

Exercise

07

TUM Department of Informatics

Supervised by Prof. Dr. Stephan Günnemann

Informatics 3 - Professorship of Data Mining and Analytics

Submitted by Marcel Bruckner (03674122)

Julian Hohenadel (03673879)

Kevin Bein (03707775)

Submission date Munich, November 30, 2019

Constrained Optimization

Problem 1:

Since f_0 is a hyperplane, the min and max values are at the vertices:

$$f_0((9,3)^T) = -2$$
 $f_0((5,7)^T) = -11$
 $f_0((7,2)^T) = 8$ $f_0((9,3)^T) = 10$

We immediately see that $\theta_{\min} = (5,7)^T$ and $\theta_{\max} = (9,3)^T$ and also $\min(f_0) = -11$ and $\max(f_0) = 10$.

Problem 2:

$$\pi_{\chi}(p) = \begin{cases} p & \text{if } p \in \chi \\ (1.5, 2.5)^T & \text{if } p \text{ is in the green corridor} \\ (3, 1)^T & \text{if } p \text{ is in the red corridor} \\ \left(\frac{1}{2}p_1 - \frac{1}{2}p_2 + 2\right) & \text{if } p \text{ is in the blue corridor} \\ \frac{1}{2} - p_1 + \frac{1}{2}p_2 + 2 & \text{if } p \text{ is in the blue corridor} \\ \left(\frac{\max(0, \min(3, p_1))}{\max(0, \min(2.5, p_2))}\right) & \text{if } p \text{ is outside green/red/blue corridor and } p \not\in \chi \end{cases}$$

The blue corridor projects down to a line. We can take any two points on the line to calculate the projection vector $\pi_{\chi_{a,b}}$. We choose $\mathbf{a} := (0,4)^T$ and $\mathbf{b} := (4,0)^T$ for simplicity.

$$\pi_{\chi_{a,b}} = a + \frac{(\mathbf{p} - \mathbf{a})^T (\mathbf{b} - \mathbf{a})}{\|\mathbf{b} - \mathbf{a}\|_2^2} (\mathbf{b} - \mathbf{a})$$

$$= \binom{0}{4} + \frac{\binom{p_1 - 0}{p_2 - 4}^T \binom{4}{-4}}{32} \binom{4}{-4}$$

$$= \binom{0}{4} + \frac{4p_1 - 4p_2 + 16}{32} \binom{4}{-4}$$

$$= \binom{0}{4} + \left(\frac{1}{8}p_1 - \frac{1}{8}p_2 + \frac{1}{2}\right) \binom{4}{-4}$$

$$= \binom{\frac{1}{2}p_1 - \frac{1}{2}p_2 + 2}{\frac{1}{2} - p_1 + \frac{1}{2}p_2 + 2}$$

Problem 3:

1. Formulate the Lagrangian:

$$L(\theta, \alpha) = f_0(\theta) + \sum_{i=1}^{M} \alpha_i f_i(\theta)$$
$$= \theta_1 - \sqrt{3}\theta_2 + \alpha(\theta_1^2 + \theta_2^2 - 4)$$
$$= \theta_1 - \sqrt{3}\theta_2 + \alpha\theta_1^2 + \alpha\theta_2^2 - \alpha 4$$

2.1 Solve:

$$\begin{split} g(\alpha) &= \min_{\theta} \left[L(\theta, \alpha) \right] \\ &= \min_{\theta} \left[\theta_1 - \sqrt{3}\theta_2 + \alpha\theta_1^2 + \alpha\theta_2^2 - \alpha 4 \right] \\ &\Rightarrow \left[\theta_1 - \sqrt{3}\theta_2 + \alpha\theta_1^2 + \alpha\theta_2^2 - \alpha 5 \right]' \stackrel{!}{=} 0 \\ &\Rightarrow \nabla_{\theta} L(\theta, \alpha) = \begin{pmatrix} 1 + 2\alpha\theta_1 \\ -\sqrt{3} + 2\alpha\theta_2 \end{pmatrix} = \stackrel{!}{=} 0 \\ &\Rightarrow \begin{cases} 1 + 2\alpha\theta_1 = 0 \\ -\sqrt{3} + 2\alpha\theta_2 = 0 \end{cases} \\ &\Rightarrow \begin{cases} \theta_1 = -\frac{1}{2\alpha} \\ \theta_2 = \frac{\sqrt{3}}{2\alpha} \end{cases} \end{split}$$

2.2 Get the dual function $g(\alpha)$:

$$\begin{split} g(\alpha) &= L(\theta, \alpha) \\ &= \theta_1 - \sqrt{3}\theta_2 + \alpha\theta_1^2 + \alpha\theta^2 - \alpha 4 \\ &= -\frac{1}{2\alpha} - \sqrt{3}\frac{\sqrt{3}}{2\alpha} + \alpha\left(-\frac{1}{2\alpha}\right)^2 + \alpha\left(\frac{\sqrt{3}}{2\alpha}\right)^2 - \alpha 4 \\ &= -\frac{1}{2\alpha} - \frac{3}{2\alpha} + \left(\frac{1}{4\alpha}\right) + \left(\frac{3}{4\alpha}\right) - \alpha 4 \\ &= -\frac{1}{\alpha} - \alpha 4 \end{split}$$

3. Solve the dual problem:

$$[g(\alpha)]'=rac{1}{lpha^2}-4\Rightarrow lpha=rac{1}{2} \ ({
m since} \ lpha\geq 0)$$
 $g\left(rac{1}{2}
ight)=-4$

Slater's condition holds.

The minimizer θ becomes:

$$\theta_1 = -\frac{1}{2\alpha} = -\frac{1}{2 \cdot \frac{1}{2}} = -1$$

$$\theta_2 = \frac{\sqrt{3}}{2\alpha} = \frac{\sqrt{3}}{2 \cdot \frac{1}{2}} = \sqrt{3}$$

Problem 4:

Appendix
We confirm that the submitted solution is original work and was written by us without further assistance.
Appropriate credit has been given where reference has been made to the work of others.
Munich, November 30, 2019, Signature Marcel Bruckner (03674122)
indition, November 36, 2516, eignature mareer Brasilier (3567 1122)
Munich, November 30, 2019, Signature Julian Hohenadel (03673879)
Munich, November 30, 2019, Signature Kevin Bein (03707775)