Grundlagen der Programmierung (Vorlesung 21)

Ralf Möller, FH-Wedel

- Vorige Vorlesung
 - Alphabet, Formale Sprache, Grammatik, erzeugte Sprache
- Inhalt dieser Vorlesung
 - Grammatikformen, BNF-Notation
- Lernziele
 - Grundkenntnisse in der Beschreibung von Programmiersprachen (sowie Teilen davon)
 - Kennenlernen von abstrakten Maschinen zur Charakterisierung von Problemen

Grammatik

Definition. Eine *Grammatik* ist ein 4-Tupel $G = (V, \Sigma, P, S)$ das folgende Bedingungen erfüllt:

- -V ist eine endliche Menge, die Menge der *Variablen*.
- Σ ist eine endliche Menge, das *Terminalalphabet*, wobei $V\cap\Sigma=\emptyset$.
- P ist die Menge der Produktionen oder Regeln. P ist eine endliche Teilmenge von $(V \cup \Sigma)^+ \times (V \cup \Sigma)^*$. (Schreibweise: $(u,v) \in P$ schreibt man meist als $u \to v$.)
- $-S \in V$ ist die Startvariable.

Übergang

Seien $u,v\in (V\cup\Sigma)^*$. Wir definieren die Relation $u\Rightarrow_G v$ (in Worten: u geht unter G unmittelbar über in v), falls u und v die Form haben

$$\begin{array}{lcl} u & = & xyz \\ \\ v & = & xy'z & \text{mit } x,z \in (V \cup \Sigma)^* \text{ und} \\ \\ y & \to & y' & \text{eine Regel in } P \text{ ist.} \end{array}$$

(Bem: Falls klar ist, welche Grammatik gemeint ist, so schreiben wir oft auch einfach kurz $u \Rightarrow v$ anstelle von $u \Rightarrow_G v$.)

Transitive Hülle einer Relation: Motivation

- Ein Wort wird durch Produktionsregeln in ein neues Wort abgebildet
- Was in was abgebildet wird, ist durch die Übergangsrelation \Rightarrow gegeben
- Im Kontext einer Grammatik können Produktionsregeln mehrfach hintereinander angewendet werden
- Es soll nun alles, was auch mehrschrittig abgeleitet werden kann, betrachtet werden
- Es ist in diesem Fall nicht die direkte Übergangsrelation zu betrachten, sondern die sogenannte <u>Hülle</u> der Übergangsrelation

Transitive Hülle einer Relation: Definition

- Seien R und S zwei zweistellige Relationen über einer Menge M, so daß $R \subseteq M \times M$ und $S \subseteq M \times M$
- Wir definieren

RS :=
$$\{(x, y) \mid \exists z \in M. (x, z) \in R \land (z, y) \in S\}$$

- Wir definieren $R^0 := \{ (x, x) \mid x \in M \}$ und dann $R^{n+1} := RR^n$
- Damit können wir dann definieren (n \in N_0):

R* :=
$$\bigcup R^n$$
 (transitive, reflexive Hülle)
n≥0

$$R^{+} := \bigcup_{n \geq 1} R^{n} \qquad \text{(transitive Hülle)}$$

Erzeugte Sprache, Ableitung

Die von G definierte (erzeugte, dargestellte) Sprache ist

$$L(G) := \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \},\$$

wobei \Rightarrow_G^* die reflexive und transitive Hülle von \Rightarrow_G ist.

Eine Folge von Worten (w_0,w_1,\ldots,w_n) mit $w_0=S$, $w_n\in\Sigma^*$ und $w_i\Rightarrow w_{i+1}$ für $i=0,\ldots,n-1$ heißt Ableitung von w_n .

Grammatikformen (1)

Definition. Jede Grammatik ist automatisch vom Typ 0. (D.h., bei Grammatiken von Typ 0 gibt es keinerlei Einschränkungen an die Regeln in P.)

Eine Grammatik ist vom *Typ 1* oder *kontextsensitiv*, falls für alle Regeln $u \to v$ in P gilt: $|u| \le |v|$.

Eine Grammatik ist vom *Typ 2* oder *kontextfrei*, falls für alle Regeln $u \to v$ in P gilt: $u \in V$ (d.h., u ist eine einzelne Variable) und $|v| \geq 1$.

Grammatikformen (2)

Eine Grammatik ist vom *Typ 3* oder *regulär*, falls für alle Regeln $u \to v$ in P gilt: $u \in V$ (d.h., u ist eine einzelne Variable) und $w \in \Sigma \cup \Sigma V$ (d.h., v ist entweder eine einzelnes Terminalzeichen oder ein Terminalzeichen gefolgt von einer Variablen).

Eine Sprache $L\subseteq \Sigma^*$ heißt vom Typ $i,i\in\{0,1,2,3\}$, falls es eine Grammatik vom Typ i gibt mit L(G)=L.

Sonderregelung für das leere Wort

 ${arepsilon}$ -Sonderregelung: Wegen $|u| \leq |v|$ kann das leere Wort bei Typ 1,2,3 Grammatiken nicht erzeugt werden. Wir erlauben daher die folgende Sonderregelung: Ist ${arepsilon} \in L(G)$ erwünscht, so ist die Regel $S \to {arepsilon}$ zugelassen, falls die Startvariable S auf keiner rechten Seite einer Produktion vorkommt.

Beispiele (1)

Typ 3:
$$L=\{a^n\mid n\in\mathbb{N}\},$$
 Grammatik: $S\to a,$ $S\to aS$ Typ 2: $L=\{a^nb^n\mid n\in\mathbb{N}\},$

Grammatik: $S \rightarrow ab$,

 $S \rightarrow aSb$

Beispiele (2)

Typ 1:
$$L=\{a^nb^nc^n\mid n\in\mathbb{N}\},$$
 Grammatik: $S\to aSXY,$ $S\to aXY,$ $XY\to YX,$ $aX\to ab,$ $bX\to bb,$ $bY\to bc,$ $cY\to cc$

Backus-Naur-Form (1)

Backus-Naur-Form: Formalismus zur kompakten Darstellung von Typ 2 Grammatiken

Statt $\begin{array}{cccc} A & \to & \alpha\gamma \\ A & \to & \alpha\beta\gamma \end{array} \quad \text{schreibt man} \quad A ::= \alpha[\beta]\gamma.$

Backus-Naur-Form (2)

Beispiel: Arithmetische Ausdrücke

$$<$$
exp $>$::= $<$ term $>$
 $<$ exp $>$::= $<$ exp $>$ + $<$ term $>$
 $<$ term $>$::= $(<$ exp $>)$
 $<$ term $>$::= $<$ term $>$ * $<$ term $>$ * $<$ term $>$

Aufgabe eines Compilers: Prüfe ob ein gegebener String einen gültigen arithmetischen Ausdruck darstellt und, falls ja, zerlege ihn in seine Bestandteile.

Beispiel: "Unsere" Sprache zur Notation von Algorithmen

```
Anweisung
                         Zuweisung
                          An we is ung sfolge \\
                          bedingteAnweisung
                          Schleifen Anweisung
Zuweisung
                          einfache Variable := Ausdruck
Anweisungsfolge
                         Anweisung; Anweisung
bedingteAnweisung ::= if Ausdruck
                             then Anweisung
                             else Anweisung
                          end if
                          if Ausdruck
                             then Anweisung
                         end if
```

Schleifen und einige Erweiterungen

```
SchleifenAnweisung ::= while Ausdruck do
                            Anweisung
                         end while
Ausdruck ::= ... | Ausdrucksfolge
Ausdrucksfolge ::= Anweisung ; Ausdruck
Ausdruck
         ::= ... bedingterAusdruck
bedingterAusdruck ::= if Ausdruck_0
                           then Ausdruck<sub>1</sub>
                           else Ausdruck<sub>2</sub>
                        end if
```

Funktionen

```
FunktionsDefinition ::= FunktionsKopf FunktionsRumpf
FunktionsKopf ::= FktName (formaleParamListe)
                          : Typ
formaleParamListe ::= formalerParameter
                       formalerParameter; formaleParamListe
formalerParameter ::= Variable : Typ
FunktionsRumpf ::= Ausdruck
Ausdruck
                       FunktionsAufruf
FunktionsAufruf ::= FktName ( aktuelleParamListe )
aktuelleParamListe ::= Ausdruck
                       Ausdruck, aktuelleParamListe
```

Blöcke

```
Anweisung ::= ... \mid Block
Block ::= begin Deklaration; Anweisung end
Deklaration ::= var Variablenliste
Variablenliste ::= Variablendekl
                  Variablendekl; Variablenliste
Variablendekl ::= Variablen : Typ
Variablen ::= Variable
                  Variable, Variablen
```

Prozedurdefinition

```
ProzedurDefinition ::= ProzedurKopf ProzedurRumpf
ProzedurKopf ::= ProzedurName (formaleParamListe)
| ProzedurName
ProzedurRumpf ::= Anweisung
Anweisung ::= ... | Prozeduraufruf
ProzedurAufruf ::= ProzedurName (aktuelleParamListe)
| ProzedurName
```

Zusammenfassung, Kernpunkte

- Formale Sprachen
- Grammatiken
- Grammatiktypen
- Entscheidungsprobleme
- Anwendungen

Was kommt beim nächsten Mal?

- Abstrakte Maschinen für spezielle Aufgaben
- Insbesondere zum Entscheiden von Wortproblemen
- Automatentheorie