

Machine Learning

Session 5 - T

Unsupervised Learning - Clustering

Degree in Applied Data Science 2024/2025

Unsupervised vs Supervised Learning

• **Unsupervised:** involves working with **unlabeled data**, where the algorithm explores the inherent **structure and patterns** within the input without explicit output guidance.

• Supervised: the algorithm is trained on a labeled dataset, where the input data is paired with corresponding output labels. The goal is to learn a mapping from inputs to outputs, allowing the algorithm to make predictions on new, unseen data.

Unsupervised vs Supervised Learning

Supervised Learning

Unsupervised Learning

Illustration by <a>@Ciaraioch

Unsupervised Learning

- What can we do in the absence of target labels?
 - Group data based on similarity ⇒ clustering
 - Simplify/reduce data ⇒ dimensionality reduction
 - Visualize data ⇒ data visualization

Supervised

X ₁	X ₂	Xp	Y

Target

Unsupervised

X ₁	X ₂	Хp	

No Target

Clustering

- Clustering is not a well-defined term with varying definitions in the literature:
 - Finding groups in data;
 - Dividing data into homogeneous groups;
 - Dividing data into groups where points within each group are close or similar;
 - Dividing data into groups where points within each group are close or similar, and points of different groups are far or dissimilar;
 - Dividing the feature space into regions with relatively high density of points, separated by regions with relatively low density of points.

Our First Clustering Task

How many clusters?

Which forms belong to each cluster?

Our first clustering task

3 clusters

by shape

Our first clustering task

Unsupervised Learning - Clustering Session 5

by color

2 clusters

Clustering

- Mathematically, clustering can be defined as a set of **optimization problems** with several variants.
- The clustering thecnique to use depens on:
 - Data type (e.g. numeric, nominal);
 - Desired output format (e.g. exclusive clusters, probabilities, hierarchies);
 - Objective function (e.g. homogeneity vs separation);
 - Similarity/distance measure (e.g. euclidean, manhattan distance).

Defining Clusters

- Partitional clustering:
 - Data is divided into groups at the same level.

- Hierarchical clustering:
 - Clusters are nested within larger clusters, in a tree.

Clustering Membership

Hard clustering:

Each example belongs only to one cluster.

Soft clustering:

Examples may belong to more than one cluster.

Fuzzy clustering:

Each example belongs to clusters with probabilities.

Clustering Coverage

- Complete lustering:
 - All examples are assigned to cluster (or clusters);
- Partial clustering:
 - Some examples unassigned (e.g. noise, irrelevant data)

Well separated clusters:

Distance between any two points in different clusters is larger than the distance between any two points in the same group.

Prototype-based clustering:

- Examples in a cluster are closer to the prototype of the cluster than to the prototype of any other cluster.
- If the data is numerical, the prototype of the cluster is often a centroid i.e., the average of all the points in the cluster.
- If the data has categorical attributes, the prototype of the cluster is often a mode i.e., the most representative point of the cluster.

Contiguity-based clustering:

- Each example in a cluster is closer to at least one example in the same cluster than to any example in a different cluster.
- Useful when clusters are irregular and intertwined.
- Does not work well when there is noise in the data.

Density-based clustering:

- Cluster is a dense region of examples that is surrounded by a region of low density.
- Used when the clusters are irregular, intertwined and when noise and outliers are present.
- Examples in low density region are classified as noise and omitted.

Similarity

Sometimes is difficult to determine what is similar or not!

Distance measures:

• Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$

Manhattan distance:

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Similarity

Sometimes is difficult to determine what is similar or not!

Similarity measures:

Jaccard similarity:

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}.$$

Pearson correlation:

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 (y_i - \bar{y})^2}}$$

Homogeneity and Separation

• **Homogeneity:** elements within a cluster must be close to each other (low distances) – intra-cluster

 Separation: elements in different clusters should be quite separate from each other (high distances) - inter-cluster

Which clustering would you choose (and why)?

VS

Clustering: "bad" solution

Violates homogeneity and separation

Clustering: "good" solution

Solution with good homogeneity and separation

Still, some pairs of points would be better grouped together in the previous solution

Hierarchical Clustering

- Generates a set of nested clusters organized as a hierarchical tree;
- Visual representation often depicted as a dendrogram:
 - A tree like diagram representing a hierarchy of nested clusters
 - Clustering obtained by cutting at desired level

Hierarchical Clustering - Advantages

Do not have to assume any particular number of clusters;

May correspond to meaningful taxonomies.

Hierarchical Clustering Types

Agglomerative:

- Start with the examples as individual clusters;
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left.

Divisive:

- Start with one cluster with all examples;
- At each step, split a cluster until each cluster contains a example (or there are k clusters).

Agglomerative Hierarchical Clustering

- 1. Compute the proximity matrix;
- 2. Let each example be a cluster;
- 3. Merge the two closest clusters;
- 4. Update the proximity matrix;
- 5. Repeat 3 and 4 until a single cluster remains (or k clusters).

Unsupervised Learning - Clustering

Session 5

Agglomerative Hierarchical Clustering

- 1. Compute the proximity matrix;
- 2. Let each example be a cluster;
- 3. Merge the two closest clusters;
- 4. Update the proximity matrix;
- 5. Repeat 3 and 4 until a single cluster remains (or k clusters).

Proximity Matrix

Hierarchical Clustering - Cluster Similarity

Average Linkage

Complete Linkage

Centroid Linkage

Hierarchical Clustering – Single vs Complete vs Average

Hierarchical Clustering – Single vs Complete vs Average

Single Linkage:

- Can handle non-eliptical shapes;
- Sensitive to noise and outliers.

Complete Linkage:

- Less susceptible to noise and outliers;
- Tends to break large clusters;
- Biased towards globular clusters.

Average Linkage:

- Compromise between single and complete linkage;
- Less susceptible to noise and outliers;
- Biased towards globular clusters.

Hierarchical Clustering - Limitations

- Do not scale well:
 - Space complexity: O(N²)
 - Time complexity: O(N³)
 - $O(N^2 \log(N))$ for some approaches.
- Cannot undo what was previosly done;

Quality varies a lot in terms of distance measure used.

Hierarchical Clustering - Summary

Hierarchical Clustering - Applications

- **Biology:** Used in genomics for grouping genes with similar expression patterns, clustering protein sequences, and phylogenetic analysis.
- Marketing: Segmentation of customers based on purchasing behavior or demographic characteristics to tailor marketing strategies.
- Image Analysis: Grouping similar images together for tasks such as image retrieval, object recognition, and image compression.
- **Document Clustering:** Organizing documents by topic for information retrieval, text mining, and document summarization.
- Anomaly Detection: Identifying outliers or unusual patterns in data, such as detecting fraudulent transactions or network intrusions.
- Finance: Segmenting financial data for portfolio optimization, risk assessment, and fraud detection.

K-Means Clustering

- Find best clustering of k clusters
 - Partitional, exclusive, complete and prototype-based;
 - Define clusters by proximity to the mean of the cluster (centroid);
 - The number of clusters is predefined (k).
- Objective: find the centroids that minimize the distance between the examples and the centroids.

K-Means Clustering: Lloyd Algorithm

• Because the optimal solution for this problem is NP-hard, practical useful solutions can be obtained with simple heuristic algorithms such as the **Lloyd algorithm**.

Lloyd algorithm:

- Start with random centroids;
- Assign each example to the closest centroid;
- Update centroids to mean of respective cluster;
- Recompute clusters and repeat until convergence.

 Does not guarantee optimal solutions as in practical implementations a maximum number of iterations is commonly defined.

K-Means Clustering: Initialization

• Forgy: start with coordinates of a random set of k examples

K-Means Clustering: Initialization

• Forgy: start with coordinates of a random set of k examples

K-Means Clustering: Initialization

• Random: random assignment, compute means

Original data

• Initialize (Forgy), compute clusters

Compute new means, update centroids

Recompute clusters

Compute new means, update centroids

Recompute clusters

• Compute new means, update centroids

Recompute clusters

Compute new means, update centroids

Recompute clusters

Compute new means, update centroids

Until convergence

K-Means Clustering: Strengths and Limitations

Strenghts:

- Simple and works well for disjoint clusters;
- Relatively efficient and scalable (Lloyd algorithm);

Limitations:

- k needs do be defined in advance;
- Higly dependent on the initialization;
- Unable to handle well noisy data and outliers;
- Not suitable for clusters of different sizes and non-convex shapes.

K-Means Clustering: Choosing k

• Chosing the value of k is not a trivial task that heavily affects the outcome of the algorithm.

- Elbow method: determine the optimal k
 - Iteratively applies K-means clustering with an increasing number of clusters.
 - Calculates the within-cluster sum of squares (WCSS) for each iteration.
 - WCSS measures the compactness of clusters; lower WCSS indicates better clustering.

K-Means Clustering: Initialization

• Importance of initialization: case 1

K-Means Clustering: Initialization

• Importance of initialization: case 2

K-Means Clustering: Different Sizes

K-Means Clustering: Non-Convex Shapes

K-Means Variants

• K-Medoids: prototypes are data points (medoids);

• K-Modes: for categorical data. Utilizes mode-based distance measures (e.g., Hamming distance)

K-Means - Applications

- Customer Segmentation: Identifying groups of customers with similar traits for targeted marketing and personalized services.
- Image Compression: Simplifying images by reducing the number of colors, preserving visual quality while saving storage space.
- Anomaly Detection: Spotting outliers in datasets, useful for fraud detection and quality control.
- Document Clustering: Organizing documents by content similarity for efficient retrieval and topic modeling.
- Retail Inventory Management: Optimizing inventory levels and product placement based on sales patterns.
- Healthcare Data Mining: Grouping patients with similar medical profiles for diagnosis and treatment planning.
- Climate Pattern Analysis: Identifying weather patterns and trends in climate data for forecasting and resource management.

https://scikit-learn.org/stable/modules/clustering.html

Resources

 Berry, M. W., Mohamed, A., & Yap, B. W. (2019). Supervised and unsupervised learning for Data Science. Cham, Switzerland: Springer Nature.

• Patel, A. A. (2019). Hands-on unsupervised learning using python. Sebastopol, CA: O'Reilly Media.