Bayesian Continuous Reassessment Method

Luka Kovacevic

July 2021

Introduction

- Aim: Use prespecified model to find the Maximum Tolerable Dose (MTD).
- Requires Target Toxicity Level (TTL) to determine what is an acceptable level of toxicity.
- Existing knowledge can be incorporated through prior distribution
- Steps for the CRM:
 - 1. Specify prior distribution with expert knowledge.
 - 2. Run first cohort based on available information.
 - 3. Compute the posterior distribution using $f(\theta|y_1, \dots, y_n) \propto f(\theta)L(\theta; y_1, \dots, y_n)$.
 - 4. Are the stopping rules satisfied?
 - If yes, stop the trial.
 - If no, return to Step 2 with the posterior distribution as the new prior.

- 1. **Theory:** Neuenschwander, B., Branson, M. and Gsponer, T., 2008. Critical aspects of the Bayesian approach to phase I cancer trials. *Statistics in medicine*, 27(13), pp.2420-2439.
 - More realistic approach to modelling dose-toxicity.
 - Maintain benefits of Bayesian framework.
 - Comparison of one-parameter and two-parameter models.
 - Oversimplified implementation of models and summaries leads to inadequecies in one-parameter model.
- 2. **Applied:** Sweeting M., Mander A., Sabin T., 2013. bcrm: Bayesian Continual Reassessment Method Designs for Phase I Dose-Finding Trials. *Journal of Statistical Software*
 - Bring methods into practice.
 - Creation of R package with step-by-step guidance.

Continuous Reassessment Method

- \mathscr{D} is set of J available doses.
- $-\pi_{\theta}(d_i)$ is the probability of toxicity at dose d with parameter θ .

Power Model:
$$\pi_{\theta}(d_i) = c_{d_i}^{\theta}, \ \theta > 0,$$

where c_d are monotonically increasing skeleton probabilities corresponding to a dose, $d_i \in \mathcal{D}$.

Skeleton probabilities are structural and constant throughout a trial.
Often set as equal to the prior estimates of DLT.

Two-parameter Logistic Model:
$$\operatorname{logit}[\pi_{\theta}(d_i)] = \operatorname{log} \alpha + \beta \operatorname{log} \left(\frac{d_i}{d^*}\right)$$
,

with $\alpha, \beta > 0$, $\theta = (\log \alpha, \log \beta)$, and d^* is some predefined reference dose.

Prior Specification

- Aim to incorporate external information (e.g. similar or previous studies).
- Flat priors are not favourable.
- No formal analysis can be made without any observed DLTs, i.e. formal methods for dose recommendation cannot be used.
- The following is proposed:
 - 1. Formulate prior information on the scale of interest, i.e. the probabilities of toxicity, $\pi_{\theta}(d)$ s.t. $d \in \mathcal{D}$.
 - 2. To define the prior of θ so that its implied information on the π -scale is in agreement with the information in 1.

Formal process of prior specification:

1. Prior information is defined on K quantiles

$$q_d = \{q_d(p_1), \dots, q_d(p_k)\},$$

 $\Rightarrow \Pr[\pi_{\theta}(d_i) \leq q_d(p_k)] = p_k, \quad k = 1, \dots, K$

Priors are defined by $J \times K$ quantiles, i.e. K quantiles for each dose.

2. Minimise difference between prespecified quantiles Q and fitted quantiles Q',

$$C(Q,Q^{'})=\max_{j,k}|q_{jk}-q_{jk}^{'}| \quad j=1,\ldots,J, k=1,\ldots,K.$$

Figure: Left panel shows an uninformative prior. Right panel shows quantiles as dots and fitted quantiles as dotted lines [1].

Dose Recommendation

1. Power Model:

- Information obtained from posterior distribution.
- Mean posterior probability of DLT is used.

Plug-in mean:

$$\mu_1(d_i; y_1, \ldots, y_n) = \pi \left(d_i; \int_0^\infty \alpha f(\alpha|y_1, \ldots, y_n) d\alpha\right)$$

Posterior mean:

$$\mu_2(d_i; y_1, \ldots, y_n) = \int_0^\infty \pi(d_i; \alpha) f(\alpha|y_1, \ldots, y_n) d\alpha$$

- Dose with posterior mean closest to the Target Toxicity Level (TTL) is chosen as the next dose
- Approach does not take into account uncertainties about the posterior means.

2. Two-parameter Logistic Model:

- One approach is to use posterior mean as described for one-parameter model.
- Another approach is to use a Bayesian analytic approach with toxicity intervals.

Loss function:

$$\mathsf{Loss}(\beta_1,\beta_2;d_i) = \begin{cases} \ell_1 & \text{if } \pi_\theta(d_i;\beta_1,\beta_2) \in (p_0,p_1] \\ \vdots & \vdots \\ \ell_m & \text{if } \pi_\theta(d_i;\beta_1,\beta_2) \in (p_{m-1},p_m] \end{cases}$$

Bayes Risk:

$$B(d_i) = \int_0^\infty \int_0^\infty \mathsf{Loss}(\beta_1, \beta_2; d_i) f(\beta_1, \beta_2 | y_1, \dots, y_n) d\beta_1 d\beta_2$$

Example loss function:

$$\mathsf{Loss}(\beta_1, \beta_2; d_i) = \begin{cases} \ell_1 = 1 & \text{if } \pi_{\theta}(d_i; \beta_1, \beta_2) \in (0, 0.2] \\ \ell_2 = 0 & \text{if } \pi_{\theta}(d_i; \beta_1, \beta_2) \in (0.2, 0.35] \\ \ell_3 = 1 & \text{if } \pi_{\theta}(d_i; \beta_1, \beta_2) \in (0.35, 0.6] \\ \ell_4 = 2 & \text{if } \pi_{\theta}(d_i; \beta_1, \beta_2) \in (0.6, 0.1] \end{cases}$$

- Assume known posterior distributions.
- Simplified Bayes Risk

$$= \ell_1 \Pr \left\{ \pi_{\theta}(d_i) \in (0, 0.2] \right\} + \ell_2 \Pr \left\{ \pi_{\theta}(d_i) \in (0.2, 0.35] \right\} \\ + \ell_3 \Pr \left\{ \pi_{\theta}(d_i) \in (0.35, 0.6] \right\} + \ell_4 \Pr \left\{ \pi_{\theta}(d_i) \in (0.6, 1.00] \right\}$$

- Conservative and aggressive loss functions.
- Uncertainty is taken into account.

	Doses									
	1	2.5	5	10	15	20	25	30	40	50
No. of patients	3	4	5	4	_	_	2	_	_	_
No. of DLTs	0	0	0	0	_	_	2	_	_	_
(A) Posterior sur	mmaries (prior sim	ilar to CI	RM prior)						
Under-dosing	1.000	0.996	0.970	0.809	0.581	0.377	0.234	0.140	0.050	0.017
Target	0.000	0.004	0.029	0.170	0.324	0.401	0.393	0.343	0.212	0.117
Excessive	0.000	0.000	0.001	0.021	0.094	0.216	0.352	0.464	0.574	0.544
Unacceptable	0.000	0.000	0.000	0.000	0.001	0.006	0.021	0.052	0.164	0.322
Risk 1-0-1-1	1.000	0.996	0.971	0.830	0.676	0.599	0.607	0.657	0.788	0.883
Risk 1-0-1-2	1.000	0.996	0.971	0.830	0.677	0.605	0.628	0.710	0.952	1.205
Risk 1-0-2-4	1.000	0.996	0.972	0.852	0.773	0.833	1.021	1.279	1.855	2.393
Mean	0.011	0.029	0.061	0.127	0.191	0.252	0.309	0.360	0.449	0.522
Std. dev.	0.018	0.034	0.056	0.088	0.111	0.126	0.136	0.142	0.148	0.147
(B) Posterior sur	(B) Posterior summaries (non-informative default prior)									
Under-dosing	1.000	0.998	0.968	0.740	0.476	0.287	0.173	0.110	0.051	0.027
Target	0.000	0.002	0.030	0.215	0.337	0.350	0.305	0.247	0.148	0.093
Excessive	0.000	0.000	0.001	0.044	0.179	0.319	0.413	0.450	0.432	0.357
Unacceptable	0.000	0.000	0.000	0.000	0.009	0.043	0.109	0.193	0.369	0.523
Risk 1-0-1-1	1.000	0.998	0.970	0.785	0.663	0.650	0.695	0.753	0.852	0.907
Risk 1-0-1-2	1.000	0.998	0.970	0.785	0.672	0.693	0.804	0.946	1.222	1.430
Risk 1-0-2-4	1.000	0.998	0.971	0.830	0.869	1.099	1.436	1.782	2.392	2.832
Mean	0.010	0.028	0.065	0.148	0.230	0.305	0.372	0.429	0.523	0.593
Std. dev.	0.014	0.030	0.056	0.099	0.132	0.155	0.171	0.180	0.189	0.189

Figure: Table of posterior probabilities of DLT [1].

Simulations: One-parameter Power Model

 Key to determining operating characteristics of various approaches to dose-finding.

Dose	$5 \mathrm{mg}$	10mg	15mg	25 mg	$40 \mathrm{mg}$	$50 \mathrm{mg}$	60mg
Prior guess of risk	0.05	0.10	0.20	0.30	0.35	0.40	0.45
Scenario 1	0.05	0.10	0.20	0.30	0.35	0.40	0.45
(Toxicity as expected)							
Scenario 2	0.06	0.12	0.24	0.36	0.42	0.48	0.54
(20% greater than expected)							
Scenario 3	0.04	0.08	0.16	0.24	0.28	0.32	0.36
(20% less than expected)							
Scenario 4	0.05	0.11	0.24	0.39	0.49	0.60	0.72
(greater rate of DLT increase)							
Scenario 5	0.05	0.09	0.16	0.21	0.23	0.24	0.25
(lesser rate of DLT increase)							

Figure: True toxicity values under each scenario in the simulation study [2].

	True risk DLT						
Scenario	[0, 0.2]	(0.2, 0.4]	(0.4, 0.6]	(0.6, 0.8]			
Experimentation proportions							
Scenario 1	0.398	0.539	0.064	0.000			
Scenario 2	0.192	0.617	0.191	0.000			
Scenario 3	0.301	0.699	0.000	0.000			
Scenario 4	0.184	0.675	0.136	0.004			
Scenario 5	0.294	0.706	0.000	0.000			
Recommendation proportions							
Scenario 1	0.204	0.737	0.059	0.000			
Scenario 2	0.022	0.837	0.141	0.000			
Scenario 3	0.051	0.949	0.000	0.000			
Scenario 4	0.019	0.926	0.054	0.001			
Scenario 5	0.033	0.967	0.000	0.000			

Figure: Simulation results for one-parameter model with non-informative Gamma(1,1) prior [2].

	True risk DLT						
Scenario	[0, 0.2]	(0.2, 0.4]	(0.4, 0.6]	(0.6, 0.8]			
Experimentation proportions							
Scenario 1	0.280	0.719	0.000	0.000			
Scenario 2	0.143	0.743	0.113	0.000			
Scenario 3	0.236	0.764	0.000	0.000			
Scenario 4	0.143	0.775	0.082	0.000			
Scenario 5	0.234	0.766	0.000	0.000			
Recommendation proportions							
Scenario 1	0.082	0.916	0.002	0.000			
Scenario 2	0.000	0.904	0.096	0.000			
Scenario 3	0.012	0.988	0.000	0.000			
Scenario 4	0.000	0.954	0.046	0.000			
Scenario 5	0.005	0.995	0.000	0.000			

Figure: Simulation results for one-parameter model with informative Gamma(20,0.05) prior [2].

Simulations: Two-parameter Logistic Model

True risk DLT								
Scenario	Model	[0, 0.2]	(0.2, 0.4]	(0.4, 0.6]				
Experimentation proportions								
Scenario 1	Two-parameter	0.395	0.566	0.039				
	EWOC $q = 0.25$	0.532	0.462	0.007				
	Toxicity intervals	0.415	0.573	0.012				
Scenario 2	Two-parameter	0.193	0.714	0.093				
	EWOC $q = 0.25$	0.288	0.687	0.025				
	Toxicity intervals	0.190	0.766	0.044				
Recommendation proportions								
Scenario 1	Two-parameter	0.202	0.747	0.051				
	EWOC $q = 0.25$	0.324	0.662	0.014				
	Toxicity intervals	0.200	0.784	0.016				
Scenario 2	Two-parameter	0.020	0.894	0.086				
	EWOC $q = 0.25$	0.055	0.916	0.029				
	Toxicity intervals	0.020	0.925	0.055				

Figure: Simulation results for two-parameter logistic model.

Key Points

- Use of uncertainty.
- Priors are important in determining how a method reacts to toxicities.
- Similar operating characteristics.
- Comparisons can be very dependent on the choice of doses, model,
- Trade-off between conservatism and finding MTD.

