Kapitel 3

2 Hauptsätze der Operatorentheorie

3.1 Das Prinzip der gleichmäßigen Beschränktheit (PUB)

Theorem 3.1 (Baire) Sei (M,d) ein vollständiger Raum, $O_n \subseteq M$ offen und dicht, $n \in \mathbb{N}$. Dann ist $D = \bigcap_{n \in \mathbb{N}} O_n$ dicht in M.

Beweis Sei $x_0 \in M$, $\delta > 0$, $B_0 = B(x_0, \delta)$. z.z: $B_0 \cap D \neq \emptyset$. Da O_1 offen und dicht $\exists x_1 \in O_1 \cap B_0$, $\delta_1 \in (0, \frac{1}{2}\delta)$ mit $\overline{B(x_1, \delta_1)} \subseteq O_1 \cap B_0$. Induktiv findet man $x_n \in O_n \cap B_{n-1}$, $\delta_n \in (0, \frac{1}{2}\delta_{n-1})$. $B_n = B(x_n, \delta_n)$ mit $\overline{B_n} \subseteq O_n \cap B_{n-1} \subseteq O_n \cap O_{n-1} \cap B_{n-2} \subseteq \cdots \subseteq O_1 \cap \ldots O_n \cap B_0$ (*). Da $\delta_m < 2^{-m}\delta$ gilt ferner, dass $x_n \in \overline{B_m} \subseteq B(x_m, 2^{-m}\delta)$ für $n \ge m$. $\Rightarrow (x_n)_{n \in \mathbb{N}}$ ist CF. $\Longrightarrow \exists x = \lim_{n \to \infty} x_n \in \overline{B_m} \ \forall m \in \mathbb{N}$.

Korollar 3.2 Sei (M,d) ein vollständiger metrischer Raum, $A_n \subseteq M$ abg $(n \in \mathbb{N})$ mit $\bigcup_{n \in \mathbb{N}} A_n = M$. Dann $\exists N \in \mathbb{N}$, sodass $\mathring{A}_N \neq \emptyset$.

Beweis Annahne: $\mathring{A}_n = \emptyset \ \forall n \in \mathbb{N}$.

Setze $O_n = M \setminus A_n \Rightarrow O_n$ ist offen und dicht (nach Satz 1.12), $n \in \mathbb{N} \stackrel{\text{Theo } 3.1}{\Rightarrow} \cap_{n \in \mathbb{N}} O_n$ ist dicht in M.

Aber: $M \setminus \bigcap_{n \in \mathbb{N}} O_n = \bigcup_{n \in \mathbb{N}} M \setminus O_n = \bigcup_{n \in \mathbb{N}} A_n = M$. Wid!

Theorem 3.3 (PUB) Seien X ein BR, Y ein normierter VR und $\mathcal{T} \subseteq B(X,Y)$. Wenn \mathcal{T} punktweise beschränkt ist $(\forall x \in X \ \exists \ c_x > 0 : \ ||Tx|| \le c_x \ \forall T \in \mathcal{T})$, dann ist \mathcal{T} gleichmäßig beschränkt $(d.h. \ \exists c > 0 : \ ||T|| \le c \ \forall T \in \mathcal{T})$

Beweis Sei $A_n = \{x \in X : ||Tx|| \le n \ \forall T \in \mathcal{T}\}\ n \in \mathbb{N}$. Nach Vor: $\bigcup_{n \in \mathbb{N}} A_n = X$. Sei $x_k \in A_n, \ x_k \mapsto x \text{ in } X \ (k \to \infty)$. Dann: $||Tx|| = \lim_{k \to \infty} ||Tx_k|| \le n \ \forall T \in \mathcal{T}$. Korollar $3.2 \Rightarrow \exists N \in \mathbb{N}, \ y \in A_N, \ \varepsilon > 0 : \ B(y, \varepsilon) \subseteq A_N$. Da $\mathcal{T} \subseteq B(X, Y) : A_N$ ist konvex und aus $x \in A_N$ folgt $-x \in A_N$, also $-B(y, \varepsilon) \subseteq -A_N = A_N$.

Damit
$$||z|| < \varepsilon \Rightarrow z = \frac{1}{2} (\underbrace{y+z}_{\in B(y,\varepsilon)} + \underbrace{z-y}_{\in -B(y,\varepsilon)} \Rightarrow z \in \frac{1}{2} (A_N + A_N) \overset{A_N \text{ konvex}}{\subseteq} A_N (*).$$

Sei $x \in X$ mit $||x|| = 1$. Dann: $z = \varepsilon x \in A_N$ nach $(*) \Rightarrow N \ge ||Tz|| = \varepsilon ||Tz|| \; \forall T \in \mathcal{T}$

 $\mathcal{T} \Rightarrow ||T|| \leq \frac{N}{\varepsilon} \ \forall T \in \mathcal{T}.$

Beispiel 3.4 Sei $X = c_{\infty}$ mit sup Norm (kein BR!), $Y = \mathbb{K}$, $T_n x = n x_n$, $n \in \mathbb{N}$. Dann: $T_n \in B(X,Y) = X^*$, $||T_m|| = n \to \infty$. Sei $x = (x_1,\ldots,x_m,0,\ldots) \in c_\infty \Rightarrow$ $|T_n x| \le m||x||_{\infty} =: c_x \Rightarrow$ Theorem 3.3 benötigt vollst. von X.

Korollar 3.5 (Banach-Steinhaus) Seien X, Y BRe, $D \subseteq X$ dichter $UVR, T_n \in$ $B(X,Y), n \in \mathbb{N}.$

Dann sind äquivalent:

- 1. $\exists T \in B(X,Y) \text{ mit } T_n x \to Tx \text{ } (n \to \infty) \text{ für alle } x \in X \text{ ("starke Konvergenz")}$
- 2. $T_n x$ konvergiert für $n \to \infty$ und alle $x \in X$.
- 3. $T_n x$ konvergiert für $n \to \infty$ und alle $x \in D$ und $||T_n|| \le c$ für alle $n \in \mathbb{N}$.

Beweis \Rightarrow b) trivial.

- b) \Rightarrow c) Nach Vor. gilt $||T_n x|| \le c_x \ \forall n \in \mathbb{N} \stackrel{\text{PUB}}{\Rightarrow} \exists c > 0 : ||T_n|| \le c, \forall n \in \mathbb{N}.$
- c) \Rightarrow a) Setze $T_0x = \lim T_nx$ für $x \in D$. Da T_n linear ist, ist T_0 linear. Ferner: $\|T_0x\| = 1$ $\lim_{n\to\infty} ||T_n x|| \stackrel{c_j}{\leq} c||x||$ für alle $x\in D\Rightarrow T_0\in B(D,Y) \stackrel{\text{Lemma 1.64}}{\Longrightarrow} \exists T\in C$ B(X,Y) mit $Tx = T_0x \ \forall x \in D$. Sei $\varepsilon > 0$, $x \in X$. Dann existiert ein $y \in D$ mit $||x - y|| \le \varepsilon$ (da $\overline{D} = X$). Damit $\overline{\lim} ||T_n x - Tx|| \le \overline{\lim}_{n \to \infty} (||T_n (x - y)|| + ||T_n y - Ty|| + ||T(y - x)||) \le C$ $c\varepsilon + \lim_{n \to \infty} ||T_n y - Ty|| + c\varepsilon = 2c\varepsilon \stackrel{\varepsilon \to 0}{\Rightarrow} Beh.$

Beispiel 3.6 Sei $X = Y = c_0, T_n x = (x_1, 2x_2, ..., nx_n, 0, ...) (n \in \mathbb{N}, x \in X) \Rightarrow$ $T_n \in B(c_0) \text{ mit } ||T_n|| \ge ||T_n e_n|| = n \Rightarrow \infty.$

Aber: Für $x=(x_1,\ldots,x_m,0,\ldots)\in c_0$ gilt: $T_nx\to(x_1,2x_2,\ldots,mx_m,0,\ldots)\Rightarrow \max$ kann in c) die Beh $||T_n|| \le c$ nicht weglassen.

Beispiel 3.7 (Fourierreihen) Sei $X = \{ f \in C(\mathbb{R}) : f(t) = f(t+2\pi), t \in \mathbb{R} \}$ mit sup Norm (BR). Setze

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(kt) dt, \ k \in \mathbb{N}_0$$
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) dt, \ k \in \mathbb{N}_0$$

Wie in Bsp 2.22 kovergiert $s_n(f,t) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos(kt) + b_k \sin(kt)$ für $n \to \infty$ in $L^2([-\pi, \pi])$, Werner S.130 zeigt:

$$s_n(f,t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f_n(s+t) D_n(s) ds \text{ mit}$$

$$D_n(t) = \begin{cases} \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}, & t \in [-\pi,\pi] \setminus \{0\} \\ n+\frac{1}{2}, & t = 0 \end{cases}$$

Setze $T_n f = s_n(f, 0) \Rightarrow T_n \in X^*$.

Annahme: T_n konvergiert für alle $f \in X \stackrel{\text{Kor 3.5}}{\Rightarrow} ||T_n|| \leq c \ \forall n \in \mathbb{N}$.

Aber: Wie in Bsp 1.67 gilt: $||T_n|| = \frac{1}{\pi} \int_{-\pi}^{\pi} |D_n(t)| dt \stackrel{n \to \infty}{\to} \infty$. (Werner IV, 2.10) Wid! $\Rightarrow \exists f \in X : s_n(f, 0)$ divergiert.

"richtiges Gegenbeispiel" (Du Bois-Raymond 1876)

Beispiel 3.8 (Links-Translation) Sei $X = L^p(\mathbb{R})$, $1 \le p < \infty$. Setze (T(t)f)(s) = f(s+t), $s \in \mathbb{R}$, $(t \in \mathbb{R}, f \in X)$. Klar. T(t)f ist mb, T(t) ist linear, $||T(t)f||_p = (\int_{\mathbb{R}} |f(s+t)|^p dt)^{\frac{1}{p}} = ||f||_p \Rightarrow T(t) \in B(X)$ ist Isometrie. Seien $f \in X, t, s, r \in \mathbb{R}$

 \mathbb{R} , $(T(t), T(s), f) = (T(s)f)(r+t) = f(r+t+s) = (T(t+s)f)(r) \Rightarrow T(t)T(s) = T(t+s) = T(s)T(t)$.

Weiter $T(0) = T \Rightarrow T(t)$ ist invertierbar mit $T(t)^{-1} = T(-t), t \in \mathbb{R}$.

Sei $f \in C_0(\mathbb{R})$, $t, t_0 \in \mathbb{R} : ||T(t)f - T(t_0)f||_{\infty} := \sup_{s \in \mathbb{R}} |f(s+t) - f(s+t_0)| \to 0 \ (t \to t_0)$, da f glm stetig. Sei supp $\subseteq [a, b]$ und $|t - t_0| \le 1$. Dann supp $(T(t)f - T(t_0)f) \subseteq [a - t_0 - 1, b + b_0 + 1] \stackrel{1.39}{\Rightarrow} ||T(t)f - T(t_0)f||_p \le c_{a,b}||T(t)f - T(t_0)f||_{\infty} \to 0 \ (t \to t_0) \stackrel{\text{Kor } 3.5,\text{Sa } 1.44}{\Rightarrow} T(t)(f) \to T(t_0)f \text{ für } f \in X, \ t \to t_0.$

 $(T(t))_{t\in\mathbb{R}}$ heißt stark stetige Operatorengruppe.

Bemerkung $t \mapsto T(t) \in B(X)$ ist bzgl der Operatornorm unstetig.

Beweis Sei $t_0 = 0$.

$$f = t^{\frac{1}{p}} \mathbb{1}_{[0,t]}, \ t > 0 \Rightarrow ||f||_p = 1$$

$$(T(t)f)(s) = t^{-\frac{1}{p}} \mathbb{1}_{[0,t]}(s+t) = \begin{cases} t^{-\frac{1}{p}}, & -t \le s \le 0\\ 0, & \text{sonst} \end{cases}$$

 $\Rightarrow ||T(t) - I|| \ge ||T(t)f - f||_p = t^{-\frac{1}{p}} \left(\int_{-t}^t |1|^p dt \right)^{\frac{1}{p}} = 2^{\frac{1}{p}} \Rightarrow T(t) \not\to I = T(0), \ t \to 0$ (in B(X)).

(entsprechend für $X = C_c(\mathbb{R})$)

Beispiel 3.9 (Faltungsoperatoren) Seien $k \in L^1(\mathbb{R}), f \in L^p(\mathbb{R}^d), 1 \leq p < \infty$. AE, Lemma X 7.2 zeigt: $\mathbb{R}^{d+d} \ni (x,y) \mapsto k(x-y) \in \mathbb{K}$ ist mb $\Rightarrow (x,y) \mapsto \varphi(x,y) = k(x-y)f(y)$ ist mb.

Sei p=1. Fubini a) $\int_{\mathbb{R}^{d+d}} |\varphi(x,y)| d(x,y) = \int_{R^d} \int_{R^d} |k(x-y)| |f(y)| dxdy = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |k(z)| dz |f(y)| dy = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |g(x,y)| dxdy = \int_{\mathbb{R}$

 $||k||_1||f||_1 \Rightarrow \varphi \in L^1(\mathbb{R}^{d+d})$. Fubini b) zeigt: $Tf(x) := (k*f)(x) := \int_{\mathbb{R}^d} k(x-y)f(y)dy$ ist für alle $x \in \mathbb{R}^d$ definiert, in x int'bar und $||Tf||_X \leq ||\varphi||_{L^1(\mathbb{R}^{d+d})} \leq ||k||_1||f||_X$. Sei $p \in (1, \infty)$. Dann

$$\begin{split} \Psi(x) & := & \int_{\mathbb{R}^d} |\varphi(x,y)| dy \\ & = & \int_{R^d} |k(x-y)|^{\frac{1}{p}} |k(x-y)|^{\frac{1}{p}} |f(y)| dy \\ & \overset{\text{H\"{o}lder}}{\leq} & (\int_{\mathbb{R}^d} |k(x-y)|^{\frac{p'}{p'}} dy)^{\frac{1}{p'}} \cdot (\int_{\mathbb{R}^d} |k(x-y)|^{\frac{p}{p}} |f(y)|^p dy)^{\frac{1}{p}} \\ & = & \|k\|_1^{\frac{1}{p'}} (|k| + |f|^p)^{\frac{1}{p}} \end{split}$$

für f.a. $x\in\mathbb{R}^d$ (vgl. Fubini a)) Da $|f|^p\in L^1(\mathbb{R}^d)$ liefert Fubini a): $\Psi^p\in L^1(\mathbb{R}^d)$ und

$$\|\Psi\|_p^p = \|\Psi^p\|_p \stackrel{a)}{\leq} \|k\|_1^{\frac{p}{p'}} \cdot \|k\|_1 \cdot \||f|^p\|_1 = \|k\|_1^p \cdot \|f\|_p^p \ (*)$$

 $\overset{\text{Fub a),Kor 1.35}}{\Longrightarrow} \varphi \in L^1(B(0,n) \times \mathbb{R}^d) \ \forall n \in \mathbb{N}.$

 $\stackrel{\text{Fub b})}{\Longrightarrow} Tf = k*f$ ist f.ü. definiert, mb und (*) liefert:

Youngsche Ungleichung
$$\|\Psi\|_p = \|k + f\|_p \le \|k\|_1 \|f\|_p$$
 (3.1)

für $1 \le p < \infty$.

Insbesondere: $T \in B(L^p(\mathbb{R})^d)$ mit $||T|| \le ||k||_1$.