Discretize mean-field limit using JKO, see if it is similar to GD.

1 Current in code

From one dimensional data, we add a dimension filled with ones to act as a bias for the first layer. The output of one ReLU neuron for one data point $(x, 1) \in \mathbb{R}^2$:

$$w, b, \alpha \in \mathbb{R} \to \max(0, wx + b)\alpha$$

The loss against labels $y_j \in \mathbb{R}$ using squared loss of the whole network of neurons is the double sum:

$$\mathcal{L} = \sum_{j=1}^{n} \left(\left(\sum_{i=1}^{m} \max(0, w_i x_j + b_i) \alpha_i \right) - y_j \right)^2$$

We can define a wasserstein gradient flow on the mean-field limit of this network, this requires taking an infinite-width ReLU network where parameters are described by a measure μ , and its output by an integral:

$$\int_{\mathbb{D}^2} m((w,b);x) \mathrm{d}\mu((w,b))$$

To simplify things, we restrict α_i to $\{-1,1\}$ and to not be a trainable parameter anymore. We keep the same expressivity(as long as we provide both a positive($\alpha_i = 1$) and negative($\alpha_i = -1$) version of the neuron) but slightly alter the training dynamic in some cases. For example , we can match the output of one neuron (of the original network) by simply scaling the first layer by the seconder layer (α):

$$\max(0, w_i x + b_i)\alpha_i = \max(0, |\alpha_i|(w_i x + b_i)) \operatorname{sign}(\alpha_i)$$

Our network with restricted α_i would describe this neuron using only two trainable parameters: $(|alpha_i|w_i, |\alpha_i|b_i)$ and fix its sign in the output.

The measure is on the parameter space. In order to do simulations we discretize the parameter space, by taking a uniform grid in \mathbb{R}^2 centered on (0,0): $(w_i,b_i)_{i=1,...m}$

We can see that we have the same output and expressivity as the regular ReLU network by taking a measure $\mu = \sum_{i=1}^{m} p_i \delta_{\theta_i = w_i}$ with $(\sum_i p_i = 1)$ and $m((w_i, b_i); x) = \max(0, w_i x + b_i) \alpha_i$, we have this equality:

$$\int_{\mathbb{R}^2} m((w,b);x) \mathrm{d}\mu((w,b)) = \sum_{i=1}^m \max(0,w_i x_j + b_i) \alpha_i p_i$$

In this case, the first layer is fixed: the change of direction $(\frac{-b_i}{w_i})$ and slope (w_i) of a neuron is described by a mass displacement from point A to point B.

The movemement is described by a PDE and simulated on a grid. Each point i of the grid has a weight $p_i \in \mathbb{R}$, and as a whole $p \in \mathbb{R}^m$ is the discretized distribution.

The same wasserstein gradient flow can be computed by this step:

$$\mu(t+1) = \arg\min_{\mu \in \mathcal{M}(\Theta)} F(\mu) + \frac{1}{2\gamma} W_2(\mu; \mu(t))$$

However, directly computing the wasserstein distance is too hard. We will compute the entropic wasserstein flow:

$$\begin{split} p_{t+1} &:= \operatorname{Prox}_{\tau f}^{W_{\gamma}}(p_t) \\ &= \underset{p \in \operatorname{simplex}}{\operatorname{arg\,min}} \ W_{\gamma}(p,q) + \tau f(p) \\ &= \underset{p \in \operatorname{simplex}}{\operatorname{arg\,min}} \left(\underset{\pi \in \Pi(p,q)}{\operatorname{min}} \langle c, \pi \rangle + \gamma E(\pi) \right) + \tau f(p) \end{split}$$

Where π is a mapping, c the ground cost for every point on the grid. When the ground cost between two points in the euclidian space is $c_{i,j} = ||x_i - x_j||^2$, (and $\gamma = 0$, f smooth...), this scheme formally discretize the above mentionned PDE.

To do the step above, we'll use a bregman splitting approach that replace the single implicit W_{γ} proximal step by many iterative KL implicit proximal steps. Specifically(?) Dykstra's algorithm for JKO stepping. This involve using the gibbs kernel: $\xi = e^{-\frac{\xi}{\gamma}} \in \mathbb{R}^{N \times N}_{+,*}$

Algorithm 1 JKOstep

```
1: p \leftarrow p_0 \in \mathbb{R}^m
 2: q_{\text{norm}} \leftarrow ||p||^2
 3: a, b \leftarrow 1, 1 \in \mathbb{R}^m
                                                                                                               ▶ Initialize vectors with ones
 4: for i \leftarrow 1 to T_i do
           p \leftarrow \operatorname{prox}_{\tau/\gamma}^{\mathrm{KL}}(\xi b)
            a \leftarrow p/(\xi b)
            ConstrEven \leftarrow \frac{\|b \cdot (\xi a) - q\|}{2}
            b \leftarrow q/(\xi a)
 8:
            ConstrOdd \leftarrow \frac{\|a \cdot (\xi b) - p\|}{2}
 9:
            if ConstrOdd < tol and ConstrEven < tol then
10:
11:
                   break
            end if
12:
13: end for
```

2 Classic setup

Data $x_j \in \mathbb{R}^d$ and labels $y_j \in \mathbb{R}$, j = 1,...,nFirst layer $w_i \in \mathbb{R}^d$, second layer $\alpha_i \in \mathbb{R}$, i = 1,...,m $\gamma > 0$ step-size, β regularization

$$\mathcal{L}(W, \alpha) = \sum_{j=1}^{n} \left(\underbrace{\sum_{i=1}^{m} \max(0, w_i^{\top} x_j) \alpha_i - y_j}^{2} + \underbrace{\lambda \sum_{i=1}^{m} \|w_i\|_{2}^{2} + \alpha_i^{2}}_{\text{Weight Decay}} \right)$$

Discret time.

Full-batch gradient descent

$$(W, \alpha)_{t+1} = (W, \alpha)_t - \gamma \nabla \mathcal{L}((W, \alpha)_t)$$

Implicit

$$\theta_{t+1} = \arg\min_{\theta} \mathcal{L}(\theta) + \frac{1}{2\gamma} \|\theta - \theta_t\|$$

Continuous time.

Taking $\gamma \to 0$, we get the gradient flow: $\frac{d\theta_t}{dt} = -\nabla \mathcal{L}(\theta_t)$. We make ReLU differentiable with $\sigma'(0) = 0$ as justified in (Boursier et al.).

Infinite width, using a measure: mean-field

Mean-field limit(Chizat & Bach): For a sufficiently large width, the training dynamics of a NN can be coupled with the evolution of a probability distribution described by a PDE.

If [...] converges, with $m \to \infty$ (many-particle limit), our particles of interest converges to a Wasserstein gradient flow of F:

$$\partial \mu_t = -\operatorname{div}(v_t \mu_t)$$
 where $v_t \in -\partial F'(\mu_t)$

$$\int_{\Theta} m(\theta; x) d\mu(\theta) = \frac{1}{m} \sum_{i=1}^{m} \langle w_i, x_j \rangle_{+} \alpha_i$$

Different ways to use a measure to represent the neurons of a two layer network:

- $\Theta = \mathbb{R}^d \times \mathbb{R}$, measure $\mu = \frac{1}{m} \sum_{i=1}^m \delta_{\theta_i = (w_i, \alpha_i)}$, output of one neuron $m(\theta = (w, \alpha); x) = \langle x, w \rangle_+ \alpha$: (works, output matches discrete) $\Theta = \mathbb{R}^d$, measure $\mu = \frac{1}{m} \sum_{i=1}^m \alpha_i \delta_{\theta_i = w_i}$ output of one neuron $m(\theta = w; x) = \langle x, w \rangle_+$
- $\Theta = \mathbb{R}^{d'} \times \mathbb{R}^{d}$, output of one neuron $m(\tilde{w}_{+}, \tilde{w}_{-}, x) = \langle \tilde{w}_{+}, x \rangle \langle \tilde{w}_{-}, x \rangle$ (works, separate neg and positive)
- $\Theta = (S^{d-1} \times \mathbb{R})$, output of one neuron $m((d, \tilde{\alpha}); x) = \tilde{\alpha} \langle d, x \rangle = \tilde{\alpha} \mathbb{1}_{\langle d, x \rangle > 0}$ (works), mapping: $d = \frac{w}{\|w\|}$ and $\tilde{\alpha} = \|w\|\alpha$. Gradient are not equal to discrete.

3.1 Algorithm, discretize the measure's space

Take a grid of N points in Θ , we can match the notation above by taking a neuron for each point of the grid m = N.

$$\mu(t+1) = \underset{\mu \in \mathcal{M}(\Theta)}{\arg\min} F(\mu) + \frac{1}{2\gamma} W_2(\mu; \mu(t))$$

3.2 JKO

What we compute by using the entropic JKO flow iterations.

$$\begin{aligned} \forall t > 0, p_{t+1} &:= \operatorname{Prox}_{\tau f}^{W_{\gamma}}(p_t) \\ &= \underset{p \in \operatorname{simplex}}{\operatorname{arg\,min}} \ W_{\gamma}(p,q) + \tau f(p) \\ &= \underset{p \in \operatorname{simplex}}{\operatorname{arg\,min}} \left(\underset{\pi \in \Pi(p,q)}{\operatorname{min}} \langle c, \pi \rangle + \gamma E(\pi) \right) + \tau f(p) \end{aligned}$$

- Meta Optimal Transport (paper) and (code git): InputConvexNN to predict solution of OT problem
- JKOnet (paper) and (code git):
 - /models -> sinkhorn loss defined in loss.py, differentiable loop in fixed
 - next step: trying to create the right Geometry object from OTT library, which is what's used for sinkhorn

3.3 Papers

The algo we try to implement

Paper with a specific case that doesn't match ours:

In the future, large-scale waserstein gradient flows

3.3.1 Grid Problems

The grid currently dictate the neuron's scale, giving multiple choices. One solution: duplicate each neuron, make one with a small scale and one with a very big scale.

References

Etienne Boursier, Loucas Pillaud-Vivien, and Nicolas Flammarion. Gradient flow dynamics of shallow relu networks for square loss and orthogonal inputs. URL http://arxiv.org/abs/2206.00939.

Lénaïc Chizat and Francis R. Bach. On the global convergence of gradient descent for overparameterized models using optimal transport. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Adv. Neural Inf. Process. Syst. 31 Annu. Conf. Neural Inf. Process. Syst. 2018 NeurIPS 2018 Dec. 3-8 2018 Montr. Can., pp. 3040–3050. URL https://proceedings.neurips.cc/paper/2018/hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html.