小考參考解答

1

(a) A stem-and-leaf plot is shown next.

Stem	Leaf	Frequency
0*	34	2
0	56667777777889999	17
1*	0000001223333344	16
1	5566788899	10
2*	034	3
2	7	1
3*	2	1

(b) The relative frequency distribution table is shown next.

Relative Frequency Distribution of Fruit Fly Lives

Testadio Trequency Distribution of Train Try Dr. of				
Class Interval	Class Midpoint	Frequency, f	Relative Frequency	
0 - 4	2	2	0.04	
5 - 9	7	17	0.34	
10 - 14	12	16	0.32	
15 - 19	17	10	0.20	
20 - 24	22	3	0.06	
25 - 29	27	1	0.02	
30 - 34	32	1	0.02	

(c) A histogram plot is shown next.

2.

- (a) $P(A \cap B \cap C) = P(C \mid A \cap B)P(B \mid A)P(A) = (0.20)(0.75)(0.3) = 0.045.$
- (b) $P(B' \cap C) = P(A \cap B' \cap C) + P(A' \cap B' \cap C) = P(C \mid A \cap B')P(B' \mid A)P(A) + P(C \mid A' \cap B')P(B' \mid A')P(A') = (0.80)(1 0.75)(0.3) + (0.90)(1 0.20)(1 0.3) = 0.564.$

3.

(a)
$$P(Z > 20) = \frac{1}{10} \int_{20}^{\infty} e^{-z/10} dz = -e^{-z/10} \Big|_{20}^{\infty} = e^{-20/10} = 0.1353.$$

1

(a)
$$g(x) = \int_1^2 \left(\frac{3x-y}{9}\right) dy = \frac{3xy-y^2/2}{9} \Big|_1^2 = \frac{x}{3} - \frac{1}{6}$$
, for $1 < x < 3$, and $h(y) = \int_1^3 \left(\frac{3x-y}{9}\right) dx = \frac{4}{3} - \frac{2}{9}y$, for $1 < y < 2$.

(b) No, since $g(x)h(y) \neq f(x,y)$.

(a)

The variance of a random variable X is

$$\sigma^2 = E(X^2) - \mu^2.$$

: For the discrete case, we can write

$$\sigma^2 = \sum_x (x - \mu)^2 f(x) = \sum_x (x^2 - 2\mu x + \mu^2) f(x)$$
$$= \sum_x x^2 f(x) - 2\mu \sum_x x f(x) + \mu^2 \sum_x f(x).$$

Since $\mu = \sum_{x} x f(x)$ by definition, and $\sum_{x} f(x) = 1$ for any discrete probability distribution, it follows that

$$\sigma^2 = \sum x^2 f(x) - \mu^2 = E(X^2) - \mu^2.$$

For the continuous case the proof is step by step the same, with summations replaced by integrations.

(b)

The covariance of two random variables X and Y with means μ_X and μ_Y , respectively, is given by

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y$$
.

: For the discrete case, we can write

$$\begin{split} \sigma_{XY} &= \sum_x \sum_y (x - \mu_X)(y - \mu_Y) f(x,y) \\ &= \sum_x \sum_y xy f(x,y) - \mu_X \sum_x \sum_y y f(x,y) \\ &- \mu_Y \sum_x \sum_y x f(x,y) + \mu_X \mu_Y \sum_x \sum_y f(x,y). \end{split}$$

Since

$$\mu_X = \sum_x x f(x, y), \ \mu_Y = \sum_y y f(x, y), \ \text{and} \ \sum_x \sum_y f(x, y) = 1$$

for any joint discrete distribution, it follows that

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y - \mu_Y \mu_X + \mu_X \mu_Y = E(XY) - \mu_X \mu_Y.$$

For the continuous case, the proof is identical with summations replaced by integrals.