红外光通信装置 (第1题)

一、任务

设计并制作一个红外光通信装置。

二、要求

1. 基本要求

(1) 红外光通信装置利用红外发光管和红外光接收模块作为收发器件,用来定向传输语音信号,传输距离为2m,如图1所示。

图 1 红外光通信装置方框图

- (2) 传输的语音信号可采用话筒或Φ3.5mm 的音频插孔线路输入,也可由 低频信号源输入;频率范围为 300~3400Hz。
- (3)接收的声音应无明显失真。当发射端输入语音信号改为800Hz单音信号时,在8Ω电阻负载上,接收装置的输出电压有效值不小于0.4V。不改变电路状态,减小发射端输入信号的幅度至0V,采用低频毫伏表(低频毫伏表为有效值显示,频率响应范围低端不大于10Hz、高端不小于1MHz)测量此时接收装置输出端噪声电压,读数不大于0.1V。如果接收装置设有静噪功能,必须关闭该功能进行上述测试。
- (4) 当接收装置不能接收发射端发射的信号时,要用发光管指示。

2. 发挥部分

- (1)增加一路数字信道,实时传输发射端环境温度,并能在接收端显示。 数字信号传输时延不超过 10s。温度测量误差不超过 2℃。语音信号和 数字信号能同时传输。
- (2)设计并制作一个红外光通信中继转发节点,以改变通信方向 90°,延 长通信距离 2 m,如图 2 所示。语音通信质量要求同基本要求 (3)。

图 2 红外光通信中继转发装置方框图

中继转发节点采用 5V 直流单电源供电,电路见图 3。串接的毫安表用来测量其供电直流电流。

图 3 中继转发节点供电电路

(3) 在满足发挥部分(2) 要求的条件下,尽量减小中继转发节点供电电流。(4) 其他。

三、说明

- 1. 本装置的通信信道必须采用红外光信道,不得使用其他通信装置。发射端及转发节点必须采用分立的红外发光管作为发射器件,安装时需外露发光管,以便检查。不得采用内部含有现成通信协议的红外光发射芯片或模块。
- 2. 中继转发节点除外接的单 5V 供电电源外,不得使用其他供电装置(如电池、超级电容等)。
- 3. 测试时, 自备 MP3 或录音机及音频连接线。

设计报告	项 目	主要内容	满分
	系统方案	红外光通信装置总体方案设计	4
	理论分析与计算	通信原理分析,提高转发器效率的方法	6
	电路与程序设计	总体电路图 程序设计	4
	测试方案与测试结果	测试数据完整性 测试结果分析	4
	设计报告结构及规范性	摘要 设计报告正文的结构 图表的规范性	2
	总分		20
	完成(1)		25
基本要求	完成 (2)		5
	完成 (3)		15
	完成(4)		5
	总分		50
发挥 部分	完成(1)		10
	完成 (2)		10
	完成(3)		25
	其他		5
	总分		50

短距视频信号无线通信网络(第2题)

一、任务

设计并制作一个短距视频信号无线通信网络。通信网络如图 1 所示。该网络包括主节点 A、从节点 B 和 C,实现从节点 B 和 C 到主节点 A 的视频信号传输。传输的视频信号为模拟彩色视频信号(彩色制式不限),由具有 AV输出端子的彩色摄像头提供。每个从节点预留 AV 视频输入(莲花 RCA)插座,通过一根 AV 连接电缆与摄像头 AV 输出端子连接。节点须使用水平全方向天线,确保节点在水平全方向上都能达到要求的通信距离。

图 1 短距视频信号无线传输网络示意图

二、要求

1. 基本要求

- (1) 实现由从节点 B 到主节点 A 的单向视频信号传输。主节点 A 预留 AV 视频输出(莲花 RCA)插座,可以输出 AV 模拟彩色视频信号。采用具有 AV 输入端子的电视机显示通信的视频内容,电视机的彩色制式应与彩色视频信号制式一致。要求电视机显示的视频内容应清晰无闪烁、色彩正常,与摄像头直接用 AV 电缆连接到电视机的图像质量无明显差异(可拍摄题目附件的电视测试卡作为图像比较的参照物),最小通信距离不小于 5m。
- (2) 实现由从节点 C 到主节点 A 的单向视频信号传输,图像质量与通信距离要求同基本要求(1)。
- (3)同时实现两个从节点 B 和 C 到主节点 A 的单向视频信号传输。图像质量与通信距离要求同基本要求 (1)。主节点 A 可通过开关选择显示从节点 B 或 C 的视频内容。
- (4) 通过开关控制,从节点 B 和 C 在其发射的视频信号中,分别叠加对应字符"B"和"C"的图案,在主节点 A 的电视机屏幕上与视频内容叠加显示。字符显示颜色、位置与大小自定。

2. 发挥部分

- (1) 从节点 B 和 C 必须分别采用 2 节 1.2~1.5V 电池独立供电。摄像头也要求采用电池独立供电,摄像头功耗不计入从节点 B 和 C 的功耗。启动产生叠加字符功能,在通信距离为 5m 时,图像质量要求同基本要求(1)。从节点 B 和 C 的功耗均应小于 150mW。
- (2)可以指定从节点 C 为中继转发节点(指定的方式任意),实现由从节点 B 到主节点 A 间的视频信号中继通信。要求 B 节点到主节点 A 总的通信 距离不小于 10m, 图像质量要求同基本要求(1)。
- (3) 从节点 C 在转发从节点 B 视频信号到主节点 A 的同时,仍能传输自己的视频信号到主节点 A。主节点可通过开关选择显示从节点 B 或 C 的视频内容,图像质量与通信距离要求同基本要求(1)。
- (4) 其他(如尽可能降低从节点 B 和 C 的功耗等)。

三、说明

1. 网络节点可以使用成品收发模块,但其工作频率和发射功率应符合国家相关规定(http://www.miit.gov.cn/n11293472/n11295310/n11297428/11637344.html)。

- 2. 摄像头与从节点间的信号连接仅限一根 AV 视频电缆, 传输 AV 模拟彩色视频信号,不得再使用其他有线或无线连接方式。
- 3. 本题所述的通信距离指两个节点设备外边沿间的最小直线距离。
- 4. 发挥部分必须在完成基本要求(4)的功能后才能进行,否则发挥部分不计入成绩。
- 5. 发挥部分(2)、(3)必须在发挥部分(1)要求的供电方式下进行。

	项目	主要内容	满分
	方案论证	比较与选择 方案描述	4
	理论分析与计算	系统相关参数设计	6
设计报告	电路与程序设计	系统组成,原理框图 与各部分的电路图 系统软件与流程图	4
以口以口	测试方案 与测试结果	测试结果完整性 测试结果分析	4
	设计报告结构 及规范性	摘要 正文结构规范 图表的完整与准确性	2
	小计		20
	完成第(1)项		16
	完成第(2)项		14
基本要求	完成第(3)项		8
	完成第(4)项		12
	小计		50
	完成第(1)项		20
	完成第(2)项		10
发挥部分	完成第(3)项		15
	其他 (4)		5
			50
	120		

附件:

电视测试卡(该卡 A4 纸彩色打印,不得改变图片大小)

可见光室内定位装置 (第3题)

一、任务

设计并制作可见光室内定位装置,其构成示意图如图 1 所示。参赛者自行搭建不小于 80cm×80cm ×80cm 的立方空间(包含顶部、底部和 3 个侧面)。顶部平面放置 3 个白光 LED,其位置和角度自行设置,由 LED 控制电路进行控制和驱动;底部平面绘制纵横坐标线(间隔 5cm),并分为 A、B、C、D、E 五个区域,如图 2 所示。要求在 3 个 LED 正常照明(无明显闪烁)的情况下,**测量电路**根据传感器检测的信号判定传感器的位置。

图 1 可见光室内定位装置示意图

图 2 底部平面坐标区域图

二、要求

1. 基本要求

- (1) 传感器位于 B、D 区域,测量电路能正确区分其位于横坐标轴的上、下区域。
- (2) 传感器位于 C、E 区域,测量电路能正确区分其位于纵坐标轴的左、右区域。
- (3) 传感器位于 A 区域,测量显示其位置坐标值,绝对误差不大于 10cm。
- (4) 传感器位于 B、C、D、E 区域,测量显示其位置坐标值,绝对误差不大于 10cm。
- (5) 测量电路 LCD 显示坐标值,显示分辨率为 0.1cm。

2. 发挥部分

- (1) 传感器位于底部平面任意区域,测量显示其位置坐标值,绝对误差不大于 3cm。
- (2) LED 控制电路可由键盘输入阿拉伯数字,在正常照明和定位(误差满足基本要求(3)或(4))的情况下,测量电路能接收并显示 3 个 LED 发送的数字信息。
- (3) LED 控制电路外接 3 路音频信号源,在正常照明和定位的情况下,测量电路能从 3 个 LED 发送的语音信号中,选择任意一路进行播放,且接收的语音信号均无明显失真。
- (4) LED 控制电路采用+12V 单电源供电,供电功率不大于 5W。
- (5) 其他。

三、说明

- 1. LED 控制电路和测量电路相互独立。
- 2. 顶部平面不可放置摄像头等传感器件。
- 3. 传感器部件体积不大于 5cm×5cm×3cm, 用"十"表示检测中心位置。
- 4. 信号发生器或 MP3 的信号可作为音频信号源。
- 5. 在 LED 控制电路的 3 个音频输入端、测量电路的扬声器输入端和供电电路端预留测试端口。
- 6. 位置绝对误差: $e = \sqrt{(x x_0)^2 + (y y_0)^2}$

式中x、y为测得坐标值, x_0 、 y_0 为实际坐标值。

- 7. 每次位置测量开始后,要求 5s 内将测得的坐标值锁定显示。
- 8. 测试环境: 关闭照明灯, 打开窗帘, 自然采光, 避免阳光直射。

	项目	主要内容	满分
设计报告	系统方案	比较与选择 方案描述	4
	理论分析与计算	定位方法 信息发送接收方法 抗干扰方法 误差分析	6
	电路与程序设计	电路设计 程序设计	4
	测试方案与测试结果	测试方案 测试结果完整性 测试结果分析	4
	设计报告结构及规范性	摘要 正文结构 图表规范性	2
	合计		20
	完成第(1)项		10
	完成第(2)项		10
基本	完成第(3)项		10
要求	完成第(4)项		16
	完成第(5)项		4
	合计		50
	完成第(1)项		12
发挥 部分	完成第(2)项		10
	完成第(3)项		18
	完成第(4)项		5
	其他		5
	合计		50
	120		

双路语音同传的无线收发系统(第4题)

一、任务

设计制作一个双路语音同传的无线收发系统,实现在一个信道上同时传输两路话音信号。系统的示意图如图 1 所示。

图 1 双路语音同传无线收发系统示意图

二、要求

1. 基本要求

(1) 制作一套 FM 无线收发系统。其中, FM 信号的载波频率设定为

G - 1 / 3

赛题答疑:李老师,创新创业学院518, lishengming@dlut.edu.cn

- 48.5MHz, 相对误差的绝对值不大于 1%; 峰值频偏不大于 25kHz; 天线长度不大于 0.5m。
- (2) 通过 FM 无线收发系统任意传输一路语音信号 A 或者 B, 语音信号的 带宽不大于 3400Hz。要求无线通信距离不小于 2m, 解调输出的语音信号波形无明显失真。
- (3) 通过 FM 无线收发系统同时传输双路语音信号 A 和 B。要求无线通信 距离不小于 2m,解调输出的双路语音信号波形无明显失真。

2. 发挥部分

- (1) 要求设计制作的发射电路中 FM 信号的载波频率能通过一个电压信号 $v_c(t)$ 进行调节,用来模拟无线通信中载波频率漂移的情况。电压信 号 $v_c(t)$ 单位电压调节载波频率产生的频率漂移量,由参赛者自行设 计。
- (2) 在保证系统能正确进行双路语音无线传输的前提下,通过 $v_c(t)$ 信号调节 FM 信号的载波频率产生不小于 300 kHz 的漂移,要求调节时间 τ 不超过 5s(秒)。
- (3) 在保证系统能正确进行双路语音无线传输的前提下,通过 $v_c(t)$ 信号调节 FM 信号的载波频率,按照图 2 所示进行漂移,要求 FM 信号的载波频率漂移范围 Δf_0 越大越好。

图 2: 载波频率漂移的图示

(4) 其他。

三、说明

- (1) 系统输入的语音信号,可以由标准的信号源产生;解调的语音信号输出应留有测试接口,以便示波器观测。
- (2) 制作的 FM 发射电路应在发射天线端引出测试端口,以便测试。

G-2/3

(3) 控制 FM 信号的载波频率漂移的外加电压信号 $v_c(t)$ 通过标准信号源外部输入。外加的 $v_c(t)$ 信号为零时,FM 信号的载波频率漂移对应为零。

	项 目	主要内容	满分
	系统方案	总体设计方案	3
	理论分析与计算	发射的双路语音合路处理分析与 计算	
		接收的双路语音信号分离处理分 析与计算	7
		无线收发系统频漂处理分析与计 算	
设计报告	电路与程序设计	电路图和流程图	5
		测试方法与仪器	
	测试方案与测 试结果	测试数据完成性	3
	以 归入	测试结果分析	
		摘要	
	设计报告结构 及规范性	设计报告正文的结构	2
	/X/%L1C L	图标的规范性	
	小计		20
	完成(1)		6
44#4	完成 (2)		20
基本要求	完成(3)		24
	小计		50
	完成(1)		10
	完成 (2)		20
发挥部分			15
	完成 (4)		5
	小计		50
总 分			