전통적자산배분

전략적 자산배분 (Strategic Asset Allocation)

정의

장기적으로 달성하고자 하는 투자 목표와 제약 조건 등을 고려하여, 최적의 자산군 비중으로 구성된 장기 정책 포트폴리오를 수립 및 유지하는 과정

- 최소 3년 이상의 장기,거시적 정책 포트폴리오(Policy Portfolio) 수립
- 위험 및 수익 목표에 근거한 전략 체계화 (목표 수익률, 목표 분산 등)
- 정적인 자산 배분으로 베타(일반적으로 연 1회 리밸런싱 주기) 추종
- 투자자 특성 (제약조건, 선호도)을 반영한 맞춤형 전략 수립 가능
- 목표 기반 투자(Goal Based Investment) 운용 시, 퇴직 연금이나 은퇴 자금 펀드 운용 등 장기 투자 시 적합한 자산배분

블랙록이 제시한 2025 US 연금 플랜 전략적 자산 배분 포트폴리오 기준 설명 투자목표 절대수익률기준최소 7% 이상목표 위험목표 주식-채권 7:3 포트폴리오의 변동성을 상한 설정 자산군 및 제약 투자기간 약 20년

주요 연구 결과

Brinson, Hood & Beebower (1986) 자산군 간 배분이 성과 변동성의 90% 이상을 설명

"자산배분 정책이 투자 성과의 대부분을 좌우하며, 시장 타이밍이나 종목 선정보다 중요하다."

Ibbotson & Kaplan (2000) 포트폴리오 수익률의 상당 부분이 전략적 자산배분의 결과임을 실증

"실증 분석으로 장기 성과에 자산배분이 가장 결정적인 요소임을 확인"

과거 10년 간의 성과 비교 (Reference Portfolio 추가): '70:30 포트폴리오'와 '50:50 포트폴리오'를 추가

자료: KB증권 / 주: USD 총 수익률 가정, 연간 리밸런싱 가정

출처: BlackRock (2025)

전술적 자산배분 (Tactical Asset Allocation)

정의

단기간(3개월 ~ 1년)의 성과에 초점을 두고 벤치마크 혹은 전략적 자산 배분 대비 알파를 얻기 위해 특정 자산군에 액티브하게 배분하는 방법

- 자산가격이 mis-pricing 되어 있다고 가정
- 투자자의 매크로 및 시장 상황 판단에 기반하여 주식 대비 채권 비중을 높이거나, 주식자산 내 특정 섹터나 국가 비중을 조절하는 등의 방식
- 상대적으로 빈번한 포트폴리오 재조정 및 높은 비용 발생 가능
- 큰 틀은 전략적 자산배분이기에 SAA의 사전적 투자한도 조건 하에 이루어짐

구분	전략적 자산배분	전술적 자산배분		
시간 범위	장기 (3년 이상)	단기 (3개월 ~ 1년)		
목표	장기 수익률 극대화	초과 수익(알파) 추구		
리밸런싱	연 1회 정도	운용 방식에 따라 빈번히 발생		
운용방식 패시브 성향		액티브 성향		
비용	저비용	상대적 고비용		

두 전략은 배타적 개념이 아닌, 상호 보완적 개념으로 이해할 수 있음

전략적 자산배분 의사결정 프로세스

전략적 자산 배분의 성패를 결정하는 핵심 프로세스

- CMA (Capital Market Assumption)의 작은 오차가 성과에 막대한 영향
- 적절한 최적화 방법론을 사용하여야 합리적인 최적해 도출 가능

자산배분펀드 사례 - 미래에셋 드림스타 자산배분 성장형 펀드 (혼합-재간접형)

펀드 운용 프로세스 및 투자 전략

투자 전략

전략 구분	설명		
전략적 자산배분 (SAA)	주식 60% : 채권 30% : 대체자산 10%의 장기적 자산배분 계획		
전술적 자산배분 (TAA)	SAA 기반 하에 주식 & 채권 자산군 ±30%내 비중 조절 / 대체자산 0%~40% 내		
Core-Satellite 전략 핵심(Core)전략 - 시장성과(베타) 추종 / 위성(Satellite)전략 - 자산군 대표 지수 대비 초과수익(알파) 추구 예시) KOSPI 지수 (Core) + 방산테마 ETF (Satellite) 익스포져			

자산배분펀드 사례 - 미래에셋 드림스타 자산배분 성장형 펀드 (혼합-재간접형)

채권 금리 단기 변동에 대응하는 TAA 전략 운용

TAA 전략 배경 (4분기 초, 10월 전후)

- 美 재정적자 확대 등에 따른 수급환경 악화 영향
- 10월, 16년 만에 미국 10년물 금리 5% 돌파
- 금리 상승 리스크가 정점에 달했다고 판단

TAA 대응 전략

- 금리 변동성 국면, 리스크 회피 목적의 채권 비중 축소
- 금리 피크아웃 판단, 듀레이션 확대 전략 수립
- 듀레이션 확대 목적으로 단기채권형 ETF 전량 매도
- 이후 3분기 간 점진적인 중장기형 채권 매수 비중 확대

적절했던 TAA 전략인가?

- 듀레이션 확대 전략은 TAA의 목적에 매우 부합함
- 채권 비중을 급격히 줄인 것은 적절한 선택인가?
 - 4분기말 시장상황 개선, 채권의 연말랠리 이어짐
 - 액티브 성과는 불확실한 단기 뷰에 의해 결정됨

자산배분펀드 사례 - 미래에셋 드림스타 자산배분 성장형 펀드 (혼합-재간접형)

알파 추구 전략: 전술적 자산배분 + Core-Satellite 기반 자산선택 효과

증시 기반 주요 Satellite 지수

구 분	Satellite ETF	대응 Core ETF	보완·강화요점
스 타	iShares Russell 1000 Growth (대형 성장)	CAD EOO	성장 팩터 가중치
일	iShares S&P 500 Value (대형 가치)	S&P 500	가치 팩터 로 성장편중 완화
	VanEck Semiconductor (반도체)	S&P	AI 관련 슈퍼사이클
	TIGER US Tech TOP10 (빅테크 10)	500·Nasdaq	익스포져
섹 터	FIDELITY Global Tech Fund (글로벌 Tech 액티브)	MSCI World	
	TIGER Nasdaq 100 (미국 성장/테크)	WISCI WOIId	글로벌 테크주 강세 추세 익스포져
	TIGER 200 IT (KOSPI 200 IT)	KOSPI 200·EM지수	
테 마	TIGER 글로벌비만치료제 TOP2PLUS	-	시장에서 주목받는 테마 및 모멘텀 팔로잉

TAA 전략 근거

AI 주도 랠리에 반도체주 비중 확대 밸류에이션 부담 완화 목적 가치주 편입

투자 결과

- 반도체 ETF 편입
- S&P 500 Value 편입

아시아 증시부진 및 캐리 축소로 정리 분산 효과 지속위해 글로벌지수 편입

- MSCI World 신규 편입
- Fidelity Asia 전량 매도

- 중국 부양책으로 신흥국 시장 반등 기대 24 Q3 국채 금리 급등에 따른 나스닥 고밸류 종목 조정 AI 과열에 따른 관련주 익스포져 축소
- MSCI EM 편입
- MSCI World 확대
- 미국테크 탑10 전량 매도
- 반도체 ETF 전량 매도

- 24 Q4 'Trump-Trade' 랠리로 성장주 강세 전환 경기연착륙 기대감으로 성장 – 가치 스타일 회전
- 러셀1000 Growth 편입
- Nasdaq100 편입
- S&P500 Value 축소

전략적 자산 배분의 한계

기대수익률 산출 과정에서 발생하는 추정오차

산출해야 하는 CMA(Captial Market Assumption)

• 기대수익률(μ) • 분산(σ²) • 상관계수(ρ) (추정치는 포트폴리오 최적화 시 입력값으로 사용됨)

위 변수들을 어떻게 추정할 수 있을까?

1. 통계 모형 활용

단순 과거 평균, 샘플 축소 및 혼합 기법, 시계열모형 추정치, 다요인 모형

2. 현금흐름할인모형 활용

고든 정률성장 모형, 그리놀드 크로너 모형 -> 목표투자기간 장기일 경우 유리

3. 위험프리미엄 방법

위험자산 기대수익률을 무위험이자율과 위험 프리미엄으로 분해 후, 위험프리미엄을 결정 요소 별 세부적으로 분해 (빌딩블록 방식)

4. 자산가격결정모형 이용 방법

CAPM을 기반으로 도출된 자본시장 기대치는 블랙-리터만 모형 등 대안적 최적화 모형에 사용되거나 위험프리미엄 산출에 사용되는 등 범용적으로 사용됨 CMA 입력값의 추정오차는 포트폴리오 추정 시 높은 영향력 (특히 기대수익률은 타 변수 대비 그 영향력이 중대함)

그 어떤 방법론도 추정오차 없는 완벽한 기대수익률을 산출할 수 없음 방법론 별 우위는 기간, 자산군 등에 따라 달라지기에 최선의 방법론도 無 즉 최적화 모형에 대입되는 입력값은 실제 기대값과 추정오차가 있기 마련임

문제인식

투자자가 가정한 기대수익률과 변동성, 상관계수에 투자 비중이 좌우되는데 이것이 정확하지 않다면, 전략적 자산배분의 '최적화된' 포트폴리오는 최적인가?

cf. 개인투자자가 적정 CMA를 산출하는 것은 어렵지만, JP모건, 블랙록, 인베스코 등 대형 기관은 투자자들을 위해 하우스 뷰가 담긴 CMA를 매년 제공하고 있음

HIF

전략적 자산 배분의 한계

MVO(평균-분산 최적화) 방법론의 문제

1. 기대수익률의 민감도

입력값으로 사용된 기대수익률의 미세한 추정오차가 증폭되어 자산군 비중을 크게 변동시킬 수 있음

예시

자산	기대수익률 (µ)	분산 (σ²)	표준편차 (σ)
Α	0.075 (7.5%)	0.05	0.2236
В	0.079 (7.9%)	0.06	0.2449
С	0.055 (5.5%)	0.04	0.2

자산 A의 기대수익률(µ) 0.5% 변동 시

기대수익률 / 자산	Α	В	C		
7.50% (기본)	47.1%	11.3%	41.6%		
8.00%	54.4%	4.6%	41.0%		
8.55%	61.8%	-2.3%	40.4%		

 $\mu_A \,$ 0.5%p 상승 -> 자산 B 비중의 67% 하락

수익 대비 위험의 미세한 차이까지 모두 활용하려는 모형구조가 되려 기대수익률의 사소한 변동에 따른 극단적 비중 변화를 초래

문제점

- MVO 결과를 신뢰할 경우 자산배분의 정책 비중이 수시로 바뀜
- 작은 전망 수정에 따른 불필요한 리밸런싱 지속 시 운용비가 급등함

2. 코너 해(Corner Solution) 문제

위험 대비 기대수익률이 조금이라도 더 나은 자산에 포트폴리오 비중이 쏠리는 문제

예시 (Long Only)

구분	자산 A	자산 B	
기대수익률 µ	8.0%	8.0 % (고정)	
분산 σ²	0.04	0.0625	
상관 ρ	0.75		

μ_A	A 비중	B 비중	
6.80%	0.66	0.34	
7.50%	0.81	0.19 ^{자산}	A 기대수익률 상승 시 코너해 발생 ↑
8.00%	0.91	0.09	
8.54% (임계치)	1.00	0.00	
9.20%	1.00	0.00	

문제점

- (사전에 추정된)기대수익률과 위험이 100% 정확하면 문제가 없지만 현실적으로 불가능
- 따라서 코너 해 발생 시, 분산 투자 효과는 전혀 누리지 못하고 손실이 확대될 수 있음

HIF

전략적 자산 배분의 한계

평균분산모형에 대한 대안적 접근

1. MVO에 제약조건 부여하여 추정오차 증폭 제한

자산별 최대 최소 편입 한도에 제약 조건을 두거나, 거래 회전율에 제한을 두는 등 인위적 개입을 통한 모형 한계 개선

제약 상황 (0 ≤ w_i ≤ 50)

기대수익률 / 자산	Α	В	С	
7.50% (기본)	47.1%	11.3%	41.6%	
8.00% (제약)	50%	8.0%	42.0%	
8.00% (비제약)	54.4%	4.6%	41.0%	
자산 B 비중의 과도한 낙폭 방지				

2. 블랙-리터만 모형

기대수익률 추정 오차에서 발생하는 문제를 개선하기 위해 90년대 초 골드만삭스의 Black & Litterman이 고안한 모형

평균-분산최적화

- 예측치에 지나치게 의존
- 극단적 자산 배분 가능성
- 입력치 변화에 민감
- 예측 오류에 취약한 구조

블랙-리터만모형

- 시장 균형점을 기초로 활용
- 유연한 전망 반영 가능
- 전망 신뢰도 반영
- 안정적 포트폴리오 구성

그 외에도 리스크-패리티 전략, 최소 분산 포트폴리오 등 학계에서 여러 대안•보완적 기법을 제시하고 있음

HIF

전략적 자산 배분의 한계

평균분산모형에 대한 대안적 접근- 블랙 리터만 모형

두 가지 정보의 결합

- 유연성: 일부 자산에 대해 전망, 나머지는 중립(neutral) 상태 유지
- 신뢰도 반영: 신뢰도 높은 전망에 큰 가중치, 불확실 전망에는 낮은 가중치
- 베이지안 결합: 사전분포 (시장 기대수익)와 우도함수 (투자자 전망) 통합

암묵적 시장 기대수익률

- 현재의 시장 포트폴리오를 효율적으로 간주
- 시장 포트폴리오 가중치 + 자산 공분산 행렬 + 위험회피계수 모두 반영하여 역산
- 시장 균형에서 역산된 기대수익률을 도출
- 불확실성 매개변수(t)를 통해 암묵적 포트폴리오에 대한 불확실 수준 설정

자산 배분 전략 실현

GPT와 파이썬을 이용한 블랙-리터만 모형 자산배분 구현

블랙-리터만 모형 구현

자산군 (ETF)	균형 포트폴리오 비중 (BM 설정)	∏ (시장균형 기대수익률)	Q (Invesco CMA)	시장 뷰 가중치	사후 기대수익률	최적 비중
미국 증시 (VTI)	20%	11.48%	5.8%	0.55	8.35%	36.05%
글로벌 증시 (VXUS)	20%	11.07%	7.1%	0.45	8.43%	22.76%
미국 채권 (BND)	20%	6.09%	5.4%	0.7	5.35%	0%
미국 리츠 (VNQ)	20%	12.81%	9%	0.5	8.15%	16.18%
원자재 (GSG)	20%	8.36%	7.9%	0.1	7.18%	25.01%
합계	100%					100%

- 시장균형 포트폴리오는 Mebane Faver의 IVY Portfolio를 임의로 설정함
- 투자자 주관적 전망(Q)는 Invesco의 Capital Market Assumption 2025 활용
- 시장균형 기대수익률은 무위험이자율 4% 기반 / Long Only 설정 / 위험회피계수 3
- 데이터 기간은 (2020.05.01 ~ 2025.04.30)으로 기대수익률은 최근 5년, 분산은 3년 이용
- 정확한 파라미터 사용 등은 미흡하므로 MVO와 비교 하기 위한 예시 수준으로 참고

평균-분산 모형과 비교

티커 / 수익률추정	MVO	블랙-리터만
미국 증시	0%	36.05%
글로벌 증시	62.65%	22.76%
미국 채권	0%	0%
미국 리츠	37.35%	16.18%
원자재	0%	25.01%
합계	100%	100%

블랙-리터만 모형은 MVO 대비 극단적 해 확률 및 과거 편향 확률↓