National College of Ireland

Masters in Science in Data Analytics (MSCDAD_A_JAN24I)
Masters in Science in Data Analytics (MSCDAD_B_JAN24I)
Masters in Science in Data Analytics (MSCDAD_C_JAN24I)

Database and Analytics Programming

Team Project (70%)

Semester 2, 2023/24

Submission deadline: TBC

1 Introduction

This project is designed to evaluate the learning objectives of the Database and Analytics Programming module as outlined below:

- LO1: Analyse, compare, contrast and critically evaluate the characteristics of programming languages, programming environments and database systems commonly utilised for data analytics solution implementation.
- LO2: Critically assess the challenges associated with processing big data datasets and compare and contrast programming for big data vis-à-vis programming for conventional datasets.
- LO3: Evaluate tools and techniques for managing the data pipeline and preparing data for further analysis through data wrangling, cleaning, and validation.
- LO4: Critically assess methods and practices for software development in order to design and implement data programming requirements.
- LO5: Evaluate, design and implement solutions for processing datasets by using key programming patterns and constructs for data analytics, relevant programming languages, and suitable database systems.

2 Objectives

The objective of this project is to identify and carry out a series of analyses on a collection of large datasets that are somehow related or complement each other, utilising appropriate programming languages, programming environments and database systems.

This project is a team project. Teams will have a **maximum of 3** members.

Your project must incorporate the following elements:

- 1. A minimum of two datasets should be used, of which at least one should be semi-structured. For teams of 3, a third dataset (semi-structured) will be required.
- 2. Datasets must be programmatically stored in appropriate database(s) prior to processing.
- 3. Programmatic pre-processing, transformation, analysis and visualisation of the data.
- 4. Programmatically storing the processed output data in appropriate databases.

For example, you could use Python to programmatically retrieve a semi-structured dataset (XML or JSON) or webscraped or streaming data) and store this data in MongoDB.

You could then use an ETL process (for instance, using Dagster or Luigi Python libraries) to read these data from MongoDB, to process and transform it, finally creating structured datasets that you store in PostgreSQL for later usage.

Following that you could use Python to conduct further analysis on these data to find interesting patterns my applying knowledge gained in other modules (e.g., statistical analysis, machine learning), and generate visualisations to better present the results.

Each dataset should contain at least 1,000 records. Some appropriate datasets may be found at:

- https://catalog.data.gov/dataset?res_format=XML
- http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/
- https://data.gov.ie/dataset?res_format=JSON
- https://catalog.data.gov/dataset?res_format=JSON
- https://data.worldbank.org/

A list of other potential sources will be posted on Moodle.

3 Deliverables

Project Report

The objectives, methodology and results of your analysis should be presented in the form of a project report. This report should discuss the programming and data processing challenges that you encountered and the means and mechanisms you implemented to overcome these challenges.

The report should be around 3,000 words in length (excluding references), should use appropriate academic style and referencing, and be presented in the IEEE conference format. Templates for Microsoft Word and LATEX can be downloaded from the IEEE¹.

The report should contain the following sections:

Abstract

This should provide a summary of the project objectives, methods and results. Take a look at abstracts from papers in your literature review to get an idea of what constitutes a good/bad

• Introduction

Here you should provide a short motivation for the project, describe the relevance of the topic and state the objectives of the project. Note that the proposed analysis should answer a novel question, which should be clearly stated by means of appropriately formed research question(s).

Related Work

In this section, you should summarise relevant academic work that addressed similar problems or guided your decisions. Note that this should be a **critical evaluation**. It should be more than a mere summary of the works and should discuss their limitations and implications.

¹ https://www.ieee.org/conferences_events/conferences/publishing/templates.html

Methodology

This section should contain:

- A detailed description of the underlying dataset(s) and your justification for choosing them.
- Full descriptions and justifications of the data processing activities carried out, such as use of APIs, databases, etc.
- Complete descriptions and justifications of the implemented data processing algorithms.
- Justifications for the choice of technologies used, such as programming languages, libraries and databases.
- Diagrams providing a visual overview of the data gathering, processing and analysis flow.

· Results and Evaluation

Here you should present the results of your work, making appropriate use of figures, tables, etc. You should provide evidence of how the project objectives were met, ensuring that you discuss your research findings, their interpretation(s) and implications.

• Conclusions and Future Work

In this section you should detail what others can/could learn from your work. You should discuss your findings in the context of the research question(s) you elicited earlier. You should present the limitations of your work, i.e. this should be a critical self-evaluation. Lastly, you should suggest potential directions for future work. Typically you would describe what you would do differently or how you would extend your work if you had more time.

Bibliography

Here you should provide a **complete list** of the academic works cited and online materials used in the project. References should be included as in-text citations **using the IEEE citation style**.

Project Presentation

As a team you should create a video presentation (maximum 10 minutes long) that will act as a discussion point for your work. It should be used to provide a discussion on what you did, how you did it, why you did it and what you discovered.

Note that although individual members will be presenting different parts of the video, each member of the team is expected to be able to present all aspects of the work individually and without assistance from other group members, if required.

Code Artefact

You should create a *zip* or *gz* archive all assets such as program code, data and system configuration details. If working as a team, there is an additional requirement for you to set up a **private** GitHub repository where each team member should commit their own code and any changes they make to code created by other team members.

Note: Having one team member be responsible for making all commits is not acceptable.

4 Submission

The project carries 70% of the total marks for the module, with a mark of 40% or greater being required to pass.

There should be only **one submission per team**, consisting of:

- A project report that must include the full name of each team member (as per NCI official documents) and
 their student number. These must be clearly visible on the front page of the report.

 The report should be named teamX.pdf where X is your team identifier and should be uploaded as a PDF
 document to the Project Report Turnitin link on Moodle.
- A **code artefact**, which should be uploaded as a *zip* or *gz* archive to the **Code Artefact** link on Moodle. This should be named *teamX.zip* or *teamX.gz*, where X is your team identifier.
- A **video presentation** that must include the full name of each team member (as per NCI official documents) and their student number. These must be clearly visible at the start of the video. This should be uploaded as a *mp4* video to the **Project Presentation** link on Moodle.
- A work breakdown report describing in detail the contribution of each team member. Again, this should be in PDF format and should include the full name of the team members (as per NCI official documents) as well as their student numbers. This should be named teamXworkbreakdown.pdf (where X is your team identifier) and should be uploaded to the Work Breakdown Report Turnitin link on Moodle.

Late submissions will not be accepted unless an extension has been requested through NCI360 and officially approved.

5 Marking

The project will be marked according to the grading rubric provided at the end of this document.

6 Academic Integrity

Any written work created by others must be properly cited and should be paraphrased or summarised where possible, otherwise it should be included in quotes. Figures not created by you should include an acknowledgement detailing the name(s) of the creator(s). Code found on the internet should not be claimed as your own, but instead a comment should be included in the source code indicating where you obtained it.

Students are strongly advised to familiarise themselves with the Guide to Academic Integrity produced by the NCI Library².

Note: All submissions will be electronically screened for evidence of academic misconduct, e.g. plagiarism, collusion and misrepresentation. Any submission showing evidence of such misconduct will be referred to the college's academic misconduct committee for disciplinary action.

² https://libguides.ncirl.ie/academicintegrity

Grading Rubric - Database and Analytics Programming Project

Semester 1 - 2022/23

Criterion	Solid H1 ≥ 80%	H1 ≥ 70% < 80%	H2.1 ≥ 60% < 70%	H2.2 ≥ 50% < 60%	Pass ≥ 40% < 50%	Fail < 40%
Project	Very challenging project	Challenging project	Reasonable project	Reasonable project	The objectives are clear, if	The objectives of the
Objectives (10%)	objectives are	objectives are well	objectives are well	objectives are clear, are	unambitious and are at	project are unclear, have
	exceptionally well	presented, are fully met	presented, fully met and	mostly met and	least partially met and	not been discussed. It is
	presented, fully met and	and thoroughly discussed.	adequately discussed.	adequately discussed.	briefly discussed.	not possible to discern if
	thoroughly discussed					the objectives have been
						met.
Literature		A very good critical	A good analysis of	An adequate analysis of	A limited analysis of some	Little or no relevant
Review (10%)	analysis of substantive	analysis of substantive	relevant literature. The	mostly relevant	relevant literature but it	literature reviewed. Very
	and highly relevant	and relevant literature.	critical analysis aspect	literature. The critical	lacks evidence of	limited evidence of
	literature.		could be somewhat	analysis aspect could be	understanding.	understanding.
Data Canada Stand	The detector have been	The determination have	stronger.	significantly stronger.	The detects	0.1.
Data Complexity and Handling (20%)	The datasets have been well prepared and	The datasets have been well prepared and	The datasets have been well prepared and	The datasets have been appropriately prepared	The datasets were appropriately handled	Only one somewhat trivial dataset was used.
Handling (20%)	meaningfully explored. All	meaningfully explored. All	explored. At least one	for analysis. At least one	given the objectives. The	No database was used to
	datasets were stored in	datasets were stored in	dataset was stored in an	dataset was stored in an	use of databases is very	store the datasets. No
	appropriate databases	appropriate databases	appropriate database. At	appropriate database. At	basic and some	obvious development was
	before and after	before and after	least one dataset has a	least one	inappropriate choices	carried out.
	processing. At least two	processing. At least two	high degree of	of the datasets is	may be evident. The	
	datasets have a high	datasets have a high	complexity.	nontrivial.	datasets are somewhat	
	degree of complexity. At	degree of complexity.			trivial.	
	least one dataset was					
	programmatically					
	retrieved - through an API					
	or by web scraping.					
Data Processing		The data processing	The use of data	The use of data	Appropriate but basic use	Poor or no
Implementation	algorithms used play a	algorithms used play a well conceived and	processing algorithms is	processing algorithms is	of data processing	implementation. If an
(20%)	well conceived and essential role in meeting	well conceived and essential role in meeting	well-thought and appropriate for the	meaningful and	algorithms. Basic use of	implementation is
	the project objectives.	the project objectives.	project objectives.	appropriate for the project objectives. There	data programming languages and a limited	provided, it demonstrates inappropriate use of data
	The implementation	Multiple data processing	Comprehensive use of at	is evidence of appropriate	number of techniques.	processing algorithms.
	significantly exceeds the	techniques / languages	least one data	use of at least one data	namber of techniques.	processing digorithms.
	stated minimum	were employed.	programming language	programming language		
	requirements.	• •	and multiple techniques.	and a small number of		
			•	appropriate techniques.		

G

Grading Rubric (continued)

Criterion	Solid H1 ≥ 80%	H1 ≥ 70% < 80%	H2.1 ≥ 60% < 70%	H2.2 ≥ 50% < 60%	Pass ≥ 40% < 50%	Fail < 40%
Level of	All parts of the analysis	All parts of the analysis	Most core components of	Some components of the	Individually all	Little or no evidence of
Automation (10%)	are automated within a	are automated within a	the analysis are	analysis are included	components of the	automation.
	single process control	single process control	automated within a single	within a larger process.	analysis are automated,	
	flow. Every run of the	flow.	process control flow.	However, some	but not necessarily	
	process can result in			components of the	connected together as	
	different results as new			analysis are run as	part of a larger process	
	data is extracted and			separate processes.	flow.	
	subsequently included,					
	such as data obtained					
	through an API.					
Results and	Three or more insightful	Three or more interesting	Three or more interesting	Two or more interesting	Two or more interesting	Little to no nonarbitrary
Conclusions (20%)	findings are excellently	and non-arbitrary	non-arbitrary findings are	non-arbitrary findings are	non-arbitrary findings are	results and/or findings
	presented and thoroughly	findings are presented	presented and thoroughly	presented and	presented but are poorly	are presented.
	discussed in the context	and thoroughly discussed	discussed.	appropriately discussed.	discussed.	
	of the domain using	the context of the domain				
	appropriate references to	using appropriate				
	prior work.	references to prior work.				
Quality of	Exceptionally well	Well written, with no	Well written, but has a	Adequately written. but	Adequately written, with	Poorly written and
Writing (10%)	written, with no language	significant language	few significant language	as a few significant	some significant language	littered with
	errors. All figures are	errors. All figures are well	or style errors. Figures are	language and/or style	and/or style errors.	typographical errors
	well conceived, readable	conceived, readable and	well presented. The IEEE	errors. Some figures are	Figures may be hard to	and/or poor use of
	and correctly captioned.	appropriately captioned.	tem-	may be hard to read. The	read or presented in a	English. The IEEE template
	The IEEE template is	The IEEE template is	plate and length limit are	IEEE template and length	suboptimal manner. The	was not used. Figures may
	strictly adhered to. The	adhered to. The report	adhered to. References	limit are mostly adhered	IEEE template may	be hard to read.
	report does not exceed	does not exceed the	are complete and	to. References are	not have been followed.	References (if any) are
	the length limits. All	length limits. References	correctly used.	complete, and correctly	References are mostly	largely incomplete.
	references are	are appropriately and		used.	complete and correctly	
	appropriately and	correctly used.			used.	
	correctly used.					