Fachbereich Medizintechnik & Technomathematik

Lehrgebiet für Angewandte Informatik

Prof. Dr. rer. nat. Jörg Striegnitz

	Probeklausur Rechnernetze SS2016		
		Bitte in Druckschrift ausfüllen:	
Termin:	28. Januar 2016	Name:	
Bearbeitungszeit:	120 min	Vorname:	
Hilfsmittel:	Taschenrechner		
		Matrikelnummer:	
		Studiengruppe	

Beachten Sie folgende Hinweise:

- Füllen Sie den oberen Teil dieses Deckblattes bitte vollständig aus und versehen Sie jedes Blatt mindestens mit Ihrer Matrikelnummer.
- Bitte beantworten Sie die Aufgaben auf den Aufgabenblättern (ggf. Rückseite verwenden).
- Sie müssen die Aufgaben nicht in der vorgegebenen Reihenfolge abarbeiten! Am besten gehen Sie wie folgt vor:
 - verschaffen Sie sich einen Überblick über alle Aufgaben;
 - klassifizieren Sie die Aufgaben nach Schwierigkeitsgrad;
 - beginnen Sie mit den Aufgaben, die Ihnen am einfachsten erscheinen.
- Schreiben Sie bitte lesbar und verständlich mit einem dokumentenechten Stift (bitte keinen Bleistift / keine roten Stifte).
- Geben Sie am Ende der Klausur auch Ihre Hilfsblätter ab (bitte ebenfalls mit Matrikelnummer versehen).

Viel Erfolg!

Bewertung							
Aufgabe	1	2	3	4	5	Gesamt	Note
Max.	20	20	15	18	12	85	
Punkte							
Erreichte							
Punkte							
Prüfer 1:							
Prüfer 2:							

Name: Matu Nu		
Name: Watt-Ni:	Name:	MatrNr:

1. Aufgabe 20 Punkte

(a) Nennen Sie drei Kriterien zur Charakterisierung einer Netzwerktopologie.

(b) Was versteht man unter einem chordalen Ring und welche Vorteile bietet er gegenüber einer normalen Ring-Topologie?

Name:	MatrNr:

(c) Kommunikationsprotokolle werden häufig in Anlehnung an das ISO/OSI-Schichtenmodell modelliert. Zählen Sie die einzelnen Schichten in logischer Reihenfolge auf und erläutern Sie kurz die Funktion der Vermittlungsschicht.

Nar	ne:	MatrNr:
(d)	Welche Vereinfachungen wurden im TCP/II gemacht und wie kann man diese rechtferti	P-Referenzmodell gegenüber dem ISO/OSI-Referenzmodell igen?
(0)	Was versteht man unter verbindungserient	ionton Kommunikation?
(e)	Was versteht man unter verbindungsorient	ierter Kommunikation:

Name:	MatrNr:

2. Aufgabe 20 Punkte

(a) Wofür steht die Abkürzung CIDR?

(b) Gegeben sei die folgende Routing-Tabelle

Ziel-IP-Adresse	Anschluss	Ihre Wahl
192.168.0.0/16	1	
192.168.128.0/24	2	
192.168.192.0/26	3	
137.226.12.0/25	4	
0.0.0.0/0	5	

Kreuzen Sie an: Auf welchen Anschluss wird ein Paket mit der Zieladresse 192.168.203.10 weitergeleitet?

(c) Woran kann ein Sender erkennen, dass die Ziel-IP-Adresse eines IP-Pakets sich in seinem eigenen IP-Subnetz befindet? Erläutern Sie dies anhand eines konkreten Beispiels.

Name:	MatrNr:

- (d) Sie sind Administrator des Netzwerkes 175.224.176.0/20.
 - Wie viele Hosts können Sie in dieses Netzwerk aufnehmen?
 - Welche Subnetzmaske müssen Sie bei den Hosts konfigurieren?
 - Wie lautet die Broadcast-Adresse für dieses Netzwerk?
 - Sie sollen dieses Netz in 7 gleich große Subnetze aufteilen. Welche Netzwerkmaske stellen Sie dann an den Rechnern innerhalb dieser Subnetze ein?

Name:	MatrNr:

(e) Rechner A sei über einen Router R mit Rechner B verbunden. Für die Strecke von A zum Router gelte MTU=2000, für die Strecke vom Router R zu Rechner B sei die MTU 1500:

$$A \overset{\text{MTU=2000}}{\longleftrightarrow} R \overset{\text{MTU=1500}}{\longleftrightarrow} B$$

Es soll ein Datenpaket der Länge 3800 Byte übertragen werden (ohne IP-Header!). Skizzieren Sie den Prozess der Fragmentierung, indem sie die folgenden Tabellen ausfüllen:

$A \overset{\text{MTU=2000}}{\longleftrightarrow} R$			
ID	MF	Total Length	Offset

$R \stackrel{\text{MTU=1500}}{\longleftrightarrow} B$				
\mathbf{MF}	Total Length	Offset		
	MF			

(f) Nennen Sie mindestens zwei Probleme, die man mit der Einführung von IPV6 lösen bzw. entschärfen wollte.

Name:	MatrNr:

3. Aufgabe 15 Punkte

- (a) Angenommen zwei Kommunikationspartner haben sich zur Fehlerkontrolle auf das Verfahren Selective Repeat verständigt und das Sliding Window habe die Größe 8. Vereinfachend gehen wir von folgenden Annahmen aus:
 - alle Datenpakete haben dieselbe Länge und benötigen dieselbe Übertragungszeit;
 - Wenn der Sender Paket n sendet, kommt gleichzeitig Paket n-1 beim Sender an;
 - \bullet die Quittung für Paket n trifft gleichzeitig mit dem Senden von Paket n+5 ein;
 - ullet der Timer zum Warten auf die Quittung für Paket n läuft nach dem Senden von Paket n+6 ab

Skizzieren Sie den Ablauf der Kommunikation für die folgenden Fälle:

- Paket 3 kommt nicht an;
- die Quittung für Paket 3 geht verloren.

Paket 3 geht verloren				Quittung für Paket 3 geht verloren		
Sender		Empf.		Sender		Empf.
Paket#		Paket#		Paket#		Paket#
]			

Hinweis: In die mittlere Spalte können Sie Kommentare eintragen (z.B. ACK3, timeout #x); Sie können aber auch einfach, wie in den Vorlesungsunterlagen, Pfeile zur Verdeutlichung des Ablaufes in die Tabellen einzeichnen. Achten Sie in jedem Fall darauf, dass ein korrektes Timing erkennbar bleibt!

Name:	MatrNr:

(b) Was versteht man unter einem *Congestion Window*, welchen Zweck hat es und wie entwickelt sich seine Größe im Laufe der Kommunikation?

Hinweis: Gehen Sie von der vereinfachten Darstellung aus der Vorlesung aus.

- (c) Die Fenstergröße einer TCP-Verbindung sei auf 28.560 Byte festgelegt; die Round-Trip-Time betrage 14ms.
 - 1) Berechnen Sie welche Datenrate (in $\frac{MBit}{s})$ man unter diesen Bedingungen erreichen kann.
 - 2) Können Sie die Übertragungsrate ohne Einsatz der Window Scale Option auf 100 $\frac{MBit}{s}$ steigern? Begründen Sie Ihre Antwort!

Name:	MatrNr:

4. Aufgabe

18 Punkte

(a) Welche drei Eigenschaften sollte ein Leitungscode haben? Nennen und erklären Sie diese.

- (b) Signaldarstellung:
 - 1) Stellen Sie die Bitfolge ${\bf 0}$ ${\bf 0}$ ${\bf 1}$ ${\bf 1}$ ${\bf 0}$ ${\bf 0}$ ${\bf 0}$ ${\bf 0}$ ${\bf 0}$ im Manchester-Code dar.

1) Stellen Sie die Bitfolge **0 0 1 1 1 0 0 0 0 1 0** im differentiellen NRZ-Code dar.

Nar	ne:	MatrNr:
(c)	QAM ist eine Mischung aus Phasen- und Ampl keine Frequenzmodulation?	itudenmodulation. Warum verwendet man bei QAM
(d)	Wo liegt der Unterschied zwischen einer Basis-	und einer Breithandühertragung?
(u)	Wo nego der emersemed zwischen emer Basis	and oner Brewandaberwagung.

Na	me:	MatrNr:
5. (a)		12 Punkte menlänge auf 64 Byte festgelegt? Stellen Sie zunächst imale Rahmenlänge braucht und zeigen Sie dann, wie
(b)	Beim Übergang von Ethernet zu Fast-Etherne Netzes dramatisch verschlechtert - warum?	et hat sich die maximal zulässige Ausdehnung eines
(c)	Nennen Sie zwei Gründe, warum CSMA/CD b	ei WLAN nicht zum Einsatz kommt.

(d)	Wir betrachten das CRC-Verfahren am Beispiel des Generatorpolynoms x^4+x^3+1 . Berechen Sie dir CRC-Prüfussme zur Bitfolge 10110101110.	9