1 Dynamické systémy

Definice 1.1 (Dynamický systém)

 $(\varphi, \Omega), \Omega \subset \mathbb{R}^n$ otevřená, $\varphi : \mathbb{R} \times \Omega \to \Omega \ \varphi(t, x).$

- $\varphi(0,x)=x$;
- $\varphi(t, \varphi(s, x)) = \varphi(t + s, x)$
- φ je spojité.

Definice 1.2 (Orbit)

 $\gamma^+(x_0) = \{\varphi(t, x_0) | t \ge 0\}$ je pozitivní orbit.

 $\gamma^{-}(x_0) = \{\varphi(t, x_0) | t \leq 0\}$ je negativní orbit.

 $\gamma(x_0) = \{ \varphi(t, x_0) | t \in \mathbb{R} \}$ je plný orbit.

Definice 1.3 (Pozitivně, negativně a úplně invariantní)

 (φ, Ω) dynamický systém, $M \subset \Omega$.

M je pozitivně invariantní $\equiv \forall x \in M : \gamma^+(x) \subset M$.

M je negativně invariantní $\equiv \forall x \in M : \gamma^{-}(x) \subset M$.

M je úplně invariantní $\equiv \forall x \in M : \gamma(x) \subset M$.

Poznámka

 $\gamma^+(x_0)$ je pozitivně invariantní, $\gamma^-(x_0)$ je negativně invariantní a $\gamma(x_0)$ je úplně invariantní.

Definice 1.4

$$\omega(x_0) = \{ y \in \Omega | \exists \{t_k\}_{k=1}^{\infty}, t_k \to \infty : \varphi(t_k, x_0) \to y \},$$

$$\alpha(x_0) = \{ y \in \Omega | \exists \{t_k\}_{k=1}^{\infty}, t_k \to -\infty : \varphi(t_k, x_0) \to y \}.$$

Poznámka (To je ekvivalentní)

$$\omega(x_0) = \{ y \in \Omega | \forall \varepsilon > 0 \ \forall T > 0 \ \exists t \geqslant T : |\varphi(t_r, x_0) - y| < \varepsilon \}.$$

Lemma 1.1

$$\overline{\omega(x_0) = \bigcap_{\tau \geqslant 0} \overline{\gamma^+(\tau, x_0)}}.$$

 $D\mathring{u}kaz$ $,\subseteq ": y \in \omega(x_0): \forall \varepsilon > 0 \ \forall T \ \exists t \geqslant T: |\varphi(t,x_0) - y| < \varepsilon. \text{ Cheeme:}$ $\forall \tau \geqslant 0 \ \forall \varepsilon > 0 \ \exists z \in \gamma^+(\tau,x_0): |y - z| < \varepsilon \Leftrightarrow$ $\Leftrightarrow \forall \tau \geqslant 0 \ \forall \varepsilon > 0 \ \exists s \geqslant \tau, z = \varphi(s,x_0): |y - \varphi(s,x_0)| < \varepsilon.$ $,\supseteq ": \forall \tau \geqslant 0 \ y \in \overline{\gamma^+(\tau,x_0)} \implies$ $\Longrightarrow \forall \varepsilon \ \exists s \geqslant \tau: |\varphi(s,x_0) - y| < \varepsilon.$

Věta 1.2 (Vlastnosti ω -limitní množiny)

Nechť (φ, Ω) je dynamický systém, $x_0 \in \Omega$. Potom

- 1. $\omega(x_0)$ je uzavřená, úplně invariantní.
- 2. Pokud $\gamma^+(x_0)$ je relativně kompaktní v \mathbb{R}^n , pak $\omega(x_0) \neq \emptyset$, $\omega(x_0)$ je kompaktní, souvislá.

 $D\mathring{u}kaz$

1. $\omega(x_0)$ je průnik uzavřených množin, tedy uzavřená. $y \in \omega(x_0) \; \exists t_k \nearrow \infty \; \varphi(t_k, x_0) \rightarrow y$.

$$s_k = t_k + t$$
 $\varphi(s_k, x_0) = \varphi(t_k + t, x_0) = \varphi(t, \varphi(t_k, x_0))$
 $t_k \to \infty, \varphi \text{spojit\'a}$ $\varphi(s_k, x_0) = \varphi(t, \varphi(t_k, x_0)) \to \varphi(t, y)$

- 2. $\exists K \subset \mathbb{R}^n$ kompaktní $\gamma^+(x_0) \subset K$. a) pokud $t_n \ge 0, t_n \to \infty \{\varphi(t_n, x_0)\}_{n=1}^{\infty}$ omezená posloupnost $\Longrightarrow \exists \{t_{n_k}\}_{k=1}^{\infty} \subset \{t_n\}_{n=1}^{\infty}$, podposloupnost, $\exists y \in \Omega \varphi(t_{n_k}, x_0) \to y$. Pak $y \in \omega(x_0)$.
- b) $\omega(x_0)$ je tedy úplná a omezená, takže kompaktní. c) at $\omega(x_0)$ je nesouvislá, tedy $\omega(x_0) \subseteq U \cup V, U, V$ otevřené disjunktní neprázdné, $U, V \subseteq K$. Vezměme $y \in \omega(x_0) \cap U, z \in \omega(x_0) \cap V$. Nechť t_n je posloupnost taková, že $\varphi(t_{2n}x_0) \to y, \ \varphi(t_{2n+1},x_0) \to z, t_{2n} < t_{2n+1}, \ \varphi(t_{2n},x_0) \in U, \ \varphi(t_{2n+1},x_0) \in V. \ F = K \setminus (U \cup V)$ uzavřená, tedy $\exists s_n \in (t_{2n},t_{2n+1}): \varphi(s_n,x_0) \in F$. Tedy $\{\varphi(s_n,x_0)\}$ je omezená posloupnost $\Longrightarrow \exists$ podposloupnost konvergující k $w \in F$.

Definice 1.5 (Topologická konjugovanost)

 $(\varphi,\Omega),\ \psi,\Theta$ dynamické systémy. $\exists:\Omega\to\Theta$ homeomorfismus (bijekce, spojité, spojitá inverze):

$$\forall x \in \Omega \ \forall t \in \mathbb{R}$$
 $h(\varphi(t, x)) = \psi(t, h(x)).$

Poznámka

Dá se zobecnit ještě zobrazováním časů.

Věta 1.3 (O rektifikaci)

$$\dot{x} = f(x), f(x_0) \neq 0, \ (\varphi, \Omega) \ p \check{r} \acute{s} lu \check{s} n \acute{y} \ dynamick \acute{y} \ syst \acute{e} m. \ \dot{y} = \begin{pmatrix} 1\\0\\0\\\vdots\\0 \end{pmatrix}, \ y(0) = 0 \ a \ (\psi, \Theta) \ j e$$

příslušný dynamický systém. Potom (φ, Ω) , (ψ, Θ) jsou lokálně topologicky konjugované $(\exists U \text{ okolí } x_0 \in \Omega \text{ a } V \text{ okolí } \mathbf{o} \in \mathbb{R}^n \text{ taková, že } \exists g: U \to V \text{ homeomorfismus } g(\varphi(t, x)) = \psi(t, g(x)) \ \forall x \in U, \ \forall t: \varphi(t, x) \in U).$

 $D\mathring{u}kaz$

BÚNO $f_1(x_0) = \alpha \neq 0$ (první souřadnice funkce f) a $x_0 = \mathbf{o}$. Buď \tilde{V} okolí $\mathbf{o} \in \mathbb{R}^n$ $G: \tilde{V} \to \mathbb{R}^n$, $G(y_1, \dots, y_n) = \varphi(y, (0, y_2, \dots, y_n))$. Chceme ukázat, že G je invertibilní na nějakém okolí.

$$\frac{\partial G(y_1, \dots, y_n)}{\partial y_1}|_{(0,\dots,0)} = \frac{\partial \varphi}{\partial t}(t = y_1, (0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots, y_n = 0} = f(\varphi(y_$$

$$\frac{\partial G(y_1, \dots, y_n)}{\partial y_j}|_{(0, \dots, 0)} = \lim_{h \to 0} \frac{G(0, \dots, h, \dots, 0) - G(0, \dots, 0)}{h} = \lim_{h \to 0} \frac{(0, \dots, h, \dots, 0)^T - (0, \dots, 0)^T}{h} = (0, \dots, 0)^T - (0, \dots, 0)^T$$

Tedy $\nabla G(0,\ldots,0)$ je "jednotková matice, až na to, že a_{11} je α ", tudíž podle věty o inverzi funkce $\exists V \subseteq \tilde{V}$ okolí $0, \exists U$ okolí bodu x_0 tak, že $G: V \to U$ je homeomorfismus. Položme $q = G^{-1}$.

Nyní už stačí
$$g(\varphi(t,x_0))=\psi(t,g(x_0))$$
 $\forall x_0\in U$ $\forall t:\varphi(t,x_0)\in U.$ $\varphi(t,x_0)=G(\psi(t,g(x_0)))$

3.
$$x \in U = G(V) \exists y \in V \ x = G(y)$$

$$x = \varphi(y, (x_{01}, x_{02} + y_2, \dots, x_{0n} + y_n))$$

$$\varphi(t,x) = \varphi(t,\varphi(y,(x_{01},x_{02}+y_2,\ldots,x_{0n}+y_n))) = \varphi(t+y,(x_{01},x_{02}+y_2,\ldots,x_{0n}+y_n))$$

Věta 1.4 (La Salle invariance principle)

$$x' = f(x), (\varphi, \Omega) \quad \varphi : \mathbb{R} \to \Omega, floc.Lip.$$

 $\exists V : \Omega \to \mathbb{R}, \text{ bounded from below.}$

$$\exists l \in \mathbb{R} : \Omega_l = \{x \in \Omega | V(x) \leq l\} - -bounded$$

$$\dot{V}_f(x) := \nabla V(x) \cdot f(x) = \sum_{j=1}^n \frac{\partial V(x)}{\partial x_j} \cdot f_j(x) \le 0 \quad \forall x \in \Omega_l.$$

$$R = \left\{ x \in \Omega_l | \dot{V}_f(x) = 0 \right\}, \quad M = \left\{ y \in R | \gamma^+(y) \subset R \right\}.$$

Then $\forall x \in \Omega_l : \omega(x) \subset M$.

Důkaz

Let $x \in \Omega_l$. $\forall y \in \omega(x) \exists t_k \nearrow \infty : x(t_k) \to y$. $\varphi(t, x_0) = x(t)$.

$$\frac{d}{dt}V(x(t)) = \nabla V(x(t)) \cdot x'(t) = \dot{V}_f(x(t)) \le 0.$$

 $V(x(t)) \setminus \text{and } \exists C : \forall x \in \Omega : V(x) > -C \text{ so } \exists \lim_{t \to \infty} V(x(t)) = c.$

So $\exists c \ \forall y \in \omega(x_0)V(y) = c. \ V(x(t_k)) \to V(y) = c.$

$$\gamma^+(y) \subset \omega(x_0) \ V(\varphi(t,y)) = c \ \forall t \geqslant 0 \implies$$

$$\implies \frac{d}{dt}V(\varphi(t,y))=0.$$

 $\gamma^+(y) \subset R$ in particular, $y \in R$. Hence $y \in M$.

2 Poincaré-Bendixson theory

Věta 2.1 (Poincaré-Bendixson)

Let $p \in \Omega$, Ω open connected. $\omega(p)$ doesn't contain stat points and $\gamma^+(p)$ is relatively compact $(\gamma^+(p) \text{ is compact})$. Then $\omega(p) = \Gamma$ -periodic orbit.

Věta 2.2 (Bendixon-Dulas)

 Ω -simply connected (\forall closed Jordan curve γ in Ω , int(γ) $\subset \Omega$). $\exists B : \Omega \to \mathbb{R} : (\operatorname{div} B)(x) = \frac{\partial B}{\partial x_1}(x_1, x_2) + \frac{\partial B}{\partial x_2}(x_1, x_2) > 0$ for almost every $x \in \Omega$. Then x' = f(x) doesn't have nontrivial periodic solutions.

Definice 2.1 (Transverzála)

 Σ segment on a line such that $\forall p \in \Sigma : \Sigma \not\parallel f(p)$.

Lemma 2.3

 Σ transverzála, $p \in \Sigma \subset \Omega$. Then $\exists \tilde{\subset} U$ neighborhood of p. $\exists \Delta > 0$ such that

$$\forall y \in \tilde{U} : \varphi(t,y) \subset U \ \forall t : |t| < \Delta \land \exists \tau : |\tau| < \frac{\Delta}{2} : \varphi(\tau,y) \in \Sigma \cap \tilde{U}.$$

Důkaz

Use Th. of rect.

Lemma 2.4

Let $p \in \Omega$ and assume that $|\gamma^+(p) \cap \Sigma| \ge 3$, i. e. $\exists t_1 < t_2 < t_3 \ \varphi(t_j, p) \in \Sigma$, j = 1, 2, 3. Then $\varphi(t_2, p)$ lie between $\varphi(t, p)$ and $\varphi(t_3, p)$.

TODO!!!

TODO!!!

2.1 Controllability

Definice 2.2 (Control theory)

$$x' = f(x, u), f: \Omega \times U, \Omega \subset \mathbb{R}^n, U \subset \mathbb{R}^n,$$

$$u \in \mathcal{U} := \{u : [0, T] \to \mathbb{R}^n | \text{measurable}, ||u||_{\infty} < \infty\} = L^{\infty}(0, T, \mathbb{R}^n).$$

(\mathcal{U} is admissible functions).

Definice 2.3 (Linear task)

 $x' = Ax + Bu, A, B \in \mathbb{R}^{n \times m}, m < n.$

Definice 2.4

$$x_0 \xrightarrow[u(0)]{t} 0 \text{ iff } x(0) = x_0, \ x(t) = 0.$$

Definice 2.5 (Area of controlability)

$$\mathcal{R}(t) = \left\{ x_0 \in \mathbb{R}^n | \exists u \in L^{\infty}(0, t, \mathbb{R}^n) : x_0 \xrightarrow[u(0)]{t} 0 \right\}$$

Definice 2.6 (Kalman matrix)

$$\mathcal{K}(A,B) := (B|AB|A^2B|\dots|A^{n-1}B)$$

Věta 2.5

For linear problem $\mathcal{R}(t) = LO(g_1, g_2, \dots, g_{n \cdot m})$, where $\mathcal{K}(A, B) = (g_1|g_2|\dots|g_{n \cdot m})$

Tvrzení 2.6 (Observation)

$$\overline{x(t) = e^{At}x_0 + \int_0^t e^{A(t-s)Bu(s)ds}}.$$

$$x_0 \xrightarrow[u(0)]{t} 0 \Leftrightarrow x(t) = 0 \Leftrightarrow x_0 = -\int_0^t e^{-As} Bu(s) ds$$
 (KO)

Lemma 2.7 (1)

$$A^k \in LO(I, A, A^2, \dots, A^{n-1}), k \in \mathbb{N}_0$$

 $D\mathring{u}kaz$

Cayley-Hamilton.

 $D\mathring{u}kaz$

- 1) $\mathcal{R}(t)$ is vector subspace of \mathbb{R}^n from definition $x_0 + x_1 \xrightarrow[(u_1 + u_2)(0)]{t} 0$, $\alpha x \xrightarrow[\alpha u(0)]{t} 0$.
- 2) We want $\mathcal{R}(t)^{\perp} = (LO(g_1, \ldots, g_n))^{\perp}$. $\square : p \in (LO(g_1, \ldots, g_n))^{\perp}$. $x_0 \in \mathcal{R}(t)$ arbitrary. From KO:

$$0 \stackrel{?}{=} p^T x_0 = -\int_0^t p^T e^{-As} Bu(s) ds = -\int_0^t \sum_{k=0}^\infty \frac{(-s)^k}{k!} p^T A^k Bu(s) ds$$

We know $(p, g_j) = 0$, $p^T g_j = 0$, $p^T \mathcal{K}(A, B) = 0$, $p^T A^k B = 0$, $k \in [n-1]$. And from lemma $1 \ k \in \mathbb{N}$. " \subseteq ": $p \in \mathbb{R}^n$, $p \in \mathcal{R}(t)^{\perp}$. We want to prove $p \perp B, AB, A^2 B, \ldots, A^{n-1} B$. $B = (b_1 | \ldots | b_m)$. $\forall j \in [n] : p \perp b_j, Ab_j, \ldots, A^{n-1} b_j$. $\varphi \in L^{\infty}(0, T, \mathbb{R})$, $u(t) = \varphi(t) \cdot \mathbf{e}_j$, where $x_0 = -\int_0^t e^{-As} Bu(s) ds$. We have $x_0 \xrightarrow[u(0)]{t} 0$, hence $x_0 \in \mathcal{R}(t)$.

$$0 = p^{T} x_{0} = -p^{T} \int_{0}^{t} e^{-As} Bu(s) ds = -\int_{0}^{t} p^{T} e^{-As} b_{j} \varphi(s) ds \implies y(s) := p^{T} e^{-As} b_{j} \equiv 0$$

So we have $p^T e^{-As} b_j \equiv 0$, we derivate it, $p^T A^n e^{-As} b_j \equiv 0$, and set s = 0.

Dusledek

 $\mathcal{R}(t)$ doesn't depend on time.

Definice 2.7 (Locally and globally controllable)

Linear problem is called locally controllable, iff $\exists \delta > 0 : \{x_0 \in \mathbb{R}^2 | |x_0| < \delta\} \subset \mathcal{R}(t)$. And globally if $\mathbb{R}^n = \mathcal{R}(t)$.

Důsledek

Linear problem is controllable \Leftrightarrow rank K(A, B) = n.

2.2 Observability

Definice 2.8 (System for observability)

$$x' = f(x), x(0) = x_0, f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n y = g(x), g: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, m < n.$$

Definice 2.9

We say that system x' = f(x) is observable through $g(\cdot)$ on [0, t], iff $\forall x_1(\cdot), x_2(\cdot) : [0, T] \to \mathbb{R}^n : g(x_1(t)) = g(x_2(t)) \ \forall t \in [0, T] \implies x_1(0) = x_2(0)$.

Definice 2.10 (Linear observability)

 $x' = Ax, y = Bx, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times n}.$

Věta 2.8

x' = Ax is observable on [0,T] through $y = Bx \Leftrightarrow x' = A^Tx + B^Tu$ is controllable.

Důkaz

$$\exists x_1(t), x_2(t), [0, T], Bx_1(t) \equiv Bx_2(t) : x(t) = x_1(t) - x_2(t), x(0) = x_0 \neq 0, Bx(t) \equiv 0.$$

$$x(t) = e^{At}x_0, Bx(t) = B^{At}x_0 \equiv 0$$
 $\forall t \in [0, T].$

We differentiate it, set t = 0 and get $Bx_0 = 0$, $BAx_0 = 0$, ..., $BA^{n-1}x_0 = 0$. So $x_0^TB^T = 0$, ..., $x_0^T (A^T)^{n-1} B^T = 0$. $x_0^T \mathcal{K}(A^T, B^T) = 0$, $x_0 \perp \mathcal{K}(A^T, B^T)$, 4.