Лекция 1 **Алгоритмы**

Характеристики алгоритма. Сложность алгоритмов. Асимптотики.

Алгоритм (неформально) — это

Набор четко сформулированных правил, в сущности, рецепт для решения некоторой вычислительной задачи.

Примеры:

- отсортировать множество чисел;
- по имеющейся дорожной карте вычислить кратчайший путь от некоторой исходной точки до места назначения;
- выполнить несколько задач до наступления установленных сроков, при этом необходимо упорядочить эти задачи так, чтобы завершить их все вовремя

Зачем изучать алгоритмы?

Важность для всех отраслей computer science

Понимание основ алгоритмизации и организации структур данных необходимо для серьезной практической работы в любой сфере информатики.

- Алгоритмы – двигатель технологических инноваций.

Закон Мура: каждый год компьютеры за счет увеличения плотности транзисторов становятся быстрее в 1,6 раз. Во многих областях прирост производительности за счет улучшения алгоритмов превышает прирост производительности за счет увеличения скорости процессов.

Алгоритмы позволяют по новому взглянуть на области за пределами computer science и IT (квантовые вычисления, колебания цен на экономических рынках и т.д.)

- Алгоритмы гимнастика для мозга.
- Разработка алгоритмов доставляет удовольствие.

Характеристики алгоритма

• Входные данные

Выходные данные

(конечные последовательности)

(конечные последовательности)

- Алгоритм описывается конечной последовательностью символов (словом)
- Алгоритм применим ко всевозможным входам
- Пошаговое выполнение (детерминированная последовательность конфигураций, оканчивающаяся завершающей конфигурацией ответом)
- Для некоторых входов выход не определен (не приводит к завершающей конфигурации.

Вычислительные ресурсы

- По вычислению можно посчитать разные задействованные ресурсы
- Экономия на одном из ресурсов может обернуться дополнительными расходами другого
- 3 главных ресурса:
 - ▶ Время (все алгоритмы выполняются пошагово. Количество элементарных шагов время работы)
 - ▶Память (пространство для промежуточных расчетов. Количество занятых единиц используемой памяти)
 - ▶Случайность. Для некоторых задач известны рандомизированные алгоритмы. Ресурс число используемых случайных битов (могут стоить дорого)

Анализ временной сложности работы алгоритма (пример). *MergeSort* - сортировка слиянием

MergeSort (псевдокод)

MERGESORT

Вход: массив A из n разных целых чисел.

Выход: массив с теми же самыми целыми числами, отсортированными от наименьшего до наибольшего.

// базовые случаи проигнорированы

C := рекурсивно отсортировать первую половину A

D := рекурсивно отсортировать вторую половину A

вернуть Merge (C, D)

Подпрограмма Merge (слияние)

MERGE

Вход: отсортированные массивы C и D (длиной n/2 каждый).

Выход: отсортированный массив В (длиной n).

Упрощающее допущение: *n* — четное.

Анализ алгоритма Merge

```
1 i := 1
2 j := 1
3 for k := 1 to n do
4    if C[i] < D[j] then
5     B[k] := C[i]
6     i := i + 1
7    else
8    B[k] := D[j]
9    j := j + 1</pre>
```

Пусть Merge работает с двумя отсортированными массивами длиной l/2 каждый.

Строки 1, 2 \rightarrow 2 операции

Цикл for l раз. Внутри цикла:

Строка 4 - 1 сравнение, строка 5(8) - 1 присваивание \rightarrow (2 операции)

Строка 6 (9) -1 приращение $\rightarrow 1$ операция

k увеличивается на $1 \rightarrow 1$ операция

Итого 4l+2 операций. При $l\geq 1$ $4l+2\leq 6l$. Возьмем 6l в качестве допустимой верхней границы для Merge.

Теорема (предел времени исполнения алгоритма MergeSort).

Для каждого входного массива длиной $n \ge 1$ алгоритм $\frac{1}{2}$ ме*rgeSort* выполняет не более $\frac{1}{2}$ $\frac{1}{2}$

Сравнение времени работы двух алгоритмов сортировки (асимптотический анализ)

Пусть есть другой алгоритм сортировки, который выполняет не более $\frac{n^2}{2}$ операций. $6n \cdot log_2 n + 6n \lessgtr \frac{n^2}{2}$?

MergeSort работает быстрее при достаточно больших размерах исходных данных.

О-символика

Пусть даны функции f(n) и g(n), значениями которых являются положительные действительные числа. Говорят, что f = O(g)

(f растет не быстрее, чем g), если существуют такая константа c>0 и $n_0 \in \mathbb{N}$, что $f(n) \le c \cdot g(n) \ \forall n > n_0$. (Или $\frac{f(n)}{g(n)} \le c$).

(Говорят $f \leq g$ с точностью до константы).

Если
$$f_1(n) = \frac{n^2}{2}$$
, $f_2(n) = 6n \cdot log_2 n + 6n$, то $f_2(n) = O(f_1(n))$
$$\frac{f_2(n)}{f_1(n)} = \frac{6n \cdot log_2 n + 6n}{\frac{n^2}{2}} = \frac{12}{n} log_2 n + \frac{12}{n} \le 24$$

Наоборот, $\frac{f_1(n)}{f_2(n)} > \frac{n}{12}$ - неограниченно

Еще пример:

Сравнение квадратичной и линейной функций

$$f_1(n) = n^2, f_2(n) = 2n + 20$$

$$\frac{f_2(n)}{f_1(n)} = \frac{2n+20}{n^2} = \frac{2}{n} + \frac{20}{n^2} \le 22$$
 ограниченно

$$f_2(n) = O(f_1(n))$$
 , но $f_1(n) \neq O(f_2(n))$, т.к. $rac{n^2}{2n+20} \geq rac{n^2}{22n} \geq rac{n}{22}$ неограниченно $(f_1(n) = \Omega(f_2(n)))$

Пусть есть алгоритм

$$f_3(n) = n + 1$$
 $f_2(n) = O(f_3(n))$ и $f_3(n) = O(f_2(n))$ т.к.
 $\frac{f_2(n)}{f_3(n)} = \frac{2n+20}{n+1} \le 20$ и $\frac{f_3(n)}{f_2(n)} = \frac{n+1}{2n+20} \le 1$

 f_2 и f_3 имеют одинаковый порядок роста \Rightarrow $f_2 = \Theta(f_3)$ Можно так: если f = O(g) и $f = \Omega(g)$ то $f = \Theta(g)$

О-большое для полиномов

Утверждение. Пусть

$$T(n) = a_k n^k + \dots a_1 n + a_0,$$

где $k \ge 0$ — это неотрицательное целое число и a_i — вещественные числа (положительные или отрицательные). Тогда $T(n) = O(n^k)$.

Доказательство.

$$T(n) \leq |a_k|n^k + \ldots + |a_1|n + |a_0|$$
.

При
$$n \ge 1$$
 $n^k \ge n^i$ для $i = 1, 2, ..., k$

$$T(n) \le |a_k| n^k + \ldots + |a_1| n^k + |a_0| n^k = \underbrace{(|a_k| + \ldots + |a_1| + |a_0|)}_{rc} \times n^k.$$

Это неравенство справедливо для каждого $n \ge n_0 = 1$, то есть то, что мы и хотели доказать. 4. m. δ .

О-большое для экспоненты

неверно!

Утверждение. Пусть

$$T(n)=2^{n+10},$$

то тогда $T(n) = O(2^n)$.

Доказательство.

$$T(n) = 2^{n+10} = 2^{10} \times 2^n = 1024 \times 2^n$$
.

Возьмем c=1024 ч.т.д Утверждение. Пусть $T(n) = 2^{10n}$,

тогда T(n) не является $O(2^n)$.

Доказательство. Допустим обратное: $T(n) = O(2^n)$. Тогда $\exists \ c > 0$ и $n_0 \ge 1$: $2^{\log n} \le c \times 2^n$ для $n > n_0$. Следовательно, $2^{9n} \le c$

Благодаря О-символике

- Можно пренебречь константами и слагаемыми более низкого порядка. (Для *MergeSort* временная сложность *T(n)=O(nlogn)*)
- n^{α} растет быстрее n^{β} при $\alpha > \beta$
- Экспонента растет быстрее любой степенной функции $(a^n$ быстрее $n^\alpha)$
- Полином быстрее логарифма (даже \sqrt{n} быстрее logn)

$$O(n^2+n)=O(n)$$
 $O(n+logn)=O(n)$ $O(5\cdot 2^n+10\cdot n^{100})=O(2^n)$ $O(n^2+B)=O(n^2+B)$ $O(1)=$ постоянная работа, не зависит от размера исходных данных

Сложность последовательных и вложенных циклов

```
FOR i:=1 TO n DO

print A[i]

FOR j:=1 TO m DO

print B[j]
```

Последовательные действия - сложение

O(n+m)

```
FOR i:=1 TO n DO

FOR j:=1 TO m DO

print (A[i], B[j])
```

Для каждой из *n* итераций внешнего цикла выполняется *m* вложенного цикла – умножение

 $O(n \cdot m)$

Основные принципы анализа алгоритмов

Необходимо уравновесить точность с непротиворечивостью. Для этого принимаются некоторые допущения, позволяющие создать оценки, чтобы увидеть достаточно точную картину того, какие алгоритмы работают, как правило, быстрее других.

- 1. Принцип №1: анализ наихудшего случая (подходит для универсальных подпрограмм, предназначенных для работы в различных областях применения)
- 2. Принцип №2: анализ значимых деталей (не стоит слишком беспокоиться о малых коэффициентах или членах низших порядков). Принцип обеспечивает
- математическую простоту
- то, что постоянные коэффициенты зависят от реализации
- нет риска потерять в точности прогноза о результате.
- 3. Принцип №3: асимптотический анализ (смещение в сторону больших входных данных)