Robotisation du désherbage mécanique des vignes

Corrigé UPSTI

À partir des équations (E3), (I.1), (I.2) et (I.3) établies à partir du modèle cinématique étendu Question 1 de la figure A, montrer que :

$$y'_{F} = \theta + \delta_{F} - \beta_{F}$$
 (I.4)
 $y'_{R} = \theta + \delta_{R} - \beta_{R}$ (I.5)
 $\theta' = \frac{y'_{F} - y'_{R}}{2L}$ (I.6)

On a les résultats suivants : $\theta = \frac{y_R - y_F}{2L}$ (E3), d'après (I.1), (I.2) et (I.3), $\dot{x}_{G_2} = V_{G_2}$, $\dot{y}_F = V_{G_2}$ ($\theta + \delta_F - \beta_F$) et $\dot{y}_R = V_{G_2}$ ($\theta + \delta_R - \beta_R$).

D'après (I.1), $\dot{x}_{G_2} = \frac{\mathrm{d}x_{G_2}}{\mathrm{d}t} = V_{G_2}$. Par ailleurs (à confirmer) on cherche $y_F' = \frac{\mathrm{d}y_F}{\mathrm{d}x_{G_2}} = \frac{\mathrm{d}y_F}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x_{G_2}} = \dot{y}_F \cdot \frac{1}{V_{G_2}} = \theta + \delta_F - \beta_F$

On montre de même que $y_R' = \theta + \delta_R - \beta_R$

Enfin,
$$\theta' = \frac{\mathrm{d}\theta}{\mathrm{d}x_{G_2}} = \frac{\frac{\mathrm{d}y_R}{\mathrm{d}x_{G_2}} - \frac{\mathrm{d}y_F}{\mathrm{d}x_{G_2}}}{2L} = \frac{y_R' - y_F'}{2L}.$$

Attention : le sujet propose l'opposé de ce résultat.

Asservissement de la variable de déplacement latéral y_F à une consigne $y_F^* = 0$ 0.0.1

Justifier le choix du modèle du comportement en déplacement latéral y_F du robot assurant sa convergence à une valeur de consigne y_F^* et son réglage

Par analogie avec un modèle temporel usuel d'ordre 2 à identifier, de paramètres caractéristiques $\omega_{0F},\,\xi_F\,\,\mathrm{et}\,\,K_F:$

- ullet en justifiant la réponse, tracer l'allure de l'évolution de $y_F\left(x_{G_2}\right)$ imposée par le modèle 1 (I.7) pour une consigne $y_F^* = 0$ en fonction de x_{G_2} , lorsque $y_F(x_{G_2} = 0) = y_{F0} > 0$ (y_{F0} étant une valeur constante), $y_F'(x_{G_2}=0)=0, K_{pF}=\frac{K_{dF}^2}{4}$ et $K_{dF}\simeq 5$; • préciser sur le graphe les éléments caractéristiques de la courbe tracée pour $x_{G_2}=0$;
- justifier pourquoi le paramètre K_{pF} a été réglé de telle sorte que $K_{pF} = \frac{K_{dF}^2}{4}$, compte-tenu du contexte de fonctionnement du robot enjambeur.

Identification des caractéristiques ω_{0F} , ξ_F et K_F

En utilisant l'analogie avec un modèle temporel, on a $s''+2\xi_F\omega_{0F}s'+\omega_{0F}^2s=K_Fe\omega_0^2$ à identifier avec la relation $y_F''+K_{dF}y_F'+K_{pF}y_F=K_{pF}y_F^*$. On a alors $\omega_{0F}^2=K_{pF}$, $K_{pF}=K_F\omega_{0F}^2$ soit $K_F=1$. De plus, $2\xi_F\omega_{0F}=K_{dF}$ soit $\xi_F=\frac{K_{dF}}{2\omega_{0F}}=\frac{K_{dF}}{2\sqrt{K_{pF}}}$.

On a donc
$$\omega_{0F} = \sqrt{K_{pF}}$$
, $\xi_F = \frac{K_{dF}}{2\sqrt{K_{vF}}}$ et $K_F = 1$.

Tracer de l'allure de l'évolution de $y_F(x_{G_2})$ En utilisant les valeurs proposées, $\xi_F = \frac{K_{dF}}{2\sqrt{K_{pF}}} \frac{K_{dF}}{2\frac{K_{dF}}{2}} = 1$.

L'allure de l'évolution de $y_F(x_{G_2})$ est donc celle d'un second ordre amorti. Il y a donc une tangente horizontale à l'origine (ce qui est confirmé par le fait qu'il soit indiqué que $y'_F(x_{G_2}=0)=0$.

Justifier que $K_{pF} = \frac{K_{dF}^2}{4}$ En ayant fait ce choix pour K_{pF} , on assure un $\xi = 1$ donc un système le plus rapide possible sans dépassement. Cela permet d'éviter les oscillations autour de la trajectoire cible et donc de limiter les problèmes de glissement.

Question 3 Expliquer ce que représente $x_{F_{r5\%}}$ dans le cas de ce modèle spatial (I.8), analogue du temps de réponse à 5 % dans le cas d'un modèle temporel. Préciser son unité. Compte-tenu de la valeur prise précédemment pour le réglage de K_{pF} , donner alors une expression littérale approchée de $x_{F_{r5\%}}$ en fonction de K_{dF} . Effectuer l'application numérique et conclure sur la pertinence de la valeur numérique de K_{dF} , vu le contexte d'utilisation du robot enjambeur.

 $x_{F_{r5\%}}$ représente la distance que met le robot à être à une distance inférieure à 5% de la trajectoire. Elle s'exprime en mètres (si toutes les distance sont en mètres).

D'après l'abaque du temps de réponse à 5% pour un système d'ordre 2, on a $\omega_{0F}x_{F_{r5\%}}\simeq 5$ pour $\xi_F=1$ (ce résultat ne me semble pas exigible dans le programme de PCSI-PSI). On a alors $x_{F_{r5\%}}\simeq \frac{5}{\omega_{0F}}\simeq \frac{5}{\sqrt{K_{pF}}}\simeq \frac{5\times 2}{K_{dF}}\simeq 2\,\mathrm{m}$. Cela semble réaliste compte-tenu de la longueur des rangs de vignes.

0.0.2 Génération des consignes d'orientation δ_F^* et δ_R^* des roues médianes

- Objectif

Établir deux relations permettant de déterminer la consigne d'orientation de la roue médiane avant δ_F^* et celle de la roue médiane arrière δ_R^* (figure A).

Question 4 À partir des relations issues du modèle cinématique étendu du robot (figure A), de la relation issue du modèle 1 choisi pour le comportement de $y_F(x_{G_2})$, et en sachant que les relations (E1) et (E2) trouvées à la question 1 permettent de considérer que les valeurs des variables y_F et y_F sont connues si y_{G_2} et θ le sont aussi (trajectoire \mathcal{T} connue):

1. déterminer l'expression de y_F'' , en fonction de δ_F , β_F , δ_R , β_R et L. Pour ce faire, commencer par exprimer y_F'' à partir de la relation (I.4), en tenant compte de l'hypothèse relative aux valeurs de $\delta_F' - \beta_F'$;

- 2. en tenant compte du point de fonctionnement souhaité, déterminer ensuite l'expression de δ_F de la roue médiane avant 5, en utilisant la relation (I.7), puis les relations (I.4) et (E3);
- 3. en identifiant précisément les variables qui sont mesurées et estimées, et en supposant que les dispositifs d'orientation des roues fonctionnent parfaitement et assurent ainsi que $\delta_F^* = \delta_F$, montrer alors que l'expression de δ_F^* est de la forme $\delta_F^* = C_1 \hat{\beta}_F + C_2 \left(\delta_R - \hat{\beta}_R \right) + C_3 y_F + C_4 y_R$; 4. donner les expressions littérales de C_1 , C_2 , C_3 et C_4 en fonction de K_{dF} , K_{pF} et L.

Déterminer l'expression de y_F'' , en fonction de δ_F , β_F , δ_R , β_R et L

D'après la relation (I.4), on a : $y_F' = \theta + \delta_F - \beta_F$. On alors $y_F'' = \frac{\mathrm{d}y_F'}{\mathrm{d}x_{G_2}} = \theta' + \delta_F' - \beta_F'$. Or en utilisant (I.6), on obtient $y_F'' = \frac{y_F' - y_R'}{2L_s} + \delta_F' - \beta_F'$. En utilisant a nouveau (I.4) et (I.5), $y_F'' = \frac{(\theta + \delta_F - \beta_F) - (\theta + \delta_R - \beta_R)}{2L} + \frac{(\theta + \delta_F - \beta_F) - (\theta + \delta_R - \beta_R)}{2L}$ $\delta_F' - \beta_F'$ soit $y_F'' = \frac{\delta_F - \delta_R + \beta_R - \beta_F}{2I} + \delta_F' - \beta_F'$.

En tenant compte de l'hypothèse du sujet, $\delta_F' - \beta_F' \simeq 0$ et $y_F'' = \frac{\delta_F - \delta_R + \beta_R - \beta_F}{2L}$.

Déterminer ensuite l'expression de δ_F

D'après (I.7), on a $y_F'' + K_{dF}y_F' + K_{pF}y_F = K_{pF}y_F^*$. En utilisant (I.4), $y_F'' + K_{dF}(\theta + \delta_F - \beta_F) + K_{pF}y_F = K_{pF}y_F^*$. Enfin en utilisant (E3), $y_F'' + K_{dF} \left(\frac{y_R - y_F}{2L} + \delta_F - \beta_F \right) + K_{pF} y_F = K_{pF} y_F^*$.

On a donc
$$K_{dF}\delta_{F} = K_{pF}y_{F}^{*} - y_{F}'' - K_{pF}y_{F} - K_{dF}\left(\frac{y_{R} - y_{F}}{2L} - \beta_{F}\right)$$

$$\Leftrightarrow \delta_F = \frac{K_{pF}}{K_{dF}} y_F^* - \frac{y_F''}{K_{dF}} - \frac{K_{pF}}{K_{dF}} y_F - \left(\frac{y_R - y_F}{2L} - \beta_F\right).$$

Montrer que
$$\delta_F^* = C_1 \hat{\beta}_F + C_2 \left(\delta_R - \hat{\beta}_R \right) + C_3 y_F + C_4 y_R$$

En utilisant les relations précédentes, on a $\delta_F = \frac{K_{pF}}{K_{JF}} y_F^* - \frac{1}{K_{JF}} \left(\frac{\delta_F - \delta_R + \beta_R - \beta_F}{2L} \right) - \frac{K_{pF}}{K_{JF}} y_F - \left(\frac{y_R - y_F}{2L} - \beta_F \right).$

On peut montrer que $\hat{\beta}_F = \beta_F$ et $\hat{\beta}_R = \beta_R$.

(En effet :
$$\hat{\beta}_F = \theta + \delta_F - \frac{\dot{y}_F}{V_{G_2}} = \frac{y_R - y_F}{2L} + \delta_F - \frac{\dot{y}_F}{V_{G_2}} = \frac{y_R - y_F}{2L} + \delta_F - \frac{V_{G_2} (\theta + \delta_F - \beta_F)}{V_{G_2}} = \frac{y_R - y_F}{2L} - \left(\frac{y_R - y_F}{2L} - \beta_F\right) = \beta_F$$
).

On a donc
$$\delta_F = \frac{K_{pF}}{K_{dF}}y_F^* - \frac{1}{K_{dF}}\left(\frac{\delta_F - \delta_R + \hat{\beta}_R - \hat{\beta}_F}{2L}\right) - \frac{K_{pF}}{K_{dF}}y_F - \frac{y_R - y_F}{2L} + \hat{\beta}_F$$

$$\Leftrightarrow \delta_F = \frac{K_{pF}}{K_{dF}} y_F^* - \frac{1}{2LK_{dF}} \left(\delta_F - \delta_R + \hat{\beta}_R - \hat{\beta}_F \right) - \frac{K_{pF}}{K_{dF}} y_F - \frac{y_R}{2L} + \frac{y_F}{2L} + \hat{\beta}_F$$

$$\Leftrightarrow \delta_F = \frac{K_{pF}}{K_{dF}} y_F^* - \frac{\delta_F}{2LK_{dF}} + \left(1 + \frac{1}{2LK_{dF}}\right) \hat{\beta}_F + \frac{1}{2LK_{dF}} \left(\delta_R - \hat{\beta}_R\right) + \left(\frac{1}{2L} - \frac{K_{pF}}{K_{dF}}\right) y_F - \frac{y_R}{2L}$$

$$\Leftrightarrow \delta_F \left(1 + \frac{1}{2LK_{dF}} \right) = \frac{K_{pF}}{K_{dF}} y_F^* + \left(1 + \frac{1}{2LK_{dF}} \right) \hat{\beta}_F + \frac{1}{2LK_{dF}} \left(\delta_R - \hat{\beta}_R \right) + \left(\frac{1}{2L} - \frac{K_{pF}}{K_{dF}} \right) y_F - \frac{y_R}{2L} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{1}{2LK_{dF}} \left(\frac{1}{2LK_{dF}} - \frac{1}{2LK_{dF}} \right) y_F - \frac{y_R}{2LK_{dF}} + \frac{y_R}{2LK_{d$$

$$\Leftrightarrow \delta_F = \frac{2LK_{pF}}{1+2LK_{dF}}y_F^* + \hat{\beta}_F + \frac{1}{1+2LK_{dF}}\left(\delta_R - \hat{\beta}_R\right) + \frac{K_{dF} - 2LK_{pF}}{1+2LK_{dF}}y_F - \frac{K_{dF}}{1+2LK_{dF}}y_R.$$

On aurait donc
$$C_1 = 1$$
, $C_2 = \frac{1}{1 + 2LK_{dF}}$, $C_3 = \frac{K_{dF} - 2LK_{pF}}{1 + 2LK_{dF}}$, $C_4 = -\frac{K_{dF}}{1 + 2LK_{dF}}$.

Ne correspond pas à l'expression demandée.