Отчёт по лабораторной работе №6

Дисциплина: архитектура компьютера

Арфонос Дмитрий

Содержание

1	Цель работы		4
2	Зада	ние	5
3	Выпо	Выполнение лабораторной работы	6
	3.1	Символьные и численные данные в NASM	6
	3.2	Выполнение арифметических операций в NASM	10
		3.2.1 Ответы на вопросы по программе	13
	3.3	Выполнение заданий для самостоятельной работы	
4	Выво	Э ДЫ	18

Список иллюстраций

5.1	Создание директории	6
3.2	Создание копии файла для дальнейшей работы	6
3.3	Редактирование файла	7
3.4	Запуск исполняемого файла	7
3.5	Редактирование файла	7
3.6	Запуск исполняемого файла	8
3.7	Создание файла	8
3.8	Редактирование файла	8
3.9	Запуск исполняемого файла	9
3.10	Редактирование файла	9
3.11	Запуск исполняемого файла	9
3.12	Редактирование файла	10
3.13	Запуск исполняемого файла	10
3.14	Создание файла	10
3.15	Редактирование файла	11
3.16	Запуск исполняемого файла	11
3.17	Изменение программы	12
3.18	Запуск исполняемого файла	12
3.19	Создание файла	12
3.20	Редактирование файла	13
3.21	Запуск исполняемого файла	13
3.22	Создание файла	14
	Написание программы	15
	Запуск исполняемого файла	16

1 Цель работы

Цель данной лабораторной работы - освоение арифметческих инструкций низкоуровневого языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM
- 3. Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

3.1 Символьные и численные данные в NASM

1

С помощью утилиты mkdir создаю директорию lab06, перехожу в нее и создаю файл для работы. (рис. [3.1])

Рис. 3.1: Создание директории

2

Копирую в текущий каталог файл in_out.asm из загрузок с помощью утилиты ср, т.к. он будет использоваться в других программах (рис. [3.2]).

Рис. 3.2: Создание копии файла для дальнейшей работы

3

Открываю созданный файл lab6-1.asm, вставляю в него программу вывода значения регистра eax (рис. [3.3]).

```
mc [darfonos@fedora]:~/work/arch-pc/lab06 Q

SNU nano 7.2 /home/darfonos/work/arch-pc/lab06/lab6-1.asm

%include 'in_out.asm'
5ECIION .bss
buf1: RESS 80

SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax, buf1
call sprintLF
call quit
```

Рис. 3.3: Редактирование файла

Создаю исполняемый файл программы и запускаю его (рис. [3.4]). Вывод программы: символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6.

Рис. 3.4: Запуск исполняемого файла

5

Изменяю в тексте программы символы "6" и "4" на цифры 6 и 4 (рис. [3.5]).

Рис. 3.5: Редактирование файла

Создаю новый исполняемый файл программы и запускаю его (рис. [3.6]). Теперь вывелся символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран.

```
[darfonos@fedora lab06]$ nasm -f elf lab6-1.asm
[darfonos@fedora lab06]$ ld -m elf_1386 -o lab6-1 lab6-1.o
[darfonos@fedora lab06]$ ./lab6-1
```

Рис. 3.6: Запуск исполняемого файла

7

Создаю новый файл lab6-2.asm с помощью утилиты touch (рис. [3.7]).

Рис. 3.7: Создание файла

8

Ввожу в файл текст другой программы для вывода значения регистра еах (рис. [3.8]).

Рис. 3.8: Редактирование файла

9

Создаю и запускаю исполняемый файл lab6-2 (рис. [3.9]). Теперь вывод число 106, потому что программа позволяет вывести именно число, а не символ, хотя все еще происходит именно сложение кодов символов "6" и "4".

```
[darfonos@fedora lab06]$ nasm -f elf lab6-2.asm
[darfonos@fedora lab06]$ ld -m elf_1386 -o lab6-2 lab6-2.o
[darfonos@fedora lab06]$ ./lab6-2
106
[darfonos@fedora lab06]$
```

Рис. 3.9: Запуск исполняемого файла

10

Заменяю в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4 (рис. [3.10]).

```
start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF
call quit
```

Рис. 3.10: Редактирование файла

11

Создаю и запускаю новый исполняемый файл (рис. [3.11]).. Теперь программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10.

```
[darfonos@fedora lab06]$ nasm -f elf lab6-2.asm
[darfonos@fedora lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[darfonos@fedora lab06]$ ./lab6-2
10
[darfonos@fedora lab06]$
```

Рис. 3.11: Запуск исполняемого файла

12

Заменяю в тексте программы функцию iprintLF на iprint (рис. [3.12]).

Рис. 3.12: Редактирование файла

Создаю и запускаю новый исполняемый файл (рис. [3.13]). Вывод не изменился, потому что символ переноса строки не отображался, когда программа исполнялась с функцией iprintLF, а iprint не добавляет к выводу символ переноса строки, в отличие от iprintLF.

[darfonos@fedora lab06]\$ nasm -f elf lab6-2.asm [darfonos@fedora lab06]\$ ld -m elf_i386 -o lab6-2 lab6-2.o [darfonos@fedora lab06]\$./lab6-2 10[darfonos@fedora lab06]\$

Рис. 3.13: Запуск исполняемого файла

3.2 Выполнение арифметических операций в NASM

14

Создаю файл lab6-3.asm с помощью утилиты touch (рис. [3.14]).

[darfonos@fedora lab06]\$ touch lab6-3.asm [darfonos@fedora lab06]\$

Рис. 3.14: Создание файла

Ввожу в созданный файл текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3 (рис. [3.15]).

Рис. 3.15: Редактирование файла

16

Создаю исполняемый файл и запускаю его (рис. [3.16]).

```
[darfonos@fedora lab06]$ nasm -f elf lab6-3.asm
[darfonos@fedora lab06]$ ld -m elf_1386 -o lab6-3 lab6-3.o
[darfonos@fedora lab06]$ ./lab6-3
Результат: 4
Остаток от деления: 1
[darfonos@fedora lab06]$
```

Рис. 3.16: Запуск исполняемого файла

17

Изменяю программу так, чтобы она вычисляла значение выражения f(x) = (4 * 6 + 2)/5 (рис. [3.17]).

Рис. 3.17: Изменение программы

Создаю и запускаю новый исполняемый файл (рис. [3.18]). Программа отработала верно.

```
[darfonos@fedora lab06]$ nasm -f elf lab6-3.asm
[darfonos@fedora lab06]$ ld -m elf_i386 -o lab6-3 lab6-3.o
[darfonos@fedora lab06]$ ./lab6-3
Результат: 5
Остаток от деления: 1
[darfonos@fedora lab06]$
```

Рис. 3.18: Запуск исполняемого файла

19

Создаю файл variant.asm с помощью утилиты touch (рис. [3.19]).

```
[darfonos@fedora lab86]$ touch variant.asm
[darfonos@fedora lab86]$
```

Рис. 3.19: Создание файла

20

Ввожу в файл текст программы для вычисления варианта задания по номеру студенческого билета (рис. [3.20]).

Рис. 3.20: Редактирование файла

Создаю и запускаю исполняемый файл (рис. [3.21]). Ввожу номер своего студ. билета "1032235421" с клавиатуры, программа вывела, что мой вариант - 2.

```
[darfonos@fedora lab06]$ nasm -f elf variant.asm
[darfonos@fedora lab06]$ ld -m elf_1386 -o variant variant.o
[darfonos@fedora lab06]$ ./variant
Введите № студенческого билета:
1032235421
Ваш вармант: 2
[darfonos@fedora lab06]$
```

Рис. 3.21: Запуск исполняемого файла

3.2.1 Ответы на вопросы по программе

1. За вывод сообщения "Ваш вариант" отвечают строки кода:

```
mov eax,rem
call sprint
```

2. Инструкция mov ecx, x используется, чтобы положить адрес вводимой строки x в регистр ecx mov edx, 80 - запись в регистр edx длины вводимой строки

- call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры
- 3. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр eax
- 4. За вычисления варианта отвечают строки:

```
xor edx,edx ; обнуление edx для корректной работы div
mov ebx,20 ; ebx = 20
div ebx ; eax = eax/20, edx - остаток от деления
inc edx ; edx = edx + 1
```

- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx увеличивает значение регистра edx на 1
- 7. За вывод на экран результатов вычислений отвечают строки:

```
mov eax,edx
call iprintLF
```

3.3 Выполнение заданий для самостоятельной работы

Шаг 1

Создаю файл lab6-4.asm с помощью утилиты touch (рис. [3.22]).

[darfonos@fedora lab06]\$ touch lab6-4.asm [darfonos@fedora lab06]\$ mc

Рис. 3.22: Создание файла

Шаг 2

Открываю созданный файл для редактирования, ввожу в него текст программы для вычисления значения выражения 2 варианта: (рис. [3.23]). f(x) = (3+12x)5

```
in_out.asm

* lab6-4.asm

*

**include _in_out.asm! : подключения внешняго файла

SECTION .data ; секция инициированных данных

msg: DB _BBeдите значение переменной х: ',0

rem: DB _Peaynbiat: ',0

SECTION .bss ; секция не инициированных данных

x: RESB 80 ; Переменная, значение к-рой будем вводить с клавиатуры

SECTION .text ; Код программы

GLOBAL _start ; Начало программы

gtopic _start ; Начало программы

gtopic _start ; Точка входа в программу

; ---- Вычисление выражения

mov eax, msg ; запись адреса выводимиого сообщения в еах

call sprint ; вызов подпрограммы печати сообщения

mov eax, x ; запись дареса переменной в есх

mov edx, 80 ; запись дареса переменной в есх

mov edx, 80 ; запись дареса переменной в есх

mov eax, x ; вызов подпрограммы преобразования

;----функция|----

call atoi ; ASCII кода в число, 'eax=x'

mov ebx,12 ; запись значения 2 в регистр ebx

mul ebx; EAX=EAX=EBX = (x*12)

add eax,3; eax = eax+3 = (3*12x)

mov ebx,5;

mul ebx;

mov edi,eax ; запись результата вычисления в _edi.'

; ---- Вывод результата на экран

mov eax,rem ; вызов подпрограммы печати

call sprint ; сообщения _Peaynb_TaI : '

mov eax,edi ; вызов подпрограммы печати значения

call iprintLF ; из _edi. в виде символов

call quit ; вызов подпрограммы завершения
```

Рис. 3.23: Написание программы

Шаг 3

1. Создаю и запускаю исполняемый файл при вводе двух значений (рис. [3.24]).

```
• x = 1, f(x) = 75
```

•
$$x = 6$$
, $f(x) = 375$

Программа отработала верно.

Рис. 3.24: Запуск исполняемого файла

Текст программы для вычисления значения выражения f(x)=(3+12x)5

```
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data ; секция инициированных данных
msq: DB 'Введите значение переменной х: ',0
rem: DB 'Результат: ',0
SECTION .bss ; секция не инициированных данных
х: RESB 80 ; Переменная, значение к-рой будем вводить с клавиатуры
SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
; ---- Вычисление выражения
mov eax, msq ; запись адреса выводимиого сообщения в еах
call sprint; вызов подпрограммы печати сообщения
mov есх, х ; запись адреса переменной в есх
mov edx, 80 ; запись длины вводимого значения в edx
call sread; вызов подпрограммы ввода сообщения
mov eax, x ; вызов подпрограммы преобразования
;-----функция-----
call atoi ; ASCII кода в число, `eax=x`
mov ebx,12; запись значения 2 в регистр ebx
mul ebx; EAX=EAX*EBX = (x*12)
```

```
add eax,3; eax = eax+3 = (3+12x)

mov ebx,5; ebx =5

mul ebx; EAX=EAX*EBX = (3+12x)*5

mov edi,eax; запись результата вычисления в 'edi'; ---- Вывод результата на экран

mov eax,rem; вызов подпрограммы печати

call sprint; сообщения 'Результат: '

mov eax,edi; вызов подпрограммы печати значения

call iprintLF; из 'edi' в виде символов

call quit; вызов подпрограммы завершения
```

4 Выводы

При выполнении данной лабораторной работы я освоил арифметические инструкции: сложение, вычитание, умножение и деление на языке ассемблер NASM.