Convex Optimization Applications

Stephen Boyd Steven Diamond Enzo Busseti

EE & CS Departments

Stanford University

IMT, Lucca, May 3-6 2016

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Portfolio allocation vector

- ▶ invest fraction w_i in asset i, i = 1, ..., n
- $w \in \mathbb{R}^n$ is portfolio allocation vector
- ▶ $\mathbf{1}^T w = 1$
- w_i < 0 means a short position in asset i (borrow shares and sell now; must replace later)
- $w \ge 0$ is a *long only* portfolio
- ► $||w||_1 = \mathbf{1}^T w_+ + \mathbf{1}^T w_-$ is leverage (many other definitions used ...)

Asset returns

- investments held for one period
- ▶ initial prices $p_i > 0$; end of period prices $p_i^+ > 0$
- ightharpoonup asset (fractional) returns $r_i = (p_i^+ p_i)/p_i$
- ▶ portfolio (fractional) return $R = r^T w$
- ▶ common model: r is a random variable, with mean $\mathbf{E} r = \mu$, covariance $\mathbf{E}(r \mu)(r \mu)^T = \Sigma$
- ▶ so R is a RV with $\mathbf{E} R = \mu^T w$, $\mathbf{var}(R) = w^T \Sigma w$
- ▶ **E** *R* is (mean) *return* of portfolio
- ▶ var(R) is *risk* of portfolio (risk also sometimes given as $std(R) = \sqrt{var(R)}$)
- two objectives: high return, low risk

Classical (Markowitz) portfolio optimization

$$\begin{array}{ll} \text{maximize} & \boldsymbol{\mu}^T \boldsymbol{w} - \boldsymbol{\gamma} \boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w} \\ \text{subject to} & \mathbf{1}^T \boldsymbol{w} = 1, \quad \boldsymbol{w} \in \mathcal{W} \end{array}$$

- ▶ variable $w \in \mathbf{R}^n$
- $lacktriangleright \mathcal{W}$ is set of allowed portfolios
- ▶ common case: $W = \mathbf{R}_{+}^{n}$ (long only portfolio)
- $\gamma > 0$ is the *risk aversion parameter*
- $\blacktriangleright \mu^T w \gamma w^T \Sigma w$ is risk-adjusted return
- lacktriangle varying γ gives optimal *risk-return trade-off*
- can also fix return and minimize risk, etc.

optimal risk-return trade-off for 10 assets, long only portfolio

return distributions for two risk aversion values

Portfolio constraints

- $ightharpoonup \mathcal{W} = \mathbf{R}^n$ (simple analytical solution)
- ▶ leverage limit: $||w||_1 \le L^{\max}$
- market neutral: $m^T \Sigma w = 0$
 - $ightharpoonup m_i$ is capitalization of asset i
 - $M = m^{\dagger} r$ is market return
 - $ightharpoonup m^T \Sigma w = \mathbf{cov}(M, R)$

i.e., market neutral portfolio return is uncorrelated with market return

optimal risk-return trade-off curves for leverage limits 1,2,4

three portfolios with $w^T \Sigma w = 2$, leverage limits L = 1, 2, 4

Variations

- ▶ require $\mu^T w \ge R^{\min}$, minimize $w^T \Sigma w$ or $\|\Sigma^{1/2} w\|_2$
- include (broker) cost of short positions,

$$s^T(w)_-, \quad s \geq 0$$

ightharpoonup include transaction cost (from previous portfolio w^{prev}),

$$\kappa^T |w - w^{\text{prev}}|^{\eta}, \quad \kappa \ge 0$$

common models: $\eta = 1, 3/2, 2$

Factor covariance model

$$\Sigma = F\tilde{\Sigma}F^T + D$$

- ▶ $F \in \mathbf{R}^{n \times k}$, $k \ll n$ is factor loading matrix
- ▶ *k* is number of factors (or sectors), typically 10s
- $ightharpoonup F_{ij}$ is loading of asset i to factor j
- ▶ D is diagonal matrix; $D_{ii} > 0$ is idiosyncratic risk
- $ightharpoonup \tilde{\Sigma} > 0$ is the factor covariance matrix
- $ightharpoonup F^T w \in \mathbf{R}^k$ gives portfolio factor exposures
- ▶ portfolio is factor j neutral if $(F^T w)_j = 0$

Portfolio optimization with factor covariance model

$$\begin{array}{ll} \text{maximize} & \mu^T w - \gamma \left(f^T \tilde{\Sigma} f + w^T D w \right) \\ \text{subject to} & \mathbf{1}^T w = 1, \quad f = F^T w \\ & w \in \mathcal{W}, \quad f \in \mathcal{F} \end{array}$$

- ▶ variables $w \in \mathbf{R}^n$ (allocations), $f \in \mathbf{R}^k$ (factor exposures)
- $ightharpoonup \mathcal{F}$ gives factor exposure constraints

▶ computational advantage: $O(nk^2)$ vs. $O(n^3)$

- ▶ 50 factors, 3000 assets
- ▶ leverage limit = 2
- ▶ solve with covariance given as
 - single matrix
 - ▶ factor model
- ► CVXPY/ECOS single thread time

covariance	solve time		
single matrix	687.26 sec		
factor model	0.58 sec		

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Covariance uncertainty

- ► single period Markowitz portfolio allocation problem
- we have fixed portfolio allocation $w \in \mathbf{R}^n$
- lacktriangle return covariance Σ not known, but we believe $\Sigma \in \mathcal{S}$
- $ightharpoonup \mathcal{S}$ is convex set of possible covariance matrices
- ▶ risk is $w^T \Sigma w$, a linear function of Σ

Worst-case risk analysis

- what is the worst (maximum) risk, over all possible covariance matrices?
- worst-case risk analysis problem:

$$\begin{array}{ll} \text{maximize} & w^T \Sigma w \\ \text{subject to} & \Sigma \in \mathcal{S}, \quad \Sigma \succeq 0 \end{array}$$

with variable Σ

- ightharpoonup . . . a convex problem with variable Σ
- ▶ if the worst-case risk is not too bad, you can worry less
- ▶ if not, you'll confront your worst nightmare

- w = (-0.01, 0.13, 0.18, 0.88, -0.18)
- \triangleright optimized for Σ^{nom} , return 0.1, leverage limit 2

$$\blacktriangleright \ \mathcal{S} = \{\Sigma^{\text{nom}} + \Delta \ : \ |\Delta_{ii}| = 0, \ |\Delta_{ij}| \le 0.2\},\$$

$$\Sigma^{\mathrm{nom}} = \left[\begin{array}{ccccc} 0.58 & 0.2 & 0.57 & -0.02 & 0.43 \\ 0.2 & 0.36 & 0.24 & 0 & 0.38 \\ 0.57 & 0.24 & 0.57 & -0.01 & 0.47 \\ -0.02 & 0 & -0.01 & 0.05 & 0.08 \\ 0.43 & 0.38 & 0.47 & 0.08 & 0.92 \end{array} \right]$$

- ▶ nominal risk = 0.168
- ▶ worst case risk = 0.422

worst case
$$\Delta = \left[\begin{array}{ccccc} 0 & 0.04 & -0.2 & -0. & 0.2 \\ 0.04 & 0 & 0.2 & 0.09 & -0.2 \\ -0.2 & 0.2 & 0 & 0.12 & -0.2 \\ -0. & 0.09 & 0.12 & 0 & -0.18 \\ 0.2 & -0.2 & -0.2 & -0.18 & 0 \end{array} \right]$$

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Ad display

- ightharpoonup m advertisers/ads, $i = 1, \ldots, m$
- ightharpoonup n time slots, $t = 1, \dots, n$
- $ightharpoonup T_t$ is total traffic in time slot t
- ▶ $D_{it} \ge 0$ is number of ad *i* displayed in period *t*
- $ightharpoonup \sum_i D_{it} \leq T_t$
- ▶ contracted minimum total displays: $\sum_t D_{it} \ge c_i$
- ▶ goal: choose D_{it}

Clicks and revenue

- C_{it} is number of clicks on ad i in period t
- ▶ click model: $C_{it} = P_{it}D_{it}$, $P_{it} \in [0, 1]$
- ▶ payment: $R_i > 0$ per click for ad i, up to budget B_i
- ▶ ad revenue

$$S_i = \min \left\{ R_i \sum_t C_{it}, B_i \right\}$$

 \dots a concave function of D

Ad optimization

choose displays to maximize revenue:

maximize
$$\sum_{i} S_{i}$$

subject to $D \geq 0$, $D^{T} \mathbf{1} \leq T$, $D\mathbf{1} \geq c$

- ▶ variable is $D \in \mathbf{R}^{m \times n}$
- ▶ data are T, c, R, B, P

- ▶ 24 hourly periods, 5 ads (A–E)
- ► total traffic:

► ad data:

Ad	Α	В	C	D	E
Ci	61000	80000	61000	23000	64000
R_i	0.15	1.18	0.57	2.08	2.43
B_i	25000	12000	12000	11000	17000

 P_{it}

optimal D_{it}

ad revenue

Ad	Α	В	C	D	E
Ci	61000	80000	61000	23000	64000
R_i	0.15	1.18	0.57	2.08	2.43
B_i	25000	12000	12000	11000	17000
$\sum_t D_{it}$	61000	80000	148116	23000	167323
S_i	182	12000	12000	11000	7760

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Standard regression

- ▶ given data $(x_i, y_i) \in \mathbf{R}^n \times \mathbf{R}, i = 1, ..., m$
- ▶ fit linear (affine) model $\hat{y}_i = \beta^T x_i v$, $\beta \in \mathbf{R}^n$, $v \in \mathbf{R}$
- ightharpoonup residuals are $r_i = \hat{y}_i y_i$
- ▶ least-squares: choose β , ν to minimize $||r||_2^2 = \sum_i r_i^2$
- mean of optimal residuals is zero
- ▶ can add (Tychonov) regularization: with $\lambda > 0$,

minimize
$$||r||_2^2 + \lambda ||\beta||_2^2$$

Robust (Huber) regression

► replace square with *Huber function*

$$\phi(u) = \begin{cases} u^2 & |u| \le M \\ 2Mu - M^2 & |u| > M \end{cases}$$

M > 0 is the Huber threshold

same as least-squares for small residuals, but allows (some)
 large residuals

- ightharpoonup m = 450 measurements, n = 300 regressors
- choose β^{true} ; $x_i \sim \mathcal{N}(0, I)$
- set $y_i = (\beta^{\text{true}})^T x_i + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0, 1)$
- with probability p, replace y_i with $-y_i$
- ▶ data has fraction *p* of (non-obvious) wrong measurements
- ▶ distribution of 'good' and 'bad' y_i are the same
- ▶ try to recover $\beta^{\text{true}} \in \mathbf{R}^n$ from measurements $y \in \mathbf{R}^m$
- 'prescient' version: we know which measurements are wrong

50 problem instances, p varying from 0 to 0.15

Quantile regression

• tilted ℓ_1 penalty: for $\tau \in (0,1)$,

$$\phi(u) = \tau(u)_{+} + (1-\tau)(u)_{-} = (1/2)|u| + (\tau - 1/2)u$$

- quantile regression: choose β, v to minimize $\sum_i \phi(r_i)$
- m au = 0.5: equal penalty for over- and under-estimating
- ightharpoonup au = 0.1: 9 imes more penalty for under-estimating
- ightharpoonup au = 0.9: 9× more penalty for over-estimating

Quantile regression

• for $r_i \neq 0$,

$$\frac{\partial \sum_{i} \phi(r_{i})}{\partial v} = \tau |\{i : r_{i} > 0\}| - (1 - \tau) |\{i : r_{i} < 0\}|$$

▶ (roughly speaking) for optimal *v* we have

$$\tau |\{i: r_i > 0\}| = (1 - \tau) |\{i: r_i < 0\}|$$

- ▶ and so for optimal v, $\tau m = |\{i : r_i < 0\}|$
- ightharpoonup au-quantile of optimal residuals is zero
- ▶ hence the name quantile regression

- \blacktriangleright time series x_t , t = 0, 1, 2, ...
- auto-regressive predictor:

$$\hat{x}_{t+1} = \beta^T(x_t, \dots, x_{t-M}) - v$$

- M = 10 is memory of predictor
- use quantile regression for $\tau = 0.1, 0.5, 0.9$
- ▶ at each time *t*, gives three one-step-ahead predictions:

$$\hat{x}_{t+1}^{0.1}, \qquad \hat{x}_{t+1}^{0.5}, \qquad \hat{x}_{t+1}^{0.9}$$

time series x_t

 x_t and predictions $\hat{x}_{t+1}^{0.1}$, $\hat{x}_{t+1}^{0.5}$, $\hat{x}_{t+1}^{0.9}$ (training set, $t=0,\ldots,399$)

 x_t and predictions $\hat{x}_{t+1}^{0.1}$, $\hat{x}_{t+1}^{0.5}$, $\hat{x}_{t+1}^{0.9}$ (test set, $t=400,\ldots,449$)

residual distributions for au= 0.9, 0.5, and 0.1 (training set)

residual distributions for $\tau = 0.9$, 0.5, and 0.1 (test set)

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Data model

- ▶ given data $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, i = 1, ..., m
- for $\mathcal{X} = \mathbf{R}^n$, x is feature vector
- for $\mathcal{Y} = \mathbf{R}$, y is (real) outcome or label
- for $\mathcal{Y} = \{-1, 1\}$, y is (boolean) outcome
- ▶ find model or predictor $\psi : \mathcal{X} \to \mathcal{Y}$ so that $\psi(x) \approx y$ for data (x, y) that you haven't seen
- for $\mathcal{Y} = \mathbf{R}$, ψ is a regression model
- for $\mathcal{Y} = \{-1, 1\}$, ψ is a *classifier*
- lacktriangle we choose ψ based on observed data, prior knowledge

Loss minimization model

- ▶ data model parametrized by $\theta \in \mathbf{R}^n$
- ▶ loss function $L: \mathcal{X} \times \mathcal{Y} \times \mathbf{R}^n \to \mathbf{R}$
- ▶ $L(x_i, y_i, \theta)$ is loss (miss-fit) for data point (x_i, y_i) , using model parameter θ
- \triangleright choose θ ; then model is

$$\psi(x) = \operatorname*{argmin}_{y} L(x, y, \theta)$$

Model fitting via regularized loss minimization

- ▶ regularization $r: \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$
- ightharpoonup r(heta) measures model complexity, enforces constraints, or represents prior
- choose θ by minimizing regularized loss

$$(1/m)\sum_{i}L(x_{i},y_{i},\theta)+r(\theta)$$

- for many useful cases, this is a convex problem
- ▶ model is $\psi(x) = \operatorname{argmin}_y L(x, y, \theta)$

model	$L(x, y, \theta)$	$\psi(x)$	$r(\theta)$
least-squares	$(\theta^T x - y)^2$	$\theta^T x$	0
ridge regression	$(\theta^T x - y)^2$	$\theta^T x$	$\lambda \ \theta\ _2^2$
lasso	$(\theta^T x - y)^2$	$\theta^T x$	$\lambda \ \theta\ _1$
logistic classifier	$\log(1 + \exp(-y\theta^T x))$	$sign(\theta^T x)$	0
SVM	$(1-y\theta^Tx)_+$	$sign(\theta^T x)$	$\lambda \ \theta\ _2^2$

- $ightharpoonup \lambda > 0$ scales regularization
- ▶ all lead to convex fitting problems

- ▶ original (boolean) features $z \in \{0, 1\}^{10}$
- ▶ (boolean) outcome $y \in \{-1, 1\}$
- ▶ new feature vector $x \in \{0,1\}^{55}$ contains all products $z_i z_j$ (co-occurence of pairs of original features)
- use logistic loss, ℓ_1 regularizer
- \blacktriangleright training data has m=200 examples; test on 100 examples

selected features $z_i z_j$, $\lambda = 0.01$

