Teoría de la Computación Sesión 11

Edgar Andrade, Ph.D.

Matemáticas Aplicadas y Ciencias de la computación

Última revisión: Julio de 2021

Contenido

Gramaticas regulares y DFAs

Jerarquía de Chomsky

Forma Normal de Chomsky

Contenido

Gramaticas regulares y DFAs

Jerarquía de Chomsky

Forma Normal de Chomsky

Gramáticas regulares

Una gramática es regular sii sus producciones son de la forma

$$A \rightarrow aB$$

$$A \rightarrow a$$

$$A \rightarrow \epsilon$$

Gramáticas regulares

Una gramática es regular sii sus producciones son de la forma

 $A \rightarrow aB$

 $A \rightarrow a$

 $A \rightarrow \epsilon$

Teorema

Las Gramáticas Regulares y los DFA son equivalentes.

Gramáticas regulares

Una gramática es regular sii sus producciones son de la forma

A o aB	Teorema
A o a	Las Gramáticas Regulares y los DFA son
$A ightarrow \epsilon$	equivalentes.

(=) Clase pasada: pasar de un DFA a una gramática regular.

⇒) Idea de la demostración

$$A \rightarrow aB$$

000

⇒) Idea de la demostración

$$A \rightarrow a$$

000

⇒) Idea de la demostración

$$A \rightarrow a$$

$$A \rightarrow \epsilon$$

Contenido

Gramaticas regulares y DFAs

Jerarquía de Chomsky

Forma Normal de Chomsky

Lenguajes

Lenguajes		
Regulares		

$$A
ightarrow aB \mid a \mid \epsilon$$

MACC Matemáticas Aplicadas y

Lenguajes			
Independientes del contexto			
Regulares			

$$A \rightarrow x$$
, $x \in (V \cup \Sigma)^*$

Lenguajes Sensibles al contexto Independientes del contexto Regulares

$$xAy \rightarrow xuy$$
,
 $x, y, u \in (V \cup \Sigma)^*$

Lenguajes

$$x \to y$$
, $x, y \in (V \cup \Sigma)^*$

Contenido

Gramaticas regulares y DFAs

Jerarquía de Chomsky

Forma Normal de Chomsky

Forma normal de Chomsky

Para hacer manipulaciones formales, es bueno tener una forma estándar para una gramática independiente del contexto.

Forma normal de Chomsky

Para hacer manipulaciones formales, es bueno tener una forma estándar para una gramática independiente del contexto.

Definición

Una CFG está en forma normal de Chomsky sii todas las reglas son de la forma

$$A \rightarrow BC$$

$$A \rightarrow a$$
,

donde a es un terminal y A, B, y C son variables. Además pedimos que ni B ni C sean la variable inicial y permitimos la regla $S \to \epsilon$, solo cuando S es la variable inicial.

Antes de hacer la demostración formal, hagamos un ejemplo.

Antes de hacer la demostración formal, hagamos un ejemplo. Consideramos la gramática:

$$S o ASA \mid aB$$

 $A o B \mid S$
 $B o b \mid \epsilon$

Antes de hacer la demostración formal, hagamos un ejemplo. Consideramos la gramática:

$$S \rightarrow ASA \mid aB$$

 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$

1. Para asegurar que la variables inicial no esté a la derecha de ninguna regla, añadimos una nueva variable inical S_0 :

$$S_0 \to S$$

$$S \to ASA \mid aB$$

$$A \to B \mid S$$

$$B \to b \mid \epsilon$$

2. Ahora quitamos todas las reglas $A \to \epsilon$, ajustando las demás reglas para no cambiar el lenguaje.

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid S \mid \epsilon$
 $B \rightarrow b \mid \epsilon$

2. Ahora quitamos todas las reglas $A \rightarrow \epsilon$, ajustando las demás reglas para no cambiar el lenguaje.

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid S \mid \epsilon$
 $B \rightarrow b \mid \epsilon$

$$S_0 o S$$
 $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A o B \mid S \mid \epsilon$
 $B o b$

2. Ahora quitamos todas las reglas $A \rightarrow \epsilon$, ajustando las demás reglas para no cambiar el lenguaje.

$$S_0 o S$$
 $S_0 o S$
 $S o ASA \mid aB \mid a$ $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A o B \mid S \mid \epsilon$ $A o B \mid S \mid \epsilon$
 $B o b \mid \epsilon$ $B o b$

3a. Quitamos las reglas
$$S o S$$
 y $S_0 o S$

$$S_0 o S$$
 $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A o B \mid S$
 $B o b$

2. Ahora quitamos todas las reglas $A \rightarrow \epsilon$, ajustando las demás reglas para no cambiar el lenguaje.

$$S_0 o S$$
 $S_0 o S$ $S o ASA \mid aB \mid a$ $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$ $A o B \mid S \mid \epsilon$ $A o B \mid S \mid \epsilon$ $B o b \mid \epsilon$ $B o b$ 3a. Quitamos las reglas $S o S$ y $S_0 o S$

$$S_0 o S$$
 $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A o B \mid S$
 $B o b$

$$S_0 o S \mid ASA \mid aB \mid a \mid SA \mid AS$$

 $S o ASA \mid aB \mid a \mid SA \mid AS$

$$A \rightarrow B \mid S$$

 $B \rightarrow b$

3b. Quitamos las reglas $A \rightarrow B$ y $A \rightarrow S$

$$S_0
ightarrow \mathit{ASA} \, | \, \mathtt{a}\mathit{B} \, | \, \mathtt{a} \, | \, \mathit{SA} \, | \, \mathit{AS}$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S \mid b$$

$$B \rightarrow b$$

3b. Quitamos las reglas $A \rightarrow B$ y $A \rightarrow S$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S \mid b$
 $B \rightarrow b$

$$S_0
ightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A
ightarrow S \mid b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B
ightarrow b$

3b. Quitamos las reglas $A \rightarrow B$ y $A \rightarrow S$

$$S_0 o ASA \mid aB \mid a \mid SA \mid AS$$
 $S_0 o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$

4. Añadimos variables y reglas para completar el trabajo.

3b. Quitamos las reglas $A \rightarrow B$ y $A \rightarrow S$

$$S_0 oup ASA \mid aB \mid a \mid SA \mid AS$$
 $S_0 oup ASA \mid aB \mid a \mid SA \mid AS$ $S oup ASA \mid aB \mid a \mid SA \mid AS$ $S oup ASA \mid aB \mid a \mid SA \mid AS$ $S oup ASA \mid aB \mid a \mid SA \mid AS$ $A oup B \mid S \mid b$ $A oup B \mid S \mid b$ $A oup B \mid S \mid b$ $A oup B \mid S \mid ASA \mid AS \mid B oup B ou$

4. Añadimos variables y reglas para completar el trabajo.

$$S_0
ightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$
 $S
ightarrow AA_1 \mid UB \mid a \mid SA \mid AS$
 $A
ightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$
 $A_1
ightarrow SA$
 $U
ightarrow a$
 $B
ightarrow b$

Formal normal de Chomsky

El procedimiento del ejemplo nos permite demostrar el siguiente resultado.

Teorema

Cualquier lenguaje independiente del contexto se puede generar a través de una gramática independiente del contexto en formal normal de Chomsky.

Vamos a describir en manera algorítmica lo que hicimos antes.

1. Añadimos una nueva variable inicial S_0 con la regla $S_0 \to S$. Así la variable inicial no comparece en la derecha de ninguna regla.

Vamos a describir en manera algorítmica lo que hicimos antes.

- 1. Añadimos una nueva variable inicial S_0 con la regla $S_0 \to S$. Así la variable inicial no comparece en la derecha de ninguna regla.
- 2. Removemos todas las reglas $A \to \epsilon$. Para no cambiar el lenguaje, añadimos una nueva regla para cada regla que removimos: si hay una regla $R \to uAv$, con u y v terminales, añadimos la regla $R \to uv$. Lo mismo hacemos para cualquier ocurrencia de A. Si había la regla $R \to A$, añadimos la regla $R \to \epsilon$ si ya no habíamos eliminado la misma. Repetimos hasta eliminar todas las reglas $A \to \epsilon$, con $A \ne S_0$.

3. Eliminamos todas las reglas unitaria de la forma $A \to B$. Para no cambiar el lenguaje, cada vez que había una regla $B \to u$, donde u es una cadena de terminales y variables, añadimos la regla $A \to u$. Repetimos hasta eliminar todas las reglas unitarias.

- 3. Eliminamos todas las reglas unitaria de la forma $A \to B$. Para no cambiar el lenguaje, cada vez que había una regla $B \to u$, donde u es una cadena de terminales y variables, añadimos la regla $A \to u$. Repetimos hasta eliminar todas las reglas unitarias.
- 4. Por último, convertimos las reglas que quedan en forma estándar. Remplazamos cada regla de la forma $A \rightarrow u_1 u_2 \cdots u_k$, donde cada u_i es una variable o un terminal, con las reglas:

$$A \rightarrow u_1 A_1, \quad A_1 \rightarrow u_2 A_2, \ldots, A_{k-2} \rightarrow u_{k-1} u_k.$$

Los A_i son variables nuevas. También remplazamos todos los terminales u_i con nuevas variables U_i y añadimos las reglas Militaria Aplicadas y Ciencias de la Computación $U_i \rightarrow u_i$.

En esta sesión usted aprendió

- Conectar las ideas de gramática regular y DFA.
- Reconocer las gramáticas que hacen parte de la Jerarquía de Chomsky.
- Transformar una CFG en una gramática en Forma Normal de Chomsky.

