المحتويات

	ول: المتجهات	الفصل الأو
2	مقدمة	1 - 1
2	تعريف المتجهات	2 - 1
2	العمليات على المتجهات (العمليات الجبرية)	3 - 1
4	خواص المتجهات	4 - 1
4	متجه الوحدة	5 - 1
5	الضرب العددي النقطي	6 - 1
5	الزاوية بين المتجهين	7 - 1
5	الضرب الاتحاهي	8 - 1

الفصل الأول المتجهات

المتجهات المتجهات

1 - 1 مقدمة

المتجهات او ما يطلق عليها الكمية المتجهة هي طريقة يتم من خلالها قياس الكميات و التعرف على مقادير الاشياء. وقد تكون معرفة الكمية المتجهة من الامور الطبيعية في حياتنا و التي لها فو ائد متعددة في جميع المجالات الحياتية

1 - 2 تعريف المتجهات

هي كميات رياضية لها مقدار واتجاه. تستخدم المتجهات في العديد من المجالات مثل: الملاحة والطيران والطقس. تتميز المتجهات بخصائص مثل: الجمع والطرح والضرب.

1 - 3 العمليات على المتجهات (العمليات الجبرية)

1. جمع المتجهات

عند جمع متجهين معاً يصبح عندها متجه جديد يختلف عنهما بالمقدار والاتجاه. ويمكن التعبير عن ذلك بالعلاقة

$$\vec{U} + \vec{V} = (U_1, U_2, \dots, U_n) + (V_1, V_2, \dots, V_n)$$
$$= (U_1 + V_1, U_2 + V_2, \dots, U_n + V_n)$$

مثال 1 - 3 - 1

لجمع المتجهين

الفصل الأول

و
$$(5,4)$$
 و $(5,4)$ نتبع الخطوات التالية $\vec{W}=(3,-2)$ $\vec{W}+\vec{V}=(5,4)+(3,-2)$ $=(5+3,4-2)$ $=(8,2)$

2. طرح المتجهات

يعطى بالعلاقة التالية

$$\vec{U} - \vec{V} = \vec{U} + (-\vec{V})$$

مثال 1 - 3 - 2

ليكن
$$\vec{V}=(5,7), \vec{W}=(4,2)$$
 فإن

$$\vec{V} - \vec{W} = (5,7) + (-4,-2)$$

= $(5-4,7-2)$
= $(1,5)$

اي بمعنى اخذ النظير الجمعي للمتجه الثاني وتصبح العملية كأنها عملية جمع.

3. ضرب عدد في متجه

عند ضرب عدد في متجه يتغير الطول فقط. وعند ضرب المتجه في عدد سالب يتغير الاتجاه، للتعبير عنه يعطى بالعلاقة التالية

$$k\vec{U} = k(U_1, U_2, \dots, U_n)$$
$$= (kU_1, kU_2, \dots, kU_n)$$

مثال 1 - 3 - 3

$$\vec{V} = (1, -9, 0, 2)$$
 جد ناتج

الحل

$$k = 12, \vec{V} = (1, -9, 0, 2)$$

$$k\vec{V} = 12(1, -9, 0, 2)$$

الفصل الأول

$$= (12 \times 1, 12 \times -9, 12 \times 0, 12 \times 2)$$
$$= (12, -108, 0, 24)$$

1 - 4 خواص المتجهات

لتكن $\vec{U}, \vec{V}, \vec{W}$ متجهات في \mathbb{R}^n و لتكن

$$1. \ \vec{U} + \vec{V} = \vec{V} + \vec{U}$$

2.
$$(\vec{U} + \vec{V}) + \vec{W} = \vec{U} + (\vec{V} + \vec{W})$$

3.
$$\vec{U} + \vec{0} = \vec{0} + \vec{U} = \vec{U}$$

4.
$$\vec{U} + (-\vec{U}) = \vec{0}$$

5.
$$(ck)\vec{U} = c(k\vec{U})$$

6.
$$k(\vec{U} + \vec{V}) = k\vec{U} + k\vec{V}$$

7.
$$(c+k)\vec{U} = c\vec{U} + k\vec{U}$$

8.
$$1 \cdot \vec{U} = \vec{U}$$

1 - 5 متجه الوحدة

هو متجه ذو مقدار وحدة واحدة، يستخدم عادةً للاشارة الى الاتجاه. يعطى بالعلاقة التالية

$$\vec{U} = \frac{1}{||\vec{V}||} \cdot \vec{V}$$

مثال 1 - 5 - 1

ليكن $\vec{W}=(4,-2,1)$ متجه. جد متجه الوحدة

الحل

$$\vec{U} = \frac{1}{||\vec{W}||} \cdot \vec{W}$$

$$||W|| = \sqrt{4^2 + (-2)^2 + 1^2}$$
$$= \sqrt{16 + 4 + 1}$$
$$= \sqrt{21}$$

$$\vec{U} = \frac{1}{\sqrt{21}} \cdot (4, -2, 1) = \left(\frac{4}{\sqrt{21}}, \frac{-2}{\sqrt{21}}, \frac{1}{\sqrt{21}}\right)$$

1 - 6 الضرب العددي النقطي

ليكن \vec{U} , \vec{V} متجهين في \mathbb{R}^n فإن الضرب النقطى لهما يعطى بالعلاقة

$$\vec{U} \cdot \vec{V} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

لضرب متجهين جبرياً نقطياً. نقوم بضرب العدد الاول من المتجه الاول في العدد الاول من المتجه الثاني، العدد الثاني من المتجه الاول في العدد الثاني من المتجه الثاني و هكذا...

مثال 1 - 6 - 1

$$ec{U}\cdotec{V}$$
 اوجد $ec{U}=(-8,0,-12),$ اوجد $ec{U}=(5,7,1)$

الحل

$$\vec{U} \cdot \vec{V} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

$$= (-8)(5) + (0)(7) + (-12)(1)$$

$$= -40 + 0 - 12$$

$$= -52$$

خواص الضرب النقطي

1.
$$\vec{U} \cdot \vec{V} = \vec{V} \cdot \vec{U}$$

2.
$$\vec{U} \cdot (\vec{V} + \vec{W}) = \vec{U} \cdot \vec{V} + \vec{U} \cdot \vec{W}$$

3.
$$k(\vec{U} \cdot \vec{V}) = (k\vec{U}) \cdot \vec{V}$$

4.
$$\vec{V} \cdot \vec{V} = ||\vec{V}||^2$$

5.
$$\vec{V} \cdot \vec{0} = \vec{0}$$

1 - 7 الزاوية بين المتجهين

تعطى بالعلاقة التالية

$$\cos \alpha = \frac{\vec{U} \cdot \vec{V}}{||\vec{U}|| \cdot ||\vec{V}||}$$

من العلاقة السابقة نستطيع ان نحصل على

$$\vec{U} \cdot \vec{V} = ||\vec{U}|| \cdot ||\vec{V}|| \cdot \cos \alpha$$

مثال 1 - 7 - 1

ليكن المتجهين هذين المتجهين جد الزاوية بين المتجهين المتجهين المتجهين المتجهين المتجهين المتجهين المتجهين المتح

الحل

$$\vec{U} \cdot \vec{V} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

$$= (1)(0) + (0)(0) + (0)(1)$$

$$= 0 + 0 + 0$$

$$= 0$$

$$||\vec{U}|| = \sqrt{1^2 + 0^2 + 0^2} = \sqrt{1} = 1$$

$$||\vec{V}|| = \sqrt{0^2 + 0^2 + 1^2} = \sqrt{1} = 1$$

$$\cos \alpha = \frac{\vec{U} \cdot \vec{V}}{||\vec{U}|| \cdot ||\vec{V}||} = \frac{0}{1} = 0$$

$$\Rightarrow \alpha = \frac{\pi}{2}$$

1 - 8 الضرب الاتجاهي

ليكن \vec{U} , \vec{V} متجهين في \mathbb{R}^3 فإن الضرب الاتجاهي لهما يكون كالاتي

$$\vec{U} \times \vec{V} = \begin{vmatrix} i & j & k \\ U_1 & U_2 & U_3 \\ V_1 & V_2 & V_3 \end{vmatrix}$$
$$= i(U_2V_3 - U_3V_2) - j(U_1V_3 - U_3V_1) + k(U_1V_2 - U_2V_1)$$

مثال 1 - 8 - 1

$$ec{U} imes ec{V}$$
 اوجد $ec{U} = (2,3,-2), ec{V} = (1,-1,0)$ ليكن

الحل

$$\vec{U} \times \vec{V} = \begin{vmatrix} i & j & k \\ 2 & 3 & -2 \\ 1 & -1 & 0 \end{vmatrix}$$

$$= i[(3)(0) - (-2)(-1)] - j[(2)(0) - (-2)(1)] + k[(2)(-1) - (3)(1)]$$

$$= i(0-2) - j(0+2) + k(-2-3)$$

$$= -2i - 2j - 5k$$

خصائص الضرب الاتجاهى

1.
$$\vec{U} \times \vec{V} = -(\vec{V} \times \vec{U})$$

2.
$$\vec{U} \times (\vec{V} + \vec{W}) = (\vec{U} \times \vec{V}) + (\vec{U} \times \vec{V})$$

3.
$$(\vec{U} + \vec{V}) \times \vec{W} = (\vec{U} \times \vec{W}) + (\vec{U} \times \vec{W})$$

4.
$$c(\vec{U} \times \vec{V}) = (c\vec{U}) \times \vec{V} = \vec{U} \times (c\vec{V})$$

5.
$$\vec{U} \times \vec{0} = \vec{0} \times \vec{U} = \vec{0}$$

6.
$$\vec{U} \times \vec{U} = \vec{0}$$

متطابقة لاكرانج

$$\left\|\vec{U}\times\vec{V}\right\|^2 = \left\|\vec{U}\right\|^2 \cdot \left\|\vec{V}\right\|^2 - (\vec{U}\cdot\vec{V})^2$$

مثال 1 - 8 - 2

لیکن (
$$\vec{U}=(-2,1,0), \vec{V}=(4,2,-5)$$
 طبق متطابقة لاکر انج علیهما

الحل

$$\vec{U} \times \vec{V} = \begin{vmatrix} i & j & k \\ -2 & 1 & 0 \\ 4 & 2 & -5 \end{vmatrix}$$
$$= i(-5 - 0) - j(10 - 0) + k(-4 - 4)$$
$$= -5i - 10j - 8k$$

المتجهات

$$\|\vec{U} \times \vec{V}\|^2 = (-5)^2 + (-10)^2 + (-8)^2$$
$$= 25 + 100 + 64$$
$$= 189$$

$$\|\vec{U}\|^2 = (-2)^2 + 1^2 + 0^2$$

$$= 4 + 1 + 0$$

$$= 5$$

$$\|\vec{V}\|^2 = 4^2 + 2^2 + (-5)^2$$
$$= 16 + 4 + 25$$
$$= 45$$

$$(\vec{U} \cdot \vec{V})^2 = [(-2, 1, 0) \cdot (4, 2, -5)]^2$$
$$= (-8 + 2 + 0)^2$$
$$= (-6)^2$$
$$= 36$$

نطبق العلاقة

$$189 = 5 \times 45 - 36$$
$$189 = 225 - 36$$
$$189 = 189$$

اذن نلاحظ ان الطرف الايمن يجب ان يساوي الطرف الايسر لكي يحقق المتطابقة.