Υπολογιστική Γεωμετρία Εργασία 1 (Voronoi)

ΒΛΑΣΣΗΣ ΠΑΝΑΓΙΩΤΗΣ 1115201400022

Εαρινό εξάμηνο Ακαδ. Έτος: 2018-19

Περιεχόμενα

1. Σχεδιασμός διαγράμματος Voronoi	3
2. Εφαρμογή διαγραμμάτων Voronoi	
3. Αλγόριθμοι για δημιουργία διαγράμματος Voronoi	
3.1. Άπληστος αλγόριθμος (Naive Algorithm)	
3.2. Αυξητικός αλγόριθμος (Incremental Algorithm)	
3.3. Διαίρει και βασίλευε (Divide and Conquer Algorithm)	

1. Σχεδιασμός διαγράμματος Voronoi

Έστω ένα σύνολο σημείων $P = \{p_1, p_2, ...\}$, στο επίπεδο, που ονομάζονται γεννήτριες (generators). Το διάγραμμα Voronoi ($\underline{E}\iota\kappa\acute{o}\nu\alpha\ 1.1$) αποτελείται από υποσύνολα του επιπέδου $\mathbf{V} = \{V_1, V_2, ...\}$, όπου V_i είναι μία περιοχή του επιπέδου, η οποία περιέχει όλα τα σημεία που βρίσκονται πλησιέστερα στο p_i από κάθε άλλο μέλος του συνόλου P.

Εικόνα 1.1. Απλό διάγραμμα Voronoi

$$q \in V(p_i) \Leftrightarrow \operatorname{dist}(q, p_i) \leq \operatorname{dist}(q, p_i), \forall p_i \in P, j \neq i.$$

Επειδή κάθε περιοχή V_i περιέχει ακριβώς μία γεννήτρια, μπορεί να χρωματιστεί με ένα χρώμα το οποίο θα αντιστοιχεί στη γεννήτρια p_i (Εικόνα 1.2)

Εικόνα 1.2. Χρωματισμός διαγράμματος Voronoi

Ο υπολογισμός των αποστάσεων μεταξύ των σημείων-γεννήτριων μπορεί να γίνει, για παράδειγμα, είτε με χρήση Ευκλείδιας απόστασης (Euclidean distance) είτε με Μανχάταν απόσταση (Manhattan distance).

Euclidean distance:
$$\ell_2=d\left[\left(a_1,a_2
ight),\left(b_1,b_2
ight)
ight]=\sqrt{\left(a_1-b_1
ight)^2+\left(a_2-b_2
ight)^2}$$

Manhattan distance:
$$d\left[\left(a_{1},a_{2}\right),\left(b_{1},b_{2}\right)
ight] = |a_{1}-b_{1}| + |a_{2}-b_{2}|.$$

2. Εφαρμογή διαγραμμάτων Voronoi

Η βασική ιδέα των διαγραμμάτων Voronoi έχει εφαρμογή σε πολλά πεδία εντός κι εκτός των μαθηματικών. Μπορούν να χρησιμοποιηθούν ως μέθοδος για την επίλυση προβλημάτων ή ως μοντέλο για δείγματα που ήδη υπάρχουν.

Πέρα από τον κλάδο της Υπολογιστικής Γεωμετρίας, τα διαγράμματα αυτά χρησιμοποιούνται και στους εξής τομείς:

- *Ρομποτική*: δημιουργία πρωτοκόλλων για την ανίχνευση εμποδίων
- Περιβάλλον: μοντελοποίηση και αντιμετώπιση φυσικών φαινομένων (π.χ. πυρκαγιά)
- Ζωολογία: μοντελοποίηση και ανάλυση των επικρατειών των ζώων
- Γεωγραφία: ανάλυση προτύπων αστικών οικισμών
- Αστρονομία: αναγνώριση συμπλεγμάτων αστεριών και γαλαξιών.
- *Πληροφορική*: χρήση σε 3D γραφικά και μοντελοποίηση δικτύων

Εικόνα 2.1. Διάγραμμα Voronoi σε χάρτη για πυρκαγιά

Εικόνα 2.2. Tube Station Map – London Underground [Source]

Εικόνα 2.3. Σχεδιασμός ηλιακού συστήματος από Rene Descartes 1644 <u>Wiki</u>

Εικόνα 2.4. Αναπαράσταση 17.168 μετεωρολογικών σταθμών

Εικόνα 2.5

Εικόνα 2.6

3. Αλγόριθμοι για δημιουργία διαγράμματος Voronoi

3.1. Άπληστος αλγόριθμος (Naive Algorithm)

Για κάθε σημείο p_i κατασκευάζουμε τη περιοχή Vononoi V_i .

- Προβλήματα ακρίβειας → ασυνέπεια διαγράμματος (Εικόνα 3.1.1)
- Δεν παράγει άμεσες πληροφορίες για τις γειτονικές περιοχές.
- Για την κατασκευή κάθε περιοχής απαιτείται χρόνος Θ(nlogn)
- Χρόνος για τη δημιουργία ολόκληρου του διαγράμματος: *O*(*n*²*logn*)

Εικόνα 3.1.1 Σχεδιασμός διαγράμματος Voronoi με άπληστο αλγόριθμο

3.2. Αυξητικός αλγόριθμος (Incremental Algorithm)

- Αρχίζουμε με το διάγραμμα Voronoi με σημεία $P=\{p_1,...,p_i\}$.
- Προσθέτουμε το σημείο p_{i+1} και εξερευνούμε όλα τα υποψήφια σημεία, ώστε να βρούμε το σημείο p_j ($1 \le j \le i$) που βρίσκεται πιο κοντά στο σημείο p_{i+1} (Εικόνα 3.2.1)
- Υπολογισμός της περιοχής κατασκευή των συνόρων (Εικόνα 3.2.2)
- Περικοπή-αλλαγή του αρχικού διαγράμματος (Εικόνα 3.2.3)
- \succ Κάθε βήμα απαιτεί χρόνο O(i) → Συνολικός χρόνος $O(n^2)$

Εικόνα 3.2.1

Εικόνα 3.2.2

3.3. Διαίρει και βασίλευε (Divide and Conquer Algorithm)

- 1. Preprocess
 - ightharpoonup Ταξινόμηση των σημείων $P = \{ p_1, p_2, ... \}$ με βάση την τετμήμενη τους
- 2. Διαίρεση (Division)
 - Κάθετη κατάτμηση (partition) του P σε 2 υποσύνολα R και B,
 περίπου ίδιου μεγέθους. (Εικόνα 3.3.1)
- 3. Αναδρομή (Recursion)
 - Αναδρομικός υπολογισμός των περιοχών Voronoi για R και B (Εικόνα 3.3.2)
- 4. Συγχώνευση (Merging)
 - Υπολογισμός της διαχωριστικής αλυσίδας (Εικόνα 3.3.3)
 - "Κλάδεμα" της περιοχής Voronoi του R που βρίσκεται δεξιά της αλυσίδας και της περιοχής Voronoi του B που βρίσκεται στα αριστερά της αλυσίδας (Εικόνα 3.3.4)
- Συνολικός χρόνος *O(nlogn)*

Εικόνα 3.3.1

Εικόνα 3.3.2.b

Εικόνα 3.3.2

Εικόνα 3.3.3

Εικόνα 3.3.4

Βιβλιογραφία

- [1] https://dccg.upc.edu/people/vera/wp-content/uploads/2013/06/GeoC-Voronoi-algorithms.pdf
- [2] https://www.ics.uci.edu/~eppstein/gina/scot.drysdale.html
- [3] https://en.wikipedia.org/wiki/Voronoi diagram
- [4] https://onionesquereality.wordpress.com/2008/12/13/voronoi-art/

