Geometria Obliczeniowa - predykaty geometryczne

Wiktor Jurasz

20 październik 2016

1 Wyniki

dane	alg	lewo	na	prawo	pomylki
a	det2d	49893	0	50107	0
	det3d	49893	0	50107	0
	fast	49893	0	50107	0
	exact	49893	0	50107	0
	slow	49893	0	50107	0
b	det2d	50068	6	49926	6
	det3d	50069	0	49931	0
	fast	50068	6	49926	6
	exact	50069	0	49931	0
	slow	50069	0	49931	0
С	det2d	516	0	484	0
	det3d	516	0	484	0
	fast	516	0	484	0
	exact	516	0	484	0
	slow	516	0	484	0
d	det2d	149	720	131	280
	det3d	63	749	188	251
	fast	149	720	131	280
	exact	454	0	546	1000
	slow	454	0	546	1000

Tablica 1: epsilon = 0

dane	alg	lewo	na	prawo	pomylki
a	det2d	49893	0	50107	0
	det3d	49893	0	50107	0
	fast	49893	0	50107	0
	exact	49893	0	50107	0
	slow	49893	0	50107	0
b	det2d	50068	6	49926	7
	det3d	50069	0	49931	0
	fast	50068	6	49926	7
	exact	50069	0	49931	0
	slow	50069	0	49931	0
С	det2d	516	0	484	0
	det3d	516	0	484	0
	fast	516	0	484	0
	exact	516	0	484	0
	slow	516	0	484	0
d	det2d	0	1000	0	0
	det3d	0	1000	0	0
	fast	0	1000	0	0
	exact	0	1000	0	0
	slow	0	1000	0	0

Tablica 2: epsilon = 1e-6

dataset	alg	lewo	na	prawo	pomylki
a	det2d	49893	0	50107	0
	det3d	49893	0	50107	0
	fast	49893	0	50107	0
	exact	49893	0	50107	0
	slow	49893	0	50107	0
b	det2d	50068	6	49926	7
	det3d	50069	0	49931	0
	fast	50068	6	49926	7
	exact	50069	0	49931	0
	slow	50069	0	49931	0
	det2d	516	0	484	0
С	det3d	516	0	484	0
	fast	516	0	484	0
	exact	516	0	484	0
	slow	516	0	484	0
d	det2d	81	857	62	143
	det3d	0	1000	0	0
	fast	81	857	62	143
	exact	0	1000	0	0
	slow	0	1000	0	0

Tablica 3: epsilon = 1e-12

2 Wybrane wykresy

Jak widać w powyższych tabelach wszystkie kombinacje algorytmów i epsilonów dają bardzo podobne rezultaty dla pierwszych 3 zbiorów danych. Nieznacznie wahania możemy zauważyć jedynie w przypadku wyznacznika 2d oraz metody fast, są to jednak błędy marginalne.

2.1 epsilon = 0

Dla wyznacznika 2d oraz algorytmu fast (1.) 72% punktów zostało zakwalifikowane prawidłowo, podobnie sprawa się ma z wyznacznikiem 3d (2.) który uzyskał wynik nieznacznie lepszy.

Dla Algorytmu exact i slow (3.) skuteczność była 0.

Na zdjęciu (4.) Widać powiększenie (1.). Można zauważyć równo rozkładające się punkty na linii, pomimo tego zakwalifikowane zostały inaczej.

2.2 epsilon = 6

Najlepsze wyniki otrzymano dla epsilona równego 6. Tutaj wszystkie algorytmy prawidłowo zakwalifikowały punkty.

2.3 epsilon = 12

Co ciekawe dla epislona równego 12 wyniki były gorsze. Wyznacznik 2d oraz algorytm fast (1.) wykazały błędy na poziomie 14%, reszta algorytmów (2.) uzyskała 100% skuteczność.

3 Szybkośc działania

Czasy działania algorytmów nie różnią się znacząco.

Dla Wyznaczników 2d, 3d i metoda fast czasy dla większych zbiorów wynosiły około 500-600 [ms] oraz 5-6 [ms] dla mniejszych. Metody exact i slow były gorsze o odpowiednio 100-200 [ms] i 1-2 [ms].

4 Wnioski

- Możemy zauważyć, że dla epsilonów większych od 0 wyniki dla algorytmów det3d, exact i slow pokrywają się ze sobą. Drugą grupę stanowią det2d i fast.
- Dla epsilonów większych od 0 Algorytmy det3d, exact i slow dają w 100% poprawne wyniki.
- Czas działania poszczególnych algorytmów nie różnił się znacznie w obrębie tego samego zbioru danych. Natomiast 100 krotne zwiększenie liczby punktów powodowała również 100 krotne zwiększenie czasu działania.
- Dla epsilona=1e-12 (precyzja 14 miejsc po przecinku) widzimy spadek dokładności w przypadku zbioru leżącego na prostej. Ponieważ liczba ta jest bardzo bliska 0 niepewności obliczeniowe powodują błędną klasyfikację punktów.
- Podobnie sprawa ma się z epsilonem=0, tutaj oczekujemy zbyt dużej dokładności i nasze algorytmy wykładają się na błędach w reprezentacji.
- Analiza błędnie zaklasyfikowanych punktów wykazała, że niemal we wszystkich przypadkach błędy są jednakowe. To znaczy, że punkt został albo sklasyfikowany przez algorytm dobrze, a jeśli wystąpił błąd, to był on taki sam dla wszystkich błędnie klasyfikujących algorytmów. Inaczej sprawa ma się jedynie dla epsilona=0 przy zbiorze danych leżącym na prostej. Tutaj zdarzały się sytuacje, że jeden punkt został zaliczony do 3 różnych kategorii.