Задание 10 (на 06.11.13)

[CC50.] ВРL_Н — это класс языков, для которых существует вероятностная машина Тьюринга M, которая использует логарифмическую память, останавливается с вероятностью 1, и для всех x выполняется, что $\Pr[M(x) = L(x)] \ge \frac{2}{3}$. Покажите, что $\Pr[M(x) = L(x)] \ge \frac{2}{3}$.

Определение. Язык $L \in MA$, если существует такая полиномиальная вероятностная машина V и полином p, что если $x \in L$, то найдется такая строка $y \in \{0,1\}^{p(n)}$, что $\Pr[V(x,y)=1] \ge \frac{2}{3}$, а если $x \notin L$, то для любой строки $y \in \{0,1\}^{p(n)}$ выполняется $\Pr[V(x,y)=1] < \frac{1}{3}$.

CC51. Существует вариант класса MA с односторонней ошибкой. $L \in MA_1$, если существует такая полиномиальная вероятностная машина V и полином p, что если $x \in L$, то найдется такая строка $y \in \{0,1\}^{p(n)}$, что $\Pr[V(x,y)=1]=1$, а если $x \notin L$, то для любой строки $y \in \{0,1\}^{p(n)}$ выполняется $\Pr[V(x,y)=1]<\frac{1}{3}$. Покажите, что $MA=MA_1$.

Определение. Язык $L \in \text{AM}$, если существует такая детерминированная машина V и полином p, что если $x \in L$, то $\Pr_{z \leftarrow \{0,1\}^{p(n)}} [\exists y \in \{0,1\}^{p(n)} : V(x,z,y) = 1] \geq \frac{2}{3}$, а если $x \notin L$, то $\Pr_{z \leftarrow \{0,1\}^{p(n)}} [\exists y \in \{0,1\}^{p(n)} : V(x,z,y) = 1] < \frac{1}{3}$.

 $\overline{\mathbf{CC52.}}$ | Покажите, что МА \subseteq АМ.

СС53. Покажите, что $MA \subseteq \Sigma_2^P$.

СС 9. Машина Тьюринга называется забывчивой, если положение головки в любой момент времени зависит только от длины входа. Докажите, что любую машину Тьюринга, работающую время T(n) можно промоделировать за время $O(T^2(n))$ на забывчивой одноленточной машине. б) А на забывчивой двухленточной за время $O(T(n)\log T(n))$.

СС 23. Покажите, что каждый язык, который принимается k-ленточной недетерминированной машиной Тьюринга за время f(n) может быть принят 2-ленточной недетерминорованной машиной за время O(f(n)).

| CC 34. | Докажите, что a) $DSpace[n^2] \subsetneq DSpace[n^3]$; б) $NSpace[n^2] \subsetneq NSpace[n^3]$.

СС 43. Докажите, что $DSpace[n] \neq NP$.

СС 45. Докажите, что если унарный язык NP-полный, то P = NP.

CC 46. Обозначим UCYCLE множество всех неориентрованных графов, в которых есть цикл. Докажите, что UCYCLE принадлежит классу L.

CC 47. Докажите, что если $NP \subseteq BPP$, то NP = RP.