SL Rules

Modus Ponens $(\rightarrow E)$

$$\begin{bmatrix} P \to Q \\ P \\ Q \end{bmatrix}$$

Conjunction Introduction $(\land I)$

$$\begin{bmatrix} P \\ Q \\ (P \wedge Q) \end{bmatrix}$$

Conjunction Elimination ($\wedge E$)

$$\begin{bmatrix} (P \wedge Q) \\ P \\ Q \end{bmatrix}$$

Disjunction Introduction $(\vee I)$

$$-\frac{(\mathsf{P})}{\mathsf{P}\vee\mathsf{Q}}$$

Disjunction Elimination ($\vee E$)

$$\begin{bmatrix} P \lor Q \\ \neg P \\ Q \end{bmatrix}$$

Biconditional Elimination $(\leftrightarrow E)$

Negation Elimination $(\neg E)$

Hypothetical Rules

Conditional Introduction $(\rightarrow I)$

$$\begin{array}{|c|c|}
\hline
n. P \\
\vdots \\
m. Q \\
P \to Q
\end{array}$$

Reductio ad Absurdum(RAA)

Argument by Cases (AC)(First Form)

$$\begin{array}{c|c} P \lor Q \\ P \to R \\ Q \to R \\ R \end{array}$$

For 2nd form , first prove $P \to R$ and $Q \to R$ using $(\to I)$