

Markscheme

May 2017

Chemistry

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

C	uestic	on	Answers	Notes	Total
1.	а		« $\frac{\sum (\text{renewables} + \text{hydroelectricity} + \text{nuclear})}{\text{total}}$ » « $\left(\frac{8800 - 7200}{12600}\right) \times 100 = 13$ «%» ✓	Accept range of "11–16%".	1
1.	b		«18000 = 0.54 x − 2000» x = 37037 «million tonnes of CO ₂ » \checkmark « $\frac{32.00}{44.01} \times 37037 = 26930$ » 27000/2.7 x 10 ⁴ «million tonnes of O ₂ » \checkmark	Accept "37000 «million tonnes of CO_2 »" for M1. Award [2] for correct final answer with two significant figures. Award [1] for non rounded answers in range 26903–26936 «million tonnes of O_2 ».	2
1.	С	i	increase in «atmospheric» pressure OR increase in [O₂ (g)]/concentration of O₂ (g) OR decrease in [O₂ (aq)]/concentration of O₂ (aq) OR decrease in temperature ✓	Accept "increase in volume of oceans «due to polar ice cap melting»" OR "consumption of O ₂ in oceans/O ₂ (aq) «by living organisms»". State symbols required for oxygen concentration.	1

(Question 1c continued)

C	uestic	on	Answers	Notes	Total
1.	С	ii	summer in one station while winter in other OR	Accept "opposite seasons «in each hemisphere»".	
			stations are at different latitudes ✓	Do not accept "different locations with different temperatures" OR "stations are in different hemispheres".	2
			oxygen dissolves better in colder water ✓		
1.	С	iii		The nitrogen cancels so is not needed in the calculation.	1
				Negative sign required for mark.	
1.	С	iv	decrease in [O ₂]/concentration of O ₂	Accept "decrease in level of O2".	
			OR	Accept "increasing CO ₂ production	
			increasing combustion of fossil fuels «consumes more O_2 so $[O_2]$ /concentration of O_2 decreases»	«consumes more O_2 so $[O_2]$ /concentration of O_2 decreases»".	_
			OR	Do not accept "decrease in amount of	1
			warmer oceans/seas/water «as oxygen dissolves better in colder water»	O ₂ " OR "increase in greenhouse gases".	
			OR		
			deforestation ✓		

C	uesti	on	Answers	Notes	Total
2.	а		mass/ m of lighter before AND after the experiment \checkmark volume of gas/ V_{gas} «collected in the cylinder» \checkmark «ambient» pressure/ P «of the room» \checkmark temperature/ T \checkmark	Accept "change in mass of lighter". Accept "weight" for "mass". Accept "volume of water displaced". Do not accept just "mass of lighter/gas". Do not accept "amount" for "volume" or "mass".	4
2.	b	i	Any two of: pressure of gas not equalized with atmospheric/room pressure ✓ too large a recorded volume «of gas produces a lower value for molar mass of butane» OR cylinder tilted ✓	Accept "vapour pressure of water not accounted for" OR "incorrect vapour pressure of water used" OR "air bubbles trapped in cylinder". Do not accept "gas/bubbles escaping «the cylinder»" or other results leading to a larger molar mass.	
			difficult to dry lighter «after experiment» OR higher mass of lighter due to moisture OR smaller change in mass but same volume «produces lower value for molar mass	Accept "lighter might contain mixture of propane and butane". Do not accept only "human errors" OR "faulty equipment" (without a clear explanation given for each) or "mistakes"	2 max
			of butane» ✓ using degrees Celcius/°C instead of Kelvin/K for temperature ✓	explanation given for each) or "mistakes in calculations".	

(Question 2b continued)

Q	Question		Answers	Notes	Total
2.	b	ii	record vapour pressure of water «at that temperature»		
			OR		
			equalize pressure of gas in cylinder with atmospheric/room pressure	Accept "adjust cylinder «up or down» to	
			OR	ensure water level inside cylinder matches level outside".	
			tap cylinder before experiment «to dislodge trapped air»	matches level outside .	
			OR	Accept "repeat experiment/readings «to	
			collect gas using a «gas» syringe/eudiometer/narrower/more precise graduated tube	eliminate random errors»".	
			OR		1
			collect gas through tubing «so lighter does not get wet»		
			OR		
			dry lighter «before and after experiment»		
			OR	Accept "use pure butane gas".	
			hold «measuring» cylinder vertical	Accept use pure butaine gas .	
			OR		
			commence experiment with cylinder filled with water ✓		

Section B

Option A — Materials

C	Question			Answers		Notes	Total
3.	а		reinforcing «phase» • «embedded in» matri				2
3.	b		Lithography	Physical or chemical physical	top down	Award [2] for all 4, [1] for 2 or 3 correct.	2
3.	С	i	Metal coordination 100% ✓	chemical	bottom up	Accept "almost 100%" if a catalyst is referred to.	1
3.	С	ii	water/ammonia/inorga	ns removed/all atoms acc anic by-product/small mol	ecules		1
3.	С	iii	amido <i>OR</i> amino ✓			Accept "amide/carboxamide/carbamoyl" for "amido". Accept "amine" for "amino". Accept "carbonyl".	1

C	uestic	on	Answers	Notes	Total
4.	а		HCl/hydrogen chloride ✓	Accept "hydrochloric acid".	1
4.	b		forms four/six/several/multiple coordinate/coordination bonds «to a central metal ion»	Accept "dative «covalent»" for "coordinate/coordination".	
			OR		
			is a polydentate/tetradentate/hexadentate ligand ✓	Do not accept just "chelates".	
			forms more stable complex/stronger bonds with central metal ion OR		
			increases entropy/S by releasing smaller «monodentate ligand» molecules previously complexed ✓		3
			complex ions are much larger «and can be removed easily due to large size of chelate complexes»		
			OR		
			heavy metal ions trapped inside the ligand/become «biologically» inactive/non-		
			toxic/harmless ✓		

C	uestic	on	Answers	Notes	Total
5.	а		carbon monoxide/CO adsorbs onto <u>palladium/Pd</u> ✓ bonds stretched/weakened/broken OR		
			«new» bonds formed OR activation energy/E _a «barrier» lowered «in both forward and reverse reactions» ✓ products/CO ₂ desorb «from surface of catalyst» ✓		3
5.	b	i	Fe/iron OR Zn/zinc OR Co/cobalt OR Cd/cadmium OR Cr/chromium ✓	Accept "Mn/manganese".	1

(Question 5b continued)

C	Questi	on	Answers	Notes	Total
5.	b	ii	$\begin{aligned} &\text{Ni}^{2+}(\text{aq}) + \text{Fe}(\text{s}) \text{Ni}(\text{s}) + \text{Fe}^{2+}(\text{aq}) \\ &\textbf{\textit{OR}} \\ &\text{Ni}^{2+}(\text{aq}) + \text{Zn}(\text{s}) \text{Ni}(\text{s}) + \text{Zn}^{2+}(\text{aq}) \\ &\textbf{\textit{OR}} \\ &\text{Ni}^{2+}(\text{aq}) + \text{Co}(\text{s}) \text{Ni}(\text{s}) + \text{Co}^{2+}(\text{aq}) \\ &\textbf{\textit{OR}} \\ &\text{Ni}^{2+}(\text{aq}) + \text{Cd}(\text{s}) \text{Ni}(\text{s}) + \text{Cd}^{2+}(\text{aq}) \\ &\textbf{\textit{OR}} \\ &\text{Ni}^{2+}(\text{aq}) + \text{Cr}(\text{s}) \text{Ni}(\text{s}) + \text{Cr}^{2+}(\text{aq}) \checkmark \end{aligned}$	Accept " $3Ni^{2+}$ (aq) $+ 2Cr$ (s) $\rightarrow 3Ni$ (s) $+ 2Cr^{3+}$ (aq)". Do not penalize similar equations involving formation of Fe^{3+} (aq), Mn^{2+} (aq) OR Co^{3+} (aq). Ignore Cl^- ions. Accept correctly balanced non-ionic equations eg, " $NiCl_2$ (aq) $+ Zn$ (s) \rightarrow Ni (s) $+ ZnCl_2$ (aq)" etc. Do not allow ECF from (b) (i).	1
5.	b	iii	$K_{sp} = [Ni^{2+}][OH^{-}]^{2}$ OR $5.48 \times 10^{-16} = [Ni^{2+}][10^{-3.5}]^{2} \checkmark$ $(Ni^{2+}] = 5.48 \times 10^{-9} \text{ (mol dm}^{-3}) \checkmark$	Award [2] for correct final answer.	2

Q	Question		Answers		Notes	Total
5.	С	i	paramagnetic materials have unpaired electrons OR diamagnetic materials have all electrons «spin-»p unpaired electrons align with an external magneti OR	c field	Accept "diamagnetic materials have no unpaired electrons" for M1.	2
			paired electrons are not influenced by magnetic fi	eld √		
5.	С	ii	Resistance	Superconductor	Accept any concave upwards curve or line showing resistance increasing with temperature. There should be a y-axis intercept. Do not accept x-axis intercept for conductor. Superconductor: Sharp transition with vertical line to x-axis. Greater than T _c , accept any concave upwards curve or line showing resistance increasing with temperature.	2

(Question 5c continued)

C	uesti	on	Answers	Notes	Total
5.	c	iii	Any three of: type 1 have lower critical temperature/ <i>T_c</i> «than type 2» OR type 2 can superconduct at higher temperatures «than type 1» ✓ type 1 are «elemental» metals AND type 2 can be alloys/composites/metal oxide ceramics/perovskites ✓ type 1 have sharp transition to superconductivity AND type 2 have more gradual transition ✓ type 1 have all «magnetic» flux expelled to normal state AND type 2 have partial penetration of flux in mixed state ✓	Award [1 max] if three correct pieces of information are given for one type only without contrasting with the other type. Marks may also be awarded from suitable sketch(es).	Total 3 max
			type 1 typically work via Cooper pairs <i>AND</i> type 2 may not necessarily use this mechanism ✓ magnetic fields can penetrate type 2 in the mixed state «in a type of Vortex» <i>AND</i> type 1 has no mixed state ✓ type 1 have one critical magnetic field/ <i>B_c AND</i> type 2 have two/ <i>B_{c1}</i> and <i>B_{c2}</i> ✓	Accept "H" for "B".	

Q	uestior	Answers	Notes	Total
6.	а	Polar molecule: «orientation of molecule» influenced by electric field/«applied» voltage/«applied» potential «difference»/«applied» current OR can be switched on and off ✓ Long alkyl chain: prevents close packing of molecules OR molecules can align OR reduces the melting point of the liquid crystal/LC «phase making liquid at room temperature» ✓	Accept "makes molecule rod-shaped" for M2.	2

C	uestion	Answers	Notes	Total
6.	b	inability to replicate calibrations below certain levels		
		OR		
		variation in methodology		
		OR		
		variation between machines calibrated with the same samples		
		OR		
		variation in plasma torches		
		OR		1
		different detection limits for MS and OES		
		OR		
		interference from solvents/other chemicals		
		OR		
		inability to produce pure standards		
		OR		
		chance that low signal and blank are the same ✓		

Q	uestion	Answers	Notes	Total
7.		HDPE <i>AND</i> LDPE «have similar IR» ✓	Accept "water bottle AND water bottle cap" for M1.	
		both are polyethene/polyethylene		
		OR		
		only branching differs		2
		OR		
		same bonds		
		OR		
		same bending/stretching/vibrations ✓		

Option B — Biochemistry

Q	uestic	on	Answers	Notes	Total
8.	а		O H	Accept CO-NH but not CO-HN for amide link.	
			CH ₂ SH (CH ₂) ₄ NH ₂ correct order ✓	Accept a full or condensed structural formula.	2
			amide link ✔	Penalize incorrect bond linkages or missing hydrogens once only in 8 (a) and 8 (c) (i).	
8.	b		_ Lys /Gln /Cys +	Do not penalize if lines are omitted or if different markings are given (eg, spots etc.), as long as relative positions are correctly indicated.	2
			Cys and Gln move to positive electrode AND Lys to negative electrode ✓	Accept Gln on original position indicated.	
			Cys further to positive electrode than Gln ✓	Award [1 max] for reverse order of amino acids.	

Q	uestic	on	Answers	Notes	Total
8.	С	i	H ₃ N ⁺ —CH—COO [−] CH ₃ ✓	Penalize incorrect bond linkages or missing hydrogens once only in 8 (a) and 8 (c) (i).	1
8.	С	ii	«pH = 9.87 + log $\left(\frac{0.500}{0.700}\right)$ » «= 9.87 - 0.146» = 9.72 ✓	pH can be deduced by an alternative method.	1

C	uestion	Answers	Notes	Total
9.	a	stearic acid <i>AND</i> chain has no kinks/more regular structure OR stearic acid <i>AND</i> it has straight chain OR stearic acid <i>AND</i> no C=C/carbon to carbon double bonds OR stearic acid <i>AND</i> saturated OR stearic acid <i>AND</i> chains pack more closely together ✓ stronger London/dispersion/instantaneous induced dipole-induced dipole forces «between molecules» ✓	Accept "stearic acid AND greater surface area/electron density". M2 can only be scored if stearic acid is correctly identified. Accept "stronger intermolecular/van der Waals'/vdW forces".	2
9.	b		Award [3] for correct final answer. Iodine number must be a whole number. Award [2 max] for 78.	3

Q	uestion	Answers	Notes	Total
10.	а	C ₁₇ H ₃₁ COONa ✓	Accept "NaC ₁₇ H ₃₁ COO".	
		[(CH₃)₃NCH₂CH₂OH]OH ✓	Accept "(CH ₃) ₃ N+CH ₂ CH ₂ OH" OR "[(CH ₃) ₃ NCH ₂ CH ₂ OH]+" if positive charge is shown.	2
			Accept suitable names (eg, sodium linoleate, choline hydroxide etc.) OR correct molecular formulas.	
10.	b	hydrolysis ✓	Accept "nucleophilic substitution/displacement / S_N/S_N2 / saponification".	1
			Do not accept "acid hydrolysis".	

Q	uestic	n	Answers	Notes	Total
11.	а		Only in straight chain form: carbonyl OR aldehyde ✓	Accept functional group abbreviations (eg, CHO etc.).	2
			Only in ring structure: hemiacetal ✓	Accept "ether".	
11.	b		CH ₂ OH H OH OH OH OH OH OH OH OH	Correct 1,4 beta link AND all bonds on the 2 carbons in the link required for mark. Ignore any errors in the rest of the structure. Penalize extra atoms on carbons in link.	1

Question	Answers	Notes	Total
11. c	minimize «negative» impact on environment		
	OR		
	minimize waste produced		
	OR		
	consider atom economy		
	OR		
	efficiency of synthetic process		
	OR		
	problems of side reactions/lower yields		1
	OR		
	control temperature «inside large reactors»		
	OR		
	availability of starting/raw materials		
	OR		
	minimize energy costs		
	OR		
	value for money/cost effectiveness/cost of production ✓		

Q	uestio	Answers	Notes	Total
12.	а	«extensive system of» conjugation/alternating single and double «carbon to carbon» bonds		
		OR		1
		delocalized electrons «over much of the molecule» ✓	Accept "delocalization".	
12.	b	cis«-retinal» converts to trans«-retinal»		
		OR		
		one of the C=C «fragments in retinal» changes «its configuration» from <i>cis</i> to <i>trans</i> ✓		1

C	uestion	Answers	Notes	Total
13.	а	« $K_{\rm m}$ = [substrate] at $\frac{1}{2}$ $V_{\rm max}$ » 4.2 × 10 ⁻³ ✓ mol dm ⁻³ ✓	Accept answers in the range of 3.5×10^{-3} to 5.0×10^{-3} mol dm ⁻³ . M2 can be scored independently.	2
13.	b	O.50 - O.40 - O.20 - O.10 - O.20 - O.10 - O.10 - O.20 - O	Do not penalize if curve does not finish exactly at same V_{max} as long as it is close to it (since drawn curve does not flatten out completely at $V_{max} = 0.50$).	1
13.	С	 K_m is inverse measure of affinity of enzyme for a substrate / K_m is inversely proportional to enzyme activity OR high value of K_m indicates higher substrate concentration needed for enzyme saturation OR low value of K_m means reaction is fast at low substrate concentration ✓ 	Idea of inverse relationship must be conveyed. Accept "high value of K _m indicates low affinity of enzyme for substrate/less stable ES complex/lower enzyme activity". Accept "low value of K _m indicates high affinity of enzyme for substrate/stable ES complex/greater enzyme activity".	1

Q	uestio	n Answers	Notes	Total
14.	а	oxygen binds to first active site «of deoxygenated heme» AND alters shape of other active sites		
		OR		2
		cooperative binding ✓		_
		affinity of partially oxygenated hemoglobin for oxygen increases ✓		
14.	b	CO is a competitive inhibitor «of oxygen binding to hemoglobin»	Do not penalize "CO binds irreversibly"	
		OR	if included in answer.	
		CO has greater affinity for hemoglobin «than oxygen» ✓		
		less oxygen is transported		2
		OR		
		uptake of oxygen decreases		
		OR		
		causes hypoxia ✓		

15.	а	phosphate groups «in nucleotides fragments are almost completely» ionized ✓	Do not accept just "phosphate «groups»".	1
15.	b	-CTGCCTAGT- ✓		1

Option C — Energy

Q	uesti	on	Answers	Notes	Total
16.	а	i	${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n \checkmark$	Accept "n" for " $_0^1$ n". Accept " $_0^2$ H \rightarrow $_0^4$ He $+$ $_0^1$ n/n".	1
16.	а	ii	higher binding energy/BE «per nucleon» for helium/products OR nucleons in products more tightly bound ✓ mass defect/lost matter converted to energy ✓	Accept converse statement in M1. Accept "mass deficit" for "mass defect".	2
16.	а	iii	$\Delta BE = BE(^{4}\text{He}) - (BE(^{2}\text{H}) + BE(^{3}\text{H}))$ OR $\Delta BE = 4 \times 7.1 - (2 \times 1.1 + 3 \times 2.8) \checkmark$ = 17.8 «MeV» \checkmark	Accept answers in range 17.3 to 18.1 «MeV». Award [1 max] for final answers in range of 3.0 to 3.4 «MeV». Award [2] for correct final answer.	2
16.	b		spectrometry ✓	Accept "spectroscopy" for "spectrometry" OR more specific techniques such as "atomic absorption spectrometry/AAS", "astrophotometry" etc. Do not award mark for incorrect specific spectrometric techniques. Do not accept "spectrum".	1

Q	uestion		,	Answers	Notes	Total
17.	а	Energy source	Advantage	Disadvantage	Do not award marks for converse statements for advantage and	
		Biofuels	low carbon footprint OR sustainable/renewable OR lower emissions of CO «for biodiesel/ethanol». OR economic security/availability in countries without crude oil ✓	lower energy content/specific energy OR high cost (only if a specific example if given eg, growing corn for ethanol etc.) OR use agricultural resources/fertilizers/pesticides/water OR biodiesel has high viscosity/clogs fuel injectors OR less suitable in low temperatures OR increased NO _x emissions for biodiesel OR greenhouse gases/CO₂ «still/also» produced ✓	disadvantage. Points related to greenhouse gases should be counted only once for the entire question. Biofuels: Accept "«close to» carbon neutral", "produce less greenhouse gases/CO ₂ " as an advantage. Accept "engines have to be modified if biodiesel used" as a disadvantage.	4
		Fossil fuels	higher energy content/specific energy <i>OR</i> low cost <i>OR</i> readily accessible ✓	linked to climate change/global warming/increased release of greenhouse gases OR not sustainable/renewable OR greater pollution possibilities ✓	Fossil Fuels: Accept specific pollution examples (eg, oil spills, toxic substances released when burning crude oil, etc.) as a disadvantage.	

C	uesti	on	Answers	Notes	Total
17.	b	i	«specific energy =» 142 ✓ kJ g ⁻¹ ✓	Accept other correct values with the correct corresponding units. M2 can be scored independently.	2
17.	b	ii	large volumes of hydrogen required OR hydrogen has lower energy density ✓ not easily transportable «form» as it is a gas OR heavy containers required to carry AND compress/regulate «hydrogen» OR high energy/cost required to compress hydrogen to transportable liquid form OR atmospheric pollution may be generated during production of hydrogen OR hydrogen fuel cells do not work at very low temperatures OR highly flammable when compressed/difficult to extinguish fires OR leaks not easy to detect OR	Accept "«hydrogen combustion contributes to» knocking in engines" OR "modified engine required" for M2. Accept "explosive" but not "more dangerous" for M2.	2
			high cost of production		
			OR		
			lack of filling stations/availability to consumer «in many countries» ✓		

C	uesti	ion	Answers	Notes	Total
17.	С	i	Anode (negative electrode): $CH_3OH (aq) + H_2O (l) \rightarrow 6H^+ (aq) + 6e^- + CO_2(g) \checkmark$	Award [1 max] for correct equations at wrong electrode.	
			Cathode (positive electrode): $\frac{3}{2} O_2(g) + 6H^+(aq) + 6e^- \rightarrow 3H_2O(l) \checkmark$	Accept "e" for "e-". Accept "O ₂ (g) + $4H^+$ (aq) + $4e^- \rightarrow 2H_2O$ (l)".	2
17.	С	ii	allows H⁺/ions pass through/diffuse/move «from anode to cathode but not electrons or small molecules» ✓	Accept "acts as a salt bridge".	1
17.	С	iii	H ⁺ /ions pass through/diffuse/move from anode/negative electrode «through membrane» to cathode/positive electrode ✓ H ⁺ /ions used to reduce oxygen at cathode/positive electrode ✓	Oxygen must be mentioned for M2.	2

Q	uesti	on	Answe	rs	Notes	Total
18.	а	i	Type of radiation	Region	Accept "B" alone for incoming radiation from sun.	
			Incoming radiation from sun Re-radiated from Earth's surface Absorbed by CO ₂ in the atmosphere	A «and B» B ✓	All three correct answers necessary for mark.	1
18.	а	ii	both between 400–700 «nm» ✓ β-carotene at higher wavelength than retina	al √	Accept any wavelength within the 400-700 nm visible region range for M1 and any higher wavelength for β -carotene within the same region for M2.	2
18.	b	i	$CO_2(aq) + H_2O(l) \rightleftharpoons H_2CO_3(aq) \checkmark$		State symbols AND equilibrium sign required for mark in (b) (i) only. Accept "CO ₂ (aq) $+$ H ₂ O (l) \rightleftharpoons H ⁺ (aq) $+$ HCO ₃ ⁻ (aq)" OR "CO ₂ (aq) $+$ H ₂ O (l) \rightleftharpoons 2H ⁺ (aq) $+$ CO ₃ ²⁻ (aq)".	1

(Question 18b continued)

Q	Question		Answers	Notes	Total
18.	b	ii	$CO_2(aq) + H_2O(l) \rightleftharpoons 2H^+(aq) + CO_3^{2-}(aq)$	Equilibrium sign needed in (b) (ii) but penalize missing equilibrium sign once	
			OR	only in (b) (i) and (ii).	
			CO_2 (aq) + H_2O (l) \rightleftharpoons H^+ (aq) + HCO_3^- (aq)		
			OR	Do not accept " $CO_2(aq) + H_2O(l) \rightleftharpoons$	
			$H_2CO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$	H_2CO_3 (aq)" unless equation was not given in b (i).	
			OR		
			$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$		
			OR		2
			$H_2CO_3(aq) + 2H_2O(l) \rightleftharpoons 2H_3O^+(aq) + CO_3^{2-}(aq)$		
			OR		
			$H_2CO_3(aq) \rightleftharpoons 2H^+(aq) + CO_3^{2-}(aq) \checkmark$		
			equilibrium shifts to the right causing increase in [H₃O+]/[H+] «thereby decreasing pH» ✓		

Q	uestio	n	Answer	'S	Notes	Total
19.	а	Type of so	olar Absorption of photons	Charge separation		
		Silicon base	• • • • • • • • • • • • • • • • • • •	«valence band» <u>electron</u> «s»		
			semiconducting material ✓	promoted to conduction band OR		
				free-moving/mobile <u>electron</u> «s» produced		
				OR		
				one-way flow of <u>electron</u> «s»	Accept "aviotance of halos AND	
				OR	Accept "existence of holes AND electrons at p-n junction" for M2.	
				«excess» <u>electrons</u> in one zone of semiconductor «and excess holes in another zone» ✓		4
		DSSC	dye absorbs a photon	redox reaction involving I-/iodide		
			«and injects an electron into TiO₂» ✓	OR		
			5.554.51.11.15.17.52.	I-/iodide oxidized to I ₃ -/triiodide		
				OR		
				I⁻/iodide reduces dye		
				OR		
				I⁻/iodide releases electron to dye		
				OR		
				I_3 -/triiodide reduced to I -/iodide \checkmark		

Q	uestion	Answers	Notes	Total
19.	b	Any of:	Accept "lower mass/lighter «so greater	
		cheaper	flexibility to integrate into windows etc.»" OR "greater power-conversion	
		OR	efficiency «with latest DSSC models»".	
		ease of fabrication		
		OR		
		use light of lower energy/lower frequency/longer wavelength		
		OR		
		plentiful and renewable resources «to construct DSSC cells»		
		OR		
		operate at lower «internal» temperatures/better at radiating heat away «since constructed with thin front layer of conductive plastic compared to glass box in photovoltaic cell»		1
		OR		
		use of nanoparticles provides large surface area exposure to sunlight/sun/light		
		OR		
		can absorb better under cloudy conditions		
		OR		
		better conductivity		
		OR		
		more flexible ✓		

Option D — Medicinal chemistry

Q	uesti	on	Answers	Notes	Total
20.	а	i	$n(\text{salicylic acid}) = \frac{2.65 \text{ g}}{138.13 \text{ g mol}^{-1}} = 0.0192 \text{ «mol}$ AND $n(\text{ethanoic anhydride}) = \frac{2.51 \text{ g}}{102.10 \text{ g mol}^{-1}} = 0.0246 \text{ «mol}$	Accept integer values for molar masses in (a) (i) and (ii).	1
20.	а	ii	«mass = 0.0192 mol × 180.17 g mol⁻¹ =» 3.46 «g» ✓	Award ECF mark only if limiting reagent determined in (i) has been used.	1
20.	а	iii	Any two of: 2500–3000 «cm ⁻¹ » / «absorbance» due to O–H in carboxyl ✓ 1700–1750 «cm ⁻¹ » / «absorbance» due to C=O in carboxyl/ethanoate ✓ 1050–1410 «cm ⁻¹ » / «absorbance» due to C–O bond in carboxyl/ethanoate ✓	Accept "carboxylic acid" for "carboxyl", "acetate/ester" for "ethanoate". Accept specific wavenumber once within indicated range. Do not award mark if reference is made to an alcohol/ether.	2 max
20.	а	iv	Any two of: melting point ✓ mass spectrometry/MS ✓ high-performance liquid chromatography/HPLC ✓ NMR/nuclear magnetic resonance ✓ X-ray crystallography ✓ elemental analysis ✓	Accept "spectroscopy" instead of "spectrometry" where mentioned but not "spectrum". Accept "ultraviolet «-visible» spectroscopy/UV/UV-Vis". Do not accept "gas chromatography/GC". Accept "thin-layer chromatography/TLC" as an alternative to "HPLC".	2 max

Q	Question		Answers	Notes	Total
20.	b	i	react with NaOH ✓	Accept "NaHCO₃" OR "Na₂CO₃" instead of "NaOH".	_
				Accept chemical equation OR name for reagent used.	1
20.	b	ii	«marginally» higher AND increase rate of dispersion OR «marginally» higher AND increase absorption in mouth/stomach «mucosa» OR «approximately the» same AND ionic salt reacts with HCl/acid in stomach to produce aspirin again ✓	Do not accept "«marginally» higher AND greater solubility in blood".	1

Q	uesti	on	Answers	Notes	Total
21.	а		Any two of: diamorphine has ester/ethanoate/acetate «groups» AND morphine has hydroxyl «groups» ✓	Accept "alcohol/hydroxy" for "hydroxyl" but not "hydroxide".	2 max
			diamorphine/ester/ethanoate/acetate groups less polar ✓	Accept "diamorphine non-polar".	Zillux
			diamorphine more soluble in lipids ✓	Accept converse statements.	
21.	b		morphine has a smaller therapeutic window ✓	Accept converse statements. Accept "codeine has lower activity" OR "codeine has lower risk of overdose" OR "codeine is less potent". Do not accept "lower abuse potential for codeine" OR "codeine less addictive" OR "codeine has a lower bioavailability".	1
21.	С	i	6 ✓		1
21.	С	ii	Chemical shift:		
			2.2–2.7 «ppm» ✓		2
			Splitting pattern: quartet/q ✓		

Q	uestio	n Answers	Notes	Total
22.	а	blocks/binds to H2-histamine receptors «in cells of stomach lining» OR	Accept "H2 receptor antagonist".	4
		prevents histamine molecules binding to H2-histamine receptors «and triggering acid secretion» ✓		1
22.	b	$[Na2CO3] = « \frac{0.500 g}{105.99 g mol^{-1} \times 0.075 dm^{3}} = » 0.0629 «mol dm-3» \checkmark$	Alternative method involving K _a may be used to deduce pH in M2.	
		$wpH = pK_a + log \frac{[conj base]}{[conj acid]} $		2
		«pH = 10.35 − 0.201 =» 10.15 ✓	Award [2] for correct final answer.	

Q	uestion	Answers	Notes	Total
23.	а	One similarity: both contain amido «group» ✓	Accept "both contain ether «group»" OR "both contain alkene/alkenyl «group»" OR "both contain carbonyl «group»" OR "both contain amino/amine	
		One difference:	«group»". Latter cannot be given in combination with second difference	
		oseltamivir contains ester «group» AND zanamivir does not	alternative with respect to amino group.	
		OR	Accept "amide/carboxamide/carbamoyl"	
		oseltamivir contains amino «group» AND zanamivir does not «but contains a guanidino group»	for "amido".	
		OR		2
		zanamivir contains carboxyl «group» AND oseltamivir does not		
		OR	Accept "amine" for "amino".	
		zanamivir contains «several» hydroxyl «groups» AND oseltamivir does not		
		OR		
		oseltamivir contains ester «group» AND zanamivir contains carboxyl «group»	Accept "carboxylic acid" for "carboxyl".	
		OR		
		oseltamivir contains ester «group» AND zanamivir contains «several» hydroxyl «groups» ✓	Accept "hydroxy/alcohol" for "hydroxyl", but not "hydroxide".	

Question		Answers	Notes	Total
23.	b	«negative» side-effects of medication on patient/volunteers		
		OR		
		effects on environment «from all materials used and produced»		
		OR		
		potential for abuse		
		OR		
		drugs may be developed that are contrary to some religious doctrines		1
		OR		
		animal testing		
		OR		
		risk to benefit ratio		
		OR		
		appropriate consent of patient volunteers ✓		

Question	Answers	Notes	Total
24.	Any of:		
	«most are» toxic «to living organisms»	Do not accept "harmful to the	
	OR	environment".	
	incomplete combustion/incineration can produce toxic		
	products/dioxins/phosgene		
	OR		
	carcinogenic ✓		
	«some can be» greenhouse gases ✓		1 max
	ozone-depleting ✓		I max
	can contribute to formation of «photochemical» smog ✓		
	can accumulate in groundwater	Do not accept just "pollutes water".	
	OR		
	have limited biodegradability ✓		
	cost/hazards of disposal ✓		

Question	Answers	Notes	Total
25.	chiral molecule/auxiliary/optically active species added/connected/attached «to		
	non-chiral starting molecule to force reaction to follow a certain path» ✓		
	one enantiomer produced		
	OR		
	chiral auxiliary creates stereochemical condition «necessary to follow a certain pathway»		
	OR		3
	stereochemical induction		
	OR		
	existing chiral centre affects configuration of new chiral centres ✓		
	«after new chiral centre created» chiral auxiliary removed «to obtain desired product» ✓		

Q	uesti	on	Answers	Notes	Total
26.	а	i	more damaging than other radiation types OR very damaging to «cancer» cells OR		
			high ionizing density «of alpha particles» ✓	Accept "high ionizing power «of alpha particles»" for M1.	2
			absorbed within a very short range of emission OR	Accept "low penetrating power «of alpha particles»" for M2.	
			causes little damage to surrounding tissues ✓		
26.	а	ii	«radioactive isotope/radionuclide/alpha-emitter» administered using carrier drug/protein/antibodies ✓		1
26.	b	i	beta/β «radiation» ✓		1
26.	b	ii	$^{90}_{39}Y \rightarrow ^{90}_{40}Zr + \beta \checkmark$	Accept " $_{-1}^{0}$ e /e/e $^{-1}$ OR " $_{-1}^{0}$ β / β $^{-1}$ Accept ECF from (b) (i) if incorrect radiation identified, eg, $_{39}^{90}$ Y $\rightarrow _{37}^{86}$ Rb + $_{2}^{4}$ He.	1
26.	b	iii	ALTERNATIVE 1:		
			«4 half-lives»		
			6.25 «%» ✓		1
			ALTERNATIVE 2:		'
			$\ll N_t = N_0(0.5)^{\frac{t}{t_{1/2}}} = 100 (0.5)^{\frac{27}{6.75}} = 86.25 \ll \%$		