Projection

(1) What is the projection of $\vec{u} = (5, 2, 10)^{\mathsf{T}}$ onto the plane H characterized by 2x + y + 3z = 0?

Procedure:

- 1. Find a vector in the plane. Choose x,y arbitrarily, then calculate z. Call this vector v_1 .
- 2. Find another vector in the plane and make sure it is linearly independent of v_1 . Call it v_2 . Now you have a basis for H.
- 3. You know the following about u_H . Use it to find the coordinates of u_H by forming a system of linear equations.
 - (a) u_H is in the plane
 - (b) $u u_H \perp v_1$
 - (c) $u u_H \perp v_2$
- (2) Let u and v be some linearly independent vectors. Then the formula for u_H , where H is the hyperplane spanned by the basis $\{v\}$, is

$$u_H = \left(\frac{u \cdot v}{v \cdot v}\right) v \tag{1}$$

This only works for one-dimensional H! Show that it is true by writing $u_H = av$ for some $a \in \mathbb{R}$ and isolating a in

$$(u-av)\perp v$$

- (3) Let $H = \text{span}(\{v\})$ with $v = (-2, 3)^{\mathsf{T}}$. Find u_H for $u = (7, 5)^{\mathsf{T}}$.
- (4) Let's try (1) again with a different strategy: What is the projection of $\vec{u} = (5, 2, 10)^{\mathsf{T}}$ onto the plane H characterized by 2x + y + 3z = 0?

Procedure:

- 1. Find an orthogonal basis for H. (In the above procedure, find v_2 such that $v_2 \perp v_1$.)
- 2. Note that the following is true (but only for a basis where the basis vectors v_i are pairwise orthogonal!): $u_H = u_{v_1} + \ldots + u_{v_n}$. Show that it is true for n = 2, i.e.

- (a) $(u_{v_1} + u_{v_2}) \in H$ (trivial)
- (b) $(u (u_{v_1} + u_{v_2})) \perp v_1$ (use the fact that $v_1 \perp v_2$)
- (c) $(u (u_{v_1} + u_{v_2})) \perp v_2$ (same idea)
- 3. Use formula (1) to calculate u_{v_1} and u_{v_2} .
- 4. Use $u_{v_1} + u_{v_2} = u_H$ to find u_H .
- (5) Consider the system of non-linear equations

$$3^{x} - y^{2} = 2
xy + \cos(y - 5) = 16$$
(2)

To solve it numerically, we need to linearize the following function around an initial estimate of the solution x = 4, y = 4.

$$f((x,y)^{\dagger}) = \begin{pmatrix} e^{x \ln 3} - y^2 - 2 \\ xy + \cos(y - 5) - 16 \end{pmatrix}$$
 (3)

Find the Jacobian of f and derive the linearization of the function around x=4,y=4.