Lecture 21: Land use optimization

Learning objectives:

Understand the basic

Appreciate the core principles of LULCC m.

Understand the strengths and weaknesses of models

Readings:

 Venter in Prep Near-term wilderness loss most likely in places with high concentrations of threatened species

 What would happen to the things we care about if we managed in 'x' way?

 What would happen to things we care about if we managed in 'x' way?

 What would happen to things we care about if we managed in 'x' way?

 What would happen to things we care about if we managed in 'x' way?

 What is the best way to manage for the things we care about?

- What is the best way to manage for the things we care about?
 - Maximize timber harvest
 - Maximize forest carbon stores
 - Maximize provision of ecosystem services
 - Maximize biodiversity habitat
 - Maximize forest resilience
- Maximal coverage problem

- What is the best way to manage for the things we care about?
 - Meet timber harvest while minimizing costs
 - Maintain carbon stores while minimizing costs
 - Provide ecosystem services while minimizing costs
 - Maintain biodiversity habitat while minimizing costs
 - Ensure forest resilience while minimizing costs
- Minimum set problem

Land use optimization for biodiversity

1900 1910

1920

1900	1910	1920	1930	1940

1900	1910	1920	1930	1940	1950	1960

1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000 2010

Land use optimization for biodiversity

Pressey et al 1994

Table 1. Summary statistics for all land areas and for protected areas

established over the three time periods analysed in this study.

	PA	Total PA	Mean cost (2012 US\$ per	Mean species
Category	Count	(km²)	ha)	richness
All land	na	127,331,523	61.54	6.81
pre-2004	157,964	16,108,966	37.77	7.37
2004-2009	30,894	2,029,430	35.14	7.53
2010-2014	13,663	1,110,729	16.13	6.31

Table 1. Summary statistics for all land areas and for protected areas

established over the three time periods analysed in this study.

	PA	Total PA	Mean cost (2012 US\$ per	Mean species
Category	Count	(km²)	ha)	richness
All land	na	127,331,523	61.54	6.81
pre-2004	157,964	16,108,966	37.77	7.37
2004-2009	30,894	2,029,430	35.14	7.53
2010-2014	13,663	1,110,729	16.13	6.31

Current coverage of threatened species

Location, location, location...

Competition for land is strong

Strategically locate protected areas

The problem is big

Systematic Conservation Planning

- 1 Identifying and involving stakeholders
- 2 Identifying conservation goals
- 3 Compiling data
- 4 Formulating conservation targets
- 5 Reviewing existing target achievement
- 6 Selecting new conservation areas
- 7 Implementing new conservation areas
- 8 Maintaining and monitoring

Systematic Conservation Planning

Computational methods for identifying locations to establish conservation areas

- Can handle large planning problems
- Efficiency
- User friendly and free
- Scenario analyses for trade-offs

Computational tools

Marxan Zonation

C-plan

Hugh Possingham

Atte Moilanen

Bob Pressey

Typical decision problem: Objectives

Typical decision problem: Objectives

ecological 'regions' biogeography

ecological processes function

habitats structure

species (and genes) composition

Ecosystem services Human values

Typical decision problem: Targets

	: 1 (b:		1'	70/
ecolog	ical r	egions	0)(0)(0	reograpi	1V I.	7%
330.0 0		60.01.0	$\kappa r g$, e e g, e, p.	• • • • • •	

- ecological processes function All
- habitats structure 20%
- species (and genes) composition XX%

• Ecosystem services Human values 10%

Typical decision problem: Constraints

Typical decision problem: Optimization

Objectives

Optimization

Network

Constraints

Optimization problem

Starts with a clear objective...

"What is the land use configuration that meets all my conservation targets for the lowest cost, while maintaining spatial cohesion of protected areas?"

Optimization problem

Which can be represented numerically...

$$\sum_{j=1}^{m} c_{j} x_{j} + \alpha.$$
BoundaryLength

Subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \geq T_{i}$$

$$i=1$$
, m

 a_{ii} = amount of feature i in planning unit j

 $T_i =$ target for feature i

$$x_j = 1$$

if the planning unit is in the reserve system

Optimization problem

And solved using...

- Wild guess
- Heuristics (eg grab the site that adds most)
- Mathematical Programming: Cocks, K. D., and Baird, I. A. (1989) "Using Mathematical Programming to Address the Multiple Reserve Selection Problem: An Example from the Eyre Peninsula, South Australia", Biological Conservation, 49, 113-130.
- Heuristic algorithms
 - Simulated annealing
 - Genetic Algorithms

optimization outputs

PA network

Irreplaceability

Models, problems and algorithms

- A model of the system is a prediction in space or time –
 for decision-making it is often a prediction of the future.
 PVA is a model. In reserve design we use species
 distribution models
- A problem is a translation of human's hopes dreams and desires into maths. The reserve design problem is a conservation problem
- An algorithm is a method for finding good answers to a problems

Next Monday

Let's see how this all works in the lab 3pm