Классификация помещений по степени опасности поражения электрическим током

- □ Без повышенной опасности это сухие, беспыльные помещения с нормальной температурой воздуха и с изолирующими (например, деревянными) полами
- □ **С повышенной опасностью** помещение, в котором выполняется одно из 5 условий:
- сырость (относительная влажность >75%);
- высокая температура (>35 °C периодически в течении суток);
- токопроводящая пыль (угольная, металлическая);
- токопроводящие полы (металл, земляные, железобетонные, кирпичные);
- возможность одновременного прикосновения к заземленным металлоконструкциям, с одной стороны, и металлическим корпусам электрооборудования с другой
- □ **Особо опасные помещения** это помещения, которые удовлетворяют одному из трех приведенных ниже условий:
- особая сырость (около 100 %);
- химически активная или органическая среда, разрушающая изоляцию;
- одновременно любые два условия для помещения с повышенной опасностью.

□ Недоступность токоведущих частей в ЭУ для случайного

прикосновения

Допустимые расстояния до токоведущих частей ЭУ, находящихся под напряжением

Напряжение, кВ		Расстояния от людей и применяемых ими инструментов и приспособлений, от временных ограждений, м	Расстояния от механизмов и грузоподъемных машин в рабочем и транспортном положении, от стропов, грузозахватных приспособлений и грузов, м
До 1	На ВЛ	0,6	1,0
	В остальных электроуста- новках	Не нормируется (без прикосновения)	1,0
	1-35	0,6	1,0
60*, 110		1,0	1,5
150		1,5	2,0
220		2,0	2,5
330		2,5	3,5
400*, 500		3,5	4,5
750		5,0	6,0
800*		3,5	4,5
1150		8,0	10,0

^{*} Постоянный ток.

- □ Применение малого напряжения
- □ Основная изоляция: для защиты от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние, а также для защиты токоведущей части от внешних воздействий
- □ Двойная (или усиленная) изоляция: дополнительно к рабочей изоляции накладывается дополнительный слой на случай повреждения первой Изоляционные материалы: пластмасса, резина, фарфор и др.

- □ Защитное заземление
- □ Уравнивание электрических потенциалов устранение разности электрических потенциалов между всеми одновременно доступными прикосновению открытыми проводящими частями стационарного электрооборудования и сторонними проводящими частями
- □ Защитное зануление

- □ Защитное отключение
- □ Электрическое разделение сети

Защитное заземление

Защитное заземление — преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (например, разряд молнии)

Назначение защитного заземления: устранение опасности поражения током в случае прикосновения к корпусу электроустановки и другим металлическим нетоковедущим частям, оказавшимся под напряжением

Принцип действия защитного заземления: снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус и другими причинами. Это достигается путем уменьшения потенциала заземленного оборудования, а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования.

Область применения защитного заземления:

- сети до 1000 В переменного тока трехфазные трехпроводные с изолированной нейтралью, однофазные двухпроводные, изолированные от земли, а также, постоянного тока двухпроводные с изолированной средней точкой источника тока;
- сети напряжением выше 1000 В переменного тока и постоянного тока с любым режимом нейтрали или средней точкой обмоток источника тока.

Защитное заземление (однофазное замыкание в сети IT)

$$I_h = \frac{U_h}{R_h}$$

$$U_h = U_3 = I_3 \cdot R_3$$

$$I_3 = \frac{U_{\Phi}}{r_3 + \frac{R}{3}}$$

Защитное заземление (однофазное замыкание в сети TN-C)

$$I_h = \frac{U_h}{R_h}$$

$$U_h = U_3 = I_3 \cdot R_3$$

$$I_3 = \frac{U_{\Phi}}{r_3 + r_0}$$

Защитное заземление (двухфазное замыкание в сети IT)

$$I_h = \frac{U_h}{R_h}$$

$$U_h = U_3 = I_3 \cdot R_3$$

$$I_3 = \frac{U_{\phi} \cdot \sqrt{3}}{r_{31} + r_{32}}$$

Типы заземляющих устройств

Выносное заземляющее устройство характеризуется тем, что заземлитель вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки. Поэтому выносное заземляющее устройство называют также сосредоточенным.

1 — заземлитель: 2 — заземляющие проводники (магистрали): 3 — заземляемое оборудование

Типы заземляющих устройств (выносное ЗУ)

Недостатки:

- отдаленность заземлителя от защищаемого оборудования, вследствие чего на всей или на части защищаемой территории коэффициент прикосновения α_1 =1
- при большом расстоянии до заземлителя может значительно возрасти сопротивление заземляющего устройства в целом за счет сопротивления заземляющего проводника

Достоинство: возможность выбора места размещения электродов заземлителя с наименьшим сопротивлением грунта

Типы заземляющих устройств

Контурное заземляющее устройство характеризуется тем, что электроды его заземлителя размещаются по контуру (периметру) площадки, на которой находится заземляемое оборудование, а также внутри этой площадки. Часто электроды распределяются на площадке по возможности равномерно, и поэтому контурное заземляющее устройство называется также распределенным.

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой:

- 1) нулевой защитный PE- или PEN-проводник питающей линии в системе TN
- 2) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT
- 3) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание(если есть заземлитель)
- 4) металлические трубы коммуникаций, входящих в здание: горячего и холодного водоснабжения, канализации, отопления, газоснабжения и т.п.
- 5) металлические части каркаса здания
- б) металлические части централизованных систем вентиляции и кондиционирования
- 7) заземляющее устройство системы молниезащиты 2-й и 3-й категорий
- 8) заземляющий проводник функционального (рабочего) заземления, если такое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления
- 9) металлические оболочки телекоммуникационных кабелей

Защитное зануление

Зануление — преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением (например, в результате пробоя фазы на корпус)

Принцип действия зануления — превращение замыкания на корпус в однофазное короткое замыкание с целью вызвать большой ток, способный обеспечить срабатывание защиты (например, автоматических выключателей) и тем самым автоматически отключить поврежденную электроустановку от питающей сети

Область применения зануления:

- трехфазные четырехпроводные сети до 1000 В с глухозаземленной нейтралью
- трехпроводные сети постоянного тока с глухозаземленной средней точкой обмотки источника энергии
- однофазные двухпроводные сети переменного тока с глухозаземленным выводом обмотки источника

Защитное зануление

$$I_{\scriptscriptstyle \mathrm{K}} = \frac{U_{\scriptscriptstyle \Phi}}{r_{\scriptscriptstyle PEN} + r_{\scriptscriptstyle L1}}$$

$$U_{{\scriptscriptstyle \mathrm{K}}2} = I_{{\scriptscriptstyle \mathrm{K}}} \cdot r_{PEN}$$

Защитное зануление (с повторным заземлением)

Защитное зануление (обрыв PEN-провода)

- а) при отсутствии повторного заземления
- б) при наличии повторного заземления

$$I_3 = \frac{U_{\Phi}}{r_{\Pi} + r_0}$$

Повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения током, возникающую в результате обрыва нулевого защитного проводника И замыкания фазы на корпус за местом обрыва, НО не может устранить ее полностью

Назначение отдельных элементов схемы зануления

Назначение нулевого защитного проводника

$$I_3 = \frac{U_{\Phi}}{r_{\kappa} + r_0}$$

$$U_{\rm K} = I_{\rm 3} \cdot r_{\rm K}$$

 I_3 может оказаться недостаточным, чтобы вызвать срабатывание максимальной токовой защиты

В трехфазной сети напряжением до 1 кВ с заземленной нейтралью без нулевого защитного проводника <u>невозможно обеспечить</u> безопасность при косвенном прикосновении, поэтому такая сеть применяться не должна

Назначение отдельных элементов схемы зануления Назначение заземления нейтрали обмоток источника тока

Заземление нейтрали обмоток источника тока, питающего сеть напряжением до 1 кВ, предназначено для снижения напряжения зануленных корпусов (а, следовательно, нулевого защитного проводника) относительно земли до безопасного значения при замыкании фазы на землю

Автоматический выключатель

Характеристика времени срабатывания автоматического выключателя в зависимости от значения сверхтока

Назначение УЗО - быстродействующая защита, обеспечивающая:

• автоматическое отключение электроустановки при возникновении в ней опасности поражения человека током (при замыкании на корпус ЭУ, прикосновения к токоведущим частям и т.п.)

• предотвращение возгораний и пожаров, вызванных токами утечки и замыкания

на землю

Принцип действия УЗО

Принцип действия УЗО — контроль входного сигнала и сравнение его с уставкой. Если входной сигнал больше уставки, срабатывает защита и отключает сеть

Классификация УЗО по типу входного сигнала:

на потенциал корпуса
на ток замыкания на землю
на напряжение нулевой последовательности
на ток нулевой последовательности
на оперативный ток

Требования к УЗО:

- Высокая чувствительность
- Малое время отключения
- Селективность действия
- Самоконтроль исправности (особенно, если УЗО применяется без защитного заземления и зануления ЭУ)
- Достаточная надежность в условиях длительной непрерывной работы

Область применения УЗО: чаще всего применяются в сетях до 1000 В в качестве дополнительной меры защиты

Защитное отключение УЗО, реагирующее на потенциал корпуса

Область применения:

Передвижные установки с индивидуальными заземлениями

УЗО предназначено для обеспечения безопасности при возникновении на заземленном (или зануленном) корпусе электроустановки повышенного потенциала

Датчик: реле напряжения

Достоинство: простота схемы **Недостатки**:

- необходимость вспомогательного заземления
- отсутствие селективности в случае присоединения нескольких корпусов к одному заземлителю
- Непостоянство уставки при изменениях сопротивления вспомогательного заземлителя

Защитное отключение УЗО, реагирующее на дифференциальный ток

УЗО типа АС — УЗО, реагирующее на переменный синусоидальный дифференциальный ток, возникающий внезапно, либо медленно возрастающий.

УЗО типа A – УЗО, реагирующее на переменный синусоидальный дифференциальный ток и пульсирующий постоянный дифференциальный ток, возникающие внезапно, либо медленно возрастающие.

УЗО типа В — УЗО, реагирующее на переменный, постоянный и выпрямленный дифференциальные токи.

УЗО типа S — УЗО, селективное (с выдержкой времени отключения).

УЗО типа G — то же, что и типа S, но с меньшей выдержкой времени

Защитное отключение УЗО, реагирующее на дифференциальный ток

Достоинства:

- многофункциональность
- селективность
- высокая чувствительность

Недостатки:

• зависимость значения входного сигнала в IT от проводимости проводов вне зоны защиты

УЗО, реагирующее на дифференциальный ток

