

1.

2.

3.

UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE INFORMÁTICA

Lista de Exercícios – 04: Tipos de Dados, Classes de Objetos e Operadores

Com relação às classes de objetos, marque a(s) alternativa(s) c	correta(s).
 () Variável é um valor imposto que pode ser alterado no deco () Constante pode ser empregada em regiões de código seque () Sinais são objetos que podem ter o seu valor alterado. () Constantes não podem ser declaradas em declaração da ente e subprogramas. () Sinais podem ser declarados na declaração da entidade e na () Variável não pode ser declarada e empregada em regiões de () Sinais são empregados em regiões de código concorrente e () Constante é um objeto com um valor estático. 	encial. idade, arquitetura da entidade, pacote, processo a arquitetura da entidade. le código sequencial.
Diante das declarações abaixo, marque V (verdadeiro) ou F (fa	also). No caso da alternativa ser falsa, justifique.
() CONSTANT Pi : REAL <= 3.14; () CONSTANT atraso : TIME := 50 ns; () VARIABLE var <= INTEGER; () VARIABLE aux := BIT : '0'; () SIGNAL tempo : TIME := 50 ns; () SIGNAL clk : BIT <= '0'; () CONSTANT Pi : REAL := 3.14; () CONSTANT atraso <= TIME := 50 ns; () VARIABLE var = INTEGER; () VARIABLE aux : BIT := '0'; () SIGNAL tempo := TIME := 50 ns; () SIGNAL clk <= BIT := '0'; () CONSTANT Pi := REAL : 3.14; () CONSTANT atraso : TIME = 50 ns; () VARIABLE var : INTEGER; () VARIABLE aux = BIT = '0'; () SIGNAL tempo : TIME <= 50 ns; () SIGNAL tempo : TIME <= 50 ns; () SIGNAL tempo : TIME <= 50 ns;	Justificativa abaixo:
Com base no código em VHDL abaixo, verifique se há ocorrê correção. ENTITY signal_ent IS PORT (a, b : IN BIT; s : OUT BIT); END signal_ent;	ncia de erros. Em caso afirmativo, proponha uma <u>Proposta de correção:</u>
ARCHITECTURE signal_arc OF signal_ent IS BEGIN SIGNAL tempo : TIME := 50 ns; SIGNAL clk : BIT := '0'; s <= a XOR b; clk <= NOT clk AFTER tempo; END signal_arc;	

UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE INFORMÁTICA

Proposta de correção:

4. Com base no código em VHDL abaixo, verifique se há ocorrência de erros. Em caso afirmativo, proponha uma correção.

```
ENTITY exemplo IS
       PORT (d0, d1, d2 : IN BIT;
                 s1, s2 : OUT BIT);
END exemplo;
ARCHITECTURE teste OF exemplo IS
BEGIN
       processo1: PROCESS(d0, d1, d2)
       VARIABLE var1 : STD LOGIC;
              BEGIN
                      var1 := d0 AND d1;
                      s1 <= var1 OR d2;
              END processo1;
       processo2: PROCESS(d0, d1, d2)
       SIGNAL signal1 : BIT;
              BEGIN
                      signal1 <= d0 AND d1;
                      s2 <= signal1 OR d2;
       END processo2;
END teste;
```

- 5. Considere os valores inteiros a = 7, b = -3 e c = 3. Mostre os resultados para as sentenças com operadores aritméticos em VHDL, a seguir:
 - a) $a/c = _{-};$
 - b) $a/(a+b) = _{-};$
 - c) $(a*c)/c = __;$
 - d) $(a/c)*c = __;$
 - e) (a+b)**c = ;
 - f) $ABS(a) + ABS(b) = ___;$
 - g) a REM $b = \underline{}$;
 - h) a MOD $b = \underline{}$;
- 6. Considere a <= "11001". Mostre os resultados para as sentenças com operadores de deslocamento em VHDL, a seguir:

		Resultado:	
a)	$x \le a SLL 2;$	"	,
b)	$y \le a SLA 2;$	"	,
c)	w <= a SLL -3;	-,- "	,
d)	$z \le a SRL 2;$	"	,
e)	r <= a SLA -3;	-,- "	,
f)	$s \le a SRL -3;$	-,- '''	,
g)	t <= a ROL 2;	"	,
h)	$u \le a ROR -3;$	-,- "	,
i)	$v \le a ROL -3;$	-,- "	,
j)	$k \le a ROR 2;$	"	,
k)	y <= a SRA 2;	-,- "	,
1)	$w \le a SRA -3;$	-,- '''	,

Universidade Estadual de Maringá Centro de Tecnologia Departamento de Informática

7. Apresente o código de uma entidade de projeto que descreva as quatro expressões lógicas a seguir. Nessas expressões, considere o operador lógico de negação com maior precedência e o operador OR com menor precedência. A declaração da entidade deve ter quatro portas de entrada, a, b, c e d, e quatro portas de saída, s1, s2, s3 e s4, todas do tipo bit.

$$s1 = a + \overline{b}$$

$$s2 = a + \overline{b}.c$$

$$s3 = (a + \overline{b}).(c + d)$$

$$s4 = (a + \overline{b}).(c + a.d)$$

8. Apresente a descrição de uma entidade de projeto (declaração da entidade mais arquitetura da entidade = código em VHDL) com duas portas de entrada e uma porta de saída, todas do tipo bit_vector. A figura a seguir ilustra o problema. Ambas as entradas possuem quatro bits, e o valor presente nessas entradas deve ser transferido para a saída, conforme ilustrado na figura.

9. Considerando a descrição ou código em VHDL a seguir, determine qual o valor de cada porta de saída. Observe que todos os comandos são concorrentes, portanto, a ordem nas linhas do código não importa.

UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE INFORMÁTICA

 Considerando a descrição ou código em VHDL a seguir, identifique as linhas que contêm erros no código e proponha uma solução.

```
ENTITY errad_1 IS

Proposta de correção:

PORT (a, b, c, d : IN BIT;
S : OUT BIT_VECTOR (5 DOWNTO 0));

END errad_1;

ARCHITECTURE teste OF errad_1 IS

BEGIN

s(0) <= a AND b OR c AND d;
s(1) <= a NOR b NOR c;
s(2) <= a AND b OR c;
s(3) <= NOT (a AND b) NAND c;
s(4) <= a XOR b XOR c;
END teste;
```

11. Na descrição ou código em VHDL a seguir, para teste de operações lógicas, a declaração da entidade contém duas entradas e três saídas do tipo bit_vector. Considerando que a_bit tem o valor "010" e b_bit tem o valor "111", determine qual o valor de cada porta de saída.

```
ENTITY std_c IS

PORT( a_bit : IN BIT_VECTOR(2 DOWNTO 0);
    b_bit : IN BIT_VECTOR(2 DOWNTO 0);
    not_bit, and_bit, or_bit : OUT BIT_VECTOR(2 DOWNTO 0));
END std_c;

ARCHITECTURE exemplo OF std_c IS
BEGIN
    not_bit <= NOT a_bit;
    and_bit <= a_bit AND b_bit;
    or_bit <= a_bit OR b_bit;
END exemplo;
```