MATH 438: Introduction to Complex Variables Assignment 3

3. Proof $n^n z^n$ converges only for z = 0By De Moirve's formula, we find

$$n^{n}z^{n} = n^{n}|z|^{n}(\cos(n\theta) + i\sin(n\theta))$$
$$= (n|z|)^{n}(\cos(n\theta) + i\sin(n\theta))$$

Which is periodic with respect to n, which will not converge unless $n^n |z|^n$ approaches 0. Since the sequence is always zero when z = 0, the sequence converges. When $z \neq 0$, since n is approaching infinity, there will exist n_0 such that for all $n \geq n_0$, (n|z|) > 2. Since 2^n doesn't converge to 0, the function will not converge, because the function will be greater than 2^n for all $n > n_0$.

5. **Proof** $b_n = 1 + 1/2 + 1/3 + ... + 1/n - \ln n, n \ge 1$ is decreasing Let $n \ge 1$

$$b_n = 1 + 1/2 + 1/3 + \dots 1/n - \ln n$$

$$= \sum_{i=1}^n \left(\frac{1}{i}\right) - \ln n$$

$$b_{n+1} - b_n = \sum_{i=1}^{n+1} \left(\frac{1}{i}\right) - \ln(n+1) - \sum_{i=1}^n \left(\frac{1}{i}\right) + \ln(n)$$

$$= \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} + \ln\frac{n}{n+1}$$

$$< 0$$

Proof $a_n = 1 + 1/2 + 1/3 + ... + 1/(n-1) - \ln n, n \ge 1$ is increasing Let $n \ge 1$

$$a_n = 1 + 1/2 + 1/3 + \dots 1/(n-1) - \ln n$$

$$= \sum_{i=1}^{n-1} \left(\frac{1}{i}\right) - \ln n$$

$$a_{n+1} - a_n = \sum_{i=1}^n \left(\frac{1}{i}\right) - \ln(n+1) - \sum_{i=1}^{n-1} \left(\frac{1}{i}\right) + \ln(n)$$

$$= \frac{1}{n} - \ln(n+1) + \ln(n) = \frac{1}{n} + \ln\frac{n}{n+1}$$

$$> 0$$

Proof a_n b_n converge to the same limit

The defintion, $a_n = b_n - 1/n \implies b_n - a_n = 1/n$. Since 1/n approaches 0 as n approaces infinity, a_n and b_n must approach the same value. Since a_n is increasing while b_n is decreasing we get that the two sequences converge to a finite number via the squeeze therom.

Proof $0.5 < \gamma < 0.6$

Since a_n is increasing, and $a_7 \approx 0.5041 > 0.5$, $\gamma > 0.5$, and since b_n is decreasing, and $b_{50} \approx 0.587182 < 0.6$, $\gamma < 0.6$

19. **Proof**

Since |p(z)| is bounded below by 0, we know that the set of points $kz \in \mathbb{C} : p(z)$ must have an infimum. Since |p(z)| is continous, k must contain it's infimum. Therefore we know that |p(z)| must attain it's minimum value at some point $z_0 \in \mathbb{C}$.

Proof

Let $p(z) = 1 + az^m + ...$, where $m \ge 1$ and $a \ne 0$. Assume p(z) is at a minimum at z = 0, where p(z) = 1. We know that $z^m = |z| (\cos(m\theta) + i\sin(m\theta))$. If we let $z_1 = (1/a)e^{i\pi}$ we find $|p(z_1)| = 0$, which contradicts p(0) being a minimum.