Final Report of the Battle of Neighborhoods

Applied Data Science Capstone Project

Asian Food in Boston

Aymen Ragguem

April 30, 2021

1. Introduction

1.1 Background

The dispersion of the Asian American population is evident in the high concentration of Asian Americans in various cities and towns in Greater Boston. Figure 2.1 in Link indicates that 16 very different cities and towns had concentrations of Asian Americans of at least 12 percent. While large cities in Greater Boston generally have larger Asian American populations, places with the most rapid Asian American increases have actually been in smaller, suburban locales.

Boston has had <u>Chinese restaurants</u> since the late 1800s, most located in Chinatown and catering almost exclusively to the Chinese population; non-Chinese customers went to places that served chop suey and chow mein. <u>Link</u>. In the late 1950s and early '60s, fueled by Hawaii's statehood in 1959, the Lower 48 fell in love with all things Polynesian or from the South Seas. Chinese restaurateurs were quick to **notice the <u>trend</u>**, and so added to their menu tropical drinks and dishes laced with sweet-and-sour sauce and plenty of pineapple. Restaurants were <u>remodeled</u> to add a festive, Polynesian touch. Although far removed from Chinese culture, the tiki craze helped make Chinese food or more accurately, <u>hybrid Chinese-American food</u> accessible to the wider public.

1.2 Problem Description

The Asian cuisine contains a wide range of cooking practices and traditions, and it varies greatly in taste and flavor to notice the trend.

In this project we will analyze various cuisines in a given location to derive the opportunities of starting up an Asian cuisine to understand the targeted cuisine in Boston, MA such Thai, Chinese and Japanese restaurants and study the level of competition in this field (saturation, growth demand ...)

Suffolk, MA was pick up the study for the following reasons:

- One last mention should be made about the Chinese food scene in and around Boston. With a continuous flow of Chinese students attending High Schools for nearly 50 years,
- Growth of Asian-American population
- There's tremendous diversity within Boston's Asian American community.

1.3 Interest

For someone interested in starting up a **restaurant** <u>business</u>, this project is a simple starting point on types of data that can be used and the variety of methods to gather them, and how to perform some data analysis to derive the statistics of the various categories of <u>venues</u> and the ratio to the <u>Asian</u> venues for the cities that falls within the <u>Boston</u> greater area.

2. Data description

2.1 Data sources

Each zip code will have latitude and longitude value assigned to a city and each city can have multiple zip code then, the result will grouped by city which will be neighborhood, Suffolk will refer to city.

<u>**DataLink**</u>: <u>https://simplemaps.com/data/us-zips</u>

The second data set will be the venue data. Details on the venues will be derived from Foursquare.com website via an API to the application.

Foursquare provides a rough guide on the types of cuisine according to a predefined set of categories as documented on its website https://developer.foursquare.com/docs/resources. While it also returns the venues' frequency by neighborhoods which is defined by their zip codes and their respective latitude and longitude.

2.2 Data Cleaning and processing

The first set of data to be processed will be the zip code of USA which contains all states. Suffolk country has 18 neighborhoods, and 33 zip codes. The lat/long of all 33 zip codes will be passed to Foursquares 's API and the venues returned will be grouped by neighborhoods. The map below shows us the distribution of all neighborhoods identified by zip code in the city.

Fig 1.Zip Code distribution across Suffolk country

Foursquare API will provide many categories of the venue data, and we are particularly interested in the Restaurant category in order to help us solve the

business problem. This is a project that will make use of many data science skills, from web scraping (Wikipedia), working with API (Foursquare), data cleaning, data wrangling, to machine learning (K-means clustering) and map visualization (Folium).

Furthermore, the venue data set that Foursquare provides is only a rough guide on the types of cuisine according to a predefined set of categories as Foursquare has documented.

As showing in fig below We search the number of venues for each Neighborhood via Foursquare and we get 81 unique categories

	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighborhood						
Allston	100	100	100	100	100	100
Boston	1400	1400	1400	1400	1400	1400
Brighton	100	100	100	100	100	100
Charlestown	100	100	100	100	100	100
Chelsea	100	100	100	100	100	100
Dorchester	277	277	277	277	277	277
Dorchester Center	75	75	75	75	75	75
East Boston	79	79	79	79	79	79
Hyde Park	43	43	43	43	43	43
Jamaica Plain	100	100	100	100	100	100
Mattapan	75	75	75	75	75	75
Revere	97	97	97	97	97	97
Roslindale	100	100	100	100	100	100
Roxbury	100	100	100	100	100	100
Roxbury Crossing	100	100	100	100	100	100
South Boston	100	100	100	100	100	100
West Roxbury	76	76	76	76	76	76
Winthrop	45	45	45	45	45	45

Then we create a new dataframe which contains 10 venues for each neighborhood (18)

2.3 Feature selection

We work on a dataframe uszip.csv which contains the following 18 features:

zip	int64
-	
lat	float64
lng	float64
city	object
state_id	object
state_name	object

```
zcta bool
parent_zcta float64
population float64
density float64
county_fips int64
county_name object
county_weights object
county_names_all object
county_fips_all object
imprecise bool
military bool
timezone object
```

We pass to clean up the no necessary row for this project:

'zcta', 'parent_zcta', 'density', 'county_fips', 'county_weights', 'imprecise', 'military', 'timezone'.

We note that population size and density features can help us to identify the Asian people in the country of study

2.4 Analytical Methods

 Understand the correlation between the highest population count and the distribution of Asian venues retrieved by Foursquare API (the ratio of the cuisine and the ratio of the White and Asian demographics)

3. Explore data and analysis

We explore now Asian food by using Foursquare API, for 10 venues and we get the following result:

10th Most Common Venue	9th Most Common Venue	8th Most Common Venue	7th Most Common Venue	6th Most Common Venue	5th Most Common Venue	4th Most Common Venue	3rd Most Common Venue	2nd Most Common Venue	1st Most Common Venue	Neighborhood	
Food Truck	Çafè	Noodle House	Vietnamese Restaurant	Korean Restaurant	Japanese Restaurant	Sushi Restaurant	Thai Restaurant	Asian Restaurant	Chinese Restaurant	Aliston	0
Food Truck	Dim Sum Restaurant	Bakery	Korean Restaurant	Vietnamese Restaurant	Japanese Restaurant	Sushi Restaurant	Thai Restaurant	Chinese Restaurant	Asian Restaurant	Boston	1
Huner Restauran	Café	Vietnamese Restaurant	Noodle House	Japanese Restaurant	Korean Restaurant	Sushi Restaurant	The Restaurant	Asian Restaurant	Chinese Restaurant	Brighton	2
Breakfast Spot	Restaurant	Noodle House	Korean Restaurant	Vietnamese Restaurant	Thai Restaurant	Japanese Restaurant	Sushi Restaurant	Chinese Restaurant	Asian Restaurant	Charlestown	3
Dine	Dumpling Restaurant	Food Court	Food Truck	Dim Sum Restaurant	Japanese Restaurant	Sushi Restaurant	Asian Restaurant	Vietnamese Restaurant	Chinese Restaurant	Chelsea	4
Taco Place	Noode House	Food Truck	Ramen Restaurant	Japanese Restaurant	Seatood Restaurant	Sushi Restaurant	Asian Restaurant	Vietnamese Restaurant	Chinese Restaurant	Dorchester	5
Grocery Store	Café	Breakfast Spot	Bakery	BBQ Joint	Seafood Restaurant	Thai Restaurant	Asian Restaurant	Chinese Restaurant	Vietnamese Restaurant	Dorchester Center	6
Dumpling Restauran	Food Court	Food Truck	Dim Sum Restaurant	BBQ Joint	Japanese Restaurant	Susmi Restaurant	Vietnamese Reptaurant	Asian Restaurant	Chinese Restaurant	East Boston	7
Dim Sun Restauran	Diner	Dumpling Restaurant	Food Court	Food Truck	Fried Chicken Joint	Convenience Store	Vietnamese Restaurant	Thai Restaurant	Chinese Restaurant	Hyde Park	8
Noodle House	Food Truck	Vegetarian / Vegan Restaurant	Vietnamese Restaurant	Japanese Restaurant	Tha: Restaurant	Ramen Restaurant	Sushi Restaurant	Asian Restaurant	Chinese Restaurant	Jamaica Plain	9
Dim Sun Restauran	Diner	Dumpling Restaurant	Food Court	Food Truck	Fried Chicken Joint	Convenience Store	Vietnamese Restaurant	Thei Restaurant	Chinese Restaurant	Mattapan	10
Dine	Dumpling Restaurant	Food Court	Food Truck	Fried Chicken Joint	Dim Sum Restaurant	Vietnamese Restaurant	Thai Restaurant	Asian Restaurant	Chinese Restaurant	Revers	11
Dine	Oumpling Restaurant	Food Court	Convenience Store	Noodle House	Japanese Restaurant	Sushi Restaurant	Asian Restaurant	Thai Restaurant	Chinese Restaurant	Roslindale	12
Food Cour	Convertience Store	Coffee Shop	Restaurant	Vietnamese Restaurant	Thai Restaurant	Japanese Restaurant	Chinese Restaurant	Sushi Restaurant	Asian Restaurant	Roxbury	13
Indiar Restauran	Food Truck	Korean Restaurant	Noodle House	Vietnamese Restaurant	Japanese Restaurant	Sushi Restaurant	Thai Restaurant	Chinese Restaurant	Asian Restaurant	Roxbury Crossing	14
Noodle House	Food Truck	Dim Sum Restaurant	Bakery	Vietnamese Restaurant	Thai Restaurant	Japanese Restaurant	Sushi Restaurant	Chinese Restaurant	Asian Restaurant	South Boston	15

The Asian venues frequency is built using the "Asian Restaurant" as venue category. Notice that all the neighborhoods that have Chinese and Asian restaurants below top 5, all have high percentage of Asian populations. Noticed that Foursquare returns:

Asian restaurant as a **category**

Chinese restaurant which is a **subcategory**

Ramen Restaurant which is a **subsubcategory**.

4. Interpretation of the results

 <u>Classification</u> of Asian cuisine is defined by the source of data, as we see Foursquare returns categories like Asian restaurants (global results) and then in next iteration it returns Chinese or Japanese restaurants which are subcategory and after this it returns some results like Ramen and dim sum ... restaurants which are subsubcategory; and here there is very difference between all Asian cuisine returned to the this hierarchy.

Demographic density

There is a correlation between population (**students**) and the count of venues of Asian cuisine, if an area has a very low population count, it will have a low count of venues and naturally a lower count of Asian venues, too. These areas can be considered low opportunity a high risk

Conclusion

Neighborhood with higher percentage of Asians population such as Boston are worth exploring.