PROBLEM SET 3

16822 GEOMETRY-BASED METHODS IN VISION (FALL 20224)

https://piazza.com/cmu/fall2024/16822b

OUT: Oct. 8, 2024 DUE: Oct. 22, 2024 11:59 PM Instructor: Shubham Tulsiani TAs: Jianjin Xu, Easton Potokar

START HERE: Instructions

• Collaboration policy: All are encouraged to work together BUT you must do your own work (code and write up). If you work with someone, please include their name in your write up and cite any code that has been discussed. If we find highly identical write-ups or code without proper accreditation of collaborators, we will take action according to university policies, i.e. you will likely fail the course. See the Academic Integrity Section detailed in the initial lecture for more information.

• Submitting your work:

- We will be using Gradescope (https://gradescope.com/) to submit the Problem Sets. Please use the provided template. Submissions can be written in LaTeX, or submitted as a scanned PDF. Regrade requests can be made, however this gives the TA the opportunity to regrade your entire paper, meaning if additional mistakes are found then points will be deducted. Each derivation/proof should be completed on a separate page. For short answer questions you should include your work in your solution.
- For questions where you must fill in a blank, please make sure your final answer is fully included in the given space. You may cross out answers or parts of answers, but the final answer must still be within the given space. We accept either LaTex pdfs or scanned documents as long as the location of each question is annotated properly.
- Materials: The data that you will need in order to complete this assignment is posted along with the writeup and template on Piazza.

1 Two-view Geometry [22 pts]

- 1. **[4 pts]** Given $\mathbf{F} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 4 & 6 & \mathbf{x} \end{bmatrix}$:
 - (a) Find x if F is a valid fundamental matrix.

(b) Compute epipoles e and e' for the computed value of x.

3. **[6 pts]** Given two affine cameras $\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ and $\mathbf{P'} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ 0 & 0 & 0 & 1 \end{bmatrix}$, show that any two distinct epipolar lines in the second image are parallel.

	statements true or false?
	era with zero-skew undergoing a translation-only motion, the epipolar lines are parallel translation component along the view direction is 0.
	translation compoenent along the view direction is 0.
(b) $\mathbf{F} = \mathbf{E}$ if and	I only if $\mathbf{K} = \mathbf{K}' = \mathbf{I}$.
(c) Assuming \mathbf{x}_1	, \mathbf{x}_2 , \mathbf{e} are distinct, \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{e} are collinear if and only if $\mathbf{F}\mathbf{x}_1 = \mathbf{F}\mathbf{x}_2$.
(d) If the: al:	
(a) II the vanishii	ng line of a plane contains the epipole, then the plane is parallel to the baseline.

2 Two-view Calibration [38 pts]

a) [6 pts] De	esign an algorithm	ı to compute F	in such case.			
b) [2 pt] Wh	nat is the minimun	n number of suc	ch correspond	ences needed	?	

(a) [2 nt] Assı	uming $N>>$	9 and several	l points are c	hosen in a noi	n-degenerate y	wav	
(a) [2 pt] 1155t			points are e		- degenerate	way.	
b) [4 ptc] Acc	uming N >>	0 but all poi	into lia on a c	ommon plone	in 2D ange		
b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	uming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	uming N >>	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	euming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
b) [4 pts] Ass	suming N >>	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
(b) [4 pts] Ass	suming N >>	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
(b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		
(b) [4 pts] Ass	suming $N >>$	9, but all poi	ints lie on a c	ommon plane	e in 3D space.		

8.	Consider the problem of estimating the fundamental matrix from a set of 8 correspondences $(\mathbf{p}, \mathbf{p}')_i \ \forall i \in [1, 8]$. We denote the image coordinates as $\mathbf{p} = (u, v, 1)$, $\mathbf{p}' = (u', v', 1)$, the fundamental matrix as \mathbf{F} with each entry as \mathbf{F}_{ij} . Assuming $\mathbf{F}_{33} \neq 0$, we can set $\mathbf{F}_{33} = 1$, and obtain a set of 8 linear equations
	of the form $\mathbf{Af} = -1_8$, where 1_8 is the 8 vector of ones, $\mathbf{f} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} & \dots & \mathbf{F}_{32} \end{bmatrix}^{\top}$ (note that this \mathbf{f} is different from the vector used in lectures for the 8-pt algorithm – it only has 8 elements.)
	(a) [2 pts] Express A in terms of (u, v) (expressing one row suffices).
	(b) [6 pts] If A is singular, show that there exists a 3×3 matrix Q that is different from F , such that for all 8 correspondence, we have $\mathbf{p}_i^{\prime \top} \mathbf{Q} \mathbf{p}_i = 0$.

(c) [6 pts] Show that the eight points in \mathbb{P}^3 corresponding to $(\mathbf{p}, \mathbf{p}')_i \ \forall i \in [1, 8]$ must lie surface. (Hint, a quadric \mathbf{S} is defined by the equation $\mathbf{X}^T \mathbf{S} \mathbf{X} = 0$, where \mathbf{S} is a symmetric	on a quadric 4×4 matrix).
(d) [4 pts] Show that the optical centers C and C' of the two cameras lie on this quadric.	

3 Two-view Reconstruction [10 pts]

- 9. Suppose $\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, and $\mathbf{P} = [\mathbf{I}|0]$:
 - (a) [4 pts] Find a feasible P' = [M|m].

(b) [2 pt] Find another distinct solution for P'.

a) Change (
b) Change (f_x, f_y, f_x', f_y'	$\binom{y}{y}$ to $(f_x/2)$	$2, f_y/2, f_x'$	$/2, f_y'/2$).		
b) Change (f_x, f_y, f_x', f_y'	$\binom{y}{y}$ to $\left(f_x/2\right)$	$2, f_y/2, f_x'$	$/2, f_y'/2$).		
b) Change (f_x, f_y, f_x', f_y'	$\binom{y}{y}$ to $\left(f_x/2\right)$	$2, f_y/2, f_x'$	$/2, f_y'/2$).		
b) Change (f_x, f_y, f_x', f_y'	$\binom{y}{y}$ to $\left(f_x/2\right)$	$2, f_y/2, f_x'$	$/2, f_y'/2$).		
b) Change (f_x, f_y, f_x', f_y'	$\binom{y}{y}$ to $(f_x/2)$	$2,f_y/2,f_x'$	$/2, f'_y/2$).		
b) Change (f_x, f_y, f_x', f_y'	$\binom{y}{y}$ to $\left(f_x/2\right)$	$2,f_y/2,f_x'$	$/2, f'_y/2$).		
b) Change (f_x, f_y, f_x', f_y'	$\binom{y}{y}$ to $(f_x/2)$	$2, f_y/2, f_x'$	$/2, f'_y/2$).		
b) Change (f_x, f_y, f_x', f_y'	$\binom{y}{y}$ to $(f_x/2)$	$2, f_y/2, f_x'$	$/2, f'_y/2$).		
b) Change (f_x, f_y, f_x', f_y'	$\binom{y}{y}$ to $(f_x/2)$	$2, f_y/2, f_x'$	$/2, f_y'/2$).		
b) Change (f_x, f_y, f_x', f_y'	(f_x) to $(f_x/2)$	$2,f_y/2,f_x'$	$/2, f_y'/2$).		
b) Change (f_x, f_y, f_x', f_y'	(y) to $(f_x/2)$	$2,f_y/2,f_x'$	$/2, f_y'/2$).		
b) Change (f_x, f_y, f_x', f_y'	(y) to $(f_x/2)$	$2,f_y/2,f_x'$	$/2, f_y'/2$).		
b) Change (f_x, f_y, f_x', f_y'	(y) to $(f_x/2)$	$2,f_y/2,f_x'$	$/2, f'_y/2$).		
b) Change (f_x, f_y, f_x', f_y'	(y) to $(f_x/2)$	$2, f_y/2, f_x'$	$/2, f'_y/2$).		
b) Change (f_x, f_y, f_x', f_y'	(y) to $(f_x/2)$	$(2,f_y/2,f_x')$	$/2, f_y'/2$).		

Attendance	Question: Among Lectures 12-15, how many did you attend in person?
Collaborati	ion Questions Please answer the following:
1. Did y	ou receive any help whatsoever from anyone in solving this assignment?
	○ Yes
	○ No
•]	If you answered 'Yes', give full details:
• ((e.g. "Jane Doe explained to me what is asked in Question 3.4")
2. Did v	ou give any help whatsoever to anyone in solving this assignment?
,	Yes
	○ No
•]	If you answered 'Yes', give full details:
	(e.g. "I pointed Joe Smith to section 2.3 since he didn't know how to proceed with Question 2")
3. Did y	ou find or come across code that implements any part of this assignment?
	○ Yes
	○ No
•]	If you answered 'Yes', give full details (book & page, URL & location within the page, etc.).