

Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria

prof.ssa Anna Antola prof. Luca Breveglieri prof. Roberto Negrini

prof. Giuseppe Pelagatti prof.ssa Donatella Sciuto prof.ssa Cristina Silvano

AXO – Architettura dei Calcolatori e Sistemi Operativi SECONDA PARTE di mercoledì 22 febbraio 2017

Cognome	Nome
Matricola	Firma

Istruzioni

- Si scriva solo negli spazi previsti nel testo della prova e non si separino i fogli.
- Per la minuta si utilizzino le pagine bianche inserite in fondo al fascicolo distribuito con il testo della prova. I fogli di minuta se staccati vanno consegnati intestandoli con nome e cognome.
- È vietato portare con sé libri, eserciziari e appunti, nonché cellulari e altri dispositivi mobili di calcolo o comunicazione. Chiunque fosse trovato in possesso di documentazione relativa al corso anche se non strettamente attinente alle domande proposte vedrà annullata la propria prova.
- Non è possibile lasciare l'aula conservando il tema della prova in corso.
- Tempo a disposizione 1 h : 30 m

Valore indicativo di domande ed esercizi, voti parziali e voto finale:

esercizio n. 1 - programmazione concorrente

Si consideri il programma C sequente (gli "#include" e le inizializzazioni dei mutex sono omessi):

```
pthread mutex t zero
sem_t red, blue
int qlobal = 0
void * less (void * arg) {
   sem_wait (&blue)
   pthread_mutex_lock (&zero)
   sem_wait (&blue)
  sem_post (&red)
                                                  /* statement A */
  pthread_mutex_unlock (&zero)
   return NULL
} /* end less */
void * equal (void * arg) {
  pthread_mutex_lock (&zero)
   sem_post (&blue)
                                                  /* statement B */
  pthread_mutex_unlock (&zero)
   return 1
void * more (void * arg) {
  qlobal = 2
                                                  /* statement C */
   pthread mutex lock (&zero)
   sem_wait (&red)
   pthread_mutex_unlock (&zero)
   return NULL
} /* end more */
void main ( ) {
   pthread_t th_1, th_2, th_3
   sem_init (&red, 0, 0)
   sem_init (&blue, 0, 1)
   pthread_create (&th_3, NULL, more, NULL)
  pthread_create (&th_1, NULL, less, NULL)
  pthread_create (&th_2, NULL, equal, NULL)
  pthread_join (th_2, &global)
                                                  /* statement D */
  pthread_join (th_1, NULL)
  pthread_join (th_3, NULL)
  return
} /* end main */
```

Si completi la tabella qui sotto **indicando lo stato di esistenza del** *thread* nell'istante di tempo specificato da ciascuna condizione, così: se il *thread* **esiste**, si scriva ESISTE; se **non esiste**, si scriva NON ESISTE; e se può essere **esistente** o **inesistente**, si scriva PUÒ ESISTERE. Ogni casella della tabella va riempita in uno dei tre modi (non va lasciata vuota).

Si badi bene alla colonna "condizione": con "subito dopo statement X" si chiede lo stato che il *thread* assume tra lo statement X e lo statement immediatamente successivo del *thread* indicato.

condizione	thread							
	th_1 - less	th_2 – equal	th_3 - more					
subito dopo stat. A								
subito dopo stat. B								
subito dopo stat. C								
subito dopo stat. D								

Si completi la tabella qui sotto, indicando i valori delle variabili globali (sempre esistenti) nell'istante di tempo specificato da ciascuna condizione. Il valore della variabile va indicato così:

- intero, carattere, stringa, quando la variabile ha un valore definito; oppure X quando è indefinita
- se la variabile può avere due o più valori, li si riporti tutti quanti
- il semaforo può avere valore positivo o nullo (non valore negativo)

Si badi bene alla colonna "condizione": con "subito dopo statement X" si chiede il valore (o i valori) che la variabile ha tra lo statement X e lo statement immediatamente successivo del *thread* indicato.

condizione	variabili globali				
Sorialzione	red	blue			
subito dopo stat. A					
subito dopo stat. B					
subito dopo stat. C					

Il sistema può andare in stallo (deadlock), con uno o più thread che si bloccano, in due casi diversi (con deadlock si intende anche un blocco dovuto a un solo thread che non potrà mai proseguire). Si indichino gli statement dove avvengono i blocchi e il valore (o i valori) della variabile global:

caso	th_1 – less	th_2 - equal	th_3-more	global
1				
2				

esercizio n. 2 – gestione dei processi

prima parte - stati dei processi

```
// programma prog_x.c
pthread_mutex_t GATE = PTHREAD_MUTEX_INITIALIZER
sem t CHECK
                                             void * SEQUENCE (void * arg) {
void * SINGLE (void * arg) {
(1) sem_wait (&CHECK)
                                             (5) pthread_mutex_lock (&GATE)
(2) pthread_mutex_lock (&GATE)
                                             (6) sem_post (&CHECK)
(3) sem wait (&CHECK)
                                             (7) pthread mutex unlock (&GATE)
(4) pthread_mutex_unlock (&GATE)
                                             (8) sem_post (&CHECK)
    return NULL
                                                 return NULL
  /* SINGLE */
                                                /* SEQUENCE */
```

```
main ( ) { // codice eseguito da S
    pthread_t TH_1, TH_2
    sem_init (&CHECK, 0, 0)
    pthread_create (&TH_1, NULL, SINGLE, (void *) 1)
    pthread_create (&TH_2, NULL, SEQUENCE, NULL)
    exit (1)
} /* main */
```

Un processo P esegue il programma prova. Un processo S esegue il programma $prog_x$. Il processo P crea il processo S crea i thread S cread S creat i thread S cread S creat i thread S creat

Si simuli l'esecuzione dei processi (fino a udt = 90) così come risulta dal codice dato, dagli eventi indicati e ipotizzando che <u>il processo P non abbia ancora eseguito la waitpid</u>. Si completi la tabella riportando quanto segue:

- \(\langle PID, TGID\)\) di ciascun processo che viene creato
- 〈 *identificativo del processo-chiamata di sistema / libreria* 〉 nella prima colonna, dove necessario e in funzione del codice proposto
- in ciascuna riga lo stato dei processi al termine del tempo indicato; si noti che la prima riga della tabella potrebbe essere solo parzialmente completata

Nota bene: nella riga con udt = **40** lo stato raggiunto dai vari processi è già indicato e si deve individuare l'evento che li porta in tale stato.

TABELLA DA COMPILARE (numero di colonne non significativo)

identificativo simbolico del prod	cesso	IDLE	Р	S	Q			
	PID	1	2	3	4			
evento processo-chiamata	TGID	1	2	3	4			
S –sem_init	0	pronto	pronto	esec	A read			
	10							
interrupt da RT_clock e scadenza quanto di tempo	20							
interrupt da DMA_in, tutti i blocchi richiesti trasferiti	30							
	40	pronto	pronto	pronto	pronto	esec	NE	
	50							
	60							
	70							
	80							
	90							

Si consideri uno Scheduler CFS con **3 task** caratterizzato da queste condizioni iniziali (**da completare**):

CONDIZIONI INIZIALI (da completare)											
DUNGUEUE	NRT	PER	RQL	CURR	VMIN						
RUNQUEUE	3	6		t1	100						
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT				
CURRENT	t1	1				10	100,00				
55	t2	2				30	100,50				
RB	t3	1				20	101,00				

Durante l'esecuzione dei task si verificano i seguenti eventi:

Events of task t1: WAIT at 1.0; WAKEUP after 6.0; Events of task t2: WAIT at 0.5; WAKEUP after 1.0;

Simulare l'evoluzione del sistema per **5 eventi** riempiendo le seguenti tabelle (per scrivere le eventuali condizioni di preemption, si usi lo spazio tra le tabelle degli eventi):

EVENTO.		TIME	TYPE	CONTEXT	RESCHED		
EVEN	10						
DUNGUEUE	NRT	PER	RQL	CURR	VMIN		
RUNQUEUE							
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT
CURRENT							
RB							
MAITING							
WAITING							

E) (E)	EVENITO.		TYPE	CONTEXT	RESCHED		
EVEN	10						
DUMOUEUE	NRT	PER	RQL	CURR	VMIN		
RUNQUEUE							
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT
CURRENT							
DD							
RB							
WAITING							
WAITING							

EVENTO		TIME	TYPE	CONTEXT	RESCHED		
EVEN	10						
DUNGUEUE	NRT	PER	RQL	CURR	VMIN		
RUNQUEUE							
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT
CURRENT							
DD							
RB							
WAITING							
WAITING							

EVENTO		TIME	TYPE	CONTEXT	RESCHED		
EVEN	10						
DUNGUEUE	NRT	PER	RQL	CURR	VMIN		
RUNQUEUE							
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT
CURRENT							
RB							
WAITING							
WAITING							

E)/ENITO		TIME	TYPE	CONTEXT	RESCHED		
EVEN	10						
DUNGUEUE	NRT	PER	RQL	CURR	VMIN		
RUNQUEUE							
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT
CURRENT							
RB							
WAITING							
WAITING							

esercizio n. 3 – gestione della memoria

prima parte - gestione dello spazio virtuale

È dato un sistema di memoria caratterizzato dai seguenti parametri generali:

MAXFREE = 3 MINFREE = 2

Si consideri la seguente situazione iniziale:

```
*****************
PROCESSO: P
        <c0 :1 R>
                   <s0 :s1 R>
                               <s1 :- ->
                                           <d0 :s2 R>
                               <p2 : 3
                                           <p3 :- ->
        <p0 :2 R>
                   <p1 :6
                          W >
                                     W >
   process P - NPV of PC and SP:
                               c0, p2
           ************
PROCESSO: Q
                               <s1 :- ->
   PT:
        <c0 :1
                   <s0 :s1 R>
                                           <d0 :s2 R>
                                                      <d1 :- ->
               R>
        <p0 :2
              R>
                   <p1 :s0 W>
                               <p2 :- ->
   process Q - NPV of PC and SP:
                               c0, p1
   _MEMORIA FISICA____(pagine libere: 3)_
                               01 : Pc0 / Qc0 / < X, 0 >
     00 : <ZP>
                               03 : Pp2
     02 : Pp0 / Qp0
     04: ----
                               05: ----
     06 : Pp1
                               07: ----
   STATO del TLB
                0: 1:
                               Pp0 : 02 -
     Pc0 : 01 -
     Pp2: 03 -
                1: 1:
     Pp1 : 06 - 1: 0:
SWAP FILE: Qp1, Ps0 / Qs0, Pd0 / Qd0,
             PC0
LRU ACTIVE:
             pp2, pp1, pp0, qp0, qc0
LRU INACTIVE:
```

ATTENZIONE: lo swap file NON è vuoto.

Si rappresenti l'effetto dei seguenti eventi sulle strutture dati della memoria compilando esclusivamente le tabelle fornite per ciascun evento (l'assenza di una tabella significa che non è richiesta la compilazione della corrispondente struttura dati).

evento 1: read (Ps0, Pd0)

		Г	PT del pr	rocesso: P			
		F	PT del pr	ocesso: Q		·	
			/FMORI	A FISICA	<u> </u>		
00:			LIVIOITI	01:	•		
02:				03:			
04:				05:			
06:				07:			
				LB			
NPV	NPF	D	Α	NPV	NPF	D	Α
			SWAI	PFILE			
s0:				s1:			
s2:				s3:			
s4:				s5:			
				1			
LRU ACTI	VE:						
LRU INAC	CTIVE:						

evento 2: write (Ps0, Pp1)

		PI	「del pı	rocesso: P	1		
	•	PT	del pr	rocesso: Q			
		ME	MORI	IA FISICA	<u> </u>		
00:				01:			
02:				03:			
04:				05:			
06:				07:			
NIDV	NDE			LB	NDE		Λ
NPV	NPF	D	Α	NPV	NPF	D	A
			SWA	PFILE			
s0:				s1:			
s2:				s3:			
s4:				s5:			
LRU ACTI	VE:						
LRU INAC	TIVE						
LKO INAC	IIVL						

spazio libero per brutta copia o continuazione			

seconda parte - gestione del file system

È dato un sistema di memoria caratterizzato dai seguenti parametri generali:

MAXFREE = 2 MINFREE = 1

Si consideri la seguente situazione iniziale:

MEMORIA FISICA(pagir	ne libere: 3)	
00 : <zp></zp>	01 : Pc0 / Qc0 / <x,0></x,0>	
02 : Pp0 / Qp0	03 : Qp1 D	İİ
04 : Pp1	05 :	İİ
06 :	07:	İİ

Per ognuno dei seguenti eventi compilare le Tabelle richieste con i dati relativi al contenuto della memoria fisica, delle variabili del FS relative al file F e al numero di accessi a disco effettuati in lettura e in scrittura.

È sempre in esecuzione il processo **P**.

ATTENZIONE: il numero di pagine lette o scritte è cumulativo, quindi è la somma delle pagine lette o scritte da tutti gli eventi precedenti oltre a quello considerato.

evento 1 - fd = open (F)

f_pos	f_count	numero pagine lette	numero pagine scritte

evento 2 - read (fd, 3500)

MEMORIA FISICA		
00:	01:	
02:	03:	
04:	05:	
06:	07:	

f_pos	f_count	numero pagine lette	numero pagine scritte

evento 3 - write (fd, 4500)

MEMORIA FISICA		
00:	01:	
02:	03:	
04:	05:	
06:	07:	

f_pos	f_count	numero pagine lette	numero pagine scritte

evento 4 - write (fd, 4500)

MEMORIA FISICA		
00:	01:	
02:	03:	
04:	05:	
06:	07:	

f_pos	f_count	numero pagine lette	numero pagine scritte

evento 5 - close (fd)

MEMORIA FISICA		
00:	01:	
02:	03:	
04:	05:	
06:	07:	

f_pos	f_count	numero pagine lette	numero pagine scritte

spazio libero per brutta	copia o continuaz	zione	