IGREX for quantifying the impact of genetically regulated expression on phenotypes

CAI Mingxuan 2019/9/12

Introduction

This vignette provides an introduction to the <code>igrex</code> package. R package <code>igrex</code> implements <code>iGrex</code>, a statistical model for quantifying the impact of genetically regulated expression on complex traits and diseases. The package can be installed with the command:

library(devtools)

install_github("mxcai/iGREX")

The package can be loaded with the command:

library("iGREX")

Fit iGREX using individual level genotype and eQTL data

We provide an example of fitting iGREX using GWAS and eQTL data in plink binary format. To use the function, we first specify the input file names:

```
file_qtlgeno <- "GTEx_qc_hm3"
file_GWASgeno <- "NFBC_filter_mph10"
file_expression <- "Liver_gene_expression.txt"
file_qtlcov <- "Liver_cov.txt"
file_GWAScov <- "NFBC_hm3_filter.eigenvec"
load("K_NFBC_hm3.RData")</pre>
```

Here, file_qtlgeno is the prefix for eQTL genotype data in plink binary format, file_GWASgeno is the GWAS data in plink binary format, file_expression is the gene expression file with extended name, file_qtlcov and file_GWAScov are covariates file for eQTL and GWAS data, respectively. For gene expression file, it must have the following format (rows for genes and columns for individuais and note that it must be tab delimited):

lower	up	genetype1	genetype2	TargetID	Chr	HG00105	HG00115
59783540	59843484	lincRNA	PART1	ENSG00000152931.6	5	0.5126086	0.7089508
48128225	48148330	protein_coding	UPP1	ENSG00000183696.9	7	1.4118007	-0.0135644
57846106	57853063	protein_coding	INHBE	ENSG00000139269.2	12	0.5755268	-1.0162217
116054583	116164515	protein_coding	AFAP1L2	ENSG00000169129.8	10	1.1117776	0.0407033
22157909	22396763	protein_coding	RAPGEF5	ENSG00000136237.12	7	0.2831573	-0.1772559
11700964	11743303	lincRNA	RP11-434C1.1	ENSG00000247157.2	12	0.2550282	-0.2831573

The covariate files must have the following format (rows for individuals and the first two columns are FID and IID):

V1	V2	V3	V4	V5	V6	V7	V8
GTEX-11DXY	GTEX-11DXY	0.0109	-0.0027	-0.0789	-0.0552724	0.0469389	0.0488902
GTEX-11DXZ	GTEX-11DXZ	-0.1053	-0.0126	0.0027	-0.0097383	0.0542790	-0.0918273

V1	V2	V3	V4	V5	V6	V7	V8
GTEX-11EQ9	GTEX-11EQ9	0.0148	-0.0078	-0.0057	0.0362291	0.0474735	-0.0502703
GTEX-11GSP	GTEX-11GSP	0.0168	-0.0052	-0.0019	-0.0505170	-0.0960899	-0.0554980
GTEX-11NUK	GTEX-11NUK	0.0154	-0.0025	0.0049	-0.0733902	0.0009193	0.0227932
GTEX-11NV4	GTEX-11NV4	-0.1152	-0.0170	-0.0223	-0.0619178	0.0035294	0.0361403

The alternative genetic correlation matrix (Ka) is just the kinship matrix and should be manually computed (which can be done by plink or GEMMA) and supplied to the function. Finally, the analysis can be done by iGREX function:

The estimated PVEs are stored in the outcome list and can be accessed by (fit\$output\$H)

	h_R	h_D	h_all	h_med
heritability	0.1917895	0.4069149	0.5987045	0.3203409
se	0.0408129	0.1001861	0.0937858	0.0823769

Fit iGREX-s using GWAS summary statistics and eQTL data

Next, we provide an example of fitting iGREX-s using GWAS summary statistics and eQTL data with an LD reference. To use the function, we first specify the input file names:

```
file_qtlgeno = file_GWASgeno = "/home/share/1000Genome/all_chr_1000G"
file_expression = "/home/share/Geuvadis/raw_data/Geuvadis_gene_expression_qn.txt"
file_qtlcov = file_GWAScov = "/home/share/mingxuan/height2014/TGP_ref_pc20.eigenvec"
file_z = "/home/share/mingxuan/prediXcan/medH/NFBC_GTEx_summary/NFBC_HDL_cov20_summary.txt"
load("/home/share/mingxuan/height2014/K TGP height.RData")
```

In this function, file_qtlgeno, file_GWASgeno, file_expression, file_qtlcov and file_GWAScov are of the same format as the ones in iGREX, while an additional GWAS summary ststistics file file_z is needed. All the data here are open access: the expression data is from the Geuavadis project, whose samples are from 1000 Genomes Europe ancestry; we use the genotypes of these 1000 Genomes samples as the LD reference panel. All files used here can be downloaded from the Dropbox link. The summary statistics should be of the following format:

SNP	N	Z	INC_ALLELE	DEC_ALLELE
cnv3p502	5123	-1.3533719	A	G
rs3115860	5123	0.5287950	\mathbf{C}	A
rs3131967	5123	0.7043162	A	G
rs12124819	5123	-0.3059190	G	A
rs17160939	5123	1.2516159	G	A
rs4475691	5123	1.1862824	A	G

The IGREX-s can then be fitted using iGREXs function:

The estimated PVEs are stored in the outcome list and can be accessed by (fit_s\$output\$H)

	h_R	h_D	h_med
heritability	0.0727114	0.4729560	0.1332522
se	0.0435076	0.1177819	0.0764512