Formelsammlung Optik

Mario Felder Michi Fallegger

13. April 2014

Inhaltsverzeichnis

1	Strahlen Optik				
	1.1	Einleitung	1		
	1.2	Konstanten	1		
	1.3	Brechung und Brechungsindex n	1		
	1.4	Strahlenverschiebung	2		
	1.5	Totalreflexion	2		
	1.6	Linsen	3		
		1.6.1 Strahlkonstruktion bei dünnen Linsen	3		
		1.6.2 Vergrösserung	3		
		1.6.3 Optische Instrumente: Mikroskop	4		
2	Wel	len Optik	5		
	2.1	Konstanten	5		
	2.2	Grundformeln	5		
	2.3	EM Welle in einem transparenten Material	6		
	2.4	Dopplereffekt (Optik)	6		
	2.5	Reale Welle und komplexe Darstellung	6		
	2.6	Vergleich des E-Felds an zwei Punkten	7		
	2.7	Intensität einer EM Welle	7		
	2.8	Interferenz	8		
	2.9	Reflexion und Transmission	8		
	2.10	Dünnfilm-Interferenz	9		
	2.11	Fabry-Perot Interferometer	10		
	2.12	Beugung am Spalt	10		
	2.13	Beugung am Gitter	11		
	2.14	Polarisation	11		

INHALTSVERZEICHNIS

	2.15 Transmission und Reflexion (Fresnell)	12			
	2.16 Absorption	12			
	2.17 Intensität Gauss Strahl	12			
3	Elektromagnetische Optik				
	3.1	15			
4	Quanten Optik	17			
	4.1	17			

Strahlen Optik

1.1 Einleitung

- Einfallswinkel = Ausfallswinkel
- Licht breitet sich von einem Punkt A zu einem Punkt B so aus, dass die Laufzeit minimal wird.

1.2 Konstanten

Lichtgeschwindigkeit
$$c = 299'792'458 \ \mathrm{m/s}$$

1.3 Brechung und Brechungsindex n

Brechungsindex:

$$n = \frac{c}{c_{mat}}$$

Brechungsgesetz von Snellius:

$$n_A \cdot \sin \theta_A = n_B \cdot \sin \theta_B$$

Der Winkel bezüglich der Grenzfläche-Lots.

1.4 Strahlenverschiebung

$$\Delta x = d \cdot \frac{\sin(\theta_a - \theta_b)}{\cos \theta_b}$$

1.5 Totalreflexion

Totalreflexion tritt auf, wenn der Grenzwinkel $\theta_k rit$ überschritten wird.

$$\sin \theta_k rit = \frac{n_B}{n_A}$$

Totalreflexion Prisma:

$$\sin\frac{\alpha+\delta}{2} = n \cdot \sin\frac{\alpha}{2}$$

1.6 Linsen

Sammellinsen, Konvexlinsen: Dieser Linsentyp hat eine positive d.h. reelle Brennweite

Zerstreulinsen, Konkavlinsen: Dieser Linsentyp hat eine negative, d.h. virtuelle Brennweite f

1.6.1 Strahlkonstruktion bei dünnen Linsen

Linsengleichung:

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b} \qquad \Rightarrow \qquad b = \frac{f \cdot g}{g - f}$$

$$\frac{B}{G} = \frac{b}{g}$$

1.6.2 Vergrösserung

Vergrösserung:

$$M = \frac{\theta^{'}}{\theta} = \frac{g_{NP}}{f} \approx \frac{25cm}{f}$$

1.6.3 Optische Instrumente: Mikroskop

Vergrösserung eines Mikroskops:

Wellen Optik

2.1 Konstanten

$$\varepsilon_0 = 8.85 \cdot 10^{-12} As/Vm$$

$$\mu_0 = 4\pi \cdot 10^{-7} Vs/Am$$

$$n_{Wasser} = 1.3$$

$$n_{Glas} = 1.5$$

2.2 Grundformeln

Wellengeschwindigkeit:

$$v = \sqrt{\frac{F_S}{\mu}}$$

 μ : Masse pro Meter

Harmonische Welle:

$$\lambda \cdot f = v$$

Wellenzahl:

$$k = \frac{2\pi}{\lambda} = \frac{\omega}{v}$$

2.3 EM Welle in einem transparenten Material

Der Brechungsindex n beschreibt wie sich die Welle in einm transparenten Material fortbewegt.

$$c_0 \Rightarrow c = \frac{c_0}{n}$$
 $\lambda_0 \Rightarrow \lambda = \frac{\lambda_0}{n}$ $f \Rightarrow konstant$

2.4 Dopplereffekt (Optik)

Da eine EM Welle kein Medium braucht für die Fortbewegung, ist beim EM Dopplereffekt nur die relative Geschwindigkeit v zwischen Sender und Empfänger relevant.

$$f` = f \cdot \sqrt{\frac{c - v}{c + v}}$$

v ist positiv bei Entfernung v ist negativ bei Annäherung

2.5 Reale Welle und komplexe Darstellung

Die komplexe Darstellung des E-Feld wird gewählt, weil die Berechnungen oft einfacher sind, insbesondere bei der Superposition (Additon)

von Feldern und der Berechnung der Leistung.

$$E(x,t) = E_0 \cdot e^{i(kx - \omega t + \phi_0)}$$

2.6 Vergleich des E-Felds an zwei Punkten

Positionsvergleich:

$$E(x + \Delta x, t) = E(x, t) \cdot e^{ik\Delta x}$$

Zeitvergleich:

$$E(x, t + \Delta t) = E(x, t) \cdot e^{-ik\Delta t}$$

Phasenverschiebung:

$$E(x_1, t_1) = E_0 \cdot e^{i(kx_1 - \omega t_1 + \phi_0)} = E_0 \cdot e^{i\phi_1}$$

$$E(x_2, t_2) = E_0 \cdot e^{i(kx_2 - \omega t_2 + \phi_0)} = E(x_1, t_1) \cdot e^{i\Delta\phi_1}$$

2.7 Intensität einer EM Welle

$$I = \frac{Leistung}{Fl\ddot{a}che} = \frac{P}{A} = \frac{1}{2} \cdot nc_0 \varepsilon_e |E_0|^2$$

$$B_0 \cdot e^{i(kx - \omega t)} \cdot (-i\omega) = E_0 \cdot e^{i(kx - \omega t)} \cdot (ik)$$

$$B_0 = E \frac{k}{\omega} = E \frac{1}{c}$$

 c_0 : Lichtgeschwindigkeit im Vakuum

n: Brechungsindex

 ε_0 : Dielektrizitätskonstante

2.8 Interferenz

- Konstruktive Interferenz: $\Delta \varphi = 0$
- Destruktive Interferenz: $\Delta \varphi = \pi$

Für Interferenzen zu addieren werden sie zuerst in das E-Feld zurück gerechnet.

Zeigerdiagramm:

$$E_{tot}(x,t) = E_{1,0} \cdot e^{i\phi_1} + E_{2,0} \cdot e^{i\phi_2} = (E_{1,0} + E_{2,0} \cdot e^{i\Delta\phi}) \cdot e^{i(kx - \omega t)}$$
$$I_{tot} = \frac{1}{2} nc_0 \varepsilon_0 |E_{tot}|^2 = \frac{1}{2} nc_0 \varepsilon_0 |E_{1,0} + E_{2,0} \cdot e^{i\Delta\phi}|^2$$

Phasenverschiebung:

$$\Delta \varphi = \varphi_2 - \varphi_1 = \Delta L k_0 + k_2 L_2 - k_1 L_1$$

$$k_0 = \frac{2\pi}{\lambda_0}$$
$$k_1 = \frac{2\pi}{\lambda_0} n_1$$

2.9 Reflexion und Transmission

Energieerhaltung:

$$I_0 = I_r + I_t$$
 \Rightarrow $n_1 E_0^2 = n_1 E_r^2 + n_2 E_t^2$

Definition:

$$E_r = r \cdot E_0 \qquad \Rightarrow \qquad E_t = t \cdot E_0 \qquad \Rightarrow \qquad 1 + r = t$$

Reflexions- und Transmissionskoeffizienten:

$$r = \frac{n_1 - n_2}{n_1 + n_2} \qquad \Rightarrow \qquad t = \frac{2n_1}{n_1 + n_2}$$

$$I_r = |r|^2 \cdot I_0 \qquad \Rightarrow \qquad I_t = \frac{n_2}{n_1} |t|^2 \cdot I_0$$

- $n_1 < n_2$: Reflektierte Welle erfährt einen Phasensprung von $\pi,$ bzw. $\lambda/2$
- $n_1 > n_2$: Reflektierte Welle erfährt keinen Phasensprung

2.10 Dünnfilm-Interferenz

Bedingung reduzierte Reflexion:

$$d = m \frac{\lambda_0}{2n} \qquad m = 1, 2, \dots$$

Bedingung verstärkte Reflexion:

$$d = \frac{\lambda_0}{4n} + m \frac{\lambda_0}{2n} \qquad m = 0, 1, \dots$$

Die Reflexion beim Übergang zwischen zwei Medien mit Brechungsindizes n_1 und n_2 kann mit einer zusätzlichen Antireflexions-Dünnschicht reduziert werden.

$$n_1 < n_{AR} < n_2$$

Schichtdicke $\frac{\lambda}{4n_{AR}}$

Idealer Brechungsindex:

$$n_{AR}^2 = n_1 \cdot n_2$$

2.11 Fabry-Perot Interferometer

Das Fabry-Perot Interferometer (Etalon) besteht aus zwei parallelen, reflektierenden Oberflächen in einem festen Abstand d mit einer Reflexion R<100.

under construction

2.12 Beugung am Spalt

$$\sin \alpha_{min} = m \cdot \frac{\lambda}{D}$$
 $\sin \alpha_{max} = (m + \frac{1}{2}) \cdot \frac{\lambda}{D}$

Für kleine Beugungswinkel gilt:

$$x_{min} = m \cdot \frac{\lambda}{D}L$$
 $x_{max} = (m + \frac{1}{2}) \cdot \frac{\lambda}{D}L$ $m = 1, 2, 3...$

Auflösungsvermögen Mikroskopie

$$\Delta l = 1.22 \frac{f\lambda}{D}$$

f: Brennweite der Linse

D: Durchmesser der Linse

2.13 Beugung am Gitter

Wenn Licht auf eine periodische Anordnung von Streukörpern trifft, können die Elementarwellen, die von den Streukörpern ausgehen in bestimmte Richtungen konstruktiv interferieren und ein Beugungsmuster generieren.

2.14 Polarisation

$$E_t = E_0 \cdot \cos \Delta \varphi \qquad I_t = I_0 \cdot \cos^2(\Delta \varphi)$$

Polarisationsgrad:

$$PG = \frac{P_{max} - P_{min}}{P_{max} + P_{min}}$$

2.15 Transmission und Reflexion (Fresnell)

under construction

2.16 Absorption

Viele Materialien absorbieren einen Teil des Lichtes. Die Absorption hängt von der Wellenlänge ab und ist oft charakteristisch für ein Material.

$$I(d)=I_0\cdot 10^{-\alpha d} \qquad I(d)=I_0\cdot e^{-\alpha^* d} \qquad I(d)=I_0\cdot 10^{\frac{-\alpha^* d}{10}}$$

$$Chemiker \qquad Physiker \qquad Optischer Ingenieur$$
 α^* in dB/m

2.17 Intensität Gauss Strahl

Die Intensität quer zur Strahlrichtung hat die Form einer Gauss Kurve. Im Abstand r=W von der z-Achse fällt die Intensität auf 13.5% (e^-2) ab.

$$I(r,z) = \underbrace{I_0 \left(\frac{W_0}{W(z)}\right)^2}_{I(0,z)} \cdot \underbrace{e^{-\frac{2r^2}{W(z)^2}}}_{Querschnittsprofil}$$

Strahlradius W(z):

$$W(z) = W_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

Mit $\pm z_0$ wird der Rayleigh Bereich (Tiefenschärfe) bezeichnet.

$$2z_0 = \frac{2\pi W_0^2}{\lambda}$$

Öffnungswinkel:

$$\theta_0 \approx \tan \theta_0 = \frac{\lambda}{\pi W_0}$$
 in rad

Gauss Strahlen:

$$W_{FWHM}(z) = 1.18 \cdot W(z)$$
 $\theta_{FWHM} = 1.18 \cdot \theta_0$

Elektromagnetische Optik

3.1

Quanten Optik

4.1