University of Canterbury Deep Learning

Deep Learning

COSC440

Andy Ming / Quelldateien

Table of contents -

Details	1
Science of Arrays	1
Machine Learning Concepts	1
Types of Learning	2
Types of Problems	2
Maschine Learning Pipeline	2
Dataset	2
Preprocessing	2
Train Model	2
Optimizing with Gradient Descent	2
Loss Function	2
Gradient Descent	2
Stochastic Gradient Descent (SGD)	3
Optimization	3
Automatic Differentiation	3
Numeric differentiation	3
Symbolic differentiation	3
Automatic differentiation	3
Diagnosis Problems	4
•	
Deep Learning Concepts	4
Multi-Dimensional Arrays & Memory Models	4
Neural Networks	4
Perceptron	4
Multi-Layer	5
Sequential and Recurrent Networks	5
	5
Latent Space	5
Transfer Learning	
Training Methods and Tricks	5
Deep Learning Problems, Models & Research	5
Computer Graphics and Vision	5
Natural Language	5
Audio and Video Synthesis	5
Search using Deep Reinforcment Learning	5
Anomaly Detection	5
Irregular Networks	5

Details -

Science of Arrays

Use Arrays wisely

Don't loop over elements in a array. Use numpy functions to do elementwise operations:

```
# Elementwise sum; both produce an array
z = x + y
z = np.add(x, y)
```

Use Boradcasting to work with arrays of different sizes:

Do **Matrix Multiplications**, remember that matrices of shape $100x20 \times 20x40$ equal a output shape of 100x40:

```
C = np.dot(A,B)
F = np.matmul(D,E)
```

Reason:

Machine Learning Concepts

Machine Learning == Function Approximation

...so our goal is to *learn* approximations of these functions *from data*

University of Canterbury Deep Learning

Types of Learning

Types of Problems

Maschine Learning Pipeline

Dataset

Annotated Datasets like MNIST (Handwritten digits).

Preprocessing

Split the dataset into Train, Validation, and Test sets

- Train set used to adjust the parameters of the model
- Validation set used to test how well we're doing as we develop
- Prevents overfitting, something you will learn later!
- Test set used to evaluate the model once the model is done

Train Model

- 1. **Initialization**: Set all weights w_i to 0.
- 2. **Iteration Process**:

- Repeat for *N* iterations, or until the weights no longer change:
 - For each training example \mathbf{x}^k with label a^k :
 - 1. Calculate the prediction error:
 - * If $a^k f(\mathbf{x}^k) = 0$, continue (no change to weights).
 - 2. Otherwise, update each weight w_i using:

$$w_i = w_i + \lambda \left(a^k - f(\mathbf{x}^k) \right) x_i^k$$

• where λ is a value between 0 and 1, representing the learning rate.

Optimizing with Gradient Descent

Loss Function

Function *L* which measures how "wrong" a network is. We want our network to answer right with **high probability**.

To get a probability for **binary classification**, we introduce a **probability layer**. One of the possible function is **Softmax**

$$p_j = \frac{e^{l_j}}{\sum_k e^{l_k}}$$

For every output j it takes every logit (output of network before activation/probability is applied) l_j in the exponent to ensure positivity. Dividing it by the sum of all logits ensures that $\sum_k p_k = 1$

To get the loss L we apply a loss-function, low probability \rightarrow high loss. We use **Cross Entropy Loss**

Gradient Descent

$$\Delta w_{j,i} = -\alpha \frac{\partial L}{\partial w_{i,i}}$$

 α : learning rate (typically 0.1-0.001)

L: loss function

 $w_{j,i}$: one single weight

To compute $-\alpha \frac{\partial L}{\partial w_{i,i}}$ use the chain rule

University of Canterbury Deep Learning


```
## Backpropagation on batch learning
\# y = expected - (f(x)>0)
labels_OH = np.zeros((labels.size, self.num_classes),

    dtype=int)

labels_OH[np.arange(labels.size),labels] = 1 #

→ One-Hot encoding

predictions = np.argmax(outputs, axis=1)
predictions_OH = np.zeros_like(outputs)
predictions_OH[np.arange(outputs.shape[0]),
    predictions] = 1
y = labels_OH - predictions_OH
# db = y*1
gradB = np.mean(y, axis=0) # average over batch
\# dW = y*x
y = y.reshape((outputs.shape[0],1,self.num_classes))
inputs =
→ inputs.reshape((outputs.shape[0], self.input_size[0]*self.input_size[1],1))
dW = inputs*y
gradW = np.mean(dW, axis=0) # average over batch
```

Stochastic Gradient Descent (SGD)

Train a network on batches, small subsets of training data.

```
# Stochastic Gradient Descent
for start in range(0, len(train_inputs),
   model.batch_size):
    inputs =
   train_inputs[start:start+model.batch_size]
   labels =
  train labels[start:start+model.batch size]
    # For every batch, compute then descend the

→ gradients for the model's weights

   outputs = model.call(inputs)
   gradientsW, gradientsB =
   model.back_propagation(inputs, outputs, labels)
    model.gradient_descent(gradientsW, gradientsB)
```

- Training process is *stochastic / non-deterministic*: batches are a random subsample.
- The gradient of a random-sampled batch is a unbiased estimator of the overall gradient of the dataset.
- Pick a large enough batch size for stable updates, but small enough to fit your GPU

Optimization

Automatic Differentiation

To avoid having to recalculate the whole chain every time a new layer is added, we use automatic derivation. There are several options:

Numeric differentiation

- Called finite differences
- Easy to implement
- Arbitraritly inaccurate/unstable

Symbolic differentiation

- Computer does algebra and simplifies expressions
- Very exact
- Complex to implement
- Only handles static expressions

Automatic differentiation

- Use the chain rule at runtime
- Gives exact results
- Handles dynamics
- Easier to implement
- Can't simplify expressions

Forward Mode Autodiff Every node stores its (value. derivative) in a tuple, called dual numbers. pute the overall derivative, each derivative can be chained up. This is implemented via **Overloading**, every function / operator has multiple definitions based on the types of the arguments. ML-Framwork functions work on these tuples.

Time Effect: O(N * M) time, O(1) memory, with N = number of inputs, with M = number of nodes

University of Canterbury Deep Learning

Reverse Mode Autodiff First, run the function to produce the graph, then compute the derivatives backward.

- Analog to the forward mode: overload math functions/operators
- Overloaded function return *Node* objects
- Overloaded functions build compute graph while executing
- After forward pass, the operations are recorded
- The backwards pass walks along the graph and computes the derivatives
- **Time Effect**: O(M) time, O(M) memory, with M = number of nodes

Fan-Outs (Reverse) The way to handle fan-out is to add the derivatives of the fanned-out nodes through replication r(x).

Diagnosis Problems

Deep Learning Concepts -

Common Misconception

Deep Learning != AI, Just because deep learning algorithms are used doesn't mean there is any intelligence involved. Deep Learning != Brain, Modern deep nets don't depend solely on biologically mimiced neural nets any more. A fully connected layer represents such a neural net the closest. Deep Learning ==:

1. Differentiable functions, composed to more complex diff. func.

- 2. A deep net is a differentiable function, some inputs are optimizable parameters
- 3. Differentiable functions produce a computation graph, which can be traversed backwards for *gradient-based* optimization

Multi-Dimensional Arrays & Memory Models Neural Networks ·····

Perceptron

Predicting with a Perceptron:

- 1. Multiply the inputs x_i by their corresponding weight w_i
- 2. Add the bias b
- 3. Binary Classifier, greater than 0, return 1, else return 0

$$f_{\Phi}(\mathbf{x}) = \begin{cases} 1, & \text{if } b + \mathbf{w} \cdot \mathbf{x} > 0 \\ 0, & \text{otherwise} \end{cases}$$

Parameters

Weights: "importance of the input to the output"

- Weight near 0: Input has little meaning to the output
- Negative weight: Increasing input → decreasing output

Bias: "a priori likelihood of positive class"

- Ensures that even if all inputs are 0, there is some result
- Can also be written as a weight for a constant 1 input

$$[x_0, x_1, x_2, \dots, x_n] \cdot [w_0, w_1, w_2, \dots, w_n] + b$$

= $[x_0, x_1, x_2, \dots, x_n, 1] \cdot [w_0, w_1, w_2, \dots, w_n, b]$

Multi-Class Perceptron

Biary Classifier: Only one output can be active $\hat{y} = \hat{y}$ $argmax(f(x^k))$, thus the update terms are

University of Canterbury Deep Learning

$$\Delta w_i = \begin{cases} 0, & \text{for } a^k = \hat{y} \\ -x_i^k, & \text{for } \hat{y} = 1, a^k = 0 \\ x_i^k, & \text{for } \hat{y} = 0, a^k = 1 \end{cases}$$

Multi-Layer

Sequential and Recurrent Networks

Latent Space

Transfer Learning

Training Methods and Tricks

Deep Learning Problems, Models & Research

Computer Graphics and Vision

Natural Language

Audio and Video Synthesis

Search using Deep Reinforcment Learning

Anomaly Detection

Irregular Networks