CLAIMS:

What is claimed is:

1	1.	A method comprising:
2		receiving content for transmission via a multicarrier wireless communication channel;
3	and	
4		generating a rate-one, space-frequency code matrix from the received content for
5	transm	nission on the multicarrier wireless communication channel from a plurality of transmit
6	antennae.	
ı		
1	2.	A method according to claim 1, wherein the received content is a vector of input symbols
2	(s) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless	
3	communication channel.	
1		
i	3.	A method according to claim 2, the element of generating a rate-one space frequency
2	code matrix comprising:	
3		dividing the vector of input symbols into a number G of groups to generate subgroups;
4	and	
5		multiplying at least a subset of the subgroups by a constellation rotation precoder to
5	produce a number G of pre-coded vectors (v_g) .	
i		
1	4.	A method according to claim 3, further comprising:
2		dividing each of the pre-coded vectors into a number of LM x 1 subvectors; and

P16330 24 Shao, et al.

- creating an $M \times M$ diagonal matrix $D_{\mathbf{s}_{\mathbf{g}},k} = diag\{\Theta_{M\times(k-1)+1}^T\mathbf{s}_{\mathbf{g}}, \dots, \Theta_{M\times k}^T\mathbf{s}_{\mathbf{g}}\}$, where k=1...L
- from the subvectors.
- 1 5. A method according to claim 4, further comprising:
- interleaving the L submatrices from the G groups to generate an $M \times Nc$ space-frequency
- 3 matrix.

1

1

1

1

1

- 1 6. A method according to claim 5, wherein the space-frequency matrix provides MNL
- channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M,
- receive antenna(s) N and channel tap(s) L.
- 7. A method according to claim 1, wherein the space-frequency matrix provides MNL
- channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M,
- receive antenna(s) N and channel tap(s) L.
- A storage medium comprising content which, when executed by an accessing
- 2 communications device causes the communications device to implement a method according to
- 3 claim 1.
- 1 9. An apparatus comprising:
- a diversity agent to receive content for transmission via a multicarrier wireless
- 3 communication channel, and to generate a rate-one, space-frequency code matrix from the

P16330

- received content for transmission on the multicarrier wireless communication channel from a
- 5 plurality of transmit antennae.
- 1 10. An apparatus according to claim 9, wherein the received content is a vector of input
- symbols (s) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless
- 3 communication channel.

1

1

1

I

I

I

- 1 11. An apparatus according to claim 10, the diversity agent further comprising:
- a pre-coder element, to divide the vector of input symbols into a number G of groups to
- generate subgroups, and to multiply at least a subset of the subgroups by a constellation rotation
- 4 pre-coder to produce a number G of pre-coded vectors (v_g) .
- 1 12. An apparatus according to claim 11, the diversity agent further comprising:
- a space-frequency encoding element, responsive to the pre-coder element, to divide each
- of the pre-coded vectors into a number of $LM \times I$ subvectors, and to create an $M \times M$ diagonal
- matrix $D_{\mathbf{s}_{\mathbf{g}},k} = diag\{\Theta_{M\times(k-1)+1}^T\mathbf{s}_g, \dots, \Theta_{M\times k}^T\mathbf{s}_g\}$, where k=1...L from the subvectors.
- 1 13. An apparatus according to claim 12, wherein the space-frequency encoding element
- interleaves the L submatrices from the G groups to generate an $M \times Nc$ space-frequency matrix.
- 1 14. An apparatus according to claim 13, wherein the space-frequency matrix provides MNL
- channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M,
- receive antenna(s) N and channel tap(s) L.

P16330

- 1 15. An apparatus according to claim 9, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M,
- receive antenna(s) N and channel tap(s) L.
- 1 16. A system comprising:

. . . .

1

1

1

1

- a number M of omnidirectional antennas; and
- a diversity agent, to receive content for transmission via a multicarrier wireless
- 4 communication channel, and to generate a rate-one, space-frequency code matrix from the
- received content for transmission on the multicarrier wireless communication channel from at
- 6 least a subset of the M omnidirectional antennas.
- 1 17. A system according to claim 16, wherein the received content is a vector of input
- symbols (s) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless
- 3 communication channel.
- 1 18. A system according to claim 17, the diversity agent further comprising:
- a pre-coder element, to divide the vector of input symbols into a number G of groups to
- generate subgroups, and to multiply at least a subset of the subgroups by a constellation rotation
- 4 pre-coder to produce a number G of pre-coded vectors (v_g) .
- 1 19. A system according to claim 18, the diversity agent further comprising:

P16330

- a space-frequency encoding element, responsive to the pre-coder element, to divide each
- of the pre-coded vectors into a number of LM x 1 subvectors, and to create an M x M diagonal
- $\text{matrix } D_{\mathbf{s_g},k} = diag\{\Theta_{M\times(k-1)+1}^T\mathbf{s_g}, \cdots, \Theta_{M\times k}^T\mathbf{s_g}\} \text{ , where } k=1...L \text{ from the subvectors.}$
- 1 20. A system according to claim 19, wherein the space-frequency encoding element
- interleaves the L submatrices from the G groups to generate an $M \times Nc$ space-frequency matrix.
- 1 21. A system according to claim 20, wherein the space-frequency matrix provides MNL
- channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M,
- receive antenna(s) N and channel tap(s) L.

11 1

I

1

1

- 1 22. A system according to claim 16, wherein the space-frequency matrix provides MNL
- channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M,
- receive antenna(s) N and channel tap(s) L.