§1 Visão Geral

Implementação atual do processador:

Sinal de relógio CLOCK é entrada do frequency_divider que reduz $1~\mathrm{Mhz} \rightarrow 1~\mathrm{Hz}.$

O apontador de programa (PC) foi implementado como um contador módulo 10, incrementado a cada pulso do **PC_register_increment**.

Os registradores de 8 bits ACC, RDM e REM também foram implementados. À direita e acima, o local onde deve ficar a memória do processador.

$\S 2$ Controle

$\S 2.1$ Divisor de Frequência

Parte de entradas do divisor de frequência, com os *inputs* CLOCK e RESET. A entrada RESET é ligada a todas as entradas CLRN dos *flip-flops* tipo D, enquanto a entrada PRN (para *preset*) recebe como entrada o sinal de um VCC (V_{CC} , Voltage Common Collector, pino setado sempre à 1).

Um **divisor de frequência** recebe como entrada uma frequência f_{in} (neste caso, o próprio sinal **CLOCK**) e retorna uma frequência

$$f_{out} = rac{f_{in}}{N}$$

onde N é um inteiro.

Podemos construir divisores de frequência com *flip-flops* do tipo D através de sua concatenação. Dessa forma, ligamos o sinal de relógio ao primeiro *flip-flop*, em uma frequência f_{in} . Os próximos *flip-flops* são ligados em sequência, recebendo o sinal da saída \overline{Q} :

- 1º flip-flop: inverte seu sinal a cada sinal do relógio
- 2º flip-flop: inverte seu sinal a cada 2 sinais do relógio
- 3º flip-flop: inverte seu sinal a cada 4 sinais do relógio
- nº flip-flop: inverte seu sinal a cada 2ⁿ sinais do relógio

Dessa forma, conseguimos construir um divisor de frequência que recebe uma frequência f_{in} e retorna uma frequência

$$f_{out} = rac{f_{in}}{2^n}$$

chamamos esta configuração de *flip-flops* de *divide-por-dois*. Se quisermos reduzir um relógio a 1 Mhz para 1 Hz, devemos

$$1 ext{ Hz} = rac{1000000 ext{ Hz}}{2^n} \implies 2^n = 1000000$$
 $\log_2(1000000) = n \implies n pprox 19.932$

a aproximação nos obriga a tomar n=20, o que garante uma frequência *menor* do que $1 \mathrm{Hz}$, mas suficientemente próxima para os fins atuais dos estudos.

A base de um divisor de frequência binário: $f_{out} = rac{f_{in}}{2^1}$

Utilizando o divisor de frequência 1-para-2 acima, construímos um divisor 1-para-16. Isto quer dizer que a frequência de saída é $\frac{1}{16}$ da frequência de entrada, ou que

$$f_{in}=2^4\cdot f_{out}$$

Tomando agora os divisores de frequência 1-para-16, construímos um divisor 1-para-1048576, que corresponde a

$$f_{out} = rac{1 ext{ MHz}}{2^{20}} pprox 1 ext{ Hz}$$

Registradores

Registrador de 8 bits de uso geral

Incrementador do PC

Contador módulo 10