CS345A: Algorithms -II

Users Online: 134

Submitted on 31/10/2021 08:56

Instructions

- Exam opens at: 31/10/2021 08:00
- You are given an extra 10 minutes after due time to submit your exam.
- However, please note that any submissions made after the due time are marked as late submissions.

Quiz 3

Question:

Attempt exactly one of the following questions.

1. **Semi-connected graph** (marks=3)

A directed graph G = (V, E) is called semi-connected if for each $u, v \in V$, there is a path from u to v or there is a path from v to u. Design an O(|E|) time algorithm to determine if a directed graph is semi-connected.

2. **Strange graph** (marks=10)

Let G=(V,E) be an undirected, unweighted, and connected graph on n=|V| vertices. We wish to compute a subgraph S=(V,H), $H\subseteq E$ such that for each pair of vertices $u,v\in V$, the distance between them in S is **at most** 3 times the distance between them in G. To achieve this objective, it suffices if we can achieve the following goal:

For each pair (u,v) such that $(u,v) \in E$ and $(u,v) \notin H$, there exists a path of **at most** 3 edges between u and v in S.

The following is the skeleton of an algorithm that accomplishes the above goal in O(|E|) time and computes such a subgraph S of $O(n^{3/2})$ edges. All you have to do is to just fill in the blanks appropriately.

Н	$\leftarrow \emptyset$;		
V	/hile(_)	
{	Pick a	Pick any vertex, say v, arbitrarily from V.	
	If (degree of v is less than \sqrt{n})		
	{	Insert all edges incident on v to H;	
		Remove v from V and remove all edges incident on v from E	
	}		
	Else		
	{	•	

CS345A: Algorithms -II

Users Online: 134

Note: Though the condition of the While loop has to be a single Boolean statement, you may write pseudocode of any length in the **Else** part of the If-statement. Please note that you will get no marks for this question if your algorithm is not correct. So avoid doing guess work.

Hint: Try to understand the logic underlying the **then** part of the If-statement. Having understood it, try to generali it for the **Else** part of the If-statement. Remember that our goal is to select $O(n^{3/2})$ edges only.

Uploaded Files:

180771 Quiz3 easy.pdf

Grades:

Marks: Not graded