Universidad Nacional Mayor de San Marcos

Sistemas de Inferencia Difusa

Ingeniería de Sistemas EPIS

Logros

- Comprender los fundamentos del razonamiento aproximado
- Entender los conceptos básicos de los conjuntos difusos y sus operaciones, y sus diferencias respecto de los clásicos
- Entender los conceptos básicos de la Lógica Difusa
- Aprender a desarrollar un sistema experto basado en lógica difusa

Agenda

- Razonamiento aproximado
- Conjuntos difusos
 - Conjuntos clásicos y conjuntos difusos
 - Funciones de pertenencia
 - Operaciones con CDs
- Lógica Difusa
 - Conceptos
 - Sistema experto basado en lógica difusa
 - Aplicación práctica: sistema experto difuso para una máquina lavadora
- Síntesis

LÓGICA DIFUSA

Conjuntos Difusos "Borrosos" (Zadeh, 1965)

- ❖ Un conjunto borroso A definido sobre un universo de discurso U es caracterizado por una función de pertenencia o membresía $\mu_A(x)$ la cual toma valores en el intervalo [0,1]
- Para un elemento x de un conjunto A su condición de membresía al cjto está dado por un cierto valor $\mu_A(x)$

Función Trapezoidal

$$\mu_{A}(x) = \begin{cases} 0, & x < a \circ x > d \\ [(x-a)/(b-a)], & a < x \le b \\ 1, & b \le x \le c \\ [(d-x)/(d-c)], c \le x \le d \end{cases}$$

$$\mu_{A}(x) = \begin{cases} 0, & x \le a \\ [(x-a) / (m-a)], & a < x \le m \\ [(b-x) / (b-m)], & m < x < b \\ 0, & \text{si } x \ge b \end{cases}$$

Función gaussiana

$$\mu_{A}(x) = \exp[-k (x-m)]^{2}$$

Función S

$$\mu_{A}(x) = \begin{cases} 0, & x < a \\ 2[(x-a)/(b-a)]^{2}, & a < x \le m \\ 1-2[(x-b)/(b-a)]^{2}, & m < x < b \\ 1, & \text{si } x \ge b \end{cases}$$

Función L

$$L(x; a, m) = \begin{cases} 1, & x < a \\ \frac{a - x}{m - a}, & a \le x \le a \\ 0, & x > n \end{cases}$$

Función Γ (gamma)

$$L(x; a, m) = \begin{cases} 1, & x < a \\ \frac{a - x}{m - a}, & a \le x \le m \\ 0, & x > m \end{cases} \qquad \Gamma(x; a, m) = \begin{cases} 0, & x < a \\ \frac{x - a}{m - a}, & a \le x \le m \\ 1, & x > m \end{cases}$$

Función de tipo Singleton

Función de tipo Singleton

Principio de Incompatibilidad

Formulado por Zadeh(1975):

"A medida que aumenta la complejidad de un sistema, nuestra capacidad de establecer sentencias precisas y significativas va disminuyendo hasta que se alcanza un umbral a partir del cual la precisión y el significado se convierten en características mutuamente exclusivas".

Sistema experto basado en Lógica Difusa

Sistemas de Inferencia Borroso (SIB) o Fuzzy Inference System (FIS)

- son SE con razonamiento aproximado
- SIB constituye un método que interpreta los valores de un vector de entrada y basado en un conjunto de reglas lógicas borrosas, asigna valores a un vector de salida (mapea un vector de entrada a una salida de tipo escalar)

Entradas --- SIB Salida

Sistema experto basado en Lógica Difusa

Arquitectura de un SIB

Sistema experto basado en Lógica Difusa

Problemas a resolver

1) SI u es A
$$u \in U$$
 ENTONCES v es B $v \in V$

u: variable lingüística de entrada

v: variable lingüística de salida

$$\mu_{\text{A}\rightarrow\text{B}}(x,y)\,\in\,\left[0,1\right]$$

mide el grado de veracidad de la implicación entre x y y

2) Y para el conjunto de reglas que se activan?

Caso de Estudio: Control de una máquina lavadora

- Esta tarea de control se puede realizar:
 - manualmente
 - control basado en lógica difusa

Controlador difuso de una máquina lavadora

Idea: construir una máquina lavadora totalmente automatizada

Objetivo: diseñar y desarrollar el controlador de una máquina lavadora que proporcione el tiempo de lavado

Borrosificación, Inferencia difusa, Desborrosificación

Controlador difuso de una máquina lavadora

Elementos de una variable lingüística Regla práctica:

VARIABLE CUANTITATIVA + término lingüístico ambiguo

EJM. alta temperatura normal baja

A cada término le corresponde un CD

1. Universo de discurso

Rango: LIM INF – LIM SUP

Supongamos: 10 °C - 25 °C

2. Partición del Universo de discurso en CBs

t-ra alta 20-25 t-ra normal 15-23 t-ra baja 10-18

Dominio de los CBs y solapamiento dependen del diseñador

3. Funciones de pertenencia

Gralmente nro de funciones de pertenencia es impar (3-9)

Gralmente traslape de 2 CDs, o de 3 CDs

Regla práctica: cuando se requiere mayor sensibilidad en la salida debido a cambios en las entradas → mayor granularidad en esa región de entrada

Costo computacional?

Granularidad

Partición gruesa de X

Partición fina de X

DESARROLLO DE UN CONTROLADOR BORROSO

1) Análisis

- 2) Para cada variable
 - 2.1 Universo de discurso
 - 2.2 Partición
 - 2.3 Fc de pertenencia

DESARROLLO DE UN CONTROLADOR BORROSO

3) Construir una tabla de decisión

VE1	VE2	 VEn	VS

4) Construir la base de reglas (BR)

Desarrollo del controlador borroso de una máquina lavadora

0) Diagrama de bloques

1) Análisis:

Variables de entrada: Dirtiness (nivel de suciedad)

Type of dirt (Tipo de suciedad)

Variable de salida: Wash time (tiempo de lavado)

Desarrollo del controlador borroso de una máquina lavadora

2) Para cada variable

2.1 Dirtiness

Universo de discurso 0 – 100 %

Términos

Nivel de suciedad Bajo (Small) 0 - 50 Nivel de suciedad Medio (Medium) 0 - 100 Nivel de suciedad Alto (Large) 50 - 100

Desarrollo del controlador borroso de una máquina lavadora

Variable de Entrada **Dirtiness**

Desarrollo del controlador borroso de una máquina lavadora

2.2 Type_of_Dirt

Universo de discurso 0 – 100 %

Términos

Nivel de suciedad No-grasoso (NotGreasy) 0 - 50

Nivel de suciedad Medio (Medium) 0 - 100

Nivel de suciedad Grasoso (Greasy) 50 - 100

Desarrollo del controlador borroso de una máquina lavadora

Variable de Entrada Type_of_dirt

Desarrollo del controlador borroso de una máquina lavadora

2.3 Wash_time

Universo de discurso 0 – 60 min

Términos
Tiempo de lavado VeryShort 8
Tiempo de lavado Short 12
Tiempo de lavado Medium 20
Tiempo de lavado Long 40
Tiempo de lavado VeryLong 60

Desarrollo del controlador borroso de una máquina lavadora

3) Construir una tabla de decisión

Dirtiness	Type-of_dirt	Wash_time
LARGE	GREASY	VERYLONG
MEDIUM	GREASY	LONG
SMALL	GREASY	LONG
LARGE	MEDIUM	LONG
MEDIUM	MEDIUM	MEDIUM
SMALL	MEDIUM	MEDIUM
LARGE	NOTGREASY	MEDIUM
MEDIUM	NOTGREASY	SHORT
SMALL	NOTGREASY	VERYSHORT

Desarrollo del controlador borroso de una máquina lavadora

4) Base de Reglas Borrosas

```
IF dirtness_of_clothes is Large and type_of_dirt is Greasy THEN wash_time is VeryLong IF dirtness_of_clothes is Medium and type_of_dirt is Greasy THEN wash_time is Long IF dirtness_of_clothes is Small and type_of_dirt is Greasy THEN wash_time is Long IF dirtness_of_clothes is Large and type_of_dirt is Medium THEN wash_time is Long IF dirtness_of_clothes is Medium and type_of_dirt is Medium THEN wash_time is Medium IF dirtness_of_clothes is Small and type_of_dirt is NotGreasy THEN wash_time is Medium IF dirtness_of_clothes is Large and type_of_dirt is NotGreasy THEN wash_time is Short IF dirtness_of_clothes is Small and type_of_dirt is NotGreasy THEN wash_time is VeryShort
```

Desarrollo del controlador borroso de una máquina lavadora

EJERCICIO

```
Suponga: Dirtiness = 30
Type of dirt = 15
```

Valor de salida del controlador difuso?

SOLUCIÓN

1) Valores crisp (nítidos)

```
Dirtiness = 30
Type_of_dirt = 15
```


Desarrollo del controlador borroso de una máquina lavadora

SOLUCIÓN-continuación

2) Borrosificación (método gráfico)

Inferencia borrosa

Modus Ponens Generalizado (MPG)

Conocimiento: SI u es A ENTONCES v es B

Hecho: u es A'

Consecuencia: v es B'

A' y B' no son necesariamente iguales a A y B respectivamente, son similares

SI u es A ENTONCES v es B Si jugador es bajo, entonces no será un buen profesional de baloncesto

u es A'

Jugador está abajo de 1.60 m = A'

v es B'

Jugador será pésimo profesional = B'

 $A \neq A'$ pero es similar

 $B \neq B'$ pero es similar

Procesamiento borroso - Método Mamdani

Inferencia difusa

Gráficamente:

Regla 1: Si x es A y y es B then z es C

Desarrollo del controlador borroso de una máquina lavadora

SOLUCIÓN-continuación

3) Reglas activadas

Dirtiness Small	Type_of_Dirt Medium Type_of_Dirt NotGreasy	R6 R9
Dirtiness Medium	Type_of_Dirt <i>Medium</i>	R5
	Type_of_Dirt <i>NotGreasy</i>	R8

Desarrollo del controlador borroso de una máq lavadora

SOLUCIÓN-continuación

- 4) Razonamiento borroso o difuso
 - 4.1) Cálculo de la parte IF

R6

0.39

0.32

IF Dirtiness is Small and Type_of_Dirt is Medium

min(0.39,0.32)=0.32

R9

0.39

0.68

IF Dirtiness is Small AND Type_of_Dirt is NotGreasy

min(0.39,0.68)=0.39

Desarrollo del controlador borroso de una máq lavadora

SOLUCIÓN-continuación

- 4) Razonamiento borroso o difuso
 - 4.1) Cálculo de la parte IF

R5

0.62

0.32

IF Dirtiness is *Medium* AND Type_of_Dirt is *Medium*

min(0.62,0.32)=0.32

R8

0.62

0.68

IF Dirtiness is *Medium* AND Type_of_Dirt is *NotGreasy*

min(0.62,0.68)=0.62

Desarrollo del controlador borroso de una máq lavadora

SOLUCIÓN-continuación

- 4) Razonamiento borroso o difuso
 - 4.1) Cálculo de la parte THEN

```
R6 Wash time is Medium 0.32
```

R9

Wash_time is *VeryShort* 0.39

R5

Wash time is *Medium* 0.32

R8

Wash_time is *Short* 0.62

Wash_time is *Medium* $\max(0.32, 0.32) = 0.32$

Desborrosificación

Centro de Máximos (CoM)

Determina el valor «típico» (máximo) de cada término y lo pondera por sus activaciones

$$y_{CoM} = \frac{\sum_{j} (Y_{j} * \omega_{j})}{\sum_{j} \omega_{j}}$$

$$\omega_{\rm j} = \mu_{\rm Resultante,j}$$

Desarrollo del controlador borroso de una máq lavadora SOLUCIÓN-continuación

5) Desborrosificación
$$\text{Centro de Máximos (CoM)} \quad y_{\text{CoM}} = \frac{\sum_{j} \left(Y_{j}^{*} * \right)}{\sum_{j} \omega_{j}}$$

$$\text{donde } \omega_{j} = \mu_{\text{Resultante},j}$$

$$\mu_{\text{Resultante},j} \text{: grado de activación en regla j (LI)}$$

$$\omega_{j} \text{: grado de cumplimiento en regla j (LD)}$$

$$Y_{j} \text{: valor «típico» (máximo) de cada término}$$

$$y_{\text{CoM}} = \frac{0.32 \times 20 + 0.62 \times 12 + 0.39 \times 8}{0.32 + 0.62 + 0.39}$$

$$y_{\text{CoM}} = 12.75 \text{ min}$$

Desborrosificación

Centro de áreas (CoA)

$$y_{CoA} = \frac{\int_{S} \mu_{B}(u) u du}{\int_{S} \mu_{B}(u) du}$$

s: soporte de B

Cálculo de la parte ENTONCES

Centro de áreas (CoA)

EJM.

Tres reglas activadas:

I ENTONCES Y es medio

J ENTONCES Y es Alto

K ENTONCES Y es Bajo

con grados de cumplimiento

 ω_{I} , ω_{J} y ω_{K} respectivamente

Unión de las salidas

Centro de áreas (CoA)

EJM.

Agregación de CBs obtenidos se hace, normalmente, a través de la operación de unión

Para el ejemplo anterior, se obtiene un nuevo CB

Mecanismo de inferencia difusa

Operadores más usados

- Conectiva AND (y): mínimo (o producto)
- Conectiva OR (o): máximo
- Negación: $\neg A(x) = 1 \mu_A(x)$
- Implicación: Mamdani (sup-min) Sugeno
- Agregación de reglas: máximo
- Desborrosificación: CoM, CoA

Sistemas expertos basados en lógica difusa

- Herramientas computacionales
 - 1) MATLAB
 Toolbox de Lógica Nebulosa
 Toolbox de Algoritmos Genéticos
 - 2) FuzzyTECH
 - 3) Xfuzzy
 - 4) FuzzyCLIPS
 - 5) FISI Logic, entre otros

Cierre

- Se entendió la representación del conocimiento mediante reglas de producción imprecisas
- Se entendió la diferencia entre probabilidad y borrosidad
- Se entendió el concepto de cjtos difusos y su diferencia respecto de los clásicos
- Se entendió el concepto de lógica difusa
- Se conoció la arquitectura de los denominados Sistemas de Inferencia Borrosa
- Se entendió el proceso de inferencia en los