Lab 5: Regularization — Linear & Logistic Regression

Abstract

In this lab, we implement **regularized linear regression**and **regularized logistic regression** We load the provided datasets,visualize the data distributions,construct polynomial feature maps, train models with different regularization strengths $\lambda \in \{0,1,10\}$, and analyze how λ influences the fitted parameters θ and the decision boundary Our objectives are to minimize the regularized costs

1. Data and Preprocessing

We load the **linear regression** dataset from exp5Data/: ex5Linx.dat (scalar input x) and ex5Liny.dat (target y).

We augment an intercept column to obtain $\tilde{X}=[1,x]\in\mathbb{R}^{m\times 2}$ and visualize the training data in a scatter plot.

```
In [28]: import numpy as np
         import matplotlib.pyplot as plt
         from pathlib import Path
         from matplotlib.lines import Line2D
         DATA DIR=Path('ex5Data')
         lin x path=DATA DIR/'ex5Linx.dat'
         lin y path=DATA DIR/'ex5Liny.dat'
         log x path=DATA DIR/'ex5Logx.dat'
         log_y_path=DATA_DIR/'ex5Logy.dat'
         x_lin=np.loadtxt(lin_x_path,dtype=float).reshape(-1,1)
         y_lin=np.loadtxt(lin_y_path,dtype=float).reshape(-1,1)
         m_lin=x_lin.shape[0]
         plt.figure(figsize=(6,4.5))
         plt.scatter(x_lin[:,0],y_lin[:,0],s=18)
         plt.xlabel("x")
         plt.ylabel("y")
         plt.title("Linear Regression - Training Data")
         plt.grid(True, linestyle='--', alpha=0.3)
         plt.show()
         X lin=np.hstack([np.ones((m lin,1)),x lin])
         print("X_lin shape:",X_lin.shape," y_lin shape:",y_lin.shape)
```


 X_{lin} shape: (7, 2) y_{lin} shape: (7, 1)

2. Polynomial Feature Mapping (Linear)

Map the scalar input to a 5th-order polynomial to form the design matrix $\Phi(x) = [1, x, x^2, x^3, x^4, x^5] \in \mathbb{R}^{m \times 6}$.

```
In [29]: def poly_map_1d(x: np.ndarray,degree:int=5)->np.ndarray:
            x=x.reshape(-1, 1)
            cols=[np.ones_like(x)]
            for d in range(1,degree+1):
               cols.append(x**d)
            return np.hstack(cols)
        Phi=poly_map_1d(x_lin,degree=5)
        print("Phi shape:",Phi.shape)
        print("Phi (first 5 rows):\n",np.round(Phi[:5],4))
       Phi shape: (7, 6)
       Phi (first 5 rows):
        [[ 1.000e+00 -9.977e-01 9.954e-01 -9.931e-01 9.908e-01 -9.885e-01]
        [ 1.000e+00 -6.957e-01 4.841e-01 -3.368e-01 2.343e-01 -1.630e-01]
        [ 1.000e+00 -4.037e-01 1.630e-01 -6.580e-02 2.660e-02 -1.070e-02]
        [ 1.000e+00 2.202e-01 4.850e-02 1.070e-02 2.400e-03 5.000e-04]]
```

3. Regularized Linear Regression (Normal Equation)

We minimize

$$J(heta) = rac{1}{2m} \, \| \Phi heta - y \|_2^2 + rac{\lambda}{2m} \sum_{j=1}^5 heta_j^2,$$

and solve

$$heta_\lambda = ig(\Phi^ op \Phi + \lambda\,Lig)^{-1}\Phi^ op y, \quad L = ext{diag}(0,1,1,1,1,1).$$

We fit for $\lambda \in \{0, 1, 10\}$ and overlay the fitted curves with the data.

```
In [30]: def ridge_closed_form(Phi,y,lam):
             n=Phi.shape[1]
             L=np.eye(n); L[0,0]=0.0
             A=Phi.T@Phi+lam*L
             b=Phi.T@y
             theta=np.linalq.solve(A,b)
             return theta
         lambdas=[0.0, 1.0, 10.0]
         thetas={}
         for lam in lambdas:
             thetas[lam]=ridge_closed_form(Phi,y_lin,lam)
             print(f"lambda={lam:.0f} theta.T={thetas[lam].ravel()}")
         x_{grid}=np.linspace(x_{lin.min()-0.05,x_{lin.max()+0.05,400).reshape(-1,1)}
         Phi grid=poly map 1d(x grid,degree=5)
         plt.figure(figsize=(6.2,4.6))
         plt.scatter(x_lin[:,0],y_lin[:,0],s=20,label='data')
         for lam in lambdas:
             y hat=(Phi grid@thetas[lam]).ravel()
             plt.plot(x_grid[:,0],y_hat,label=f'lambda={lam:.0f}')
         plt.xlabel("x")
         plt.ylabel("y")
         plt.title("Regularized Linear Regression (degree 5)")
         plt.grid(True, linestyle='--', alpha=0.3)
         plt.legend()
         plt.show()
        lambda=0 theta.T=[ 0.47252877 0.68135289 -1.38012842 -5.97768747
                                                                             2.441732
        68 4.737114331
        lambda=1 theta.T=[ 0.3975953 -0.42066637 0.12959211 -0.3974739
                                                                             0.175255
        53 -0.33938772]
        lambda=10 theta.T=[ 0.52047074 -0.18250706 0.06064258 -0.14817721 0.07433
        006 -0.127957371
```


4. Effect of Regularization (Linear)

For each $\lambda \in \{0,1,10\}$ fitted in Step 3, we report:

Training MSE

$$MSE = \frac{1}{m} \|\Phi \theta_{\lambda} - y\|_2^2.$$

Regularized objective

$$J(heta_\lambda) = rac{1}{2m} \, \|\Phi heta_\lambda - y\|_2^2 + rac{\lambda}{2m} \sum_{i=1}^5 heta_{\lambda,j}^2.$$

Coefficient shrinkage (exclude intercept)

$$\|\theta_{\lambda,1:}\|_2$$
.

We tabulate the metrics and plot $\|\theta_{\lambda,1:}\|_2$ against λ .

```
data=0.5/m*np.sum(resid*resid)
    reg=0.5*lam/m*np.sum(theta[1:]*theta[1:])
    return data+req
rows=[]
for lam in [0.0,1.0,10.0]:
   th=thetas[lam]
   m_mse=mse(Phi,y_lin,th)
   jval=reg_objective(Phi,y_lin,th,lam)
    norm =float(np.linalg.norm(th[1:]))
    rows.append((lam,m_mse,jval,norm_))
print("lambda |
                     MSE(train)
                                              J(theta)
                                                                 ||theta_{1:}
for lam,m_mse,jval,norm_ in rows:
    print(f"{lam:6.1f} | {m_mse:18.6f} | {jval:18.6f} | {norm_:16.6f}")
lams=np.array([r[0] for r in rows],dtype=float)
nrms=np.array([r[3] for r in rows],dtype=float)
plt.figure(figsize=(5.6,4.0))
plt.plot(lams,nrms,marker='o')
plt.xlabel("lambda")
plt.ylabel(r"$\|\theta_{1:}\|_2$")
plt.title("Coefficient Shrinkage vs. Regularization")
plt.grid(True, linestyle='--', alpha=0.3)
plt.show()
```

lambda	MSE(train)	J(theta)	theta_{1:} _2
0.0	0.001509	0.000754	8.155002
1.0	0.034805	0.052948	0.705435
10.0	0.247531	0.181509	0.284325

Coefficient Shrinkage vs. Regularization

5. Feature Mapping for Logistic Regression (degree 6)

We map (u, v) to all monomials up to total degree 6:

2025/10/22 23:36

$$\Phi(u,v) = \{ u^i v^j \mid i,j \ge 0, \ i+j \le 6 \}.$$

This yields $1+\sum_{d=1}^6(d+1)=28$ features (including the intercept term u^0v^0). We construct $\Phi_{\log}\in\mathbb{R}^{m\times 28}$ for subsequent regularized Newton updates.

```
In [32]: DATA_DIR=Path('ex5Data')
         X_log_raw=np.loadtxt(DATA_DIR/'ex5Logx.dat',dtype=float,delimiter=',').resha
         y log=np.loadtxt(DATA DIR/'ex5Logy.dat',dtype=float).reshape(-1,1)
         m log=X log raw.shape[0]
         def map feature deg6(UV: np.ndarray,degree:int=6)->np.ndarray:
             u=UV[:,0].reshape(-1,1)
             v=UV[:,1].reshape(-1,1)
             feats=[]
             for d in range(degree+1):
                 for i in range(d,-1,-1):
                     j=d-i
                     feats.append((u**i)*(v**j))
             return np.hstack(feats)
         Phi log=map feature deg6(X log raw,degree=6)
         print("Phi_log shape:",Phi_log.shape," y_log shape:",y_log.shape)
         print("Phi_log first row (rounded):\n",np.round(Phi_log[0],4))
        Phi_log shape: (117, 28) y_log shape: (117, 1)
        Phi log first row (rounded):
         [1.000e+00 5.130e-02 6.996e-01 2.600e-03 3.590e-02 4.894e-01 1.000e-04
         1.800e-03 2.510e-02 3.424e-01 0.000e+00 1.000e-04 1.300e-03 1.760e-02
         2.395e-01 0.000e+00 0.000e+00 1.000e-04 9.000e-04 1.230e-02 1.675e-01
         0.000e+00 0.000e+00 0.000e+00 0.000e+00 6.000e-04 8.600e-03 1.172e-01]
```

6. Regularized Logistic Regression

We minimize the regularized negative log-likelihood

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log h_ heta(x^{(i)}) + (1-y^{(i)}) \log \left(1-h_ heta(x^{(i)})
ight)
ight] + rac{\lambda}{2m} \sum_{j=1}^{n-1} heta_j^2,$$

where $h_{\theta}(x)=\sigma(\theta^{\top}x)$ and $\sigma(z)=\frac{1}{1+e^{-z}}.$ The intercept θ_0 is excluded from regularization.

The gradient and Hessian are

$$abla J(heta) = rac{1}{m} X^ op ig(\sigma(X heta) - yig) + rac{\lambda}{m} L heta, \qquad H(heta) = rac{1}{m} X^ op WX + rac{\lambda}{m} L,$$
 with $X = \Phi_{\log} \in \mathbb{R}^{m imes n}$, $W = \mathrm{diag}ig(\sigma(X heta) \odot (1 - \sigma(X heta))ig)$, and $L = \mathrm{diag}(0, 1, \dots, 1)$.

We run Newton updates

2025/10/22 23:36

$$\theta \leftarrow \theta - H(\theta)^{-1} \nabla J(\theta)$$

until $\|\nabla J(\theta)\|_2$ is below a tolerance or a maximum number of iterations is reached.

```
In [33]: X=Phi_log
         y=y_log
         m, n=X.shape
         def sigmoid(z):
             out=np.empty like(z,dtype=float)
             pos=z>=0
             neg=~pos
             out [pos]=1.0/(1.0+np.exp(-z[pos]))
             ez=np.exp(z[neq])
             out [neg] = ez/(1.0+ez)
             return out
         def cost grad hess(theta, lam):
             z=X@theta
             h=sigmoid(z)
             eps=1e-12
             data=-np.mean(y*np.log(h+eps)+(1-y)*np.log(1-h+eps))
              reg=(lam/(2*m))*np.sum(theta[1:]**2)
             J=data+reg
             g=(X.T@(h-y))/m
             L=np.eye(n); L[0,0]=0.0
             q+=(lam/m)*(L@theta)
             w=(h*(1-h)).ravel()
             H=(X.T@(X*w[:,None]))/m+(lam/m) * L
              return J,q,H
         def newton_logistic(lam=1.0, max_iter=25, tol=1e-6, verbose=True):
             theta=np.zeros((n,1))
              for it in range(1, max iter+1):
                  J,q,H=cost grad hess(theta,lam)
                  try:
                      p=np.linalg.solve(H,g)
                  except np.linalg.LinAlgError:
                      p=np.linalg.lstsq(H,g,rcond=None)[0]
                  theta new=theta-p
                  grad norm=float(np.linalg.norm(g))
                  if verbose:
                      print(f"iter {it:02d}: J={J:.6f}, ||grad||={grad_norm:.3e}")
                  theta=theta new
                  if grad norm<tol:</pre>
                      break
              return theta
         lam=1.0
         theta_log=newton_logistic(lam=lam, max_iter=30, tol=1e-7, verbose=True)
         print("\ntheta_log shape:",theta_log.shape)
         proba=sigmoid(X@theta log)
         y pred=(proba>=0.5).astype(int)
         acc=(y pred==y).mean()
         print(f"Training accuracy (lambda={lam:.1f}): {acc*100:.2f}%")
```

```
iter 01: J=0.693147, ||grad||=1.121e-01
iter 02: J=0.529750, ||grad||=2.439e-02
iter 03: J=0.524692, ||grad||=3.060e-03
iter 04: J=0.524633, ||grad||=4.656e-05
iter 05: J=0.524633, ||grad||=1.099e-08

theta_log shape: (28, 1)
Training accuracy (lambda=1.0): 84.62%
```

7. Decision Boundary (Logistic)

We visualize the boundary defined by $\theta^\top \Phi(u,v)=0$, which is equivalent to $\sigma(\theta^\top \Phi(u,v))=0.5$. We overlay the boundary on the training scatter.

```
In [34]: u,v=X_log_raw[:,0],X_log_raw[:,1]
         pos=(y_log[:,0]==1)
          neg=(y_log[:,0]==0)
          plt.figure(figsize=(6.2, 5.2))
          plt.scatter(u[pos],v[pos],marker='+',label='y=1')
          plt.scatter(u[neg], v[neg], marker='o', label='y=0')
          u min,u max=u.min()-0.1,u.max()+0.1
          v \min_{v \in A} \max_{v \in A} () - 0.1, v \max_{v \in A} () + 0.1
          U,V=np.meshgrid(np.linspace(u_min,u_max,400),np.linspace(v_min,v_max,400))
          UV=np.c [U.ravel(), V.ravel()]
          Phi_grid=map_feature_deg6(UV,degree=6)
          Z=(Phi grid@theta log).reshape(U.shape)
          cs=plt.contour(U,V,Z,levels=[0.0],linewidths=2)
          handles, labels=plt.gca().get_legend_handles_labels()
          handles.append(Line2D([0],[0],linestyle='-',linewidth=2,label='decision bour
          plt.legend(handles=handles)
          plt.xlabel("u")
          plt.ylabel("v")
          plt.title("Logistic Regression (degree 6) - Decision Boundary")
          plt.grid(True, linestyle='--', alpha=0.3)
          plt.legend()
          plt.show()
```


8. Decision Boundary vs. Regularization

We refit the logistic model for $\lambda \in \{0,1,10\}$ and, for each λ , plot the boundary $\theta^{\top}\Phi(u,v)=0$ over the training scatter. We also report the training accuracy for each λ .

```
In [35]: lams=[0.0,1.0,10.0]
          results=[]
          def fit_and_plot(lam):
              th=newton_logistic(lam=lam,max_iter=30,tol=1e-7,verbose=False)
              proba=sigmoid(Phi_log@th)
              y_pred=(proba>=0.5).astype(int)
              acc=(y_pred==y_log).mean()
              u, v=X_log_raw[:,0], X_log_raw[:,1]
              pos=(y_log[:,0]==1); neg=(y_log[:,0]==0)
              plt.figure(figsize=(6.2,5.2))
              plt.scatter(u[pos],v[pos],marker='+',label='y=1')
              plt.scatter(u[neg],v[neg],marker='o',label='y=0')
              u_{\min}, u_{\max} = u_{\min}() - 0.1, u_{\max}() + 0.1
              v_{min}, v_{max} = v.min() - 0.1, v.max() + 0.1
              U, V=np.meshgrid(np.linspace(u_min,u_max,400),np.linspace(v_min,v_max,400)
              UV=np.c_[U.ravel(), V.ravel()]
```

```
Z=(map_feature_deg6(UV,degree=6)@th).reshape(U.shape)

cs=plt.contour(U,V,Z,levels=[0.0],linewidths=2)
handles,labels=plt.gca().get_legend_handles_labels()
handles.append(Line2D([0],[0],linestyle='-',linewidth=2,label='Decision
plt.legend(handles=handles)

plt.xlabel("u");plt.ylabel("v")
plt.title(rf"Logistic (degree 6) - $\lambda={\lam:g}$, acc={acc*100:.2f}%
plt.grid(True,linestyle='--',alpha=0.3)
plt.show()

return lam,float(acc),th

for lam in lams:
    results.append(fit_and_plot(lam))

print("lambda | training accuracy")
for lam,acc,_ in results:
    print(f"{\lam:6.1f} | {acc*100:7.2f}%")
```



```
lambda | training accuracy
0.0 | 89.74%
1.0 | 84.62%
10.0 | 72.65%
```

9. Evaluation across Regularization (Logistic)

For $\lambda \in \{0,1,10\}$, we report:

- Objective value $J(\theta_{\lambda})$ at convergence;
- · Training accuracy;
- Confusion matrix $\begin{bmatrix} TN & FP \\ FN & TP \end{bmatrix}$

```
In [37]:

def evaluate_logistic(lam):
    th=newton_logistic(lam=lam,max_iter=30,tol=1e-7,verbose=False)
    J,_,_=cost_grad_hess(th, lam)
    proba=sigmoid(Phi_log@th)
    yhat=(proba>=0.5).astype(int)
    acc=float((yhat == y_log).mean())
    y_true=y_log.ravel().astype(int)
    y_pred=yhat.ravel().astype(int)
    TN=int(((y_true==0)&(y_pred==0)).sum())
    FP=int(((y_true==0)&(y_pred==1)).sum())
```

2025/10/22 23:36

```
FN=int(((y_true==1)&(y_pred==0)).sum())
    TP=int(((y_true==1)&(y_pred==1)).sum())
     return lam,float(J),acc,(TN,FP,FN,TP),th
 summary=[]
 for lam in [0.0,1.0,10.0]:
    summary.append(evaluate_logistic(lam))
                                | acc(%) | [TN FP; FN TP]")
 print("lambda |
                    J(theta)
 for lam, Jval, acc, cm, _ in summary:
    TN, FP, FN, TP=cm
    print(f"{lam:6.1f} | {Jval:14.6f} | {acc*100:7.2f} | [{TN:2d} {FP:2d};
lambda |
                         | acc(%)
                                       [TN FP; FN TP]
            J(theta)
              0.199837 |
                                    [52 7; 5
  0.0
                           89.74
                                                531
  1.0
              0.524633
                           84.62
                                    [45 14;
                                                541
              0.647584 |
                           72.65 |
                                    [34 25; 7
                                                51]
 10.0
```

10. Conclusion and Parameter Norm (Logistic)

Summary.

On the linear dataset, mapping to degree 5 and applying L_2 regularization yields stable fits. As λ increases, the fitted curve becomes smoother, the coefficient norm decreases, and the training error increases—typical bias-variance trade-off.

On the logistic dataset with degree 6 features, Newton's Method converges in a few iterations. The decision boundary evolves from complex ($\lambda = 0$) to smoother and more circular ($\lambda = 10$). Training accuracy usually peaks at a moderate λ .

Answer to "How does λ affect the results?"

Increasing λ strengthens L_2 regularization, which **decreases** $\|\theta\|_2$ (stronger shrinkage), **simplifies** the decision boundary (lower variance), and usually **increases** training loss / reduces training accuracy (higher bias). Very small λ may overfit; very large λ may underfit; a moderate λ (e.g., 1) often yields the best balance on this dataset.