Step k = 2:

					$\tilde{a}_{2}^{(2)}$:	1	7	2	-7]				
0	0	0	0	٦.١	1	1	7	2	-7	7 1	1	7	2	-7
-4	-27	1	27	1+	4	4	28	8	-28	=	0	1	9	-1
-1	-1	44	1		1	1	7	2	-7	1	0	6	46	-6
	$\widetilde{A}^{(2)}$ $w^{(2)}$					$w^{(2)}\otimes \tilde{a}_2^{(2)}$					A ⁽³⁾			

Step k = 3:

we obtain a triangular system $A^{(4)}X = b^{(4)}$ having X for solution:

$$A^{(4)} = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 7 & 2 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & -8 \end{pmatrix}; \qquad b^{(4)} = \begin{pmatrix} 0 \\ -7 \\ -1 \\ 0 \end{pmatrix};$$

$$X = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}.$$

Example 3. Let $A \in \mathbb{R}^{3\times 3}$ be invertible. Compute $B = A^{-1}$ by using the algorithm (\mathcal{A}_{GJR})

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 1 & 1 \\ 2 & -1 & 4 \end{pmatrix}; \qquad B^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Step k = 1:

We calculate $v^{(1)} = B^{(1)}a_1 = a_1$

$$v^{(1)} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \leftarrow k = 1; \qquad w^{(1)} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix},$$

we compute $B^{(2)} = \tilde{B}^{(1)} + w^{(1)} \otimes \tilde{b}_1^{(1)}$

$$\begin{split} \tilde{b}_{1}^{(1)} : & \boxed{1 \quad 0 \quad 0} \\ \hline \hline {0 \quad 0 \quad 0 \atop 0 \quad 1 \quad 0} \\ \hline {0 \quad 0 \quad 1 \quad 0} \\ \hline \tilde{B}^{(1)} \end{split} + \begin{bmatrix} 1 \\ 2 \\ -2 \\ w^{(1)} \end{bmatrix} & \begin{bmatrix} 1 \quad 0 \quad 0 \\ 2 \quad 0 \quad 0 \\ -2 \quad 0 \quad 0 \\ w^{(1)} \otimes \tilde{b}_{1}^{(1)} \end{bmatrix} = \begin{bmatrix} 1 \quad 0 \quad 0 \\ 2 \quad 1 \quad 0 \\ -2 \quad 0 \quad 1 \\ B^{(2)} \end{split}$$

This step is easy. It is considered as an initialization: it

suffices to put $w^{(1)}$ in the first column of the matrix $B^{(1)}$ and to pass directly to iteration 2.

Step k=2:

We calculate $v^{(2)} = B^{(2)}a_2$

$$v^{(2)} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \leftarrow k = 2; \qquad w^{(2)} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix},$$

we compute $B^{(3)} = \tilde{B}^{(2)} + w^{(2)} \otimes \tilde{b}_2^{(2)}$

$$\tilde{b}_2^{(2)}$$
: 2 1 0

1	0	0		-1	Γ	$\overline{-2}$	-1	0		-1	-1	0
0	0	0	+	-1		-2	-1	0	=	-2	-1	0
-2	0	1		1		2	1	0		0	1	1
	$B^{(2)}$			$w^{(2)}$	_	w	(2) \otimes		$B^{(3)}$			

Step k = 3: We calculate $v^{(3)} = B^{(3)}a_3$

$$v^{(3)} = \begin{pmatrix} -1 \\ -1 \\ 5 \end{pmatrix} \leftarrow k = 3; \qquad w^{(3)} = \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix},$$

we compute $B^{(4)} = \tilde{B}^{(3)} + w^{(3)} \otimes \tilde{b}_{2}^{(3)}$

$$\tilde{b}_{3}^{(3)}: \boxed{0 \ 1 \ 1}$$

-1	-1	0	$\frac{1}{5}$	0	$\frac{1}{5}$	<u>1</u> 5	_	-1	$-\frac{4}{5}$	$\frac{1}{5}$
-2	-1	0	$+\frac{1}{5}$	0	1/5	<u>1</u> 5	-	-2	$-\frac{4}{5}$	$\frac{1}{5}$
0	0	0	$\frac{1}{5}$	0	$\frac{1}{5}$	$\frac{1}{5}$		0	<u>1</u> 5	$\frac{1}{5}$
	$\tilde{B}^{(3)}$				$w^{(3)}$	$\otimes \hat{b}_3^{(3)}$			$B^{(4)}$)

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 1 & 1 \\ 2 & -1 & 4 \end{pmatrix};$$

$$B^{(4)} = A^{-1} = \frac{1}{5} \begin{pmatrix} -5 & -4 & 1 \\ -10 & -4 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

6. Conclusion

The idea of Proposition 2 gives rise to a new algorithm, which is easy, concise, clear and serves to calculate the inverse of the basic matrix of the current basis at iteration r, by starting from the identity matrix. In other words, this algorithm contributes to the amelioration of the product