Symmetric Matrix

A <u>square Matrix</u> **A** is said to be **symmetric** if **aij=aji** for all i and j, where **aij** is an element present at (i,j)th position (ith row and jth column in **matrix A**) and **aji** is an element present at (j,i)th position (jth row and ith column in **matrix A**).

In other words, we can say that **matrix A** is said to be **symmetric** if **transpose** of **matrix A** is equal to **matrix A** itself ($A^T = A$).

1	2	5
2	5	-7
5	-7	3

It is **symmetric matrix** because aij = ajifor all i and j Example, a12=a21=2,a13=a31=5 and a23=a32=-7

In other words, **transpose** of **Matrix A** is equal to **matrix A** itself $(A^T = A)$ which means **matrix A** is **symmetric**.

Skew-Symmetric Matrix

<u>Square</u> matrix A is said to be skew-symmetric if $a_{ij} = -a_{ji}$ for all i and j. In other words, we can say that matrix A is said to be skew-symmetric if transpose of matrix A is equal to negative of matrix A i.e ($A^T = -A$). Note that all the main diagonal elements in the skew-symmetric matrix are zero.

0	-5	4
5	0	-1
-4	1	0

Symmetric

$$A^T = A$$

Skew-symmetric

$$A^T = -A$$

Above is skew-symmetric matrix because $a_{ij} = -a_{ji}$ for all i and j and leading diagonal elements are zero.

$A = -A^{T}$ and leading diagonal elements are zero.

Singular and Non singular Matrix

Non Singular Matrix

A square matrix A is said to be non-singular if $|A| = \det(A) \neq 0$

Singular Matrix

A matrix is singular if its determinant is zero.

A 2 x 2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is singular if its determinant ad - bc = 0

A 3 x 3 matrix
$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$
 is singular if its determinant

$$a_{1} \bullet \begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix} - a_{2} \bullet \begin{vmatrix} b_{1} & c_{1} \\ b_{3} & c_{3} \end{vmatrix} + a_{3} \bullet \begin{vmatrix} b_{1} & c_{1} \\ b_{2} & c_{2} \end{vmatrix} = 0$$

$$a_{1} (b_{2}c_{3} - b_{3}c_{2}) - a_{2} (b_{1}c_{3} - b_{3}c_{1}) + a_{3} (b_{1}c_{2} - b_{2}c_{1}) = 0$$

Properties of determinant

- If all the elements of a row (or column) are zeros, then the value of the determinant is zero.
- Determinant of a Identity matrix (I_n) is 1
- If two rows (or columns) of a matrix are identical the value of the determinant is zero.
- If rows and columns are interchanged then value of determinant remains same (value does not change). Therefore, $\det(A) = \det(A^T)$, here A^T is transpose of matrix A.

$$|\mathbf{A}| = |\mathbf{A}^{\mathrm{T}}|$$

• Let A and B be two matrix, then det(AB) = det(A)*det(B).

$$|AB|=|A|*|B|$$

Determinant of a Matrix

The determinant of a matrix is a **special number** that can be calculated from a <u>square matrix</u>.

Determinant can be calculated only and only of square matrix.

A Matrix is an array of numbers:

 $\begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix}$

leading diagonal elements are: 3 and 6

A Matrix

(This one has 2 Rows and 2 Columns)

The determinant of that matrix is (calculations are explained later):

$3\times6 - 8\times4 = 18 - 32 = -14$

Symbol

The **symbol** for determinant is two vertical lines either side.

Example:

 $|\mathbf{A}|$ means the determinant of the matrix A

For a 2×2 Matrix

For a 2×2 matrix (2 rows and 2 columns):

$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$$

The determinant is:

first multiply leading diagonal values – multiply other diagonal values determinant of A = det(A) = |A| = ad - bc

- Blue is positive (+ad),Red is negative (-bc)

Example:

$$B = \begin{bmatrix} 4 & 6 \\ 3 & 8 \end{bmatrix}$$

$$|B| = 4 \times 8 - 6 \times 3$$

= 32 - 18
= 14

For a 3×3 Matrix

For a 3×3 matrix (3 rows and 3 columns):

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

The determinant is:

$$|A| = a \cdot \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \cdot \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \cdot \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$|A| = a.(ei - fh) - b.(di - fg) + c.(dh - eg)$$

$$|A| = a \cdot \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \cdot \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \cdot \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$C = \begin{bmatrix} 6 & 1 & 1 \\ 4 & -2 & 5 \\ 2 & 8 & 7 \end{bmatrix}$$

|C| =
$$6 \times (-2 \times 7 - 5 \times 8) - 1 \times (4 \times 7 - 5 \times 2) + 1 \times (4 \times 8 - (-2 \times 2))$$

= $6 \times (-54) - 1 \times (18) + 1 \times (36)$
= -306

Example:

$$\det\begin{bmatrix} -5 & 0 & -1 \\ 1 & 2 & -1 \\ -3 & 4 & 1 \end{bmatrix} = -5 \cdot \det\begin{bmatrix} 2 & -1 \\ 4 & 1 \end{bmatrix} - (0) \cdot \det\begin{bmatrix} 1 & -1 \\ -3 & 1 \end{bmatrix} + (-1) \cdot \det\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$$

$$= -5 \left[2 - (-4) \right] - 0 \left[1 - (3) \right] - 1 \left[4 - (-6) \right]$$

$$= -5 (2 + 4) - 0 - 1 (4 + 6)$$

$$= -5 (6) - 1 (10)$$

$$= -30 - 10$$

$$= -40$$

Minors and co factors of matrix

Write Minors and Cofactors of the elements of following

determinants: (i) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$

Minor of
$$a_{11} = M_{11} = \begin{vmatrix} \frac{1}{0} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1(1) - 0 = 1$$

Minor of
$$a_{12} = M_{12} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0 - 0 = 0$$

Minor of
$$a_{13} = M_{13} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0 - 0 = 0$$

Minor of
$$a_{21} = M_{21} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 0 - 0 = 0$$

Minor of
$$a_{22} = M_{22} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1$$

Minor of $a_{23} = M_{23} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0 - 0 = 0$

Minor of
$$a_{31} = M_{31} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} = 0 - 0 = 0$$

Minor of
$$a_{32} = M_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 0 - 0 = 0$$

Minor of
$$a_{33} = M_{33} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 - 0 = 1$$

Minor matrix:

1	0	0
0	1	0
0	0	1

This matrix is fixed

+1	-1	+1
-1	+1	-1
+1	-1	+1

Co factor matrix:

1	-0=0	0
-0=0	1	-0=0
0	-0=0	1

1	0	0
0	1	0
0	0	1

Adjoint matrix= transpose of co factor matrix

transpose means = interchange of rows and columns

 1^{st} row of co factor matrix = 1^{st} column of adjoint matrix 2^{nd} row of co factor matrix = 2^{nd} column of adjoint matrix 3^{rd} row of co factor matrix = 3^{rd} column of adjoint matrix

Adjoint matrix=

1	0	0
0	1	0
0	0	1

Minor, co factor and adjoint of 2X 2 matrix

A=

2	3
1	5

Minor Matrix=

swap the elements of both diagonals

5	1
3	2

You have to change the sign in Elements of other diagonal (not leading digonal)

+1	-1
-1	+1

Co factors =

5	-1
-3	2

Adjoint matrix= transpose of co factor matrix

5	-3
-1	2

A formula for finding the inverse

$$A^{-1} = \frac{\operatorname{adj} A}{|A|}$$

A square matrix A has an inverse, if |A| is not equal to 0.

To find inverse of matrix:

- Matrix shoud be square
- Det(MAtrix) is not equal to 0 0r |A| Not equal to 0