Maksim Kulichenko

+1 435 512 1450 | kulichenko.mb@gmail.com

- Director's Postdoc Fellow
- Physics and Chemistry of Materials (T-1) Group, Los Alamos National Laboratory
- Personal website: https://m-kulichenko.github.io/
- Google Scholar profile: https://scholar.google.com/citations?user=5QlRU5wAAAAJ&hl

Research Interests

Applications of Machine Learning in chemistry, chemical bonding, spectroscopy

Education

PhD — Utah State University, Logan, Utah

2018 — 2022

Department of Chemistry and Biochemistry

Major: Chemistry

Advisor: Alexander I. Boldyrev

Thesis: Stability, Electronic Structure, and Nonlinear Optical Properties in Clusters and Materials: A

Synergistic Experimental-Computational Analysis

BSc (with Honors) — Lomonosov Moscow State University, Moscow, Russia 2014 — 2018

Department of Fundamental Physical and Chemical Engineering

Major: Applied Mathematics and Physics

Thesis: Reactions of insertion in bond $MY_n+H_2=MY_nH_2$ (M=C, Si, Al, B and Y=H, F, Cl),

 $MY^++H_2=MYH_2^+$ (M=C, Si and Y=H, F, Cl): quantum chemical study.

Skills & Abilities

Programming:

Python (proficient), C++ (basics)

Machine Learning:

Toolkits: PyTorch, Scikit-Learn, NumPy, SciPy, Pandas

Machine learning in the context of interatomic potentials

Uncertainty quantification for atomistic data acquisition

Computational Chemistry:

Proficient in the following computational chemistry packages: ASE, GAUSSIAN, VASP, ORCA, ADF,

ABINIT, MAESTRO, HIPNN

Molecular dynamics (ab initio/DFT and ML-based)

Structural global minima search

Computational spectroscopy

Multireference quantum-chemical calculations

Computational analysis of non-linear optical properties

Bonding analysis in molecules and solids

Other:

Experience with High Performance Computing (via SLURM)

SQL (MySQL basics)

Experience in SSH servers building and remote-control software configuration (WinSCP, OpenSSH)

Open-Source Projects

PYSEQM

Description: A PyTorch-based package for semi-empirical quantum chemical simulations

Repository: https://github.com/lanl/PYSEQM/tree/develop

Contributions:

- Implementation of Extended Lagrangian Born-Oppenheimer Molecular Dynamics engine
- Implementation of the support of open-shell calculations
- Generation of reactive dataset for training ML model interfaced with semiempirical Hamiltonian
- Code refactoring

Active Learning Framework

2020 - 2023

Description: A framework for atomistic data sampling via ensemble-based active learning Repository: https://github.com/lanl/ALF/tree/main Contributions:

• Implementation of an uncertainty-driven sampler for a diverse chemical data acquisition

Experience

Director's Postdoc Fellow, Los Alamos National Lab Research topic: applications of machine learning in atomistic simulations	2022 – present
Graduate Contractor, Los Alamos National Lab Graduate Research Assistant position at USU funded by Los Alamos National Lab. Topic: applications of machine learning in atomistic simulations	2020 – 2022
Graduate Research/Teaching Assistant — Utah State University Research topic: computational chemistry	2018 – 2022
Summer Internship — Los Alamos National Lab, NM Internship topic: Development of sampling techniques for machine learning potentials	Summer 2020
Internship — Institute of Problems of Chemical Physics of Russian Academy of Sciences Internship topic: quantum chemical investigation of efficient reaction pathways	2017 - 2018

Publications

The full publication list can be found on my Google Scholar page: 22 published articles
Citations –301 (Google Scholar)
h-index – 12

- Semi-Empirical Shadow Molecular Dynamics: A PyTorch implementation
 M. Kulichenko, K. Barros, N. Lubbers, N. Fedik, G. Zhou, S. Tretiak, B. Nebgen,
 A.M.N. Niklasson
 J. Chem. Theory Comput. (2023) 19, 3209, DOI:10.1021/acs.jctc.3c00234 (IF=6.6)
- 2. Synergy of Semiempirical Models and Machine Learning in Computational Chemistry
 N. Fedik, B. Nebgen, N. Lubbers, K. Barros, **M. Kulichenko**, Y. W. Li, R. Zubatyuk, R.
 Messerly, O. Isayev, S. Tretiak

 Accepted in the Journal of Chemical Physics (2023)

 (IF=4.3)
- 3. Uncertainty Driven Dynamics for Active Learning of Interatomic Potentials

 M. Kulichenko, N. Lubbers, J. S. Smith, Y. W. Li, R. Messerly, S. Tretiak, K. Barros, B. Nebgen

 Nat. Comput. Sci. (2023) 3, 230, DOI: 10.1038/s43588-023-00406-5
- Extending machine learning beyond interatomic potentials for predicting molecular properties
 N. Fedik, R. Zubatyuk, M. Kulichenko, N. Lubbers, J. S. Smith, B. Nebgen, R. review Messerly, Y. W. Li, A. I. Boldyrev, K. Barros, O. Isayev & S. Tretiak Nat. Rev. Chem. (2022) DOI: 10.1038/s41570-022-00416-3 (IF=34.0)
- 5. Photoelectron Spectroscopy and Theoretical Study of Di-Copper–Boron Clusters: $Cu_2B_3^- \text{ and } Cu_2B_4^- \\ \text{1 citation}$ A. S. Pozdeev, W.-J. Chen, H. W. Choi, **M. Kulichenko**, D.-F. Yuan, A. I. Boldyrev, L.-S. Wang $J. Phys. Chem. A, (2023), 127, 4888, DOI: 10.1021/acs.jpca.3c02417 \qquad (IF=2.9)$
- 6. On the Structures and Bonding of Copper Boride Nanoclusters, $Cu_2B_x^-$ (x = 5–7)
 - A. S. Pozdeev, W.-J. Chen, **M. Kulichenko**, H. W. Choi, A. I. Boldyrev, L.-S. Wang *Solid State Sci.*(2023) 142 ,DOI:10.1016/j.solidstatesciences.2023.107248 (IF=3.7)
- 7. Probing Copper-Boron Interactions in the Cu₂B₈⁻ Borozene Complex
 3 citations
 M. Kulichenko, W.-J. Chen, H. W. Choi, D.-F. Yuan, A. I. Boldyrev, L.-S. Wang
 J. Vac. Sci. & Technol A (2022) 40,042201, DOI:10.1021/acs.jpca.1c05846 (IF=2.4)

8. Photoelectron Spectroscopy of Size-Selected Bismuth-Boron Clusters: BiB _n ⁻ (n = 6-8) WJ. Chen, M. Kulichenko , H. W. Choi, J. Cavanagh, DF. Yuan, A. I. Boldyrev, LS. Wang J. Phys. Chem. A (2021) 125, 31, 6751, DOI: 10.1021/acs.jpca.1c05846 (IF=2.9)	13 citations Published as part of the special issue "125 Years of The Journal of Physical
9. Bridging Aromatic/Antiaromatic Units. Recent Advances in Aromaticity and Antiaromaticity in Main-group and Transition-metal Clusters from Bonding and Magnetic analyses	6 citation Invited review
N. V. Tkachenko, I. A. Popov, M. Kulichenko , N. Fedik, ZM. Sun, A. Muñoz-Castro, A. I. Boldyrev	14 citations
Eur. J. Inorg. Chem. (2021) 41, 4239, DOI: 10.1002/ejic.202100519 (IF=2.5)	
10. The Rise of Neural Networks for Materials and Chemical Dynamics	32 citations
M. Kulichenko , J. S. Smith, B. Nebgen, Y. W. Li, N. Fedik, A. I. Boldyrev, N. Lubbers, K. Barros, S. Tretiak	Invited perspective
J. Phys. Chem. Lett. (2021) 12, 6227, DOI: 10.1021/acs.jpclett.1c01357 (IF=6.5)	=6.5) Featured on the issue cover
11. Chapter: Spherical aromaticity in inorganic chemistry	1 citation
	1
M. Kulichenko, N. Fedik, N. V. Tkachenko, Á. Muñoz-Castro, ZM. Sun, A. I. Boldyrev Aromaticity - Modern Computational Methods and Applications, Elsevier (2021) Pages 447-489, DOI: 10.1016/B978-0-12-822723-7.00014-5	Invited chapter
Boldyrev Aromaticity - Modern Computational Methods and Applications, Elsevier (2021)	
Boldyrev Aromaticity - Modern Computational Methods and Applications, Elsevier (2021) Pages 447-489, DOI: 10.1016/B978-0-12-822723-7.00014-5 12. Designing Molecular Electrides from Defective Unit Cells of Cubic Alkaline Earth	chapter
Boldyrev Aromaticity - Modern Computational Methods and Applications, Elsevier (2021) Pages 447-489, DOI: 10.1016/B978-0-12-822723-7.00014-5 12. Designing Molecular Electrides from Defective Unit Cells of Cubic Alkaline Earth M. Kulichenko, A. N. Utenyshev, K. V. Bozhenko	chapter 3 citations 12 citations
Boldyrev Aromaticity - Modern Computational Methods and Applications, Elsevier (2021) Pages 447-489, DOI: 10.1016/B978-0-12-822723-7.00014-5 12. Designing Molecular Electrides from Defective Unit Cells of Cubic Alkaline Earth M. Kulichenko, A. N. Utenyshev, K. V. Bozhenko J. Phys. Chem. C (2021) 125, 17, 9564, DOI: 10.1021/acs.jpcc.1c02710 (IF=4.1) 13. Double σ-Aromaticity in a Planar Zinc-Doped Gold Cluster: Au ₉ Zn ⁻ M. Kulichenko, WJ. Chen, YY. Zhang, CQ. Xu, J. Li, LS. Wang	chapter 3 citations 12 citations
Boldyrev Aromaticity - Modern Computational Methods and Applications, Elsevier (2021) Pages 447-489, DOI: 10.1016/B978-0-12-822723-7.00014-5 12. Designing Molecular Electrides from Defective Unit Cells of Cubic Alkaline Earth M. Kulichenko, A. N. Utenyshev, K. V. Bozhenko J. Phys. Chem. C (2021) 125, 17, 9564, DOI: 10.1021/acs.jpcc.1c02710 (IF=4.1) 13. Double σ-Aromaticity in a Planar Zinc-Doped Gold Cluster: Au ₉ Zn ⁻ M. Kulichenko, WJ. Chen, YY. Zhang, CQ. Xu, J. Li, LS. Wang J. Phys. Chem. A (2021) 125, 21, 4606, DOI: 10.1021/acs.jpca.1c02954 (IF=2.9) 14. Bottled spiro-doubly aromatic trinuclear [Pd ₂ Ru] ⁺ complexes M. Kulichenko, N. Fedik, A. Monfredini, A. Muñoz-Castro, D. Balestri, A. I. Boldyrev, G. Maestri	chapter 3 citations 12 citations
Boldyrev Aromaticity - Modern Computational Methods and Applications, Elsevier (2021) Pages 447-489, DOI: 10.1016/B978-0-12-822723-7.00014-5 12. Designing Molecular Electrides from Defective Unit Cells of Cubic Alkaline Earth M. Kulichenko, A. N. Utenyshev, K. V. Bozhenko J. Phys. Chem. C (2021) 125, 17, 9564, DOI: 10.1021/acs.jpcc.1c02710 (IF=4.1) 13. Double σ-Aromaticity in a Planar Zinc-Doped Gold Cluster: Au ₉ Zn ⁻ M. Kulichenko, WJ. Chen, YY. Zhang, CQ. Xu, J. Li, LS. Wang J. Phys. Chem. A (2021) 125, 21, 4606, DOI: 10.1021/acs.jpca.1c02954 (IF=2.9) 14. Bottled spiro-doubly aromatic trinuclear [Pd ₂ Ru] ⁺ complexes M. Kulichenko, N. Fedik, A. Monfredini, A. Muñoz-Castro, D. Balestri, A. I. Boldyrev, G. Maestri Chem. Sci. (2021) 12, 477-486, DOI: 10.1039/D0SC04469E (IF=9.8)	chapter 3 citations 12 citations
Boldyrev Aromaticity - Modern Computational Methods and Applications, Elsevier (2021) Pages 447-489, DOI: 10.1016/B978-0-12-822723-7.00014-5 12. Designing Molecular Electrides from Defective Unit Cells of Cubic Alkaline Earth M. Kulichenko, A. N. Utenyshev, K. V. Bozhenko J. Phys. Chem. C (2021) 125, 17, 9564, DOI: 10.1021/acs.jpcc.1c02710 (IF=4.1) 13. Double σ-Aromaticity in a Planar Zinc-Doped Gold Cluster: Au ₉ Zn ⁻ M. Kulichenko, WJ. Chen, YY. Zhang, CQ. Xu, J. Li, LS. Wang J. Phys. Chem. A (2021) 125, 21, 4606, DOI: 10.1021/acs.jpca.1c02954 (IF=2.9) 14. Bottled spiro-doubly aromatic trinuclear [Pd ₂ Ru] ⁺ complexes M. Kulichenko, N. Fedik, A. Monfredini, A. Muñoz-Castro, D. Balestri, A. I. Boldyrev, G. Maestri	chapter 3 citations 12 citations

16. Can aromaticity be a kinetic trap? Example of mechanically interlocked aromatic 49 citations polycatenanes built of cyclo[18]carbon N. Fedik, M. Kulichenko, D. Steglenko, A. I. Boldyrev Chem. Commun. (2020) 56, 2711-2714, DOI: 10.1039/C9CC09483K (IF=6.2)17. Periodic F-defects on the MgO Surface as Potential Single-Defect Catalysts with Non-15 citations **Linear Optical Properties** M. Kulichenko, N. Fedik, D. Steglenko, R. M. Minyaev, V. I. Minkin, A. I. Boldyrev Chem. Phys. (2020) 532, 110680, DOI: 10.1016/j.chemphys.2020.110680 (IF=2.3) 18. Expansion of aromaticity magnetic criteria on multi-layer structures. Magnetic 21 citations response and spherical aromaticity of Matryoshka-like [Sn@Cu₁₂@Sn₂₀]¹²⁻ cluster M. Kulichenko, N. Fedik, A. I. Boldyrev, A. Muñoz-Castro Chem. Eur. J. (2020) 26, 2263-2268, DOI: 10.1002/chem.201905088 (IF=5.2)19. Hydrated Sulfate Clusters $SO_4^{2-}(H_2O)_n$ (n = 1–40): Charge Distribution Through 29 citations M. Kulichenko, N. Fedik, K. V. Bozhenko, A. I. Boldvrev J. Phys. Chem. B (2019) 123, 18, 4065, DOI: 10.1021/acs.jpcb.9b01744 (IF=3.0)20. High-Resolution Photoelectron Imaging of IrB₃⁻: Observation of a p-Aromatic B₃⁺ Ring 21 citations J. Czekner, L. F. Cheung, S. Kocheril, M. Kulichenko, A. I. Boldyrev, L.-S. Wang Angew. Chem. Int. Ed. (2019) 58, 8877, DOI: 10.1002/anie.201902406 (IF=15.3)21. Two Names of Stability: Spherical Aromatic or Superatomic Intermetalloid Cluster 16 citations $[Pd_3Sn_8Bi_6]^{4-}$ featured on the issue N. Fedik, M. Kulichenko, A. I. Boldyrev cover Chem. Phys. (2019) 522, 134, DOI: 10.1016/j.chemphys.2019.02.015 (IF=2.3) 22. Inorganic Molecular Electride Mg₄O₃: Structure, Bonding and Nonlinear Optical 18 citations Properties M. Kulichenko, N. Fedik, K. V. Bozhenko, A. I. Boldyrev Chem. Eur. J. (2019) 25, 5311-5315, DOI:10.1002/chem.201806372 (IF=5.2)

Peer Review Activity

21 reviews

Journal list can be found on my Web of Science page.

Outreach Activity

Caticaen Activity	
Co-organizer of an annual workshop "Machine Learning and Informatics for Chemistry and Materials" Event webpage: https://meetings.telluridescience.org/meetings/workshop-details?wid=1128	2022, 2023
Graduate students recruiting (USU)	2020-2021
Building a departmental computer cluster which is used by graduate students for research and by undergrads for Physical Chemistry labs (USU, Chemistry & Biochemistry department)	2019
Member of a student council (Moscow State University)	2014-2018
Participation in the organization of All-Russian Science Festival NAUKA 0+ (Moscow, Russia)	2014, 2015
Conferences and Talks	
Workshop "Machine Learning and Informatics for Chemistry and Materials", Telluride, CO Talk	2022
Topic: Uncertainty Driven Dynamics for Active Learning of Interatomic Potentials	
International Conference on Chemical Bonding, Hawaii Invited Talk	2022
Topic: Accelerating Data Generation for Machine Learning Potentials by Biasing Towards Regions of Uncertainty	
Los Alamos National Lab, Lightning Talks, Talk	2021
Topic: Diversification of ML Datasets via Bias Potentials as Functions of Uncertainty	
ACS Conference	2021
Live Speaker Presentation	
Topic: Diversification of ML datasets via "uncertainty" as a bias potential	
Los Alamos National Lab, Lightning Talks Talk	2020
Topic: Diversification of ML Datasets via Bias Potentials as Functions of Uncertainty	
ACS National Meeting at San Diego, CA Poster session	2019
Topic: Elusive Electrides. From Solids to Molecules	
XXIV International Conference of Students and Young Scientists "Lomonosov" , Moscow, MS Poster session	U 2017
Topic: Quantum chemical study of reactions of insertion in bond $MY_n + H_2 = MY_nH_2$ (M = C, Si, Al, B and Y = H, F, Cl), $MY^+ + H_2 = M_YH_2^+$ (M = C, Si and Y = H, F, Cl)	

Teaching Experience

CHEM 1225 Chemical Principles Lab II, Spring 2019

CHEM 1215 Chemical Principles Lab I, Spring 2020

CHEM 1215 Chemical Principles Lab I, Fall 2020

Evaluations in range 9-10

Awards

Director's Postdoc Fellowship , Los Alamos National Lab Selections are made based on academic and research accomplishments, the strength of the proposed research, as well as their potential impact at the Laboratory.	2022
Teng Scholarship , Utah State University This one-year award is given to an exemplary graduate student in the Department of Chemistry and Biochemistry.	2022
Outstanding Graduate Student in Chemistry, Utah State University The award is given to a student within their last year of graduate study in chemistry, who has demonstrated outstanding research and academic achievement.	2022
Winner of Universiade "Lomonosov" in fundamental physical and chemical engineering, Moscow, MSU.	2018
Recipient of Increased State Academic Scholarship , Moscow State University <i>Selection criteria</i> : Scholarship is awarded for noteworthy academic, research, social, cultural, creative, and/or athletic achievements.	2017