1.4. Комплексная функция

1° Определение

 $Mem.\ f: E\subset \mathbb{R}\longrightarrow D\subset \mathbb{R} \stackrel{def}{\Longleftrightarrow}$ отображение такое, что $\forall x\in E\ \exists !y\in D\ |\ y=f(x)$

Def. $f:D\subset\mathbb{C}\longrightarrow G\subset\mathbb{C} \stackrel{def}{\Longleftrightarrow}$ отображение такое, что $\forall z\in D\ \exists w\in G\ |\ f(z)=w$

Def. Если $\forall z \in D \exists ! w \in G$, то f называется однозначной функцией

Def. Если $\forall z_1, z_2 \in D(z_1 \neq z_2) \Longrightarrow f(z_1) \neq f(z_2)$, то f называется однолистной функцией

 $Ex.\ 1.\ w = \sqrt{z}$ - неоднозначная функция

$$\exists z = 1 = 1(\cos 0 + i \sin 0)$$
$$\sqrt{z} = \sqrt{1} \left(\cos \frac{2\pi k}{2} + i \sin \frac{2\pi k}{2}\right)$$
$$w_1 = 1, \quad w_2 = -1$$

 $\mathit{Ex.}\ 2.\ \mathit{w} = \mathit{z}^2$ - неоднолистная функция

$$z_1 = 1, z_2 = -1$$
 $w(z_1) = w(z_2) = 1$

Nota. Если f(z) однозначна и однолистна, то f(z) - взаимно однозначное соответствие (биекция). Тогда $\exists q(x) \mid q(f(x)) = x$

Комплексную функцию f(z) можно представить как u(x,y)+iv(x,y), где x+iy=z

Ex.
$$w = z^2 = (x + iy)^2 = x^2 + 2ixy - y^2 = (x^2 - y^2) + i \cdot 2xy$$

 $u(x, y) = (x^2 - y^2),$ $v(x, y) = 2xy$

2° Предел

Def.
$$L \in \mathbb{C}, f: D \longrightarrow G, \quad L \stackrel{def}{=} \lim_{z \to z_0} f(z) \Longrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \middle| \ z \in D, z \in U_{\delta}^{\circ}(z_0) \ f(x) \in U_{\varepsilon}(L)$$

В определении существование и значение L не должно зависеть от пути, по которому z приближается к точке сгущения z_0 . Может быть так, что для любого направления стремления предел есть, но в общем смысле не существует

$$Ex. \ f(z) = \frac{1}{2i} \left(\frac{z}{\overline{z}} - \frac{\overline{z}}{z} \right) \qquad \exists z = \rho e^{i\varphi}$$

$$f(z) = \frac{1}{2i} \left(\frac{\rho e^{i\varphi}}{\rho e^{-i\varphi}} - \frac{\rho e^{-i\varphi}}{\rho e^{i\varphi}} \right) = \frac{1}{2i} \left(e^{2i\varphi} - e^{-2i\varphi} \right) = \frac{1}{2i} (\cos 2\varphi + i \sin 2\varphi - \cos 2\varphi + i \sin 2\varphi) = \sin 2\varphi$$
Зафиксируем $\varphi = \varphi^* \in [0; 2\pi)$, тогда $\sin 2\varphi^* \in [-1; 1]$

$$\lim_{z\to 0} f(z) = \lim_{\begin{subarray}{c} \rho\to 0\\ \varphi=\varphi^*\end{subarray}} f(z) = \lim_{\begin{subarray}{c} \rho\to 0\\ \varphi=\varphi^*\end{subarray}} \sin 2\varphi = \sin 2\varphi^* \in [-1;1]$$

Значения предела занимает отрезок [-1;1] \Longrightarrow $\nexists \lim_{z \to 0} f(z)$

На рисунке изображена $\sin 2\varphi$, на оси Oz изображена Rew. Черные линии - это возможные пути приближения $z \kappa 0$

Nota. Это аналогия с односторонними пределами \mathbb{R} -функций

Def. Непрерывность функций в точке z_0 .

 $f:D\longrightarrow G, z_0\in D,\ f(z)$ называется непрерывной в $z_0,$ если $\lim_{z\to z_0}f(z)=f(z_0)$

На языке приращений: $\Delta f = f(z_0 + \Delta z) - f(z_0) \xrightarrow{\Delta z \to 0} 0$

$$\Delta z = z - z_0 = \Delta x + i \Delta y \to 0 \Longrightarrow \begin{cases} \Delta x \to 0 \\ \Delta y \to 0 \end{cases} \Longrightarrow \Delta \rho \to 0$$

3° Элементарные комплексные функции

$$Ex. 1.$$
 Линейная $f(z) = az + b$,

$$a, b \in \mathbb{C}$$
 $a \neq 0$

Эта функция однозначная, однолистная $\Longrightarrow \exists f^{-1}(z) = g(z) = \frac{z-b}{a}$

Геометрический смысл:

 $a \in \mathbb{C}, z \in \mathbb{C}$

$$az=|a||z|(\cos(\varphi_a+\varphi_z)+i\sin(\varphi_a+\varphi_z))$$
 - поворот и растяжение $(\varphi_a=\arg a,\ \varphi_z=\arg z)$ $az+b=(x_{az}+x_b)+i(y_{az}+y_b)$ - сдвиг

То есть линейная функция - комбинация линейных перемещений

 $Ex.\ 2.$ Степенная $w=z^n,\quad n\in\mathbb{N}$ - однозначная, может быть неоднолистной

Для $n \in \mathbb{Q}$ функция становится неоднозначной

Ex.
$$w = z^2$$
 $z = \rho e^{i\varphi}, w = \rho^2 e^{2i\varphi}$

Заметим, что $\arg z_1 = \arg z_2 \pm \pi$

$$w(z_1) = \rho^2 e^{2i \arg z_1} = \rho^2 e^{2i (\arg z_1 + 2\pi k)}$$

$$w(z_2) = \rho^2 e^{2i\arg z_2} = \rho^2 e^{2i(\arg z_1 + \pi)} = \rho^2 e^{i(2\arg z_1 + 2\pi)} = w(z_1)$$

Область однолистности z^2 - множество точек, для которых $\arg z \in [0;\pi)$

Точку w=0 называют точкой разветвления

$$\begin{split} Ex. \ \ & w = z^{-1} = \frac{1}{z} \qquad \qquad w(0) = \infty, \, w(\infty) = 0 \\ z \in \mathbb{C} \setminus \{0\} \text{ - функция обратима} \\ & w = re^{i\psi} = \frac{1}{\rho e^{i\phi}} = \frac{1}{\rho} e^{-i\varphi} \Longrightarrow |w| = \frac{1}{|z|}, \, \text{arg} w = -\text{arg} z \end{split}$$

$$w = re^{i\psi} = \frac{1}{\rho e^{i\phi}} = \frac{1}{\rho} e^{-i\varphi} \Longrightarrow |w| = \frac{1}{|z|}, \arg w = -\arg z$$

Преобразование $|w| = \frac{1}{|z|}$ называется инверсией, а argw = -argz дает симметрию относительно Rez

2.
$$(e^{z_1})^{z_2} = e^{z_1 z_2}$$

3. $e^{z+2\pi i} = e^z \cdot e^{2\pi i} = e^z$ - показательная функция периодична с периодом $2\pi i$

Если
$$e^w = e^{u+vi} = e^u(\cos v + i\sin v) = z = |z|e^{i\arg z}$$
, то $u = \ln|z|$, $v = \arg z + 2\pi k$
Тогда $\left[\operatorname{Ln}z = \ln|z|(\cos(\arg z + 2\pi k) + i\sin(\arg z + 2\pi k))\right]$

 $\ln z = \operatorname{Ln} z$ при k = 0 - т. н. главное значение

