EHM2141 LOJİK DEVRELER

2024-2025 BAHAR DÖNEMİ

HAFTA 2 – DERS 2 27 Şubat 2025

Dr. Sibel ÇİMEN

İŞARETLİ SAYILARIN GÖSTERİMİ

İkili sayı sisteminde işaretli sayıların gösterimi 3 şekilde yapılır. Bunlar; işaret bitli gösterim (işaretli büyüklük), işaretli 2'ye tümleyen, işaretli 1'tümleyen.

1. İşaret bitli gösterim (işaretli büyüklük)

$$-5_{10}=(?)_2$$

$$-5_{10} = 1101_2 (4-bit)$$

$$-5_{10} = 10000101_2$$
 (8-bit)

$$+5_{10} = 00000101_2$$
 (8-bit)

İşaret sayılarda tümleme aritmetiği

Taban'a göre tümleme işlemi: n tabanında verilmiş, q rakamlı tam kısımdan oluşan $(N)_n$ sayısının tabana göre tümleyeni [2];

$$(T)_n = n^q - (N)_n$$

23₁₀ sayısının 10'a göre tümleyeni;

$$(T)_n = 10^2 - (23)_{10} = 77$$

$$77_{10} \rightarrow -23_{10}$$
 (10 tabanına tümlemeye göre)

23-47=-24
$$\rightarrow$$
 23+(-47)=23+(53)=076
76₁₀ \rightarrow -24₁₀ (10 tabanına tümlemeye göre)

Taban'a göre tümleme işlemi:

0.6642₁₀ sayısının 10'a göre tümleyeni [2];

$$(T)_n = 10^0 - (0.6642)_{10} = 0.3358$$

111101₂ sayısının 2'ye göre tümleyeni;

$$(T)_n = 2^6 - (111101)_2 = 1000000 - 111101 = (000011)_2$$

111101₂ sayısının 2'ye göre tümleyeni;

000010 + 1 = 000011

00011₂ sayısının 2'ye göre tümleyeni;

Toplama / Çıkarma İşlemi

2BH=43D, 78H=120D

(Taban-1)'e göre tümleme işlemi:

n tabanında verilmiş, q rakamlı tam ve p rakamlı kesirli kısımdan oluşan $(N)_n$ sayısının (taban-1)'e göre tümleyeni [2];

$$(T)_n = n^q - n^{-p} - (N)_n$$

23₁₀ sayısının 9'a göre tümleyeni;

$$(T)_n = 10^2 - 10^0 - (23)_{10} = 100 - 1 - 23 = 76$$

111101₂ sayısının 1'e göre tümleyeni;

$$(T)_n = 2^6 - 2^0 - (111101)_2 = 1000000 - 1 - 111101 = (000010)_2$$

000010

1'e Tümleme İle Pozitif Sayıların Negatif	2'ye Tümleme İle Pozitif Sayıların					
Karşılığının Elde Edilmesi	Negatif Karşılığının Elde Edilmesi					
+ 5 → 0101	; önce sayının 1'e tümleyeni bulunur.					
- 5 → 1010	+ 5 > 0101					
	1010					
	+ 1 ; sonra 1 eklenir.					
	· 					
	l - 5 → 1011					

İkili sayıların (4-bit) işaretli gösterimi [1]

Ondalık	İşaretli 2'ye	İşaretli 1'e	İşaretli		
Değer	tümleyen	tümleyen	büyüklük		
	0111	0111			
+ 7			0111		
+ 6	0110	0110	0110		
+ 5	0101	0101	0101		
+ 4	0100	0100	0100		
+ 3	0011	0011	0011		
+ 2	0010	0010	0010		
+ 1	0001	0001	0001		
+ 0	0000	0000	0000		
- 0		1111	1000		
- 1	1111	1110	1001		
- 2	1110	1101	1010		
- 3	1101	1100	1011		
- 4	1100	1011	1100		
- 5	1011	1010	1101		
- 6	1010	1001	1110		
- 7	1001	1000	1111		
- 8	1000				

İşaretli tamsayılar ile 2'ye tümleyen sayıların grafik gösterimi [1] .

8-bit 2'ye tümleyen işaretli tamsayılar [1]

Kayan Noktalı Sayı Sistemleri (Floating Point Numbers)

Noktalı sayıları bellekte tutmak için akla gelen ilk gelen yöntem sabit noktalı (fixed point – fixed radix) gösterimdir. Sayının noktadan önceki ve sonraki kısımları için sabit uzunlukta yerler ayrılır. Sabit noktalı gösterim bellekte fazla yer kaplar.

Örneğin; 1 trilyon (10^{12}) sayısını göstermek için 40 bit gerekir (10^{12} ~ 2^{40}). Benzer şekilde noktadan sonra da (10^{-12}) hassasiyet için de 40 bit gerekir. Toplamda bellekte 80 bit yer ayırmak gerekir.

Üstel Gösterim (Scientific notation, exponential notation):

$$\mp F.B^{\mp E}$$

Bellekte F ve E tutulur.

F: Fraction (kesir, mantis)

E: Exponent (Üs)

B: Base (Taban)

976000000000000=0,976x10¹⁵

Kayan Noktalı Sayı Sistemleri (Floating Point Numbers)

Normalize Sayı:

Noktanın yerine önceden karar verilir ve bu yer bilgisi bellekte tutulmaz. Noktanın her zaman sıfırdan farklı en yüksek anlamlı sayının sağında olduğu kabul edilir.

Yükseltilmiş Üs (Biased Exponent):

Üs değerinin negatif olmaması için üs değeri bellekte saklanmadan önce belli bir değer (bias) ile toplanır (üs yükseltilir). Böylece üssün işaretinin saklanmasına gerek kalmaz.

IEEE 754 Standardı (1985, Güncelleme 2008):

Single Precision (32-bit, C Programlama dilinde veri tipi 'float'):

S Üs Kesir 1bit 8bit 23bit

Üs 127 yükseltilmiştir.

Double Precision (64-bit, C Programlama dilinde veri tipi 'double'):

Üs 1023 yükseltilmiştir.

IEEE 754 Standardı (1985, Güncelleme 2008):

Floating-point formats

IEEE 754

16-bit: Half (binary16)

32-bit: Single (binary32), decimal32

64-bit: Double (binary64), decimal64

128-bit: Quadruple (binary128), decimal128

256-bit: Octuple (binary256)

40-bit or 80-bit: Extended precision

Other

Minifloat

bfloat16

Microsoft Binary Format

IBM floating-point architecture

Posit

G.711 8-bit floats

Arbitrary precision

IEEE 754 Standardı (1985, Güncelleme 2008):

Normalize Sayı:

İkili sayı sisteminde '0' dan farklı anlamlı sayı '1' dir.

Noktadan önce her zaman '1' olduğu bilindiğinden bu 1 değeri bellekte tutulmaz. Buna gizli 1 (hidden one) denir.

Örnek: 22.625₁₀ sayısı IEEE754 Standardında single precision gösteriminde nasıl ifade edilir?

$$+22.625_{10} = +10110.101_2 = 1.0110101 \times 2^4$$

0 10000011

01101010...00000

1bit 8bit

23bit

Yükseltilmiş üs;

127+4=131

10000011

Üs ve Mantis Özel Değerleri:

- 1. E=0 ve F=0 \rightarrow N=0 (iki tane 0 var. +/-)
- 2. E=255 ve F=0 → N=±∞
- 3. E=255 ve F \neq 0 \rightarrow NaN (Not a Number) 0/0 veya ∞/∞
- 4. E=0 ve F≠0 → Normalize olmayan sayı

Normalize olmayan sayılar mutlak değeri küçük olan sayılar için kullanılır. İnceleyiniz.

Kodlama:

Kodlama, bilginin veya verinin sayısal olarak gösterilmesi için kullanılan yöntemdir.

İkili Kod: Sayının iki tabanında karşılığıdır. İkili (binary) sayı.

İkili Kodlanmış Ondalık (Binary Coded Decimal) Gösterim:

İkili kodlanmış ondalık (Binary Coded Decimal, BCD) sayı sistemi, ikili sayıların ondalık karşılıklarının fiziksel dış dünyada gösterilmesini sağlamak üzere sayısal elektronik sistemlerinde yaygın olarak kullanılır.

BCD sayı sisteminin genel biçimi ve terminolojisi aşağıda verilmiştir.

0111	0011	0010	0101
7	3	2	5

Ondalık sistemden BCD sisteme dönüşüm, her bir ondalık basamak ayrı ayrı 4-bit ikili sayıya dönüştürülerek yapılır.

$$73.2_{10}^{5} = 0111_{0011}^{0011} \cdot 0010_{0101_{BCD}}^{0101}$$

$$1001001.01_2 = 7\frac{3}{10}.2\frac{5}{10} = 0111 \frac{0011}{0011} . 0010 \frac{0101}{0101}$$

Sayısal Kodlar:

Çok kullanılan bazı ikili kodlanmış ondalık kodlar [1].

Ondalık	2421	3-Fazla	7-parçalı LED (aktif "0")
Sayı	Kodu	Kodu	gfedcba
0	0000	0011	1000000
1	0001	0100	1111001
2	0010	0101	0100100
3	0011	0110	0110000
4	0100	0111	0011001
5	1011	1000	0010010
6	1100	1001	0000010
7	1101	1010	1111000
8	1110	1011	0000000
9	1111	1100	0010000

Çok kullanılan ikili kodla2 [1].

Ondalık	4-bit İkili	"Gray"
Sayı	DCBA	DCBA
0	0000	0000
1	0001	0001
3	0010	0011
	0011	0010
<u>4</u> 5	0100	0110
	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Alfa Nümerik Kodlar:

Fiziksel dünyada bilgi iletişimde kullanılan semboller yalnız sayıları içermez. Bunlara ek olarak büyük ve küçük harfler, noktalama ve özel işaretler de kullanılır. Bunlardan en yaygın olanı 128 sembolden oluşan ASCII (AMERICAN STANDARD CODE for INFORMATION INTERCHANGE, Bilgi Değişimi için Standart Amerikan Kodu) alfa nümerik kodudur [1].

ASCII Tablosu

		MSB	\rightarrow						
	Hex	0	1	2	3	4	5	6	7
LSB	0	NUL	DLE	Boşluk	0	@	Р	`	р
↓	1	SOH	DC1	!	1	Α	Q	а	q
	2	STX	DC2	•	2	В	R	b	r
	3	ETX	DC3	#	3	С	S	С	s
	4	EOT	DC4	\$	4	D	Т	d	t
	5	ENQ	NAK	%	5	E	U	е	u
	6	ACK	SYN	&	6	F	٧	f	V
	7	BEL	ETB	•	7	G	W	g	w
	8	BS	CAN	(8	Н	Х	h	Х
	9	HT	EM)	9	I	Υ	i	у
	Α	LF	SUB	*	:	J	Z	j	Z
	В	VT	ESC	+	;	K	[k	{
	O	FF	FS	,	<	L	١	- 1	
	D	CR	GS	•	=	M	1	m	}
	Ε	so	RS		>	N	Ā	n	~
	F	SI	US	1	?	0	_	0	DEL

Alfa Nümerik Kodlar:

IBM uyumlu bilgisayarlarda EBCDIC (EXTENDED BCD INTERCHANGE CODE, Bilgi Değişimi için Genişletilmiş BCD Kodu) karakter kod tabloları kullanılır. Bu gelişmiş karakter kodu, ASCII koduna ek olarak fazladan 128 tane daha karakter kodu içerir ve bilginin yanında değişik uluslara göre özel karakterleri değişir [1].

EBCDIC tablosu

REFERANSLAR:

- 1. 'Lojik Devreler', Tuncay UZUN Ders Notları, http://tuncayuzun.com/Dersnot LDT.htm, 2020.
- 2. 'Lojik Devre Tasarımı', Taner ASLAN ve Rifat ÇÖLKESEN, Papatya Yayıncılık, 2013.