Germs, loca	l rings,	tanger	15
$\frac{(1)}{T(x)} = \frac{(1)}{x}$	Closed $\langle f_1, \dots, f_r \rangle$	e REXI,	,×n]
$O_{\times,x} \stackrel{\sim}{=}$			
i.e.	restrict	×:,>c	
is surj & k			
f V			Poly
SUM)	=======================================	F 9
P			9(x) #C

. . . .

.

.

. .

. . .

. . .

. .

.

.

.

.

. .

.

. . .

. .

.

۰

. .

. .

. . . .

.

. .

. .

.

. . .

. .

.

Suppose f E Oxin gues to O $f \sim (U, f)$ $U \subset \bigwedge^{\infty} \chi \in U$ $(U \cap X, f) \sim O germ.$ After possibly shrinking U, we have +1000After possibly shrinking U, $f = \frac{P}{9}$ polynomials. 9 + 0 on so $P|_{U \cap X} = 0$ on all of X But don't Know P=0 $p\left(x\right) = V(3i-)$ 9(x) =0 p(x).g(x) = 0on all 6

Can write $= \geq \alpha_i$, f_i $\in \mathbb{Z}[X_1 - X_1]$ Divide by g < justify. $g(x) \neq 0 \Rightarrow g$ is invertible in an open set containing X. =) g is invertible in Ona $P = \sum_{q} \frac{q_{i}}{q} \cdot f_{i}$ $\left(\frac{\rho}{9}\right) = \sum_{i=1}^{n} \frac{\alpha_i}{99} \cdot \frac{f_i}{7}$ some other Wanted germs. E Op, x

Tangent spaces x EX 1) Ring hom Ox, a -> tr[e]/2 2 K-Derivations Oxn - R Opaque? The def. is indep of courdinates? Also give functionality. f:× induces df: Tx,2-7 Tx,y.

$$f^*: O_{Y,y} \rightarrow O_{X,x}$$
 $V \circ f^*$
 $k[\varepsilon]/\varepsilon^2$

Ring from $O_{Y,y} \rightarrow k[\varepsilon]/\varepsilon^2$
 $V \circ f^*$
 $V \circ f$

0 x, 2 / [[] / 2 -> Sol" xito (aitbie) K[E]/EZ-valued Sols means 7 antbne) (ait bie) , anthrE) Etele/22 fi (aitbir) 0 = 0+0.8 $O_{X,x} = O_{X,x} / \langle t^{1,-1} t^{x} \rangle$ f; represents O of Ox,n. $f: (a_1+b_1\epsilon, ..., a_n+b_n\epsilon) = 0$ to goback. (aitbir) a sol? X; Horas Cait bije

Show that it sends
$$f: \mapsto 0$$
 so it descends to the quotient V

$$\frac{1}{1} \left(V_{1}f \right) = \left(V_{1}f \right) = \left(V_{2}f \right) = \left(V_{3}f \right) = \left(V_{4}f \right) = \left(V_{$$

 $(U, P_a) \sim (U', P'_{a'})$ then $\frac{P}{=}$ $\frac{Q'}{Q'}$ Jopen V C UNU' where $P_q = P_{q'}'$ is $P_q = P_q' \leftarrow as$ then it follows that $p(a,+b,\epsilon) = p'-q$ $\frac{\mathcal{P}}{\mathcal{Q}}(a;th;c) = \frac{\mathcal{P}}{\mathcal{Q}}(a;th;c).$ becomse we have film 0 a solution

Example:
$$f(x_1y) = y - 2^2$$
 $a = (1,1)$
 $(1,1) + \epsilon(b_1,b_2)$
 $\epsilon \in \epsilon[\epsilon]/\epsilon^2$
 $(1+\epsilon b_1,1+\epsilon b_2)$

When does this lie on the curve?

 $(1+\epsilon b_2) - (1+\epsilon b_1)^2 = 0$
 $(1+\epsilon b_2) - (1+\epsilon b_1)^2 = 0$
 $(1+\epsilon b_2) - (1+\epsilon b_1) = 0$
 $(1+\epsilon b_2) - (1+\epsilon b_1) = 0$
 $(1+\epsilon b_2) - (1+\epsilon b_1) = 0$

Remains only the ϵ -term.

 $\epsilon(b_2-2b_1) = 0$

Condusion
(1,1) + & (b1,b2) lies on the
curve iff $b_2 - 2b_1 = 0$
(Lying on the subvar will be a system of lin equations in the E
system of lin equations in the E
$(\alpha_{1,-},\alpha_{n}) \in X$
$(a_1 + \varepsilon b_1) = - $ ant $b_n \varepsilon$)
$f(x, t \in b_1,) = 0$
$f_i(a_{i,1}-ia_n)=0$
No const-tem
$NO \varepsilon^2 + em$
only & term < Linear cambol bis.

.

only if deb in y courd is Thuice deb in a courd (3). A third egy formulation of tangent space is. Homk (m/m² k) $X \subset A^{\Sigma}$ $M = (x_i - a_i) \subset O_{A_i, x_i}$ m= lev space with basis $(\lambda,-\alpha),-\cdot,\lambda,-\alpha$ $\leq c_i(x_i-a_i)$ $c_i \in \mathbb{R}$ For my for X, we need to further quotient by firstr. Fi = image of fi in M/m²

$$f_{i} = \text{Linear part } f_{i}^{1}$$

$$f_{i} = \text{Linear part } f_{i$$

$$\frac{1}{12}$$

$$\frac{1}{12}$$

$$\frac{1}{12}$$

Want to solve antbac) = 0 f: (a, +b, E, $f_i(a_{ii-1}a_{ii}) = 0$ f; (a,,-,an) + 3fi (a,-,an) b, E $\frac{\partial f_i}{\partial x_2} \left(\alpha_{i-1} \alpha_n \right) b_2 \varepsilon$ $\frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \left(\alpha_{i,i-1} \alpha_{x_i} \right) = \sum_{i$

(4) Tangent space to $V(xy-z^2)$ $C(A^3)$ at < X17,77/ X1-72 (0,0,0)+ & (b1,b2,b3) b when is this a sol to $\times y - z^2 = 0$ $(\epsilon b_1 \cdot \epsilon b_2 - (\epsilon b_3)^2) = 0$ Always! Tis 3-dimonsionel consists of all (b1, b2, b3).

$$(xy-2)$$

$$(0,0,0)+ \in (b+1)b_{2}b_{3}$$

$$(\epsilon,b_{1})(\epsilon b_{2}) - \epsilon b_{3} = 0$$

$$(\epsilon,b_{1})(\epsilon b_{2}) - \epsilon b_{3} = 0$$

$$(\epsilon,b_{1})(\epsilon,b_{2}) - \epsilon b_{3} = 0$$

$$(\epsilon,b_{1})(\epsilon$$

for X (x,4,7) $=\langle x_1y_1z\rangle/z$ $m/m^2 \stackrel{\sim}{=} \langle x, y \rangle$ Hom (m/m², le) has same dim
as m/m² $\times \times \mapsto \alpha$ fixes the hom 1 Y 1 D $\begin{array}{c} \times & \longrightarrow & \bigcirc \\ \times & \longrightarrow & \bigcirc \end{array}$ $\begin{array}{c} \times & \longrightarrow & 0 \\ \times & \longrightarrow & 0 \end{array}$ Hom (Mzk) basis of torm a

(6)
$$V(X^{3}+Y^{3}+Z^{3}) \subset \mathbb{P}^{2}$$

Smooth at: $[1:-1:0]$

Tangent space is one dim.

Move to an affine $X=1$
 $V(1+y^{3}+z^{3}) \subset A^{2}(y_{1}z)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$
 $(-1,0)$

