A Geometria das Superfícies de Riemann

André Hisatsuga Diogo Ramos Eduardo Sodré

IME-USP

7 de dezembro de 2021

Introdução

Este seminário se divide basicamente em 5 partes, que consistem em

- revisões e definições iniciais;
- classificação das superfícies de Riemann simplesmente conexas;
- tipos de superfícies a partir dessas classificações;
- falar dessas geometrias, o que nos leva às métricas conformes;
- o primeiro foco do nosso trabalho, falar que toda superfície de Riemann complexa tem métrica conforme de curvatura gaussiana constante;
- o segundo foco do nosso trabalho, que é o Teorema de Pick.

Revisão Breve de Análise Complexa

 $V\subseteq\mathbb{C}$ aberto, $f:V o\mathbb{C}$ é holomorfa (complexa analítica) se existe

$$\lim_{z \to .0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}, \ \forall z_0 \in V.$$

Da teoria de análise complexa: se $f:V\to\mathbb{C}$ é: holomorfa, então é

- infinitamente diferenciável;
- função aberta;
- localmente série de potências.

Se $f'(z) \neq 0$ para todo $z \in V$, então a função é dita *conforme*.

Se a inversa for holomorfa, então a função é dita biholomorfa.

Seja X uma variedade topológica de dimensão 2. Uma Carta complexa é um par (φ, U) , em que φ é o homeomorfismo $\varphi: U \subseteq X \to V \subseteq \mathbb{C}$, e U e V são abertos.

Cartas compatíveis = transição $\varphi_2 \circ \varphi_1^{-1}$ entre cartas é (bi)holomorfa:

Um atlas é a coleção $\mathfrak{U} = \{(\varphi_i, U_i)\}$ de cartas compatíveis que cobrem X.

Chamamos de *estrutura complexa* a dupla (X, Σ) em que temos X com um atlas maximal Σ . Se Σ for implícito, diz-se que X é uma **superfície de Riemann**.

Ex.: \mathbb{C} com atlas $\{id : \mathbb{C} \to \mathbb{C}\}$, e abertos $V \subseteq \mathbb{C}$.

Ex.: A esfera de Riemann $\mathbb{C}P^1 = \mathbb{P}^1 = \widehat{\mathbb{C}}$:

Dizemos que $f:X\to Y$ é um mapa holomorfo entre superfícies de Riemann se a representação coordenada $\psi\circ f\circ \varphi^{-1}$ for holomorfa:

Se for um mapa holomorfo com inversa holomorfa, o chamamos de biholomorfismo. Nesse caso, X e Y são (conformemente) isomorfas.

Se Y = X, $f : X \to X$ é um automorfismo conforme, de grupo Aut(X).

OBS.: $\mathbb{D}=\{z\in\mathbb{C}\colon |z|<1\}$ é difeomorfo a \mathbb{C} como superfícies reais, mas **não** são isomorfos como superfícies de Riemann. Isso é uma consequência do seguinte teorema, que chamamos de Teorema de Liouville:

Teorema (Liouville)

Se $f:\mathbb{C}\to\mathbb{C}$ é uma função holomorfa limitada, então f é constante.

Duas perguntas:

- Como são todas as superfícies de Riemann (a menos de isomorfismo)?
- Quais propriedades ou estruturas (geométricas) elas têm?

Toda superfície de Riemann é uma superfície abstrata, então faz sentido perguntar da geometria.

O Teorema de Uniformização

Um espaço topológico B é simplesmente conexo se toda curva em B pode ser deformada continuamente em um ponto. (Noção de deformação homotópica)

A presença de curvas que não podem ser deformadas num ponto nos diz que existem de "buracos" nesse espaço.

 \mathbb{D} e $\widehat{\mathbb{C}}$ são simplesmente conexos, mas $\mathbb{D}\setminus\{0\}$ não.

O Teorema de Uniformização

Sabemos classificar todas as superfícies de Riemann simplesmente conexas!

Teorema de Uniformização de Riemann

Toda superfície de Riemann S simplesmente conexa é biholomorfa a exatamente uma das superfícies abaixo:

- O plano complexo ℂ;
- O disco aberto D;
- A esfera de Riemann $\widehat{\mathbb{C}}$.

Mas como saber para as não simplesmente conexas?

Utilizamos as ideias de recobrimentos e ações de grupos.

O Teorema da Uniformização

O Teorema de Uniformização de Riemann

Toda superfície de Riemann S é isomorfa a \widetilde{S}/Γ , onde \widetilde{S} é uma superfície de Riemann simplesmente conexa, e $\Gamma \cong \pi_1(S) \subseteq \operatorname{Aut}(\widetilde{S})$ é grupo com ação livre e propriamente descontínua em \widetilde{S} .

 \widetilde{S} é o recobrimento universal de S.

Ação livre: $g \neq id \implies g$ não tem pontos fixos.

Ação propriamente descontínua: se $K \subseteq S$ é compacto, existem apenas finitos $g \in \Gamma$ com $g(K) \cap K \neq \emptyset$.

O quociente \widetilde{S}/Γ é o espaço de órbitas da ação.

O Teorema da Uniformização

Ex.: O toro \mathcal{T}^2 . Dado um reticulado Λ em \mathbb{C} , gerado por ω_1 e ω_2 , pensamos no grupo gerado pelas translações

$$z \mapsto z + \omega_1$$
, $z \mapsto z + \omega_2$.

O quociente pelas órbitas é o toro! $T^2 \cong \mathbb{C}/\Lambda$.

O Teorema da Uniformização

Ex.: O plano furado $\mathbb{C} \setminus \{0\}$. Temos o recobrimento $\exp : \mathbb{C} \to \mathbb{C} \setminus \{0\}$, e o grupo Γ das translações

$$z \mapsto z + 2\pi i n$$

agindo em \mathbb{C} . Obtém que $\mathbb{C}\setminus\{0\}\cong\mathbb{C}/\Gamma\cong\mathbb{C}/\mathbb{Z}$.

Os Tipos de Superfícies

Dividimos as superfícies de Riemann em 3 classes:

- As **esféricas**, recobertas por $\widehat{\mathbb{C}}$;
- As **euclidianas**, recobertas por \mathbb{C} ;
- As **hiperbólicas**, recobertas por D.

Achar S vira uma questão algébrica de achar $\Gamma \subseteq \operatorname{Aut}(\widetilde{S})$ com ação livre e propriamente descontínua!

Sabemos os automorfismos de $\widehat{\mathbb{C}},\mathbb{C},\mathbb{D}.$ Por exemplo, os de \mathbb{D} são

$$z\mapsto e^{i\theta}rac{z-a}{1-\overline{a}z},$$

com $\theta \in \mathbb{R}$ e $a \in \mathbb{D}$. (Fatores de Blaschke)

Sabemos então as superfícies de Riemann:

- Esféricas: apenas $\widehat{\mathbb{C}}$.
- Euclidianas: \mathbb{C} , cilindros \mathbb{C}/\mathbb{Z} , e toros $\mathbb{C}/\Lambda \cong \mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z})$.
- Hiperbólicas: todas as outras!

Faz sentido falarmos da geometria delas?

Já "sabemos" a geometria do plano $\mathbb C$ e da esfera $\mathbb C$. Temos ideia do cilindro, toro, etc.

Queremos uma geometria que seja coerente com a estrutura complexa: *métricas conformes*.

Métricas Conformes

Uma $m ext{\'e}trica$ riemanniana em um aberto de $\mathbb C$ é da forma

$$ds^2 = g_{11}dx^2 + 2g_{12}dxdy + g_{22}dy^2.$$

É dita conforme se $g_{11}=g_{22}$ e $g_{12}=0$. Assim, com z=x+yi, $ds^2=\varphi(x+yi)^2(dx^2+dy^2)$, ou $ds=\varphi(z)|dz|$ para $\varphi(z)$ uma função suave e estritamente positiva.

Essa métrica é *invariante* por um automorfismo conforme w=f(z) \iff satisfizer $\varphi(f(z))=\varphi(z)/|f'(z)|$. Ou seja, f é isometria.

Possível calcular curvatura gaussiana pela fórmula

$$K = \frac{\varphi_x^2 + \varphi_y^2 - \varphi(\varphi_{xx} + \varphi_{yy})}{\varphi^4}.$$

Quais são métricas conformes "naturais" em \mathbb{C} , $\widehat{\mathbb{C}}$ e \mathbb{D} ?

15/26

Métricas Conformes

Métrica conforme no plano \mathbb{C} :

$$ds^2 = dx^2 + dy^2 = dz\overline{dz} \implies ds = |dz|,$$

é a usual, curvatura gaussiana constante $K\equiv 0$.

Métrica conforme na esfera de Riemann $\widehat{\mathbb{C}}$: identifica com $S^2 \subset \mathbb{R}^3$ sob projeção estereográfica,

$$ds = \frac{2|dz|}{1+|z|^2}.$$

Métrica esférica: curvatura constante $K \equiv 1$.

Se comporta bem em vizinhança de ∞ ; $z \mapsto 1/z$ é isometria.

Métricas Conformes

Métrica conforme em D: é a métrica de Poincaré

$$ds = \frac{2|dz|}{1 - |z|^2}.$$

Com $\mathbb D$ biholomorfo a $\mathbb H=\{z\in\mathbb C\mid \operatorname{Im} z>0\}$, é a métrica no semiplano superior

$$ds^2 = \frac{1}{y^2}(dx^2 + dy^2) \implies ds = \frac{1}{y}|dz|$$

de curvatura constante $K \equiv -1$.

Dadas as métricas em \mathbb{C} , $\widehat{\mathbb{C}}$ e \mathbb{D} , como obter métricas nas superfícies de Riemann S que eles recobrem?

É possível se o grupo Γ age em \widetilde{S} por isometrias!

Métricas Conformes e Ações por Isometrias

Para $\widehat{\mathbb{C}}$; única superfície esférica é o próprio $\widehat{\mathbb{C}}$.

Para \mathbb{C} : únicos automorfismos conformes que são isometrias são as translações $z\mapsto z+\omega$. Então temos métricas conformes em \mathbb{C}/\mathbb{Z} e \mathbb{C}/Λ com

$$\mathbb{C} \to \mathbb{C}/\mathbb{Z}, \quad \mathbb{C} \to \mathbb{C}/\Lambda$$

isometrias locais, e curvatura $K \equiv 0$.

E para \mathbb{D} ?

Teorema

A métrica de Poincaré em $\mathbb D$ é a única tal que todos os automorfismos conformes de $\mathbb D$ são isometrias da métrica.

Métricas Conformes e Ações por Isometrias

Com métrica em $\widetilde{S}=\mathbb{D}$, e Γ agindo em \widetilde{S} por isometrias, temos a métrica de Poincaré em $S=\widetilde{S}/\Gamma$ com

$$\mathbb{D} = \widetilde{S} \longrightarrow \widetilde{S}/\Gamma = S$$

é isometria local. Vai ser conforme e curvatura $K \equiv -1$.

Teorema

Toda superfície de Riemann admite métrica conforme de curvatura constante que é positiva, nula ou negativa dependendo de a superfície ser esférica, euclidiana ou hiperbólica.

Na verdade, vai valer que a métrica é completa!

Como são as funções holomorfas entre superfícies hiperbólicas?

Teorema (Pick)

Sejam X, Y superfícies de Riemann hiperbólicas, e $f: X \to Y$ mapa holomorfo. Então vale apenas uma das três afirmações abaixo:

- f é isomorfismo conforme de X em Y, e é isometria entre as métricas de Poincaré correspondentes.
- f é recobrimento, mas não 1 para 1. Neste caso, f é isometria local, mas não global, e $d_Y(f(p), f(q)) \le d_X(p, q)$.
- f decresce distâncias não-nulas estritamente. Mais especificamente, para todo $K \subseteq X$ compacto, existe constante $0 < c_K < 1$ tal que, para $p, q \in K$,

$$d_Y(f(p), f(q)) \leq c_K d_X(p, q).$$

Ex.: $f(z) = z^2$ contrai distâncias em \mathbb{D} , mas é isometria local em $\mathbb{D} \setminus \{0\}$!

Utiliza o lema de Schwarz de análise complexa:

Lema (Schwarz)

Seja $f: \mathbb{D} \to \mathbb{D}$ função holomorfa tal que f(0) = 0. Então $|f'(0)| \leq 1$, e para todo $z \in \mathbb{D}$, $|f(z)| \leq |z|$.

Ainda mais, f é automorfismo conforme se e somente se |f'(0)| = 1, ou para algum $z \in \mathbb{D}$, |f(z)| = |z|. Neste caso, f é rotação $z \mapsto \lambda z$ com $\lambda \in S^1$.

Demonstração do teorema: T_pS espaço vetorial complexo 1-dimensional; métrica de Poincaré induz norma ||v|| em T_pS .

Norma de $df_p: T_pS \to T_{f(p)}S'$:

$$\|df_p\| = \frac{\|df_p(v)\|}{\|v\|}$$

independe de $0 \neq v \in T_pS$. Lema de Schwarz: se $S = \mathbb{D}$ e f(0) = 0, então $||df_0|| \leq 1$, e igual a 1 se e só se automorfismo conforme.

Com S e S' hiperbólicas simplesmente conexas e $p \in S$, $\|df_p\| \le 1$, e é igual a 1 se e só se f isomorfismo conforme.

Com S e S' hiperbólicas, escolhe um $lift F : \widetilde{S} \to \widetilde{S}'$ de f para os recobrimentos universais:

$$\widetilde{S} \xrightarrow{F} \widetilde{S}' \implies T_{\widetilde{\rho}} \widetilde{S} \xrightarrow{dF_{p}} T_{F(\widetilde{\rho})} \widetilde{S}'
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
S \xrightarrow{f} S' \qquad T_{p} S \xrightarrow{df_{p}} T_{f(p)} S'$$

Mapas verticais são recobrimentos e isometrias locais, então mostra que $\|df_p\|=1\iff f$ é recobrimento.

Se f não é recobrimento, $\|df_p\| < 1$. Com $K \subseteq S$ compacto, tome $K' \supseteq K$ onde, para $p, q \in K$, existe geodésica entre p, q de comprimento $d_S(p,q)$ em K'. $\|df_p\|$ assume máximo $c_K < 1$ em K'.

Com $\gamma: I \to K'$ curva,

$$L(f \circ \gamma) = \int_{I} \|(f \circ \gamma)'(t)\| dt = \int_{I} \|df_{p}(\gamma'(t))\| dt$$

$$\leq \int_{I} \|c_{K}\gamma'(t)\| dt = c_{K} \int_{I} \|\gamma'(t)\| dt = c_{K} L(\gamma).$$

Resultado para distâncias segue da definição

$$d_{S}(p,q) = \inf_{\gamma(0)=p,\gamma(1)=q} L(\gamma).$$

Corolário interessante: $\iota:S\to S'$ a inclusão, $S\neq S'$, e $p\neq q\in S$. Então

$$d_{S'}(p,q) < d_{S}(p,q).$$

Ou seja, distâncias medidas com respeito a superfícies hiperbólicas maiores são sempre menores!

Referências

- [1] Otto Forster. *Lectures on Riemann Surfaces*. 1^a ed. Graduate Texts in Mathematics. Springer, New York, NY, 1981.
- [2] John Milnor. *Dynamics in One Complex variable*. 3^a ed. Annals of Mathematics Studies. Princeton University Press, 2006.