

DCCF: Deep Comprehensible Color Filter Learning Framework for High-Resolution Image Harmonization

Ben Xue¹, Shenghui Ran², Quan Chen², Rongfei Jia², Binqiang Zhao², Xing Tang²

¹Peking University & ²Alibaba Inc, Tao Technology

Paper, code are available: https://github.com/rockeyben/DCCF

Comprehensible Image Processing

Our contributions:

- Make deep learning based color harmonization practical for real-world high-resolution images.
- Design four types of novel neural filter (i.e. hue, saturation, value and attentive rendering filters) that are comprehensible for human. Further interaction is possible.
- Achieve SOTA performance on iHarmony4 (Cong et al., CVPR'20) dataset at original resolution by 7.63% / 1.69% relative improvements on MSE / PSNR.

High-Resolution Processing

Learn pixel-level image filters at low-resolution, then upsample them to high-resolution to make subtle local adjustments. (e.g. value filters: learnable curves)

DCCF: Deep Comprehensible Color Filter

Value filters: $f_{val}(x; \phi, V_{min}) = V_{min} + \sum_{i=1}^{m} \phi_i * \max(x - \frac{i-1}{m}, 0)$

Saturation filter: $f_{sat}(x;\sigma) = x + (x - C_{med}) * clip(\sigma)$

Hue filter: $f_{col}(x; \Delta) = \mathbf{R}x + t$

 $= \begin{bmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{bmatrix} \begin{bmatrix} x_R \\ x_G \\ x_B \end{bmatrix} + \begin{bmatrix} \delta_{14} \\ \delta_{24} \\ \delta_{34} \end{bmatrix}$

Attentive rendering filter: $I_4 = I * \alpha + W_{ref} * I_3 * (1 - \alpha)$

Intermediate Result Visualization

Quantitative Result

High-resolution performance comparison State-of-the-art

	Entire Dataset		HCOCO		$_{ m HAdobe5k}$		HFlickr		Hday2night	
Method	MSE ↓	PSNR ↑	MSE ↓	PSNR ↑	MSE ↓	PSNR ↑	MSE ↓	PSNR ↑	MSE ↓	PSNR ↑
Input image	177.99	31.22	73.03	33.53	354.46	27.63	270.99	28.20	113.07	33.91
iDIH-HRNet [28]	-	-	19.96	38.25	-	-	93.50	32.42	71.01	35.77
iDIH-HRNet 28 +BU	43.56	34.98	34.40	35.45	37.82	35.47	104.69	30.91	50.87	37.41
iDIH-HRNet [28]+GF [14]	35.47	36.00	25.93	36.70	34.51	36.03	85.05	32.01	49.90	37.67
iDIH-HRNet 28 +BGU 2	26.85	37.24	18.53	37.90	26.71	37.50	66.26	33.19	51.96	37.23
DCCF	24.65	37.87	17.07	38.66	23.34	37.75	64.77	33.60	55.76	37.40

Good balance for High-resolution efficiency comparison complexity

		1024×1024	4		2048×2048	8	3072×3072			
Method	T-C (ms) ↓	T-G (ms) ↓	Mem (MB) ↓	T-C (ms) ↓	T-G (ms) ↓	$Mem (MB) \downarrow$	T-C (ms) ↓	T-G (ms) ↓	$Mem (MB) \downarrow$	
iDIH-HRNet 28	420	231	1641	41040	907	4233	139768	2042	8551	
iDIH-HRNet [28] + GF [14]	642	80.2	983	2001	160	1513	10181	391	2483	
iDIH-HRNet 28 + BGU 2	9932	-	2893	20803	-	4042	29836	-	8173	
DCCF-iDIH-HRNet	762	104	1259	3289	286	2607	6517	545	4845	
	'	'								

T-C: time on CPU; T-G: time on GPU

Qualitative Result

DCCF learns harmonized global appearance while maintaining high-resolution details.

Human Interaction

 θ : hue angle of user's color intention

 α : blending ratio for human and network's decision

