

MD A068679

U.S. ARMY MISSILE RESEARCH AND DEVELOPMENT COMMAND

Redstone Arsenal, Alabama 35809

TECHNICAL REPORT H-78-1

COMPILATION OF DATA RELEVANT TO NUCLEAR PUMPED LASERS

VOLUME III

E. W. McDaniel, M. R. Flannery, E. W. Thomas, H. W. Ellis, and K. J. McCann School of Physics Georgia Institute of Technology Atlanta, Georgia 30332

S. T. Manson Physics Department Georgia State University Atlanta, Georgia 30303

J. W. Gallagher, J. R. Rumble, and E. C. Beaty Joint Institute for Laboratory Astrophysics University of Colorado Boulder, Colorado 80302

and

T. G. Roberts
High Energy Laser Laboratory

December 1978

Approved for public release; distribution unlimited

PREPARED FOR:
High Energy Laser Laboratory
US Army Missile Research and Development Command
Redstone Arsenal, Alabama 35809

79 05 14 055

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

UNCLASSIFIED

	ON PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSION	NO. 3 RECIPIENT'S CATALOG NUMBER
H-78-1		(9)
. TITLE (and Subtitle)		5. THE OF REPORT & PERIOD COVERE
COMPILATION OF DATA RELEVANT TO	NUCLEAR PUMPED	Technical Bata Nept
Valume III.		F. PERFORMING ORG. REPORT NUMBER
- Autriono	The American Control of the Control	8. CONTRACT OR GRANT NUMBER(4)
H. W. Ellis and K. J. McCann J. W. Gallagher, J. R. Rumble,	S. T. Manson, E. C. Beaty, and	
T. G. ROBERTS 9. PERFORMING ORGANIZATION NAME AND ADDR	RESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Commander		
US Army Missile Research and De Attn: DRDMI-H	evelopment Comman	
Redstone Arsenal, Alabama 3580	09	
11. CONTROLLING OFFICE NAME AND ADDRESS		12 HEPORT DATE
Commander US Army Missile Research and De	evelopment Comman	December 1978
Attn: DRDMI-TI		15. NUMBER OF PAGES
Redstone Arsenal, Alabama 3580	Herent from Controlling Office	e) 15. SECURITY CLASS. (of this report)
Notice of the second se	/	Unclassified
PDRDMI-H-78-1-	VOL-31	
1 NKUMIT-H-19	Man of the Contract of the Con	154. DECLASSIFICATION/DOWNGRADING
6. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release;	arberrough diff	ill Leed
17. DISTRIBUTION STATEMENT (of the abetract ent	tered in Black 20, If differen	i from Report)
17. DISTRIBUTION STATEMENT (of the abstract and 18. SUPPLEMENTARY NOTES *Present Address: Eckerd College St. Petersburg, FL 33733	e, **Volume I Volume II	contains pages 1 through 427; contains pages 429 through 89 I contains pages 893 through 134
18. SUPPLEMENTARY NOTES *Present Address: Eckerd College	e, **Volume I Volume II Volume II	contains pages 1 through 427; contains pages 429 through 89 I contains pages 893 through 134
18. SUPPLEMENTARY NOTES *Present Address: Eckerd College St. Petersburg, FL 33733 19. KEY WORDS (Continue on reverse side if necessar	e, **Volume I Volume II Volume II ury and identity by block num mechanisms s	contains pages 1 through 427; contains pages 429 through 89 I contains pages 893 through 134
18. SUPPLEMENTARY NOTES *Present Address: Eckerd College St. Petersburg, FL 33733 19. KEY WORDS (Continue on reverse aids if necessary Excitation Laser pumping Ionization Heavy nuclide Light nuclide	e, **Volume I Volume II Volume II volume II ry and identity by block num mechanisms s	contains pages 1 through 427; contains pages 429 through 89 I contains pages 893 through 134 (her) High energy electron beams High energy ion beams
18. SUPPLEMENTARY NOTES *Present Address: Eckerd College St. Petersburg, FL 33733 19. KEY WORDS (Continue on reverse aids if necessar Excitation Laser pumping Ionization Heavy nuclide Light nuclide 20. ABSTRACT (Continue on reverse aids if necessar	we, **Volume I Volume II Volume II Volume II was and identity by block num mechanisms s s ding Volumes No. ear pumped lasers as laser research fechnical Report evant to Rare Gase conniel, M. R. Fla	contains pages 1 through 427; contains pages 429 through 8 I contains pages 893 through 13 (her) High energy electron beams High energy ion beams IV and V, contain a compiand are part of a series on and development. The first (H-78-1 in December 1977, con-Rare Gas and Rare Gas-Monoha-

DD FORM 1473 EDITION OF ! NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

410127 4

SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered)

ABSTRACT (CONCLUDED)

Volumes III, IV, and V contain data on many different species of atoms, molecules, and ions: a large fraction of them are already of direct interest in laser media; many more may become important in the future. These volumes cover all of the subjects treated in Vols. I and II; one difference is that now secondary electron energy spectra are discussed in a separate chapter. A chapter on nuclear data has also been added.

A species index for all five volumes will be published separately.

PREFACE

This volume, and the succeeding Volumes No. IV and V, contain a compilation of data relevant to nuclear pumped lasers and are part of a series on atomic and molecular data for gas laser research and development. The first two volumes, published as MIRADCOM Technical Report H-78-1 in December 1977, contained "Compilation of Data Relevant to Rare Gas-Rare Gas and Rare Gas-Monohalide Excimer Laser" by E. W. McDaniel, M. R. Flannery, H. W. Ellis, F. L. Eisele, W. Pope, and T. G. Roberts. These first two volumes are referred to herein as "Vol. I" and "Vol. II," usually without further designation.

In Vols. I and II, heavy emphasis was placed on the rare gases and halogens (atoms, molecules, and ions), and on the rare gas-halides, although a significant amount of material on other species was included. Vol. I deals with structural properties and with heavy particle-heavy particle collisions. Vol. II treats the collisions of electrons and photons with heavy particles; transport properties of electrons, ions, and neutrals; interactions of heavy particles with electric and magnetic fields; particle penetration in gases; and particle and photon interactions with solids.

Vols. I and II were prepared in the context of the two most-used techniques for gas laser pumping: electrical discharges and high intensity, high energy electron and ion beams. Vols. III, IV, and V contain much information relevant to electrical discharges and high intensity, high energy electron and ion beams, but are oriented toward a third pumping technique: nuclear pumping. This mechanism involves direct nuclear excitation of the laser gas in which, for example, a pulsed nuclear reactor generates a high intensity pulse of neutrons of duration between 0.1 and 10 msec. These neutrons produce fission in reactions with heavy nuclides within the laser or interact with light nuclides in (n,p) or (n,α) reactions. The high energy charged particles thus produced then deposit their energy in excitation and ionization of the laser gas in reactions similar to those taking place when a high energy electron beam traverses the laser. Nuclear pumping has been achieved with He, Ne, Ar, Kr, Xe, C, N, O, Hg, CO, mixtures of the rare gases, and possibly with CO2, KrF, and XeF. These nuclear reactions may also become interesting in some form of a hybrid laser where the excitation and ionization produced might be used to supply electrons for an electrical discharge laser or an initiator for a pulsed chemical laser, or as an initiator and sustainer for a continuous wave (CW) chemical laser. Therefore, some data relevant to those systems have also been included.

The laser pumping mechanisms, when viewed on the molecular level, are frequently extremely complex. Some inkling of this situation is provided by consideration of the bizarre combinations of gases often

used in lasers to produce and/or pump the atomic or molecular species of interest. Some of these combinations are as unexpected, felicitous, and efficacious as that of lox, bagels, and cream cheese. In these volumes, data on many different species of atoms, molecules, and ions are provided: a large fraction of them are already of direct interest in laser media; many more may become important in the future. This volume and the succeeding volumes cover all of the subjects treated in Vols. I and II; one difference is that now secondary electron energy spectra are discussed in a separate chapter. A chapter on nuclear data has also been added.

A species index for all five volumes will be published separately.

ACKNOWLEDGMENTS FOR VOLUME III (CHAPTER A)

The generous contribution made to this volume by Professors Stanley Bashkin and John O. Stoner of the University of Arizona who supplied the 228 atomic energy level and Grotrian diagrams used in Section A-1 is acknowledged. They also supplied most of the references that appear in Section A-2.

Special thanks are due to Dr. Nick Winter of the Lawrence Livermore Laboratories and to Dr. W. R. Wadt and Dr. P. Jeffrey Hay of the Los Alamos Scientific Laboratory for providing material for Chapter A in advance of its publication.

Drs. J. T. Moseley, D. Heustis, R. E. Olson, R. Saxon, and P. Jullienne provided much useful information on the subject of interaction potentials.

Professor W. Carl Lineberger gave expert advice on electron affinities that was much appreciated. Dr. R. D. Cowan kindly supplied information on the spectrum of the uranium atom.

Finally, we wish to thank Dr. Edward L. Wilkinson, Mr. John E. Hagefstration, and Dr. J. R. Fisher of the Ballistic Missile Advanced Technology Center for their support and encouragement during the preparation of this report.

A. STRUCTURAL PROPERTIES OF ATOMS, MOLECULES, AND IONS

CONTENTS

		Page
A-1.	Periodic Table. Energy Level and Grotrian Diagrams of Atoms and Singly-Charged Positive Ions	895
A-2.	References on Atomic Energy Levels, Spectral Lines, Lifetimes, Oscillator Strengths, and Transition	
	Probabilities	1131
A-3.	Polarizabilities and Multipole Moments	1155
A-4.	Electron Affinities of Atoms and Molecules	1159
A-5.	General References on Potential Energy Curves, Electronic Energies, Spectroscopic Constants, and Absorption and Emission Spectra of Excimer Systems	1163
	Smission operate of Sheriner byocoms	1103
A-6.	Potential Energy Curves, Electronic Energies, and	
	Spectroscopic Constants for Xe_2^+ and Xe_2^- . Interactions	
	Between Like and Unlike Pairs of Rare-Gas Atoms	1167
A-7.	Potential Energy Curves, Electronic Energies, Spectroscopic Constants, and Absorption Spectra for Ne_2^+ , Ar_2^+ , Kr_2^+ , Xe_2^+ ,	
	and ArKr ⁺	1183
A-8.	Potential Energy Curves, Vibrational Levels, Transition Moments, Fluorescence and Einstein Transition Probabilities for NeF, ArF, ArCl, KrF, and KrCl. Wavenumbers,	
	Franck-Condon Factors, and R^n -Centroids for XeF	1211
A-9.	Potential Energy Curves, Electronic Energies, Spectroscopic Constants, and Transition Moments for ${\rm Ar_2F}$ and ${\rm Kr_2F}$	1247
A-10.	Potential Energy Curves, Spectroscopic Constants, and Emission Data for $HgC\ell$ and $HgBr$	1269
A-11.	Potential Energy Curves, Electronic Energies, Spectroscopic Constants, and Dipole and Transition Moments for the Rare	
	Gas Oxides	1282

		Page
A-12.	Potential Energy Curves, Electronic Energies, Spectroscopic Constants, Transition Moments, and Emission and Absorption Data for GaKr, InKr, and $T\ell Kr$	1300
A-13.	Potential Energy Curves and Spectroscopic Constants for AuH, AuC ℓ , HgC ℓ_2 , and HgH	1317
A-14.	Potential Energy Curves, Electronic Energies, and Spectroscopic Constants for Valence States of 0_2	1337

A-1. PERIODIC TABLE. ENERGY LEVEL AND GROTRIAN DIAGRAMS OF ATOMS AND SINGLY-CHARGED POSITIVE IONS

CONTENTS

											Page
A-1.1. Table of Chem	ical-Scale	Ato	omic	Wei	ghts						897
A-1.2. Periodic Table	e of the I	Eleme	ents								898
Notes on Use of Energ	y Level ar	nd Gr	roti	ian	Diag	am	s.				899
A-1.3 A-1.5.	Diagrams	for	Н (Z =	1) .						902
A-1.6 A-1.9.	Diagrams	for	Не	(Z =	2)						905
A-1.10 A-1.11.	Diagrams	for	He	(Z	= 2)						909
A-1.12 A-1.13.	Diagrams	for	В (Z =	5) .						911
A-1.14 A-1.17.	Diagrams	for	B^+	(Z =	5).						913
A-1.18 A-1.28.	Diagrams	for	С (Z =	6) .						917
A-1.29 A-1.33.	Diagrams	for	c^+	(Z =	6).						928
A-1.34 A-1.43.	Diagrams	for	N (Z =	7) .						933
A-1.44 A-1.55.	Diagrams	for	N+	(Z =	7).						943
A-1.56 A-1.63.	Diagrams	for	0 (Z =	8).						955
A-1.64 A-1.70.	Diagrams	for	0+	(Z =	8).						963
A-1.71 A-1.76.	Diagrams	for	F	(Z =	9) .						970
A-1.77 A-1.91.	Diagrams	for	F ⁺	(Z =	9).						976
A-1.92 A-1.102.	Diagrams	for	Ne	(Z =	10)						991
A-1.103 A-1.109.	Diagrams	for	Ne	(Z	= 10)						1002
A-1.110 A-1.112.	Diagrams	for	A1	(Z =	13)						1009
A-1.113 A-1.119.	Diagrams	for	A1	(Z	= 13)						1012
A-1.120 A-1.128.	Diagrams	for	S (Z =	16).						1019

					Page
A-1.129	- A-1.132.	Diagrams	for	S^+ (Z = 16)	1028
A-1.133	- A-1.156.	Diagrams	for	C1 (Z = 17)	1032
A-1.157	- A-1.181.	Diagrams	for	$C1^+$ (Z = 17)	1056
A-1.182	- A-1.204.	Diagrams	for	Ar (Z = 18)	1081
A-1.205	- A-1.230.	Diagrams	for	Ar^{+} (Z = 18)	1104

Tabular Data. A-1.1. Table of the chemical-scale atomic weights.

Element	Symbol	Atomic number	Atomic weight†	Element	Symbol	Atomic number	Atomic weight
Actinium	Ac	89	227	Mendelevium	Md	101	[256]
Aluminum	Al	13	26.98	Mercury	Hg	80	200.61
Americium	Am	95	[243]:	Molybdenum	Mo	42	95.95
Antimony	Sb	51	121 76	Neodymium	Nd	60	144 .27
Argon	A	18	39.944	Neptunium	Np	93	[237]
Arsenic	As	33	74.91	Neon	Ne	10	20.18
Astatine	At	85	[210]	Nickel	Ni	28	58.69
Barium	Ba	56	137.36	Niobium			
Berkelium	Bk	97	[247]	(Columbium)	Nb	41	92.91
Beryllium	Be	4	9.013	Nitrogen	N	7	14.00
Bismith	Bi	83	209.00	Nobelium	No	102	[256]
Boron	В	5	10.82	Osmium	Cis	76	190.2
Bromine	Br	35	79.916	Oxygen	0	8	16
Cadmium	Cd	48	112.41	Palladium	Pd	46	106.7
Calcium	Ca	20	40.08	Phosphorus	P	15	30.97
Californium	Cf	98	[249]	Platinum	Pt	78	195.23
Carbon	C	6	12 011	Plutonium	Pu	94	[242]
Cerium	Ce	58	140 13	Polonium	Po	84	210
Cesium	Cs	55	132 91	Potassium	K	19	39.10
Chlorine	CI	17	35.457	Praseodymium	Pr	59	140.92
Chromium	Cr	24	52.01	Promethium	Pm	61	[145]
Cobalt	Co	27	58.94	Protactinium	Pa	91	231
Columbium				Radium	Ra	88	226.05
(see Niobium) '				Radon	Rn	86	222
Copper	Cu	29	63 54	Rhenium	Re	75	186.31
Curium	Cm	96	[247]	Rhodium	Rh	45	102 91
Dysprosium	Dy	66	162 46	Rubidium	Rb	37	85.48
Einsteinium	Es	99	{254}	Ruthenium	Ru	44	101 1
Erbium	Er	68	167.2	Samarium	Sm	62	150.43
Europium	Eu	63	152.0	Scandium	Sc	21	44.96
Fermium	Fm	100	[253]	Selenium	Se	34	78.96
Fluorine	F	9	19.00	Silicon	Si	14	28.09
Francium	Fr	87	[223]	Silver	Ag	47	107 . 886
Gadolinium	Gd	64	156.9	Sodium	Na	11	22.99
Gallium	Ga	31	69.72	Strontium	Sr	38	87.63
Germanium	Ge	32	72.60	Sulfur	S	16	32.06
Gold	Au	79	197.0	Tantalum	Ta	73	180.95
Hafnium	Hf	72	178 6	Technetium	Tc	43	[99]
Helium	He	2	4.003	Tellurium	Te	52	127 61
Holmium	Ho	67	164.94	Terbium	Tb	65	158.93
Hydrogen	H	1	1.0080		Tl	81	204.39
Indium	In	49	114.76	Thorium	Th	90	232.05
Iodine	I	53	126.91	Thulium	Tm	69	168.94
Iridium. t	Ir	77	192.2	Tin	Sn	50	118.70
Iron	Fe	26	55.85	Titanium	Ti	22	47.90
Krypton	Kr	36	83 80	Tungsten	W	74	183.92
Lanthanum	La	57	138.92	Uranium	U	92	238.07
Lawrencium	Lr	103	[257]	Vanadium	v	23	50.95
Lead	Pb	82	207.21	Xenon	Xe	54	131.3
Lithium	Li	3	6.940	Ytterbium	Yb	70	173.04
Lutetium	Lu	71	174.99	Yttrium	Y	39	88.92
Magnesium	Mg	12	24.32	Zinc	Zn	30	65.38
Manganese	Mn	25	54.94	Zirconium	Zr	40	91.22

[†] Atomic weights are from the Committee on Atomic Weights of the American Chemical Society,

J. Am. Chem. Soc., 76: 2033 (1954).

‡ Atomic weights in brackets represent the isotope of longest known half-period.

Tabular Data. A-1.2. Periodic table of elements.

Orbit	M		K-L		K-L-M		Y-W-7-		131.30 -18-18-8 -M-N-O	4-0-N-	940
	He + 0028	Ne Ne	20.183	+++ 18 +5 Ar	39.948	2 X	83.80 -9-19-8	+++ Xe	131.30	86 ° Rn (22) -32-18-8	
		- E4	18.984		35.453 2-8-7	14 35 14 15 15 15 15 15 15 15 15 15 15 15 15 15	79.909		126.9044	7	
		°0		S 1211	32.064	153 Se 155	78.96	+3 52 +4 53 +5 Te +5 I	127.60	+3 84 +2 85 +5 Po +4 At 0 (210) (210) -5 (22-18-6 -32-1	
		-FFFFF	4.0067 -2	13 S 15	30.9738		74.9216		121.75	7.19 208.990 2-18-4 -32-18-5	
		777 • O	12.01115 14.0067 -2 15.9994 2-4 2-5 -3 2-6	Si ++ 15	28.086	32 +2 33 Ge +4 As	72.59 -8-18-4	Sn +2 51	18.69	1 00 DL 8 7	
		7 10 M	10.811	13 +3 14 Al Si	26.9815	+231 +332 Ga Ge	69.72	49 +3 50 In Sn	102,905 106.4 107.870 112.40 114.82 118.69 -18-16-1 -18-18-0-18-18-1 -18-18-2 -18-18-3 -18-18-4	77 77	
9				Transition	,,,,		-9-19-2	+1 48 +2 49 Cd In	112.40	Hg +1 200.50	
9				Fem		+2 29 +1 30 +3 Cu +2 Zn		47 +1 Ag +1	107.870	Au +3	
					1	28 Ni ++	38.71 63.54 -\$-16-2 -\$-18-1	45 +3 46 +747 Rh Pd +4 Ag	106.4	78 Pt ++	
	ART	← Bleetroa Coafguration			Group 8	+2 27 +2 28 +3 Co +3 Ni	58.932 -8-15-2	34 TA	102.905	17 + 14 11 11 11 11 11 11 11 11 11 11 11 11	
	← Oxidation States KEY TO CHART	Jectros Co		,	1	Fe ++	35.847 -\$-14-2	Tc + Ru	(99) -18-13-2 -18-15-1	50 S	
0,	++ x x x			Transition Elements		1 +2 24 +2 25 +2 26 + +3 Cr +3 Mn+3 Fe +	54.538 4-13-2	15 T	-1-18-13-	2 Re + + + + + + + + + + + + + + + + + +	
8	Sn ++	1911		Transit		75	51.996 2 -8-13-1	12 42 4 Mo	-1-18-13	W 183.85	
8	Atomic Number -	Avonic weignt				**** ****	47.90 50.942 -8-10-3 -8-11-2	+41 +342 +943 Nb +5 Mo Tc	91.22 -18-10-2 -18-12-1 -18-13-1	Ta Ta 188.24	
•	Atomic	486				12		+3 46	6 91.22 -2 -18-10	+3 72 Hf Hf 113.49	.77
2		7 .	9.0122	12 +1 Mg +1	24.312	Ca +221	40.08 44.966	254	87.62 88.905 -18-8-2 -18-9-2	55 +156 +257 +372 +473 +474 +475 +476 +4177 +478 +4779 +180 +1811 CS Ba La Hf Ta W Re +708 +41r +4Pt +4Au +3Hg +2TI 132.06 13734 13841 17849 180.38 180.2 180.2 180.2 180.0 180.87 20.38 204.1 189.41 189.41 180.00 180.87 20.38 204.1 189.41 189.42 10.0 180.87 20.38 204.1 189.41 189.42 10.0 180.87 20.38 204.1 189.41 189.42 10.0 180.87 20.38 204.1 189.41 189.42 10.0 180.87 20.38 204.1 189.41 189.42 10.0 180.87 20.38 204.1 189.41 1	Fr Ra Ac +3 (223) (226) (227) -18-9-1 -19-9-2
	H -1 1.00797	Li He	6.939 9.0 2-1 2-2	11 + 12 Na Mg	22.9898 24.	15 +1 28 C. C. C.	39.702 40.	37 +138 +23 Rb Sr	18-8-1	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Nd H	**	PH +	Sm +3 150.35	Eu +3	Gd +3	25 25 55 55 55 55 55 55 55 55 55 55 55 5	Dy +1	58 +359 +360 +361 +362 +263 +264 +365 +366 +367 +3 Ce +49r Nd Pm Sm +3 Eu +3 Gd Tb Dy Ho 160.12 100.07 144.34 (143) 150.35 151.54 152.35 153.54 152.00 154.30 119-2.2 20-2-2 22-3-2 24-3-2 24-4-2 23-4-2 24-4-2 24-4-2 23-4-2 23-4-2	8 H 2 5 8	P P S	44 49 44 44 44 44 44 44 44 44 44 44 44 4	+271 +3 +3 Lu +3 Lu +3 -32-52
20	1777	Np+	Pr	A H	C H	90 +191 +592 +393 +394 +395 +396 +397 +398 +399 Th Pa +1 U +3 Np +3Pu +3 Am +3 Cm Bk +1 Cf Es	# %	E S	8 H	Md Md	102	103 Lw
238.00	7 7	20-02	22.038 (231) 28.03 (237) (242) (19.9-2 -20-9-2	24.92	-25-9-2	-26-9-2	(251)	254)	30-6-2	(347) (349) (351) (354) (359) (353) (359) (-31-9-3	(254)	_

(umbers in parentheses are mass numbers of most stable isotope of that element.

Notes on the Use of Energy Level and Grotrian Diagrams (Based on book by Bashkin and Stoner)

Two types of diagrams have been indispensable since their first appearance in the literature of atomic structure: energy-level diagrams and electronic transition (Grotrian) diagrams.

Energy-Level Diagrams

The general format of these diagrams is quite standard — a level is represented by a short, horizontal line which is located by two coordinates. The ordinate is the level's energy, always given in inverse centimeters [cm⁻¹], and the abscissa indicates a combination of orbital and spin angular momenta quantum numbers. The notation adhered to is primarily that of Kelly's with the adoption of the "primed" convention consistent with Moore 2.

To clarify the diagrams, each system is exhibited in a format best suited for it. For example, when energy-level densities are inconveniently high, the topmost levels are indicated together with all lower levels having a reasonable density.

The full precision of the latest experimental energy-level values has been retained and is exhibited on the diagram. In general, theoretically calculated values are shown with less precision than is given in the original sources.

The primary data on which the diagrams are based were taken primarily from Kelly's 1 exhaustive tabulations and several other references $^{2-5}$. In addition to these general references, several other references are cited for many of the systems.

Several instances occur in which ions possessing various core configurations result in many different final configurations. When this occurs, each core is given a separate diagram — specifically differentiated from the others in the title and corner labels.

Each energy-level diagram contains (1) a key which defines various symbols, (2) the ionization level (from Kelly and Palumbo 3), and (3) the ground configurations of the ion and the next higher ion. The j- ℓ and j-j intermediate coupling schemes are respectively represented by [] and $\{$ $\}$. All energy-levels and j-values are listed in order of increasing excitation. When intermediate coupling occurs, the intermediate-coupling angular momenta are shown in a vertical array in order of

increasing excitation, from bottom to top. In cases where a single energy occurs for two or more j-values, the following notation has been adopted.

For example: 797270 3d ([5/2, 3/2], 1/2),

which means that the lower level is common to the first two j-values and the upper level belongs to j = 1/2.

The ionization level is shown as a horizontal dashed line. The ionization level is simply the energy difference between the ground term and the bottom of the continuum for the terms having the ground-term core.

Grotrian Diagrams

Diagrams showing transitions from one spectroscopic term to another are called "Grotrian Diagrams." Most of the transitions have been extracted from the listing of Kelly and Palumbo³ and Striganov and Sventitskii⁴. A few others were taken from later publications. When line densities became too great for clarity, the line of shortest wavelengths together with as many of the other lines as could be conveniently drawn, were included. Lines that were omitted were selected bitrarily. In some cases, the diagram was divided into two or more diagrams. In most cases, the same energy scales were used for both the Grotrian and energy-level diagrams.

The full precision with which wavelengths have been measured has not been incorporated into the diagrams. Usually, the precisions illustrated on the diagrams is one significant figure less than that occurring in the literature. When two lines occur in a multiplet, two numbers are given, separated by a comma. When more than two lines occur, the extreme wavelengths are given, separated by a dash. Wavelengths are in vacuum for values shorter than 2000 $\overset{\text{O}}{\mathbf{A}}$ and in air for longer values.

Hyperfine effects, radio-frequency spectroscopy, and inner-shell transitions have been, for the most part, neglected.

Acknowledgments

The up-to-date enery-level and Grotrian diagrams contained herein have been provided by Stanely Bashkin⁶ and John O. Stoner, Jr., who are directing an extensive compilation project at the University of Arizona. Complete information on all neutral atoms and positive ions through Titanium XXII is presently available in three of their publications ^{7,8,9}

References

- 1. R. L. Kelly, <u>Tabulation of Energy Levels for Atoms and Ions</u> (unpublished).
- 2. C. E. Moore, Atomic Energy Levels, Circular 467, National Bureau of Standards, 1 (1949), Reprinted as NSRDS-NBS 35, Vol. 1.
- 3. R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines
 Below 2000 Angstroms, Hydrogen Through Krypton, U.S. Government
 Printing Office, Washington, D.C., Stock No. 0851-00061 (1973).
- 4. A. R. Striganov and N. S. Sventitskii, <u>Tables of Spectral Lines of Neutral and Ionized Atoms</u>, IFI/Plenum, New York (1968).
- 5. C. E. Moore and P. W. Merrill, Partial Grotrian Diagrams of Astrophysical Interest, Appendix A of Lines of the Chemical Elements in Astronomical Spectra, Carnegie Institute of Washington Publication 610 (1958). Reprinted as NSRDS-NBS-23.
- 6. Stanley Bashkin (private communication).
- 7. Stanley Bashkin and John O. Stoner, Jr., Atomic Energy Levels and Grotrian Diagrams, Vol. I, Hydrogen I Phosphorus XV, North Holland, New York (1975).
- 8. Stanley Bashkin and John O. Stoner, Jr., Atomic Energy Levels and Grotrian Diagrams, Vol. II, Sulfur I Titanium XXII, North Holland, New York (1978).
- 9. Stanley Bashkin and John O. Stoner, Jr., Atomic Energy Levels and Grotrian Diagrams, Vol. I, Addenda, North Holland, New York (1978).

Tabular Data. A-1.3. Diagram for H (Z = 1).

нІ			
	nh 2Ho		
	02 gn		
iron, 2=1)	nt 2F o	10936 6(%) 10936 6(%) 10936 6(%) 10936	
H I ENERGY LEVELS (1electron, 2=1) (Configuration:n1)	O ₂ Pu	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
H I ENE	np ² P°	0(4, 3) 1 (4, 3	
	25		(4,1)
		ENERGY LEVEL (cm²)	-0

H I ENERGY LEVELS (lelectron, Z=1) (Configuration: n1)

H I ENERGY LEVELS (Lelectron, Z=1)
F.S., H.F.S., LAMB SHIFTS
(NOT TO SCALE)

REFERENCES
J D GOTCO and J E Mack. J Opt Soc. Amer. 22, 634 (1963)
B N Toylor, W.H. Power, D.N. Longenberg, Rev. Mad. Phys. 4, (1965)
T.

Tabular Data. A-1.6. Diagram for He (Z = 2).

Tabular Data. A-1.7. Diagram for He (Z = 2).

He I ENERGY LEVELS (2 electrons, Z=2) (Configuration: Is nl)

R Tabular Data. A-1.8. Diagram for He (Z = 2). He I GROTRIAN DIAGRAM, DOUBLY-EXCITED (2 electrone, Z=2) (Configuration: n1 n1', Singlet and Triplet Systems) à å 0 -2040 -2030 47x10-ENERGY (cm.1)

He I DOUBLY EXCITED SINGLET TRIPLET GROTRIAN DIACHAM

He I DOUBLY EXCITED SINGLET, TRIPLET

He II ENERGY LEVELS (1electron, Z=2) (HI sequence, Configuration: n1)

HeI

Tabular Data. A-1.11. Diagram for He^+ (Z = 2).

He II ENERGY LEVELS (1 electron, Z=2)
(H I sequence, Configuration: n1)

Tabular Data. A-1.12. Diagram for B (Z = 5).

Tabular Data. A-1.13. Diagram for B (Z = 5).

Tabular Data. A-1.14. Diagram for B⁺ (Z = 5).

Tabular Data. A-1.15. Diagram for B^+ (Z = 5).

Tabular Data. A-1.16. Diagram for B^+ (Z = 5).

Tabular Data. A-1.17. Diagram for B^+ (Z = 5).

BE ENERGY LEVELS (4 electrons, 2-5) (Be I sequence, Configuration: Ishin'r, Triplet System)

CI

Tabular Data. A-1.19. Diagram for C(Z = 6).

Tabular Data. A-1.20. Diagram for C(Z = 6).

2820 34 P 7 30,2,3) - 2520°(2) 25.20 5 9(2.3) 9(2.3) 7(2.3.4) 5(2,2,4) 1 623,41 . P CI GROTRIAN DIAGRAM (6 electrons, Z=6) (Configuration : $3e^3p^6$, $2s2\beta^3D^6$, $3p^3D$ to higher Triplets, and Quintet to Quintet Terms) Tabular Data. A-1.21. Diagram for C(Z=6). N 50,2,31 2p("P)md "D" 86.23) 7.1.23) 1 60,2,3) 9 - 2\$ 2p (0,1,2) Spr prima to 2p(*P*)np*S and 2s2p*S* - 2x2 p(u) Loxon 90 x 10 -par os 30.00 O 10 ENERGY (cm+)

Tabular Data. A-1.22. Diagram for C (Z = 6).

TRIPLET GROTRIAN DIAGHAM

Tabular Data. A-1.24. Diagram for C(Z=6).

C I ENERGY LEVELS (6 electrons, Z-6)

Tabular Data. A-1.25. Diagram for C(Z = 6).

C I
SONGLETS TO
NTERMEDIATE COUPLING
INTERCOMBINATION
GROTRIAN DIAGRAM

C I
Ground Term (2p P) to
SINGLET, QUINTET
INTERCOMBINATION
GROTRIAN DIAGRAM

Tabular Data. A-1.28. Diagram for C(Z = 6).

Tabular Data. A-1.30. Diagram for C^+ (Z = 6).

Tabular Data. A-1.31. Diagram for C^+ (Z = 6).

Tabular Data. A-1.32. Diagram for C^+ (Z = 6).

C II INTERCOMBINATION GROTRIAN DIAGRAM DOUBLET-QUARTET

-40(%.%) A36A.W ni core :25, 2pt (PP) n'r core :25, 2pt ('D) n'r core :25, 2pt ('S) - 3pm.1 \$ 60 PE A 404. 20 7 3018.30 Tabular Data. A-1.35. Diagram for N (Z = 7). 3pr. 3) N I GROTRIAN DIAGRAM (7 electrons, 2=7) (Configuration: lss 2s 2ps ni : 2p 2ps to higher Doublets) - Sprt. 4) -2pd.3) A 20. 0.0 -34(4,5) 13/4.4 J 3. 20% -30 S O -2s2p*(%) -30% 138 (1) S I 8 8 8 5 4 5 4 5 4° 145 x 107 100 x 103 115 x 10 125 x 10. 0110 120 = 10 105 x 10

Tabular Data. A-1.37. Diagram for N (Z = 7).

Tabular Data. A-1.38. Diagram for N (Z = 7).

Tabular Data. A-1.39. Diagram for N (Z = 7).

Tabular Data. A-1.40. Diagram for N (Z = 7).

Tabular Data. A-1.41. Diagram for N (Z = 7).

14-19 - 14-19 14-19 - 14-19 15-19 - 14-19 15-19 - 14-19 4-4. 14-15 E - 15-15 7 40-5 Q P0 104-10 664-10 56-10 Quartet Tabular Data. A-1.42. Diagram for N (Z = 7). 3(4-4) N I INTERCOMBNATION GROTRIAN DIAGRAM (7 electrons, 2-7) (Configuration: 1s*2s*2p*nl, Doublet - Quartet Systems) -8288 4 - 82983 no 20. Doublet 8 Sz ou LO 1811 (1-m2) 3210 2410 No xol 102 x 103-20 × 80 ENEBOL

QUARTET TO DOUBLET INTERCOMBINATION GROTRIAN DIAGRAM

Tabular Data. A-1.44. Diagram for N^+ (Z = 7).

Tabular Data. A-1.45. Diagram for N^+ (Z = 7).

Tabular Data. A-1.46. Diagram for N^+ (Z = 7).

Tabular Data. A-1.47. Diagram for N^+ (Z = 7).

Tabular Data. A-1.49. Diagram for N^+ (Z = 7).

N II NTERMEDIATE COUPLING GROTRIAN DIAGRAM

N II NTERCOMBINATIO GROTRIAN DIAGRAM

Tabular Data. A-1.55. Diagram for N^+ (Z = 7).

Tabular Data. A-1.56. Diagram for 0 (Z = 8).

Tabular Data. A-1.57. Diagram for 0 (Z = 8).

Tabular Data. A-1.58. Diagram for 0 (Z = 8).

Tabular Data. A-1.59. Diagram for 0 (Z = 8).

Tabular Data. A-1.60. Diagram for 0 (Z = 8).

Tabular Data. A-1.61. Diagram for 0 (Z = 8).

Tabular Data. A-1.62. Diagram for 0 (Z = 8).

Tabular Data. A-1.63. Diagram for 0 (Z = 8).

Tabular Data. A-1.64. Diagram for 0^+ (Z = 8).

Tabular Data. A-1.65. Diagram for 0^+ (Z = 8).

2761091 - 44 (9,1/2) OII 200524~34(½) 200525~4*(½) 200525~4*(½) 200 ÷. 9 2738973-44(1/2)-2736112-44(1/2/2) 27820-41(1/2/2) 273801-34(1/2/2) 278063-41(1/2/2) 274722-41(1/2/2) 2738786-41(1/2/2) 2738413-41(1/2/2) $-260578! -54(7_2) \frac{265999}{260968!} -5!(\frac{3}{2}7_2) \frac{369992}{2601650} -5!(\frac{3}{2}7_2)$ - Core Excitation State n) care: 2p/36)
n'(care: 2p/36)
n'(care: 2p/36)
[I 2p³ *5₂₇ • 0 II 2p² *b₀] .5° -Energy Level Ionization Level 283240 cm⁻¹ (3516eV) 206972 3 - 34 (9, 3,) 2004000 - 34 なん (2005) - 36 (なん) - 1 - 1 - 225 203 35 - 34 (なん) - 1 - 1 - 225 203 35 - 34 (なん) - 25 10 (なん) KEY £. OIL ENERGY LEVELS (7 electrons, 2=8) (NI Sequence, Configuration: 1s² 2s² 2p² ni, Doublet System) 2 21152196 34 3,5/1 -26938 4-2019, 1,1 0 265656 — 54(½) — — 8863-3*(%,%) 1659960 -20 (3,3/2) 0, 404669 - 203(3,1/2)-. \$\$\$\$ 40(4.%) (4.4) 化一层 4 20304221-36(4) .S. 220001. -34(1/2) 1957104-2014 S 285x10 256x 10-225x10 195 x 102 25 x 104 **2**0×38 45 xIO3 ENERGY (cm-1)

Tabular Data. A-1.66. Diagram for 0^+ (Z = 8).

Tabular Data. A-1.67. Diagram for 0^+ (Z = 8).

Tabular Data. A-1.69. Diagram for 0^+ (Z = 8).

1.

Tabular Data. A-1.70. Diagram for 0^+ (Z = 8).

Tabular Data. A-1.71. Diagram for F (Z = 9).

Tabular Data. A-1.72. Diagram for F(Z = 9).

Tabular Data. A-1.73. Diagram for F (Z = 9).

Tabular Data. A-1.74. Diagram for F (Z = 9).

Tabular Data. A-1.75. Diagram for F(Z = 9).

F.I. INTERCOMBINATION GROTRIAN DIAGRAM (9 electrons, Z=9) Configuration: Is 2s 2p n, Doublet to Quarter System

Tabular Data. A-1.79. Diagram for F^+ (Z = 9).

Tabular Data. A-1.80. Diagram for F^+ (Z = 9).

Tabular Data. A-1.81. Diagram for F^+ (Z = 9).

Tabular Data. A-1.82. Diagram for F^+ (Z = 9).

Tabular Data. A-1.84. Diagram for F^+ (Z = 9).

Tabular Data. A-1.85. Diagram for F^+ (Z = 9).

Tabular Data. A-1.88. Diagram for F^+ (Z = 9).

Tabular Data. A-1.89. Diagram for F^+ (Z = 9).

. u nd core : 20 (15") nT' core : 20" (10") n" " core : 20" (10") . Tabular Data. A-1.91. Diagram for F^+ (Z = 9). F.E. GROTRIAN DIAGRAM (8 olectrons, 2-9)
(OI sequence, intercombination; Oxiginal, Triples Terms to Singles & Triples) ٥ 30 S S 29 x 10 T 16.5 x 10 % 26 a 10-23x10* ENERGY (cm.)

Tabular Data. A-1.92. Diagram for Ne (Z = 10).

Tabular Data. A-1.93. Diagram for Ne (Z = 10).

CALL STAN Tabular Data. A-1.94. Diagram for Ne (Z = 10). (10)[4],0,0 ns[4]2,!)

COTES: n!=2p*(2p**) n'!=2p*(2p**) n'f' [3] (3,4) Tabular Data. A-1.95. Diagram for Ne (Z = 10). Ne I GROTRIAN DIAGRAM (10 electrons,Z=10) (Configuration: 1s² 2s² 2p° (2P)nl,3p to Higher Terms) 72 (2.3) 74 (2.3) 75 (4.3) 75 (6.3) (10)[7], s,u ns 12 (2.1) TOx STI 65xIO

Tabular Data. A-1.97. Diagram for Ne (Z = 10).

HIGH INTERNEDIATE COUPLING

Tabular Data. A-1.102. Diagram for Ne (Z = 10).

Tabular Data. A-1.104. Diagram for Ne⁺ (Z = 10).

Tabular Data. A-1.105. Diagram for Ne (Z = 10).

Tabular Data. A-1.106. Diagram for Ne (Z = 10).

Tabular Data. A-1.106. Diagram for Ne $^+$ (Z = 10).

Tabular Data. A-1.107. Diagram for Ne⁺ (Z = 10).

Tabular Data. A-1.108. Diagram for Ne $^+$ (Z = 10).

Tabular Data. A-1.109. Diagram for Ne $^+$ (Z = 10). n core 20 (P) Ne I GROTRIAN DAGRAM (9electron, 2-10)
(F I sequence, Configuration is 2st 2pt in Courter to Doublets 8 intermediate Coupling , intercombination)

45

45

75

86 - 3p(1, 1) The second 4 Dane 305.0 2010 -0198 20.03 ENERGY (cm-1) 215.02 2010 28.0 20.02

Tabular Data. A-1.110. Diagram for Al (Z = 13).

Tabular Data. A-1.112. Diagram for Al (Z = 13).

Tabular Data. A-1.114. Diagram for $A1^+$ (Z = 13).

Tabular Data. A-1.116. Diagram for $A1^+$ (Z = 13).

Tabular Data. A-1.117. Diagram for Al^+ (Z = 13).

Tabular Data. A-1.118. Diagram for Al^+ (Z = 13).

Tabular Data. A-1.119. Diagram for $A1^+$ (Z = 13).

Tabular Data. A-1.120. Diagram for S(Z = 16).

Tabular Data. A-1.121. Diagram for S (Z = 16).

S I SINGLETS QUINTETS 78638 2 - 4p(3 [51 35 36 36 - 51 35 36 35 [5] 69237.83 - 45(2) 00,50 ionzation Level 83 558 c cm⁻¹ (0.350 eV) ni circe - 3s² 3p¹(59) ni circe - 3s² 3p¹(59) ni circe - 3s² 3p¹(59) 923658 -- 3(2) 00 S Z ENERGY LEVELS (16 electrons, Z*16) (Configuration is 2s² 2p² 3s² 3p³ nl, Singlet and Quintet Systems) 8:4374 - 353090 7828642 — 45°(i) 77853956 \(\textstyle Ap\(\text{(i)} \) 0d, N d, o S, du 8130923 — 8154532.01 8130923 — 715,4532.01 8049473 — 615,4532.01 76653 - 4(5,4.3.2.1) 7914318 - 5(5,4,3,2,1) 79) 77857030 — 5(4,32,0) 77857030 — 5(4,32,10) 7497690 7497631 7591516 — 50.2.31 7497335 7391150 8205394 — 9(4) 8162890 — 9(4) 8099548 — 7(4) 7999236 - 6(4) on spo 63475 26 63457 33 — 4 (, 2, 3) 63446 36 de du 8181940 — 10(2) 8128176 — 9(2) 8044930 — 8(2) - 5(2 7905824 - 7(2) 7646426 -- 6(2) 5262365 - 4/Z 05° SU 6 1103 J 84 x 103 80 x 103 76 x 103 ENERGY (cm-1) 64 x 103 53 x 103 -10 x 103 23 x 103 22 x103 72 x 103 52 x 103

Tabular Data. A-1.122. Diagram for S(Z = 16).

Tabular Data. A-1.123. Diagram for S (Z = 16).

Tabular Data. A-1.124. Diagram for S(Z = 16).

Tabular Data. A-1.126. Diagram for S(Z = 16).

Tabular Data. A-1.128. Diagram for S(Z = 16).

Tabular Data. A-1.130. Diagram for S^+ (Z = 16).

S II ENERGY LEVELS (15 electrons, Z = 16)
(P I sequence, Configuration: 18²2s²2p⁶3s²3p²nl, Doublet System)

Tabular Data. A-1.132. Diagram for S^+ (Z = 16).

Tabular Data. A-1.133. Diagram for C1 (Z = 17).

Tabular Data. A-1.134. Diagram for Cl (Z = 17).

Tabular Data. A-1.135. Diagram for C1 (Z = 17).

Tabular Data. A-1.137. Diagram for C1 (Z = 17).

Tabular Data. A-1.139. Diagram for (Z = 17).

Tabular Data. A-1,141. Diagram for (Z = 17).

Tabular Data. A-1.143. Diagram for C1 (Z = 17).

-6[3](2,2) -5[3] (3,\$) 7-4[3](3,3) -5[2] (\$.\$) -4[2] (\$.\$) -6[2] (\$,\$) P CORES IN LS COUPLING II | 3830 (P) II | 3830 (S) đ CI I INTERCOMBINATION GROTRIAN DIAGRAM (17 electrons, Z=17) (Configuration: \mathbf{ls}^2 \mathbf{Zs}^2 \mathbf{Zp}^6 $\mathbf{3s}^2$ $\mathbf{3p}^6$ n., Transitions Between 4p 2 S° or Higher Doublets and Intermediate Coupling Terms) Tabular Data. A-1.145. Diagram for C1 (Z = 17). (4) [0] 8— 7[0] (%) (4) [0]9 -5[0](%) nd 2F 40 (3.2) - 4p(\$,\$) np 200 £3(2,2) og pu -20(3.4) £40(2,4) -4p(1,1) -30(\$,1/2) 20 -661127, 7073.76 -34 (\$, \$) 45 (\$, 1/2) 1 2p (2)5 no So 103×101 -01×66 95 x 103-ر چ چ ENERGY (cm-1) 84×103-86x103 75×10-

1044

CORES nl = 3s²3p⁶(²P) nl' = 3s²3p⁶('S) nl' = 3s²3p⁶('S) CI INTERCOMBINATION GROTRIAN DIAGRAM (17 electrons, Z=17) (Configuration: is 2s2 2p2 3s2 3p2 n1, 85°, 2p, 5pc terms to (2 p) Intermediate Coupling) 5 Tabular Data. A-146. Diagram for Cl (Z = 17). d c (34) [1] 9-(4.4)[1] SC 40(4,4) 45. (4.4.) of odz du - 30 (x, x) 5 9 .S₂ du ENERGY 105 x 10² 91 x 103-86 x 103-0 × 10 ₹0 × 26 84 × 104 75 x 104 (cw-1)

CI I

S, *P, *P* terms to (*P,)
INTERMEDIATE COUPLING
INTERCOMBINATION
GROTRIAN DIAGRAM

CI I INTERCOMPINATION GROTIAN DIAGRAM *2c *p* to *0 terms 2 Tabular Data. A-1.148. Diagram for C1 (Z = 17). CI I INTERCOMBINATION GROTRIAN DIAGRAM (17 electrons, Z=17) (Configuration: 1s² 2s² 2p³ 3s² 3p² ni, ²S; ² p;² Po²D terms to (³P₂) Intermediate Coupling) đ - 8[2](\$,\$) 7-6[2]18.2) 5[2](3,3) 7[2](3,3) S - 45 (2,3) 40(1,4) 2 du -45(\$,4) (4,4)05 nl 2p 1 5(%) °5, du 105 x 103 96x 103 74 x 103 101 x 103 Sox 103 91 x 103 84×103 103 x 103 97×103 95 x 10 93 x 103 ENERGY(cm⁻¹)

Tabular Data. A-1.150. Diagram for Cl (Z = 17).

Intermediate Coupling Cores n I = (%) n P = (%) Tabular Data. A-1.151. Diagram for C1 (Z = 17). CI I INTERCOMBINATION GROTRIAN DIAGRAM (17 electrons, Z=17) (Configuration: 13 23 22 33 35 11, 45° 40, 49° terms to (Pt.) Intermediate Coupling.) 71:32 34 (F) 30(2,2,2) S, du 105×10 OXOO! 95×103 ENEBGA (cm.,) 70x103 90x10 -01x 08 75x10-

CI I
INTERCOMBINATION
GROTRIAN
DIAGRAM

(*D,*D*,*F terms to
(*P₂) intermediate (Configuration: Is² 2s² 2p² 3s² 3p² ni, *D, *D°, *F terms to (*Pg.) Intermediate Coupling terms) 696.32 596.4.70.53 7360.44.759.83 690.48.89.82 10250 50-0600 50-Tabular Data. A-1.154. Diagram for C1 (Z = 17). CI I INTERCOMBINATION GROTRIAN DIAGRAM (17 electrons, Z=17) 5 [2 (\$ \$) 2) --- 8 [2] (\$,\$) 7 [2] (\$,\$) - 6[2] (\$ \$) nd 4F CORES. n | = 35°30°(PP) n'| = 35°30°('D) n'| = 35°30°('S) ob du 5 105 x 10³ -00 x 00 95 x 103 75 × 10± 70 × 10 85 x 10³ 90 x 06 00 x 06 ENERGY

00,00 40 5(2.2.4) Diagram for C1 (Z = 17). od du J 30(4.3.3.) CI I INTERCOMBINATION GROTRIAN DIAGRAM (IT electrons, Z = 17) (Configuration: 1st 2st 2pt 3st 3pt nl, Doublet to Quartet) 1215 os du nd 2F Tabular Data. A-1.155. -34(4,4) -34(4,4) 050m o_lu np 2 P° ul Sp Se

CI I
DOUBLET to QUARTET
INTERCOMBINATION
GROTRIAN DIAGRAM 39.3.3.3 nd 4F CORES (1 = 35 30 (P) (1 = 35 30 (D) (1 = 35 30 (S) - 48(2,2,4) ENERGY (cm⁻¹) 88 x 103 72 x 10-96x10 92 x 103

Tabular Data. A-1.156. Diagram for (Z = 17).

Tabular Data. A-1.157. Diagram for $C1^+$ (Z = 17).

Tabular Data. A-1.158. Diagram for $C1^+$ (Z = 17).

CI II

Tabular Data. A-1.159. Diagram for $C1^+$ (Z = 17).

Tabular Data. A-1.160. Diagram for $C1^+$ (Z = 17).

Tabular Data. A-1.161. Diagram for $C1^+$ (Z = 17).

Tabular Data. A-1.162. Diagram for $C1^+$ (Z = 17).

Tabular Data. A-1.163. Diagram for Cl^+ (Z = 17).

Tabular Data, A-1.172. Diagram for Cl⁺ (Z = 17). CI ENERGY LEVELS (16 electrons, Z=17)

| 123,000 to the control of the con - Energy Levels Com" 8308974 8308974 8308973 83089.73 7446086 7446082 7446082 7446080 7984338 T 6(6(3,4)5) 79843,75 \$ 187628.37 (10) 186080.20 (10) 1861.330 (2) (10) 1827.320 (2) (10) 1787.134 (10) 1787.134 (10) 1787.134 (10) 1787.134 (10) Tabular Data. A-1.174. Diagram for $C1^+$ (Z = 17). 17419402 174193.79 174193.06 174192.80 (64.346) (64.3429) (64.3339) (64.3348) (64.3302) CI II ENERGY LEVELS (16 electrons, Z = 17)
(SI sequence, Configuration: 1s*2s*2p*3s*3p*n, Quintet System) COPES n1 = 3p²(*S°) n'(* = 3p³(*D°) n'f = 3p³(*P°) 1030428 1030312 1029772 102964 181515.18 — 7(4) 17726823 — 6(1,3,4) 17726823 — 6(1,3,4) 69800.79 69800.96 69800.47 69800.20 18227426 18227022 U 8(14.3) 17851473 U 7(12.3) 17850436 U 7(12.3) 15946466 - 5(1,2,3) 72063.64 172052.10 172045.05 — 6 (1,2,3) 8 15223491 -- 5(2) 16867436 -- 6(2) 107879,86 - 4(2) 17666014 - 7(2) \$ 2 190 x 103 180 x 103 170 x 103 40 x 104 30 x 10 20 x 103 110 x 103 200 x 103 160 x 103 00 : 10

CIE

Tabular Data. A-1.175. Diagram for Cl (Z = 17).

CL INTERCOMBNATION GROTRLAN DAGRAM (16 electrons, Z=17)

(SI sequence, Configuration: 1s² 2s² 2p³ 3s² 3p² nl, Singlet to Tuplet, Even to Odd Terms)

SINGLET TO TRIPLET even to odd terms INTERCOMBINATION GROTRIAN DIAGRAM

Tabular Data. A-1.177. Diagram for Cl^+ (Z = 17). CI II INTERCOMBINATION GROTRIAN DIAGRAM (16 electrons, Z = 17) (S I sequence, Configuration: $ls^2 2s^2 2p^2 3s^2 3p^2 n_1$, Singlet to Triplet, Odd to Even Terms) 11 3E 20 og, pu ed, pu , D. -d, 10 og iS. 17 x 104 13 x 104 IIx 10. ENERGY (cm-1)

Tabular Data. A-1.186. Diagram for Ar (Z = 18). At ENERGY LEVELS (18 electrons, 2.18) (Configuration is 2st 2st 3st 3pt (1 Pr 1) ii, (1 Pr 1) iii, (1 Pr 1) iii, (1 Pr 1 Pr 1 Couping, ii 23) -61—262821 Grand Sassoy Sure 285.0

Tabular Data. A-1.192. Diagram for Ar (Z=18). Ar I ENERGY LEVELS (18 electrons, Z*18) (Configuration: N*23*20*38*39* $(^{2}_{1})_{1}$, Hop $_{1}$ -1 Coupling System)

Tabular Data. A-1.193. Diagram for Ar (Z = 18).

Tabular Data. A-1.194. Diagram for Ar (Z = 18).

Tabular Data. A-1.196. Diagram for Ar (Z = 18).

At I GROTHUM Buschul (18 deciron, Z-18)

(Configuration 18 2s 2g 3s 3g 4 th Transition with core change from (Pp.) 4)

(-15, line)

(-15,

122 . 10

Tabular Data. A-1.200. Diagram for Ar (Z = 18).

Tabular Data. A-1.202. Diagram for Ar (Z = 18).

[Ar I 30° 15, - Ar II 30° 49. 315120 - 97 314490 - 97 313450 - 77 FD 18 su (0₂) Ar I ENERGY LEVELS (18 electrons, Z = i8) (Configuration: is 2 2s 2 2p 3 3p 4 (P) ii (m L $_j$) n'f, Doubly-excited levels) (20 ml Pare 320110 -01×082 300×103-310×10-

Tabular Data. A-1.203. Diagram for Ar (Z = 18).

Tabular Data. A-1.204. Diagram for Ar (Z = 18).

Tabular Data. A-1.206. Diagram for Ar^+ (Z = 18).

Tabular Data. A-1.213. Diagram for Ar^+ (Z = 18).

- 644.A.A. -Saft. 1.1 Tabular Data. A-1.214. Diagram for Ar^+ (Z = 18). (CLT sequence, Configuration: Inf2af2gf3af3gfM, Forestions Among Lowest Quarter Levels) 1,04 Ar II GROTPLAN DIAGRAM (17 electrons, Z = 18) 43.05-Vessian Lagan Vessian \$ 2 6 21 10

Tabular Data. A-1.219. Diagram for Ar^+ (Z = 18).

Tabular Data. A-1.221. Diagram for Ar $^+$ (Z = 18).

Tabular Data. A-1.226. Diagram for Ar^+ (Z = 18).

Tabular Data. A-1.228. Diagram for Ar (Z = 18).

A-2. REFERENCES ON ATOMIC ENERGY LEVELS, SPECTRAL LINES, LIFTIMES, OSCILLATOR STRENGTHS, AND TRANSITION PROBABILITIES*

CONTENTS

		Page
A-2.1.	General References and References to Specific Atoms of Secondary Interest Here	1132
A-2.2.	References on Specific Atoms and Singly-Charged Positive	1140

^{*}For data on radiative lifetimes of the rare gas atoms and molecules, see pages 194-212 of Vol. I.

- A-2.1. General References and References to Specific Atoms of Secondary Interest Here
- S. Bashkin and J. O. Stoner, "Atomic Energy Levels and Grotrian Diagrams Vol. I: Hydrogen I Phosphorus XV," (North-Holland, Amsterdam 1975). Also "Addenda" (1978).
- S. Bashkin and J. O. Stoner, "Atomic Energy Levels and Grotrian Diagrams Vol. II: Sulfur I Titanium XXII," (Elsevier North-Holland, Amsterdam, 1978). Additional volumes dealing with other atoms and ions are in preparation.
- J. A. Bearden and A. F. Burr, "Atomic Energy Levels," USAEC Division of Technical Information, Final Report, Washington, D.C. (NYO-2543-1), 244 (1965). Rev. Mod. Phys. 39, 125 (1967).
- E. Biemont and N. Grevesse, Infrared Wavelengths and Transition Probabilities for Atoms, 3< Z<20," Atomic Data and Nuclear Data Tables 12, 217 (1973).
- T. A. Carlson, C. W. Nestor, Jr., N. Wasserman, and J. D. McDowell, "Calculated Ionization Potentials for Multiply Charged Ions," Atomic Data 2, 63 (1970).
- A. Corney, "The Measurement of Lifetimes of Free Atoms, Molecules, and Ions," in L. Marton (Ed.), "Advances in Electronics and Electron Physics" 29, 116 (Academic, New York, 1970).
- C. Corliss and J. Sugar, "Energy Levels of Manganese, Mn I through Mn XXV," Jour. Phys. Chem. Ref. Data 6, (4), 1253 (1977).
- M. Crance, "Theoretical Transition Probabilities and Energy Levels in Ne I Isoelectronic Sequence," Atomic Data 5, 185 (1973).
- R. J. S. Crossley, "The Calculation of Atomic Transition Probabilities," in D. R. Bates and I. Estermann (Eds.), "Advances in Atomic and Molecular Physics" 5, 237 (Academic, New York, 1969).
- A. Dalgarno. "Spontaneous Two-Photon Transitions in Hydrogen and Helium," in F. Bopp and H. Kleinpoppen (Eds.), "Physics of the One- and Two-Electron Atoms," 261 (North-Holland, Amsterdam, 1970).
- J. P. Desclaux, "Relativistic Dirac-Fock Expectation Values for Atoms with Z=1 to Z=120," Atomic Data and Nuclear Data Tables 12, 311 (1973).
- H. T. Doyle, "Relativistic Z Dependent Corrections to Atomic Energy Levels," in D. R. Bates and I. Estermann (Eds.), "Advances in Atomic and Molecular Physics" 5, 337 (Academic, New York, 1969).

- G. W. F. Drake, "Radiative Decay of the Metastable States of the H and He Sequences Theory," in S. J. Smith and G. K. Walters (Eds.), "Atomic Physics 3," 269 (Plenum, New York, 1973).
- G. W. Erickson, "Energy Levels of One-Electron Atoms," Jour. Phys. Chem. Ref. Data 6, (3), 831 (1977).
- U. Fano and J. W. Cooper, "Spectral Distribution of Atomic Oscillator Strengths," Rev. Mod. Phys. 40, 441 (1968). See Addendum 41, 724 (1969).
- B. C. Fawcett, "Wavelengths and Classifications of Emission Lines Due to $2s^22p^n-2s2p^{n+1}$ and $2s2p^n-2p^{n+1}$ Transitions, $Z^{\leq}28$," Atomic Data and Nuclear Data Tables $\underline{16}$, 135 (1975).
- C. F. Fischer, "Average-Energy-of-Configuration Hartree-Fock Results for the Atoms Helium to Radon," Atomic Data and Nuclear Data Tables $\underline{4}$, 301 (1972), Erratum $\underline{12}$, 87 (1973).
- S. Fraga, K. M. S. Saxena, and B. W. N. Lo, "Hartree-Fock Values of Energies, Interaction Constants, and Atomic Properties for Groundstates of Negative Ions, Neutral Atoms, and First Four Positive Ions from Helium to Krypton," Atomic Data 3, 323 (1971).
- S. Fraga and K. M. S. Saxena, "Hartree-Fock Values of Energies, Interaction Constants, and Atomic Properties for Excited States with p^N Configurations of Negative Ions, Neutral Atoms, and First Positive Ions from Boron to Bromine," Atomic Data 4, 255 (1972).
- S. Fraga and K. M. S. Saxena, "Hartree-Fock Values of Energies, Interaction Constants, and Atomic Properties for Excited States with $3d^N4s^0$ and $3d^N4s^2$ Configuration of Negative Ions, Neutral Atoms, and First Four Positive Ions of Transition Elements," Atomic Data 4, 269 (1972).
- J. B. Fuhr, B. J. Miller, and G. A. Martin, "Bibliography on Atomic Transition Probabilities," (1914 through October 1977), National Bureau of Standards (U.S.) Special Publication 505, U.S. Government Printing Office, Washington, D.C. (April, 1978).
- A. H. Gabriel, "Spectral Intensities from Helium-Like Ions," in T. R. Carson and M. J. Roberts (Eds.), "Atoms and Molecules in Astrophysics," 311 (Academic, New York, 1972).
- L. Hagan, "Bibliography on Atomic Energy Levels and Spectra," (July 1971 through June 1975), National Bureau of Standards (U.S.) Special Publication 363, Supplement 1, U.S. Government Printing Office, Washington, D.C. (January 1977).

- G. R. Harrison, "Wavelength Tables with Intensities in Arc, Spark, or Discharge Tube of More than 100,000 Spectrum Lines, Most Strongly Emitted by the Atomic Elements Under Normal Conditions of Excitation Between 10,000 A and 2,000 A Arranged in Order of Decreasing Wavelengths," 463 (MIT Press, Cambridge, Massachusetts, 1969).
- C. J. Humphreys, "First Spectra of Neon, Argon, and Xenon 136 in the 1.2-4.0 μ m Region," J. Phys. Chem. Ref. Data 2, 519-530 (1973).
- J. Karwowski, K. M. S. Saxena, B. Bray, and S. Fraga, "Atomic Energy Levels: Isoelectronic Series 2psup(N), 3psup(N), 4psup(N), and 3dsup(N)," Alberta University, Edmonton (Canada), Division of Theoretical Chemistry, Technical Report (TC-AEL-1-75), 59 pages (1975).
- V. Kaufman and B. Edlen, "Reference Wavelengths from Atomic Spectra in the Range 15 A to 25000 A," J. Phys. Chem. Ref. Data 3, 825-895 (1974).
- R. L. Kelly and D. E. Harrison, Jr., "Ionization Potentials, Experimental and Theoretical, of Elements Hydrogen to Krypton," Atomic Data 3, 177 (1971).
- R. L. Kelly and L. J. Palumbo, "Atomic and Ionic Emission Lines Below 2,000 Angstroms, Hydrogen through Krypton," Naval Research Laboratory, Washington, D.C. (NRL-7599) 1003 pages (June 1973).
- L. Lang (Ed.), "Absorption Spectra in the Ultraviolet and Visible Region" 1, 20, 438 pages (Akademiai Kiado, Budapest, Hungary, 1966-1975).
- L. Lang (Ed.), "Absorption Spectra in the Ultraviolet and Visible Region, A Theoretical and Technical Introduction, Third Edition, 80 pages (Akademiai Kiado, Budapest, Hungary (1963).
- I. Lindgren and A. Rosen, "Relativistic Self-Consistent-Field Calculations with Application to Atomic Hyperfine Interaction. Part I: Relativistic Self-Consistent Fields, Part II: Relativistic Theory of Atomic Hyperfine Interaction," in E. W. McDaniel and M. R. C. McDowell (Eds.), "Case Studies in Atomic Physics" 4, 97 (North-Holland, Amsterdam, 1975).
- I. Lindgren and A. Rosen, "Relativistic Self-Consistent-Field Calculations with Atomic Hyperfine Interaction. Part III: Comparison Between Theoretical and Experimental Hyperfine-Structure Results," in E. W. McDaniel and M. R. C. McDowell (Eds.), "Case Studies in Atomic Physics" 4, 199 (North-Holland, Amsterdam, 1975).
- L. Lipsky, "Energy Levels and Classifications of Doubly Excited States in Two-Electron Systems (Z=1,2,3,4,5) Below the N=2 and N=3 Thresholds," Atomic Data and Nuclear Data Tables 20, 127 (1977).
- C. C. Lu, T. A. Carlson, F. B. Malik, T. C. Tucker, and C. W. Nestor, Jr., "Relativistic Hartree-Fock-Slater Eigenvalues, Radial Expectation Values, and Potentials for Atoms, 2<Z<126," Atomic Data $\underline{3}$, 1 (1971) Erratum $\underline{14}$, 89 (1974).

- W. C. Martin, "Energy Levels of Neutral Helium (⁴He I)," J. Phys. Chem. Ref. Data 2, 257-266 (1973).
- G. A. Martin and W. L. Wiese, "Tables of Critically Evaluated Oscillator Strengths for the Lithium Isoelectronic Sequence," J. Phys. Chem. Ref. Data 5, 537 (1976).
- W. C. Martin, et al., "Ground Levels and Ionization Potentials for Lanthanide and Actinide Atoms and Ions," Jour. Phys. Chem. Ref. Data $\underline{3}$, 771 (1974).
- W. C. Martin, R. Zalubas, and L. Hagan, "Atomic Energy Levels The Rare-Earth Elements," NSRDS-NBS 60, 422 pages (1978). For sale by Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
- D. L. Mathews, B. M. Johnson, and C. F. Moore, "Calculated K Auger-Electron and K X-Ray Transition Energies for the Multiply Ionized Neon Atom," Atomic Data and Nuclear Data Tables 15, 41 (1975).
- W. F. Meggers, C. H. Corliss, and B. F. Scribner, "Tables of Spectral-Line Intensitities, Part 1," Arranged by Elements, Supersedes NBS-Monograph-32 (Vols. 1 and 2) and Its Supplement NBS Monograph 145, 387 pages, U.S. Department of Commerce, Washington, D.C. (May 1975).
- W. F. Meggers, C. H. Corliss, and B. F. Scribner, "Tables of Spectral-Line Intensities, Part 2," Arranged by Wavelengths, Supersedes NBS-Monograph-32, Part 1 and 2 and its supplements, Second Edition, 228 pages [NBS-Monograph-145 (pt. 2)], U.S. Department of Commerce, Washington, D.C. (May 1975)
- B. M. Miles and W. L. Wiese, "Critically Evaluated Transition Probabilities for Ba I and II," National Bureau of Standards (U.S.), Technical Note 474, U.S. Government Printing Office, Washington, D.C. (1969); At. Data $\underline{1}$, 1-17 (1969).
- B. M. Miles and W. L. Wiese, "Bibliography on Atomic Transition Probabilities (January 1916 through June 1969)," National Bureau of Standards (U.S.), Special Publication 320. U.S. Government Printing Office, Washington, D.C. (1970).
- C. E. Moore, "Selected Tables of Atomic Spectra, Part A, B. Atomic Energy Levels (Second Edition). Multiplet Tables, N I, N II, N III," National Bureau of Standards, Washington, D.C., National Standard Reference Data System (NSRDS-NBS-3, Section 5) (May 1975).

- C. E. Moore, "Selected Tables of Atomic Spectra, Part A, B. Atomic Energy Levels (Second Edition). Multiplet Tables, H I, D, T." National Bureau of Standards, Washington, D.C., National Standard Reference Data System (NSRDS-NBS-3, Section 6) (September 1972).
- C. E. Moore, "Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables of 0," U.S. Department of Commerce, Washington, D.C. (MSRDS-NBS-3, Section 7)(1976).
- C. E. Moore, "Atomic Energy Levels, As Derived from the Analysis of Optical Spectra. Vol. 1 The Spectra of Hydrogen, Deuterium, Trítium, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, Fluorine, Neon, Sodium, Magnesium, Aluminum, Silicon, Phosphorus; Sulfur, Chlorine, Argon, Potassium, Calcium, Scandium, Titanium, and Vanadium," National Bureau of Standards, Washington, D.C., National Standard Reference Data System (NSRDS-NBS-35, Vol. 1). Reprint of NBS-Circ-467 1, 359 pages (December 1971).
- C. E. Moore, "Atomic Energy Levels. As Derived from the Analysis of Optical Spectra. Vol. 2 The Spectra of Chromium, Magnesium, Iron, Cobalt, Nickel, Copper, Zinc, Gallium, Germanium, Arsenic, Selenium Bromine, Krypton, Rubidium, Strontium, Yttrium, Zicronium, and Niobium," National Bureau of Standards, Washington, D.C., National Standard Reference Data System, Reprint of NBS-Circ-467, Vol. 2 (NSRDS-NBS-35, Vol. 2), 227 pages (December 1971).
- C. E. Moore, "Atomic Energy Levels. As Derived from the Analyses of Optical Spectra. Vol. 3 The Spectra of Molybdenum, Technetium, Ruthenium, Rhodium, Palladium, Silver, Cadmium, Indium, Tin, Antimony, Tellurium, Iodine, Xenon, Cesium, Barium, Lanthanum-Hafnium, Tantalum, Tungsten, Rhenium, Osmium, Iridum, Platinum, Gold, Mercury, Thallium, Lead, Bismuth, Polonium, Radon, Radium, and Actinium," National Bureau of Standards, Washington, D.C., National Standard Reference Data System. Reprint of NBS-Circ-467 (Vol. 3) (NSRDS-NBS-35, Vol. 3), 245 pages (December 1971).
- C. E. Moore, "Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra," National Bureau of Standards, Washington, D.C., National Standard Reference Data System, National Standard Reference Data Service, National Bureau of Standards (NSRDS-NBS-34), 34 8 pages (September 1970).
- C. E. Moore, "Atomic Energy Levels," U.S. Government Printing Office, Washington, D.C., National Bureau of Standards Circular 467 I-III (1949, 1952, and 1958).
- C. E. Moore and P. W. Merrill, "Partial Grotrian Diagrams of Astrophysical Interest," Appendix A of Lines of the Chemical Elements in Astronomical Spectra, Carnegie Institution of Washington Publication 610 (1958). Reprinted as NSRDS-NBS-23.

- C. E. Moore, "Multiplet Table of Astrophysical Interest, Part 1, 2, Table of Multiplets. Finding List of All Lines in the Table of Multiplets," National Bureau of Standards, Washington, D.C., National Standard Reference Data System, Reprint of NBS-TN-36 (NSRDS-NBS-40, Rev.), 253 pages (February 1972).
- C. E. Moore, "Selected Tables of Atomic Spectra, Part A.: Atomic Energy Levels Second Edition, Part B: Multiplet Tables, Si II, Si III, Si IV, Data Derived from the Analyses of Optical Spectra," U.S. Government Printing Office, Washington, D.C., National Standard Reference Data Service, National Bureau of Standards, Category 3 Atomic and Molecular Properties (NSRDS-NBS-3, Section 1) 3, (1), 40 pages (1965).
- C. E. Moore, Selected Tables of Atomic Spectra, Part A, B, Atomic Energy Levels (Second Edition), Multiplet Tables, Si I," National Bureau of Standards, Washington, D.C., National Standard Reference Data System (NSRDS-NBS-3, Section 2) (November 1967).
- C. E. Moore, "Selected Tables of Atomic Spectra, Part A, B, Atomic Energy Levels. Multiplet Tables C I, C II, C III, C IV, C V, C VI," National Bureau of Standards, Washington, D. C., National Standard Reference Data System A32 0647 (NSRDS-NBS-3, Section 3) (November 1970).
- C. E. Moore, "Selected Tables of Atomic Spectra, Part A, B, Atomic Energy Levels (Second Edition), Multiplet Tables, N IV, N V, N VI, N VII," National Bureau of Standards, Washington, D.C., National Standard Reference Data System (NSRDS-NBS-3, Section 4) (August 1971).
- C. E. Moore, "Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables for 0," U.S. Department of Commerce, Washington, D.C. (NSRDS-NBS-3, Section 7)(1976).
- C. C. Nelson, B. C. Saunders, and S. I. Salem, "K X-Ray Transition Probabilities," Atomic Data 1, 377 (1970).
- P. D. Noerdlinger and S. E. Dynan, "Ultraviolet Absorption Lines Arising on Metastable States," Astrophys. J. Suppl. Ser. 29 (283), 185-191 (1975).
- M. Outred, "Tables of Atomic Spectral Lines for the 10,000 Å to 40,000 Å Region," Jour, Phys. Chem. Ref. Data 7, (1)(1978).
- D. J. Pegg, P. M. Griffin, I. A. Sellin, W. W. Smith, and B. Donnally, "Metastable States of Highly Excited Heavy Ions," in S. J. Smith and G. K. Walters (Eds.), "Atomic Physics 3" 327 (Plenum, New York, 1973).
- R. T. Poe and T. N. Chang, "Theoretical Study of Atomic Rydberg States," in S. J. Smith and G. K. Walters (Eds.), "Atomic Physics 3," 143 (Plenum, New York, 1973).

- N. F. Ramsey, "Atomic Hydrogen Hyperfine Structure," in F. Bogg and H. Kleinpoppen (Eds.), "Physics of the One- and Two-Electron Atoms," 218 (North-Holland, Amsterdam, 1970).
- J. Reader and J. Sugar, "Energy Levels of Iron, Fe I through Fe XXVI," J. Phys. Chem. Ref. Data 4, 353-439 (1975).
- A. L. Risinger and A. D. Medven (Eds.), "TRC Selcted Ultraviolet Spectral Data," Vol. 1, Thermodynamics Research Center Data Project, College Station, Texas A&M University, Texas (June 1973).
- S. I. Salem, S. L. Panossiam, and R. A. Krause, "Experimental K and L Relative X-Ray Emission Rates," Atomic Data and Nuclear Data Tables $\underline{14}$, 91 (1974).
- S. I. Salem and C. W. Schultz, "L X-Ray Transition Probabilities," Atomic Data 3, 215 (1971).
- J. H. Scofield, "Relativistic Hartree-Slater Values for K and L X-Ray Emission Rates," Atomic Data and Nuclear Data Tables 14, 121 (1974).
- O. Sinanoglu, "Atomic Structure, Transition Probabilities, and Theory of Electron Correlation in Ground and Excited States," in V. W. Hughes, B. Bederson, V. W. Cohen, and F. M. J. Pichanick (Eds.), "Atomic Physics 1," 131 (Plenum, New York, 1969).
- M. W. Smith and W. L. Wiese, "Graphical Presenations of Systematic Trends of Atomic Oscillator Strengths along Isoelectronic Sequences and New Oscillator Strengths Derived by Interpolation" Astrophys. J. Suppl. Ser. 23, (196) 103-192 (1971).
- M. W. Smith and W. L. Wiese, "Atomic Transition Probabilities for Forbidden Lines of the Iron Group Elements (A Critical Data Compilation for Selected Lines)," J. Phys. & Chem. Ref. Data 2, 85-120 (1973).
- A. R. Striganov and N. S. Sventitskii, "Tables of Spectral Lines of Neutral and Ionized Atoms," Translated from Russian (Plenum, New York, 1968).
- J. Sugar and C. Corliss, "Energy Levels of Chromium, Cr I through Cr XXIV," Jour. Phys. Chem. Ref. Data 6, (2), 317 (1977).
- W. L. Wiese, "Transition Probabilities for Allowed and Forbidden Lines; Lifetimes of Excited States," in B. Bederson and W. L. Fite (Eds.), "Methods of Experimental Physics Vol. 7, Atomic and Electron Physics, Part A," 117 (Academic, New York, 1968).
- W. L. Wiese and B. M. Glennon, "Atomic Transition Probabilities," American Institute of Physics Handbook," Third Edition, Chapter 7, 200-263 (McGraw-Hill, New York, 1971).

- W. L. Wiese and J. R. Fuhr, "Atomic Transition Probabilities for Scandium and Titanium (A Critical Data Compilation of Allowed Lines)," J. Chem. Ref. Data 4, 263-352 (1975).
- W. L. Wiese, M. W. Smith, and B. M. Glennon, "Atomic Transition Probabilities (H through Ne A Critical Data Compilation)," National Bureau of Standards, U.S. Government Printing Office, Washington, D.C., National Standard Reference Data Service (NSRDS-NBS-I, Section 4)(1966).
- W. L. Wiese, M. W. Smith, and B. M. Miles, "Atomic Transition Probabilities (Na through Ca A Critical Data Compilation)," National Bureau of Standards, U.S. Government Printing Office, Washington, D.C., National Bureau of Standards (NSRDS-NBS-II, Section 22)(1969).
- C. E. Tull, R. P. McEachran, and M. Cohen, "Relativistic Corrections to Ionization Energies and Theoretical Dipole Oscillator Strengths for Fe XVI, Co XVII, and Ni XVIII," Atomic Data 3, 169 (1971).
- W. H. Wing, K. R. Lea, and W. E. Lamb, Jr., "Highly Excited States of Helium and Neon," in S. J. Smith and G. K. Walters (Eds.), "Atomic Physics 3," 119, (Plenum, New York, 1973).
- E. Worden, "The Emission Spectrum of Curium," Atomic Data and Nuclear Data Tables 18, 459 (1976).
- S. M. Younger, J. R. Fuhr, G. A. Martin, and W. L. Wiese, "Atomic Transition Probabilities for Vanadium, Chronium, and Manganese," Jour. Phys. Chem. Ref. Data 7, (2), 495 (1978).
- A. N. Zaidel, V. K. Prokofev, S. M. Raiskii, A. V. Slavnyi, and E. Ya. Shreider, "Tables of Spectral Lines," Translated from Russian, 782 (Plenum, New York, 1970).

A-2.2. References on Specific Atoms of Relevance Here

H Z = 1 1 electron

See the general references.

He Z = 2 2 electrons

R. Arrathoon, J. Opt. Soc. Amer. $\underline{61}$, 332 (1971). (Transition wavelengths and probabilities).

- H. G. Berry, J. Desesquelles, and M. Dufay, Phys. Rev. A6, 600 (1972).
- H. G. Berry, I. Martinson, L. J. Curtis, and L. Lundin, Phys. Rev. <u>A3</u>, 1934 (1971). (Energies and transitions for doubly-excited states).
- J. Humphreys and H. J. Kostkowski, J. Research NBS 49, 73 (1952). (Observed infrared spectra).
- A. N. Ivanova, U. I. Safronova, and V. N. Kharitonova, Opt. and Spectros. $\underline{24}$, 55 (1968). (Energy level table of calculated and experimental values).
- E. J. Knystautus and R. Drovin, Nucl. Instrum. Methods 110, 95 (1973).
- U. Litzen, Physica Scripta 2, 103 (1970). (Improved infrared wavelengths).
- R. Madden and K. Codling, Ap. J. 141, 364 (1965). (Line and energy level tables for resonant absorption lines observed in the region 165-200 A).
- W. C. Martin, J. Opt. Soc. Amer. 50, 174 (1960). (Observed wavelengths).
- W. C. Martin, J. Phys. Chem. Ref. Data $\underline{2}$, 257 (1973). (Compilation of all levels observed to date with one and two electrons excited).
- J. R. Woodworth and H. W. Moos, Phys. Rev. $\underline{12}$, 2455 (1975). (Single-photon rates for transitions 1s $^{1}\text{S}_{0}$ 2s $^{3}\text{S}_{1}$).

He⁺ Z = 2 1 electron

E. G. Kessler, Jr., and F. L. Roesler, J. Opt. Soc. Amer. $\underline{62}$, 440 (1972). (Fine structure of n=4-5, and n=4-6 transitions in He⁺ at low temperature).

Z = 5 5 electrons

C. M. Brown, S. G. Tilford, and M. L. Guiter, J. Opt. Soc. Amer. 64, 877 (1974). (Transitions from the ground term to high D and S terms).

- B. Edlen, A. Olme, G. Herzberg, and J. W. C. Johns, J. Opt. Soc. Amer. 60, 889 (1970). (Line tables from observed spectra).
- P. Gunnvald and L. Minnhagen, Ark. Fys. 22, 327 (1962). (Line and energy level tables and a Grotrian diagram for the transitions observed).
- U. Litzen, Physica Scripta 1, 251 (1970). (Infrared observations).

 B^+ Z = 5 4 electrons

- H. G. Berry and J. L. Subtil, Physcia Scripta $\underline{9}$, 217 (1973). (These authors classify some displaced terms).
- E. W. H. Selwyn, Proc. Phys. Soc. $\underline{41}$, 392 (1929). (Observed lines of wavelengths in the region 1600 to 2000 Å).

Z = 6 6 electrons

- I. S. Bowen, Ap. J. $\underline{132}$, 1 (1960). (Line table from empirical data of forbidden transitions).
- L. Johansson, Ark. Fys. 25, 425 (1963). (Line tables for spectral lines observed in the range 3420 to 9659 Å).
- L. Johansson and U. Litzen, Ark. Fys. 29, 175 (1965). (Infrared spectrum).
- L. Johansson, Ark. Fys. 31, 201 (1966). (Detailed analysis of the spectrum).

 C^{+} Z = 6 5 electrons

S. Glad, Ark. Fys. 7, 7 (1952). (Extended analysis of spectrum).

N Z = 7 7 electrons

- I. S. Bowen, Ap. J. $\underline{132}$, 1 (1960). (Transition wavelengths from nebular observations).
- K. B. S. Eriksson, Physica Scripta $\underline{9}$, 151 (1974). (Line and energy-level tables based on wavelengths from 860 to 9100 A).
- J. W. McConkey, D. J. Burns, and J. A. Kernahan, J. Quant. Spectrosc. Radiat. Transfer $\underline{8}$, 823 (1968). (Spectrogram and line table for lines observed in the region 10,105 to 10,775 Å).
- C. E. Moore, Selected Tables of Atomic Spectra, N I, N II, N III, NSRDS-NBS-3, Section 5 (U.S. Govt. Printing Office, 1975).

- I. S. Bowen, Ap. J. $\underline{132}$, 1 (1960). (Transition wavelengths from nebular observations).
- W. B. Bridges and A. N. Chester, IEEE J. Qu. Electronics $\underline{1}$, 66 (1965). (Line table for transitions calculated and observed in ion lasers).
- B. Edlen, Handbuch der Phys. 27, 172 (1964). (Corrections to Eriksson's energy level values).
- K. B. S. Eriksson, Phys. Rev. $\underline{102}$, 102 (1956). (Theory of coupling of 2 P core with f and g electrons, applied to N⁺).
- K. B. S. Eriksson, Ark. Fys. $\underline{13}$, 303 (1958). (Extended analysis of spectrum).
- T. Sasaki, N. Kaifu, N. Itoh, K. Sakai, and I. Shimada, Sci. of Light 14, 142 (1965). (Grotrian diagrams).
- J. B. Tatus, Mon. Not. R. Astr. Soc. $\underline{140}$, 87 (1968). (Line table of calculated and observed wavelengths).

Z = 8 8 electrons

- I. S. Bowen, Ap. J. 121, 306 (1955). (Transition wavelengths from nebular observations).
- I. S. Bowen, Ap. J. $\underline{132}$, 1 (1960). (Transition wavelengths from nebular observations).
- P. M. Dehmer and W. A. Chupka, J. Chem. Phys. 62, 584 (1975).
- K. B. S. Eriksson and H. B. S. Isberg, Ark. Fys. <u>24</u>, 549 (1963); <u>37</u>, 221 (1968).
- K. B. S. Eriksson, Ark. Fys. 30, 199 (1965). (Observed transition wavelengths and energy levels of the ground configuration).
- R. E. Huffman, J. C. Larrabee, and Y. Tanaka, J. Chem. Phys. $\underline{46}$, 2213 (1967). (Line and energy level tables from observed absorption spectra in the vacuum ultraviolet. Spectrograms and an energy level diagram are included).
- B. Isberg, Ark, Fys. 35, 495 (1967). (Detailed analysis of spectrum).

 0^+ Z = 8 7 electrons

- I. S. Bowen, Ap. J. $\underline{121}$, 306 (1955). (Transition wavlengths from nebular observations).
- I. S. Bowen, Ap. J. $\underline{132}$, 1 (1960). (Transition wavelengths from nebular observations).
- W. B. Bridges and A. N. Chester, IEEE J. Qu. Electronics $\underline{1}$, 66 (1965). (Calculated and observed wavelengths of lines in ion gas lasers).

T. Sasaki, N. Kaifu, N. Itoh, K. Sakai, and I. Shimada, Sci. of Light 14, 142 (1965). (Grotrian diagrams).

Z = 9 9 electrons

J. E. Hansen and W. Persson, Physica Scripta 8, 197 (1973). $(2p^4ns)$ and $2p^4nd$ configurations in F and Ne⁺).

Z = 9 8 electrons

I. S. Bowen, Ap. J. 132, 1 (1960). (Observed wavelengths).

H. Palenius, J. Opt. Soc. Amer. 56, 828 (1966). (Transition wavelengths).

H. P. Palenius, Ark. Fys. 39, 15 (1968). (Extends analysis of spectrum).

Ne Z = 10 10 electrons

O. Andrade, M. Gallardo, and K. Bockasten, Appl. Phys. Letters $\underline{11}$, 99 (1967). (Table of lines observed in noble-gas lasers.)

K. Codling, R. P. Madden, and D. L. Ederer, Phys. Rev. $\underline{155}$, 26 (1967). (Line table of resonance lines in the absorption spectrum in the range 80 to 570 Å).

K. G. Ericsson and L. R. Lidholt, IEEE J. Qu. Electronics 3, 94 (1967). (Wavelengths of superrandiant transitions, observed and calculated).

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. <u>133A</u>, 1476 (1964). (Line table, term table, and partial Grotrian diagram based on observations in the region 20,000 to 350,000 A.)

C. J. Humphreys, E. Paul, Jr., R. D. Cowan, and K. L. Andrew, J. Opt. Soc. Amer. 57, 855 (1967). (Line table and energy level array from observations in the region 39,000 to 40,160 Å).

U. Litzen, Ark. Fys. 38, 317 (1968). (Line table based on observation and an energy level table of values observed and calculated).

Ne⁺ Z = 10 9 electrons

W. B. Bridges and A. N. Chester, IEEE J. Qu. Electronics $\underline{1}$, 66 (1965). (Table of lines observed and calculated in ion gas lasers.)

K. G. Ericsson and L. R. Lidholt, IEEE J. Qu. Electronics 3, 94 (1967). (Wavelengths of superradiant transitions, observed and calculated).

U. Fink, S. Bashkin, and W. S. Bickel, J. Quant. Spectrosc. Radiat. Transfer 10, 1241 (1970). (Line table of calculated and observed values in the region 3195 to 4515 Å).

- J. E. Hansen and W. Persson, Physica Scripta 8, 197 (1973). $(2p^4 ns \text{ and } 2p^4 nd \text{ configurations in F and Ne}^+)$.
- K. W. Meissner, R. D. Van Veld, and P. G. Wilkinson, J. Opt. Soc. Amer. 48, 1001 (1958). (Line tables in the vacuum ultraviolet region).
- W. Persson and L. Minnhagen, Ark. Fys. 37, 273 (1967). (Line tables, energy level tables, and a partial energy level diagram for lines observed in the region 10,200 to 2500 Å.)
- W. Persson, Physica Scripta, 3, 133 (1971). (Intermediate coupling terms).
- W. Persson, J. Opt. Soc. Amer. $\underline{59}$, 285 (1969). (Revised and extended analysis of spectrum).
- P. G. Wilkinson and K. L. Andrew, J. Opt. Soc. Amer. 53, 710 (1963). (Improved wavelength determinations for some lines in Ne 11).

A1 Z = 13 13 electrons

- K. B. S. Eriksson, Ark. Fys. 39, 421 (1969). (Identifies the term $3s3p^2$ 2D at 48,654 cm⁻¹).
- K. B. S. Eriksson and H. B. S. Isberg, Ark. Fys. 33, 593 (1967). {Line and energy level tables in comparison of their results with Penkin and Shabanova [Opt. and Spectros. 18, 425 (1925)]}.
- N. P. Penkin and L. N. Shabanova, Opt. and Spectros. $\underline{18}$, 425 (1925). (Line and energy level tables for lines observed in the region 2000 to 2300 Å.)
- E. W. H. Selwyn, Proc. Phys. Soc. 41, 392 (1929). (Table of lines observed in the region 1600 to 2100 Å).
- M. Shimauchi, Sci. of Light $\underline{7}$, 101 (1958). (Tables of lines observed in air, nitrogen, oxygen, and argon atmospheres.)
- M. Shimauchi, Sci. of Light $\underline{12}$, 31 (1962). (Line table and spectrograms of observed lines in a helium atmosphere).
- P. S. P. Wei, K. T. Tang, and R. B. Hall, J. Chem. Phys. $\underline{61}$, 3593 (1974). (These authors classify some forbidden transitions in this spectrum).
- S. Weniger, Ann. d'Astrophysics Suppl. <u>28</u>, 117 (1965). (Tables of lines observed in the region 4000 to 2100 Å studied under variations of temperature).
- T. Yamashita, Sci. of Light $\underline{14}$, 28 (1965). (Line and term tables from lines observed in the region 2120 to 2080 Å).

S

- S. Bashkin, W. S. Bickel, H. D. Dieselman, and J. B. Schroeder, J. Opt. Soc. Amer. <u>57</u>, 1395 (1967). (Wavelengths of lines observed in the region 4140 to 4670 Å).
- E. W. H. Selwyn, Proc. Phys. Soc. 41, 392 (1929). (Table of lines observed in the region 1600 to 2100 Å).
- S. Weniger, Ann. d'Astrophysics Suppl. $\underline{28}$, 117 (1965). (Tables of lines observed in the region 4000 to 2100 Å studied under variations of temperature).

Z = 16

16 electrons

- I. S. Bowen, Ap. J. 121, 306 (1955).
- I. S. Bowen, Ap. J. $\underline{132}$, 1 (1960). (Line table of observed forbidden transitions).
- K. B. S. Eriksson, J. Opt. Soc. Am. <u>63</u>, 632 (1973). (Remeasured wavelengths of two forbidden spectral lines).
- G. Hubner and C. Wittig, J. Opt. Soc. Am. $\underline{61}$, 415 (1971). (Two laser lines are identified with transitions in $\overline{S1}$.)
- L. R. Jakobsson, Ark. Fys. 34, 19 (1966). (Author gives the line tables, energy level tables, a transition array chart, and a partial energy level diagram based on observations in the extra-photographic infrared region, in the region around 9700 to 10,000 Å, and in the region 9212 to 34,270 Å.)
- V. Kaufman and L. J. Radziemski, Jr., J. Opt. Soc. Am. <u>59</u>, 227 (1969). (Energy level table based on observations).
- J. W. McConkey, D. J. Burns, K. A. Moran, and J. A. Kernahan, Nature $\frac{17}{1}$, 538 (1968). (Term table based on observations. The values for the $3p^4$ levels do not fully agree with Kelly's tables.)
- Y. G. Toresson, Ark. Fys. $\underline{18}$, 417 (1960). (Line and term tables from lines observed in the vacuum ultraviolet region).

s+

Z = 16

- NOTE: The levels designated "N" are taken from Moore's AEL tables.
- H. G. Berry, R. M. Schectman, I. Martinson, W. S. Bickel, and S. Bashkin, J. Opt. Soc. Am. 60, 335 (1970).
- L. M. Beyer, W. E. Maddox, and L. B. Bridwell, J. Opt. Soc. Am. <u>63</u> 365 (1973).

- L. Block and E. Block, J. Phys. Rad. $\underline{6}$, 30 (1935). (Line tables from observations in the region 320 to 1260 Å).
- I. S. Bowen, Ap. J. 121, 306 (1955). (Wavelengths of forbidden transitions observed in nebulae).
- I. S. Bowen, Ap. J. $\underline{132}$, 1 (1960). (Line tables from nebular observations).

C1 Z = 17 17 electrons

- B. Edlen, Z. Physik, $\underline{104}$, 407 (1937). (Line table from observations in the region 6610 to 7660 Å).
- J. E. Hansen, J. Opt. Soc. Am. $\underline{67}$, 754 (1977). (Position and wavefunction for the sp 6 2 S term).
- C. J. Humphreys and E. Paul, Jr., J. Opt. Soc. Am. $\underline{49}$, 1180 (1959). (Line and energy tables based on observations in the regions 10,221 to 25,323 Å and 6920 to 10,002 Å).
- C. J. Humphreys and E. Paul, Jr., J. Opt. Soc. Am. $\underline{62}$, 432 (1972). (Line table for observations in the region 19,800 to 28,570 A).
- C. J. Humphreys, E. Paul, Jr. and L. Minnhagen, J. Opt. Soc. Am. $\underline{61}$, 110 (1971). (Line and energy level tables based on observations in the region 39,600 to 40,530 Å).
- L. Minnhagen, J. Opt. Soc. Am. 51, 298 (1961). (Line and energy level tables based on calculations and observations; wavelengths listed are in the region 10,280 to 16,290 Å.)
- L. J. Radziemski, Jr. and V. Kaufman, J. Opt. Soc. Am. $\underline{59}$, 424 (1969). (Line and energy level tables from lines observed in the region 960 to 40,535 Å).

Z = 17 16 electrons

- I. S. Bowen, Ap. J. 132, 1 (1960). (Line table of observed and predicted values).
- W. B. Bridges and A. N. Chester, IEEE J. Qu. Electronics $\underline{1}$, 66 (1965). (Line table of lines observed and calculated in the region 4780 to 6100 $^{\circ}$ A in ion lasers).
- B. Edlen, Phys. Rev. 61, 434 (1942).
- V. Kaufman and L. J. Radziemski, Jr., J. Opt. Soc. Am. <u>59</u>, 227 (1969). (Term table from observations).

- C. C. Kiess and T. L. de Bruin, J. Research NBS $\underline{23}$, 443 (1939). (Term diagram, a term array, and tables of lines observed in the regions 2100 to 9485 Å and 555 to 1925 Å).
- K. Marakawa, Z. Physik $\underline{109}$, 162 (1939). (Line and term tables for lines observed in the region 3095 to 6720 A).
- L. J. Radziemski, Jr., and V. Kaufman, J. Opt. Soc. Am. $\underline{64}$, 366 (1974). (Observed lines of Cl 11 from 500 to 11,000 Å).

Ar Z = 18 18 electrons

- O. Andrade, M. Gallardo, and K. Bockasten, Appl. Phys. Letters <u>11</u>, 99 (1967). (Transition wavelengths of observed superradiant lines in lasers).
- K. Bockasten and O. Andrade, Nature 215, 382 (1967).
- K. Bockasten, T. Lundholn, and O. Andrade, Phys. Letters 22, 145 (1966). (Three observed transitions wavelengths in the near infrared).
- J. C. Boyce, Phys. Rev. 48, 396 (1935). (Table of observed and calculated lines in the region 800 to 1070 Å).
- K. Burns and K. B. Adams, J. Opt. Soc. Am. $\underline{43}$, 1020 (1953). (Line and energy level tables for lines observed in the region 5450 to 9657 A).
- R. D. Cowan, J. Opt. Soc. Am. 58, 924 (1968). (Line table and an energy level table of experimental and calculated values.)
- K. G. Ericsson and L. R. Lidholt, IEEE J. Qu. Electronics $\underline{3}$, 94 (1967). (Authors observe and identify a line at 7067.2 Å).
- W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. <u>133A</u>, 1476 (1964). (Line table of observed stimulated emission spectral lines).
- G. Hepner, Compt. Rend. $\underline{248}$, 1142 (1959). (Line table of observations in the region 18,420 to 25,660 Å).
- C. J. Humphreys and H. J. Kostkowski, J. Research NBS $\underline{49}$, 73 (1952). (Line table of observations in the region 12,110 to 16,940 Å.)
- C. J. Humphreys, E. Paul, Jr. R. D. Cowan, and K. L. Andrew, J. Opt. Soc. Am. 57, 855 (1967). (Line table and a supermultiplet array based on observations in the region 39,650 to 40,480 Å).
- P. G. Kruger and S. G. Weissberg, Phys. Rev. $\underline{48}$, 659 (1935). (Term table from observations).

- P. G. Kruger, S. G. Weissberg, and L. W. Phillips, Phys. Rev. 51, 1090 (1937). (Term table from observations).
- H. H. Li and C. J. Humphreys, J. Opt. Soc. Am. $\underline{64}$, 1072 (1974). (These authors observe this spectrum interferometrically in the range 3173 to 11,672 A.)
- S. Liberman, Compt. Rend. <u>261</u>, <u>2601</u> (1965). (Table of lines observed in the region 20,620 to 72,170 Å).
- T. A. Littlefield and W. R. C. Rowley, Proc. Roy. Soc. $\underline{276}$ A, 502 (1963). (Line and energy level tables from lines observed in the region 12,405 to 16,950 Å and calculated for 2p-3d and 2p-3s transitions in the region 9195 to 32,310 Å).
- T. A. Littlefield and D. T. Turnball, Proc. Roy. Soc. <u>281A</u>, 577 (1954). (Line and energy level tables of lines observed in the region 3550 to 6540 Å).
- R. P. Madden, D. L. Ederer, and K. Codling, Phys. Rev. 177, 136 (1969). (Tables of lines observed in the regions 290 to 430 Å and 210 to 280 Å).
- L. Minnhagen, J. Opt. Soc. Am. $\underline{63}$, 1185 (1973). (Author reobserves and reanalyzes this spectrum over the range 3000 to 12,356 A).
- G. Norlén, Ark. Fys. 35, 119 (1967). (Line and energy level tables from lines observed in the region 5150 to 6960 Å.)
- G. Norlen, Physica Scripta $\underline{8}$, 249 (1973). (This author reobserves and reanalyzes this spectrum in the range 3400 to 9800 Å.)
- E. Paul, Jr. and C. J. Humphreys, J. Opt. Soc. Am. <u>49</u>, 1186 (1959). (Table of lines observed in the region 13,860 to 25,125 Å).
- E. R. Peck, B. N. Khanna, and N. C. Anderholm, J. Opt. Soc. Am. $\underline{52}$, 536 (1962). (Wavelengths in the near infrared as secondary standards).
- B. Petersson, Ark. Fys. $\underline{27}$, 317 (1964). (Two transition wavelengths in the vacuum ultraviolet and a table of Ritz standards in the vacuum ultraviolet region).
- E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Research NBS $\underline{55}$, 279 (1955). (Wavelengths for standards in the infrared region).
- T. Sasaki, N. Kaifu, N. Ito, K. Shimada, and I Sakai, Sci. of Light $\underline{13}$, 115 (1964). (Grotrian diagram).
- W. R. Sittner and E. R. Peck, J. Opt. Soc. Am. 39, 474 (1949). (Table of wave numbers from lines observed in the region 1200 to 22,000 Å).

K. Yoshino, J. Opt. Soc. Am. <u>60</u>, 1220 (1970). (Detailed study of the absorption spectrum in the vacuum ultraviolet).

Ar+

Z = 18

- J. C. Boyce, Phys. Rev. 48, 396 (1935). (Line and term tables for lines observed in the region 1980 to 480 Å).
- W. G. Bridges and A. N. Chester, IEEE J. Qu. Electronics $\underline{1}$, 66 (1965). (Line table of lines observed and calculated in ion lasers).
- G. Convert, M. Armand, and P. Martinot-Lagarde, Compt. Rend. 258, 4467 (1961). (Line table and a partial Grotrian diagram for lines observed in region 4765 to 4545 Å).
- B. Edlen, Z Physik 104, 407 (1937). (Line table for lines observed in the region near 2530 Å).
- K. G. Ericsson and L. R. Lidholt, IEEE J. Qu. Electronics 3, 94 (1967). (Two wavelengths from superradiant transitions observed in lasers).
- U. Fink, S. Bashkin, and W. S. Bickel, J. Quant, Spectrosc. Radiat. Transfer $\underline{10}$, 1241 (1970). (Line table of calculated and observed values in the region 3375 to 4965 Å).
- J. E. Hansen, J. Opt. Soc. Am. $\underline{67}$, 754 (1977). (Position and wavefunction for the sp⁶ 2 S term).
- G. Herzberg, Proc. Phys. Soc. $\underline{248A}$, 309 (1958). (Energy level diagram and line tables for lines observed in the near vacuum ultraviolet regions, and for lines calculated in the far ultraviolet region).
- B. Kjöllerstrom, N. H. Möller, and H. Svensson, Ark. Fys. 29, 167 (1965).
- H. H. Li and C. J. Humphreys, J. Opt. Soc. Am. <u>64</u>, 1072 (1974). (Spectrum of Ar II in the photographic infrared).
- L. Maissel, J. Opt. Soc. Am. $\frac{48}{9}$, 853 (1958). (Table of lines observed in the region 3460 to 3660 Å in a study of the Stark shift).
- L. Minnhagen, Ark. Fys. $\underline{14}$, 483 (1958). (Transition and energy level arrays and line tables for lines observed in the regions 2000 to 1260 A and 1000 to 480 A).
- L. Minnhagen, Ark. Fys. $\underline{14}$, 123 (1958). (Partial energy level diagram and an energy level table).
- L. Minnhagen, Ark. Fys. $\underline{18}$, 97 (1960). (Energy level tables and arrays, and a partial energy level diagram from empirical data and from calculations for the nf and ng levels).

- L. Minnhagen, Ark. Fys. $\underline{25}$, 203 (1963). (Line tables for lines observed in the region 12,500 to 2000 Å and 2000 to 1400 Å, and energy level tables, term tables, and a partial energy level diagram from observations and calculations).
- L. Minnhagen, J. Opt. Soc. Am. $\underline{61}$ 1257 (1971), and $\underline{63}$, 1185 (1973). (Line and energy level tables and a partial energy level diagram from observations and calculations).
- G. Norlén, Ark. Fys. $\underline{35}$, 119 (1967). (Line table for lines observed in the region 6870 to 4880 Å).
- G. Norlén, Physica Scripta 8, 249 (1973). (Interferometrically-determined wavelengths and levels).
- E. H. Pinnington, B. Curnette, and M. Dufay, J. Opt. Soc. Am. 61, 978 (1971). (Table of lines observed in the region 520 to 1000 A).
- T. Sasaki, N. Kaifu, N. Ito, K. Shimada, and I. Sakai, Sci. of light $\underline{13}$, 115 (1964). (Table of unidentified lines and a Grotrian diagram).

Br Z = 35 35 electrons

- M. A. Catalan and F. R. Rico, "Anales de la Real Sociedad Espanola de Fisica y Quimical, 54A, 301 (1958).
- J. E. Hansen, Jour. Opt. Soc. Amer. 67, (6), 754 (1977).
- C. J. Humphreys and E. Paul, Jour. Opt. Soc. Amer. 62, (3), 432 (1972).
- C. J. Humphreys, E. Paul, and L. Minnehagen, Jour. Opt. Soc. Amer. $\underline{61}$, 110 (1971).
- J. L. Tech, Journal of Research, NBS 67A, 505 (1963).
- J. L. Tech and C. H. Corliss, Journal of Research, NBS $\underline{65A}$, (3), 159 (1961).

 Br^+ Z = 35 34 electrons

- R. D. Bengtson and M. H. Miller, Physical Review A 14, (5), 1915 (1976).
- M. A. Catalan and F. R. Rico, Anales de la Real Sociedad 54A, 301 (1958).
- V. Henc-Bartolic, D. Soldo, and A. Persin, Jour. Opt. Soc. Amer. $\underline{68}$, (2), 259 (1978).
- E. Moore, Bulletin of the American Astronomical Society 2, (1), (1970).
- K. Rahimullah and M. S. Z Chaghtai, J. Quant. Spectrosc. Rad. Trans. 16, (2), 105 (1976).
- R. Ramanadham, and K. R. Rao, Ind. J. Phys. 18, 317 (1944).
- Y. B. Rao, Ind. J. Phys. 32, 497 (1957).

- T. Anderson, O. H. Madsen, and G. Sorensen, Phys. Scripta 6, 125 (1972).
- O. Andrade, M. Gallardo, and K. Bockasten, App. Phys. Letters $\underline{11}$, (3), 99 (1967).
- M. A. Catalan and F. R. Rico, Annales de la Real 54A, 301 (1958).
- K. Codling and R. P. Madden, Phys. Rev. A 4, (6), 2261 (1971).
- R. Damachini, L. Cahen, J. Brochard, and R. Vetler, J. Phys. B. $\underline{9}$, (9), L211 (1976).
- K. B. S. Ericksson and G. Norlen, Phys. Scripta 1, 247 (1970).
- W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garret, Phys. Rev. 133, (6A), A1476 (1964).
- M. Aymar and M. Coulombe, Atomic Data and Nuclear Data Tables $\underline{21}$, 537 (1978).
- C. J. Humphreys and H. J. Kostkowski, Journal of Research, NBS $\underline{49}$, (2), 73 (1952).
- C. J. Humphreys, E. Paul, R. D. Cowan, and K. L. Andrew, Jour. Opt. Soc. Amer. <u>57</u>, (7), 855 (1967).
- C. J. Humphreys and E. Paul, Jour. Opt. Soc. Amer. 60, (2), 200 (1970).
- D. J. Irwin, J. A. Kernahan, E. H. Pinnington, and A. E. Livingston, Jr., Jour. Opt. Soc. Amer. 66, (12), 1397 (1976).
- V. Kaufman and C. J. Humpreys, Jour. Opt. Soc. Amer. $\underline{59}$, (12), 1614 (1969).
- S. Liberman, Acad. Sci. Paris 261, (14), 2601 (1965).
- R. A. Lilly, Jour. Opt. Soc. Amer. 66, (3), 245 (1976).
- R. P. Madden and K. Codling, Jour. Opt. Soc. Amer. 54, 268 (1964).
- Yu I. Malakhov and V. A. Fabrikant, Opt. Spectrosk. 34, 645 (1973).
- W. F. Meggers, T. L. de Bruin, and C. J. Humphreys, Journal of Research, NBS 7, 643 (1931).
- W. F. Meggers and C. J. Humphreys, Journal of Research, NBS $\underline{10}$, 427 (1932).
- P. W. Murphy, Jour. Opt. Soc. Amer. 58, (9), 1200 (1968).
- E. Paul and C. J. Humphreys, Jour Opt. Soc. Amer. 49, (12), 1186 (1959).
- B. Peterson, Ark. Fysik 27, (23), 317 (1964).
- E. K. Plyler, L. R. Blaine, and E. D. Tidwell, Journal of Research, NBS 55, (5) 279 (1955).
- W. R. Sittner and E. R. Peck, Jour. Opt. Soc. Amer. 39, (6) 474 (1949).

J. C. Boyce, Phys. Rev. 47, 718 (1935).

Kr

Z = 36

35 electrons

- 0. P. Bochkova, I. A. Zubkova, and S. E. Frish, Opt. Specktrosk $\underline{36}$, 29-35 (1974).
- W. B. Bridges and A. W. Chester, IEEE J. of Qu. Electronics, 60 (1965).
- M. A. Catalan and P. R. Rico, Anales de la Real 54A, 301 (1958).
- T. L. de Bruin, C. J. Humphreys, and W. F. Meggers, Journal of Research, NBS $\underline{11}$, 409 (1933).
- K. E. Donnelly, P. J. Kindlmann, and W. R. Bennett, Jr., Jour. Opt. Soc. Amer. 65, (11), 1359 (1975).
- U. Fink, S. Bashkin, and W. S. Bickel, J. Quant. Spec. Rad. Trans. $\underline{10}$, 1241 (1970).
- J. E. Hansen, Jour. Opt. Soc. Amer. 67, (6), 754 (1977).
- D. J. Irwin, J. A. Kernahan, E. H. Pinnington, and A. E. Livingston, Jr., Jour. Opt. Soc. Amer. <u>66</u>, (12), 1396 (1976).
- L. Minnhagen, H. Strihed, and B. Petersson, Ark. Fysik $\underline{39}$, (34), 471 (1968).
- V. P. Podbiralina, Yu. M. Smirnov, and N. V. Stegnova, Opt. Specktrosk. 34, 467 (1973).
- G. S. Rostovikova, V. P. Samoilov, and Yu. M. Smirnov, Opt. Specktrosk. 35, 600 (1973).
- N. Spector and S. Garpman, Jour. Opt. Soc. Amer. 67, (2), 155 (1977).
- J. C. Boyce, Phys. Rev. 47, 718 (1935).

I

Z = 53

- F. E. Eshback and R. A. Fisher, Jour. Opt. Soc. Amer. $\underline{44}$, (11), 868 (1954).
- J. E. Hansen, Jour. Opt. Soc. Amer. 67, (6), 754 (1977).
- C. J. Humphreys and E. Paul, Jour. Opt. Soc. Amer. 62, (3), 432 (1972).
- C. J. Humphreys, E. Paul, and L. Minnehagen, Jour. Opt. Soc. Amer. $\underline{61}$, (1) 110 (1971).
- C. C. Kiess and C. H. Corliss, Journal of Research, NBS 63A, 1 (1959).
- E. Luc-Koenig and J. Verges, Phys. Scripta 12, 199 (1975).
- L. Minnhagen, Ark. Fysik 21, (26), 415 (1961).
- K. Murakawa, Ziet. Phys. 109, (1939).

52 electrons

- W. B. Bridges and A. W. Chester, IEEE J. Qu. Electronics, 1, 66 (1965).
- P. Lacroute, Am d' Astroph. 2, (1939).
- W. C. Martin and C. H. Corliss, Journal of Research, NBS 64A (6) (1960).
- K. Murakawa, Zeit. Phys. 109, (1939).
- W. C. Martin and C. H. Corliss, J. Res. Nat. Bur. Stand. 64A 443 (1960).

Xe

T+

Z = 54

- T. Andersen, O. H. Madsen, and G. Sorensen, Phys. Scripta 6, 125 (1972).
- O. Andrade, M. Gallardo, and K. Bockasten, Appl. Phys. L $\underline{11}$, (3), 99 (1967).
- K. Codling and R. P. Madden, Phys. Rev. A 4, (6), 2261 (1971).
- M. F. Coulombe and J. Sinzelle, J. de Physique 36, 773 (1975).
- M. Dakhil and J. F. Kielkopf, Jour. Opt. Soc. Amer. 67, (6), 844 (1977).
- C. C. Davis and T. A. King, J. Quan. Sp. Rad. Trans. 13, 825 (1973).
- W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. <u>133</u>, (6A) A1476 (1964).
- L. Herman and K. C. Clark, J. Quant. Spec. Rad. Trans. 5, 765 (1965).
- C. J. Humphreys and H. J. Kostkowski, Journal of Research, NBS, $\underline{49}$, (2) 73 (1952).
- C. J. Humphreys and E. Paul, Jour. Opt. Soc. Amer. 60, (10), 1302 (1970).
- C. J. Humphreys, E. Paul, R. D. Cowan, and K. L. Andrew, Jour. Opt. Soc. Amer. <u>57</u>, (7), 855 (1967).
- A. Lesage and J. Richou, J. Quant. Spec. Rad. Trans. 12, 1313 (1972).
- S. Liberman, Acad. Sci. Paris 261, (14), 2601 (1965).
- S. Liberman, J. de Physique 30, 53 (1969).
- T. A. Littlefield and M. Rafi, J. Phys. B 7, (5), 612 (1974).
- K. T. Lu, Phys. Rev. A 4, (2), 579 (1971).
- B. Petersson, Ark. Fysik 27, (23), 317 (1964).
- E. K. Plyler, L. R. Blaine, and E. D. Tidwell, NBS 2630 55, (5) 279 (1955).
- G. S. Rostovikova, V. P. Samoilov, and Yu. M. Smirnov, Opt. Spect. $\underline{34}$, (1), 3 (1973).
- W. R. Sittner and E. R. Peck, Jour. Opt. Soc. Amer. 39, (6), 474 (1949).

- M. Aymar and M. Coulombe, Atomic Data and Nuclear Data Tables $\underline{21}$, 537 (1978).
- T. Andersen, O. H. Madsen, and G. Sorensen, Phys. Scripta 6, 125 (1972).
- W. B. Bridges and A. W. Chester, IEEE J. Qu. Electronics, 1, 66 (1965).
- B. Edlen, Phys. Rev. 65, 798 (1944).
- U. Fink, S. Bashkin, and W. S. Bickel, J. Quant. Spec. Rad. Trans. $\underline{10}$, 1241 (1970).
- S. Garpman, Jour. Opt. Soc. Amer. 66, (9) 904 (1976).
- J. E. Hansen, Jour. Opt. Soc. Amer. 67, (6), 754 (1977).
- C. J. Humphreys and E. Paul, Jour. Opt. Soc. Amer. 60, (11), 1302 (1970).
- C. J. Humphreys and E. Paul, Jour. Opt. Soc. Amer. 60, (11), 1454 (1970).
- G. W. Hoffman and P. E. Toschek, Jour. Opt. Soc. Amer. 66, (2), 152 (1976).
- E. G. Lluesma, A. A. Tagliaferri, C. A. Massone, M. Garavaglia, and
- M. Gallardo, Jour. Opt. Soc. Amer. 63, (3), 362 (1973).
- C. J. Humphreys, W. F. Meggers, T. L. de Bruin, NBS 23, 683 (1939).
- V. P. Podbiralina, Yu. M. Smirnov, and N. U. Stegnova, Opt. Spect. $\underline{34}$, (4), 467 (1973).
- G. S. Rostovíkova, U. P. Samoilov, and Yu. M. Smirnov, Opt. Spect. $\underline{34}$, (1), 3 (1973).
- T. M. El Sherbini, J. Phys. B 9, (10), 1665 (1976).
- C. J. Humphreys, J. Res. Nat. Bur. Stand. 22, 19 (1939).

- J. Blaise and L. J. Radziemski, "Energy Levels of Neutral Atomic Uranium", J. Opt. Soc. Am. <u>66</u>, 644 (1976).
- D. W. Steinhaus, L. J. Radziemski, Jr., R. D. Cowan, J. Blaise, F. Guelachvili, Z. B. Osman, and J. Verges, "Present Status of the Analyses of the First and Second Spectra of Uranium (U I and U II) as Derived from Measurements of Optical Spectra," Los Angeles Scientific Laboratory Report LA-4501 (October 1971).
- D. W. Steinhaus, M. V. Phillips, J. B. Moody, L. J. Radziemski, Jr., K. J. Fisher, and D. R. Hahn, "The Emission Spectrum of Uranium Between 19,080 and 30,261 cm⁻¹", Los Alamos Scientific Laboratory Report LA-4944 (August 1972).

A-3. POLARIZABILITIES AND MULTIPOLE MOMENTS

CONTENTS

		Page
A-3.1.	Recommended Values for the Polarizabilities of Ground	
	State Atoms	• 1156

Tabulated Data. A-3.1. Recommended values for the polarizabilities of ground state atoms in units of $10^{-24}~{\rm cm}^3$.*

Estimated		
accuracy (%)	Atom	Average polarizability
"Exact"	Н	0.666793
0.5	He	0.204956
	Li	24.3
2	Be B	5.60
2	C	3.03
•	N	1.76
2	o O	1.10
1	F	0.802
;	Ne Ne	0.557 0.395
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Na Na	23.6
,	Mg	10.6
,	Al	8.34
,	Si	5.38
,	P	3.63
2	S	2.90
2	CI	2.18
0.5	Ar	1.64
2	K	43.4
8	Ca	25.0
50	Sc	16.9
50	Ti	13.6
50	v	11.4
50	Cr	6.8
50	Mn	8.6
50	Fe	7.5
50	Co	6.8
50	Ni	6.5
50	Cu	6.1
2	Zn	7.08
2	Ga	8.12
2 2 2 2	Ge	6.07
2	As	4.31
	Se	3.77
2	Br	3.05
0.5	Kr	2.48
2	Rb	47.3
8	Sr	27.6
50	Y	22
50	Zr	18

^{*}From T. M. Miller and B. Bederson, "Atomic and Molecular Polarizabilities-A Review of Recent Advances," in "Advances in Atomic and Molecular Physics" (D. R. Bates and B. Bederson, Eds.), Vol. 13, Academic Press, New York (1977).

Tabulated Data A-3.1. Recommended values for the polarizabilities of ground states atoms in units of $10^{-24}~{\rm cm}^3$ (Continued).

Estimated		
accuracy		Average
(".)	Atom	polarizability
50	Nb	14
50		13
50	Мо	
50	Tc Ru	10.0
50	Rh	8.6
50	Pd	7.6
50	Ag	6.9
50	Cd	6.0
50	In	4.5
50	Sn	4.4
50	Sb	4.0
50	Te	3.9
50	i	3.9
0.5	Xe	4.04
2	Cs	59.6
8	Ba	39.7
50	La	37
50	Ce	36
50	Pr	34
50	Nd	32
50	Pm	30
50	Sm	29
50	Eu	27
50	Gd	26
50	ТЬ	25
50	Dy	25
50	Ho	23
50	Er	23
50	Tm	22
50	Yb	22
50	Lu	20
50	Hſ	15
50	Ta	13
50	w	10
50	Re	9
50	Os	8
50	lr .	7
50	Pt	6.3
50	Au	5.7
50	Hg	5.1
50	TI	3.5
50	Pb	3.7
50	Bi	4.0
50	Po	4.6
50	At	5.1
50	Rn	6.3
50	Fr	67
50	Ra	46
50	Ac	53
50	Th	50
50	Pa	48
50	U	46
50	Np	45
50	Pu	43
50	Am	41
50	Cm	40
50	Bk	39
50	Ct	38
50	Es	36
50	Fm	35
50	Md	34
50	No	33
50	Lw	32

A-4. ELECTRON AFFINITIES*

CONTENTS

A-4.1.	Electron Affinities of Atoms	1161
A-4.2.	Electron Affinities of Molecules	1162
A-4. Re	eferences:	
A. P. M.	Baede, Adv. Chem. Phys. <u>30</u> , 463 (1975).	
R. N. Co 2023 (19	ompton, P. W. Reinhardt, and C. D. Cooper, J. Chem. Phys. 178).	<u>68</u> ,

- J. Phys. Chem. Ref. Data 4, 539-576 (1975).

 H. S. W. Massey, Negative Ions (Third Edition) (Cambridge University Press, Cambridge 1976).
- B. L. Moiseiwitsch, "Negative Ions", in <u>Atomic Processes</u> and <u>Applications</u> (edited by P. G. Burke and B. L. Moiseiwitsch), 291-319 (North-Holland Publishing Co., Amsterdam, 1976).

H. Hotop and W. C. Lineberger, "Binding Energies in Atomic Negative Ions",

Page

For discussions of the difference between electron affinities and vertical detachment energies for molecules, see H.S.W. Massey, "Negative Ions," (Third Edition) Cambridge University Press, Cambridge (1976), pg. 166 and E. W. McDaniel, "Collision Phenomena in Ionized Gases," Wiley, New York (1964), pg. 379.

Tabular Data. A-4.1. Electron Affinities of Atoms (in eV).

Не	< 0	Ag	1.303 (7)
Ne	< 0	A1	0.46 (3)
Ar	< 0	В	0.28 (1)
Kr	< 0	С	1.268 (5)
Xe	< 0	Cd <	0
		Cu	1.226 (10)
F	3.399 (3)	D*	0.757 ± 0.005
C1	3.615 (4)	Н	0.7542 (3)
Br	3.364 (4)	Hg <	0
I	3.061 (4)	In	0.30 (15)
		N -	0.07 (8)
Li	0.620 (7)	0	1.462 (3)
Na	0.546 (5)	P	0.743 (10)
K	0.5012(5)	S	2.0772 (5)
Rb	0.4860(5)	Se	2.0206 (3)
Cs	$0.4715 \binom{5}{20}$	Te	1.9708 (3)
Fe [†]	0.164 ± 0.035	U	unmeasured at this date

Note: Unless otherwise indicated, the data here are recommended values from Table 10 in the critical review:
H. Hotop and W. C. Lineberger, "Binding Energies in Atomic Negative Ions," Jour. Phys. Chem. Ref. Data 4, 539-576 (1975).

^{*}K. E. McCulloh and J. A. Walker, Chem. Phys. Lett. <u>25</u>, 439 (1974).

[†]P. C. Engelking and W. C. Lineberger, Phys. Rev. <u>A</u> <u>19</u>, 149 (1979).

Tabular Data. A-4.2. Electron Affinities of Molecules (in eV).

F ₂	3.08 ± 0.1	
Cl 2	2.38 ± 0.1	W. A. Chupka, J. Berkowitz, and D. Gutman.
Br ₂	2.51 ± 0.1	J. Chem. Phys. <u>55</u> , 2724 (1971).
12	2.58 <u>+</u> 0.1	
IBr	2.7 <u>+</u> 0.2	
ICL	1.43	J. Jortner and U. Sokolov, Nature 190, 1003 (1961).
L1CL	0.61 ± 0.02	J. L. Carlsten, J. R. Peterson, and W. C. Lineberger, Chem. Phys. Lett. 37, 5 (1976).
Fe0	1.492 <u>+</u> 0.020	P. C. Engelking and W. C. Lineberger, J. Chem. Phys. $\underline{66}$, 5054 (1977).
	0.381 ± 0.014	P. C. Engelking and W. C. Lineberger, J. Chem. Phys. $\underline{65}$, 4323 (1976).
NH(a¹∆)	1.960 ± 0.010	
PO	1.092 ± 0.010	P. F. Zittel and W. C. Lineberger, J. Chem. Phys. 65,
PH	1.028 ± 0.010	1236 (1976).
PH ₂	1.271 ± 0.010	
UF ₆	≥ 5.1	R. N. Compton, J. Chem. Phys. <u>66</u> , 4478 (1977).
UF ₅	4.0 ± 0.4	
CF ₃ Br	0.91 <u>+</u> 0.2	R. N. Compton, P. W. Reinhardt, and C. D. Cooper,
CF3I	1.57 ± 0.2	J. Chem. Phys. <u>68</u> , 4360 (1978).
SF ₆	0.46 ± 0.2	R. N. Compton, P. W. Reinhardt, and C. D. Cooper,
SeF ₆	2.9 ± 0.2	J. Chem. Phys. 68, 2023 (1978).
TeF ₆	3.3 ± 0.2	
SF5	2.71 ± 0.2	
SF ₄	0.78 ± 0.2	
SF ₃	3.07 ± 0.2	
СН	1.238 ± 0.008	A. Kasdan, E. Herbst and W. C. Lineberger, Chem. Phys. Lett. 31, 78 (1975).
NH ₂	0.779 <u>+</u> 0.037	R. J. Celotta, R. A. Bennett and J. L. Hall, J. Chem. Phys. <u>60</u> , 1740 (1974).
СНЗО	1.570 ± 0.022	
CD30	1.552 + 0.022	P. C. Engelking, G. B. Ellison, and W. C. Lineberger, J. Chem. Phys. 69, 1826 (1978).
CH3S	1.882 ± 0.024	5. Gien. Tilye. <u>07</u> , 1020 (1770).

Tabular Data. A-4.2. Electron Affinities of Molecules (in eV) (Continued).

CN	3.82	+ 0.02			Chupka and T. A. Walter, J. Chem.	
			Phys	. <u>50</u> , 1497 (196	99).	
С2Н	3.73		D. F	eldmann, Z. Nat	urforsch. Teil A <u>25</u> , 621 (1970).	
c_2	3.54					
ОН	1.8255	5 ± 0.002		otop, R. A. Ber . <u>58</u> , 2373 (197	nett and W. C. Lineberger, J. Chem.	
NO	0.024	+ 0.010 - 0.005			Celotta, J. L. Hall, J. Levine and Rev. A <u>6</u> , 607 (1972).	
02	0.440	<u>+</u> 0.008			A. Bennett, J. L. Hall, M. W. Siegel . Rev. A <u>6</u> , 631 (1972).	
CH ₂	0.21	<u>+</u> 0.03	W. C		d W. P. Reinhardt, J. Am. Chem. Soc.	
co ₂	-0.6			. Compton, P. W	Reinhardt, and C. D. Cooper, J. Chem.	
N ₂ O	0.22	<u>+</u> 0.1		. Hopper, A. C. nem. Phys. <u>65</u> ,	Wahl, R. L. C. Wu and T. O. Tiernan, 5474 (1976).	
03	2.14	<u>+</u> 0.15		Rothe, S. Y. (1975).	Tang, and G. Reck, J. Chem. Phys. <u>62</u> ,	
NO ₂	2.36	<u>+</u> 0.1		erbst, T. A. Pa . <u>61</u> , 1300 (197	tterson, and W. C. Lineberger, J. Chem. 4).	
во2	4.07	<u>+</u> 0.2	D. E	. Jensen, Trans	. Faraday Soc. <u>65</u> , 2123 (1969).	
co ₃	2.9	<u>+</u> 0.3		. Moseley, P. C. Cosby and J. R. Peterson, J. Chem. Phys. 2512 (1976).		
HNO 3	0.57	+ 0.15	В. Р	Mathur, E. W.	Rothe, S. Y. Tang, and Kanwai Mahajan,	
NO ₃	3.68	+ 0.2		nem. Phys. <u>64</u> ,		
co ₄	1.22		J. L	. Pack and A. V	. Phelps, J. Chem. Phys. 45, 4316 (1966	
н ₂		-1.7		NCO	>2.6 + 0.4	
CH ₃		1.08		CS	<1.2	
OD		1.823 + 0.00	02	so	1.09 + 0.05	
C ₂		3.54 + 0.05		S ₂	1.663 + 0.040	
C ₂ H		3.73 + 0.05		04	negative ion detected	
SIH		1.277 + 0.00	09	SO ₂	1.097 + 0.036	
SiH ₂		1.124 + 0.03		CO3(H2O)	2.1	
2			10	3. 2.		

^{*}From the chapter "Negative Ions" by B. L. Moiseiwitsch in "Atomic Processes and Applications", P. G. Burke and B. L. Moiseiwitsch, (Eds). 314-315 (North-Holland Publishing Co., Amsterdam, 1976).

A-5. GENERAL REFERENCES ON POTENTIAL ENERGY CURVES, ELECTRONIC ENERGIES, SPECTROSCOPIC CONSTANTS AND ABSORPTION AND EMISSION SPECTRA OF EXCIMER SYSTEMS *

General References

- W. C. Ermler, Yoon S. Lee, K. S. Pitzer, and N. W. Winter, "Ab initio Effective Core Potentials Including Relativistic Effects.
 II. Potential Energy Curves for Xe₂, Xe₂ and Xe₂," J. Chem. Phys. 69, 976 (1978).
- 2. W. R. Wadt, "The Electronic States of Ar_2^+ , Kr_2^+ and Xe_2^+ . I. Potential Curves With and Without Spin-Orbit Coupling," J. Chem. Phys. 68. 402 (1978).
- 3. W. R. Wadt, R. J. Hay, and L. R. Kahn, "Relativistic and Nonrelativistic Effective Core Potentials for Xenon. Applications to XeF, Xe_2 and Xe_2^+ ," J. Chem. Phys. <u>68</u>, 1752 (1978).
- H. H. Michels, R. H. Hobbs, L. A. Wright, and J. W. D. Connolly, "Electronic Structure of Excimer Molecular Lasers," Int. Jour. Quant. Chem. 13, 167 (1978).
- G. Brual and S. M. Rothstein, "Rare Gas Interactions Using an Improved Statistical Method," J. Chem. Phys. 69, 1177 (1978).
- J. S. Cohen and R. T. Pack, "Modified Statistical Method for Intermolecular Potentials. Combining Rules for Higher Van der Waals Coefficients," J. Chem. Phys. 61, 2372 (1974).
- 7. Y. S. Lee, W. C. Ermler, and K. S. Pitzer, "Ab initio Effective Core Potentials Including Relativistic Effects. I. Formalism and Applications to the Xe and Au Atoms," J. Chem. Phys. 67, 5861 (1977).
- J. M. Farrar and Y. T. Lee, "Intermolecular Potentials from Crossed Beam Differential Elastic Scattering Measurements. V. The Attractive Well of He₂," J. Chem. Phys. <u>56</u>, 5801 (1972).
- 9. J. M. Farrar, Y. T. Lee, V. V. Goldman, and M. L. Klein, "Neon Interatomic Potentials from Scattering Data and Crystalline Properties," Chem. Phys. Letts. 19, 359 (1973).

^{*}These references are in addition to those previously given in Vol. I, Section A, pages 8-14.

- J. M. Parson, P. E. Siska, and Y. T. Lee, "Intermolecular Potentials from Crossed-Beam Differential Elastic Scattering Measurements.
 IV. Ar + Ar," J. Chem. Phys. 56, 1151 (1972).
- J. A. Barker, R. O. Watts, J. K. Lee, T. P. Schafer, and Y. T. Lee, "Interatomic Potentials for Krypton and Xenon," J. Chem. Phys. <u>61</u>, 3081 (1974).
- 12. C. H. Chen, P. E. Siska, and Y. T. Lee, "Intermolecular Potentials from Crossed-Beam Differential Elastic Scattering Measurements.

 VIII. He + Ne, He + Ar, He + Kr and He + Xe," J. Chem. Phys. 59, 601 (1973).
- 13. C. Y. Ng, Y. T. Lee, and J. A. Barker, "Improved Potentials for Ne + Ar, Ne + Kr and Ne + Xe," J. Chem. Phys. $\underline{61}$, 1996 (1974).
- 14. J. M. Parson, T. P. Schafer, P. E. Siska, F. P. Tully, Y. C. Wong, and Y. T. Lee, "Intermolecular Potentials from Crossed Beam Differential Elastic Scattering Measurements. II. Ar + Kr and Ar + Xe," J. Chem. Phys. 53, 3755 (1970).
- R. G. Gordon and Y. S. Kim, "Theory for the Forces Between Closed-Shell Atoms and Molecules," J. Chem. Phys. 56, 3122 (1972).
- A. I. M. Rae, "A Theory for the Interactions Between Closed-Shell Systems," Chem. Phys. Letts. 18, 574 (1973).
- A. I. M. Rae, "A Calculation of the Interaction Between Pairs of Rare-Gas Atoms," Mol. Phys. 29, 467 (1975).
- U. Buck, F. Huisken, H. Pauly, and J. Schleusener, "Intermolecular Potentials by the Inversion of Differential Cross Sections. V. ArKr," J. Chem. Phys. 68, 3334 (1978).
- 19. R. Luckx, Ph. Coulon, and H. N. W. Lekkerker, "Dispersion Forces Between Noble Gas Atoms," J. Chem. Phys. 69, 2424 (1978).
- 20. H. H. Michels, R. H. Hobbs, and L. A. Wright, "Electronic Structure of the Noble Gas Dimer Ions. I. Potential Energy Curves and Spectroscopic Constants" (in press).
- 21. W. R. Wadt, D. C. Cartwright, and J. S. Cohen, "Theoretical Absorption Spectra for Ne_2^+ , Ar_2^+ , Kr_2^+ and Xe_2^+ in the Near Ultraviolet," Appl. Phys. Letts. 31, 672 (1977).
- 22. C. F. Bender and N. W. Winter, "Theoretical Absorption Spectra of ArKr⁺," Appl. Phys. Letts. 33, 29 (1978).
- 23. W. J. Stevens, M. Gardner, A. Karo, and P. Julienne, "Theoretical Determination of Bound-Free Absorption Cross Sections in Ar_2^+ ," J. Chem. Phys. <u>67</u>, 2860 (1977).

- N. W. Winter, C. F. Bender, and T. N. Rescigno, "Potential Energy Curves and Predicted Fluorescence for Neon Fluoride," J. Chem. Phys. 67, 3122 (1977).
- N. W. Winter and T. N. Rescigno, "Theoretical Calculation of the Bound-Free Emission Spectra of KrF," J. Chem. Phys. (in press).
- T. H. Dunning and P. J. Hay, "Electronic States of KrF," Appl. Phys. Letts. 28, 649 (1976).
- 27. P. J. Hay and T. H. Dunning, "The Electronic States of KrF," J. Chem. Phys. 66, 1306 (1977).
- P. J. Hay and T. H. Dunning, "The Covalent and Ionic States of the Xenon Halides," J. Chem. Phys. 69, 2209 (1978).
- 29. T. H. Dunning and P. J. Hay, "The Low Lying States of the Rare-Gas Fluorides," J. Chem. Phys. 69 134 (1978).
- 30. J. Tellinghuisen, A. K. Hays, J. M. Hoffman, and G. C. Tisone, "Spectroscopic Studies of Diatomic Noble Gas Halides. II. Analysis of Bound-Free Emission from XeBr, XeI and KrF," J. Chem. Phys. 65, 4473 (1976).
- 31. J. Tellinghuisen, G. C. Tisone, J. M. Hoffman, and A. K. Hays, "Analysis of Spontaneous and Laser Emission from XeF," J. Chem. Phys. 64, 4796 (1976).
- 32. J. Tellinghuisen, P. C. Tellinghuisen, G. C. Tisone, J. M. Hoffman, and A. K. Hays, "Spectroscopic Studies of Diatomic Noble Gas Halides. III. Analysis of XeF 3500 A Band System," J. Chem. Phys. 68, 5177 (1978).
- 33. P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Velazco, and D. W. Setser, "Spectroscopic Studies of Diatomic Noble Gas Halides. IV. Vibrational and Rotational Constants for the X, B and D States of XeF," J. Chem. Phys. 68, 5187 (1978).
- 34. W. R. Wadt and P. J. Hay, "The Low Lying Electronic States of Ar₂F," Appl. Phys. Letts. <u>30</u>, 573 (1977).
- W. R. Wadt and P. J. Hay, "Electronic States of Ar₂F and Kr₂F,"
 J. Chem. Phys. 68, 3859 (1978).
- D. L. Huestis and N. E. Schlotter, "Diatomics-in-Molecules Potential Surfaces for the Triatomic Rare Gas Halides: Rg₂X," J. Chem. Phys. 69, 3100 (1978).
- 37. T. H. Dunning and P. J. Hay, "Low-Lying Electronic States of the Rare-Gas Oxides," J. Chem. Phys. 66, 3767 (1977).
- 38. W. R. Wadt, "The Electronic Structure of HgCℓ and HgBr," Appl. Phys. Letts. (in press).

- 39. T. H. Dunning, M. Valley, and H. S. Taylor, "Theoretical Studies of the Low-Lying Electronic States of GaKr, Including Extrapolation to InKr and T&Kr," J. Chem. Phys. 69, 2672 (1978).
- 40. P. J. Hay, W. R. Wadt, L. R. Kahn, and F. W. Bobrowitz," Ab initio Studies of AuH, AuCl, HgH and HgCl₂ Using Relativistic Core Potentials," J. Chem. Phys. 69, 984 (1978).

A-6. POTENTIAL ENERGY CURVES, ELECTRONIC ENERGIES AND SPECTROSCOPIC CONSTANTS FOR xe_2^+ AND xe_2^* . INTERACTIONS BETWEEN LIKE AND UNLIKE PAIRS OF RAREGAS ATOMS

CONTENTS

		Page
A-6.1.	Electronic transition laser-Xe ₂	1170
A-6.2.	Spectroscopic constants for Xe_2^+ and Xe_2^*	1171
A-6.3.	${ m Xe}_2^+$ potential energy curves without spin-orbit	
	coupling	1172
A-6.4.	Xe_2^+ potential energy curves including spin-orbit	
	coupling	1173
A-6.5.	Xe_2^* potential energy curves without spin-orbit	
	coupling	1174
A-6.6.	${\sf Xe}_2^{m{\star}}$ potential energy curves including spin-orbit	
	coupling	1175
A-6.7.	Valence SCF energies of electronic states of	
	diatomic Xe	1176
A-6.8.	Xe_2 , Xe_2^* , and Xe_2^+ potential energy curves including	
	spin-orbit coupling	1177
A-6.9.	Selected Xe_2^+ and Xe_2^* vertical transition energies	1178
A-6.10.	Variation of the magnitude of the transition moment for	
	Xe_2^* with internuclear distance	
A-6.11.	Interaction energies for ${}^{1}\Sigma_{g}^{+}$ states of He ₂ , Ne ₂ , Ar ₂ ,	
	and Kr ₂ as determined by experiment and by various	
	theoretical models	1180
A-6.12.	Interaction energies of He-Ne $(^1\Sigma^+)$, He-Ar $(^1\Sigma^+)$ and	
	He-Kr $\binom{1}{\Sigma}^+$) as determined by experiment and by various	
	theoretical models	1181

		Page
A-6.13.	Interaction energies of Ne-Ar $({}^{1}\Sigma^{+})$, Ne-Kr $({}^{1}\Sigma^{+})$,	
	and Ar-Kr ($^{1}\Sigma^{+}$) as determined by experiment and by various theoretical models	1100

A-6. References:

- W. C. Ermler, Y. S. Lee, K. S. Pitzer, and N. W. Winter, "<u>Ab initio</u> Effective Core Potentials Including Relativistic Effects. II.

 Potential Energy Curves for Xe₂, Xe₂ and Xe₂," J. Chem. Phys. <u>69</u>, 976 (1978).
- 2. W. R. Wadt, "The Electronic States of Ar₂, Kr₂ and Xe₂. I. Potential Energy Curves With and Without Spin-Orbit Coupling," J. Chem. Phys. 68, 402 (1978).
- 3. W. R. Wadt, P. J. Hay, and L. R. Kahn, "Relativistic and Nonrelativistic Effective Core Potentials for Xenon. Applications to XeF, Xe_2 , and Xe_2^+ ," J. Chem. Phys. <u>68</u>, 1752 (1978).
- G. Brual and S. M. Rothstein, "Rare Gas Interactions Using an Improved Statistical Method," J. Chem. Phys. 69, 1177 (1978).
- H. H. Michels, R. H. Hobbs, L. A. Wright, and J. W. D. Connolly, "Electronic Structure of Excimer Molecule Lasers," Int. Jour. Quant. Chem. <u>13</u>, 167 (1978).

Graphical Data. A-6.1. Electronic transition laser— Xe_2 .

Tabular Data A-6.2. Spectroscopic constants for Xe_2^+ and Xe_2^* .

		$R_e(a_0)$	D _e (eV)	ω _e (cm ⁻¹)	we X (cm 1)	B (cm ⁻¹)	$\alpha_{\rm e}({\rm cm}^{-1})$
$xe_2 + 2r_4$	es .	5.74	0.99	122.5	0.45	0.02786	0.00011
	P	80.9	1.08	124			
	υ	5.84	1.04	125			
$(1/2)^{d}_{u}$	æ	5.82	0.70	110.4	0.53	0.02704	0.00013
	д	6.18	0.79	112			
	U	5.91	92.0	112			
xe_2 xe_2 xe_3	a	2.67	1.00	128.3	0.62	0.02856	0,00012
$^{1}\Sigma_{\mathrm{u}}^{+}$	a	5.65	1.03	129.2	0.45	0.02868	0.00011
+ ₀ "	a	5.72	0.77	118.5	0.53	0.02800	0.00013
'o"	rd	5.73	0.78	117.3	0.59	0.02793	0.00014
J.	a	5.73	0.79	118.0	0.59	0.02796	0.00014

a Reference 1.

b Reference 2.

c Reference 3.

d Empirical estimate of D_o = 1.03 eV, R_e = 6.14 a_o.

Graphical Data. A-6.3. Xe_2^+ potential energy curves without spin-orbit coupling.

Graphical Data. A-6.4. Xe_2^+ potential energy curves including spin-orbit coupling.

Graphical Data. A-6.5. Xe_2^* potential energy curves without spin-orbit coupling.

Graphical Data. A-6.6. Xe_2^* potential energy curves including spin-orbit coupling.

Tabular Data. A-6.7. Valence SCF energies of electronic states of diatomic Xeª.

	Xe ₂		×	xe ₂ ⁺					xe2	* ~			
~	12+	2 ₂ +	2 _{II} 8	2 _T	2 ₂ +	3°+	1 ₂ +	3 _π	1 8	3 _n	In u	3°+	1 ₂ +
4.50	.81444 .53110	.53110	.42507	.34045	.27521	.64589	.64179	.54394	.53932	.46150	.45212	.32973	.38823
5.00	.90935 .58558	.58558	.50808	.45424	.39509	90269.	.69303	.62280	.61849	.57027	.56233	.50881	.50497
5.50	. 95534 . 60159	.60159	.54494	.51093	.46317	.71099	.70680	.65688	.65272	.62362	.61664	.57446	.57078
5.75	.96839 .60283	.60283	.55440	.52742	.48561	.71151	.70718	.66530	.66118	.63888	.63223	. 59607	. 59227
9.00	97740 . 60176	.60176	.56040	.53902	.50286	.70983	.70540	.67044	.66634	87679.	.64309	.61269	.60867
6.25	.98361	.59936	.56409	.54717	.51621	.70712	.70244	.67343	.66934	.65681	.65064	.62560	.62125
6.50	.98789 .59630	.59630	.56629	.55290	.52662	.70381	.69893	.67504	96029.	.66189	.65588	.63570	.63098
7.00	.99288	.58972	.56814	.55979	.54124	66969.	.69173	.67598	.67192	.66773	.66206	96679.	.64447
7.50	.99527	.58377	.56844	.56324	.55043	66069.	.68542	.67557	.67155	.67040	.66503	.65894	.65290
8.00	.99643	.99643 .57898	.56821	.56499	.55629	.68618	07089.	.67471	.67077	.67148	.66641	95799.	.65835
9.00	.99730	.57271	.56755	.56633	.56252	.67945	.67369	.67264	16899.	.67137	76999	.66977	.66426
10.00	. 99755 . 56952	.56952	.56711	99995.	.56515	.67486	79699.	.67032	.66701	18699.	00999.	.67056	.66618
20.00	. 99703 . 56655	.56655	.56653	.56653	.56655	.56655 .64309		.64067 .64242	.64024	.64241	.64020	.64304	86079.

 $^{\mathbf{a}}$ All quantities in a.u. Energies are negative and are relative to -32,00000.

Graphical Data. A-6.8. Xe_2 , Xe_2^* and Xe_2^+ potential energy curves including spin-orbit coupling.

Tabular Data. A-6.9. Selected Xe_2^+ and Xe_2^* vertical transition energies (eV).

		æ	cIp	CI-EPC
xe ²	$(1/2)_{\rm u} + (3/2)_{\rm g}$	1.03	0.99	0.96
	$+ 1(1/2)_g$	1.67	1.60	1.57
	+ II(1/2) _g	3.56	3.31	3.32
Xe2*d	0+ x0+ n	66.9		
	$l_u + x_0^+$	6.88		

a Reference 1.

b Reference 2.

c Reference 3.

d A bound-free emission is observed at 7.3 eV.

Tabular Data. A-6.10. Variation of the magnitude of the transition moment for Xe_2^* with internuclear distance (a.u.).

State R(a ₀)	1 _E ⁺ _u	¹ п	o _u +	1 _u
5.5	0.691	0.953	0.678	0.115
5.75	0.723	0.944	0.705	0.130
6.25	0.785	0.922	0.752	0.159
7.5	0.901	0.866	0.804	0.207
8.0	0.926	0.841	0.803	0.209

Graphical Data. A-6.11. Interaction energies for $^{1}\Sigma^{+}$ states of He₂, Ne₂, Ar₂, and Kr₂ as determined by experiment [solid line, Refs. (A-5.8) - (A-5.11)] and by various theoretical models [broken lines, Ref. (A-5.5)].

Graphical Data. A-6.12. Interaction energies of He-Ne $(^1\Sigma^+)$, He-Ar $(^1\Sigma^+)$ and He-Kr $(^1\Sigma^+)$ as determined by experiment [solid line, Ref. (A-5.12)] and by various theoretical models [broken line, Ref. (A-5.5)].

Graphical Data. A-6.13. Interaction energies of Ne-Ar $(^1\Sigma^+)$, Ne-Kr $(^1\Sigma^+)$, and Ar-Kr $(^1\Sigma^+)$ as determined by experiment [solid line, Refs. (A-5.13) and (A-5.14)] and by various theoretical models [broken lines, ref. (A-5.5)].

A-7. POTENTIAL ENERGY CURVES, ELECTRONIC ENERGIES, SPECTROSCOPIC CONSTANTS, AND ABSORPTION SPECTRA FOR Ne₂⁺, Ar₂⁺, Kr₂⁺, Xe₂⁺, AND ArKr⁺

CONTENTS

		Page
A-7.1.	Long-range-force interaction parameters for the noble gas dimer ions	1187
A-7.2.	Ab initio potential energy curves for	
	Ar_2^+ without inclusion of spin-orbit coupling	1188
A-7.3.	Potential energy curves for Me ₂ including spin-orbit coupling	1189
A-7.4.	Potential energy curves for Ar ₂ including spin-orbit coupling	1190
A-7.5.	Potential energy curves for Kr_2^+ including spin-orbit coupling	1191
A-7.6.	Potential energy curves for Xe_2^+ including spin-orbit coupling	1192
A-7.7.	Density functional potential energy curves for Ne $_2^+$ assuming $\Lambda\text{-S}$ coupling	1193
A-7.8.	Density functional potential energy curves for Ne_2^+ (spin-orbit effects included)	1194
A-7.9.	Density functional potential energy curves for Ar_2^+ assuming $\Lambda\text{-S}$ coupling	1195
A-7.10.	Density functional potential energy curves for Ar_2^+ (spin-orbit effects included)	1196
A-7.11.	Density functional potential energy curves for Kr_2^+ assuming $\Lambda\text{-S}$ coupling	1197
A-7.12.	Density functional potential energy curves for Kr_2^+ (spin-orbit effects included)	1198

		Page
A-7.13.	Density functional potential energy curves for Xe_2^+ assuming $\Lambda\text{-S}$ coupling	1100
A-7.14.	Density functional potential energy curves	1199
	for Xe_2^+ (spin-orbit effects included)	1200
A-7.15.	Spectroscopic constants for Ne_2^+	1201
A-7.16.	Spectroscopic constants for Ar_2^+	1202
A-7.17.	Spectroscopic constants for Kr_2^+	1203
A-7.18.	Spectroscopic constants for Xe_2^+	1204
A-7.19.	Summary of spectroscopic constants for the A $^2\epsilon^+_{1/2u}$ state of the noble gas dimer ions	1205
A-7.20.	Absorption cross sections (in 10^{-18} cm ²) for the $I(1/2)_u \rightarrow II(1/2)_g$ transition in Ne_2^+ , Ar_2^+ , Kr_2^+ , and Xe_2^+ based on <u>ab initio</u> calculated spectra shifted to coincide with experimental absorption maxima	1206
A-7.21.	The absorption spectra for the $I(1/2)_u$ $\rightarrow II(1/2)_g$ transition in Ne_2^+ , Ar_2^+ , Kr_2^+ and Xe_2^+ determined from <u>ab initio</u> con. Trustion interaction calculations	1207
A-7.22.	Potential energy curves for the ground and excited states of ArKr ⁺ without spin-orbit coupling	1208
A-7.23.	Potential energy curves for the ground and excited states of ArKr including spin-orbit	1209

		Page
A-7.24.	Theoretical absorption curves for the transitions from the ground state to the $^{\rm III}_{1/2}$ and $^{\rm IV}_{1/2}$ excited states of	
	ArKr ⁺	1210

A-7. POTENTIAL ENERGY CURVES, ELECTRONIC ENERGIES, SPECTROSCOPIC CONSTANTS AND ABSORPTION SPECTRA FOR Ne₂⁺, Ar₂⁺, Kr₂⁺, Xe₂⁺ AND ArKr⁺.

General References

- 1. H. H. Michels, R. H. Hobbs, and L. A. Wright, "Electronic Structure of the Noble Gas Dimer Ions. I. Potential Energy Curves and Spectroscopic Constants" (in press).
- 2. W. R. Wadt, D. C. Cartwright, and J. S. Cohen, "Theoretical Absorption Spectra for Ne_2^+ , Ar_2^+ , Kr_2^+ and Xe_2^+ in the Near Ultraviolet," Appl. Phys. Letts. <u>31</u>, 672 (1977).
- C. F. Bender and N. W. Winter, "Theoretical Absorption Spectra of ArKr⁺," Appl. Phys. Letts. <u>33</u>, 29 (1978).

Tabular Data. A-7.1. Long-range-force interaction parameters for the noble gas dimer ions.

Species	a _o (bohr ³)	$\Sigma < r_i^2 > (bohr^2)$	<u>I (eV</u>)
Ne	2.66 a,b	9.699 ^d	21.564 e,f
Ne	(1.32) °	6.842	40.962
Ar	11.08	26.145	15.759
Ar	(6.52)	20.054	27.629
Kr	16.74	39.674	13.999
Kr ⁺	(10.78)	31.847	24.359
Xe	27.29	62.511	12.127
Xe ⁺	(18.90)	52.022	21.2

a R. R. Teachout and R. T. Pack, Atomic Data 3, 195 (1971).

$$\alpha_0 \sim \Sigma < r_i^2 > \frac{2}{r_i}$$

b A. Dalgarno, Adv. Physics <u>11</u>, 281 (1962).

The ion polarizabilities are scaled from the atomic $lpha_{0}$ using the hydrogenic form,

d Non-relativistic Hartree-Fock calculation.

e R. L. Kelly and D. E. Harrison, Jr., Atomic Data 3, 177 (1971).

f C. E. Moore, Nat. Bur. Std. (U.S.) Circ. 467 (1958).

Graphical Data. A-7.2. Ab initio potential energy curves for Ar_2^+ without inclusion of spin-orbit coupling.

Tabular Data. A-7.3. Potential energy curves for Ne $_2$ including spin-orbit coupling. Energies in eV relative to c.g. of Ne $_2^+$ at R = $^\circ$.

R (a.u.)	A 2 + Zu	m	B 21/28	2 2 1/2 B 2 1/2 C 13/2 C 2 1/2 D 2 + 1/2 D	C 21/2u	D 2+ 1/2u
2.8	-0.89497					
3.0	-1.28953	1.26194	1.32586	2.57256	2.63768	4.50598
3.2	-1.37990	0.48908	0.55283	1.43735	1.50265	3.06507
3.4	-1.31808	0.07755	0.14109	0.76574	0.83129	2.11391
3.6	-1.18232	-0.12882	-0.06558	0.37242	0.43830	1.47550
3.8	-1.01630	-0.21895	-0.15609	0.14705	0.21334	1.04125
0.4	-0.84617	-0.24597	-0.18362	0.02207	0.08890	0.74236
4.2	-0.68726	-0.24091	-0.17924	-0.04416	0.02338	0.53395
η·η	-0.54766	-0.22074	-0.15998	-0.07598	-0.00748	0.38739
9.4	-0.43046	-0.19535	-0.13579	-0.08868	-0.01897	0.28363
8	-0.03230	-0.03230 -0.03230	-0.03230	-0.03230	09790.0	09490.0

Tabular Data, A-7.4. Potential energy curves for ${\rm Ar}_2^+$ including spin-orbit coupling. Energies in eV relative to c.g. of ${\rm Ar}_2^+$ at ${\rm R}=^\infty$.

mergaco in contractor constituents	מים ביו	2 2				
R (a.u.)	A 2 + 1/2	B 2 13/2g	B 2 1/2R	c 2 13/2u	c 2 1/2u	D 25+ 1/2u
4.2	-1.18618	1.65365	1.76982	2.77055	2.89064	4.95560
4.4	-1.34226	ı	•	•	٠	•
7.6	-1.38227	0.44736	0.56260	1.14139	1.26240	2.81570
4.8	-1.34896	0.14654	0.26118	.0.69322	0.81483	2.14999
5.0	-1.27160	-0.03714	0.07676	0.39334	0.51563	1.65681
5.2	-1.16918	-0.14504	-0.03200	0.19416	0.31726	1.28605
5.4	-1.05453	-0.19620	-0.08425	0.07089	0.19489	1.01491
5.8	-0.82182	-0.22463	-0.11562	-0.05891	0.06740	0.64328
0.9	-0.71382	-0.21307	-0.10599	-0.08259	0.04512	0.52554
6.2	-0.61523	-0.19933	19160.0-	74960.0-	0.03290	0.43043
8	-0.05919	-0.05919	-0.05919	-0.05919	0.11837	0.11837

Tabular Data. A-7.5. Potential energy curves for ${\rm Kr}_2^+$ including spin-orbit coupling. Energies in eV relative to c.g. of ${\rm Kr}_2^+$ at R = $^{\omega}$.

R (a.u.)	A 25+	В 2 13/29	B 2 1/28	C 2 113/21	C 2 1/2u	D 2 + 1/2m
4.8	-1.28087	1	1			1
5.0	-1.38709	0.69575	1.09151	1.43876	1.91284	3.18488
5.2	-1.41503	0.27628	0.66358	0.87603	1.35598	2.46023
5.4	-1.38910	0.00729	0.38423	0.48908	0.97546	1.92201
5.6	-1.32866	-0.16482	0.19960	0.22295	0.71627	1.51846
5.8	-1.24730	-0.28795	0.06150	0.02825	0.52948	1.19889
0.9	-1.15345	-0.33612	-0.00457	-0.08468	0.42439	0.98465
4.9	-0.95763	-0.39054	-0.10324	-0.22768	0.30020	0.58250
6.8	-0.77681	-0.38945	-0.15500	-0.28414	0.26501	0.52489
7.0	-0.69752	-0.37898	-0.17192	-0.27435	0.26591	0.18097
7.2	-0.62696	-0.36673	-0.18626	-0.29870	0.27285	0.45125
8	-0.22197	-0.22197	-0.22197	-0.22197	0.44393	0.44393

Tabular Data. A-7.6. Potential energy curves for Xe_2 including spin-orbit coupling. Energies in eV relative to c.g. of Xe_2^2 at $R=\infty$.

R (a.u.)	$A = \frac{2}{\Sigma} + \frac{1}{2}$	B 2 13/2g	B 2 1/28	c 2 13/2u	c 2 1/2u	D 2 1/2u
5.6	-1.40193		,	,		-
5.8	-1.48344	0.33100	0.95693	0.93646	1.92269	2.74968
0.9	-1.50867	0.02237	0.61482	0.52197	1.52369	2.25511
6.2	-1.49362	-0.16564	0.38771	0.24616	1.26243	1.89954
4.9	-1.45490	-0.33783	0.17473	0.00150	1.03543	1.59142
9.9	-1.39811	-0.44565	0.02261	-0.16640	0.88498	1.36717
6.8	-1.33076	-0.52015	-0.09755	-0.29043	0.77902	1.19677
7.0	-1.25/01	-0.55939	-0.18338	-0.37035	0.71648	1.07791
7.4	-1.10398	-0.58459	-0.29772	-0.45724	0.66367	0.93575
7.6	-1.03040	-0.58149	-0.33514	-0.47699	0.66026	0.89673
7.8	-0.95973	-0.57425	-0.36461	-0.48069	0.67123	0.87026
8.0	-0.89665	-0.56304	-0.38755	-0.49278	0.67575	0.85330
8.2	-0.83747	-0.54924	-0.40162	-0.49133	0.69129	0.84609
8	-0.43549	-0.43549	-0.43549	-0.43549	0.87098	0.87098

Tabular Data. A-7.7. Density functional potential energy curves for Ne $_2^+$ assuming Λ -S coupling. Energies in a.u. relative to E($^\infty$) = -256.3646 a.u.

R (a.u.)	A ² E _u +	В ² П	0 2 n	D 2 E +
3.0	04737	9540.	.09573	.16557
3.2	05068	91610.	.05401	.11261
3.4	04840	10100.	.02933	.07765
3.6	0.640	00355	.01487	71450.
3.8	03729	-,00686	.00659	.03820
0.4	03101	00785	.00200	.02720
4.2	02515	-,00767	77000-	13610.
7.7	01998	-,00693	00161	01410.
4.6	01563	-,00599	00207	,01024
8	.0	.0	.0	0.

Graphical Data. A-7.8. Density functional potential energy curves for Ne_2^+ (spin-orbit effects included).

Tabular Data. A-7.9. Density functional potential energy curves for ${\rm Ar}_2$ assuming A-S coupling. Energies in a.u. relative to E ($^{\infty}$)² = -1053.0921.

R (8.u.)	A ² E ⁺ u	В ² л	2 4 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	+ 3 D
4.2	04353	.06295	.10399	.18203
9.4	05070	.01862	.04412	.10336
4.8	04945	.00756	.02765	.07887
5.0	04659	.00081	.01663	.06072
5.2	04279	00316	.00931	.04707
5.4	03855	00504	.00478	.03706
5.8	02991	00608	.00001	.02330
0.9	02589	00566	00086	.01890
6.2	02221	00515	00137	.01532
8	0.	·	·	

Graphical Data. A-7.10. Density functional potential energy curves for Ar_2^+ (spin-orbit effects included).

Tabular Data. A-7-11. Density functional potential energy curves for Kr_2^+ assuming $\Lambda-S$ coupling. Energies in a.u. relative to $E(\infty)$ = -5503.6239.

R (a.u.)	$\frac{A^2}{a}$	B 2 II	C 2n	D 2 +
5.0	04987	.03373	.06103	.11527
5.2	05068	.01831	.04035	.08833
5.4	04949	.00843	.02613	71890.
9.6	04701	.00210	.01635	.05288
5.8	04373	00243	.00920	65070.
6.0	03999	00420	.00505	.03206
4.9	03211	00620	00021	.01933
6.8	02468	00616	00229	.01159
7.0	02136	00577	00266	76800.
7.2	01835	00532	00282	06900
8	.0	.0	.0	·

Graphical Data. A-7.12. Density functional potential energy curves for Kr_2^+ (spin-orbit effects included).

Fabular Data. A-7.13. Density functional potential energy curves for Xe_2^+ assuming A-S coupling. Energies in a.u. relative to $E(\infty)$ = -14463.8615.

R(a.u.)	A 2 + 4	в 2п	2 2	+ 3 0
5.8	05028	.02817	.05042	70260.
0.9	05064	.01683	.03519	.07264
6.2	04955	26600.	.02505	.05613
.7.9	04748	.00359	90910.	.04531
9.9	04475	00037	68600.	.03541
6.8	04161	00311	.00533	.02750
7.0	03825	00455	.00239	.02142
7.4	03139	00548	00080	.01292
7.6	02808	00537	00153	00010.
7.8	02h9h	00510	00166	.00768
0.0	02202	00469	00211	.00580
8.2	01932	00418	00205	.00451
8	.0	.0	.0	

Graphical Data. A-7.14. Density functional potential energy curves for Xe_2^+ (spin-orbit effects included).

Tabular Data. A-7.15. Spectroscopic constants for Ne_2^+

State	T _e (eV)	we (cm-1)	T_e (eV) ω_e (cm ⁻¹) $\omega_e X_e$ (cm ⁻¹)	$\alpha_e(cm^{-1})$ $r_e(A)$	r _e (A)	$B_{e}(cm^{-1})$ $D_{e}(eV)$ $D_{o}(eV)$	D _e (eV)	D _o (eV)
D^{2} Σ^{+}	544.4	(vertical	vertical excitation energy, repulsive curve)	ergy, repuls	ive curve			
c 2 1/20	1.359	122.5	4.8	9910.0	2.50	0.2665	0.085	0.078
c 2113/2u	1.287	103.9	8.7	0.0194	2.54	0.2579	090.0	0.054
B 21/2g	1.195	5.945	0.6	0.0125	2.15	0.3626	0.152	0.137
в 2п3/28	1.132	250.8	9.6	0.0122	2.14	0.3634	0.215	0,199
A 25+	0.0	0.765	6.1	0600.0	1.69	0.5840	1.347	1.310

Tabular Data. A-7.16. Spectroscopic constants for Ar_2^+ .

State	T _e (eV)	$T_e(eV) = \omega_e(cm^{-1}) = \omega_e$	$\omega_{\rm e} \chi_{\rm e} ({\rm cm}^{-1}) \alpha_{\rm e} ({\rm cm}^{-1}) r_{\rm e} (A) B_{\rm e} ({\rm cm}^{-1}) D_{\rm e} ({\rm eV}) D_{\rm o} ({\rm eV})$	$a_e^{(cm^{-1})}$	r _e (A)	$B_{e}(cm^{-1})$	D _e (eV)	D _o (eV)
D 2,+ 1/2g	4.198		(vertical excitation energy, repulsive curve	n energy,	repulsi	re curve)		
c 2 1/2u	1.413	62.4	6.3	7400.0	3.40	0.0732	0.087	0.084
c 2 3/2u	1.285	53.7	3.7	0.0043	3.40	0.0732	0.037	0.034
B 2 1/2g	1.264	146.9	12.0	0.0030	3.02	0.0924	0.058	0.049
B 213/28	1.155	153.7	10.1	0.0024	3.02	0.0927	0.167	0.158
A 2r+	0.0	297.9	1.7	0.0011	2.43	0.1428	1.322	1.304

Tabular Data. A-7.17. Spectroscopic constants for Kr_2 .

State Te	(eV)	w (cm ⁻¹)	$\omega_{e^{X}e^{(cm^{-1})}}$	a (cm 1)	re(A)	$B_{e}(cm^{-1})$ $D_{e}(eV)$ $D_{o}(eV)$	D _e (eV)	D (eV
2+ 2 1/28	3.875	(vertical	(vertical excitation energy repulsive curve	nergy repuls	ive curve			
B2n1/2g	2.079	(vertical	(vertical excitation energy, repulsive curve	nergy, repul	sive curv	e)		
c 211/2u	1.679	70.2	1.3	0.0004	3.64	0.0304	0.179	0.175
c 2 3/2u	1.115	51.7	7.0	0.0001	3.85	0.0271	110.0	0.074
B 713/28	1.019	78.0	1.9	700000	3.48	0.0333	0.173	0.168
A 2 + 0.0	0.0	176.7	0.7	0.0002	2.75	0.0533	1.192	1.181

Tabular Data. A-7.18. Spectroscopic constants for Xe_2 .

State	Te(eV)	E (Cm-1)	w X (cm ⁻¹)	$\alpha_e^{(cm^{-1})}$	r _e (A)	$B_e(cm^{-1})$ $D_e(eV)$ $D_o(eV)$	D (eV)	Do(eV)
D 2 + 3.764	3.764	(vertical	(vertical excitation energy, repulsive curve)	energy, rej	pulsive cur	.ve)		
c 21/2u	2.169	54.5	0.3	0.0002	3.97	0.0163	0.209	0.206
в 2 1/28	2.123	(vertical	(vertical excitation energy, repulsive curve)	energy, rei	pulsive cur	ve)		
c 2 13/2u 1	1.034	58.5	0.3	0,000	7.00	0.0160	0.042	0.038
в ² п _{3/2g} о.	0.923	49.7	0.3	0.0003	3.91	0.0168	0.149	0.146
A 2 1/2u 0.0	0.0	117.2	7.0	0.0001	3.18	0.0253	1.072	1.065

Tabular Data. A-7.19. Summary of spectroscopic constants for the A $^2\Sigma^+$ state of the noble gas dimer ions.

Ion	$\frac{D_{e}(eV)}{e}$	(-so) D _e (ev)	< <u>r >(a.u.)</u>	{-S0}* R (a.u.)
Ne ₂ +	1.35	1.37	0.965	3.19
Ar 2	1.32	1.40	1.663	4.59
Kr ₂ +	1.19	1.39	1.952	5.17
Xe ₂ +	1.07	1.38	2,338	5.94

*{-50}: Without spin-orbit effects.

Tabular Data. A-7.20. Absorption cross sections (in 10^{-18} cm²) for the I(1/2) $_{\rm u}$ + II(1/2) $_{\rm g}$ transition in Ne₂, Ar₂, Kr₂, and Xe₂ based on <u>ab initio</u> calculated spectra shifted to The unshifted cross sections for Art, Kr2, coincide with experimental absorption maxima. and Xe_2^+ are shown in parentheses.

		KrF 248 nm	XeBr 282 nm	XeCl	XeF 352 nm
	(300 °K)	23	17	7.4	0.96
	(%.009)	21	15	8.6	2.5
Art	(300°K)	10 (1.2)	44 (18)	39 (38)	8.7 (31)
	(Y. 009)	14 (3.4)	34 (19)	32 (30)	15 (27)
	(300°K)	0.31 (0.061)	14 (5.1)	40 (24)	36 (42)
,	(800°K)	1.7 (0.45)	19 (9.4)	32 (23)	31 (31)
Xe;	(300°K)	$0.0031 (7.4 \times 10^{-8})$	1.7 (0.041)	16 (2.9)	48 (31)
	(H° 009)	$0.041 (1.8 \times 10^{-7})$	5.9 (0.14)	18 (7.0)	34 (27)

Graphical Data. A-7.21. The absorption spectra for the $I(1/2)_u$ \rightarrow $II(1/2)_g$ transition in Ne_2^+ , Ar_2^+ , Kr_2^+ , and Xe_2^+ determined from ab initio configuration interaction calculations.

Graphical Data. A-7.22. Potential energy curves for the ground and excited states of $ArKr^+$ without spin-orbit coupling.

Graphical Data. A-7.23. Potential energy curves for the ground and excited states of ArKr⁺ including spin-orbit coupling.

Graphical Data. A-7.24. Theoretical absorption curves for the transitions from the ground state to the $\rm III_{1/2}$ and $\rm IV_{1/2}$ excited states of ArKr $^+$.

A-8. POTENTIAL ENERGY CURVES, VIBRATIONAL LEVELS, TRANSITION MOMENTS, FLUORESCENCE AND EINSTEIN TRANSITION PROBABILITIES FOR NeF, ArF, ArCl, KrF, and KrCl. WAVENUMBERS, FRANCK-CONDON FACTORS, AND Rⁿ - CENTROIDS FOR XeF

CONTENTS

		Page
A-8.1.	Potential energy curves for the covalent and ion-pair states of NeF including spin-orbit coupling	1215
A-8.2.	Vibrational levels and wavefunctions for the $n(2\pi)$	
	$B(^2\Sigma_{1/2})$ state of NeF	1216
A-8.3	Transition moments for the states of NeF without spin-orbit interaction as a function of internuclear	
	separation	1216
A-8.4.	Calculated fluorescence for the $2^2\Sigma \rightarrow 1^2\Sigma$ transition of NeF at T = 450 and 2000°K	1217
A-8.5.	Calculated fluorescense of NeF for the $2^2\Sigma \rightarrow 1^2\Sigma$	
	transition, the 2^2 II \rightarrow 1^2 II transition, and the sum of the two rescaled to unity at its maximum	1217
A-8.6.	Potential energy curves and six lowest vibrational levels for the $\rm II_{3/2}$, $\rm III_{1/2}$, $\rm IV_{1/2}$ states of ArF	1218
A-8.7.	Calculated Einstein transition probabilities for the	
	$III_{1/2}$ - $I_{1/2}$ transition from the first four vibrational levels of the $III_{1/2}$ state of ArF	1219
A-8.8.	The Einstein A-coefficients for the five strongest bands of ArF	1220
A-8.9.	The total Einstein A-coefficient for ArF obtained by summing the contributions from the five strongest	
	transitions with equal weightings	1221
A-8.10.	The potential energy curves and six lowest vibrational levels for the $^{11}_{3/2}$, $^{111}_{1/2}$, and $^{1V}_{1/2}$ states ArCl	1222
A-8.11.	Calculated Einstein transition probabilities for the	
	$III_{1/2}$ - $I_{1/2}$ transition from the first four vibrational	
	levels of the $III_{1/2}$ state of ArCl	1223

		Page
A-8.12.	The Einstein A-coefficients for the five strongest bands of ArCl	1224
A-8.13.	The total Einstein A-coefficients for ArCl obtained by summing the contributions from the five strongest transitions with equal weightings	1225
A-8.14.	Comparison of ArF and ArCl emission features \dots .	1226
A-8.15.	The potential energy curves and six lowest vibrational levels for the ${\rm II}_{3/2}$, ${\rm III}_{1/2}$, and ${\rm IV}_{1/2}$ states of KrF including the positions of the vibrational levels for each state	1227
A-8.16.	Calculated Einstein transition probabilities for the $^{\rm III}_{1/2}$ - $^{\rm I}_{1/2}$ transition from the first four vibrational levels of the $^{\rm III}_{1/2}$ state of KrF	1228
A-8.17.	Comparison of the experimental KrF fluorescence using Ne and Ar as diluent gases	
A-8.18.	The Einstein A-coefficients for the five strongest bands of KrF	1230
A-8.19.	The total Einstein A-coefficient for KrF obtained by summing the contributions from the five strongest transitions with equal weighting	1231
A-8.20.	KrF fluorescence spectrum	1232
A-8.21.	The potential energy curves and six lowest vibrational levels for the ${\rm II}_{3/2}$, ${\rm III}_{1/2}$, and ${\rm IV}_{1/2}$ states of KrCl .	1233
A-8.22.	The Einstein A-coefficient for the III $_{1/2}$ - I $_{1/2}$ transition for KrCl in absolute units	1234
A-8.23.	The Einstein A-coefficients for the five strongest bands of KrCl	1235
A-8.24.	The total Einstein A-coefficient for KrCl obtained by summing the contributions from the five strongest transitions with equal weightings	1236
A-8.25.	KrCl fluorescence spectrum	1237

		Page
A-8.26.	Comparison of KrF and KrCl emission features	1238
A-8.27.	Abbreviated rotational level diagram for X, B, and D states of XeF, illustrating theoretically predicted branch structures for B-X and D-X transitions	1239
A-8.28.	Wavenumbers (cm $^{-1}$) of assigned lines in 1-2 band of XeF B \rightarrow X transition	1240
A-8.29.	Franck-Condon factors (× 10^3) for B-X system of XeF	1241
A-8.30.	Franck-Condon factors (× 10^3) for D-X system of XeF	1242
A-8.31.	R centroids (A) for B-X system of XeF	1243
A-8.32.	Potential curves and energy levels for X state of XeF: rotationless potential (solid) and effective potential for N = 70	1244
A-8.33.	Spectroscopic parameters (cm ⁻¹) for X, B, and D states of XeF	1245
A-8.34.	Spectroscopic constants (cm ⁻¹) for 1-2 band of XeF B-X system, from least-squares fit of assigned lines having	
	$N \leq 40$	1246

A-8. References:

- 1. N. W. Winter, C. F. Bender, and T. N. Rescigno, "Potential Energy Curves and Predicted Fluorescence for Neon Fluoride," J. Chem. Phys. 67, 3122 (1977).
- N. W. Winter, T. N. Rescigno, "Theoretical Calculation of the Bound-Free Emission Spectra of KrF," J. Chem. Phys. (in press).
- 3. P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Velazco, and D. W. Setser, "Spectroscopic Studies of Diatomic Noble Gas Halides. IV. Vibrational and Rotational Constants for the X, B and D States of XeF," J. Chem. Phys. 68, 5187 (1978).
- J. R. Murray and H. T. Powell, "KrCl Laser Oscillation at 222 nm," Appl. Phys. Letts. <u>27</u>, 252 (1976).

Graphical Data. A-8.1. Potential energy curves for the covalent and ion-pair states of NeF including spin-orbit coupling.

Graphical Data. A-8.2. Vibrational levels and wavefunctions for the B($^2\Sigma_{1/2}$) state of NeF.

Graphical Data. A-8.3. Transition moments for the states of NeF without spin-orbit interaction as a function of internuclear separation.

Graphical Data. A-8.4. Calculated fluorescence for the $2^2\Sigma$ \to $1^2\Sigma$ transition of NeF at T = 450 and 1000°K.

Graphical Data. A-8.5. Calculated fluorescence of NeF for the $2^2\Sigma \to 1^2\Sigma$ transition (curve a), the $2^2\Pi \to 1^2\Pi$ transition (curve b), and the sum of the two (curve c) rescaled to unity at its maxium.

Graphical Data. A-8.6. Potential energy curves and six lowest vibrational levels for the ${\rm II}_{3/2}$, ${\rm III}_{1/2}$, ${\rm IV}_{1/2}$ states of ArF. To facilitate identification of the levels, note that the level separation is almost equal for each state.

Graphical Data. A-8.7. Calculated Einstein transition probabilities (A-coefficients) for the $III_{1/2}$ - $I_{1/2}$ transition from the first four vibrational levels of the $III_{1/2}$ state of ArF. Each curve has been weighted by a Boltzmann factor for T = 450°K.

Graphical Data. A-8.8. The Einstein A-coefficients for the five strongest bands of $\mbox{ArF.}$

Graphical Data. A-8.9. The total Einstein A-coefficient for ArF obtained by summing the contributions from the five strongest transitions with equal weightings.

Graphical Data. A-8.10. The potential energy curves and six lowest vibrational levels for the $\rm II_{3/2}$, $\rm III_{1/2}$, and $\rm IV_{1/2}$ states of ArCl. To facilitate identification of the levels note that level separation is almost equal for each state.

Graphical Data. A-8.11. Calculated Einstein transition probabilities (A-coefficients) for the $III_{1/2}$ - $I_{1/2}$ transition from the first four vibrational levels of the $III_{1/2}$ state of ArCl. Each curve has been weighted by a Boltzmann factor for T = 450°K.

Graphical Data. A-8.12. The Einstein A-coefficients for the five strongest bands of ArCl.

Graphical Data. A-8.13. The total Einstein A-coefficient for ArCl obtained by summing the contributions from the five strongest transitions with equal weightings.

Tabular Data. A-8.14. Comparison of ArF and ArCl emission features.

Transition		ArF			Arc1**	
	λ calc.	γ exp.	T calc.	λ calc.	γ exp.	T calc.
$B^2\Sigma_{1/2} + X^2\Sigma_{1/2}$	183 nm	пп 190	3.6 ns	173 nm	174 nm	4.4 ns
$D^2\Pi_{1/2} + X^2\Sigma_{1/2}$	175 nm		34 ns	167 nm	169 nm	su 61
$c^{2}\pi_{3/2} + A^{2}\pi_{3/2}$	188 nm		53 ns	175 nm		su 62
$D^2 \pi_{1/2} + A^2 \pi_{1/2}$	185 nm		94 ns	174 nm		223 ns
$B^2\Sigma_{1/2} + A^2\Pi_{1/2}$	194 nm		227 ns	180 nm		62 ns

* Evaluated at $R = 4.5 a_0$

** Evaluated at $R = 5.5 a_0$

Graphical Data. A-8.15. The potential energy curves and six lowest vibrational levels for the ${\rm II}_{3/2}$, ${\rm III}_{1/2}$, and ${\rm IV}_{1/2}$ states of KrF including the positions of the vibrational levels for each state. To facilitate identification of the levels, note that level separation is almost constant for each state.

Graphical Data. A-8.16. Calculated Einstein transition probabilities (A-coefficients) for the $III_{1/2}$ – $I_{1/2}$ transition from the first four vibrational levels of the $III_{1/2}$ state of KrF. Each curve has been weighted by a Boltzmann factor for T = 450°K.

COMPARISON OF THE KrF III 1/2 + 1 1/2 TRANSITION WITH Ne AND Ar AS BUFFER GASES

and Ar as diluent gases as measured by J. R. Murray and H. T. Powell (in Electronic Graphical Data, A-8.17. Comparison of the experimental KrF fluorescence using Ne Transition Lasers II, edited by L. E. Wilson).

Graphical Data. A-8.18. The Einstein A-coefficients for the five strongest bands of KrF.

Graphical Data. A-8.19. The total Einstein A-coefficient for KrF obtained by summing the contributions from the five strongest transitions with equal weighting.

Graphical Data. A-8.20. KrF fluorescence spectrum.

Graphical Data. A-8.21. The potential energy curves and six lowest vibrational levels for the ${\rm II}_{3/2}$, ${\rm III}_{1/2}$, and ${\rm IV}_{1/2}$ states of KrCl. To facilitate identification of levels, note the level separation is almost constant for each state.

Graphical Data. A-8.22. The Einstein A-coefficient for the III $_{1/2}$ - $_{1/2}$ transition for KrCl in absolute units. Each curve has been weighted by a Boltzmann factor for T = 450°K.

Graphical Data. A-8.23. The Einstein A-coefficients for the five strongest bands of KrCl.

Graphical Data. A-8.24. The total Einstein A-coefficient for KrCl obtained by summing the contributions from the five strongest transitions with equal weightings.

Graphical Data. A-8.25. KrCl fluorescence spectrum.

Tabular Data. A-8.26. Comparison of KrF and KrCl emission features.

		KrF			KrC1	
Transition	Wavelength (nm)	ч	Lifetime (nsec)	Wavelength (nm)		Lifetime (nsec)
	Calc ^a	Exp	Calca	Calc	Exp	Calc
$B^2\Sigma_{1/2} + X^2\Sigma_{1/2}$	239	248	7	214	222	7.9
$D^2 \pi_{1/2} + x^2 \Sigma_{1/2}$	211	220	13	191	199	11
$c^2 \pi_{3/2} + A^2 \pi_{3/2}$	264	~275	75	220		87
$D^2 \pi_{1/2} + A^2 \pi_{1/2}$	228	~236	96	200		278
$B^2\Sigma_{1/2} + A^2\Pi_{1/2}$	259		180	226	235	7.1

 $^{\rm a}{\rm P}$. J. Hay and T. H. Dunning, Applied Phys. Lett. 28, 649 (1976).

bj. R. Murray and H. T. Powell, Applied Phys. Lett. 29, 252 (1976).

Graphical Data. A-8.27. Abbreviated rotational level diagram for X, B, and D states of XeF, illustrating theoretically predicted branch structures for B-X and D-X transitions. The energies are arbitrary, with X levels taken as K'' with α = -0.135, and B and D levels taken as K'e'f with δ_B = 1.87 and δ_D = -0.87. In our notation the illustrated transitions for each system are, from left to right, $P_e(2)$, $R_e(2)$, $P_f(2)$, and $R_f(2)$.

Tabular Data. A-8.28. Wavenumbers (cm $^{-1}$) of assigned lines in 1-2 band of XeF B \rightarrow X transition.

N'	P_f branch	P, branch	R, branch	R, branch
4		28770.77		
5		770.02		
6				28 772.78
7	28769.85			
9		766,63		
10		765.61	28774.05	
11		764.54	773.73	
12		763.41	773.44	770.43
13	765.00	762.23		769.85
14	763.97	760.99	772.59	
15	762.87	759.68		
16		758.31		
17	760.56	756.88		
18	759.32	755.38	770.31	
19	758.01		769.55	
20	756.65		768.75	
21	755.25	750.62	767.89	762.87
22		748.93	766.96	
23				760.56
24	750.62		765.00	759.32
25	748.93	743.52	763.97	758.01
26		741.57	762.87	756.65
27		739.61		755,25
28	743.64	737.55	760.43	
29	741.80	735.46	759.16	
30	739.89	733.34	757.81	750.75
31	737.95	731.14	756.43	749.18
32	735.92	728.91	754.99	747.52
33	733.86	726.66	753.49	745.81
34	731.74	724.28	751.96	744.06
35	729.57		750.38	742,27
36	727.37	719.50	748.74	740.43
37	725.12	717.05		738.55
38	722.80	714.50		736.62
39	720.44	711.95	743,64	734.65
40	718.05	709.34	741.80	732,64
41	715.65	706.71	739.89	730.58
42	713.13	704.07		728.50
43	710.64	701.31	736.06	726,36
44	708.09	698.58	734.09	724.28
45	705.51	695.80	732,09	
46	702.84	693.02	730.03	719.86
47		690.23	727.99	717.63
48	697.48	687.33	725.83	715,41
49	694.75	001.00	723.69	713.13
50	692.02		721.51	710.91
51	000.00		719,32	120.31
52			717.05	
53			714.81	

Tabular Data. A-8.29. Franck-Condon factors $(\times 10^3)$ for B-X system of XeF. Successive entries for each band are values for N' = N" = 0, 20, 30, 40, 50, 60, 70.

υ"	v'=0	1	2	3	4	5
0	3	8	15	24	32	41
	4	9	17	25	34	43
	4	10	19	28	36	4
	5	12	21	31	40	41
	7	15	25	35	45	52
	10	20	32	42	51	51
	16	27	40	51	59	64
1	60	85	101	99	86	6
	66	90	104	99	85	6
	75	96	108	100	83	6
	90	105	113	100	80	5
	114	116	118	97	74	5
	151	127	121	91	64	3
	211	133	121	78	50	2
2	323	129	68	16	1	
	345	122	62	12	0	
	372	110	53	7	0	1
	412	91	42	2	1	13
	463	63	28	0	5	20
	521	27	14	4	12	3
	567	0	5	24	20	4:
3	489	20	12	68	40	3
	480	37	14	74	37	2
	463	65	15	81 ′	31	2
	427	119	15	89	22	1
	360	214	10	97	9	1:
	249	354	1	104	0	
	98	479	1	109	22	•
4	77	518	11	24	43	
	53	526	25	22	59	
	29	517	50	20	80	
	6	468	103	20	116	
	1	343	184	23	165	
	30	129	256	29	206	2
5	34	31	401	39	123	7
	39	8	373	52	117	9
	42	0	312	68	105	13
	38	29	193	80	80	173
	19	101	41	64	34	170
6	0	116	26	103	15	12
	1	97	66	59	8	8
	4	62	120	18	2	43
	10	13	154	1	2	,
7	4	37	30	124	4	38
	1	47	4	112	8	50
	0	45	4	73	10	47
8	3	5	57	41	4	
	2	14	22	57	0	
9	2	0	44	8	12	,

 $a_{(v'',N'')}$ levels (7,30), (6,40), (5,50), (4,50), (4,60), (3,60), (3,70), (2,70), and (1,70) lie above the dissociation limit; hence they can rotationally predissociate.

Tabular Data. A-8.30. Franck-Condon factors (\times 10³) for D-X system of XeF. Multiple entries, where they occur, are for N' = N" = 0, 20, and 30, successively.

e **	t. , = 0	1	2	3	4	5
0	75	96	111	111	104	9:
	81	100	114	112	105	92
	6.9	105	117	114	105	9
1	425	114	54	8	0	
	443	106	49	6	0	
	464	94	43	3	1	
2	441	105	27	88	35	23
	425	130	26	91	31	2:
	401	165	25	93	26	15
3	16	535	68	7	85	14
	9	516	92	7	98	11
	2	482	126	7	114	
4	34	0	401	85	81	122
	34	5	356	101	78	144
	32	20	291	118	73	171
5	2	76	89	100	33	100
	4	59	125	61	27	76
	6	37	166	25	18	46
6	1	42	8	182	4	18
	0	44	0	167	11	2€
	0	41	8	126	20	34
7	2	9	46	66	17	2
	1	14	22	86	3	(
	0	18	4	86	0	2
8	1	1	40	11	36	5
	1	4	24	28	13	2
9	1	0	26	1	33	3
0	0	0	16	0	24	1

Tabular Data, A-8.31. R centroids (A) for B-X system of XeF. The first entry is for N' = N'' = 0, and the second (where given) is for N' = N'' = 40. Omitted values are ill defined owing to weak Franck-Condon overlap.

v"	v'=0	1	2	3	4	5
0	2.536	2.494	2.466	2.443	2,423	2,406
	2.546	2.500	2.472	2.448	2.428	2.410
1	2.565	2.508	2.479	2,453	2.432	2,413
	2.576	2.511	2.485	2.456	2,436	2,416
2	2.600	2.499	2.496	2.435	2.404	2.458
	2.613	2.476	2.515	2.344	2,443	2.450
3	2.650	2.858	2.326	2.536	2.412	2.458
	2.673	2.730	2.198	2.572	2,329	2.514
4	2.785	2,683	3.352	2.884	2.702	2.091
	3,131	2,698	2,877	3.162	2.712	•••
5	2,592	2,877	2.714	3.182	2.839	2.899
	2,698	2,518	2.698	2.941	2.985	2.828
6	•••	2,695	2.640	2.665	3,361	2.856
	2,588	2,880	2.699	•••	2,657	3,444
7	2,830	2,604	2.775	2.742	3.779	2.708
8	2.724	2.445	2.725	2.758	2,257	•••
9	2.674	•••	2.704	2.771	2,622	•••
10	2.641		2.689	2.811	2.700	3.617

Graphical Data. A-8.32. Potential curves and vibrational energy levels for X state of XeF: rotationless potential (solid) and effective potential for N=70.

Tabular Data. A-8.33. Spectroscopic parameters (cm $^{-1}$) for X, B, and D states of XeF. Standard errors (lo, in parentheses) from the vibrational parameter determination are given in terms of last significant digits.

	X	В	ν
T.	0	25 811.0(7)	38 051,4(7)
Cu1(2,)	225, 40(150)	309,02(11)	350,14(19)
cuz(- wexe)	-10.874(1000)	-1.505(9)	-1.899(18)
Cus	0.2981(2700)		
CW	- 0, 08125(3100)		
Cus	0.004963(1330)		
D _e	1175(20)	42 783(20)	44 080(20)*
$C_{r1}(B_{e})$	0.19326b	0.14670	0.1608
cr2(-a,)	-6.985×10^{-3}	- 9.9×10 ⁻⁴	-1.20×10 ⁻³
C+3	1.596×10 ⁻⁴		
C+4	-7.167×10^{-5}		
R _e (Å)	2.293	2,631	2,513
$c_{a1}(D_e)$	5.36×10-7	1.32×10^{-7}	1.36×10 ⁻⁷
ca	1.53×10 ⁻⁷	1.6×10^{-10}	1.4×10 ⁻¹⁰
ca	-3.45×10^{-8}		
CH	1.08×10 ⁻⁸		
CA1(H)	-5.6×10^{-12}	-4.4×10^{-14}	-8.1×10^{-14}
CA2	-1.48×10^{-11}		
CAS	6.6×10 ⁻¹²		
C _{M4}	-1.9×10^{-12}		
۵	- 0.04°		
8		1.82	- 0.82d

^aDissociation to F⁻(1 S) + Xe⁺(2 P $_{3/2}$) for B state, Xe⁺(2 P $_{1/2}$) for D state.

^bRotational and centrifugal distortion parameters for X state valid for v'' = 0-6.

^cFrom analysis of 1-2 band only.

^dCalculated from δ_B , using $\delta_B + \delta_D = 1$.

Tabular Data. A-8.34. Spectroscopic constants (cm $^{-1}$) for 1-2 band of XeF B-X system, from least-squares fit of assigned lines having N \leq 40. Standard errors (1 σ , in parentheses) are in terms of last significant digits.

28 773. 070(7)
0.14521(4)
$(1.35 \times 10^{-7})^{2}$
1.820(17)
0.17568(5)
$9.67(12) \times 10^{-7}$
$(-3.0 \times 10^{-11})^a$
-0.041(14)
$-4.3(11) \times 10^{-10}$
0.023

 $^{^{\}mathrm{a}}$ Calculated at the outset and held fixed in the fit.

A-9. POTENTIAL ENERGY CURVES, ELECTRONIC ENERGIES, SPECTROSCOPIC CONSTANTS, AND TRANSITION MOMENTS FOR ${\rm Ar}_2{\rm F}$ and ${\rm Kr}_2{\rm F}$

CONTENTS

		Page
A-9.1.	Schematic orbit representation of the nine lowest electronic states of ${\rm Ar}_2{\rm F}$ for isosceles triangle	
	geometries	1251
A-9.2.	Potential curves for ${\rm Ar}_2{\rm F}$ in an isosceles triangle configuration with the Ar-Ar distance fixed at 2.51 Å .	1252
A-9.3.	Potential curves for Ar_2F in an isosceles triangle configuration with R_2 fixed at 2.25 A \cdots	1253
A-9.4.	Potential curves for ${\rm Ar}_2{\rm F}$ in a collinear configuration varying both the Ar-Ar and adjacent Ar-F distances	1254
A-9.5.	Potential curves for the lowest two ionic states of $\mathrm{Ar}_2\mathrm{F}$	
	in a right triangle configuration as a function of the Ar-Ar distance	1255
A-9.6.	Schematic orbital diagram of the two dipole-allowed	
	emissions from the 2^2B_2 state in Ar_2F	1256
A-9.7.	Estimate of the $2^2B_2 \rightarrow 1^2B_2$ (1^2A_1) transition energy in	
	Ar_2^{F} and Kr_2^{F}	1257
A-9.8.	Effect of \overline{F} on the states of Ar_2^+	1258
A-9.9.	Spectroscopic data for the 2^2B_2 ($4^2\Gamma$) state of Ar_2F	
	with analogous data for the $2^2\Sigma^+$ [III(1/2)] state of ArF and the $1^2\Sigma^+$ [I(1/2)u] state of Ar $_2^+$ without and with	
	spin-orbit coupling	1259
A-9.10.	Calculated data for the dipole-allowed emissions from	
	the 2 ² B ₂ state of Ar ₂ F in its equilibrium isosceles	
	triangle geometry neglecting spin-orbit effects	1260

		Page
A-9.11.	Transition moment from the $4^2\Gamma$ state of $Ar_2\Gamma$ (including the spin-orbit coupling) for the equilibrium isosceles triangle geometry of the 2^2B_2 state	1261
A-9.12.	Calculated data including spin-orbit coupling for the dipole-allowed emissions from the $4^2\Gamma$ state of Ar_2F at the equilibrium isosceles triangle geometry of the 2^2B_2 state	1262
A-9.13.	Calculated data for the dipole-allowed absorptions from 2^2B_2 state of Ar_2F in its equilibrium isosceles triangle geometry neglecting spin-orbit effects	1262
A-9.14.	Calculated data for the dipole-allowed absorptions in Ar_2^+ without $\binom{2}{\Sigma}_u^+$ and with $[\operatorname{I}(1/2)_u]$ spin-orbit coupling	1263
A-9.15.	Calculated data including spin-orbit coupling for the dipole-allowed absorptions from the $4^2\Gamma$ state of Ar_2F at the equilibrium isosceles triangle geometry of the 2^2B_2 state	1264
A-9.16.	Spectroscopic data for the 2^2B_2 ($4^2\Gamma$) state of Kr_2F with analogous data for the $2^2\Sigma^+$ [III(1/2)] state of KrF and the $1^2\Sigma^+_u$ [(1/2)] state of Kr_2^+ without and	
A-9.17.	with spin-orbit coupling	1264
A-9.18.	triangle geometry neglecting spin-orbit effects Transition moments (in a.u.) from $4^2\Gamma$ state of Kr_2F (including spin-orbit coupling) for the equilibrium	1265
	isosceles triangle geometry of the 2^2B_2 state	1265

		Page
A-9.19.	Calculated data including spin-orbit coupling for	
	the dipole-allowed emissions from the $4^2\Gamma$ state of Kr_2F at the equilibrium isosceles triangle geometry	
	of the 2^2B_2 state	1266
A-9.20.	Calculated data for the dipole-allowed absorptions from	
	2 ² B ₂ state of Kr ₂ F in its equilibrium isosceles triangle	
	geometry neglecting the spin-orbit effects	1266
A-9.21.	Calculated data for the dipole-allowed absorptions in	
	Kr_{2}^{+} without $({}^{2}\mathrm{\Sigma}_{\mathrm{u}}^{+})$ and with $[\mathrm{I}(1/2_{\mathrm{u}})]$ spin-orbit	
	coupling	1267
A-9.22.	Calculated data including spin-orbit coupling for the	
	dipole-allowed absorptions from the $4^2\Gamma$ state of $\mathrm{Kr}_2\mathrm{F}$	
	at the equilibrium isosceles triangle geometry of the	
	2^2B_2 state	1267
A-9.23.	Electronic state energies for Ar ₂ F and Kr ₂ F at their	
	respective equilibrium isosceles triangle geometries without and with spin-orbit coupling	1268
A-9.24.	The overall radiative life-time (in nsec) of the 2^2B_2	
	state in Ar ₂ F as a function of geometry	1268

A-9. References:

1. W. R. Wadt and P. J. Hay, "Electronic States of Ar_2F and Kr_2F ," J. Chem. Phys. <u>68</u>, 3850 (1978).

Graphical Data. A-9.1. Schematic orbit representation of the nine lowest electronic states of Ar₂F for isosceles triangle geometries.

Graphical Data. A-9.2. Potential curves for ${\rm Ar}_2{\rm F}$ in an isosceles triangle configuration with the Ar-Ar distance fixed at 2.51 Å.

Graphical Data. A-9.3. Potential curves for $\mathrm{Ar}_2^{\,\mathrm{F}}$ in an isosceles triangle configuration with R_2 fixed at 2.25 Å.

Graphical Data, A-9.4. Potential curves for Ar_2F in a collinear configuration varying both the Ar-Ar (bottom scale) and adjacent Ar-F (top scale) distances.

Graphical Data. A-9.5. Potential curves for the lowest two ionic states of ${\rm Ar}_2 {\rm F}$ in a right triangle configuration as a function of the Ar-Ar distance.

a. $2^2B_2^{-1}^2B_2^2 = 10^2B_2^2 = 10^2B_1^2 = 10^2$

b.

$$2^{2}B_{2} \rightarrow 1^{2}A_{1} \qquad (<2^{2}B_{2}|Y) (|1^{2}A_{1}>)$$

$$Ar \sqrt[8]{}$$

$$Ar \sqrt[8]{}$$

$$Ar \sqrt[8]{}$$

$$Ar \sqrt[8]{}$$

$$Ar \sqrt[8]{}$$

Graphical Data. A-9.6. Schematic orbital diagram of the two dipole-allowed emissions from the $2^2 \rm B_2$ state in $\rm Ar_2 F$.

Tabular Data. A-9.7. Estimate of the $2^2B_2 + 1^2B_2$ (1^2A_1) transition energy in Ar_2F and Kr_2F .

Arf $(2^2\Sigma^+-1^2\Sigma^+)$	$6.42 \text{ eV}^{\text{a}}$
$-D_e \left[\operatorname{Ar}_2^+(^2\Sigma_u^+) \right]$	-1.23 ^b
- Ar ₂ repulsion at Ar ₂ ($^2\Sigma_u^{+}$) R_e	-0.86°
Predicted Ar ₂ F $(2^2B_2 \rightarrow 1^2B_2, 1^2A_1)$	4.33 eV or 286 nm
$\operatorname{KrF} (2^2\Sigma^{\bullet} - 1^2\Sigma^{\bullet})$	5.00d
$-D_e \left[\operatorname{Kr}_2^+(^2\Sigma_u^+) \right]$	-1.15 ^b
- Kr_2 repulsion at $\operatorname{Kr}_2^+(^2\Sigma_u^+)R_e$	-0.86°
Predicted $Kr_2F(2^2B_2-1^2B_2, 1^2A_1)$	2.99 eV or 415 nm

^aJ. J. Ewing and C. A. Brau, Appl. Phys. Letts. <u>27</u>, 350 (1975)

^bC. Y. Ng., D. J. Trevor, B. H. Mahan, and Y. T. Lee, J. Chem. Phys. <u>66</u>, 446 (1977).

^cW. R. Wadt, J. Chem. Phys. <u>68</u>, 402 (1978).

dJ. M. Hoffman, A. K. Hays, and G. C. Tisone, Appl. Phys. Letts. 28, 538 (1976).

Tabular Data. A-9.8. Effect of F on the states of Ar_2 .

		Ar2F-	Ar_2^{\dagger}
$R_1(a_0)$	$R_2(a_0)$	$E(1^2A_2)-E(2^2B_2)(eV)$	$E(^2\Pi_g)-E(^2\Sigma_u^*)(\mathrm{eV})$
4.75	20.0	1,56	1.59
4.75	7.0	1.56	1,59
4.75	5.0	1.57	1.59
4.75	4.5	1.57	1.59
4.75	4.25	1.58	1.59
4.75	4.0	1.57	1,59
4.75		1.53	1,59
4,5	4.25	1.94	1,96
4.75	4.25	1.58	1.59
5.0	4.25	1.29	1.29
5.25	4.25	1.05	1,05
5.75	4.25	0.72	0.69
0.9	4,25	09.0	0.56

Tabular Data. A-9.9. Spectroscopic data for the 2^2B_2 ($4^2\Gamma$) state of Ar_2F with analogous data for the $2^2\Sigma^+$ [III(1/2)] state of ArF and the $1^2\Sigma^+$ [I(1/2)] state of Ar_2^+ without and with spin-orbit coupling.

	$\mathrm{Ar}_2\mathrm{F}(2^{2}B_2)$	$Ar_2F(2^2B_2)$ $ArF(2^2\Sigma^*)^a$	$\operatorname{Ar}_2^{+}(1^{}\Sigma_u^{+})^{\operatorname{b}}$
$R_e({ m Ar-F})({ m \AA})$	2.54	2.40	
$R_e({ m Ar-Ar})({ m \AA})$	2.48		2.50
$D_e(Ar_2^++F^-)(eV)$	2.00	5.52	
$D_e(Ar^+F^- + Ar)(eV)$	09.0		1.24
	$Ar_2F(4^2\Gamma)$	$ArF[III(1/2)]^a$	$\operatorname{Ar}_2^+[\operatorname{I}(1/2)_{\boldsymbol{u}}]^{\operatorname{b}}$
$D_e(Ar_2^++F^-)(eV)$	2,00	5.49	
$D_e({\rm Ar}^+{\rm F}^- + {\rm Ar})({\rm eV})$	0.57		1.19

^aT. H. Dunning and P. J. Hay, Chem. Phys. (in press).

b_W. R. Wadt. J. Chem. Phys. <u>68</u>, 402 (1978).

Tabular Data. A-9.10. Calculated data for the dipole-allowed emissions from the ${\bf 2}^2{\bf B}_2$ state of ${\rm Ar}_2{
m F}$ in its equilibrium isosceles triangle geometry neglecting spin-orbit effects.

	$\Delta E(eV)$	γ(nm)	M(D)	A (Sec-1)a
$2^2B_2 - 1^2A_1$	4.64	267	0.49	3.95×10 ⁶
$2^2B_2 \rightarrow 1^2B_2$	4.53	274	0.49	3.60×10^{6}

a The overall lifetime of the $2^2\mathrm{B}_2$ state is 132 nsec.

(including spin-orbit coupling) for the equilibrium isosceles triangle geometry Tabular Data. A-9.11. Transition moment (in a.u.) a from the 4 state of $\mathrm{Ar}_2\mathrm{F}$ of the 2^2B_2 state.

	$M_{\mathbf{x}}$	M_{y}	M_z	M
$4^2\Gamma - 1^2\Gamma$	5.09×10-4	1.92×10^{-1}	-4.12×10^{-2}	1.96×10-1
$4^2\Gamma - 2^2\Gamma$	1.43×10-4	1.66×10^{-2}	1.85×10^{-1}	1.86×10^{-1}
$4^2\Gamma - 3^2\Gamma$	5.98×10^{-4}	-1.29×10^{-2}	-2.75×10^{-2}	3.04×10^{-2}
$4^2\Gamma - 5^2\Gamma$	-6.04×10^{-3}	5.61×10^{-2}	$2.13{\times}10^{-2}$	6.03×10^{-2}
$4^2\Gamma - 6^2\Gamma$	-1.48×10^{-2}	-1.36×10-1	8.94×10^{-3}	1.37×10^{-1}
42r-72r	-5.14×10^{-5}	1.65×10-1	0	1.65×10-1
$4^2\Gamma - 8^2\Gamma$	9.72×10^{-5}	-4.12×10^{-2}	0	4.25×10 ⁻²
42r-92r	-4.60×10^{-3}	2.08	1.25×10-4	2.08

 a 1 e $_{0}$ = 2.541765 debye (D).

Tabular Data. A-9.12. Calculated data including spin-orbit coupling for the dipole-allowed emissions from the 4^Γ state of ${\rm Ar}_2 {\rm F}$ at the equilibrium isosceles triangle geometry of the $2^2 {\rm B}_2$ state.

	$\Delta E (eV)$	γ(nm)	M(D)	$A(sec^{-1})^a$
$4^2\Gamma - 1^2\Gamma$	4.64	267	0.50	4.08×10 ⁶
$4^2\Gamma - 2^2\Gamma$	4.52	274	0.47	3.40×10^{6}
$4^2\Gamma - 3^2\Gamma$	4.38	283	0.08	8.27×10^{4}

^aThe overall lifetime of the 4^2 state is 132 nsec.

Tabular Data. A-9.13. Calculated data for the dipole-allowed absorptions from ${\rm 2^2B_2}$ state of ${\rm Ar_2F}$ in its equilibrium isosceles triangle geometry neglecting spin-orbit effects.

	$\Delta E(eV)$	γ(nm)	M(D)	f
$2^2B_2 - 3^2B_2$	1.54	805	90.0	2.0×10-5
$2^2B_2-1^2A_2$	1.66	749	0.04	1.0×10 ⁻⁵
$2^2B_2-2^2A_1$	2.34	529	0.43	1.7×10^{-3}
$2^2B_2 - 3^2A_1$	3.88	320	5.29	0.41

Tabular Data. A-9.14. Calculated data for the dipole-allowed absorptions in ${\rm Ar}_2^+$ without $(^2\Sigma_{\bf u}^+)$ and with $[{\rm I}(1/2)_{\bf u}]$ spin-orbit coupling.

	$\Delta E (\mathrm{eV})$	γ(nm)	M(D)	f
$1^2\Sigma_u^+ - 1^2\Pi_g$	1.66	745	0.09	5.0×10^{-5}
$1^2\Sigma_u^+ - 1^2\Sigma_g^+$	3,89	319	5.26	0.41
$\mathrm{I}(1/2)_u \to \mathrm{I}(3/2)_g$	1,61	772	90.0	2.4×10^{-5}
$\mathrm{I}(1/2)_u \to \mathrm{I}(1/2)_g$	1.72	720	0.38	9.2×10-4
$\mathrm{I}(1/2)_{\boldsymbol{u}} \to \mathrm{II}(1/2)_{\boldsymbol{g}}$	3, 89	318	5.22	0.40

Tabular Data. A-9.15. Calculated data including spin-orbit coupling for the dipole-allowed absorptions from the $4^2\Gamma$ state of Ar $_2\Gamma$ at the equilibrium isosceles triangle geometry of the 2^2B_2 state.

	$\Delta E (eV)$	λ(nm)	M(D)	f
$4^2\Gamma \rightarrow 5^2\Gamma$	1.52	818	0.15	1.4×10 ⁻⁴
$4^2\Gamma \rightarrow 6^2\Gamma$	1.68	737	0.35	7.7×10^{-4}
$4^2\Gamma \rightarrow 7^2\Gamma$	2.33	531	0.42	1.6×10 ⁻³
$4^2\Gamma \rightarrow 8^2\Gamma$	2.58	481	0.11	1.1×10 ⁻⁴
$4^2\Gamma \rightarrow 9^2\Gamma$	3.88	319	5.29	0.41

Tabular Data. A-9.16. Spectroscopic data for the $2^2 B_2$ ($4^2 \Gamma$) state of Kr $_2F$ with analogous data for the $2^2 \Sigma^+$ [III(1/2)] state of Kr $_2F$ and the $1^2 \Sigma_u^+$ [(1/2) $_u$] state of Kr $_2^+$ without and with spin-orbit coupling.

	$Kr_2F(2^2B_2)$	$KrF(2^2\Sigma^+)^a$	$Kr_2^{\bullet}(1^2\Sigma_{\boldsymbol{u}}^{\bullet})^{b}$
$R_e(Kr-F)(\mathring{A})$	2.67	2.53	
$R_e(Kr-Kr)(\mathring{A})$	2.77		2.79
$D_e(\mathrm{Kr}_2^{\bullet}+\mathrm{F}^{-})(\mathrm{eV})$	4.95	5.36	
$D_e(\mathrm{Kr}^+\mathrm{F}^-+\mathrm{Kr})(\mathrm{eV})$	0.63		1.23
	$Kr_2F(4^2\Gamma)$	KrF[III(1/2)] ²	Kr ₂ *[I(1/2) _u] ^t
$D_e(\mathrm{Kr}_2^{\bullet} + \mathrm{F}^-)(\mathrm{eV})$	4.95	5.31	
$D_e(\mathrm{Kr}^+\mathrm{F}^-+\mathrm{Kr})(\mathrm{eV})$	0.49		1.05

^aP. J. Hay and T. H. Dunning, J. Chem. Phys. <u>66</u>, 1306 (1977).

^bW. R. Wadt. J. Chem. Phys. <u>68</u>, 402 (1978).

Tabular Data. A-9.17. Calculated data for the dipole-allowed emissions from $2^2 B_2$ state of Kr_2F in its equilibrium isosceles triangle geometry neglecting spin-orbit effects.

	ΔE (eV)	λ(nm)	M(D)	$A(\sec^{-1})^a$
$2^{2}B_{2} \rightarrow 1^{2}A_{1}$	3.47	357	0.66	2.97×10^6
$2^{2}B_{2} \leftarrow 1^{2}B_{2}$	3.38	368	0.85	4.61×10^6

 $^{^{\}mathrm{a}}$ The overall lifetime of the $\mathrm{2}^{2}\mathrm{B}_{2}$ state is 132 nsec.

Tabular Data. A-9.18. Transition moments (in a.u.) a from $4^2\Gamma$ state of $\mathrm{Kr}_2 F$ (including spin-orbit coupling) for the equilibrium isosceles triangle geometry of the $2^2 \mathrm{B}_2$ state.

	$M_{\mathbf{x}}$	M_{y}	M _z	M
$4^2\Gamma \rightarrow 1^2\Gamma$	1.2×10 ⁻³	2.59×10 ⁻¹	-1.24×10 ⁻¹	2.87×10 ⁻¹
$4^2\Gamma \rightarrow 2^2\Gamma$	5.22×10^{-4}	3.52×10^{-3}	3.13×10 ⁻¹	3.13×10 ⁻¹
$4^2\Gamma \rightarrow 3^2\Gamma$	3.51×10^{-3}	-1.26×10^{-2}	-4.81×10^{-2}	4.98×10 ⁻²
$4^2\Gamma \rightarrow 5^2\Gamma$	-1.63×10^{-2}	7.94×10^{-2}	4.20×10^{-2}	9.13×10 ⁻²
$4^2\Gamma \rightarrow 6^2\Gamma$	-2.11×10^{-2}	-6.18×10^{-1}	-3.29×10^{-2}	6.19×10 ⁻¹
$4^2\Gamma \rightarrow 7^2\Gamma$	-1.73×10^{-5}	1.53×10 ⁻¹	0	1.53×10 ⁻¹
$4^2\Gamma \rightarrow 8^2\Gamma$	1.01×10^{-4}	-9.30×10^{-2}	0	9.30×10^{-2}
$4^2\Gamma \rightarrow 9^2\Gamma$	-8.91×10^{-4}	2.12	-1.53×10^{-3}	2.12

 $a_1 ea_0 = 2.541765 \text{ debye (D)}.$

Tabular Data. A-9.19. Calculated data including spin-orbit coupling for the dipole-allowed emissions from the $4^2\Gamma$ state of $\mathrm{Kr}_2\Gamma$ at the equilibrium isosceles triangle geometry of the $2^2\mathrm{B}_2$ state.

	ΔE (eV)	λ(nm)	M(D)	$A(sec^{-1})^a$
$4^2\Gamma \rightarrow 1^2\Gamma$	3.44	361	0.73	3.55×10^{6}
$4^2\Gamma \rightarrow 2^2\Gamma$	3.34	371	0.80	$3.88{\times}10^6$
$4^2\Gamma \rightarrow 3^2\Gamma$	3.14	395	0.13	8.18×10^4

 $^{^{\}mathbf{a}}$ The overall lifetime of the $^{2}\Gamma$ state is 133 nsec.

Tabular Data. A-9.20. Calculated data for the dipole-allowed absorptions from $2^2 \mathrm{B}_2$ state of $\mathrm{Kr}_2 \mathrm{F}$ in its equilibrium isosceles triangle geometry neglecting the spin-orbit effects.

	$\Delta E (eV)$	λ(nm)	M(D)	f
$2^{2}B_2 \rightarrow 3^{2}B_2$	1.46	849	0.14	1.0×10-4
$2^{2}B_2 \rightarrow 1^{2}A_2$	1.56	794	0.07	2.8×10 ⁻⁵
$2^2B_2 \rightarrow 2^2B_1$	2.15	577	0.46	1.8×10 ⁻³
$2^{2}B_{2} \rightarrow 3^{2}A_{1}$	3.60	344	5.62	0.43

Tabular Data, A-9.21. Calculated data for the dipole-allowed absorptions in Kr_2^+ without $(^2\Sigma_{\mathbf{u}}^+)$ and with $[\mathrm{I(1/2)}_{\mathbf{u}}]$ spin-orbit coupling.

	$\Delta E (eV)$	$\lambda(nm)$	M(D)	f
$1^2 \Sigma_u^+ \rightarrow 1^2 \Pi_g$	1.57	790	0.15	1.3×10 ⁻⁴
$1^{2}\Sigma_{u}^{+} \rightarrow 1^{2}\Sigma_{g}^{+}$	3.59	346	5.39	0.40
$I(1/2)_u \rightarrow I(3/2)_g$	1.36	911	0.10	5.6×10 ⁻⁵
$\mathrm{I}(1/2)_u \to \mathrm{I}(1/2)_g$	1.75	708	1.55	1.6×10 ⁻²
$I(1/2)_u \rightarrow II(1/2)_g$	3.66	339	5.20	0.38

Tabular Data. A-9.22. Calculated data including spin-orbit coupling for the dipole-allowed absorptions from the $4^2\Gamma$ state of ${\rm Kr}_2 {\rm F}$ at the equilibrium isosceles triangle geometry of the $2^2 {\rm B}_2$ state.

	ΔE (eV)	λ(nm)	M(D)	f
$4^2\Gamma \rightarrow 5^2\Gamma$	1.32	938	0.23	2.7×10 ⁻⁴
$4^2\Gamma \rightarrow 6^2\Gamma$	1.73	718	1.57	1.6×10^{-2}
$4^2\Gamma \rightarrow 7^2\Gamma$	2.06	603	0.39	1.2×10^{-3}
$4^2\Gamma \rightarrow 8^2\Gamma$	2.59	478	0.24	5.2×10^{-4}
$4^2\Gamma \rightarrow 9^2\Gamma$	3.69	336	5.39	0.41

Tabular Data. A-9.23. Electronic state energies for ${\rm Ar_2F}$ and ${\rm Kr_2F}$ at their respective equilibrium isosceles triangle geometries without and with spin-orbit coupling. (Energies are in hartrees).

Without spin-orbit coupling		With spin-orbit coupling			
State	Ar_2F^a	Kr ₂ F ^b	State	Ar_2F^a	Kr ₂ F
$1^{2}A_{1}$	-0.89765	-0.13053	12Γ	-0.89777	-0.13066
$1^{2}B_{2}$	-0.89336	-0.12717	$2^2\Gamma$	-0.89337	-0.12713
$1^{2}B_{1}$	-0.88822	-0.11997	$3^2\Gamma$	-0.88810	-0.11988
2^2B_2	-0.72706	-0.00295	$4^2\Gamma$	-0.72716	-0.00439
$3^{2}B_{2}$	-0.67043	0.05070	$5^2\Gamma$	-0.67137	0.04418
$1^{2}A_{2}$	-0.66624	0.05443	$6^2\Gamma$	-0.66542	0.05907
2^2A_1	-0.64096	0.07596	$7^2\Gamma$	-0.64148	0.07117
2^2B_1	-0.63293	0.08467	$8^2\Gamma$	-0.63230	0.09090
3^2A_1	-0.58464	0.12934	$9^2\Gamma$	-0.58452	0,13123

^aEnergies are relative to -1152 hartree.

Tabular Data. A-9.24. The overall radiative life-time (in nsec) of the $2^2 \rm B_2$ state in $\rm Ar_2 F$ as a function of geometry. $\rm Ar_2 F$ has a $\rm C_{2v}$ isosceles triangle geometry with base = $\rm R_1$ and height = $\rm R_2$. $\rm R_1$ and $\rm R_2$ are in bohr (1a₀ = 0.529177 A).

R_1 R_2	4.0	4.25	4.5
4.5		222	
4.75	87.1	126	206
5.0		85.8	

 $^{^{}m b}$ Energies are relative to -5603 hartree.

A-10. POTENTIAL ENERGY CURVES, SPECTROSCOPIC CONSTANTS, AND EMISSION DATA. FOR HgC ℓ and HgBr

CONTENTS

		Page
A-10.1.	Potential energy curves for the $X^2\Sigma^+$, $A^2\Pi$, and $B^2\Sigma^+$ states of HgCl without spin-orbit coupling	1271
A-10.2.	Potential energy curves for the $X^2\Sigma^+$, $A^2\Pi$, $B^2\Sigma^+$, and	
	$C,D^2\Pi$ states of HgC ℓ without spin-orbit coupling	1272
A-10.3.	Potential energy curves for ${\rm HgC}\ell$ doublet states	1273
A-10.4.	Potential energy curves for ${\tt HgC\ell}$ quartet states	1274
A-10.5.	Potential energy curves for the $X^2\Sigma^+$, $A^2\Pi$, and $B^2\Sigma^+$ states of HgBr without spin-orbit coupling	1275
A-10.6.	Potential energy curves for the $X^2\Sigma^+$, $A^2\Pi$, $B^2\Sigma^+$, and	
	$C,D^2\Pi$ states of HgBr without spin-orbit coupling	1276
A-10.7.	Potential energy curves for the HgBr doublet states	1277
A-10.8.	Potential energy curves for the HgBr quartet states	1278
A-10.9.	Spectroscopic constants for the X and B states of	
	${\rm Hg}^{202}~{\rm Cl}^{35}$ with and without spin-orbit coupling	1279
A-10.10.	Spectroscopic constants for the X and B states of	
	${\rm Hg}^{202}~{\rm Br}^{79}$ with and without spin-orbit coupling	1280
A-10.11.	Emission data for the B \rightarrow X lasing transition in HgCl with and without spin-orbit coupling	1281
A-10.12.	Emission data for the B \rightarrow X lasing transition in HgBr with and without spin-orbit coupling	1281

A-10. References:

1. W. R. Wadt, "The Electronic Structure of HgC ℓ and HgBr," Appl. Letts. (in press).

Graphical Data. A-10.1. Potential energy curves for the $X^2 \Sigma^+$, $A^2 \Pi$, and $B^2 \Sigma^+$ states of HgCl without spin-orbit coupling.

Graphical Data. A-10.2. Potential energy curves for the $X^2\Sigma^+$, $A^2\Pi$, $B^2\Sigma^+$, and $C,D^2\Pi$ states of HgCl without spin-orbit coupling.

HgCI DOUBLET STATES

Graphical Data. A-10.3. Potential energy curves for ${\rm HgC}\ell$ doublet states.

Graphical Data. A-10.4. Potential energy curves for $\mathrm{HgC}\ell$ quartet states.

Graphical Data. A-10.5. Potential energy curves for the $X^2\Sigma^+$, $A^2\Pi$, and $B^2\Sigma^+$ states of HgBr without spin-orbit coupling.

Graphical Data. A-10.6. Potential energy curves for the $X^2\Sigma^+$, $A^2\Pi$, $B^2\Sigma^+$, and C, $D^2\Pi$ states of HgBr without spin-orbit coupling.

HgBr DOUBLET STATES

Graphical Data. A-10.7. Potential energy curves for the HgBr doublet states.

Graphical Data. A-10.8. Potential energy curves for the ${\tt HgBr}$ quartet states.

Tabular Data. A-10.9. Spectroscopic constants for the X and B states of $\rm Hg$ $_{\rm Cl}^{35}$ with and without spin-orbit coupling.

Spin-Orbit Coupling 2.41		R (A)	$e_{e(cm^{-1})} \frac{x_{e}_{e(cm^{-1})} B_{e(cm^{-1})}}{e^{(cm^{-1})}}$	x w (cm) B (cm 1)	a (cm 1)	2 (eV)	n(0)1
2.41 285.3 2.25 .098 2.93 198.8 .51 .066 Spin-Orbit Coupling /2 2.42 285.6 2.29 .098 /2 2.93 198.0 .56 .066 sriment /2 — 292.6 1.60 — 192.0 .50 —	Without	Spin-Orbi	t Coupling					
2.93 198.8 .51 .066 In-Orbit Coupling 2.42 285.6 2.29 .098 2.93 198.0 .56 .066 - 292.6 1.60 192.0 .50	x ² z ⁺	2.41	285.3	2.25	860.	92000.	.91	3.28
1n-Orbit Coupling 2.42 285.6 2.29 .098 2.93 198.0 .56 .066	B ² 2+	2.93	198.8	.51	990.	.00015	4.77	5.41
2.42 285.6 2.29 .098 2.93 198.0 .56 .066 ant 292.6 1.60 192.0 .50	With Sp.	in-Orbit C	Coupling					
2.93 198.0 .56 .066 ent 292.6 1.60 192.0 .50	$x^2z_{1/2}^+$	2.42	285.6	2.29	860.	7.00077	.87	3.28
ent — 292.6 1.60 — — — — — — — — — — — — — — — — — — —	$B^2_{\Sigma_{1/2}}$		198.0	. 56	990.	.00015	4.77	5.41
- 292.6 1.60 - - 192.0 .50	Experim	ent						
- 192.0 .50	$x^2_{\Sigma_{1/2}^+}$	1	292.6	1.60	1	1	1.08	١
	B ² E	1	192.0	.50	1	1	66.4	1

	R _e (A)	w (cm -1)	x m (cm 1) B (cm 1)	B (cm -1)	$\alpha_{\rm e}({\rm cm}^{-1})$	D _e (eV)	n(D)
Without	Spin-Orbi	Without Spin-Orbit Coupling					
x ² E ⁺	2.61	159.4	1.64	0.044	07000.	.48	2.62
B ² E ⁺	3.04	141.8	.29	.032	90000.	4.77	5.51
With Sp:	With Spin-Orbit Coupling	coupling					
x^2 _{1/2}	2.62	159.4	1.64	770.	77000.	.33	2.62
${_{\rm B}}^2\Sigma_{1/2}^+$	3.05	141.8	.29	.032	90000.	4.77	5.51
Experiment	ent						
$x^2 \varepsilon_{1/2}^+$	1	186.5	.97	ı	ı	.71	١
B22+1/2	١	135.1	.28	ı	1	4.87	1

Tabular Data. A-10.11. Emission data for the B \rightarrow X lasing transition in HgCl with and without spin-orbit coupling.

	T _e (eV)	$T_e(eV)$ $\Delta E(eV)$ $\lambda(nm)$ $M(D)$) (nm)	M(D)	T(ns)
Without Spin-Orbit Coupling	2.73	2.73 2.25 552 4.37	552	4.37	27.4
With Spin-Orbit Coupling	2.73	2.25	552	4.36	27.5
Experiment	2.90	2.22	558	3.52	9.47
				66.7	22.2

Tabular Data. A-10.12. Emission data for the B $\,\div$ X lasing transition in HgBr with and without spin-orbit coupling.

	Te (eV)	$T_{e}(eV)$ $\Delta E(eV)$ $\lambda(nm)$ $M(D)$ $\tau(ns)$	γ(nm)	M(D)	t(ns)
Without Spin-Orbit Coupling	2.70	2.70 2.50	497 3.88 26.0	3.88	26.0
With Spin-Orbit Coupling	2.70	2.50	167	3.77 27.6	27.6
Experiment	2.91	2.47	502	4.12 23.7	23.7

A-11. POTENTIAL ENERGY CURVES, ELECTRONIC ENERGIES, SPECTROSCOPIC CONSTANTS, AND DIPOLE AND TRANSITION MOMENTS FOR THE RARE GAS OXIDES

CONTENTS

		Page
A-11.1.	Total energies of the states of NeO arising from Ne (^{1}S) + O $(^{3}P, ^{1}D, ^{1}S)$	1285
A-11.2.	Total energies of the states of ArO arising from Ar (^{1}S) + 0 $(^{3}P, ^{1}D, ^{1}S)$	1286
A-11.3.	Calculated potential energy curves for the states of NeO arising from the Ne $\binom{1}{S}$ + 0 $\binom{3}{P}$, $\binom{1}{D}$, $\binom{1}{S}$) separated atom limits	1287
A-11.4.	Calculated potential energy curves for the states of ArO arising from the Ar $\binom{1}{S}$ + 0 $\binom{3}{P}$, $\binom{1}{D}$, $\binom{1}{S}$) separated atom limits	1288
A-11.5.	Total energies of the states of KrO arising from Kr (1 S) + 0 (3 P, 1 D, 1 S)	1289
A-11.6.	Total energies of the states of XeO arising from Xe (^{1}S) + 0 $(^{3}P, ^{1}D, ^{1}S)$	1290
A-11.7.	Calculated potential energy curves for the states of KrO arising from the Kr $\binom{1}{S}$ + 0 $\binom{3}{P}$, $\binom{1}{D}$, $\binom{1}{S}$ separated atom limits	1291
A-11.8.	Calculated potential energy curves for the states of XeO arising from the Xe (^1S) + 0 $(^3P$, 1D , 1S) separated atom limits	1292
A-11.9.	Calculated spectroscopic constants for the $1^1\Sigma^+$ states of ${}^{84}{\rm Kr}^{16}{}_0$ and ${}^{132}{\rm Xe}^{16}{}_0$	1293
A-11.10.	Vibrational levels and spacings for the $1^1\Sigma^+$ state of XeO	1294

		Page
A-11.11.	Orbital diagrams for the $^{3,1}\Pi$ and $^{3}\Sigma^{-}$, and $^{1}\Delta$ states of ArO	1295
A-11.12.	Orbital diagrams for the 1,2 $^{1}\Sigma^{+}$ states of ArO	1295
A-11.13.	Calculated crossing points and energies for the $1^1 \Sigma^+$ - $^3 \Pi$ and $1^1 \Sigma^+$ - $^3 \Sigma^-$ crossings in the rare	
	gas monoxides	1296
A-11.14.	Calculated transition moments for the $2^{1}\Sigma^{+}$ - $1^{1}\Sigma^{+}$ and $2^{1}\Sigma^{+}$ - 1^{1} transitions in the rare gas monoxides	1296
		1270
A-11.15.	Calculated pseudo-lifetimes for the $2^1\Sigma^+$ states of the rare gas oxides	1297
A-11.16.	Dipole transition moments for the $2^{1}\Sigma^{+}$ - $1^{1}\Sigma^{+}$ and $2^{1}\Sigma^{+}$ - $^{1}\Pi$ transitions in ArO, KrO and XeO	1298
A-11.17.	Dipole moments for the $1^1\Sigma^+$ states of ArO, KrO, and XeO	1299

A-11. References:

1. T. H. Dunning and P. J. Hay, "Low-Lying Electronic Data of the Rare-Gas Oxides," J. Chem. Phys. <u>66</u>, 3767 (1977).

Tabular Data. A-11.1 Total energies of the states of NeO arising from Ne $^{(1)}$ S) + 0 $^{(3)}$ P, $^{(1)}$ D, $^{(1)}$ S). Energies are relative to -203 hartree.

$R(a_0)$	Π^{ϵ}	32-	$1^{1}\Sigma^{\bullet}$	п	۵,	2 1 Z*
2.50	-0.10974	0.07731	-0.19091	-0.03497	0.15266	0.20825
2,75	-0.22077	-0.10267	-0.23476	-0.14415	-0.02472	0.03748
3.00	-0.28369	-0.20963	-0.25589	-0.20469	-0.12986	-0.06148
3, 25	-0.31950	-0.27310	-0.26673	-0.23847	-0.19217	-0.11767
3.50	-0,33990	-0.31077	-0.27304	-0.25750	-0.22909	-0.14886
3,75	-0.35145	-0.33308	-0.27701	-0.26827	-0.25091	-0.16589
4.00	-0.35792	-0.34626	-0.27946	-0.27438	-0.26377	-0.17516
4.25	-0.36151	-0.35402	-0.28088	-0.27782	-0.27133	-0.18026
4.50	-0.36347	-0.35859	-0.28165	-0.27976	-0.27577	-0.18309
5.00	-0.36508	-0.36283	-0.28219	-0.28141	-0.27987	-0.18556
5.50	-0.36546	-0.36424	-0.28223	-0.28185	-0.28123	-0.18631
6.00	-0.36550	-0.36467	-0.28215	-0.28191	-0.28164	-0.18649
7.00	-0.36542	-0.36475	-0.28203	-0.28184	-0.28172	-0.18647
8.50	-0.36539	-0.36473	-0.28199	-0.28181	-0.28169	-0.18644
12,00	-0.36539	-0.36472	-0.28198	-0.28180	-0.28169	-0.18644

Tabular Data. A-11.2. Total energies of the states of ArO arising from Ar $(^1$ S) + 0 $(^3$ P, 1 D, 1 S). Energies are relative to -601 hartree.

$R(a_0)$	311	3 _Σ -	112.	1,	ړ. م	212
2,75	-0.29182	-0.06217	-0.44208	-0.24285	-0.00417	0,03161
2.875	-0.35262	-0.15344	-0.46954	-0.30044	-0.09150	-0.05269
3.00	-0.40244	-0.23193	-0.48830	-0.34717	-0,16622	-0.12417
3.25	-0.47548	-0.35453	-0.50857	-0.41414	-0.28227	-0.23285
3.50	-0.52268	-0.43958	-0.51604	-0,45558	-0.36285	-0.30585
3,75	-0.55285	-0.49694	-0.51786	-0.48064	-0.41755	-0.35331
4.00	-0.57201	-0.53483	-0.51800	-0.49573	-0.45394	-0.38287
4.25	-0.58409	-0.55947	-0.51812	-0.50489	-0.47773	-0.40042
4.50	-0.59159	-0.57528	-0.51848	-0.51050	-0.49304	-0.41045
5.00	-0.59896	-0.59165	-0.51924	-0.51607	-0.50894	-0.41932
5.50	-0.60156	-0.59812	-0.51953	-0.51815	-0.51521	-0.42227
6.00	-0.60241	-0.60062	-0.51952	-0.51886	-0.51763	-0.42328
6.50	-0.60261	-0.60152	-0.51940	-0.51904	-0.51850	-0.42359
7.00	-0.60260	-0.60178	-0.51927	-0.51902	-0.51875	-0.42362
8.50	-0.60247	-0.60180	-0.51907	-0.51889	-0.51876	-0.42352
12.00	-0.60245	-0.60178	-0.51905	-0.51887	-0.51875	-0.42350

Graphical Data. A-11.3. Calculated potential energy curves for the states of NeO arising from the Ne (^1S) + 0 $(^3P$, 1D , $^1S)$ separated atom limits. The curves have been uniformly shifted to correct for the errors in the 0 $(^1D$ - $^3P)$ and 0 $(^1S$ - $^3P)$ excitation energies.

Graphical Data. A-11.4. Calculated potential energy curves for the states of ArO arising from the Ar (^1S) + 0 $(^3P, ^1D, ^1S)$ separated atom limits. The curves have been uniformly shifted to correct for the errors in the 0 $(^1D - ^3P)$ and 0 $(^1S - ^3P)$ excitation energies.

Tabular Data. A-11.5. Total energies of the states of KrO arising from Kr $(^1$ S) + 0 $(^3$ P, 1 D, 1 S). Energies are relative to -2826 hartree.

$R(a_0)$	Π_{ϵ}	32-	112.	П	Δ,	212
2.875	-0.40859	-0.19828	-0.55182	-0.36789	-0.14745	-0.11674
3.00	-0.46706	-0.27803	-0.58546	-0.42315	-0.22337	-0.19086
3,125	-0.51513	-0.34767	-0.60858	-0.46801	-0.28906	-0.25437
3.25	-0.55449	-0.40802	-0.62400	-0.50422	-0.34548	-0.30813
3,375	-0.58656	-0.45990	-0.63382	-0.53318	-0.39359	-0.35311
3.50	-0.61252	-0.50418	-0.63955	-0.55604	-0.43439	-0.39033
3.75	-0.65040	-0.57327	-0.64338	-0.58776	-0.49801	-0.44611
4.00	-0.67496	-0.62156	-0.64207	-0.60655	-0.54289	-0.48311
4.25	-0.69085	-0.65452	-0.63947	-0.61754	-0.57393	-0.50673
4.50	-0.70106	-0.67656	-0.63736	-0.62403	-0.59493	-0.52092
4.75	-0.70756	-0.69107	-0.63612	-0.62794	-0.60886	-0.52892
5.00	-0.71164	-0.70050	-0.63552	-0,63036	-0.61796	-0.53329
5.50	-0.71572	-0.71049	-0.63508	-0.63284	-0.62764	-0.53701
00.9	-0.71719	-0.71457	-0.63487	-0.63381	-0.63160	-0.53825
6.50	-0.71765	-0.71619	-0.63467	-0.63413	-0.63317	-0.53867
2.00	-0.71773	-0.71676	-0.63449	-0.63417	-0.63372	-0.53876
8.50	-0.71757	-0.71689	-0.63418	-0.63399	-0.63386	-0.53862
12.00	-0.71753	-0.71686	-0.63413	-0.63394	-0.63383	-0.53858

Tabular Data. A-11.6. Total energies of the states of XeO arising from Xe (^1S) + 0 $(^3P, ^1D, ^1S)$. Energies are relative to -7306 hartree.

$R(a_0)$	Π^{ϵ}	32-	112.	П1	η.	212
3.00	-0.31839	-0.14551	-0.44467	-0.28890	-0.10619	-0.08134
3, 125	-0.37811	-0.21500	-0.49122	-0.34653	-0.17279	-0.14771
3,25	-0.42548	-0.27347	-0.52356	-0.39120	-0.22770	-0.20198
3,375	-0.46388	-0.32392	-0.54568	-0.42648	-0.27416	-0.24731
3.50	-0.49542	-0.36797	-0.56045	-0.45476	-0.31415	-0.28579
3,625	-0.52136	-0.40656	-0.56975	-0.47748	-0.34875	-0.31852
3.75	-0.54255	-0.44043	-0.57481	-0.49545	-0.37858	-0.34592
4.00	-0.57376	-0.49605	-0.57659	-0.52010	-0.42645	-0.38701
4.25	-0.59438	-0.53783	-0.57246	-0.53405	-0.46238	-0.41435
4.50	-0.60812	-0.56823	-0.56659	-0.54156	-0.48927	-0.43243
4.75	-0.61736	-0.58972	-0,56128	-0.54550	-0.50888	-0.44388
5.00	-0.62355	-0.60457	-0.55744	-0.54762	-0.52275	-0.45039
5.25	-0.62767	-0.61467	-0,55506	-0.54887	-0.53231	-0.45362
5.50	-0.63037	-0.62143	-0.55370	-0.54969	-0.53878	-0.45500
6.00	-0.63323	-0.62888	-0.55250	-0.55065	-0.54596	-0.45576
6.50	-0.63434	-0.63208	-0.55203	-0.55110	-0.54907	-0.45591
7.00	-0.63474	-0.63340	-0.55179	-0.55128	-0.55037	-0.45596
8.50	-0.63481	-0.63411	-0.55144	-0.55124	-0.55107	-0.45587
12.00	-0.63474	-0.63407	-0.55134	-0.55116	-0.55104	-0.45579

Graphical Data. A-11.7. Calculated potential energy curves for the states of KrO arising from the Kr (^1S) + 0 $(^3P$, 1D , 1S) separated atom limits. The curves have been uniformly shifted to correct for the errors in the 0 $(^1D$ - 3P) and 0 $(^1S$ - 3P) excitation energies.

Graphical Data. A-11.8. Calculated potential energy curves for the states of XeO arising from the Xe (^1S) + 0 $(^3P$, 1D , $^1S)$ separated atom limits. The curves have been uniformly shifted to correct for the errors in the O $(^1D$ - $^3P)$ and O $(^1S$ - $^3P)$ excitation energies.

Tabular Data. A-11.9. Calculated spectroscopic constants for the 1^{1} states of 84 Kr 16 O and 132 Xe 16 O. Units are as indicated.

	KrO	X	eO
	Calc	Calc	Exptl a,t
Te, eVe	1.71	1.26	1.60
Re, Å	2.00	2.08	2.65
De, eV	0.25	0.70	0.36
ω_e , cm ⁻¹	375d	470 ^d	372
	12	6.6	12
B_e , cm ⁻¹	0.317	0.275°	
α_e	0.011	0.0045	

^aReferences 1, A-11.

^bFor a discussion of the "experimental" constants of the 1^1E^+ state of XeO, see A-11 Ref. 1.

^cRelative to the Rg $(^{1}S) + 0$ (^{3}P) separated atom limit.

 $^{^{}m d}$ The calculated w_e and $w_e x_e$ were obtained from a least-squares fit of the lowest 8 (KrO) or 16 (XeO) vibrational energies with a four term expansion.

^eThe calculated B_c and α_c were obtained from a least-squares fit of the lowest 8 (KrO) or 16 (XeO) rotation constants (B_c) with a four term expansion.

Tabular Data. A-11.10. Vibrational levels and spacings for the $1^{1}\Sigma^{+}$ state of XeO. Energies are in cm⁻¹.

	G(v)	ΔG	$(v+\frac{1}{2})$
υ	Calca	Calc	Exptl ^b
0	232	457	
1	690	44	
2	1134	431	
3	1565	416	
4	1981	401	
5	2382	385	
6	2767	367	
7	3134	349	347
8	3483	328	328
9	3811	306	302
10	4118	282	272
11	4400	256	252
12	4656	226	224
13	4882	193	201
14	5075	158	186
15	5233		200

^aObtained by solving the vibrational (J = 0) Schroedinger equation with the calculated potential.

b_{Reference 1.}

^cSeven higher levels are omitted here.

Graphical Data. A-11.11. Orbital diagrams for the $^{3,1}{\rm R}$ and $^{3}{\rm E}^{-}$, and $^{1}{\rm A}$ states of ArO .

Graphical Data. A-11.12. Orbital diagrams for the 1,2 $^1\Sigma^+$ states of ArO. Configuration coefficients (unnormalized) for both large R(R_L) and short R(R_S) have been listed.

Tabular Data. A-11.13. Calculated crossing points and energies for the $1^1\Sigma^+$ - $^3\Pi$ and $1^1\Sigma^+$ - $^3\Sigma^-$ crossings in the rare gas monoxides. Units are as indicated.

	$1^{1}\Sigma^{+}-^{3}\Pi$		$1^{1}\Sigma^{+}-^{3}\Sigma^{-}$	
Molecule	R_c	$\Delta E_c^{\ b}$	R_c	$\Delta E_c^{\ b}$
NeO	1.53 Å	0.92 eV	1.74 Å	0.39 eV
ArO	1.87	0.068	2.09	0.028
KrO	2.00	-0.25	2.23	-0.16
XeO	2.19	-0.64	2.42	-0.37

^aThe curves have been shifted to correct for the error in the calculated 0 (1 D) - 0 (3 P) excitation energy; see A-11 Ref. 1.

Tabular Data. A-11.14. Calculated transition moments for the $2^1 \Sigma^+ - 1^1 \Sigma^+$ and $2^1 \Sigma^+ - 1^1 \Pi$ transitions in the rare gas monoxides. Moments are in atomic units.

	Are	0	K	rO	Xe	90
R (a ₀)	2 ¹ Σ*-1 ¹ Σ*	2 1Σ*-111 a	2 ¹ Σ*-1 ¹ Σ*	21Σ·-111 a	2 15 -1 15 +	2 1Σ*-1Π°
2.75	0.0099	0.1273				
3.00	0.1847	0.1062				
3.25			0.2165	0.0835		
3.50	0.3512	0.0819	0.3123	0.0894	0,2165	0.0584
4.00	0.3862	0.0598	0.4951	0.0880	0.4093	0.1211
4.50	0.2703	0,3091	0.4890	0.0704	0.6723	0.0822
4.75			0.4132	0.0590		
5.00	0.1464	0.0236	0.3233	0.0480	0.7033	0.0468
5.50	0.0690	0.0142	0.1762	0.0305	0.4784	0.0253
6.00	0.0403	0.0089	0.0886	0.0196	0.2628	0.0146
6.50				0.0132		
7.00	0.0403	0.0089	0.0287		0.0728	0.0063
8.50	0.0043	0.0019	0.0085	0.0041	0.0167	0.0027

^aThe matrix element given is $\left\langle 2^{1} \Sigma^{+} |\chi|^{1} \Pi_{\chi} \right\rangle$.

 $^{^{}b}$ Relative to the Rg $(^{1}$ S) + 0 $(^{1}$ D) separated atom energy.

Tabular Data. A-11.15. Calculated pseudo-lifetimes for the $2^{1\Sigma}^+$ states of the rare gas oxides. Units are as indicated.

Molecule	Transition	R*	$\Delta E(R^*)^2$	$\mu_{ij}(R^*)$	$A_{ ho}$	Tp
ArO	2 ¹ Σ*-1 ¹ Σ* - ¹ Π	2.97 Å	2.26 eV 2.22	0.0598 ea ₀ 0.0128	$4.4 \times 10^4 \text{ sec}^{-1}$ 4.4×10^3	23 μsec 230
KrO	$2^{1}\Sigma^{\bullet}-1^{1}\Sigma^{\bullet}$ -1Π	3.02	2.27	0.134 0.0254	2.2×10^5 1. 7×10^4	4.5 60
Xe0	$2^{1}\Sigma^{+}_{1}^{1}\Sigma^{+}_{1}$ $-^{1}\Pi$	2.89	2.32	0.496 0.0264	3.3×10^{6} 1.6×10^{4}	0.31 62

^a Corrected for the error in the calculated $0(^{1}S)-0(^{1}D)$ excitation energy.

Graphical Data. A-11.16. Dipole transition moments for the $2^1\Sigma^+$ - $1^1\Sigma^+$ and $2^1\Sigma^+$ - 1^1 transitions in ArO, KrO and XeO.

Graphical Data. A-11.17. Dipole moments for the $1^1\Sigma^+$ states of ArO, KrO, and XeO.

A-12. POTENTIAL ENERGY CURVES, ELECTRONIC ENERGIES, SPECTROSCOPIC CONSTANTS, TRANSITION MOMENTS AND EMISSION AND ABSORPTION DATA FOR GaKr, InKr, AND $T\ell Kr$

CONTENTS

	Page
A-12.1.	Energies obtained from the POL-CI calculations on the low-lying electronic states of GaKr and GaKr +
A-12.2.	Calculated energies of the I 1/2, II 1/2, and I 3/2 states of GaKr with spin-orbit corrections 1303 $$
A-12.3.	Excitation energies and ionization potentials for the Ga, In, and T1 atoms, in eV
A-12.4.	Spectroscopic constants for the bound states of $^{69}\text{Ga}^{84}\text{Kr}$ and $^{69}\text{Ga}^{84}\text{Kr}^+$
A-12.5.	Calculated potential energy curves for the states of GaKr and $GaKr^{+}$ arising from the $Ga(^{2}P, ^{2}S)$ + $Kr(^{1}S)$ and $Ga^{+}(^{1}S)$ + $Kr(^{1}S)$ separated atom limits
A-12.6.	Calculated potential energy curves for the states of GaKr and $GaKr^{+}$ arising from the $Ga(^{2}P_{1/2}, 3/2, ^{2}S_{1/2}) + Kr(^{1}S_{0})$ and $Ga^{+}(^{1}S_{0}) + Kr(^{1}S_{0})$ separated atom limits
A-12.7.	Model potential energy curves for the states of InKr and InKr $^+$ arising from the In $(^2P_{1/2}, 3/2, ^2S_{1/2})$ + Kr $(^1S_0)$ and In $^+$ $(^1S_0)$ + Kr $(^1S_0)$ separated atom limits
Λ-12.8.	Model potential energy curves for the states of T1Kr and T1Kr $^+$ arising from the T1 (2 P $_{1/2}$, 3/2, 2 S $_{1/2}$) + Kr (1 S $_0$) and In $^+$ (1 S $_0$) + Kr (1 S $_0$) separated atom limits

		Page
A-12.9.	Dipole transition moments coupling the low-lying states of GaKr obtained from the POL-CI calculations	1309
A-12.10.	Calculated dipole transition moments coupling the III 1/2 and I 1/2, II 1/2 and I 3/2 states of GaKr with spin-orbit corrections	1309
A-12.11.	Calculated dipole transition moments for $1^2 \Sigma^+$ - $1^2 \Pi$, $2^2 \Sigma^+$ - $1^2 \Pi$, and $2^2 \Sigma^+$ - $1^2 \Sigma^+$ transitions in GaKr	1310
A-12.12.	Calculated dipole transition moments for III 1/2 - I 1/2, III 1/2 - I 3/2, and III 1/2 - II 1/2 transitions in GaKr	1311
A-12.13.	Model dipole transition moments for the III 1/2 - I 1/2, III 1/2 - I 3/2, and III 1/2 - II 1/2 transitions in TlKr	1312
A-12.14.	Model absorption, K_v (T), and simulated emission, g_v (T), coefficients for InKr at T = 3000 and 1200° K	1313
A-12.15.	Calculated absorption, K_V (T), and stimulated emission, g_V (T), coefficients for GaKr at T = 300 and $1500^{\circ} K$	1314
A-12.16.	Model absorption, K_V (T), and stimulated emission, g_V (T), coefficients for T1Kr at T = 300 and 1090° K.	1315
A-12.17.	Orbital diagrams for the low-lying electronic states of GaKr and GaKr +	1316

A-12. References:

1. T. H. Dunning, M. Valley, and H. S. Taylor, "Theoretical Studies of the Low-Lying Electronic States of GaKr, Including Extrapolation to InKr and T ℓ Kr," J. Chem. Phys. <u>69</u>, 2672 (1978).

Tabular Data. A-12.1. Energies obtained from the POL-CI calculations on the low-lying electronic states of GaKr and $GaKr^+$. Distances are in bohr; energies are in hartree. Energies are relative to -4674 hartree.

R	1 ² Π	GaKr 1 ² Σ*	2 ² ∑ *	GaKr*
3.75	-1.02539	- 0.96866	-0.93379	- 0.85625
4.00	-1.07933	-1.01870	-0.99238	-0.90683
4.50	-1.14810	-1.08688	-1.06440	- 0.96758
5.00	-1.17924	-1.13516	-1.08855	-0.99287
5.50	-1.19225	-1.16324	-1.09545	-1.00070
6.00	-1.19772	-1.17938	-1.09677	-1.00202
6.50	-1.19984	-1.18865	-1.09631	-1.00107
7.00	-1.20045	-1.19396	-1.09545	-0.99950
8.00	-1.20020	-1.19865	-1.09420	-0.99670
0.00	-1.19933	-1.20029	-1.09406	-0.99402
15.00	-1.19878	-1.20012	-1.09502	-0.99304

Tapular Data. A-12.2. Calculated energies of the I 1/2, II 1/2, and I 3/2 states of GaKr with spin-orbit corrections. Distances are in bohr; energies are in hartree. Energies are relative to the energy of the $1^2\Sigma^+$ state at R = 15 a_0 .

R	I 1/2	I 3/2	II 1/2
3.75	0.17228	0.17484	0.23152
4.00	0.11835	0.12091	0.18147
4.50	0.04957	0.05213	0.11329
5.00	0.01841	0.02099	0.06502
5.50	0.00538	0.00799	0.03698
6.00	-0.00015	0.00252	0.02089
6.50	-0.00234	0.00040	0.01170
7.00	-0.00307	-0.00022	0.00650
8.00	-0.00316	0.00003	0.00215
10.00	-0.00280	0.00090	0.00103
15.00	-0.00251	0.00126	0.00126

Tabular Data. A-12.3. Excitation energies and ionization potentials for the Ga, In, and T1 atoms, in ${\rm eV}$.

Group IIIA atoms				
State	Ga	ln	Tl	
$^{2}P_{1/2}$	0.000	0.000	0.000	
² P _{3/2}	0.102	0.274	0.966	
² S _{1/?}	3.073	3.022	3.282	
¹ S ₀	5.998	5.786	6.108	

Tabular Data. A-12.4. Spectroscopic constants for the bound states of $^{69}\mathrm{Ga}^{84}\mathrm{Kr}$ and $^{69}\mathrm{Ga}^{84}\mathrm{Kr}^+$. Units are as indicated.

	Ga	GaKr*	
	1 ² Π	5;2.	1,52,
T_e , eV	0.00	2.82	5.40
Re, Å	3.78	3.17	3.14
D_e , eV	0.041	0.047	0.24
ω _e , cm ⁻¹	36	66	83
B_e	0.0312	0.0442	0.0452

THE LOW-LYING STATES OF GoKr AND GoKr+

Graphical Data. A-12.5. Calculated potential energy curves for the states of GaKr and GaKr $^+$ arising from the Ga (2 P, 2 S) + Kr (1 S) and Ga $^+$ (1 S) + Kr (1 S) separated atom limits. The curves have been uniformly shifted to correct for the errors in the gallium atom excitation energies.

THE LOW-LYING STATES OF Gakr AND Gakr * WITH SPIN-ORBIT CORRECTIONS

Graphical Data. A-12.6. Calculated potential energy curves for the states of GaKr and GaKr⁺ arising from the Ga (2 P $_{1/2}$, $_{3/2}$, 2 S $_{1/2}$) + Kr (1 S $_0$) and Ga⁺ (1 S $_0$) + Kr (1 S $_0$) separated atom limits. The curves have been uniformly shifted to correct for the errors in the gallium excitation energies.

THE LOW-LYING STATES OF INK AND INK WITH SPIN-ORBIT CORRECTIONS

Graphical Data. A-12.7. Model potential energy curves for the states of InKr and InKr $^+$ arising from the In (2 P $_1/2$, 3/2, + Kr (1 S $_0$) and In $^+$ (1 S $_0$) + Kr (1 S $_0$) separated atom limits.

THE LOW-LYING STATES OF TIKE AND TIKE WITH SPIN-ORBIT CORRECTIONS

Graphical Data. A-12.8. Model potential energy curves for the states of T1Kr and T1Kr $^+$ arising from the T1 (2 P $_{1/2}$, 3/2, 2 S $_{1/2}$) + Kr (1 S $_0$) and In $^+$ (1 S $_0$) + Kr (1 S $_0$) separated atom limits.

Tabular Data. A-12.9. Dipole transition moments coupling the low-lying states of GaKr obtained from the POL-C1 calculations.

R	$1^{2}\Sigma^{4}-1^{2}\Pi^{a}$	$2^{2}\Sigma^{4}-1^{2}\Pi^{a}$	$2^2\Sigma^*-1^2\Sigma^*$
3.75	- 0.9037	-0.7877	0.4095
4.00	-0.8462	-0.8680	-0.3055
4.50	-0.1365	-1.2090	-2.0676
5.00	0.0992	-1.2349	-1.4402
5.50	0.1257	-1.2469	-1.2456
6.00	0.1166	-1.2554	-1.1893
6.50	0.0984	-1.2619	-1.1800
7.00	0.0789	-1.2677	-1.1902
8.00	0.0476	-1.2777	-1.2310
10.00	0.0163	-1.2898	-1.2976
15.00	0.0018	-1.2917	-1.3101

^aThe matrix element given is $\langle n^2 \Sigma^+ | \chi | 1^2 \pi_{\chi} \rangle$.

Tabular Data. A-12.10. Calculated dipole transition moments coupling the III 1/2 and I 1/2, II 1/2 and I 3/2 states of GaKr with spin-orbit corrections. Distances are in bohr; moments are in atomic units.

	III 1/2-	-I 1/2	III 1/2-	-II 1/2	III 1/2-I 3/2
R	Z	(x, y)	Z	(x,y)	(x, y)
4.00	-0.0086	0.6135	-0.3054	-0.0173	-0.6138
4.50	-0.0576	0.8545	-2.0667	-0.0238	-0.8549
5.00	-0.0549	0.8726	-1.4392	-0.0333	-0.8732
5.50	-0.0701	0.3803	-1.2437	-0.0496	-0.8817
6.00	-0.1007	0.8845	-1.1850	-0.0752	-0.8877
6.50	-0.1504	0.8850	-1.1704	-0.1138	-0.8923
7.00	-0.2249	0.8803	-1.1688	-0.1694	-0.8964
8.00	-0.4405	0.8436	-1.1495	-0.3233	-0.9035
10.00	-0.7254	0.7562	-1.0759	-0.5098	-0.9120
15.00	-0.7564	0.7457	-1.0697	-0.5273	-0.9134

DIPOLE TRANSITION MOMENTS AMONG THE LOW-LYING STATES OF Gakr

Graphical Data. A-12.11. Calculated dipole transition moments for $1^2\Sigma^+ - 1^2\Pi$, $2^2\Sigma^+ - 1^2\Pi$, and $2^2\Sigma^+ - 1^2\Sigma^+$ transitions in GaKr.

DIPOLE TRANSITION MOMENTS AMONG THE LOW-LYING STATES OF Gakr WITH SPIN-ORBIT CORRECTIONS

Graphical Data. A-12.12. Calculated dipole transition moments for III 1/2 - I 1/2, III 1/2 - I 3/2, and III 1/2 - II 1/2 transitions in GaKr.

DIPOLE TRANSITION MOMENTS CONNECTING THE LOW-LYING STATES OF TIKE WITH SPIN-ORBIT CORRECTIONS

Graphical Data. A-12.13. Model dipole transition moments for the III 1/2 - I 1/2, III 1/2 - I 3/2, and III 1/2 - II 1/2 transitions in TlKr.

Graphical Data. A-12.14. Model absorption, K $_{\rm V}$ (T), and simulated emission, $\rm g_{\rm V}$ (T), coefficients for InKr at T = 3000 and 1200°K.

Graphical Data. A-12.15. Calculated absorption, K $_{\rm V}$ (T), and stimulated emission, $_{\rm R}$ (T), coefficients for GaKr at T = 300 and 1500 $^{\circ}$ K.

THE LOW-LYING ELECTRONIC STATES OF GaKr AND GaKr *

	2	Σ+	2	П
VALENCE	Go H	Kr C	Go	κ,
	9	9	T	9
RYDBERG	(gb)	A)		
	Go+	Kr Kr		
ION	offe	afo		

Graphical Data. A-12.17. Orbital diagrams for the low-lying electronic states of GaKr and GaKr⁺. The two lobed figures represent 4p orbitals in the plane of the paper; the circle represents a 4p orbital perpendicular to the plane of the paper; and the 5s Rydberg orbital is represented by a large dashed circle.

A-13. POTENTIAL ENERGY CURVES AND SPECTROSCOPIC CONSTANTS FOR AuH, AuC ℓ , $\mathrm{HgC}\ell_2$, AND HgH

CONTENTS

		Page
A-13.1.	Orbital energies and radial expectation values for Au and Hg from relativistic and nonrelativistic wavefunctions	1321
A-13.2	Comparison of excitation energies in (eV) for the lowest states of Au and Hg atoms from all-electron calculations	1322
A-13.3.	Orbital energies of the valence electrons in Au and Hg atoms from nonrelativistic (NR) and relativistic (R) all-electron calculation	1323
A-13.4.	Comparison of the energies of the lowest three states of Au atom from nonrelativistic (NR) all-electron calculations with experimental energies	1323
A-13.5.	Comparison of the excitation energies (in eV) for Hg atom computed from all-electron and valence-electron calculations, where the valence electron calculations explicitly treated the outer 12 electrons of Hg	1324
A-13.6.	Comparison of excitation energies for Au from all- electron and valence-electron calculations, where the valence-electron calculations explicitly treated the outer 11 electrons of Au	1325
A-13.7.	Comparison of excitation energies (in eV) for the states of the Au atom with spin-orbit coupling effects included	1325
A-13.8.	Comparison of the energies of the lowest three states of Hg atom from nonrelativistic (NR) and relativistic (R) all electron calculations with experimental energies	1326
A-13.9.	Comparison of the relativistic all-electron (AE) and valence-electron (VE) results for the states of Hg atom where the relativistic ECP was used for the VE	
	calculations	1326

		Page
A-13.10.	Comparison of valence-electron (VE) results for Au atom using the relativistic ECP and including spin-orbit coupling effects by perturbation theory with the results of Dirac-Hartree-Fock calculations and with experiment	1327
A-13.11.	Spectroscopic constants for Au ¹⁹⁷ H computed from relativistic and nonrelativistic potentials	
A-13.12.	Spectroscopic constants for $\mathrm{Au}^{197}\mathrm{C1}^{37}$ from relativistic and nonrelativistic potentials	1328
A-13.13.	(a) Potential energy curves for AuH using relativistic(R) and nonrelativistic (NR) potentials for GVB wavefunctions.(b) Potentials energy curves for AuH using the R potentials with GVB and POL-CI wavefunctions	1329
A-13.14.	(a) Potential energy curves for AuCl using relativistic(R) and nonrelativistic (NR) potentials for GVB wavefunctions.(b) Potential energy curves for AuCl using the R potential with GVB and POL-CI wavefunctions	1330
A-13.15.	Calculated and experimental bond lengths and dissociation energies for ${\rm HgCl}_2$	1331
A-13.16.	Ionization potentials (in eV) for HgCl_2 from orbital energies (- ε_i) and from separate SCF calculations (ΔE - SCF)	1332
A-13.17.	Calculated and experimental ionization potentials for the 5d orbitals of HgCl ₂ , where spin-orbit coupling effects have been included	1332
A-13.18.	Orbital energies of $\mathrm{HgC\ell}_2$, from Hartree-Fock calculations using relativistic and nonrelativistic potentials for Hg	1333
A-13.19.	Ionization potentials for $\mathrm{HgC\ell}_2$ using the relativistic potential for Hg as predicted from Koopmans' theorem ($-\varepsilon_i$) and from separate SCF calculations ($\Delta \mathrm{E}\text{-SCF}$)	1333

		Page
A-13.20.	Potential energy curves for the lowest states of HgH without spin-orbit coupling effects	1334
A-13.21.	Potential energy curves for the lowest states of HgH including spin-orbit coupling effects	1334
A-13.22.	Spectroscopic constants for the states of 202 HgH	

A-13. References:

 P. J. Hay, W. R. Wadt, L. R. Kahn, and F. W. Bobrowicz, "Ab Initio Studies of AuH, AuCl, HgH and HgCl₂ Using Relativistic Core Potentials," J. Chem. Phys. 69, 984 (1978).

Tabular Data. A-13.1. Orbital energies (in hartree) and radial expectation values (in bohr) for Au and Hg from relativistic and nonrelativistic wavefunctions.

	Nonrelativistic Hartree-Fock	Relativistic Hartree-Fock ^a	Dirac- Hartree-Fockb-d
	C	orbital energies	ereally services
Au atom			
5d	-0.5210	-0.6047	-0.4547 (-0.4287(5d.
6 <i>s</i>	-0.2208	-0.2902	$\begin{array}{c} -0.4547 \\ -0.2917 \end{array} \begin{cases} -0.4287(5d_{\star}) \\ -0.4935(5d_{\star}) \end{cases}$
6p	-0.1182	-0.1264	•••
Hg atom			
5 <i>d</i>	-0.7141	-0.6047	-0.6048 (-0.5746(5d.)
6s	-0.2620	-0.3267	$\begin{array}{c} -0.6048 \left\{ -0.5746(5d_{\star}) \right. \\ -0.3280 \left\{ -0.6501(5d_{\star}) \right. \end{array}$
6 <i>p</i>	-0.1716	-0.1778	•••
Au atom		(r)	
5 <i>d</i>	1.54	1.58	1 59 (1.62(5d ₊)
6 <i>s</i>	3.70	3.07	$\begin{array}{c} 1.59 \\ 3.06 \end{array} \begin{cases} 1.62(5d_{\star}) \\ 1.54(5d_{\star}) \end{cases}$
6p	5.54	5.14	5.12
Hg atom			
5 <i>d</i>	1.43	1.47	$\begin{array}{c} 1.47 \\ 2.84 \end{array} \begin{cases} 1.50(5d_{\bullet}) \\ 1.43(5d_{\bullet}) \end{cases}$
68	3.33	2.84	2 84 (1.43(5d)
65	4.26	4.07	•••

 $^{^{\}mathrm{a}}\mathrm{present}$ work using Cowan-Griffin method, A-13 Ref. 1.

b Averaged over fine-structure components.

 $^{^{\}mathrm{c}}$ J. B. Mann (unpublished and calculations).

 $^{^{\}mathrm{d}}$ J. P. Desclaux, At. Data Nucl. Data Tables $\underline{12}$, 311 (1973).

Tabular Data. A-13.2. Comparison of excitation energies in (eV) for the lowest states of ${\tt Au}$ and ${\tt Hg}$ atoms from all-electron calculations.

	Hartree- Fock	Relativistic Hartree- Fock ^a	Dirac- Hartree- Fock ^{b,d}	Exptl b, c
		Au atom		
5d ¹⁰ 6s ¹ (2S)	0.00	0.00	0.00	0.00
5d9 6s2 (2D)	5.13	1.86	1.86	1.74
5d ¹⁰ 6p ¹ (² P)	2.71	4.24	4.24	4.95
		Hg atom		
5d ¹⁰ 6s ² (¹ S)	0.00	0.00		0.00
5d ¹⁰ 6s 6p (³ P)	2,15	3.81		5.18
5d ¹⁰ 6s 6p (¹ P)	4.14	5.66		6.70

^aPresent work using Cowan-Griffin method, A-13 Ref. 1.

b Averaged over fine-structure components.

^CC. E. Moore, "Atomic Energy Levels," Natl. Bur. Stand. (U.S.) Circ. 476 (1958), Vol. III.

 $^{^{}m d}_{
m J.}$ B. Mann (unpublished calculations).

Graphical Data. A-13.3. Orbital energies of the valence electrons in Au and Hg atoms from nonrelativistic (NR) and relativistic (R) all-electron calculation. The 6p energies correspond to the $5d^{10}6p^1$ and $5d^{10}6p^1(^3P)$ configurations, respectively.

Graphical Data. A-13.4. Comparison of the energies of the lowest three states of Au atom from nonrelativistic (NR) all-electron calculations with experimental energies.

Tabular Data. A-13.5. Comparison of the excitation energies (in eV) for Hg atom computed from all-electron and valence-electron calculations, where the valence electron calculations explicitly treated the outer 12 electrons of Hg.

	Excitation energies (eV)		Ground state total energies	
	${}^{1}S \rightarrow {}^{3}P$	${}^{1}S \rightarrow {}^{1}P$	(hartree)	
Expt ^a	5.18	6.70		
	Relativistic o	alculations		
All-electron HF	3.81	5.66		
Valence-electron	(3s3p3d) basis			
HF	3.81	5.88	-43.47818	
MC-SCF	4.58	6.65	-43.50711	
Valence-electron	(3s4p4d) basis			
HF	3.78	5.64	-43.55284	
	Nonrelativistic	calculations		
All-electron HF	2.15	4.14		
Valence-electron	(3s3p4d) basis			
HF	2.04	4.21	-44.14543	

 $^{^2}$ Averaged over fine-structure components.

Tabular Data. A-13.6. Comparison of excitation energies for Au from all-electron and valence-electron calculations, where the valence-electron calculations explicitly treated the outer 11 electrons of Au.

	Excitation energy (eV	
	$^2S \leftarrow ^2D$	$^2S \leftarrow ^2P$
Expt ^a	1.74	4.95
Relativ	istic calculation	ns
All-electron	1.86	4.24
Valence-electron	1.67	4.22
Nonrelativ	ristic calculatio	ns
All-electron	5.13	2.71
Valence-electron	4.87	2.70

^aAveraged over fine-structure components.

Tabular Data. A-13.7. Comparison of excitation energies (in eV) for the states of the Au atom with spin-orbit coupling effects included.

	Dirac- Hartree- Fock	Relativistic Hartree–Fock	Valence-electron Hartree-Fock	Expt
1S1/2	0.00	0.00	0.00	0.00
$^{2}D_{5/2}$	1.27	1.23	1.04	1.14
$^{2}D_{3/2}$	2.74	2.80	2.62	2,66
$^{2}P_{1/2}$	4.01	4.01	3.99	4.63
$^{2}P_{3/2}$	4.36	4.36	4.34	5,10
		Spin-orbit parame	eters (cm ⁻¹)	
5d	-4734	- 5105	(- 5105)	- 4910
6p	1879	1834	(1843)	2543

Graphical Data. A-13.8. Comparison of the energies of the lowest three states of Hg atom from nonrelativistic (NR) and relativistic (R) all-electron calculations with experimental energies.

Graphical Data. A-13.9 Comparison of relativistic all-electron (AE) and valence-electron (VE) results for the states of Hg atom where the relativistic ECP was used for the VE calculations.

Graphical Data. A-13.10. Comparison of valence-electron (VE) results for Au atom using the relativistic ECP and including spin-orbit coupling effects by perturbation theory with the results of Dirac-Hartree-Fock calculations and with experiment.

Tabular Data. A-13.11 Spectroscopic constants for $\mathrm{Au}^{197}\mathrm{H}$ computed from relativistic and nonrelativistic potentials.

$AuH-X^1\Sigma^+$	$R_e(\text{\AA})$	$D_e(eV)$	ω _e (cm ⁻¹
Nonrel. ECP			
HF	1.763	0.99	1387
GVB-1	1.820	1.52	1203
POL-CI	1.807	1.57	1217
Rel. ECP			
HF	1.508	1.55	2014
GVB-1	1.514	2.14	1891
POL-CI	1.522	2.23	1871
(1+2)CI	(1.5237)c	2.66	•••
Exptl ^a	1.5237	3.37	2305
1-Center num	erical Dirac	-Fock (all-	electron)b
Nonrel.	1.745		2296
Rel.	1.659 ^d	•••	2178

^aU. Ringstrom, Ark. Fys. <u>27</u>, 227 (1964).

Tabular Data. A-13.12. Spectroscopic constants for Au¹⁹⁷C1³⁷ from relativistic and nonrelativistic potentials.

AuCl— $X^1\Sigma^+$	$R_e(\text{\AA})$	$D_e(eV)$	$\omega_e(\text{cm}^{-1})$
Nonrel. ECP			
GVB-1	2.447	2.58	277
Rel. ECP			
GVB-1	2.283	1.96	298
POL-CI	2.291	2.39	306
Exptl ^{a, b}	• • •	3.5 ± 0.1	382

^aA. G. Gaydon, <u>Dissociation Energies</u> (Chapman and Hall, London, 1968).

bJ. P. Desclaux and P. Pyyko, Chem. Phys. Lett. 39, 300 (1976).

 $^{^{}m c}$ Experimental bond length assumed.

 $^{^{\}mathrm{d}}\mathrm{Using}$ a Morse potential fit instead of a quadratic fit leads to an R_e of 1.622 Å.

bB. Rosen, Spectroscopic Data (Pergamon, Oxford, 1970).

Graphical Data. A-13.13. (a) Potential energy curves for AuH using relativistic (R) and nonrelativistic (NR) potentials for GVB (2-configuration) wavefunctions. (b) Potentials energy curves for AuH using the R potentials with GVB and POL-CI wavefunctions.

Graphical Data. A-13.14. (a) Potential energy curves for AuCl using relativistic (R) and nonrelativistic (NR) potentials for GVB wavefunctions. (b) Potential energy curves for AuCl using the R potential with GVB and POL-CI wavefunctions.

Tabular Data. A-13.15. Calculated and experimental bond lengths and dissociation energies (into Hg + 2Cl) for ${\rm HgCl}_2.$

	R.(Å)		De(kcal/mole)	
	HF	2-config.	HF	2-config.
Rel. ECP	2,290	2,301	57.5	59.6
Nonrel, ECP	2.409	2,412	97.6	100.0
Nonrel. ECPe	2.313	2,315	:	115.7
Expt.	2.29±0.024, 2.252d		106.4b	

^ap.A. Akisin, V.P. Spiridonov, and A.N. Khodchenkov, Zh. Fiz.Khim. 33, 20 (1959); earlier determinations were discussed by L. R. Maxwell and V. M. Mosley, Phys. Rev. 57, 21 (1940).

bJANAF Thermochemical Tables" Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 37 (1971) where zero-point corrections have not been applied.

CH. Basch, M.D. Newton, J. Jafri, J.W. Moskowitz and S. Topiol, J. Chem. Phys. (in press).

d_{K.} Kashiwabara, S. Konaka, and M. Kimura, Bull. Chem. Soc. Jpn <u>46</u>, 410 (1973)

Tabular Data. A-13.16. Ionization potentials (in eV) for ${\rm HgCl}_2$ from orbital energies (- ϵ_i) and from separate SCF calculations (ΔE - SCF).

	$-\epsilon_i$ (Nonrel.)	$-\epsilon_i$ (Rel.)	Δ E-SCF (Rel.)	Exptl ^a
2π _g (3p _{C1})	12.21	12.56	11.98	11.43
$1\pi_u (3p_{C1})$	12.64	13.06	12.48	12.13
$2\sigma_{u} (3p_{C1})$	12.86	13.01	12.43	12.74
$3\sigma_g (3p_{C1})$	13.08	14.09	13.60	13,74
$1\delta_g \ (5d_{\mathrm{H}g})$	22.66	20.14	17.15	
$1\pi_{\rm g}$ $(5d_{\rm Hg})$	22.99	20.81	17.98	
$2\sigma_{\rm g}~(5d_{\rm Hg})$	22.67	20.70	18.63	
$1\sigma_{\!\scriptscriptstyle u} \ (3s_{\rm Cl})$	28.58	29.00		
1σ _ε (3s _{C1})	29.35	29.62		

 $^{^{}a}$ J.H.D. Elana, Int. J. Mass. Spectrom. Ion Phys. $\underline{4}$, 37 (1970).

Tabular Data. A-13.17. Calculated and experimental ionization potentials for the 5d orbitals of ${\rm HgCl}_2$, where spin-orbit coupling effects have been included.

State (Ω)	$-\epsilon_i$ with $S-O$ coupling	ΔE -SCF with S - O coupling	Exptl ^a
5/2	19.39	16.40	16.71
3/2	19.88	16.99	17.05
1/2	20.00	17.51	17.27
3/2	21.44	18.51	18,65
1/2	21.89	19.42	•••

 $^{^{}a}$ J.H.D. Elana, Int. J. Mass. Spectrom. Ion Phys. $\underline{4}$, 37 (1970).

Graphical Data. A-13.18. Orbital energies of ${\rm HgC}\ell_2$ from Hartree-Fock calculations using relativistic and nonrelativistic potentials for Hg.

Graphical Data. A-13.19. Ionization potentials for $\mathrm{HgC}\ell_2$ using the relativistic potential for Hg as predicted from Koopmans' theorem (- ϵ_i) and from separate SCF calculations ($\Delta \mathrm{E-SCF}$).

Graphical Data. A-13.20. Potential energy curves for the lowest states of HgH without spin-orbit coupling effects.

Graphical Data. A-13.21. Potential energy curves for the lowest states of HgH including spin-orbit coupling effects. The states dissociating to ${\rm Hg(}^1{\rm P)}$ + H are not shown.

Tabular Data. A-13.22. Spectroscopic constants for the states of $^{\rm 202}{\rm HgH}.$

	$R_e(\text{\AA})$	$D_e(eV)$	$\omega_e(\mathrm{cm}^{-1})$	$T_e(eV)$			
	States without	spin-orbit	coupling				
X ² Σ*							
Present	1.763	0.33	1227	0.00			
Das, Wahla	1.783	0.37	1123	0.00			
Exptl ^{b,c}	1.7404	0.46	1387	0.00			
1 ² Π							
Present	1.574	1.41	1693	3,32			
Das, Wahl	1.593	•••	2032	3.80			
2 ² Σ*							
Present	2.390	1.25		3.46			
Das, Wahl							
St	ates including	spin-orbit	coupling				
$\Pi_{\frac{1}{2}}(^2\Pi_{1/2})$							
Present	1.579	1.09	1629	3,11			
Exptl	1.586	2.08	2066	3.05			
$I^{\frac{3}{2}}(^2\Pi_{3/2})$							
Present	1.575	0.98	1686	3.48			
Exptl	1.580	1.85	2067	3.50			
III $\frac{1}{2}$ (2 $^2\Sigma_{1/2}^+$)							
Present	2.078	0.53	1604	3.94			
Exptl	$(r_0 = 2.03)$	1.15	•••	4.20			

^aG. Das and A. C. Wahl, J. Chem. Phys. <u>64</u>, 4672 (1974).

^bT. L. Porter, J. Opt. Soc. Am. <u>52</u>, 1201 (1962).

cW. C. Stwalley, J. Chem Phys. <u>63</u>, 3062 (1975).

A-14. POTENTIAL ENERGY CURVES, ELECTRONIC ENERGIES, AND SPECTROSCOPIC CONSTANTS FOR VALENCE STATES OF $\mathbf{0}_2$

CONTENTS

		Page
A-14.1.	Potential energy curves for 0_2^- , 0_2^- , and 0_2^+	1339
A-14.2.	Calculated potential curves for singlet valence states of 0_2	1340
A-14.3.	Calculated potential curves for triplet valence states of 0_2	1341
A-14.4.	Calculated potential curves for 62 valence states of 0_2 given in hartrees relative to the asymptotic energy of each state	1342
A-14.5.	Calculated potential curves for quintet valence states of 0_2	1346
A-14.6.	Molecular constants for 12 electronic states of $\boldsymbol{0}_2$	1347
A-14.7.	Separated-atom energy levels of 0_2 given in eV relative to the 3P + 3P asymptote	1348
A-14.8.	Equilibrium constants for five new, weakly bound states of 0_2	1348

A-14. References:

- R. P. Saxon and B. Liu, "Ab initio Configuration Study of the Valence States of O₂," J. Chem. Phys. 67, 5432 (1977).
- 2. P. Krupenie, "The Spectrum of Molecular Oxygen," J. Phys. Chem. Ref. Data. 1, 423 (1977)*.
- H. F. Schaefer and F. E. Harris, "Ab initio Calculations on 62 Low-Lying States of the 0₂ Molecule," J. Chem. Phys. 48, 4946 (1968).
- 4. B. J. Moss and W. A. Goddard, "Configuration Interaction Studies on Low-Lying States of 0_2^* ," J. Chem. Phys. <u>63</u>, 3523 (1975).

Reference 2 is a critical review and compilation of the observed and predicted spectroscopic data on 0_2 and its ions 0_2^- , 0_2^+ , and 0_2^{2+} . The ultraviolet, visible, infrared, Raman, microwave, and electron para-magnetic resonance spectra are included. Each electronic band system is discussed in detail, and tables of band origins and heads are given. The microwave and EPR data are also tabulated. Special subjects such as the dissociation energy of 0_2 , perturbations, and predissociations are discussed. Potential energy curves are given, as well as f-values, Franck-Condon integrals, and other intensity factors. A summary table lists the molecular constants for all known electronic states of 0_2 and 0_2^+ . Electronic structure and theoretical calculations are also discussed.

Graphical Data. A-14.1. Potential energy curves for 0_2^- , 0_2^- , and 0_2^+ .

Graphical Data. A-14.2. Calculated potential curves for singlet valence states of 0_2 . Energies are given relative to $0 \, (^3P) + 0 \, (^3P)$.

Graphical Data. A-14.3. Calculated potential curves for triplet valence states of 0_2 . Energies are given relative to $0\ (^3P)$ + $0\ (^3P)$.

Tabular Data. A-14.4 Calculated potential curves for 62 valence states of $\boldsymbol{0}_2$ given in hartrees relative to the asymptotic energy of each state.

							-		
R(a ₀)	$b^1\Sigma_g^+$	21 E	$3^1\Sigma_g^+$	41 E	$5^1\Sigma_q^+$	$6^1\Sigma_q^+$	715 ·	15.	C1Σ
1.8	0.10650	0.62422	0.81921	0. 93779	0.87063	0.91214	0.87560	0.48987	0.48807
2.0	-0.04505	0.51873	C.54599	0.63957	0.65576	0.59581	0.64727	0. 24 190	0.22479
2.2	-0.10362	0.49603	0.37025	0.41849	0.57767	C.51852	0.43434	0.09649	0.08365
2.3	-0.11384	0.46416	C.33526	0.35037	0.49961	0.46287	0.39552	0.04919	0.04091
2.4	-0.11043	0.40 122	0.30070	0.34183	C.39506	0.38980	0.35502	0.01368	0.01068
2.6	-0.16791	0.31138	0.22689	0.23073	0.32221	C. 27880	0.29188	-0.03164	-0.02397
2.8	-0.09069	0.25123	C.11568	0.17928	0.21730	0. 22615	0.21178	-0.05347	-0.03717
3.0	-0.07133	0.20055	0.04904	0.12488	0.16833	0.11892	0.15911	-0.06056	-0.03879
3. 2	-0.05327	0.14393	C. C2474	0.03006	0.14368	0.05140	0.08909	-0.05882	-0.03472
3.4	-0.03317	0.10261	0.01038	0.05043	C. C 9958	C.03626	0.04508	-0.05231	-0.02850
3.5	-0.C319C	0.03646	0.00581	0.03997	0.08297	C.03116	0.03040	-0.04816	-0.02524
3.6	-0.02649	0.07276	0.00256	0.03170	0.06931	0.02688	0.01949	-0.04375	-0.02209
3.8	-0.01831	0.05138	-0.00105	0.01998	0.04864	C.02006	0.00607	-0.03493	-0.01649
4.0	-0.01214	0.03619	-0.C0220	0.01264	0.03427	0.01493	-0.00009	-0.02694	-0.01203
4.5	-0.00453	0.01499	-0.00148	0.00400	0.01436	0.00702	-0.00272	-0.01303	-0.00534
5.0	-0.00189	0.00624	-C.CCC50	0.00115	0.00612	0.00333	-0.00151	-0.00623	-0.00244
5.5	-0.00093	0.00265	-0.00009	0.00020	0.00272	0.00166	-0.00068	-0.00316	-0.00119
6.0	-0.00339	0.00117	C.CCCO4	-0.00011	0.00129	0.00089	-0.00033	-0.00175	-0.00062
6.5	-0.00119	0.00054	C.00005	-0.00016	0.00067	0.00051	-0.00018	-0.00105	-0.00036
7.0	-0.00010	0.00027	0.00003	-0.00C12	0.00C37	C.00032	-0.00011	-0.00067	-0.00021
7.5	-0.00005	0.00015	C.0CC02	-0.00008	0.00022	0.00022	-0.00007	-0.00045	-0.00013
8.0	-0.00002	0.00009	0.00002	-0.00005	0.00014	0.00016	-0.00005	-0.00031	-0.00008
9.0	0.00000	0.00004	0.00002	-0.00002	U.CCC07	0.00009	-0.00002	-0.00016	-0.00004
10.0	0.00001	0.00003	C.COCC2	-0.00001	0.00004	0.00006	-0.00001	-0.00009	-0.00001
20.0	0.00000	0.00125	6. 16571	0.16600	0.16625	0.26219	0.35923	0.26219	-0.00000
R(a ₀)	2¹ Σ.	3 ¹ Σ ₀ -	1 ¹ П _а	21110	3 ¹ 11 ₀	4 ¹ П _а	1 ¹ П _и	2111,	3¹ II.
				2 ¹ [1 _g	3 ¹ 11 _g	4 ¹ П _g			
1.8	0.59036	0.72444	0.50684	0.38172	0.39743	0.76760	0.70054	0.57396	0.59596
1.8	0.59036	0.72444	0.50684	0.38172	0.39743 0.29786	0.76760 0.57251	0.70054 0.50662	0.57396	0.59596 0.48550
1.8 2.0 2.2	0.59036 0.48587 0.45371	0.72444 0.65267 C.49053	0.50684 0.32532 C.20859	0.38172 0.24879 0.23629	0.39743 0.29786 0.28489	0.76760 0.57251 0.30248	0.70054 0.50662 0.33331	0.57396 0.38767 0.26014	0.59596 0.48550 0.46368
1.8 2.0 2.2 2.3	0.59036 0.48587 0.45371 0.38626	0.72444 0.65267 C.49053 0.45984	0.50684 0.32532 C.2C859 0.17509	0.38172 0.24879 0.23629 0.24471	0.39743 0.29786 0.28489 0.29205	0.76760 0.57251 0.30248 C.19934	0.70054 0.50662 0.33331 0.26410	0.57396 0.38767 0.26014 0.21669	0.59596 0.48550 0.46368 0.43307
1.8 2.0 2.2 2.3 2.4	0.59036 0.48587 0.45371 0.38626 0.30725	0.72444 0.65267 C.49053 0.45984 C.46294	0.50684 0.32532 C.2C859 0.17509 C.15253	0.38172 0.24879 0.23629 0.24471 0.20847	0.39743 0.29786 0.28489 0.29205 0.25949	0.76760 0.57251 0.30248 C.19934 0.20914	0.70054 0.50662 0.33331 0.26410 0.20858	0.57396 0.38767 0.26014 0.21669 0.18150	0.59596 0.48550 0.46368 0.43307 0.39737
1.8 2.0 2.2 2.3 2.4 2.6	0.59036 0.48587 0.45371 0.38626 0.30725 0.19072	0.72444 0.65267 C.49053 0.45984 C.46294 0.42491	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935	0.38172 0.24879 0.23629 0.24471 0.20847 0.08402	0.39743 0.29786 0.28489 0.29205 0.25949 0.18976	0.76760 0.57251 0.30248 C.19934 0.20914 C.18861	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989
1.8 2.0 2.2 2.3 2.4 2.6 2.8	0.59036 0.48587 0.45371 0.38626 0.30725 0.19072 0.11579	0.72444 0.65267 C.49053 0.45984 C.46294 0.42491 0.29095	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 C.12353	0.38172 0.24879 0.23629 0.24471 0.20847 0.08402 0.00285	0.39743 C.29786 O.28489 C.29205 O.25949 O.18976 O.11464	0.76760 0.57251 0.30248 0.19934 0.20914 0.18861 0.09548	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0	0.59036 0.48587 0.45371 0.38626 0.30725 0.19072 0.11579 0.06823	0.72444 0.65267 C.49053 0.45984 C.46294 0.42491 0.29095 0.20045	0.50684 0.32532 0.20859 0.17509 0.15253 0.12935 0.12353 0.11408	0.38172 0.24879 0.23629 0.24471 0.20847 0.08402 0.00285	0.39743 0.29786 0.28489 0.29205 0.25949 0.18976 0.11464 0.06808	0.76760 0.57251 0.30248 C.19934 0.20914 C.18861 0.09548 0.03756	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.10133
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.2	0.59036 0.48587 0.45371 0.38626 0.30725 0.19072 0.11579 0.06323 0.03845	0.72444 0.65267 C.49053 0.45984 C.46294 0.42491 0.29095 0.20045 0.13924	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 C.12353 0.11408 C.C7824	0.38172 0.24879 0.23629 0.24471 0.20847 0.08402 0.0285 -0.03843 -0.03235	0.39743 0.29786 0.2489 0.29205 0.25949 0.18976 0.11464 0.06808 0.03941	0.76760 0.57251 0.30248 C.19934 0.20914 C.18861 0.09548 0.03756 0.00523	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264	0.57396 0.38767 0.26014 0.21669 0.18150 0.1295 0.09470 0.06970 0.04853	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.10133 0.05753
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.2 3.4	0.59C16 0.485d7 0.45371 0.38626 0.30725 0.19072 0.11579 0.06323 0.03845	0.72444 0.65267 C.49053 0.45984 C.46294 0.42491 0.29095 0.20045 0.13924 0.09742	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 C.12353 0.11408 C.C7824 0.05342	0.38172 0.24879 0.23629 0.24471 0.20847 0.08402 0.00285 -0.03843 -0.03235 -0.02529	0.39743 C.29786 0.24489 C.29205 0.18976 0.11464 C.06808 0.03941 0.02215	0.76760 0.57251 0.30248 C.19934 0.20914 C.18861 0.09548 0.03756 0.00523 -C.01011	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 0.03145	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.10133 0.05753 0.03780
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.2 3.4 3.5	0.59036 0.485371 0.45371 0.38626 0.30725 0.19072 0.11579 0.06423 0.03845 0.02329 0.01425	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.29095 0.13924 0.09742 0.08166	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 C.12353 0.11408 C.C7822 0.05342 0.05342	0.38172 0.24879 0.23629 0.24471 0.20847 0.08402 0.00285 -0.03843 -0.03235 -0.02529 -0.02194	0.39743 C.29786 0.28489 C.29205 0.25949 0.18976 0.11464 C.06808 0.03941 0.02215 0.01646	0.76760 0.57251 0.30248 C.19934 0.20914 C.18861 0.09548 0.03756 0.00523 -C.01011	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 0.03145 0.02703	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660 0.01865	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.10133 0.05753 0.03780 0.03128
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.2 3.4 3.5 3.6	0.59C36 0.485d7 0.485d7 0.45371 0.38626 0.30725 0.19072 0.11579 0.06423 0.03845 0.02329 0.01425 0.00471	0.72444 0.65267 C.49053 0.45984 C.46294 0.42491 0.29095 0.20045 0.13924 0.09742 0.08166 0.06852	0.50684 0.32532 C.2C859 0.17509 C.15253 0.12935 C.12353 0.11408 C.C7824 0.05342 0.04401	0.38172 0.24879 0.23629 0.24471 0.20847 0.04402 0.00285 -0.03843 -0.03235 -0.02529 -0.02194 -0.01885	0.39743 0.29786 0.28489 0.29205 0.25949 0.18976 0.11464 0.06808 0.03941 0.02215 0.01646 0.01220	0.76760 0.57251 0.30248 C.19934 0.20914 C.18861 0.09548 0.03756 0.00523 -C.01011 -0.01364 -0.C1533	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 9.03145 0.02703 0.02317	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660 0.01865 0.01287	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.10133 0.05753 0.03780 0.03128 0.02581
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.2 3.4 3.5 3.6 3.8	0.59C36 0.48537 0.45371 0.38526 0.30725 0.19072 0.11579 0.06423 0.03845 0.02029 0.01425 0.00471 0.00471	0.72444 0.65267 C.49053 0.45984 0.42491 0.29095 0.20045 0.13924 0.08166 0.06852 0.04834	0.50684 0.32532 C.20859 0.17509 0.175253 0.12353 0.11408 C.C7824 0.05342 0.04401 0.03616 C.C241b	0.38172 0.24879 0.23629 0.24471 0.20847 0.08402 0.00285 -0.03843 -0.03235 -0.02529 -0.02194 -0.01885 -0.01355	0.39743 0.25786 0.24489 0.29205 0.25949 0.18976 0.11464 0.06808 0.03941 0.02215 0.01646 0.01220	0.76760 0.57251 0.30248 C.19934 C.18861 0.09548 0.03756 0.00523 - C.01011 -0.01364 -0.01533	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 0.03145 0.02703 0.02317 0.01684	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.04853 0.02660 0.01865 0.01287 0.00598	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.10133 0.05753 0.03780 0.03128 0.02561 0.01735
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.2 3.4 3.5 3.6 3.6	0.59C16 0.485d7 0.45371 0.38626 0.30725 0.19072 0.11579 0.06423 0.03845 0.02J29 0.01425 0.00471 0.00394 0.00104	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.20045 0.13924 0.09742 0.08166 0.06852 0.04834 0.03414	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 C.12353 0.11408 C.07824 0.054401 0.03616 C.0241b	0.38172 0.24879 0.23629 0.24471 0.20847 0.04402 0.00285 -0.03235 -0.03235 -0.02529 -0.01885 -0.01355 -0.01355	0.39743 0.29786 0.24489 0.29905 0.25949 0.18976 0.11464 0.06808 0.03941 0.02215 0.01646 0.01220 0.00674 0.00380	0.76760 0.57251 0.30248 0.20914 0.20914 0.09548 0.03756 0.00523 -C.01011 -0.01364 -0.01523 -0.01526	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 0.03145 0.02703 0.02317 0.01684 0.01203	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660 0.01865 0.01287 0.00598	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.10133 0.05753 0.03780 0.03128 0.02581 0.01735
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.2 3.4 3.5 3.6 4.0	0.59C16 0.485d7 0.453d7 0.38026 0.30725 0.19072 0.06423 0.03845 0.02029 0.01425 0.00704 0.00104 0.00104	0.72444 0.65267 C.49053 0.45984 C.46294 0.42491 0.29095 0.13924 0.09742 0.08166 0.06852 0.04834 0.03414	0.50684 0.32532 C.20859 0.17509 C.15253 0.11408 C.C7824 0.05342 0.03616 C.C241b 0.01590 0.00495	0.38172 0.24879 0.23629 0.24471 0.20847 0.08402 0.0285 -0.03843 -0.03235 -0.02529 -0.02194 -0.01365 -0.03949 -0.00378	0.39743 0.29786 0.28489 0.29205 0.25949 0.18976 0.11464 0.06808 0.03941 0.02215 0.016406 0.01220 0.00674 0.00390 0.00091	0.76760 0.57251 0.30248 0.19934 0.20914 0.03756 0.00523 -C.01011 -0.01364 -0.01533 -0.01526 -0.01529	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.09581 0.05909 0.04264 2.03145 0.02703 0.02317 0.01684 0.01203	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660 0.01287 0.00598 0.00281	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.10133 0.05753 0.03128 0.02581 0.02581 0.01735 0.01148
1.8 2.0 2.2 2.3 2.4 2.8 3.0 3.2 3.4 3.5 3.6 4.5	0.59C36 0.483d7 0.45371 0.38026 0.30725 0.19072 0.06423 0.03845 0.02229 0.01425 0.00471 0.00104 -0.00089	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.29095 0.20045 0.09742 0.09742 0.0852 0.04854 0.03414 0.01431	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 0.11408 C.C7824 0.05342 0.05342 0.05342 0.05495 0.00495 0.00495 0.00495	0.38172 0.24879 0.23629 0.24471 0.08402 0.003402 0.00285 -0.03843 -0.03235 -0.02529 -0.02194 -0.01865 -0.01375 -0.00378	0.39743 C.29786 0.24489 C.29205 0.25949 0.18976 0.11464 C.06808 0.03941 0.02215 0.01646 0.01220 0.00674 0.00380 0.00091	0.76760 0.57251 0.30248 0.19934 0.20914 0.09548 0.03756 0.00523 -0.01011 -0.01364 -0.01533 -0.01526 -0.01298 -0.00688	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 0.03145 0.02317 0.02317 0.01684 0.01203 0.00475 0.00162	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660 0.01287 0.00598 0.00281 0.00008	0.59596 0.48550 0.46368 0.43307 0.39737 0.17539 0.17539 0.03780 0.03780 0.03128 0.01735 0.01148 0.00381
1.8 2.0 2.2 2.3 2.4 2.8 3.0 3.2 3.5 3.6 3.6 4.0 5.5	0.59C16 0.485d7 0.45371 0.38626 0.30725 0.19072 0.11579 0.06423 0.03245 0.02129 0.01425 0.00471 0.00394 0.00004 0.00084 0.00084	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.20045 0.13924 0.09742 0.08166 0.06852 0.04834 0.03414 0.01431 0.00607 0.00607	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 C.12353 0.11408 C.07824 0.03616 C.02416 0.01590 0.00495 0.00190	0.38172 0.24879 0.23629 0.24471 0.20847 0.08402 0.0285 -0.03235 -0.02529 -0.01355 -0.03649 -0.03649 -0.00376 -0.00376	0.39743 C.29786 O.24489 C.29205 O.25949 O.18976 O.11464 C.06808 O.03941 O.02215 O.01646 O.01220 O.00674 O.00010	0.76760 0.57251 0.30248 0.19934 0.20914 0.09548 0.03756 0.00523 - C.01011 -0.01364 -0.01523 -0.01526 -0.01298 -0.00325 -0.00325	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 0.0270 0.02317 0.01684 0.01203 0.0475 0.00475	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660 0.01865 0.01287 0.00598 0.00281 0.00008	0.59596 0.48550 0.46368 0.43307 0.39737 0.10133 0.05753 0.03780 0.03128 0.01735 0.01735 0.01148 0.00381 0.00107
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.2 3.4 3.5 3.6 4.5 5.0 5.0	0.59C16 0.485d7 0.45371 0.38026 0.30725 0.11579 0.06423 0.03845 0.02129 0.01425 0.00104 0.00104 0.00064 0.00064	0.72444 0.65267 C.495984 C.46294 0.42491 0.29095 0.20045 0.13924 0.09742 0.08166 0.06852 0.04834 0.01431 0.01431 0.00607 0.00267	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 0.11408 C.07824 0.03416 0.03616 C.0241b 0.01590 0.00495 0.00495 0.00524	0.38172 0.24879 0.23629 0.24471 0.20847 0.09402 0.00285 -0.03843 -0.03235 -0.02529 -0.01885 -0.01355 -0.00949 -0.00165 -0.00066	0.39743 0.29786 0.28489 0.29205 0.25949 0.18976 0.11464 0.06808 0.03941 0.02215 0.01646 0.01220 0.00674 0.00380 0.00091 0.00011	0.76760 0.57251 0.30248 0.19934 0.20914 0.03756 0.00523 -C.01011 -0.01563 -0.01533 -0.01526 -0.01298 -0.00668 -0.00325 -0.00173	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.02703 0.02703 0.02317 0.01684 0.01203 0.00475 0.00162 0.00040	0.57396 0.38767 0.26014 0.21669 0.18150 0.0970 0.04853 0.02660 0.01885 0.01287 0.00598 0.00281 0.00281 0.00007	0.59596 0.48550 0.46368 0.43307 0.39737 0.17539 0.10133 0.05753 0.03780 0.02581 0.02581 0.01188 0.00381 0.00107 0.00015
1.8 2.0 2.2 2.3 2.6 2.8 3.0 3.2 3.4 3.5 3.6 3.8 4.0 5.0 5.5 6.0	0.59C36 0.483d7 0.45371 0.38026 0.30725 0.11579 0.06423 0.03845 0.02129 0.01425 0.00971 0.00104 -0.00089 -0.00084 -0.00064 -0.00046	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.20045 0.09742 0.09742 0.0852 0.04854 0.04834 0.03414 0.00607 0.00607 0.00607 0.00125	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 0.11408 C.07824 0.05342 0.05342 0.05490 0.00495 0.00495 0.00495 0.00495 0.00495 0.00495	0.38172 0.24879 0.23629 0.24471 0.08402 0.00285 -0.03285 -0.02529 -0.02194 -0.01865 -0.00378 -0.00378 -0.000378 -0.00052 -0.00065 -0.00086	0.39743 C.29786 0.24489 C.29205 0.25949 0.18976 0.03941 0.02215 0.01646 0.01220 0.00674 0.00380 0.00091 0.00010	0. 76760 0. 57251 0. 30248 0. 19934 0. 20914 0. 03756 0. 03756 0. 00523 -0. 01011 -0. 01364 -0. 01533 -0. 01526 -0. 01298 -0. 00068 -0. 00072 -0. 00172 -0. 00172 -0. 00172	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 0.03145 0.02317 0.01684 0.01203 0.00475 0.00000	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660 0.01287 0.00598 0.00281 0.00008 -0.00008 -0.00008	0.59596 0.48550 0.46368 0.43307 0.39737 0.17539 0.10133 0.05753 0.03780 0.03128 0.02581 0.01735 0.01148 0.00381 0.00107 0.00015 -0.00013
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.5 3.6 3.6 4.0 4.5 5.5 6.0 5.5	0.59C16 0.485d7 0.45371 0.38026 0.30725 0.11579 0.06423 0.03845 0.02129 0.01425 0.00104 0.00104 0.00064 0.00064	0.72444 0.65267 C.495984 C.46294 0.42491 0.29095 0.20045 0.13924 0.09742 0.08166 0.06852 0.04834 0.01431 0.01431 0.00607 0.00267	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 0.11408 C.07824 0.03416 0.03616 C.0241b 0.01590 0.00495 0.00495 0.00524	0.38172 0.24879 0.23629 0.24471 0.20847 0.09402 0.00285 -0.03843 -0.03235 -0.02529 -0.01885 -0.01355 -0.00949 -0.00165 -0.00066	0.39743 C.25746 O.24489 C.25949 O.18976 U.11464 C.06808 O.03941 O.02215 O.01646 O.01220 O.00674 O.00010 O.00010 O.00010 O.00011	0.76760 0.57251 0.30248 0.19934 0.20914 0.19861 0.09548 0.03756 0.00523 - C.01011 -0.01533 -0.01526 -0.01298 -0.00375 -0.00102 -0.00173 -0.00102 -0.00007	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.04264 0.03145 0.02703 0.02317 0.01684 0.01203 0.00475 0.00042 0.00000	0.57396 0.38767 0.26014 0.21669 0.18150 0.09470 0.06970 0.04853 0.02660 0.01287 0.00598 0.00281 0.00007 -0.00008 -0.00008	0.59596 0.48550 0.46368 0.43307 0.39737 0.10133 0.05753 0.03780 0.03128 0.02581 0.01735 0.01148 0.00381 0.00107 0.00015 -0.00015
1.8 2.0 2.2 2.3 2.6 2.8 3.0 3.2 3.4 3.5 3.6 3.8 4.0 5.0 5.5 6.0	0.59C36 0.483d7 0.45371 0.38026 0.30725 0.11579 0.06423 0.03845 0.02129 0.01425 0.00971 0.00104 -0.00089 -0.00084 -0.00064 -0.00046	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.20045 0.09742 0.09742 0.0852 0.04854 0.04834 0.03414 0.00607 0.00607 0.00607 0.00125	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 0.11408 C.07824 0.05342 0.05342 0.05490 0.00495 0.00495 0.00495 0.00495 0.00495 0.00495	0.38172 0.24879 0.23629 0.24471 0.08402 0.00285 -0.03285 -0.02529 -0.02194 -0.01865 -0.00378 -0.00378 -0.000378 -0.00052 -0.00065 -0.00086	0.39743 C.29786 0.24489 C.29205 0.25949 0.18976 0.03941 0.02215 0.01646 0.01220 0.00674 0.00380 0.00091 0.00010	0.76760 0.57251 0.30248 0.19934 0.20914 0.03556 0.00523 -C.01011 -0.01533 -0.01533 -0.01526 -0.00225 -0.00173 -0.00102 -0.00102 -0.00102 -0.00030	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.02703 0.02703 0.02317 0.01684 0.01203 0.00475 0.00040 0.00000 0.000000	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.04853 0.02660 0.01287 0.00598 0.00281 0.00008 -0.00008 -0.00008 -0.00008	0.59596 0.48550 0.46368 0.43307 0.39737 0.17539 0.10133 0.05753 0.03780 0.03780 0.02581 0.01735 0.01188 0.00107 0.00015 -0.00013
1.8 2.0 2.2 2.3 2.6 2.8 3.0 3.2 3.4 3.5 6.5 7.0 7.0	0.59C16 0.485d7 0.453d7 0.38026 0.30725 0.19072 0.0125 0.03845 0.02J29 0.01425 0.0071 0.0039 -0.00084 -0.00064 -0.00046 -0.00046	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.20045 0.13924 0.09742 0.08166 0.06852 0.04834 0.01431 0.00607 0.00267 0.00125 0.00021 0.00021	0.50684 0.32532 C.20859 0.17509 C.15253 0.11408 C.2935 C.12353 0.11408 C.27824 0.05342 0.03616 C.2241b 0.01590 0.00195 0.00195 0.00105 0.00052 -C.00052	0.38172 0.24879 0.24879 0.24471 0.20847 0.03843 -0.03235 -0.02529 -0.01885 -0.01355 -0.00378 -0.00165 -0.00032	0.39743 C.25746 O.24489 C.25949 O.18976 U.11464 C.06808 O.03941 O.02215 O.01646 O.01220 O.00674 O.00010 O.00010 O.00010 O.00011	0. 76760 0. 57251 0. 30248 0. 19934 0. 20914 0. 03756 0. 00523 -0. 01523 -0. 01533 -0. 01526 -0. 01298 -0. 00102 -0. 00102 -0. 00103 -0. 00103 -0. 00103 -0. 00103 -0. 00030	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.0959 0.04264 0.03145 0.02317 0.01684 0.01203 0.00475 0.00042 0.000000	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660 0.01287 0.00598 0.00281 0.00008 -0.00007 -0.00008 -0.00007 -0.00008	0.59596 0.48550 0.46368 0.43307 0.39737 0.17539 0.10133 0.05753 0.03780 0.03128 0.02581 0.01735 0.01148 0.00181 0.00107 0.00015 -0.00013 -0.00015 -0.00015
1.8 2.0 2.2 2.3 2.4 2.6 2.8 3.0 3.2 3.5 3.6 3.6 3.6 3.6 5.5 5.0 6.0 6.5 7.5	0.59C16 0.485d7 0.45371 0.38026 0.30725 0.19072 0.06123 0.03845 0.02029 0.01425 0.00104 0.00089 -0.00084 -0.00084 -0.00033 -0.00123	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.20045 0.13924 0.08166 0.06852 0.04834 0.01431 0.01431 0.01267 0.00267 0.00126 0.00036	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 0.11408 0.07842 0.07842 0.03616 C.0241b 0.01590 0.00495 0.00495 0.00052 -C.00054 -C.00054 -0.00049	0.38172 0.24879 0.23629 0.24471 0.20847 0.0402 0.0285 -0.03843 -0.03235 -0.02529 -0.01885 -0.01355 -0.00949 -0.0165 -0.00052 -0.00052 -0.00052 -0.00032 -0.00032 -0.00032	0.39743 C.29786 0.28489 C.29205 0.25949 0.18976 0.11464 0.06808 0.03941 0.02215 0.01646 0.01220 0.00674 0.00380 0.00010 -0.00011 -0.00014 -0.00014	0.76760 0.57251 0.30248 0.19934 0.20914 0.09548 0.03756 0.00523 -C.01011 -0.01533 -0.01523 -0.01298 -0.00325 -0.00173 -0.00102 -0.00011	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 0.02703 0.02317 0.01624 0.01203 0.00475 0.00042 0.000047 0.000012 0.00012 0.00012	0.57396 0.38767 0.26169 0.18150 0.12955 0.09470 0.06873 0.02660 0.01287 0.00598 0.00281 0.00008 -0.00007 -0.00008 -0.00002 -0.00002	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.05753 0.03780 0.03128 0.02581 0.01735 0.01148 0.00381 0.00107 0.00015 -0.00019 -0.00019 -0.00019
1.8 2.0 2.2 2.3 2.4 2.6 3.0 3.2 3.5 3.6 4.0 4.5 6.5 7.0 7.5 8.0	0.59C36 0.483d7 0.45371 0.38626 0.30725 0.19072 0.06423 0.03845 0.02129 0.01425 0.0071 0.00394 0.00104 -0.00089 -0.00084 -0.00033 -0.00023 -0.00016	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.20045 0.13924 0.09742 0.08166 0.06852 0.04834 0.01431 0.00607 0.00267 0.00125 0.00021 0.00021	0.50684 0.32532 C.20859 0.17509 C.15253 0.12935 C.12353 0.11408 C.07824 0.05342 0.05342 0.05490 0.00495 0.00495 0.00495 0.00000000000000000000000000000000000	0.38172 0.24879 0.23629 0.24471 0.08402 0.00285 -0.03285 -0.02529 -0.02194 -0.01865 -0.00949 -0.00052 -0.00052 -0.00052 -0.00052 -0.000052 -0.00002	0.39743 C.29786 0.24489 C.29205 0.25949 0.18976 0.11464 C.06808 0.03941 0.02215 0.01646 0.1220 0.00674 0.00380 0.00091 0.00010 -0.00011 -0.00014 -0.00013 -0.00014	0. 76760 0. 57251 0. 30248 0. 19934 0. 20914 0. 03756 0. 00523 -0. 01523 -0. 01533 -0. 01526 -0. 01298 -0. 00102 -0. 00102 -0. 00103 -0. 00103 -0. 00103 -0. 00103 -0. 00030	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.0959 0.04264 0.03145 0.02317 0.01684 0.01203 0.00475 0.00042 0.000000	0.57396 0.38767 0.26014 0.21669 0.18150 0.12955 0.09470 0.06970 0.04853 0.02660 0.01287 0.00598 0.00281 0.00008 -0.00007 -0.00008 -0.00007 -0.00008	0.59596 0.48550 0.46368 0.43307 0.39737 0.17539 0.10133 0.05753 0.03780 0.03128 0.02581 0.01735 0.01148 0.00181 0.00107 0.00015 -0.00013 -0.00015 -0.00015
1.8 2.0 2.2 2.3 2.6 2.8 3.5 3.6 3.5 3.6 4.5 5.5 6.0 7.5 8.0	0.59C16 0.485d7 0.453d7 0.38e26 0.30725 0.19072 0.06423 0.03845 0.02)29 0.01425 0.00471 0.00394 0.00104 0.00089 -0.00084 -0.00346 -0.00346 -0.00346 -0.00016	0.72444 0.65267 C.49053 0.45984 C.46294 0.29095 0.20045 0.13924 0.09742 0.08166 0.06852 0.04834 0.03414 0.01431 0.00607 0.00267 0.00025 0.00021 0.00012	0.50684 0.32532 C.20859 0.17509 C.15253 0.11408 C.67824 0.05342 0.03616 C.02418 0.0159 0.00109 0.000022 -C.00049 -C.00049 -C.00049 -C.00049 -C.00049 -C.00049 -C.00049	0.38172 0.24879 0.23629 0.24471 0.20847 0.03843 -0.03235 -0.02529 -0.02194 -0.01885 -0.03949 -0.00376 -0.00096 -0.00092 -0.00092 -0.00007 -0.00007	0.39743 C.25746 0.24489 C.25949 0.18976 0.11464 0.06808 0.03941 0.02215 0.01646 0.01220 0.00674 0.00010 0.00010 -0.00011 -0.00013 -0.00013 -0.00013 -0.00019 -0.000019 -0.000019 -0.000019 -0.000019	0.76760 0.57251 0.30248 0.19934 0.20914 0.09548 0.03756 0.00523 -C.01011 -0.01533 -0.01523 -0.01298 -0.00325 -0.00173 -0.00102 -0.00011	0.70054 0.50662 0.33331 0.26410 0.20858 0.13135 0.08581 0.05909 0.04264 0.02703 0.02317 0.01624 0.01203 0.00475 0.00042 0.000047 0.000012 0.00012 0.00012	0.57396 0.38767 0.26169 0.18150 0.12955 0.09470 0.06873 0.02660 0.01287 0.00598 0.00281 0.00008 -0.00007 -0.00008 -0.00002 -0.00002	0.59596 0.48550 0.46368 0.43307 0.39737 0.28989 0.17539 0.05753 0.03780 0.03128 0.02581 0.01735 0.01148 0.00381 0.00107 0.00015 -0.00019 -0.00019 -0.00019

Tabular Data. A-14.4 Calculated potential curves for 62 valence states of 0_2 given in hartrees relative to the asymptotic energy of each state. (Continued).

R(a ₀)	4¹ Π _u	$a^1 \Delta_g$	$2^1\Delta_g$	31 Ag	$4^1\Delta_g$	1 1 A	$2^1\Delta_u$	¹ Ф _g	100
1.8	0.54772	0. 27303	0.44183	0.81141	0.78295	0.52510	0.53453	0.39220	0.64196
2.0	0.44275	-0.07635	C.33837	0.59776	0.53975	0.26985	0.42168	0.29999	0.53868
2.2	0:38046	-0.13196	0.31716	0.36249	0.46403	0.12428	0.38110	0.28713	0.51136
2.3	0.35327	-C. 14051	C.27576	0.32183	0.44640	0.07721	0.35421	0.29497	0.49255
2.4	0.33574	-0.14133	0.21382	0. 33185	0.38321	C. C4198	0.31217	0.26490	0.47536
2.6	0.23706	-0.12912	0.11913	0.31593	0.26336	-0.00292	0.23946	0.14653	0.34171
2.8	0.15418	-0.10807	0.05918	0.20517	C. 29479	- C. 02485	0.19071	0.07417	0.22628
3.0	0.09571	-0.08492	0.02210	0.13171	0.22231	-0.03269	0.14287	C. C3210	0.14980
3.2	0.05738	-0.06333	0.00030	0.08396	0.14570	-0.03239	0.09062	0.00923	0.09934
3.4	0.03406	-0.04520	-0.01113	0.05345	0.09402	-0.02799	0.05623	-0.00193	0.06610
3.5	0.02641	-0.03767	-0.01406	0.04271	0.07511	0.02512	0.04402	-0.00474	0.05401
3. 5	0.02361	-0.03118	-C.01560	0.03418	0.05978	-0.02214	0.03432	-0.00633	0.04419
3.8	0.01286	-0.02106	-0.01576	0.02202	0.03750	-0.01647	0.02062	-0.00719	0.02967
4.0	0.00835	-0.01412	-C.01371	0.01428	0.02328	-0.01182	0.01223	-0.0C651	0.02000
4.5	0.00337	-0.00538	-0.00730	0.00488	0.00707	-0.00516	0.00326	-0.00387	0.00750
5.0	0.00161	-0.00222	-0.00354	0.00163	0.00232	-0.00263	0.00085	-0.00230	0.00280
5.5	0.00083	-0.00099	-0.00184	0.00051	0.00082	-0.00153	0.00013	-0.00147	0.00103
6.0	0.00046	-0.00048	-0.00105	0.00014	0.00030	-0.00097	-0.00008	-0.00099	0.00038
6.5	0.00029	-0.00026	-0.00066	0.30002	0.00011	- 0. CC065	-0.00013	-0.00068	0.00014
7.0	0.00018	-0.00014	-0.00043	-0.00001	0.00004	-0.00044	-0.00012	-0.00048	0.00005
7.5	0.00713	-0.00008	-0.00029	-0.00002	C. 0CC01	-0.00031	-0.00010	-0.00034	0.00002
8.0	0.00009	-0.00005	-C.0002C	-0.00001	0.00000	-0.00022	-0.00007	-0.00024	0.00001
9.0	0.00105	-0.00002	-0.00010	-0.00001	0.00000	-C.00011	-0.00004	-0.00013	0.00001
10.0	0.00003	-0.0000C	-C.00C05	-0.00000	0.00000	-0.00006	-0.00002	-0.00007	0.00001
20.0	0.26233	0.00000	0.16597	0.16600	0.26239	0.16597	0.26239	0. 16612	0.16612

R(a ₀)	11°g	3 ½ ⁺ ₉	×3Σ-g	$2^3\Sigma_{g}$	3 ³ Σ-	4 ³ \(\Sigma_g^-\)	A35,	5 ₃ Σ ⁿ +	3 ³ Σ ₊ ,
1.8	0.85720	0.48328	C.C2825	0.50430	0.81931	0.80922	0.50973	0.77601	0.83606
2.0	0.68188	0. 38790	-0.12072	0.40243	0.61562	0.55214	0.24316	0.67036	0.69923
2.2	0.60357	0.37171	-C.17448	0.38002	0.38406	0.48151	0.09950	0.59077	0.56181
2.3	0.59368	0.37819	-0. 18 168	0.30006	0.38657	C. 45847	0.05574	0.49613	0.56036
2.4	0.58057	0.38975	-0.18093	0.23430	0.39556	0.35303	0.02465	0.41659	0.54220
2.6	0.54370	0.35125	-0.16494	0.13940	0.28995	C. 32792	-0.01125	0.29756	0.38770
2.8	0.37589	0.23825	-0.13934	0.07840	0.18311	0. 27285	-0.02517	0.21796	0.24472
3.0	0.25/42	0.16139	-0.11081	0. C3906	0.11287	0.20421	-0.02711	0.16473	0.14581
3.2	0.17646	C. 10925	-0.08304	0.01339	0.06801	0.13845	-0.02319	0.12943	0.07716
3.4	0.12114	0.07392	-0.05925	-0.00343	C. C4048	C.08888	-0.01724	0.10663	0.02935
3.5	0.10043	0.06080	-0.04743	-0.00930	0.03122	0.07045	-0.01425	0.09283	0.01709
3.6	0.08330	0.05000	-0.03787	-0.01366	C-C2413	0.05548	-0.01151	0.07763	0.01107
3.8	0.05738	0.03378	-C-C2278	-0.01829	0.01447	0.03371	-0.00709	0.05427	0.00339
4.0	0.03357	0.02278	-0.C1300	-0.01348	0.00866	0.01994	-0.00417	0.03794	-0.00029
4.5	0.01571	0.00841	-0.C0354	-0.01110	0.00210	0.00493	-0.00123	0.01554	-0.00189
5.0	0.00233	0.00304	-0.00145	-0.00515	0.00010	C. CC118	-0.00056	0.00642	-0.00110
5.5	0.00262	0.00106	-C.0CC78	-0-00235	-0.00043	0.00024	-0.00033	0.00272	-0.00052
6.0	0.00114	0. 30035	-0.00047	-0.00111	-0.00051	-0.00002	-0.00021	0.00119	-0.00024
6.5	0.00053	0.00010	-0.00030	-0.00055	-0.00047	-0.00009	-0.00013	0.00055	-0.00012
7.0	0.00128	0.00002	-0.00019	-0.00028	-0.00039	- C. CCC09	-0.00007	0.00027	-0.00006
7.5	0.00016	-0.00000	-C.00C13	-0.00015	-0.00030	-0.00008	-0.00004	0.00015	-0.00003
8.0	0.00010	-0.00000	-0.00008	-0.00009	-0.00022	- 0. CCC06	-0.00002	0.00009	-0.00001
9.0	0.00005	0.00000	-C.00C03	-0.00004	-0.00011	-0.00003	0.00000	0.00004	-0.00000
10.0	0.00003	0.00000	-0.00001	-0.00002	-0.CC006	-0.00001	0.00001	0.00003	0.00000
20.0	0.16025	0.08300	-c.cocco	0.04300	0.08345	C. 17974	0.00000	0.00125	0.08300

Tabular Data. A-14.4 Calculated potential curves for 62 valence states of θ_2 given in hartrees relative to the asymptotic energy of each state. (Continued).

R(a ₀)	$8^3\Sigma_u^-$	23 5 u	$3^3\Sigma^{\alpha}$	1 ³ 11 ₉	2 ³ 11 _g	3 ³ 11 _g	4 ³ 11 _g	5 ³ 11 _g	13II _u
1.8	0.51595	0.69461	0.74252	0.43650	0.42217	C.46823	0.89067	0.85222	0.63719
2.0	0.25852	0.58419	C.59300	0.26433	0.32404	0. 37538	0.69775	0.61916	0.44513
2.2	0.11369	0.50650	0.44503	0.15112	0.31672	C. 36241	0.42547	0.38047	0.27091
2. 1	0. 06710	0.41117	C.4C759	0.11872	0.32361	0. 12540	0. 366 10	0.28031	0.20252
2.4	0.03210	0.13260	0.36182	0.01685	0.24153	C.28681	0.33320	0.24330	0.14870
2.6	-0.01199	0.21813	C.29C80	0.97389	0.12419	0. 16 38 7	0.21717	0. 22581	0.07620
2.8	-0.03361	0.14454	0.24239	0.05692	0.05160	0.08651	0.14436	0.12997	0.03660
3.0	-0.04126	0.09709	0.16851	0.06717	0.00710	0.03962	0.09844	0.06733	0.01705
3.2	-0.04365	0.06605	0.10917	0.06038	-C.01129	0.01297	0.06790	0.03005	0.00887
3.4	-0.03566	0.04532	0.06914	0.04210	-0.00850	-0.00054	0.04633	0.01074	0.00631
3.5	-0.03237	0. 0 3761	0.05445	0.03513	-0.CC726	-0.00397	0.03804	0.00549	0.00592
3.6	-0.02888	0.03122	0.04254	0.02930	-0.C0680	-0.00513	0.03113	0.00213	0.00571
3.8	-0.02202	0.02147	0.02529	0.02026	-0.00758	-0.00401	0.02074	-0.00108	0.00516
4.0	-0.01608	0.01465	0.01452	0.01391	-0.00692	-0.00276	0.01375	-0.00190	0.00412
4.5	-0.00687	0.00525	0.00330	0.00510	-0.00384	-0.00121	0.00474	-0.00137	0.00114
5.0	-0.00311	0.00152	0.00075	0.00164	-0.00194	-0.00070	0.00144	-0.00077	-0.00036
5.5	-0.00153	0.00014	0.00012	0.00038	-0.00101	-0.00C52	0.00028	-0.00047	-0.00075
6.0	-0.00078	-0.00032	-C.COC05	-0.00002	-0.00051	-0.00044	-0.00009	-0.00031	-0.00071
6.5	-0.00039	-0.00043	-0.00010	-0.00013	-0.00023	-0.00039	-0.00019	-0.00021	-0.00057
7.0	-0.00020	-0.00039	-0.00009	-0.00013	-0.00009	-0.00031	-0.00018	-0.00014	-0.00042
7.5	-0.00)12	-0.00030	-0.00008	-0.00010	-0.00005	-0.00021	-0.00015	-0.00010	-0.00031
8.0	-0.00008	-0.00022	-0.00006	-0.10008	-0.C0003	-0.C0014	-0.00012	-0.00006	-0.00022
9.0	-0.00004	-C.00011	-0.00003	-0.00004	-0.00000	-0.00007	-0.00007	-0.00003	-0.00012
10.0	-0.00002	-0.00006	-0.00001	-0.00002	0.00001	-0.00003	-0.00004	-0.00001	-0.00006
20.0	0.68300	0.08345	0. 17974	0.30062	0.08235	0.08312	0.08360	0.17924	0.00061
R(a ₀)	2 ³ 11 ₀	3 ³ II _u	4 ³ П _U	5 ³ П _и	$1^3\Delta_{q}$	$2^3\Delta_{ m g}$	$C^3\Delta_{_U}$	2 ³ Δ ₀	$3^3\Delta_{_{\scriptscriptstyle U}}$
1.8	0.53440	0.65994	0.71111	0.75055	0.47807	C.87063	0.50075	0.68513	0.8.344
2.0	0.40706	0.55385	C.60C59	0.51157	0.38295	0.70058	0.23574	0.58003	0.69787
2.2	0.31432	0.41100	0.52034	0.43980	0.36679	0.62815	0.09337	0.48618	0.55229
2.3	0.28349	0.35716	C.49528	0.42641	0.37333	0.60569	0.05019	0.38976	0.55091
2.4	0.24738								
2.6		0.33122	0.47765	0.39673	0.38494	C.50823	0.01962	0.31071	
	0.17747	0.33122	0.47765	0.25337	0.34655	0.41475	0.01962		0.54000
2.8	0.17747							0.31071	
3.0		0.30900	C.32361	0.25337	0.34655	0.41475	-0.01537	0.31071	0.54000
3.0	0.12552	0.30900	0.32361	0.25337	0.34655	0.41475 C.37807	-0.01537 -0.02855	0.31071 0.19487 0.11941	0.54008 0.44992 0.31130
3. 0	0.12552 0.08777	0.30900 0.19872 0.12014	0.32361 0.23133 0.15366	0.25337 0.17971 0.11638	0.34655 0.23456 0.15840	0.41475 0.37807 0.25955	-0.01537 -0.02855 -0.02989	0.31071 0.19487 0.11941 0.07025	0.54008 0.44992 0.31130 0.21627
3. 0 3. 2 3. 4 3. 5	0.12552 0.08777 0.05378	0.30900 0.19872 0.12014 0.06959	0.32361 0.23133 0.15366 0.10220	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539	0.34655 0.23456 0.15840 0.10681	0.41475 0.37807 0.25955 0.17837	-0.01537 -0.02855 -0.02989 -0.02550	0.31071 0.19487 0.11941 0.07025 0.03843	0.5400d 0.44992 0.31130 0.21627 0.15088
3.0 3.2 3.4	0.12552 0.08777 0.05578 0.03208	0.30900 0.19872 0.12014 0.06959 0.04325	0.32361 0.23133 0.15366 0.10220 0.06804	0.25337 0.17971 0.11638 0.07269 0.04503	0.34655 0.23456 0.15840 0.10681 0.07191	0.41475 0.37807 0.25955 0.17837 3.12276	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916	0.31071 0.19487 0.11941 0.07025 0.03843 0.01839	0.54008 0.44992 0.31130 0.21627 6.15088 0.10555
3. 0 3. 2 3. 4 3. 5	0.12552 0.08777 0.05378 0.03208 0.02136	0.30900 0.19872 0.12014 0.06959 0.04325 0.03505 0.02844 0.01859	0.32361 0.23133 0.15366 0.10220 0.06804 0.05553	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896	0.41475 0.37807 0.25955 0.17837 3.12276 0.10190	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916 -0.01601	0.31071 0.19487 0.11941 0.07025 0.03843 0.01839	0.54008 0.44992 0.31130 0.21627 0.15088 0.10555 0.08835
3. 0 3. 2 3. 4 3. 5 3. 6	0.12552 0.08777 0.05878 0.03208 0.02136 0.01314	0.30900 0.19872 0.12014 0.06959 0.04325 0.03505 0.02844	0.32361 0.23133 0.15366 0.10220 0.06804 0.05553 0.04532	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896 0.04832	0.41475 0.37807 0.25955 0.17837 3.12276 0.10190 0.08462	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916 -0.01601 -0.01311	0.31071 0.19487 0.11941 0.07025 0.03843 0.01839 0.01161 0.00652	0.54008 0.44992 0.31130 0.21627 0.15088 0.10555 0.08835 0.07397
3.0 3.2 3.4 3.5 3.6 3.8 4.0 4.5	0.12552 0.08777 0.05478 0.03208 0.02136 0.01314 0.00293 -0.00155 -0.00288	0.30900 0.19872 0.12014 0.06959 0.04325 0.03505 0.02844 0.01859 0.01200 0.00372	C.32361 O.23133 C.15366 O.10220 C.06804 O.05553 O.04532 Q.03016 C.02C03 O.00703	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779 0.01707 0.01042 0.00290	0.34655 0.23456 0.15840 0.1681 0.07191 0.05896 0.04832 0.03239 0.02162 0.00764	0.41475 C.37807 0.25955 0.17837 J.12276 0.10190 0.08462 0.05842 0.04040 0.01619	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916 -0.01601 -0.01311 -0.00841	0.31071 0.19487 0.11941 0.07025 0.03843 0.01161 0.00652 0.00025	0.54008 0.44992 0.31130 0.21627 0.15088 0.10555 0.08835 0.07397 0.05187
3.0 3.2 3.4 3.5 3.6 3.8 4.0 4.5 5.0	0.12552 0.08777 0.05978 0.03208 0.02136 0.01314 0.00293 -0.00155 -0.00288 -0.00174	0.30900 0.19872 0.12014 0.06959 0.04325 0.03505 0.02844 0.01859 0.01200 0.00372 0.00091	0.32381 0.23133 0.15366 0.10220 0.06804 0.05553 0.04532 0.03016 0.02003	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779 0.01707 0.01042 0.00290 0.0067	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896 0.04832 0.03239 0.02162 0.00764 0.00252	0.41475 0.37807 0.25955 0.17837 3.12276 0.10190 0.08462 0.05842 0.04040 0.01619 0.00662	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916 -0.01601 -0.01311 -0.00841 -0.00525	0.31071 0.19487 0.11941 0.07025 0.03843 0.01161 0.00652 0.00025	0.54008 0.44992 0.31130 0.21627 0.15088 0.10555 0.08835 0.07397 0.05187 0.03639
3.0 3.2 3.4 3.5 3.6 3.8 4.0 4.5 5.0	0.12552 0.08777 0.05378 0.03208 0.02136 0.01314 0.00293 -0.00155 -0.0028 -0.00174 -0.00396	0.30900 0.19872 0.12014 0.06959 0.04325 0.03505 0.02844 0.01859 0.01200 0.00372 0.00091	C.32361 O.23133 C.15366 O.10220 C.06804 O.05553 O.04532 Q.03016 C.02C03 O.00703	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779 0.01707 0.01042 0.00290	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896 0.04832 0.023239 0.02162 0.00764 0.00252 0.00071	0.41475 C.37807 0.25955 0.17837 J.12276 0.10190 0.08462 0.05842 0.04040 0.01619 0.00662 0.00279	-0.01537 -0.02855 -0.02955 -0.02550 -0.01916 -0.01601 -0.01311 -0.00841 -0.00525 -0.00180	0.31071 0.19487 0.11941 0.07025 0.03843 0.01839 0.01161 0.00652 -0.0025 -0.00250	0.54008 0.44994 0.31130 0.21627 6.15088 0.10555 0.08835 0.07397 0.05187 6.03639
3.0 3.2 3.4 3.5 3.6 3.8 4.0 4.5 5.0 5.5 6.0	0.12552 0.08777 0.05478 0.03208 0.02136 0.01314 0.00293 -0.00155 -0.00288 -0.00174 -0.00096	0.30900 0.19872 0.12014 0.06959 0.04325 0.03505 0.02844 0.01859 0.01200 0.00372 0.00091 1.00000	C.32381 O.23133 C.15366 O.10220 C.06804 O.05553 O.04532 O.03016 C.02C03 O.00703 O.00229	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779 0.01707 0.01042 0.00290 0.0067	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896 0.04832 0.03239 0.02162 0.00764 0.00252	0.41475 0.37807 0.25955 0.17837 3.12276 0.10190 0.08462 0.05842 0.04040 0.01619 0.00662	-0.01537 -0.02855 -0.02950 -0.02550 -0.01916 -0.01601 -0.01311 -0.00841 -0.00525 -0.00180 -0.0084	0.31071 0.19487 0.11941 0.07025 0.03843 0.01181 0.00652 0.00025 -0.00250 -0.00292	0.5400d 0.44992 0.31130 0.21627 6.15088 0.10555 0.08835 0.07397 0.03637 0.03637 0.03637
3. 0 3. 2 3. 4 3. 5 3. 6 3. 8 4. 0 4. 5 5. 0 5. 5 6. 0 6. 5	0.12552 0.08770 0.05478 0.03208 0.02136 0.01314 0.00293 -0.0015 -0.00288 -0.00174 -0.00096 -0.00051	0.30900 0.19872 0.12014 0.06959 0.04325 0.02844 0.01859 0.01200 0.00372 0.00091 0.000027 -0.00027	C.32381 0.23133 0.15366 0.10220 0.06804 0.05553 0.04532 0.03016 0.00203 0.00703 0.00229 0.00003 -C.00C14	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779 0.01042 0.00290 0.30067 0.000015 -0.00015	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896 0.04432 0.03239 0.02162 0.00764 0.00252 0.00071	0.41475 0.37807 0.25955 0.17837 3.12276 0.10190 0.08462 0.05842 0.04040 0.01619 0.0062 0.00279 0.00123 0.00123	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916 -0.01601 -0.01311 -0.00525 -0.00180 -0.00084 -0.00089 -0.00099	0.31071 0.19487 0.11941 0.07025 0.03839 0.01161 0.00652 0.00025 -0.00250 -0.00250	0.5400d 0.4499d 0.31130 0.21627 0.1508d 0.10555 0.08835 0.07397 0.05187 0.03639 0.01499 0.00623 0.00266
3. 0 3. 2 3. 4 3. 5 3. 6 3. 8 4. 0 4. 5 5. 5 6. 0 6. 5 7. 0	0.12552 0.08777 0.05378 0.03208 0.02136 0.01314 0.00293 -0.00155 -0.00288 -0.00174 -0.00051 -0.00053	0.3090C 0.19872 0.12014 0.06959 0.04325 0.03505 0.01200 0.01200 0.00372 0.00091 0.00000 -0.00027 -0.00030	C.32361 2.23133 C.15366 2.10220 C.06804 0.05553 0.04532 0.03016 C.02203 0.00703 0.00229 0.00060 0.00003 -C.00C14 -0.00017	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779 0.01707 0.01042 0.00290 0.00001 -0.00015 -0.00015	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896 0.04432 0.02162 0.00764 0.00252 0.00071 0.00012 -0.00008	0.41475 0.37807 0.25955 0.17837 0.10190 0.08462 0.05842 0.04040 0.01619 0.00662 0.00279 0.00123 0.00028	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916 -0.01601 -0.00341 -0.00525 -0.00180 -0.00084 -0.00048 -0.00029 -0.00012	0.31071 0.19487 0.11941 0.07025 0.03843 0.01161 0.00652 0.00025 -0.00250 -0.00250 -0.00167 -0.00087	0.5400a 0.44992 0.31130 0.21627 0.15080 0.10555 0.08835 0.07397 0.05187 0.03639 0.01499 0.00623 0.0026
3.0 3.4 3.5 3.6 3.8 4.0 4.5 5.5 6.0 6.5 7.0	0.12552 0.08777 0.05378 0.03208 0.02136 0.01314 0.00293 -0.00155 -0.00288 -0.00174 -0.00096 -0.00051 -0.00023	0.3090C 0.19914 0.12014 0.06959 0.04325 0.03505 0.01200 0.0037 0.00091 0.00091 0.00027 -0.00032 -0.00031	C.32361 2.23133 C.15366 2.10220 C.06804 0.05553 0.04532 0.03703 0.00703 0.00229 0.00600 -C.00C014 -0.00017 -0.00015	0.25337 0.17971 0.11638 0.04503 0.04503 0.03539 0.02779 0.01042 0.00297 0.00001 -0.00015 -0.00015	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896 0.04432 0.03239 0.02162 0.00764 0.00252 0.00071 -0.00005 -0.00005	0.41475 0.37807 0.25955 0.17837 0.10190 0.08462 0.05842 0.04040 0.01619 0.00662 0.00279 0.00123 0.00058 0.00029	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916 -0.01601 -0.03841 -0.00525 -0.00180 -0.00084 -0.00084 -0.00089 -0.00089 -0.00019 -0.00019	0.31071 0.19487 0.11941 0.07025 0.03843 0.01839 0.01161 0.00652 0.00025 -0.0025 -0.00292 -0.00167 -0.00087 -0.00027 -0.000167	0.54004 0.44992 0.31130 0.21627 0.15080 0.10555 0.0835 0.07397 0.05187 0.03639 0.01099 0.00623 0.00119 0.00059 0.00029
3.0 3.2 3.4 3.5 3.6 4.0 4.5 5.0 5.5 6.0 7.5	0.12552 0.08777 0.05478 0.02136 0.02136 0.01314 0.00293 -0.00155 -0.00288 -0.00174 -0.00091 -0.00093 -0.00008	0.3090C 0.19214 0.12014 0.06959 0.04325 0.03505 0.01200 0.0037 0.00091 0.00027 -0.00023 -0.00023 -0.00021 -0.00023	C.32361 2.23133 C.15366 2.10220 C.06804 0.05553 0.04532 0.03703 0.00703 0.00229 C.00C60 0.00003 -C.00C14 -O.00C17 -O.00015	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779 0.01042 0.00290 0.00001 -0.00015 -0.00015 -0.00012	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896 0.04432 0.03239 0.02162 0.00764 0.00252 0.00071 0.00005 -0.00008 -0.00008	0.41475 0.25955 0.17837 3.12276 0.10190 0.08462 0.05842 0.04040 0.01619 0.00662 0.00279 0.00123 0.00058 0.00029 0.00016	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916 -0.01601 -0.03111 -0.00841 -0.00525 -0.00180 -0.00084 -0.00048 -0.00019 -0.00019 -0.00019 -0.00005	0.31071 0.19487 0.11941 0.07025 0.03843 0.01839 0.01161 0.00652 -0.0025 -0.0025 -0.0025 -0.00087 -0.00087 -0.00087 -0.00027	0.54004 0.44992 0.31130 0.21627 0.15084 0.10555 0.05835 0.07397 0.05187 0.03639 0.00623 0.00056 0.0019
3.0 3.2 3.4 3.5 3.6 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 9.0	0.12552 0.08777 0.05478 0.02136 0.01314 0.00293 -0.00155 -0.00174 -0.00196 -0.00096 -0.00005 -0.00003 -0.00005	0.30900 0.19872 0.12014 0.06959 0.04325 0.03505 0.01200 0.01200 0.00372 0.00091 -0.00030 -0.00030 -0.00031 -0.00001 -0.00001	C.32361 2.23133 C.15366 2.10220 C.06804 0.05553 0.04532 0.03016 C.02203 0.00703 0.00229 0.00060 0.00003	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779 0.01707 0.01042 0.00290 0.00015 -0.00015 -0.00015 -0.00016 -0.00004	0.34655 0.23456 0.15840 0.10681 0.07191 0.0252 0.0252 0.00764 0.00252 0.00071 0.00005 -0.00008 -0.00007 -0.00005	0.41475 0.37807 0.25955 0.17837 0.10190 0.08462 0.05842 0.04040 0.01619 0.0062 0.00279 0.0012 0.00029 0.00016 0.00016 0.00005	-0.01537 -0.02855 -0.02989 -0.02550 -0.01960 -0.01601 -0.00341 -0.00525 -0.00180 -0.00048 -0.00048 -0.00029 -0.00012 -0.00007 -0.00007 -0.00007	0.31071 0.19487 0.11941 0.07025 0.03843 0.01839 0.01161 0.00652 0.00025 -0.0025 -0.00292 -0.00167 -0.00087 -0.00087 -0.00007	0.54004 0.44992 0.31130 0.21627 0.15080 0.10555 0.0835 0.07397 0.05187 0.03639 0.01099 0.00623 0.00119 0.00059 0.00029
3.0 3.2 3.4 3.5 3.6 4.0 5.0 5.5 6.0 7.5	0.12552 0.08777 0.05478 0.02136 0.02136 0.01314 0.00293 -0.00155 -0.00288 -0.00174 -0.00091 -0.00093 -0.00008	0.3090C 0.19214 0.12014 0.06959 0.04325 0.03505 0.01200 0.0037 0.00091 0.00027 -0.00023 -0.00023 -0.00021 -0.00023	C.32361 2.23133 C.15366 2.10220 C.06804 0.05553 0.04532 0.03703 0.00703 0.00229 C.00C60 0.00003 -C.00C14 -O.00C17 -O.00015	0.25337 0.17971 0.11638 0.07269 0.04503 0.03539 0.02779 0.01042 0.00290 0.00001 -0.00015 -0.00015 -0.00012	0.34655 0.23456 0.15840 0.10681 0.07191 0.05896 0.04432 0.03239 0.02162 0.00764 0.00252 0.00071 0.00005 -0.00008 -0.00008	0.41475 0.25955 0.17837 3.12276 0.10190 0.08462 0.05842 0.04040 0.01619 0.00662 0.00279 0.00123 0.00058 0.00029 0.00016	-0.01537 -0.02855 -0.02989 -0.02550 -0.01916 -0.01601 -0.03111 -0.00841 -0.00525 -0.00180 -0.00084 -0.00048 -0.00019 -0.00019 -0.00019 -0.00005	0.31071 0.19487 0.11941 0.07025 0.03843 0.01839 0.01161 0.00652 -0.00252 -0.00252 -0.00087 -0.00087 -0.00087 -0.00007 -0.00016	0.5400a 0.44992 0.31130 0.21627 0.15080 0.10555 0.08835 0.07397 0.05187 0.01499 0.00623 0.00119 0.00056 0.00019

Tabular Data. A-14.4 Calculated potential curves for 62 valence states of 0_2 given in hartrees relative to the asymptotic energy of each state. (Continued).

R(a ₀)	$^3\Phi_9$	°Ф.	152°	$2^5\Sigma_9^+$	5 <u>2</u> -	6 U 2	5n _u	$^{5}\Delta_{9}$
1.8	0.46347	0.70406	1.18893	1.32424	0.95557	0.94008	0.91197	0.94106
2.0	3.37205	0.60298	0.95967	1.07451	0.71817	6.71078	0.69442	0.77333
2.2	0.35965	C. 56491	0.73495	0.84102	0.46895	0.43643	0.59166	0-10400
2.3	0.36759	0.53812	0.60427	0.83470	0.37435	C. 33463	0.56513	0.59879
2.4	0.28329	C. 5208C	C. 49597	0.77697	0.29813	0.25320	0.50356	0.49100
2.6	0.17215	0.35281	0.33339	0.55335	0.18901	C. 13835	0.33477	0.32933
2.8	0.10003	0.23510	0.22374	0.38083	0.12005	0.06909	0.22230	C. 22045
3.0	0.05677	0.15615	0.14995	9.26218	C. C7802	C.02909	0.14742	0.14731
3.2	0.03153	0.10333	C. 10C34	0.18071	0.05125	0.00739	0.09759	0.09824
3.4	0.01720	0.06309	0.06705	.0.12472	0.03415	- 0.00325	0.06442	0.06538
3.5	0.01264	0.05518	C.05477	0.10366	0.02799	-0.00546	0.05228	0.05329
3.6	0.00928	0.04465	0.04472	0.03618	0.02238	- 0.00751	0.04238	0.04341
3.8	0.00497	0.02910	0.02576	0.03463	0.01550	-0.00838	0.02774	C. 02874
0.4	0.00260	0.01830	0.01974	0.04131	0.010.0	-0.00772	0.01804	0.01894
4.5	0.00017	0.00591	0.00691	9.01663	0.00354	-0.00486	0.00588	0.00649
5.0	-0.00047	0.00152	0.00231	0.00690	0.00097	- C. 30287	0.00169	0.00209
5.5	-0.00055	9.00014	0.00000	6.00245	0.00010	-0.00174	0.00032	0.00058
0.9	-0.00347	-0.00023	0.00017	0.00124	-0.00014	- 0.00110	-0.00007	6000000
6.5	-0.00035	-C.00027	C.00001	0.30357	-0.00018	-0.00071	-0.00015	-0.00005
7.0	-0.00025	-0.00023	-0.00002	0.33028	-0.00015	- C. COO48	-0.00014	-0.00007
1.5	-0.00018	-0.00017	-0.00002	0.00015	-0.00011	-0.00033	-0.00011	-0.00006
8.0	-0.00013	-0.00012	-0.00001	6000000	-C. CC000	- 0.00023	-0.00008	-0.00004
0.6	96000-0-	-0.00006	0000000	0.00004	-0.00003	-0.00012	10000.0-	-0.00001
10.0	-0.00303	-0.00003	0.00001	0.00003	-0.00001	-0.00000	-0.00002	-0.00000
20.0	0.08312	0.03312	0000000	0.00125	0.00125 -0.00000	0.00061	0.09062	0.0000

energies for R = $20a_0$ are given relative to the calculated 3P + 3P asymptote of -149.695177 hartrees. $1a_0$ = 0.52918 A; 1 hartree = 27.2116 eV. $^{\rm a}$ The asymptotic energy for each state is taken to be the calculated energy at R = $20a_0$. The

Graphical Data. A-14.5. Calculated potential curves for quintet valence states of 0_2 . Energies are given relative to $0\ (^3P)$ + $0\ (^3P)$.

Tabular Data. A-14.6. Molecular constants for 12 electronic states of $\mathbf{0_2}.^{\mathbf{a}}$

State	Ref.	$R_{\sigma}(\text{Å})$	$D_e(eV)$	$D_0(eV)$	$T_e(eV)$	$T_0(eV)$	$\omega_e(\text{cm}^{-1})$	$\omega_e x_e (\text{cm}^{-1})$	$B_e(\text{cm}^{-1})$	$a_e(cm^{-1})$
X3 Σ,	1	1, 236	4.957	4.864		4.	1498.8	9.87	1.38	0.0141
	Exptl, 2	1.208	5.213	5.115			1580.2	11.98	1.45	0.0159
	3	1.30	3.81	3, 72			1582.	14.	1.25	0.0127
	4	1.238	4.876				1692.7			
$a^1\Delta_e$	1	1, 250	3, 857	3,771	1.098	1,091	1403.4	8.74	1,35	0.0158
	Exptl, 2	1,216	4.231	4.138	0.982	0.977	1509.3	12.9	1,43	0.0171
		1.33	2, 81	2.72		1.00	1406.	16,	1, 19	0, 0134
	3	1.249	3.787		1.089		1595.0			0,010.
b 1 Σ;	1	1, 267	3, 168	3.087	1.776	1,764	1310.8	10,44	1, 31	0,0172
28	Exptl. 2	1, 227	3.577	3.489	1.636	1.627	1432.7	13, 93	1, 40	0.0172
	3	1. 34	2.44	2.36	1.050	1.36	1318.	18.	1, 17	
	4	1. 260	3. 185	2.30	1.691	1.30	1505.1	10.	1, 17	0.017
$c^1\Sigma_u^-$	1	1.555	1.062	1.016	3.888	3.842	759.8	12.25	0,872	0.0146
	Exptl. 2	1.517	1.114	1.066	4.098	4.050	794.3	12.74	0,916	0.0139
	3	1.56	0.90	0.85		2.87	920.	27.	0.87	0.017
	4	1,525	0.939		3.937		832.6			
$C^3\Delta_{\mathbf{w}}$	1	1,550	0.825	0.778	4, 130	4.085	780.1	13, 18	0,877	0.0146
	Exptl. 2	~1.5	0.907	0.861	4,306	4,255	750.	27.		
	3	1.55	0.67	0.61		3.11	958.		0.88	0.016
	4	1.522	0.703		4.173		858.6			
$A^3\Sigma_{\mu}^{\bullet}$	1	1,558	0.745	0.698	4,206	4.160	764.6	13.94	0,868	0.0151
	Exptl. 2	1,522	0.824	0.775	4.389	4, 340	799, 1	12, 16	0.911	0.0142
	3	1.56	0.61	0.55		3.16	943.	29.	0.87	0,017
	4	1,528	0.626		4.249		836.6			
B 3 Σ.	1	1,627	1,136	1.091	6,079	6,032	724.9	7.04	0,791	0.0077
B Zu	Exptl. 2	1.604	1.007	0.963	6. 173	6, 119	709.1		0. 791	
	3	1.68	0.30	0.363	0, 173	6. 01	593.	10.61 27.	0.819	0.0119 0.012
	4	1, 625	0.805	0.20	6.308	0.01	667.8	. 21.	0. 74	0.012
- 1										
23Σ.	2	2.069	0.511	0.479	6.699	6.638	537.0	13.73	0.490	0,0045
	1 3 4	2.00	0.38	0.33		5.94	872.	18.	0.53	-0.009
		2.101	0.314		6.798		482.6	,		
2 1 II.	3	1.620	1.111	1.005	8.411	8, 423	1626.4	163.67	0.819	0.0388
	3	1.57	0.84	0.69		8.13	2559.	65.	0.84	0.005
1 ¹ Δ,	1	1,631	0.905	0.862	8.570	8,521	705.6	9,59	0.788	0,0101
	3	1.70	0.20	0.17	0.0.0	8, 64	549.	35.	0.73	0.027
	1 3 4	1.648	0.556		8.794	0.0.	627.2			0.02.
2 1 A.			0.437	0.406		0.000		10 51	0.547	0.0100
2 4	1 3	1.961		100.00	9.031	8.968	499.5	13.51	0.547	0.0102
		1.88	0.14	0.10		8.71	597.	26.	0.60	0.015
1 Σ.	1 3	1,611	1,653	1.555	10,430	10.386	792.4	7.71	0.811	0.0092
	3	1.66	0.74	0.70		10.28	625.	-1.	0.76	0.022
	4	1,655	0.920		10.187		652.8			

 $^{^{\}mathrm{a}}$ All experimental values are taken from Ref. 2.

Tabular Data. A-14.7. Separated-atom energy levels of $\mathbf{0}_2$ given in eV relative to the $^3\mathrm{P}$ + $^3\mathrm{P}$ asymptote.

Separated-atom limit	This work	Experiment	SH	MG
¹ S + ¹ S	9.79	8.380	9.46	8. 05
$^{1}D + ^{1}S$	7.14	6.157	7.28	6.36
$^3P + ^1S$	4.88	4.190	4.73	4.02
$^{1}D + ^{1}D$	4, 51	3, 935	5, 10	4.67
$^3P + ^1D$	2.25	1.967	2.55	2.34

Tabular Data. A-14.8. Equilibrium constants for five new, weakly bound states of $\mathbf{0}_2$.

State	$R_{e}(\text{Å})$	$D_e(eV)$	$T_e(eV)$
1 ⁵ ∏€	1,996	0.228	4.746
2 3 II g	1.721	0.327	6.884
33 II.	1,922	0.147	7.072
1 1 A.	2.002	0.196	9.282
4 1 II.	1.952	0.428	11,667

DISTRIBUTION

	No. of Copies
School of Physics	
Georgia Institute of Technology	
Attn: Dr. E. W. McDaniel	50
K. J. McCann	10
Dr. F. L. Eisele	10
E. W. Thomas	10
Dr. W. M. Pope	10
Dr. M. R. Flannery Atlanta, Georgia 30332	10
Joint Institute for Laboratory Astrophysics	
University of Colorado	
Attn: J. W. Gallagher	10
J. R. Rumble	10
E. C. Beaty Boulder, Colorado 80302	10
Eckerd College	
Attn: Dr. H. W. Ellis	10
St. Petersburg, Florida 33733	
Physics Department	
Georgia State University	
Attn: S. T. Manson	10
Atlanta, Georgia 30303	
Defense Documentation Center	
Cameron Station	
Alexandria, Virginia 22314	2
Director	
Ballistic Missile Defense Advanced Technology Center	
Attn: ATC, Mr. J. D. Carlson	1
ATC-0, Mr. W. Davies Mr. G. Sanmann	1
Mr. J. Hagefstration	1
-T, Dr. E. Wilkinson	1
-R, Mr. Don Schenk	i
P. O. Box 1500	
Huntsville, Alabama 35807	
Defense Advanced Research Project	
1400 Wilson Boulevard	
Attn: Director, Laser Division	1
Arlington, Virginia 22209	

	No. of Copies
Lawrence Livermore Laboratory P. O. Box 808	
Attn: Dr. Joe Fleck	1
Dr. John Emmet	1
Livermore, California 94550	
Los Alamos Scientific Laboratory P. O. Box 1663	
Attn: Dr. Keith Boyer (MS 550)	1
Los Alamos, New Mexico 87544	
Central Intelligence Agency	
Attn: Mr. Julian C. Nall (OSI/PSTD)	1
Washington, D.C. 20505	
US Army Research Office	
Attn: Dr. Robert Lontz	2
P. O. Box 12211	
Research Triangle Park, North Carolina 27709	
DRCPM-HEL, COL D. H. Lueders	1
HEL-T, Dr. C. J. Albers	1
DRSMI-LP, Mr. Voigt	1
DRDMI-X, Mr. McKinley	1
-T, Dr. Kobler	1
-H, Dr. Hallowes	1
-HS, Dr. Honeycutt	1
Mr. Cason	1
Dr. Roberts (Additional Distribution)	485
-NS	1
-TBD	3
-TI (Record Set)	1
(Reference Copy)	1