Colle - Electrotechnique

Nom: Prénom:

Groupe: 2i-TP17 Date: 4 décembre 2020

Un pont monophasé tout thyristors alimente une charge (machine à courant continu en série avec une inductance) qui consomme un courant constant $I=10\,\mathrm{A}$. Le pont est alimenté entre les points A et D sous une tension sinusoïdale $v(t)=V\sqrt{2}sin(\omega t)$ de période $T=20\,\mathrm{ms}$, et de valeur efficace $V=230\,\mathrm{V}$. Les thyristors T_1 et T_4 sont amorcés périodiquement aux instants $t_1,\,t_1+T,\ldots$ $(0< t_1< T/2)$. Les thyristors T_2 et T_3 sont amorcés périodiquement aux instants $t_1+T/2,\,t_1+3T/2,\,\ldots$

Le retard à l'amorçage vaut $t_1 = 3T/8$, ce qui correspond à un angle d'amorçage $\alpha = 3\pi/4$.

- 1. Exprimer u(t) en fonction de v(t)
 - (a) lorsque T_1 et T_4 sont passants.
 - (b) lorsque T_2 et T_3 sont passants.
- 2. Représenter une période de l'évolution de la tension d'alimentation v(t) (comme ci-dessous). Sur votre copie, laisser de la place sous le graphique pour les instants de conduction des thyristors.

Faire apparaître sur le tracé de v(t) les instants d'amorçage t_1 et $t_1 + T/2$ des thyristors, et indiquer sous ce graphique les instants de conduction des thyristors. Vous pouvez écrire votre raisonnement si nécessaire.

- 3. En déduire l'évolution de la tension u(t) (à représenter sur le même graphique que précédemment, mais avec une autre couleur).
- 4. Établir l'expression de la tension moyenne $\langle u(t) \rangle$ aux bornes de la charge en fonction de V, puis calculer sa valeur. Seuls les résultats justifiés seront pris en compte.