Computación en Internet I

Andrés A. Aristizábal P. aaaristizabal@icesi.edu.co

Departamento de Tecnologías de Información y Comunicaciones

2023-1

Agenda

- Wireless networks
 - Wireless standards
 - Wireless topologies
- Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

Agenda del día

- Wireless networks
 - Wireless standards
 - Wireless topologies
- 2 Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

What are the wireless standards?

 They are a set of standards that allows devices from different manufacturers to communicate with each other.

What are the wireless standards?

- They are a set of standards that allows devices from different manufacturers to communicate with each other.
- Such as:

What are the wireless standards?

- They are a set of standards that allows devices from different manufacturers to communicate with each other.
- Such as:
 - ▶ IEEE 802.11 wireless standards (or Wi-Fi).
 - IEEE 802.15 (Bluetooth).
 - IEEE 802.16 (WiMAX).

How did the IEEE 802.11 started?

 In July 1990, the IEEE, announced that their 802 project was forming a working group to investigate and develop wireless standards.

How did the IEEE 802.11 started?

- In July 1990, the IEEE, announced that their 802 project was forming a working group to investigate and develop wireless standards.
- This working group was named 802.11.

How did the IEEE 802.11 started?

- In July 1990, the IEEE, announced that their 802 project was forming a working group to investigate and develop wireless standards.
- This working group was named 802.11.
- The 802.11 has created several wireless standards that are in operation in various environments.

What is CSMA/CA?

• Carrier Sense Multiple Access/Collision Avoidance is the access method used in Wi-Fi networks.

What is CSMA/CA?

- Carrier Sense Multiple Access/Collision Avoidance is the access method used in Wi-Fi networks.
 - Carrier sense means it listens to what is happening on the carrier, in this case, the airwaves.
 - Multiple access simply means that the carrier is available to multiple devices.
 - Collision avoidance means that there is a mechanism in place to avoid collisions.

What is the RTS/CTS process the CSMA/CA follows?

It is a simple process called Ready To Send/Clear To Send.

What is the RTS/CTS process the CSMA/CA follows?

- It is a simple process called Ready To Send/Clear To Send.
- It consists of four steps:
 - 1 The sending device listens out for any transmissions.
 - 2 If no transmissions are heard, it sends an RTS message to the access point advising it has data that it wants to transmit.
 - 3 If the access point is free, it will send a CTS message to the device.
 - The sending device transmits the data

What are radio waves?

• Form part of the electromagnetic spectrum.

- Form part of the electromagnetic spectrum.
- Appear in the radio frequency zone of the spectrum.

- Form part of the electromagnetic spectrum.
- Appear in the radio frequency zone of the spectrum.
- Are generated by passing an alternating current through a conductor and transmitted out of an antenna as a waveform or sine wave.

- Form part of the electromagnetic spectrum.
- Appear in the radio frequency zone of the spectrum.
- Are generated by passing an alternating current through a conductor and transmitted out of an antenna as a waveform or sine wave.
- Data is transmitted through these radio waves.

- Form part of the electromagnetic spectrum.
- Appear in the radio frequency zone of the spectrum.
- Are generated by passing an alternating current through a conductor and transmitted out of an antenna as a waveform or sine wave.
- Data is transmitted through these radio waves.
- How close each of the peaks of the waves are is dictated by the frequency.

- Form part of the electromagnetic spectrum.
- Appear in the radio frequency zone of the spectrum.
- Are generated by passing an alternating current through a conductor and transmitted out of an antenna as a waveform or sine wave.
- Data is transmitted through these radio waves.
- How close each of the peaks of the waves are is dictated by the frequency.

What is frequency?

 Can be defined as the number of times a specific event occurs in a specified period of time.

- Can be defined as the number of times a specific event occurs in a specified period of time.
- Or defined by the number of cycles it completes in one second.

- Can be defined as the number of times a specific event occurs in a specified period of time.
- Or defined by the number of cycles it completes in one second.
 - When the wave signal has returned to its starting point, it has completed a single RF signal cycle.
 - Each cycle is measured in hertz (Hz).
 - One cycle per second is 1 Hz.

- Can be defined as the number of times a specific event occurs in a specified period of time.
- Or defined by the number of cycles it completes in one second.
 - When the wave signal has returned to its starting point, it has completed a single RF signal cycle.
 - Each cycle is measured in hertz (Hz).
 - One cycle per second is 1 Hz.
- The higher the frequency, the more data can be transmitted per second.

- Can be defined as the number of times a specific event occurs in a specified period of time.
- Or defined by the number of cycles it completes in one second.
 - When the wave signal has returned to its starting point, it has completed a single RF signal cycle.
 - Each cycle is measured in hertz (Hz).
 - One cycle per second is 1 Hz.
- The higher the frequency, the more data can be transmitted per second.
- Higher frequencies tend to have a shorter wavelength
 - Over distance, the signal becomes too weak to be received.

How different frequencies compare to each other?

What are the set of prefixes to identify the frequency?

What are the set of prefixes to identify the frequency?

- 1,000 Hz = 1 Kilohertz (1 KHz)
- 1,000 KHz = 1 Megahertz (1 MHz)
- 1,000 MHz = 1 Gigahertz (1 GHz)

Which are the most common frequencies used in WiFi communication?

Which are the most common frequencies used in WiFi communication?

• The 2.4 GHz and 5 GHz ranges.

Which are the most common frequencies used in WiFi communication?

- The 2.4 GHz and 5 GHz ranges.
- Both are classed as unlicensed frequency ranges.

Which are the most common frequencies used in WiFi communication?

- The 2.4 GHz and 5 GHz ranges.
- Both are classed as unlicensed frequency ranges.
 - Anyone can use them without requiring a permit.
 - Avoids every user of a wireless computing device seeking a license
 - There is an abundance of them out there, which can lead to unexpected Radio Frequency Interference (RFI).

What can be said about the 2.4 GHz frequency?

 Particularly affected by RFI (baby monitors, microwave ovens, Bluetooth, radio-controlled toys all use this frequency).

What can be said about the 2.4 GHz frequency?

- Particularly affected by RFI (baby monitors, microwave ovens, Bluetooth, radio-controlled toys all use this frequency).
- The 2.4 GHz frequency band is broken down into up to 14 overlapping channels.

What can be said about the 2.4 GHz frequency?

- Particularly affected by RFI (baby monitors, microwave ovens, Bluetooth, radio-controlled toys all use this frequency).
- The 2.4 GHz frequency band is broken down into up to 14 overlapping channels.
 - ▶ In the US and Canada, there are 11 channels available.
 - Most of Europe has 13.
 - Japan has 14 channels available.
 - Ideally to implement a wireless network, you will look to see what channels are available to use and, where possible, spot an unused channel that does not overlap with any channels in use.

What about the 5 GHz frequency?

• It used to be less saturated with devices than its 2.4 GHz counterpart.

What about the 5 GHz frequency?

- It used to be less saturated with devices than its 2.4 GHz counterpart.
- However more devices embraced standards that supported this range.

What about the 5 GHz frequency?

- It used to be less saturated with devices than its 2.4 GHz counterpart.
- However more devices embraced standards that supported this range.
- This range is split into channels, however, they are non-overlapping and there are 23 of them of 20 MHz each.

What about the 5 GHz frequency?

- It used to be less saturated with devices than its 2.4 GHz counterpart.
- However more devices embraced standards that supported this range.
- This range is split into channels, however, they are non-overlapping and there are 23 of them of 20 MHz each.
- Any devices that support both frequencies are referred to as dual-band.

What is modulation of radio waves?

• It is a method of modifying the transmission of radio waves to increase efficiency.

What is modulation of radio waves?

- It is a method of modifying the transmission of radio waves to increase efficiency.
- It can be applied to either the power (amplitude), frequency, or phase.

What is modulation of radio waves?

- It is a method of modifying the transmission of radio waves to increase efficiency.
- It can be applied to either the power (amplitude), frequency, or phase.
 - By modulating the power, the height of the sine wave is increased or decreased.
 - Modulating the frequency involves changing the frequency in such a way that the peaks of the sine waves are nearer or further away from each other.
 - The higher the frequency (the closer the waves are), the more data will be transmitted.

What is modulation of radio waves?

- It is a method of modifying the transmission of radio waves to increase efficiency.
- It can be applied to either the power (amplitude), frequency, or phase.
 - By modulating the power, the height of the sine wave is increased or decreased.
 - Modulating the frequency involves changing the frequency in such a way that the peaks of the sine waves are nearer or further away from each other.
 - The higher the frequency (the closer the waves are), the more data will be transmitted.
- By modulating the signal, there is a more efficient use of the available bandwidth offered by the channel.

What is IEEE 802.11a?

 A standard released in September 1999 which supported devices using the 5 GHz range.

- A standard released in September 1999 which supported devices using the 5 GHz range.
- Had a speed of 54 Mbps.

- A standard released in September 1999 which supported devices using the 5 GHz range.
- Had a speed of 54 Mbps.
- Had an indoor range of 35 m.

- A standard released in September 1999 which supported devices using the 5 GHz range.
- Had a speed of 54 Mbps.
- Had an indoor range of 35 m.
- Utilized a modulation technology called Orthogonal Frequency Distribution Multiplexing (OFDM).
 - This technique broke the 20 MHz channels used by this frequency range into 52 sub-carriers per channel.
 - Each sub-carrier had a bandwidth of 312.5 KHz, and therefore had a lower data rate than a full channel.
 - It worked quite efficiently as the number of sub-carriers meant the overall data rate was better.

What is IEEE 802.11b?

 It utilized the 2.4 GHz frequency range and therefore is not compatible with 802.11a.

- It utilized the 2.4 GHz frequency range and therefore is not compatible with 802.11a.
- This disparity in frequency between the two standards meant that there was no compatibility between the devices in each of the standards.

- It utilized the 2.4 GHz frequency range and therefore is not compatible with 802.11a.
- This disparity in frequency between the two standards meant that there was no compatibility between the devices in each of the standards.
- It has a maximum indoor range of 35 m.

- It utilized the 2.4 GHz frequency range and therefore is not compatible with 802.11a.
- This disparity in frequency between the two standards meant that there was no compatibility between the devices in each of the standards.
- It has a maximum indoor range of 35 m.
- Uses a technique called Direct Sequence Spread Spectrum (DSSS).
 - If a radio signal is corrupted in transit between devices it would likely be discarded and the original transmission would have to be re-sent. T
 - ► To overcome this obstacle, additional data would be transmitted that would allow for errors occurring in the transmission.
 - When DSSS is used, rather than sending the data over as a single bit, a representative set of bit values is sent (known as chips).
 - If one of the bits in the stream is corrupted, then we can still calculate the original value of the bit being transmitted

What is IEEE 802.11g?

 Was designed to enhance the technical capabilities of 802.11b and provide a speed of up to 54 Mbps.

- Was designed to enhance the technical capabilities of 802.11b and provide a speed of up to 54 Mbps.
- A frequency of 2.4 GHz was used (like 802.11b).

- Was designed to enhance the technical capabilities of 802.11b and provide a speed of up to 54 Mbps.
- A frequency of 2.4 GHz was used (like 802.11b).
- In the early days of 802.11g implementation, organizations did not necessarily have to replace all of their hardware at the same time.

- Was designed to enhance the technical capabilities of 802.11b and provide a speed of up to 54 Mbps.
- A frequency of 2.4 GHz was used (like 802.11b).
- In the early days of 802.11g implementation, organizations did not necessarily have to replace all of their hardware at the same time.
- The downfall of mixing standards on a network was that the network could only go as fast as the slowest device.

- Was designed to enhance the technical capabilities of 802.11b and provide a speed of up to 54 Mbps.
- A frequency of 2.4 GHz was used (like 802.11b).
- In the early days of 802.11g implementation, organizations did not necessarily have to replace all of their hardware at the same time.
- The downfall of mixing standards on a network was that the network could only go as fast as the slowest device.
- IEEE 802.11g had a maximum indoor range of 38 m.

- Was designed to enhance the technical capabilities of 802.11b and provide a speed of up to 54 Mbps.
- A frequency of 2.4 GHz was used (like 802.11b).
- In the early days of 802.11g implementation, organizations did not necessarily have to replace all of their hardware at the same time.
- The downfall of mixing standards on a network was that the network could only go as fast as the slowest device.
- IEEE 802.11g had a maximum indoor range of 38 m.
- For modulation, this standard uses a derivative of OFDM.

What is IEEE 802.11n?

 It supported both 2.4 GHz and 5 GHz, therefore, devices supporting it were usually dual-band.

- It supported both 2.4 GHz and 5 GHz, therefore, devices supporting it were usually dual-band.
- It introduced the concept of Multiple-Input Multiple-Output (MIMO) antennas.
 - 802.11n devices usually had multiple antennas.
 - It may have some antennas transmitting or some receiving.
 - All of these antennas could be used for communication with one or other or multiple devices.
 - Some antennas could work on one frequency, while the remainder could work on the other frequency.

What is IEEE 802.11n?

• It could make channel bonding, a process of combining two adjacent 20 MHz channels into one 40 MHz channel (doubling the bandwidth).

- It could make channel bonding, a process of combining two adjacent 20 MHz channels into one 40 MHz channel (doubling the bandwidth).
- It could use a technique called beamforming.
 - When an antenna transmits, the signal goes out equally in all directions.
 - The signal is more focused in a particular direction and therefore provides a stronger signal, reaching up to 70 m.

- It could make channel bonding, a process of combining two adjacent 20 MHz channels into one 40 MHz channel (doubling the bandwidth).
- It could use a technique called beamforming.
 - When an antenna transmits, the signal goes out equally in all directions.
 - The signal is more focused in a particular direction and therefore provides a stronger signal, reaching up to 70 m.
- Combining all of these techniques, 802.11n provides speeds of up to 600 Mbps (in total).

- It could make channel bonding, a process of combining two adjacent 20 MHz channels into one 40 MHz channel (doubling the bandwidth).
- It could use a technique called beamforming.
 - When an antenna transmits, the signal goes out equally in all directions.
 - The signal is more focused in a particular direction and therefore provides a stronger signal, reaching up to 70 m.
- Combining all of these techniques, 802.11n provides speeds of up to 600 Mbps (in total).
- For modulation, this standard uses a derivative of OFDM.

What is IEEE 802.11ac

• Uses a single 5 GHz frequency.

- Uses a single 5 GHz frequency.
- Improved on the MIMO beamforming and channel bonding.

- Uses a single 5 GHz frequency.
- Improved on the MIMO beamforming and channel bonding.
- Utilized 40 MHz channels that could be bonded to make 80 MHz and 160 MHz channels.

- Uses a single 5 GHz frequency.
- Improved on the MIMO beamforming and channel bonding.
- Utilized 40 MHz channels that could be bonded to make 80 MHz and 160 MHz channels
- Used a very efficient modulation technique called Quadrature Amplitude Modulation (QAM).

- Uses a single 5 GHz frequency.
- Improved on the MIMO beamforming and channel bonding.
- Utilized 40 MHz channels that could be bonded to make 80 MHz and 160 MHz channels.
- Used a very efficient modulation technique called Quadrature Amplitude Modulation (QAM).
- These improvements allowed 802.11ac to have a staggering overall speed of 1.3 Gbps.

- Uses a single 5 GHz frequency.
- Improved on the MIMO beamforming and channel bonding.
- Utilized 40 MHz channels that could be bonded to make 80 MHz and 160 MHz channels.
- Used a very efficient modulation technique called Quadrature Amplitude Modulation (QAM).
- These improvements allowed 802.11ac to have a staggering overall speed of 1.3 Gbps.
- However, the indoor range dropped back down to 35 m.

How can all this standards be summarized?

Category	Speed	Frequency	Indoor distance	Modulation
В	11 Mbps	2.4 GHz	35 m	DSSS
G	54 Mbps	2.4 GHz	38 m	OFDM
A	54 Mbps	5 GHz	35 m	OFDM
N	Up to 600 Mbps	2.4 GHz & 5 GHz	70 m	OFDM
AC	1.3 Gbps	5 GHz	35 m	QAM

Agenda del día

- Wireless networks
 - Wireless standards
 - Wireless topologies
- Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

Which areas to consider while planning a wireless network?

Hardware.

- Hardware.
- Environment.

- Hardware.
- Environment.
- The number of users.

- Hardware.
- Environment.
- The number of users.
- Site surveys.

Which areas to consider while planning a wireless network?

- Hardware.
- Environment.
- The number of users.
- Site surveys.

How is a Wi-Fi network identified?

Which areas to consider while planning a wireless network?

- Hardware.
- Environment.
- The number of users.
- Site surveys.

How is a Wi-Fi network identified?

• It is identified by its Service Set Identifier (SSID).

Which areas to consider while planning a wireless network?

- Hardware.
- Environment.
- The number of users.
- Site surveys.

How is a Wi-Fi network identified?

- It is identified by its Service Set Identifier (SSID).
- A human-readable name usually created by the network administrator and broadcast out by the WAPs.

What is the ad hoc mode network?

 An ad hoc mode network (or peer-to-peer) is geared toward connecting devices together without the need for any intermediary devices such as WAPs.

What is the ad hoc mode network?

- An ad hoc mode network (or peer-to-peer) is geared toward connecting devices together without the need for any intermediary devices such as WAPs.
- Devices simply talk to each other, in what is referred to as an Independent Basic Service Set (IBSS).

What is the ad hoc mode network?

- An ad hoc mode network (or peer-to-peer) is geared toward connecting devices together without the need for any intermediary devices such as WAPs.
- Devices simply talk to each other, in what is referred to as an Independent Basic Service Set (IBSS).
 - The IBSSID is a pseudorandom identifier similar to a MAC address generated by the device creating the ad hoc network.

What is the infrastructure mode network?

 Clients must connect to an intermediary wireless network device in order to communicate to other devices on the network.

- Clients must connect to an intermediary wireless network device in order to communicate to other devices on the network.
- May involve just one WAP or multiple WAPs.

- Clients must connect to an intermediary wireless network device in order to communicate to other devices on the network.
- May involve just one WAP or multiple WAPs.
- Usually connects to a wired backbone network.

- Clients must connect to an intermediary wireless network device in order to communicate to other devices on the network.
- May involve just one WAP or multiple WAPs.
- Usually connects to a wired backbone network.
- The SSID will be the same for all WAPs.

What is the infrastructure mode network?

 A single WAP and its associated devices are referred to as a Basic Service Set (BSS).

- A single WAP and its associated devices are referred to as a Basic Service Set (BSS).
- Identified by a Basic Service Set Identifier (BSSID), which is the MAC address of the WAP.

What is the infrastructure mode network?

- A single WAP and its associated devices are referred to as a Basic Service Set (BSS).
- Identified by a Basic Service Set Identifier (BSSID), which is the MAC address of the WAP.
- A collection of BSSes using the same SSID form an Extended Service Set (ESS).

What is the infrastructure mode network?

- A single WAP and its associated devices are referred to as a Basic Service Set (BSS).
- Identified by a Basic Service Set Identifier (BSSID), which is the MAC address of the WAP.
- A collection of BSSes using the same SSID form an Extended Service Set (ESS).
- Identified by an Extended Service Set Identifier (ESSID), which is usually the SSID of the network.

What is the infrastructure mode network?

- A single WAP and its associated devices are referred to as a Basic Service Set (BSS).
- Identified by a Basic Service Set Identifier (BSSID), which is the MAC address of the WAP.
- A collection of BSSes using the same SSID form an Extended Service Set (ESS).
- Identified by an Extended Service Set Identifier (ESSID), which is usually the SSID of the network.
- It is the main type of wireless network implemented within an organization and at home.

What is an example of this kind of network?

What is a wireless bridge?

• A wireless bridge allows a wired network to connect with a wireless network

- A wireless bridge allows a wired network to connect with a wireless network
- Also enables two wireless networks to connect.

- A wireless bridge allows a wired network to connect with a wireless network
- Also enables two wireless networks to connect.
- In this sort of implementation, a unidirectional antenna, such as a Yagi most likely be used.

- A wireless bridge allows a wired network to connect with a wireless network
- Also enables two wireless networks to connect.
- In this sort of implementation, a unidirectional antenna, such as a Yagi most likely be used.
- It is is a form of point-to-point network.

- A wireless bridge allows a wired network to connect with a wireless network
- Also enables two wireless networks to connect.
- In this sort of implementation, a unidirectional antenna, such as a Yagi most likely be used.
- It is is a form of point-to-point network.

What is a wireless distribution system?

• WDS is a wireless network where the majority of the networks do not connect to a wired network but connect to each other.

What is a wireless distribution system?

- WDS is a wireless network where the majority of the networks do not connect to a wired network but connect to each other.
- Any WAP that connects to the wired network is referred to as a main base station.

What is a wireless distribution system?

- WDS is a wireless network where the majority of the networks do not connect to a wired network but connect to each other.
- Any WAP that connects to the wired network is referred to as a main base station.
- A remote base station is one that receives data from wireless clients and forwards them to a main base station or relay base station.

What is a wireless distribution system?

- WDS is a wireless network where the majority of the networks do not connect to a wired network but connect to each other.
- Any WAP that connects to the wired network is referred to as a main base station.
- A remote base station is one that receives data from wireless clients and forwards them to a main base station or relay base station.
- A relay base station receives data from main and remote base stations and forwards it to another base station.

Agenda del día

- Wireless networks
 - Wireless standards
 - Wireless topologies
- Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

What is a topology?

• It can be thought of as a map that details how the network fits together and how the data travels.

What is a topology?

- It can be thought of as a map that details how the network fits together and how the data travels.
- They can be classed as either physical or logical.

What is a topology?

- It can be thought of as a map that details how the network fits together and how the data travels.
- They can be classed as either physical or logical.
- A physical topology describes how the devices are connected together.

What is a topology?

- It can be thought of as a map that details how the network fits together and how the data travels.
- They can be classed as either physical or logical.
- A physical topology describes how the devices are connected together.
- A logical topology describes how the data travels from device to device.

Agenda del día

- Wireless networks
 - Wireless standards
 - Wireless topologies
- Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

How is the access method in a bus topology?

 The IEEE 802.3 uses an access method called carrier sense multiple access/collision detection (CSMA/CD), which is used for a number of wired connections.

- The IEEE 802.3 uses an access method called carrier sense multiple access/collision detection (CSMA/CD), which is used for a number of wired connections.
- Any device wishing to transmit on the network has to listen out for a gap in the traffic (carrier sense).

- The IEEE 802.3 uses an access method called carrier sense multiple access/collision detection (CSMA/CD), which is used for a number of wired connections.
- Any device wishing to transmit on the network has to listen out for a gap in the traffic (carrier sense).
- If no device is talking the device will transmit its data.

- The IEEE 802.3 uses an access method called carrier sense multiple access/collision detection (CSMA/CD), which is used for a number of wired connections.
- Any device wishing to transmit on the network has to listen out for a gap in the traffic (carrier sense).
- If no device is talking the device will transmit its data.
- If a device is already transmitting, the device wishing to send data will wait a random amount of back off time, before repeating the process.

What are the advantages of a bus topology?

What are the advantages of a bus topology?

• Its relative simplicity makes it well suited for a small network.

What are the advantages of a bus topology?

- Its relative simplicity makes it well suited for a small network.
- Offers some resilience.

What are the advantages of a bus topology?

- Its relative simplicity makes it well suited for a small network.
- Offers some resilience.
- Relatively cheap to implement, as it uses a minimal amount of cabling.

What are the advantages of a bus topology?

- Its relative simplicity makes it well suited for a small network.
- Offers some resilience.
- Relatively cheap to implement, as it uses a minimal amount of cabling.

What are the disadvantages of a bus topology?

What are the advantages of a bus topology?

- Its relative simplicity makes it well suited for a small network.
- Offers some resilience.
- Relatively cheap to implement, as it uses a minimal amount of cabling.

What are the disadvantages of a bus topology?

• The more devices added, the more collisions occurring.

What are the advantages of a bus topology?

- Its relative simplicity makes it well suited for a small network.
- Offers some resilience.
- Relatively cheap to implement, as it uses a minimal amount of cabling.

What are the disadvantages of a bus topology?

- The more devices added, the more collisions occurring.
- The backbone cable serves as a single point of failure.

Bus topology

What are the advantages of a bus topology?

- Its relative simplicity makes it well suited for a small network.
- Offers some resilience.
- Relatively cheap to implement, as it uses a minimal amount of cabling.

- The more devices added, the more collisions occurring.
- The backbone cable serves as a single point of failure.
- It can be quite difficult to troubleshoot.

Agenda del día

- Wireless networks
 - Wireless standards
 - Wireless topologies
- Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

How can a ring topology be described?

Each device is connected to two devices.

- Each device is connected to two devices.
- Data is transferred by passing it on to the next device in the network.

- Each device is connected to two devices.
- Data is transferred by passing it on to the next device in the network.
- If the data is not for that device, it will forward it on to the next device and so on.

- Each device is connected to two devices.
- Data is transferred by passing it on to the next device in the network.
- If the data is not for that device, it will forward it on to the next device and so on.

What are the advantages of a ring topology?

Relatively simple to troubleshoot.

- Relatively simple to troubleshoot.
- As the devices in a ring topology are not fighting for access to the network media, no collisions take place, making it quite efficient.

- Relatively simple to troubleshoot.
- As the devices in a ring topology are not fighting for access to the network media, no collisions take place, making it quite efficient.
- Any device that receives the data will regenerate the signal before passing it on to the next device, thereby reducing signal attrition.

- Relatively simple to troubleshoot.
- As the devices in a ring topology are not fighting for access to the network media, no collisions take place, making it quite efficient.
- Any device that receives the data will regenerate the signal before passing it on to the next device, thereby reducing signal attrition.
- Relatively simple to add a new device.

What are the advantages of a ring topology?

- Relatively simple to troubleshoot.
- As the devices in a ring topology are not fighting for access to the network media, no collisions take place, making it quite efficient.
- Any device that receives the data will regenerate the signal before passing it on to the next device, thereby reducing signal attrition.
- Relatively simple to add a new device.

What are the disadvantages of a ring topology?

What are the advantages of a ring topology?

- Relatively simple to troubleshoot.
- As the devices in a ring topology are not fighting for access to the network media, no collisions take place, making it quite efficient.
- Any device that receives the data will regenerate the signal before passing it on to the next device, thereby reducing signal attrition.
- Relatively simple to add a new device.

What are the disadvantages of a ring topology?

 If a device is faulty, it has the capacity to bring down the network, unless a bidirectional implementation is in place.

What are the advantages of a ring topology?

- Relatively simple to troubleshoot.
- As the devices in a ring topology are not fighting for access to the network media, no collisions take place, making it quite efficient.
- Any device that receives the data will regenerate the signal before passing it on to the next device, thereby reducing signal attrition.
- Relatively simple to add a new device.

What are the disadvantages of a ring topology?

- If a device is faulty, it has the capacity to bring down the network, unless a bidirectional implementation is in place.
- As each device receives the data, it has to perform a check of the data to see if it is for itself, before passing it on if it is not.

What are the advantages of a ring topology?

- Relatively simple to troubleshoot.
- As the devices in a ring topology are not fighting for access to the network media, no collisions take place, making it quite efficient.
- Any device that receives the data will regenerate the signal before passing it on to the next device, thereby reducing signal attrition.
- Relatively simple to add a new device.

What are the disadvantages of a ring topology?

- If a device is faulty, it has the capacity to bring down the network, unless a bidirectional implementation is in place.
- As each device receives the data, it has to perform a check of the data to see if it is for itself, before passing it on if it is not.
- It might start causing considerable delay to the traffic.

Agenda del día

- Wireless networks
 - Wireless standards
 - Wireless topologies
- Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

How can a star topology be described?

A network where all devices connect to a central point.

What are the advantages of a star topology?

Efficient.

- Efficient.
- Fairly resilient.

- Efficient.
- Fairly resilient.
- Ability to add devices at will to the network without causing disruption.

- Efficient.
- Fairly resilient.
- Ability to add devices at will to the network without causing disruption.
- Scales well to large networks.

What are the advantages of a star topology?

- Efficient.
- Fairly resilient.
- Ability to add devices at will to the network without causing disruption.
- Scales well to large networks.

What are the advantages of a star topology?

- Efficient.
- Fairly resilient.
- Ability to add devices at will to the network without causing disruption.
- Scales well to large networks.

What are the disadvantages of a star topology?

• The central device is a single point of failure.

What are the advantages of a star topology?

- Efficient.
- Fairly resilient.
- Ability to add devices at will to the network without causing disruption.
- Scales well to large networks.

- The central device is a single point of failure.
- It can be quite expensive.

Agenda del día

- Wireless networks
 - Wireless standards
 - Wireless topologies
- Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

How can a a token ring topology be described?

• A device can only talk when it is in possession of a token.

- A device can only talk when it is in possession of a token.
- That token is passed from device to device, until someone needs to talk, and they take possession of the token.

- A device can only talk when it is in possession of a token.
- That token is passed from device to device, until someone needs to talk, and they take possession of the token.
- Once they have finished with the token, they relinquish it for someone else to use.

- A device can only talk when it is in possession of a token.
- That token is passed from device to device, until someone needs to talk, and they take possession of the token.
- Once they have finished with the token, they relinquish it for someone else to use.
- A token ring network has a physical star topology and a logical ring topology.

- A device can only talk when it is in possession of a token.
- That token is passed from device to device, until someone needs to talk, and they take possession of the token.
- Once they have finished with the token, they relinquish it for someone else to use.
- A token ring network has a physical star topology and a logical ring topology.
- Physically, the devices connect to a central device called a media access unit or multiple access unit (MAU).

- A device can only talk when it is in possession of a token.
- That token is passed from device to device, until someone needs to talk, and they take possession of the token.
- Once they have finished with the token, they relinquish it for someone else to use.
- A token ring network has a physical star topology and a logical ring topology.
- Physically, the devices connect to a central device called a media access unit or multiple access unit (MAU).
- As far as the data is concerned, it goes from device to device and the MAU is ignored.

Agenda del día

- Wireless networks
 - Wireless standards
 - Wireless topologies
- Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

How can a mesh topology be described?

How can a mesh topology be described?

• Every device is connected to every other device.

How can a mesh topology be described?

- Every device is connected to every other device.
- Devices need to have a separate interface for each of the other devices.

How can a mesh topology be described?

- Every device is connected to every other device.
- Devices need to have a separate interface for each of the other devices.

What are the advantages of a mesh topology?

What are the advantages of a mesh topology?

Fault tolerance.

What are the advantages of a mesh topology?

- Fault tolerance.
- High level of redundancy.

What are the advantages of a mesh topology?

- Fault tolerance.
- High level of redundancy.

What are the disadvantages of a mesh topology?

What are the advantages of a mesh topology?

- Fault tolerance.
- High level of redundancy.

What are the disadvantages of a mesh topology?

Cost.

What are the advantages of a mesh topology?

- Fault tolerance.
- High level of redundancy.

What are the disadvantages of a mesh topology?

- Cost.
- The skill set required to configure the mesh for redundancy.

Agenda del día

- Wireless networks
 - Wireless standards
 - Wireless topologies
- Network topologies
 - Logical versus physical topology
 - Bus topology
 - Ring topology
 - Star topology
 - Token ring topology
 - Mesh topology
 - Hybrid topology
- Workshop

How can a hybrid topology be described?

Something consisting of mixed components.

How can a hybrid topology be described?

- Something consisting of mixed components.
- A network topology that connects two or more different network topologies together.

How can a hybrid topology be described?

- Something consisting of mixed components.
- A network topology that connects two or more different network topologies together.

What are the advantages of a hybrid topology?

What are the advantages of a hybrid topology?

• Leveraging the benefits of the component topologies.

What are the advantages of a hybrid topology?

- Leveraging the benefits of the component topologies.
- Minimizing the disadvantages of the component topologies.

Workshop

Workshop

Complete workshop for today's class. To be handed in the next class.