(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-54909

(43)公開日 平成10年(1998)2月24日

(51) Int. C l. ⁶ G 0 2 B B 3 2 B G 0 2 F	5/30 7/02 1	別記号 0 3 3 0	庁内整理番号		F I G 0 2 B B 3 2 B G 0 2 F	5/30 7/02 1/1335	1 0 3 5 3 0	技術	表示箇所
	審査請求未請	求 請求	項の数 7	FD			(全12頁)		
(21) 出願番号	特願平8-	227818			(71)出願人		64 C株式会社		
(22) 出願日 平成8年 (1996) 8月9日				(72)発明者	大阪府茨木市下穂積1丁目1番2号 三原 尚史 大阪府茨木市下穂積1丁目1番2号 日東電				
•					(72)発明者	大阪府港	忠幸 茨木市下穂積1丁	目1番2号	日東電
					(72) 発明者	大阪府落	人則 技术市下穂積1丁	目1番2号	日東電
					(74)代理人	工株式会 弁理士	藤本勉	最終〕	頁に続く

(54) 【発明の名称】円偏光分離層、光学素子、偏光光源装置及び液晶表示装置

(57)【要約】

【課題】 複数のコレステリック液晶層を重畳した場合の出射光の視角変化による色変化が少ない円偏光分離層を得て、側面からの入射光を効率よく出射する光利用効率に優れる偏光光源装置、及び明るくて視認性に優れる液晶表示装置を得ること。

【解決手段】 反射波長域が異なるコレステリック液晶層(11,12)を、反射光の中心波長が400~550m未満と550以上~700mの範囲にあるものの組合せで有する重畳体からなる円偏光分離層(1)、及び側面からの入射光を上下面の一方より出射する導光板の出射面側に当該円偏光分離層を有する偏光光源装置。

【効果】 可視光域のほぼ全域を反射波長域とする薄型の円偏光分離層が得られる。

【特許請求の範囲】

【請求項1】 反射波長域が異なるコレステリック液晶 層を、反射光の中心波長が400~550㎜未満と55 0以上~700mの範囲にあるものの組合せで有する重 畳体からなることを特徴とする円偏光分離層。

【請求項2】 請求項1において、重畳体がコレステリ ック液晶層の2層体又はそれと支持基材よりなる3層体 又は4層以上体からなり、2層のコレステリック液晶層 の合計厚が1~50 μmで、重畳体の全厚が1~200 μmである円偏光分離層。

【請求項3】 請求項1又は2に記載の円偏光分離層に おける当該中心波長が長波長のコレステリック液晶層側 に位相差層又は偏光板の一方又は両方を有することを特 徴とする光学素子。

【請求項4】 請求項3において、円偏光分離層と偏光 板の間に位相差層が位置する光学素子。

【請求項5】 請求項3又は4に記載の光学素子に拡散 層を配置してなり、その拡散層が円偏光分離層、位相差 層又は偏光板に隣接することを特徴とする光学素子。

射する導光板の出射面側に、請求項1若しくは2に記載 の円偏光分離層又は請求項3~5に記載の光学素子を有 することを特徴とする偏光光源装置。

【請求項7】 液晶セルの片側に、請求項6に記載の偏 光光源装置を配置したことを特徴とする液晶表示装置。

【発明の詳細な説明】

$[0 \ 0 \ 0 \ 1]$

【発明の技術分野】本発明は、コレステリック液晶層の 視角による色変化を防止した円偏光分離層、及びそれを 用いた光利用効率に優れる偏光光源装置、並びに明るさ 30 に優れて良視認性の液晶表示装置に関する。

[0002]

【背景技術】従来、側面よりの入射光を上下の片面より 出射させるようにしたサイドライト型の導光板の下面に 反射層を設け、出射面にコレステリック液晶層からなる 円偏光分離層を設けて、その円偏光分離層を介し入射光 を左右の円偏光からなる透過光と反射光に分離し、その 反射光を下面の反射層を介し反射させて出射面より再出 射させるようにした照明システムが提案されていた(特 公報、特開平7-36032号公報)。

【0003】かかる照明システムは、非偏光の通例光で は偏光板を透過する際に導光板出射光の55%程度が吸 収されて有効利用できる光に乏しいことから、光を偏光 として偏光板に供給できるようして偏光板による吸収を 防止し、それにより光利用効率の向上をはかって液晶表 示装置等の明るさを向上させることを目的としたもので ある。前記の円偏光分離層を介した反射光の波長(λ) は、入射角をθとしたとき、コレステリック液晶層の複

ピッチ (p) に基づき、式: $n_{o}p\cos\theta < \lambda < n_{o}p\cos\theta$ θ で表される。

【0004】前記のno、noは大きい値でないことから 通例、反射光の波長領域は可視光領域よりも狭く、単層 のコレステリック液晶層を介した透過光及び反射光が色 付いて見え、選択反射性や円偏光二色性と称されてい る。厚さ方向にコレステリック液晶層のピッチを変えて 反射光の波長領域を広げる試みもあるが(特開平6-2 81814号公報)、一般には反射光の波長領域の異な 10 る複数のコレステリック液晶層を重畳した円偏光分離層 として、前記着色を中間色化する方法が採られている (特開平1-133003号公報)。

【0005】しかしながら、前記した重畳型の円偏光分 離層には、視角を変える際に出射光が青色化し、更に視 角を変えると赤色化するという色変化の問題点があっ た。円偏光分離層をバックライトシステムとして液晶表 示装置に適用した場合、表示色が青色側にシフトレ、そ(のため発光体の輝線スペクトル波長を円偏光分離層によ る反射波長の中心とその短波長端の中間に設定する提案 【請求項6】 側面からの入射光を上下面の一方より出 20 もあるが(特開平7-36025号公報)、前記の視角 変化による色変化の解決策とはならない。

[0006]

【発明の技術的課題】本発明は、複数のコレステリック 液晶層を重畳した場合の出射光の視角変化による色変化 が少ない円偏光分離層を得て、側面からの入射光を効率 よく出射する光利用効率に優れる偏光光源装置、及び明 るくて視認性に優れる液晶表示装置を得ることを課題と する。

[0007]

【課題の解決手段】本発明は、反射波長域が異なるコレ ステリック液晶層を、反射光の中心波長が400~55 0 mm未満と550以上~700 mmの範囲にあるものの組 合せで有する重畳体からなることを特徴とする円偏光分(離層、及び側面からの入射光を上下面の一方より出射す る導光板の出射面側に当該円偏光分離層を有することを 特徴とする偏光光源装置を提供するものである。

[0008]

【発明の効果】反射光の中心波長が上記範囲にある2層 のコレステリック液晶層を重畳した上記の構成により、 開平3-45906号公報、特開平6-324333号 40 視角変化による出射光の色変化が小さくて可視光域のほ ぼ全域を反射波長域とする薄型の円偏光分離層を得るこ とができ、それを用いて光利用効率に優れる偏光光源装 置、ひいては明るくて視認性に優れる液晶表示装置を得っ ることができる。視角変化で出射光が色変化する理由 は、円偏光分離層を偏光として透過するためであるかも 知れないが定かではなく、従って前記の重畳方式で視角 変化による色変化が抑制される理由は不明である。

[0009]

【発明の実施形態】本発明の円偏光分離層は、反射波長 屈折による常光と異常光の屈折率(n。、n。)及び螺旋 50 域が異なるコレステリック液晶層を、反射光の中心波長

40

が400~550nm未満と550以上~700nmの範囲 にあるものの組合せで有する重畳体からなる。その例を 図1(a)~(h)に示した。1が円偏光分離層であ り、11,12がコレステリック液晶層、13,14, 15が支持基材である。図例の如く、重畳体は2層のコ レステリック液晶層を用いて形成される。また必要に応 じて支持基材が用いられ、その配置位置は適宜に決定す ることができる。

【0010】コレステリック液晶層としては、グランジ ャン配向により自然光を透過光と反射光として左右の円 偏光に分離する適宜なものを用いうる。ちなみにその具 体例としては、コレステリック液晶相を有する層、就中 コレステリック相を呈する液晶ポリマーからなる層を有 するシートや当該層をガラス板等の上に展開したシー ト、あるいはコレステリック相を呈する液晶ポリマーか らなるフィルムなどがあげられる。

【0011】前記においてコレステリック液晶層は、可 及的に均一に配向していることが好ましい。均一配向の コレステリック液晶層は、散乱のない反射光を提供し で、液晶表示装置等の視野角の拡大に有利であり、特に 斜め方向からも直接観察される直視型液晶表示装置等の 形成に適している。

【0012】本発明による円偏光分離層は、反射光の中 心波長が400~550m未満と550以上~700m の範囲にある組合せで反射波長域が異なる2層のコレス テリック液晶層を重畳することにより形成することがで きる。かかる2層のコレステリック液晶層の重畳は、コ レステリック液晶層の少ない層数で可視光域の全域ない し可及的に全域を反射波長域とする薄型の円偏光分離層 を得ることを目的とする。

【0013】すなわち、単層のコレステリック液晶層で は通例、選択反射性(円偏光二色性)を示す波長域に限 界があり、その限界は約100mの波長域に及ぶ広い範 囲の場合もあるが、その波長範囲でも液晶表示装置等に 適用する場合に望まれる可視光の全域には及ばないか ら、選択反射性(反射波長域)の異なる2層のコレステ リック液晶層を重畳させて円偏光二色性を示す波長域を 拡大させ、可視光域の全域ないし可及的に全域を反射波 長域とし、かつそれを少ない層数で達成して薄型化を図 ることを目的とする。

【0014】前記において、用いる2層のコレステリッ ク液晶層の好ましい組合せは、反射光の中心波長が45 0~540m、就中480~520mの範囲、特に約5 00nmのものと、560~650nm、就中580~62 0mの範囲、特に約600mのものとの組合せである。 【0015】また2層のコレステリック液晶層は、各層 で反射される円偏光の位相状態を揃えて各波長域で異な る偏光状態となることを防止し、利用できる状態の偏光

を増量する点より、同じ方向の円偏光を反射するもの同

士の組合せで用いることが好ましい。

【0016】円偏光分離層を形成するコレステリック液 晶には、適宜なものを用いてよく、特に限定はない。従 って、液晶配向性を付与する共役性の直線状原子団(メ ソゲン) がポリマーの主鎖や側鎖に導入された主鎖型や 側鎖型などの種々のものを用いうる。位相差の大きいコ レステリック液晶分子ほど選択反射の波長域が広くな り、大視野角時の波長シフトに対する余裕などの点より 好ましく用いうる。また重さや自立性等の点よりは液晶 ポリマーが好ましく用いうる。さらに、その液晶ポリマ ーとしては、取扱い性や実用温度での配向の安定性など の点より、ガラス転移温度が30~150℃のものが好 ましく用いうる。

【0017】ちなみに、前記した主鎖型の液晶ポリマー の例としては、屈曲性を付与するスペーサ部を必要に応 じ介してパラ置換環状化合物等からなるメソゲン基を結 合した構造を有する、例えばポリエステル系やポリアミ ド系、ポリカーポネート系やポリエステルイミド系など のポリマーがあげられる。

【0018】また側鎖型の液晶ポリマーの例としては、 ポリアクリレートやポリメタクリレート、ポリシロキサ ンやポリマロネート等を主鎖骨格とし、側鎖として共役 性の原子団からなるスペーサ部を必要に応じ介してパラ 置換環状化合物等からなる低分子液晶化合物(メソゲン 部)を有するもの、低分子カイラル剤含有のネマチック 系液晶ポリマー、キラル成分導入の液晶ポリマー、ネマ チック系とコレステリック系の混合液晶ポリマーなどが あげられる。

【0019】前記の如く、例えばアゾメチン形やアゾ 形、アゾキシ形やエステル形、ビフェニル形やフェニル シクロヘキサン形、ビシクロヘキサン形の如きパラ置換 30 芳香族単位やパラ置換シクロヘキシル環単位などからな るネマチック配向性を付与するバラ置換環状化合物を有 するものにても、不斉炭素を有する化合物等からなる適 宜なキラル成分や低分子カイラル剤等を導入する方式な どによりコレステリック配向性のものとすることができ る (特開昭 5 5 - 2 1 4 7 9 号公報、米国特許明細書第 5332522号等)。なおパラ置換環状化合物におけ るパラ位における末端置換基は、例えばシアノ基やアル キル基、アルコキシ基などの適宜なものであってよい。 【0020】またスペーサ部としては、屈曲性を示す例

えばポリメチレン鎖- (CH2) n-やポリオキシメチレ ン鎖- (CH₂CH₂O)_m-などがあげられる。スペー サ部を形成する構造単位の繰返し数は、メソゲン部の化 学構造等により適宜に決定され、一般にはポリメチレン 鎖の場合にはnが $0 \sim 20$ 、就中 $2 \sim 12$ 、ポリオキシ メチレン鎖の場合にはmが0~10、就中1~3であ る。

【0021】なお上記した主鎖型液晶ポリマーの調製は 例えば、成分モノマーをラジカル重合方式やカチオン重 50 合方式やアニオン重合方式等により共重合させる、通例

のボリマー合成に準じた適宜な方式で行うことができる。また側鎖型液晶ボリマーの調製も例えば、アクリル酸やメタクリル酸のエステルの如きピニル系主鎖形成用モノマーに必要に応じスペーサ基を介してメソゲン基を導入したモノマーをラジカル重合法等によりボリマー化するモノマー付加重合方式や、ボリオキシメチルシリレンのSiーH結合を介し白金系触媒の存在下にビニル置換メソゲンモノマーを付加反応させる方式、主鎖ボリマーに付与した官能基を介し相関移動触媒を用いたエステル化反応によりメソゲン基を導入する方式や、マロン酸の一部に必要に応じスペーサ基を介してメソゲン基を導入したモノマーとジオールとを重縮合反応させる方式などの適宜な方式で行うことができる。

*【0022】上記において、成膜性や良好なモノドメイン状態のグランジャン配向性、配向処理の短時間性やガラス状態への安定した固定性、コレステリック相の螺旋ピッチの制御性、薄くて軽くピッチ等の配向状態が実用温度で変化しにくく、耐久性や保存安定性に優れる円偏光分離層の形成性などの点より好ましく用いうる液晶ポリマーは、下記の一般式(a)で表わされるモノマー単位と、一般式(b)で表わされるモノマー単位を成分とする共重合体、就中、一般式(a)のモノマー単位60~95重量%と、一般式(b)のモノマー単位40~5重量%からなる共重合体を成分とするものである(特願平7-251818号)。

【0023】一般式(a):

(ただし、 R^1 は水素又はメチル基、mは $1\sim6$ の整 数、 X^2 は CO_2 基又はO数、 X^1 は CO_2 基又はOCO基であり、p及びqは1又 20 $-R^4$ であり、+0 の +0 の +

一般式(b):

$$\begin{array}{c} R^z \\ (CH_z C) \\ CO_z (CH_z)_{\overline{n}} O \\ \end{array} - X^z - X^3$$

(ただし、R²は水素又はメチル基、nは1~6の整

【0024】前記の一般式(a)、一般式(b)で表わされるモノマー単位を形成しうるアクリル系モノマーは、適宜な方法で合成することができる。その例としては、先ずエチレンクロロヒドリンと4ーヒドロキシ安息香酸を、ヨウ化カリウムを触媒としてアルカリ水溶液中で加熱還流させてヒドロキシカルボン酸を得た後、それをアクリル酸又はメタクリル酸と脱水反応させて(メタ)アクリレートとし、その(メタ)アクリレートを4ーシアノー4'ーヒドロキシピフェニルでDCC(ジシクロヘキシルカルボジイミド)とDMAP(ジメチルアミノピリジン)の存在下にエステル化することにより一般式(a)に属するモノマーを得る方法があげれる。

【0025】また、一般式(b)に属するアクリル系モノマーの合成例としては、先ずヒドロキシアルキルハライドと4ーヒドロキシ安息香酸を、ヨウ化カリウムを触媒としてアルカリ水溶液中で加熱還流させてヒドロキシカルボン酸を得た後、それをアクリル酸又はメタクリル酸と脱水反応させて(メタ)アクリレートとしその(メ

数、X²はCO₂基又はOCO基、X³は-CO-R³又は -R⁴であり、そのR³は

R⁴は

であり、R5は下記のものである。)

タ)アクリレートを、4位にR³基含有のCO基を有す(るフェノールでDCCとDMAPの存在下にエステル化する方法や、前記の脱水反応後その(メタ)アクリレートを4位に不斉炭素基を有するフェノールでDCCとDMAPの存在下にエステル化する方法などがあげられる

【0026】従って、前記の一般式(a)や一般式
40 (b)に属する他のモノマーも、目的の導入基を有する
適宜な原料を用いて上記に準じて合成することができ
る。なお前記の4位にR³基含有のCO基を有するフェ
ノールは、例えば先ずクロロ蟻酸メチルと4ーヒドロキ
シ安息香酸をアルカリ水溶液中で反応させてカルボン酸
とし、それをオキサリルクロリドで酸クロライドとした
後、ビリジン/テトラヒドロフラン中でHーR³と反応
させてR³基を導入し、ついでそれをアンモニア水で処
理して保護基を除去する方法などにより、また4位に不
斉炭素基を有するフェノールは、例えば4ーヒドロキシ
50 ベンズアルデヒドと(S)ー(-)-1-フェニルエチ

ルアミンをトルエン中で共沸脱水する方法などにより得ることができる。

【0027】上記した共重合体は、その一般式(b)で表わされるモノマー単位の含有率を変えることでコレステリック液晶の螺旋ビッチを変化させることができる。従って、一般式(b)で表わされるモノマー単位の含有率の制御で円偏光二色性を示す波長を調節でき、可視光域の光に対して円偏光二色性を示す光学素子も容易に得ることができる。

【0028】液晶ポリマーによるコレステリック液晶層 10 の形成は、従来の配向処理に準じた方法で行うことができる。ちなみにその例としては、支持基材上にポリイミドやポリビニルアルコール、ポリエステルやポリアリレート、ポリアミドイミドやポリエーテルイミド等の膜を形成してレーヨン布等でラビング処理した配向膜、又はSiOの斜方蒸着層、又は延伸処理による配向膜等からなる適宜な配向膜の上に液晶ポリマーを展開してガラス、転移温度以上、等方相転移温度未満に加熱し、液晶ポリマー分子がグランジャン配向した状態でガラス転移温度未満に冷却してガラス状態とし、当該配向が固定化され 20 た固化層を形成する方法などがあげられる。

【0029】前記の支持基材としては、例えばトリアセチルセルロースやポリビニルアルコール、ポリイミドやポリアリレート、ポリエステルやポリカーポネート、ポリスルホンやポリエーテルスルホン、アモルファスポリオレフィンや変性アクリル系ポリマー、エポキシ系樹脂の如きプラスチックからなる単層又は積層フイルム、あるいはガラス板などの適宜なものを用いうる。薄型化等の点よりは、プラスチックフィルムが好ましく、また偏光状態の変化の防止による光の利用効率の向上などの点30よりは複屈折による位相差が可及的に小さいものが好ましい。

【0030】液晶ポリマーの展開は、例えば液晶ポリマーの溶媒による溶液をスピンコート法やロールコート法、フローコート法やプリント法、ディップコート法や流延成膜法、バーコート法やグラビア印刷法等の適宜な方法で薄層展開し、それを必要に応じ乾燥処理する方法などにより行うことができる。前記の溶媒としては、例えば塩化メチレンやシクロヘキサノン、トリクロロエチレンやテトラクロロエタン、Nーメチルピロリドンやテム0トラヒドロフランなどの適宜なものを用いうる。

【0031】また液晶ボリマーの加熱溶融物、好ましくは等方相を呈する状態の加熱溶融物を前記に準じ展開し、必要に応じその溶融温度を維持しつつ更に薄層に展開して固化させる方法などの、溶媒を使用しない方法、従って作業環境の衛生性等が良好な方法によっても液晶ボリマーを展開させることができる。なお液晶ボリマーの展開に際しては、薄型化等を目的に必要に応じて配向膜を介したコレステリック液晶層の重畳方式なども採ることができる。

8

【0032】液晶ポリマーの展開層を配向させるための加熱処理は、上記した如く液晶ポリマーのガラス転移温度から等方相転移温度までの温度範囲、すなわち液晶ポリマーが液晶相を呈する温度範囲に加熱することにより行うことができる。また配向状態の固定化は、ガラス転移温度未満に冷却することで行うことができ、その冷却条件については特に限定はない。通例、前記の加熱処理を300℃以下の温度で行いうることから、自然冷却方式が一般に採られる。

【0033】支持基材上に形成した液晶ポリマーの固化層は、支持基材との一体物としてそのまま円偏光分離層に用いうるし、支持基材より剥離してフィルム等からなる円偏光分離層として用いることもできる。フィルム等からなる支持基材との一体物として形成する場合には、偏光の状態変化の防止性などの点より、位相差が可及的に小さい支持基材を用いることが好ましい。

【0034】コレステリック液晶層の厚さは、配向の乱れや透過率低下の防止、選択反射の波長範囲(反射波長域)の広さなどの点より、 $0.5\sim50\,\mu\mathrm{m}$ 、就中 $1\sim30\,\mu\mathrm{m}$ 、特に $1.5\sim10\,\mu\mathrm{m}$ が好ましい。また円偏光分離層の薄型化等の点より2層のコレステリック液晶層の合計厚が $1\sim50\,\mu\mathrm{m}$ 、就中 $2\sim30\,\mu\mathrm{m}$ 、特に $3\sim10\,\mu\mathrm{m}$ であることが好ましい。さらに支持基材を有する場合には、その基材を含めた合計厚が $20\sim200\,\mu\mathrm{m}$ 、就中 $25\sim150\,\mu\mathrm{m}$ 、特に $30\sim100\,\mu\mathrm{m}$ であることが好ましい。円偏光分離層の形成に際しては、コレステリック液晶層に安定剤や可塑剤、あるいは金属類などからなる種々の添加剤を必要に応じて配合することができる

【0035】本発明において用いる円偏光分離層は、例えば低分子量体からなるコレステリック液晶層をガラスやフィルム等の透明基材で挟持したセル形態、液晶ポリマーからなるコレステリック液晶層を透明基材で支持した形態(図1b~h)、コレステリック液晶層の液晶ポリマーフィルムからなる形態(図1a)、それらの形態物を適宜な組合せで重畳した形態などの適宜な形態とすることができる。

【0036】前記の場合、コレステリック液晶層をその強度や操作性などに応じて図1に例示の如く1層又は2層以上の支持基材で保持することもできる。2層以上の支持基材を用いる場合には、偏光の状態変化を防止する点などより例えば無配向のフィルムや、配向しても複屈折の小さいトリアセテートフィルムなどの如く位相差が可及的に小さいものが好ましく用いうる。薄型化等の点より好ましい形態は、透明基材で支持した形態や液晶ポリマーのフィルムからなる形態などである。

【0037】なお円偏光分離層は、上記の分離性能の均一化や斜め入射光の波長シフトに対処する点などより重畳の各層は、平坦な層として形成されていることが好ま 50 しい。コレステリック液晶層の重畳には、製造効率や薄 膜化などの点より液晶ポリマーの使用が特に有利である。重畳処理は、単なる重ね置きや、粘着剤等の接着剤を介した接着などの適宜な方式を採ることができる。

【0038】本発明においては、円偏光分離層に対して位相差層や偏光板や拡散層等の適宜な光学層の1種又は2種以上を配置して種々の光学素子を形成することができる。その例を図2、図3に示した。2が位相差層、3が偏光板、4が拡散層である。前記の場合、位相差層や偏光板は図例の如く、円偏光分離層の光出射側となる、反射光の中心波長が長波長のコレステリック液晶層側に配置される。

【0039】位相差層は、直線偏光変換手段として機能するものであり、円偏光分離層より出射した円偏光が位相差層に入射して位相変化を受け、その位相変化が1/4波長に相当する波長の光は直線偏光に変換され、他の波長光は楕円偏光に変換される。変換された楕円偏光は、前記の直線偏光に変換された光の波長に近いほど扁平な楕円偏光となる。かかる結果、偏光板を透過しうる直線偏光成分を多く含む状態の光が位相差層より出射されることとなる。

【0040】直線偏光成分の多い状態に変換することにより、偏光板を透過しやすい光とすることができる。この偏光板は、例えば液晶表示装置の場合、液晶セルに対する視野角の変化で発生する偏光特性の低下を防止して表示品位を維持する光学層や、より高度な偏光度を実現してよりよい表示品位を達成する光学層などとして機能するものである。

【0041】すなわち前記において、偏光板を用いずに、円偏光分離層よりの出射偏光をそのまま液晶セルに入射させて表示を達成することは可能であるが、偏光板 30を介することで前記した表示品位の向上等をはかりうることから必要に応じて偏光板が用いられる場合がある。その場合に、偏光板に対する透過率の高いほど表示の明るさの点より有利であり、その透過率は偏光板の偏光軸(透過軸)と一致する偏光方向の直線偏光成分を多く含むほど高くなるので、それを目的に直線偏光変換手段を介して円偏光分離層よりの出射偏光を所定の直線偏光に変換するものである。

【0042】ちなみに、通例のヨウ素系偏光板に自然光や円偏光を入射させた場合、その透過率は約43%程度 40であるが、直線偏光を偏光軸を一致させて入射させた場合には80%を超える透過率を得ることができ、従って光の利用効率が大幅に向上して明るさに優れる液晶表示などが可能となる。またかかる偏光板では、99.99%に達する偏光度も達成できる。円偏光分離層の単独では、かかる高偏光度の達成は困難で、特に斜めからの入射光に対する偏光度が低下しやすい。

【0043】位相差層としては、円偏光分離層より出射 場合、特にその外部側表面層をした円偏光を、1/4波長の位相差に相当して直線偏光 差を与える層が占める場合にはを多く形成しうると共に、他の波長の光を前記直線偏光 50 度を設定することが好ましい。

と可及的にパラレルな方向に長径方向を有し、かつ可及 的に直線偏光に近い扁平な楕円偏光に変換しうるものが 好ましい。位相差層は、円偏光分離層と共に偏光板と一 体的に設けることもできる。

10

【0044】前記の如き位相差層を用いることにより、その出射光の直線偏光方向や楕円偏光の長径方向が偏光板の透過軸と可及的に平行になるように配置して、偏光板を透過しうる直線偏光成分の多い状態の光を得ることができる。位相差層は、適宜な材質で形成でき、透明で10均一な位相差を与えるものが好ましく、一般には位相差板が用いられる。

【0045】位相差層にて付与する位相差は、円偏光分離層より出射される円偏光の波長域などに応じて適宜に決定しうる。ちなみに可視光域では波長範囲や変換効率等の点より、殆どの位相差板がその材質特性より正の複屈折の波長分散を示すものであることも加味して、その位相差が小さいもの、就中100~180m、特に110~150m以下の位相差を与えるものが好ましく用いうる。

20 【0046】位相差板は、1層又は2以上の重畳層として形成することができる。1層からなる位相差板の場合には、複屈折の波長分散が小さいものほど波長毎の偏光状態の均一化をはかることができて好ましい。一方、位相差板の重畳化は、波長域における波長特性の改良に有効であり、その組合せは波長域などに応じて適宜に決定してよい。

【0047】なお可視光域を対象に2層以上の位相差板とする場合、上記の如く100~180mmの位相差を与える層を1層以上の奇数層として含ませることが直線偏光成分の多い光を得る点より好ましい。100~180mmの位相差を与える層で形成することが波長特性の改良等の点より好ましいが、これに限定するものではない。【0048】位相差板は、例えばボリカーボネートやボリスルホン、ボリエステルやボリメチルメタクリレート、ボリアミドやボリビニールアルコール等からなるフィルムを延伸処理してなる複屈折性シートなどとして得ることができる。発光強度や発光色を広い視野角で均一に維持する点よりは、位相差層の面内における位相差の誤差が小さいほど好ましく、就中、その誤差が±10mm以下であることが好ましい。

【0049】位相差層に設定する位相差や光学軸の方向は、目的とする直線偏光の振動方向などに応じて適宜に決定することができる。ちなみに135mの位相差を与える位相差層の場合、円偏光の向きに応じて光学軸に対し振動方向が+45度又は-45度の直線偏光(波長540m)が得られる。なお位相差層が2層以上からなる場合、特にその外部側表面層を100~180mの位相差を与える層が占める場合にはその層に基づいて配置角度を設定することが行去しい。

【0050】円偏光分離層の所定側に上記した直線偏光変換手段としての位相差層を設けた場合には、図3に例示の如くその位相差層の上に必要に応じて偏光板が設けられる。かかる形態の光学素子は、その偏光板を液晶セルの光源側の偏光板として用いることができる。また偏光板は、円偏光分離層の所定側に位相差層を設けることなく配置することもできる。かかる形態の光学素子は、円偏光分離層を透過した円偏光を偏光板を介して直線偏光化するようにしたものであり、液晶セルの光源側に好ましく用いうる。

【0051】偏光板としては、適宜なものを用いうるが一般には、偏光フィルムからなるものが用いられる。偏光フィルムの例としては、ポリビニルアルコール系や部分ホルマール化ポリビニルアルコール系、エチレン・酢酸ビニル共重合体系部分ケン化物の如き親水性高分子のフィルムにヨウ素及び/又は二色性染料を吸着させて延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物の如きポリエン配向フィルムなどがあげられる。偏光フィルムの厚さは通例5~80~μπであるが、これに限定されない。用いる偏光板は、偏光フィルムの片面又は両面を透明保護層等で被覆したものなどであってもよい。

【0052】円偏光分離層に必要に応じて設ける拡散層は、導光板と共に使用した場合に出射光を平準化して明暗ムラを抑制し、液晶セルに適用した場合に画素との干渉でモアレによるギラギラした視認が生じることの防止などを目的とする。円偏光分離層より出射した光の偏光状態の維持性などの点より好ましく用いうる拡散層は、位相差が波長633mの垂直入射光、好ましくは入射角30度以内の入射光に基づいて30m以下、就中0~20mのものである。

【0053】拡散層は、例えば粒子分散樹脂層の形成方式、サンドブラストや化学エッチング等の表面凹凸化処理による方式、機械的ストレスや溶剤処理等によるクレイズ発生方式、所定の拡散構造を設けた金型による転写形成方式などの任意な方式で、円偏光分離層や位相差層等への塗布層や拡散シートなどとして適宜に形成することができる。なお拡散層は、円偏光分離層の当該長波長側や短波長側、円偏光分離層に設けた位相差層や偏光板の間や、それらの上面などの、円偏光分離層や位相差層や偏光板等に隣接した適宜な位置に配置することができる

【0054】本発明による偏光光源装置は、側面からの入射光を上下面の一方より出射する導光板の出射面側に、上記した円偏光分離層又は光学素子を配置したものである。その例を図4に例示した。51が導光板である。かかる偏光光源装置5によれば、導光板より出射した光が円偏光分離層に入射し、左右いずれかの円偏光は透過し、他方の円偏光は反射され、その反射光は、戻り光として導光板に再入射する。導光板に再入射した光

は、下面の反射層等からなる反射機能部分で反射されて 再び円偏光分離層に入射し、透過光と反射光 (再々入射 光) に再度分離される。

【0055】従って、反射光としての再入射光は、円偏光分離層を透過しうる所定の円偏光となるまで円偏光分離層と導光板との間に閉じ込められて反射を繰返すこととなるが、本発明においては再入射光の利用効率等の点より、可及的に少ない繰返し数で、就中、初回の再入射光が反射の繰返しなく出射するようにしたものが好ましい。

【0056】前記の導光板としては、側面からの入射光を上下面の一方より出射する適宜なものを用いうる。導光板は通例、いずれか一方が出射面となる上下面、及び上下面間の少なくとも一側端面からなる入射面を有する板状物からなる。円偏光分離層を介して再入射した円偏光を位相差の影響なくその円偏光状態を良好に維持したまま下面に導き、また下面で反射した帰路光をその円偏光状態を維持したまま出射させる点などより好ましく用いうる導光板は、厚さ方向における複屈折による位相差が上記した拡散層と同様に可及的に小さいものであり、就中30m以下、特に0~20mのものである。

【0057】導光板の形態は、出射面よりの出射効率に優れその出射光が出射面に対する垂直性に優れて有効利用しやすく、また円偏光分離層を介した再入射光の出射効率にも優れてその出射方向の初期出射方向との近似性などの点より、微細なプリズム状凹凸、就中、長辺面と短辺面からなる凸部又は凹部を周期的に有する構造が好ましい(特願平7-321036号)。さらに入射面に対向する側端部の厚さが入射面のそれよりも薄いもの、就中50%以下の厚さであるものが好ましい。

【0058】前記の入射面に対する対向側端部の薄型化は、入射面より入射した光が伝送端としての当該対向側端部に至るまでに、プリズム状凹凸面の短辺面に効率よく入射し、その反射を介し出射面より出射して入射光を目的面に効率よく供給できる点で有利である。またかかる薄型化構造とすることで導光板を軽量化でき、例えばプリズム状凹凸面が直線状の場合、均一厚の導光板の約75%の重量とすることができる。

【0059】前記したプリズム状凹凸を形成する凸部又は凹部は通例、入射面に沿う方向の長辺面と短辺面からなる斜面の繰返し単位にて周期的に形成される。なお凸部又は凹部は、それを形成する斜面の基準面との交点を結ぶ直線に基づき、斜面の交点(頂点)が当該直線よりも突出しているか(凸)、窪んでいるか(凹)に基づく。

【0060】また凸部又は凹部を形成する斜面の長辺面と短辺面は、基準面との交点と頂点を結ぶ直線に基づいて判断されるが、光の利用効率を向上させる点などよりその長辺面の出射面に対する投影面積が短辺面のそれの3倍以上、就中5倍以上とすることが好ましい。さらに

50

30

その長辺面を凸部の場合には入射面側に、凹部の場合には入射面に対向する側端側に位置するように配置すること、従って入射面側に凸部の場合には長辺面が、凹部の場合には短辺面が位置するように配置することが好ましい。

【0061】前記により、短辺面に直接入射する伝送光に加えて、長辺面に入射してその反射を介し短辺面に入射する伝送光もその短辺面を介した反射にて出射面に供給(出射)することができ、光利用効率の向上をはかりうる。また長辺面は、偏光光源装置とした場合に円偏光分離層で反射された再入射光を再出射させるために機能する部分であり、かかる点より長辺面の出射面に対する好ましい投影面積は、短辺面のそれの5倍以上、特に10~100倍である。

【0062】 導光板のプリズム状凹凸を設ける上下面の一方又は双方の形状は、適宜に決定してよい。好ましくは上記したように傾斜面として、入射面よりもその対向側端部を薄型化したものである。その場合、傾斜面の形状は任意に決定してよく、直線面や曲面などのように適宜な面形状とすることができる。直線面でない場合、出射面よりの出射光の出射方向を均一化する点などよりは、プリズム状凹凸を設ける面の全位置で平均傾斜角度より5度以内の範囲にあることが好ましい。

【0063】設けるプリズム状凹凸の形状も、直線状の斜面で形成されている必要はなく、屈折面や湾曲面等を含む斜面にて形成されていてもよい。また凸部又は凹部は、プリズム状凹凸面の全体で凸凹やその形状等が同じである必要はなく、垂直性に優れる出射光を得る点よりは入射側から徐々にその形状や角度が変化する構造が好ましい。

【0064】プリズム状凹凸面における凸部又は凹部のピッチは、出射光がその凸部又は凹部を介し通例ストライプ状に放出されるため明暗ムラの抑制や液晶セルとのモアレの防止などの点より小さいほど好ましい。製造精度等を考慮した好ましい凸部又は凹部の周期は、500 μ 山以下、就中300 μ 山以下、特に $5\sim200$ μ 皿である。なお周期が5 μ 皿未満では製造精度等の点より生産効率に乏しくなり、干渉や回折による分散が増大して液晶表示装置用のバックライトに不向きとなる。

【0065】また凸部又は凹部を形成する斜面における上記した長辺面は、その出射面に対する傾斜角が0~10度、就中5度以下、特に2度以下であることが好ましい。かかる傾斜角の範囲とすることにより、当該傾斜角より大きい角度で伝送される光が長辺面に入射して反射され、その場合に当該長辺面の傾斜角に基づいて出射面に、より平行な角度で反射されて短辺面に入射し、反射されて出射面より出射する。

【0066】前記の結果、短辺面に入射する光の入射角 液状樹脂を、所定のプリズム状凹凸を形成しうる型に充を一定化でき、反射角のバラツキを抑制できて出射光の 填ないし流延して重合処理する方法や、熱可塑性樹脂を平行光化をはかることができる。従って、凸部又は凹部 50 所定のプリズム状凹凸を形成しうる金型に加熱下に押付

を形成する斜面における長辺面と短辺面の当該傾斜角を 調節することにより、出射光に指向性をもたせることが でき、それにより出射面に対して垂直方向ないしそれに 近い角度で光を出射させることが可能になる。

14

【0067】ちなみにアクリル樹脂からなる導光板では、その屈折率(約1.5)に基づいて端面入射光の伝送される光の最大角は41.8度であり、導光板の屈折率が増大するに伴い伝送される光の最大角は小さくなる。そのため前記長辺面の傾斜角が10度を超えると、長辺面の出射面に対する投影面積の割合が減少して長辺面を介し出射方向を制御しうる伝送光の割合が低下し、また長辺面を経由して短辺面に入射した伝送光と、短辺面に直接入射した伝送光との反射角のバラツキが大きくなり、出射光を平行光化する制御性が低下して出射光の指向性に乏しくなる。なお当該長辺面の傾斜角が0度では、出射光の平行化に不利となるが、本発明においては許容される。

【0068】一方、凸部又は凹部を形成する斜面における上記した短辺面は、その出射面に対する傾斜角が25~50度、就中30度以上であることが好ましい。かかる傾斜角の範囲とすることにより、直接又は長辺面を介して入射する伝送光をその短辺面を介し出射面に対して垂直又はそれに近い角度に反射して、液晶表示装置等の視認性の向上に有効に作用する方向の光を効率よく出射させることができる。

【0069】導光板における入射面の形状については、特に限定はなく、適宜に決定してよい。一般には、出射面に対して垂直な面とされるが、例えば湾曲凹形などの光源の外周等に応じた形状として、入射光率の向上をはることもできる。また、光源との間に介在する導入部を有する入射面構造などとすることもできる。その導入部は、光源などに応じて適宜な形状とすることができる。なお出射面の形状は、フラット面などが一般的であるが、必要に応じて微細なプリズム状凹凸を設けることもできるし、拡散層を設けることもできる。さらに円偏光分離層を導光板の出射面に直接設けることもできる。

【0070】導光板は、光源の波長領域に応じそれに透明性を示す適宜な材料にて形成しうる。ちなみに可視光域では、例えばポリメチルメタクリレートの如きアクリル系樹脂、ポリカーポネートやポリカーポネート・ポリスチレン共重合体の如きポリカーボネート系樹脂、エポキシ系樹脂等で代表される透明樹脂やガラスなどの如く約400~700mの波長範囲で透明性を示すものがあげられる。

【0071】導光板は、適宜な方法で形成ししたものであってよい。量産性等の点より好ましい製造方法としては、例えば熱や紫外線ないし放射線等で重合処理しうる液状樹脂を、所定のプリズム状凹凸を形成しうる型に充填ないし流延して重合処理する方法や、熱可塑性樹脂を所定のプリズム状凹凸を形成しうる金型に加熱下に押付

けて形状を転写する方法、加熱溶融させた熱可塑性樹脂 あるいは熱や溶媒を介して流動化させた樹脂を所定の形 状に成形しうる金型に充填する射出成形等の方法などが あげられる。

【0072】導光板は、例えば光の伝送を担う導光部に プリズム状凹凸面形成用のシートを接着したものの如 く、異種材料の積層体などとして形成されていてもよ く、1種の材料による一体的単層物として形成されてい る必要はない。上記した導光板では、短辺面と長辺面の 面積比や傾斜角、プリズム状凹凸面の形状や曲率等の制 御に基づいて出射光の角度分布や面内分布等の特性を調 節することができる。

【0073】ちなみに、屈折率が1.5でプリズム状凹 凸面が曲率を有しない傾斜面であり、初期出射光が垂直 に出射する導光板の場合、長辺面の出射面に対する傾斜 角を6.6度以下とすることで、円偏光分離層を介した 再入射光を10度以内の角度変化で再出射させることが できる。またその場合、プリズム状凹凸面が曲率を有す るときには当該傾斜角が6.6度以下となる部分を上記 した所定面積以上の割合で有することにより、当該再入 20 射光を 10度以内の角度変化で再出射させることができ る。

【0074】 導光板の厚さは、使用目的による導光板の サイズや光源の大きさなどにより適宜に決定することが できる。液晶表示装置等に用いる場合の導光板の一般的 な厚さは、その入射面に基づき20mm以下、就中0.1 ~10㎜、特に0.5~8㎜である。

【0075】導光板の出射面の対向面には、図例の如く 必要に応じて反射層52、好ましくは金属反射層を配置 することができる。かかる反射層は、当該対向面からの 漏れ光の発生を防止して出射効率の向上に有効であり、 偏光光源装置の偏光変換手段として機能する。反射層 は、当該対向面に一体化されていてもよいし、反射シー ト等として重ね合されていてもよく、本発明にては適宜 な配置形態を採ることができる。

【0076】前記において金属からなる反射層によれ ば、反射時に偏光特性を効率的に反転させることがで き、その偏光変換効率が屈折率相違の界面を介した全反 射や拡散反射による場合よりも優れている。ちなみに金 属面に概ね垂直に円偏光が入射すると、円偏光の左右の 40 変換効率は100%近い値となり、入射角30度位まで は90%以上の変換効率を示す。

【0077】偏光変換効率の点より好ましい金属反射層 は、アルミニウム、銀、金、銅又はクロムなどからなる 高反射率の金属の少なくとも1種を含有する金属面を有 するものである。導光板の出射面の対向面との密着性に 優れる金属反射層は、バインダ樹脂による金属粉末の混 入塗工層や、蒸着方式等による金属薄膜の付設層などと して形成することができる。金属反射層は、多層干渉薄 膜などとして形成されていてもよく、その片面又は両面 50 光板は、側面よりの入射光を高い効率で出射面より出射

には、必要に応じ反射率の向上や酸化防止等を目的とし た適宜なコート層を設けることもできる。

【0078】なお反射層については、前記の反射層52 に代えて、あるいはその反射層と共に、導光板の出射面 の対向面に沿って反射板を設けることもできる。導光板 の当該対向面に反射板を設ける方式は、長辺面の傾斜角 が同一の場合、円偏光分離層を介した再入射光の再出射 角を小さくできる利点がある。その反射板については、 前記の反射層に準じることができ、金属反射面を有する 反射板が好ましく用いうる。従って反射板としては、金 属薄膜を付設した樹脂シートや金属箔、金属板などの適 宜なものを用いることができる。反射板の表面は、鏡面 であることを必須とせず、小さい角度の複数面や連続曲 面などとして全体的には均一に形成されていてもよい。

【0079】また反射板としては、再出射光の広がりを 抑制する点などより、平行光を入射させた場合の反射光 の反射角の広がりの半値幅の半角が10度以内、就中5 度以内のものが好ましい。従って反射板としては、反射 率が高く、反射角の広がりが小さい適宜なものを用いう る。凹凸や圧延ロール等による粗表面を有して反射光の 反射角が若干広がるようにしたものであってもよい。

【0080】上記した導光板によれば、それを用いて高 精度に平行化された光を視認に有利な垂直性に優れる方 向に出射し、光源からの光を効率よく利用して明るさに 優れる偏光光源装置を得ることができ、ひいては明るく て見やすく低消費電力性に優れる液晶表示装置などの種 々の装置を形成することができる。なお導光板として は、それに基づく出射光の波長域と、円偏光分離層が所 定外の円偏光として反射する光の波長域が可及的に一致 するものが好ましく用いうる。

【0081】サイドライト型のバックライトは、図例の 如く通例、導光板の入射面に光源53を配置することに より形成される。その光源としては適宜なものを用いう るが、例えば(冷、熱)陰極管等の線状光源や発光ダイ オード等の点光源、あるいはその線状又は面状等のアレ イ体などが好ましく用いうる。当該バックライトの形成 に際しては、必要に応じて図例の如く、線状光源からの 発散光を導光板の側面に導くために光源を包囲する光源 ホルダ54や、光の出射方向制御用のプリズムシートな どの適宜な補助手段を配置した組合せ体とすることもで きる。

【0082】なお光源ホルダとしては、高反射率金属薄 膜を付設した樹脂シートや金属箔などが一般に用いられ る。光源ホルダを導光板の端部に接着剤等を介して接着 する場合には、その接着部分についてはプリズム状凹凸 の形成を省略することもできる。また、光源ホルダを導 光板の所定面に延設して反射板を兼ねさせることもでき

【0083】偏光光源装置の形成に好ましく用いうる導

させ、その出射光が高い指向性、就中、出射面に対する 垂直性に優れる指向性を示すと共に、円偏光分離層を介 した再入射光の再出射効率に優れ、その再出射光の指向 性と出射角度が初期出射光の指向性と出射角度に可及的 に一致し、かつ円偏光分離層を介した再入射光を少ない 反射繰返し数で、就中、反射の繰返しなく出射するよう にしたものである。

【0084】上記のように本発明による偏光光源装置 は、円偏光分離層による反射光(再入射光)を偏光変換 による出射光として再利用することで反射ロス等を防止 し、その出射光を必要に応じ位相差層等を介し直線偏光 成分をリッチに含む光状態に変換して偏光板を透過しや すくし吸収ロスを防止して、光利用効率の向上をはかり うるようにしたものである。この方式により、理想的に は偏光板を透過する光量を約2倍に増量しうるが、光源 として利用する点よりは、偏光板を透過しうる直線偏光 成分を65%以上、就中70%以上含むことが好まし い。

【0085】本発明による偏光光源装置は、上記の如く 光の利用効率に優れて明るく、垂直性に優れて明暗ムラ の少ない光を提供し、大面積化等も容易であることより 液晶表示装置等におけるバックライトシステムなどとし て種々の装置に好ましく用いることができる。

【0086】図5に本発明による偏光光源装置5をバッ クライトシステムに用いた液晶表示装置6を例示した。 61が下側の偏光板、62が液晶セル、63が上側の偏 光板、64が補償用拡散板である。下側の偏光板61や 補償用拡散板64は、必要に応じて設けられる。

【0087】液晶表示装置は一般に、液晶シャッタとし て機能する液晶セルとそれに付随の駆動装置、偏光板、 バックライト、及び必要に応じての補償用位相差板等の 構成部品を適宜に組立てることなどにより形成される。 本発明においては、上記した偏光光源装置を用いる点を 除いて特に限定はなく、従来に準じて形成することがで きる。特に、直視型の液晶表示装置を好ましく形成する ことができる。

{ · · ·

【0088】従って用いる液晶セルについては特に限定 はなく、適宜なものを用いうる。就中、偏光状態の光を 液晶セルに入射させて表示を行うものに有利に用いら れ、例えばツイストネマチック液晶やスーパーツイスト ネマチック液晶を用いた液晶セル等に好ましく用いうる が、非ツイスト系の液晶や二色性染料を液晶中に分散さ せたゲストホスト系の液晶、あるいは強誘電性液晶を用 いた液晶セルなどにも用いうる。液晶の駆動方式につい ても特に限定はない。

【0089】なお高度な直線偏光の入射による良好なコ ントラスト比の表示を得る点よりは偏光板として、特に バックライト側の偏光板として、例えばヨウ素系や染料 系の吸収型直線偏光子などの如く偏光度の高いものを用 いた液晶表示装置が好ましい。液晶表示装置の形成に際 50 1/4波長板と偏光板を、円偏光分離板の当該中心波長

しては、例えば視認側の偏光板の上に設ける拡散板やア ンチグレア層、反射防止膜や保護層や保護板、あるいは 液晶セルと偏光板の間に設ける補償用位相差板などの適 宜な光学層を適宜に配置することができる。

18

【0090】前記の補償用位相差板は、複屈折の波長依 存性などを補償して視認性の向上等をはかることを目的 とするものである。本発明においては、視認側又は/及 びバックライト側の偏光板と液晶セルの間等に必要に応 じて配置される。なお補償用位相差板としては、波長域 などに応じて適宜なものを用いることができ、1層又は 2層以上の重畳層として形成されていてよい。補償用位 相差板は、上記した直線偏光変換用の位相差板で例示の 延伸フィルムなどとして得ることができる。

【0091】本発明において、上記した偏光光源装置や 液晶表示装置を形成する光学素子ないし部品は、全体的 又は部分的に積層一体化されて固着されていてもよい し、分離容易な状態に配置したものであってもよい。液 晶表示装置等の形成に際しては、垂直性や平行光性に優 れる出射光を供給し、円偏光分離層を介した再入射光も 散乱等によるロスや角度変化の少ない状態で、かつ初期 出射光との方向の一致性よく再出射して、視認性の向上 に有効な方向の出射光を効率よく供給する偏光光源装置 が好ましく用いうる。

[0092]

【実施例】

参考例 1

アクリル系の主鎖を有するガラス転移温度が60℃の側 鎖型コレステリック液晶ポリマーを、厚さ50μmのト リアセチルセルロースフィルムのポリイミドラビング処 30 理面にスピンコート方式で成膜後(厚さ3μm)、14 5℃で30秒間加熱後さらに125℃で2分間加熱して 急冷し、鏡面状の選択反射状態を呈する円偏光分離板を 得た。これは、選択反射の中心波長が500mで、左円 (偏光を透過するものであった。

【0093】参考例2

アクリル系の主鎖を有するガラス転移温度が70℃の側 鎖型コレステリック液晶ポリマーを、厚さ50μmのト リアセチルセルロースフィルムのポリイミドラビング処 理面にスピンコート方式で成膜後(厚さ3μm)、16 40 0℃で30秒間加熱後さらに140℃で2分間加熱して 急冷し、鏡面状の選択反射状態を呈する円偏光分離板を 得た。これは、選択反射の中心波長が600mで、左円・ 偏光を透過するものであった。

【0094】実施例1

参考例1及び参考例2で得た円偏光分離板を接着積層し て円偏光分離板を得、その当該中心波長が600mmの液 晶層側に1/4波長板を介して偏光板を左円偏光板とな るように配置して光学素子を得た。

【0095】比較例

が500mの液晶層側に配置したほかは実施例1に準じて光学素子を得た。

【0096】評価試験

*実施例、比較例で得た光学素子をその偏光板を上側にして、均一な明るさの面光源上に配置し、視角の変化による色度変化を目視評価した。その結果を次表に示した。

	実施例1	比較例	
上下方向	良好	赤変	
左右方向	良好	赤変	

【図面の簡単な説明】

【図1】円偏光分離層例の断面図

【図2】光学素子例の断面図

【図3】他の光学素子例の断面図

【図4】偏光光源装置例の断面図

【図5】液晶表示装置例の断面図

【符号の説明】

1:円偏光分離層

11,12:コレステリック液晶層

13,14,15:支持基材

2:位相差層

3: 偏光板

4:拡散層

5: 偏光光源装置

5 1: 導光板

5 2:反射層

5 3:光源

6:液晶表示装置

【図1】

【図2】

【図3】

【図4】

54 53 51 51

【図5】

フロントページの続き

(72)発明者 西尾 昭徳

大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内