Chapter 15: Nonparametric Statistics

15.1 Let Y have a binomial distribution with n = 25 and p = .5. For the two-tailed sign test, the test rejects for extreme values (either too large or too small) of the test statistic whose null distribution is the same as Y. So, Table 1 in Appendix III can be used to define rejection regions that correspond to various significant levels. Thus:

Rejection region	α
$Y \le 6$ or $Y \ge 19$	$P(Y \le 6) + P(Y \ge 19) = .014$
$Y \le 7$ or $Y \ge 18$	$P(Y \le 7) + P(Y \ge 18) = .044$
$Y \le 8$ or $Y \ge 17$	$P(Y \le 8) + P(Y \ge 17) = .108$

- **15.2** Let $p = P(blood levels are elevated after training). We will test <math>H_0$: p = .5 vs H_a : p > .5.
 - **a.** Since m = 15, so p-value = $P(M \ge 15) = \binom{17}{15} 5^{17} + \binom{17}{16} 5^{17} + \binom{17}{16} 5^{17} = 0.0012$.
 - **b.** Reject H_0 .
 - **c.** $P(M \ge 15) = P(M > 14.5) \approx P(Z > 2.91) = .0018$, which is very close to part **a**.
- **15.3** Let p = P(recovery rate for A exceeds B). We will test H_0 : p = .5 vs H_a : $p \neq .5$. The data are:

Hospital	A	В	Sign(A - B)
1	75.0	85.4	_
2	69.8	83.1	_
3	85.7	80.2	+
4	74.0	74.5	_
5	69.0	70.0	_
6	83.3	81.5	+
7	68.9	75.4	_
8	77.8	79.2	_
9	72.2	85.4	_
10	77.4	80.4	_

- **a.** From the above, m = 2 so the p-value is given by $2P(M \le 2) = .110$. Thus, in order to reject H_0 , it would have been necessary that the significance level $\alpha \ge .110$. Since this is fairly large, H_0 would probably not be rejected.
- **b.** The *t*–test has a normality assumption that may not be appropriate for these data. Also, since the sample size is relatively small, a large–sample test couldn't be used either.
- **15.4 a.** Let p = P(school A exceeds school B in test score). For H_0 : p = .5 vs H_a : $p \neq .5$, the test statistic is M = # of times school A exceeds school B in test score. From the table, we find m = 7. So, the p-value = $2P(M \ge 7) = 2P(M \le 3) = 2(.172) = .344$. With $\alpha = .05$, we fail to reject H_0 .
 - **b.** For the one–tailed test, H_0 : p = .5 vs H_a : p > .5. Here, the p–value = $P(M \ge 7) = .173$ so we would still fail to reject H_0 .

- 15.5 Let p = P(judge favors mixture B). For H_0 : p = .5 vs H_a : $p \neq .5$, the test statistic is M = # of judges favoring mixture B. Since the observed value is m = 2, p-value = $2P(M \le 2) = 2(.055) = .11$. Thus, H_0 is not rejected at the $\alpha = .05$ level.
- **15.6 a.** Let p = P(high elevation exceeds low elevation). For H_0 : p = .5 vs H_a : p > .5, the test statistic is M = # of nights where high elevation exceeds low elevation. Since the observed value is m = 9, p-value = $P(M \ge 9) = .011$. Thus, the data favors H_a .
 - **b.** Extreme temperatures, such as the minimum temperatures in this example, often have skewed distributions, making the assumptions of the *t*–test invalid.
- **15.7 a.** Let p = P(response for stimulus 1 is greater that for stimulus 2). The hypotheses are H_0 : p = .5 vs H_a : p > .5, and the test statistic is M = # of times response for stimulus 1 exceeds stimulus 2. If it is required that $\alpha \le .05$, note that

$$P(M \le 1) + P(M \ge 8) = .04$$
,

where M is binomial(n = 9, p = .5) under H_0 . Our rejection region is the set $\{0, 1, 8, 9\}$. From the table, m = 2 so we fail to reject H_0 .

- **b.** The proper test is the paired *t*-test. So, with H_0 : $\mu_1 \mu_2 = 0$ vs. H_a : $\mu_1 \mu_2 \neq 0$, the summary statistics are $\overline{d} = -1.022$ and $s_D^2 = 3.467$, the computed test statistic is $|t| = \frac{|-1.022|}{\sqrt{\frac{3.467}{9}}} = 1.65$ with 8 degrees of freedom. Since $t_{.025} = 2.306$, we fail to reject H_0 .
- **15.8** Let p = P(B exceeds A). For H_0 : $p = .5 \text{ vs } H_a$: $p \neq .5$, the test statistic is M = # of technicians for which B exceeds A with n = 7 (since one tied pair is deleted). The observed value of M is 1, so the p-value = $2P(M \le 1) = .125$, so H_0 is not rejected.
- **15.9 a.** Since two pairs are tied, n = 10. Let p = P(before exceeds after) so that H_0 : p = .5 vs H_a : p > .5. From the table, m = 9 so the p-value is $P(M \ge 9) = .011$. Thus, H_0 is not rejected with $\alpha = .01$.
 - **b.** Since the observations are counts (and thus integers), the paired *t*–test would be inappropriate due to its normal assumption.
- **15.10** There are *n* ranks to be assigned. Thus, $T^+ + T^- = \text{sum of all ranks} = \sum_{i=1}^n i = n(n+1)/2$ (see Appendix I).
- **15.11** From Ex. 15.10, $T^- = n(n+1)/2 T^+$. If $T^+ > n(n+1)/4$, it must be so that $T^- < n(n+1)/4$. Therefore, since $T = \min(T^+, T^-)$, $T = T^-$.
- **15.12** a. Define d_i to be the difference between the math score and the art score for the ith student, i = 1, 2, ..., 15. Then, T⁺ = 14 and T⁻ = 106. So, T = 14 and from Table 9, since 14 < 16, p-value < .01. Thus H₀ is rejected. **b.** H₀: identical population distributions for math and art scores vs. H_a: population
 - **b.** H_0 : Identical population distributions for math and art scores vs. H_a : population distributions differ by location.

15.13 Define d_i to be the difference between school A and school B. The differences, along with the ranks of $|d_i|$ are given below.

Then, $T^+ = 49$ and $T^- = 6$ so T = 6. Indexing n = 10 in Table 9, .02 < T < .05 so H_0 would be rejected if $\alpha = .05$. This is a different decision from Ex. 15.4

- **15.14** Using the data from Ex. 15.6, $T^- = 1$ and $T^+ = 54$, so T = 1. From Table 9, p-value < .005 for this one-tailed test and thus H_0 is rejected.
- **15.15** Here, R is used:

```
> x <- c(126,117,115,118,118,128,125,120)
> y <- c(130,118,125,120,121,125,130,120)
> wilcox.test(x,y,paired=T,alt="less",correct=F)
```

Wilcoxon signed rank test

data: x and y V = 3.5, p-value = 0.0377 alternative hypothesis: true mu is less than 0

The test statistic is T = 3.5 so H_0 is rejected with $\alpha = .05$.

- **15.16** a. The sign test statistic is m = 8. Thus, p-value = $2P(M \ge 8) = .226$ (computed using a binomial with n = 11 and p = .5). H_0 should not be rejected.
 - **b.** For the Wilcoxon signed–rank test, $T^+ = 51.5$ and $T^- = 14.5$ with n = 11. With $\alpha = .05$, the rejection region is $\{T \le 11\}$ so H_0 is not rejected.
- 15.17 From the sample, $T^+ = 44$ and $T^- = 11$ with n = 10 (two ties). With T = 11, we reject H_0 with $\alpha = .05$ using Table 9.
- **15.18** Using the data from Ex. 12.16:

Thus, $T^+ = 118$ and $T^- = 2$ with n = 15. From Table 9, since $T^- < 16$, p-value < .005 (a one-tailed test) so H_0 is rejected.

15.19 Recall for a continuous random variable Y, the median ξ is a value such that $P(Y > \xi) = P(Y < \xi) = .5$. It is desired to test H_0 : $\xi = \xi_0$ vs. H_a : $\xi \neq \xi_0$.

- **a.** Define $D_i = Y_i \xi_0$ and let M = # of negative differences. Very large or very small values of M (compared against a binomial distribution with p = .5) lead to a rejection.
- **b.** As in part a, define $D_i = Y_i \xi_0$ and rank the D_i according to their absolute values according to the Wilcoxon signed–rank test.
- **15.20** Using the results in Ex. 15.19, we have H_0 : $\xi = 15,000$ vs. H_a : $\xi > 15,000$ The differences $d_i = y_i 15000$ are:

- **a.** With the sign test, m = 2, p-value = $P(M \le 2) = .055$ (n = 10) so H_0 is rejected.
- **b.** $T^+ = 49$ and $T^- = 6$ so T = 6. From Table 9, .01 < p-value < .025 so H_0 is rejected.
- **15.21** a. $U = 4(7) + \frac{1}{2}(4)(5) 34 = 4$. Thus, the p-value $= P(U \le 4) = .0364$

b.
$$U = 5(9) + \frac{1}{2}(5)(6) - 25 = 35$$
. Thus, the *p*-value = $P(U \ge 35) = P(U \le 10) = .0559$.

c.
$$U = 3(6) + \frac{1}{2}(3)(4) - 23 = 1$$
. Thus, p-value = $2P(U \le 1) = 2(.0238) = .0476$

15.22 To test: H_0 : the distributions of ampakine CX-516 are equal for the two groups H_a : the distributions of ampakine CX-516 differ by a shift in location

The samples of ranks are:

Age group
$$20s$$
 20 11 7.5 14 7.5 16.5 2 18.5 3.5 7.5 $W_A = 108$ $65-70$ 1 16.5 7.5 14 11 14 5 11 18.5 3.5 $W_B = 102$

Thus,
$$U = 100 + 10(11)/2 - 108 = 47$$
. By Table 8,
 p -value = $2P(U \le 47) > 2P(U \le 39) = 2(.2179) = .4358$.

Thus, there is not enough evidence to conclude that the population distributions of ampakine CX–516 are different for the two age groups.

15.23 The hypotheses to be tested are:

 H_0 : the population distributions for plastics 1 and 2 are equal H_a : the populations distributions differ by location

The data (with ranks in parentheses) are:

By Table 8 with $n_1 = n_2 = 6$, $P(U \le 7) = .0465$ so $\alpha = 2(.0465) = .093$. The two possible values for U are $U_A = 36 + \frac{6(7)}{2} - W_A = 27$ and $U_B = 36 + \frac{6(7)}{2} - W_B = 9$. So, U = 9 and thus H_0 is not rejected.

- **15.24** a. Here, $U_A = 81 + \frac{9(10)}{2} W_A = 126 94 = 32$ and $U_B = 81 + \frac{9(10)}{2} W_B = 126 77 = 49$. Thus, U = 32 and by Table 8, p-value = $2P(U \le 32) = 2(.2447) = .4894$.
 - **b.** By conducting the two sample *t*-test, we have H_0 : $\mu_1 \mu_2 = 0$ vs. H_a : $\mu_1 = \mu_2 \neq 0$. The summary statistics are $\overline{y}_1 = 8.267$, $\overline{y}_2 = 8.133$, and $s_p^2 = .8675$. The computed test stat.

is
$$|t| = \frac{|.1334|}{\sqrt{.8675(\frac{2}{9})}} = .30$$
 with 16 degrees of freedom. By Table 5, p -value > 2(.1) = .20 so

 H_0 is not rejected.

- **c.** In part **a**, we are testing for a shift in distribution. In part **b**, we are testing for unequal means. However, since in the t-test it is assumed that both samples were drawn from normal populations with common variance, under H_0 the two distributions are also equal.
- 15.25 With $n_1 = n_2 = 15$, it is found that $W_A = 276$ and $W_B = 189$. Note that although the actual failure times are not given, they are not necessary:

$$W_A = [1 + 5 + 7 + 8 + 13 + 15 + 20 + 21 + 23 + 24 + 25 + 27 + 28 + 29 + 30] = 276.$$

Thus, $U = 354 - 276 = 69$ and since $E(U) = \frac{n_1 n_2}{2} = 112.5$ and $V(U) = 581.25$, $z = \frac{69 - 112.5}{\sqrt{581.25}} = -1.80.$

Since $-1.80 < -z_{.05} = -1.645$, we can conclude that the experimental batteries have a longer life.

15.26 R:

```
> DDT <- c(16,5,21,19,10,5,8,2,7,2,4,9)
> Diaz <- c(7.8,1.6,1.3)
> wilcox.test(Diaz,DDT,correct=F)
```

Wilcoxon rank sum test

data: Diaz and DDT
W = 6, p-value = 0.08271
alternative hypothesis: true mu is not equal to 0

With $\alpha = .10$, we can reject H_0 and conclude a difference between the populations.

- **15.27** Calculate $U_A = 4(6) + \frac{4(5)}{2} W_A = 34 34 = 0$ and $U_B = 4(6) + \frac{6(7)}{2} W_B = 45 21 = 24$. Thus, we use U = 0 and from Table 8, p-value = $2P(U \le 0) = 2(.0048) = .0096$. So, we would reject H_0 for $\alpha \approx .10$.
- **15.28** Similar to previous exercises. With $n_1 = n_2 = 12$, the two possible values for U are $U_A = 144 + \frac{12(13)}{2} 89.5 = 132.5$ and $U_B = 144 + \frac{12(13)}{2} 210.5 = 11.5$,

but since it is required to detect a shift of the "B" observations to the right of the "A" observations, we let $U = U_A = 132.5$. Here, we can use the large–sample approximation. The test statistic is $z = \frac{132.5-72}{\sqrt{300}} = 3.49$, and since $3.49 > z_{.05} = 1.645$, we can reject H_0 and conclude that rats in population "B" tend to survive longer than population A.

15.29 H_0 : the 4 distributions of mean leaf length are identical, vs. H_a : at least two are different. R:

```
> len <-
c(5.7,6.3,6.1,6.0,5.8,6.2,6.2,5.3,5.7,6.0,5.2,5.5,5.4,5.0,6,5.6,4,5.2,
3.7,3.2,3.9,4,3.5,3.6)
> site <- factor(c(rep(1,6),rep(2,6),rep(3,6),rep(4,6)))
> kruskal.test(len~site)
```

Kruskal-Wallis rank sum test

```
data: len by site
Kruskal-Wallis chi-squared = 16.974, df = 3, p-value = 0.0007155
```

We reject H_0 and conclude that there is a difference in at least two of the four sites.

15.30 a. This is a completely randomized design.

From the above, we cannot reject H_0 .

From the above, we fail to reject H_0 : we cannot conclude that campaign 2 is more successful than campaign 3.

- **15.31 a.** The summary statistics are: TSS = 14,288.933, SST = 2586.1333, SSE = 11,702.8. To test H_0 : $\mu_A = \mu_B = \mu_C$, the test statistic is $F = \frac{2586.1333/2}{11,702.8/12} = 1.33$ with 2 numerator and 12 denominator degrees of freedom. Since $F_{.05} = 3.89$, we fail to reject H_0 . We assumed that the three random samples were independently drawn from separate normal populations with common variance. Life–length data is typically right skewed.
 - **b.** To test H_0 : the population distributions are identical for the three brands, the test statistic is $H = \frac{122}{15(16)} \left(\frac{36^2}{5} + \frac{35^2}{5} + \frac{49^2}{5}\right) 3(16) = 1.22$ with 2 degrees of freedom. Since $\chi^2_{.05} = 5.99$, we fail to reject H_0 .

15.32 a. Using R:

By the above, p-value = .03474 so there is evidence that the distributions of recovery times are not equal.

b. R: comparing the Victoria A and Russian strains:

With p-value = .01733, there is sufficient evidence that the distribution of recovery times with the two strains are different.

```
15.33 R:
```

With a p-value = .5641, we fail to reject the hypothesis that the distributions of weights are equal for the four temperatures.

15.34 The rank sums are: $R_A = 141$, $R_B = 248$, and $R_C = 76$. To test H_0 : the distributions of percentages of plants with weevil damage are identical for the three chemicals, the test statistic is $H = \frac{12}{30(31)} \left(\frac{141^2}{10} + \frac{248^2}{10} + \frac{76^2}{10} \right) - 3(31) = 19.47$. Since $\chi^2_{.005} = 10.5966$, the *p*-value is less than .005 and thus we conclude that the population distributions are not equal.

15.35 By expanding *H*,

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{k} n_i \left(\overline{R_i}^2 - 2\overline{R_i} \frac{n+1}{2} + \frac{(n+1)^2}{4} \right)$$

$$= \frac{12}{n(n+1)} \sum_{i=1}^{k} n_i \left(\frac{R_i^2}{n_i^2} - (n+1) \frac{R_i}{n_i} + \frac{(n+1)^2}{4} \right)$$

$$= \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} + \frac{12}{n} \sum_{i=1}^{k} R_i + \frac{3(n+1)}{n} \sum_{i=1}^{k} n_i$$

$$= \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} + \frac{12}{n} \left(\frac{n(n+1)}{2} \right) + \frac{3(n+1)}{n} \cdot n$$

$$= \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(n+1).$$

15.36 There are 15 possible pairings of ranks: The statistic H is

$$H = \frac{12}{6(7)} \sum R_i^2 / 2 - 3(7) = \frac{1}{7} \left(\sum R_i^2 - 147 \right).$$

The possible pairings are below, along with the value of H for each.

	pairings		H
(1, 2)	(3, 4)	(5, 6)	32/7
(1, 2)	(3, 5)	(4, 6)	26/7
(1, 2)	(3, 6)	(5, 6)	24/7
(1, 3)	(2, 4)	(5, 6)	26/7
(1, 3)	(2, 5)	(4, 6)	18/7
(1, 3)	(2, 6)	(4, 5)	14/7
(1, 4)	(2, 3)	(5, 6)	24/7
(1, 4)	(2, 5)	(3, 6)	8/7
(1, 4)	(2, 6)	(3, 5)	6/7
(1, 5)	(2, 3)	(4, 6)	14/7
(1, 5)	(2, 4)	(3, 6)	6/7
(1, 5)	(2, 6)	(3, 4)	2/7
(1, 6)	(2, 3)	(4, 5)	8/7
(1, 6)	(2, 4)	(3, 5)	2/7
(1, 6)	(2, 5)	(3, 4)	0

Thus, the null distribution of *H* is (each of the above values are equally likely):

15.37 R:

- **a.** From the above, we do not have sufficient evidence to conclude the existence of a difference in the tastes of the antibiotics.
- **b.** Fail to reject H_0 .
- **c.** Two reasons: more children would be required and the potential for significant child to child variability in the responses regarding the tastes.

15.38 R:

With $\alpha = .01$ we fail to reject H_0 : we cannot conclude that the cadmium concentrations are different for the six rates of sludge application.

15.39 R:

With $\alpha = .05$, we can conclude that there is a difference in the abilities of the sealers to prevent corrosion.

15.40 A summary of the ranked data is

Ear	A	В	C
1	2	3	1
2	2	3	1
3	1	3	2
4	3	2	1
5	2	1	3
6	1	3	2
7	2.5	2.5	1
8	2	3	1
9	2	3	1
10	2	3	1

Thus, $R_A = 19.5$, $R_B = 26.5$, and $R_C = 14$.

To test: H_0 : distributions of aflatoxin levels are equal H_a : at least two distributions differ in location

 $F_r = \frac{12}{10(3)(4)}[(19.5)^2 + (26.5)^2 + (14)^2] - 3(10)(4) = 7.85$ with 2 degrees of freedom. From Table 6, .01 < p-value < .025 so we can reject H_0 .

15.41 a. To carry out the Friedman test, we need the rank sums, R_i , for each model. These can be found by adding the ranks given for each model. For model A, $R_1 = 8(15) = 120$. For model B, $R_2 = 4 + 2(6) + 7 + 8 + 9 + 2(14) = 68$, etc. The R_i values are:

Thus, $\sum R_i^2 = 71,948$ and then $F_r = \frac{12}{8(15)(16)}[71,948 - 3(8)(16)] = 65.675$ with 14 degrees of freedom. From Table 6, we find that p-value < .005 so we soundly reject the hypothesis that the 15 distributions are equal.

- **b.** The highest (best) rank given to model H is lower than the lowest (worst) rank given to model M. Thus, the value of the test statistic is m = 0. Thus, using a binomial distribution with n = 8 and p = .5, p-value = 2P(M = 0) = 1/128.
- **c.** For the sign test, we must know whether each judge (exclusively) preferred model H or model M. This is not given in the problem.
- **15.42** H_0 : the probability distributions of skin irritation scores are the same for the 3 chemicals vs. H_a : at least two of the distributions differ in location.

From the table of ranks,
$$R_1 = 15$$
, $R_2 = 19$, and $R_3 = 14$. The test statistic is

$$F_r = \frac{12}{8(3)(4)} [(15)^2 + (19)^2 + (14)^2] - 3(8)(4) = 1.75$$

with 2 degrees of freedom. Since $\chi^2_{.01} = 9.21034$, we fail to reject H_0 : there is not enough evidence to conclude that the chemicals cause different degrees of irritation.

15.43 If k = 2 and b = n, then $F_r = \frac{2}{n}(R_1^2 + R_2^2) - 9n$. For $R_1 = 2n - M$ and $R_2 = n + M$, then

$$F_r = \frac{2}{n} [(2n - M)^2 + (n + M)^2] - 9n$$

$$= \frac{2}{n} [(4n^2 - 4nM + M^2) + (n^2 + 2nM + M^2) - 4.5n^2]$$

$$= \frac{2}{n} (-.5n^2 - 2nM + 2M^2)$$

$$= \frac{4}{n} (M^2 - nM - \frac{1}{4}n^2)$$

$$= \frac{4}{n} (M - \frac{1}{2}n)^2$$

The Z statistic from Section 15.3 is $Z = \frac{M - \frac{1}{2}n}{\frac{1}{2}\sqrt{n}} = \frac{2}{\sqrt{n}}(M - \frac{1}{2}n)$. So, $Z^2 = F_r$.

15.44 Using the hints given in the problem,

$$F_{r} = \frac{12b}{k(k+1)} \sum \left(\overline{R}_{i}^{2} - 2\overline{R}_{i} \overline{R} + \overline{R}^{2} \right) = \frac{12b}{k(k+1)} \sum \left(R_{i}^{2} / b^{2} - (k+1)R_{i} / b + (k+1)^{2} / 4 \right)$$

$$= \frac{12b}{k(k+1)} \sum R_{i}^{2} / b^{2} - \frac{12}{k} \frac{bk(k+1)}{2} + \frac{12b(k+1)k}{4k} = \frac{12}{bk(k+1)} \sum R_{i}^{2} - 3b(k+1).$$

15.45 This is similar to Ex. 15.36. We need only work about the 3! = 6 possible rank pairing. They are listed below, with the R_i values and F_r . When b = 2 and k = 3, $F_r = \frac{1}{2} \sum R_i^2 - 24$.

1	2	R_i	1	2	R_i
1	1	2	1	1	2
2	2	4	2	3	5
3	3	6	3	2	5
	$F_r = 4$			$F_r = 3$	
Block			Block		
DIOCK			DIUCK		
1	2	R_i	1	2	R_i
1 1	2	$\frac{R_i}{3}$	1 1	2	$\frac{R_i}{3}$
1 1 2			1 1 2		
1		3	1 1	2	3
1 1 2	2 1	3	1 1 2	2	3 5
1 1 2	2 1 3	3	1 1 2	2 3 1	3 5

Block
 Block

 1
 2

$$R_i$$

 1
 3
 4

 2
 1
 3
 4

 2
 1
 3
 4

 3
 2
 5
 3
 1
 4

 $F_r = 1$
 $F_r = 0$

Thus, with each value being equally likely, the null distribution is given by $P(F_r = 0) = P(F_r = 4) = 1/6$ and $P(F_r = 1) = P(F_r = 3) = 1/3$.

- **15.46** Using Table 10, indexing row (5, 5):
 - **a.** $P(R = 2) = P(R \le 2) = .008$ (minimum value is 2).
 - **b.** $P(R \le 3) = .040$.
 - **c.** $P(R \le 4) = .167$.
- **15.47** Here, $n_1 = 5$ (blacks hired), $n_2 = 8$ (whites hired), and R = 6. From Table 10, p-value = $2P(R \le 6) = 2(.347) = .694$.

So, there is no evidence of nonrandom racial selection.

15.48 The hypotheses are H_0 : no contagion (randomly diseased) H_a : contagion (not randomly diseased)

Since contagion would be indicated by a grouping of diseased trees, a small numer of runs tends to support the alternative hypothesis. The computed test statistic is R = 5, so with $n_1 = n_2 = 5$, p-value = .357 from Table 10. Thus, we cannot conclude there is evidence of contagion.

15.49 a. To find $P(R \le 11)$ with $n_1 = 11$ and $n_2 = 23$, we can rely on the normal approximation. Since $E(R) = \frac{2(11)(23)}{11+23} + 1 = 15.88$ and V(R) = 6.2607, we have (in the second step the continuity correction is applied)

$$P(R \le 11) = P(R < 11.5) \approx P(Z < \frac{11.5 - 15.88}{\sqrt{6.2607}}) = P(Z < -1.75) = .0401.$$

- **b.** From the sequence, the observed value of R = 11. Since an unusually large or small number of runs would imply a non–randomness of defectives, we employ a two–tailed test. Thus, since the p–value = $2P(R \le 11) \approx 2(.0401) = .0802$, significance evidence for non–randomness does not exist here.
- **15.50 a.** The measurements are classified as *A* if they lie above the mean and *B* if they fall below. The sequence of runs is given by

Thus, R = 7 with $n_1 = n_2 = 8$. Now, non-random fluctuation would be implied by a small number of runs, so by Table 10, p-value = $P(R \le 7) = .217$ so non-random fluctuation cannot be concluded.

b. By dividing the data into equal parts, $\overline{y}_1 = 68.05$ (first row) and $\overline{y}_2 = 67.29$ (second row) with $s_p^2 = 7.066$. For the two–sample t–test, $|t| = \frac{|68.05 - 67.27|}{\sqrt{7.066(\frac{2}{8})}} = .57$ with 14 degrees

of freedom. Since $t_{.05} = 1.761$, H_0 cannot be rejected.

15.51 From Ex. 15.18, let *A* represent school *A* and let *B* represent school *B*. The sequence of runs is given by

Notice that the 9^{th} and 10^{th} letters and the 13^{th} and 14^{th} letters in the sequence represent the two pairs of tied observations. If the tied observations were reversed in the sequence of runs, the value of R would remain the same: R = 13. Hence the order of the tied observations is irrelevant.

The alternative hypothesis asserts that the two distributions are not identical. Therein, a small number of runs would be expected since most of the observations from school A would fall below those from school B. So, a one–tailed test is employed (lower tail) so the p–value = $P(R \le 13)$ = .956. Thus, we fail to reject the null hypothesis (similar with Ex. 15.18).

15.52 Refer to Ex. 15.25. In this exercise, $n_1 = 15$ and $n_2 = 16$. If the experimental batteries have a greater mean life, we would expect that most of the observations from plant B to be smaller than those from plant A. Consequently, the number of runs would be small. To use the large sample test, note that E(R) = 16 and V(R) = 7.24137. Thus, since R = 15, the approximate p-value is given by

$$P(R \le 15) = P(R < 15.5) \approx P(Z < -.1858) = .4263.$$

Of course, the hypotheses H_0 : the two distributions are equal, would not be rejected.

15.53 R:

```
> grader <- c(9,6,7,7,5,8,2,6,1,10,9,3)
> moisture <- c(.22,.16,.17,.14,.12,.19,.10,.12,.05,.20,.16,.09)
> cor(grader,moisture,method="spearman")
[1] 0.911818
```

Thus, $r_S = .911818$. To test for association with $\alpha = .05$, index .025 in Table 11 so the rejection region is $|r_S| > .591$. Thus, we can safely conclude that the two variables are correlated.

15.54 R:

From the above, $r_S = -.8791607$ and the p-value for the test H_0 : there is no association is given by p-value = .0001651. Thus, H_0 is rejected.

15.55 R:

```
> rank <- c(8,5,10,3,6,1,4,7,9,2)
> score <- c(74,81,66,83,66,94,96,70,61,86)
> cor.test(rank,score,alt = "less",method="spearman")
```

Spearman's rank correlation rho

- **a.** From the above, $r_S = -.8449887$.
- **b.** With the p-value = .001043, we can conclude that there exists a negative association between the interview rank and test score. Note that we only showed that the correlation is negative and not that the association has some specified level.

15.56 R:

a. From the above, $r_S = -.5929825$.

-0.5929825

- **b.** With the p-value = .02107, we can conclude that there exists a negative association between rating and distance.
- **15.57** The ranks for the two variables of interest x_i and y_i corresponding the math and art, respectively) are shown in the table below.

Student
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

$$R(x_i)$$
 1
 3
 2
 4
 5
 7.5
 7.5
 9
 10.5
 12
 13.5
 6
 13.5
 15
 10.5

 $R(y_i)$
 5
 11.5
 1
 2
 3.5
 8.5
 3.5
 13
 6
 15
 11.5
 7
 10
 14
 8.5

Then,
$$r_S = \frac{15(1148.5) - 120(120)}{\sqrt{[15(1238.5) - 120^2]^2}} = .6768$$
 (the formula simplifies as shown since the

samples of ranks are identical for both math and art). From Table 11 and with $\alpha = .10$, the rejection region is $|r_S| > .441$ and thus we can conclude that there is a correlation between math and art scores.

15.58 R:

```
> bending <- c(419,407,363,360,257,622,424,359,346,556,474,441)
> twisting <- c(227,231,200,211,182,304,384,194,158,225,305,235)
> cor.test(bending,twisting,method="spearman",alt="greater")
```

Spearman's rank correlation rho

- **a.** From the above, $r_S = .8111888$.
- **b.** With a p-value = .001097, we can conclude that there is existence of a population association between bending and twisting stiffness.
- **15.59** The data are ranked below; since there are no ties in either sample, the alternate formula for r_S will be used.

Thus,
$$r_S = 1 - \frac{6[(0)^2 + (0)^2 + ... + (0)^2}{10(99)} = 1 - 0 = 1$$
.

From Table 11, note that 1 > .794 so the p-value < .005 and we soundly conclude that there is a positive correlation between the two variables.

- **15.60** It is found that $r_S = .9394$ with n = 10. From Table 11, the p-value < 2(.005) = .01 so we can conclude that correlation is present.
- **15.61** a. Since all five judges rated the three products, this is a randomized block design.
 - **b.** Since the measurements are ordinal values and thus integers, the normal theory would not apply.
 - **c.** Given the response to part b, we can employ the Friedman test. In R, this is (using the numbers 1–5 to denote the judges):

```
> rating <- c(16,16,14,15,13,9,7,8,16,11,7,8,4,9,2)
> brand <- factor(c(rep("HC",5),rep("S",5),rep("EB",5)))
> judge <- c(1:5,1:5,1:5)
> friedman.test(rating ~ brand | judge)
```

Friedman rank sum test

```
data: rating and brand and judge
Friedman chi-squared = 6.4, df = 2, p-value = 0.04076
```

With the (approximate) p-value = .04076, we can conclude that the distributions for rating the egg substitutes are not the same.

15.62 Let p = P(gourmet A's rating exceeds gourmet B's rating for a given meal). The hypothesis of interest is H_0 : p = .5 vs H_a : $p \neq .5$. With M = # of meals for which A is superior, we find that

$$P(M \le 4) + P(M \ge 13) = 2P(M \le 4) = .04904.$$

using a binomial calculation with n = 17 (3 were ties) and p = .5. From the table, m = 8 so we fail to reject H_0 .

15.63 Using the Wilcoxon signed–rank test,

```
> A <- c(6,4,7,8,2,7,9,7,2,4,6,8,4,3,6,9,9,4,4,5)
> B <- c(8,5,4,7,3,4,9,8,5,3,9,5,2,3,8,10,8,6,3,5)
> wilcox.test(A,B,paired=T)
```

Wilcoxon signed rank test

```
data: A and B
V = 73.5, p-value = 0.9043
alternative hypothesis: true mu is not equal to 0
```

With the p-value = .9043, the hypothesis of equal distributions is not rejected (as in Ex. 15.63).

- **15.64** For the Mann–Whitney U test, $W_A = 126$ and $W_B = 45$. So, with $n_1 = n_2 = 9$, $U_A = 0$ and $U_B = 81$. From Table 8, the lower tail of the two–tailed rejection region is $\{U \le 18\}$ with $\alpha = 2(.0252) = .0504$. With U = 0, we soundly reject the null hypothesis and conclude that the deaf children do differ in eye movement rate.
- 15.65 With $n_1 = n_2 = 8$, $U_A = 46.5$ and $U_B = 17.5$. From Table 8, the hypothesis of no difference will be rejected if $U \le 13$ with $\alpha = 2(.0249) = .0498$. Since our U = 17.5, we fail to reject H_0 (same as in Ex. 13.1).
- **15.66 a.** The measurements are ordered below according to magnitude as mentioned in the exercise (from the "outside in"):

Instrument	A	B	A	B	B	B	A	A	A
Response	1060.21	1060.24	1060.27	1060.28	1060.30	1060.32	1060.34	1060.36	1060.40
Rank	1	3	5	7	9	8	6	4	2

To test H_0 : $\sigma_A^2 = \sigma_B^2$ vs. H_a : $\sigma_A^2 > \sigma_B^2$, we use the Mann–Whitney U statistic. If H_a is true, then the measurements for A should be assigned lower ranks. For the significance level, we will use $\alpha = P(U \le 3) = .056$. From the above table, the values are $U_1 = 17$ and $U_2 = 3$. So, we reject H_0 .

b. For the two samples, $s_A^2 = .00575$ and $s_B^2 = .00117$. Thus, F = .00575/.00117 = 4.914 with 4 numerator and 3 denominator degrees of freedom. From R:

```
> 1 - pf(4.914,4,3)
[1] 0.1108906
```

Since the p-value = .1108906, H_0 would not be rejected.

15.67 First, obviously $P(U \le 2) = P(U = 0) + P(U = 1) + P(U = 2)$. Denoting the five observations from samples 1 and 2 as A and B respectively (and $n_1 = n_2 = 5$), the only sample point associated with U = 0 is

because there are no A's preceding any of the B's. The only sample point associated with U=1 is

since only one A observation precedes a B observation. Finally, there are two sample points associated with U = 2:

Now, under the null hypothesis all of the $\binom{10}{5}$ = 252 orderings are equally likely. Thus,

$$P(U \le 2) = 4/252 = 1/63 = .0159.$$

15.68 Let Y = # of positive differences and let T = the rank sum of the positive differences. Then, we must find $P(T \le 2) = P(T = 0) + P(T = 1) + P(T = 2)$. Now, consider the three pairs of observations and the ranked differences according to magnitude. Let d_1 , d_2 , and d_3 denote the ranked differences. The possible outcomes are:

Now, under H_0 Y is binomial with n = 3 and p = P(A exceeds B) = .5. Thus, P(T = 0) = P(T = 0, Y = 0) = P(Y = 0)P(T = 0 | Y = 0) = .125(1) = .125.

Similarly, $P(T=1) = P(T=1, Y=1) = P(Y=1)P(T=1 \mid Y=1) = ...375(1/3) = .125$, since conditionally when Y=1, there are three possible values for T(1, 2, or 3).

Finally, P(T=2) = P(T=2, Y=1) = P(Y=1)P(T=2 | Y=1) = ...375(1/3) = .125, using similar logic as in the above.

Thus,
$$P(T \le 2) = .125 + .125 + .125 = .375$$
.

15.69	a. A com	posite rar	nking o	f the	data i	is:
13.07	a. 11 COIII	posite rai	IKIIIZ U	I LIIC	uata 1	l

Line 1	Line 2	Line 3
19	14	2
16	10	15
12	5	4
20	13	11
3	9	1
18	17	8
21	7	6
$R_1 = 109$	$R_2 = 75$	$R_3 = 47$

Thus,

$$H = \frac{12}{21(22)} \left[\frac{109^2}{7} + \frac{75^2}{7} + \frac{47}{7} \right] = 3(22) = 7.154$$

with 2 degrees of freedom. Since $\chi^2_{.05} = 5.99147$, we can reject the claim that the population distributions are equal.

15.70 a. R:

```
> rating <- c(20,19,20,18,17,17,11,13,15,14,16,16,15,13,18,11,8,
12,10,14,9,10)
> supervisor <- factor(c(rep("I",5),rep("II",6),rep("III",5),
    rep("IV",6)))
> kruskal.test(rating~supervisor)
```

Kruskal-Wallis rank sum test

```
data: rating by supervisor
Kruskal-Wallis chi-squared = 14.6847, df = 3, p-value = 0.002107
```

With a p-value = .002107, we can conclude that one or more of the supervisors tend to receive higher ratings

b. To conduct a Mann–Whitney U test for only supervisors I and III,

Thus, with a p-value = .02078, we can conclude that the distributions of ratings for supervisors I and III differ by location.

15.71 Using Friedman's test (people are blocks), $R_1 = 19$, $R_2 = 21.5$, $R_3 = 27.5$ and $R_4 = 32$. To test H_0 : the distributions for the items are equal vs.

 H_a : at least two of the distributions are different

the test statistic is $F_r = \frac{12}{10(4)(5)} \left[19^2 + (21.5)^2 + (27.5)^2 + 32^2 \right] - 3(10)(5) = 6.21.$

With 3 degrees of freedom, $\chi_{.05}^2 = 7.81473$ and so H_0 is not rejected.

- **15.72** In R:
 - > perform <- c(20,25,30,37,24,16,22,25,40,26,20,18,24,27,39,41,21,25)
 - > group <- factor(c(1:6,1:6,1:6))</pre>
 - > method <- factor(c(rep("lect",6),rep("demonst",6),rep("machine",6)))</pre>
 - > friedman.test(perform ~ method | group)

Friedman rank sum test

data: perform and method and group
Friedman chi-squared = 4.2609, df = 2, p-value = 0.1188

With a p-value = .1188, it is unwise to reject the claim of equal teach method effectiveness, so fail to reject H_0 .

15.73 Following the methods given in Section 15.9, we must obtain the probability of observing exactly Y_1 runs of S and Y_2 runs of F, where $Y_1 + Y_2 = R$. The joint probability mass functions for Y_1 and Y_2 is given by

$$p(y_1, y_2) = \frac{\binom{7}{y_1 - 1} \binom{7}{y_2 - 1}}{\binom{16}{8}}.$$

(1) For the event R = 2, this will only occur if $Y_1 = 1$ and $Y_2 = 1$, with either the S elements or the F elements beginning the sequence. Thus,

$$P(R=2) = 2p(1, 1) = \frac{2}{12.870}$$
.

- (2) For R = 3, this will occur if $Y_1 = 1$ and $Y_2 = 2$ or $Y_1 = 2$ and $Y_2 = 1$. So, $P(R = 3) = p(1, 2) + p(2, 1) = \frac{14}{12.870}$.
- (3) Similarly, $P(R=4) = 2p(2, 2) = \frac{98}{12.870}$.
- (4) Likewise, $P(R = 5) = p(3, 2) + p(2, 3) = \frac{294}{12.870}$.
- (5) In the same manor, $P(R=6) = 2p(3, 3) = \frac{882}{12,870}$.

Thus, $P(R \le 6) = \frac{2+14+98+294+882}{12,870} = .100$, agreeing with the entry found in Table 10.

15.74 From Ex. 15.67, it is not difficult to see that the following pairs of events are equivalent:

$$\{W = 15\} \equiv \{U = 0\}, \{W = 16\} \equiv \{U = 2\}, \text{ and } \{W = 17\} \equiv \{U = 3\}.$$

Therefore, $P(W \le 17) = P(U \le 3) = .0159$.

15.75 Assume there are n_1 "A" observations and n_2 "B" observations, The Mann–Whitney U statistic is defined as

$$U = \sum_{i=1}^{n_2} U_i ,$$

where U_i is the number of A observations preceding the i^{th} B. With $B_{(i)}$ to be the i^{th} B observation in the combined sample after it is ranked from smallest to largest, and write $R[B_{(i)}]$ to be the rank of the i^{th} ordered B in the total ranking of the combined sample. Then, U_i is the number of A observations the precede $B_{(i)}$. Now, we know there are (i-1) B's that precede $B_{(i)}$, and that there are $R[B_{(i)}] - 1$ A's and B's preceding $B_{(i)}$. Then,

$$U = \sum_{i=1}^{n_2} U_i = \sum_{i=1}^{n_2} [R(B_{(i)}) - i] = \sum_{i=1}^{n_2} R(B_{(i)}) - \sum_{i=1}^{n_2} i = W_B - n_2(n_2 + 1)/2$$

Now, let $N = n_1 + n_2$. Since $W_A + W_B = N(N+1)/2$, so $W_B = N(N+1)/2 - W_A$. Plugging this expression in to the one for U yields

$$U = N(N+1)/2 - n_2(n_2+1)/2 - W_A = \frac{N^2 + N + n_2^2 + n_2}{2} - W_A$$

= $\frac{n_1^2 + 2n_1n_2 + n_2^2 + n_1 + n_2 - n_2^2 - n_2}{2} - W_A = n_1n_2 + \frac{n_1(n_1+1)}{2} - W_A$.

Thus, the two tests are equivalent.

15.76 Using the notation introduced in Ex. 15.65, note that

$$W_A = \sum_{i=1}^{n_1} R(A_i) = \sum_{i=1}^{N} X_i$$
,

where

$$X_i = \begin{cases} R(z_i) & \text{if } z_i \text{ is from sample } A \\ 0 & \text{if } z_i \text{ is from sample } B \end{cases}$$

If H_0 is true,

$$E(X_{i}) = R(z_{i})P[X_{i} = R(z_{i})] + 0 \cdot P(X_{i} = 0) = R(z_{i})\frac{n_{1}}{N}$$

$$E(X_{i}^{2}) = [R(z_{i})]^{2} \frac{n_{1}}{N}$$

$$V(X_{i}) = [R(z_{i})]^{2} \frac{n_{1}}{N} - (R(z_{i})\frac{n_{1}}{N})^{2} = [R(z_{i})]^{2} \frac{(n_{1}(N-n_{1})}{N^{2}}).$$

$$E(X_{i}, X_{i}) = R(z_{i})R(z_{i})P[X_{i} = R(z_{i}), X_{i} = R(z_{i})] = R(z_{i})R(z_{i})\frac{(n_{1})(n_{1}-1)}{N}$$

From the above, it can be found that $Cov(X_i, X_j) = R(z_i)R(z_i) \left[\frac{-n_1(N-n_1)}{N^2(N-1)} \right]$.

Therefore,

$$E(W_A) = \sum_{i=1}^{N} E(X_i) = \frac{n_1}{N} \sum_{i=1}^{N} R(z_i) = \frac{n_1}{N} \left(\frac{N(N+1)}{2} \right) = \frac{n_1(N+1)}{2}$$

and

$$\begin{split} V(W_A) &= \sum_{i=1}^N V(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j) \\ &= \frac{n_1(N-n_1)}{N^2} \sum_{i=1}^N [R(z_i)]^2 - \frac{n_1(N-n_1)}{N^2(N-1)} \bigg[\sum_{i=1}^N \sum_{j=1}^N R(z_i) R(z_j) - \sum_{i=1}^N [R(z_i)]^2 \bigg] \\ &= \frac{n_1(N-n_1)}{N^2} \bigg[\frac{N(N+1)N2N+1)}{6} \bigg] - \frac{n_1(N-n_1)}{N^2(N-1)} \bigg\{ \bigg[\sum_{i=1}^N R(z_i) \bigg]^2 - \sum_{i=1}^N [R(z_i)]^2 \bigg\} \\ &= \frac{2n_1(N-n_1)(N+1)(2N+1)}{12N} - \frac{n_1(N-n_1)}{N^2(N-1)} \bigg[\frac{N^2(N+1)^2}{4} - \frac{N(N+1)(2N+1)}{6} \bigg] \\ &= \frac{n_1n_2(n_1+n_2+1)}{12} \bigg[\frac{4N+2}{N} - \frac{(3N+2)(N-1)}{n(N-1)} \bigg] = \frac{n_1n_2(n_1+n_2+1)}{12} \ . \end{split}$$

From Ex. 15.75 it was shown that $U = n_1 n_2 + \frac{n_1(n_1+1)}{2} - W_A$. Thus,

$$E(U) = n_1 n_2 + \frac{n_1(n_1+1)}{2} - E(W_A) = \frac{n_1 n_2}{2}$$

$$V(U) = V(W_A) = \frac{n_1 n_2(n_1+n_2+1)}{12}.$$

15.77 Recall that in order to obtain T, the Wilcoxon signed–rank statistic, the differences d_i are calculated and ranked according to absolute magnitude. Then, using the same notation as in Ex. 15.76,

$$T^+ = \sum_{i=1}^N X_i$$

where

$$X_i = \begin{cases} R(D_i) & \text{if } D_i \text{ is positive} \\ 0 & \text{if } D_i \text{ is negative} \end{cases}$$

When H_0 is true, $p = P(D_i > 0) = \frac{1}{2}$. Thus,

$$E(X_{i}) = R(D_{i})P[X_{i} = R(D_{i})] = \frac{1}{2}R(D_{i})$$

$$E(X_{i}^{2}) = [R(D_{i})]^{2}P[X_{i} = R(D_{i})] = \frac{1}{2}[R(D_{i})]^{2}$$

$$V(X_{i}) = \frac{1}{2}[R(D_{i})]^{2} = [\frac{1}{2}R(D_{i})]^{2} = \frac{1}{4}[R(D_{i})]^{2}$$

$$E(X_{i}, X_{i}) = R(D_{i})R(D_{i})P[X_{i} = R(D_{i}), X_{i} = R(D_{i})] = \frac{1}{4}R(D_{i})R(D_{i}).$$

Then, $Cov(X_i, X_j) = 0$ so

$$E(T^{+}) = \sum_{i=1}^{n} E(X_{i}) = \frac{1}{2} \sum_{i=1}^{n} R(D_{i}) = \frac{1}{2} \left(\frac{n(n+1)}{2} \right) = \frac{n(n+1)}{4}$$

$$V(T^{+}) = \sum_{i=1}^{n} V(X_{i}) = \frac{1}{4} \sum_{i=1}^{n} [R(D_{i})]^{2} = \frac{1}{4} \left(\frac{n(n+1)(2n+1)}{6} \right) = \frac{n(n+1)(2n+1)}{24}.$$

Since
$$T^- = \frac{n(n+1)}{2} - T^+$$
 (see Ex. 15.10),
 $E(T^-) = E(T^+) = E(T)$
 $V(T^-) = V(T^+) = V(T)$

15.78 Since we use X_i to denote the rank of the i^{th} "X" sample value and Y_i to denote the rank of the i^{th} "Y" sample value,

$$\sum\nolimits_{i=1}^{n} X_i = \sum\nolimits_{i=1}^{n} Y_i = \frac{n(n+1)}{2} \text{ and } \sum\nolimits_{i=1}^{n} X_i^2 = \sum\nolimits_{i=1}^{n} Y_i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Then, define $d_i = X_i - Y_i$ so that

$$\sum\nolimits_{i=1}^{n} d_i^{\,2} = \sum\nolimits_{i=1}^{n} \left(X_i^{\,2} - 2 X_i Y_i + Y_i^{\,2} \right) = \frac{n(n+1)(2n+1)}{6} - 2 \sum\nolimits_{i=1}^{n} X_i Y_i + \frac{n(n+1)(2n+1)}{6}$$

and thus

$$\sum\nolimits_{i=1}^{n} X_{i} Y_{i} = \tfrac{n(n+1)(2n+1)}{6} - \tfrac{1}{2} \sum\nolimits_{i=1}^{n} d_{i}^{2} \; .$$

Now, we have

$$r_{S} = \frac{n\sum_{i=1}^{n} X_{i}Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{\left[n\sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}\right]}\sqrt{\left[n\sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right]}}$$

$$= \frac{\frac{n^{2}(n+1)(2n+1)}{6} - \frac{n}{2}\sum_{i=1}^{n} d_{i}^{2} - \frac{n^{2}(n+1)^{2}}{4}}{\frac{n^{2}(n+1)(2n+1)}{12} - \frac{n}{2}\sum_{i=1}^{n} d_{i}^{2}}}$$

$$= \frac{\frac{n^{2}(n+1)(n-1)}{12} - \frac{n}{2}\sum_{i=1}^{n} d_{i}^{2}}{\frac{n^{2}(n+1)(n-1)}{12}}$$

$$= 1 - \frac{n}{2}\sum_{i=1}^{n} d_{i}^{2}$$

$$= 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n(n^{2}-1)}.$$