Rank-65873 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(8) is 1244173461

General information

Number of lines	1
Number of points	73
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	9
Number of points off lines	64
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9
Type of lines on points	$1^9, 0^{64}$

Singular Points

The surface has 1 singular points:

$$0: P_{75} = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1)$$

The 1 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{593} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{593} = \mathbf{Pl}(1, 1, 1, 1, 1, 0)_{306}$$

Rank of lines: (593)

Rank of points on Klein quadric: (306)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 9 single points: The single points on the surface are:

$0: P_{20} = (1, 1, 1, 0)$ lies on line ℓ_0	$5: P_{366} = (5, 4, 4, 1)$ lies on line
1: $P_{75} = (1, 0, 0, 1)$ lies on line ℓ_0	$6: P_{437} = (4, 5, 5, 1)$ lies on line
$2: P_{146} = (0, 1, 1, 1)$ lies on line ℓ_0	7: $P_{512} = (7, 6, 6, 1)$ lies on line
$3: P_{220} = (3, 2, 2, 1)$ lies on line ℓ_0	8: $P_{583} = (6,7,7,1)$ lies on line
$4: P_{291} = (2,3,3,1)$ lies on line ℓ_0	

 $\begin{array}{c} \ell_0 \\ \ell_0 \\ \ell_0 \\ \ell_0 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 64 points not on any line: The points on the surface but not on lines are:

$0: P_0 = (1, 0, 0, 0)$	18: $P_{171} = (2, 4, 1, 1)$
$1: P_4 = (1, 1, 1, 1)$	19: $P_{175} = (6, 4, 1, 1)$
$2: P_{27} = (0, 2, 1, 0)$	$20: P_{196} = (3,7,1,1)$
$3: P_{37} = (2,3,1,0)$	$21: P_{197} = (4,7,1,1)$
$4: P_{43} = (0, 4, 1, 0)$	$22: P_{203} = (2,0,2,1)$
$5: P_{55} = (4, 5, 1, 0)$	$23: P_{224} = (7, 2, 2, 1)$
$6: P_{66} = (7, 6, 1, 0)$	$24: P_{244} = (3, 5, 2, 1)$
$7: P_{67} = (0, 7, 1, 0)$	$25: P_{245} = (4, 5, 2, 1)$
$8: P_{82} = (0, 1, 0, 1)$	$26: P_{255} = (6, 6, 2, 1)$
$9: P_{92} = (2, 2, 0, 1)$	$27: P_{256} = (7, 6, 2, 1)$
$10: P_{104} = (6, 3, 0, 1)$	$28: P_{271} = (6, 0, 3, 1)$
$11: P_{110} = (4, 4, 0, 1)$	$29: P_{282} = (1, 2, 3, 1)$
$12: P_{117} = (3, 5, 0, 1)$	$30: P_{288} = (7, 2, 3, 1)$
13: $P_{127} = (5, 6, 0, 1)$	$31: P_{296} = (7, 3, 3, 1)$
$14: P_{137} = (7, 7, 0, 1)$	$32: P_{305} = (0, 5, 3, 1)$
15: $P_{138} = (0, 0, 1, 1)$	$33: P_{307} = (2, 5, 3, 1)$
$16: P_{158} = (5, 2, 1, 1)$	$34: P_{316} = (3, 6, 3, 1)$
$17: P_{160} = (7, 2, 1, 1)$	$35: P_{317} = (4, 6, 3, 1)$

```
36: P_{333} = (4,0,4,1)
                                                                   51: P_{481} = (0, 3, 6, 1)
                                                                   52: P_{488} = (7, 3, 6, 1)
37: P_{355} = (2, 3, 4, 1)
38: P_{356} = (3, 3, 4, 1)
                                                                   53: P_{499} = (2, 5, 6, 1)
39: P_{363} = (2,4,4,1)
                                                                   54: P_{503} = (6, 5, 6, 1)
40: P_{382} = (5, 6, 4, 1)
                                                                   55: P_{509} = (4, 6, 6, 1)
41: P_{384} = (7, 6, 4, 1)
                                                                   56: P_{514} = (1, 7, 6, 1)
42: P_{396} = (3, 0, 5, 1)
                                                                   57: P_{517} = (4, 7, 6, 1)
                                                                   58: P_{528} = (7, 0, 7, 1)
43: P_{422} = (5, 3, 5, 1)
44: P_{424} = (7, 3, 5, 1)
                                                                   59: P_{547} = (2, 3, 7, 1)
45: P_{426} = (1, 4, 5, 1)
                                                                   60: P_{551} = (6, 3, 7, 1)
46: P_{427} = (2, 4, 5, 1)
                                                                   61: P_{565} = (4, 5, 7, 1)
                                                                   62: P_{566} = (5, 5, 7, 1)
47: P_{435} = (2, 5, 5, 1)
                                                                   63: P_{581} = (4, 7, 7, 1)
48: P_{441} = (0, 6, 5, 1)
49: P_{445} = (4, 6, 5, 1)
50: P_{462} = (5, 0, 6, 1)
```

Line Intersection Graph

 $\frac{0}{0 \mid 0}$

Neighbor sets in the line intersection graph: Line 0 intersects

Line in point

The surface has 73 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$25: P_{203} = (2,0,2,1)$	$50: P_{424} = (7, 3, 5, 1)$
$1: P_4 = (1, 1, 1, 1)$	$26: P_{220} = (3, 2, 2, 1)$	$51: P_{426} = (1,4,5,1)$
$2: P_{20} = (1, 1, 1, 0)$	$27: P_{224} = (7, 2, 2, 1)$	$52: P_{427} = (2,4,5,1)$
$3: P_{27} = (0, 2, 1, 0)$	$28: P_{244} = (3, 5, 2, 1)$	$53: P_{435} = (2, 5, 5, 1)$
$4: P_{37} = (2, 3, 1, 0)$	$29: P_{245} = (4, 5, 2, 1)$	$54: P_{437} = (4, 5, 5, 1)$
$5: P_{43} = (0, 4, 1, 0)$	$30: P_{255} = (6, 6, 2, 1)$	$55: P_{441} = (0, 6, 5, 1)$
$6: P_{55} = (4, 5, 1, 0)$	$31: P_{256} = (7, 6, 2, 1)$	$56: P_{445} = (4, 6, 5, 1)$
$7: P_{66} = (7, 6, 1, 0)$	$32: P_{271} = (6,0,3,1)$	$57: P_{462} = (5, 0, 6, 1)$
$8: P_{67} = (0,7,1,0)$	$33: P_{282} = (1, 2, 3, 1)$	$58: P_{481} = (0, 3, 6, 1)$
$9: P_{75} = (1,0,0,1)$	$34: P_{288} = (7, 2, 3, 1)$	$59: P_{488} = (7, 3, 6, 1)$
$10: P_{82} = (0, 1, 0, 1)$	$35: P_{291} = (2, 3, 3, 1)$	$60: P_{499} = (2, 5, 6, 1)$
11: $P_{92} = (2, 2, 0, 1)$	$36: P_{296} = (7, 3, 3, 1)$	$61: P_{503} = (6, 5, 6, 1)$
$12: P_{104} = (6, 3, 0, 1)$	$37: P_{305} = (0, 5, 3, 1)$	$62: P_{509} = (4, 6, 6, 1)$
13: $P_{110} = (4, 4, 0, 1)$	$38: P_{307} = (2, 5, 3, 1)$	$63: P_{512} = (7, 6, 6, 1)$
$14: P_{117} = (3, 5, 0, 1)$	$39: P_{316} = (3, 6, 3, 1)$	$64: P_{514} = (1, 7, 6, 1)$
$15: P_{127} = (5, 6, 0, 1)$	$40: P_{317} = (4, 6, 3, 1)$	$65: P_{517} = (4, 7, 6, 1)$
$16: P_{137} = (7, 7, 0, 1)$	$41: P_{333} = (4, 0, 4, 1)$	$66: P_{528} = (7, 0, 7, 1)$
$17: P_{138} = (0, 0, 1, 1)$	$42: P_{355} = (2, 3, 4, 1)$	$67: P_{547} = (2, 3, 7, 1)$
$18: P_{146} = (0, 1, 1, 1)$	$43: P_{356} = (3, 3, 4, 1)$	$68: P_{551} = (6, 3, 7, 1)$
$19: P_{158} = (5, 2, 1, 1)$	$44: P_{363} = (2, 4, 4, 1)$	$69: P_{565} = (4, 5, 7, 1)$
$20: P_{160} = (7, 2, 1, 1)$	$45: P_{366} = (5, 4, 4, 1)$	$70: P_{566} = (5, 5, 7, 1)$
$21: P_{171} = (2,4,1,1)$	$46: P_{382} = (5, 6, 4, 1)$	$71: P_{581} = (4,7,7,1)$
$22: P_{175} = (6, 4, 1, 1)$	$47: P_{384} = (7, 6, 4, 1)$	$72: P_{583} = (6,7,7,1)$
$23: P_{196} = (3,7,1,1)$	$48: P_{396} = (3, 0, 5, 1)$	
$24: P_{197} = (4,7,1,1)$	$49: P_{422} = (5, 3, 5, 1)$	