Reporte ejemplo

titanic - Option

Agenda

Analisis Exploratorio

Procesamiento de los datos

Insights

Clasificación

1. Datos

Analisis exploratorio

Subiendo a Bigquery

Investigando el dataset https://www.kaggle.com/c/titanic/data

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

2. Procesamiento

Procesamiento y transformación (2 approaches)

Jupyter Notebook (Datalab GCP)

Procesamiento, transformación y limpieza en python (mediante Bigquery API) Dataprep GCP

Limpieza de los datos a través de interfaz interactiva GCP

Etapas

Deleting unnecessary columns

Se eliminan las columnas:

Ticket, Passenger Id, Cabin. Ya

que no aportan información

relevante al problema

Missing values (%)

-Embarked: 0.22%

-Age: 19.86%

Solution:

-Eliminar filas NaN en embarked dado que no afecta en el total

Checking missing

values

-Reemplazar edades con el promedio por sexo y Pclass para ser lo más representativo posible

Coding values

-El sexo se codifica en 0 o 1 para ser interpretado en pasos posteriores.

-Se generan 5 rangos de edad para poder sacar información.

Datalab (Jupyter notebook)

https://github.com/fbahamonde/optionexample/blob/master/option-titanic.ipynb

Dataprep

3. Clustering

Etapas

PCA

Escoger el número de clusters

Insights

Se reduce la dimensionalidad para ver la posibilidad de graficar los clústeres a generar

Escoger el número de clusters

Mediante Elbow Method se interpretan los resultados para generar información útil

PCA

Al ver que las primeras componentes logran describir la mayor parte del problema, se procede a reducir la dimensión a 2 componentes para su visualización

Elección de cantidad de clusters

Mediante Elbow Method se procede con la cantidad de clusters.

De la Fig. se puede ver que 4 resulta un buen número.

Clusters

Se generan 4 grupos que se encuentran separados principalmente por rangos de edad.

De este análisis se desprende que los grupos etarios con mayor probabilidad de sobrevivir son los menores, independiente de la clase.

5. Insights

Insights

- * Personas sin familiares tenían mayor probabilidad de sobrevivir
- * Como era de esperarse, en promedio sobrevivió más gente de clase alta (1).
- * En promedio sobrevivieron más mujeres que hombres.
- * Mejores de edad fueron los que más posibilidades tenían de sobrevivir, así mismo, las mejores entre 30 y 60 tienen una altísima probabilidad de sobrevivir, independiente de la clase.
- * Sobre 60 años la probabilidad de supervivencia disminuye a casi 0

4. Clasificación

Resultados modelos

Logistic Regression

Accuracy: 0.74 (+/- 0.16)

Decision Tree

Accuracy: 0.62 (+/- 0.20)

Random Forest

Accuracy: 0.64 (+/- 0.18)

^{*}Utilizando Cross-Validation (5 Folds) y sin optimizar parámetros en los modelos.

^{**}Para la clasificación se codifica Embarked de 0 a 2. Y se reemplazan las columnas asociadas a familiares por la "Alone", que indica si viajo con familiares o solo.

Almacenamiento Bigquery

Para finalizar, se almacenan los datos procesados en Datalab en bigquery. Para su posterior uso o despliegue de insights en Data Studio o similar.

Gracias!

Felipe Bahamonde felipe.bahamonde.m@ug.uchile.cl

