ECE380 Digital Logic

Combinatorial Circuit Building Blocks:

Decoders, Demultiplexers, Encoders and Code Converters

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 22-1

Decoders

- Decoder circuits: decode encoded information
- A binary decoder has n data inputs and 2^n outputs
- Only one output is asserted at any time (one-hot encoded) and each output corresponds to one valuation of the inputs
- An enable input (En) is used to disable the outputs
 - If En=0, none of the decoder outputs is asserted
 - If En=1, one of the outputs is asserted according to the valuation of the inputs

Electrical & Computer Engineering

Inputs					Outputs								
Ena G1	ble G2*		C C	elect B	A	YON	Y1N	Y2N	Y3N	Y4N	Y5N	Y6N	Y7N
X L H H H H H H	H X L L L L L L		X X L L L H H H H	X L H H L H	X X H H H H H		H H H H H H H H	H H H H H H H H H	H H H H H H H H H	H H H H H H H H H H	H H H H H H H	H H H H H H L H	H H H H H H H L
*	G2	= G	2AN	+ G2B	N								

Note the 'active low' outputs

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 22-5

Decoder application

 A common decoder application is the decoding of address lines for memory chips

Electrical & Computer Engineering

Demultiplexers

- A multiplexer multiplexed n data inputs to a single output
- A circuit that performs the opposite, placing the value of a single input onto one for multiple outputs is called a *demultiplexer*
- An n-to-2ⁿ decoder implements a 1-to-n demultiplexer

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 22-7

Encoders

- An encoder performs the opposite function of a decoder
- A **binary encoder** encodes information (data) from 2ⁿ inputs into an *n*-bit code (output)
 - Exactly one of the inputs should have a value of one
 - The outputs represent the binary number that identifies which input is equal to 1
- Encoders reduce the number of bits needed to represent given information
- Practical use: transmitting information in a digital system

Electrical & Computer Engineering

Encoders

A 2ⁿ-to-n binary encoder

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 22-9

Priority encoders

- Another useful class of encoders is based on the *priority* of the input signals
- In a priority encoder, each input has a priority level associated with it
- The encoder outputs indicate the active input that has the highest priority
 - When an input with a high priority is asserted, the other lower priority inputs are ignored

Electrical & Computer Engineering

Priority encoders

- Assume that w₀ has the lowest priority and w₃ has the highest
- The output z indicates when none of the inputs are 1
- Letting
 - $-i_0=w_3'w_2'w_1'w_0$
 - $-i_1=w_3'w_2'w_1$
 - $-i_2=w_3'w_2$
 - $-i_3=w_3$

$$y_0 = i_1 + i_3, y_1 = i_2 + i_3$$

 $z = i_1 + i_2 + i_3 + i_4$

W_3	W_2	W_1	W_0	\boldsymbol{y}_1	y ₀	Z	
0	0	0	0	D	D	0	
0	0	0	1	0	D 0 1 0	1	
0	0	1	Χ	0	1	1	
0	1	Χ	Χ	1	0	1	
1	Χ	Χ	Χ	1	1	1	

4-to-2 priority encoder truth table

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 22-11

Code converters

- The purpose of code converter circuits is to convert from one type of input encoding to another type of output encoding
- For example:
 - A 3-to-8 decoder converts from a binary number to a one-hot encoding at the output
 - A 8-to-3 encoder performs the opposite
- Many different types of code converter circuits can be constructed
 - One common example a a BCD-to7-segment decoder

Electrical & Computer Engineering

BCD-to-7-segment decoder

- Converts one binary-coded decimal (BCD) digit into information suitable for driving a digit-oriented display
 - A vending machine display is an example
- The circuit converts a BCD digit into 7 signals that are used to drive (activate) the segments in the display
 - Each segment is a small light-emitting diode (LED), which glows when driven by an electrical signal

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 22-13

BCD-to-7-segment decoder

	а	
f		b
e	g	с
	d	

W ₃	<i>W</i> ₂	W_1	W_0	а	b	с	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

Electrical & Computer Engineering

BCD-to-7-segment decoder

Electrical & Computer Engineering