CS3245

Information Retrieval

Lecture 8: A complete search system – Scoring and results assembly

Last Time: tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = (1 + \log t \mathbf{f}_{t,d}) \times \log_{10}(N/d\mathbf{f}_t)$$

- Best known weighting scheme in information retrieval
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Last Time: Vector Space Model

- Key idea 1: represent both d and q as vectors
- Key idea 2: Rank documents according to their proximity (similarity) to the query in this space

Dot product
$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 $\cos(\overrightarrow{q}, d)$ is the cosine similarity of \overrightarrow{q} and \overrightarrow{d} ... or, equivalently, the cosine of the angle between \overrightarrow{q} and \overrightarrow{d} .

Today

- Speeding up vector space ranking
- Putting together a complete search system

National University of Singapore

Recap: Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
     float Length[N]
  3 for each query term t
     do calculate w<sub>t,q</sub> and fetch postings list for t
         for each pair(d, tf<sub>t,d</sub>) in postings list
        do Scores d + = w_{t,d} \times w_{t,a}
     Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
 10
```

Blanks on slides, you may want to fill in

Efficient cosine ranking

- Find the K docs in the collection "nearest" to the query $\Rightarrow K$ largest query-doc cosines.
- Efficient ranking:
 - Computing a single cosine efficiently.
 - Choosing the K largest cosine values efficiently.

Can we do this without computing all N cosines?

Simpler case – unweighted queries

National Univ of Singapore

- No weighting on query terms
 - Assume each query term has weight 1
 - i.e. w_{t,q} = 1
 (no tf, nor idf factor; just Boolean presence)
- Then for ranking, don't need to normalize query vector
 - Simpler version of algorithm from last week

Faster cosine: unweighted query

```
FastCosineScore(q)
```

- 1 float Scores[N] = 0
- 2 for each d
- 3 do Initialize Length[d] to the length of doc d
- 4 for each query term t
- 5 **do** calculate $W_{t,q}$ and fetch postings list for t
- 6 **for each** pair(d, tf_{t,d}) in postings list
- 7 **do** add $wf_{t,d}$ to Scores[d]
- 8 Read the array Length[d]
- 9 for each d
- 10 **do** Divide *Scores*[*d*] by *Length*[*d*]
- 11 **return** Top *K* components of *Scores*[]

Figure 7.1 A faster algorithm for vector space scores.

No expensive multiplication; now just addition

Computing the *K* largest cosines: selection vs. sorting

- Typically we want to retrieve the top K docs (in the cosine ranking for the query)
 - Don't need total order for all docs

Can we pick off docs with K highest cosines?

Formal Problem Specification:
 Let J = number of docs with nonzero cosines.
 Then we seek the K best of these J

5

Use heaps for selecting top K

- Heap = Binary tree in which each node's value > the values of children
- Takes O(J) operations to construct, then each of K "winners" read off in O(log J) steps.
- For J=1M, K=100, this is about 10% of the cost of sorting

Blanks on slides, you may want to fill in

Bottlenecks

- Primary computational bottleneck in scoring: cosine computation
- Can we avoid doing this computation for all docs?
- Yes, but may sometimes get it wrong
 - a doc not in the top K may creep into the list of K output docs, and vice versa
 - Is this such a bad thing?

Generic approach

- Find a set A of contenders, with K < |A| << N</p>
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top K docs in A
- Think of A as <u>pruning</u> non-contenders
- The same approach can also used for other (non-cosine) scoring functions

Heuristic 1: Index elimination

- Basic algorithm: FastCosineScore of Fig 7.1 only considers docs containing at least one query term
- Extend this to a logical conclusion:
 - Only consider high idf query terms
 - Only consider docs containing many query terms

High-idf query terms only

- E.g., given a query such as catcher in the rye only accumulate scores from catcher and rye
- Intuition: in and the contribute little to the scores and so don't alter rank-ordering much

Benefit:

- Postings of low idf terms have many docs → these (many) docs get eliminated from set A of contenders
- Similar in spirit to stopwording

Docs containing many query terms

- Any doc with at least one query term is a candidate for the top K output list, but ...
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
 - Imposes a "soft conjunction" on queries seen on web search engines (early Google)
- Easy to implement in postings traversal

Example: Requiring 3 of 4 query terms

Scores only computed for docs 8, 16 and 32.

Blanks on slides, you may want to fill in

Heuristic 2: Champion lists

- Precompute for each dictionary term t, the r docs of highest weight in t's postings
 - Call this the <u>champion list</u> for t
 (aka <u>fancy list</u> or <u>top docs</u> for t)
 - For tf-idf weighting this just means
- Note that r has to be chosen at index build time
 - Thus, it's possible that r < K</p>
- At query time, only compute scores for docs in the champion list of some query term
 - Pick the K top-scoring docs from amongst these

Heuristic 3: Static quality scores

- We want top-ranking documents to be both relevant and authoritative
- Relevance is being modeled by cosine scores
- Authority is typically a query-independent property of a document
- Examples of <u>authority signals</u>
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many diggs, retweets or del.icio.us bookmarks
 - PageRank score

Quantitative

Modeling authority

- Assign to each document a query-independent quality score in [0,1] to each document d
 - Denote this by g(d)
- Thus, a quantity like the number of citations is scaled into [0,1]

Net score

Consider a simple total score combining cosine relevance and authority

$$net-score(q,d) = g(d) + cosine(q,d)$$

- Can use some other linear combination than an equal weighting
- Indeed, any function of the two "signals" of user happiness
- Now we seek the top K docs by net score

Top K by net score – fast methods

- First idea: Order all postings by g(d)
- Key: this is a common ordering for all postings

Wait a second. We previously said documents need to be in order of docID to be merged efficiently. Why does this not violate it?

- Thus, can concurrently traverse query terms' postings for
 - Postings intersection
 - Cosine score computation

5

Why order postings by g(d)?

- Under g(d)-ordering, top-scoring docs likely to appear early in postings traversal
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early
 - Short of computing scores for all docs in postings

Combining heuristics 2 and 3: Champion lists in g(d)-ordering

- Can combine champion lists with g(d)-ordering
- Maintain for each term a champion list of the r docs with highest g(d) + tf-idf_{t,d} instead of just tf-idf_{t,d}
- Seek top-K results from only the docs in these champion lists

High and low lists

- For each term, we maintain two postings lists called high and low
 - Think of high as the champion list
- When traversing postings on a query, only traverse high lists first
 - If we get more than K docs, select the top K and stop
 - Else proceed to get docs from the low lists
- Can be used even for simple cosine scores, without global quality g(d)
- A means for segmenting index into two tiers

Heuristic 4: Impact-ordered postings

- We only want to compute scores for docs for which $wf_{t,d}$ is high enough
- We sort each postings list by $wf_{t,d}$
- Problem: not all postings in a common order!
 (Concurrent traversal then not possible)
- How do we compute scores in order to pick off top K?
 - Two ideas follow ...

A. Early termination

- Sort t's postings by descending $wf_{t,d}$ value
- When traversing t's postings, stop early after either
 - a fixed number of r docs
 - wf_{t,d} drops below some threshold
- Take the union of the resulting sets of docs
 - One from the postings of each query term
- Compute only the scores for docs in this union

B. idf ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- Can apply to cosine weighting but also other net scores

Heuristic 5:

National University of Singapore

Cluster pruning – preprocessing

- Pick \sqrt{N} docs at random: call these leaders
- For every other doc, pre-compute nearest leader
 - Docs attached to a leader: its followers;
 - Likely: each leader has $\sim \sqrt{N}$ followers.

Why choose leaders at random?

- Fast
- Leaders reflect data distribution

Cluster pruning – query processing

- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek K nearest docs from among L's followers.

Visualization

Clustering Pruning Variants

- Have each follower attached to b1 nearest leaders
- From query, find b2 nearest leaders and their followers
- b1 affects preprocessing step at indexing time
- b2 affects query processing step at run time
- Think about how these parameters affect precision, recall

7

Parametric and zone indexes

(Back to Chapter 6)

- Thus far, a doc has been a sequence of terms
- Documents often have multiple parts, with different semantics:
 - Author
 - Title
 - Date of publication
 - etc.
- These constitute the <u>metadata</u> about a document

- We sometimes wish to search by these metadata
 - E.g., find docs authored by William Shakespeare in the year
 1601, containing alas poor Yorick
- Year = 1601 is an example of a <u>field</u>
- Also, author last name = shakespeare, etc.
- Field or parametric index: postings for each field value
 - Sometimes build range (B-tree) trees (e.g., for dates)
- Field query typically treated as conjunction
 - (doc must be authored by shakespeare)

Zone Also used in HW#4

- A zone is a region of the doc that can contain an arbitrary amount of text e.g.,
 - Title
 - Abstract
 - References ...
- Build inverted indexes on zones as well to permit querying
- E.g., "find docs with merchant in the title zone and matching the query gentle rain"

Two methods for zone indexing

Encode zones in dictionary vs. postings.

Tiered indexes

Break postings up into a hierarchy of lists

Most important
...
Least important

- Inverted index thus broken up into tiers of decreasing importance
- At query time, use only top tier unless insufficient to get K docs.
 - If so, drop to lower tiers
- Generalization of high-low lists (Slide 24)

Example tiered index

To think about: What information would be useful to use to determine tiers?

Query term proximity

- Free text queries: just a set of terms typed into the query box – common on the web
- Users prefer docs where the query terms occur close to each other

- Let w be the smallest window in a doc containing all query terms, e.g.,
- For the query *strained mercy* the smallest window in the doc *The quality of mercy is not strained* is <u>4</u>.

Query parsers

- Free text query from user may in fact spawn one or more queries to the indexes, e.g. query rising interest rates
 - 1. Run the query as a phrase query
 - 2. If <*K* docs contain the phrase *rising interest rates*, run the two phrase queries *rising interest* and *interest rates*
 - If we still have <K docs, run the vector space query rising interest rates
 - 4. Rank matching docs by vector space scoring
- This sequence is issued by a <u>query parser</u>

Putting it all together

Won't be covering these blue modules in this course

Summary

Making the Vector Space Model more efficient to compute

- Approximating the actual correct results
- Skipping unnecessary documents

In actual data: dealing with zones and fields, query term proximity

Resources for today

IIR 7, 6.1