دقيقه	الات امتحان نهائی درس فیزیک (۳) و آزمایشگاه رشته: ریاضی فیزیک ساعت شروع: ۸ صبح مدت امتحان: ۲۰	سؤا
-	سال سوم أموزش متوسطه تاريخ امتحان: ۴۰/ ۳۰/ ۱۳۹۲ تعداد صفحات: ٤	
ن	ش آموزان روزانه، بزرگسال و داوطلبان آزاد سراسر کشور نوبت خرداد ماه سال ۱۳۹۲ مرکز سنجش آموزش و پرورد http://aee.medu.ir	دانن
نمره	سؤالات (پاسخنامه دارد)	رديف
,	در جمله های زیر کلمه های مناسب را از داخل پرانتز انتخاب نموده و به پاسخ نامه انتقال دهید: الف) برای یک گاز کامل این کمیت میکروسکوپیک است . (گرمای ویژه – سرعت مولکول ها)	1
	ب) در اثر پدیده ی (فرو شکست – قطبیدگی) دی الکتریک تغییر ماهیت داده یا سوراخ شده و خازن می سوزد. پ) آمپرسنج غیر ایده آل ، همواره عددی (کمتر – بیشتر) از جریان واقعی مدار را نشان می دهد. ت) نیرویی که سیم های مستقیم و موازی حامل جریان بر هم وارد می کنند ، اساس تعریف عملیاتی (تسلا– آمپر) است .	
``	کدام یک از جمله های زیر درست و کدام یک نادرست است ؟ الف) وجود برفک روی بدنه ی داخلی محفظه ی یخ ساز یخچال ، باعث افزایش ضریب عملکرد دستگاه می شود. ب) به وسیله ی « اُهم – متر » می توان مقاومت رشته ی سیم داخل لامپ روشن را اندازه گیری کرد. پ) هر چه آهنگ تغییر شار مغناطیسی بیش تر باشد، نیروی محرکه ی القایی ایجاد شده در مدار بیش تر خواهد شد . ت)متداول ترین روش تولید جریان القایی تغییر اندازه ی میدان مغناطیسی است .	٢
1/٢٥	جاهای خالی را با کلمه های مناسب پر کنید و به پاسخنامه انتقال دهید : الف) ۲۸۷ مقدار گرمایی است که در به یک مول گاز داده می شود تا دمای آن یک کلوین افزایش یابد. ب) اگر اندازه ی یکی از دوذره ی بارداری که در فاصله ۲ از یکدیگر قرار گرفته اند نصف شود، نیروی الکتریکی بین آن ها می شود. پ) وقتی به یک جسم بار الکتریکی داده می شود، بار در محل داده شده باقی می ماند و در جسم جابجا نمی شود .	٣
	ت) نیروی وارد بر بار الکتریکی مثبت واقع در میدان الکتریکی با آن است. ث) اگر فاصله بین صفحه های خازن تختی را که به یک باتری متصل است افزایش دهیم ، انرژی ذخیره شده در آن می یابد.	
+/0	به سوال های زیر پاسخ دهید: الف) شکل مقابل رسانای بارداری را نشان می دهد. پتانسیل الکتریکی و چگالی سطحی بار را در نقطه های A و B با هم مقایسه کنید . پایه عایق باید میسسسسس	٤
+/0	در مدار روبه رو ، مقاومت ها مشابه و آمپرسنج و ولت سنج هردو ایده آل هستند. با بستن کلید K عددهای آمپرسنج و ولت سنج چه تغییری می کنند؟ K K K K K K K K	
	«ادامه ی سوالات در صفحه دوم »	

مدت امتحان: ۱۲۰ دقیقه	، شروع : ۸ صبح	ساعت	رشته : ر یاضی فیزیک	و آزمایشگاه	سؤالات امتحان نهائي درس فيزيك (٣)
اد صفحات: ٤	تعد	129	Y / • W /• F :	تاريخ امتحان	سال سوم أموزش متوسطه
	مرکــز سنجش آموزش و پرورش http://aee.medu.ir		مور نوبت خرداد ماه سا	، آزاد سراسر کث	دانش آموزان روزانه، بزرگسال و داوطلبان

,	م رکــ ز سنج <i>ش</i> اموزش و پرورش http:// <u>aee.medu.ir</u>	آموزان روزانه، بزرگسال و داوطلبان آزاد سراسر کشور نوبت خرداد ماه سال ۱۳۹۲	دانش
نمره		سؤالات (پاسخنامه دارد)	رديف
+/0	$\vec{B} \times \times$	جهت حرکت میله ی AC را با ذکر دلیل مشخص کنید . × I	
+/٢0	جم $oldsymbol{V}_1$ تا حجم $oldsymbol{V}_1$ متراکم $oldsymbol{P}_{oldsymbol{A}}$	مطابق شکل، یک گاز را طی سه فرایند جداگانه ی هم دما، هم فشار و بی دررو از حمی کنیم. الف در کدام فرایند گرما مبادله نمی شود ؟	0
+/0	,	ب) با استدلال تعیین کنید در کدام فرایند قدر مطلق کار انجام شده کمتر است ؟	
+/٢0	P _Y P _Y V _Y	پ) در کدام فرایند انرژی درونی ثابت می ماند؟ V	
1/0	P(atm) 1/7 B C T T	جرخه ی (P-T) مقابل ، مربوط به یک مول گاز کامل تک اتمی است . الف) حجم گاز در حالت A ، چند متر مکعب است ؟ ب) گرمای مبادله شده در فرایند BC چند ژول است ؟ $C_{MP} = \frac{\delta}{\gamma} R , R = \lambda \frac{J}{mol.k}$ $T(k)$	7
1/10	مقدار گرما به موتور داده می شود ؟	توان یک موتور بنزینی ۱۰ KW و بازده گرمای آن ۲۰ درصد است . در هر دقیقه چه	٧
+/0	سانتی متر از یکدیگر بر روی خط	الف) دو بار الکتریکی q_1 و q_7 در فاصله ی معینی از یکدیگر واقع شده اند، به آن ها مطابق شکل است . بردار میدان را در نقطه های A و B در پاسخنامه رسم کنیا q_7 و q_7 در فاصله ی q_7 دو بار الکتریکی نقطه ای q_7 = q_7 و q_7 در فاصله ی q_7 در استی قرار دارند . در چه فاصله ای از بار q_7 برآیند میدان الکتریکی صفر می شود	٨

مدت امتحان: ۱۲۰ دقیقه	ساعت شروع : ۸ صبح	: ریاضی فیزیک	سگاه رشته	مؤالات امتحان نهائی درس فیزیک (۳) و آزمایش
د صفحات : ٤	ا تعدا	mar / +m /+f	ة امتحان :	سال سوم أموزش متوسطه تاريخ
مرکــز سنجش أموزش و پرورش http://aee.medu.ir		ت خرداد ماه سال ا	اسر کشور نوب	انش آموزان روزانه، بزرگسال و داوطلبان آزاد سرا

	http://aee.medu.ir	
نمره	سؤالات (پاسخنامه دارد)	ردیف
1/٢0	در شکل زیر ، بار الکتریکی $\mathbf{q}=+\mathbf{T}\mathbf{\mu}\mathbf{c}$ در شکل زیر ، بار الکتریکی $\mathbf{q}=+\mathbf{T}\mathbf{q}$ در شکل زیر ، بار الکتریکی $\mathbf{q}=+\mathbf{T}\mathbf{q}$ در شکل نام نام در شکل تا بازد نام در	٩
)	$c_{\gamma}=\Upsilon\cdot\mu F$ در شکل زیر اختلاف پتانسیل بین دو نقطه A و B برابر γ و لا برابر γ و ولتاژ دو سر باتری را حساب کنید. γ و ولتاژ دو سر باتری را حساب کنید. γ و ولتاژ دو سر γ و ولتاژ د	1.
+/٧٥	نمودار مفهومی زیر را کامل کنید :	11
	عوامل مؤثر بر مقاومت رساناهای فلزی در دمای ثابت دمای ثابت	
+/0	با توجه به کد رنگ های زیر ، حلقه های مقاومت کربنی را به ترتیب حرف های	١٢
	روی شکل چنان تعیین کنید که اندازه ی مقاومت الکتریکی Ω ۴۳۰۰ باشد. (قرمز= ۲ ، نارنجی π ، زرد = π) (قرمز= ۲ ، نارنجی π ، نارن	
1/40	$\varepsilon_{\rm r}=?$ و $r_{\rm r}=1\Omega$ با توجه به جهت جریان در مدار شکل مقابل ، حساب کنید :	۱۳
	$A = \Upsilon\Omega$ الف) مقدار B	
	I = YA اختلاف پتانسیل بین دو نقطه ی $I = YA$ اختلاف پتانسیل بین دو نقطه ی $I = YA$	
	$arepsilon_{ ho}$ توان تلف شده در باتری $arepsilon_{ ho}$	
i,	$\varepsilon_{\gamma} = 17\nu, r_{\gamma} = 1\Omega$	

«ادامه ی سوالات در صفحه چهارم »

متحان: ۱۲۰ دقیقه	<u> </u>			لات امتحان نهائی درس فیزیک (۳
	تعداد صفحان	1897 / +8 /+8	تاريخ امتحان :	سال سوم أموزش متوسطه
ِش و پرورش //:http	مركــز سنجش أموز aee.medu.ir	ن خرداد ماه سال ۱۳۹۲	بان آزاد سراسر کشور نوبت	ش آموزان روزانه، بزرگسال و داوطلب
		(پاسخنامه دارد)		

تمره	سؤالات (پاسخنامه دارد)	رديف
+/o +/Yo	دانش آموزی مداری مطابق شکل می بندد و تعدادی سوزن فولادی در زیر سیملوله قرار می دهد . با بستن کلید مشاهده می کند ، تعدادی از سوزن های فولادی جذب میله ی آهنی درون سیملوله می شوند. الف) علت مشاهده ی این پدیده را بنویسید. ب) اگر مقاومت رئوستا را کاهش دهیم پیش بینی می کنید تعداد سوزن هایی	18
:	که جذب میله می شوند افزایش می یابد یا کاهش ؟ توضیح دهید.	
1/40	قطعه سیمی به طول ۷۰cm و جرم ${\rm 3r}$ در میدان مغناطیسی افقی و یکنواختی به بزرگی ${\rm 4.60}$ تسلا و عمود بر میدان قرار گرفته است. اگر جریان در سیم از جنوب به شمال باشد ، جریانی که باید از سیم بگذرد و جهت میدان مغناطیسی را طوری تعیین کنید که نیروی الکترو مغناطیسی وارد بر سیم نیروی وزن را خنثی کند . $(g = {\rm 1.6} N/kg)$	10
+/٧٥	پیچه ی مسطحی از ۱۰ دور سیم نازک درست شده است و جریان ۲۸ از آن می گذرد . اگر بزرگی میدان مغناطیسی در $\left(\mu_\circ=rac{\pi}{A} ight)=rac{\pi}{A}$ بیچه چقدر است ؟	١٦
1	از سیملوله ای جریانی به معادله $t=t^{r}+t$ می گذرد،(I برحسب آمپر و t برحسب ثانیه است) در صورتی که اندازه ی نیروی محرکه القایی در لحظه $t=t$ برابر $t=t$ ولت باشد ، ضریب خود القایی سیملوله را محاسبه کنید.	١٧
+/0	معادله جریان متناوبی در SI به صورت $I=rac{1}{2}\sin\left(1\cdot n t ight)$ است . دوره ی جریان را حساب کنید.	۱۸
7+	«موفق باشید » جمع نمره	

رشته : ریاضی - فیسزیک	راهنمای تصحیح امتحان نها یی درس: فیرنک (۳) و آزمایشگاه
تاریخ امتحان: ۴ / ۳ / ۱۳۹۲	سال سوم أموزش متوسطه
مرکـز سنجش آموزش و پرورش http://aee.medu.ir	دانش آموزان روزانه ، بزرگسال و داوطلبان آزاد سراسر کشور نوبت خرداد ماه سال ۱۳۹۲

	http://aee.medu.ir		راهنمای تصحیح			ردیف
نمره				1	1 1 21 4 244	1
١	هر مورد (۲۰/۰)	ت) أمپر	پ) کمتر	ب) فروشكست	الف) سرعت مولکول ها	<u>'</u>
١	هر مورد (۱/۲۰)	ت) نادرست	پ) درست	ب) نادرست	الف) نادرست	۲
1/10	ث) کاهش	ت) هم جهت	ب پ) نارسانا	ب) \ ب برابر يا نصف	الف) حجم ثابت	٣
:				Y . Y	هر مورد (۰/۲٥)	
1/0			(·/۲۵)	$\delta_A \succ \delta_B$, (\cdot/Υ)	$V_A = V_B$ (الف	٤
		ٔ نشان می دهد			ب) أمير سنج عدد بيشتر	
	مت با میدان اصلی است پس میله	جهت میدان القایی هم ج	$\cdot (\cdot / \Upsilon \Delta) \varepsilon = BlV s$	$\sin heta$ راست یا رابطه ی	پ) با استفاده از قانون دست	
) حرکت کرده است .	AC به سمت چپ (۲۵/۰	
١				ر رو (۰/۲۵)	ا اك) فرايند (٣) بى د	0
		W/	$ =S_{P-V} (\cdot/\Upsilon \Delta)$	· (·/٢۵	ب) کار فرایند (۱) (و	
				(./٢۵)	پ) فرایند (۲) هم دما	
1/0	$P_A V_A = nRT_A \ (\cdot/\Upsilon \triangle) \to$	$V_A = \frac{1 \times A \times f}{1 \times A \times f}$	$\frac{\cdot}{\cdot} = \cdot / \cdot Y m^{r} (\cdot / Y)$	۵)	الف)	24
	$Q = nC_{MP} \Delta T(\cdot/\Upsilon\Delta) = 1 \times$	$(\frac{\omega}{7}) \times \lambda \times \frac{\omega}{7}$	$\cdot) = Y \cdot \cdot \cdot J(\cdot/Y\Delta)$		ب) ۱	
		(
1/40	$P = \frac{ W }{t} (\cdot / \Upsilon \Delta) \to 1 \cdot \times 1^{\Upsilon}$	$= \frac{ W }{(\cdot/\Upsilon\Delta)} \to V $	$V = 9 \times 10^{4} J(0.75)$)		٧
ļ	$\eta = \frac{ W }{Q_H}(\cdot/\Upsilon\Delta) \to \frac{\Upsilon\Delta}{V\cdot \cdot} =$	$\frac{\varphi \times V^{\perp}}{Q_H} \rightarrow Q_H =$	$YF \times 1.^{\Delta} J(\cdot/Y\Delta)$			
	ZH	2 п		Turk in the second		
1/0		E_A(+/Y0	هر نقطه باشد. هر مورد (مماس برخط های میدان در	الف) دقت شود باید هر بردار ه	٨
ļ L	+q, A		1			
		E_B				
	$E_1 = E_Y(\cdot/\Upsilon\Delta) \to k \frac{q_1}{r^{\Upsilon}} =$	$k \frac{q_{Y}}{\sqrt{1+q_{Y}}} (\cdot/Y\Delta)$	$\rightarrow \frac{\Upsilon}{} = \frac{\lambda}{}$	$\rightarrow x = 1.cm(\cdot/\Upsilon\Delta)$	→	
	$\frac{1}{x^{7}}$	··· (٣·-x)٢	x^{r} $(r-x)^{r}$,	ب)	
	$r - x = Y \cdot cm(\cdot/Y\Delta)$					

رشته : ریاضی - فیسزیک	راهنمای تصحیح امتحان نها یی درس: فیریک (۳) و آزمایشگاه
تاریخ امتحان: ۴ / ۳ / ۱۳۹۲	سال سوم أموزش متوسطه
مرکز سنجش أموزش و پرورش http://aee.medu.ir	دانش اَموزان روزانه ، بزرگسال و داوطلبان اَزاد سراسر کشور نوبت خرداد ماه سال ۱۳۹۲

	http://aee.medu.ir	ردیف
نمره	راهنمای تصحیح	
1/40		
		٩
	$\Delta U = -W_E(\cdot/\Upsilon\Delta) = -qEd\cos\theta(\cdot/\Upsilon\Delta) = -\Upsilon\times\Upsilon\cdot^{-\bullet}\times\Upsilon\cdot^{\bullet}\times\cdot/\Upsilon\times\cos\Upsilon\Upsilon^{\circ}(\cdot/\Delta) = -\Upsilon\times\Upsilon\cdot^{-\delta}J(\cdot/\Upsilon\Delta)$	
	در صورتی که به دلیل ندانستن مقدار ۳۷ cos جواب اَخر را بدست نیاورده است نمره کامل داده شود.	
	$ec{m{E}}$	
	A Tryo B	
	F	
1	$q_{\gamma} = q_{\gamma} = C_{\gamma} V_{\gamma} (\cdot / \gamma \Delta) \rightarrow q_{\gamma} = \gamma \cdot \times \beta \cdot = \gamma \gamma \cdot \mu c (\cdot / \gamma \Delta)$	1.
	$V_{r} = \frac{q_{r}}{c_{r}} = \frac{r \cdot r}{r} = r \cdot V(\cdot / r \Delta)$	
	$V = V_1 + V_2 = 9 \cdot + 4 \cdot = 1 \cdot \cdot \cdot V(\cdot / 12)$	
+/٧٥	7 - 7, 1 / 7 - 7 - 1 / 1 / 7 (/ 1 / 1)	
1,40	الف) مستقیم (۰/۲۰) ب) سطح مقطع (۰/۲۰) پ) مقاومت ویژه (۰/۲۰)	11
	(انتخاب رنگ سوم با توجه به دو رنگ دیگر نیازی به تعلق نمره ندارد) قرمز =C (۰/۲۰) نارنجی =B (۰/۲۰) زرد =A	١٢
+/0	$R = \overline{ab} \times 1^n = \mathfrak{rr} \cdot \Omega \rightarrow$	
1/40	$I = \frac{\mathcal{E}_1 - \mathcal{E}_Y}{R + r_1 + r_2} (\cdot / Y \circ) \to Y = \frac{YY - \mathcal{E}_Y}{Y + Y + Y} \to \mathcal{E}_Y = YV (\cdot / Y \circ)$ (ف)	١٣
	$V_A - RI - \varepsilon_{\Upsilon} - Ir_{\Upsilon} = V_B (\cdot/\Upsilon \circ) \rightarrow V_A - \Upsilon \times \Upsilon - \Upsilon - \Upsilon - \Upsilon \times \Upsilon = V_B \rightarrow V_B - V_A = -\Upsilon \cdot V (\cdot/\circ) (\cdot/\circ)$	
	$P = r_1 I^{Y} (\cdot / Y \Delta) \to p = 1 \times Y^{Y} = Y W (\cdot / Y \Delta) (\mathbf{y})$	
1/70	1	1.5
	الف) بنا به القای خاصیت مغناطیسی (۰/۲۰) سیملوله اَهنربا شده و قطب های ناهمنام در سوزن های مجاور خود ایجاد میکن (۲۸۷۰)	١٤
	می کند (۰/۲۵)	
	ب) با کاهش مقاومت رئوستا، جریان افزایش می یابد (۰/۲۰) پس میدان مغناطیسی سیملوله افزایش می یابد(۰/۲۰)	
	و تعداد سوزن های بیشتری جذب می شوند(۰/۲۵)	
}		
L		1

رشته : ریاضی - فیسزیک	راهنمای تصحیح امتحان نها یی درس: فیسزیک (۳) و آزمایشگاه
تاریخ امتحان: ۴ / ۳ / ۱۳۹۲	سال سوم أموزش متوسطه
مرکـز سنجش آموزش و پرورش http://aee.medu.ir	دانش آموزان روزانه ، بزرگسال و داوطلبان آزاد سراسر کشور نوبت خرداد ماه سال ۱۳۹۲

نمره	راهنمای تصحیح	رديف
1/40	$F = mg \rightarrow I/B \sin \theta = mg(\cdot/\Upsilon\Delta)$ $I \times \Upsilon\Delta \times 1 \cdot {}^{-\Upsilon} \times \Delta \times 1 \cdot {}^{-\Upsilon} \times 1 = \cdot/\cdot 9 \times 1 \cdot (\cdot/\Delta) \rightarrow I = 19A(\cdot/\Upsilon\Delta)$ $(\cdot/\Upsilon\Delta)$ mg	10
+/٧٥	$B = \frac{\mu_0 NI}{rR} (\cdot/r\Delta) \to r\pi \times 1 \cdot \overline{} = \frac{r\pi \times 1 \cdot \overline{} \times 1 \cdot \overline{}}{rR} (\cdot/r\Delta) \to R = \cdot/1 \ m(\cdot/r\Delta)$	١٦
١	$\left \varepsilon_{L}\right = \left -L\frac{dI}{dt}\right (\cdot/\Upsilon\Delta) \to \cdot/\Upsilon\Upsilon = \left -L\times(\Upsilon t + 1)\right _{t=\Upsilon}(\cdot/\Upsilon\Delta) \to L = \cdot/\cdot\Upsilon H(\cdot/\Delta)$	۱۷
+/0	$I = I_m \sin wt = I_m \sin \frac{\forall \pi}{T} t \left(\frac{\cdot}{\top} \Delta \right) \to \frac{\forall \pi}{T} = 1 \cdot \frac{\cdot}{\pi} \to T = \frac{\cdot}{\top} \Delta $	۱۸
7+	ان محترم با عرض سلام و خسته نباشید ، لطفأ برای پاسخ های درست دیگر نمره ی لازم را در نظر بگیرید. جمع نمره	همكا,