0-1背包

第一节 (免费试听)

我是班主任sunny,加我领取课程福利哦

讲师: 炼药师

加班主任,进班级答疑群快速获取面试资料/课程福利

关注公众号, 了解大厂资讯

版权声明

九章的所有课程均受法律保护,不允许录像与传播录像 一经发现,将被追究法律责任和赔偿经济损失

什么是背包, 主要分类

• 重要性: 1.动态规划中的重难点, 2面试中的常考点

• 什么是背包问题

• 主要分类: 0-1背包, 完全背包, 多重背包

• 爆搜, 贪心的思路与局限

• 动态规划算法实例与代码

0-1 背包 爆搜

举例: 背包容量 m = 10

物品大小 A = [2, 3, 5, 7]

物品价值 V = [1, 5, 2, 4]

爆搜解法:分别枚举每一个物体取或者不取,1代表取,0代表不取

状态	容量	价值									
0000	0	0	0100	3	5	1000	2	1	1100	5	6
0001	7	4	0101	10	9	1001	9	5	1101	12	×
0010	5	3	0110	8	7	1010	7	3	1110	10	8
0011	12	×	0111	15	×	1011	14	×	1111	17	×

0-1 背包 贪心

- 取价值最高:
- m=2, A = [1, 1, 2], V = [2, 2, 3]
- 贪心答案: 3, 正确答案: 4
- 取重量最轻
- m=2, A = [1, 1, 2], V = [1, 1, 3]
- 贪心答案: 2, 正确答案: 3
- 取单位价值最高
- m=3, A = [1, 1, 3], V = [2, 2, 5]
- 贪心答案: 4, 正确答案: 5

所有的贪 心,都是 错误!!

爆搜算法的局限:

0-1 背包 动态规划实现:

举例1: 背包容量 m = 10

物品大小 A = [2, 3, 5, 7]

物品价值 V = [1, 5, 2, 4]

使用数组来记录取前i个物品,在容量j的情况下能取的最大价值

i/j	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0										
2	0										
3	0										
4	0										

0-1 背包 动态规划实现:

i/j	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1
2	0	0	1	5	5	6	6	6	6	6	6
3	0	0	1	5	5	6	6	6	7	7	8
4	0	0	1	5	5	6	6	6	7	7	9

dp[i][j]表示前i个物体,在容量j的情况下,能取到的最大价值如果取第i个物体,价值为dp[i-1][j-A[i]]+V[i] (j-A[i]>0) 如果不取第i个物体,价值为dp[i-1][j] 状态转移: dp[i][j] = max(dp[i-1][j-A[i]]+V[i], dp[i-1][j])

0-1 背包 动态规划实现:

举例2: 背包容量 m = 8

物品大小 A = [2, 3, 4, 5]

物品价值 V = [3, 4, 5, 6]

i/j	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0	3	3	3	3	3	3	3
2	0	0	3	4	4	7	7	7	7
3	0	0	3	4	5	7	8	9	9
4	0	0	3	4	5	7	8	9	10

作业: LintCode563 https://www.lintcode.com/problem/backpack-v/

扫描二维码关注微信/微博 获取最新面试题及权威解答

微信: ninechapter

知乎专栏: http://zhuanlan.zhihu.com/jiuzhang

微博: http://www.weibo.com/ninechapter

官网: www.jiuzhang.com