February 26, 2025

SYST0022-1

Laboratories 1 & 2

- Cart-pole system
- Laboratory 1
- · Laboratory 2

Cart-pole System

g: Gravity force

l: Pole length

 m_p : Pole mass

 m_c : Cart mass

x : Cart position

 θ : Pole angle

 $f_{\boldsymbol{x}}$: Force on the cart

Cart-pole System

g: Gravity force

l: Pole length

 m_p : Pole mass

 m_c : Cart mass

x : Cart position

 θ : Pole angle

 $f_{\boldsymbol{x}}$: Force on the cart

Cart-pole System

g: Gravity force

l: Pole length

 m_p : Pole mass

 m_c : Cart mass

x : Cart position

 θ : Pole angle

 f_x : Force on the cart

Laboratory 1: Intuitive PID

Focus on:

- Negative feedback
- PID controller notions

Deliverable:

- Report as a .pdf file
- Submission on Gradescope
- Deadline is 7th of March 2025, 11:59PM

The notebook for the laboratory is published on Ed.

Laboratory 2: PID Design via Loop shaping

Focus on:

- Gang of Four
- Nyquist plot and Simplified criterion
- Stability margins

Deliverable:

- Report as a .pdf file
- Submission on Gradescope
- Deadline is 14th of March 2025, 11:59PM

The notebook for the laboratory is published on Ed.

Collaboration Policy

You can discuss the assignment with other students, but you must write your own solutions.

Copying someone else's solution, or just making trivial changes to avoid copying verbatim, is not acceptable.