CIS 678 - Machine Learning

Maximum Likelihood Learning

Linear Regression: Probabilistic Twin

Method of Least Squares

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Linear Regression

Least Squares Solution

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Least Squares Solution

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Least Squares Solution

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Normal (Gaussian) Distribution

- Definition: A continuous, symmetric, bell-shaped probability distribution.
- ► **Applications:** Test scores, heights, errors, finance, etc.
- Parameters:
 - Mean (μ): center of the distribution
 - Standard deviation (σ) : spread of the data
- **▶** Empirical Rule:
 - ▶ 68% within $\mu \pm 1\sigma$
 - ▶ 95% within $\mu \pm 2\sigma$
 - ▶ 99.7% within $\mu \pm 3\sigma$

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},eta) = \prod_{n=1}^N \mathcal{N}\left(t_n|y(x_n,\mathbf{w}),eta^{-1}
ight).$$

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},eta) = \prod_{n=1}^N \mathcal{N}\left(t_n|y(x_n,\mathbf{w}),eta^{-1}
ight).$$

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},eta) = \prod_{n=1}^N \mathcal{N}\left(t_n|y(x_n,\mathbf{w}),eta^{-1}
ight).$$

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right).$$

$$= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\beta^{-2}}} \exp\left\{-\frac{1}{2\beta^{-2}} \{y(x_n, \mathbf{w}) - t_n\}^2\right\}$$

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right).$$

$$= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\beta^{-2}}} \exp\left\{-\frac{1}{2\beta^{-2}} \{y(x_n, \mathbf{w}) - t_n\}^2\right\}$$

Probabilistic Formulation: Modeling Error Distribution

$$\begin{split} p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) &= \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right). \\ &= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\beta^{-2}}} \exp\left\{-\frac{1}{2\beta^{-2}} \{y(x_n, \mathbf{w}) - t_n\}^2\right\} \end{split}$$

Taking the log

$$\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$

It's called Log likelihood!

Probabilistic Formulation: Modeling Error Distribution

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n|y(x_n, \mathbf{w}), \beta^{-1}\right).$$

Taking the log

$$\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$
 Does it look familiar???

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Probabilistic Formulation: Modeling Error Distribution

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n|y(x_n, \mathbf{w}), \beta^{-1}\right).$$

Taking the log

$$\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$
 Does it look familiar????
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Maximizing Log likelihood is equivalent to minimizing the quadratic loss/error in the context of LR!

MLE is standard & probabilistic technique

Probabilistic Formulation: Modeling Error Distribution

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right).$$

$$= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\beta^{-2}}} \exp\left\{-\frac{1}{2\beta^{-2}} \{y(x_n, \mathbf{w}) - t_n\}^2\right\}$$

Taking the log

$$\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$

It's called Log likelihood!

Maximizing Likelihood Learning

$$\mathbf{w}^* = \underset{W}{\operatorname{arg\,max}} \ p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta^{-1})$$

MLE is standard & probabilistic technique

Probabilistic Formulation: Modeling Error Distribution

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n|y(x_n, \mathbf{w}), \beta^{-1}\right).$$

$$= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\beta^{-2}}} \exp\left\{-\frac{1}{2\beta^{-2}} \{y(x_n, \mathbf{w}) - t_n\}^2\right\}$$

Taking the log

$$\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$

It's called Log likelihood!

Maximizing Likelihood Learning

Can be generalized for any problem given that we properly explain the distribution of the data

$$\mathbf{w}^* = \underset{W}{\operatorname{arg\,max}} p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta^{-1})$$

QA