talk05 练习与作业

目录

0.1	练习和作业说明	1
0.2	Talk05 内容回顾	1
0.3	练习与作业: 用户验证	1
0.4	练习与作业 1: dplyr 练习	2

0.1 练习和作业说明

将相关代码填写入以"'{r}" 标志的代码框中,运行并看到正确的结果; 完成后,用工具栏里的"Knit" 按键生成 PDF 文档;

将 PDF 文档改为: 姓名-学号-talk05 作业.pdf, 并提交到老师指定的平台/钉群。

0.2 Talk05 内容回顾

- dplyr、tidyr (超级强大的数据处理) part 1
 - 长宽数据转换
 - dplyr 几个重要函数

0.3 练习与作业:用户验证

请运行以下命令,验证你的用户名。

如你当前用户名不能体现你的真实姓名,请改为拼音后再运行本作业!

```
Sys.info()[["user"]]

## [1] "s56hh"

Sys.getenv("HOME")

## [1] "C:/Users/s56hh/Documents"
```

0.4 练习与作业 1: dplyr 练习

0.4.1 使用 mouse.tibble 变量做统计

- 每个染色体(或 scaffold)上每种基因类型的数量、平均长度、最大和最小长度,挑出最长和最短的基因
- 去掉含有 500 以下基因的染色体 (或 scaffold), 按染色体 (或 scaffold)、数量高 -> 低进行排序

代码写这里,并运行;

library(tidyverse)

```
mouse.tibble <- read_delim( file = "data/talk04/mouse_genes_biomart_sep2018.txt",</pre>
delim = "\t", quote = "" );
## Rows: 138532 Columns: 6
## -- Column specification -----
## Delimiter: "\t"
## chr (5): Gene stable ID, Transcript stable ID, Protein stable ID, Transcript...
## dbl (1): Transcript length (including UTRs and CDS)
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
dat1 <- mouse.tibble %>%
       select( CHR = `Chromosome/scaffold name`, TYPE = `Transcript type`,
                             GENE_ID = `Gene stable ID`,
                             GENE_LEN = `Transcript length (including UTRs and CDS)` )
       arrange( \mathtt{CHR} , -GENE_LEN ) %>%
       group_by( CHR, TYPE ) %>%
       summarise( count = n_distinct( GENE_ID ), mean_len = mean( GENE_LEN ), max_len=ma
## `summarise()` has grouped output by 'CHR'. You can override using the `.groups`
## argument.
dat1
## # A tibble: 919 x 8
## # Groups:
               CHR [117]
##
      CHR
            TYPE
                                    count mean_len max_len min_len max_GENE min_G~1
      <chr> <chr>
                                             <dbl>
                                                      <dbl>
                                                              <dbl> <chr>
##
                                    <int>
                                                                             <chr>>
                                                                 78 ENSMUSG~ ENSMUS~
   1 1
            antisense
                                      224
                                            1236.
                                                       7928
   2 1
            lincRNA
                                      347
                                            1207.
                                                       9720
                                                                154 ENSMUSG~ ENSMUS~
##
## 3 1
            miRNA
                                      128
                                              98.0
                                                        442
                                                                 53 ENSMUSG~ ENSMUS~
## 4 1
            {\tt misc\_RNA}
                                       30
                                             239.
                                                        353
                                                                 85 ENSMUSG~ ENSMUS~
```

2

1526

1800

1252 ENSMUSG~ ENSMUS~

non_stop_decay

5 1

##

```
6 1
            nonsense_mediated_decay
                                       314
                                              1844.
                                                       10770
                                                                 284 ENSMUSG~ ENSMUS~
##
   7 1
            polymorphic_pseudogene
                                              1122
##
                                         2
                                                        1194
                                                                1050 ENSMUSG~ ENSMUS~
   8 1
            processed_pseudogene
                                       627
                                              728.
                                                        4530
                                                                  30 ENSMUSG~ ENSMUS~
##
   9 1
            processed_transcript
                                       462
                                               951.
                                                        7640
                                                                  65 ENSMUSG~ ENSMUS~
##
## 10 1
            protein_coding
                                      1200
                                             2700.
                                                       40378
                                                                  75 ENSMUSG~ ENSMUS~
## # ... with 909 more rows, and abbreviated variable name 1: min_GENE
dat2 <- mouse.tibble %>%
       select( CHR = `Chromosome/scaffold name`, TYPE = `Transcript type`,
                              GENE_ID = `Gene stable ID`,
                              GENE_LEN = `Transcript length (including UTRs and CDS)` )
       group_by( CHR ) %>%
       summarise( count = n_distinct( GENE_ID ), mean_len = mean( GENE_LEN ), max_len=ma
       filter(count>500) %>%
       arrange( CHR,-count )
dat2
## # A tibble: 21 x 7
      CHR
            count mean_len max_len min_len max_GENE
##
                                                                min_GENE
                     <dbl>
                              <dbl>
                                      <dbl> <chr>
##
      <chr> <int>
                                                                 <chr>
    1 1
             3443
                     1875.
                              40378
                                         30 ENSMUSG00000097109 ENSMUSG00000026014
##
##
    2 10
             2630
                     1723.
                             123179
                                         51 ENSMUSG00000097353 ENSMUSG00000111262
    3 11
             3011
                     1694.
                              24175
                                         41 ENSMUSG00000097062 ENSMUSG00000020745
##
    4 12
             2481
                     1570.
                              21704
                                         10 ENSMUSG00000097698 ENSMUSG00000021057
##
##
   5 13
             2505
                     1644.
                              52401
                                         16 ENSMUSG00000097582 ENSMUSG00000113027
             2532
                     1564.
                                          9 ENSMUSG00000097358 ENSMUSG00000002326
    6 14
                              93147
##
                                         10 ENSMUSG00000097234 ENSMUSG00000115301
   7 15
             1851
                     1679.
                              19823
    8 16
             1594
                     1657.
                              26901
                                         38 ENSMUSG00000097551 ENSMUSG00000039200
##
                                          9 ENSMUSG00000097676 ENSMUSG00000036594
##
   9 17
             1823
                     1697.
                              15768
                                         42 ENSMUSG00000097738 ENSMUSG00000040957
## 10 18
              904
                      2030.
                              13391
## # ... with 11 more rows
```

0.4.2 使用 grades 变量做练习

knitr::kable(grades_spread);

1. 装入 grades 变量;

```
library(dplyr); grades <- read_tsv( file = "data/talk05/grades.txt"
);</pre>
```

2. 尝试使用 spread 和 gather 函数将其变宽后再变长;

name	Bioinformatics	Chemistry	Chinese	English	Microbiology
Kang Ning	100	76	20	NA	NA
Weihua	99	NA	NA	99	89
Chen					
Zhi Liu	NA	NA	69	50	100

```
grades_gather<-grades_spread %>% gather( course, grade,-name )
knitr::kable( grades_gather );
```

name	course	grade
Kang Ning	Bioinformatics	100
Weihua Chen	Bioinformatics	99
Zhi Liu	Bioinformatics	NA
Kang Ning	Chemistry	76
Weihua Chen	Chemistry	NA
Zhi Liu	Chemistry	NA
Kang Ning	Chinese	20
Weihua Chen	Chinese	NA
Zhi Liu	Chinese	69
Kang Ning	English	NA
Weihua Chen	English	99
Zhi Liu	English	50
Kang Ning	Microbiology	NA
Weihua Chen	Microbiology	89
Zhi Liu	Microbiology	100

3. 研究并使用 tidyr 包里的 pivot_longer 和 pivot_wider 函数对 grades 变量进行宽长转换;

```
## dbl (1): grade
```

##

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

grades_wider = pivot_wider(grades, names_from = 'course', values_from = 'grade')
knitr::kable(grades_wider)

name	Microbiology	English	Chinese	Bioinformatics	Chemistry
Zhi Liu	100	50	69	NA	NA
Weihua	89	99	NA	99	NA
Chen					
Kang Ning	NA	NA	20	100	76

grades_longer = pivot_longer(grades_wider,2:6, names_to = 'course', values_to = 'grade'
knitr::kable(grades_longer)

name	course	grade
Zhi Liu	Microbiology	100
Zhi Liu	English	50
Zhi Liu	Chinese	69
Zhi Liu	Bioinformatics	NA
Zhi Liu	Chemistry	NA
Weihua Chen	Microbiology	89
Weihua Chen	English	99
Weihua Chen	Chinese	NA
Weihua Chen	Bioinformatics	99
Weihua Chen	Chemistry	NA
Kang Ning	Microbiology	NA
Kang Ning	English	NA
Kang Ning	Chinese	20

name	course	grade
Kang Ning	Bioinformatics	100
Kang Ning	Chemistry	76

4. 使用 pivot_longer 时,有时会产生 na 值,如何使用此函数的参数去除带 na 的行?

代码写这里,并运行;

grades_longer1 = pivot_longer(grades_wider,2:6, names_to = 'course', values_to = 'grade
knitr::kable(grades_longer1)

name	course	grade
Zhi Liu	Microbiology	100
Zhi Liu	English	50
Zhi Liu	Chinese	69
Weihua Chen	Microbiology	89
Weihua Chen	English	99
Weihua Chen	Bioinformatics	99
Kang Ning	Chinese	20
Kang Ning	Bioinformatics	100
Kang Ning	Chemistry	76

5. 以下代码有什么作用?

grades %>% complete(name, course)

答:显示完整的含 NA 的表

0.4.3 使用 grades2 变量做练习

首先,用下面命令生成 grades2 变量:

然后统计: 1. 每个人最差的学科和成绩分别是什么? 2. 哪个职业的平均成绩最好? 3. 每个职业的最佳学科分别是什么 (按平均分排序)???

```
## 代码写这里,并运行:
library(tidyverse)
grades2 <- tibble( "Name" = c("Weihua Chen", "Mm Hu", "John Doe", "Jane Doe",
                                 "Warren Buffet", "Elon Musk", "Jack Ma"),
                      "Occupation" = c("Teacher", "Student", "Teacher", "Student",
                                       rep( "Entrepreneur", 3 ) ),
                      "English" = sample( 60:100, 7 ),
                      "ComputerScience" = sample(80:90, 7),
                      "Biology" = sample( 50:100, 7),
                      "Bioinformatics" = sample( 40:90, 7)
                      );
grades2_gather<-grades2 %>% gather( course, grade,-Name,-Occupation )
grades2_aaaa <- grades2_gather %>% arrange( Name, -grade );
grades2_aaaa %>%
group_by(Name) %>%
summarise( worst_course = last( course ),
worst grade = last( grade ));
## # A tibble: 7 x 3
##
    Name
                  worst_course worst_grade
```

```
##
     <chr>
                   <chr>>
                                         <int>
## 1 Elon Musk
                   Bioinformatics
                                            44
## 2 Jack Ma
                   Bioinformatics
                                            79
## 3 Jane Doe
                   Biology
                                            68
## 4 John Doe
                   Bioinformatics
                                            76
## 5 Mm Hu
                   Bioinformatics
                                            66
## 6 Warren Buffet Bioinformatics
                                            58
## 7 Weihua Chen
                   Bioinformatics
                                            51
grades2_aaaa %>%
group_by(Occupation) %>%
summarise( avg_grades = mean( grade ) ) %>%
arrange( -avg_grades );
## # A tibble: 3 x 2
##
     Occupation
                 avg_grades
##
     <chr>
                       <dbl>
## 1 Teacher
                        77.6
## 2 Student
                        77.2
## 3 Entrepreneur
                        76.6
grades2_aaaa %>%
group_by(Occupation) %>%
summarise( best_course = first( course ),
  avg_grades = mean( grade ) ) %>%
arrange( -avg_grades );
## # A tibble: 3 x 3
     Occupation
                  best_course
##
                                  avg_grades
     <chr>
                  <chr>>
                                        <dbl>
## 1 Teacher
                  English
                                         77.6
## 2 Student
                  ComputerScience
                                         77.2
## 3 Entrepreneur English
                                         76.6
```

0.4.4 使用 starwars 变量做计算

- 1. 计算每个人的 BMI;
- 2. 挑选出肥胖 (BMI >= 30) 的人类, 并且只显示其 name, sex 和 homeworld:

```
## 代码写这里,并运行;
starwars %>% group_by(name) %>%
summarise(BMI=mass/(height*height)*10000)
```

```
## # A tibble: 87 x 2
                            BMI
##
     name
##
      <chr>
                          <dbl>
##
   1 Ackbar
                           25.6
   2 Adi Gallia
                           14.8
##
   3 Anakin Skywalker
##
                           23.8
## 4 Arvel Crynyd
                           NA
## 5 Ayla Secura
                           17.4
## 6 Bail Prestor Organa NA
## 7 Barriss Offee
                           18.1
## 8 BB8
                           NA
## 9 Ben Quadinaros
                           24.5
## 10 Beru Whitesun lars
                           27.5
## # ... with 77 more rows
```

```
## # A tibble: 12 x 3
##
                                              homeworld
      name
                              sex
      <chr>
                                              <chr>
##
                              <chr>
##
    1 Bossk
                              male
                                              Trandosha
    2 Darth Vader
                              male
                                              Tatooine
##
##
    3 Dud Bolt
                              male
                                              Vulpter
##
    4 Grievous
                              male
                                              Kalee
##
    5 IG-88
                              none
                                              <NA>
    6 Jabba Desilijic Tiure hermaphroditic Nal Hutta
##
   7 Jek Tono Porkins
##
                              male
                                              Bestine IV
   8 Owen Lars
##
                              male
                                              Tatooine
   9 R2-D2
                              none
                                              Naboo
## 10 R5-D4
                              none
                                              Tatooine
## 11 Sebulba
                              male
                                              Malastare
## 12 Yoda
                              male
                                              <NA>
```

- 3. 挑选出所有人类;
- 4. 按 BMI 将他们分为三组,<18, 18~25, >25, 统计每组的人数,并用 barplot 进行展示;注意:展示时三组的按 BMI 从小到大排序;
- 5. 改变排序方式,按每组人数从小到大排序;

代码写这里,并运行;

(Human <- starwars %>% filter(species == "Human"))

A tibble: 35 x 14

```
##
                  height
                          mass hair_~1 skin_~2 eye_c~3 birth~4 sex
                                                                        gender homew~5
      name
##
      <chr>
                    <int> <dbl> <chr>
                                         <chr>
                                                 <chr>
                                                            <dbl> <chr> <chr> <chr>
    1 Luke Skywa~
                      172
                             77 blond
                                        fair
                                                 blue
                                                             19
                                                                  male mascu~ Tatooi~
##
    2 Darth Vader
                      202
                            136 none
                                         white
                                                             41.9 male
                                                                        mascu~ Tatooi~
##
                                                 yellow
    3 Leia Organa
                      150
                                                 brown
                                                                  fema~ femin~ Aldera~
##
                             49 brown
                                         light
                                                             19
    4 Owen Lars
                      178
                            120 brown,~ light
                                                 blue
                                                             52
                                                                  male
                                                                        mascu~ Tatooi~
##
##
   5 Beru White~
                      165
                             75 brown
                                         light
                                                 blue
                                                             47
                                                                  fema~ femin~ Tatooi~
##
    6 Biggs Dark~
                      183
                             84 black
                                         light
                                                 brown
                                                             24
                                                                  male mascu~ Tatooi~
   7 Obi-Wan Ke~
                      182
                             77 auburn~ fair
                                                 blue-g~
                                                             57
                                                                  male mascu~ Stewjon
```

```
8 Anakin Sky~
                     188
                            84 blond
                                        fair
                                                blue
                                                           41.9 male mascu~ Tatooi~
    9 Wilhuff Ta~
                     180
                            NA auburn~ fair
                                                blue
                                                           64
                                                                 male
                                                                      mascu~ Eriadu
## 10 Han Solo
                     180
                            80 brown
                                        fair
                                                brown
                                                                male mascu~ Corell~
                                                           29
## # ... with 25 more rows, 4 more variables: species <chr>, films <list>,
       vehicles <list>, starships <list>, and abbreviated variable names
## #
       1: hair_color, 2: skin_color, 3: eye_color, 4: birth_year, 5: homeworld
H1<-Human %>% group_by(name) %>%
  summarise(BMI=mass/(height*height)*10000)%>%filter(BMI<18)</pre>
H2<-Human %>% group_by(name) %>%
  summarise(BMI=mass/(height*height)*10000)%>%filter(BMI>=18,BMI<25)</pre>
H3<-Human %>% group_by(name) %>%
  summarise(BMI=mass/(height*height)*10000)%>%filter(BMI>=25)
barplot(height = c(nrow(H1), nrow(H2), nrow(H3)),
        names.arg = c('BMI<18', '18<=BMI<25', 'BMI>=25'),
        ylim = c(0,12)
```


6. 查看 starwars 的 films 列,它有什么特点? data.frame 可以实现类似的功能吗?

答: 都是 <chr[X]> 这样的形式。可以

7. 为 starwars 增加一列,用于统计每个角色在多少部电影中出现。

```
## 代码写这里,并运行;
starwars1<-add_column(starwars,film_num=NA)
starwars1
```

```
## # A tibble: 87 x 15
## name height mass hair_~1 skin_~2 eye_c~3 birth~4 sex gender homew~5
```

```
<chr>>
                    <int> <dbl> <chr>
                                                  <chr>
                                                            <dbl> <chr> <chr> <chr>
##
                                         <chr>
##
    1 Luke Skywa~
                      172
                             77 blond
                                         fair
                                                 blue
                                                             19
                                                                  male
                                                                         mascu~ Tatooi~
    2 C-3PO
                             75 <NA>
                                         gold
                                                                         mascu~ Tatooi~
##
                      167
                                                 yellow
                                                            112
                                                                  none
##
    3 R2-D2
                       96
                             32 <NA>
                                         white,~ red
                                                             33
                                                                         mascu~ Naboo
                                                                  none
    4 Darth Vader
                      202
                                                             41.9 male
                                                                         mascu~ Tatooi~
##
                            136 none
                                         white
                                                 yellow
##
    5 Leia Organa
                      150
                             49 brown
                                         light
                                                 brown
                                                             19
                                                                  fema~ femin~ Aldera~
##
    6 Owen Lars
                      178
                            120 brown,~ light
                                                 blue
                                                             52
                                                                  male
                                                                         mascu~ Tatooi~
##
    7 Beru White~
                      165
                             75 brown
                                         light
                                                 blue
                                                             47
                                                                  fema~ femin~ Tatooi~
##
    8 R5-D4
                       97
                             32 <NA>
                                         white,~ red
                                                                         mascu~ Tatooi~
                                                             NA
                                                                  none
    9 Biggs Dark~
##
                      183
                             84 black
                                         light
                                                             24
                                                                  \mathtt{male}
                                                                         mascu~ Tatooi~
                                                 brown
  10 Obi-Wan Ke~
                      182
                             77 auburn~ fair
                                                 blue-g~
                                                             57
                                                                  male mascu~ Stewjon
     ... with 77 more rows, 5 more variables: species <chr>, films <list>,
       vehicles <list>, starships <list>, film_num <lgl>, and abbreviated variable
## #
## #
       names 1: hair_color, 2: skin_color, 3: eye_color, 4: birth_year,
       5: homeworld
## #
```

0.4.5 使用 Theoph 变量做练习

注: 以下练习请只显示结果的前 6 行;

1. 选取从 Subject 到 Dose 的列;总共有几列?

```
## 代码写这里,并运行;
The1<-select(Theoph,Subject:Dose)
head(The1)
```

```
## Subject Wt Dose
## 1 1 79.6 4.02
## 2 1 79.6 4.02
## 3 1 79.6 4.02
## 4 1 79.6 4.02
## 5 1 79.6 4.02
## 6 1 79.6 4.02
```

```
length(The1)
```

[1] 3

2. 用 filter 选取 Dose 大于 5, 且 Time 高于 Time 列平均值的行;

```
## 代码写这里,并运行;
```

The2<-Theoph %>% filter(Dose>5,Time>mean(Time))
head(The2)

```
## Subject Wt Dose Time conc
## 1 5 54.6 5.86 7.02 7.09
## 2 5 54.6 5.86 9.10 5.90
## 3 5 54.6 5.86 12.00 4.37
## 4 5 54.6 5.86 24.35 1.57
## 5 10 58.2 5.50 7.08 8.02
## 6 10 58.2 5.50 9.38 7.14
```

3. 用 mutate 函数产生新列 trend, 其值为 Time 与 Time 列平均值的差; 注意:请去除可能产生的 na 值;

代码写这里,并运行;

The3<-Theoph %>% mutate(trend=Time-mean(Time))
head(The3)

```
##
     Subject
               Wt Dose Time conc
                                      trend
## 1
           1 79.6 4.02 0.00 0.74 -5.894621
## 2
           1 79.6 4.02 0.25 2.84 -5.644621
## 3
           1 79.6 4.02 0.57 6.57 -5.324621
           1 79.6 4.02 1.12 10.50 -4.774621
## 4
           1 79.6 4.02 2.02 9.66 -3.874621
## 5
## 6
           1 79.6 4.02 3.82 8.58 -2.074621
```

4. 用 mutate 函数产生新列 weight_cat , 其值根据 Wt 的取值范围而不同:

- 如果 Wt > 76.2, 为 'Super-middleweight', 否则
- 如果 Wt > 72.57, 为 'Middleweight', 否则
- 如果 Wt > 66.68, 为 'Light-middleweight'
- 其它值,为'Welterweight'