Generalized Lee Bounds Guide to Code

1 Overview

The code for the paper "Generalized Lee Bounds" is contained in the zipped file "GenLeeBounds.zip". Unzipping this file provides this guide as well as several files and sub-directories. Specifically, the sub-directory "R" contains the files that construct basic generalized bound and sharp bound. The sub-directory "Raw_Data" is empty, it needs to be populated by the user with JobCorps Public Use Files from Schochet et al. (2008). The sub-directories, namely, "Logs", "Figures", "Tables" and "Derived_Data" are populated at run time. These files produce the tables and figures appearing in the paper and in the Online Appendix, as summarized on the next page.

2 JobCorps Public Use Files

We do not include original files from Schochet et al. (2008) because of GitHub size restrictions. In these notes and associated files, we provide computer code that allows a user to replicate our results given access to these data. Specifically, the R code assumes that the sub-directory Raw_Data contains the four files: baseline.sas7bdat, empl_tl.sas7bdat, mileston.sas7bdat, key_vars.sas7bdat. These files were downloaded from the AER website, replication code of Schochet et al. (2008). Covariate descriptions are given in Appendix L of Schochet et al. (2008).

Table 1: Overview of Files Creating Figures and Tables

Table/Figure	File(s) Creating It	File(s) Being Created
Figures 1 and 2	STEP2_TEST_MONOTONICITY/*.R	Figures/Figure1.png, Figure2.png
Tables 1 and 2	STEP3_ESTIMATE_BOUNDS/Table*.R	Tables/STEP3_Bounds/Vira/csv/Table*.csv
Figure 3	STEP4_FIGURE3/Figure3.R,	Figures/Figure3.png
	print_Figure3.R	

3 Overview of R Files

Table 2: R Files in R folder

R Function	Input	Output	Description
	auxil	iary.R	
prepare_leedata	raw Lee data (panel for all weeks), week number	data vector leedata for given week	logs of hourly earnings, missing values by zero, attaches weights, assembles leedata $W = (D,X,S,SY, \text{weight}, \Pr(D = 1 \mid X), \Pr(D = 0 \mid X))$
main_bb	data, name of function, number of repetitions	bootstrapped estimates	
compute_confidence_ region	main estimate, bootstrapped draws, and significance level α	$CR_{1-\alpha}$ in (5.13)	estimates cov matrix from bootstrapped estimates, takes cholesky sqrtm, re- turns CR
	leebo	unds.R	
basic_lee_bound	leedata	$\beta_U^{\rm basic}$ in (2.4)	basic Lee bound under (Assumption 1)
discrete_bound	leedata, indicator of treatment helps	bound in (2.8)	discrete Lee bound of Algorithm 1
	first_stage_	functions.R	
estimate_selection	leedata, formula selection treat*(covnames), method (glm or rlassologit),	glm.fit object (coefs γ^d in (5.1))	glm.fit object
predict_selection	glm.fit object, leedata	s(0,x) and $s(1,x)$ in (3.1)	s.hat=fitted values for $s(0,x)$ and $s(1,x)$
estimate_quantile	leedata, formula outcome treat*(covnames), quantreg:rq method (default or lasso), quantile grid size	$Q^{1}(u,x)$ and $Q^{0}(u,x)$ on Page 6 for $u \in (0.1,0.2,,0.9)$ if grid=0.1	data frame of fitted values for $Q^1(u,x)$ and $Q^0(u,x)$
impute_quantile_ level	$p_0(x)$ and quantile estimates	$Q(p_0(x),x)$	plugs $p_0(x)$ into $Q^1(u,x)$ to get $Q(p_0(x),x)$
estimate_borderline_ wage	$p_0(x)$ and quantile estimates	data frame y.hat=(y.p0. hat,y.1.p0.hat)	sorted quantile estimates + trimmed at min/max wage encoding $Q(p_0(x),x)$, $Q(1-p_0(x),x)$
first_stage_wrapper	leedata	leedata + s.hat+ y. hat: fitted values for Algo- rithm 2	

Table 3: R Files in R folder

second_stage_functions.R $m_U(W,\xi)$ in (3.15) trimmed_moments trimmed moments leedata *N*-vector of $cor_U^{hurt}(W, \xi)$ orthogonal_correction (including bias leedata correction $cor_U^{hurt}(W, \xi)$, y.hat), ins.hat and terms: $\operatorname{cor}_{U}^{\operatorname{help}}(W,\xi),$ $\operatorname{cor}_{L}^{\operatorname{hurt}}(W,\xi),$ $\operatorname{cor}_{L}^{\operatorname{help}}(W,\xi)$ in (4.9)dicator of treatment helps $(4.\bar{1}1)$ $\begin{array}{ll} \frac{g_U^{\text{help}}(W,\xi)}{g_U^{\text{hurt}}(W,\xi)} & \text{and} \\ g_U^{\text{hurt}}(W,\xi) & \text{in} \quad (4.7) \\ \text{if "ortho} &== \text{True"} \\ \text{and } m_U^{\text{help}}(W,\xi) & \text{and} \\ m_U^{\text{hurt}}(W,\xi) & \text{in} \quad (2.10) & \text{if} \\ \end{array}$ *N*-vector of $g_U^{\text{help}}(W, \xi)$ and $g_U^{\text{hurt}}(W, \xi)$ in (4.7) numerator_2ndstage leedata (including s.hat and y.hat) option "ortho == False always_takers_share (including uses (3.9) if option leedata π_{AT} $\mathbb{E}\min(s(0,X),s(1,X))$ "ortho_d == False"; s.hat) $g_D(W, s)$ in (4.16) if "ortho_d == option True" estimates $g_U^{\mathrm{help}}(W,\xi)$ and $g_U^{\mathrm{hurt}}(W,\xi)$, comsecond_stage_wrapper leedata (including output of Algorithm 1 s.hat and y.hat) bines into $g_U(W,\xi)$ as in (5.8), divides by π_{AT} , returns ortho_leebounds output of Algorithm 1 (1) first-stage-wrapper leedata (2) second-stagewrapper $\bar{\beta}_U$ in (6.8) basic_generalized_ leedata basic generalized bound

Table 4: Helper files for Steps 2, 3 and 4

bound

R Function	Input	Output	Description
/STEP2_TEST_MONOTONICITY/utils_for_test.R			
compute_tstat_by_group	leedata	t statistics by	t statistics
		groups	
test_wrapper	week, group	maximum of t	t statistics
		statistics	

(Assumption 2(b))

Table 5: Overview of Code (Step 1 and 2)

Filename	Input Files	Output File	Description
Step 1: Prepare Data			
prepare_basic_data.R	/Raw_Data/	/Derived_Data/dataLee2009.csv	merge input files by MPRID, recodes some
	key_vars.sas7bdat,		covariates to match Lee(2009) and saves
	mileston.sas7bdat,		the result into data/dataLee2009.csv
	baseline.sas7bdat,		
	empl_tl.sas7bdat	/Daginal Data/dataLag2000aanagista	identifier all extreminal conjulation and an
prepare_covariates.R	baseline.sas7bdat, /De-	/Derived_Data/dataLee2009covariates	identifies all categorical variables and re-
	rived_Data/dataLee2009.csv	.feather	codes them as binary indicators. Output is
			not loaded at GitHub due to memory con-
			straint.
prepare_covariates_short.l	R baseline.sas7bdat, /De-	/Derived_Data/dataLee2009covariates	Drops welfare, school, training history.
	rived_Data/dataLee2009.csv	_short.feather	Output is not loaded at GitHub due to
			memory constraint.

Table 6: Overview of Code (Step 2)

Filename	Input Files	Output File	Description
Step 2: Test Monotonicity			
Figures12.R	/Derived_Data/dataLee2009.csv,	/Tables/STEP2_Monotonicity/Vira/	data for Figures 1 and 2
	dataLee2009covariates.feather	Figure 1.csv, Figure 2.csv, Frechet-	
		Bounds.csv,	
test_monotonicity.R	/Derived_Data/dataLee2009.csv,	/Tables/STEP2_Monotonicity/Vira/	1. Conduct a monotonicity test for each
	dataLee2009covariates.feather	test_result.csv	week using a week-specific test statistic
			(7.4) and <i>p</i> -value; 2. See results in Table
			C.10
print_Figures12.R	/Tables/STEP2_Monotonicity/	/Figures/Figure1png, Figure2png	Print Figure 1,2
	Vira/Figure1.csv, Figure2.csv		

Table 7: Overview of Code (Step 3)

Filename	Input Files	Output File	Description	
	Step 3: Estimate Bounds			
Table1.R	dataLee2009.csv	csv files under Tables/STEP3_Bounds/	(1) estimate always-takers share, basic Lee bounds (2.4) and discrete Lee bounds (2.8) and 95%-CR under Assumption 1	
Tab_Lee.R	dataLee2009.csv, dataLee2009covariates.feather	csv files under Tables/STEP3_Bounds/	estimates generalized bound (3.18) using Algorithm 2 with first-stage fitted values based on penalized estimates for logistic and quantile regression under Assumption 2(b)	
Tab_Full.R	dataLee2009.csv, dataLee2009covariates_short.feather	csv files under Tables/STEP3_Bounds/	estimates generalized bound (3.18) using Algorithm 2 with first-stage fitted values based on penalized estimates for logistic and quantile regression under Assumption 2(b)	
Tab_Lasso.R	dataLee2009.csv, dataLee2009covariates.feather	csv files under Tables/STEP3_Bounds/	estimates generalized bound (3.18) using Algorithm 2 with first-stage fitted values based on estimates for logistic and quantile regression under Assumption 2(b) using Lassoselected covariates	
Table2.R			assembles Table2.txt based on Tab_*.R above	

References

Schochet, P. Z., Burghardt, J., and McConnell, S. (2008). Does job corps work? impact findings from the national job corps study. *American Economic Review*, 98(1):1864–1886.