Distribució	PMF/PDF/CDF	Esperança	Variança
Bernoulli (p) $p \in (0,1)$	P(X = 1) = p $P(X = 0) = q = 1 - p$	p	pq
$B(n,p)$ $n \in \mathbb{N}, p \in (0,1)$	$P(X = k) = \binom{n}{k} p^k q^{n-k}$	np	npq
$ Geom(p) \\ p \in (0,1) $	$P(X=k) = q^k p$	$\frac{q}{p}$	$\frac{q}{p^2}$
$Poiss(\lambda)$ $\lambda \in (0, +\infty)$	$P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$	λ	λ
$U(a,b) \\ -\infty < a < b < +\infty$	$f(x) = \frac{1}{b-a} \cdot \mathbb{1}_{(a,b)}(x)$ $F(x) = \frac{x-a}{b-a} \cdot \mathbb{1}_{(a,b)}(x)$	$m_1 = \frac{a+b}{2}$ $m_n = \frac{\sum_{i=0}^{n} a^i b^{n-i}}{n+1}$	$\frac{(b-a)^2}{12}$
$\mathcal{N}(\mu, \sigma^2)$ $\mu \in \mathbb{R}, \ \sigma \in (0, +\infty)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{(2\sigma^2)}}$	$m_1 = \mu$ $m_2 = \mu^2 + \sigma^2$	σ^2
$\exp(\lambda)$ $\lambda \in (0, +\infty)$	$f(x) = \lambda e^{-\lambda x} \cdot \mathbb{1}_{(0,+\infty)}(x)$ $F(x) = (1 - e^{-\lambda x}) \cdot \mathbb{1}_{(0,+\infty)}(x)$	$m_1 = \frac{1}{\lambda}$ $m_n = \frac{n!}{\lambda^n}$	$\frac{1}{\lambda^2}$
$Gamma(\alpha, \beta)$ $\alpha, \beta \in (0, +\infty)$	$f(x) = \frac{\alpha^{\beta}}{\Gamma(\beta)} \cdot x^{\beta - 1} \cdot e^{-\alpha x} \cdot \mathbb{1}_{(0, +\infty)}(x)$	$\frac{\beta}{\alpha}$	$\frac{\beta}{\alpha^2}$
$\mathcal{LN}(\mu, \sigma^2)$ $\mu \in \mathbb{R}, \ \sigma \in (0, +\infty)$	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\left(\frac{\log x - \mu}{2\sigma^2}\right)^2}$	$\theta = e^{\mu + \frac{\sigma^2}{2}}$	$\theta^2(e^{\sigma^2}-1)$
χ_n^2 $n \in \mathbb{N}$	$f(x) = \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}} \cdot \mathbb{1}_{(0, +\infty)}(x)$	n	2n
t_n $n \in \mathbb{N} \text{ (g. llibertat)}$	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$	0 if $n > 1$	$\frac{n}{n-2}$ if $n > 2$

- 1 (Exponencial-Gamma). $\text{Exp}(\alpha) \sim \text{Gamma}(\alpha, 1)$. $(Y_i)_i \text{ VAIID}, Y_i \sim \text{Exp}(\alpha)$, aleshores $\sum_i Y_i = Z \sim$ Gamma (α, n) . $\Gamma(p) = \int_0^\infty x^{p-1} e^{-x} dx$ (en general), $\Gamma(n) = (n-1)!$ (en els enters).
- **2 (Normal).** Si $X \sim \mathcal{N}(0,1)$, aleshores per a $n \geq 1$: $\mathbb{E}(X^{2n}) = \frac{(2n)!}{2^n \cdot n!}$ i $\mathbb{E}(X^{2n-1}) = 0$. Evidentment, $\mathcal{N}(0,1)$ és un cas particular de $N(\mu,\sigma^2)$ prenent els valors $\mu = 0$ i $\sigma^2 = 1$. Si $X \sim \mathcal{N}(0,1)$, aleshores $Y = \mu + \sigma X \sim N(\mu, \sigma^2)$. Si $Y \sim N(\mu, \sigma^2)$, aleshores $X = \frac{Y - \mu}{\sigma} \sim \mathcal{N}(0, 1)$.
- 3 (χ^2 de Pearson). $\chi^2_{(n)} \sim \text{Gamma}(\frac{1}{2}, \frac{n}{2})$. Si X_1, \dots, X_n són VAIID amb llei $\mathcal{N}(0,1)$, aleshores $X_i^2 \sim$ $\chi^2_{(1)} \sim \text{Gamma}(\frac{1}{2}, \frac{1}{2})$. Consegüentment, $X_1^2 + \dots + X_n^2 \sim G(\frac{1}{2}, \frac{n}{2}) \sim \chi^2_{(n)}$. Siguin X_1, \dots, X_n, n valid amb llei $N(0,\sigma^2)$, aleshores $\frac{X_1^2+\cdots+X_n^2}{\sigma^2}\sim\chi_{(n)}^2$.
- **4 (t-student).** Siguin $X \sim \mathcal{N}(0,1)$ i $Y \sim \chi^2_{(n)}$ dues variables aleatòries independents, aleshores $\frac{\sqrt{n}X}{\sqrt{Y}} \sim t_{(n)}$. Siguin $Y, X_1, \ldots, X_n, n+1$ VAIID amb llei $N(0, \sigma^2)$, aleshores $\frac{\sqrt{nY}}{\sqrt{X_1^2 + \cdots + X_n^2}} \sim t_{(n)}$. Tenim que $\mathbb{E}(X) = 0$ per a n>1 i $Var(X)=\frac{n}{n-2}, n>2$. Asimptòticament es comporta com una $\mathcal{N}(0,1)$.
- **5.** $P(X < a) = F(a^{-}), P(a \le X \le b) = F(b) F(a^{-}), P(a < X \le b) = F(b) F(a), P(a \le X < b) = F(a^{-})$ $F(b^{-}) - F(a^{-}), P(a < X < b) = F(b^{-}) - F(a), P(X = a) = F(a) - F(a^{-}) \ge 0.$
- **6 (Canvi de paràmetre).** Y té densitat $f_Y(y) = f_X(g^{-1}(y)) \cdot |(g^{-1})'(y)| = f_X(g^{-1}(y)) \frac{1}{|g'(g^{-1}(y))|}$
- 7. Siguin X, Y v.a. simples i $a, b \in \mathbb{R}$. Aleshores: $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$, $\mathbb{E}(a + bX) = a + b\mathbb{E}(X)$, i si X, Y > 0 i X < Y, es té $\mathbb{E}(X) < \mathbb{E}(Y)$. Si X, Y independents amb esperança finita, $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ A més, si tenim X_1, \ldots, X_n VAIID, $\mathbb{E}(X_i) = \mathbb{E}(X_i), \forall i, j$.

- 8. Siguin X_1, \ldots, X_n VAIID amb llei B(p) L'objectiu de l'estimació puntual és trobar esti-(Bernoulli), aleshores $X_1 + \cdots + X_n \sim B(n, p)$ (Binomial). Siguin $X \sim B(n_1, p)$ i $Y \sim B(n_2, p)$ independents; aleshores, $X + Y \sim B(n_1 + n_2, p)$.
- 9. Sempre es verificarà $\mathbb{E}[\bar{X}] = \mu$ i $Var(\bar{X}) =$ $\frac{\sigma^2}{\sigma}$, sense importar la distribució.
- moments de segon ordre finits. Aleshores, Var(X + Y) = Var(X) + Var(Y). Interessant: $\operatorname{Var}(X_{(n)}) = \frac{\operatorname{Var}(X_1)}{n} \operatorname{i} \operatorname{Var}(a+bX) = b^2 \operatorname{Var}(X).$ $\operatorname{Cov}(X,Y) = E[(X-E(X))(Y-E(Y))].$
- 11. Sigui X una variable aleatòria amb funció de distribució contínua. Aleshores, Y = $F(X) \sim U(0,1)$. Si $X \sim U(0,1)$, aleshores $Z = -\ln X \sim \text{Exp}(1)$. Siguin X $Gamma(\alpha, \beta_1)$ i $Y \sim Gamma(\alpha, \beta_2)$ dues variables aleatòries independents. Aleshores, X + $Y \sim \text{Gamma}(\alpha, \beta_1 + \beta_2).$
- 12 (Indicatrius). $\mathbb{1}_{A \cap B} = \min(\mathbb{1}_A, \mathbb{1}_B) = \mathbb{1}_A$ · 25 (Estimador eficient). Direm que T és efi- $\mathbb{1}_B$. $\mathbb{1}_{A \cup B} = \max(\mathbb{1}_A, \mathbb{1}_B) = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cap B}$. $\mathbb{E}(\mathbb{1}_A) = P(A), \text{Var}(\mathbb{1}_A) = P(A)(1 - P(A)).$
- 13 (Txebitxev). Sigui X v.a. no negativa i $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ creixent tal que $\mathbb{E}(f(X)) < \infty$. Per a tot nombre real positiu a tal que f(a) > 0, es compleix que $P(X \ge a) \le \frac{\mathbb{E}(f(X))}{f(a)}$.
- 14 (Jensen). Sigui X v.a. amb esperança finita i g convexa tal que $E(g(X)) < \infty$. Aleshores, $g(E(X)) \leq E(g(X)).$
- 15 (Model regular). Un model estadístic no és regular si, per exemple, $\{x \in \Omega \mid L(x,\theta) > 0\}$ 0} $\subset \Omega$ depèn de θ . En el cas unidimensional. és exponencial regular si:

$$L(x,\theta) = \exp\left\{C(\theta)\Phi(x) + D(\theta) + \Psi(x)\right\}. (1)$$

- 16 (Neyman-Fisher). Sigui T un estadístic. T és suficient si existeixen $\psi(T(x), \theta)$ i h(x) tals que $\mathcal{L}(x,\theta) = \psi \cdot h$.
- (1) és un estadístic complet i suficient. A més, ments: Òbviament $k \ge d$, però pot ocórrer que $\mathbb{E}_{\theta}(\Phi(x)) = -\frac{D'(\theta)}{C'(\theta)}$
- 18 (Informació de Fisher). En un model estadístic paramètric regular (R), la informació de Fisher és la funció del paràmetre següent: $I_F(\theta) := \mathbb{E}_{\theta} (|\partial_{\theta} \ln L(x,\theta)|^2) = \mathbb{E}_{\theta} (\operatorname{sc}(\theta)^2) i$ $\mathbb{E}_{\theta}(\partial_{\theta} \ln L(x,\theta)) = 0$. Assumint $(R), I_F(\theta) =$ $-\mathbb{E}_{\theta}\left(\partial_{\theta}^{2}\ln L(x,\theta)\right).$

Considerem un model estadístic paramètric $(\Omega, \mathscr{A}, \{P_{\theta}, \theta \in \Theta\}), \Theta \subseteq \mathbb{R}^d$, on el paràmetre θ és desconegut, i n observacions x_1, \ldots, x_n d'un vector aleatori $X = (X_1, \dots, X_n) : \tilde{\Omega} \longrightarrow \Omega$ I la matriu:

- 19 (Uniformement millor). Fixada una funció de pèrdua W i dos estadístics T i S amb funció de risc finita per a qualsevol $\theta \in \Theta$, direm que T és uniformement millor que S si $R_T(\theta) < R_S(\theta), \forall \theta \in \Theta.$
- **20** ($\dot{\mathbf{O}}$ ptim). Fixada una funció de pèrdua W i una classe & d'estadístics que tenen tots funció de risc finita per a qualsevol $\theta \in \Theta$, direm que T és òptim dins la classe $\mathscr E$ si

$$R_T(\theta) \leq R_S(\theta), \quad \forall \theta \in \Theta, \forall S \in \mathscr{E}$$

madors òptims.

- 21 (Sense biaix). Direm que un estadístic integrable T és un estimador sense biaix de $q(\theta)$ si $\mathbb{E}_{\theta}(T) = q(\theta)$, per a tot $\theta \in \Theta$.
- 22 (Biaix). El biaix d'un estimador integrable 10. Siguin X, Y dues v.a. independents amb T respecte a $g(\theta)$ és la funció $b_T(\theta) = \mathbb{E}_{\theta}(T)$ –
 - **23.** La mitjana mostral $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ és un estimador sense biaix de $\mathbb{E}_{\theta}(X_1)$. La variància mostral $T = \frac{1}{n} \sum_{i} (X_i - \bar{X}_n)$ és un estimador esbiaixat de $Var_{\theta}(X_1)$.
 - 24 (Cota de Cramer-Rao). Suposem que tenim un model estadístic paramètric regular $g(\Theta) \longrightarrow \mathbb{R}^k$ s'anomena funció pivotant per a com el d'abans. Sigui $T \in \mathscr{E}_F$ i considerem $g(\theta)$ si compleix: la funció $g(\theta) = \mathbb{E}_{\theta}(T)$. Aleshores, $\operatorname{Var}_{\theta}(T) \geq$
 - cient si per a tot $\theta \in \Theta$ es compleix que $\operatorname{Var}_{\theta}(T) = \frac{g'(\theta)^2}{I_F(\theta)}$. Tot estimador $T \in \mathscr{E}_F$ eficient no té biaix i tot estimador eficient en un model (R) és UMV.
 - 26 (Eficient). Sigui un model estadístic paramètric regular i $T \in \mathcal{E}_F$ un estadístic. Són equivalents:
 - 1. T és eficient respecte a $g(\theta)$.
 - 2. Existeix una funció $\lambda(\theta)$ tal que per a tot $\theta \in \Theta$, $\lambda(\theta) \cdot \partial_{\theta} \ln L(x,\theta) = T(x)$ $g(\theta) \xrightarrow{x \to \infty} P(\theta).$
 - 27 (Mètode dels moments). La llei dels grans nombres ens diu que els moments empírics convergeixen cap als moments poblacionals:

$$\hat{m}_j := \frac{1}{n} \sum_{i=1}^n x_i^j \xrightarrow[n \to \infty]{} m_j = \mathbb{E}_\theta \left(x_1^j \right).$$

17. En un model exponencial regular, la Φ de Propietats asimptòtiques del mètode de mok > d. Aquests estimadors són fortament con-

> **28** (EMV). Un estadístic $\hat{\theta} = \hat{\theta}(x)$ a valors en Θ s'anomena estimador de màxima versemblança del paràmetre θ si maximitza la funció de versemblança $L(x,\theta)$. Un EMV $\hat{\theta}(x)$ haurà de complir les anomenades equacions de versem-

$$\partial_{\theta_i} \ln L(x,\theta)|_{\theta=\hat{\theta}(x)} = 0, \quad i = 1,\dots,d.$$

$$\left(-\partial_{\theta_i,\theta_j}^2 \ln L(x,\theta)|_{\theta=\hat{\theta}(x)}\right)_{i,j=1,\dots,d}$$

haurà de ser definida positiva. Amb aquestes condicions obtenim $\hat{\theta}(x)$ és un màxim local; a la pràctica, però ens faltarà confirmar que és

29 (Invariància funcional). Si $\hat{\theta}$ és un EMV de θ en el model $(\Omega, \mathcal{A}, \{P_{\theta} \mid \theta \in \Theta\})$, aleshores $q(\hat{\theta})$ (bijectiva) és un EMV de $\bar{\theta} = q(\theta)$. Si existeix un estimador eficient, serà l'obtingut pel mètode de la màxima versemblança.

30 (Consistent). Direm que una successió d'estimadors $(T_n)_n$ és consistent/fortament con-

$$T_n \xrightarrow[\text{qs}]{P_{\theta}} g(\theta), \forall \theta \in \Theta.$$
$$T_n \xrightarrow[\text{qs}]{\text{qs}} g(\theta), \forall \theta \in \Theta.$$

- 31 (Regió de confiança). Una regió de confiança per a $g(\theta)$ al nivell de confiança α compleix que $P_{\theta}(x \in \Omega, g(\theta) \in S(x)) \geq \alpha$ (permet d'interpretar α com la probabilitat que S(x) inclogui el veritable valor des paràmetre).
- 32 (Funció pivotant). Una funció $\Pi: \Omega \times$
- 1. Per a tot $\theta \in \Theta$, $\pi(\cdot, q(\theta))$ és mesurable.
- 2. La llei de $\pi(\cdot, g(\theta))$ no depèn de θ .
- variables incorrelacionades amb $E(X^2) < C$.

$$\frac{S_n - E(S_n)}{n} \xrightarrow{n \to \infty} 0.$$

- **34.** Sigui $(X_n)_n$ una successió de VAIID. Suposem que $E(|X_1|) < \infty$. Aleshores, $\lim_n \frac{S_n}{n} =$ $E(X_1)$, Qs. Recíprocament, si $E(|X_1|) = \infty$. Aleshores, $\limsup_{n} \frac{S_n}{n} = \infty$, QS.
- 35 (del límit central). Sigui (Z_n) una successió de VAIID i de quadrat integrable. m i σ^2 són la mitjana i la variància de la distribució comuna. Suposem $\sigma^2 > 0$. Si $S_n = Z_1 + \cdots + Z_n$, es compleix que:

$$\mathcal{L} - \lim_{n \to \infty} \frac{S_n - nm}{\sigma_{\bullet} \sqrt{n}} = Y,$$

on Y és una v.a. amb distribució $\mathcal{N}(0,1)$.

- 36 (Teorema de Fisher). Sigui (x_1, \ldots, x_n) una mostra aleatòria simple de mida n d'una normal N(0,1). Aleshores, la mitjana i la variància mostral són independents i, a més $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i \sim N\left(0, \frac{1}{n}\right) \text{ i } ns_n^2 = \sum_{i=1}^n (x_i - \bar{x}_n)^2 \sim \chi_{(n-1)}^2.$
- **37.** Sigui (x_1,\ldots,x_n) una mostra aleatòria simple de mida n d'una normal $N(\mu, \sigma^2)$ Aleshores, la mitjana i la variància mostral són independents i $\bar{x}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right), \frac{ns_n^2}{\sigma^2} \sim \chi_{(n-1)}^2$ i $\sqrt{n-1} \cdot \frac{\bar{x}_n - \mu}{s} \sim t_{(n-1)}$.
- **38.** Sigui (x_1, \ldots, x_{n_1}) una mostra aleatòria simple de mida n_1 d'una normal $N(\mu_1, \sigma_2^2)$ i (y_1, \ldots, y_{n_2}) una mostra aleatòria simple de mida n_2 d'una normal $N(\mu_2, \sigma_2^2)$ independent de l'anterior. Aleshores, les dues variàncies mostrals $s_{n_1}^2$ i $s_{n_2}^2$ associades a cada mostra són independents i:

$$\frac{n_1 s_{n_1}^2 (n_2 - 1) \sigma_2^2}{n_2 s_{n_2}^2 (n_1 - 1) \sigma_1^2} \sim F_{n_1 - 1, n_2 - 1}.$$

39 (Estadístic suficient). Direm que un estadístic $T:\Omega \longrightarrow \mathbb{R}^n$ és suficient si la llei 46 (IC per a la diferència de mitjanes amb la mateixa variància desconeguda). del vector X condicionada per l'estadístic T no depèn de θ .

40 (Estadístic complet). Direm que un estadístic S és complet si per a tota funció $f: g(\Theta) \longrightarrow \mathbb{R}$ mesurable, tal que f(S) és integrable, es compleix:

$$\mathbb{E}_{\theta}(f(S)) = 0, \forall \theta \in \Theta \implies f(S) = 0, \forall \theta \in \Theta, \text{ ae.}$$
 (2)

41 (IC per a la mitjana amb variància coneguda). En un exemple ja hem obtingut:

$$S(x) = \left[\bar{x}_n - \eta_\alpha \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}_n + \eta_\alpha \cdot \frac{\sigma}{\sqrt{n}}\right],$$

amb $\nu([-\eta_{\alpha}, \eta_{\alpha}]) = \alpha$, on ν és la llei N(0, 1).

42 (IC per a la mitjana amb variància desconeguda). Considerem una mostra aleatòria simple de mida n d'una variable aleatòria amb llei normal $N(\mu, \sigma^2)$ amb paràmetres μ, σ desconeguts, de la qual volem donar un interval de confiança per a la mitjana μ . Tenim la funció pivotant següent:

$$\nu \sim \pi(x,\mu) = \sqrt{n-1} \cdot \frac{\bar{x}_n - \mu}{s_n} \sim t_{(n-1)}.$$

Com que una t de Student és simètrica al voltant del zero, escollim un $\eta_{\alpha} > 0$ tal que $\nu([-\eta_{\alpha},\eta_{\alpha}]) = \alpha$. Aleshores:

$$P_{\theta}\left(x \in \mathbb{R}^n, -\nu_{\alpha} \le \sqrt{n-1} \cdot \frac{\bar{x}_n - \mu}{s_n} \le \nu_{\alpha}\right) = \alpha.$$

Per tant, l'interval de confiança per μ és:

$$S(x) = \left[\bar{x}_n - \eta_\alpha \cdot \frac{s_n}{\sqrt{n-1}}, \bar{x}_n + \eta_\alpha \cdot \frac{s_n}{\sqrt{n-1}}\right].$$

43 (IC per a la variància). Considerem la funció pivotant

$$\nu \sim \pi(x, \sigma^2) = \frac{ns_n^2}{\sigma^2} \sim \chi_{(n-1)}^2.$$

Com que una χ^2 de Pearson no és simètrica, escollim dos reals positius $\zeta_{\alpha} < \eta_{\alpha}$ tals que:

$$P_{\theta}\left(x \in \mathbb{R}^n \mid \frac{ns_n^2}{\sigma^2} \le \zeta_{\alpha}\right) = P_{\theta}\left(x \in \mathbb{R}^n \mid \eta_{\alpha} \le \frac{ns_n^2}{\sigma^2}\right) = \frac{1-\alpha}{2}.$$

Així l'interval de confiança per a la variància σ^2 és $S(x) = \left[\frac{ns_n^2}{n}, \frac{ns_n^2}{n}\right]$

44 (Radi de confiança per a la mitjana i la variància). Tenim que:

$$\nu \sim \pi(x, \theta) = \left(\sqrt{n} \frac{\bar{x}_n - \mu}{\sigma}, \frac{ns_n^2}{\sigma^2}\right)$$

és una funció pivotant amb lleis normal N(0,1) i χ_{n-1}^2 , respectivament i, a més, independents. S'han de trobar $\zeta_{\alpha}, \eta_{\alpha}, \kappa_{\alpha} > 0$ tals que $\eta_{\alpha} < \kappa_{\alpha}$ i:

$$P_{\theta}\left(x \in \mathbb{R}^n \mid -\zeta_{\alpha} \leq \sqrt{n} \frac{\bar{x}_n - \mu}{\sigma} \leq \zeta_{\alpha}, \ \eta_{\alpha} \leq \frac{ns_n^2}{\sigma^2} \leq \kappa_{\alpha}\right) = \alpha.$$

Existeixen moltes possibilitats per determinar aquests tres valors, per exemple, denotan $\nu_1 = N(0,1)$ i $\nu_2 \sim \chi^2_{n-1}$, els podem escollir de manera que es compleixin:

$$\nu_1([-\zeta_\alpha,\zeta_\alpha]) = \sqrt{\alpha} \ \mathrm{i} \ \nu_2([0,\eta_\alpha]) = \nu_2([\kappa_\alpha,\infty)) = \frac{1-\sqrt{\alpha}}{2}.$$

Aleshores, la regió de confiança per (μ, σ^2) serà:

$$S(x) = \left[\bar{x}_n - \zeta_\alpha \frac{\sigma}{\sqrt{n}}, \bar{x}_n + \zeta_\alpha \frac{\sigma}{\sqrt{n}} \right] \times \left[\frac{ns_n^2}{\kappa_\alpha}, \frac{ns_n^2}{\eta_\alpha} \right].$$

45 (Raó de variàncies). Un resultat previ ens dona una funció pivotant:

$$\nu \sim \pi \left(x, y, \frac{\sigma_1^2}{\sigma_2^2} \right) = \frac{n_1 s_{n_1}^2 (n_2 - 1) \sigma_2^2}{n_2 s_{n_2}^2 (n_1 - 1) \sigma_1^2} = \frac{\tilde{s}_{n_1}^2 \sigma_2^2}{\tilde{s}_{n_2}^2 \sigma_1^2} \sim F_{n_1 - 1, n_2 - 1}.$$

Com que una F de Fisher no és simètrica, per trobar l'interval de confiança buscarem dos nombres reals positius ζ_{α} , η_{α} tals que:

$$\nu([0,\zeta_{\alpha}]) = \frac{1-\alpha}{2} i \nu([\eta_{\alpha},\infty)) = \frac{1-\alpha}{2}.$$

Per tant, l'interval per a la raó és $S(x) = \begin{bmatrix} \frac{\tilde{s}_{n_1}^2}{\eta_{\alpha}\tilde{s}_{n_2}^2}, \frac{\tilde{s}_{n_1}^2}{\zeta_{\alpha}\tilde{s}_{n_2}^2} \end{bmatrix}$

Per diferents resultats, per exemple, perquè

$$\bar{X}_n - \bar{Y}_n \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1}, \frac{\sigma_2^2}{n_2}\right),$$

(2) tenim que

$$\frac{\bar{x}_{n_1} - \bar{y}_{n_2} - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$$

$$\frac{n_1 s_{n_1}^2}{\sigma^2} + \frac{n_2 s_{n_2}^2}{\sigma^2} = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_{n_1})^2}{\sigma^2} + \frac{\sum_{i=1}^{n_2} (y_i - \bar{y}_{n_2})^2}{\sigma^2} \sim \chi_{(n_1 + n_2 - 2)}^2$$

són independents. Aleshores, per les propietats de la t-Student la funció següent és

$$\nu \sim \pi \left(x, y, \mu_1 - \mu_2 \right)$$

$$= \frac{\bar{x}_{n_1} - \bar{y}_{n_2} - (\mu_1 - \mu_2)}{\sqrt{n_1 s_{n_1}^2 + n_2 s_{n_2}^2}} \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}} \sim t_{(n_1 + n_2 - 2)}.$$

Podem escollir un real positiu ζ_{α} tal que $\nu([-\zeta_{\alpha},\zeta_{\alpha}])=\alpha$ i, aleshores, obtenim l'interval

$$S(x) = \left[\bar{x}_{n_1} - \bar{y}_{n_2} - \zeta_{\alpha} \sqrt{\frac{(n_1 + n_2) \left(n_1 s_{n_1}^2 + n_2 s_{n_2}^2 \right)}{n_1 n_2 \left(n_1 + n_2 - 2 \right)}}, \\ \bar{x}_{n_1} - \bar{y}_{n_2} + \zeta_{\alpha} \sqrt{\frac{\left(n_1 + n_2 \right) \left(n_1 s_{n_1}^2 + n_2 s_{n_2}^2 \right)}{n_1 n_2 \left(n_1 + n_2 - 2 \right)}} \right]}$$

47 (IC per a la diferència de mitjanes amb diferents variàncies desconegudes). En aquest cas no tenim una resolució exacta del problema i el que es fa és donar solucions aproximades. Nosaltres donarem alguns breus comentaris extrets del llibre de Vélez i García. Si la mida de les mostres no és gaire petita $(n_1, n_2 > 15)$ es substitueix σ_1^2 i σ_2^2 per les variàncies mostrals corregides respectives, obtenint que

$$\frac{\bar{x}_{n_1} - \bar{y}_{n_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{\tilde{s}_{n_1}^2}{n_1} + \frac{\tilde{s}_{n_2}^2}{n_2}}}$$

es comportarà aproximadament com una normal N(0,1). En canvi, en el cas que la mida d'una mostra sigui petita, s'empra que la quantitat anterior es comporta aproximadament com una $t_{(n)}$ on n és l'enter més pròxim a:

$$\frac{\left(\frac{\bar{s}_{n_1}^2}{n_1} + \frac{\bar{s}_{n_2}^2}{n_2}\right)^2}{\frac{1}{n_1+1}\left(\frac{\bar{s}_{n_1}}{n_1}\right)^2 + \frac{1}{n_2+1}\left(\frac{\bar{s}_{n_2}}{n_2}\right)^2}.$$

48 (Intervals de confiança asimptòtics). Suposem una successió d'estadístics T_n amb moment de segon ordre finit $(Var_{\theta}(T_n) \ll \infty)$, complint que $\mathbb{E}_{\theta}(T_n) = g(\theta)$ i amb el comportament asimptòtic següent: $\frac{T_n - g(\theta)}{\sqrt{\operatorname{Var}_{\theta}(T_n)}} \xrightarrow[n \to \infty]{\mathscr{L}} N(0,1)$. Si la mida de la mostra n és suficientment gran, podrem donar un interval de confiança de $q(\theta)$ utilitzant l'aproximació d'aquest quocient per la distribució normal. És a dir:

$$P_{\theta}\left(-\eta_{\alpha} \leq \frac{T_n - g(\theta)}{\sqrt{\operatorname{Var}_{\theta}(T_n)}} \leq \eta_{\alpha}\right) = \alpha.$$

Pel que:

$$T_n - \eta_\alpha \sqrt{\operatorname{Var}_{\theta}(T_n)} \le g(\theta) \le T_n + \eta_\alpha \sqrt{\operatorname{Var}_{\theta}(T_n)}.$$

- **49.** Sigui $(x_1, x_2, ..., x_n)$ vaiid amb densitat $f_{\beta}(x) = \frac{1}{4\beta 1} \mathbb{1}_{[1,4\beta]}$ amb $\beta > \frac{1}{4}$.
 - 1. És un model regular?
 - 2. Troba un estadístic suficient i complet.
 - 3. Construeix un estimador sense biaix a partir de l'EMV de β , $\hat{\beta}$.
 - Construeix un estimador sense biaix a partir de l'estimador pels moments de β , $\widetilde{\beta}$.

1. Tenim que $L(x,\beta) = \frac{1}{(4\beta-1)^n} \mathbb{1}_{\begin{bmatrix} \underline{x}(n) \\ \vdots \end{bmatrix},\infty]}(\beta)$. Veiem que el model no és regular perquè L=0 si $\beta<\frac{x(n)}{\beta}$ per tant no es satisfà la primera condició de regularitat.

2. Per Neyman-Fisher, $T(x) = x_{(n)}$ és suficient.

- 3. L'estimador demanat ve donat per $\hat{\beta} = \frac{x_{(n)}}{4}$ i tenim que $E_{\beta}(\hat{\beta}) = E_{\beta}(\frac{X_{(n)}}{4}) =$ $\frac{n}{4(4\beta-1)^n}\int_1^{4\beta}(z-1)^{n-1}z\,dz=\frac{1+4n\beta}{4(n+1)}\text{ i si diem }\widehat{\beta}^*=\beta\text{ i }\widehat{\beta}=E_\beta(\widehat{\beta})\text{ i a\"illem tenim}$ un estimador sense biaix $\hat{\beta}^* = \frac{4(n+1)\hat{\beta}^{-1}}{4n}$
- 4. Ara utilitzem $E(X_1) = \int_1^{4\beta} \frac{x}{4\beta 1} dx = \frac{4\beta + 1}{2}$ i ens queda $\widetilde{\beta} = \frac{2\overline{x} 1}{4}$.
- 5. El UMV es $\hat{\beta}^*$ ja que no té biaix i es funció de l'estadístic suficient i complet

50. Sigui n=10, hem obtingut $x_{(1)}=-1, x_{(10)}=2$. Les observacions son vaiid amb densitat $f(x,\theta) = \frac{3}{2\theta} \mathbb{1}_{\left[-\frac{\theta}{\alpha}, \frac{\theta}{\alpha}\right]}$.

- 1. Troba la llei de |X|.
- 2. Troba una funció pivotant que depengui de $max(|X_1|, \ldots, |X_n|)$.
- 3. Troba un interval de confiança de 0.95 basat en EMV.

Proof. 1. Si Y = |X| i $y \in [0, \frac{\theta}{3}]$. La funció de distribució per $y \in [0, \frac{\theta}{3}]$ és $P(|Y| \le y) = P(|X| \le y) = P(-y \le X \le y) = \frac{3}{2\theta} \int_{-y}^{y} dx = \frac{3y}{\theta}$. Si y < 0aleshores val 0, si $y > \frac{\theta}{2}$ aleshores és 1. Com es contínua i derivable aleshores $f_Y(y) = \frac{3}{\theta} \mathbb{1}_{[0, \frac{\theta}{3}]}(y)$. Això és $Y \sim U(0, \frac{\theta}{3})$.

- 2. Gràcies a l'apartat a tenim $\frac{|X|}{a/3} \sim U(0,1)$ i aleshores $\frac{3}{4} max(|X_1|,\ldots,|X_n|) \sim$ $max(U_1, U_2, \dots, U_n)$ on $U_i \sim u(0, 1)$ independents.
- 3. Tenim $L(x,\theta) = (\frac{3}{2\theta})^n \prod_{i=1}^n \mathbb{1}_{\left[-\frac{\theta}{3},\frac{\theta}{3}\right]}(x_i)$. Però $-\frac{\theta}{3} \leqslant x_i \leqslant \frac{\theta}{3}$ implica que $|x_i| \leqslant \frac{\theta}{3}$ per tant si escrivim $|x|_{(n)} = max(|x_1|, \dots, |x_n|)$ tenim $L(x, \theta) = (\frac{3}{2\theta})^n \mathbb{1}_{3|x|_{(n)}, \infty}(\theta)$. D'aquesta manera el EMV és $\widehat{\theta}(x) = 3|x|_{(n)}$. Considerant les variables $Y_i = \frac{3|X_i|}{\theta}$ tenim $Y_i \sim U(0,1)$ i aleshores $\frac{\tilde{\theta}}{\theta} = \frac{3}{\theta}|X|_{(n)} = max(\frac{3}{\theta}|X|_{(1)},\ldots,\frac{3}{\theta}|X|_{(n)}) =$ $max(Y_1,\ldots,Y_n)$ te una llei independent de θ . Aleshores $\frac{\theta}{\theta}$ té densitat donada per $f_{\tilde{\theta}}(u) = nu^{n-1}\mathbb{1}_{(0,1)}(u)$. Podem buscar k tal que $P(k \leqslant \frac{\theta}{\theta} \leqslant 1) = 0.95$. Això es $1 - k^n = 0.95$ i per tant $k = \sqrt[n]{0.05}$. En el nostre cas, amb n = 10 és k=0.74. Ara tenim $0.74 \leqslant \frac{\theta}{\theta} \leqslant 1$, i per tant, $\theta \leqslant \theta \leqslant \frac{\theta}{0.74}$. Tenint en compte que $\widehat{\theta(x)}=3|x|_{(n)}$ i que $x_{(1)}=-1,x_{(10)}=2$ tenim que $\widehat{\theta(x)}=3\cdot 2=6$ i ens queda l'interval $6 \le \theta \le \frac{6}{0.74} \approx 8.1$.

51. Suposant que el contingut de nicotina dels cigarrets de determinada marca segueix una distribució $N(30, \sigma^2)$. Agafem a l'atzar deu cigarrets d'aquesta marca i obtenim:

$$\frac{1}{10} \sum_{i=1}^{n} (X_i - 30)^2 = 12.4.$$

Trobeu un interval de confiança per a σ amb un nivell de confiança de 0.9.

Proof. Tenim una mostra d'una variable aleatòria X amb distribució normal de mitjana $\mu=30$ i σ^2 desconeguda. Tenim que $\frac{\sum_{i=1}^n (X_i-\mu)^2}{\sigma^2}\sim \chi^2_{(n)}$. Està clar que $\frac{X-30}{\sigma}$ té una distribució normal estàndard. Per tant:

$$T := \sum_{i=1}^{n} \left(\frac{X_i - 30}{\sigma} \right)^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - 30)^2$$

és un estadístic amb la distribució $\chi^2_{(n)}$ de Pearson, amb n graus de llibertat. Observem que T és una funció pivotant perquè la seva llei no depèn del paràmetre σ^2 . En aquest cas, assumim n=10 i, aleshores, podem calcular a,b tals que $P(a \le T \le b) = P(a \le T \le b)$ $\chi^2_{(10)} \le b) = 0.9.$

$$P(\chi^2_{(10)} \le a) = 0.05 \implies a = 3.94$$

 $P(\chi^2_{(10)} \le b) = 0.95 \implies b = 18.30$

Volem arribar a demostrar que l'interval observat és $\left[\frac{124}{1830}, \frac{124}{394}\right] = [6.78, 31.47]$. Efecti-

$$a \le \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2} \le b \iff \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{b} \le \sigma^2 \le \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{a}.$$

En el nostre cas tenim que $\sum_{i=1}^{n} (X_i - 30)^2 = 12.4 \cdot 10 = 124$, pel que l'interval de

$$I_{0.9}(\sigma^2) = \left[\frac{\sum_{i=1}^n (X_i - 30)^2}{b}, \frac{\sum_{i=1}^n (X_i - 30)^2}{a}\right] = \left[\frac{124}{18.30}, \frac{124}{3.94}\right] = [6.78, 31.47].$$

Si volem un interval per a σ tenim $I_{0.9}(\sigma) = [\sqrt{6.78}, \sqrt{31.47}] = [2.60, 5.61].$