

PREDICCIÓN DE SENTIMIENTOS EN UN E-COMMERCE

PROYECTO MACHINE LEARNING. BOOTCAMP DATA SCIENCE ESTHER VEGUILLAS.

PREPROCESADO PARA EDA

- Elimino registros sin comentario
- Separo train/test
- Relleno categorías con moda (de train)
- Agrupo edades en décadas
- Ignoro outliers

PREDICCIÓN DE SENTIMIENTO

- Fusión de título y comentario
- Recomendación como target, cambiando polaridad
- Eliminar prendas de los Wordstops
- CountVectorizer +
 lemmatizer + stemmer + n grams + VarianceThreshold

MEJORES MODELOS

Proceso manual:
LogisticRegression
CountVectorizer
n-gram (bigram + trigram)
VarianceThreshold(0.0005)
25.991 features

Confusion Mat 0 1 0 3493 186 1 280 569	rix:			
Classificatio	n Report: precision	recall	f1-score	support
0 1	0.93 0.75	0.95	0.94 0.71	3679 849
accuracy macro avg weighted avg	0.84 0.89	0.81 0.90	0.90 0.82 0.89	4528 4528 4528

Confusion Matri 0 1 0 3481 198 1 283 566	x:					
Classification Report:						
	recision	recall	f1-score	support		
0	0.92	0.95	0.94	3679		
1	0.74	0.67	0.70	849		
		Minowall				
accuracy			0.89	4528		
macro avg	0.83	0.81	0.82	4528		
weighted avg	0.89	0.89	0.89	4528		

Usando Gridsearch:
SVC,
RandomForest,
LogisticRegression
772.779 features

It looked beautiful on the web, but it is very wide and the fabric looks like plastic

I like the shape of this skirt, but it is a difficult color to match. I don't know if I'm going to be able to wear it a lot

It looked beautiful on the web, but it is very wide and the fabric looks like plastic

I like the shape of this skirt, but it is a difficult color to match. I don't know if I'm going to be able to rear it a lot

CONCLUSIONES ML

- A pesar de que el dataset tenía un marcado desequilibrio en el target, se ha conseguido un ratio de acierto (recall) para el target desfavorable ("no recomienda") del 67%, obteniendo el target mayoritario ("sí recomienda") un acierto del 95%.
- El modelo que mejor respuesta ha ofrecido ha sido la regresión logística combinada con tratamiento de texto (vectorización, n-gram y reducción de features en función de la desviación típica).
- Para este caso particular, la diferencia en el tratamiento del texto con lemmatizacion o con stemmer no ha sido significativa. Sin embargo, aplicar bigramas y trigramas ha resultado más beneficioso.
- En cuanto a la reducción de features, ha funcionado mucho mejor VarianThreshold que SelectKBest.

Muchas gracias

:)

Git:

https://github.com/Estherveg
LinkedIn:

https://www.linkedin.com/in/eveguillas/

Imágenes: Pexels (christian-diokno, ksenia-chernaya, rosana-solis)