4.25

- 1. Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for the given vector field \mathbf{F} and the oriented surface S. $\mathbf{F}(s,y,z) = x\mathbf{i} + y\mathbf{j} + 5\mathbf{j}$, S is the boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 2.
- **2.** Use Stokes' Theorem to evaluate $\iint_S curl \mathbf{F} \cdot d\mathbf{S}$. $\mathbf{F}(x,y,z) = ze^y \mathbf{i} + x\cos y \mathbf{j} + xz\sin y \mathbf{k}$, S is the hemisphere $x^2 + y^2 + z^2 = 16$, $y \ge 0$, oriented in the direction of the positive y-axis.
- **3.** Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$. $\mathbf{F}(x,y,z) = xe^y\mathbf{i} + (z-e^y)\mathbf{j} xy\mathbf{k}$, S is the ellipsoid $x^2 + 2y^2 + 3z^2 = 4$.