Vector notation

- This week, we derive the Kalman filter algorithm, which is a special case of sequential probabilistic inference
- We begin by defining some math notation that we will use from now on
 - □ Superscript "—" indicates a <u>predicted</u> quantity based only on <u>past</u> measurements
 - □ Superscript "+" indicates an <u>estimated</u> quantity based on both <u>past and present</u> measurements
 - \Box Symbol "^" indicates a predicted or estimated quantity: \hat{x}^+ or \hat{x}^-
 - \Box Symbol "~" indicates an error: the difference between a true and predicted or estimated quantity: $\tilde{x} = x \hat{x}$

Dr. Gregory L. Plett

Iniversity of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

1 of 8

3.2.1: Predict/correct mechanism of sequential probabilistic inference

Matrix notation

■ Symbol "∑" is used to denote correlation between the two arguments in its subscript (autocorrelation if only one is given)

$$\Sigma_{xy} = \mathbb{E}[xy^T]$$
 and $\Sigma_x = \mathbb{E}[xx^T]$

■ Furthermore, if the arguments are zero mean (as they often are in the quantities we talk about), then this represents covariance

$$\Sigma_{\tilde{x}\tilde{y}} = \mathbb{E}[\tilde{x}\tilde{y}^T] = \mathbb{E}[(\tilde{x} - \mathbb{E}[\tilde{x}])(\tilde{y} - \mathbb{E}[\tilde{y}])^T]$$

for zero-mean \tilde{x} and \tilde{y}

Dr. Gregory L. Plett

University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

2 of 8

3.2.1: Predict/correct mechanism of sequential probabilistic inference

Cost function to minimize (optimize)

■ Desire state estimate that minimizes "mean-squared error"

$$\begin{split} \hat{x}_k^{\text{MMSE}}(\mathbb{Y}_k) &= \arg\min_{\hat{x}_k} \left(\mathbb{E} \left[\left\| x_k - \hat{x}_k^+ \right\|_2^2 \mid \mathbb{Y}_k \right] \right) \\ &= \arg\min_{\hat{x}_k} \left(\mathbb{E} \left[(x_k - \hat{x}_k^+)^T (x_k - \hat{x}_k^+) \mid \mathbb{Y}_k \right] \right) \\ &= \arg\min_{\hat{x}_k} \left(\mathbb{E} \left[x_k^T x_k - 2x_k^T \hat{x}_k^+ + (\hat{x}_k^+)^T \hat{x}_k^+ \mid \mathbb{Y}_k \right] \right) \end{split}$$

■ Solve for \hat{x}_k^+ by differentiating cost function and setting result to zero

$$0 = \frac{\mathrm{d}}{\mathrm{d}\hat{x}_{k}^{+}} \mathbb{E} \left[x_{k}^{T} x_{k} - 2x_{k}^{T} \hat{x}_{k}^{+} + (\hat{x}_{k}^{+})^{T} \hat{x}_{k}^{+} \mid \mathbb{Y}_{k} \right]$$

Preliminary solution to state estimate

■ To do so, note the following identities from vector calculus,

$$\frac{\mathrm{d}}{\mathrm{d}X}Y^TX = Y, \qquad \frac{\mathrm{d}}{\mathrm{d}X}X^TY = Y, \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}X}X^TAX = (A + A^T)X$$

■ Then,

$$0 = \frac{\mathrm{d}}{\mathrm{d}\hat{x}_k^+} \mathbb{E} \left[x_k^T x_k - 2x_k^T \hat{x}_k^+ + (\hat{x}_k^+)^T \hat{x}_k^+ \mid \mathbb{Y}_k \right]$$
$$0 = \mathbb{E} \left[-2(x_k - \hat{x}_k^+) \mid \mathbb{Y}_k \right] = 2\hat{x}_k^+ - 2\mathbb{E} \left[x_k \mid \mathbb{Y}_k \right]$$
$$\hat{x}_k^+ = \mathbb{E} \left[x_k \mid \mathbb{Y}_k \right]$$

■ Desire to find algorithm for computing for $\mathbb{E}[x_k \mid \mathbb{Y}_k]$

Dr. Gregory L. Plett

University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

4 of 8

3.2.1: Predict/correct mechanism of sequential probabilistic inference

Prediction error and innovation

- Define prediction error $\tilde{x}_k^- = x_k \hat{x}_k^-$ where $\hat{x}_{\nu}^- = \mathbb{E}[x_k \mid \mathbb{Y}_{k-1}]$
 - □ Error is always "truth minus prediction" or "truth minus estimate"
 - □ We can't compute error in practice, since truth value is not known
 - □ But, we can prove statistical results using this definition that give an algorithm for estimating the truth using measurable values
- Also, define the measurement innovation (what is new or unexpected in the measurement) as $\tilde{y}_k = y_k \hat{y}_k$ where $\hat{y}_k = \mathbb{E}[y_k \mid \mathbb{Y}_{k-1}]$

Dr. Gregory L. Plett

Iniversity of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

E of 9

3.2.1: Predict/correct mechanism of sequential probabilistic inference

Prediction error and innovation are zero mean

■ Both \tilde{x}_k^- and \tilde{y}_k can be shown to be zero mean using method of iterated expectation: $\mathbb{E}_Y \big[\mathbb{E}_{X|Y} \big[X \mid Y \big] \big] = \mathbb{E}_X \big[X \big]$

$$\mathbb{E}\left[\tilde{x}_{k}^{-}\right] = \mathbb{E}\left[x_{k}\right] - \mathbb{E}\left[\mathbb{E}\left[x_{k} \mid \mathbb{Y}_{k-1}\right]\right] = \mathbb{E}\left[x_{k}\right] - \mathbb{E}\left[x_{k}\right] = 0$$

$$\mathbb{E}\left[\tilde{y}_{k}\right] = \mathbb{E}\left[y_{k}\right] - \mathbb{E}\left[\mathbb{E}\left[y_{k} \mid \mathbb{Y}_{k-1}\right]\right] = \mathbb{E}\left[y_{k}\right] - \mathbb{E}\left[y_{k}\right] = 0$$

■ Note also that \tilde{x}_k^- is uncorrelated with past measurements as they have already been incorporated into \hat{x}_k^-

$$\mathbb{E}\big[\tilde{x}_k^- \mid \mathbb{Y}_{k-1}\big] = \mathbb{E}\big[x_k - \mathbb{E}\big[x_k \mid \mathbb{Y}_{k-1}\big] \mid \mathbb{Y}_{k-1}\big] = 0 = \mathbb{E}\big[\tilde{x}_k^-\big]$$

Predict/correct solution

 \blacksquare Consider now expanding the relationship $\mathbb{E}\big[\tilde{x}_k^- \mid \mathbb{Y}_k\big]$

$$\mathbb{E}\big[\tilde{x}_k^- \mid \mathbb{Y}_k\big] = \underbrace{\mathbb{E}\big[x_k \mid \mathbb{Y}_k\big]}_{\hat{x}_k^+} - \underbrace{\mathbb{E}\big[\hat{x}_k^- \mid \mathbb{Y}_k\big]}_{\hat{x}_k^-}$$

- $\ \square$ This is true because $\hat{x}_k^- = \mathbb{E}[x_k \mid \mathbb{Y}_{k-1}]$ is a constant vector, and further conditioning on \mathbb{Y}_k has no additional effect
- We can also expand this relationship a different way

$$\mathbb{E}\big[\tilde{x}_k^- \mid \mathbb{Y}_k\big] = \mathbb{E}\big[\tilde{x}_k^- \mid \mathbb{Y}_{k-1}, y_k\big] = \mathbb{E}\big[\tilde{x}_k^- \mid y_k\big]$$

■ Combining both expansions, we have $\hat{x}_k^+ = \hat{x}_k^- + \mathbb{E}\big[\tilde{x}_k^- \mid y_k\big]$, which is a predict/correct sequence of steps, as promised

Dr. Gregory L. Plett

University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

7 of 8

3.2.1: Predict/correct mechanism of sequential probabilistic inference

Summary

- You learned meaning of notation we use, including superscripts "—" and "+", symbols "^" and "~", and symbol "∑"
- We are solving a minimum mean-squared-error problem to find a state estimate
 - \Box Initial solution was $\hat{x}_k^+ = \mathbb{E}[x_k \mid \mathbb{Y}_k]$
 - $\ \Box$ Later refined this to be $\hat{x}_k^+ = \hat{x}_k^- + \mathbb{E}\big[\tilde{x}_k^- \mid y_k\big]$
 - □ A predict/correct structure
- But, what is $\mathbb{E}[\tilde{x}_k^- \mid y_k]$? That's what we look at next

Dr. Gregory L. Plett

University of Colorado Colorado Spring

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

8 of 8