FINAL REPORT

Trey Dufrene, Alan Wallingford, David Orcutt, Ryan Warner, Zack Johnson

ME 407 Preliminary Design of Robotic Systems Embry-Riddle Aeronautical University

Contents

List of Figures

List of Tables

1 DH Table for 6 DOF Manipulator	
----------------------------------	--

Table 1: DH Table for 6 DOF Manipulator

DH	d_i	θ_i	$ a_i $	α_i
1	ℓ_1	q_1	0	$\pi/2$
2	-d	q_2	210	0
3	0	$q_3 + \pi/2$	75	$\pi/2$
4	$\ell_3 + \ell_4$	$ q_4 $	0	$-\pi/2$
5	0	q_5	0	$\pi/2$
6	ℓ_6	q_6	0	0

$$A = Rot_{z,\theta} \ Trans_{z,d} \ Trans_{x,a} \ Rot_{x,\alpha}$$
 (1)

Given an arbitrary homogeneous matrix T_i^{i-1} (computed by matrix multiplication of A matrices $\to \left[A_1A_2\cdots A_{i-1}A_i\right]$), the orientation vector \bar{z}_i (with respect to φ , θ and ψ) and the relative joint position (displacement) vector \bar{o}_i (with respect to x, y, and z) can be obtained via the 3^{rd} and 4^{th} columns of the matrix respectively, as shown in Equation 2 (given β as an arbitrary rotation angle about the z-axis).

$$T_i^{i-1} = \begin{bmatrix} c_{\beta} & -s_{\beta} & z_i^{\varphi} & o_i^x \\ s_{\beta} & c_{\beta} & z_i^{\theta} & o_i^y \\ 0 & 0 & z_i^{\psi} & o_i^z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2)