R computing for Business Data Analytics

Homework 4 (Due date: 23:59PM on December 11, 2016)

Please e-mail your homework (.pdf) and the associated R code (.R) to hchuang.om@gmail.com.

The email title must be R_HW4_GroupName. NO late homework will be accepted.

Q1. (20%) The probability density P(X=k) of a random variable $X \sim \text{Poisson-Tweedie family } (\alpha, \beta, \gamma)$ can be calculated through a *double recursion algorithm*.

The first recursion exists in p_k :

$$\begin{split} p_0 = & \begin{pmatrix} e^{\beta[(1-\gamma)^{\alpha}-1]/\alpha}, \alpha \neq 0 \\ (1-\gamma)^{\beta}, \alpha = 0 \end{pmatrix}, \ p_1 = \beta \gamma * p_0, \\ p_{k+1} = & \frac{1}{k+1} \begin{pmatrix} \beta \gamma * p_k + \sum_{i=1}^k j * r_{k+1-i} p_j \end{pmatrix}, \ k=1,2,... \end{split}$$

The second recursion exists in r_i :

$$r_1 = (1 - \alpha)\gamma$$
, $r_{j+1} = \left(\frac{j - 1 + \alpha}{j + 1}\right)\gamma * r_j$, $j = 1, 2, ...$

where $\alpha \in (-\infty, 1]$, $\beta \in (0, +\infty]$, $\gamma \in [0, 1]$

Write a function *PTF* that has four inputs (k, a, b, g) (a for α , b for β , and g for γ) and returns p_k . Use the function to calculate PTF(9, -3, 2, 0.5) (The answer should be close to 0.04235).

Q2. (20%) MLE and Simulation

(a) For the Bernoulli distribution $P(X = x_i \mid p) = p^{x_i} (1 - p)^{1 - x_i}$, derive \hat{p}_{MLE} .

(Hint: Solve *p* for
$$\ell'(p) = 0$$
 where $\ell(p) = \log(\prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i})$)

- (b) Continuing (a), given p=0.5, simulate n=50, n=5000, n=500,000 Bernoulli random numbers. For each simulated sample of size n, calculate \hat{p}_{MLE} from the sample and compare \hat{p}_{MLE} to the TRUE p=0.5, what have you observed?
- (c) For the exponential distribution $f(x_i) = \lambda e^{-\lambda x_i}$, derive $\hat{\lambda}_{MLE}$ and prove the Markov Property: $P(X > s + t \mid X > s) = P(X > t)$ (Hint: $F(x) = 1 e^{-\lambda x}$)
- (d) Continuing (c), given λ =0.5, simulate n=50, n=5000, n=500,000 exponential random numbers. For each simulated sample of size n, calculate $\hat{\lambda}_{MLE}$ from the sample and compare $\hat{\lambda}_{MLE}$ to the TRUE λ =0.5, what have you observed?

Q3. (20%) Binomial and Poisson Distributions

- (a) The table below records the historical number of car accidents/week in a district. Create a vector called *car.accident* that stores 109 zeros, 65 ones, 22 twos, 3 threes, and 1 four.
- (b) Apply the *fitdistr*() function in *R* (load the *MASS* library first) to fit the *car.accident* data with the Poisson distribution. What is the value of estimated λ ? What is the log-likelihood?
- (c) Given the estimated λ , use R to do the computation and finish the 3^{rd} column of table below. Are the predicted frequencies close to the actual frequency?
- (d) Given the estimated λ , finish the 4th column of table below using *R*.

Car Accidents	Frequency	Poisson(λ =???)	Binomial($n=200, p=\lambda/200$)
0	109	$200*P(X=0 \lambda)=$	200*P(X=0 n,p)=
1	65	$200*P(X=1 \lambda)=$	200*P(X=1 n,p)=
2	22	$200*P(X=2 \lambda)=$	200*P(X=2 n,p)=
3	3	$200*P(X=3 \lambda)=$	200*P(X=3 n,p)=
4	1	$200*P(X=4 \lambda)=$	200*P(X=4 n,p)=
>4	0	$200*P(X>4 \lambda)=$	200*P(X>4 n,p)=

Q4. (20%) Binomial, Poisson, and Normal Distributions

- (a) Finish the second, third, and fourth column of the table below using *R*.
- (b) Based on the probability densities you calculate, generate a plot in which the x-axis is 0:8 and the y-axis lies between [0, 0.25]. The plot should have three lines with *different* width and colors. (red thin line for Binomial, green thick line for Poisson, blue thicker line for Normal).

Defectives	Binomial(<i>n</i> =20, <i>p</i> =0.2)	Poisson(λ=4)	Normal $(\mu = 4, \sigma^2 = 4)$
(<i>x</i>)	P(X=x)	P(X=x)	P(x-0.5 < X < x+0.5)
0			
1			
2			
3			
4			
5			
6			
7			
8			

Q5. (20%) Two mathematical functions $\sqrt{1-(|x|-1)^2}$ and $a\cos(1-|x|)-\pi$ can be used to draw a beautiful heart with the following R code.

- > heart_up = function(x) {sqrt(1-(abs(x)-1)^2)}
- > heart_lo = function(x) {acos(1-abs(x))-pi}
- > x = seq(-2,2,0.05)
- > plot(x, heart_lo(x), ylim=c(heart_lo(0),1), type= '1')
- > lines(x, heart_up(x))

The **exact area** of this heart can be obtained through *integration*. Use functions for integration in R and show me what the area is?