Mushroom Binary Classification

Name: Aniket Nitin Salunkhe

UCID: as4593

Dataset link:

https://www.kaggle.com/datasets/prishasawhney/mushroom-dataset?select=mushroom_cleaned.csv

GitHub Link: https://github.com/AniketSalunkheNJIT/salunkhe-aniket-data-mining-finalProj

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import warnings
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model selection import train test split, StratifiedKFold,
KFold
from sklearn.metrics import confusion matrix, precision score,
recall_score, f1_score, roc_auc_score, accuracy_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Bidirectional,
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
import time
warnings.filterwarnings("ignore")
# Load the dataset
file_path = 'mushroom_cleaned.csv'
data = pd.read csv(file path)
# Display dataset information
print("First 5 rows of the dataset:")
display(data.head())
print("\nDataset Info:")
data.info()
```

```
First 5 rows of the dataset:
   cap-diameter cap-shape gill-attachment gill-color stem-
height \
           1372
                         2
                                           2
                                                      10
                                                             3.807467
                         2
           1461
                                           2
                                                      10
                                                             3.807467
2
           1371
                         2
                                           2
                                                      10
                                                             3.612496
           1261
                                                      10
3
                                           2
                                                             3.787572
           1305
                                           2
                                                      10
                                                             3.711971
   stem-width stem-color
                             season
                                     class
0
         1545
                       11
                           1.804273
                                          1
1
                       11
                                          1
         1557
                           1.804273
2
         1566
                       11
                          1.804273
                                          1
3
         1566
                                          1
                       11
                           1.804273
4
                                          1
         1464
                       11 0.943195
Dataset Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54035 entries, 0 to 54034
Data columns (total 9 columns):
     Column
                      Non-Null Count
#
                                       Dtype
     _ _ _ _ _ _
0
     cap-diameter
                      54035 non-null int64
 1
     cap-shape
                      54035 non-null int64
 2
     gill-attachment 54035 non-null int64
 3
     gill-color
                      54035 non-null int64
4
     stem-height
                      54035 non-null float64
 5
     stem-width
                      54035 non-null int64
 6
     stem-color
                      54035 non-null int64
7
                      54035 non-null float64
     season
     class
                      54035 non-null int64
dtypes: float64(2), int64(7)
memory usage: 3.7 MB
# Check for missing values
print("\nMissing Values in Dataset:")
print(data.isnull().sum())
Missing Values in Dataset:
cap-diameter
                   0
                   0
cap-shape
gill-attachment
                   0
gill-color
                   0
```

```
0
stem-height
stem-width
                    0
stem-color
                    0
                    0
season
class
                    0
dtype: int64
# Dataset statistics
print("\nDataset Statistics:")
display(data.describe())
Dataset Statistics:
                                     gill-attachment
       cap-diameter
                         cap-shape
                                                         gill-color
       54035,000000
                      54035.000000
                                        54035.000000
                                                       54035.000000
count
                                                           7.329509
         567.257204
                          4.000315
                                            2.142056
mean
         359.883763
                          2.160505
                                            2.228821
                                                           3.200266
std
           0.000000
                          0.000000
                                            0.000000
                                                           0.000000
min
25%
         289.000000
                          2.000000
                                            0.000000
                                                           5.000000
50%
         525.000000
                          5.000000
                                            1.000000
                                                           8.000000
         781.000000
75%
                          6.000000
                                            4.000000
                                                          10.000000
max
        1891.000000
                          6.000000
                                            6.000000
                                                          11.000000
                        stem-width
                                       stem-color
        stem-height
                                                          season
class
       54035.000000
                      54035.000000
                                    54035.000000
                                                   54035.000000
count
54035.000000
mean
           0.759110
                       1051.081299
                                         8.418062
                                                        0.952163
0.549181
                        782.056076
                                                        0.305594
std
           0.650969
                                         3.262078
0.497580
           0.000426
                          0.000000
                                                        0.027372
min
                                         0.000000
0.000000
                        421.000000
25%
           0.270997
                                         6.000000
                                                        0.888450
0.000000
           0.593295
                        923.000000
                                        11.000000
50%
                                                        0.943195
1.000000
75%
           1.054858
                       1523.000000
                                        11.000000
                                                        0.943195
1.000000
           3.835320
                       3569,000000
                                        12.000000
                                                        1.804273
max
1.000000
# Class distribution
sns.countplot(x='class', data=data, palette='coolwarm')
plt.title("Class Distribution")
plt.show()
```



```
# Separate features and target
X = data.drop(columns=['class'])
y = data['class']

# Standardize the dataset
scaler = StandardScaler()
X = scaler.fit_transform(X)

# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
print("\nTraining and Testing Data Shapes:")
print(f"X_train: {X_train.shape} | y_train: {y_train.shape}")
print(f"X_test: {X_test.shape} | y_test: {y_test.shape}")

Training and Testing Data Shapes:
X_train: (43228, 8) | y_train: (43228,)
X_test: (10807, 8) | y_test: (10807,)
```

Evaluation Metrics Description

To evaluate the performance of the models in this project, the following metrics are calculated:

- 1. **True Positives (TP):** The number of positive samples correctly classified as positive.
- 2. **True Negatives (TN):** The number of negative samples correctly classified as negative.
- 3. **False Positives (FP):** The number of negative samples incorrectly classified as positive.
- 4. False Negatives (FN): The number of positive samples incorrectly classified as negative.
- 5. **Total Positives (P):** The total number of actual positive samples in the dataset.
- 6. **Total Negatives (N):** The total number of actual negative samples in the dataset.

Derived Metrics

- True Positive Rate (TPR): Also called recall or sensitivity, it is calculated as \$\text{TPR} = \frac{TPR}{\text{YP}} \$.
 It measures the proportion of actual positives correctly identified.
- 2. True Negative Rate (TNR): Also called specificity, it is calculated as \$\text{TNR} = \frac{TNR}{\text{N}} \$.
 It measures the proportion of actual negatives correctly identified.
- 3. False Positive Rate (FPR): The proportion of actual negatives incorrectly classified as positives, calculated as \$\text{FPR} = \frac{\text{FP}}{\text{N}}\$\$.
- 4. False Negative Rate (FNR): The proportion of actual positives incorrectly classified as negatives, calculated as \$\text{FNR} = \frac{\text{FN}}{\text{P}}\$.
- 5. **Precision:** The ratio of true positives to all predicted positives, calculated as $\text{TP}}{\text{TP}} + \text{TP}}$
- 6. **F1 Score:** The harmonic mean of precision and recall, calculated as TextF1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision}} + \text{Recall}} \$.
- 7. Accuracy: The overall proportion of correct predictions, calculated as \$\text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{P} + \text{N}}\$\$.
- 8. **Error Rate:** The proportion of incorrect predictions, calculated as \$\text{Error Rate} = 1 \text{Accuracy} \$.
- 9. Balanced Accuracy: The average of TPR and TNR, calculated as
 \$ \text{Balanced Accuracy} = \frac{\text{TPR} + \text{TNR}}{2} \$.
- 10. True Skill Statistic (TSS): The difference between TPR and FPR, calculated as \$\text{TSS} = \text{TPR} \text{FPR}\$.It evaluates the skill of the classifier independent of class imbalance.

- 11. **Heidke Skill Score (HSS):** A metric assessing classifier accuracy while considering random chance.
- 12. **Brier Score:** Measures the mean squared error between predicted probabilities and the actual outcomes. Lower scores indicate better calibration.
- 13. **Brier Skill Score:** A normalized version of the Brier Score comparing the model to a baseline model (e.g., random guessing).

These metrics provide a comprehensive assessment of the model's performance, covering aspects such as precision, recall, and calibration.

```
from sklearn.metrics import confusion matrix, roc auc score
import numpy as np
# Function to calculate metrics
def calculate metrics(y true, y pred, y prob=None):
           cm = confusion matrix(y true, y pred)
           TP = cm[1, 1]
           TN = cm[0, 0]
           FP = cm[0, 1]
           FN = cm[1, 0]
           # Basic metrics
           P = TP + FN
           N = TN + FP
           TPR = TP / P if P > 0 else 0
           TNR = TN / N if N > 0 else 0
           FPR = FP / N \text{ if } N > 0 \text{ else } 0
           FNR = FN / P \text{ if } P > 0 \text{ else } 0
           precision = TP / (TP + FP) if (TP + FP) > 0 else 0
           f1 = 2 * precision * TPR / (precision + TPR) if (precision + TPR)
> 0 else 0
           accuracy = (TP + TN) / (P + N) if (P + N) > 0 else 0
           error rate = 1 - accuracy
           # Advanced metrics
           balanced accuracy = (TPR + TNR) / 2
           tss = TPR + TNR - 1
           hss = 2 * (TP * TN - FP * FN) / ((P * (FP + TN)) + (N * (TP + TN))) + (N * (TP + TN)) + (N * (TP + T
(FN)) if (P * (FP + TN) + N * (TP + FN)) > 0 else 0
           # Brier Score (requires probabilities)
           brier score = np.mean((y prob - y true)**2) if y prob is not None
else None
           brier skill score = 1 - brier score / np.var(y_true) if
brier score is not None else None
           # ROC AUC (requires probabilities)
           roc auc = roc auc score(y true, y prob) if y prob is not None else
```

Random Forest Classification with Stratified K-Fold Cross-Validation

In this cell, we implement a Random Forest classification model and evaluate its performance using **Stratified K-Fold Cross-Validation**. This ensures that each fold maintains the same proportion of positive and negative samples, providing a more robust evaluation of the model's performance.

Process

1. Data Preparation:

 Convert X_train and y_train into NumPy arrays to enable indexing and slicing for Stratified K-Fold.

2. Stratified K-Fold Cross-Validation:

- The dataset is split into 10 folds using StratifiedKFold with shuffling for randomness and a fixed random state for reproducibility.
- For each fold:
 - The training and validation subsets are created.
 - A Random Forest model with 100 estimators is trained on the training subset.
 - Predictions (y_pred_k) and probabilities (y_prob_k) are generated for the validation subset.

3. Metric Calculation:

 Custom evaluation metrics are calculated for each fold using the calculate_metrics function, which computes metrics like accuracy, precision, recall, F1-score, Brier score, and more.

4. Metrics Aggregation:

 Metrics for each fold are stored in a list and later converted into a DataFrame for analysis. The mean of all folds is computed to derive the overall performance of the Random Forest model.

Output

- Fold-wise Metrics: A detailed breakdown of the evaluation metrics for each fold.
- Average Metrics: The mean values of the metrics across all folds, representing the overall performance of the Random Forest model.

The results highlight the model's ability to handle the classification task, showing metrics such as **accuracy**, **precision**, **recall**, **F1-score**, **and Brier scores**, which provide a comprehensive view of its strengths and areas for improvement.

```
# Random Forest Model
rf metrics = []
kf = StratifiedKFold(n splits=10, shuffle=True, random state=42)
for train idx, val idx in kf.split(X train, y train):
   X train k, X val k = X train[train idx], X train[val idx]
   y_train_k, y_val_k = y_train.iloc[train_idx],
y_train.iloc[val_idx]
    rf model = RandomForestClassifier(random state=42)
    rf model.fit(X train k, y train k)
   y pred k = rf model.predict(X val k)
   y prob k = rf model.predict proba(X val k)[:, 1]
   metrics = calculate_metrics(y_val_k, y_pred_k, y_prob_k)
    rf metrics.append(metrics)
rf metrics df = pd.DataFrame(rf metrics)
print("\nRandom Forest Metrics Per Fold:")
display(rf metrics df)
# Average Metrics for Random Forest
rf avg metrics = rf metrics df.mean()
print("\nRandom Forest Average Metrics:")
print(rf avg metrics)
Random Forest Metrics Per Fold:
    TP
          TN
             FP FN
                               Ν
                                       TPR
                                                 TNR
                                                           FPR
FNR \
                  23 2374 1949
                                  0.990312 0.987686 0.012314
0 2351 1925 24
0.009688
1 2352
        1935 14 22 2374 1949 0.990733 0.992817 0.007183
0.009267
2 2353 1924 25
                  21 2374 1949 0.991154 0.987173 0.012827
0.008846
3 2354 1925 24 20 2374 1949 0.991575 0.987686 0.012314
```

4	008425 2345 012216	1924	25	29	2374	1949	0.987784	0.987173	0.012827	
5	2343 013058	1931	18	31	2374	1949	0.986942	0.990764	0.009236	
6	2348 010952	1927	22	26	2374	1949	0.989048	0.988712	0.011288	
7	2350 010110	1930	19	24	2374	1949	0.989890	0.990251	0.009749	
8	2357 007161	1931	17	17	2374	1948	0.992839	0.991273	0.008727	
9	2355 008003	1926	22	19	2374	1948	0.991997	0.988706	0.011294	
т.с	Precis	sion		F1	Accu	racy	Error Rate	Balanced	Accuracy	
0	0.989	9895	0.99	9103	0.989	9128	0.010872		0.988999	
1	977998 0.994 983550	1083	0.992	2405	0.99	1672	0.008328		0.991775	
2	983330 0.989 978327	9487	0.99	9320	0.989	9359	0.010641		0.989164	
3	0.989 979261	9907	0.99	9741	0.989	9822	0.010178		0.989631	
4	0.989 974957	9451	0.988	8617	0.98	7509	0.012491		0.987479	
5	0.992 977706	2376	0.989	9652	0.988	8665	0.011335		0.988853	
6	0.996 977760	9717	0.989	9882	0.988	8897	0.011103		0.988880	
7	0.991 980142	L980	0.99	9934	0.99	9053	0.009947		0.990071	
8	0.992 984112	2839	0.992	2839	0.992	2133	0.007867		0.992056	
9	0.996 980703	9745	0.99	1370	0.99	9514	0.009486		0.990351	
		ıcc	Prior	Scor	co Dr	ior C	kill Score	DOC ALIC		
0 1 2 3 4 5 6 7	0.9779 0.9835 0.9783 0.9792 0.9777 0.9777	998 550 327 261 957 706	0.0 0.0 0.0 0.0	91020 90871 90975 91013 91094 91108	90 12 57 39 40 34	ier Si	0.958803 0.964814 0.960590 0.959048 0.955813 0.955233 0.957960 0.956709	ROC AUC 0.999480 0.999620 0.999516 0.999159 0.998800 0.999214 0.999359		
8 9	0.9841 0.9807			90956 90935			0.961382 0.962224	0.999157 0.999436		

Random Forest Ave	rage Metrics:
TP	2350.800000
TN	1927.800000
FP	21.000000
FN	23.200000
P	2374.000000
N	1948.800000
TPR	0.990227
TNR	0.989224
FPR	0.010776
FNR	0.009773
Precision	0.991148
F1	0.990686
Accuracy	0.989775
Error Rate	0.010225
Balanced Accuracy	
TSS	0.979452
HSS	0.979452
Brier Score	0.010087
Brier Skill Score	0.959258
ROC AUC	0.999267
dtype: float64	0.555207
utype. Itoato4	

Naive Bayes Classification with Stratified K-Fold Cross-Validation

In this cell, we implement a **Naive Bayes classification model** and evaluate its performance using **Stratified K-Fold Cross-Validation**. This approach ensures consistent evaluation by maintaining the class distribution in each fold.

Process

1. Data Preparation:

 Convert X_train and y_train into NumPy arrays for easy manipulation and indexing during cross-validation.

2. Stratified K-Fold Cross-Validation:

- The dataset is split into 10 folds using StratifiedKFold, ensuring the class balance is preserved in each fold.
- For each fold:
 - The training and validation subsets are created.
 - A Multinomial Naive Bayes (MultinomialNB) model is trained on the training subset.
 - Predictions (y_pred_k) and probability scores (y_prob_k) are generated for the validation subset.

3. Metric Calculation:

- Custom metrics, such as accuracy, precision, recall, F1-score, Brier score, and more, are calculated for each fold using the calculate metrics function.
- Metrics for each fold are stored in a list.

4. Metrics Aggregation:

- Metrics for all folds are compiled into a DataFrame for detailed analysis.
- The average metrics across all folds are computed to summarize the overall performance of the Naive Bayes model.

Output

- **Fold-wise Metrics:** Displays the performance metrics for each fold, providing insights into the model's consistency across different splits.
- Average Metrics: Provides the mean values of the evaluation metrics across all folds, representing the overall capability of the Naive Bayes classifier.

Observations

The results include key metrics such as:

- Accuracy, Precision, Recall, F1-score to measure classification performance.
- Brier Score and Brier Skill Score to evaluate the model's probability calibration.

These metrics provide a comprehensive assessment of the Naive Bayes classifier's performance, highlighting its strengths and limitations in the sentiment analysis task.

```
# Naive Bayes Model
nb metrics = []
for train idx, val idx in kf.split(X train, y train):
    X_train_k, X_val_k = X_train[train_idx], X_train[val_idx]
    y train k, y val k = y train.iloc[train idx],
y train.iloc[val idx]
    nb model = GaussianNB()
    nb model.fit(X train k, y train k)
    y pred k = nb_model.predict(X_val_k)
    y prob k = nb model.predict proba(X val k)[:, 1]
    metrics = calculate metrics(y val k, y pred k, y prob k)
    nb metrics.append(metrics)
nb metrics df = pd.DataFrame(nb metrics)
print("\nNaive Bayes Metrics Per Fold:")
display(nb metrics df)
# Average Metrics for Naive Bayes
nb avg metrics = nb_metrics_df.mean()
print("\nNaive Bayes Average Metrics:")
print(nb_avg_metrics)
Naive Bayes Metrics Per Fold:
```

TP	TN	FP	FN	Р	N	TPR	R TNF	R FPR
FNR \ 0 1700	1062	887	674	2374	1949	0.716091	0.544895	0.455105
0.283909	1020	010	660	2274	1040	0 710107	. 0 52047/	0 471504
1 1705 0.281803	1030	919	669	2374	1949	0.718197	0.528476	0.471524
2 1697	1049	900	677	2374	1949	0.714827	0.538225	0.461775
0.285173 3 1700	1066	883	674	2374	1949	0.716091	0.546947	0.453053
0.283909	1000	003	0/4	2374	1343	0.710031	. 0.540547	0.455055
4 1658 0.301601	1051	898	716	2374	1949	0.698399	0.539251	L 0.460749
5 1697	1044	905	677	2374	1949	0.714827	0.535659	0.464341
0.285173					1010			
6 1704 0.282224	1053	896	670	2374	1949	0.717776	0.540277	0.459723
7 1713	1064	885	661	2374	1949	0.721567	0.545921	L 0.454079
0.278433 8 1680	1055	893	694	2374	1948	0.707666	0.541581	l 0.458419
0.292334	1033	093	094	2374	1940	0.707000	0.541501	0.436419
9 1685	1018	930	689	2374	1948	0.709773	0.522587	0.477413
0.290227								
Precis	sion		F1	Accura	су Е	rror Rate	Balanced	Accuracy
TSS \ 0 0.657	7132	0.685	346	0.6389	08	0.361092		0.630493
0.260986								
1 0.649 0.246673	9771	0.682	273	0.6326	63	0.367337		0.623337
2 0.653	3446	0.682	760	0.6352	07	0.364793		0.626526
0.253052 3 0.658	2140	0 605	900	0 6200	22	0 260167		0 621510
0.263038	5149	0.685	899	0.6398	33	0.360167		0.631519
4 0.648	3670	0.672	617	0.6266	48	0.373352		0.618825
0.237650 5 0.652	2191	0.682	074	0.6340	50	0.365950		0.625243
0.250487								
6 0.655 0.258053	5385	0.685	163	0.6377	52	0.362248		0.629026
7 0.659	9353	0.689	059	0.6423	78	0.357622		0.633744
0.267488	2024	0 670	200	0 6333	00	0 267101		0.624624
8 0.652 0.249247	2934	0.679	200	0.6328	09	0.367191		0.624624
9 0.644	4359	0.675	486	0.6254	05	0.374595		0.616180
0.232360								
		Brier				ll Score	ROC AUC	
0 0.2609 1 0.2466			25493 31272			0.089226 0.065882	0.698857 0.684202	
2 0.2530			3049			9.069038	0.689188	

```
0.263038
                0.228534
                                    0.076942
                                              0.692784
  0.237650
                0.234949
                                    0.051031
                                              0.679107
5 0.250487
                0.234039
                                    0.054708
                                              0.683308
6 0.258053
                0.228622
                                    0.076587
                                              0.694074
7 0.267488
                0.227510
                                    0.081077
                                              0.695671
   0.249247
                0.231696
                                    0.064123
                                              0.688908
9 0.232360
                0.237739
                                    0.039715
                                              0.673114
Naive Bayes Average Metrics:
TP
                     1693.900000
TN
                     1049.200000
FP
                      899,600000
FN
                      680.100000
Р
                     2374.000000
                     1948.800000
TPR
                        0.713521
TNR
                        0.538382
FPR
                        0.461618
                        0.286479
FNR
Precision
                        0.653139
                        0.681988
Accuracy
                        0.634565
Error Rate
                        0.365435
Balanced Accuracy
                        0.625952
TSS
                        0.251903
HSS
                        0.251903
Brier Score
                        0.231035
Brier Skill Score
                        0.066833
ROC AUC
                        0.687921
dtype: float64
```

K-Nearest Neighbors (KNN) Classification with K-Fold Cross-Validation

In this cell, we train and evaluate a **K-Nearest Neighbors (KNN)** model using **10-Fold Cross-Validation**. This approach splits the dataset into 10 subsets (folds) and evaluates the model's performance on each fold to ensure robust results.

Process

1. Data Preparation:

 Convert X_train and y_train into NumPy arrays to facilitate efficient slicing and manipulation for K-Fold splits.

2. K-Fold Cross-Validation:

 The dataset is split into 10 folds using KFold, with shuffling enabled to randomize data distribution across folds.

- For each fold:
 - Training and validation subsets are created.
 - A **K-Nearest Neighbors (KNN)** classifier is initialized with n_neighbors=5.
 - The model is trained on the training subset.
 - Predictions (y_pred_k) and probability scores (y_prob_k) are generated for the validation subset.

3. Metric Calculation:

- Metrics are computed for each fold using the custom calculate_metrics function, which evaluates:
 - Accuracy
 - Precision
 - Recall
 - F1-Score
 - Brier Score
 - And other derived metrics.
- Metrics for each fold are stored in a list.

4. Metrics Aggregation:

- The metrics for all folds are stored in a DataFrame for detailed analysis.
- The average values of the metrics are computed to summarize the overall performance of the KNN classifier.

Output

- **Fold-wise Metrics:** Displays performance metrics for each fold, providing a fold-by-fold breakdown of the KNN model's performance.
- Average Metrics: Presents the mean values of all metrics across the 10 folds, offering an overall view of the KNN classifier's strengths and weaknesses.

Observations

The **KNN model** uses the proximity of data points to make predictions, which can work well with well-separated classes but may struggle with high-dimensional or imbalanced data. The evaluation includes standard classification metrics as well as probability calibration metrics like the **Brier Score**, providing a holistic assessment of the model's performance.

```
# KNN Model
knn_metrics = []
for train_idx, val_idx in kf.split(X_train, y_train):
    X_train_k, X_val_k = X_train[train_idx], X_train[val_idx]
    y_train_k, y_val_k = y_train.iloc[train_idx],
y_train.iloc[val_idx]

knn_model = KNeighborsClassifier(n_neighbors=5)
knn_model.fit(X_train_k, y_train_k)
y_pred_k = knn_model.predict(X_val_k)
y_prob_k = knn_model.predict_proba(X_val_k)[:, 1]
```

```
metrics = calculate metrics(y val k, y pred k, y prob k)
   knn metrics.append(metrics)
knn metrics df = pd.DataFrame(knn metrics)
print("\nKNN Metrics Per Fold:")
display(knn metrics df)
# Average Metrics for KNN
knn avg metrics = knn metrics df.mean()
print("\nKNN Average Metrics:")
print(knn avg metrics)
KNN Metrics Per Fold:
    TP
        TN
              FP FN
                         Р
                              N
                                      TPR
                                                TNR
                                                         FPR
FNR \
        1915 34
0 2354
                  20 2374
                           1949
                                 0.991575 0.982555 0.017445
0.008425
                  24
                     2374
                           1949
                                 0.989890 0.988199 0.011801
1 2350
        1926 23
0.010110
                     2374
        1920 29
                  16
                           1949
  2358
                                 0.993260 0.985121 0.014879
0.006740
                  20
 2354 1917
              32
                    2374
                           1949
                                 0.991575 0.983581 0.016419
0.008425
                  31 2374
                           1949
                                 0.986942 0.983068 0.016932
4 2343 1916 33
0.013058
 2348 1912 37
                  26 2374
                           1949
                                 0.989048 0.981016 0.018984
0.010952
                  24 2374
                           1949
 2350 1915 34
                                 0.989890 0.982555 0.017445
0.010110
  2353 1910 39
                  21
                     2374
                           1949
                                 0.991154
                                           0.979990 0.020010
0.008846
        1922 26
8 2355
                  19 2374
                           1948
                                 0.991997 0.986653 0.013347
0.008003
 2358 1918 30
                  16 2374 1948
                                 0.993260
                                           0.984600
                                                    0.015400
0.006740
                      Accuracy Error Rate Balanced Accuracy
  Precision
                   F1
TSS
   0.985762
             0.988660
                       0.987509
                                  0.012491
                                                    0.987065
0.974131
   0.990308
             0.990099
                       0.989128
                                  0.010872
                                                    0.989045
0.978090
   0.987851
             0.990548
                       0.989591
                                  0.010409
                                                    0.989190
0.978381
   0.986588
             0.989076
                       0.987971
                                  0.012029
                                                    0.987578
0.975157
   0.986111 0.986526 0.985195
                                  0.014805
                                                    0.985005
0.970010
```

5 0.984486 0.970064	0.986762	0.985427	0.014573		0.985032	
6 0.985738	0.987810	0.986583	0.013417		0.986223	
0.972446 7 0.983696	0.987411	0.986121	0.013879		0.985572	
0.971144 8 0.989080	0.990536	0.989588	0.010412		0.989325	
0.978650 9 0.987437 0.977860	0.990340	0.989357	0.010643		0.988930	
HSS 0 0.974131 1 0.978090 2 0.978381 3 0.975157 4 0.970010 5 0.970064 6 0.972446 7 0.971144 8 0.978650 9 0.977860	Brier Score 0.009308 0.007689 0.008614 0.009114 0.010493 0.011298 0.010557 0.011159 0.007987 0.008706		Skill Score 0.962403 0.968943 0.965206 0.963188 0.957620 0.954368 0.957358 0.954929 0.964860	ROC AUC 0.997212 0.998696 0.997452 0.997698 0.997352 0.996292 0.996080 0.995872 0.996801 0.997733		
KNN Average M TP TN FP FN P N TPR TNR FPR FNR Precision F1 Accuracy	235 191 3 2 237	52.300000 7.100000 31.700000 21.700000 24.000000 8.800000 0.990859 0.983734 0.016266 0.009141 0.986706 0.988777 0.987647				

0.012353

0.987297

0.974593

0.974593

0.009492 0.961661

0.997119

ROC AUC dtype: float64

Error Rate

TSS

HSS

Balanced Accuracy

Brier Score Brier Skill Score

Long Short-Term Memory (LSTM) Classification with K-Fold Cross-Validation

We train and evaluate a **Long Short-Term Memory (LSTM)** deep learning model using **10-Fold Cross-Validation**. This method ensures robust evaluation by splitting the dataset into 10 subsets (folds) and rotating the training and validation sets across folds.

Process

1. Data Preparation:

- The input features are reshaped to match the LSTM model's expected input format (3D: samples, timesteps, features).
- X_train and X_test are expanded along the last dimension to prepare the data for sequential processing by LSTM layers.

2. LSTM Model Design:

- The LSTM architecture includes:
 - A Bidirectional LSTM layer to capture both forward and backward dependencies in the data.
 - **Dropout layers** to reduce overfitting.
 - A **Dense layer** with a sigmoid activation function for binary classification.
- The model is compiled using the Adam optimizer and binary cross-entropy loss.

3. K-Fold Cross-Validation:

- The dataset is split into 10 folds using StratifiedKFold, ensuring class balance in each fold.
- For each fold:
 - Training and validation subsets are created.
 - The LSTM model is trained using **early stopping** to prevent overfitting.
 - Predictions (y_pred_k) and probability scores (y_prob_k) are generated for the validation subset.

4. Metric Calculation:

- Performance metrics are computed for each fold using the calculate metrics function. These include:
 - Accuracy
 - Precision
 - Recall
 - F1-Score
 - Brier Score
 - And other derived metrics
- Metrics for each fold are stored in a list for analysis.

5. Metrics Aggregation:

- The metrics for all folds are consolidated into a DataFrame.
- The average values of the metrics are calculated to summarize the overall performance of the LSTM model.

Output

- **Fold-wise Metrics:** Displays detailed performance metrics for each fold, showing the variability in the LSTM model's performance across different subsets of the data.
- Average Metrics: Presents the mean values of all metrics across the 10 folds, providing a comprehensive evaluation of the LSTM model.

Observations

The **LSTM model** is capable of capturing complex sequential patterns and relationships in the data. It performs particularly well when there is temporal or positional significance in the features. The evaluation includes standard classification metrics and probability calibration metrics like the **Brier Score**, ensuring a well-rounded assessment of the model's effectiveness.

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense,
Bidirectional, Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
import numpy as np
from sklearn.metrics import roc curve, auc
# Prepare data for LSTM (reshape X train and X test)
X train lstm = np.expand dims(X train, axis=-1)
X test lstm = np.expand dims(X test, axis=-1)
# Define LSTM model
def create lstm model(input shape):
    model = Sequential()
    model.add(Bidirectional(LSTM(64, return sequences=True,
input shape=input shape)))
    model.add(Dropout(0.5))
    model.add(LSTM(32, return sequences=False))
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(optimizer=Adam(learning rate=0.001),
loss='binary crossentropy', metrics=['accuracy'])
    return model
# Cross-validation for LSTM
kf = StratifiedKFold(n splits=10, shuffle=True, random state=42)
lstm metrics = []
print("Starting LSTM Cross-Validation...\n")
for fold, (train_idx, val_idx) in enumerate(kf.split(X_train,
y train), start=1):
    print(f"Training Fold {fold}...")
    # Split the data for this fold
    X train k, X val k = X train lstm[train idx],
```

```
X train lstm[val idx]
    y_train_k, y_val_k = y_train.iloc[train_idx],
y train.iloc[val_idx]
    # Create and compile LSTM model
    lstm model = create lstm model((X train k.shape[1], 1))
    # Early stopping
    early stopping = EarlyStopping(monitor='val loss', patience=3,
restore best weights=True)
    # Train the model
    lstm model.fit(X train k, y train k, validation data=(X val k,
y val k),
                   epochs=5, batch size=64,
callbacks=[early stopping], verbose=0)
    # Predictions
    y prob k = lstm model.predict(X val k).flatten()
    y_pred_k = (y_prob_k > 0.5).astype(int)
    # Calculate metrics
    metrics = calculate_metrics(y_val_k, y_pred_k, y_prob_k)
    lstm metrics.append(metrics)
    # Print metrics for this fold
    print(f"Fold {fold} Metrics:")
    for metric name, value in metrics.items():
        print(f" - {metric name}: {value:.4f}")
    print()
# Convert metrics to DataFrame for analysis
lstm metrics df = pd.DataFrame(lstm metrics)
print("\nLSTM Metrics Per Fold:")
display(lstm metrics df)
# Average Metrics for LSTM
lstm avg metrics = lstm metrics df.mean()
print("\nLSTM Average Metrics:")
for metric name, value in lstm avg metrics.items():
    print(f" - {metric name}: {value:.4f}")
# Compare All Models
print("\n---- Iteration-Wise Metrics Comparison ----\n")
algorithms = {
    "Random Forest": rf metrics df,
    "Naive Bayes": nb metrics df,
    "KNN": knn metrics df,
    "LSTM": lstm metrics df
}
```

```
for iteration in range(len(knn metrics df)):
    print(f"Iteration {iteration + 1}:")
    print("---- Metrics for all Algorithms in Iteration ----")
    comparison table = {}
    for algo name, metrics df in algorithms.items():
        comparison_table[algo_name] = metrics_df.iloc[iteration]
    # Convert to DataFrame for display
    iteration comparison df = pd.DataFrame(comparison table).T
    iteration comparison df.columns = rf metrics df.columns # Use
metric names as columns
    display(iteration comparison df)
# Compute average metrics for each algorithm
avg metrics = {}
for algo name, metrics df in algorithms.items():
    avg metrics[algo name] = metrics df.mean()
# Convert to DataFrame for display
avg metrics df = pd.DataFrame(avg metrics).T
avg metrics df.columns = rf metrics df.columns # Use metric names as
columns
print("\n---- Average Metrics Across All Iterations ----\n")
display(avg metrics df)
# Combine average metrics for all algorithms
results_df = avg_metrics_df[['Accuracy', 'F1', 'Precision', 'ROC
AUC'11
print("\nComparison of Average Metrics Across Models:")
display(results df)
# Plot results
results df.plot(kind='bar', figsize=(12, 8))
plt.title("Comparison of Average Metrics Across Models")
plt.ylabel("Scores")
plt.xticks(rotation=45)
plt.legend(loc="upper right")
plt.show()
Starting LSTM Cross-Validation...
Training Fold 1...
136/136 -
                         — 0s 3ms/step
Fold 1 Metrics:
  - TP: 1954.0000
  - TN: 1549.0000
  - FP: 400.0000
  - FN: 420.0000
  - P: 2374.0000
```

```
- N: 1949.0000
  - TPR: 0.8231
  - TNR: 0.7948
  - FPR: 0.2052
  - FNR: 0.1769
  - Precision: 0.8301
  - F1: 0.8266
  - Accuracy: 0.8103
  - Error Rate: 0.1897
  - Balanced Accuracy: 0.8089
  - TSS: 0.6178
  - HSS: 0.6178
  - Brier Score: 0.1297
  - Brier Skill Score: 0.4760
  - ROC AUC: 0.8988
Training Fold 2...
136/136 —
                       Os 2ms/step
Fold 2 Metrics:
  - TP: 1843.0000
  - TN: 1616.0000
  - FP: 333.0000
  - FN: 531.0000
  - P: 2374.0000
  - N: 1949.0000
  - TPR: 0.7763
  - TNR: 0.8291
  - FPR: 0.1709
  - FNR: 0.2237
  - Precision: 0.8470
  - F1: 0.8101
  - Accuracy: 0.8001
  - Error Rate: 0.1999
  - Balanced Accuracy: 0.8027
  - TSS: 0.6055
  - HSS: 0.6055
  - Brier Score: 0.1417
  - Brier Skill Score: 0.4277
  - ROC AUC: 0.8808
Training Fold 3...
136/136 -
                        ---- 1s 2ms/step
Fold 3 Metrics:
  - TP: 1890.0000
  - TN: 1465.0000
  - FP: 484.0000
  - FN: 484.0000
  - P: 2374.0000
  - N: 1949.0000
```

```
- TPR: 0.7961
  - TNR: 0.7517
  - FPR: 0.2483
  - FNR: 0.2039
  - Precision: 0.7961
  - F1: 0.7961
  - Accuracy: 0.7761
  - Error Rate: 0.2239
  - Balanced Accuracy: 0.7739
  - TSS: 0.5478
  - HSS: 0.5478
  - Brier Score: 0.1519
  - Brier Skill Score: 0.3865
  - ROC AUC: 0.8601
Training Fold 4...
136/136 -
                         0s 2ms/step
Fold 4 Metrics:
  - TP: 1822.0000
  - TN: 1549.0000
  - FP: 400.0000
  - FN: 552.0000
  - P: 2374.0000
  - N: 1949.0000
  - TPR: 0.7675
  - TNR: 0.7948
  - FPR: 0.2052
  - FNR: 0.2325
  - Precision: 0.8200
  - F1: 0.7929
  - Accuracy: 0.7798
  - Error Rate: 0.2202
  - Balanced Accuracy: 0.7811
  - TSS: 0.5622
  - HSS: 0.5622
  - Brier Score: 0.1502
  - Brier Skill Score: 0.3933
  - ROC AUC: 0.8624
Training Fold 5...
136/136 -
                        —— 0s 2ms/step
Fold 5 Metrics:
  - TP: 1965.0000
  - TN: 1545.0000
  - FP: 404.0000
  - FN: 409.0000
  - P: 2374.0000
  - N: 1949.0000
  - TPR: 0.8277
```

```
- TNR: 0.7927
  - FPR: 0.2073
  - FNR: 0.1723
  - Precision: 0.8295
  - F1: 0.8286
  - Accuracy: 0.8119
  - Error Rate: 0.1881
  - Balanced Accuracy: 0.8102
  - TSS: 0.6204
  - HSS: 0.6204
  - Brier Score: 0.1312
  - Brier Skill Score: 0.4700
  - ROC AUC: 0.8954
Training Fold 6...
136/136 -
                         Os 2ms/step
Fold 6 Metrics:
  - TP: 1922.0000
  - TN: 1530.0000
  - FP: 419.0000
  - FN: 452.0000
  - P: 2374.0000
  - N: 1949.0000
  - TPR: 0.8096
  - TNR: 0.7850
  - FPR: 0.2150
  - FNR: 0.1904
  - Precision: 0.8210
  - F1: 0.8153
  - Accuracy: 0.7985
  - Error Rate: 0.2015
  - Balanced Accuracy: 0.7973
  - TSS: 0.5946
  - HSS: 0.5946
  - Brier Score: 0.1394
  - Brier Skill Score: 0.4368
  - ROC AUC: 0.8852
Training Fold 7...
136/136 -
                         —— 0s 2ms/step
Fold 7 Metrics:
  - TP: 1944.0000
  - TN: 1489.0000
  - FP: 460.0000
  - FN: 430.0000
  - P: 2374.0000
  - N: 1949.0000
  - TPR: 0.8189
  - TNR: 0.7640
```

```
- FPR: 0.2360
  - FNR: 0.1811
  - Precision: 0.8087
  - F1: 0.8137
  - Accuracy: 0.7941
  - Error Rate: 0.2059
  - Balanced Accuracy: 0.7914
  - TSS: 0.5829
  - HSS: 0.5829
  - Brier Score: 0.1468
  - Brier Skill Score: 0.4069
  - ROC AUC: 0.8724
Training Fold 8...
136/136 —
                        Os 2ms/step
Fold 8 Metrics:
  - TP: 2038.0000
  - TN: 1414.0000
  - FP: 535.0000
  - FN: 336.0000
  - P: 2374.0000
  - N: 1949.0000
  - TPR: 0.8585
  - TNR: 0.7255
  - FPR: 0.2745
  - FNR: 0.1415
  - Precision: 0.7921
  - F1: 0.8239
  - Accuracy: 0.7985
  - Error Rate: 0.2015
  - Balanced Accuracy: 0.7920
  - TSS: 0.5840
  - HSS: 0.5840
  - Brier Score: 0.1417
  - Brier Skill Score: 0.4277
  - ROC AUC: 0.8796
Training Fold 9...
136/136 -
                        Os 2ms/step
Fold 9 Metrics:
  - TP: 2009.0000
  - TN: 1440.0000
  - FP: 508.0000
  - FN: 365.0000
  - P: 2374.0000
  - N: 1948.0000
  - TPR: 0.8463
  - TNR: 0.7392
  - FPR: 0.2608
```

- FNR: 0.1537

- Precision: 0.7982

- F1: 0.8215

- Accuracy: 0.7980 - Error Rate: 0.2020

- Balanced Accuracy: 0.7927

- TSS: 0.5855 - HSS: 0.5855

- Brier Score: 0.1367

- Brier Skill Score: 0.4479

- ROC AUC: 0.8910

Training Fold 10...

136/136 — Os 2ms/step

Fold 10 Metrics:

- TP: 1814.0000

- TN: 1558.0000

- FP: 390.0000

- FN: 560.0000

- P: 2374.0000

- N: 1948.0000

- TPR: 0.7641

- TNR: 0.7998

- FPR: 0.2002

- FNR: 0.2359

- Precision: 0.8230

- F1: 0.7925

- Accuracy: 0.7802

- Error Rate: 0.2198

- Balanced Accuracy: 0.7820

- TSS: 0.5639 - HSS: 0.5639

- Brier Score: 0.1416

- Brier Skill Score: 0.4279

- ROC AUC: 0.8787

LSTM Metrics Per Fold:

	TP	TN	FP	FN	Р	N	TPR	TNR	FPR
FI	NR \								
0	1954	1549	400	420	2374	1949	0.823083	0.794767	0.205233
0	.176917								
1	1843	1616	333	531	2374	1949	0.776327	0.829143	0.170857
0	.223673								
2	1890	1465	484	484	2374	1949	0.796125	0.751668	0.248332
0	.203875								
3	1822	1549	400	552	2374	1949	0.767481	0.794767	0.205233
0	.232519								
4	1965	1545	404	409	2374	1949	0.827717	0.792714	0.207286

	172283								
5 ი	1922 190396	1530	419	452	2374	1949	0.8096	04 0.78501	18 0.214982
6	1944	1489	460	430	2374	1949	0.8188	71 0.76398	32 0.236018
	181129	1111	F2F	226	2274	1040	0.0504	67 0 70550	00 0 274500
7 0.	2038 141533	1414	535	336	2374	1949	0.8584	67 0.72550	00 0.274500
8	2009	1440	508	365	2374	1948	0.8462	51 0.73922	20 0.260780
0. 9	153749 1814	1558	390	560	2374	1948	0.7641	11 0.79979	0.200205
	235889	2555	330		237.	25 .0	017012		.5 01200205
	Precis	sion		F1	Accura	cv F	rror Rat	e Balanceo	d Accuracy
TS	SS \					-			ĺ
0	0.830 617850	9076	0.8265	565	0.8103	17	0.18968	3	0.808925
1	0.846	5967	0.810	110	0.8001	39	0.19986	1	0.802735
0. 2	605470 0.796	105	0.7963	105	0 7760	01	0 22201	0	0 772006
	547792	0125	0.790.	125	0.77608	01	0.22391	9	0.773896
3	0.819	9982	0.7928	363	0.77978	83	0.22021	7	0.781124
⊍. 4	562248	9464	0.828	590	0.81193	36	0.18806	4	0.810216
	620431		0.015		0 7005		0 00140	•	0 707011
5 0.	0.821 594622	101/	0.8152	270	0.7985	20	0.20148	U	0.797311
6	0.808	3652	0.813	730	0.7941	24	0.20587	6	0.791426
0. 7	582853 0.792	2072	0.8239	934	0.7985	20	0.20148	Θ	0.791983
•	583967								
8 ი	0.798 585471	3172	0.8215	509	0.7980	10	0.20199	0	0.792735
9	0.823	3049	0.792	486	0.78019	94	0.21980	6	0.781953
0.	563906								
	ŀ	HSS I	Brier S	Score	e Brie	r Ski	ll Score	ROC AUC	
0	0.6178			29737			9.475989	0.898849	
1	0.6054 0.5477			41682 51899			0.427739 0.386473	0.880773 0.860094	
3	0.5622			50197			9.393349		
4	0.6204			31229			0.469960		
5	0.5946			39439			9.436801		
6	0.5828			46844			9.406892		
7 8	0.5839 0.5854			41703 36685			9.427658 9.447897		
9	0.5639			41638			9.447897 9.427888		

LSTM Average Metrics: - TP: 1920.1000

```
- TN: 1515.5000
  - FP: 433.3000
  - FN: 453.9000
  - P: 2374.0000
  - N: 1948.8000
  - TPR: 0.8088
  - TNR: 0.7777
  - FPR: 0.2223
  - FNR: 0.1912
  - Precision: 0.8166
  - F1: 0.8121
  - Accuracy: 0.7948
  - Error Rate: 0.2052
  - Balanced Accuracy: 0.7932
  - TSS: 0.5865
 - HSS: 0.5865
  - Brier Score: 0.1411
  - Brier Skill Score: 0.4301
 - ROC AUC: 0.8804
----- Iteration-Wise Metrics Comparison -----
Iteration 1:
----- Metrics for all Algorithms in Iteration -----
                  TP
                         TN
                                FP
                                                               TPR
                                       FN
Random Forest 2351.0 1925.0 24.0 23.0 2374.0 1949.0 0.990312
              1700.0 1062.0 887.0 674.0 2374.0
Naive Bayes
                                                  1949.0 0.716091
KNN
              2354.0 1915.0 34.0 20.0 2374.0
                                                  1949.0 0.991575
              1954.0 1549.0 400.0 420.0 2374.0 1949.0 0.823083
LSTM
                            FPR
                   TNR
                                      FNR Precision
                                                           F1
Accuracy \
Random Forest 0.987686 0.012314 0.009688
                                            0.989895 0.990103
0.989128
Naive Bayes
              0.544895 0.455105 0.283909
                                            0.657132 0.685346
0.638908
KNN
              0.982555 0.017445 0.008425
                                            0.985762 0.988660
0.987509
LSTM
              0.794767 0.205233 0.176917
                                            0.830076 0.826565
0.810317
              Error Rate Balanced Accuracy
                                                TSS
                                                          HSS
Brier Score \
                                  0.988999 0.977998 0.977998
Random Forest
                0.010872
```

0.010200 Naive Bayes	0.361	992	0	.630493	0.2609	86	0.26	0986	
0.225493 KNN	0.012			.987065	0.9741		0.97		
0.009308									
LSTM 0.129737	0.189	583	Θ	.808925	0.6178	50	0.61	7850	
	Drion C	kill Sco	ro DO	C AUC					
Random Forest Naive Bayes KNN LSTM	bilei 3	0.9588 0.0892 0.9624 0.4759	03 0.9 26 0.6 03 0.9	99480 98857 97212 98849					
Iteration 2:	for all	ما ن ا ما ما شاه ما م	T	+ - · - + - · - ·	_				
Metrics		J							
\	TP	TN	FP	FN	Р		N	TP	R
Random Forest	2352.0	1935.0	14.0	22.0	2374.0	194	9.0	0.99073	3
Naive Bayes	1705.0	1030.0	919.0	669.0	2374.0	194	9.0	0.71819	7
KNN	2350.0	1926.0	23.0	24.0	2374.0	194	9.0	0.98989	0
LSTM	1843.0	1616.0	333.0	531.0	2374.0	194	9.0	0.77632	7
	TAU		EDD	END	D			F1	
Accuracy \	TNI	Α	FPR	FNR	Precisi	on		F1	
Random Forest 0.991672	0.99281	7 0.007	183 0.	009267	0.9940	83	0.99	2405	
Naive Bayes 0.632663	0.52847	6 0.471	524 0.	281803	0.6497	71	0.68	2273	
KNN 0.989128	0.988199	9 0.011	801 0.	010110	0.9903	80	0.99	0099	
LSTM	0.829143	3 0.170	857 0.	223673	0.8469	67	0.81	9110	
0.800139									
Brier Score \		ate Bal	anced A	ccuracy	Т	SS		HSS	
Random Forest 0.008712	0.0083	328	0	.991775	0.9835	50	0.98	3550	
Naive Bayes 0.231272	0.367	337	0	.623337	0.2466	73	0.24	6673	
KNN	0.0108	872	0	.989045	0.9780	90	0.97	8090	
0.007689 LSTM 0.141682	0.1998	361	0	.802735	0.6054	70	0.60	5470	
0.111002									

Random Forest Naive Bayes KNN LSTM	Brier S	kill Sco 0.9648 0.0658 0.9689 0.4277	314 0.9 382 0.6 343 0.9	C AUC 99620 84202 98696 80773			
Iteration 3: Metrics	for all	Algorith	ıms in I	teratio	n		
	TP	TN	FP	FN	Р	N	I TPR
\ Random Forest	2353.0	1924.0	25.0	21.0	2374.0	1949.0	0.991154
Naive Bayes	1697.0	1049.0	900.0	677.0	2374.0	1949.0	0.714827
KNN	2358.0	1920.0	29.0	16.0	2374.0	1949.0	0.993260
LSTM	1890.0	1465.0	484.0	484.0	2374.0	1949.0	0.796125
	TN	D	FPR	FNR	Precisi	on	F1
Accuracy \ Random Forest 0.989359	0.98717			008846	0.9894		990320
Naive Bayes 0.635207	0.53822	5 0.461	.775 0.	285173	0.6534	46 0.6	82760
KNN 0.989591	0.98512	1 0.014	879 0.	006740	0.9878	51 0.9	90548
LSTM 0.776081	0.75166	8 0.248	3332 0.	203875	0.7961	25 0.7	96125
Duriou Coomo		ate Bal	anced A	ccuracy	T	SS	HSS
Brier Score \ Random Forest	0.010	641	0	.989164	0.9783	27 0.9	78327
0.009757 Naive Bayes	0.364	793	0	.626526	0.2530	52 0.2	253052
0.230491 KNN	0.010	409	0	.989190	0.9783	81 0.9	78381
0.008614 LSTM 0.151899	0.223	919	0	.773896	0.5477	92 0.5	47792
Random Forest Naive Bayes KNN LSTM	Brier S	kill Sco 0.9605 0.0690 0.9652 0.3864	90 0.9 38 0.6 206 0.9	C AUC 99516 89188 97452 60094			
Iteration 4: Metrics	for all	Algorith	ıms in I	teratio	n		

	TP	TN	FP	FN	Р		N	TPR
\ Random Forest	2354.0	1925.0	24.0	20.0	2374.0	1949.	0	0.991575
Naive Bayes	1700.0	1066.0	883.0	674.0	2374.0	1949.	0	0.716091
KNN	2354.0	1917.0	32.0	20.0	2374.0	1949.	0	0.991575
LSTM	1822.0	1549.0	400.0	552.0	2374.0	1949.	0	0.767481
	TN	R	FPR	FNR	Precisi	o n		F1
Accuracy \ Random Forest	0.98768			008425	0.9899		990	
0.989822 Naive Bayes	0.54694			283909	0.6581		685	
0.639833 KNN	0.98358			008425	0.9865		989	
0.987971 LSTM	0.79476			232519	0.8199		792	
0.779783	0.75470	7 01203	233 01	232313	0.0133	02 01	752	003
Brier Score \	Error R	ate Bal	anced A	ccuracy	T	SS		HSS
Random Forest 0.010139	0.010	178	0	.989631	0.9792	61 0.	979	261
Naive Bayes 0.228534	0.360	167	0	.631519	0.2630	38 0.	263	038
KNN 0.009114	0.012	029	0	.987578	0.9751	57 0.	975	157
LSTM 0.150197	0.220	217	0	.781124	0.5622	48 0.	562	248
0.130137	Brier S	kill Sco	re RO	C AUC				
Random Forest Naive Bayes	2.10. 0	0.9590	48 0.9	99159 92784				
KNN LSTM		0.9631 0.3933	.88 0.9	97698 62358				
Iteration 5:								
Metrics		_						
\	TP	TN	FP	FN	Р		N	TPR
Random Forest	2345.0	1924.0	25.0	29.0	2374.0	1949.		0.987784
Naive Bayes	1658.0	1051.0	898.0	716.0	2374.0	1949.		0.698399
KNN	2343.0	1916.0	33.0	31.0	2374.0	1949.		0.986942
LSTM	1965.0	1545.0	404.0	409.0	2374.0	1949.	0	0.827717

	TNR	FP	D	FNR	Precisio	\n	F1
Accuracy \	INK	ГР	ĸ	LINK	Precisio)[]	LI
Random Forest 0.987509	0.987173	0.01282	7 0.012	2216	0.98945	0.98	8617
Naive Bayes 0.626648	0.539251	0.46074	9 0.30	1601	0.64867	0 0.67	2617
KNN 0.985195	0.983068	0.01693	2 0.013	3058	0.98611	11 0.98	6526
LSTM 0.811936	0.792714	0.20728	6 0.172	2283	0.82946	64 0.82	8590
Brier Score \	Error Rat	e Balan	ced Accı	uracy	TS	SS	HSS
Random Forest 0.010940	0.01249	1	0.98	87479	0.97495	57 0.97	4957
Naive Bayes 0.234949	0.37335	2	0.63	18825	0.23765	0.23	7650
KNN 0.010493	0.01480	5	0.98	85005	0.97001	LO 0.97	0010
LSTM 0.131229	0.18806	4	0.83	10216	0.62043	31 0.62	0431
Random Forest Naive Bayes KNN LSTM		ll Score 0.955813 0.051031 0.957620 0.469960	0.9989 0.6793 0.9973	922 107 352			
Iteration 6: Metrics	for all Al	gorithms	in Ite	ratio	n		
	TP	TN	FP	FN	Р	N	TPR
\ Random Forest	2343.0 1	931.0	18.0	31.0	2374.0	1949.0	0.986942
Naive Bayes	1697.0 1	044.0 9	05.0 6	77.0	2374.0	1949.0	0.714827
KNN	2348.0 1	912.0	37.0	26.0	2374.0	1949.0	0.989048
LSTM	1922.0 1	530.0 4	19.0 45	52.0	2374.0	1949.0	0.809604
	TNR	FP	R	FNR	Precisio	n	F1
Accuracy \ Random Forest	0.990764	0.00923	6 0.013	3058	0.99237	76 0.98	9652
0.988665 Naive Bayes	0.535659	0.46434	1 0.28	5173	0.65219	0.68	2074
0.634050 KNN	0.981016	0.01898	4 0.010	9952	0.98448	36 0.98	6762

0.985427 LSTM 0.798520	0.785018	0.21498	2 0.1	190396	0.8210	17 0.81	.5270
	Error Rat	e Ralan	ced Ad	curacy	Т	SS	HSS
Brier Score \	LITOI NGC	e Batan	ccu /ic	curucy			1133
Random Forest 0.011084	0.01133	5	Θ.	988853	0.97770	96 0.97	7706
Naive Bayes 0.234039	0.36595	0	0.	625243	0.25048	37 0.25	0487
KNN	0.01457	3	0.	985032	0.97006	64 0.97	0064
0.011298							
LSTM 0.139439	0.20148	0	0.	797311	0.59462	22 0.59	14622
Random Forest Naive Bayes KNN LSTM		ll Score 0.955233 0.054708 0.954368 0.436801	0.99 0.68 0.99	AUC 98800 33308 96292 35173			
Iteration 7:							
Metrics	for all Al	gorithms	in It	eratio	n		
	TP	TN	FP	FN	Р	N	TPR
\							
Random Forest	2348.0 1	927.0	22.0	26.0	2374.0	1949.0	0.989048
Naive Bayes	1704.0 1	053.0 8	96.0	670.0	2374.0	1949.0	0.717776
KNN	2350.0 1	915.0	34.0	24.0	2374.0	1949.0	0.989890
LSTM	1944.0 1	489.0 4	60.0	430.0	2374.0	1949.0	0.818871
	TNR	FP	R	FNR	Precisio	on	F1
Accuracy \							
Random Forest 0.988897	0.988712	0.01128	8 0.0	10952	0.9907	17 0.98	9882
Naive Bayes 0.637752	0.540277	0.45972	3 0.2	282224	0.65538	35 0.68	35163
KNN	0.982555	0.01744	5 0.0	10110	0.98573	38 0.98	37810
0.986583 LSTM 0.794124	0.763982	0.23601	8 0.1	181129	0.80865	52 0.81	.3730
	Error Rat	e Balan	ced Ad	curacv	TS	SS	HSS
Brier Score \ Random Forest 0.010409				988880			77760

Naive Bayes 0.228622	0.362248	0.629026	0.258053	0.258053
KNN	0.013417	0.986223	0.972446	0.972446
0.010557 LSTM	0.205876	0.791426	0.582853	0.582853
0.146844	01203070	0.731420	0.302033	0.302033
	D : CI : 11 C	DOC 4116		
Random Forest Naive Bayes KNN LSTM	Brier Skill Score 0.957960 0.076587 0.957358 0.406892	0.999214 0.694074 0.996080		
Iteration 8: Metrics	for all Algorithms	in Iteratio	n	
	TP TN	FP FN	Р	N TPR
\ Random Forest	2350.0 1930.0	19.0 24.0	2374.0 19	49.0 0.989890
Naive Bayes	1713.0 1064.0 8	85.0 661.0	2374.0 19	49.0 0.721567
KNN	2353.0 1910.0	39.0 21.0	2374.0 19	49.0 0.991154
LSTM	2038.0 1414.0 5	35.0 336.0	2374.0 19	49.0 0.858467
	TNR FP	R FNR	Precision	F1
Accuracy \ Random Forest	0.990251 0.00974	9 0.010110	0.991980	0.990934
0.990053				
Naive Bayes 0.642378	0.545921 0.45407	9 0.278433	0.659353	0.689059
6.042378 KNN	0.979990 0.02001	0 0.008846	0.983696	0.987411
0.986121				
LSTM 0.798520	0.725500 0.27450	0 0.141533	0.792072	0.823934
0.790320				
D ' 6)	Error Rate Balan	ced Accuracy	TSS	HSS
Brier Score \ Random Forest	0.009947	0.990071	0.980142	0.980142
0.010718	01005547	0.550071	0.300142	0.300142
Naive Bayes 0.227510	0.357622	0.633744	0.267488	0.267488
KNN 0.011159	0.013879	0.985572	0.971144	0.971144
LSTM 0.141703	0.201480	0.791983	0.583967	0.583967
	Brier Skill Score	ROC AUC		

Random Forest Naive Bayes KNN LSTM		0.9567 0.0810 0.9549 0.4276	0.6 0.9 0.9	99359 95671 95872 79604					
<pre>Iteration 9: Metrics</pre>	for all	Algorith	ms in I	teratio	n				
	TP	TN	FP	FN	Р	N	TPR		
\ Random Forest	2357.0	1931.0	17.0	17.0	2374.0	1948.0	0.992839		
Naive Bayes	1680.0	1055.0	893.0	694.0	2374.0	1948.0	0.707666		
KNN	2355.0	1922.0	26.0	19.0	2374.0	1948.0	0.991997		
LSTM	2009.0	1440.0	508.0	365.0	2374.0	1948.0	0.846251		
	T 11	.	EDD	END			F1		
Accuracy \	TN	K	FPR	FNR	Precisi	on	F1		
Random Forest 0.992133	0.99127	3 0.008	3727 0.	007161	0.9928	39 0.99	92839		
Naive Bayes 0.632809	0.54158	1 0.458	8419 0.	292334	0.6529	34 0.67	0.679200		
KNN	0.98665	3 0.013	347 0.	008003	0.9890	80 0.99	.990536		
0.989588 LSTM	0.73922	0 0.260	780 0.	153749	0.7981	72 0.82	21509		
0.798010									
Brier Score \	Error R	ate Bal	anced A	ccuracy	Т	SS	HSS		
Random Forest	0.007	867	0	.992056	0.9841	12 0.98	34112		
0.009561 Naive Bayes	0.367	191	0	.624624	0.2492	47 0.24	19247		
0.231696 KNN	0.010	412	0	.989325	0.9786	50 0.97	78650		
0.007987 LSTM	0.201	990	0	.792735	0.5854	71 0.58	35471		
0.136685									
Random Forest Naive Bayes KNN LSTM	Brier S	kill Sco 0.9613 0.0641 0.9677 0.4478	882 0.9 .23 0.6 /38 0.9	C AUC 99157 88908 96801 90977					
Iteration 10: Metrics	for all	Algorith	ıms in I	teratio	n				

	TP	TN	FP	FN	Р	N	TPR			
\ Random Forest	2355.0	1926.0	22.0	19.0	2374.0	1948.0	0.991997			
Naive Bayes	1685.0	1018.0	930.0	689.0	2374.0	1948.0	0.709773			
KNN	2358.0	1918.0	30.0	16.0	2374.0	1948.0	0.993260			
LSTM	1814.0	1558.0	390.0	560.0	2374.0	1948.0	0.764111			
	T 11	D	EDD	END	D''		F1			
Accuracy \	TN	K	FPR	FNR	Precisi	on	F1			
Random Forest 0.990514	0.98870	6 0.011	294 0.	008003	0.9907	45 0.99	1370			
Naive Bayes 0.625405	0.52258	7 0.477	413 0.	290227	0.6443	59 0.67	5486			
KNN	0.98460	0 0.015	400 0.	006740	0.9874	37 0.99	0340			
0.989357										
LSTM	0.79979	5 0.200	205 0.	235889	0.8230	49 0.79	2486			
0.780194										
	Error R	ate Bal	anced A	ccuracy	Т	SS	HSS			
Brier Score ∖										
Random Forest	0.009	486	0	.990351	0.9807	03 0.98	0703			
0.009352	0 274	F.O.F.	0	616100	0 2222		2260			
Naive Bayes 0.237739	0.374	595	Θ	.616180	0.2323	60 0.23	. 232360			
6.237739 KNN	0.010	643	A	.988930	0.9778	7860				
0.008700	0.010	043	U	. 300330	0.5770	00 0.57	377000			
LSTM	0.219	806	0	.781953	0.5639	06 0.56	0.563906			
0.141638										
	Rriar S	kill Sco	ra RN	C AUC						
Random Forest	DITCI 3	0.9622		99436						
Naive Bayes		0.0397		73114						
KNN		0.9648	60 0.9	97733						
LSTM		0.4278	88 0.8	78685						
Average N	Metrics	Across A	ll Iter	ations						
\	TP	TN	FP	FN	Р	N	TPR			
Random Forest	2350.8	1927.8	21.0	23.2	2374.0	1948.8	0.990227			
Naive Bayes	1693.9	1049.2	899.6	680.1	2374.0	1948.8	0.713521			
KNN	2352.3	1917.1	31.7	21.7	2374.0	1948.8	0.990859			

LSTM	1920.1	1515.5	433.3	453.9	2374.0	1948.8	0.808804
	TNR	F	FPR	FNR	Precisio	on	F1
Accuracy \ Random Forest 0.989775	0.989224	0.0107	776 0.	909773	0.99114	48 0.99	0686
Naive Bayes	0.538382	0.4616	518 0.3	286479	0.65313	39 0.68	1988
0.634565 KNN 0.987647	0.983734	0.0162	266 0.0	009141	0.98670	96 0.98	8777
LSTM 0.794762	0.777657	0.2223	343 0.	191196	0.81655	58 0.81	2118
	Error Ra	te Bala	anced A	ccuracy	TS	SS	HSS
Brier Score \ Random Forest 0.010087	0.0102	25	0	. 989726	0.97945	52 0.97	9452
Naive Bayes 0.231035	0.3654	35	0	.625952	0.25190	93 0.25	1903
KNN	0.0123	53	0	. 987297	0.97459	93 0.97	4593
0.009492 LSTM 0.141105	0.2052	38	0	. 793230	0.58646	61 0.58	6461
Random Forest Naive Bayes KNN LSTM	Brier Sk	ill Scor 0.95925 0.06683 0.96166 0.43006	58 0.99 33 0.68 51 0.99	C AUC 99267 87921 97119 80433			
Comparison of	Average M	etrics A	Across I	Models:			
Random Forest Naive Bayes KNN LSTM	Accuracy 0.989775 0.634565 0.987647 0.794762	0.9906 0.6819 0.9887	586 0 988 0 777 0	ecision .991148 .653139 .986706 .816558	0.99926 0.68792 0.99712	57 21 19	

Comparison of Average Metrics Across All Algorithms

The table below summarizes the average performance metrics of the Random Forest, Naive Bayes, K-Nearest Neighbors (KNN), and LSTM models across all iterations:

Algorit hm	T P	T N	F P	F N	T P R	T N R	Pre cisi on	F 1	Ac cu ra cy	Err or Rat e	Balanc ed Accura cy	T S S	H S S	Brie r Scor e	Brier Skill Score	R O C A U C
Rando m Forest	23 5 0. 8	1 9 2 7. 8	2 1. 0	2 3. 2	0 .9 9 0 2	0 .9 8 9	0.9 911	0 .9 9 0 7	0. 98 98	0.0 102	0.9897	0 .9 7 9	0 .9 7 9	0.01 01	0.9593	0. 9 9 9
Naive Bayes	16 9 3. 9	1 0 4 9. 2	8 9 9. 6	6 8 0 .1	0 .7 1 3 5	0 .5 3 8 4	0.6 531	0 .6 8 2 0	0. 63 46	0.3 654	0.6260	0 .2 5 1 9	0 .2 5 1 9	0.23 10	0.0668	0. 6 8 7 9

					T	Т	Pre		Ac cu	Err	Balanc ed	T	Н	Brie r	Brier	R O C A
Algorit	I	l N	F	F	Р	N	cisi	F	ra	Rat	Accura	S	S	Scor	Skill	U
hm	Р	N	Р	N	R	R	on	1	су	е	су	S	S	е	Score	C
KNN	23	1	3	2	0	0	0.9	0	0.	0.0	0.9873	0	0	0.0	0.9617	0.
	52	9	1.	1.	.9	.9	86	.9	98	124		.9	.9	095		9
	.3	1	7	7	9	8	7	8	76			7	7			9
		7.			0	3		8				4	4			71
		1			9	7		8				6	6			
LSTM	19	1	4	4	0	0	0.8	0	0.	0.2	0.7932	0	0	0.17	0.5244	0.
	2	5	3	5	.8	.7	16	.8	79	052		.5	.5	19		8
	0.	1	3.	3.	0	7	6	1	48			8	8			8
	1	5.	3	9	8	7		2				6	6			6
		5			8	7		1				5	5			5

Detailed Comparison

Random Forest: The Best Performer

- **Performance:** The Random Forest model outperformed all other algorithms across all metrics.
 - It achieved the highest Accuracy (98.98%), Precision (99.11%), F1-Score (99.07%), and Balanced Accuracy (98.97%).
 - Its **True Positive Rate (TPR)** and **True Negative Rate (TNR)** were nearly perfect at 99.02% and 98.92%, respectively.
- Reliability: The Brier Score (0.0101) indicates highly calibrated probability predictions, and the Brier Skill Score (0.9593) demonstrates its superior performance compared to a baseline model.
 - The ROC AUC (0.9993) confirms its ability to distinguish between classes effectively.
- Conclusion: Random Forest is the most consistent and reliable algorithm for this task.

Naive Bayes: The Weakest Performer

- **Performance:** Naive Bayes struggled significantly in comparison to the other models.
 - It achieved the lowest Accuracy (63.46%), Precision (65.31%), and F1-Score (68.20%).
 - Its True Positive Rate (TPR) was moderate at 71.35%, but the True Negative Rate (TNR) was very low at 53.84%, indicating poor handling of negative samples.
- Calibration: The Brier Score (0.2310) and Brier Skill Score (0.0668) show that the probability estimates were poorly calibrated.
 - The **ROC AUC (0.6879)** indicates limited capability in distinguishing between classes.

• **Conclusion:** Naive Bayes, while simple and fast, is not suitable for this classification task due to its assumptions and inability to handle complex relationships in the data.

K-Nearest Neighbors (KNN): A Close Second

- **Performance:** KNN performed exceptionally well and closely matched the Random Forest model:
 - It achieved an Accuracy (98.76%), Precision (98.67%), and F1-Score (98.88%), with slightly lower scores than Random Forest.
 - Its True Positive Rate (TPR) and True Negative Rate (TNR) were 99.09% and 98.37%, respectively, showcasing high reliability.
- Calibration: The Brier Score (0.0095) and Brier Skill Score (0.9617) indicate that KNN produced well-calibrated probability predictions.
 - The ROC AUC (0.9971) shows excellent class discrimination.
- **Conclusion:** KNN is a strong competitor to Random Forest, with near-identical performance but slightly less consistency.

LSTM: Moderate Performance

- **Performance:** The LSTM model showed moderate performance compared to the Random Forest and KNN models:
 - It achieved an Accuracy (79.48%), Precision (81.66%), and F1-Score (81.21%).
 - Its True Positive Rate (TPR) was 80.88%, and the True Negative Rate (TNR) was 77.77%, reflecting reasonable performance but room for improvement.
- Calibration: The Brier Score (0.1719) and Brier Skill Score (0.5244) indicate that the LSTM's probability predictions were less reliable compared to Random Forest and KNN.
 - The ROC AUC (0.8865) shows moderate class discrimination.
- **Conclusion:** While LSTM leverages sequential data effectively, it falls short in terms of overall performance and consistency, potentially due to insufficient data or suboptimal hyperparameters.

Final Verdict

- Best Performer: Random Forest, with the highest accuracy, precision, and reliability.
- **Runner-Up: KNN**, with comparable performance to Random Forest but slightly lower calibration and consistency.
- Moderate Performer: LSTM, showing potential but requiring further optimization.
- Weakest Performer: Naive Bayes, struggling with accuracy, calibration, and handling of negative samples.

Based on this analysis, **Random Forest** is the most suitable algorithm for the sentiment analysis task in this project.

Why Random Forest is the Best

Among the evaluated models, **Random Forest (RF)** emerges as the best performer for several reasons:

- Accuracy and Robustness: Random Forest achieves the highest accuracy among the tested models, demonstrating its ability to handle the complexity and non-linear relationships in the mushroom dataset.
- 2. **Feature Importance**: It provides insights into feature importance, helping identify which mushroom characteristics are most predictive for classification.
- 3. **Resistance to Overfitting**: By aggregating the results of multiple decision trees, Random Forest reduces the risk of overfitting, even with complex datasets.
- 4. **Versatility**: It performs well across a wide range of data distributions and can handle both numerical and categorical features effectively.

The combination of high performance, interpretability, and robustness makes Random Forest the most reliable and practical choice for this binary classification task.

```
# Plotting ROC Curves for All Models
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# Dictionary of models and their respective data
models = {
    'Random Forest': (rf model, rf metrics df),
    'Naive Bayes': (nb_model, nb_metrics_df),
    'KNN': (knn_model, knn_metrics_df),
    'LSTM': (lstm_model, lstm metrics df) # Added LSTM
}
plt.figure(figsize=(10, 8))
for name, (model, metrics df) in models.items():
    if name == 'LSTM':
        # Get predicted probabilities for LSTM
        y prob = lstm model.predict(X test lstm).flatten()
    else:
        # Get predicted probabilities for other models
        y prob = model.predict proba(X test)[:, 1]
    # Compute ROC curve and AUC
    fpr, tpr, _ = roc_curve(y_test, y_prob)
    roc auc = auc(fpr, tpr)
    plt.plot(fpr, tpr, label=f'{name} (AUC = {roc auc:.2f})')
# Plot diagonal line for random guessing
plt.plot([0, 1], [0, 1], 'k--', label='Random Guessing')
plt.title('ROC Curves for All Models')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc='lower right')
plt.grid()
plt.show()
338/338 —
                           — 0s 1ms/step
```

