FLOW PRESENTATION

- CUSTOMER PAIN POINTS/GAPS FOR DIFFERENT
 BUSINESS TYPES/PERSONAS & SOLUTIONS ENVISAGED
- > WHY DID WE CHOOSE THE MODELS THAT WE CHOSE?
- > AI/ML MODELLING
 - > DATA INTRODUCTION

→ DEMO: Inputs to the model

- > DATA PREPARTION
- > MODEL EVALUATION & PREDICTION
- > INVENTORY REPLENISHMENT REORDER POINT & SAFETY STOCK DEMO: Output
- BENEFITS CUSTOMER & TBH

VOICE OF CUSTOMERS

Inventory is ordered using **experience and intuition**. **Overstocking** seems to be a common trait. Use **time- based inventory replenishment** methodology

VOICE OF CUSTOMERS

Inventory is ordered using **experience and intuition**. **Overstocking** seems to be a common trait. Use **time- based inventory replenishment** methodology

REPLENISHMENT OF INVENTORY

TIME BASED

INVENTORY BASED

INVENTORY BASED REPLENISHMENT is better because

- Better Adaptation to Demand Variability
- Reduced Risk of Stockouts
- Optimized Inventory Holding Costs
- Improved Supply Chain Responsiveness
- Customer Service Improvements

with limitations of

• Requires accurate demand forecast

- Addressed through our forecasting model
- Requires regular monitoring of inventory

Classify inventory and keep count in their system which they currently do

DEMAND FORECASTING

SELECTED

DATASET STRUCTURE

	record_ID	week	store_id	sku_id	total_price	base_price	is_featured_sku	is_display_sku	units_sold
149381	211540	2013-07-09	9112	219844	244.3875	361.9500	0	1	41
149384	211543	2013-07-09	9112	222087	163.1625	208.0500	1	1	664
149389	211552	2013-07-09	9112	245387	355.5375	469.5375	1	0	22
149372	211525	2013-07-09	9092	245338	356.2500	467.4000	1	1	33
149363	211516	2013-07-09	9092	219029	278.5875	309.9375	0	0	31

Input Variables

- Week
- SKU ID
- Store ID

External/Exogenous Variables

- Total Price
- Base Price
- Is featured SKU
- Is display SKU

Target Variable

Units Sold

Any external variable GDP, population can be added like mentioned in the use-case and the model will still work

Data Source: Kaggle

DATA PREPARATION

DATA CLEANING

DATA UNDERSTANDING

DATA PROCESSING

TRANSFORMED DATA TYPE

TREATED MISSING VALUES

REMOVED DUPLICATE ENTRIES

TREATED INCONSISTENT VALUES

SORTED DATA BASED ON DATE

If missing values > 1% then removed the rows else replaced with mean

```
# caccutate the total number of rows
total_rows = len(df)
# Calculate the number of rows with missing values
na_rows = df.isna().any(axis=1).sum()
if na_rows < total_rows * 0.01:
    df.dropna(inplace=True)
else:
    # Fill missing values with the average of store_id and sku_id combination
    df.fillna(df.groupby(['store_id', 'sku_id']).transform('mean'), inplace=True)
df.isnull().sum()</pre>
```

DATA PREPARATION

DATA CLEANING

DATA UNDERSTANDING

DATA PROCESSING

DATA SELECTION

Based on sku and store input

sku_id = 216419 store_id = 8091

> UNDERSTANDING DISTRIBUTION

UNDERSTANDING
COMPONENTS and DATA
STATIONARITY USING DET

SKEWNESS: 1.7979

<u>Observation</u>: Data is highly skewed towards right

Observation: Data has both trend and seasonality

DATA PREPARATION

DATA PROCESSING

LOG TRANSFORMATION

Normalization for better predictions by treating skewness

REMOVED OUTLIERS

 $\mu +/-3\sigma$

INTRODUCED FEATURES

Accounting for seasonality in data and discount as another variable

DIVIDED INTO TRAIN & TEST

80% - train (4680 weeks*); 20% - test (1170 weeks*)

*For the selected sku and store

SKEWNESS: -0.4571

Transformation: Normalized the curve

display_sku	units_sold	month	year	day_of_week	day_of_month	disc
0	162	7	2013	1	9	
0	140	7	2013	1	9	
0	74	7	2013	1	9	
0	45	7	2013	1	9	
0	63	7	2013	1	9	

Features introduced: month, year, day_of_week, day_of_month, discounts

MODELLING & PREDICTIONS

SELECTION OF MODEL

PREDICTION

Evaluated the models using RMSE (root mean squared error) and MAPE (Mean absolute percentage error) and selected the model with lower RMSE

RMSE: Avg. magnitude of errors

• Sensitive to large errors, therefore, useful for identifying outliers in the forecast.

<u>Interpretation</u>: A lower RMSE indicates that the model's predictions are closer to the actual values

Accuracy = 1 - MAPE: Percentage error

- Indicates accuracy in terms of %
- Asymmetry in Handling overestimation and underestimation
- Insensitive to error magnitude

<u>Interpretation</u>: A higher Accuracy indicates that the model's predictions are closer to the actual values

Evaluation Metrics

*For the selected sku and store

MODELLING & PREDICTIONS

SELECTION OF MODEL

PREDICTION

week store_id sku_id actual_values_rf predicted_values_rf

2011-07-11	8091 2	16419	11.0	20.0
2011-07-04	8091 2	16419	25.0	22.0
2011-06-27	8091 2	16419	17.0	19.0
2011-06-20	8091 2	16419	25.0	19.0
2011-06-13	8091 2	16419	24.0	37.0

Actutal Values Vs Predicted values

6 most important features important to predicting demand for the sku and store:

Selected Features: Index(['store_id', 'total_price', 'base_price', 'is_display_sku', 'month', 'day_of_month']

for the chosen sku and store

FINDING RE-ORDER POINT

Based on demand forecast

Sku id - 216419 Reorder Point: 182.0 Safety Stock: 48.0

BENEFITS TO CUSTOMER

Identify Demand
Patterns &
Dependence on
External Factors

Better adaptation to demand variability therefore improved production planning.

Reduce inventory holding cost

Reduce costs associated with storage, maintenance, and obsolescence

Improved cash flow

Maintain optimal inventory levels based on actual demand; better inventory turnover

Reduce stock outs

Setting optimal reorder point and maintaining safety stock ensures that businesses maintain adequate inventory levels

03

)4