

01-Introduction

Practical Machine Learning (with R)

UC Berkeley Fall 2016

Topics

- Introduction
- Tools and Environment
- Exercise
- Introductions (continued)
- Data Science, Machine Learning and Opportunities
- Machine Learning

INTRODUCTIONS

Me (Personally)

My Skills

- R /Python Programmer (>15 years)
- Machine Learning (>15 years)
- DevOps
- · Researcher and Writer: Machine Learning, Clinical Medicine, Chemistry, Finance

Education

- UC Berkeley → (UT Austin) → UC Santa Barbara → UC Berkeley
- Post-graduate: UC Berkeley, Stanford

Professional Experience

- Lawrence Berkeley National Lab, Allianz, Open Data
- Sept. 2010 Founded Decision Patterns

Professional Interests

- Machine Learning / Statistics
- High Performance Computing

- Applied Statistics and Visualization
- Management of Data Organizations

(Decision Patterns)

Decision Patterns

- Founded 2010
- Bring together complementary skills for data strategy:

Acquisition → Organization → Storage Access → Utilization

- Our Model
 - Service Consulting
 - Not a start-up -- no VC funding
 - Use consulting margins from to niche products

- Our Customers
 - Financial Services, Retail, Entertainment, Food, Communications, Defense, Environmental Sciences

What do I like most about what I do?

THINGS

We get to work on a

- variety of problems,
- with a variety of technologies
- in a variety of fields

What do I like least about what I do?

THINGS

We have to work on a

- variety of problems,
- with a variety of technologies
- in a variety of fields

TOOLS AND ENVIRONMENT

EXERCISE: SET-UP TOOLS AND ENVIRONMENT

- olnstall R → CRAN
- ⇒Install R Studio Desktop™ (IDE)
- ⇒ Install git
- Create github account
 - Send name, student id, github id to: <u>christopher.brown@berkeley.edu</u>

GIT

Git / GITHUB / Source Tree Workflow

What is it?

A source control tool (and **process**) to promote collaborative development

Interfaces

- Github
- Source TreeTM
- R Studio
- command-line

Features

- Distributed
- Each clone contains complete history
- Ability to return to
- Branch in and merging

GIT COMMANDS

- Repo(sitory): location where files are stored. If different from original source: "fork"
- Branch: Copy of code that can be independently worked on.
- checkout: Change to specific branch/commit.
- add: Tell which files to "stage" (accept) commit. Done on a per-file basis.
- commit: accept changes.
- pull: Retrieve changes from remote repository
- push: Send committed change to remote repository
- log: review history of commits
- status: review "staged" status

EXERCISES

- Create github account
- Send account log-in, student id to <u>christopher.brown@berkeley.edu</u>

Clone class repository

git clone https://github.com/csx460

You? DISCUSSION OF INDIVIDUAL GOALS?

You

- Occupation (student/professional)? Employer?
- Experience Using R?
 - None
 - < 1 year</p>
 - < 3 years</p>
 - > 5 years
- How many use R as your principal data.science tool?

- How many use/have used?
 - Python
 - SAS or SPSS
 - Matlab
 - Statistica
 - Spark/Scala
 - Java
 - C/C++
- Ever spend too much time debating which technology fits?

Class / Objectives

Theory

Distinguish fundamental aspects of machine learning

Practice

- Frame problems to make the suitable for solution via machine learning
- Build (train) notation and Johnson, Kjellollaborate in a group using learning modes pringer Science+Business tools for collaborative/social 2013 programming
- Evaluate (score) machine learning models

algorithms

- Deploy machine learning models to operations
- Generate high quality, graphical and textual results

Text

Machine Learning with R, 2nd Edition

ISBN: 978-1-78439-390-8

Lantz, Brett

Packt Publishing

2015

Recommended Text

Applied Predictive Modeling

ISBN-13: 978-1461468486

ISBN-10: 1461468485

Kuhn, Max and Johnson, Kjell

Springer Science+Business

2013

Additional Resources

Texts (not used in this class)

The Art of R Programming by Norm Matloff

Elements of Statistical Learning by Hastie, Friedman, Tibshirani

Data Mining Concepts and Techniques by Han, Kamber, Pei

Online

- CRAN
 - Packages
 - Task Views
- Metacran (r-pkg.org)
- Stackoverflow.com
- r-bloggers.com
- H. Wickham Online Resources:
 - Advanced R Programming
 - R for Data Science
- Github

CONTACTS / COORDINATES

- Christopher Brown
 christopher.brown@berkeley.edu
 checked once / day (mornings)
 phone # (provided in class)
- Class Website
 - https://github.com/CSX460
- Class group (invitation only)
 - https://groups.google.com/forum/#!forum/csx460

GRADING

>~10 Weekly Exercises (80%)

- Exercises are Rmarkdown in the github
- Due at the beginning of class each week
- Submitted via github commits
 - Please email me your github login
 - ! Github commits are timestamped
- Answers reviewed in class
- Work on them in class, time-permitting
- Class Participation (20%)
- Attendance is Mandatory
 - no unexcused absences.

** PARTICIPATE **

RMARKDOWN/KNITR

RMARKDOWN

What is it?

- Simple text mark-up syntax
- that supports the markdown standard
- And allows incorporation of R analysis and graphical output

Are assignments will be done in Markdown ...

 Simply put your answers in the space provided

→ Demonstration

ML OVERVIEW

EXAMPLE OF ML ALGORITHM(S)

- Spam Filter
- handwriting recognition (svm)
- Traffic engineering (lights)
- Weather prediction
- Sentiment analysis (social media)
- Netflix Recommender
- Fraud detection (Visa)
- Imaging processing
- Intrution detection
- Self-driving cars

Data Science Venn Diagram

Ref. http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

MACHINE INTELLIGENCE 2.0

SHIVONZILIS.COM/MACHINEINTELLIGENCE

BREAKDOWN OF CODE TASKS

ELITE CODING

USEFUL R PACKAGES

- > install.packages("package-name")
- Tables: data.tables, tibble
- Data Manipulation (tidyverse)
 - Pipe operators: magrittr (pipeR, backpipe) (shiny)
 - Tables: dplyr, tidyr
 - Read/Writing: readr, readxl, foreign
- Visualization: ggplot2, ggvis
- Reporting: rmarkdown/knitr, shiny
- ML Framework: caret (Classification and Regression Training)

EXERCISES IN CLASS

QUESTION 1

What is machine learning?

A formal process for building a model

QUESTION 2

What is a model?

a function that estimates a response associated with (a set of) known predictors

$$\widehat{y} = f(\overrightarrow{x})$$

QUESTION 3: WHAT ARE THE PROPERTIES OF f

- Should be easy* to evaluate
- Takes a one or more values of inputs
- Yields a single output value for each input

Output, \hat{y} , should be "close to" observed values, y:

$$\widehat{\mathbf{y}} \sim \mathbf{y}$$

^{*} Computational cheap/efficient

QUESTION 4

How do we find f?

QUESTION 4

How do we use f?

