# **Engenharia UNINOVE**

# Função Exponencial

# Propriedades, gráficos, crescimento e descrescimento

**Objetivo:** Discutir algumas características da função exponencial, como sua representação gráfica, suas propriedades e seu crescimento e decrescimento.

# Módulo II



Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

## Situação-problema 1:

Dada a função exponencial do tipo  $f(x) = 3^x$ , como saber se ela é crescente ou decrescente?

Vamos construir sua representação gráfica para visualizar o comportamento dos dados ao longo da reta real. Para isso, vamos construir uma tabela com valores para x e seus respectivos valores da função:

| Х    | -3              | -2              | -1              | 0 | 1              | 2  |
|------|-----------------|-----------------|-----------------|---|----------------|----|
| f(x) | $\frac{1}{3^3}$ | $\frac{1}{3^2}$ | $\frac{1}{3^1}$ | 1 | 3 <sup>1</sup> | 32 |

## Veja o gráfico a seguir:

De acordo com o gráfico, a função  $f(x) = 3^x$  é crescente, pois quanto maiores os valores de x, maiores os valores de f(x), ou seja, da função.



## ENGENHARIA UNINOVE – FUNÇÃO EXPONENCIAL

Gráfico elaborado pelo autor, utilizando Winplot

# Situação-problema 2

Dada a função exponencial do tipo  $f(x) = \left(\frac{1}{2}\right)^x$ , como saber se é crescente ou decrescente?

Vamos construir a sua representação gráfica para visualizar o comportamento dos dados ao longo da reta real. Para isso, vamos construir uma tabela com valores para x e seus respectivos valores da função:

| X    | -3                                         | -2                                         | -1                                         | 0 | 1               | 2               |
|------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---|-----------------|-----------------|
| f(x) | $\frac{1}{\left(\frac{1}{2}\right)^3} = 8$ | $\frac{1}{\left(\frac{1}{2}\right)^2} = 4$ | $\frac{1}{\left(\frac{1}{2}\right)^1} = 2$ | 1 | $\frac{1}{2^1}$ | $\frac{1}{2^2}$ |

## Veja o gráfico a seguir:

De acordo com o gráfico, a função  $f(x)=\left(\frac{1}{2}\right)^x$ é decrescente, pois quanto maiores os valores de x, menores os valores de f(x), ou seja, da função.



#### DICA:

Para construir o gráfico de uma função, faça sempre uma tabela com valores de x e seus respectivos valores da função.

Para isso, escolha valores de x positivos e negativos quando possível, de acordo com o domínio.



Gráfico elaborado pelo autor, utilizando Winplot

# Propriedades da função exponencial

Para toda função do tipo  $f(x) = a^x$ , temos:

- I. Quando x = 0,  $f(0) = a^0 = 1$ . Assim, para funções deste tipo, sempre temos o ponto (0, 1), no gráfico.
- II. Quando a > 1, (base maior que 1), a função  $f(x) = a^x$  será **crescente.**
- III. Quando 0 < a < 1 (a base é um número entre 0 e 1) , a função  $f(\mathbf{x}) = \mathbf{a}^{\mathbf{x}} \operatorname{ser\'a} \mathbf{decrescente.}$
- IV. Para todo a > 0 e a  $\neq$  1, se  $a^{x_1} = a^{x_2}$ , então  $x_1 = x_2$ .

## ENGENHARIA UNINOVE – FUNÇÃO EXPONENCIAL

- V. Para todo a > 0 e todo  $x \in R$ , temos que  $f(x) = a^x$  é sempre positiva. Desta maneira, a curva do gráfico está sempre acima do eixo X.
- VI. Devido às propriedades das potências,  $f(x + y) = f(x) \cdot f(y)$ . Esta propriedade transforma a função de uma soma em um produto de funções, pois:  $f(x + y) = a^{x+y} = a^x \cdot a^y = f(x) \cdot f(y)$ .



#### IMPORTANTE:

As operações devem ser sempre com o mesmo denominador.

## **Exercícios resolvidos**

**1.** Dada a função  $f(x) = 3^x$ , calcule f(2); f(5); f(7).

#### Resolução

$$f(2) = 3^2 = 9$$

$$f(5) = 3^5 = 243$$

Usando a propriedade:  $f(x + y) = a^{x+y} = a^x \cdot a^y = f(x) \cdot f(y)$ 

Temos:  $f(7) = 3^7 = 2187$ , então  $f(2+5) = 9 \times 243 = 2187$ .

### ENGENHARIA UNINOVE - FUNÇÃO EXPONENCIAL

**2.** Dadas as funções  $f(x) = \left(\frac{7}{5}\right)^x$  e  $f(x) = \left(\frac{2}{3}\right)^x$ , verifique se elas são crescentes ou decrescentes.

### Resolução

A função  $f(x)=\left(\frac{7}{5}\right)^x$  é crescente pela propriedade II, pois a base  $a=\frac{7}{5}=1,4 \text{ é maior que 1}.$ 

A função  $f(x)=\left(\frac{2}{3}\right)^x$  é decrescente pela propriedade III, pois a base  $a=\frac{2}{3}=0,666\cdots$  está entre 0 e 1.

**3.** Construa o gráfico da função  $f(x) = \left(\frac{1}{3}\right)^x + 1$ .

## Resolução

Em primeiro lugar, analisamos o valor da base. É um número entre 0 e 1. Portanto, a função é decrescente.

Em segundo lugar, construímos uma tabela com alguns valores para x e seus respectivos da função:

| Х   | -2                                              | -1                                             | 0     | 1                                 | 2                                  |  |
|-----|-------------------------------------------------|------------------------------------------------|-------|-----------------------------------|------------------------------------|--|
| (x) | $\frac{1}{\left(\frac{1}{3}\right)^2} + 1 = 10$ | $\frac{1}{\left(\frac{1}{3}\right)^1} + 1 = 4$ | 1+1=2 | $\frac{1}{3^1} + 1 = \frac{4}{3}$ | $\frac{1}{3^2} + 1 = \frac{10}{9}$ |  |

### ENGENHARIA UNINOVE – FUNÇÃO EXPONENCIAL





Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

## **REFERÊNCIAS**

DANTE, Luiz Roberto. Matemática – Contexto e Aplicações. Ensino Médio, 1º ano. São Paulo: 3. ed. São Paulo: Editora Ática, 2010.

IEZZI, Gelson et al. Matemática – Ciência e Aplicações. Ensino Médio, 1º ano. São Paulo: 3. ed. São Paulo: Editora Ática, 2010.

KIYUKAWA, Rokusaburo et al. Os Elos da Matemática. Ensino Médio, 1º ano. São Paulo: Editora Saraiva, 2010.