CS532 Web Science: Assignment 5

Finished on March 3, 2016

Dr. Michael L. Nelson

Naina Sai Tipparti ntippart@cs.odu.edu

Contents

Proble	m 1 stion
	wer
Proble	
	stion
Listi	ngs
1	Finding Communities in Zachary's Karate Club
List	of Figures
1	The Existing Graph
2	Actual Graph After Split
3	Prediction of Edge Betweenness Algorithm
4	Prediction of Leading Eigenvector Algorithm
5	3-Cluster Prediction
6	4-Cluster Prediction
7	5-Cluster Prediction

Problem 1

Question

We know the result of the Karate Club (Zachary, 1977) split. Prove or disprove that the result of split could have been predicted by the weighted graph of social interactions. How well does the mathematical model represent reality?

Generously document your answer with all supporting equations, code, graphs, arguments, etc.

Useful sources include:

Original paper

http://aris.ss.uci.edu/lin/76.pdf

Slides

http://www-personal.umich.edu/ladamic/courses/networks/si614w06/ppt/lecture18.ppt

http://clair.si.umich.edu/si767/papers/Week03/Community/CommunityDetection.pptx

Code and data

 $http://networkx.github.io/documentation/latest/examples/graph/karate_club.html$

http://nbviewer.ipython.org/url/courses.cit.cornell.edu/info6010/resources/11notes.ipynburges/11not

http://stackoverflow.com/questions/9471906/what-are-the-differences-between-community-detection-algorithms-in-igraph/9478989 #9478989

http://stackoverflow.com/questions/5822265/are-there-implementations-of-algorithms-for-community-detection-in-graphs

http://konect.uni-koblenz.de/networks/ucidata-zachary

http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm#zachary

https://snap.stanford.edu/snappy/doc/reference/CommunityGirvanNewman.html

 $http://igraph.org/python/doc/igraph-pysrc.html \#Graph.community_edge_betweenness$

Answer

As was illustrated in the original study of Zachary's karate club, [1], a prediction of the structure of the club if a separation were to occur can be made with a high degree of accuracy using weighted edges based on the perceived "strength" of each relationship it modeled. The prediction method outlined in the original paper was an implementation of the maximum flow-minimum cut labeling procedure [2]. The pickled [3] dataset of the existing karate club, with weights for each edge, was obtained from http://nexus.igraph.org/api/dataset_info?id=1&format=html and used to create the graph shown in Figure 1.

Figure 1: The Existing Graph

The actual structure of the two resulting clubs after the split are shown in Figure 2.

Figure 2: Actual Graph After Split

To predict a separation of the existing graph into two or more distinct community components a pair of community detection algorithms will be employed and the results will be compared to the actual results of the split from Zachary's original study [1]. Community Detection was chosen as a means for predicting the results of fission events because it is logical that a given community would less likely be split along strong inter-community edges than those weaker, community-spanning edges.

The first algorithm used was the Edge Betweenness algorithm, developed by Girvan and Newman [4]. This is a divisive algorithm that removes edges that have the highest betweenness measure because these tend to be community-spanning edges.

Figure 3: Prediction of Edge Betweenness Algorithm

 ${\tt Edge} \ \ {\tt Betweenness} \ \ {\tt method} \ \ {\tt results} :$

Variant elements:

[3, 14]

94.12% accuracy

As you can see this method is fairly accurate, with over 94% of the prediction being correct.

The second method used was the Leading Eigenvector algorithm developed my M. Newman [5]. This method uses a special matrix, called the modularity matrix, to determine which edges to remove.

Figure 4: Prediction of Leading Eigenvector Algorithm

Leading Eigenvector method results:
Variant elements:
[]
100.0 % accuracy

This method proves 100% efficacy in its prediction.

The python code to produce these graphs is shown in Listing 1.

```
1 #! /usr/bin/env python
   import pickle
   import igraph
  from igraph import plot
  FILENAME = 'karate.pickle'
  # load the graph
  data = pickle.loads(open(FILENAME).read())['karate']
11
  # Create faction list of actual group membership after split,
  # translated to values that would mirror a cut.membership list
   factions\_after\_split = map(lambda x: int(x-1), data.vs['Faction'])
16 def compare (predicted):
      Compares the predicted and actual numerical lists and
       returns a list of variant members and the accuracy of the prediction
21
      res = []
       for idx, val in enumerate (factions after split):
           if predicted[idx] != val:
               # Translate index to match original dataset
               res.append(idx + 1)
      return res, 100 - round(float(len(res)) / float(len(factions after split)) * 100, 2)
26
   def print_results(method, res, acc):
       print ("{} method results: \nVariant elements:\n\t {}\n{} % accuracy".format (method, res,
           acc))
31 | if __name__ == '__main_
      # Plot existing graph
      layout = data.layout('fr')
       plot(data, "initial karate graph.pdf", layout=layout, vertex label=data.vs['name'],
36
      # Girvan-Newman Edge Betweenness method
      com eb = data.community edge betweenness (
           clusters=2,
           directed=False,
           weights=data.es['weight'])
       clust eb = com eb.as clustering()
41
       res_eb, acc_eb = compare(clust_eb.membership)
       plot(clust eb, "clust_eb.pdf", vertex_label=data.vs['name'], margin=25)
       print results ("Edge Betweenness", res eb, acc eb)
      # Newman Leading Eigenvector method
46
      clust le = data.community leading eigenvector(clusters=2, weights=data.es['weight'])
       res le, acc le = compare(clust_le.membership)
       plot (clust le, "clust le pdf", vertex label=data.vs['name'], margin=25)
      print_results ("Leading Eigenvector", res_le, acc_le)
51
      # Plot 3..5 community predictions
       for i in xrange(3, 6):
           cluster = data.community edge betweenness(
               clusters=i,
56
               directed=False,
               weights=data.es['weight']).as_clustering()
           plot(cluster, "cluster" + str(i) + ".pdf", vertex label=data.vs['name'], margin=25)
```

Listing 1: Finding Communities in Zachary's Karate Club

Problem 2

Question

We know the group split in two different groups. Suppose the disagreements in the group were more nuanced – what would the clubs look like if they split into groups of 3, 4, and 5?

Answer

The Edge Betweenness algorithm was run for target clusterings of three, four and five and the results are in Figures 5, 6, and 7.

Figure 5: 3-Cluster Prediction

Figure 6: 4-Cluster Prediction

Figure 7: 5-Cluster Prediction

References

- [1] Wayne W. Zachary. An information flow model for conflict and fission in small groups, 1977.
- [2] Jr. L. R. Ford and D. R. Fulkerson. Flows in networks, 1962.
- [3] The Python Software Foundation. Python pickle module. https://docs.python.org/ 2/library/pickle.html, February 2016.
- [4] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in network. 69, 2004.
- [5] M. E. J. Newman. Finding and evaluating community structure in networks using the eigenvectors of matrices. 74, 2006.