Cálculo em Várias Variáveis

Exemplos: teoremas de Stokes e do Divergente

ICT-Unifesp

Exemplo

Calcule a integral $\iint_S \operatorname{rot} \vec{F} \cdot d\vec{S}$, onde $\vec{F}(x,y,z) = xz \, \vec{i} + yz \, \vec{j} + xy \, \vec{k} \, e \, S \, \acute{e} \, a \, parte \, da \, esfera$ $x^2 + y^2 + z^2 = 4 \, que \, est\acute{a} \, dentro \, do \, cilindro \, x^2 + y^2 = 1$ $e \, acima \, do \, plano \, xy$.

A curva fronteira C é obtida resolvendo as equações $x^2 + y^2 + z^2 = 4$ e $x^2 + y^2 = 1$, o que resulta em $z^2 = 3$, isto é, $z = \sqrt{3}$, pois $z \ge 0$. Assim, C é a circunferência descrita por $x^2 + y^2 = 1$ e $z = \sqrt{3}$.

A curva fronteira C é obtida resolvendo as equações $x^2+y^2+z^2=4$ e $x^2+y^2=1$, o que resulta em $z^2=3$, isto é, $z=\sqrt{3}$, pois $z\geq 0$. Assim, C é a circunferência descrita por $x^2+y^2=1$ e $z=\sqrt{3}$.

Uma parametrização de C é

$$\vec{r}(t) = \cos t \, \vec{i} + \sin t \, \vec{j} + \sqrt{3} \, \vec{k}, \, 0 \le t \le 2\pi.$$

A curva fronteira C é obtida resolvendo as equações $x^2+y^2+z^2=4$ e $x^2+y^2=1$, o que resulta em $z^2=3$, isto é, $z=\sqrt{3}$, pois $z\geq 0$. Assim, C é a circunferência descrita por $x^2+y^2=1$ e $z=\sqrt{3}$.

Uma parametrização de C é

$$\vec{r}(t) = \cos t \, \vec{i} + \sin t \, \vec{j} + \sqrt{3} \, \vec{k}, \, 0 \le t \le 2\pi.$$

Logo,
$$\vec{r}'(t) = -\sin t \, \vec{i} + \cos t \, \vec{j}$$
.

Além disso,

$$\vec{F}(\vec{r}(t)) = \sqrt{3}\cos t\,\vec{i} + \sqrt{3}\sin t\,\vec{j} + \cos t\sin t\,\vec{k}.$$

Portanto, pelo Teorema de Stokes,

$$\iint_{S} \operatorname{rot} \vec{F} \cdot d\vec{S} = \int_{C} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

$$= \int_{0}^{2\pi} (-\sqrt{3}\cos t \sin t + \sqrt{3}\sin t \cos t) dt$$

$$= \sqrt{3} \int_{0}^{2\pi} 0 dt = 0.$$

Note que no exemplo anterior, calculamos a integral de superfície apenas conhecendo os valores de \vec{F} na fronteira C. Logo, se tivermos outra superfície orientada com a mesma fronteira C, obteremos o mesmo valor para a integral de superfície.

Assim, nas condições do Teorema de Stokes, se S_1 e S_2 são superfícies orientadas com mesma fronteira orientada C, então

$$\iint_{S_1} \operatorname{rot} \vec{F} \cdot d\vec{S} = \int_{C} \vec{F} \cdot d\vec{r} = \iint_{S_2} \operatorname{rot} \vec{F} \cdot d\vec{S}.$$

Esse fato é especialmente útil quando for difícil calcular a integral sobre uma das superfícies, mas for mais fácil sobre a outra.

Exemplo

Vamos calcular $\iint_{S} \vec{F} \cdot d\vec{S}$, onde $\vec{F}(x, y, z) = xy \, \vec{i} + (y^2 + e^{xz^2}) \vec{j} + sen(xy) \vec{k} \, e \, S \, \acute{e} \, a$ superfície da região E delimitada pelo cilindro parabólico $z = 1 - x^2$ e os planos z = 0, y = 0 e y + z = 2.

Note que seria muito trabalhoso calcular o fluxo de \vec{F} através de S (seria necessário resolver quatro integrais de superfície).

Note também que o divergente de \vec{F} tem expressão mais simples do que \vec{F} :

$$\operatorname{div} \vec{F} = \frac{\partial}{\partial x}(xy) + \frac{\partial}{\partial y}(y^2 + e^{xz^2}) + \frac{\partial}{\partial z}(\operatorname{sen} xy) = 3y.$$

Para usarmos o Teorema do Divergente, escrevemos *E* como

$$E = \{(x, y, z) \mid -1 \le x \le 1, \ 0 \le z \le 1 - x^2, \ 0 \le y \le 2 - z\}.$$

Assim,

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{E} \operatorname{div} \vec{F} dV = \iiint_{E} 3y \, dV$$
$$= 3 \int_{-1}^{1} \int_{0}^{1-x^{2}} \int_{0}^{2-z} y \, dy \, dz \, dx = \dots = \frac{184}{35}.$$

