Question 1: (a) Find the upper and lower Darboux integrals for $f(x) = x^2$ on the interval [0, b] and show that $\int_0^b x^2 = b^3/3$.

- To find the upper and lower Darboux integrals for $f(x) = x^2$ on [0, b], we consider a partition $P_n = \{x_0, x_1, \dots, x_n\}$ of [0, b], where $x_i = \frac{ib}{n}$ for $i = 0, 1, \dots, n$.
- For each subinterval $[x_{i-1}, x_i]$, the function $f(x) = x^2$ is increasing.
- Therefore, the infimum m_i of f(x) on $[x_{i-1}, x_i]$ is $f(x_{i-1}) = (\frac{(i-1)b}{n})^2$.
- The supremum M_i of f(x) on $[x_{i-1}, x_i]$ is $f(x_i) = (\frac{ib}{n})^2$.
- The length of each subinterval $\Delta x_i = x_i x_{i-1} = \frac{b}{n}$.
- The lower Darboux sum is $L(f, P_n) = \sum_{i=1}^n m_i \, \Delta x_i = \sum_{i=1}^n (\frac{(i-1)b}{n})^2 \frac{b}{n} = \frac{b^3}{n^3} \sum_{i=1}^n (i-1)^2 = \frac{b^3}{n^3} \sum_{k=0}^{n-1} k^2.$
- Using the formula $\sum_{k=0}^{N} k^2 = \frac{N(N+1)(2N+1)}{6}$, we have $\sum_{k=0}^{n-1} k^2 = \frac{(n-1)n(2n-1)}{6}$.
- So, $L(f, P_n) = \frac{b^3}{n^3} \frac{(n-1)n(2n-1)}{6} = \frac{b^3}{6} \frac{(n-1)(2n-1)}{n^2} = \frac{b^3}{6} (1 \frac{1}{n})(2 \frac{1}{n}).$
- The lower Darboux integral is $\underline{\int_0^b x^2 dx} = \lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} \frac{b^3}{6} (1 \frac{1}{n})(2 \frac{1}{n}) = \frac{b^3}{6} (1)(2) = \frac{b^3}{3}.$

- The upper Darboux sum is $U(f, P_n) = \sum_{i=1}^n M_i \Delta x_i = \sum_{i=1}^n (\frac{ib}{n})^2 \frac{b}{n} = \frac{b^3}{n^3} \sum_{i=1}^n i^2$.
- Using the formula $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.
- So, $U(f, P_n) = \frac{b^3}{n^3} \frac{n(n+1)(2n+1)}{6} = \frac{b^3}{6} \frac{(n+1)(2n+1)}{n^2} = \frac{b^3}{6} (1 + \frac{1}{n})(2 + \frac{1}{n}).$
- The upper Darboux integral is $\overline{\int_0^b} x^2 dx = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} \frac{b^3}{6} (1 + \frac{1}{n})(2 + \frac{1}{n}) = \frac{b^3}{6} (1)(2) = \frac{b^3}{3}.$
- Since the upper and lower Darboux integrals are equal, the function is integrable, and $\int_0^b x^2 dx = \frac{b^3}{3}$.
- (b) Let f be a bounded function on [a, b]. If P and Q are partitions of [a, b] and $P\subseteq Q$, then prove that $L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P)$.
 - Let P be a partition of [a, b], and Q be a refinement of P, meaning P
 ⊆ Q. This implies that Q contains all the points of P, plus some additional points.
 - Consider a single subinterval $[x_{i-1}, x_i]$ from the partition P. Let $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$ and $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$.
 - When we refine the partition P to Q by adding a point c in (x_{i-1}, x_i) , the interval $[x_{i-1}, x_i]$ is split into two subintervals: $[x_{i-1}, c]$ and $[c, x_i]$.
 - Let $m_{i'}$ be the infimum on $[x_{i-1}, c]$ and $m_{i''}$ be the infimum on $[c, x_i]$. We know that $m_i \le m_{i'}$ and $m_i \le m_{i''}$.

- The contribution to the lower sum from the interval $[x_{i-1}, x_i]$ in P is $m_i(x_i x_{i-1})$.
- The contribution to the lower sum from the corresponding subintervals in Q is $m_{i'}(c x_{i-1}) + m_{i''}(x_i c)$.
- Since $m_i \le m_{i'}$ and $m_i \le m_{i''}$, we have $m_i(c-x_{i-1}) \le m_{i'}(c-x_{i-1})$ and $m_i(x_i-c) \le m_{i''}(x_i-c)$.
- Summing these, $m_i(c-x_{i-1})+m_i(x_i-c)=m_i(x_i-x_{i-1})\leq m_{i'}(c-x_{i-1})+m_{i''}(x_i-c).$
- This shows that the lower sum either increases or stays the same when a partition is refined. Thus, $L(f, P) \le L(f, Q)$.
- Similarly, for the upper sum, let $M_{i'}$ be the supremum on $[x_{i-1}, c]$ and $M_{i''}$ be the supremum on $[c, x_i]$. We know that $M_i \ge M_{i'}$ and $M_i \ge M_{i''}$.
- The contribution to the upper sum from the interval $[x_{i-1}, x_i]$ in P is $M_i(x_i x_{i-1})$.
- The contribution to the upper sum from the corresponding subintervals in Q is $M_{i'}(c-x_{i-1})+M_{i''}(x_i-c)$.
- Since $M_i \ge M_{i'}$ and $M_i \ge M_{i''}$, we have $M_i(c-x_{i-1}) \ge M_{i'}(c-x_{i-1})$ and $M_i(x_i-c) \ge M_{i''}(x_i-c)$.
- Summing these, $M_i(c x_{i-1}) + M_i(x_i c) = M_i(x_i x_{i-1}) \ge M_{i'}(c x_{i-1}) + M_{i''}(x_i c)$.

- This shows that the upper sum either decreases or stays the same when a partition is refined. Thus, $U(f,Q) \le U(f,P)$.
- Finally, for any partition Q, it is always true that $L(f,Q) \leq U(f,Q)$ because for each subinterval, $m_i \leq M_i$.
- Combining these inequalities, we get $L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P)$.
- (c) Let f: [a, b] \rightarrow R be a bounded function on [a, b]. Prove that if f is integrable on [a, b], then for each $\epsilon > 0$, there exists a partition P of [a, b] such that U(f, P) L(f, P) < ϵ .
 - By definition, a bounded function f on [a,b] is Darboux integrable if its lower Darboux integral equals its upper Darboux integral, i.e., $\underline{\int_a^b f(x) dx} = \overline{\int_a^b f(x) dx}.$
 - Let $I = \int_a^b f(x) dx$.
 - By the definition of the lower Darboux integral, for any $\varepsilon > 0$, there exists a partition P_1 such that $I \varepsilon/2 < L(f, P_1) \le I$.
 - By the definition of the upper Darboux integral, for any $\varepsilon > 0$, there exists a partition P_2 such that $I \leq U(f, P_2) < I + \varepsilon/2$.
 - Let P be a common refinement of P_1 and P_2 , i.e., $P = P_1 \cup P_2$.
 - From part (b), we know that if $P_1 \subseteq P$, then $L(f, P_1) \le L(f, P)$. So, $I \varepsilon/2 < L(f, P)$.

- Also from part (b), if $P_2 \subseteq P$, then $U(f,P) \le U(f,P_2)$. So, $U(f,P) < I + \varepsilon/2$.
- Combining these inequalities, we have: $U(f,P) L(f,P) < (I + \varepsilon/2) (I \varepsilon/2) U(f,P) L(f,P) < I + \varepsilon/2 I + \varepsilon/2 U(f,P) L(f,P) < \varepsilon$.
- Thus, if f is integrable on [a,b], then for each $\varepsilon > 0$, there exists a partition P of [a,b] such that $U(f,P)-L(f,P)<\varepsilon$.
- (d) Let f(x) = 2x + 1 over the interval. Let $P = \{0,1/2,1,3/2,2\}$ be a partition of. Compute U(f, P), L(f, P) and U(f, P) L(f, P).
 - The interval is not explicitly stated, but based on the partition $P = \{0,1/2,1,3/2,2\}$, the interval is [0,2].
 - The function is f(x) = 2x + 1. This is an increasing function.
 - The subintervals are:
 - o [0,1/2]
 - o [1/2,1]
 - o [1,3/2]
 - o [3/2,2]
 - For an increasing function on an interval $[x_{i-1}, x_i]$:
 - o $m_i = f(x_{i-1})$ (infimum)
 - o $M_i = f(x_i)$ (supremum)

$$\circ \ \Delta x_i = x_i - x_{i-1}$$

- Calculations for each subinterval:
 - o Interval 1: [0,1/2]

•
$$m_1 = f(0) = 2(0) + 1 = 1$$

•
$$M_1 = f(1/2) = 2(1/2) + 1 = 2$$

•
$$\Delta x_1 = 1/2 - 0 = 1/2$$

o Interval 2: [1/2,1]

•
$$m_2 = f(1/2) = 2(1/2) + 1 = 2$$

•
$$M_2 = f(1) = 2(1) + 1 = 3$$

•
$$\Delta x_2 = 1 - 1/2 = 1/2$$

o Interval 3: [1,3/2]

•
$$m_3 = f(1) = 2(1) + 1 = 3$$

•
$$M_3 = f(3/2) = 2(3/2) + 1 = 4$$

•
$$\Delta x_3 = 3/2 - 1 = 1/2$$

o Interval 4: [3/2,2]

•
$$m_4 = f(3/2) = 2(3/2) + 1 = 4$$

•
$$M_4 = f(2) = 2(2) + 1 = 5$$

•
$$\Delta x_4 = 2 - 3/2 = 1/2$$

- Lower Darboux Sum L(f,P): $L(f,P)=m_1\Delta x_1+m_2\Delta x_2+m_3\Delta x_3+m_4\Delta x_4$ L(f,P)=(1)(1/2)+(2)(1/2)+(3)(1/2)+(4)(1/2) L(f,P)=1/2+1+3/2+2=5
- Upper Darboux Sum U(f,P): $U(f,P) = M_1 \Delta x_1 + M_2 \Delta x_2 + M_3 \Delta x_3 + M_4 \Delta x_4$ U(f,P) = (2)(1/2) + (3)(1/2) + (4)(1/2) + (5)(1/2) U(f,P) = 1 + 3/2 + 2 + 5/2 = 7
- Difference U(f, P) L(f, P): U(f, P) L(f, P) = 7 5 = 2.

Question 2: (a) Let f be an integrable function on [a, b]. Show that –f is integrable on [a, b] and $\int_{a^b} (-f) = -\int_{a^b} f$.

- Given that f is an integrable function on [a, b], by the definition of integrability, for any ε > 0, there exists a partition P such that U(f, P) L(f, P) < ε.
- Let g(x) = -f(x).
- For any subinterval $[x_{i-1}, x_i]$ of a partition P, let m_i and M_i be the infimum and supremum of f on this interval, respectively.
- The infimum of g(x) = -f(x) on $[x_{i-1}, x_i]$ is $-M_i$. (Because if $M_i = \sup f(x)$, then $-M_i = \inf (-f(x))$.)
- The supremum of g(x) = -f(x) on $[x_{i-1}, x_i]$ is $-m_i$. (Because if $m_i = \inf f(x)$, then $-m_i = \sup (-f(x))$.)
- Now, let's look at the Darboux sums for g(x):

$$L(g, P) = \sum_{i=1}^{n} (-M_i) \Delta x_i = -\sum_{i=1}^{n} M_i \Delta x_i = -U(f, P).$$

$$O U(g,P) = \sum_{i=1}^{n} (-m_i) \Delta x_i = -\sum_{i=1}^{n} m_i \, \Delta x_i = -L(f,P).$$

• Now consider the difference U(g, P) - L(g, P):

$$O U(g,P) - L(g,P) = (-L(f,P)) - (-U(f,P)) = U(f,P) - L(f,P).$$

- Since f is integrable, for any $\varepsilon > 0$, there exists a partition P such that $U(f,P) L(f,P) < \varepsilon$.
- Therefore, $U(g,P) L(g,P) < \varepsilon$, which implies that g(x) = -f(x) is integrable on [a,b].
- Now, let's show that $\int_a^b (-f) = -\int_a^b f$.
- We know that $\int_a^b (-f) = \underline{\int_a^b} (-f) = \lim_{||P|| \to 0} L(-f, P) = \lim_{||P|| \to 0} (-U(f, P)).$
- Since f is integrable, $\lim_{|P|\to 0} U(f, P) = \int_a^b f$.
- Therefore, $\int_a^b (-f) = -\int_a^b f$.
- (b) Let $f: \to R$ be defined as $f(x) = \{1, \text{ if } x \text{ is rational}; -1, \text{ if } x \text{ is irrational}\}$. Calculate the upper and lower Darboux Integrals for f on the interval. Is f integrable on?
 - The interval is not explicitly stated but is implicitly [a, b] as usually understood for Darboux integrals. Let's assume the interval is [a, b].
 - Let P be any partition of [a, b], $P = \{x_0, x_1, \dots, x_n\}$.
 - Consider any subinterval [x_{i-1}, x_i].

- Since every non-empty interval of real numbers contains both rational and irrational numbers:
 - The supremum of f(x) on $[x_{i-1}, x_i]$ is $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x) = 1$ (because there's always a rational number in the interval).
 - The infimum of f(x) on $[x_{i-1}, x_i]$ is $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x) = -1$ (because there's always an irrational number in the interval).
- Now, let's calculate the Darboux sums:
 - o Lower Darboux Sum $L(f,P) = \sum_{i=1}^n m_i \Delta x_i = \sum_{i=1}^n (-1)(x_i x_{i-1}).$
 - $L(f,P) = -(x_1 x_0) (x_2 x_1) \dots (x_n x_{n-1}).$
 - This is a telescoping sum: $L(f, P) = -(x_n x_0) = -(b a)$.
 - O Upper Darboux Sum $U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} (1)(x_i x_{i-1}).$
 - $U(f,P) = (x_1 x_0) + (x_2 x_1) + \dots + (x_n x_{n-1}).$
 - This is a telescoping sum: $U(f, P) = (x_n x_0) = (b a)$.
- The lower Darboux integral is $\int_{a}^{b} f(x)dx = \sup_{P} L(f,P) = \sup_{P} (-(b-a)) = -(b-a)$.
- The upper Darboux integral is $\overline{\int_a^b} f(x) dx = \inf_P U(f, P) = \inf_P (b a) = (b a)$.
- Is f integrable on?

- For f to be integrable, the lower Darboux integral must be equal to the upper Darboux integral.
- o Here, $\int_a^b f(x)dx = -(b-a)$ and $\int_a^b f(x)dx = (b-a)$.
- Since $a \neq b$, $-(b-a) \neq (b-a)$. For example, if a = 0, b = 1, then the lower integral is -1 and the upper integral is 1.
- Therefore, the function f(x) is not integrable on the given interval.
- (c) Let $f: [a, b] \to R$ be a bounded function. Show that if f is integrable (Darboux) on [a, b], then it is Riemann integrable on [a, b].
 - A function f is Darboux integrable on [a,b] if for every $\varepsilon > 0$, there exists a partition P of [a,b] such that $U(f,P) L(f,P) < \varepsilon$. Also, the common value of the upper and lower Darboux integrals is the Darboux integral.
 - A function f is Riemann integrable on [a,b] if there exists a number I such that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for every partition P with norm $||P|| < \delta$ and any choice of sample points $c_i \in [x_{i-1},x_i]$, we have $|R(f,P)-I| < \varepsilon$, where $R(f,P) = \sum_{i=1}^n f(c_i) \Delta x_i$ is the Riemann sum.
 - Let f be Darboux integrable on [a,b] with integral $I = \int_a^b f(x) dx$.
 - By the definition of Darboux integrability, for every $\varepsilon > 0$, there exists a partition P_0 such that $U(f, P_0) L(f, P_0) < \varepsilon$.
 - For any partition P, and any choice of sample points $c_i \in [x_{i-1}, x_i]$:

- We know that $m_i \le f(c_i) \le M_i$ for each subinterval.
- Multiplying by Δx_i and summing over all subintervals: $L(f, P) = \sum_{i=1}^n m_i \, \Delta x_i \leq \sum_{i=1}^n f(c_i) \Delta x_i = R(f, P) \leq \sum_{i=1}^n M_i \, \Delta x_i = U(f, P).$
- Also, by the property of Darboux integrals, we know that for any partition P:

$$\circ \ L(f,P) \leq \underline{\int_a^b} f(x) dx = I = \overline{\int_a^b} f(x) dx \leq U(f,P).$$

- Combining these, we have: $L(f,P) \le R(f,P) \le U(f,P)$ and $L(f,P) \le I \le U(f,P)$.
- This implies that both R(f,P) and I lie within the interval [L(f,P),U(f,P)].
- Therefore, the distance between R(f,P) and I must be less than or equal to the length of this interval: $|R(f,P)-I| \le U(f,P)-L(f,P)$.
- Since f is Darboux integrable, for any $\varepsilon > 0$, there exists a partition P such that $U(f,P) L(f,P) < \varepsilon$.
- This implies that for any such partition P and any choice of sample points c_i , we have $|R(f,P)-I|<\varepsilon$.
- This is precisely the definition of Riemann integrability. Therefore, if f
 is Darboux integrable, it is Riemann integrable.
- (d) For a bounded function f on [a, b], define the Riemann Sum associated with a partition P. Hence, give Riemann's definition of integrability.

- Riemann Sum: Let f be a bounded function on the interval [a,b]. Let $P = \{x_0, x_1, \ldots, x_n\}$ be a partition of [a,b] such that $a = x_0 < x_1 < \ldots < x_n = b$. Let $\Delta x_i = x_i x_{i-1}$ be the length of the i-th subinterval. For each subinterval $[x_{i-1}, x_i]$, choose an arbitrary sample point $c_i \in [x_{i-1}, x_i]$. The Riemann sum for f corresponding to the partition P and the chosen sample points c_i is defined as: $R(f, P) = \sum_{i=1}^n f(c_i) \Delta x_i$.
- Riemann's Definition of Integrability: A bounded function f on [a,b] is said to be Riemann integrable if there exists a unique real number I such that for every $\varepsilon>0$, there exists a $\delta>0$ such that for every partition P of [a,b] with norm $||P||=\max_i \Delta x_i<\delta$, and for any choice of sample points $c_i\in [x_{i-1},x_i]$, we have: $|R(f,P)-I|<\varepsilon$. The number I is called the Riemann integral of f over [a,b], denoted by $\int_a^b f(x) dx$.

Question 3: (a) Prove that every bounded piecewise monotonic function f on [a, b] is integrable.

- A function f is piecewise monotonic on [a, b] if the interval [a, b] can be divided into a finite number of subintervals such that f is monotonic on each subinterval.
- A function is monotonic on an interval if it is either increasing or decreasing on that interval.
- We know that every monotonic function on a closed and bounded interval is integrable.
- Let f be a bounded piecewise monotonic function on [a, b].

- This means there exists a partition of [a, b], say $P_0 = \{x_0, x_1, ..., x_n\}$ such that on each subinterval $[x_{j-1}, x_j]$, f is monotonic.
- Since f is monotonic on each $[x_{j-1}, x_j]$, f is integrable on each $[x_{j-1}, x_j]$.
- This implies that for each subinterval $[x_{j-1}, x_j]$ and for any $\varepsilon_j > 0$, there exists a partition P_j of $[x_{j-1}, x_j]$ such that $U(f|_{[x_{j-1}, x_j]}, P_j) L(f|_{[x_{j-1}, x_j]}, P_j) < \varepsilon_j$.
- Let $P = P_0 \cup P_1 \cup ... \cup P_n$ be a partition of [a, b] formed by combining all the partition points.
- Then $U(f,P) L(f,P) = \sum_{j=1}^{n} (U(f|_{[x_{j-1},x_{j}]},P_{j}) L(f|_{[x_{j-1},x_{j}]},P_{j})).$
- We can choose $\varepsilon_j = \varepsilon/n$ for each subinterval.
- Then $U(f,P) L(f,P) < \sum_{j=1}^{n} \varepsilon / n = n \cdot (\varepsilon / n) = \varepsilon$.
- Since for any $\varepsilon > 0$, we can find such a partition P, f is integrable on [a,b].
- (b) Show that if a function f is integrable on [a, b], then |f| is integrable on [a, b] and $|\int_{a^b} f| \le \int_{a^b} |f|$.
 - Part 1: Show that |f| is integrable.
 - Given that f is integrable on [a,b], it means f is bounded on [a,b]. If f is bounded, then there exists M>0 such that $|f(x)| \le M$ for all $x \in [a,b]$. This also means that |f| is bounded.

- o For any subinterval $[x_{i-1}, x_i]$ of a partition P, let m_i and M_i be the infimum and supremum of f on this interval, and $m_{i'}$ and $M_{i'}$ be the infimum and supremum of |f| on this interval.
- We know that for any $x, y \in [x_{i-1}, x_i]$, we have $||f(x)| |f(y)|| \le |f(x) f(y)|$.
- This implies that $M_{i'} m_{i'} \le M_i m_i$. (The oscillation of |f| is less than or equal to the oscillation of f).
- o Now, consider the difference between the upper and lower Darboux sums for |f|: $U(|f|, P) L(|f|, P) = \sum_{i=1}^{n} (M_{i'} m_{i'}) \Delta x_i$.
- Since f is integrable, for any ε > 0, there exists a partition P such that U(f,P) L(f,P) < ε.
- Therefore, $U(|f|, P) L(|f|, P) < \varepsilon$, which implies that |f| is integrable on [a, b].
- Part 2: Show that |∫_a^b f| ≤ ∫_a^b |f|.
 - We know that for any real number $x, -|x| \le x \le |x|$.
 - Therefore, for any $x \in [a, b]$, we have $-|f(x)| \le f(x) \le |f(x)|$.
 - Since integration preserves inequalities: $\int_a^b (-|f(x)|)dx \le \int_a^b f(x)dx \le \int_a^b |f(x)|dx$.

- From part (a) of Question 2, we know that $\int_a^b (-|f(x)|)dx = -\int_a^b |f(x)|dx$.
- So, $-\int_{a}^{b} |f(x)| dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} |f(x)| dx$.
- This inequality is equivalent to saying that $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$.
- (c) If f is a continuous, non-negative function on [a, b] and if $\int_{a^b} f = 0$, then prove that f is identically 0 on [a, b]. Give an example of a discontinuous non-zero function f on for which $\int_0^1 f = 0$.
 - Part 1: Proof for continuous, non-negative function.
 - Assume, for the sake of contradiction, that f is not identically 0 on [a, b].
 - Since f is non-negative, this means there exists at least one point $c \in [a, b]$ such that f(c) > 0.
 - Since f is continuous at c and f(c) > 0, by the definition of continuity, for $\varepsilon = f(c)/2 > 0$, there exists a $\delta > 0$ such that for all $x \in [c \delta, c + \delta] \cap [a, b]$, we have |f(x) f(c)| < f(c)/2.
 - o This implies f(c) f(c)/2 < f(x) < f(c) + f(c)/2, or f(c)/2 < f(x) < 3f(c)/2.
 - So, there exists an interval $[c_1, c_2] \subseteq [a, b]$ (where $[c_1, c_2]$ is $[c \delta, c + \delta] \cap [a, b]$) such that for all $x \in [c_1, c_2]$, $f(x) \ge f(c)/2 > 0$. Let k = f(c)/2.

- O Now, consider the integral of f over [a,b]: $\int_a^b f(x)dx = \int_a^{c_1} f(x)dx + \int_{c_1}^{c_2} f(x)dx + \int_{c_2}^b f(x)dx$.
- o Since $f(x) \ge 0$ on [a,b], $\int_a^{c_1} f(x) dx \ge 0$ and $\int_{c_2}^b f(x) dx \ge 0$.
- o On the interval $[c_1, c_2]$, we have $f(x) \ge k > 0$.
- o Therefore, $\int_{c_1}^{c_2} f(x) dx \ge \int_{c_1}^{c_2} k dx = k(c_2 c_1)$.
- o Since k > 0 and $c_2 c_1 > 0$, it follows that $k(c_2 c_1) > 0$.
- Thus, $\int_{a}^{b} f(x)dx \ge k(c_2 c_1) > 0$.
- This contradicts our assumption that $\int_a^b f(x)dx = 0$.
- O Therefore, our initial assumption must be false, meaning f(x) must be identically 0 on [a, b].
- Part 2: Example of a discontinuous non-zero function f on for which $\int_0^1 f = 0$.
 - o The interval is implicitly [0,1].
 - Let $f: [0,1] \to \mathbb{R}$ be defined as: $f(x) = \begin{cases} 1 & \text{if } x = 1/2 \\ 0 & \text{if } x \neq 1/2 \end{cases}$
 - O This function is discontinuous at x = 1/2. It is not identically zero on [0,1] (because f(1/2) = 1).
 - However, when calculating the integral, the value of the function at a single point does not affect the value of the definite integral. The set of discontinuities is a set of measure zero.

- More formally, for any partition P of [0,1], if 1/2 is not a partition point, it falls into one subinterval. The contribution of this subinterval to the integral will approach zero as the norm of the partition approaches zero. If 1/2 is a partition point, it's an endpoint of two intervals.
- O The integral $\int_0^1 f(x)dx$ can be evaluated. The function is 0 everywhere except at a single point.
- The lower Darboux sum will always be 0 (since the infimum in any interval containing 0 will be 0, and in intervals not containing 1/2, it is 0).
- The upper Darboux sum will also approach 0. For any interval $[x_{i-1}, x_i]$ containing 1/2, the supremum is 1, so the contribution is $1 \cdot (x_i x_{i-1})$. For other intervals, the supremum is 0. As the norm of the partition goes to 0, the length of the interval containing 1/2 goes to 0, so the upper sum also goes to 0.
- o Therefore, $\int_0^1 f(x) dx = 0$.
- (d) State and prove Fundamental Theorem of Calculus I.
 - Statement of Fundamental Theorem of Calculus I (FTC I): Let f be a continuous function on the closed interval [a,b]. Let $F(x) = \int_a^x f(t)dt$ for $x \in [a,b]$. Then F is differentiable on (a,b) and F'(x) = f(x) for all $x \in (a,b)$. If f is continuous at a, F is right-differentiable at a and $F'(a^+) = f(a)$. If f is continuous at b, f is left-differentiable at b and $f'(b^-) = f(b)$.

Proof:

- o Let $x \in (a, b)$. We want to show that F'(x) = f(x), which means we need to evaluate the limit: $F'(x) = \lim_{h \to 0} \frac{F(x+h) F(x)}{h}$.
- O By the definition of F(x): $F(x+h) F(x) = \int_a^{x+h} f(t)dt \int_a^x f(t)dt = \int_x^{x+h} f(t)dt$.
- o So, we need to evaluate $\lim_{h\to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$.
- O Since f is continuous on [a, b], it is continuous on any subinterval, including [x, x + h] (or [x + h, x] if h < 0).
- o By the Extreme Value Theorem, on this closed interval, f attains its minimum value m_h and maximum value M_h .
- So, $m_h \le f(t) \le M_h$ for all t between x and x + h.
- o Integrating this inequality over the interval from x to x + h: If h > 0: $\int_{x}^{x+h} m_h \, dt \leq \int_{x}^{x+h} f(t) dt \leq \int_{x}^{x+h} M_h \, dt \, m_h h \leq \int_{x}^{x+h} f(t) dt \leq M_h h$ Dividing by h (since h > 0): $m_h \leq \frac{1}{h} \int_{x}^{x+h} f(t) dt \leq M_h$. If h < 0: The integral is from x to x + h, which means x + h < x. $\int_{x}^{x+h} m_h \, dt \geq \int_{x}^{x+h} f(t) dt \geq \int_{x}^{x+h} M_h \, dt$ (reversing limits changes sign, or multiplying by negative h flips inequality) $m_h h \geq \int_{x}^{x+h} f(t) dt \geq M_h h$ Dividing by h (since h < 0, we also flip the inequalities): $m_h \leq \frac{1}{h} \int_{x}^{x+h} f(t) dt \leq M_h$.
- o In both cases (h > 0 or h < 0), we have $m_h \le \frac{F(x+h)-F(x)}{h} \le M_h$.

- As $h \to 0$, the interval [x, x + h] shrinks to the point x.
- o Since f is continuous at x, as $h \to 0$, $m_h \to f(x)$ and $M_h \to f(x)$.
- o By the Squeeze Theorem, $\lim_{h\to 0} \frac{F(x+h)-F(x)}{h} = f(x)$.
- Therefore, F'(x) = f(x).
- The statements about right-differentiability at a and leftdifferentiability at b follow similarly by considering one-sided limits.

Question 4: (a) If u and v are continuous functions on [a, b] that are differentiable on (a, b), and u' and v' are integrable, prove that $\int_{a^b} uv' + \int_{a^b} u'v = u(b)v(b) - u(a)v(a)$. Hence evaluate $\int_0 (\pi/2) x \cos x$.

Proof of Integration by Parts Formula:

- Consider the product function P(x) = u(x)v(x).
- O Since u and v are differentiable on (a, b) and continuous on [a, b], their product P(x) is also differentiable on (a, b) and continuous on [a, b].
- o By the product rule for differentiation, P'(x) = u'(x)v(x) + u(x)v'(x).
- Given that u' and v' are integrable, and u and v are continuous (and thus bounded), it implies that u'v and uv' are also integrable (products of integrable/bounded functions are integrable).

- o Now, apply the Fundamental Theorem of Calculus II, which states that if P' is integrable on [a,b], then $\int_a^b P'(x)dx = P(b) P(a)$.
- o So, $\int_a^b (u'(x)v(x) + u(x)v'(x))dx = u(b)v(b) u(a)v(a)$.
- o By the linearity of integration: $\int_a^b u'(x)v(x)dx + \int_a^b u(x)v'(x)dx = u(b)v(b) u(a)v(a)$.
- o This is the integration by parts formula: $\int_a^b u \, v' \, dx = [uv]_a^b \int_a^b u' \, v \, dx$. (Rearranged form).
- The given form is $\int_a^b u \, v' + \int_a^b u' \, v = u(b)v(b) u(a)v(a)$.

Evaluate ∫₀^(π/2) x cos x:

- We use the integration by parts formula. Let u(x) = x and $dv = \cos x dx$.
- Then du = dx and $v = \int \cos x dx = \sin x$.
- O Applying the formula $\int_a^b u \, dv = [uv]_a^b \int_a^b v \, du$: $\int_0^{\pi/2} x \cos x dx = [x\sin x]_0^{\pi/2} \int_0^{\pi/2} \sin x dx$.
- Evaluate the first term: $[x\sin x]_0^{\pi/2} = (\frac{\pi}{2}\sin(\frac{\pi}{2})) (0 \cdot \sin(0)) = (\frac{\pi}{2} \cdot 1) 0 = \frac{\pi}{2}$.
- o Evaluate the second term: $\int_0^{\pi/2} \sin x dx = [-\cos x]_0^{\pi/2} = (-\cos(\frac{\pi}{2})) (-\cos(0)) = (-0) (-1) = 1.$

- O Substitute these values back: $\int_0^{\pi/2} x \cos x dx = \frac{\pi}{2} 1$.
- (b) Use the Fundamental Theorem of Calculus to calculate $\lim_{x\to 0} (1/x) \int_0^x e^{t^2} dt$.
 - This limit has the form $\lim_{x\to 0} \frac{\int_0^x e^{t^2} dt}{x}$. This is an indeterminate form of type 0/0 because $\int_0^0 e^{t^2} dt = 0$.
 - We can use L'Hôpital's Rule.
 - Let $F(x) = \int_0^x e^{t^2} dt$. Then by the Fundamental Theorem of Calculus I, $F'(x) = e^{x^2}$.
 - The derivative of the denominator *x* is 1.
 - Applying L'Hôpital's Rule: $\lim_{x\to 0} \frac{\int_0^x e^{t^2} dt}{x} = \lim_{x\to 0} \frac{\frac{d}{dx}(\int_0^x e^{t^2} dt)}{\frac{d}{dx}(x)}. = \lim_{x\to 0} \frac{e^{x^2}}{\frac{d}{dx}}. = e^{0^2} = e^0 = 1.$
 - Alternatively, this limit is precisely the definition of the derivative of the function $F(x) = \int_0^x e^{t^2} dt$ at x = 0, i.e., F'(0).
 - By FTC I, $F'(x) = e^{x^2}$. So, $F'(0) = e^{0^2} = 1$.
- (c) Let f be an integrable function on [a, b]. For x in [a, b], let $F(x) = \int_{a^{x}} f(t)dt$. Then show that F is uniformly continuous on [a, b]. For $F(x) = \{0, t < 0; t, 0 \le t \le 1; 4, t > 1\}$ (i) Determine the function $F(x) = \int_{0}^{x} f(t)dt$. (ii) Where is F continuous?
 - Part 1: Show F is uniformly continuous.

- o Given that f is an integrable function on [a, b], it implies that f is bounded on [a, b].
- So, there exists a constant M > 0 such that $|f(t)| \le M$ for all $t \in [a, b]$.
- $\circ \ \text{Let } F(x) = \int_a^x f(t) dt.$
- o Consider any $x_1, x_2 \in [a, b]$ with $x_1 < x_2$.
- $|F(x_2) F(x_1)| = |\int_a^{x_2} f(t)dt \int_a^{x_1} f(t)dt| = |\int_{x_1}^{x_2} f(t)dt|.$
- Ousing the property that $\left| \int_{c}^{d} g(t)dt \right| \leq \int_{c}^{d} \left| g(t) \right| dt$: $\left| \int_{x_{1}}^{x_{2}} f(t)dt \right| \leq \int_{x_{1}}^{x_{2}} \left| f(t) \right| dt$.
- o Since $|f(t)| \le M$: $\int_{x_1}^{x_2} |f(t)| dt \le \int_{x_1}^{x_2} M dt = M(x_2 x_1)$.
- o So, $|F(x_2) F(x_1)| \le M|x_2 x_1|$. (We can use $|x_2 x_1|$ to cover both $x_1 < x_2$ and $x_2 < x_1$).
- This shows that F is Lipschitz continuous on [a, b] with Lipschitz constant M.
- \circ Since every Lipschitz continuous function on a closed interval is uniformly continuous, F is uniformly continuous on [a,b].
- Part 2: Given $f(t) = \{0, t < 0; t, 0 \le t \le 1; 4, t > 1\}$
 - The question seems to have a typo for $F(x) = \{0, t < 0; t, 0 \le t \le 1; 4, t > 1\}$. This looks like a definition of a function, let's call it g(t), which is not f(t) from the previous context. Let's

assume the question meant "Let f(t) be defined as:" and then proceeds to define a piecewise function.

o So, let
$$f(t)$$
 be defined as: $f(t) = \begin{cases} 0 & \text{if } t < 0 \\ t & \text{if } 0 \le t \le 1 \\ 4 & \text{if } t > 1 \end{cases}$

- o (i) Determine the function $F(x) = \int_0^x f(t) dt$.
 - We need to consider different cases for x.
 - Case 1: x < 0 $F(x) = \int_0^x f(t)dt = 0$ (since f(t) = 0 for t < 0 and the upper limit is less than the lower limit, $\int_0^x (1-t)^2 dt = 0$.
 - Case 2: $0 \le x \le 1$ $F(x) = \int_0^x f(t)dt = \int_0^x t \, dt = \left[\frac{t^2}{2}\right]_0^x = \frac{x^2}{2} 0 = \frac{x^2}{2}$.
 - Case 3: x > 1 $F(x) = \int_0^x f(t)dt = \int_0^1 f(t)dt + \int_1^x f(t)dt$. $F(x) = \int_0^1 t \, dt + \int_1^x 4 \, dt. \ F(x) = \left[\frac{t^2}{2}\right]_0^1 + \left[4t\right]_1^x. \ F(x) = \left(\frac{t^2}{2}\right)_0^1 + \left(\frac$
 - So, the function F(x) is: $F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^2/2 & \text{if } 0 \le x \le 1 \\ 4x 7/2 & \text{if } x > 1 \end{cases}$

o (ii) Where is F continuous?

■ Each piece of F(x) (0, $x^2/2$, 4x - 7/2) is a polynomial, and thus continuous within its defined interval. We need

to check continuity at the transition points x = 0 and x = 1.

- At x = 0:
 - $\lim_{x\to 0^-} F(x) = \lim_{x\to 0^-} 0 = 0$.
 - $\lim_{x\to 0^+} F(x) = \lim_{x\to 0^+} x^2/2 = 0^2/2 = 0.$
 - $F(0) = 0^2/2 = 0$.
 - Since the left limit, right limit, and function value are all equal at x = 0, F is continuous at x = 0.
- At x = 1:
 - $\lim_{x\to 1^-} F(x) = \lim_{x\to 1^-} x^2/2 = 1^2/2 = 1/2.$
 - $\lim_{x \to 1^+} F(x) = \lim_{x \to 1^+} (4x 7/2) = 4(1) 7/2 = 8/2 7/2 = 1/2.$
 - $F(1) = 1^2/2 = 1/2$.
 - Since the left limit, right limit, and function value are all equal at x = 1, F is continuous at x = 1.
- Therefore, F(x) is continuous for all $x \in \mathbb{R}$.
- (d) For $t \in$, define $F(t) = \{0, t < 1/2; 1, t \ge 1/2\}$ and let $f(x) = x^2, x \in$. Show that f is F-integrable and that $\int_0^1 f dF = f(1/2)$.
 - This question refers to the Riemann-Stieltjes integral, denoted by $\int_a^b f \, dF$.

- The interval for integration is [0,1].
- The integrator function is $F(t) = \begin{cases} 0 & \text{if } t < 1/2 \\ 1 & \text{if } t \ge 1/2 \end{cases}$. This is a step function with a jump at t = 1/2.
- The integrand function is $f(x) = x^2$. This is a continuous function.

Showing f is F-integrable:

- A common theorem states that if f is continuous on [a, b] and F is a function of bounded variation on [a, b], then f is Riemann-Stieltjes integrable with respect to F.
- o In our case, $f(x) = x^2$ is continuous on [0,1].
- The function F(t) is a step function with a single jump. Such functions are of bounded variation. The total variation is $|F(1/2) F(1/2^-)| = |1 0| = 1$.
- Therefore, *f* is F-integrable on [0,1].

• Calculating $\int_0^1 f dF$:

- For a function F that is a step function with a single jump at $c \in (a,b)$, and f is continuous at c, the Riemann-Stieltjes integral $\int_a^b f \, dF \text{ simplifies to: } \int_a^b f(x) dF(x) = f(c)[F(c^+) F(c^-)].$
- o In our case, the jump occurs at c = 1/2.
- o $F(1/2^+) = 1$ (since F(t) = 1 for $t \ge 1/2$).
- o $F(1/2^-) = 0$ (since F(t) = 0 for t < 1/2).

- The jump size is $[F(1/2^+) F(1/2^-)] = 1 0 = 1$.
- The integrand function is $f(x) = x^2$.
- We need to evaluate f at the jump point c = 1/2: $f(1/2) = (1/2)^2 = 1/4$.
- o Therefore, $\int_0^1 f \, dF = f(1/2) \cdot (1) = f(1/2)$.
- o So, $\int_0^1 x^2 dF(x) = (1/2)^2 = 1/4$.

Question 5: (a) Find the volume of the solid generated when the region enclosed by the curves $x = \sqrt{y}$ and x = y/4 is revolved about the x - axis.

- First, find the points of intersection of the two curves: $x = \sqrt{y} \Rightarrow x^2 = y$ $y = y/4 \Rightarrow y = 4x$
- Substitute y = 4x into $x^2 = y$: $x^2 = 4x$ $x^2 4x = 0$ x(x 4) = 0 So, x = 0 or x = 4.
- If x = 0, y = 0. Point is (0,0).
- If x = 4, $y = 4^2 = 16$ (from $y = x^2$) or y = 4(4) = 16 (from y = 4x). Point is (4,16).
- The region is enclosed by $y = x^2$ and y = 4x.
- We are revolving about the x-axis. We will use the Washer Method.
- The outer radius R(x) is the upper curve, and the inner radius r(x) is the lower curve.

- On the interval [0,4], $4x \ge x^2$. To check, pick x = 1, $4(1) \ge 1^2 \implies 4 \ge 1$. So y = 4x is the outer curve, and $y = x^2$ is the inner curve.
- R(x) = 4x
- $r(x) = x^2$
- The volume V is given by the integral: $V = \int_a^b \pi ([R(x)]^2 [r(x)]^2) dx$. $V = \int_0^4 \pi ((4x)^2 (x^2)^2) dx$. $V = \pi \int_0^4 (16x^2 x^4) dx$.
- Integrate term by term: $V = \pi \left[\frac{16x^3}{3} \frac{x^5}{5} \right]_0^4$. $V = \pi \left[\left(\frac{16(4)^3}{3} \frac{4^5}{5} \right) (0 0) \right]$. $V = \pi \left[\frac{16 \cdot 64}{3} \frac{1024}{5} \right]$. $V = \pi \left[\frac{1024}{3} \frac{1024}{5} \right]$. $V = 1024\pi \left[\frac{1}{3} \frac{1}{5} \right]$. $V = 1024\pi \left[\frac{5-3}{15} \right]$. $V = 1024\pi \left[\frac{2048\pi}{15} \right]$.
- (b) Use cylindrical shells to find the volume of the solid generated when the region under $y = x^2$ is revolved about the line y = -1.
 - The region is under $y = x^2$. This typically means from y = 0 to $y = x^2$. Let's assume the interval for x is from 0 to some value, say b, for a meaningful region. If not specified, we usually mean the region bounded by $y = x^2$ and y = 0 (the x-axis). Let's assume the region is from x = 0 to x = 2 for a specific example, or more generally an interval [0, a]. Let's assume we are integrating from x = 0 to some x = 0.
 - However, revolving about y = -1 with cylindrical shells usually implies integrating with respect to y. This means we need to express x in terms of y.
 - From $y = x^2$, we have $x = \sqrt{y}$ (assuming $x \ge 0$).

- The region is bounded by $y = x^2$, x = 0, and some upper limit for y. Let's assume the region is under $y = x^2$ from x = 0 to x = 2. So y goes from 0 to $2^2 = 4$.
- The axis of revolution is y = -1.
- For cylindrical shells when revolving about a horizontal line y = k:
 - o Shell height is $x_{right} x_{left}$ in terms of y. So $h(y) = \sqrt{y} 0 = \sqrt{y}$.
 - Shell radius is the distance from the axis of revolution y = -1 to the strip at height y. So r(y) = y (-1) = y + 1.
- The volume V is given by $V = \int_c^d 2\pi \cdot \text{radius} \cdot \text{height} dy$.
- The limits of integration for y are from 0 to 4 (since x goes from 0 to 2, $y=x^2$ goes from y=0 to y=4). $V=\int_0^4 2\,\pi(y+1)\sqrt{y}dy$. $V=2\pi\int_0^4 (y^{3/2}+y^{1/2})dy$.
- Integrate term by term: $V = 2\pi \left[\frac{y^{5/2}}{5/2} + \frac{y^{3/2}}{3/2}\right]_0^4$. $V = 2\pi \left[\frac{2}{5}y^{5/2} + \frac{2}{3}y^{3/2}\right]_0^4$. $V = 2\pi \left[\left(\frac{2}{5}(4)^{5/2} + \frac{2}{3}(4)^{3/2}\right) (0)\right]$. $V = 2\pi \left[\left(\frac{2}{5}(32) + \frac{2}{3}(8)\right)\right]$. $V = 2\pi \left[\frac{64}{5} + \frac{16}{3}\right]$. $V = 2\pi \left[\frac{64 \cdot 3 + 16 \cdot 5}{15}\right]$. $V = 2\pi \left[\frac{192 + 80}{15}\right]$. $V = 2\pi \left[\frac{272}{15} + \frac{544\pi}{15}\right]$.
- (c) Find the exact arc length of the curve $x = (1/3)(y^2 + 2)^{3/2}$ from y = 0 to y = 1.

- The arc length formula for a curve given by x = g(y) from y = c to y = d is: $L = \int_c^d \sqrt{1 + (\frac{dx}{dy})^2} \, dy$.
- Given $x = \frac{1}{3}(y^2 + 2)^{3/2}$.
- Find $\frac{dx}{dy}$: $\frac{dx}{dy} = \frac{1}{3} \cdot \frac{3}{2} (y^2 + 2)^{1/2} \cdot (2y)$. $\frac{dx}{dy} = y(y^2 + 2)^{1/2}$.
- Now, calculate $(\frac{dx}{dy})^2$: $(\frac{dx}{dy})^2 = [y(y^2 + 2)^{1/2}]^2 = y^2(y^2 + 2) = y^4 + 2y^2$.
- Substitute into the arc length formula: $L = \int_0^1 \sqrt{1 + (y^4 + 2y^2)} \, dy$. $L = \int_0^1 \sqrt{y^4 + 2y^2 + 1} \, dy$. $L = \int_0^1 \sqrt{(y^2 + 1)^2} \, dy$. $L = \int_0^1 (y^2 + 1) \, dy$ (since $y^2 + 1$ is always positive).
- Integrate: $L = \left[\frac{y^3}{3} + y\right]_0^1$. $L = \left(\frac{1^3}{3} + 1\right) \left(\frac{0^3}{3} + 0\right)$. $L = \frac{1}{3} + 1 = \frac{4}{3}$.
- (d) Find the area of the surface that is generated by revolving the portion of the curve $y = x^2$ between x = 1 and x = 2 about the y axis.
 - The surface area formula for revolving about the y-axis for a curve y = f(x) from x = a to x = b is: $S = \int_a^b 2\pi x \sqrt{1 + (\frac{dy}{dx})^2} dx$.
 - Given $y = x^2$.
 - Find $\frac{dy}{dx}$: $\frac{dy}{dx} = 2x$.
 - Calculate $(\frac{dy}{dx})^2$: $(\frac{dy}{dx})^2 = (2x)^2 = 4x^2$.

- Substitute into the surface area formula: $S = \int_1^2 2 \pi x \sqrt{1 + 4x^2} dx$.
- To evaluate this integral, use a u-substitution. Let $u=1+4x^2$. Then du=8xdx, so $xdx=\frac{1}{8}du$.
- Change the limits of integration: When x = 1, $u = 1 + 4(1)^2 = 5$. When x = 2, $u = 1 + 4(2)^2 = 1 + 16 = 17$.
- Substitute into the integral: $S = 2\pi \int_5^{17} \sqrt{u} \cdot \frac{1}{8} du$. $S = \frac{2\pi}{8} \int_5^{17} u^{1/2} du$. $S = \frac{\pi}{4} \left[\frac{u^{3/2}}{3/2} \right]_5^{17}$. $S = \frac{\pi}{4} \left[\frac{u^{3/2}}{3/2} \right]_5^{17}$. $S = \frac{\pi}{6} \left[17^{3/2} 5^{3/2} \right]$. $S = \frac{\pi}{6} \left[17\sqrt{17} 5\sqrt{5} \right]$.

Question 6: (a) Discuss the convergence or divergence of the following improper integrals: (i) $\int_0^1 (1/\sqrt{x}) dx$; (ii) $\int_-(-\infty)^{\wedge}(+\infty) e^{\wedge}(-x^2) dx$.

- (i) $\int_0^1 (1/\sqrt{x}) dx$
 - This is an improper integral of Type I because the integrand $1/\sqrt{x}$ has an infinite discontinuity at x=0 within the interval [0,1].
 - o We evaluate it as a limit: $\int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{a \to 0^+} \int_a^1 x^{-1/2} dx$.
 - o Integrate $x^{-1/2}$: $\int x^{-1/2} dx = \frac{x^{1/2}}{1/2} = 2\sqrt{x}$.
 - o Now apply the limits: $\lim_{a\to 0^+} [2\sqrt{x}]_a^1 = \lim_{a\to 0^+} (2\sqrt{1} 2\sqrt{a}) = \lim_{a\to 0^+} (2-2\sqrt{a}) = 2 2(0) = 2.$
 - Since the limit exists and is a finite number (2), the improper integral converges.

- (ii) ∫_(-∞)^(+∞) e^(-x²)dx
 - This is an improper integral of Type II because both limits of integration are infinite.
 - We split the integral into two (or three) parts. Let's split it at 0: $\int_{-\infty}^{+\infty} e^{-x^2} dx = \int_{-\infty}^{0} e^{-x^2} dx + \int_{0}^{+\infty} e^{-x^2} dx.$
 - $\circ \quad \text{Consider } \int_0^{+\infty} e^{-x^2} \, dx = \lim_{b \to +\infty} \int_0^b e^{-x^2} \, dx.$
 - o The integral $\int e^{-x^2} dx$ is not expressible in terms of elementary functions. This is the Gaussian integral.
 - However, it is known that $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$.
 - Since the value is finite, the integral converges.
 - (More formally, one can show convergence using comparison tests. For $x \ge 1$, $e^{-x^2} \le e^{-x}$. We know $\int_1^\infty e^{-x} \, dx = [-e^{-x}]_1^\infty = 0 (-e^{-1}) = e^{-1}$, which converges. Since e^{-x^2} is positive, and bounded by an integrable function, $\int_1^\infty e^{-x^2} \, dx$ converges. Similarly for $\int_{-\infty}^{-1} e^{-x^2} \, dx$. The integral over [-1,1] is a definite integral of a continuous function, so it exists. Thus, the entire integral converges.)
- (b) Find the value of r for which the integral $\int_1 \wedge (+\infty) x^{-r} dx$ exists or converges, and determine the value of the integral.
 - This is an improper integral of Type II.

- We evaluate it as a limit: $\int_1^{+\infty} x^{-r} dx = \lim_{b \to +\infty} \int_1^b x^{-r} dx$.
- Case 1: r=1. $\lim_{b\to +\infty}\int_1^b x^{-1}\,dx=\lim_{b\to +\infty}\int_1^b \frac{1}{x}dx.=\lim_{b\to +\infty}[\ln|x|]_1^b.=\lim_{b\to +\infty}(\ln b-\ln 1).=\lim_{b\to +\infty}\ln b=+\infty.$ So, for r=1, the integral diverges.
- Case 2: $r \neq 1$. $\lim_{b \to +\infty} \int_1^b x^{-r} dx = \lim_{b \to +\infty} \left[\frac{x^{-r+1}}{-r+1} \right]_1^b = \lim_{b \to +\infty} \left(\frac{b^{1-r}}{1-r} \frac{1^{1-r}}{1-r} \right) = \frac{1}{1-r} \lim_{b \to +\infty} (b^{1-r} 1).$
 - For the limit to exist, b^{1-r} must go to 0 as $b \to +\infty$. This happens if and only if the exponent (1-r) is negative.
 - $0 \quad 1 r < 0 \Longrightarrow 1 < r$.
 - o If r > 1, then 1 r is negative, so $\lim_{b \to +\infty} b^{1-r} = 0$.
 - o In this case, the value of the integral is $\frac{1}{1-r}(0-1) = \frac{-1}{1-r} = \frac{1}{r-1}$.
- **Conclusion:** The integral $\int_{1}^{+\infty} x^{-r} dx$ converges if and only if r > 1. When it converges, its value is $\frac{1}{r-1}$.
- (c) Show that the improper integral $\int_1 \wedge (+\infty)$ (sin x / x²)dx converges absolutely.
 - For an integral to converge absolutely, $\int_1^{+\infty} |\frac{\sin x}{x^2}| dx$ must converge.
 - We use the Comparison Test for improper integrals.
 - We know that $|\sin x| \le 1$ for all x.

- Therefore, $\left|\frac{\sin x}{x^2}\right| = \frac{|\sin x|}{x^2} \le \frac{1}{x^2}$ for all $x \ge 1$.
- Now, consider the integral of the dominating function: $\int_{1}^{+\infty} \frac{1}{x^2} dx$.
- This is a p-integral of the form $\int_{1}^{+\infty} \frac{1}{x^{p}} dx$ with p = 2.
- From part (b), we know that such an integral converges if p > 1. Since 2 > 1, $\int_{1}^{+\infty} \frac{1}{x^2} dx$ converges.
 - $\text{O Let's verify: } \lim_{b \to +\infty} \int_1^b x^{-2} \, dx = \lim_{b \to +\infty} [-x^{-1}]_1^b = \\ \lim_{b \to +\infty} (-\frac{1}{b} (-\frac{1}{1})) = \lim_{b \to +\infty} (1 \frac{1}{b}) = 1 0 = 1.$
- Since $0 \le |\frac{\sin x}{x^2}| \le \frac{1}{x^2}$ and $\int_1^{+\infty} \frac{1}{x^2} dx$ converges, by the Comparison Test, $\int_1^{+\infty} |\frac{\sin x}{x^2}| dx$ also converges.
- Therefore, the improper integral $\int_1^{+\infty} \frac{\sin x}{x^2} dx$ converges absolutely.
- (d) Define the Gamma function $\Gamma(m)$. Prove that $\Gamma(m)$ converges if m > 0.
 - Definition of the Gamma Function Γ(m): The Gamma function,
 Γ(m), is defined by the improper integral: Γ(m) = ∫₀^{+∞} x^{m-1} e^{-x} dx.
 This definition is valid for complex numbers m with a positive real part (Re(m) > 0). For real values of m, it is defined for m > 0.
 - **Proof of Convergence for m > 0:** We need to show that the integral converges for m > 0. This is an improper integral of Type I and Type II (if m 1 < 0). We need to split the integral into two parts to

address both potential discontinuities: $\Gamma(m) = \int_0^{+\infty} x^{m-1} e^{-x} dx =$ $\int_0^1 x^{m-1} e^{-x} dx + \int_1^{+\infty} x^{m-1} e^{-x} dx.$

- Part 1: Convergence of $\int_0^1 x^{m-1} e^{-x} dx$ (Improper at x=0 if m-1<0, i.e., m<1).
 - o For $x \in (0,1]$, e^{-x} is bounded between e^{-1} and $e^0 = 1$. So, $e^{-x} \le 1$.
 - Thus, $0 \le x^{m-1}e^{-x} \le x^{m-1}$ for $x \in (0,1]$.
 - O Consider the integral $\int_0^1 x^{m-1} dx$. This is a p-integral of the form $\int_0^1 \frac{1}{x^p} dx$ where p = 1 m.
 - \circ This integral converges if p < 1.
 - \circ So, $1-m < 1 \Rightarrow m > 0$.
 - o If m > 0, then $\int_0^1 x^{m-1} dx = \left[\frac{x^m}{m}\right]_0^1 = \frac{1^m}{m} \lim_{a \to 0^+} \frac{a^m}{m} = \frac{1}{m} 0 = \frac{1}{m}$, which is finite.
 - o Since $\int_0^1 x^{m-1} dx$ converges for m>0, by the Comparison Test, $\int_0^1 x^{m-1} e^{-x} dx$ converges for m>0.
- Part 2: Convergence of $\int_1^{+\infty} x^{m-1} e^{-x} dx$ (Improper at $x = +\infty$).
 - o For large x, the exponential term e^{-x} dominates any polynomial term x^{m-1} .

- We can use the Limit Comparison Test. Consider a comparison function $g(x) = \frac{1}{x^2}$. (We know $\int_1^{+\infty} \frac{1}{x^2} dx$ converges).
- O Calculate the limit: $\lim_{x\to +\infty} \frac{x^{m-1}e^{-x}}{1/x^2} = \lim_{x\to +\infty} \frac{x^{m+1}}{e^x}$.
- o By repeated application of L'Hôpital's Rule (if $m+1 \ge 0$) or by the fact that exponential functions grow faster than any polynomial, this limit is 0 for any finite m.
- o Since the limit is 0 (a finite non-negative number), and $\int_1^{+\infty} \frac{1}{x^2} dx$ converges, by the Limit Comparison Test, $\int_1^{+\infty} x^{m-1} e^{-x} dx$ converges.
- Conclusion: Since both parts of the integral converge for m>0, the Gamma function $\Gamma(m)=\int_0^{+\infty}x^{m-1}\,e^{-x}dx$ converges if m>0.