Detecting Cardiomegaly from Chest X-Rays

Brendan Nugent

Cardiomegaly

- Enlargement of the heart
- Commonly caused by coronary artery disease
- Morality:

After 1 year: 30%

After 5 years: 50%

Image from Bougais et al., 2020

The Problem

The Data

Preprocessing

Modeling

Diagnosing Cardiomegaly

- Diagnosis by medical imaging to determine size of heart
 - Cardiothoracic ratio > 50%
- One type of imaging is chest X-rays

Image from Radiology Masterclass

The Problem

The Data

Preprocessing

Modeling

The Goal

Create a model that detects the presence of cardiomegaly from a chest X-ray with an accuracy of 75% and a recall of 70%.

Image from Bougais et al., 2020

The Problem

The Data

Preprocessing

Modeling

The Data

- 112,120 images of chest X-rays
- Published by the National Institutes of Health
- Labeled through natural language processing by Wang et al.
 - Estimated 90% accuracy
 - Labels include: atelectasis, consolidation, infiltration, pneumothorax, edema, emphysema, fibrosis, effusion, pneumonia, pleural thickening, nodule mass, hernia, and cardiomegaly

The Problem

The Data

Preprocessing

Modeling

Label

2776 (2.5%) of the 112,120 images showed cardiomegaly

The Problem

The Data

Preprocessing

Modeling

Patient Gender and Age

aby and a series of the series

Cardiomegaly was more common among female patients.

The age distributions were practically identical.

The Problem

The Data

Preprocessing

Modeling

Undersampling

- 2776 images with cardiomegaly
- 2776 images without cardiomegaly

The Problem

The Data

Preprocessing

Modeling

The Images

1024 x 1024 grayscale pictures

The Problem

The Data

Preprocessing

Modeling

Preparing Splits

Full:

Training 60% 3330 images

Validation 20% 1112 images Testing
20%
1110 images

Partial:

Training 80% 800 images

Validation 20% 200 images

The Problem

The Data

Preprocessing

Modeling

Preprocessing

ResNet50's preprocess_input function

- Zero-centers each color channel with respect to ImageNet dataset
- Does not scale Values

Data augmentation

- Rotated images
- Shifted height and width

The Problem

The Data

Preprocessing

Modeling

Convolutional Neural Nets

Simple CNN AlexNet dense dense pooling pooling Image from oreilly.com

The Problem

The Data

Preprocessing

Modeling

Simple CNN Architecture

- Convolutional layer with 96 filters of size
 11x11 with a stride of 3, activated by relu
- Max pooling layer
- Convolutional layer with 32 filters of size 5x5, activated by relu
- Max pooling layer
- Dense layer with 512 neurons activated by relu
- Output layer with 1 neuron activated by sigmoid function

The Problem

The Data

Preprocessing

Modeling

AlexNet Architecture

- 5 Convolutional blocks that include batch normalization and max pooling
- 3 fully connected layers

The Problem

The Data

Preprocessing

Modeling

ResNet50 Architecture

- Minimizes degradation through residual blocks containing Skip Connections
 - Provides a shortcut for gradients to pass through to prevent vanishing gradients
- Convolutional bock
- 4 residual blocks
- 1 fully connected layer

Image from Bendjillali et al.

The Problem

The Data

Preprocessing

Modeling

Adapted ResNet50 Architecture

- Convolutional bock
- 4 residual blocks
- 2 fully connected layers
 - \circ Dropout = 0.4

The Problem

The Data

Preprocessing

Modeling

Initial Modeling

Epochs = 10, learning rate = 1e-4

AlexNet:

Accuracy: 0.7770

Recall: 0.7374

The Problem

The Data

Preprocessing

Modeling

Initial Modeling

AlexNet may benefit from more epochs in training.

The Problem

The Data

Preprocessing

Modeling

Tuning Learning Rate and Batch Size

Model	Optimal Learning Rate	Optimal Batch Size
Simple CNN	1e-4	45
AlexNet	1e-5	15
ResNet50	1e-5	15
Adapted ResNet50	1e-4	45

The Problem

The Data

Preprocessing

Modeling

Final Evaluation

All models improved, but AlexNet remains the highest performing.

	Accuracy	Recall
Validation	0.8013	0.7734
Testing	0.7775	0.7423

The Problem

The Data

Preprocessing

Modeling

Saliency Maps

The model recognizes the borders between the heart and the lungs.

The Problem

The Data

Preprocessing

Modeling

Conclusions

AlexNet Model

- Learning rate = 1e-5
- Batch size = 15

Accuracy	Precision	Recall
77.75%	79.85%	74.23%

The Problem

The Data

Preprocessing

Modeling

Future Directions

Improvements

- Increase size training set and implement augmentation
- Adjust image size
 - o 320 x 320, 512 x 512, 1024 x 1024
- Add additional fully connected layer to AlexNet

Future Projects

- Apply AlexNet to other conditions diagnosed through medical imaging
 - Pneumonia, TB
- Determine bounding boxes around heart and thorax to calculate the cardiothoracic ratio

The Problem

The Data

Preprocessing

Modeling

Thank you!

Brendan Nugent

Email: bjnugent@mac.com

LinkedIn: https://www.linkedin.com/in/bjnugent/

Github: https://github.com/bjnugent

Project report: https://github.com/bjnugent/cardiomegaly/tree/main/reports/final_report.pdf