

CAT SWARM OPTIMIZATION (CSO)

CREADORES: SHU-CHUAN CHU1, PEI-WEI TSAI2, Y JENG-SHYANG PAN2

ES UN ALGORITMO DE INTELIGENCIA DE ENJAMBRE Y FUE MOTIVADO POR PARTICLE SWARM OPTIMIZATION (PSO) Y ANT COLONY OPTIMIZATION (ACO).

ESTE ESTÁ BASADO EN EL COMPORTAMIENTO DE LOS GATOS, Y ESTÁ PENSADA PARA RESOLVER PROBLEMAS CONTINUOS, ASÍ QUE TAMBIÉN SE EXPLICARÁ LAS DIFERENCIAS PRINCIPALES CON SU VERSIÓN MODIFICADA BINARY CAT SWARM OPTIMIZATION (BCSO), LO CUAL PERMITIRÁ SOLUCIONAR PROBLEMAS DISCRETOS.

EL GATO DESCANSANDO [SEEKING MODE]

ESTE MODELO SIMULA EL COMPORTAMIENTO DEL GATO CUANDO ESTÁ DESCANSANDO, AUNQUE SIEMPRE ESTÁ ALERTA BUSCANDO LA SIGUIENTE POSICIÓN PARA MOVERSE.

CAT SWARM OPTIMIZATION (CSO)

- 1 SE CREAN **SMP** COPIAS DEL GATO. SI EL **SPC** ES TRUE SE CREAN **SMP 1** COPIAS Y EL GATO ACTUAL SE ELIGE COMO CANDIDATO.
- 2 SE APLICAN LAS MUTACIONES A LAS COPIAS SEGÚN LOS SIGUIENTES PARÁMETROS:
 - -CDC DEFINE CUANTAS DIMENSIONES SERAN MODIFICADAS: MUTACIONES = CDC * DIMENSION
 - -SRD ES LA PROPORCIÓN DE MUTACIÓN PARA LAS DIMENSIONES SELECCIONADAS.

FÓRMULA APLICADA PARA LA MUTACIÓN:

OPERADOR = -1 Ó 1 ELEGIDO ALEATORIAMENTE.
CAT[D] = CAT[D] + (OPERADOR * SRD * CAT[D])

- 3 SE EVALUA LA FUNCIÓN FITNESS PARA TODOS LOS CANDIDATOS. HELP_THE_CAT
- 4 SE SELECCIONA ALEATORIAMENTE LA NUEVA POSICIÓN DEL GATO.

BINARY CAT SWARM OPTIMIZATION (BCSO)

- 1 SE CREAN **SMP** COPIAS DEL GATO. SI EL **SPC** ES TRUE SE CREAN **SMP 1** COPIAS Y EL GATO ACTUAL SE ELIGE COMO CANDIDATO.
- 2 SE APLICAN LAS MUTACIONES A LAS COPIAS SEGÚN LOS SIGUIENTES PARÁMETROS:
 - -CDC DEFINE CUANTAS DIMENSIONES SERAN MODIFICADAS: MUTACIONES = CDC * DIMENSION
 - ---SRD-ES-LA-PROPORCIÓN-DE-MUTACIÓN-PARA-LAS-DIMENSIONES-SELECCIONADAS:EN ESTE CASO, EL PARÁMETRO PROBABILIDAD DE MUTACIÓN (PMO) REEMPLAZA EL PARÁMETRO SRD DE LA
 VERSIÓN ORIGINAL.
 - -PMO PROBABILIDAD DE MUTACIÓN
- 3 SE EVALUA LA FUNCIÓN FITNESS PARA TODOS LOS CANDIDATOS. HELP_THE_CAT
- 4 SE SELECCIONA ALEATORIAMENTE LA NUEVA POSICIÓN DEL GATO.

$$P_{i} = \frac{\left| FS_{i} - FS_{b} \right|}{FS_{\text{max}} - FS_{\text{min}}}, \text{ where } 0 < i < j$$
 (1)

If the goal of the fitness function is to find the minimum solution, $FS_b = FS_{max}$, otherwise $FS_b = FS_{min}$.

EL GATO CAZANDO [TRACING MODE]

ESTE MODELO SIMULA EL COMPORTAMIENTO DEL GATO CUANDO ESTÁ DESCANSANDO, AUNQUE SIEMPRE ESTÁ ALERTA BUSCANDO LA SIGUIENTE POSICIÓN PARA MOVERSE.

CAT SWARM OPTIMIZATION (CSO)

1 SE ACTUALIZA LA VELOCIDAD.

$$v_{k,d} = v_{k,d} + r_1 \times c_1 \times (x_{best,d} - x_{k,d})$$
, where $d = 1, 2, ..., M$ (2)

DONDE **r1** ES UN VALOR ALEATORIO Y **C1** ES UNA CONSTANTE Y EN ESTA IMPLEMENTACIÓN, SE HA RENOMBRADO A **OMEGA**.

BINARY CAT SWARM OPTIMIZATION (BCSO)

EL VECTOR VELOCIDAD AHORA CAMBIA SU SIGNIFICADO A PROBABILIDAD DE CAMBIO. PARA CADA DIMENSIÓN DEL GATO SE DEFINEN DOS VELOCIDADES:

- V1KD: ES LA PROBABILIDAD DE QUE EL BIT CAMBIA A 1
- VOKD: ES LA PROBABILIDAD DE QUE EL BIT CAMBIE A O

1 SE ACTUALIZA LA VELOCIDAD.

$$if X_{gbest,d} = 1 Then d_{kd}^{1} = r_{1}c_{1} and d_{kd}^{0} = -r_{1}c_{1}$$

 $if X_{gbest,d} = 0 Then d_{kd}^{1} = -r_{1}c_{1} and d_{kd}^{0} = r_{1}c_{1}$ (6)

$$V_{kd}^{1} = wV_{kd}^{1} + d_{kd}^{1}$$

$$V_{kd}^{0} = wV_{kd}^{0} + d_{kd}^{0} d = 1,...,M (5)$$

$$V'_{kd} = \begin{cases} V_{kd}^1 & if \ X_{kd} = 0\\ V_{kd}^0 & if \ X_{kd} = 1 \end{cases}$$
 (7)

2 SE ACTUALIZA LA POSICIÓN

$$t_{kd} = sig(V'_{kd}) = \frac{1}{1 + e^{-V'_{kd}}}$$
 (8)

$$x_{kd} = \begin{cases} X_{gbest,d} & if \ rand < t_{kd} \\ x_{kd} & if \ t_{kd} < rand \end{cases} d = 1,...,M$$
 (9)

FLUJO DE CSO Y BCSO

- 1 SE GENERAN N GATOS ALEATORIOS.
- 2 SE INICIAN SUS POSICIONES Y VELOCIDADES ALEATORIAMENTE.
- 3 SE CLASIFICAN ALEATORIAMENTE A LOS GATOS SEGÚN EL PARAMETRO MR.
- 4 SE EVALÚA LA FUNCIÓN FITNESS PARA TODOS LOS GATOS.
 - M SE CHADDALA METOD DOSICIÓN
- 5 SE APLICAN LOS COMPORTAMIENTOS.
- SE VALIDA LA CONDICIÓN DE TERMINACIÓN, SI NO SE HA TERMINADO, SE REGRESA AL PASO 3.

