

High Rate Tests of CVD Diamond Pad Detectors

RD42 Meeting

Michael Reichmann

6th May 2019

Table of Contents

- Motivation
- Website
- Setup
- Measurements
- 6 Analysis
- 6 Results
- Conclusion

Section 1

Motivation

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz/cm}^2\right)$
- \bullet current detectors is designed to survive ${\sim}12\,\text{month}$ in High-Luminosity LHC
- $\bullet \to \text{CERN} \ \text{R\&D}$ for more radiation tolerant detector designs and/or materials

M. Reichmann (311 zürich) Pad Analysis 6th May 2019

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- current detectors is designed to survive ~12 month in High-Luminosity LHC
- → CERN R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - isolating material
 - high charge carrier mobility
 - smaller signal than in silicon with same thickness (large bandgap)
 - ▶ after $1 \cdot 10^{16} \, \text{n/cm}^2$ the mean drift path in diamond larger than in silicon

M. Reichmann (FIHzürich) 6th May 2019 Pad Analysis

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz/cm}^2
 ight)$
- ullet current detectors is designed to survive $\sim\!12\,\mathrm{month}$ in High-Luminosity LHC
- ullet \to CERN R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - ▶ isolating material
 - ▶ high charge carrier mobility
 - smaller signal than in silicon with same thickness (large bandgap)
 - \blacktriangleright after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

Work at ETH:

- investigate signals and radiation tolerance in various detector designs:
 - ▶ Pad Detectors → whole diamond as single cell readout
 - ▶ Pixel Detectors → diamond sensor on pixel readout chip
 - ▶ 3D Pixel Detectors → 3D diamond detector on pixel readout chip

M. Reichmann (FIHzürich) Pad Analysis 6th May 2019

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2
 ight)$
- ullet current detectors is designed to survive $\sim\!12\,\mathrm{month}$ in High-Luminosity LHC
- → CERN R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - ▶ isolating material
 - ▶ high charge carrier mobility
 - ► smaller signal than in silicon with same thickness (large bandgap)
 - \blacktriangleright after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

Work at ETH:

- investigate signals and radiation tolerance in various detector designs:
 - ► Pad Detectors → this talk
 - ► Pixel Detectors
 - ▶ 3D Pixel Detectors

M. Reichmann (FIII zürich) Pad Analysis 6th May 2019

Section 2

Website

Website

- finished analysis of all the pad data taken at PSI (Oct 2015 Oct 2018)
- most of the following results on the website (https://diamond.ethz.ch/psi)

Section 3

Setup

Test Site

- ullet High Intensity Proton Accelerator (HIPA) at PSI (Cyclotron) o beam line PiM1
- \bullet clean positive pion beam (${\sim}98\,\%$ $\pi^+)$ with momentum of 260 MeV/c
 - ▶ 3/4 smaller signals than at CERN! (120 GeV/c)
- tunable particle fluxes from $\mathcal{O}\left(1\,\mathrm{kHz/cm^2}\right)$ to $\mathcal{O}\left(10\,\mathrm{MHz/cm^2}\right)$
- ullet significant multiple scattering o worsens resolution

Final

Final Setup

Figure: Modular Beam Telescope

- 4 tracking planes → trigger (fast-OR) with adjustable effective area
- diamond pad detectors in between tracking planes
- fast scintillator

Setup Development

Figure: Current Setup (Aug16 - Oct18)

- ullet scintillator o precise trigger timing of $\mathcal{O}\left(1\,\mathrm{ns}\right)$
- Trigger Unit (TU) → strongly simplifying setup
- ullet global trigger o (Plane 1 AND Plane 2) AND Scintillator

M. Reichmann (allzürich) Pad Analysis 6th May 2019

Section 4

Measurements

Tested Detectors

Name	Nick	Producer	Туре	Τ [μm]	Irr _{max}	Comments
S129	S129	е6	scCVD	528	0	reference
IIa-3	IIa-3	lla	scCVD	?	$5\cdot 10^{13}$	
SiD1	SiD1	PSI	Si-Diode	300	0	calibration
SiD2	SiD2	IJS	Si-Diode	100	0	calibration
2A87-e	2А87-е	II-VI	pCVD	?	$5 \cdot 10^{13}$	
116-78	poly-A	II-VI	pCVD	?	0	
116-79	poly-B	II-VI	pCVD	?	0	fixed surface
116-81	poly-D	II-VI	pCVD	?	$1\cdot 10^{14}$	
116-94	94	II-VI	pCVD	?	0	also as pixel
116-95	95	II-VI	pCVD	?	$5\cdot 10^{14}$	also as pixel
116-96	96	II-VI	pCVD	?	0	
116-97	97	II-VI	pCVD	510	$3.5\cdot 10^{15}$	irradiation studies
II6-B2	B2	II-VI	pCVD	455	$8 \cdot 10^{15}$	irradiation studies
116-E5	E5	II-VI	pCVD	520	0	bcm prime test
II6-H0	H0	II-VI	pCVD	515	0	bcm prime test
II6-H8	H8	II-VI	pCVD	505	0	bcm prime test

Table: Pad Detector Information.

M. Reichmann (all zürich) Pad Analysis 6th May 2019 8 / 23

Diamond	May15	Aug15	Oct15	Aug16	Oct16
S129	√ (0)	√ (0)	√ (0)	√ (0)	√ (0)
IIa-3	X	X	$\checkmark (5 \cdot 10^{13})$	X	X
SiD1	X	Х	Х	√ (0)	√ (0)
SiD2	X	X	X	X	√ (0)
2А87-е	Х	Х	$\checkmark (5 \cdot 10^{13})$	Х	Х
116-78	√ (0)	X	X	X	X
116-79	√ (0)	√ (0)	X	X	X
116-81	$\checkmark (1 \cdot 10^{14})$	X	$\checkmark (1 \cdot 10^{14})$	X	X
116-94	√ (0)	X	X	√ (0)	X
116-95	√ (0)	X	X	$\checkmark (5 \cdot 10^{14})$	X
116-96	√ (0)	X	X	X	X
116-97	X	√ (0)	√ (0)	$\checkmark (5 \cdot 10^{14})$	$\checkmark (1.5 \cdot 10^{15})$
II6-B2	X	√ (0)	$\checkmark (5 \cdot 10^{14})$	$\checkmark (1 \cdot 10^{15})$	$\checkmark (2 \cdot 10^{15})$
II6-E5	X	X	X	X	X
II6-H0	X	X	X	X	X
II6-H8	X	Х	X	X	X

Table: Pad Detector Timeline. Irradiation in n/cm^2 in parenthesis.

M. Reichmann (=11/zürich) Pad Analysis 6th May 2019 9 / 23

Diamond	May17	Jul17	Aug17	Aug18	Oct18
S129	√ (0)	√ (0)	√ (0)	√ (0)	X
IIa-3	X	X	X	X	X
SiD1	X	X	X	X	X
SiD2	√ (0)	√ (0)	√ (0)	√ (0)	X
2A87-e	X	Х	Х	Х	X
116-78	X	X	X	X	X
116-79	X	√ (0)	X	X	X
116-81	X	X	X	X	X
116-94	X	X	X	X	X
116-95	X	X	X	X	X
116-96	X	X	X	X	X
116-97	X	$\checkmark (1.5 \cdot 10^{15})$	\checkmark (3.5 · 10 ¹⁵)	X	X
II6-B2	X	$\checkmark (2 \cdot 10^{15})$	\checkmark (4 · 10 ¹⁵)	$\checkmark (8 \cdot 10^{15})$	X
116-E5	X	✓ *(0)	X	X	X
II6-H0	√ *(0)	√ *(0)	X	X	X
II6-H8	X	X	X	√ (0)	√ *(0)

Table: Pad Detector Timeline. Irradiation in n/cm^2 in parenthesis. * - BCMPrime devices.

M. Reichmann (FIHzürich) Pad Analysis 6th May 2019 10 / 23

Scan Types

Diamond	Rate Scan	Voltage Scan	Random Scan
S129	✓	✓	Х
IIa-3	✓	X	X
SiD1	✓	✓	X
SiD2	✓	✓	X
2A87-e	✓	X	X
116-78	✓	X	X
116-79	✓	X	X
116-81	✓	✓	X
116-94	✓	✓	✓
116-95	✓	✓	✓
116-96	✓	X	X
116-97	✓	X	✓
II6-B2	✓	✓	✓
II6-E5	✓	X	X
II6-H0	✓	X	X
II6-H8	✓	X	X

Table: Pad Detector Scan Types.

M. Reichmann (FIH zürich) Pad Analysis 6th May 2019 11 / 23

Section 5

Analysis

Alignment

- \bullet assume the same error for all planes: $\frac{2.5}{\sqrt{12}} \cdot$ pixel dimension
- ullet set errors of p1 to 0 (anchor o remains untouched)
- first coarse pre-alignment by connecting the outer planes with a straight line
 - move inner planes by mean of the residual distribution

- assume the same error for all planes: $\frac{2.5}{\sqrt{12}}$ · pixel dimension
- ullet set errors of p1 to 0 (anchor o remains untouched)
- first coarse pre-alignment by connecting the outer planes with a straight line
 - move inner planes by mean of the residual distribution
- then fine alignment by fitting a straight line through all planes
 - ▶ keep p1 fixed and iteratively translate and rotate the other planes according to residuals

12 / 23

M. Reichmann (allzürich) Pad Analysis 6th May 2019

Theoretical Distribution

Chi-squared distribution:

$$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2}$$

- special case of Gamma-Distribution
- ullet theoretical distribution of the χ^2 from the track fits fully known

M. Reichmann (FIHzürich) Pad Analysis 6th May 2019

Distribution after Alignment

- fit function: $[0]*TMath::GammaDist(x, k/2, 0, \theta = 2)$
- k number degrees of freedom = NPlanes 2
- ullet does not fit very well o incorrect errors of the individual points (planes)

Determination of the Errors (1)

1. General Scaling:

- leave width of the distribution as free parameter in fit (indicator the errors)
- adjust all errors slowly until width converges to theoretical value of 1

2. Individual Scaling:

- set one plane under test (not included in fit)
- iteratively adjust errors of the other planes

• define signal region: one bunch wide (20 ns) around the triggered signal

• define signal region: one bunch wide (20 ns) around the triggered signal

- define signal region: one bunch wide (20 ns) around the triggered signal
- find the peak within the signal region by max value

- define signal region: one bunch wide (20 ns) around the triggered signal
- find the peak within the signal region by max value
- signal: integrate asymmetrically around the peak (optimisation by SNR)

M. Reichmann (allzürich) Pad Analysis 6th May 2019

- define signal region: one bunch wide (20 ns) around the triggered signal
- find the peak within the signal region by max value
- signal: integrate asymmetrically around the peak (optimisation by SNR)
- pedestal: same integration window in centre of pre-trigger bunch

M. Reichmann (FIHzürich) Pad Analysis 6th May 2019

- define signal region: one bunch wide (20 ns) around the triggered signal
- find the peak within the signal region by max value
- signal: integrate asymmetrically around the peak (optimisation by SNR)
- pedestal: same integration window in centre of pre-trigger bunch

M. Reichmann (FIHzürich) Pad Analysis 6th May 2019

- integration performed on time corrected waveform
- single bin integral: (w) times the mean of the two values: $w \cdot (v1 + v2)/2$
- \bullet sum up the single integrals + interpolated edges to get the exact integration width
- normalise by the width of the integral

M. Reichmann (TH zürich)

Section 6

Results

Tracking Resolution

- resolution = width of the residual distribution at the plane under test
- \bullet can achieve ${\sim}20\,\mu m$ resolution at very low χ^2
- resolution at the front slightly better than in the background
 - ► less multiple scattering

M. Reichmann (Fillzürich) Pac

• show both mean and standard deviation of all measurement to demonstrate stability

Rate Measurements

ullet show irradiation rate scans and drop in pulse height + snr?

Rate Measurements

ullet show irradiation rate scans and drop in pulse height + snr?

Rate Measurements

Fix Rate Dependence

- \bullet less than 20 % of the tested diamonds show rate dependence $>\!10\,\%$
- very large rate dependence at the first measurement (>90 %)
- after reprocessing and surface cleaning with RIE very stable behaviour (\sim 2%)
- feasible to "fix" bad diamonds

Section 7

Conclusion

Conclusion

empty

moreempty

moremoreempty

