DSE 220: Machine learning

Worksheet 2 — Useful distance functions

- 1. Consider the two points x = (-1, 1, -1, 1) and x' = (1, 1, 1, 1).
 - (a) What is the L_2 distance between them?
 - (b) What is the L_1 distance between them?
 - (c) What is the L_{∞} distance between them?
- 2. For the point x = (1, 2, 3, 4) in \mathbb{R}^4 , compute the following.
 - (a) $||x||_1$
 - (b) $||x||_2$
 - (c) $||x||_{\infty}$
- 3. For each of the following norms, consider the set of points with length ≤ 1 . In each case, state whether this set is shaped like a *ball*, a *diamond*, or a *box*.
 - (a) ℓ_2
 - (b) ℓ_1
 - (c) ℓ_{∞}
- 4. List all points in \mathbb{R}^2 with $||x||_1 = ||x||_2 = 1$.
- 5. Which of these distance functions is a *metric*? If it is not a metric, state which of the four metric properties it violates.
 - (a) Let $\mathcal{X} = \mathbb{R}$ and define d(x, y) = x y.
 - (b) Let Σ be a finite set and $\mathcal{X} = \Sigma^m$. The Hamming distance on \mathcal{X} is d(x,y) = # of positions on which x and y differ.
 - (c) Squared Euclidean distance on \mathbb{R}^m , that is, $d(x,y) = \sum_{i=1}^m (x_i y_i)^2$. (It might be easiest to consider the case m = 1.)
- 6. Suppose d_1 and d_2 are two metrics on a space \mathcal{X} . Define d to be their sum: $d(x,y) = d_1(x,y) + d_2(x,y)$. Is d necessarily a metric? Either show that it is or give a counterexample.