

Appendix D

Equations of incompressible resistive MHD

Both \mathbf{v} and \mathbf{B} are solenoidal

$$\nabla \cdot \mathbf{v} = \nabla \cdot \mathbf{B} = 0 \quad (\text{D.1})$$

The definition of fluid vorticity closely parallels that of current density via Ampere's Law

$$\boldsymbol{\omega} = \nabla \times \mathbf{v}, \quad \mathbf{j} = \nabla \times \mathbf{B} \quad (\text{D.2})$$

The vorticity evolves in time according to a generalized Navier-Stokes equation that includes the effect of the Lorentz force term ($\mathbf{j} \times \mathbf{B}$)

$$\partial_t \boldsymbol{\omega} - \nabla \times (\mathbf{v} \times \boldsymbol{\omega} + \mathbf{j} \times \mathbf{B}) = \mu_\nu (-1)^{\nu-1} \Delta^\nu \boldsymbol{\omega} \quad (\text{D.3})$$

Where μ_ν is the fluid viscosity and the exponent ν determines the type of diffusion operator that is used. $\nu = 1$ gives usual Navier-Stokes diffusion. $\nu = 2$ gives "hyperdiffusion"

The magnetic field also evolves in time according to a convection-diffusion equation:

$$\partial_t \mathbf{B} - \nabla \times (\mathbf{v} \times \mathbf{B}) = \eta_\nu (-1)^{\nu-1} \Delta^\nu \mathbf{B} \quad (\text{D.4})$$

Where η_ν is the electrical resistivity of the fluid. Be aware that equations D.3 and D.4 are nonlinearly coupled through the convection terms.

Appendix E

Vector field visualization using a complex color code

Appendix F

Direction of future research