Algoritmos Evolucionários baseados em Gramáticas

Computação Natural Gisele L. Pappa

Introdução

- Na aula passada, estudamos três propriedade que devem ser respeitadas ao criar um conjunto de funções de um PG, incluindo *fechamento*
- As dificuldades impostas pelo fechamento levaram a criação de uma novas vertentes dentro da GP:
 - GP restrito a sintaxe
 - GPs baseados em gramáticas

Programação Genética

GP Restrito a Sintaxe

- Para cada função do conjunto de funções, especificar o tipo de dados de seus argumentos e o tipo de dados retornado
- Cada terminal é também associado a um tipo de dados
- Cruzamento e mutação são modificados com respeito a restrições nos tipos de dados

GP Restrito a Sintaxe

Função	Tipo de dados dos	Tipo de dado	
	argumentos	retornado	
+, -, *, /	(real, real)	real	
>, <	(real, real)	boolean	
AND, OR	(boolean, boolean)	boolean	

GP baseada em gramática

- Além de garantir a propriedade de fechamento, permite incorporar ao espaço de busca domínio sobre o problema
- GP baseada em gramática podem ser divididas em 2 grandes classes de acordo com:
 - Tipo de representação utilizado
 - Tipo da gramática utilizada
 - Livre de contexto, lógica, etc

PG baseada em gramática

• Classificação de acordo com a representação

PG baseada em Gramáticas (Tipo 1)

Exemplo de Gramática

```
CFG Grammar
<expr> ::= <expr> <op> <expr> |
                                    (1)
           <numb> |
                                    (2)
           <var>
                                    (3)
<op> ::= +
                                    (4)
                                    (5)
<var> ::= x |
                                    (6)
                                    (7)
<numb> ::= 2 |
                                    (8)
                                    (9)
```


Derivation Steps followed to produce x+2

$$\stackrel{1}{\Rightarrow}$$
 $\stackrel{3}{\Rightarrow}$ $\stackrel{6}{\Rightarrow}$ x $\stackrel{4}{\Rightarrow}$ x + $\stackrel{2}{\Rightarrow}$ x + $\stackrel{8}{\Rightarrow}$ x + 2

Diferenças em relação a PG convencional

• Indivíduos criados através de mutação e crossover devem respeitar as regras de produção da gramática

• Crossover não tem um poder tão destrutivo

PG baseada em Gramáticas (Tipo 2)

- Indivíduos são normalmente representados por um string binário
- Existe um mapeamento do genótipo para o fenótipo baseado em processos biológicos

Mapeamento inspirado na biologia

Código Genético

$-\mathbf{C}$	odon U	C	A	G	
U	UUU - Phe	UCU - Ser	UAU - Tyr	UGU - Cys	U
	UUC - Phe	UCC - Ser	UAC - Tyr	UGC - Cys	C
	UUA - Leu	UCA - Ser	UAA - Stop	UGA - Stop	A
	UUG - Leu	UCG - Ser	UAG - Stop	UGG - Trp	\mathbf{G}
\mathbf{C}	CUU - Leu	CCU - Pro	CAU - His	CGU - Arg	U
	CUC - Leu	CCC - Pro	CAC - His	CGC - Arg	\mathbf{C}
	CUA - Leu	CCA - Pro	CAA - Gln	CGA - Arg	A
	CUG - Leu	CCG - Pro	CAG - Gln	CGG - Arg	G
\mathbf{A}	AUU - Ile	ACU - Thr	AAU - Asn	AGU - Ser	U
	AUC - Ile	ACC - Thr	AAC - Asn	AGC - Ser	\mathbf{C}
	AUA - Ile	ACA - Thr	AAA - Lys	AGA - Arg	A
	AUG - Met	ACG - Thr	AAG - Lys	AGG - Arg	\mathbf{G}
\mathbf{G}	GUU - Val	GCU - Ala	GAU - Asp	GGU - Gly	U
	GUC - Val	GCC - Ala	GAC - Asp	GGC - Gly	\mathbf{C}
	GUA - Val	GCA - Ala	GAA - Glu	GGA - Gly	A
	GUG - Val	GCG - Ala	GAG - Glu	GGG - Gly	G

• Degeneração de código genético (diferentes codons mapeam o mesmo aminoácido

Code	Name	Code	Name
Phe	Phenylalanine	Leu	Leucine
\mathbf{Tyr}	Tyrosine	Cys	Cysteine
\mathbf{Trp}	Tryptophan	\mathbf{Pro}	Proline
\mathbf{His}	Histidine	Gln	Glutamine
\mathbf{Arg}	Arginine	\mathbf{Ile}	Isoleucine
Met	Methionine	Thr	Threonine
\mathbf{Asn}	Asparagine	Lys	Lysine
\mathbf{Ser}	Serine	Val	Valine
Ala	Alanine	\mathbf{Asp}	Aspartic Acid
\mathbf{Glu}	Glutamic Acid	Gly	Glycine

Código Genético

GENETIC CODE	PARTIAL PHENOTYPE	GE Codon	Regra
Codon (A group of 3 Nucleotides)	Amino Acid (Protein Component)	GE (8 bits)	
G G C G G A G G G	Glycine	00000010 00010010	line>
		00100010	

• Para uma regra com duas escolhas

O valor do codon de um GE mod número de regras determina o número da regra

Exemplo de Mapeamento

Gramática

$$A < seq > ::= < vowel > (0)$$
$$| < seq > < vowel > (1)$$

Processo de Decodificação

Mapeamento

- O que acontece se eu termino de ler o genótipo e meu indivíduo ainda apresenta não-terminais?
 - Uso o conceito de "wrapping"
 - Reaproveitamento de material genético (inspirado na sobreposição de genes comum bactérias)

Implicações da Degeneração de Código Genético

• Aparecimento de mutações neutras

• Variações no genótipo não tem efeito no

fenótipo

	U	\mathbf{C}	\mathbf{A}	\mathbf{G}	
U	UUU - Phe	UCU - Ser	UAU - Tyr	UGU - Cys	U
	UUC - Phe	UCC - Ser	UAC - Tyr	UGC - Cys	\mathbf{C}
	UUA - Leu	UCA - Ser	UAA - Stop	UGA - Stop	A
	UUC Leu	UCG - Ser	UAG - Stop	UGG - Trp	G
\mathbf{C}	CUU - Leu	CCU - Pro	CAU - His	CGU - Arg	U
/	CUC - Leu	CCC - Pro	CAC - His	CGC - Arg	\mathbf{C}
(CUA - Leu	CCA - Pro	CAA - Gln	CGA - Arg	A
	CUG - Leu	CCG - Pro	CAG - Gln	CGG - Arg	G
\mathbf{A}	AUU lie	ACU - Thr	AAU - Asn	AGU - Ser	U
	AUC - Ile	ACC - Thr	AAC - Asn	AGC - Ser	\mathbf{C}
	AUA - Ile	ACA - Thr	AAA - Lys	AGA - Arg	A
	AUG - Met	ACG - Thr	AAG - Lys	AGG - Arg	G
\mathbf{G}	GUU - Val	GCU - Ala	GAU - Asp	GGU - Gly	U
	GUC - Val	GCC - Ala	GAC - Asp	GGC - Gly	\mathbf{C}
	GUA - Val	GCA - Ala	GAA - Glu	GGA - Gly	A
	GUG - Val	GCG - Ala	GAG - Glu	GGG - Gly	G

Representação

- Trabalha com vetores de bits de tamanho variável
- Ao gerar a população inicial, determina um número máximo de codons que cada indivíduo pode ter

Operadores Genéticos

- Mutação de um ponto
- Crossover de um ponto
- Duplicação de codons
 - Selecionados aleatoriamente e inseridos antes do último codon

Principais características de Evolução de Gramáticas

- Separa o genótipo do fenótipo
- Degeneração de código genético
 - Ajuda a manter a diversidade da população
 - Ajuda a preservar a funcionalidade dos programas através de mutações neutras
- Operador wrapping
 - Reusar código genético

Críticas (Problemas)

- Novamente não existe semântica
- Cruzamento não faz muito sentido
 - Estaremos trocando bits que não fazem referência alguma a gramática
 - Operador *wrap* também faz com que o efeito do cruzamento seja amplificado
- Não existe localidade nos operadores, característica importante em EAs

Fitness Landscape

• Gráfico que ilustra as *n* dimensões do seu problema, e a *qualidade da sua solução* naquele ponto do espaço.

Fitness Landscape

A real fitness landscape for protein evolution

Random substitutions easily climb to 40% of the original function.

Enormous diversity is required to climb within the rugged surface to 100%.

2D plot of a hill ——

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0000096

Localidade (locality)

- Diz respeito ao quanto que genótipos vizinhos correspondem a fenótipos vizinhos
- É um bom indicador da dificuldade de se resolver um problema
- Localidade
 - Alta todos os genótipos vizinhos correspondem a fenótipos vizinhos
 - Baixa maioria dos genótipos vizinhos não corresponde aos fenótipos vizinhos

Localidade (locality)

- Representações com alta localidade são necessárias para se ter uma busca eficiente
 - Operadores tem o mesmo efeito no espaço de genótipo e fenótipo
- Operadores genéticos podem ser aproveitar do conhecimento que se tem do espaço de fitness para guiar a busca

RESULTADOS: TIPO 1 VERSUS TIPO 2

Gramática – Regressão Simbólica

Comparações

Figure 6: Evolution of training and testing fitness on the Boston Housing symbolic regression problem.

Leitura Recomendada

- O'Neill M., Ryan C. *Automatic Generation of Programs with Grammatical Evolution*. In Proceedings of AICS 1999, pages 72-78.
- P. A. Whigham, Grammatically-based Genetic Programming, Proc. of the Workshop on Genetic Programming: From Theory to Real-World Applications, 1995, pages 33-41.

Mais informações

http://www.grammatical-evolution.org/

Artigos de referência da aula

- Hayashi, Yuuki, et al. "Experimental rugged fitness landscape in protein sequence space." *PLoS One* 1.1 (2006): e96.
- P. A. Whigham, G. Dick, J. Maclaurin, and C. A. Owen. 2015. Examining the "Best of Both Worlds" of Grammatical Evolution. In *Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation* (GECCO '15)