

INF351 – Computación de Alto Desempeño

Microarquitecturas y Características

PROF. ÁLVARO SALINAS

Microarquitecturas

Las microarquitecturas corresponden a las distintas organizaciones de un dispositivo respecto a diseños y tecnologías.

En las GPU de NVIDIA capaces de utilizar CUDA se distinguen las siguientes según su orden de lanzamiento:

- Tesla
- Fermi
- Kepler
- Maxwell
- Pascal
- Volta
- Turing

Tesla

Lanzamiento: 2006

Compute capability: 1.x

CUDA cores per SM: 8

- Soporte para CUDA
- Unified shader model
- Streaming multiprocessors (SM)

Fermi

Lanzamiento: 2009

Compute capability: 2.x

CUDA cores per SM: 32

- Más CUDA cores
- GigaThread global scheduler
- Soporte para FP64

Fermi

Kepler

Lanzamiento: 2012

Compute capability: 3.x

CUDA cores per SM (SMX): 192

- Más CUDA cores
- Warps de 32 subprocesos
- SMX son más eficientes en power consumption

Kepler

Kepler

Maxwell

Lanzamiento: 2014

Compute capability: 5.x

CUDA cores per SM (SMM): 128

- Gran aumento de memoria L2 cache
- SMM sacrifican un poco de performance por mucha eficiencia

Maxwell

Pascal

Lanzamiento: 2016

Compute capability: 6.x

CUDA cores per SM: 64

- High Bandwith Memory 2
- Operaciones de FP16 se realizan el doble de rápido que operaciones de FP32, y éstas a su vez, el doble de rápido que las de FP64
- Más registros por CUDA core y más Shared Memory
- Dynamic scheduler

Pascal

Volta

Lanzamiento: 2017

Compute capability: 7.x

CUDA cores per SM: 64

- Tensor cores
- NVLink 2.0 (solo Tesla)

Volta

Turing

Lanzamiento: 2018

Compute capability: 7.5

CUDA cores per SM: 64

Principales cambios respecto a su predecesor:

Ray-Tracing (RT) cores

Turing

Evolución

Diferencias según compute capability

Para saber cuáles son las características soportadas por cada compute capability, así también como las especificaciones técnicas de cada generación, consulte el siguiente link:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications

Para consultar la compute capability de su dispositivo, acceda al siguiente link:

https://en.wikipedia.org/wiki/CUDA#GPUs supported