Aluno: Felipi Lima Matozinho

1) MAX =

process	Α	В	С
P0	4	1	0
P1	1	4	1
P2	0	0	2
P3	2	2	4

AVAILABLE = [5 5 5]

ALLOCATION =

process	Α	В	С
P0	0	0	0
P1	0	0	0
P2	0	0	0
P3	0	0	0

a) P0 requisita [2 1 0]

process	Α	В	С
P0	4	1	0
P1	1	4	1
P2	0	0	2

process	Α	В	С
P3	2	2	4

$$REQ_0$$
 = [2 1 0]

$$REQ_0 <= NEED_0$$
 => OK: GOTO 2

$$REQ_0 <= AVAILABLE$$
 => ОК: GOTO 3

ALLOCATION =

process	Α	В	С
P0	2	1	0
P1	0	0	0
P2	0	0	0
Р3	0	0	0

NEED =

process	Α	В	С
P0	2	0	0
P1	1	4	1
P2	0	0	2
P3	2	2	4

AVAILABLE = [3 4 5]

Verificação de estado seguro

FINISH = [F F F F]

WORK = [3 4 5]

$$NEED_0 <= WORK$$
 && $FINISH[0] == F$ => OK: GOTO 3 $WORK$ = [3 4 5] + [2 1 0] = [5 5 5] $FINISH$ = [T F F F]

$$NEED_1 <= WORK$$
 && $FINISH[1] == F$ => OK: GOTO 3 $WORK$ = [5 5 5] + [0 0 0] = [5 5 5] $FINISH$ = [T T F F]

$$NEED_2 <= WORK$$
 && $FINISH[2] == F$ => OK: GOTO 3 $WORK$ = [5 5 5] + [0 0 0] = [5 5 5] $FINISH$ = [T T T F]

$$NEED_3 <= WORK$$
 && $FINISH[3] == F$ => OK: GOTO 3 $WORK$ = [5 5 5] + [0 0 0] = [5 5 5] $FINISH$ = [T T T T]

b) P3 requisita [0 0 1] AVAILABLE = [3 4 5]

ALLOCATION =

process	Α	В	С
P0	2	1	0
P1	0	0	0
P2	0	0	0
P3	0	0	0

process	Α	В	С
P0	2	0	0
P1	1	4	1

process	Α	В	С
P2	0	0	2
Р3	2	2	4

$$REQ_3$$
 = [0 0 1]

$$REQ_3 <= NEED_3$$
 => OK: GOTO 2
 $REQ_3 <= AVAILABLE$ => OK: GOTO 3
 ALLOCATION =

process	Α	В	С
P0	2	1	0
P1	0	0	0
P2	0	0	0
P3	0	0	1

NEED =

process	Α	В	С
P0	2	0	0
P1	1	4	1
P2	0	0	2
P3	2	2	3

AVAILABLE = [3 4 4]

Verificação de estado seguro

FINISH = [F F F F]WORK = [3 4 4]

$$NEED_0 <= WORK$$
 && $FINISH[0] == F$ => ОК: GOTO 3 $WORK = [344] + [210] = [554]$ $FINISH = [TFFF]$

$$NEED_1 <= WORK$$
 && $FINISH[1] == F$ => ОК: GOTO 3 $WORK = [554] + [000] = [554]$ $FINISH = [TTFF]$

$$NEED_2 <= WORK$$
 && $FINISH[2] == F$ => ОК: GOTO 3 $WORK = [554] + [000] = [554]$ $FINISH = [TTTF]$

$$NEED_3 <= WORK$$
 && $FINISH[3] == F$ => ОК: GOTO 3 $WORK = [554] + [001] = [555]$ $FINISH = [TTTT]$

c) P2 requisita [0 0 2] AVAILABLE = [3 4 4]

ALLOCATION =

process	Α	В	С
P0	2	1	0
P1	0	0	0
P2	0	0	0
Р3	0	0	1

process	Α	В	С
P0	2	0	0

process	Α	В	C
P1	1	4	1
P2	0	0	2
P3	2	2	3

$$REQ_2$$
 = [0 0 2]

$$REQ_2 <= NEED_2$$
 => OK: GOTO 2 $REQ_2 <= AVAILABLE$ => OK: GOTO 3

ALLOCATION =

process	Α	В	С
P0	2	1	0
P1	0	0	0
P2	0	0	2
P3	0	0	1

NEED =

process	Α	В	С
P0	2	0	0
P1	1	4	1
P2	0	0	0
P3	2	2	3

AVAILABLE = [3 4 2]

Verificação de estado seguro

$$FINISH = [F F F F]$$

WORK = [3 4 2]

$$NEED_0 <= WORK$$
 && $FINISH[0] == F$ => ОК: GOTO 3 $WORK = [342] + [210] = [552]$ $FINISH = [TFFF]$

$$NEED_1 <= WORK$$
 && $FINISH[1] == F$ => OK: GOTO 3 $WORK = [552] + [000] = [552]$ $FINISH = [TTFF]$

$$NEED_2 <= WORK$$
 && $FINISH[2] == F$ => ОК: GOTO 3 $WORK = [552] + [002] = [554]$ $FINISH = [TTTF]$

$$NEED_3 <= WORK$$
 && $FINISH[3] == F$ => ОК: GOTO 3 $WORK = [554] + [001] = [555]$ $FINISH = [TTTT]$

d) P3 requisita [2 0 1]

AVAILABLE = [3 4 2]

ALLOCATION =

process	Α	В	С
P0	2	1	0
P1	0	0	0
P2	0	0	2
P3	0	0	1

process	Α	В	C
P0	2	0	0
P1	1	4	1
P2	0	0	0
P3	2	2	3

$$REQ_3$$
 = [2 0 1]

 $REQ_3 <= NEED_3$ => OK: GOTO 2

 $REQ_3 <= AVAILABLE$ => ОК: GOTO 3

ALLOCATION =

process	Α	В	С
P0	2	1	0
P1	0	0	0
P2	0	0	2
Р3	2	0	2

NEED =

process	Α	В	С
P0	2	0	0
P1	1	4	1
P2	0	0	0
P3	0	2	2

AVAILABLE = [1 4 1]

Verificação de estado seguro

FINISH = [F F F F]

WORK = [1 4 1]

 $NEED_0 \mathrel{<=} WORK$ && $FINISH[0] \mathrel{==} F$ => FALSE

 $NEED_1 <= WORK$ && FINISH [1] == F => OK: GOTO 3

WORK = [141] + [000] = [141]

FINISH = [FTFF]

 $NEED_0 <= WORK$ && FINISH[0] == F => FALSE

 $NEED_2 <= WORK$ && FINISH[2] == F => OK: GOTO 3

WORK = [141] + [002] = [143]

FINISH = [FTTF]

 $NEED_0 <= WORK$ && FINISH[0] == F => FALSE

 $NEED_3 <= WORK$ && FINISH[3] == F => OK: GOTO 3

WORK = [143] + [202] = [345]

FINISH = [FTTT]

 $NEED_0 <= WORK$ && FINISH[0] == F => OK: GOTO 3

WORK = [345] + [210] = [555]

FINISH = [TTTT]

Sistema em estado seguro => requisição aceita

e) P1 requisita [0 4 1]

AVAILABLE = [1 4 1]

ALLOCATION =

process	Α	В	С
P0	2	1	0

process	Α	В	С
P1	0	0	0
P2	0	0	2
P3	2	0	2

NEED =

process	Α	В	С
P0	2	0	0
P1	1	4	1
P2	0	0	0
P3	0	2	2

$$REQ_1$$
 = [0 4 1]

$$REQ_1 <= NEED_1$$
 => OK: GOTO 2

$$REQ_1 <= AVAILABLE$$
 => ОК: GOTO 3

ALLOCATION =

process	Α	В	С
P0	2	1	0
P1	0	4	1
P2	0	0	2
P3	2	0	2

process	Α	В	С
P0	2	0	0
P1	1	0	0
P2	0	0	0
P3	0	2	2

AVAILABLE = [1 0 0]

Verificação de estado seguro

FINISH = [F F F F] WORK = [1 0 0] $NEED_0 <= WORK$ && FINISH[0] == F => FALSE $NEED_1 <= WORK$ && FINISH[1] == F => Ok: GOTO 3 WORK = [100] + [041] = [141]FINISH = [FTFF] $NEED_0 \mathrel{<=} WORK$ && $FINISH[0] \mathrel{==} F$ => FALSE $NEED_2 <= WORK$ && FINISH[2] == F => OK: GOTO 3 WORK = [141] + [002] = [143]FINISH = [FTTF] $NEED_0 <= WORK$ && FINISH[0] == F => FALSE $NEED_3 \mathrel{<=} WORK$ && $FINISH[3] \mathrel{==} F$ => OK: GOTO 3 WORK = [143] + [202] = [345]FINISH = [FTTT] $NEED_0 <= WORK$ && FINISH[0] == F => OK: GOTO 3 WORK = [345] + [210] = [555]FINISH = [TTTT]

f) P1 requisita [1 0 0]

AVAILABLE = [1 0 0]

ALLOCATION =

process	Α	В	С
P0	2	1	0
P1	0	4	1
P2	0	0	2
P3	2	0	2

NEED =

process	Α	В	C
P0	2	0	0
P1	1	0	0
P2	0	0	0
P3	0	2	2

$$REQ_1$$
 = [1 0 0]

$$REQ_1 <= NEED_1$$
 => OK: GOTO 2

 $REQ_1 <= AVAILABLE$ => ОК: GOTO 3

ALLOCATION =

process	Α	В	С
P0	3	1	0

process	Α	В	С
P1	0	4	1
P2	0	0	2
P3	2	0	2

NEED =

process	Α	В	С
P0	1	0	0
P1	1	0	0
P2	0	0	0
P3	0	2	2

AVAILABLE = [0 0 0]

Verificação de estado seguro

FINISH = [F F F F]WORK = [0 0 0]

$$NEED_0 <= WORK$$
 && $FINISH[0] == F$ => FALSE

$$NEED_1 <= WORK$$
 && $FINISH[1] == F$ => FALSE

$$NEED_2 <= WORK$$
 && $FINISH[2] == F$ => OK: GOTO 3

$$WORK = [000] + [002] = [002]$$

$$FINISH = [\mathit{FFTF}]$$

$$NEED_0 <= WORK$$
 && $FINISH[0] == F$ => FALSE

$$NEED_1 <= WORK$$
 && $FINISH[1] == F$ => FALSE

$$NEED_3 <= WORK$$
 && $FINISH[3] == F$ => FALSE

Sistema em estado inseguro => requisição recusada devido a risco de gerar deadlock

2)

AVAILABLE = [0 0 0]

ALLOCATION =

process	Α	В	С
P0	3	0	1
P1	0	1	0
P2	5	2	0
P3	0	0	1
P4	0	0	1

REQUEST =

process	Α	В	С
P0	0	0	1
P1	0	0	0
P2	0	1	1
P3	0	0	1
P4	0	0	0

a)

 $\mathsf{FINISH} = [\mathsf{F} \, \mathsf{F} \, \mathsf{F} \, \mathsf{F} \, \mathsf{F}]$

 $WORK = [0 \ 0 \ 0]$

 $REQUEST_0 <= WORK$ && FINISH[0] == F => False

$$REQUEST_1 <= WORK \&\& FINISH[1] == F \Rightarrow \text{OK: GOTO 3}$$

$$FINISH = [FTFFF]$$

$$WORK = [000] + [010] = [010]$$

$$REQUEST_0 <= WORK \&\& FINISH[0] == F \Rightarrow \text{FALSE}$$

$$REQUEST_2 <= WORK \&\& FINISH[2] == F \Rightarrow \text{FALSE}$$

$$REQUEST_3 <= WORK \&\& FINISH[3] == F \Rightarrow \text{FALSE}$$

$$REQUEST_4 <= WORK$$
 && $FINISH[4] == F$ => ОК: GOTO 3 $FINISH = [FTFFT]$ $WORK = [010] + [001] = [011]$

$$REQUEST_0 <= WORK$$
 && $FINISH[0] == F$ => ОК: GOTO 3 $FINISH = [TTFFT]$ $WORK = [011] + [301] = [312]$

$$REQUEST_2 <= WORK$$
 && $FINISH[2] == F$ => ОК: GOTO 3 $FINISH = [TTTFT]$ $WORK = [312] + [520] = [832]$

$$REQUEST_3 <= WORK$$
 && $FINISH[3] == F$ => ОК: GOTO 3 $FINISH = [TTTTT]$ $WORK = [832] + [001] = [833]$

Sistema não está em deadlock

b)

AVAILABLE = [0 0 0]

ALLOCATION =

process	Α	В	C
P0	3	0	1
P1	0	1	0

process	Α	В	С
P2	5	2	0
P3	0	0	1
P4	0	0	1

REQUEST =

process	Α	В	С
P0	0	0	1
P1	0	0	0
P2	0	1	1
P3	0	0	1
P4	1	0	0

FINISH =
$$[FFFFF]$$

WORK = $[0\ 0\ 0]$

$$REQUEST_0 <= WORK$$
 && $FINISH[0] == F$ => FALSE

$$REQUEST_1 <= WORK$$
 && $FINISH[1] == F$ => ОК: GOTO 3 $FINISH = [FTFFF]$

$$WORK = [000] + [010] = [010]$$

$$REQUEST_0 <= WORK$$
 && $FINISH[0] == F$ => False

$$REQUEST_2 <= WORK$$
 && $FINISH[2] == F$ => FALSE

$$REQUEST_3 <= WORK$$
 && $FINISH[3] == F$ => False

$$REQUEST_4 <= WORK$$
 && $FINISH[4] == F$ => False

Os processos P0, P2, P3 e P4 estão em deadlock