- 1. Sejam as funções booleana apresentadas a seguir. Apresentar a expressão booleana logicamente equivalente a cada uma na forma canônica da soma-de-produtos.
 - a. $f(A, B, C) = A.B.(\bar{B} + C) + A.\bar{C} + B$
 - b. $f(A,B,C,D) = A + B + \overline{A}.D + \overline{A.B}$
 - c. $f(A, B, C, D) = A.B.C + \overline{A.C}.B + D$
- 2. Você precisa montar o circuito digital para controlar uma linha de montagem com quatro equipamentos, A, B, C e D. A linha se mantém funcionando mesmo quando os equipamentos A e C param simultaneamente; bem como se mantém funcionando quando somente o equipamento D deixa de funcionar. Nas demais condições a linha para de funcionar. Projetar o circuito que produz o alarme quando a linha para de funcionar.
- 3. Uma máquina digital de compras opera com as seguintes moedas de troco: R\$ 1,00; R\$ 0,50; e R\$ 0,25. A máquina aceita somente notas de R\$ 10,00. Ao inserir a nota o usuário pode selecionar uma combinação de três produtos: A, B e C; e pressionar a tecla <*enter*>. A tabela abaixo ilustra a configuração de troco:

Produtos	Quantidade de moedas		
	R\$1,00	R\$0,50	R\$0,25
A ou B	3	1	1
A e B,	2	1	1
A e C,			
С			
BeC	3	0	1
Todos	2	0	0

Desenhar um circuito mínimo para gerar as saídas adequadas na máquina de compras.

- 4. Minimizar as expressões apresentadas na questão 1 utilizando o Mapa K e apresentar os circuitos utilizando portas AND, OR e INVERSORES.
- 5. Implementar os circuitos da questão anterior utilizando somente portas NAND.