Mathematical Methods for Computer Science I

Fall 2017

Series 2 – Hand in before Monday, 02.10.2017 - 12.00

- 1. A kiosk sells postcards with 10 different views.
 - a) In how many ways can one buy 8 (not necessarily different) postcards?
 - b) In how many ways can one buy 15 postcards so that to have at least one postcard of every kind?
 - c) In how many ways can one buy 8 different postcards?
 - d*) You have bought 8 different postcards. In how many ways can you send them to 5 friends of yours so that everybody gets at least one postcard? *
- 2. a) You are playing a lottery where 6 balls are drawn out of 49. How many different ways are there to fill the lottery card? How many of them will guess exactly 3 of 6 numbers? How many of them will guess at least 3 of 6 numbers?
 - b) Let m, n, k be positive integers such that $k \leq m$ and $k \leq n$. Prove:

$$\binom{m+n}{k} = \binom{m}{0} \binom{n}{k} + \binom{m}{1} \binom{n}{k-1} + \dots + \binom{m}{k} \binom{n}{0}.$$

(*Hint:* think of taking k balls from a bag with m black and n white balls. In how many different ways can you get i black and k-i white balls?)

3. a) How many lattice paths are there that go from A to B moving only downwards and passing through the point C?

b) Prove the identity

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$$

using the fact that any path from A to B passes through one of the white points.

c) Prove the same identity using the result of Problem 2b).

^{*}Problems marked with * are bonus problems.

4. Recall that a composition of a positive integer n is a representation of n as the sum of positive integers, taking into account the order of summands. The number of summands can range between 1 and n, in particular the compositions

$$n = n$$
 and $n = \underbrace{1 + \dots + 1}_{n}$

are possible. How many different compositions of n are there?

5. a) Represent the identity

$$\binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \dots + \binom{n+k-1}{k-1} = \binom{n+k}{k-1}$$

graphically on the Pascal triangle and check it for some values of n and k.

b) Prove this identity for all n and k.

										1										
									1		1									
								1		2		1								
							1		3		3		1							
						1		4		6		4		1						
					1		5		10		10		5		1					
				1		6		15		20		15		6		1				
			1		7		21		35		35		21		7		1			
		1		8		28		56		70		56		28		8		1		
	1		9		36		84		126		126		84		36		9		1	
1		10		45		120		210		252		210		120		45		10		1