L1 (CHAPTER 2)

Data Representation

Bit, Byte, Half-word, Word, Double-Word

Decimal, Binary and Hex

Decimal	Binary	Hex
0	0000	0x0
1	0001	0x1
2	0010	0x2
3	0011	0x3
4	0100	0x4
5	0101	0x5
6	0110	0x6
7	0111	0x7
8	1000	0x8
9	1001	0x9
10	1010	0xA
11	1011	0xB
12	1100	0xC
13	1101	0xD
14	1110	0xE
1 5	1111	0xF

Prefix 0x denotes hex

Unsigned Integers

Five-bit binary code

Convert from Binary to Decimal:

$$1011_2 = \frac{1}{1} \times 2^3 + \frac{0}{1} \times 2^2 + \frac{1}{1} \times 2^1 + \frac{1}{1} \times 2^0$$

$$= 8 + 2 + 1$$

$$= 11$$

Unsigned Integers

Convert Decimal to Binary

Example I

$$52_{10} = 110100_2$$

Example 2

$$32_{10} = 100000_2$$

Carry/borrow flag bit for unsigned arithmetic

- When adding two unsigned numbers in an n-bit system, a carry occurs if the result is larger than the maximum unsigned integer that can be represented (i.e. $2^n 1$).
- When subtracting two unsigned numbers, borrow occurs if the result is negative, smaller than the smallest unsigned integer that can be represented (i.e. 0).
- On ARM Cortex-M3 processors, the carry flag and the borrow flag are physically the same flag bit in the CPSR (Current Program Status Register).
 - Carry = NOT Borrow

Carry/borrow flag bit for unsigned arithmetic

If result of addition crosses the boundary between 0 and $2^n - 1$, the carry flag is set.

Carry flag = 1, since true result $34 > 2^5 - 1$.

For 5-bit system, a carry occurs when adding 28 and 6

Carry/borrow flag bit for unsigned arithmetic

If result of subtraction crosses the boundary between 0 and $2^n - 1$, the borrow flag is set.

Carry flag = 0 (Borrow flag = 1), since true result -2 < 0.

For 5-bit system, a borrow occurs when subtracting 5 from 3.

Signed Integer Representation Overview

- Three ways to represent signed binary integers:
 - Signed magnitude
 - $\rightarrow value = (-1)^{sign} \times Magnitude$
 - One's complement $(\widetilde{\alpha})$

$$\qquad \alpha + \widetilde{\alpha} = 2^n - 1$$

- Two's complement $(\overline{\alpha})$
 - $\alpha + \overline{\alpha} = 2^n$

	Sign-and-Magnitude	One's Complement	Two's Complement
Range	$[-2^{n-1}+1,2^{n-1}-1]$	$[-2^{n-1}+1,2^{n-1}-1]$	$[-2^{n-1}, 2^{n-1} - 1]$
Zero	Two zeroes (± 0)	Two zeroes (± 0)	One zero
Unique Numbers	$2^{n}-1$	$2^{n} - 1$	2^n

Signed Integers Method 1: Signed magnitude

Sign-and-Magnitude:

 $value = (-1)^{sign} \times Magnitude$

- The most significant bit is the sign.
- The rest bits are magnitude.
- Example: in a 5-bit system

$$+7_{10} = 00111_2$$

$$-7_{10} = 10111_2$$

Two ways to represent zero

$$+0_{10} = 00000_{2}$$

$$-0_{10} = 10000_2$$

- Not used in modern systems
 - Hardware complexity
 - Two zeros

Signed Integers Method 2: One's Complement

One's Complement ($\widetilde{\alpha}$):

$$\alpha + \widetilde{\alpha} = 2^n - 1$$

The one's complement representation of a negative binary number is the bitwise NOT of its positive counterpart.

Example: in a 5-bit system
$$+7_{10} = 00111_2$$

$$-7_{10}^{10} = 11000_2^2$$

$$+7_{10} + (-7_{10}) = 00111_2 + 11000_2$$

= 11111_2
= $2^5 - 1$

Signed Integers

Method 3: Two's Complement

Two's Complement $(\overline{\alpha})$:

$$\alpha + \overline{\alpha} = 2^n$$

TC of a number can be obtained by its bitwise NOT plus one.

Example 1: TC(3)

	Binary	Decimal
Original number	00011	3
Step 1: Invert every bit	11100	
Step 2: Add 1	+ 00001	
Two's complement	11101	-3

Signed Integers Method 3: Two's Complement

Two's Complement (TC)

$$\alpha + \overline{\alpha} = 2^n$$

TC of a number can be obtained by its bitwise NOT plus one.

Example 2:TC(-3)

	Binary	Decimal
Original number	11101	-3
Step 1: Invert every bit	00010	
Step 2: Add 1	+ 00001	
Two's complement	00011	3

Signed Integers Method 3: Two's Complement

Two's Complement (TC)

14

$$\alpha + \overline{\alpha} = 2^n$$

TC of a number can be obtained by its bitwise NOT plus one.

Example 2:TC(-16)

	Binary	Decimal
Original number	10000	-16
Step 1: Invert every bit	01111	
Step 2: Add 1	+ 10000	
Two's complement	10000	-16

Negation of -16 in 5-bit two's complement wraps back to itself, meaning the most negative number's two's complement is itself. (Number range is [-16, 15], so 16 is out of range)

Quiz

- Calculate TC(-6) for 6-bit system
- ▶ For a 6-bit two's complement number: the range of representable integers is from −32 to +31.
- ▶ −16 in 6-bit two's complement is 110000
 - Write 16 in binary: 010000
 - ▶ Take the two's complement (invert bits and add 1):
- To take the negation of this (i.e., find the two's complement of 110000):
 - Invert bits: 001111, Add 1: 001111+1=010000
 - ▶ This is 16 in binary, so the negation of -16 is +16 as expected.
- ▶ Unlike the 5-bit case where −16 is the minimum and its negation wraps onto itself, in 6 bits −16 behaves normally with correct negation.

Comparison: different signed reps

Signed magnitude representation Range [-15,15]

0 = positive

1 = negative

One's complement representation
Range [-15,15]
Negative = invert al

Negative = invert all bits of a positive

Two's Complement representation Range [-16,15]
TC = invert all bits, then plus 1

Comparison: unsigned vs. signed

Unsigned int representation Range [0, 31]

Two's Complement representation Range [-16,15] TC = invert all bits, then plus 1

Unsigned vs. Signed (TC)

	Unsigned	Two's Complement Signed
Range	$[0, 2^{n-1}]$	$[-2^{n-1}, 2^{n-1} - 1]$
Zero	One zero	One zero
Unique Numbers	2^n	2^n

Two's Complement for 8-bit System

8-bit signed Int (Two's Complement)	8-bit unsigned Int	Binary
-128	128	1000 0000
-127	129	1000 0001
-2	254	1111 1110
-1	255	1111 1111
0	0	0000000
1	1	0000001
127	127	0 1 1 1 1 1 1 1

Note: Most significant bit (MSB) equals sign for signed int

Sign Extension

Decimal	Binary		
	4-bit	8-bit	32-bit
3 _{ten}	0011 _{two}	0000 0011 _{two}	0000 0000 0000 0011 _{two}
-3 _{ten}	1101 _{two}	1111 1101 _{two}	1111 1111 1111 1101 _{two}

- Assignment differs for signed (above table) and unsigned numbers
 - Compiler knows (from type declaration)
 - · Different assembly instructions for copying signed/unsigned data

Overflow flag for signed arithmetic

- When adding or subtracting two signed numbers in an n-bit system, an overflow occurs if the true result is larger than the maximum signed integer (i.e. $2^{n-1}-1$) or smaller than the minimum signed integer (i.e. -2^{n-1}) that can be represented
- Overflow may occur when adding 2 operands with the same sign, or subtracting 2 operands with different signs, including:
 - I. adding two positive numbers
 - 2. adding two negative numbers
 - 3. subtracting a positive number from a negative number
 - 4. subtracting a negative number from a positive number
- Overflow cannot occur when adding 2 operands with different signs or when subtracting 2 operands with the same sign.
 - Why?

Overflow flag for signed arithmetic

- Overflow cannot occur when adding 2 operands with different signs or when subtracting 2 operands with the same sign. Proof:
 - A n-bit signed int has the range $[-2^{n-1}, 2^{n-1}-1]$
 - n = 4, number range [-16, 15]
 - ▶ 2 operands with different signs: positive one in the range of $[0, 2^{n-1}-1]$, negative one in the range of $[-2^{n-1}, -1]$. So the range of their sum must be $[0-2^{n-1}, 2^{n-1}-1+(-1)]=[-2^{n-1}, 2^{n-1}-2] \in [-2^{n-1}, 2^{n-1}-1]$
 - Positive number range [0, 15], negative number range [-16, -1]. Range of their sum [0-16, 15-1]=[-16, 14]
 - ▶ 2 operands with the same sign: if both are positive and in the range of [0, 2^{n-1} -1], then the range of their difference must be $[0-(2^{n-1}-1), 2^{n-1}-1-0]=[-(2^{n-1}-1), 2^{n-1}-1]$; if both are negative and in the range of $[-2^{n-1}, -1]$, then the range of their difference must be $[-2^{n-1}-(-1), -1-(-2^{n-1})]=[-2^{n-1}+1, 2^{n-1}-1]$ ∈ $[-2^{n-1}, 2^{n-1}-1]$
 - ▶ Both positive numbers [0, 15], range of difference [0-15, 15-0]=[-15, 15]
 - Both negative numbers [-16, -1], range of difference [-16-(-1), -1-(-16)]=[-15, 15]

Overflow bit flag for signed arithmetic

An overflow occurs when adding two positive numbers and getting a negative result.

Overflow flag = I, since true result $17 > 2^4 - 1$.

Overflow bit flag for signed arithmetic

An overflow occurs when adding two negative numbers and getting a positive result.

Carry and Overflow Flags in CPSR

CPSR (Current Program Status Register)

Bit	Name	Meaning after add or sub
N	negative	result is negative
Z	zero	result is zero
٧	overflow	signed overflow
С	carry	unsigned overflow

Summary of Carry and Overflow Flags

Carry flag C = I (Borrow flag = 0) upon an <u>unsigned</u> addition if the answer is wrong (true result > 2^n -I)

Carry flag C = 0 (Borrow flag = I) upon an <u>unsigned</u> subtraction if the answer is wrong (true result < 0)

Overflow flag V = I upon a <u>signed</u> addition or subtraction if the answer is wrong (true result $> 2^{n-1} - I$ or true result $< -2^{n-1}$)

	Unsigned Addition	Unsigned Subtraction	Signed Addition or Subtraction
Carry flag	true result > 2 ⁿ -1 → Carry flag=1 Borrow flag=0 (Result incorrect)	true result < 0 → Carry flag=0 Borrow flag=1 (Result incorrect)	N/A
Overflow flag	N/A	N/A	true result > 2 ⁿ⁻¹ -1 or true result < -2 ⁿ⁻¹ → Overflow flag=1 (Result incorrect)

Signed or unsigned

Whether the carry flag or the overflow flag should be used depends on the programmer's intention.

Check the carry/borrow Flag for unsigned addition/ subtraction

C Program

Check the overflow flag for signed addition/subtraction

Signed or Unsigned

```
a = 0b10000

b = 0b10000

c = a + b
```

- Are a and b signed or unsigned numbers?
- CPU does not know; it sets up both the carry flag and the overflow flag.
- It is software's (programmer/compiler) responsibility to interpret the flags.
 - The C compiler uses either the carry or the overflow flag based on how this integer is declared in source code ("uint" or "int").

Signed or Unsigned

```
a = 0b10000

b = 0b10000

c = a + b
```

Are a and b signed or unsigned numbers?

```
If unsigned:

uint a, b;

a = 16

b = 16

c = a + b

= 32 > 2^5-1

Carry flag set

If signed:

int a, b;

a = -16

b = -16

c = a + b

= -32 < -2^4

Overflow flag set
```

Why use Two's Complement

Two's complement representation simplifies hardware

Operation	Are signed and unsigned operations the same?
Addition	Yes
Subtraction	Yes
Multiplication	Yes if the product has the same number of bits as operands (not discussed in class)
Division	No (not discussed in class)

Adding two integers

- Same bit patterns, different interpretation.
 - Unsigned addition: 23+6=29
 - ▶ Signed addition: -9+6=-3

31

This example shows that the hardware adder for adding unsigned numbers, also works correctly for adding signed numbers.

Subtracting two signed integers:

$$(-9) - 6$$

- Same bit patterns, different interpretation.
 - ▶ Unsigned subtraction: 23-6=17
 - Signed subtraction: -9-6=-15
- This example shows that the hardware subtractor for subtracting unsigned numbers, also works correctly for subtracting signed numbers.

Two's Complement Simplifies Hardware Implementation

- In two's complement, the same hardware works correctly for both signed and unsigned addition/subtraction.
- If the product has the same number of bits as operands, the same hardware works correctly for both signed and unsigned multiplication.
- ▶ However, this is not true for division.

Hex Char Dec Hex Char Dec Hex Char Dec Hex Char Dec SP NUL @ **SOH** Α а **STX** В b **ETX** C # C **EOT** d D **ENQ** Ε е **ACK** & F f **BEL** G g BS н h HT i Ι A LF **2A 4A** 6A **0B VT 2B 4B** K **6B** k C FF **2C 4C** 6C D CR **2D** 4D 6D М m **ØE SO 2E** 6E **4E** N n ØF SI 2F 6F 4F DLE р DC1 Q q DC2 R r DC3 S S DC4 Т t NAK U u SYN V **ETB** W W CAN X X **EM** Υ У A **SUB 3A 5A** Ζ **7A** Z

American
Standard
Code for
Information
Interchange

1B

1C

D

1E

1F

ESC

FS

GS

RS

US

3B

3C

3D

3E

3F

<

=

>

5B

5C

5D

5E

5F

7B

7C

7D

7E

7F

{

~

DEL

ASCII

```
char str[13] = "ARM Assembly";
// The length has to be at least 13
// even though it has 12 letters. The
// NULL terminator should be included.
```

Memory Address	Memory Content	Letter
$str + 12 \rightarrow$	0x00	\0
$str + 11 \rightarrow$	0x79	у
str + 10 \rightarrow	0x6C	1
$str + 9 \rightarrow$	0x62	b
$str + 8 \rightarrow$	0x6D	m
$str + 7 \rightarrow$	0x65	е
$str + 6 \rightarrow$	0x73	S
$str + 5 \rightarrow$	0x73	S
$str + 4 \rightarrow$	0x41	Α
str + 3 \rightarrow	0x20	space
$str + 2 \rightarrow$	0x4D	M
$str + 1 \rightarrow$	0x52	R
str →	0x41	Α

String Comparison

Strings are compared based on their ASCII values

- "j" < "jar" < "jargon" < "jargonize"</p>
- "CAT" < "Cat" < "DOG" < "Dog" < "cat" < "dog"</p>
- "12" < "123" < "2" < "AB" < "Ab" < "ab" < "abc"</p>

Find out String Length

Stings are terminated with a null character (NUL, ASCII value 0x00)

```
Pointer dereference operator *
                                       Array subscript operator []
                                       int strlen (char *pStr){
int strlen (char *pStr){
                                           int i = 0;
    int i = 0;
                                           // loop until *pStr is NULL
    // loop until pStr[i] is NULL
                                           while( *pStr ) {
    while( pStr[i] )
                                                i++;
        i++;
                                                pStr++;
    return i;
                                           return i;
                                       }
```

Convert to Upper Case

A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53	54	55	56	57	58	59	5A
а	b	С	d	е	f	g	h	i	j	k	1	m	n	0	р	q	r	s	t	u	V	w	X	у	Z
61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F	70	71	72	73	74	75	76	77	78	79	7A

$$a' - A' = 0x61 - 0x41 = 0x20 = 32$$

```
Pointer dereference operator *
void toUpper(char *pStr){
  for(char *p = pStr; *p; ++p){
    if(*p >= 'a' && *p <= 'z')
        *p -= 'a' - 'A';
    //or: *p -= 32;
  }
}</pre>
```

```
Array subscript operator []

void toUpper(char *pStr){
   char c = pStr[0];
   for(int i = 0; c; i++, c = pStr[i];) {
      if(c >= 'a' && c <= 'z')
          pStr[i] -= 'a' - 'A';
      // or: pStr[i] -= 32;
   }
}</pre>
```

Summary

- Unsigned integer arithmetic
- Signed integer arithmetic
 - 2's complement
- ASCII strings

References

- Lecture I.Why use two's complement?
 - https://www.youtube.com/watch?v=IJCefqV80ck&list=PLRJhV4 hUhlymmp5CCelFPyxbknsdcXCc8&index=I
- Lecture 2: Carry flag for unsigned addition and subtraction
 - https://www.youtube.com/watch?v=MxGW2WurKuM&list=PL RJhV4hUhlymmp5CCelFPyxbknsdcXCc8&index=2
- Lecture 3: Overflow flag for signed addition and subtraction
 - https://www.youtube.com/watch?v=Bln6iyYlGio&list=PLRJhV4h Uhlymmp5CCelFPyxbknsdcXCc8&index=3