

Universidade Estadual Paulista (UNESP)

Faculdade de Ciências

Curso de Bacharelado em Ciência da Computação

Campus de Bauru - SP

Reconhecimento de marcha humana utilizando poses 3D

estimadas de múltiplas poses

2D

Pedro Luiz Cason Caldato

Disciplina: Projeto e Implementação de Sistemas 2023 Professor Orientador: Aparecido Nilceu Marana

Sumário

- 1. Introdução
- 2. Objetivos
- 3. Fundamentação teórica
- 4. Método Proposto
- 5. Resultados e discussão
- 6. Conclusão
- 7. Referências

Introdução

Biométria - O que é:

Análise de características físicas ou comportamentais para identificação do indivíduo, como:

- a) DNA
- b) Ouvido
- c) Face
- d) Termograma facial
- e) Termograma da mão
- f) Veias das mãos
- g) Impressão digital

h) Caminhada

- i) Geometria da mão
- j) Iris
- k) Impressão da palma da mão
- l) Retina
- m) Assinatura
- n) Voz

Biométria - O que é:

Utilizados diariamente para:

- Autenticação de dispositivos móveis (celulares);
- Confirmação de pagamentos bancários;
- 3. Liberação de acesso em ambientes;
- 4. Autenticação de documentos;
- 5. Controle de ambientes;

Fonte: Jain, Ross e Pabhakar (2004)

Problemas

- Necessidade de sensores específicos para a aplicação, como no caso dos sistemas biométricos por digital ou íris;
- Requer, em sua grande maioria, o contato direto e colaboração do indivíduo;
- Os dados precisam ser de **boa qualidade** para fazer o reconhecimento biométrico, como para o reconhecimento facial, por íris, voz, ou digital;
- Algumas aplicações requerem a identificação da pessoa sem o contato direto e, às vezes, sem o consentimento:
 - Pode-se citar o monitoramento de ambientes como aeroportos e shoppings;

Reconhecimento Biométrico por Marcha

- Identifica o indivíduo com base no padrão de caminhada do mesmo;
 - Utiliza características como ângulo máximo entre as pernas e braços ao caminhar -> movimento repetitivo;
 - Amplitude do movimento;
 - Angulação média e máxima entre membros (braços e antebraços, por exemplo);
- Possível de se utilizar em aplicações com vídeos de baixa resolução (JANGUA; MARANA, 2020);
- Pode ser feito o reconhecimento biométrico à distância e de forma anônima;
- Pode utilizar câmeras de vigilância já instalada nos locais;

Objetivos

Objetivo Geral

Desenvolver um método baseado em Rede Neural Artificial (RNA) para reconhecimento biométrico de pessoas através de reconhecimento de marcha humana utilizando poses 3D obtidas a partir de múltiplas poses 2D.

Objetivos Específicos

- Pesquisar sobre reconhecimento biométrico de pessoas;
- Realizar levantamento bibliográfico de trabalho correlatos;
- Extração de poses 3D a partir de múltiplas poses 2D;
- Modelagem de RNA;
- Realização de testes com a RNA proposta;
- Analisar os resultados obtidos.

Fundamentação Teórica

Pose 2D/3D

Vértices no plano da imagem formado por pontos 2D (x, y);

Fonte: Elaborado pelo autor.

Vértices no frame do mundo formado por pontos 3D (x, y, z);

Fonte: Elaborado pelo autor.

Parâmetros Extrínseco/Intrínseco de câmeras

- Descrevem a projeção de um ponto 3D do mundo no plano da imagem;
- Obtenção através do processo de calibração de câmeras;

Fonte: Adaptado de MathWorks (2023).

Parâmetros Extrínseco/Intrínseco de câmeras

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Método Proposto

Base de Dados

- CASIA Gait Dataset-A:
 - 20 indivíduos distintos;
 - 12 sequências de imagens por indivíduo;
 - 4 sequências para cada uma direção;

Fonte: Center for Biometrics and Security Research (2010).

Base de Dados

- CASIA Gait Dataset-B:
 - 124 indivíduos distintos;
 - 11 câmeras diferentes;
 - Câmeras com angulações de 18°;

Fonte: Center for Biometrics and Security Research (2010).

Calibração das Câmeras

- Utilização do COLMAP ->
 Pipeline de SFM (Structure From Motion);
- Amplamente utilizado para reconstruções 3D (com textura) utilizando apenas imagens;
- Resolve sistemas de equações
 não-linear para reduzir a função
 de custo de reprojeção;

Fonte: Adaptado de Bianco, Ciocca e Marelli (2018)

Calibração das Câmeras

Pipeline do COLMAP

Calibração das Câmeras

• Utilização do COLMAP para a estimação dos parâmetros das câmeras para o dataset CASIA-B;

Fonte: Elaborado pelo autor.

Extração das poses 2D

- Utilização da Rede Neural Convolucional OpenPifPaf;
- Escolha pelo código aberto e facilidade do uso;
- Ao total, são 17
 pontos-chave diferentes;

Fonte: Adaptado de Kreiss, Bertoni e Alahi (2021).

Fonte: Elaborado pelo autor.

Estimação das poses 3D utilizando poses 2D

- Utilização da função *cv2.triangulatePoints* em Python:
 - Necessidade das coordenadas do mesmo ponto nas duas imagens diferentes;
 - Necessidade da matriz de projeção (K[R|t]);
 - Cálculo da *depth* através da disparidade $\frac{Z}{t} = \frac{f}{D}$
 - Estimação do ponto 3D;

Fonte: Adaptado de Kreiss, Bertoni e Alahi (2021).

Estimação das poses 3D utilizando poses 2D

- Exemplo das poses 3D geradas no dataset CASIA-B;
- Foram utilizados apenas duas câmeras que proporciona ampla visão dos membros dos indivíduos;

RNA Proposta

- Objetivo de condensar a informação e representá-la em um espaço vetorial de menor dimensão:
 - Baseado no modelo NetVLAD,
 utilizado para abordagens de *Image Retrieval*;
 - Última camada é uma normalização, fazendo com que o vetor descritor tenha norma 1 e possibilitando a função de custo;
 - Função de custo utilizada é a *Triplet* Loss;

Camada	Canais de Entrada	Canais de Saída
Calliaua		Callais de Salda
X	$40 \times 17 \times 3$	-
CONV 2D	$40 \times 17 \times 3$	$64 \times 17 \times 3$
BATCH NORM	$64 \times 17 \times 3$	$64 \times 17 \times 3$
RELU	$64 \times 17 \times 3$	$64 \times 17 \times 3$
CONV 2D	$64 \times 17 \times 3$	$128 \times 17 \times 3$
BATCH NORM	$128 \times 17 \times 3$	$128 \times 17 \times 3$
RELU	$128 \times 17 \times 3$	$128 \times 17 \times 3$
CONV 2D	$128 \times 17 \times 3$	$256 \times 17 \times 3$
BATCH NORM	$256 \times 17 \times 3$	$256 \times 17 \times 3$
RELU	$256 \times 17 \times 3$	$256 \times 17 \times 3$
FLATTEN	$256 \times 17 \times 3$	13056×1
LINEAR	13056×1	512×1
BATCH NORM	512×1	512×1
RELU	512×1	512×1
LINEAR	512×1	256×1
L2-NORM	256×1	256×1

RNC Proposta

- Para cada iteração, durante o treinamento da rede, a mesma "aprende" pesos que consigam gerar descritores diferentes para diferentes dados de entrada;
- Com o banco de dados criado, utiliza-se a distância cossenoidal entre o vetor descritor estimado com o banco para recuperar a pessoa que o dado de entrada/descritor pertence:

$$\cos \theta = \frac{x \bigcirc y}{||x|| \cdot ||y||}.$$

Pipeline Proposta

Resultados e Discussão

CASIA GAIT-A em Top-1

- Validação utilizando o dataset CASIA GAIT-A;
- Treinamento utilizando os vídeos sem acessórios;
- Utilização dos vídeos com acessórios para o cálculo da acurácia;
- Obtivemos uma boa acurácia quando treinado utilizando ambos datasets;

Método	Acurácia
Wang et al. (2003)	88.75%
Liu et al. (2016)	89.17%
Lima e Schwartz (2019)	95.42%
Jangua e Marana (2020) com distância Euclidiana	87.92%
Jangua e Marana (2020) com distância Chi-quadrado	91.67%
Método Proposto Treinado no Conjunto GAIT-A	90.00%
Método Proposto Treinado no Conjunto GAIT-B	85.00%

CASIA GAIT-B em Top-1

- Validação utilizando o dataset CASIA GAIT-B;
- Treinamento utilizando os vídeos sem acessórios;
- Utilização dos vídeos com acessórios para o cálculo da acurácia;
- Obtivemos uma boa acurácia quando treinado utilizando o dataset CASIA GAIT-B;
- Baixa acurácia quando treinado usando o dataset CASIA GAIT-A:
 - Uma possível justificativa é a pequena quantidade de dados para treino;

Método	Acurácia
Yu et al. (2007)	83.50%
Chen et al. (2009)	91.10%
Lima e Schwartz (2019)	98.00%
Jangua e Marana (2020) (Distância Euclidiana)	91.26%
Jangua e Marana (2020) (Distância Chi-Quadrado)	94.22%
Método Proposto Treinado no Conjunto GAIT-A	56.45%
Método Proposto Treinado no Conjunto GAIT-B	86.10%

CASIA GAIT-B com casaco em Top-1

- Validação utilizando o dataset CASIA GAIT-B;
- Treinamento utilizando os vídeos com casaco;
- Utilização dos vídeos com/sem acessórios para o cálculo da acurácia;
- Obtivemos uma boa acurácia quando treinado utilizando o dataset CASIA GAIT-B:
 - Prova-se que nossa abordagem tem uma baixa dependência quanto aos acessórios;
- Baixa acurácia quando treinado usando o dataset CASIA GAIT-A;

Método	Acurácia
Lima e Schwartz (2019)	95.16%
Jangua e Marana (2020) (Distância Euclidiana)	86.29%
Jangua e Marana (2020) (Distância Chi-Quadrado)	89.72%
Método Proposto Treinado no Conjunto GAIT-A	56.15%
Método Proposto Treinado no Conjunto GAIT-B	85.80%

Discussões

- Melhorar a estimação dos parâmetros (intrínsecos e extrínsecos) das câmeras devido seu impacto direto na qualidade das poses 3D:
 - Utilizar um processo de calibração através de *chess-board*;
- Refinar a precisão das poses 3D:
 - Analisar outros modelos de redes neurais para extração de poses 2D;
 - Refinar as poses 3D utilizando o erro de reprojeção das câmeras;
- Fazer um estudo do Top-N ao invés apenas do Top-1:
 - Em image retrieval, por exemplo, a prática de analisar os Top-N melhores resultados é comum.
- Adquirir um maior conjunto de dados para treinar a rede neural de extração do vetor descritor;
- Testar outros algoritmos de estimação de poses 3D utilizando mais de duas câmeras;

Conclusão

Conclusão

- Provou-se que é possível extrair poses 3D utilizando vídeos de diferentes câmeras e utilizar tal dado para fazer o reconhecimento biométrico;
 - Vantagem de lidar melhor com oclusões devido ao uso de diferentes câmeras;
 - Ideal para aglomerar informações de diferentes câmeras em uma única estimação;
- Tal abordagem pode ser utilizada sem contato direto com o indivíduo que deseja-se reconhecer;
- Tal abordagem não tem uma dependência direta com vestimenta e acessórios que estejam sendo utilizados no momento;
- Obteve-se resultados competitivos, apesar de não se comparar aos métodos de Lima e Schwartz (2019);

Bibliografia

BIANCO, S.; CIOCCA, G.; MARELLI, D. Evaluating the performance of structure from motion pipelines. Journal of Imaging, v. 4, n. 8, 2018. ISSN 2313-433X. Disponível em: https://www.mdpi.com/2313-433X/4/8/98>.

Center for Biometrics and Security Research. Chinese Academy of Sciences (CASIA). 2010. Acesso em: 10 de Outubro, 2023. Disponível em: http://www.cbsr.ia.ac.cn/english/index.asp>.

COLMAP. Tutorial - COLMAP. 2023. Acesso em: 3 de Outubro, 2023. Disponível em: https://colmap.github.io/tutorial.html>.

GAO, X.; ZHANG, T. Introduction to Visual SLAM. 1st. ed. Singapura: Springer, 2021. ISBN 9811649383.

JAIN, A. K.; ROSS, A.; PRABHAKAR, S. An introduction to biometric recognition. IEEE Transactions on circuits and systems for video technology, IEEE, v. 14, n. 1, p. 4–20, 2004.

JANGUA, D.; MARANA, A. A new method for gait recognition using 2d poses. In: Anais do XVI Workshop de Visão Computacional. Porto Alegre, RS, Brasil: SBC, 2020. p. 69–74. ISSN 0000-0000. Disponível em: https://sol.sbc.org.br/index.php/wvc/article/view/13483>.

LIMA, V. de; SCHWARTZ, R. Gait recognition using pose estimation and signal processing. In: Iberoamerican on Pattern Ecognition. [S.I.]: CIARP, 2019. ISSN 0000-0000.

MathWorks. What Is Camera Calibration?. 2023. Acesso em: 10 de Novembro, 2023. Disponível em: https://www.mathworks.com/help/vision/ug/camera-calibration.html.

Obrigado!