

DECODER/ENCODER Mux/demux

9주차 발표

컴퓨터공학실험II(CSE3016-05)

20191149 전종욱 20201072 박소현

목차

- Decoder
- Encoder
- Bcd to decimal decoder
- Priority encoder

- Mux
- DeMux
- Demux와 Decoder의 차이
- Mux/DeMux 심화

컴퓨터공학실험II(CSE3016-05) 9주차 발표

Decoder

복호기, 해독기

- ■2진수를 10진수로 변환하는 논리회로
- -n 비트의 2진수를 입력하면 최대 2^n 비트로 이루어진 정보를 출력한다.
- ■입력된 n 비트 정보 중 사용되지 않거나 정의되지 않은 경우, 출력은 2^n 보다 작을 수 있다. $n \times m$ 해독기는 n 개의 입력과 m 개의 출력을 가지며, 이때 m은 2^n 보다 작거나 같아야 한다

2 to 4 Decoder

■2 to 4 decoder 은 2개의 입력과 4개의 출력을 가진다.

Ing	out	Output			
Α	В	D_0	D_1	D_2	D_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$D_0 = \overline{AB}$$

$$D_1 = \overline{A}B$$

A B	0	1	
0	0	0	
1	1	0	

$$D_2 = A\overline{B}$$

A	0	1
0	0	1
1	0	0

$$D_3 = AB$$

A	0	1
0	0	0
1	0	1

Encoder

부호기, 암호기

- ■해독기의 반대 역할 수행
- ■10진수를 2진수로 변환하는 논리 회로
- ■입력된 2^n 비트의 정보를 n 비트의 2진수로 변환하여 출력
- ■입력된 정보 중, 하나라도 1의 입력 값을 가지면, 해당 입력 정보에 대한 2진 코드 값을 출력한다.

4 to 2 Encoder

4to 2 encoder 은 4개의 입력과 2개의 출력을 가진다.

CD AB	00	01	11	10
00		1		0
01	1			
11				
10	0			

	Inp	Out	put		
Α	В	С	D	Y_0	Y_1
1	0	0	0	0	0
0	1	0	0	1	0
0	0	1	0	0	1
0	0	0	1	1	1

$$Y_1 = \overline{AB}C\overline{D} + \overline{ABC}D$$

CD AB	00	01	11	10
00		1		1
01	0			
11				
10	0			

BCD(8421) 코드를 입력 받아 이에 대응하는 출력을 반환한다.

입력이 0110일 경우 10진수로는 6이 된다. 따라서 output bit 중 B6에 불이 켜지게 된다.

0000은 10진수로 0이다. 즉, 입력이 없다는 의미이므로 output에 표시되지 않는다.

BCD to Decimal Decoder (2)

	Inp	out						Output				
A0(8)	A1(4)	A2(2)	A3(1)	B1	B2	<i>B3</i>	B4	<i>B5</i>	B6	<i>B7</i>	B8	B9
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	1
1	0	1	0	X	X	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X	X

BCD to Decimal Decoder (3)

A_2A_3 A_0A_1	00	01	11	10
00	Х	1	0	0
01	0	0	0	0
11	Х	Х	Х	Х
10	0	0	Х	X

A_2A_3 A_0A_1	00	01	11	10
00	X	0	0	1
01	0	0	0	0
11	Х	Х	Х	Х
10	0	0	Х	Х

A_2A_3 A_0A_1	00	01	11	10
00	X	0	1	0
01	0	0	0	0
11	Х	Х	Х	Х
10	0	0	Х	Х

A_2A_3 A_0A_1	00	01	11	10
00	Х	0	0	0
01	1	0	0	0
11	Х	Х	Х	Х
10	0	0	Х	Х

 B_1

 B_2

 B_3

 B_4

A_2A_3 A_0A_1	00	01	11	10
00	Х	0	0	0
01	0	1	0	0
11	Х	Х	Х	Х
10	0	0	Х	Х

A_2A_3 A_0A_1	00	01	11	10
00	Х	0	0	0
01	0	0	0	1
11	Х	Х	Х	Х
10	0	0	Х	Х

A_2A_3 A_0A_1	00	01	11	10
00	Х	0	0	0
01	0	0	1	0
11	Х	Х	Х	Х
10	0	0	Х	Х

A_2A_3 A_0A_1	00	01	11	10
00	Х	0	0	0
01	0	0	0	0
11	х	Х	Х	Х
10	1	0	Х	Х

A_2A_3 A_0A_1	00	01	11	10
00	X	0	0	0
01	0	0	0	0
11	Х	Х	Х	Х
10	0	1	Х	Х

 B_5

 B_6

 B_7

 B_{ϵ}

 B_9

Decimal to BCD Encoder (1)

BCD to Decimal Decoder 와 반대로 동작하는 회로 10진수를 4비트 BCD 형식으로 인코딩한다.

Decimal to BCD Encoder (2)

	Output							Inp	out			
D1	D2	D3	D4	D5	D6	D7	D8	D9	YO	Y1	Y2	<i>Y3</i>
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	1	1	0	0	1

$$Y0 = D8 + D9$$

$$Y1 = D4 + D5 + D6 + D7$$

$$Y2 = D2 + D3 + D6 + D7$$

$$Y3 = D1 + D3 + D5 + D7 + D9$$

Priority Encoder

- ▶우선순위 부호기는 여러 개의 입력이 동시에 들어올 때, 우선순위에 따라 하나의 입력을 선택하는 논리 회로이다.
- ■동작은 다음과 같다.
 - ■N개의 입력을 받아, 우선순위가 가장 높은 비트를 찾는다.
 - ■해당 비트의 위치를 2진수로 인코딩하여 출력한다.

	Input				output		
D0	D1	D2	D3	А	В	V	
0	0	0	0	х	х	0	
1	0	0	0	0	0	1	
х	1	0	0	0	1	1	
x	х	1	0	1	0	1	
х	х	х	1	1	1	1	

D_2D_3 D_0D_1	00	01	11	10
00		1	1	1
01		1	1	1
11		1	1	1
10		1	1	1

D_2D_3 D_0D_1	00	01	11	10
00		1	1	
01	1	1	1	1
11	1	1	1	1
10		1	1	

Mux

멀티플렉서

sele	ctor	output
S ₁	So	Y
0	0	I_0
0	1	I ₁
1	0	I ₂
1	1	I_3

- ■2n개의 입력 신호 중 n개의 선택신호를 이용하여 입력 신호중 하나를 선택하여 출력한다
- ■4 to 1 line MUX는 4(22)개의 입력 신호중 2개의 선택신호를 이용하여 입력신호 중 하나를 선택하여 출력하게 한다.
- ■멀티플렉서는 많은 입력 중 하나를 선택하므로 데이터 선택기(Data Selector)라고도 불린다.
- ■Input 2n개, select signal(선택신호) n개, Output 1개

IHS

디멀티플렉서

S_1	S_0	D_0	D_1	D_2	D_3
0	0	I	0	0	0
0	1	0	I	0	0
1	0	0	0	I	0
1	1	0	0	0	I

- ■멀티플렉서와 반대의 동작을 한다.
- ■정보를 한 선으로 받아서, 선택 값에 따라 출력선 2n개 중 하나를 선택하여 받은 정보를 전송한다.
- ■한 개의 데이터 입력에 대해, n개의 선택 단자를 통해 2n개의 출력 단자 중 어느 단자에 출력할지 선택하는 회로이다.
- ■데이터 분배기(Data distributor)라고도 불린다.
- ■Input 1개, select signal(선택신호) n개, Output 2n개

Demux와 Decoder의 차이

IHS

- ■1 to 4 demux에서 입력선을 제거하면 2 to 4 decoder가 된다
- ■유사한 구조
- ■Demux는 하나의 데이터 입력, 소수의 제어입력, 많은 출력
- ■Decoder는 이진수를 하나의 신호로 변환하는 회로
- ■진리표 역시 decoder에 Input을 곱해주는 결과

Inp	out	Output				
Α	В	D_0	D_1	D_2	D_3	
0	0	1	0	0	0	
0	1	0	1	0	0	
1	0	0	0	1	0	
1	1	0	0	0	1	

S_1	S_0	D_0	D_1	D_2	D_3
0	0	I	0	0	0
0	1	0	I	0	0
1	0	0	0	I	0
1	1	0	0	0	I

Mux/DeMux 심화 (1)

- ■Mux/Demux는 보통 통신에서 많이 사용된다
- ■통신 시스템에서 Mux는 하나의 채널에 여러 개의 신호를 실어 보내는 데에 쓰인다.
- ●여러 개의 신호를 여러 개의 회선을 통해서 보내는 것보다 비용, 시간측면에서 이득을 본다

Mux/DeMux 심화 (2)

주파수 분할 다중화 FDM(Frequency Division Multiplexing), 파장 분할 다중화 WDM (Wavelength Division Multiplexing)

Figure 1: Basic WDM Technology Diagram

- ■통신은 신호를 송신하는 부분과 수신하는 부분으로 이루어진다.
- ■송신부는 Mux를, 수신부는 DeMux를 작동한다
- •여러 개의 입력을, 하나의 큰 신호로 바꾸어 보낸 뒤, 하나의 신호를, 여러 개의 출력으로 나눠 보낸다.
- •이외에도 주파수가 아닌 빛의 파장같은 여러 요소를 이용한 다중화 기법이있다

ALAN B. MARCOVITZ, 『논리회로와 컴퓨터설계』, 한티미디어(2008)

임석구, 홍경호(2015), 디지털 논리회로(3판), 한빛아카데미

오창환(2013), 디지털 논리회로 이해, 한국학술정보(주)

한밭대학교 12-MuxDmux.PDF (hanbat.ac.kr)

서강대학교 9주차 강의자료

케이시, "DWDM 기술: 얼마나 알고 계십니까?", fiber mall

https://www.fibermall.com/ko/blog/cwdm-dwdm-mux-demux-technology.htm

<기여도>

전종욱: 50%

박소현: 50%