Proof Systems for Retracts in Simply Typed Lambda Calculus

Colin Stirling cps@inf.ed.ac.uk

LFCS School of Informatics University of Edinburgh

ICALP, Riga, 12th July 2013

▶ types $\sigma ::= b \mid \sigma \rightarrow \sigma \quad b \in B$ base types

- ▶ types $\sigma := b \mid \sigma \rightarrow \sigma \quad b \in B$ base types
 - ▶ If $\sigma \notin B$ then has form $\sigma_1 \to \ldots \to \sigma_n \to a$

- ▶ types $\sigma := b \mid \sigma \rightarrow \sigma \quad b \in B$ base types
 - ▶ If $\sigma \notin B$ then has form $\sigma_1 \to \ldots \to \sigma_n \to a$
- terms (typed)
 - ▶ Variables x have a unique type (Church style) x^{σ}

- ▶ types $\sigma := b \mid \sigma \to \sigma \quad b \in B$ base types
 - ▶ If $\sigma \notin B$ then has form $\sigma_1 \to \ldots \to \sigma_n \to a$
- terms (typed)
 - Variables x have a unique type (Church style) x^{σ}
 - if x^{σ} then $x : \sigma$
 - if $M : \sigma$ and $x : \rho$ then $\lambda x.M : \rho \rightarrow \sigma$
 - if $M: \rho \rightarrow \sigma$ and $N: \rho$ then $(MN): \sigma$

- ▶ types $\sigma := b \mid \sigma \to \sigma \quad b \in B$ base types
 - ▶ If $\sigma \notin B$ then has form $\sigma_1 \to \ldots \to \sigma_n \to a$
- terms (typed)
 - Variables x have a unique type (Church style) x^{σ}
 - if x^{σ} then $x : \sigma$
 - if $M : \sigma$ and $x : \rho$ then $\lambda x.M : \rho \rightarrow \sigma$
 - if $M: \rho \rightarrow \sigma$ and $N: \rho$ then $(MN): \sigma$
- ightharpoonup closed $M: \sigma$ no free variables
- ▶ M, M': σ are α -equivalent renamings of each other

```
(\beta) (\lambda x.M)N \to_{\beta} M\{N/x\} \{\cdot/\cdot\} Substitution
(\eta) \lambda x.(Mx) \to_{\eta} M x not free in M
```

(
$$\beta$$
) $(\lambda x.M)N \to_{\beta} M\{N/x\}$ $\{\cdot/\cdot\}$ Substitution
(η) $\lambda x.(Mx) \to_{\eta} M$ x not free in M

- ▶ Facts Strong normalisation and confluence (of \rightarrow_{β} , \rightarrow_{η} , $\rightarrow_{\beta\eta}$)
- ▶ M in β -normal form if no N such that $M \rightarrow_{\beta} N$

(
$$\beta$$
) $(\lambda x.M)N \to_{\beta} M\{N/x\}$ $\{\cdot/\cdot\}$ Substitution
(η) $\lambda x.(Mx) \to_{\eta} M$ x not free in M

- ► Facts Strong normalisation and confluence (of \rightarrow_{β} , \rightarrow_{η} , $\rightarrow_{\beta\eta}$)
- ▶ M in β -normal form if no N such that $M \rightarrow_{\beta} N$
- ▶ Equivalence: $M =_{\beta\eta} M'$ if there are N, N'

$$M \longrightarrow_{\beta\eta}^* N$$
 $M' \longrightarrow_{\beta\eta}^* N'$

(
$$\beta$$
) $(\lambda x.M)N \to_{\beta} M\{N/x\}$ $\{\cdot/\cdot\}$ Substitution
(η) $\lambda x.(Mx) \to_{\eta} M$ x not free in M

- ► Facts Strong normalisation and confluence (of \rightarrow_{β} , \rightarrow_{η} , $\rightarrow_{\beta\eta}$)
- ▶ M in β -normal form if no N such that $M \rightarrow_{\beta} N$
- ▶ Equivalence: $M =_{\beta\eta} M'$ if there are N, N'

$$M \rightarrow^*_{\beta\eta} N$$
 $M' \rightarrow^*_{\beta\eta} N'$

▶ β -equivalence: $M =_{\beta} M'$ similar; \rightarrow_{β}^* replaces $\rightarrow_{\beta\eta}^*$

ho is a retract of au, if there are terms C:
ho o au and D: au o
ho such that $D(C(x^
ho)) =_{eta \eta} x$

 ρ is a retract of τ , if there are terms $C: \rho \to \tau$ and $D: \tau \to \rho$ such that $D(C(x^{\rho})) =_{\beta\eta} x$

DECISION PROBLEM: given ρ, τ , is ρ a retract of τ ?

▶ Bruce and Longo [STOC 85] solve problem for $=_{\beta}$ by providing a simple proof system. Much harder for $=_{\beta\eta}$

 ρ is a retract of τ , if there are terms $C: \rho \to \tau$ and $D: \tau \to \rho$ such that $D(C(x^{\rho})) =_{\beta\eta} x$

- ▶ Bruce and Longo [STOC 85] solve problem for $=_{\beta}$ by providing a simple proof system. Much harder for $=_{\beta\eta}$
- ▶ De Liguro, Piperno and Statman [LICS 92] solve affine case for $=_{\beta\eta}$ when B is a singleton by providing a proof system
- ▶ Generalised by Regnier and Urzyczyn [2002] to arbitrary B: proof system for affine case provides NP decision procedure

 ρ is a retract of τ , if there are terms $C: \rho \to \tau$ and $D: \tau \to \rho$ such that $D(C(x^{\rho})) =_{\beta\eta} x$

- ▶ Bruce and Longo [STOC 85] solve problem for $=_{\beta}$ by providing a simple proof system. Much harder for $=_{\beta\eta}$
- ▶ De Liguro, Piperno and Statman [LICS 92] solve affine case for $=_{\beta\eta}$ when B is a singleton by providing a proof system
- ► Generalised by Regnier and Urzyczyn [2002] to arbitrary *B*: proof system for affine case provides NP decision procedure
- ▶ Padovani [TLCA 01] shows decidability for general case when *B* is a singleton (no complexity bound)

 ρ is a retract of τ , if there are terms $C: \rho \to \tau$ and $D: \tau \to \rho$ such that $D(C(x^{\rho})) =_{\beta\eta} x$

- ▶ Bruce and Longo [STOC 85] solve problem for $=_{\beta}$ by providing a simple proof system. Much harder for $=_{\beta\eta}$
- ▶ De Liguro, Piperno and Statman [LICS 92] solve affine case for $=_{\beta\eta}$ when B is a singleton by providing a proof system
- ▶ Generalised by Regnier and Urzyczyn [2002] to arbitrary B: proof system for affine case provides NP decision procedure
- ► Padovani [TLCA 01] shows decidability for general case when B is a singleton (no complexity bound)
- Decidability of general case follows from decidability of higher-order matching (Stirling [ICALP 06, LMCS 09]); non-elementary complexity bound

 ρ is a retract of τ , if there are terms $C: \rho \to \tau$ and $D: \tau \to \rho$ such that $D(C(x^{\rho})) =_{\beta\eta} x$

- ▶ Bruce and Longo [STOC 85] solve problem for $=_{\beta}$ by providing a simple proof system. Much harder for $=_{\beta\eta}$
- ▶ De Liguro, Piperno and Statman [LICS 92] solve affine case for $=_{\beta\eta}$ when B is a singleton by providing a proof system
- ► Generalised by Regnier and Urzyczyn [2002] to arbitrary *B*: proof system for affine case provides NP decision procedure
- ▶ Padovani [TLCA 01] shows decidability for general case when B is a singleton (no complexity bound)
- Decidability of general case follows from decidability of higher-order matching (Stirling [ICALP 06, LMCS 09]); non-elementary complexity bound
- Here: proof system for general case with EXPSPACE upper bound

Let
$$\rho = \rho_1 \to \ldots \to \rho_I \to a$$
 and $\tau = \tau_1 \to \ldots \to \tau_n \to a$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})(C(x^{\rho}))=_{\beta\eta}xz_1\ldots z_l$$

Let
$$\rho = \rho_1 \to \ldots \to \rho_l \to a$$
 and $\tau = \tau_1 \to \ldots \to \tau_n \to a$

▶ Retracts must share "target" type a. So, ρ retract of τ if there is $D: \tau \to \rho$ and $C: \rho \to \tau$ and instantiating variables

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})(C(x^{\rho}))=_{\beta\eta}xz_1\ldots z_l$$

▶ We can restrict $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$ to $\lambda f^{\tau}.f S_1^{\tau_1}...S_n^{\tau_n}$; variables f, z_1, \ldots, z_l occur only once in $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$

Let
$$\rho = \rho_1 \to \ldots \to \rho_l \to a$$
 and $\tau = \tau_1 \to \ldots \to \tau_n \to a$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})(C(x^{\rho}))=_{\beta\eta}xz_1\ldots z_l$$

- ▶ We can restrict $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$ to $\lambda f^{\tau}.f S_1^{\tau_1}...S_n^{\tau_n}$; variables f, z_1, \ldots, z_l occur only once in $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$
- ▶ We can restrict $C(x^{\rho})$ to $\lambda y_1^{\tau_1} \dots y_n^{\tau_n} . H(xT_1^{\rho_1} \dots T_l^{\rho_l})$ where

Let
$$\rho = \rho_1 \to \ldots \to \rho_I \to a$$
 and $\tau = \tau_1 \to \ldots \to \tau_n \to a$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})(C(x^{\rho}))=_{\beta\eta}xz_1\ldots z_l$$

- ▶ We can restrict $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$ to $\lambda f^{\tau}.f S_1^{\tau_1}...S_n^{\tau_n}$; variables f, z_1, \ldots, z_l occur only once in $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$
- ► We can restrict $C(x^{\rho})$ to $\lambda y_1^{\tau_1} \dots y_n^{\tau_n} . H(xT_1^{\rho_1} \dots T_l^{\rho_l})$ where \times occurs only once in $C(x^{\rho})$

Let
$$\rho = \rho_1 \to \ldots \to \rho_I \to a$$
 and $\tau = \tau_1 \to \ldots \to \tau_n \to a$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})(C(x^{\rho}))=_{\beta\eta}xz_1\ldots z_l$$

- ▶ We can restrict $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$ to $\lambda f^{\tau}.f S_1^{\tau_1}...S_n^{\tau_n}$; variables f, z_1, \ldots, z_l occur only once in $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$
- ▶ We can restrict $C(x^{\rho})$ to $\lambda y_1^{\tau_1} \dots y_n^{\tau_n} . H(xT_1^{\rho_1} \dots T_l^{\rho_l})$ where
 - x occurs only once in $C(x^{\rho})$
 - H is ε if ρ and τ are built from a single base type

Let
$$\rho = \rho_1 \to \ldots \to \rho_l \to a$$
 and $\tau = \tau_1 \to \ldots \to \tau_n \to a$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})(C(x^{\rho}))=_{\beta\eta}xz_1\ldots z_l$$

- ▶ We can restrict $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$ to $\lambda f^{\tau}.f S_1^{\tau_1}...S_n^{\tau_n}$; variables f, z_1, \ldots, z_l occur only once in $D(z_1^{\rho_1}, \ldots, z_l^{\rho_l})$
- ▶ We can restrict $C(x^{\rho})$ to $\lambda y_1^{\tau_1} \dots y_n^{\tau_n} . H(xT_1^{\rho_1} \dots T_l^{\rho_l})$ where
 - x occurs only once in $C(x^{\rho})$
 - H is ε if ρ and τ are built from a single base type
 - if $T_i^{\rho_i}$ contains an occurrence of y_j then it is the head variable of $T_i^{\rho_i}$, z_i occurs in $S_j^{\tau_j}$ and $T_i^{\rho_i}$ contains no other occurrences of any y_k , $1 \le k \le n$

$$\rho = \rho_1 \to \ldots \to \rho_l \to a \text{ and } \tau = \tau_1 \to \ldots \to \tau_n \to a$$

▶ Only z_1 occurs in S_1 ; so y_1 occurs in T_1

$$\rho = \rho_1 \to \ldots \to \rho_l \to a \text{ and } \tau = \tau_1 \to \ldots \to \tau_n \to a$$

▶ Only z_1 occurs in S_1 ; so y_1 occurs in T_1

 $D(z_1^{\rho_1},\ldots,z_l^{\rho_l})$

▶ So, $T_1(\overline{v}_1)(S_1(x_1/z_1)) =_{\beta\eta} x_1\overline{v}_1$; i.e., ρ_1 is retract of τ_1 and $\rho_2 \to \ldots \to \rho_1 \to a$ is retract of $\tau_2 \to \ldots \to \tau_n \to a$

$$\rho = \rho_1 \to \ldots \to \rho_l \to a \text{ and } \tau = \tau_1 \to \ldots \to \tau_n \to a$$

$$\lambda f^{\tau}$$
 $\lambda y_1^{\tau_1} \dots y_n^{\tau_n}$
 $\lambda y_1^{\tau_1} \dots y_n^{\tau_n}$

Now z_1, \ldots, z_k occur in S_1 ; so y_1 occurs in T_1, \ldots, T_k

 $D(z_1^{\rho_1},\ldots,z_l^{\rho_l})$

 $C(x^{\rho}) =_{\beta\eta}$

 $xz_1 \dots z_l$

$$\rho = \rho_1 \to \ldots \to \rho_l \to a \text{ and } \tau = \tau_1 \to \ldots \to \tau_n \to a$$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})$$
 $C(x^{\rho})=_{\beta\eta}$ $xz_1\ldots z_l$

- Now z_1, \ldots, z_k occur in S_1 ; so y_1 occurs in T_1, \ldots, T_k
- So, one $S_1' = S_1(x_1/z_1, \dots, x_k/z_k)$ and k terms $T_i(\overline{v}_i)$ with $T_i(\overline{v}_i)(S_1') = \beta_{\eta} x_i \overline{v}_i$;

$$\rho = \rho_1 \to \ldots \to \rho_I \to a \text{ and } \tau = \tau_1 \to \ldots \to \tau_n \to a$$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})$$
 $C(x^{\rho})=_{\beta\eta}$ $xz_1\ldots z_l$

- Now z_1, \ldots, z_k occur in S_1 ; so y_1 occurs in T_1, \ldots, T_k
- So, one $S_1' = S_1(x_1/z_1, \dots, x_k/z_k)$ and k terms $T_i(\overline{v}_i)$ with $T_i(\overline{v}_i)(S_1') = \beta \eta x_i \overline{v}_i$;
- May not guarantee ρ_1 is a retract of τ_1 and ... and ρ_k is a retract of τ_1 ; do have $\rho_{k+1} \to \ldots \to \rho_l \to a$ is retract of $\tau_2 \to \ldots \to \tau_n \to a$

$$\rho = \rho_1 \to \ldots \to \rho_l \to a \text{ and } \tau = \tau_1 \to \ldots \to \tau_n \to a$$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})$$
 $C(x^{\rho})=_{\beta\eta}$ $xz_1\ldots$

- Now z_1, \ldots, z_k occur in S_1 ; so y_1 occurs in T_1, \ldots, T_k
- So, one $S_1' = S_1(x_1/z_1, \dots, x_k/z_k)$ and k terms $T_i(\overline{v_i})$ with $T_i(\overline{v_i})(S_1') =_{\beta\eta} x_i \overline{v_i}$;

$$\rho = \rho_1 \to \ldots \to \rho_l \to a \text{ and } \tau = \tau_1 \to \ldots \to \tau_n \to a$$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})$$
 $C(x^{\rho})=_{\beta\eta}$ $xz_1\ldots$

- Now z_1, \ldots, z_k occur in S_1 ; so y_1 occurs in T_1, \ldots, T_k
- So, one $S_1' = S_1(x_1/z_1, \dots, x_k/z_k)$ and k terms $T_i(\overline{v}_i)$ with $T_i(\overline{v}_i)(S_1') = \beta \eta \ x_i \overline{v}_i$;
- Must be distinct paths w_i to z_i in S_1 ; path w_i may "preclude some components of" τ_1 .

$$\rho = \rho_1 \to \ldots \to \rho_l \to a \text{ and } \tau = \tau_1 \to \ldots \to \tau_n \to a$$

$$D(z_1^{\rho_1},\ldots,z_l^{\rho_l})$$
 $C(x^{\rho})=_{\beta\eta}$ $xz_1\ldots$

- Now z_1, \ldots, z_k occur in S_1 ; so y_1 occurs in T_1, \ldots, T_k
- So, one $S'_1 = S_1(x_1/z_1, \ldots, x_k/z_k)$ and k terms $T_i(\overline{v}_i)$ with $T_i(\overline{v}_i)(S'_1) =_{\beta\eta} x_i \overline{v}_i$;
- Must be distinct paths w_i to z_i in S_1 ; path w_i may "preclude some components of" τ_1 .
- ightharpoonup Captured using operator $au_1
 vert w_i$
- Guarantees ρ_i is a retract of $\tau_1 \upharpoonright w_i$

Goal directed proof system (for singleton B)

$$V \stackrel{\rho \leq \rho}{=} V \frac{\rho \leq \sigma \to \tau}{\rho \leq \tau}$$

$$C \frac{\delta \to \rho \leq \sigma \to \tau}{\delta \leq \sigma} \frac{\delta \to \rho \leq \sigma \to \tau}{\rho \leq \tau}$$

$$P_1 \frac{\rho_1 \to \dots \to \rho_k \to \rho \leq \sigma \to \tau}{[\rho_1, \dots, \rho_k] \leq \sigma} \frac{[\rho_1, \dots, \rho_k] \leq \sigma}{\rho_1 \leq \sigma \upharpoonright w_1 \dots \rho_k \leq \sigma \upharpoonright w_k}$$

 $w_1 \sqsubset \ldots \sqsubset w_k$ are k-minimal realisable paths of type σ

Example proof tree

$$\frac{(\sigma \to o) \to (\sigma \to o) \to o \unlhd (\sigma \to (o \to o \to o) \to o) \to o}{\frac{[\sigma \to o, \sigma \to o] \unlhd \sigma \to (o \to o \to o) \to o}{\sigma \to o \unlhd \sigma \to o} \quad o \unlhd o}$$

- ▶ Let $\sigma' = \sigma \rightarrow (o \rightarrow o \rightarrow o) \rightarrow o$
- ▶ There are paths w_1 and w_2 where $\sigma' \upharpoonright w_1 = \sigma \rightarrow o = \sigma' \upharpoonright w_2$

Example proof tree

$$\frac{(\sigma \to o) \to (\sigma \to o) \to o \unlhd (\sigma \to (o \to o \to o) \to o) \to o}{\frac{[\sigma \to o, \sigma \to o] \unlhd \sigma \to (o \to o \to o) \to o}{\sigma \to o \unlhd \sigma \to o} \quad o \unlhd o}$$

- ▶ Let $\sigma' = \sigma \rightarrow (o \rightarrow o \rightarrow o) \rightarrow o$
- ▶ There are paths w_1 and w_2 where $\sigma' \upharpoonright w_1 = \sigma \rightarrow o = \sigma' \upharpoonright w_2$
- \blacktriangleright In both cases the paths preclude second component of σ'

General case: multiple base types

▶ Further operation on paths: $w(\sigma)$ subtype after w

General case: multiple base types

- ▶ Further operation on paths: $w(\sigma)$ subtype after w
- Proof system just differs in one rule

$$P_2' \frac{[\rho_1, \ldots, \rho_k] \leq \sigma}{\rho_1 \leq v_1(\sigma) \upharpoonright w_1 \ldots \rho_k \leq v_k(\sigma) \upharpoonright w_k}$$

where the realisable paths are v_1w_1, \ldots, v_kw_k

Soundness and completeness of proof systems

▶ Define a dialogue game between potential witnesses D and C for a retract

Soundness and completeness of proof systems

- ▶ Define a dialogue game between potential witnesses D and C for a retract
- ▶ Define a canonical presentation of paths in terms

Soundness and completeness of proof systems

- Define a dialogue game between potential witnesses D and C for a retract
- ▶ Define a canonical presentation of paths in terms
- ▶ Uniformity poperties of game play underpin combinatorics on paths: notions of realisable (families of) paths, *k*-minimal paths, . . .

Soundness and completeness of proof systems

- Define a dialogue game between potential witnesses D and C for a retract
- ▶ Define a canonical presentation of paths in terms
- ▶ Uniformity poperties of game play underpin combinatorics on paths: notions of realisable (families of) paths, *k*-minimal paths, . . .
- Main proofs of soundness and completeness are then inductive: see full version

▶ Each subgoal of a proof rule has smaller size than goal

- ► Each subgoal of a proof rule has smaller size than goal
- ▶ A proof witness can then be presented in PSPACE

- ► Each subgoal of a proof rule has smaller size than goal
- ▶ A proof witness can then be presented in PSPACE
- ► BUT checking that a subgoal obeys the side conditions in the case of the product rules requires exponential space

- ► Each subgoal of a proof rule has smaller size than goal
- ▶ A proof witness can then be presented in PSPACE
- ▶ BUT checking that a subgoal obeys the side conditions in the case of the product rules requires exponential space
- ► So, EXPSPACE decision procedure

- ► Each subgoal of a proof rule has smaller size than goal
- ▶ A proof witness can then be presented in PSPACE
- ▶ BUT checking that a subgoal obeys the side conditions in the case of the product rules requires exponential space
- ► So, EXPSPACE decision procedure
- Can this be reduced to PSPACE?

1.
$$\rho = (\sigma \to o) \to (\sigma \to o) \to o$$

 $\tau = (\sigma \to (o \to o \to o) \to o) \to o$ where σ is arbitrary

1.
$$\rho = (\sigma \to o) \to (\sigma \to o) \to o$$

 $\tau = (\sigma \to (o \to o \to o) \to o) \to o$ where σ is arbitrary
• Let $\rho_1 = \rho_2 = \sigma \to o$ and let $\tau_1 = \sigma \to (o \to o \to o) \to o$.

1. $\rho = (\sigma \to o) \to (\sigma \to o) \to o$ $\tau = (\sigma \to (o \to o \to o) \to o) \to o$ where σ is arbitrary • Let $\rho_1 = \rho_2 = \sigma \to o$ and let $\tau_1 = \sigma \to (o \to o \to o) \to o$. • $D(z_1^{\rho_1}, z_2^{\rho_2})$ is $\lambda f^{\tau}.f(\lambda u^{\sigma} v^{o \to o \to o}.v(z_1 u)(z_2 u))$ • $C(x^{\rho})$ is $\lambda y^{\tau_1}.x(\lambda w^{\sigma}.yw(\lambda s^{o}t^{o}.s))(\lambda w^{\sigma}.yw(\lambda s^{o}t^{o}.t))$;

1.
$$\rho = (\sigma \to o) \to (\sigma \to o) \to o$$

 $\tau = (\sigma \to (o \to o \to o) \to o) \to o$ where σ is arbitrary
• Let $\rho_1 = \rho_2 = \sigma \to o$ and let $\tau_1 = \sigma \to (o \to o \to o) \to o$.
• $D(z_1^{\rho_1}, z_2^{\rho_2})$ is $\lambda f^{\tau}.f(\lambda u^{\sigma} v^{o \to o \to o}.v(z_1 u)(z_2 u))$
• $C(x^{\rho})$ is $\lambda y^{\tau_1}.x(\lambda w^{\sigma}.yw(\lambda s^{o}t^{o}.s))(\lambda w^{\sigma}.yw(\lambda s^{o}t^{o}.t));$
• $(D(z_1, z_2))C(x) \to_{\beta}^* x(\lambda w^{\sigma}.z_1 w)(\lambda w^{\sigma}.z_2 w) =_{\beta\eta} xz_1z_2$

1.
$$\rho = (\sigma \to o) \to (\sigma \to o) \to o$$

 $\tau = (\sigma \to (o \to o \to o) \to o) \to o$ where σ is arbitrary
• Let $\rho_1 = \rho_2 = \sigma \to o$ and let $\tau_1 = \sigma \to (o \to o \to o) \to o$.
• $D(z_1^{\rho_1}, z_2^{\rho_2})$ is $\lambda f^{\tau}.f(\lambda u^{\sigma} v^{o \to o \to o}.v(z_1 u)(z_2 u))$
• $C(x^{\rho})$ is $\lambda y^{\tau_1}.x(\lambda w^{\sigma}.yw(\lambda s^{\sigma}t^{\sigma}.s))(\lambda w^{\sigma}.yw(\lambda s^{\sigma}t^{\sigma}.t))$;
• $(D(z_1, z_2))C(x) \to_{\beta}^* x(\lambda w^{\sigma}.z_1 w)(\lambda w^{\sigma}.z_2 w) =_{\beta\eta} xz_1z_2$
2. $\rho = (b \to a) \to a \to a$
 $\tau = (b \to (a \to o \to a) \to a) \to a$

1.
$$\rho = (\sigma \to o) \to (\sigma \to o) \to o$$

 $\tau = (\sigma \to (o \to o \to o) \to o) \to o$ where σ is arbitrary
• Let $\rho_1 = \rho_2 = \sigma \to o$ and let $\tau_1 = \sigma \to (o \to o \to o) \to o$.
• $D(z_1^{\rho_1}, z_2^{\rho_2})$ is $\lambda f^{\tau}.f(\lambda u^{\sigma} v^{o \to o \to o}.v(z_1 u)(z_2 u))$
• $C(x^{\rho})$ is $\lambda y^{\tau_1}.x(\lambda w^{\sigma}.yw(\lambda s^{o}t^{o}.s))(\lambda w^{\sigma}.yw(\lambda s^{o}t^{o}.t));$
• $(D(z_1, z_2))C(x) \to_{\beta}^* x(\lambda w^{\sigma}.z_1 w)(\lambda w^{\sigma}.z_2 w) =_{\beta\eta} xz_1z_2$
2. $\rho = (b \to a) \to a \to a$
 $\tau = (b \to (a \to o \to a) \to a) \to a$
• let $\rho_1 = b \to a$, $\rho_2 = a$ and $\tau_1 = b \to (a \to o \to a) \to a$

1.
$$\rho = (\sigma \to o) \to (\sigma \to o) \to o$$

 $\tau = (\sigma \to (o \to o \to o) \to o) \to o$ where σ is arbitrary
• Let $\rho_1 = \rho_2 = \sigma \to o$ and let $\tau_1 = \sigma \to (o \to o \to o) \to o$.
• $D(z_1^{\rho_1}, z_2^{\rho_2})$ is $\lambda f^{\tau}.f(\lambda u^{\sigma} v^{o \to o \to o}.v(z_1 u)(z_2 u))$
• $C(x^{\rho})$ is $\lambda y^{\tau_1}.x(\lambda w^{\sigma}.yw(\lambda s^{o}t^{o}.s))(\lambda w^{\sigma}.yw(\lambda s^{o}t^{o}.t));$
• $(D(z_1, z_2))C(x) \to_{\beta}^* x(\lambda w^{\sigma}.z_1 w)(\lambda w^{\sigma}.z_2 w) =_{\beta\eta} xz_1z_2$
2. $\rho = (b \to a) \to a \to a$
 $\tau = (b \to (a \to o \to a) \to a) \to a$
• let $\rho_1 = b \to a$, $\rho_2 = a$ and $\tau_1 = b \to (a \to o \to a) \to a$
• $D(z_1^{\rho_1}, z_2^{\rho_2})$ is $\lambda f^{\tau}.f(\lambda u_1^{h}u_2^{a \to o \to a}.u_2(z_1 u_1)z_2)$
• $C(x^{\rho})$ is $\lambda y^{\tau_1}.ys^{b}(\lambda w_1^{a}w_2^{o}.x(\lambda v^{b}.yv(\lambda w_1^{a}w_2^{o}.w_1))w_2);$

1.
$$\rho = (\sigma \to o) \to (\sigma \to o) \to o$$

 $\tau = (\sigma \to (o \to o \to o) \to o) \to o$ where σ is arbitrary
• Let $\rho_1 = \rho_2 = \sigma \to o$ and let $\tau_1 = \sigma \to (o \to o \to o) \to o$.
• $D(z_1^{\rho_1}, z_2^{\rho_2})$ is $\lambda f^{\tau}.f(\lambda u^{\sigma}v^{o\to o\to o}.v(z_1u)(z_2u))$
• $C(x^{\rho})$ is $\lambda y^{\tau_1}.x(\lambda w^{\sigma}.yw(\lambda s^{\sigma}t^{\sigma}.s))(\lambda w^{\sigma}.yw(\lambda s^{\sigma}t^{\sigma}.t));$
• $(D(z_1, z_2))C(x) \to_{\beta}^* x(\lambda w^{\sigma}.z_1w)(\lambda w^{\sigma}.z_2w) =_{\beta\eta} xz_1z_2$
2. $\rho = (b \to a) \to a \to a$
 $\tau = (b \to (a \to o \to a) \to a) \to a$
• let $\rho_1 = b \to a$, $\rho_2 = a$ and $\tau_1 = b \to (a \to o \to a) \to a$
• $D(z_1^{\rho_1}, z_2^{\rho_2})$ is $\lambda f^{\tau}.f(\lambda u_1^b u_2^{a\to o\to a}.u_2(z_1u_1)z_2)$
• $C(x^{\rho})$ is $\lambda y^{\tau_1}.ys^b(\lambda w_1^a w_2^o.x(\lambda v^b.yv(\lambda w_1^a w_2^o.w_1))w_2);$
• $(D(z_1, z_2))C(x) \to_{\beta}^* x(\lambda v^b.z_1v)z_2 =_{\beta\eta} xz_1z_2$