

7. Nilai dan Vektor Eigen

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

DR. Dra. Kasiyah Junus, MSc

Tujuan pembelajaran

Jika diberikan matriks persegi A, mahasiswa mampu

- 1. menentukan nilai-nilai eigen dan vektor-vektor eigen yang bersesuaian,
- 2. melakukan diagonalisasi terhadap matriks A,
- 3. mengidentifikasi sifat-sifat matriks berdasarkan nilai eigen,
- 4. menjelaskan ruang eigen sebagai ruang null suatu matriks.

Cakupan materi

Pre-test

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Pre-test

Jawablah pertanyaan berikut ini:

Diberikan matriks A_{2x2} dan vektor-vektor **u**, **v**, dan **w**

$$A = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \qquad \vec{u} = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \qquad \vec{w} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$\vec{u} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

$$\vec{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\vec{w} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

- Hitunglah Au, Aw, Av.
- Manakah dari hasil kali tersebut yang hasilnya adalah vektor yang sejajar dengan vektor semula?

Jawaban soal pre-test

$$A = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \qquad \vec{u} = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \qquad \vec{w} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$\vec{u} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

$$\vec{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\vec{w} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$A\vec{u} = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 24 \end{bmatrix} \neq k\vec{u} \quad \text{untuk setiap } k \in R$$

u dan Au TIDAK sejajar

$$A\vec{v} = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 2\vec{v}$$
 v dan $A\mathbf{v}$ sejajar

$$A\vec{w} = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix} = 1\vec{w}$$
 w dan Aw sejajar

7.1 Nilai eigen dan vektor eigen

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Review: konsep dasar

- Matriks diagonal adalah matriks persegi yang elemen selain diagonal utamanya 0 semua. Tidak ada syarat untuk elemen diagonal utama. Boleh nol atau tidak nol.
- Dua vektor sejajar jika yang satu merupakan kelipatan skalar yang lain. Contoh: vektor x sejajar dengan λx (λ skalar).
- A persegi. Jika $A\mathbf{x} = \mathbf{0}$ memenuhi salah satu dari 2 kemungkinan: (1) mempunyai tepat satu solusi, yaitu solusi trivial saja (2) mempunyai tak hingga banyak solusi (solusi tidak trivial dan trivial).
- Det(A) = 0 jika dan hanya jika A⁻¹ tidak ada jika dan hanya jika Ax =
 0 mempunyai tak hingga banyak solusi.

Contoh: Perkalian vektor dengan matriks

$$\begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 24 \end{bmatrix} \neq k \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \end{bmatrix} = 1 \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$A\mathbf{v} = 2\mathbf{v}$$

$$Aw = 1w$$

Perkalian vektor dengan matriks

Perkalian matriks dengan vektor dapat menghasilkan vekor yang sejajar dengan vektor semula

x dan Ax sejajar (searah atau berlawanan arah)

Definisi: nilai dan vektor eigen

Definisi 7.1: Nilai eigen dan vektor eigen

Diberikan matriks $A_{n\times n}$, vektor tak nol \mathbf{v} di R^n disebut vektor eigen dari A jika terdapat skalar sedemikian hingga $A\mathbf{v} = \lambda \mathbf{v}$, λ disebut nilai eigen, \mathbf{x} adalah vektor eigen dari A yang bersesuaian dengan λ .

(disyaratkan $\mathbf{v} \neq \mathbf{0}$)

Latihan 1: vektor nol dan nilai eigen nol

a. Mengapa disyaratkan vektor eigen tidak boleh nol?

Jawab:

Misalkan vektor $\mathbf{v} = \mathbf{0}$, maka untuk semua matriks $A_{n \times n}$, dan skalar λ berlaku $A\mathbf{x} = \lambda \mathbf{x}$, maka tidak memberikan informasi yang berarti yang diberikan oleh persamaan tersebut.

b. Apakah nilai eigen bisa bernilai nol?

Jawab:

Nilai eigen bisa nol. Jika matriks memiliki nilai eigen nol maka matriks tersebut tidak mempunyi inverse.

Latihan 2: SPL homogen dengan $A_{nxn}x = 0$

1. A adalah matriks nxn dan spl Ax = 0 mempunyai penyelesaian trivial saja. Apa kesimpulanmu tentang A?

Jawaban:

- a. A mempunyai inverse.
- b. $det(A) \neq 0$
- 2. A adalah matriks nxn dan SPL Ax = 0 mempunyai penyelesaian TIDAK trivial. Apa kesimpulanmu tentang A dan det(A)?

Jawaban:

- a. A tidak mempunyai inverse.
- b. det(A) = 0

Masalah vektor eigen

Diberikan matriks persegi A,

Temukan semua vektor tidak nol **x** sedemikian hingga **Ax** kelipatan skalar **x** (atau **Ax** sejajar dengan **x**).

atau

Temukan semua vektor tak nol \mathbf{x} sedemikian hingga $A\mathbf{x} = \lambda \mathbf{x}$ untuk suatu skalar λ

Masalah nilai eigen

Diberikan matriks persegi A.

$$A$$
 $\mathbf{x} = \lambda \mathbf{x}$ \mathbf{x} vektor tak nol

Temukan semua skalar λ sedemikian hingga $Ax = \lambda x$ untuk suatu vektor **tak nol x**.

atau

Temukan semua vektor \mathbf{x} sedemikian hingga persamaan $A\mathbf{x} = \lambda \mathbf{x}$ mempunyai penyelesaian tidak trivial.

Pernyataan-pernyataan ekuivalen

Jika A matriks persegi nxn, maka kalimat-kalimat berikut ekuivalen

- 1. λ nilai eigen A
- 2. terdapat vektor tak nol **x** sedemikian hingga A**x** = λ **x**
- 3. Spl $(A \lambda I)\mathbf{x} = \mathbf{0}$ mempuyai solusi tidak nol (non-trivial)
- 4. λ adalah penyelesaian persamaan $det(A \lambda I) = 0$

Mencari nilai eigen A sama dengan mencari penyelesaian persamaan $det(\lambda I - A) = 0$

Persamaan karakteristik

Jika diuraikan, $\det(A - \lambda I)$ merupakan suku banyak berderajat n dalam λ , $p(\lambda) = \lambda^n + c_{n-1}\lambda^{n-1} + c_{n-2}\lambda^{n-2} + \cdots + c_1\lambda + c_0$ suku banyak karakteristik

Persamaan $\det(A - \lambda I) = \lambda^n + c_{n-1}\lambda^{n-1} + c_{n-2}\lambda^{n-2} + \dots + c_1\lambda + c_0 = 0$ disebut **persamaan karakteristik**

$$\left(\begin{array}{c}A\end{array}\right) \quad - \quad \left(\begin{array}{c}\lambda I\end{array}\right) \quad = \quad \left(\begin{array}{c}A-\lambda I\end{array}\right)$$

$$\det \left(A-\lambda I \right) = \lambda^{n} + c_{n-1}\lambda^{n-1} + c_{n-2}\lambda^{n-2} + \dots + c_{1}\lambda + c_{0} = 0$$

Persamaan dengan derajat n mempunyai paling banyak n penyelesaian, jadi matriks $n \times n$ paling banyak mempunyai n nilai eigen berbeda.

Latihan 3: mencari nilai-nilai eigen

Tentukan semua nilai eigen
$$A = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}$$

Jawab:

Pertama ditentukan persamaan karakteristik dari persamaan $det(A-\lambda I) = 0$

$$\det\begin{pmatrix} 2-\lambda & 0 \\ 4 & 1-\lambda \end{pmatrix} = 0$$

Diperoleh persamaan karakteristik

$$(2-\lambda)(1-\lambda)-0.4=0$$

$$(2-\lambda)(1-\lambda)=0$$

Penyelesaian persamaan karakteristik tersebut merupakan nilai eigen dari A yaitu: $\lambda_1 = 2$, $\lambda_2 = 1$

Prosedur menentukan nilai eigen

Diberikan matriks persegi A, maka nilai-nilai eigen A dapat diperoleh sebagai berikut

1. Tentukan persamaan karakteristik $det(A - \lambda I) = 0$

$$p(\lambda) = \lambda^{n} + c_{n-1}\lambda^{n-1} + c_{n-2}\lambda^{n-2} + \dots + c_{1}\lambda + c_{0} = 0$$

- 2. Ubahlah persamaan karakteristik ke dalam persamaan suku banyak karakteristik yang mudah diselesaikan.
- 3. Selesaikan persamaan di atas untuk memperoleh nilai-nilai eigen dari A.

Latihan 4: menentukan nilai eigen

Tentukan semua nilai eigen dari matriks persegi
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix}$$

Jawab:

1. Tentukan persamaan karakteristik $det(A - \lambda I) = 0$

$$\det(A - \lambda I) = \det\begin{pmatrix} 1 - \lambda & 1 & 1 \\ 0 & 3 - \lambda & 3 \\ -2 & 1 & 1 - \lambda \end{pmatrix} = (1 - \lambda)^2 (3 - \lambda) - 6 + 2(3 - \lambda) - 3(1 - \lambda)$$

2. Ubahlah persamaan karakteristik ke dalam persamaan sukubanyak karakteristik:

$$(1-\lambda)^2(3-\lambda)-6+2(3-\lambda)-3(1-\lambda)=0$$

3. Selesaikan persamaan di atas untuk memperoleh nilai-nilai eigen

$$(1-\lambda)^{2}(3-\lambda)-(3-\lambda)=0$$

$$\lambda_{1}=0$$

$$\lambda(\lambda-2)(3-\lambda)=0$$

$$\lambda_{2}=2$$

$$\lambda_{3}=3$$

Nilai eigen matriks diagonal

Diberikan matriks diagonal
$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A - \lambda I = \begin{pmatrix} 2 - \lambda & 0 & 0 & 0 \\ 0 & 5 - \lambda & 0 & 0 \\ 0 & 0 & 6 - \lambda & 0 \\ 0 & 0 & 0 & 1 - \lambda \end{pmatrix}$$

Persamaan karakteristik: $det(A-\lambda I) = (2-\lambda)(5-\lambda)(6-\lambda)(1-\lambda) = 0$ Nilai-nilai eigen 2, 6, 5, 1 (merupakan entri diagonal utama)

Nilai-nilai eigen matriks diagonal adalah elemen-elemen diagonal utamanya.

Latihan 5: menentukan nilai eigen

1. Diberikan matriks segitiga atas berikut ini. Tentukan nilai-nilai eigennya.

$$A = \begin{pmatrix} 1 & 1 & 3 & 0 \\ 0 & 5 & 2 & 0 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 0 & 7 \end{pmatrix}$$

2. Tentukan semua nilai eigen matriks segitiga bawah berikut ini.

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

- 3. Berapa nilai eigen matriks identitas?
- 4. Suku banyak karakteristik matriks B adalah $(\lambda-1)^3(\lambda-1)\lambda$, berapa ukuran matriks B?

Kunci jawaban Latihan 5

1. Nilai-nilai eigen matriks
$$A = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 5 & 2 & 0 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 0 & 7 \end{bmatrix}$$
 adalah **1**, **5**, **6**, **7**

2. Nilai-nilai eigen matriks
$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 adalah a_{11} , a_{22} ,... a_{nn}

- 3. Nilai eigen matriks identitas adalah 1
- 4. Suku banyak karakteristik matriks B adalah $(\lambda-1)^3(\lambda-1)\lambda$, maka B berordo 5x5

Apakah λ nilai eigen A?

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 4 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Jika ditanyakan apakah 2, 4, 8 merupakan nilai eigen matriks A, $A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 4 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ maka dapat diselesaikan dengan melihat apakah 2, 4, 8 masing-masing penyelesaian persamaan karakteristik.

 λ = 2, 4, 8. Jika det(A-λI) = 0, maka λ merupakan nilai eigen, kalau \neq 0, maka λ bukan nilai eigen dari A.

$$\det(A-2I) = \det\begin{pmatrix} 2-2 & 2 & 0 \\ 0 & 4-2 & 0 \\ 0 & 1 & 0-2 \end{pmatrix} = 0$$
 2 adalah nilai eigen A

$$\det(A-4I) = \det\begin{pmatrix} 2-4 & 2 & 0 \\ 0 & 4-4 & 0 \\ 0 & 1 & 0-4 \end{pmatrix} = 0 \quad \text{4 adalah nilai eigen } A$$

$$\det(A-OI) = \det\begin{pmatrix} 2-8 & 2 & 0 \\ 0 & 4-8 & 0 \\ 0 & 1 & 0-8 \end{pmatrix} = -192 \quad \text{8 bukan nilai eigen } A$$

Latihan 6: menentukan vektor eigen

Diberikan matriks A dan dua vektor tak nol u, x, y dan vektor nol z.
 Tentukan apakah u, x, y, z merupakan vektor eigen A.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix}, \vec{u} = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}, \vec{x} = \begin{pmatrix} -4 \\ -6 \\ 2 \end{pmatrix}, \vec{y} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \vec{z} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \vec{w} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

- Tentukan dan gambarkan vektor-vektor u, x, y, z dan Au, Ax, Ay, Az
- [Petunjuk: x vektor eigen bersesuaian dengan nilai eigen 2,
 u vektor eigen dengan nilai eigen nol,
 - y bukan vektor eigen,
 - z vektor nol, jadi bukan vektor eigen.]

Latihan 7

Tentukan apakah pernyataan di bawah ini bernilai benar atau salah

- 1. Suatu matriks mungkin memiliki nilai eigen nol, dan vektor nol pasti bukan vektor eigen untuk matriks manapun.
 - Kunci jawaban: BENAR
 - Vektor nol bukan vektor eigen, nilai eigen bisa nol. Nanti akan diperlihatkan bahwa vektor dengan nilai eigen nol adalah matriks singular (tidak mempunyai inverse)
- 2. Vektor \mathbf{x} dan \mathbf{y} adalah vektor eigen A, maka $\mathbf{x} = \mathbf{y}$.
 - Kunci jawaban: SALAH
- 3. λ_1 dan λ_2 adalah nilai-nilai eigen A, maka det $(A \lambda_1 I) = \det(A \lambda_2 I)$
 - Kunci jawaban: BENAR

Nilai eigen matriks pangkat

Teorema 7.1:

Jika n adalah bilangan bulat positif, λ nilai eigen matriks A, maka λ^n adalah nilai eigen A^n

 Diberikan sembarang matriks A dan diketahui bahwa λ adalah nilai eigennya. Maka terdapat vektor tak nol x sedemikian hingga

$$A\mathbf{x} = \lambda \mathbf{x}$$

kalikan kedua ruas dengan matriks A

$$A.Ax = A \lambda x$$

$$A^2$$
x = $\lambda(A$ **x**)

$$A^2\mathbf{x} = \lambda^2\mathbf{x}$$

substitusi **Ax** dengan **λx**

jadi,
$$\lambda^2$$
 merupakan nilai eigen A^2

Nilai eigen matriks pangkat

Nilai eigen dari A adalah 0, 2, dan 3.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix}$$

Akan dihitung nilai eigen untuk
$$A^2 = \begin{pmatrix} -1 & 5 & 5 \\ -6 & 12 & 12 \\ -4 & 2 & 2 \end{pmatrix}, A^{13}, A^{20}$$

Nilai eigen untuk A² adalah: 0, 4, dan 9

Nilai eigen untuk A^{13} adalah: 0, 2^{13} , dan 3^{13}

Nilai eigen untuk A^{20} adalah 0, 2^{20} , dan 3^{20}

Jika nilai eigen A diketahui, maka nilai Aⁿ bisa langsung ditentukan tanpa menghitung Aⁿ terlebih dahulu.

Nilai eigen matriks singular

• Misalkan λ = 0 merupakan nilai eigen dari A.

Maka 0 merupakan penyelesaian persamaan karakteristik:

dengan menganti λ dengan 0, diperoleh c0 = 0.

Padahal $det(A-\lambda I) = 0$, dengan $\lambda = 0$, maka det(A) = c0 = 0.

Karena det(A) = 0 maka A tidak mempunyai inverse.

• Sebaliknya, $det(A) = det(A - \lambda I)$ dengan mengambil $\lambda = 0$.

Jadi det(A) = c0.

Jika A tidak mempunyai inverse, maka det(A) = 0 = c0.

Sehingga λ = 0 merupakan salah satu penyelesaian persamaan karakteristik.

 λ = 0 merupakan salah satu nilai eigen dari *A*.

Teorema 7.2:

O adalah nilai eigen A jika dan hanya jika A tidak mempunyai inverse.

Nilai eigen matriks transpose

$$det(B) = det(B^{T})$$
$$(A-\lambda I)^{T} = (A^{T}-\lambda I)$$

Misalkan λ merupakan nilai eigen dari A, maka det $(A-\lambda I)=0$. Karena matriks dan transposenya mempunyai determinan yang sama, maka det $(A-\lambda I)^T=0$. Karena $(A-\lambda I)^T=(A^T-\lambda I)$, maka det $(A^T-\lambda I)=0$. Jadi, λ adalah nilai eigen dari A^T . Kesimpulan: A dan A^T mempunyai nilai eigen yang sama

Jeorema 7.3:

A dan A^T mempuyai nilai eigen yang sama.

Latihan 8

Tentukan apakah pernyataan di bawah ini bernilai benar atau salah!

- 1. Jika $A\mathbf{x} a\mathbf{x} = 0$ untuk skalar tak nol a, maka \mathbf{x} adalah vektor eigen.
- 2. Jika a bukan nilai eigen A, maka spl (aI A)x = 0 mempunyai tepat satu penyelesaian.
- 3. Setiap matriks identitas mempunyai satu nilai eigen 1
- 4. Matriks dengan nilai eigen 1 saja adalah matriks identitas.
- 5. Jika berikut ini adalah suku banyak karakteristik matriks A $p(\lambda) = (\lambda 1)^2 (\lambda 2)^3 (\lambda 3)$ maka A berukuran 5x5
- 6. Jika berikut ini adalah suku banyak karakteristik matriks A $p(\lambda) = (\lambda 1)^2 (\lambda 2)^3 (\lambda 3)$, maka A^2 tidak mempunyai inverse.

Kunci jawaban Latihan 8

Kunci:

- 1. SALAH, jika x vektor nol maka x bukan vektor eigen
- 2. BENAR
- 3. BENAR
- 4. SALAH
- 5. SALAH
- 6. SALAH

7.2 Ruang Eigen

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

7.2 Ruang Eigen

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Kelipatan skalar vektor eigen

Diberikan A. Diketahui bahwa **x** adalah vektor eigen A yang bersesuaian dengan nilai eigen 2. Selidiki apakah 1/2x, 10x, 5x juga vektor-vektor

eigen
$$A_1$$

$$\mathbf{x} = \begin{pmatrix} -4 \\ -6 \\ 2 \end{pmatrix}$$

$$\frac{1}{2}\mathbf{x} = \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$$

$$A\mathbf{x} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ -6 \\ 2 \end{pmatrix} = \begin{pmatrix} -8 \\ -12 \\ 4 \end{pmatrix} = 2\mathbf{x}$$

$$Ax = 2x$$

$$A\mathbf{x} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ -6 \\ 2 \end{pmatrix} = \begin{pmatrix} -8 \\ -12 \\ 4 \end{pmatrix} = 2\mathbf{x} \qquad A(10\mathbf{x}) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} -40 \\ -60 \\ 20 \end{pmatrix} = \begin{pmatrix} -80 \\ -120 \\ 40 \end{pmatrix} = 2(10\mathbf{x})$$

$$A(10\mathbf{x}) = 2(10\mathbf{x})$$

$$A \qquad \mathbf{x} \qquad = \qquad \lambda \qquad \mathbf{x}$$

$$A \qquad (10) \qquad \mathbf{x} \qquad = \qquad \lambda \qquad (10) \qquad \mathbf{x}$$

Bagaimana jika skalarnya 0?

Kelipatan skalar vektor eigen (lanjutan)

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} -4 \\ -6 \\ 2 \end{pmatrix}$$

$$A\mathbf{x} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ -6 \\ 2 \end{pmatrix} = \begin{pmatrix} -8 \\ -12 \\ 4 \end{pmatrix} = 2\mathbf{x}$$

$$Ax = 2x$$

$$\frac{1}{2}\mathbf{x} = \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$$

$$A\left(\frac{1}{2}\mathbf{x}\right) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ -6 \\ 2 \end{pmatrix} = 2\left(\frac{1}{2}\mathbf{x}\right)$$

$$A\left(\frac{1}{2}\right)x = 2\left(\frac{1}{2}\right)x$$

Kelipatan skalar (tak nol) dari vektor eigen adalah vektor eigen yang bersesuaian dengan nilai eigen yang sama

Menentukan semua vektor eigen E_{λ}

- Diberikan vektor matriks A dan salah satu nilai eigennya, misalnya λ . Tentukan semua vektor eigen yang bersesuaian dengan λ .
- Vektor-vektor eigen A yang bersesuaian dengan $\lambda = 3$ dapat diperoleh dengan menyelesaikan spl $(A \lambda I)x = 0$. Vektor eigen adalah anggota Null $(A \lambda I)$

Null($A - \lambda I$)

O

Null($A - \lambda I$)-{O}

Himpunan semua penyelesaian spl $(A - \lambda I)\mathbf{x} = 0$

Himpunan semua vektor eigen bersesuaian dengan λ

Ruang eigen

• Ruang eigen A yang bersesuaian dengan λ terdiri atas semua vektor eigen yang bersesuaian dengan λ dan vektor nol

Ruang penyelesaian spl $(A - \lambda I)\mathbf{x} = 0$ Null $(A - \lambda I)\mathbf{x}$

Ruang Eigen E_{λ}

• Menentukan E_{λ} sama dengan menentukan himpunan penyelesaian spl:

$$(A - \lambda I)x = 0$$

Prosedur menentukan ruang eigen

Diberikan A dan nilai eigen λ.

 E_{λ} ruang eigen A yang bersesuaian dengan λ diperoleh sbb:

- 1. Dibentuk spl homogen $(A \lambda I)\mathbf{x} = \mathbf{0}$
- 2. Selesaikan SPL homogen tersebut, diperoleh ruang Null($A \lambda I$)
- 3. Ruang eigen E_{λ} adalah ruang penyelesaian SPL homogen $(A \lambda I)\mathbf{x} = \mathbf{0}$

$$E_{\lambda} = \text{Null}(A - \lambda I)$$

Contoh: Menentukan ruang eigen E₂

Diberikan matriks A dan salah satu nilai eigennya, yaitu $\lambda = 3$. Akan ditentukan semua vektor eigen yang bersesuaian dengan $\lambda = 3$.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ -2 & 1 & 1 \end{pmatrix}$$

$$A - \lambda I = \begin{pmatrix} 1 - 3 & 1 & 1 \\ 0 & 3 - 3 & 3 \\ -2 & 1 & 1 - 3 \end{pmatrix}$$

Dibentuk spl(A-3I)x = 0

$$(A-3I)\mathbf{x} = \begin{pmatrix} 1-3 & 1 & 1 \\ 0 & 3-3 & 3 \\ -2 & 1 & 1-3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{array}{c} -2x_1 + x_2 + x_3 & = & 0 \\ 3x_3 & = & 0 \\ -2x_1 + x_2 - 2x_3 & = & 0 \end{array}$$

 $x_3 = 0$

$$-2x_1 + x_2 + x_3 = 0$$
$$3x_3 = 0$$
$$-2x_1 + x_2 - 2x_3 = 0$$

$$x_1 = a$$
Penyelesaian umum: $x_2 = 2a$
Himpunan penyelesaian:
$$\begin{cases} 1 \\ 2 \\ 0 \end{cases}, a \in R$$

$$x_3 = 0$$

Himpunan vektor eigen Abersesuaian dengan $\lambda = 3: \left\{ a \begin{bmatrix} 1 \\ 2 \end{bmatrix}, a \neq 0, a \in R \right\}$

Latihan 9: Menentukan ruang eigen

- 1. Apa hubungan ruang eigen E_{λ} dengan ruang Null($A \lambda I$)
- 2. Apakah setiap elemen ruang eigen merupakan vektor eigen?
- 3. Buatlah prosedur untuk menentukan basis ruang eigen matriks A yang bersesuaian dengan nilai eigen λ .

Jawaban:

- 1. $E_{\lambda} = \text{Null}(A \lambda I)$
- TIDAK, ada satu elemen ruang eigen yaitu 0 yang bukan vektor eigen.
 Salah satu syarat vektor eigen adalah vektor tersebut tidak boleh nol.
- 3. [Petunjuk: carilah basis dari Null($A \lambda I$)]

Refleksi

- Tuliskan 5 hal baru yang Anda pelajari dari modul ini.
- Tuliskan konsep apa saja yang masih belum Anda kuasai dengan baik.

Materi berikutkan: Diagonalisasi Matriks

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA