Statistical Test for Detecting Differences Between Two Time Trends

1. Exploratory Overview of the Experiment

This dataset originates from a vector competence experiment and investigating whether two mosquito species:

1. Aedes aegypti and 2. Aedes albopictus can become infected with and transmit a virus over time.

Experimental Design Summary

- Mosquito species: Aedes aegypti, Aedes albopictus.
- Time points: 3, 7, 14, and 21 days post-infection (dpi)
- Replicates: 2 biological replicates
- Tissue types sampled:
 - Body: assesses infection
 - Legs: assesses dissemination
 - Saliva: assesses transmission
- Virus detection method: qRT-PCR
 - Binary outcome: Pos (positive) or Neg (negative)

Variables of Interest

• Predictors: mosquito species (Mosquito_specie), days post-infection (dpi)

- Outcomes:
 - Infection determined by qRT-PCR result from Body
 - Dissemination determined by qRT-PCR result from Legs
 - Transmission determined by qRT-PCR result from Saliva

Main Research Question

Do the temporal trends of infection, dissemination, and transmission significantly differ between Aedes aegypti and Aedes albopictus?

2. Statistical Modeling

2.1 Logistic Regression for Infection

To evaluate the effect of mosquito species and dpi on infection status, we fit a logistic regression model.

Hypotheses

- Null hypothesis (H_0) : The effect of dpi on infection probability is the same for both species.
- Alternative hypothesis (H_1) : The effect of dpi on infection probability differs between species.

Model Formula

We model the log-odds of infection using the logistic regression model:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 \cdot \text{Species} + \beta_2 \cdot \text{dpi} + \beta_3 \cdot (\text{Species} \times \text{dpi})$$

• where p is the probability of infection (i.e., positive qRT-PCR result for body tissue).

2.2 Mixed-Effects Logistic Regression for Infection

To consider for experimental replication, we extend the previous model by fitting a mixed-effects logistic regression model. This allows us to model infection probability while adjusting for potential variation between biological replicates.

Hypotheses:

- Null hypothesis (H0): The effect of dpi on infection probability is the same for both species, and replicates do not influence the results.
- Alternative hypothesis (H_1) : The effect of dpi on infection probability differs between species, after adjusting for replicate-level variability.

2.3 Bayesian Logistic Regression for Infection

We fit a Bayesian logistic regression model. This approach allows estimating the probability that infection rates differ by species and time, using Bayesian inference.

Hypotheses:

- Null hypothesis (H_0) : There is no effect of dpi, species, or their interaction on infection probability.
- Alternative hypothesis (H_1) : There is an effect of at least one predictor on infection probability, with uncertainty expressed via posterior distributions.