Свойства непрерывных функций на промежутках

Опр: 1. Множество $I \subset \mathbb{R}$ называется промежутком, если из того, что $x_1, x_2 \in I$, $x_1 \leq x_2 \Rightarrow [x_1, x_2] \subset I$.

Примеры: \mathbb{R} , \varnothing , точка, отрезок, полуинтервал - промежутки.

Утв. 1. Если I - промежуток, то I - это интервал или отрезок или полуинтервал (допускаются бесконечные концы).

 \square Пусть $I \neq \emptyset$ и ограничен, по принципу полноты Вейрштрасса $\exists B = \sup I, A = \inf I$. Очевидно, что $I \subset [A,B]$. Покажем, что интервал $(A,B) \subset I$.

Если $(A, B) = \emptyset$, то A = B и множество I - просто одна точка = $\{A\}$.

Пусть $x \in (A, B) \Rightarrow A < x < B \Rightarrow x > A \Rightarrow x$ - не является нижней гранью $I \Rightarrow \exists x_1 \in I : x_1 < x$. Аналогично, $x < B \Rightarrow x$ - не является верхней гранью $I \Rightarrow \exists x_2 \in I : x < x_2$.

Получаем, что $x \in [x_1, x_2] \subset I$ - по определению промежутка $\Rightarrow x \in I$. Таким образом $\forall x \in (A, B) \Rightarrow x \in I \Rightarrow (A, B) \subset I$.

Упр. 1. Разобрать случай, когда I не является ограниченным множеством.

 \square Пусть $I \neq \emptyset$ и не ограничен снизу и сверху. Очевидно, что $I \subset \mathbb{R}$. $\forall x \in \mathbb{R}, \exists x_1, x_2 \in I : x \in [x_1, x_2] \Rightarrow I \subset \mathbb{R} \Rightarrow I = \mathbb{R}$.

Пусть $I \neq \emptyset$ и не ограничен сверху, но ограничен снизу \Rightarrow по принципу полноты Вейрштрасса $\exists A = \inf I$. Очевидно, что $I \subset [A, +\infty)$. Покажем, что полуинтервал $(A, +\infty) \subset I$.

Пусть $x \in (A, +\infty) \Rightarrow A < x \Rightarrow x > A \Rightarrow x$ - не является нижней гранью $I \Rightarrow \exists x_1 \in I \colon x_1 < x$. Так как I не ограничен сверху, то $\exists x_2 \in I \colon x < x_2$.

Получаем, что $x \in [x_1, x_2] \subset I$ - по определению промежутка $\Rightarrow x \in I$. Таким образом $\forall x \in (A, B) \Rightarrow x \in I \Rightarrow (A, B) \subset I$.

Следствие 1. (Из теоремы о промежуточном значении) Если $I \neq \emptyset$ - промежуток и $f \colon I \to \mathbb{R}$ - непрерывная функция, то $f(I) = \{ y \colon \exists x \in I, f(x) = y \}$ (образ) является промежутком.

□ Если I - это точка, то утверждение очевидно. Пусть в I более одной точки.

Надо проверить: $\forall y_1, y_2 \in f(I), y_1 \leq y_2$ верно, что $[y_1, y_2] \subset f(I)$.

Возьмем $x_1 \in I$: $f(x_1) = y_1, x_2 \in I$: $f(x_2) = y_2$. Пусть $x_1 \le x_2$.

Если $x_1 = x_2 \Rightarrow y_1 = y_2$ и все доказано.

Если $x_1 < x_2 \Rightarrow [x_1, x_2] \subset I$. Поскольку f - непрерывна на $[x_1, x_2] \Rightarrow$ по теореме о промежуточном значении $\forall y \in [y_1, y_2], \exists \, x \in [x_1, x_2] \colon y = f(x) \Rightarrow [y_1, y_2] \subset f(I)$.

Rm: 1. Если $f: \mathbb{R} \to \mathbb{R}$ всякий промежуток отображает в промежуток, то это не означает, что f непрерываная функция.

Пример:

$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

Теорема 1. Если f - монотонна на промежутке $I \neq \emptyset$ и f(I) - промежуток, то f - непрерывна на I.

Если функция монотонна (пусть она не убывает), тогда она имеет пределы слева, справа и какое-то значение в точке x_0 .

Рис. 1: Монотонная функция не убывает на І, имеет пределы слева и справа.

Если есть разрыв в этой точке, то хотя бы с одной стороны будет ненулевое расстояние между значением в точке и односторонним пределом. Пусть предел слева = A отличается от значения в x_0 : $A \neq f(x_0)$. Тогда все точки левее x_0 будут меньше предела слева. Все точки правее x_0 , больше или равны $f(x_0)$.

Рис. 2: Предел слева $\neq f(x_0)$. Интервал $(A, f(x_0)) \not\subset f(I)$.

В этом случае, интервала $(A, f(x_0))$ точно нету в f(I). Возьмем точку x_1 левее x_0 , получим, что $[f(x_1), f(x_0)] \subset f(I)$, так как по условию образ это промежуток.

Рис. 3: $x_1 < x_0$, $[f(x_1), f(x_0)] \subset f(I)$.

Таким образом, у монотонной функции разрывы выбивают в области значения дырки, что запрещено тем, что образ это промежуток.

 \square Пусть x_0 - внутренняя точка I (если x_0 - граничная точка, то будет аналогично). Пусть f - не убывает, тогда

$$\exists \lim_{x \to x_0 -} f(x) = \sup_{x < x_0} f = A$$

$$\exists \lim_{x \to x_0 +} f(x) = \inf_{x > x_0} f = B$$

Если x_0 - точка разрыва f, то хотя бы одно из неравенств $A < f(x_0) \lor f(x_0) < B$ - верно, иначе это была бы точка непрерывности. Пусть $A < f(x_0)$, тогда $\forall x < x_0, f(x) \le A, \forall x \ge x_0, f(x) \ge f(x_0)$ и $(A, f(x_0)) \cap f(I) = \emptyset$.

С другой стороны, для всякого $x_1 < x_0$, $[f(x_1), f(x_0)] \subset f(I)$ и $(A, f(x_0)) \subset [f(x_1), f(x_0)]$, так как $f(x_1) \leq A \Rightarrow$ получили противоречие.

Упр. 2. Доказать в случае, если x_0 - граничная точка.

Теорема 2. (Об обратной функции) Пусть $I \neq \emptyset$ промежуток и $f \colon I \to \mathbb{R}$ - непрерывная, строго монотонная функция. Тогда

- 1) $f(I) = J = \{ y : \exists x \in I, f(x) = y \}$ непустой промежуток;
- 2) $f: I \to J$ биекция;
- 3) $f^{-1} \colon J \to I$ строго монотонна и непрерывна;

- 1) При непрерывном отображении, образ промежутка это промежуток;
- 2) Из строгой монотонности следует, что функция инъективна. Отображение на свой образ всегда сюръективно. Поэтому функция f биекция;
- 3) Если f^{-1} строго монотонна на промежутке J, то f^{-1} непрерывна на нем, так как образ промежутка промежуток;

Поэтому достаточно проверить, что функция f^{-1} - строго монотонна. Возьмем $y_1 < y_2 \Rightarrow$ сравним $f^{-1}(y_1)$ и $f^{-1}(y_2)$. Пусть для определенности f - возрастает $\Rightarrow x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2)$.

 $x_1 \neq x_2$, иначе $y_1 = f(x_1) = f(x_2) = y_2$. Пусть $x_1 > x_2 \Rightarrow y_1 = f(x_1) > f(x_2) = y_2$, но по условию $y_1 < y_2 \Rightarrow$ противоречие $\Rightarrow x_1 < x_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y_2)$.

 \mathbf{Rm} : 2. Направление монотонности у f^{-1} будет такое же, как и у f (по доказательству теоремы).

Пример: $y = x^{2n+1}, n \in \mathbb{N};$

f всюду определена на \mathbb{R} . f - непрерывная функция \Rightarrow её область значений это промежуток, он не ограничен сверху и снизу: $m^{2n+1} \xrightarrow[m \to \infty]{} +\infty$, $(-m)^{2n+1} \xrightarrow[m \to \infty]{} -\infty \Rightarrow$ область значений \mathbb{R} . Эта функция возрастает \Rightarrow по теореме об обратной функции $\exists f^{-1} \colon \mathbb{R} \to \mathbb{R}$ - непрерывна и возрастает.

$$f^{-1}(y) = y^{\frac{1}{2n+1}} = \sqrt[2n+1]{y}$$

Пример: $y = x^{2n}, n \in \mathbb{N};$

f всюду определена на \mathbb{R} . f - непрерывная функция \Rightarrow её область значений это промежуток, он не ограничен сверху: $m^{2n} \xrightarrow[m \to \infty]{} +\infty \Rightarrow$ область значений $[0,+\infty)$. Эта функция имеет два промежутка монотонности. Выберем $[0,+\infty)$, на нем она возрастает и отображает его на $[0,+\infty) \Rightarrow$ по теореме об обратной функции $\exists f^{-1} \colon [0,+\infty) \to [0,+\infty)$ - непрерывна и возрастает.

$$f^{-1}(y) = y^{\frac{1}{2n}} = \sqrt[2n]{y}$$

Rm: 3. Аналогично строятся другие обратные функции: берется промежуток, где функция непрерывна и строго монотонна и применяется теорема об обратной функции.

Построение функции a^x

Пусть a > 1. В школе:

1.
$$a^n = \underbrace{a \cdot \ldots \cdot a}_n$$
;

2.
$$a^0 = 1$$
;

3.
$$a^{-n} = \frac{1}{a^n}$$
;

4.
$$a^{\frac{p}{q}} = \left(a^{\frac{1}{q}}\right)^p;$$

Таким образом, возникает функция $y = a^x, x \in \mathbb{Q}$. У нее есть следующие свойства:

- 1. $a^0 = 1$;
- 2. $a^{x+y} = a^x a^y$;
- 3. $x < y \Rightarrow a^x < a^y$ (строгая монотонность);
- 4. $a^n \to +\infty$, $a^{-n} \to 0$ (доказывается так, например: $a^n = (1+a-1)^n \ge 1 + n(a-1)$);

Как определить a^x для $x \notin \mathbb{Q}$?

<u>Идея</u>: возьмем $r_n \in \mathbb{Q}$: $r_n \to x$, $a^x = \lim_{n \to \infty} a^{r_n}$. Будут ли эти числа сходится? Почему они будут сходится к одному и тому же? $r_n \to r \in \mathbb{Q} \Rightarrow a^r = \lim_{n \to \infty} a^{r_n}$?

Утв. 2. Предположим, что f определена на $\mathbb{Q} \cap [a,b]$ и удовлетворяет условию:

$$|f(x) - f(y)| \le C|x - y|, \, \forall x, y \in \mathbb{Q} \cap [a, b]$$

Тогда $\exists !\, \tilde{f}$ - непрерывная функция на $[a,b]\colon f=\tilde{f}$ на $\mathbb{Q}\cap [a,b].$

 \square Пусть $r_n \to x, r_n \in \mathbb{Q}$, положим, что $\tilde{f}(x) = \lim_{n \to \infty} f(r_n)$. Проверим, что этот предел существует, не зависит от выбора r_n и совпадает со значением функции f, если приближаемся к рациональной точке.

Существование: Возьмем r_n, r_m , по условию $|f(r_n) - f(r_m)| \le C|r_n - r_m|$, r_n - сходится \Rightarrow последовательность фундаментальна \Rightarrow выполняется условие Коши $\Rightarrow \forall \varepsilon > 0, \exists N : \forall n, m > N \Rightarrow |r_n - r_m| < \varepsilon \Rightarrow |f(r_n) - f(r_m)| < C\varepsilon$, то есть $f(r_n)$ - фундаментальна и значит $\exists \lim_{n \to \infty} f(r_n)$.

Независимость от выбора r_n : Пусть $r_n \to x \land s_n \to x \Rightarrow |f(r_n) - f(s_n)| \le C|r_n - s_n| \to 0 \Rightarrow \lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} f(s_n)$.

Совпадение в рациональных точках: Если $x \in \mathbb{Q} \Rightarrow r_n \equiv x \Rightarrow \lim_{n \to \infty} f(r_n) = f(x)$.

Следовательно, такое определение $\tilde{f}(x) = \lim_{n \to \infty} f(r_n)$ - корректно и $\tilde{f} = f$ на \mathbb{Q} .

Возьмем x,y и возьмем $r_n \to x, \, s_n \to y$. Знаем, что $|f(r_n) - f(s_n)| \le C|r_n - s_n| \Rightarrow |f(r_n) - f(s_n)| \to |\tilde{f}(x) - \tilde{f}(y)|, \, C|r_n - s_n| \to C|x-y| \Rightarrow |\tilde{f}(x) - \tilde{f}(y)| \le C|x-y| \Rightarrow \tilde{f}$ - непрерывна.

Единственность: Пусть есть две \tilde{f}_1 , \tilde{f}_2 - непрерывные функции: $\tilde{f}_1 = f = \tilde{f}_2$ на $\mathbb{Q} \Rightarrow \tilde{f}_1(x) = f = \tilde{f}_2(x)$, $\forall x$ по непрерывности: $r_n \in Q$, $r_n \to x$, $\tilde{f}_1(r_n) \to \tilde{f}_1(x)$, $\tilde{f}_2(r_n) \to \tilde{f}_2(x)$, но $\tilde{f}_1(r_n) = \tilde{f}_2(r_n) \Rightarrow$ равны их пределы $\tilde{f}_1(x) = \tilde{f}_2(x)$.

Утв. 3. $\forall [-N, N], \exists C(N) : |a^x - a^y| \le C(N)|x - y|, \forall x, y \in \mathbb{Q} \cap [-N, N].$

- $1) \ 1 < a^{\frac{1}{n}} = (1+a-1)^{\frac{1}{n}} \le 1 + \frac{a-1}{n} \text{ (неравенство Бернулли)} \Rightarrow a^{\frac{1}{n}} 1 \le \frac{a-1}{n}.$ Пусть $0 < x \le 1, \ x \in \mathbb{Q} \Rightarrow \frac{1}{n+1} < x \le \frac{1}{n} \Rightarrow a^x 1 \le a^{\frac{1}{n}} 1 \le \frac{a-1}{n}$ $\frac{a-1}{n} = (a-1) \cdot \frac{n+1}{n} \cdot \frac{1}{n+1} \le 2(a-1)x, \ \forall x \in (0,1] \cap \mathbb{Q} \Rightarrow a^x 1 \le 2(a-1)x;$
- 2) $\forall x,y,\in [-N,N]\cap \mathbb{Q}$. Если $x=y\Rightarrow$ очевидно: $0\leq 0$. Пусть $x>y\Rightarrow |a^x-a^y|=a^y(a^{x-y}-1)\leq a^N(a^{x-y}-1)$, так как функция монотонная. Если $0< x-y\leq 1\Rightarrow |a^x-a^y|\leq a^N2(a-1)(x-y)$. Если $1< x-y\Rightarrow |a^x-a^y|\leq a^{3N}(x-y)$, так как $x,y\in [-N,N]\Rightarrow \max\{x-y\}=N-(-N)=2N$. Таким образом $C(N)=\max\{a^N2(a-1),a^{3N}\}$;