## 1. előadás

# $\mathbf{AZ} \mathbb{R}^n$ TÉR TOPOLÓGIÁJA

Eddigi az egyváltozós analízissel, vagyis  $\mathbb{R} \to \mathbb{R}$  típusú (vagy másképpen fogalmazva valósvalós) függvényekkel foglalkoztunk. Láttuk, hogy az alapvető fogalmak a szóban forgó függvényeknek a határértéke, folytonossága, deriváltja és integrálja. A továbbiakban a többváltozós analízis alapjaival fogunk megismerkedni. Az egyváltozós analízis alapvető fogalmainak és eredményeinek az  $\mathbb{R}^n \to \mathbb{R}^m$   $(1 \le n, m \in \mathbb{N})$  típusú (az ún. vektor-vektor) függvényekre való kiterjesztéséről lesz szó.

De mi az alapja ennek a kiterjesztésnek? Idézzük fel a függvény végesben vett véges határértékének fogalmát! Legyen  $f \in \mathbb{R} \to \mathbb{R}$  és  $a \in \mathcal{D}'_f$ , ahol  $a \in \mathbb{R}$ . Azt mondjuk, hogy az f függvénynek az a pontban vett határértéke az  $A \in \mathbb{R}$  szám, ha

$$\forall \varepsilon > 0$$
-hoz  $\exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ 0 < |x - a| < \delta : |f(x) - A| < \varepsilon.$ 

Ugyanez környezetekkel kifejezve:

$$\forall \varepsilon > 0$$
-hoz  $\exists \delta > 0, \ \forall x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A),$ 

ahol

$$K_r(x) := \{ y \in \mathbb{R} \mid |x - y| < r \} = (x - r, x + r)$$

az x valós szám r > 0 sugarú környezetét jelenti. Látható, hogy a fenti fogalom (még az  $a \in \mathcal{D}_f'$  torlódási pont fogalma is) teljesen leírható környezetekkel. Ez azt jelenti, hogy ha bevezetnénk a környezet fogalmát  $\mathbb{R}^n$ -ben, akkor változtatás nélkül általánosítani tudnánk a függvény végesben vett véges határértékének fogalmát.

#### Metrikus és normált terek

A környezeteket nem lehet akármilyen módon értelmezni, mert akkor határértéktől "elvárt" tulajdonságok nem maradnak érvényben. A valós számok halmazán a  $K_r(x)$  környezet nem más, mint azon pontok halmaza, amelyeknek távolsága az x ponttól kisebb, mint r. Ha ezen az úton maradunk, akkor csak egy távolságfüggvényre vagy más néven metrikára lesz szükségünk a környezetek értelmezéséhez  $\mathbb{R}^n$ -ben.

Mit jelent az, hogy metrika? Gondolhatunk arra, hogy a valós térben, ahol élünk, két pont távolsága mindig a két pontot összekötő egyenes szakasz hossza. Sajnos nem mindig tudunk egyenes úton eljutni az egyik ponttól a másikig, ezért sokszor szükséges egy ettől eltérő metrikát értelmezni. A matematikai analízis különböző metrikákat enged alkalmazni, azonban vannak olyan tulajdonságok, amiket minden metrikának teljesíteni kell.

Legyen  $M \neq \emptyset$  egy adott halmaz és  $d: M \times M \to \mathbb{R}$  olyan függvény, amelyre minden  $x, y, z \in M$  esetén az teljesül, hogy

$$i. \hspace{1cm} d(x,y) \geq 0, \hspace{0.5cm} \text{\'es} \hspace{0.5cm} d(x,y) = 0 \hspace{0.5cm} \Longleftrightarrow \hspace{0.5cm} x = y \hspace{0.5cm} \text{(pozit\'ev definits\'eg)},$$

$$ii.$$
  $d(x,y) = d(y,x)$  (szimmetria),

$$iii. \qquad d(x,y) \leq d(x,z) + d(z,y) \qquad \text{(háromszög egyenlőtlenség)}.$$

Ekkor az (M, d) együttest **metrikus térnek** nevezzük. Ugyanakkor azt mondjuk, hogy d **metrika** vagy **távolságfüggvény** M-en, a d(x, y) szám pedig az x és az y elemek távolsága.

Az egyváltozós analízisben eddig a d(x,y) := |x-y| metrikát alkalmaztunk, amely **természetes távolságnak** szokás nevezni, de értelmeztetők ettől lényegesen eltérő metrikákat is  $\mathbb{R}$ -en. Pl. igazolható, hogy a

$$d_1(x,y) := \begin{cases} 0 & (x=y) \\ 1 & (x \neq y) \end{cases}$$

leképezés metrika (ún.  $diszkrét \ metrika$ )  $\mathbb{R}$ -en, illetve a

$$d_2(x,y) := \frac{|x-y|}{1+|x-y|}$$
 és  $d_3(x,y) := |e^x - e^y|$ 

függvények szintén metrikák  $\mathbb{R}$ -en. Metrikát nem csak  $\mathbb{R}$ -en értelmezhető. Sokszor "váratlan" területeken is találkozunk metrikával. Erre példa a kódelméletben fontos szerepet játszó Hamming-távolság.

Ha az (M,d) metrikus tér egyben lineáris tér (vektortér), akkor minden x elem (vektor) nagyságát (hosszát) úgy értelmezzük, mint az elem nullától való távolsága. Erre a ||x|| jelölést alkalmazzuk, azaz ||x|| := d(x,0). Tudjuk, hogy  $\mathbb R$  egy 1 dimenziós vektortérnek tekinthető, így ha d a természetes metrika, akkor ||x|| = |x-0| = |x|. Tudjuk, hogy az abszolút értéknek a következő tulajdonságai vannak:

- a)  $|x| \ge 0$ , és |x| = 0  $\iff$  x = 0,
- b) |xy| = |x| |y|,
- c)  $|x + y| \le |x| + |y|$

minden  $x, y \in \mathbb{R}$  esetén. Ezeket az Analízis I. kurzuson igazoltuk, és számos állítás bizonyításában alkalmaztuk. Nem okoz meglepetést tehát a következő fogalom bevezetése.

Legyen  $X \neq \emptyset$  egy lineáris tér  $\mathbb{R}$ -felett és  $\|.\|: X \to \mathbb{R}$  olyan függvény (ún. **norma**), amelyre minden  $x, y \in X$  és  $\lambda \in \mathbb{R}$  esetén igaz, hogy

- i)  $||x|| \ge 0 \quad \text{és} \quad ||x|| = 0 \iff x = 0,$
- $||\lambda x|| = |\lambda| ||x||$  (abszolút homogén),
- ||x + y|| < ||x|| + ||y|| (szubadditív).

Ekkor az  $(X, \|.\|)$  együttest **normált térnek** nevezzük. Ugyanakkor azt mondjuk, hogy  $\|x\|$  az  $x \in X$  elem normája.

Könnyen igazolható, hogy ha  $(X, \|.\|)$  egy normált tér, akkor a

$$d(x, y) := ||x - y|| \quad (x \in X).$$

függvény metrika az X halmazon, azaz (X, d) metrikus tér. Minden normált tér tehát egyúttal metrikus tér is. Ezt a d metrikát a  $\|.\|$  norma által indukált metrikának nevezzük.

Bebizonyítható az is, hogy egy normából származó metrika abszolút homogén és eltolás invariáns, azaz

$$d(\lambda x, \lambda y) = |\lambda| d(x, y)$$
 és  $d(x + z, y + z) = d(x, y)$ 

minden  $x,y,z\in X$  és  $\lambda\in\mathbb{R}$  esetén. Az abszolút homogenitás nem érvényes a fenti példákban szereplő  $d_1,\,d_2$  és  $d_3$  metrikákra, de nyilván érvényes a természetes metrikára. A normákra még igazolható az

$$||x|| - ||y||| \le ||x - y||$$
  $(x, y \in X)$ 

egyenlőtlenség is a valós számokra igazolt  $||x| - |y|| \le |x - y|$  egyenlőtlenséghez hasonlóan.

Az  $R^n$  lineáris téren több norma is értelmezhető. A legfontosabbak a következők:

$$||x||_{2} := \left(\sum_{k=1}^{n} x_{k}^{2}\right)^{1/2} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}} \qquad (euklideszi \ norma),$$

$$||x||_{1} := \sum_{k=1}^{n} |x_{k}| = |x_{1}| + |x_{2}| + \dots + |x_{n}|,$$

$$||x||_{\infty} := \max\{|x_{k}| \mid k = 1, 2, \dots, n\} = \max\{|x_{1}|, |x_{2}|, \dots, |x_{n}|\},$$

ahol  $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ . Mindhárom norma jó abban az értelemben, hogy visszaadják a szám abszolút értékét n = 1 esetén. Tehát mindhárom az abszolút érték általánosításának tekinthető. Akkor melyiket kellene használni?

A kérdés megválásólasához figyelembe kell venni a következő fogalmat: azt mondjuk, hogy két  $\|.\|_a$  és  $\|.\|_b$  norma **egymással ekvivalens**, ha  $\exists c, d > 0$  valós számok, hogy

$$||x||_a \le c||x||_b$$
 és  $||x||_b \le d||x||_a$   $(x \in \mathbb{R}^n)$ .

Igazolható, hogy ekvivalens normák esetén nincs "lényeges" különbség abban, hogy melyiküket alkalmazunk az alapvető fogalmak megalkotásában (lásd pl. a sorozatok konvergenciájáról szóló részben lévő megjegyzés).

A fent értelmezett normák egymással ekvivalensek, hiszen nem nehéz igazolni, hogy

$$\frac{1}{n} \|x\|_1 \le \|x\|_{\infty} \le \|x\|_2 \le \|x\|_1 \qquad (x \in \mathbb{R}^n).$$

Az is igaz azonban, hogy véges dimenziós térben bármely két norma egymással ekvivalens. A továbbiakban mi az  $||x||_2$  euklideszi normát fogjuk preferálni.

A normák ekvivalenciája nem azt jelenti, hogy a környezetek hasonlóak. A következő ábra szemlélteti  $\mathbb{R}^2$ -ben az origó középpontú egységsugarú környezetet, vagyis a

$$K_1(0) = \left\{ x \in \mathbb{R}^2 \mid ||x - 0|| < 1 \right\} \qquad \left( 0 = (0, 0) \right)$$

halmazt különböző normák esetén.



### $\mathbf{Az} \ \mathbb{R}^n$ euklideszi tér

A Matematikai alapok tantárgyban az  $\mathbb{R}^n$  tér számos tulajdonságáról eset szó. Most összefoglaljuk a legfontosabbakat.

Legyen  $n \in \mathbb{N}^+$  egy adott pozitív természetes szám. Az  $\mathbb{R}^n$  szimbólummal jelöljük a rendezett valós szám n-esek halmazát:

$$\mathbb{R}^n := \{ x = (x_1, x_2, \dots, x_n) \mid x_k \in \mathbb{R}, \ k = 1, 2, \dots, n \}.$$

Az  $x_1, x_2, \ldots, x_n$  számokat az  $x = (x_1, x_2, \ldots, x_n)$  pont (vektor) **koordinátáinak** vagy **komponenseinek** nevezzük.

 $\mathbb{R}^1$ -et azonosítjuk  $\mathbb{R}$ -rel. A sík pontjai rendezett valós számpárokkal (vagyis az  $\mathbb{R}^2$  halmaz elemeivel), a tér pontjai pedig rendezett valós számhármasokkal (vagyis  $\mathbb{R}^3$  elemeivel) azonosíthatók. Az  $\mathbb{R}^n$  halmaz tehát ezek "természetes" általánosításaként fogható fel. Az n>3 esetben  $\mathbb{R}^n$ -nek nincs szemléletes jelentése, de a fogalom mégis nélkülönözhetetlen mind az elmélet, mind pedig az alkalmazások szempontjából.

A középiskolában a sík és a tér vektoraival több műveletet is értelmeztünk. Vektorok **összeadá**sának, valamint vektor (valós) számmal való szorzásának a mintájára vezetjük be az  $\mathbb{R}^n$  halmazon az alábbi komponensenkénti műveleteket: ha  $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n)$  és  $\lambda \in \mathbb{R}$ , akkor

$$x + y := (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n), \qquad \lambda \cdot x := (\lambda x_1, \lambda x_2, \dots, \lambda x_n).$$

Ezek az  $\mathbb{R}^n$ -beli műveletek rendelkeznek a sík és a tér vektorainak megismert alapvető tulajdonságaival. Röviden ezt úgy fejezzük ki, hogy  $\mathbb{R}^n$  ezekkel a műveletekkel *lineáris tér* (vagy vektortér az  $\mathbb{R}$  skalár tartomány felett). Ennek a vektortérnek a dimenziója pontosan n, azaz rendelkezik egy n darab tagból álló bázissal.

Kiemeljük azt fontos tényt is, hogy rögzített  $n, m \in \mathbb{N}^+$  esetén az  $n \times m$ -es valós elemű mátrixok  $\mathbb{R}^{n \times m}$  szimbólummal jelölt halmazában is értelmezzük az összeadás és a számmal való szorzás műveleteket, és  $\mathbb{R}^{n \times m}$  ezekkel a műveletekkel  $\mathbb{R}$  feletti lineáris tér.

A középiskolában a sík és tér vektorainak az összeadásán és a számmal való szorzásán kívül megismerkedtünk még egy fontos művelettel, vektorok skaláris szorzatával. Ezt a fogalmat is fogjuk az  $\mathbb{R}^n$  lineáris térre is kiterjeszteni: Az  $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n)$  vektorok skaláris szorzatát az

$$\langle x, y \rangle := \sum_{k=1}^{n} x_k y_k = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

valós számmal definiáljuk. A skaláris szorzat olyan  $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  típusú függvény, amely szimmetrikus, mindkét változójában lineáris, és a belőle számozó  $\langle x, x \rangle$  kvadratikus kifejezés pozitív definit. Ez azt jelenti, hogy az  $(\mathbb{R}^n, \langle ., . \rangle)$  együttes egy n-dimenziós euklideszi téret alkot az  $\mathbb{R}$  skalár tartomány felett. Fontos megemlíteni, hogy érvényes az ún. Cauchy—Schwarz-egyenlőtlenség:

$$\left| \langle x, y \rangle \right| \le \|x\| \cdot \|y\| \qquad (x, y \in \mathbb{R}^n)$$

A skaláris szorzat segítségével értelmezhetjük  $\mathbb{R}^n$ -beli vektorok szögét, merőlegességét, illetve a hosszát (normát) és a távolságot. Ezekre a geometriában megszokott tulajdonságok jelentős része megmarad. Az  $x=(x_1,x_2,\ldots,x_n)$  vektor **normáját** (**hosszát** vagy **abszolút értékét**) az

$$||x|| := ||x||_2 := \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\langle x, x \rangle}$$

képlettel definiáljuk. Az  $x, y \in \mathbb{R}^n$  vektorok **távolságán** az ||x - y|| számot értjük. Ha a továbbiakban az  $\mathbb{R}^n$  euklideszi térről beszélünk, akkor mindig az  $\mathbb{R}^n$  lineáris térre és az azon értelmezett, a fenti skaláris szorzatból származó euklideszi normára gondolunk.

Egy  $a \in \mathbb{R}^n$  pont r > 0 sugarú **környezetén** a

$$K_r(a) := \left\{ x \in \mathbb{R}^n \mid ||x - a|| < r \right\}$$

halmazt értjük. n=1 esetén  $K_r(a)$  az a pontra szimmetrikus (a-r,a+r) nyílt intervallum. Ha n=2, akkor  $K_r(a)$  az a pont körüli r sugarú nyílt körlap, n=3 esetén pedig az a pont körüli r sugarú nyílt gömb. A "nyílt gömb" elnevezést használjuk akkor is, ha n>3.

A  $\emptyset \neq A \subset \mathbb{R}^n$  halmazt **korlátosnak** nevezzük, ha  $\exists r > 0 \colon A \subset K_r(0)$ , vagyis A benne van egy  $0 = (0, 0, \dots, 0)$  középpontú, alkalmas sugarú nyílt gömbben.

Környezetek segítségével (hasonlóan mint  $\mathbb{R}$ -ben) értelmezhetjük  $\mathbb{R}^n$ -ben is a következő "topológiai" fogalmakat.

Tegyük fel, hogy A az  $\mathbb{R}^n$  euklideszi térnek egy nem üres részhalmaza. Ekkor

- $a \in \mathbb{R}^n$  az A halmaz **torlódási pontja** (jelekkel  $a \in A'$ ), ha  $\forall K(a) : K(a) \cap A$  végtelen halmaz, azaz az a pont minden környezete végtelen sok A-beli pontot tartalmaz,
- $a \in A$  az A halmaz **belső pontja** (jelekkel  $a \in \text{int } A$ ), ha  $\exists K(a) : K(a) \subset A$ ,
- az A halmaz **nyílt halmaz**, ha minden pontja belső pont,
- az A halmaz **zárt halmaz**, ha  $\mathbb{R}^n \setminus A$  nyílt halmaz.

Látható, hogy a környezettel kapcsolatos fogalmak és jelölés módja nem változtak a már ismert  $\mathbb{R}$ -beli fogalmakhoz és jelöléhez képes, de tulajdonságai különbözhetnek. A nyílt és zárt halmazok struktúrája jóval gazdagabb. Pl.  $\mathbb{R}$ -ben egy nyílt halmaz mindig előáll megszámlálhatóan sok nyílt intervallum uniójaként.

Többdimenziós térben nem fogunk rendezést értelmezni, így nem beszélünk alsó, felső korlátokról, maximum, minimumról, ill. szuprémum-, infimumról. A teret nem fogjuk bővíteni olyan ideális elemekkel, mint a  $+\infty$  és a  $-\infty$  szimbólumokkal tettük a valós számok halmazán.

# Konvergencia az $\mathbb{R}^n$ euklideszi térben

1. Definíció.  $Az x : \mathbb{N} \to \mathbb{R}^n$  függvényt  $\mathbb{R}^n$ -beli sorozatnak nevezzük. Az

$$x(k) =: x_k \qquad (k \in \mathbb{N})$$

helyettesítési érték a sorozat k-adik vagy k-indexű tagja, a tag sorszámát jelző szám a tag indexe. Lehetséges jelölései:

$$x$$
,  $(x_k)$   $vagy$   $(x_0, x_1, x_2, \dots)$ .

Mivel egy  $\mathbb{R}^n$ -beli pont koordinátainak jelölésére szintén alsó indexet használunk, így a félreértések elkerülésére az  $(x_k)$  sorozat k-adik tagjának i-edik koordinátájára az  $x_k^{(i)}$  jelölést alkalmazzuk. Adott  $\mathbb{R}^n$ -beli  $(x_k)$  sorozat és rögzített  $i=1,2,\ldots,n$  esetén beszélhetünk az  $(x_k^{(i)})$  koordinátasorozatról, ami már valós sorozat. A koordinátasorozatok fontos szerepet játszanak az  $\mathbb{R}^n$ -beli sorozatok vizsgálatánál.

Azt mondjuk, hogy az  $\mathbb{R}^n$ -beli  $(x_k)$  sorozat korlátos, ha a sorozat értékkészlete korlátos, azaz ha az

$$\mathcal{R}_x = \{ x_k \in \mathbb{R}^n \mid k \in \mathbb{N} \}$$

halmaz korlátos. Rendezés híján  $egy \mathbb{R}^n$ -beli sorozat monotonitása nem értelmezhető, de a koordinátasorozatok esetében van értelme a monotonitásnak.

Emlékeztetünk arra, hogy az  $(x_k): \mathbb{N} \to \mathbb{R}$  valós sorozatot akkor neveztük konvergensnek, ha

$$\exists A \in \mathbb{R}, \ \forall \varepsilon > 0 \text{-hoz} \ \exists k_0 \in \mathbb{N}, \ \forall k > k_0 \colon |x_k - A| < \varepsilon.$$

Látható, hogy a fogalom lényegében az  $\mathbb{R}$ -en értelmezett d(x,y) = |x-y| természetes távolságon múlik. Ha abszolút érték helyett az  $\mathbb{R}^n$ -n értelmezett  $\|.\|$  euklideszi normát használjuk, akkor általánosíthatjuk a sorozatok konvergenciájának fogalmát  $\mathbb{R}^n$ -re.

**2. Definíció.** Legyen  $1 \le n \in \mathbb{N}$ . Azt mondjuk, hogy az  $\mathbb{R}^n$  euklideszi tér  $(x_k) : \mathbb{N} \to \mathbb{R}^n$  sorozata konvergens, ha

$$\exists A \in \mathbb{R}^n, \ \forall \varepsilon > 0 \text{-hoz} \ \exists k_0 \in \mathbb{N}, \ \forall k > k_0 \colon ||x_k - A|| < \varepsilon.$$

Ha A létezik, akkor az egyértelmű, és A-t az  $(x_k)$  sorozat határértékének nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{k \to +\infty} x_k = A, \quad x_k \to A, \text{ ha } k \to +\infty.$$

 $Az(x_k)$  sorozat divergens, ha nem konvergens.

 $Megjegyz\acute{e}s.$  A fenti definíció megalkotásában nincs jelentősége annak, hogy melyik normát választunk, hiszen  $\mathbb{R}^n$ -ben minden norma ekvivalens. Ha ui. az egyik norma mellett egy sorozat konvergens, akkor egy másik norma mellett is konvergens azonos határértékkel. Ennek igazolásához vegyük két ekvivalens  $\|.\|_a$  és  $\|.\|_b$  normát, azaz  $\exists c, d > 0$  valós számok, hogy

$$||x||_a \le c||x||_b$$
 és  $||x||_b \le d||x||_a$   $(x \in \mathbb{R}^n)$ .

Ha  $\lim(x_k) = A$  a  $\|.\|_a$  norma mellett, akkor

$$\forall \varepsilon > 0$$
-hoz  $\exists k_0 \in \mathbb{N}, \ \forall k > k_0 \colon ||x_k - A||_a < \frac{\varepsilon}{d}.$ 

Ekkor

$$||x_k - A||_b \le d||x_k - A||_a < \varepsilon,$$

amiből következik, hogy  $\lim(x_k) = A$  a  $\|.\|_b$  norma mellett is.

Hasonlóan igazolható, hogy ha  $\lim(x_k) = A$  a  $\|.\|_b$  norma mellett, akkor  $\lim(x_k) = A$  a  $\|.\|_a$  norma mellett is.

A konvergencia definíciójában rögtön megfigyelhető, hogy az  $(x_k)$  vektorsorozat pontosan akkor tart az A vektorhoz, ha az

$$y_k := \|x_k - A\| \qquad (k \in \mathbb{N})$$

R-beli sorozat tart nullához, azaz

$$\lim_{k \to +\infty} x_k = A \quad \iff \quad \lim_{k \to +\infty} ||x_k - A|| = 0.$$

A fenti megállapítás már mutatja, hogy a vektorsorozatok konvergenciája visszavezethető valós sorozatok konvergenciájára. Sőt, igazolni fogjuk, hogy egy vektorsorozat konvergenciája ekvivalens a koordináták sorozatainak a konvergenciájával.

**1. Tétel.** Legyen  $n \in \mathbb{N}^+$ . Egy  $\mathbb{R}^n$ -beli sorozat akkor és csak akkor konvergens, ha a sorozat minden koordinátasorozata konvergens, és a határértéke a határvektor megfelelő koordinátája, azaz

$$\mathbb{R}^n \ni x_k = \left(x_k^{(1)}, x_k^{(2)}, \dots, x_k^{(n)}\right) \to A = \left(A^{(1)}, A^{(2)}, \dots, A^{(n)}\right), \quad ha \quad k \to +\infty$$

pontosan akkor igaz, ha minden i = 1, 2, ..., n koordinátára

$$x_k^{(i)} \to A^{(i)}, \quad ha \quad k \to +\infty.$$

**Bizonyítás.**  $\Longrightarrow$  Tegyük fel, hogy  $\lim_{k\to+\infty}x_k=A$ , azaz  $\lim_{k\to+\infty}\|x_k-A\|=0$ . Rögzítsük az  $i=1,2,\ldots,n$  indexet. Mivel

$$0 \le \left| x_k^{(i)} - A^{(i)} \right| \le \sqrt{\sum_{j=1}^n \left( x_k^{(j)} - A^{(j)} \right)^2} = \|x_k - A\| \to 0, \text{ ha } k \to +\infty,$$

ezért a közrefogási elv szerint  $\lim_{k\to+\infty} \left|x_k^{(i)}-A^{(i)}\right|=0$ , azaz  $\lim_{k\to+\infty} x_k^{(i)}=A^{(i)}$ .

Tegyük fel, hogy minden  $i=1,2,\ldots,n$  indexre  $\lim_{k\to+\infty}x_k^{(i)}=A^{(i)}$ , azaz  $\lim_{k\to+\infty}|x_k^{(i)}-A^{(i)}|=0$ . Ekkor az

$$0 \le ||x_k - A|| = ||x_k - A||_2 \le ||x_k - A||_1 = \sum_{i=1}^n |x_k^{(i)} - A^{(i)}| \to 0, \text{ ha } k \to +\infty,$$

egyenlőtlenség és ismét a közrefogási elv alkalmazásával azt kapjuk, hogy  $\|x_k - A\| \to 0$ , ha  $k \to +\infty$ , azaz  $\lim_{k \to +\infty} x_k = A$ .

#### Példák:

• 
$$\lim_{k \to +\infty} \left( \frac{1}{k}, \left( 1 + \frac{1}{k} \right)^k \right) = (0, e)$$
, hiszen  $\lim_{k \to +\infty} \frac{1}{k} = 0$  és  $\lim_{k \to +\infty} \left( 1 + \frac{1}{k} \right)^k = e$ .

• Az 
$$x_k := \left(\frac{1}{k^2}, \frac{\sin k}{k}, k\right)$$
  $(k \in \mathbb{N}^+)$  sorozat divergens, mert  $\lim_{k \to +\infty} k = +\infty$ .

A tétel segítségével a legtöbb számsorozatra vonatkozó állítást általánosíthatjuk  $\mathbb{R}^n$ -beli sorozatokra. A bizonyítás többnyire abból áll, hogy a koordináták sorozataira alkalmazzuk a megfelelő számsorozatokra vonatkozó tételt. Ezért  $\mathbb{R}^n$ -beli sorozatokra is igaz a határérték egyértelmű-ségére vonatkozó tétel, az összegsorozat és a számszoros sorozat határértékére vonatkozó tétel, illetve a konvergens sorozat részsorozataira vonatkozó tétel.

A következő két állításban azt fogalmazzuk meg, hogy az  $\mathbb{R}$ -beli sorozatok konvergenciájára vonatkozó alapvető jelentőségű tételek az  $\mathbb{R}^n$  euklideszi térben is érvényesek.

**2. Tétel (Cauchy-féle konvergenciakritérium).** Legyen  $n \in \mathbb{N}^+$ . Az  $\mathbb{R}^n$  euklideszi tér  $(x_k)$  sorozata akkor és csak akkor konvergens, ha  $(x_k)$  Cauchy-sorozat, azaz

$$\forall \varepsilon > 0 \text{-}hoz \ \exists k_0 \in \mathbb{N}, \ \forall k, l > k_0 \colon ||x_k - x_l|| < \varepsilon.$$

3. Tétel (Bolzano-Weierstrass-féle kiválasztási tétel).  $Az \mathbb{R}^n \ (n \in \mathbb{N}^+)$  euklideszi térben minden korlátos sorozatnak van konvergens részsorozata.