This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Is the following relation a function?

2 -20 3 -45 4 -80 5 -80 4 20 3 45 2 80	n B
--	-----

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

2. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was -4(x+3)+2. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

3. Is the following relation a linear function?

x	У	
4	-64	
5	-100	
6	-144	The solution is No, which is option B
7	-196	The solution is No, which is option b
8	196	•
7	64	•
6	100	•

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

4. Is the equation below a linear function?

$$f(x) = -5(x-4) + 1$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was -5(x-4)+1. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

5. Is the following relation a function?

\mathbf{X}	у					
0	0					
1	1					
2	2	The solution i	ia Voa	which	is option A	٨
3	3	The solution i	s res,	willen	is option	л.
4	4	-				
5	5					
6	6	•				

A. Yes

* Correct! Every x-value has exactly one output.

B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

6. Is the graph below a linear function?

The solution is no, the graph is not linear, which is option B.

A. Yes, the graph is linear

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does not have a constant rate of change.

B. No, the graph is not linear.

General Comment: The equation graphed was $5(2)^{x-5}-4$. Alinear function has a constant rate of growth. This means the is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

7. Is the following relation a linear function?

^{*} Correct! The graph does not have a constant rate of change and thus is not a linear function.

X	У	
2	12	
3	27	-
4	48	The solution is No, which is option B.
5	75	The solution is No, which is option B.
6	-75	-
5	-12	-
4	-27	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

8. Is the equation below a linear function?

$$f(x) = 4(x+1) + 3$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 4(x + 1)+3. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

9. Is the following relation a function?

$$(1,4.0), (2,5.66), (3,6.93), (4,8.0), (5,8.94), (6,9.8), (7,10.58)$$

The solution is Yes, which is option A.

- A. Yes
 - * Correct! Every x-value has exactly one output.
- B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

10. Is the graph below a linear function?

The solution is no, the graph is not linear, which is option B.

A. Yes, the graph is linear

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does not have a constant rate of change.

B. No, the graph is not linear.

* Correct! The graph does not have a constant rate of change and thus is not a linear function.

General Comment: The equation graphed was $-4(x+2)^5-3$. Alinear function has a constant rate of growth. This means is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

11. Is the following relation a linear function?

X	У					
2	11					
3	18					
4	25	The solution is	V_{OC}	which	is ontio	n A
5	32	The solution is	res,	willen	із оршо	пл
6	39					
7	46	-				
8	53	-				

A. Yes

* Correct! As x increases/decreases, y increases/decreases at the same rate.

B. No

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

12. Is the equation below a linear function?

$$f(x) = -5(x+1) + 2$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was -5(x+1)+2. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).