ITC6001A1 - INTRODUCTION TO BIG DATA - FALL TERM 2023

Final Project - Last.FM dataset

Alkiviadis Kariotis 241735 Konstantinos Margaritis 122451

Prof.: Dr. Dimitrios Vogiatzis

Presentation Overview

Data Processing

Correlation Analysis

Similarity Assessment

Dynamics of Listening and Tagging

Libraries Used for the entire project

- pandas: Data manipulation
- numpy: Numerical computing
- matplotlib.pyplot: Data visualization
- seaborn: better plotting
- scipy.stats.zscore: Standardization
- sklearn.metrics.pairwise.cosine_similarity: Similarity measurement
- scipy.sparse.csr_matrix: Sparse matrix representation
- json: Data serialization
- plotly.express: Interactive plotting
- plotly.graph_objs: Plotly graph objects
- ipywidgets: Interactive widgets

Data Processing Overview

Number of unique artists	17632
Number of unique tags	11946
Number of unique users	1892

- Data Loading: Process of loading data using pandas.
 - Inspecting the files to see what the separator is
 - Load the 6 .data files through the use of pandas with tab (\t) delimiter
 - For encoding we used 'ISO-8859-1' (Latin-1 WE)
- Data Overview: Description of the Last.fm dataset.
 - For all of the 6 files checked key statistics and information, through the functions
 - .info()
 - .describe()

Datasets: artists, tags, user_artists, user_friends, user_taggedartists & user_taggedartists-timestamps

user_artists data fame

Visualization of Top20 artists by Listening Frequency

In the user_artists data frame we proceeded with:

- Slicing and keeping only the artistID column
- Counting the values (corresponds to frequency)
- Sorting the values
- Keeping the biggest 20 frequency values

artist_listening_frequency =
user_artists_df['artistID'].value_counts().
sort_values(ascending=False).head(20)

Visualization of Top20 users by Tagging Frequency

In the user_taggedartists data frame we proceeded with:

- Slicing and keeping only the userID column
- Counting the values (corresponds to frequency)
- Sorting the values
- Keeping the biggest 20 frequency values

tag_frequency =
user_taggedartists_df['userID'].value_co
unts().sort_values(ascending=False).hea
d(20)

Visualization of Top20 users by Number of Friends

In the user_friends data frame we proceeded with:

- Slicing and keeping only the userID column
- Counting the values (corresponds to frequency)
- Sorting the values
- Keeping the 20 users with the most friends

	userID	friendID	
0	2	275	
1	2	428	
2	2	515	
3	2	761	
4	2	831	
25429	2099	1801	
25430	2099	2006	
25431	2099	2016	
25432	2100	586	
25433	2100	607	

Outlier Detection | Z-score

- Firstly, we looked at the listening frequencies (weight column of user_artists).
- We started by trying to estimate the optimal threshold for the z-score function.
- Picked values from 1.5-4 with step 0.1 and looped everything to get the plot based on the number of outliers detected.
- The area where the rate of decrease, of the number of outliers started to significantly slow down, should show the optimal threshold point.
- This is between 2.5 and 3, based on the plot.

Outlier Detection | IQR

- The IQR (Interquartile Range) method for outliers involves calculating the range between the first quartile (25th percentile) and the third quartile (75th percentile) of a dataset and identifying any data points that fall below the first quartile minus 1.5 times the IQR or above the third quartile plus 1.5 times the IQR as potential outliers.
- On the listening frequency we applied this method, and the difference of outliers in terms of number was significant.
- Useful for identifying outliers in skewed distributions and less influenced by extreme values → robust application when dealing with non-normal distributions datasets → identifies more outlies than the

z-score method.

- Then we calculated based on z-score and IQR for all three cases, by firstly finding the respective frequencies, and then applying the following formula: (Frequency - mean) / std
- Artists → Listening Frequency
- Tags → Tag usage Frequency
- Users → Listening time (weight_sum)

(userID	artistID	weight	z_score
0	2	51	13883	3.502167
50	3	101	13176	3.313700
254	7	288	43864	11.494283
506	12	333	23961	6.188686
508	12	377	59695	15.714395
		***		***
91717	2072	3489	12842	3.224665
91986	2080	72	80721	21.319352
92138	2084	207	12498	3.132964
92551	2094	1459	26090	6.756220
92649	2096	436	14690	3.717291

Similarity Assessment

- To identify the listening habits of the users, we performed a cosine similarity analysis.
- We created a pivot table, using as index the userID, as column the artistID and as values the weight.
- Then used the function of cosine similarity to find the angle between the non-zero vectors from the pivot table.
- Finally stored that to a csv file in order to be used with the KNN method.
- Here we identified the nearest neighbors for each of the two cases (3&10) based on the similarity scores of each user, stored in the csv file from above.

Dynamics of Listening and Tagging

- We started by making the necessary transformation to the timestamp column, assigning also a safety function to turn milliseconds to seconds.
- We created a dynamically changing code for the choice of the time interval changing from monthly to trimester with just changing M to Q
- Then we grouped the data by interval and started to assigning to a dictionary the following values for each one of them:

```
#store results in a dictionary
results[interval] = {
    'unique_users': unique_users,
    'unique_tags': unique_tags,
    'unique_artists': unique_artists,
    'top_artists': top_artists,
    'top_tags': top_tags
```

```
Interval: 2005-07
 Number of unique users: 11
 Number of unique tags: 78
 Number of unique artists: 465
 Top 5 artists (by ID): [599, 59, 2861, 1083, 1013]
 Top 5 tags (by ID): [2191, 17, 370, 3496, 642]
Interval: 2005-08
 Number of unique users: 13
 Number of unique tags: 58
 Number of unique artists: 111
 Top 5 artists (by ID): [11892, 227, 234, 550, 14468]
 Top 5 tags (by ID): [73, 828, 371, 735, 1]
Interval: 2005-09
 Number of unique users: 8
 Number of unique tags: 81
 Number of unique artists: 178
 Top 5 artists (by ID): [11892, 1377, 5555, 6852, 51]
 Top 5 tags (by ID): [2726, 824, 839, 424, 76]
Interval: 2005-10
 Number of unique users: 5
 Number of unique tags: 73
 Number of unique artists: 142
 Top 5 artists (by ID): [227, 51, 59, 225, 235]
 Top 5 tags (by ID): [73, 79, 84, 134, 296]
```


Dynamics of Listening and Tagging | Interactive Plots

• Then we proceeded with two interactive plots for visualization by using plotly and ipywidgets.

Correlation Analysis

Gathering Artist and Listening Data for Each User:

 Music Habits: for each user, count how many different artists they've listened to and calculate the total time they've spent listening.

Finding Out How Social Each User Is:

 How many friends each user has. This is done by counting the number of connections each user has in our friends' data.

Bringing It All Together:

 Combine the music and social data. We merged the artist and listening information with the friends' data → make sure to account for users who might not have any friends listed in our data by assigning them a friend count of zero→ ensures that no user is left out.

Uncovering Relationships in the Data:

 All the data compiled together → explore the relationships between how many artists a user listens to, their total listening time, and the number of friends they have →correlation matrix to see if and how these different aspects are related to each other.

Number of Artists vs Number of Friends

• Scatter plot with Regression Line

Total Listening Time vs Number of Friends

• Scatter plot with Regression Line

Thank you for your time 😊

Github link: