$$(\mathbf{c} \circ h)(a) = \mathbf{c}(a_1)$$
 y $(\mathbf{c} \circ h)(b) = \mathbf{c}(b_1)$

О

$$(\mathbf{c} \circ h)(a) = \mathbf{c}(b_1)$$
 y $(\mathbf{c} \circ h)(b) = \mathbf{c}(a_1)$.

En el primer caso, se dice que la reparametrización **conserva la orientación**, y una partícula que recorre la trayectoria $\mathbf{c} \circ h$ se mueve en el mismo sentido que una partícula que recorre \mathbf{c} . En el segundo caso, se dice que la reparametrización **invierte la orientación**, y una partícula que recorre la trayectoria $\mathbf{c} \circ h$ se mueve en sentido opuesto al de la una partícula que recorre la trayectoria \mathbf{c} (Figura 7.2.4).

Por ejemplo, si C es la imagen de una trayectoria \mathbf{c} , como se muestra en la Figura 7.2.5—es decir, $C = \mathbf{c}([a_1,b_1])$ —y si h conserva la orientación, entonces $\mathbf{c} \circ h(t)$ irá de $\mathbf{c}(a_1)$ a $\mathbf{c}(b_1)$ cuando t va de a a b; y si h invierte la orientación, $\mathbf{c} \circ h(t)$ irá de $\mathbf{c}(b_1)$ a $\mathbf{c}(a_1)$ cuando t vaya de a hasta b.

Figura 7.2.4 Ilustración de (a) una reparametrización que conserva la orientación y de (b) una reparametrización que invierte la orientación.

Ejemplo 7

Sea **c**: $[a, b] \to \mathbb{R}^3$ una trayectoria a trozos C^1 . Entonces:

- (a) La trayectoria \mathbf{c}_{op} : $[a,b] \to \mathbb{R}^3$, $t \mapsto \mathbf{c}(a+b-t)$ es una reparametrización de \mathbf{c} que corresponde a la aplicación h: $[a,b] \to [a,b]$, $t \mapsto a+b-t$; denominamos a \mathbf{c}_{op} trayectoria opuesta a \mathbf{c} . Esta reparametrización invierte la orientación.
- (b) La trayectoria $\mathbf{p}: [0,1] \to \mathbb{R}^3, t \mapsto \mathbf{c}(a+(b-a)t)$ es una reparametrización que conserva la orientación de \mathbf{c} que corresponde al cambio de coordenadas $h: [0,1] \to [a,b], t \mapsto a+(b-a)t.$