

planetmath.org

Math for the people, by the people.

examples of ring of integers of a number field

Canonical name ExamplesOfRingOfIntegersOfANumberField

 $\begin{array}{lll} \text{Date of creation} & 2013\text{-}03\text{-}22 \ 15\text{:}08\text{:}09 \\ \text{Last modified on} & 2013\text{-}03\text{-}22 \ 15\text{:}08\text{:}09 \end{array}$

Owner alozano (2414) Last modified by alozano (2414)

Numerical id 7

Author alozano (2414)

Entry type Example
Classification msc 13B22
Related topic NumberField

Related topic AlgebraicNumberTheory

Related topic CanonicalBasis

 $Related\ topic \qquad Integral Basis Of Quadratic Field$

Definition 1. Let K be a number field. The ring of integers of K, usually denoted by \mathcal{O}_K , is the set of all elements $\alpha \in K$ which are roots of some monic polynomial with coefficients in \mathbb{Z} , i.e. those $\alpha \in K$ which are integral over \mathbb{Z} . In other words, \mathcal{O}_K is the integral closure of \mathbb{Z} in K.

Example 1. Notice that the only rational numbers which are roots of monic polynomials with integer coefficients are the integers themselves. Thus, the ring of integers of \mathbb{Q} is \mathbb{Z} .

Example 2. Let \mathcal{O}_K denote the ring of integers of $K = \mathbb{Q}(\sqrt{d})$, where d is a square-free integer. Then:

$$\mathcal{O}_K \cong \begin{cases} \mathbb{Z} \oplus \frac{1+\sqrt{d}}{2}\mathbb{Z}, & \text{if } d \equiv 1 \mod 4, \\ \mathbb{Z} \oplus \sqrt{d} \ \mathbb{Z}, & \text{if } d \equiv 2, 3 \mod 4. \end{cases}$$

In other words, if we let

$$\alpha = \begin{cases} \frac{1+\sqrt{d}}{2}, & \text{if } d \equiv 1 \mod 4, \\ \sqrt{d}, & \text{if } d \equiv 2, 3 \mod 4. \end{cases}$$

then

$$\mathcal{O}_K = \{ n + m\alpha : n, m \in \mathbb{Z} \}.$$

Example 3. Let $K = \mathbb{Q}(\zeta_n)$ be a cyclotomic extension of \mathbb{Q} , where ζ_n is a primitive nth root of unity. Then the ring of integers of K is $\mathcal{O}_K = \mathbb{Z}[\zeta_n]$, i.e.

$$\mathcal{O}_K = \{a_0 + a_1\zeta_n + a_2\zeta_n^2 + \ldots + a_{n-1}\zeta_n^{n-1} : a_i \in \mathbb{Z}\}.$$

Example 4. Let α be an algebraic integer and let $K = \mathbb{Q}(\alpha)$. It is *not true* in general that $\mathcal{O}_K = \mathbb{Z}[\alpha]$ (as we saw in Example 2, for $d \equiv 1 \mod 4$).

Example 5. Let p be a prime number and let $F = \mathbb{Q}(\zeta_p)$ be a cyclotomic extension of \mathbb{Q} , where ζ_p is a primitive pth root of unity. Let F^+ be the maximal real subfield of F. It can be shown that:

$$F^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1}).$$

Moreover, it can also be shown that the ring of integers of F^+ is $\mathcal{O}_{F^+} = \mathbb{Z}[\zeta_p + \zeta_p^{-1}].$