Package 'fmx'

April 30, 2024

Type Package
Title Finite Mixture Parametrization
Version 0.1.2
Date 2024-04-30
Description A parametrization framework for finite mixture distribution using S4 objects. Density, cumulative density, quantile and simulation functions are defined. Currently normal, Tukey g-&-h, skew-normal and skew-t distributions are well tested. The gamma, negative binomial distributions are being tested.
License GPL-2
Imports methods, goftest, sn, VGAM, param2moment, TukeyGH77
Encoding UTF-8
Language en-US
Depends R (>= $4.4.0$)
Suggests fitdistrplus, ggplot2, mixtools, mixsmsn, scales
RoxygenNote 7.3.1
NeedsCompilation no
Author Tingting Zhan [aut, cre, cph] (https://orcid.org/0000-0001-9971-4844), Inna Chervoneva [ctb, cph] (https://orcid.org/0000-0002-9104-4505)
Maintainer Tingting Zhan <tingtingzhan@gmail.com></tingtingzhan@gmail.com>
Repository CRAN
Date/Publication 2024-04-30 14:20:09 UTC
R topics documented:
fmx-package approxdens as.fmx as.fmx.fitdist

2 fmx-package

confint.fmx dbl2fmx dfmx distArgs distType dist_logtrans fmx fmx-class fmx2dbl fmx_constraint	8 9
as.fmx.Skew.t as.fmx.t coef.fmx confint.fmx dbl2fmx dfmx distArgs distType dist_logtrans fmx fmx-class fmx2dbl fmx_constraint	8
as.fmx.t coef.fmx confint.fmx dbl2fmx dfmx distArgs distType dist_logtrans fmx fmx-class fmx2dbl fmx_constraint	
coef.fmx confint.fmx dbl2fmx dfmx dfmx distArgs distType dist_logtrans fmx fmx-class fmx2dbl fmx_constraint	9
confint.fmx dbl2fmx dfmx distArgs distType dist_logtrans fmx fmx fmx-class fmx2dbl fmx_constraint	
dbl2fmx dfmx distArgs distType dist_logtrans fmx fmx fmx-class fmx2dbl fmx_constraint	10
dfmx distArgs distType dist_logtrans fmx fmx-class fmx2dbl fmx_constraint	10
distArgs distType dist_logtrans fmx fmx-class fmx2dbl fmx_constraint	11
distType dist_logtrans fmx fmx-class fmx2dbl fmx_constraint	12
dist_logtrans . fmx fmx-class fmx2dbl fmx_constraint	15
fmx	15
fmx-class	16
fmx2dbl	16
fmx_constraint	17
-	18
fmx_diagnosis	19
	20
getTeX	21
Kolmogorov_dist	21
logLik.fitdist	22
logLik.fmx	23
logLik.mixEM	24
MaP	24
mixEM_pars	25
mlogis	25
moment2fmx	27
moment_fmx	28
nobs.fitdist	28
npar.fmx	29
print.fmx	29
qfmx_interval	30
show,fmx-method	30
sort.mixEM	31
sort_mixsmsn	32
user_constraint	22
vcov.fmx	رر
[,fmx,ANY,ANY,ANY-method	34

approxdens 3

Description

A parametrization framework for finite mixture distribution using S4 objects.

Density, cumulative density, quantile and simulation functions are defined.

Currently normal, Tukey g-&-h, skew-normal and skew-t distributions are well tested. The gamma, negative binomial distributions are being tested.

Author(s)

```
Maintainer: Tingting Zhan <tingtingzhan@gmail.com> (ORCID) [copyright holder] Other contributors:
```

• Inna Chervoneva <Inna . Chervoneva@jefferson . edu> (ORCID) [contributor, copyright holder]

approxdens

Empirical Density Function

Description

••

Usage

```
approxdens(x, ...)
```

Arguments

```
x numeric vector, observations... additional parameters of density.default
```

Details

```
approx inside density.default
another 'layer' of approxfun
```

Value

Function approxdens returns a function.

```
x = rnorm(1e3L)
f = approxdens(x)
f(x[1:3])
```

4 as.fmx.fitdist

as.fmx

Turn Various Objects to fmx Class

Description

Turn various objects created in other R packages to fmx class.

Usage

```
as.fmx(x, ...)
```

Arguments

x an R object

... additional parameters, see **Arguments** in individual S3 dispatches

Details

Various mixture distribution estimates obtained from other R packages are converted to fmx class, so that we could take advantage of all methods defined for fmx objects.

Value

S3 generic function as.fmx returns an fmx object.

as.fmx.fitdist

Convert fitdist Objects to fmx Class

Description

To convert fitdist objects (from package **fitdistrplus**) to fmx class.

Usage

```
## S3 method for class 'fitdist' as.fmx(x, ...)
```

Arguments

```
x fitdist object
```

Value

Function as.fmx.fitdist returns an fmx object.

as.fmx.mixEM 5

Examples

```
library(fitdistrplus)
# ?fitdist
data(endosulfan, package = 'fitdistrplus')
ATV <- subset(endosulfan, group == 'NonArthroInvert')$ATV
log10ATV <- log10(ATV)
fln <- fitdist(log10ATV, distr = 'norm')
(fln2 <- as.fmx(fln))
hist.default(log10ATV, freq = FALSE)
curve(dfmx(x, dist = fln2), xlim = range(log10ATV), add = TRUE)</pre>
```

as.fmx.mixEM

Convert mixEM Objects to fmx Class

Description

To convert mixEM objects (from package mixtools) to fmx class.

Currently only the returned value of normalmixEM and gammamixEM are supported

Usage

```
## S3 method for class 'mixEM' as.fmx(x, data = x[["x"]], ...)
```

Arguments

```
x mixEM object data numeric vector ...
```

Value

Function as.fmx.mixEM returns an fmx object.

Note

plot.mixEM not plot gammamixEM returns, as of 2022-09-19.

```
library(mixtools)
(wait = as.fmx(normalmixEM(faithful$waiting, k = 2)))
hist.default(faithful$waiting, freq = FALSE)
curve(dfmx(x, dist = wait), xlim = range(faithful$waiting), add = TRUE)
```

6 as.fmx.Normal

Description

To convert Normal object (from package **mixsmsn**) to fmx class.

Usage

```
## S3 method for class 'Normal'
as.fmx(x, data, ...)
```

Arguments

```
x 'Normal' object, returned from smsn.mix with parameter family = 'Normal' data numeric vector
... additional parameters, currently not in use
```

Value

Function as.fmx.Normal returns an fmx object.

Note

smsn.mix does not offer a parameter to keep the input data, as of 2021-10-06.

```
library(mixsmsn)
# ?smsn.mix
arg1 = c(mu = 5, sigma2 = 9, lambda = 5, nu = 5)
arg2 = c(mu = 20, sigma2 = 16, lambda = -3, nu = 5)
arg3 = c(mu = 35, sigma2 = 9, lambda = -6, nu = 5)
set.seed(120); x = rmix(n = 1e3L, p=c(.5, .2, .3), family = 'Skew.t',
    arg = list(unname(arg1), unname(arg2), unname(arg3)))

# Normal
class(m2 <- smsn.mix(x, nu = 3, g = 3, family = 'Normal', calc.im = FALSE))
mix.hist(y = x, model = m2)
m2a = as.fmx(m2, data = x)
hist(x, freq = FALSE)
curve(dfmx(x, dist = m2a), xlim = range(x), add = TRUE)</pre>
```

as.fmx.Skew.normal 7

as.fmx.Skew.normal Convert Skew.normal Object to fmx

Description

To convert Skew.normal object (from package mixsmsn) to fmx class.

Usage

```
## S3 method for class 'Skew.normal'
as.fmx(x, data, ...)
```

Arguments

```
x 'Skew.normal' object, returned from smsn.mix with parameter family = 'Skew.normal'.

data numeric vector
... additional parameters, currently not in use
```

Value

Function as.fmx.Skew.normal returns an fmx object.

Note

smsn.mix does not offer a parameter to keep the input data, as of 2021-10-06.

```
library(mixsmsn)
# ?smsn.mix
arg1 = c(mu = 5, sigma2 = 9, lambda = 5, nu = 5)
arg2 = c(mu = 20, sigma2 = 16, lambda = -3, nu = 5)
arg3 = c(mu = 35, sigma2 = 9, lambda = -6, nu = 5)
set.seed(120); x = rmix(n = 1e3L, p=c(.5, .2, .3), family = 'Skew.t',
    arg = list(unname(arg1), unname(arg2), unname(arg3)))

# Skew Normal
class(m1 <- smsn.mix(x, nu = 3, g = 3, family = 'Skew.normal', calc.im = FALSE))
mix.hist(y = x, model = m1)
m1a = as.fmx(m1, data = x)
(l1a = logLik(m1a))
hist(x, freq = FALSE)
curve(dfmx(x, dist = m1a), xlim = range(x), add = TRUE)</pre>
```

8 as.fmx.Skew.t

Description

To convert Skew. t object (from package mixsmsn) to fmx class.

Usage

```
## S3 method for class 'Skew.t'
as.fmx(x, data, ...)
```

Arguments

```
x 'Skew.t' object, returned from smsn.mix with parameter family = 'Skew.t'
data numeric vector
... additional parameters, currently not in use
```

Value

Function as.fmx.Skew.t returns an fmx object.

Note

smsn.mix does not offer a parameter to keep the input data, as of 2021-10-06.

```
# mixsmsn::smsn.mix with option `family = 'Skew.t'` is slow
library(mixsmsn)
# ?smsn.mix
arg1 = c(mu = 5, sigma2 = 9, lambda = 5, nu = 5)
arg2 = c(mu = 20, sigma2 = 16, lambda = -3, nu = 5)
arg3 = c(mu = 35, sigma2 = 9, lambda = -6, nu = 5)
set.seed(120); x = rmix(n = 1e3L, p=c(.5, .2, .3), family = 'Skew.t',
 arg = list(unname(arg1), unname(arg2), unname(arg3)))
# Skew t
class(m3 \leftarrow smsn.mix(x, nu = 3, g = 3, family = 'Skew.t', calc.im = FALSE))
mix.hist(y = x, model = m3)
m3a = as.fmx(m3, data = x)
hist(x, freq = FALSE)
curve(dfmx(x, dist = m3a), xlim = range(x), add = TRUE)
(13a = logLik(m3a))
stopifnot(all.equal.numeric(AIC(13a), m3$aic), all.equal.numeric(BIC(13a), m3$bic))
```

as.fmx.t

Description

To convert t object (from package **mixsmsn**) to fmx class.

Usage

```
## S3 method for class 't'
as.fmx(x, data, ...)
```

Arguments

```
x 't' object, returned from smsn.mix with parameter family = 't'
data numeric vector
... additional parameters, currently not in use
```

Value

Function as.fmx.t has not been completed yet

Note

smsn.mix does not offer a parameter to keep the input data, as of 2021-10-06.

```
library(mixsmsn)
# ?smsn.mix
arg1 = c(mu = 5, sigma2 = 9, lambda = 5, nu = 5)
arg2 = c(mu = 20, sigma2 = 16, lambda = -3, nu = 5)
arg3 = c(mu = 35, sigma2 = 9, lambda = -6, nu = 5)
set.seed(120); x = rmix(n = 1e3L, p=c(.5, .2, .3), family = 'Skew.t',
    arg = list(unname(arg1), unname(arg2), unname(arg3)))
# t
class(m4 <- smsn.mix(x, nu = 3, g = 3, family = 't', calc.im = FALSE))
mix.hist(y = x, model = m4)
# as.fmx(m4, data = x) # not ready yet!!</pre>
```

10 confint.fmx

coef.fmx

Parameter Estimates of fmx object

Description

..

Usage

```
## S3 method for class 'fmx'
coef(object, internal = FALSE, ...)
```

Arguments

object fmx object

internal logical scalar, either for the user-friendly parameters (FALSE, default) (e.g., mean, sd

for normal mixture, and A, B, g, h for Tukey g-and-h mixture), or for the inter-

nal/unconstrained parameters (TRUE).

... place holder for S3 naming convention

Details

Function coef.fmx returns the estimates of the user-friendly parameters (parm = 'user'), or the internal/unconstrained parameters (parm = 'internal'). When the distribution has constraints on one or more parameters, function coef.fmx does not return the estimates (which is constant 0) of the constrained parameters.

Value

Function coef.fmx returns a numeric vector.

confint.fmx

Confidence Interval of fmx Object

Description

...

Usage

```
## S3 method for class 'fmx'
confint(object, ..., level = 0.95)
```

dbl2fmx 11

Arguments

object fmx object

... place holder for S3 naming convention

level confidence level, default 95%.

Details

confint.fmx returns the Wald-type confidence intervals based on the user-friendly parameters (parm = 'user'), or the internal/unconstrained parameters (parm = 'internal'). When the distribution has constraints on one or more parameters, function confint.fmx does not return the confident intervals of for the constrained parameters.

Value

confint.fmx returns a matrix

db12fmx

Inverse of fmx2dbl, for internal use

Description

..

Usage

```
dbl2fmx(x, K, distname, ...)
```

Arguments

x numeric vector, unrestricted parameters

K integer scalar distname character scalar

... additional parameters, not currently used

Details

Only used in downstream function QuantileGH::QLMDe and unexported function QuantileGH::: $qfmx_gr$, not compute intensive.

Value

Function dbl2fmx returns a list with two elements \$pars and \$w

12 dfmx

dfmx

Density, Distribution and Quantile of Finite Mixture Distribution

Description

Density function, distribution function, quantile function and random generation for a finite mixture distribution with normal or Tukey g-&-h components.

Usage

```
dfmx(
  х,
 dist,
 distname = dist@distname,
 K = dim(pars)[1L],
 pars = dist@pars,
 w = dist@w,
  log = FALSE
)
pfmx(
  q,
  dist,
  distname = dist@distname,
 K = dim(pars)[1L],
  pars = dist@pars,
 w = dist@w,
 lower.tail = TRUE,
  log.p = FALSE
)
qfmx(
 р,
  dist,
  distname = dist@distname,
 K = dim(pars)[1L],
  pars = dist@pars,
 w = dist@w,
  interval = qfmx_interval(dist = dist),
  lower.tail = TRUE,
  log.p = FALSE
)
rfmx(
```

dfmx 13

```
n,
  dist,
  distname = dist@distname,
  K = dim(pars)[1L],
  pars = dist@pars,
  w = dist@w
)
```

Arguments

```
numeric vector, quantiles, NA_real_ value(s) allowed.
x,q
dist
                  fmx object, a finite mixture distribution
distname, K, pars, w
                   auxiliary parameters, whose default values are determined by argument dist.
                  The user-specified vector of w does not need to sum up to 1; w/sum(w) will be
                  used internally.
                  additional parameters
                  logical scalar. If TRUE, probabilities are given as log(p).
log, log.p
lower.tail
                  logical scalar. If TRUE (default), probabilities are Pr(X \leq x), otherwise,
                   Pr(X > x).
р
                  numeric vector, probabilities.
interval
                  length two numeric vector, interval for root finding, see vuniroot2 and vuniroot
                  integer scalar, number of observations.
```

Details

A computational challenge in function dfmx is when mixture density is very close to 0, which happens when the per-component log densities are negative with big absolute values. In such case, we cannot compute the log mixture densities (i.e., -Inf), for the log-likelihood using function logLik.fmx. Our solution is to replace these -Inf log mixture densities by the weighted average (using the mixing proportions of dist) of the per-component log densities.

Function qfmx gives the quantile function, by numerically solving pfmx. One major challenge when dealing with the finite mixture of Tukey g-&-h family distribution is that Brent–Dekker's method needs to be performed in both pGH and qfmx functions, i.e. two layers of root-finding algorithm.

Value

Function dfmx returns a numeric vector of probability density values of an fmx object at specified quantiles x.

Function pfmx returns a numeric vector of cumulative probability values of an fmx object at specified quantiles q.

Function qfmx returns an unnamed numeric vector of quantiles of an fmx object, based on specified cumulative probabilities p.

Function rfmx generates random deviates of an fmx object.

14 dfmx

Note

Function qnorm returns an unnamed vector of quantiles, although quantile returns a named vector of quantiles.

```
library(ggplot2)
(e1 = fmx('norm', mean = c(0,3), sd = c(1,1.3), w = c(1, 1)))
curve(dfmx(x, dist = e1), xlim = c(-3,7))
ggplot() + geom_function(fun = dfmx, args = list(dist = e1)) + xlim(-3,7)
ggplot() + geom_function(fun = pfmx, args = list(dist = e1)) + xlim(-3,7)
hist(rfmx(n = 1e3L, dist = e1), main = '1000 obs from e1')
x = (-3):7
round(dfmx(x, dist = e1), digits = 3L)
round(p1 \leftarrow pfmx(x, dist = e1), digits = 3L)
stopifnot(all.equal.numeric(qfmx(p1, dist = e1), x, tol = 1e-4))
(e2 = fmx('GH', A = c(0,3), g = c(.2, .3), h = c(.2, .1), w = c(2, 3)))
ggplot() + geom_function(fun = dfmx, args = list(dist = e2)) + xlim(-3,7)
round(dfmx(x, dist = e2), digits = 3L)
round(p2 \leftarrow pfmx(x, dist = e2), digits = 3L)
stopifnot(all.equal.numeric(qfmx(p2, dist = e2), x, tol = 1e-4))
(e3 = fmx('GH', g = .2, h = .01)) # one-component Tukey
ggplot() + geom_function(fun = dfmx, args = list(dist = e3)) + xlim(-3.5)
set.seed(124); r1 = rfmx(1e3L, dist = e3);
set.seed(124); r2 = TukeyGH77::rGH(n = 1e3L, g = .2, h = .01)
stopifnot(identical(r1, r2)) # but ?rfmx has much cleaner code
round(dfmx(x, dist = e3), digits = 3L)
round(p3 \leftarrow pfmx(x, dist = e3), digits = 3L)
stopifnot(all.equal.numeric(qfmx(p3, dist = e3), x, tol = 1e-4))
a1 = fmx('GH', A = c(7,9), B = c(.8, 1.2), g = c(.3, 0), h = c(0, .1), w = c(1, 1))
a2 = fmx('GH', A = c(6,9), B = c(.8, 1.2), g = c(-.3, 0), h = c(.2, .1), w = c(4, 6))
library(ggplot2)
(p = ggplot() +
 geom_function(fun = pfmx, args = list(dist = a1), mapping = aes(color = 'g2=h1=0')) +
 geom_function(fun = pfmx, args = list(dist = a2), mapping = aes(color = 'g2=0')) +
 xlim(3,15) +
 scale_y_continuous(labels = scales::percent) +
 labs(y = NULL, color = 'models') +
 coord_flip())
p + theme(legend.position = 'none')
# to use [rfmx] without \pkg{fmx}
(d = fmx(distname = 'GH', A = c(-1,1), B = c(.9,1.1), g = c(.3,-.2), h = c(.1,.05), w = c(2,3)))
d@pars
```

distArgs 15

```
set.seed(14123); x = rfmx(n = 1e3L, dist = d)
set.seed(14123); x_raw = rfmx(n = 1e3L,
distname = 'GH', K = 2L,
pars = rbind(
    c(A = -1, B = .9, g = .3, h = .1),
    c(A = 1, B = 1.1, g = -.2, h = .05)
),
w = c(.4, .6)
)
stopifnot(identical(x, x_raw))
```

distArgs

Name(s) of Formal Argument(s) of Distribution

Description

To obtain the name(s) of distribution parameter(s).

Usage

```
distArgs(distname)
```

Arguments

distname

character scalar, name of distribution

Value

Function distArgs returns a character vector.

See Also

formalArgs

distType

Distribution Type

Description

..

Usage

```
distType(type = c("discrete", "nonNegContinuous", "continuous"))
```

16 fmx

Arguments

type character scalar

Value

Function distType returns a character vector.

dist_logtrans

Distribution Parameters that needs to have a log-transformation

Description

••

Usage

```
dist_logtrans(distname)
```

Arguments

distname

character scalar, name of distribution

Value

Function dist_logtrans returns an integer scalar

 fmx

Create fmx Object for Finite Mixture Distribution

Description

To create fmx object for finite mixture distribution.

Usage

```
fmx(distname, w = 1, ...)
```

Arguments

distname character scalar

w (optional) numeric vector. Does not need to sum up to 1; w/sum(w) will be used

internally.

... mixture distribution parameters. See function dGH for the names and default

values of Tukey g-&-h distribution parameters, or dnorm for the names and

default values of normal distribution parameters.

fmx-class 17

Value

Function fmx returns an fmx object.

Examples

```
(e1 = fmx('norm', mean = c(0,3), sd = c(1,1.3), w = c(1, 1))) isS4(e1) # TRUE slotNames(e1)

(e2 = fmx('GH', A = c(0,3), g = c(.2, .3), h = c(.2, .1), w = c(2, 3)))

(e3 = fmx('GH', A = 0, g = .2, h = .2)) # one-component Tukey
```

fmx-class

fmx Class: Finite Mixture Parametrization

Description

An S4 object to specify the parameters and type of distribution of a one-dimensional finite mixture distribution.

Slots

distname character scalar, name of parametric distribution of the mixture components. Currently, normal ('norm') and Tukey g-&-h ('GH') distributions are supported.

pars double matrix, all distribution parameters in the mixture. Each row corresponds to one component. Each column includes the same parameters of all components. The order of rows corresponds to the (non-strictly) increasing order of the component location parameters. The columns match the formal arguments of the corresponding distribution, e.g., 'mean' and 'sd' for normal mixture, or 'A', 'B', 'g' and 'h' for Tukey *g-&-h* mixture.

w numeric vector of mixing proportions that must sum to 1

data (optional) numeric vector, the one-dimensional observations

data.name (optional) character scalar, a human-friendly name of the observations

vcov_internal (optional) variance-covariance matrix of the internal (i.e., unconstrained) estimates

vcov (optional) variance-covariance matrix of the mixture distribution (i.e., constrained) estimates Kolmogorov, CramerVonMises, KullbackLeibler (optional) numeric scalars

18 fmx2db1

fmx2dbl

Reparameterization of fmx Object

Description

To convert the parameters of fmx object into unrestricted parameters.

Usage

```
fmx2dbl(
    x,
    distname = x@distname,
    pars = x@pars,
    K = dim(pars)[1L],
    w = x@w,
    ...
)
```

Arguments

```
x fmx object
distname character scalar, default x@distname
pars numeric matrix, default x@pars
K integer scalar, default value from x
w numeric vector, default x@w
... additional parameters, not currently used
```

Details

For the first parameter

```
• A_1 \to A_1

• A_2 \to A_1 + \exp(\log(d_1))

• A_k \to A_1 + \exp(\log(d_1)) + \dots + \exp(\log(d_{k-1}))
```

For mixing proportions to multinomial logits.

```
For 'norm': sd \rightarrow log(sd) for 'GH': B \rightarrow log(B), h \rightarrow log(h)
```

Value

Function fmx2dbl returns a numeric vector.

See Also

dbl2fmx

fmx_constraint 19

fmx_constraint

Parameter Constraint(s) of Mixture Distribution

Description

Determine the parameter constraint(s) of a finite mixture distribution fmx, either by the value of parameters of such mixture distribution, or by a user-specified string.

Usage

```
fmx_constraint(
  dist,
  distname = dist@distname,
  K = dim(dist@pars)[1L],
  pars = dist@pars
)
```

Arguments

dist	(optional) fmx object
distname	character scalar, name of distribution (see fmx), default value determined by dist
K	integer scalar, number of components, default value determined by dist
pars	double matrix, distribution parameters of a finite mixture distribution (see fmx), default value determined by dist

Value

Function fmx_constraint returns the indices of internal parameters (only applicable to Tukey g-&-h mixture distribution, yet) to be constrained, based on the input fmx object dist.

```
 (d0 = fmx('GH', A = c(1,4), g = c(.2,.1), h = c(.05,.1), w = c(1,1))) \\ (c0 = fmx\_constraint(d0)) \\ user\_constraint(character(), distname = 'GH', K = 2L) # equivalent \\ (d1 = fmx('GH', A = c(1,4), g = c(.2,0), h = c(0,.1), w = c(1,1))) \\ (c1 = fmx\_constraint(d1)) \\ user\_constraint(c('g2', 'h1'), distname = 'GH', K = 2L) # equivalent \\ (d2 = fmx('GH', A = c(1,4), g = c(.2,0), h = c(.15,.1), w = c(1,1))) \\ (c2 = fmx\_constraint(d2)) \\ user\_constraint('g2', distname = 'GH', K = 2L) # equivalent \\ \end{aligned}
```

20 fmx_diagnosis

fmx_diagnosis

Diagnoses for fmx Estimates

Description

Diagnoses for fmx estimates.

Usage

```
Kolmogorov_fmx(object, data = object@data, ...)
KullbackLeibler_fmx(object, data = object@data, ...)
CramerVonMises_fmx(object, data = object@data, ...)
```

Arguments

object fmx object, or an R object convertible to an fmx object

data double vector, observed data. Default is object@data, the data used for estima-

tion.

... additional parameters, currently not in use

Details

Function Kolmogorov_fmx calculates Kolmogorov distance.

Function KullbackLeibler_fmx calculates Kullback-Leibler divergence. The R code is adapted from LaplacesDemon::KLD.

Function CramerVonMises_fmx calculates Cramer-von Mises quadratic distance (via cvm.test).

Value

Functions Kolmogorov_fmx, KullbackLeibler_fmx, CramerVonMises_fmx all return numeric scalars.

See Also

```
dgof::cvmf.test
```

getTeX 21

getTeX

TeX Label (of Parameter Constraint(s)) of fmx Object

Description

Create TeX label of (parameter constraint(s)) of fmx object

Usage

```
getTeX(dist, print_K = FALSE)
```

Arguments

dist fmx object

print_K logical scalar, whether to print the number of components K. Default FALSE.

Value

Function getTeX returns a character scalar (of TeX expression) of the constraint, primarily intended for end-users in plots.

Examples

```
 (d0 = fmx('GH', A = c(1,4), g = c(.2,.1), h = c(.05,.1), w = c(1,1)))  getTeX(d0)  (d1 = fmx('GH', A = c(1,4), g = c(.2,0), h = c(0,.1), w = c(1,1)))  getTeX(d1)  (d2 = fmx('GH', A = c(1,4), g = c(.2,0), h = c(.15,.1), w = c(1,1)))  getTeX(d2)
```

Kolmogorov_dist

One-Sample Kolmogorov Distance

Description

To calculate the one-sample Kolmogorov distance between observations and a distribution.

Usage

```
Kolmogorov_dist(x, null, alternative = c("two.sided", "less", "greater"), ...)
```

22 logLik.fitdist

Arguments

```
x numeric vector, observations x null cumulative distribution function alternative character scalar, alternative hypothesis, either 'two.sided' (default), 'less', or 'greater' additional arguments of null
```

Details

Function Kolmogorov_dist is different from ks.test in the following aspects

- Ties in observations are supported. The step function of empirical distribution is inspired by ecdf. This is superior than (0: (n 1))/n in ks.test.
- Discrete distribution (with discrete observation) is supported.
- Discrete distribution (with continuous observation) is not supported yet. This will be an easy modification in future.
- Only the one-sample Kolmogorov distance, not the one-sample Kolmogorov test, is returned, to speed up the calculation.

Value

Function Kolmogorov_dist returns a numeric scalar.

Examples

```
# from ?stats::ks.test
x1 = rnorm(50)
ks.test(x1+2, y = pgamma, shape = 3, rate = 2)
Kolmogorov_dist(x1+2, null = pgamma, shape = 3, rate = 2) # exactly the same

# discrete distribution
x2 <- rnbinom(n = 1e2L, size = 500, prob = .4)
suppressWarnings(ks.test(x2, y = pnbinom, size = 500, prob = .4)) # warning on ties
Kolmogorov_dist(x2, null = pnbinom, size = 500, prob = .4) # wont be the same</pre>
```

logLik.fitdist

Log-Likelihood of fitdist Object

Description

..

Usage

```
## S3 method for class 'fitdist'
logLik(object, ...)
```

logLik.fmx 23

Arguments

object fitdist object

additional parameters, currently not in use

Details

Output of fitdist has elements \$loglik, \$aic and \$bic, but they are simply numeric scalars. fitdistrplus:::logLik.fitdist simply returns these elements.

Value

Function logLik.fitdist returns a logLik object, which could be further used by AIC and BIC. (I have written to the authors)

logLik.fmx

Log-Likelihood of fmx Object

Description

Usage

```
## S3 method for class 'fmx'
logLik(object, data = object@data, ...)
```

Arguments

. . .

object fmx object

double vector, actual observations data place holder for S3 naming convention

Details

Function logLik.fmx returns a logLik object indicating the log-likelihood. An additional attribute attr(,'logl') indicates the point-wise log-likelihood, to be use in Vuong's closeness test.

Value

Function logLik.fmx returns a logLik object with an additional attribute attr(,'logl').

24 MaP

logLik.mixEM

Log-Likelihood of 'mixEM' Object

Description

To obtain the log-Likelihood of 'mixEM' object, based on mixtools 2020-02-05.

Usage

```
## S3 method for class 'mixEM'
logLik(object, ...)
```

Arguments

object 'mixEM' object, currently only the returned value of normalmixEM and gam-

mamixEM are supported

... additional parameters, currently not in use

Value

Function logLik.mixEM returns a logLik object.

MaP

Maximum a Posteriori clustering

Description

••

Usage

```
MaP(x, dist, ...)
```

Arguments

```
x numeric vector
dist an fmx object
```

Value

Function MaP returns an integer vector.

mixEM_pars 25

Examples

```
x = rnorm(1e2L, sd = 2)
m = fmx('norm', mean = c(-1.5, 1.5), w = c(1, 2))
library(ggplot2)
ggplot() + geom_function(fun = dfmx, args = list(dist = m)) +
  geom_point(mapping = aes(x = x, y = .05, color = factor(MaP(x, dist = m)))) +
  labs(color = 'Maximum a Posteriori\nClustering')
```

mixEM_pars

Names of Distribution Parameters of 'mixEM' Object

Description

Names of distribution parameters of 'mixEM' object, based on mixtools 2020-02-05.

Usage

```
mixEM_pars(object)
```

Arguments

object

'mixEM' object, currently only the returned value of normalmixEM and gam-

mamixEM are supported

Value

Function mixEM_pars returns a character vector

See Also

normalmixEM gammamixEM

mlogis

Multinomial Probabilities & Logits

Description

Performs transformation between vectors of multinomial probabilities and multinomial logits.

This transformation is a generalization of plogis which converts scalar logit into probability and qlogis which converts probability into scalar logit.

26 mlogis

Usage

```
qmlogis_first(p)
qmlogis_last(p)
pmlogis_first(q)
pmlogis_last(q)
```

Arguments

```
p numeric vector, multinomial probabilities, adding up to 1
q numeric vector, multinomial logits
```

Details

Functions pmlogis_first and pmlogis_last take a length k-1 numeric vector of multinomial logits q and convert them into length k multinomial probabilities p, regarding the first or last category as reference, respectively.

Functions qmlogis_first and qmlogis_last take a length k numeric vector of multinomial probabilities p and convert them into length k-1 multinomial logits q, regarding the first or last category as reference, respectively.

Value

Functions pmlogis_first and pmlogis_last return a vector of multinomial probabilities *p*. Functions qmlogis_first and qmlogis_last return a vector of multinomial logits *q*.

See Also

plogis qlogis

```
(a = qmlogis_last(c(2,5,3)))
(b = qmlogis_first(c(2,5,3)))
pmlogis_last(a)
pmlogis_first(b)

q0 = .8300964
(p1 = pmlogis_last(q0))
(q1 = qmlogis_last(p1))

# various exceptions
pmlogis_first(qmlogis_first(c(1, 0)))
pmlogis_first(qmlogis_first(c(0, 1)))
pmlogis_first(qmlogis_first(c(0, 0, 1)))
pmlogis_first(qmlogis_first(c(0, 1, 0, 0)))
pmlogis_first(qmlogis_first(c(1, 0, 0, 0)))
```

moment2fmx 27

```
pmlogis_last(qmlogis_last(c(1, 0)))
pmlogis_last(qmlogis_last(c(0, 1)))
pmlogis_last(qmlogis_last(c(0, 0, 1)))
pmlogis_last(qmlogis_last(c(0, 1, 0, 0)))
pmlogis_last(qmlogis_last(c(1, 0, 0, 0)))
```

moment2fmx

Creates fmx Object with Given Component-Wise Moments

Description

Creates fmx Object with Given Component-Wise Moments

Usage

```
moment2fmx(distname, w, ...)
```

Arguments

distname character scalar

w numeric vector

... numeric scalars, some or all of mean, sd, skewness and kurtosis (length will be recycled), see moment2param

Value

Function moment2fmx returns a fmx object.

```
m = c(-1.5, 1.5)
s = c(.9, 1.1)
sk = c(.2, -.3)
kt = c(.5, .75)
w = c(2, 3)
(d1 = moment2fmx(distname='GH', w=w, mean=m, sd=s, skewness=sk, kurtosis=kt))
moment_fmx(d1)
(d2 = moment2fmx(distname='st', w=w, mean=m, sd=s, skewness=sk, kurtosis=kt))
moment_fmx(d2)
library(ggplot2)
ggplot() +
 geom_function(aes(color = 'GH'), fun = dfmx, args = list(dist=d1), n = 1001) +
 geom_function(aes(color = 'st'), fun = dfmx, args = list(dist=d1), n = 1001) +
# two curves looks really close, but actually not identical
x = rfmx(n = 1e3L, dist = d1)
range(dfmx(x, dist = d1) - dfmx(x, dist = d2))
```

28 nobs.fitdist

 $moment_fmx$

Moment of Each Component in an fmx Object

Description

To find moments of each component in an fmx object.

Usage

```
moment_fmx(object)
```

Arguments

object

an fmx object

Details

Function moment_fmx calculates the moments and distribution characteristics of each mixture component of an S4 fmx object.

Value

Function moment_fmx returns a moment object.

Examples

```
(d2 = fmx('GH', A = c(1,6), B = 2, g = c(0,.3), h = c(.2,0), w = c(1,2)))
moment_fmx(d2)
```

nobs.fitdist

Number of Observations in fitdist Object

Description

••

Usage

```
## S3 method for class 'fitdist'
nobs(object, ...)
```

Arguments

```
object fitdist object
```

... additional parameters, currently not in use

npar.fmx 29

Value

Function nobs.fitdist returns an integer scalar

npar.fmx

Number of Parameters of fmx Object

Description

..

Usage

```
npar.fmx(dist)
```

Arguments

dist

fmx object

Details

Also the degree-of-freedom in logLik, as well as stats:::AIC.logLik and stats:::BIC.logLik

Value

Function npar.fmx returns an integer scalar.

print.fmx

S3 print of fmx Object

Description

•

Usage

```
## S3 method for class 'fmx'
print(x, ...)
```

Arguments

x an fmx object

... additional parameters, not currently in use

Value

Function print.fmx returns the input fmx object invisibly.

30 show,fmx-method

qfmx_interval

Obtain interval for vuniroot2 for Function qfmx

Description

Obtain interval for vuniroot2 for Function qfmx

Usage

```
qfmx_interval(
  dist,
  p = c(1e-06, 1 - 1e-06),
  distname = dist@distname,
  K = dim(pars)[1L],
  pars = dist@pars,
  w = dist@w,
  ...
)
```

Arguments

```
dist fmx object

p length-2 numeric vector

distname, K, pars, w (optional) ignored if dist is provided

... additional parameters, currently not used
```

Value

Function qfmx_interval returns a length-2 numeric vector.

show, fmx-method

Show fmx Object

Description

Print the parameters of an fmx object and plot its density curves.

Usage

```
## S4 method for signature 'fmx'
show(object)
```

Arguments

object an fmx object

sort.mixEM 31

Value

The show method for fmx object does not have a returned value.

sort.mixEM

Sort 'mixEM' Object by First Parameters

Description

To sort a 'mixEM' object by its first parameters, i.e., μ 's for normal mixture, α 's for γ -mixture, etc.

Usage

```
## S3 method for class 'mixEM'
sort(x, decreasing = FALSE, ...)
```

Arguments

x 'mixEM' object

decreasing logical scalar. Should the sort by mu's be increasing (FALSE, default) or de-

creasing (TRUE)?

... additional parameters, currently not in use

Details

normalmixEM does not order the location parameter

Value

Function sort.mixEM returns a 'mixEM' object.

See Also

sort

32 sort_mixsmsn

sort_mixsmsn Sort Objects from Rhrefhttps://CRAN.R-project.org/package=mixsmsnmixsmsn by Location Parameters

Description

To sort an object returned from package mixsmsn by its location parameters

Usage

```
## S3 method for class 'Skew.normal'
sort(x, decreasing = FALSE, ...)

## S3 method for class 'Normal'
sort(x, decreasing = FALSE, ...)

## S3 method for class 'Skew.t'
sort(x, decreasing = FALSE, ...)

## S3 method for class 't'
sort(x, decreasing = FALSE, ...)
```

Arguments

```
    x 'Normal', 'Skew.normal', 'Skew.t' object
    decreasing logical scalar. Should the sort the location parameter be increasing (FALSE, default) or decreasing (TRUE)?
    ... additional parameters, currently not in use
```

Details

smsn.mix does not order the location parameter

Value

```
Function sort.Normal returns a 'Normal' object.
Function sort.Skew.normal returns a 'Skew.normal' object.
Function sort.Skew.t returns a 'Skew.t' object.
```

See Also

sort

user_constraint 33

user_constraint

Formalize User-Specified Constraint of fmx Object

Description

Formalize user-specified constraint of fmx object

Usage

```
user_constraint(x, distname, K)
```

Arguments

x character vector, constraint(s) to be imposed. For example, for a two-component Tukey g-&-h mixture, c('g1', 'h2') indicates $g_1 = h_2 = 0$ given $A_1 < A_2$, i.e., the g-parameter for the first component (with smaller location value) and

i.e., the g-parameter for the first component (with smaller location value) and the h-parameter for the second component (with larger mean value) are to be

constrained as 0.

distname character scalar, name of distribution

K integer scalar, number of components

Value

Function user_constraint returns the indices of internal parameters (only applicable to Tukey's g-&-h mixture distribution, yet) to be constrained, based on the type of distribution distname, number of components K and a user-specified string (e.g., c('g2', 'h1')).

```
 (d0 = fmx('GH', A = c(1,4), g = c(.2,.1), h = c(.05,.1), w = c(1,1))) \\ (c0 = fmx\_constraint(d0)) \\ user\_constraint(distname = 'GH', K = 2L, x = character()) # equivalent \\ (d1 = fmx('GH', A = c(1,4), g = c(.2,0), h = c(0,.1), w = c(1,1))) \\ (c1 = fmx\_constraint(d1)) \\ user\_constraint(distname = 'GH', K = 2L, x = c('g2', 'h1')) # equivalent \\ (d2 = fmx('GH', A = c(1,4), g = c(.2,0), h = c(.15,.1), w = c(1,1))) \\ (c2 = fmx\_constraint(d2)) \\ user\_constraint(distname = 'GH', K = 2L, x = 'g2') # equivalent \\
```

vcov.fmx

Variance-Covariance of fmx Object

Description

..

Usage

```
## S3 method for class 'fmx'
vcov(object, internal = FALSE, ...)
```

Arguments

object fmx object

internal logical scalar, either for the user-friendly parameters (FALSE, default) (e.g., mean, sd

for normal mixture, and A,B,g,h for Tukey g-and-h mixture), or for the inter-

nal/unconstrained parameters (TRUE).

... place holder for S3 naming convention

Details

Function vcov.fmx returns the approximate asymptotic variance-covariance matrix of the user-friendly parameters via delta-method (parm = 'user'), or the asymptotic variance-covariance matrix of the internal/unconstrained parameters (parm = 'internal'). When the distribution has constraints on one or more parameters, function vcov.fmx does not return the variance/covariance involving the constrained parameters.

Value

Function vcov.fmx returns a matrix.

```
[,fmx,ANY,ANY,ANY-method
```

Subset of Components in fmx Object

Description

Taking subset of components in fmx object

Usage

```
## S4 method for signature 'fmx,ANY,ANY,ANY' x[i]
```

Arguments

Χ	fmx object
i	integer or logical vector, the row indices of <i>components</i> to be chosen, see [

Details

Using definitions as S3 method dispatch `[.fmx` won't work for fmx objects.

Value

An fmx object consisting of a subset of components. information about the observations (e.g. slots @data.name), will be lost.

```
(d = fmx('norm', mean = c(1, 4, 7), w = c(1, 1, 1))) d[1:2]
```

Index

[, 35	fmx2db1, 11, 18, 18
[,fmx,ANY,ANY,ANY-method,34	fmx_constraint, 19, 19
	fmx_diagnosis, 20
AIC, 23	formalArgs, 15
approx, 3	function, <i>3</i> , <i>22</i>
approxdens, 3, 3	
approxfun, 3	gammamixEM, <i>5</i> , <i>24</i> , <i>25</i>
as.fmx, 4, 4	getTeX, <i>21</i> , 21
as.fmx.fitdist,4,4	
as.fmx.mixEM, 5, 5	integer, 11, 13, 16, 18, 19, 24, 29, 33, 35
as.fmx.Normal, 6 , 6	W 1
as.fmx.Skew.normal, 7, 7	Kolmogorov_dist, 21, 22
as.fmx.Skew.t, $8, 8$	Kolmogorov_fmx, 20
as.fmx.t, 9 , 9	Kolmogorov_fmx (fmx_diagnosis), 20
	ks.test, 22
BIC, 23	KullbackLeibler_fmx, 20
	<pre>KullbackLeibler_fmx (fmx_diagnosis), 20</pre>
character, 11, 15–19, 21, 22, 25, 27, 33	•
coef.fmx, 10, 10	length, <i>30</i>
confint.fmx, 10, <i>11</i>	list, 11
CramerVonMises_fmx, 20	logical, 10, 13, 21, 31, 32, 34, 35
CramerVonMises_fmx (fmx_diagnosis), 20	logLik, 23, 24, 29
cvm.test, 20	logLik.fitdist, 22, 23
	logLik.fmx, <i>13</i> , <i>23</i> , 23
db12fmx, <i>11</i> , 11, <i>18</i>	logLik.mixEM, 24, 24
density.default, 3	
dfmx, 12, 13	MaP, 24, 24
dGH, <i>16</i>	matrix, 11, 17-19, 34
dist_logtrans, 16, 16	mixEM_pars, 25, 25
distArgs, <i>15</i> , 15	mlogis, 25
distType, 15, 16	moment, 28
dnorm, <i>16</i>	moment2fmx, 27, 27
double, 17, 19, 20, 23	moment2param, 27
	moment_fmx, 28, 28
ecdf, 22	
	nobs.fitdist, 28, 29
fitdist, 4, 22, 23, 28	normal, 17
fmx, 4–11, 13, 16, 16, 17–21, 23, 24, 27–31,	normalmixEM, <i>5</i> , <i>24</i> , <i>25</i> , <i>31</i>
33–35	npar.fmx, 29, 29
fmx-class, 17	numeric, 3, 5–11, 13, 16–18, 20, 22–24, 26,
fmx-package, 2	27, 30

INDEX 37

```
pfmx, 13
pfmx (dfmx), 12
pGH, 13
plogis, 25, 26
plot.mixEM, 5
{\tt pmlogis\_first}, \underline{26}
pmlogis_first (mlogis), 25
pmlogis_last, 26
pmlogis_last (mlogis), 25
print, 29
print.fmx, 29, 29
qfmx, 13, 30
qfmx (dfmx), 12
qfmx_interval, 30, 30
qlogis, 25, 26
qmlogis_first, 26
qmlogis_first (mlogis), 25
qmlogis_last, 26
qmlogis_last (mlogis), 25
qnorm, 14
quantile, 14
rfmx, 13
rfmx (dfmx), 12
show, 31
show, fmx-method, 30
smsn.mix, 6-9, 32
sort, 31, 32
sort.mixEM, 31, 31
sort.Normal, 32
sort.Normal (sort_mixsmsn), 32
sort.Skew.normal, 32
sort.Skew.normal(sort_mixsmsn), 32
sort.Skew.t, 32
sort.Skew.t (sort_mixsmsn), 32
sort.t(sort_mixsmsn), 32
sort_mixsmsn, 32
user_constraint, 33, 33
vcov.fmx, 34, 34
vector, 3, 5–11, 13–18, 20, 22–27, 30, 33, 35
vuniroot, 13
vuniroot2, 13, 30
```