PROGRAM 18: Compute KLT Kernel of Various Sizes and Apply to KLT of Different Signals (1D, 2D).

```
N = [4, 8, 16];
for i = 1:length(N)
  n = N(i);
  X = randn(n);
  C = cov(X);
  [E, D] = eig(C);
  fprintf('KLT Kernel of size %d:\n', n);
  disp(E); % Display KLT Kernel
end
x 1D = rand(1, 8);
Cx = cov(x 1D);
[E 1D, D 1D] = eig(Cx);
x 1D KLT = E 1D' * x 1D(:);
x 1D Reconstructed = E 1D * x 1D KLT;
figure;
subplot(3,1,1); plot(x 1D, '-o'); title('Original 1D Signal');
subplot(3,1,2); plot(diag(D 1D), '-o'); title('Eigenvalues (KLT Spectrum)');
subplot(3,1,3); plot(x 1D Reconstructed, '-o'); title('Reconstructed 1D Signal');
I 2D = imread('download.jpg');
if size(I 2D, 3) == 3
  I 2D = rgb2gray(I 2D);
end
I 2D = double(I 2D);
[m, n] = size(I 2D);
new size = min(m, n);
I 2D = imresize(I 2D, [new size, new size]);
C 2D = cov(I 2D);
[E 2D, D 2D] = eig(C 2D);
I 2D KLT = E 2D' * I 2D * E 2D;
I 2D Reconstructed = E 2D * I 2D KLT * E 2D';
figure;
subplot(2,2,1); imshow(I 2D, []); title('Original Image');
subplot(2,2,2); imshow(log(1 + abs(D 2D)), []); title('KLT Spectrum (Eigenvalues)');
subplot(2,2,3); imshow(I 2D Reconstructed, []); title('Reconstructed Image');
```

 $subplot(2,2,4); imshow(abs(I_2D - I_2D_Reconstructed), []); title('Difference \ Between \ Original \ and \ Reconstructed');$

OUTPUT:

PROGRAM 19: Compute KLT of Different Signals (1D, 2D) [Image] using MATLAB function klt() /inv(klt()).

```
N = [4, 8, 16];
for i = 1:length(N)
  n = N(i);
  X = randn(n, n);
  C = cov(X);
  [E, D] = eig(C);
  fprintf('KLT Kernel of size %d:\n', n);
  disp(E);
end
x 1D = rand(8, 1);
Cx = cov(x 1D);
[E 1D, D 1D] = eig(Cx);
x 1D KLT = E 1D' * x 1D;
x 1D Reconstructed = E 1D * x 1D KLT;
figure;
subplot(3,1,1); plot(x 1D, '-o'); title('Original 1D Signal');
subplot(3,1,2); plot(diag(D 1D), '-o'); title('KLT Spectrum (Eigenvalues)');
subplot(3,1,3); plot(x 1D Reconstructed, '-o'); title('Reconstructed 1D Signal');
I 2D = imread('download.jpg');
if size(I 2D, 3) == 3
  I 2D = rgb2gray(I 2D);
end
I 2D = double(I 2D);
[m, n] = size(I 2D);
new size = min(m, n);
I 2D = imresize(I 2D, [new size, new size]);
C 2D = cov(I 2D);
[E 2D, D 2D] = eig(C 2D);
I 2D KLT = E 2D' * I 2D * E 2D;
I 2D Reconstructed = E 2D * I 2D KLT * E 2D';
figure;
subplot(2,2,1); imshow(I 2D, []); title('Original Image');
subplot(2,2,2); imshow(log(1 + abs(D 2D)), []); title('KLT Spectrum (Eigenvalues)');
subplot(2,2,3); imshow(I 2D Reconstructed, []); title('Reconstructed Image');
subplot(2,2,4); imshow(abs(I 2D - I 2D Reconstructed), []); title('Difference Between
Original and Reconstructed');
```

OUTPUT:

KLT Kerne	el of s	ize 4:									
-0.75	50 -0.	.0811	0.1598	-0.630	7						
-0.388		.1261	-0.8755	0.258							
	-0.1529 -0.8649		0.3019	0.370							
-0.500	60 0.	.4790	0.3418	0.630	7						
KLT Kerne	el of si	ize 8:									
0.44	18 -0	.1128	0.5184	0.288	1 0.	0514	0.5024	-0.429	7 9.6	9277	
0.600		.1567	0.4028			2280	-0.5049	0.327		1086	
-0.24		.8532	0.2186	0.056			-0.0507			0.3166	
0.080	ð7 -0.	. 2267	-0.2234	-0.068			-0.4073	-0.693	9 0.1	L640	
-0.157	71 -0.	.0385	0.0559	-0.024	43 -0.8407		0.4215	0.292	5 0.0	0073	
0.136	61 0.	.3321	-0.2134	-0.411	3 -0.0298		0.2248	-0.268	2 -0.7	-0.7302	
0.28	57 -0	.0022	-0.1530	-0.694	-0.6941 0.1190		0.2904	0.034	2 0.	0.5599	
0.50		.2676	-0.6318	0.480			0.1078	0.131		0.1166	
0.30.	20 0	.2070	0.0510	0.400	- 0.	0005	0.1070	0.131		1100	
										ĺ	
KLT Kernel o											
Columns 1	through 1	1									
-0.1293	-0.0272	0.3138	0.2922	0.2055	0.6059	-0.1704	-0.1071	-0.0771	0.2016	-0.0968	
-0.0979	-0.1467	-0.2034	0.0005	-0.1962	0.0840	-0.3671	-0.1788	-0.0282	-0.1170	-0.3885	
-0.0886	0.3030	-0.2574	-0.2595	-0.0561	0.2747	-0.3001	0.0600	-0.6035	-0.1987	0.4008	
0.0834	0.3573	-0.3660	0.3586	-0.2879	0.0858	-0.0826		0.2209	0.3130	0.0752	
0.0612	0.1514	-0.3406	-0.3866	0.3263	-0.0062	0.3090		-0.0664	0.2175	-0.2217	
0.0428	-0.1296	-0.0311	0.0256	-0.5486	0.1365	0.3844		0.0519	-0.4203	0.0299	
-0.0303 0.1376	-0.2020 0.0813	0.2537 -0.1103	0.1262 -0.3486	-0.1707 -0.0949	0.0498 0.1048	-0.0711 -0.2727		-0.1156 0.3295	0.3451 0.3951	0.3515 -0.0785	
-0.0104	0.4138	0.2980	-0.2143	-0.0936	0.4982	0.3858		0.2035	-0.0319	-0.0424	
-0.5539	0.0424	-0.1871	-0.1979	-0.2711	0.0447	0.0022		0.0972	0.0406	-0.0443	
0.4890	0.0267	0.0469	-0.2019	-0.0173	-0.0328	-0.1045	-0.2790	0.2472	-0.0639	0.5019	
0.0702	0.0307	0.4467	-0.4118	0.0052	-0.0809	-0.2038		-0.1030	-0.1087	-0.2257	
0.1622	-0.5495	-0.3357	-0.0994	0.2219	0.4932	-0.0387		0.2024	-0.1963	0.0370	
-0.0789	0.1388	0.1397	-0.0690	-0.1184	-0.0374	-0.4527		0.3931	-0.2885	-0.0572	
-0.1649 0.5681	-0.4186 0.0032	0.0930 -0.0011	-0.3442 0.0510	-0.3332 -0.3618	-0.0151 0.0909	0.0864 -0.0391		-0.0726 -0.3575	0.3936 0.1174	0.1208 -0.4097	
0.3001	0.0032	-0.0011	0.0310	-0.5010	0.0303	-0.0551	0.1032	-0.5575	0.11/4	-0.4037	
Columns 12	Columns 12 through 16										
0.1939	-0.1277	-0.4816	-0.0681	-0.0490							
0.1270	-0.2783	0.3358	-0.5861	-0.0035							
-0.0617	0.1529	-0.0305	-0.0445	0.0018							
-0.3809 -0.1595	0.0289 -0.3285	-0.0373 -0.3012	0.0796 -0.1756	-0.0461 0.3871							
-0.1891	-0.1258	-0.4306	-0.2165	-0.1488							
-0.3715	-0.4480	0.2436	-0.0520	0.2690							
-0.0126	0.1457	-0.1083	-0.1183	-0.4076							
0.0477	0.1075	0.4550	-0.0907	0.1179							
0.2945	-0.4040	0.0135	0.5232	-0.0692							
0.4091	-0.3656	-0.0691	-0.0622	-0.0203							
-0.4752 -0.2357	-0.1862 0.0567	-0.0505 0.1726	0.1799 0.2878	-0.2964 0.0263							
-0.0859	0.1501	-0.2201	0.20704	0.6270							
0.1014	0.4094	-0.1107	-0.1278	0.2049							
0.2063	-0.0026	0.0283	0.3563	0.2056							

Original Image

KLT Spectrum (Eigenvalues)

Reconstructed Image

Difference Between Original and Reconstructe

Original 1D Signal

PROGRAM 20: Apply a mask on image and apply KLT & SVD and compare their results.

```
I 2D = imread('download.jpg');
if size(I 2D, 3) == 3
  I 2D = rgb2gray(I 2D);
end
I 2D = double(I 2D);
[m, n] = size(I 2D);
new size = min(m, n);
I 2D = imresize(I 2D, [new size, new size]);
mask = zeros(new size, new size);
mask(1:50, 1:50) = 1;
C 2D = cov(I 2D);
[E 2D, D 2D] = eig(C 2D);
I 2D KLT = E 2D' * I 2D * E 2D;
I 2D KLT Masked = I 2D KLT.* mask;
I 2D KLT Reconstructed = E 2D * I 2D KLT Masked * E 2D';
[U, S, V] = svd(I 2D);
S Masked = S .* mask;
I 2D SVD Reconstructed = U * S Masked * V';
figure;
subplot(3,3,1); imshow(I 2D, []); title('Original Image');
subplot(3,3,2); imshow(log(1 + abs(D 2D)), []); title('KLT Spectrum');
subplot(3,3,3); imshow(log(1 + abs(S)), []); title('SVD Spectrum');
subplot(3,3,4); imshow(I 2D KLT, []); title('KLT Transformed Image');
subplot(3,3,5); imshow(I 2D SVD Reconstructed, []); title('SVD Reconstructed Image');
subplot(3,3,6); imshow(I 2D KLT Reconstructed, []); title('KLT Reconstructed Image');
subplot(3,3,7); imshow(abs(I 2D - I 2D SVD Reconstructed), []); title('SVD Error');
subplot(3,3,8); imshow(abs(I 2D - I 2D KLT Reconstructed), []); title('KLT Error');
subplot(3,3,9); imshow(abs(I 2D SVD Reconstructed - I 2D KLT Reconstructed), []);
title('Difference SVD vs KLT');
I 2D = imread('download.jpg');
if size(I 2D, 3) == 3
  I 2D = rgb2gray(I 2D);
end
I 2D = double(I 2D);
[m, n] = size(I 2D);
new size = min(m, n);
I 2D = imresize(I 2D, [new size, new size]);
```

```
mask = zeros(new size, new size);
mask(1:50, 1:50) = 1;
C 2D = cov(I 2D);
[E 2D, D 2D] = eig(C 2D);
I 2D KLT = E 2D' * I 2D * E 2D;
I 2D KLT Masked = I 2D KLT.* mask;
I 2D KLT Reconstructed = E 2D * I 2D KLT Masked * E 2D';
[U, S, V] = svd(I 2D);
S Masked = S .* mask;
I 2D SVD Reconstructed = U * S Masked * V';
figure;
subplot(3,3,1); imshow(I 2D, []); title('Original Image');
subplot(3,3,2); imshow(log(1 + abs(D 2D)), []); title('KLT Spectrum');
subplot(3,3,3); imshow(log(1 + abs(S)), []); title('SVD Spectrum');
subplot(3,3,4); imshow(I 2D KLT, []); title('KLT Transformed Image');
subplot(3,3,5); imshow(I 2D SVD Reconstructed, []); title('SVD Reconstructed Image');
subplot(3,3,6); imshow(I 2D KLT Reconstructed, []); title('KLT Reconstructed Image');
subplot(3,3,7); imshow(abs(I 2D - I 2D SVD Reconstructed), []); title('SVD Error');
subplot(3,3,8); imshow(abs(I 2D - I 2D KLT Reconstructed), []); title('KLT Error');
subplot(3,3,9); imshow(abs(I 2D SVD Reconstructed - I 2D KLT Reconstructed), []);
title('Difference SVD vs KLT');
```

OUTPUT:

Figure 1

Original Image

KLT Spectrum

SVD Spectrum

Original Image

KLT Spectrum

SVD Spectrum

SVD Spectrum

Original Image

KLT Spectrum

SVD Spectrum

PROGRAM 21: Apply Average, Median, Min, and Max Filters & Comparing Metrics.

```
clc; clear; close all;
data = [
  10 20 30 40 50;
  15 25 35 45 55;
  20 30 40 50 60;
  25 35 45 55 65;
  30 40 50 60 70
];
avg filter = fspecial('average', [3 3]);
filtered avg = imfilter(data, avg filter, 'replicate');
filtered median = medfilt2(data, [3 3]);
filtered min = ordfilt2(data, 1, ones(3,3), 'symmetric');
filtered max = ordfilt2(data, 9, ones(3,3), 'symmetric');
disp('Original Data Matrix:');
disp(data);
disp('Average Filtered Matrix:');
disp(filtered avg);
disp('Median Filtered Matrix:');
disp(filtered median);
disp('Minimum Filtered Matrix:');
disp(filtered min);
disp('Maximum Filtered Matrix:');
disp(filtered max);
```

Output:

Original Data Matrix: Minimum Filtered Matrix:												
10	20	30	40	50			10	40	20	20	40	
15	25	35	45	55			10	10	20	30	40	
20	30	40	50	60			10	10	20	30	40	
25	35	45	55	65			15	10	25	35	45	
30	40	50	60	70			13	15	25	20	45	
							20	20	30	40	50	
_	Average Filtered Matrix:							25	35	45	55	
15.00		21.6667		.6667	41.6667	48.3333	25	23	22	43	22	
18.33		25.0000		.0000	45.0000	51.6667						
23.33		30.0000		.0000	50.0000	56.6667	Maximum	Filte	red Mat	riv.		
28.33		35.0000		.0000	55.0000	61.6667	ridatilidili	IIICC				
31.66	67	38.3333	48.	. 3333	58.3333	65.0000	25	35	45	55	55	
							30	40	50	60	60	
	Median Filtered Matrix:											
0	15	25	35	0			35	45	55	65	65	
15	25	35	45	45			40	50	60	70	70	
20	30	40	50	50								
25	35	45	55	55			40	50	60	70	70	
0	30	40	50	0								

PROGRAM 22: Apply Gamma, Log, Square, and Square Root Transformations.

```
clc; clear; close all;
data = [
  10 20 30 40 50;
  15 25 35 45 55;
  20 30 40 50 60;
  25 35 45 55 65;
  30 40 50 60 70
];
data vector = data(:);
[counts, bin edges] = histcounts(data vector, 'BinMethod', 'integer');
figure;
bar(bin edges(1:end-1), counts, 'BarWidth', 1);
title('Original Data Histogram');
xlabel('Data Value');
ylabel('Frequency');
data eq = histeq(data, numel(unique(data vector)));
data eq vector = data eq(:);
[counts_eq, bin_edges_eq] = histcounts(data_eq_vector, 'BinMethod', 'integer');
figure;
bar(bin edges eq(1:end-1), counts eq, 'BarWidth', 1);
title('Equalized Data Histogram');
xlabel('Data Value');
ylabel('Frequency');
disp('Original Data Matrix:');
disp(data);
disp('Equalized Data Matrix:');
disp(data eq);
```

Output:

PROGRAM 23: Apply local operations or filters to a given image and compare the results based on the output image.

Output:

Original Matrix Laplacian Filtered Matthesharp Masking Result

PROGRAM 24: Calculate histogram of a given image and apply the various histogram enhanced methods and compare the result based on the resultant image and histograms. use matrix

```
imageMatrix = uint8(rand(256) * 255);
figure;
subplot(2, 2, 1); imshow(imageMatrix); title('Original Image');
subplot(2, 2, 2); bar(imhist(imageMatrix)); title('Original Histogram');
imageEqualized = histeq(imageMatrix);
subplot(2, 2, 3); imshow(imageEqualized); title('Equalized Image');
subplot(2, 2, 4); bar(imhist(imageEqualized)); title('Equalized Histogram');
min val = double(min(imageMatrix(:)));
max val = double(max(imageMatrix(:)));
contrastStretched = uint8(255 * (double(imageMatrix) - min val) / (max val - min val));
figure;
subplot(1, 2, 1); imshow(contrastStretched); title('Contrast Stretched Image');
subplot(1, 2, 2); bar(imhist(contrastStretched)); title('Contrast Stretched Histogram');
imageCLAHE = adapthisteq(imageMatrix);
figure;
subplot(1, 2, 1); imshow(imageCLAHE); title('Adaptive Histogram Equalization');
subplot(1, 2, 2); bar(imhist(imageCLAHE)); title('Histogram After Adaptive Equalization');
```

Output:

