Student Placement Prediction Report

Name: Japjeet kaur

ld: C0937720

1. Introduction

This project aims to predict student placement status using academic and demographic features from a dataset containing student profiles and placement outcomes. Various classification models were trained and evaluated to identify the best-performing algorithm for predicting whether a student will be placed or not.

2. Dataset Overview

- Dataset: Placement_Data_Full_Class.csv
- Number of instances: 215
- Features: Academic percentages (SSC, HSC, Degree, MBA, etc.), demographic info (gender, work experience), and placement status.
- Target variable: `status` indicates whether a student was placed (1) or not (0).

Initial Data Inspection

- No missing values found.
- Categorical variables encoded using LabelEncoder.
- Dropped irrelevant columns: 'sl no', 'salary'.

3. Exploratory Data Analysis (EDA)

Distribution of Placement Status

The dataset shows a moderate balance between placed and not placed students.

Key Feature Insights

- Academic scores (`ssc_p`, `hsc_p`, `degree_p`, `mba_p`) generally show higher averages for placed students.
- Boxplots reveal that degree and MBA percentages are strong indicators of placement.
- Work experience positively influences placement likelihood.

Correlation Analysis

- Positive correlations observed between `mba_p`, `degree_p`, `ssc_p` and placement status
- Heatmap and pairplots visually confirmed these relationships.

4. Model Building and Evaluation

Multiple classification models were trained on 70% of the data and tested on the remaining 30%. Performance was evaluated using accuracy, precision, recall, and F1-score.

Models Tested

- Logistic Regression
- Random Forest Classifier
- Support Vector Machine (SVM)
- K-Nearest Neighbors (KNN)
- Gradient Boosting Classifier
- Decision Tree Classifier
- Voting Classifier (Ensemble of multiple models)

Baseline Results

	Τ.			
Model	Accuracy	Precision	Recall	F1 Score
Logistic	78.5%	79.2%	93.3%	85.7%
Regression				
Random	83.1%	82.7%	95.6%	88.7%
Forest				
SVM	84.6%	81.8%	100%	90.0%
KNN	83.1%	81.5%	97.8%	88.9%
Gradient	83.1%	84.0%	93.3%	88.4%
Boosting				
Decision Tree	73.8%	78.0%	86.7%	82.1%
Voting	84.6%	84.3%	95.6%	89.6%
Classifier				

⁻ SVM achieved the highest recall (perfectly identified all placed students) and the best F1 score.

5. Hyperparameter Tuning

GridSearchCV was used to optimize key models for better performance, focusing on maximizing F1-score.

⁻ The Voting Classifier provided the most balanced performance, combining strengths of individual models.

Best Parameters Found

Model	Best Parameters	
Random Forest	{'n_estimators': 50, 'max_depth': None, 'min_samples_split': 5, 'min_samples_leaf': 1}	
SVM	{'C': 1, 'kernel': 'linear', 'gamma': 'scale'}	
Gradient Boosting	{'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 50}	

Results After Tuning

Model	Accuracy	Precision	Recall	F1 Score
Random Forest (Tuned)	86.2%	87.5%	93.3%	90.3%
SVM (Tuned)	80.0%	82.0%	91.1%	86.3%
Gradient Boosting (Tuned)	83.1%	84.0%	93.3%	88.4%
Voting Classifier (with tuned models)	83.1%	82.7%	95.6%	88.7%

- Tuned Random Forest improved in all metrics and became the best performing model overall.
- Surprisingly, tuning SVM reduced its accuracy slightly, possibly due to parameter constraints.
- Voting Classifier maintained strong performance with tuned base models.

6. Conclusions

- Academic performance, especially degree and MBA percentages, are strong predictors of student placement.
- Work experience also positively correlates with placement likelihood.
- Among all models, Random Forest (tuned) achieved the best balance of precision, recall, and overall accuracy.
- The Voting Classifier provides a robust ensemble approach combining multiple models for balanced results.
- The high recall values across models indicate reliable identification of placed students, crucial for real-world placement prediction.