

Frank Rosenblatt, 1957

Bias (Threshold)

- Another way to describe the threshold
- Negative threshold
- More convenient for notation
- Describes how easy it is to make the perceptron "fire"

Logic

- From the perceptron we can create a NAND gate
- From a NAND gate can create all other logic units (AND, NOR, etc.)
- See Nielson 2016*

Notation Example

inputs	weights
1	0
\mathcal{X}	1
y	0.5

= 1 x 0 + 1 x
$$x$$
 + 0.5 x y
= x + 0.5 y
 y = -2 x

*linearly separable

Updating

inputs	weights
1	0
\sim	1
y	0.5

= 1 x 0 + 1 x
$$x$$
 + 0.5 x y
= x + 0.5 y
 y = -2 x

For each misclassified point update w:

$$\begin{aligned} \mathbf{W}_{\text{NEW}} &= \mathbf{W}_{\text{OLD}} + \mathcal{N}_{\text{old}} \\ & \\ \text{Learning} \\ & \text{Rate} \end{aligned} \quad \begin{aligned} & \text{inputs} \\ & \text{Re-classification} \\ & & \\ & +1 \text{ or } -1 \end{aligned}$$

Updating

For each misclassified point update w:

$$W_{NEW-1} = 0 + 0.2 \times 1 \times 1 = 0.2$$

 $W_{NEW-x} = 1 + 0.2 \times 1 \times 2 = 1.4$
 $W_{NEW-y} = 0.5 + 0.2 \times 1 \times -2 = 0.1$

inputs	old w	new w
1	0	0.2
\mathcal{X}	1	1.4
y	0.5	0.1

- Want to build a learning algorithm
- Could change b or w
- BUT that will cause very large changes
- Network will never "fix"
- Solution: "smooth" the output

- Sigmoid function "smooths" the output
- Makes changing w
 and b less sudden and
 more predictable
- Could use lots of other functions...

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}}.$$

- Perceptrons have 0/1 output
- Sigmoid neurons have
 0 1 output (eg. 0.1,
 0.6778, etc.)
- How to interpret sigmoid neuron output?

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}}.$$

Hidden Layer

Project

Build a neural network that predicts whether a student is paying attention from their webcam footage.