Problem analysis of Divide And Conquer

YAO ZHAO

Hilbert Curve

W₂ consists of four W₁ structures with the lower-left and the lower-right ones are 90 degree rotated clockwise and counter-clockwise, respectively; the upper ones have the same structure with W₁. Connect the four structures with 3 unit lines.

 W_3 consists of four W_2 structures with the lower-left and the lower-right ones are 90 degree rotated clockwise and counter-clockwise, respectively; the upper ones have the same structure with W_2

Hilbert Curve

▶ This rule has been devised by a mathematical philosopher David Hilbert (1862 – 1943), and the resulting curve is usually called a Hilbert Curve named after him. He once talked about a space filling method using this kind of curve to fill up a square with 2^k sides.

For each vertex p on the Hilbert curve, we define the the coordinates of p to be the location of the square of p in the squares matrix, and we define the serial number of p to be the vertices count on the curve from the beginning to p.

For example, when the coordinates of p is (3,4) and the order is 2, the number of p is 10;

when the coordinates of p is (5, 1) and the order is 3, the number of p is 59.

Given the order of the Hilbert curve and the coordinates of p, can you figure out the number of p?

Problem analysis

Problem analysis

How to map (5,1) to (4,4)?

Step 1: Divide the W₃ to 4 parts

Step 2: Find which part (5,1) is in

W₃ is a 8*8 square matrix

$$x <= 4 y <= 4 \text{ Part 1}$$
 $x <= 4 y > 4 \text{ Part 2}$
 $x > 4 y > 4 \text{ Part 3}$
 $x > 4 y <= 4 \text{ Part 4}$

Step 3: get offset value according part number

Step 3: Part 1 case

Step 3: Part 2&3 cases

Further analysis: W₂

How to map (4,4) to (2,2)?

Step 1: Divide the W_2 to 4 parts

Step 2: Find which part (4,4) is in

$$x \le 2y \le 2 \text{ Part 1}$$
 $x \le 2y > 2 \text{ Part 2}$
 $x > 2y > 2 \text{ Part 3}$
 $x > 2y \le 2 \text{ Part 4}$

Step 3: get offset value according part number

Each element-8

coordinates x-2 y-2

$$(4,4) \to (2,2)$$

Base code: W_1

coordinates number

```
w[3][3] = \{\{0,0,0\},
           {0,1,4},
           \{0,2,3\}\};
public static long HilbertNumber(int n, int x, int y) {
     if(n==1)
          return w[x][y];
     int m = 1 << (n-1);
     if(x \le m) \{
          if(y \le m)
               return HilbertNumber(n-1, y, x);//Part 1, x' = y y'=x
          else
               return m*m + HilbertNumber(n-1, x, y-m);//Part 2, coordinates offset: y-m
     } else {
         if(y>m)
               return 2*m*m + HilbertNumber(n-1, x-m, y-m); );//Part 3, coordinates offset: x-m y-m
         else
               return 3*m*m + HilbertNumber(n-1, m+1-y, m+1-(x-m));//Part4, coordinates offset: x=x-m
                                                                    //x' = m+1-y, y' = m+1-x
```