Laboratorio Microondas

Daniel Fajardo and Juan Sebastian Vargas Universidad de los Andes, Departamento de física (Dated: 18 de febrero de 2016)

La radiación electromagnética, que esta compuesta por ondas electromagnéticas, fue descubierta en los inicios del siglo 19. Las Microondas son ampliamente utilizadas en telecomunicaciones, radares y muchos usos mas. En este experimento se utilizo un emisor de microondas con $\lambda=2,85cm$ con el cual se observaron varios fenómenos de las ondas E.M.

Palabras clave: Radiación Electromagnética, Microondas, Campos Eléctrico, Campo Magnetico, Polarización

INTRODUCCIÓN

SE DEBE HACER UN MARCO TEORICO DE: ONDAS ELECTROMAGNETICAS, POLARI-ZACION, RESULTADOS ESPERADOS DE LOS EXPERIMENTOS

La Polarizacion es un vector que apunta en la misma dirección que \vec{E} y se denota como: \vec{n}

MONTAJE EXPERIMENTAL

El primer montaje consiste colocar el emisor frente al recibidor, y variar la distancia entre los dos como se muestra en la figura 1:

Figura 1. Primer montaje

Donde se varia la distancia R y se anota su respectivo valor de intensidad dado por el recibidor. Se hizo la medición para 7 diferentes valores de R con valores entre 40cm hasta 100cm. Ademas con el mismo montaje de la Figura 1 dejando un R constante se roto el recibidor cada 10° empezando en su posición natural (0°) hasta 180°

RESULTADOS Y ANÁLISIS

En la Tabla I podemos ver la relación entre la distancia R y la intensidad relativa medida por el recibidor:

R(cm)	Medicion (mA)
40	>1
50	0.86
60	0.65
70	0.50
80	0.36
90	0.2
100	0.14

Cuadro I. Tabla que muestra la medicion con su respectivo valor de R

Figura 2. Grafico de la intensidad contra distancia

En la Figura 2 vemos una grafica de los puntos de la Tabla I y a simple vista se puede ver que la intensidad medida es inversamente proporcional a la distancia, resultado que no nos sorprende ya que la intensidad disminuye con la distancia.

Cuando dejamos R constante y rotamos el recibidor obtenemos la siguiente tabla:

Angulo Recibidor(°)	Medicion (mA)
0	1
10	1
20	0.95
30	0.84
40	0.70
50	0.52
60	0.28
70	0.07
80	0
90	0
100	0
110	0
120	0.04
130	0.37
140	0.58
150	0.77
160	0.92
170	1
180	>1

Cuadro II. Tabla de la variacion de la Intensidad en función del angulo

Figura 3. Grafico de Intensidad contra Angulo de rotacion

En la Figura 3 obtenemos un resultado esperado, ya que el emisor genera ondas que tienen polarización lineal, cuando el vector \vec{n} se encuentra en la misma dirección que la polarización del recibidor (0°) la intensidad será máxima, ya que las polarizaciones coincides, cuando este ángulo va cambiando la intensidad disminuye, hasta el punto en el que la Intensidad es mínima cuando \vec{n} es perpendicular a la polarización del recibidor(90°).

CONCLUSIONES