Statistics of Diffeomorphisms

Tom Fletcher and Miaomiao Zhang

School of Computing Scientific Computing and Imaging Institute University of Utah

May 17, 2018

Transformation Models

From D'Arcy Thompson, On Growth and Form, 1917.

Deformation-Based Morphometry

Step 1: Use deformable registration to align images.

Step 2: Throw away the images!

Step 3: Analyze the resulting deformation fields.

Shape differences are encoded in the transformation

Deformation-Based Morphometry

Step 1: Use deformable registration to align images.

Step 2: Throw away the images!

Step 3: Analyze the resulting deformation fields.

Shape differences are encoded in the transformation

Population Analysis

- Register each image to an atlas (a.k.a. template)
- Simultaneously estimate the atlas
- Statistical analysis of deformation fields
- Atlas provides common coordinates for other data (functional, diffusion, etc.)

Riemannian Metric on Velocity Fields

Sobolev metric: $\langle v, w \rangle_V = \int_{\Omega} \langle Lv(x), w(x) \rangle dx$

L is a symmetric, positive-definite differential operator, e.g., $L=(I-\alpha\Delta)^s.$

How Smooth Are These Functions?

Diffeomorphic Atlas Estimation

Minimize: image match + geodesic energy

$$\min_{I,v^i} \sum_{i=1}^N \frac{1}{2\sigma^2} \|I \circ (\phi^i)^{-1} - I_i\|^2 + \|v^i\|_L^2$$

Joshi et al. 2004, Vialard et al. 2011

Bayesian Atlas Estimation

Likelihood: iid Gaussian on each of the *M* voxels

$$p(I_i | v^i, I) = \frac{1}{(2\pi)^{M/2} \sigma^M} \exp\left(-\frac{\|I \circ (\phi^i)^{-1} - I_i\|^2}{2\sigma^2}\right)$$

Prior: multivariate Gaussian on discretized velocity v^i

$$p(v^{i}) = \frac{1}{(2\pi)^{\frac{M}{2}} |L^{-1}|^{\frac{1}{2}}} \exp\left(-\frac{(Lv^{i}, v^{i})}{2}\right)$$

Zhang et al., IPMI 2013

Inference

Log posterior:

$$\log \prod_{i=1}^{N} p\left(v^{i} | I_{i}; \theta\right) \propto \frac{N}{2} \log |L| - \frac{1}{2} \sum_{i=1}^{N} (Lv^{i}, v^{i})$$
$$- \frac{MN}{2} \log \sigma - \frac{1}{2\sigma^{2}} \sum_{i=1}^{N} ||I \circ (\phi^{i})^{-1} - I_{i}||^{2}.$$

- Treat vⁱ as latent random variables
- \blacktriangleright Have to integrate the v^i out
- Approximated by Hamiltonian Monte Carlo

Synthetic Shape Generation

 $\alpha = 0.025$

 $\sigma = 0.05$

Bayesian Atlas Estimation

Input: 3D MR Images

Initialization

Bayesian Atlas

$$\alpha = 28$$

Atlas

Deformed Atlas to Individual

$$\alpha = 2.8$$

Atlas

Deformed Atlas to Individual

$$\alpha = 0.28$$

Atlas

Deformed Atlas to Individual

 $\alpha = 0.028$

Atlas

Deformed Atlas to Individual

$$\alpha = 0.0028$$

Atlas

Deformed Atlas to Individual

$$\alpha = 0.00028$$

Atlas

Deformed Atlas to Individual

Bayesian Principal Geodesic Analysis

- Estimate variability of brain shape
- Sparsity prior determines the dimensionality

Zhang & Fletcher, MICCAI 2014, MedIA 2015

OASIS Data Experiment

- ▶ Train BPGA on 130 MRI from OASIS (ages 60-95)
- How well can we reconstruct 20 unseen images?
- Compared to linear PCA on images (LPCA) and tangent space PGA (TPGA)

BPGA Modes of Variation

BPGA Result

	LPCA	TPCA	BPGA
Average MSE	4.2×10^{-2}	3.4×10^{-2}	2.8×10^{-2}
Std of MSE	1.25×10^{-2}	4.8×10^{-3}	4.2×10^{-3}

FLASH

Fourier-approximated
Lie
Algebra
SHooting

Fast Diffeomorphic Image Registration

Geodesic equation:

$$\frac{\partial v}{\partial t} = -\mathbf{K} \left[(Dv)^T m + Dm v + m \operatorname{div} v \right]$$

$$m = Lv$$
 is momentum $K = L^{-1} = (\alpha \Delta + I)^{-s}$

Fourier coefficients of the discretized K operator on a 128×128 grid, with $\alpha = 3$, s = 3.

Use bandlimited velocity fields!

Fourier-Approximated Lie Algebra

Lie Algebra in Continuous Domain:

$$[v, w] = Dvw - Dwv$$

Lie Algebra in Discrete Domain:

$$[\tilde{v}, \tilde{w}] = (\tilde{D}\tilde{v}) \star \tilde{w} - (\tilde{D}\tilde{w}) \star \tilde{v},$$

 $ilde{v}, ilde{w} \in ilde{V}$: bandlimited velocity fields in Fourier domain.

Almost a Lie Algebra!

- Closure: $\forall \tilde{u}, \tilde{v} \in \tilde{V}, [\tilde{u}, \tilde{v}] \in \tilde{V}$
- Bilinearity:

$$[a\tilde{u} + b\tilde{v}, \tilde{w}] = a[\tilde{u}, \tilde{w}] + b[\tilde{v}, \tilde{w}]$$

- Anticommutativity: $\begin{bmatrix} \tilde{v} & \tilde{w} \end{bmatrix} = -\begin{bmatrix} \tilde{w} & \tilde{v} \end{bmatrix}$
 - $[\tilde{v}, \tilde{w}] = -[\tilde{w}, \tilde{v}]$
- Jacobi identity: **Doesn't Hold!** $[\tilde{u}, [\tilde{v}, \tilde{w}]] + [\tilde{w}, [\tilde{u}, \tilde{v}]] + [\tilde{v}, [\tilde{u}, \tilde{w}]] \neq 0$

EPDiff Equation in $ilde{V}$

$$\frac{\partial \tilde{v}}{\partial t} = -\operatorname{ad}_{\tilde{v}}^{T} \tilde{v}
= -\tilde{K} \left[(\tilde{D}\tilde{v})^{T} \star \tilde{m} + \tilde{D}\tilde{m} \star \tilde{v} + \tilde{m} \star \operatorname{div}(\tilde{v}) \right]$$

 $L: \quad ext{band-limited } L ext{ operator in Fourier domain} \\ ext{div}: \quad ext{Fourier transform of discrete divergence operator}$

Results on OASIS Brain Data

Comparison of pairwise image registration: LDDMM vs. FLASH

Results on Atlas Building

Figure: Left: axial and coronal slices from the 60 OASIS images. Right: atlas estimated by our model and LDDMM.

Results on Atlas Building

Figure: Atlas intensity difference between LDDMM and our method.

- ▶ LDDMM: ~ 2 hours
- Our method: 7.5mins

Open Source Software

Manifold statistics:

bitbucket.org/vakra/manifoldstatistics

FLASH:

bitbucket.org/FlashC/flashc