Instulling Required Libraries

2019/12/26

```
In [1]:
        import sys
        !{sys.executable} -m pip install geocoder
        Requirement already satisfied: geocoder in /opt/conda/envs/Python36/lib/pytho
        n3.6/site-packages (1.38.1)
        Requirement already satisfied: click in /opt/conda/envs/Python36/lib/python3.
        6/site-packages (from geocoder) (7.0)
        Requirement already satisfied: requests in /opt/conda/envs/Python36/lib/pytho
        n3.6/site-packages (from geocoder) (2.21.0)
        Requirement already satisfied: future in /opt/conda/envs/Python36/lib/python
        3.6/site-packages (from geocoder) (0.17.1)
        Requirement already satisfied: six in /opt/conda/envs/Python36/lib/python3.6/
        site-packages (from geocoder) (1.12.0)
        Requirement already satisfied: ratelim in /opt/conda/envs/Python36/lib/python
        3.6/site-packages (from geocoder) (0.1.6)
        Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/Python3
        6/lib/python3.6/site-packages (from requests->geocoder) (2019.11.28)
        Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /opt/conda/envs/Pytho
        n36/lib/python3.6/site-packages (from requests->geocoder) (3.0.4)
        Requirement already satisfied: idna<2.9,>=2.5 in /opt/conda/envs/Python36/li
        b/python3.6/site-packages (from requests->geocoder) (2.8)
        Requirement already satisfied: urllib3<1.25,>=1.21.1 in /opt/conda/envs/Pytho
```

```
In [2]: !conda install -c conda-forge folium=0.5.0 --yes
```

Requirement already satisfied: decorator in /opt/conda/envs/Python36/lib/pyth

n36/lib/python3.6/site-packages (from requests->geocoder) (1.24.1)

Solving environment: done

All requested packages already installed.

on3.6/site-packages (from ratelim->geocoder) (4.3.2)

Importing The Required Libraries

```
In [3]:
        #importing the required library
        import pandas as pd
        import numpy as np
        from sklearn.cluster import KMeans
        import folium
        from geopy.geocoders import Nominatim
        import matplotlib.cm as cm
        import matplotlib.colors as colors
        import geocoder
```

Reading The Data From The HTML Page

```
#reading the data from the HTML page
data=pd.read html("https://en.wikipedia.org/wiki/List of postal codes of Canad
a: M")
```

Extracting The First Table From The Dataset

```
In [5]:
          #Extracting the first table from the dataset
          df=data[0]
In [6]:
          df.head()
Out[6]:
                                           Neighbourhood
              Postcode
                                 Borough
           0
                   M<sub>1</sub>A
                             Not assigned
                                              Not assigned
                   M2A
                             Not assigned
                                              Not assigned
           2
                   МЗА
                                North York
                                                Parkwoods
           3
                   M4A
                                North York
                                            Victoria Village
                   M5A Downtown Toronto
                                              Harbourfront
In [7]:
          # reseting the index
          df=df.reset index()
In [8]:
          df.head()
Out[8]:
              index Postcode
                                        Borough
                                                 Neighbourhood
           0
                  0
                          M<sub>1</sub>A
                                    Not assigned
                                                     Not assigned
                          M2A
                                    Not assigned
                                                     Not assigned
                  1
                  2
                          МЗА
                                       North York
                                                       Parkwoods
                  3
                          M4A
                                       North York
                                                    Victoria Village
                          M5A Downtown Toronto
                                                     Harbourfront
In [9]:
          # droping index column
          df = df.drop("index", axis=1)
```

```
In [10]: | df.head()
```

Out[10]:

Postcode		Borough	Neighbourhood	
0	M1A	Not assigned	Not assigned	
1	M2A	Not assigned	Not assigned	
2	МЗА	North York	Parkwoods	
3	M4A	North York	Victoria Village	
4	M5A	Downtown Toronto	Harbourfront	

Extracting All The Borough Except Not Assigned Value

```
In [11]: #Extracting all the Borough except Not assigned value
         df=df[df['Borough'] != 'Not assigned']
```

In [12]: df.head()

Out[12]:

	Postcode	Borough	Neighbourhood
2	МЗА	North York	Parkwoods
3	M4A	North York	Victoria Village
4	M5A	Downtown Toronto	Harbourfront
5	M6A	North York	Lawrence Heights
6	M6A	North York	Lawrence Manor

```
In [13]: | df.index = np.arange(1, len(df) + 1)
          df.head()
```

Out[13]:

Postcode		Borough	Neighbourhood	
1	МЗА	North York	Parkwoods	
2	M4A	North York Victoria V		
3	M5A	Downtown Toronto	Harbourfront	
4	M6A	North York	Lawrence Heights	
5	M6A	North York	Lawrence Manor	

```
In [14]: | df['Neighbourhood'] = np.where(df['Neighbourhood']=='Not assigned',df['Boroug
         h'],df['Neighbourhood'])
         df.head(10)
```

Out[14]:

Postcode		Borough	Neighbourhood	
1	МЗА	North York	Parkwoods	
2	M4A	North York	Victoria Village	
3	M5A	Downtown Toronto	Harbourfront	
4	M6A	North York	Lawrence Heights	
5	M6A	North York	Lawrence Manor	
6	M7A	Queen's Park	Queen's Park	
7	М9А	Downtown Toronto	Queen's Park	
8	M1B	Scarborough	Rouge	
9	M1B	Scarborough	Malvern	
10	МЗВ	North York	Don Mills North	

In [15]: df.head(10)

Out[15]:

Postcode		Borough	Neighbourhood	
1	МЗА	North York	Parkwoods	
2	M4A	North York	Victoria Village	
3	M5A	Downtown Toronto	Harbourfront	
4	M6A	North York	Lawrence Heights	
5	M6A	North York	Lawrence Manor	
6	M7A	Queen's Park	Queen's Park	
7	M9A	Downtown Toronto	Queen's Park	
8	M1B	Scarborough	Rouge	
9	M1B	Scarborough	Malvern	
10	МЗВ	North York	Don Mills North	

Grouping The Postcode And Combining The Neighbourhood

```
In [16]: # grouping the Postcode and combining the Neighbourhood
         df["Neighbourhood"] = df.groupby("Postcode")["Neighbourhood"].transform(lambda
         neigh: ', '.join(neigh))
In [17]: #remove duplicates
         df = df.drop_duplicates()
```

```
In [18]: | df.head()
```

Out[18]:

Neighbourhood	Borough	Postcode	
Parkwoods	North York	МЗА	1
Victoria Village	North York	M4A	2
Harbourfront	Downtown Toronto	M5A	3
Lawrence Heights, Lawrence Manor	North York	M6A	4
Queen's Park	Queen's Park	M7A	6

Replacing The Not Assigned of The Neighbourhood With The Borough Value

```
In [19]: # replacing the Not assigned of the Neighbourhood with the Borough value
         df['Neighbourhood'].replace("Not assigned", df["Borough"],inplace=True)
```

Finding The Shape Of The Dataset

```
In [20]: # finding the shape of the dataset
         df.shape
Out[20]: (103, 3)
```

Getting The values Of Latitude And Longitude

```
In [21]:
         def get_geos(postalCode):
             # initialize your variable to None
             lat lng coords = None
             # loop until you get the coordinates
             while(lat_lng_coords is None):
                  g = geocoder.arcgis('{}, Toronto, Ontario'.format(postalCode.strip()))
                  lat_lng_coords = g.latlng
                 latitude = lat_lng_coords[0]
                  longitude = lat lng coords[1]
             return latitude,longitude
```

```
In [22]: df['Latitude'],df['Longitude'] = zip(*df['Postcode'].apply(get geos))
         df.head()
```

Out[22]:

	Postcode	Borough	Neighbourhood	Latitude	Longitude
1	МЗА	North York	Parkwoods	43.752420	-79.329242
2	M4A	North York	Victoria Village	43.730600	-79.313265
3	M5A	Downtown Toronto	Harbourfront	43.650295	-79.359166
4	M6A	North York	Lawrence Heights, Lawrence Manor	43.723270	-79.451286
6	M7A	Queen's Park	Queen's Park	43.661150	-79.391715

Applying Clustring Algorithm For The Dataset

```
cluster df=df.drop(['Postcode', 'Borough', 'Neighbourhood'], axis=1)
          cluster df.head()
Out[23]:
                      Longitude
              Latitude
          1 43.752420 -79.329242
          2 43.730600 -79.313265
          3 43.650295 -79.359166
          4 43.723270 -79.451286
          6 43.661150 -79.391715
In [24]: from sklearn.preprocessing import StandardScaler
         X = cluster df.values[:,0:]
          X = np.nan_to_num(X)
          cluster dataset = StandardScaler().fit transform(X)
          cluster_dataset[0,:]
Out[24]: array([0.914631 , 0.69584445])
In [25]: num clusters = 5
          k_means = KMeans(init="k-means++", n_clusters=num_clusters, n_init=12)
          k means.fit(cluster dataset)
          labels = k means.labels
          print(labels)
          [3 3 0 2 0 4 1 3 0 0 2 4 1 3 0 0 0 4 1 0 0 2 1 0 0 0 1 3 3 0 0 0 1 3 2 0 0
          0 1 3 2 0 0 0 1 3 2 0 0 2 2 1 3 2 0 3 2 2 0 3 2 3 3 4 2 1 3 3 0 4 2 1 3 3
```

0 4 0 2 1 0 0 4 1 0 0 1 0 0 4 2 1 0 0 4 2 1 0 0 4 0 0 4 4]

```
In [26]: cluster_dataset=df
         cluster_dataset['labels']=labels
         cluster_dataset.head()
```

Out[26]:

	Postcode	Borough	Neighbourhood	Latitude	Longitude	labels
1	МЗА	North York	Parkwoods	43.752420	-79.329242	3
2	M4A	North York	Victoria Village	43.730600	-79.313265	3
3	M5A	Downtown Toronto	Harbourfront	43.650295	-79.359166	0
4	M6A	North York	Lawrence Heights, Lawrence Manor	43.723270	-79.451286	2
6	M7A	Queen's Park	Queen's Park	43.661150	-79.391715	0

Drawing The Custring map

```
In [27]: | address = 'Toronto, Ontario'
         geolocator = Nominatim(user_agent="toronto_ontario")
         location = geolocator.geocode(address)
         latitude = location.latitude
         longitude = location.longitude
         print('The geograpical coordinates of Toronto, Ontario are {}, {}.'.format(lat
         itude, longitude))
```

The geograpical coordinates of Toronto, Ontario are 43.653963, -79.387207.

```
In [28]: # create map
         map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11)
         # set color scheme for the clusters
         x = np.arange(num_clusters)
         ys = [i + x + (i*x)**2  for i in range(num_clusters)]
         colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
         rainbow = [colors.rgb2hex(i) for i in colors_array]
         # add markers to the map
         markers_colors = []
         for lat, lon, poi, cluster in zip(cluster_dataset['Latitude'], cluster_dataset
         ['Longitude'], cluster_dataset['Neighbourhood'], cluster_dataset['labels']):
             label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=Tru
         e)
             folium.CircleMarker(
                  [lat, lon],
                 radius=5,
                 popup=label,
                  color=rainbow[cluster-1],
                 fill=True,
                 fill_color=rainbow[cluster-1],
                 fill_opacity=0.7).add_to(map_clusters)
         map_clusters
```

Out[28]:

In []: