1. Delno urejene množice

DEFINICIJA: Relacija R delno ureja množico A, če je refleksivna, antisimetrična in tranzitivna.

DEFINICIJA: Veriga je podmnožica v A (kjer je (A, \leq) delna urejenost), v kateri so paroma primerljivi elementi. Antiveriga je množica paroma neprimerljivih elementov. <u>Višina</u> delne urejenosti je moč njene največje verige. <u>Širina</u> delne urejenosti je moč njene največje antiverige.

Definicija: (A, \leq) delna urejenost. Tedaj je $x \in A$:

- minimalni element, če ne obstaja $y \in A, y \neq x$, da velja $y \leq x$;
- maksimalni element, če ne obstaja $y \in A, y \neq x$, da velja $x \leq y$;
- najmanjši element, če za vse $y \in A$ velja $x \leq y$;
- največji element, če za vse $y \in A$ velja $y \leq x$;

Trditev: Naj bo (A, \leq) končna delna urejenost. Tedaj A premore vsaj en minimalni in vsaj en maksimalni element.

Definicija: Delni urejenosti $(A, \leq), (A', \leq')$ sta <u>izomorfni</u>, če obstaja bijekcija $f: A \longrightarrow A'$, taka da je

$$x \le y \iff f(x) \le' f(y) \forall x, y \in A.$$

TRDITEV: Če je (A, R) veriga, |A| = n, tedaj je (A, R) izomorfna $([n], \leq)$.

2. Linearne razširitve in dimenzija delne urejenosti

Definicija: $L = (A, \leq)$ je linearna urejenost, če je delna urejenost, ki je veriga.

Definicija: Naj bo $P=(\overline{A},\leq)$ delna urejenost. Tedaj je linearna urejenost $L=(A,\leq')$ <u>linearna razširitev</u> delne urejenosti P, če velja: $x\leq y\Longrightarrow x\leq' y$. IZREK: Naj bo $P = (A, \leq)$ končna delna urejenost. Tedaj P premore linearno razširitev. Celo več, če sta x in $y \in A$ neprimerljiva elementa, tedaj obstaja taka linearna razširitev $L = (A, \leq')$, da velja $x \leq' y$.

Posledica: Naj bo $P = (A, \leq)$ končna delna urejenost in naj bosta $x, y \in A$. Tedaj je $x \leq y$ natanko tedaj, ko je $x \leq y$ v vsaki linearni razširitvi L = (A, <').

DEFINICIJA: Naj bo $P = (A, \leq)$ delna urejenost. Tedaj je družina $\mathcal{L} = \{L = (A, \leq_L)\}$ linearnih razširitev od P realizator za P, če velja:

$$\forall x, y: x \leq y \iff x \leq_L y \quad \forall L = (A, \leq_L).$$

Trditev: Naj bo $P = (A, \leq)$ delna urejenost. Tedaj je družina linearnih razširitev \mathcal{L} realizator za P natanko tedaj, ko za vsak par neprimerljivih elementov x in y obstajata $L, L' \in \mathcal{L}$, taka da je $x \leq_L y$ in $y \leq_L x$.

Opomba: \mathcal{L} je realizator pomeni: $\cap_{L \in \mathcal{L}} L = P$.

DEFINICIJA: Dimenzija delne urejenosti je moč njenega najmanjšega realizatorja.

 $\text{Trditev: Naj bo} \ \overline{P_n = (\{a_1, \dots, a_n\} \cup \{b_1, \dots, b_n\}, \leq)}, \ \text{kjer} \leq : a_i \leq b_j \ \text{za vse} \ i \neq j \ \text{in} \ a_i \leq a_i, b_i \leq b_i \forall i. \ \dim P_n = n \ \text{za} \ n \geq 2.$

DEFINICIJA: Naj bo $P=(A,\leq)$ delna urejenost. Tedaj je vložitev P v \mathbb{R}^n taka injektivna preslikava $f:A\longrightarrow\mathbb{R}^n$, da velja:

$$x \le y \quad (\mathbf{v} \ P) \Longleftrightarrow f(x) \le f(y) \quad (\mathbf{v} \ \mathbb{R}^n).$$

IZREK: Naj bo $P = (A, \leq)$ (končna) delna urejenost. Tedaj je dim P enaka najmanjšemu n, za katerega obstaja vložitev P v \mathbb{R}^n .

3. Trije klasični izreki

Trditev: Naj bo $P = (A, \leq)$ končna delna urejenost in naj bo n velikost največje verige v P. Tedaj lahko P pokrijemo z n antiverigami. (Te antiverige vsebujejo vse elemente iz A)

DILWORTHOV IZREK: Naj bo $P = (A, \leq)$ končna delna urejenost. Tedaj je najmanjše število disjunktnih verig, s katerimi lahko pokrijemo A enako velikosti največje antiverige v P.

HALLOV IZREK: Če je G dvodelen graf z biparticijo X, Y, potem je problem popolnega prirejanja za X rešljiv natanko tedaj, ko velja:

$$\forall A \subset X : |N(A)| > |A|.$$

Spernerjev izrek: Naj bo \mathcal{A} antiveriga v $P = (2^{[n]}, \subseteq)$. Tedaj je:

$$|\mathcal{A}| \le {n \choose \lfloor \frac{n}{2} \rfloor}.$$

Opomba: Izrek je najboljši možen (EVER!): Če za \mathcal{A} izberemo vse podmnožice moči $\lfloor \frac{n}{2} \rfloor$ bo širina $P = (2^{[n]}, \subseteq)$ enaka $\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

4. Schnyderjev izrek

Definicija: G = (V, E) graf. Incidenčna urejenost je definirana na $V \cup E$, in sicer:

$$e = uv \in E \Longrightarrow u \le e, v \le e + \text{refleksivnost.}$$

Definicija: Dimenzija grafa G je dimenzija njegove incidenčne urejenosti.

Schnyderjev izrek: Graf G je ravninski natanko tedaj, ko je dim $G \leq 3$.

Naj bo $h_i(u)$ višina vozlišča u v \leq_i (glede na višino vozlišča) in \leq_1, \leq_2, \leq_3 realizator incidenčne urejenosti grafa G. $f: V \longrightarrow \mathbb{R}^2$ s predpisom $f(u) = (2^{h_1(u)}, 2^{h_2(u)})$ je injektivna.

DEFINICIJA: Triangulacija je taka vložitev ravninskega grafa v ravnino, da so vsa njegova lica trikotniki. Vsak ravninski graf je vpet podgraf neke triangulacije

DEFINICIJA: Schnyderjeva označitev triangulacije je prireditev oznak iz [3] notranjim kotom, tako da velja:

- ullet vsi koti pri v_i so označeni z i,
- vsak notranji trikotnik ima oznake 1,2,3 v smeri urinega kazalca,
- koti okrog notranjega vozlišča imajo oznake: nekaj 1 (vsaj 1), nekaj 2 (vsaj 1), nekaj 3 (vsaj 1).

Iz T naredimo digraf tako, da vsako povezavo usmerimo proti enakima kotoma. Povezavo označimo: ime = smer (kot v katerega kaže).

5. Načrti in t-načrti

DEFINICIJA: Naj bo X v-množica. Tedaj je družina $\mathcal B$ k-podmnožic množice X načrt s parametri (v,k,λ) , če se vsak element iz X pojavi v natanko λ množicah iz \mathcal{B} . Elementi družine \mathcal{B} so bloki načrta.

Trditev: Če je \mathcal{B} (v,k,λ) -načrt (in $|\mathcal{B}|=b$), tedaj je $bk=v\lambda$. x je v kvečjemu $\binom{b-1}{k-1}$ blokih. $\lambda \leq \binom{v-1}{k-1}$, z uporabo trditve dobimo $b \leq \binom{v}{k}$.

IZREK: Načrt s parametri (v,k,λ) obstaja natanko tedaj, ko $k|v\lambda$ in je $\lambda \leq {v-1 \choose k-1}$.

Definicija: Družina \mathcal{B} k-podmnožic v-množice X je t-načrt s parametri $(v, \overline{k}, \lambda_t)$, če se vsaka t-podmnožica od X pojavi v natanko λ_t blokih.

IZREK: Če je \mathcal{B} t-načrt, tedaj je \mathcal{B} tudi s-načrt za $1 \le s < t$.

POSLEDICA: Če je \mathcal{B} t-načrt s parametri (v, k, λ_t) , potem je \mathcal{B} tudi s-načrt s parametri (v, k, λ_s) in velja:

$$\lambda_s = \lambda_t \frac{(v-s)(v-s-1)\cdots(v-t+1)}{(k-s)(k-s-1)\cdots(k-t+1)}.$$

6. CIKLIČNE KONSTRUKCIJE NAČRTOV IN FISHERJEVA NEENAKOST

Trditev: Naj bo $S \subseteq \mathbb{Z}_m$ in naj bodo $S+i, i \in \mathbb{Z}_n$, paroma različni. Tedaj ti odseki tvorijo (m, |S|, |S|)-načrt.

DEFINICIJA: $S \subseteq \mathbb{Z}_m$ je množica razlik, če se vsak neničelni element iz \mathbb{Z}_m pojavi enakokrat kot razlika dveh elementov iz S.

IZREK: Naj bo $S \subseteq \mathbb{Z}_m$ množica razlik in naj bo k = |S|. Če so odseki S + i paroma različni, tedaj $\{S + i; i \in \mathbb{Z}_m\}$ tvori 2-načrt s parametri $(m, k, \frac{k(k-1)}{m-1})$.

IZREK: FISHERJEVA NEENAKOST Naj bo $\mathcal B$ 2-načrt s parametri (v,k,λ_2) , kjer je v>k. Tedaj je $b\geq v$.

OPOMBA 1: Prejšnji izrek pravi, da je neenakost najboljša možna (EVER!), saj je v prejšnjem izreku dosežena enakost.

OPOMBA 2: Predpostavka v>k je zato, da se izognemo trivialnemu primeru, ko je v=k: X v-množica, tedaj je $\mathcal B$ t-načrt za vsak t.

7. VAJE

LEMA: Vsak izomorfizem delnih urejenosti slika najmanjši element v najmanjši element.

Catalanova števila: $C_n = \frac{1}{n+1} {2n \choose n}$.

 $P=(A,\leq),\,x,y\in A$ neprimerljiva. Potem $(A,\leq\cup\{(x,y)\})$ ni delna urejenost.

DEFINICIJA: Naj bo $P=(A,\leq)$ delna urejenost in $x,y\in A$ neprimerljiva. Pravimo, da stax in y kritičen par, če je tudi $(A,\leq\cup\{(x,y)\})$ delna urejenost.

Lema: Če je (A, \leq) končna delna urejenost, kritičen par vedno obstaja.

Lema: Vsak dvodelen regularen graf ima popolno prirejanje.

LEMA: Vsak dvodelen biregularen (stopnje vozlišč v X so d_1 , stopnje vozlišč v Y pa d_2) graf $G(X \cup Y, E)$ ima popolno prirejanje iz X v Y, če je |X| < |Y|. DEFINICIJA: Urejena n-terica (a_1, \ldots, a_m) je sistem različnih predstavnikov za množice $S_1, \ldots, S_m \subseteq [n]$, če velja:

- $a_i \in S_i; i = 1, ... m$
- $a_i \neq a_j$.

Lema: Sistem različnih predstavnikov za S_1, \ldots, S_m obstaja natanko tedaj, ko ima unija poljubnih k množic vsaj k elementov za $k=1,\ldots,m$.

Lema: Če so $A_1, \ldots A_k$ različne podmnožice [n] in $A_i \cap A_j \neq \emptyset$ za vsaka i, j, je $k \leq 2^{n-1}$.

Lema: Naj bo $\mathcal B$ načrt s parametri (n,k,λ) nad množico X in $\mathcal B'=\{X\backslash B; B\in\mathcal B\}$. Tedaj je $\mathcal B'$ načrt s parametri $(b,n-k,\frac{n-k}{k}\lambda)$.

TRDITEV: Če je S množica razlik v \mathbb{Z}_m , potem je tudi $\mathbb{Z}_m \setminus S$ množica razlik v \mathbb{Z}_m .

Lema: Naj za 2-načrt s parametri (v, k, λ_2) velja b = v. Tedaj je $k - \lambda_2$ popoln kvadrat, če je v sod.

Trditev: Naj bo A incidenčna matrika 2-načrta \mathcal{B} , za katerega velja b=v. Tedaj je tudi A^T incidenčna matrika nekega 2-načrta.

Definicija: Steinerjev trojček je 2-načrt s parametri (v, 3, 1).

Lema: Steinerjev trojček obstaja le v primeru, ko je $v \equiv 1(6)$ ali $v \equiv 3(6)$.

Velja $\lambda_1 = \lambda_2 \frac{v-1}{k-1}$

Naj boAincidenčna matrika 2-načrta, za katerega velja b=v. Velja:

 $\bullet \det AA^T = k^2(k - \lambda_2)^{v-1}$

•

$$AA^{T} = \begin{bmatrix} k & \lambda_{2} & \cdots & \lambda_{2} \\ \lambda_{2} & k & \ddots & \vdots \\ \vdots & \ddots & \ddots & \lambda_{2} \\ \lambda_{2} & \cdots & \lambda_{2} & k \end{bmatrix}$$

- $\bullet\,$ če velja $A^TA=AA^T,$ imata A in A^T natanko λ_2 skupnih enic
- $\bullet \ AA^T = (k \lambda_2)I_v + \lambda_2 \mathbb{1}_v.$