Theory of Computation

Lesson 14a - CFGs simulating PDAs

Summer- I 2024 - W. Schnyd

Review

Last Time:

- 1. Chomsky Normal Forms
 - Derivations of words of length $n \ge 1$ have 2n-1 steps (substitutions)
- 2. Pushdown Automata (PDAs)
- NFA + stack
- transitions (q, σ, a) (p, b) if in state q read σ on tape: replace a on top of stack with b and enter state p.
- 3. PDAs Examples
 - Designing PDAs
 - Proving that they work
- 4. CFLs are the languages recognized by PDAs
 - Every CFG can be simulated by a PDA
 - Simulate leftmost derivations on the stack
 - Extended PDAs as a tool

Summer-1 2024 - W. Schnyder

PDA to CFG

Theorem. A language is context-free if and only if some pushdown automaton recognizes it.

Theorem part 2. If L is recognized by some pushdown automaton P, then L is context free.

Proof. Idea: more complex version of simulation of DFA by regular grammar.

Omitted (see textbook p121-125).

Summer- I 2024 - W. Schny

Theory of Computation

Lesson 14b - Closure Properties

Summer- I 2024 - W. Schnyde

Closure Properties

Theorem. Context-free languages are closed under the regular operations: union, concatenation, star. They are also closed under reversal.

Proof. Let L_1 , L_2 be context-free languages.

$$L_1 = L(G_1)$$
 , $G_1 = (V_1, \Sigma, R_1, S_1)$ cfg
 $L_2 = L(G_2)$, $G_2 = (V_2, \Sigma, R_2, S_2)$ cfg $\begin{cases} can assume \\ V_1 \cap V_2 = \emptyset \end{cases}$

(a) Union. Construct cfg for $L_1 \cup L_2$

$$G = (V, \Sigma, R, S)$$
 where

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$$

75

Summer-I 2024 - W. Schnyder

Closure Properties

(b) Concatenation. Construct cfg for $L_1 \cdot L_2$

$$G = (V, \Sigma, R, S)$$
 where

 $V = V_1 \cup V_2 \cup \{S\}$ -----new variable $S \notin V_1 \cup V_2$ is start variable

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}$$

(c) Star. Construct cfg for L_1^*

$$G = (V, \Sigma, R, S)$$
 where

$$V = V_1 \cup \{S\}$$
 —new variable $S \notin V_1$ is start variable

$$R = R_1 \cup \{S \rightarrow S_1 S, S \rightarrow \varepsilon\}$$

 $\begin{tabular}{ll} word of L_l* is empty or it is a word of L_l concatenated with a word of L_l* \\ \end{tabular}$

76

Summer-I 2024 - W. Schnyde

Closure Properties

(d) Reversal. Construct cfg for L_1^R

$$G = (V_1, \Sigma, R, S_1)$$
 where

R is obtained by reversing right-hand sides of rules:

$$A \rightarrow \alpha_1 \alpha_2 \dots \alpha_k \qquad (\alpha_i \in V \cup \Sigma)$$

becomes

$$A \rightarrow \alpha_k \dots \alpha_2 \alpha_1$$

Remark. Context-free languages are not closed under intersection, complementation, and set difference.

Proof: soon. Intuition: can't simulate two PDAs at the same time as simulations would compete for the stack.

Summer-1 2024 - W. Schnyde

Theory of Computation

Lesson 14c - More Closure Properties

Closure Properties

Theorem. The intersection of a context-free language with a regular language is always context-free.

Proof.

 $P = (Q, \Sigma, \Gamma, \delta, s, F)$ PDA accepts the context-free language $D = (Q', \Sigma, \delta', s', F')$ DFA accepts the regular language

Want pushdown automaton SIM that simulates simultaneous runs of P and D on the same input.

SIM accepts input iff both P and D accept.

$$\mathrm{SIM} \,=\, (Q \times Q^{\, \shortmid} \,\,,\,\, \varSigma \,\,,\,\, \varGamma \,\,,\,\, \varDelta \,\,,\,\, (s,s^{\prime}) \,\,, F \times F^{\, \prime})$$

Closure Properties

SIM = $(Q \times Q', \Sigma, \Gamma, \Delta, (s, s'), F \times F')$

In simulation. two cases:

- D and P read same input symbol $\sigma \in \Sigma$ at the same time.
- D waits without changing state while P reads ε .

$$P \qquad \xrightarrow{\varepsilon} \stackrel{\varepsilon}{\longleftrightarrow} \stackrel{\varepsilon}{\longleftrightarrow} \stackrel{\sigma_1}{\longleftrightarrow} \stackrel{\varepsilon}{\longleftrightarrow} \stackrel{\sigma_2}{\longleftrightarrow} \stackrel{\varepsilon}{\longleftrightarrow} \stackrel{\varepsilon}{\longleftrightarrow} \stackrel{\sigma_3}{\longleftrightarrow} \stackrel{\varepsilon}{\longleftrightarrow} 0 \ f$$

$$D \longrightarrow \circ \xrightarrow{\sigma_1} \circ \xrightarrow{\sigma_2} \circ \xrightarrow{\sigma_3} \circ q_3' = f'$$

Closure Properties

SIM = $(Q \times Q', \Sigma, \Gamma, \Delta, (s, s'), F \times F')$

In simulation. two cases:

- D and P read same input symbol $\sigma \in \Sigma$ at the same time.
- D waits without changing state while P reads ε .

Construction of Δ (visual). For every $q' \in Q'$ do:

For each transition

For each transition

$$(q) \xrightarrow{\varepsilon, a \to b} (p)$$
 of P

 $(q) \xrightarrow{\sigma, a \to b} (p)$ of P with $\sigma \in \Sigma$:

add (q, q') $\sigma, a \rightarrow b$ (p, p')

where $p' = \delta'(q', \sigma)$

Closure Properties

SIM = $(Q \times Q', \Sigma, \Gamma, \Delta, (s, s'), F \times F')$

In simulation, two cases:

• D waits without changing state while P

• D and P read same input symbol $\sigma \in \Sigma$ at the same time.

Construction of Δ . For every $q' \in Q'$ do:

For each transition $(q, \varepsilon, a) (p, b)$ of P:

add $((q,q'), \varepsilon, a)((p,q'), b)$

For each transition $(q, \sigma, a)(p, b)$ of P with $\sigma \in \Sigma$:

add $((q, q'), \sigma, a)((p, p'), b)$ where $p' = \delta'(q', \sigma)$

Closure Properties

Exercise. $\Sigma = \{a, b\}$. Let L be the set of words that have the same number of a's and b's and do not have a substring abab or baba. Show that L is context-free.

Solution. Consider languages

 $A = \{ w \in \Sigma^* \mid w \text{ has same number of } a\text{'s and } b\text{'s} \}$ $B = \{ w \in \Sigma^* \mid w \text{ has a substring } abab \}$ $C = \{ w \in \Sigma^* \mid w \text{ has a substring } baba \}$ $L = A \cap \overline{B} \cap \overline{C}$

A is context-free by lecture 12a

B is regular as $B = (a \cup b)^* abab (a \cup b)^*$

C is regular as $C = (a \cup b)^* baba (a \cup b)^*$

Closure properties of reg. languages $\Rightarrow (\overline{B} \cap \overline{C})$ is regular

Lemma implies $A \cap (\overline{B} \cap \overline{C})$ is context-free.

Summer-I 2024 - W. Schnyde

Theory of Computation

Lesson 14d - Pumping Lemma Intro

Summer- I 2024 - W. Schnyde

Pumping Lemma

Poll 14.1 (Graded on attendance) Based on your knowledge or intuition, which of the following languages are context-free?

(c)
$$\{a^nb^na^n \mid n \ge 0\}$$
 — no

Pumping Lemma

Theorem (Pumping Lemma). Let \boldsymbol{L} be a context-free language.

Then there exists a number $p \ge 0$ (pumping length) such that each word $w \in L$ with $|w| \ge p$ can be written as

with

$$w = u \circ v \circ x \circ y \circ z$$

$$(1) |v \circ x \circ y| \le p$$

(2)
$$v \neq \varepsilon$$
 or $y \neq \varepsilon$

(3) $u \cdot v^n \cdot x \cdot y^n \cdot z \in L$ for all integers $n \ge 0$.

Proof. Soon.

Note. $p = 0 \iff L = \emptyset$

.

[83]

Summer- I 2024 - W. Schnyder

Pumping Lemma

Pumping Lemma. Let *L* be a context-free language.

Then there exists a number $p \ge 0$ (pumping length) such that each word $w \in L$ with $|w| \ge p$ can be written as

with $w = u \cdot v \cdot x \cdot y \cdot z$

- $(1) \mid v \circ x \circ y \mid \leq p$
- (2) $v \neq \varepsilon$ or $v \neq \varepsilon$
- (3) $u \cdot v^n \cdot x \cdot y^n \cdot z \in L$ for all $n \ge 0$.

(1) and (2) mean:

word $w \leq p$

v and y are not both empty and lie within an interval of length p of w

(3) means: can pump down (n = 0) $u \times z \in L$ can pump up $(n \ge 2)$ $u \times v^2 \times v^2 \times v^3 \times v^3$

Summer- I 2024 - W. Schnyder

Pumping Lemma

86

Pumping Lemma.

L context-free language. \Rightarrow

exists number $p \ge 0$ (pumping length) such that each word $w \in L$ with $|w| \ge p$ can be written as

 $w = u \cdot v \cdot x \cdot y \cdot z$ with

- $(1) \mid v \circ x \circ y \mid \leq p$
- (2) $v \neq \varepsilon$ or $y \neq \varepsilon$
- (3) $u \circ v^n \circ x \circ y^n \circ z \in L$ for all $n \ge 0$.

Example 1. Find the minimum pumping length of $L = \{a^n b^n \mid n \ge 0\}$.

p = 1? Doesn't work with w = ab

 $w \in L$ and $|w| \ge 1$ but w can't be pumped within an interval of length 1:

(1) & (2) would imply that one of v, y is ε , the other is a or b. Pumping would change only one letter count.

p = 2? Works: given any $w \in L$ with $|w| \ge 2$

$$w = \underbrace{a \dots a}_{u} \underbrace{a \quad b}_{v \quad y} \underbrace{b \dots b}_{z}$$
 (with $x = \varepsilon$)

Pumping Lemma

Pumping Lemma. L context-free language. exists number $p \ge 0$ (pumping length) such that each word $w \in L$ with $|w| \ge p$ can be written as $w = u \cdot v \cdot x \cdot y \cdot z$ with $(1) \mid v \circ x \circ y \mid \leq p$ (2) $v \neq \varepsilon$ or $y \neq \varepsilon$

(3) $u \cdot v^n \cdot x \cdot y^n \cdot z \in L$

for all $n \ge 0$.

Example 2. Find the minimum pumping length of $L = \{a^n \# b^n | n \ge 0\}.$

 $p \le 2$? Doesn't work with w = a # b.

 $w \in L$ and $|w| \ge 2$ but w can't be pumped within an interval of length 2:

- vxy is contained in a#: pumping changes the count of a or # but not of b.
- vxy is contained in # b : pumping changes the count of b or # but not of a.

p = 3? Works: given any $w \in L$ with $|w| \ge 3$

$$w = \underbrace{a \dots a}_{u} \underbrace{a \# b}_{v \times y} \underbrace{b \dots b}_{z}$$

Pumping Lemma

Pumping Lemma. L context-free language exists number $p \ge 0$ (pumping length)

such that each word $w \in L$ with $|w| \ge p$ can be written as

 $w = u \cdot v \cdot x \cdot y \cdot z$ with

- $(1) \mid v \circ x \circ y \mid \leq p$
- (2) $v \neq \varepsilon$ or $y \neq \varepsilon$
- (3) $u \cdot v^n \cdot x \cdot y^n \cdot z \in L$ for all $n \ge 0$.

Example 3. Show that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.

Proof (by contradiction). Suppose that *L* is context-free, pumping length p.

Consider $w = a^p b^p c^p$.

We have $w \in L$ and $|w| \ge p$.

Cannot pump within interval of length p:

- interval contains at most two of letters a, b, c.
- pumping would change count of one or two letters, but not of the third.

CONTRADICTION

Summer-1 2024 - W. Schnyde

Pumping Lemma

Pumping Lemma.

L context-free language. exists number $p \ge 0$

(pumping length) such that each word $w \in L$ with $|w| \ge p$ can be written as

 $w = u \cdot v \cdot x \cdot y \cdot z$

- $(1) \mid v \cdot x \cdot y \mid \leq p$
- (2) $v \neq \varepsilon$ or $y \neq \varepsilon$
- $(3) \ u \circ v^n \circ x \circ y^n \circ z \in L$ for all $n \ge 0$.

Example 3. Show that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.

Proof (by contradiction). Suppose that L is context-free, pumping length p.

Consider $w = a^p b^p c^p$.

We have $w \in L$ and $|w| \ge p$.

Thus w = u v x y z with properties (1), (2), (3).

By (1), vxy cannot contain both a's and c's

- By (2), $v \neq \varepsilon$ or $y \neq \varepsilon$.
- ⇒ pumping changes the counts of at least 1 and at most 2 letters.

Thus $u v^2 x y^2 z \notin L$. CONTRADICTION to (3)

Summer-1 2024 - W. Schnyder

Pumping Lemma

Pumping Lemma.

L context-free language. exists number $p \ge 0$

(pumping length) such that each word $w \in L$ with $|w| \ge p$ can be written as

 $w = u \cdot v \cdot x \cdot y \cdot z$

- $(1) \mid v \cdot x \cdot y \mid \leq p$
- $(3) \ u \cdot v^n \cdot x \cdot y^n \cdot z \in L$
- (2) $v \neq \varepsilon$ or $y \neq \varepsilon$ for all $n \ge 0$.

Example 3. Show that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.

Note. Didn't really need property (1) in the proof. Was only used to show: v and y together contain at most two letters

This is implied by (3) and structure of L: each of v, y contains at most one letter

otherwise, say $v = \dots a \dots b \dots$

 $v^2 = \dots a \dots b \dots a \dots b \dots$ then

Theory of Computation

Lesson 14e - Pumping Lemma

93

Pumping Lemma and Closure Properties

92

Corollary. Context-free languages are not closed under intersection, complement, and set difference.

Proof.

(a) Intersection.

$$L_1 = \{a^i b^j c^k \mid i = j\}$$

$$L_2 = \{a^i b^j c^k \mid j = k\}$$
 easy to show L_1, L_2 context-free.

 $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.

94

Summer- I 2024 - W. Schnyde

Pumping Lemma and Closure Properties

Corollary. Context-free languages are not closed under intersection, complement, and set difference.

Proof.

(b) Complement.

$$L_1 \cap L_2 = \overline{L_1 \cap L_2} = \overline{L_1} \cup \overline{L_2}$$

CFLs are closed under union. If they were also closed under complement, then they would be closed under intersection.

(c) Set difference.

$$\overline{L} = \Sigma^* - L$$

 Σ^* is context-free. If CFLs were closed under set difference, then they would also be closed under complement.

Summer- I 2024 - W. Schnyde

Pumping Lemma

Pumping Lemma.

L context-free language.

exists number $p \ge 0$ (pumping length) such that each word $w \in L$ with $|w| \ge p$ can be written as

 $w = u \cdot v \cdot x \cdot y \cdot z$

with

- $(1) \mid v \circ x \circ y \mid \leq p$
- (2) $v \neq \varepsilon$ or $y \neq \varepsilon$
- (3) $u \cdot v^n \cdot x \cdot y^n \cdot z \in L$ for all $n \ge 0$.

Example 4. Show that

$$L = \{a^i b^j a^i b^j \mid i, j \ge 1\}$$

is not context-free.

Proof (by contradiction). Suppose that L is context-free, pumping length p.

Attempt 1. Consider $w = a^p b a^p b$.

- Would work to show L not regular!
- Doesn't work to show *L* not context-free:

$$w = a^{p-1} a b a \underline{a^{p-1} b}$$

$$u v x y \underline{z}$$

Summer-1 2024 - W. Schnyder

Pumping Lemma

Pumping Lemma.

L context-free language

exists number $p \ge 0$ (pumping length) such that each word $w \in L$ with $|w| \ge p$ can be written as

 $w = u \cdot v \cdot x \cdot y \cdot z$

- $(1) \mid v \circ x \circ y \mid \leq p$
- (2) $v \neq \varepsilon$ or $y \neq \varepsilon$
- (3) $u \cdot v^n \cdot x \cdot y^n \cdot z \in L$ for all $n \ge 0$.

Example 4. Show that

$$L = \{a^i \ b^j \ a^i \ b^j \mid \ i,j \ge 1\}$$

is not context-free.

Attempt 2. Consider $w = a^p b^p a^p b^p$.

We have $w \in L$ and $|w| \ge p$.

Cannot pump within interval of length p:

- Interval can't overlap two runs of a's or two runs of b's.
- Pumping changes counts in one run of *a*'s but not in the other, or in one run of b's but not in the other.

CONTRADICTION

Summer- I 2024 - W. Schny

Pumping Lemma

Pumping Lemma.

L context-free language.

exists number $p \ge 0$ (pumping length) such that each word $w \in L$ with $|w| \ge p$ can be written as

 $w = u \cdot v \cdot x \cdot y \cdot z$

- with
- $(1) \mid v \circ x \circ y \mid \leq p$
- (2) $v \neq \varepsilon$ or $y \neq \varepsilon$
- (3) $u \cdot v^n \cdot x \cdot y^n \cdot z \in L$ for all $n \ge 0$.

Example 5. Show that $L = \{ww \mid w \in \{a,b\}^*\}$ is not context-free.

Proof (by contradiction). Suppose that L is context-free.

Then $L_1 = L \cap \underbrace{a^+b^+a^+b^+}_{\text{regular}}$ is context-free.

Claim: $L_1 = \{a^i \ b^j \ a^i \ b^j \ | \ i, j \ge 1\}$ contradicts example 4

Suppose that $w \ w \in a^+ b^+ a^+ b^+$ must begin tmust end
with b

then $w = a^i b^j$ where $i, j \ge 1$

Summer- I 2024 - W. Schny