

TMA4150 Vår 2016

Øving 8

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag

Fra boka:

Seksjon 18: 15, 18, 37, 46 Seksjon 19: 1, 2, 12, 23, 29

Eksamensoppgaver

Eksamen Høst 2010, oppg 4 Eksamen Vår 2011, oppg 3 Eksamen Høst 2011, oppg 4

- 1 La $n \in \mathbb{Z}$ være et heltall (ikke nødvendigvis positivt!) og definer $\mathbb{Z}[\sqrt{n}] = \{a + b\sqrt{n} \mid a, b \in \mathbb{Z}\}$. Vis at dette er en ring og at $\mathbb{Z} \subseteq \mathbb{Z}[\sqrt{n}] \subseteq \mathbb{C}$.
- 2 La $M_n(\mathbb{Z})$ være ringen av alle $n \times n$ -matriser over \mathbb{Z} . Finn alle enhetene og nulldivisorene i $M_n(\mathbb{Z})$.

 Hint: Determinant.
- a) La R og S være to ringer med enhet. Vis at et element $(a, b) \in R \times S$ er enhet i $R \times S$ hvis og bare hvis a er enhet i R og b er enhet i S.
 - **b)** La m, n være to positive heltall med gcd(m, n) = 1. Definer $f : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ ved $f(a) = (a \mod m, a \mod n)$. Vis at f er en ringisomorfi.
 - c) Eulers phi-funksjon $\phi: \mathbb{N} \to \mathbb{N}$ er definert ved at $\phi(n) = |\{a|1 \leq a \leq n, \gcd(a,n) = 1\}|$. Med andre ord, $\phi(n)$ er antall heltall mindre enn eller lik n som er relativt primisk til n. Vis at $\phi(mn) = \phi(m)\phi(n)$ når n og m er reltivt primiske.

*Hint:*Se på antall enheter i \mathbb{Z}_{mn} og $\mathbb{Z}_m \times \mathbb{Z}_n$.

- En ikke-triviell ringhomomorfi $f: R \to S$ der R og S er ringer med enhet der $0_R \neq 1_R$ og $0_S \neq 1_S$, er en ringhomomorfi slik at $f(1_R) = 1_S$.
 - a) Vis at dersom $f: R \to S$ er en ikke-triviell ringhomomorfi, så er f(0) = 0 og f(-1) = -1.
 - **b)** Vis at den eneste ringhomomorfi $f: \mathbb{C} \to \mathbb{R}$ er triviell. Hint: Hva måte f(i) være dersom f var ikketriviell?