Bitcoin: Programming the Future of Money

Topics in Computer Science - ITCS 4010/5010, Spring 2025

Dr. Christian Kümmerle

Lecture 10

Arithmetic on Elliptic Curves

Main Reference:

- "Programming Bitcoin: Learn How to Program Bitcoin from Scratch", Jimmy Song, 1st Edition, O'Reilly, 2019, Chapters 2 and 3

Elliptic Curves

WHAT IS AN ELLIPTIC CURVE?

Set of solutions
$$S_{ab}$$
Used in Bitcoin (FODA):
$$S_{0,7} = \{(x,y): y^2 = x\}$$
Name: $Sec_p 256kI''$
Q: $\{s_1(x,y)=\{2,1\}\}$ a point on S_{ab} ?

LHS: $y^2 = I^2 = 1$
RHS: $x^3 + ax + b = 2^3 + a \cdot 2 + b$

$$a = 0,5 = 2 + 2a + b$$

Set of solutions
$$S_{ab} = ((x, y): y^2 = x^3 + a \cdot x + b)$$

Used in Bitcoin (FODA):
$$S_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$Nome: \text{Secp256k1}''$$

$$S_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$Nome: \text{Secp256k1}''$$

$$S_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0, b = 7)$$

$$N_{0,7} = \{(x,y): y^2 = x^3 + 7\} \text{ (choose } a = 0,$$

ELLIPTIC CURVE SECT256K1

EC equation:

$$y^2 = x^3 + 7$$

$$S_{a,b} = \{(x, y) : y^2 = x^3 + ax + b\}$$

with $a = 0$ and $b = 7$.

ELLIPTIC CURVES

Goal: Define addition of points $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$
for P, P E Sab (points on the elliptic curve We will use following fundamental result
We will use following fundamental result
recrem: (special case of Bezouts than)
An elliptic curve intersects with a straight line either (o) D exactly of three points (counting tongential intersections twice) (b) D exactly once, or
(o) Dexactly at three points (counting tought to messacross ruce)
(6) Desadly once, or
(c) Desactly twice (in which case line is vertical)

LINES AND ELLIPTIC CURVES: CASE OF LINE INTERSECTING AT THREE POINTS

Case (a)
(Not towner tal
point)

LINES AND ELLIPTIC CURVES: INTERSECTING AT ONE POINT AND ONE TANGENTIAL POINT

(ase (a)

LINES AND ELLIPTIC CURVES: CASE OF LINE INTERSECTING AT ONLY ONE POINT

CASE (C): TWO POINTS, CONNECTED BY VERTICAL LINE

Case (c): We define: P+P= 0 => Properties is additive inverse of Properties Propert

Luguer:

We aread

associativity

do we need to "reflect Cat x-axis to define Pref2.

We need: (A+B)+ C = A+(B+C)

If
$$A = (x_{11}y_{1}) \in S_{a,b}$$
, $B = (x_{21}y_{2}) \in S_{a,b}$ core two points on elliptic curve $S_{a,b} := \{(x,y) : y = x^3 + ax + b\}$, the derivate properties of point oddition.

(i) $(A+B) \in (=A+(B+C)$ "associative in Commutativity"

(ii) $A+B=B+A$ "commutativity"

(iii) $A+C=A+C=A$ for "point at infairty" O additive inhabity (iv) There exists an additive inverse $A=A+A=(-A)=O$ for all $A \in S_{a,b}$.

2A:= A+A 3A = A+A+A

A =
$$(x_{11}y_{1}) \in Sa_{1}b$$
 | B = $(x_{21}y_{2}) \in Sa_{2}b$ | $Z = (x_{31}y_{3})$ | B = $(x_{31}y_{3})$ | B

To find point Z, we need: (AD) $y = S(x-x_1) + y_1$ (Sine equation with $S = \frac{y_2 - y_3}{z_2 - z_3}$ MD y = x = x + b (elliptic couvre equation) (a+b) = a +26+62 Squaring (1) and plugging into (1): [S(x-x)+4] = x3+ax+b = $S(x-x_0)^2 + 2-s(x-x_0)y_1 + y_1^2 = x^4 ax + 6$ $(=) \frac{3}{x} - (\frac{2}{3} \times - \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{2}{3}$

We know: ×3 (first coordinate of Z) needs to satisfy $= \sum_{x=0}^{3} \frac{2^{2}}{3^{2}} \frac{2^{2}}{3^{2}$ $= (x - x_1) - (x - x_2) \cdot (x - x_3)$ Since $x = x_1$ and $x = x_2$ are the two other solutions of (x, x_1) $= \chi^3 + \left(-\chi_1 - \chi_2 - \chi_3\right) \chi^2 + \dots + \dots + \dots$ We can now match? oder coefficients of equation (the ones intront of x). $= -x_1 - x_2 - x_3 = x_3 - x_1 - x_2 = x_3 - x_1 - x_2 = x_2 = x_2 - x_1 - x_2 = x_2 - x_1 - x_2 = x_2 = x_2 - x_2 - x_2 - x_2 = x_2 - x_$

(first coordinate of Af >> We can compute & given (first coordinate of B Obtained as $S = \frac{42-47}{x_2-x_7}$ y-coordinate y3 of Z: From line equation $y_3 = 5(8_3 \times 1) + y_1$ We obtain A+B=(x3,43) by setting y3 = -1/3 = -5(53-2)- 47 2) ×3= 5²-×,-×2

A =
$$(x_{11}y_{1}) \in S_{a,b}$$
, B = $(x_{21}y_{2}) \in S_{a,b}$
Case 2: $x_{1} = x_{2}$, and $y_{2}^{-} - y_{1}$
 \Rightarrow Case of shoright (the being vertical)

P:= A+B = 0, point of thereby

B

A =
$$(x_{11}y_{1})$$
 ∈ $S_{a,b}$ $B = (x_{21}, y_{2})$ € $S_{a,b}$ $B = A$

(ase 3: $x_{1} = x_{21}$ $y_{1} = y_{1}$ y_{1} ‡0

(ase 3: $x_{1} = x_{21}$ $y_{2} = y_{1}$ y_{1} ‡0

(ase derivative $y(x) = x^{3} + ax + b$

(ase derivative $y(x) = x^{3} + ax + b$

(ase derivative $y(x) = x^{3} + ax + b$

(ase derivative $y(x) = x^{3} + ax + b$

(both sides)

(ase 3: $x_{1} = x_{21}$ $y_{2} = x^{3} + ax + b$

(both sides)

(ase 3: $x_{1} = x_{21}$ $y_{2} = x^{3} + ax + b$

(both sides)

(ase 3: $x_{1} = x_{21}$ $y_{2} = x^{3} + ax + b$

(both sides)

(ase 3: $x_{1} = x_{21}$ $y_{2} = x^{3} + ax + b$

(both sides)

(ase 3: $x_{1} = x_{21}$ $y_{2} = x^{3} + ax + b$

(both sides)

(ase 3: $x_{1} = x_{21}$ $y_{2} = x^{3} + ax + b$

(both sides)

(ase 3: $x_{1} = x_{21}$ $x_{21} = x_{21}$ $x_{22} = x_{21}$

(both sides)

(ase 3: $x_{1} = x_{21}$ $x_{21} = x_{21}$

(both sides)

(ase 4: $x_{1} = x_{21}$ $x_{21} = x_{21}$

(both sides)

(ase 6: $x_{21} = x_{21}$ $x_{22} = x_{21}$

(both sides)

(ase 6: $x_{21} = x_{21}$ $x_{22} = x_{21}$

(both sides)

(ase 6: $x_{21} = x_{21}$ $x_{22} = x_{21}$

(both sides)

(ase 6: $x_{21} = x_{21}$ $x_{22} = x_{21}$

(both sides)

(ase 6: $x_{21} = x_{21}$ $x_{22} = x_{21}$

(both sides)

(both sides)

(ase 6: $x_{21} = x_{21}$ $x_{22} = x_{21}$

(both sides)

(both sides)

(consider)

(c

SCALAR MULTIPLICATION ON ELLIPTIC CURVES

We went to define "multiples" of elliptic carve points. E.g. Given $A = (x_1, y_1) \in S_{a,b}$, compute $B : A \in S_{a,b}$ Different from defining A-B, where ABCSG6-Daine: K-A=A+A+--+A it k is lintaged Observation: If we consider $S_{a,b}^{Fp} = \{(x,y) \in F \times F : y^2 = x^3 + a \times tb\}$, then solving $k \cdot A = B$ for k finite field f and p (given $A, B \in S_{a,b}^{Fp}$) is extremely land if order p is very large.

SCALAR MULTIPLICATION ON ELLIPTIC CURVES

"discrete Coarithin problem for alliptic courses"