STAT 110: Week 3

University of Otago

Outline

- Data summaries: sample mean and standard deviation
- Summaries are limited
 - ► To go further we needed statistical models
 - Use probability to describe the variation in the data
- Had an introduction to probability
- Today we will introduce idea of a random variable
 - Useful in helping us use probability to describe data

Example: bovine leptospirosis

- An inspector visits cattle & dairy farms for signs of bovine leptospirosis
- If they visit three farms, the sample space has eight possible outcomes
 - ▶ LLL, LLC, LCL, LCC, CLL, CLC, CCL, CCC
 - L: evidence of leptospira at farm
 - C: farm is clear
 - Each outcome has an associated probability
- If the inspector visits 30 farms, there are 1 073 741 824 possible outcomes
- The way the problem is expressed makes it difficult to answer questions:
 - ▶ How many farms would we expect to have evidence of leptospira?
 - ▶ How likely is it that 24 or more farms will have evidence of leptospira?

• We need a better way of writing/expressing things

Random variable

- A random variable assigns a numerical value to each outcome in sample space
- For our purposes, we can use a simpler definition:
 - ▶ A random variable is a (random) process with a numerical outcome
- · Common to represent a random variable with capital letter
 - ightharpoonup e.g. X or Y or Z
- The possible values are given with lowercase letters
 - \triangleright e.g. x, y, z

Random variables: leptospirosis example

- ullet Y represents the number of farms with evidence of leptospira
- Visit three farms
 - Four possible values: $y_1 = 0$, $y_2 = 1$, $y_3 = 2$, $y_4 = 3$
- Visit 30 farms
 - ▶ 31 possible values: $y_1 = 0$, $y_2 = 1$, ..., $y_{31} = 30$.
- We may use i (or j) as an index of possible values
 - e.g. i=2 is the second possible value; $y_i=y_2=1$
- We use the k to represent the number of possible values
 - ightharpoonup k = 4 if we visit three farms
 - k = 31 if we visit 30 farms

Probability distribution

- A random variable has an associated probability distribution
- For the leptospirosis example

- $Pr(Y = y_i)$: the probability that (the random variable) Y takes the value y_i
 - lacktriangledown e.g. for i=3: $\Pr(Y=2)=0.4$, the probability that Y takes the value 2

Probability distribution: example

- Suppose we open an online store that sells two products
- A given online visitor may:
 - ▶ With probability 0.4 buy nothing: we receive \$0
 - ▶ With probability 0.3 buy item A: we receive \$20
 - ▶ With probability 0.2 buy item B: we receive \$35
 - ▶ With probability 0.1 buy item A and B: we receive \$50
- If Y represents the money we receive from an online visitor

i	1	2	3	4	Total
y_i	0	20	35	50	
$\Pr(Y=y_i)$	0.4	0.3	0.2	0.1	1

Using probability distributions

- With these definitions we can start to ask useful questions
 - ▶ How likely is it that 2 or more farms will have evidence of leptospira?
 - ▶ How likely is it that we will receive \$20 or below from an online visitor?

Using probability distributions

- With these definitions we can start to ask useful questions
 - ▶ How likely is it that 2 or more farms will have evidence of leptospira?
 - ▶ How likely is it that we will receive \$20 or below from an online visitor?
- We use results from last week to answer those questions
- Using the online store as an example
 - ▶ Think of the y values as events: $y_1 = 0$, $y_2 = 20$, $y_3 = 35$, $y_4 = 50$
 - ▶ The events are mutually exclusive
 - $ightharpoonup \Pr(Y \le 20) = \Pr(Y = 0 \text{ or } Y = 20) = \Pr(Y = 0) + \Pr(Y = 20) = 0.4 + 0.3 = 0.7$

Expectation

- We can't yet answer the other question from earlier
 - ▶ How many farms would we expect to have evidence of leptospira? or
 - ▶ How much money do we expect to receive from an online visitor?
- We want to find E[Y], the expected value of the random variable Y
 - lacktriangle The expected value is the same as the mean and is often represented by μ
- · To find this, we weight each possible value by its corresponding probability

$$E[Y] = \sum_{i=1}^{k} y_i \Pr(Y = y_i)$$

• k is the number of possible values (in both our examples k=4)

$$E[Y] = y_1 \Pr(Y = y_1) + y_2 \Pr(Y = y_2) + y_3 \Pr(Y = y_3) + y_4 \Pr(Y = y_4)$$

Expectation: leptospirosis example

How many farms would we expect to have evidence of leptospira?

$$E[Y] = \underbrace{0 \times 0.25}_{0} + \underbrace{1 \times 0.15}_{0.15} + \underbrace{2 \times 0.4}_{0.8} + \underbrace{3 \times 0.2}_{0.6}$$
$$= 1.55$$

• We expect to find 1.55 farms with evidence of leptospira infection

Expectation: online store

How much money do we expect to receive from an online visitor?

$$E[Y] = \underbrace{0 \times 0.4}_{0} + \underbrace{20 \times 0.3}_{6} + \underbrace{35 \times 0.2}_{7} + \underbrace{50 \times 0.1}_{5}$$

$$= 18$$

• We expect to receive \$18 from an online visitor

STAT 110: Week 3

Expection: intuition

$$egin{array}{c|ccccc} i & 1 & 2 & 3 & 4 & Total \\ \hline y_i & 0 & 20 & 35 & 50 \\ \Pr(Y=y_i) & 0.4 & 0.3 & 0.2 & 0.1 & 1 \\ \hline \end{array}$$

- If we saw 100 online visitors
 - ▶ We would expect 40 of them to spend nothing: receive \$0
 - ▶ We would expect 30 of them to spend \$20: receive \$600
 - ▶ We would expect 20 of them to spend \$35: receive \$700
 - ▶ We would expect 10 of them to spend \$50: receive \$500
- We would expect to receive \$1800 per 100 visitors = \$18 per visitor
- Multiplying y_i by $Pr(Y = y_i)$ is taking a 'direct route' to this answer

Expectation: intuition

- Another way we can look at expectation is by thinking of the probability distribution as a old-fashioned scale
- The expected value balances the probability distribution (gold triangle)

STAT 110: Week 3

Variance

- We could also ask questions that relate to variability
 - ▶ How much would we expect income from our store to vary from one day to the next?
- For small problems (like those we have been looking at)
 - Probably preferable to base this off the probability distribution
- For larger problems (which we are moving toward)
 - We need a measure of variability
 - ► Typically use variance / standard deviation

STAT 110: Week 3

Variance

- The variance of the random variable Y is Var(Y)
 - ► Find the average of squared deviations from the mean
 - Weight the squared deviations by their probability

$$Var(Y) = \sum_{i=1}^{k} (y_i - E[Y])^2 \Pr(Y = y_i)$$

• For k=4

▶
$$\operatorname{Var}(Y) = (y_1 - E[Y])^2 \Pr(Y = y_1) + (y_2 - E[Y])^2 \Pr(Y = y_2) + (y_3 - E[Y])^2 \Pr(Y = y_3) + (y_4 - E[Y])^2 \Pr(Y = y_4)$$

Variance: leptospirosis example

• What is the variance in the number of farms that have evidence of leptospira?

 $\blacktriangleright \ \ \text{We know} \ E[Y] = 1.55$

$$\operatorname{Var}(Y) = \underbrace{(0 - 1.55)^2 \times 0.25}_{2.4025 \times 0.25} + \underbrace{(1 - 1.55)^2 \times 0.15}_{0.3025 \times 0.15} + \underbrace{(2 - 1.55)^2 \times 0.4}_{0.2025 \times 0.4} + \underbrace{(3 - 1.55)^2 \times 0.2}_{2.1025 \times 0.2}$$
$$= 1.1475$$

STAT 110: Week 3

Standard deviation

- The standard deviation is the square root of variance
 - $\blacktriangleright \ \operatorname{sd}(Y) = \sqrt{\operatorname{Var}(Y)}$
- For the leptospirosis example
 - $ightharpoonup \operatorname{sd}(Y) = \sqrt{1.1475} = 1.07$
- The standard deviation is (approximately) the average deviation from the mean
- Often the variance will be represented by σ^2
 - \blacktriangleright The standard deviation as σ

STAT 110: Week 3

Example: online visitors

- What is the variance in the amount we receive from an online visitor?
 - We know E[Y] = 18

$$\begin{aligned} \mathsf{Var}(Y) &= \underbrace{(0-18)^2 \times 0.4}_{324 \times 0.4} + \underbrace{(20-18)^2 \times 0.3}_{4 \times 0.3} + \underbrace{(35-18)^2 \times 0.2}_{289 \times 0.2} + \underbrace{(50-18)^2 \times 0.1}_{1024 \times 0.1} \\ &= 291 \\ \mathsf{sd}(Y) &= 17.1 \end{aligned}$$

Slide 18 STAT 110: Week 3

We've seen this before

- We saw expectation (mean), standard deviation, and variance in Week 1
 - ► Sample mean, sample variance, sample standard deviation
 - ► These are summaries of a particular data set (a sample)
- Today we've found these quantities for a distribution
 - Summaries of a random variable
 - ▶ Tells us something about what realizations from the distribution should look like

Summary

- Introduced random variables
- Probability distribution of random variable
- Saw several summaries of random variables
 - Mean
 - Variance
 - Standard deviation

STAT 110: Week 3

Outline

- We saw random variables in the last lecture
 - ▶ Probability distribution
 - Expectation
 - Variance
- Continue learning about random variables today
 - ► Can we have continuous random variables?
 - ▶ What happens when we combine random variables?

Discrete vs continuous

- The random variables we looked at in the last lecture were all discrete
 - Countable number of distinct values
- Discrete random variables are useful in a range of problems, e.g.
 - Number of eggs in a nest
 - ▶ Number of tasks completed in fixed time
 - Number of bugs in a piece of computer code
 - ► Number of voters who prefer candidate X
- There are other situations where things aren't discrete, e.g.
 - ▶ The flipper length of a gentoo penguin
 - ► The time taken in reflex test
 - ► The pH of seawater
- These can take continuous values

Continuous random variables

- An infinite (and uncountable) number of possible values
- Each value has a probability density
 - ▶ Best seen graphically (e.g. for flipper length)

STAT 110: Week 3 Flipper length (mm) Slide 24

Probability density

- This curve is called a probability density function (pdf)
- Probability is given by the area under the curve (pdf)
 - ▶ The total area under the curve (pdf) is 1
- The probability of flipper length between 185 and 190 mm is given by:

STAT 110: Week 3 Flipper length (mm) Slide 25

Continuous vs discrete

- Much of what we have already learned applies to continuous random variables
 - ▶ We can find expectation, variance, standard deviation
 - ► The calculations are more complex (sums are replaced by integrals)
 - ► Explore in more detail in more advanced courses (e.g. STAT 270)

Continuous

- Much of what we have already learned applies to continuous random variables
 - ▶ We can find expectation, variance, standard deviation
 - ▶ The calculations are more complex (sums are replaced by integrals)
 - ► Explore in more detail in more advanced courses (e.g. STAT 270)
- Look at examples on the next two slides

Complement

- Suppose we know the probability that flipper length is less than 190 mm (blue)
 - ▶ Pr(flipper length < 190) = 0.2
- What is Pr(flipper length > 190)? (gold)
 - ▶ It is a complement!

Combinations of random variables

- We may be interested in the combination of several random variables
 - Adélie penguins: feeding trip time
 - Random variables: time spent (i) feeding, (ii) resting, (iii) transit, in a trip
 - Combination: total trip time
 - Genetic linkage (crossover¹)
 - Random variables: number of crossovers in each chromosome
 - Combination: total number of crossovers
 - Cricket: runs scored
 - Random variables: number of singles, twos, threes, fours, sixes in an innings.
 - Combination: total score
 - ► Finance: portfolio value
 - Random variables: share prices for spark (SPK) and port of Tauranga (POT)
 - Combination: portfolio value (e.g. portfolio: 5 SPK, 10 POT)

¹ segments of DNA from one parent's chromosome swap with corresponding segments on the other parent's chromosome during meiosis

Combination of random variables

- ullet Suppose we have random variables X and Y
 - ▶ To guide the development, we will think about
 - X: value of one SPK share in one months time
 - Y: value of one POT share in one months time
- We may be interested in a linear combination of X and Y
 - ightharpoonup aX + bY
- What is the expected value of aX + bY?
- What is the variance of aX + bY

Expected value of combination

- If we owned shares: 5 SPK and 10 POT
 - ▶ Linear combination represents the value of our portfolio in one months time
 - ▶ 5X + 10Y
 - Here, a is the number of SPK shares: 5
 - Here, b is the number of POT shares: 10
- How do we find the expected value of the linear combination?

$$E[aX + bY] = aE[X] + bE[Y]$$

• If E[X] = 3 and E[Y] = 6.3 then, the expected portfolio value is

$$E[5X + 10Y] = 5E[X] + 10E[Y]$$
= 5 × 3 + 10 × 6.3
= 78

Expected value of combination

- Ice cream is sold from 16 L containers in NZ
 - Expect that there is 16 L when opened
 - ► Can vary: let's say a standard deviation of 0.1 L (variance 0.01)
 - Let X be the amount of ice cream in a container: E[X] = 16, Var(X) = 0.01
- A new container of goldrush icecream is opened for the person ahead of us in line.
- They get a scoop of gold rush
 - Expect each scoop to get 0.1 L of ice cream
 - ► Standard deviation of 0.01 L (variance 0.0001).
 - ▶ Let Y be the amount in a scoop of ice cream: E[Y] = 0.1, Var(Y) = 0.0001
- The amount of goldrush icecream when we come to order is X-Y
 - ▶ What is E[X Y]?

Variance of combination

- Can also be important to have a measure of variability for the combination of random variables
 - ► Trip time for Adélie penguins
 - Number of crossovers
 - ► Runs in cricket innings
 - Value of portfolio
- If X and Y are independent, then

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y)$$

- If X and Y are not independent
 - ▶ The variance is more complicated (additional term needed)
 - ► Considered in higher level courses

Variance of combination

- What is Var(X Y) for ice cream example?
 - a = 1
 - ▶ b = -1

$$Var(X - Y) = 1^{2}Var(X) + (-1)^{2}Var(Y)$$

$$= Var(X) + Var(Y)$$

$$= 0.01 + 0.0001$$

$$= 0.0101$$

- Portfolio: what is Var(5X + 10Y)?
 - ► Assume that share prices are independent (unlikely to be the case in reality)

Variance of combination

- We saw that Var(X Y) = Var(X) + Var(Y)
 - ▶ We are subtracting Y from X. Why do the variances add?
- A server with low variability
 - ► Each scoop has is consistent in terms of the amount of ice cream
- A server with high variability
 - Each scoop can vary greatly (small or large or anywhere in between)
- If server is highly variable, will amount left in container be highly variable?

Variance of combination

- We saw that Var(X Y) = Var(X) + Var(Y)
 - ▶ We are subtracting *Y* from *X*. Why do the variances add?
- A server with low variability
 - Each scoop has is consistent in terms of the amount of ice cream
- A server with high variability
 - ► Each scoop can vary greatly (small or large or anywhere in between)
- If server is highly variable, will amount left in container be highly variable?
- The variability in the amount of ice cream is the same if:
 - ▶ Add a scoop of ice cream to the container, or
 - Took a scoop of ice cream away

Abstract example

- Look at another example: somewhat abstract
 - ▶ Provide some useful results that we will use in coming weeks
- Let Y_1 and Y_2 be independent observations from a distribution
 - \blacktriangleright Mean μ
 - \triangleright Standard deviation σ
- What is the mean and variance of $\frac{Y_1+Y_2}{2}$?
 - Sample mean of two values from a distribution

Abstract example: expected value

The expected value of the sample mean is

$$E\left[\frac{Y_1 + Y_2}{2}\right] = \frac{1}{2}E[Y_1] + \frac{1}{2}E[Y_2]$$
$$= \frac{1}{2}\mu + \frac{1}{2}\mu$$
$$= \mu$$

• The variance of the sample mean is

$$Var\left(\frac{Y_1 + Y_2}{2}\right) = \frac{1}{4}Var(Y_1) + \frac{1}{4}Var(Y_2)$$
$$= \frac{1}{4}\sigma^2 + \frac{1}{4}\sigma^2$$
$$= \frac{\sigma^2}{2}$$

Abstract example: extension

- This can be extended to when we have n independent observations: Y_1, Y_2, \ldots, Y_n
- The expected value of the sample mean is

$$E\left[\frac{Y_1 + Y_2 + \dots + Y_n}{n}\right] = \frac{1}{n}E[Y_1] + \frac{1}{n}E[Y_2] + \dots + \frac{1}{n}E[Y_n]$$
$$= \mu$$

• The variance of the sample mean is

$$Var\left(\frac{Y_1 + Y_2 + \dots + Y_n}{n}\right) = \frac{1}{n^2} Var(Y_1) + \frac{1}{n^2} Var(Y_2) + \dots + \frac{1}{n^2} Var(Y_n)$$
$$= \frac{\sigma^2}{n}$$

Summary

- Looked at continuous random variables
 - ▶ There are differences, but much remains the same
- Looked at combination of random variables
 - Expectation
 - Variance
- Next lecture: start developing models for data

STAT 110: Week 3

Outline

- Introduction to statistical modeling
 - ► Populations and parameters
 - ► Samples and statistics
 - ► Estimation of parameters
 - ► Introduce the normal distribution

Big picture

- We may be interested in flipper lengths of gentoo penguins in the Palmer archipelago
 - e.g. what is the mean flipper length?
- How could we find the mean flipper length of gentoos on Palmer?

Big picture

- We may be interested in flipper lengths of gentoo penguins in the Palmer archipelago
 - e.g. what is the mean flipper length?
- How could we find the mean flipper length of gentoos on Palmer?
- Problem: question refers to population (of gentoos in the archipelago)
 - ▶ We cannot answer it unless we measure every individual in the population
 - ► Likely impossible
- Formulate a statistical model
 - ▶ Use a sample to tell us about the population

Statistical model

- Idea: assume the population values follow some distribution
 - ▶ The distribution tell us how the values vary in the population
- The distribution has unknown parameters
 - Parameter: any quantity that describes a population
- It is the parameter(s) that are of interest
 - ► Tell us about the population
- Abstract concepts
 - ▶ Introduce an example to make the idea more concrete
- We have seen probability distributions in simple 'generic' cases

▶ Introduce specific case: normal distribution

Normal model

- Assume that the data are normally distributed
 - ▶ We might also say we are using a normal model
- The normal distribution is sometimes called:
 - ► Bell-shaped curve
 - Gaussian model
- Described by two parameters:
 - ► Mean µ (Greek letter mu)
 - Standard deviation σ (Greek letter sigma)
 - Often refer to the variance σ^2 instead of the standard deviation
- We will spend some time familiarizing ourselves with the normal distribution

Probability density function (pdf) of normal distribution: $\mu = 0$, $\sigma = 1$

STAT 110: Week 3

Pdf of normal distribution: different $\boldsymbol{\mu}$

Pdf of normal distribution: different σ

Model for gentoo

- We assume flipper lengths follow a normal distribution
 - ▶ This is an assumption about the population of gentoo penguins in Palmer archipelago
 - lacktriangle Parameters μ and σ are unknown
 - $-\mu$: mean flipper length (population level)
 - σ : standard deviation of flipper lengths (population level)
- Typically use greek letters for parameters
 - ▶ Here we are using μ and σ

Populations and samples

- Big idea: use a sample (and statistics) to estimate parameters
 - ▶ The estimate is an educated guess at the parameter value
- We have flipper length measurements from 68 gentoo penguins (cf. week 1)
- How could we use this sample to estimate μ ?

Populations and samples

- Big idea: use a sample (and statistics) to estimate parameters
 - ▶ The estimate is an educated guess at the parameter value
- We have flipper length measurements from 68 gentoo penguins (cf. week 1)
- How could we use this sample to estimate μ ?
- ullet The sample mean $ar{y}$ could be used to estimate the population mean μ
 - ▶ The sample mean \bar{y} is an example of a statistic
 - ► Statistic: any quantity computed from values in a sample

That's easy ... are we done?

- Our example: finding a 'suitable' statistic is straightforward
 - ► Not always the case
- Let's imagine a more extensive penguin study:
 - ▶ Interested in understanding how feeding patterns, spatial structure (within a colony and between colonies), time of year, (and other factors) might influence penguin condition
 - What statistic(s) should we use for that?
- Later in semester we will (hopefully) think more about general strategies for finding suitable statistics (estimators)

Model fitting

- For our model, we have
 - $\hat{\mu} = \bar{y}$
 - $\hat{\sigma} = s$
 - ▶ The population std deviation (σ) is being estimated by the sample std deviation (s)
- We have used the hat symbol to represent that we are estimating a parameter
 - \triangleright $\hat{\mu}$ is said "mu-hat"
 - $\hat{\mu} = \bar{y}$: the parameter μ is being estimated by \bar{y} (a statistic)

Fitted model

- Look at the fitted model (graphically)
 - ▶ (Normal) model at the estimated parameter values
- Compare the fitted model to the data
 - ► Load the gentoo penguin data into R (for the next few slides)
 - ▶ Revise material from week 1

Fitted model

Slide 53 STAT 110: Week 3

Statistical models

- Common mistakes:
 - ▶ Believing that μ is 195.8 mm (the sample mean)
 - This is the estimate of μ
 - It is impossible to know the value of μ
 - ▶ Believing that the model is true
 - Hope the model chosen is a reasonable approximation to reality
 - We should check this
- Checking the model fit
 - ▶ Looking to see if the model and the data are 'out of sync'
 - Plot: normal appears to describe the data reasonably well
 - ► Think a lot more about model fit in a couple of weeks (regression)

Statistical models

- In this example we have used a normal model for the data
- Should be reasonable for what we believe about flipper length:
 - Continuous values (flipper lengths can take any (positive) value)
 - Reasonably close to symmetric
 - An adult gentoo is unlikely to have a flipper four times the size of another adult gentoo
 - Cf. income
- Not all data looks like this!
 - ▶ Different types of data (yes/no, count, categories, time, space, ...)
 - ▶ Different characteristics (e.g. income)
 - Different complexity
- Many probability distributions with different characteristics
 - ▶ Next figure is for illustration, we don't need to learn it!

Looking forward I

- We will be working with a normal model for a few weeks
 - Look more at the normal distribution
 - Use it to describe (and model) data
 - Want to understand it as much as possible
- Explore a strategy for estimating parameters
 - ► Barely scratch the surface
 - ► Cover in more depth in higher level courses STAT 270, 370, 371
- Explore 'extensions' to normal model (e.g. regression)
- Explore models for other types of data: yes/no data

Looking forward II

- What does our estimate tell us about the parameter?
 - \blacktriangleright We have an estimate of μ from the sample of size 68
 - ▶ How 'close' to the true value of μ is it likely to be?
- Is the estimate likely to be better / worse if it were from:
 - ► A sample of size 6?
 - ► A sample of size 600?
- Explore how to determine how precise/uncertain the estimate is
- Also important is how were the data were collected?
 - e.g. does our sample consist of only adults?
 - We'll come back to this later in the semester
- Use the model for prediction (regression)

Summary

- Introduction to statistical modeling
 - ► Fit a normal model
 - lacktriangle Estimated the parameter μ with the statistic $ar{y}$
- Next: get a better understanding of the normal distribution