ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Подкидышев Алексей Сергеевич Студент факультета инноваций и высоких технологий (группа 790)

Лабораторная работа №2.4.1

«Определение теплоты испарения жидкости»

Долгопрудный 29 марта 2018 г.

1 Установка. Теоретический материал:

1.1 Оборудование

В работе используются: термостат; герметичный сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп

ждения через змеевик 3 подается холодная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряется термометром 5. В термостат погружен прибор 6 с исследуемой жидкостью (в нашем случае — спирт). Над ней находится насыщенный пар. Давление пара определяется ртутным манометром, соединенным с исследуемым объемом. Отсчет показаний манометра производится с помощью микроскопа.

Наполненный водой резервуар 1 играет роль термостата. Нагревание

производится спиралью 2. Для охла-

Рис. 1: Схема установки для определения теплоты испарения

1.2 Описание/Цель работы

Цель работы: Измерение давления насыщенного пара жидкости при различных температурах; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

Ucnapehue — переход вещества из жидкого состояния в газообразное. Оно происходит со всей поверхности жидкости. Для испарения молекулы должны преодолеть силу молекулярного сцепления и совершить работу против внешнего давления P, поэтому не все молекулы способны совершить эту работу, а только те, которые обладают достаточной кинетической энергией. Поэтому переход части молекул в пар приводит к обеднению жидкости быстрыми молекулами, т.е. к ее охлаждению.

Количество теплоты, необходимое для изотермического испарения одного моля жидкости при внешнем давлении, равном упругости ее насыщенных паров, называется молярной теплотой испарения (парообразования). В настоящей работе используется метод определения теплоты испарения, основанный на уравнении Клапейрона-Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{V_2 - V_1} \tag{1}$$

Здесь P – давление насыщенного пара при температуре T, L – теплота испарения жидкости, V_1 – объем жидкости, V_2 – объем пара. При нашей точности опытов величиной V_1 можно пренебречь (она составляет порядка 0.5% объема пара). Обозначим $V_2 = V$. Объем связан с давлением и температурой уравнением Ван-Дер-Ваальса:

$$(P + \frac{a}{V^2})(V - b) = RT \tag{2}$$

Однако в наших условиях пренебрежение константами a и b вносит погрешность менее 3% при атмосферном давлении, а при более низких давлениях погрешность становится еще меньше. Положим

$$V = \frac{RT}{P} \tag{3}$$

Подставляя (3) в (1) и пренебрегая V_1 , получим

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{4}$$

2 Ход работы:

- 1. Измерим высоту слоя конденсата.
 - Заметим, что над поверхностью ртути находится небольшой слой воды высотой $\Delta h=9.2$ cm. Этот слой будет создавать добавочное давление $\Delta p=\rho g\Delta h\approx 90.16$ Па. Будем учитывать это давление при дальнейших подсчетах.
- 2. Включим термостат. Будем достаточно медленно (чтобы температура спирта оставалось близкой к температуре воды) нагревать воду в калориеметре от температуры T_0 до 40^{o} С. При этом с повышением температуры на 1 градус измеряем разность уровней в манометре. Перенесем данные в таблицу 1 (при измерении давления необходимо учесть поправку Δp).

h_1 ,cm	h_2 ,cm	T, C°	T, K	$\triangle H, m$	$P, 10^3 \; \Pi a$
10,15	5,53	20,27	293,4	0,046	6,049
10,53	5,27	22	295,2	$0,\!053$	6,900
10,83	4,89	24	297,2	$0,\!059$	7,803
11,12	4,58	26	299,2	$0,\!065$	8,601
11,45	4,2	28	301,2	0,073	9,544
11,8	3,75	30	303,2	0,081	10,607
12,3	3,34	32	305,2	0,090	11,816
12,79	2,86	34	307,2	0,099	13,105
13,34	2,22	36	309,2	0,111	14,687
13,85	1,14	38	311,2	$0,\!127$	16,800
14,61	1,02	40	313,2	$0,\!136$	17,969

Таблица 1: Результаты измерений при нагревании воды от 20 до $40C^{\circ}$

3. Откроем змеевик для охлаждения воды. Необходимо проводить охлаждение примерно тем же темпом, что и нагревание. Проведем аналогичные измерения и перенесем их в таблицу 2.

h_1 ,cm	h_2 ,cm	T, C°	T, K	$\triangle H, m$	$P, 10^3 \; \Pi a$
14,61	1,02	40	313,15	0,136	17,969
13,95	1,61	38	311,15	0,123	16,308
13,35	2,27	36	309,15	0,111	14,634
12,75	2,77	34	307,15	0,100	13,172
12,33	3,3	32	305,15	0,090	11,909
11,88	3,75	30	303,15	0,081	10,713
11,49	4,12	28	301,15	0,074	9,704
11,09	4,49	26	299,15	0,066	8,680
10,7	4,84	24	297,15	0,059	7,697
10,45	5,21	22	295,15	0,052	6,873
10,25	5,41	20	293,15	0,048	6,342
14,61	1,02	40	313,2	0,136	17,969

Таблица 2: Результаты измерений при охолождении воды

4. По данным в таблицах 1 и 2. Найдем зависимость P(T), lnP(1/T): построим два графика: в координатах P, T (рис. 2) и в координатах $1/P, \ln T$ (рис. 3)

Рис. 2: График зависимости Р(Т) основнанный на измерениях Таблици 1-2

Рис. 3: График зависимости lnP(1/T) основнанный на измерениях $Taблицы\ 1-2$. Который используется нами для поиска L - теплоты испарения жидкости СПОСОБОМ 2

5. С помощью данных на графике рассчитаем значение L. Для первого графика (*Cnocoб 1*):

$$L_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{RT_i^2}{P_i} \left(\frac{dP}{dT}\right)_i$$

где $\left(\frac{dP}{dT}\right) \approx 581,3\cdot 10^{-3}$. Получаем $L_1\approx 44390~\rm{Дж/моль}$. Погрешность измерений:

$$\frac{\sigma_{L_1}}{L_1} = \sqrt{2\left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{\sigma_P}{P}\right)^2 + \left(\frac{\sigma_{\frac{dP}{dT}}}{\frac{dP}{dT}}\right)^2}$$

$$\frac{\sigma_{L_1}}{L_1} = \sqrt{2\left(\frac{4,9}{302,5}\right)^2 + \left(\frac{2716,7}{9786,8}\right)^2 + \left(\frac{159,9}{521,3}\right)^2} \approx 7$$

Для второго графика ($Cnoco6\ 2$):

$$L_2 = -R \frac{d(\ln P)}{d(1/T)}$$

Получим $L_2 pprox 41294~{
m Дж/моль}.$ Погрешность измерений:

$$\sigma_L \approx \frac{R}{\sqrt{n}} \sqrt{\frac{<(\ln P)^2 > - <\ln P >^2}{<\frac{1}{T^2} > - <\frac{1}{T} >^2}} - k^2$$

$$\sigma_L \approx \frac{8,31}{\sqrt{11}} \sqrt{4866^2 - \frac{134,152 - 134,040}{2 \cdot 10^{-7}}} \approx 475,1$$

Результаты:

Занесем полученные результаты в таблицу:

$1 L_1$ Дж/моль	L_1 , кДж/кг	$arepsilon_{L_1},\%$	L_2 , Дж/моль	L_2 , кДж/кг.	$arepsilon_{L_2},\%$
43620,0	946,82	7	41294,5	896,33	2

Таблица 3: Результаты измерения удельной теплоты испарения спирта

3 Вывод

В ходе эксперимента было установлено, что использование способа расчета с помощью второго графика позволяет добиться значительно меньших погрешностей, чем расчет с помощью первого графика. Полученное значение удельной теплоты испарения спирта составляет 946,82 кДж/кг, что не совсем соответствует табличным данным(837 кДж/кг). Погрешность эксперимента может быть объяснена недостаточным временем между экспериментальными точками, так как, возможно, жидкость и пар не успевали прийти в динамическое равновесие. Также погрешность вызваны пренебрежением коэффициентами в уравнении Ван-дер-Ваальса.