# Mathematik I WS 15/16

Thomas  $Dinges^1$  Jonas Wolf <sup>2</sup>

25. Dezember 2015

Inoffizielles Skript für die Vorlesung Mathematik I im WS 15/16, bei Britta Dorn. Alle Angaben ohne Gewähr. Fehler können gerne via E-Mail gemeldet werden.

<sup>&</sup>lt;sup>1</sup>thomas.dinges@student.uni-tuebingen.de

<sup>&</sup>lt;sup>2</sup>mail@jonaswolf.de

# Inhaltsverzeichnis

| 1 | Logi | k 5                                         |  |  |  |  |  |  |  |
|---|------|---------------------------------------------|--|--|--|--|--|--|--|
|   | 1.1  | Negation                                    |  |  |  |  |  |  |  |
|   | 1.2  | Konjunktion                                 |  |  |  |  |  |  |  |
|   | 1.3  | Disjunktion                                 |  |  |  |  |  |  |  |
|   | 1.4  | XOR                                         |  |  |  |  |  |  |  |
|   | 1.5  | Implikation                                 |  |  |  |  |  |  |  |
|   | 1.6  | Äquivalenz                                  |  |  |  |  |  |  |  |
|   | 1.7  | Beispiel                                    |  |  |  |  |  |  |  |
|   | 1.8  | Definition                                  |  |  |  |  |  |  |  |
|   | 1.9  | Satz                                        |  |  |  |  |  |  |  |
|   | 1.10 | Bemerkung                                   |  |  |  |  |  |  |  |
|   | 1.11 | Bemerkung (Logisches Umformen)              |  |  |  |  |  |  |  |
|   | 1.12 | Definition                                  |  |  |  |  |  |  |  |
|   | 1.13 | Beispiel                                    |  |  |  |  |  |  |  |
|   | 1.14 | Definition                                  |  |  |  |  |  |  |  |
|   | 1.15 | Beispiel / Bemerkung                        |  |  |  |  |  |  |  |
|   |      | Negation von All- und Existenzaussagen      |  |  |  |  |  |  |  |
|   |      |                                             |  |  |  |  |  |  |  |
| 2 | Men  |                                             |  |  |  |  |  |  |  |
|   | 2.1  | Definition (Georg Cantor, 1845-1918)        |  |  |  |  |  |  |  |
|   | 2.2  | Bemerkung                                   |  |  |  |  |  |  |  |
|   | 2.3  | Definition                                  |  |  |  |  |  |  |  |
|   | 2.4  | Beispiel                                    |  |  |  |  |  |  |  |
|   | 2.5  | Satz (Rechenregeln für Mengen)              |  |  |  |  |  |  |  |
| 0 | Б    |                                             |  |  |  |  |  |  |  |
| 3 |      | eismethoden 21                              |  |  |  |  |  |  |  |
|   | 3.1  | Direkter Beweis                             |  |  |  |  |  |  |  |
|   | 3.2  | Beweis durch Kontraposition                 |  |  |  |  |  |  |  |
|   | 3.3  | Beweis durch Widerspruch, indirekter Beweis |  |  |  |  |  |  |  |
|   | 3.4  | Vollständige Induktion                      |  |  |  |  |  |  |  |
|   |      | 3.4.1 Prinzip der vollständigen Induktion   |  |  |  |  |  |  |  |
|   |      | 3.4.2 Bemerkung                             |  |  |  |  |  |  |  |
|   |      | 3.4.3 Verschärftes Induktionsprinzip        |  |  |  |  |  |  |  |
|   | 3.5  | Schubfachprinzip                            |  |  |  |  |  |  |  |
|   |      | 3.5.1 Idee                                  |  |  |  |  |  |  |  |
|   |      | 3.5.2 Satz                                  |  |  |  |  |  |  |  |
|   |      | 3.5.3 Beispiel                              |  |  |  |  |  |  |  |
|   | 3.6  | Weitere Beweistechniken (Werkzeugkiste)     |  |  |  |  |  |  |  |

| 4 | Abbi | ldungen 3:                                                    |
|---|------|---------------------------------------------------------------|
|   | 4.1  | Definition                                                    |
|   | 4.2  | Beispiele                                                     |
|   | 4.3  | Beispiele                                                     |
|   | 4.4  | Definition                                                    |
|   | 4.5  | Beispiel                                                      |
|   | 4.6  | Definition                                                    |
|   | 4.7  | Beispiele                                                     |
|   | 4.8  | Definition                                                    |
|   | 4.9  | Beispiel                                                      |
|   | 4.10 | Bemerkung                                                     |
|   | 4.11 | Definition                                                    |
|   | 4.12 | Beispiel                                                      |
|   |      | Satz                                                          |
|   |      | Satz (Charakterisierung bijektiver Abbildungen)               |
|   | 4.15 | Bemerkung / Definition                                        |
|   | 4.16 | Satz (Wichtiger Satz für endliche Mengen)                     |
|   |      | Das Prinzip der rekursiven Definition von Abbildungen 40      |
|   |      | Beispiel                                                      |
|   |      | Bemerkung                                                     |
|   | 4.20 | Beispiel (Fibonacci-Zahlen)                                   |
| 5 | Rela | tionen 4                                                      |
|   | 5.1  | Definition                                                    |
|   | 5.2  | Beispiel                                                      |
|   | 5.3  | Definition                                                    |
|   | 5.4  | Beispiele                                                     |
|   | 5.5  | Definition                                                    |
|   | 5.6  | Beispiele                                                     |
|   | 5.7  | Definition                                                    |
|   | 5.8  | Beispiel                                                      |
|   | 5.9  | Definition                                                    |
|   | 5.10 | Satz (Klasseneinteilung, Zerlegung durch Äquivalenzklassen) 4 |
|   |      | Satz                                                          |
|   | 5.12 | Definition                                                    |
|   | 5.13 | Beispiel                                                      |
| 6 | Elen | nentare Zahlentheorie 4                                       |
|   | 6.1  | Definition                                                    |
|   | 6.2  | Satz 50                                                       |
|   | 6.3  | Satz und Definition: Division mit Rest. 5                     |

| 6.4  | Beispiel                     | ,1 |
|------|------------------------------|----|
| 6.5  | Definition                   | 3  |
| 6.6  | Beispiel                     | 3  |
| 6.7  | Satz (b-adische Darstellung) | 3  |
| 6.8  | Beispiel                     | 4  |
| 6.9  | Korollar                     | 6  |
| 6.10 | Beispiel                     | 6  |

# 1 Logik

### Aussagenlogik

Eine **logische Aussage** ist ein Satz, der entweder wahr oder falsch (also nie beides zugleich) ist. Wahre Aussagen haben den Wahrheitswert 1 (auch wahr, w, true, t), falsche den Wert 0 (auch falsch, f, false).

Notation: Aussagenvariablen  $A, B, C, ...A_1, A_2$ .

Beispiele:

- 2 ist eine gerade Zahl (1)
- Heute ist Montag (1)
- 2 ist eine Primzahl (1)
- 12 ist eine Primzahl (0)
- Es gibt unendlich viele Primzahlen (1)
- Es gibt unendlich viele Primzahlzwillinge (Aussage, aber unbekannt, ob 1 oder 0)
- 7 (keine Aussage)
- Ist 173 eine Primzahl? (keine Aussage)

Aus einfachen Aussagen kann man durch logische Verknüpfungen (**Junktoren**, z.B. und, oder, ...) kompliziertere bilden. Diese werden Ausdrücke genannt (auch Aussagen sind Ausdrücke). Durch sogenannte **Wahrheitstafeln** gibt man an, wie der Wahrheitswert der zusammengesetzten Aussage durch die Werte der Teilaussagen bedingt ist. Im folgenden seien A, B Aussagen.

Die wichtigsten Junktoren:

### 1.1 Negation

Verneinung von A:  $\neg A$  (auch  $\bar{A}$ ), *nicht* A, ist die Aussage, die genau dann wahr ist, wenn A falsch ist.

Wahrheitstafel:

| Α | $\neg A$ |
|---|----------|
| 1 | 0        |
| 0 | 1        |

Beispiele:

• A: 6 ist durch 3 teilbar. (1)

•  $\neg A$ : 6 ist nicht durch 3 teilbar. (0)

• B: 4,5 ist eine gerade Zahl (0)

•  $\neg B$ : 4,5 ist keine gerade Zahl. (1)

### 1.2 Konjunktion

Verknüpfung von A und B durch  $und: A \wedge B$  ist genau dann wahr, wenn A und B gleichzeitig wahr sind.

Wahrheitstafel:

| Α | В | $A \wedge B$ |
|---|---|--------------|
| 1 | 1 | 1            |
| 1 | 0 | 0            |
| 0 | 1 | 0            |
| 0 | 0 | 0            |

Beispiele:

•  $\underbrace{6 \text{ ist eine gerade Zahl}}_{A(1)}$  und  $\underbrace{\text{durch 3 teilbar}}_{B(1)}$ . (1)

•  $\underbrace{9 \text{ ist eine gerade Zahl}}_{A(0)}$  und  $\underbrace{\text{durch 3 teilbar}}_{B(1)}$ . (0)

### 1.3 Disjunktion

 $oder: A \vee B$ 

Wahrheitstafel:

| A | В | $A \vee B$ |
|---|---|------------|
| 1 | 1 | 1          |
| 1 | 0 | 1          |
| 0 | 1 | 1          |
| 0 | 0 | 0          |

↑ Einschließendes oder, kein entweder…oder.

Beispiele:

• 6 ist gerade oder durch 3 teilbar. (1)

- 9 ist gerade oder durch 3 teilbar. (1)
- 7 ist gerade oder durch 3 teilbar. (0)

#### 1.4 XOR

entweder oder: A xor B,  $A \oplus B$  (ausschließendes oder, exclusive or).

Wahrheitstafel:

| Α | В | $A \oplus B$ |
|---|---|--------------|
| 1 | 1 | 0            |
| 1 | 0 | 1            |
| 0 | 1 | 1            |
| 0 | 0 | 0            |

### 1.5 Implikation

wenn, dann,  $A \Rightarrow B$ :

- wenn A gilt, dann auch B
- A impliziert B
- aus A folgt B
- A ist <u>hinreichend</u> für B,
- B ist notwendig für A

Wahrheitstafel:

| Α | В | $A \Rightarrow B$ |
|---|---|-------------------|
| 1 | 1 | 1                 |
| 1 | 0 | 0                 |
| 0 | 1 | 1                 |
| 0 | 0 | 1                 |

Merke: ex falso quodlibet: aus einer falschen Aussage kann man alles folgern!

(Die Implikation  $A\Rightarrow B$  sagt nur, dass B wahr sein muss, <u>falls</u> A wahr ist. Sie sagt nicht, dass B tatsächlich war ist.)

Beispiele:

• Wenn 1 = 0, bin ich der Papst. (1)

# 1.6 Äquivalenz

genau dann wenn,  $A \Leftrightarrow B$  (dann und nur dann wenn, g.d.w, äquivalent, if and only if, iff)

Beispiele:

- Heute ist Montag genau dann wenn morgen Dienstag ist. (1)
- Eine natürliche Zahl ist durch 6 teilbar g. d. w. sie durch 3 teilbar ist. (0)  $A \Rightarrow B \ (1)$   $B \Rightarrow A \ (0)$

### Festlegung

 $\neg$  bindet stärker als alle anderen Junktoren:  $(\neg A \land B)$  heißt  $(\neg A) \land B$ 

### 1.7 Beispiel

a)

Wann ist der Ausdruck  $(A \vee B) \wedge \neg (A \wedge B)$  wahr?

 $\rightarrow$  Wahrheitstafel

| A | В | $(A \lor B)$ | $(A \wedge B)$ | $\neg (A \land B)$ | $(A \vee B) \wedge \neg (A \wedge B)$ |
|---|---|--------------|----------------|--------------------|---------------------------------------|
| 1 | 1 | 1            | 1              | 0                  | 0                                     |
| 1 | 0 | 1            | 0              | 1                  | 1                                     |
| 0 | 1 | 1            | 0              | 1                  | 1                                     |
| 0 | 0 | 0            | 0              | 1                  | 0                                     |

∧ Klammerung relevant

Welche Wahrheitswerte ergeben sich für

•  $A \lor (B \land \neg A) \land B)$ ?

•  $A \vee B \wedge \neg A \wedge B$ ?

 $(A \vee B) \wedge \neg (A \wedge B)$  und  $(A \oplus B)$  haben dieselben Wahrheitstafeln. Ausdrücke sehen unterschiedlich aus (Syntax), aber haben dieselbe Bedeutung (Semantik). Dies führt zu 1.8 Definition.

b)

Wann ist  $(A \wedge B) \Rightarrow \neg (C \vee A)$  falsch?

 $\rightarrow$  Wahrheitstafel: <u>alle</u> möglichen Belegungen von A, B, C mit 0/1

| A | В | С | $(A \wedge B)$ | $\neg(C \lor A)$ | $(A \land B) \Rightarrow \neg(C \lor A)$ |
|---|---|---|----------------|------------------|------------------------------------------|
| 1 | 1 | 1 | 1              | 0                | 0                                        |
| 1 | 1 | 0 | 1              | 0                | 0                                        |
| 1 | 0 | 1 | 0              | 0                | 1                                        |
| 1 | 0 | 0 | 0              | 0                | 1                                        |
| 0 | 1 | 1 | 0              | 0                | 1                                        |
| 0 | 1 | 0 | 0              | 1                | 1                                        |
| 0 | 0 | 1 | 0              | 0                | 1                                        |
| 0 | 0 | 0 | 0              | 1                | 1                                        |

oder überlegen:

$$(A \wedge B) \Rightarrow \neg (C \vee A)$$
 ist nur 0, wenn

$$(A \wedge B) = 1$$
, also  $A = 1$  und  $B = 1$ 

und

$$\neg (C \lor A) = 0$$
 ist.

(Wissen: A = 1), also  $\underline{C} = 0$  oder  $\underline{C} = 1$  möglich.

#### 1.8 Definition

Haben zwei Ausdrücke  $\alpha$  und  $\beta$  bei jeder Kombination von Wahrheitswerten ihrer Aussagevariablen den gleichen Wahrheitswert, so heißen sie <u>logisch äquivalent</u>; man schreibt  $\alpha \equiv \beta$ . (' $\equiv$ ' ist kein Junktor, entspricht '=')

Es gilt: Falls  $\alpha \equiv \beta$  gilt, hat der Ausdruck  $\alpha \Leftrightarrow \beta$  immer den Wahrheitswert 1.

### 1.9 Satz

Seien A, B, C Aussagen. Es gelten folgende logische Äquivalenzen:

- a) Doppelte Negation:  $A \equiv \neg(\neg A)$
- b) Kommutativität von  $\land$ ,  $\lor$ ,  $\oplus$ ,  $\Leftrightarrow$ :
  - $(A \wedge B) \equiv (B \wedge A)$
  - $(A \lor B) \equiv (B \lor A)$
  - $(A \oplus B) \equiv (B \oplus A)$
  - $(A \Leftrightarrow B) \equiv (B \Leftrightarrow A)$

 $\underline{\wedge}$  gilt nicht für ' $\Rightarrow$ ' !!  $(A \Rightarrow B \not\equiv B \Rightarrow A)$ 

- c) Assoziativität von  $\land$ ,  $\lor$ ,  $\oplus$ ,  $\Leftrightarrow$ :
  - $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
  - $(A \lor B) \lor C \equiv A \lor (B \lor C)$
  - $(A \oplus B) \oplus C \equiv A \oplus (B \oplus C)$
  - $(A \Leftrightarrow B) \Leftrightarrow C \equiv A \Leftrightarrow (B \Leftrightarrow C)$
- d) Distributivität:
  - $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
  - $\bullet \ \ A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$
- e) Regeln von DeMorgan:
  - $\bullet \ \neg (A \land B) \equiv \neg A \lor \neg B$
  - $\bullet \ \neg (A \lor B) \equiv \neg A \land \neg B$
- $\mathbf{f)} \ A \Rightarrow B \equiv \neg B \Rightarrow \neg A$
- $\mathbf{g)} \ A \Rightarrow B \equiv \neg A \vee B$
- h)  $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$

(Alle Äquivalenzen gelten auch, wenn die Aussagevariablen durch Ausdrücke ersetzt werden.)

Beweis: Jeweils mittels Wahrheitstafel (Übung!), zum Beispiel:

a) 
$$\begin{array}{|c|c|c|c|c|} \hline A & \neg A & \neg (\neg A) \\ \hline 1 & 0 & 1 \\ 0 & 1 & 0 \\ \hline \end{array}$$

|    | Α | В | $(A \wedge B)$ | $\neg(A \land B)$ | $\neg A$ | $\neg B$ | $(\neg A \lor \neg B)$ |
|----|---|---|----------------|-------------------|----------|----------|------------------------|
|    | 1 | 1 | 1              | 0                 | 0        | 0        | 0                      |
| e) | 1 | 0 | 0              | 1                 | 0        | 1        | 1                      |
|    | 0 | 1 | 0              | 1                 | 1        | 0        | 1                      |
|    | 0 | 0 | 0              | 1                 | 1        | 1        | 1                      |

### 1.10 Bemerkung

$$(1.9 \text{ f}): (A \Rightarrow B) \equiv \underbrace{(\neg B \Rightarrow \neg A)}_{\text{wird } \underline{\text{Kontraposition}}} \text{ genannt, wichtig für Beweis. Wird im Sprachgebrauch oft falsch verwendet.}$$

**Beispiel:** Pit ist ein Dackel.  $\Rightarrow$  Pit ist ein Hund.

äquivalent zu:  $(\neg B) \Rightarrow (\neg A)$ 

Pit ist kein Hund.  $\Rightarrow$  Pit ist kein Dackel.

aber nicht zu:  $B \Rightarrow A$ 

Pit ist ein Hund.  $\Rightarrow$  Pit ist ein Dackel.

und nicht zu:  $\neg A \Rightarrow \neg B$ 

Pit ist kein Dackel.  $\Rightarrow$  Pit ist kein Hund.

**Beispiel:** Sohn des Logikers / bellende Hunde  $(\rightarrow$  Folien)

# 1.11 Bemerkung (Logisches Umformen)

Sei  $\alpha$  ein Ausdruck. Ersetzen von Teilausdrücken von  $\alpha$  durch logisch äquivalente Ausdrücke liefert einen zu  $\alpha$  äquivalenten Ausdruck. So erhält man eventuell kürzere/einfachere Ausdrücke, zum Beispiel:

$$\neg(A\Rightarrow B)\underset{\text{1.9 g}}{\equiv}\neg(\neg A\vee B)\underset{\text{1.9 e})}{\equiv}\neg(\neg A)\wedge(\neg B)\underset{\text{1.9 a})}{\equiv}A\wedge\neg B$$

#### 1.12 Definition

Ein Ausdruck heißt <u>Tautologie</u>, wenn er für jede Belegung seiner Aussagevariablen, immer den Wert 1 <u>annimmt</u>. Hat er immer Wert 0, heißt er <u>Kontradiktion</u>. Gibt es mindestens eine Belegung der Aussagevariablen, so dass der Ausdruck Wert 1 hat, heißt er erfüllbar.

### 1.13 Beispiel

- a)  $A \vee \neg A$  Tautologie  $A \wedge \neg A$  Kontradiktion
- b)  $\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$  Tautologie (vergleiche Beispiel in 1.11).  $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$  Tautologie (vergleiche Beispiel in 1.9g).
- c)  $A \wedge \neg B$  ist erfüllbar (durch A = 1, B = 0).

### Prädikatenlogik

Eine <u>Aussageform</u> ist ein sprachliches Gebilde, dass formal wie eine Aussage aussieht, aber eine oder mehrere Variablen enthält.

Beispiel: 
$$P(x)$$
 :  $\underbrace{x}_{Variable} \underbrace{< 10}_{\text{Prädikat (Eigenschaft)}}$ 

Q(x): x studiert Informatik R(y): y ist Primzahl und  $y^2 + 2$  ist Primzahl.

Eine AussageformP(x) wird zur Aussage, wenn man die Variable durch ein konkretes Objekt ersetzt. Diest ist nur dann sinnvoll, wenn klar ist, welche Werte für x erlaubt sind, daher wird oft die zugelassene Wertemenge mit angegeben. (hier Vorgriff auf Kapitel Mengen)

Im Beispiel:

- P(3) ist wahr, P(42) falsch.
- R(2) ist falsch, R(3) ist wahr.

Oft ist die Frage interessant, ob es wenigstens ein x gibt, für das P(x) wahr ist, oder ob P(x) sogar für alle zugelassenen x wahr ist.

#### 1.14 Definition

Sei P(x) eine Aussageform.

a) Die Aussage Für alle x (aus einer bestimmten Menge M) gilt P(x). ist wahr genau dann wenn P(x) für alle in Frage kommenden x wahr ist.

Schreibweise:  $\forall x \in M$  : P(x) für alle, für jedes aus der Menge M gilt Eigenschaft

auch 
$$\bigvee_{x \in M} P(x)$$
.

Das Symbol ∀ heißt All- Quantor, die Aussage All- Aussage.

b) Die Aussage Es gibt (mindestens) ein x aus M, das die Eigenschaft P(x) besitzt. ist wahr, g.d.w P(x) für mindestens eines der in Frage kommenden x wahr ist.

Schreibweise:  $\exists x \in M \quad \vdots \quad P(x)$ .

∃ heißt Existenzquantor, die Aussage Existenzmenge.

### 1.15 Beispiel / Bemerkung

Übungsgruppe G:  $\underbrace{a}_{Anna}\underbrace{b}_{Bob}\underbrace{c}_{Clara}$ 

B(x): x ist blond. W(x): x ist weiblich.

$$B(a) = 1, W(b) = 0$$

1. Alle Studenten der Gruppe sind blond. (1)

 $\forall x \in G$ : x ist blond

 $\forall x \in G: B(x) (1)$ 

Das bedeutet: a blond  $\wedge$  b blond  $\wedge$  c blond

$$\underbrace{B(a)}_{1} \wedge \underbrace{B(b)}_{1} \wedge \underbrace{B(c)}_{1}$$

 $\forall$ ist also eine Verallgemeinerung der Konjunktion.

2. Alle Studenten der Gruppe sind weiblich. (0)

$$\underbrace{W(a)}_{1} \wedge \underbrace{W(b)}_{0} \wedge \underbrace{W(c)}_{1}(0)$$

3. Es gibt einen Studenten der Gruppe, der weiblich ist. (1)

$$\exists x \in G: W(x) (1)$$

bedeutet: 
$$\underbrace{W(a)}_{1} \lor \underbrace{W(b)}_{0} \lor \underbrace{W(c)}_{1} = 1$$

 $\exists$  ist verallgemeinerte Disjunktion.

4. Aussage A: Alle Studenten der Gruppe sind weiblich. (0)

Verneinung von A?  $\neg A$ 

∧ Nicht korrekt wäre: Alle Studenten der Gruppe sind männlich. (Wahrheitswert ist auch 0)

Korrekt: Nicht alle Studenten der Gruppe sind weiblich (1) Es gibt (mindestens) einen Studenten der Gruppe, der nicht weiblich ist. (1)

allgemeiner:

#### 1.16 Negation von All- und Existenzaussagen

a) 
$$\neg(\forall x \in M : P(x)) \equiv \exists x \in M : \neg P(x)$$

b) 
$$\neg(\exists x \in M : P(x)) \equiv \forall x \in M : \neg P(x)$$

(Verallgemeinerung der Regeln von DeMorgan) (vergleiche Beispiel 1.15, 4):

$$\neg(\forall x \in G : W(x))$$

$$\equiv \neg(W(a) \land W(b) \land W(c)$$

$$\underbrace{\equiv}_{DeMorgan} (\neg W(a)) \vee (\neg W(b)) \vee (\neg (W(c)))$$

$$\equiv \exists x \in G : \neg W(x)$$

### Bemerkung

Aussageformen können auch mehrere Variablen enthalten, Aussagen mit mehreren Quantoren sind möglich.

Zum Beispiel:

$$\exists x \in X \quad \exists y \in Y : P(x, y)$$
$$\exists x \in X \quad \forall y \in Y : P(x, y)$$

$$\forall x \in X \quad \exists y \in Y : P(x, y)$$
  
 $\forall x \in X \quad \forall y \in Y : P(x, y)$ 

Negation dann durch mehrfaches Anwenden von 1.16, zum Beispiel:

$$\neg(\forall x \in X \quad \forall y \in Y \quad \exists z \in Z : P(x, y, z)) 
\equiv \exists x \in X : \neg(\forall y \in Y \quad \exists z \in Z : P(x, y, z)) 
\equiv \exists x \in X \quad \exists y \in Y : \neg(\exists z \in Z : P(x, y, z)) 
\equiv \exists x \in X \quad \exists y \in Y \quad \forall z \in Z : \neg P(x, y, z))$$

#### Also:

ändere  $\exists$  in  $\forall$ ,  $\forall$  in  $\exists$ , verneine Prädikat.

### 2 Mengen

### 2.1 Definition (Georg Cantor, 1845-1918)

Eine <u>Menge</u> ist eine Zusammenfassung von bestimmten wohlunterscheidbaren Objekten (<u>Elementen</u>) unserer Anschauung oder unseres Denkens zu einem Ganzen.

Im Folgenden seien A, B Mengen.

- a)  $x \in A : x$  ist Element der Menge A  $x \notin A : x$  ist nicht Element der Menge A oder auch:  $A \ni x : x$  ist Element der Menge A  $A \not\ni x : x$  ist nicht Element der Menge A
- b) Eine Menge kann beschrieben werden durch:

 $\mathbb{N}_0 = \{0, 1, 2, 3, 4, ...\}$  Menge der natürlichen Zahlen mit der Null  $\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$  Menge der ganzen Zahlen

- Charakterisierung ihrer Elemente:
  - $A = \{x \mid x \text{ besitzt die Eigenschaft } E\}, \text{ z.B.:}$

$$A = \{ n \mid n \in \mathbb{N} \text{ und n ist gerade} \}$$

sprich: "mit der Eigenschaft"

$$= \{2, 4, 6, 8, ...\}$$

$$= \{x \mid \exists k \in \mathbb{N} \text{ mit } x = 2 \cdot k\} = \{2k \mid k \in \mathbb{N}\}\$$

Bsp:  $\mathbb{Q}=\{\frac{a}{b}\mid a,b\in\mathbb{Z},b\neq 0\}$  Menge der rationalen Zahlen

- c) Mit Ø bezeichnen wir die Menge ohne Elemente (leere Menge)
- d) Mit |A| bezeichnen wir die Anzahl der Elemente der Menge A (Kardinalität oder Mächtigkeit von A), zum Beispiel:

$$|\{1, a, *\}| = 3, \quad |\emptyset| = 0, \quad |\mathbb{N}| = \infty, \quad |\{\mathbb{N}\}| = 1$$

e)  $A \cap B := \{x \mid x \in A \land x \in B\}$  heißt <u>Durchschnitt</u> oder <u>Schnittmenge</u> von A und B.

Grafische Veranschaulichung: Venn-Diagramm ( $\wedge$  gilt nicht als Beweis)



f)  $A \cup B := \{x \mid x \in A \lor x \in B\}$  heißt Vereinigung von A und B.



**Beispiele:**  $A = \{1, 2, 3\}, B = \{2, 3, 4\}, C = \{4\}$ 

$$A \cap B = \{2, 3\},$$
  

$$A \cap C = \emptyset,$$
  

$$B \cap C = \{4\} = C,$$

 $A \cup B = \{1, 2, 3, 4\}$ 

g) A und B heißen disjunkt, falls gilt  $A \cap B = \emptyset$ 



h) A heißt Teilmenge von  $B, A \subseteq B$ , falls gilt:

$$x \in A \Rightarrow x \in B$$

Oder in Worten: Jedes Element von A ist auch Element von B.

Dasselbe bedeutet die Notation

$$B \supset A$$

(B ist Obermenge von A)

Beispiel:  $\{1,2\} \subseteq \{1,2,3\} \subseteq \mathbb{N} \subseteq \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{R}$  (reelle Zahlen)

Es gilt:  $\emptyset \subseteq A$  für jede Menge A.

**Achtung:** Unterschied  $\subseteq, \in !$ 

Zum Beispiel:

 $A = \{1, \mathbb{N}\}$  (hier ist die Menge N ein Element von A, keine Teilmenge!)

 $1 \in A, \qquad \mathbb{N} \in A, \qquad \mathbb{N} \not\subseteq A, \qquad 2 \not\in A, \qquad \{1\} \subseteq A$ 

i) Zwei Mengen A, B heißen gleich  $(A = B, \text{ falls gilt: } A \subseteq B \text{ und } B \subseteq A \text{ (also } x \in A \Rightarrow / \Leftarrow / \Leftrightarrow x \in B.$ 

Darin liegt ein Beweisprinzip: Man zeigt A=B, indem man zeigt:

- $x \in A \Rightarrow x \in B$
- $x \in B \Rightarrow x \in A \text{ (mehr später)}$

Beispiel:  $A = 2, 3, 4, \qquad B = \{x \in \mathbb{N} \mid x > 1 \text{ und } x < 5\} \ A = B$ 

**j**)  $A \subsetneq B(A \subsetneq B)$  bedeutet  $A \subseteq B$ , aber  $A \neq B$ .

(d.h.  $\exists x \in B \text{ mit } x \notin A, \text{ aber } x \in B$ )

(A ist echte Teilmenge von B.)

k) Mit  $P(A) := \{B \mid B \text{ ist eine Teilmenge von A}\} = \{B \mid B \subseteq A\}$  bezeichnen wir die Menge aller (echten oder nicht echten) Teilmengen von A, die sogenannte Potenzmenge von A.  $(\emptyset \subseteq A \forall A, A \subseteq A \forall A)$ 

Beispiel:

$$A = \{1, \}, P(A) = \{\emptyset, \{\underbrace{1}_{A}\}\}$$

$$B = \{1, 2\}, P(B) = \{\emptyset, \{1\}, \{2\}, \{\underbrace{1, 2}_{B}\}\}$$

$$C = \{1, 2, 3\}, P(C) = \dots (8 \text{ Elemente})$$

$$P(\emptyset) = \{\emptyset\}$$

Was ist P(P(A))?

$$P(P(A)) = P(\{\emptyset, \{1\}\}) = \{\emptyset, \{\emptyset\}, \{1\}, \{\emptyset, \{1\}\}\}\}$$

1)  $A \setminus B := \{x \mid x \in A \text{ und } x \notin B\}$  heißt die <u>Differenz</u> (A ohne B). Ist  $A \subseteq X$  mit einer Obermenge X, so heißt  $X \setminus A$  das <u>Komplement</u> von A

(bezüglich X). Wir schreiben  $A_X^C$  oder kurz  $A^C$  (wenn X aus dem Kontext klar ist).

m)  $A \triangle B := (A \backslash B) \cup (B \backslash A)$  heißt die symmetrische Differenz von A und B.

### 2.2 Bemerkung

Verallgemeinerung der Vereinigung und des Durchschnitts:

$$A_1 \cap A_2 \cap \ldots \cap A_n = \{x \mid x \in A_1 \land x \in A_2 \land \ldots \land x \in A_n\}$$

$$=:\bigcap_{i=1}^n A_i$$

$$A_1 \cup \ldots \cup A_n = \{x \mid x \in A_1 \vee \ldots \vee x \in A_n\}$$

$$=: \bigcup_{i=1}^{n} A_i$$

Beziehungsweise noch allgemeiner:

Sei S eine Menge von Mengen (System von Mengen)

#### 2.3 Definition

Seien A, B Mengen.

$$A\underbrace{x}_{Kreuz}B \vcentcolon= \{(a,b) \mid a \in A, b \in B\}$$

Die Menge aller geordneten Paare, heißt <u>kartesisches Produkt</u> von A und B (nach René Descartes, 1596 - 1650).

Dabei legen wir fest: (a, b) = (a', b') (mit  $a, a' \in A, b, b' \in B$ ):  $\Leftrightarrow a = a'$  und b = b'.

Allgemein sei für Mengen  $A_1, ...A_n (n \in \mathbb{N})$   $A_1xA_2x...xA_n := \{a_1, a_2, ..., a_n) \mid a_i \in A_i, \forall i = 1...n\}$ die Menge aller geordneten n-Tupel (mit analoger Gleichheitsdefinition).

$$(n = 2 : Paare, n = 3 : Tripel)$$

Schreibweise:

$$A_1 \times ... \times A : n =: \sum_{i=1}^n A_i$$

Ist eine der Mengen  $A_1, ... A_n$  leer, setzen wir  $A_1 \times ... \times A_n = \emptyset$ .

Statt  $A \times A$  schreiben wir auch  $A^2$ , statt  $\underbrace{A \times ... \times A}_{n-Faktoren} = A^n$ .

### 2.4 Beispiel

$$\begin{split} A &= \{1,2,3\}, B = \{3,4\} \\ (1,3) &\in A \times B, \underbrace{(3,1)}_{B \times A} \notin A \times B, \\ \underbrace{(3,1)}_{B \times B} \notin A \times B \in B \times A \end{split}$$

$$(1,2) \in A \times B, \in A \times A$$
  
 $A \times B = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\}$   
 $B \times A = \dots$   
 $B \times B = B^2 = \{(3,3), (3,4), (4,3), (4,4)\}$ 

### 2.5 Satz (Rechenregeln für Mengen)

Seien A, B, C, X Mengen. Dann gilt:

- a)  $A \cup B = B \cup A$   $A \cap B = B \cap A$ (Kommutativgesetz)
- b)  $(A \cup B) \cup C = A \cup (B \cup C)$   $(A \cap B) \cap C = A \cap (B \cap C)$ (Assoziativgesetz)
- c)  $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$   $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (Disbributivgesetz)
- d)  $A, B \subseteq X$ , dann  $(A \cap B)_X^C = A_X^C \cup B_X^C$   $(A \cup B)_X^C = A_X^C \cap B_X^C$  (Regeln von DeMorgan)
- e)  $A \subseteq X$ , dann  $(A_X^C)_X^C = A$
- f)  $A\Delta B = (A \cup B) \setminus (A \cap B)$  $(= \{x \mid x \in A \oplus x \in B\})$



g)  $A \cap B = A$  genau dann, wenn  $A \subseteq B$   $(A \cap B) = A \iff A \subseteq B)$ 

h) 
$$A \cup B = A \Leftrightarrow B \subseteq A$$

**Beweis** 

a) 
$$A \cup B = \{x \mid x \in A \lor x \in B\}$$
  
=  $\{x \mid x \in B \lor x \in A\} = B \cup A$   
Kommutativgesetz 1.9 b)

 $A \cap B$  analog

- b), c) Übung, wie a) benutze Assoziativgesetz (1.9 c) ) bzw. Distributivgesetz (1.9 d) ) für logische Äquivalenzen.
- $\begin{aligned} \mathrm{d}) & & (A \cap B)_X^C \\ & = \{x \mid x \in X \setminus (A \cap B)\} \\ & = \{x \mid x \in X \wedge (x \notin (A \cap B))\} \\ & = \{x \mid x \in X \wedge \neg (x \in (A \cap B))\} \\ & = \{x \mid x \in X \wedge \neg (x \in A \wedge x \in B)\} \\ & = \{x \mid x \in X \wedge (x \notin A \vee x \notin B)\} \\ & = \{x \mid ((x \in X) \wedge (x \notin A)) \vee ((x \in X) \wedge (x \notin B))\} \\ & = A_X^C \cup B_X^C \end{aligned}$ 
  - 2. Regel analog
  - e) ähnlich
  - f) g) h) später

#### 3 Beweismethoden

Ein mathematischer <u>Beweis</u> ist die Herleitung der Wahrheit (oder Falschheit) einer Aussage aus einer Menge von <u>Axiomen</u> (nicht beweisbare Grundtatsachen) oder bereits bewiesenen Aussagen nmittels logischen Folgerungen.

Bewiesene Aussagen werden Sätze genannt.

<u>Lemma</u> - Hilfssatz, der nur als Grundlage für wichtigeren Satz formuliert und bewiesen wird.

Theorem - wichtiger Satz

Korollar - einfache Folgerung aus Satz, z.B. Spezialfall

Definition - Benennung/Bestimmung eines Begriffs/Symbols

□ - Zeichen für Beweisende (■, q.e.d., wzbw...)

Mathematische Sätze haben oft die Form:

Wenn V (Voraussetzung) gilt, dann gilt auch B (Behauptung)

 $(V, B: Aussagen), kurz: V \Rightarrow B$ 

Zu zeigen ist also, dass  $V \Rightarrow B$  eine wahre Aussage ist.

#### Direkter Beweis 3.1

Gehe davon aus, dass V wahr ist, folgere daraus, dass B wahr ist.

[ Sei V wahr,  $\Rightarrow$  ...  $\Rightarrow ...$  $\Rightarrow B \text{ ist wahr}$ 

Beispiel: Sei  $n \in \mathbb{N}$ . Ist n gerade, so ist auch  $n^2$  gerade.

Beweis: Sei  $n \in \mathbb{N}$  gerade. // V ist wahr  $\Rightarrow n = 2 \cdot k$  für ein  $k \in \mathbb{N}$  $(\exists k \in \mathbb{N} \text{ mit } n = 2 \cdot k)$  $\Rightarrow n^2 = (2 \cdot k)^2 = 4 \cdot k^2 = 2 \cdot (2k^2)$ 

 $\Rightarrow n^2$  ist gerade.

// B ist wahr

#### 3.2 Beweis durch Kontraposition

 $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$ vgl. Satz 1.9 f)

Statt  $V \Rightarrow B$  zu zeigen, können wir also auch  $\neg B \Rightarrow \neg V$  zeigen.

[ Es gelte  $\neg B \Rightarrow \dots$  $\Rightarrow \dots$ 

$$\vdots \\ \Rightarrow \text{ es gilt } \neg V ]$$

Beispiel: Sei  $n \in \mathbb{N}$ .

$$\underbrace{\text{Ist } n^2 \text{ gerade}}_{V}, \underbrace{\text{so ist auch } n \text{ gerade}}_{B}.$$

#### Beweis durch Kontraposition:

Sei n ungerade.  $// \neg B$  gilt.  $\Rightarrow n = 2k + 1 \text{ für ein } k \in \mathbb{N}_0$   $\Rightarrow n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = \underbrace{2(2k^2 + 2k)}_{\text{gerade}} + 1$  $\Rightarrow n^2$  ist ungerade.  $// \neg V$  gilt.

#### 3.3 Beweis durch Widerspruch, indirekter Beweis

Zu zeigen ist Aussage A. Wir gehen davon aus, dass A nicht gelte  $(\neg A \text{ ist wahr})$ und folgern durch logische Schlüsse eine zweite Aussage B, von der wir wissen, dass sie falsch ist. Wenn alle logischen Schlüsse korrekt waren, muss also  $\neg A$  falsch gewesen sein, also A wahr.

( 
$$((\neg A \Rightarrow B) \land (\neg B)) \Rightarrow A \text{ ist Tautologie})$$

Beispiel: [Euklid]  $\sqrt{2} \notin \mathbb{Q}$ 

Beweis: Wir nehmen an, dass die Aussage falsch ist, also  $\sqrt{2} \in \mathbb{Q}$  gilt, das heißt  $\sqrt{2} = \frac{p}{q}$  mit p. q.  $\in \mathbb{Z}(q \neq 0)$  teilerfremd (vollständig gekürzter Bruch)

$$\Rightarrow 2 = \frac{p^2}{q^2}$$

 $\Rightarrow p^2 = 2q^2$ , also ist  $p^2$  gerade, damit aber auch p gerade (Beispiel in 3.2), also p = 2 \* r mit  $r \in \mathbb{Z}$ .

$$\Rightarrow p^2 = (2r)^2 = 2q^2$$

$$\Rightarrow 4r^2 = 2q^2$$

$$\Rightarrow \underline{2r^2 = q^2}$$

$$\Rightarrow 4r^2 = 2q^2$$

$$\Rightarrow \underline{2r^2 = q^2}$$

 $\Rightarrow q^2$  gerade

 $\Rightarrow q$  gerade

Also: p gerade, q gerade, Widerspruch zu p,q teilerfremd.

Also war die Annahme falsch, es muss  $\sqrt{2} \notin \mathbb{Q}$  gelten.  $\square$ 

### 3.4 Vollständige Induktion

Eine Methode, um Aussagen über natürliche Zahlen zu beweisen.

#### Beispiel: Gauß

$$(=\frac{100}{2}*101)$$

### Allgemein:

$$\frac{1}{1+2+3+\ldots+n} = \underbrace{\frac{n(n+1)}{2}}_{Vermutung}$$

$$(n \in \mathbb{N})$$

#### 3.4.1 Prinzip der vollständigen Induktion

Sei  $n_0 \in \mathbb{N}$  fest vorgegeben (oft  $n_0 = 1$ ).

Für jedes  $n \geq n_0, n \in \mathbb{N}$ , sei A(n) eine Aussage, die von n abhängt.

Es gelte:

1.  $A(n_0)$  ist wahr (Induktionsanfang)

2. 
$$\forall n \in \mathbb{N}, n \ge n_0$$
: Ist $A(n)$ wahr, so ist $A(n+1)$ wahr. (Induktionsschritt)

Induktionsvorraussetzung Induktionsbehauptung

Dann ist die Aussage A(n) für alle  $n \ge n_0$  wahr. (Dominoprinzip)

(Bemerkung: gilt auch für  $\mathbb{N}_0$  ( $n_0 = 0$  auch möglich) und für  $n_0 \in \mathbb{Z}$ , Behauptung gilt dann für alle  $n \in \mathbb{Z}$  mit  $n \geq n_0$ ).

#### Beispiel:

a) Kleiner Gauß  $1+2+...+n=\frac{n(n+1)}{2} \forall n \in \mathbb{N}$ 

Beweis:

$$A(n): 1+2+...+n = \frac{n(n+1)}{2}$$

- Induktionsanfang  $(n = 1) : A(1) : 1 = \frac{1*(1+1)}{2}$
- Induktionsschritt:

Induktionsvorraussetzung: sei  $n \ge 1$ . Es gelte A(n), d.h.  $1 + ... + n = \frac{n(n+1)}{2}$ 

Induktionsbehauptung: Es gilt A(n+1), d.h.  $1+\ldots+n+(n+1)=\frac{(n+1)(n+1+1)}{2}$ 

Beweis: 
$$\underbrace{1+2+...+n}_{Ind.vor.} + (n+1) = \underbrace{\frac{n(n+1)}{2}}_{Ind.vor.} + (n+1)$$

$$= \frac{n^2+n+2n+2}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$A(n+1)$$

- **b)**  $A(n): 2^n \ge n \forall n \in \mathbb{N}$ 
  - Induktionsanfang: (n = 1) : A(1) gilt:  $2^1 \ge 1$
  - Induktionsschritt:

Induktionsvorraussetzung: Sei  $n \ge 1$ . Es gelte A(n), d.h.  $2^n \ge n$ 

Induktionsbehauptung: (Zu zeigen!): Es gilt A(n+1), d.h.  $2^{2+1} \ge n+1$ .

Beweis: 
$$2^{n+1}=2*2^n$$
  $\geq$   $2*n$  
$$= n+n$$
 
$$\geq n+1,$$
 also  $2^{n+1}\geq n+1$ 

#### 3.4.2 Bemerkung

Für Formeln wie in Beispiel 3.4.1a) benutzen wir das Summenzeichen  $\Sigma$  (sigma, großes griechisches S)

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \ 1 + 2 + 3 + \dots + n \ k = 1k = 2k = 3k = n$$

weitere Bsp:

$$\sum_{k=1}^{n} 2k = 2 * 1 + 2 * 2 + \dots 2 * n \sum_{k=4}^{n} 2k = 2 * 4 + 2 * 5 + \dots 2 * n$$

$$\sum_{k=1}^{3} 7 = 7 + 7 + 7 = 21$$

allg. 
$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_n \ (a_m, a_{m+1}, ...a-n \in \mathbb{R})$$

h heißt Summationszeichen

$$\sum_{k=m}^{n} a_k = \sum_{i=m}^{n} a_i$$

Schreibweisen:

$$\sum_{k=1}^{n} a_k, \sum_{k=1}^{n} a_k, \sum_{k\in\mathbb{N}} a_k, \sum_{k=1, k\neq 2}^{4} a_k = a_1 + a_3 + a_4$$

Für n < m setzt man

$$\sum_{k=m}^{n} a_k = 0 (leere Summe), \text{ z.B. } \sum_{k=7}^{3} k = 0$$

#### Produktzeichen $\Pi$

$$\prod_{k=m}^{n} a_k = a_m * a_{m+1} \dots a_n,$$

für 
$$n < m$$
 setze  $\prod_{k=m}^{n} a_k = 1$ 

Rechenregeln für Summen (zu beweisen z.B. durch vollständige Induktion)

a)

$$\sum_{k=m}^{n} a = (n - m + 1) * a$$
$$(\sum_{k=3}^{5} a = a + a + a = (5 - 3 + 1) * a)$$

b)

$$\sum_{k=m}^{n} (c * a_k) = c * \sum_{k=m}^{n} a_k$$

c) Indexverschiebung

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots a_n$$
=  $a_{(m+e)-e} + a_{(m+1+e)-e} + \dots + a_{(n+e)-e}$ 
neuer Summations index  $j := k + e$ 

(k durchläuft Werte: 
$$m, m + 1..., n$$
, j durchläuft Werte:  $m + e, m + 1 + e, ... n + e$ ) also gilt  $\sum_{k=m}^{n} a_k = \sum_{j=m+e}^{n+e} a_{j-e}$  (Beispiel:  $\sum_{k=0}^{5} a_k * x^{k+2} = \sum_{j=2}^{7} a_{j-2} * x^j$ )

#### d) Addition von Summen gleicher Länge

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

e) Aufspalten

$$\sum_{k=m}^n a_k = \sum_{k=m}^l a_k + \sum_{k=l+1}^n a_k$$
 für  $m < l < n$ 

f) Teleskopsumme

$$\sum_{k=m}^{n} (a_k - a_{k+1}) = a_m - a_{m+1}$$

$$\sum_{k=m}^{n} (a_k - a_{k+1}) = (a_m - a_{m+1} + (a_{m+1} - a_{m+2} + (a_{m+2}...) + (a_n - a_{m+1} + 1))$$

g) Doppelsummen

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = \sum_{i=1}^{n} (a_{i1} + a_{i2} + \dots + a_{im} = a_{11} + a_{12} + \dots + a_{1m} + a_{21} + a_{22} + a_{2m}$$

#### 3.4.3 Verschärftes Induktionsprinzip

 $A(n), n_0$  wie in 3.4.1

Es gelte:

- (1)  $A(n_0)$  ist wahr
- (2)  $\forall n \geq n_0$ : Sind  $A(n_0)$ , ..., A(n) wahr, so ist A(n+1) wahr. (d.h.  $A(n_0) \wedge A(n_0+1) \wedge ... \wedge A(n) \Rightarrow A(n+1)$ )

Dann ist A(n) wahr für <u>alle</u>  $n \in \mathbb{N}, n \ge n_0$ 

Beispiel: A(n): Jede natürliche Zahl n > 1 ist Primzahl oder Produkt von Primzahlen.

Beweis:

Induktionsanfang:  $(n_0 = 2)$ . n = 2 ist Primzahl  $\checkmark$ 

Induktionsschritt: Sei  $n \ge n_0$   $(n \ge 2)$ 

#### • Induktionsvoraussetzung:

Aussage gilt für 2, 3, 4, ..., n

$$(A(2), A(3), A(4), ..., A(n) \text{ wahr})$$

#### • Induktionsbehauptung:

A(n+1) gilt, d.h. n+1 ist Primzahl oder Produkt von Primzahlen.

Beweis:

- falls n+1 Primzahl, so gilt A(n+1)
- falls n+1 keine Primzahl, dann ist  $n+1=k \cdot l$ , für  $k,l \in \mathbb{N}$ , 1 < k < n+1, 1 < l < n+1 (k=l möglich).

Nach Induktionsvoraussetzung:

Aussage gilt für 
$$k$$
 und  $l \Rightarrow n+1$  ist Produkt von Primzahlen.  $(A(n+1) \text{ ist wahr})$ 

### 3.5 Schubfachprinzip

#### 3.5.1 Idee

In einem Schrank befinden sich n verschiedene Paar Schuhe. Wie viele Schuhe muss man maximal herausziehen, bis man sicher ein zusammenpassendes Paar hat?

(Antwort: n+1)

#### 3.5.2 Satz

(Schubfachprinzip, engl.: pigeon hole principle)

Seien  $k, n \in \mathbb{N}$ .

Verteilt man n Objekte auf k Fächer, so gibt es ein Fach, das mindestens  $\lceil \frac{n}{k} \rceil$  Objekte enthält.

(Dabei bezeichnet  $\lceil x \rceil$  die kleinste ganze Zahl z mit  $x \leq z$ .)

<u>Beweis</u> (durch Kontraposition):

$$(\underbrace{n \text{ Objekte}, k \text{ Fächer}}_A \Rightarrow \underbrace{\exists \text{ Fach mit mind. } \lceil \frac{n}{k} \rceil \text{ Objekten}}_B$$

statt  $A \Rightarrow B$  zeige  $\neg B \Rightarrow \neg A$ )

 $(\neg B)$  Jedes Fach enthalte höchstens  $\lceil \frac{n}{k} \rceil - 1$  Objekte.

Dann ist die Gesamtzahl von Objekten höchstens

$$k \cdot \underbrace{\left(\left\lceil \frac{n}{k} \right\rceil - 1\right)}_{< \frac{n}{k}} < k \cdot \frac{n}{k} = n$$

 $(\neg A)$  es gibt also weniger als n Objekte

#### 3.5.3 Beispiel

a) Wieviele Menschen müssen auf einer Party sein, damit <u>sicher</u> 2 am selben Tag Geburtstag haben?

367

b) Auf jeder Party mit mindestens 2 Gästen gibt es 2 Personen, die dieselbe Anzahl <u>Freunde</u> auf der Party haben.

Beweis: Sei n die Anzahl der Partygäste. Jeder Gast kann mit 0, 1, 2, ..., n-1 Gästen befreundet sein (n Möglichkeiten).

Aber: Es kann nicht sein, dass ein Gast 0 Freunde hat und gleichzeitig ein Gast n-1 (=alle) Freunde hat.

 $\Rightarrow$ Es gibt n-1mögliche Werte für die Anzahl der Freunde, entspricht n-1 Fächern.

Jeder der n Gäste trägt sich in ein Fach ein

 $\Rightarrow$  mindestens 2 Gäste sind im selben Fach.

c) In Berlin gibt es mindestens 2 Personen, die genau dieselbe Anzahl Haare auf dem Kopf haben.

Beweis: Anzahl Haare im Durchschnitt:

blond 150.000 braun 110.000 schwarz 100.000 rot 90.000 zur Sicherheit: maximal 1 Millionen Haare möglich entspricht 1 Mio Fächer.

Anzahl Einwohner in Berlin: 3,5 Millionen  $\Rightarrow$  Behauptung 3.5.2

### 3.6 Weitere Beweistechniken (Werkzeugkiste)

- a) Wichtigste Technik: Ersetzen eines mathematischen Begriffs durch seine Definition (und umgekehrt).  $A(\subset B = \{x \mid x \in A \lor x \in B\})$
- b) Aussagen der Form  $\forall a \in S$  gilt P(a): beginne mit: Sei  $a \in S$ , zeige P(a).
- c) Aussage der Form  $\exists a \in S \text{ mit } P(a)$  oft: finde/gebe konkretes Element a an, für dass P(a) gilt.
- d) Gleichheit von Mengen zeigt man oft mittels Inklusion (vgl. Definition 2.1(i))

Zu zeigen: 
$$A = B$$
 ( $A, B$  Mengen)
zeige:  $A \subseteq B$  (Sei  $a \in A \Rightarrow ... \Rightarrow ... \Rightarrow a \in B$ ) 2.1 (i))
und  $B \subseteq A$  (Sei  $b \in B \Rightarrow ... \Rightarrow ... \Rightarrow b \in A$ )
$$\subseteq ...$$

$$\supseteq ...$$

$$Beispiel: 2.5f$$
)
$$A \triangle B = (A \cup B) \setminus (A \cap B)$$
Beweis:
$$\subseteq \text{Sei } x \in A \triangle B = (A \setminus B) \cup (B \setminus A)$$
1. Fall:
$$x \in A \setminus B, \text{ dann gilt } x \in A, \text{ also } x \in A \cup B$$

$$\text{Außerdem } x \notin B, \text{ also gilt auch } x \notin A \cap B$$

$$\Rightarrow x \in (A \cup B) \setminus (A \cap B)$$
2. Fall
$$\text{Ist } x \in B \setminus A, \text{ so argumentiere analog.}$$

$$\supseteq \text{sei } x \in (A \cup B) \setminus (A \cap B)$$

$$\Rightarrow x \in A \text{ oder } x \in B.$$

#### 1.Fall

$$x \in A$$
, so ist  $x \notin B$ , da  $x \notin A \cap B$   
 $\Rightarrow x \in A \setminus B \subseteq (A \setminus B) \cup (B \setminus A)$   
 $= A \triangle B$ ,  
d.h.  $x \in A \triangle B$ .

### 2.Fall (1. Fall analog)

$$x \in B$$
, so  $x \notin A$ , da  $x \notin A \cap B$   
 $\Rightarrow x \in B \setminus A \subseteq A \triangle B$   
Also  $x \in A \triangle B$ 

e) Äquivalenzen  $(A \Leftrightarrow B, A, B \text{ Aussagen})$  werden meist in 2 Schritten bewiesen:

Hinrichtung zeigt 
$$A \Rightarrow B$$
,  
Rückrichtung zeigt  $B \Rightarrow A$ .

(oft auch eine von beiden mittels Kontraposition)

Beispiel: 2.5g) 
$$A \cap B = A \Leftrightarrow A \subseteq B$$

#### Beweis:

$$\Rightarrow$$
: Sei  $A \cap B = A$ . Dann ist  $A = A \cap B \subseteq B$   
 $\Leftarrow$ : Sei  $A \subseteq B$ . Dann ist  $A \subseteq A$  und  $A \subseteq B$ ,  
also ist  $A \subseteq A \cap B$   
außerdem  $A \cap B \subseteq A$ 

$$\Rightarrow A = A \cap B$$

2.5h) analog.

f) Äquivalenzen der Form:

Sei ... . Dann sind folgende Aussagen äquivalent:

- a) ...
- b) ...
- c) ..
- d) ...

Zeigt man durch Ringschluss:

Zeige 
$$a$$
)  $\Rightarrow$   $b$ )  $\Rightarrow$   $c$ )  $\Rightarrow$   $d$ )  $\Rightarrow$   $a$ )

(oder andere Reihenfolge, soll *Ring* geben.)

# 4 Abbildungen

### 4.1 Definition

a) Eine Abbildung (oder <u>Funktion</u>)

$$f: A \to B$$

besteht aus

zwei nicht-leeren Mengen:
 A, dem <u>Definitionsbereich</u> von f

B, dem <u>Bildbereich</u> von f

– und einer Zuordnungsvorschrift, die jedem Element  $a \in A$  genau ein Element  $b \in B$  zuordnet

Wir schreiben dann b = f(a), nennen b das <u>Bild</u> oder den <u>Funktionswert</u> von a (unter f), und a (ein) <u>Urbild</u> von b (unter f).

Notation:

$$f \colon A \to B$$
  
 $a \mapsto f(a)$ 

b) Die Menge  $G_f := \{(a, f(a)) \mid a \in A\} \subseteq A \times B$  heißt der Graph von f.

### 4.2 Beispiele

Siehe Folien!

### 4.3 Beispiele

a) A Menge

$$id_A \colon A \to A$$
  
 $x \mapsto x$ 

identische Abbildung

b)  $f: \mathbb{R} \to \mathbb{R}$  $x \mapsto x^2$  ist Abbildung (aus der Schule bekannt als  $f(x) = x^2$ ) c)  $\wedge$  kann als Abbildung aufgefasst werden, + ebenso:

$$\land \colon \{0,1\} \times \{0,1\} \to \{0,1\}$$

$$(A,B) \mapsto A \land B$$

$$+ \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$(a,b) \mapsto a+b$$

Allgemein bezeichnet man eine Abbildung  $\{0,1\}^n \to \{0,1\}^m \ (n,m\in\mathbb{N})$  als boolesche Funktion.

#### 4.4 Definition

Zwei Abbildungen  $f\colon A\to B,\ g\colon C\to D$  heißen gleich (in Zeichen: f=g), wenn:

- $\bullet$  A = C
- $\bullet$  B=D
- f(a) = g(a)

 $\forall a \in A (= C)$ 

### 4.5 Beispiel

$$f: \{0, 1\} \to \{0, 1\}, x \mapsto x$$
$$g: \{0, 1\} \to \{0, 1\}, x \mapsto x^2$$
$$f = g$$

#### 4.6 Definition

Sei  $f: A \to B$ , seien  $A_1 \subseteq A, B_1 \subseteq B$  Teilmengen.

Dann heißt

a) 
$$f(A_1) := \{f(a) \mid a \in A_1\} \subseteq B \text{ das } \underline{\text{Bild}} \text{ von } A_1 \text{ (unter } f) \text{ (Bildmenge)}.$$

$$(\text{Beispiel: } f : \mathbb{N} \to \mathbb{N}$$

$$x \mapsto 2x$$

$$A_1 = \{1, 3\}$$

$$f(A_1) = \{f(1), f(3)\} = \{2, 6\} \text{ )}$$

b) 
$$f^{-1}(B_1) := \{a \in A \mid f(a) \in B_1\} \subseteq A$$
  
das Urbild von  $B_1$  (unter  $f$ ).

(Beispiel oben: 
$$B_1 = \{8, 14, 100\}, f^{-1}(B_1) = \{4, 7, 50\}$$
  
 $B_2 = \{3\}, f^{-1}(B_2) = \emptyset$ )

c) 
$$f$$
 surjektiv, falls gilt:  $f(a) = B$ 

(d.h. 
$$\forall b \in B \exists a \in A : f(a) = b$$
)

[ alle Elemente von B werden getroffen ]

d) f injektiv, falls gilt:

$$\forall a_1, a_2 \in A \text{ mit } a_1 \neq a_2 \text{ gilt } f(a_1) \neq f(a_2)$$

(äquivalent: 
$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$
)

[ kein Element von B wird doppelt getroffen ]

e) f <u>bijektiv</u>, falls f surjektiv und injektiv (f ist Bijektion).

[ jedes Element wird genau einmal getroffen ]

### 4.7 Beispiele

siehe Folien

- a) f aus Beispiel in 4.6 a) ist injektiv, aber nicht surjektiv:
  - $f(\mathbb{N})$ ist Menge der geraden natürlichen Zahlen, nicht  $\mathbb{N}.$

b) 
$$f: \mathbb{R} \to \mathbb{R}$$
  
 $x \mapsto x^2$ 

nicht surjektiv:

$$f(\mathbb{R}) = \mathbb{R}_0^+ = \{x \in \mathbb{R} \mid x \ge 0\} \ne \mathbb{R}$$

nicht injektiv:

$$f(1) = f(-1) = 1$$

$$f(2) = f(-2) = 4$$

$$g \colon \mathbb{R}_0^+ \to \mathbb{R}_0^+$$
$$x \mapsto x^2$$

injektiv, surjektiv, bijektiv

c) 
$$f: \mathbb{R} \to \mathbb{R}$$
  
 $x \mapsto 2x + 1$   
ist surjektiv:  
Sei  $y \in \mathbb{R}$ . Zeige:  $\exists x \in \mathbb{R}$  mit  $y = 2x + 1$  (vgl. 3.6 b) )  
Wähle  $x = \frac{y-1}{2}$   
 $f$  ist injektiv:  
angenommen, es gibt  $x_1, x_2 \in \mathbb{R}$   
mit  $f(x_1) = f(x_2)$ , d.h.  
 $2x_1 + 1 = 2x_2 + 1$ ,  
dann folgt  $x_1 = x_2$ .

### 4.8 Definition

Sei  $f: A \to B$  bijektiv. Dann definieren wir die <u>Umkehrfunktion</u>.

 $f^{-1} \colon B \to A,$ indem wir jedem  $b \in B$ dasjenige  $a \in A$ zuordnen, für das f(a) = b gilt.

### 4.9 Beispiel

 $b_3 \rightarrow a_2$ 

$$A(a_1,a_2,a_3)$$
  $B(b_1,b_2,b_3)$   
 $f: (A \to B)$  bijektiv  
 $a_1 \to b_2$   
 $a_2 \to b_3$   
 $a_3 \to b_1$   

$$f^{-1}: B \to A$$
  
 $b_1 \to a_3$   
 $b_2 \to a_1$ 

### 4.10 Bemerkung

Man kann jedem  $b \in B$  wirklich ein  $a \in A$  zuordnen, das f(a) = b erfüllt, denn f ist surjektiv. Nur <u>ein</u> solches a, denn f ist injektiv.

#### 4.11 Definition

Seien  $g \colon A \to B$   $f \colon B \to C$ Abbildungen.

Dann heißt die Abbildung:  $f \circ g \colon A \to C$  $a \to (f \circ g)(a) :=$  $f(g(a)) \forall a \in A$ 

die Hintereinanderausführung oder Komposition von f mit g.

f nach g

$$A \underset{g}{\longrightarrow} B \underset{f}{\longrightarrow} C$$

### 4.12 Beispiel

$$A = B = C = \mathbb{R}$$

$$f: \mathbb{R} \to \mathbb{R}$$
  $g: \mathbb{R} \to \mathbb{R}$   $x \to x+1$   $x \to 2x$ 

$$(f \circ g)(x) = f(g(x)) = f(2x) = 2x + 1$$

$$(g \circ f)(x) = g(f(x)) = g(x+1) = 2 * (x+1)$$
  
= 2x + 2

hier also  $f \circ g \neq g \circ f!$ 

### 4.13 Satz

Die Komposition {inj., surj., bij} Abbildungen ist {inj., surj., bij}

Beweis: Pü / Ü

# 4.14 Satz (Charakterisierung bijektiver Abbildungen)

Sei  $f: A \to B$  eine Abbildung.

f ist bijektiv genau dann, wenn es eine Abbildung  $g: B \to A$  gibt mit  $g \circ f = id_A$  und  $f \circ g = id_B$ .

Diese Abbildung g ist eindeutig und genau die Umkehrfunktion von f, also  $g = f^{-1}$ .

 $f^{-1}$  ist ebenfalls bijektiv und es gilt  $(f^{-1})^{-1} = f$ 

#### Beweis:

" $\Rightarrow$ " Sei f bijektiv. Dann existiert für jedes  $b \in B$  genau ein  $a \in A$  mit b = f(a).

Definiere nun also  $g: B \to A$  mit g(b) = a, dann gilt die Aussage:

$$(g \circ f)(a) = g(f(a)) = g(\underline{b}) = a = id_A(a)$$

$$(f \circ g)(b) = f(g(b)) = f(\underline{a}) = b = id_B(b)$$

" $\Leftarrow$ " Es existiere Abbildung g wie angegeben (zu zeigen: f ist bijektiv)

- f surjektiv: Sei  $b \in B$ . Dann ist  $g(b) \in A$ ,  $f(\underline{g(b)}) = id_B(b) = b$ , d.h. g(b) ist Urbild von b unter f.
- f injektiv:

Sei 
$$f(a_1) = f(a_2)$$

Dann ist 
$$\underline{\underline{a_1}} = g(\underline{f(a_1)}) = g(f(a_2)) = \underline{\underline{a_2}}$$

• Eindeutigkeit von g:

Angenommen es gäbe Abbildungen  $g_1, g_2$  mit angegebenen Eigenschaften.

Sei  $b \in B$ . Dann gibt es genau ein  $a \in A$  mit f(a) = b.

Also 
$$g_1(b) = g_1(\underline{f(a)}) = a = g_2(\underline{f(a)}) = g_2(\underline{b}),$$
  
d.h.  $g_1 = g_2$ 

•  $f^{-1}$  bijektiv,  $(f^{-1})^{-1} = f$ :

folgt aus  $f \circ f^{-1} = id_B$ ,  $f^{-1} \circ f = id_A$ , wende Aussage des Satzes auf  $f^{-1}$  an.

# 4.15 Bemerkung / Definition

Bijektivität erlaubt präzise Definition der Endlichkeit / Unendlichkeit von Mengen:

- a) Menge  $M \neq \emptyset$  heißt endlich  $\Leftrightarrow \exists n \in \mathbb{N} : \exists$  bijektive Abbildung  $f : \{1, ..., n\} \rightarrow M$ .
  - (∅ wird auch als endlich bezeichnet).

Andernfalls heißt M unendlich.

[Hilberts Hotel]

b) Zwei Mengen  $M_1, M_2$  heißen gleichmächtig, falls es eine bijektive Abbildung  $g \colon M_1 \to M_2$  gibt.

Beispiel: N, 2N (alle geraden natürlichen Zahlen) gleichmächtig:

$$g: \mathbb{N} \to 2\mathbb{N}$$

$$n \mapsto 2n$$

ist bijektiv.

c) Menge M heißt <u>abzählbar unendlich</u>, wenn M gleichmächtig ist wie  $\mathbb{N}$ , d.h.  $\exists$  bijektive Abbildung.

$$h: \mathbb{N} \to M$$
.

### Beispiel:

- N abzählbar unendlich:  $h = id_{\mathbb{N}}$
- $\mathbb{N}$  abzählbar unendlich:  $h: \mathbb{N} \to \mathbb{N}_0(x \to x 1)$  ist bijektiv.
- $\mathbb Z$  ist abzählbar unendlich: (Geschichte vom Teufel:  $h \to \mathbb Z$ 
  - $1 \rightarrow 0$
  - $2 \rightarrow 1$
  - $3 \rightarrow -1$
  - $4 \rightarrow 2$

$$\underbrace{5}_{Tag} \to \underbrace{-2}_{Zahl}$$

allgemein:

$$x \to \begin{cases} k & \text{falls } x = 2k + 1 (\text{für } k = 0, 1, 2, \dots) \\ -k & \text{falls } x = 2k (\text{für } k = 1, 2, 3, \dots) \end{cases}$$

• Q ist abzählbar unendlich:

$$\frac{1}{1}\frac{1}{2}\frac{1}{3}\frac{1}{4}\frac{1}{5}...$$

$$\frac{2}{1}\frac{2}{2}\frac{2}{3}\frac{2}{4}\frac{2}{5}...$$

$$\frac{3}{1}\frac{3}{2}\frac{3}{3}\frac{3}{4}\frac{3}{5}...$$

:

Cantorsches Diagonalverfahren.

- $\mathbb{R}$  ist <u>nicht</u> abzählbar unendlich! (Beweis von Cantor, 2. Diagonalisierungsargument)  $\rightarrow$  eventuell später
- $P(\mathbb{N} \text{ ist nicht abzählbar unendlich (allgemein: } |A| < |P(A)| \text{ Satz von Cantor.)}$

# 4.16 Satz (Wichtiger Satz für endliche Mengen)

Seien  $A, B \neq \emptyset$  endliche Mengen, |A| = |B|, und  $f: A \rightarrow B$  eine Abbildung. Dann gilt f injektiv  $\Leftrightarrow f$  surjektiv  $\Leftrightarrow f$  bijektiv.

#### Beweis:

Wir setzen n:|A|=|B|. Es genügt zu zeigen f injektiv  $\Leftrightarrow f$  surjektiv.

 $\Rightarrow$  Sei f injektiv, d.h. falls  $a_1, a_2 \in A$  mit  $a_1 \neq a_2$ , dann gilt  $f(a_1) \neq f(a_2)$ .

D.h., verschiedene Elemente aus A werden auf verschiedene Elemente aus B abgebildet, die n Elemente aus A also auf n verschiedene Elemente aus B. Da B genau n Elemente besitzt, ist f surjektiv. (f(A) = B).

[formaler: d.h. 
$$| f(A) | = | A | = | B |$$
.  
Da  $f(A) \subseteq B$  endlich, folgt  $f(A) = B$ .

# 4.17 Das Prinzip der rekursiven Definition von Abbildungen

Sei  $B \neq \emptyset$  Menge,  $n_0 \in \mathbb{N}$ ,  $A = \{n \in \mathbb{N} \mid n \geq n_0\}$ .

Man kann eine Funktion  $f: A \to B$  definieren durch

- Angabe des Startwerts  $f(n_0)$
- Beschreibung, wie man für jedes  $n \in A$  den Funktionswert f(n+1) aus f(n) berechnet (Rekursionsschritt).

# 4.18 Beispiel

a) Die Fakultätsfunktion:  $f: \mathbb{N}_0 \to \mathbb{N}$ mit f(0) = 0  $\underbrace{!}_{\text{Fakultät}} = 1$  (Startwert)

$$f(n+1) = (n+1)! = n!(n+1)$$
 für alle  $n \ge 0$ 

Also:

$$f(1) = 1! = 0! * 1$$

$$f(2) = 2! = 1! * 2 = 1 * 2 = 2$$

$$f(3) = 3! = 2! * 3 = 1 * 2 * 3$$

$$f(4) = 4! = 3! * 4 = 1 * 2 * 3 * 4$$

:

$$f(70) = 70! \approx 1,2 * 10^{100}$$

b) Potenzen: für festes  $x \in \mathbb{R}$  definiere

$$x^0 = 1$$

$$x^{n+1} = x^n * x \text{ für alle } n \ge 0$$

$$(Px: \mathbb{N}_0 \to \mathbb{R} \qquad n \to x^n)$$

c) Eine Pflanze verdopple jeden Tag die Anzahl ihrer Knospen und produziere eine zusätzliche.

 $f \colon \mathbb{N} \to \mathbb{N}$ beschreibe die Anzahl der Knospen nach n Tagen.

$$f(1) = 1$$

$$f(2) = 2 * 1 + 1 = 3$$

$$f(3) = 2 * 3 + 1 = 7$$

$$f(4) = 2 * 7 + 1 = 15$$

:

$$f(n+1) = 2 * f(n) + 1$$

Wieviele Knospen gibt es nach 100 Tagen?  $\Rightarrow$  Geschlossene / explizite Form von f gefragt.

Vermutung:  $f(n) = 2^n - 1$ 

(Bemerkung: bessere Methoden (statt vermuten / raten) in der Vorlesung Algorithmen, dort z.B. auch mathematische Strukturen wie oben, diese werden  $B\ddot{a}ume$  (Graphen) genannt.

Beweis: vollständige Induktion

Induktionsanfang:

$$f(1) = 2^1 - 1 = 1$$

Induktionsschritt:

Indunktionsvorraussetzung:

sei 
$$f(n) = 2^n - 1 \forall n \ge 1$$

Induktionsbehauptung:

$$f(n+1) = 2^{n+1} - 1$$

**Beweis:** 

$$f(n+1) = 2 * f(n) + 1$$

$$= 2(2^{n} - 1) + 1$$

$$= 2^{n+1} - 2 + 1$$

$$= 2^{n+1} - 1$$

# 4.19 Bemerkung

Die rekursive Definition kann verallgemeinert werden: benutze zur Definition von f(n+1) die vorigen  $k(k \in \mathbb{N}$  Werte von f, also  $\underbrace{f(n), f(n-1), ..., f(n-k+1)}_{\text{k Stück}}$ 

und gebe k Startwerte  $f(n_0), f(n_0 + 1), ..., f(n_0 + k - 1)$ 

# 4.20 Beispiel (Fibonacci-Zahlen)

k = 2

$$f(1) = 1$$

$$f(2) = 1$$

$$f(n+1) = f(n) + f(n+1)$$

$$(f(3) = f(2) + f(1) = 1 + 1 = 2,$$

$$f(4) = 2 + 1 = 3,$$

$$f(5) = 3 + 2 = 5,$$

$$f(6) = 8,$$

$$f(7) = 13...)$$

explizite Form:

$$f(n) = \frac{1}{\sqrt{5}} \left( \left( \frac{1 + \sqrt{5}}{2} \right)^n - \left( \frac{1 - \sqrt{5}}{2} \right)^n \right)$$

# 5 Relationen

# 5.1 Definition

Seien  $M_1, ..., M_n$ nicht leere Mengen  $(n \in \mathbb{N}).$ 

- a) Eine n-stellige Relation über  $M_1, ..., M_n$  ist eine Teilmenge von  $M_1 \times ... \times M_n$ . Ist  $M_1 = ... = M_n = M$ , d.h.  $R \supseteq M^n$ , so spricht man von einer n-stelligen Relation auf M.
- (speziell: n=2, zweistellige Relation auf M: Sei  $M \neq \emptyset$  Menge. Eine Teilmenge  $R_{\sim} \subseteq M \times M$  heißt (zweistellige) Relation auf M. Statt  $(a,b) \in R_{\sim}$  (mit  $a,b \in M$ ) schreibt man kurz  $a\overline{R_{\sim}b}$  oder  $a \sim b$  (a steht in Relation zu b)

# 5.2 Beispiel

- a) Relationale Datenbanken ( $\rightarrow$  Folie)
- b)  $M = \{1, 2, 3\},\$

$$R_{\sim} = \{(1,2), (1,3), (2,3)\}$$
  
also:  $1 \sim 2, 1 \sim 3, 2 \sim 3$ 

Hierfür sind wir die Notation < gewohnt:

1 < 2, 1 < 3, 2 < 3 (*Kleiner-Relation*)

Ähnlich: 
$$\geq$$
 auf  $M:R_{\geq}=\{(1,1),(2,1),(3,1),(2,2),(3,2),(3,3)\}$ 

allgemeiner: kleiner-Relation auf  $\mathbb{Z}$ :

$$\begin{array}{l} R_{<}\{(x,y) \mid x,y \in \mathbb{Z}, x < y\} \\ R_{\leq \cdots} \leq \end{array}$$

**c**)

Teiler-Relation R, auf  $\mathbb{Z}$ :

$$R_{|} = \{(x,y) \mid x,y \in \mathbb{Z} \text{ und } \exists k \in \mathbb{Z} \text{ mit } x \mid y \text{ } (x \text{ } teilt \text{ } y)$$

z.B. 
$$6|42$$
,  $3|-27$ ,  $7|0$ 

d) Sei M die Menge aller Menschen,  $R_m = \{(a, b) \mid a, b \in M \text{ und } a \text{ und } b \text{ haben dieselbe Mutter } \}$ 

Zwei wichtige Typen von Relationen auf einer Menge:

Ordnungsrelationen und Äquivalenzrelationen.

## 5.3 Definition

Sei  $M \neq \emptyset, R_{\prec}$  (oder  $\leq$ ) eine Relation auf M mit folgenden Eigenschaften:

- 1.  $\forall x \in M : x \prec x \text{ (Reflexivität)}$
- 2.  $\forall x, y \in M : (x \leq y \land y \leq x) \Rightarrow x = y \text{ (Antisymmetrie)}$
- 3.  $\forall x, y, z \in M : (x \leq y \land y \leq z) \Rightarrow x \leq z$  (Transitivität)

Dann heißt  $\leq$  Ordnungsrelation oder (partielle) Ordnung auf M.

Gilt zusätzlich:

4.  $\forall x, y \in M : x \leq y$  oder  $y \leq x$ , so heißt  $\leq$  eine <u>totale</u> (oder <u>vollständige</u>, oder <u>lineare</u>) Ordnung.

Ist  $x \leq y$  und  $x \neq y$ , so schreibt man  $x \prec y$ .

## 5.4 Beispiele

a)  $R_{\leq}$  auf  $\mathbb{Z}$  (Beispiel 5.2 b)) ist totale Ordnung auf  $\mathbb{Z}$ , ebenso auf  $\mathbb{Q}, \mathbb{R}$ .

 $R_{\leq}$  ist <u>keine</u> partielle Ordnung; (1),(4) nicht erfüllt:

- (1): für kein  $x \in \mathbb{Z}$  gilt x < x
- (4): für x = y gilt weder x < y noch y < x.
- b)  $R_{||}$  (5.2 c)) auf  $\mathbb{N}$  ist partielle Ordnung, nicht total (zum Beispiel gilt für  $3,4\in\mathbb{N}$  weder 3|4 noch 4|3.).

 $R_{|}$  auf  $\mathbb{Z}$  ist <u>keine</u> partielle Ordnung; nicht antisymmetrisch: z.B. -3|3, 3|-3, aber  $3 \neq -3$ 

- c) Teilmengenrelation ( $\subseteq$ ) auf  $\mathcal{P}(M)$  ist partieller Ordnung, für |M| > 1 nicht total (Übung).
- d) Beispiel für Relation, die (1),(2) erfüllt, aber nicht (3):

$$M = \{1, 2, 3\}$$

$$R = \{\underbrace{(1, 1), (2, 2), (3, 3)}_{\rightarrow \text{ reflexiv}}, (1, 2), * (2, 3)\}$$

- \* Achtung:  $(2,1) \notin R$ , sonst müsste 2=1 gelten (wegen Antisymmetrie).
- $(1,2) \in R, (2,3) \in R, \text{ aber } (1,3) \notin R$
- $\Rightarrow$  nicht transitiv.

$$(1, 2), (2, 2)$$
  $(1, 2)\checkmark$   $(1, 1), (1, 2)$   $(1, 2)\checkmark$ 

e) Sei  $\leq$  partielle Ordnung auf  $M, n \in \mathbb{N}$ .

Dann definiere die lexikographische Ordnung  $\leq_{lex}$  auf  $M^n$  wie folgt:

$$x = (x_1, ..., x_n) \leq_{lex} y = (y_1, ..., y_n) :\Leftrightarrow$$
  
 $x = y \text{ oder } x_i < y_i \text{ für das kleinste } i \text{ mit } x_i \neq y_i$ 

(Übung:  $\leq_{lex}$  ist partielle Ordnung)

(Falls  $\leq$  totale Ordnung auf M ist, dann  $\leq_{lex}$  totale Ordnung auf  $M^n$ , vgl. Wörterbuch)

Beispiel:  $M = \{a, b, c\}$  a < b < c dann ist z.B. auf  $M^4$ 

 $(a, a, a, a) \leq_{lex} (a, a, a, b) \leq_{lex} ... \leq_{lex} (a, b, a, c) \leq_{lex} ... \leq_{lex} (a, b, b, a) \leq_{lex} ... \leq_{lex} (c, c, c, c)$ 

## Äquivalenzrelationen:

2 Elemente äquivalent, falls sie sich bezüglich einer Eigenschaft gleichen/ähnlich sind, z.b. Farbe, gleiche Übungsgruppe, gleicher Rest bei Division durch 3, ...

# 5.5 Definition

Eine Relation  $\sim$  auf einer Menge  $M \neq \emptyset$  heißt Äquivalenzrelation falls gilt:

- (1) Reflexivität:  $x \sim x$  für alle  $x \in M$ .
- (2) Symmetrie:  $\forall x, y \in M : x \sim y \Rightarrow y \sim x$
- (3) **Transitivität:** Für alle  $x, y, z \in M$  gilt: falls  $x \sim y$  und  $y \sim z$ , dann ist auch  $x \sim z$ .

# 5.6 Beispiele

- a) <-Relation (Beispiel  $5.2\ b$ ) ist keine Äquivalenzrelation (nicht reflexiv, nicht symmetrisch, transitiv).
  - ≥ keine Äquivalenzrelation (reflexiv, nicht symmetrisch, transitiv)
- b)  $M \neq \emptyset$  beliebig,  $a \sim b :\Leftrightarrow a = b$

Gleichheit ist eine Äquivalenzrelation

$$(= := \{(a, a) \mid a \in M\})$$

- c)  $R_m$  (Mutter-Relation) aus Beispiel 5.2 d) ist Äquivalenzrelation
- d)  $M = \mathbb{Z}, a \sim b :\Leftrightarrow b a \text{ ist gerade},$ d.h.  $\exists k \in \mathbb{Z} \text{ mit } b - a = 2 * k.$ 
  - $\sim$  ist Äquivalenzrelation:
    - reflexiv: Sei  $a \in M$ , dann gilt  $a \sim a$ , denn a a = 0 = 2 \* 0
    - symmetrisch: Sei  $a \sim b$   $\Rightarrow b - a = 2 * k$  für ein  $k \in \mathbb{Z}$   $\Rightarrow a - b = -2 * k = 2 * \underbrace{(-k)}_{\in \mathbb{Z}}$  $\Rightarrow b \sim a$

- transitiv: seien 
$$a \sim b, b \sim c \Rightarrow \exists k, l \in \mathbb{Z}$$
:  
 $b-a=2*k, \quad c-b=2*l$   
 $\Rightarrow c-a=(c-b)+(b-a)=2l+2k=2*\underbrace{(l+k)}_{\in \mathbb{Z}}$   
 $\Rightarrow a \sim c$ 

e) analog: wähle  $r \in \mathbb{N}$  fest,  $M = \mathbb{Z}$   $a \sim b : \Leftrightarrow b - a$  ist durch r teilbar (d.h.  $\exists k \in \mathbb{Z}$  mit b - a = r \* k)  $\sim$  ist Äquivalenzrelation.

# 5.7 Definition

Sei  $\sim$  eine Äquivalenz<br/>relation auf  $M \neq \emptyset$ .

Dann heißt für  $x \in M$  die Menge  $[x] := \{y \in M \mid y \sim x\}$  die Äquivalenzklasse von x (bzgl.  $\sim$ ) auf M.

## 5.8 Beispiel

a) Gleichheit liefert triviale, nämlich einelementige Äquivalenzen:

$$[x] = \{x\} \forall x \in M$$

b) vgl. Beispiel 5.6d),  $M = \mathbb{Z}, a \sim b \Leftrightarrow b-a$  gerade  $[0] = \{b \in \mathbb{Z} \mid b-0 \text{ gerade }\} = \text{Menge der geraden Zahlen}$   $= [2] = [4] = [-2] = \dots$ 

$$[1] = \{b \in \mathbb{Z} \mid b-1 \text{ gerade }\} = \text{Menge der ungeraden Zahlen}$$
 
$$= [3] = [5] = [-1] = \dots$$

Es gilt:  $[0] \cup [1] = \mathbb{Z}$ , und  $[0] \cap [1] = \emptyset$  (disjunkte Vereinigung, Zerlegung von  $\mathbb{Z}$ , siehe folgende Definition.)

## 5.9 Definition

Sei  $M \neq \emptyset, Z \subseteq \mathcal{P}(M)$  eine Menge von Teilmengen von M.

Die Elemente von Z seien paarweise disjunkt , d.h.  $\forall A, B \in Z$  mit  $A \neq B$  gilt  $A \cap B = \emptyset$ .

$$\begin{aligned} &(Beispiel: M := \{1,2,3,4,5\}, \\ &Z'\{\{1\},\{1,2\},\{3,4\}\}, \\ &Z\{\{1\},\{2,3\},\{4,5\}\} \end{aligned}$$

Elemente von Z' nicht paarweise disjunkt, aber Elemente von Z paarweise disjunkt.)

Dann heißt die Vereinigung  $\bigcup_{A\in Z}A$  auch disjunkte Vereinigung, Notation:  $\bigcup_{A\in Z}A$  (oder  $\biguplus_{A\in Z}A$ ).

Gilt zusätzlich  $\bigcup_{A\in Z}A,$  so heißt Z Zerlegung oder Partition von M.

# 5.10 Satz (Klasseneinteilung, Zerlegung durch Äquivalenzklassen)

Sei  $\sim$  Äquivalenz<br/>relation auf  $M \neq \emptyset$ . Dann gilt:

- (1) für jedes  $x \in M$  ist  $[x] \neq \emptyset$
- $(2) \bigcup_{x \in M} [x] = M$
- (3)  $\forall x, y \in M$  gilt entweder [x] = [y] oder  $[x] \cap [y] = \emptyset$

In Worten: Über  $\sim$  wird M zerlegt in nicht leere, paarweise disjunkte Mengen (die Äquivalenzklassen).

### Beweis:

(1) 
$$x \sim x \quad \forall x \in M \text{ (Reflexivität)}$$
  
 $\Rightarrow x \in [x]$ 

(2) zeige =, also 
$$\subseteq$$
,  $\supseteq$ :

$$\subseteq \bigcup_{x \in M} [x]_{\subseteq M} \subseteq M \text{ (nach Definition)}.$$

$$\supseteq M = \bigcup_{x \in M} \{x\} \underbrace{\subseteq}_{(1)} \bigcup_{x \in M} [x],$$

also 
$$M \subseteq \bigcup_{x \in M} [x]$$
.

(3) wir zeigen: 
$$[x] \cap [y] \neq \emptyset \Rightarrow [x] = [y]$$

```
Sei dazu z \in [x] \cap [y] (denn Schnitt \neq \emptyset)
\Rightarrow z \sim x \text{ und } z \sim y \ (*)
\Rightarrow x \sim z \text{ und } y \sim z \text{ (**)}
wir zeigen: [x] = [y]
     • [x] \subseteq [y]: sei u \in [x]
         \Rightarrow u \sim x
         \Rightarrow u \sim z
         Transitivität, x \sim z (**)
         \Rightarrow u \sim y
        Transitivität, z \sim y (*)
         \Rightarrow u \in [y].
     • [x] \supseteq [y]: sei u \in [y]
         \Rightarrow u \sim y
         \Rightarrow u \sim z
         (Transitivität, y \sim z (**))
         \Rightarrow u \sim x
         Transitivität, z \sim x (*)
         \Rightarrow u \in [x]
         Also insgesamt [x] = [y].
```

Eine Äquivalzenzrelation auf einer Menge M liefert also eine Zerlegung von M. Es gilt auch die Umkehrung.

## 5.11 Satz

Sei  $M \neq \emptyset$  eine Menge, Z eine Zerlegung von  $M, M = \bigcup_{A \in Z} A$ .

Definiere für  $x, y \in M$ :

 $x \sim y : \Leftrightarrow x \text{ und } y \text{ liegen in derselben Menge } A \in Z.$ 

Dann ist  $\sim$  eine Äquivalenzrelation auf M, und die Äquivalenzklassen bezüglich  $\sim$  sind genau die Mengen  $A \in \mathbb{Z}$ .

### Beweis:

•  $\sim$  ist reflexiv:

Sei 
$$x \in M = \bigcup_{A \in Z} A$$

 $\Rightarrow x \in A$  für ein  $A \in Z$ 

$$\Rightarrow x \sim x$$

•  $\sim$  ist symmetrisch:

Sei  $x \sim y$ , d.h.  $x, y \in A$  für ein  $A \in Z$ .

$$\Rightarrow y \sim x$$

•  $\sim$  ist transitiv:

Seien  $x \sim y, y \sim x$ , d.h.  $x, y \in A$  und  $y, z \in B$  für passende  $A, B \in Z$   $y \in A \cap B \Rightarrow A = B$  (Zerlegung ist <u>disjunkte</u> Vereinigung)  $\Rightarrow x, z \in A$   $\Rightarrow x \sim z$ 

• Äquivalenzklassen: folgt aus Definition von  $\sim$ .

## 5.12 Definition

Sei  $\sim$  eine Äquivalenzrelation auf M.

Eine Teilmenge von M, die aus jeder Äquivalenzklasse bezüglich  $\sim$  genau ein Element (einen sogenannten Repräsentanten) enthält, nennt man ein Repräsentantensystem von  $\sim$ .

# 5.13 Beispiel

Beispiel 5.6 d / 5.8 b:

 $a \sim b \Leftrightarrow b - a$  gerade.

Äquivalenzklassen waren [0], [1]

Repräsentantensysteme sind zum Beispiel  $\{0,1\}$  oder  $\{2,9\}$  oder  $\{-42,3\}$ .

# 6 Elementare Zahlentheorie

## 6.1 Definition

Seien  $a, b \in \mathbb{Z}, b \neq 0$ .

b heißt <u>Teiler von a</u> (b teilt a, b | a), falls  $q \in \mathbb{Z}$  existiert mit  $a = q \cdot b$ .

$$(d.h. \ \frac{a}{b} = q \in \mathbb{Z})$$

a heißt dann <u>Vielfaches</u> von b.

 $(b \nmid a \text{ bedeutet: } b \text{ ist kein Teiler von } a)$ 

(Beispiel: 6 | 42 , -5 | 10 ,  $5 \nmid 42$  ,  $1 \mid -1$  ,  $1 \mid 0$  , 0 ist nie Teiler einer Zahl.)

# 6.2 Satz

Seien  $a, b, c, d \in \mathbb{Z}$ 

- a) Ist  $b \mid a$ , dann auch  $|b| \mid a$ ,  $b \mid |a|$  und  $|b| \mid |a|$ .
  - (|b|) bezeichnet den Betrag von b,

$$|b| = \begin{cases} b & \text{, falls } b \ge 0\\ -b & \text{, falls } b < 0 \end{cases}$$

- b) Falls  $b \mid c$  und  $b \mid d$ , dann  $b \mid k \cdot c + l \cdot d$   $\forall k, l \in \mathbb{Z}$
- c) Ist  $b \mid a \text{ und } a \neq 0, \text{ dann } |b| \leq |a|$
- d) Ist  $b \mid a$  und  $a \mid b$ , dann  $a = \pm b$

## Beweis:

- a) Sei  $b \mid a$ .
  - Ist b > 0, so ist |b| = b, also gilt |b| |a.
  - Ist b < 0, so ist |b| = -b  $b \mid a$ , d.h.  $\exists q \in \mathbb{Z}$  mit  $a = q \cdot b = (-q) \cdot (-b) = (-q) \cdot |b|$ .  $(-q) \in \mathbb{Z}$ , also gilt  $|b| \mid a$ .

Restliche Behauptung analog!

b) 
$$b \mid c$$
, d.h.  $\exists q \in \mathbb{Z} \text{ mit } c = q \cdot b$   
 $\Rightarrow k \cdot c = k \cdot q \cdot b$   $\forall k \in \mathbb{Z}$   
 $b \mid d$ , d.h.  $\exists m \in \mathbb{Z} \text{ mit } d = m \cdot b$   
 $\Rightarrow l \cdot d = l \cdot m \cdot b$   $\forall l \in \mathbb{Z}$ .

$$\Rightarrow \underline{k \cdot c} + \underline{l \cdot d} = \underline{k \cdot q \cdot b} + \underline{l \cdot m \cdot b} = \underbrace{(k \cdot q + l \cdot m)}_{\in \mathbb{Z}} \cdot b \qquad \forall k, l \in \mathbb{Z}$$

$$\Rightarrow b \mid k \cdot c + l \cdot d$$
  $\forall k, l \in \mathbb{Z}$ 

c)  $b \mid a$ , nach Teil a) also  $|b| \mid |a|$ 

$$\Rightarrow |a| = \underbrace{q} \cdot |b| = \underbrace{|b| + |b| + \ldots + |b|}_{q \text{ Summanden}} \ge |b|$$
  $\in \mathbb{N}, \text{ da } |a|, |b| \ge 0 \text{ und } a \ne 0$ 

d) Da  $b \mid a$  und  $a \mid b$ , sind  $a, b \neq 0$ 

Nach c): 
$$|b| \le |a|$$
 und  $|a| \le |b| \Rightarrow |a| = |b|$ , d.h.  $a = \pm b$ .

Teilbarkeit in  $\mathbb Z$  ist im Allgemeinen nicht erfüllt. Daher ist Teilen mit Rest wichtig.

#### Satz und Definition: Division mit Rest 6.3

Seien  $a, b \in \mathbb{Z}, b \neq 0$ .

Dann existieren eindeutig bestimmte  $q, r \in \mathbb{Z}$  mit

$$\begin{array}{ll} (1) & a = q \cdot b + r \\ (2) & 0 \le r < |b| \end{array} \right\} \text{ Division mit Rest}$$

q wird Quotient genannt, r Rest.

Bezeichnung:  $q = a \operatorname{div} b$  $r = a \mod b \pmod{allo}$ 

Es gilt also 
$$\underbrace{a \mod b}_{Rest} = 0 \Leftrightarrow b \mid a$$

#### **Beispiel** 6.4

• 
$$a = 22, b = 5, 22 = 4 * 5 + 2$$
  
22 div  $5 = 4, 22 \mod 5 = 2$ 

• 
$$a = 22, b = -5, 22 = -4 * (-5) + 2$$
  
22 div  $(-5) = -4, 22 \mod (-5) = 2$ 

• 
$$a = -22, b = 5, -22 = -5 * 5 + 3$$
  
( $\land (0 \le r < 5)!$ )  
 $-22 \text{ div } 5 = -5, -22 \mod 5 = 3$ 

• 
$$a = -22, b = -5, -22 = 5 * (-5) + 3$$
  
 $-22 \text{ div } (-5) = 5, -22 \mod (-5) = 3$ 

## Beweis von 6.3:

• Existenz von q und r mit (1), (2):

1. Fall: 
$$b > 0$$
  
Sei  $q$  die größte ganze Zahl mit  $q \le \frac{a}{b}$   $(q = \lfloor \frac{a}{b} \rfloor)$   
Dann ist  $b * q \le a$   $(\text{da } b > 0 \ !)$   
Setze  $r := a - b * q$  es gilt also  $r \ge 0$   $\Rightarrow a = q * b + r$  ((1) gilt)  
Zu zeigen bleibt noch:  $r < |b| = b$   
Widerspruchsbeweis: angenommen,  $r \ge b$ . Dann ist  $r = b + s$  für ein  $s \ge 0$ , d.h.  $a = q * b + (b + s)$   $b(q + 1) + s$   $\Rightarrow q + 1 + \underbrace{s}_{b} = \frac{a}{b}$   $\Rightarrow q + 1 \le \frac{a}{b}$  zur Wahl von  $q \ne 1$   
Also gilt  $0 \le r < b$   
 $\frac{2}{b}$  Fall:  $b < 0$   
Es gilt (\*) mit  $|b|$ , also gilt  $a = q * |b| + r, 0 \le r < |b|$  schon ok

• q, r sind eindeutig bestimmt:

= (-q) \* b + r

angenommen, 
$$\exists q_1, q_2, r_1, r_2 \in \mathbb{Z}$$
, so dass  $a = q_1 * b + r_1 = q_2 * b + r_2 \\ 0 \le r_1, r_2 < |b|.$ 

Sei o.B.d.A (ohne Beschränkung der Allgemeinheit)  $r_2 \geq r_1$ 

Dann ist 
$$(q_1 - q_2) * b = r_2 - r_1 \ge 0$$
,  
also  $b \mid (r_2 - r_1)$ 

wir zeigen  $(r_2 - r_1 = 0)$  durch Widerspruch:

angenommen, 
$$r_2 - r_1 \neq 0$$
.  
 $b \mid (r_2 - r_1), (r_2 - r_1 \neq 0)$   
 $\Rightarrow |b| \leq |r_2 - r_1| = r_2 - r_1 < r_2 < |b|$ 

Also gilt  $r_1 = r_2$ .

Wegen (\*), da  $b \neq 0, q_1 = q_2$ .

#### 6.5 Definition

Sei  $x \in \mathbb{R}$ .

[x] = kleinste ganze Zahl z mit  $z \ge x$  (ceiling-Funktion, aufrunden)

 $\lfloor x \rfloor = \text{gr\"oßte ganze Zahl } z \text{ mit } z \leq x \text{ (floor-Funktion, abrunden)}$ 

#### 6.6 Beispiel

$$\lceil 3 \rceil = 3, \lceil \tfrac{4}{3} \rceil = 2, \lfloor \tfrac{4}{3} \rfloor = 1, \lceil -\tfrac{4}{3} \rceil = -1, \lfloor -\tfrac{4}{3} \rfloor = -2$$

Anwendung: Stellenwertsysteme zur Basis  $b\ (b\in\mathbb{N},b>1)$ 

b=2: Binärsystem

b = 8: Oktalsystem

b = 10: Dezimalsystem

b = 16: Hexadezimalsystem

#### Satz (b-adische Darstellung) 6.7

Sei  $b \in \mathbb{N}, b > 1$ . Jede natürliche Zahl  $n \in \mathbb{N}_0$ , lässt sich eindeutig darstellen in der

$$n = \sum_{i=0}^{k} x_j * b^i$$
, wobei für  $k$  und  $x_i$  gilt:

(1) 
$$k = 0$$
 für  $n = 0$   
 $b^k \le n < b^{k+1}$  für  $n > 0$ 

(2) 
$$x_i \in \mathbb{N}_0, 0 \le x_i \le b - 1, x_k \ne 0 \text{ für } n \ne 0.$$

```
(Die x_i heißen <u>Ziffern</u> von n bzgl. b. Schreibweise: n = (x_k...x_0)_b oder, falls b klar (z.B. b = 10) n = x_k...x_0
```

# 6.8 Beispiel

$$b = 2 \text{ (Binärsystem)}$$

$$6 = 1 * 2^{2} + 1 * 2^{1} + 0 * 2^{0} (k = 2)$$

$$(6)_{10} = (110)_{2}$$

$$9 = 1 * 2^{3} + 0 * 2^{2} * 0 * 2^{1} + 1 * 2^{0} (9)_{10} = (1001)_{2}$$

$$0 = (0)_{2}$$

$$1 = (1)_{2}$$

$$2 = (10)_{2}$$

$$3 = (11)_{2}$$

$$4 = (100)_{2}$$

$$5 = (101)_{2}$$

$$\vdots$$

$$Ziffern für  $b = 16$ :  $0, 1, ..., 9, A, B, C, D, E, F$ 

$$(11)_{10} = (B)_{16}$$
Beweis  $(6.7)$ :$$

verschärfte Induktion nach n: Induktionsanfang: n = 0 (hat Darstellung  $(0)_b$ )

Induktionsschritt: sei n > 0.

- Induktionsvorraussetzung: Die Aussage gelte für alle  $n' \in \mathbb{N}_0$  mit n' < n,
- Induktionsbehauptung: Die Aussage gilt für n.
- Beweis:

Nach Satz über Div mit Rest (6.3) gilt 
$$\exists q,r \in \mathbb{Z} \text{ mit } n=q*b+r$$
 Setze  $x_0=r$  (also  $x_0=n \mod b$  und  $n'=q$  (also  $n'=\frac{n-x_0}{b}$ , dann ist  $0 \le n' < n$ 

Nach Induktionsvorraussetzung gilt also  $n' = \sum_{i=0}^{k} x'_i * b^i, k, x'_i$  mit (1), (2) setze  $x_{i+1} = x'_i$  für i = 0, 1, ..., k

Dann ist 
$$n = n' * b + x_0$$
  

$$= \sum_{i=0}^{k} x_i' * b^{i+1} + x_0$$
  

$$= \sum_{i=1}^{k+1} x_i * b^i + x_0$$
  

$$= \sum_{i=0}^{k+1} x' i * b^i$$

- -(1) und (2) gelten:
- (2) gilt nach Konstruktoren der  $x_i$  (1):

-falls 
$$n' = 0$$
,  $[z.z: b^0 \le n < b^1]$   
dann ist  $n = x_0$ .  
wegen  $x_0 < b$  ist  $b^0 = 1 \le n < b^1$ 

- falls 
$$n'>0$$
 [z.Z:  $b^{k+1} \leq n < b^{k+2}]$ dann gilt (Ind.Vor.)  $b+ \leq n' < b^{k+1}$ 

$$\Rightarrow b^{k+1} \le b * n' \le \underbrace{b * n' + x_0}_{n}$$

zeige II: Es ist  $n' \le b^{k+1} - 1$ , also  $bn' \le b^{k+2} - b$ 

$$\Rightarrow \underbrace{bn' + x_0}_{x} \le b^{k+2} - b + x_0 < b^{k+2}$$

- Darstellung ist eindeutig:

Sei 
$$nj = \sum_{i=0}^{k} x_i * b^i = \sum_{i=0}^{l} y_i * b^i$$
  
 $(x_i, y_i, k, l \text{ mit } (1), (2)$ 

Dann ist 
$$x_0 = n \mod b = y_0$$
 wende Ind. Vor. an auf  $n' = \frac{n-x_0}{b} = \frac{n-y_0}{b}$ , Beh. folgt.  $\square$ 

## 6.9 Korollar

Der Beweis liefert ein Verfahren zur Bestimmung der Darstellung von  $n \in \mathbb{N}_0$  zur Basis b > 1:

$$n_{0} := n, \quad x_{0} := n_{0} \mod b$$

$$n_{1} := \frac{n_{0} - x_{0}}{b}, \quad x_{1} := n_{1} \mod b$$

$$\vdots$$

$$n_{k} := \frac{n_{k-1} - x_{k-1}}{b}, \quad x_{k} := n_{k} \mod b$$
solange, bis  $n_{k} < b \pmod{k}$ 
Dann  $n = (n_{k}n_{k-1} \dots n_{0})_{b}$ 

## 6.10 Beispiel

a)  $(41)_{10}$  im Binärsystem (b=2) (mit Algorithmus aus 6.9)

$$\begin{array}{llll} 41 \mod 2 = 1 \\ \frac{41-1}{2} = 20, & 20 \mod 2 = 0 \\ \frac{20-0}{2} = 10, & 10 \mod 2 = 0 \\ & & | & 001 \\ \frac{10-0}{2} = 5, & 5 \mod 2 = 1 \\ & & | & 1001 \\ \frac{5-1}{2} = 2, & 2 \mod 2 = 0 \\ & & | & 01001 \\ \frac{2-0}{1} = 1 < b(=2), \text{ fertig.} \\ & & | & 101001 \end{array}$$

oder (gut bei kleinen Zahlen):

höchste 2er-Potenz 
$$\leq 41$$
 ist  $\underline{2}^5 = 32$   
 $41 - 32 = 9$   
höchste 2er-Potenz  $\leq 9$  ist  $\underline{2}^3 = \underline{8}$   
 $9 - 8 = \underline{1} = \underline{2}^0$   
 $(41)_{10} = \underline{2}^5 + \underline{2}^3 + \underline{2}^0 = (101001)_2$ 

b)  $(41)_{10}$  im Hexadezimalsystem:

$$(41)_{10} = (29)_{16}$$
  
[ oder:  $(41)_{10} = (10 \ 1001)_2$   
=  $(0010 \ 1001)_2 = (29)_{16}$ 

$$(0010)_2 = (2)_{10} = (2)_{16}$$
  
 $(1001)_2 = (9)_{10} = (9)_{16}$ 

c)  $(41)_5$  im 3er-System:

$$(41)_5 = 4 \cdot 5^1 + 1 \cdot 5^0 = (21)_{10}$$

$$21 \mod 3 = 0 \qquad | 0$$

$$\frac{21 - 0}{3} = 7, \quad 7 \mod 3 = 1$$

$$\frac{7 - 1}{3} = 2 < 3, \text{ fertig}$$

$$(41)_5 = (210)_3$$

$$| 210$$