Reading:

- \bullet For this homework: 1.4.-1.5
- For Wednesday, February 9: 2.1-2.2
- For Monday, February 14: 2.2-2.3

Problem 1.

Folland Chapter 1, Problem 28

Problem 2.

Let (X, Σ, μ) be measure space. We say that $E \subseteq X$ is an atom if

- $E \in \Sigma$,
- $\mu(E) > 0$,
- $\{\mu(F) : F \subseteq E, F \in \Sigma\} = \{0, \mu(E)\}.$

We say that μ is *diffuse* if it has no atoms.

(a) Let (X,d,μ) be a metric measure space. Assume that μ is outer regular, and that

$$\mu(E) = \sup \{ \mu(K) : K \subseteq E \text{ compact} \} \text{ for all Borel } E \subseteq X.$$

If $\mu(\{p\}) = 0$ for all $p \in X$, show that μ is diffuse.

(b) Let $F: \mathbb{R} \to \mathbb{R}$ be an increasing, right-continuous function. Show that for $p \in \mathbb{R}$ we have that $\{p\}$ is an atom of μ_F if and only if F is discontinuous at p. Show that μ_F is diffuse if and only if F is continuous.

Problem 3.

Let (X, Σ, μ) be a σ -finite measure space.

- (i) Suppose that $(E_j)_{j\in J}$ is a collection of sets with $E_j\in \Sigma$ for all $j\in J$ and with $\mu(E_j)>0$ for all $j\in J$, and so that $\mu(E_j\cap E_k)=0$ for $j\neq k$ in J. Show that J is countable.
- (ii) Let (Ω, ρ) be the metric space defined in Problem 12 of Chapter 1 of Folland. For $E \in \Sigma$, let [E] be its equivalence class in Ω . Show that

$$\{[E]: E \subseteq X \text{ is an atom}\},\$$

is countable.

Problem 4.

Let (X, Σ, μ) be a diffuse σ -finite measure space. For $A \in \Sigma$, show that:

$$\{\mu(B): B \subseteq A, B \in \Sigma\} = [0, \mu(A)].$$

Suggestions: Reduce to the finite case. It might be helpful to first show that for every $E \in \Sigma$ with $\mu(E) > 0$, we have $0 = \inf\{\mu(B) : B \subseteq E \text{ and } \mu(B) > 0\}$.

Problem 5.

Folland Chapter 1, Problem 29

Problem 6.

- (a) Let \mathcal{E}_q be the family of h-intervals in \mathbb{R} with rational endpoints. Show that \mathcal{E}_q is an elementary family and that the σ -algebra generated by this elementary family is all Borel subsets of \mathbb{R} .
- (b) Suppose that $\mu: \mathcal{B}_{\mathbb{R}} \to [0, \infty]$ is a measure and that $\mu(E+x) = \mu(E)$ for all $E \in \mathcal{B}_{\mathbb{R}}, x \in \mathbb{R}$. Assume that $0 < \mu((0,1]) < +\infty$. Show that $\mu(E) = \mu((0,1])m(E)$ for all $E \in \mathcal{B}_{\mathbb{R}}$.

1