# **KU LEUVEN**



Privacy-friendly machine learning algorithms for intrusion detection systems supervisor: Pr. dr. ir. Bart Preneel

Henri De Plaen

Master Applied Mathematics, KU Leuven

December 22, 2017 Leuven, Belgium



0 – Outline 2/26

- Introduction
- Intrusion detection systems
- Multiparty computation
- Methodology
- Conclusion

1 – Outline 3/26

- Introduction
- 2 Intrusion detection systems
- Multiparty computation
- 4 Methodology
- Conclusion

- As computers are used more and more (including for sensible data), and the connection between them increases as well, there is a constant need for better intrusion detection systems.
- Machine learning algorithms can increase performance of a lot of existing applications, but they need a significant dataset.
- The amount of data increases as well, but remains sensible in the case of intrusion detection systems, hence the need for encryption.



Privacy-friendly data pooling for enhancing intrusion detection systems



2 – Outline 6/26

- Introduction
- Intrusion detection systems
- Multiparty computation
- 4 Methodology
- Conclusion

Different types, based on where the intrusion takes place

- Network Intrusion Detection System (NIDS)
- Host Intrusion Detection System (HIDS)
- Hybrid Intrusion Detection System

#### Different detection methods

- Signature based
  - Advantages: accuracy and time
  - Disadvantages: only known intrusion types are detected
- Anomaly based
  - Advantages: new intrusion types can be detected
  - Disadvantages: malicious activity disguised as normal traffic can pass through
- Machine learning (classification)

**KU LEUVEN** 

Different types, based on where the intrusion takes place

- Network Intrusion Detection System (NIDS)
  - Advantages: detects attack before it occurs
  - Disadvantages: needs to be implemented on the network
  - Host Intrusion Detection System (HIDS)
    - Advantages: collects broader data type
    - Disadvantages: needs to be implemented on each machine and only detects after the intrusion
  - Hybrid Intrusion Detection System
    - Advantages: much more effective
    - Disadvantages: huge implementation necessary, not privacy-friendly

Privacy-friendly data pooling for machine learning network intrusion detection system



3 – Outline 10/26

- Introduction
- 2 Intrusion detection systems
- Multiparty computation
- 4 Methodology
- Conclusion

### Addition over $\mathbb{Z}_2$

- i players have each a secret number  $n_i$
- they want to know if the sum of their numbers is even or uneven.  $\Sigma n_i \mod 2 = 0$  or 1 ?
- they don't want anybody except them to know their number

### Solution

- ullet each players divides its number  $n_i$  into j  $m_{i,j}$  parts.  $\Sigma m_{i,j} = n_i$
- j players each receive the  $m_{i,j}$ -part of each i players, sums it up and say if it is even or not.  $\Sigma_i m_{i,j} \mod 2 = 0$  or 1.
- the results of all j players is then summed up and is even if  $\Sigma n_i \mod 2 = 0$  and uneven otherwise. The problem is resolved.



B. 7 (4+3+0)

KU LEUVEN

#### Garbled

- Boolean circuit
- Based on OT
- Constant number of rounds

### Arithmetic

- Based on somewhat homomorphic encryption (SHE)
- Allows for addition and multiplication



- The receiver doesn't get any information on the strings he didn't recieve
- The sender doesn't know which string was asked

| Alice                                                    |                             | Bob                                       |  |  |  |
|----------------------------------------------------------|-----------------------------|-------------------------------------------|--|--|--|
| $(E.n) \& x_0, x_1$                                      | $\xrightarrow{N,e,x_0,x_1}$ | $b \in \{0,1\}$ $v = (x_b - k^e) \bmod N$ |  |  |  |
|                                                          | <i>v</i>                    |                                           |  |  |  |
| $k_0 = (v - x_0)^d \mod N$<br>$k_1 = (v - x_1)^d \mod N$ |                             |                                           |  |  |  |
| $m'_0 = m_0 + k_0$<br>$m'_1 = m_1 + k_1$                 | $\xrightarrow{m_0',m_1'}$   | $m_b = m_b' - k$                          |  |  |  |

| g | e | output $g \wedge e$ |               | garbled output          |               | permuted garbled output |
|---|---|---------------------|---------------|-------------------------|---------------|-------------------------|
| 0 | 0 | 0                   |               | $Enc(H(W^0_G,W^0_E),0)$ |               | $Enc(H(W^0_G,W^1_E),0)$ |
| 0 | 1 | 0                   | $\Rightarrow$ | $Enc(H(W^0_G,W^1_E),0)$ | $\Rightarrow$ | $Enc(H(W^1_G,W^1_E),1)$ |
| 1 | 0 | 0                   |               | $Enc(H(W^1_G,W^0_E),0)$ |               | $Enc(H(W^0_G,W^0_E),0)$ |
| 1 | 1 | 1                   |               | $Enc(H(W^1_G,W^1_E),1)$ |               | $Enc(H(W^1_G,W^0_E),0)$ |

 $\bf Fig.\,1.$  The garbling of an AND gate

#### Different leads

- Fairplay (boolean, n-party)
- BMR (boolean, n-party)
- Sharemind (3-party, proprietary)
- VIFF (obsolete)
- ABY (2-party)
- SPDZ (artihmetic, n-party)

Privacy-friendly collaborative network intrusion detection system



4 – Outline 18/26

- Introduction
- 2 Intrusion detection systems
- Multiparty computation
- Methodology
- Conclusion

#### **Datasets**

- KDD CUP '99
- AWID
- PCAP
- UNB ISCX
- CSIC 2010 HTTP Dataset
- West Point NSA DataSet





## Current research algorithms

- Semi-supervised learning algorithms with fuzziness
- K-Nearest Neighbors
- Support Vector Machines
- Bayes Classifier
- EM-Clustering
- Genetic algorithms
- Classification Tree

- Build on existing application (e.g. Bro Network Security Monitor, OpenNMS,...), in the form of a plug-in.
- Feed with constant new data, provided from other analysis tools
- User-friendly
- Off-line



4 - Agenda 22/26



- Begin March: Benchmark and designing working machine-learning algorithm
- Begin April: Design of final algorithm including MPC
- Begin May: Prototyping as a plug-in
- Begin June: Poster and report

5 – Outline 23/26

- Introduction
- 2 Intrusion detection systems
- Multiparty computation
- 4 Methodology
- Conclusion

5 – References 24/26

- D. Catalano, R. Cramer, G. D. Crescenzo, I. Darmgård, D. Pointcheval, and T. Takagi, Contemporary Cryptology. Birkhäuser Basel, 2005.
- [2] A. R. B. S. P. F. Atmaja Sahasrabuddhe, Sonali Naikade, "Survey on intrusion detection system using data mining techniques," *International Research Journal of Engineering and Technology (IRJET)*, may 2017.

5 – Conclusion 25/26

## Further optimizations

- Hybrid Intrusion Detection Systems
- Speed and complexity optimizations (research on HE)
- Deep learning



5 – Questions? 26/26



**KU LEUVEN**