Tomasz Beneś

Sprawozdanie – Lista 3

Zadanie 1.

Implementacja polega na algorytmie:

- 1. Policz środek c odcinka [a,b]
- 2. Jeżeli f(a)*f(c) > 0, a = c; w przeciwnym wypadku b = c

Metoda bisekcji polega na dzieleniu odcinka, na którym funkcja zmienia znak, i zawężeniu go, odrzucając tą połowę, na której znak się nie zmienia.

Zadanie 2.

Implementacja metody Newtona polega na zastosowaniu wzoru:

$$x_{n+1} = x_n - \frac{f(x)}{f'(x)}$$

Z warunkiem $f'(r)\neq 0$ (czyli pierwiastek jest jednokrotny).

Zadanie 3.

Implementacja metody siecznych wykorzystuje przybliżenie pochodnej w postaci:

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

I zastąpieniem nią pochodnej w metodzie Newtona:

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

Przy czym dwa pierwsze wyrazy muszą być dane.

Zadanie 4.

4a. Opis problemu

Zastosowanie wymienionych metod dla funkcji $\sin(x) - (\frac{1}{2}x)^2 = 0$. Parametry były podane w treści zadania.

4c. Wyniki

	Pierwiastek	Wartość	Iteracje
Bisekcji	1.9337539672851562	-2.7027680138402843e-7	16
Newtona	1.93375216656148	2.110129405874517e-6	14
Siecznych	1.933753644474301	1.564525129449379e-7	4

4d. Wnioski

Wszystkie metody osiągnęły ten sam poziom dokładności w różnej liczbie iteracji. Mimo niedokładnego przybliżania pochodnej, metoda siecznych okazała się najszybsza. Można wnioskować, że dla odpowiednich danych jest skuteczniejsza.

Zadanie 5.

5a. Opis problemu

Znalezienie punktu przecięcia funkcji y=3x z $y=e^x$. metodą bisekcji.

5b. Rozwiązanie

$$3x=e^x$$
.

$$3x-e^x=0$$

Pierwiastek powyższego równania będzie stanowił rozwiązanie problemu.

5c. Wyniki

Funkcje przecinają się w dwóch punktach, w przedziałach [0, 1] i [1, 2].

Przedział	Pierwiastek	Wartość	Iteracje
[0, 1]	0.619140625	9.066320343276146e-5	9
[1, 2]	1.5120849609375	7.618578602741621e-5	13

5d. Wnioski

Warto zauważyć, że bez znajomości funkcji $3x-e^x=0$ metoda bisekcji znajdzie tylko jeden z pierwiastków, uruchomiona na przedziale zawierającym je oba. Można też zaobserwować, że dla pierwiastka bliżej środka przedziału (\sim 1.51) potrzebne było więcej iteracji.

Zadanie 6.

6a. Opis problemu

Zbadanie funkcji $f(x)=e^{1-x}-1$ i $g(x)=xe^{-x}$ trzema metodami z zadaną dokładnością. Zaobserwowanie różnych zachowań przy podanych danych.

6b. Rozwiązanie

Odpowiednie przedziały zostały dobrane na podstawie wykresów. Są przedstawione w tabeli wynikowej.

6c. Wyniki

Wyniki dla funkcji f₁

Metoda	Dane	Pierwiastek	Wartość	Iteracje
Bisekcji	[0.5, 2.0]	0.9999923706054688	7.629423635080457e-6	16
	[-500, 500]	1.0000020265579224	-2.026555868894775e-6	26
Newtona	0.0	0.999999999987766	1.2234657731369225e-12	5
	-10.0	0.999999999999999	0.0	16
	10.0	NaN	NaN	3
Siecznych	0, 2	1.0000017597132702	-1.7597117218937086e-6	6
	-10, 10	NaN	NaN	3

Wyniki dla funkcji f₂

Metoda	Dane	Pierwiastek	Wartość	Iteracje
Bisekcji	[-2, 3]	7.62939453125e-6	7.62933632381113e-6	17
	[-20, 30]	4.76837158203125e-6	4.768348844717916e-6	21
Newtona	0.0	-9.389621148813321e-14	-9.389621148814203e-14	6
	1.0	błąd	pochodna bliska zeru	-
	1.5	15.85996660038479	2.0530819776075742e-6	11
Siecznych	-1, 1	-2.2029906018022774e-6	-2.202995454975215e-6	17
	-1, 2	14.293420230716682	8.863038351539702e-6	15

6d. Wnioski

- Metoda bisekcji jest globalnie zbieżna.
- Metody Newtona i Siecznych są zbieżne lokalnie.

Odpowiedzi na pytania

- 1. Dla f_1 i $x_0 > 1$ w metodzie Newtona pochodna jest bliska zeru. Nie otrzymujemy poprawnej odpowiedzi.
- 2. Dla f_2 i $x_0 > 1$ zbliżamy się do zera (granica funkcji w nieskończoności to 0), dlatego przy odpowiednio dużej δ metoda Newtona znajdzie fikcyjny pierwiastek.
- 3. Dla f_2 i $x_0 = 1$ pochodna wynosi 0. Nie otrzymujemy poprawnej odpowiedzi.