

Guía de Ejercicios Nº 6: Transistor TBJ

Constante	Valor
q	$1,602 \times 10^{-19} \mathrm{C}$
m_0	$9{,}109 \times 10^{-31}\mathrm{kg}$
k	$1,381 \times 10^{-23} \mathrm{J/K} = 8,617 \times 10^{-5} \mathrm{eVK}$
h	$6,626 \times 10^{-34} \mathrm{Js} = 4,136 \times 10^{-15} \mathrm{eVs}$
ϵ_0	$8.85 \times 10^{-12} \mathrm{F/m} = 88.5 \mathrm{fF/cm}$
$\epsilon_r(\mathrm{Si})$	11,7
$\epsilon_r(\mathrm{SiO}_2)$	3,9

Parte I: Parámetros y regímenes de operación

- 1. Para un transistor TBJ NPN operando en régimen directo se pide:
 - a) Indique las tensiones V_{BE} y V_{BC} para que se encuentre en dicho régimen.
 - b) Realice un diagrama de concentración de portadores y explique el efecto transistor, indicando las corrientes que circulan en cada zona del dispositivo.
 - c) Explique qué condiciones deben cumplir los dopajes y dimensiones del transistor para que aumente la ganancia de corriente β_F .
 - d) Explique brevemente el efecto Early utilizando el diagrama de concentración de portadores anterior.
- 2. Dado un transistor cuyos parámetros de fabricación son $N_{dE}=7.5\times10^{18}\,\mathrm{cm}^{-3},\,N_{aB}=1\times10^{17}\,\mathrm{cm}^{-3},\,N_{dC}=1.5\times10^{16}\,\mathrm{cm}^{-3},\,D_{pE}=5\,\mathrm{cm}^2/\mathrm{s},\,D_{nB}=10\,\mathrm{cm}^2/\mathrm{s},\,W_B=300\,\mathrm{nm},\,W_E=250\,\mathrm{nm}.$
 - a) Halle el valor de la corriente de saturación I_S para un transistor construido en este proceso.
 - b) Halle el valor de β_F para un transistor construido con este proceso.
 - c) ¿Por qué para obtener un elevado valor de β_F se utilizan transistores NPN y no transistores PNP?
- 3. En la figura 1 se muestra un diagrama de concentraciones de portadores minoritarios para un transistor bipolar de juntura polarizado.
 - a) ¿Es un transistor NPN o PNP?
 - b) ¿En qué régimen está polarizado el transistor? ¿Cuál es la relación entre las tensiones V_{BE} y V_{BC} ?
 - c) Para este caso en particular, ¿la corriente es entrante o saliente?
 - d) Graficar el diagrama de concentraciones de portadores minoritarios para los otros regímenes.

Figura 1

- 4. En la Fig. 2 se muestra un diagrama de concentraciones de portadores minoritarios para un transistor bipolar de juntura polarizado.
 - a) ¿Es un transistor NPN o PNP?
 - b) ¿En qué régimen está polarizado el transistor? ¿Cuál es la relación entre las tensiones V_{BE} y V_{BC} ?
 - c) Para este caso en particular, ¿la corriente es entrante o saliente?
 - d) Graficar el diagrama de concentraciones de portadores minoritarios para los otros regímenes.

Figura 2

5. Se tiene un transistor TBJ NPN conectado como en la Fig. 3. Los parámetros del transistor se muestran en la tabla 1. Se sabe que V_{CC} tiene el valor suficiente como para que siempre se cumpla que $V_{BC} < 0$ V. Graficar el módulo de la corriente de colector en escala semilogarítmica en función de la tensión baseemisor $(0 < V_{BE} < 0.8 \text{ V})$ para tres temperaturas: 300 K, 325 K y 350 K.

Figura 3

Parámetro	Valor
$\overline{N_{De}}$	$10^{18}\mathrm{cm}^{-3}$
N_{Ab}	$10^{16}{\rm cm}^{-3}$
N_{Dc}	$10^{14}{\rm cm}^{-3}$
A_E	$10\mu\mathrm{m}^2$
W_B	$2\mathrm{\mu m}$
V_A	∞

Tabla 1

Parte II: Polarización

6. El circuito de la Fig. 4 tiene un transistor TBJ NPN con $\beta = 100$ y $V_A \to \infty$, fuentes $V_{CC} = 12$ V y $V_{BB} = 4$ V, y resistencias $R_B = 100$ k Ω y R = 1 k Ω . Calcular el punto de polarización (también llamado punto de reposo o punto Q).

Figura 4

- 7. Se tiene un TBJ NPN de $\beta_F=200$ y $V_A\to\infty$ polarizado como muestra la Fig. 5. Se utiliza una resistencia en el colector $R_C=500\,\Omega$, una sola fuente de alimentación $V_{CC}=10\,\mathrm{V}$, y dos resistencias de base $R_{B1}=R_{B2}=200\,\mathrm{k}\Omega$.
 - a) Determinar el punto de trabajo.
 - b) Determinar el valor de R_{B2} para que la corriente I_C sea 6 mA con el dispositivo en MAD siendo $R_{B1} = 10 \,\mathrm{k}\Omega$.
 - c) Determinar el punto de trabajo nuevamente con $R_{B1} = R_{B2} = 200 \,\mathrm{k}\Omega$, pero esta vez para las siguientes tensiones de Early: $V_{A1} = 10 \,\mathrm{V}$ y $V_{A2} = 100 \,\mathrm{V}$. ¿Puede despreciarse el efecto Early en alguno de esos dos casos? Justifique.

Figura 5

- 8. Para el circuito de la Fig. 6, siendo el transistor un TBJ PNP con $\beta=80$ y $V_A\to\infty$, y además $R_{B1}=50\,\mathrm{k}\Omega$, $R_{B2}=100\,\mathrm{k}\Omega$, $R=210\,\Omega$ y $V_{CC}=5\,\mathrm{V}$:
 - a) Hallar el punto Q.
 - b) Hallar R_{B1} tal que la caída de tensión en R sea $V_R=2.5\,\mathrm{V}.$
 - c) Hallar nuevamente el punto Q si ahora $V_A = 20 \,\mathrm{V}$.

Figura 6

9. Para el circuito de la Fig. 7, donde $V_{CC}=5\,\mathrm{V},\,R=100\,\Omega$ y $\beta_F=300$, encuentre el valor de R_B para que $V_X=0\,\mathrm{V}$. Con el valor de R_B hallado, encuentre todas las tensiones y corrientes del circuito.

Figura 7

- 10. Para el circuito de la Fig. 8 con $\beta=500,\,V_A=20\,\mathrm{V},\,V_{CC}=6\,\mathrm{V},\,R_B=118\,\mathrm{k}\Omega,\,R_{var}=20\,\mathrm{k}\Omega,\,\mathrm{se}$ pide:
 - a) Hallar las corrientes I_C mínima e I_C máxima que se puede obtener según la posición del potenciómetro R_{var} . Considere un valor de R_C tal que el dispositivo se encuentre en MAD y $V_{BE} = 0.7$ V para la corriente máxima.
 - b) Explicar cómo se puede usar el circuito de la figura 8 medir la transferencia I_C vs V_{BE} . Indique las modificaciones que debería realizar y la conexión de los instrumentos.
 - c) ¿Qué parámetros pueden obtenerse de un ajuste de esta curva? ¿Cómo se obtienen?

Figura 8

11. Se tiene un transistor TBJ NPN con $\beta=100$ y $V_A\to\infty$ conectado como indica la Fig. 9, donde $R_B=100\,\mathrm{k}\Omega,\,R_C$ es variable y $V_{CC}=5\,\mathrm{V}.$

DISPOSITIVOS SEMICONDUCTORES Última actualización: 1^{er} Cuatrimestre de 2023

- a) Mediante el método de la recta de carga, estimar la tensión V_{CE} cuando $R_C=500\,\Omega.$ Grafique.
- b) Si ahora $R_C = 10 \,\mathrm{k}\Omega$, estime la corriente de colector utilizando la recta de carga.
- c) Si ahora $V_A = 20 \,\mathrm{V}$, estimar el rango de R_C permitido para que el transistor permanezca en MAD. ¿Cuáles son los valores máximos y mínimos que toma la corriente de colector en MAD?

Figura 9

Parte III: Pequeña señal

- 12. Dado un transistor cuyos parámetros de fabricación son $N_{dE}=7.5\times10^{18}\,\mathrm{cm^{-3}},~N_{aB}=1\times10^{17}\,\mathrm{cm^{-3}},~N_{dC}=1.5\times10^{16}\,\mathrm{cm^{-3}},~D_{pE}=5\,\mathrm{cm^{2}/s},~D_{nB}=10\,\mathrm{cm^{2}/s},~W_{B}=300\,\mathrm{nm},~W_{E}=250\,\mathrm{nm},~A_{E}=25\,\mathrm{\mu m^{2}},~A_{B}=100\,\mathrm{\mu m^{2}},~\tau_{T_{BE}}=20\,\mathrm{ns},~V_{A}=35\,\mathrm{V},~\mathrm{polarizado~con}~I_{C}=100\,\mathrm{\mu A}~\mathrm{y}~V_{CE}=2\,\mathrm{V}.$
 - a) Halle los valores de los elementos del modelo de pequeña señal de bajas frecuencias (g_m, r_π, r_o) y dibuje el circuito correspondiente.
 - b) Halle los valores de los elementos del modelo de pequeña señal de altas frecuencias $(g_m, r_\pi, r_o, C_\pi, C_\mu, r_\mu)$ y dibuje el circuito correspondiente.
- 13. Se tiene un transistor PNP conectado al circuito de la Fig. 6, usando $R_{B1} = 100 \,\mathrm{k}\Omega$, $R_{B2} = 80 \,\mathrm{k}\Omega$, $R = 200 \,\Omega$ y $V_{CC} = 5 \,\mathrm{V}$. Los datos del transistor son $\beta = 300$, $V_A = 60 \,\mathrm{V}$. Calcular los parámetros del modelo de pequeña señal de bajas frecuencias y dibujar su circuito. ¿Cuánto varía la corriente de colector si v_{be} cambia en $5 \,\mathrm{mV}$?

Parte IV: Integradores

14. Para el circuito de la Fig. 10, considerando $\beta = 50$, $V_{CC} = 5$ V, $R_{B1} = 100$ k Ω , $R_{B2} = 287$ k Ω , R = 4 k Ω , $V_T = 0.8$ V, μ_n $C'_{ox}W/(2L) = 100$ μ A/V², hallar el punto de trabajo del transistor bipolar: (I_{CQ}, V_{CEQ}) .

DISPOSITIVOS SEMICONDUCTORES Última actualización: 1^{er} Cuatrimestre de 2023

Figura 10

- 15. Para el circuito de la Fig. 11, donde $V_{CC}=9\,\mathrm{V},\,R=180\,\Omega$ y $\beta_F=500,$
 - a) Encuentre el valor de R_B para que $V_X = 4.5 \,\mathrm{V}.$
 - b) Con el valor hallado en el ítem anterior, encuentre todas las tensiones y corrientes del circuito.
 - c) ¿Cuánto puede variar R para que el circuito se mantenga operando en Modo Activo Directo?

Figura 11

- 16. Para el circuito de la Fig. 12, donde los parámetros del transistor son $\beta=200$ y $V_A=50$ V, se pide:
 - a) Hallar el punto de polarización o reposo Q, siendo $R_B=330\,\mathrm{k}\Omega,\,R_E=1.8\,\mathrm{k}\Omega$ y $V_{CC}=V_{BB}=5\,\mathrm{V}.$
 - b) Reemplazar R_B y R_E para logra
r $g_m=28\,\mathrm{mS}$ y $V_E=V_{CC}/2.$
 - c) Hallar el modelo de pequeña señal para bajas frecuencias del transistor en esta situación. Explique que representa cada componente de dicho modelo.
 - d) Suponiendo ahora que $V_{BB} = 5$ V, pero que V_{CC} es una tensión variable, hallar el rango de tensiones para los cuales es válido el modelo del punto b).

Figura 12

DISPOSITIVOS SEMICONDUCTORES Última actualización: 1^{er} Cuatrimestre de 2023

- 17. En la Fig. 13 se muestra la medición de una curva de salida correspondiente a un circuito como el de la figura 9, donde el transistor tiene $\beta = 250$ y la tensión de alimentación es $V_{CC} = 3$ V.
 - a) Determinar el valor de la resistencia de base utilizada en esta medición.
 - b) Si debido a variaciones del proceso el β del transistor es un 10 % mayor que su valor nominal, ¿qué corriente cambia? ¿ I_B o I_C ? Calcule el nuevo valor.
 - c) A partir de la recta de carga, determinar el máximo y el mínimo valor de R_C utilizados en esta medición. Asumiendo que para medir cada punto de la curva la resistencia de colector se varía en un mismo valor ΔR_C , calcule este paso en R_C entre mediciones.
 - d) A partir de la curva medida, estime el valor de la tensión de Early y r_o .

Figura 13

18. Se tiene un transistor conectado como en la Fig. 14, donde se utiliza un diodo zener con los siguientes parámetros: $V_Z=2.1\,\mathrm{V};~1.3\,\mathrm{mA} < I_Z < 20\,\mathrm{mA}$. El transistor tiene los siguientes parámetros: $V_{BE~ON}=-0.7\,\mathrm{V}$ y $V_A=200\,\mathrm{V}$. La tensión de alimentación es $V_{DD}=5\,\mathrm{V}$ y la resistencia de base es $R_B=100\,\mathrm{k}\Omega$. ¿Cuál debería ser el mínimo valor de β del TBJ para que el diodo Zener actúe como referencia de tensión? ¿Y el máximo?

Figura 14