramme waren "plausible" Zug-Generatoren
- Mitter der 70er: **Brute-Force Suche** gewann wegen taktischer Schwächen, die ab Suchtiefe von 5 Halbzügen offenbar wurde
 - Aufmerksamkeit der Öffentlichkeit, wegen erstmaligen Siegen über menschliche Gegner
- In den frühen 90ern: Siegeszug der selektiven Programme, kurz nach Erfindung des *Null-Move-Pruning*

Konzept

- Selektive Suchstrategien versuchen, große Teile des Suchbaums auf Grund irgendeiner Heuristik abzuschneiden
- Kriterien an gute Heuristiken:
 - Schnelligkeit
 - Maß z.B. durchsuchte Halbzüge pro Zeit; Zeit bis "richtiger" Zug gefunden
 - Bewahrung der Taktischen Stärke
 - Maß z.B. Standard-Testsituationen gelöst; gewonnene Spiele

DarkThought (Stand 1997)

- Mix aus ,,quick and dumb" und wissensbasiert
- Über Schalter im Quellcode konfigurierbar
 - Verschiedene "Such-Persönlichkeiten"
- ANSI-C auf verschiedene Platformen portierbar
 - DEC Alpha, Intel x86, Sun Sparc, 32- oder 64-Bit
 CPUs
- Vollständig Bitboard-basiert
- Auf 500 MHz DEC Alpha-21164a: 200K nps im Mittelspiel und 650K nps im Endspiel

Begriffsklärung

Quiescence Search

- Üblicherweise beginnt die Suche mit einer vollen Breiten-Suche (full-width search)
- Bewertungsfunktion kann unzuverlässig sein; z.B. wenn mitten in Tauschmanöver abgebrochen
- An solchen Positionen setzt die "Ruhe-Suche" an und sucht bis zu "ruhigen" Knoten weiter
- Die Ebene des Baumes, an dem die Breiten-Suche endet, heißt Horizont ([full-width] horizon)

Begriffsklärung (Forts.)

- Statische Bewertungsfunktion bewertet Schachbrettposition und wird meist an "ruhigen" Knoten aufgerufen
 - Einfache (meist schlechte) Funktionen bewerten nur die Materialsituation
 - Andere Kriterien:
 - Bauernstruktur
 - Figurenplatzierung
 - Passierte Bauern
 - Königssicherheit

Begriffsklärung (Forts.)

- Suchtiefenerweiterung (Search Depth Extension)
 - Unter bestimmten Kriterien wird die Suchtiefe unter einem Knoten erhöht; der Knoten verdient genauere Betrachtung
 - Wichtig: gute Kriterien, um den Baum nicht unnötig zu vergrößern und dadurch die Vorteile aufzuwiegen
 - Check Extension
 - Recapture Extension
 - Singular Reply Extension

• ...

Null-Move-Pruning

- Stellt die Frage: "Wenn ich nichts tue, kann der Gegner mir schaden?"
- Technisch: Starte die Suche so, als wäre der Gegner am Zug, aber mit reduzierter Suchtiefe *R*
 - Reduziert Baumgröße z.T. erheblich
 - Nicht (einfach) einsetzbar in Endspielen wegen Zugzwang-Situationen
- Üblich ist R=2, wegen R=1 zu langsam und R=3 taktisch zu schwach

Null-Move-Pruning, Ergebnisse

Test	R=1	R=1	R = 2	$\mathbf{R} = 2$	R = 3	R = 3
Suite	Δ Nodes	Δ Sol	#Nodes	#Solved	Δ Nodes	Δ Sol
ECM-08	+96.29%	+8	1,232,004,798	552 / 879	-23.23%	-21
ECM-10	+198.76%	+3	8,823,781,692	642 / 879	-33.55%	-17
ECM-12	+304.35%	+1	83,443,531,950	704 / 879	-44.50%	-11
WAC-08	+101.63%	0	146,094,041	285 / 300	-27.88%	-4
WAC-10	+205.97%	0	946,867,509	296 / 300	-36.06%	-2
WAC-12	+317.48%	0	8,998,551,515	296 / 300	-48.04%	-2
WCS-08	+100.02%	0	750,804,397	841 / 1001	-27.63%	-10
WCS-10	+201.13%	+5	5,398,696,585	866 / 1001	-36.34%	-11
WCS-12	+295.46%	+2	52,801,555,626	874 / 1001	-42.00%	-8
Sum-08	+97.97%	+8	2,128,903,236	1678 / 2180	-25.10%	-35
Sum-10	+200.05%	+8	15,169,345,786	1804 / 2180	-34.70%	-30
Sum-12	+301.93%	+3	145,243,639,091	1874 / 2180	-43.74%	-21

Adaptives Null-Move-Pruning

- Wie kann man die Baum-Reduktion von R=3 mit der taktischen Stärke von R=1 kombinieren?
- Ändere *R* dynamisch mit der verbleibenden Suchtiefe (*depth*; Abstand zum Horizont)
- Allgeimeine Meinung: je größer *depth* (näher an der Wurzel), desto kleiner *R*
 - Experimenteller Fehlschlag
- Umgedrehter Ansatz
 - Experimentell vielversprechend

Adaptives Null-Move-Pruning (Forts.)

- Wähle R=3, falls depth > 6, R=2 sonst
 - Niedrigere Grenzen taktisch unsicherer
 - Höhere Grenzen zu langsam
- Weitere Verbesserung auf $R3^{\sim}_{6}2$:

```
R=2, wenn(depth \le 6) oder

((depth \le 8) und(max_figuren_pro_seite < 3))
```

$$R=3, wenn(depth>8)oder$$

 $((depth>6)und(max_figuren_pro_seite\geq3))$

Adaptives Null-Move-Pruning, Ergebnisse

Test	R = 2	R = 2	$R = 3^{\sim}_{6}2$	$\mathbf{R} = 3_{6}^{\sim} 2$	
Suite	#Nodes	#Solved	Δ Nodes	Δ Solved	
ECM-08	1,232,004,798	552 / 879	-7.31%	0	0.00%
ECM-10	8,823,781,692	642 / 879	-18.14%	+1	+0.16%
ECM-12	83,443,531,950	704 / 879	-33.79%	+1	+0.14%
WAC-08	146,094,041	285 / 300	-11.78%	0	0.00%
WAC-10	$946,\!867,\!509$	296 / 300	-23.65%	0	0.00%
WAC-12	8,998,551,515	296 / 300	-38.13%	0	0.00%
WCS-08	750,804,397	841 / 1001	-10.89%	+2	+0.24%
WCS-10	5,398,696,585	866 / 1001	-19.93%	-1	-0.12%
WCS-12	52,801,555,626	874 / 1001	-27.06%	+1	+0.11%
Sum-08	2,128,903,236	1678 / 2180	-8.88%	+2	+0.12%
Sum-10	15,169,345,786	1804 / 2180	-19.12%	0	0.00%
Sum-12	145,243,639,091	1874 / 2180	-31.61%	+2	+0.11%

Adaptives Null-Move-Pruning, Ergebnisse (Forts.)

Test	$\mathbf{R} = 3_6^{\sim} 2$	$\mathbf{R} = 3_6^{\sim} 2$	R=3	R=3	
Suite	#Nodes	#Solved	Δ Nodes	Δ Solved	
ECM-08	1,141,945,247	552 / 879	-17.18%	-21	-3.80%
ECM-10	7,223,147,693	643 / 879	-18.83%	-18	-2.80%
ECM-12	55,247,962,504	705 / 879	-16.18%	-12	-1.70%
WAC-08	128,884,163	285 / 300	-18.25%	-4	-1.40%
WAC-10	722,933,343	296 / 300	-16.25%	-2	-0.68%
WAC-12	5,567,403,822	296 / 300	-16.01%	-2	-0.68%
WCS-08	669,041,798	843 / 1001	-18.78%	-12	-1.42%
WCS-10	4,322,736,356	865 / 1001	-20.50%	-10	-1.16%
WCS-12	38,513,454,674	875 / 1001	-20.48%	-9	-1.03%
Sum-08	1,939,871,208	1680 / 2180	$\fbox{-17.80\%}$	-37	-2.20%
Sum-10	12,268,817,392	1804 / 2180	-19.26%	-30	-1.66%
Sum-12	99,328,821,000	1876 / 2180	-17.73%	-23	-1.23%

Futility Pruning

- Setzt an sog. **Grenzknoten** (**frontier nodes**) an; d.h. verbleibende Suchtiefe *depth=1*
- Untere Grenze wird berechnet für alle Züge, die kein Schach bieten
 - Einfach, falls Bewertungsfunktion nur Materialbalance (mat_balance) und Positionsbewertung (posn score) addiert

 $eval(node) \ge mat_balance(node) - max_posn_score$

Futility Pruning (Forts.)

- Mit folgenden Betrachtungen ...
 alpha(node)=-beta(succ(node, move))
 mat_balance(succ(node, move))=
 -mat_balance(node)-mat_gain(move)
- ... gelangt man zur Futility-Bedingung

```
mat_balance(node)
+mat_gain(move)
+max_posn_score≤alpha(node)
```

Selective Futility Pruning

• Ersetze den *max_posn_score* durch eine selbstgewählte Spanne *futil_margin*

```
mat\_balance(node) \\ + mat\_gain(move) \\ + futil\_margin \le alpha(node), \\ futil\_margin \in \{2*pawn\_val, ..., 4*pawn\_val\}
```

• Dies opfert theoretisches Fundament zu Gunsten einer höheren Beschneidungsrate (ca. 60% kleinerer Baum mit kaum taktischen Fehlern)

Extended Futility Pruning

- Setzt an Prä-Grenzknoten (pre-frontier nodes; depth=2) an
- Futility-Spanne muss dabei größer sein
 - Gute Werte:

```
futil\_margin \in \{rook\_val, ..., rook\_val + pawn\_val\}
```

• Zusätzlich wird *nicht* abgeschnitten, falls direkter Vorgängerknoten Suchtiefenerhöhung ausgelöst hat (Idee aus Razoring, s. dort)

Extended Futility Pruning, Ergebnisse

Test	Normal	rmal Normal Extd.		Extd.	
Suite	#Nodes	#Solved	Δ Nodes	Δ Solved	(No.)
ECM-08	1,232,004,798	552 / 879	-11.86%	-1.81%	(-10)
ECM-10	8,823,781,692	642 / 879	-13.41%	-0.94%	(-6)
ECM-12	83,443,531,950	704 / 879	-16.70%	-1.14%	(-8)
WAC-08	146,094,041	285 / 300	-14.10%	0.00%	(0)
WAC-10	946,867,509	296 / 300	-20.38%	-0.68%	(-2)
WAC-12	8,998,551,515	296 / 300	-29.89%	0.00%	(0)
WCS-08	750,804,397	841 / 1001	-11.86%	-0.48%	(-4)
WCS-10	5,398,696,585	866 / 1001	-17.22%	-0.35%	(-3)
WCS-12	52,801,555,626	874 / 1001	-26.58%	+0.23%	(+2)
Sum-08	2,128,903,236	1678 / 2180	-12.01%	-0.83%	(-14)
Sum-10	15,169,345,786	1804 / 2180	-15.20%	-0.61%	(-11)
Sum-12	145,243,639,091	1874 / 2180	-21.11%	-0.32%	(-6)

Razoring

- Nutzt die gleiche Idee an Prä-Prä-Grenzknoten (depth=3)
- Anstatt abzuschneiden, werden die Knoten "rasiert"
 - d.h. die Suchtiefe wird um eins verringert
 - Anschließend wird erweitertes Futility-Pruning angewandt
- Genügend risikoarme Futility-Spannen:

```
futil\_margin \in \{queen\_val, ..., queen\_val + pawn\_val\}
```

Limited Razoring

- Zusätzliche Bedingungen, unter denen Razoring nicht angewandt wird
 - Es sind weniger als 4 gegnerische Figuren auf dem Brett
 - Der direkte Vorgängerknoten hat Suchtiefenerhöhung ausgelöst

Limited Razoring (Forts.)

- Effekt: Wenn die Seite, die am Zug ist, schwer im Nachteil ist, ...
 - ... werden alle "ruhigen" Züge + alle nicht Schach bietenden, schlagenden Züge mit unzureichendem Materialgewinn und geringerer Suchtiefe als 3 Halbzüge abgeschnitten
 - ... wird die Suchtiefe aller übrigen Züge um eins verringert

Limited Razoring, Ergebnisse

Test	Extd.	Extd.	+Razor	+Razor	
Suite	#Nodes	#Solved	Δ Nodes	Δ Solved	(No.)
ECM-08	1,085,889,029	542 / 879	-0.91%	+0.92%	(+5)
ECM-10	7,640,512,567	636 / 879	-1.50%	0.00%	(0)
ECM-12	69,508,462,114	696 / 879	-9.64%	-0.43%	(-1)
WAC-08	125,494,781	285 / 300	-0.21%	0.00%	(0)
WAC-10	753,895,911	294 / 300	-1.93%	0.00%	(0)
WAC-12	6,308,884,467	296 / 300	-3.87%	0.00%	(0)
WCS-08	661,758,996	837 / 1001	-2.41%	-0.24%	(-2)
WCS-10	4,469,041,033	863 / 1001	-2.54%	+0.23%	(+2)
WCS-12	38,766,902,141	876 / 1001	-6.68%	+0.11%	(+1)
Sum-08	1,873,142,806	1664 / 2180	-1.39%	+0.18%	(+3)
Sum-10	12,863,449,511	1793 / 2180	-1.89%	+0.11%	(+2)
Sum-12	114,584,248,722	1868 / 2180	-8.32%	0.00%	(0)

Fazit

- Selektive Suchtechniken versuchen erfolgreich, anhand plausibler Heuristiken den Suchbaum zu verkleinern
- Die taktischen Schwächen, die dabei zwangsläufig auftreten, sind zu minimieren
- Die Kombination verschiedener Techniken kann zu weiteren taktischen und Geschwindigkeits-Vorteilen führen (Synergie-Effekte)
- Neue Strategien sind Gegenstand der Forschung

Quellen

- Heinz, E. A., Adaptive Null-Move Pruning, 1999
- Heinz, E. A., How DarkThought Plays Chess, 1997
- Heinz, E. A., Extended Futility Pruning, 1998
- http://satirist.org/learn-game/ methods/search/quiesce.html
- http://www.seanet.com/~brucemo/topics/ nullmove.htm
- http://www.chessbrain.net/beowulf/theory.html