EE3210 Cheatsheet Final Exam

Formula regarding to Complex Number

Magnitude |x|

$$|x| = \sqrt{(\Re\{x\})^2 + (\Im\{x\})^2} = \sqrt{x \cdot x^*}$$
 (1)

Phase $\angle(x)$

$$\angle(x) = an^{-1}\left(rac{\Im\{x\}}{\Re\{x\}}
ight)$$
 (2)

Complex Conjugate of x

$$x^* = \Re\{x\} - j\Im\{x\} \tag{3}$$

Periodicity

If there exists T > 0 such that

$$x(t) = x(t+T) \tag{4}$$

for all t, the smallest T is called the fundamental period.

If there exists a positive integer N such that

$$x[n] = x[n+N] \tag{5}$$

for all n, the smallest N is called the fundamental period.

If a signal is not periodic, then it is aperiodic.

Even and Odd Function

The signal is an even function if

$$x_e(t) = x_e(-t) \text{ or } x_e[n] = x_e[-n]$$
 (6)

The signal is an odd function if

$$x_o(t) = -x_o(-t) \text{ or } x_o[n] = -x_o[-n]$$
 (7)

Any signal can be represented by a sum of even and odd signals

$$x(t) = x_e(t) + x_o(t) \text{ or } x[n] = x_e[n] + x_o[n]$$
 (8)

where

$$x_e(t) = \frac{1}{2}[x(t) + x(-t)] \text{ and } x_o(t) = \frac{1}{2}[x(t) - x(-t)]$$
 (9)

$$x_e[n] = \frac{1}{2}[x[n] + x[-n]] \text{ and } x_o[n] = \frac{1}{2}[x[n] - x[-n]]$$
 (10)

Energy and Power

Energy of a signal is defined as

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
 or $\sum_{n=-\infty}^{\infty} |x[n]|^2$ (11)

If the signal energy is ∞ , then to use power of x(t) or x[n] as the measure, which is defined as

$$P_x = \lim_{T \to \infty} rac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt \qquad ext{or} \qquad \lim_{N \to \infty} rac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$
 (12)

Signal power is the time average of the signal energy.

A signal is energy signal if $0 < E_x < \infty$, indicating its $P_x = 0$.

A signal is power signal if $0 < P_x < \infty$, indicating its $E_x = \infty$.

Unit Impulse

The unit impulse $\delta(t)$ has the following characteristics,

$$\delta(t) = 0, \qquad t \neq 0 \tag{13}$$

and

$$\int_{-\infty}^{\infty} \delta(t) \, dt = 1 \tag{14}$$

Sifting Property

 $\delta(t)$ can be the building block of any continuous-time signal,

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) d\tau$$
 (15)

That is, imagining x(t) as a sum of infinite impulse functions and each with amplitude $x(\tau)$.

Unit step

The unit step function u(t) has the following form,

$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases} \tag{16}$$

u(t) can be expressed in terms of $\delta(t)$ as

$$u(t) = \int_{-\infty}^{\infty} u(\tau)\delta(t-\tau) d\tau = \int_{0}^{\infty} \delta(t-\tau) d\tau$$
 (17)

Conversely, to express $\delta(t)$ in terms of u(t) as

$$\delta(t) = \frac{du(t)}{dt} \tag{18}$$

Sinusoid

It is a sine or cosine wave of the following form,

$$x(t) = A\cos(\omega t + \phi) \tag{19}$$

which is characterised by three parameters, amplitude A>0, radian frequency ω and phase $\phi\in[0,2\pi)$

Fundamental period T_0 is determined as

$$x(t) = x(t + T_0) = A\cos(\omega(t + T_0) + \phi) = A\cos(\omega t + 2\pi + \phi)$$

$$\implies \omega T_0 = 2\pi$$

$$\implies T_0 = \frac{2\pi}{\omega} = \frac{1}{f}$$
(20)

For the complex-valued case, it has the following form,

$$x(t) = Ae^{j(\omega t + \phi)} \tag{21}$$

Using the Euler formula

$$e^{j\phi} = \cos(\phi) + j\sin(\phi) \tag{22}$$

According to (22), to obtain that

$$\cos(\phi) = \frac{e^{j\phi} + e^{-j\phi}}{2} \tag{23}$$

and

$$\sin(\phi) = \frac{e^{j\phi} - e^{-j\phi}}{2} \tag{24}$$

Unit Impulse in Discrete-Time

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases} \tag{25}$$

Unit Step in Discrete-Time

$$u[n] = \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases} \tag{26}$$

Sifting Property in Discrete-Time

 $\delta[n]$ can be served as the building block of any discrete-time signal x[n] as

$$x[n] = \dots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \dots$$

$$= \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
(27)

u[n] can be expressed in terms of $\delta[n]$ as

$$u[n] = \sum_{k=0}^{\infty} \delta[n-k] \tag{28}$$

Conversely, $\delta[n]$ can be expressed in terms of u[n] as

$$\delta[n] = u[n] - u[n-1] \tag{29}$$

Basic System Properties

Memoryless

A system is memoryless if its output at a given time is dependent only on the input at that same time, i.e., y(t) at time t depends only on x(t) at time t; y[n] at time n depends

only on x[n] at time n.

Invertibility

A system is invertible if distinct inputs lead to distinct outputs, as known as if an inverse system exists

Linearity

A system is linear if it obeys principle of superposition.

$$\mathcal{T}\{ax_1(t) + bx_2(t)\} = a\mathcal{T}\{x_1(t)\} + b\mathcal{T}\{x_2(t)\} = ay_1(t) + by_2(t) \tag{30}$$

and

$$\mathcal{T}\{ax_1[n] + bx_2[n]\} = a\mathcal{T}\{x_1[n]\} + b\mathcal{T}\{x_2[n]\} = ay_1[n] + by_2[n] \tag{31}$$

A standard approach to determine the linearity of a system is given as follows. Let

$$y_i[n] = \mathcal{T}\{x_i[n]\}, \qquad i = 1, 2, 3$$
 (32)

with

$$x_3[n] = ax_1[n] + bx_2[n] (33)$$

If $y_3[n] = ay_1[n] + by_2[n]$, then the system is linear.

Time-Invariance

A system is time-invariant if a time-shift of input causes a corresponding shift in output as followings,

$$y(t) = \mathcal{T}\{x(t)\} \to y(t - t_0) = \mathcal{T}\{x(t - t_0)\}$$
 (34)

and

$$y[n] = \mathcal{T}\{x[n]\} \to y[n - n_0] = \mathcal{T}\{x[n - n_0]\}$$
 (35)

That is, the system response is independent of time.

Causality

A system is causal if the output y(t) or y[n] at time t or n depends on input x(t) or x[n] up to time t or n.

That is, in casual system, output does not depends on the future input.

Stability

A system is stable if every bounded input x(t) or x[n] produces a bounded output y(t) or y[n] for all t or n, or if the bounded-input bounded-output criterion is satisfied.

That is

and

$$|y[n]| < B \qquad \text{if } |x[n]| < A, \qquad |A| < \infty, \ |B| < \infty \tag{37}$$

Linear Time-Invariant System (LTI)

Impulse Response

The impulse response h(t) or h[n] is the output of a LTI system when the input is the unit impulse $\delta(t)$ or $\delta[n]$

Convolution

The convolution of x[n] and h[n] is defined as

$$y[n] = \sum_{m = -\infty}^{\infty} x[m]h[n - m] = x[n] \circledast h[n]$$
(38)

Similarly, the convolution of x(t) and h(t) is defined as

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau = x(t) \circledast h(t)$$
 (39)

There are three properties in convolution:

Commutative,

$$x[n] \circledast h[n] = h[n] \circledast x[n]$$

$$\sum_{m=-\infty}^{\infty} x[m]h[n-m] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$
(40)

Associative,

$$x[n] \circledast (h_1[n] \circledast h_2[n]) = (x[n] \circledast h_1[n]) \circledast h_2[n] \tag{41}$$

Distributive,

$$y[n] = x[n] \circledast (h_1[n] + h_2[n])$$

$$= x[n] \circledast h_1[n] + x[n] \circledast h_2[n]$$
(42)

Causality and Stability in LTI

A LTI system is causal if its impulse response satisfies

$$h(t) = 0, t < 0$$
 (43)
 $h[n] = 0, n < 0$

A LTI system is stable if its impulse response satisfies

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$
(44)

Fourier Series

Fourier series is the frequency domain representation of a continuous-time periodic signal.

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\Omega_0 t}, \qquad t \in (-\infty, \infty)$$
 (45)

where

$$a_k = rac{1}{T_p} \int_{-T_p/2}^{T_p/2} x(t) e^{-jk\Omega_0 t} \, dt, \qquad k = \dots -1, 0, 1, 2 \dots$$
 (46)

That is, every periodic signal can be expressed as a sum of harmonically related complex sinusoids with frequencies $\cdots - \Omega_0, 0, \Omega_0, 2\Omega_0, 3\Omega_0, \cdots$, where the fundamental frequency Ω_0 is called the first harmonic.

 a_k is generally complex, so to use $^{\land 1daf00}$ and $^{\land a4039b}$ for its representation,

$$|a_k| = \sqrt{(\Re\{a_k\})^2 + (\Im\{a_k\}^2)}$$
 (47)

and

$$\angle(a_k) = \tan^{-1}\left(\frac{\Im\{a_k\}}{\Re\{a_k\}}\right) \tag{48}$$

According to (4), that x(t) is periodic if there exists $T_p>0$ such that

$$x(t) = x(t + T_p), \qquad t \in (-\infty, \infty)$$
 (49)

The smallest T_p is called fundamental period.

The fundamental frequency Ω_0 can be computed as

$$\Omega_0 = \frac{2\pi}{T_p} \tag{50}$$

Properties of Fourier Series

Linearity

Let $x(t) \leftrightarrow a_k$ and $y(t) \leftrightarrow b_k$ be two Fourier series pairs with the same period of T_p ,

$$Ax(t) + By(t) \leftrightarrow Aa_k + Bb_k \tag{51}$$

Time Shifting

A shift of t_0 in x(t) causes a multiplication of $e^{-jk\Omega_0t_0}$ in a_k as

$$x(t) \leftrightarrow a_k \implies x(t-t_0) \leftrightarrow e^{-jk\Omega_0 t_0} a_k = e^{-jk(2\pi)/T_p t_0} a_k$$
 (52)

Time Reversal

$$x(t) \leftrightarrow a_k \implies x(-t) \leftrightarrow a_{-k}$$
 (53)

Time Scaling

For a time-scaled version of x(t), $x(\alpha t)$ where $\alpha \neq 0$ is a real number, is defined as

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\Omega_0 t} \implies x(\alpha t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(\alpha\Omega_0)t}$$
 (54)

Multiplication

Let $x(t) \leftrightarrow a_k$ and $y(t) \leftrightarrow b_k$ be two Fourier series pairs with the same period of T_p , is defined as

$$x(t)y(t) \leftrightarrow \sum_{l=-\infty}^{\infty} a_l b_{k-l}$$
 (55)

Conjugation

$$x(t) \leftrightarrow a_k \implies x^*(t) \leftrightarrow a_{-k}^*$$
 (56)

Parseval's Relation

The Parseval's relation addresses the power of x(t) as

$$\frac{1}{T_p} \int_{-T_p/2}^{T_p/2} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$
 (57)

Fourier Transform

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt$$
 (58)

where $X(j\Omega)$ is a function of frequency Ω , also know as spectrum.

The inverse Fourier transform is defined as

$$x(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$
 (59)

Periodic Signal Representation using Fourier Transform

Fourier transform can be used to represent continuous-time periodic signals with the use of $\delta(t)$.

Instead of time domain, to consider impulse in the frequency domain as

$$X(j\Omega) = 2\pi\delta(\Omega - \Omega_0) \tag{60}$$

The inverse Fourier transform is defined as

$$x(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\Omega - \Omega_0) e^{j\Omega t} d\Omega = e^{j\Omega_0 t}$$
 (61)

As a result, the Fourier transform pair is

$$e^{j\Omega_0 t} \leftrightarrow 2\pi\delta(\Omega - \Omega_0)$$
 (62)

Properties of Fourier Transform

Linearity

Let $x(t) \leftrightarrow X(j\Omega)$ and $y(t) \leftrightarrow Y(j\Omega)$ be two Fourier transform pairs, and it is defined as

$$ax(t) + by(t) \leftrightarrow aX(j\Omega) + bY(j\Omega)$$
 (63)

Time Shifting

A shift of t_0 in x(t) causes a multiplication of $e^{-j\Omega t_0}$ in $X(j\Omega)$, as

$$x(t) \leftrightarrow X(j\Omega) \implies x(t-t_0) \leftrightarrow e^{-j\Omega t_0} X(j\Omega)$$
 (64)

Time Reversal

$$x(t) \leftrightarrow X(j\Omega) \implies x(-t) \leftrightarrow X(-j\Omega)$$
 (65)

Time Scaling

For a time-scaled version of x(t), $x(\alpha t)$ where $\alpha \neq 0$ is a real number, it is defined as

$$x(t) \leftrightarrow X(j\Omega) \implies x(\alpha t) \leftrightarrow \frac{1}{|\alpha|} X\left(\frac{j\Omega}{\alpha}\right)$$
 (66)

Multiplication

Let $x(t) \leftrightarrow X(j\Omega)$ and $y(t) \leftrightarrow Y(j\Omega)$ be two Fourier transform pairs, it is defined as

$$x(t)\cdot y(t)\leftrightarrow rac{1}{2\pi}X(j\Omega)\circledast Y(j\Omega)=rac{1}{2\pi}\int_{-\infty}^{\infty}X(j au)Y(j(\Omega- au))\,d au \eqno(67)$$

Conjugation

$$x(t) \leftrightarrow X(j\Omega) \implies x^*(t) \leftrightarrow X^*(-j\Omega)$$
 (68)

Parseval's Relation

The Parseval's relation address the energy of x(t) defined as

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^2 dt$$
 (69)

Convolution

Let $x(t) \leftrightarrow X(j\Omega)$ and $y(t) \leftrightarrow Y(j\Omega)$ be two Fourier transform pairs, it is defined as

$$x(t) \circledast y(t) \leftrightarrow X(j\Omega)Y(j\Omega)$$
 (70)

Differentiating x(t) w.r.t. t corresponds to multiply $X(j\Omega)$ by $j\Omega$ in the frequency domain is defined as

$$\frac{dx(t)}{dt} \leftrightarrow j\Omega X(j\Omega) \implies \frac{d^k x(t)}{dt^k} \leftrightarrow (j\Omega)^k X(j\Omega) \tag{71}$$

Integration

$$\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \frac{1}{j\Omega} X(j\Omega) + \pi X(0) \delta(\Omega)$$
 (72)

Fourier Transform and LTI System

$$y(t) = x(t) \circledast h(t) \leftrightarrow Y(j\Omega) = X(j\Omega)H(j\Omega) \tag{73}$$

This suggests to convert the input and impulse response to frequency domain, then y(t) can be computed from inverse Fourier transform of $X(j\Omega)H(j\Omega)$.

 $H(j\Omega)$ represents the LTI system in the frequency domain, is called the system frequency response.

As the input and output of a LTI system satisfy the differential equation

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$
 (74)

Therefore, the system frequency response $H(j\Omega)$ can also be computed as

$$H(j\Omega) = \frac{Y(j\Omega)}{X(j\Omega)} = \frac{\sum_{k=0}^{M} b_k(j\Omega)^k}{\sum_{k=0}^{M} a_k(j\Omega)^k}$$
(75)

Discrete-Time Fourier Transform (DTFT)

With the use of sampled version of a continuous-time signal x(t), to obtain the discrete-time Fourier transform (DTFT) as follows,

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(76)

where $\omega = \Omega T$ as the discrete-time frequency.

It is also periodic with period 2π as follows,

$$X(e^{j(\omega+2k\pi)}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega+2k\pi)n}$$
(77)

The inverse DTFT is defined as

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \tag{78}$$

Properties of DTFT

Linearity

If $x_1[n] \leftrightarrow X_1(e^{j\omega})$ and $x_2[n] \leftrightarrow X_2(e^{j\omega})$ are two DTFT pairs, then

$$ax_1[n] + bx_2[n] \leftrightarrow aX_1(e^{j\omega}) + bX_2(e^{j\omega}) \tag{79}$$

Time Shifting

A shift of n_0 in x[n] causes a multiplication of $e^{-j\omega n_0}$ in $X(e^{j\omega})$ as follows

$$x[n] \leftrightarrow X(e^{j\omega}) \implies x[n-n_0] = e^{-j\omega n_0} X(e^{j\omega})$$
 (80)

Time Reversal

The DTFT pairs of x[-n] is defined as

$$x[n] \leftrightarrow X(e^{j\omega}) \implies x[-n] \leftrightarrow X(e^{-j\omega})$$
 (81)

Multiplication

Multiplication in the time domain corresponds to convolution in the frequency domain is defined as

$$x_1[n] \cdot x_2[n] \leftrightarrow X_1(e^{j\omega}) \widetilde{\circledast} X_2(e^{j\omega}) = rac{1}{2\pi} \int_{-\pi}^{\pi} X_1(e^{j\tau}) \, X_2(e^{j(\omega- au)}) d au \qquad (82)$$

where $\tilde{\circledast}$ denotes convolution within one period.

Conjugation

The DTFT pair for $x^*[n]$ is defined as

$$x[n] \leftrightarrow X(e^{j\omega}) \implies x^*[n] \leftrightarrow X^*(e^{-j\omega})$$
 (83)

Multiplication by an Exponential Sequence

Multiplying x[n] by $e^{j\omega_0n}$ in time domain corresponds to a shift of w_0 in the frequency domain, it is defined as

$$x[n] \leftrightarrow X(e^{j\omega}) \implies e^{j\omega_0 n} x[n] \leftrightarrow X(e^{j(\omega - \omega_0)})$$
 (84)

Differentiation

Differentiating $X(e^{j\omega})$ w.r.t. w corresponds to multiply x[n] by n, it is defined as

$$x[n] \leftrightarrow X(e^{j\omega}) \implies nx[n] \leftrightarrow j \frac{dX(e^{j\omega})}{d\omega}$$
 (85)

Parseval's Relation

The Parseval's relation addresses the energy of x[n]

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| X(e^{j\omega}) \right|^2 d\omega \tag{86}$$

Convolution

If $x_1[n] \leftrightarrow X_1(e^{j\omega})$ and $x_2[n] \leftrightarrow X_2(e^{j\omega})$ are two DTFT pairs, then

$$x_1[n] \circledast x_2[n] \leftrightarrow X_1(e^{j\omega})X_2(e^{j\omega}) \tag{87}$$

DTFT and LTI

$$y[n] = x[n] \circledast h[n] \leftrightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) \tag{88}$$

This suggests to convert the input and impulse response to frequency domain, then y[n] is computed from inverse DTFT of $X(e^{j\omega})H(e^{j\omega})$.

 $H(e^{j\omega})$ represents the LTI system in the frequency domain, is called the system frequency response.

Since the input and output of a discrete-time LTI system satisfy the difference equation as follows

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$
(89)

Therefore, the system frequency response can be computed as

$$H(e^{j\omega}) = rac{Y(e^{j\omega})}{X(e^{j\omega})} = rac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{\sum_{k=0}^{M} a_k e^{-j\omega k}}$$
 (90)

Sampling and Reconstruction

Sampling

It is a process of converting a continuous-time signal $\boldsymbol{x}(t)$ into a discrete-time signal $\boldsymbol{x}[n]$.

x[n] is obtained by extracting x(t) every T seconds where T is known as the sampling period or interval.

Therefore, its relationship between x(t) and x[n] is

$$x[n] = x(t)|_{t=nT} = x(nT), \qquad n = \dots -1, 0, 1, 2, \dots$$
 (91)

x[n] can uniquely represent x(t) or use x[n] to reconstruct x(t) if x(t) is bandlimited such that its Fourier transform $X(j\Omega)=0$ for $|\Omega|\geq\Omega_b$ where Ω_b is called the bandwidth and the sampling period T is sufficiently small.

In the time domain, x_st is obtained by multiplying x(t) by the impulse train $i(t)=\sum_{k=-\infty}^\infty \delta(t-kT)$, as follows

$$x_s(t) = x(t) \sum_{k=-\infty}^{\infty} \delta(t - kT) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - kT)$$
 (92)

Let the sampling frequency in radian be $\Omega_s=2\pi/T$, it is defined as

$$I(j\Omega) = \Omega_s \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s)$$
 (93)

Therefore, $X_s j\Omega$ is determined as

$$X_{s(j\Omega)} = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_0))$$
 (94)

which is the sum of infinite copies of $X(j\Omega)$ scaled by 1/T.

Sampling Theorem

Let x(t) be a bandlimited continuous-time signal with

$$X(j\Omega) = 0, \qquad |\Omega| > \Omega_b \tag{95}$$

Then x(t) is uniquely determined by its samples x[n] = x(nT), $n = \cdots -1, 0, 1, 2 \cdots$, if

$$\Omega_s = rac{2\pi}{T} > 2\Omega_b$$
 (96)

Therefore, to avoid aliasing, the sampling frequency must exceed $2\Omega_b$.

Reconstruction

It is a process of transforming x[n] back to x(t) via a discrete-time to continuous-time (DC) converter.

Therefore, the requirements of $H(j\Omega)$ are

$$H(j\Omega) = \begin{cases} T, & -\Omega_c < \Omega < \Omega_c \\ 0, & \text{otherwise} \end{cases}$$
 (97)

where $\Omega_b < \Omega_c < \Omega_s - \Omega_b$, which is a lowpass filter.

Set Ω_c as the average of Ω_b and $(\Omega_s - \Omega_b)$, as follows

$$\Omega_c = \frac{\Omega_s}{2} = \frac{\pi}{T} \tag{98}$$

z Transform

The z transform of x[n], denoted by X(z), is defined as

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$
(99)

where z is a continuous complex variable.

z can be expressed as

$$z = re^{j\omega} \tag{100}$$

where r=|z|>0 is magnitude and $\omega=\angle(z)$ is angle of z.

From <u>^69f76b</u>, z transform can be written as

$$|X(z)|_{z=re^{j\omega}} = X(rej\omega) = \sum_{n=-\infty}^{\infty} (x[n]r^{-n})e^{-j\omega n}$$
 (101)

Region of Convergence (ROC)

ROC indicates when z transform of a sequence converges.

Generally there exists some z such that

$$|X(z)| = \left|\sum_{n=-\infty}^{\infty} x[n]z^{-n}\right| \to \infty$$
 (102)

where the z transform does not converge

The set of values of z for which X(z) converges, as

$$|X(z)| = \left| \sum_{n = -\infty}^{\infty} x[n] z^{-n} \right| \le \sum_{n = -\infty}^{\infty} \left| x[n] z^{-n} \right| < \infty$$
 (103)

It is called the ROC, which must be specified along with X(z) in order for the z transform to be complete. If there is no value of z satisfies 11d83a , then z transform does not exists.

Poles and Zeros

Values of z for which X(z) = 0 are the zeros of X(z).

Values of z for which $X(z) = \pm \infty$ are the poles of X(z).

Finite-Duration and Infinite-Duration Sequences

Finite-duration sequence is that the values of $\boldsymbol{x}[n]$ are nonzero only for a finite time interval.

Otherwise, x[n] is called an infinite-duration sequence, with three variants,

- 1. If x[n] = 0 for $n < N_+ < \infty$ where N_+ is an integer, then it is right sided.
- 2. If x[n] = 0 for $n > N_- > -\infty$ where N_- is an integer, then it is left-sided.
- 3. If it is neither right-sided nor left-sided, then it is two-sided.

Table of z Transform

Sequence	Transform	ROC
$\delta[n]$	1	All z
$\delta[n-m]$	z^{-m}	$ z > 0$, $m > 0$; $ z < \infty$, $m < 0$
	1	z > a
$a^n u[n]$	$1 - az^{-1}$	
	1	
$-a^nu[-n-1]$	$1 - az^{-1}$	z < a
	az^{-1}	
$na^nu[n]$	$\frac{\overline{(1-az^{-1})^2}}{az^{-1}}$	z > a
	az^{-1}	
$\left -na^nu[-n-1]\right $	$\overline{(1-az^{-1})^2}$	z < a
	$1 - a\cos(b)z^{-1}$	
$a^n \cos(bn)u[n]$	$\boxed{1 - 2a\cos(b)z^{-1} + a^2z^{-2}}$	z > a
	$a\sin(b)z^{-1}$	
$a^n \sin(bn)u[n]$	$1 - 2a\cos(b)z^{-1} + a^2z^{-2}$	z > a

Summary of ROC Properties

- 1. There are four possible shapes for ROC, namely the entire region except possibly z=0 and/or $z=\infty$, a ring, or inside or outside a circle in the z plane centred at origin.
- 2. The DTFT of a sequence x[n] exists iff the ROC of z transform of x[n] includes the unit circle.
- 3. The ROC cannot contain any poles.
- 4. When x[n] is a finite-duration sequence, the ROC is the entire z plane except possibly z=0 and/or $z=\infty$.
- 5. When x[n] is a right-sided sequence, the ROC is of the form $|z|>|p_{\max}|$ where p_{\max} is the pole with the largest magnitude in X(z).
- 6. When x[n] is a left-sided sequence, the ROC is of the form $|z|<|p_{\min}|$ where p_{\min} is the pole with the smallest magnitude in X(z).
- 7. When x[n] is a a two-sided sequence, the ROC is of the form $|p_a| < z < |p_b|$.
- 8. The ROC must be a connected region.

Properties of *z* **Transform**

Linearity

Let $x_1[n] \leftrightarrow X_1(z)$ and $x_2[n] \leftrightarrow X_2(z)$ be two z transform pairs with ROCs \mathcal{R}_{x_1} and \mathcal{R}_{x_2} , respectively, it is defined as

$$ax_1[n] + bx_2[n] \leftrightarrow aX_1(z) + bX_2(z) \tag{104}$$

Its ROC is denoted by \mathcal{R} , which includes $\mathcal{R}_{x_1} \cap \mathcal{R}_{x_2}$, that is \mathcal{R} contains at least the intersection of \mathcal{R}_{x_1} and \mathcal{R}_{x_2} .

Time Shifting

A time-shift of n_0 in x[n] causes a multiplication of z^{-n_0} in X(z), it is defined as

$$x[n-n_0] \leftrightarrow z^{-n_0} X(z) \tag{105}$$

Multiplication by an Exponential Sequence

If multiply x[n] by z_0^n in the time domain, the variable z will be changed to z/z_0 in the z transform domain, it is defined as

$$z_0^n x[n] \leftrightarrow X(z/z_0) \tag{106}$$

If the ROC for x[n] is $R_+ < |z| < R_-$, then the ROC for $z_0^n x[n]$ is $|z_0|R_+ < |z| < |z_0|R_-$.

Differentiation

Differentiating X(z) w.r.t. z corresponds to multiply x[n] by n in the time domain, it is defined as

$$nx[n] \leftrightarrow -z rac{dX(z)}{dz}$$
 (107)

Conjugation

The z transform pair for $x^*[n]$ is defined as

$$x^*[n] \leftrightarrow X^*(z^*) \tag{108}$$

Time Reversal

The z transform pair for x[-n] is defined as

$$x[-n] \leftrightarrow X(z^{-1}) \tag{109}$$

If the ROC for x[n] is $R_+ < |z| < R_-$, then the ROC for x[-n] is $1/R_- < |z| < 1/R_+$.

Convolution

Let $x_1[n] \leftrightarrow X_1(z)$ and $x_2[n] \leftrightarrow X_2(z)$ be two z transform pairs with ROCs \mathcal{R}_{x_1} and \mathcal{R}_{x_2} , respectively, it is defined as

$$x_1[n] \circledast x_2[n] \leftrightarrow X_1(z)X_2(z) \tag{110}$$

and its ROC includes $\mathcal{R}_{x_i} \cap \mathcal{R}_{x_i}$.

Causality and Stability Investigation with ROC

The causality condition is same with ^6ccb9e as

$$h[n] = 0, \qquad n < 0 \tag{111}$$

If the system is causal and h[n] is of finite duration, the ROC should include ∞ .

If the system is causal and h[n] is of infinite duration, the ROC is of the form $|z|>|p_{\max}|$ and should include ∞ .

The stability condition is same with https://example.com/bf9b9b as

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty \tag{112}$$

Inverse z Transform

The z transform and inverse z transform are one-to-one mapping as

$$x[n] \leftrightarrow X(z)$$
 (113)

Partial Fraction Expansion

Consider X(z) is a rational function in z^{-1} , as

$$X(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$
 (114)

Determine the N nonzero poles, c_1, c_2, \ldots, c_N .

If M < N and all poles are of first order,

$$X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - c_k z^{-1}} \tag{115}$$

$$A_k = (1 - c_k z^{-1}) X(z)|_{z = c_k}$$
(116)

Perform inverse z transform for the fraction by inspection.

If $M \geq N$ and all poles are of first order,

$$X(z) = \sum_{l=0}^{M-N} B_l z^{-l} + \sum_{k=1}^{N} \frac{A_k}{1 - c_k z^{-1}}$$
(117)

 B_l are obtained by long division of the numerator by the denominator, such as

$$X(z) = \frac{z^{-2} - 2z^{-1} + 4}{0.5z^{-2} - 1.5z^{-1} + 1}, \qquad |z| > 1$$
(118)

Then, B_l can be found as

$$0.5z^{-2} - 1.5z^{-1} + 1 \frac{2}{z^{-2} - 2z^{-1} + 4} \frac{z^{-2} - 3z^{-1} + 4}{z^{-1} + 2}$$

After finding B_l , using <u>^69c1dc</u> to find A_k .

If M < N with multiple-order poles

If X(z) has a s order pole at $z = c_i$ with $s \ge 2$, then it is defined as

$$X(z) = \sum_{k=1, k \neq i}^{N} \frac{A_k}{1 - c_k z^{-1}} + \sum_{m=1}^{s} \frac{C_m}{(1 - c_i z^{-1})^m}$$
(119)

 C_m can be computed as

$$C_m = \frac{1}{(s-m)!(-c_i)^{s-m}} \cdot \frac{d^{s-m}}{dw^{s-m}} [(1-c_iw)^s X(w^{-1})] \bigg|_{w=c_i^{-1}}$$
(120)

 A_k can be found by using <u>^69c1dc</u>.

If $M \geq N$ with multiple order poles

$$X(z) = \sum_{l=0}^{M-N} B_l z^{-1} + \sum_{k=1, k \neq i}^{N} \frac{A_k}{1 - c_k z^{-1}} + \sum_{m=1}^{s} \frac{C_m}{(1 - c_i z^{-1})^m}$$
(121)

Transfer Function H(z) of Linear Time-Invariant System

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$
 (122)

Applying z transform on $\underline{^{a27150}}$ with the use of the linearity and time shifting properties, it is defined as

$$Y(z)\sum_{k=0}^{N}a_{k}z^{-k} = X(z)\sum_{k=0}^{M}b_{k}z^{-k}$$
(123)

Then, the transfer function, denoted by H(z), is defined as

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$
(124)

Laplace Transform

The Laplace transform of x(t), denoted by X(s), is defined as

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$$
 (125)

where s is a continuous complex variable.

To express s as

$$s = \sigma + j\Omega \tag{126}$$

where σ and Ω are the real and imaginary parts of s respectively.

According to ^de7d82, the Laplace transform can be written as

$$X(\sigma+j\Omega)=\int_{-\infty}^{\infty}x(t)e^{-(\sigma+j\Omega)t}\,dt=\int_{-\infty}^{\infty}(x(t)e^{-\sigma t})e^{-j\Omega t}\,dt$$
 (127)

Region of Convergence (ROC)

ROC indicates when Laplace transform of x(t) converges, that is if

$$|X(s)| = \left| \int_{-\infty}^{\infty} x(t) e^{-st} \, dt
ight| o \infty$$

Then, the Laplace transform does not converge at point s.

Therefore, the Laplace transform exists if

$$|X(\sigma+j\Omega)| \leq \int_{-\infty}^{\infty} \left| x(t)e^{-(\sigma+j\Omega)t} \right| dt = \int_{-\infty}^{\infty} \left| x(t)e^{-\sigma t} \right| dt < \infty$$
 (129)

The set of values of σ which satisfies $\underline{^{9a928a}}$ is called the ROC.

Poles and Zeros

Values of s for which X(s) = 0 are the zeros of X(s).

Values of s for which $X(s) = \pm \infty$ are the poles of X(s).

Finite-Duration and Infinite-Duration Signals

Finite-Duration Singal

If the values of x(t) are nonzero only for a finite time interval, then it is a finite-duration signal. If x(t) is absolutely integrable, then the ROC of X(s) is the entire s plane.

That is,

$$x(t) = \begin{cases} \text{nonzero}, & T_1 < t < T_2 \\ 0, & \text{otherwise} \end{cases}$$
 (130)

It is also absolutely integrable,

Infinite-Duration Signal

It x(t) is not finite-duration, then it is an infinite-duration signal.

- 1. If x(t) = 0 for $t < T_1 < \infty$, then it is right-sided.
- 2. If x(t) = 0 for $t > T_2 > -\infty$, then it is left-sided.
- 3. If it is neither right-sided nor left sided, then it is two-sided.

Table of Laplace Transforms

Signal	Transform	ROC
$\delta(t)$	1	All s
$\delta(t-T)$	e^{-sT}	All s
	1	
$e^{-at}u(t)$	s+a	$\Re\{s\} > -a$
	1	
$-e^{-at}u(-t)$	s+a	$\Re\{s\} < -a$
t^{n-1} $e^{-at_{at}(t)}$	1	
$\left \frac{(n-1)!}{(n-1)!}e^{-it}u(t)\right $	$(s+a)^n$	$\Re\{s\} > -a$
$\frac{-e^{-at}u(-t)}{\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)}$ $-\frac{t^{n-1}}{(n-1)!}e^{-at}u(-t)$	1	
$-\frac{1}{(n-1)!}e^{-u(-t)}$	$(s+a)^n$	$\Re\{s\} < -a$
	$\frac{s+a}{}$	
$e^{-at}\cos(bt)u(t)$	$(s+a)^2 + b^2$	$\left \Re\{s\}>-a\right $
	b	
$e^{-at}\sin(bt)u(t)$	$(s+a)^2 + b^2$	$\Re\{s\} > -a$

Summary of ROC Properties

- 1. The ROC of X(s) consists of a region parallel to the $j\Omega$ axis in the s plane. There are four possible cases, namely, the entire region, right-half plane (region includes ∞), left-half plane (region includes $-\infty$) and single strip (region bounded by two poles).
- 2. The Fourier transform of a signal x(t) exists iff the ROC of the Laplace transform of x(t) includes the $j\Omega$ axis.
- 3. For a rational X(s), its ROC cannot contain any poles.
- 4. When x(t) is finite-duration and absolutely integrable, the ROC is the entire s plane.
- 5. When x(t) is right-sided, the ROC is the right-half plane to the right of the rightmost pole.
- 6. When x(t) is left-sided, the ROC is left-half plane to the left of the leftmost pole.
- 7. When x(t) is two-sided, the ROC is the form $\Re\{p_a\} > \Re\{s\} > \Re\{p_b\}$ where p_a and p_b are two poles of X(s) with the successive values in real part.
- 8. The ROC must be a connected region.

Properties of Laplace Transform

Linearity

Let $x_1(t) \leftrightarrow X_1(s)$ and $x_2(t) \leftrightarrow X_2(s)$ be two Laplace transform pairs with ROCs \mathcal{R}_{x_1} and \mathcal{R}_{x_2} respectively, it is defined as

$$ax_1(t) + bx_2(t) \leftrightarrow aX_1(s) + bX_2(s) \tag{132}$$

Its ROC is denoted by \mathcal{R} , which contains at least the intersection of \mathcal{R}_{x_1} and \mathcal{R}_{x_2} .

Time Shifting

A time-shift of t_0 in x(t) causes a multiplication of e^{-st_0} in X(s), that is

$$x(t) \leftrightarrow X(s) \implies x(t - t_0) \leftrightarrow e^{st_0}X(s)$$
 (133)

The ROC for $x(t-t_0)$ is identical to X(s).

Multiplication by an Exponential Signal

$$x(t) \leftrightarrow X(s) \implies e^{s_0 t} x(t) \leftrightarrow X(s - s_0)$$
 (134)

If the ROC for x(t) is \mathcal{R} , then the ROC for $e^{s_0t}x(t)$ is $\mathcal{R}+\mathfrak{R}\{s_0\}$, that is shifted by $\mathfrak{R}\{s_0\}$. If X(s) has a pole (zero) at s=a, then $X(s-s_0)$ has a pole (zero) at $s=a+s_0$.

Differentiation in s Domain

Differentiating X(s) w.r.t. s corresponds to multiply x(t) by -t in the time domain, that is,

$$x(t) \leftrightarrow X(s) \implies -tx(t) \leftrightarrow \frac{dX(s)}{ds}$$
 (135)

The ROC for tx(t) is identical to that of X(s).

Conjugation

The Laplace transform pair for $x^*(t)$ is defined as

$$x(t) \leftrightarrow X(s) \implies x^*(t) \leftrightarrow X^*(s^*)$$
 (136)

The ROC for $x^*(t)$ is identical to X(s).

Time Reversal

The Laplace transform pair for x(-t) is defined as

$$x(t) \leftrightarrow X(s) \implies x(-t) \leftrightarrow X(-s)$$
 (137)

The ROC will be reversed too.

Convolution

Let $x_1(t) \leftrightarrow X_1(s)$ and $x_2(t) \leftrightarrow X_2(s)$ be two Laplace transform pairs with ROCs \mathcal{R}_{x_1} and \mathcal{R}_{x_2} respectively, it is defined as

$$x_1(t) \circledast x_2(t) \leftrightarrow X_1(s)X_2(s) \tag{138}$$

and its ROC includes $\mathcal{R}_{x_1} \cap \mathcal{R}_{x_2}$.

Differentiation in Time Domain

Differentiating x(t) w.r.t. t corresponds to multiply X(s) by s in the s domain, that is defined as

$$x(t) \leftrightarrow X(s) \implies \frac{dx(t)}{dt} \leftrightarrow sX(s)$$
 (139)

Its ROC includes the ROC for x(t).

Integration

$$x(t) \leftrightarrow X(s) \implies \int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \frac{1}{s} X(s)$$
 (140)

If the ROC for x(t) is \mathcal{R} , then the ROC for $\int_{-\infty}^t x(\tau) \, d\tau$ includes $\mathcal{R} \cap \{\Re\{s\} > 0\}$.

Causality and Stability Investigation with ROC

The causality condition is same with <u>^6ccb9e</u>, which is

$$h(t) = 0, \qquad t < 0 \tag{141}$$

If the system is causal and h(t) is of infinite duration, the ROC must be the right-half plane. If H(s) is rational and its ROC is the right-half plane, then the system must be causal.

Inverse Laplace Transform

Partial Fraction Expansion

Consider X(s) is a rational function in s, that is

$$X(s) = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$
 (142)

To obtain the partial fraction expansion, first to determine N nonzero poles, c_1, c_2, \ldots, c_N

If M < N and all poles are first order,

$$X(s) = \sum_{k=1}^{N} \frac{A_k}{s - c_k} \tag{143}$$

and A_k can be computed as

$$A_k = (s - c_k)X(s)|_{s = c_k} (144)$$

If $M \geq N$ and all poles are first order,

$$X(s) = \sum_{l=0}^{M-N} B_l s^l + \sum_{k=1}^{N} \frac{A_k}{s - c_k}$$
 (145)

and B_l are obtained by long division of the numerator by the denominator, A_k can be obtained using 922282 .

If M < N with multiple-order poles,

Assuming that X(s) has a r order pole at $s=c_i$, with $r\geq 2$.

$$X(s) = \sum_{k=1, k \neq i}^{N} \frac{A_k}{s - c_k} + \sum_{m=1}^{r} \frac{C_m}{(s - c_i)^m}$$
(146)

and C_m can be computed as

$$C_m = rac{1}{(r-m)!} \cdot rac{d^{r-m}}{ds^{r-m}} [(s-c_i)^r X(s)] igg|_{s=c_i}$$
 (147)

If $M \ge N$ with multiple-order poles,

$$X(s) = \sum_{l=0}^{M-N} B_l s^l + \sum_{k=1, k \neq i}^{N} \frac{A_k}{s - c_k} + \sum_{m=1}^{r} \frac{C_m}{(s - c_i)^m}$$
(148)

Transfer Function of LTI System

The differential equation is defined as

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$
 (149)

Applying Laplace transform with the use of linearity property, it can be defined as

$$Y(s)\sum_{k=0}^{N}a_{k}s^{k}=X(s)\sum_{k=0}^{M}b_{k}s^{k}$$
 (150)

Therefore, the transfer function, denoted by H(s) is defined as

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$
(151)

Miscellaneous

Geometric Series Formulas

$\sum_{k=0}^{\infty}a^k=rac{1}{1-a}$	$\sum_{k=0}^{N} a^k = rac{1-a^{N+1}}{1-a}$
$\sum_{k=1}^{\infty}a^k=rac{a}{1-a}$	$\sum_{k=1}^{N} a^k = rac{a(1-a^{N+1})}{1-a}$
$\sum_{k=N_1}^{N_2} a^k = rac{a^{N_1} - a^{N_2+1}}{1-a}$	$\sum_{k=1}^N k = rac{N(N+1)}{2}$

Changing Subject on Summation

$$X(z) = \sum_{n=-\infty}^{-1} -a^n z^{-n} = -\sum_{m=1}^{\infty} a^{-m} z^m = -\sum_{m=1}^{\infty} (a^{-1} z)^m$$

LTI System

$$y[n] = (x[n] + x[n] \otimes h_1[n]) \otimes h_2[n]$$

$$= (x[n] \otimes \delta[n] + x[n] \otimes h_1[n]) \otimes h_2[n]$$

$$= x[n] \otimes ([\delta[n] + h_1[n]]) \otimes h_2[n]$$