Modelli probabilistici

Jacopo Tissino

28 febbraio 2017

1 Basi

Definizione 1.1. Esperimento aleatorio: osservazione su un fenomeno il cui esito non è determinabile a priori.

Definizione 1.2. Spazio di probabilità: terna di

- 1. Spazio campionario Ω : l'insieme degli esiti possibili;
- 2. Evento: elemento di $\mathcal{P}(\Omega)$;
- 3. Probabilità: $\mathbb{P}: \mathcal{P}: \Omega \to [0,1]$ tale che:
 - (a) $\mathbb{P}(\Omega) = 1$;
 - (b) σ -additività: \forall successione di eventi $(A_n)_{n \in \mathbb{N}}$:

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$
 (1.1)

Le operazioni logiche fra eventi sono equivalenti a quelle insiemistiche fra sottoinsiemi di Ω . Valgono i teoremi di De Morgan, anche per insiemi numerabili.

Eventi "disgiunti" hanno intersezione nulla. Dalla σ -additività deriva l'additività finita.

Proprietà immediate: $\forall A, B \in \mathcal{P}(\Omega)$:

- 1. $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(B \cap A)$;
- 2. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B) \leq \mathbb{P}(A) + \mathbb{P}(B)$.

Definizione 1.3. La funzione $p:\Omega\to[0,1]$ è una densità di probabilità se:

- 1. $\forall \omega \in \Omega : p(\omega) > 0$;
- 2. $\sum_{\omega \in \Omega} p(\omega) = 1.$

Teorema 1.1. Data la funzione $p:\Omega\to[0,1]$, la funzione $\mathbb{P}:\mathcal{P}(\Omega)\to[0,1]$ tale che $\forall A\subseteq\Omega:\mathbb{P}(A)=\sum_{\omega\in A}p(\omega)$ è una probabilità.

Vale anche il viceversa: data $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$ la funzione $p: \Omega \to [0,1]$ tale che $p(\omega) = \mathbb{P}(\{\omega\})$ è una densità di probabilità.

Esempi di spazi discreti Per uno spazio uniforme, per il quale $|\Omega| \in \mathbb{N}$, $\forall \omega \in \Omega : p(\omega) = 1/|\Omega|$.

Richiami di combinatoria Scegliamo k elementi da n:

- 1. Disposizioni con ripetizione: n^k ;
- 2. Disposizioni semplici: $\prod_{i=n-k+1}^{n} i = n!/(n-k+1)!;$
- 3. Combinazioni semplici: $C_{n,k} = \binom{n}{k} = n!/(k!(n-k)!)$.

Coefficienti multinomiali Vogliamo dividere n elementi in k gruppi, di cardinalità (n_i) , con $\sum_i n_i = n$. Si può fare in un numero di modi pari a:

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{\prod_{i=1}^k n_i!}$$
 (1.2)

2 Modello di Ising

Dato lo spazio finito Ω e data la funzione Hamiltoniana $H:\Omega\to\mathbb{R}$ (energia) con parametro $\beta\geq 0$. Definiamo $\forall\omega\in\Omega$ la Misura di Gibbs:

$$p_{\beta} = \frac{e^{-\beta H(\omega)}}{z_{\beta}} = \frac{e^{-\beta H(\omega)}}{\sum_{\omega \in \Omega} e^{-\beta H(\omega)}}$$
 (2.1)

è una ddp. Interpretazione fisica: $\beta^{-1} = k_B T$. La misura dà la probabilità di osservare un certo stato all'equilibrio.

Casi limite: $\beta \approx 0$ densità uniforme, $\beta \to \infty$ densità zero ovunque, uniforme nel minimo

Un grafo è un insieme di vertici e spigoli: $G=(V,E), E\subseteq V\times V$. Definiamo quindi lo spazio:

$$\mathbb{Z}^n = (\mathbb{Z}^n, (x, y) \in \mathbb{Z}^n : d(x, y) = 1)$$
(2.2)

Un sottografo finito $\Lambda \subset \mathbb{Z}^n$ è considerato con tutti i suoi spigoli: $E(\Lambda) = \{(x,y) : x,y \in \Lambda, (x,y) \in E(\mathbb{Z}^n)\}.$

Ogni vertice assume valore ± 1 . Lo spazio è dunque $\Omega = \{\pm 1\}^{|\Lambda|}$; σ è uno stato, ovvero $\sigma \in \Omega \implies \sigma = (\sigma_k)_{k \in \Lambda}$.

Per comodità, $d(x, y) = 1 \iff x \sim y$.

Definiamo $\partial \Lambda = \{x \in \Lambda : \exists y \in \Lambda^C : x \sim y\}$. Sia quindi $\tau = \{\pm 1\}^{|\Lambda^C|}$ l'esterno del reticolo. Definiamo

$$H_{\Lambda}^{\tau}(\sigma) = -\frac{1}{2} \sum_{\substack{x,y \in \Lambda \\ x \sim y}} \sigma_x \sigma_y - \sum_{\substack{x \in \partial \Lambda \\ y \in \Lambda^C \\ x \sim y}} \sigma_x \tau_y \tag{2.3}$$

Indice

1	Sasi 1
	Esempi di spazi discreti
	Richiami di combinatoria
2	Modello di Ising 2