

PRODUCT SPECIFICATION

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: V370H4 **SUFFIX: L01**

Customer:						
APPROVED BY	SIGNATURE					
Name / Title Note						
Please return 1 copy for your consignature and comments.	firmation with your					

Approved By	Checked By	Prepared By
Chao-Chun Chung	Vincent Chou	Meng-hui Lin

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATION	6
2. ABSOLUTE MAXIMUM RATINGS	
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
2.2 PACKAGE STORAGE	8
2.3 ELECTRICAL ABSOLUTE RATINGS	
2.3.1 TFT LCD MODULE	8
2.3.2 BACKLIGHT INVERTER UNIT	8
3. ELECTRICAL CHARACTERISTICS	
3.1 TFT LCD MODULE	9
3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION	12
3.2.1 LAMP SPECIFICATION	12
3.2.2 ELECTRICAL SPECIFICATION	12
3.2.3 INVERTER INTERFACE CHARACTERISTICS	14
4. BLOCK DIAGRAM OF INTERFACE	14
4.1 TFT LCD MODULE	
4.1 IF1 LCD MODULE	10
5. INPUT TERMINAL PIN ASSIGNMENT	17
5.1 TFT LCD MODULE INPUT	17
5.2 BACKLIGHT UNIT	19
5.3 INVERTER UNIT	20
5.4 BLOCK DIAGRAM OF INTERFACE	21
5.5 LVDS INTERFACE	22
5.6 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING	25
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6.2 POWER ON/OFF SEQUENCE	
5.2 : 5 : 2 : 5 : 5 : 5 : 5 : 5 : 5 : 5 :	

Version 2.0 Date: 05 Nov. 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

7. OPTICAL CHARACTERISTICS	29
7.1 TEST CONDITIONS	29
7.2 OPTICAL SPECIFICATIONS	30
8. PRECAUTIONS	
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	33
8.2 SAFETY PRECAUTIONS	33
9. DEFINITION OF LABELS	
9.1 CMI MODULE LABEL	34
10. PACKAGING	
10.1 PACKING SPECIFICATIONS	
10.2 PACKING METHOD	35
11 MECHANICAL CHARACTERISTICS	2.77

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver. 2.0	Nov. 05, 2010	All	All	The Approval Specification was first issued.

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V370H4-L01 is a 37" TFT Liquid Crystal Display module with CCFL Backlight and 2ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display true 16.7M colors (8bit). The inverter module for backlight is built-in.

1.2 FEATURES

- High brightness (450 nits)
- High contrast ratio (6000:1)
- Fast response time (Gray to gray average 8.5 ms)
- High color saturation (NTSC 72%)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Ultra wide viewing angle : Super MVA technology
- RoHS compliance

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	819.36 (H) x 460.89 (V) (37" diagonal)	mm	(1)
Bezel Opening Area	828.6(H) x 469.8 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.14225 (H) x 0.42675 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7M	color	
Display Operation Mode	Transmissive mode / Normally Black	-	
Surface Treatment	Anti-Glare Coating (Haze 11%) Hard Coating (3H)	-	(2)

Note (1) Please refer to the attached drawings in chapter 11 for more information about the front and back outlines.

Note (2) The spec. of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATION

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	876.0	877.0	878.0	mm	(1)
Module Size	Vertical(V)	516.0	516.8	517.6	mm	(1)
Iviodule Size	Depth(D)	35.4	36.4	37.4	mm	To rear
	Depth(D)	52.0	53.0	54.0	mm	To inverter cover
Weight			7865		g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

PRODUCT SPECIFICATION

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol		V	alue/	Unit	Note	
iteiii			Min.	Max.	Offic	Note	
Storage Temperature	TST		-20	+60	°C	(1)	
Operating Ambient Temperature	TOP		0	50	ºC	(1), (2)	
Shock (Non-Operating)	SNOP	X,Y axis	-	50	G	(3), (5)	
Shock (Non-Operating)	SNOP	Z axis	-	50	G	(3), (5)	
Vibration (Non-Operating)	VNO	OP	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 ${}^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Ullit	Note	
Power Supply Voltage	VCC	-0.3	13.5	V	(1)	
Logic Input Voltage	VIN	-0.3	3.6	٧	(1)	

2.3.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	VW	-	3000	VRMS	
Power Supply Voltage	VBL	0	30	V	(1)
Control Signal Level	_	-0.3	7	V	(1), (3)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control and Internal PWM Control.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \,{}^{\circ}C)$

Parameter		Symbol	ymbol Value				Note		
				Min.	Тур.	Max.	Unit	Note	
	Power Supply	Voltage	V _{CC}	10.8	12	13.2	٧	(1)	
	Rush Cui	rent	I _{RUSH}	-	-	2.8	Α	(2)	
		White Pattern	-	-	0.32	-	Α		
Power Su	pply Current	Horizontal Stripe	-	-	0.55	0.66	Α	(3)	
		Black Pattern	-	-	0.31	-	Α		
		ntial Input High hold Voltage	V_{LVTH}	+100	-		mV		
		Differential Input Low Threshold Voltage		-		-100	mV		
LVDS interface	Commo	ommon Input Voltage		1.0	1.2	1.4	٧	(4)	
		Differential input voltage (Single-end)		200	-	600	mV		
	Terminating Resistor		R _T		100	-	ohm		
CMOS	Input High	Threshold Voltage	V _{IH}	2.7	-	3.3	V		
interface	Input Low	Threshold Voltage	VIL	0	-	0.7	V		

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Vcc rising time is 470us

PRODUCT SPECIFICATION

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \text{ Hz}$, whereas a power dissipation check pattern below is displayed.

Note (4) The LVDS input characteristics are as follows:

Date: 05 Nov. 2010

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION

3.2.1 LAMP SPECIFICATION

 $(Ta = 25 \pm 2 \,{}^{\circ}C)$

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	V _W	-	960	-	V_{RMS}	
Lamp Current	Ι _L	3.0	10.5	11.5	mA _{RMS}	
Lamp Turn On Voltage	Vs	-	-	1640	V _{RMS}	(1) , Ta = 0 ^o C
Lamp rum on voitage		-	-	1370	V _{RMS}	(1) , Ta = 25 ^o C
Operating Frequency	Fo	30	-	80	KHz	-
Lamp Life Time	L _{BL}	50,000	-	-	Hrs	-

3.2.2 ELECTRICAL SPECIFICATION

Version 2.0

 $(Ta = 25 \pm 2 \, {}^{\circ}C)$

Parameter	Cymbol		Value	Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Offic	Note
Total Power Consumption	P ₂₅₅	-	93	98	W	(5), (6), I _L =10.5mA
Power Supply Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Power Supply Current	I _{BL}	-	3.88	4.08	Α	Non Dimming
Input Inrush Current	-	-	-	6.03	A _{peak}	V _{BL} =24V,(IL=typ) (7)
Input Ripple Noise	- 4	-	-	912	mV _{P-P}	V _{BL} =22.8V
Oscillating Frequency	Fw	50	53	56	kHz	(3)
Dimming frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	10	20	-	%	(8)

- Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.
- Note (2) The lamp starting voltage V_s should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25

 $\pm 2^{\circ}$ C and $I_L = 10.0 \sim 11.0 mArms$.

- Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- Note (6) The measurement condition of Max. value is based on 37" backlight unit under input voltage 24V, average lamp current 10.8 mA and lighting 30 minutes later.
- Note (7) The duration of Input Inrush Current is about VBL Rising Time 30ms.
- Note (8) 10% minimum duty ratio is only valid for electrical operation

PRODUCT SPECIFICATION

3.2.3 INVERTER INTERFACE CHARACTERISTICS

Parameter		0 1 1	Test		Value		Unit	Niete	
Parameter		Symbol	Condition	Min.	Тур.	Тур. Мах.		Note	
On/Off Control Voltage	ON	V _{BLON}	_	2.0	_	5.0	V		
On/On Control voltage	OFF	V BLON	_	0	_	0.8	V		
Internal PWM Control	MAX	V_{IPWM}		3.15	3.3	3.45	V	Maximum duty ratio	
Voltage	MIN	V IPWM	_	_	0	_	V	Minimum duty ratio	
External PWM Control	HI	V		2.0	_	5.0	V	Duty on	
Voltage	LO	V_{EPWM}		0	_	0.8	V	Duty off	
Status Signal	HI	Status		3.0	3.3	3.6	V	Normal	
Status Signal	LO	Status		0	_	0.8	V	Abnormal	
VBL Rising Time)	Tr1	_	30	_	_	ms	10%-90%V _{BL}	
Control Signal Rising	Time	Tr	_	_	_	100	ms		
Control Signal Falling	Time	Tf	_	_	_	100	ms		
PWM Signal Rising	Гіте	T_{PWMR}	_	_	_	50	us		
PWM Signal Falling	Time	T _{PWMF}	_	_	_	50	us		
Input impedance)	R _{IN}	_	1	_	_	ΜΩ		
PWM Delay Time		T_PWM	_	100		_	ms		
DI ON Dalay Tara		T _{on}	_	300	_	-	ms		
BLON Delay Time	U	T _{on1}	_	300			ms		
BLON Off Time		T.,,		300			ms		

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: $VBL \rightarrow PWM \text{ signal} \rightarrow BLON$ Turn OFF sequence: BLOFF → PWM signal → VBL

PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE INPUT

CNF1 Connector Pin Assignment (GS13512-1411S-7F(Foxconn))

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	(2)
5	N.C.	No Connection	
6	N.C.	No Connection	
7	SELLVDS	LVDS data format Selection	(3)(4)
8	N.C.	No Connection	
9	N.C.	No Connection	(2)
10	N.C.	No Connection	
11	GND	Ground	
12	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
13	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
14	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	(5)
15	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(5)
16	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
17	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	ECLK-	Even pixel Negative LVDS differential clock input	(5)
20	ECLK+	Even pixel Positive LVDS differential clock input	(5)
21	GND	Ground	
22	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(E)
23	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(5)
24	N.C.	No Connection	(0)
25	N.C.	No Connection	(2)
26	GND	Ground	
27	GND	Ground	
28	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
29	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
30	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	(5)
31	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(5)
32	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
33	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	OCLK-	Odd pixel Negative LVDS differential clock input.	/E\
36	OCLK+	Odd pixel Positive LVDS differential clock input.	(5)
37	GND	Ground	
38	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	/E\
39	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(5)
40	N.C.	No Connection	(0)
41	N.C.	No Connection	(2)
42	GND	Ground	
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(2)
48	VCC	+12V power supply	\ /
49	VCC	+12V power supply	
50	VCC	+12V power supply	

PRODUCT SPECIFICATION

51	VCC	+12V power supply	

Note (1) LVDS connector pin order defined as follows

- Note (2) Reserved for internal use. Please leave it open.
- Note (3) Low = Open or connect to GND: VESA Format, High = Connect to +3.3V: JEIDA Format.
- Note (4) LVDS signal pin connected to the LCM side has the following diagram.

R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

System side: R1 < 1K

Note (5) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

Pin No.	Symbol	Description	Remark
NA	NA	NA	NA

Note (1) The backlight interface housing for high voltage side is a model CPLEA4C1000, manufactured by CVILUX or equivalent.

5.3 INVERTER UNIT

CN1 (Header): CI0114M1HR0-LA (CviLux)

Pin No.	Symbol	Description						
1								
2								
3	VBL	+24V Power input						
4								
5								
6								
7								
8	GND	Ground						
9								
10								
11	Status	Normal (3.3V)						
11	Olalus	Abnormal (0V)						
12	E_PWM	External PWM Control						
13	I_PWM	Internal PWM Control						
14	BLON	BL ON/OFF						

Note (1) PIN 13: Internal PWM Control (Use Pin 13): Pin 12 must open.

Note (2) PIN 12: External PWM Control (Use Pin 12): Pin 13 must open.

Note (3) Pin 13(I_PWM) and Pin 12(E_PWM) can't open in same period.

5.4 BLOCK DIAGRAM OF INTERFACE

Version 2.0 21 Date: 05 Nov. 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

PRODUCT SPECIFICATION

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data DE: Data enable signal DCLK: Data clock signal

Notes (1) The system must have the transmitter to drive the module.

Notes (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially

5.5 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=L or open)

JEDIA LVDS format : (SELLVDS pin=H)

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE : Data enable signal DCLK : Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

												Da	ata	Sigr	nal										
	Color				Re	ed							G	reer	1						Bli	ле			
	T	R7	R6	R5	R4	R3	R2	R1	R0	G7		G5		G3	G2	G1	G0	B7	B6	B5	B4	ВЗ	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:					:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:		<u> </u>		:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1100	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	•	·		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	À	÷			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		Ŀ) :		:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:			:	:	:	:		:	:	:	:		-	•		:	:	:		:		
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

PRODUCT SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

 $(Ta = 25 \pm 2 \,{}^{\circ}C)$

The input signal timing specifications are shown as the following table and timing diagram.

	= :			_	_	-		
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
LVDS	Input cycle to cycle jitter	T _{rcl}	_		200	ps	(3)	
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%		F _{clkin} +2%	MHz	(4)	
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(4)	
LVDS Receiver	Setup Time	Tlvsu	600	_	-	ps	(5)	
Data	Hold Time	Tlvhd	600	l	_	ps	(3)	
	Frame Rate	F _{r5}	47	50	53	Hz	(6)	
Vertical	Traino Trato	F _{r6}	57	60	63	Hz	(0)	
Active Display	Total	Tv	1090	1125	1480	Th	Tv=Tvd+Tvb	
Term	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb	10	45	400	Th	_	
Horizontal	Total	Th	1030	1100	1325	Тс	Th=Thd+Thb	
Active Display	Display	Thd	960	960	960	Tc	_	
Term	Blank	Thb	70	140	365	Тс	_	

Note (1) Please make sure the range of pixel clock has follow the below equation:

 $Fclkin(max) \ge Fr6 \times Tv \times Th$

 $Fr5 \times Tv \times Th \ge Fclkin(min)$

DATA

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:

INPUT SIGNAL TIMING DIAGRAM

Valid display data (960 clocks)

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

 $(Ta = 25 \pm 2 \, {}^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC is in off level, please keeping the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failures.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Ta	25±2	оС		
Ambient Humidity	Ha	50±10	%RH		
Supply Voltage	VCC	12	V		
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"		
Lamp Current(HV)	I _L	10.5± 0.5	mA		
Oscillating Frequency (Inverter)	F _w	53± 3	KHz		
Frame rate		60	Hz		

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contra	Contrast Ratio Response Time Center Luminance of White		_	4200	6000	-	-	Note (2)
Respon				-	8.5	-	ms	Note (3)
Center Lumin	ance of White	L _C		360	450	-	cd/m ²	Note (4)
White V	/ariation	δW		-	-	1.3	-	Note (7)
Cross	s Talk	CT		-	-	4	%	Note (5)
	Red	Rx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		0.645		-	
	neu	Ry	Viewing angle at		0.326		-	
	Green	Gx	normal direction		0.293		-	
Color		Gy		Тур	0.608	Тур.+	_	
Chromaticity	Blue	Bx		0.03	0.144	0.03	-	
Officialisity	Dide	Ву			0.063		-	
	White	Wx			0.280		-	
	VVIIILE	Wy			0.290		-	
	Color Gamut				72	-	%	NTSC
	Horizontal	θ_x +		80	88	-		
Viewing	rionzoniai	θ_{x} -	CR≥20	80	88	-	Deg.	Note (1)
Angle	Vertical	θ_{Y} +	Un≥20	80	88	-	Deg.	INOLE (1)
	Vertical	Av-		80	88	_		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80.

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = $\frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}$

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, and 255. Gray to gray average time means the average switching time of gray level 0, 63, 127, 191, and 255. to each other.

Note (4) Definition of Luminance of White (LC):

Measure the luminance of gray level 255 at center point and 5 points

LC = L(5), where L(X) is corresponding to the luminance of the point X at the figure in Note (6).

PRODUCT SPECIFICATION

Note (5) Definition of Cross Talk (CT):

$$CT = \mid Y_B - Y_A \mid / \mid Y_A \times 100 \text{ (\%)}$$

Where:

(a)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

 Y_A = Luminance of measured location without gray level 128 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 128 pattern (cd/m²)

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), \sim L (5)] / Minimum [L (1), L (2), \sim L (5)]$

Horizontal Line Number [pixel]

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight. [3]
- Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the [4] damage and latch-up of the CMOS LSI chips.
- [5] Do not plug in or pull out the I/F connector while the module is in operation.
- Do not disassemble the module. [6]
- Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily [7] scratched.
- Moisture can easily penetrate into LCD module and may cause the damage during operation. [8]
- When storing modules as spares for a long time, the following precaution is necessary. [9]
 - [9.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [9.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [10] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of [2] contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

PRODUCT SPECIFICATION

9. DEFINITION OF LABELS

9.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V370H4-L01

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1,2002=2,2003=3,2004=4...2010=0,2011=1,2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

10. PACKAGING

10.1 PACKING SPECIFICATIONS

- (1) 5 LCD TV modules / 1 Box
- (2) Box dimensions: 954(L)x378(W)x602(H)mm
- (3) Weight: approximately 42.9 Kg (5 modules per box)

10.2 PACKING METHOD

Figures 10-1 and 10-2 are the packing method

Figure.10-1 packing method

-PE Sheet

-Corner Protector (L1200*50*50mm) t=5mm

(L1150*W970*H143mm)

PP Belt

Pallet Label

PRODUCT SPECIFICATION

Air Transportation

Sea / Land Transportation (40ft Container)

Figure.10.2 Packing method

11. MECHANICAL CHARACTERISTICS

Version 2.0 Date: 05 Nov. 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

Version 2.0 38 Date: 05 Nov. 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited