Art Unit: 3773

AMENDMENTS TO THE CLAIMS

Please amend claim 25 and cancel claim 29 as set forth below.

LISTING OF CLAIMS

- 1. (Withdrawn) A deployment mechanism for deploying a filamentous endovascular device having a proximal end, comprising: an elongate, flexible, hollow deployment tube having an open proximal end, a distal section terminating in an open distal end, and a lumen defined between the proximal and distal ends; a retention sleeve fixed to the distal section of the deployment tube and extending a short distance distally past the distal end of the deployment tube; and a coupling element attached to the proximal end of the endovascular device and releasably held in a non-fluid-tight engagement within the retention sleeve near the distal end of the deployment tube so as to be separable from the retention sleeve in response to fluid pressure applied to the coupling element through the lumen and the distal end of the deployment tube.
- 2. (Withdrawn) The deployment mechanism of claim 1, wherein the retention sleeve is made of a polymer.
- 3. (Withdrawn) The deployment mechanism of claim 2, wherein the polymer is selected from the group consisting of PET, a fluoropolymer, polyimide, polyamide, polyurethane, polyolefin, and block copolymers.
- 4. (Withdrawn) The deployment mechanism of claim 1, wherein the retention sleeve is resistant to radial expansion.
- 5. (Withdrawn) The deployment mechanism of claim 1, wherein coupling element includes an exterior surface and a purge passage that is formed in the exterior surface of the coupling element.

Art Unit: 3773

6. (Withdrawn) The deployment mechanism of claim 5, wherein the purge passage is helical.

7. (Withdrawn) The deployment mechanism of claim 5, wherein the purge passage is dimensioned to provide a substantial restriction to the flow therethrough of a liquid having a viscosity greater than or approximately equal to 2 cP.

- 8. (Withdrawn) The deployment mechanism of claim 1, wherein the coupling element is pivotally attached to the proximal end of the endovascular device.
- 9. (Withdrawn) The mechanism of claim 1, further comprising a deployment sensing system that provides an indication of the separation of the endovascular device from the retention sleeve.
- 10. (Withdrawn) The mechanism of claim 9, wherein the deployment sensing system comprises: a pressure sensor in the deployment tube, the pressure sensor generating a first electrical signal indicative of the pressure in the deployment tube; a detection circuit that receives the first signal and that generates a second electrical signal in response to a drop in pressure associated with the separation of the endovascular device from the retention sleeve; and an indicator that provides an audible, visible, or tactile indication in response to the second signal.
- 11. (Withdrawn) The deployment mechanism of claim 9, wherein the coupling element includes an electrically conductive material, and wherein the deployment sensing system comprises: first and second electrodes located in the retention sleeve so as to establish electrical contact with the coupling element when the coupling element is held within the retention sleeve; a circuit in which an electrical current is generated that flows through the first and second electrodes and the coupling element, and that generates an electrical signal in response to a change in an electrical parameter in the circuit associated with the separation of the coupling element from the

Art Unit: 3773

retention sleeve; and an indicator that provides an audible, visible, or tactile indication in response to the electrical signal.

12. (Withdrawn) The deployment mechanism of claim 11, wherein the electrical parameter is selected from the group consisting of resistance and current.

13. (Previously Presented) A method of deploying a filamentous endovascular device into a target vascular site, comprising the steps of:

- (a) providing an elongate, flexible, hollow deployment tube having an open proximal end, a distal section terminating in an open distal end, and a lumen defined between the proximal and distal ends;
- (b) providing a filamentous endovascular device having a proximal end and a coupling element attached to the proximal end, the coupling element being releasably attached to the deployment tube adjacent the open distal end thereof, the coupling element being formed with a purge passage
- (c) purging air from the lumen by introducing a purging liquid through the lumen with a pressure sufficient to displace air from the lumen through the purge passage but not sufficient to separate the endovascular device from the deployment tube;
- (d) introducing the endovascular device intravascularly to the target vascular site while it is attached to the deployment tube; and
- (e) separating the endovascular device from the deployment tube without radially expanding the deployment tube by injecting a liquid into the proximal end of the lumen.
- 14. (Original) The method of claim 13, further comprising the step of:
- (f) generating an electrical signal in response to the separation of the endovascular device from the deployment tube.

Art Unit: 3773

15. (Original) The method of claim 13, wherein the purge passage is dimensioned so as to provide a substantial restriction to the flow therethrough of a liquid having a viscosity greater than or equal to a predetermined viscosity, and wherein the injecting

step comprises the step of injecting a liquid having a viscosity greater than the

predetermined viscosity through the lumen.

16. (Original) The method of claim 15, wherein the predetermined viscosity is

approximately 1 cP, and wherein the relatively high viscosity liquid is a contrast agent

having a viscosity of at least about 2 cP.

17. (Previously Presented) The method of claim 13, wherein the deployment tube

comprises a retention sleeve at a distal end thereof such that said coupling element is

releasably held by said retention sleeve.

18. Canceled.

19. (Original) The method of claim 13, wherein the injected liquid in the injecting

step applies pressure directly to the coupling element.

20. (Previously Presented) The method of claim 13, wherein the coupling element

has an exterior surface, and wherein the purge passage is formed in the exterior

surface of the coupling element.

21. (Original) The method of claim 20, wherein the purge passage is helical.

22. (Previously Presented) The method of claim 14, wherein the step of generating

an electrical signal includes the steps of:

(1) detecting a drop in pressure in the deployment tube when the endovascular

device separates from the deployment tube; and

(2) generating the signal in response to the detected drop in pressure.

Art Unit: 3773

23. (Previously Presented) The method of claim 14, wherein the step of generating an electrical signal includes the steps of:

- (1) providing an electrical circuit that includes the coupling element; and
- (2) generating the signal in response to a change in an electrical parameter in the circuit.
- 24. (Original) The method of claim 23, wherein the electrical parameter is selected from the group consisting of resistance and current.
- 25. (Currently Amended) A method of deploying a filamentous endovascular device into a target vascular site, comprising the steps of:
- (a) providing an elongate, flexible, hollow deployment tube having an open proximal end, a distal section terminating in an open distal end, and a lumen defined between the proximal and distal ends;
- (b) providing a filamentous endovascular device having a proximal end and a coupling element attached to the proximal end, the coupling element being releasably attached to the deployment tube adjacent the open distal end thereof, the coupling element being formed with a purge passage
- (c) purging air from the lumen by introducing a purging liquid through the lumen with a pressure sufficient to displace air from the lumen through the purge passage but not sufficient to separate the endovascular device from the deployment tube;
- (d) reducing friction between said coupling element and said deployment tube prior to introducing the device into a patient;
- (e) introducing the endovascular device intravascularly to the target vascular site while it is attached to the deployment tube; and
 - (f) separating said coupling element from said deployment tube.

Art Unit: 3773

26. (Previously Presented) The method of claim 25 wherein reducing friction between said coupling element and said deployment tube comprises softening said coupling element with said purging liquid, thereby reducing a pressure needed to separate said coupling element from said deployment tube distal end.

27. (Previously Presented) The method of claim 25 wherein reducing friction between said coupling element and said deployment tube comprises increasing lubricity of said coupling element.

28. (Previously Presented) The method of claim 25 wherein separating said coupling element from said deployment tube comprises by injecting a liquid into the proximal end of the lumen.

29. (Canceled) The method of claim 25 wherein separating said coupling element from said deployment tube comprises:

injecting a liquid into the proximal end of the lumen;

allowing said deployment tube to contract around a proximal end of said coupling element, thereby expelling said coupling element from said deployment tube.