Table of Contents

- Introduzione
- 2 II problema
- Struttura del codice
- 4 Risultat
- Conclusioni

Il progetto

Scopo

Lo scopo è di creare una piccola libreria per il pricing di derivati finanziari con il metodo degli elementi finiti, appoggiandosi sulla libreria deal.ii. L'idea è che l'utilizzatore possa sia utilizzare gli oggetti presenti, sia crearne altri con grande facilità nel caso ne avesse bisogno.

Il progetto

Scopo

Lo scopo è di creare una piccola libreria per il pricing di derivati finanziari con il metodo degli elementi finiti, appoggiandosi sulla libreria deal.ii. L'idea è che l'utilizzatore possa sia utilizzare gli oggetti presenti, sia crearne altri con grande facilità nel caso ne avesse bisogno.

Motivazioni

La procedura più diffusa in finanza è di usare le differenze finite. Gli elementi finiti, a fronte di una maggiore difficoltà implementativa, risultano essere più vantaggiosi.

Table of Contents

- Introduzione
- 2 II problema
- Struttura del codice
- 4 Risultati
- Conclusioni

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

 La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, Se^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, che necessita di un trattamento speciale.

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, che necessita di un trattamento speciale. Separabile in due pezzi.

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, che necessita di un trattamento speciale.

Trasformazioni price e logprice

$$\begin{split} \frac{\partial u}{\partial t} + \left(r - \frac{\sigma^2}{2}\right) \frac{\partial u}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} - ru \\ + \int_{\mathbb{R}} \left(u(t, x + y) - u(t, x) - (e^y - 1) \frac{\partial u}{\partial x}\right) \nu(dy) = 0 \end{split}$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, che necessita di un trattamento speciale.

Trasformazioni price e logprice

Scomposizione della parte integrale

Definendo nel modo seguente le quantità

$$\hat{lpha} = \int_{\mathbb{R}} (e^y - 1)
u(y) dy$$
 $\hat{\lambda} = \int_{\mathbb{R}}
u(y) dy$

l'equazione diventa

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + (r - \hat{\alpha}) S \frac{\partial C}{\partial S} - (r + \hat{\lambda}) C + \int_{\mathbb{R}} C(t, Se^y) \nu(y) dy = 0$$

28 agosto 2014

Scomposizione della parte integrale

Analogamente per la trasformazione logprice si ha

$$\hat{\lambda} = \int_{\mathbb{R}}
u(y) dy, \ \hat{lpha} = \int_{\mathbb{R}} (\mathrm{e}^y - 1)
u(y) dy,$$

con rispettiva equazione

$$\frac{\partial u}{\partial t} + \left(r - \frac{\sigma^2}{2} - \hat{\alpha}\right) \frac{\partial u}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} - (r + \hat{\lambda})u + \int_{\mathbb{R}} u(t, x + y)\nu(y)dy = 0$$

28 agosto 2014

In due dimensioni

Con la trasformazione Price

$$\begin{split} \frac{\partial C}{\partial t} + (r - \hat{\alpha}_1) S_1 \frac{\partial C}{\partial S_1} + (r - \hat{\alpha}_2) S_2 \frac{\partial C}{\partial S_2} + \frac{\sigma_1^2}{2} S_1^2 \frac{\partial^2 C}{\partial S_1^2} + \frac{\sigma_2^2}{2} S_2^2 \frac{\partial^2 C}{\partial S_2^2} \\ + \rho \sigma_1 \sigma_2 S_1 S_2 \frac{\partial^2 C}{\partial S_1 \partial S_2} - (r + \lambda_1 + \lambda_2) C \\ + \int_{\mathbb{R}} C(t, S_1 e^y, S_2) \nu_1(y) dy + \int_{\mathbb{R}} C(t, S_1, S_2 e^y) \nu_2(y) dy = 0 \end{split}$$

In due dimensioni

Con la trasformazione Logprice

$$\begin{split} \frac{\partial u}{\partial t} + \frac{\sigma_1^2}{2} \frac{\partial^2 u}{\partial x_1^2} + \frac{\sigma_2^2}{2} \frac{\partial^2 u}{\partial x_2^2} + \rho \sigma_1 \sigma_2 \frac{\partial^2 u}{\partial x_1 \partial x_2} + \left(r - \frac{\sigma_1^2}{2} - \hat{\alpha}_1\right) \frac{\partial u}{\partial x_1} \\ + \left(r - \frac{\sigma_2^2}{2} - \hat{\alpha}_2\right) \frac{\partial u}{\partial x_2} - \left(r + \hat{\lambda}_1 + \hat{\lambda}_2\right) u \\ + \int_{\mathbb{R}} u(t, x_1 + y, x_2) \nu_1(y) dy + \int_{\mathbb{R}} u(t, x_1, x_2 + y) \nu_2(y) dy = 0 \end{split}$$

Discretizzazione

Ricordiamo l'integrale da calcolare

$$\int_{\mathbb{R}} C(t, Se^y) \nu(y) dy$$

al quale applichiamo il cambio di variabile

$$z = Se^y$$

Figura: Una semplice griglia strutturata

L'integrale diventa allora

$$\int_0^\infty \frac{C(t,z)}{z} \nu\left(\log\left(\frac{z}{S}\right)\right) dz$$

Figura: Una semplice griglia strutturata

L'integrale diventa allora

$$\int_0^\infty \frac{C(t,z)}{z} \nu\left(\log\left(\frac{z}{S}\right)\right) dz$$

Quindi per ogni cella, si calcolano i contributi dovuti alla cella

Figura: Poniamoci su una cella

L'integrale diventa allora

$$\int_0^\infty \frac{C(t,z)}{z} \nu\left(\log\left(\frac{z}{S}\right)\right) dz$$

Quindi per ogni cella, si calcolano i contributi dovuti alla cella e si distribuiscono ai nodi di competenza:

- In 1d, a tutti i nodi.
- In 2d, solo a quelli che giaciono sulla retta passante per la faccia selezionata. Prima sull'asse x.

Figura: I contributi della cella ai nodi x

L'integrale diventa allora

$$\int_0^\infty \frac{C(t,z)}{z} \nu\left(\log\left(\frac{z}{S}\right)\right) dz$$

Quindi per ogni cella, si calcolano i contributi dovuti alla cella e si distribuiscono ai nodi di competenza:

- In 1d, a tutti i nodi.
- In 2d, solo a quelli che giaciono sulla retta passante per la faccia selezionata. Poi sull'asse y.

Figura: I contributi della cella ai nodi y

In questo caso l'integrale da calcolare è

$$\int_{-\infty}^{\infty} u(t,x+y)\nu(y)dy$$

su una griglia qualunque. Notare come si può uscire dal domininio a causa del termine x + y

Figura: Una griglia

In questo caso l'integrale da calcolare è

$$\int_{-\infty}^{\infty} u(t, x+y) \nu(y) dy$$

su una griglia qualunque. Notare come si può uscire dal domininio a causa del termine x + yIn questo caso si cicla su tutti i vertici. Selezionato un vertice i.

Figura: Poniamoci su un nodo

In questo caso l'integrale da calcolare è

$$\int_{-\infty}^{\infty} u(t, x+y) \nu(y) dy$$

su una griglia qualunque. Notare come si può uscire dal domininio a causa del termine x + yIn questo caso si cicla su tutti i vertici. Selezionato un vertice i, si avranno dei nodi di quadratura in direzione x e si quadra su $x_i + z_l$ (in blu), e se la dimensione è due, anche su y lungo $y_i + z_I$.

Figura: Calcolo lungo le direzioni

Table of Contents

- Introduzione
- 2 II problema
- 3 Struttura del codice
- 4 Risultat
- Conclusioni

La libreria deal.ii

Libreria deal.ii

Una potente libreria opensource ad elementi finiti sui quadrilateri. Molto completa e semplice da utilizzare all'inizio, permette di risolvere problemi variazionali fino a 3 dimensioni con poche righe di codice.

La libreria deal.ii

Libreria deal.ii

Una potente libreria opensource ad elementi finiti sui quadrilateri. Molto completa e semplice da utilizzare all'inizio, permette di risolvere problemi variazionali fino a 3 dimensioni con poche righe di codice.

Vantaggi

- Documentazione molto ampia e chiara, a cui si aggiunge la presenza di 51 tutorial programs che illustrano come usare la libreria per problemi tipici
- Organizzata in moduli che coprono le diverse aree di un problema ad elementi finiti (creazione griglie, algebra lineare, output risultati, etc)

La nostra implementazione

Tre strutture chiave per il problema

Classi Opzione

Rappresentano il problema e gestiscono creazione griglia, assemblaggio sistema e soluzione.

Classi Model

I vari modelli utilizzati in finanza sono rappresentati con questa classe, la cui interfaccia è stabilita da una classe base astratta.

Classi Integrali

Il calcolo della parte integrale è gestito da queste classi, e le Opzioni salvano un puntatore a un oggetto di questo tipo.

Tutte sfruttanti il meccanismo dell'ereditarietà al fine di COMPLETE HERE

Le classi Opzione

Seguendo la linea di deal.ii, le classi opzione costituiscono il *core* del programma ad elementi finiti. Implementano i vari metodi necessari per la soluzione del problema.

Le classi foglia sono quelle effettivamente usate, in quanto implementano tutti i metodi.

Figura: Schema delle classi Opzione

Le classi Opzione

Seguendo la linea di deal.ii, le classi opzione costituiscono il *core* del programma ad elementi finiti. Implementano i vari metodi necessari per la soluzione del problema.

Le classi foglia sono quelle effettivamente usate, in quanto implementano tutti i metodi.

Factory di Opzioni

Per facilitare la creazione di opzioni all'utente, è stata creata una *Factory* che permette di creare i vari oggetti **Opzione** con un'interfaccia comune.

Le classi Opzione

Seguendo la linea di deal.ii, le classi opzione costituiscono il *core* del programma ad elementi finiti. Implementano i vari metodi necessari per la soluzione del problema.

Le classi foglia sono quelle effettivamente usate, in quanto implementano tutti i metodi.

Factory di Opzioni

Per facilitare la creazione di opzioni all'utente, è stata creata una *Factory* che permette di creare i vari oggetti **Opzione** con un'interfaccia comune.

Estensibile

L'utente può sia utilizzare le opzioni già esistenti, che crearne delle nuove partendo dal secondo o dal terzo livello di ereditarietà.

Le classi Integrale

Per calcolare la parte integrale, sono state create una serie di classi. Il secondo livello di ereditarietà distingue fra *price* e *logprice*, mentre le classi foglia implementano quadrature specifiche ai modelli.

Figura: Schema delle classi LevyIntegral

Le classi Integrale

Per calcolare la parte integrale, sono state create una serie di classi. Il secondo livello di ereditarietà distingue fra *price* e *logprice*, mentre le classi foglia implementano quadrature specifiche ai modelli.

Figura: Schema delle classi LevyIntegral

anything else?

Table of Contents

- Introduzione
- 2 II problema
- Struttura del codice
- 4 Risultati
- Conclusioni

Table of Contents

- Introduzione
- 2 II problema
- Struttura del codice
- 4 Risultati
- Conclusioni