

CoverPage Overview Customers Employees Products Promotions Forecasts Prospects

Data Source : SQL Server Data Analyst: Adedotun Adeboye

GENERAL OVERVIEW

Year is 2021

Summary Board \$6,109,407 \$12,600,375 -51.51% **Total Sales SPLY Sales** YoY% Growth \$2,538,214 \$5,016,434 -49.40% **Total Profit** SPLY Profit YoY% Growth 3953 3760 5.13% **Total Orders** SPLY Orders YoY% Growth 3255 2216 46.89% YoY% Growth Customers **SPLY Customers** -28.43% Avg Orders SPLY Avg_Ord... YoY% Growth \$1.877 \$5.686 -66,99% Avg Spend SPLY Avg_Spend YoY% Growth

Employees Above/Below Median Salary Year EMPLOYEES BOARD 296 2022 \vee Ken Sánchez Year is 2022 **Employee Count** Laura Norman Sheela Word Gender James Hamilton Sales Territory R... \times Country X David Bradley ΑII \vee Australia Brian Welcker Terri Duffy **Rob Walters** Department Dylan Miller ☐ Document Cont... **United States** Jean Trenary \$17,941,389 Amy Alberts Engineering Stephen Jiang Executive **Total Sales** Australia Australia Syed Abbas \$52,172,670 \$12,786,328 \$12,786,328 Facilities and M... Roberto Tamburello Wendy Kahn Finance United Kingdom Michael Raheem \$6,987,403 Human Resourc... Diane Margheim **V** 100 ☐ Information Ser... 0 50 Salary Marketing Sales Employee Performance Sales Employee Trend ☐ Production Production Con... \$6,176K Lynn Tsoflias \$12,786K Linda Mitchell \$11,075K Purchasing \$5,311K \$5,111K \$5,034K Shu Ito \$11,075K Quality Assuran... **Fotal Sales** Jae Pak \$6,987K Research and D... David Campbell \$6,799K \$4,605K \$3,480k \$4,415K Pamela Ansman-Wolfe \$6,799K Sales \$2,724K Tete Mensa-Annan \$6,799K ☐ Shipping and R... \$2,442K Rachel Valdez \$5,923K ☐ Tool Design Ranjit Varkey Chuduk... \$5,026K Dec Feb Jun Jul Sep Oct Nov Jan Mar Apr May Aug Total Sales Month

© PRODUCTS OVERVIEW

SubCategory	Total Sales	Total Prc^
⊞ Touring Bikes	\$11,582,307	\$4,382,
⊞ Road Bikes	\$15,642,014	\$5,687,4
	\$21,701,208	\$9,862,
Mountain-500 Silver, 52	\$111,303	\$50,
Mountain-500 Silver, 48	\$110,738	\$50,
Mountain-500 Silver, 44	\$83,619	\$38,
Mountain-500 Silver, 42	\$92,093	\$41,
Mountain-500 Silver, 40	\$115,823	\$52,
Mountain-500 Black, 52	\$97,198	\$44,
Total	\$48,925,529	\$19,932, [∨]
<		>

TRENDS & FORECAST

Year is 2022
Country is Australia
State is Alabama
City is Ballard
Category is Accessories
Sub-Category is Bib-Shorts

ANALYSIS OF PROSPECTS

2059
Num of Prospects

City

FirstName	LastName	City	/
Abby	Malhotra	Sedro Woo	
Abby	Prasad	Concord	
Abby	Rodriguez	Las Vegas	
Abby	Srini	Berkeley	
Abigail	Brown	Port Orcha	
Abigail	Bryant	Edmonds	
Abigail	Davis	Saint Ann	
Abigail	Flores	Colma	
Abigail	Gray	Merritt Isla	
Abigail	Hall	Gold Bar	
Abigail	Watson	Seattle	
Vdam	Alovandor	Codar City	

BUSINESS DEMANDS

S/N	Role	Demands	Purpose	Criteria
1	Directors &	Report overview of revenue,	Performance	Sensitivity
	Managers	profit, growth over the years &	review,	enabled PBI
		staff performance.	planning, staff	dashboard
			re-appraisal	
			and reward	
			purposes	
2	Sales team	Dashboard Overview of Sales.	For targeting,	PBI Dashboard
		General sales performance,	customer	enabled with daily
		Customer, products, prospects	acquisition and	refresh; alerts and
		and promotions analysis.	retention	subscriptions
		Factors influencing sales as	purposes.	
		well. Granularity also required.		
3	Business	Overview of prospects, trends &	Decision	Weekly refresh of
	Development	Forecasts	Making for	Sales PBI
	Team		innovative	dashboard
			purposes	
4	Data Science	Overview of trends & forecast	Predictions and	Weekly refresh of
	Team	Information	further analysis	PBI dashboard

SNAPSHOT OF 'ADW PROJECT REAL' POWER BI MODEL & TABLES

SNAPSHOT OF SQL CODES

```
/***Ouerv for Sales Facts Table***/
□SELECT FIS.[SalesOrderNumber]
      ,[ProductKey]
      ,[OrderDateKey]
      , [DueDateKey]
      ,[ShipDateKey]
      ,[CustomerKey]
      ,[PromotionKey]
      ,[SalesTerritoryKey]
      ,[OrderQuantity]
      ,[UnitPrice]
      ,[UnitPriceDiscountPct] AS 'DiscountPerUnit'
      ,[DiscountAmount]
      ,[ProductStandardCost] AS ProductCost
      ,[TotalProductCost]
      ,[SalesAmount]
       ,
,([SalesAmount] - [TotalProductCost]) AS 'Profit' /***Added a new column to display the profit for each sale***/
       ,FIR.[SalesReasonKey]
       ,DSR.[SalesReasonName] AS ActualReason
       , DSR.[SalesReasonReasonType] AS GeneralReason
   FROM [AdventureWorksDW2019].[dbo].[FactInternetSales] AS FIS
   LEFT JOIN [FactInternetSalesReason] AS FIR JOIN [DimSalesReason] AS DSR
   ON SalesOrderNumber = FIR.SalesOrderNumber
   ON FIR.SalesReasonKey = DSR.SalesReasonKey
   ORDER BY FIS.SalesOrderNumber
   /***Merged columns from 2 other Fact tables to make a big fact table so we can have a star schema in our model***/
  /***Query For Prospective Buyers Table***/

□SELECT [ProspectiveBuyerKey]

        ,[FirstName]
        ,[LastName]
        ,[BirthDate]
        ,DATEDIFF(year, BirthDate, GETDATE())AS Age
        ,CASE MaritalStatus WHEN 'M' THEN 'Married' WHEN 'S' THEN 'Single' END AS 'MaritalStatus'
         ,CASE Gender WHEN 'M' THEN 'Male' WHEN 'F' THEN 'Female' END AS 'Gender'
        ,[YearlyIncome]
        ,[TotalChildren] AS Children
        ,[Education]
        ,[Occupation]
        ,[HouseOwnerFlag] AS Houses
        ,[NumberCarsOwned] AS Cars
        ,[City]
        ,[StateProvinceCode]
         ,[PostalCode]
    FROM [AdventureWorksDW2019].[dbo].[ProspectiveBuyer]
 /***Query For Promotions Table***/
□SELECT [PromotionKey]
         ,[EnglishPromotionName] AS PromotionName
         ,([DiscountPct] * 100) AS PercentDiscount
         ,[EnglishPromotionType] AS PromotionType
         , [EnglishPromotionCategory] AS PromotionCategory
         ,[StartDate]
         ,[EndDate]
          ,DATEDIFF(MONTH,[StartDate], [EndDate]) AS PromotionPeriod
         ,[MinQty]
         ,[MaxQty]
    FROM [AdventureWorksDW2019].[dbo].[DimPromotion]
```

```
/***Query for Call Center Table***/
□SELECT [FactCallCenterID] AS CallCenterID

,[DateKey]
,[WageType]
,CASE [Shift] WHEN 'AM' THEN 'Morning' WHEN 'PM1' THEN 'Afternoon'
WHEN 'PM2' THEN 'Evening' WHEN 'midnight' THEN 'Midnight' END AS 'Shift'
,[LevelOneOperators] AS Level1Operators
,[LevelTwoOperators] AS Level2Operators
,[TotalOperators]
,[Calls]
,[AutomaticResponses]
,[Orders]
,[IssuesRaised]
,[AverageTimePerIssue] AS AvgTimePerIssue
FROM [AdventureWorksDW2019].[dbo].[FactCallCenter]
```

STATISTICS TEST

Purpose of this Statistics Test: The statistics test was introduced to either approve or disapprove of the result and prediction given by the key influencer chart in the 'Customer' page of the "ADW Project Real" Power BI report.

Fig1: Sample of the Key Influencers Chart and Analysis

The result stated that Sales tends to increase when:

- i. Customers have 0 or no kids (decrease in the number of kids)
- ii. Customers own a car or less
- iii. Introducing a 3rd value that wasn't tested initially "Number of houses owned by the customer"

TESTING METHOD

The statistical method used for testing is 'Multiple Linear Regression'

Fig 2: Regression Diagram

Regression

	Variables Entered/Removed ^a									
	Model	Variables Entered								
•	1	Cars, Houses, Children ^b		Enter						
	a. Dependent Variable: V10 b. All requested variables entered.									

All the independent variables were approved for analysis

The dependent variable is "V10" which is "Sales"

SAMPLE SIZE

A sample representative of the population was extracted from the ADW database in CSV. Format and used for the analysis.

ANALYSIS & RESULTS

Fig 3: Diagram of Model Summary

	Model Summary ^b						
Model R R Square Square Estimate							
1	.058ª	.003	.003	926.9240287			
	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						

- a. Predictors: (Constant), Cars, Houses, Children
- b. Dependent Variable: V10

Model Summary: The 'R Square' and 'Adjusted R Square' value confirms that we are working with a multiple linear regression method

'R' here is the Multiple Correlation Coefficient and having a value of 58% literally means that the correlation between the dependent and independent variables is moderate.

'R-Squared' also known as 'Coefficient of Variance' represents the proportion of variance in the dependent variable that can be explained by the independent variable. Judging by the value of R Square below, only 3% of the variance in the dependent variable can be explained by the independent variable which happens to be very low or non-existent. Furthermore the remaining 97% variance cannot be explained by the examined independent variables.

However, we cannot conclude until we have seen the remainder of the analysis and the individual sig. values and coefficient analysis for the independent variables.

ANOVA (Analysis of Variance)

Fig 4: ANOVA

			$ANOVA^a$			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	178050450.20	3	59350150.066	69.077	<.001 b
	Residual	51889809432	60394	859188.155		
	Total	52067859882	60397			
a. De	pendent Variat	le: V10				
b. Pre	edictors: (Cons	tant), Cars, House	s, Children			

ANOVA helps to determine if the equation in its entirety is significant or not. The 'Sig.' value seen in the table below shows that the equation and the variables are significant in predicting Sales.

COEFFICIENTS

Fig 5: Coefficient's Table

				Coefficients	1			
		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confiden	ce Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	546.593	8.854		61.735	<.001	529.240	563.947
	Children	-28.929	2.466	051	-11.730	<.001	-33.763	-24.095
	Houses	24.460	8.366	.012	2.924	.003	8.061	40.858
	Cars	-15.806	3.416	020	-4.627	<.001	-22.501	-9.111

While ANOVA talks about the whole equation, the coefficient shows us which of independent variables is significant in predicting increase in sales and this is depicted by the sig. value of each independent variable. *The 'sig.' value for each of the independent variables must be less than 0.05 (<0.05) for it to be classed as significant*

From our 'Coefficients' table above:

- > Children is less than 0.05 and hence is significant
- ➤ Houses is less than 0.05 and is significant as well
- > Cars is less than 0.05 and is significant too
- The constant is less than 0.05 and is significant too

All our independent variables are significant and can help in predicting our dependent variable which is 'Sales'.

The Equation for prediction:

Predicted Sales = (546.593) + (Children*-28.929) + (Houses*24.460) + (Cars*-15.806)

Unstandardized Coefficients

From the results above, all the independent variables "Children, Houses & Cars" can statistically and significantly predict sales. Since all the independent variables are statistically significant and assuming all variables are constant, a corresponding increase in sales can be predicted with a 28.9% decrease in Children owned plus 24.4% increase in home ownership plus 15.8% decrease in car ownership.

Standardized Coefficients

A standard deviation increase in the number of children will result in a standard deviation decrease of 0.051 in sales. A standard deviation increase in the number of houses will result in a standard deviation decrease of 0.012 in sales. A standard deviation increase in the number of cars will result in a standard deviation decrease of 0.020 in sales. This also shows us that the number of children has twice or more impact in predicting sales.

<u>Coefficient Correlations</u>: Judging from the values, we can deduce that none of the independent variables are correlated to one another and this is significant in validating the results.

Coefficient Correlations ^a							
Model			Cars	Houses	Children		
1	Correlations	Cars	1.000	.129	282		
		Houses	.129	1.000	209		
		Children	282	209	1.000		
	Covariances	Cars	11.668	3.697	-2.376		
		Houses	3.697	69.997	-4.320		
		Children	-2.376	-4.320	6.082		
a. De	pendent Variab	le: V10					

CONCLUSION

We can safely conclude that the prediction made by the Key Influencers chart in Power BI is correct as it has also been proved by our statistical test. It is therefore safe for the business to go ahead to use this predictions for informed decision making however they deem fit.