Коллок по ДМ №4

by @alekshi3

1. Метод математической индукции. Wiki:

- Метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1, затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n+1.

Presentation:

МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ

Метод математической индукции является важным способом доказательства предложений (утверждений), зависящих от натурального аргумента.

Метод математической индукции состоит в следующем:

Предложение (утверждение) P(n), зависящее от натурального числа n, справедливо для любого натурального n если:

- 1. Р(1) является истинным предложением (утверждением);
- 2. P(n) остается истинным предложением (утверждением), если n увеличить на единицу, то есть P(n+1) истинное предложение (утверждение).

Таким образом метод математической индукции предполагает два этапа:

- 1. Этап проверки: проверяется, истинно ли предложение (утверждение) Р(1).
- Этап доказательства: предполагается, что предложение P(n) истинно, и доказывается истинность предложения P(n + 1) (n увеличено на единицу).

 ${\bf \underline{3}}$ амечание В некоторых случаях метод математической индукции используется в следующей форме:

Пусть m - натуральное число, m ≥ 1 и P(n) - предложение, зависящее от n, n \geq m.

Если

- 1. Р(т) справедливо;
- 2. Р(n) будучи истинным предложением, влечет истинность предложения P(n+1) для любого натурального n, $n \ge m$, тогда P(n) истинное предложение для любого натурального n, $n \ge m$.

Вся информация здесь: https://www.math.md/school/krujok/inductr/inductr.html

2. Определение сочетания (не формулой). Неупорядоченный набор размера k из n элементов (C(n,k)). *Presentation:*

k-Combination

Сочетания без повторений

 Def Сочетание — неупорядоченный набор размера m из n элементов

Def Число сочетаний m элементов из n без повторений

$$C(n, k) = C_n^k = \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!} = \frac{A_n^k}{k!}$$
 hepernous

Secnopress. × bocm

Secnopress.

Пример: Сколько существует способов сформировать футбольную команду из группы в 20 человек?

NB: Порядок не важен. Элементы различны

k-Combination of infinite Multiset

Сочетания с повторениями $\binom{n}{k} = \binom{n}{k} = \binom{n+k-1}{k! \cdot (n-1)!}$ $\binom{n+k-1}{k! \cdot (n-1)!}$ $\binom{n}{k} = \binom{n+k-1}{k! \cdot (n-1)!}$

<u>Пример</u>: Есть конфеты 4 типов и нужно купить 10 штук. Сколько различных наборов конфет можно купить?

$$P(k, n-1) = 0$$

$$= \frac{(n+k-1)!}{k!(n-1)!} = \binom{n}{k}$$

$$3 - \frac{n}{1} (n-1)$$

NB: Порядок не важен. Элементы могут повторяться

3. Формулы для сочетаний без повторений.

$$C(n,k) = C_n^k = \binom{n}{k} = \frac{A(n,k)}{k!} = \frac{n!}{(n-k)! \cdot k!}$$

4. Формулы для сочетаний с повторениями.

$$\dot{C}(n,k) = \dot{C}_n = \begin{pmatrix} \dot{n} \\ k \end{pmatrix} = \frac{(n+k-1)!}{(n-1)! \cdot k!}$$

Определение размещения (не формулой).

– упорядоченная последовательность длины k из n элементов (A(n,k)).

Presentation:

Arrangement (Partitial Permutation / K-Permutation)

Размещения без повторений

Def Размещение – упорядоченная последовательность длины m из n элементов

$$A(n,k) = A_n^k = n \cdot (n-t) \cdot \dots \cdot (n-k+t) = \frac{n!}{(n-k)!}$$

Пример: В чемпионате по футболу участвуют 16 команд. Сколько существует способов распределения

медалей за первые три места?

$$N = 16 \text{ (амфавиг)}$$
 $k = 3 \text{ (соботты)}$

NB: Важен порядок. Элементы различны

Arrangement of k elements of a set S

Permutation with repetition

Размещения с повторениями

Def Число размещений с повторениями

$$A(n,k) = A_n^k = n^k$$

$$k = 3$$

$$A_{5}^{3} = 5^{3}$$

NB: Важен порядок. Элементы могут повторяться

Mongroom Squeens 2 n Tucho na Sopel q yaky n-apz Kon-leo Sy nebox qynnymin n-apz

6. Формулы для размещений без повторений.

$$A(n,k) = A_n^k = \frac{n!}{(n-k)!}$$

7. Формула для размещений с повторениями.

$$\dot{A}(n,k) = \dot{A}_n^k = n^k$$

8. Определение перестановки (не формулой). это переупорядочение набора элементов (P(n)). Presentation:

Permutation (without repetition)

Перестановки без повторений

Def Факториал – произведение всех натуральных чисел от 1 до n = n!Def Перестановка – это переупорядочение набора элементов

Def Число перестановок без повторений: $P(n) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$ P(n) = n

Пример: Сколько существует возможных способов формирования числа, переставляя цифры 1, 2, 3, 4, 5?

mennynarubre P(5) = 5! 5.4.3.2.1

NB: Важен порядок. Элементы различны

Permutation of multiset

Перестановки с повторениями

Def Число перестановок с повторениями

Имеется n элементов k различных типов, тогда количество различных перестановок этих элементов:

$$P(n) = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}$$

Пример: Сколько слов можно образовать слов из букв слова МАТЕМАТИКА N = 10 K = 6 N = 10 N = 1Пример: Сколько слов можно образовать слов из букв слова МАТЕМАТИКА

NB: Важен порядок. Элементы могут повторяться

9. Формула перестановок с повторениями.
$$\dot{P}(n) = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}$$

Формула перестановок без повторений. 10.

11. Отличие перестановок и размещений.

перестановки задействуют все элементы набора, а размещения только часть его элементов.

12. Принцип Дирихле.

если поместить n+1 объект в n контейнеров, то по крайней мере в одном контейнере будет более одного объекта.

13. Принцип сложения.

Wiki:

- если событие A имеет а возможных исходов, а событие B имеет b возможных исходов, причем только одно из этих событий может произойти, то общее число возможных результатов = a+b.

Presentation:

Принцип сложения: Пусть $S_1, S_2, ... S_m$ - попарно непересекающиеся множества. Пусть для каждого i, множество S_i содержит n_i элементов.

Тогда выбрать один элемент из них можно $n_1 + n_2 + \cdots + n_m$ способами.

На языке теории множеств: $|S_i| = |n_i|$

<u>МВ</u>: Выбирается один элемент. Попарно непересекающиеся множества Пример: Сколько способов выбрать один фрукт из 5 груш и 6 яблок?

14. Принцип умножения.

Wiki:

- если есть а способов сделать что-то и b способов независимо сделать что-то другое, то существует а*b способов сделать и то, и другое.

Presentation:

Принцип умножения: Пусть задана последовательность событий $E_1, E_2, \dots E_m$ таких, что E_1 осуществляется n_1 способами E_2 осуществляется n_2 способами и т.д.

Тогда вся эта последовательность (упорядоченная) может быть осуществлена $n_1 \cdot n_2 \cdot \dots \cdot n_m$ способами.

NB: Последовательный выбор нескольких элементов (одновременно). Множества могут совпадать, пересекаться, не совпадать Пример: Номера автомобиля, подбрасывание монеты и кости.

15. Формула включения-исключения. *Wiki:*

- если имеются два множества, то количество элементов в их объединении равно сумме количеств элементов во множествах за вычетом количества элементов в их пересечении.

- формула для 2 множеств: $A \lor B = A + B - A \land B$
- формула для 3 множеств: $A \lor B \lor C = A + B + C - A \land B - B \land C - A \land C + A \land B \land C$

Presentation:

Формула включения-исключения

Тогда количество вариантов выбора одного элемента из них равно:

Пример: определить мощность множества (сколько) натуральных чисел в первой сотне,

которые не делятся ни на 3, ни на 5?
$$|U| = 100 |S_1| = \left| \frac{100}{3} \right| = 33 \qquad |S_2| = \frac{100}{5} = 20 \qquad |S_1 \cap S_2| = \frac{100}{3 \cdot 5} = 6$$

$$|U| - \left(|S_1| + |S_2| - |S_1 \cap S_2| \right) = 100 - \left(33 + 20 - 6 \right) = 53$$

NB: Сложение с пересекающимися множествами

Лексикографический порядок на строках. 16.

Лексикографический - название лексикографический порядок получил по аналогии с сортировкой.

Wiki:

Слова α предшествует слову β ($\alpha < \beta$), если:

- либо первые т символов этих слов совпадают, а т+1-й символ слова α меньше m+1-го символа слова β (например, АБАК < АБРАКАДАБРА, так как первые две буквы у этих слов совпадают, а третья буква у первого слова меньше, чем у второго);
- либо слово α является началом слова β (например, **СОН < СОННЫИ).**

Лексикографический порядок

Def Лексикографический порядок на строках $A = a_1 a_2 \dots a_n$ $B = b_1 b_2 \dots b_m$ $A \leq B$, если

burnoumeence ognong sbyx youbburi

1. $a_i = b_i$ gue boez $1 \leq i \leq n$ n < m con \leq conhui

2. $\exists k \leq min(n,m): a_k \leq b_k$ и учи $\forall i:i \geq k$ $a_i = b_i$ 12348 ≤ 1236 0 1 0 1 1 1 2 3 4 3 1 5 1

17. Формирование следующей в лексикографическом порядке перестановки.

Простыми словами:

- проходимся по перестановке справа налево, пока не найдем возрастающую ПАРУ.
- меняем местами МЕНЬШИЙ (левый) элемент пары с САМЫМ ПРАВЫМ относительно него БОЛЬШИМ (минимальный элемент, больший нашего и стоящим правее) элементом перестановки.
- зеркалим все, что было справа от позиции, где только что стоял меньший элемент пары.

С нерка:

алгоритм для генерации следующей лексикографической перестановки

- Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример)
- Меняем его с минимальным элементом, большим нашего, стоящим правее
- Перевернем правую часть

Пример работы

Лексикографический порядок

Формирование следующей в лексикографическом порядке перестановки (a_1, a_2, \dots, a_n)

- Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример)
- Меняем его с минимальным элементом, большим нашего, стоящим правее
- Перевернем правую часть

1. moving m 7.2. ai>ai+, que mil Ln, no am am, cupole napelo 2. berdpans min ai, +2. i>m n am ai us rboite berdupaen min>am 3. am a: 4. nepeynopego cume bce ai no are am b boypacmo vory nopregne

1	3	2	5	4	исходная перестановка
		۸			находим элемент, нарушающий убывающую последовательность
				۸	минимальный элемент больше нашего
1	3	4	5	2	меняем их местами
1	3	4	2	5	разворачивам правую часть
1	3	4	2	5	следующая перестановка

Лексикографический порядок

Формирование следующей в лексикографическом порядке перестановки (а1, а2 an)

1. націпня т.г. a; > a; + que мгі сп, но ам сам спрова палево

2. вибрань тіп a; ,+.г. i>m и am са; из гвоста вибираем міп>ам

3. ат а.

4. передпортедогить все a; после ат в возрастоющу портедке

1. 28 35 4761

2. 28 35 4761

4. 28 35 6 7 41

4. 28 35 6 1 47

18. Формирование следующего в лексикографическом порядке сочетания той же длины.

Простыми словами:

- приписываем в конец сочетания число равное увеличенному на 1 максимальному числу данного алфавита.
- ищем ПАРУ элементов, разница между которыми >1.
- инкрементируем МЕНЬШИЙ (увеличиваем значение на 1) элемент пары.
- убираем приписанное ранее число в конце.(пункт 1)

 заменяем все, что было справа от этого элемента(приписанное число из п. 1 не учитывается) на минимальный возможный хвост.

С нерка:

алгоритм для генерации следующего лексикографического сочетания

- ullet Добавим в конец массива с сочетанием N+1 максимальный элемент.
- Пойдём справа налево. Будем искать номер элемента, который отличается от предыдущего на 2 и больше
- Увеличим найденный элемент на 1. и допишем в конец минимально возможный хвост, если такого элемента нет на вход было дано последнее сочетание

Пример работы

Presentation:

Лексикографический порядок

k-coremanue

Формирование следующего в лексикографическом порядке сочетания (той же длины)

- Добавим в конец массива с сочетанием N+1 максимальный элемент.
- Пойдём справа налево. Будем искать номер элемента, который отличается от предыдущего на 2 и больше.
- Увеличим найденный элемент на 1, и допишем в конец минимально возможный хвост, если такого элемента

нет – на вход было дано последнее сочетание.

Лексикографический порядок

Формирование следующего в лексикографическом порядке сочетания с повторениями (той же длины)

$$\begin{split} &1. Copmuposka \{C_1,C_2,...,C_k\} \ no \ sospac manno. \\ &2.i=k;C_0=0. \\ &3. Ecmi \ C_i=n, mo \ i=i-1 u \ u \partial mu \ k \ 3. \\ &4.C_i=C_i+1; \ j=i+1. \\ &5.C_j=C_{j-i}; \ j=j+1. \\ &6. Ecmi \ j\leq k, mo u \ u \partial mu \ k \ 5. \\ &7. \{C_1,C_2,...,C_k\}-cove manne \ c \ no smopenismu. \end{split}$$

Теорема об эквивалентности формул задающих сочетания (правило симметрии)

Простыми словами:

сочетания из n по m элементов и из n по n-m элементов совпадают.

$$\mathrm{C}(n,m)=C_n^m=inom{n!}{m!*(n-m)!}=\mathrm{C}(n,n-m)=inom{n!}{(n-m)!*(n-(n-m))!}$$

Presentation:

лько существует трёхэлементных подмножеств множества из 10 элементов, а сколько семиэлементных?

Теорема Вандермонда 20.

Presentation:

Теоремы комбинаторики

Th Вандермонда. Сколькими способами можно составить подмножество из двух множеств.

$$\binom{n+m}{r} = \sum_{k=0}^{r} \binom{n}{k} \cdot \binom{m}{r-k}$$

Следствие из теоремы Вандермонда. 21.

Следствие:
$$n = m = r$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{n}{k} \cdot \binom{n}{n-k}$$

$$\begin{pmatrix} 2 & n \\ n \end{pmatrix} = \sum \binom{$$

22. Биномиальная теорема.

Wiki:

В элементарной алгебре биномиальная теорема (или биномиальное разложение) описывает алгебраическое разложение по степеням биномиала. Согласно теореме, можно разложить многочлен $(x+y)^n$ в сумму, включающую члены вида ax^by^c , где показатели b и c являются неотрицательными целыми числами с b+c=n, а коэффициент a каждого члена является определенным положительным целым числом, зависящим от n и b. Для например, для n=4,

$$(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4.$$

Коэффициент a в терминах ax^by^c известен как биномиальный коэффициент $\binom{n}{b}$ или $\binom{n}{c}$ (оба имеют одинаковое значение). Эти коэффициенты при изменении n и \dot{b} могут быть расположены так, чтобы образовать треугольник Паскаля. Эти числа также встречаются в комбинаторике, где $\binom{n}{b}$ указывается количество различных комбинаций b элементов, которые могут быть выбраны из n-элементного множества. Поэтому $\binom{n}{b}$ часто произносится как "n выбирают b".

Presentation:

Теоремы комбинаторики

Th Биномиальная $\forall n : (a+b)^n = \sum_{m=0}^n {n \choose m} a^m \cdot b^{n-m} = \sum_{m=0}^n {n \choose m} a^{n-m} \cdot b^m$

Cuez combrue: ecu a= b=1 To
$$\sum_{m=0}^{n} \binom{n}{m} = 2^{n}$$

Теорема о сумме сочетаний (следствие из 23. биномиальной).

если
$$a=b=1$$
, то $\displaystyle\sum_{m=0}^{n} {n \choose m}=2^n$

Теорема о коэффициентах биномиального 24. треугольника.

$$\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$$

Теоремы комбинаторики

25. Алфавит, символ.

- **символ** объект, имеющий собственное содержание и уникальную читаемую форму.
- **алфавит** конечное непустое множество символов. *Presentation:*

Формальные языки

Course (auto company of auto automorphism)

Символ (англ. symbol) — объект, имеющий собственное содержание и уникальную читаемую форму. **Алфавит** (англ. alphabet) — конечное непустое множество символов. Условимся обозначать алфавиты символом Σ .

Наиболее часто используются следующие алфавиты.

- 1. $\Sigma = \{0,1\}$ бинарный или двоичный алфавит.
- 2. $\Sigma = \{a, b, ..., z\}$ множество строчных букв английского алфавита.
- 3. Множество ASCII-символов или множество всех печатных ASCII-символов

Слово / Цепочка / Строка (англ. string) — это конечная последовательность символов некоторого алфавита.

Длина цепочки (англ. $string\ length$) — число символов в цепочке. Длину некоторой цепочки ω обычно обозначают $|\omega|$

Пустая цепочка (англ. *empty string*) — цепочка, не содержащая ни одного символа. Эту цепочку, обозначаемую ε , можно рассматривать как цепочку в любом алфавите.

Степень алфавита: Если Σ — некоторый алфавит, то можно выразить множество всех цепочек определенной длины, состоящих из символов данного алфавита, используя знак степени. Определим Σ^k как множество всех цепочек длины k, состоящих из символов алфавита Σ (над алфавитом Σ).

Множество всех цепочек над алфавитом Σ принято обозначать

$$\Sigma^* = \bigcup_{k=0}^{\infty} \Sigma^k$$

26. Слово / цепочка.

Это конечная последовательность символов некоторого алфавита.

27. Длина цепочки.

Число символов в цепочке (длину некоторой цепочки ω обычно обозначают $|\omega|$).

28. Пустая цепочка.

Цепочка, не содержащая ни одного символа (обозначается за ε).

29. Степень алфавита.

Выражение множества всех цепочек определенной длины, состоящих из символов данного алфавита, используя знак степени (Σ^k — множество всех цепочек длины k, состоящих из символов алфавита Σ (над алфавитом Σ)).

30. Степень языка.

Base:

• Множество всех цепочек над алфавитом Σ принято обозначать $\Sigma^* = \bigcup_{k=0}^\infty \Sigma^k$ • Язык L над алфавитом Σ — некоторое подмножество Σ^* .
• $\{\varepsilon\}$ — язык, содержащий одну лишь пустую цепочку. $L^k = \begin{cases} \{\varepsilon\}, k=0 \\ LL^{k-1}, k>0. \end{cases}$ расшифровка: Пусть L - язык, тогда $L^0 = \{\varepsilon\}$.

Presentation:

Формальные языки: операции над языками

31. Конкатенация цепочек.

Последовательная запись нескольких цепочек. Presentation:

Формальные языки

Конкатенация цепочек

Пусть x и y — цепочки. Тогда xy обозначает их конкатенацию (соединение), т. е. цепочку, в которой последовательно записаны цепочки x и y. Более строго, если x — цепочка из i символов: $x=a_1a_2\dots a_i$,

x — цепочка из i символов: $x=a_1a_2 \dots a_i$, y — цепочка из j символов: $y=b_1b_2 \dots b_j$, то xy — это цепочка длины i+j: $xy=a_1a_2 \dots a_ib_1b_2 \dots b_j$.

Пример:

Пусть x = 01101 и y = 110. Тогда xy = 01101110, а yx = 11001101.

Для любой цепочки ω справедливы равенства $\varepsilon\omega = \omega\varepsilon = \omega$

Таким образом, є является единицей (нейтральным элементом) относительно операции конкантенации, поскольку результат ее конкатенации с любой цепочкой дает ту же самую цепочку.

32. Конкатенация языков.

Язык, состоящий из конкатенаций цепочек данных языков.

Presentation:

Формальные языки

Операции над языками

Пусть L и M — языки. Тогда над ними можно определить следующие операции.

L Ø = L Ø * = ξες [ε]* = {ες

- 1. Теоретико множественные операции:
 - L ∪ M объединение,
 - • $L \cap M$ пересечение,
 - $\bullet L \setminus M$ разность,
 - $ullet ar{L} = \Sigma^* \setminus \hat{L}$ дополнение.

2. Конкатенация:
$$LM = \{\alpha\beta | \alpha \in L, \beta \in M\}$$
.
$$|L \cdot M| \leq |L | M|$$
 3. Степень языка: $L^k = \{ \{ \epsilon \}, k = 0 \}$
$$|L \cdot M| \leq |L | M|$$

$$|L \cdot M| \leq |L \cdot M|$$

$$|L \cdot M|$$

$$|L \cdot M| \leq |L \cdot M|$$

$$|L \cdot M|$$

4. Замыкание Клини (the Kleene star or Kleene operator or Kleene closure):

$$L^* = \bigcup_{i=0}^{\infty} L^i$$
 $L = \{0, 1\}$ $L^* = \{E, 0, 1, 00, 01, 10, 11, 000, \dots, 5\}$

33. Замыкание Клини.

Множество всех строк конечной длины, порождённое элементами множества L.

Если V — множество символов

то V^* — множество всех строк из символов из V с добавлением пустой строки

Звезда Клини [править | править код]

Замыкание Клини множества V есть

$$V^* = \bigcup_{i=0}^{\infty} V^i$$
 .

То есть это множество всех строк конечной длины́, порождённое элементами множества V.

Формальный язык. 34.

Presentation:

Формальные языки

Операции над языками

Пусть L и M — языки. Тогда над ними можно определить следующие операции.

L Ø = L

Ø * = { E }

{ E } * = { E }

- 1. Теоретико множественные операции:
 - \bullet *L* ∪ *M* объединение,
 - $\bullet L \cap M$ пересечение,

 - • $L \setminus M$ разность, • $\bar{L} = \Sigma^* \setminus L$ дополнение.

2. Конкатенация:
$$LM = \{\alpha\beta \mid \alpha \in L, \beta \in M\}$$
.
$$|L \cdot M| \leq |L | |M|$$
 3. Степень языка: $L^k = \begin{cases} \{\varepsilon\}, k = 0 \\ LL^{k-1}, k > 0. \end{cases}$
$$M = \{0, 0\}$$

$$L \cdot M = \{0, 0\}$$

$$M = \{0, 0\}$$

$$M = \{0, 0\}$$

$$M = \{0, 0\}$$

4. Замыкание Клини (the Kleene star or Kleene operator or Kleene closure):

$$L^* = \bigcup_{i=0}^{\infty} L^i \qquad L = \{0,1\} \qquad L^* = \{E,0,1,00,01,10,11,000,...\}$$

Множество регулярных языков. 35.

Регулярные (автоматные) языки

Множество регулярных языков (англ. set of regular languages) REG над алфавитом $\Sigma = \{c_1, c_2, ..., c_k\}$ — множество, которое может быть получено из языков, каждый из которых содержит единственное слово — с; или є, и пустого языка при помощи последовательных применений операций объединения, конкатенации или замыкания Клини и никаких других, то есть:

- •Определим регулярные языки нулевого уровня как $R_0 = ig\{\emptyset, \{\epsilon\}, \{c_1\}, \{c_2\}, ..., \{c_k\}ig\}.$
- ullet Регулярные языки ненулевого уровня определим рекуррентным соотношением: $R_{i+1} = R_i \cup \{L_1 \cup L_2, L_1^* : L_1, L_2 \in R_i\}$.

Регулярные (автоматные) языки

36. Регулярное выражение.

Способ порождения языка над алфавитом.

По словам Пермякова:

— шаблон, сопоставляемый с искомой строкой слева направо. Presentation:

Регулярные выражения

- ullet Для любого i слово c_i является регулярным выражением, задающим язык из одного слова c_i .
- ullet ϵ является регулярным выражением, задающим язык из одной пустой строки, а \emptyset пустой язык
- ullet Если $lpha_1$ и $lpha_2$ являются регулярными выражениями, задающими языки L_1 и L_2 соответственно, то $(lpha_1)|(lpha_2)$ регулярное выражение, задающее L_1 U L_2 .
- Если α_1 и α_2 являются регулярными выражениями, задающими языки L_1 и L_2 соответственно, то $(\alpha_1)(\alpha_2)$ регулярное выражение, задающее L_1L_2 .
- Если $lpha_1$ является регулярным выражением, задающим язык L_1 , то ${lpha_1}^*$ регулярное выражение, задающее ${L_1}^*$.
- Операции указаны в порядке возрастания приоритета, при этом скобки повышают приоритет аналогично арифметическим

Регулярные выражения, входящие в современные языки программирования (в частности, <u>PCRE</u>), имеют больше возможностей, чем то, что называется регулярными выражениями в теории формальных языков; в частности, в них есть нумерованные обратные ссылки^ы. Это позволяет им разбирать строки, описываемые не только регулярными грамматиками, но и более сложными, в частности, <u>контекстно-свободными грамматиками</u>

Акадешические Регулярные выражения муче Regex

Comourne nper comobremo que perqueparx egernos

Lyre Regex

$$\beta$$
 - nycmoe unomectoo

 $\{E'\}$
 $\{E'\}$
 $\{C'\}$
 $\{C'\}$

$$(01)^* = \{ \mathcal{E}_1 01, 0101, 010101...$$

 $01^* = \{ 0, 01, 011, 0111 ...$
 $01^* | 1 = (0(1)^*) | 1 = \{ 0, 1, 01, 011, 0111 ...$

Регулярные выражения, входящие в современные языки программирования (в частности, РСПЕ), имеют больше возможностей, чем го, что называется регулярными выражениями в теории формальных языков, в частности, в них есть нумерованные обратные съпляей. Это поволяет им разбирать строих, описываемые не только регулярными грамматиками, но и более сложными, в частности, контекстно-свободными грамматиками

Пример

(a|bc)* = {8, a, bc, aa, bc bc, abc, bca, aaa, bc bc bc

Пример

Cuoke, cosephiam tempoe tudio equility $0^* \mid (0^* \mid 0^* \mid 0^*)^*$

Это все списание ренуперних едижов

через порочити. Если рассиотрени через шетор распознованиез wiki:

Регуля́рный язык (регуля́рное мно́жество) в теории формальных языков — множество <u>слов,</u> которое распознает некоторый <u>конечный автомат.</u>

37. Регулярный язык.

С нерка:

Регулярные языки: два определения и их эквивалентность	
Определение:	
Множество регулярных языков (англ. set of regular languages) REG над алфавитом $\Sigma=\{c_1,c_2,\ldots,c_k\}$ — множество, которое может быть получе помощи последовательных применений операций объединения, конкатенации или замыжания Клино и никаюх других, то есть. • Определим регулярные языки члуневого уровня как $\operatorname{R}_0=\{\varnothing,\{\varepsilon\},\{c_1\},\{c_2\},\ldots,\{c_k\}\}$ • Регулярные языки нечулевого уровня определим рекуррентным соотношением: $\operatorname{R}_{i+1}=\operatorname{R}_i\cup\{L_1\cup L_2,L_1L_2,L_1^* L_1,L_2\in\operatorname{R}_i\}$ • Тогда $\operatorname{REG}=\bigcup_{i=0}^\infty\operatorname{R}_i$	но из языков, каждый из которых содержит единственное слово — c_4 или $arepsilon$, и пустого языка при
Определение:	
Регулярное выражение (англ. regular expression) над алфавитом $\Sigma = \{c_1, c_2, \dots, c_k\}$ — способ порождения языка над Σ . Определяется рекурсивне $*$ для пюбого i спово c_1 является рекурсивным выражением, задающим язык из одного спова c_2 — нутой язык $*$ $*$ е. является регулярным выражением, задающим язык из одного спова c_2 — нутой язык $*$ $*$ е. является регулярным выражениям, задающими язык 1_1 и 1_2 соответственно, то $(\alpha_1)(\alpha_2)$ — регулярное выражение, задающее $*$ $*$ спи α_1 и α_2 являются регулярными выражениям, задающими язык 1_1 и 1_2 соответственно, то $(\alpha_1)(\alpha_2)$ — регулярное выражение, задающее $*$ $*$ спи α_1 и α_2 являются регулярными выражениям, задающими язык 1_1 и 1_2 соответственно, то $(\alpha_1)(\alpha_2)$ — регулярное выражение, задающее $*$ спи α_1 и α_2 являются регулярными выражениям 1_1 со α_1 — регулярное выражение, задающее $*$ спи α_1 и α_2 задающее $*$ спи α_3 на α_4 и α_4 задающее $*$ спи α_4 на	$L_1 \bigcup L_2$.
Определение:	
Пусть задам апфавит $\Sigma = \{c_1, c_2, \dots, c_k\}$. Множество R будем называть набрееулярным множеством над апфавитом Σ , если: $1 \cdot R_0 \subset R$ гае $R_0 = \{\varnothing, \{\varepsilon\}, \{c_1\}, \{c_2\}, \dots, \{c_k\}\}$. $2 \cdot L_1, L_2 \in R$ $\perp L_1 \cup L_2 \in R$, $L_1 L_2 \in R$, $L_2 \in R$, $L_3 \in R$. $2 \cdot L_3 \cap R = \frac{1}{2} \left\{ \sum_{i=1}^{N} \left\{ \sum_{$	

38. Детерминированный конечный автомат.

• Набор из пяти элементов (Σ , Q, $q_o \in Q$, $F \subseteq Q$, $\delta : Q \times \Sigma \square Q$), где:

 Σ – алфавит.

Q – множество состояний.

 q_0 — начальное (стартовое) состояние (их может быть несколько).

F – множество доступных состояний.

 δ – функция перехода.

39. Недетерминированный конечный автомат.

• Набор из пяти элементов (Σ , Q, q_o \in Q, F \subseteq Q , δ : Q \times Σ \square 2^Q), где:

 Σ – алфавит.

Q – множество состояний.

 q_0 — начальное (стартовое) состояние (их может быть несколько).

F – множество доступных состояний.

 δ – функция перехода.

<u>единственное отличие НКА от ДКА — существование нескольких</u> <u>переходов по одному символу из одного состояния.</u>

40. Язык автомата.

- множество всех допускаемых автоматом слов.
- произвольный язык является автоматным, если существует ДКА, допускающий те и только те слова, которые принадлежат языку.

• множество $L(A) = \{\alpha \exists t \in T : \langle s, \alpha \rangle \vdash ^* \langle t, \epsilon \rangle \}$ называется **языком** автомата.

С нерка:

Presentation:

41. Теорема Клини.

REG = AUT

Классы регулярных и автоматных языков совпадают. иными словами, все, что можно задать с помощью регулярных выражений, можно задать с помощью конечных автоматов и наоборот.

42. Событие (достоверное, невозможное, случайное). Примеры событий: случайное (Я выиграю в лотерее), невозможное (У собаки выросли крылья), достоверное (После среды наступит четверг).

43. Несовместные события.

События, возникающие в одно и то же время в определённых обстоятельствах, называют совместными, а не возникающие вместе — несовместными. Пример: такие события, как «начался полдень» и «посыпался град», будут совместными, а события «началось утро» и «началась ночь» — несовместными.

44. Полная группа событий.

Полная группа — группа, которая изоморфна своей группе автоморфизмов. Полная группа — так называют делимые неабелевы группы. Полная группа событий — в теории вероятностей система случайных событий такая, что непременно произойдет одно и только одно из них.

45. Вероятность события.

Вероятность события A — отношение количества благоприятствующих событию A исходов к общему количеству всех равновозможных исходов. m — количество исходов испытания, в которых наступает событие A, n — количество всех равновозможных исходов.

46. Закон сложения двух совместных событий A и B. Правило суммы для совместных событий: чтобы найти вероятность объединения двух совместных событий, нужно из суммы их вероятностей вычесть вероятность их пересечения. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

47. Условная вероятность события A относительно события B.

P(A|B) — вероятность события A при условии, что событие B произошло. Если события A и B несовместны, то они не имеют общих точек и, следовательно, событие AB является невозможным: P(AB) = O(A|B) = P(A).

48. Независимые события А и В.

События A и B являются независимыми, если вероятность наступления одного из них не изменяется при наступлении другого. Событие A является зависимым от события B, если наступление события B изменяет вероятность наступления события A. Пример: бросают игральный кубик.

49. Геометрическое определение вероятности.

Вероятность наступления некоторого события A в испытании равна P(A) = g/G, где G — геометрическая мера, выражающая общее число всех равновозможных исходов данного испытания, а g — мера, выражающая количество благоприятствующих событию A исходов.

50. Формула полной вероятности.

позволяет вычислить вероятность интересующего события через вероятности его произойти при выполнении гипотез с заданной вероятностью. Формула полной вероятности требуется, когда необходимо узнать вероятность совершения некоторого события, если его совершение зависит от нескольких условий. Например, можно узнать вероятность принятия законопроекта, зная, с какой вероятностью его примет каждая партия. Ещё формула применяется в задачах о нахождении среднего качества продукции, выпускаемой цехом.

51. Формула Байеса.

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

- Р(А) изначальная вероятность предложения А.
- Р(В) абсолютная вероятность наступления события В.
- P(A|B) вероятность предложения A при наступлении события B.
- P(B|A) вероятность наступления события B, если предложение A истинно.

52. Функция распределения.

Функцией распределения случайной величины ξ называется функция F(x), выражающая вероятность того, что ξ примет значение, меньшее чем x: $F(x) = P(\xi < x)$.

53. Распределение Бернулли (какие в нем есть события, формула вероятности события).

Описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех".

С нерка:

Распределение Бернулли

Определение:

Распределение Бернулли (англ. Bernoulli distribution) — описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех".

Случайная величина ξ с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью p успеха : ни одного успеха или один успех. Функция распределения ξ имеет вид

$$F_{\xi}(x) = P(\xi < x) \begin{cases} 0, & x \leq 0 \\ 1 - p, & 0 < x \leq 1 \\ 1, & x > 1 \end{cases}$$

54. Биномиальное распределение (какие в нем есть события, формула вероятности события).

С нерка:

Биномиальное распределение

Определение

Случайная величина ξ имеет **биномиальное распределение** (англ. binomial distribution) с параметрами $n \in \mathbb{N}$ и $p \in (0,1)$ и пишут: $\xi \in \mathbb{B}_{n,p}$ если ξ принимает значения $k=0,1,\ldots,n$ с вероятностями $P(\xi=k)=\binom{n}{k}\cdot p^k\cdot (1-p)^{n-k}$.

Случайная величина с таким распределением имеет смысл числа успехов в n испытаниях схемы Бернулли с вероятностью успеха p.

Таблица распределения ξ имеет вид

ξ	0	1	 k	
P	$(1-p)^n$	$n \cdot p \cdot (1-p)^{n-1}$	 $\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$	 p^n

Формула Бернулли

Обозначим через v_n число успехов, случившихся в n испытаниях схемы Бернулли. Эта случайная величина может принимать целые значения от 0 до n в зависимости от результатов испытаний. Например, если все n испытаний завершились неудачей, то величина v_n равна нулю.