```
In [2]: | import numpy as np
        data = np.genfromtxt("diabetes2.csv", delimiter=',', skip header=1, dtype=int)
        data
Out[2]: array([[ 6, 148, 72, ...,
                                    0, 50,
                                             1],
              [ 1, 85,
                                        31,
                         66, ...,
                                    Ο,
                                              0],
              [ 8, 183,
                                        32,
                         64, ...,
                                    Ο,
                                             1],
              [ 5, 121,
                         72, ...,
                                    Ο,
                                        30,
                                             0],
              [ 1, 126, 60, ...,
                                    0, 47,
                                             1],
              [ 1, 93, 70, ...,
                                    Ο,
                                       23,
                                             0]])
In [3]: import pandas as pd
                               # built on top of numpy
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        import seaborn as sns # built on top of matplotlib
        from pandas.api.types import CategoricalDtype # enables specifying categorical aget
        ype below
In [4]: diabetes = pd.read_csv("diabetes2.csv") #Reading the dataset in a dataframe using P
        andas
       print diabetes.head(5)
       print
        diabetes.info()
          preg plas pres skin insu mass pedi age class
            6 148 72 35
                                 0 33.6 0.627 50
       0
                                                            1
                                   0 26.6 0.351
             1
                85 66 29
                                                   31
                                                            0
       1
       2
            8 183 64
                             0
                                   0 23.3 0.672
                                                   32
                                                            1
                     66
                             23
                                   94 28.1 0.167
             1
                 89
                                                    21
                                                            0
             0
                137
                       40
                             35
                                  168 43.1 2.288
                                                            1
                                                    33
        <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 768 entries, 0 to 767
       Data columns (total 9 columns):
               768 non-null int64
       preg
       plas
               768 non-null int64
       pres
               768 non-null int64
               768 non-null int64
       skin
               768 non-null int64
        insu
                768 non-null float64
       pedi
                768 non-null float64
       age
                768 non-null int64
       class
               768 non-null int64
       dtypes: float64(2), int64(7)
       memory usage: 54.1 KB
```

In [5]: diabetes.describe()

Out[5]:

	preg	plas	pres	skin	insu	mass	pedi	а
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.0000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.24088
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.76023
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.00000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.00000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.00000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.00000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.00000

```
In [6]: diabetes2 = diabetes.copy(deep=True)
    # use replace as pure function:
    diabetes2['plas'] = diabetes['plas'].replace(0,np.NaN)
    diabetes2['pres'] = diabetes['pres'].replace(0,np.NaN)
    diabetes2['skin'] = diabetes['skin'].replace(0,np.NaN)
    diabetes2['insu'] = diabetes['insu'].replace(0,np.NaN)
    diabetes2['mass'] = diabetes['mass'].replace(0,np.NaN)

#use replace as mutator by setting arg inplace=True
    #diabetes2['pedi'].replace(0,np.NaN, inplace=True)
    #diabetes.describe()
    diabetes2.describe()
```

Out[6]:

	preg	plas	pres	skin	insu	mass	pedi	а
count	768.000000	763.000000	733.000000	541.000000	394.000000	757.000000	768.000000	768.0000
mean	3.845052	121.686763	72.405184	29.153420	155.548223	32.457464	0.471876	33.24088
std	3.369578	30.535641	12.382158	10.476982	118.775855	6.924988	0.331329	11.76023
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	0.078000	21.00000
25%	1.000000	99.000000	64.000000	22.000000	76.250000	27.500000	0.243750	24.00000
50%	3.000000	117.000000	72.000000	29.000000	125.000000	32.300000	0.372500	29.00000
75%	6.000000	141.000000	80.000000	36.000000	190.000000	36.600000	0.626250	41.00000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.00000

Out[7]:

	age							insu		pres			skin	
	count	mean	std	min	25%	50%	75%	max	count	mean		75%	max	cour
class														
0	500.0	31.190000	11.667655	21.0	23.0	27.0	37.0	81.0	264.0	130.287879		78.0	122.0	361.
1	268.0	37.067164	10.968254	21.0	28.0	36.0	44.0	70.0	130.0	206.846154		84.0	114.0	180.

2 rows × 64 columns

```
In [8]: %matplotlib inline
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x81fa400>

Out[10]: <matplotlib.text.Text at 0x16241e80>

In [11]: sns.barplot(x="class", y="mass", hue="class", data=plot_diabetes)### This shows the
 BMI for the people with diabetes(class 1) is
 plt.title("BarPlot between the Class and BMI values") ### greater than people wi
 thout diabetes(class 0)

Out[11]: <matplotlib.text.Text at 0x16ad7978>

In [12]: sns.distplot(diabetes.mass,kde=False) ### This shows the mean BMI will be close to
30
plt.title("Histogram showing the BMI values")

Out[12]: <matplotlib.text.Text at 0xdcaeb00>

In [13]: sns.distplot(diabetes.insu,kde=False) ### This shows there are many records with in sulin values as 0
plt.title("Histogram showing the insulin value frequency")

Out[13]: <matplotlib.text.Text at 0x17103400>

Out[14]: <matplotlib.text.Text at 0x1740e5c0>

Regression plot to see the relation between insulin and plasma values


```
In [15]: fig, ax = plt.subplots()
    colors = {0:'red', 1:'blue'}
    grouped = plot_diabetes.groupby('class')
    for key, group in grouped:
        group.plot(ax=ax, kind='scatter', x='mass', y='pres', label=key, color=colors[key])
    plt.title("Scatter plot showing the BMI vs Blood Pressure values for class categories") ### This shows that clearly most of class 0 are on the lower end of the spectrues for plas and insu levels.
```

Out[15]: <matplotlib.text.Text at 0x175d5400>

Scatter plot showing the BMI vs Blood Pressure values for class categories

7 of 8

```
In [16]: plt.hist([plot_diabetes['mass'][plot_diabetes['class']==0],plot_diabetes['mass'][pl
    ot_diabetes['class']==1]], color=['r','b'], alpha=0.5)
    plt.title('Histogram showing the BMI values across class (Red - class 0, Blue - cla
    ss 1)')
```

Out[16]: <matplotlib.text.Text at 0x18ecfe10>

