Optimal Binary Search Trees

Dynamic programming.

Operation Research.

The goal of the maximum weight independent set problem (MWIS) is to compute, for a given set of geometric objects with certain weights, a subset of disjoint (non-overlapping) objects with maximum total weight.

There is a PTAS (polynomial-time algorithm scheme) for MWIS in disk graphs, provided that a disk representation of the graph is given. The running-time for achieving approximation ratio $1 + \epsilon$ is $n^{O(1/\epsilon^2)}$ for a disk graph with n disks.

Details:

 \bullet Executed on: 29/09/2014 09:26.

• Execution time: 0,000014 SECONDS.

• Memory required: 1140 bytes.

Nodes

	Name	Probabilities
1	20	5,00
2	25	4,00
3	32	3,00
4	44	2,00
5	48	1,00
6	78	6,00
7	83	7,00
8	88	8,00
9	root	100,00

Table 1: Nodes probabilities.

Contents

O	ptimal Binary Search Trees	1
	Nodes	1
	Execution	3
	Analisis	4
	Digest	5

Execution

	1	2	3	4	5	6	7	8	9	10
0	0,00	5,00	13,00	20,00	26,00	30,00	47,00	65,00	88,00	224,00
1		0,00	4,00	10,00	15,00	18,00	33,00	48,00	71,00	202,00
2			0,00	3,00	7,00	10,00	22,00	36,00	57,00	184,00
3				0,00	2,00	4,00	13,00	27,00	45,00	169,00
4					0,00	1,00	8,00	22,00	38,00	160,00
5						0,00	6,00	19,00	35,00	156,00
6							0,00	7,00	22,00	137,00
7								0,00	8,00	116,00
8									0,00	100,00
9										0,00

Table 2: Table A.

	1	2	3	4	5	6	7	8	9	10
0	0	1	1	2	2	2	3	6	6	9
1		0	2	2	3	3	3	6	6	9
2			0	3	3	3	6	6	7	9
3				0	4	4	6	6	7	9
4					0	5	6	6	7	9
5						0	6	7	7	9
6							0	7	8	9
7								0	8	9
8									0	9
9										0

Table 3: Table R.

Analisis

Figure 1: Optimal search tree.

Digest

 \bullet Total nodes : 9.

 $\bullet \ \, \mathrm{Levels}: 6.$

 $\bullet \ \mathrm{Expected} \ \mathrm{cost} : 224{,}00.$