Universal fault-tolerant quantum computation with only transversal gates and error correction

Ben W. Reichardt USC Viterbi

Encoded computing

Fault tolerance

- 1) encoded gates
- 2) error correction

Encoded computing

Fault tolerance

- 1) encoded gates
- 2) error correction

Encoded computing

Fault tolerance

- 1) encoded gates
- 2) error correction

Theorem [Eastin, Knill 2009]

No quantum code admits transversal implementation of a universal set of encoded gates.

Theorem [Eastin, Knill 2009]

No quantum code admits transversal implementation of a universal set of encoded gates.

State distillation

~10x cost of transversal gates

Theorem [Eastin, Knill 2009]

No quantum code admits transversal implementation of a universal set of encoded gates.

State distillation

~10x cost of transversal gates

Theorem [Eastin, Knill 2009]

No quantum code admits transversal implementation of a universal set of encoded gates.

Main result

Universality is possible with only transversal gates and *error correction*.

15-bit Hamming code

Parity checks

```
      0
      0
      0
      0
      0
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

15-bit Hamming code

15-bit Hamming code

```
Z . . . . Z . . Z . Z . . .
                                  . Z . . . . Z . Z . . Z . . .
                                  . . Z . . . Z Z . . . Z . . .
                                  . . . Z . . Z . Z Z . . . . .
                                  . . . . Z . Z Z . Z . . . . .
                                  . . . . . Z Z Z Z . . . . . .
                                  . . . . . . . ZZZZZZZ
   . . . . . . . X X X X X X X X
                                  . . . Z Z Z Z . . . . Z Z Z Z
   . . . X X X X . . . . X X X X
                                  . Z Z . . Z Z . . Z Z . . Z Z
   . X X . . X X . . X X . . X X
                                  Z . Z . Z . Z . Z . Z . Z
   X \cup X \cup X \cup X \cup X \cup X \cup X
```

Z Z . . Z . Z . . .

. Z Z . Z . . Z . . .

. . Z . . . Z Z . . . Z . . .

. . . Z . . Z . Z Z

. . . . Z . Z Z . Z

FactCNOT and *T* are transversal

Fact

CNOT and T are transversal

What about Hadamard?

```
Z . . . . Z . . Z . Z . . .
. Z . . . . Z . Z . . Z . . .
. . Z . . . Z Z . . . Z . . .
. . . Z . . Z . Z Z . . . . .
. . . . Z . Z Z . Z . . . . .
. . . . . Z Z Z Z . . . . . .
. . . . . . . ZZZZZZZ
. . . Z Z Z Z . . . . Z Z Z Z
. Z Z . . Z Z . . Z Z . . Z Z
Z . Z . Z . Z . Z . Z . Z . Z
```

```
Z . . . . Z . . Z . Z . . .
                                        . Z . . . . Z . Z . . Z . . .
H: X \rightarrow HXH = Z
                                        . . Z . . . Z Z . . . Z . . .
    Z \mapsto HZH = X
                                        . . . Z . . Z . Z Z . . . . .
What about Hadamard?
                                        . . . . Z . Z Z . Z . . . . .
                                        . . . . . Z Z Z Z . . . . . .
                                        . . . . . . . ZZZZZZZ
. . . . . . . X X X X X X X X
                                        . . . Z Z Z Z . . . . Z Z Z Z
. . . X X X X . . . . X X X X
. \chi \chi . . \chi \chi . . \chi \chi . . \chi \chi \longleftrightarrow . Z Z . . Z Z . . Z Z . . Z Z
                                        Z . Z . Z . Z . Z . Z . Z
X \cup X \cup X \cup X \cup X \cup X \cup X
```

```
\mathsf{X} . . . . \mathsf{X} . \mathsf{X} . \mathsf{X} . \mathsf{X} . . .
   . X . . . . X . X . . X . . .
   . . X . . . X X . . . X . . .
   . . . X . . X . X X . . . . .
   . . . . X . X X . X . . . . .
   . . . . X X X X . . . . . .
                                      . . . . . . . Z Z Z Z Z Z Z Z Z
   . . . . . . . X X X X X X X X
                                      . . . Z Z Z Z . . . . Z Z Z Z
   . . . X X X X . . . . X X X X
                                      . Z Z . . Z Z . . Z Z . . Z Z
   . X X . . X X . . X X . . X X
                                      Z . Z . Z . Z . Z . Z . Z
   X \cup X \cup X \cup X \cup X \cup X \cup X
```

```
±1 Z . . . . Z . . Z . Z . . .
   \mathsf{X} . . . . \mathsf{X} . \mathsf{X} . \mathsf{X} . \mathsf{X} . . .
   . X . . . . X . X . . X . . .
   . . . X . . X . X X . . . . .
   . . . . X . X X . X . . . . .
   . . . . . X X X X . . . . . . .
                                    . . . . . . . Z Z Z Z Z Z Z Z
   . . . . . . . X X X X X X X X
                                    . . . Z Z Z Z . . . . Z Z Z Z
   . . . X X X X . . . . X X X X
                                    . Z Z . . Z Z . . Z Z . . Z Z
   . X X . . X X . . X X . . X X
                                    Z . Z . Z . Z . Z . Z . Z . Z
   X \cup X \cup X \cup X \cup X \cup X \cup X
```

```
±1 Z . . . . Z . . Z . Z . . .
   \mathsf{X} . . . . \mathsf{X} . \mathsf{X} . \mathsf{X} . \mathsf{X} . . .
   . X . . . . X . X . . X . . .
   . . . X . . X . X X . . . . .
   . . . . X . X X . X . . . . .
  . . . . . XXXX . . . . . .
                                   . . . . . . . ZZZZZZZ
   . . . . . . . X X X X X X X X
                                   . . . Z Z Z Z . . . . Z Z Z Z
   . . . X X X X . . . . X X X X
                                   . Z Z . . Z Z . . Z Z . . Z Z
   . X X . . X X . . X X . . X X
                                   Z . Z . Z . Z . Z . Z . Z . Z
   X \cup X \cup X \cup X \cup X \cup X \cup X
```

```
±1 Z . . . . Z . Z . Z . . .
   \mathsf{X} . . . . \mathsf{X} . \mathsf{X} . \mathsf{X} . \mathsf{X} . . .
   . X . . . . X . X . . X . . .
   . . . X . . X . X X . . . . .
   . . . . X . X X . X . . . . .
                                    . . . . . . . Z Z Z Z Z Z Z Z Z
   . . . . . . . X X X X X X X X
                                    . . . Z Z Z Z . . . . Z Z Z Z
   . . . X X X X . . . . X X X X
                                    . Z Z . . Z Z . . Z Z . . Z Z
   . X X . . X X . . X X . . X X
                                    Z . Z . Z . Z . Z . Z . Z . Z
   X \cup X \cup X \cup X \cup X \cup X \cup X
```

```
±1 Z . . . . Z . Z . Z . . .
                               ±1 . Z . . . . Z . Z . . Z . . .
                               ±1 . . Z . . . Z Z . . . Z . . .
                               ±1 . . . Z . . Z . Z Z . . . . .
                               +1 . . . . Z . Z Z . Z . . . . .
                               ±1 . . . . . Z Z Z Z . . . . . . .
                                  . . . . . . . ZZZZZZZ
   . . . . . . . X X X X X X X X
                                  . . . Z Z Z Z . . . . Z Z Z Z
   . . . X X X X . . . . X X X X
                                  . Z Z . . Z Z . . Z Z . . Z Z
   . X X . . X X . . X X . . X X
                                  Z . Z . Z . Z . Z . Z . Z
   X \cup X \cup X \cup X \cup X \cup X \cup X
```

ResultCNOT, *T*, *H* are transversal


```
Z . . . . Z . . Z . Z . . .
. Z . . . . Z . Z . . Z . . .
. . Z . . . Z Z . . . Z . . .
. . . Z . . Z . Z Z . . . . .
. . . . Z . Z Z . Z . . . . .
. . . . . Z Z Z Z . . . . . .
 . . . Z Z Z Z . . . . Z Z Z Z
. Z Z . . Z Z . . Z Z . . Z Z
Z . Z . Z . Z . Z . Z . Z . Z
```

ResultCNOT, *T*, *H* are transversal

Universality!

```
Z . . . . . Z . . Z . Z . . .
. Z . . . . Z . Z . . Z . . .
. . Z . . . Z Z . . . Z . . .
. . . Z . . Z . Z Z . . . . .
. . . . Z . Z Z . Z . . . . .
. . . . . Z Z Z Z . . . . . .
. . . . . . . Z Z Z Z Z Z Z Z Z
. . . Z Z Z Z . . . . Z Z Z Z
. Z Z . . Z Z . . Z Z . . Z Z
Z . Z . Z . Z . Z . Z . Z . Z
```


$$\left| f_i \cdot f_j \right| = 0 \mod 2$$

$$|f_i \cdot f_j \cdot f_k| = 0 \mod 2$$

$$|f_i \cdot f_j| = 0 \mod 2$$
$$|f_i \cdot f_j \cdot f_k| = 0 \mod 2$$

$$|f_i \cdot f_j| = 0 \mod 2$$
$$|f_i \cdot f_j \cdot f_k| = 0 \mod 2$$

Brayvi, Haah 2012

Explicit constructions

- [[49,1,5]]
- [[3k+8,k,2]] (k even)

Theorem

Any triorthogonal code admits transversal *T*, up to (diagonal) Clifford corrections.

$$|f_i \cdot f_j| = 0 \mod 2$$
$$|f_i \cdot f_j \cdot f_k| = 0 \mod 2$$

Claim

For any triorthogonal code:

Claim

For any triorthogonal code:

Theorem [Shi 2003]

Toffoli and Hadamard are universal for quantum computation

Outlook for triorthogonal codes

Distillation not required!

But...

- [[15,1,3]] threshold error rate ~0.01%
- Performance likely worse under locality constraints
- Thresholds unknown for other codes

Toffoli distillation

Goal

Prepare the state

Toffoli distillation

Goal

Prepare the state

Average cost to produce one Toffoli

Toffoli distillation

Goal

Prepare the state

Average cost to produce one Toffoli

Summary

- Triorthogonal codes admit transversal CCZ & Hadamard (with EC)
- Improved Toffoli distillation

Summary

- Triorthogonal codes admit transversal CCZ & Hadamard (with EC)
- Improved Toffoli distillation

Open questions

- Resource estimates triorthogonal codes?
- More (and better) triorthogonal codes?
- Other ways to eliminate distillation?
 - [Knill, Laflamme, Zurek 1997]
 - [Bombin 2013]
 - [Jochym-O'Connor, Laflamme 2013]

