Algèbre linéaire avancée II printemps 2021 Série 5

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soit V un espace vectoriel et soit $B=\{v_1,v_2,v_3\}$ une base de V. Soit $f:V\times V\to K$ une forme bilinéaire symétrique telle que

$$f(v_1,v_1)=2, f(v_2,v_2)=3, f(v_3,v_3)=-1, f(v_1,v_2)=0, f(v_2,v_3)=1, f(v_3,v_1)=-2.$$

- 1. Écrire la matrice A_B^f de la forme bilinéaire f pour la base B.
- 2. Trouver une base orthogonale $C = \{w_1, w_2, w_3\}$ pour V par rapport à la forme bilinéaire f.

Exercice 2. Soit $A, B \in \mathbb{R}^{n \times n}$.

- 1. Les matrices A et B sont semblables si et seulement si elles ont le même spectre.
 - ☐ TRUE ☐ FALSE
- 2. Si les matrices A et B ont le même spectre $\lambda_1, \ldots, \lambda_k$ et sont toutes les deux diagonalisables, alors A et B sont semblables.
 - ☐ TRUE ☐ FALSE
- 3. Si $p_A(B) = 0$, alors A et B sont semblables.
 - ☐ True ☐ False
- 4. Si A et B sont semblables, alors $p_A(B) = 0$.

☐ TRUE ☐ FALSE

Exercice 3. Soit V de dimension finie et B une base de V. Montrer que deux formes bilinéaires $f,g:V\times V\to K$ sont différentes si et seulement si $A_B^f\neq A_B^g$.

Exercice 4. Soit V de dimension finie et B une base de V. Une forme bilinéaire f: $V \times V \to K$ est symétrique si et seulement si A_B^f est symétrique.

Exercice 5. Soit $V \subseteq \mathbb{R}_3[x]$ l'espace vectoriel des polynômes de degré au plus 3 sur \mathbb{R} avec le forme bilinéaire

$$\langle p,q
angle = \int_{-1}^1 p(x) q(x) \mathrm{d}x.$$

- 1. Décrire la matrice $A_B^{\langle\cdot,\cdot\rangle}$ pour $B=\{1,x,x^2,x^3\}$.
- 2. Montrer que l'ensemble $\{p_0, p_1, p_2, p_3\}$ de polynômes

$$egin{align} p_0 &= 1 & p_1 &= x \ p_2 &= rac{1}{2}(3x^2-1) & p_3 &= rac{1}{2}(5x^3-3x) \ \end{array}$$

est une base orthogonale de V.

Exercice 6. On considère les vecteurs

$$v_1=egin{pmatrix}1\1\0\0\end{pmatrix}$$
 , $v_2=egin{pmatrix}0\1\1\0\end{pmatrix}$, et $v_3=egin{pmatrix}0\0\1\1\end{pmatrix}\in\mathbb{Z}_2^4.$

Est-ce que span $\{v_1, v_2, v_3\}$ possède une base orthogonale par rapport à la forme bilinéaire symétrique standard?

Exercice 7. Montrer que la relation de congruence \cong est une relation d'équivalence sur l'ensemble des matrices $K^{n\times n}$.

Rappel: Deux matrices $A, B \in K^{n \times n}$ sont congruentes s'il existe une matrice $P \in K^{n \times n}$ inversible telle que $A = P^T B P$.

Exercice 8. (*) Soit V un espace vectoriel sur un corps K et $\langle \cdot, \cdot \rangle \colon V \times V \to K$ une forme bilinéaire. Soient $E \subseteq V$ et E^* le sous-espace de V engendré par les éléments de E. Montrer $E^{\perp} = E^{*\perp}$.

Rappel: Pour $W\subseteq V$, $W^{\perp}=\{v\in V:v\perp w \text{ pour tout } w\in W\}.$