《线性回归》

杨 瑛

清华大学 数学科学系 Email: yyang@math.tsinghua.edu.cn

Tel: 62796887

2019.04.22

Outline

- 多重共线性
 - 多重共线性的定义
 - 判定共线性的方法
 - 例
 - 关于多重共线性进一步的说明
 - 作业

- 1 多重共线性
 - 多重共线性的定义
 - 判定共线性的方法
 - 例
 - 关于多重共线性进一步的说明
 - 作业

主要研究的问题:

- 0. 本节内容主要来自于Oliver, pp. Chapter 3 和Draper and Smith, Chapter 16. 以及Seber and Lee (2003), Section 9.7
- 1. 什么是多重共线性(multicollinearity)?
- 2. 多重共线性对LSE的影响是什么?
- 3. 如何判断数据中存在多重共线性?

- 在实际问题的解决中,通常会遇到多个变量的回归问题,但 是估计结果不理想,表现为:
- 某些回归系数的估计的绝对值异常的大
- 系数的LSE与问题的实际背景相违背
- 问题的原因在于: 回归自变量之间存在着近似线性关系,称之为多重共线性(multicolinearity)

多重共线性的定义

• 多重共线性: 简单情形

设 x_1 和 x_2 为两个自变量,其n次观测数据分别为:

$$\mathbf{x}_1=(x_{11},\cdots,x_{n1}),$$

$$\mathbf{x}_2=(x_{12},\cdots,x_{n2}).$$

 \mathbf{x}_1 和 \mathbf{x}_2 的样本相关系数的平方:

$$r^{2} = \frac{\left[\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})(x_{i2} - \bar{x}_{2})\right]^{2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2} \sum_{i=1}^{n} (x_{i2} - \bar{x}_{2})^{2}} = \frac{s_{12}^{2}}{s_{11}s_{22}}$$
(1)

其中, \bar{x}_1 和 \bar{x}_2 为 \mathbf{x}_1 和 \mathbf{x}_2 的样本均值.

将自变量数据xi 标准化:

$$x_{ij}^* = \frac{x_{ij} - \bar{x}_j}{(s_{ij})^{1/2}}, j = 1, 2,$$
 (2)

 $\mathbf{x}_{j}^{*} = (x_{1j}^{*}, \cdots, x_{nj}^{*})^{T}$ 称为 \mathbf{x}_{j} 的标准化,j = 1, 2. 这样以来,(1) 中的 r^{2} 相当于 x_{1}^{*} 和 x_{2}^{*} 之间的"样本"相关系数。

$$a\mathbf{x}_1^* + b\mathbf{x}_2^* = \mathbf{0}$$

因为

$$||a\mathbf{x}_1^* + b\mathbf{x}_2^*||^2 = (a\mathbf{x}_1^* + b\mathbf{x}_2^*)^T (a\mathbf{x}_1^* + b\mathbf{x}_2^*)$$

= $a^2 + 2abr + b^2$ (3)

$$a = \frac{1}{\sqrt{2}}, \qquad b = -\frac{1}{\sqrt{2}} sgn(r),$$
 (4)

其中

$$\operatorname{sgn}(r) = \begin{cases} 1, & \text{\pm r} \ge 0 \\ -1, & \text{\pm r} < 0 \end{cases}$$

由(3) 得:

$$||a\mathbf{x}_1^* + b\mathbf{x}_2^*||^2 = 1 - |r|$$
 (5)

故 $|r| = 1 \Rightarrow a\mathbf{x}_1^* + b\mathbf{x}_2^* = \mathbf{0}$. 这就是所谓的"(严)共线性"。

统计中的共线性:

$$||a\mathbf{x}_1^* + b\mathbf{x}_2^*|| \approx 0.$$
 (6)

其中a和b满足 $a^2 + b^2 = 1$ (为什么?).

• 考虑线性模型

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i, 1 \le i \le n.$$
 (7)

其中 $\mathbf{x}_1 = (x_{11}, \dots, x_{n1})^T$ 和 $\mathbf{x}_2 = (x_{12}, \dots, x_{n2})^T$ 共线性。

多重共线性的定义

设计矩阵为
$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{x2} \end{pmatrix}$$
,

$$|\mathbf{X}^T\mathbf{X}| = n\left[s_{11}s_{22} - s_{12}^2\right] = ns_{11}s_{22}(1 - r^2),$$

其中

$$s_{11} = \sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2, \qquad s_{22} = \sum_{i=1}^{n} (x_{i2} - \bar{x}_2)^2,$$

$$s_{12} = \sum_{i=1}^{n} (x_{i1} - \bar{x}_1)(x_{i2} - \bar{x}_2).$$

结论

由此可以看出:

- * 如果|r| = 1, 则($\mathbf{X}^T \mathbf{X}$) 的逆矩阵不存在。
- *线性模型(7)没有形如

$$\widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

的LSE。

* 但是正规方程组:

$$(\mathbf{X}^T\mathbf{X})\beta = \mathbf{X}^T\mathbf{Y}$$

仍然可能有(无穷多个)解。

如果 \mathbf{x}_1 和 \mathbf{x}_2 是统计共线性的,则

$$\begin{aligned} & \operatorname{Var}(\hat{\beta}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1} \\ &= \frac{\sigma^2}{s_{11}s_{22}(1-r^2)} \\ &\times \begin{pmatrix} A_{11} & \overline{x}_2s_{12} - \overline{x}_1s_{22} & \overline{x}_1s_{12} - \overline{x}_2s_{11} \\ \overline{x}_2s_{12} - \overline{x}_1s_{22} & s_{22} & -s_{12} \\ \overline{x}_1s_{12} - \overline{x}_2s_{11} & -s_{12} & s_{11} \end{pmatrix} \end{aligned}$$

• $\hat{\beta}_i$ 的方差将会趋于正无穷,当 $|r| \to 1$.

当只有两个自变量时,用样本相关系数r的绝对值或者平方的 大小可以判断两个变量共线性的强弱程度,但不适合多个自变量的情形。

方差膨胀因子(variance inflation factor)

- 可以利用所谓的"方差膨胀因子"来判定变量之间的多重共 线性
- 两个自变量情形:

$$VIF_j = \frac{1}{1 - r^2}, \ j = 1, 2 \tag{8}$$

方差膨胀因子(variance inflation factor)(续)

• 多个自变量情形:

$$VIF_{j} = s^{jj*} = \frac{1}{1 - R_{j}^{2}}, \ j = 1, \cdots, k,$$
(9)

其中 R_j^2 是把第j个自变量看作因变量,用其余k-1个变量做线性回归所得到的决定系数。

- VIF_i 可以度量每个变量所受到的多共线性的影响的大小
- 相关系数度量共线性简单、直观,但只适用于有两个自变量的情形;
- 方差膨胀因子适用于多个自变量的情形。

共线性的危害

$|r| \rightarrow 1$ 将会导致:

- LSE 的方差增大;
- 估计的性质不稳定;
- 置信区间的长度增加;
- 在假设检验中,将会导致对因变量有显著影响的自变量判定 为无显著影响【为什么?】

评价估计量的优良性的标准:

均方误差(mean squared errors, MSE)

设 $\beta \in \mathbb{R}^p$ 是未知的参数向量, $\hat{\beta}$ 是 β 的一个估计,则 $\hat{\beta}$ 的均方误差定义为

$$\mathsf{MSE}(\widehat{\beta}) = E \|\widehat{\beta} - \beta\|^2 = E(\widehat{\beta} - \beta)^T (\widehat{\beta} - \beta).$$

- MSE 的意义: 度量了估计量 $\hat{\beta}$ 与未知参数 β 的平均偏离的大小。
- 好的估计量应该有比较小的均方误差。

Theorem

在一定的正则性条件下,

$$MSE(\widehat{\beta}) = trace(Cov(\widehat{\beta})) + ||E\widehat{\beta} - \beta||^2.$$
 (10)

- $\hat{\beta}$ 的均方误差可分解为:
 - $\hat{\beta}$ 的各分量的方差之和;
 - $\hat{\beta}$ 的各分量的偏差之和。
- 估计的MSE由其各分量的方差和偏差所确定。
- 好的估计量应该有较小的方差和较小的偏差。

Proof.

$$\begin{split} \mathsf{MSE}(\widehat{\beta}) &= E(\widehat{\beta} - \beta)^T (\widehat{\beta} - \beta) \\ &= E([\widehat{\beta} - E\widehat{\beta}] + [E\widehat{\beta} - \beta])^T ([\widehat{\beta} - E\widehat{\beta}] + [E\widehat{\beta} - \beta]^T) \\ &= E(\widehat{\beta} - E\widehat{\beta})^T (\widehat{\beta} - E\widehat{\beta}) + (E\widehat{\beta} - \beta)^T (E\widehat{\beta} - \beta) \\ &= E \mathrm{trace}([\widehat{\beta} - E\widehat{\beta}]^T [\widehat{\beta} - E\widehat{\beta}]) + \|E\widehat{\beta} - \beta\|^2 \\ &= E \mathrm{trace}([\widehat{\beta} - E\widehat{\beta}][\widehat{\beta} - E\widehat{\beta}]^T) + \|E\widehat{\beta} - \beta\|^2 \\ &= \mathrm{trace}E([\widehat{\beta} - E\widehat{\beta}][\widehat{\beta} - E\widehat{\beta}]^T) + \|E\widehat{\beta} - \beta\|^2 \\ &= \mathrm{trace}(\mathsf{Cov}(\widehat{\beta})) + \|E\widehat{\beta} - \beta\|^2. \end{split}$$

由于β 的LSE 为

$$\widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

是 β 的无偏估计,所以上述定理(10) 式中的最后一项等于零。

● 于是:

$$MSE(\widehat{\beta}) = \sigma^2 trace((\mathbf{X}^T \mathbf{X})^{-1}). \tag{11}$$

• 设 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p > 0$ 为 $\mathbf{X}^T \mathbf{X}$ 的特征根,因为 $\mathbf{X}^T \mathbf{X}$ 可逆,所以($\mathbf{X}^T \mathbf{X}$)⁻¹ 的特征根为

$$\lambda_1^{-1}, \cdots, \lambda_p^{-1}$$

所以(11) 变为

$$MSE(\widehat{\beta}) = \sigma^2 \sum_{k=1}^{p} \frac{1}{\lambda_k}.$$
 (12)

- 由此可以看出:
 - 如果 $\mathbf{X}^T\mathbf{X}$ 至少有一个特征根特别小且接近于零,则 $\mathbf{MSE}(\hat{\beta})$ 就会非常大。
 - 从均方误差的标准来看,这时的LSE就不是一个好估计。
- 由于

$$\mathsf{MSE}(\widehat{\beta}) = E(\widehat{\beta} - \beta)^T (\widehat{\beta} - \beta) = E \|\widehat{\beta}\|^2 - \beta^T \beta,$$

从而,

$$E\|\widehat{\beta}\|^2 = \|\beta\|^2 + \mathsf{MSE}(\widehat{\beta}) = \|\beta\|^2 + \sigma^2 \sum_{k=1}^p \frac{1}{\lambda_k}.$$

- 即,自变量的数据相关矩阵 $\mathbf{X}^T\mathbf{X}$ 至少有一个特征根特别小 且接近于零时,就会导致:
 - $\hat{\beta}$ 的长度要比真正的未知向量 β 的长度长得多;
 - $\hat{\beta}$ 的某些分量的绝对值非常之大。
- 总而言之, $\mathbf{X}^T\mathbf{X}$ 极小的特征根就会导致LSE $\hat{\beta}$ 不再是一个好的估计。

进一步的讨论:

• 设 $x_{(k)}$ 为**X** 的第k 列, λ 为**X**^T**X** 的一个特征 根, $\eta = (\eta_1, \dots, \eta_p)^T$ 为相应的单位特征向量,如果 $\lambda \approx 0$,则

$$\mathbf{X}^T \mathbf{X} \eta = \lambda \eta \approx 0.$$

• 用 η^T 左乘上式两端,

$$\eta^T \mathbf{X}^T \mathbf{X} \eta = \lambda \eta^T \eta \approx 0.$$

● 干是

$$\mathbf{X}\eta \approx 0.$$

即

$$\eta_1 x_{(1)} + \dots + \eta_p x_{(p)} \approx 0 \tag{13}$$

● 从(13) 可以看出,对于n组数据有

$$\eta_1 \mathbf{X}_{(1)} + \dots + \eta_p \mathbf{X}_{(p)} \approx 0. \tag{14}$$

这就是所谓的线性回归模型存在共线性。在有些教科书也称为设计矩阵是病态的(ill-conditioning)。

条件数:

- $\mathbf{X}^T\mathbf{X}$ 有几个很小的特征根,设计阵就可能有几个共线性关系存在;
- 方阵 X^TX 的条件数定义为

$$k = \frac{\lambda_1}{\lambda_p}$$

条件数刻画了 $\mathbf{X}^T\mathbf{X}$ 的特征根的散布程度。可以用来判断共线性是否存在以及共线性的严重程度。

条件数的经验值:

在实际应用中,

- 若 $100 \le k \le 1000$, 共线性的程度中等或者较强;

Example

下面的表中给出了有6个协变量的回归问题的原始数据。

原始数据

no	у	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6
1	172.480	-0.399	3.057	2.298	3	8.888	17.23
2	169.085	0.690	2.438	3.355	2	8.547	17.11
3	158.530	0.815	0.156	3.944	3	8.180	15.46
4	185.481	0.711	-2.341	7.330	3	9.700	17.84
5	165.873	1.290	1.881	1.947	3	8.330	16.89
6	129.689	0.668	-0.021	4.869	1	7.015	12.58
7	198.504	1.190	3.228	5.397	0	10.107	20.70
8	268.064	-1.202	3.015	5.822	5	13.308	26.51
9	192.043	-0.019	5.384	0.023	4	10.346	18.91
10	242.086	-0.156	3.182	3.636	5	12.428	23.82
11	101.139	-1.604	0.712	3.713	2	5.488	9.12
12	107.732	0.257	2.760	-0.023	3	6.125	9.91
13	44.947	-1.056	-0.018	0.773	2	1.794	4.48
14	268.694	1.415	1.961	6.246	4	13.637	26.74
15	121.015	-0.805	1.903	2.605	2	5.992	12.02

探索性数据分析

- Y与x₁,x₂,···,x₆之间是否有关系?
- 如果有,是什么关系?
- 看图学统计!
- 请看下面的散点图:

	50 100 150 200 250	-2 -1 0 1 2	2 4 0 1	-2.0 -1.0 0.0 1.0
no				
95	у	8,00		00° 00° 00° 00° 00° 00° 00° 00° 00° 00°
0000	, , , , x1			
		. ° x2		
		° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	х3	
7-000	0 0000 0 0 0	0 0	, x4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	, 20° 00° 00° 00° 00° 00° 00° 00° 00° 00°			x5
	a company of the comp			, \$ o o o o o o o o o o o o o o o o o o

- 尝试线性模型
- 利用Im 命令建立线性回归模型

$$Y_{i} = \beta_{0} + x_{1}\beta_{1} + x_{2}\beta_{2} + x_{3}\beta_{3} + x_{4}\beta_{4} + x_{5}\beta_{5} + x_{6}\beta_{6} + \epsilon_{i},$$

$$1 \le i \le 15.$$
(15)

回归系数等结果如下:

Call:
$$Im(formula = y \sim x1 + x2 + x3 + x4 + x5 + x6)$$

Residuals:

Min	1Q	Median	3Q	Max
-0.13383	-0.01544	0.00290	0.03692	0.09700

Coefficients:

<u>coomorano.</u>	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.11329	0.06824	-1.66	0.135
x1	0.97912	0.07589	12.90	1.23e-06
x2	2.04989	0.08741	23.45	1.16e-08
x3	3.03878	0.08884	34.20	5.83e-10
x4	4.02942	0.08784	45.87	5.63e-11
x5	4.95964	0.07462	66.47	2.92e-12
x6	6.00878	0.02742	219.16	< 2e-16

Residual standard error: 0.08256 on 8 degrees of freedom

Multiple R-Squared: 1, Adjusted R-squared: 1

F-statistic: 1.332e+06 on 6 and 8 DF, p-value: < 2.2e-16

Figure: Model 0123456 with intercept

分析1:

从上面的结果可以看出:

- intercept 项是不显著的。
- 除此之外, 其余的t 检验、F检验都是显著的。
- $R^2 = 1$.
- 一切看上去都很好。
- 是否可以断定y 与x1,···,x6 的之间的关系是线性关系?
- 是否所有的变量都是必要的?
- 下面将截距项去掉作线性回归,结果如下:

Call:

Im(formula =
$$y \sim 0 + x1 + x2 + x3 + x4 + x5 + x6$$
)

Residuals:

Min	1Q	Median	3Q	Max
-0.1767	-0.0432	0.0197	0.0310	0.0955

Fetimate Std Frror t value

		Lotimate	Old. Elloi	i value	' '(/
	x1	0.98438	0.08290	11.88	8.42e-07
	x2	2.04354	0.09547	21.41	4.98e-09
3:	х3	3.03015	0.09696	31.25	1.72e-10
	х4	4.02093	0.09586	41.94	1.24e-11
	х5	4.94186	0.08073	61.21	4.18e-13
	x6	6.01578	0.02962	203.12	< 2e-16

Coefficients:

Residual standard error: 0.09026 on 9 degrees of freedom

Multiple R-Squared: 1, Adjusted R-squared: 1

F-statistic: 9.813e+06 on 6 and 9 DF, p-value: < 2.2e-16

Figure: Model 123456 without intercept

- - 从上面的结果可以看出,去掉截距项之后,一切似乎表现的 很完美(t, F, R^2 等)
 - 是否存在共线性?
 - \bullet X^TX 的六个特征根为

$$\lambda_1 = 6353.4031059$$
 $\lambda_2 = 86.3911570$
 $\lambda_3 = 23.7276929$ $\lambda_4 = 11.8731137$
 $\lambda_5 = 2.6619385$ $\lambda_6 = 0.2155923$

【X标准化之后的特征根 为40.61645975, 23.16515389, 13.29941369 6.71022405, 0.15467628, 0.05407234】 条件数为

$$k = \frac{6353.4031059}{0.2155923} = 29469.52 >> 1000$$

【标准化情形:

k = 40.61645975/0.05407234 = 751.1504 > 100

• 条件数远远大于1000【标准化情形::大于100】,根据前面的标准,模型(15)的设计阵存在严重(或者较严重的)的共线性,因为 $\lambda_6=0.2155923$ 相对很小,其对应的特征向量为

$$\eta^T = (0.408, 0.482, 0.492, 0.486, -0.343, -0.0611)$$

【标准化情

形: (-0.192, -0.446, -0.546, -0.330, 0.575, 0.156)】

• 因而回归自变量之间有如下的的共线性关系:

$$0.408x_1 + 0.482x_2 + 0.492x_3 + 0.486x_4 - 0.343x_5 - 0.0611x_6 \approx 0$$

【标准化情形: $-0.192x_1 - 0.446x_2 - 0.546x_3 - 0.330x_4 + 0.575x_5 + 0.156x_6 \approx 0$ 】

● 上式中x₆和x₅ 系数的符号相同,可以将系数较小的一个变量 舍弃。得到

$$0.40896584x_1 + 0.48240293x_2 + 0.49203282x_3 + 0.48603711x_4 - 0.34345798x_5 \approx 0$$

• 由此推断 x_1, x_2, x_3, x_4 和 x_5 又有共线性关系。 利用回归**R**: $\text{Im}(x_5 \sim 0 + x_1 + x_2 + x_3 + x_4)$ 可检验之。

- 利用变量x₁,x₂,x₃ 和x₄ 作回归分析(有截距项),结果如下:
- Call: Im(formula = $y \sim x1 + x2 + x3 + x4$).

• Residuals:

i icoladalo.				
Min	1Q	Median	3Q	Max
-11.7813	-2.2789	0.4507	3.8036	8.0045

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1.5305	5.2127	-0.294	0.775
x1	15.4653	1.8960	8.157	9.93e-06
x2	19.9389	1.0905	18.284	5.15e-09
x3	21.1995	0.9061	23.396	4.61e-10
x4	20.8403	1.3469	15.472	2.59e-08

- Residual standard error: 6.426 on 10 degrees of freedom
- Multiple R-Squared: 0.9924, Adjusted R-squared: 0.9894
- F-statistic: 327.3 on 4 and 10 DF, p-value: 1.491e-10

Figure: Model 01234 with intercept

- 利用变量 x_1, x_2, x_3 和 x_4 作回归分析(没有截距项),结果如下:
- Call: $Im(formula = y \sim 0 + x1 + x2 + x3 + x4)$.

Residuals:

Min	1Q	Median	3Q	Max
-12.366	-2.679	1.317	3.389	7.869

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
x1	15.4888	1.8139	8.539	3.50e-06
x2	19.8055	0.9493	20.862	3.40e-10
х3	21.0300	0.6688	31.443	4.00e-12
x4	20.6443	1.1203	18.427	1.28e-09

- Residual standard error: 6.154 on 11 degrees of freedom
- Multiple R-Squared: 0.9991, Adjusted R-squared: 0.9988
- F-statistic: 3164 on 4 and 11 DF, p-value: < 2.2e-16

Figure: Model 01234 without intercept

例

• 最后确定的可用的回归模型为(注意,不是唯一的模型!)

$$\hat{y} = 15.4888x_1 + 19.8055x_2 + 21.0300x_3 + 20.6443x_4.$$

计算方差膨胀因子

方差的膨胀系数

$$VIF_j = \frac{1}{1 - R_j^2}, \ j = 1, \cdots, k.$$
 (16)

 VIF_j 可用来检查每一个协变量所受到多重共线性的影响大小。可将特别大的 VIF_j 对应的协变量 x_j 剔除之,以消除共线性。

j	1	2	3	4	5	6
R_j^2	0.909	0.9817	0.9877	0.9665	0.9913	0.9839
VIF_j	10.989	54.644	81.300	29.850	114.942	62.111

说明变量 x_5 与其余五个自变量呈高度线性相关,可以把 x_5 从线性模型 $Y = \sum_{i=1}^6 \beta_i x_i$ 中剔除!

将自变量x5剔除之后进一步的分析:

j	1	2	3	4	5	6
R_j^2	0.8033	0.9601	0.9722	0.9128	×	0.9833
VIF_j	5.083	25.062	35.971	11.467	×	59.880

说明变量 x_6 与其余四个自变量呈高度线性相关,可以把 x_4 从线性模型中剔除!

进一步将自变量x6剔除之后做方差膨胀因子分析:

	j	1	2	3	4	5	6
ĺ	R_j^2	0.1162	0.2894	0.2807	0.1377	×	××
	VIF_j	1.131	1.407	1.390	1.159	×	××

这时方差膨胀因子达到了合理的水平! 可以利用 x_1, x_2, x_3 和 x_4 与y 建立线性模型!

- 如果自变量的个数较多时,诊断共线性是一个反复的过程,可能需要多步!
- 事实上,我们可以利用方差膨胀因子去选择模型/变量!
- 方差膨胀因子也可以调用R 的packages 'car'快速得到: library('car') # Companion to Applied Regression $vif(lm(y \sim x1 + x2 + x3 + x4 + x5 + x6, data = dat))$ 得到!
- 【了解 'car' 的功能! 】

关于方差膨胀因子的说明:

- 方差膨胀因子是通过确定性系数定义的,膨胀系数越大, R_i^2 越接近于1,因此共线性越强;
- 方差膨胀因子可以度量整体的共线性;
- 方差膨胀因子同时继承了确定性系数的缺点:它不能甄别变量之间可能共存的其它相关性.
- 更进一步的内容请阅读:
 - Chatterjee, S. and B. Price (1977) *Regression Analysis by Example*, John Wiley and Sons: New York.
 - Chatterjee, S. and A. S. Hadi (2006) Regression Analysis by Example, 4th Ed. John Wiley and Sons: New Jersey. (有 中译本)

关于回归诊断的参考书

- David A. Belsley, Edwin Kuh, Roy E. Welsch (1980).
 Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley-Interscience
- Peter J. Rousseeuw, Annick M. Leroy (1987) Robust Regression and Outlier Detection. Wiley.
- Samprit Chatterjee, Ali S. Hadi (1988). Sensitivity Analysis in Linear Regression. Wiley

共线性产生的原因:

- 数据收集的局限性;
- 自变量客观上有近似的线性关系;
- 数据的再加工......
 - 注意:在许多大型的回归问题中,由于人们对于自变量之间 的关系缺乏足够的认识,很有可能把有共线性关系的变量引 入回归方程,可能会导致LSE的性质不理想和不稳定。
 - 甄别和消除共线性在回归模型的实际应用中是非常重要的。

- - 完全共线性: 如果 $|X^TX| = 0$,(通常需要先标准化数据,再做 分析)
 - 不完全共线性: 如果 $|X^TX| \approx 0$,
 - 前面在考察共线性时, 只是从设计矩阵是否列相关程度上考 虑的.
 - 事实上, 把每一列向量看作是一个随机变量的实现时, 利用 相关系数也可以判断两个变量之间是否存在共线性. 在实际 中,若两个变量的相关系数(的绝对值)较大时,例如,大于0.8, 则认为变量之间存在共线性[相当于数据标准化之后再做共 线性判断!]

共线性的相关系数检验法

• 首先将X的列向量 $x_i = (x_{1i}, \cdots, x_{ni})^T$ 标准化:

$$x_j^* = (x_j - \bar{x}_j)/\mathsf{SS}_{jj}, j = 1, \cdots, p$$

其中
$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$
, $SS_{jj} = \left[\frac{1}{n} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2\right]^{1/2}$.

• 以 $x_i^*(j=1,\cdots,p)$ 为列向量形成新的关联矩阵 X^* ,则

$$X^{*T}X^* = \begin{pmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{pmatrix}$$

其中 r_{kj} 是 x_k^* 和 x_j 之间的相关系数.

关于多重共线性进一步的说明

共线性的相关系数检验法(续)

- $M_{r_{ki}} \approx 1$ 可以看出两个变量共线性的;
- 当要判断多个变量之间的共线性时,只须判断*X*^TX** 的最小特征根是否接近或者等于零即可.

关于多重共线性进一步的说明

如何克服共线性

- 在可控的试验中,事先设计好自变量的观测值,预先避免观测变量之间的共线性或者降低共线性;[思考:如何设计可达到此要求?]
- 当自变量是不可控制时,当在数据中已经发生较为严重的共 线性时,要消除多于的变量。

消除共线性的方法: 岭估计(ridge regression)

- 牺牲估计的无偏性, 以降低估计的方差. 【以MSE 为评价标准。】
- 通常的LS估计为: $\hat{\beta} = (X^T X)^{-1} X^T Y$,
- 岭估计为: $\hat{\beta}_{(k)} = (X^TX + kI_p)^{-1}X^TY$, 其中k是<mark>适当选取</mark>的正数, 使得

$$MSE(\widehat{\beta}_{(k)}) \leq Var(\widehat{\beta}).$$

• 记 $S = X^T X$, S的特征根为 $\lambda_1 \ge \cdots \ge \lambda_p > 0$, 则可以证明:

$$\mathsf{MSE}(\widehat{\beta}) = \sum_{j=1}^p \mathsf{Var}(\widehat{\beta}_j) = \sigma^2 \mathsf{trace}(S^{-1}) = \sigma^2 \sum_{j=1}^p \frac{1}{\lambda_j}.$$

消除共线性的方法: 岭估计(ridge regression)(续)

- 当存在比较严重的共线性时, 有部分的 λ_j 的值会非常之小且接近于0, 从而: 使得 $MSE(\hat{\beta})$ 变得非常之大.
- 另外对于岭估计 $\hat{\beta}_{(k)}$,有

$$MSE(\widehat{\beta}_{(k)}) = \sum_{j=1}^{p} \frac{\sigma^2 \lambda_j + k^2 \beta_j^2}{(\lambda_j + k)^2}.$$

● 可以适当的选择k > 0 使得:

$$MSE(\widehat{\beta}_k) \leq Var(\widehat{\beta}),$$

这就是ridge 回归的基本思想。

关于判断共线性的进一步说明:

- 共线性通常只对连续性的变量来判断。
- 若自变量中既有连续变量,又有分类变量的话。正常情况下 连续变量不会被分类变量线性表示,分类变量应该不参与共 线性的判断。
- 如果有多个分类变量,需要对分类变量判别共线性。多个分类变量如果不经过人工选择,有可能会有某个因为逻辑关系、归属关系等,被别的分类变量确定。比如,同时有省名与省编码。
- 如果变量中有多个连续变量和多个分类变量,则需要量两类变量分开,然后分别判断是否有共线性。
- 如果一个变量时连续型的,另外一个变量是分类变量,Pearson相关系数并不是合适的度量相关性的指标(个人观点)。
- 哑变量通常不需要标准化。

作业

- 1. 阅读教材Seber and Lee (2003), p. 249-263
- 2. 阅读教材Draper and Smith (1998), p. 369-386 以及p. 387-400
- **3.** 在阅读教材的基础上,试评价两本书上关于共线性论述的异同,你有什么看法?
- **4.** 安装R的package 'car',熟悉vif的使用方法。利用data()查看R中自带的数据集,自行选择一个数据集,建立线性模型,并判断共线性是否存在。