Metaheurísticas - Práctica 1

Juan Luis Suárez Díaz 05 de marzo de 2017

Índice

Ejercicio 1 Solución		 																	-	1
Ejercicio 2 Solución	 •	 										•							4	2
Ejercicio 3 Solución		 				•	 •												4	2
Ejercicio 4 Solución		 													•				;	3
Ejercicio 5 SOlución		 																	;	3
Ejercicio 6 Solución																				3

Ejercicio 1

Calcula una solución maximal del PVI:

$$\begin{cases} x' = x^2 \\ x(t_0) = x_0 \end{cases}$$

Solución

Si $x_0 = 0$ podemos tomar la función constantemente 0 en todo \mathbb{R} , que es claramente solución maximal del PVI.

Supongamos $x_0 \neq 0$. Llamamos $y = \frac{1+x_0t_0}{x_0}$ y consideramos los intervalos $I_- =]-\infty, y[, I_+ =]y, +\infty[$.

Si $x_0>0$, definimos la función $\varphi:I_-\to\mathbb{R}$ dada por $\varphi(t)=\frac{x_0}{1+x_0t_0-x_0t}.$ $\varphi\in\mathcal{C}^1(I_-)$ y claramente $(t,\varphi(t))\in\mathbb{R}\times\mathbb{R}$, que es el dominio de definición de f. Además, $\varphi'(t)=\frac{x_0^2}{(1-x_0t+x_0t_0)^2}=\varphi(t)^2$, luego φ es una solución de la ecuación. Se tiene también que $t_0=\frac{1}{x_0}+t_0-\frac{1}{x_0}=y-\frac{1}{x_0}< y$, luego $t_0\in I_-$, y finalmente $\varphi(t_0)=\frac{x_0}{1+x_0t_0-x_0t_0}=x_0$, luego φ es solución del PVI y además no es prolongable a y, puesto que φ diverge en y, luego es solución maximal.

Si $x_0 < 0$, definimos la función $\varphi: I_+ \to \mathbb{R}$ dada por $\varphi(t) = \frac{x_0}{1 + x_0 t_0 - x_0 t}$. De nuevo, $\varphi \in \mathcal{C}^1(I_+)$, $(t, \varphi(t)) \in \mathbb{R} \times \mathbb{R}$ y $\varphi'(t) = \frac{x_0^2}{(1 - x_0 t + x_0 t_0)^2} = \varphi(t)^2$, luego φ es solución de la ecuación. Además, $t_0 = \frac{1}{x_0} + t_0 - \frac{1}{x_0} = y - \frac{1}{x_0} > y$, luego $t_0 \in I_+$ y finalmente $\varphi(t_0) = x_0$. De nuevo no es prolongable a y, luego φ es solución maximal.

Ejercicio 2

Calcula una solución maximal del PVI:

$$\begin{cases} x' = x^n \\ x(0) = x_0 \end{cases}$$

donde $n \in \mathbb{N}, n \geq 2 \ y \ x_0 > 0$.

Solución

Tenemos una ecuación en variables separadas, en la que f está definida en todo $\mathbb{R} \times \mathbb{R}^+$, f(t,x) = a(t)g(x) con $a(t) = 1 \ \forall t \in \mathbb{R}, g(x) = x^n \ \forall x \in \mathbb{R}^+$ y $g(x_0) \neq 0$. Podemos definir $G: \mathbb{R}^+ \to \mathbb{R}$ por $G(x) = \int_{x_0}^x \frac{1}{t^n} dt = \frac{-1}{n-1}(x^{-n+1} - x_0^{-n+1})$, que es estrictamente monótona, por ser su derivada $1/x^n$ estrictamente decreciente, luego inyectiva, y su inversa es $G^{-1}: G(\mathbb{R}^+) \to \mathbb{R}^+$ dada por $G^{-1}(y) = (-y(n-1) + x_0^{-n+1})^{\frac{-1}{n-1}}$. Como la función A(t) = t es una primitiva de a(t) que se anula en $t_0 = 0$ definimos $\varphi: I = G(\mathbb{R}^+) \to \mathbb{R}^+$ por $\varphi(t) = G^{-1}(A(t)) = G^{-1}(t) = (-t(n-1) + x_0^{-n+1})^{\frac{-1}{n-1}}$. φ está bien definida puesto que A(I) = I, y por construcción se tiene que $\varphi \in \mathcal{C}^1(I), \ t_0 = 0 = G(x_0) \in G(\mathbb{R}^+) = I, \ (t, \varphi(t)) \in \mathbb{R} \times \mathbb{R}^+ \ \forall t \in I \ y \ \varphi(0) = G^{-1}(0) = x_0$. Además, $\varphi'(t) = g(G^{-1}(A(t)))a(t) = g(\varphi(t))a(t) = \varphi(t)^n$, luego φ es solución del PVI.

Determinamos I. $I=G(\mathbb{R}^+)=\frac{-1}{n-1}(\mathbb{R}^+-x_0^{-n+1})=\frac{-1}{n-1}\mathbb{R}^+-\frac{x_0^{-n+1}}{-n+1}=\mathbb{R}^--\frac{x_0^{-n+1}}{-n+1}=$ $\left]-\infty,-\frac{x_0^{-n+1}}{-n+1}\right[$. Finalmente, tenemos que φ no es prolongable a $\frac{-x_0^{-n+1}}{-n+1}$ puesto que en dicho punto el denominador se anula y la función diverge, luego φ es solución maximal del PVI.

Observación. Todos los términos que dependen de n en cualquier expresión de las anteriores están bien definidos puesto que $n \ge 2$.

Ejercicio 3

Calcula una solución maximal del PVI:

$$\begin{cases} x' = x \ln x \\ x(0) = x_0 \end{cases}$$

donde $x_0 > 0$.

Solución

Hacemos el cambio $x = e^u$. Entonces:

$$e^u u = x \ln(x) = x' = u' e^u \Rightarrow u' = u \Rightarrow u(t) = Ae^t, A \in \mathbb{R} \Rightarrow x = \exp(Ae^t) = K^{e^t}, K > 0$$

De $x_0 = x(0) = K$, obtenemos $K = x_0$. Definimos $\varphi : \mathbb{R} \to \mathbb{R}$ por $\varphi(t) = x_0^{e^t}$. $\varphi \in \mathcal{C}^1(\mathbb{R})$, $(t, \varphi(t)) \in \mathbb{R} \times \mathbb{R}^+$, donde está definida $f(t,x) = x \ln(x)$ y $\varphi'(t) = (\exp(\ln(x_0)e^t))' = \ln(x_0)e^tx_0^{e^t} \ln(x_0^{e^t}) = \varphi(t) \ln(\varphi(t))$. Además, claramente $0 \in \mathbb{R}$ y $\varphi(0) = x_0$, luego φ es una solución del PVI maximal, pues está definida en todo \mathbb{R} .

2

Ejercicio 4

Calcula soluciones maximales de los siguientes PVI:

$$a) \begin{cases} x' = \left(\frac{x}{t}\right)_{+}, \ t > 0 \\ x(1) = 0 \end{cases}, \quad b) \begin{cases} x' = \left(\frac{x}{t}\right)_{+}, \ t > 0 \\ x(1) = 1 \end{cases}, \quad c) \begin{cases} x' = \left(\frac{x}{t}\right)_{+}, \ t > 0 \\ x(1) = -1 \end{cases}$$

 $donde\ z_+ := \max\{z, 0\}$

Solución

 $f(t,x) = (\frac{x}{t})_+$ está definida en $\mathbb{R}^+ \times \mathbb{R}$ y es continua, pues los únicos puntos donde podría haber discontinuidad son los de la recta x = 0, pero en este caso el límite siempre 0.

- a) Definimos la función $\varphi \equiv 0$ en \mathbb{R}^+ . Es claramente solución del PVI y es maximal.
- b) Definimos la función $\varphi: \mathbb{R}^+ \to \mathbb{R}$ dada por $\varphi(t) = t$. En este caso se tiene $\left(\frac{\varphi(t)}{t}\right)_+ = \max\{1,0\} = 1 = \varphi'(t) \ \forall t \in \mathbb{R}^+, \ \varphi(1) = 1 \ \text{y se verifican las demás condiciones claramente, luego } \varphi$ es solución maximal del PVI.
- c) Definimos la función $\varphi: \mathbb{R}^+ \to \mathbb{R}$ dada por $\varphi(t) = -1 \ \forall t \in \mathbb{R}^+$. En este caso, $\left(\frac{\varphi(t)}{t}\right)_+ = \max\{-1/t, 0\} = 0 = \varphi'(t) \ \forall t \in \mathbb{R}^+, \ \varphi(1) = -1 \ y$ de nuevo se verifican las demás condiciones, luego φ es solución maximal del PVI.

Ejercicio 5

Calcula dos soluciones maximales (distintas) del PVI:

$$\begin{cases} x' = t\sqrt[3]{x} \\ x(1) = 0 \end{cases}$$

SOlución

Por un lado, es claro que la función constantemente 0 definida en \mathbb{R} es una solución maximal del PVI.

Por otro lado, integrando las variables separadas e imponiendo las condiciones iniciales obtenemos como candidata la función $t\mapsto \left(\frac{t^2-1}{3}\right)^{3/2}$, la cual nos permite definir la función $\varphi:\mathbb{R}\to\mathbb{R}$ dada por

$$\varphi(t) = \begin{cases} 0 & , t \le 1 \\ \left(\frac{t^2 - 1}{3}\right)^{3/2} & , t > 1 \end{cases}$$
. Se tiene que $\varphi'(t) = \begin{cases} 0 & , t < 1 \\ t\left(\frac{t^2 - 1}{3}\right)^{1/2} & , t > 1 \end{cases}$, que tiene a 0 como ambos

límites laterales de las derivadas, luego $\varphi \in \mathcal{C}^1(\mathbb{R})$ y $\varphi'(t) = t\sqrt[3]{\varphi(t)}$, y claramente $(t, \varphi(t)) \in \mathbb{R} \times \mathbb{R}$, $t_0 = 1 \in \mathbb{R}$ y $\varphi(1) = 0$, luego φ es otra solución maximal del PVI distinta de la solución 0.

Ejercicio 6

Estudia la unicidad de la solución del PVI:

$$\begin{cases} x' = -t\sqrt[3]{x} \\ x(0) = 0 \end{cases}$$

Solución

Tenemos $t_0 = 0$ y la función h definida en \mathbb{R} por $h(x) = -t\sqrt[3]{x}$, fijado $t \in \mathbb{R}$. Entonces, h es creciente (resp. decreciente) si y solo si $t \le t_0$ (resp. $t \ge t_0$). Por tanto, $\forall t \ge t_0$ (resp. $t \le t_0$), aplicando el teorema de unicidad de Peano tenemos unicidad en el futuro (resp. en el pasado). De la unicidad en el futuro y en el pasado se deduce la unicidad global.