

Best Available Copy

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
5. Dezember 2002 (05.12.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/096888 A1

(51) Internationale Patentklassifikation⁷: C07D 239/48,
A61K 31/505, 31/506, A61P 35/00, C07D 239/47, 239/34,
239/42, 405/12, 401/12, 403/12, 409/12, 417/12

Bergstrasse 62, 11115 Berlin (DE). HUWE, Christoph;
Sandhauser Strasse 111, 13005 Berlin (DE).

(21) Internationales Aktenzeichen: PCT/EP02/05669

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

(22) Internationales Anmeldedatum:
23. Mai 2002 (23.05.2002)

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), europäisches Patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR),
OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

(25) Einreichungssprache: Deutsch

Veröffentlicht:

— mit internationalem Recherchenbericht

(26) Veröffentlichungssprache: Deutsch

Zur Erklärung der Zweibuchstaben-Codes und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

(30) Angaben zur Priorität:
DE 101 27 581.1 29. Mai 2001 (29.05.2001) DE
DE 102 12 098.6 11. März 2002 (11.03.2002) DE

(71) Anmelder: SCHERING AKTIENGESELLSCHAFT
[DE/DE]; Müllerstrasse 178, 13342 Berlin (DE).

(72) Erfinder: BRUMBY, Thomas; Lepsiusstrasse 60, 12163
Berlin (DE). JAUTELAT, Rolf; Driesenerstrasse 1, 10439
Berlin (DE). PRIEN, Olaf; Lützenstrasse 12, 10711
Berlin (DE). SCHÄFER, Martina; Ossietzkystrasse 7,
13187 Berlin (DE). SIEMEISTER, Gerhard; Reimer-
swalder Steig 26, 13503 Berlin (DE). LÜCKING, Ulrich;

A1

(54) Title: CDK INHIBITING PYRIMIDINES, PRODUCTION THEREOF AND THEIR USE AS MEDICAMENTS

WO 02/096888

(54) Bezeichnung: CDK INHIBITORISCHE PYRIMIDINE, DEREN HERSTELLUNG UND VERWENDUNG ALS ARZNEIMITTEL

(57) Abstract: The invention relates to the pyrimidine derivatives of general formula (1), wherein R¹, R², X, A and B are defined as in the description, for use as inhibitors of the cyclin-dependent kinase. The invention further relates to the production thereof as well as to their use as medicament in the treatment of various diseases.

A1

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Pyrimidinderivate der allgemeinen Formel (1) in der R¹, R², X, A und B die in der Beschreibung enthaltenen Bedeutungen haben, als Inhibitoren der Zyklin-abhängigen Kinase, deren Herstellung sowie deren Verwendung als medikament zur Behandlung verschiedener Erkrankungen.

CDK inhibitorische Pyrimidine, deren Herstellung und Verwendung als Arzneimittel

Die vorliegende Erfindung betrifft Pyrimidinderivate, deren Herstellung sowie
5 deren Verwendung als Medikament zur Behandlung verschiedener
Erkrankungen.

- Die CDKs (cyclin-dependent kinase) ist eine Enzymfamilie, die eine wichtige Rolle bei der Regulation des Zellzyklus spielt und somit ein besonders
10 interessantes Ziel für die Entwicklung kleiner inhibitorischer Moleküle ist. Selektive Inhibitoren der CDKs können zur Behandlung von Krebs oder anderen Erkrankungen, die Störungen der Zellproliferation zur Ursache haben, verwendet werden.
- 15 Pyrimidine und Analoga sind bereits als Wirkstoffe beschrieben wie beispielsweise die 2-Anilino-Pyrimidine als Fungizide (DE 4029650) oder substituierte Pyrimidinderivate zur Behandlung von neurologischen oder neurodegenerativen Erkrankungen (WO 99/19305). Als CDK-Inhibitoren werden unterschiedlichste Pyrimidinderivate beschrieben, beispielsweise Bis(anilino)-
20 pyrimidinderivate (WO 00/12486), 2-Amino-4-substituierte Pyrimidine (WO 01/14375), Purine (WO 99/02162), 5-Cyano-Pyrimidine (WO 02/04429), Anilinopyrimidine (WO 00/12486) und 2-Hydroxy-3-N,N-dimethylaminopropoxy-Pyrimidine (WO 00/39101).
- 25 Die Aufgabe der vorliegenden Erfindung ist es Verbindungen bereitzustellen, die bessere Eigenschaften als die bereits bekannten Inhibitoren haben. Die hier beschriebenen Substanzen sind besser wirksam, da sie bereits im nanomolaren Bereich inhibieren und so von anderen bereits bekannten CDK-Inhibitoren wie z.B. Olomoucin und Roscovitin zu unterscheiden sind.
- 30 Es wurde nun gefunden, dass Verbindungen der allgemeinen Formel I

in der

- R¹ für Wasserstoff, Halogen, C₁-C₆-Alkyl, Nitro oder für die Gruppe -COR⁵, -OCF₃, -(CH₂)_nR⁵, -S-CF₃ oder -SO₂CF₃
- 5 steht,
- R² für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, -N(C₁-C₆-Alkyl)₂, -SO(C₁-C₆-Alkyl), -SO₂(C₁-C₆-Alkyl), C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkyIOAc, Carboxy, Aryl, Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein- oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, oder

R^2

für die Gruppe

5

steht,

X für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl)
oder für -OC₃-C₁₀-Cycloalkyl welches ein- oder mehrfach,
gleich oder verschieden mit einem Heteroaromaten

10 substituiert sein kann, steht
oder

X und R² gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden, der
gegebenenfalls ein oder mehrere Heteroatome enthalten
kann und gegebenenfalls ein- oder mehrfach mit Hydroxy,

15 C₁-C₆-Alkyl; C₁-C₆-Alkoxy oder Halogen substituiert sein
kann,

A und B jeweils unabhängig voneinander für Wasserstoff, Hydroxy,
C₁-C₃-Alkyl, C₁-C₆-Alkoxy oder für die Gruppe -SR⁷, -
S(O)R⁷, -SO₂R⁷, -NHSO₂R⁷, -CH(OH)R⁷, -CR⁷(OH)-R⁷,

20 C₁-C₆-AlkylP(O)OR³OR⁴, -COR⁷ oder für

stehen,

oder

- 5 A und B gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden der gegebenenfalls durch ein- oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O oder =SO₂

- Gruppen im Ring unterbrochen sein kann und/ oder
gegebenenfalls ein oder mehrere mögliche
Doppelbindungen im Ring enthalten sein können und der
C₃-C₁₀-Cycloalkyl-Ring gegebenenfalls ein- oder mehrfach,
gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-
Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, C₂-C₆-
Alkenyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -
NHC₁-C₆-Alkyl, -N(C₁-C₆-Alkyl)₂, -SO(C₁-C₆-Alkyl), -SO₂R⁷,
C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc,
Phenyl, oder mit der Gruppe R⁶ substituiert sein kann, wobei
das Phenyl selbst gegebenenfalls ein- oder mehrfach, gleich
oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-
Alkoxy, oder mit der Gruppe -CF₃ oder -OCF₃ substituiert
sein kann,
- jeweils unabhängig voneinander für Wasserstoff, Phenyl,
Benzloxy, C₁-C₁₂-Alkyl, C₁-C₆-Alkoxy, C₂-C₄-Alkenyloxy,
C₃-C₆-Cycloalkyl, Hydroxy, Hydroxy-C₁-C₆-alkyl, Dihydroxy-
C₁-C₆-alkyl, Heteraryl, Heterocyclo-C₃-C₁₀-alkyl,
Heteraryl-C₁-C₃-alkyl,
- gegebenenfalls mit Cyano substituiertes C₃-C₆-Cycloalkyl-
C₁-C₃-alkyl, oder für
gegebenenfalls ein- oder mehrfach, gleich oder verschieden
mit Phenyl, Pyridyl, Phenoxy, C₃-C₆-Cycloalkyl, C₁-C₆-
Alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht,
wobei das Phenyl selbst ein oder mehrfach, gleich oder
verschieden mit Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder mit
der Gruppe -SO₂NR³R⁴ substituiert sein kann,
oder für die Gruppe -(CH₂)_nNR³R⁴, -CNHNH₂ oder -NR³R⁴
oder
- gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden der
gegebenenfalls durch ein- oder mehrere Stickstoff,
Sauerstoff und/ oder Schwefel-Atome unterbrochen sein
kann und/ oder durch ein oder mehrere =C=O Gruppen im

Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, steht,

5 R⁵ für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht,

 R⁶ für einen Heteroaryl oder C₃-C₁₀-Cycloalkyl-Ring steht, wobei der Ring die oben angegebene Bedeutung hat,

 R⁷ für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₁₀-Cycloalkyl mit der oben angegebenen Bedeutung, oder für die Gruppe -NR³R⁴ steht, oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, C₁-C₆-Alkoxy, Halogen, Phenyl, -NR³R⁴ oder Phenyl, welches selbst, ein-oder mehrfach gleich oder verschieden mit Halogen, Hydroxy,

10 C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann, substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht, oder für Phenyl steht, welches selbst ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann,

15 R⁸, R⁹ und R¹⁰ jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, -N(C₁-C₆-Alkyl)₂, -SO(C₁-C₆-Alkyl), -SO₂(C₁-C₆-Alkyl), C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkyIOAc,

- Carboxy, Aryl, Heteraryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteraryl,
Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶
oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-
C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-
C₁₀-Cycloalkyl, Aryl, Heteraryl, -(CH₂)_n-Aryl und -(CH₂)_n-
Heteraryl selbst gegebenenfalls ein- oder mehrfach, gleich
oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-
Alkoxy, oder mit der Gruppe -CF₃ oder -OCF₃ substituiert
sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-
C₁₀-Alkyl gegebenenfalls durch ein- oder mehrere Stickstoff,
Sauerstoff und/ oder Schwefel-Atome unterbrochen sein
kann und/ oder durch ein oder mehrere =C=O Gruppen im
Ring unterbrochen sein kann und/ oder gegebenenfalls ein
oder mehrere mögliche Doppelbindungen im Ring enthalten
sein können, stehen, und
- 15 n für 0 - 6 steht,
bedeuten, sowie deren Isomeren, Diastereomeren, Enantiomeren und
Salze, die bekannten Nachteile überwinden.
- 20 Unter Alkyl ist jeweils ein geradkettiger oder verzweigter Alkylrest, wie
beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek. Butyl, tert.
Butyl, Pentyl, Isopentyl, Hexyl, Heptyl, Octyl, Nonyl und Decyl, zu verstehen.
- Unter Alkoxy ist jeweils ein geradkettiger oder verzweigter Alkoxyrest, wie
- 25 beispielsweise Methyloxy, Ethyloxy, Propyloxy, Isopropyloxy, Butyloxy,
Isobutyloxy, sek. Butyloxy, tert.-Butyloxy, Pentyloxy, Isopentyloxy oder Hexyloxy
zu verstehen.
- Unter Alkylthio ist jeweils ein geradkettiger oder verzweigter Alkylthiorest, wie
- 30 beispielsweise Methylthio, Ethylthio, Propylthio, Isopropylthio, Butylthio,
Isobutylthio, sek. Butylthio, tert.-Butylthio, Pentythio, Isopentythio oder
Hexylthio zu verstehen.

Unter Cycloalkyl sind im allgemeinen monocyclische Alkylringe wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl oder Cyclodecyl, aber auch bicyclische Ringe oder tricyclische Ringe wie zum Beispiel Norbornyl, Adamantanyl, etc. zu verstehen.

5

- Unter den Ringsystemen, bei denen gegebenenfalls ein- oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, sind zum Beispiel Cycloalkenyle wie Cyclopropenyl, Cyclobutenyl, Cyclopentenyl, Cyclohexenyl, 10 Cycloheptenyl zu verstehen, wobei die Anknüpfung sowohl an der Doppelbindung wie auch an den Einfachbindungen erfolgen kann.

- Falls A und B, R³ und R⁴, X und R², jeweils unabhängig voneinander, gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden, der gegebenenfalls durch eine 15 oder mehrere Heteroatome wie Stickstoff-Atome, Sauerstoff-Atome und/ oder Schwefel-Atome unterbrochen sein kann, und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann, und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, sind aber auch die unter Heteroarylrest bzw. Heterocycloalkyl und 20 Heterocycloalkenyl genannten Definitionen zu verstehen.

Unter Halogen ist jeweils Fluor, Chlor, Brom oder Jod zu verstehen.

- Die Alkenyl-Substituenten sind jeweils geradkettig oder verzweigt, wobei 25 beispielsweise folgenden Reste gemeint sind: Vinyl, Propen-1-yl, Propen-2-yl, But-1-en-1-yl, But-1-en-2-yl, But-2-en-1-yl, But-2-en-2-yl, 2-Methyl-prop-2-en-1-yl, 2-Methyl-prop-1-en-1-yl, But-1-en-3-yl, Ethinyl, Prop-1-in-1-yl, But-1-in-1-yl, But-2-in-1-yl, But-3-en-1-yl, Allyl.
- 30 Unter Alkinyl ist jeweils ein geradkettiger oder verzweigter Alkinyl-Rest zu verstehen, der 2 - 6, bevorzugt 2 - 4 C-Atome enthält. Beispielsweise seien die folgenden Reste genannt: Acetylen, Propin-1-yl, Propin-3-yl, But-1-in-1-yl, But-1-in-4-yl, But-2-in-1-yl, But-1-in-3-yl, etc.

Der Arylrest umfaßt jeweils 3 – 12 Kohlenstoffatome und kann jeweils benzokondensiert sein.

- Beispielsweise seien genannt: Cyclopropenyl, Cyclopentadienyl, Phenyl, Tropyl,
5 Cyclooctadienyl, Indenyl, Naphthyl, Azulenyl, Biphenyl, Fluorenyl, Anthracenyl etc.

- Der Heteroarylrest umfaßt jeweils 3 - 16 Ringatome und kann anstelle des Kohlenstoffs ein- oder mehrere, gleiche oder verschiedene Heteroatome, wie
10 Sauerstoff, Stickstoff oder Schwefel im Ring enthalten, und kann mono-, bi- oder tricyclisch sein, und kann zusätzlich jeweils benzokondensiert sein.

Beispielsweise seien genannt:

- Thienyl, Furanyl, Pyrrolyl, Oxazolyl, Thiazolyl, Imidazolyl, Pyrazolyl, Isoxazolyl,
15 Isothiazolyl, Oxadiazolyl, Triazolyl, Thiadiazolyl, etc. und Benzoderivate davon, wie z. B. Benzofuranyl, Benzothienyl, Benzoxazolyl, Benzimidazolyl, Indazolyl, Indolyl, Isoindolyl, etc.; oder Pyridyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Triazinyl, etc. und Benzoderivate davon, wie z. B. Chinolyl, Isochinolyl, etc.; oder Azocinyl, Indolizinyl, Purinyl, etc. und Benzoderivate davon; oder Chinolinyl,
20 Isochinolinyl, Cinnolinyl, Phthalazinyl, Chinazolinyl, Chinoxalinyl, Naphthyridinyl, Pteridinyl, Carbazolyl, Acridinyl, Phenazinyl, Phenothiazinyl, Phenoxazinyl, Xanthenyl, Oxepinyl, etc.

- Heterocycloalkyl steht für einen 3 – 12 Kohlenstoffatome umfassenden Alkyring, der anstelle des Kohlenstoffes ein oder mehrere, gleich oder verschiedene Heteroatome, wie z. B. Sauerstoff, Schwefel oder Stickstoff enthält.
Als Heterocycloalkyle seien z. B. genannt: Oxiranyl, Oxethanyl, Aziridinyl, Azetidinyl, Tetrahydrofuranyl, Pyrrolidinyl, Dioxolanyl, Imidazolidinyl, Pyrazolidinyl, Dioxanyl, Piperidinyl, Morpholinyl, Dithianyl, Thiomorpholinyl,
30 Piperazinyl, Trithianyl, Chinuclidinyl etc.

Heterocycloalkenyl steht für einen 3 – 12 Kohlenstoffatome umfassenden Alkyring, der anstelle des Kohlenstoffes ein oder mehrere, gleich oder

verschiedene Heteroatome, wie z. B. Sauerstoff, Schwefel oder Stickstoff enthält, und der teilgesättigt ist.

Als Heterocycloalkenyle seien z. B. genannt: Pyran, Thiin, Dihydroazet, etc.

- 5 Ist eine saure Funktion enthalten, sind als Salze die physiologisch verträglichen Salze organischer und anorganischer Basen geeignet, wie beispielsweise die gut löslichen Alkali- und Erdalkalisalze sowie N-Methyl-glukamin, Dimethyl-glukamin, Ethyl-glukamin, Lysin, 1,6-Hexadiamin, Ethanolamin, Glukosamin, Sarkosin, Serinol, Tris-hydroxy-methyl-amino-methan, Aminopropandiol, Sovak-10 Base, 1-Amino-2,3,4-butantriol.

Ist eine basische Funktion enthalten, sind die physiologisch verträglichen Salze organischer und anorganischer Säuren geeignet wie Salzsäure, Schwefelsäure, Phosphorsäure, Zitronensäure, Weinsäure u.a.

15

Besonders wirksam sind solche Verbindungen der allgemeinen Formel (I) in der

- R¹ für Wasserstoff, Halogen, C₁-C₆-Alkyl, Nitro oder für die Gruppe -COR⁵, -OCF₃, -(CH₂)_nR⁵, -S-CF₃ oder -SO₂CF₃ steht,
- R² für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, -N(C₁-C₆-Alkyl)₂, -SO(C₁-C₆-Alkyl), -SO₂(C₁-C₆-Alkyl), C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkyIOAc, Carboxy, Aryl, Heteraryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteraryl, Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl

5

oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein- oder mehrere Stickstoff-, Sauerstoff- und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, oder

10

R²

für die Gruppe

15

steht,

X

für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl) oder für -OC₃-C₁₀-Cycloalkyl welches ein- oder mehrfach, gleich oder verschieden mit einem Heteroaromatensubstituiert sein kann, steht oder

20

X und R²

gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiert sein kann,

5

A und B jeweils unabhängig voneinander für Wasserstoff, Hydroxy,
C₁-C₃-Alkyl, C₁-C₆-Alkoxy oder für die Gruppe -S-CH₃, -SO₂-
C₂H₄-OH, -CO-CH₃, -S-CHF₂, -S-(CH₂)_nCH(OH)CH₂N-
R³R⁴, -CH₂P(O)OR³OR⁴, -S-CF₃, -SO-CH₃, -SO₂CF₃, -
SO₂-(CH₂)_n-N-R³R⁴, -SO₂-NR³R⁴, -SO₂R⁷, -CH-(OH)-CH₃
oder für

stehen, oder

- 5 bilden können,
 R^3 und R^4 jeweils unabhängig voneinander für Wasserstoff, Phenyl,
 Benzyloxy, C₁-C₁₂-Alkyl, C₁-C₆-Alkoxy, C₂-C₄-Alkenyloxy,
 C₃-C₆-Cycloalkyl, Hydroxy, Hydroxy-C₁-C₆-alkyl, Dihydroxy-
 C₁-C₆-alkyl, Heteroaryl, Heterocyclo-C₃-C₁₀-alkyl,
 10 Heteroaryl-C₁-C₃-alkyl,
 gegebenenfalls mit Cyano substituiertes C₃-C₆-Cycloalkyl-
 C₁-C₃-alkyl, oder für
 gegebenenfalls ein- oder mehrfach, gleich oder verschieden
 mit Phenyl, Pyridyl, Phenoxy, C₃-C₆-Cycloalkyl, C₁-C₆-
 15 Alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht,
 wobei das Phenyl selbst ein oder mehrfach, gleich oder
 verschieden mit Halogen, Trifluormethyl, C₁-C₆-Alkyl, C₁-C₆-
 Alkoxy oder mit der Gruppe $-SO_2NR^3R^4$ substituiert sein
 kann,
 20 oder für die Gruppe $-(CH_2)_nNR^3R^4$, $-CNHNH_2$ oder $-NR^3R^4$
 oder für

5

stehen, welche gegebenenfalls mit C₁-C₆-Alkyl substituiert sein können,

R⁵ für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht,

R⁶ für die Gruppe

10

R⁷

für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, -C₂H₄OH, -NR³R⁴, oder die Gruppe

steht,

R⁸, R⁹ und

R¹⁰ jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl oder für die Gruppe

5

stehen und

n für 0 – 6 steht, bedeuten, sowie deren Isomeren,

10 Enantiomeren, Diastereomeren und Salze.

Als ganz besonders wirksam haben sich solche Verbindungen der allgemeinen Formel I erwiesen, in der

15 R¹ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder für die Gruppe -(CH₂)_nR⁵ steht,

R² für -CH(CH₃)-(CH₂)_n-R⁵, -CH-(CH₂OH)₂, -(CH₂)_nR⁷,

-CH(C₃H₇)-(CH₂)_n-R⁵, -CH(C₂H₅)-(CH₂)_n-R⁵, -CH₂-CN,
 -CH(CH₃)COCH₃, -CH(CH₃)-C(OH)(CH₃)₂,
 -CH(CH(OH)CH₃)OCH₃, -CH(C₂H₅)CO-R⁵, C₂-C₄-Alkinyl,
 -(CH₂)_n-COR⁵, -(CH₂)_n-CO-C₁-C₆-Alkyl, -(CH₂)_n-C(OH)(CH₃)-
 5 Phenyl, -CH(CH₃)-C(CH₃)-R⁵, -CH(CH₃)-C(CH₃)(C₂H₅)-R⁵,
 -CH(OCH₃)-CH₂-R⁵, -CH₂-CH(OH)-R⁵, -CH(OCH₃)-CHR⁵-
 CH₃, -CH(CH₃)-CH(OH)-CH₂-CH=CH₂, -CH(C₂H₅)-CH(OH)-
 (CH₂)_n-CH₃, -CH(CH₃)-CH(OH)-(CH₂)_n-CH₃, -CH(CH₃)-
 10 CH(OH)-CH(CH₃)₂, (CH₂OAC)₂, -(CH₂)_n-R⁶, -(CH₂)_n-(CF₂)_n-
 CF₃, -CH(CH₂)_n-R⁵)₂, -CH(CH₃)-CO-NH₂, -CH(CH₂OH)-
 Phenyl, -CH(CH₂OH)-CH(OH)-(CH₂)_nR⁵, -CH(CH₂OH)-
 CH(OH)-Phenyl, -CH(CH₂OH)-C₂H₄-R⁵, -(CH₂)_n-C≡C-
 C(CH₃)=CH-COR⁵, -CH(Ph)-(CH₂)_n-R⁵, -(CH₂)_n-COR⁵, -
 (CH₂)_nPO₃(R⁵)₂, -(CH₂)_n-COR⁵, -CH((CH₂)_nOR⁵)CO-R⁵, -
 15 (CH₂)_nCONHCH((CH₂)_nR⁵)₂, -(CH₂)_nNH-COR⁵, -
 CH(CH₂)_nR⁵-(CH₂)_nC₃-C₁₀-Cycloalkyl, -(CH₂)_n-C₃-C₁₀-
 Cycloalkyl, C₃-C₁₀-Cycloalkyl, gegebenenfalls ein- oder
 mehrfach, gleich oder verschieden mit Hydroxy, C₁-C₆-Alkyl
 oder der Gruppe -COONH(CH₂)_nCH₃ oder -NR³R⁴
 20 substituiertes C₁-C₆-Alkyl, C₃-C₁₀-Cycloalkyl, -(CH₂)_n-O-
 (CH₂)_n-R⁵, -(CH₂)_n-NR³R⁴,
 -CH(C₃H₇)-(CH₂)_n-OC(O)-(CH₂)_n-CH₃, -(CH₂)_n-R⁵,
 -C(CH₃)₂-(CH₂)_n-R⁵, -C(CH₂)_n(CH₃)-(CH₂)_nR⁵,
 -C(CH₂)_n-(CH₂)_nR⁵, -CH(t-Butyl)-(CH₂)_n-R⁵,
 25 -CCH₃(C₃H₇)-(CH₂)_nR⁵, -CH(C₃H₇)-(CH₂)_n-R⁵,
 -CH(C₃H₇)-COR⁵, -CH(C₃H₇)-(CH₂)_n-OC(O)-NH-Ph,
 -CH((CH₂)_n(C₃H₇))-(CH₂)_nR⁵,
 -CH(C₃H₇)-(CH₂)_n-OC(O)-NH-Ph(OR⁵)₃, -NR³R⁴,
 -NH-(CH₂)_n-NR³R⁴, R⁵-(CH₂)_n-C^{*}H-CH(R⁵)-(CH₂)_n-R⁵,
 30 -(CH₂)_n-CO-NH-(CH₂)_n-CO-R⁵, -OC(O)NH-C₁-C₆-Alkyl oder
 -(CH₂)_n-CO-NH-(CH₂)_n-CH-((CH₂)_nR⁵)₂,
 oder für C₃-C₁₀-Cycloalkyl steht, welches mit der Gruppe

5

substituiert ist, oder für die Gruppe

oder

10

steht,

X

für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl)
oder

5 R²

steht, oder
für die Gruppe

10

X und R² gemeinsam eine Gruppe

15

A und B bilden,
jeweils unabhängig voneinander für Wasserstoff, Hydroxy,
C₁-C₃-Alkyl, C₁-C₆-Alkoxy oder für die Gruppe -S-CH₃,
-SO₂-C₂H₄-OH, -CO-CH₃, -S-CHF₂,
-S-(CH₂)_nCH(OH)CH₂N-R³R⁴, -CH₂PO(OC₂H₅)₂, -S-CF₃,
-SO-CH₃, -SO₂CF₃, -SO₂-(CH₂)_n-N-R³R⁴, -SO₂-NR³R⁴,
-SO₂R⁷, -CH(OH)-CH₃, -COOH, -CH((CH₂)_nR⁵)₂, -(CH₂)_nR⁵,
-COO-C₁-C₆-Alkyl, -CONR³R⁴ oder für

5

stehen, oder

A und B gemeinsam eine Gruppe

5

bilden können,

- 10 R³ und R⁴ jeweils unabhängig voneinander für Wasserstoff, Phenyl, Benzyloxy, C₁-C₁₂-Alkyl, C₁-C₆-Alkoxy, C₂-C₄-Alkenyloxy, C₃-C₆-Cycloalkyl, Hydroxy, Hydroxy-C₁-C₆-alkyl, Dihydroxy-C₁-C₆-alkyl, Heteroaryl, Heterocyclo-C₃-C₁₀-alkyl, Heteroaryl-C₁-C₃-alkyl,
- 15 gegebenenfalls mit Cyano substituiertes C₃-C₆-Cycloalkyl-C₁-C₃-alkyl, oder für gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenoxy, C₃-C₆-Cycloalkyl, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder mit der Gruppe -SO₂NR³R⁴ substituiert sein kann,
- 20 oder für die Gruppe -(CH₂)_nNR³R⁴, -CNHNH₂ oder -NR³R⁴ oder für
- 25

5

10

R^5 für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl,

Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht,

R^6 für die Gruppe

steht,

- 5 R⁷ für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, -(CH₂)_nOH,
 -NR³R⁴ oder die Gruppe

- 10 steht,
 R⁸, R⁹ und
 R¹⁰ für Wasserstoff, Hydroxy, C₁-C₆-Alkyl oder für die Gruppe
 -(CH₂)_n-COOH stehen, und
 n für 0 – 6 stehen, bedeuten, sowie deren Isomeren,
 15 Diastereoisomeren, Enantiomeren und Salze.

Die erfindungsgemäßen Verbindungen inhibieren im wesentlichen Zyklin-abhängige Kinasen, worauf auch deren Wirkung zum Beispiel gegen Krebs, wie
 20 solide Tumoren und Leukämie, Autoimmunerkrankungen wie Psoriasis, Aloperzie, und Multiple Sklerose, Chemotherapeutika-induzierte Aloperzie und Mukositis, kardiovaskuläre Erkrankungen, wie Stenosen, Arteriosklerosen und Restenosen, infektiöse Erkrankungen, wie z. B. durch unizelluläre Parasiten, wie Trypanosoma, Toxoplasma oder Plasmodium, oder durch Pilze hervorgerufen,
 25 nephrologische Erkrankungen, wie z. B. Glomerulonephritis, chronische neurodegenerative Erkrankungen, wie Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung, akute neurodegenerative Erkrankungen, wie Ischämien des Gehirns und Neurotraumata, virale Infektionen, wie z. B.
 30 Cytomegalus-Infektionen, Herpes, Hepatitis B und C, und HIV Erkrankungen basiert.

- Der eukaryote Zellteilungszyklus stellt die Duplikation des Genoms und seine Verteilung auf die Tochterzellen sicher, indem er eine koordinierte und regulierte Abfolge von Ereignissen durchläuft. Der Zellzyklus wird in vier
- 5 aufeinanderfolgende Phasen eingeteilt: die G1 Phase repräsentiert die Zeit vor der DNA-Replikation, in der die Zelle wächst und für externe Stimuli empfänglich ist. In der S Phase repliziert die Zelle ihre DNA, und in der G2 Phase bereitet sie sich auf den Eintritt in die Mitose vor. In der Mitose (M Phase) wird die replizierte DNA getrennt und die Zellteilung vollzogen.
- 10 Die Zyklin-abhängigen Kinasen (CDKs), eine Familie von Serin/Threonin-Kinasen, deren Mitglieder die Bindung eines Zylklin (Cyc) als regulatorische Untereinheit zu ihrer Aktivierung benötigen, treiben die Zelle durch den Zellzyklus. Unterschiedliche CDK/Cyc Paare sind in den verschiedenen Phasen
- 15 des Zellzyklus aktiv. Für die grundlegende Funktion des Zellzyklus bedeutende CDK/Cyc Paare sind beispielsweise CDK4(6)/CycD, CDK2/CycE, CDK2/CycA, CDK1/CycA und CDK1/CycB. Einige Mitglieder der CDK-Enzymfamilie haben eine regulatorische Funktion indem sie die Aktivität der vorgenannten Zellzyklus-CDKs beeinflussen, während anderen Mitgliedern der CDK-Enzymfamilie noch
- 20 keine bestimmte Funktion zugeordnet werden konnte. Eine von diesen, CDK5, zeichnet sich dadurch aus, daß sie eine atypische, von den Zyklinen abweichende, regulatorische Untereinheit besitzt (p35), und ihre Aktivität im Gehirn am höchsten ist.
- 25 Der Eintritt in den Zellzyklus und das Durchlaufen des "Restriction Points", der die Unabhängigkeit einer Zelle von weiteren Wachstumssignalen für den Abschluß der begonnenen Zellteilung markiert, werden durch die Aktivität der CDK4(6)/CycD und CDK2/CycE Komplexe kontrolliert. Das wesentliche Substrat dieser CDK-Komplexe ist das Retinoblastoma-Protein (Rb), das Produkt des
- 30 Retinoblastoma Tumorsuppressor Gens. Rb ist ein transkriptionelles Ko-Repressor Protein. Neben anderen noch weitgehend unverstandenen Mechanismen, bindet und inaktiviert Rb Transkriptionsfaktoren vom E2F-Typ, und bildet transkriptionelle Repressorkomplexe mit Histon-Deacetylasen

- (HDAC) (Zhang H.S. et al. (2000). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. *Cell* 101, 79-89). Durch die Phosphorylierung des Rb durch CDKs werden gebundene E2F Transkriptionsfaktoren freigesetzt und führen zu
- 5 transkriptioneller Aktivierung von Genen, deren Produkte für die DNA Synthese und die Progression durch die S-Phase benötigt werden. Zusätzlich bewirkt die Rb-Phosphorylierung die Auflösung der Rb-HDAC Komplexe, wodurch weitere Gene aktiviert werden. Die Phosphorylierung von Rb durch CDK's ist mit dem Überschreiten des "Restriction Points" gleichzusetzen. Für die Progression
- 10 durch die S-Phase und deren Abschluß ist die Aktivität der CDK2/CycE und CDK2/CycA Komplexe notwendig, z. B. wird die Aktivität der Transkriptionsfaktoren vom E2F-Typ mittels Phosphorylierung durch CDK2/CycA abgeschaltet sobald die Zellen in die S-Phase eingetreten sind. Nach vollständiger Replikation der DNA steuert die CDK1 im Komplex mit CycA
- 15 oder CycB den Eintritt und das Durchlaufen der Phasen G2 und M (Abb. 1).

Entsprechend der außerordentlichen Bedeutung des Zellteilungszyklus ist das Durchlaufen des Zyklus streng reguliert und kontrolliert. Die Enzyme, die für die Progression durch den Zyklus notwendig sind, müssen zu dem richtigen

20 Zeitpunkt aktiviert werden, und auch wieder abgeschaltet werden sobald die entsprechende Phase durchlaufen ist. Entsprechende Kontrollpunkte ("Checkpoints") arretieren die Progression durch den Zellzyklus falls DNA-Schäden detektiert werden, oder die DNA-Replikation, oder der Aufbau des Spindelapparates noch nicht beendet ist.

25 Die Aktivität der CDKs wird durch verschiedene Mechanismen, wie Synthese und Degradation der Zykline, Komplexierung der CDKs mit den entsprechenden Zyklinen, Phosphorylierung und Dephosphorylierung regulatorischer Threonin- und Tyrosin-Reste, und die Bindung natürlicher inhibitorischer Proteine, direkt kontrolliert. Während die Proteinmenge der CDKs in einer proliferierenden Zelle

30 relativ konstant ist, oszilliert die Menge der einzelnen Zykline mit dem Durchlaufen des Zyklus. So wird zum Beispiel die Expression von CycD während der frühen G1 Phase durch Wachstumsfaktoren stimuliert, und die Expression von CycE wird nach Überschreiten des "Restriction Points" durch die

Aktivierung der Transkriptionsfaktoren vom E2F-Typ induziert. Die Zykline selbst werden durch Ubiquitin-vermittelte Proteolyse abgebaut. Aktivierende und inaktivierende Phosphorylierungen regulieren die Aktivität der CDK's, zum Beispiel phosphorylieren CDK-aktivierende Kinassen (CAKs) Thr160/161 der

5 CDK1, wohingegen die Familie der Wee1/Myt1 Kinassen CDK1 durch Phosphorylierung von Thr14 und Tyr15 inaktivieren. Diese inaktivierenden Phosphorylierungen können durch cdc25 Phosphatasen wieder aufgehoben werden. Sehr bedeutsam ist die Regulation der Aktivität der CDK/Cyc-Komplexe durch zwei Familien natürlicher CDK Inhibitorproteine (CKIs), den

10 Proteinprodukten der p21 Genfamilie (p21, p27, p57) und der p16 Genfamilie (p15, p16, p18, p19). Mitglieder der p21 Familie binden an Zyklin-Komplexe der CDKs 1,2,4,6, inhibieren aber nur Komplexe die CDK1 oder CDK2 enthalten. Mitglieder der p16 Familie sind spezifische Inhibitoren der CDK4- und CDK6-Komplexe.

15 Oberhalb dieser komplexen direkten Regulation der Aktivität der CDKs liegt die Ebene der Kontrollpunkt-Regulation. Kontrollpunkte erlauben der Zelle das geordnete Ablauen der einzelnen Phasen während des Zellzykluses zu verfolgen. Die wichtigsten Kontrollpunkte liegen am Übergang von G1 nach S

20 und von G2 nach M. Der G1-Kontrollpunkt stellt sicher, daß die Zelle keine DNA-Synthese beginnt falls sie nicht entsprechend ernährt ist, mit anderen Zellen oder dem Substrat korrekt interagiert, und ihre DNA intakt ist. Der G2/M Kontrollpunkt stellt die vollständige Replikation der DNA und den Aufbau der mitotischen Spindel sicher, bevor die Zelle in die Mitose eintritt. Der G1

25 Kontrollpunkt wird von dem Genprodukt des p53 Tumorsuppressorgens aktiviert. p53 wird nach Detektion von Veränderungen im Metabolismus oder der genomischen Integrität der Zelle aktiviert und kann entweder einen Stopp der Zellzyklusprogression oder Apoptose auslösen. Dabei spielt die transkriptionelle Aktivierung der Expression des CDK Inhibitorproteins p21 eine

30 entscheidende Rolle. Ein zweiter Zweig des G1 Kontrollpunktes umfaßt die Aktivierung der ATM und Chk1 Kinassen nach DNA-Schädigung durch UV-Licht oder ionisierende Strahlung und schließlich die Phosphorylierung und den nachfolgenden proteolytischen Abbau der cdc25A Phosphatase (Mailand N. et

- a/. (2000). Rapid destruction of human cdc25A in response to DNA damage. *Science* 288, 1425-1429). Daraus resultiert eine Arretierung des Zellzykluses, da die inhibitorische Phosphorylierung der CDKs nicht entfernt wird. Nach Aktivierung des G2/M Kontrollpunktes durch Schädigung der DNA sind beide
- 5 Mechanismen in ähnlicher Weise daran beteiligt, die Progression durch den Zellzyklus zu stoppen.

Der Verlust der Regulation des Zellzyklusses und der Verlust der Funktion der Kontrollpunkte sind Charakteristika von Tumorzellen. Der CDK-Rb-Signalweg ist

10 in über 90% humaner Tumorzellen von Mutationen betroffen. Diese Mutationen, die schließlich zur inaktivierenden Phosphorylierung des RB führen, schließen die Überexpression von D- und E-Zyklinen durch Genamplifikation oder chromosomal Translokationen, inaktivierende Mutationen oder Deletionen von CDK-Inhibitoren des p16-Typs, sowie erhöhten (p27) oder verminderten (CycD)

15 Proteinabbau ein. Die zweite Gruppe von Genen, die durch Mutationen in Tumorzellen getroffen sind, kodiert für Komponenten der Kontrollpunkte. So ist p53, das essentiell für die G1 und G2/M Kontrollpunkte ist, das am häufigsten mutierte Gen in humanen Tumoren (ca. 50%). In Tumorzellen, die p53 ohne Mutation exprimieren, wird es häufig aufgrund einer stark erhöhten

20 Protein degradation inaktiviert. In ähnlicher Weise sind die Gene anderer für die Funktion der Kontrollpunkte notwendiger Proteine von Mutationen betroffen, zum Beispiel ATM (inaktivierende Mutationen) oder cdc25 Phosphatasen (Überexpression).

25 Überzeugende experimentelle Daten deuten darauf hin, daß CDK2/Cyc-Komplexe eine entscheidende Position während der Zellzyklusprogression einnehmen: (1) Sowohl dominant-negative Formen der CDK2, wie die transkriptionelle Repression der CDK2 Expression durch anti-sense Oligonukleotide bewirken einen Stopp der Zellzyklusprogression. (2) Die

30 Inaktivierung des CycA Gens in Mäusen ist letal. (3) Die Störung der Funktion des CDK2/CycA Komplexes in Zellen mittels zell-permeabler Peptide führte zur Tumorzell-selektiven Apoptose (Chen Y.N.P. et al. (1999). Selective killing of

transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. *Proc. Natl. Acad. Sci. USA* 96, 4325-4329).

- Veränderungen der Zellzykluskontrolle spielen nicht nur bei Krebserkrankungen
- 5 ein Rolle. Der Zellzyklus wird durch eine Reihe von Viren, sowohl durch transformierende, wie durch nicht-transformierende, aktiviert um die Vermehrung der Viren in der Wirtszelle zu ermöglichen. Der fälschliche Eintritt in den Zellzyklus von normalerweise post-mitotischen Zellen wird mit verschiedenen neurodegenerativen Erkrankungen in Zusammenhang gebracht .
- 10 Die Mechanismen der Zellzyklusregulation, ihrer Veränderungen in Krankheiten und eine Vielzahl von Ansätzen zur Entwicklung von Inhibitoren der Zellzyklusprogression und speziell der CDKs wurden bereits in mehreren Publikationen ausführlich zusammenfassend beschrieben (Sielecki T.M. et al. (2000). Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation.
- 15 *J. Med. Chem.* 43, 1-18; Fry D.W. & Garrett M.D. (2000). Inhibitors of cyclin-dependent kinases as therapeutic agents for the treatment of cancer. *Curr. Opin. Oncol. Endo. Metab. Invest. Drugs* 2, 40-59; Rosiania G.R. & Chang Y.T. (2000). Targeting hyperproliferative disorders with cyclin dependent kinase inhibitors. *Exp. Opin. Ther. Patents* 10, 215-230; Meijer L. et al. (1999).
- 20 Properties and potential applications of chemical inhibitors of cyclin-dependent kinases. *Pharmacol. Ther.* 82, 279-284; Senderowicz A.M. & Sausville E.A. (2000). Preclinical and clinical development of cyclin-dependent kinase modulators. *J. Natl. Cancer Inst.* 92, 376-387).
- 25 Zur Verwendung der erfindungsgemäßen Verbindungen als Arzneimittel werden diese in die Form eines pharmazeutischen Präparats gebracht, das neben dem Wirkstoff für die enterale oder parenterale Applikation geeignete pharmazeutische, organische oder anorganische inerte Trägermaterialien, wie zum Beispiel, Wasser, Gelatine, Gummi arabicum, Milchzucker, Stärke,
- 30 Magnesiumstearat, Talk, pflanzliche Öle, Polyalkylenglykole usw. enthält. Die pharmazeutischen Präparate können in fester Form, zum Beispiel als Tabletten, Dragees, Suppositorien, Kapseln oder in flüssiger Form, zum Beispiel als Lösungen, Suspensionen oder Emulsionen vorliegen. Gegebenenfalls enthalten

sie darüber hinaus Hilfsstoffe, wie Konservierungs-, Stabilisierungs-, Netzmittel oder Emulgatoren; Salze zur Veränderung des osmotischen Drucks oder Puffer. Diese pharmazeutischen Präparate sind ebenfalls Gegenstand der vorliegenden Erfindung.

5

Für die parenterale Anwendung sind insbesondere Injektionslösungen oder Suspensionen, insbesondere wässrige Lösungen der aktiven Verbindungen in polyhydroxyethoxyliertem Rizinusöl, geeignet.

10 Als Trägersysteme können auch grenzflächenaktive Hilfsstoffe wie Salze der Gallensäuren oder tierische oder pflanzliche Phospholipide, aber auch Mischungen davon sowie Liposomen oder deren Bestandteile verwendet werden.

15 Für die orale Anwendung sind insbesondere Tabletten, Dragees oder Kapseln mit Talkum und/oder Kohlenwasserstoffträger oder -binder, wie zum Beispiel Lactose, Mais- oder Kartoffelstärke, geeignet. Die Anwendung kann auch in flüssiger Form erfolgen, wie zum Beispiel als Saft, dem gegebenenfalls ein Süßstoff beigefügt ist.

20

Die enteralen, parenteralen und oralen Applikationen sind ebenfalls Gegenstand der vorliegenden Erfindung.

25 Die Dosierung der Wirkstoffe kann je nach Verabfolgungsweg, Alter und Gewicht des Patienten, Art und Schwere der zu behandelnden Erkrankung und ähnlichen Faktoren variieren. Die tägliche Dosis beträgt 0,5-1000 mg, vorzugsweise 50-200 mg, wobei die Dosis als einmal zu verabreichende Einzeldosis oder unterteilt in 2 oder mehreren Tagesdosen gegeben werden kann.

30 Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der Verbindungen der allgemeinen Formel I, zur Herstellung eines Arzneimittels zur Behandlung von Krebs, Autoimmunerkrankungen, kardiovaskulären Erkrankungen, Chemotherapeutika-induzierter Alopezie und Mukositis,

- infektiösen Erkrankungen, nephrologischen Erkrankungen, chronischen und akuten neurodegenerativen Erkrankungen und viralen Infektionen, wobei unter Krebs solide Tumoren und Leukämie, unter Autoimmunerkrankungen Psoriasis, Alopecia und Multiple Sklerose, unter kardiovaskulären Erkrankungen Stenosen,
- 5 Arteriosklerosen und Restenosen, unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen, unter nephrologischen Erkrankungen Glomerulonephritis, unter chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung,
- 10 unter akut neurodegenerativen Erkrankungen Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen Cytomegalus-Infektionen, Herpes, Hepatitis B oder C, und HIV Erkrankungen zu verstehen sind.

Ebenfalls Gegenstand der vorliegenden Erfindung sind Arzneimittel zur Behandlung der oben aufgeführten Erkrankungen, die mindestens eine Verbindung gemäß der allgemeinen Formel I enthalten, sowie Arzneimittel mit geeigneten Formulierungs- und Trägerstoffen.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I sind unter anderem hervorragende Inhibitoren der Zyklin-abhängigen Kinasen, wie CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 und CDK9, sowie der Glycogen-Synthase-Kinase (GSK-3β).

Soweit die Herstellung der Ausgangsverbindungen nicht beschrieben wird, sind diese bekannt oder analog zu bekannten Verbindungen oder hier beschriebenen Verfahren herstellbar. Es ist ebenfalls möglich, alle hier beschriebenen Umsetzungen in Parallel-Reaktoren oder mittels kombinatorischer Arbeitstechniken durchzuführen.

Die Isomerengemische können nach üblichen Methoden wie beispielsweise Kristallisation, Chromatographie oder Salzbildung in die Enantiomeren bzw. E/Z-Isomeren aufgetrennt werden.

Die Herstellung der Salze erfolgt in üblicher Weise, indem man eine Lösung der Verbindung der Formel I mit der äquivalenten Menge oder einem Überschuß

einer Base oder Säure, die gegebenenfalls in Lösung ist, versetzt und den Niederschlag abtrennt oder in üblicher Weise die Lösung aufarbeitet.

Herstellung der erfindungsgemäßen Verbindungen

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen

- 5 Verbindungen, ohne den Umfang der beanspruchten Verbindungen auf diese Beispiele zu beschränken.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I lassen sich nach folgenden allgemeinen Verfahrensschemata herstellen:

10 Schema 1

Schema 2

15 Z = O oder NH

Schema 3

Beispiel 1

- 5 Herstellung von 5-Brom-N₂-(4-difluorormethylthiophenyl)-N₄-2-propynyl-2,4-pyrimidindiamin (erfolgt nach Verfahrensschema 1) (Verbindung 23).

245 mg (1 mmol) 2-Chlor-4-2-propynylaminopyrimidin werden in 2 ml Acetonitril gelöst und eine Suspension von 4-(Difluormethylthio)-anilinhydrochlorid [hergestellt aus 352 mg (2 mmol) 4-(Difluormethylthio)-Anilin, 1 ml Acetonitril and 0,5 ml wässrige HCl (4M in Dioxan)] wird bei Raumtemperatur hinzugegeben. Anschließend wird das Reaktionsgemisch über Nacht unter N₂-Atmosphäre am Rückfluss erhitzt. Nach Abkühlung wird das Gemisch filtriert, die verbleibende feste Phase wird mit H₂O gewaschen und getrocknet. Eine Ausbeute von 328 mg (85%) des Produktes ist zu erwarten.

	6H	8.25 (s,1H)	Ausbeute:
	2C	7.86 (d,2H)	85%
	H	7.51 (d,2H)	
		7.38	
		(t,56.8Hz,1H)	Schmelzpunkt:
			>235°C
	4C	4.18 (m,2H)	
	H	3.16 (sb,1H)	
		10.24 (sb,1H)	
	NH	8.17 (sb,1H)	

Beispiel 2

- 5 Herstellung von 5-Brom-N-(3-(oxiranylmethoxy)phenyl)-2-(2-propynyloxy)-2-pyrimidinamin (Verbindung 51) und erfolgt nach Verfahrensschema 2.

1,55 g (4.9 mmol) der Verbindung 20 werden in 5,5 ml Epibromhydrin gelöst, 1,38 g K₂CO₃ und 65 mg Tetrabutylammoniumbromid werden dazu gegeben.

- 10 Das Reaktionsgemisch wird unter Stickstoffatmosphäre bei 100°C 1 Stunde gerührt. Nach Zugabe von Ethylacetat wird das resultierende Präzipitat gesammelt und vom Ethanol umkristallisiert. Die Produktausbeute beträgt 1,15 g (62%) als weißes Pulver.

	6H	8.45 (s,1H)	
	2CH	7.47 (s,1H)	
		7.32 (d,1H)	Ausbeute: 62%
		7.20 (t,1H)	
		6.40 (d,1H)	Schmelzpunkt: 173°C
		4.32 (dd,1H)	
		3.82 (dd,1H)	
		3.3-3.4(m,1H)	
		2.87 (t,1H)	
		2.72 (dd,1H)	
	4CH	5.13 (d,2H)	
		3.67 (t,1H)	
	NH	9.84 (sb,1H)	

15

Die Substanz 40 wird analog zu Beispiel 2 hergestellt

6-H 8.36 (s,1H)
2CH 7.60 (d,1H)
 6.91 (d,1H)
 4.28 (dd,1H)
 3.79 (dd,1H)
 3.31 (m,1H)
 2.84 (dd,1H)
 2.70 (dd,1H)

Chromatographie:
H/EA 1:3 0.5%TEA
Ausbeute: 38%
Schmelzpunkt: 140-141°C

4CH 5.07 (d,12H)
 3.65 (t,1H)
NH 9.65 (sb,1H)
OH

Beispiel 3

- Herstellung 1-(4-((5-Brom-4-(2-propynyloxy)-pyrimidin-2-yl)-amino)phenoxy)-3-5 (4-phenylpiperazin-1-yl)-2-propanol (Verbindung 41).

Zu einer Lösung von 19 mg (0.05 mM) der Substanz 51 in N,N'-Dimethylpropylharnstoff (DMPU) werden 0.2 ml einer 0.5 M 4-Phenylpiperazin-Lösung in DMPU gegeben. Das Reaktionsgemisch wird für 18 Stunden bei einer 10 Temperatur von 80°C gehalten. Nach dem Abkühlen werden 3,5 ml tertiärer Butylmethylether hinzugegeben und die organische Phase wird 5 mal mit 1,5 ml H₂O extrahiert und anschließend im Vakuum evaporiert. Der verbleibende Rest wird an 1,7g (15 µM) Lichrosphere Si60 (Gradient: Dichloromethan / Hexan 1:1 zu DCM und dann Dichloromethan / Methanol 99:1 bis 93:7) chromatographiert.

15 Eine Produktausbeute von 17 mg (64%) wird erreicht.

In analoger Verfahrensweise werden auch die folgenden Verbindungen hergestellt:

Nr.	Struktur	Nr.	Struktur	Nr.	Struktur
96		97		98	
99		100		101	
102		103		104	
105		106		107	
108		109		110	
111		112		113	

Nr.	Struktur	Nr.	Struktur	Nr.	Struktur
114		115		116	
117		118		119	

Folgende Verbindungen wurden in analoger Verfahrensweise zu den beschriebenen Beispielen hergestellt.

Nr.	Struktur	Name
28		5-Brom-N2-(4-(2-Diethylaminoethylsulfonyl)phenyl)-N4-2-propynyl-2,4-pyrimidindiamin
30		1-(4-[5-Bromo-4-(2-propynylamino)-2-pyrimidinyl]amino-phenylthio)-3-(diethylamino)-2-propanol
32		5-Brom-N2-(3-phenylsulfonylphenyl)-N4-2-propynyl-2,4-pyrimidindiamin

Nr	Struktur	Name
33		N-[4-[[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]amino]-benzolsulfonyl]morpholin
41		1-(4-((5-Brom-4-(2-propynyoxy)-pyrimidin-2-yl)-amino)phenoxy)-3-(4-phenylpiperazin-1-yl)-2-propanol
57		N-[5-Brom-4-((2R)-1-hydroxy-4-methyl-2-butylamino)-2-pyrimidinyl]-indazol-5-amin
58		4-[[5-Fluor-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-pyrimidinyl]amino]-benzolsulfonamid
59		4-[[5-Iod-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-pyrimidinyl]amino]-benzolsulfonamid
62		4-[[5-Fluor-4-(2-propynylamino)-2-pyrimidinyl]amino]-benzolsulfonamid
65		4-[[5-Ethyl-4-(2-propynylamino)-2-pyrimidinyl]amino]-benzolsulfonamid
66		1-[4-[(5-Iod-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-pyrimidinyl)amino]phenyl]-ethanon

Nr	Struktur	Name
68		1-[4-[(5-Ethyl-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-pyrimidinyl)amino]phenyl]-ethanon
72		4-[[5-Brom-4-(2-(2-oxo-imidazolin-1-yl)ethylamin)-2-pyrimidinyl]amino]-benzolsulfonamid
73		4-[[5-Brom-4-(2,2,3,3,3-pentafluoropropoxy)-2-pyrimidinyl]amino]-benzolsulfonamid
75		4-[[5-Brom-4-(1,3-bisacetoxy-2-propoxy)-2-pyrimidinyl]amino]-benzolsulfonamid
76		4-[[5-Brom-4-(1,3-dihydroxy-2-propoxy)-2-pyrimidinyl]amino]-benzolsulfonamid
79		N-[(5-Brom-2-(4-sulfamoylphenyl)amino)-4-yl]-L-alanineamid
83		1-[4-[(5-Brom-4-(2-propynylamino)-2-pyrimidinyl)amino]phenyl]-ethanol

Folgende Verbindungen wurden analog zu den beschriebenen

Syntheseverfahren gemäß Schema 1 oder 2 hergestellt:

Alle NMR-Spektren werden in angegebenem Lösungsmittel gemessen oder in DMSO.

5

Bsp.-Nr.	37	38	39	5
6-H	8.34 (s,1H)	8.39 (s,1H)	8.30 (s,1H)	8.00 (s,1H)
2CH	12.88 (sb,1H) 8.07 (s,1H) 7.93 (s,1H) 7.41 (d,1H) 7.56	9.28 (s,1H) 8.79 (s,1H) 7.70 (d,1H) 8.04 (d,1H)	7.74 (s,1H) 7.44 (d,1H) 7.22 (d,1H) 3.98 (t,2H) 3.13 (t,2H) 2.99 (s,3H)	7.52 (d,2H) 6.65 (d,2H)
4CH	(dd,1H)	4.19 (d,2H) 3.22 (sb,1H)	4.16 (d,2H) 3.28 (sb,1H)	4.09 (d,2H) 3.09 (s,1H)
NH	4.15 (dd,2H) 3.18 (t,1H) 9.30 (sb,1H) 7.39 (tb,1H)	10.43(sb,1H) 8.45 (sb,1H)	10.6(1H) 8.75 (1H)	9.00 (s,1H) 8.96 (s,1H) 7.31 (t,1H)
Chro- mato- graphie	EA + 0.5% TEA 10%	- 36%	Kristallisiert MeOH 73%	- 20%
Aus- beute				
Schmp.	231°C	>235°C	237°C	157°C

Beispiel Nr.	16	24	26	35
6-H	8.80 (s,1H)	8.30 (s,1H)	8.18 (s,1H)	8.14 (s,1H)
2CH	7.67 (d,2H) 7.27 (d,2H) 2.47 (s,3H)	7.94 (d,2H) 7.63 (d,2H)	7.67 (s,1H) 7.54 (d,1H) 7.24 (t,1H) 6.92 (d,1H)	8.28 (s,1H) 7.98 (d,1H) 7.41 (t,1H) 7.25 (d,1H)
4CH	4.17 (dd,2H) 3.75 (t,1H)	4.17 (dd,2H) 3.18 (t,1H)	4.20 (dd,2H) 3.12 (sb,1H)	4.14 (dd,2H) 3.04 (sb,1H)
NH	10.55 (sb,1H) 8.68 (sb,1H)	10.45 (sb,1H) 8.22 (sb,1H)	9.78 (sb,1H) 7.95 (sb,1H)	9.58 (sb,1H) 7.46 (sb,1H)
Chrom.	-	-	-	-
Aus- beute	94%	86%	73%	69%
Schmp.	232-234°C	160°C	194°C	143°C

Beispiel Nr.	27	36	34	21
6-H	8.18 (s,1H)	8.26 (s,1H)	8.25 (s,1H)	8.17 (s,1H)
2CH	8.73 (s,1H) 7.62 (d,1H) 7.72 (t,1H) 8.31 (d,1H)	8.12 (s,1H) 7.35- 7.55(m,3H) 8.06 (d,1H)	8.16 (s,1H) 7.43 (d,1H) 7.52 (t,1H) 8.01 (d,1H) 2.78 (m,2H) 1.35 (mc,2H) 1.24 (mc,2H) 0.80 (t,3H)	8.74 (s,1H) 7.43 (d,1H) 7.52 (t,1H) 8.08 (d,1H) 3.43 (t,2H) 3.70 (t,2H)
4CH	4.18 (dd,2H) 3.06 (t,1H)	4.21 (d,2H)	4.21 (d,2H) 3.09 (sb,1H)	4.20 (dd,2H) 3.08 (t,1H)
NH	10.02 (s,1H) 7.49 (sb,1H)	3.09 (sb,1H) 9.68 (sb,1H)	10.3 (sb,1H) 8.13 (sb,1H)	9.79 (s,1H) 7.55 (tb,1H)
OH		7.30 (sb,2H)		4.90 (sb,1H)
Chrom.	-	krist.EtOH	-	-
Aus-beute	69%	64%	87%	59%
Schmp.	144°C	219°C	220°C	192.5- 193.5°C

Beispiel Nr.	31	25	23	11
6-H	8.25 (s,1H)	8.14 (s,1H)	8.25 (s,1H)	8.29 (s,1H)
2CH	7.65 (d,2H) 7.24 (d,2H) 3.19 (d,21.3Hz,2 H) 3.95	8.01 (d,2H) 7.56 (d,2H) 2.70 (s,3H)	7.86 (d,2H) 7.51 (d,2H) 7.38 (t,56.8Hz,1H)	7.95 (d,2H) 7.78 (d,2H)
4CH	(mc,4H)	4.15 (dd,2H)	4.18 (m,2H)	4.19 (d,2H)
NH	1.20 (t,6H) 4.17 (sb,2H) 3.15 (sb,1H) 10.19 (sb,1H) 8.34(sb,1H)	3.14 (t,1H) 9.69 (sb,1H) 7.55 (tb,1H)	3.16 (sb,1H) 10.24 (sb,1H) 8.17 (sb,1H)	3.18 (sb,1H) 10.40 8.24 (sb,1H) 7.15 (sb,2H)
Chrom.	EA krist.	DCM/MeOH	-	krist.
Aus- beute	H/DIPE 23%	95:5 25%	85%	DIPE/EtOH 17%
Schmp.	198°C	217-218°C	>235°C	>235°C

Beispiel Nr.	44	45	4
6-H	8.34 (s,1H)	8.34 (s,1H)	8.23 n(sb,1H)
2CH	7.93 (d,2H) 7.79 (d,2H)	7.74 (mc,4H)	7.39 (d,2H) 6.79 (d,2H)
4CH	4.20 (sb,2H) 3.31 (sb,1H)	4.55 (q,1H) 1.98 (dq,2H) 0.94 (t,3H) 3.61 (s,3H)	3.52-3.71 (2H) 3.97 (mc,1H) 1.96 (mc,1H) 0.91 (d,3H)
NH	11.03 (sb,1H) 9.04 (sb,1H) 7.34 (sb,2H)	10.60 (s,1H) 7.97 (d,1H) 7.31 (db,2H)	0.85 (d,3H) 10.35 (sb,1H) 7.76 (sb,1H)
Chrom. Aus- beute	krist. EtOH 27%	krist. EtOH 48%	- 52%
Schmp.	252°C	235°C	242-243°C

Beispiel Nr.	10	15	3	19
6-H	8.27 (s,1H)	8.17 (s,1H)	7.97 (s,1H)	8.20-8.35
2H	7.80 (mc,4H)	7.60 (d,2H) 7.24 (d,2H) 2.44 (s,3H)	7.44 (d,2H) 6.67 (d,2H)	(2H) 7.90 (sb,1H) 7.50-7.64 (2H) 3.46 (t,2H)
4H	3.66 (mc,2H)	3.5-3.7 (2H) 40.1 (mc,1H)	3.50-3.65 (4H)	3.70 (t,2H) 3-56-3.66
	n.obs.	1.98 (mc,1H)	4.12 (mc,1H)	(4H)
	2.04	0.94 (d,3H)		4.28 (mc,1H)
NH	(mc,1H)	0.90 (d,3H)		
OH	0.97 (d,3H)	9.95 (sb,1H)	8.98 (sb,1H)	
	0.94 (d,3H)	6.96 (sb,1H)	5.97 (db,1H)	
	10.40 (sb,1H)	ca.4, sehr breit	8.90 (sb,1H)	NH and OH sind sehr breit
	7.18 (sb,2H)		4.80 (tb,2H)	
	n. obs.			
Chrom.	-	-	-	Kristallisiert Wasser
Aus- beute	43%	27%	76%	52%
Schmp.	252-253°C	192-193°C	257-258°C	209-210°C

Beispiel Nr.	9	14	55	50
6-H	8.30 (s,1H)	8.30 (s,1H)	8.11 (s,1H)	8.17 (s,1H)
2H	7.82 (mc,4H)	7.55 (d,2H) 7.30 (d,2H) 2.48 (s,3H)	7.87 (s,4H) 2.50 (s)	7.95 (d,2H) 7.86 (d,2H) 2.50 (s)
4H	3.63 (mc,4H)	3.54-3.68 (4H) 4.24 (mc,1H)	4.19 (mc,1H) 3.61 (mc,4H)	4.17 (dd,2H) 3.13 (t,1H)
NH	4.24		9.73 (s,1H)	9.81 (s,1H)
OH	(mc,1H)	10.63 (sb,1H) 7.60 (sb,1H)	6.20 (s,1H) 4.88 (t,2H)	7.58 (t,1H)
	10.59 (b,1H) 7.2 (sb) 6.1 (sb)	4.4 (b)		
Chrom.	Kristallisiert		Kristallisiert	-
Aus-beute	MeOH 24%	91%	MeOH/DIPE 27%	56%
Schmp.	247-248°C	233-234°C	228-229°C	241°C

Beispiel Nr.	46	13	52	53
6-H	8.07s,1H) 2H 7.91 (d,2H) 7.69 (d,2H)	8.00 (s,1H) 7.68 (d,2H) 7.18 (d,2H) 2.44 (s,3H)	8.09 (s,1H) 7.88 (s,4H)	8.11 (s,1H) 7.86 (s,4H) not obs.
4H	3.30 (t,2H) n.obs.(mc,1 H) 0.45 (mc,2H)	3.54 (q,2H) 2.53 (t,2H) 2.40-2.45 (4H) 3.58 (t,4H)	3.32 (t,2H) 1.20 (mc,1H) 0.44 (mc,2H) 0.30 (mc,2H)	3.62 (mc,2H) 4.06 (mc,1H) 2.02 (mc,1H) 0.97 (d,3H) 0.92 (d,3H)
NH	0.30		9.70 (s,1H)	9.70 (s,1H)
OH	(mc,2H) 9.94 (s,1H) 7.21 (t,1H) 7.18 (s,2H)	9.20 (sb,1H) 6.81 (tb,1H)	7.21 (t,1H)	6.24 (d,1H) 4.80 (sb,1H)
Chrom. Aus- beute	H/EA 1:2 20%	- 28%	- 53%	H/EA 1:2 9%
Schmp.	256°C	185-186°C	183°C	170°C

Beispiel Nr.	1	54	12	60
6-H	7.96 (s,1H)	8.22 (s,1H)	8.03 (s,1H)	8.10 (s,1H)
2H	7.43 (d,2H) 6.67 (d,2H)	7.93 (d,2H) 7.85 (d,2H)	7.68 (d,2H) 7.19 (d,2H) 2.43 (s,3H)	7.92 (d,2H) 7.66 (d,2H) not. obs. 2.74 (t,2H)
4H	1.20 (d,3H) 4.38 (mc,1H) 3.37 (dd,1H) 3.48 (dd,1H)	4.26 (d,2H) 3.12 (sb,1H)	1.20 (d,3H) 4.42 (mc,1H) 3.37 (dd,1H) 3.50 (dd,1H) 3.34 (s,3H)	3.61 (mc,2H) 4.04 (mc,1H) 2.01 (mc,1H) 0.94 (d,3H) 0.91 (d,3H)
NH	3.28 (s,3H) 8.92 (sb,1H) 8.81 (sb,1H)	9.78 (s,1H)	9.26 (s,1H)	9.72 (s,1H) 7.65 (s,1H) 6.27 (d,1H)
OH	6.20 (tb,1H)	7.21 (t,1H)	6.42 (d,1H)	4.80 (sb,1H) 4.70 (sb,1H)
Chrom. Aus- beute	Kristallisiert EA 64%	Kristallisiert DIPE/MeOH 52%	Kristallisiert. EA 36%	
Schmp.	165.5- 166°C	210°C	91°C	150-151°C

Beispiel Nr.	7	17	2	18
6-H	8.32 (s,1H)	8.08 (s,1H)	7.95 (s,1H)	8.32 (s,1H)
4CH	1.22 (d,3H) 4.46 (mc,1H) 3.40 (dd,1H) 3.57 (dd,1H)	1.21 (d,3H) 4.53 (mc,1H) 3.41 (dd,1H) 3.51 (dd,1H) 3.27 (s,3H)	3.50 (q,2H) 2.50 (t,2H) 2.40 (t,4H) 3.59 (t,4H) (6H)	3.10 (m,2H) 3.52 (m,4H) 3.77-3.97 (2H)
2CH	3.28 (s,3H) 7.80 (s,4H)	8.53 (s,1H) 7.40 (d,1H) 7.50 (t,1H) 7.86 (d,1H) 3.40 (t,2H) 3.68 (t,2H)	7.45 (d,2H) 6.66 (d,2H)	8.40 (s,1H) 7.55-7.70 (2H) 7.85 (d,1H) 3.48 (m,2H)
NH	10.79	9.65 (sb,1H) 6.47 (db,1H)	8.94 (sb,1H) 8.79 (sb,1H)	3.70 (m,2H)
OH	(sb,1H) 7.84 (db,1H) 7.31 (sb,2H)	4.84 (tb,1H)	6.70 (tb,1H)	11.16 (sb,1H) 10.60 (sb,1H) 8.20 (sb,1H)
Chrom. Aus- beute	- 25%	- 10%	- 62%	kristall. MeOH 50%
Schmp.	247°C Zers.	201-202°C	227.5- 228.5°C	245°C Zers.

Beispiel Nr.	8 (D_2O)
6-H	8.14 (s,1H)
4CH	3.06 (sb,2H) 3.39 (t,4H) 3.71 (sb,2H) 3.85 (sb,2H) 3.94 (t,2H)
2CH	8.00 (d,2H) 7.72 (d,2H)
NH	
OH	
Chrom.	krist. Wasser
Aus- beute	25%
Schmp.	>275°C

Beispiel Nr.	47	6	22	84
5-H	8.74 (s,1H)	8.31 (s,1H)	8.31 (s,1H)	8.47 (s,1H)
2CH	7.87 (d,2H) 7.74 (d,2H)	7.47 (d,2H) 6.71 (d,2H)	7.76 (d,2H) 7.72 (d,2H) 2.58 (s,3H)	4.48 (t,2H) 2.01 (mc,2H) 2.44 (mc,2H)
4CH	4.50 (t,2H) 2.03 (mc,2H) 2.44 (mc,2H)	5.04 (d,2H) 3.59 (t,1H)	5.05 (d,2H) 2.57 (t,1H)	7.91 (d,2H)
2NH	10.14 (s,1H) 7.21 (s,2H)	9.02 (sb,1H) 9.40 (sb,1H)	7.47 (sb,1H)	7.85 (d,2H) 2.50 (s) 10.19 (s,1H)
Chrom. Aus- beute	MeOH/DCM 1:9 4%	66%	- 8%	- 11%
Schmp.	186-187°C	146°C	165-166°C	152°C

Beispiel Nr.	86	77
5-H	8.47 (s,1H)	8.48 (s,1H)
2CH	4.07 (mc,2H) 3.81 (mc,2H) 3.60 (mc,2H)	5.52 (m,1H) 3.68 (d,4H) 3.48 (mc,4H)
4CH	3.48 (mc,2H) 3.41 (t,2H) 1.07 (t,3H)	1.09 (t,6H) 7.84 (d,2H)
2NH	7.84 (d,2H) 7.91 (d,2H) 10.18 (s,1H)	7.74 (d,2H) 8.05 (vb) 3.40 (vb)
Chrom.	-	-
Aus- beute	2%	74%
Schmp.	85°C	132°C

Beispiel Nr.	40	20
6-H	8.36 (s,1H)	8.40 (s,1H)
2CH	7.60 (d,1H) 6.91 (d,1H) 4.28 (dd,1H) 3.79 (dd,1H) 3.31 (m,1H) 2.84 (dd,1H) 2.70 (dd,1H)	7.23 (s,1H) 6.42 (d,1H) 7.06 (t,1H) 7.18 (d,1H)
4CH	5.07 (d,12H) 3.65 (t,1H)	5.12 (d,2H) 3.60 (sb,1H)
NH	9.65 (sb,1H)	9.60 (sb,1H)
OH		9.21 (sb,1H)
Chrom.	H/EA 1:3	krist. DIPE
Aus- beute	0.5%TEA 38%	35%
Schmp.	140-141°C	174°C

Beispiel Nr.	49	48	29	42
6-H	8.14 (s,1H)	8.10 (s,1H)	8.09 (s,1H)	7.87 (d,3.4,1H)
2H	7.88 (d,2H) 7.69 (d,2H)	7.92 (d,2H) 7.66 (d,2H) not. obs. 2.74 (t,2H)	8.50 (s,1H) 7.86 (d,1H) 7.50 (t,1H) 7.40 (d,1H)	7.51 (d,2H) 6.66 (d,2H)
4H	3.41 (q,2H) 2.20 (t,2H) 1.81 (q,2H)	3.61 (mc,2H) 4.04 (mc,1H) 2.01 (mc,1H) 0.94 (d,3H) 0.91 (d,3H)	3.40 (t,2H) 3.52-3.73 (4H) 4.09 (mc,1H) 1.98 (mc,1H) 0.97 (d,3H)	4.13 (dd,2H) 3.08 (t,1H)
NH	9.64 (s,1H) 7.64 (t,1H)	9.72 (s,1H) 7.65 (s,1H)	0.89 (d,3H) 9.68 (s,1H)	8.76 (s,1H) 7.74 (tb,1H)
OH	3.5 (vb)	6.27 (d,1H) 4.80 (sb,1H) 4.70 (sb,1H)	6.17 (d,1H) 4.74 (t,1H) 4.93 (t,1H)	8.88 (s,1H)
Chrom.	-	krist.MeOH/DI	DCM/EA 2:1	H/EA 1:2
Aus- beute	9%	PE 16%	26%	29%
Schmp.	262°C	150-151°C		163°C

Beispiel Nr.	43	55	89	88
6-H	7.93 (s,1H)	8.11 (s,1H)	8.36 (s,1H)	8.29 (s,1H)
2H	7.52 (d,2H) 6.68 (d,2H)	7.87 (s,4H) 2.50 (s)	7.7-7.8 (5H)	7.73 (d,2H) 7.57 (d,2H)
4H	3.09 (s,1H) 4.14 (d,2H)	4.19 (mc,1H) 3.61 (mc,4H)	3.66 (mc,2H) 4.04 (m,1H) 1.99 (mc,1H) 0.94 (d,3H) 0.89 (d,3H)	3.7-3.9 (2H) 5.19 (m,1H) 7.2-7.4 (5H)
NH	8.98 (sb,2H) 7.50 (s,1H)	9.73 (s,1H) 6.20 (s,1H)	11.11 (sb,1H)	10.50 (s,1H) 5.029 (vb)
OH		4.88 (t,2H)	7.34 (sb,2H) n. obs.	
Chrom. Aus- beute	H/EA 1:2 35%	krist. MeOH/ DIPE 27%	- 74%	- 27%
Schmp.	168°C	228°C	248°C Zers.	159°C Zers.

Beispiel Nr.	87	92	91	96
6-H	8.09 (s,1H)	8.10 (s,1H)	8.09 (s,1H)	8.06 (s,1H)
2H	7.90 (d,2H) 7.82 (d,2H) not. obs	7.91 (d,2H) 7.63 (d,2H) 2.39 (d,3H)	7.98 (d,2H) 7.61 (d,2H) 2.54 (s,6H)	7.88 (d,2H) 7.69 (d,2H)
4H	3.69 (td,2H) 2.84 (t,2H) 7.60 (s,1H) 6.86 (s,1H)	1.21 (d,3H) 4.45 (mc,1H) 3.38 (dd,1H) 3.51 (dd,1H)	1.20 (d,3H) 4.46 (mc,1H) 3.47 (dd,1H) 3.51 (dd,1H) 3.38 (s,3H)	3.41 (m,2H) 1.62 (m,4H) 2.41 (m,2H) 5.07 (s,2H)
NH	7.34 (tb,1H) 9.72 (s,1H)	9.73 (sb,1H) 7.20 (q,1H)	9.81 (sb,1H) 6.58 (db,1H)	7.32 (s,5H) 9.64 (s,1H) 7.16 (sb,2H)
OH	11.91 (sb,1H)	6.57 (d,1H)		
Chrom. Aus- beute	- 16%	H bis H/EA 1:1 21%	H bis H/EA 1:1 7%	- 33%
Schmp.	210 °C	167-168°C	105°C	202°C

Beispiel Nr.	97	98	90	85
6-H	8.07 (s,1H)	8.10 (s,1H)		8.30 (s,1H)
2H	7.87 (s,4H) 2.50 (s,3H)	7.86 (mc,4H) n. obs.		7.95 (d,2H) 7.69 (d,2H) 2.48 (s,3H)
4H	3.41 (m,2H) 1.61 (m,4H) 2.41 (m,2H) 5.07 (s,2H)	3.68 (t,2H) 2.68 (t,2H) 4.08 (q,2H) 1.17 (t,§H)		3.50 (q,2H) 1.87 (m,2H) 2.38 (t,2H) 4.03 (q,2H) 1.13 (t,3H)
NH	7.32 (s,5H) 9.70 (s,1H) 7.19 (t,1H)	9.74 (s,1H) 7.18 (t,1H)		10.86 (s,1H) 8.28 (sb,2H)
Chrom.	-	-		-
Aus- beute	23%	32%		53%
Schmp.	152°C	172		184°C

Beispiel Nr.	63	94	93	80
	9.73 (s,1H) 8.25 (s,1H) 7.95 (d,2H) 7.67 (d,2H) 7.21 (s,3H) 4.12 (s,2H) 3.12 (s,1H)	10.91 (s,1H) 8.34 (s,1H) 7.80 (s,4H) 7.30 (s,2H) 4.35 (m,1H) 3.58 (m,2H) 2.47 (m,2H) 2.03 (s,3H) 1.91 (m,2H)	10.80 (s,1H) 8.30 (s,1H) 7.81 (d,2H) 7.65 (d,2H) 7.30 (m,8H) 4.95 (d,1H) 4.38 (m,1H) 3.59 (d,1H)	10.88 (s,1H) 8.40 (s,1H) 8.29 (m,1H) 7.79 (s,4H) 7.31 (s,2H) 4.75 (dd,1H) 3.65 (m,1H) 3.49 (m,1H) 2.10 (m,2H)
Aus- beute	61%	24%	70%	51%
Schmp.	220	168	243	
Masse	428 (EI)	462 (ES)	494 (ES)	427 (EI)

Beispiel Nr.	120	121	122	123
	9.65 (s,1H) 8.12 (s,1H) 7.89 (d,2H) 7.65 (d,2H) 7.15 (s,2H) 6.06 (d,1H) 4.71 (t,1H) 4.18 (m,1H) 3.67 (t,1H) 0.95 (s,9H)	9.68 (s,1H) 8.11 (s,1H) 7.93 (t,1H) 7.90 (d,2H) 7.65 (d,2H) 7.15 (s,2H) 7.07 (t,1H) 3.65 (m,2H) 3.56 (s,3H) 3.07 (q,2H) 2.45 (t,2H) 2.30 (t,2H) 1.65 (p,2H)	11.30 (s,1H) 8.11 (d,1H) 7.85 (d,2H) 7.72 (d,2H) 7.31 (s,2H) 6.71 (d,1H) 3.85 (m,8H) 2.22 (t,2H) 1.60 (m,4H) 1.30 (m,2H)	10.79 (s,1H) 8.35 (s,1H) 8.25 (s,1H) 7.80 (s,4H) 7.30 (s,2H) 3.41 (m,2H) 2.22 (t,2H) 1.60 (m,4H) 1.30 (m,2H)
Aus- beute	49%	24%	80%	73%
Schmp.				252
Masse	445 (EI)	516 (EI)	334 (EI)	459 (EI)

Beispiel Nr.	95	124	125	126
	11.19 (s,1H) 8.37 (s,1H) 8.11 (d,1H) 7.80 (s,4H) 7.31 (s,2H) 3.91 (m,1H) 1.89 (m,4H) 1.67 (m,1H) 1.55 (m,2H) 1.34 (m,2H) 1.15 (m,1H)	9.62 (s,1H) 8.04 (s,1H) 7.88 (m,3H) 7.66 (d,2H) 7.13 (s,3H) 3.58 (s,3H) 3.40 (m,2H) 3.05 (m,2H) 2.25 (m,2H) 2.05 (m,2H) 1.60 (m,5H) 1.32 (m,3H)	9.62 (s,1H) 8.04 (s,1H) 7.86 (d,2H) 7.66 (d,2H) 7.12 (s,3H) 3.58 (s,3H) 3.40 (m,2H) 2.30 (t,2H) 1.60 (m,4H) 1.32 (m,2H)	10.91 (s,1H) 8.38 (s,1H) 7.83 (d,2H) 7.77 (d,2H) 7.28 (s,2H) 7.04 (d,1H) 6.40 (br,3H) 4.35 (m,1H) 3.87 (m,1H) 3.60 (d,2H) 3.41 (dd,1H) 3.28 (dd,1H)
Aus- beute	29%	25%	27%	46%
Schmp.	255		218	
Masse	425 (EI)	557 (ES)	471 (EI)	449 (EI)

Beispiel Nr.	127	128	129	130
	9.96 (s,1H) 8.12 (s,1H) 7.85 (d,2H) 7.69 (d,2H) 7.20 (s,2H) 6.78 (d,1H) 4.35 (m,1H) 3.48 (m,2H) 1.65 (m,7H) 1.10 (m,6H)	9.60 (s,1H) 8.05 (s,1H) 7.90 (d,2H) 7.69 (d,2H) 7.42 (d,1H) 7.16 (m,3H) 4.57 (t,2H) 3.70 (m,1H) 3.4 (m,5H) 2.10 (t,2H) 1.55 (m,4H) 1.30 (m,2H)	9.67 (s,1H) 8.07 (s,1H) 7.87 (d,2H) 7.75 (d,2H) 7.13 (s,2H) 6.40 (d,1H) 4.91 (br,1H) 4.23 (m,1H) 3.52 (m,2H) 1.21 (d,3H)	9.65 (s,1H) 8.08 (s,1H) 7.87 (d,2H) 7.64 (d,2H) 7.14 (s,2H) 6.53 (d,1H) 4.62 (d,1H) 3.90 (br,1H) 3.40 (br,1H) 1.88 (m,4H) 1.50 (m,2H) 1.30 (m,2H)
Aus- beute	18%	94%	61%	58%
Schmp.	220		259	262
Masse	485 (EI)	531 (ES)	403 (EI)	443 (EI)

Beispiel Nr.	131	132	133	134
	9.62 (s,1H) 8.08 (s,1H) 7.92 (d,2H) 7.67 (d,2H) 7.23 (s,2H) 6.75 (t,1H) 3.22 (d,2H) 1.95 (s,3H) 1.60 (m,12H)	9.70 (s,1H) 8.11 (s,1H) 7.90 (d,2H) 7.60 (d,2H) 7.21 (q,1H) 5.25 (d,1H) 4.77 (t,1H) 4.02 (m,1H) 3.60 (m,2H) 2.39 (d,3H) 2.02 (m,1H) 0.95 (dd,6H)	9.69 (s,1H) 8.11 (s,1H) 7.88 (d,2H) 7.66 (d,2H) 7.15 (s,2H) 6.52 (d,1H) 4.35 (dd,1H) 2.29 (m,1H) 1.07 (d,3H) 0.91 (d,3H)	10.85 (s,1H) 8.31 (s,1H) 7.90 (d,1H) 7.85 (d,2H) 7.75 (d,2H) 7.54 (s,1H) 3.90 (m,1H) 3.38 (t,2H) 2.78 (br,2H) 1.50 (m,11H)
Aus- beute	9%	42%	25%	64%
Schmp.	229	141		
Masse	491 (EI)	443 (EI)	444 (FAB)	

Beispiel Nr.	135	136	137	138
	10.01 (s,1H) 8.28 (s,1H) 7.81 (d,2H) 7.71 (t,1H) 7.63 (d,2H) 7.45 (br,1H) 4.34 (dt,2H) 3.32 (t,2H) 2.71 (br,2H)	9.70 (s,1H) 8.11 (s,1H) 7.90 (d,2H) 7.64 (d,2H) 7.35 (t,1H) 6.55 (d,1H) 4.65 (t,1H) 4.45 (m,1H) 3.53 (m,1H) 3.44 (m,6H) 2.75 (q,2H) 1.20 (d,3H)	9.65 (s,1H) 9.58 (s,1H) 8.10 (s,1H) 7.85 (d,2H) 7.68 (d,2H) 7.40 (m,2H) 7.18 (m,4H) 6.94 (t,1H) 6.75 (d,1H) 4.40 (m,3H) 2.05 (m,1H) 0.96 (dd,6H)	9.70 (s,1H) 8.10 (s,1H) 7.89 (d,2H) 7.63 (d,2H) 7.39 (t,1H) 6.68 (d,1H) 4.34 (dd,1H) 3.36 (m,3H) 2.25 (q,2H) 2.29 (m,1H) 1.05 (dd,6H)
Aus- beute	34%	53%	59%	57%
Schmp.				
Masse	570 (ES)	460 (ES)	549 (ES)	488 (ES)

Beispiel Nr.	139	140	141	142
	9.82 (s,1H) 8.15 (s,1H) 7.82 (d,2H) 7.64 (d,2H) 7.39 (t,1H) 6.55 (d,1H) 4.64 (t,1H) 4.50 (t,1H) 3.65 (s,3H) 3.4 (m,2H) 2.75 (m,2H) 2.35 (m,1H) 1.00 (dd,6H)	9.82 (s,1H) 8.08 (s,1H) 7.96 (d,2H) 7.75 (t,1H) 7.62 (d,2H) 7.30 (t,1H) 4.64 (t,1H) 4.14 (m,2H) 3.35 (m,2H) 3.16 (m,1H) 2.75 (q,2H)	9.58 (s,1H) 8.12 (s,1H) 7.83 (d,2H) 7.68 (d,2H) 7.15 (s,2H) 5.92 (s,1H) 5.28 (t,1H) 3.50 (d,2H) 1.42 (s,6H)	9.62 (s,1H) 8.07 (s,1H) 7.87 (d,2H) 7.67 (d,2H) 7.14 (s,2H) 6.36 (d,1H) 4.81 (t,1H) 4.32 (m,1H) 3.47 (m,2H) 1.52 (m,3H) 0.90 (d,3H) 0.86 (d,3H)
Aus- beute	20%	63%	23%	8%
Schmp.				
Masse	502 (ES)	382 (ES)	415 (EI)	443 (EI)

Beispiel Nr.	143	144	145	78
	10.6 (s,1H) 8.28 (s,1H) 8.30 (m,5H) 7.48 (d,1H) 7.20 (s,1H) 4.05 (br,1H) 3.60 (br,2H) 2.01 (m,1H) 0.90 (m,6H)	10.11 (s,1H) 8.45 (s,1H) 7.86 (d,2H) 7.78 (d,2H) 7.15 (br,2H) 5.32 (m,1H) 3.91 (m,2H) 3.53 (m,2H) 2.05 (m,2H) 1.70 (m,2H)	11.05 (s,1H) 8.32 (s,1H) 8.08 (d,1H) 7.80 (m,4H) 7.30 (br,2H) 3.88 (m,1H) 3.65 (m,1H) 1.95 (m,2H) 1.69 (m,2H) 1.35 (m,4H)	9.69 (s,1H) 8.06 (s,1H) 7.88 (d,2H) 7.63 (d,2H) 7.18 (s,2H) 7.10 (t,1H) 6.65 (d,1H) 4.47 (m,1H) 3.97 (m,1H) 2.98 (m,2H) 2.00 (m,4H) 1.40 (m,8H) 0.85 (t,3H)
Aus- beute	13%	47%	42%	20%
Schmp.				
Masse	392 (EI)	428 (EI)	441 (EI)	541 (ES)

Beispiel Nr.	146	147	148	149
	11.13 (s,1H) 8.38 (s,1H) 7.92 (d,2H) 7.75 (m,3H) 4.04 (m,1H) 3.80 (s,3H) 3.65 (m,2H) 2.00 (m,1H) 0.96 (d,3H) 0.89 (d,3H)	11.18 (s,1H) 8.35 (s,1H) 7.90 (s,4H) 7.62 (d,1H) 4.02 (m,1H) 3.62 (m,2H) 3.02 (s,3H) 2.00 (m,1H) 0.95 (d,3H) 0.89 (d,3H)	11.15 (s,1H) 8.35 (s,1H) 7.90 (d,2H) 7.65 (m,3H) 4.01 (m,1H) 3.60 (m,6H) 2.85 (m,4H) 2.00 (m,1H) 0.95 (d,3H) 0.85 (d,3H)	9.19 (s,1H) 8.30 (s,1H) 8.02 (s,1H) 7.62 (m,1H) 6.85 (d,1H) 6.05 (d,1H) 4.03 (m,1H) 3.56 (m,2H) 1.96 (m,1H) 0.97 (d,3H) 0.90 (d,3H)
Aus- beute	86%	33%	79%	42%
Schmp.	225	211	232	241
Masse	408 (EI)	428 (EI)	501 (EI)	411 (ES)

Beispiel Nr.	150	151	152	153
	11.19 (s,1H) 10.80 (s,1H) 8.30 (m,2H) 7.85 (d,1H) 7.72 (d,1H) 7.20 (d,1H) 4.02 (m,1H) 3.60 (m,2H) 2.00 (m,1H) 1.01 (d,3H) 0.90 (d,3H)	10.96 (s,1H) 8.35 (s,1H) 7.95 (m,2H) 7.65 (m,3H) 4.04 (m,1H) 3.62 (m,2H) 2.00 (m,1H) 0.90 (M,6H)	9.50 (s,1H) 8.08 (s,1H) 7.75 (m,5H) 6.17 (d,1H) 4.80 (br,1H) 4.64 (br,2H) 4.05 (m,1H) 3.94 (m,1H) 3.52 (m,6H) 2.01 (m,1H) 0.93 (dd,6H)	12.90 (s,1H) 9.45 (s,1H) 8.52 (s,1H) 8.05 (s,1H) 7.82 (d,1H) 7.50 (d,1H) 7.32 (t,1H) 6.11 (d,1H) 4.72 (s,1H) 4.10 (s,1H) 3.60 (m,2H) 2.01 (m,1H) 0.99 (d,3H) 0.92 (d,3H)
Aus- beute	27%	65%	85%	9%
Schmp.				231
Masse	420 (ES)	395 (ES)	468 (ES)	395 (ES)

Beispiel Nr.	154	155	156	157
	10.91 (s,1H) 8.38 (s,1H) 7.90 (d,1H) 7.80 (m,4H) 7.05 (d,1H) 4.50 (s,2H) 4.04 (m,1H) 3.62 (m,2H) 1.96 (m,1H) 0.93 (d,3H) 0.85 (d,3H)	11.05 (s,1H) 8.34 (m,2H) 7.75 (m,3H) 7.52 (t,1H) 4.04 (m,1H) 3.85 (s,3H) 3.65 (m,2H) 2.00 (m,1H) 0.94 (d,3H) 0.85 (d,3H)	10.51 (s,1H) 8.22 (s,1H) 7.71 (d,1H) 7.27 (m,1H) 6.86 (m,2H) 6.06 (s,2H) 3.96 (m,1H) 3.62 (m,2H) 1.99 (m,1H) 0.90 (m,6H)	15.50 (s,1H) 9.50 (s,1H) 8.40 (s,1H) 8.11 (s,1H) 7.80 (d,1H) 7.53 (d,1H) 6.16 (d,1H) 4.78 (br,1H) 4.03 (m,1H) 3.60 (m,2H) 2.01 (m,1H) 0.91 (dd,6H)
Aus- beute	90%	48%	77%	21%
Schmp.	170	181	177	196
Masse	381 (ES)	409 (ES)	394 (EI)	391 (EI)

Beispiel Nr.	158	159 *	160 *	161 *
	10.80 (s,1H) 8.31 (s,1H) 7.97 (d,2H) 7.88 (m,3H) 7.52 (m,5H) 4.01 (m,1H) 3.62 (m,2H) 2.00 (m,1H) 0.91 (m,6H)	9.65 (s,1H,1+2) 8.08 (s,1H,1+2) 7.88 (d,2H,1+2) 7.65 (d,2H,1+2) 7.15 (s,1H,1+2) 6.62 (d,1H,2) 6.40 (d,1H,1) 4.05 (m,1H,1) 3.89 (m,1H,2) 2.30-1.20 (m,15H,1+2)	9.65 (s,1H,1+2) 8.08 (s,1H,1+2) 7.88 (d,2H,1+2) 7.65 (d,2H,1+2) 7.15 (s,1H,1+2) 6.62 (d,1H,2) 6.40 (d,1H,1) 4.05 (m,1H,1) 3.89 (m,1H,2) 2.30-1.20 (m,15H,1+2)	7.92 (s,1H) 7.84 (d,2H) 7.58 (d,2H) 3.72 (m,1H) 3.35 (m,2H) 3.10 (m,1H) 2.91 (m,2H) 2.00 (m,2H) 1.89 (m,2H) 1.66 (m,4H) 1.39 (m,5H)
Aus- beute	37%	21%	14%	8%
Schmp.			199	> 300
Masse	469 (EI)	468 (EI)	468 (EI)	508 (EI)

Bsp.-Nr.	162	163 *	164	165
	11.25 (s,1H) 9.40 (s,1H) 8.47 (s,1H) 8.29 (s,1H) 7.63 (s,1H) 7.43 (d,1H) 7.07 (m,3H) 4.06 (m,1H) 3.63 (m,2H) 1.98 (m,1H) 0.95 (d,3H) 0.85 (d,3H)	10.95 (s,1H) 10.72 (s,1H) 9.47 (br,2H) 9.30 (br,2H) 8.32 (2xs,2H) 8.08 (d,1H) 7.88 (d,2H) 7.75 (m,6H) 7.30 (br,4H) 6.95 (d,1H) 4.12 (m,1H) 3.98 (m,1H) 3.30 (m,1H) 3.10 (m,1H) 2.69 (m,2H) 2.25 (m,2H) 1.80 (m,18H) 1.01 (m,4H) 0.72 (m,4H)	9.65 (s,1H) 8.54 (s,1H) 8.10 (s,1H) 7.82 (d,1H) 7.45 (m,2H) 6.20 (d,1H) 4.70 (t,1H) 4.10 (m,1H) 3.60 (m,2H) 3.15 (s,3H) 2.00 (m,1H) 0.96 (d,3H) 0.89 (d,3H)	
Aus-beute	16%	33%	14%	51%
Schmp.	195			162-164
Masse	446 (ES)	480 (EI)	429 (ES)	462 (EI)

Beispiel Nr.	166	167 *	168 *	169
	10.90 (s,1H) 8.95 (s,1H) 7.93 (m,2H) 7.25 (m,3H) 6.30 (s,1H) 6.00 (d,1H) 4.75 (tr,1H) 4.05 (m,1H) 3.60 (m,2H) 2.00 (m,1H) 1.00 (m,6H)	11.15 (br,1H) 10.90 (s,1H) 9.75 (br,2H) 8.35 (s,1H) 7.78 (m,4H) 7.30 (br,2H) 4.15 (m,1H) 3.50 (m,5H) 2.85 (s,6H) 1.90 (m,8H)	11.30 (br,2H) 11.08 (s,1H) 10.92 (s,1H) 9.90 (s,1H) 9.70 (s,1H) 8.36 (2xs,2H) 8.20 (d,1H) 7.93 (d,2H) 7.75 (m,6H) 7.35 (br,4H) 7.10 (d,1H) 4.15 (m,1H) 3.98 (m,1H) 3.64 (m,8H) 3.40 (m,5H) 3.10 (m,5H) 1.95 (m,26H)	9.05 (br,1H) 8.85 (s,1H) 8.11 (d,1H) 7.97 (s,1H) 7.47 (dd,1H) 6.80 (d,1H) 5.95 (d,1H) 4.80 (br,2H) 3.90 (m,2H) 3.45 (m,6H) 2.00 (m,1H) 0.90 (m,6H)
Aus- beute	6%	16%	58%	60%
Schmp.		256	261	
Masse	390 (ES)	512 (ES)	538 (ES)	484 (ES)

	 Diastereomere 1/2 (ca. 1:1)			
Beispiel Nr.	170 *	171	172	173
	11.05 (s,1H) 10.90 (s,1H) 10.6 (br,2H) 8.35 (2xs,2H) 8.15 (d,1H) 7.80 (m,8H) 7.30 (br,4H) 7.05 (m,1H) 4.25 (m,1H) 3.95 (m,2H) 3.65 (m,1H) 3.20 (m,10H) 1.90 (m,24H)	10.45 (s,1H) 8.25 (s,1H) 8.00 (br,1H) 7.85 (d,2H) 7.75 (d,2H) 7.45 (br,1H) 3.60 (m,5H) 3.35 (m,2H) 2.80 (m,2H) 2.41 (t,2H) 1.90 (m,2H)	11.05 (s,1H) 8.35 (m,2H) 7.82 (d,1H) 7.65 (d,2H) 7.50 (t,1H) 4.05 (m,1H) 3.62 (m,2H) 2.00 (m,1H) 0.96 (d,3H) 0.85 (d,3H)	8.90 (s,1H) 8.72 (s,1H) 7.95 (s,1H) 7.18 (m,1H) 7.05 (dd,1H) 6.75 (d,1H) 5.99 (d,1H) 4.74 (t,1H) 4.03 (m,1H) 3.70 (s,3H) 3.60 (m,2H) 2.00 (m,1H) 0.90 (m,6H)
Aus- beute	64%	7%	65%	40%
Schmp.	226	164	206	144
Masse	525 (ES)	488 (ES)	395 (ES)	397 (ES)

Diastereomere 1/2 (ca. 1:1)	Diastereomere 3/4 (ca. 1:1)			
Beispiel Nr.	174 *	175 *	176	177
	11.05 (m,3H) 10.48 (s,1H) 8.38 (s,2H) 7.80 (m,8H) 7.80 (br,4H) 7.10 (s,1H) 6.95 (s,1H) 4.42 (m,2H) 4.18 (m,2H) 3.70-2.90 (m,10H) 2.40-1.60 (m,20H)	11.15 (br,1H) 11.05 (s,2H) 10.65 (br,1H) 8.30 (s,2H) 8.13 (m,2H) 7.88 (m,8H) 7.30 (br,4H) 4.40 (m,2H) 4.00 (br,2H) 3.70-2.90 (m,10H) 2.40-1.40 (m,20H)	8.00 (s,1H) 7.80 (m,4H) 4.48 (m,1H) 3.65 (d,2H) 1.75 (m,1H) 1.59 (m,2H) 1.01 (d,3H) 0.92 (d,3H)	9.65 (s,1H) 8.08 (s,1H) 7.85 (d,2H) 7.65 (d,2H) 7.40 (br,1H) 7.15 (s,2H) 3.55 (m,2H) 2.55 (m,2H) 2.15 (m,2H) 1.80 (m,3H) 1.65 (m,1H)
Aus- beute	95%	51%	3%	8%
Schmp.				
Masse	511 (ES)	511 (ES)	443 (EI)	456 (EI)

Beispiel Nr.	178	179	180	181
	9.49 (s,1H) 8.25 (s,1H) 7.80 (m,4H) 7.32 (br,2H) 4.03 (m,2H) 3.75 (m,1H) 3.35 (m,2H) 1.80 (m,2H) 1.40 (m,2H)	9.61 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.65 (d,2H) 7.60 (t,1H) 7.15 (s,2H) 3.45 (m,2H) 2.40 (t,2H) 2.20 (s,6H) 1.75 (t,2H)	9.65 (s,1H) 8.11 (s,1H) 7.81 (s,2H) 7.63 (d,2H) 7.15 (s,2H) 6.64 (d,1H) 4.28 (m,3H) 2.00 (m,1H) 1.98 (s,3H) 0.98 (d,3H) 0.93 (d,3H)	9.71 (s,1H) 8.06 (s,1H) 7.90 (d,2H) 7.61 (d,2H) 7.37 (t,1H) 6.56 (d,1H) 4.66 (m,2H) 3.90 (m,1H) 3.39 (m,3H) 2.78 (q,2H) 1.96 (m,4H) 1.56 (m,2H) 1.29 (m,2H)
Aus- beute	17%	9%	27%	24%
Schmp.				
Masse	427 (EI)	428 (EI)	472 (ES)	486 (ES)

Beispiel Nr.	182	183	184	185
	9.68 (s,1H) 9.47 (s,1H) 8.10 (s,1H) 7.81 (d,2H) 7.67 (d,2H) 7.14 (s,2H) 6.76 (m,3H) 4.47 (m,2H) 4.30 (m,1H) 3.65 (s,6H) 3.54 (s,3H) 1.99 (m,1H) 0.98 (d,3H) 0.92 (d,3H)	10.97 (s,1H) 8.30 (s,1H) 8.02 (d,1H) 7.81 (m,4H) 7.30 (s,2H) 4.14 (m,1H) 1.80 (m,12H) 	11.06 (s,1H) 8.04 (m,1H) 7.82 (m,2H) 7.70 (m,2H) 7.30 (s,2H) 6.72 (m,1H) 3.75 (m,5H) 1.88 (m,2H) 1.48 (m,2H)	11.01 (s,1H) 8.38 (s,1H) 7.82 (s,4H) 7.40 (d,1H) 7.32 (s,2H) 4.20 (m,1H) 3.70 (m,2H) 0.97 (s,9H)
Aus- beute	57%	78%	26%	76%
Schmp.				
Masse	639 (ES)	439 (EI)	348 (EI)	445 (EI)

Beispiel Nr.	186	187	188	189
	9.71 (s,1H) 8.11 (s,1H) 7.90 (d,2H) 7.70 (d,2H) 7.12 (s,2H) 6.75 (d,1H) 4.45 (m,1H) 2.25 (m,6H) 1.90 (m,2H)	7.75 (s,1H) 7.65 (d,2H) 7.58 (d,2H) 5.82 (s,1H) 4.25 (s,2H) 3.40 (t,2H) 2.82 (t,2H) 2.06 (s,3H)	10.60 (s,1H) 8.29 (s,1H) 7.79 (d,2H) 7.71 (d,2H) 7.28 (s,2H) 6.60 (s,1H) 3.58 (s,2H) 2.10 (m,2H) 1.78 (m,2H) 1.55 (m,4H)	11.19 (s,1H) 8.03 (d,1H) 7.88 (d,2H) 7.78 (d,2H) 7.31 (s,2H) 6.58 (d,1H) 3.60 (m,4H) 1.20 (m,6H)
Aus- beute	16%	7%	61%	35%
Schmp.				
Masse	440 (ES)	480 (ES)	443 (EI)	321 (EI)

Beispiel Nr.	190	191 *	192 *	193
	10.61 (s,1H) 8.28 (s,1H) 7.82 (d,2H) 7.73 (d,2H) 7.53 (br,1H) 7.25 (s,2H) 4.25 (m,1H) 2.59 (br,1H) 2.21 (br,1H) 1.94 (m,1H) 1.40 (m,7H)	9.67 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.65 (d,2H) 7.11 (s,2H) 6.35 (d,1H) 4.10 (m,1H) 3.62 (m,4H) 2.45 (m,4H) 2.19 (m,1H) 1.88 (m,4H) 1.65 (m,4H)	9.63 (s,1H) 8.06 (s,1H) 7.85 (d,2H) 7.65 (d,2H) 7.15 (s,2H) 6.55 (d,1H) 3.95 (m,1H) 3.58 (m,4H) 2.50 (m,4H) 1.96 (m,1H) 1.50 (m,4H) 1.30 (m,4H)	10.61 (s,1H) 8.28 (s,1H) 7.78 (m,4H) 7.45 (d,1H) 7.20 (s,2H) 4.30 (br,2H) 3.53 (m,2H) 1.21 (d,3H)
Aus- beute	63%	15%	17%	57%
Schmp.				
Masse	437 (EI)	511 (ES)	511 (EI)	403 (EI)

Beispiel Nr.	194	195	196	197
	9.89 (s,1H) 8.21 (s,1H) 7.82 (d,2H) 7.65 (m,3H) 7.17 (br,2H) 4.30 (m,2H)	10.98 (s,1H) 8.51 (br,1H) 8.29 (s,1H) 7.81 (m,4H) 7.29 (br,2H) 3.45 (m,4H) 1.68 (m,2H) 1.45 (m,2H)	10.39 (s,1H) 8.30 (s,1H) 8.04 (d,2H) 7.70 (d,2H) 7.21 (br,2H) 6.55 (s,1H) 3.49 (s,1H) 2.32 (m,2H) 1.85 (m,2H) 1.60 (m,5H) 1.29 (m,1H)	10.85 (s,1H) 8.71 (d,1H) 8.31 (s,1H) 7.72 (d,2H) 7.55 (d,2H) 7.30 (m,6H) 5.41 (m,1H) 3.49 (m,2H) 2.11 (m,2H)
Aus- beute	26%	56%	12%	61%
Schmp.				
Masse	476 (EI)	417 (EI)	450 (EI)	479 (EI)

(+)-Enantiomer	(-)-Enantiomer	Diastereomer 1	Diastereomer 2	
Beispiel Nr.	198	199	200	201
	11.01 (s,1H) 8.32 (s,1H) 8.10 (d,1H) 7.80 (m,4H) 7.30 (br,2H) 3.70 (m,1H) 1.80 (m,5H) 1.48 (m,1H) 1.29 (m,2H) 1.07 (m,1H) 0.83 (d,3H)	11.01 (s,1H) 8.32 (s,1H) 8.10 (d,1H) 7.80 (m,4H) 7.30 (br,2H) 3.70 (m,1H) 1.80 (m,5H) 1.48 (m,1H) 1.29 (m,2H) 1.07 (m,1H) 0.83 (d,3H)		9.16 (s,1H) 8.07 (s,1H) 7.89 (d,2H) 7.67 (d,2H) 7.15 (s,2H) 6.45 (d,1H) 4.35 (s,2H) 3.97 (m,1H) 3.40 (m,4H) 2.85 (m,1H) 2.55 (m,1H) 1.82 (m,2H) 1.61 (m,6H)
Aus-beute	4%	4%	7%	2%
Schmp.				
Masse	439 (EI)	439 (EI)	515 (ES)	515 (ES)

Beispiel Nr.	202	203 *	204 *	205
	10.21 (s,1H) 8.18 (s,1H) 8.10 (d,2H) 7.92 (d,2H) 6.39 (d,1H) 4.80 (br,1H) 4.05 (m,1H) 3.62 (m,2H) 2.00 (m,1H) 0.99 (d,3H) 0.92 (d,3H)		9.66 (s,1H) 8.08 (s,1H) 7.90 (d,2H) 7.69 (d,2H) 7.15 (s,2H) 6.53 (d,1H) 3.93 (m,1H) 2.05 (m,5H) 1.51 (m,2H) 1.15 (m,2H) 0.42 (m,2H) 0.25 (m,2H)	9.73 (s,1H) 8.11 (s,1H) 7.82 (d,2H) 7.65 (d,2H) 7.12 (s,2H) 6.80 (d,1H) 4.67 (m,1H) 3.13 (m,1H) 2.86 (m,3H) 2.18 (m,2H)
Aus- beute	10%	2%	2%	16%
Schmp.				
Masse	483 (ES)	480 (EI)	480 (EI)	430 (ES)

Beispiel Nr.	206	207	208	209
	9.75 (s,1H) 8.19 (s,1H) 7.75 (d,2H) 7.18 (d,2H) 7.17 (s,2H) 6.68 (d,1H) 5.35 (t,1H) 4.71 (m,1H) 3.91 (m,2H) 3.65 (s,3H)	10.98 (s,1H) 8.50 (d,2H) 8.31 (s,1H) 7.97 (d,2H) 7.78 (d,2H) 7.57 (d,1H) 7.00 (t,1H) 4.01 (m,1H) 3.62 (m,2H) 1.97 (m,1H) 0.98 (d,3H) 0.92 (d,3H)	11.00 (s,1H) 8.31 (s,1H) 7.74 (m,5H) 7.21 (d,1H) 6.80 (d,1H) 4.00 (m,1H) 3.62 (m,2H) 1.95 (m,1H) 0.98 (d,3H) 0.90 (d,3H)	9.55 (s,1H) 8.08 (s,1H) 7.80 (d,2H) 7.60 (d,2H) 6.58 (br,4H) 6.20 (d,1H) 4.80 (br,1H) 4.04 (m,1H) 3.60 (m,2H) 2.00 (m,1H) 0.99 (d,3H) 0.92 (d,3H)
Aus- beute	5%	55%	44%	77%
Schmp.	223	248	228	231
Masse	446 (ES)	507 (EI)	514 (EI)	

Beispiel Nr.	210	211	212	71
	10.03 (s,1H) 8.38 (s,1H) 8.14 (s,1H) 7.81 (d,2H) 7.60 (d,1H) 7.30 (m,7H) 4.99 (s,2H) 3.42 (m,2H) 2.97 (m,2H) 1.58 (m,2H) 1.30 (m,4H)	10.90 (s,1H) 8.40 (m,1H) 8.30 (s,1H) 7.88 (d,2H) 7.73 (d,2H) 7.38 (br,1H) 3.45 (m,4H) 2.38 (s,3H) 1.62 (m,2H) 1.45 (m,2H)	9.18 (s,1H) 9.05 (s,1H) 7.98 (s,1H) 7.18 (m,2H) 6.98 (m,2H) 6.31 (m,1H) 4.45 (t,1H) 3.47 (m,4H) 1.63 (m,2H) 1.48 (m,2H)	9.66 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.63 (m,3H) 7.28 (t,1H) 7.11 (s,2H) 6.88 (s,1H) 3.65 (m,2H) 2.88 (t,2H)
Aus- beute	86%	22%	41%	77%
Schmp.				
Masse	528 (Cl)	429 (El)	352 (El)	437 (El)

Beispiel Nr.	213	61	214	215
	12.40 (br,1H) 11.10 (s,1H) 8.08 (d,2H) 7.79 (m,4H) 7.30 (s,2H) 4.04 (m,1H) 3.60 (m,2H) 2.07 (s,3H) 2.00 (m,1H) 0.97 (d,3H) 0.90 (d,3H)	12.41 (br,1H) 11.11 (s,1H) 8.10 (d,1H) 7.80 (m,5H) 7.30 (s,2H) 4.08 (m,1H) 3.63 (m,2H) 2.50 (m,2H) 2.01 (m,1H) 1.15 (t,3H) 0.99 (d,3H) 0.92 (d,3H)	8.03 (s,1H) 7.76 (m,4h) 3.70 (s,2H) 1.92 (m,4H) 0.92 (m,6H) (in MeOD) 3.74 (d,1H) 3.52 (d,1H) 2.72 (m,1H) 1.35 (s,3H) 0.97 (d,3H) 0.91 (d,3H)	9.55 (s,1H) 8.10 (s,1H) 7.80 (d,2H) 7.68 (d,2H) 7.15 (s,2H) 5.82 (s,1H) 3.74 (d,1H)
Aus- beute	49%	25%	2%	9%
Schmp.				
Masse	365 (EI)	379 (EI)	443 (ES)	444 (ES)

Beispiel Nr.	216	217	218	219
	10.88 (s,1H) 8.36 (s,1H) 8.03 (d,1H) 7.79 (m,4H) 7.28 (br,2H) 4.65 (m,1H) 3.89 (m,2H)	10.88 (s,1H) 8.36 (s,1H) 8.03 (d,1H) 7.79 (m,4H) 7.28 (br,2H) 4.65 (m,1H) 3.89 (m,2H)	11.01 (s,1H) 8.52 (br,1H) 8.29 (s,1H) 7.78 (m,4H) 7.32 (s,2H) 3.39 (m,2H) 1.70 (m,6H) 1.15 (m,3H) 0.96 (m,2H)	11.11 (s,1H) 8.53 (m,1H) 8.36 (s,1H) 7.80 (m,4H) 7.31 (s,2H) 3.71 (m,2H) 2.65 (m,2H)
Aus- beute	65%	34%	58%	88%
Schmp.	239	239	238	280
Masse	439 (EI)	413 (EI)	439 (EI)	416 (EI)

Beispiel Nr.	74	56	220	221
	9.67 (s,1H) 8.11 (s,1H) 7.88 (m,4H) 6.25 (d,1H) 4.81 (m,1H) 4.05 (m,1H) 3.61 (m,2H) 2.01 (m,1H) 0.97 (d,3H) 0.92 (d,3H)	9.70 (s,1H) 8.81 (m,1H) 7.96 (s,1H) 7.43 (d,2H) 6.67 (d,2H) 6.20 (m,1H) 4.38 (m,1H) 3.48 (m,1H) 3.37 (m,1H) 1.20 (d,3H)	8.92 (m,1H) 8.08 (s,1H) 7.83 (d,2H) 7.68 (d,2H) 7.22 (t,1H) 7.11 (s,2H) 3.95 (m,4H) 3.48 (m,2H) 1.79 (m,4H) 1.18 (t,6H)	9.66 (s,1H) 8.08 (s,1H) 7.83 (d,2H) 7.68 (d,2H) 7.22 (t,1H) 7.11 (s,2H) 3.95 (m,4H) 3.48 (m,2H) 1.79 (m,4H) 1.18 (t,6H)
Aus- beute	7%	17%	65%	19%
Schmp.	285	158	166	
Masse	457 (EI)	392 (EI)	354 (EI)	522 (ES)

Beispiel Nr.	222	223	224	225
	9.81 (s,1H) 9.08 (s,1H) 8.68 (s,1H) 8.35 (m,1H) 8.20 (s,1H) 8.02 (t,1H) 7.63 (m,5H) 7.17 (s,2H) 7.03 (s,1H) 4.82 (d,2H)	9.71 (s,1H) 8.13 (s,1H) 7.89 (d,2H) 7.66 (d,2H) 7.31 (t,1H) 7.14 (s,2H) 3.98 (m,2H) 3.69 (s,3H) 3.64 (s,3H)	9.70 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.65 (d,2H) 7.25 (m,3H) 6.11 (m,1H) 3.40 (m,5H)	10.29 (s,1H) 8.83 (m,2H) 8.51 (m,1H) 8.26 (s,1H) 7.93 (d,2H) 7.60 (d,2H) 7.51 (d,2H) 7.25 (br,2H) 4.90 (d,2H)
Aus- beute	54%	23%	7%	43
Schmp.	300	300		243
Masse	501 (EI)	465 (EI)		434 (EI)

Beispiel Nr.	226	227	228	229
	10.38 (s,1H) 8.52 (br,1H) 8.23 (s,1H) 7.72 (m,4H) 7.36 (m,1H) 7.22 (s,2H) 7.03 (m,1H) 6.95 (m,1H) 4.80 (d,2H)	10.30 (s,1H) 8.78 (m,1H) 8.36 (m,3H) 7.81 (m,2H) 7.60 (m,4H) 7.22 (br,2H) 4.94 (d,2H)	10.52 (s,1H) 8.66 (m,1H) 8.28 (s,1H) 7.63 (m,4H) 7.26 (m,6H) 4.63 (d,2H)	10.88 (s,1H) 8.92 (m,1H) 8.33 (s,1H) 7.72 (d,2H) 7.62 (d,2H) 7.30 (m,4H) 6.89 (d,2H) 4.62 (d,2H) 3.70 (s,3H)
Aus- beute	47%	41%	88%	89%
Schmp.	229	287	259	233
Masse	440 (Cl)	434 (El)	451 (El)	463 (El)

BeispielNr.	230
	10.45 (s,1H) 8.20 (s,1H) 8.05 (m,1H) 7.79 (m,4H) 7.21 (s,2H) 3.50 (m,2H) 1.83 (m,2H) 1.56 (m,2H)
Ausbeute	58%
Schmp.	>300
Masse	466 (ES)

Beispiel Nr.	231	232	233	234
	10.3 (s, 1H) 8.34 (tr, 1H) 8.2 (s, 1H) 7.9 (m, 4H) 4.3 (q, 2H) 4.2 (m, 2H) 3.23 (tr, 1H) 1.32 (tr, 3H)	9.28 (s, 1H) 8.0 (s, 1H) 7.73 (d, 2H) 7.63 (tr, 1H) 7.18 (d, 2H) 5.0 (m, 1H) 4.3 (s, 2H) 4.14 (m, 2H) 3.11 (tr, 1H)	10.48 (s, 1H) 8.25 (s, 1H) 7.85 (m, 4H) 7.25 (m, 1H) 7.15 (s, 1H) 5.1 (m, 1H) 3.58 (m, 4H)	9.63 (s, 1H) 8.12 (s, 1H) 7.65 (m, 4H) 7.42 (d, 2H) 7.35 (tr, 2H) 7.21 (m, 1H) 7.16 (s, 1H) 5.35 (m, 1H) 1.55 (d, 3H)
Aus- beute	85%	35%	33%	25%
Schmp.				
Masse	330 (EI)	288 (EI)	389 (Cl)	448 (ESI)

Beispiel-Nr.	235	236	237	238
Schmp. [°C]				
Masse	486 (ES)	516 (ES)	504 (ES)	488 (ES)

Beispiel-Nr.	239	240	241	242
Schmp. [°C]				
Masse	536 (ES)	502 (ES)	484 (ES)	551 (ES)

Beispiel-Nr.	243	244	245	
Schmp. [°C]				
Masse	516 (ES)	514 (ES)	433 (ES)	

Beispiel-Nr.	246	247	248	249
Schmp. [°C]			205	>300
Masse	446 (ES)	415 (EI)	504 (ES)	431 (ES)

Beispiel-Nr.	250	251	252	253
Schmp. [°C]	113	231	187	
Masse	488 (ES)	446 (ES)	433 (ES)	

Nr.	254	255	256	257
Schmp. [°C]				
Masse	399 (ES)	444 (ES)	474 (ES)	486 (ES)

Die mit *) gekennzeichneten Verbindungen Nr. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203 und 204 können über die unter Beispiel Nr. 295
 5 beschriebene Verfahrensvariante hergestellt werden.

Beispiel 258

10 Herstellung von 4-(5-Brom-4-morpholin-4-yl-pyrimidin-2-ylamino)-phenylsulfonamid

202 mg (0.60 mmol) der Verbindung Beispiel Nr. 122 werden mit 1 ml Wasser sowie 0.2 g (1.2 mmol) Brom versetzt und bei Raumtemperatur gerührt. Nach 24
 15 Stunden werden erneut 0.2 g (1.2 mmol) Brom zugegeben und weitere 24 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird mittels

Unterdruck evaporiert und der verbleibende Rückstand chromatographisch (Flashmaster II, DCM / MeOH 7:3) gereinigt. Man erhält 17 mg (0.04 mmol, 7%) des Produktes als weissen Feststoff.

Beispiel-Nr.	259	260	261	262
Schmp. [°C]		205-207	202-203	
Masse	MS (ES) 452, 454 (M+ H, 100 %)			428 (ES)

Beispiel-Nr.	Verbindung	ESI-MS
263		434
264		434
265		477
266		477
267		552
268		552

Analog der unter Beispiel 6.0 (s. Herstellung der Zwischenprodukte, Seite 186)

- 5 beschriebenen Verfahrensweise zur Herstellung der Zwischenprodukte wurden auch folgende Verbindungen hergestellt:

10

Beispiel-Nr.	269	270	271
Ausbeute	47%	90%	
Masse	ESI : MH ⁺ 480 (100%) 478 (97%) 115 (30%)	ESI : MH ⁺ 432 (100%) 430 (94%)	ESI : MH ⁺ 446 (18%)

Analog zu Herstellungsbeispiel 1 wurden auch die folgenden Verbindungen hergestellt:

5

Beispiel -Nr.	272	273	274	275
Aus-beute	61%	44%	42%	68%
Masse	EI : M ⁺ 463 (4%) 277 (8%) 105 (100%)	EI : M ⁺ 403 (24%) 358 (100%) 277 (52%)	ESI : MH ⁺ 418 100% 416 (94%) 346 (8%)	EI : M ⁺ 401 (33%) 372 (100%) 344 (38%)

Beispiel -Nr.	276	277	278	279
Aus- beute	81%	58%	~20%	30%
Masse	EI : M ⁺ 431 (5%) 372 (100%) 291 (46%)	ESI : MH ⁺ 444 (100%) 442 (97%) 115 (20%)	ESI : MH ⁺ 494 (75%) 346 (18%) 214 (55%)	ESI : MH ⁺ 418 (100%) 416 (97%) 310 (27%)

Beispiel -Nr.	280	281	282	283
Aus- beute	55%	43%	~18%	35%
Masse	ESI : MH^+ 444 (100%) 442 (97%) 214 (12%)	ESI : MH^+ 446 (100%) 444 (95%) 346 (5%)	ESI : MH^+ 416 (100%) 414 (96%) 317 (4%)	ESI : MH^+ 446 (100%) 444 (90%)

Beispiel -Nr.	284	285	286	287
Aus- beute	51%	46%	47%	61%
Masse	ESI : MH ⁺ 520 (100%) 518 (97%) 115 (27%)	ESI : MH ⁺ 520 (100%) 518 (97%) 115 (23%)	ESI : MH ⁺ 432 (100%) 430 (95%) 346 (5%)	ESI : MH ⁺ 446 (100%) 444 (93%) 115 (13%)

5

Gemäß nachfolgender Herstellungsvariante werden auch die folgenden Verbindungen synthetisiert:

10

30 mg (0,0678 mMol) der Verbindung Nr. 277 werden in 1 ml Methanol/Tetrahydrofuran 1:1 gelöst. Nach Zugabe von ~10 mg Natriumborhydrid wird 2 Stunden nachgerührt. Dann wird unter Kühlung mit ~3-4 Tropfen Eisessig gequencht und eingeengt. Nachfolgend wird das Rohprodukt

mit wenig Wasser aufgenommen, abgesaugt, mit Acetonitril nachgewaschen und bei 60°C im Vakuum getrocknet. Ausbeute: 21 mg (70% der Theorie) der gewünschten Verbindung.

Beispiel -Nr.	288	289
Aus- beute	52%	70%
Masse	EI: M^+ 465 (5%) 358 (40%) 207 (31%)	ESI : MH^+ 446 (100%) 444 (93%) 117 (20%)

Beispiel 290

5 Herstellung der Oximether-Pyrimidin-Verbindungen der allgemeinen Formel I

Die Herstellung der Oximether erfolgt nach dem folgenden allgemeinen Reaktionsschema:

10

15

R⁸ und R⁹ haben die in der allgemeinen Formel I angegebenen Bedeutungen.

Herstellung von Beispiel 290

20

50 mg (0,12 mMol) der Verbindung Nr. 282, 34 mg Hydroxylammoniumchlorid und 150 mg pulversiertes KOH werden 2 Stunden in 2 ml Ethanol unter
25 Rückfluß gekocht. Danach wird auf Eiswasser gegossen und mit Eisessig

angesäuert, 3 mal mit Dichlormethan/Isopropanol 4:1 extrahiert, getrocknet mit Magnesiumsulfat und eingeengt. Der Rückstand wird mit Acetonitril aufgeschlemmt, absaugt und bei 60 °C getrocknet. Ausbeute: 28 mg (54% der Theorie) gewünschte Verbindung.

5

Masze

ESI :

MH⁺ 429 (29%)

371 (61%)

10 289 (91%)

In analoger Verfahrensweise wurden auch folgende Verbindungen hergestellt:

Besispiel-Nr.	291	292	293
Ausbeute	34%	36%	40%
Masse	ESI : MH ⁺ 443 (95%) 445 (99%) 373 (32%)	ESI : MH ⁺ 485 (92%) 487 (99%)	ESI : MH ⁺ 487 (91%) 489 (89%) 373 (32%)

15

Beispiel 294**5 Reduktive Aminierung**

50 mg (0,12 mMol) der Verbindung Nr. 282 und 7,5 mg (0,132 mMol) Cyclopropylamin werden in 2 ml 1,2-Dichlorethan gelöst. Nach Zugabe von 9,1
 10 mg (0,144 mMol) Natriumcyanoborhydrid lässt man 12 Stunden nachröhren.
 Dann wird mit Dichlormethan/ Isopropanol 4:1 verdünnt, 2 mal mit Wasser gewaschen, getrocknet mit Magnesiumsulfat und einengt. Der Rückstand wird über Kieselgel mit Dichlormethan/ Methanol 95:5 chromatographiert. Ausbeute : 18 mg (33 % der Theorie) gewünschte Verbindung.

15

Aus-beute	33%
Masse	ESI : MH^+ 457 (98%) 455 (93%) 249 (55%)

In analoger Verfahrensweise werden auch die Verbindungen Nr. 159, 160, 161,
5 163, 167, 168, 170, 174, 175, 191, 192, 203 und 204 hergestellt.

Beispiel 295 und 296

- 5 In analoger Verfahrensweise zu Beispiel 1 werden auch folgende zwei Verbindungen hergestellt:

Beispiel	295	296
Ausbeute	46 %	47 %
Masse	ESI : MH ⁺ 432 (30%) 434 (31%) 123 (100%)	ESI : MH ⁺ 446 (45%) 448 (49%) 123 (90%)

Herstellung der Sulfonamide der allgemeinen Formel I

5

10

- 0.2 mmol Sulfonsäurefluorid werden im Reaktor eines Synthesizers vorgelegt,
- 15 Man gibt 1.0 ml Solvens, vorzugsweise 2-Butanol hinzu. Nacheinander werden über eine Pipette 0.2 ml (0.2 mmol) von DMAP – gelöst in einem Solvens, beispielsweise DMSO oder 2-Butanol - und 0.2 mL (0.2 mmol) des Amins, gelöst in 2-Butanol, hinzugegeben. Die Reaktionsmischung wird anschliessend für 20 Stunden bei 80°C gerührt. Nach beendeteter Reaktion wird das
- 20 Rohprodukt abpipettiert und der Reaktor mit 1.0 mL THF nachgewaschen. Die Lösung des Rohproduktes wird dann eingeengt und mittels HPLC gereinigt.

Es wurden die nachfolgenden Verbindungen hergestellt:

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
297		526,4968	526/528
298		562,5298	562/564
299		624,6006	624/626
300		501,4471	501/503
301		538,4682	538/540

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
302		588,4465	588/590
303		528,5126	528/530
304		542,5394	542/544
305		556,5662	556/558
306		570,593	570/572

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
307		510,4106	510/512
308		588,4465	588/590
309		548,503	548/550
310		555,4949	555/557
311		500,459	500/502

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
312		514,4858	514/516
313		515,4739	515/517
314		557,5543	557/559
315		470,3896	470/472
316		551,5069	551/553

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
317		534,4762	534/536
318		568,9213	568/570
319		524,4374	524/526
320		543,4839	543/545
321		488,4044	488/490

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
322		526,4776	526/528
323		564,502	564/566
324		527,4849	527/529
325		541,5117	541/543
326		538,4395	538/540

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
327		541,5117	541/543
328		521,4375	521/523
329		538,4395	538/540
330		521,4375	521/523
331		550,4752	550/552

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
332		550,4752	550/552
333		613,5551	613/615
334		534,4762	534/536
335		512,47	512/514
336		548,503	548/550

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
337		610,5738	610/612
338		487,4203	487/489
339		524,4414	524/526
340		574,4197	574/576
341		514,4858	516/514

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
342		528,5126	528/530
343		542,5394	542/544
344		556,5662	556/558
345		496,3838	496/498
346		574,4197	574/576

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
347		534,4762	534/536
348		541,4681	541/543
349		486,4322	486/488
350		500,459	500/502
351		501,4471	501/503
352		543,5275	543/545

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
353		456,3628	456/458
354		537,4801	537/539
355		520,4494	520/522
356		554,8945	554/556
357		510,4106	510/512

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
358		529,4571	529/531
359		474,3776	474/476
360		512,4508	541/514
361		550,4752	550/552
362		513,4581	513/515

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
363		527,4849	527/529
364		524,4127	524/526
365		527,4849	527/529
366		507,4107	507/509
367		524,4127	524/526

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
368		507,4107	507/509
369		536,4484	536/538
370		536,4484	536/538
371		599,5283	599/601
372		520,4494	520/522

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
373		512,47	512/514
374		548,503	548/550
375		610,5738	610/612
376		524,4414	524/526
377		574,4197	574/576

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
378		514,4858	514/516
379		528,5126	528/530
380		542,5394	542/544
381		496,3838	496/498
382		574,4197	574/576

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
383		534,4762	534/536
384		541,4681	541/543
385		486,4322	486/488
386		500,459	500/502
387		501,4471	501/503
388		543,5275	543/545

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
389		537,4801	537/539
390		520,4494	520/522
391		554,8945	554/556
392		510,4106	510/512
393		529,4571	529/531

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
394		474,3776	474/476
395		512,4508	512/514
396		513,4581	513/515
397		527,4849	527/529
398		524,4127	524/526

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
399		527,4849	527/529
400		507,4107	507/509
401		524,4127	524/526
402		507,4107	507/509
403		536,4484	526/538

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
404		536,4484	536/538
405		599,5283	599/601
406		520,4494	520/522
407		529,4419	529/531
408		534,4762	534/536

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
409		596,547	596/598
410		473,3935	473/475
411		510,4146	510/512
412		560,3929	560/562
413		500,459	500/502

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
414		514,4858	514/516
415		528,5126	528/530
416		482,357	482/484
417		560,3929	560/562
418		520,4494	520/522

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
419		527,4413	527/529
420		472,4054	472/474
421		486,4322	486/488
422		487,4203	487/489
423		529,5007	529/531

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
424		523,4532	523/525
425		506,4226	506/508
426		540,8677	540/542
427		496,3838	496/498
428		515,4303	515/517

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
429		460,3508	460/462
430		498,424	498/500
431		499,4313	499/501
432		513,4581	513/515
433		510,3859	510/512

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
434		513,4581	513/515
435		493,3839	493/495
436		510,3859	510/512
437		493,3839	493/495
438		522,4216	522/524

Beispiel-Nr.	Verbindung	Molgewicht	ESI-MS
439		522,4216	522/524
440		585,5015	585/587
441		506,4226	506/508
442		515,4151	515/517
443 *)		416,30	416/418

*) hergestellt nach dem unter Sulfonamide beschriebenen Verfahren

Herstellung der Pyrimidin-Sulfonylfluoride der allgemeinen Formel I

Die Herstellung der Pyrimidin-Sulfonsäurefluoride erfolgt analog zur Herstellung der Sulfonsäureamide.

5

10

Beispiel-Nr.	Verbindung	Molgewicht	Schmelzpunkt [°C] und ESI-MS
444		405,25	217-220 405/407
445		419,27	196-202 419/421

Beispiel-Nr.	Verbindung	Molgewicht	Schmelzpunkt [°C] und ESI-MS
446		419,27	165-196 419/421
447		433,30	198-204 433/435
448		433,30	144-149 433/435
449		447,33	219-222 447/449

Beispiel-Nr.	Verbindung	Molgewicht	Schmelzpunkt [°C] und ESI-MS
450		405,25	170-173 405/407
451		419,27	226-228 419/421
452		433,30	433/435
453		447,33	447/449
454		433,30	433/435
455		419,27	419/421

In analoger Verfahrensweise zu den oben beschriebenen Beispielen wurden auch die folgenden para-Verbindungen hergestellt:

Beispiel-Nr.	Verbindung	Molekular-gewicht	ESI-MS
456		498,4432	498/500
457		534,4762	534/536
458		596,547	596/598
459		473,3935	473/475

Beispiel-Nr.	Verbindung	Molekular-gewicht	ESI-MS
460		510,4146	510/512
461		560,3929	560/562
462		500,459	500/502
463		514,4858	514/516

Beispiel-Nr.	Verbindung	Molekular-gewicht	ESI-MS
464		528,5126	528/530
465		542,5394	542/544
466		560,3929	560/562
467		520,4494	520/522

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
468		527,4413	527/529
469		472,4054	472/474
470		486,4322	486/488
471		529,5007	529/531
472		442,336	442/444

Beispiel-Nr.	Verbindung	Molekular-gewicht	ESI-MS
473		523,4532	523/525
474		506,4226	506/508
475		540,8677	540/542
476		496,3838	496/498

Beispiel-Nr.	Verbindung	Molekular-gewicht	ESI-MS
477		515,4303	515/517
478		460,3508	460/462
479		498,424	498/500
480		536,4484	536/538
481		499,4313	499/501

Beispiel-Nr.	Verbindung	Molekular-gewicht	ESI-MS
482		513,4581	513/515
483		510,3859	510/512
484		513,4581	513/515
485		493,3839	493/495
486		510,3859	510/512

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
487		493,3839	493/495
488		522,4216	522/524
489		522,4216	522/524
490		585,5015	585/587
491		506,4226	506/508

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
492		515,4151	515/517
493		512,47	
494		548,503	
495		610,5738	
496		487,4203	
497		524,4414	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
498		574,4197	
499		514,4858	
500		528,5126	
501		542,5394	
502		556,5662	
503		496,3838	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
504		574,4197	
505		534,4762	
506		541,4681	
507		486,4322	
508		500,459	
509		501,4471	
510		543,5275	

Beispiel-Nr..	Verbindung	Molekulargewicht	ESI-MS
511		456,3628	
512		537,4801	
513		520,4494	
514		566,4742	
515		554,8945	
516		510,4106	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
517		529,4571	
518		474,3776	
519		512,4508	
520		550,4752	
521		513,4581	
522		527,4849	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
523		524,4127	
524		527,4849	
525		507,4107	
526		524,4127	
527		507,4107	
528		536,4484	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
529		536,4484	
530		599,5283	
531		520,4494	
532		529,4419	

Trennung von Diastereomerengemischen der erfindungsgemäßen Verbindungen

5 Trennung am Beispiel des Diastereomerengemisches der Verbindung Nr. 274

10

Das Diastereomerengemisch wurde in die beiden korrespondierenden Racemate (A und B) mittels HPLC getrennt. Bedingungen:

- Säule: Kromasil C18(5µm) 150x4,6mm
- 15 Eluent: 25% Acetonitril / Wasser mit 1 ml NH3/l;
- Fluß: 1,0 ml/min
- Detektion: PDA 300nm
- Retentionszeiten: Racemate A - 11,6 min
Racemate B - 12,4 min

20

NMR	DMSO-d6: 9.68, s, 1 H 8.12, s, 1 H 7.87, d, 2 H 7.70, d, 2 H 7.14, s, 2 H 6.15, d, 1 H 5.01, d, 1 H 4.10, m, 1 H 3.80, m, 1 H 1.22, d, 3 H 1.1, d, 3 H	DMSO-d6: 9.68, s, 1 H 8.11, s, 1 H 7.85, d, 2 H 7.69, d, 2 H 7.16, s, 2 H 6.35, d, 1 H 4.90, d, 1 H 4.08, m, 1 H 3.80, m, 1 H 1.18, d, 3 H 1.12, d, 3 H

Nachfolgend wurden die Racemate A und B jeweils mittels chiraler HPLC getrennt.

5 Bedingungen:

Säule: Chiralpak AD(10µm) 250x4,6mm

Eluent: Hexan/ Ethanol 80:20

Fluß: 1,0 ml/min

Detektion: PDA 300nm

- 10 Retentionszeiten: Enantiomer A1 - 16,6 min
 Enantiomer A2 - 19,6 min
 Enantiomer B1 - 16,0 min
 Enantiomer B2 - 17,8 min

Herstellung der für die Synthese der erfindungsgemäßen Verbindungen der allgemeinen Formel I vorzugsweise verwendeten Zwischenstufen.

5 Beispiel 1.0

Herstellung von N-(2-Chlor-5-fluor-4-pyrimidinyl)-N-2-propynylamin

- 11,1g (66 mmol) 2,4-Dichlor-5-fluorpyrimidin werden in 60 ml Acetonitril gelöst,
 10 10,2 ml (73 mmol) Triäthylamin und 6,0 ml (86 mmol) Propynylamin werden hinzugegeben. Das Reaktionsgemisch wird bei Raumtemperatur über Nacht gerührt und anschließend in Wasser gegossen. Die Mischung wird mittels Ethylacetat extrahiert, die kombinierten organischen Phasen werden über MgSO₂ getrocknet und das Lösemittel wird mittels Unterdruck evaporiert. Nach
 15 Umkristallisierung des verbleibenden Materials mit Diisopropylether / Hexan, beträgt die Ausbeute 10.6 g (87% der Theorie) des Produktes.

5-H	8.18 (3.3Hz,1H)	Lösemittel: DMSO
4CH	4.14 (dd,2H) 3.20 (t,1H)	Ausbeute: 87%
NH	8.65 (tb,1H)	Schmelzpunkt: 96°C

20

- Die nachfolgenden beschriebenen 4-(Diaminocyclohexyl)-Derivate werden über reduktive Aminierungen des beschriebenen Keto-Derivates unter Verwendung von Triacetoxyborhydrid (Abdel-Magid, Carson, Harris, Maryanoff, Sha, *J. Org. Chem.* 1996, 61, 3849) synthetisiert. Das Keto-Derivat wird durch TPAP-
 25 Oxidation (Griffith, Ley, *Aldrichimica Acta* 1990, 23, 13) des entsprechenden Alkohols erhalten.

In analoger Verfahrensweise werden auch folgende Zwischenverbindungen hergestellt.

Beispiel -Nr.	1.1	1.2	1.3	1.4
Löse- mittel	CDCl ₃	DMSO	DMSO	DMSO
5-H	7.87 (s,1H)	8.34 (s,1H)	8.24 (s,1H)	8.23 (s,1H)
4CH	4.32 (dd,2H) 2.30 (t,1H)	4.48 (q,1H) 1.93 (dq,2H) 0.92 (t,3H)	3.59 (td,2H) 2.78 (t,2H)	3.21 (t,2H) 1.10 (mc,1H) 0.42 (mc,2H)
5CH	2.03 (s,3H)	3.66 (s,3H)	6.85 (s,1H) 7.90 (tb,1H)	0.37 (mc,2H) 7.84 (t,1H)
NH	4.91 (sb,1H)	7.69 (d,1H)	11.92 (sb,1H)	
Aus- beute	80%	42%	33%	74%
Schmp.	121-121.5°C	73°C	90°C	98°C

Beispiel -Nr.	1.5	1.6	1.7	1.8
Löse-mittel	DMSO	DMSO	DMSO	DMSO
6-H	8.26 (s,1H)	8.26 (s,1H)	8.27 (s,1H)	8.37 (s,1H)
4CH	3.59 (mc,2H) 3.90 (mc,1H) 1.98 (mc,1H) 0.94 (d,3H) 0.86 (d,3H)	3.58 (mc,2H) 3.97(mc,1H) 1.96 (mc,1H) 0.92 (d,3H) 0.84 (d,3H)	3.58 (sb,4H) 4.14 (mc,1H)	4.40 (m, 1H) 3.49 (dd,1H) 3.33 (dd,1H) 3.26 (s,3H) 1.15 (d,3H)
OH	4.67 (mb,1H)	4.74 (t,1H)	4.78 (sb,2H)	
NH	6.75 (sb,1H)	6.87 (d,1H)	6.73 (sb,1H)	7.29 (d, 1H)
Aus-beute	82%	91%	41%	74%
Schmp.	113-114°C	121 – 122°C	155-156°C	Öl

Beispiel-Nr.	1.9	1.10
Lösemittel	DMSO	DMSO
6-H	8.24 (s,1H)	8.36 (s,1H)
4CH	3.49 (q,2H) 2.50 (t,2H) 2.42 (t,4H) 3.56 (t,4H)	4.14 (d,2H) 3.18 (t,1H)
OH		
NH	7.57 (sb,1H)	8.40 (s,1H)
Ausbeute	31%	73
Schmp.	118 – 119°C	103 – 104°C

Beispiel -Nr.	1.11	1.12	1.13	1.14
Löse-mittel	DMSO	DMSO	DMSO	DMSO
6-H	8.30 (s,1H) 4.46 (dq,1H) 1.38 (d,3H)	8.32 (s,1H) 5.04 (q,1H) 2.39 (m,2H)	8.29 (s,1H) 3.7-3.9 (2H) 5.19 (m,1H) 7.2-7.4 (5H)	8.24 (s,1H) 4.25 (m,1H) 3.48 (m,2H)
NH	7.60 (sb,1H)	4.31 (q,1H)	7.72 (d,1H) 5.09 (t,1H)	1.86 (m,2H)
OH	7.29 (sb,1H) 7.21 (d,1H)	4.40 (t,1H) 8.13 (d,1H)		2.43 (m,2H) 2.03(s,3H) 7.13 (d,1H) 4.88 (t,1H)
Aus-beute	87%	63%	99%	78%
Schmp.	234°C Zers.	210°C Zers.	152-153°C	130°C

Beispiel-Nr.	1.15	1.16	1.17
Lösemittel	DMSO	DMSO	DMSO
6-H	8.20 (s,1H) 3.55 (m, 2H) 4.22 (m,1H) 5.03 (m,2H) 7.1-7.4 (5H)	8.21 (s,1H) 3.33 (q, 2H) 1.53 (m,4H) 1.28 (m,2H) 2.29 (t,2H)	8.22 (s,1H) 3.39 (q,2H) 2.26 (t,2H) 1.79 (q,2H)
NH	6.53 (d,1H) 5.93 (d,1H)	7.74 (t,1H)	7.78 (t,1H) 12.11 (sb,1H)
Ausbeute	93%	99%	11%
Schmp.	Öl	Öl	Öl

Beispiel-Nr.	1.18	1.19	1.20
Ausbeute	86 %	64 %	87%
Masse	ESI : MH ⁺ 297(2%) 266 (22%) 234 (30%)	ESI : MH ⁺ 311 (2%) 248 (20%) 236 (18%)	CI : M+ 354 (100%) 352 (72%) 308 (54%)

Beispiel-Nr.	1.21	1.22	1.23
Ausbeute	26 %	~20%	89%
Masse	EI : M ⁺ 327 (10%) 222 (36%) 105 (100%)	NMR , CDCl ₃ 8,16 (s , 1H) 6,55 (s , 1H) 4,43 (d , 2H) 1,29 (s , 9H)	EI : M ⁺ 265 (15%) 236 (100%) 209 (18%)

5

Beispiel-Nr.	1.24	1.25	1.26
Ausbeute	75 %	70 %	83 %
Masse	CI : M ⁺ 384 (100%) 212 (21%) 91 (7%)	CI M ⁺ 384 (100%) 212 (21%) 91 (7%)	ESI : 319 3% 278 100% 220 68%

10

Beispiel-Nr.	1.27
Ausbeute	98 %
Masse	ESI: MH ⁺ 296 (90%) 298 (100%) 210 (12%)

Beispiel 2.0**Herstellung von 5-Brom-2-chlor-4-(4,4,4-trifluorbutoxy)pyrimidin**

- 5 3,19 g (14 mmol) 5-Brom-2,4-dichlorpyrimidin werden mit 8,06 g (63 mmol) 4,4,4-trifluorbutanol gemischt und 0,74 ml (8.4 mmol) Trifluormethansulfonsäure werden langsam dazu gegeben. Das Reaktionsgemisch wird bei Raumtemperatur über Nacht gerührt und anschließend in Wasser gegossen. Die Mischung wird mittels Ethylacetat extrahiert, die kombinierten organischen
- 10 Phasen werden über MgSO₂ getrocknet und das Lösemittel wird mittels Unterdruck evaporiert. Das Produkt ist immer mit variierenden Mengen 2,4-Bisalkoxypyrimidin kontaminiert. Deshalb wird das verbleibende Material mittels Gradientenchromatographie mit Kieselgel als Trägermaterial (Eluent: Hexan und Hexan/ethylacetat im Verhältnis 9:1) gereinigt. Dieses Verfahren führt zu einer
- 15 Ausbeute von 1,70 g (38%) und liefert ebenfalls 1,93 g (34%) an 5-Brom-2,4-bis-(4,4,4-Trifluorbutoxy)pyrimidin (Ausgangsverbindung).

5-H 8.74 (s,1H) Chromatographie: H bis H/EA 9:1
 4C 4.48 (t,2H) Ausbeute: 38%
 H 2.00 (mc,2H) Schmelzpunkt: 66.5 – 67.5°C
 2.44 (mc,2H)

5C
 H

In analoger Verfahrenweise werden auch die folgenden Verbindungen hergestellt:

Beispiel-Nr.	2.1	2.2
	CDCl ₃	DMSO
5-H	8.49 (s,1H)	8.75 (s,1H)
4CH	5.10 (d,2H) 3.79 (mc,2H) 3.60 (mc,2H)	
5CH	2.59 (t,1H) 3.48 (mc,2H) 3.40 (t,2H) 1.07 (t,3H)	
Chrom.	H to H/EA 4:1	DCM to DCM/ MeOH 95:5
Ausbeute	78%	11%
Schmp.	55°C	Öl

Analog zu den Verfahrensbeispielen 1 und 2 werden auch folgende Zwischenprodukte hergestellt:

Beispiel -Nr.	1-2.1	1-2.2	1-2.3	1-2.4
Löse-Mittel	DMSO	DMSO	DMSO	DMSO
	8.26 (s,1H) 6.65 (d,1H) 4.70 (t,1H) 4.10 (dt,1H) 3.65 (at,2H) 0.90 (s,9H)	8.26 (s,1H) 6.65 (d,1H) 4.70 (t,1H) 4.10 (dt,1H) 3.65 (at,2H) 0.90 (s,9H)	8.29 (s,1H) 6.32 (s,1H) 4.89 (t,3H) 3.74 (d,6H)	8.28 (s,1H) 7.09 (d,1H) 5.05 (d,1H) 3.95 (m,1H) 3.60 (m,5H) 1.30 (s,3H) 1.28 (s,3H)
Aus-beute	49%	70%	16%	92%
Masse	309 (EI)	309 (EI)	314 (EI)	354 (EI)

Beispiel -Nr.	1-2.5	1-2.6	1-2.7	1-2.8
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.15 (s,1H) 7.25 (t,1H) 3.16 (s,2H) 1.90 (s,3H) 1.61 (q,6H) 1.41 (s,6H)	8.22 (s,1H) 4.82 (t,1H) 4.49 (br,1H) 3.85 (m,1H) 3.76 (m,1H) 3.54 (m,1H) 3.40 (m,1H) 1.93 (m,3H) 1.80 (m,1H)	8.28 (s,1H) 6.29 (s,1H) 5.31 (t,1H) 3.39 (d,2H) 1.39 (s,6H)	8.22 (s,1H) 7.23 (d,1H) 4.60 (d,1H) 3.85 (m,1H) 3.35 (m,1H) 1.80 (m,4H) 1.53 (m,2H) 1.20 (m,2H)
Aus- beute	70%	75%	46%	24%
Masse	357 (EI)	293 (EI)	281 (EI)	305 (EI)

Beispiel -Nr.	1-2.9	1-2.10	1-2.11	1-2.12
Löse-mittel	DMSO	DMSO	DMSO	DMSO
	8.38 (s,1H) 4.81 (br,1H) 3.96 (m,2H) 3.72 (m,1H) 3.30 (m,2H) 1.81 (m,2H) 1.48 (m,2H)	8.22 (s,1H) 7.05 (d,1H) 4.82 (t,1H) 4.18 (m,1H) 3.42 (m,2H) 1.15 (d,3H)	8.21 (s,1H) 7.06 (d,1H) 4.81 (t,1H) 4.22 (m,1H) 3.47 (m,2H) 1.51 (m,2H) 1.37 (m,1H) 0.88 (m,6H)	8.31 (s,1H) 7.32 (d,1H) 4.35 (s,1H) 3.68 (s,3H) 2.32 (m,1H) 0.90 (dd,6H)
Aus-beute	19%	71%	99%	77 %
Masse	292 (EI)	266 (EI)	308 (EI)	322 (ES)

Beispiel -Nr.	1-2.13	1-2.14	1-2.15	1-2.16
Löse-mittel	DMSO	DMSO	DMSO	DMSO
	8.41 (s,1H) 8.11 (s,1H) 4.28 (t,2H)	8.25 (s,1H) 4.53 (m,1H) 3.88 (m,2H) 3.70 (dd,1H) 3.62 (dd,1H) 2.16 (m,1H) 2.02 (m,1H) 7.56 (d,1H)	8.19 (s,1H) 7.65 (t,1H) 3.18 (t,2H) 1.62 (m,6H) 1.16 (m,3H) 0.90 (m,2H)	8.19 (s,1H) 7.30 (d,1H) 3.65 (m,1H) 1.68 (m,5H) 1.25 (m,4H) 0.78 (d,3H)
Aus-beute	46%	72%	68%	31%
Masse	390 (FAB)	277 (EI)	303 (EI)	305 (EI)

Beispiel -Nr.	1-2.17	1-2.18	1-2.19	1-2.20
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.21 (s,1H) 7.22 (d,1H) 3.88 (m,1H) 1.70 (m,4H) 1.50 (m,2H) 1.28 (m,1H) 1.01 (m,2H) 0.82 (d,3H)	8.35 (t,1H) 8.19 (s,1H) 3.40 (m,2H) 2.97 (p,1H) 2.22 (m,4H) 2.08 (dd,1H) 1.70 (m,6H)	8.21 (s,1H) 7.81 (t,1H) 3.41 (dd,2H) 2.31 (m,10H) 2.13 (s,3H) 1.70 (p,2H)	8.20 (s,1H) 7.71 (t,1H) 4.45 (br,1H) 3.40 (m,4H) 1.60 (m,2H) 1.44 (m,2H)
Aus- beute	22%	32%	28%	98%
Masse	303 (EI)	320 (EI)	349 (EI)	281 (EI)

Beispiel -Nr.	1-2.21	1-2.22	1-2.23	1-2.24
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.25 (s,1H) 8.08 (d,1H) 7.35 (m,5H) 5.30 (m,1H) 4.81 (t,1H) 3.45 (m,2H) 2.05 (m,2H)	8.25 (s,1H) 7.38 (d,1H) 4.44 (m,1H) 2.60 (m,2H) 2.24 (m,2H) 2.07 (m,2H) 1.90 (m,2H)	8.20 (s,1H) 7.28 (d,1H) 4.19 (m,1H) 2.40 (m,6H) 1.50 (m,4H) 1.15 (d,3H) 0.91 (t,6H)	8.21 (s,1H) 7.24 (d,1H) 7.02 (t,1H) 4.40 (m,1H) 3.92 (m,1H) 2.95 (q,2H) 1.95 (m,2H) 1.82 (m,2H) 1.59 (m,2H) 1.3 (m,6H) 0.82 (t,3H)
Aus- beute	97%	58%	52%	70%
Masse	343 (EI)	304 (ES)	348 (EI)	

	 Diastereomer 1/2	 Diastereomer 1	 Diastereomer 2	 Diastereomer 1
Beispiel -Nr.	1-2.25	1-2.26	1-2.27	1-2.28
Löse- mittel	DMSO	DMSO	DMSO	DMSO
		8.22 (s,1H) 7.21 (d,1H) 3.82 (m,1H) 2.45 (m,4H) 2.22 (m,1H) 1.78 (m,8H) 1.45 (m,6H)	8.25 (s,1H) 6.87 (d,1H) 4.02 (m,1H) 2.45 (m,4H) 2.22 (m,1H) 1.78 (m,8H) 1.45 (m,6H)	8.22 (s,1H) 7.28 (d,1H) 3.85 (m,1H) 2.19 (s,6H) 2.15 (m,1H) 1.82 (m,4H) 1.50 (m,2H) 1.25 (m,2H)
Aus- beute	n.b.	26%	23%	51%
Masse	344 (EI)	374 (EI)	374 (EI)	334 (EI)

	Diastereomer 1+2 (ca.1:1)	Diastereomer 1+2 (ca.1:1)	Diastereomer 3+4 (ca.1:1)	
Beispiel -Nr.	1-2.29	1-2.30	1-2.31	1-2.32
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.22 (s,2H) 7.28 (d,1H) 7.10 (d,1H) 4.00 (m,1H) 3.85 (m,1H) 2.19 (s,6H) 2.17 (s,6H) 2.15 (m,1H) 2.00 (m,1H) 1.82 (m,8H) 1.50 (m,6H) 1.25 (m,2H)	8.21 (s,1H) 7.18 (d,1H) 4.62 (s,1H) 4.20 (m,1H) 3.95 (m,1H) 2.75 (dd,1H) 2.50 (m,2H) 2.31 (dd,1H) 2.15 (s,1H) 2.00 (m,1H) 1.82 (m,4H) 1.55 (m,5H)	8.21 (s,1H) 7.22 (d,1H) 4.65 (s,1H) 4.15 (m,1H) 3.85 (m,1H) 2.78 (m,1H) 2.60 (m,1H) 2.38 (dd,1H) 1.95 (m,3H) 1.80 (m,2H) 1.52 (m,3H) 1.20 (m,2H)	8.71 (s,1H) 5.32 (m,1H) 3.82 (m,2H) 3.55 (m,2H) 2.00 (m,2H) 1.70 (m,2H)
Aus- beute	13%	35%	21%	40%
Masse	334 (EI)	374 (EI)	374 (EI)	292 (EI)

Beispiel -Nr.	1-2.33	1-2.34	1-2.35	1-2.36
Löse- mittel	DMSO	CDCl ₃	DMSO	CDCl ₃
	8.50 (s,1H) 4.10 (m,2H) 3.72 (m,1H) 3.30 (m,2H) 1.75 (m,2H) 1.35 (m,2H)	8.08 (s,1H) 6.04 (m,1H) 5.71 (br,1H) 4.48 (d,2H) 3.71 (s,3H) 2.25 (s,3H)	8.23 (s,1H) 7.27 (d,1H) 7.04 (t,1H) 4.46 (m,1H) 3.95 (m,1H) 2.94 (m,2H) 1.92 (m,4H) 1.62 (m,2H) 1.32 (m,6H) 0.84 (t,3H)	8.11 (s,2H,1+2) 5.55 (m,1H,1) 5.29 (m,1H,2) 4.25 (m,1H,1) 3.98 (m,1H,2) 3.72 (m,8H,1+2) 2.65 (m,8H,1+2) 1.70 (m,18H,1+2)
Aus- beute	3%	30%	70%	66%
Masse	291 (EI)	300 (ES)	405 (ES)	375 (ES)

Beispiel -Nr.	1-2.37	1-2.38	1-2.39	1-2.40
Löse- mittel	CDCl ₃	CDCl ₃	DMSO	DMSO
	8.14 (s,1H) 5.41 (m,1H) 4.49 (m,1H) 2.44 (m,6H) 1.79 (m,2H)	8.20 (s,1H) 7.71 (m,1H) 7.30 (m,6H) 4.97 (s,2H) 3.00 (m,2H) 1.40 (m,8H)	8.22 (s,1H) 6.35 (s,1H) 5.19 (t,1H) 3.54 (d,2H) 2.00 (m,2H) 1.75 (m,4H) 1.53 (m,2H)	8.22 (s,1H) 7.12 (d,1H) 4.10 (m,1H) 2.20 (m,1H) 1.89 (m,1H) 1.35 (m,8H)
Aus- beute	58%	77%	48%	60%
Masse	304 (ES)	427 (ES)	308 (EI)	301 (EI)

Beispiel -Nr.	1-2.41	1-2.42	1-2.43	1-2.44
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.19 (s,1H) 7.21 (d,1H) 4.03 (m,1H) 1.60 (m,12H)	8.21 (s,1H) 7.03 (d,1H) 4.83 (t,1H) 4.13 (m,1H) 3.47 (m,2H) 1.12 (d,3H)	8.28 (s,1H) 3.62 (q,4H) 1.18 (t,6H)	8.41 (s,1H) 8.15 (t,1H) 4.21 (td,2H)
Aus- beute	73%	61%	13%	21%
Masse	303 (EI)	267 (EI)	265 (EI)	339 (EI)

Beispiel -Nr.	1-2.45	1-2.46	1-2.47	1-2.48
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.36 (s,1H) 6.56 (s,1H) 3.81 (s,1H) 2.28 (m,2H) 1.83 (m,2H) 1.58 (m,6H)	8.26 (s,1H) 8.06 (d,1H) 7.30 (m,5H) 5.29 (m,1H) 4.81 (t,1H) 3.42 (m,2H) 2.10 (m,2H)	8.32 (t,1H) 8.15 (s,1H) 3.40 (m,2H) 2.34 (m,2H) 2.18 (s,6H) 1.69 (m,2H)	8.15 (s,1H) 7.06 (d,1H) 4.65 (br,1H) 3.79 (m,1H) 3.52 (m,1H) 1.86 (m,2H) 1.61 (m,2H) 1.25 (m,4H)
Aus- beute	84%	97%	22%	53%
Masse	314 (EI)	343 (EI)	294 (EI)	307 (EI)

Beispiel -Nr.	1-2.49	1-2.50	1-2.51	1-2.52
Löse- mittel	DMSO	DMSO	DMSO	
	8.29 (s,1H) 6.05 (s,1H) 5.18 (m,1H) 3.54 (s,2H) 1.92 (m,2H) 1.70 (m,2H)	8.18 (s,1H) 7.25 (d,1H) 4.15 (m,1H) 2.40 (m,6H) 1.50 (m,4H) 1.17 (d,3H) 0.90 (dd,6H)	8.29 (s,1H) 6.18 (s,1H) 5.15 (t,1H) 3.70 (m,1H) 3.49 (m,1H) 2.60 (m,1H) 0.92 (d,3H) 0.83 (d,3H)	8.38 (s,1H) 7.28 (d,1H) 5.28 (t,1H) 4.65 (m,1H) 3.86 (m,2H) 3.65 (s,3H)
Aus- beute	16%	52%	27%	63%
Masse	308 (EI)	350 (EI)	308 (EI)	309 (EI)

Beispiel -Nr.	1-2.53	1-2.54	1-2.55
Löse- mittel	DMSO	DMSO	DMSO
	8.22 (s,1H) 7.65 (t,1H) 7.30 (m,6H) 5.01 (s,2H) 3.38 (m,2H) 3.04 (m,2H) 1.68 (m,2H)	7.75 (s,1H) 6.55 (d,1H) 4.54 (m,1	8.18 (s,1H) 7.69 (t,1H) 4.32 (br,1H) 3.35 (m,4H) 1.40 (m,6H)
Aus- beute	77%	50%	43%
Masse	398 (EI)	229 (EI)	295 (EI)

Beispiel 3.0**Herstellung der Amine**

5

- 4,5 g (20 mMol) 2-Brombutyraldehyddiethylacetal (Fa. Pfaltz-Bauer) und 5,2 g (80 mMol) Natriumazid werden 5 Tage in 15 ml DMF bei 100°C gerührt. Dann
- 10 wird auf kalte verdünnte Natriumhydrogencarbonatlösung gegossen, 3x mit Ether extrahiert, die org. Phase mit Magnesiumsulfat getrocknet und eingeengt: Rohausbeute 1,87 g (50% d.Th.).
- 936 mg des Rohproduktes werden in 50 ml Methanol gelöst, mit Palladium auf Kohle (10%ig) versetzt und 12 Stunden unter H₂-Atmosphäre gerührt. Nach
- 15 Abfiltrieren des Katalysators und Einengen verbleiben 457mg (57% der Theorie) des gewünschten Amins.

Beispiel-Nr.	3.0	3.1	3.2	3.3
Ausbeute	50%	57%	50 %	71 %
NMR CDCl ₃	4,38 (d , 1H) 3,72 (m , 2H) 3,6 (m , 2H) 3,25 (m , 1H) 1,7 (m , 1H) 1,46 (m , 1H) 1,25 (trtr , 6H) 1,0 (tr , 3H)	4,19 (d , 1H) 3,68 (m , 2H) 3,52 (m , 2H) 2,7 (m , 1H) 1,60 (m , 1H) 1,25 (m , 1H) 1,2 (trtr , 6H) 0,95 (tr , 3H)	4,38 (d , 1H) 3,58 (m , 2H) 3,5 (m , 1H) 3,49 (s , 3H) 3,43 (s , 3H) 3,39 (s , 3H)	4,25 (d , 1H) 3,5 (m , 1H) 3,42 (s , 3H) 3,41 (s , 3H) 3,40 (m , 1H) 3,08 (m , 1H)

5

Beispiel 4.0**Herstellung der freien Aldehyde**

10

148 mg 0,5 mMol der Zwischenprodukt-Verbindung 1.18 werden in 1 ml Eisessig gelöst. Bei Raumtemperatur gibt man 0,5 ml 1N Salzsäure hinzu und 15 röhrt 12 Stunden. Zur Aufarbeitung wird auf Eiswasser gegossen und vorsichtig mit pulverisiertem Natriumhydrogencarbonat neutralisiert. Dann wird 3 mal mit

Essigester extrahiert, die org. Phase mit Magnesiumsulfat getrocknet und eingeengt. Rohprodukt 104 mg (83% der Theorie) des Aldehyds der Verbindung 4.0. Das Rohprodukt kann ohne weitere Reinigung eingesetzt werden.

Beispiel -Nr.	4.1	4.0	4.2	4.3
Ausbeute	82 %	83 %	89 %	79 %
Masse	ESI : MH ⁺ 278 (39%) 210 (100%)	ESI : MH ⁺ 250 (9%)	ESI: MH ⁺ 266 (8%)	ESI: MH ⁺ 294 (10%)

Beispiel 5.0**5 Herstellung der Ketone**

- 10 100 mg (0,356 mMol) der Verbindung 6.0 und 126 mg N-Methylmorpholin-N-oxid werden in 5 ml Dichlormethan gelöst, und 10 min. mit pulverisiertem Molsieb (4 A) gerührt. Dann gibt man 6 mg Tetrapropylammoniumperruthenat hinzu und röhrt 4 Stunden bei Raumtemperatur nach. Nach Einengen wird über Kieselgel chromatographiert (Hexan/Essigester 4:1 > 2:1). Ausbeute: 75 mg (76% der Theorie) des Ketons der Verbindung 5.0.
- 15

Beispiel -Nr.	5.0
Aus- beute	76%
Masse	ESI : MH^+ 280 (100%) 200 (37%) 156 (30%)

Beispiel 6.0**Herstellung der Alkohole**

5

- 10 265 mg (1 mMol) der Verbindung 4.2 werden in 20 ml Tetrahydrofuran gelöst. Unter Eisbadkühlung werden 5 Equivalente Methylmagnesiumbromid (3 molare Lösung in Ether) portionsweise hinzugegeben. Dann wird 3 Stunden bei Raumtemperatur nachgerührt und anschließend unter Kühlung mit Wasser gequencht. Dann wird mit Ammoniumchloridlösung versetzt , 3 mal mit
- 15 Essigester extrahiert, die organische Phase mit Magnesiumsulfat getrocknet und einengt. Flashchromatographie (Hexan/Essigester 2:1) ergibt 213 mg (76% der Theorie) des Alkohols der Verbindung 6.0.

20

ESI : MH⁺ 282 (100%) 276 (5%)

25

In analoger Verfahrensweise werden auch folgende Zwischenprodukte
 5 hergestellt:

Beispiel -Nr.	6.1	6.2	6.3
Ausbeute	46%	32%	39%
Masse	EI: M ⁺ 267 (3%) 223 (100%) 132 (27%)	ESI : MH ⁺ 308 (100%) 306 (71%) 268 (31%)	ESI : MH ⁺ 296 (100%) 294 (73%) 217 (4%)

Beispiel -Nr.	6.4	6.5
Aus- beute	36%	50%
Massen	EI : M+ 281 (3%) 223 (100%) 114 (38%)	ESI: MH ⁺ 310 (100%) 308 (87%) 298 (9%)

Beispiel -Nr.	6.6	6.7	6.8
Aus- beute	40%	~20%	35%
Masse	EI : M ⁺ 358 (100%) 356 (97%) 277 (29%)	CI: M ⁺ 310 (100%) 308 (84%) 130 (54%)	ESI : MH ⁺ 294 (28%) 296 (36%) 210 (100%)

Beispiel -Nr.	6.9	6.10
Aus- beute	29 %	67 %
Masse	ESI: MH^+ 308 (28%) 310 (38%) 210 (100%)	ESI: MH^+ 310 (87%) 312 (100%) 123 (24%)

5

10

Gegenstand der vorliegenden Erfindung sind somit auch Verbindungen der allgemeinen Formel Ia

5

in der

D für Halogen, und X, R¹, und R² die in der allgemeinen Formel (I) angegebenen Bedeutungen haben.

- 10 Insbesonders wertvoll sind solche Zwischenprodukte der allgemeinen Formel Ia, in der D für Chlor steht und X, R¹ und R² die in der allgemeinen Formel angegebenen Bedeutungen haben.

Ein weiterer Gegenstand der vorliegenden Erfindung sind auch solche Verbindungen, die unter das Schutzrecht DE 4029650 fallen und deren Wirkung im fungiziden Bereich liegt, die jedoch nicht als CDK-Inhibitoren beschrieben sind, und auch ihre Verwendung zur Behandlung von Krebs wird nicht 5 beschrieben wird.

Nr.	Struktur	Name
5		4-[[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]amino]-phenol
6		4-[[5-Brom-4-(2-propynyloxy)-2-pyrimidinyl]amino]-phenol
16		5-Brom-N2-(4-methylthiophenyl)-N4-2-propynyl-2,4-pyrimidindiamin
22		1-[4-[(5-Brom-4-(2-propynyloxy)-2-pyrimidinyl)amino]phenyl]-ethanon
23		5-Brom-N2-(4-difluormethylthiophenyl)-N4-2-propynyl-2,4-pyrimidindiamin

Nr.	Struktur	Name
24		5-Brom-N4-2-propynyl-N2-(4-trifluormethylthiophenyl)-2,4-pyrimidinediamin
35		5-Brom-N4-2-propynyl-N2-(3-trifluormethylthiophenyl)-2,4-pyrimidindiamin
37		N-[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]-indazol-5-amin
38		N-[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]-benzthiazol-5-amin
42		4-[[5-Fluor-4-(2-propynyloxy)-2-pyrimidinyl]amino]phenol
43		4-[[5-Chlor-4-(2-propynyloxy)-2-pyrimidinyl]amino]phenol
50		1-[4-[(5-Brom-4-(2-propynylamino)-2-pyrimidinyl)amino]phenyl]-ethanon

Nr.	Struktur	Name
54		1-[4-[(5-Iod-4-(2-propynylamino)-2-pyrimidinyl)amino]phenyl]-ethanon
70		1-[4-[(5-Ethyl-4-(2-propynylamino)-2-pyrimidinyl)amino]phenyl]-ethanon
81		1-[4-[(5-Brom-4-(2-propynylamino)-2-pyrimidinyl)amino]phenyl]-ethanol
82		1-[4-[(5-Brom-4-(2-propynyoxy)-2-pyrimidinyl)amino]phenyl]-ethanol

Die Erfindung betrifft somit weiterhin pharmazeutische Mittel umfassend eine Verbindung der allgemeinen Formel I

in der

- R¹ für Halogen oder C₁-C₃-Alkyl steht
- 5 X für Sauerstoff oder -NH steht,
- A für Wasserstoff steht
- B für Hydroxy, -CO-Alkyl-R⁷, -S-CHF₂, -S-(CH₂)_nCH(OH)CH₂N-R³R⁴, -S-CF₃, oder -CH(OH)-CH₃, steht, oder
- A und B unabhängig voneinander eine Gruppe

10

oder

bilden können,

R², R³, R⁴, R⁷ und R⁸ die in der allgemeinen Formel I angegebenen Bedeutungen haben, sowie der Isomere, Diastereomere, Enantiomere und Salze.

15

- Die erfindungsgemäßen Mittel können ebenfalls zur Behandlung von Krebs, Autoimmunerkrankungen, kardiovaskulären Erkrankungen, Chemotherapeutika-induzierter Alopezie und Mukositis, infektiösen Erkrankungen, nephrologischen Erkrankungen, chronischen und akuten neurodegenerativen Erkrankungen und
- 20 viralen Infektionen, wobei unter Krebs solide Tumoren und Leukämie, unter Autoimmunerkrankungen Psoriasis, Alopezie und Multiple Sklerose, unter kardiovaskulären Erkrankungen Stenosen, Arteriosklerosen und Restenosen, unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen, unter nephrologischen Erkrankungen Glomerulonephritis, unter
 - 25 chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung, unter akut neurodegenerativen Erkrankungen Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen Cytomegalus-Infektionen, Herpes, Hepatitis B oder C, und HIV Erkrankungen
 - 30 verwendet werden.

Die nachfolgenden Beispiele beschreiben die biologische Wirkung der erfindungsgemäßen Verbindungen ohne die Erfindung auf diese Beispiele zu beschränken.

5 Beispiel 1

CDK2/CycE Kinase Assay

- Rekombinante CDK2- und CycE-GST-Fusionsproteine, gereinigt aus
10 Bakulovirus-infizierten Insektenzellen (Sf9), wurden von Dr. Dieter Marmé, Klinik für Tumorphysiologie Freiburg, erhalten. Histon IIIS, das als Kinase-Substrat verwendet wurde, wurde bei der Fa. Sigma gekauft.
CDK2/CycE (50 ng/Meßpunkt) wurde für 15 min bei 22°C in Anwesenheit verschiedener Konzentrationen an Testsubstanzen (0 µM, sowie innerhalb des
15 Bereiches 0,01 - 100 µM) in Assaypuffer [50 mM Tris/HCl pH8,0, 10 mM MgCl₂, 0,1 mM Na ortho-Vanadat, 1,0 mM Dithiothreitol, 0,5 µM Adenosintrisphosphat (ATP), 10 µg/Meßpunkt Histon IIIS, 0,2 µCi/Meßpunkt ³³P-gamma ATP, 0,05% NP40, 12,5% Dimethylsulfoxid] inkubiert. Die Reaktion wurde durch Zugabe von EDTA-Lösung (250 mM, pH8,0, 14 µl/Meßpunkt) gestoppt.
20 Von jedem Reaktionsansatz wurden 10 µl auf P30 Filterstreifen (Fa. Wallac) aufgetragen, und nicht-eingebautes ³³P-ATP wurde durch dreimaliges Waschen der Filterstreifen für je 10 min in 0,5%iger Phosphorsäure entfernt. Nach dem Trocknen der Filterstreifen für 1 Stunde bei 70°C wurden die Filterstreifen mit Szintillator-Streifen (MultiLex™ A, Fa. Wallac) bedeckt und für 1 Stunde bei
25 90°C eingebrannt. Die Menge an eingebautem ³³P (Substratphosphorylierung) wurde durch Szintillationsmessung in einem gamma-Strahlungsmeßgerät (Wallac) bestimmt.

Beispiel 2**Proliferationsassay**

- 5 Kultivierte humane Tumorzellen (wie angegeben) wurden in einer Dichte von 5000 Zellen/Meßpunkt in einer 96-Loch Multititerplatte in 200 µl des entsprechenden Wachstumsmediums ausplattiert. Nach 24 Stunden wurden die Zellen einer Platte (Nullpunkt-Platte) mit Kristallviolett gefärbt (s.u.), während das Medium der anderen Platten durch frisches Kulturmedium (200 µl), dem die
- 10 Testsubstanzen in verschiedenen Konzentrationen (0 µM, sowie im Bereich 0,01 - 30 µM; die finale Konzentration des Lösungsmittels Dimethylsulfoxid betrug 0,5%) zugesetzt waren, ersetzt. Die Zellen wurden für 4 Tage in Anwesenheit der Testsubstanzen inkubiert. Die Zellproliferation wurde durch Färbung der Zellen mit Kristallviolett bestimmt: Die Zellen wurden durch Zugabe von 20
- 15 µl/Meßpunkt einer 11%igen Glutaraldehyd-Lösung 15 min bei Raumtemperatur fixiert. Nach dreimaligem Waschen der fixierten Zellen mit Wasser wurden die Platten bei Raumtemperatur getrocknet. Die Zellen wurden durch Zugabe von 100 µl/Meßpunkt einer 0,1%igen Kristallviolett-Lösung (pH durch Zugabe von Essigsäure auf pH3 eingestellt) gefärbt. Nach dreimaligem Waschen der
- 20 gefärbten Zellen mit Wasser wurden die Platten bei Raumtemperatur getrocknet. Der Farbstoff wurde durch Zugabe von 100 µl/Meßpunkt einer 10%igen Essigsäure-Lösung gelöst. Die Extinktion wurde photometrisch bei einer Wellenlänge von 595 nm bestimmt. Die prozentuale Änderung des Zellwachstums wurde durch Normalisierung der Meßwerte auf die
- 25 Extinktionswerte der Nullpunktplatte (=0%) und die Extinktion der unbehandelten (0 µM) Zellen (=100%) berechnet.

Die Ergebnisse aus Beispiel 1 und 2 sind in der folgenden Tabelle angegeben.

Beispiel Nummer	Inhibition IC ₅₀ [nM]	Proliferation IC ₅₀ [µM]				S _w (g/l)	
		CDK2/CycE	MCF7	H460	HCT116	DU145	
22	40		1,2	1,5	1,5	1,5	0.003
37	70		4				0.006
6	70		4	6			0.008
40	20		1	3	3	9	0.002
51	70		8				
20	60		4				
21	400		2				
1	300		8				
2	700						
16	300		3				
24	400		5				
26	300		3				
35	120		>10				
23	180		3				
11	6		0,2	0,5	0,3	0,2	
38	80		>10				
34	1800						
10	4		0,2	0,5	0,5	0,5	
12	400		4				
25	70		1,2	1,5	1,1	1,2	0.017
9	7		0,9		3	3	
7	6		0,7	1,5	1,2	0,5	0.028
31	800		7				0.0023
14	200		3				0.013
18	2000						0.039
3	200		8				0.039
19	800		>10				0.041
13	2000		>10				

Beispiel Nummer	Inhibition IC ₅₀ [nM]	Proliferation IC ₅₀ [µM]				Sw (g/l)
		CDK2/CycE	MCF7	H460	HCT116	
17	1000	>10				0.04
4	40	8				0.042
15	300	>10				0.024
8	<10	4				0.007
43	200	6				0.04
36	30	0,4	0,6	0,5	0,6	0.018
27	>10000					
42	2000					0.043
39	300					0.0016
44	8	1,2	0,4	0,4	0,3	0.005
45	10	2	1,7	1,2	0,5	0.0094
50	150					
5	90	10				0.043
46	7	2				0.0069
52	200	0,2	1,6	1,2	2	0.0005
53	300	1,6				0.026
54	100	1,1				0.0015
47	12	0,7	1,8	1,3	0,9	
56	80	4				0.023
49	50	>10				0.044
48	4	0,2	1	0,4	0,3	0.042
96	400					0.0005
98	2000					
85	2000					0.001
84	400					0.0005
86	3000					
87	250	0,8				0.003
22	40	1,2	1,5	1,5	1,5	0.003

Beispiel Nummer	Inhibition IC₅₀ [nM]	Proliferation IC₅₀ [µM]				Sw (g/l)
	CDK2/CycE	MCF7	H460	HCT116	DU145	
37	70	4				0.006
6	70	4	6			0.008
16	300	3				
24	400	5				
35	120	>10				
23	180	3				
38	80	>10				
43	200	6				0.04
42	2000					0.043
50	150					
5	90	10				0.043
54	100	1,1				0.0015

**Überlegenheitsnachweis der erfindungsgemäßen Verbindungen
gegenüber den bekannten Verbindungen**

- 5 Zum Nachweis der Überlegenheit der erfindungsgemäßen Verbindungen gegenüber den bekannten Verbindungen wurden die erfindungsgemäßen Verbindungen mit bekannten Referenzverbindungen und strukturähnlichen bekannten Verbindungen im Enzymtest verglichen. Das Ergebnis ist in der folgenden Tabelle aufgeführt.

10

Beispiel-Nr.	R ²	A	CDK2/ CycE IC ₅₀ [nM]	MCF-7 IC ₅₀ [μM]	Löslich- keit (g/l)
 Nr. 48	CH(C ₃ H ₇)-CH ₂ -OH-	-SO ₂ -N-(CH ₂) ₂ -OH	4	0,2	0,042
 Nr. 9	CH(CH ₂ OH) ₂	SO ₂ NH ₂	7	0,9	0,009
 Nr. 11	Propargyl-NH-	SO ₂ NH ₂	6	0,2	

Beispiel-Nr.	R ²	A	CDK2/ CycE IC ₅₀ [nM]	MCF-7 IC ₅₀ [μ M]	Löslich- keit (g/l)
 Olomoucine			7000	30	
 Roscovitine			1500	8	
 Kenpaullone			1800	6	
 Alsterpaullone			90	1.2	
 Purvalanol A			10	2	

Beispiel-Nr.	R ²	A	CDK2/ CycE IC ₅₀ [nM]	MCF-7 IC ₅₀ [μ M]	Löslich- keit (g/l)
Beispiel 11 aus WO01/14375 (Seite 38) 			190		

- Aus den Ergebnissen der Tabelle ist zu erkennen, dass die erfindungsgemäßen
- 5 Verbindungen sowohl im Enzym-Test, als auch im Zell-Test deutlich höhere Aktivitäten am Enzym und in MCF-7-Zellen als die aus dem Stand der Technik bekannten Verbindungen aufweisen. Damit sind die erfindungsgemäßen Verbindungen den bekannten Verbindungen weit überlegen.

Patentansprüche**1. Verbindungen der allgemeinen Formel I**

5

in der

- 10 R¹ für Wasserstoff, Halogen, C₁-C₆-Alkyl, Nitro oder für die Gruppe -COR⁵, -OCF₃, -(CH₂)_nR⁵, -S-CF₃ oder -SO₂CF₃ steht,
- 15 R² für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, -N(C₁-C₆-Alkyl)₂, -SO(C₁-C₆-Alkyl), -SO₂(C₁-C₆-Alkyl), C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkyIOAc, Carboxy, Aryl, Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF₃ oder

5

 R^2

-OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein- oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, oder für die Gruppe

10

15

X

steht,
für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl)
oder für -OC₃-C₁₀-Cycloalkyl welches ein- oder mehrfach, gleich oder verschieden mit einem Heteroaromatensubstituiert sein kann, steht

20

X und R²

gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiert sein kann,

25

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₃-Alkyl, C₁-C₆-Alkoxy oder für die Gruppe -SR⁷, -S(O)R⁷, -SO₂R⁷, -NHSO₂R⁷, -CH(OH)R⁷, -CR⁷(OH)-R⁷, C₁-C₆-AlkylP(O)OR³OR⁴, -COR⁷ oder für

stehen,

oder

- 5 A und B gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden der gegebenenfalls durch ein- oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O oder =SO₂

Gruppen im Ring unterbrochen sein kann und/ oder
gegebenenfalls ein oder mehrere mögliche
Doppelbindungen im Ring enthalten sein können und der
C₃-C₁₀-Cycloalkyl-Ring gegebenenfalls ein- oder mehrfach,
gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-
Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, C₂-C₆-
Alkenyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -
NHC₁-C₆-Alkyl, -N(C₁-C₆-Alkyl)₂, -SO(C₁-C₆-Alkyl), -SO₂R⁷,
C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkyIOAc,
5 Phenyl, oder mit der Gruppe R⁶ substituiert sein kann, wobei
das Phenyl selbst gegebenenfalls ein- oder mehrfach, gleich
oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-
Alkoxy, oder mit der Gruppe -CF₃ oder -OCF₃ substituiert
10 sein kann,
15 R³ und R⁴ jeweils unabhängig voneinander für Wasserstoff, Phenyl,
Benzyoxy, C₁-C₁₂-Alkyl, C₁-C₆-Alkoxy, C₂-C₄-Alkenyloxy,
C₃-C₆-Cycloalkyl, Hydroxy, Hydroxy-C₁-C₆-alkyl, Dihydroxy-
C₁-C₆-alkyl, Heteroaryl, Heterocyclo-C₃-C₁₀-alkyl,
Heteroaryl-C₁-C₃-alkyl,
20 gegebenenfalls mit Cyano substituiertes C₃-C₆-Cycloalkyl-
C₁-C₃-alkyl, oder für
gegebenenfalls ein- oder mehrfach, gleich oder verschieden
mit Phenyl, Pyridyl, Phenoxy, C₃-C₆-Cycloalkyl, C₁-C₆-
Alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht,
25 wobei das Phenyl selbst ein oder mehrfach, gleich oder
verschieden mit Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder mit
der Gruppe -SO₂NR³R⁴ substituiert sein kann,
oder für die Gruppe -(CH₂)_nNR³R⁴, -CNHNH₂ oder - NR³R⁴
oder
30 R³ und R⁴ gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden der
gegebenenfalls durch ein- oder mehrere Stickstoff,
Sauerstoff und/ oder Schwefel-Atome unterbrochen sein
kann und/ oder durch ein oder mehrere =C=O Gruppen im

Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, steht,

- 5 R⁵ für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht,
- 10 R⁶ für einen Heteroaryl oder C₃-C₁₀-Cycloalkyl-Ring steht, wobei der Ring die oben angegebene Bedeutung hat,
- 15 R⁷ für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₁₀-Cycloalkyl mit der oben angegebenen Bedeutung, oder für die Gruppe -NR³R⁴ steht, oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, C₁-C₆-Alkoxy, Halogen, Phenyl, -NR³R⁴ oder Phenyl, welches selbst, ein-oder mehrfach gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann, substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht, oder für Phenyl steht, welches selbst ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann,
- 20 R⁸, R⁹ und R¹⁰ jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, -N(C₁-C₆-Alkyl)₂, -SO(C₁-C₆-Alkyl), -SO₂(C₁-C₆-Alkyl), C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkyI OAc,

Carboxy, Aryl, Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein- oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, stehen, und

n für 0 - 6 steht, bedeuten, sowie deren Isomeren, Diastereomeren, Enantiomeren und Salze.

2. Verbindungen der allgemeinen Formel I, gemäß Anspruch 1, in der R¹ für Wasserstoff, Halogen, C₁-C₆-Alkyl, Nitro oder für die Gruppe -COR⁵, -OCF₃, -(CH₂)_nR⁵, -S-CF₃ oder -SO₂CF₃ steht,

R² für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, -N(C₁-C₆-Alkyl)₂, -SO(C₁-C₆-Alkyl), -SO₂(C₁-C₆-Alkyl), C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkyIOAc, Carboxy, Aryl,

Heteroaryl, $-(CH_2)_n$ -Aryl, $-(CH_2)_n$ -Heteroaryl, Phenyl- $(CH_2)_n$ -R⁵, $-(CH_2)_nPO_3(R^5)_2$ oder mit der Gruppe -R⁶ oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, $-(CH_2)_n$ -Aryl und $-(CH_2)_n$ -Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch eine oder mehrere Stickstoff-, Sauerstoff- und/oder Schwefelatome unterbrochen sein kann und/oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, oder für die Gruppe R²

steht,
X für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl) oder für -OC₃-C₁₀-Cycloalkyl welches ein- oder mehrfach, gleich oder verschieden mit einem Heteroaromat substituiert sein kann, steht
oder
X und R² gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten

kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halaogen substituiert sein kann,

A und B jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₃-Alkyl, C₁-C₆-Alkoxy oder für die Gruppe -S-CH₃, -SO₂-C₂H₄-OH, -CO-CH₃, -S-CHF₂, -S-(CH₂)_nCH(OH)CH₂N-R³R⁴, -CH₂P(O)OR³OR⁴, -S-CF₃, -SO-CH₃, -SO₂CF₃, -SO₂-(CH₂)_n-N-R³R⁴, -SO₂-NR³R⁴, -SO₂R⁷, -CH-(OH)-CH₃ oder für

5

10

stehen, oder

- 5 bilden können,

10 R³ und R⁴ jeweils unabhängig voneinander für Wasserstoff, Phenyl, Benzyloxy, C₁-C₁₂-Alkyl, C₁-C₆-Alkoxy, C₂-C₄-Alkenyloxy, C₃-C₆-Cycloalkyl, Hydroxy, Hydroxy-C₁-C₆-alkyl, Dihydroxy-C₁-C₆-alkyl, Heteroaryl, Heterocyclo-C₃-C₁₀-alkyl, Heteroaryl-C₁-C₃-alkyl,
gegebenenfalls mit Cyano substituiertes C₃-C₆-Cycloalkyl-C₁-C₃-alkyl, oder für
gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenoxy, C₃-C₆-Cycloalkyl, C₁-C₆-alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder mit der Gruppe -SO₂NR³R⁴ substituiert sein kann,
20 oder für die Gruppe -(CH₂)_nNR³R⁴, -CNHNNH₂ oder -NR³R⁴ oder für

5 stehen, welche gegebenenfalls mit C₁-C₆-Alkyl substituiert sein können,

R⁵ für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht,

R⁶ für die Gruppe

10

R⁷ für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, -C₂H₄OH, -NR³R⁴, oder die Gruppe

steht,

R^8 , R^9 und

R^{10} jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl oder für die Gruppe

5

stehen und

n für 0 – 6 steht, bedeuten, sowie deren Isomeren,

10 Enantiomeren, Diastereomeren und Salze.

3. Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 und 2, in der

15 R^1 für Wasserstoff, Halogen, C₁-C₃-Alkyl oder für die Gruppe $-(\text{CH}_2)_n\text{R}^5$ steht,

R^2 für $-\text{CH}(\text{CH}_3)\text{-}(\text{CH}_2)_n\text{-R}^5$, $-\text{CH}(\text{CH}_2\text{OH})_2$, $-(\text{CH}_2)_n\text{R}^7$,

-CH(C₃H₇)-(CH₂)_n-R⁵, -CH(C₂H₅)-(CH₂)_n-R⁵, -CH₂-CN,
 -CH(CH₃)COCH₃, -CH(CH₃)-C(OH)(CH₃)₂,
 -CH(CH(OH)CH₃)OCH₃, -CH(C₂H₅)CO-R⁵, C₂-C₄-Alkinyl,
 -(CH₂)_n-COR⁵, -(CH₂)_n-CO-C₁-C₆-Alkyl, -(CH₂)_n-C(OH)(CH₃)-
 5 Phenyl, -CH(CH₃)-C(CH₃)-R⁵, -CH(CH₃)-C(CH₃)(C₂H₅)-R⁵, -
 CH(OCH₃)-CH₂-R⁵, -CH₂-CH(OH)-R⁵, -CH(OCH₃)-CHR⁵-
 CH₃, -CH(CH₃)-CH(OH)-CH₂-CH=CH₂, -CH(C₂H₅)-CH(OH)-
 (CH₂)_n-CH₃, -CH(CH₃)-CH(OH)-(CH₂)_n-CH₃, -CH(CH₃)-
 10 CH(OH)-CH(CH₃)₂, (CH₂OAC)₂, -(CH₂)_n-R⁶, -(CH₂)_n-(CF₂)_n-
 CF₃, -CH(CH₂)_n-R⁵)₂, -CH(CH₃)-CO-NH₂, -CH(CH₂OH)-
 Phenyl, -CH(CH₂OH)-CH(OH)-(CH₂)_nR⁵, -CH(CH₂OH)-
 CH(OH)-Phenyl, -CH(CH₂OH)-C₂H₄-R⁵, -(CH₂)_nC≡C-
 C(CH₃)=CH-COR⁵, -CH(Ph)-(CH₂)_n-R⁵, -(CH₂)_n-COR⁵, -
 (CH₂)_nPO₃(R⁵)₂, -(CH₂)_n-COR⁵, -CH((CH₂)_nOR⁵)CO-R⁵, -
 15 (CH₂)_nCONHCH((CH₂)_nR⁵)₂, -(CH₂)_nNH-COR⁵, -
 CH(CH₂)_nR⁵-(CH₂)_nC₃-C₁₀-Cycloalkyl, -(CH₂)_n-C₃-C₁₀-
 Cycloalkyl, C₃-C₁₀-Cycloalkyl, gegebenenfalls ein- oder
 mehrfach, gleich oder verschieden mit Hydroxy, C₁-C₆-Alkyl
 oder der Gruppe -COONH(CH₂)_nCH₃ oder -NR³R⁴
 20 substituiertes C₁-C₆-Alkyl, C₃-C₁₀-Cycloalkyl, -(CH₂)_n-O-
 (CH₂)_n-R⁵, -(CH₂)_n-NR³R⁴,
 -CH(C₃H₇)-(CH₂)_n-OC(O)-(CH₂)_n-CH₃, -(CH₂)_n-R⁵,
 -C(CH₃)₂-(CH₂)_n-R⁵, -C(CH₂)_n(CH₃)-(CH₂)_nR⁵,
 -C(CH₂)_n-(CH₂)_nR⁵, -CH(t-Butyl)-(CH₂)_n-R⁵,
 25 -CCH₃(C₃H₇)-(CH₂)_nR⁵, -CH(C₃H₇)-(CH₂)_n-R⁵,
 -CH(C₃H₇)-COR⁵, -CH(C₃H₇)-(CH₂)_n-OC(O)-NH-Ph,
 -CH((CH₂)_n(C₃H₇))-(CH₂)_nR⁵,
 -CH(C₃H₇)-(CH₂)_n-OC(O)-NH-Ph(OR⁵)₃, -NR³R⁴,
 30 -(CH₂)_n-NR³R⁴, R⁵-(CH₂)_n-C^{*}H-CH(R⁵)-(CH₂)_n-R⁵,
 -(CH₂)_n-CO-NH-(CH₂)_n-CO-R⁵, -OC(O)NH-C₁-C₆-Alkyl oder
 -(CH₂)_n-CO-NH-(CH₂)_n-CH-((CH₂)_nR⁵)₂,
 oder für C₃-C₁₀-Cycloalkyl steht, welches mit der Gruppe

5

substituiert ist, oder für die Gruppe

oder

10

steht,

X

für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl)
oder

5 R²

steht, oder
für die Gruppe

10

X und R² gemeinsam eine Gruppe

15

bilden,

A und B jeweils unabhängig voneinander für Wasserstoff, Hydroxy,
C₁-C₃-Alkyl, C₁-C₆-Alkoxy oder für die Gruppe -S-CH₃,
-SO₂-C₂H₄-OH, -CO-CH₃, -S-CHF₂,
-S-(CH₂)_nCH(OH)CH₂N-R³R⁴, -CH₂PO(OC₂H₅)₂, -S-CF₃,
-SO-CH₃, -SO₂CF₃, -SO₂-(CH₂)_n-N-R³R⁴, -SO₂-NR³R⁴,
-SO₂R⁷, -CH(OH)-CH₃, -COOH, -CH((CH₂)_nR⁵)₂, -(CH₂)_nR⁵,
-COO-C₁-C₆-Alkyl, -CONR³R⁴ oder für

20

5

stehen, oder

A und B gemeinsam eine Gruppe

5

bilden können,

- 10 R³ und R⁴ jeweils unabhängig voneinander für Wasserstoff, Phenyl, Benzyloxy, C₁-C₁₂-Alkyl, C₁-C₆-Alkoxy, C₂-C₄-Alkenyloxy, C₃-C₆-Cycloalkyl, Hydroxy, Hydroxy-C₁-C₆-alkyl, Dihydroxy-C₁-C₆-alkyl, Heteroaryl, Heterocyclo-C₃-C₁₀-alkyl, Heteroaryl-C₁-C₃-alkyl,
- 15 gegebenenfalls mit Cyano substituiertes C₃-C₆-Cycloalkyl-C₁-C₃-alkyl, oder für gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenoxy, C₃-C₆-Cycloalkyl, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder mit der Gruppe -SO₂NR³R⁴ substituiert sein kann,
- 20 oder für die Gruppe -(CH₂)_nNR³R⁴, -CNHNNH₂ oder -NR³R⁴
- 25 oder für

5

stehen, welche gegebenenfalls mit C₁-C₆-Alkyl substituiert sein können,

10

R⁵ für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht,

R⁶ für die Gruppe

steht,

5 R^7 für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, -(CH₂)_nOH,
-NR³R⁴ oder die Gruppe

10 steht,
R⁸, R⁹ und
R¹⁰ für Wasserstoff, Hydroxy, C₁-C₆-Alkyl oder für die Gruppe
-(CH₂)_n-COOH stehen, und
n für 0 – 6 stehen, bedeuten, sowie deren Isomeren,
15 Diastereoisomeren, Enantiomeren und Salze.

4. Verwendung der Verbindung der allgemeinen Formel Ia

20

in der D für Halogen steht, und X, R¹, und R² die in der allgemeinen Formel (I) angegebenen Bedeutungen haben, als Zwischenprodukte zur Herstellung der Verbindung der allgemeinen Formel I.

25

5. Verwendung der Verbindungen der allgemeinen Formel Ia, gemäß Anspruch 4, in der D für Chlor steht und X, R¹ und R² die in der allgemeinen Formel angegebenen Bedeutungen haben.

5

6. Pharmazeutische Mittel umfassend eine Verbindung der allgemeinen Formel I in der

R¹ für Halogen oder C₁-C₃-Alkyl steht

X für Sauerstoff oder -NH steht,

10 A für Wasserstoff steht

B für Hydroxy, -CO-Alkyl-R⁷, -S-CHF₂, -

S(CH₂)_nCH(OH)CH₂N-R³R⁴, -S-CF₃, oder -CH-(OH)-CH₃,

steht, oder

A und B unabhängig voneinander eine Gruppe

oder

bilden können,

15

R², R³, R⁴, R⁷ und R⁸ die in der allgemeinen Formel I angegebenen Bedeutungen haben, sowie deren Isomeren, Diastereomeren, Enantiomeren und Salzen.

20

7. Verwendung der Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 bis 3, zur Herstellung eines Arzneimittels zur Behandlung von Krebs, Autoimmunerkrankungen, Chemotherapeutika-induzierter Aloperzie und Mukositis, kardiovaskulären Erkrankungen, infektiösen Erkrankungen, nephrologischen Erkrankungen, chronisch und akut neurodegenerativen Erkrankungen und viralen Infektionen.

25 30 8. Verwendung gemäß Anspruch 7, dadurch gekennzeichnet, daß unter Krebs solide Tumoren und Leukämie, unter Autoimmunerkrankungen Psoriasis, Aloperzie und Multiple Sklerose, unter kardiovaskulären

Erkrankungen Stenosen, Arteriosklerosen und Restenosen, unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen, unter nephrologischen Erkrankungen Glomerulonephritis, unter chronisch neurodegenerativen Erkrankungen Huntington's

- 5 Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung, unter akut neurodegenerativen Erkrankungen Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen Cytomegalus-Infektionen, Herpes, Hepatitis B und C und HIV Erkrankungen zu verstehen sind.

10

15 9. Arzneimittel, die mindestens eine Verbindung gemäß den Ansprüchen 1 bis 3 enthalten.

20

25 10. Arzneimittel gemäß Anspruch 9, zur Behandlung von Krebs, Autoimmunerkrankungen, kardiovaskulären Erkrankungen, infektiöse Erkrankungen, nephrologische Erkrankungen, neurodegenerative Erkrankungen und virale Infektionen.

30

35 11. Verbindungen gemäß den Ansprüchen 1 bis 3 und Arzneimittel gemäß den Ansprüchen 6 bis 7 mit geeigneten Formulierungs- und Trägerstoffen.

40

45 12. Verwendung der Verbindungen der allgemeinen Formel I und der pharmazeutischen Mitteln, gemäß den Ansprüchen 1 bis 3 und 6, als Inhibitoren der Zyklin-abhängigen Kinasen.

50

55 13. Verwendung gemäß Anspruch 12, dadurch gekennzeichnet, daß die Kinase CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 oder CDK9 ist.

14. Verwendung der Verbindungen der allgemeinen Formel I und der pharmazeutischen Mitteln, gemäß den Ansprüchen 1 bis 3 und 6 als
5 Inhibitoren der Glycogen-Synthase-Kinase (GSK-3 β).
15. Verwendung der Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 bis 3, in Form eines pharmazeutischen Präparates für die
10 enterale, parenterale und orale Applikation.
16. Verwendung des Mittels gemäß Anspruch 6, in Form eines Präparates für die enterale, parenterale und orale Applikation.

Fig 1

INTERNATIONAL SEARCH REPORT

Inte
nal Application No
PCT/EP 02/05669

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C07D239/48	A61K31/505	A61K31/506	A61P35/00	C07D239/47
	C07D239/34	C07D239/42	C07D405/12	C07D401/12	C07D403/12
	C07D409/12	C07D417/12			

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, BEILSTEIN Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	DING, SHENG ET AL: "A Combinatorial Scaffold Approach toward Kinase-Directed Heterocycle Libraries" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2002), 124(8), 1594-1596, XP002210160 the whole document ---	1-16
P, X	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 21 January 2002 (2002-01-21) retrieved from STN XP002210161 Order Number F0487-0047 & "Ambinter Exploratory Library" , AMBINTER , F-75016 PARIS ---	1-3 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

16 August 2002

Date of mailing of the international search report

12/09/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kollmannsberger, M

INTERNATIONAL SEARCH REPORT

Inte	onal Application No
PCT/EP 02/05669	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICES, COLUMBUS, OHIO, US; retrieved from STN XP002210162 Order Numbers CD207267, CD207266 & "Oak Samples Product List" 8 October 2001 (2001-10-08), OAK SAMPLES LTD., 03680 KIEV-142, UKRAINE ---	1-3
P,Y	WO 02 04429 A (THOMAS ANDREW PETER ;ASTRAZENECA UK LTD (GB); HEATON DAVID WILLIAM) 17 January 2002 (2002-01-17) claims ---	1-16
X	WO 98 33798 A (DOHERTY ANNETTE MARIAN ;DOBRUSIN ELLEN MYRA (US); WARNER LAMBERT C) 6 August 1998 (1998-08-06) Seite 47 4-Hydroxymethylverbindungen page 141; table 2 claim 20 ---	1-16
X	WO 00 53595 A (BREAULT GLORIA ANNE ;JAMES STEWART RUSSELL (GB); PEASE JANE ELIZAB) 14 September 2000 (2000-09-14) claims page 51; examples 7-9 ---	1-16
Y	WO 01 14375 A (BEATTIE JOHN FRANKLIN ;BREAULT GLORIA ANNE (GB); JEWSBURY PHILLIP) 1 March 2001 (2001-03-01) cited in the application claims ---	1-16
Y	WO 00 39101 A (BREAULT GLORIA ANNE ;PEASE JANET ELIZABETH (GB); ASTRAZENECA UK LT) 6 July 2000 (2000-07-06) claims ---	1-16
Y	WO 99 50251 A (CALVERT ALAN HILARY ;NOBLE MARTIN EDWARD MANTYLA (GB); BOYLE FRANC) 7 October 1999 (1999-10-07) claims ---	1-16
X	EP 0 310 550 A (CIBA GEIGY AG) 5 April 1989 (1989-04-05) claim 1 Tabelle 1 Verbindungen mit R3=H Tabelle 3 Verbindungen mit R3=H ---	1-3 4,5
		-/-

INTERNATIONAL SEARCH REPORT

Inte	inal Application No
PCT/EP 02/05669	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 40 29 650 A (HOECHST AG) 26 March 1992 (1992-03-26) cited in the application claim 1 page 17 -page 57; table 1 ---	1-3
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. BRN 249340, 265505 XP002210163 & NAITO, I. ET AL.: CHEM. PHARM. BULL., vol. 6, 1958, pages 338-341, ---	1-3
X	JP 03 127790 A (MORISHITA PHARMACEUT CO LTD) 30 May 1991 (1991-05-30) claim 2 page 847, column 26; table 5 ---	1-3
X	EP 0 224 339 A (IHARA CHEMICAL IND CO ;KUMIAI CHEMICAL INDUSTRY CO (JP)) 3 June 1987 (1987-06-03) claims 1-4 page 4; examples 3,13 ---	1-3
X	BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDO[2,3-D]PYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 41, no. 22, 1998, pages 4365-4377, XP002191993 ISSN: 0022-2623 page 4367; examples 42,43 ---	1-3

INTERNATIONAL SEARCH REPORT
Information on patent family members

Inte	nal Application No
PCT/EP 02/05669	

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0204429	A	17-01-2002	AU WO	6931701 A 0204429 A1	21-01-2002 17-01-2002
WO 9833798	A	06-08-1998	AU BR EP HR JP WO ZA	6648098 A 9807305 A 0964864 A2 980060 A1 2001509805 T 9833798 A2 9800914 A	25-08-1998 02-05-2000 22-12-1999 30-06-1999 24-07-2001 06-08-1998 09-11-1998
WO 0053595	A	14-09-2000	AU BR CN EP WO NO NZ	2818700 A 0008770 A 1349528 T 1161428 A1 0053595 A1 20014317 A 513893 A	28-09-2000 08-01-2002 15-05-2002 12-12-2001 14-09-2000 01-11-2001 28-09-2001
WO 0114375	A	01-03-2001	AU BR CZ EP WO NO	6583300 A 0013476 A 20020617 A3 1214318 A1 0114375 A1 20020832 A	19-03-2001 30-04-2002 12-06-2002 19-06-2002 01-03-2001 12-04-2002
WO 0039101	A	06-07-2000	AU BR CN EP WO NO	1874300 A 9916590 A 1335838 T 1140860 A1 0039101 A1 20013038 A	31-07-2000 23-10-2001 13-02-2002 10-10-2001 06-07-2000 22-08-2001
WO 9950251	A	07-10-1999	AU CA EP WO JP	3155199 A 2326357 A1 1066266 A1 9950251 A2 2002509921 T	18-10-1999 07-10-1999 10-01-2001 07-10-1999 02-04-2002
EP 0310550	A	05-04-1989	AT AU BG BR CA CA CA CN CN CN CZ CZ CY DE DK DK EP ES FI	89821 T 2287088 A 60541 B1 8804955 A 1317952 A1 1331759 A1 1329934 A1 1032441 A ,B 1064270 A ,B 1064191 A ,B 8905753 A3 8806385 A3 1770 A 3881320 D1 85993 A 536288 A 0310550 A1 2054867 T3 884409 A ,B,	15-06-1993 06-04-1989 28-08-1995 02-05-1989 18-05-1993 30-08-1994 31-05-1994 19-04-1989 09-09-1992 09-09-1992 16-11-1994 16-11-1994 20-10-1995 01-07-1993 20-07-1993 29-03-1989 05-04-1989 16-08-1994 29-03-1989

INTERNATIONAL SEARCH REPORT
Information on patent family members

Int'l Application No
PCT/EP 02/05669

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
EP 0310550	A	HK HR HU HU IE IL IL IL JP JP JP KR LV LV LV LV LV LV LV LV MD MD MD MX NO NO NZ PH PL PL	21394 A 940473 A1 47787 A2 213938 B 62424 B 87866 A 102422 A 102423 A 1113374 A 1924134 C 6049689 B 9206738 B1 10613 A 10613 B 10614 A 10614 B 10556 A 10556 B 10676 A 10676 B 38 B1 501 B1 206 B1 13166 A 884284 A ,B, 932441 A 226323 A 26459 A 274899 A1 281026 A1	18-03-1994 30-04-1996 28-04-1989 28-11-1997 08-02-1995 13-05-1993 10-06-1993 15-03-1993 02-05-1989 25-04-1995 29-06-1994 17-08-1992 20-04-1995 20-04-1996 20-04-1995 20-04-1996 20-04-1995 20-04-1996 20-06-1995 20-04-1996 31-08-1994 29-03-1996 31-05-1995 01-09-1993 29-03-1989 29-03-1989 26-04-1990 27-07-1992 11-12-1989 05-03-1990
DE 4029650	A	26-03-1992	DE 4029650 A1 26-03-1992	
JP 03127790	A	30-05-1991	NONE	
EP 0224339	A	03-06-1987	DE 3676460 D1 07-02-1991 DE 224339 T1 05-11-1987 EP 0224339 A2 03-06-1987 JP 1901608 C 27-01-1995 JP 6029263 B 20-04-1994 JP 63208581 A 30-08-1988 KR 9300149 B1 09-01-1993 KR 9300150 B1 09-01-1993 US 4988704 A 29-01-1991 US 4814338 A 21-03-1989	

INTERNATIONALER RECHERCHENBERICHT

Inte	nales Aktenzeichen
PCT/EP 02/05669	

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 C07D239/48 A61K31/505 A61K31/506 A61P35/00 C07D239/47
 C07D239/34 C07D239/42 C07D405/12 C07D401/12 C07D403/12
 C07D409/12 C07D417/12

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 7 C07D A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, BEILSTEIN Data, PAJ, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
P,X	DING, SHENG ET AL: "A Combinatorial Scaffold Approach toward Kinase-Directed Heterocycle Libraries" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2002), 124(8), 1594-1596, XP002210160 das ganze Dokument	1-16
P,X	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 21. Januar 2002 (2002-01-21) retrieved from STN XP002210161 Order Number F0487-0047 & "Ambinter Exploratory Library", AMBINTER , F-75016 PARIS	1-3

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
 - *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 - *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 - *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 - *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 - *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
16. August 2002	12/09/2002
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Kollmannsberger, M

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 02/05669

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
P,X	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICES, COLUMBUS, OHIO, US; retrieved from STN XP002210162 Order Numbers CD207267, CD207266 & "Oak Samples Product List" 8. Oktober 2001 (2001-10-08), OAK SAMPLES LTD., 03680 KIEV-142, UKRAINE ---	1-3
P,Y	WO 02 04429 A (THOMAS ANDREW PETER ;ASTRAZENECA UK LTD (GB); HEATON DAVID WILLIAM) 17. Januar 2002 (2002-01-17) Ansprüche ---	1-16
X	WO 98 33798 A (DOHERTY ANNETTE MARIAN ;DOBRUSIN ELLEN MYRA (US); WARNER LAMBERT C) 6. August 1998 (1998-08-06) Seite 47 4-Hydroxymethylverbindungen Seite 141; Tabelle 2 Anspruch 20 ---	1-16
X	WO 00 53595 A (BREAUT GLORIA ANNE ;JAMES STEWART RUSSELL (GB); PEASE JANE ELIZAB) 14. September 2000 (2000-09-14) Ansprüche Seite 51; Beispiele 7-9 ---	1-16
Y	WO 01 14375 A (BEATTIE JOHN FRANKLIN ;BREAUT GLORIA ANNE (GB); JEWSBURY PHILLIP) 1. März 2001 (2001-03-01) in der Anmeldung erwähnt Ansprüche ---	1-16
Y	WO 00 39101 A (BREAUT GLORIA ANNE ;PEASE JANET ELIZABETH (GB); ASTRAZENECA UK LT) 6. Juli 2000 (2000-07-06) Ansprüche ---	1-16
Y	WO 99 50251 A (CALVERT ALAN HILARY ;NOBLE MARTIN EDWARD MANTYLA (GB); BOYLE FRANC) 7. Oktober 1999 (1999-10-07) Ansprüche ---	1-16
X	EP 0 310 550 A (CIBA GEIGY AG) 5. April 1989 (1989-04-05) Anspruch 1 Tabelle 1 Verbindungen mit R3=H Tabelle 3 Verbindungen mit R3=H ---	1-3 4,5
		-/-

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 02/05669

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE 40 29 650 A (HOECHST AG) 26. März 1992 (1992-03-26) in der Anmeldung erwähnt Anspruch 1 Seite 17 -Seite 57; Tabelle 1 ---	1-3
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. BRN 249340, 265505 XP002210163 & NAITO, I. ET AL.: CHEM. PHARM. BULL., Bd. 6, 1958, Seiten 338-341, ---	1-3
X	JP 03 127790 A (MORISHITA PHARMACEUT CO LTD) 30. Mai 1991 (1991-05-30) Anspruch 2 Seite 847, Spalte 26; Tabelle 5 ---	1-3
X	EP 0 224 339 A (IHARA CHEMICAL IND CO ;KUMIAI CHEMICAL INDUSTRY CO (JP)) 3. Juni 1987 (1987-06-03) Ansprüche 1-4 Seite 4; Beispiele 3,13 ---	1-3
X	BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, Bd. 41, Nr. 22, 1998, Seiten 4365-4377, XP002191993 ISSN: 0022-2623 Seite 4367; Beispiele 42,43 ---	1-3

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 1-16 (teilweise)

Die vorliegenden Ansprüche beziehen sich u. a. auf "Isomere" strukturell definierter Verbindungen. Da unter "Isomeren" normalerweise Verbindungen mit gleicher Summenformel, aber unterschiedlicher Struktur (z. B. Konstitution) verstanden werden, ist nicht klar, auf welche Verbindungen die Ansprüche in dieser Beziehung gerichtet sein sollen (Art. 6 PCT). Die Recherche wurde daher auf strukturell in den Ansprüchen definierte Verbindungen beschränkt.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.

INTERNATIONALER RECHERCHENBERICHT

nationales Aktenzeichen
PCT/EP 02/05669

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl die Ansprüche 12–16 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. Ansprüche Nr. 1–16 (teilweise)
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
3. Ansprüche Nr.
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

Bemerkungen hinsichtlich eines Widerspruchs

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 02/05669

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 0204429	A	17-01-2002	AU WO	6931701 A 0204429 A1		21-01-2002 17-01-2002
WO 9833798	A	06-08-1998	AU BR EP HR JP WO ZA	6648098 A 9807305 A 0964864 A2 980060 A1 2001509805 T 9833798 A2 9800914 A		25-08-1998 02-05-2000 22-12-1999 30-06-1999 24-07-2001 06-08-1998 09-11-1998
WO 0053595	A	14-09-2000	AU BR CN EP WO NO NZ	2818700 A 0008770 A 1349528 T 1161428 A1 0053595 A1 20014317 A 513893 A		28-09-2000 08-01-2002 15-05-2002 12-12-2001 14-09-2000 01-11-2001 28-09-2001
WO 0114375	A	01-03-2001	AU BR CZ EP WO NO	6583300 A 0013476 A 20020617 A3 1214318 A1 0114375 A1 20020832 A		19-03-2001 30-04-2002 12-06-2002 19-06-2002 01-03-2001 12-04-2002
WO 0039101	A	06-07-2000	AU BR CN EP WO NO	1874300 A 9916590 A 1335838 T 1140860 A1 0039101 A1 20013038 A		31-07-2000 23-10-2001 13-02-2002 10-10-2001 06-07-2000 22-08-2001
WO 9950251	A	07-10-1999	AU CA EP WO JP	3155199 A 2326357 A1 1066266 A1 9950251 A2 2002509921 T		18-10-1999 07-10-1999 10-01-2001 07-10-1999 02-04-2002
EP 0310550	A	05-04-1989	AT AU BG BR CA CA CA CN CN CN CZ CZ CY DE DK DK EP ES FI	89821 T 2287088 A 60541 B1 8804955 A 1317952 A1 1331759 A1 1329934 A1 1032441 A ,B 1064270 A ,B 1064191 A ,B 8905753 A3 8806385 A3 1770 A 3881320 D1 85993 A 536288 A 0310550 A1 2054867 T3 884409 A ,B,		15-06-1993 06-04-1989 28-08-1995 02-05-1989 18-05-1993 30-08-1994 31-05-1994 19-04-1989 09-09-1992 09-09-1992 16-11-1994 16-11-1994 20-10-1995 01-07-1993 20-07-1993 29-03-1989 05-04-1989 16-08-1994 29-03-1989

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 02/05669

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0310550	A	HK 21394 A HR 940473 A1 HU 47787 A2 HU 213938 B IE 62424 B IL 87866 A IL 102422 A IL 102423 A JP 1113374 A JP 1924134 C JP 6049689 B KR 9206738 B1 LV 10613 A LV 10613 B LV 10614 A LV 10614 B LV 10556 A LV 10556 B LV 10676 A LV 10676 B MD 38 B1 MD 501 B1 MD 206 B1 MX 13166 A NO 884284 A , B, NO 932441 A NZ 226323 A PH 26459 A PL 274899 A1 PL 281026 A1	18-03-1994 30-04-1996 28-04-1989 28-11-1997 08-02-1995 13-05-1993 10-06-1993 15-03-1993 02-05-1989 25-04-1995 29-06-1994 17-08-1992 20-04-1995 20-04-1996 20-04-1995 20-04-1996 20-04-1995 20-04-1996 20-06-1995 20-04-1996 31-08-1994 29-03-1996 31-05-1995 01-09-1993 29-03-1989 29-03-1989 26-04-1990 27-07-1992 11-12-1989 05-03-1990
DE 4029650	A	26-03-1992	DE 4029650 A1 26-03-1992
JP 03127790	A	30-05-1991	KEINE
EP 0224339	A	03-06-1987	DE 3676460 D1 07-02-1991 DE 224339 T1 05-11-1987 EP 0224339 A2 03-06-1987 JP 1901608 C 27-01-1995 JP 6029263 B 20-04-1994 JP 63208581 A 30-08-1988 KR 9300149 B1 09-01-1993 KR 9300150 B1 09-01-1993 US 4988704 A 29-01-1991 US 4814338 A 21-03-1989

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADING TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.