1. a) (i) Plot the image intensity.

(ii) $F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j(\frac{2\pi}{M}ux + \frac{2\pi}{M}vy)} = \frac{1}{MN} \sum_{x=0}^{M-1} f(x,y_0) e^{-j(\frac{2\pi}{M}ux + \frac{2\pi}{M}vy_0)}$ $= \frac{1}{MN} \sum_{x=0}^{M-1} c e^{-j(\frac{2\pi}{M}ux + \frac{2\pi}{M}vy_0)} = \frac{1}{MN} c e^{-j\frac{2\pi}{M}vy_0} \sum_{x=0}^{M-1} e^{-j\frac{2\pi}{M}ux}$

$$\sum_{x=0}^{M-1} e^{-j\frac{2\pi}{M}ux} = \frac{1 - e^{-j\frac{2\pi}{M}uM}}{1 - e^{-j\frac{2\pi}{M}u}} = \begin{cases} 0 & u \neq 0 \\ M & u = 0 \end{cases}$$

$$|F(u,v)| = \begin{cases} 0 & u \neq 0 \\ \frac{c}{N} & u = 0 \end{cases}$$

$$|F(u,v)| = \begin{cases} cN, & v = 0\\ 0, & \text{otherwise} \end{cases}$$

(iii) Compare the plots found in (i) and (ii) above.

As seen a straight line in space implies a straight line perpendicular to the original one in frequency.

- b) Figure (c) is the right answer since it contains edges which are perpendicular to the edges of the original image. As we know, each image in space produces a perpendicular image in the amplitude of the DFT.
- c) (i) The first image $f_1(x,y)$ has a solid horizontal edge. Its mean is $\frac{r_1 + s_1}{2}$. The zero-mean

version of it is $f_1(x,y) = \begin{cases} \frac{r_1 - s_1}{2} & 1 \le x \le M, 1 \le y \le \frac{M}{2} \\ \frac{s_1 - r_1}{2} & 1 \le x \le M, \frac{M}{2} < y \le M \end{cases}$. The second image $f_2(x,y)$

has a solid vertical edge. Its mean is $\frac{r_2 + s_2}{2}$. The zero-mean version of it is

$$f_2(x,y) = \begin{cases} \frac{r_2 - s_2}{2} & 1 \le x \le M, 1 \le y \le \frac{M}{2} \\ \frac{s_2 - r_2}{2} & 1 \le x \le M, \frac{M}{2} < y \le M \end{cases}$$
. The variance of $f_1(x,y)$ is $\frac{r_1^2 + s_1^2}{2}$. The

variance of $f_2(x,y)$ is $\frac{r_2^2 + s_2^2}{2}$. The covariance between the two images is zero (this is

the mean of the product of the two images). This is because
$$f_1(x, y)$$
 is of the form $\begin{bmatrix} a \\ \cdots \\ -a \end{bmatrix}$

and
$$f_2(x,y)$$
 is of the form $\begin{bmatrix} b & \vdots & -b \end{bmatrix}$ therefore $f_1(x,y)f_2(x,y) = \begin{bmatrix} ab & \vdots & -ab \\ \cdots & \vdots & \cdots \\ -ab & \vdots & ab \end{bmatrix}$. So

the mean of $f_1(x,y)f_2(x,y)$ is zero. In that case the covariance matrix of the population

is
$$C = \begin{bmatrix} \frac{r_1^2 + s_1^2}{2} & 0\\ 0 & \frac{r_2^2 + s_2^2}{2} \end{bmatrix}$$
. The eigenvalues of the covariance matrix are $\frac{r_1^2 + s_1^2}{2}$ and

- $\frac{r_2^2 + s_2^2}{2}$. The images $g_1(x, y)$ and $g_2(x, y)$ are simply the zero mean versions of the original images.
- (ii) There is no point of using the KL transform since it is obvious visually that the images are uncorrelated.

Question 2 - Answer

(i) The intensities of the two inner squares are very similar and therefore the inner pattern is not visible. It basically looks like a single square instead of []

$$P(r_3) = \frac{64 \times 64 / 2}{256 \times 256} = \frac{1}{32}$$

$$p(r_2) = \frac{1}{32}$$

=> $p(r_1) = \frac{30}{32}$

After histogram equalisation $r_3 \rightarrow s_3 = p(r_1) = \frac{1}{32}$

$$f_2 \rightarrow S_2 = p(r_3) + p(r_2) = \frac{2}{32}$$

The inner pattern will still not be visible in the histogram equalised image

(ii) If we do local histogram equalisation				
the patch with the patter will perfectly fit				
in a scanning patch. For that patch				
we have				
$p(r_3) = \frac{1}{2}, p(r_2) = \frac{1}{2}$				
$r_3 \rightarrow s_3 = \frac{1}{2}$ white				
$r_2 \rightarrow s_2 = 1$				
exact mid shade of gray				
The rest of the mage will turn white.				
Therefore, the inner pattern will be visible =>				
(iii) Adaptive (10cal) HE is definitely more beneficial				

b) We assur	ne that the in	ages are extended
by zeros).	
. For the lef	timage	
& Sblack corn	ers response: 0	(2 on total)
& [white corn	ers response: o ers response:	+ (2 on total
Non bor	der-	9 —
white pixe (6 on total)	Is next to the ed	ge have response $\frac{6}{9} = \frac{2}{3}$
black non bor	els next to the	2 dge have response $\frac{3}{9} \cdot \frac{1}{3}$
(6 on total)		9 3
(top and bottal)		ext to the edge: 4
		jext to the edge 2
2 (2 on total))	9
3		
border while	e pixels 2 = 6 [10 on totale)
	3 9	
border blace	ck pixels o (10 on total)
	pixels: 12/rest o	
Total manaba	2 lofe borderlpike	12 0/28 (rest 64-08 200
	ponse 1	response 0 36/2 = 18
Intensities	Number of pix	els Probability
0	24	24/64
2/9	2	2/64
3/9	6	6/64
4/9	4	4/64
6/9	16	16/64
1	12.	12/64

	
Tesponse 4	(18 pixels)
(2 pixels)	
(2 pixels)	
(12 pixels)	
(12 pixels)	
er of pixels	Probability
4	4 164
24	24/64
18	18/64
18	18/64
are different	
	(2 pixels) (2 pixels) (12 pixels) (12 pixels) er of pixels 4 24

s .

```
Question 3 - Answer
 <u>(i)</u>
                  ≥ h (x,y)e
   H(u,v) = 0 = 7 \cos \frac{2\pi}{m} v = -1
                      SITCE VE TO, M-1
       book Work
          \frac{2\eta}{M}v - K\eta, K even \Rightarrow v = 0
```

Therefore, H(u,v) and C(u,v) are never				
o at the same time and the restored				
image can always be estimated.				
~				

Question 4-Answer

a) (i) 1 histogram of g(x,y)

(iii) Obviously g(x,y)

One solution that does not always work! (extended Huffman) All the questions are answered here.

Letter	Probability	Codeword
s_1	0.95	0
s_2	0.02	11
<i>S</i> 3	0.03	10

Table 1: Huffman code for three-letter alphabet; H=0.335 bits/symbol; $l_{avg}=1.05$ bits/symbol; redundancy = 0.715 bits/symbol or 213% of entropy.

Letter	Probability	Code
s_1s_1	0.9025	0
s_1s_2	0.0190	111
s_1s_3	0.0285	100
s_2s_1	0.0190	1101
s ₂ s ₂	0.0004	110011
S ₂ S ₃	0.0006	110001
s ₃ s ₁	0.0285	101
s_3s_2	0.0006	110010
8383	0.0009	110000

Table 2: The Huffman code for the extended alphabet; $l_{avg} = 1.222$ bits/new symbol or $l_{avg} = 0.611$ bits/original symbol; redundancy = 72% of entropy; redundancy drops to acceptable values for N=8 (alphabet size = 6561).