CH402 Chemical Engineering Process Design

Class Notes L13

Flowsheet Synthesis

Block Diagram of (all) Chemical Processes

Often simplified to this form.

Case Study - Vinyl Chloride Monomer (VCM) Production

Problem definition (market survey)

21,100,000 tons/y in 2000

40,000,000 tons/y in 2009

8,000,000 t/y in 2009

~10,000,000 t/y in 2020

Emissions are a problem 23 Feb 2023 East Palestine, OH

average US plant capacity is 667,000 t/y

3.7% growth from 2000-2009

2.7% growth from 2009-2024

12 US plants

1,334 million lbs/y per plant 604.8 million kg/y per plant

Next step is a literature search – 5 Routes Identified

Kirk-Othmer, Wikipedia (also CH383)

 $C_2H_2 + HCI \longrightarrow C_2H_3CI$

Route 1
direct reaction of acetylene
(acetylene hydrochlorination)

Kirk-Othmer, Wikipedia

Literature Search

(also CH383)

Route 2 direct chlorination of ethylene (liquid phase)

thermodynamically favored
$$C_2H_4 + CI_2 \longrightarrow C_2H_4CI_2$$

Not the product we want

Kirk-Othmer, Wikipedia

Literature Search

CH383

$$C_2H_4 + CI_2 \longrightarrow C_2H_4CI_2$$

ethylene chlorination

$$C_2H_4CI_2 \longrightarrow C_2H_3CI + HCI$$

pyrolysis

$$C_2H_4 + CI_2 \longrightarrow C_2H_3CI + HCI$$

Route 3 direct chlorination + pyrolysis

Kirk-Othmer, Wikipedia

Literature Search

$$C_2H_4 + 2HCI + \frac{1}{2}O_2 \longrightarrow C_2H_4CI_2 + H_2O \quad \text{oxychlorination}$$

$$C_2H_4CI_2 \longrightarrow C_2H_3CI + HCI \quad \text{pyrolysis}$$

$$C_2H_4 + HCI + \frac{1}{2}O_2 \longrightarrow C_2H_3CI + H_2O \quad \textbf{Route 4}$$
oxychlorination + pyrolysis

Kirk-Othmer, Wikipedia

Literature Search

$$C_2H_4 + CI_2 \longrightarrow C_2H_4CI_2 \qquad \text{chlorination} \\ + \\ C_2H_4 + 2HCI + \frac{1}{2}O_2 \longrightarrow C_2H_4CI_2 + H_2O \qquad \text{oxychlorination} \\ + \\ C_2H_4CI_2 \longrightarrow C_2H_3CI + HCI \qquad \text{pyrolysis}$$

$$2C_2H_4 + Cl_2 + \frac{1}{2}O_2$$
 \longrightarrow $2C_2H_3CI + H_2O$ Route 5 (overall)

5 processes identified in literature survey

Summary

$$C_2H_2 + HCI$$

$$\longrightarrow$$
 C₂H₃Cl

Α acetylene hydrochl.

$$C_2H_4 + CI_2$$

$$\longrightarrow$$
 C₂H₃Cl + HCl

direct chlorination C

$$C_2H_4 + CI_2$$

$$\longrightarrow$$
 C₂H₃CI + HCI

C-P chlorination + pyrolysis

$$C_2H_4 + HCI + \frac{1}{2}O_2 \longrightarrow C_2H_3CI + H_2O$$

O-P oxychlorination + pyrol.

$$2C_2H_4 + Cl_2 + \frac{1}{2}O_2$$

$$\rightarrow$$
 2C₂H₃Cl + H₂O C-O-P chlor. + oxychlor. + pyrol.

Functions Diagram – C – Direct Chlorination

The utility of the functions diagram is that it can be used to build much larger processes.

$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Cl_2$$

$$C_2H_4 + CI_2 \longrightarrow C_2H_4CI_2$$

Functions Diagram – Pyrolysis

Hybrid Functions Diagram - Route 3 - CP

Functions Diagram – Oxychlorination

Hybrid Functions Diagram - Route 5 - COP

 $\mathsf{C_2H_4CI_2}$

 $C_2H_4CI_2$

Input/Output Structure - Route 5 - COP

I/O box is frequently left blank

The I/O analysis allows us to make an assessment of the overall economics of the process.

5 processes

				Reaction Path
C ₂ H ₂ + HCl		C ₂ H ₃ Cl	Α	1
$C_2H_4 + Cl_2$		C ₂ H ₃ Cl + HCl	С	2
$C_2H_4 + Cl_2$		C ₂ H ₃ CI + HCI	C-P	3
C ₂ H ₄ + HCl + ½ O ₂		C ₂ H ₃ Cl + H ₂ O	O-P	4
$2C_2H_4 + Cl_2 + \frac{1}{2}O_2$		2C ₂ H ₃ Cl + H ₂ O	C-O-P	5

Economic Analysis is Based on I/O

Measures the economic "driving force" Example 4-2, page 135

			Reaction Path, kg/kg VC				
Species	MW, kg/kgmol	Price, \$/kg	1	2	3	4	5
Cl ₂	70.9	0.03		-1.13	-1.13		-0.57
HCI	36.5	0.22	-0.58	0.58	0.58	-0.58	
C ₂ H ₂	26.0	1.39	-0.42				
C ₂ H ₄	28.1	0.45		-0.45	-0.45	-0.45	-0.45
C ₂ H ₃ Cl	62.5	0.45	1.00	1.00	1.00	1.00	1.00
O ₂	32.0	0.04				-0.26	-0.13
product val	ue		\$0.45	\$0.58	\$0.58	\$0.45	\$0.45
reactant co	ost		-\$0.71	-\$0.24	-\$0.24	-\$0.34	-\$0.22
excess val	ue		-\$0.26	\$0.34	\$0.34	\$0.11	\$0.23

I/O diagram for process 5 is shown on slide 24

The bottom line represents \$/kg. If we know the kg/year, then we know the annual cash flow.

(a) Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas.

(b) What production mode should be used to obtain production rates of 2x10⁷ and 1x10⁸ kg/y? (batch or continuous?)

Electricity: \$.05/kW·h

H₂: \$.67/kg (Kirk-Othmer)

O₂: \$.04/kg (Kirk-Othmer)

Coal: \$.055/kg

Steam: \$.008/kg

NG: \$.13/kg

References are Kirk-Othmer and Ullman's

basis: 1kg of H₂

Use same approach as Example 4-13

Continuous versus Batch

page 132-133

Batch if:

production rate < 50 m.t./y

heavy fouling

biological processes

pharmaceutical processes

short product life spans, 1-2 y

product value >> product cost

(a) Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas. (b) What production mode should be utilized to obtain production rates of 3×10^7 and 1×10^8 kg/yr?

basis: 1kg of H₂

H₂: \$.67/kg (Kirk-Othmer)

O₂: \$.04/kg (Kirk-Othmer)

Steam: \$.008/kg

NG: \$.13/kg

Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas.

hint 1: need stoichiometry (reaction coefficients).

hint 2: need an empirical formula for coal (coal is not "C").

basis: 1kg of H₂

H₂: \$.67/kg (Kirk-Othmer)

O₂: \$.04/kg (Kirk-Othmer)

Coal: \$.055/kg Steam: \$.008/kg

Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas.

hint: need a relationship between electrical power and stoichiometry

basis: 1kg of H₂

electrolysis is a cathode/anode process with 2 mol e- flowing per mol H₂ think electrochemical (Daniel) cell from general chemistry with a voltage of ~1.1 V

Electricity: \$.05/kW·h

H₂: \$.67/kg (Kirk-Othmer)

 O_2 : \$.04/kg (Kirk-Othmer)

Questions?