

Distributing Candies

Mătușa Khong pregătește n cutii de bomboane pentru elevii de la o școală din apropiere. Cutiile sunt numerotate de la 0 la n-1 și sunt inițial goale. În cutia i ($0 \le i \le n-1$) încap c[i] bomboane.

Mătușei Khong îi ia q zile să pregătească cutiile cu bomboane. În ziua j ($0 \le j \le q-1$), ea efectuează o acțiune specificată de trei numere întregi l[j], r[j] și v[j] unde $0 \le l[j] \le r[j] \le n-1$ și $v[j] \ne 0$. Pentru fiecare cutie k, astfel încât $l[j] \le k \le r[j]$:

- Dacă v[j]>0, atunci mătușa Khong adaugă bomboane în cutia k, una câte una, până când sunt adăugate exact v[j] bomboane sau cutia devine plină. Cu alte cuvinte, dacă în cutie erau p bomboane înainte de acțiune, atunci după acțiune în cutie vor fi $\min(c[k], p+v[j])$ bomboane.
- Dacă v[j] < 0, atunci mătușa Khong scoate bomboanele din cutia k, una câte una, până când scoate exact -v[j] bomboane sau cutia devine goală. Cu alte cuvinte, dacă cutia avea p bomboane înainte de acțiune, atunci după acțiune în cutie vor fi $\max(0, p + v[j])$ bomboane.

Sarcina dvs. este de a determina numărul de bomboane din fiecare cutie după q zile.

Detalii de implementare

Trebuie să implementați următoarea procedură:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: un tablou unidimensional de lungime n. Pentru $0 \le i \le n-1$, c[i] reprezintă numărul de bomboane care încap în cutia i.
- $l,\ r$ și v: trei tablouri unidimensionale de lungime q. În ziua j, pentru $0 \le j \le q-1$, mătușa Khong efectuează o acțiune specificată de numerele întregi $l[j],\ r[j]$ și v[j], așa cum este descris mai sus .
- Această procedură ar trebui să returneze un tablou unidimensional de lungime n. Notăm tabloul cu s. Pentru $0 \le i \le n-1$, s[i] ar trebui să fie numărul bomboanelor din cutia i după q zile.

Exemplu

Să considerăm următorul apel:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Aceasta înseamnă că în cutia $\,0\,$ încap $\,10\,$ bomboane, în cutia $\,1\,$ încap $\,15\,$ bomboane, iar în cutia $\,2\,$ încap $\,13\,$ bomboane.

La sfârșitul zilei 0, cutia 0 are $\min(c[0], 0+v[0])=10$ bomboane, cutia 1 are $\min(c[1], 0+v[0])=15$ bomboane și cutia 2 are $\min(c[2], 0+v[0])=13$ bomboane.

La sfârșitul zilei $\,1$, cutia $\,0$ are $\,max(0,10+v[1])=0$ bomboane, cutia $\,1$ are $\,max(0,15+v[1])=4$ bomboane. Deoarece $\,2>r[1]$, nu există nicio modificare a numărului de bomboane din cutia $\,2$. Numărul de bomboane la sfârșitul fiecărei zile este rezumat mai jos:

Ziua	Cutia 0	Cutia 1	Cutia 2
0	10	15	13
1	0	4	13

Prin urmare procedura ar trebui să returneze [0, 4, 13].

Restricții

- $1 \le n \le 200\,000$
- $1 \le q \le 200\,000$
- $1 \le c[i] \le 10^9$ (pentru oricare $0 \le i \le n-1$)
- $0 \leq l[j] \leq r[j] \leq n-1$ (pentru oricare $0 \leq j \leq q-1$)
- $-10^9 \le v[j] \le 10^9, v[j] \ne 0$ (pentru oricare $0 \le j \le q-1$)

Subtask-uri

- 1. (3 puncte) $n, q \leq 2000$
- 2. (8 puncte) v[j] > 0 (pentru oricare $0 \le j \le q-1$)
- 3. (27 puncte) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 puncte) l[j]=0 și r[j]=n-1 (pentru oricare $0\leq j\leq q-1$)
- 5. (33 puncte) Fără restricții suplimentare.

Exemplul de Grader

Grader-ul citește datele de intrare în următorul format:

- linia 1: n
- linia 2: c[0] c[1] ... c[n-1]
- linia 3: *q*
- linia 4+j ($0 \leq j \leq q-1$): $l[j] \ r[j] \ v[j]$

Grader-ul afișează valoarea returnată în următorul format:

• linia 1: $s[0] \ s[1] \ \dots \ s[n-1]$