Title

Songyu Ye

March 20, 2025

Abstract

Abstract

Contents

1	Vector bundles and connections	1
2	Principal bundles and connections	2
3	Associated bundle construction	3
4	Local systems	4
5	Nonabelian Hodge theory	4
6	Geometric Langlands Program	4

1 Vector bundles and connections

This section follows definitions from [?].

Lemma 1.1. Let M be an \mathcal{O}_X -module. Giving a left \mathcal{D}_X -module structure on M extending the \mathcal{O}_X -module structure is equivalent to giving a \mathbb{C} -linear morphism

$$\nabla: \Theta_X \to \mathcal{E}nd_{\mathbb{C}}(M) \quad (\theta \mapsto \nabla_{\theta}),$$

satisfying the following conditions:

1.
$$\nabla_{f\theta}(s) = f\nabla_{\theta}(s) \quad (f \in \mathcal{O}_X, \theta \in \Theta_X, s \in M)$$

2.
$$\nabla_{\theta}(fs) = \theta(f)s + f\nabla_{\theta}(s) \quad (f \in \mathcal{O}_X, \theta \in \Theta_X, s \in M)$$

3.
$$\nabla_{[\theta_1,\theta_2]}(s) = [\nabla_{\theta_1},\nabla_{\theta_2}](s) \quad (\theta_1,\theta_2 \in \Theta_X, s \in M)$$

In terms of ∇ the left \mathcal{D}_X -module structure on M is given by

$$\theta_s = \nabla_{\theta}(s) \quad (\theta \in \Theta, s \in M).$$

The condition (3) above is called the *integrability condition* on M.

For a locally free left \mathcal{O}_X -module M of finite rank, a \mathbb{C} -linear morphism $\nabla: \Theta_X \to \mathcal{E}nd_{\mathbb{C}}(M)$ satisfying the conditions (1), (2) is usually called a *connection* (of the corresponding vector bundle). If it also satisfies the condition (3), it is called an *integrable (or flat) connection*. Hence we may regard a (left) \mathcal{D}_X -module as an integrable connection of an \mathcal{O}_X -module which is not necessarily locally free of finite rank.

Definition 1.2. We say that a \mathcal{D}_X -module M is an integrable connection if it is locally free of finite rank over \mathcal{O}_X .

Definition 1.3. A local system on X is a locally free \mathbb{C}_X -module of finite rank.

2 Principal bundles and connections

Definition 2.1. A principal G-bundle on X is a fiber bundle P on X with a right action of G on P such that the action is free and transitive on each fiber of P and the projection map $\pi: P \to X$ is G-equivariant.

Definition 2.2. Let $V = \ker \pi : TP \to TX$ be the vertical bundle of P. An Ehresmann connection on P is a smooth subbundle H of TP, called the horizontal bundle of the connection, which is complementary to V, in the sense that it defines a direct sum decomposition $TE = H \oplus V$.

The fundamental vector field $X^{\#}$ at a point $p \in P$ is defined as:

$$X_p^{\#} = \left. \frac{d}{dt} \right|_{t=0} (p \cdot \exp(tX)),$$

where:

- $\exp: \mathfrak{g} \to G$ is the exponential map,
- $\exp(tX)$ is the one-parameter subgroup of G generated by X,

• $p \cdot \exp(tX)$ is the action of $\exp(tX)$ on p.

In other words, $X^\#$ is the tangent vector to the curve $t\mapsto p\cdot \exp(tX)$ at t=0. The fundamental vector field $X^\#$ is vertical, meaning it is tangent to the fibers of P. This is because the action of G preserves fibers, so $X^\#$ lies in the kernel of the differential $d\pi:TP\to TM$, where $\pi:P\to M$ is the projection. The map $X\mapsto X^\#$ is a Lie algebra homomorphism. Moreover, for $g\in G$, the pushforward of $X^\#$ by the right action R_q is:

$$(R_q)_* X^\# = (\mathrm{Ad}_{q^{-1}} X)^\#,$$

where Ad is the adjoint action of G on \mathfrak{g} .

Definition 2.3. A principal connection is a \mathfrak{g} -valued 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ (where \mathfrak{g} is the Lie algebra of G) satisfying the following conditions:

1. For all $X \in \mathfrak{g}$,

$$\omega(X^{\#}) = X,$$

where $X^{\#}$ is the **fundamental vector field** on P generated by X.

2. For all $g \in G$,

$$R_q^*\omega = Ad_{q^{-1}} \circ \omega,$$

where:

- $R_q: P \to P$ is the right action of g on P,
- $R_g^*\omega$ is the pullback of ω by R_g ,
- $Ad_{g^{-1}}: \mathfrak{g} \to \mathfrak{g}$ is the adjoint action of G on \mathfrak{g} .

Definition 2.4. The curvature of a \mathfrak{g} -valued 1-form ω on a principal G-bundle P is the \mathfrak{g} -valued 2-form $F = d\omega + \frac{1}{2}[\omega, \omega]$, where $d\omega$ is the exterior derivative of ω and $[\omega, \omega]$ is the Lie bracket of ω with itself. We say that ω is flat, or integrable if F = 0.

Remark 2.5. We can also write the curvature as the failure of commutativity of the covariant derivative:

$$F(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}.$$

3 Associated bundle construction

Given a principal G-bundle P where G acts freely transitively on the fibers, and a representation $G \to GL(V)$, we can form an associated vector bundle $E = P \times_G V$ by taking the quotient of

 $P \times V$ by the action of G given by

$$g \cdot (p, v) = (p \cdot g^{-1}, g \cdot v).$$

In other words, if P has transition functions $U_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to G$, then E has transition functions $U_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to GL(V)$. Conversely, if E is a vector bundle with structure group G via a representation ρ , we can recover the principal G-bundle P as the frame bundle of E.

The notion of a linear connection on E coincides precisely with the notion of a principal connection on P. Likewise does the notion of integrability of a connection.

4 Local systems

Let G^{discrete} be G with the discrete topology. Then local systems are precisely G^{discrete} -bundles on X. Other interpretations of local systems include:

- 1. A local system is given by a covering of open sets, transition functions $\gamma_{ij}: U_i \cap U_j \to G$ which are locally constant and satisfy the 1-cocycle condition $g_{ij}g_{jk}g_{ki}=id$. Equivalence of local systems is given by a common refinement of two coverings and a family of maps to G which conjugate one system of transition functions to the other.
- 2. Suppose that X is connected. Then equivalence classes of local systems are in one-to-one correspondence with the equivalence classes of homomorphisms of the fundamental group $\pi_1(X)$ to G. Let M be an integrable connection of rank m. Then the sheaf of horizontal sections

$$M^{\nabla} = \{ s \in M : \nabla_X s = 0 \text{ for all } X \in \Theta_X \}$$

is a locally free \mathbb{C}_X -module of rank m. This is how one thinks about local systems as locally constant sheaves of vector spaces.

Moreover, by considering the parallel transport of sections of M along paths, we can define a representation of the fundamental group $\pi_1(X)$ on the germ of horizontal sections, which is a vector space of dimension m. This representation is called the monodromy representation of M.

5 Nonabelian Hodge theory

Nonabelian Hodge theory on a smooth projective complex curve X, as formulated by Simpson, studies three different moduli problems for bundles for a complex reductive group G:

deRham $Conn_G(X)$: the moduli stack of flat G-connnections on X

Dolbeaut $\mathcal{H}iggs_G(X)$: the moduli stack of G-Higgs bundles on X

Betti $\mathcal{L}oc_G(X)$: the moduli stack of G-local systems on X

6 Geometric Langlands Program

The geometric Langlands program provides a nonabelian, global and categorical form of harmonic analysis. We fix a complex reductive group G and study the moduli stack $\operatorname{Bun}_G(X)$ of G-bundles on X. This stack comes equipped with a large commutative symmetry algebra: for any point $x \in X$ we have a family of correspondences acting on $\operatorname{Bun}_G(X)$ by modifying G-bundles at x. The goal of the geometric Langlands program is to simultaneously diagonalize the action of Hecke correspondences on suitable categories of sheaves on $\operatorname{Bun}_G(X)$.

One can ask to label the common eigensheaves (Hecke eigensheaves) by their eigenvalues (Langlands parameters), or more ambitiously, to construct a Fourier transform identifying categories of sheaves with dual categories of sheaves on the space of Langlands parameters. The kernels for Hecke modifications are bi-equivariant sheaves on the loop group G(K), $K = \mathbb{C}((t))$, with respect to the arc subgroup G(O), $O = \mathbb{C}[[t]]$. The underlying double cosets are in bijection with irreducible representations of the Langlands dual group.