武汉大学 2016-2017 学年第一学期期末考试 概率统计 B (A 卷答题卡)

				7 工 于 7												
姓名	学院															
姓石		[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]		
7- I		[1]	[1]	[1]	[1]	[]]	[1]	[]]	[]]	[1]		[1]	[1]	[]		
注意事项	1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]		
	考号信息点。	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]		
	2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]		
	作解答题:字体工整、笔迹清楚。	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]		
	3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]		
	写的答题无效;在草稿纸、试题卷上答题无效。	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]		
	4.保持卷面清洁,不要折叠、不要弄破。	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]		
		[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]		

一、(12 分) 若事件 B 和 A 相互独立, P(A) = 0.5, P(B) = 0.4, $C = A \cup B$ 求 (1) P(C);

(2) $P(C|(A \cup B))$.

二、(12 分) 某人出游,他坐火车、汽车、飞机的概率分别为0.4,0.2,0.4,而对应迟到的概率分别为 $\frac{1}{4},\frac{1}{3},\frac{1}{6}$ 求: (1)他迟到的概率; (2)如果他迟到了,他是坐汽车来的概率?

三、 $(12 \, \mathcal{G})$ 若随机变量 X 在区间 (0,2) 服从均匀分布;(1) 求方程 $y^2 + 2y + X = 0$ 有实根的概率。(2) 若对随机变量 X 进行 4 次独立观察,记 Y 为上方程有解的次数,求 Y 的数学期望和方差。

(1)求随机变量 X 和 Y 的边沿概率密度 $f_x(x)$; $f_y(y)$; (2) X 和 Y 是否独立 ? (3)求 $Z = X^2 + Y^2$ 的概率密度。

五、(12分)某生产线加工产品的合格率为0.8,已知:合格每件可获利80元,不合格每件亏损20元。

(1)为保证每天的平均利润不低于 6000 元,问他们至少要加工多少件产品?(2)为保证每天的利润不低于 6000 元的概率大于 0.977 ,问他们至少要加工多少件产品?(已知 $\Phi(2.0)=0.977$)

七、(12 分) 若总体 X 在 $(\theta,1)$ 上服从均匀分布, θ 未知, $X_1,X_2,...X_n$ 为样本;

(1)求 θ 的矩估计; (2)求 θ 的极大似然估计; (3)它们是否为无偏估计,如果不是,将他们化为无偏估计。

六、(12 分) 若 X_1, X_2, \dots, X_6 是正态总体N(0,1) 的样本,(1) 求常数a,b,c,n (这里 $abc \neq 0$),使

 $Y = aX_1^2 + b(2X_2 - X_3)^2 + c(3X_4 - 2X_5 - X_6)^2 \sim \chi^2(n)$;

(2) 求常数 d ,使得 $F = d \frac{{X_1}^2 + {X_2}^2}{{X_3}^2 + {X_4}^2 + {X_5}^2 + {X_6}^2}$ 服从 F(m,n) 分布? 这里 m,n 各是多少?

八、(12 分)某地发现一个金属矿,取 25 个样本测试,发现品位的平均值为 32.1,样本方差为 6.25;问:此矿的品位是不是显著大于 30? ($\alpha=0.05$)(假设矿石品位近似服从正态分布)已知: $u_{0.05}=1.65,u_{0.025}=1.96$

 $t_{0.05}(25) = 1.708, t_{0.05}(24) = 1.712, t_{0.025}(25) = 2.060, t_{0.025}(24) = 2.064$