Assignment 6

Presented by: Qi (Daniel) ZHENG G44426724, Sizhe WU G26890251, Ruibo WANG G24256043, Yingyu LIN G48092483, Xinyue ZHAO G27620695

Part 1

The REG Procedure Model: MODEL1 Dependent Variable: NIKKEIDIFF

Number of Observations Read	132
Number of Observations Used	131
Number of Observations with Missing Values	1

Analysis of Variance

Source	DF	Sum of	Mean	F Value $Pr > F$
		Squares	Square	
Model	2	9078283	4539142	3.52 0.0324
Error	128	164923103	1288462	
Corrected Total	130	174001387		

Root MSE 1135.10429 **R-Square** 0.0522 **Dependent Mean** -97.33221 **Adj R-Sq** 0.0374

Coeff Var -1166.21645

Parameter Estimates

Variable	DF	Parameter Estimate		t Value	Pr > t
Intercept	1	2409.73805	951.70013	2.53	0.0125
TIME	1	-7.57578	3.66169	-2.07	0.0406
NIKKEILAG	1	-0.11003	0.04176	-2.63	0.0095

Dickey-Fuller Unit Root Tests

Type	Lags	Rho	Pr < Rho	Tau	Pr < Tau	$\mathbf{F} \mathbf{Pr} > \mathbf{F}$
Zero Mean	0	-0.8890	0.4911	-1.24	0.1958	
Single Mean	0	-6.5157	0.3013	-1.64	0.4584	1.82 0.6075
Trend	0	-14.4145	0.1893	-2.63	0.2657	3.52 0.4734

Dickey-Fuller τ -test for stationarity

 H_0 : $\delta = 0$, the series has unit root.

 H_a : $\delta < 0$, the series does not have unit root

Firstly, it is crucial to mention that we cannot use ANOVA t-test (P = 0.0095 < 0.05) to test for unit root, only because $\hat{\rho}$ no longer follows t-distribution. Instead, by observing the Dickey-Fuller table, we obtain that the P-value of the τ -statistics is 0.2657, which is greater than 0.05; therefore, we retain the null hypothesis at 95% confidence level, and conclude that the original series has unit root on a statistical basis. Consequently, the Nikkei series is not stationary.

Dickey-Fuller F-test for trend stationarity

H0: $\delta = 0$; $\beta = 0$, the series is not trend stationary.

H1: $\delta < 0$ or $\beta \neq 0$, the series is trend stationary.

According to the Dickey-Fuller unit root test table, we obtain the P-value of the F is 0.4734, which is greater than 0.05; therefore, we retain the null hypothesis at 95% confidence level. This means the original series is neither stationary nor trend stationary, instead, the series is a random walk. In this case, Nikkei would be difference stationary and not trend stationary; the necessary order of differencing to make original Nikkei series stationary would be one.

Part 2

(1)

(a)

Original model:
$$Y_t = 10 + \varepsilon_t - 0.65 \cdot \varepsilon_{t-1} - 0.24 \cdot \varepsilon_{t-2}$$
 (1.1)

To calculate $\widehat{Y}_n(1)$, substitute t = n + 1, thus getting:

$$\widehat{Y}_{n}(1) = E(T_{n+1}|H_{n}) = 10 + \widehat{\varepsilon}_{n+1} - 0.65 \cdot \varepsilon_{n} - 0.24 \cdot \varepsilon_{n-1}$$
(1.2)

where the estimated future error $\hat{\epsilon}_{n+1} = 0$, and historical errors are obtained by calculating their deviation from their most recent estimates, i.e.,

$$\widehat{Y}_{n}(1) = 10 - 0.65 \cdot \varepsilon_{n} - 0.24 \cdot \varepsilon_{n-1}
= 10 - 0.65 \left(Y_{n} - \widehat{Y}_{n-1}(1) \right) - 0.24 \left(Y_{n-1} - \widehat{Y}_{n-2}(1) \right)$$
(1.3)

Similarly,

$$\widehat{Y}_{n}(2) = 10 - 0.24 \cdot \varepsilon_{n}$$

$$= 10 - 0.24 \left(Y_{n} - \widehat{Y}_{n-1}(1) \right)$$
(1.4)

$$\widehat{Y}_{n}(3) = 10 + \widehat{\varepsilon}_{n+3} - 0.65 \cdot \widehat{\varepsilon}_{n+2} - 0.24 \cdot \widehat{\varepsilon}_{n+1}$$

$$= 10$$
(1.5)

(b).

Substitute n = 100 into (1.3), thus getting

$$\begin{split} \widehat{Y}_{100}(1) &= 10 - 0.65 \left(Y_{100} - \widehat{Y}_{99}(1) \right) - 0.24 \left(Y_{99} - \widehat{Y}_{98}(1) \right) \\ &= 10 - 0.65 (11 - 10) - 0.24 (13 - 11) \\ &= 8.87 \end{split}$$

Substitute n = 100 into (1.4), thus getting

$$\widehat{Y}_{100}(2) = 10 - 0.24(Y_{100} - \widehat{Y}_{99}(1))$$

= 10 - 0.24(11 - 10)
= 9.76

Substitute n = 100 into (1.5), thus getting

$$\hat{Y}_{100}(3) = 10$$

Substitute n = 101 into (1.3), thus getting

$$\begin{split} \widehat{Y}_{101}(1) &= 10 - 0.65 \left(Y_{101} - \widehat{Y}_{100}(1) \right) - 0.24 \left(Y_{100} - \widehat{Y}_{99}(1) \right) \\ &= 10 - 0.65 \times (12 - 8.87) - 0.24 \times (11 - 10) \\ &= 7.7225 \end{split}$$

(2)

Original model:

$$\begin{cases} Y_t = 750 - 100X_t + \epsilon_t \\ \epsilon_t = 0.575\epsilon_{t-1} + a_t \end{cases}$$

Data input gives

$$Y_{49} = 250, X_{49} = 0.55, X_{50} = 0.45, X_{51} = 0.3$$

Historical error is the deviation between actual data and its estimate, therefore,

$$\epsilon_{49} = Y_{49} - 750 + 100 X_{49}$$

= $250 - 750 + 100 \times 0.55$
= -445

Forecast \hat{Y}_{50} :

$$\widehat{Y}_{50} = 750 - 100 X_{50} + 0.575 \epsilon_{49} + \widehat{a}_{50}$$

= 750 - 100 \times 0.45 + 0.575 \times (-445) + 0
= 449.125

where

$$\hat{\epsilon}_{50} = 0.575\epsilon_{49} + \hat{a}_{50}$$

= $0.575 \times (-445) + 0$
= -255.875

Therefore, forecast \widehat{Y}_{51} :

$$\widehat{Y}_{51} = 750 - 100 X_{51} + 0.575 \widehat{\epsilon}_{50} + \widehat{a}_{51}$$

= $750 - 100 \times 0.3 + 0.575 \times (-255.875) + 0$
= 572.872