Contents

Ι	Set	.		7
1	Ring		ism	9
II	Se	equen	ces	11
2	Sup	remun	and infimum	13
3	Inte	rval		15
4	Enh	anced	real line	17
5	Vec	tor spa	ace	19
	5.1	K-mod	lule	19
		5.1.1	Def	19
		5.1.2	Remark	19
		5.1.3	Notation	20
		5.1.4	K-vector space	20
		5.1.5	Association:	20
		5.1.6	Remark:	21
	5.2	sub K-	module	21
		5.2.1	Def	21
		5.2.2	Example	21
	5.3	morph	ism of K-modules	21
		5.3.1	Def	21
		5.3.2	K-linear mapping	21
		5.3.3	Theorem	21
		5.3.4	Remark:column	22
	5.4	kernel		22
		5.4.1	Prop	22
		5.4.2	Def	22
		5.4.3	Theorem	22
		5 4 4	Def	23

		5.4.5 Remark	3
		5.4.6 Theorem	3
		5.4.7 Proof:	3
6	Moı	notone mappings 25	5
	6.1	Def	
	6.2	Prop	
	6.3	Def	
	6.4	Prop	
	6.5	Prop	
	6.6	Def	
	6.7	Prop	
	6.8	Proof	
	0.0	6.8.1 bijection	
		6.8.2 uniqueness	
		0.6.2 uniqueness	1
7	sequ	nence and series 29)
	7.1	Def)
	7.2	Remark)
	7.3	Prop)
	7.4	proof	9
	7.5	Prop	9
	7.6	limit)
		7.6.1 Def 30)
		7.6.2 Remark)
		7.6.3 Prop)
		7.6.4 Prop	1
		7.6.5 Prop	1
		7.6.6 Theorem	1
		7.6.7 Def 31	1
		7.6.8 Prop	1
		7.6.9 Prop	2
		7.6.10 Theorem	2
		7.6.11 Notation	2
		7.6.12 Corollary	2
		7.6.13 Notation	2
		7.6.14 Theorem: Bolzano-Weierstrass	2
8		chy sequence 35	
	8.1	Def	
	8.2	Prop	
	8.3	Theorem: Completeness of real number	
	8.4	Absolutely converge	
		8.4.1 Prop	3

9	Con	nparison and Technics of Computation	37
	9.1	Def	37
	9.2	Prop	37
	9.3	Theorem	37
	9.4	Prop	38
	9.5	Prop	39
	9.6	Theorem	39
	9.7	Prop	39
	9.8	Theorem	40
	9.9	Remark	40
	9.10	Calculates on $O(),o()$	40
		9.10.1 Plus	40
		9.10.2 Transform	41
		9.10.3 Transition	41
		9.10.4 Times	41
	9 11	On the limit	41
		Prop	41
		Prop	42
		Prop	42
		Theorem: d'Alembert ratio test	42
	9.13		
		9.15.1 Lemma	43
	0.10	9.15.2 (2)	43
	9.16	Prop	43
		9.16.1 Corollary	44
	o 4 =	9.16.2 Corollary	44
	9.17	Theorem: Cauchy root test	44
II		Copology	45
10	Abs	olute value and norms	47
	10.1	Def	47
	10.2	Notation	47
	10.3	Prop	47
11	Quo	tient Structure	49
	-	Def	49
			49
		Prop	49
		Def	50
		Remark	50
		Prop	50
		Notation on Equivalence Class	50
		Proof	50 51
		Quotient set	51
	11.9		
		11.9.1 Example	51

11.10Def			51
11.11Remark			51
11.12Prop			51
11.13Theorem			52
11.14Def			52
11.15Prop			52
11.16Def			53
11.17Theorem			53
11.17.1 Reside Class			54
11.18Theorem			54
11.19Theorem			55
11.19 Theorem	 	•	99
12 Topology			57
12.1 Def	 		57
12.2 Remark			57
12.2.1 Example			57
12.3 Def			57
12.3.1 Example			58
12.4 Def			58
12.4.1 Example			58
12.5 Prop			58
12.6 Def			58
12.7 Def			59
12.7.1 Example			59
12.8 Axiom of choice			59
12.9 Def			59
12.10Theorem			59
12.11Zorn's lemma			59
12.12Prop			59
12.13Proof			60
12.14Def: Initial Segment			60
12.15Example			60
12.16Prop			60
12.17Proof			60
			60
12.18Prop	 	•	60
12.20Lemma			61
12.21Prop			61
12.22Def			61
12.23Def			61
12.24Prop			62
			62
			63
12.26Theorem(Zorn's lemma)	 	•	09

CONTENTS	F
CONTENTS	.5
CONTENTS	0

13	Filter	65
	13.1 Def	65
	13.1.1 Example	65
	13.2 Def: Filter Basis	65
	13.2.1 Remark	65
	13.2.2 Example	66
	13.3 Remark	66
	13.3.1 Example	66
	13.4 Def	66
	13.5 Remark	67
	13.6 Extra Episode	67
	13.7 Prop	67
14	Limit point and accumulation point	69
	14.1 Def	69
	14.2 Prop	69
	14.3 Def	70
	14.4 Prop	70
15	Limit of mappings	71
10	15.1 Def	71
	15.2 Remark	71
	15.2.1 Example	71
	15.3 Remark	71
	15.4 Remark	72
	15.5 Prop	72
	15.6 Theorem	72
	15.7 Prop	73
	-	73
	15.8 Def	73
	15.9 Remark	13
	15.10Prop	73

Part I

Set

Ring

1.1 morphism

Def

Let A and B be unitary rings . We call morphism of unitary rings from A to B . only mapping $A \to B$ is a morphism of group from (A,+) to (B,+),and a morphism of monoid from (A,\cdot) to (B,\cdot)

Properties

• Let R be a unitary ting. There is a unique morphism from \mathbb{Z} to R

•

algebra

we call k-algebra any pair(R,f), when R is a unitary ring , and $f: k \to R$ is a morphism of unitary rings such that $\forall (b,x) \in k \times R, f(b)x = xf(b)$

Example: For any unitary ring R, the unique morphism of unitary rings $\mathbb{Z} \to R$ define a structure of $\mathbb{Z} - algebra$ on R (extra: \mathbb{Z} is commutative despite R isn't guaranteed)

Notation: Let k be a commutative unitary ring (A,f) be a k-algebra. If there is no ambiguity on f, for any $(\lambda,a) \in k \times A$, we denote $f(\lambda)a$ as λa

Formal power series

reminder: $n\in\mathbb{N}$ is possible infinite , so $\sum\limits_{n\in\mathbb{N}}$ couldn't be executed directly. Def:

(extended polynomial actually) Let k be a commutative unitary ring. Def : Let T be a formal symbol. We denote $k^{\mathbb{N}}$ as k[T] If $(a_n)_{n\in\mathbb{N}}$ is an element of $k^{\mathbb{N}}$, when we denote $k^{\mathbb{N}}$ as k[T] this element is denote as $\sum_{n\in\mathbb{N}} a_n T^n$ Such

element is called a formal power series over k and a_n is called the Coefficient of T^n of this formal power series Notation:

- omit terms with coefficient O
- write T' as T
- omit Coefficient those are 1;
- omit T^0

Example $1T^0 + 2T^1 + 1T^2 + 0T^3 + ... + 0T^n + ...$ is written as $1 + 2T + T^2$ Def Remind that $k[T] = \{\sum_{n \in \mathbb{N}} a_n T^n \mid (a_n)_{n \in \mathbb{N}} \in k^{\mathbb{N}} \}$, define two composition

$$\forall F(T) = a_0 + a_+ 1T + \dots \quad G(T) = b_0 + \dots$$
let $F + G = (a_0 + b_0) + \dots$

$$FG = \sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n$$

Properties:

- $(k[T], +, \cdot)$ form a commutative unitary ring.
- $k \to k[T]$ $\lambda \mapsto \lambda T$ is a morphism

•
$$(FG)H = \left(\sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n\right) \left(\sum_{n \in \mathbb{N}} c_n T^n\right) = \sum_{n \in \mathbb{N}} \left(\sum_{p,q,l=n} a_p b_q c_l\right) T^n$$
 is a trick applied on integral

Derivative:

let
$$F(T) \in k[T]$$

We denote by $F'(T)$ or $\mathcal{D}(F(T))$ the formal power series $\mathcal{D}(F) = \sum_{n \in \mathbb{N}} (n+1)a_{n+1}T^n$
Properties:

- $\mathcal{D}(k[T], +) \to (k[T], +)$ is a morphism of groups
- $\mathcal{D}(FG) = F'G + FG'$

We denote $exp(T) \in k[T]$ as $\sum_{n \in \mathbb{N}} \frac{1}{n!} T^n$, which fulfil the differential equation $\mathcal{D}(exp(T)) = exp(T)$ (interesting)

Cauchy sequence: $(F_i(T))_{i\in\mathbb{N}}$ be a sequence of elements in k[T], and $F(T) \in$ k[T]We say that $(F_i(T))_{i\in\mathbb{N}}$ is a Cauchy sequence if $\forall l\in\mathbb{N}$, there exists $N(l)\in\mathbb{N}$ such that $\forall (i,j) \in \mathbb{N}^2_{>N(l)}, ord(F_i(T) - F_j(T)) \geq l$

Part II Sequences

Supremum and infimum

Def:

Let (X,\leq) be a partially ordered set A and Y be subsets of X, such that $A\subseteq Y$

- If the set $\{y \in Y \mid \forall a \in A, a \leq Y\}$ has a least element then we say that A has a Supremum in Y with respect to \leq denoted by $sup_{(y,\leq)}A$ this least element and called it the Supremum of A in Y(this respect to \leq)
- If the set $\{y \in Y \mid \forall a \in A, y \leq a\}$ has a greatest element, we say that A has n infimum in Y with respect to \leq . We denote by $inf_{(y,\leq)}A$ this greatest element and call it the infimum of A in Y
- Observation: $inf_{(Y,<)}A = sup_{(Y,>)}A$

Notation:

Let (X, \leq) be a partially ordered set, I be a set.

- If f is a function from I to X sup f denotes the supremum of f(I) is X.inf ftakes the same
- If $(x_i)_{i \in I}$ is a family of element in X, then $\sup_{i \in I} x_i$ denotes $\sup\{x_i \mid i \in I\}$ (inX)

If moreover $\mathbb{P}(\cdot)$ denotes a statement depending on a parameter in I then $\sup_{i \in I, \mathbb{P}(i)} x_i \text{ denotes } \sup\{x_i \mid i \in I, \mathbb{P}(i) \text{ holds}\}$

Example:

Let $A = x \in R \mid 0 \le x < 1 \subseteq \mathbb{R}$ We equip \mathbb{R} with the usual order relation.

$$\{y \in \mathbb{R} \mid \forall x \in A, x \le y\} = \{y \in \mathbb{R} \mid y \ge 1\}$$

So $\sup A = 1$

$$\{y \in \mathbb{R} \mid \forall x \in A, y \le x\} = \{y \in \mathbb{R} \mid y \ge 0\}$$

Hence $\inf A = 0$

Example: For $n \in \mathbb{N}$, let $x_n = (-1)^n \in R$

$$\sup_{n \in \mathbb{N}} \inf_{k \in \mathbb{N}, k \ge n} x_k = -1$$

Proposition:

Let (X,\leq) be a partially ordered set, A,Y,Z be subset of X, such that $A\subseteq Z\subseteq Y$

- If max A exists, then is is also equal to $\sup_{(y,<)} A$
- If $\sup_{(y,<)} A$ exists and belongs to Z, then it is equal to $\sup A$

inf takes the same Prop.

Let X,\leq be a partially ordered set ,A,B,Y be subsets of X such that $A\subseteq B\subseteq Y$

- If $\sup_{(y,<)} A$ and $\sup_{(y,<)} B$ exists, then $\sup_{(y,<)} A \leq \sup_{(y,<)} B$
- If $\inf_{(y,\leq)} A$ and $\inf_{(y,\leq)} B$ exists, then $\inf_{(y,\leq)} A \geq \inf_{(y,\leq)} B$

Prop.

Let (X, \leq) be a partially ordered set ,I be a set and $f,g:I\to X$ be mappings such that $\forall t\in I, f(t)\leq g(t)$

- If inf f and inf g exists, then inf $f \leq \inf g$
- If $\sup f$ and $\sup g$ exists, then $\sup f \leq \sup g$

Interval

We fix a totally ordered set (X, \leq)

Notation:

If $(a, b) \in X \times X$ such that $a \leq b$, [a,b] denotes $\{x \in X \mid a \leq x \leq b\}$

Def:

Let $I \subseteq X$. If $\forall (x,y) \in I \times I$ with $x \leq y$, one has $[x,y] \subseteq I$ then we say that I is a interval in X

Example:

Let $(a,b) \in X \times X$, such that $a \leq b$ Then the following sets are intervals

- $|a,b| := \{x \in X \mid a,x,b\}$
- $[a, b] := \{x \in X \mid a, x, b\}$
- $[a, b] := \{x \in X \mid a, x, b\}$

Prop.

Let Λ be a non-empty set and $(I_{\lambda})_{{\lambda} \in \Lambda}$ be a family of intervals in X.

- $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X
- If $\bigcap_{\lambda \in \Lambda} I_{\lambda} \neq \varnothing, \bigcup_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X

We check that $[a, b] \subseteq I_{\lambda} \cup I_{|}\mu$

- If $b \le x$ $[a, b] \subseteq [a, x] \subseteq I_{\lambda}$ because $\{a, x\} \subseteq I_{\lambda}$
- If $x \le a$ $[a,b] \subseteq [x,b] \subseteq I_{\mu}$ because $\{b,x\} \subseteq I_{\mu}$
- If a < x < b then $[a,b] = [a,x] \cup [x,b] \subseteq I_{\lambda} \cup I_{\mu}$

Def:

Let (X, \leq) be a totally ordered set .I be a non-empty interval of X. If $\sup I$ exists in X, we call $\sup I$ the right endpoint; inf takes the similar way. Prop.

Let I be an interval in X.

- Suppose that $b = \sup I \text{ exists. } \forall x \in I, [x, b] \subseteq I$
- Suppose that $a = \inf I$ exists. $\forall x \in I, |a, x| \subseteq I$

Prop.

Let I be an interval in X. Suppose that I has supremum b and an infimum a in X.Then I is equal to one of the following sets [a,b] [a,b[]a,b[Def

let (X, \leq) be a totally ordered set . If $\forall (x, z) \in X \times X$, such that $x < z \quad \exists y \in X$ such that x < y < z, than we say that (X, \leq) is thick Prop.

Let (X, \leq) be a thick totally ordered set. $(a,b) \in X \times X, a < b$ If I is one of the following intervals [a,b]; [a,b[;]a,b[;]a,b[Then inf I=a sup I=b (for it's thick empty set is impossible) Proof:

Since X is thick, there exists $x_0 \in]a, b[$ By definition,b is an upper bound of I. If b is not the supremum of I, there exists an upper bound M of I such that M_ib. Since X is thick , there is $M' \in X$ such that $x_0 \leq M, M' < b$ Since $[x, b] \subseteq [a, b] \in I$ Hence M and M' belong to I, which conflicts with the uniqueness of supremum.

Enhanced real line

Def:

Let $+\infty$ and -infty be two symbols that are different and don not belong to \mathbb{R} We extend the usual total order $\leq on \mathbb{R} to \mathbb{R} \cup \{-\infty, +\infty\}$ such that

$$\forall x \in \mathbb{R}, -\infty < x < +\infty$$

Thus $\mathbb{R} \cup \{-\infty, +\infty\}$ become a totally ordered set, and $\mathbb{R} =]-\infty, +\infty[$ Obviously, this is a thick totally ordered set. We define:

- $\forall x \in]-\infty, +\infty[$ $x + (+\infty) := +\infty$ $(+\infty) + x := +\infty$
- $\forall x \in [-\infty, +\infty[\quad x + (-\infty) := -\infty \quad (-\infty) + x = -\infty$
- $\forall x \in]0, +\infty]$ $x(+\infty) = (+\infty)x = +\infty$ $x(-\infty) = (-\infty)x = -\infty$
- $\forall x \in [-\infty, 0]$ $x(+\infty) = (+\infty)x = -\infty$ $x(-\infty) = (-\infty)x = +\infty$
- $-(+\infty) = -\infty$ $-(-\infty) = +\infty$ $(\infty)^{-1} = 0$
- $(+\infty) + (-\infty)$ $(-\infty) + (+\infty)$ $(+\infty)0$ $0(+\infty)$ $(-\infty)0$ $0(-\infty)$ ARE NOT DEFINED

Def

Let (X, \leq) be a partially ordered set. If for any subset A of X,A has a supremum and an infimum in X, then we say the X is order complete Example

Let Ω be a set $(\mathscr{P}(\Omega), \subseteq)$ is order complete If \mathscr{F} is a subset of $\mathscr{P}(\Omega)$, sup $\mathscr{F} = \bigcup_{A \in \mathscr{F}} A$

Interesting tip: $\inf \emptyset = \Omega \quad \sup \emptyset = \emptyset$ \mathcal{AXION} :

 $(\mathbb{R} \cup \{-\infty, +\infty\}, \leq)$ is order complete In $\mathbb{R} \cup \{-\infty, +\infty\}$ sup $\emptyset = -\infty$ inf $\emptyset = +\infty$

Notation:

- For any $A \subseteq \mathbb{R} \cup -\infty, +\infty$ and $c \in \mathbb{R}$ We denote by A+c the set $\{a+c \mid a \in A\}$
- If $\lambda \in \mathbb{R} \setminus \{0\}$, λA denotes $\{\lambda a \mid a \in A\}$
- -A denotes (-1)A

Prop.

For any $A \subseteq \mathbb{R} \cup \{-\infty, +\infty\}$, $\sup(-A) = -\inf A$, $\inf(-A) + -\sup A$ Def We denote by (R, \leq) a field \mathbb{R} equipped with a total order \leq , which satisfies the following condition:

- $\forall (a,b) \in \mathbb{R} \times \mathbb{R}$ such that a < b , one has $\forall c \in \mathbb{R}, a+c < b+c$
- $\forall (a,b) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}, ab > 0$
- $\forall A \subseteq \mathbb{R}$, if A has an upper bound in \mathbb{R} , then it has a supremum in \mathbb{R}

Prop.

Let
$$A \subseteq [-\infty, +\infty]$$

- $\forall c \in \mathbb{R}$ $\sup(A+c) = (\sup A) + c$
- $\forall \lambda \in \mathbb{R}_{>0}$ $\sup(\lambda A) = \lambda \sup(A)$
- $\forall \lambda \in \mathbb{R}_{\leq 0}$ $sup(\lambda A) = \lambda \inf(A)$

inf takes the same

Theorem:

Let I and J be non-empty sets

$$\begin{array}{l} f:I\rightarrow [-\infty,+\infty],g:J\rightarrow [-\infty,+\infty]\\ a=\sup\limits_{x\in I}f(x)\quad b=\sup\limits_{y\in J}g(y)\quad c=\sup\limits_{(x,y)\in I\times J,\{f(x),g(y)\}\neq\{+\infty,-\infty\}}(f(x)+g(y))\\ \text{If }\{a,b\}\neq\{+\infty,-\infty\}\\ \text{then }c=a+b \end{array}$$

inf takes the same if $(-\infty) + (+\infty)$ doesn't happen

Corollary:

Let I be a non-empty set, $f: I \to [-\infty, +\infty], g: J \to [-\infty, +\infty]$ Then $\sup_{x \in I, \{f(x), g(y)\} \neq \{+\infty, -\infty\}} (f(x) + g(x)) \leq (\sup_{x \in I} f(x))(\sup_{x \in I} g(x))$ inf takes the similar($\leq \to \geq$) (provided when the sum are defined)

Vector space

In this section:
K denotes a unitary ring.
Let 0 be zero element of K
1 be the unity of K

5.1 K-module

5.1.1 Def

Let (V,+) be a commutative group. We call left/right K-module structure: any mapping $\Phi:K\times V\to V$

- $\forall (a,b) \in K \times K, \forall x \in V \quad \Phi(ab,x) = \Phi(a,\Phi(b,x))/\Phi(b,\Phi(a,x))$
- $\forall (a,b) \in K \times K, \forall x \in V, \Phi(a+b,x) = \Phi(a,x) + \Phi(b,x)$
- $\forall a \in K, \forall (x, y) \in V \times V, \Phi(a, x + y) = \Phi(a, x) + \Phi(a, y)$
- $\forall x \in V, \Phi(1, x) = x$

A commutative group (V,+) equipped with a left/right K-module structure is called a left/right K-module.

5.1.2 Remark

Let K^{op} be the set K equipped with the following composition laws:

- $\bullet \ K \times K \to K$
- $(a,b) \mapsto a+b$
- $\bullet K \times K \to K$
- $(a,b) \mapsto ba$

Then K^{op} forms a unitary ring Any left $K^{op} - module$ is a right K-module Any right $K^{op} - module$ is a left K-module $(K^{op})^{op} = K$

5.1.3 Notation

When we talk about a left/right K-module (V,+), we often write its left K-module structure as $K \times V \to V \quad (a,x) \mapsto ax$

The axioms become:

$$\forall (a,b) \in K \times K, \forall x \in V \quad (ab)x = a(bx)/b(ax)$$

$$\forall (a,b) \in K \times K, \forall x \in V \quad (a+b)x = ax+bx$$

$$\forall a \in K, \forall (x,y) \in V \times V \quad a(x+y) = ax+ay$$

$$\forall x \in V \quad 1x = x$$

5.1.4 K-vector space

If K is commutative, then $K^{op}=K$, so left K-module and right K-module structure are the same . We simply call them K-module structure. A commutative group equipped with a K-module structure is called a K-module. If K is a field, a K-module is also called a K-vector space

Let $\Phi: K \times V \to V$ be a left or right K-module structure

$$\forall x \in V, \Phi(\cdot, x) : K \to V \quad (a \in K) \mapsto \Phi(a, x)$$

is a morphism of addition groups. Hence $\Phi(0,x)=0, \Phi(-a,x)=-\Phi(a,x)$ $\forall a\in K, \Phi(a,\cdot):V\to V$ is a morphism of groups. Hence $\Phi(a,0)=0, \Phi(a,-x)=-\Phi(a,x)(\cdot\ is\ a\ var)$

5.1.5 Association:

 $\forall x \in K$

$$(f(f+g)+h)(x) = (f+g)(x)+h(x) = f(x)+g(x)+h(x)$$
$$(f+(g+h))(x) = f(x)+((g+h)(x)) = f(x)+g(x)+h(x)$$

Let
$$0: I \to K: x \mapsto 0 \quad \forall f \in K^I \quad f + 0 = f$$

Let $-f: f + (-f) = 0$

The mapping $K \times K^I \to K^I : (a, f) \mapsto af \quad (af)(x) = af(x)$ is a left K-module structure

The mapping $K\times K^I\to K^I:(a\in I)\mapsto ((x\in I)\mapsto f(x)a)$ (af)(x)=af(x) is a right K-module structure

5.1.6 Remark:

We can also write an element μ of K^I is the form of a family $(\mu_i)_{i\in I}$ of elements in K (μ_i) is the image of $i\in I$ by μ)
Then

$$(\mu_i)_{i \in I} + (\nu_i)_{i \in I} := (\mu_i + \nu_i)_{i \in I}$$

 $a(\mu_i)_{i \in I} := (a\mu_i)_{i \in I}$
 $(\mu_i)_{i \in I} a = (\mu_i a)_{i \in I}$

5.2 sub K-module

5.2.1 Def

Let V be a left/right K-module. If W is a subgroup of V. Such that $\forall a \in K, \forall x \in W \quad ax/xa \in W$, then we say that W is left/right sub-K-module of V.

5.2.2 Example

Let I be a set .Let $K^{\bigoplus I}$ be the subset of K^I composed of mappings $f: I \to K$ such that $I_f = \{x \in I \mid f(x) \neq 0\}$ is finite. It is a left and right sub-K-module of K^I

In fact,
$$\forall (f,g) \in K^{\bigoplus I} \times K^I$$
 $I_{f-g} = x \in I \mid f(x) - g(x) \neq 0 \subseteq I_f \cup I_g$
Hence $f - g \in K^{\bigoplus I}$ So $K^{\bigoplus I}$ is a subgroup of K^I $\forall a \in K, \forall f \in K^{\bigoplus I}$ $I_{af} \subseteq I_f, I_{(x \mapsto f(x)a)} \subseteq I_f$

5.3 morphism of K-modules

5.3.1 Def

Let V and W be left K-module, A morphism of groups $\phi: V \to W$ is called a morphism of left K-modules if $\forall (a, x) \in K \times V, \phi(ax) = a\phi(x)$

5.3.2 K-linear mapping

If K is commutative, a morphism of K-modules is also called a K-linear mapping. We denote by $\hom_{K-Mod}(V,W)$ the set of all morphism of left-K-module from V to W.This is a subgroup of W^V

5.3.3 Theorem

Let V be a left K-module. Let I be a set. The mapping $\hom_{K-Mod}(K^{\bigoplus I}, V) \to V^I: \phi \to (\phi(e_i))_{i \in I}$ is a bijection where $e_i: I \to K: j \mapsto \begin{cases} 1 & j=i \\ 0 & j \neq i \end{cases}$

5.3.4 Remark:column

In the case where I=1,2,3,...,n V^I is denoted as V^n,K^I is denoted as K^n For any $(x_1,...,x_n)\in V^n$, by the theorem, there exists a unique morphism of left K-modules $\phi:K^n\to V$ such that $\forall i\in 1,...,n\phi(e_i)=x_i$

We write this
$$\phi$$
 as a column $\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$ It sends $(a_1, \dots, a_n) \in K^n$ to $a_1x_1 + \dots + a_nx_n$

5.4 kernel

5.4.1 Prop

Let G and H be groups and $f: G \to H$ be a morphism of groups

- $I_m(f) \subseteq H$ is a subgroup of H
- $\bullet \ \ker(f) = \{ x \in G \mid f(x) = e_H \}$
- f is injection iff $ker(f) = \{e_G\}$

5.4.2 Def

ker(f) is called the kernel of f

5.4.3 Theorem

f is injection iff $\ker(f) = \{e_G\}$

Proof

Let e_G and e_H be neutral element of G and H respectively

- (1) Let x and y be element of G $f(x)f(y)^{-1} = f(x)f(y)^{-1} = f(xy^{-1}) \in Im(f)$. So Im(f) is a subgroup of H
- (2) Let x and y be element of $\ker(f)$ One has $f(xy^{-1})=f(x)f(y)^{-1}=e_H$ $e_H^{-1}=e_H$. So $xy^{-1}\in\ker(f)$ So $\ker(f)$ is a subgroup of G
- (3) Suppose that f is injection. Since $f(E_G) = e_H$ one has $\ker(f) = f^{-1}(\{e_H\}) = \{e_G\}$ Suppose that $\ker(f) = \{e_G\}$ If f(x) = f(y)then $f(xy^{-1}) = f(x)f(y)^{-1} = e_H$ Hence $xy^{-1} = e_G \Rightarrow x = y$

5.4. KERNEL 23

5.4.4 Def

Let (V,+) be a commutative group, I be a set. We define a composition law + on V^I as follows

$$(x_i)_{i \in I} + (y_i)_{i \in I} := (x_i + y_i)_{i \in I}$$

Then V^I forms a commutative group

5.4.5 Remark

Let E and F be left K-modules

 $\hom_{K=Mod}(E,F):=\{\text{morphisms of left K-modules from E to F}\}\subseteq F^E$ is a subgroup of F^E

In fact f and g are elements of $hom_{K-Mod}(E, F)$, then f-g is also a morphism of left K-module

$$(f-g)(x+y) = f(x+y) - g(x+y) = (f(x) + f(y)) - (g(x) + g(y)) = (f(x) - g(x)) + (f(y) - g(y)) = (f - g)(x) + (f - y)(x)$$

5.4.6 Theorem

Let V be a left K-module, I be a set The mapping $\hom_{K-Mod}(K^{\bigoplus I}, V) \to V^I$: $\phi \mapsto (\phi(e_i))_i \in I$ is an isomorphism of groups, where $e_i : I \to K : j \mapsto \begin{cases} 1 & j=i \\ 0 & j \neq i \end{cases}$

5.4.7 **Proof:**

One has $(\phi + \psi)(e_i) = \phi(e_I) + \psi(e_i)$ $\forall (\phi, psi) \in \text{hom}_{K-Mod}(K^{\bigoplus I}, V)^2$ Hence $\Psi(\phi, \psi) = (\phi(e_i) + \psi(e_i))_{i \in I} = \Psi(\phi) + \Psi(\psi)$ So Ψ is a morphism of groups

injectivity Let $\phi \in \text{hom}_{K-Mod}(K^{\bigoplus I}, V)$ Such that $\forall i \in I(\forall \phi \in \text{ker}(\Psi)) \quad \phi(e_i) = 0$ Let $a = (a_i)_{i \in I} \in K^{\bigoplus I}$ One has $a = \sum_{i \in I} a_i e_i$

If fact,
$$\forall j \in I$$
, $a_j = \sum_{i \in I, a_i \neq 0} a_i e_i(j)$
Thus $\phi(a) = \sum_{i \in I, a_i \neq 0} a - I \phi(e_i) = 0$

Hence ϕ is the neutral element.

surjectivity Let $x = (x_i)_{i \in I} \in V^I$ We define $\phi_x : K^{\bigoplus I} \to V$ such that $\forall a = (a_i)_{i \in I} \in K^{\bigoplus I}, \phi_x(a) = \sum_{i \in I, a_i \neq 0} a_i x_i$ This is a morphism of left K modules

This is a morphism of left K-modules

 $foralli \in I, \phi_x(e_i) = 1x_i = x_i \text{ So } \Psi(\phi_x) = x$

Suppose that K' is a unitary ring, and V is also equipped with a right K'-module structure, Then $\hom_{K-Mod}(K^{\bigoplus I},V)\subseteq V^{K^{\bigoplus I}}$ is a right sub-k'-module , and Ψ in the theorem is a right K'-module isomorphism

Monotone mappings

6.1 Def

Let I and X be partially ordered sets, $f: I \to X$ be a mapping.

- If $\forall (a,b) \in I \times I$ such that a < b. One has $f(a) \leq f(b)/f(a) < f(b)$, then we say that f is increasing/strictly increasing. decreasing takes similar way.
- If f is (strictly) increasing or decreasing, we say that f is (strictly) monotone

6.2 Prop.

Let X,Y,Z be partially ordered sets. $f: X \to Y, g: Y \to Z$ be mappings

- If f and g have the same monotonicity, then $g \circ f$ is increasing
- If f and g have different monotonicities, then $g \circ f$ is decreasing

strict monotonicities takes the same

6.3 Def

Let f be a function from a partially ordered set I to another partially ordered set .If $f \mid_{Dom(f)} \to X$ is (strictly) increasing/decreasing then we say that f is (strictly) increasing/decreasing

6.4 Prop.

Let I and X be partially ordered sets. f be function from I to X.

- If f is increasing/decreasing and f is injection, then f is strictly increasing/decreasing
- ullet Assume that I is totally ordered and f is strictly monotone, then f is injection

6.5 Prop

Let A be totally ordered set, B be a partially ordered set, f be an injective function from A to B

If f is increasing/decreasing ,then so is f^{-1}

6.6 Def

Let X and Y be partially ordered sets. $f: X \to Y$ be a bijection. If both f and f^{-1} are increasing ,then we say that f is an isomorphism of partially ordered sets.

(If X is totally, then a mapping $f: X \to Y$ is an isomorphism of partially ordered sets iff f is a bijection and f is increasing)

6.7 Prop.

Let I be a subset of $\mathbb N$ which is infinite. Then there is a unique increasing bijection $\lambda_I:\mathbb N\to I$

6.8 Proof

6.8.1 bijection

```
We construct f: \mathbb{N} \to I by induction as follows. Let f(0) = \min I Suppose that f(0), ..., f(n) are constructed then we take f(n+1) := \min(I \setminus \{f(0), ..., f(n)\}) Since I \setminus \{f(0), ..., f(n-1)\} \supseteq I \setminus \{f(0), ..., f(n)\}. Therefore f(n) \le f(n+1) Since f(n+1) \notin \{f(0), ..., f(n)\}, we have f(n) < f(n+1) Hence f is strictly increasing and this is injective If f is not surjective, then I \setminus Im(f) has a element \mathbb{N}. Let m = \min\{n \in \mathbb{N} \mid N \le f(n)\}. Since N \notin Im(f), N < f(m). So m \ne 0. Hence f(m-1) < N < f(m) = \min(I \setminus \{f(0), ..., f(m-1)\}) By definition, N \in I \setminus Im(f) \subseteq I \setminus \{f(0), ..., f(m-1)\}, Hence f(m) \le N, causing contradiction.
```

6.8. PROOF 27

6.8.2 uniqueness

exercise: Prove that $Id_{\mathbb{N}}$ is the only isomorphism of partially ordered sets from \mathbb{N} to \mathbb{N}

sequence and series

Let $I \subseteq \mathbb{N}$ be a infinite subset

7.1 Def

Let X be a set.We call sequence in X parametrized by I a mapping from I to X.

7.2 Remark

If K is a unitary ring and E is a left K-module then the set of sequence E^I admits a left-K-module structure. If $x=(x_n)_{n\in I}$ is a sequence in E, we define a sequence $\sum (x):=(\sum_{i\in I,i\leq n}x_i)_{n\in\mathbb{N}}$, called the series associated with the sequence x.

7.3 Prop

 $\sum:E^I\to E^{\mathbb{N}}$ is a morphism of left-K-module

7.4 proof

Let
$$x = (x_i)_{i \in I}$$
 and $y = (y_i)_{i \in I}$ be elements of E^I

$$\sum_{i \in I, i \le n} (x_i + y_i) = (\sum_{i \in I, i \le n} x_i) + (\sum_{i \in I, i \le n} y_i), \lambda \sum_{i \in I, i \le n} x_i = \sum_{i \in I, i \le n} \lambda x_i$$

7.5 Prop

Let I be a totally ordered set . X be a partially ordered set, $f: I \to X$ be a mapping $J \in I$ Assume that J does not have any upper bound in I

- If f is increasing , then f(I) and f(J) have the same upper bounds in X
- If f is decreasing ,then f(I) and f(J) have the same lower bounds in X

7.6 limit

7.6.1 Def

Let $i \subseteq \mathbb{N}$ be a infinite subset. $\forall (x_i)_{n \in I} \in [-\infty, +\infty]^I$ where $[-\infty, +\infty]$ denotes $\mathbb{R} \cup \{-\infty, +\infty\}$, we define:

$$\lim\sup_{n\in I, n\to +\infty} x_n := \inf_{n\in I} (\sup_{i\in I, i\geq n} x_i)$$

$$\lim_{n \in I, n \to +\infty} \inf x_n := \sup_{n \in I} (\inf_{i \in I, i \ge n} x_i)$$

If $\limsup_{n\in I, n\to +\infty} x_n = \liminf_{n\in I, n\to +\infty} x_n = l$, we then say that $(x_n)_{n\in I}$ tends to l and that l is the limit of $(x_n)_{n\in I}$. If in addition $(x_n)_{n\in I} \in \mathbb{R}^I$ and $l \in \mathbb{R}$, we say that $(x_n)_{n\in I}$ converges to l

7.6.2 Remark

If $J \subseteq \mathbb{N}$ is an infinite subset, then:

$$\lim_{n \in I, n \to +\infty} = \inf_{n \in J} (\sup_{i \in I, i \ge n} x_i)$$

$$\lim_{n \in I, n \to +\infty} \inf x_n = \sup_{n \in J} (\inf_{i \in I, i \ge n} x_i)$$

Therefore if we change the values of finitely many terms in $(x_i)_{i \in I}$ the limit superior and the limit inferior do not change.

In fact, if we take $J = \mathbb{N} \setminus \{0, ..., m\}$, then $\inf_{n \in J} (...)$ and $\sup_{n \in J} (...)$ only depends on the values of $x_i, i \in I, i \geq m$

7.6.3 Prop

$$\forall (x_n)_{n \in I} \in [-\infty, +\infty]^I, \lim_{n \in I, n \to +\infty} x_n \le \limsup_{n \in I, n \to +\infty} x_n$$

7.6. LIMIT 31

7.6.4 Prop

Let
$$(x_n)_{n\in I} \in [-\infty, +\infty]^I$$

$$\forall c \in \mathbb{R}$$

$$\lim\sup_{n\in I, n\to +\infty} (x_n+c) = (\lim\sup_{n\in I, n\to +\infty} x_n) + c$$

$$\lim\inf_{n\in I, n\to +\infty} (x_n+c) = (\lim\inf_{n\in I, n\to +\infty} x_n) + c$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\sup_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\inf_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\sup_{n\in I, n\to +\infty} x_n$$

7.6.5 Prop

Let $(x_n)_{n\in I}$ be elements in $[-\infty, +\infty]^I$. Suppose that there exists $N_0 \in \mathbb{N}$ such that $\forall n \in I, n \geq N_0$, one has $x_n \leq y_n$ Then

$$\limsup_{n \in I, n \to +\infty} (x_n) \le \limsup_{n \in I, n \to +\infty} y_n$$
$$\liminf_{n \in I, n \to +\infty} (x_n) \ge \liminf_{n \in I, n \to +\infty} y_n$$

7.6.6 Theorem

Let $(x_n)_{n\in I}, (y_n)_{n\in I}, (z_n)_{n\in I}$ be elements of $[-\infty, +\infty]^I$ Suppose that

- $\exists N N \in \mathbb{N}, \forall n \in I, n \geq N_0 \text{ one has } x_n \leq y_n \leq z_n$
- $(x_n)_{n\in I}$ and $(z_n)_{n\in I}$ tend to the same limit l

Then $(y_n)_{n\in I}$ tends to l

7.6.7 Def

Let I be an infinite subset of \mathbb{N} , and $(x_n)_{n\in I}$ be a sequence in some set X. We call subsequence of $(x_n)_{n\in I}$ a sequence of the form $(x_n)_{n\in J}$, where J is an infinite subset of I

7.6.8 Prop

Let I and J be infinite subset of $\mathbb N$ such that $J\subseteq I$ $\forall (x_n)_{n\in I}\in [-\infty,+\infty]^I$,one has

$$\lim_{n \in I, n \to +\infty} \inf (x_n) \le \lim_{n \in I, n \to +\infty} y_n$$

$$\lim_{n \in I, n \to +\infty} \sup_{n \in I, n \to +\infty} y_n$$

In particular, if $(x_n)_{n\in I}$ tends to $l\in [-\infty,+\infty]$, then $(x_n)_{n\in J}$ tends to l

7.6.9 Prop

 $\forall n \in \mathbb{N}, \text{one has}$

$$\liminf_{n \in J, n \to +\infty} (x_n) \ge \liminf_{n \in I, n \to +\infty} y_n$$

$$\limsup_{n \in J, n \to +\infty} (x_n) \le \limsup_{n \in I, n \to +\infty} y_n$$

7.6.10 Theorem

Let $I \subseteq \mathbb{N}$ be an infinite subset and $(x_N)_{n \in I}$ be a sequence in $[-\infty, +\infty]$

- If the mapping $(n \in I) \mapsto x_n$ is increasing, then $(x_N)_{i \in I}$ tends to $\sup_{n \in I} x_n$
- If the mapping $(n \in I) \mapsto x_n$ is decreasing, then $(x_N)_{i \in I}$ tends to $\inf_{n \in I} x_n$

7.6.11 Notation

If a sequence $(x_N)_{n\in I} \in [-\infty, +\infty]$ tends to some $l \in [-\infty, +\infty]$ the expression $\lim_{n\in I, n\to} x_n$ denotes this limit l

7.6.12 Corollary

Let $(x_n)_{n\in I}$ be a sequence in $\mathbb{N}_{\geq 0}$ Then the series $\sum_{n\in I} x_n$ (the sequence $(\sum_{i\in I, i\leq n})_{n\in \mathbb{N}}$) tends to an element in $\mathbb{N}_{\geq 0}\cup\{+\infty\}$ It converges in \mathbb{R} iff it is bounded from above (namely has an upper bound in \mathbb{R})

7.6.13 Notation

If a series $\sum_{n\in I} x_n$ in $[-\infty, +\infty]$ tends to some limit, we use the expression $\sum_{n\in I} x_n$ to denote the limit

7.6.14 Theorem: Bolzano-Weierstrass

Let $(x_n)_{n\in I}$ be a sequence in $[-\infty, +\infty]$ There exists a subsequence of $(x_n)_{n\in I}$ that tends to $\limsup_{n\in I, n\to +\infty} x_n$ There exists a subsequence of $(x_n)_{n\in I}$ that rends to $\liminf_{n\in I, n\to +\infty} x_n$

7.6. LIMIT 33

Proof

Let $J = \{ n \in I \mid \forall m \in I, \text{if } m \leq n \text{ then } x_m \leq x_n \}$

If J is infinite, the sequence $(x_N)_{n\in J}$ is decreasing so it tends to $\inf_{n\in J} x_n$

 $\forall n \in J \text{ by definition } x_n = \sup_{i \in I, i \geq n} x_i \text{ so } \limsup_{n \in I, n \to +\infty} x_n = \inf_{n \in J} \sup_{i \in I, i \geq n} x_i = \sum_{i \in I, i \geq n}$

 $\inf_{n \in J} x_n = \lim_{n \in J, n \to +\infty} x_n$

Assume that J is finite. Let $n_0 \in I$ such that $\forall n \in J, n < n_0$. Denote by $l = \sup$

 $n{\in}I, n{\geq}n_0$

Let $\overline{N} \in \mathbb{N}$ such that $N \geq n_0$. By definition $\sup_{i \in I, i > n_0} x_i \leq l$. If the strict

inequality $\sup_{i \in I, i \geq N} x_i < l$ holds, then $\sup_{i \in I, i \geq N} x_i$ is NOT an upper bound of $\{x_n \mid i \in I, i \geq N\}$

 $n \in I, n_0 \le n < N$

So there exists $n \in I$ such that $n_0 \le n < N$ such that $x_n > \sup_{i \in I, i \ge N} x_i$ We may also assume that n is largest among elements of $I \cap [n_0, N]$ that satisfies

this inequality.

Then $\forall m \in I$ if $m \geq n$ then $x_m \leq x_n$ Thus $n \in J$ that contradicts the maximality of n_0

Therefore

$$l = \sup_{i \in I, i \ge N} x_i$$

, which leads to

$$\lim_{n \in I, n \to +\infty} x_n = l$$

Moreover, if $m \in I, m \geq n_0$ then $m \notin J$, so $x_m < l$ (since otherwise $x_m = \sup_{i \in I, i \geq m} x_i$ and hence $m \in J$)Hence, $\forall finite subset I' of <math>\{m \in I \mid m \geq n_0\}$

 $\max_{i \in I} x_i < l$ and hence $\exists n \in I$, such that $n > \max_{i \in I'} x_i < x_n$

We construct by induction an increasing sequence $(n_j)_{j\in\mathbb{N}}$ in I

Let n_0 be as above. Let $f: \mathbb{N} \to I_{\geq n_0}$ be a surjective mapping.

If n_j is chosen, we choose $n_{j+1} \in I$ such that

$$n_{j+1} > n_j, x_{n_{j+1}} > \max\{x_{f(j)}, x_{n_j}\}$$

Hence the sequence $(x_{n_j})_{j\in\mathbb{N}}$ is increasing And

$$\sup_{j \in \mathbb{N}} x_{n_j} \le \sup_{j \in \mathbb{N}} x_{f(j)} = \sup_{n \in I, n \ge n_0} x_n = l$$

$$l = \sup_{n \in I, n \ge n_0}$$

So $(x_{n_i})_{i\in\mathbb{N}}$ tends to l

Cauchy sequence

8.1 Def

Let $(x_n)_{n\in I}$ be a sequence in \mathbb{R} If $\inf_{N\in\mathbb{N}}\sup_{(n,m)\in I\times I,\ n,m\geq N}|x_n-x_m|=\lim_{N\to +\infty}\sup_{(n,m)\in I\times I,\ n,m\geq N}|x_n-x_m|=0$ then we say that $(x_n)_{n\in I}$ is a Cauchy sequence

8.2 Prop

- If $(x_n)_{i\in I}\in\mathbb{R}^I$ converges to some $l\in\mathbb{R}$, then it is a Cauchy sequence
- If $(x_N)_{i\in I}$ is a Cauchy sequence, there exists M>0 such that $\forall n\in I \ |x_n|\leq M$
- If $(x_n)_{n\in I}$ is a Cauchy sequence, then $\forall J\subseteq I$ infinite, $(x_n)_{n\in I}$ is a Cauchy sequence.
- If $(x_n)_{n\in I}$ is a Cauchy sequence, then $\forall J\subseteq I$ infinite and $l\in\mathbb{R}$ such that $(x_n)_{n\in I}$ converges to l, then $(x_n)_{n\in J}$ converges to l too.

8.3 Theorem: Completeness of real number

If $(x_n)_{n\in I}\in\mathbb{R}^I$ is a Cauchy sequence, then it converges in \mathbb{R}

Proof

Since $(x_n)_{n\in I}$ is a Cauchy sequence, $\exists M\in\mathbb{R}_{>0}$ such that $-M\leq x_n\leq M$ $\forall x\in I$ So $\limsup_{n\in I,n\to+\infty}x_n\in\mathbb{R}$. By Bolzano-Weierstrass theorem. $\exists J\subseteq I$ infinite such that $(x_n)_{n\in I}$ converges to $\limsup_{n\in I,n\to+\infty}x_n\in\mathbb{R}$. Therefore $(x_n)_{n\in I}$ converges to the same limit.

8.4 Absolutely converge

We say that a series $\sum_{n\in I} x_n \in \mathbb{R}$ converges absolutely if $\sum_{n\in I} |x_n| < +\infty$

8.4.1 Prop

If a series $\sum\limits_{n\in I}x_n$ converges absolutely, then it converges in $\mathbb R$

Comparison and Technics of Computation

9.1 Def

Let $(x_n)_{n\in I}$ and $(y_n)_{n\in I}$ be sequence in \mathbb{R}

- If there exists $M \in \mathbb{R}_{>0}$ and $N \in \mathbb{N}$ such that $\forall n \in I_{\geq N}, |x_N| \leq M|y_m|$ then we write $x_n = O(y_n), n \in I, n \to +\infty$
- If there exists $(\epsilon_n)_{n\in I}\in\mathbb{R}^I$ and $N\in\mathbb{N}$ such that $\lim_{n\in I, n\to +\infty}\epsilon_n=0$ and $\forall n\in I_{\geq N}, |x_N|\leq |\epsilon y_m|$, then we write $x_n=\circ (y_n), n\in I, n\to +\infty$ Example:

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

9.2 Prop.

Let I and X be partially ordered sets and $f:I\to X$ be an increasing/decreasing mapping. Let J ba a subset of I. Assume that any elements of I has an upper bound in J. Then f(I) and f(J) have the same upper/lower bounds in X

9.3 Theorem

Let I be a totally ordered set, $f: I \to [-\infty, +\infty]$ and $g: I \to [-\infty, +\infty]$ be two mappings that are both increasing/decreasing. Then the following equalities holds, provided that the sum on the right hand side of the equality is well defined.

$$\sup_{x\in I,\{f(x),g(x)\}\neq\{-\infty,+\infty\}}=(\sup_{x\in I}f(x))+(\sup_{y\in I}g(y))$$

$$\inf_{x \in I, \{f(x), g(x)\} \neq \{-\infty, +\infty\}} = (\inf_{x \in I} f(x)) + (\inf_{y \in I} g(y))$$

Proof

We can assume f and g increasing. Let $a = \sup f(I), b = \sup g(I)$ Let $A = \{(x,y) \in I \times I \mid \{f(x),g(x)\} \neq \{-\infty,+\infty\}\}$ We equip A with the following order relation.

$$(x,y) \le (x',y') \text{ iff } x \le x', y \le y'$$

Let
$$B = A \cap \Delta_I = \{(x, y) \in A \mid x = y\}.$$

Consider

$$h: A \to [-\infty, +\infty]$$
 $h(x, y) = f(x) + g(y)$

h is increasing.

Let $(x, y) \in A$. Assume that $x \leq y$

If $\{f(y), g(y)\} \neq \{-\infty, +\infty\}$ then $(y, y) \in B$ and $(x, y) \leq (y, y)$

If
$$\{f(y), g(y)\} = \{-\infty, +\infty\}$$
 and for $(x, y) \in A \Rightarrow f(y) = +\infty, g(y) = -\infty$. So $a = +\infty$, Hence $b > -\infty$

So $\exists z \in I$ such that $g(z) > -\infty$. We should have $y \leq z$ Hence f(z) + g(z) is well defined, $(z, z) \in B$ and $(x, y) \leq (z, z)$ Similarly, if $x \geq y$, (x, y) has also an upper bound in B. Therefore: $\sup h(A) = \sup h(B)$

9.4 Prop.

Let $I \subseteq \mathbb{N}$ be an infinite subset. Let $(x_n)_{n \in I}$ and $(y_n)_{n \in I}$ be elements of $[-\infty, +\infty]^I$ such that $\forall n \in I \mid \{x_n, y_n\} \neq \{-\infty, +\infty\}$. Then the following inequalities holds, provided that the sum on the right hand side is well defined.

$$\limsup_{n \in I, n \to +\infty} (x_n + y_n) \leq (\limsup_{n \in I, n \to +\infty} x_n) + (\limsup_{n \in I, n \to +\infty} y_n)$$

$$\lim_{n \in I, n \to +\infty} \inf (x_n + y_n) \ge (\lim_{n \in I, n \to +\infty} x_n) + (\lim_{n \in I, n \to +\infty} y_n)$$

Proof

 $\forall n \in \mathbb{N}, \text{ let } A_N = \sup_{n \in I, n \geq N} x_n \quad B_N = \sup_{n \in I, n \geq N} y_n. \ (A_N)_{N \in \mathbb{N}} \text{ and } (B_N)_{N \in \mathbb{N}}$ are decreasing, and $\limsup_{n \in I, n \to +\infty} x_n = \inf_{N \in \mathbb{N}} A_N \quad \limsup_{n \in I, n \to +\infty} y_n = \inf_{N \in \mathbb{N}} B_N$ By theorem:

$$\inf_{N\in\mathbb{N}} A_N + \inf_{N\in\mathbb{N}} B_N = \inf_{N\in\mathbb{N}, \{A_N, B_N\} \neq \{-\infty, +\infty\}} (A_N + B_N)$$

Let
$$C_N = \sup_{n \in I, n \ge N} (x_n + y_n) \le A_N + B_N$$
 if $A_N + B_N$ is defined.

Therefore

$$\inf_{N\in\mathbb{N}}C_N \leq \inf_{N\in\mathbb{N},\{A_N,B_N\}\neq \{-\infty,+\infty\}}(A_N+B_N) = \inf_{N\in\mathbb{N}}A_N + \inf_{N\in\mathbb{N}}B_N$$

9.5. PROP. 39

9.5 Prop.

Let $I \subseteq \mathbb{N}$ be an infinite subset. Let $(x_n)_{n \in I}$ and $(y_n)_{n \in I}$ be elements of $[-\infty, +\infty]^I$ such that $\forall n \in I \mid \{x_n, y_n\} \neq \{-\infty, +\infty\}$. Then the following inequalities holds, provided that the sum on the right hand side is well defined.

$$\limsup_{n \in I, n \to +\infty} (x_n + y_n) \ge (\limsup_{n \in I, n \to +\infty} x_n) + (\limsup_{n \in I, n \to +\infty} y_n)$$

$$\liminf_{n\in I, n\to +\infty} (x_n+y_n) \ge (\liminf_{n\in I, n\to +\infty} x_n) + (\liminf_{n\in I, n\to +\infty} y_n)$$

Proof

a tricky proof?:

$$\limsup_{n \in I, n \to} x_n = \limsup_{n \in I, n \to} (x_n + y_n - y_n) \le \limsup_{n \in I, n \to} (x_n + y_n) - \liminf_{n \in I, n \to} y_n$$

to have a true proof, only need to discuss conditions with ∞

9.6 Theorem

Let $(x_n)_{n\in I}$ and $(y_n)_{n\in I}$ be elements of $[-\infty,+\infty]^I$. Assume that $\forall n\in I,y_n\in\mathbb{R}$ and $(y_n)_{n\in I}$ converges to some $i\in\mathbb{R}$. Then:

$$\lim_{n \in I, n \to +\infty} \sup (x_n + y_n) = (\lim_{n \in I, n \to +\infty} x_n) + l$$

$$\lim_{n \in I, n \to +\infty} \inf (x_n + y_n) = (\lim_{n \in I, n \to +\infty} \inf x_n) + l$$

9.7 Prop.

Let $(x_n)_{n\in I}$ and $(y_n)_{n\in I}$ be elements of $[-\infty, +\infty]^I$ Then:

$$\liminf_{n\in I, n\to +\infty} \max\{x_n,y_n\} = \max\{\liminf_{n\in I, n\to +\infty} x_n, \liminf_{n\in I, n\to +\infty} y_n\}$$

$$\lim_{n\in I, n\to +\infty} \min\{x_n, y_n\} = \min\{\lim_{n\in I, n\to +\infty} x_n, \lim_{n\in I, n\to +\infty} y_n\}$$

Proof

About the first inequality. Since $\max\{x_n, y_n\} \ge x_n \quad \max\{x_n, y_N\} \ge y_n$ By the theorem of Bolzano-Weierstrass theorem, there exists an infinite subset J of I such that

$$\lim_{n \in J, n \to +\infty} = \limsup_{n \in J, n \to +\infty} \max \{x_n, y_n\}$$

$$\lim_{n\in J, n\to} \max\{x_n, y_n\} = \lim_{n\in J_1, n\to} \max\{x_n, y_n\} = \lim_{n\in J, n\to} x_n \le \limsup_{n\in I, n\to +\infty} x_n$$

If J_2 is infinite

$$\limsup_{n \in I, n \to +\infty} = \lim_{n \in J_2, n \to +\infty} \max\{x_n, y_n\} \leq \limsup_{n \in I, n \to +\infty} y_n$$

9.8 Theorem

Let $(a_N)_{n\in I}\in\mathbb{R}^I$ $l\in\mathbb{R}$. The following statements are equivalent

- $(a_N)_{n\in I}$ converges to l
- $\lim_{n \in I, n \to +\infty} |a_n l| = 0$

Proof

$$|a_n - l| = \max\{a_n - l, l - a_n\}$$

$$\lim_{n \in I, n \to +\infty} |a_n - l| = \max\{\left(\lim_{n \in I, n \to +\infty} a_n\right) - l, l - \left(\lim_{n \in I, n \to +\infty} a_n\right)\}$$

- (1) \Rightarrow (2): If $(a_n)_{n \in I}$ converges to l, then $\limsup_{n \in I, n \to +\infty} a_n = \liminf_{n \in I, n \to +\infty} a_n = l$
- $(2) \Rightarrow (1): \\ \text{If } \limsup_{n \in I, n \to +\infty} |a_n l| = 0 \text{ ,then } \limsup_{n \in I, n \to +\infty} a_n \leq l \leq \liminf_{n \in I, n \to +\infty} a_n \\ \text{Therefore: } \limsup_{n \in I, n \to +\infty} a_n = \liminf_{n \in I, n \to +\infty} a_n = l$

9.9 Remark

Let $(a_n)_{n\in I}$ be a sequence in \mathbb{R} , $l\in\mathbb{R}$ The sequence $(a_n)_{n\in I}$ converges to liff $a_n-l=o(1), n\in I, n\to +\infty$

9.10 Calculates on O(),o()

9.10.1 Plus

Let $(a_n)_{n\in I}$ $(a'_n)_{n\in I}$ and $(b_n)_{n\in I}$ be elements in \mathbb{R}^I

- If $a_n = O(b_n), a'_n = O(b_n), n \in I, n \to +\infty$ then $\forall (\lambda, \mu) \in \mathbb{R}^2 \quad \lambda a_n + \mu a'_n = O(b_n), n \in I, n \to +\infty$
- If $a_n = o(b_n), a'_n = o(b_n), n \in I, n \to +\infty$ then $\forall (\lambda, \mu) \in \mathbb{R}^2$ $\lambda a_n + \mu a'_n = o(b_n), n \in I, n \to +\infty$

9.10.2 Transform

Let $(a_n)_{n\in I}$ and $(b_n)_{n\in I}$ be two sequence in \mathbb{R} If $a_n=o(b_n), n\in I, n\to +\infty$, then $a_n=O(b_n), n\in I, n\to +\infty$

9.10.3 Transition

Let $(a_n)_{n\in I}$, $(b_n)_{n\in I}$ and $(c_n)_{n\in I}$ be elements in \mathbb{R}^I

- If $a_n = O(b_n)$ and $b_n = O(c_n), n \in I, n \to +\infty$ then $a_n = O(c_n), n \in I, n \to +\infty$
- If $a_n = O(b_n)$ and $b_n = o(c_n), n \in I, n \to +\infty$ then $a_n = o(c_n), n \in I, n \to +\infty$
- If $a_n = o(b_n)$ and $b_n = O(c_n), n \in I, n \to +\infty$ then $a_n = o(c_n), n \in I, n \to +\infty$

9.10.4 Times

Let $(a_n)_{n\in I}, (b_n)_{n\in I}, (c_n)_{n\in I}, (d_n)_{n\in I}$ be sequences in \mathbb{R}

- If $a N = O(b_n), c_n = O(d_n), n \in I, n \to +\infty$ then $a_n c_n = O(b_n d_n), n \in I, n \to +\infty$
- If $a N = o(b_n), c_n = O(d_n), n \in I, n \to +\infty$ then $a_n c_n = o(b_n d_n), n \in I, n \to +\infty$

9.11 On the limit

Let $(a_n)_{n\in I}$, $(b_n)_{n\in I}$ be elements of \mathbb{R}^I that converges to $l\in\mathbb{R}$ and $l'\in\mathbb{R}$ respectively. Then:

- $(a_n + b_n)_{n \in I}$ converges to l + l'
- $(a_n b_n)_{n \in I}$ converges to ll'

9.12 Prop

Let $a \in \mathbb{R}$ THen $a^n = o(n!)$ $n \to +\infty$

Proof

Let $N \in \mathbb{N}$ such that |a| < NFor $n \in \mathbb{N}$ such that $n \ge N$

$$0 \le \frac{|a^n|}{n!} = \frac{|a^N|}{N!} \cdot frac|a^n - N|\frac{n!}{N!} \le \frac{|a^N|}{N!} (\frac{|a|}{N})^n - N$$

And $0 < \frac{|a|}{<}1 \Rightarrow \lim_{n \to +\infty} (\frac{|a|}{N})^n = 0$. Therefore:

$$\lim_{n \to +\infty} \frac{|a^n|}{n!} = 0$$

namely:

$$a^n = o(n!)$$

9.13 Prop

$$n! = o(n^n) \quad n \to +\infty$$

Proof

Let
$$N \in \mathbb{N}_{\geq 1}$$

 $0 \leq \frac{n!}{n^n} \leq \frac{1}{n} \Rightarrow \lim_{n \to +\infty} \frac{n!}{n^n} = 0$

9.14 Prop

Let $(a_n)_{n\in I}, (b_n)_{n\in I}$ be the elements of \mathbb{R}^I If the series $\sum_{n\in I} b_n$ converges absolutely and if $on = O(b_n)$ $n \to +\infty$ Then $\sum_{n\in I} a_n$ converges absolutely

Proof

By definition $\sum\limits_{n\in I}|b_N|<+\infty$ If $|a_N|\leq M|b_N|$ fro $n\in I, n\geq N$ where $N\in\mathbb{N}$ Then

$$\sum_{n \in I} |a_n| = \sum_{n \in I, n < N} |a_n| + \sum_{n \in I, n \ge N} |a_n| \le \sum_{n \in I, n < N} |a_n| + \sum_{n \in I, n \ge N} |b_n| < +\infty$$

9.15 Theorem: d'Alembert ratio test

Let $(a_N)_{n\in\mathbb{N}}\in(\mathbb{R}\setminus\{0\})^{\mathbb{N}}$

- If $\limsup_{n\to+\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$, then $\sum_{n\in\mathbb{N}} a_n$ converges absolutely
- If $\liminf_{n\to+\infty} |\frac{a_{n+1}}{a_n}| > 1$, then $\sum_{n\in\mathbb{N}} a_n$ does not converge (diverges)

9.16. PROP 43

Proof

(1)

Let $\alpha\in\mathbb{R}$ such that $\limsup_{n\to+\infty}|\frac{a_{n+1}}{a_n}|<\alpha<1,$ alpha isn't a lower bound of $(\sup_{n\geq N} \left| \frac{a_{n+1}}{a_n} \right|)_{N\in\mathbb{N}}$

So $\exists N \in \mathbb{N}$ such that $\sup_{n \geq N} |\frac{a_{n+1}}{a_n}| < \alpha \text{Hence for } n \geq N \quad |a_n| \leq \alpha^{n-N} |a_N| \text{ since }$

$$\frac{a_n}{a_N} = \frac{a_{N+1}}{a_N} \frac{a_{N+2}}{a_{N+1}} ... \frac{a_n}{a_{n-1}}$$

Therefore $a_n = O(\alpha^n)$ since $\sum_{n \in \mathbb{N}} = \frac{1}{1-\alpha} < +\infty$, $\sum_{n \in \mathbb{N}} a_n$ converge absolutely.

9.15.1Lemma

If a series $\sum_{n\in\mathbb{N}} a_n \in \mathbb{R}$ converges, then $\lim_{n\to+\infty} a_n = 0$

Proof

If $(\sum_{i=0}^n a_i)_{n\in\mathbb{N}}$ converges to some $l\in\mathbb{R}$, then $(\sum_{i=0}^{n-1} a_i)_{n\in\mathbb{N}, n\geq 1}$ converges to l, too. Hence $\left(a_n = \left(\sum_{i=0}^n a_i\right) - \left(\sum_{i=0}^{n-1} a_i\right)\right)_{n \in \mathbb{N}}$ converges to l-l=0

9.15.2(2)

Let $\beta \in \mathbb{R}$ such that $1 < \beta < \liminf_{n \to +\infty} |\frac{a_{n+1}}{a_n}| = \sup_{N \in \mathbb{N}} \inf_{n \geq N} |\frac{a_{n+1}}{a_n}|$ So there exists $N \in \mathbb{N}$ such that $\beta < \inf_{n \geq N} |\frac{a_{n+1}}{a_n}|$

 $\forall n \in \mathbb{N}, n \geq N \quad |\frac{a_{n+1}}{a_n}| \geq \beta$

Hence $(|a_n|)_{n\in\mathbb{N}}$ is not bounded since $|a_n| \ge \beta^{n-N} |a_n|$ By the lemma: $\sum_{n\in\mathbb{N}} a_n$ diverges.

9.16 Prop

Let $a \in \mathbb{R}, a > 1$ Then $n = o(a^n), n \to +\infty$

Proof

Let $\epsilon > 0$ such that $a = (1 + \epsilon)^2$

$$a^{n} = (1 + \epsilon)^{2n} = (1 + \epsilon)^{n} (1 + \epsilon)^{n} \ge (1 + n\epsilon)(1 + n\epsilon) \ge \epsilon^{2} n^{2}$$

Hence

$$n \le \frac{a^n}{\epsilon^2 n} = o(a^n)$$

9.16.1 Corollary

Let
$$a > 1, t \in \mathbb{R}_{>0}$$
 Then $n^t = o(a^n), n \to +\infty$

Proof

Let $d \in \mathbb{N}_{\geq 1}$ such that $t \leq d$ Then $n^{t-d} \leq 1$ So

$$n^t = n^d n^{t-d} = O(n^d)$$

Let
$$b = \sqrt[d]{a} > 1$$

$$n^d = o((b^n)^d) = o(a^n)$$

Hence $n^t = o(a^n)$

9.16.2 Corollary

There exists $M \ge 1$ such that $\forall x \in \mathbb{R}, x \ge M, \ln(x) \le x$

Proof

Let $a \in \mathbb{R}$ such that 1 < a < e

9.17 Theorem: Cauchy root test

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Let $\alpha = \limsup_{n\to+\infty} |a_n|^{\frac{1}{n}}$

- If $\alpha < 1$, then $\sum_{n \in \mathbb{N}} a_n$ converges absolutely.
- If a > 1 then $\sum_{n \in \mathbb{N}} a_n$ diverges

Proof

(1)

Let $\beta \in \mathbb{R}$, $\alpha < \beta < 1$. There exists $N \in \mathbb{N}$ such that $|a_N|^{\frac{1}{n}} \leq \beta$ for $n \geq N$. That means $|a_n| = O(\beta^n)$ since $0 < \beta < 1$, $\sum_{n \in \mathbb{N}} a_n$ converges absolutely.

(2)

If $\alpha > 1$ then $\forall N \in \mathbb{N} \quad \exists n \geq N$ such that $|a_n|^{\frac{1}{n}} \geq 1$, since otherwise $\exists N \in \mathbb{N} \ \forall n \geq N, |a_n|^{\frac{1}{n}} < 1$ contradiction Hence $(|a_n|)_{n \in \mathbb{N}}$ cannot converge to 0.

Part III
Topology

Absolute value and norms

10.1 Def

Let K be a field . By absolute value on K, we mean a mapping $|\cdot|:K\to\mathbb{R}_{\geq 0}$ that satisfies:

- (1) $\forall a \in K \quad |a| = 0 \text{ iff } a = 0$
- $(2) \ \forall (a,b) \in K^2 \quad |ab| = |a| \cdot |b|$
- (3) $\forall (a,b) \in K^2 \quad |a+b| \le |a| + |b|$ (triangle inequality)

10.2 Notation

 \mathbb{Q} Take a prime num $p \ \forall \alpha \in \mathbb{Q} \setminus \{0\}$ there exists a integer $ord_p(\alpha) \frac{a}{b}$, where $a \in \mathbb{Z} \setminus \{0\}$ $b \in \mathbb{N} \setminus \{0\}$

10.3 Prop

$$\mathbb{Q} \to \mathbb{R}_{\geq 0}$$

$$|\cdot| : \alpha \mapsto \begin{cases} p^{-ord_p(\alpha)} & \text{if } \alpha \neq 0\\ 0 & \text{if } \alpha = 0 \end{cases}$$

is a absolute value on $\mathbb Q$

Proof

(1) Obviously

(2) If
$$\alpha = p^{ord_p(\alpha)} \frac{a}{b}, \beta = p^{ord_p(\beta)} \frac{c}{d} \quad p \nmid abcd$$

$$\alpha\beta = p^{ord_p(\alpha) + ord_p(\beta)} \frac{ac}{bd} \quad p \nmid ac, p \nmid bd$$

$$\begin{aligned} (3) & \ \alpha+\beta = p^{ord_p(\alpha)} \frac{a}{b} + p^{ord_p(\beta)} \frac{c}{d} \\ & \text{Assume} \ ord_p(\alpha) \geq ord_p(\beta) \\ & \alpha+\beta \\ & = p^{ord_p(\beta)} \left(p^{ord_p(\alpha) - ord_p(\beta)} \frac{a}{b} + \frac{c}{d} \right) \\ & = p^{ord_p(\beta)} \frac{p^{ord_p(\alpha) - ord_p(\beta)} ad + bc}{bd} \quad p \nmid bd \\ & \text{So} \end{aligned}$$

$$ord_p(\alpha + \beta) \ge ord(\beta)$$

Hence
$$ord_p(\alpha + \beta) \ge \min\{ord_p(\alpha), ord_p(\beta)\}$$

So $|\alpha + \beta|_p = p^{-ord_p(\alpha + \beta)} \le \max\{p^{-ord_p(\alpha)}, p^{-ord_p(\beta)}\} = \max\{|\alpha|_p, |\alpha|_p\} \le |\alpha|_p, |\alpha|_p$

Quotient Structure

11.1 Def

Let X be a set and \sim be a binary relation on X If :

- $\forall x \in X, x \sim x$
- $\forall (x,y) \in X \times X$, if $x \sim y$ then $y \sim x$
- $\forall (x, y, z) \in X^3$, if $x \sim y, y \sim z$ then $x \sim z$

then we say that \sim is an equivalence relation

11.2 equivalence class

 $\forall x \in X$ we denote by [x] the set $\{y \in X \mid y \sim x\}$ and call it the equivalence class of x on X.Let X/\sim be the set $\{[x] \mid x \in X\}$

11.3 Prop.

Let X be a set and \sim be an equivalence relation on X

- (1) $\forall x \in X, y \in [x] \text{ on has } [x] = [y]$
- (2) If α and β are elements of X/\sim such that $\alpha\neq\beta$ then $\alpha\cap\beta=\varnothing$
- (3) $X = \bigcup_{\alpha \in X/\sim} \alpha$

Proof

- (1) Let $z \in [y]$. Then $y \sim z$. Since $y \in [x]$ on has $x \sim y$ Therefore $x \sim z$ namely $z \in [x]$. This proves $y[] \subseteq [x]$. Moreover ,since $x \sim y$, one has $x \in [y]$. Hence $[x] \subseteq [y]$. Thus we obtain [x] = [y]
- (2) Suppose that $\alpha \cap \beta \neq \emptyset, y \in \alpha \cap \beta$ By $(1), \alpha = [y], \beta = [y]$, Thus leads to a contradiction.
- (3) $\forall x \in X \quad x \in [x] \text{ Hence } x \in \bigcup_{\alpha \in X/\sim} \alpha \text{Hence } X \subseteq \bigcup_{\alpha \in X/\sim} \alpha. \text{Conversely,}$ $\forall \alpha \in X/\sim, \alpha \text{ is a subset of } X. \text{ Hence } \bigcup_{\alpha \in X/\sim} \alpha \subseteq X. \text{Then } X = \bigcup_{\alpha \in X/\sim} \alpha$

11.4 Def

Let G be a group and X be a set We call left/right action of G on X ant mapping $G \times X \to X : (g,x) \mapsto gx/(g,x) \mapsto xg$ that satisfies:

- $\forall x \in X$ 1x = x / x1 = x
- $\forall (g,h) \in G^2, x \in X$ g(hx) = (gh)x / (xg)h = x(gh)

11.5 Remark

If we denote by G^{op} the set G equipped with the composition law:

$$G \times G \to G$$

$$(g,h) \mapsto hg$$

The a right action of G on X is just a left action of G^{op} on X.

11.6 Prop

Let G be a group and X be a set . Assume given a left action of G on X. Then the binary relation \sim on X defined as $x \sim y$ iff $\exists g \in G \quad y = gx$ is an equivalence relation

11.7 Notation on Equivalence Class

We denote by G/X the set $X/\sim \forall x\in X$ the equivalence class of x is denoted as Gx/xG or $orb_G(x)$ call the orbit of x under the action of G

11.8. PROOF 51

11.8 Proof

- $\forall x \in X \quad x = 1x \text{ so } x \sim x$
- $\forall (x,y) \in X^2$ if y = gx for same $g \in G$ then $g^{-1}y = g^{-1}(gx) = (g^{-1}g)x = 1x = x.(y \sim x)$
- $\forall (x,y,z) \in X^3$, if $\exists (g,h) \in G^2$, such that y=gx and then z=h(gx)=(hg)x So $x \sim z$

11.9 Quotient set

Let X be a set and \sim be an equivalence relation, the mapping $X \to X/\sim$: $(x \in X) \mapsto [x]$ is called the projection mapping. X/\sim is called the quotient set of X by equivalence relation \sim

11.9.1 Example

Let G be a group and H be a subgroup of G. Then the mapping

$$H \times G \to G$$

$$(h,g) \mapsto hg/(h,g) \mapsto gh$$

is a left/right action of H on G. Thus we obtain two quotient sets H/G and G/H

11.10 Def

Let G be a group and H be a subgroup of G. Ig $\forall g \in G, h \in H$ $ghg^{-1} \in H$, Then we say that H is a normal subgroup of G

11.11 Remark

 $\forall g \in G, gH = Hg$, provided that H is a normal subgroup of G. In fact $\forall h \in$,

- $\exists h' \in H$ such that $ghg^{-1} = h'$ Hence gh = h'g. This shows $gH \subseteq Hg$
- $\exists h'' \in H$ such that $g^{-1}hg = h''$ Hence hg = gh''. This shows $Hg \subseteq gH$

Thus gH = Hg

11.12 Prop

If G is commutative, any subgroup of G is normal

11.13 Theorem

Let G be a group and H be a normal subgroup of G. Then the mapping

$$G/H \times H/G \rightarrow G/H$$

$$(xH, Hx) \mapsto (xy)H$$

is well defined and determine a structure of group of quotient set G/H Moreover the projection mapping

$$\pi:G\to G/H$$

$$x \mapsto xH$$

is a morphism of groups.

Proof

- If xH = x'H, yH = y'H then $\exists h_1 \in H, h_2 \in H$ such that $x' = xh_1, y' = yh_2$ Hence $x'y' = xh_1yh_2 = (xy)(y^{-1}h_1y)h_2$. For $y^{-1}h_1y, h_2 \in H$ then (x'y')H = (xy)H. So the mapping is well defined.
- $\forall (x,y,x) \in G^3$ $(xH)(yH \cdot zH) = xH((yx)H) = (x(yz)H = ((xy)z)H = ((xy)H)zH = (xH \cdot yH)zH)$
- $\bullet \ \forall x \in G \quad 1H \cdot xH = xH \cdot 1H = xH \quad x^{-1}HxH = xHx^{-1}H = 1H$
- $\pi(xy) = (xy)H = xH \cdot yH = \pi(x)\pi(y)$

11.14 Def

Let K be a unitary ring and E be a left K-module. We say that a subgroup F og (E, +) is a left sub-K-module of E if $\forall (a, x) \in K \times F, ax \in F$

11.15 Prop

Let K be a unitary ring , E be a left K-module and F be a sub-K-module. Then the mapping

$$K \times (E/F) \to E/F$$

$$(a, [x]) \mapsto [ax]$$

is well defined , and defines a left-K-module structure on E/F. Moreover, the projection mapping $pi: E \to E/F$ is a morphism of left-K-modules

11.16. DEF 53

Proof

Let x and x' be elements of E such that [x] = [x'], that meas: $x' - x \in F$ Hence $a(x' - x) = ax' - ax \in F$ So [ax] = [ax']Let us check that E/F forms a left K-module.

- a([x] + [y]) = a([x + y]) = [a(x + y)] = [ax + ay] = [ax] + [ay]
- (a+b)[x] = [(a+b)x] = [ax+bx] = [ax] + [bx]
- 1[x] = [1x] = [x]
- a(b[x]) = a[bx] = [a(bx)] = [(ab)x] = (ab)[x]

By the provided proposition, π is a morphism of groups. Moreover $\forall x \in E, a \in K$ $\pi(ax) = [ax] = a[x] = a\pi(x)$

11.16 Def

Let A be a unitary ring . We call two-sided ideal any subgroup I of (A,+) that satisfies : $\forall x \in I, a \in A \quad \{ax, xa\} \subseteq I()$ (I is a left and right sub-K-module of A)

11.17 Theorem

Let A be a unitary ring and I be a two sided ideal of A. The mapping

$$(A/I) \times (A/I) \to A/I$$

$$([a],[b]) \mapsto [ab]$$

is well defined. Moreover, A/I becomes a unitary ring under the addition and this composition law, and the projection mapping

$$A \stackrel{\pi}{\longrightarrow} A/I$$

is a morphism of unitary ring (if is a morphism of additive groups and multiplicative monoids, namely $\pi(a+b) = \pi(a) + \pi(b), \pi(ab) = \pi(a)\pi(b), \pi(1) = 1$)

Proof

If $a' \sim a, b' \sim b$ that means $a' - a \in I, b' - b \in I$ then a'b' - ab = a'b' - a'b + a'b - ab = a'(b' - b) + (a' - a)b. For $(a' - a), (b' - b) \in I$, then $a'b' - ab \in I$ Therefore $a'b' \sim ab$

11.17.1 Reside Class

Let $d \in \mathbb{Z}$ and $d\mathbb{Z} = \{n \in \mathbb{Z} \mid \exists m \in \mathbb{Z}, n = dm\} \ d\mathbb{Z}$ is a two sided ideal of \mathbb{Z} If $m \in \mathbb{Z}$, for any $a \in \mathbb{Z}$ $adm = dma \in d\mathbb{Z}$

Denote by $\mathbb{Z}/d\mathbb{Z}$ the quotient ring. The class of $n \in \mathbb{Z}$ in $\mathbb{Z}/d\mathbb{Z}$ is called the reside class of n modulo d

If A is a commutative unitary ring, a two sided ideal of A is simply called an ideal of A

11.18 Theorem

Let $f: G \to H$ be a morphism of groups

- (1) Im(f) is a subgroup of H
- (2) $\ker(f) := \{x \in G \mid f(x) = 1_H\}$ is a normal subgroup of G
- (3) The mapping

$$\widetilde{f}: G/Ker(f) \to Im(f)$$
 $[x] \mapsto f(x)$

is well defined and is an isomorphism of groups

(4) f is injective iff $\ker(f) = \{1_G\}$

Proof

- (1) Let α and β be elements of Im(f). Let $(x,y) \in G^2$ such that $\alpha = f(x), \beta = f(y)$ Then $\alpha\beta^{-1} = f(x)f(y)^{-1} = f(xy^{-1}) \in Im(f)$ So Im(f) is a subgroup
- (2) Let x and y be elements of $\ker(f)$. One has $f(xy^{-1}) = f(x)f(y)^{-1} = 1_H 1_H^{-1} = 1_H$ So $xy^{-1} \in \ker f$. Hence $\ker f$ is a subgroup of G Let $x \in \ker f, y \in G$. One has $f(yxy^{-1}) = f(y)f(x)f(y)^{-1} = f(y)f(y)^{-1} = 1_H$ Hence $yxy^{-1} \in \ker f$. So $\ker f$ is a normal subgroup
- (3) If $x \sim y$ then $\exists z \in \ker f$ such that y = xz Hence $f(y) = f(x)f(z) = f(x)1_H = f(x)$ So f is well defined. Moreover $\widetilde{f}([x][y]) = \widetilde{f}([xy]) = f(xy) = f(x)f(y) = f([x])f([y])$ Hence \widetilde{f} is a morphism of groups. By definition $Im(\widetilde{f}) = Im(f)$ If x and y are elements of x such that x such that x is a such that x such that x is a such that x

11.19. THEOREM

55

(4) If f is injective $\forall x \in \ker f$ $f(x) = 1_H = f(1_G)$, so $x = 1_G$. Therefore $\ker f\{1_G\}$ Conversely, suppose that $\ker f = \{1_G\} \quad \forall (x,y) \in G^2 \text{ if } f(x) = f(y) \text{ then } f(x)f(y)^{-1} = 1_H$. Hence $xy^{-1} = 1_G, x = y$

11.19 Theorem

Let K be a unitary ring and $f:E\to F$ be a morphism of left K-modules. Then

- (1) Im(f) is a left-sub-K-module of F
- (2) $\ker(f)$ is a left-sub-K-module of E
- (3) $\widetilde{f}:E/\ker f\to Im(f)$ is a isomorphism of left K-modules $[x]\mapsto f(x)$

Proof

- (1) $\forall x \in E$, f(ax) = af(x) So $af(x) \in Im(f)$
- (2)
- (3)

Topology

12.1 Def

Let X be a set. We call topology on X any subset $\mathcal J$ of $\wp(x)$ that satisfies:

- $\emptyset \in \mathcal{J}$ and $X \in \mathcal{J}$
- If $(u_i)_{i\in I}$ is an arbitrary family of elements in \mathcal{J} , then $\bigcup_{i\in I} u_i \in \mathcal{J}$
- If u and v are elements of \mathcal{J} , then $u \cap v \in \mathcal{J}$

12.2 Remark

If $(u_i)_i^n = 1$ is a finite family of elements of \mathcal{J} , then $\bigcap_{i=1}^n u_i \in \mathcal{J}$ (by induction, this follows from (3))

12.2.1 Example

 $\{\phi, X\}$ is a topology. call the trivial topology on $\wp(X)$ is a topology called the discrete topology.

12.3 Def

Let X be a set. We call metric on X any mapping $d: X \times X \to \mathbb{R}_{\geq 0}$, that satisfies

- d(x,y) = 0 iff x=y
- $\forall (x,y) \in X^2, d(x,y) = d(y,x)$
- $\forall (x, y, z) \in X^3$ $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

(X,d) is called a metric space

12.3.1 Example

Let X be a set

$$d: X^2 \to \mathbb{R}_{\geq 0}$$

$$d(x, y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

is a metric

12.4 Def

Let (X,d) be a metric space. For any $x \in X$, $\epsilon \in \mathbb{R}_{\geq 0}$, let $B(x,\epsilon) := \{y \in X \mid d(x,y) \leq \epsilon\}$ We call the open ball of radius ϵ centered at x

12.4.1 Example

Consider (\mathbb{R}, d) with d(x, y) = |x - y|, then $B(x, \epsilon) = |x - \epsilon, x + \epsilon|$

12.5 Prop.

Let (X,d) be a metric space . let \mathcal{J}_d be the set of $U \subseteq X$ such that $\forall x \in U \exists \epsilon > 0$ $B(x, \epsilon) \subseteq U$ THen \mathcal{J}_d is a topology on X

Proof

- $\varnothing \in \mathcal{J}_d \quad X \in \mathcal{J}_d$
- Let $(u_i)_{i\in I}$ be a family of elements of \mathcal{J}_d Let $U = \bigcup_{i\in I} u_i, \ \forall x\in U, \exists i\in I$ such that $x\in u_i$. Since $u_i\in \mathcal{J}_d, \exists \epsilon>0$ such that $B(x,y)\subseteq u_i\subseteq U$ Hence $U\in \mathcal{J}_d$
- Let U and V be elements of \mathcal{J}_d Let $x \in U \cap V \exists a, b \in \mathbb{R}_{\geq 0}$ such that $B(x,a) \subseteq U, B(x,b) \subseteq V$ Taking $\epsilon = \min\{a,b\}$, Then $B(x,\epsilon) = B(x,a) \cap B(x,b) \subseteq U \cap V$ Therefore $U \cap V \in \mathcal{J}_d$

12.6 Def

 \mathcal{J}_d is called the topology induced by the metric d

12.7. DEF 59

12.7 Def

We call topology space any pair (X, \mathcal{J}) where X is a set and \mathcal{J} is a topology on X

Given a topological space (X, \mathcal{J}) If $U \in \mathcal{J}$ then we say that U is an open subset of X. If $F \in \wp(X)$ such that $X \setminus F \in \mathcal{J}$, then we say that F is closed subset of X

If there exists d a metric on X such that $\mathcal{J} = \mathcal{J}_d$ then we say that \mathcal{J} is metrizable

12.7.1 Example

Let X be a set . The discrete topology on X is metrizable. In fact,m if d denote the metric defined as $d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$ $\forall x \in X \quad B(x,1) = \{x\} \text{ So } \{x\} \in \mathcal{J}_d \text{ Hence } \forall A \subseteq X \quad A = \bigcup_{x \in A} \{x\} \in \mathcal{J}_d$

12.8 Axiom of choice

For any set I and any family $(A_i)_{i\in I}$ of non-empty sets , there exists a mapping $f:I\to\bigcup_{i\in I}A_i$ such that $\forall i\in I, f(i)\in A_i$

12.9 Def

Let (X, \leq) be a partially ordered set If $\forall A \subseteq X$ A is non-empty, there exists a least element of A then we say that (X, \leq) is a well ordered set.

12.10 Theorem

For any set X, there exists an order relation \leq on such that (X, \leq) forms a well ordered set.

12.11 Zorn's lemma

Let (X, \leq) be a partially ordered set . If $\forall A \subseteq X$ that is totally ordered with respect to \leq , there exists an upper bound of A inside X. Then , there exists a maximal element x_0 of $X(\forall y \in X, y > x_0$ does not hold)

12.12 Prop.

Let (X, \leq) be a well ordered set , $y \notin X$. We extends \leq to $X \cup \{y\}$, such that $\forall x \in X, x < y$. Then $(X \cup \{y\}, \leq)$ is well ordered.

12.13 Proof

Let $A \subseteq X \cup \{y\}$, $A \neq \emptyset$. If $A = \{y\}$ then Y is the least element of A. If $A \neq \{y\}$ then $B = A \setminus \{y\}$ is non-empty. Let b be the least element of B. Since b < y it's also the least element of A

12.14 Def: Initial Segment

Let (X, \leq) be a well ordered set. $S \subseteq X$, If $\forall s \in S, x \in X$ x < s initial $x \in S(X_{\leq s} \subseteq S)$, then we say that S is an initial segment of X

If S is a initial segment such that S = X then we sat that S is a proper initial segment.

12.15 Example

 $\forall x \in X \quad X_{< x} = \{s \in X \mid s < x\} \text{ Then } X_{< x} \text{ is a proper initial segment of } X.$

12.16 Prop.

Let (X, \leq) be a well ordered set , If $(S_i)_{i \in I}$ is a family of initial segment of X, then $\bigcup_{i \in I} S_i$ is an initial segment of X

12.17 Proof

 $\forall s \in \bigcup_{i \in I} S_i, \exists i \in I \text{ such that } s \in S_i, i \in I \text{ Therefore } X_{\leq s} \subseteq \bigcup_{i \in I} S_i$

12.18 Prop.

Let $(X \leq 1)$ be a well erodered set.

- (1) Let S be a proper initial segment of X, $x = \min(X \setminus S)$ Then $S = X_{\leq x}$
- $(2) \begin{array}{c} X \to \wp(X) \\ x \mapsto X_{< x} \end{array}$
- (3) The set of all initial segments of X forms a well ordered subset of $(\wp(x), \subseteq)$

12.19 Proof

(1) $\forall s \in S$ if $x \leq s$ then $x \in S$ contradiction. Hence s < x, This shows $S \subseteq X_{< x}$ Conversely , if $t \in X, t \not\in X \setminus S$ Hence $t \in S$. Hence $X_{< x} \subseteq S$ 12.20. LEMMA 61

(2) Let $x, y \in X, x < y$ By definition $X_{< x} \subseteq X_{< y}$ Moreover $x \in X_{< y} \setminus X_{< x}$ So $X_{< x} \subsetneq X_{< y}$

(3) Let $\mathcal{F} \subseteq \wp(X)$ be a set of initial segments. $\mathcal{F} \neq \varnothing$. Then there exists $A \subseteq X$ such that $\mathcal{F} \setminus \{x\} = \{X_{\leq x} \mid x \in A\}$ If $A = \varnothing$ then $\mathcal{F} = \{X\}$, and $\{X\}$ is the least element of \mathcal{F} . Otherwise $A \neq \varnothing$ and A has a least element a. Then by(2) $X_{\leq a}$ is the least element of \mathcal{F}

12.20 Lemma

Let (X, \leq) be a well ordered set, $f: X \to X$ be a strictly increasing mapping. Then $\forall x \in X, x \leq f(x)$

Proof

Let $A = \{x \in X \mid f(x) < x\}$ If $A \neq \emptyset$, let a be the least element of A. By definition f(a) < a. Hence f(f(a)) < f(a) since f is strictly increasing . This shows $f(a) \in A$. But a is the least element of A, f(a) < a cannot hold: contradiction.

12.21 Prop

Let (X, \leq) be a well ordered set, S and T be two initial segment of X . If $f: S \to T$ is a bijection that's strictly increasing , then $S = T, f = Id_S$

Proof

We may assume $T\subseteq S$.Let $l:T\to S$ be the induction mapping and $g=l\circ f:S\to S$. Since g is strictly increasing , by the lemma , $\forall s\in S,s\le g(s)=f(s)\in T$. Since T is an initial segment, $s\in T$. Hence S=T Apply the lemma to f^{-1} we get $\forall s\in S,s\le f^{-1}(s)$ Hence $f(s)\le s$ Therefore f(s)=s

12.22 Def

Let (X, \leq) and (Y, \leq) be partially ordered sets. If $\exists f : X \to Y$ that's increasing and bijective, we say that (X, \leq) and (Y, \leq) are isomorphic

12.23 Def

Let (X, \leq) and (Y, \leq) be well ordered sets. If (X, \leq) is isomorphic to an initial segment of Y. We note $X \leq Y$ or $Y \succeq X$. If X is isomorphic to Y, we note $X \sim Y$. If $X \leq Y$ but $X \not\sim Y$, we note $X \prec Y$ or $Y \prec X$

12.24 Prop.

Let X and Y be well ordered sets. Among the following condition, one and only one holds.

$$X \prec Y \quad X \sim Y \quad X \succ Y$$

Proof

We construct a correspondence f from X to Y, such that $(x,y)\in \Gamma_f,$ iff $X_{< x}\sim Y_{< y}$

By the last proposition of Oct. 11, f is a function.

- If $a, b \in Dom(f)^2$, a < b, then $X_{< a} \subsetneq X_{< b}$ By definition, $Y_{< f(b)} \sim X_{< b}$ $Y_{< f(a)} \sim X_{< a}$ Hence $Y_{< f(a)}$ is isomorphic to a proper initial segment of $Y_{< f(b)}$. Therefore $Y_{f(a)}$ is a proper initial segment of $Y_{< f(b)}$. We then get f(a) < f(b). Thus f is strictly increasing.
- Let $a \in Dom(f)$ Let $x \in X, x < a$ Then $X_{< x}$ is a initial segment of $X_{< a} \sim Y_{< f(a)}$ Hence $\exists y \in Y \mid X_{< x} \sim Y_{< y}$ This shows that $x \in Dom(f)$. Hence Dom(f) is an initial segment of X. Applying this to f^{-1} , we get: Im(f) = Dom(f) is an initial segment of Y
- Either Dom(f) = X or Im(f) = Y. Assume that $x \in X \setminus Dom(f), y \in Y \setminus Im(f)$ are respectively the least elements of $X \setminus Dom(f)$ and $Y \setminus Im(f)$. Then we get $Dom(f) = X_{< x}, Im(f) = Y_{< y}$. We obtain $X_{< x} \sim Y_{< y}, (x, y) \in \Gamma_f$. Contradiction

•

Case 1
$$Dom(f) = X, Im(f) \subsetneq Y$$
 $X \prec Y$
Case 2 $Dom(f) \subsetneq X, Im(f) = Y$ $X \succ Y$
Case 3 $Dom(f) = X, Im(f) = Y$ $X \sim Y$

12.25 Lemma

Let (X, \leq) be a partially ordered set . $\mathfrak{S} \subseteq \wp(X)$. Assume that

- $\forall A \in \mathfrak{S}, (A, \leq)$ is a well-ordered set.
- $\forall (A,B) \in \mathfrak{S}^2$, either A is an initial segment of B, or B is a initial segment of A.

Let $Y = \bigcup_{A \in \mathfrak{S}} A$. Then (Y, \leq) is a well ordered set, and $\forall A \in \mathfrak{S}, A$ is an initial segment of Y.

Proof

- Let $A \in \mathfrak{S}, x \in A, y \in Y, y < x$. Since $Y = \bigcup_{B \in \mathfrak{S}} B, \exists B \in \mathfrak{S}$, such that $y \in B$. If $y \not\in A$ then $B \not\subseteq A$. Hence A is an initial segment of B. Hence $y \in A$. Contradiction
- Let $Z \subseteq Y, Z \neq \emptyset$. Then $\exists A \in \mathfrak{S}, A \cap Z \neq \mathfrak{S}$. Let m be the least element of $A \cap Z$. Let $z \in Z, B \in \mathfrak{S}$, such that $z \in B$. If $z \in A$, then $m \leq z$. If $z \notin A$, then A is an initial segment of B.

Since B is well ordered , if $m \not \leq z$ then z < m. Since $m \in A$, we het $z \in A$. Contradiction.

Therefore, m is the least element of Z.

12.26 Theorem(Zorn's lemma)

Let (X, \leq) be a partially ordered set. Suppose that any well-ordered subset of X has an upper bound on X, the X has a maximal element (a maximal element m of $\{x \mid x > m\} = \emptyset$)

Proof

Suppose that X doesn't have any maximal element. $\forall A \in \omega. \exists f(A)$ such that $\forall a \in A, a < f(A)$

Let

$$\omega = \{ \text{well ordered subset of X} \}$$

. (guaranteed by axiom of choice)

Let $f: \omega \to X$ such that f(A) is an upper bound of $A \in \omega$.

If $A \in \omega$ satisfies

$$\forall a \in Aa = f(A_{< a})$$

, we say that A is a f-set

Let

$$\mathfrak{S} = \{f - sets\}$$

Note that

$$\varnothing \in \mathfrak{S}$$

if

$$\forall A \in \mathfrak{S}, A \cap \{f(A)\} \in \mathfrak{S}$$

In fact, if $a \in A$, then

$$A_{\leq a} = (A \cup \{f(A)\})_{\leq a}$$

If $a = f(A) \not\in A$ then

$$(A \cup \{f(A)\})_{\leq a} = A$$

Let A and B be elements of \mathfrak{S} . Let I be the union of all common initial segments of A and B. This is also a common initial segment of A and B. If $I \neq A$ and $I \neq B$, then

$$\exists (a,b) \in A \times B, I = A_{\leq a} = B_{\leq b} \quad f(I) = f(A_{\leq a}) = f(B_{\leq b})$$

. Hence

$$a = b$$

. Then $I \cup \{a\}$ is also a common initial segment of A and B, contradiction. By the lemma ,

$$Y:=\bigcup_{A\in\mathfrak{S}}A$$

is well-ordered , and $\forall A \in \mathfrak{S}$ is an initial segment of Y. Since A is an initial segment of Y

$$\forall a \in Y, \exists A \in \mathfrak{S} \quad a \in AA_{\leq a} = Y_{\leq a}$$

. Hence

$$f(Y_{< a}) = f(A_{< a}) = a$$

. Hence

$$y \in \mathfrak{S}$$

. Thus Y is the greatest element of (\mathfrak{S},\subseteq) . However,

$$Y \cup \{f(Y)\} \in \mathfrak{S}$$

. Hence

$$f(y) \in Y$$

If f(y) is not a maximal element of X

$$\exists x \in X, f(y) < x$$

Filter

13.1 Def

Let Xbe a set. We call filter if X any $\mathcal{F} \subseteq \wp(x)$ that satisfies:

- (1) $\mathcal{F} \neq \emptyset, \emptyset \notin \mathcal{F}$
- (2) $\forall A \in \mathcal{F}, \forall B \in \wp(X), \text{ if } A \subseteq B, \text{ then } B \in \mathcal{F}$
- (3) $\forall (A, B) \in \mathcal{F} \times \mathcal{F}, A \cap B \in \mathcal{F}$

13.1.1 Example

- (1) Let $Y \subseteq X, Y \neq \emptyset$. $\mathcal{F}_Y := \{A \in \wp(X) \mid Y \subseteq A\}$ is a filter, called the principal filter of Y.
- (2) Let X be an infinite set.

$$\mathcal{F}_{Fr}(X) := \{ A \in \wp(X) \mid X \backslash A \text{is infinite} \}$$

is a filter called the Fréchet filter of X.

(3) Let (X, \mathcal{J}) be a topological space, $x \in X$ We call neighborhood of x any $V \in \wp(X)$ such that $\exists u \in \mathcal{J}$, satisfying $x \in U \subseteq V$. Then $\mathcal{V} = \{\text{neighborhoods of } x\}$ is a filter.

13.2 Def: Filter Basis

Let X ba a set. $\mathscr{B} \subseteq \wp(X)$. If $\varnothing \notin \mathscr{B}$ and $\forall (B_1, b_2) \in \mathscr{B}^2, \exists B \in \mathscr{B}$, such that $B \subseteq B_1 \cap B_2$. We say that \mathscr{B} is a filter basis.

13.2.1 Remark

If \mathscr{B} is a filter basis, then $\mathcal{F}(\mathscr{B}) = \{A \subseteq X \mid \exists B \in \mathscr{B} \mid B \subseteq A\}$ is a filter

Proof

 $\varnothing \notin \mathcal{F}(\mathscr{B}), \mathcal{F}(\mathscr{B}) \neq \varnothing$ since $0 \neq B \subseteq \mathcal{F}(\mathscr{B})$. If $A \in \mathcal{F}(\mathscr{B}), A' \in \wp(X)$ such that $A \subseteq A'$, then $\exists B \in \mathscr{B}$ such that $B \subseteq A \subseteq A'$. Hence $A' \in \mathcal{F}(\mathscr{B})$ If $A_1, A_2 \in \mathcal{F}(\mathscr{B})$, then $\exists (B_1, B_2) \in \mathscr{B}^2$ such that $B_1 \subseteq A_1, B_2 \subseteq A_2$. Since \mathscr{B} is a filter basis, $\exists B \in \mathscr{B}$ such that $B \subseteq B_1 \cap B_2 \subseteq A_1 \cap A_2$ Hence $A_1 \cap A_2 \in A_1 \cap A_2 \in A_1 \cap A_2 \in \mathcal{F}(\mathscr{B})$

13.2.2 Example

- Let $Y \subseteq X, Y \neq \emptyset$ $\mathscr{B} = \{Y\}$ is a filter basis. $\mathcal{F}(\mathscr{B}) = \mathcal{F}_Y = \{A \subseteq X \mid Y \subseteq A\}$
- Let (X, \mathcal{J}) be a topological space $x \in X$. If \mathscr{B}_x is a filter basis such that $\mathcal{F}(\mathscr{B}) = \mathcal{V}_x = \{\text{neighborhood of } x\}$, then we say that \mathscr{B}_x is a neighborhood basis of x

13.3 Remark

Let \mathcal{B}_x is a neighborhood basis of x iff

- $\mathscr{B}_x \subseteq \mathcal{V}_x$
- $\forall V \in \mathcal{V}_x \quad \exists U \in \mathscr{B}_x \text{ such that } U \subseteq V$
- Let (X, d) be a metric space, $x \in X \forall \epsilon > 0$, Let

$$B(x,\epsilon) = \{ y \in X \mid d(x,y) < \epsilon \}$$

$$\overline{B}(x,\epsilon) = \{ y \in X \mid d(x,y) \le \epsilon \}$$

Then

- $-\{B(x,\epsilon) \mid \epsilon > 0\}$ is a neighborhood basis of x
- $-\{\overline{B}(x,\frac{1}{n})\mid n\in\mathbb{N}_{>1}\}$ is a neighborhood basis of x
- $\{B(x,\epsilon) \mid \epsilon > 0\}$ is a neighborhood basis of x
- $-\{\overline{B}(x,\frac{1}{n})\mid n\in\mathbb{N}_{\geq 1}\}$ is a neighborhood basis of x

13.3.1 Example

 $\mathcal{V}_x \cap \mathcal{J}$ is a neighborhood basis of x

13.4 Def

 $V \in \wp(X)$ is called a neighborhood of x if $\exists U | in \mathcal{J}$ such that $x \in U \subseteq V$

13.5. REMARK 67

13.5 Remark

Let (X, \mathcal{J}) be a topological space, $x \in X$ and \mathscr{B}_x a neighborhood basis os x. Suppose that \mathscr{B} is countable. We choose a surjective mapping $(B_n)_{n \in \mathbb{N}}$ from \mathbb{N} to \mathscr{B}_x . For any $n \in \mathbb{N}$, let $A_n = B_0 \cap B_1 \cap \ldots \cap B_n \in \mathcal{V}_x$ The sequence $(A_n)_{n \in \mathbb{N}}$ is decreasing adn $\{A_n \mid n \in \mathbb{N}\}$ is a neighborhood basis of x.

13.6 Extra Episode

 $\wp(\mathbb{N})$ is NOT countable

Suppose that $f: \wp(\mathbb{N}) \to \mathbb{N}$ injective. Then $\exists g: \mathbb{N} \to \wp(\mathbb{N})$ surjective. Taking $A = \{n \in \mathbb{N} \mid n \notin g(n)\}$. Since g is surjective, $\exists a \in \mathbb{N}$ such that A = g(a).

If $a \in A$, then $a \in g(a)$, hence $a \notin A$

If $a \notin A$, then $a \in g(a) = A$

Contradiction

13.7 Prop.

Let Y and R be sets, $g: Y \to E$ be a mapping,

• If \mathcal{F} is a filter of Y, then

$$G_*(\mathcal{F}) := \{ A \in \wp(E) \mid g^{-1}(A) \in \mathcal{F} \}$$

is a filter on E

• If \mathcal{B} is a filter basis of Y, then

$$g(\mathcal{B}) := \{g(B) \mid B \in \mathcal{B}\}$$

is a filter of E, adn $\mathcal{F}(g(\mathscr{B})) = g_*(\mathcal{F}(\mathscr{B}))$

Proof

- (1) $E \in g_x(\mathcal{F})$ since $g^{-1}(E) = Y$ $\varnothing \notin g_x(\mathcal{F})$ since $g^{-1}(\varnothing) = \varnothing$
 - If $A \in g_x(\mathcal{F})$ and $A' \supseteq A$, then $g^{-1}(A') \supseteq g^{-1}(A) \in \mathcal{J}$, so $g^{-1}(A') \in \mathcal{J}$, Hence $A' \in g_x(\mathcal{F})$
 - If $A_1, A_2 \in g_x(\mathcal{F})$. Then $g^{-1}(A_1) \in \mathcal{F}, g^{-1}(A_2) \in \mathcal{F}$ Hence $g^{-1}(A_1 \cap A_2) = g^{-1}(A_1) \cap g^{-1}(A_2) \in \mathcal{F}$. So $A_1 \cap A_2 \in g_x(\mathcal{F})$.
- (2) Since g is a mapping , and $\varnothing \not\in \mathscr{B}$, we get $\varnothing \not\in g(\mathscr{B})$, since $\mathscr{B} \neq \varnothing, g(\mathscr{B}) \neq \varnothing$.

Let $B_1, B_2 \in \mathcal{B}$, there exists $C \in \mathcal{B}$ such that $C \subseteq B_1 \cap B_2$. Hence $g(C) \subseteq g(B_1) \cap g(B_2)$, namely $g(\mathcal{B})$ is a filter basis.

Limit point and accumulation point

We fix a topological space (X, \mathcal{J})

14.1 Def

Let \mathcal{F} be a filter of X and $x \in X$

- If $\mathcal{V}_x \subseteq \mathcal{F}$ then we say that x is an limit point of \mathcal{F}
- If $\forall (A, V) \in \mathcal{F} \times \mathcal{V}_x, A \cap V \neq \emptyset$, we say that x is an accumulation point of \mathcal{F}

So any limit point of \mathcal{F} is necessarily a accumulation point of mathcal F

14.2 Prop

Let \mathscr{B} be a filter basis of X, $x \in X$, \mathscr{B}_x a neighborhood basis of x. Then x is an accumulation point of $\mathcal{F}(\mathscr{B})$ iff $\forall (B,U) \in \mathscr{B} \times \mathscr{B}_x$, $B \cap U \neq \varnothing$

Proof

Necessity

Since $\mathscr{B} \subseteq \mathcal{F}(\mathscr{B}), \mathscr{B} \subseteq \mathcal{V}_x$, the necessity is true.

Sufficiency

Let $(A, V) \in \mathcal{F}(\mathscr{B}) \times \mathcal{V}_x$. There exist $B \in \mathscr{B}, U \in \mathscr{B}_x$, such that $B \subseteq A, U \subseteq V$. Hence $\varnothing \neq B \cap U \subseteq A \cap V$

14.3 Def

Let $Y\subseteq X, Y\neq\varnothing$. W call accumulation point of Y any accumulation point of the principal filter $\mathcal{F}=\{A\subseteq X\mid Y\subseteq A\}$. We denote by $\overline{Y}=\{\text{accumulation points of }Y\}$. Note that $x\in\overline{Y}$ iff $\forall U\in\mathscr{B}_x,Y\cap U\neq\varnothing$ By convention $\overline{\varnothing}=\varnothing$

14.4 Prop

Let $Y \subseteq X$. Then \overline{Y} is the smallest closed subset of X containing Y.

Proof

 $\forall x \in X \setminus \overline{Y}$, then there exists $U_x = \mathcal{V} \cap \mathcal{J}$, such that $Y \cap U_x = \emptyset$. Moreover, $\forall y \in U_x, U_x \in \mathcal{V}_y \cap \mathcal{J}$. This shows that $\forall y \in U_x, y \notin \overline{Y}$. Therefore $X \setminus \overline{Y} = \bigcap_{x \in X \setminus \overline{Y}} U_x \in \mathcal{J}$

Let $Z \subseteq X$ be a closed subset that contain Y. Suppose that $\exists y \in \overline{Y} \backslash Z$. Then $U = X \backslash Z \in \mathcal{V}_y \cap \mathcal{J}$ and $U \cap Y \subseteq U \cap Z = \emptyset$. So $y \notin \overline{Y}$ contradiction. Hence $\overline{Y} \subseteq Z$.

Limit of mappings

15.1 Def

Let (E, \mathcal{J}_E) be a topological space . $f: Y \to E$ a mapping , and \mathcal{F} eb a filter of Y. If $a \in E$ is a limit point of $F_*(\mathcal{F})$ namely , \forall neighborhoodV of $a, f^{-1}(V) \in \mathcal{F}$, then we say that a is a limit of the filter \mathcal{F} by f

15.2 Remark

Let \mathscr{B}_a be a neighborhood basis of a. Then $\mathcal{V}_a \subseteq f_x(\mathcal{F})$, iff $\mathscr{B} \subseteq f_*(\mathcal{F})$ Therefore, a is a limit of \mathcal{F} by f iff $\forall V \in \mathscr{B}_a, f^{-1}(V) \in \mathcal{F}$

15.2.1 Example

Let (E, \mathcal{J}_E) be a topological space. $I \subseteq \mathbb{N}$ be an infinite subset, $x = (x_n)_{n \in I} \in E^I$. If the Fréchet filter $\mathcal{F}_{Fr}(I)$ has a limit $a \in E$ by the mapping $x : I \to E$, we say that $(x_n)_{n \in I}$ converges to a ,denote as

$$a = \lim_{n \in I, n \to +\infty} x_n$$

15.3 Remark

 $a = \lim_{n \in I, n \to +\infty} x_n \text{ iff, } \forall U \in \mathscr{B}_a \text{(where } \mathscr{B}_a \text{ is a neighborhood basis of } a), \\ \exists N \in \mathbb{N} \text{ such that } x_n \in U \text{ for any } n \in I_{\geq N}$

Suppose that \mathcal{J}_E is induced by a metric $d.\{B(a,\epsilon) \mid \epsilon > 0\}, \{\overline{B}(a,\epsilon) \mid \epsilon > 0\}\{B(a,\frac{1}{n}) \mid n \in \mathbb{N}_{\geq 1}\}\{\overline{B}(a,\frac{1}{n}) \mid n \in \mathbb{N}_{\geq 1}\}$ are all neighborhood basis of a. There fore, the following are equivalent

- $a = \lim_{n \in i, n \to +\infty} x_n$
- $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in I_{>N}, d(x_n, a) < \epsilon$

- $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in I_{>N}, d(x_n, a) \leq \epsilon$
- $\forall k \in \mathbb{N}_{\geq 1}, \exists N \in \mathbb{N}, \forall n \in I_{\geq N}, d(x_n, a) < \frac{1}{n}$
- $\forall k \in \mathbb{N}_{>1}, \exists N \in \mathbb{N}, \forall n \in I_{>N}, d(x_n, a) \leq \frac{1}{n}$

 $(x^{-1}(B(a,\epsilon)) = \{n \in I \mid d(x_n,a) < \epsilon\}$? unknown position)

15.4 Remark

We consider the metric d on \mathbb{R} defined as

$$\forall (x, x) \in \mathbb{R}^2 \quad d(x, y) := |x - y|$$

The topology of \mathbb{R} defined by this metric is called the usual topology on \mathbb{R}

15.5 Prop

Let $(x_n)_{n\in I}\in\mathbb{R}^I$, where $I\subseteq\mathbb{N}$ is an infinite subset. Let $l\in\mathbb{R}$. The following statements are equivalent:

- The sequence $(x_n)_{n\in I}$ converges to l in the topological space \mathbb{R}
- $\liminf_{n \in I, n \to +\infty} x_n = \limsup_{n \in I, n \to +\infty} x_n = l$
- $\bullet \lim \sup_{n \in I, n \to} |x_n l| = 0$

15.6 Theorem

Let (X,d) be a metric space .Let $I \subseteq \mathbb{N}$ be an infinite subset and $(x_n)_{n \in I}$ be an element of X^I . Let $l \in X$. The following statements are equivalent:

- $(x_n)_{n\in I}$ converges to l
- $\limsup_{n \in I, n \to +\infty} d(x_n, l) = 0$ (equivalent to $\lim_{n \in I, n \to +\infty} d(x, l) = 0$)

Proof

- (1) \Rightarrow (2) The condition (1) is equivalent to $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in I_{\geq N}, d(x_n, l) < \epsilon$. We then get $\sup_{n \in I_{geqN}} d(x, l) \leq \epsilon$. Therefore $\limsup_{n \in I, n \to +\infty} d(x_n, l) \leq \epsilon$ We obtain that $\limsup_{n \in I, n \to +\infty} = 0$
- (2) \Rightarrow (1) Let $\epsilon \in \mathbb{R}_{>0}$ If $\inf_{N \in \mathbb{N}} \sup_{n \in I_{\geq N}} d(x_n, l) = 0$. Then $\exists N \in \mathbb{N}$ $\sup_{n \in I_{\leq N}} d(x_n, l) < \epsilon$. Hence $\forall n \in I_{\geq N} d(x_n, l) < \epsilon$. Since ϵ is arbitrary, (*) is true, Hence (1) is also true.

15.7. PROP 73

15.7 Prop

Let (X, \mathcal{J}) be a topological space . $Y \subseteq X, p \in \overline{Y} \setminus Y$. Then

$$\mathcal{V}_{p,Y} := \{ V \cap Y \mid V \in \mathcal{V}_p \}$$

is a filter of Y.

Proof

Y is not empty otherwise $\overline{Y} = \emptyset$.

- $Y = X \cap Y \in \mathcal{V}_{p,Y}$ $\varnothing \notin \mathcal{V}_{p,Y}$ since $p \in \overline{Y}$
- Let $V \in \mathcal{V}_p$ and $A \subseteq Y$ such that $V \cap Y \subseteq A$. Let $U = V \cup (A \setminus (V \cap Y)) \in \mathcal{V}_p$ and $U \cap Y = A \in \mathcal{V}_{p,Y}$
- Let U and V be elements of \mathcal{V}_p Let $W=U\cap V\in\mathcal{V}_p$ Then $W\cap Y=(U\cap Y)\cap (V\cap Y)\in\mathcal{V}_{p,Y}$

15.8 Def

Let (X, \mathcal{J}_x) and (E, \mathcal{J}_E) be topological spaces, $Y \subseteq X, p \in \overline{Y} \setminus Y$, and $f: Y \to E$ be a mapping . If a is a limit point of $(F_*(\mathcal{V}_{p,Y}))$, then we say that a is a limit of f when the variable $y \in Y$ tends to p, denoted as $a = \lim_{y \in Y, y \to p} f(y)$

15.9 Remark

If \mathscr{B}_a is a neighborhood basis of a. Then $a = \lim_{y \in Y, y \to p} f(y)$ is equivalent to $\forall U \in \mathscr{B}_a \quad \exists V \in \mathcal{V}_p \text{ such that } Y \cap V \subseteq f_{-1}(U) (\Leftrightarrow f(Y \cap V) \subseteq U)$

15.10 Prop

Let X be a set, \mathscr{B} be a filter basis, \mathscr{G} be a filter. If $\mathscr{B} \subseteq \mathscr{G}$, then $\mathcal{F} \subseteq \mathscr{G}$.

Proof

Let $V \in \mathcal{F}(\mathcal{B})$ By definition $\exists U \in \mathcal{B}$ such that $U \subseteq V$, since $U \in \mathcal{G}$ (for $\mathcal{B} \subseteq \mathcal{G}$) and since \mathcal{G} is a filter, $V \in G$

15.11 Theorem

Let (X, \mathcal{J}_x) and $(E < \mathcal{J}_E)$ be topological spaces. $Y \subseteq X, \ p \in \overline{T} \backslash Y, a \in E$. We consider the following conditions.

(i)
$$a = \lim_{y \in Y, y \to p} f(y)$$

(ii)
$$\forall (y_n)_{n\in\mathbb{N}} \in Y^{\mathbb{N}}$$
 if $\lim_{n\to+\infty} y_n = p$ then $\lim_{n\to\infty} f(y_n) = a$

The following statements are true

- If (i) holds, then (ii) also holds
- \bullet Assume that p has a countable neighborhood basis, then (i) and (ii) are equivalent.

Proof

(1) Let $(y_n)_{n\in\mathbb{N}}\in Y^{\mathbb{N}}$ such that $p=\lim_{n\to+\infty}y_n$. For any $U\in\mathcal{V}_p, \exists N\in\mathbb{N}$ such that $\forall n\in\mathbb{N}_{\geq N} \quad y\in U\cap Y. y_n\in U\cap Y$ Therefore

$$\mathcal{V}_{p,Y} \subseteq y_*(\mathcal{F}_{Fr}(\mathbb{N}))$$

We then get

$$f_*(\mathcal{V}_{p,Y}) \subseteq f_*(y_*(\mathcal{F}_{Fr}(\mathbb{N}))) = (f \circ y)_*(\mathcal{F}_{Fr}(\mathbb{N}))$$

Condition (i) leads

$$\mathcal{V}_a \subset f_*(\mathcal{V}_{r,Y}) \subset (f \circ y)_*(\mathcal{F}_{Fr}(\mathbb{N}))$$

This means

$$\lim_{n \to +\infty} f(y_n) = a$$

(2) Assume that p has a countable neighborhood basis . There exists a decreasing sequence $(V_n)_{n\in\mathbb{N}}\in\mathcal{V}_P^{\mathbb{N}}$ such that $\{V_n\mid n\in\mathbb{N}\}$ forms a neighborhood basis of p.

Assume that (i) does not hold. Then there exists $U \in \mathcal{V}_a$ such that,

$$\forall n \in \mathbb{N} \quad V_n \cap Y \not\subseteq f^{-1}(U)$$

Take an arbitrary

$$y_n \in (V_n \cap Y) \backslash f^{-1}(U)$$

Therefore,

$$\lim_{n \to +\infty} y_n = \emptyset$$

In fact,

$$\forall W \in \mathcal{V}_p, \exists N \in \mathbb{N} \quad V_N \subseteq W$$

Hence

$$\forall n \in \mathbb{N}_{>N} \quad y_n \in W$$

However $f(y_n) \notin U$ for any $n \in \mathbb{N}$, so $(f(y_n))_{n \in \mathbb{N}}$ cannot converges to a.