Generalized linear models and logistic regression

So far, most of the analyses we have described have been based around linear models that assume normally distributed populations of the response variable and of the error terms from the fitted models. Most linear models are robust to this assumption, although the extent of this robustness is hard to gauge, and transformations can be used to overcome problems with non-normal error terms. There are situations where transformations are not effective in making errors normal (e.g. when the response variable is categorical) and, in any case, it might be better to model the actual data rather than data that are transformed to meet assumptions. What we need is a technique for modeling that allows other types of distributions besides normal. Such a technique was introduced by Nelder & Wedderburn (1972) and further developed by McCullough & Nelder (1989) and is called generalized linear modeling (GLM). In this chapter, we will examine two common applications of GLMs: logistic regression, used when the response variable is binary, and Poisson regression, when the response variable represents counts. In the next chapter, we will describe loglinear models when both response and predictor variables are categorical and usually arranged in the form of a contingency table.

13.1 Generalized linear models

Generalized linear models (GLMs) have a number of characteristics that make them more generally applicable than the general linear models we have considered so far. One of the most important is that least squares estimation no longer applies and maximum likelihood methods must be used (Chapter 2).

A GLM consists of three components. First is the random component, which is the response variable and its probability distribution (Chapter 1). The probability distribution must be from the exponential family of distributions, which includes normal, binomial, Poisson, gamma and negative binomial. If Y is a continuous variable, its probability distribution might be normal; if Y is binary (e.g. alive or dead), the probability distribution might be binomial; if Y represents counts, then the probability distribution might be Poisson. Probability distributions from the exponential family can be defined by the natural parameter, a function of the mean, and the dispersion parameter, a function of the variance that is required to produce standard errors for estimates of the mean (Hilbe 1993). For distributions like binomial and Poisson, the variance is related to the mean and the dispersion parameter is set to one. For distributions like normal and gamma, the dispersion parameter is estimated separately from the mean and is sometimes called a nuisance parameter.

Second is the systematic component, which represents the predictors (X variables) in the model. These predictors might be continuous and/or categorical and interactions between predictors, and polynomial functions of predictors, can also be included.

Third is the link function, which links the random and the systematic component. It

actually links the expected value of *Y* to the predictors by the function:

$$g(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots$$
 (13.1)

where $g(\mu)$ is the link function and β_0 , β_1 , etc., are parameters to be estimated. Three common link functions include the following.

- 1. Identity link, which is $g(\mu) = \mu$, and models the mean or expected value of *Y*. This is used in standard linear models.
- 2. Log link, which is $g(\mu) = \log(\mu)$, and models the log of the mean. This is used for count data (that cannot be negative) in log-linear models (Chapter 14).
- 3. Logit link, which is $g(\mu) = \log[\mu/(1-\mu)]$, and is used for binary data and logistic regression (Section 13.2).

GLMs are considered parametric models because a probability distribution is specified for the response variable and therefore for the error terms from the model. A more flexible alternative is to use quasi-likelihood models that estimate the dispersion parameter from the data rather than constraining it to the value implied by a specific probability distribution, such as one for a binomial and Poisson. Quasi-likelihood models are particularly useful when our response variable has a binomial or Poisson distribution but is over or under dispersed, i.e. the probability distribution has a dispersion parameter different from one and therefore a variance greater or less than expected from the mean.

GLMs are linear models because the response variable is described by a linear combination of predictors (Box 5.1). Fitting GLMs and maximum likelihood estimation of their parameters is based on an iterative reweighted least squares algorithm called the Newton–Raphson algorithm. Linear regression models (Chapters 5 and 6) can be viewed as a GLM, where the random component is a normal distribution of the response variable and the link function is the identity link so that the expected value (the mean of Y) is modeled. The OLS estimates of model parameters from the usual linear regression will be very similar to the ML estimates from the GLM fit.

Readable introductions to GLMs can be found in, among others, Agresti (1996), Christensen (1997), Dobson (1990), and Myers & Montgomery (1997).

13.2 Logistic regression

One very important application of GLMs in biology is to model response variables that are binary (e.g. presence/absence, alive/dead). The predictors can be either continuous and/or categorical. For example, Beck (1995) related two response variables, the probability of survival (survived or didn't survive) and the probability of burrowing (burrowed or didn't burrow), to carapace width for stone crabs (Menippe spp.). Matlack (1994) examined the relationship between the presence/absence of individual species of forest shrubs (response variables) against a number of continuous predictors, such as stand area, stand age, distance to nearest woodland, etc. In both examples, logistic regression was required because of the binary nature of the response variable.

13.2.1 Simple logistic regression

We will first consider the case of a single continuous predictor, analogous to the usual linear regression model (Chapter 5). When the response variable is binary (i.e. categorical with two levels, zero or one), we actually model $\pi(x)$, the probability that Y equals one for a given value of X. The usual model we fit to such data is the logistic regression model, a nonlinear model with a sigmoidal shape (Figure 13.1). The change in the probability that Y equals one for a given change in X is greatest for values of X near the middle of its range, rather than for values at the extremes. The error terms from the logistic model are not normally distributed; because the response variable is binary, the error terms have a binomial distribution. This suggests that ordinary least squares (OLS) estimation is not appropriate and maximum likelihood (ML) estimation of model parameters is necessary. In this section, we will examine a situation with one binary response variable (Y), which can take values of zero or one, and one continuous predictor (X).

Lizards on islands

Polis et al. (1998) studied the factors that control spider populations on islands in the Gulf of

Figure 13.1 (a) Scatterplot of the presence and absence of *Uta* in relation to perimeter to area ratio on 19 islands in the Gulf of California (Polis et al. 1998). (b) Scatterplot of the predicted probabilities from logistic regression model of the presence of *Uta* in relation to perimeter to area ratio.

California. Potential predators included lizards of the genus *Uta* and scorpions (*Centruroides exilicauda*). We will use their data to model the presence/absence of lizards against the ratio of perimeter to area for each island. The analysis of these data is presented in Box 13.1.

Logistic model and parameters

The logistic model is:

$$\pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$
(13.2)

where β_0 and β_1 are parameters to be estimated. For the Polis et al. (1998) example, $\pi(x)$ is the probability that $y_i = 1$ (i.e. Uta is present) for a given x_i (P/A ratio). As we will see shortly, β_0 is the constant (intercept) and β_1 is the regression coefficient (slope), which measures the rate of change in $\pi(x)$ for a given change in X. This model can be fitted with nonlinear modeling techniques (Chapter 6) to estimate β_0 and β_1 but the modeling process is tedious and the output from software unhelpful.

An alternative approach is to transform $\pi(x)$ so that the logistic model closely resembles a

familiar linear model. First, we calculate odds that an event occurs (e.g. $y_i = 1$ or Uta is present), which is the probability that an event occurs relative to its converse, i.e. the probability that $y_i = 1$ relative to the probability that $y_i = 0$:

$$\frac{\pi(x)}{1 - \pi(x)} \tag{13.3}$$

If the odds are >1, then the probability that $y_i = 1$ is greater than the probability that $y_i = 0$; if the odds are <1, then the converse is true. Then we take the natural log of the odds that $y_i = 1$:

$$\ln\left[\frac{\pi(x)}{1-\pi(x)}\right] \tag{13.4}$$

This is the logit transformation or link function, that we will term g(x), and which can be modeled against our predictor much more easily as:

$$g(x) = \beta_0 + \beta_1 x_i \tag{13.5}$$

For the example from Polis et al. (1998):

$$g(x) = \beta_0 + \beta_1 (P/A \text{ ratio})_i$$
 (13.6)

In model 13.6, g(x) is the natural log (i.e. logit) of the odds that Uta is present on an island relative

Box 13.1 Worked example of logistic regression: presence/absence of lizards on islands

Polis et al. (1998) studied the factors that control spider populations on islands in the Gulf of California. We will use part of their data to model the presence/absence of lizards (*Uta*) against the ratio of perimeter to area (P/A, as a measure of input of marine detritus) for 19 islands in the Gulf of California. We modeled the presence of *Uta* (binary) against P/A as:

$$g(x) = \beta_0 + \beta_1 (P/A ratio)$$

where g(x) is the natural log of the odds of Uta occurring on an island. Uta occurred on ten of the 19 islands and the data are plotted in Figure 13.1(a). The H_0 of main interest was that there was no relationship between the presence of Uta (i.e. the odds that Uta occurred relative to not occurred) and the P/A ratio of an island. This is the H_0 that $\beta_1 = 0$.

The maximum likelihood estimates of the model parameters were as follows.

Parameter	Estimate	ASE	Wald statistic	Р
$oldsymbol{eta}_0 \ oldsymbol{eta}_1$	3.606	1.695	2.127	0.033
	-0.2196	0.101	-2.184	0.029

Note that the Wald statistic is significant so we would reject the H_0 that $\beta_1=0$. The odds ratio for P/A was estimated as 0.803 with 95%CI from 0.978 to 0.659. For a one unit increase in P/A, an island has a 0.803 chance of having Uta compared to not have Uta, a decrease in the odds of having Uta of approximately 20%. The plot of predicted probabilities from this model is shown in Figure 13.1(b), clearly showing the logistic relationship.

The other way to test the fit of the model, and therefore test the H_0 that $\beta_1 = 0$, is to compare the fit of the full model $(g(x) = \beta_0 + \beta_1 x_i)$ to the reduced model $(g(x) = \beta_0)$.

Full model log-likelihood = -7.110

Reduced model (constant only) log-likelihood = -13.143

 $G^2 = -2$ (difference in log-likelihoods) = 12.066, df = 1, P = 0.001. This is also the difference in deviance of the full and reduced models. This test also results in us rejecting the H_0 that $\beta_1 = 0$. Note that the Wald test seems more conservative (larger P value).

Goodness of fit statistics were calculated to assess the fit of the model. The Hosmer–Lemeshow statistic was more conservative than either Pearson χ^2 or G^2 and was not significant. Along with the low values for Pearson χ^2 or G^2 , there was no evidence for lack of fit of the model. The logistic analogue of r^2 indicated that about 46% of the uncertainty in the presence of Uta on islands could be explained by P/A ratio.

Statistic	Value	df	Р
Hosmer–Lemeshow (\hat{C}) Pearson χ^2 Deviance (G^2) r_L^2	2.257 15.333 14.221 0.459	5 17 17	0.813 0.572 0.651

Analysis of diagnostics showed that two islands, Cerraja and Mitlan, were more influential than the rest on the outcome of the model fitting. They had the largest Pearson and deviance residuals and also unusually large values for the logistic regression equivalent of Cook's measure of influence, Hosmer & Lemeshow's (1989) $\Delta\beta$. However, our conclusion for the test of whether $\beta_{\parallel}=0$ based on the G^2 statistic (deviance) was not changed if either of these two observations were omitted.

to being absent. We now have a familiar linear model, although the interpretation of the coefficients is a little different (see below). The logit transformation does two important things. First, g(x) now ranges between $-\infty$ and $+\infty$ whereas $\pi(x)$ is constrained to between zero and one. Linear models are much more appropriate when the response variable can take any real value. Second, the binomial distribution of errors is now modeled.

The logistic regression model is a GLM. The random component is Y with a binomial probability distribution; the systematic component is the continuous predictor X; and the link function that links the expected value of Y to the predictor(s) is a logit link.

Now we use maximum likelihood (ML) techniques to estimate the parameters β_0 and β_1 from logistic model 13.5 by maximizing the likelihood function L:

$$L = \prod_{i=1}^{n} \pi(x_{i})^{y_{i}} [1 - \pi(x_{i})]^{1-y_{i}}$$
(13.7)

It is mathematically much easier to maximize the log-likelihood function $\ln(L)$ (Chapter 2). ML estimation is an iterative process requiring appropriate statistical software that will also provide standard errors of the ML estimates of β_0 and β_1 . These standard errors are asymptotic because they are based on a normal distribution of the parameter estimates that is only true for large sample sizes. Confidence intervals for the parameters can also be calculated from the product of the asymptotic standard error and the standard normal z distribution. Both the standard errors and confidence intervals should be considered approximate.

We earlier defined the odds of an event occurring, which is the probability an event occurs relative to its converse, i.e. the probability that $y_i = 1$ relative to the probability that $y_i = 0$ or the probability that Uta occurs on an island relative to it not occurring. Our logistic regression model is that the natural log of the odds equals the constant (β_0) plus the product of the regression coefficient (β_1) and x_i :

$$\ln\left[\frac{\pi(x)}{1-\pi(x)}\right] = \beta_0 + \beta_1 x_i \tag{13.8}$$

We can compare the value of the log of the odds

$$\ln\left[\frac{\pi(x)}{1-\pi(x)}\right]$$

for $X = x_i$ and $X = x_i + 1$, i.e. for the predicted Y-values in a logistic regression model for X-values one unit apart. For the Polis *et al.* (1998) data, this is comparing the log of the odds of *Uta* occurring on an island for P/A ratios that differ by one unit. The ratio of these two odds is called the odds ratio and it is a measure of how the odds of *Uta* occurring change with a change in P/A ratio. Some simple arithmetic produces:

odds ratio =
$$e^{\beta_1}$$
 (13.9)

This is telling us that β_1 represents the change in the odds of an outcome for an increase in one unit of X. For the Polis et al. (1998) data, the estimated logistic regression coefficient (b_1) is an estimate of how much the odds of Uta occurring on an island (compared to not occurring) would change for an increase in P/A ratio of one unit. A positive value of b_1 indicates that the odds would increase and a negative value indicates the odds would decrease.

The constant, β_0 , is the value of g(x) when $x_i = 0$ and represents the intercept of the logistic regression model; its interpretation is similar to the intercept of the linear regression model (Chapter 5) and it is usually of less biological interest.

Null hypotheses and model fitting

The $\rm H_0$ of main interest when fitting a simple logistic regression model is that $\beta_1=0$, i.e. there is no relationship between the binary response variable and the predictor variable. In the Polis *et al.* (1998) study, the $\rm H_0$ is that there is no relationship between the presence/absence of *Uta* and the P/A ratio of an island. Equivalently, the $\rm H_0$ is that the log of the odds of *Uta* occurring on an island relative to not occurring is independent of the P/A ratio of the island.

There are two common ways of testing this H_0 . The first is to calculate the Wald statistic, a ML version of a t test, which is the parameter estimate divided by the standard error of the parameter estimate:

$$\frac{b_1}{s_{b_1}}$$
 (13.10)

The Wald statistic is most reliable when sample sizes are large so an alternative hypothesis testing strategy that is more robust to small sample sizes and provides a link to measuring the fit of GLMs would be attractive. The approach is similar to that described for OLS regression models in Chapters 5 and 6 where we compare full and reduced models, except that we use log-likelihood as a measure of fit rather than least squares. To test the H_0 that $\beta_1 = 0$ for a simple logistic regression model with a single predictor, we compare the fit (the log-likelihood) of the full model:

$$g(x) = \beta_0 + \beta_1 x_i \tag{13.5}$$

to the fit of the reduced model:

$$g(x) = \beta_0 \tag{13.11}$$

To compare likelihoods, we use a likelihood ratio statistic (Λ), which is the ratio of the log-likelihood of reduced model to the log-likelihood of full model. Remember from Chapter 2 that larger log-likelihoods mean a better fit, so if Λ is near one, then β_1 contributes little to the fit of the full model whereas if Λ is less than one, then β_1 does contribute to the fit of the full model. To test the H_0 , we need the sampling distribution of Λ when H_0 is true. The sampling distribution of Λ is messy so instead we calculate a G^2 statistic:

$$G^2 = -2\ln(\Lambda) \tag{13.12}$$

This is also called the likelihood ratio χ^2 statistic. Sokal & Rohlf (1995) called it the *G* statistic. It can be simplified to:

$$G^2 = -2$$
(log-likelihood reduced – log-likelihood full) (13.13)

If H_0 ($\beta_1 = 0$) is true and certain assumptions hold (Section 13.2.4), the sampling distribution of G^2 is

very close to a χ^2 distribution with one df.

Therefore, we can test H_0 that $\beta_1 = 0$ with either the Wald test or with G^2 test comparing the fit of reduced and full models. In contrast to least squares model fitting (Chapter 5), where the t test and the F test for testing $\beta_1 = 0$ are identical for a simple linear regression, the Wald and G^2 tests are not the same in logistic regression. The Wald test tends to be less reliable and lacks power for smaller sample sizes and the likelihood ratio statistic is recommended (Agresti 1996, Hosmer & Lemeshow 1989).

The G^2 statistic is also termed the deviance when the likelihood ratio is the likelihood of a specific model divided by the likelihood of the saturated model. The deviance therefore is:

The saturated model is a model that explains all the variation in the data. In regression models, the saturated model is one with as many parameters as there are observations, like a linear regression through two points (Hosmer & Lemeshow 1989). Note that the full model $[g(x) = \beta_0 + \beta_1 x_i]$ is not a saturated model, as it does not fit the data perfectly. In a simple logistic regression with two parameters (β_0 and β_1), we can compare the deviance of the full and reduced models, i.e. the G2 statistics for each model compared to a saturated model. The difference between the deviances tells us whether or not the two models fit the data differently. We do not actually fit a saturated model in practice because the log-likelihood of the saturated model is always zero (the maximum value of a log-likelihood because the model is a perfect fit), so the deviance for a given model is simply the loglikelihood of that model. Therefore, the difference in deviances equals:

This is simply the G^2 statistic we calculated earlier. The likelihood ratio χ^2 statistic (G^2) therefore equals the difference in deviance of the two models. This concept becomes much more important when we have models with numerous parameters (i.e. multiple predictors) and therefore we have lots of possible reduced models (Section 13.2.2).

The other reason the deviance is a useful quantity is because it is the GLM analogue of SS_{Residual}, i.e. it measures the unexplained variation for a given model and therefore is a measure of goodness-of-fit (Section 13.2.5). In the same way that we could create analysis of variance tables for linear models by partitioning the variability, we can create an analysis of deviance table for GLMs. Such a partitioning of deviance is very useful for GLMs with numerous parameters, especially complex contingency tables (Chapter 14).

13.2.2 Multiple logistic regression

Logistic regression can be easily extended to situations with multiple predictor variables. The model fitting procedure is just an extension of the log-likelihood approach described in the previous section. For example, Wiser *et al.* (1998) studied the invasion of mountain beech forests in New Zealand by the exotic perennial herb *Hieracium lepidulum*. They modeled the probability of the exotic occurring on approximately 250 plots in relation to a number of predictor variables measured for each plot, including richness of plant species, the percentage of total species in the tall herb guild, the distance to the nearest non-alpine open land, other physical variables such as annual

potential solar radiation, elevation, etc., and chemical characteristics of the soil (Ca, K, Mg, P, pH, N and C:N). Hansson *et al.* (2000) modeled the probability of predation by avian predators on artificial eggs in nests of the Great Reed Warbler in Sweden. Their predictor variables included experimental period (early and late in year) and attractiveness of the territory in which nest occurred, as well as the interaction between these two variables. Our worked example will be taken from a study of the ecology of fragmentation in urban landscapes.

Fragmentation and native rodents

Bolger et al. (1997) recorded the number of species of native rodents (except Microtus californicus) on 25 canyon fragments in southern California. These fragments have been isolated by urbanization. We will use their data to model the presence/absence of any species of native rodent in a fragment against three predictor variables: distance (meters) of fragment to nearest source canyon, age (years) since the fragment was isolated by urbanization, and percentage of fragment area covered in shrubs. The analysis of these data is presented in Box 13.2.

Box 13.2 Worked example of logistic regression: presence/absence of rodents in habitat fragments

Using the data from Bolger et al. (1997), we will model the presence/absence of any species of native rodent (except *Microtus californicus*) against three predictor variables: distance (meters) to nearest source canyon (X_1) , age (years) since fragment was isolated by urbanization (X_2) , and percentage of fragment area covered in shrubs (X_3) :

$$g(x) = \beta_0 + \beta_1$$
 (distance), $+\beta_2$ (age), $+\beta_3$ (% shrub),

where g(x) is the natural log of the odds of a species of native rodent occurring in a fragment. The scatterplots of the presence of rodents against each predictor are shown in Figure 13.2. The H_0 s of main interest were that there was no relationship between the presence of native rodents (i.e. the odds that native rodents occurred relative to not occurred) and each of the predictor variables, holding the others constant. These H_0 s are that $\beta_1 = 0$, $\beta_2 = 0$ and $\beta_3 = 0$.

The maximum likelihood estimates and tests of the parameters were as follows.

Parameter	Estimate	ASE	Wald statistic	Р
β_0	-5.910	3.113	-I.899	0.058
β_{\perp}	0.000	0.001	0.399	0.690
β_{2}	0.025	0.038	0.664	0.570
$\hat{\beta_3}$	0.096	0.041	2.361	0.018

The odds ratios were as follows.

Predictor	Distance	Age	Percentage shrub cover
Odds ratio	1.000	1.025	1.101
95% Cl	0.999–1.002	0.952–1.104	1.016–1.192

Model comparisons include the following. Log-likelihood of full model: -9.679.

Reduced model	H ₀	Log-likelihood	G^2	Р
$\beta_0 + \beta_2 (age)_i + \beta_3 (\% shrub)_i$	$\beta_{ }(distance) = 0$	-9.757	0.156	0.693
$\beta_0 + \beta_1 (distance)_i + \beta_3 (\% shrub)_i$	$\beta_2(age) = 0$	-9.901	0.444	0.505
$\beta_0 + \beta_1 (distance)_i + \beta_2 (age)_i$	β_3 (% shrub) = 0	-14.458	9.558	0.002

The conclusions from the Wald test and from the G^2 tests from the model fitting procedure agree. Only the effect of percentage shrub cover on the probability of rodents being present, holding age and distance from nearest source canyon constant, is significant. The odds ratio for percentage shrub cover was estimated as 1.101 and the 95% CI do not include one; for a 1% increase in shrub cover, a fragment has a 1.101 more chance of having a rodent than not, so even though the effect is significant, the effect size is small. The odds ratios for the other two predictors clearly include one, indicating that increases in those predictors do not increase the probability of a rodent being present in a fragment.

Goodness of fit statistics were calculated to assess the fit of the model. The Hosmer–Lemeshow statistic was not significant indicating no evidence for lack of fit of the model.

Statistic	Value	df	Р
Hosmer–Lemeshow (\hat{C}) Pearson χ^2 Deviance (G^2) r_L^2	6.972 20.823 19.358 0.441	6 21 21	0.323 0.470 0.562

The model diagnostics suggested that the only fragment that might be influential on the results of the model fitting was Spruce, with a dfbeta ($\Delta\beta$) and Pearson and deviance residuals much greater than the other observations. Unfortunately, we could not get the algorithm to converge on ML estimates when this observation was deleted, so we could not specifically examine its influence on the estimated regression coefficients.

Figure 13.2 Scatterplots of the presence and absence of native rodents in relation (a) to distance to nearest source canyon, (b) age since fragment was isolated by urbanization, and (c) % of fragment area covered in shrubs. Data from Bolger et al. (1997).

Logistic model and parameters

The general multiple logistic regression model for *p* predictors is:

$$g(x) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}$$
 (13.16)

For the Bolger et al. (1997) data:

$$g(x) = \beta_0 + \beta_1(\text{distance})_i + \beta_2(\text{age})_i + \beta_3(\% \text{ shrub})_i$$
 (13.17)

In models 13.16 and 13.17 we find the following.

g(x) is the natural log of the odds ratio of $y_i = 1$ versus $y_i = 0$, i.e. the log of the odds of a species of native rodent occurring relative to not occurring in a fragment.

 β_0 is the intercept or constant, i.e. the log of the odds of a species of native rodent occurring relative to not occurring in a fragment when all predictors equal zero.

 β_1 is the partial regression coefficient for X_1 , holding the remaining predictors constant, i.e. the change in the log of the odds of a species of native rodent occurring relative to not occurring in a fragment for a single unit increase in distance to nearest source canyon, holding canyon age and percentage shrub cover constant.

 β_2 is the partial regression coefficient for X_2 , holding the remaining predictors constant, i.e. the change in the log of the odds of a species of native rodent occurring relative to not occurring in a fragment for a single unit increase in canyon age, holding distance to nearest source canyon and percentage shrub cover constant.

 β_3 is the partial regression coefficient for X_3 , holding the remaining predictors constant, i.e. the change in the log of the odds of a species of native rodent occurring relative to not occurring in a fragment for a single unit increase in

percentage shrub cover, holding distance to nearest source canyon and canyon age constant.

Just like in multiple linear regression models, we can firstly test the significance of the overall regression model by comparing the log-likelihood of the full model (13.16 and 13.17) to the log-likelihood of the reduced model (constant, or β_0 , only). We calculate a G^2 statistic [-2(log-likelihood reduced – log-likelihood full)] to test the H_0 that at least one of the regression coefficients equals zero.

To test individual coefficients, we can calculate Wald statistics, each one being the estimated regression coefficient divided by standard error of estimated coefficient. These Wald statistics are the equivalent of *t* tests for partial regression coefficients in multiple linear regression (Chapter 6) and can be compared to the standard normal (*z*) distribution. Our reservations about Wald tests (lack of power with small sample sizes) described in Section 13.2.1 apply equally here.

A better approach is to fit a series of reduced models and compare their fit to the full model. To test H_0 that β_1 (distance) = 0, we compare the fit of the full model:

$$g(x) = \beta_0 + \beta_1 (\text{distance})_i + \beta_2 (\text{age})_i + \beta_2 (\% \text{ shrub})_i$$
(13.17)

to the fit of a reduced model based on H_0 being true:

$$g(x) = \beta_0 + \beta_2(age)_i + \beta_3(\% shrub)_i$$
 (13.18)

with the G^2 statistic:

If the G^2 test is significant, we know that the inclusion of distance as a predictor makes the full

model a better fit to our data than the reduced model and therefore H_0 is rejected. We can do a similar model comparison test for the other predictors.

The difference between the full and reduced models is also the difference in the deviances of the two models. Remember that the deviance is a measure of the unexplained variability after fitting a model so comparing deviances is just like comparing SS_{Residuals} for linear models. Neter *et al.* (1996) called this the partial deviance and we can present the results of a multiple logistic regression as an analysis of deviance table.

Other aspects of multiple linear regression described in Chapter 6 also apply to multiple logistic regression. In particular, including interactions between predictors and polynomial terms might have great biological relevance and these terms can be tested by comparing the fit of full model to the appropriate reduced models.

13.2.3 Categorical predictors

Categorical predictor variables can be incorporated in the logistic modeling process by converting them to dummy variables (Chapter 5). Logistic regression routines in most statistical software will do this automatically. We described two sorts of coding for turning categorical predictors into continuous dummy variables for OLS regression in Chapter 5. It is important that you know which method your statistical software is using, as the interpretation of the coefficients and odds ratios is not the same for the two methods. Most programs use reference cell coding where one group of a categorical predictor is used as a reference and the effects of the other groups are relative to that reference group. Alternatively, effects coding could be used, where each group logit is compared to the overall logit (Hosmer & Lemeshow 1989).

A model with a binary response variable and one or more categorical predictors is usually termed a logit model (Agresti 1990, 1996), to distinguish it from classical logistic regression. If all the predictors are categorical, then log-linear modeling (Chapter 14) is a more sensible procedure because the data are in the form of a contingency table. However, log-linear modeling does not automatically distinguish one of the variables

as a response variable. For different log-linear models, there are equivalent logit models that identify a response variable (see Agresti 1996, p. 165; Chapter 14).

13.2.4 Assumptions of logistic regression

Like all GLMs, logistic regression assumes that the probability distribution for the response variable, and hence for the error terms from the fitted model, is adequately described by the random component chosen. For logistic regression, we assume that the binomial distribution is appropriate, which is likely for binary data. The reliability of the model estimation also depends on the logistic model being appropriate and checking the adequacy of the model is important (Section 13.2.5).

When there are two or more predictors in the model, then absence of strong collinearity (strong correlations between the predictors) is as important for logistic regression models as it was for OLS regression models (Chapter 6). While not necessarily reducing the predictive value of the model, collinearity will inflate the standard errors of the estimates of the model coefficients and can produce unreliable results (Hosmer & Lemeshow 1989, Menard 1995, Tabachnick & Fidell 1996). Most logistic regression routines in statistical software do not always provide automatic collinearity diagnostics, but examining a correlation matrix between the continuous predictors or a contingency table analysis for categorical predictors will indicate if there are correlations/associations between predictors. Tolerance, the r^2 of a regression model of a particular variable as the response variable against the remaining variables as predictors, can also be calculated for each predictor by simply fitting the model as a usual OLS linear regression model. Because tolerance only involves the predictor variables, its calculation is not affected by the binary nature of the response variable.

13.2.5 Goodness-of-fit and residuals

Checking the adequacy of the regression model is just as important for logistic models as for general linear models. One simple and important diagnostic tool for checking whether our model is adequate is to examine the goodness-of-fit. As with linear models fitted by least squares, the fit of a logistic model is determined by how similar the observed Y-values are to the expected or predicted Y-values. The predicted probabilities that $y_i = 1$ for given x_i are:

$$\hat{\pi}(x) = \frac{e^{b_0 + b_1 x}}{1 + e^{b_0 + b_1 x}} \tag{13.19}$$

In model 13.19, b_0 and b_1 are the estimated coefficients of the logistic regression model. A measure of fit of a particular model is the difference between the observed and fitted values, i.e. the residuals. Residuals in GLMs are similar to those for linear models, the difference between the observed probability that $y_i = 1$ and the predicted (from the logistic regression model) probability that $y_i = 1$.

There are two well-known statistics for assessing the goodness-of-fit of a logistic regression model. These statistics can be used to test that the observed data came from a population in which the fitted logistic regression model is true. The first is the Pearson χ^2 statistic based on observed (0) and expected, fitted or predicted (e) observations (Chapter 14):

$$\sum_{i=1}^{n} \frac{(o-e)^2}{e} = \sum_{i=1}^{n} \frac{(y_i - n\,\hat{\pi}_i)^2}{n\,\hat{\pi}_i(1 - \hat{\pi}_i)}$$
(13.20)

In Equation 13.20, y_i is the observed value of Y, $\hat{\pi}_i$ is the predicted or fitted value of Y for a given value of x_i and n is the number of observations. The use of the χ^2 statistic for logistic regression models is best visualized by treating the data as a two (binary response, Y) by n (different values of X) contingency table. The χ^2 statistic for goodness-of-fit is the usual χ^2 for contingency tables (Chapter 14).

The other is the G^2 statistic, which is:

$$\pm 2 \sum_{i=1}^{n} (o.\log(o/e)) = \pm 2 \left[\sum_{i=1}^{n} y_i \ln(y_i/n\,\hat{\pi}_i) + (n-y_i)\ln[(n-y_i)/n(1-\hat{\pi}_i)] \right]$$
(13.21)

The terms in Equation 13.21 are as defined as in Equation 13.20. The G^2 statistic is also the deviance for a given model, defined in Section 13.2.1.

In both cases, low values indicate that the model is a better fit to the data, i.e. the observed and fitted values are similar. The Pearson χ^2 statis-

tic and the deviance G^2 statistic approximately follow a χ^2 distribution under certain assumptions. The most important assumption is that the minimum predicted frequency of either of the binary outcomes is not too small (see Chapter 14). When the predictors are continuous, however, there will usually be one or few observations of Y for each combination of values of the predictor variables $(n_i = 1)$ so this assumption is not met and the Pearson χ^2 statistic and the deviance G^2 statistic will not have approximate χ^2 distributions. The statistics themselves are still valid measures of goodness-of-fit; it is just their Pvalues that are unreliable (Hosmer et al. 1997). Note also that when we have multiple observations for each combination of X-values, such as when the predictors are categorical, we will have a contingency table in which the expected frequencies are more likely to be reasonable (see Section 13.2.3 and Chapter 14) and the P-values associated with these statistics will be much more reliable. Note also that the calculation of deviance for categorical predictors depends on whether the saturated model is determined based on individual observations or groupings of observations (Siminoff 1998).

So, we cannot use the usual χ^2 or G^2 statistics to test null hypotheses about overall goodness-offit of a model when the predictors are continuous, although they are still useful as comparative measures of goodness-of-fit. Hosmer & Lemeshow (1989) developed a solution to the problem of testing goodness-of-fit for continuous predictors in logistic regression by grouping observations so that the minimum expected frequency of either of the binary outcomes is not too small. The Hosmer-Lemeshow statistic, also termed the deciles of risk (DC) statistic, is derived from aggregating the data into ten groups. The grouping is based on either each group having one tenth of the ordered predicted probabilities so the groups have equal numbers of observations, or the groups being separated by fixed cutpoints (e.g. first group having all probabilities ≤ 0.10 , etc.). Both grouping methods produce a statistic (\hat{C}) which approximately follows a χ^2 distribution with df as the number of groups minus two.

Hosmer *et al.* (1997) reviewed many goodnessof-fit tests, including the Pearson χ^2 statistic and \hat{C} , for assessing logistic regression models. They found that the χ^2 statistic performed well if based on the conditional mean and variance estimate and compared to a scaled χ^2 distribution; unfortunately, the computations required to modify the usual χ^2 statistic are not straightforward. They also recommended \hat{C} , as it is available in most statistical software and is powerful and we support their recommendation.

There has also been work on analogues of r^2 used as a measure of explained variance in OLS regression. Menard (2000) discussed a range of measures like r^2 for logistic regression and tentatively recommended:

$$r_{\rm L}^2 = \frac{[\ln(L_0) - \ln(L_{\rm M})]}{\ln(L_0)} = 1 - \frac{\ln(L_{\rm M})}{\ln(L_0)}$$
 (13.22)

In Equation 13.22, L_0 is the likelihood for the model with only the intercept and $L_{\rm M}$ is the likelihood for the model with all predictors (one in the case of simple logistic regression).

13.2.6 Model diagnostics

As well as assessing the overall fit of the model, it is also important to evaluate the contribution of each observation, or group of observations, to the fit and deviations from the fit. In OLS linear models, we have emphasized the importance of residuals, the difference between each observed and fitted or predicted value. There are two types of residuals from logistic regression models. The first is the Pearson residual for an observation, which is the contribution of the difference between the observed and predicted value for an observation to the Pearson χ^2 statistic, and is usually expressed as a standardized residual (e.):

$$e_{i} = \frac{y_{i} - n\hat{\pi}_{i}}{\sqrt{[n\hat{\pi}_{i}(1 - \hat{\pi}_{i})]}}$$
(13.23)

where y_i is the observed value of Y, $\hat{\pi}_i$ is the predicted or fitted value of Y for a given value of x_i and n is the number of observations. The second is the deviance residual for an observation, which is the contribution of the difference between the observed and predicted value for an observation to the total deviance.

The Pearson and deviance residuals approximately follow a normal distribution for larger

sample sizes when the model is correct and residuals greater than about two indicate lack of fit (Agresti 1996, Hosmer & Lemeshow 1989, Menard 1995). When predictor variables are continuous and there is only a single value of *Y* for each combination of values of the predictor variables, then the large sample size condition will not hold and single residuals will be difficult to interpret. When the predictor variables are categorical and we have reasonable sample sizes for each combination of predictor variables, then residuals are easier to interpret and we will examine such residuals in the context of contingency tables in Chapter 14.

Diagnostics for influence of an observation, i.e. how much the estimates of the parameters change if the observation is deleted, are also available and are similar to those for OLS models (Chapter 5; see also Hosmer & Lemeshow 1989, Menard 1995). These include (i) leverage, which is measured in the same way as for OLS regression, and (ii) an analogue of Cook's statistic standardized by its standard error called Dfbeta (Agresti 1996) or $\Delta\beta$ (Hosmer & Lemeshow 1989), which measures the standardized change in the estimated logistic regression coefficient b_1 when an observation is deleted. The change in χ^2 or deviance when an observation is deleted can also be calculated. These diagnostics are standard output from many logistic regression routines in statistical software. Influential observations should always be checked and our recommendations from Chapters 4 and 5 apply here.

13.2.7 Model selection

As with OLS multiple linear regression, we often wish to know which of the two or more predictor variables in the logistic regression model contributes most to the pattern in the binary response variable. A related aim is to find the "best" model, one that provides the maximum fit for the fewest predictors. The criteria for assessing different models include the Pearson χ^2 or deviance (G^2) statistics, r_L^2 and information criteria like Akaike's (see Chapter 6). The Akaike Information Criterion (AIC) adjusts ("penalizes") the G^2 (deviance) for a given model for the number of predictor variables:

$$AIC = G^2 - n + 2p (13.24)$$

where *n* is the number of observations and *p* is the number of predictors. For categorical predictors:

$$AIC = G^2 - D + 2p (13.25)$$

where *D* is the number of different combinations of the categorical predictors (Larntz 1993). Models with low AICs are the best fit and if many models have similarly low AICs, you should choose the one with the fewest model terms. For both continuous and categorical predictors, we prefer comparing full and reduced models to test individual terms rather than comparing the fit of all possible models to try and select the "best" one.

We will not discuss stepwise modeling for multiple logistic regression or more general logit models. Our reservations about stepwise procedures (see also James & McCulloch 1990) have been stated elsewhere (Chapter 6).

13.2.8 Software for logistic regression

Logistic regression models can be fitted using statistical software in two main ways. Most programs provide logistic regression modules, often as part of a general regression module. It is assumed that the response variable is binary and that a GLM is fitted with a binomial distribution for the error terms and a logit link function. Some software offers GLM routines and the error distribution and link function might need to be specified. The range of diagnostics is usually extensive but it is always worth running a known data set from a text like Christensen (1997) or Hosmer & Lemeshow (1989). Tabachnick & Fidell (1996) have provided an annotated comparison of output from four common programs.

13.3 Poisson regression

Biologists often deal with data that are in the form of counts (e.g. number of organisms in a sampling unit, numbers of cells in a tissue section) and we commonly wish to model a response that is a count variable. Counts usually have a Poisson distribution, where the mean equals the variance and therefore linear models based on normal distributions may not be appropriate. One solution is to simply transform the response variable with a power transformation

(e.g. $\sqrt{\ }$), which tends to remove any relationship between the mean and variance. An alternative is to use a GLM with a Poisson error term and a log link function that is called a log-linear model. Log-linear models are commonly used to analyze contingency tables (Chapter 14) but can also be used effectively when the predictors are continuous and the response variable is a count to produce a Poisson regression model:

$$\log(\mu) = \beta_0 + \beta_1 x_i \tag{13.26}$$

In model 13.26, μ is the mean of the Poisson distributed response variable, β_0 is the intercept (constant), β_1 is the regression coefficient and x_i is the value of a single predictor variable for observation i. The model predicts that a single unit increase in X results in Y increasing by a factor of e^{β_1} (Agresti 1996). A positive or negative value of β_1 represents Y increasing or decreasing respectively as X increases. Such models can be easily extended to include multiple predictors. For example, Speight et al. (1998) described the infestation of a scale insect Pulvinaria regalis in an urban area in England. They modeled egg code, the level of adult/egg infestation measured on a scale of one to ten, against seven predictor variables: tree species, tree diameter, distance to nearest infested tree, distance to nearest road, percentage impermeability of ground, tree vigor and distance from nearest building.

Nearly all the discussion in previous sections related to logistic regression, including estimation, model fitting and goodness-of-fit, and diagnostics, applies similarly to Poisson regression models. One additional problem that can occur when modeling count data is that we are assuming that the response has a Poisson distribution where the mean equals the variance. Often, however, the variance is greater than the mean, which is termed overdispersion (Agresti 1996). In GLMs, the dispersion parameter is now less than or greater than one (see Section 13.1). Standard errors of estimated regression coefficients will be smaller than they should and tests of hypotheses will have inflated probabilities of Type I error. Overdispersion is usually caused by other factors, which we have not measured, influencing our response variable in heterogeneous ways. For example, we might model number of plant