

PLAGIARISM SCAN REPORT

Date	2020-03-11
Words	285
Characters	2244

Content Checked For Plagiarism

int trigger_pin = 11; // trig pin of HC-SR04 int echo_pin = 10; // Echo pin of HC-SR04 int EA = 9; //ENA connected to digital pin 9 int EB = 3; //ENB connected to digital pin 3 int reverse_A = 7; int foreward_A = 6; int reverse_B = 5; int foreward_B = 4; long dur, dist; void setup() { delay(random(500,2000)); // delay for random time Serial.begin(9600); pinMode(reverse_A, OUTPUT); // set Motor pins as output pinMode(foreward_A, OUTPUT); pinMode(reverse_B, OUTPUT); pinMode(foreward_B, OUTPUT); pinMode(EA, OUTPUT); // initialize ENA pin as an output pinMode(EB, OUTPUT); // initialize ENB pin as an output pinMode(trigger_pin, OUTPUT); // set trig pin as output pinMode(echo_pin, INPUT); //set echo pin as input to capture reflected waves } void loop() { analogWrite(trigger_pin, LOW); delayMicroseconds(2); analogWrite(trigger_pin, HIGH); // send waves for 10 us delayMicroseconds(10); dur = pulseIn(echo_pin, HIGH); // receive reflected waves dist = dur / 58.2; // convert to distance Serial.println(dist); delay(10); if (dist > 19) { analogWrite(EA, 150); // set right motors speed analogWrite(EB, 150); // set left motors speed digitalWrite(foreward_B, HIGH); // move forward digitalWrite(reverse_B, LOW); digitalWrite(foreward_A, HIGH); digitalWrite(reverse_A, LOW); } if (dist < 18) { analogWrite(EA, 0); // set right motors speed analogWrite(EB, 0); // set left motors speed digitalWrite(foreward_B, LOW); //Stop digitalWrite(reverse_B, LOW); digitalWrite(foreward_A, LOW); digitalWrite(reverse_A, LOW); delay(500); analogWrite(EA, 255); // set right motors speed analogWrite(EB, 255); // set left motors speed digitalWrite(foreward_B, LOW); //movebackword digitalWrite(reverse_B, HIGH); digitalWrite(foreward_A, LOW); digitalWrite(reverse_A, HIGH); delay(500); analogWrite(EA, 0); // set right motors speed analogWrite(EB, 0); // set left motors speed digitalWrite(foreward_B, LOW); //Stop digitalWrite(reverse_B, LOW); digitalWrite(foreward_A, LOW); digitalWrite(reverse_A, LOW); delay(100); analogWrite(EA, 0); // set right motors speed analogWrite(EB, 150); // set left motors speed digitalWrite(foreward_B, HIGH); //turnleft digitalWrite(reverse_B, LOW); digitalWrite(reverse_A, LOW); digitalWrite(foreward_A, LOW); delay(500); }

Matched Source

No plagiarism found

