

Why Digital Thread?

Global Horizons

9. Manufacturing and Materials

9.3 Game Changers

Global Horizons

Final Report

United States Air Force Global Science and Technology Vision

9.3 Game Changers

Exploiting the three game-changing opportunities below will help the AF meet the need for more rapid development and deployment. The recommendations represent the first steps on the path to future game-changers.

AF/ST TR 13-01 21 June 2013

Distribution A. Approved for public release; distribution SAF/PA Public Release Case No. 2013-04

Digital Thread and Digital Twin

Digital Thread and Digital Twin

The concept of a digital thread/digital twin comprised of advanced modeling and simulation tools that link materials-design-processing-manufacturing (Digital Thread) will be the game-changer that provides the agility and tailorability needed for rapid development and deployment, while also reducing risk. State Awareness and System Prognosis advantages will be achieved through the Digital Twin, a virtual representation of the system as an integrated system of data, models, and analysis tools applied over the entire life cycle on a tail-number unique and operator-by-name basis. M&S tools will optimize manufacturability, inspectability, and sustainability from the outset. Data captured from legacy and future systems will provide the basis for refined models that enable component and system-level prognostics. Archived digital descriptions of new systems would greatly facilitate any subsequent re-engineering required in the future. Human performance monitoring will enable adaptation of systems to the "mission capable" state of the operator.

Digital Thread Defined

- "Digital Thread is the creation and use of a digital surrogate of a materiel system to allow dynamic, real-time assessment of the system's current and future capabilities to inform decisions in ... acquisition....
- The digital surrogate is a physics-based technical description of the weapon system resulting from the generation, management, and application of data, models, and information from authoritative sources across the system's life cycle."

 (Extracted from SAF/AQR Definition)

Digital Thread Data - Models - Information

Digital Thread Concept

Main Goals:

- Use ALL AVAILABLE INFORMATION in analyses
- Use PHYSICS to inform analyses
- Use PROBABILISTIC METHODS to quantify program risks
- CLOSE THE LOOP
 from the beginning to
 the end and back to the
 beginning of the acquisition
 lifecycle

Make INFORMED DECISIONS throughout acquisition

"AS IS" State for PRODUCTION:

- Conformance req'ts thrown over the wall to PRODUCTION
- Conforming product thrown over the wall to OPERATION & SUSTAINMENT
- Conformance reported as "PASS" / "FAIL" only
- OEM/USAF only engaged when problems arise

Lots of data generated in the manufacturing supply chain is not deployed in decision making!

"TO BE" State for PRODUCTION:

- Conformance req'ts linked to manufacturing process capability as well as design/performance
- Details of "as-built" product delivered to OPERATION & SUSTAINMENT
- Full production data streams captured & analyzed
- OEM/USAF engaged continuously

Engineering decision making informed by the Digital Thread

- Foundation for streamlined resolution of weapon system performance issues
- Reduction in late discovery of system performance deficiencies
- Identification & management of technology maturation risks
- Quantification of risk at critical decision points
- Informed trade space exploration (design and manufacturing)
 - In-depth assessment of the feasibility and lifecycle cost of system configuration options
 - Data-rich assessment of requirement, cost, and performance trades

Manufacturing Benefits:

- Yield and Rate improvements through agility on the shop floor (adaptive machining, virtual assembly, etc.)
- Infrastructure to generate, capture, organize, and utilize relevant data & information (e.g. *Pass/Fail* to *As-Built* for condition-based maintenance)

