Q1 Machine Learning Project: Prediction of Confirmed Status of Detected Exoplanet Candidates

Alan Zhu and Leonardo Valli

Introduction

- Exoplanets are planets orbiting stars other than our sun
- Currently ~5,800 confirmed exoplanets
- Confirming exoplanet candidates is time-consuming
- Goal: Predict confirmed exoplanet status using data about detected exoplanets

Dataset

- Transiting Exoplanet Survey Satellite (TESS) Dataset
- 61 attributes identification, position, planet properties, stellar properties, dates.
- Class TESS Follow-Up Working Group Disposition (TFOPWG): Confirmed or rejected
- https://exofop.ipac.caltech.edu/tess/

Attribute	Meaning
TOI	TESS Object of Interest number - unique identifier for the exoplanet candidate
Planet Orbital Period [days]	Time the planet takes to make a complete orbit around its host star.
Planet Transit Depth [ppm]	The relative flux (brightness) decrease caused by the orbiting body transiting in front of the star.
Planet Radius [R_Earth]	Radius of the planet.
TESS Magnitude	Brightness of the planet.
Stellar Radius [R_Sun]	Radius of the host star.

Preprocessing

Preprocessing

Done in Python using Google Colab

Preprocessing - Instance Removal

- Remove instances of planets with no determined status
 - \circ 7,000 \rightarrow 2,000 instances
- Remove Instances with no class value

Preprocessing - Binary Encoding

- We made our class variable binary
 - Nown Planet (KP) and Confirmed Planet (CP) → True
 - ∘ False Positive (FP) and False Alarm (FA) \rightarrow False

```
[ ] df['TFOPWG Disposition'].replace(['KP', 'FA'], ['CP', 'FP'], inplace=True)
df['TFOPWG Disposition'].replace(['CP', 'FP'], ['True', 'False'], inplace=True)
```

No. Label Count W	/eight
1 KP 537 537	3
1 10	
2 CP 463 463	
3 PC 4623 4623	
4 APC 428 428	
5 FA 94 94	
6 FP 1070 1070	

Preprocessing - Preliminary Attribute Removal

- Attribute removal: remove attributes we no intuitively have no predictive power
 - Identifiers
 - Positions
 - Dates
 - Error
 - \circ 62 \rightarrow 22

```
[ ] df = df.drop(
        columns=[
            "TESS Mag err",
            "PM RA err (mas/yr)",
            "PM Dec err (mas/yr)",
            "Epoch (BJD) err",
            "Period (days) err",
             "Duration (hours) err",
             "Depth (mmag) err",
            "Depth (ppm) err",
            "Planet Radius (R_Earth) err",
            "Stellar Distance (pc) err",
             "Stellar Eff Temp (K) err",
            "Stellar log(g) (cm/s^2) err",
            "Stellar Radius (R_Sun) err",
            "Stellar Metallicity err",
             "Stellar Mass (M Sun) err",
        axis=1,
    ) # columns that are just the error of other columns
```

```
df = df.drop(
    columns=[
         "TOI",
        "TIC ID",
        "Master",
        "SG1A".
        "SG1B",
        "SG2",
        "SG3",
        "SG4",
        "SG5",
        "Previous CTOI",
        "TESS Disposition",
        "Planet Name",
        "Pipeline Signal ID",
        "Source",
        "Detection",
         "RA".
         "Dec",
        "PM RA (mas/yr)",
        "PM Dec (mas/yr)",
        "Epoch (BJD)",
        "Sectors",
        "Date TOI Alerted (UTC)",
        "Date TOI Updated (UTC)",
        "Date Modified",
        "Comments".
    axis=1.
 ) # columns that have no intuitive use for predictions
```


Preprocessing - Handling Missing Values

- Initially had 39072 missing values
- Remove columns with >75% missing
 - Stellar Metallicity
- Fill in with mean for columns with 0%<missing<75%

```
#deal with missing values
for col in df.columns:
  num missing = df[col].isnull().sum()
  percent missing = (num missing / len(df)) * 100
  print(f"Column '{col}': {num missing} missing values, {percent missing:.2f}% missing.")
  # If percentage of missing values is greater than 75%, drop the column
  if percent missing > 75:
      df.drop(columns=[col], inplace=True)
      print(f"Column '{col}' dropped due to high percentage of missing values.")
  elif percent_missing > 0:
    mean of col = df[col].mean()
    df[col].fillna(mean of col, inplace=True)
    print(f"Missing values in column '{col}' filled with mean value {mean of col}")
```


Preprocessing - Normalization

- Z-score normalization
 - Presence of outliers

```
[ ] for col in df.drop(columns=['TFOPWG Disposition'], axis=1).columns:
    mean = df[col].mean()
    std = df[col].std()

    for row in df.index:
        df.loc[row, col] = (df.loc[row, col]-mean)/std

df.head()
```


Preprocessing - Train test split

- Train-test-validation split: 70% / 15% / 15%
 - Stratified Random Sampling

```
from sklearn.model_selection import train_test_split

X = df.drop(columns = ['TFOPWG Disposition'], axis=1)
y = df['TFOPWG Disposition']

X_train, X_temp, y_train, y_temp = train_test_split(X, y, stratify=y, test_size=0.3)
X_test, X_val, y_test, y_val = train_test_split(X_temp, y_temp, stratify=y_temp, test_size=0.5)

X_train['TFOPWG Disposition'] = y_train
X_test['TFOPWG Disposition'] = y_test
X_val['TFOPWG Disposition'] = y_val
```

- Ended up using k-fold cross validation
 - Weka doesn't support train-test-validation split

Us when Weka didn't take our validation set

Attribute Selection

Correlation

Pearson Correlation Coefficient

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

```
Ranked attributes:
 0.3761
         14 Planet Equil Temp (K)
 0.3109
         20 Stellar Mass (M Sun)
 0.2617
         17 Stellar Eff Temp (K)
 0.2602
          18 Stellar log(g) (cm/s^2)
0.2548
           6 Imaging Observations
 0.2363
          4 Time Series Observations
 0.2334
          5 Spectroscopy Observations
0.1977
         16 Stellar Distance (pc)
0.1948
         13 Planet Insolation (Earth Flux)
0.1399
         19 Stellar Radius (R Sun)
 0.1342
         15 Planet SNR
 0.0877
         12 Planet Radius (R Earth)
 0.0653
           9 Duration (hours)
 0.0409
          11 Depth (ppm)
 0.04
           2 TSM
 0.0384
           3 Predicted Mass (M Earth)
 0.0296
          10 Depth (mmag)
 0.0185
          1 ESM
 0.0143
           8 Period (days)
 0.012
           7 TESS Mag
```

CFS Subset

- Correlation-based Feature Subset
- Evaluates intercorrelation
- 12 attributes


```
4,5,6,8,10,12,13,14,15,16,18,20 : 12
Time Series Observations
Spectroscopy Observations
Imaging Observations
Period (days)
Depth (mmag)
Planet Radius (R Earth)
Planet Insolation (Earth Flux)
Planet Equil Temp (K)
Planet SNR
Stellar Distance (pc)
Stellar log(g) (cm/s^2)
Stellar Mass (M Sun)
```

Gain Ratio

- Information gain (entropy)
- Expected value of information
- Probability distribution

$$H(P) = -\sum_{x \in C} P(x) \log P(x)$$

(Shannon entropy)

2 TSM

Relief

- Calculate feature score
- Closest same-class and different-class neighbors
- Association between attribute and class and inter-attribute relationships

p - dimensional space

- ★ Target Instance (e.g. Class '○')Instance with Class '○'
- Instance with Class 'X' (Zero instance weight)

(Zero instance weight)

- Instance with Class 'O'
 Nearest Neighbor(s) (Near)
- Instance with Class 'X' Nearest Neighbor(s) (Near)

```
Ranked attributes:
0.027226
            14 Planet Equil Temp (K)
0.015745
            20 Stellar Mass (M Sun)
0.011189
             4 Time Series Observations
0.010021
             7 TESS Mag
0.008191
            18 Stellar log(q) (cm/s^2)
0.007213
             5 Spectroscopy Observations
0.006352
             9 Duration (hours)
0.006173
             6 Imaging Observations
0.005643
            13 Planet Insolation (Earth Flux)
0.004976
            17 Stellar Eff Temp (K)
0.004535
            16 Stellar Distance (pc)
0.003795
             3 Predicted Mass (M Earth)
0.002523
            15 Planet SNR
0.002195
             1 ESM
0.001401
            11 Depth (ppm)
0.00132
            12 Planet Radius (R Earth)
0.00099
            10 Depth (mmag)
0.000871
            19 Stellar Radius (R Sun)
0.000841
             2 TSM
0.000662
             8 Period (days)
```

Self-Selected

- Planetary characteristics
- Stellar characteristics
- Significance (depth, SNR)
- Number of observations

Depth (ppm) Planet Radius (R_Earth) Planet Insolation Planet Equil Temp (K) Planet SNR Stellar Eff Temp (K) Stellar log(q) (cm/s^2) Stellar Radius (R_Sun) Stellar Mass (M_Sun) Time Series Observations Spectroscopy Observations Imaging Observations

Classification

Classification - OneR

For every attribute in the training data:

For every value for that attribute:

For every class value:

Calculate error for the rule value -> class value Remember the best performing rule for this value

Remember the best performing rules for this attribute

Final rules = best performing rules from one attribute

		Play	Golf
7	*	Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3

IF Outlook = Sunny THEN PlayGolf = Yes
IF Outlook = Overcast THEN PlayGolf = Yes
IF Outlook = Rainy THEN PlayGolf = No

Classification - NaiveBayes

For every class value:

Find percentage of training data that is that class

For every attribute:

For every value of that attribute:

Calculate likelihood of that class having that value

Classification = max(percentage * likelihoods)

Classification - MultilayerPerceptron

Initialize random base weights for network

For every instance in the training set:

Make prediction using current weights

Calculate loss (e.g., Mean Squared Error) by comparing prediction to actual class

For every weight in the NeuralNet:

Update via gradient descent

Classification - J48

```
Planet Equil Temp (K) <= -0.024019

| Stellar Distance (pc) <= -0.543783

| Depth (mmag) <= 0.005916

| Planet SNR <= -0.37245: False (2.0)

| Planet SNR > -0.37245: True (51.0/10.0)

| Depth (mmag) > 0.005916: False (5.0/1.0)

| Stellar Distance (pc) > -0.543783: False (300.0/90.0)

Planet Equil Temp (K) > -0.024019: False (416.0/26.0)
```

Classification - RandomForests

For i in range(n):

Create decision tree

For i in range(n): #Classification

Have the i-th decision tree make a prediction on the test instance Classification = Class with the most votes from the decision trees

Results

Results - Accuracies

Accuracy

		Attribute Selection Method						
		Correlation Attribute Eval	Gain Ratio Attribute Eval	ReliefF Attribute Eval	Cfs Subset Eval	Our Choice of Attribute Subset		
	OneR	66.54%	66.54%	67.05%	66.54%	66.54%		
Classifi cation	NaiveBayes	65.53%	63.22%	67.51%	62.80%	65.99%		
Method	RandomForests	87.38%	86.65%	86.83%	87.89%	86.46%		
	MultilayerPerceptron	79.99%	79.02%	82.39%	80.73%	80.45%		

Results - Area under ROC Curve

ROC Area

		Attribute Selection Method							
		Correlation Attribute Eval	Gain Ratio Attribute Eval	ReliefF Attribute Eval	Cfs Subset Eval	Our Choice of Attribute Subset			
	OneR	0.665	0.665	0.670	0.665	0.665			
Classifi cation	NaiveBayes	0.815	0.803	0.801	0.803	0.820			
Method	RandomForests	0.945	0.937	0.941	0.949	0.943			
	MultilayerPerceptron	0.887	0.869	0.886	0.884	0.881			

Results - Confusion Matrices

Correlation Attribute Eval

-	O	1eR			Naive	Bayes	
		Pred	licted		4	Pred	licted
		True	False			True	False
ıal	True	663	337	la la	True	912	88
Actu	False	387	777	Actu	False	658	506
Actual	00.0	200000		Actual	1 200 0	100000	

Randon	nForests		2	Multilayer	rPerceptron		
	Pred	icted			Predicted		
	True	False			True	False	
True	873	127	- E	True	794	206	
False	146	1018	Actual	False	227	937	

False

135

1029

Gain Ratio Attribute Eval

OneR				Naive	Bayes	
	Predicted				Pred	licted
	True	False			True	False
True	663	337	la la	True	925	75
False	387	777	Actu	False	721	443
Randor	nForests			Multilavei	Percentro	n
	True False	Pred True True 663	Predicted True False True 663 337 False 387 777	Predicted	Predicted True False True 663 337 False 387 777 True False	Predicted Pred True False True True 925 False 387 777 False 721

	Randor	nForests			Multilayer	Perceptro	n
		Pred	licted			Pred	icted
		True	False			True	False
<u></u>	True	871	129	<u>a</u>	True	796	204
Actual	False	160	1004	Actual	False	250	914

ReliefF Attribute Eval

	O ₁	neK			Naive	Bayes	
		Pred	licted			Pred	licted
		True	False			True	False
<u>a</u>	True	665	335	<u> </u>	True	863	137
Actual	False	378	786	Actual	False	566	598
	Randoi	nForests			Multilayer	Perceptro	n
		Pred	licted			Pred	licted
		True	False			True	False
<u></u>	True	867	133	<u></u>	True	854	146

False

235

929

Cfs Subset Eval

	O	neR		20	Naive	Bayes	
		Pred	licted			Pred	licted
		True	False			True	False
lal	True	663	337	la	True	906	94
Actual	False	387	777	Actual	False	711	453
	Rando	nForests			Multilayer	Perceptro	n
		Pred	licted			Pred	licted
		True	False			True	False
=	True	873	127		True	808	192

False

225

939

Our Choice of Attribute Subset

False

152

1012

	Oı	neR			Naive	Bayes	
		Predicted				Pred	licted
		True	False			True	False
ıal	True	663	337	la la	True	921	79
Actual	False	387	777	Actual	False	657	507

	RandomForests				MultilayerPerceptron			
		Predicted				Predicted		
		True	False			True	Fals	
<u> </u>	True	866	134	Actual	True	808	192	
Actual	False	159	1005		False	231	933	
l)		l:				I :		

Final Precision: 0.866 Final Recall: 0.873

Conclusions

Conclusions

- Our model is highly accurate (88%) at predicting confirmed exoplanet status
- Can be used as a tool to assist astronomers in confirming exoplanets
- Selecting priority follow-up observations
- Save valuable time: research telescopes, computing clusters, scientists
- No ML model has been developed for this dataset before
- Possible future direction: train a larger neural network

96% accuracy with astronomers' input

Thanks for your attention;)