LA Restaurant Health Inspection

Recommendation System

Team HAL9000

CONTENT

Overview

PART ONE

Models

PART TWO

Demo Future Works

PART THREE

PART FOUR

Project Objective and Definition

Pain Points

- Public health issue has attracted more and more attention.
 Few smart city projects studied on restaurant inspection.
- For the citizens, health inspection information can be hard to find on platforms.
- For the governments, the restaurant inspection is a source of cost and efficient resource allocation is needed.

Our Project

- Predict the restaurant health violation risk
- Segment the restaurants
- Offer personalized restaurant recommendations

OVERVIEW Simplified Process Map **EDA** COUNTY OF LOS ANGELES OPEN DATA (Understand the datasets) **Feature Engineering** (Deal with null values, outliers, yelp Streamlit etc. Select/Extract/Synthesize useful features for the model. e.g. Transform the open time Selenium 9K+ restaurants Streamlit per day on Yelp to open hours (Imitate a human 13k+ inspection (For website) records per week) clicking on a web page) Customers EDA & Feature Record Problem looking for Integration & Definition healthy Engineering Linkage Data Collection Modeling restaurants Visualization ML/DS Skills Government Domain Knowledge Restaurants' **Prediction NLP** owners (Random Forest, Boosting, Neural (Text preprocessing Networks, etc.) RLTK and cleaning) Segmentation (KMeans, LDA Topic Modeling) **RLTK** Recommendation (Blocking, (Content-based) **Entity Linking**) **Optimization & Evaluation**

Prediction

Goal: Classify the restaurants into 3 health risk levels (low/medium/high risk)

Features:

Baseline.

Final Model

- Categorical: Location, Price, Size, Photos(bool), Take_out(bool), Q&A(bool)
- Numerical: Open_duration, employees, Review_counts, Review_sentiment_polarity

Machine Learning Models & Evaluation Metrics:

Model Accuracy Roc auc Logistic Regression 0.835 0.58 SVM 0.839 0.63 Random Forest 0.842 0.67 XGBoost 0.827 0.71 **Neural Networks** 0.51 0.857

Segmentation

Pipeline: PCA - KMeans - t-SNE & Topic Modeling

	Model	Objective	Evaluation		
X	PCA	Dimension Reduction	Explained variance on the first 3 PCs: 0.5		
	KMeans	Learn the representation of the data	Scree Plot: K=5		
× ×	t-SNE	2D visualization of the clusters based on PCA	KL divergence = 0.47		
\	Topic Modeling	Extract the keywords from comments	We sampled 10 restaurants and check if the keywords are really included in the descriptions of the restaurants. Included Rate = 70%		

Number of Correct Topic/ Detected Topics

Randomly Selected Restaurants

e.g. 10 Restaurants

Topic Model Really in the Yelp **Description?**

		restaurant	cluster	is_included
	0	Pharaoh Karaoke Lounge	0	False
	1	Sanamluang Cafe Hollywood	0	True
Results	2	Eduardo's Border Grill	1	True
	3	Mom's Donut and Chinese Food to Go	1	False
	4	Ministry Of Coffee	1	True
	5	Papa Johns Pizza	2	True
	6	Moishe's Restaurant	3	True
	7	Hot Thai Restaurant	3	True
	8	Kai Ramen West Hollywood	3	True
	9	Ginger's Divine Ice Creams	3	False

Evaluation:

- Among all 10 recommended results, how many are actually relevant?
- Ran some tests average **74%** relevancy.

Backup Demo

Web application

File Use Case

- 1. Optimize UI adding images, organize layouts, etc.
- 2. Add an option for users to provide feedbacks on the models

- 3. Add a rating system for users to provide feedbacks on the recommendation systems
- Crawl more features to feed into the model to improve the performance
- 5. Integrate ChatGPT for explaining the final results

REFERENCES

- 1. N. H. M. Shamsuddin, N. A. Ali and R. Alwee, "An overview on crime prediction methods," 2017 6th ICT International Student Project Conference (ICT-ISPC), Johor, Malaysia, 2017, pp. 1-5, doi: 10.1109/ICT-ISPC.2017.8075335.
- M. Feng et al., "Big Data Analytics and Mining for Effective Visualization and Trends Forecasting of Crime Data," in IEEE Access, vol. 7, pp. 106111-106123, 2019, doi: 10.1109/ACCESS.2019.2930410.
- Iqbal, Rizwan, et al. "An experimental study of classification algorithms for crime prediction." Indian Journal of Science and Technology 6.3 (2013): 4219-4225.
 Raschka, Sebastian. "Model evaluation, model selection, and algorithm selection in machine learning." arXiv
- preprint arXiv:1811.12808 (2018).

 5. Llorente, Fernando, et al. "Marginal likelihood computation for model selection and hypothesis testing: an
- extensive review." SIAM Review 65.1 (2023): 3–58.

 6. Barron, Andrew R. "Predicted squared error: a criterion for automatic model selection." Self-organizing
- methods in modeling. CRC Press, 2020. 87-103.
- 7. Choi, Jinkyung, Douglas Nelson, and Barbara Almanza. "Food safety risk for restaurant management: Use of restaurant health inspection report to predict consumers' behavioral intention." Journal of Risk Research 22.11 (2019): 1443–1457.
- 8. Choi, Jinkyung, Douglas Nelson, and Barbara Almanza. "Food safety risk for restaurant management: Use of restaurant health inspection report to predict consumers' behavioral intention." Journal of Risk Research 22.11 (2019): 1443-1457.
- 9. Siering, Michael. "Leveraging online review platforms to support public policy: Predicting restaurant health violations based on online reviews." Decision Support Systems 143 (2021): 113474.
- 10. Luna, Julio César, et al. "Food safety assessment and risk for toxoplasmosis in school restaurants in Armenia, Colombia." Parasitology research 118 (2019): 3449–3457.

