Az autotuner tábla műszaki leírása

ATU-100 bővített tábla

N7DDC fejlesztés.

Figyelem! Nincsenek korlátozások vagy korlátok ezen anyag felhasználására bármilyen célból, valamint minden kapcsolódó anyag, amelynek szerzője az N7DDC.

Figyelem! Az ebben a dokumentumban közzétett információk csak akkor igazak, ha a készülék firmware verzióval használja. Ha nem képes arra, hogy megtudja, melyik szoftververziót használja, a flash firmware 2.5-ös verzióját, a programozó használatával győződjön meg róla, hogy a leírásban szereplő információk megtalálhatók és megfelelnek az eszköz tulajdonságainak.

Itt letölthet bármilyen firmware-verziót:

http://www.sdr-deluxe.com/forum/7-18-1

PCB források a Sprint 6.0 elrendezéshez:

http://www.sdr-deluxe.com/load/

Megnevezés

Az eszközt amatőr rádióberendezések részeként használják, erősítők vagy adóvevők részeként, vagy külön eszközként, a teljesítményerősítők (UM) kimeneti impedanciájának összehangolására antennákkal.

Ellentétben a **mini kártyával**, ez az eszköz 5-7 sorozat induktivitást tartalmazhat és 5-7 kondenzátort, ami lehetővé teszi (maximum konfiguráció), hogy hatékonyan működjenek széles frekvenciasávban, átfedésben az amatőr rádió HF 1,8 és 50 MHz között. A felhasználó rendelkezésére álló algoritmusok számos beállítása lehetővé teszi egy mikroprocesszor és vezérlő áramkör használatát más automatikus tuner projektekben különböző változatokkal. Mindazonáltal van egy alaprendszer, amelyet a szerző követ.

Az alapmodell a szerző szerint 7 kapcsolt induktivitást tartalmaz szabálytalan lépésekkel, 0,05 μH-tól 4,5 μH-ig, 7 kondenzátorral szabálytalan lépések, 10 pF-től 1 nF-ig. Alapértelmezett paraméterek garantálja az eszköz megbízható működését az alapvető változatban, és alapvető paraméterek a teszteléshez, amikor a szerző szoftvereket fejleszt. A felhasználó számos paramétert megváltoztathat, ami megváltoztathatja a készülék viselkedését és még működésképtelenné teheti.

<u>Kérjük, olvassa el figyelmesen a leírást a változtatások előtt.</u> Itt kérdezhet vagy részt vehet az eszköz beszélgetésében http://www.cqham.ru/forum/...N7DDC

Az "alapmodell" használata

A szerző feltételezi, hogy a készülék két forgatókönyvben használható: kiegészítő modul részeként egy adó-vevő és/vagy erősítő részeként, vagy független különálló esetben, jelzéssel vagy anélkül. Nincs szükség arra, hogy valamit újratervezzen. Mind a kézi hangolás indítása gomb, mind a vezérlőjel kimenete az adó-vevő vagy erősítő vezérlő processzorából csatlakoztatható a vezérlő csatlakozóhoz.

Ha 250 ms-nál rövidebb a gomb nyomása vagy a vezérlőjelekkel ellátott vezérlővezetékre gyakorolt rövid hatás miatt a tuner elemek visszaállnak az eredeti állapotukba, amikor az összes induktivitás és kapacitás ki van kapcsolva. A vezérlőjel hosszabb tartása bekapcsolja a beállítási folyamat kezdetét.

A RA7 és RA6 mikroprocesszoros csatlakozókból további jelek lehetnek a meglévő berendezésekkel való jobb integrációhoz. Ez a Tx_request hordozó kérés a tuninghoz közvetlen és inverz formában. Ezt a jelet az eszköz processzora bocsátja ki a hangoláshoz

szükséges időre, amelynek során az adónak biztosítania kell a megfelelő teljesítményű folyamatos hordozót.

Ezzel a beállítással automatizálható, hogy a felhasználónak nem kell végrehajtania további műveleteket, kivéve a beállítások gombra való kattintást. Ez nem szükséges, mivel az eszköz lehetővé teszi a megfelelő teljesítményű bármilyen bemeneti jel hangolását, legyen az beszéd, egy RF jel által modulált bármilyen típusú moduláció, telegrafikus csomag, és még egy zajszerű jel is.

A hangolás leáll, ha a bemeneti jel teljesítménye alacsony, és folytatódik, amikor az megjelenik. Ez azt jelenti, hogy a beállítás közvetlenül a berendezés normál működésében is történhet.

Az eszköz megbízható működéséhez azonban ajánlatos ezt a jelet használni az adó jelerősségének csökkentésére a készülék értékeihez a hangolás során, például az ALC hurok hatására.

A Tx_request jel felhasználható olyan LED csatlakoztatására is, amely jelzi a beállítási folyamat tevékenységét abban az esetben, ha az LCD kijelző használata nem kívánatos vagy lehetetlen.

Kijelző

Általánosságban elmondható, hogy a készülék kijelzőelemek nélkül használható, míg a készülék működésének vezérléséhez használhatja például az adó-vevőbe beépített SWR-mérő skáláját vagy egy külön külső SWR-mérőt. Természetesen, ha önmûködőként önmûködő gépet használ, akkor nagyon kényelmes lenne, ha saját kijelzője lenne a mûvelet nyomon követésére, és ez az eszköz lehetővé teszi, hogy különböző módon hajtsa végre.

A legegyszerűbb módja egy kétszínű vörös-zöld közös anódos LED csatlakoztatása a processzor programozása csatlakozó gombjaihoz. Ahhoz, hogy ez a megjelenítési módszer működjön, módosítania kell az alapértelmezett értékeket, amelyeket az alábbiakban tárgyalunk.

A közös anódokat a csatlakozó VCC csapjához kell csatlakoztatni (+5 V teljesítmény), a zöld LED katódját az áramkorlátozó ellenálláson keresztül a CLK csaphoz csatlakozik, a piros LED katódja a határoló ellenálláson keresztül a DAT-csaphoz csatlakozik.

Így a LED három színt készíthet: világos, **zöld, narancs és piros**, attól függően, hogy a VSWR mely vonalban van, amellyel az illesztési folyamat befejeződött.

Ha kijelző LED **zöld színű az SWR 1,5-nél kevesebb**, **narancssárga - 2,5-nél kisebb** és a **vörösnél az SWR 2,5-nél többet** fog jelezni. A LED kialszik, amikor a beállítások elindulnak és rögtön a befejezés után ragyog (jelez). Itt szem előtt kell tartani, hogy a jóváhagyási feltételek megváltozása és az SWR változása esetén a LED nem változtatja meg a ragyogás színét, ugyanaz marad, attól függően, hogy melyik SWR értéket rögzítette.

A készülék működéséről sokkal több információ áll rendelkezésre, ha a csatlakozóhoz csatlakozik a szabványos kétsoros 1602 LCD kijelző. Ehhez egy kis I2C port bővítő kártyára is szükség lesz, hogy a párhuzamos LCD vezérlő kódot I2C soros buszokká alakítsa. Ezek a PCF8574T chipet széles körben használt táblák, amelyek hozzáférési címe a 4E buszon van. Ez a jelzés arra utal, hogy a szerző alapértelmezés szerint használja, és az alapértelmezett firmware már konfigurálva van egy ilyen indikátor használatához.

Egyes port kiterjesztő kártyák "AT" indexű PCF8574-es chipeket használnak, és eltérő busz hozzáférési címmel rendelkeznek.

Használhatók a kívánt cím beállításával is (amelyet az alábbiakban ismertetünk).

Az LCD csatlakoztatásakor a programozó csatlakozó csapjai a rendeltetésüknek megfelelően használhatók, a VCC 5 V-os tápegység, a GND földelés, a DAT és a CLK adat- és órajelekkel.

A kijelző bal oldala mutatja a teljesítményt és az SWR-t. A csúcsérzékelő üzemmódot használjuk, amely lehetővé teszi, hogy különböző típusú modulációkat használva pontosan mérjük az adó jelerősségét.

A jobb oldalon a készülék által az utolsó hangolási folyamat eredményeként beállított induktivitási és kapacitási értékek láthatók. A jelzést az első és a második sorban hajtjuk végre, és az L és C jelzések felcserélhetők.

Ez a kondenzátorok csatlakozási pontjának megjelenítésére szolgál a G-lánc klasszikus rendszere szerint. Tehát, ha az induktivitás a felső sor tetején van. Feltételezzük, hogy a tuner kondenzátora csatlakoztatva van, vagyis a kimeneten. Ha az induktivitás értéke a kapacitási érték alatt az alsó sorban jelenik meg, akkor a kapacitás az induktivitáshoz kapcsolódik, azaz a bemenethez.

A kijelzőn röviden megjelenhet néhány felirat is, amelyek magyarázzák az eszköz aktuális üzemmódjait. Ezek a TUNE, RESET, OVERLOAD (ha a készülékhez 150 W-nál nagyobb teljesítményű jelet alkalmaznak).

Az eszköz méretének csökkentése érdekében lehetőség van kis méretű OLED kijelzők csatlakoztatására, amelyek ugyanazt az I2C buszt vezérlik.

Ezek egy fekete-fehér OLED kijelzők SSD1306 vezérlővel és 128x32 képpontos felbontással, 0,91 hüvelyk átlóval, vagy 128x64 képpontos felbontással, 0,96 és 1,3 hüvelyk átlóval. Ezek a kijelzők ugyanúgy kapcsolódnak, de ahhoz, hogy megfelelően működhessenek, a firmware-paramétereket meg kell változtatni (az alábbiakban ismertetjük).

A 0.91" 128 * 32 kijelzőn megjelenő kép egy 1602-es rendszerű kijelzőnek néz ki, miközben apró méretei vannak.

A 128 * 64 kijelzőn megjelenő kép kissé eltérő, négy sorban és nagyobb karakterekkel.

További gombok

A készülék lehetővé teszi további két további gomb csatlakoztatását, mely alapvető funkció. Ezek a Bypass és az Auto gombok. A gombok az RB1 és az RB2 processzor portjaihoz csatlakoznak. Az alkalmazott portokat ajánlatos áthidalni kondenzátorokkal, hogy elkerüljék az interferenciát, ami zavarhatja a processzort.

A Bypass gomb megnyomása ideiglenesen leállítja az összes kapacitást és induktivitást, és a jelet a bemenetről a kimenetre közvetlenül továbbítja.

Ez az üzemmód az LCD kijelzőn egy aláhúzás formájában megfelelő jelzéssel rendelkezik. Ha az Auto üzemmód aktiválva van, akkor az áthidaló üzemmód érvényben marad.

A gomb ismételt megnyomása kikapcsolja a bypass módot, és a készülék újra csatlakoztatja az utolsó hangolási folyamat végén telepített kapacitásokat és induktivitásokat. Az automatikus üzemmód is folytatódik, ha korábban aktiválták.

Az Auto gomb megnyomása aktiválja az eszköz automatikus üzemmódját, amely a kijelzőn pontjelként jelenik meg. A készülék emlékezni fog az automatikus bekapcsolásra üzemmódban marad, és az áramellátás kikapcsolása után is marad, amíg újra nem kapcsolja ki. Az automatikus üzemmód is aktiválható paraméterek megváltoztatása a firmware alatt (az alábbiakban ismertetjük).

Automatikus üzemmód

Az automatikus működési mód egyedülálló lehetőséget biztosít a felhasználó számára. Használja a készüléket anélkül, hogy megnyomná a gombokat, és csatlakoztassa a külső vezérlőt. A készülék gombok nélkül végrehajtható - jelzés nélkül – és ezzel egyidejűleg elvégzi az antenna tápvezeték ellenállásának összehangolását.

Az algoritmus a következőket használja: ha az aktuális SWR meghaladja az 1,3-at, és az előző beállítás után rögzített értékhez képest (1,3-1) értékre vált, a beállítási mód aktiválódik.

Általában ez a feltétel könnyen teljesíthető tartományváltozás, ami a hangolási folyamat azonnali aktiválását okozza. Szükség esetén a beállítás trigger küszöbértéke megváltoztatható a paraméterek módosításával a firmware alatt (az alábbiakban ismertetendő).

Speciális üzemmódok

A készüléknek számos speciális működési módja van, amelyek célja az összeszerelés, hibakeresés vagy hibaelhárítás.

Amikor a készüléket **mindhárom megnyomott Tune, Bypass és Auto** gombbal bekapcsolja, a **Fast Test üzemmód** aktiválódik. Ebben az üzemmódban a készülék minden relé számára tápellátást biztosít, amely lehetővé teszi a tranzisztoros kapcsolókkal vagy a forrasztási hiányosságokkal kapcsolatos hibák gyors azonosítását.

Amikor a készüléket a **Bypass és az Auto gombokkal** megnyomja, a készülék átkapcsol **teszt üzemmódra**. Ebben az üzemmódban manuálisan, lépésről lépésre lehet a Bypass és az Auto gombokkal módosíthatja a kapacitás vagy az induktivitás értékét.

A Tune gomb hosszú megnyomásával kiválaszthatja, hogy mely elemek kerülnek mozgatásra, és egy rövid gombnyomás megváltoztatja a kondenzátor csatlakozási pontját. Ebben az üzemmódban lehetséges a bemeneti teljesítmény és az SWR mérése a vonalon. Az egész folyamatot egyértelmű jelzés kíséri.

Lehetséges eszköz módosítások

A mikroprocesszor és annak szoftvere lehetővé teszi, hogy 5-6-7 induktivitást és 5-6-7 kondenzátort irányítson lineárisan növekvő lépéssel vagy nemlineárisan. Az összetevők értékei tetszőlegesek lehetnek, értéküket a firmware beállításaiban lehet megadni.

A processzor programozása a kijelzőn megjelenő értékek helyes megjelenítéséhez. Amikor a maximális értéknél kevesebb elemet választunk (7), a vezérlő busz alsó bitjei működnek.

A firmware helytelen beállítása vagy a vezérlőelemek sorrendjében fellépő hibák meghibásodáshoz vezethetnek a telepítés során vagy a teljes konfigurálhatatlansághoz. Ugyanakkor az értékek pontos jelzése csak a kijelzőn megjelenő kijelző pontosságát befolyásolhatja, de nem a tuning algoritmus működését.

A műszaki adatok, "Alapmodell"

A megengedett tápfeszültségek tartománya: 10-15 V DC

Maximális áramfelvétel: 400 mA

Maximális üzemi teljesítmény: 100 watt

Maximális lehetséges mért teljesítmény: 150 watt

A hangolás elindításához szükséges minimális teljesítmény: 5 watt *

Minimális lehetséges mért teljesítmény: 0,1 watt

Mérési lépés 10 W teljesítményig: 0,1 W

Mérési lépés 10 wattnál nagyobb teljesítménnyel: 1 watt

A teljesítménymérés pontossága: 10%

Maximálisan telepített induktivitás: 8,53 µH

Az induktivitás minimális telepítési lépése: 0,05 μH

Maximális beépített kapacitás: 1869 pF Minimális kapacitási telepítési lépés: 10 pF

Az alapértelmezett beállítások módosítása

A mikroprocesszor programozása során közvetlenül a vezérlő kódra (program) történő írás mellett javasoljuk, hogy rögzítsünk egy kis számú EEPROM memóriát.

Az ezekben a cellákban lévő információkat a felhasználó módosíthatja a programozás előtt.

A processzor minden egyes indításakor a program először leolvassa a hosszú távú memória celláiból származó adatokat annak érdekében, hogy tovább használhassa ezt az információt a munkához.

Így a felhasználó könnyedén megváltoztathatja az eszköz számos paraméterét anélkül, hogy megértené a készüléket összehasonlíthatatlanul összetettebb szoftverfejlesztési folyamatokat.

^{*} Egyes paraméterek szükség esetén módosíthatók.

Az alábbiakban részletesen ismertetjük a firmware ezen verziójában használt jelentős cellákat.

Kérjük, vegye figyelembe, hogy a cellák számozása nulla, és a számozás hexadecimális kódban van megadva. Az ilyen szabályokkal való számozás "címzésnek" nevezhető, és a cellaszám ebben a formátumban a "cím".

Például a 10-es címmel rendelkező cella nem a tizedik cella a fiókban. Ez a 16. cella.

Az alábbiakban csak a cellák címét kapjuk, mivel a címzés a programban használható programozó processzor.

A cellákban lévő adatok hexadecimális kódokban is értéket képviselnek, de ez a felhasználók kényelmét szolgálja, hogy a szokásos értékeket nem kell hexadecimális formátumra konvertálni.

Így például 15 wattos teljesítményértékek rögzítéséhez elegendő a 15-ös szám írása a cellába, és az SWR beállításakor az 1.7-nél elegendő a 17 szám felírása.

Gondosan olvassa el a leírást, és fókuszáljon alapértelmezett értékekre.

A kényelem érdekében a firmware olvasható a mikroprocesszorról, módosíthatja a memóriacellákat és írja vissza.

Az összes érték visszaállítása az alapértelmezett értékekre elegendő a szerző firmwarejének újbóli programozása.

00 - a csatlakoztatott kijelző címbeállító cellája. A PCF8574AT chipen készített 1602 kijelző bővítőpanelje a 7E címmel rendelkezik, a "T" index - 4E.

Az OLED kijelzők címe általában 78 vagy 7A. A csatlakoztatott I2C-eszközzel való normál működéshez bármilyen cella rögzíthető a cellában. Az alapértelmezett érték 4E, amely megfelel a 1602-es LCD kijelzőnek a PCF8574T chipen található bővítő kártyával.

01 - egy olyan cellát jelent, amely jelzi a csatlakoztatott kijelző típusát.

A 00 érték egy csatlakoztatott kétszínű LED-nek felel meg.

01 érték - 1602 LCD port bővítő kártyával.

02 érték - OLED kijelző 128 * 32,

03 érték - OLED kijelző 128 * 32, fordított kép.

04 érték - OLED kijelző 128 * 64,

05 érték - OLED kijelző 128 * 64, fordított kép.

Figyelem! A készülék nem rendelkezik a fent leírtaktól eltérő megjelenítéssel.

02 - az automatikus üzemmód cella aktiválása. Ha a készüléket további gombok nélkül kívánja használni, akkor az 01-es érték beírásával engedélyezheti az automatikus üzemmódot. Az alapértelmezett érték 00.

Amikor aktiválja ezt a módot, a processzor automatikusan rögzíti a 01 értéket ebben a cellában, ezzel emlékezve a felhasználói választásra.

03 - cella, hogy beállítsa a várakozási időt a jelzés után a relé kiváltásához vagy felszabadításához.

Ez az idő magában foglalja az RF detektor kimenetén a feszültség meghatározásához szükséges időt, miután a relék a megadott pozíciókba kerültek kialakításra. Az ezredmásodpercben megadott érték az alapértelmezett érték 15. A túl rövid idő meghibásodást okozhat a beállítás során.

04 - cella az automatikus üzemmód beállításához szükséges küszöb beállításához.

A formátum: az első szám az SWR egész, a második szám a tized.

Az alapértelmezett érték 13, azaz amikor az automatikus üzemmód aktiválódik. Ez azt jelenti, hogy amikor az automatikus üzemmód aktiválódik, a beállítás akkor indul el, amikor az SWR 1,3-nál magasabb, és amikor az (1.3-1) -re változik.

05 - cella a hangolás elindításához szükséges minimális teljesítmény beállításához.

Felvett formátum: az első szám – tíz(es) watt, a második egy(es) Watt. Az alapértelmezett érték 05, vagyis a beállítás csak a bemeneti teljesítménynél működik, legalább 5 watt. A túl alacsony érték nem megfelelő finomhangoláshoz vezethet.

06 - cella a maximális teljesítmény meghatározása a biztonságos hangoláshoz.

Ha a bemeneti teljesítmény meghaladja ezt az értéket, a beállítás nem kerül végrehajtásra, és a készülék a felhasználó által meghatározott határokon belül várja a teljesítményszintet. Ugyanabban a formátumban rögzítve. Ha az érték 00, ellenőrizze a maximális értéket, a teljesítmény nem keletkezik. Az alapértelmezett érték 00.

- **07 a cellák a sorok függőleges eltolásának lefelé történő beállítására** OLED kijelzőkre. Bizonyos kijelzők esetén szükség lehet. Az alapértelmezett érték 01.
- **08 egy olyan cellát tartalmaz, amely vízszintes eltolt vonalakat** állíthat balra az OLED kijelzőkhöz. Bizonyos kijelzők esetén szükség lehet. Az alapértelmezett érték 02.
- **09 a cella a maximális kezdeti SWR értékének beállítására**, amikor a beállítás történik. Az értékeket a formátumban adjuk meg: az első szám az SWR-egész szám, a második szám a tized. Ha az érték 0, az ellenőrzés nem történik meg és a beállítás mindig működik. Az alapértelmezett érték 0.
- **OA a telepített induktivitások számának beállítására szolgáló cella** a 05, 06 vagy 07 értékeket. Az alapértelmezett érték 07.
- **OB ha az induktivitás sora lineáris pályával rendelkezik**, írjon 01-et a cellába. Az alapértelmezett érték 00.
- OC cella a telepített kondenzátorok számának beállításához

Az értékek 05, 06 vagy 07. Az alapértelmezett érték 07.

OD - ha a kondenzátorok sora lineáris, írjon 01-et a cellába az alapértelmezett érték 00.

OE - lehetővé teszi az RF detektor diódák nemlinearitásának szoftverkorrekcióját. kell, hogy legyen tiltsa le, ha az áramkör hardverkorrekcióval rendelkezik. Az alapértelmezett érték 01 (Inkluzív).

OF - a kapcsolt induktivitások fordított irányítása. Engedélyezni kell, amikor relék használata normál nyitású kontaktusokkal a kapcsolja az induktivitásokat. Az alapértelmezett érték 00 (letiltva)

A 10-es címmel kezdve a cellák a névleges értékű induktivitások beállítására szolgálnak.

Két cellánként használunk értéket, az induktivitás a legkisebbtől kezdve. Az értékek nanoHenry-ben vannak írva. Például a 4 μH azaz 4000 nanoHenry. Írjuk a cellákhoz 40 00. A 110 nanoHenry-nél - irjunk 01 10-et. Összesen 14 cellát használnak egymás után, kettő minden értékhez.

A 20. címmel kezdődően a beépített kondenzátorok névértékeit rögzítik.

Minden érték a pikofaradban. Például 82 pikofaradot írnak 00 82-ra. Az 1.2 nanofaradnál 12 00-ra írunk. 14 cellát használnak egymás után, kettőt minden egyes értékhez.

© David Fainitski, N7DDC 2019

Google translate 2019.01.07. Gyula HA3HZ ☺