GCHSM

Gaussian Charge distributed Harmonic Solvation Model

Ver. 1.0

2025年10月

Nakai Group

Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University

GCHSM ユーザーマニュアル Version 1.0

概要

GCHSM は、Gaussian charge distributed harmonic solvation model (GC-HSM)を用いた量子化学計算を実行するためのプログラムである。GC-HSM は、従来の HSM の問題点を解決することが可能であるだけでなく、凝集系の熱力学量を高精度に求めることが可能である。なお、本プログラムは PySCF (ver. 2.9.0)の Wrapper であり、誰でも簡便かつ容易に実行することが可能である。

1. GCHSM の入力

GCHSM の実行には、インプットファイルが必要である。インプットファイルは、"input.inp"をデフォルトのファイル名とし、主として以下の4つのセクションから構成される。

- Main セクション
- Title セクション
- Geometry セクション

Main セクションと Title セクションの終わりには空行が挿入される。以下は、水中の水分子に対する 振動数計算のインプットファイルの例である。

%MAIN

CALCTYPE = hess

METHOD = HF

DFTTYP = B3LYP-D3BJ

BASIS = cc-pvdz

HSM = TRUE

PROJECT = TRUE

FREOTEMP = 298.15

%END

#vibrational frequency calculation

%GEOMETRY

0 1

O 0.000000000000 0.00000002290434 0.12533601079751 H 0.000000000000 0.75867849691627 -0.46855429138676

H 0.0000000000000 -0.75867851982061 -0.46855430941074

%END

Main セクション

Title セクション

Geometry セクション

1.1. MAIN セクション

%MAIN

CALCTYPE = hess

METHOD = HF

DFTTYP = B3LYP-D3BJ

BASIS = cc-pvdz

HSM = TRUE

PROJECT = TRUE

FREQTEMP = 298.15

%END

キーワード・オプションの区切りは半角スペースまたは Tab キー

基底関数の指定 HSM計算の実施

Main セクション

計算内容

汎関数の指定

オプション [デフォルト] 内容

✓ CALCTYPE :以下の計算内容を指定。 [sp]

• sp: 一点計算

· opt: 構造最適化計算

· hess:振動数計算

· freq:熱力学量評価

: 汎関数を指定。HF, DFT, MP2 が指定可能。 ✓ METHOD [DFT]

: METHOD=DFT とした場合に有効。 **✓** DFTTYP [B3LYP]

✓ BASIS : 基底関数を指定。 [STO-3G]

✓ HSM [TRUE] : GC-HSM 計算を実施。

HSM = TRUE とした場合、水溶媒中の計算として

(SCRF = CPCM, ALPHA = 1.2, EPS = 80.1510, ORDER = 17)

を指定。

FALSE の場合、気相中での計算を実施

: 並進・回転空間への射影の有無

: CPCM と COSMO が指定可能 ✓ SCRF [CPCM]

: PCM におけるスケーリングファクターを指定。 ✓ ALPHA [1.2]

:溶媒の比誘電率を指定。 ✓ EPS [80.1510]

✓ ORDER : Lebedev order を指定。 [17]

✓ PROJECT [FALSE] : 非静電項の計算時に使用するキャビティ面の生成手 ✓ NE CAVITY [PCM]

法の指定。PCM の場合、キャビティ球のグリッド分割

が適用される。SES の場合、キャビティ球の多面体近

似が適用される。

: 分散、斥力エネルギーの計算手法の指定。 ✓ NE MODEL [GAMESS] NE MODEL=GAMESS のみ指定可能。 文献[1,2]に基づいて計算を実施。 ✓ NE DENSITY [0.997]:溶媒分子の密度を指定。 ✓ NE MOLAR_MASS [18.01528] :溶媒分子の分子量を指定。 : キャビティ生成エネルギーの計算手法を指定。 ✓ NE CAV MODEL [SPT] NE CAV MODEL=SPT のみ有効であり、文献[3]に基 づいて計算を実施。 : キャビティ生成エネルギー計算時の温度を指定。 ✓ NE SPT T [298.15] ✓ NE SPT SIGMA [1.50]:溶媒半径を指定。 ✓ NE SPT VM :溶媒分子体積を指定。 [18.07] : 溶媒の等圧体積膨張係数の指定 ✓ NE SPT ALPHA [0.000257] : 圧力を指定。 ✓ NE SPT P [1.0]: NE SPT P で指定した圧力の単位指定。 ✓ NE SPT PUNIT [atm] : 内部エネルギー・エントロピー計算時に使用する温度

状を指定。

の指定。複数の温度指定が可能。

Title セクション 1. 2.

✓ FREQTEMP

✓ MOLE

#vibrational frequency calculation

[298.15]

[LINEAR]

Title セクション

: CALCTYPE=freq が指定された場合に有効。分子の形

Title セクションは、計算に関係する情報を付記するために用いられる。"#"から開始する。

1 3 Geometry セクション

	4.000 c. , ,	7 7 7		
%G	EOMETRY	Geometry セクション		
0 1				電荷、スピン多重度
0	0.00000000000000	0.00000002290434	0.12533601079751	<mark>原子1の座標</mark>
Н	0.000000000000000	0.75867849691627	-0.46855429138676	<mark>原子2の座標</mark>
Н	0.000000000000000	-0.75867851982061	-0.46855430941074	<mark>原子3の座標</mark>
%EI	ND			

Geometry セクションは、入力構造の電荷とスピン多重度の2つの整数値の指定から始まる。改行後、 原子の位置を小数表記のデカルト座標(Å)で指定する。

2. GCHSM の出力

ジョブを投入すると、アウトファイルとして①input. out と②freq. out が出力される。なお、①の名称はインプットファイル(input. inp)と同じ名前である。

2.1. input. out

2. I. Input. out ~(省略)	
Execution of GCHSM begun Mon Oct 06 17:10:55 2025	ジョブの投入日時
vibrational frequency calculation	タイトルセクションの出力
SYSTEM	
Total number of atoms 3	系の情報
Number of electrons 10 Charge of system 0	<mark>原ナ剱</mark> 電子数
Spin multiplicity 1 Number of basis functions 24	<mark>電荷</mark> スピン多重度
Number of occupied orbitals 5	基底関数の数
	占有軌道数
VIBRATION OPTIONS	PROJECT 実施の有無
Projection of trans/rot: ON (nTR = 6)	
	三/ 公 々 / 4
Computational Details	<i>計算条件</i>
Method HF	汎関数
DFT functional - Basis cc-pvdz	基底関数
Dispersion DFT-D3(BJ)/D3	分散の有無
PCM Details	PCM 情報
SCRF (PCM) CPCM	PCM の種類
SCRF (PCM) CPCM Dielectric 80.1510	比誘電率
vdW scale alpha 1.200 Lebedev order 17	スケーリングファクター Lebedev grid の番号
Non-electrostatic Contributions	非静電項の計算
	ッドは · 电·ス・シロ · 升
[Surface]	キャビティの構築手法
Kind : PCM Area (Ang.^2) : 164.930193	<u>表面積</u> <i>体積</i>
Volume (Ang.^3) : 192.557609	グリッド点の総数(SES の場
Number of surface point : 228	合は Tesselae の総数)

Model : GAMESS Density : 3.332768e-02 E_disp (kcal/mol) : -3.044875 E_rep (kcal/mol) : 0.178001	計算アルゴリズム 密度 分散エネルギー 斥力エネルギー
[Cavitation] Model : SPT G_cav (kcal/mol) : 2.192535 H_c (kcal/mol) : 0.190439 T*S_c (kcal/mol) : -2.002096	キャビティ生成エネルギー 計算手法 自由エネルギー エンタルピー寄与 エントロピー寄与
Total non-electrostatic energy (kcal/mol): -0.674339	非静電エネルギー
*** Start vibrational frequency calculation ***	
HARMONIC FREQUENCIES	基準振動解析
Mode Frequency(cm-1) Note 1 17.59 2 23.84 3 17.76 4 227.20 5 365.60 6 609.25 7 1664.19 8 3555.84 9 3908.11	振動数 虚振動がある場合、Note に"Imag"と出力 振動数が10cm ⁻¹ に満たない 場合、Note に low と出力
Thermochemistry at 298.15 K	<u>熱力学計算(温度)</u>
Temperature : 298.15 K Pressure : 1.00 atm Total Mass : 18.015 Amu	<u>温度</u> <u>圧力</u> 質量
Internal energy	内部エネルギー
E(vib) : 54.60 kJ/mol 13.05 kcal/mol E(rot) : 4.93 kJ/mol 1.18 kcal/mol E(trans): 3.72 kJ/mol 0.89 kcal/mol Total E : 63.26 kJ/mol 15.12 kcal/mol	振動エネルギー 回転エネルギー 並進エネルギー 総エネルギー
Entropy	エントロピー
S(vib) : 0.00002 kJ/mol/K S(rot) : 0.01436 kJ/mol/K S(trans): 0.08387 kJ/mol/K Total S : 0.09826 kJ/mol/K	電子エントロピー 回転エントロピー 並進エントロピー 総エントロピー

分散・斥力エネルギー

[Dispersion/Repulsion]

2. 2. freq. out

- 1 31.357883648009
- 2 81.795728860024
- 3 75.988009145976
- 4 382.649803121748
- 5 309.735845474172
- 6 442.385022641645
- 7 1691.249913131260
- 8 3849.887419632710
- 9 3963.622756143805

1 列目が振動モードの番号、2 列目が振動数 (cm^{-1}) に相当する。CALCTYPE = freq とした場合、このファイルを用いて熱力学量計算のみを実施。

参考文献

- [1] F. M. Floris and J. Tomasi, "Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation", *J. Comput. Chem.*, **10**, 616 (1989).
- [2] F. M. Floris, J. Tomasi, and J.L.P. Ahuir, "Dispersion and repulsion contributions to the solvation energy: Refinements to a simple computational model in the continuum approximation", *J. Comput. Chem.*, **12**, 784 (1991).
- [3] R. A. Pierotti, "A Scaled Particle Theory of Aqueous and Nonaqueous Solutions", *Chem. Rev.*, **76**, 717 (1976).

■HSM 総説

1. 中井浩巳, "調和溶媒和モデル (HSM) を用いた凝縮系の自由エネルギー計算", J. Comput. Chem. Jpn. **16**, 83 (2017).

■HSM 理論

2. H. Nakai and A. Ishikawa, "Quantum chemical approach for condensed-phase thermochemistry: Proposal of a harmonic solvation model, *J. Chem. Phys.*, **141**, 174106 (2014).

■GC-HSM 理論

3. In preparation.

■HSM 利用計算

- 4. A. Ishikawa and H. Nakai, "Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules", *Chem. Phys. Lett.*, **624**, 6 (2015).
- 5. M. Okoshi, A. Ishikawa, Y. Kawamura, and H. Nakai, "Theoretical Analysis of the Oxidation Potentials of Organic Electrolyte Solvents", *ECS Electrochem. Lett.*, **4**, A103 (2015).
- 6. A. Ishikawa and H. Nakai, "Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential", *Chem. Phys. Lett.*, **650**, 159 (2016).
- 7. A. Ishikawa, M. Kamata, and H. Nakai, "Quantum chemical approach for condensed-phase thermochemistry (IV): Solubility of gaseous molecules", *Chem. Phys. Lett.*, **655-656**, 103 (2016).