EXERCICIS DE CÀLCUL DIFERENCIAL EN DIVERSES VARIABLES Primer quadrimestre del curs 2014-2015

Llista 1: L'espai \mathbb{R}^n

- 1. Trobeu la projecció ortogonal de u sobre v, on u = (1, 1, 2) i v = (-1, -2, 1). Els vectors u i v, formen un angle agut ?
- 2. Utilitzant la desigual
tat de Cauchy-Schwarz $|u \cdot v| \leq ||u|| ||v||$, proveu que si $x_1, \dots, x_n \in \mathbb{R}$, llavors es compleix

 $\frac{x_1 + \dots + x_n}{n} \le \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}.$

Per a quins vectors $w = (x_1, \dots, x_n)$ és té una igualtat?

- 3. Donat el conjunt $A = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 2\}$:
 - (a) Representeu-lo gràficament.
 - (b) Proveu que (0,1) és un punt interior a A.
 - (c) Proveu que (1,2) és un punt exterior a A.
 - (d) Proveu que (-1, -1) és un punt de la frontera de A. És un punt d'acumulació de A?
 - (e) Doneu dos punts interiors a A, dos d'exteriors i dos de la frontera, diferents dels anteriors. No cal que proveu que ho són.
 - (f) Té punts aïllats el conjunt A?
- 4. Trobeu l'adherència, l'interior i la frontera dels conjunts següents. Quins són oberts, tancats, acotats o bé compactes.
 - (a) $A = (\mathbb{R} \setminus \mathbb{Z})^2$ en \mathbb{R}^2 .
 - (b) $B = [0, 2] \times [1, 2)$ en \mathbb{R}^2 .
 - (c) $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 2y 3 \le 0\}$ en \mathbb{R}^3 . (d) $D = \{(x, y, z) \in \mathbb{R}^3 : |z| \le 3, x^2 + y^2 = 1\}$ en \mathbb{R}^3 . (e) $E = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 \le 4\}$ en \mathbb{R}^2 .