Wildfire prediction

@javichur

Disaster Response Hackathon

Inspiration

Many forest fires happen around the world. There are many investigations to detect fires in satellite images (using colors, temperature changes, vegetation changes, etc...).

But since we have a history of satellite images, I have thought to use the images prior to the start of the fire, to try to predict in which places a fire is most likely to start.

Step 1. Data collection

Wildfire dataset. 300-500m resolution.
Temporal Coverage from several years ago. https://firms.modaps.eosdis.nasa.gov/download/

		latitude	longitude	brightness	scan	track	acq_date	acq_time	satellite	instrument	confidence	version	bright_t31	frp	daynight	type
	0	-11.2690	-27.6022	310.5	1.7	1.3	2021-01-01	0007	Terra	MODIS	71	6.03	294.7	16.4	N	3
	1	-6.4528	143.2207	307.0	1.1	1.1	2021-01-01	0101	Terra	MODIS	50	6.03	292.4	5.0	D	0
	2	28.7351	9.7986	303.2	1.0	1.0	2021-01-01	0119	Aqua	MODIS	54	6.03	276.0	10.9	N	2
	3	28.7368	9.7881	310.7	1.0	1.0	2021-01-01	0119	Aqua	MODIS	81	6.03	276.8	16.1	N	2
	4	31.5913	5.9692	302.2	1.2	1.1	2021-01-01	0119	Aqua	MODIS	48	6.03	270.4	14.3	N	2
).				***							***					
	3090808	-32.6069	147.2451	306.6	1.5	1.2	2021-08-31	2357	Terra	MODIS	61	6.03	292.7	10.1	D	0
	3090809	-32.1991	146.9268	304.8	1.6	1.2	2021-08-31	2357	Terra	MODIS	53	6.03	294.5	7.4	D	0
	3090810	-32.6090	145.7355	304.1	1.8	1.3	2021-08-31	2357	Terra	MODIS	36	6.03	294.0	7.7	D	0
	3090811	-32.1986	146.9203	312.9	1.6	1.2	2021-08-31	2357	Terra	MODIS	71	6.03	294.7	17.1	D	0
	3090812	-38.1520	145.3238	304.3	1.5	1.2	2021-08-31	2358	Terra	MODIS	59	6.03	288.2	9.8	D	0

3090813 rows × 15 columns

Registry of Open Data on AWS

Sentinel-2

Sentinel-2 is a satellite mission that provides high resolution image of the Earth (10m resolution), every 5 days.

Temporal Coverage from several years ago. https://registry.opendata.aws/sentinel-2/

Step 2. Data preparation

- 2.1. Exploring the data using an interactive map, with filters by date, layers and popups.
- 2.2. Download and cut satellite images of the moments before the fire starts. This will be our dataset. Do it at scale automatically (for many fires).
- 2.3. **Overlay** this satellite images on fire locations.
- 2.4. Convert images to grayscale.
- 2.5. Add images labeled as "non-future fireable location" to the dataset.

Step 3. Train the model

Model: Visual Transformer.

Classification between "potential place for future fire" and "no future fire".

```
efficient_transformer = Linformer(
    dim=128,
    seq_len=49+1, # 7x7 patches + 1 cls-token
    depth=12,
    heads=8,
    k=64
)

model = ViT(
    dim=128,
    image_size=224,
    patch_size=32,
    num_classes=2,
    transformer=efficient_transformer,
    channels=1, # FIXED! Channels=1 (grayscale)
).to(device)
```


Step 4. Evaluating and predictions

3 options to predict:

- From **URL image**.
- From Image Upload.
- From Lat/Lon (click on map).

Thanks!

@javichur