中華民國第56屆中小學科學展覽會作品說明書

高級中等學校組 工程學科(一)科

佳作

052314

PM2.5 智慧整合照護窗

學校名稱:新北市立鶯歌高級工商職業學校

作者:

職二 陳宥潤

職二 易聖博

職二 陳 慶

指導老師:

曾盛如

褚崇勝

關鍵詞:舒適度、環境、自動化

摘要

窗戶是室內與室外的主要空氣流通管道,妥善調節窗戶可以替人們空氣污染防護做把關。污染物中 PM2.5 對人體的危害最大,WHO 已正式將 PM2.5 歸為 2 級致癌物質,最新的健康醫療報導更指出 PM2.5 會造成腦損及中風。所以建築物的通風調節,窗戶至為重要,因此如果能自動偵測污染濃度逕行調節窗戶,並啟動除污裝置,可避免人們暴露在 PM2.5 等污染物的危害之下。

本次研究使用檢知元件來偵測 PM2.5、照度、溫濕度、風速、空氣品質等,取得環境變因,再配合微控電路有效運用控制技術,賦予窗戶智慧,從 PM2.5 危害隔離、空氣品質、舒適度及適當照度等觀點來進行實驗研究,以全面性的整合達到無微不至的 PM2.5 智慧照護窗。

壹、研究動機

粒徑小於 2.5 微米的細懸浮微粒穿透性強,已證實對呼吸系統及腦、心血管健康影響甚大,甚至導致癌症;居家保持空氣流通,可使室內清新,也是健康生活的要件。上述二者應如何取得平衡點才能兼顧通風與安全,是我們想要探討的主要項目。

人們在早上的第一件事是拉開窗簾、開窗,在夜幕低垂時要關閉,如此日復一日重覆而不經濟。另外在學校裡在安全考量下較高之窗戶無法開啟,而減低了窗戶的效益,加上窗戶的調節對於大部份的人,是大多在感覺不適的情形下才去動手,及即性差而且很不方便。在窗戶較多的場所,例如:活動中心、教室等,窗戶調節要耗費大量的人力及時間所以調節次數減少,而且無法做到精細的差異控制,本次研究主題的動機是為了改善上述的問題。

貳、研究目的

本研究要隔離空氣中的危險因子 PM2.5,並由環境中的的各項變因來改變窗與窗簾的運作,有效的協助與照護室內的人們,以達成下面目的:

- 一、有效隔離 PM2.5 及空氣品質污染危害。
- 二、實現全自動調整窗,依照人們的習慣需求。
- 三、協助行動不便人十居家照護,免手動調節。
- 四、提升窗與窗簾的調節時效,可在感覺不適前即調節完畢。
- 五、 節省主控電路上的成本,所有窗戶集中控制。

參、研究設備及器材

一、硬體設備與材料

主要是以感測模組檢測出環境變因,傳送至伺服器平台進行分析,再使用<u>微控電路</u>精密控制電動窗戶,所需的主要設備與材料如下表 1:

表 1 使用設備器材一覽表

二、相關軟體

網路伺服器分析平台可快速即時分析成果,取得有效資訊;韌體程式是採用 Arduino 微控電路開發環境,所需的相關軟體如下表 2:

表 2 相關軟體表

	相關軟體表							
項次	軟體名稱	規格用途						
1	PHP+MySQL 分析平台	數據分析、圖表繪製						
2	Arduino IDE	Aduino 韌體開發、燒錄						
3	Fritzing	Aduino 電路繪製、規劃配置						
4	Cadence OrCAD	電路設計、模擬						
5	eTeks Sweet Home 3D	3D 示意圖繪製						
6	Adobe Dreamweaver	PHP 分析及繪圖程式編寫						

肆、研究過程或方法

本次研究首先資料蒐集 PM2.5 等空氣品質影響危害、照度控制及溫濕度舒適度指數等,接著製作開關窗電動機構,並且設計控制與室內外環境感測電路,再實驗個別變因及交互影響分析,最後試圖找出適當的調節方式。所規劃研究程序如下圖 1 及圖 2,並加以說明:

圖 1 PM2.5 智慧照護窗研究流程

圖 2 PM2.5 智慧照護窗實驗模型製作程序

一、 窗與環境因素關係探討:

對於可能影響智慧窗的動作環境參考值,有下面四項:

- (一) PM2.5 等粉塵及空氣品質危害: 取第3級低危為動作基準。(參考資料: 附表 1 附表 2)
- (二) 理想照度與規範:取極精細作業 750Lux 為動作基準。(參考資料:附表3)
- (三) 溫濕度舒適度指數:取中間矩形範為動作基準(參考資料:附圖1)
- (四) 蒲福風級:取強風6級強風10.8m/ses 為動作基準(參考資料:附表4)
- 由上面4個項目,預定規畫室內外偵測項目及推動設備如表3

表 3 室內外偵測項目及推動設備表

	環境偵測項目及推動設備表									
項次	室外感測項目	室内感測項目	推動設備							
1	PM2.5 及粉塵感測	溫濕度感測	PM2.5 空氣清淨機							
2	溫濕度感測	照度感測模組	抽排風機、水霧加濕器							
3	照度感測模組	空氧品質感測	室内照明							
4	空氧品質感測		空氣清淨機							
5	風速計		冷暖氣、除濕空調							
6	雨水感測		除濕機							

二、 窗、窗簾電動機構設計製作:

以目前最普遍之氣密窗做為設計藍本,用較易取得的拉繩來製作,左方以馬達帶動 捲線器可以收放拉繩,右方使用定滑輪輔助拉繩動作,構想設計如圖 3 及圖 4。

圖 3 電動拉繩機構設計圖

圖 4 模型窗的設計

(一) 捲線器的設計製作

如果以機械加工的方式製作金屬捲線器較為昂貴且複雜,在有限資源下可以採 用雷射切割壓克力的方式,再逐層黏合形成自製捲線器,捲線器製作過程如下圖 5:

(1)設計原始圖案

(2) 不同尺寸及厚度的切割壓克力片

(3)逐層黏合壓克力片

(4)鑽孔並攻牙加入固定螺絲

(5)安裝於減速馬達

圖 5 雷射切割壓克力捲線器製作過程圖

在等候雷射切割壓克力的同時有了另一個構想,若是採用 3D 印表機也許有更好的效果,因此把構想的手繪圖交付機械製圖,再以 3D 印表機輸出,如下圖 6:

圖 6 3D 印表 ABS 捲線器製作過程圖

(二) 拉窗、窗簾機構製作

以定滑輪配合拉繩的機構,左方以直流減速馬達轉動帶動捲線器,在正轉時開

窗;在逆轉時關窗,捲線器的兩個線槽在運作時,一線槽為收線時則另一線槽為放

線,來完成開窗或關窗的控制,如圖7及圖8。

(1)拉繩結構及防斷彈片

(2)單邊定滑輪導引拉繩

(3)拉窗機構完成圖

圖7窗戶拉繩機構製作

(1)馬達及捲線軸

(2)右側定滑輪及固定中線

圖8窗簾拉繩機構製作過程圖

三、 控制電路的構想設計:

電路構想上區分為微電腦主控電路及馬達驅動、室內感測電路、室外感測電路,如下圖9:

圖 9 控制電路構想配置圖

為有效測試動作的正常與否,另外規畫製作陽光與照度模擬電路以快速實驗與測試。

四、室內外環境關係探討

(一)溫度與濕度

為調節最佳舒適度在室內外均安裝溫濕度感測器,以窗、簾及抽風設備,調節至 舒適範圍,仍有不足再以冷暖氣、除濕空調設備輔助,如下圖 10 所示。

圖 10 室內舒適度低於室外,開窗戶調節至舒適範圍

(二)光線與照度

為調節最佳光線,安裝室內外照度感測器,以窗簾及室內照明,調節最佳照度,如下圖 11 所示。

圖 11 室內光線不足且低於室外,拉動窗簾以調節至標準照度

- (三)強風與大雨:關閉窗戶。
- (四) 夜間:可自動調節窗戶,並拉上窗簾保護隱私。
- (五)粉塵與空氣污染:室外空氣污染可關閉窗戶;室內空氣污染打開窗戶減低污染,啟 動通風設備或空氣清淨機。

五、 PM2.5 細懸浮微粒偵測實驗(一般環境下)

(一)**實驗環境**:學校電學實驗室。

(二)使用器材:PMS3003 懸浮微粒偵測器、LinkitOne、紀錄伺服器。

(三)實驗目的:一般環境下的 PM2.5 影響因數探討。

(四)實驗方式:每10秒紀錄一次,在3小時內的變化。

```
void loop() {
                                                                                 COM6 (Linklt ONE)
  Sum = 0;
    if(Serial1.available()>0) {
                                                                                CF=1. PM1.0=2 ug/m3
    //Serial.println("Serial ok!");
                                                                                CF=1, PM2.5=3 ug/m3
                                                                                CF=1, PM1√=6 ug/m3
    for (i=0; i<leng; i++) {
                                                                                atmosphere
                                                                                           PM1.0=2 ug/m3
       buf[i]= Serial1.read();
                                                                                atmosphere
                                                                                             Q.5=3 ug/m3
                                                                                atmosphere,
                                                                                               ₹6 ug/m3
       //Serial.print(buf[i]);
                                                                                complete
                                                                                          PM2.5 偵測濃度
       //Serial.print(",");
                                             PM2.5 偵測濃度值
                                                                                CF=1, PM1.0=2 ug/m3
       if(i <leng-2) Sum += buf[i];
                                             每10秒紀錄一次
                                                                                CF=1, PM2.5=4 ug/m3
                                                                                CF=1, PM1O=6 ug/m3
    cSum=buf[22]*256+buf[23];
                                                                                atmosphere, PM1.0=2 ug/m3
                                                                                atmosphere, PM2.5=4 ug/m3
    if(Sum == cSum ){
                            //判斷查驗和,資料檢核
                                                                                atmosphere, PM10=6 ug/m3
outStr=String(buf[4]*256+buf[5])+","+String(buf[6]*256+buf[7])+","+Strin
                                                                                complete
g(buf[8]*256+buf[9])+","

✓ Autoscroll

+String(buf[10]*256+buf[11])+","+String(buf[12]*256+buf[13])+","+String
```

圖 12 Arduino 與 PMS3003 序列傳輸程式

圖 13 PM2.5 偵測電路接線(一般環境)

六、 照度、風速、空氣品質等環境偵測實驗

(一)實驗環境:一般環境(學校專題實驗室)

(二)使用器材:風速感測器、照度感測器、溫濕度感測器、空氣品質感測器、煙霧感測器、Arduino Yun 微控板、紀錄伺服器。

(三)實驗目的:一般環境下開關窗及開關窗簾影響因數探討。

(四)實驗方式:每10秒紀錄一次,在3小時內的變化。

圖 14 照度、風速、空氣品質偵測實驗

七、有害氣體、人體偵測等環境偵測實驗

(一)實驗環境:一般環境(學校專題實驗室)。

(二)使用器材:風速感測器、照度感測器、溫濕度感測器、空氣品質感測器、煙霧感測器、Arduino Yun 微控板、紀錄伺服器。

(三)實驗目的:一般環境下開關窗及開關窗簾及交互影響探討。

(四)實驗方式:每6分鐘紀錄一次,在1天內的變化。

圖 15 溫濕度、有害氣體、人體偵測實驗

八、環境模擬實驗

(一)實驗環境:一般環境(學校專題實驗室)

(二)使用器材:馬達驅動板、LED 燈泡、MOSFET 大電流驅動板、Arduino UNO 微控板。

(三)實驗目的:調節 LED 燈泡光線及風扇強度,以模擬日照與風速,加速實驗進行。

(四)實驗方式:每5~10秒調節光線及風扇強度,用以自動實驗開關窗簾動作。

圖 16 日照與風速環境模擬

九、環境感測之響應時機實驗

(一)實驗環境:一般環境(學校專題實驗室)。

(二)使用器材:室外環境偵測組合電路、室內環境偵測組合電路。

(三)實驗目的:各環境感測之響應時機數值確認實驗。

(四)實驗方式:每5~10秒調節光線及風扇強度,用以自動實驗開關窗簾動作。

圖 17 室/內外偵測電路

十、 PM2.5 增加濃度與過濾實驗

(一)實驗環境:一般環境(學校專題實驗室)、密閉壓克力空間。

(二)使用器材: PM2.5 感測器、線香、香煙、14cm 風扇、N98 過濾材料、熱線風速計。

(三)實驗目的:實驗 PM2.5 可能來源及濃度,如何過濾 PM2.5 及過濾效率。

(四)實驗方式:燃燒線香、香煙及粉筆灰揚塵增加 PM2.5 濃度變化及探討過濾情形。

圖 18 PM2.5 增加濃度與過濾實驗

十一、太陽能與控制

窗戶接近陽光容易使用太陽能,在使用<u>太陽能電池板</u>同時可兼具雨遮功能。為達有效能源使用,加入太陽能控制器,可協助電源的分配,並有效管理蓄電池充電放電。

圖 19 太陽能控制關係圖

伍、研究結果

一、PM2.5 細懸浮微粒偵測實驗(一般環境下)

序號	PM1.0 (ug/m3)	PM2.5 (ug/m3)	PM10 (ug/m3)	PM1.0ATM (ug/m3)	PM2.5ATM (ug/m3)	PM10ATM (ug/m3)	時間
382	30	41	48	26	38	48	2016/3/14 AM 9:38:29
381	30	45	53	26	40	51	2016/3/14 AM 9:38:23
380	31	45	53	27	40	51	2016/3/14 AM 9:38:16
379	32	42	50	27	39	50	2016/3/14 AM 9:38:10
378	31	42	50	27	39	50	2016/3/14 AM 9:38:04
377	31	41	55	27	38	54	2016/3/14 AM 9:37:58
376	31	41	55	27	38	54	2016/3/14 AM 9:37:52
375	31	40	54	27	38	52	2016/3/14 AM 9:37:46
374	30	39	55	26	36	54	2016/3/14 AM 9:37:40
373	30	39	55	26	36	54	2016/3/14 AM 9:37:34
372	30	38	57	26	36	55	2016/3/14 AM 9:37:28
371	28	38	56	26	36	54	2016/3/14 AM 9:37:22
370	28	38	56	26	36	54	2016/3/14 AM 9:37:16
369	28	38	56	26	36	54	2016/3/14 AM 9:37:09
368	28	36	55	26	35	54	2016/3/14 AM 9:37:03
367	28	36	55	26	35	54	2016/3/14 AM 9:36:57
366	28	36	55	26	35	54	2016/3/14 AM 9:36:51
365	28	36	55	26	35	54	2016/3/14 AM 9:36:45
364	28	36	55	26	35	54	2016/3/14 AM 9:36:39
363	28	37	55	26	35	54	2016/3/14 AM 9:36:33
模組	PMS3003						
Total L	og: 382 F1	om:1To		Pag	ge: [1] <u>2 3 4 5</u>	678910	Page

圖 20 PM2.5 偵測數據表(每 10 秒 1 次,紀錄 400 次)

圖 21 一般環境 PM2.5 偵測趨勢圖(單位:ug/m3)

二、照度、風速、空氣品質等環境偵測實驗

圖 22 有害氣體、人體偵測等環境偵測實驗趨勢圖

序號	風速 (meter/hr)	照度(Lux)	温度(°C)	濕度(%)	空氣品質 (ppm)	煙霧(ppm)	時間	備註
1	455.96	609.17	27.93	43.96	84	178	2015/1/9 PM 1:19:27	
2	330.05	626.67	28.13	43.48	84	180	2015/1/9 PM 1:19:16	
3	2139.43	623.33	28.63	42.48	86	179	2015/1/9 PM 1:19:04	
4	167.74	557.5	28.98	42.15	87	178	2015/1/9 PM 1:18:53	
5	713.2	590.83	29.48	41.32	86	179	2015/1/9 PM 1:18:42	
6	1377.88	610.83	30.38	40.52	88	174	2015/1/9 PM 1:18:31	
7	1487.37	666.67	31.29	43.21	90	175	2015/1/9 PM 1:18:20	
8	286.66	590.83	32.56	92.29	94	179	2015/1/9 PM 1:18:08	
9	171.83	324.17	27.82	44.81	81	202	2015/1/9 PM 1:17:57	
10	344.49	425	28.12	46.83	511	180	2015/1/9 PM 1:17:46	
11	556.61	295	28.02	44.07	65	181	2015/1/9 PM 1:17:35	
12	759.76	542.5	28.09	44.41	81	180	2015/1/9 PM 1:17:24	
13	923.48	525	28.03	44.27	81	182	2015/1/9 PM 1:17:13	
14	559.8	526.67	27.79	44.48	83	207	2015/1/9 PM 1:17:01	
15	175.34	530	27.5	45.21	79	181	2015/1/9 PM 1:16:50	
16	248.37	467.5	27.44	45.47	78	181	2015/1/9 PM 1:16:39	
17	409.9	441.67	27.5	45.7	78	183	2015/1/9 PM 1:16:28	
18	233.04	449.17	27.48	47.52	78	183	2015/1/9 PM 1:16:17	
19	550.12	537.5	27.4	45.16	77	180	2015/1/9 PM 1:16:06	
20	148.59	519.17	27.48	44.94	78	182	2015/1/9 PM 1:15:54	
模組	MD-wind	GY-30	SHT-10	SHT-10	MQ-135	MQ-9		
otal Lo	g: 48107 Fr	om: 21 To		Pa	ge: [1] <u>2 3 4 5</u>	678910	Page1	~

圖 23 PM2.5 偵測數據表(每 6 分 1 次,紀錄 48000 次)

三、 有害氣體、人體偵測等環境偵測實驗(一般環境下)

序號	濕度(%)	温度(°C)	人體(PIR)	煙霧(ppm)	瓦斯(ppm)	空氣品質 (ppm)	時間	
138	49.1833	22.3667	288	245	16	142.667	2014/12/26 PM 12:55:0	
137	48.3833	22.3167	287	246.167	16.6667	142.667	2014/12/26 PM 12:54:0	
136	48.0167	22.3333	288	246	16	142.667	2014/12/26 PM 12:53:0	
135	47.8833	22.4	286.667	245.333	16	142	2014/12/26 PM 12:51:3	
134	47.8833	22.4833	286.833	244.833	16	142.333	2014/12/26 PM 12:50:3	
133	48.1667	22.45	287.5	245.833	16	142.5	2014/12/26 PM 12:49:3	
132	48.1333	22.4667	287.333	244.833	16	142.667	2014/12/26 PM 12:48:3	
131	48.1333	22.5	286.667	245	16.1667	142.5	2014/12/26 PM 12:47:3	
130	48.1167	22.5	288.667	245.5	16	142.333	2014/12/26 PM 12:46:2	
129	48.0167	22.5167	287.833	244.167	16	142.833	2014/12/26 PM 12:45:2	
128	48.0167	22.5333	288.667	244	16.1667	142.833	2014/12/26 PM 12:44:2	
127	47.6167	22.6333	287.667	242.167	16	143	2014/12/26 PM 12:43:2	
126	47.6333	22.75	282.5	243	16	140.833	2014/12/26 PM 12:42:2	
125	48.2167	22.6	319.833	266	16.6667	159	2014/12/26 PM 12:40:5	
124	48.5833	22.4	284.667	298.5	16.1667	141.833	2014/12/26 PM 12:39:5	
123	48.75	22.2167	285	242.333	16.3333	142.333	2014/12/26 PM 12:38:5	
122	48.5	22.2667	285.5	242.167	16.3333	142.333	2014/12/26 PM 12:37:5	
121	48.2833	22.3333	285	245.167	16.1667	141.5	2014/12/26 PM 12:36:5	
120	48.85	22.3667	287.833	243.333	16.8333	142.833	2014/12/26 PM 12:35:1	
119	48.8667	22.3167	284.333	244.667	16.8333	141.833	2014/12/26 PM 12:34:1	
模組	DHT-22	DHT-22	HC-SR501	MQ-2	MQ-5	MQ-135		
Total Lo	g:6118 Fron	n:5981 To	P	age: <u>295</u> <u>296</u>	297 298 299 [300] <u>301</u> <u>302</u> <u>30</u>	<u>3 304</u>	
《採DHT-22溫濕度模組,以一分鐘內6次偵測之平均值統計								

圖 24 PM2.5 偵測數據表(每 10 秒 1 次,紀錄 400 次)

圖 25 一般環境 PM2.5 偵測趨勢圖(單位:ug/m3)

四、環境感測之響應時機實驗結果

以新有效溫度 ET*的舒適度範圍,再以矩形調整為程式判斷範圍,氣溫範圍為 19~27.5° C,相對濕度小於 80%,(如參考資料:附圖 1)。

表 4 環境與感測反應時機

	環境與感測反應時機									
項次	項目	室外指數	室內指數	窗戶動作	窗簾動作	備註				
1	溫度	19~27.5°	19~27.5°	不動作	XX					
2	溫度	<19 , >27.5	XX	關閉						
3	溫度	19~27.5°	<19 , >27.5	調節開大						
4	濕度	>80%	XX	關閉						
5	照度	>750Lux	<750Lux	XX	調節開大					
6	照度	>750Lux	>750Lux	XX	調節關小					
7	照度	<50Lux	XX	XX	關閉	夜間				
8	風速	>10.8m/s	XX	關閉	XX	強風				
9	PM2.5	>54ug/m3	XX	關閉	XX	污染				
10	空氣品質	>100psi	XX	關閉	XX	污染				
11	空氣品質	XX	>100psi	開啟最大	XX	流通				
12	雨滴	1	XX	關閉	XX	下雨				

五、PM2.5 變化實驗結果

燃燒線香、香煙、蚊香產生煙霧大 PM2.5 濃度均可立即上升到 2000 ug/m³,過濾結果如下:

圖 26 PM2.5 重力垂降實驗曲線

圖 27 PM2.5 濃度變化圖-線香 ug/m³

圖 28 PM2.5 濃度變化圖-香煙 ug/m³

陸、討論

科技能帶來方便性,賦予生活用品智慧,並且可有效運用於人們的照護,避免日常生活中的危害:

一、日常活動所產生的 PM2.5 的因素:

由圖 22 實驗結果可知人的活動開始,也是各污染源的開始;另外周圍環境的活動 揚塵會造成短暫性的上升,經由圖 24 實驗結果:

- (一) 走動、物品放置揚塵:下課時間的 PM2.5 較上課時約有 3 倍的濃度,推論是學生下課活動時在地面走動及身上灰塵揚起所造成。。
- (二) 掃地及抖動抹布:打掃時間的 PM2.5 較上課時約有 8 倍的濃度。

二、 大量產生的 PM2.5 的活動:

由以實驗結果五(圖 26)我們發現,生活中很多不經意的行為可能產生大量的 PM2.5, 而置身於 PM2.5 的危害。

- (一)燃燒線香、香煙、蚊香等:這些有些人每天都要接觸的事,產生的 PM2.5 濃度驚人,可上升到 2000 ug/m³以上,遠高於 54 ug/m³的安全值,近 40 倍。
- (二)粉筆灰:尤其在擦黑板及打板擦時 PM2.5 濃度可達 600 ug/m³以上。

三、 PM2.5 渦濾方法探討:

- (一)**自然重力垂降**:由圖 26 實驗結果,PM2.5 自然之下降低至 50%需 19~20 分鐘;加入循環風結果亦同,可見要快速消除,加入過濾是必要的。
- (二)**醫療用口罩:**可快速過濾 PM2.5,以圖 24 實驗結果,在濃度 2200 ug/m³,可在 30 秒 內過濾到環境值,實驗箱 100 公升,風扇直徑 14cm,風速 10cm/sec;若以 5 坪 (15.15m²) 房間加上清淨機清淨力 110m³/h,可計算需時 680.13 秒,約 11.34 分。

實驗風扇清淨力
$$C = A \times V \times t = \frac{\pi d^2}{4} \times 0.1 \times 3600 = 5.5418 m^3/h$$

房間加上清淨機清淨時間 = $\frac{v_1}{v_2} \times \frac{c_2}{c_1} \times t = \frac{15 \times 3}{0.1} \times \frac{5.5418}{110} \times 30 = 680.13 sec$

(三)活性碳口罩:基本上與醫療口罩相同,多了活性碳層。

(四) N95 及 N98 口罩:由圖 27 實驗結果,N98 因為質地細密,透氣性差,反而降低效果,不適合用在 PM2.5 過濾。

四、 PM2.5 感測器的探討:

- (一) **垂降式 PM2.5 感測器**:以自然重力垂降再以光感測方式偵測數值,僅能偵測粉塵的 總數值。例如:SHARP GP2Y1051AU0F。
- (二)抽風式 PM2.5 感測器:將空氣以進氣扇吸入進風口後,具有更低慣性的 PM2.5 會在 半路上浮,再以光感測方式偵測數值,可分別偵測 PM1.0、PM2.5、PM10。例如: SHARP DN7C3CA006、PantengGx PMSX0XX 系列。

五、 自動窗結構討論

(一) 電動機的選擇

首先進行氣密窗的拉力實驗,以拉繩吊掛水筒,逐漸加入水筒直到氣密窗開始 移動,以電子秤稱重量即為靜摩擦力。

採用 DC 12V 減速馬達可避免轉速過高,並可獲得較大的轉矩。選擇以轉矩適當可拉動市售氣密窗,且不拉斷拉繩及不夾傷手為原則,如下圖 29(1)中 120rmp 減速馬達。

(1)120rmp,DC 12V 減速馬達

(2) 80rmp, DC 12V 減速馬達

(3)轉矩適當,不易夾傷手

(4)轉矩大,拉繩易斷

圖 29 二款 DC 12V 減速馬達比較

(二)拉窗機構:

- 1. **齒條機構**:因齒條僅能在窗的最上方或最下方施力,而 拉窗的最適施力範圍在 1/4 到 3/4 的位置,否則氣密窗 會卡住無法拉動,不適合目 前窗戶,如右圖所示:
- 2. 拉繩機構:可安裝於 1/4 到 3/4 的位置,但是仍需要包 覆隔離保護。

圖 30 拉窗的最適施力範圍

(三)開窗定位控制:

採用超音波測距用於偵測開窗的大小,增加開窗線性變化。

六、採用智慧控制窗的優點:

- (一)使用微電腦電路可以增加控制彈性,可依即時偵測結果動作及個人習慣做調整。
- (二)加裝環境感測器可提供資訊給微電腦電路,可提供足夠判斷資訊。
- (三)可依不同的使用者做參數設定客製化動作。
- (四)可安裝於現有窗戶,不必更換窗戶,實用性高。
- (五)使用者仍可用手動開關窗戶,不受電路及斷電影響。
- (六)微電腦控制及感測電路僅需一組可控制大量窗戶,可節省成本。
- (七)對照各種資料指數,例如:舒適度、標準照度、PM2.5等,可讓窗的運作符合人性需求。
- (八)窗戶與窗簾的調節自動化可有效照護室內居家,尤其是身心障礙者。
- (九)透過伺服器平台可掌握即時各項指數資訊。

柒、結論

窗戶室內與室外的主要空氣流通管道,因此妥善調節窗戶可以替人們空氣污染防護做把關。 以下是我們的各項結論:

- 一、智慧照護窗可有效隔離 PM2.5 及其他污染物並且快速過濾消除: 室外 PM2.5 過高 (>54ug/m³)可立即關閉窗戶,經實驗可在 12 分鐘內迅速濾除 PM2.5,可保護家人健康。
- 二、實現全面性整合型自動照護窗,包括照度、溫濕度、風速、空氣品質的適度自動調節。: 以有效的感測值加上智慧自動化整合設計,讓窗戶的調節不用手動操作,並智慧連結環境控制家電,如:冷暖氣空調、除濕機、空氣濾清器等;將溫度、濕度、空氣清潔度控制在安全舒適範圍。
- 三、提升窗與窗簾的調節時效,可在感覺不適之前已先調節完成:使用舒適度、照度、風速 指標資料參數,可設定為判斷機制,達到最佳值;例如:風速>10.8m/s 強風等級立即關 窗,照度>750Lux 窗簾調節關小。
- 四、可隔離有害氣體並發出警報:智慧調節窗監測空氣品質偵測有害氣體,當空氣品質達到 >100psi 普通級最大值,迅速警報或開啟可增加安全性。
- 五、**節能環保**:利用加裝太陽能板、蓄電池及供蓄電控制器,形成供蓄電系統,達成節能環保之效。

捌、參考文獻

施士文(2014.9)。Arduino 微電腦應用實習。新北市:台科大圖書股份有限出版社。梅克 2 工作室(2014.2)。Arduino 微電腦控制實習。新北市:台科大圖書股份有限出版社。尹國正(2013)。第 2 版 PHP+MySQL 程式設計。新北市:新文京開發出版股份有限公司。楊水清(2008)。深入淺出 JavaScript 與 Ajax 網頁設程式設計。台北縣:博碩文化股份公司。文淵閣工作室(2008)。挑戰 PHP5/MySQL 程式設計樂活學。台北市:基峰資訊股份有限公司。W.Richard Stens(2009)。TCP/IP Illuxtrated,Volumel 中譯本。台北市:和碩科技文化有限公司。學校教室照明與節能參考手冊(教育部 20160307) http://www.edu.tw/细懸浮微粒(PM2.5)指標對照表、空氣污染指標(行政院環境保護署 20160307))

http://tagm.epa.gov.tw/

台灣區冷凍空調工程工業同業公會 舒適度指標。http://www.hvac-net.org.tw/ 【PM2.5 問題嚴重 腦損、中風機率激增】。

http://www.healthnews.com.tw/readnews.php?id=23986

【2-5 擴散與逸散】。http://natural.cmsh.tc.edu.tw/senior/chem/h2text/2-5

【教科書中關於氣體擴散實驗的錯誤】http://sci.hcsh.ntpc.edu.tw/diffusio.htm

【HTTP SERVER 安裝及設定說明文件】The Apache Software Foundation。

http://natural.cmsh.tc.edu.tw/senior/chem/h2text/2-5

【安裝及設定說明文件】MySQL Server Database。http://www.mysql.com/

【PHP Language 安裝及設定說明文件】**The PHP Group**。http://www.php.net/

【PF 安裝及設定說明文件】The OpenBSD project 。 http://www.openbsd.org/

玖、附錄

一、引用資料

(一) 窗與環境因素關係探討:

1. PM2.5 等粉塵及空氣品質危害

附表 1 細懸浮微粒(PM2.5)指標對照表與活動建議(摘自環保署)

指標等級	1	2	3	4	5	6	7		8	9	10
分類	低	低	低	中	中	中	高		高	高	非常高
PM _{2.5} 濃度	0-11	12-23	24-35	36-41	42-47	48-53	54-58		59-64	65-70	≧71
一般民眾活動建議	正常月	5外活動	0	正常戶	外活動。			適,或喉	「人如果を 如眼痛 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	,咳嗽,應該	任何人如果有不 適,如眼痛,咳 嗽或喉嚨痛等, 應減少體力消 耗,特別是減少 戶外活動。
敏感性族 群 活動建議	正常戶外活動。		有心臟、呼吸道及心血 管疾病的成人與孩童感 受到癥狀時,應考慮減 少體力消耗,特別是減 少戶外活動。			及人體減2.力3.能	有心臟、 加管疾, 別消耗, 別消戶年 以 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所	病的成 應減少 等別是 動。 感減少體 前的人可	1. 有心臟、呼 吸道及心血管疾 病的成人與孩 童,好是是 應避免體力消 耗,特別是避免 戶外活動。 2. 具有氣喘的 人可能需增加使 用吸入劑的頻 率。		

附表 2 空氣污染指標日 PSI 值與健康影響(摘自環保署)

空氣污染指標 (PSI)	0~50	51~100	101~199	200~299	>=300
對健康的影響	良好	普通	不良	非常不良	有害
到陡灰叫彩音	Good	Moderate	Unhealthful	Very Unhealthful	Hazardous
人體健康影響	對一般 民眾身 體健康 無影	對敏感族群健康無立即影響。	對敏感族群會有輕 微症狀惡化的現 象,如臭氧濃度在 此範圍,眼鼻會略 有刺激感。	對敏感族群會有明顯惡化的現象,降低其運動能力;一般大眾則視身體狀況,可能產生各種不同的症狀。	對敏感族群除了 不適症狀顯著惡 化並造成某些疾 病提早開始;減 低正常人的運動 能力。

2. 理想照度與規範

附表 3 學校教室建議照度標準(摘自教育部)

作業種類	教室名稱	桌面照度	地板面照度	黑板面照度
		[lx]	[lx]	[lx]
極精細作業	製圖教室、縫紉教室	750		500
精細作業	普通教室、實驗教室 電腦教室、自然教室 社會教室、美術教室 工藝教室、家事教室 會計教室、英打教室 視聽教室、語言教室 視聽教室、餐飲教室 音樂教室	500		500
普通作業	舞蹈教室		300	500

3. 溫濕度舒適度指數

附圖 1 溫度、相對濕度與舒適度關係曲線

4. 蒲福風級

附表 4 陸上應用之蒲福風級表(摘自中央氣象局)

蒲福風級	風之稱謂	一般敘述	公尺每秒 m/s
0	無風	煙直上	不足 0.3
	calm		
1	軟風	僅煙能表示風向,但不能轉動風標。	0.3-1.5
	light air		
2	輕風 slight breeze	人面感覺有風,樹葉搖動,普通之風標轉動。	1.6-3.3
3	微風		3.4-5.4
3	gentle breeze	划未及分型16到7个总,连俱规模。	3.4-3.4
4	和風	塵土及碎紙被風吹揚,樹之分枝搖動。	5.5-7.9
	moderate breeze		
5	清風	有葉之小樹開始搖擺。	8.0-10.7
	fresh breeze		
6	強風	樹之木枝搖動,電線發出呼呼嘯聲,張傘困	10.8-13.8
	strong breeze	難。	
7	疾風	全樹搖動,逆風行走感困難。	13.9-17.1
	near gale		
8	大風	小樹枝被吹折,步行不能前進。	17.2-20.7
	gale		
9	烈風 strong galo	建築物有損壞,煙囪被吹倒。	20.8-24.4
	strong gale 狂風		24 5 22 4
10	storm	樹被風拔起,建築物有相當破壞。	24.5-28.4
11	暴風	極少見,如出現必有重大災害。	28.5-32.6
11	violent storm		20.5 52.0
12	颶風	-	32.7-36.9
	hurricane		
13	-	-	37.0-41.4
14	-	-	41.5-46.1
15	-	-	46.2-50.9
16	-	-	51.0-56.0
17	-	-	56.1-61.2

【評語】052314

本作品建置偵測環境空氣品質能力,並可自動關窗戶及開窗戶本作品建置偵測環境空氣品質能力,並可自動關窗戶及開窗戶,升降窗簾,以有效隔離 PM2.5 細懸浮微粒。採用 Arduino 控制板,連結偵測環境品質的包括有 PM2.5 感測器、溫濕度、煙霧、瓦斯、紅外線人體偵測、光照度、風速記等。連結馬達已開關窗戶及升降窗簾。

系統已建置完成。並展示的量測空氣品質的數據、窗戶開關及 窗簾升降功能、均已展示成功。

空氣品質監測能力也應用於多款式口罩材料有效的檢測,也有助於民眾選用 PM2.5 口罩參考。