metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(μ -Naphthalene-1,5-disulfonato- $\kappa^2 O^1$: O^5)bis[triaqua(glycinato- $\kappa^2 N$,O)-copper(II)]

Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 24 April 2012; accepted 30 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.026; wR factor = 0.073; data-to-parameter ratio = 15.8.

In the title compound, $[Cu_2(C_2H_4NO_2)_2(C_{10}H_6O_6S_2)(H_2O)_6]$, the naphthalenedisulfonate group lies on a center of inversion and bridges two glycinate-chelated Cu^{II} atoms. The Cu^{II} atom exists in a $CuNO_4$ square-pyramidal geometry that is distorted towards an octahedron owing to a long $Cu-O_{sulfonate}$ bond $[2.636\ (2)\ \mathring{A}]$. In the crystal, extensive $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds link adjacent molecules into a three-dimensional network

Related literature

For a review of metal arenesulfonates, see: Cai (2004).

Experimental

Crystal data

[Cu₂(C₂H₄NO₂)₂-(C₁₀H₆O₆S₂)(H₂O)₆] $M_r = 669.57$ Monoclinic, $P2_1/c$ a = 5.802 (3) Å b = 11.341 (6) Å c = 17.613 (8) Å $β = 99.793 (18)^{\circ}$ $V = 1142.1 (9) \text{ Å}^3$ Z = 2Mo Kα radiation $μ = 2.13 \text{ mm}^{-1}$ T = 293 K $0.38 \times 0.26 \times 0.19 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.498, T_{\max} = 0.688$ 10939 measured reflections 2615 independent reflections 2482 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.073$ S = 1.072615 reflections 166 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.47$ e Å $^{-3}$ $\Delta \rho_{\rm min} = -0.63$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$O1w-H11\cdots O2^{i}$	0.84	2.02	2.741 (2)	143
$O1w-H12\cdots O5^{ii}$	0.84	2.10	2.785 (2)	139
$O2w-H21\cdots O4^{iii}$	0.84	2.00	2.773 (2)	152
$O2w-H22\cdots O4^{iv}$	0.84	2.02	2.823 (2)	158
$O3w-H31\cdots O2^{ii}$	0.84	1.91	2.676 (2)	151
$O3w-H32\cdots O3^{iv}$	0.84	1.93	2.691 (2)	150
$N1-H1\cdots O5$	0.88	2.53	3.079 (3)	121
N1-H2···O2 ⁱⁱ	0.88	2.50	3.194 (3)	137

Symmetry codes: (i) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x - 1, y, z; (iv) -x + 1, -y + 1, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5523).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Cai, J. (2004). Coord. Chem. Rev. 248, 1061–1083.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2012). E68, m730 [doi:10.1107/S1600536812019332]

(μ -Naphthalene-1,5-disulfonato- $\kappa^2 O^1$: O^5)bis[triaqua(glycinato- $\kappa^2 N$,O)copper(II)]

Shan Gao and Seik Weng Ng

Comment

Metal arenesulfonates are generally crystalline compounds; in some, the metal is connected to the arenesulfonate by a covalent bond whereas in others, the arenesulfonate interacts indirectly with the metal center in an outer-sphere type of coordination (Cai, 2004). In the title compound (Scheme I), the Cu^{II} atom exists in a CuNO₄ square-pyramidal geometry that is distorted towards an octahedron owing to the long Cu–O_{sulfonate} bond (2.636 (2) Å). The atom lies above the square plane (r.m.s. deviation 0.082 Å) and the apical water molecule lies 2.371 (2) Å above the plane (Fig.1). Extensive N–H···O and O–H···O hydrogen bonds link adjacent molecules into a three-dimensional network (Table 1).

Experimental

Dicopper carbonate dihydroxide (1 mmol, 221 mg), glycine (2 mmol, 150 mg) 1,5-naphthalenedisulfonic acid tetrahydrate (2 mmol, 720 mg) were dissolved in water (10 ml). The solution was heated for 5 h and then filtered. Blue crystals separated from the solution after several days.

Refinement

H-atoms were placed in calculated positions (C-H 0.93–0.97, N-H 0.88, O-H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C,N,O).

The (2 2 3) reflection was omitted owing to bad disagreement.

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO* (Rigaku, 1998); data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Acta Cryst. (2012). E68, m730 Sup-1

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry-related atoms are not labeled.

(μ -Naphthalene-1,5-disulfonato- $\kappa^2 O^1$: O^5)bis[triaqua(glycinato- $\kappa^2 N$,O)copper(II)]

Crystal data

$[Cu_2(C_2H_4NO_2)_2(C_{10}H_6O_6S_2)(H_2O)_6]$	F(000) = 684
$M_r = 669.57$	$D_{\rm x} = 1.947 \; {\rm Mg \; m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 10177 reflections
a = 5.802 (3) Å	$\theta = 3.6-27.5^{\circ}$
b = 11.341 (6) Å	$\mu = 2.13 \text{ mm}^{-1}$
c = 17.613 (8) Å	T = 293 K
$\beta = 99.793 (18)^{\circ}$	Prism, blue
$V = 1142.1 (9) \text{ Å}^3$	$0.38 \times 0.26 \times 0.19 \text{ mm}$
Z=2	

Data collection

Rigaku R-AXIS RAPID IP diffractometer	10939 measured reflections 2615 independent reflections
Radiation source: fine-focus sealed tube	2482 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
ω scan	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$
Absorption correction: multi-scan	$h = -7 \longrightarrow 6$
(ABSCOR; Higashi, 1995)	$k = -14 \longrightarrow 14$
$T_{\min} = 0.498, T_{\max} = 0.688$	$l = -21 \rightarrow 22$
` , <u> </u>	,, ,, ,,

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from
$wR(F^2) = 0.073$	neighbouring sites
S = 1.07	H-atom parameters constrained
2615 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0429P)^2 + 0.6921P]$
166 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.47 \ m e \ \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.63 \text{ e Å}^{-3}$

sup-2 Acta Cryst. (2012). E68, m730

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.35965 (4)	0.51409 (2)	0.341914 (12)	0.02354 (9)
S1	0.70836 (8)	0.73372 (4)	0.44741 (2)	0.02159 (11)
O1	0.1995 (2)	0.64747 (12)	0.28644 (8)	0.0287 (3)
O2	0.2226 (3)	0.77425 (13)	0.19250(8)	0.0343 (3)
O1w	0.1638 (3)	0.37202 (15)	0.26192 (9)	0.0397 (4)
H11	0.0956	0.3256	0.2879	0.060*
H12	0.2599	0.3342	0.2407	0.060*
O2w	0.1040(3)	0.50030 (11)	0.40277 (8)	0.0265 (3)
H21	0.0939	0.5633	0.4271	0.040*
H22	0.1325	0.4441	0.4340	0.040*
O3w	0.5629(3)	0.39956 (14)	0.40378 (8)	0.0369 (3)
H31	0.5917	0.3436	0.3756	0.055*
H32	0.4956	0.3734	0.4389	0.055*
O3	0.4994(2)	0.66501 (11)	0.45410 (7)	0.0270 (3)
O4	0.9218 (3)	0.67519 (12)	0.48533 (8)	0.0327 (3)
O5	0.7143 (3)	0.76531 (13)	0.36808 (8)	0.0345 (3)
N1	0.5974(3)	0.53828 (15)	0.27352 (9)	0.0280 (3)
H1	0.7251	0.5697	0.2999	0.034*
H2	0.6344	0.4702	0.2548	0.034*
C1	0.2931 (3)	0.68561 (16)	0.23169 (10)	0.0236 (3)
C2	0.4970(3)	0.61731 (17)	0.21047 (11)	0.0279 (4)
H2A	0.4444	0.5714	0.1643	0.033*
H2B	0.6160	0.6719	0.1996	0.033*
C3	0.6918 (3)	0.86710 (14)	0.49908 (9)	0.0200 (3)
C4	0.8728 (3)	0.89338 (16)	0.55662 (10)	0.0258 (4)
H4	0.9958	0.8404	0.5691	0.031*
C5	0.8744 (4)	1.00050 (17)	0.59723 (12)	0.0275 (4)
H5	0.9982	1.0174	0.6366	0.033*
C6	0.6966 (3)	1.07958 (16)	0.57946 (10)	0.0239 (3)
H6	0.7024	1.1507	0.6060	0.029*
C7	0.5021 (3)	1.05448 (14)	0.52074 (9)	0.0186 (3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.02546 (13)	0.02263 (14)	0.02478 (14)	0.00560(8)	0.01067 (9)	0.00671 (8)
S1	0.0305(2)	0.01428 (19)	0.0221(2)	0.00179 (15)	0.01062 (16)	-0.00129 (14)
O1	0.0311 (6)	0.0273 (7)	0.0307 (7)	0.0076 (5)	0.0134 (5)	0.0098 (5)
O2	0.0379 (7)	0.0294 (7)	0.0378 (8)	0.0054 (6)	0.0131 (6)	0.0152(6)
O1w	0.0462 (9)	0.0409 (9)	0.0350(8)	-0.0102 (7)	0.0153 (7)	-0.0150(7)
O2w	0.0324 (7)	0.0199(6)	0.0310(7)	0.0022 (5)	0.0162 (6)	0.0001 (5)
O3w	0.0491 (8)	0.0386 (8)	0.0266 (7)	0.0221 (7)	0.0162 (6)	0.0093 (6)
О3	0.0362 (7)	0.0196 (6)	0.0270 (6)	-0.0049(5)	0.0107 (5)	-0.0012(5)
O4	0.0352 (7)	0.0224 (6)	0.0420(8)	0.0107 (6)	0.0106 (6)	-0.0027(6)
O5	0.0529 (9)	0.0306 (7)	0.0241 (6)	-0.0039(6)	0.0187 (6)	-0.0018(5)
N1	0.0273 (8)	0.0283 (8)	0.0302 (8)	0.0054 (6)	0.0103 (6)	0.0031 (6)
C1	0.0254 (8)	0.0210(8)	0.0246 (8)	-0.0019(7)	0.0046 (7)	0.0005 (6)

Acta Cryst. (2012). E68, m730 sup-3

C2	0.0325 (9)	0.0286 (9)	0.0247 (8)	0.0019 (7)	0.0113 (7)	0.0021 (7)
C3	0.0266 (8)	0.0145 (7)	0.0202 (7)	0.0013 (6)	0.0076 (6)	-0.0006(6)
C4	0.0259 (8)	0.0224 (8)	0.0282 (9)	0.0057 (7)	0.0021 (7)	0.0003 (7)
C5	0.0274 (9)	0.0269 (9)	0.0255 (9)	-0.0008(7)	-0.0033(7)	-0.0042(7)
C6	0.0288 (8)	0.0194 (8)	0.0226 (8)	-0.0018(7)	0.0023 (7)	-0.0037(6)
C7	0.0239 (8)	0.0142 (7)	0.0183 (7)	0.0001 (6)	0.0051 (6)	0.0000 (6)

Geometric parameters (Å, °)

Geometric parameters (A,)			
Cu1—O1	1.9485 (15)	O3w—H32	0.8400
Cu1—O3w	1.9566 (15)	N1—C2	1.468 (2)
Cu1—O2w	1.9783 (16)	N1—H1	0.8800
Cu1—N1	1.9988 (18)	N1—H2	0.8800
Cu1—O1w	2.3081 (17)	C1—C2	1.513 (3)
Cu1—O3	2.636 (2)	C2—H2A	0.9700
S1—O5	1.4486 (15)	C2—H2B	0.9700
S1—O4	1.4626 (15)	C3—C4	1.363 (3)
S1—O3	1.4629 (15)	C3—C7 ⁱ	1.430(2)
S1—C3	1.7763 (18)	C4—C5	1.409 (3)
O1—C1	1.261 (2)	C4—H4	0.9300
O2—C1	1.248 (2)	C5—C6	1.362 (3)
O1w—H11	0.8400	C5—H5	0.9300
O1w—H12	0.8400	C6—C7	1.424(2)
O2w—H21	0.8400	C6—H6	0.9300
O2w—H22	0.8400	C7—C3 ⁱ	1.430(2)
O3w—H31	0.8400	C7—C7 ⁱ	1.434 (3)
O1—Cu1—O3w	170.20 (7)	Cu1—N1—H1	110.0
O1—Cu1—O2w	89.75 (6)	C2—N1—H2	110.0
O3w—Cu1—O2w	94.72 (7)	Cu1—N1—H2	110.0
O1—Cu1—N1	84.86 (6)	H1—N1—H2	108.4
O3w—Cu1—N1	90.81 (7)	O2—C1—O1	123.76 (17)
O2w—Cu1—N1	174.45 (6)	O2—C1—C2	118.17 (16)
O1—Cu1—O1w	95.31 (7)	O1—C1—C2	118.03 (16)
O3w—Cu1—O1w	93.67 (8)	N1—C2—C1	110.61 (15)
O2w—Cu1—O1w	86.50 (6)	N1—C2—H2A	109.5
N1—Cu1—O1w	92.67 (7)	C1—C2—H2A	109.5
O5—S1—O4	113.29 (9)	N1—C2—H2B	109.5
O5—S1—O3	111.43 (9)	C1—C2—H2B	109.5
O4—S1—O3	111.76 (9)	H2A—C2—H2B	108.1
O5—S1—C3	107.21 (9)	C4—C3—C7 ⁱ	121.37 (15)
O4—S1—C3	105.54 (8)	C4—C3—S1	117.72 (13)
O3—S1—C3	107.12 (8)	C7 ⁱ —C3—S1	120.89 (13)
C1—O1—Cu1	114.77 (12)	C3—C4—C5	120.24 (16)
Cu1—O1w—H11	109.5	C3—C4—H4	119.9
Cu1—O1w—H12	109.5	C5—C4—H4	119.9
H11—O1w—H12	109.5	C6—C5—C4	120.77 (17)
Cu1—O2w—H21	109.5	C6—C5—H5	119.6
Cu1—O2w—H22	109.5	C4—C5—H5	119.6
H21—O2w—H22	109.5	C5—C6—C7	120.72 (17)

Acta Cryst. (2012). E68, m730 sup-4

Cu1—O3w—H31 Cu1—O3w—H32 H31—O3w—H32 C2—N1—Cu1	109.5 109.5 109.5 108.28 (12)	C5—C6—H6 C7—C6—H6 C6—C7—C3 ⁱ C6—C7—C7 ⁱ	119.6 119.6 123.13 (15) 119.03 (19)
C2—N1—H1	110.0	C3 ⁱ —C7—C7 ⁱ	117.83 (18)
O2w—Cu1—O1—C1	-174.25 (13)	O4—S1—C3—C4	4.06 (16)
N1—Cu1—O1—C1	4.42 (13)	O3—S1—C3—C4	123.29 (15)
O1w—Cu1—O1—C1	-87.80 (14)	O5—S1—C3—C7 ⁱ	61.24 (16)
O1—Cu1—N1—C2	-13.65 (13)	O4—S1—C3—C7 ⁱ	-177.71 (14)
O3w—Cu1—N1—C2	175.17 (13)	O3—S1—C3—C7 ⁱ	-58.48 (16)
O1w—Cu1—N1—C2	81.45 (13)	C7 ⁱ —C3—C4—C5	-1.1(3)
Cu1—O1—C1—O2	-175.95 (15)	S1—C3—C4—C5	177.09 (15)
Cu1—O1—C1—C2	6.4 (2)	C3—C4—C5—C6	-0.4(3)
Cu1—N1—C2—C1	19.48 (19)	C4—C5—C6—C7	1.6 (3)
O2—C1—C2—N1	164.25 (17)	C5—C6—C7—C3 ⁱ	178.49 (18)
O1—C1—C2—N1	-18.0 (2)	C5—C6—C7—C7 ⁱ	-1.3(3)
O5—S1—C3—C4	-116.99 (15)		

Symmetry code: (i) -x+1, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —Н	\mathbf{H} ··· A	D··· A	D— H ··· A
O1 <i>w</i> —H11···O2 ⁱⁱ	0.84	2.02	2.741 (2)	143
O1 <i>w</i> —H12···O5 ⁱⁱⁱ	0.84	2.10	2.785 (2)	139
$O2w$ — $H21$ ··· $O4^{iv}$	0.84	2.00	2.773 (2)	152
O2 <i>w</i> —H22···O4 ^v	0.84	2.02	2.823 (2)	158
O3 <i>w</i> —H31···O2 ⁱⁱⁱ	0.84	1.91	2.676 (2)	151
O3 <i>w</i> —H32···O3 ^v	0.84	1.93	2.691 (2)	150
N1—H1···O5	0.88	2.53	3.079 (3)	121
N1—H2···O2 ⁱⁱⁱ	0.88	2.50	3.194 (3)	137

Symmetry codes: (ii) -x, y-1/2, -z+1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.

Acta Cryst. (2012). E**68**, m730