Методические указания к выполнению расчётно-графической работы по теме

«Геометрия»

Расчетно-графические работы выполняются командами студентов (по 3-4 человека) и заключаются в выполнении заданий, оформлении отчета и его защите в форме доклада. Сформированные команды сами выбирают себе номер от 1 до 8 так, чтобы у каждой команды он был уникальный. Защита работ проходит в конце модуля.

К расчетно-графической работе предъявляются следующие требования:

- 1) к выполнению заданий в работе должны быть:
 - а. представлены в логической последовательности основные этапы исследования или решения;
 - b. указаны используемые теоретические положения и методы;
 - с. получены точные численные результаты и построены требуемые графические изображения;
- 2) к оформлению отчета отчет должен быть выполнен в электронном виде в одном из следующих форматов: doc, docx или ppt, pptx (для ppt, pptx используется шаблон Университета ИТМО (ИСУ -> Полезные ссылки -> Корпоративная стилистика -> Презентации (в самом низу))

и содержать:

- а. титульный лист/слайд (название дисциплины, номер модуля, учебный год, название РГР, ФИ исполнителя, номера групп, дата, место (Университет ИТМО));
- b. условия всех заданий;
- с. основные этапы решения (исследования) каждой задачи, его теоретическое обоснование, численные результаты;
- d. графики или рисунки, иллюстрирующие решение каждой задачи (выполненные в математическом редакторе Desmos: https://www.desmos.com/ или Geogebra: https://www.geogebra.org/). В случае интерактивных графиков и рисунков допускается вставить в отчёт вместо них ссылки на рабочие листы математического редактора и при защите демонстрировать их отдельно;
- е. выводы;
- f. оценочный лист (для работы, выполненной командой; при этом вклад каждого исполнителя оценивается всей командой по шкале от 0 до 5 баллов).
- 3) к докладу для доклада отводится от 7 до 10 минут. Доклад подкрепляется демонстрацией отчёта, который выводится на экран ноутбука или проецируется на экран в мультимедийной аудитории. Во время доклада оценивается качество устного изложения материала и ответы на вопросы по теме работы. Доклад должен содержать:
 - а. постановку задачи;
 - изложение основных этапов исследования или решения;
 - с. ссылки на теоретический материал, используемый при исследовании и решении;
 - d. результаты исследования или решения и их оценку;
 - е. выводы.

Задание 1. Исследование и построение траекторий движения небесных тел

Пункты 1, 2, 3 и 5 задания выполняются всеми командами без вариантов, пункт 4 – по вариантам. Для графического представления рекомендуется использовать редактор Desmos.

Из законов Ньютона и Кеплера можно вывести уравнение траектории небесного тела массой m под действием силы тяготения со стороны небесного тела массой M. Если M много больше m, то движением большего тела можно пренебречь, считать тело неподвижным и совместить с ним начало полярной системы координат (СК). В такой СК уравнение траектории меньшего тела будет иметь следующий вид:

$$r\left(\varphi\right) = \frac{p}{1 - \mathcal{E}\cos\left(\varphi - \mathcal{Q}\right)},$$

где α – угол между фокальной осью и полярной осью СК, ε – эксцентриситет, p – фокальный параметр.

- 1) Исследуйте вид траектории движения меньшего тела в зависимости от параметров ε и α при фиксированном p (задаётся произвольно).
- 2) Сделайте вывод о влиянии параметров ε и α на расположение, вид и свойства кривой.
- 3) Используя переход в ДПСК: $x' = r\cos(\varphi \alpha)$, $y' = r\cos(\varphi \alpha)$, получите уравнение кривой в каноническом виде. Соотнесите результаты, полученные аналитически, с результатами графического исследования. Сделайте вывод о влиянии ε на параметры канонического уравнения кривой.
- 4) Пользуясь справочными данными об эксцентриситете, афелии и перигелии планет (например: http://galspace.spb.ru/xaracteris.html), вычислите значение параметра p в полярном уравнении кривой для двух небесных тел, выясните геометрический смысл этого параметра.

№ команды	1	2	3	4	5	6	7	8
Небесное тело 1	Меркури й	Сатурн	Марс	Плутон	Меркури й	Плутон	Марс	Юпитер
Небесное тело 2	Земля	Нептун	Юпитер	Нептун	Венера	Сатурн	Земля	Земля

5) Выясните, что такое космическая скорость, и установите, какие физические характеристики тела влияют на траекторию его движения в Солнечной системе (определяют значение эксцентриситета).

Задание 2. Поверхности второго порядка

Задания выполняются командами по вариантам. Для графического представления рекомендуется использовать редактор GeoGebra.

Даны уравнения следующих поверхностей:

№ команд ы	Поверхность 1	Поверхность 2
1	$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = 1$, $z \le 0$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z - z_0, z_0 < 0$
2	$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$
3	$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = 0 , z \le 0$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{(z - z_0)^2}{c^2} = -1, z - z_0 \ge 0, z_0 < 0$
4	$\frac{x^2}{A^2} + \frac{y^2}{B^2} = z$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
5	$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0 , z \ge 0$
6	$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = -1, z \ge 0$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$
7	$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = 1, z \le 0$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
8	$\frac{x^2}{A^2} + \frac{y^2}{B^2} = -z$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{(z - z_0)^2}{c^2} = -1, z - z_0 \ge 0, z_0 < 0$

- 1) Зафиксируйте параметры A, B, C первой поверхности. Изменяя параметры a, b, c, $z_{\scriptscriptstyle 0}$ второй поверхности, проведите графическое исследование формы пересечения поверхностей.
- 2) Подберите параметры второй поверхности так, чтобы линия пересечения являлась плоской кривой. Выведите её уравнение.

Всем удачи!