MADALINE

Dr Dayal Kumar Behera

MADALINE

 Several ADALINEs arranged in a multilayer net is known as Many ADALINES, or MADALINE (Many Adaptive Linear Neurons)

Architecture

A two input, one output, one hidden layer with two hidden units MADALINE

Learning

- There are two training algorithms for MADALINE, viz., MR-I and MR-II.
- In MR-I algorithm, only the weights of the hidden units are modified during the training. (weights for the inter-connections from the hidden units to the output unit are kept unaltered)
- However, in case of MR-II, all weights are adjusted, if required.

Procedure MADALINE-MR-I-Learning

Step 1. Initialize v_0 , v_1 , v_2 with 0.5 and other weights w_{01} , w_{11} , w_{12} , w_{02} , w_{12} and w_{22} by small random values. All bias inputs are set to 1. Step 2. Set the learning rate h to a suitable value. Step 3. For each bipolar training pair s: t, do Steps 4-6 Step 4. Activate the input units: $x_1 = s_1$, $x_2 = s_2$, all biases are set to 1 permanently.

Procedure MADALINE-MR-I-Learning

Step 5. Propagate the input signals through the net to the output unit Y.
5.1 Compute net inputs to the hidden units.

$$z_{in_{1}} = 1 \times w_{01} + x_{1} \times w_{11} + x_{2} \times w_{21}$$

 $z_{in_{2}} = 1 \times w_{02} + x_{1} \times w_{12} + x_{2} \times w_{22}$

5.2 Compute activations of the hidden units z_out_1 and z_out_2 using the bipolar step function

$$z_{-}out = \begin{cases} 1, & \text{if } z_{-}in \ge 0 \\ -1, & \text{if } z_{-}in < 0. \end{cases}$$

5.3 Compute net input to the output unit

$$y_in = 1 \times v_0 + z_out_1 \times v_0 + z_out_2 \times v_2$$

5.4 Find the activation of the output unit y-out using the same activation function as in Step 5.2, i.e.,

$$y_-out = \begin{cases} 1, & \text{if } y_-in \ge 0 \\ -1, & \text{if } y_-in < 0. \end{cases}$$

Procedure MADALINE-MR-I-Learning

- **Step 6.** Adjust the weights of the hidden units, if required, according to the following rules:
 - i) If $(y_out = t)$ then the net yields the expected result. Weights need not be updated.
 - ii) If $(y_out \neq t)$ then apply one of the following rules whichever is applicable.

Case I: t = 1

Find the hidden unit $z_{\rm j}$ whose net input $z_{\rm j}$ is closest to 0. Adjust the weights attached to $z_{\rm j}$ according to the formula

$$w_{ij}$$
 (new) = w_{ij} (old) + $h \times$ (1- z_in_j) $\times x_i$, for all i .

Case II: t = -1

Adjust the weights attached to those hidden units $z_{\rm j}$ that have positive net input.

$$w_{ij}$$
 (new) = w_{ij} (old) + $h \times (-1 - z_i n_j) \times x_i$, for all i .

- Step 7. Test for stopping condition. It can be any one of the following:
 - i) No change of weight occurs in Step 6.
 - ii) The weight adjustments have reached an acceptable level.
 - iii) A predefined number of iterations have been carried out.

If the stopping condition is satisfied then stop. Otherwise go to Step 3.

Example

 Let us train a MADALINE net through the MR-I algorithm to realize the two-input XOR function by assuming initial weights and learning rate as below.

Table 7.9. Bipolar training set for XOR function

X ₀	<i>x</i> ₁	<i>X</i> ₂	t
1	1	1	-1
1	1	-1	1
1	-1	1	1
1	-1	-1	-1

Table 7.10. Initial weights and the fixed learning rate

w ₀₁	W ₁₁	w ₂₁	W ₀₂	W ₁₂	W ₂₂	η
.2	.3	.2	.3	.2	.1	.5

Calculation

•
$$z_{in1} = 1 \times w01 + x1 \times w11 + x2 \times w21$$

= $1 \times .2 + 1 \times .3 + 1 \times .2 = .7$

- *z_out*1 = 1
- $z_{in2} = 1 \times w_{02} + x_{1} \times w_{12} + x_{2} \times w_{22}$ = $1 \times .3 + 1 \times .2 + 1 \times .1 = .6$

•
$$y_in = 1 \times v0 + z_out1 \times v1 + z_out2 \times v2$$

= $1 \times .5 + 1 \times .5 + 1 \times .5 = 1.5$

• *y_out* = 1


```
• w01 (new) = w01 (old) + h \times (-1 - z_in1)
= .2 + .5 \times (-1 - .7)
= .2 - .85
= -.65
```

•
$$w11 (new) = w11 (old) + h \times (-1 - z_in1)$$

= $.3 - .85$
= $-.55$

```
• w21 (new) = w21 (old) + h \times (-1 - z_in1)
= .2 - .85
= -.65
```

•
$$w02 (new) = w02 (old) + h \times (-1 - z_in2)$$

= $.3 + .5 \times (-1 - .6)$
= $.3 - .8$
= $-.5$

• $w12 (new) = w12 (old) + h \times (-1 - z_in2)$ = .2 - .8= -.6

- $w22 (new) = w22 (old) + h \times (-1 z_in2)$ = .1 - .8
- = -.7

 Hence the new set of weights after training with the first training pair (1, 1): −1 in the first epoch is obtained as

$$W = \begin{bmatrix} w_{01} & w_{02} \\ w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \begin{bmatrix} -.65 & -.5 \\ -.55 & -.6 \\ -.65 & -.7 \end{bmatrix}$$

MR-I: XOR Function

Table 7.11. MADALINE Learning of XOR Function through MR-I algorithm

#	X ₀	×,	X ₂	t	z_in ₁	z_in ₂	z_out,	z_out ₂	y_in	y_out	W ₀₁	W ₁₁	W ₂₁	W ₀₂	W ₁₂	W ₂₂
0											.2	.3	.2	.3	.2	.1
1	1	1	1	-1	.7	.6	1	1	1.5	1	65	55	65	5	6	7
2	1	1	-1	1	55	4	-1	-1	5	-1	65	55	65	.2	.1	-1.4
3	1	-1	1	1	- .75	-1.3	-1	-1	5	-1	.23	-1.43	.13	.2	.1	-1.4
4	1	-1	-1	-1	1.56	1.5	1	1	1.5	1	-1.05	一.15	1.41	-1.05	1.35	- .15

Epoch #1

MR-I: XOR Function

0											-1.05	15	1.41	-1.05	1.35	15
1	1	1	1	-1	.21	.15	1	1	1.5	1	-1.66	76	8.	-1.63	.77	73
2	1	1	-1	1	-3.22	13	-1	-1	5	-1	-1.66	76	.8	-2.07	.33	29
3	1	-1	1	1	1	-1.45	-1	—1	5	-1	-2.11	31	.35	-2.07	.33	29
4	1	-1	-1	-1	-2.15	-2.11	-1	-1	5	-1					-	
	Epoch #2															
0											-2.11	- .31	.35	-2.07	.33	29
1	1	1	1	-1	-2.07	-2.03	-1	-1	5	-1						
2	1	1	-1	1	-2.77	-1.45	-1	-1	5	-1	-2.11	31	.35	84	1.56	-1.52
3	1	-1	1	1	-1.45	-3.92	-1	-1	5	-1	88	-1.54	.88	84	1.56	-1.52
4	1	-1	-1	-1	22	88	-1	-1	5	-1						

Epoch #3

MR-I: XOR Function

#	× ₀	<i>x</i> ₁	X ₂	t	z_in ₁	z_in ₂	z_out ₁	z_out ₂	y_in	y_out	W ₀₁	W ₁₁	W ₂₁	W ₀₂	W ₁₂	W ₂₂
0											88	-1.54	.88	84	1.56	-1.52
1	1	1	1	-1	-1.54	8	-1	-1	5	-1						
2	1	1	-1	1	-3.3	2.24	-1	1	.5	1						
3	1	-1	1	1	1.54	-3.92	1	-1	.5	1						
4	1	-1	-1	-1	22	88	-1	-1	5	-1						

Epoch #4