

Enable Blackwell Inference With TensorRT Model Optimizer

Huizi Mao, Jingyu Xin, Ye Yu

03/17/2025

Outline

- Overview of TensorRT Model Optimizer (ModelOpt)
- 2. ModelOpt quantization
 - a. FP4 for large language models
 - b. FP4 for diffusion models & others
- 3. ModelOpt speculative decoding

ModelOpt - A Toolkit for Inference Optimization

- Inference optimization algorithms
- APIs to apply optimizations for HF/NeMo/Megatron models
- Gateway to deployment optimized solutions TensorRT-LLM, TensorRT, vLLM etc

Install ModelOpt library:

pip install nvidia-modelopt --extra-index-url https://pypi.nvidia.com

OSS ModelOpt library and examples on GitHub:

https://github.com/NVIDIA/TensorRT-Model-Optimizer

NVIDIA TensorRT Model Optimizer (ModelOpt)

Product Overview

Quantization Formats Supported by ModelOpt

Quantization format	Details	GPU support
INT8	Weight & act quantization~2x memory and compute saving	All
FP8	 Weight & act quantization ~2x memory and compute saving, near lossless 	Ada, Hopper & Blackwell
INT4 (weight-only)	 INT4 weights, FP16 activations ~4x memory saving, no compute saving 	All
FP4	Weights & act quantization~4x memory and compute saving	New on Blackwell
Mixed FP4	 FP4 weights, FP8/BF16/etc activations ~4x memory saving, compute saving depends 	New on Blackwell

Comparing FP4 with other formats

- Advantages of Blackwell FP4 formats
 - 8-bit block scaling factors -> less overhead, finer-grained block sizes than INT4
 - Allows two-level scaling -> larger dynamic range
 - Native hardware support for matmul and decoding

ModelOpt Post-training quantization (PTQ) Workflow

PTQ is a simple way to get started for FP4 inference

Quantization Flow in ModelOpt - FP4 PTQ

```
import modelopt.torch.quantization as mtq
import modelopt.torch.export as mte

model = ... # Load model

# Load calibration data-loader, a small subset of data is sufficient
calib_dataloader = get_calib_dataloader(num_samples=512)

# Define forward loop for calibration with the model as input
def forward_loop(model):
    for data in calib_dataloader:
        model(data)
```

```
# Perform PTQ
model = mtq.quantize(model, mtq.NVFP4_DEFAULT_CFG, forward_loop)
```

```
# Deploy the model via TRT-LLM/etc
mte.export_hf_checkpoint(model, export_dir=export_path)
```


Comparing PTQ accuracy

- FP4 shows decent accuracy in weight & activation quantization
 - Better accuracy than INT4 in weight-only quantization

Quantization-aware Training (QAT)

- QAT can further improve the quantization accuracy
 - A simple yet effective QAT method is straight-through estimator (STE)
 - QAT (different from Quantized Training) requires weights in original precision

Quantization Flow in ModelOpt - FP4 QAT

QAT can be simply done on the PTQ'd model

```
# Perform PTQ: Add quantizer nodes and perform calibration
model = mtq.quantize(model, atq.NVFP4_DEFAULT_CFG, forward_loop)

# Do finetuning(QAT) with the original training loop
# Epoch number/Learning rate should be reduced
train(model, dataloader, loss_func)
```

Save the weights and quantization state for evaluation or resumed training mto.save(model, filename)

Better accuracy with QAT

- FP4 QAT on original training data can fully recover accuracy
 - Results obtained with NVIDIA's Nemotron 4 with internal training data and pipeline
 - ~5% pretraining data is used

Method	Nemotron-4-15B base	Nemotron-4-340B base
BF16 (baseline)	64.2%	81.1%
FP4 with PTQ	61.0%	80.8%
FP4 with QAT	64.5%	81.4%

5-shot MMLU accuracy

FP4 Performance on Blackwell

- FP4 greatly improves LLM inference performance
 - Initial data below, more optimizations coming soon

🔯 NVIDIA

Mixed layer precision quantization

- Mixed layer precision keep sensitive layers in high precision
 - Supported via ModelOpt's autoquantize and TRT-LLM

AutoQuantize - Automatic mixed layer precision

Given compression target, find layers to minimize sensitivity (accuracy impact proxy)

Results: Quantized Model with AutoQuantize

 AutoQuantize is usually better than human heuristics

 How to use AutoQuantize in ModelOpt:

mtq.auto_quantize()

FP4 MLP-only - A common recipe that quantize MLP linear layers to FP4, leave others to FP8

Advanced topic - Mixed tensor precision

- Weight quantization -> memory size/bandwidth (all scenarios)
- Act quantization -> GEMM math throughput (prefill & large-batch decode)
- KV Cache quantization -> memory size/bandwidth (long-context/large-batch decode)
- BMM quantization -> Attention math throughput (long-context prefill)

Mixed tensor precision features in ModelOpt/TRTLLM

- Mixed precision GEMM kernels
 - Int4 weight, FP8 activation, math in FP8 -> mtq.W4A8_AWQ_BETA_CFG
 - FP4 weight, FP8 activation, math in FP8 (coming soon)
- Mixed precision Attention kernels
 - FP8 KV Cache -> mtg.FP8_WA_FP8_KV_CFG
 - FP8 Attention math -> --use_fp8_context_fmha (TRTLLM flag)
 - FP4 KV Cache, FP8 Attention math (coming soon)

Enable FP4 inference for Diffusion models

Flux.1 Dev FP4 Workflow

- Flux.1 Dev, one of the state-of-the-art image generation models
- Goal: optimize the backbone with FP4, which drives 98%+ of overall latency

Flux.1 Dev FP4 Workflow

- ModelOpt Supports calibration of any PyTorch-based model
- Deploy using ONNX-TRT or other compatible solutions

Quantization-aware Training (QAT) and SVDQuant

- FP4 PTQ can cause artifacts (e.g., awkward text) sometimes and lower metrics vs. BF16.
- QAT, or with <u>SVDQuant</u> can lead to higher accuracy.

Distillation with QAT

- Standard QAT
 - Due to the synthetic data, regular QAT is challenging
- Distillation-Based QAT
 - Used BF16 teacher and quantized student.
 - Boosted image quality via output and block-wise distillation

Output Distillation

Block-wise Distillation

FP4 Results: Quality

- Demonstrated notable improvements in quality and clarity, based on example images and metrics
- QAT expects further gains by using original Flux training data instead of synthetic data

Numerical results for FP4

Model	Image Reward	CLIP-IQA	CLIP
BF16	1.118	0.926	30.150
FP4 PTQ	1.096	0.923	29.860
FP4 QAT	1.119	0.928	29.920
FP4 SVDQ	1.108	0.927	30.068

BF16 FP4 PTQ

Prompt: A pack of dogs gather around a laptop, intently watching a tutorial on digital painting. The screen displays the words "Blend colors effectively."

FP4 QAT

FP4 SVDQuant

FP4 Results: Performance

- Use FP4 inference on Blackwell GPUs to reduce VRAM and latency.
- Switch to Low-VRAM Mode in <u>DemoDiffusion</u> if VRAM is limited (higher latency).

Diagram showing 3X Flux. 1-dev image throughput leaps with RTX 5090 with FP4 achieving 2.9X greater throughput than FP16 low-VRAM and 1.7x greater throughput than FP8

Appendix: FP4 on Video-Gen Models

Cosmos-7B, NVIDIA's STOA world foundation model, sees video quality improvement with FP4 SVDQuant.

BF16 FP4 PTQ **FP4 SVDQuant**

Screenshot of the generated video

Appendix: Live demo

Code demo && demoDiffusion Inference on RTX 5090

```
+ # Configuration for knowledge distillation (KD)
+ kd confia = {
    "teacher model": teacher model,
    "criterion": distill_config["criterion"],
    "loss_balancer": distill_config["loss_balancer"],
   "expose minimal state dict": False,
+ transformer = mtd.convert(transformer, mode=[("kd loss", kd config)])
# Move the model to the appropriate device and set the desired weight precision
transformer.to(accelerator.device, dtype=weight_dtype)
transformer.requires_grad_(True)
# Making sure to freeze the weights from model._teacher_model
transformer, optimizer, train dataloader, Ir scheduler = accelerator.prepare(
  transformer, optimizer, train_dataloader, lr_scheduler
# Compute the distillation loss using ModelOPT's compute_kd_loss
+ loss = transformer.compute kd loss(...)
```

🔯 NVIDIA

modelopt.onnx subpackage - General support & Platform agnostic

- Natively supports diverse model architecture beyond language transformer
 - ResNets
 - ViT, SwinT
 - BEVFormer, BEVFusion
 - Llama family
- Supports a broad range of platforms
 - Windows, Desktop Linux, Mobile Linux

ONNX Quantization Workflow

- ModelOpt ONNX quantization recognizes graph pattern and explicitly inserts Q/DQ nodes
 - Better user control over TensorRT's implicit quantization
- Currently supports FP8/INT8/INT4

Speculative decoding

- More applications demand ultra low latency in LLM generation
- LLM inference is usually memory bound
- Speculative decoding computes multiple tokens in one generation, identical output distribution

https://research.google/ blog/looking-back-at-spe **nvibia** culative-decoding/

Supported speculative decoding algorithms

Algorithm	Details	Framework	Deployment
Medusa	Finetuned Medusa headsPredict multiple future tokens in parallel	HuggingfaceMegatron-LMNeMo (coming soon)	TensorRT-LLMvLLM (coming soon)
EAGLE	Finetuned EAGLE modulePredict multiple future tokens autoregressively	HuggingfaceMegatron-LMNeMo (coming soon)	TensorRT-LLMvLLM (coming soon)
Multi-Token Prediction	Finetuned MTP modulesPredict multiple future tokens autoregressively	Megatron-LMHuggingface (coming soon)NeMo (coming soon)	TensorRT-LLM

Medusa

Multiple decoding heads for parallel future tokens predictions

EAGLE

- An autoregressive draft module to predict future tokens
- Predict in feature space

Multi-Token Prediction

- Similar to EAGLE in architecture
- Use different modules for multiple token predictions

Speculative model training workflow

- (Optional) Quantize base model
- Synthesize training data using (quantized) base model
- Convert base model into speculative model
- Finetune speculative model (optional: freeze base model)
- (Optional) Quantize speculative model (PTQ)
- (Optional) Finetune quantized speculative model (QAT)
- (Optional) Pruning and sparsifying

Demo

```
import transformers import modelopt.torch.speculative as mtsp
```

```
model = transformers.AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")
config = {
    "eagle_num_layers": 1,
}
mtsp.convert(model, [("eagle", config)])
```


Perf results

Summary

- Blackwell boosts GenAl inference speed with better hardware and advanced features
- Model Optimizer toolkit provides a gateway for inference optimization on NV ecosystem
 - FP4 quantization
 - Speculative decoding
 - And more features from pytorch to deployment

Acknowledgement: Omri Almog, Chenjie Luo, Zhiyu Cheng, Kai Xu, Asma KT Kuriparambil, Simon Layton, etc.

ModelOpt is now open-source on Github

https://github.com/NVIDIA/TensorRT-Model-Optimizer

