Árbol de Decisión. Problema del restaurante.

Pablo Cabrera

17 de Junio de 2017

1 Datos de entrada

Alternativa	Bar	Viernes	Hambre	Clientes	Precio	Lluvia	Reserva	Tipo	Espera	OBJETIVO
Si	No	No	Si	Algunos	Alto	No	Si	Frances	0-10	SI
Si	No	No	Si	Lleno	Bajo	No	No	Tailandes	30-60	NO
No	Si	No	No	Algunos	Bajo	No	No	Hamburg	0-10	SI
Si	No	Si	Si	Lleno	Bajo	Si	No	Tailandes	10-30	SI
Si	No	Si	No	Lleno	Alto	No	Si	Frances	60	NO
No	Si	No	Si	Algunos	Medio	Si	Si	Italiano	0-10	SI
No	Si	No	No	Ninguno	Bajo	Si	No	Hamburg	0-10	NO
No	No	No	Si	Algunos	Medio	Si	Si	Tailandes	0-10	SI
No	Si	Si	No	Lleno	Bajo	Si	No	Hamburg	60	NO
Si	Si	Si	Si	Lleno	Alto	No	Si	Italiano	10-30	NO
No	No	No	No	Ninguno	Bajo	No	No	Tailandes	0-10	NO
Si	Si	Si	Si	Lleno	Bajo	No	No	Hamburg	30-60	SI

1.1 Cálculo de entropía para variable Bar

Entropía para Bar = No
$$-\frac{3}{6}\log_2\left(\frac{3}{6}\right) - \frac{3}{6}\log_2\left(\frac{3}{6}\right) \approx 1.000$$

Entropia total de variable Bar $\tfrac{6}{12} \cdot 1.000 + \tfrac{6}{12} \cdot 1.000 \approx 1.000$

1.2 Cálculo de entropía para variable Hambre

Entropía para Hambre = No
$$-\frac{1}{5}\log_2\left(\frac{1}{5}\right) - \frac{4}{5}\log_2\left(\frac{4}{5}\right) \approx 0.722$$

Entropia total de variable Hambre $\tfrac{7}{12} \cdot 0.863 + \tfrac{5}{12} \cdot 0.722 \approx 0.804$

1.3 Cálculo de entropía para variable Tipo

Entropía para Tipo = Hamburg
$$-\frac{2}{4}\log_2\left(\frac{2}{4}\right) - \frac{2}{4}\log_2\left(\frac{2}{4}\right) \approx 1.000$$

Entropía para Tipo = Italiano
$$-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) \approx 1.000$$

Entropía para Tipo = Frances
$$-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) \approx 1.000$$

Entropia total de variable Tipo
$$\tfrac{4}{12} \cdot 1.000 + \tfrac{4}{12} \cdot 1.000 + \tfrac{2}{12} \cdot 1.000 + \tfrac{2}{12} \cdot 1.000 \approx 1.000$$

1.4 Cálculo de entropía para variable Lluvia

Entropía para Lluvia = No
$$-\frac{3}{7}\log_2\left(\frac{3}{7}\right) - \frac{4}{7}\log_2\left(\frac{4}{7}\right) \approx 0.985$$

Entropia total de variable Lluvia
$$\tfrac{5}{12} \cdot 0.971 + \tfrac{7}{12} \cdot 0.985 \approx 0.979$$

1.5 Cálculo de entropía para variable Precio

$$-\frac{1}{3}\log_2\left(\frac{1}{3}\right) - \frac{2}{3}\log_2\left(\frac{2}{3}\right) \approx 0.918$$

Entropía para Precio = Bajo
$$-\frac{3}{7}\log_2\left(\frac{3}{7}\right) - \frac{4}{7}\log_2\left(\frac{4}{7}\right) \approx 0.985$$

Entropía para Precio = Medio
$$-\frac{2}{2}\log_2\left(\frac{2}{2}\right) - \frac{0}{2}\log_2\left(\frac{0}{2}\right) \approx 0.000$$

Entropia total de variable Precio $\tfrac{3}{12}\cdot 0.918+\tfrac{7}{12}\cdot 0.985+\tfrac{2}{12}\cdot 0.000\approx 0.804$

1.6 Cálculo de entropía para variable Clientes

Entropía para Clientes = Algunos
$$-\frac{4}{4}\log_2\left(\frac{4}{4}\right) - \frac{0}{4}\log_2\left(\frac{0}{4}\right) \approx 0.000$$

Entropía para Clientes = Ninguno
$$-\frac{0}{2}\log_2\left(\frac{0}{2}\right) - \frac{2}{2}\log_2\left(\frac{2}{2}\right) \approx 0.000$$

Entropia total de variable Clientes
$$\tfrac{6}{12}\cdot 0.918 + \tfrac{4}{12}\cdot 0.000 + \tfrac{2}{12}\cdot 0.000 \approx 0.459$$

1.7 Cálculo de entropía para variable Reserva

Entropía para Reserva = No
$$-\frac{3}{7}\log_2\left(\frac{3}{7}\right) - \frac{4}{7}\log_2\left(\frac{4}{7}\right) \approx 0.985$$

Entropia total de variable Reserva $\tfrac{5}{12} \cdot 0.971 + \tfrac{7}{12} \cdot 0.985 \approx 0.979$

1.8 Cálculo de entropía para variable Espera

Entropía para Espera = 30-60
$$-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) \approx 1.000$$

Entropía para Espera = 60
$$-\frac{0}{2}\log_2\left(\frac{0}{2}\right) - \frac{2}{2}\log_2\left(\frac{2}{2}\right) \approx 0.000$$

Entropía para Espera = 0-10

$$-\frac{4}{6}\log_2\left(\frac{4}{6}\right) - \frac{2}{6}\log_2\left(\frac{2}{6}\right) \approx 0.918$$

Entropia total de variable Espera $\tfrac{2}{12} \cdot 1.000 + \tfrac{2}{12} \cdot 1.000 + \tfrac{2}{12} \cdot 0.000 + \tfrac{6}{12} \cdot 0.918 \approx 0.792$

1.9 Cálculo de entropía para variable Alternativa

Entropía para Alternativa = No
$$-\frac{3}{6}\log_2\left(\frac{3}{6}\right) - \frac{3}{6}\log_2\left(\frac{3}{6}\right) \approx 1.000$$

Entropia total de variable Alternativa $\tfrac{6}{12} \cdot 1.000 + \tfrac{6}{12} \cdot 1.000 \approx 1.000$

1.10 Cálculo de entropía para variable Viernes

Entropía para Viernes = No
$$-\frac{4}{7}\log_2\left(\frac{4}{7}\right) - \frac{3}{7}\log_2\left(\frac{3}{7}\right) \approx 0.985$$

Entropia total de variable Viernes $\tfrac{5}{12} \cdot 0.971 + \tfrac{7}{12} \cdot 0.985 \approx 0.979$

1.11 Resultado de cálculo de entropía

El atributo con menor entropía es Clientes

 $Clientes = Algunos \implies resultado = SI$

El valor Lleno del atributo Clientes no discrimina los datos. Se procederá a hacer el análisis del subarbol.

 $Clientes = Ninguno \implies resultado = NO$

1.12 Árbol de decisión generado

2 Subarbol Clientes=Lleno

Alternativa	Bar	Viernes	Hambre	Clientes	Precio	Lluvia	Reserva	Tipo	Espera	OBJETIVO
Si	No	No	Si	Lleno	Bajo	No	No	Tailandes	30-60	NO
Si	No	Si	Si	Lleno	Bajo	Si	No	Tailandes	10-30	SI
Si	No	Si	No	Lleno	Alto	No	Si	Frances	60	NO
No	Si	Si	No	Lleno	Bajo	Si	No	Hamburg	60	NO
Si	Si	Si	Si	Lleno	Alto	No	Si	Italiano	10-30	NO
Si	Si	Si	Si	Lleno	Bajo	No	No	Hamburg	30-60	SI

2.1 Cálculo de entropía para variable Bar

Entropía para Bar = No
$$-\frac{1}{3}\log_2\left(\frac{1}{3}\right) - \frac{2}{3}\log_2\left(\frac{2}{3}\right) \approx 0.918$$

Entropia total de variable Bar
$$\tfrac{3}{6} \cdot 0.918 + \tfrac{3}{6} \cdot 0.918 \approx 0.918$$

2.2 Cálculo de entropía para variable Hambre

Entropía para Hambre = No
$$-\tfrac{0}{2}\log_2\left(\tfrac{0}{2}\right) - \tfrac{2}{2}\log_2\left(\tfrac{2}{2}\right) \approx 0.000$$

Entropia total de variable Hambre
$$\tfrac{4}{6} \cdot 1.000 + \tfrac{2}{6} \cdot 0.000 \approx 0.667$$

2.3 Cálculo de entropía para variable Tipo

Entropía para Tipo = Hamburg
$$-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) \approx 1.000$$

Entropía para Tipo = Italiano
$$-\tfrac{0}{1}\log_2\left(\tfrac{0}{1}\right) - \tfrac{1}{1}\log_2\left(\tfrac{1}{1}\right) \approx 0.000$$

Entropía para Tipo = Frances
$$-\tfrac{0}{1}\log_2\left(\tfrac{0}{1}\right) - \tfrac{1}{1}\log_2\left(\tfrac{1}{1}\right) \approx 0.000$$

Entropia total de variable Tipo
$$\tfrac{2}{6} \cdot 1.000 + \tfrac{2}{6} \cdot 1.000 + \tfrac{1}{6} \cdot 0.000 + \tfrac{1}{6} \cdot 0.000 \approx 0.667$$

2.4 Cálculo de entropía para variable Lluvia

Entropía para Lluvia = No

$$-\frac{1}{4}\log_2\left(\frac{1}{4}\right) - \frac{3}{4}\log_2\left(\frac{3}{4}\right) \approx 0.811$$

Entropia total de variable Lluvia $\tfrac{2}{6} \cdot 1.000 + \tfrac{4}{6} \cdot 0.811 \approx 0.874$

2.5 Cálculo de entropía para variable Precio

Entropía para Precio = Bajo
$$-\frac{2}{4}\log_2\left(\frac{2}{4}\right) - \frac{2}{4}\log_2\left(\frac{2}{4}\right) \approx 1.000$$

Entropia total de variable Precio $\frac{2}{6} \cdot 0.000 + \frac{4}{6} \cdot 1.000 \approx 0.667$

2.6 Cálculo de entropía para variable Clientes

Entropia total de variable Clientes

 $\frac{6}{6} \cdot 0.918 \approx 0.918$

2.7 Cálculo de entropía para variable Reserva

Entropía para Reserva = No
$$-\frac{2}{4}\log_2\left(\frac{2}{4}\right) - \frac{2}{4}\log_2\left(\frac{2}{4}\right) \approx 1.000$$

Entropia total de variable Reserva $\frac{2}{6} \cdot 0.000 + \frac{4}{6} \cdot 1.000 \approx 0.667$

2.8 Cálculo de entropía para variable Espera

Entropía para Espera = 30-60
$$-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) \approx 1.000$$

Entropía para Espera = 60
$$-\frac{0}{2}\log_2\left(\frac{0}{2}\right) - \frac{2}{2}\log_2\left(\frac{2}{2}\right) \approx 0.000$$

Entropia total de variable Espera $\tfrac{2}{6}\cdot 1.000 + \tfrac{2}{6}\cdot 1.000 + \tfrac{2}{6}\cdot 0.000 \approx 0.667$

2.9 Cálculo de entropía para variable Alternativa

Entropía para Alternativa = No
$$-\frac{0}{1}\log_2\left(\frac{0}{1}\right) - \frac{1}{1}\log_2\left(\frac{1}{1}\right) \approx 0.000$$

Entropia total de variable Alternativa $\frac{5}{6} \cdot 0.971 + \frac{1}{6} \cdot 0.000 \approx 0.809$

2.10 Cálculo de entropía para variable Viernes

Entropía para Viernes = No
$$-\tfrac{0}{1}\log_2\left(\tfrac{0}{1}\right) - \tfrac{1}{1}\log_2\left(\tfrac{1}{1}\right) \approx 0.000$$

Entropia total de variable Viernes $\frac{5}{6} \cdot 0.971 + \frac{1}{6} \cdot 0.000 \approx 0.809$

2.11 Resultado de cálculo de entropía

El atributo con menor entropía es Hambre

El valor Si del atributo Hambre no discrimina los datos. Se procederá a hacer el análisis del subarbol.

 $Hambre = No \implies resultado = NO$

2.12 Árbol de decisión generado

3 Subarbol Clientes=Lleno, Hambre=Si

Alternativa	Bar	Viernes	Hambre	Clientes	Precio	Lluvia	Reserva	Tipo	Espera	OBJETIVO
Si	No	No	Si	Lleno	Bajo	No	No	Tailandes	30-60	NO
Si	No	Si	Si	Lleno	Bajo	Si	No	Tailandes	10-30	SI
Si	Si	Si	Si	Lleno	Alto	No	Si	Italiano	10-30	NO
Si	Si	Si	Si	Lleno	Bajo	No	No	Hamburg	30-60	SI

3.1 Cálculo de entropía para variable Bar

Entropía para Bar = No
$$-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) \approx 1.000$$

Entropia total de variable Bar
$$\tfrac{2}{4} \cdot 1.000 + \tfrac{2}{4} \cdot 1.000 \approx 1.000$$

3.2 Cálculo de entropía para variable Hambre

Entropia total de variable Hambre $\frac{4}{4} \cdot 1.000 \approx 1.000$

3.3 Cálculo de entropía para variable Tipo

Entropía para Tipo = Hamburg
$$-\frac{1}{1}\log_2\left(\frac{1}{1}\right) - \frac{0}{1}\log_2\left(\frac{0}{1}\right) \approx 0.000$$

Entropía para Tipo = Italiano
$$-\frac{0}{1}\log_2\left(\frac{0}{1}\right) - \frac{1}{1}\log_2\left(\frac{1}{1}\right) \approx 0.000$$

Entropia total de variable Tipo
$$\tfrac{2}{4}\cdot 1.000 + \tfrac{1}{4}\cdot 0.000 + \tfrac{1}{4}\cdot 0.000 \approx 0.500$$

3.4 Cálculo de entropía para variable Lluvia

Entropía para Lluvia = No
$$-\frac{1}{3}\log_2\left(\frac{1}{3}\right) - \frac{2}{3}\log_2\left(\frac{2}{3}\right) \approx 0.918$$

Entropia total de variable Lluvia

$$\frac{1}{4} \cdot 0.000 + \frac{3}{4} \cdot 0.918 \approx 0.689$$

3.5 Cálculo de entropía para variable Precio

Entropía para Precio = Bajo
$$-\frac{2}{3}\log_2\left(\frac{2}{3}\right) - \frac{1}{3}\log_2\left(\frac{1}{3}\right) \approx 0.918$$

Entropia total de variable Precio $\frac{1}{4} \cdot 0.000 + \frac{3}{4} \cdot 0.918 \approx 0.689$

3.6 Cálculo de entropía para variable Clientes

Entropia total de variable Clientes $\frac{4}{4} \cdot 1.000 \approx 1.000$

3.7 Cálculo de entropía para variable Reserva

Entropía para Reserva = Si $-\frac{0}{1}\log_2\left(\frac{0}{1}\right) - \frac{1}{1}\log_2\left(\frac{1}{1}\right) \approx 0.000$

Entropía para Reserva = No
$$-\frac{2}{3}\log_2\left(\frac{2}{3}\right) - \frac{1}{3}\log_2\left(\frac{1}{3}\right) \approx 0.918$$

Entropia total de variable Reserva $\frac{1}{4} \cdot 0.000 + \frac{3}{4} \cdot 0.918 \approx 0.689$

3.8 Cálculo de entropía para variable Espera

Entropía para Espera = 30-60
$$-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) \approx 1.000$$

Entropia total de variable Espera $\tfrac{2}{4} \cdot 1.000 + \tfrac{2}{4} \cdot 1.000 \approx 1.000$

3.9 Cálculo de entropía para variable Alternativa

Entropia total de variable Alternativa $\frac{4}{4} \cdot 1.000 \approx 1.000$

3.10 Cálculo de entropía para variable Viernes

Entropía para Viernes = No
$$-\frac{0}{1}\log_2\left(\frac{0}{1}\right) - \frac{1}{1}\log_2\left(\frac{1}{1}\right) \approx 0.000$$

Entropia total de variable Viernes $\frac{3}{4} \cdot 0.918 + \frac{1}{4} \cdot 0.000 \approx 0.689$

3.11 Resultado de cálculo de entropía

El atributo con menor entropía es Tipo

El valor Tailandes del atributo Tipo no discrimina los datos. Se procederá a hacer el análisis del subarbol.

$$Tipo = Italiano \implies resultado = NO$$

 $Tipo = Hamburg \implies resultado = SI$

3.12 Árbol de decisión generado

4 Subarbol Clientes=Lleno, Hambre=Si, Tipo=Tailandes

Alternativa	Bar	Viernes	Hambre	Clientes	Precio	Lluvia	Reserva	Tipo	Espera	OBJETIVO
Si	No	No	Si	Lleno	Bajo	No	No	Tailandes	30-60	NO
Si	No	Si	Si	Lleno	Bajo	Si	No	Tailandes	10-30	SI

4.1 Cálculo de entropía para variable Bar

Entropia total de variable Bar $\tfrac{2}{2} \cdot 1.000 \approx 1.000$

4.2 Cálculo de entropía para variable Hambre

Entropia total de variable Hambre $\frac{2}{2} \cdot 1.000 \approx 1.000$

4.3 Cálculo de entropía para variable Tipo

Entropia total de variable Tipo $\frac{2}{2} \cdot 1.000 \approx 1.000$

4.4 Cálculo de entropía para variable Lluvia

Entropía para Lluvia = Si $-\frac{1}{1}\log_2\left(\frac{1}{1}\right) - \frac{0}{1}\log_2\left(\frac{0}{1}\right) \approx 0.000$

Entropía para Lluvia = No $-\tfrac{0}{1}\log_2\left(\tfrac{0}{1}\right) - \tfrac{1}{1}\log_2\left(\tfrac{1}{1}\right) \approx 0.000$

Entropia total de variable Lluvia $\tfrac{1}{2} \cdot 0.000 + \tfrac{1}{2} \cdot 0.000 \approx 0.000$

4.5 Cálculo de entropía para variable Precio

Entropia total de variable Precio $\frac{2}{2} \cdot 1.000 \approx 1.000$

4.6 Cálculo de entropía para variable Clientes

Entropia total de variable Clientes $\frac{2}{2} \cdot 1.000 \approx 1.000$

4.7 Cálculo de entropía para variable Reserva

Entropia total de variable Reserva $\frac{2}{2} \cdot 1.000 \approx 1.000$

4.8 Cálculo de entropía para variable Espera

Entropía para Espera = 10-30 $-\frac{1}{1}\log_2\left(\frac{1}{1}\right) - \frac{0}{1}\log_2\left(\frac{0}{1}\right) \approx 0.000$

Entropía para Espera = 30-60 $-\frac{0}{1}\log_2\left(\frac{0}{1}\right) - \frac{1}{1}\log_2\left(\frac{1}{1}\right) \approx 0.000$

Entropia total de variable Espera $\tfrac{1}{2} \cdot 0.000 + \tfrac{1}{2} \cdot 0.000 \approx 0.000$

4.9 Cálculo de entropía para variable Alternativa

Entropía para Alternativa = Si $-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) \approx 1.000$

Entropia total de variable Alternativa $\frac{2}{2} \cdot 1.000 \approx 1.000$

4.10 Cálculo de entropía para variable Viernes

Entropía para Viernes = Si $-\frac{1}{1}\log_2\left(\frac{1}{1}\right) - \frac{0}{1}\log_2\left(\frac{0}{1}\right) \approx 0.000$

Entropía para Viernes = No $-\frac{0}{1}\log_2\left(\frac{0}{1}\right) - \frac{1}{1}\log_2\left(\frac{1}{1}\right) \approx 0.000$

Entropia total de variable Viernes $\frac{1}{2} \cdot 0.000 + \frac{1}{2} \cdot 0.000 \approx 0.000$

4.11 Resultado de cálculo de entropía

El atributo con menor entropía es Lluvia

 $Lluvia = No \implies resultado = NO$

 $Lluvia = Si \implies resultado = SI$

4.12 Árbol de decisión generado

