Parsing Practice

Kevin Liang
LING 185A

Thor Solary, August 22, 2024

1 Parsing

Consider the following CFG.

Complete the following parsing tables with the steps for the bottom-up, top-down, and left-corner parse of "the girl ate paella in Spain." See the lecture handout for examples.

2 Bottom-up parsing

Bottom-up parsing schema

- Starting configuration: $(\epsilon, x_1 \dots x_n)$ where $x_1 \dots x_n$ is the input
- SHIFT step: $(\Phi, x_i x_{i+1} \dots x_n) \Rightarrow (\Phi A, x_{i+1} \dots x_n)$ where there is a rule $A \to x_i$ in the grammar
- REDUCE step: $(\Phi B_1 \dots B_m, x_i \dots x_n) \Rightarrow (\Phi A, x_i \dots x_n)$ where there is a rule $A \to B_1 \dots B_m$ in the grammar
- Goal configuration: (A, ϵ) where A is one of the grammar's start symbols

Type of transit	tion Rule used	Configuration
0 -	-	$(\epsilon$, the girl ate paella in Spain)
1 shift	$D \rightarrow the$	(D, girl ate paella in Spain)
2 sk:f+	N -7 9:01	(b N, atc paella in Spain)
3 REAVEC	NISON	(ND, ate Paella in Spain)
4 sh:++	$V \rightarrow 4tc$	(NDU, packa in spain)
5 sh: +t	NP -> Pnella	LNP V NP, in Spain)
6 sh; + +	p + in	(ND N ND B' 26012)
7 Shift	40 -> 51nin	(NP U NP P NP ,)
8 r c d u C C	PPJINI	(ND N NP PP, <03)
9 TI duce	16 -> 1 10 b	b (ND Ab'cbz)
10 reduce	5 -> MI UP	(S, ϵ)

3 Top-down parsing

Top-down parsing schema

- Starting configuration: $(A, x_1 ... x_n)$ where A is one of the grammar's start symbols and $x_1 ... x_n$ is the input
- PREDICT step: $(A\Phi, x_i \dots x_n) \Rightarrow (B_1 \dots B_m \Phi, x_i \dots x_n)$ where there is a rule $A \to B_1 \dots B_m$ in the grammar
- MATCH step: $(A\Phi, x_i x_{i+1} \dots x_n) \Rightarrow (\Phi, x_{i+1} \dots x_n)$ where there is a rule $A \to x_i$ in the grammar
- Goal configuration: (ϵ, ϵ)

	Type of transition	n Rule used	Configuration
0	-	-	(S, the girl ate paella in Spain)
1	predict	$S \to NP \; VP$	(NP VP, the girl ate paella in Spain)
2	predict	NP - D N	(DN VP, the sirl ate paella in Spain
	match		(N VP, sirl ate lacks in Spain)
4	~atch	N -> airl	(UP, ate paella in Spain)
5	beeg: ct	16 -2 7 40 66	
6	met Ch	15 atc	(NP Ph, raella in Spain)
7	natch	ND -> paclia	(PP, in spain)
8	pridict	10 9 F. 19	(P ND, in Spain)
	nat ch	P -> i-	(NP, Spain)
		up a Spain	(ϵ,ϵ)

4 Left-corner parsing

Left-corner parsing schema

- Starting configuration: $(\overline{A}, x_1 \dots x_n)$ where A is one of the grammar's start symbols and $x_1 \dots x_n$ is the input
- SHIFT step: $(\Phi, x_i x_{i+1} \dots x_n) \Rightarrow (A\Phi, x_{i+1} \dots x_n)$ where there is a rule $A \to x_i$ in the grammar
- MATCH step: $(\overline{A}\Phi, x_ix_{i+1}\dots x_n) \Rightarrow (\Phi, x_{i+1}\dots x_n)$ where there is a rule $A \to x_i$ in the grammar
- LC-PREDICT step: $(B_1\Phi, x_i \dots x_n) \Rightarrow (\overline{B_2} \dots \overline{B_m} A\Phi, x_i \dots x_n)$ where there is a rule $A \to B_1 \dots B_m$ in the grammar
- LC-CONNECT step: $(B_1 \overline{A} \Phi, x_i \dots x_n) \Rightarrow (\overline{B_2} \dots \overline{B_m} \Phi, x_i \dots x_n)$ where there is a rule $A \to B_1 \dots B_m$ in the grammar
- Goal configuration: (ϵ, ϵ)

The way I like to think about it: X means you have parsed/found an X. \overline{X} means you want/are looking for an X. Thus:

- SHIFT creates an X; you've found an X in the beginning of the string
- MATCH removes an \overline{X} ; you were looking for an X and you found it in the beginning of the string
- LC-PREDICT, using a rule A → B C...D, removes a B from the stack, and adds C...D A to the stack. That is, you already found a B before, and if you can find a C,..., D, etc. you'll know you've found an A.
- LC-CONNECT works in a similar way, given a rule $A \to B$ C...D. You have a B and you're looking for an \overline{A} . You can get the A you're looking for by using your B, as long as you find additional C...D. So now all you are looking for is that C...D.

_			- Lage Lage	Pars
	Type of trar	nsition Rule used		
_	0 -	-	$(\overline{S}, \text{ the girl ate paella in Spain})$	
	1 shift	$D \rightarrow the$	(D \overline{S} , girl ate paella in Spain)	
	2 LC- predict	nb - 1 n	(N NP 5, Firl ate packs	m Spain)
	3 match	N-> sirl	(NI 3, atl paella	in 5 pain)
	4 L (- Connect	S -> NI UP	(VP, are paella i	~ Spain)
	5 sh: p+	$v \rightarrow atc$	(V JP, pacila in	7047
	6 L C-Cornect	JB JN N LE BB	(NP PP, pacila in	>p~(~)
_	7 match	ND -> brolla	(PP/ : 2 Spain)	
	8 Ship +	P -> in	(b' bb' 26-5)	
	9 Ll-Comect	bb -> 6 wh	(ND, SPara)	
	10 Mint Ch	NP > Spain	(ϵ,ϵ)	
-				

