

Computer Science Department

CS504

Digital Logic & Computer Organization

Lecture 3

Lecture Outline (Chapter 2)

- **★** Canonical Forms (Section 2.6)
 - Converting To Sum-Of-Minterms Form
 - Converting To Product-Of-Maxterms Form
 - Conversion Between Canonical Forms
 - Algebraic Conversion Between Canonical Forms
 - Function Complements
 - Standard Forms
 - AND/OR Two-Level Implementation
- **★** Other Logic Operations (Section 2.7)
- **★** Digital Logic Gates (Section 2.8)
 - Extension To Multiple Inputs
 - Positive And Negative Logic

Converting To Sum-Of-Minterms Form

- A function that is not in the Sum-of-Minterms form can be converted to that form by means of a truth table
- Consider $F = \overline{y} + \overline{x} \overline{z}$

x	y	Z	F	Minterm
0	0	0	1	$\mathbf{m}_0 = \overline{x} \ \overline{y} \ \overline{z}$
0	0	1	1	$m_1 = \overline{x} \overline{y} z$
0	1	0	1	$m_2 = \overline{x} y \overline{z}$
0	1	1	0	
1	0	0	1	$m_4 = x \overline{y} \overline{z}$
1	0	1	1	$m_5 = x \overline{y} z$
1	1	0	0	
1	1	1	0	

$$F = \sum (0, 1, 2, 4, 5) =$$

$$m_0 + m_1 + m_2 + m_4 + m_5 =$$

$$\overline{x} \, \overline{y} \, \overline{z} + \overline{x} \, \overline{y} \, z + \overline{x} \, y \, \overline{z} +$$

$$x \, \overline{y} \, \overline{z} + x \, \overline{y} \, z$$

Converting To Product-Of-Maxterms Form

- A function that is not in the Product-of-Maxterms form can be converted to that form by means of a truth table
- Consider again: $F = \overline{y} + \overline{x} \overline{z}$

x	У	Z	F	Maxterm
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$\mathbf{M}_3 = (x + \overline{y} + \overline{z})$
1	0	0	1	
1	0	1	1	
1	1	0	0	$\mathbf{M}_6 = (\overline{x} + \overline{y} + z)$
1	1	1	0	$\mathbf{M}_7 = (\overline{x} + \overline{y} + \overline{z})$

$$F = \prod(3, 6, 7) =$$

$$M_3 \cdot M_6 \cdot M_7 =$$

$$(x + \overline{y} + \overline{z}) (\overline{x} + \overline{y} + \overline{z}) (\overline{x} + \overline{y} + \overline{z})$$

Conversions Between Canonical Forms

χ	у	Z	F	Minterm	Maxterm
0	0	0	0		$\mathbf{M}_0 = (x + y + z)$
0	0	1	1	$m_1 = \overline{x} \overline{y} z$	
0	1	0	1	$m_2 = \overline{x} y \overline{z}$	
0	1	1	1	$m_3 = \overline{x} y z$	
1	0	0	0		$\mathbf{M}_4 = (\overline{x} + y + z)$
1	0	1	1	$m_5 = x \overline{y} z$	
1	1	0	0		$\mathbf{M}_6 = (\overline{x} + \overline{y} + z)$
1	1	1	1	$m_7 = x y z$	

$$F = \mathbf{m}_1 + \mathbf{m}_2 + \mathbf{m}_3 + \mathbf{m}_5 + \mathbf{m}_7 = \sum (1, 2, 3, 5, 7) =$$

$$\overline{x} \, \overline{y} \, z + \overline{x} \, y \, \overline{z} + \overline{x} \, y \, z + x \, \overline{y} \, z + x \, y \, z$$

$$F = \mathbf{M}_0 \cdot \mathbf{M}_4 \cdot \mathbf{M}_6 = \prod (0, 4, 6) = (x + y + z)(\overline{x} + y + z)(\overline{x} + \overline{y} + z)$$

Algebraic Conversion To Sum-Of-Minterms

- Expand all terms first to explicitly list all minterms
- AND any term missing a variable v with $(v + \overline{v})$
- Example 1: $f = x + \overline{x} \overline{y}$ (2 variables) $f = x (y + \overline{y}) + \overline{x} \overline{y}$ $f = x y + x \overline{y} + \overline{x} \overline{y}$ $f = m_3 + m_2 + m_0 = \sum (0, 2, 3)$
- Example 2: g = a + b c (3 variables) $g = a (b + \overline{b})(c + \overline{c}) + (a + \overline{a}) \overline{b} c$ $g = a b c + a b \overline{c} + a \overline{b} c + a \overline{b} \overline{c} + a \overline{b} c + \overline{a} \overline{b} c$ $g = \overline{a} \overline{b} c + a \overline{b} \overline{c} + a \overline{b} c + a \overline{b} c + a \overline{b} c$ $g = m_1 + m_4 + m_5 + m_6 + m_7 = \sum (1, 4, 5, 6, 7)$

Algebraic Conversion To Product-Of-Maxterms

- Expand all terms first to explicitly list all Maxterms
- OR any term missing a variable v with $v \cdot \overline{v}$
- Example 1: $f = x + \overline{x} \overline{y}$ (2 variables) Apply 2nd distributive law:

$$f = (x + \bar{x}) (x + \bar{y}) = 1 \cdot (x + \bar{y}) = (x + \bar{y}) = M_1$$

• Example 2: $g = a \bar{c} + b c + \bar{a} \bar{b}$ (3 variables)

$$g = (a \overline{c} + b c + \overline{a}) (a \overline{c} + b c + b)$$
 (distributive)

$$g = (\overline{c} + b c + \overline{a}) (a \overline{c} + c + \overline{b})$$
 $(x + \overline{x} y = x + y)$

$$g = (\overline{c} + b + \overline{a}) (a + c + \overline{b})$$
 $(x + \overline{x} y = x + y)$

$$g = (\bar{a} + b + \bar{c}) (a + b + c) = M_5 \cdot M_2 = \prod (2, 5)$$

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical form
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices
- Example: Given $F(x, y, z) = \sum (1, 3, 5, 7)$ $\overline{F}(x, y, z) = \sum (0, 2, 4, 6)$ $\overline{F}(x, y, z) = \prod (1, 3, 5, 7)$

Summary of Minterms And Maxterms

- There are 2^n minterms and maxterms for Boolean functions with n variables.
- Minterms and maxterms are indexed from 0 to $2^n 1$
- Any Boolean function can be expressed as a logical sum of minterms and as a logical product of maxterms
- The complement of a function contains those minterms not included in the original function
- The complement of a sum-of-minterms is a product-of-maxterms with the same indices

Standard Forms

- Standard Sum-of-Products (SOP) form:
 equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
 - SOP: $ABC + \overline{A}\overline{B}C + B$
 - POS: $(A+B) \cdot (A+\overline{B}+\overline{C}) \cdot C$
- These "mixed" forms are neither SOP nor POS
 - $\bullet (A B + C) (A + C)$
 - $\bullet AB\overline{C}+AC(A+B)$

Standard Sum-Of-Products (SOP)

- A sum of minterms form for n variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates
 - The second level is a single OR gate
- This form often can be simplified so that the corresponding circuit is simpler.

Standard Sum-Of-Products (SOP)

A Simplification Example:

$$F(A,B,C) = \sum (1,4,5,6,7)$$

Writing the minterm expression:

$$F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + AB\overline{C} + ABC$$

Simplifying:

$$\mathbf{F} = \overline{\mathbf{A}} \ \overline{\mathbf{B}} \ \mathbf{C} + \mathbf{A} \ (\overline{\mathbf{B}} \ \overline{\mathbf{C}} + \overline{\mathbf{B}} \ \mathbf{C} + \mathbf{B} \ \overline{\mathbf{C}} + \mathbf{B} \ \mathbf{C})$$

$$F = \overline{A} \overline{B} C + A (\overline{B} (\overline{C} + C) + B (\overline{C} + C))$$

$$\mathbf{F} = \overline{\mathbf{A}} \ \overline{\mathbf{B}} \ \mathbf{C} + \mathbf{A} \ (\overline{\mathbf{B}} + \mathbf{B})$$

$$\mathbf{F} = \overline{\mathbf{A}} \ \overline{\mathbf{B}} \ \mathbf{C} + \mathbf{A}$$

$$F = \overline{B} C + A$$

Simplified F contains 3 literals compared to 15

AND/OR Two-Level Implementation

The two implementations for F are shown below

It is quite apparent which is simpler!

SOP and POS Observations

- The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity

• Boolean algebra can be used to manipulate equations into simpler forms

• Simpler equations lead to simpler implementations

Other Logic Operations

- 2ⁿ rows in the truth table of n binary variables
- 2^{2ⁿ} functions for n binary variables
- 16 functions of two binary variables

Table 2.7 *Truth Tables for the 16 Functions of Two Binary Variables*

X	y	F ₀	<i>F</i> ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Other Logic Operations (2)

Table 2.8 Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not <i>y</i>
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	x'	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x \supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15}=1$	·	Identity	Binary constant 1

Other Logic Operations (3)

- Consider the 16 functions
 - two are equal to a constant
 - four are repeated twice
 - inhibition and implication are not commutative or associative
 - the other eight: complement, transfer, AND, OR, NAND, NOR, XOR, and equivalence are used as standard gates
 - complement: inverter
 - transfer: buffer (used for power amplification)
 - equivalence: XNOR

Digital Logic Gates

Name	Graphic symbol	Algebraic function	Truth table
AND	$x \longrightarrow F$	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	x y F	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	$x \longrightarrow F$	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
Buffer	$x \longrightarrow F$	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

Figure 2.5 Digital Logic Gates

Digital Logic Gates (2)

NAND	$x \longrightarrow F$	F = (xy)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
NOR	x y F	F = (x + y)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$
Exclusive-OR (XOR)	x y F	$F = xy' + x'y$ $= x \oplus y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
Exclusive-NOR or equivalence	x y F	$F = xy + x'y'$ $= (x \oplus y)'$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$

Figure 2.5 Digital Logic Gates (Continued)

Extension To Multiple Inputs

- All gates -except for the inverter and buffer- can be extended to have more than two inputs
- A gate can be extended to multiple inputs if the binary operation it represents is commutative & associative
- The AND and OR operations, defined in Boolean algebra, possess these two properties.
- x+y=y+x

(commutative)

(x+y)+z = x+(y+z) = x+y+z

(associative)

Extension To Multiple Inputs (2)

 NAND and NOR are commutative but not associative => they are not extendable

Fig. 2-6 Demonstrating the nonassociativity of the NOR operator; $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

Extension To Multiple Inputs (3)

- Multiple NOR = a complement of OR gate
- Multiple NAND = a complement of AND gate

Fig. 2-7 Multiple-input and cascated NOR and NAND gates

Extension To Multiple Inputs (4)

- The XOR and XNOR gates are commutative and associative
- XOR is an odd function: it is equal to 1 if the inputs variables have an odd number of 1's

(c) Truth table

Z.

 ν

Fig. 2-8 3-input exclusive-OR gate

Positive And Negative Logic

- The same physical gate has different logical meanings depending on interpretation of the signal levels.
- Positive Logic
 - HIGH signal levels represent Logic 1
 - LOW signal levels represent Logic 0
- Negative Logic
 - LOW signal levels represent Logic 1
 - HIGH signal levels represent Logic 0
- A gate that implements a Positive Logic AND function will implement a Negative Logic OR function, and vice-versa.

Positive And Negative Logic (2)

• Given this signal level table:

Input	Output
XY	
L L	L
L H	Н
H L	Н
н н	Н

What logic function is implemented?

Positive	(H = 1)
Logic	$(\mathbf{L} = 0)$
0 0	0
0 1	1
1 0	1
1 1	1

Negative Logic	$(\mathbf{H} = 0)$ $(\mathbf{L} = 1)$
1 1	1
1 0	0
0 1	0
0 0	0

Positive And Negative Logic (3)

Rearranging the negative logic terms to the standard function table order:

Positive	(H = 1)
Logic	$(\mathbf{L} = 0)$
0 0	0
0 1	1
1 0	1
1 1	1

Negative	$(\mathbf{H}=0)$
Logic	(L=1)
0 0	0
0 1	0
1 0	0
1 1	1

OR

AND

Logic Symbol Conventions

Use of polarity indicator to represent use of negative logic convention on gate inputs or outputs

Positive Logic

Negative Logic

The End

Questions?