

UNITS & MEASUREMENTS

1.	In a given system of units, 1 unit of mass = $2kg$, 1 unit of length = $5m$ and 1 unit of time = $5s$ then in this system, $1N$ represents									
	1) $\frac{5}{2}$ units of force	2) $\frac{2}{5}$ units of force	3) 2 units of force	4) $\frac{1}{2}$ units of force						
2.	1) ±0.2%	rod is measured as 100.1c 2) $\pm 0.5\%$	3) ±0.3%	4) ±0.1%						
3.	In the relation $P = \frac{\alpha}{\beta} = e^{\frac{-\alpha x}{nR\theta}}$, P is power, X is distance, n is number of moles, R is a gas constant and θ is									
	temperature. The dimension of formula of β is									
	$1)\left[M^{0}L^{0}T^{0}\right]$	$2)\left[M^{1}L^{0}T^{1}\right]$	$3)\left[M^{0}L^{-1}T^{1}\right]$	$4) \left[M^0 L^{-1} T^{-1} \right]$						
4.	Power delivered by a force is given by the relation $P = \frac{\alpha}{\beta} e^{-\beta t}$, where t is time, find the dimensional formula									
	for α			_						
	1) $\lfloor M^1 L^2 T^{-4} \rfloor$	$2)\left[M^{1}L^{2}T^{4}\right]$	$3) \left\lfloor M^{-1}L^{-2}T^4 \right\rfloor$	$4) \left\lfloor M^1 L^{-2} T^4 \right\rfloor$						
5.	Considering density, frequency and velocity as fundamental quantities, find the dimensions of angular momentum									
		2) $[\rho]^2 [f]^{-4} [v]^5$		4) $[\rho][f]^{-4}[v]^{-5}$						
6.	1) Mass	fan's constant have same 2) Length	3) Time	4) All the above						
7.	$\frac{he}{4\pi M}$ has the same dimensions as (h-plank's constant, e= change, m=mass)									
8.	1) Magnetic moment 2) Magnetic induction 3) Angular momentum 4) Pole strength Magnetic induction and magnetic flux differ in the dimensions of									
9.	1) Mass Three of the quantities	2) Electric current defined below has the sa	3) Lengths me dimensional formula	4) Time a. Identify the						
	i) $\sqrt{Energy / mass}$ ii) $\sqrt{pressure / density}$ ii) $\sqrt{force / linear \ density}$									
	1) ii only	· -	•	4) i, ii and iii only						
10.	,			ity of free space, planks constant and						
	speed of light then $\frac{e^2}{E_0 hc}$ has the dimensions of									
	A) angle	B) relative density	C) strain	D) current						
	1) A,B	2) D	3) A,B,C	4) A,B,C,D						
11.	If density (D), acceleration (a) and force are taken as basic quantities then the time period has dimensions									
	1) $\frac{1}{6}$ in F	$2) \frac{-1}{6} in F$	3) $\frac{2}{3}in$ F	4) All of the above						
12.	The liquid drop of density $ ho$, radius r and surfaces tension σ oscillates with time period T. which of the									
	following expression for T^2 is correct									
	1) $\rho r^3 / \sigma$	2) $\rho\sigma/r^3$	3) $r^3 \sigma / \rho$	4) none						

 $X = 3YZ^2$ find dimensions of Y in (MKSA) system, if X and Z are the dimension of capacity and magnetic field respectively

1) $\left[M^{-3}L^{-2}T^{-4}A^{-1}\right]$ 2) $\left[ML^{-2}\right]$ 3) $\left[M^{-3}L^{-2}T^{4}A^{4}\right]$ 4) $\left[M^{-3}L^{-2}T^{8}A^{4}\right]$

The equation of a wave is given by : $Y = A \sin \omega \left| \frac{x}{v} - K \right|$ where ω is the angular velocity and v is the linear 26. velocity. The dimension of K is:

1) LT

3) T^{-1}

If $V = \sqrt{\frac{rP}{P}}$, then dimensions of γ are:

1) $\left\lceil M^0 L^0 T^0 \right\rceil$ 2) $\left\lceil M^0 L^0 T^{-1} \right\rceil$ 3) $\left\lceil M^1 L^0 T^0 \right\rceil$ 4) $\left\lceil M^0 L^1 T^0 \right\rceil$

Suppose refractive index μ is given as $\mu = A + \frac{\beta}{\lambda^2}$ where A and B are constant and λ is the wavelength, 28.

then dimension of B are same as that of:

1) wave length

2) volume

3) pressure

The quantities A and B are related by the relation, m = A/B, where m is the linear density and A is the force. 29. The dimensions of B are of

1) Pressure

2) work

3) latent heat

4) none of the above

If Q denote the charge on the plate of a capacitor of capacitance C then the dimensional formula for Q^2 / C is 30.

1) $\left\lceil L^2 M^2 T \right\rceil$

2) $\left[LMT^{2}\right]$ 3) $\left[L^{2}MT^{-2}\right]$ 4) $\left[L^{2}M^{2}T^{2}\right]$

KEY

1-10	1	4	3	1	2	4	1	3	4	3
11-20	1	1	4	4	4	1	2	2	1	1
21-30	4	4	3	4	4	2	1	4	3	3

SOLUTIONS

1. 1N can be represented as kg m/s²

$$1N = \frac{[M][L]}{[T]^2}$$

$$1N = \frac{(1kg)(1m)}{[1s]^2} = \frac{\left(\frac{1}{2}unit \ of \ mass\right)\left(\frac{1}{5}unit \ of \ length\right)}{\left(\frac{1}{5}unit \ of \ time\right)^2}$$

$$1N = \frac{1}{2} \times \frac{1}{5} \times \frac{5}{1} \times \frac{5}{1}$$
 unit of force

$$1N = \frac{5}{2}$$
 unit of force

2. Length =
$$100.1$$
cm

So, looking the length, we can say it is measured with a instrument of least count = 0.1cm Maximum error in reading = least count = 0.1cm,

$$\Delta x = 0.1cm$$

% error in reading =
$$\frac{\Delta x}{x} \times 100$$

= $\frac{0.1}{100.1} \times 100$
= 0.1%

3. In exponential function, exponent must be a number
$$\frac{\alpha x}{ne\theta} = \dim ensionless = 1$$

$$\Rightarrow \left[\alpha\right] = \frac{\left[nR\theta\right]}{\left[x\right]} = \frac{\left[n\right]\left[R\right]\left[\theta\right]}{\left[x\right]}$$

$$\Rightarrow \left[\alpha\right] = \frac{mol \times Jmol^{-1}K^{-1}.k}{L}$$

$$\Rightarrow \left[\alpha\right] = \left[JL^{-1}\right]$$

$$\left[P\right] = \frac{\left[\alpha\right]}{\beta} \Rightarrow \beta = \frac{\left[\alpha\right]}{\left[P\right]}$$

$$\Rightarrow \beta = \frac{\left[JL^{-1}\right]}{\left[J.T^{-1}\right]}$$

$$= \left[M^{0}L^{-1}T^{1}\right]$$

$$[\beta t] = [M^{0}L^{0}T^{0}]$$

$$\Rightarrow [\beta] = [M^{0}L^{0}T^{-1}]$$

$$P = \frac{\alpha}{\beta}e^{-\beta t}$$

$$[M^{1}L^{2}T^{-3}] = \frac{\alpha}{[T^{-1}]} \times [M^{0}L^{0}T^{0}]$$

$$\alpha = [M^{1}L^{2}T^{-4}]$$

5.
$$[L] = [\rho]^a [f]^b [V]^c$$

$$[M L^2 T^{-1}] = [M L^{-3}]^a [T^{-1}]^b [L T^{-1}]^c$$

$$[M L^2 T^{-1}] = [M^a L^{-3a+c} T^{-b-c}]$$

$$[L] = [\rho][f]^{-4}[V]^{5}$$

6. Solar constant =
$$\frac{Energy}{area \times time} = \frac{\left[M^{1}L^{2}T^{-2}\right]}{\left[L^{2}\right] \times \left[T\right]}$$
$$= \left[M^{1}L^{0}T^{-3}\right]$$

Stefan's constant =
$$\frac{\Delta E}{\Delta A \Delta T \theta^4} = \frac{M^1 L^2 T^{-2}}{\left[L^2\right] \left[T^1\right] \left[K^4\right]}$$
$$\left[\sigma\right] = \left[M^1 L^0 T^{-3} K^{-4}\right]$$

7.
$$\frac{he}{4\pi m} = \frac{\left[M^{1}L^{2}T^{-1}\right]\left[M^{0}L^{0}T^{1}A^{1}\right]}{\left[M^{1}\right]} = \left[M^{0}L^{2}T^{0}A^{1}\right]$$

Magnetic moment

$$(M) = 2l \times m$$

$$[M] = [M^0 L^2 T^0 A^1]$$

8. Magnetic induction
$$(\vec{B}) = \frac{\phi}{A}$$

$$[B] = \lceil M^1 L T^{-2} A^{-1} \rceil$$

Magnetic flux $(\phi) = B \times A$

$$= \left[M^1 L^2 T^{-2} A^{-1}\right]$$

9. i)
$$\sqrt{\frac{Energy}{mass}} = \sqrt{\frac{M^1 L^2 T^{-2}}{M^1}} = \sqrt{L^2 T^{-2}} = \left[L^1 T^{-1}\right]$$

ii)
$$\sqrt{\frac{\text{Pr essure}}{\text{density}}} = \sqrt{\frac{M^1 L^{-1} T^{-2}}{M^1 L^{-3}}} = \sqrt{L^2 T^{-2}} = \left[L^1 T^{-1}\right]$$

iii)
$$\sqrt{\frac{Force}{linear\ density}} = \sqrt{\frac{M^{1}L^{1}T^{-2}}{M^{1}L^{-1}}} = \sqrt{L^{2}T^{-2}} = \left[L^{1}T^{-1}\right]$$

10.
$$\frac{e^2}{E_0 h_c} = \frac{\left[M^0 L^0 T^1 A^1 \right]^2}{\left[M^{-1} L^{-3} T^4 A^2 \right] \left[M^1 L^2 T^{-1} \right] \left[L^1 T^{-1} \right]}$$
$$= \frac{\left[T^2 A^2 \right]}{\left[T^2 A^2 \right]} = \left[M^0 L^0 T^0 \right]$$

A) Angle =
$$\frac{arc.length}{radius} = \frac{\left[M^0 L^1 T^0\right]}{\left[M^0 L^1 T^0\right]} = \left[M^0 L^0 T^0\right]$$

B) Relative density =
$$\left[M^0L^0T^0\right]$$

C) Strain =
$$\frac{change\ in\ dim\ ention}{original\ dim\ enstions} = \left[M^0L^0T^0\right]$$

D) Current =
$$\frac{q}{T} = \left[M^0 L^0 T^0 A^1 \right]$$

11.
$$[T] = [D]^x [a]^y [F]^z$$

$$\lceil M^0 L^0 T^1 \rceil = \lceil M^1 L^{-3} \rceil^x \lceil L T^{-2} \rceil^y \lceil M^1 L^1 T^{-2} \rceil^z$$

Comparing x + z = 0, -3x + y + z = 0, -2y - 2z = 1

$$x = -2, y = -2/3, z = 116$$

$$T = (D]^{-2} (a]^{-2/3} [F]^{1/6}$$

$$1/6 in F$$
12.
$$T = r^a \sigma^b \rho^c$$

$$[T] = [L]^a \lceil MT^{-2} \rceil^b \lceil M L^{-3} \rceil^c$$

$$b = -1/2$$
, $c = 1/2$, $a = 3/2$

$$T = r^{3/2} \sigma^{-1/2} \rho^{1/2}$$

$$T = \sqrt{\frac{r^3 \rho}{\sigma}}$$

$$T^2 = \frac{r^3 \rho}{\sigma}$$

13.
$$x(t) = \frac{V_0}{A} (1 - e^{At})$$

$$[At] = cons \tan t = 1$$

$$A = \frac{1}{T} = \left[T^{-1} \right]$$

$$x(t) = \frac{V_0}{4}$$

$$V_0 = x(t) \times A$$

$$[V_0] = [L] \times [T^{-1}]$$

$$[V_0] = \lceil LT^{-1} \rceil$$

14.
$$\sqrt{\frac{C}{L}} = \left[M^{1}L^{2}T^{-3}A^{-2} \right] \times \sqrt{\frac{M^{-1}L^{-2}T^{4}A^{2}}{ML^{2}T^{-2}A^{-2}}}$$
$$= \left[M^{1}L^{2}T^{-3}A^{-2} \right] \times \left[M^{-2}L^{-4}T^{6}A^{4} \right]$$

$$= \left[M^{1}L^{2}T^{-3}A^{-2} \right] \times \left[M^{-1}L^{-2}T^{3}A^{2} \right]$$

$$= \left\lceil M^0 L^0 T^0 A^0 \right\rceil$$

Units = $kg m^2 / sec$

$$\Rightarrow \frac{\frac{2}{3} \times \left(\frac{2}{3}\right)^r}{2/3} = \frac{4}{9}$$

$$16. T = V^a A^b C^c$$

$$[T] = [L^3]^a [L^2]^b [LT^{-1}]^c$$

$$c = -1, b = -1, a = +1$$

$$T = V^1 A^{-1} C^{-1}$$

$$T = \frac{V}{AC}, \ k \to cons \tan t$$

$$T = \frac{KV}{AC}$$

$$17. f = M^a r^b c^c$$

$$\left[T^{-1}\right] = \left[M\right]^a \left[L\right]^b \left[M^{-1}LT^2\right]^c$$

$$a = c = -1/2$$

$$b = 1/2$$

$$f \propto M^{-1/2} r^{1/2} C^{-1/2}$$

$$f \propto r^{1/2}$$

18.
$$T \propto P^a d^b S^c$$

$$a+b+c=0, -a-3b=0, -2a-2c=1$$

$$b = 1/2, a = -3/2, c = 1$$

$$T \propto P^{-3/2} d^{1/2} S^1$$

19.
$$M \propto V^a F^b W^c$$

$$\begin{bmatrix} M^{1} \end{bmatrix} = \begin{bmatrix} L^{1}T^{-1} \end{bmatrix}^{a} \begin{bmatrix} M^{1}L^{1}T^{-2} \end{bmatrix}^{b} \begin{bmatrix} M^{1}L^{2}T^{-2} \end{bmatrix}^{c}$$

$$b = 0, c = 1, a = -2$$

$$b = 0, c = 1, a = -2$$

$$M = V^{-2}F^0W^1$$

$$M = W / V^2$$

20.
$$V \propto A^{1/2} d^{-1/2}$$

$$[V] = [A]^{1/2} [d]^{-1/2}$$

$$[A]^{1/2} = [V][d]^{-1/2}$$

$$[A] = [V]^2 [d]^1$$

$$[A] = \lceil M^1 L^{-1} T - 2 \rceil$$

Elastic constant
$$=\frac{stress}{strain}$$

$$E = \left[M^1 L^{-1} T^{-2} \right]$$

21.
$$x = \varepsilon_0 L \frac{\Delta V}{\Delta t}$$

$$x = \frac{\left[M^{-1}L^{-3}T^{4}A^{2}\right]\left[L\right]\left[M^{1}L^{2}T^{-3}A^{-1}\right]}{\left[T^{1}\right]}$$

$$x = [A]$$

x = current

$$22. T = 2\pi \sqrt{\frac{L}{g}}$$

$$T^2 = 4\pi^2 \frac{L}{g}$$

$$g = 4\pi^2 \frac{L}{T^2}$$

The maximum percentage error $\frac{\Delta g}{g} = \frac{\Delta L}{L} + 2\frac{\Delta T}{T}$

$$\frac{\Delta g}{g} = 2\% + 2 \times 3$$

$$=2\%+6\%$$

$$\frac{\Delta g}{g} = 8\%$$

$$23. \qquad V = \frac{p}{2l} \left(\frac{F}{m}\right)^{1/2}$$

Squaring the equation on either side,

$$V^2 = \frac{P^2}{4l^2} \left(\frac{F}{m}\right)$$

$$\Rightarrow m = \frac{p^2 F}{4l^2 v^2}$$

$$\Rightarrow m = \frac{\left[ML^{1}T^{-2}\right]}{\left[L^{2}\right]\left[T^{-1}\right]^{2}}$$

$$\Rightarrow m = \lceil M^1 L^{-1} T^0 \rceil$$

24. n=no.of particle per unit area per unit time $n_1 \& n_2 = \text{no.of particle per unit volume } x_1 \& x_2 \text{ are distance}$ from some reference point. Dimension of 'n' = $\left[L^{-2}T^{-1}\right]$

Dimensional formula of $n_1 \& n_2 = [L^{-3}]$

Dimensional formula of $x_1 & x_2 = [L]$.

$$n = -d\left(\frac{n_2 - n_1}{x_2 - x_1}\right)$$

$$D = -n \left(\frac{x_2 - x_1}{n_2 - n_1} \right)$$

$$D = \frac{\left[L^{-2}T^{-1}\right]\left[L\right]}{\left[L^{-2}\right]}$$

$$D = \left[M^0 L^2 T^{-1} \right]$$

$$25. x = 3yz^2$$

Let
$$y = M^a L^b T^c Q^d$$

$$x = 3yz^2$$

$$\Rightarrow y = \frac{x}{3z^2}$$

$$\Rightarrow y = \frac{\left[M^{-1}L^{-2}A^{2}T^{4}\right]}{\left[M^{1}A^{-1}T^{-2}\right]^{2}}$$

$$Q = AT$$

$$y = \left\lceil M^{-3} L^{-2} T^{4Q^4} \right\rceil$$

26.
$$\frac{x}{V}$$
 have the same dimension as of K.

Dimension formula of $K = \frac{x}{V}$

$$K = \frac{[L]}{\lceil LT^{-1} \rceil} = [T]$$

$$27. V = \sqrt{\frac{r\rho}{\rho}}$$

$$\Rightarrow r = \frac{r\rho}{\rho}$$

$$\Rightarrow r = \frac{\left[LT^{-1}\right]^2 \left[M^1L^{-3}\right]}{\left[M^1L^{-1}T^{-2}\right]}$$

$$r = \left[M^0 L^0 T^0\right]$$

28.
$$\mu = A + \frac{B}{\lambda^2}$$

 $\mu \rightarrow$ dimension less quantity according to principle of homogeneity

$$\mu = \frac{B}{\lambda^2}$$

$$B = \lambda^2$$

$$B = L^2$$

 $L^2 \rightarrow$ dimension of area

$$29. \qquad m \to \left[M^1 L^{-1} \right]$$

$$A \to \left[M^1 L^1 T^{-2} \right]$$

$$m = A / B$$

$$\Rightarrow B = A / m$$

$$\Rightarrow B = \frac{\left[M^{1}L^{1}T^{-2}\right]}{\left[M^{1}L^{-1}\right]}$$

$$\Rightarrow B = \left[L^2 T^{-2}\right]$$

 $\lceil L^2 T^{-2} \rceil \rightarrow$ dimensional formula of latest heat.

30. The term $\frac{Q^2}{2c}$ is the formula of energy stored in a capacitor so it has the dimension of energy. So,

$$\frac{Q^2}{c} = \left[M^1 L^2 T^{-2} \right]$$