	D1 r	need	to focus	on	coeff	s fo	r the	2 tr	ansr	nitte	ers.	THe	y're	both	n the	same	e bt	w																						
	nee	das	stopband	Atte	enua	tion	of 4	0 dB	lowe	er th	nan D	C; N	1ER	is a	relat	tive re	equi	rem	ent,	do a	as w	ell a	s you	u cai	n									_						
4	L is	Nsp	s; the FF	₹ of s	rrc	and	rc o	nly d	iffers	s fro	m tr	ansi	ition	bar	nd;																			_	_	_	_			
			late the													piece	ewis	se oi	oera	tion	like	how	, thei	ir FR	lis d	lefin	ed							4	_	_	_			_
			RC filter													,																		_	_	_	_			_
-											adayı	ina	(1:1/6	in	161)		-														-	-		_	_		_	-		_
-			ing an FI					KIIOV	VII as	S WII	luow	irig	(IIKE	: 111 4	+01)		-														+			+	\dashv	+	+			_
			[n] = h_i																															-		-	-			_
			a real fil			Ī								·	1														ľ	onds	to	mul	tipli	catio	n in	the	other	r doı	main	
+	Tim	e do	main we	brir	ng a i	inpu	t sig	ınal i	nto t	he f	ilter	and	the	out	out is	the o	on	volut	tion	of th	ne in	put a	and fi	ilter'	's im	puls	se re	spor	se					+		+				_
	In fr	equ	ency don	nain,	the	FR i	s m	ultip	le by	spe	ctru	m o	finp	ut s	ignal	to ge	t th	ne to	upt	ı																				
	in tl	ne ti	me dom	ain v	ve pe	erfor	m w	rindo	wing	g ope	eratio	on w	hich	n is j	just į	point	by p	oint	mu	ltipl	icati	on; t	his c	orre	espo	nds	to co	onvol	utior	n in fr	equ	uenc	y do	mair	า					
	In ti	ne fr	equency	dom	ain	we c	onv	olve	ideal	l FR	with	the	wir	ndov	r's Fl	R																								
			Frequec												oes i	t influ	enc	e ov	eral	l FR	of th	ne fir	nite f	ilter	? so	me	of th	e wir	dow	s are	re	ct, k	aise	r, ha	mm	ing,	etc	. and	d the	se
			distinct											ise																										
	win	dwo	ing is m	ultip	ying	2 se	que	nces	in th	ne tii	me d	lom	ain.																											
																																		_						
																															_			_	_	_	_			
_																																		_	_	_	_			
_																															+			_	_		_			_
-																																		_	_		_			
-																	-																		-					_
+																																								_
																															+									_
																															_			_	_	_	_			
																															+			_	_	_	_			
+																	-														+			_	-	_	-			_
																																		-	-	_	-			
+																																								
+																																								
																																		_	_	_	_	_		
											_																				4			_	_	_	_		_	
											\dashv																				+			\perp	\dashv	+	_	-	_	
-																	-														+			_	_	_	_	-		
+											\rightarrow																				+			\dashv	\dashv	+	+			_
+																	+														+			+	+	-	+	+		_
+																		_											+		+			+	+		+	+		_
+																													+					+	+	+	+	+		
																																		+	+	+	+	+		
																																		\top	+					
																																			\top					

In order to have no ISI, we need to have periodic zero crossings in the filter such that the downsample version of the filter's going to hav 1 sample that is a peak and the rest are zeros we see our equivalent systm, we only need h1, h5, h9 For a RC filter, it has a peak in the center then drops off The center coeff in this case is h5, the largest peak is whatever is multipled by h5; we have 2 extra terms in the output: xmh1an xm-2h9 x[m-1]h5 is the ideal expected term and the extra terms are ISI terms. If our system is a perfect RC system, it would have periodic zero crossings such that h1 would be 0 and h9 would be 0 to remove the ISI terms and we only want the h5 term. If we don't have the right coeffs or long enough response to duplicate the response, we may have contributes to the ISI based on every 4th term not being zero due to our upsampler and downsampler rate ISI is generated when every 4th coeff isnt 0; lets see the MER for the system compute MER under assumption of no AWGN or quantization noise, solely based on ISI Xcmshl, + Xcm-1]h5 + Xcn-2]h9 MER = any (ideal mag 2)

any (error mg2). avg of large number of received symbols _ avy { x L m - 1] 2 h 5 2 } avs {xcm 2 h, 2 ; 2 x cm 3 x cm - 2] h, h, + x cm - 2] h, g ?} since theres + and - values for ((N, 2 + hg2) Es = average signal energy x[m] and x[m-2] (3a, a, -a, -3a) if you take 2 symbols and multiple them together, we could end up with this product being positive or negative; after injecting a large sequence of this, we would expect that these terms would negate each other = MER h. + hg 2 ho hy he ha] hea [n] = [h. hy if the equilvalent filter meets nyquest zero condition, every 4th coeff besides h5 should be zero thus we get our $h5^2/0 = infinity$ and means we have no error ex: h5 = 1, h1 = 0.1, h9 = 0.1 $MER = 1^2/(1^2+.1^2) = 1/.02 = 50$ in most cases we want the MER in dB since this is how we work with comms systems MER dB = 10log10(50) = ~17 dBwe started out with a PS filter and match filter and convolve them into heg, based on this system with upsampling and downsampling on the ends: the output will only depend on every 4th coeff, where we compare the magnitudes of each of these taps and can compute the MER for the filter can play with beta, upsampling/downsampling rate (not advise to change O/W affects MER), truncation (IIR to FIR) to design a filter to meet your requirements Best filter to use is based on MER

