Resolución de sistemas lineales

Profesor Filánder Sequeira Chavarría

Organización de la presentación

- Introducción
- 2 Iteración de Jacobi
- Iteración de Gauss-Seidel
- 4 Iteración de SOR

Normas de vectores

Considerando el espacio vectorial real \mathbb{R}^n , se tiene que este posee las siguientes normas usuales:

$$\bullet \|\mathbf{x}\|_{\infty} := \max_{i=1}^{n} |x_i|$$

•
$$\|\mathbf{x}\|_1 := \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \ldots + |x_n|$$

Normas de vectores

Considerando el espacio vectorial real \mathbb{R}^n , se tiene que este posee las siguientes normas usuales:

$$\bullet \|\mathbf{x}\|_{\infty} := \max_{i=1}^{n} |x_i|$$

•
$$\|\mathbf{x}\|_1 := \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \ldots + |x_n|$$

•
$$\|\mathbf{x}\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$

Normas de vectores

Considerando el espacio vectorial real \mathbb{R}^n , se tiene que este posee las siguientes normas usuales:

$$\bullet \|\mathbf{x}\|_{\infty} := \max_{i=1}^{n} |x_i|$$

•
$$\|\mathbf{x}\|_1 := \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \ldots + |x_n|$$

•
$$\|\mathbf{x}\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$

Con el objetivo de determinar una aproximación a la solución $\mathbf{x} \in \mathbb{R}^n$ del sistema lineal

$$\mathbf{A}\mathbf{x} = \mathbf{b},$$

con $\mathbf{A} \in \mathbb{R}^{n \times n}$ no singular y $\mathbf{b} \in \mathbb{R}^n$, en lo que sigue se busca definir iteraciones del método de punto fijo en varias variables.

$$\begin{cases} \mathbf{x}^{(0)} \in \mathbb{R}^n \text{ dado} \\ \mathbf{x}^{(k+1)} = \boldsymbol{\varphi}(\mathbf{x}^{(k)}) & \text{para } k = 0, 1, 2, \dots \end{cases}$$

donde $\varphi : \mathbb{R}^n \to \mathbb{R}^n$.

Con el objetivo de determinar una aproximación a la solución $\mathbf{x} \in \mathbb{R}^n$ del sistema lineal

$$\mathbf{A}\mathbf{x} = \mathbf{b},$$

con $\mathbf{A} \in \mathbb{R}^{n \times n}$ no singular y $\mathbf{b} \in \mathbb{R}^n$, en lo que sigue se busca definir iteraciones del método de punto fijo en varias variables. Esto es:

$$\left\{ \begin{array}{l} \mathbf{x}^{(0)} \in \mathbb{R}^n \text{ dado} \\ \\ \mathbf{x}^{(k+1)} \, = \, \boldsymbol{\varphi}(\mathbf{x}^{(k)}) \qquad \text{para } k = 0, 1, 2, \dots \end{array} \right.$$

donde $\varphi : \mathbb{R}^n \to \mathbb{R}^n$.

La notación $\mathbf{x}^{(k)}$ debe entenderse como sigue:

$$\mathbf{x}^{(k)} = \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \\ \vdots \\ x_n^{(k)} \end{pmatrix}$$

es decir, $x_i^{(k)} \in \mathbb{R}$ corresponde a la *i*-ésima componente del vector $\mathbf{x}^{(k)} \in \mathbb{R}^n$, el cual es la aproximación del método de punto fijo en la iteración k.

Para el método de punto fijo:

$$\left\{ \begin{array}{l} \mathbf{x}^{(0)} \in \mathbb{R}^n \text{ dado} \\ \\ \mathbf{x}^{(k+1)} \, = \, \boldsymbol{\varphi}(\mathbf{x}^{(k)}) \qquad \text{para } k = 0, 1, 2, \dots \end{array} \right.$$

el criterio de parada ahora es dado por:

$$\frac{\|\mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}\|}{\|\mathbf{b}\|} < tol$$

el cual puede reescribirse como:

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}\| < tol \|\mathbf{b}\|$$

donde lo preferible es el uso de la norma-2.

Para el método de punto fijo:

$$\left\{ \begin{array}{l} \mathbf{x}^{(0)} \in \mathbb{R}^n \text{ dado} \\ \\ \mathbf{x}^{(k+1)} \, = \, \boldsymbol{\varphi}(\mathbf{x}^{(k)}) \qquad \text{para } k = 0, 1, 2, \dots \end{array} \right.$$

el criterio de parada ahora es dado por:

$$\frac{\|\mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}\|}{\|\mathbf{b}\|} < tol$$

el cual puede reescribirse como:

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}\| < tol \|\mathbf{b}\|$$

donde lo preferible es el uso de la norma-2.

Finalmente, para la elección de la función:

$$\varphi: \mathbb{R}^n \to \mathbb{R}^n$$

- Método de Jacobi
- Método de Gauss-Seidel (dos versiones)
- Método de SOR (dos versiones)

Finalmente, para la elección de la función:

$$\varphi: \mathbb{R}^n \to \mathbb{R}^n$$

- Método de Jacobi
- Método de Gauss-Seidel (dos versiones)
- Método de SOR (dos versiones)

Finalmente, para la elección de la función:

$$\varphi: \mathbb{R}^n \to \mathbb{R}^n$$

- Método de Jacobi
- Método de Gauss-Seidel (dos versiones)
- Método de SOR (dos versiones)

Finalmente, para la elección de la función:

$$\varphi: \mathbb{R}^n \to \mathbb{R}^n$$

- Método de Jacobi
- Método de Gauss-Seidel (dos versiones)
- Método de SOR (dos versiones)

Organización de la presentación

- Introducción
- 2 Iteración de Jacobi
- 3 Iteración de Gauss-Seidel
- 4 Iteración de SOR

Para introducir el método o iteración de Jacobi, considere el caso particular en que $\mathbf{A} \in \mathbb{R}^{3\times 3}$. Es decir, dado el sistema lineal:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{cases}$$

Para introducir el método o iteración de Jacobi, considere el caso particular en que $\mathbf{A} \in \mathbb{R}^{3\times 3}$. Es decir, dado el sistema lineal:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{cases}$$

Para introducir el método o iteración de Jacobi, considere el caso particular en que $\mathbf{A} \in \mathbb{R}^{3\times 3}$. Es decir, dado el sistema lineal:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 & = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 & = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 & = b_3 \end{cases}$$

Para introducir el método o iteración de Jacobi, considere el caso particular en que $\mathbf{A} \in \mathbb{R}^{3\times 3}$. Es decir, dado el sistema lineal:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{cases}$$

Así, nótese que:

$$\begin{cases} a_{11}x_1 &= b_1 - a_{12}x_2 - a_{13}x_3 \\ a_{22}x_2 &= b_2 - a_{21}x_1 - a_{23}x_3 \\ a_{33}x_3 &= b_3 - a_{31}x_1 - a_{32}x_2 \end{cases}$$

donde, cuando $a_{11} \neq 0$, $a_{22} \neq 0$ y $a_{33} \neq 0$, se tiene que:

$$\begin{cases} x_1 &= \frac{1}{a_{11}} (b_1 - a_{12}x_2 - a_{13}x_3) \\ x_2 &= \frac{1}{a_{22}} (b_2 - a_{21}x_1 - a_{23}x_3) \\ x_3 &= \frac{1}{a_{33}} (b_3 - a_{31}x_1 - a_{32}x_2) \end{cases}$$

Así, nótese que:

$$\begin{cases} a_{11}x_1 &= b_1 - a_{12}x_2 - a_{13}x_3 \\ a_{22}x_2 &= b_2 - a_{21}x_1 - a_{23}x_3 \\ a_{33}x_3 &= b_3 - a_{31}x_1 - a_{32}x_2 \end{cases}$$

donde, cuando $a_{11} \neq 0$, $a_{22} \neq 0$ y $a_{33} \neq 0$, se tiene que:

$$\begin{cases} x_1 &= \frac{1}{a_{11}} (b_1 - a_{12}x_2 - a_{13}x_3) \\ x_2 &= \frac{1}{a_{22}} (b_2 - a_{21}x_1 - a_{23}x_3) \\ x_3 &= \frac{1}{a_{33}} (b_3 - a_{31}x_1 - a_{32}x_2) \end{cases}$$

Así, nótese que:

$$\begin{cases} a_{11}x_1 &= b_1 - a_{12}x_2 - a_{13}x_3 \\ a_{22}x_2 &= b_2 - a_{21}x_1 - a_{23}x_3 \\ a_{33}x_3 &= b_3 - a_{31}x_1 - a_{32}x_2 \end{cases}$$

donde, cuando $a_{11} \neq 0$, $a_{22} \neq 0$ y $a_{33} \neq 0$, se tiene que:

$$\begin{cases} x_1 &= \frac{1}{a_{11}} (b_1 - a_{12}x_2 - a_{13}x_3) \\ x_2 &= \frac{1}{a_{22}} (b_2 - a_{21}x_1 - a_{23}x_3) \\ x_3 &= \frac{1}{a_{33}} (b_3 - a_{31}x_1 - a_{32}x_2) \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & &$$

Por lo tanto, se puede describir la iteración de punto fijo:

$$\begin{cases} x_1^{(k+1)} &= \frac{1}{a_{11}} \left(b_1 - a_{12} x_2^{(k)} - a_{13} x_3^{(k)} \right) \\ x_2^{(k+1)} &= \frac{1}{a_{22}} \left(b_2 - a_{21} x_1^{(k)} - a_{23} x_3^{(k)} \right) \\ x_3^{(k+1)} &= \frac{1}{a_{33}} \left(b_3 - a_{31} x_1^{(k)} - a_{32} x_2^{(k)} \right) \end{cases}$$

Método de Jacobi

De acuerdo con lo anterior, en general se obtiene la iteración:

$$\begin{cases} \mathbf{x}^{(0)} \text{ dado} \\ \text{Para } k = 0, 1, 2, \dots, \text{ hasta converger, hacer:} \\ x_i^{(k+1)} = \frac{1}{a_{ii}} \left\{ b_i - \sum_{\substack{j=1\\j \neq i}}^n a_{ij} x_j^{(k)} \right\}, \quad \forall i = 1, 2, \dots, n \end{cases}$$

conocida como la iteración de Jacobi.

Ejemplo

Aproxime la solución del sistema lineal:

$$\begin{cases}
4x_1 + x_2 - x_3 &= 12 \\
-x_1 + 3x_2 + x_3 &= -8 \\
2x_1 + 2x_2 + 5x_3 &= 14
\end{cases}$$

Utilice una tolerancia de 0.02 con la norma infinito, así como la aproximación inicial $(1,1,1)^{t}$. Más aún, usando la solución $(4,-2,2)^{t}$, halle el error relativo de su aproximación final.

Despejando la diagonal en el sistema lineal, se tiene que:

$$\begin{cases}
4x_1 + x_2 - x_3 &= 12 \\
-x_1 + 3x_2 + x_3 &= -8 \\
2x_1 + 2x_2 + 5x_3 &= 14
\end{cases}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\begin{cases}
x_1^{(k+1)} &= \frac{1}{4}(12 - x_2^{(k)} + x_3^{(k)}) \\
x_2^{(k+1)} &= \frac{1}{3}(-8 + x_1^{(k)} - x_3^{(k)}) \\
x_3^{(k+1)} &= \frac{1}{5}(14 - 2x_1^{(k)} - 2x_2^{(k)})
\end{cases}$$

Despejando la diagonal en el sistema lineal, se tiene que:

$$\begin{cases}
4x_1 + x_2 - x_3 &= 12 \\
-x_1 + 3x_2 + x_3 &= -8 \\
2x_1 + 2x_2 + 5x_3 &= 14
\end{cases}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\begin{cases}
x_1^{(k+1)} &= \frac{1}{4}(12 - x_2^{(k)} + x_3^{(k)}) \\
x_2^{(k+1)} &= \frac{1}{3}(-8 + x_1^{(k)} - x_3^{(k)}) \\
x_3^{(k+1)} &= \frac{1}{5}(14 - 2x_1^{(k)} - 2x_2^{(k)})
\end{cases}$$

Ahora, utilizando $\mathbf{x}^{(0)} := (1, 1, 1)^{t}$, se sigue que:

• Iteración k=0

$$\begin{cases} x_1^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_2^{(1)} &= \frac{1}{3}(-8 + 1 - 1) = -\frac{8}{3} \\ x_3^{(1)} &= \frac{1}{5}(14 - 2 \cdot 1 - 2 \cdot 1) = 2 \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3 \\ -\frac{8}{3} \\ 2 \end{pmatrix}$$

Ahora, utilizando $\mathbf{x}^{(0)} := (1, 1, 1)^{\mathsf{t}}$, se sigue que:

• Iteración k=0

$$\begin{cases} x_1^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_2^{(1)} &= \frac{1}{3}(-8 + 1 - 1) = -\frac{8}{3} \\ x_3^{(1)} &= \frac{1}{5}(14 - 2 \cdot 1 - 2 \cdot 1) = 2 \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3 \\ -\frac{8}{3} \\ 2 \end{pmatrix}$$

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ -\frac{8}{3} \\ 2 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{14}{3} \\ 1 \\ \frac{10}{3} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{14}{3}$$

$$\approx 4.6667 \neq 0.28$$
(So signs)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ -\frac{8}{3} \\ 2 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{14}{3} \\ 1 \\ \frac{10}{3} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{14}{3}$$

$$\approx 4.6667 \neq 0.28$$
(So signs)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ -\frac{8}{3} \\ 2 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{14}{3} \\ 1 \\ \frac{10}{3} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{14}{3}$$

$$\approx 4.6667 \neq 0.28$$
(So signs)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ -\frac{8}{3} \\ 2 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{14}{3} \\ 1 \\ \frac{10}{3} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{14}{3}$$

$$\approx 4.6667 < 0.28$$
(Se sigue)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ -\frac{8}{3} \\ 2 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{14}{3} \\ 1 \\ \frac{10}{3} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{14}{3}$$

$$\approx 4.6667 \not< 0.28$$
(Se sigue)

• Iteración k=1

$$\begin{cases} x_1^{(2)} &= \frac{1}{4}(12 - \left(-\frac{8}{3}\right) + 2) = \frac{25}{6} \\ x_2^{(2)} &= \frac{1}{3}(-8 + 3 - 2) = -\frac{7}{3} \\ x_3^{(2)} &= \frac{1}{5}(14 - 2 \cdot 3 - 2 \cdot \left(-\frac{8}{3}\right)) = \frac{8}{3} \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(2)} = \begin{pmatrix} \frac{25}{6} \\ -\frac{7}{3} \\ \frac{8}{3} \end{pmatrix}$$

• Iteración k=1

$$\begin{cases} x_1^{(2)} &= \frac{1}{4}(12 - \left(-\frac{8}{3}\right) + 2) = \frac{25}{6} \\ x_2^{(2)} &= \frac{1}{3}(-8 + 3 - 2) = -\frac{7}{3} \\ x_3^{(2)} &= \frac{1}{5}(14 - 2 \cdot 3 - 2 \cdot \left(-\frac{8}{3}\right)) = \frac{8}{3} \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(2)} = \begin{pmatrix} \frac{25}{6} \\ -\frac{7}{3} \\ \frac{8}{3} \end{pmatrix}$$

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{25}{6} \\ -\frac{7}{3} \\ \frac{8}{3} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{1}{3} \\ \frac{1}{2} \\ -3 \end{pmatrix} \right\|_{\infty}$$

$$= 3 \nleq 0.28$$

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{25}{6} \\ -\frac{7}{3} \\ \frac{8}{3} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{1}{3} \\ \frac{1}{2} \\ -3 \end{pmatrix} \right\|_{\infty}$$

$$= 3 \not< 0.28$$
(So given)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{25}{6} \\ -\frac{7}{3} \\ \frac{8}{3} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{1}{3} \\ \frac{1}{2} \\ -3 \end{pmatrix} \right\|_{\infty}$$

$$= 3 \nleq 0.28$$

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{25}{6} \\ -\frac{7}{3} \\ \frac{8}{3} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{1}{3} \\ \frac{1}{2} \\ -3 \end{pmatrix} \right\|_{\infty}$$

$$= 3 \not< 0.28$$
(Se sigue)

• Iteración k=2

$$\begin{cases} x_1^{(3)} &= \frac{1}{4}(12 - \left(-\frac{7}{3}\right) + \frac{8}{3}) = \frac{17}{4} \\ x_2^{(3)} &= \frac{1}{3}(-8 + \frac{25}{6} - \frac{8}{3}) = -\frac{13}{6} \\ x_3^{(3)} &= \frac{1}{5}(14 - 2 \cdot \left(\frac{25}{6}\right) - 2 \cdot \left(-\frac{7}{3}\right)) = \frac{31}{15} \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(3)} = \begin{pmatrix} \frac{17}{4} \\ -\frac{13}{6} \\ \frac{31}{15} \end{pmatrix}$$

• Iteración k=2

$$\begin{cases} x_1^{(3)} &= \frac{1}{4}(12 - \left(-\frac{7}{3}\right) + \frac{8}{3}) = \frac{17}{4} \\ x_2^{(3)} &= \frac{1}{3}(-8 + \frac{25}{6} - \frac{8}{3}) = -\frac{13}{6} \\ x_3^{(3)} &= \frac{1}{5}(14 - 2 \cdot \left(\frac{25}{6}\right) - 2 \cdot \left(-\frac{7}{3}\right)) = \frac{31}{15} \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(3)} = \begin{pmatrix} \frac{17}{4} \\ -\frac{13}{6} \\ \frac{31}{15} \end{pmatrix}$$

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{17}{4} \\ -\frac{13}{6} \\ \frac{31}{15} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{23}{30} \\ \frac{41}{60} \\ -\frac{1}{2} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{23}{30}$$

$$\approx 0.7667 \nleq 0.28$$
(Se sigue)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{17}{4} \\ -\frac{13}{6} \\ \frac{31}{15} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{23}{30} \\ \frac{41}{60} \\ -\frac{1}{2} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{23}{30}$$

$$\approx 0.7667 \nleq 0.28$$
(Se sigue)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{17}{4} \\ -\frac{13}{6} \\ \frac{31}{15} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{23}{30} \\ \frac{41}{60} \\ -\frac{1}{2} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{23}{30}$$

$$\approx 0.7667 \not< 0.28$$
(Se sigue)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{17}{4} \\ -\frac{13}{6} \\ \frac{31}{15} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{23}{30} \\ \frac{41}{60} \\ -\frac{1}{2} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{23}{30}$$

$$\approx 0.7667 \not< 0.28$$
(Se sigue)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{17}{4} \\ -\frac{13}{6} \\ \frac{31}{15} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{23}{30} \\ \frac{41}{60} \\ -\frac{1}{2} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{23}{30}$$

$$\approx 0.7667 \not< 0.28$$
(Se sigue)

• Iteración k=3

$$\begin{cases} x_1^{(4)} &= \frac{1}{4}(12 - \left(-\frac{13}{6}\right) + \frac{31}{15}) = \frac{487}{120} \\ x_2^{(4)} &= \frac{1}{3}(-8 + \frac{17}{4} - \frac{31}{15}) = -\frac{349}{180} \\ x_3^{(4)} &= \frac{1}{5}(14 - 2 \cdot \left(\frac{17}{4}\right) - 2 \cdot \left(-\frac{13}{6}\right)) = \frac{59}{30} \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(4)} = \begin{pmatrix} \frac{487}{120} \\ -\frac{349}{180} \\ \frac{59}{30} \end{pmatrix}$$

• Iteración k=3

$$\begin{cases} x_1^{(4)} &= \frac{1}{4}(12 - \left(-\frac{13}{6}\right) + \frac{31}{15}) = \frac{487}{120} \\ x_2^{(4)} &= \frac{1}{3}(-8 + \frac{17}{4} - \frac{31}{15}) = -\frac{349}{180} \\ x_3^{(4)} &= \frac{1}{5}(14 - 2 \cdot \left(\frac{17}{4}\right) - 2 \cdot \left(-\frac{13}{6}\right)) = \frac{59}{30} \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(4)} = \begin{pmatrix} \frac{487}{120} \\ -\frac{349}{180} \\ \frac{59}{30} \end{pmatrix}$$

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{487}{120} \\ -\frac{349}{180} \\ \frac{59}{30} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{59}{180} \\ -\frac{11}{120} \\ -\frac{13}{180} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{59}{180}$$

$$\approx 0.3278 \not< 0.28$$
(So signo)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{487}{120} \\ -\frac{349}{180} \\ \frac{59}{30} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{59}{180} \\ -\frac{11}{120} \\ -\frac{13}{180} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{59}{180}$$

$$\approx 0.3278 \not< 0.28$$
(So signo)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{487}{120} \\ -\frac{349}{180} \\ \frac{59}{30} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{59}{180} \\ -\frac{11}{120} \\ -\frac{13}{180} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{59}{180}$$

$$\approx 0.3278 \not< 0.28$$
(Se signe)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{487}{120} \\ -\frac{349}{180} \\ \frac{59}{30} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{59}{180} \\ -\frac{11}{120} \\ -\frac{13}{180} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{59}{180}$$

$$\approx 0.3278 < 0.28$$
(Se sigue)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{487}{120} \\ -\frac{349}{180} \\ \frac{59}{30} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -\frac{59}{180} \\ -\frac{11}{120} \\ -\frac{13}{180} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{59}{180}$$

$$\approx 0.3278 \nleq 0.28$$
(Se sigue)

• Iteración k=4

$$\begin{cases} x_1^{(5)} &= \frac{1}{4}(12 - \left(-\frac{349}{180}\right) + \frac{59}{30}) = \frac{2863}{720} \\ x_2^{(5)} &= \frac{1}{3}(-8 + \frac{487}{120} - \frac{59}{30}) = -\frac{709}{360} \\ x_3^{(5)} &= \frac{1}{5}(14 - 2 \cdot \left(\frac{487}{120}\right) - 2 \cdot \left(-\frac{349}{180}\right)) = \frac{1757}{900} \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(5)} = \begin{pmatrix} \frac{2863}{720} \\ -\frac{709}{360} \\ \frac{1757}{900} \end{pmatrix}$$

• Iteración k=4

$$\begin{cases} x_1^{(5)} &= \frac{1}{4}(12 - \left(-\frac{349}{180}\right) + \frac{59}{30}) = \frac{2863}{720} \\ x_2^{(5)} &= \frac{1}{3}(-8 + \frac{487}{120} - \frac{59}{30}) = -\frac{709}{360} \\ x_3^{(5)} &= \frac{1}{5}(14 - 2 \cdot \left(\frac{487}{120}\right) - 2 \cdot \left(-\frac{349}{180}\right)) = \frac{1757}{900} \end{cases}$$

donde se obtiene que:

$$\mathbf{x}^{(5)} = \begin{pmatrix} \frac{2863}{720} \\ -\frac{709}{360} \\ \frac{1757}{900} \end{pmatrix}$$

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{2863}{720} \\ -\frac{709}{360} \\ \frac{1757}{900} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{29}{1800} \\ -\frac{27}{400} \\ \frac{9}{40} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{9}{40}$$

$$\approx 0.225 < 0.28$$
(Se detiene)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{2863}{720} \\ -\frac{709}{360} \\ \frac{1757}{900} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{29}{1800} \\ -\frac{27}{400} \\ \frac{9}{40} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{9}{40}$$

$$\approx 0.225 < 0.28$$
(Se detiene)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{2863}{720} \\ -\frac{709}{360} \\ \frac{1757}{900} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{29}{1800} \\ -\frac{27}{400} \\ \frac{9}{40} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{9}{40}$$

$$\approx 0.225 < 0.28$$
(Se detiene)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 - 1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} \frac{2863}{720} \\ -\frac{709}{360} \\ \frac{1757}{900} \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \frac{29}{1800} \\ -\frac{27}{400} \\ \frac{9}{40} \end{pmatrix} \right\|_{\infty}$$

$$= \frac{9}{40}$$

$$\approx 0.225 < 0.28$$
(Se detiene)

$$\frac{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} \frac{2863}{720} \\ -709 \\ 360 \\ \frac{1757}{900} \end{pmatrix} \right\|_{\infty}}{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} \right\|_{\infty}} = \frac{\left\| \begin{pmatrix} \frac{17}{720} \\ -\frac{11}{360} \\ \frac{43}{900} \end{pmatrix} \right\|_{\infty}}{4}$$

$$= \frac{\frac{43}{900}}{4}$$

$$\frac{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} \frac{2863}{720} \\ -\frac{709}{360} \\ \frac{1757}{900} \end{pmatrix} \right\|_{\infty}}{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} \right\|_{\infty}} = \frac{\left\| \begin{pmatrix} \frac{17}{720} \\ -\frac{11}{360} \\ \frac{43}{900} \end{pmatrix} \right\|_{\infty}}{4}$$

$$= \frac{\frac{43}{900}}{4}$$

$$\frac{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} \frac{2863}{720} \\ -\frac{709}{360} \\ \frac{1757}{900} \end{pmatrix} \right\|_{\infty}}{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} \right\|_{\infty}} = \frac{\left\| \begin{pmatrix} \frac{17}{720} \\ -\frac{11}{360} \\ \frac{43}{900} \end{pmatrix} \right\|_{\infty}}{4}$$

$$= \frac{\frac{43}{900}}{4}$$

$$\frac{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} \frac{2863}{720} \\ -\frac{709}{360} \\ \frac{1757}{900} \end{pmatrix} \right\|_{\infty}}{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} \right\|_{\infty}} = \frac{\left\| \begin{pmatrix} \frac{17}{720} \\ -\frac{11}{360} \\ \frac{43}{900} \end{pmatrix} \right\|_{\infty}}{4}$$

$$= \frac{\frac{43}{900}}{4}$$

$$\approx 0.011944444444$$

Ejercicio

Ejercicio

Aproxime la solución del sistema lineal:

$$\begin{cases} 5x_1 + x_2 - x_3 &= -6 \\ x_1 + 5x_2 + x_3 &= 0 \\ -x_1 + x_2 + 5x_3 &= 6 \end{cases}$$

Utilice una tolerancia de 0.01 con la norma infinito. Más aún, usando la solución $(-1,0,1)^{t}$, halle el error relativo de su aproximación final.

Ejercicio

Ejercicio para la casa (II Examen, IC-2018)

Considere el siguiente sistema lineal:

$$\begin{pmatrix} 1 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 3 & 1 & 0 \\ 0 & 1 & 5 & \frac{3}{2} \\ 0 & 0 & \frac{3}{2} & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ -21 \\ 39 \\ 0 \end{pmatrix}. \tag{*}$$

- a) Utilice el método de Jacobi, con $\mathbf{x}^{(0)} = (1, -2, 2, -1)^{t}$, para determinar una aproximación a la solución del sistema (*). Considere una exactitud de al menos 5×10^{-2} y la norma- ∞ .
- b) Sabiendo que la solución exacta del sistema (\star) corresponde a $(6, -12, 12, -6)^{t}$, determine el error relativo en la aproximación obtenida en a). Utilice la norma-2.

Matriz estrictamente diagonal dominante

Definición

Una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ se dice **estrictamente diagonal dominante**, si para cada $i = 1, 2, \dots, n$ se cumple que:

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

Es decir, si en cada fila el valor absoluto de la entrada en la diagonal, es mayor que la suma de los valores absolutos de las entradas restantes de esa fila.

Observación: Toda matriz estrictamente diagonal dominante es no singular.

Matriz estrictamente diagonal dominante

Definición

Una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ se dice **estrictamente diagonal dominante**, si para cada $i = 1, 2, \dots, n$ se cumple que:

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

Es decir, si en cada fila el valor absoluto de la entrada en la diagonal, es mayor que la suma de los valores absolutos de las entradas restantes de esa fila.

Observación: Toda matriz estrictamente diagonal dominante es no singular.

Ejemplo

Las siguientes matrices son estrictamente diagonal dominante:

$$\begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \quad y \quad \begin{pmatrix} 5 & 1 & -1 \\ 1 & 5 & 1 \\ -1 & 1 & 5 \end{pmatrix}.$$

Convergencia del método de Jacobi

Teorema

Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es estrictamente diagonal dominante, entonces la iteración de Jacobi converge hacia la solución de $\mathbf{A}\mathbf{x} = \mathbf{b}$, para todo $\mathbf{b} \in \mathbb{R}^n$ y para todo $\mathbf{x}^{(0)} \in \mathbb{R}^n$.

Observación: Este teorema no es una equivalencia. Es decir, es posible probar que Jacobi converge, por ejemplo, para la matriz

$$\mathbf{A} := \left(\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right)$$

la cual no es estrictamente diagonal dominante

Convergencia del método de Jacobi

Teorema

Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es estrictamente diagonal dominante, entonces la iteración de Jacobi converge hacia la solución de $\mathbf{A}\mathbf{x} = \mathbf{b}$, para todo $\mathbf{b} \in \mathbb{R}^n$ y para todo $\mathbf{x}^{(0)} \in \mathbb{R}^n$.

Observación: Este teorema no es una equivalencia. Es decir, es posible probar que Jacobi converge, por ejemplo, para la matriz

$$\mathbf{A} := \left(\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right)$$

la cual no es estrictamente diagonal dominante.

Ejercicio

Ejercicio para la casa (Ampliación, IIC-2019)

Considere el siguiente sistema de ecuaciones:

$$\begin{cases} 9x_1 + x_2 - 3x_3 = 1 \\ x_1 + 8x_2 - 2x_3 = 2 \\ 3x_1 - x_2 + 7x_3 = 3 \end{cases}$$

- a) Compruebe que el método de Jacobi converge para este sistema lineal.
- b) Considere una aproximación inicial de $\mathbf{x}^{(0)} = (0.2, 0.3, 0.4)^{t}$. Aplique el método de Jacobi para aproximar la solución del sistema. Utilice la condición de parada vista en clase, con norma-1, y una tolerancia de 0.003.

Organización de la presentación

- Introducción
- 2 Iteración de Jacobi
- 3 Iteración de Gauss-Seidel
- 4 Iteración de SOR

El método de Gauss-Seidel consiste en una aceleración del método de Jacobi. Para ver en qué consiste esta nueva iteración considere nuevamente el sistema 3×3 genérico:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{cases}$$

el cual se reescribe de la forma

$$\begin{cases} x_1 &= \frac{1}{a_{11}} (b_1 - a_{12}x_2 - a_{13}x_3) \\ x_2 &= \frac{1}{a_{22}} (b_2 - a_{21}x_1 - a_{23}x_3) \\ x_3 &= \frac{1}{a_{33}} (b_3 - a_{31}x_1 - a_{32}x_2) \end{cases}$$

El método de Gauss-Seidel consiste en una aceleración del método de Jacobi. Para ver en qué consiste esta nueva iteración considere nuevamente el sistema 3×3 genérico:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{cases}$$

el cual se reescribe de la forma

$$\begin{cases} x_1 &= \frac{1}{a_{11}} (b_1 - a_{12}x_2 - a_{13}x_3) \\ x_2 &= \frac{1}{a_{22}} (b_2 - a_{21}x_1 - a_{23}x_3) \\ x_3 &= \frac{1}{a_{33}} (b_3 - a_{31}x_1 - a_{32}x_2) \end{cases}$$

El método de Gauss-Seidel consiste en una aceleración del método de Jacobi. Para ver en qué consiste esta nueva iteración considere nuevamente el sistema 3×3 genérico:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{cases}$$

el cual se reescribe de la forma:

$$\begin{cases} x_1 &= \frac{1}{a_{11}} (b_1 - a_{12}x_2 - a_{13}x_3) \\ x_2 &= \frac{1}{a_{22}} (b_2 - a_{21}x_1 - a_{23}x_3) \\ x_3 &= \frac{1}{a_{33}} (b_3 - a_{31}x_1 - a_{32}x_2) \end{cases}$$

En el método de Jacobi, se suele calcular cada componente de la aproximación en orden:

En el método de Jacobi, se suele calcular cada componente de la aproximación en orden:

$$(x_1^{(0)}, x_2^{(0)}, x_3^{(0)}) \quad x_1^{(1)} = \frac{1}{a_{11}} (b_1 - a_{12} x_2^{(0)} - a_{13} x_3^{(0)})$$

$$(x_1^{(1)}, x_2^{(0)}, x_3^{(0)}) \quad x_2^{(1)} = \frac{1}{a_{22}} (b_2 - a_{21} x_1^{(1)} - a_{23} x_3^{(0)})$$

$$(x_1^{(1)}, x_2^{(0)}, x_3^{(0)}) \quad x_3^{(1)} = \frac{1}{a_{33}} (b_3 - a_{31} x_1^{(1)} - a_{32} x_2^{(0)})$$

En el método de Jacobi, se suele calcular cada componente de la aproximación en orden:

Dos variantes conocidas, se diferencian por el orden en que se recorren las variables:

$$\begin{array}{ccc} x_1 & \downarrow & \\ x_2 & \downarrow & \\ x_3 & \downarrow & \end{array} \right\} \quad \text{Gauss-Seidel hacia adelante}$$

o bien:

$$\begin{pmatrix} x_3 & \downarrow \\ x_2 & \downarrow \\ x_1 & \downarrow \end{pmatrix}$$
 Gauss-Seidel hacia atrás

Dos variantes conocidas, se diferencian por el orden en que se recorren las variables:

$$\begin{array}{ccc} x_1 & \downarrow & \\ x_2 & \downarrow & \\ x_3 & \downarrow & \end{array} \right\} \quad \text{Gauss-Seidel hacia adelante}$$

o bien:

$$\left. \begin{array}{ccc} x_3 & \downarrow & \\ x_2 & \downarrow & \\ x_1 & \downarrow & \end{array} \right\} \ \ \text{Gauss-Seidel hacia atrás}$$

Método de Gauss-Seidel

De acuerdo con lo anterior, en general se obtiene la iteración:

$$\begin{cases}
\mathbf{x}^{(0)} \text{ dado} \\
\text{Para } k = 0, 1, 2, \dots, \text{ hasta converger, hacer:} \\
x_i^{(k+1)} = \frac{1}{a_{ii}} \left\{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right\} \\
\forall i = 1, 2, \dots, n
\end{cases}$$

conocida como la iteración de Gauss-Seidel hacia adelante.

Método de Gauss-Seidel

De acuerdo con lo anterior, en general se obtiene la iteración:

$$\begin{cases}
\mathbf{x}^{(0)} \text{ dado} \\
\text{Para } k = 0, 1, 2, \dots, \text{ hasta converger, hacer:} \\
x_i^{(k+1)} = \frac{1}{a_{ii}} \left\{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k+1)} \right\} \\
\forall i = n, n-1, \dots, 1
\end{cases}$$

conocida como la iteración de Gauss-Seidel hacia atrás.

Ejemplo

Considere nuevamente el sistema lineal:

$$\begin{cases}
4x_1 + x_2 - x_3 &= 12 \\
-x_1 + 3x_2 + x_3 &= -8 \\
2x_1 + 2x_2 + 5x_3 &= 14
\end{cases}$$

Utilice el método de Gauss-Seidel hacia adelante con una tolerancia de al menos 0.02. Use la norma infinito y la aproximación inicial $(1,1,1)^{t}$.

Para iniciar, se tiene que:

$$\begin{cases} x_1 &= \frac{1}{4}(12 - x_2 + x_3) \\ x_2 &= \frac{1}{3}(-8 + x_1 - x_3) \\ x_3 &= \frac{1}{5}(14 - 2x_1 - 2x_2) \end{cases}$$

de esta forma, se sigue el método:

Ahora, utilizando $\mathbf{x}^{(0)} := (1, 1, 1)^{\mathsf{t}}$, se sigue que:

• Iteración k = 0

$$\begin{cases} x_1^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_2^{(1)} &= \frac{1}{3}(-8 + 3 - 1) = -2 \\ x_3^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3 - 2 \cdot (-2)) = 2.4 \end{cases}$$

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3 \\ -2 \\ 2.4 \end{pmatrix}$$

Ahora, utilizando $\mathbf{x}^{(0)} := (1, 1, 1)^{\mathsf{t}}$, se sigue que:

• Iteración k = 0

$$\begin{cases} x_1^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_2^{(1)} &= \frac{1}{3}(-8 + 3 - 1) = -2 \\ x_3^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3 - 2 \cdot (-2)) = 2.4 \end{cases}$$

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3 \\ -2 \\ 2.4 \end{pmatrix}$$

Ahora, utilizando $\mathbf{x}^{(0)} := (1, 1, 1)^{\mathsf{t}}$, se sigue que:

• Iteración k=0

$$\begin{cases} x_1^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_2^{(1)} &= \frac{1}{3}(-8 + 3 - 1) = -2 \\ x_3^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3 - 2 \cdot (-2)) = 2.4 \end{cases}$$

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3 \\ -2 \\ 2.4 \end{pmatrix}$$

Ahora, utilizando $\mathbf{x}^{(0)} := (1, 1, 1)^{\mathsf{t}}$, se sigue que:

• Iteración k=0

$$\begin{cases} x_1^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_2^{(1)} &= \frac{1}{3}(-8 + 3 - 1) = -2 \\ x_3^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3 - 2 \cdot (-2)) = 2.4 \end{cases}$$

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3 \\ -2 \\ 2.4 \end{pmatrix}$$

Error: Nótese que $tol \|\mathbf{b}\|_{\infty} = 0.02 \cdot 14 = 0.28$, y luego:

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 2.4 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} 4.4 \\ -1.4 \\ 0 \end{pmatrix} \right\|_{\infty}$$

$$= 4.4 \not< 0.28$$
(Se sigue)

• Iteración k=1

$$\begin{cases} x_1^{(2)} &= \frac{1}{4}(12 - (-2) + 2.4) = 4.1 \\ x_2^{(2)} &= \frac{1}{3}(-8 + 4.1 - 2.4) = -2.1 \\ x_3^{(2)} &= \frac{1}{5}(14 - 2 \cdot 4.1 - 2 \cdot (-2.1)) = 2 \end{cases}$$

$$\mathbf{x}^{(2)} = \begin{pmatrix} 4.1 \\ -2.1 \\ 2 \end{pmatrix}$$

• Iteración k=1

$$\begin{cases} x_1^{(2)} &= \frac{1}{4}(12 - (-2) + 2.4) = 4.1 \\ x_2^{(2)} &= \frac{1}{3}(-8 + 4.1 - 2.4) = -2.1 \\ x_3^{(2)} &= \frac{1}{5}(14 - 2 \cdot 4.1 - 2 \cdot (-2.1)) = 2 \end{cases}$$

$$\mathbf{x}^{(2)} = \begin{pmatrix} 4.1 \\ -2.1 \\ 2 \end{pmatrix}$$

• Iteración k=1

$$\begin{cases} x_1^{(2)} &= \frac{1}{4}(12 - (-2) + 2.4) = 4.1 \\ x_2^{(2)} &= \frac{1}{3}(-8 + 4.1 - 2.4) = -2.1 \\ x_3^{(2)} &= \frac{1}{5}(14 - 2 \cdot 4.1 - 2 \cdot (-2.1)) = 2 \end{cases}$$

$$\mathbf{x}^{(2)} = \begin{pmatrix} 4.1 \\ -2.1 \\ 2 \end{pmatrix}$$

• Iteración k=1

$$\begin{cases} x_1^{(2)} &= \frac{1}{4}(12 - (-2) + 2.4) = 4.1 \\ x_2^{(2)} &= \frac{1}{3}(-8 + 4.1 - 2.4) = -2.1 \\ x_3^{(2)} &= \frac{1}{5}(14 - 2 \cdot 4.1 - 2 \cdot (-2.1)) = 2 \end{cases}$$

$$\mathbf{x}^{(2)} = \begin{pmatrix} 4.1 \\ -2.1 \\ 2 \end{pmatrix}$$

Error:

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 4.1 \\ -2.1 \\ 2 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -0.3 \\ 0.4 \\ 0 \end{pmatrix} \right\|_{\infty}$$

$$= 0.4 \not< 0.28$$
(Se sigue)

• Iteración k=2

$$\begin{cases} x_1^{(3)} &= \frac{1}{4}(12 - (-2.1) + 2) = 4.025 \\ x_2^{(3)} &= \frac{1}{3}(-8 + 4.025 - 2) = -1.9917 \\ x_3^{(3)} &= \frac{1}{5}(14 - 2 \cdot 4.025 - 2 \cdot (-1.9917)) = 1.9867 \end{cases}$$

$$\mathbf{x}^{(3)} = \begin{pmatrix} 4.025 \\ -1.9917 \\ 1.9867 \end{pmatrix}$$

• Iteración k=2

$$\begin{cases} x_1^{(3)} &= \frac{1}{4}(12 - (-2.1) + 2) = 4.025 \\ x_2^{(3)} &= \frac{1}{3}(-8 + 4.025 - 2) = -1.9917 \\ x_3^{(3)} &= \frac{1}{5}(14 - 2 \cdot 4.025 - 2 \cdot (-1.9917)) = 1.9867 \end{cases}$$

$$\mathbf{x}^{(3)} = \begin{pmatrix} 4.025 \\ -1.9917 \\ 1.9867 \end{pmatrix}$$

• Iteración k=2

$$\begin{cases} x_1^{(3)} &= \frac{1}{4}(12 - (-2.1) + 2) = 4.025 \\ x_2^{(3)} &= \frac{1}{3}(-8 + 4.025 - 2) = -1.9917 \\ x_3^{(3)} &= \frac{1}{5}(14 - 2 \cdot 4.025 - 2 \cdot (-1.9917)) = 1.9867 \end{cases}$$

$$\mathbf{x}^{(3)} = \begin{pmatrix} 4.025 \\ -1.9917 \\ 1.9867 \end{pmatrix}$$

• Iteración k=2

$$\begin{cases} x_1^{(3)} &= \frac{1}{4}(12 - (-2.1) + 2) = 4.025 \\ x_2^{(3)} &= \frac{1}{3}(-8 + 4.025 - 2) = -1.9917 \\ x_3^{(3)} &= \frac{1}{5}(14 - 2 \cdot 4.025 - 2 \cdot (-1.9917)) = 1.9867 \end{cases}$$

$$\mathbf{x}^{(3)} = \begin{pmatrix} 4.025 \\ -1.9917 \\ 1.9867 \end{pmatrix}$$

Error:

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 4.025 \\ -1.9917 \\ 1.9867 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -0.1216 \\ 0.0134 \\ -0.0001 \end{pmatrix} \right\|_{\infty}$$

$$= 0.1216 < 0.28$$
(Se detiene)

Finalmente, el error relativo viene dado por:

$$\frac{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} 4.025 \\ -1.9917 \\ 1.9867 \end{pmatrix} \right\|_{\infty}}{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} \right\|_{\infty}} = \frac{\left\| \begin{pmatrix} -0.025 \\ -0.0083 \\ 0.0133 \end{pmatrix} \right\|_{\infty}}{4}$$

$$= \frac{0.025}{4}$$

$$= 0.00625$$

Convergencia de Gauss-Seidel #1

Teorema

Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es estrictamente diagonal dominante, entonces la iteración de Gauss-Seidel converge hacia la solución de $\mathbf{A}\mathbf{x} = \mathbf{b}$, para todo $\mathbf{b} \in \mathbb{R}^n$ y para todo $\mathbf{x}^{(0)} \in \mathbb{R}^n$.

Convergencia de Gauss-Seidel #2

Teorema

Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es simétrica definida positiva, entonces la iteración de Gauss-Seidel converge hacia la solución de $\mathbf{A}\mathbf{x} = \mathbf{b}$, para todo $\mathbf{b} \in \mathbb{R}^n$ y para todo $\mathbf{x}^{(0)} \in \mathbb{R}^n$.

Ejercicio

Ejercicio

Aproxime la solución del sistema lineal:

$$\begin{cases} 5x_1 + x_2 - x_3 &= -6 \\ x_1 + 5x_2 + x_3 &= 0 \\ -x_1 + x_2 + 5x_3 &= 6 \end{cases}$$

Utilice el método de Gauss-Seidel hacia atrás con una tolerancia de 0.01 con la norma infinito. Más aún, usando la solución $(-1,0,1)^{t}$, halle el error relativo de su aproximación final.

Ejercicio

Ejercicio para la casa (II Examen, IC-2018)

Dado $\alpha \in \mathbb{R} \setminus \{0\}$, considere el siguiente sistema lineal:

$$\begin{cases}
\alpha x_1 + x_2 + \alpha x_3 &= 1 \\
x_1 + 4x_2 + x_3 &= 2 \\
x_1 + \alpha x_3 &= 3
\end{cases} (\star)$$

- a) ¿Existe algún valor de α , tal que la matriz del sistema (*) sea estrictamente diagonal dominante? Justifique su respuesta.
- b) Realice dos iteraciones del método de Gauss-Seidel hacia adelante, con $\mathbf{x}^{(0)} = (1,1,1)^{t}$, para hallar una aproximación a la solución del sistema (\star).

Organización de la presentación

- Introducción
- 2 Iteración de Jacobi
- 3 Iteración de Gauss-Seidel
- 4 Iteración de SOR

En el método de Gauss-Seidel, cuando se calcula $x_i^{(k+1)}$, se deja de usar $x_i^{(k)}$ para usar $x_i^{(k+1)}$, debido a que la nueva aproximación se considera mejor por ser más reciente.

¿Pero es realmente la nueva aproximación, mejor que la previa?

En el método de Gauss-Seidel, cuando se calcula $x_i^{(k+1)}$, se deja de usar $x_i^{(k)}$ para usar $x_i^{(k+1)}$, debido a que la nueva aproximación se considera mejor por ser más reciente.

¿Pero es realmente la nueva aproximación, mejor que la previa?

Introducción

La verdad es que no es posible garantizar que la nueva aproximación, de una componente de la solución, es mejor que la previa. Esto debido a que el método de Gauss-Seidel mejorar el vector completo y no necesariamente cada una de las entradas de este.

Por tal razón, es natural considerar un promedio ponderado entre la nueva aproximación con la previa. Es decir, dado $\omega \in \mathbb{R} \setminus \{0\}$ se puede considerar en cada iteración:

$$(1-\omega)x_i^{(k)} + \omega x_i^{(k+1)}$$

Introducción

La verdad es que no es posible garantizar que la nueva aproximación, de una componente de la solución, es mejor que la previa. Esto debido a que el método de Gauss-Seidel mejorar el vector completo y no necesariamente cada una de las entradas de este.

Por tal razón, es natural considerar un promedio ponderado entre la nueva aproximación con la previa. Es decir, dado $\omega \in \mathbb{R} \setminus \{0\}$ se puede considerar en cada iteración:

$$(1-\omega)x_i^{(k)} + \omega x_i^{(k+1)}$$

Método de SOR

De acuerdo con lo anterior, en general se obtiene la iteración:

$$\begin{cases}
\mathbf{x}^{(0)} \ \mathbf{y} \ \omega \in \mathbb{R} \setminus \{0\} \ \text{dados} \\
\text{Para } k = 0, 1, 2, \dots, \text{ hasta converger, hacer:} \\
\widehat{x}_i^{(k+1)} = \frac{1}{a_{ii}} \left\{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right\} \\
x_i^{(k+1)} = (1 - \omega) x_i^{(k)} + \omega \widehat{x}_i^{(k+1)} \\
\forall i = 1, 2, \dots, n
\end{cases}$$

conocida como la iteración de sobrerelajación hacia adelante, o bien, la iteración de SOR hacia adelante.

Método de SOR

De acuerdo con lo anterior, en general se obtiene la iteración:

$$\begin{cases}
\mathbf{x}^{(0)} \ \mathbf{y} \ \omega \in \mathbb{R} \setminus \{0\} \ \text{dados} \\
\text{Para } k = 0, 1, 2, \dots, \text{ hasta converger, hacer:} \\
\widehat{x}_i^{(k+1)} = \frac{1}{a_{ii}} \left\{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k+1)} \right\} \\
x_i^{(k+1)} = (1 - \omega) x_i^{(k)} + \omega \widehat{x}_i^{(k+1)} \\
\forall i = n, n-1, \dots, 1
\end{cases}$$

conocida como la iteración de sobrerelajación hacia atrás, o bien, la iteración de SOR hacia atrás.

Convergencia del método de SOR

Teorema (Ostrowski-Reich)

Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es simétrica definida positiva y $0 < \omega < 2$, entonces la iteración de SOR converge hacia la solución de $\mathbf{A}\mathbf{x} = \mathbf{b}$, para todo $\mathbf{b} \in \mathbb{R}^n$ y para todo $\mathbf{x}^{(0)} \in \mathbb{R}^n$.

Observación: En el caso de $\omega=1$, considerado en el teorema previo, el método de SOR es exactamente el método de Gauss-Seidel.

Convergencia del método de SOR

Teorema (Ostrowski-Reich)

Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es simétrica definida positiva y $0 < \omega < 2$, entonces la iteración de SOR converge hacia la solución de $\mathbf{A}\mathbf{x} = \mathbf{b}$, para todo $\mathbf{b} \in \mathbb{R}^n$ y para todo $\mathbf{x}^{(0)} \in \mathbb{R}^n$.

Observación: En el caso de $\omega=1$, considerado en el teorema previo, el método de SOR es exactamente el método de Gauss-Seidel.

Considere nuevamente el sistema lineal:

$$\begin{cases}
4x_1 + x_2 - x_3 &= 12 \\
-x_1 + 3x_2 + x_3 &= -8 \\
2x_1 + 2x_2 + 5x_3 &= 14
\end{cases}$$

Utilice el método de SOR hacia adelante con $\omega = 1.2$ y una tolerancia de al menos 0.02. Use la norma infinito y la aproximación inicial $(1,1,1)^{t}$.

Usando $\mathbf{x}^{(0)} := (1,1,1)^{\mathsf{t}}$ y $\omega = 1.2 \Rightarrow 1 - \omega = -0.2$, se sigue que:

$$\begin{cases}
\widehat{x}_{1}^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\
x_{1}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 3 = 3.4 \\
\widehat{x}_{2}^{(1)} &= \frac{1}{3}(-8 + 3.4 - 1) = -1.8667 \\
x_{2}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot (-1.8667) = -2.44 \\
\widehat{x}_{3}^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3.4 - 2 \cdot (-2.44)) = 2.416 \\
x_{3}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 2.416 = 2.6992
\end{cases}$$

Usando $\mathbf{x}^{(0)} := (1,1,1)^{\mathsf{t}}$ y $\omega = 1.2 \Rightarrow 1 - \omega = -0.2$, se sigue que:

$$\begin{cases} \widehat{x}_{1}^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_{1}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 3 = 3.4 \\ \\ \widehat{x}_{2}^{(1)} &= \frac{1}{3}(-8 + 3.4 - 1) = -1.8667 \\ x_{2}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot (-1.8667) = -2.44 \\ \\ \widehat{x}_{3}^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3.4 - 2 \cdot (-2.44)) = 2.416 \\ x_{3}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 2.416 = 2.6992 \end{cases}$$

Usando $\mathbf{x}^{(0)} := (1,1,1)^{\mathsf{t}}$ y $\omega = 1.2 \Rightarrow 1 - \omega = -0.2$, se sigue que:

$$\begin{cases} \widehat{x}_{1}^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_{1}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 3 = 3.4 \\ \\ \widehat{x}_{2}^{(1)} &= \frac{1}{3}(-8 + 3.4 - 1) = -1.8667 \\ x_{2}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot (-1.8667) = -2.44 \\ \\ \widehat{x}_{3}^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3.4 - 2 \cdot (-2.44)) = 2.416 \\ x_{3}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 2.416 = 2.6992 \end{cases}$$

Usando $\mathbf{x}^{(0)} := (1,1,1)^{\mathsf{t}}$ y $\omega = 1.2 \Rightarrow 1 - \omega = -0.2$, se sigue que:

$$\begin{cases} \widehat{x}_{1}^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_{1}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 3 = 3.4 \\ \\ \widehat{x}_{2}^{(1)} &= \frac{1}{3}(-8 + 3.4 - 1) = -1.8667 \\ x_{2}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot (-1.8667) = -2.44 \\ \\ \widehat{x}_{3}^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3.4 - 2 \cdot (-2.44)) = 2.416 \\ x_{3}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 2.416 = 2.6992 \end{cases}$$

Usando $\mathbf{x}^{(0)} := (1,1,1)^{\mathsf{t}}$ y $\omega = 1.2 \Rightarrow 1 - \omega = -0.2$, se sigue que:

$$\begin{cases} \widehat{x}_{1}^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_{1}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 3 = 3.4 \\ \widehat{x}_{2}^{(1)} &= \frac{1}{3}(-8 + 3.4 - 1) = -1.8667 \\ x_{2}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot (-1.8667) = -2.44 \\ \widehat{x}_{3}^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3.4 - 2 \cdot (-2.44)) = 2.416 \\ x_{3}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 2.416 = 2.6992 \end{cases}$$

Usando $\mathbf{x}^{(0)} := (1,1,1)^{\mathsf{t}}$ y $\omega = 1.2 \Rightarrow 1 - \omega = -0.2$, se sigue que:

$$\begin{cases} \hat{x}_{1}^{(1)} &= \frac{1}{4}(12 - 1 + 1) = 3 \\ x_{1}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 3 = 3.4 \\ \hat{x}_{2}^{(1)} &= \frac{1}{3}(-8 + 3.4 - 1) = -1.8667 \\ x_{2}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot (-1.8667) = -2.44 \\ \hat{x}_{3}^{(1)} &= \frac{1}{5}(14 - 2 \cdot 3.4 - 2 \cdot (-2.44)) = 2.416 \\ x_{3}^{(1)} &= (-0.2) \cdot 1 + (1.2) \cdot 2.416 = 2.6992 \end{cases}$$

Se obtiene que:

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3.4 \\ -2.44 \\ 2.6992 \end{pmatrix}$$

Error: (Recuerde que $tol \|\mathbf{b}\|_{\infty} = 0.28$)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3.4 \\ -2.44 \\ 2.6992 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} 3.5392 \\ 0.0208 \\ -1.416 \end{pmatrix} \right\|_{\infty}$$

$$= 3.5392 \not< 0.28$$
(Se sigue)

Se obtiene que:

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3.4 \\ -2.44 \\ 2.6992 \end{pmatrix}$$

Error: (Recuerde que $tol \|\mathbf{b}\|_{\infty} = 0.28$)

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3.4 \\ -2.44 \\ 2.6992 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} 3.5392 \\ 0.0208 \\ -1.416 \end{pmatrix} \right\|_{\infty}$$

$$= 3.5392 \not< 0.28$$
(Se sigue)

$$\begin{cases} \widehat{x}_{1}^{(2)} &= \frac{1}{4}(12 - (-2.44) + 2.6992) = 4.2848 \\ x_{1}^{(2)} &= (-0.2) \cdot 3.4 + (1.2) \cdot 4.2848 = 4.4618 \\ \widehat{x}_{2}^{(2)} &= \frac{1}{3}(-8 + 4.4618 - 2.6992) = -2.0791 \\ x_{2}^{(2)} &= (-0.2) \cdot (-2.44) + (1.2) \cdot (-2.0791) = -2.0069 \\ \widehat{x}_{3}^{(2)} &= \frac{1}{5}(14 - 2 \cdot 4.4618 - 2 \cdot (-2.0069)) = 1.818 \\ x_{3}^{(2)} &= (-0.2) \cdot 2.6992 + (1.2) \cdot 1.818 = 1.6418 \end{cases}$$

$$\begin{cases} \widehat{x}_{1}^{(2)} &= \frac{1}{4}(12 - (-2.44) + 2.6992) = 4.2848 \\ x_{1}^{(2)} &= (-0.2) \cdot 3.4 + (1.2) \cdot 4.2848 = 4.4618 \\ \widehat{x}_{2}^{(2)} &= \frac{1}{3}(-8 + 4.4618 - 2.6992) = -2.0791 \\ x_{2}^{(2)} &= (-0.2) \cdot (-2.44) + (1.2) \cdot (-2.0791) = -2.0069 \\ \widehat{x}_{3}^{(2)} &= \frac{1}{5}(14 - 2 \cdot 4.4618 - 2 \cdot (-2.0069)) = 1.818 \\ x_{3}^{(2)} &= (-0.2) \cdot 2.6992 + (1.2) \cdot 1.818 = 1.6418 \end{cases}$$

$$\begin{cases} \widehat{x}_{1}^{(2)} &= \frac{1}{4}(12 - (-2.44) + 2.6992) = 4.2848 \\ x_{1}^{(2)} &= (-0.2) \cdot 3.4 + (1.2) \cdot 4.2848 = 4.4618 \\ \widehat{x}_{2}^{(2)} &= \frac{1}{3}(-8 + 4.4618 - 2.6992) = -2.0791 \\ x_{2}^{(2)} &= (-0.2) \cdot (-2.44) + (1.2) \cdot (-2.0791) = -2.0069 \\ \widehat{x}_{3}^{(2)} &= \frac{1}{5}(14 - 2 \cdot 4.4618 - 2 \cdot (-2.0069)) = 1.818 \\ x_{3}^{(2)} &= (-0.2) \cdot 2.6992 + (1.2) \cdot 1.818 = 1.6418 \end{cases}$$

Se obtiene que:

$$\mathbf{x}^{(2)} = \begin{pmatrix} 4.4618 \\ -2.0069 \\ 1.6418 \end{pmatrix}$$

Error:

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 4.4618 \\ -2.0069 \\ 1.6418 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -2.1985 \\ 0.8407 \\ 0.8812 \end{pmatrix} \right\|_{\infty}$$

$$= 2.1985 \not< 0.28$$
(Se signe)

Se obtiene que:

$$\mathbf{x}^{(2)} = \begin{pmatrix} 4.4618 \\ -2.0069 \\ 1.6418 \end{pmatrix}$$

Error:

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 4.4618 \\ -2.0069 \\ 1.6418 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -2.1985 \\ 0.8407 \\ 0.8812 \end{pmatrix} \right\|_{\infty}$$

$$= 2.1985 \not< 0.28$$
(Se sigue)

$$\begin{cases} \widehat{x}_{1}^{(3)} &= \frac{1}{4}(12 - (-2.0069) + 1.6418) = 3.9122 \\ x_{1}^{(3)} &= (-0.2) \cdot 4.4618 + (1.2) \cdot 3.9122 = 3.8023 \\ \widehat{x}_{2}^{(3)} &= \frac{1}{3}(-8 + 3.8023 - 1.6418) = -1.9465 \\ x_{2}^{(3)} &= (-0.2) \cdot (-2.0069) + (1.2) \cdot (-1.9465) = -1.9344 \\ \widehat{x}_{3}^{(3)} &= \frac{1}{5}(14 - 2 \cdot 3.8023 - 2 \cdot (-1.9344)) = 2.0528 \\ x_{3}^{(3)} &= (-0.2) \cdot 1.6418 + (1.2) \cdot 2.0528 = 2.135 \end{cases}$$

$$\begin{cases} \widehat{x}_{1}^{(3)} &= \frac{1}{4}(12 - (-2.0069) + 1.6418) = 3.9122 \\ x_{1}^{(3)} &= (-0.2) \cdot 4.4618 + (1.2) \cdot 3.9122 = 3.8023 \\ \widehat{x}_{2}^{(3)} &= \frac{1}{3}(-8 + 3.8023 - 1.6418) = -1.9465 \\ x_{2}^{(3)} &= (-0.2) \cdot (-2.0069) + (1.2) \cdot (-1.9465) = -1.9344 \\ \widehat{x}_{3}^{(3)} &= \frac{1}{5}(14 - 2 \cdot 3.8023 - 2 \cdot (-1.9344)) = 2.0528 \\ x_{3}^{(3)} &= (-0.2) \cdot 1.6418 + (1.2) \cdot 2.0528 = 2.135 \end{cases}$$

$$\begin{cases} \widehat{x}_{1}^{(3)} &= \frac{1}{4}(12 - (-2.0069) + 1.6418) = 3.9122 \\ x_{1}^{(3)} &= (-0.2) \cdot 4.4618 + (1.2) \cdot 3.9122 = 3.8023 \\ \widehat{x}_{2}^{(3)} &= \frac{1}{3}(-8 + 3.8023 - 1.6418) = -1.9465 \\ x_{2}^{(3)} &= (-0.2) \cdot (-2.0069) + (1.2) \cdot (-1.9465) = -1.9344 \\ \widehat{x}_{3}^{(3)} &= \frac{1}{5}(14 - 2 \cdot 3.8023 - 2 \cdot (-1.9344)) = 2.0528 \\ x_{3}^{(3)} &= (-0.2) \cdot 1.6418 + (1.2) \cdot 2.0528 = 2.135 \end{cases}$$

Se obtiene que:

$$\mathbf{x}^{(3)} = \begin{pmatrix} 3.8023 \\ -1.9344 \\ 2.135 \end{pmatrix}$$

Error:

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3.8023 \\ -1.9344 \\ 2.135 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} 0.8602 \\ -0.5295 \\ -0.4108 \end{pmatrix} \right\|_{\infty}$$

$$= 0.8602 \not< 0.28$$
(Se sigue)

Se obtiene que:

$$\mathbf{x}^{(3)} = \begin{pmatrix} 3.8023 \\ -1.9344 \\ 2.135 \end{pmatrix}$$

Error:

$$\begin{cases} \hat{x}_{1}^{(4)} = \frac{1}{4}(12 - (-1.9344) + 2.135) = 4.0174 \\ x_{1}^{(4)} = (-0.2) \cdot 3.8023 + (1.2) \cdot 4.0174 = 4.0604 \\ \hat{x}_{2}^{(4)} = \frac{1}{3}(-8 + 4.0604 - 2.135) = -2.0249 \\ x_{2}^{(4)} = (-0.2) \cdot (-1.9344) + (1.2) \cdot (-2.0249) = -2.043 \\ \hat{x}_{3}^{(4)} = \frac{1}{5}(14 - 2 \cdot 4.0604 - 2 \cdot (-2.043)) = 1.993 \\ x_{3}^{(4)} = (-0.2) \cdot 2.135 + (1.2) \cdot 1.993 = 1.9646 \end{cases}$$

$$\begin{cases} \widehat{x}_{1}^{(4)} &= \frac{1}{4}(12 - (-1.9344) + 2.135) = 4.0174 \\ x_{1}^{(4)} &= (-0.2) \cdot 3.8023 + (1.2) \cdot 4.0174 = 4.0604 \\ \widehat{x}_{2}^{(4)} &= \frac{1}{3}(-8 + 4.0604 - 2.135) = -2.0249 \\ x_{2}^{(4)} &= (-0.2) \cdot (-1.9344) + (1.2) \cdot (-2.0249) = -2.043 \\ \widehat{x}_{3}^{(4)} &= \frac{1}{5}(14 - 2 \cdot 4.0604 - 2 \cdot (-2.043)) = 1.993 \\ x_{3}^{(4)} &= (-0.2) \cdot 2.135 + (1.2) \cdot 1.993 = 1.9646 \end{cases}$$

$$\begin{cases} \widehat{x}_{1}^{(4)} &= \frac{1}{4}(12 - (-1.9344) + 2.135) = 4.0174 \\ x_{1}^{(4)} &= (-0.2) \cdot 3.8023 + (1.2) \cdot 4.0174 = 4.0604 \\ \widehat{x}_{2}^{(4)} &= \frac{1}{3}(-8 + 4.0604 - 2.135) = -2.0249 \\ x_{2}^{(4)} &= (-0.2) \cdot (-1.9344) + (1.2) \cdot (-2.0249) = -2.043 \\ \widehat{x}_{3}^{(4)} &= \frac{1}{5}(14 - 2 \cdot 4.0604 - 2 \cdot (-2.043)) = 1.993 \\ x_{3}^{(4)} &= (-0.2) \cdot 2.135 + (1.2) \cdot 1.993 = 1.9646 \end{cases}$$

Se obtiene que:

$$\mathbf{x}^{(4)} = \begin{pmatrix} 4.0604 \\ -2.043 \\ 1.9646 \end{pmatrix}$$

Error:

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 4.0604 \\ -2.043 \\ 1.9646 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -0.234 \\ 0.2248 \\ 0.1422 \end{pmatrix} \right\|_{\infty}$$

$$= 0.234 < 0.28$$
(Se detiene)

Se obtiene que:

$$\mathbf{x}^{(4)} = \begin{pmatrix} 4.0604 \\ -2.043 \\ 1.9646 \end{pmatrix}$$

Error:

$$\left\| \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} - \begin{pmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 4.0604 \\ -2.043 \\ 1.9646 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -0.234 \\ 0.2248 \\ 0.1422 \end{pmatrix} \right\|_{\infty}$$

$$= 0.234 < 0.28$$
(Se detiene)

Finalmente, el error relativo viene dado por:

$$\frac{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} 4.0604 \\ -2.043 \\ 1.9646 \end{pmatrix} \right\|_{\infty}}{\left\| \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} \right\|_{\infty}} = \frac{\left\| \begin{pmatrix} -0.0604 \\ 0.043 \\ 0.0354 \end{pmatrix} \right\|_{\infty}}{4}$$

$$= \frac{0.0604}{4}$$

$$= 0.0151$$

Observación

Considere el sistema lineal $\mathbf{A}\mathbf{x} = \mathbf{b}$, el cual se desea resolver mediante el método de SOR. Para ello, es necesario definir un valor de ω , donde para cierto tipo particular de matrices (matrices consistentemente ordenadas), se tiene un valor óptimo de ω definido como:

$$\omega_{\text{opt}} := \frac{2}{1 + \sqrt{1 - \left[\lambda_{\text{máx}}(\mathbf{I} - \mathbf{D}^{-1}\mathbf{A})\right]^2}}$$

donde \mathbf{D} es la matriz diagonal formada por la entradas de la diagonal de \mathbf{A} , \mathbf{I} es la matriz identidad y $\lambda_{\max}(\cdot)$ corresponde al mayor valor propio de una matriz.

Dada la matriz:

$$\mathbf{A} := \begin{pmatrix} 4 & 1 & -1 \\ 3 & 3 & -6 \\ -3 & 6 & 5 \end{pmatrix},$$

$$\mathbf{B} := \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 4 & 1 & -1 \\ 3 & 3 & -6 \\ -3 & 6 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -\frac{1}{4} & \frac{1}{4} \\ -1 & 0 & 2 \\ \frac{3}{2} & -\frac{6}{5} & 0 \end{pmatrix}$$

Dada la matriz:

$$\mathbf{A} := \begin{pmatrix} 4 & 1 & -1 \\ 3 & 3 & -6 \\ -3 & 6 & 5 \end{pmatrix},$$

$$\mathbf{B} := \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 4 & 1 & -1 \\ 3 & 3 & -6 \\ -3 & 6 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -\frac{1}{4} & \frac{1}{4} \\ -1 & 0 & 2 \\ \frac{3}{2} & -\frac{6}{2} & 0 \end{pmatrix}$$

Dada la matriz:

$$\mathbf{A} := \begin{pmatrix} 4 & 1 & -1 \\ 3 & 3 & -6 \\ -3 & 6 & 5 \end{pmatrix},$$

$$\mathbf{B} := \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 4 & 1 & -1 \\ 3 & 3 & -6 \\ -3 & 6 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -\frac{1}{4} & \frac{1}{4} \\ -1 & 0 & 2 \\ \frac{3}{2} & -\frac{6}{5} & 0 \end{pmatrix}$$

Dada la matriz:

$$\mathbf{A} := \begin{pmatrix} 4 & 1 & -1 \\ 3 & 3 & -6 \\ -3 & 6 & 5 \end{pmatrix},$$

$$\mathbf{B} := \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 4 & 1 & -1 \\ 3 & 3 & -6 \\ -3 & 6 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -\frac{1}{4} & \frac{1}{4} \\ -1 & 0 & 2 \\ \frac{3}{5} & -\frac{6}{5} & 0 \end{pmatrix}$$

Luego, para determinar los valores propios de ${\bf B}$, se considera el polinomio característico:

$$|\mathbf{B} - \lambda \mathbf{I}| = \begin{vmatrix} -\lambda & -\frac{1}{4} & \frac{1}{4} \\ -1 & -\lambda & 2 \\ \frac{3}{5} & -\frac{6}{5} & -\lambda \end{vmatrix} = -\lambda^3 - 2\lambda$$
$$= -\lambda(\lambda^2 + 2) = -\lambda(\lambda - \sqrt{2}i)(\lambda + \sqrt{2}i)$$

de donde se deduce que el espectro de B viene dado por:

$$\sigma(\mathbf{B}) = \{0, \sqrt{2}i, -\sqrt{2}i\}.$$

Ejemplo |

Luego, para determinar los valores propios de ${\bf B}$, se considera el polinomio característico:

$$|\mathbf{B} - \lambda \mathbf{I}| = \begin{vmatrix} -\lambda & -\frac{1}{4} & \frac{1}{4} \\ -1 & -\lambda & 2 \\ \frac{3}{5} & -\frac{6}{5} & -\lambda \end{vmatrix} = -\lambda^3 - 2\lambda$$
$$= -\lambda(\lambda^2 + 2) = -\lambda(\lambda - \sqrt{2}i)(\lambda + \sqrt{2}i)$$

de donde se deduce que el espectro de ${f B}$ viene dado por:

$$\sigma(\mathbf{B}) = \{0, \sqrt{2}i, -\sqrt{2}i\}.$$

Así, nótese que $\lambda_{\text{máx}}(\mathbf{B}) = \sqrt{2}i$, por lo que el valor óptimo para ω , se calcula como sigue:

$$\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - (\sqrt{2}i)^2}} = \frac{2}{1 + \sqrt{1 + 2}}$$
$$= \frac{2}{1 + \sqrt{3}} \cdot \frac{1 - \sqrt{3}}{1 - \sqrt{3}} = \sqrt{3} - 1$$

donde se obtiene $\omega_{\rm opt} = \sqrt{3} - 1 \approx 0.7321$.

Así, nótese que $\lambda_{\text{máx}}(\mathbf{B}) = \sqrt{2}i$, por lo que el valor óptimo para ω , se calcula como sigue:

$$\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - (\sqrt{2}i)^2}} = \frac{2}{1 + \sqrt{1 + 2}}$$
$$= \frac{2}{1 + \sqrt{3}} \cdot \frac{1 - \sqrt{3}}{1 - \sqrt{3}} = \sqrt{3} - 1$$

donde se obtiene $\omega_{\rm opt} = \sqrt{3} - 1 \approx 0.7321$.

Ejercicio

Ejercicio para la casa

Usando ω_{opt} previamente calculado, utilice el método de SOR hacia atrás para resolver el sistema lineal:

$$\begin{cases} 4x_1 + x_2 - x_3 = 4 \\ 3x_1 + 3x_2 - 6x_3 = 0 \\ -3x_1 + 6x_2 + 5x_3 = 8 \end{cases}$$

con una tolerancia menor a 10^{-2} con la norma-2.