

ORIGINAL IMAGE

IMAGE SEGMENTATION

MORPHOLOGICAL TRANSFORMATIONS

OUTPUT IMAGE

```
import cv2
import numpy as np
input_image = cv2.imread('Test.png')
hsv_input_image = cv2.cvtColor(input_image,cv2.COLOR_BGR2HSV)
```

Installing Python Modules

pip install opency-python

MORPHOLOGICAL TRANSFORMATIONS

OUTPUT IMAGE

Different color range

Similarly to other colors (blue and grey).

inRange

Checks if array elements lie between the elements of two other arrays.

$$mask(I) = lower_b(I) \le src(I) \le upper_b$$

bitwise_and

Computes bitwise conjunction of the two arrays. $res(I) = src(I) \land src(I) \quad if \quad mask(I) \neq 0$

OUTPUT IMAGE

morphologyEx

The function morphologyEx can perform advanced morphological transformations using an erosion and dilation as basic operations. It is useful for noise removal. cv.MORPH_OPEN: it applies erosion followed by dilation. For removing external noise.

cv.MORPH_CLOSE: it applies dilation followed by erosion. For removing internal object noise.

OUTPUT IMAGE

Creating the full image