

(4)

AD-A212 268

DTIC FILE COPY

TECHNICAL REPORT BRL-TR-3044

BRL

EXTENDED BASIS SET CALCULATIONS
OF ATOMIZATION ENERGIES: COMPARISON
OF ISOGYRIC AND DIRECT RESULTS

GEORGE F. ADAMS
MARY M. GALLO (U OF GA)
MICHAEL J. PAGE (NRL)

SEPTEMBER 1989

DTIC
ELECTED
SEP 12 1989
S E D

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

89 9 12 052

DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commerical product.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS		
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.		
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE				
4. PERFORMING ORGANIZATION REPORT NUMBER(S) BRL-TR-3044		5. MONITORING ORGANIZATION REPORT NUMBER(S)		
6a. NAME OF PERFORMING ORGANIZATION US Army Ballistic Research Laboratory	6b. OFFICE SYMBOL (If applicable) SLCBR- IB	7a. NAME OF MONITORING ORGANIZATION		
6c. ADDRESS (City, State, and ZIP Code) Aberdeen Proving Ground, MD 21005-5066		7b. ADDRESS (City, State, and ZIP Code)		
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER		
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS		
		PROGRAM ELEMENT NO 61102A	PROJECT NO AH43	TASK NO.
		WORK UNIT ACCESSION NO		
11. TITLE (Include Security Classification) EXTENDED BASIS SET CALCULATIONS OF ATOMIZATION ENERGIES: COMPARISON OF ISOGYRIC AND DIRECT RESULTS				
12. PERSONAL AUTHOR(S) George F. Adams, Mary M. Gallo*, Michael J. Page**				
13a. TYPE OF REPORT Final	13b. TIME COVERED FROM Jan 88 TO Feb 89	14. DATE OF REPORT (Year, Month, Day)		15. PAGE COUNT
16. SUPPLEMENTARY NOTATION University of Georgia, **Naval Research Laboratory Published in Proceedings, 1988 JANNAF Combustion Meeting				
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Heat of Formation, Moller-Plesset Perturbation Theory, Extended Basis Set		
FIELD 07	GROUP 04			
20	05			
19. ABSTRACT (Continue on reverse if necessary and identify by block number) We describe the results of a series of extended basis set Moller-Plesset perturbation theory calculations on a series of first row hydrides. Analysis of atomization energy predictions obtained employing the isogycric reaction technique demonstrates that third-order perturbation theory results are virtually indistinguishable from the results using a full fourth-order calculation. 7				
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION Unclassified		
22a. NAME OF RESPONSIBLE INDIVIDUAL DR. GEORGE F. ADAMS		22b. TELEPHONE (Include Area Code) 301-278-6197	22c. OFFICE SYMBOL SLCBR- IB-1	

TABLE OF CONTENTS

	<u>Page</u>
I. INTRODUCTION.....	5
II. METHODS.....	5
III. RESULTS.....	7
IV. DISCUSSION.....	9
ACKNOWLEDGEMENTS.....	11
REFERENCES.....	13
DISTRIBUTION LIST.....	15

Accession Per	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A-1	

I. INTRODUCTION

With the development of software efficiently implementing quantum chemical techniques that employ energy gradient and Hessian data, and the concurrent increase of access to modern supercomputers, systematic studies of molecular structures and properties have become routine. Recently, several groups have reported efforts to compute accurate values of molecular heats of formation. Pople and coworkers described a study of first-row hydrides using full fourth-order perturbation theory with a variety of basis sets.¹ In the same proceedings, Binkley and Frisch described results of perturbation theory studies of bond dissociation energies for a series of first-row diatomics.² The results described in these papers indicated that fourth-order perturbation theory calculations using extended basis sets provided generally excellent results for sigma-bonded systems, with less accurate results obtained for multiply bonded systems.

Subsequently, Page, et al., used a similar approach to evaluate the dimerization energy of borane.³ There were systematic differences among these studies that should be noted. Binkley and Frisch computed equilibrium structures using third-order perturbation theory, whereas the other calculations used structural parameters predicted at the Hartree-Fock level. Page, et al., employed an extended basis set when computing the energy, while the other authors approximated this extended basis set by assuming that the effects of individual basis set extensions were additive. Related to these efforts to predict molecular energies accurately, Handy and coworkers have published a series of papers that attempt to evaluate the success of various levels of theory in predicting the properties of molecules.^{4,5,6} Those computations all employed extended basis sets in order to isolate the effect of theoretical method from the effect of basis set deficiencies. This note describes the effects on computed atomization energies of variation in the theoretical model used to analyze extended basis set results. In particular, we focus on differences obtained when one uses either the isogyric analysis employed by Pople, et al.,¹ or the direct method of computation used in our previous reports.^{3,7} We also describe the application of isogyric analyses at several orders of perturbation theory.

II. METHODS

We report a series of Moller-Plesset perturbation theory calculations on small molecules. These calculations employ large atomic centered basis sets for the expansion of the molecular orbitals, beginning with the 6-311G basis designed for use with correlation theory methods.⁸ This basis is augmented by including diffuse functions, s-type for hydrogen and both s- and p-type for the first row atoms. Additionally three sets of functions in the first polarization space and one set in the second polarization space are added for each atom. For the largest molecule studied, diborane, the total number of basis functions is 186. Perturbation theory calculations were performed using the GAUSSIAN82 computer programs⁹ for structures optimized at the SCF level using the well-known double zeta plus polarization basis set.^{10,11} Structures for those compounds characterized by open-shell wavefunctions were computed using unrestricted Hartree-Fock wavefunctions. Harmonic frequencies were also computed using SCF methods with the DZP basis.

Results are reported for all three B_1 hydrides and diborane, as well as water, ammonia, hydroxyl radical, carbon monoxide, boron oxide, BO , and methane. The atomization energies of the compounds are evaluated in two ways. One technique computes directly the difference between the sum of the energies of the constituent atoms and the molecule's energy. That is, we compute the energy for the process,

Alternately, we evaluate the energy using the isogyric technique described by Pople, et al., in Reference 1. In this case, energies relative to that of the hydrogen molecule are computed using reactions for which the number of unpaired spins is conserved. This is equivalent to conserving the number of electron pairs among the species involved in the comparison. Knowing the number of unpaired electrons for a particular atomic ground state enables one to write isogyric comparisons with molecular hydrogen. For the BH molecule, one has,

Assuming that theory can predict the energy of a reaction producing an atom plus hydrogen molecule(s), then the precisely known value of the dissociation energy for the H_2^{12} can be used to give the value of D_e for the molecule of interest.

Our computations differ from those of Pople, et al., in several ways. The theoretical energies used in their analysis were obtained by improving the results of energies computed using fourth-order Moller-Plesset theory with the 6-311G** basis set. Initially, they estimated a correction to the correlation energy by using an extrapolation method that estimates the contribution made by orders of perturbation greater than four. The extrapolation procedure produced atomization energies that differed little from the fourth-order results. In some cases, agreement with experiment was poorer, an indication that the main source of error was the incompleteness of the basis set used to describe the molecular orbitals. Additionally, the fourth-order perturbation theory calculations ignored the energy contribution due to excitations of the electrons in the 1s core of the first row atoms. Most of our calculations do not make this approximation, but neither do we employ the extrapolation procedure to estimate the energy contribution obtained, perhaps, at higher orders of perturbation theory.

The basis set improvements in Reference 1 were evaluated incrementally; the effects of adding diffuse functions, polarization functions, and functions in the second polarization space were assumed to be additive. In the present case, all calculations are done with the extended basis set. Pople, et al., concluded that the addition of diffuse functions and second polarization functions had marked effects on the atomization energy calculation, but the effects of the first polarization functions were primarily equal for the atoms and the molecules.¹ If the effects of the basis set extensions were truly orthogonal, those results should closely mimic the data described here. Since it is unlikely that there is no cooperative effect, our approach should lead to slight differences with the incremental results.

In addition to the full fourth-order perturbation theory calculations, the diborane calculations were performed using the frozen core approximation. In order to obtain an indication of the effect of this approximation on the computed atomization energy, we have computed energies for several species using both a full perturbation theory calculation and the frozen core approximation. In addition, we have included the third-order perturbation theory results for each species. We anticipate the application of lower order perturbation theory results for larger molecules using semiempirical correction factors. Our goal here is to provide data on the application of this more approximate level of theory using extended basis sets.

III. RESULTS

We summarize the results of the perturbation theory calculations in Table 1. Our experience with the boranes indicated that extended basis set calculations yielded atomization energy predictions at third-order that were nearly equal to the full fourth-order perturbation theory predictions. With the data presented in this table, we can compare the third-order and fourth-order results over a larger class of compounds.

Table 1. Electronic Energy Results (Hartrees)

Molecule	Hartree-Fock	MP3	SDTO-MP4	SDTO-MP4(FC)
H	-0.49981	-0.49981	-0.49981	
B	-24.53108	-24.60644	-24.61167	-24.59308
C	-37.69025	-37.79163	-37.79638	-37.77642
N	-54.39889	-54.52976	-54.53302	-54.51173
O	-74.80934	-74.98919	-74.99316	-74.97094
H ₂	-1.13275	-1.17027	-1.17178	
BH	-25.12930	-25.23876	-25.24484	
BH ₂	-25.75976	-25.87763	-25.88193	
BH ₃	-26.39969	-26.55272	-26.55784	-26.53676
CH ₄	-40.21259	-40.45285	-40.46095	-40.43767
NH ₃	-56.21978	-56.49086	-56.50067	-56.47654
H ₂ O	-76.05931	-76.35067	-76.36215	-76.33811
OH	-75.41932	-75.65542	-75.66215	
BO	-99.55687	-99.89308	-99.91786	
O ₂	-149.67687	-150.14865	-150.17612	
B ₂ H ₆	-52.83425	-53.13056		-53.14242

Table 2 contains the data on all ten molecules studied. Both direct and isogyric predictions are reported for each molecule. In every case, the isogyric computation of the atomization energy, scaling with the known atomization energy of the hydrogen molecule, predicts a larger atomization energy than does the direct method of computation. The difference between the direct and isogyric comparison is equal to a multiple of the difference between the calculated atomization energy of the hydrogen molecule and the known value that we employ in our scaling.

Data comparing the results of full fourth-order atomization energy predictions with those obtained using third-order perturbation theory are presented in Table 3. Both direct and isogyric results are considered. The MP3 results preserve the energy difference between the direct and isogyric methods, although the magnitudes are greater than those obtained using the fourth-order data. For the hydrogen containing molecules, the energy differences between the third- and fourth-order results are not dramatically large, nor is the direction of the energy change constant. For the BO and O₂ molecules, on the other hand, the energy differences are large. Since neither molecule's atomization reaction can be described in terms of the breaking of a series of sigma bonds, it is not surprising that the reduced treatment of electron correlation provided at the MP3 level leads to so different a result than the full MP4 calculation. Triple-excitation diagrams that occur first at fourth-order, are required to describe the dissociation of these multiply-bonded systems.

Table 2. MP4 Predictions of Atomization Energies (Units: Hartrees)

Molecule	Full MP4		Frozen Core MP4	
	Direct	Isogyric	Direct	Isogyric
BH	0.13336	0.13566	-----	-----
BH ₂	0.27064	0.27294	-----	-----
BH ₃	0.44674	0.45134	0.44425	0.44884
CH ₄	0.66233	0.66923	0.66201	0.66891
NH ₃	0.46822	0.47512	0.46538	0.47228
H ₂ O	0.36937	0.37397	0.36755	0.37215
OH	0.16918	0.17148	-----	-----
BO	0.31303	0.31523	-----	-----
O ₂	0.18980	0.19210	-----	-----
B ₂ H ₆	-----	-----	0.95740	0.96660

Table 3. Comparison of MP3 and MP4 Atomization Energies (Units: H)

Molecule	SDTO-MP4		MP3	
	Direct	Isogyric	Direct	Isogyric
BH	0.13336	0.13566	0.13251	0.13632
BH ₂	0.27064	0.27294	0.27157	0.27538
BH ₃	0.44674	0.45134	0.44685	0.45447
CH ₄	0.66233	0.66923	0.66198	0.67341
NH ₃	0.46822	0.47512	0.46167	0.47310
H ₂ O	0.36937	0.37397	0.36186	0.36948
OH	0.16918	0.17148	0.16642	0.17023
BO	0.31303	0.31523	0.29745	0.30126
O ₂	0.18980	0.19210	0.17027	0.17408

IV. DISCUSSION

Handy and coworkers in a series of publications investigated the effect of the level of correlation energy on the prediction of molecular structures and spectroscopic properties.^{4,5,6} Most of these studies used an extended basis set similar to that employed in this work. In each case, the rationale is that the extended basis set removes at least one variable from the analysis of the results; additional basis set improvements will have scant effect. We assume that this is so in our calculations. While we have not set out to determine the convergence of the perturbation sequence with respect to the atomization energy predictions, we can comment on that based upon the third-order perturbation theory results.

The most obvious characteristic of these calculations is the systematic difference in predicted atomization energy that occurs at each level of theory investigated. Isogyric analysis always predicts a larger atomization energy than does a direct computation, with the difference between the methods increasing as the completeness of the theoretical treatment of correlation is reduced. This must occur, since the magnitude of the correction factor increases as the level of sophistication of correlation energy calculation is reduced.

It is also true that the full fourth-order perturbation theory atomization energies always exceed the frozen core results. The differences are generally small, a consequence of the fact that all the cases for which we can compare numbers involve a single first-row atom. In addition, our frozen core predictions are always equal to or greater than the predictions given by Pople, et al., for the same molecules. These differences are primarily due to the difference in hydrogen atom basis sets used in the two sets of calculations.

As discussed previously, the difference between the direct calculation of the atomization energy and the isogyric prediction is a multiple of the difference between the computed energy for the hydrogen molecule and the exact value. Thus, the correction factor for the BH molecule is one-third that of the methane molecule. To evaluate the results of the calculations, we compare the atomization energy predictions to those given in Reference 1. Those authors evaluated zero-point energy contributions using the best vibrational frequency data available at that time. There are cases, especially for the BH_2 molecule, the experimental numbers for both frequency and heat of formation are clearly incorrect. These empirically derived data, along with the results of our calculations and the frozen core data of Pople, et al., are summarized in Table 4. Note that the full MP4 calculations using the isogyric method of analysis overestimates the empirical atomization energy in every case but one, the BH_2 molecule. Our value for BH_3 is higher than that derived in a recent experimental study.¹⁴ That report assigns a D_0 value of 265.3 kcal/mole, from which we derive a D_0 equal to 280.6 kcal/mole, using our previously reported zero point energy.³ Our direct computation of the atomization energies tend to be close to the frozen core results, and are always lower than the experimental values, except for the BH molecule. In this case, there is reason to question the accuracy of the theoretical result. Both the BH molecule and the boron atom have low-lying excited states that are the consequence of double excitations. The perturbation theory techniques used in this study do not accurately account for the energy

contribution due to these excited states. Curtis and Pople have described a technique for computing corrections due to higher-order perturbation theory terms,¹⁵ and they have demonstrated the application of the technique in a study of small boron compounds.¹⁶ That analysis leads to a reduction by several kcal/mole of the atomization energies originally reported in Reference 1.

Since the magnitudes of the energy differences between theory and experiment are so small it is not possible to assign the "correct" value, except in the case of BH_2 for which the empirical value is known to be incorrect.

Table 4. Theoretical and Experimental Atomization Energies (kcal/mole)

Molecule	SDTO-MP4 Direct	SDTO-MP4 Isogyric	MP3	SDTO-MP4-FC ¹	Experiment ¹³
BH	83.7	85.1	85.5	85.3	82.8
BH_2	169.8	171.2	172.8	168.5	196.2
BH_3	280.3	283.2	285.2	280.9	280.6 ¹⁴
CH_4	415.6	419.8	422.5	419.9	419.8
NH_3	293.8	298.1	296.9	296.2	297.3
H_2O	231.8	234.7	231.8	230.9	232.2
OH	106.2	107.6	106.9	105.5	106.6

Finally, we consider results of the isogyric analysis with the third-order perturbation theory results. As noted above, this technique fails utterly when applied to multiply bonded systems. In the case of the hydrides, however, the large basis set predictions are in reasonable agreement with the full fourth-order results. In every case, the corrected third order results exceed the atomization energy predictions of the direct calculations and the frozen-core calculations. There is not a systematic difference between the third-and fourth-order isogyric results, however. While admitting that the test set is small, we must conclude that the third-order perturbation theory calculations do provide surprisingly reasonable values for the sigma bonded molecules. Certainly, a more thorough evaluation of the application of extended basis set third-order results for sigma bonded systems seems warranted, since the computational advantages of this lower level of theory are substantial. The recent description of Carter and Goddard of an excellent prediction of the methylene singlet-triplet splitting obtained using an extended basis set with the computationally efficient GVB method¹⁷ also indicates the potential benefits of this genre of quantum chemical technique.

ACKNOWLEDGEMENTS

This work was supported, in part, by the United States Air Force Astronautics Laboratory. Conversations with Dr. L.A. Curtiss, Argonne National Laboratory were most helpful, and we thank him for his assistance.

REFERENCES

1. J.A. Pople, M.J. Frisch, B.T. Luke, and J.S. Binkley, "A Moller-Plesset Study of the Energetics of AH_n Molecules ($A = Li$ to F)," Int. Jour. Quantum Chem., Vol. 17S, p. 307, 1983.
2. J.S. Binkley and M.J. Frisch, "Ab Initio Determination of Band Dissociation Energies: The First Row Diatomics CO , N_2 , NO , O_2 , and F_2 ," Int. Jour. Quantum Chem., Vol. 17S, p. 331, 1983.
3. M.J. Page, G.F. Adams, J.S. Binkley, and C.F. Melius, "Dimerization Energy of Borane," J. Phys. Chem., Vol. 91, p. 2675, 1987.
4. E.D. Simandiras, N.C. Handy, and R.D. Amos, "On the High Accuracy of MP2-Optimized Geometries and Harmonic Frequencies with Large Basis Sets," Chem. Phys. Letters Vol. 133, p. 324, 1987.
5. E.D. Simandiras, J.E. Rice, T.J. Lee, R.D. Amos, and N.C. Handy, "On the Necessity of F Basis Functions for Sending Frequencies," J. Chem. Phys., Vol. 88, p. 3187, 1988.
6. I.A. Alberts and N.C. Handy, "Moller-Plesset Third Order Calculations with Large Basis Sets," J. Chem. Phys., Vol. 89, p. 2107, 1988.
5. R. Krishnan, J.S. Binkley, R. Seeger, and J.A. Pople, J. Chem. Phys., Vol. 72, p. 650, 1980.
6. R.D. Amos, S.M. Colwell, N.C. Handy, P.J. Knowles, R. Nobes, J.E. Rice, and A.J. Stone, CADPAC, The Cambridge Analytic Derivatives Package, 1986.
7. G.F. Adams and M.J. Page, "Structures and Energies for Small Boron Compounds. One and Two Boron Compounds," BRL Technical Report in press.
8. R. Krishnan, J.S. Binkley, R. Seeger, and J.A. Pople, "Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions," J. Chem. Phys., Vol. 72, p. 650, 1980.
9. J.S. Binkley, M.J. Frisch, D.J. DeFrees, K. Raghavachari, R.A. Whiteside, H.B. Schlegel, E.M. Fluder, R.E. Seeger, and J.A. Pople, GAUSSIAN-82, Release II, Dept. of Chemistry, Carnegie-Mellon University, Pittsburgh, PA.
10. S.I. Huzinaga, "Gaussian Type Basis Functions for Polyatomic Systems," J. Chem. Phys., Vol. 42, p. 1293, 1965.
11. T.H. Dunning, Jr., "Gaussian Basis Functions for Use in Molecular Calculations. I. Contraction of (9s,5p) Atomic Basis Sets for the First-Row Atoms," J. Chem. Phys., Vol. 53, p. 2823, 1970.
12. K. Huber and G. Herzberg, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979.

13. D.H. Stull and H. Prophet, Project Directors, JANAF Thermochemical Tables, 2nd Ed., US Government Printing Office, Washington, DC, NSRDS-NBS-37, Catalog Number Cl3.48:37, 1971.
14. B. Ruscic, C.A. Mayhew, and J. Berkowitz, "Photoionization Studies of $(BH_3)_n$ ($n=1,2$)," J. Chem. Phys., Vol. 88, p. 5580, 1988.
15. L.A. Curtis and J.A. Pople, "A Theoretical Study of BH_n Compounds," J. Chem. Phys., Vol. 89, p. 614, 1988.
16. L.A. Curtis and J.A. Pople, "Theoretical Studies of $B_2H_5^+$, $B_2H_6^+$, and B_2H_6 ," J. Chem. Phys., Vol. 89, p. 4875, 1988.
17. E.A. Carter and W.A. Goddard, III, "Correlation-Consistent Configuration Interaction: Accurate Band Dissociation Energies from Simple Wave Functions," J. Chem. Phys., Vol. 88, p. 3132, 1988.

BRL MANDATORY DISTRIBUTION LIST

<u>No of Copies</u>	<u>Organization</u>	<u>No of Copies</u>	<u>Organization</u>
(Unclass., unlimited) 12	Administrator	1	Commander
(Unclass., limited) 2	Defense Technical Info Center		US Army Missile Command
(Classified) 2	ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145		ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
1	HQDA (SARD-TR) WASH, DC 20310-0001	1	Commander
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	Director
1	Commander US Army Laboratory Command ATTN: AMSLC-DL Adelphi, MD 20783-1145	(Class. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
2	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-MSI Picatinny Arsenal, NJ 07806-5000	(Unclass. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
2	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000	1	The Rand Corporation P.O. Box 2138 Santa Monica, CA 90401-2138
1	Director Benet Weapons Laboratory Armament RD&E Center US Army AMCCOM ATTN: SMCAR-LCB-TL Watervliet, NY 12189-4050	(Class. only) 1	Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000
1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299-5000	1	<u>Aberdeen Proving Ground</u> Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen Cdr, USATECOM ATTN: AMSTE-TO-F
1	Commander US Army Aviation Systems Command ATTN: AMSAV-DACL 4300 Goodfellow Blvd. St. Louis, MO 63120-1798	Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-MSI	
1	Director US Army Aviation Research and Technology Activity Ames Research Center Moffett Field, CA 94035-1099		

DISTRIBUTION LIST

<u>No. Of Copies</u>	<u>Organization</u>	<u>No. Of Copies</u>	<u>Organization</u>
1	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-SCA-T, L. Stiefel Dover, NJ 07801	1	Commander Naval Air Systems Command ATTN: J. Ramnarace, AIR-54111C Washington, DC 20360
1	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-LC-G, L. Harris Dover, NJ 07801	1	Commander Naval Surface Weapons Center ATTN: J.L. East, Jr., G-23 Dahlgren, VA 22448-5000
2	Commander US Army Missile Command ATTN: AMSMI-RK, D.J. Ifshin W. Wharton Redstone Arsenal, AL 35898	2	Commander Naval Surface Weapons Center ATTN: R. Bernecker, R-13 G.B. Wilmot, R-16 Silver Spring, MD 20902-5000
1	Commander US Army Missile Command ATTN: AMSMI-RKA, A.R. Maykut Redstone Arsenal, AL 35898-5249	5	Commander Naval Research Laboratory ATTN: M.C. Lin J. McDonald E. Oran J. Shnur R.J. Doyle, Code 6110 Washington, DC 20375
4	Commander US Army Research Office ATTN: R. Ghirardelli D. Mann R. Singleton R. Shaw P. O. Box 12211 Research Triangle Park, NC 27709-2211	1	Commanding Officer Naval Underwater Systems Center Weapons Dept. ATTN: R.S. Lazar/Code 36301 Newport, RI 02840
3	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-LCA-G, D. S. Downe, J. A. Lannon, T. Vladimiroff Dover, NJ 07801	1	Superintendent Naval Postgraduate School Dept. of Aeronautics ATTN: D.W. Netzer Monterey, CA 93940
1	Office of Naval Research Department of the Navy ATTN: R.S. Miller, Code 432 800 N. Quincy Street Arlington, VA 22217	4	AFRPL/CX ATTN: S. Rodgers P. Dolan D. Konawalow M. Rosenkratz Edwards AFB, CA 93523-5000

DISTRIBUTION LIST

<u>No. Of Copies</u>	<u>Organization</u>	<u>No. Of Copies</u>	<u>Organization</u>
4	AFRPL/DY, Stop 24 ATTN: R. Corley R. Geisler J. Levine D. Weaver Edwards AFB, CA 93523-5000	1	Applied Combustion Technology, Inc. ATTN: A.M. Varney P.O. Box 17885 Orlando, FL 32860
1	AFRPL/MKPB, Stop 24 ATTN: B. Goshgarian Edwards AFB, CA 93523-5000	2	Applied Mechanics Reviews The American Society of Mechanical Engineers ATTN: R.E. White A.B. Wenzel 345 E. 47th Street New York, NY 10017
3	AFOSR ATTN: J.M. Tishkoff L. Davis F. Wodarczyk Bolling Air Force Base Washington, DC 20332	1	Atlantic Research Corp. ATTN: M.K. King 5390 Cherokee Avenue Alexandria, VA 22314
		1	Atlantic Research Corp. ATTN: R.H.W. Waesche 7511 Wellington Road Gainesville, VA 22065
1	NASA Langley Research Center Langley Station ATTN: G.B. Northam/MS 168 Hampton, VA 23365	1	AVCO Everett Rsch. Lab. Div. ATTN: D. Stickler 2385 Revere Beach Parkway Everett, MA 02149
4	National Bureau of Standards ATTN: J. Hastie M. Jacox T. Kashiwagi H. Semerjian US Department of Commerce Washington, DC 20234	1	Battelle Memorial Institute Tactical Technology Center ATTN: J. Huggins 505 King Avenue Columbus, OH 43201
1	OSD/SDIO/UST ATTN: L.H. Caveny Pentagon Washington, DC 20301-7100	1	Cohen Professional Services ATTN: N.S. Cohen 141 Channing Street Redlands, CA 92373
1	Aerojet Solid Propulsion Co. ATTN: P. Micheli Sacramento, CA 95813	1	Exxon Research & Eng. Co. ATTN: A. Dean Route 22E Annandale, NJ 08801

DISTRIBUTION LIST

<u>No. Of Copies</u>	<u>Organization</u>	<u>No. Of Copies</u>	<u>Organization</u>
1	Ford Aerospace and Communications Corp. DIVAD Division Div. Hq., Irvine ATTN: D. Williams Main Street & Ford Road Newport Beach, CA 92663	1	Honeywell, Inc. ATTN: R.E. Tompkins MN38-3300 10400 Yellow Circle Drive Minnetonka, MN 55343
1	General Applied Science Laboratories, Inc. 77 Raynor Avenue Ronkonkoma, NY 11779-6649	1	IBM Corporation ATTN: A.C. Tam Research Division 5600 Cottle Road San Jose, CA 95193
1	General Electric Armament & Electrical Systems ATTN: M.J. Bulman Lakeside Avenue Burlington, VT 05401	1	IIT Research Institute ATTN: R.F. Remaly 10 West 35th Street Chicago, IL 60616
1	General Electric Company 2352 Jade Lane Schenectady, NY 12309	4	Director Lawrence Livermore National Laboratory ATTN: C. Westbrook M. Costantino B. Lengsfield N. Winter P.O. Box 808 Livermore, CA 94550
1	General Electric Ordnance Systems ATTN: J. Mandzy 109 Plastics Avenue Pittsfield, MA 01203	1	Lockheed Missiles & Space Co. ATTN: George Lo 3251 Hanover Street Dept. 52-35/B204/2 Palo Alto, CA 94304
2	General Motors Rsch Labs Physics Department ATTN: T. Sloan R. Teets Warren, MI 48090	1	Los Alamos National Lab ATTN: B. Nichols T7, MS-3284 P.O. Box 1663 Los Alamos, NM 87545
2	Hercules, Inc. Allegany Ballistics Lab. ATTN: R.R. Miller E.A. Yount P.O. Box 210 Cumberland, MD 21501	1	National Science Foundation ATTN: A.B. Harvey Washington, DC 20550
1	Honeywell, Inc. Government and Aerospace Products ATTN: D.E. Broden/ MS MN50-2000 600 2nd Street NE Hopkins, MN 55343	1	Olin Corporation Smokeless Powder Operations ATTN: V. McDonald P.O. Box 222 St. Marks, FL 32355

DISTRIBUTION LIST

<u>No. Of Copies</u>	<u>Organization</u>	<u>No. Of Copies</u>	<u>Organization</u>
1	Paul Gough Associates, Inc. ATTN: P.S. Gough 1048 South Street Portsmouth, NH 03801-5423	3	SRI International ATTN: G. Smith D. Crosley D. Golden 333 Ravenswood Avenue Menlo Park, CA 94025
2	Princeton Combustion Research Laboratories, Inc. ATTN: M. Summerfield N.A. Messina 475 US Highway One Monmouth Junction, NJ 08852	1	Stevens Institute of Tech. Davidson Laboratory ATTN: R. McAlevy, III Hoboken, NJ 07030
1	Hughes Aircraft Company ATTN: T.E. Ward 8433 Fallbrook Avenue Canoga Park, CA 91303	1	Thiokol Corporation Elkton Division ATTN: W.N. Brundige P.O. Box 241 Elkton, MD 21921
1	Rockwell International Corp. Rocketdyne Division ATTN: J.E. Flanagan/HB02 6633 Canoga Avenue Canoga Park, CA 91304	1	Thiokol Corporation Huntsville Division ATTN: R. Glick Huntsville, AL 35807
8	Sandia National Laboratories Combustion Sciences Dept. ATTN: R. Cattolica S. Johnston P. Mattern D. Stephenson C.F. Melius D. Dandy C. Rohlfing S.J. Binkley Livermore, CA 94550	3	Thiokol Corporation Wasatch Division ATTN: S.J. Bennett P.O. Box 524 Brigham City, UT 84302
1	Science Applications, Inc. ATTN: R.B. Edelman 23146 Cumorah Crest Woodland Hills, CA 91364	1	United Technologies ATTN: A.C. Eckbreth East Hartford, CT 06108
1	Science Applications, Inc. ATTN: H.S. Pergament 1100 State Road, Bldg. N Princeton, NJ 08540	3	United Technologies Corp. Chemical Systems Division ATTN: R.S. Brown T.D. Myers (2 copies) P.O. Box 50015 San Jose, CA 95150-0015
1		1	Universal Propulsion Company ATTN: H.J. McSpadden Black Canyon Stage 1 Box 1140 Phoenix, AZ 85029

DISTRIBUTION LIST

<u>No. Of Copies</u>	<u>Organization</u>	<u>No. Of Copies</u>	<u>Organization</u>
1	Veritay Technology, Inc. ATTN: E.B. Fisher 4845 Millersport Highway P.O. Box 305 East Amherst, NY 14051-0305	5	University of Southern California Dept. of Chemistry ATTN: S. Benson C. Wittig R. Beaudet H. Reisler G. Segal Los Angeles, CA 90007
1	Brigham Young University Dept. of Chemical Engineering ATTN: M.W. Beckstead Provo, UT 84601	1	Case Western Reserve Univ. Div. of Aerospace Sciences ATTN: J. Tien Cleveland, OH 44135
1	California Institute of Tech. Jet Propulsion Laboratory ATTN: MS 125/159 4800 Oak Grove Drive Pasadena, CA 91103	1	Cornell University Department of Chemistry ATTN: T.A. Cool Baker Laboratory Ithaca, NY 14853
1	California Institute of Technology ATTN: F.E.C. Culick/ MC 301-46 204 Karman Lab. Pasadena, CA 91125	1	Univ. of Dayton Rsch Inst. ATTN: D. Campbell AFRPL/PAP Stop 24 Edwards AFB, CA 93523
1	University of California, Berkeley Mechanical Engineering Dept. ATTN: J. Daily Berkeley, CA 94720	1	University of Florida Dept. of Chemistry ATTN: J. Winefordner Gainesville, FL 32611
1	University of California Los Alamos Scientific Lab. P.O. Box 1663, Mail Stop B216 Los Alamos, NM 87545	2	University of Florida Quantum Theory Project ATTN: R.L. Bartlett M. Zerner Gainesville, FL 32611
2	University of California, Santa Barbara Quantum Institute ATTN: K. Schofield M. Steinberg Santa Barbara, CA 93106	3	Georgia Institute of Technology School of Aerospace Engineering ATTN: E. Price W.C. Strahle B.T. Zinn Atlanta, GA 30332

DISTRIBUTION LIST

<u>No. Of Copies</u>	<u>Organization</u>	<u>No. Of Copies</u>	<u>Organization</u>
1	University of Illinois Dept. of Mech. Eng. ATTN: H. Krier 144MER, 1206 W. Green St. Urbana, IL 61801	1	Princeton University MAE Dept. ATTN: F.A. Williams Princeton, NJ 08544
1	Johns Hopkins University/APL Chemical Propulsion Information Agency ATTN: T.W. Christian Johns Hopkins Road Laurel, MD 20707	1	Purdue University School of Aeronautics and Astronautics ATTN: J.R. Osborn Grissom Hall West Lafayette, IN 47906
1	University of Michigan Gas Dynamics Lab Aerospace Engineering Bldg. ATTN: G.M. Faeth Ann Arbor, MI 48109-2140	1	Purdue University Department of Chemistry ATTN: E. Grant West Lafayette, IN 47906
1	University of Minnesota Dept. of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55455	2	Purdue University School of Mechanical Engineering ATTN: N.M. Laurendeau S.N.B. Murthy TSPC Chaffee Hall West Lafayette, IN 47906
3	Pennsylvania State University Applied Research Laboratory ATTN: K.K. Kuo H. Palmer M. Micci University Park, PA 16802	1	Rensselaer Polytechnic Inst. Dept. of Chemical Engineering ATTN: A. Fontijn Troy, NY 12181
1	Pennsylvania State University Dept. of Mechanical Engineering ATTN: V. Yang University Park, PA 16802	1	Stanford University Dept. of Mechanical Engineering ATTN: R. Hanson Stanford, CA 94305
1	Polytechnic Institute of NY Graduate Center ATTN: S. Lederman Route 110 Farmingdale, NY 11735	1	University of Texas Dept. of Chemistry ATTN: W. Gardiner Austin, TX 78712
2	Princeton University Forrestal Campus Library ATTN: K. Brezinsky I. Glassman P.O. Box 710 Princeton, NJ 08540	1	University of Utah Dept. of Chemical Engineering ATTN: G. Flandro Salt Lake City, UT 84112

DISTRIBUTION LIST

<u>No. Of Copies</u>	<u>Organization</u>
1	Virginia Polytechnic Institute and State University ATTN: J.A. Schetz Blacksburg, VA 24061
1	Commandant USAFAAS ATTN: ATSF-TSM-CN Fort Sill, OK 73503-5600
2	F.J. Seiler Research Lab (AFSC) ATTN: S.A. Shakelford J. Stewart USAF Academy, CO 80840-6528
1	Freedman Associates ATTN: E. Freedman 2411 Diana Road Baltimore, MD 21209-1525

USER EVALUATION SHEET/CHANGE OF ADDRESS

This laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers below will aid us in our efforts.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

2. How, specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

4. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

BRL Report Number _____ Division Symbol _____

Check here if desire to be removed from distribution list. _____

Check here for address change. _____

Current address: Organization _____
Address _____

-----FOLD AND TAPE CLOSED-----

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T(NEI)
Aberdeen Proving Ground, MD 21005-5066

OFFICIAL BUSINESS

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T(NEI)
Aberdeen Proving Ground, MD 21005-9989