

	Preface	xv
1.	EXPERIMENTS AND GENERALIZED CAUSAL INFERENCE	1
	Experiments and Causation	3
	Defining Cause, Effect, and Causal Relationships Causation, Correlation, and Confounds Manipulable and Nonmanipulable Causes Causal Description and Causal Explanation	3 7 7 9
	Modern Descriptions of Experiments	12
	Randomized Experiment Quasi-Experiment Natural Experiment Nonexperimental Designs	13 13 17 18
	Experiments and the Generalization of Causal Connections	18
	Most Experiments Are Highly Local But Have General Aspirations Construct Validity: Causal Generalization as Representation External Validity: Causal Generalization as Extrapolation Approaches to Making Causal Generalizations	18 20 21 22
	Experiments and Metascience	26
ř	The Kuhnian Critique Modern Social Psychological Critiques Science and Trust Implications for Experiments	27 28 28 29
	A World Without Experiments or Causes?	31

2.	STATISTICAL CONCLUSION VALIDITY AND	
	INTERNAL VALIDITY	33
	Validity	34
	A Validity Typology Threats to Validity	37 39
	Statistical Conclusion Validity	42
	Reporting Results of Statistical Tests of Covariation Threats to Statistical Conclusion Validity The Problem of Accepting the Null Hypothesis	42 45 52
	Internal Validity	53
	Threats to Internal Validity Estimating Internal Validity in Randomized Experiments and Quasi-Experiments	54 61
		01
	The Relationship Between Internal Validity and Statistical Conclusion Validity	63
3.	CONSTRUCT VALIDITY AND EXTERNAL	
	VALIDITY	64
	Construct Validity	64
	Why Construct Inferences Are a Problem	66
	Assessment of Sampling Particulars	69
	Threats to Construct Validity Construct Validity, Preexperimental Tailoring, and	72
	Postexperimental Specification	81
	External Validity	83
	Threats to External Validity	86
	Constancy of Effect Size Versus Constancy of Causal Direction	90
	Random Sampling and External Validity	91
	Purposive Sampling and External Validity	92
	More on Relationships, Tradeoffs, and Priorities	93
	The Relationship Between Construct Validity and External	0.2
	Validity The Relationship Between Internal Validity and Construct	93
	Validity	95
	Tradeoffs and Priorities	96
	Summary	102

4.	QUASI-EXPERIMENTAL DESIGNS THAT EITHER LACK A CONTROL GROUP OR LACK PRETEST	
	OBSERVATIONS ON THE OUTCOME	103
	The Logic of Quasi-Experimentation in Brief	104
	Designs Without Control Groups	106
	The One-Group Posttest-Only Design The One-Group Pretest-Posttest Design The Removed-Treatment Design The Repeated-Treatment Design	106 108 111 113
	Designs That Use a Control Group But No Pretest	115
	Posttest-Only Design With Nonequivalent Groups Improving Designs Without Control Groups by Constructing	115
	Contrasts Other Than With Independent Control Groups The Case-Control Design	125 128
	Conclusion	134
5.	QUASI-EXPERIMENTAL DESIGNS THAT USE BOTH CONTROL GROUPS AND PRETESTS	135
	Designs That Use Both Control Groups and Pretests	136
	The Untreated Control Group Design With Dependent Pretest and Posttest Samples	136
	Matching Through Cohort Controls	148
	Designs That Combine Many Design Elements	153
	Untreated Matched Controls With Multiple Pretests and Posttests, Nonequivalent Dependent Variables, and	
	Removed and Repeated Treatments	153
	Combining Switching Replications With a Nonequivalent Control Group Design	154
	An Untreated Control Group With a Double Pretest and Both Independent and Dependent Samples	154
	The Elements of Design	156
	Assignment	156
	Measurement	158
	Comparison Groups Treatment	159 160

	Conclusion	161
	Appendix 5.1: Important Developments in Analyzing Data From Designs With Nonequivalent Groups	1.61
	Propensity Scores and Hidden Bias	161 162
	Selection Bias Modeling	162
	Latent Variable Structural Equation Modeling	169
6	. QUASI-EXPERIMENTS: INTERRUPTED	
	TIME-SERIES DESIGNS	171
	What Is a Time Series?	172
	Describing Types of Effects	172
	Brief Comments on Analysis	174
	Simple Interrupted Time Series	175
	A Change in Intercept	175
	A Change in Slope Weak and Delayed Effects	176
	The Usual Threats to Validity	178 179
	Adding Other Design Features to the Basic Interrupted Time Series	
		181
	Adding a Nonequivalent No-Treatment Control Group Time Series	100
	Adding Nonequivalent Dependent Variables	182 184
	Removing the Treatment at a Known Time	188
	Adding Multiple Replications	190
	Adding Switching Replications	192
	Some Frequent Problems with Interrupted Time-Series	
	Designs	195
	Gradual Rather Than Abrupt Interventions	196
	Delayed Causation Short Time Series	197
	Limitations of Much Archival Data	198 203
	A Comment on Concomitant Time Series	205
	Conclusion	206
7.	REGRESSION DISCONTINUITY DESIGNS	207
*	The Basics of Regression Discontinuity	208
	The Basic Structure	200

	Examples of Regression Discontinuity Designs Structural Requirements of the Design Variations on the Basic Design	212 216 219
	Theory of the Regression Discontinuity Design	220
	Regression Discontinuities as Treatment Effects in the Randomized Experiment Regression Discontinuity as a Complete Model of the	221
	Selection Process	224
	Adherence to the Cutoff	227
	Overrides of the Cutoff	227
	Crossovers and Attrition	228
	Fuzzy Regression Discontinuity	229
	Threats to Validity	229
	Regression Discontinuity and the Interrupted Time Series Statistical Conclusion Validity and Misspecification of	229
	Functional Form	230
	Internal Validity	237
	Combining Regression Discontinuity and Randomized Experiments	238
	Combining Regression Discontinuity and Quasi-Experiments	241
	Regression Discontinuity—Experiment or Quasi-Experiment?	242
	Appendix 7.1: The Logic of Statistical Proofs about Regression Discontinuity	243
3.	RANDOMIZED EXPERIMENTS: RATIONALE, DESIGNS, AND CONDITIONS CONDUCIVE TO DOING THEM	246
	The Theory of Random Assignment	247
	What Is Random Assignment?	248
	Why Randomization Works	248
	Random Assignment and Units of Randomization	253
	The Limited Reach of Random Assignment	256
	Some Designs Used with Random Assignment	257
	The Basic Design	257
	The Pretest-Posttest Control Group Design	261
	Alternative-Treatments Design with Pretest	261

	Factorial Designs Longitudinal Designs	262 263 266 268
	Crossover Designs	
	Conditions Most Conducive to Random Assignment	269
	When Demand Outstrips Supply When an Innovation Cannot Be Delivered to All Units at Once When Experimental Units Can Be Temporally Isolated: The	269 270
	Equivalent-Time-Samples Design When Experimental Units Are Spatially Separated or Interunit	270
	Communication Is Low When Change Is Mandated and Solutions Are Acknowledged	271272
	to Be Unknown When a Tie Can Be Broken or Ambiguity About Need Can Be Resolved	273
	When Some Persons Express No Preference Among Alternatives	273
	When You Can Create Your Own Organization	274
	When You Have Control over Experimental Units When Lotteries Are Expected	274 275
	When Random Assignment Is Not Feasible or Desirable	276
	Discussion	277
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT	277279
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT	
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT Ethical and Legal Issues with Experiments	279
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT	279 280
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT Ethical and Legal Issues with Experiments The Ethics of Experimentation Withholding a Potentially Effective Treatment The Ethics of Random Assignment	279 280 281
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT Ethical and Legal Issues with Experiments The Ethics of Experimentation Withholding a Potentially Effective Treatment	279 280 281 283
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT Ethical and Legal Issues with Experiments The Ethics of Experimentation Withholding a Potentially Effective Treatment The Ethics of Random Assignment Discontinuing Experiments for Ethical Reasons	279 280 281 283 286 289
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT Ethical and Legal Issues with Experiments The Ethics of Experimentation Withholding a Potentially Effective Treatment The Ethics of Random Assignment Discontinuing Experiments for Ethical Reasons Legal Problems in Experiments Recruiting Participants to Be in the Experiment Improving the Random Assignment Process	279 280 281 283 286 289 290 292
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT Ethical and Legal Issues with Experiments The Ethics of Experimentation Withholding a Potentially Effective Treatment The Ethics of Random Assignment Discontinuing Experiments for Ethical Reasons Legal Problems in Experiments Recruiting Participants to Be in the Experiment Improving the Random Assignment Process Methods of Randomization	279 280 281 283 286 289 290 292 294
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT Ethical and Legal Issues with Experiments The Ethics of Experimentation Withholding a Potentially Effective Treatment The Ethics of Random Assignment Discontinuing Experiments for Ethical Reasons Legal Problems in Experiments Recruiting Participants to Be in the Experiment Improving the Random Assignment Process Methods of Randomization What to Do If Pretest Means Differ	279 280 281 283 286 289 290 292 294 294 303
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT Ethical and Legal Issues with Experiments The Ethics of Experimentation Withholding a Potentially Effective Treatment The Ethics of Random Assignment Discontinuing Experiments for Ethical Reasons Legal Problems in Experiments Recruiting Participants to Be in the Experiment Improving the Random Assignment Process Methods of Randomization What to Do If Pretest Means Differ Matching and Stratifying	279 280 281 283 286 289 290 292 294 294 303 304
9.	PRACTICAL PROBLEMS 1: ETHICS, PARTICIPANT RECRUITMENT, AND RANDOM ASSIGNMENT Ethical and Legal Issues with Experiments The Ethics of Experimentation Withholding a Potentially Effective Treatment The Ethics of Random Assignment Discontinuing Experiments for Ethical Reasons Legal Problems in Experiments Recruiting Participants to Be in the Experiment Improving the Random Assignment Process Methods of Randomization What to Do If Pretest Means Differ	279 280 281 283 286 289 290 292 294 294 303

	Appendix 9.1: Random Assignment by Computer SPSS and SAS World Wide Web Excel	311 311 313 313
10.	PRACTICAL PROBLEMS 2: TREATMENT IMPLEMENTATION AND ATTRITION	314
	Problems Related to Treatment Implementation	315
	Inducing and Measuring Implementation Analyses Taking Implementation into Account	315 320
	Post-Assignment Attrition	323
	Defining the Attrition Problem	323
	Preventing Attrition Analyses of Attrition	324 334
	Discussion	340
11.	GENERALIZED CAUSAL INFERENCE: A GROUNDED THEORY	341
	The Received View of Generalized Causal Inference:	2.42
	Formal Sampling	342
	Formal Sampling of Causes and Effects Formal Sampling of Persons and Settings	344 346
	Summary	348
	A Grounded Theory of Generalized Causal Inference	348
	Exemplars of How Scientists Make Generalizations	349
	Five Principles of Generalized Causal Inferences	353 354
	The Use of Purposive Sampling Strategies Applying the Five Principles to Construct and External Validity	356
	Should Experimenters Apply These Principles to All Studies?	371
	Prospective and Retrospective Uses of These Principles	372
	Discussion	373
12.	GENERALIZED CAUSAL INFERENCE: METHOD	S
	FOR SINGLE STUDIES	374
	Purposive Sampling and Generalized Causal Inference	374
	Purposive Sampling of Typical Instances	375
	Purposive Sampling of Heterogeneous Instances	376

	Purposive Sampling and the First Four Principles Statistical Methods for Generalizing from Purposive Samples	378 386
	Methods for Studying Causal Explanation	389
	Qualitative Methods Statistical Models of Causal Explanation Experiments That Manipulate Explanations	389 392 414
	Conclusion	415
13.	GENERALIZED CAUSAL INFERENCE: METHODS	5
	FOR MULTIPLE STUDIES	417
	Generalizing from Single Versus Multiple Studies	418
	Multistudy Programs of Research	418
	Phased Models of Increasingly Generalizable Studies Directed Programs of Experiments	419 420
	Narrative Reviews of Existing Research	421
	Narrative Reviews of Experiments Narrative Reviews Combining Experimental and	422
	Nonexperimental Research Problems with Narrative Reviews	423 423
	Quantitative Reviews of Existing Research	425
	The Basics of Meta-Analysis Meta-Analysis and the Five Principles of Generalized Causal	426
	Inference Discussion of Meta-Analysis	435 445
	Appendix 13.1: Threats to the Validity of Meta-Analyses	446
	Threats to Inferences About the Existence of a Relationship Between Treatment and Outcome	447
	Threats to Inferences About the Causal Relationship Between Treatment and Outcome	450
	Threats to Inferences About the Constructs Represented in Meta-Analyses	453
	Threats to Inferences About External Validity in Meta-Analyses	454
14.	A CRITICAL ASSESSMENT OF OUR	
	ASSUMPTIONS	456
	Causation and Experimentation	453
	Causal Arrows and Pretzels	453
	Epistemological Criticisms of Experiments Neglected Ancillary Questions	459 461

Validity	462
Objections to Internal Validity	462
Objections Concerning the Discrimination Between Construct	
Validity and External Validity	466
Objections About the Completeness of the Typology	473
Objections Concerning the Nature of Validity	475
Quasi-Experimentation	484
Criteria for Ruling Out Threats: The Centrality of Fuzzy	
Plausibility	484
Pattern Matching as a Problematic Criterion	485
The Excuse Not to Do a Randomized Experiment	486
Randomized Experiments	488
Experiments Cannot Be Successfully Implemented	488
Experimentation Needs Strong Theory and Standardized	
Treatment Implementation	489
Experiments Entail Tradeoffs Not Worth Making	490
Experiments Assume an Invalid Model of Research Utilization	493
The Conditions of Experimentation Differ from the Conditions	
of Policy Implementation	495
Imposing Treatments Is Fundamentally Flawed Compared with	
Encouraging the Growth of Local Solutions to Problems	497
Causal Generalization: An Overly Complicated Theory?	498
Nonexperimental Alternatives	499
Intensive Qualitative Case Studies	500
Theory-Based Evaluations	501
Weaker Quasi-Experiments	502
Statistical Controls	503
Conclusion	504
Glossary	505
References	514
Actiones	314
Name Index	593
Subject Index	609

CD Enclosed

Designing Experiments Second Edition and Analyzing Data

A Model Comparison Perspective

Scott E. Maxwell Harold D. Delaney

TLFeBOOK

	Preface	XVII
I	CONCEPTUAL BASES OF EXPERIMENTAL DESIG AND ANALYSIS	N
1	The Logic of Experimental Design	3
	The Traditional View of Science	3
	Responses to the Criticisms of the Idea of Pure Science	5
	Assumptions	5
	Modern Philosophy of Science	10 22
	Threats to the Validity of Inferences from Experiments	22 23
	Types of Validity Conceptualizing and Controlling for Threats to Validity	30
	Exercises	32
2	Introduction to the Fisher Tradition	34
4	"Interpretation and its Reasoned Basis"	35
	A Discrete Probability Example	37
	Randomization Test	41
	Of Hypotheses and p Values: Fisher Versus Neyman–Pearson	47
	Toward Tests Based on Distributional Assumptions	49
	Statistical Tests with Convenience Samples	49
	The Assumption of Normality	50
	Overview of Experimental Designs to be Considered	56
	Exercises	59
II	MODEL COMPARISONS FOR BETWEEN-SUBJECT	rs designs
3	Introduction to Model Comparisons: One-Way	
	Between-Subjects Designs	67
	The General Linear Model	69
	One-Group Situation	71
	Basics of Models	71
	Proof That \bar{Y} Is the Least-Squares Estimate of μ (Optional)	73
	Development of the General Form of the Test Statistic	75 78
	Numerical Example Relationship of Models and Hymotheses	/8 80
	Relationship of Models and Hypotheses Two-Group Situation	80
	Development in Terms of Models	80
	Development in terms of violets	
		vii

	Alternative Development and Identification with Traditional Terminology	83
	Tests of Replication (Optional)	85
	The General Case of One-Way Designs	88
	Formulation in Terms of Models	88
	Numerical Example A Model in Terms of Effects	91
		93
	On Tests of Significance and Measures of Effect	98
	Measures of Effect Measures of Effect Size	100
		101
	Measures of Association Strength	104 107
	Alternative Representations of Effects	1107
	Statistical Assumptions Implications for Expected Values	110
	Robustness of ANOVA	110
	Checking for Normality and Homogeneity of Variance	114
	Transformations	117
	Power of the <i>F</i> Test: One-Way ANOVA	120
	Determining Sample Size Using d and Table 3.10	123
	Pilot Data and Observed Power	123
	Exercises	124
	Extension: Robust Methods for One-Way Between-Subject Designs	129
	Parametric Modifications	131
	Nonparametric Approaches	136
	Choosing Between Parametric and Nonparametric Tests	137
	Two Other Approaches (Optional)	143
	Why Does the Usual F Test Falter with Unequal n s When Population	140
	Variances Are Unequal? (Optional)	145
	Exercises	147
	2.	
4	Individual Comparisons of Means	149
	A Model Comparison Approach for Testing Individual Comparisons	150
	Preview of Individual Comparisons	150
	Relationship to Model Comparisons	150
	Derivation of Parameter Estimates and Sum of Squared Errors (Optional)	152
	Expression of F Statistic	153
	Numerical Example	155
	Complex Comparisons	157
	Models Perspective	157
	Numerical Example	162
	The t Test Formulation of Hypothesis Testing for Contrasts	163
	Practical Implications	164
	Unequal Population Variances	165
	Numerical Example	168
	Measures of Effect	169
	Measures of Effect Size	170
	Measures of Association Strength	173
	Testing More Than One Contrast	177
	How Many Contrasts Should Be Tested?	177
	Linear Independence of Contrasts	178
	Orthogonality of Contrasts	179

Example of Correlation Between Nonorthogonal Contrasts (<i>Optional</i>) Another Look at Nonorthogonal Contrasts: Venn Diagrams	
Exercises	
Extension: Derivation of Sum of Squares for a Contrast	
Testing Several Contrasts: The Multiple-Comparison	
Problem	
Multiple Comparisons	
Experimentwise and Per-Comparison Error Rates	
Simultaneous Confidence Intervals	
Levels of Strength of Inference	
Types of Contrasts	
Overview of Techniques	
Planned Versus Post Hoc Contrasts	
Multiple Planned Comparisons	
Bonferroni Adjustment	
Modification of the Bonferroni Approach With Unequal Variances	
Numerical Example	
Pairwise Comparisons	
Tukey's WSD Procedure	
Modifications of Tukey's WSD	
Numerical Example	
Post Hoc Complex Comparisons	
Proof That $SS_{\text{max}} = SS_{\text{B}}$	
Comparison of Scheffé to Bonferroni and Tukey	
Modifications of Scheffé's Method	
Numerical Example	
Other Multiple-Comparison Procedures	
Dunnett's Procedure for Comparisons with a Control	
Numerical Example	
Procedures for Comparisons with the Best	
Numerical Example	
Fisher's LSD (Protected t)	
False Discovery Rate	
Choosing an Appropriate Procedure	
Exercises	
Trend Analysis	
Quantitative Factors	
Statistical Treatment of Trend Analysis	
The Slope Parameter	
Numerical Example	
Hypothesis Test of Slope Parameter	
Confidence Interval and Other Effect Size Measures for Slope Parameter	
Numerical Example	
Testing for Nonlinearity	
Numerical Example	
Testing Individual Higher Order Trends	
Contrast Coefficients for Higher Order Trends Numerical Example	

	Further Examination of Nonlinear Trends	263
	Trend Analysis with Unequal Sample Sizes	267
	Concluding Comments	269
	Exercises	269
7	Two-Way Between-Subjects Factorial Designs	275
	The 2×2 Design	275
	The Concept of Interaction	277
	Additional Perspectives on the Interaction	278
	A Model Comparison Approach to the General Two-Factor Design	280
	Alternate Form of Full Model	280
	Comparison of Models for Hypothesis Testing	284
	Numerical Example	290
	Family wise Control of Alpha Level	291
	Measures of Effect	291
	Follow-Up Tests	297
	Further Investigation of Main Effects	297
	Marginal Mean Comparisons Without Homogeneity Assumption	
	(Optional)	300
	Further Investigation of an Interaction—Simple Effects	301
	An Alternative Method for Investigating an Interaction—Interaction	
	Contrasts	309
	Statistical Power	317
	Advantages of Factorial Designs	319
	Nonorthogonal Designs	320
	Design Considerations	321
	Relationship Between Design and Analysis	321
	Analysis of the 2×2 Nonorthogonal Design	322
	Test of the Interaction	322
	Unweighted Marginal Means and Type III Sum of Squares	324
	Unweighted Versus Weighted Marginal Means	325
	Type II Sum of Squares	327
	Summary of Three Types of Sum of Squares	328
	Analysis of the General $a \times b$ Nonorthogonal Design	329
	Test of the Interaction	329
	Test of Unweighted Marginal Means Test of Marginal Magnetin and Additive Model	330 331
	Test of Marginal Means in an Additive Model	331
	Test of Weighted Marginal Means Summary of Types of Sum of Squares	333
	Which Type of Sum of Squares Is Best?	333 334
	A Note on Statistical Packages for Analyzing Nonorthogonal Designs	335
	Numerical Example	337
	Final Remarks	343
	Exercises	343
8	Higher Order Petryson Subjects Factorial Designs	254
σ	Higher Order Between-Subjects Factorial Designs The $2 \times 2 \times 2$ Design	354 354
	The Meaning of Main Effects	354 355
	The Meaning of Two-Way Interactions	356
	THE INCUMENTAL OF THE STATE HINDING WIND	220

	The Meaning of the Three-Way Interaction	357
	Graphical Depiction	359
	Further Consideration of the Three-Way Interaction	361
	Summary of Meaning of Effects	366
	The General $A \times B \times C$ Design	367
	The Full Model	367
	Formulation of Restricted Models	368
	Numerical Example	372
	Implications of a Three-Way Interaction	374
	General Guideline for Analyzing Effects	376
	Summary of Results	381
	Graphical Depiction of Data	382
	Confidence Intervals for Single Degree of Freedom Effects	383
	Other Questions of Potential Interest	386
	Tests to Be Performed When the Three-Way Interaction	
	Is Nonsignificant	387
	Nonorthogonal Designs	389
	Higher Order Designs	391
	Exercises	392
9	Designs With Covariates: ANCOVA and Blocking	399
	ANCOVA	401
	The Logic of ANCOVA	401
	Linear Models for ANCOVA	403
	Two Consequences of Using ANCOVA	414
	Assumptions in ANCOVA	420
	Numerical Example	428
	Measures of Effect	431
	Comparisons Among Adjusted Group Means	434
	Generalizations of the ANCOVA Model	438
		439
	Choosing Covariates in Randomized Designs	441
	Sample Size Planning and Power Analysis in ANCOVA	
	Alternate Methods of Analyzing Designs with Concomitant Variables	443
	ANOVA of Residuals	444
	Gain Scores	444
	Blocking	448
	Exercises	453
	Extension: Heterogeneity of Regression	456
	Test for Heterogeneity of Regression	456
	Accommodating Heterogeneity of Regression	460
10	Designs with Random or Nested Factors	469
	Designs with Random Factors	469
	Introduction to Random Effects	469
	One-Factor Case	471
	Two-Factor Case	474
	Numerical Example	481
	Alternative Tests and Design Considerations with Random Factors	483
	Follow-up Tests and Confidence Intervals	484

	Measures of Association Strength	485
	Using Statistical Computer Programs to Analyze Designs	
	with Random Factors	489
	Determining Power in Designs with Random Factors	490
	Designs with Nested Factors	494
	Introduction to Nested Factors	494
	Example	499
	Models and Tests	499
	Degrees of Freedom	504
	Statistical Assumptions and Related Issues	506
	Follow-up Tests and Confidence Intervals	507
	Strength of Association in Nested Designs	508
	Using Statistical Computer Programs to Analyze Nested Designs	509
	Selection of Error Terms When Nested Factors Are Present	510
	Complications That Arise in More Complex Designs	512
	Exercises	517
Ш	MODEL COMPARISONS FOR DESIGNS INVOLVING	
	WITHIN-SUBJECTS FACTORS	
44		
11	One-Way Within-Subjects Designs: Univariate Approach	525
	Prototypical Within-Subjects Designs	525
	Advantages of Within-Subjects Designs	527
	Analysis of Repeated Measures Designs with Two Levels	527
	The Problem of Correlated Errors	527
	Reformulation of Model	529
	Analysis of Within-Subjects Designs with More Than Two Levels	531
	Traditional Univariate (Mixed-Model) Approach	532
	Comparison of Full and Restricted Models	533
	Estimation of Parameters: Numerical Example	534
	Assumptions in the Traditional Univariate (Mixed-Model) Approach	539
	Homogeneity, Sphericity, and Compound Symmetry	540
	Numerical Example	541
	Adjusted Univariate Tests	542
	Lower-Bound Adjustment	543
	ê Adjustment	543
	$\bar{\varepsilon}$ Adjustment	544
	Summary of Four Mixed-Model Approaches	545
	Measures of Effect	547
	Comparisons Among Individual Means	550
	Confidence Intervals for Comparisons	551
	Confidence Intervals with Pooled and Separate Variances (Optional)	553
	Considerations in Designing Within-Subjects Experiments	555
	Order Effects	556
	Differential Carryover Effects	556
	Controlling for Order Effects with More Than Two Levels:	
	Latin Square Designs	557

	Relative Advantages of Between-Subjects and Within-Subjects Designs	561
	Intraclass Correlations for Assessing Reliability	563
	Exercises	567
12	Higher-Order Designs with Within-Subjects Factors:	
	Univariate Approach	573
	Designs with Two Within-Subjects Factors	573
	Omnibus Tests	574
	Numerical Example	577
	Further Investigation of Main Effects	579
	Further Investigation of an Interaction—Simple Effects	581
	Interaction Contrasts	582
	Statistical Packages and Pooled Error Terms Versus Separate	
	Error Terms	583
	Assumptions	584
	Adjusted Univariate Tests	588
	Confidence Intervals	590
	Quasi-F Ratios	590
	One Within-Subjects Factor and One Between-Subjects Factor	
	in the Same Design	592
	Omnibus Tests	593
	Further Investigation of Main Effects	599
	Further Investigation of an Interaction—Simple Effects	601
	Interaction Contrasts	605
	Assumptions	607
	Adjusted Univariate Tests	609
	More Complex Designs	610
	Designs with Additional Factors	610
	Latin Square Designs	611
	Exercises	616
13	One-Way Within-Subjects Designs: Multivariate Approach	624
	A Brief Review of Analysis for Designs with Two Levels	624
	Multivariate Analysis of Within-Subjects Designs with Three Levels	626
	Need for Multiple D Variables	626
	Full and Restricted Models	627
	The Relationship Between D_1 and D_2	629
	Matrix Formulation and Determinants	630
	Test Statistic	632
	Multivariate Analysis of Within-Subjects Designs with a Levels	633
	Forming D Variables	633
	Test Statistic	635
	Numerical Example	635
	Measures of Effect	638
	Choosing an Appropriate Sample Size	639
	Choice of D Variables	645
	Tests of Individual Contrasts	647
	Quantitative Repeated Factors (Optional)	649

	Multiple-Comparison Procedures: Determination of Critical Values	650
	Planned Comparisons	651
	Pairwise Comparisons	651
	Post Hoc Complex Comparisons	652
	Finding D_{max} (Optional)	653
	Confidence Intervals for Contrasts	654
	The Relationship Between the Multivariate Approach	
	and the Mixed-Model Approach	658
	Orthonormal Contrasts	658
	Comparison of the Two Approaches	660
	Reconceptualization of ε in Terms of $E^*(F)$ (Optional)	663
	Multivariate and Mixed-Model Approaches for Testing Contrasts	665
	Numerical Example	666
	The Difference in Error Terms	667
	Which Error Term Is Better?	669
	A General Comparison of the Multivariate and	
	Mixed-Model Approaches	671
	Assumptions	672
	Tests of Contrasts	672
	Type I Error Rates	672
	Type II Error Rates	673
	Summary	675
	Exercises	676
14	Higher Order Designs with Within-Subjects Factors:	
	Multivariate Approach	682
	Two Within-Subjects Factors, Each with Two Levels	682
	Formation of Main-Effect D Variables	684
	Formation of Interaction D Variables	686
	Relationship to the Mixed-Model Approach	688
	Multivariate Analysis of Two-Way $a \times b$ Within-Subjects Designs	688
	Formation of Main-Effect D Variables	688
	Formation of Interaction D Variables	691
	Omnibus Tests—Multivariate Significance Tests	693
	Measures of Effect	694
	Further Investigation of Main Effects	695
	Further Investigation of an Interaction—Simple Effects	696
	Interaction Contrasts	698
	Confidence Intervals for Contrasts	699
	The Relationship Between the Multivariate and the	
	Mixed-Model Approaches (Optional)	701
	Multivariate and Mixed-Model Approaches for Testing Contrasts	703
	Comparison of the Multivariate and Mixed-Model Approaches	704
	One Within-Subjects Factor and One Between-Subjects Factor	
	in the Same Design	704
	Split-Plot Design With Two Levels of the Repeated Factor	704
	General $a \times b$ Split-Plot Design	713
	Measures of Effect	725

	Confidence Intervals for Contrasts	738
	The Relationship Between the Multivariate and the	
	Mixed-Model Approaches (Optional)	742
	Assumptions of the Multivariate Approach	744
	Multivariate and Mixed-Model Approaches for Testing	
	Within-Subjects Contrasts	745
	Comparison of the Multivariate and Mixed-Model Approaches	746
	More Complex Designs (Optional)	746
	Exercises	752
[V	ALTERNATIVE ANALYSIS STRATEGIES	
15	An Introduction to Multilevel Models for Within-Subjects	
	Designs	763
	Advantages of New Methods	763
	Within-Subjects Designs	763
	Overview of Remainder of Chapter	764
	Within-Subjects Designs	765
	Various Types of Within-Subjects Designs	765
	Models for Longitudinal Data	765
	Review of the ANOVA Mixed-Model Approach	766
	Random Effects Models	767
	Maximum Likelihood Approach	767
	An Example of Maximum Likelihood Estimation (Optional)	768
	Comparison of ANOVA and Maximum Likelihood Models	770
	Numerical Example	773
	A Closer Look at the Random Effects Model	778
	Graphical Representation of Longitudinal Data	779
	Graphical Representation of the Random Intercept Model	781
	Coding Random Effects Predictor Variables	785
	Random Effects Parameters	786
	Numerical Example	788
	Graphical Representation of a Model With Random Slope	
	and Intercept	790
	Further Consideration of Competing Models	791
	Additional Models Deserving Consideration	793
	Graphical Representation of a Growth Curve Model	798
	Design Considerations	800
	An Alternative to the Random Effects Model	802
	Additional Covariance Matrix Structures	809
	Tests of Contrasts	813
	Overview of Broader Model Comparison	814
	Complex Designs	816
	Factorial Fixed Effects	817
	Multiple Variables Measured Over Time	818
	Unbalanced Designs	818
	Conclusion	820
	Exercises	820

16	An Introduction to Multilevel Hierarchical Mixed Models:			
	Nested Designs	828		
	Review of the ANOVA Approach	829		
	Maximum Likelihood Analysis Models for the Simple Nested Design	831		
	Numerical Example—Equal n	833		
	Numerical Example—Unequal n	840		
	Maximum Likelihood Analysis Models for Complex Nested Designs	845		
	Hierarchical Representation of the Model for a Simple Nested Design	846		
	Models With Additional Level 2 Variables	849		
	Models with Additional Level 1 Variables	853		
	Exercises	867		
Ap	pendixes			
A	Statistical Tables	A-1		
В	Part 1. Linear Models: The Relation Between ANOVA and			
	Regression	B-1		
	Part 2. A Brief Primer of Principles of Formulating and			
	Comparing Models	B-26		
C	Notes	C-1		
D	Solutions to Selected Exercises	D-1		
E	References	E-1		
	Name Index	N-1		
	Subject Index	S-1		

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

P	refac	e		vii
1	Inti	oduct	ion	1
2	Sta	tistical	l Learning	15
	2.1	What	Is Statistical Learning?	15
		2.1.1	Why Estimate f ?	17
		2.1.2	How Do We Estimate f ?	21
		2.1.3	The Trade-Off Between Prediction Accuracy	
			and Model Interpretability	24
		2.1.4	Supervised Versus Unsupervised Learning	26
		2.1.5	Regression Versus Classification Problems	28
	2.2	Assess	sing Model Accuracy	29
		2.2.1	Measuring the Quality of Fit	29
		2.2.2	The Bias-Variance Trade-Off	33
		2.2.3	The Classification Setting	37
	2.3	Lab: I	Introduction to R	42
		2.3.1	Basic Commands	42
		2.3.2	Graphics	45
		2.3.3	Indexing Data	47
		2.3.4	Loading Data	48
		2.3.5	Additional Graphical and Numerical Summaries	49
	2.4	Exerc	_	52

3	Lin	ear Regression 59
	3.1	Simple Linear Regression 61
		3.1.1 Estimating the Coefficients 61
		3.1.2 Assessing the Accuracy of the Coefficient
		Estimates
		3.1.3 Assessing the Accuracy of the Model 68
	3.2	Multiple Linear Regression
		3.2.1 Estimating the Regression Coefficients
		3.2.2 Some Important Questions
	3.3	Other Considerations in the Regression Model 82
		3.3.1 Qualitative Predictors 82
		3.3.2 Extensions of the Linear Model 86
		3.3.3 Potential Problems
	3.4	The Marketing Plan
	3.5	Comparison of Linear Regression with K -Nearest
		Neighbors
	3.6	Lab: Linear Regression
		3.6.1 Libraries
		3.6.2 Simple Linear Regression
		3.6.3 Multiple Linear Regression
		3.6.4 Interaction Terms
		3.6.5 Non-linear Transformations of the Predictors 115
		3.6.6 Qualitative Predictors
		3.6.7 Writing Functions
	3.7	Exercises
4	Cla	ssification 127
	4.1	
	4.2	Why Not Linear Regression?
	4.3	Logistic Regression
		4.3.1 The Logistic Model
		4.3.2 Estimating the Regression Coefficients 133
		4.3.3 Making Predictions
		4.3.4 Multiple Logistic Regression
		4.3.5 Logistic Regression for >2 Response Classes 137
	4.4	Linear Discriminant Analysis
		4.4.1 Using Bayes' Theorem for Classification 138
		4.4.2 Linear Discriminant Analysis for $p = 1 \dots 139$
		4.4.3 Linear Discriminant Analysis for $p > 1 \dots 142$
		4.4.4 Quadratic Discriminant Analysis 149
	4.5	A Comparison of Classification Methods
	4.6	Lab: Logistic Regression, LDA, QDA, and KNN 154
		4.6.1 The Stock Market Data
		4.6.2 Logistic Regression
		4.6.3 Linear Discriminant Analysis

				Contents	X1
		4.6.4	Quadratic Discriminant Analysis		163
		4.6.5	K-Nearest Neighbors		163
		4.6.6	An Application to Caravan Insurance Data		165
	4.7	Exerci	ises		168
5	Res	ampliı	ng Methods		175
	5.1	_	-Validation		176
		5.1.1	The Validation Set Approach		176
		5.1.2	Leave-One-Out Cross-Validation		178
		5.1.3	k-Fold Cross-Validation		181
		5.1.4	Bias-Variance Trade-Off for k -Fold		
			Cross-Validation		183
		5.1.5	Cross-Validation on Classification Problem	ıs	184
	5.2	The B	Bootstrap		187
	5.3	Lab: (Cross-Validation and the Bootstrap		190
		5.3.1	The Validation Set Approach		191
		5.3.2	Leave-One-Out Cross-Validation		192
		5.3.3	k-Fold Cross-Validation		193
		5.3.4	The Bootstrap		194
	5.4	Exerci	ises		197
6	Line	ear Mo	odel Selection and Regularization		203
	6.1		t Selection		205
		6.1.1	Best Subset Selection		205
		6.1.2	Stepwise Selection		207
		6.1.3	Choosing the Optimal Model		210
	6.2	Chain1			210
		SIIIIIII	kage Methods		210
		6.2.1	kage Methods		
			9		214
		6.2.1	Ridge Regression		214 215
	6.3	6.2.1 6.2.2 6.2.3	Ridge Regression		214 215 219
	6.3	6.2.1 6.2.2 6.2.3	Ridge Regression		214 215 219 227
	6.3	6.2.1 6.2.2 6.2.3 Dimer	Ridge Regression		214 215 219 227 228
	6.3	6.2.1 6.2.2 6.2.3 Dimer 6.3.1 6.3.2	Ridge Regression		214 215 219 227 228 230
		6.2.1 6.2.2 6.2.3 Dimer 6.3.1 6.3.2	Ridge Regression		214 215 219 227 228 230 237
		6.2.1 6.2.2 6.2.3 Dimer 6.3.1 6.3.2 Consid	Ridge Regression		214 215 219 227 228 230 237 238
		6.2.1 6.2.2 6.2.3 Dimer 6.3.1 6.3.2 Consid 6.4.1	Ridge Regression		214 215 219 227 228 230 237 238 238
		6.2.1 6.2.2 6.2.3 Dimer 6.3.1 6.3.2 Consid 6.4.1 6.4.2	Ridge Regression		214 215 219 227 228 230 237 238 238 239
		6.2.1 6.2.2 6.2.3 Dimer 6.3.1 6.3.2 Consid 6.4.1 6.4.2 6.4.3 6.4.4	Ridge Regression		214 215 219 227 228 230 237 238 238 239 241
	6.4	6.2.1 6.2.2 6.2.3 Dimer 6.3.1 6.3.2 Consid 6.4.1 6.4.2 6.4.3 6.4.4	Ridge Regression		214 215 219 227 228 230 237 238 238 239 241 243
	6.4	6.2.1 6.2.2 6.2.3 Dimer 6.3.1 6.3.2 Consid 6.4.1 6.4.2 6.4.3 6.4.4 Lab 1:	Ridge Regression		214 215 219 227 228 230 237 238 238 239 241 243 244
	6.4	6.2.1 6.2.2 6.2.3 Dimer 6.3.1 6.3.2 Consid 6.4.1 6.4.2 6.4.3 6.4.4 Lab 1: 6.5.1	Ridge Regression		214 215 219 227 228 230 237 238 238 239 241 243 244 244

	6.6	Lab 2: Ridge Regression and the Lasso	251
		6.6.1 Ridge Regression	251
		6.6.2 The Lasso	255
	6.7	Lab 3: PCR and PLS Regression	256
		6.7.1 Principal Components Regression	256
		6.7.2 Partial Least Squares	258
	6.8	Exercises	259
7	Mo	ving Beyond Linearity	265
	7.1	Polynomial Regression	266
	7.2	Step Functions	268
	7.3	Basis Functions	270
	7.4	Regression Splines	271
		7.4.1 Piecewise Polynomials	271
		7.4.2 Constraints and Splines	271
		7.4.3 The Spline Basis Representation	273
		7.4.4 Choosing the Number and Locations	
		of the Knots	274
		7.4.5 Comparison to Polynomial Regression	276
	7.5	Smoothing Splines	277
		7.5.1 An Overview of Smoothing Splines	277
		7.5.2 Choosing the Smoothing Parameter λ	278
	7.6	Local Regression	280
	7.7	Generalized Additive Models	282
		7.7.1 GAMs for Regression Problems	283
		7.7.2 GAMs for Classification Problems	286
	7.8	Lab: Non-linear Modeling	287
		7.8.1 Polynomial Regression and Step Functions	288
		7.8.2 Splines	293
		7.8.3 GAMs	294
	7.9	Exercises	297
8	Tre	e-Based Methods	303
	8.1	The Basics of Decision Trees	303
		8.1.1 Regression Trees	304
		8.1.2 Classification Trees	311
		8.1.3 Trees Versus Linear Models	314
		8.1.4 Advantages and Disadvantages of Trees	315
	8.2	Bagging, Random Forests, Boosting	316
		8.2.1 Bagging	316
		8.2.2 Random Forests	320
		8.2.3 Boosting	321
	8.3	Lab: Decision Trees	324
	٥.٠	8.3.1 Fitting Classification Trees	324
		8.3.2 Fitting Regression Trees	327

			Contents	xiii
		8.3.3 Bagging and Random Forests		. 328
		8.3.4 Boosting		
	8.4	Exercises		
9	Sup	port Vector Machines		337
	9.1	Maximal Margin Classifier		
		9.1.1 What Is a Hyperplane?		
		9.1.2 Classification Using a Separating Hyper		
		9.1.3 The Maximal Margin Classifier		
		9.1.4 Construction of the Maximal Margin Cl	assifier	. 342
		9.1.5 The Non-separable Case		
	9.2	Support Vector Classifiers		
		9.2.1 Overview of the Support Vector Classifi	er	. 344
		9.2.2 Details of the Support Vector Classifier		
	9.3	Support Vector Machines		
		9.3.1 Classification with Non-linear Decision		
		Boundaries		. 349
		9.3.2 The Support Vector Machine		. 350
		9.3.3 An Application to the Heart Disease Da	ıta	. 354
	9.4	SVMs with More than Two Classes		. 355
		9.4.1 One-Versus-One Classification		. 355
		9.4.2 One-Versus-All Classification		. 356
	9.5	Relationship to Logistic Regression		. 356
	9.6	Lab: Support Vector Machines		. 359
		9.6.1 Support Vector Classifier		
		9.6.2 Support Vector Machine		. 363
		9.6.3 ROC Curves		. 365
		9.6.4 SVM with Multiple Classes		. 366
		9.6.5 Application to Gene Expression Data		. 366
	9.7	Exercises		. 368
10	Uns	upervised Learning		373
		The Challenge of Unsupervised Learning		. 373
		Principal Components Analysis		
		10.2.1 What Are Principal Components?		. 375
		10.2.2 Another Interpretation of Principal Con-	nponents .	. 379
		10.2.3 More on PCA		. 380
		10.2.4 Other Uses for Principal Components		. 385
	10.3	Clustering Methods		. 385
		10.3.1 K -Means Clustering		. 386
		10.3.2 Hierarchical Clustering		. 390
		10.3.3 Practical Issues in Clustering		. 399
	10.4	Lab 1: Principal Components Analysis		. 401

xiv Contents

Inde	Index			
10.7	Exercises	13		
	0.6.2 Clustering the Observations of the NCI60 Data 4	10		
	0.6.1 PCA on the NCI60 Data	08		
10.6	Lab 3: NCI60 Data Example 40	07		
	0.5.2 Hierarchical Clustering	06		
	0.5.1 K -Means Clustering 40	04		
10.5	⊿ab 2: Clustering	04		

Data Analysis Using Regression and Multilevel/Hierarchical Models

ANDREW GELMAN JENNIFER HILL

CAMBRIDGE

Li	List of examples pa		age xvii
Pı	eface	e	xix
1	Wh	v?	1
_	1.1	What is multilevel regression modeling?	1
	1.2	Some examples from our own research	3
	1.3	Motivations for multilevel modeling	6
	1.4	Distinctive features of this book	8
	1.5	Computing	9
2	Con	cepts and methods from basic probability and statistics	13
	2.1	Probability distributions	13
	2.2	Statistical inference	16
	2.3	Classical confidence intervals	18
	2.4	Classical hypothesis testing	20
	2.5	Problems with statistical significance	22
	2.6	55,000 residents desperately need your help!	23
	2.7	Bibliographic note	26
	2.8	Exercises	26
Pa	art 1.	A: Single-level regression	29
3	Line	ear regression: the basics	31
	3.1	One predictor	31
	3.2	Multiple predictors	32
	3.3	Interactions	34
	3.4	Statistical inference	37
	3.5	Graphical displays of data and fitted model	42
	3.6	Assumptions and diagnostics	45
	3.7	Prediction and validation	47
	3.8	Bibliographic note	49
	3.9	Exercises	49
4	Line	ear regression: before and after fitting the model	53
	4.1	Linear transformations	53
	4.2	Centering and standardizing, especially for models with interaction	
	4.3	Correlation and "regression to the mean"	57
	4.4	Logarithmic transformations	59
	4.5	Other transformations	65
	4.6	Building regression models for prediction	68
	4.7	Fitting a series of regressions	73

TENTS	5
	TENTS

	4.8 4.9	Bibliographic note Exercises	74 74
5	_	stic regression	79
	5.1	Logistic regression with a single predictor	79
	5.2	Interpreting the logistic regression coefficients	81
	5.3	Latent-data formulation	85 86
	5.4	Building a logistic regression model: wells in Bangladesh Logistic regression with interactions	86 92
	$5.5 \\ 5.6$	Evaluating, checking, and comparing fitted logistic regressions	92 97
	5.7	Average predictive comparisons on the probability scale	101
	5.8	Identifiability and separation	104
	5.9	Bibliographic note	105
		Exercises	105
6	Gen	eralized linear models	109
U	6.1	Introduction	109
	6.2	Poisson regression, exposure, and overdispersion	110
	6.3	Logistic-binomial model	116
	6.4	Probit regression: normally distributed latent data	118
	6.5	Multinomial regression	119
	6.6	Robust regression using the t model	124
	6.7	Building more complex generalized linear models	125
	6.8	Constructive choice models	127
	6.9	Bibliographic note	131
	6.10	Exercises	132
Pa	rt 1I	3: Working with regression inferences	135
7	Sim	ulation of probability models and statistical inferences	137
	7.1	Simulation of probability models	137
	7.2	Summarizing linear regressions using simulation: an informal	
		Bayesian approach	140
	7.3	Simulation for nonlinear predictions: congressional elections	144
	7.4	Predictive simulation for generalized linear models	148
	7.5	Bibliographic note	151
	7.6	Exercises	152
8		ulation for checking statistical procedures and model fits	155
	8.1	Fake-data simulation	155
	8.2	Example: using fake-data simulation to understand residual plots	157
	8.3	Simulating from the fitted model and comparing to actual data	158
	8.4 8.5	Using predictive simulation to check the fit of a time-series model	163 165
	8.6	Bibliographic note Exercises	165
c	C	real inference using magnession on the two-two-stars 111	167
9		sal inference using regression on the treatment variable Causal inference and predictive comparisons	167
	9.1 9.2	The fundamental problem of causal inference	167 170
	9.2 9.3	Randomized experiments	$\frac{170}{172}$
	9.3	Treatment interactions and poststratification	178

CONTENTS	xi

	9.5	Observational studies	181
	9.6	Understanding causal inference in observational studies	186
	9.7	Do not control for post-treatment variables	188
	9.8	Intermediate outcomes and causal paths	190
	9.9	Bibliographic note	194
		Exercises	194
10	Caus	sal inference using more advanced models	199
	10.1	Imbalance and lack of complete overlap	199
	10.2	Subclassification: effects and estimates for different subpopulations	204
	10.3	Matching: subsetting the data to get overlapping and balanced treatment and control groups	206
	10.4	Lack of overlap when the assignment mechanism is known:	
		regression discontinuity	212
	10.5	Estimating causal effects indirectly using instrumental variables	215
	10.6	Instrumental variables in a regression framework	220
		Identification strategies that make use of variation within or between	
		groups	226
	10.8	Bibliographic note	229
	10.9	Exercises	231
Pa	rt 2A	a: Multilevel regression	235
11		cilevel structures	237
	11.1	Varying-intercept and varying-slope models	237
		Clustered data: child support enforcement in cities	237
	11.3	Repeated measurements, time-series cross sections, and other	
		non-nested structures	241
		Indicator variables and fixed or random effects	244
		Costs and benefits of multilevel modeling	246
		Bibliographic note	247
	11.7	Exercises	248
12	Mult	tilevel linear models: the basics	251
		Notation	251
	12.2	Partial pooling with no predictors	252
	12.3	Partial pooling with predictors	254
		Quickly fitting multilevel models in R	259
		Five ways to write the same model	262
	12.6	Group-level predictors	265
	12.7	Model building and statistical significance	270
		Predictions for new observations and new groups	272
	12.9	How many groups and how many observations per group are	
	10.10	needed to fit a multilevel model?	275
		Bibliographic note	276
	12.11	Exercises	277
13		tilevel linear models: varying slopes, non-nested models, and	0 70
		r complexities	279
	13.1	Varying intercepts and slopes	279
	13.2	Varying slopes without varying intercepts	283

xii CONTENTS

	13.3	Modeling multiple varying coefficients using the scaled inverse- Wishart distribution	284
	13.4	Understanding correlations between group-level intercepts and	
		slopes	287
		Non-nested models	289
		Selecting, transforming, and combining regression inputs	293
		More complex multilevel models	297
		Bibliographic note	297
	13.9	Exercises	298
14	Mul	tilevel logistic regression	301
		State-level opinions from national polls	301
	14.2	Red states and blue states: what's the matter with Connecticut?	310
	14.3	Item-response and ideal-point models	314
		Non-nested overdispersed model for death sentence reversals	320
		Bibliographic note	321
	14.6	Exercises	322
15	Mul	tilevel generalized linear models	325
		Overdispersed Poisson regression: police stops and ethnicity	325
		Ordered categorical regression: storable votes	331
		Non-nested negative-binomial model of structure in social networks	332
	15.4	Bibliographic note	342
	15.5	Exercises	342
Pa	rt 2I	3: Fitting multilevel models	343
16	Mul	tilevel modeling in Bugs and R: the basics	345
		Why you should learn Bugs	345
		Bayesian inference and prior distributions	345
	16.3	Fitting and understanding a varying-intercept multilevel model	
		using R and Bugs	348
	16.4	Step by step through a Bugs model, as called from R	353
	16.5	Adding individual- and group-level predictors	359
	16.6	Predictions for new observations and new groups	361
		Fake-data simulation	363
		The principles of modeling in Bugs	366
		Practical issues of implementation	369
		Open-ended modeling in Bugs	370
		Bibliographic note	373
	16.12	? Exercises	373
17	Fitti	ing multilevel linear and generalized linear models in Bugs	
	and		375
	17.1	Varying-intercept, varying-slope models	375
		Varying intercepts and slopes with group-level predictors	379
		Non-nested models	380
		Multilevel logistic regression	381
		Multilevel Poisson regression	382
		Multilevel ordered categorical regression	383
	17.7	Latent-data parameterizations of generalized linear models	384

	CONTENTS		
17.8	Bibliographic note	385	
	Exercises	385	
	lihood and Bayesian inference and computation	387	
	Least squares and maximum likelihood estimation	387	
	Uncertainty estimates using the likelihood surface	390	
	Bayesian inference for classical and multilevel regression	392	
	Gibbs sampler for multilevel linear models	397	
18.5	Likelihood inference, Bayesian inference, and the Gibbs sampler:	400	
10.6	the case of censored data	402	
	Metropolis algorithm for more general Bayesian computation Specifying a log posterior density, Gibbs sampler, and Metropolis	408	
10.7	algorithm in R	409	
18.8	Bibliographic note	413	
	Exercises	413	
10.0	TACTOROS .	110	
19 Deb	ugging and speeding convergence	415	
19.1	Debugging and confidence building	415	
19.2	General methods for reducing computational requirements	418	
	Simple linear transformations	419	
	Redundant parameters and intentionally nonidentifiable models	419	
	Parameter expansion: multiplicative redundant parameters	424	
19.6	Using redundant parameters to create an informative prior		
40 =	distribution for multilevel variance parameters	427	
	Bibliographic note	434	
19.8	Exercises	434	
Part 3	From data collection to model understanding to model		
	king	435	
	ple size and power calculations	437	
20.1	Choices in the design of data collection		
20.1	Choices in the design of data collection Classical power calculations: general principles, as illustrated by	437 437	
20.1 20.2	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions	437 437 439	
20.1 20.2 20.3	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes	437 437 439 443	
20.1 20.2 20.3 20.4	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling	437 437 439 443 447	
20.1 20.2 20.3 20.4 20.5	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation	437 437 439 443 447 449	
20.1 20.2 20.3 20.4 20.5 20.6	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note	437 437 439 443 447 449 454	
20.1 20.2 20.3 20.4 20.5 20.6	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation	437 437 439 443 447 449	
20.1 20.2 20.3 20.4 20.5 20.6 20.7	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note	437 437 439 443 447 449 454	
20.1 20.2 20.3 20.4 20.5 20.6 20.7	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises	437 437 439 443 447 449 454 454	
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises erstanding and summarizing the fitted models	437 437 439 443 447 449 454 454	
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1 21.2	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises erstanding and summarizing the fitted models Uncertainty and variability	437 437 439 443 447 449 454 454 457	
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1 21.2 21.3	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises erstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances	437 437 439 443 447 449 454 454 457 457	
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1 21.2 21.3 21.4 21.5	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises erstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients Average predictive comparisons R^2 and explained variance	437 437 439 443 447 449 454 457 457 457 459 462	
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1 21.2 21.3 21.4 21.5 21.6	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises erstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients Average predictive comparisons R^2 and explained variance Summarizing the amount of partial pooling	437 437 439 443 447 449 454 457 457 459 462 466 473 477	
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1 21.2 21.3 21.4 21.5 21.6 21.7	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises erstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients Average predictive comparisons R^2 and explained variance Summarizing the amount of partial pooling Adding a predictor can increase the residual variance!	437 437 439 443 447 449 454 457 457 459 462 466 473 477 480	
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises erstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients Average predictive comparisons R^2 and explained variance Summarizing the amount of partial pooling Adding a predictor can increase the residual variance! Multiple comparisons and statistical significance	437 437 439 443 447 449 454 457 457 459 462 466 473 477 480 481	
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9	Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises erstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients Average predictive comparisons R^2 and explained variance Summarizing the amount of partial pooling Adding a predictor can increase the residual variance!	437 437 439 443 447 449 454 457 457 459 462 466 473 477 480	

xiv CONTENTS

22	Ana	lysis of variance	487
		Classical analysis of variance	487
	22.2	ANOVA and multilevel linear and generalized linear models	490
		Summarizing multilevel models using ANOVA	492
		Doing ANOVA using multilevel models	494
		Adding predictors: analysis of covariance and contrast analysis	496
		Modeling the variance parameters: a split-plot latin square	498
		Bibliographic note	501
		Exercises	501
23	Cau	sal inference using multilevel models	503
		Multilevel aspects of data collection	503
	23.2	Estimating treatment effects in a multilevel observational study	506
		Treatments applied at different levels	507
	23.4	Instrumental variables and multilevel modeling	509
	23.5	Bibliographic note	512
	23.6	Exercises	512
24	Mod	lel checking and comparison	513
	24.1	Principles of predictive checking	513
	24.2	Example: a behavioral learning experiment	515
	24.3	Model comparison and deviance	524
	24.4	Bibliographic note	526
	24.5	Exercises	527
25	Miss	sing-data imputation	52 9
		Missing-data mechanisms	530
		Missing-data methods that discard data	531
	25.3	Simple missing-data approaches that retain all the data	532
		Random imputation of a single variable	533
		Imputation of several missing variables	539
		Model-based imputation	540
		Combining inferences from multiple imputations	542
		Bibliographic note	542
	25.9	Exercises	543
Aŗ	pend	lixes	545
\mathbf{A}		quick tips to improve your regression modeling	547
	A.1	Fit many models	547
	A.2	Do a little work to make your computations faster and more reliable	547
	A.3	Graphing the relevant and not the irrelevant	548
	A.4	Transformations	548
		Consider all coefficients as potentially varying	549
	A.6	Estimate causal inferences in a targeted way, not as a byproduct	
		of a large regression	549
В		istical graphics for research and presentation	551
	B.1	Reformulating a graph by focusing on comparisons	552
	B.2	Scatterplots	553
	B3	Miscellaneous tips	550

CONTE	ENTS	X
B.4	Bibliographic note	562
B.5	Exercises	563
C Soft	ware	565
C.1	Getting started with R, Bugs, and a text editor	565
C.2	Fitting classical and multilevel regressions in R	565
C.3	Fitting models in Bugs and R	567
C.4	Fitting multilevel models using R, Stata, SAS, and other software	568
C.5	Bibliographic note	573
Refere	nces	575
Author	rindex	601
Subjec	t index	607

An Introduction to R Second Edition

W. N. Venables, D. M. Smith and the R Development Core Team

Copyright © 1990 W. N. Venables

Copyright © 1992 W. N. Venables & D. M. Smith

Copyright © 1997 R. Gentleman & R. Ihaka

Copyright © 1997, 1998 M. Maechler

Copyright © 1999–2006 R Development Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Development Core Team.

ISBN 3-900051-12-7

Table of Contents

P	refa	ace	1
1	Ir	ntroduction and preliminaries	2
	1.1	The R environment	
	1.2	Related software and documentation	
	1.3	R and statistics	
	1.4	R and the window system	
	1.5	Using R interactively	3
	1.6	An introductory session.	
	1.7	Getting help with functions and features	
	1.8	R commands, case sensitivity, etc.	
	1.9	Recall and correction of previous commands	
	1.10 1.11	0 1	
2	Q:	imple manipulations, numbers and rectors	7
2		imple manipulations; numbers and vectors	
	$2.1 \\ 2.2$	Vector arithmetic	
	2.3	Generating regular sequences	
	$\frac{2.0}{2.4}$	Logical vectors	
	2.5	Missing values	
	2.6	Character vectors	
	2.7	Index vectors; selecting and modifying subsets of a data set	10
	2.8	Other types of objects	11
3	O	Objects, their modes and attributes	13
	3.1	Intrinsic attributes: mode and length	13
	3.2	Changing the length of an object	14
	3.3	Getting and setting attributes	
	3.4	The class of an object	14
4	O	ordered and unordered factors	16
	4.1	A specific example	16
	4.2	The function tapply() and ragged arrays	16
	4.3	Ordered factors	17
5	\mathbf{A}	arrays and matrices	
	5.1	Arrays	18
	5.2	Array indexing. Subsections of an array	18
	5.3	Index matrices	
	5.4	The array() function	
		5.4.1 Mixed vector and array arithmetic. The recycling rule	
	5.5	The outer product of two arrays	
	5.6	Generalized transpose of an array	
	5.7	Matrix facilities	
	U	,,,,, 1v1au11x 111U1U1P11Cau1O11	

	5.7.2 Linear equations and inversion	. 22
	5.7.3 Eigenvalues and eigenvectors	
	5.7.4 Singular value decomposition and determinants	. 23
	5.7.5 Least squares fitting and the QR decomposition	. 23
	5.8 Forming partitioned matrices, cbind() and rbind()	. 24
	5.9 The concatenation function, c(), with arrays	
	5.10 Frequency tables from factors	25
6	Lists and data frames	26
U		
	6.1 Lists	
	6.2 Constructing and modifying lists	
	6.2.1 Concatenating lists	
	6.3.1 Making data frames	
	6.3.2 attach() and detach()	
	6.3.3 Working with data frames	
	6.3.4 Attaching arbitrary lists	
	6.3.5 Managing the search path	
_		0.0
7		
	7.1 The read.table() function	
	7.2 The scan() function	
	7.3 Accessing builtin datasets	
	7.3.1 Loading data from other R packages	
	7.4 Editing data	. 32
8	Probability distributions	33
	8.1 R as a set of statistical tables	
	8.2 Examining the distribution of a set of data	
	8.3 One- and two-sample tests	
0		40
9	Grouping, loops and conditional execution	
	9.1 Grouped expressions	
	9.2 Control statements	
	9.2.1 Conditional execution: if statements	
	9.2.2 Repetitive execution: for loops, repeat and while	. 40
10	0 Writing your own functions	42
	10.1 Simple examples	. 42
	10.2 Defining new binary operators	
	10.3 Named arguments and defaults	
	10.4 The '' argument	
	10.5 Assignments within functions	. 44
	10.6 More advanced examples	
	10.6.1 Efficiency factors in block designs	
	10.6.2 Dropping all names in a printed array	
	10.6.3 Recursive numerical integration	
	10.7 Scope	
	III V L'instamazing the environment	48
	10.8 Customizing the environment	

11 Statistical models in R	50
11.1 Defining statistical models; formulae	. 50
11.1.1 Contrasts	52
11.2 Linear models	. 53
11.3 Generic functions for extracting model information	53
11.4 Analysis of variance and model comparison	. 54
11.4.1 ANOVA tables	54
11.5 Updating fitted models	
11.6 Generalized linear models	
11.6.1 Families	
11.6.2 The glm() function	
11.7 Nonlinear least squares and maximum likelihood models	
11.7.1 Least squares	
11.7.2 Maximum likelihood	
11.8 Some non-standard models	60
10 C 1' 1 1	00
12 Graphical procedures	
12.1 High-level plotting commands	
12.1.1 The plot() function	
12.1.2 Displaying multivariate data	
12.1.3 Display graphics	
12.1.4 Arguments to high-level plotting functions	
12.2 Low-level plotting commands	
12.2.1 Mathematical annotation	
12.2.2 Hershey vector fonts	
12.3 Interacting with graphics	
12.4 Using graphics parameters	
12.4.1 Permanent changes: The par() function	
12.4.2 Temporary changes: Arguments to graphics functions	
12.5.1 Graphical elements	
12.5.2 Axes and tick marks	
12.5.3 Figure margins	
12.5.4 Multiple figure environment	
12.6 Device drivers	
12.6.1 PostScript diagrams for typeset documents	
12.6.2 Multiple graphics devices	
12.7 Dynamic graphics	
13 Packages	76
13.1 Standard packages	76
13.2 Contributed packages and CRAN	
13.3 Namespaces	
•	
Appendix A A sample session	78
•	
Appendix B Invoking R	81
B.1 Invoking R from the command line	
B.3 Invoking R under Windows B.3 Invoking R under Mac OS X	
B.4 Scripting with R.	

Appendix C	The command-line editor	87
C.1 Preliminarie	······································	87
	ons	
C.3 Command-li	ine editor summary	. 87
Appendix D	Function and variable index	89
Appendix E	Concept index	92
Appendix F	References	94

Phil Spector

Data Manipulation with R

Contents

Pre	eface		V
1	Dat	a in R	1
	1.1	Modes and Classes	1
	1.2	Data Storage in R	2
	1.3	Testing for Modes and Classes	7
	1.4	Structure of R Objects	7
	1.5	Conversion of Objects	8
	1.6	Missing Values	10
	1.7	Working with Missing Values	10
2	Rea	ding and Writing Data	13
	2.1	Reading Vectors and Matrices	13
	2.2	Data Frames: read.table	
	2.3	Comma- and Tab-Delimited Input Files	17
	2.4	Fixed-Width Input Files	17
	2.5	Extracting Data from R Objects	18
	2.6	Connections	23
	2.7	Reading Large Data Files	25
	2.8	Generating Data	27
		2.8.1 Sequences	27
		2.8.2 Random Numbers	29
	2.9	Permutations	30
		2.9.1 Random Permutations	30
		2.9.2 Enumerating All Permutations	30
	2.10	Working with Sequences	31
	2.11	Spreadsheets	33
		2.11.1 The RODBC Package on Windows	33
		2.11.2 The gdata Package (All Platforms)	34
	2.12	Saving and Loading R Data Objects	
		Working with Binary Files	

VIII Contents

	2.14	Writing R Objects to Files in ASCII Format	38
		2.14.1 The write Function	38
		2.14.2 The write.table function	39
	2.15	Reading Data from Other Programs	39
3	Ra	nd Databases	43
	3.1	A Brief Guide to SQL	43
		3.1.1 Navigation Commands	43
		3.1.2 Basics of SQL	44
		3.1.3 Aggregation	45
		3.1.4 Joining Two Databases	46
		3.1.5 Subqueries	47
		3.1.6 Modifying Database Records	48
	3.2	ODBC	49
	3.3	Using the RODBC Package	50
	3.4	The DBI Package	51
	3.5	Accessing a MySQL Database	51
	3.6	Performing Queries	52
	3.7	Normalized Tables	52
	3.8	Getting Data into MySQL	53
	3.9	More Complex Aggregations	55
4	Dat	es	57
	4.1	as.Date	57
	4.2	The chron Package	59
	4.3	POSIX Classes	60
	4.4	Working with Dates	63
	4.5	Time Intervals	64
	4.6	Time Sequences	65
	_		
5		tors	67
	5.1	Using Factors	67
	5.2	Numeric Factors	70
	5.3	Manipulating Factors	70
	5.4	Creating Factors from Continuous Variables	72
	5.5	Factors Based on Dates and Times	73
	5.6	Interactions	74
G	Q1 ₋	coninting	75
6		scripting	75
	6.1	Basics of Subscripting	75
	6.2	Numeric Subscripts	75
	6.3	Character Subscripts	75 76
	6.4	Logical Subscripts	76
	6.5	Subscripting Matrices and Arrays	77
	6.6	Specialized Functions for Matrices	81

		Contents	IX
	6.7	Lists	82
	6.8	Subscripting Data Frames	
7	Cha	aracter Manipulation	87
	7.1	Basics of Character Data	87
	7.2	Displaying and Concatenating Character Strings	87
	7.3	Working with Parts of Character Values	89
	7.4	Regular Expressions in R	90
	7.5	Basics of Regular Expressions	91
	7.6	Breaking Apart Character Values	93
	7.7	Using Regular Expressions in R	94
	7.8	Substitutions and Tagging	98
8	Dat	a Aggregation	101
	8.1	table	
	8.2	Road Map for Aggregation	106
	8.3	Mapping a Function to a Vector or List	
	8.4	Mapping a function to a matrix or array	
	8.5	Mapping a Function Based on Groups	
	8.6	The reshape Package	
	8.7	Loops in R	
9	Res	haping Data	131
	9.1	Modifying Data Frame Variables	
	9.2	Recoding Variables	
	9.3	The recode Function	
	9.4	Reshaping Data Frames	
	9.5	The reshape Package	
	9.6	Combining Data Frames	
	9.7	Under the Hood of merge	
Inc	lex .		149

The R Series

Using R for Introductory **Statistics**

John Verzani

Preface

These notes are an introduction to using the statistical software package R for an introductory statistics course. They are meant to accompany an introductory statistics book such as Kitchens "Exploring Statistics". The goals are not to show all the features of R, or to replace a standard textbook, but rather to be used with a textbook to illustrate the features of R that can be learned in a one-semester, introductory statistics course.

These notes were written to take advantage of R version 1.5.0 or later. For pedagogical reasons the equals sign, =, is used as an assignment operator and not the traditional arrow combination <-. This was added to R in version 1.4.0. If only an older version is available the reader will have to make the minor adjustment.

There are several references to data and functions in this text that need to be installed prior to their use. To install the data is easy, but the instructions vary depending on your system. For Windows users, you need to download the "zip" file, and then install from the "packages" menu. In UNIX, one uses the command R CMD INSTALL packagename.tar.gz. Some of the datasets are borrowed from other authors notably Kitchens. Credit is given in the help files for the datasets. This material is available as an R package from:

```
http://www.math.csi.cuny.edu/Statistics/R/simpleR/Simple 0.4.zip for Windows users. http://www.math.csi.cuny.edu/Statistics/R/simpleR/Simple 0.4.tar.gz for UNIX users.
```

If necessary, the file can sent in an email. As well, the individual data sets can be found online in the directory

```
http://www.math.csi.cuny.edu/Statistics/R/simpleR/Simple.
```

This is version 0.4 of these notes and were last generated on August 22, 2002. Before printing these notes, you should check for the most recent version available from

the CSI Math department (http://www.math.csi.cuny.edu/Statistics/R/simpleR).

Copyright © John Verzani (verzani@math.csi.cuny.edu), 2001-2. All rights reserved.

Contents

Introduction	1
What is R	1
A note on notation	1
Data	1
Starting R	1
Entering data with c	
Data is a vector	
Problems	
Univariate Data	8
 	_
Numerical data	
Problems	
Bivariate Data	19
Handling bivariate categorical data	
Handling bivariate data: categorical vs. numerical	
Bivariate data: numerical vs. numerical	
Linear regression.	
Problems	
Multivariate Data	32
Storing multivariate data in data frames	
Accessing data in data frames	
Manipulating data frames: stack and unstack	
Using R's model formula notation	
Ways to view multivariate data	
The lattice package	
Problems	40

Random Data	4
Random number generators in R– the "r" functions	
Simulations	4
The central limit theorem	
Using simple.sim and functions	4
Problems	
Exploratory Data Analysis	5
Our toolbox	
Examples	
Problems	
Confidence Interval Estimation	5
Population proportion theory	
Proportion test	
The z-test	
Confidence interval for the median	
Problems	
Hypothesis Testing	6
Testing a population parameter	
Tests for the median	
Problems	
TD 1 4 4	
Two-sample tests Two-sample tests of proportion	6
Two-sample t-tests	
Resistant two-sample tests	
Problems	
	_
Chi Square Tests	7
The chi-squared distribution	
Chi-squared tests of independence	
Chi-squared tests for homogeneity	
Problems	
Regression Analysis	7
Simple linear regression model	
Statistical inference	
Problems	
11002101110	
Multiple Linear Regression	8
The model	
Analysis of Variance	8
one-way analysis of variance	
Problems	
Appendix: Installing R	9
Appendix: External Packages	9
Appendix: A sample R session	9
A sample session involving regression	
<i>t</i> -tests	
A simulation example	

Appendix: What happens when R starts?	100
Appendix: Using Functions	100
The basic template	100
For loops	
Conditional expressions	
Appendix: Entering Data into R	103
Using c	104
using scan	104
Using scan with a file	
Editing your data	
Reading in tables of data	
Fixed-width fields	
Spreadsheet data	
XML, urls	
"Foreign" formats	
Appendix: Teaching Tricks	106
Appendix: Sources of help, documentation	107

Statistics and Computing

Peter Dalgaard

Introductory Statistics with R

Second Edition

Contents

Pr	eface			vii
1	Basic	s		1
	1.1	First s	teps	1
		1.1.1	An overgrown calculator	3
		1.1.2	Assignments	3
		1.1.3	Vectorized arithmetic	4
		1.1.4	Standard procedures	6
		1.1.5	Graphics	7
	1.2	R lang	guage essentials	9
		1.2.1	Expressions and objects	9
		1.2.2	Functions and arguments	11
		1.2.3	Vectors	12
		1.2.4	Quoting and escape sequences	13
		1.2.5	Missing values	14
		1.2.6	Functions that create vectors	14
		1.2.7	Matrices and arrays	16
		1.2.8	Factors	18
		1.2.9	Lists	19
		1.2.10	Data frames	20
		1.2.11	Indexing	21
		1.2.12		22
		1.2.13	Indexing of data frames	23
		1.2.14	Grouped data and data frames	25

		1.2.15 Implicit loops	6
			7
	1.3		8
2	The	2 anvisamment	1
2			1
	2.1	0	1
		1	1
		1	2
		1 0	3
		0 1	4
			5
		2.1.6 Built-in data	5
		2.1.7 attach and detach	6
		2.1.8 subset, transform, and within	7
	2.2	The graphics subsystem	9
			9
			0
			2
		0 1	2
	2.3	01	4
	2.0		4
			6
	2.4	O	6
	2.4		7
			0
			1
	2.5	0 1 0	2
	2.5	Exercises	3
3	Proba	ability and distributions 5	5
	3.1	Random sampling 5	5
	3.2		6
	3.3		7
	3.4	Continuous distributions	8
	3.5		9
			9
			2
			3
		2	4
	3.6		5
	5.0	DACTEDES	J
4			7
	4.1	, 0 0 1	7
	4.2		1
		4.2.1 Histograms	1

			Contents	xiii
		4.2.2 Empirical cumulative distribution		73
		4.2.3 Q-Q plots		74
		4.2.4 Boxplots		75
	4.3	Summary statistics by groups		75
	4.4	Graphics for grouped data		79
		4.4.1 Histograms		79
		4.4.2 Parallel boxplots		80
		4.4.3 Stripcharts		81
	4.5	Tables		83
		4.5.1 Generating tables		83
		4.5.2 Marginal tables and relative frequency.		87
	4.6	Graphical display of tables		89
		4.6.1 Barplots		89
		4.6.2 Dotcharts		91
		4.6.3 Piecharts		92
	4.7	Exercises		93
5	One-	and two-sample tests		95
	5.1	One-sample t test		95
	5.2	Wilcoxon signed-rank test		99
	5.3	Two-sample t test		100
	5.4	Comparison of variances		103
	5.5	Two-sample Wilcoxon test		103
	5.6	The paired t test		104
	5.7	The matched-pairs Wilcoxon test		104
	5.8	Exercises		107
6	Regr	ession and correlation		109
Ü	6.1	Simple linear regression		109
	6.2	Residuals and fitted values		113
	6.3	Prediction and confidence bands		117
	6.4	Correlation		120
	0.4	6.4.1 Pearson correlation		121
		6.4.2 Spearman's ρ		123
		6.4.3 Kendall's τ		123
	6.5	Exercises		124
				121
7		ysis of variance and the Kruskal-Wallis test		127
	7.1	One-way analysis of variance		127
		7.1.1 Pairwise comparisons and multiple testing		131
		7.1.2 Relaxing the variance assumption		133
		7.1.3 Graphical presentation		134
		7.1.4 Bartlett's test		136
	7.2	Kruskal–Wallis test		136
	7.3	Two-way analysis of variance		137

xiv Contents

		7.3.1 Graphics for repeated measurements	140
	7.4	The Friedman test	141
	7.5	The ANOVA table in regression analysis	141
	7.6	Exercises	143
8	Tabu	lar data	145
	8.1	Single proportions	145
	8.2	Two independent proportions	147
	8.3	<i>k</i> proportions, test for trend	149
	8.4	$r \times c$ tables	151
	8.5	Exercises	153
9	Powe	er and the computation of sample size	155
	9.1	The principles of power calculations	155
		9.1.1 Power of one-sample and paired t tests	156
		9.1.2 Power of two-sample t test	158
		9.1.3 Approximate methods	158
		9.1.4 Power of comparisons of proportions	159
	9.2	Two-sample problems	159
	9.3	One-sample problems and paired tests	161
	9.4	Comparison of proportions	161
	9.5	Exercises	162
10	Adva	nced data handling	163
	10.1	Recoding variables	163
		10.1.1 The cut function	163
		10.1.2 Manipulating factor levels	165
		10.1.3 Working with dates	166
		10.1.4 Recoding multiple variables	169
	10.2	Conditional calculations	170
	10.3	Combining and restructuring data frames	171
		10.3.1 Appending frames	172
		10.3.2 Merging data frames	173
		10.3.3 Reshaping data frames	175
	10.4	Per-group and per-case procedures	178
	10.5	Time splitting	179
	10.6	Exercises	183
11	Multi	iple regression	185
	11.1	Plotting multivariate data	185
	11.2	Model specification and output	187
	11.3	Model search	190
	11.4	Exercises	193

		Contents	s xv
12	Linea	ar models	195
	12.1	Polynomial regression	196
	12.2	Regression through the origin	198
	12.3	Design matrices and dummy variables	200
	12.4	Linearity over groups	202
	12.5	Interactions	206
	12.6	Two-way ANOVA with replication	207
	12.7		208
	12.7	Analysis of covariance	209
		12.7.1 Graphical description	212
	120	12.7.2 Comparison of regression lines	
	12.8	Diagnostics	218
	12.9	Exercises	224
13	Logis	stic regression	227
	13.1	Generalized linear models	228
	13.2	Logistic regression on tabular data	229
		13.2.1 The analysis of deviance table	234
		13.2.2 Connection to test for trend	235
	13.3	Likelihood profiling	237
	13.4	Presentation as odds-ratio estimates	239
	13.5	Logistic regression using raw data	239
	13.6	Prediction	241
	13.7	Model checking	242
	13.8	Exercises	247
	10.0	2.62.63.66	
14		ival analysis	249
	14.1	Essential concepts	249
	14.2	Survival objects	250
	14.3	Kaplan–Meier estimates	251
	14.4	The log-rank test	254
	14.5	The Cox proportional hazards model	256
	14.6	Exercises	258
15	Rates	s and Poisson regression	259
10	15.1		259
	13.1	15.1.1 The Poisson distribution	260
		15.1.2 Survival analysis with constant hazard	260
	15.0		
	15.2	Fitting Poisson models	262 266
	15.3	Computing rates	
	15.4	Models with piecewise constant intensities	270
	15.5	Exercises	274
16	Nonl	inear curve fitting	275

276

278

16.1

16.2

	0
XV1	Contents

		Self-starting models	284 285 287 288	
A	Obta	ining and installing R and the ISwR package	289	
В	Data	sets in the ISwR package	293	
C	Com	pendium	325	
D	Ansv	vers to exercises	337	
Bibliography		355		
In	dex		357	

A Handbook of Statistical Analyses **Using** SECOND EDITION

Brian S. Everitt and Torsten Hothorn

Contents

1	An	Introduction to R	1
	1.1	What Is R?	1
	1.2	Installing R	2
	1.3	Help and Documentation	4
	1.4	Data Objects in R	5
	1.5	Data Import and Export	9
	1.6	Basic Data Manipulation	11
	1.7	Simple Summary Statistics	14
	1.8	Organising an Analysis	18
	1.9	Summary	20
2	Sin	nple Inference	21
	2.1	Introduction	21
	2.2	Statistical Tests	25
	2.3	Analysis Using R	29
	2.4	Summary	39
3	Coı	nditional Inference	41
	3.1	Introduction	41
	3.2	Conditional Test Procedures	44
	3.3	Analysis Using R	46
	3.4	Summary	53
4	Ana	alysis of Variance	55
	4.1	Introduction	55
	4.2	Analysis of Variance	58
	4.3	Analysis Using R	59
	4.4	Summary	71
5	Mu	lltiple Linear Regression	73
	5.1	Introduction	73
	5.2	Multiple Linear Regression	74
	5.3	Analysis Using R	76
	5.4	Summary	86

6	Logistic Regression and Generalised Linear Models	89
	6.1 Introduction	89
	6.2 Logistic Regression and Generalised Linear Models	92
	6.3 Analysis Using R	94
	6.4 Summary	106
7	Density Estimation	109
	7.1 Introduction	109
	7.2 Density Estimation	111
	7.3 Analysis Using R	117
	7.4 Summary	125
8	Recursive Partitioning	131
	8.1 Introduction	131
	8.2 Recursive Partitioning	131
	8.3 Analysis Using R	133
	8.4 Summary	141
9	Survival Analysis	143
	9.1 Introduction	143
	9.2 Survival Analysis	144
	9.3 Analysis Using R	150
	9.4 Summary	157
10	Analysing Longitudinal Data I	159
	10.1 Introduction	159
	10.2 Analysing Longitudinal Data	162
	10.3 Linear Mixed Effects Models	163
	10.4 Analysis Using R	165
	10.5 Prediction of Random Effects	168
	10.6 The Problem of Dropouts	169
	10.7 Summary	172
11	Analysing Longitudinal Data II	175
	11.1 Introduction	175
	11.2 Generalised Estimating Equations	177
	11.3 Analysis Using R	179
	11.4 Summary	194
12	2 Meta-Analysis	197
	12.1 Introduction	197
	12.2 Systematic Reviews and Meta-Analysis	199
	12.3 Statistics of Meta-Analysis	201
	12.4 Analysis Using R	202
	12.5 Meta-Regression	203

12.6 Publication Bias	207
12.7 Summary	211
13 Principal Component Analysis	215
13.1 Introduction	215
13.2 Principal Component Analysis	215
13.3 Analysis Using R	218
13.4 Summary	223
14 Multidimensional Scaling	227
14.1 Introduction	227
14.2 Multidimensional Scaling	227
14.3 Analysis Using R	233
14.4 Summary	239
15 Cluster Analysis	243
15.1 Introduction	243
15.2 Cluster Analysis	245
15.3 Analysis Using R	248
15.4 Summary	253
Bibliography	259

Practical Recipes for Visualizing Data

Table of Contents

Pre	eface	ix
1.	R Basics	. 1
	1.1. Installing a Package	1
	1.2. Loading a Package	2
	1.3. Loading a Delimited Text Data File	3
	1.4. Loading Data from an Excel File	4
	1.5. Loading Data from an SPSS File	5
2.	Quickly Exploring Data	. 7
	2.1. Creating a Scatter Plot	7
	2.2. Creating a Line Graph	9
	2.3. Creating a Bar Graph	11
	2.4. Creating a Histogram	13
	2.5. Creating a Box Plot	15
	2.6. Plotting a Function Curve	17
3.	Bar Graphs	19
	3.1. Making a Basic Bar Graph	19
	3.2. Grouping Bars Together	22
	3.3. Making a Bar Graph of Counts	25
	3.4. Using Colors in a Bar Graph	27
	3.5. Coloring Negative and Positive Bars Differently	29
	3.6. Adjusting Bar Width and Spacing	30
	3.7. Making a Stacked Bar Graph	32
	3.8. Making a Proportional Stacked Bar Graph	35
	3.9. Adding Labels to a Bar Graph	38
	3.10. Making a Cleveland Dot Plot	42
4.	Line Graphs	49

	4.1. Making a Basic Line Graph	49
	4.2. Adding Points to a Line Graph	52
	4.3. Making a Line Graph with Multiple Lines	53
	4.4. Changing the Appearance of Lines	58
	4.5. Changing the Appearance of Points	59
	4.6. Making a Graph with a Shaded Area	62
	4.7. Making a Stacked Area Graph	64
	4.8. Making a Proportional Stacked Area Graph	67
	4.9. Adding a Confidence Region	69
5.	Scatter Plots	. 73
	5.1. Making a Basic Scatter Plot	73
	5.2. Grouping Data Points by a Variable Using Shape or Color	75
	5.3. Using Different Point Shapes	77
	5.4. Mapping a Continuous Variable to Color or Size	80
	5.5. Dealing with Overplotting	84
	5.6. Adding Fitted Regression Model Lines	89
	5.7. Adding Fitted Lines from an Existing Model	94
	5.8. Adding Fitted Lines from Multiple Existing Models	97
	5.9. Adding Annotations with Model Coefficients	100
	5.10. Adding Marginal Rugs to a Scatter Plot	103
	5.11. Labeling Points in a Scatter Plot	104
	5.12. Creating a Balloon Plot	110
	5.13. Making a Scatter Plot Matrix	112
6.	Summarized Data Distributions	117
	6.1. Making a Basic Histogram	117
	6.2. Making Multiple Histograms from Grouped Data	120
	6.3. Making a Density Curve	123
	6.4. Making Multiple Density Curves from Grouped Data	126
	6.5. Making a Frequency Polygon	129
	6.6. Making a Basic Box Plot	130
	6.7. Adding Notches to a Box Plot	133
	6.8. Adding Means to a Box Plot	134
	6.9. Making a Violin Plot	135
	6.10. Making a Dot Plot	139
	6.11. Making Multiple Dot Plots for Grouped Data	141
	6.12. Making a Density Plot of Two-Dimensional Data	143
7.	Annotations	147
	7.1. Adding Text Annotations	147
	7.2. Using Mathematical Expressions in Annotations	150

	7.3. Adding Lines	152
	7.4. Adding Line Segments and Arrows	155
	7.5. Adding a Shaded Rectangle	156
	7.6. Highlighting an Item	157
	7.7. Adding Error Bars	159
	7.8. Adding Annotations to Individual Facets	162
8.	Axes	167
	8.1. Swapping X- and Y-Axes	167
	8.2. Setting the Range of a Continuous Axis	168
	8.3. Reversing a Continuous Axis	170
	8.4. Changing the Order of Items on a Categorical Axis	172
	8.5. Setting the Scaling Ratio of the X- and Y-Axes	174
	8.6. Setting the Positions of Tick Marks	177
	8.7. Removing Tick Marks and Labels	178
	8.8. Changing the Text of Tick Labels	180
	8.9. Changing the Appearance of Tick Labels	182
	8.10. Changing the Text of Axis Labels	184
	8.11. Removing Axis Labels	185
	8.12. Changing the Appearance of Axis Labels	187
	8.13. Showing Lines Along the Axes	189
	8.14. Using a Logarithmic Axis	190
	8.15. Adding Ticks for a Logarithmic Axis	196
	8.16. Making a Circular Graph	198
	8.17. Using Dates on an Axis	204
	8.18. Using Relative Times on an Axis	207
9.	Controlling the Overall Appearance of Graphs	211
	9.1. Setting the Title of a Graph	211
	9.2. Changing the Appearance of Text	213
	9.3. Using Themes	216
	9.4. Changing the Appearance of Theme Elements	218
	9.5. Creating Your Own Themes	221
	9.6. Hiding Grid Lines	222
10.	Legends	225
	10.1. Removing the Legend	225
	10.2. Changing the Position of a Legend	227
	10.3. Changing the Order of Items in a Legend	229
	10.4. Reversing the Order of Items in a Legend	231
	10.5. Changing a Legend Title	232
	10.6. Changing the Appearance of a Legend Title	235

	10.7. Removing a Legend Title	236
	10.8. Changing the Labels in a Legend	237
	10.9. Changing the Appearance of Legend Labels	239
	10.10. Using Labels with Multiple Lines of Text	240
11.	Facets	243
	11.1. Splitting Data into Subplots with Facets	243
	11.2. Using Facets with Different Axes	246
	11.3. Changing the Text of Facet Labels	246
	11.4. Changing the Appearance of Facet Labels and Headers	250
12.	Using Colors in Plots	251
	12.1. Setting the Colors of Objects	251
	12.2. Mapping Variables to Colors	252
	12.3. Using a Different Palette for a Discrete Variable	254
	12.4. Using a Manually Defined Palette for a Discrete Variable	259
	12.5. Using a Colorblind-Friendly Palette	261
	12.6. Using a Manually Defined Palette for a Continuous Variable	263
	12.7. Coloring a Shaded Region Based on Value	264
13.	Miscellaneous Graphs	267
	13.1. Making a Correlation Matrix	267
	13.2. Plotting a Function	271
	13.3. Shading a Subregion Under a Function Curve	272
	13.4. Creating a Network Graph	274
	13.5. Using Text Labels in a Network Graph	278
	13.6. Creating a Heat Map	281
	13.7. Creating a Three-Dimensional Scatter Plot	283
	13.8. Adding a Prediction Surface to a Three-Dimensional Plot	285
	13.9. Saving a Three-Dimensional Plot	289
	13.10. Animating a Three-Dimensional Plot	291
	13.11. Creating a Dendrogram	291
	13.12. Creating a Vector Field	294
	13.13. Creating a QQ Plot	299
	13.14. Creating a Graph of an Empirical Cumulative Distribution Function	301
	13.15. Creating a Mosaic Plot	302
	13.16. Creating a Pie Chart	307
	13.17. Creating a Map	309
	13.18. Creating a Choropleth Map	313

	13.20. Creating a Map from a Shapefile	319				
14.	Output for Presentation	323				
	14.1. Outputting to PDF Vector Files	323				
	14.2. Outputting to SVG Vector Files	325				
	14.3. Outputting to WMF Vector Files	325				
	14.4. Editing a Vector Output File	326				
	14.5. Outputting to Bitmap (PNG/TIFF) Files	327				
	14.6. Using Fonts in PDF Files	330				
	14.7. Using Fonts in Windows Bitmap or Screen Output	332				
15.	Getting Your Data into Shape.					
	15.1. Creating a Data Frame	336				
	15.2. Getting Information About a Data Structure	337				
	15.3. Adding a Column to a Data Frame	338				
	15.4. Deleting a Column from a Data Frame	338				
	15.5. Renaming Columns in a Data Frame	339				
	15.6. Reordering Columns in a Data Frame	340				
	15.7. Getting a Subset of a Data Frame	341				
	15.8. Changing the Order of Factor Levels	343				
	15.9. Changing the Order of Factor Levels Based on Data Values	344				
	15.10. Changing the Names of Factor Levels	345				
	15.11. Removing Unused Levels from a Factor	347				
	15.12. Changing the Names of Items in a Character Vector	348				
	15.13. Recoding a Categorical Variable to Another Categorical Variable	349				
	15.14. Recoding a Continuous Variable to a Categorical Variable	351				
	15.15. Transforming Variables	352				
	15.16. Transforming Variables by Group	354				
	15.17. Summarizing Data by Groups	357				
	15.18. Summarizing Data with Standard Errors and Confidence Intervals	361				
	15.19. Converting Data from Wide to Long	365				
	15.20. Converting Data from Long to Wide	368				
	15.21. Converting a Time Series Object to Times and Values	369				
A.	Introduction to ggplot2	373				
Inc	dex.	385				

R Graphics

Paul Murrell

Contents

List of Figures

List of Tables

1 4	4 n 1	Introd	lucti	ion 1	to	R	Grap	hi	$\mathbf{c}\mathbf{s}$
-----	--------------	--------	-------	-------	----	---	------	----	------------------------

- 1.1 R graphics examples
 - 1.1.1 Standard plots
 - 1.1.2 Trellis plots
 - 1.1.3 Special-purpose plots
 - 1.1.4 General graphical scenes
 - 1.2 The organization of R graphics
 - 1.2.1 Types of graphics functions
 - 1.2.2 Traditional graphics versus grid graphics
 - 1.3 Graphical output formats
 - 1.3.1 Graphics devices
 - 1.3.2 Multiple pages of output
 - 1.3.3 Display lists

I TRADITIONAL GRAPHICS

2 Simple Usage of Traditional Graphics

- 2.1 The traditional graphics model
- 2.2 Plots of one or two variables
 - 2.2.1 Arguments to graphics functions
 - 2.2.2 Standard arguments
- 2.3 Plots of multiple variables
- 2.4 Modern plots and specialized plots
- 2.5 Interactive graphics

3 Customizing Traditional Graphics

- 3.1 The traditional graphics model in more detail
 - 3.1.1 Plotting regions
 - 3.1.2 The traditional graphics state
- 3.2 Controlling the appearance of plots
 - 3.2.1 Colors
 - 3.2.2 Lines

	3.2.3	Text
	3.2.4	Data symbols
	3.2.5	Axes
	3.2.6	Plotting regions
	3.2.7	Clipping
	3.2.8	Moving to a new plot
3.3	Arrang	ing multiple plots
	3.3.1	Using the traditional graphics state
	3.3.2	Layouts
	3.3.3	The split-screen approach
3.4	Annota	ating plots
	3.4.1	Annotating the plot region
	3.4.2	Missing values and non-finite values
	3.4.3	Annotating the margins
	3.4.4	Legends
	3.4.5	Axes
	3.4.6	Mathematical formulae
	3.4.7	Coordinate systems
	3.4.8	Bitmap images
	3.4.9	Special cases
3.5		ng new plots
	3.5.1	A simple plot from scratch
	3.5.2	A more complex plot from scratch
	3.5.3	Writing traditional graphics functions
GR	ID GR	APHICS
Trell	is Grar	phics: the Lattice Package
4.1	_	atice graphics model
1.1	4.1.1	Lattice devices
4.2		plot types
	4.2.1	The formula argument and multipanel conditioning
	4.2.2	A nontrivial example
4.3	Contro	lling the appearance of lattice plots
4.4		ing lattice plots
4.5	_	ating lattice plots
	4.5.1	Panel functions and strip functions
	4.5.2	Adding output to a lattice plot
4.6	Creatin	ng new lattice plots

П

4

5.1

5.2

5 The Grid Graphics Model

A brief overview of grid graphics

5.1.1 A simple example

Graphical primitives

		5.2.1	Standard arguments		
	5.3	Coordi	inate systems		
		5.3.1	Conversion functions		
		5.3.2	Complex units		
	5.4	Contro	olling the appearance of output		
		5.4.1	Specifying graphical parameter settings		
		5.4.2	Vectorized graphical parameter settings		
5.5 Viewports			orts		
		5.5.1	Pushing, popping, and navigating between viewports		
		5.5.2	Clipping to viewports		
		5.5.3	Viewport lists, stacks, and trees		
		5.5.4	Viewports as arguments to graphical primitives		
		Graphical parameter settings in viewports			
		5.5.6	Layouts		
	5.6	Missin	g values and non-finite values		
	5.7	Interac	ctive graphics		
5.8 Customizing lattice plots			mizing lattice plots		
		5.8.1	Adding grid output to lattice output		
		5.8.2	Adding lattice output to grid output		
6	The	Grid C	Graphics Object Model		
	6.1	Workii	ng with graphical output		
		6.1.1	Standard functions and arguments		
	6.2	Grob l	ists, trees, and paths		
		6.2.1	Graphical parameter settings in gTrees		
		6.2.2	Viewports as components of gTrees		
		6.2.3	Searching for grobs		
	6.3				
6.3.1 Capturing output					
6.4 Placing and packing grobs in frames		g and packing grobs in frames			
		6.4.1	Placing and packing off-screen		
	6.5	Other	details about grobs		
		6.5.1	Calculating the sizes of grobs		
		6.5.2	Editing graphical context		
	6.6	Saving	and loading grid graphics		
	6.7	Workin	ng with lattice grobs		
7	Deve	eloping	New Graphics Functions and Objects		
	7.1	An exa	ample		
		7.1.1	Modularity		
	7.2	Simple	graphics functions		
		7.2.1	Embedding graphical output		
		7.2.2	Facilitating annotation		
		7.2.3	Editing output		
		7.2.4	Absolute versus relative sizes		

- 7.3 Graphical objects
 - 7.3.1 Overview of creating a new graphical class
 - 7.3.2 Defining a new graphical class
 - 7.3.3 Validating grobs
 - 7.3.4 Drawing grobs
 - 7.3.5 Editing grobs
 - 7.3.6 Sizing grobs
 - 7.3.7 Pre-drawing and post-drawing
 - 7.3.8 Completing the example
 - 7.3.9 Reusing graphical elements
 - 7.3.10 Other details
- 7.4 Querying grid

A A Brief Introduction to R

- A.1 Obtaining and installing R
- A.2 An environment for statistical computing and graphics
 - A.2.1 Batch processing
 - A.2.2 Data types
 - A.2.3 Variables
 - A.2.4 Indexing
 - A.2.5 Data structures
 - A.2.6 Formulae
 - A.2.7 Expressions
 - A.2.8 Packages
 - A.2.9 Accessing data sets
 - A.2.10 Getting help
- A.3 A programming language
 - A.3.1 Debugging
- A.4 An object-oriented language

B Combining Traditional Graphics and Grid Graphics

- B.1 The gridBase package
 - B.1.1 Annotating base graphics using grid
 - B.1.2 Embedding base graphics plots in grid viewports
 - B.1.3 Problems and limitations

Bibliography

List of Figures

- 1.1 A simple scatterplot
- 1.2 Some standard plots
- 1.3 A customized scatterplot
- 1.4 A Trellis dotplot
- 1.5 A map of New Zealand produced using R
- 1.6 Some polar-coordinate plots
- 1.7 A novel decision tree plot
- 1.8 A table-like plot
- 1.9 Didactic diagrams
- 1.10 A music score
- 1.11 A piece of clip art
- 1.12 The structure of the R graphics system
- 2.1 Four variations on a scatterplot
- 2.2 Plotting an 1m object
- 2.3 Plotting an agnes object
- 2.4 Modifying default barplot() and boxplot() output
- 2.5 Standard arguments for high-level functions
- 2.6 Plotting three variables
- 2.7 Plotting multivariate data
- 2.8 Some modern and specialized plots
- 3.1 The plot regions in traditional graphics
- 3.2 Multiple figure regions in traditional graphics
- 3.3 The user coordinate system in the plot region
- 3.4 Figure margin coordinate systems
- 3.5 Outer margin coordinate systems
- 3.6 Predefined and custom line types
- 3.7 Line join and line ending styles
- 3.8 Alignment of text in the plot region
- 3.9 Font families and font faces
- 3.10 Data symbols available in R
- 3.11 Basic plot types
- 3.12 Different axis styles
- 3.13 Graphics state settings controlling plot regions
- 3.14 Some basic layouts

- 3.15 Some complex layouts
- 3.16 Annotating the plot region
- 3.17 More examples of annotating the plot region
- 3.18 Drawing polygons
- 3.19 Annotating the margins
- 3.20 Some simple legends
- 3.21 Customizing axes
- 3.22 Mathematical formulae in plots
- 3.23 Custom coordinate systems
- 3.24 Overlaying plots
- 3.25 Overlaying output
- 3.26 Adding a bitmap to a plot
- 3.27 Special-case annotations
- 3.28 A panel function example
- 3.29 Annotating a 3D surface
- 3.30 A back-to-back barplot
- 3.31 A graphics function template
- 4.1 A scatterplot using lattice
- 4.2 The result of modifying a lattice object
- 4.3 Plot types available in lattice
- 4.4 A lattice multipanel conditioning plot
- 4.5 A complex lattice plot
- 4.6 Some default lattice settings
- 4.7 Controlling the layout of lattice panels
- 4.8 Arranging multiple lattice plots
- 4.9 Annotating a lattice plot
- 5.1 A simple scatterplot using grid
- 5.2 Primitive grid output
- 5.3 Drawing arrows
- 5.4 Drawing polygons
- 5.5 A demonstration of grid units
- 5.6 Graphical parameters for graphical primitives
- 5.7 Recycling graphical parameters
- 5.8 Recycling graphical parameters for polygons
- 5.9 A diagram of a simple viewport
- 5.10 Pushing a viewport
- 5.11 Pushing several viewports
- 5.12 Popping a viewport
- 5.13 Navigating between viewports
- 5.14 Clipping output in viewports
- 5.15 The inheritance of viewport graphical parameters
- 5.16 Layouts and viewports
- 5.17 Layouts and units

- 5.18 Nested layouts
- 5.19 Non-finite values for line-tos, polygons, and arrows
- 5.20 Controlling the size of lattice panels
- 5.21 Adding grid output to a lattice plot
- 5.22 Embedding a lattice plot within grid output
- 6.1 Modifying a circle grob
- 6.2 Editing grobs
- 6.3 The structure of a gTree
- 6.4 Editing a gTree
- 6.5 Using a gTree to group grobs
- 6.6 Packing grobs by hand
- 6.7 Calculating the size of a grob
- 6.8 Grob dimensions by reference
- 6.9 Editing the graphical context
- 6.10 Editing the grobs in a lattice plot
- 7.1 A plot of oceanographic data
- 7.2 A grid.imageFun() function
- 7.3 Output from the grid.imageFun() function
- 7.4 A grid.ozFun() function
- 7.5 Example output from grid.ozFun()
- 7.6 Annotating grid.ozFun() output
- 7.7 Editing grid.ozFun() output
- 7.8 An "imageGrob" class
- 7.9 Some validDetails() methods
- 7.10 An "ozGrob" class
- 7.11 An "ozImage" class
- 7.12 Some editDetails() methods
- 7.13 Editing an imageGrob
- 7.14 Low-level editing of an imageGrob
- 7.15 Helper functions for a "ribbonLegend" class
- 7.16 A "ribbonLegend" class
- 7.17 An "ozKey" class
- 7.18 A plot of temperature data
- 7.19 A splitString() function
- 7.20 Performing calculations before drawing
- 7.21 A "splitText" class
- 7.22 Drawing faces
- 7.23 Some face functions
- 7.24 Some face objects
- B.1 Annotating a traditional plot with grid
- B.2 Embedding a traditional plot within lattice output

List of Tables

- 1.1 Graphical output formats
- 3.1 High-level traditional graphics state settings
- 3.2 Low-level traditional graphics state settings
- 3.3 Read-only traditional graphics state settings
- 3.4 Functions to generate color sets
- 3.5 Font faces
- 3.6 Font families
- 4.1 Plotting functions in lattice
- 5.1 Graphical primitives in grid
- 5.2 Coordinate systems in grid
- 5.3 Graphical parameters in grid
- 5.4 Grid font faces
- 6.1 Functions for working with grobs