

Rebalancing Citibike, A Time Series Analysis

By: Mitchell Krieger

Bike share systems like Citibike in NYC face a unique problem.

When bike docks are full, riders can't return bikes.

When bike docks are empty, there are no bikes to take out

System Balance:

- When a the Citibike System is balanced it means that bike are distributed so that stations don't get too full nor too empty.
- Signs of an unbalanced system:

Bike Pools:

Stations where riders deposit bikes but don't take them out

Causes too full stations

Bike Drains:

Stations where riders take bikes out but don't return them

Causes empty stations

How can we ensure a balanced system?

To do so we'll need to be able to understand:

- System Traffic: How Users Ride
 - When and Where to Rebalance?
- Number of bikes at a given station
 - O How much to re-balance?
- Station, Rider and other behavior that leads to bike drainage & poolage
 - Why did it become unbalanced?
 - Possible exogenous variables such as weather, elevation and holidays

Methodology

6. Incorporate Exogenous Variables

7. Create Dashboard Deployment

5. Clustering into pools, drains and balanced stations through seasonality extraction

4. Time Series Analysis to predict available bikes at a given station

PROPHET

1. Collect data from Citibike and Open Bus focusing on 2018

2. Clean and Prep Data for Analysis

3. Exploratory Data Analysis and Visualization

The Data:

- Data Collected From Citbike Live Feed and Open Bus Project
- Focused Analysis on 2018
- Operated by Motivate, a subsidiary of Lyft

System Stats:

- Launched in 2013
- 1200+ stations between NYC & JC
 - Huge growth from 650+ stations in 2018
- 1.75 million trips in 2018
- Majority of trips are <15 minutes

Visualizing the system in a typical weekday...

...we can see both seasonality and pools/drains.

Diving Deeper into Seasonality:

Yearly Seasonality?

- Exists but is weak on an individual station basis
- Only apparent when aggregated by month
- May not actually be useful in modeling

Modeling

Goal: A model that captures the seasonality (weekly and daily) and closely predicts number of available bikes (low RMSE and MAE values).

Best version of each type of Model:

Model	Seasonality Captured	RMSE	MAE
Dummy ARIMA	None	8.97	8.05
SARIMA	Daily	9.71	7.77
LSTM	Daily	10.44	8.80
CNN/LSTM	None	4.88	3.63
Facebook Prophet	Daily, Weekly	6.30	5.15

The Facebook Prophet Model

- Closely Models both the train (green) and test (blue) sets
 - Much of the data is within the confidence interval
- Captures both daily and weekly seasonality extremely well
- Very distant forecasts also perform quite well

Seasonality Extraction

Captures patterns identified in the Exploratory Data Analysis:

- Weekly Season:
 - Tues/Weds/Thurs are hot
 - Weekends behave differently
- Daily Season:
 - High activity during Rush Hour commuting times

We can use the daily season extraction to classify pools, drains and balanced stations.

Balanced stations' extracted daily season should:

- Return to where they start after a cycle
- Have a curve centered mostly around zero in a:
 - U Shape (residential neighborhoods)
 - ∩ Shape (business districts)

Unbalanced stations' extracted daily seasons could:

- Have a ∪ or ∩ curve centered far from zero
 - Center < 0 (drain)
 - Center > 0 (pool)

- Have a trend
 - Decreasing (drain)
 - Increasing (pool)
- Have a flat line
 - At Zero (station is unused)
 - Below Zero (drain)
 - Above Zero (pool)

Identifying stations as pools, drains, or balanced

- Implemented algorithm with 5 clusters to yield the most distinct groups of stations.
- Correctly identified key system trends:
 - Pooling in Brooklyn
 - Draining from midtown and the Upper East Side
 - Difference in seasonality between stations in residential districts and business districts
- Slight Pool cluster is not highly distinct, may be misclassification of pools & balanced

Conclusion

Now that stations are classified as pools, drains or balanced:

- Take advantage of seasonality to redistribute bikes strategic times:
 - During late night hours bikes are nearly frozen.
 - The relative lull between the morning and evening commuter rush hour
 - Weekends
- Consider adding additional stations in areas with many pools/drains
- Distribute electric bikes strategically to battle elevation and long distances between stations
- Monitor changes in balancing as Citibike Continues to expand

Next Steps

- Refine Modeling/Clustering to better capture slight drains and slight pools
- Incorporate exogenous variables such as holidays, weather, electric bikes and elevation
- Collect data additional data and run analysis on 2020 as Citibike has expanded greatly since 2018
- Analyze the impact of COVID-19 on changes in rider behavior and station trends/clustering.

Thank you!

For more information:

- GitHub Repository for this Project
- Citibike System Data
- Bloomberg 2014 profile on the mathematics of rebalancing

Contact Information:

- Email: <u>mitkrieger@gmail.com</u>
- GitHub: @mitkrieg