22]: d 22]: 0 1 2 3 4 23]: d	State Stat
6666641: d.41: I	6492 red 6.2 0.600 0.08 2.0 0.090 32.0 44.0 0.9949 3.45 0.58 10.5 5 6493 red 5.9 0.550 0.10 2.2 0.062 39.0 510 0.9957 3.42 0.76 11.0 6 6494 red 6.3 0.510 0.13 2.3 0.076 29.0 40.0 0.99574 3.42 0.76 11.0 6 6495 red 5.9 0.645 0.12 2.0 0.075 32.0 44.0 0.99547 3.57 0.71 10.2 5 6496 red 6.0 0.310 0.47 3.6 0.067 18.0 42.0 0.99547 3.57 0.71 10.2 5 6496 red 6.0 0.310 0.47 3.6 0.067 18.0 42.0 0.99547 3.57 0.71 10.2 5 6497 residual sugar, 'chlorides', 'tree sulfur dioxide', 'chlorides', 'free sulfur dioxide', 'quality'], disperiodical sugar, 'chlorides', 'service sulfur dioxide', 'density', 'gal', 'sulphates', 'alconol', 'gal', 'sulphates', 'alconol', 'quality'], disperiodical sulfur dioxide', 'density', 'gal', 'sulphates', 'alconol', 'gal', 'sulphates', 'alconol', 'gal', 'sulphates', 'alconol', 'gal', 'sulphates', 'alconol', 'gal', 'gal', 'sulphates', 'alconol', 'gal', 'sulphates', 'alconol', 'gal', 'sulphates', 'alconol', 'gal', 'gal', 'sulphates', 'alconol', 'gal', 'gal', 'sulphates', 'alconol', 'gal', 'sulphates', 'alconol', 'gal', 'gal', 'sulphates', 'alconol', 'gal', 'gal'
7]: d <c: #="" 0="" 1="" 2="" 3="" 4="" 5="" 5<="" dat="" ran="" td=""><td> </td></c:>	
9 10 1: dty mer dty dty mer dty	
r c c f f t c c p s a c c c c c c c c c c c c c c c c c c	citic acid 0 reactional augar 0 chlorides 0 free author doxide 1 total author dexide 0 density 0 guilter decide 0 quality 0 duye: int64 DATA VISUALIZATION MATPLOTLIB pt. bar(df['type'],df['fixed acidity'],color='b') pt. viabel('type') pt. viabel('type') pt. viabel('fixed (tixed by)) pt. viabel('fixed (tixed by)) pt. viabel('fixed citat')
Fixed Acidity by by p	
2]: I 1 1 1 1 1 1 1 1 1 1 1 1 1	Text(0, 0.5, 'Citric Acid') SCATTER PLOT
4]: I	Text (0, 0.5, 'Count') Tour (0, 0.5, 'Count') Tour (0, 0.5, 'Count') Tour (0, 0.5, 'Count') SEABORN
8]: < 4 1	sns.countplot(x="type",data=df) <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre>
31 62 93 124 155 186 217 248 279 310 341 403 434 465 527 558 589 620	-0.100 -0.075 -0.050 -0.025 -0.000 -0.075 -0.000 -0.075 -0.000 -0.075 -0.000 -0.075 -0.000 -0.005 -0
7]: <	<pre>sns.countplot (x="type", hue="quality", data=df) <pre> </pre> <pre> <a ,="" <="" data='df")' href="quality" pre=""> <pre> <a ,="" <="" data='df")' href="quality" pre=""> <pre> <a ,="" <a="" <a<="" data='df")' href="quality" td=""></pre></pre></pre></pre>
(CLASSIFICATION ALGORITHM CONVERTING STRING DATA INTO NUMERIC VALUES string National Content National C
6 6 6	
6 6 6	0 1 1 1 2 1 3 1 4 1 6492 0 6493 0 6494 0
[55]: d	46f drop (columns="type", inplace=True) df drop (columns="type", inplace=True) fixed acidity volatile acidity citric acid gradual sugar chlorides gr
6 6 64	6494 6.3 0.510 0.7
6 6 6 64	2 8.1 0.280 0.40 6.9 0.050 30.0 97.0 0.99510 3.26 0.44 10.1 6 1 3 7.2 0.230 0.32 8.5 0.068 47.0 186.0 0.9960 3.19 0.40 9.9 6 1 4 7.2 0.230 0.32 8.5 0.068 47.0 186.0 0.9960 3.19 0.40 9.9 6 1 . 7.2 0.230 0.32 8.5 0.068 47.0 186.0 0.9960 3.19 0.40 9.9 6 1 . 7.2 0.230 0.32 8.5 0.068 47.0 186.0 0.9960 3.19 0.40 9.9 6 1 . 7.2 0.230 0.32 8.5 0.068 47.0 186.0 0.9960 3.19 0.40 9.9 6 1 . 7.2 0.230 0.600 0.08 2.0 0.090 3.2.0 44.0 0.9940 3.46 0.59 10.5 5 0 6493 5.9 0.550 0.10 2.2 0.062 3.9 0.061 3.9 0.9 10.0 0.9 10.
72]: f 73]: b 74]: b 74]: s S1]: x x	######################################
Y 32]: a T 33]: f	(5.9 , 0.645, 0.12 ,, 0.71 , 10.2 , 5.), (6. , 0.31 , 0.47 ,, 0.66 , 11. , 6.)]) yea.values y arvay([[1],
66]: fr r 77]: r C: STO	LOGISTIC REGRESSION from sklearn.linear model import LogisticRegression regralogisticRegression() reg.fit(x_train,y_train) Stylears\Sharatheal\anaconda3\lib\site-packages\sklearn\utils\validation.py;993: DataConversionWarning: A column-vector y was passed when a ld array was expected. Flease change the shape of y to (n_samples,), for example ell(). y = column_or_id(y, warn=True) Stylears\Sharatheal\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py;814: ConvergenceWarning: lbfgs failed to converge (status=1): Topic: Topic Topic Mo. of ITERATIONS REACHED LIMIT. Increase the number of iterations (nax_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(LogisticRegression()
Y. (8]: a (9]: Y. (9]: a (9): f	<pre>y_pred=get_predict(x_test) y_pred array([1, 0, 1,, 0, 1, 1], dtype-wint8) y_test array([1],</pre>
04]: 9 04 f r 05 r	acc=acuracy_score (y_test, y_pred) acc=100 98.15384615384616 DECISION TREE from sklearn.tree import * reg=becisionTreeClassifier() pecisionTreeClassifier() y_pred=reg_predict (x_test)
07 a	<pre>y_test array([[1],</pre>
	Text (1.0689655172413793), 0.38888888888888889, 'gini = 0.0\neamples = 3\nvalue = [3, 0]'), Text (0.09195402299850575, 0.5, 'gini = 0.0\neamples = 23\nvalue = [23, 0]'), Text (0.2672413793102448, 0.7222222222222222; 'X[8] < 3.613\ngini = 0.016\namples = 1378\nvalue = [1, 1367]'), Text (0.2014942528735633, 0.6111111111111112, 'X[5] < 6.5\ngini = 0.016\namples = 1364\nvalue = [7, 1357]'), Text (0.11994252973563218, 0.388888888888889, 'X[9] <= 0.44\ngini = 0.375\namples = 4\nvalue = [3, 1]'), Text (0.11994252973565218, 0.3888888888888889, 'X[9] <= 0.44\ngini = 0.375\namples = 4\nvalue = [3, 1]'), Text (0.16991554022988505, 0.27777777777777777, 'gini = 0.0\namples = 1\nvalue = [0, 1]'), Text (0.1699155402298506, 0.388888888888889, 'X[9] <= 0.44\ngini = 0.07\namples = 20\nvalue = [0, 20]'), Text (0.1609155402298506, 0.3888888888888889, 'X[7] <- 0.995\ngini = 0.01\namples = 14\nvalue = [4, 1316]'), Text (0.20689655174413793, 0.38888888888888888889, 'X[7] <- 0.995\ngini = 0.219\namples = 16\nvalue = [2, 14]'), Text (0.20298505747126436, 0.2777777777777777777777777777777777777
	Text (0.33333333333333, 0.611111111111112, "X[2] <= 0.15\nqini = 0.408\namples = 14\nvalue = [4, 10]"), Text (0.3363218390804598, 0.5, 'qini = 0.0\nxamples = 10\nvalue = [4, 0]"), Text (0.6494252873363219, 0.833333333333334, 'X[6] <- 10.5\nxinjni = 0.2288\nxamples = 527\nvalue = [435, 92]"), Text (0.6494252873563216306, 0.5), Text (0.4252873563216306, 0.611111111111111112, 'X[2] <= 0.295\nqinjni = 0.052\nxamples = 415\nvalue = [404, 11]"), Text (0.4252873563216306, 0.611111111111111112, 'X[2] <- 0.205\nqinjni = 0.052\nxamples = 6\nvalue = [1, 5]"), Text (0.40229885057471265, 0.5, 'qini = 0.0\nxamples = 15\nvalue = [0, 1]"), Text (0.402298850574713, 0.6111111111111111111111111111111111111
	Text (0.816091950025985, 0.72222222222222222, "x[1] <- 0.455Nogini - 0.176Nosamples = 112Novalue = [31, 81]"), Text (0.6781609195002298, 0.61iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
09 C	cm=confusion matrix(y_test,y_pred)
09 a 10 a a 10 g F 11 f 20 r 21 r	array([[460, 16],
21 Pr 22 y. y. 22 a 23 y. 23 a	interpretable and interpretable and a state of the state
24 a 25 a a 25 g k 41 r 42 r	
sii	
46 C	<pre>from sklearn.metrics import confusion_matrix,accuracy_score cm=confusion_matrix(y_test,y_pred) cm array([[395, 81],</pre>

