

T1-IA

Gustavo Oliveira nº46395, Berke Balci nº64498, Semiha Çetintaş nº64751

Évora, 19 de junho de 2025

1 Questão 1 -

Considere o seguinte problema: Um Agente A tem como objetivo mover um Robot da entrada 'E' de um labirinto até à saída 'S', após apanhar 2 objetos que só podem ser apanhados na seguinte ordem: primeiro o objeto 'a' e depois o objeto 'b'. O Robot pode mover-se para cima, baixo, esquerda e direita, mas não pode ir para as casas marcadas com um x. Se o Robot estiver numa casa com um objeto, pode apanha-lo se for o objeto 'a' ou se for o objeto 'b' e já tiver apanhado o objeto 'a'.

(a) Represente em Prolog o estado inicial e o estado final para cada um dos 2 exemplos.

Exemplo 1:

```
estado_inicial((pos(1,1), objetos([]))).
estado_final((pos(2,7), objetos([a,b]))).
```

Exemplo 2:

```
estado_inicial((pos(1,1), objetos([]))).
estado_final((pos(5,7), objetos([a,b]))).
```

(b) Represente em Prolog os operadores de transição de estados para este problema.

```
% Movimento
transicao((pos(X,Y), objetos(Objs)), mover(D), (pos(NX,NY), objetos(Objs))) :-
direcao(DX,DY,D),
    NX is X + DX,
    NY is Y + DY,
    posicao_valida(pos(NX,NY)).

% Coleta de Objetos
transicao((pos(X,Y), objetos([])), apanhar(a), (pos(X,Y), objetos([a]))) :- objeto(a,
    pos(X,Y)).
transicao((pos(X,Y), objetos([a])), apanhar(b), (pos(X,Y), objetos([a,b]))) :- objeto(b,
    pos(X,Y)).
```

(c) Apresente o código em Prolog do algoritmo de pesquisa não informada mais eficiente a resolver este problema. Para justificar a escolha do algoritmos deve apresentar o número e uma estimativa do número de nós visitados e em memoria para cada algoritmo.

As estimativas de **nós visitados** e **nós em memórias** memória podem ser obtidas através dos cálculos das **complexidades temporais** e **espaciais**.

Breadth-First Search (BFS)

• Tempo: $O(b^{d+1})$

• Espaço: $O(b^{d+1})$

Depth-First Search (DFS)

• Tempo: $O(b^m)$

• Espaço: $O(b \cdot m)$

Vamos começar por determinar os valores de ${\bf b}$ (Branching Factor), ${\bf m}$ (profundidade máxima explorável) e ${\bf d}$ (Profundidade da solução de menor custo) .

Branching Factor:

Para esse problema é 4 possíveis mover-se para direita, esquerda, cima e baixo. Assim, podemos considerar que o branching factor é:

$$b = 4 \tag{1}$$

Profundidade da solução de menor custo (d):

Uma solução para o problema, como menor custo, envolve :

- Sair de E até a
- Ir de a até b
- Ir de b até S

Portanto,

$$d = 3 \tag{2}$$

profundidade máxima explorável (m):

profundidade máxima do espaço de estados.

$$m = 7 \tag{3}$$

Breadth-First Search (BFS)

Cálculo:

• Tempo: $O(3^{d+1}) = O(4^4) = 256$

• Espaço: $O(3^{d+1}) = O(4^4) = 256$

Depth-First Search (DFS)

Cálculo:

• Tempo: $O(4^7) = 16,384$

• Espaço: $O(4 \cdot 7) = 28$

Algoritmo	Tempo	Espaço	Ótimo	Completo
BFS	$O(4^3) = 64$	$O(4^3) = 64$	Sim	Sim
DFS	$O(4^7) = 16384$	$O(4\cdot 7) = 28$	Não	Não

Tabela 1: Comparação entre algoritmos de busca não informada

Análise Comparativa

Observamos que o algoritmo **BFS** possui tempo e espaço de execução na ordem de $O(4^4) = 256$, garantindo sempre encontrar a solução ótima, mesmo que à custa de maior consumo de memória.

Por outro lado, o DFS pode explorar até $O(4^7) = 16,384$ estados, com consumo de memória bem inferior $(O(4 \cdot 7) = 28)$, mas não garante encontrar a melhor solução.

Assim, optamos pelo algoritmo **BFS**, que garante **completude** e **optimalidade**, sendo o mais adequado neste contexto.

BFS:

- (d) Depois de resolver os ${\bf 2}$ exemplos deste problema com o algoritmo da alínea anterior indique:
- i. qual o número total (exacto) de estados visitados.

Exemplo 1:

7		S		x			
6	(X)	0	(X)				х
5	Ō	O	(X)				
4	Ō	a	Ō	Ø			
3	Ō	O	Ō	(X)			
2	(X)	Ō	Ō	(X)			
1	Е	Ŏ	Ŏ	(X)			
	1	2	3	4	5	6	7

Figura 1: Legenda da imagem

$$N \acute{o} s = 22 \tag{4}$$

Exemplo 2:

• 2	2° Exemplo							
	7	0	0	a	0	S		
	6	X	0	(X)	0	0	0	x
	5	0	0	0	0	0	0	0
	4	0	0	6	0	0	0	0
	3	0	0	0	X	0	0	0
	2	0	0	0	X	0	0	0
	1	Е	0	0	0	0	0	0
		1	2	3	4	5	6	7

Figura 2: Legenda da imagem

$$N\acute{o}s = 46 \tag{5}$$

ii. qual o máximo número (exacto) de estados que têm que estar simultaneamente em memória.

Em uma pesquisa em **profundidade em largura** todos os visitados ficam salvos em memória. Assim, o número de nós visitados é igual ao número de nós em memória.

Exemplo 1:

$$N\acute{o}s = 22 \tag{6}$$

Exemplo 2:

$$N\acute{o}s = 46 \tag{7}$$

(e) Proponha duas heurísticas admissíveis para estimar o custo de um estado até à solução para este problema.

Heurísticas Admissíveis

Uma heurística admissível é uma função h(n) que nunca sobrestima o custo real h'(n) para atingir a solução a partir de um estado n. Formalmente:

$$h(n) \le h'(n) \tag{8}$$

Heurística 1: Distâncias de Manhattan

A distância de Manhattan representa o número mínimo de movimentos entre duas posições em um grid, desconsiderando obstáculos. Logo, a heurística nunca sobrestima o custo real e é admissível.

$$dist_{manhattan}((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$
(9)

Heurística 2: Distâncias Euclidiana:

Apesar de subestimar mais que a Manhattan, a distância Euclidiana nunca sobrestima o custo real. É, portanto, admissível neste problema, embora menos informativa.

$$dist_{\text{euclidiana}}((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
(10)

(f) Apresente o código em Prolog do algoritmo de pesquisa informada mais eficiente para resolver os 2 exemplos deste problema usando as heurísticas definidas na alínea anterior. Justifique a escolha do melhor algoritmo e heurística.

O algoritmo escolhido foi o A*, uma vez que:

- É completo, ou seja, encontra uma solução se ela existir;
- É ótimo, desde que a heurística usada seja admissível;
- É eficiente em termos de número de nós expandidos, comparado a outras abordagens.

```
// pesquisa_a([],_):- !,fail.
pesquisa_a([no(E,Pai,Op,C,HC,P)|_],no(E,Pai,Op,C,HC,P)):- estado_final(E),inc.

// pesquisa_a([E|R],Sol):- inc, asserta(fechado(E)), expande(E,Lseg), esc(E),
insere_ord(Lseg,R,Resto),
length(Resto,N), actmax(N),
pesquisa_a(Resto,Sol).
```

- (g) Depois de resolver os 2 exemplos deste problema com o algoritmo da alínea anterior indique para cada função heurística:
- i. qual o número total (exacto) de estados visitados.
- ii. qual o máximo número (exacto) de estados que têm que estar simultaneamente em memória.

Heurística 1: Distância de Manhattan

- i. Número de estados visitados: 32
- ii. Máximo de estados simultaneamente em memória: 12

Esta heurística é mais informativa, o que permite ao A^* reduzir significativamente a expansão de estados e a ocupação da memória.

Heurística 2: Distância Euclidiana

- i. Número de estados visitados: 45
- ii. Máximo de estados simultaneamente em memória: 17

Por subestimar mais fortemente, esta heurística resulta numa maior expansão de estados e maior ocupação de memória.