

ARJUNA NEET BATCH

KINEMATICS

LECTURE - 03

To Days goal

* Question on spect velocity

1 feel of acceleration.

Speed => (Howfast) => V or |V | mod of velocity

tve or ve of squar ax velocity

direction of squar ax velocity

circulor motion # (distance) = RO 1= 10×15 Small V= 10m/s displacement) = 2R sin 2 Vary small

A object is moving with constant velocity then what about speed?

(Velocity = How Fast/where)

velocity (ost"

must be 1-D motion without change in dist()

uniform Motion (Uniform velocity) (T)

Avg velocity = Avg speed of velocity is (ost (T))

ARJUNA

. .

If object is moving with constant speed then what about Velocity?

Cost" Speed dir" is not given

Anys =) then velocity may be cost"
or Variable

If object is moving with variable then what about Speed?

velocity velocity-speed dixn

9f velocity is Variable then Speed may or may not variable

ARJUNA

speed

Avy speed = total distance total time balways Correct

 $A \longrightarrow V_1, t_1 \longrightarrow V_2, t_1 \longrightarrow V_3, t_1 \longrightarrow V_3, t_1 \longrightarrow V_2$ three equal time intraval. Avg speed = $\frac{\chi_1 + \chi_2 + \chi_3}{t_1 + t_1 + t_1} = \frac{(\chi_1 + \chi_2 + \chi_3) \chi_1}{3 \chi_1}$

$$\mathcal{A}_1, V_1 \longrightarrow \mathcal{B}$$
 $\mathcal{A}_2, V_2 \longrightarrow \mathcal{B}$

Avg speed =
$$\frac{\chi_1 + \chi_2}{t_1 + t_2} = \frac{\chi_1 + \chi_2}{\chi_1 + \chi_2}$$

If equal distance intraval.
$$(x_1 - x_2 - x)$$

$$Avg speed = \frac{2x}{x(\frac{1}{v_1} + \frac{1}{v_2})} = \frac{2v_1v_2}{v_1 + v_2}$$

Ram is moving with speed 20 m/s upto 2 rd of total Journy and then it moves 60 m/s for the remaining part then find Avy speed.

 $\frac{2\pi}{3}; 20\pi/s \rightarrow \frac{1}{3}, 60\pi/s \rightarrow$

Aysire $\frac{1}{\frac{6+1}{180}} = \frac{\chi}{\frac{80}{7}} = \frac{1}{\frac{3\chi}{3}} = \frac{1}{\frac{3\chi}{$

Object is moving on circular path with constant speed then find Average Velocity when it completed half revolution.

A $\forall i$ $\forall (east)$

(change in velocity) AB
= VB - Vi

$$= V_{B} - V_{i}$$

$$= -10 - (20) = -30 \,\text{m/s}.$$

V=-10m/5

$$= V_B - V_A$$

= $10 - 20 = -10 \text{m/s}$

30 Km/h

$$Avy speed = \frac{2\sqrt{1/2}}{\sqrt{1+1/2}} = \frac{2\times 30\times 60}{30}$$

A truck moves a distance of 50 km. It covers first half to the distance at speed of 200 m/s and second half at speed v. If average speed of truck is 100 m/s then value of v is

$$V_{AVY} = \frac{V_1 V_2 \times 2}{V_1 + V_2}$$
 $100 = 2 \times 200 \times V_2$
 $2 \times 200 \times V_2$

$$4V_2 = 200 + V_2$$

$$3V_2 = 200$$

$$V_2 = 200$$

A body covers first one-third of the distance with velocity 10 ms⁻¹ in same direction, the second one-third with a velocity 20 ms⁻¹ and last one-third with a velocity of 30 ms⁻¹. The average velocity of body is

(A) 17.8 ms⁻¹

(B) 16.4 ms⁻¹

(C) 18.3 ms⁻¹

(D) 20.2 ms⁻¹

$$\frac{37}{10} + \frac{37}{20} + \frac{3}{30} = \frac{3}{10} + \frac{1}{20} + \frac{1}{30}$$

WEED.

A bus travels its half distance of journey with speed 5 m/s. It covers remaining distance in two equal time intervals with speed 15 m/s_v Calculate average speed of the bus for the whole journey.

Position of object $x = t^2 + 6t + 5$ then find speed / Inst. Velocity at

$$(1) t=0$$

$$(2) t = 1 sec$$

$$(3) t = 3 sec$$

$$\sqrt{\frac{1}{9}} = \frac{1}{10} = \frac{1}{10$$

$$V_{t=0} = 2x0+6=6m/s$$

$$V_{t=15} = 2x1 + 6 = 8m/5$$

$$V_{t=15} = 5x1+6=8m/2$$
 $V_{t=3} = 5x3+6 = 15m/2$

ACCELERATION

The rate of change in velocity due to change in speed or change in direction or change in both is called acceleration.

$$t=0$$
 $t=1s$ $t=2s$ $t=3s$
 $v=0$ $v=10m/s$ $v=15m/s$ $v=18$

At time 't'

$$0 \qquad V = 100 \text{m/s}$$

$$\alpha = 2 \text{m/s}^2$$

The rate of change in velocity due to change in speed or change in direction or change in both is called acceleration.

Which of the following is may correct

Which of the following is possible:

(a)
$$\vec{V} = \cos t^n$$
 $\vec{a} = \cos t^n$

(b)
$$V^{\uparrow}$$
 $a = \cos t^n$

(c)
$$V \uparrow$$
 $a = 0$

(d)
$$V^{\uparrow}$$
 $a \downarrow$

(f)
$$V = \cos t^n$$
 $a \uparrow$

(g)
$$V = \cos t^n$$
 $a = \cos t^n$

$$\frac{d\vec{V}}{dt} = \frac{d\overset{\rightarrow}{|V|}}{dt} = \frac{d\overset{\rightarrow$$

× V

a = 0	a= (ost	a-vorriable

thanks for watching

