

Computer Sciences Faculty University of Murcia

IoT for Water Management: Towards Intelligent Anomaly Detection

2019 IEEE WF-IoT. TP1-8: IoT Services and Applications for Verticals

Aurora González-Vidal, Jesús Cuenca-Jara, Antonio F. Skarmeta {aurora.gonzalez2, jesus.cuenca1, skarmeta}@um.es

Content

Introduction

Context Objective

Related work

Methodology

Scheme

Step 1: Individual time series anomaly detection

Step 2: Anomaly and discord classification

Metrics

Use case and experiment results

Data

Results

Conclusions and future work

Conclusions

Future Work

Introduction

Context

- ► Yearly >32 billion m³ of treated water are lost
- Water demand dynamics make it difficult to manage water supply
- ► Smarter ways: IoT + data analytics
- Smart water meters collect measurements of water consumption, opening up a wealth of opportunities for water providers when empowered by data mining techniques.

Anomalies in water consumption

Anomalies in water consumption time series lead to

- Reveal leaks
- Reveal device/meter failures
- Detect illegal water use
- Detect warning situations
- Allow the provision of personalized feedback to customer

Objective

- To develop a methodology in order to detect anomaly consumption in water systems
- Application: evaluation (testing the effectiveness) in a real water system
- Comparison of two approaches: ARIMA-based framework and HOT-SAX-based framework

Related work

Related work

Several techniques have already been used for anomaly detection in the urban water process:

- ► Change-point methods
- Probabilistic outlier detection has been explored in water management scenarios.
- Heatwave events in temperature time series can be considered anomalies. In the litterature, a multiresolution quantile approach that extends a variation of the Symbolic Aggregate Approximation (SAX) that we are also going to use is proposed to find heatwave events.

Methodology

Scheme

- Objective: discover the weak and strong points of methods from different nature to find anomalies in water consumption time series
- ► Two-steps scheme
 - Extract outliers and abnormal patterns using the individual time series properties of the data
 - 2. Try to classify them thanks to the annotated series.

Step 1 - ARIMA

ARIMA based algorithm

$$y_t = z_t + \sum_{j=1}^m w_j L_j(B) I_{tj}$$

z_t is an ARIMA process

- Five types of **outliers** are considered:
 - 1. "AO" additive outliers
 - 2. "LS" level shifts
 - 3. "TC" temporary changes
 - 4. "IO" innovative outliers
 - 5. "SLS" seasonal level shifts

Step 1 - HOT-SAX

- Symbolic Aggregate Approximation (SAX)
 - 1. Normalization
 - Discretization: Piecewise Aggregate Approximation (PAA)
 - Symbolization (alphabet)
- Heuristically Order Time series (HOT): find the less frequent words in the time series -> anomalies

Step 2 - ARIMA

Association Rule Learning for ARIMA framework

- Objective: differentiate which types of outliers correspond to anomalous behaviors and which correspond to normal fluctuations in consumption
- An Association Rule Learning Algorithm was applied to these sets of outliers with the aim of studying if the type of outliers detected by the algorithm is representative for each class.

Step 2 - ARIMA

- In order to carry out a more exhaustive study, the Association Rule Learning Algorithm was applied on different size sets:
 - 1. Taking only the outlier closest to the breakdown
 - 2. Taking the two closest
 - 3. Taking the three closest
 - 4. etc.

Step 2 - HOT-SAX

Subseries classification using Random Forest for HOT- SAX discordances

- Objective: discriminate between subseries that indicate a future anomaly and subseries that do not after applying HOT-SAX algorithm
 - Separate series that lead to anomalies and series which does not lead to anomalies and apply the algorithm
 - After that, we apply a random forest classifier in order to fit a model that discriminates between subseries

Metrics

► Contingency Table

	Anomaly	Not Anomaly
Anomaly predicted	True positive (TP)	False positive (FP)
Not Anomaly predicted	False negative (FN)	True negative (TN)

Sensitivity and Specificity

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

Use case and experiment results

Data

- Data from 40000 smart meters that mainly belong to factories and buildings
- ► Every data point is gathered with a timestamp, that is, it has the form of a time series.
- ▶ 30 time series anotated

SCADA real time pipe information

Results - Detection of anomalies (Step 1)

Accuracy detecting anomalies:

► ARIMA-framework: 90 %

► HOT-SAX: 80 %

However, both approaches present a high rate of false positives

Results on 2 smart meters

Results Classification of anomalies (Step 2)

- ARIMA + Association Rules: Inconclusive
- ► HOT-SAX + Random Forest:

Table: Contingency Table Results

	Anomaly	Not Anomaly
Anomaly predicted	12	9
Not Anomaly predicted	2	23

Sensitivity = 86%

Specificity = 72%

Conclusions and future work

Conclusions

- This is the first time that a combination between univariate anomaly detection techniques and further analysis is used for discarding false anomalies in water consumption
- This is a step forward towards automatic water management in smart cities. In many utility companies, anomaly detection is either neglected or done by a technician who normally is unable to check all smart meters

Future Work

- ► Select other algorithms based on a machine learning approach
- Design an experiment which tests several anomaly detection models and finds the best one through expert validation.
- ► Elaborate a friendly graphic user interface
- Analyze and develop retrofit techniques
- Use Big Data frameworks in order to facilitate the analysis on real time.

Highlighted references

- C. Chen, L.-M. Liu, Joint estimation of model parameters and outlier effects in time series, Journal of the American Statistical Association 88 (421) (1993) 284–297.
- J. L. de Lacalle, tsoutliers: Detection of Outliers in Time Series, r package version 0.6-6 (2017). URL https://CRAN.R-project.org/package=tsoutliers
- Keogh, Eamonn, Jessica Lin, and Ada Fu. "Hot sax: Efficiently finding the most unusual time series subsequence." Fifth IEEE International Conference on Data Mining (ICDM'05). Ieee, 2005.

Questions?

Find this presentation at: github.com/auroragonzalez/presentations

Computer Sciences Faculty University of Murcia

IoT for Water Management: Towards Intelligent Anomaly Detection

2019 IEEE WF-IoT. TP1-8: IoT Services and Applications for Verticals

Aurora González-Vidal, Jesús Cuenca-Jara, Antonio F. Skarmeta {aurora.gonzalez2, jesus.cuenca1, skarmeta}@um.es