Discrete Mathematics and Logic Lecture 3

Andrey Frolov

Innopolis University

The naive set theory

The naive set theory	Logic	
Complement	Negation	
\overline{A}	$\neg P$	
Intersection	Conjunction	
$A_1 \cap A_2$	$P_1 \& P_2$	
Union	Disjunction	
$A_1 \cup A_2$	$P_1 \vee P_2$	

The naive set theory

The naive set theory	Logic	
$A \cap A = A$ $A \cup A = A$	$a \& a = a$ $a \lor a = a$	
$A \cap B = B \cap A A \cup B = B \cup A$	$a \& b = b \& a a \lor b = b \lor a$	
$A\cap (B\cap C)=(A\cap B)\cap C$	a & (b & c) = (a & b) & c	
$A \cup (B \cup C) = (A \cup B) \cup C$	$a \lor (b \lor c) = (a \lor b) \lor c$	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$a \& (b \lor c) = (a \& b) \lor (a \& c)$	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$a \lor (b \& c) = (a \lor b) \& (a \lor c)$	
$\overline{A \cap B} = \overline{A} \cup \overline{B}$	$\neg(a \& b) = \neg a \lor \neg b$	
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$ eg(a \lor b) = eg a \& eg b$	

Universe

The naive set theory	Logic	
The empty set	False	
Ø	F 0	
The universe	True	
U	T 1	

Example of Universe

$$\{x \in \mathbb{Z} \mid x < 0\}$$

Complement

$$\overline{A} = \{ x \in \mathbf{U} \mid x \notin A \}$$

Universe

The naive set theory		Logic	
$A \cap \emptyset = \emptyset$	$A \cup \mathbf{U} = \mathbf{U}$	a&0=0	$a \lor 1 = 1$
$A \cap \mathbf{U} = A$	$A \cup \emptyset = A$	a&1=a	$a \lor 0 = a$
$A \cap \overline{A} = \emptyset$	$A \cup \overline{A} = \mathbf{U}$	$a \& \neg a = 0$	$a \lor \neg a = 1$
$\overline{\overline{A}} = A$		$\neg(\neg a)=a$	

for any
$$A$$
, $\emptyset \subseteq A$ & $A \subseteq \mathbf{U}$

Definition

$$X \times Y = \{(x, y) \mid x \in X \& y \in Y\}$$

Example

If
$$A = \{1, 2, 3\}$$
 and $B = \{a, b\}$, then

$$A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$$

Definition

$$X_1 \times \cdots \times X_n = \{(x_1, \dots, x_n) \mid x_1 \in X_1 \& \dots \& x_n \in X_n\}$$

Example

$$\underbrace{X\times\cdots\times X}_{n\text{ times}}=X^n$$

$$\mathbb{R}^3$$

$$A \times A \neq A$$

$$A \times B \neq B \times A$$

$$A \times \emptyset = \emptyset \times A = \emptyset$$

$$A \times (B \times C) = (A \times B) \times C$$

$$*(x,(y,z)) = ((x,y),z) = (x,y,z)$$

$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

 $A \times (B \cup C) = (A \times C) \cup (A \times C)$

$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$(A \cap B) \times (X \cap Y) = (A \times X) \cap (B \times Y)$$

Properties

$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Proof

$$(x,y) \in (A \cup B) \times C \Leftrightarrow (x \in A \cup B) \& (y \in C) \Leftrightarrow$$

$$\Leftrightarrow$$
 $(x \in A \lor x \in B) \& (y \in C) \Leftrightarrow *$

$$\Leftrightarrow$$
 * $(x \in A \& y \in C) \lor (x \in B \& y \in C) \Leftrightarrow$

$$\Leftrightarrow ((x,y) \in A \times C) \vee ((x,y) \in B \times C) \Leftrightarrow (x,y) \in (A \times C) \cup (B \times C)$$

$$(P_1 \vee P_2) \& P_3 = (P_1 \& P_3) \vee (P_2 \& P_3)$$

Properties

$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

 $A \times (B \cup C) = (A \times C) \cup (A \times C)$

$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

 $A \times (B \cap C) = (A \times B) \cap (A \times C)$

$$(A \cap B) \times (X \cap Y) = (A \times X) \cap (B \times Y)$$

Exercise

Prove all properties

Power of a set

Definition

For a set A, the power of A is the set $2^A = \mathcal{P}(A) = \{B \mid B \subseteq A\}$

Examples

- 1) If $A = \{a\}$ then $\mathcal{P}(A) = \{\emptyset, \{a\}\}$
- 2) If $A = \{a, b\}$ then $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

Definition

Intuitively, the cardinality of a set A, denotes by |A|, is the number of elements of A.

Examples

- 1. $|\emptyset| = 0$
- 2. if $A = \{2\}$ then |A| = 1
- 2. if $A = \{1, 2, 3\}$ then |A| = 3
- 3. $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = \omega$
- 4. $|\mathbb{R}| = 2^{\omega}$

$$|A \cup B| = |A| + |B| - |A \cap B|$$
$$|A \cup B| = |A| + |B|, \text{ if } A \cap B = \emptyset$$
$$|A \times B| = |A| \cdot |B|$$

Properties

$$|A \cup B| = |A| + |B|$$
, if $A \cap B = \emptyset$

Proof

Let
$$A = \{a_1, a_2, \dots, a_n\}$$
 and $B = \{b_1, b_2, \dots, b_m\}$.

Since
$$A \cap B = \emptyset$$
, $A \cup B = \{a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_m\}$.

Therefore,
$$|A \cup B| = |A| + |B|$$

Properties

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Proof

Define
$$A \setminus B = \{x \in A \mid x \notin B\} = A \cap \overline{B}$$
.

$$A = (A \setminus B) \cup (A \cap B) \qquad B = (B \setminus A) \cup (A \cap B)$$

$$(A \setminus B) \cap (A \cap B) = \emptyset \qquad (B \setminus A) \cap (A \cap B) = \emptyset$$

$$|A| = |A \setminus B| + |A \cap B| \qquad |B| = |B \setminus A| + |A \cap B|$$

$$A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$$

$$|A \cup B| = |A \setminus B| + |A \cap B| + |B \setminus A|$$

Properties

$$|A \times B| = |A| \cdot |B|$$

Example

Let $A = \{a_1, a_2, \dots, a_n\}$ and $B = \{b_1, b_2, \dots, b_m\}$.

Obviously, the table contains $n \times m$ elements.

$$|A \times B| = |A| \cdot |B|$$

$$|A_1 \times A_2 \times \dots \times A_n| = |A_1| \cdot |A_2| \cdot \dots \cdot |A_n|$$

$$|A^n| = |A|^n$$

$$|2^{A}| = 2^{|A|}$$

$$A = \{a_{1}, a_{2}, \dots, a_{n-1}, a_{n-2}, a_{n}\}$$

$$a_{1} \quad a_{2} \quad \dots \quad a_{n-1} \quad a_{n} \quad Subsets$$

$$0 \quad 0 \quad \dots \quad 0 \quad 0 \quad \emptyset$$

$$0 \quad 0 \quad \dots \quad 0 \quad 1 \quad \{a_{n}\}$$

$$0 \quad 0 \quad \dots \quad 1 \quad 0 \quad \{a_{n-1}\}$$

$$0 \quad 0 \quad \dots \quad 1 \quad 1 \quad \{a_{n-1}, a_{n}\}$$

$$\dots \quad \dots \quad \dots$$

$$1 \quad 1 \quad \dots \quad 0 \quad 0 \quad \{a_{1}, a_{2}, \dots, a_{n-2}\}$$

$$1 \quad 1 \quad \dots \quad 0 \quad 1 \quad \{a_{1}, a_{2}, \dots, a_{n-2}, a_{n}\}$$

$$1 \quad 1 \quad \dots \quad 1 \quad 0 \quad \{a_{1}, a_{2}, \dots, a_{n-2}, a_{n-1}\}$$

$$1 \quad 1 \quad \dots \quad 1 \quad 1 \quad A = \{a_{1}, a_{2}, \dots, a_{n-2}, a_{n-1}, a_{n}\}$$

$$*0 = "a_{i} \notin A" \quad \& \quad 1 = "a_{i} \in A"$$

Exercise

Prove by induction that the number of rows of truth table for n columns is 2^n .

Thus,

$$|2^A| = 2^{|A|}$$

Thank you for your attention!