

Disjunction

- Definition: Let p and q be propositions. The disjunction of p and q, denoted $p \vee q$, is the proposition that is:
 - \Box false when both p and q are false, and true otherwise.
- Example:
 - □ Let p: "the butler did it" and let q: "the cook did it." What does $p \lor q$ say?
 - Solution: "Either the butler or the cook did it, or both."

36

Truth Table for $p \lor q$

р	q	p∨q
T	T	T
T	F	T
F	T	T
F	F	F

Note the difference between $\it inclusive$ and $\it exclusive$ OR in English

9

Exclusive OR

- Definition: Let p and q be propositions. The *Exclusive OR* of p and q, denoted $p \oplus q$, is the proposition that is:
 - u true when *exactly one* of *p* and *q* is *true*, and false otherwise.

38

Truth table for $p \oplus q$

p	q	<i>p</i> ⊕ <i>q</i>
T	T	F
T	F	T
F	T	T
F	F	F

Conditional Proposition (Implication)

Definition: Let *p* and *q* be propositions. The conditional proposition, also called *implication*, *p* → *q*

is the proposition that is:

 \Box false when p is true and q is false, and true otherwise.

5 40

More on $p \rightarrow q$

- The conditional operator is interpreted as a guarantee; If the condition is true then the conclusion is expected (guaranteed) to be true, for the implication to be true.
 - Ex: Let p = "It is raining", q = "There are clouds in the sky"
 - $p \rightarrow q$
 - If it is raining then there are clouds in the sky.
 - Note that if it is not raining and there are clouds in the sky, the guarantor has not lied.
- There may not be a cause and effect relationship here.
 - □ Ex: The proposition "If snow is black then I can fly" is true (as we know it!).

More on $p \rightarrow q \dots$

- Terminologies used to express $p \rightarrow q$:
 - \Box If p then q
 - p implies q
 - p only if q
 - p is a sufficient condition for q
 - \Box q follows from p
 - \Box q is a necessary condition for p
 - q if p
 - \Box q when p
 - \Box q whenever p
 - $\neg q$ unless $\neg p$

5

More on $p \rightarrow q \dots$

5

- Other propositions *related* to $p \rightarrow q$:
 - $\neg q \rightarrow p$ is called the <u>converse</u>;
 - If there are clouds in the sky then it is raining .
 - □ $\neg p \rightarrow \neg q$ is called the <u>inverse;</u>
 - If it is not raining then there are no clouds in the sky
 - $\neg q \rightarrow \neg p$ is the <u>contrapositive</u>.
 - If there no clouds in the sky then it is not raining.

Conditional Propositions

p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
T	T				
T	F				
F	T				
F	F				

5

Conditional Propositions... $p \rightarrow q$ $q \rightarrow p$ $\neg p \rightarrow \neg q$ $\neg q \rightarrow \neg p$ q T T T T F Т F T Т F F T F T Τ T p = "It is raining", q = "There are clouds in the sky"

5

Biconditional

- Definition: Let p and q be propositions. The biconditional $p \leftrightarrow q$ is the proposition that is true when p and q have the same truth values, and false otherwise.
- The biconditional $p \leftrightarrow q$ is true when both the implications $p \rightarrow q$ and $q \rightarrow p$ are true.
 - p if and only if q'
 - You are a U.S. citizen if and only if you are eligible to hold a U.S. passport.

5

NOR

5

■ Definition: Let p and q be propositions. The proposition p NOR q, denoted as $p \downarrow q$, is the proposition that is true when both p and q false, and false otherwise.

Summary of logical operations

p	q	$\neg p$	p ^ q	$p \vee q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$	p↓q
T	T	F	T	T	F	T	T	F
T	F	F	F	T	T	F	F	F
F	T	T	F	T	T	T	F	F
F	F	T	F	F	F	T	T	T

How many distinct logical operators can we define?

51

Well-formed Formulas

- A well-formed formula (wff) can be generated by using one or more of the following rules finitely many times
 - □ A proposition standing alone is a wff.
- □ If *p* is wff, so is $\neg p$.
- □ If p and q are wffs, so are $p \land q$, $p \lor q$, $p \to q$, and $p \leftrightarrow q$.

Precedence of Logical Operators

- 1: Parentheses
- 2: Negation is applied before all others
- 3: Conjunction is prior to Disjunction
- 4: Conditionals at last

Operator	Precedence
7	1
^, ٧	2
\rightarrow , \leftrightarrow	3

Translating English Sentences

- "You can access the Internet from campus only if you are a computer science major or you are not a freshman."
- Let *a*, *c* and *f* represent the propositions:
 - a: "You can <u>a</u>ccess the Internet from campus"

 - □ *f* : "You are a <u>f</u>reshman."
- $a \rightarrow (c \lor \neg f)$

50

Tautology, Contradiction, Contingency

- Definition: A *tautology* is any proposition (wff) that is always true regardless of the truth values of its "atomic" propositions.
- A tautology is a proposition which is true by virtue of logic.
- Definition: A contradiction is any wff that is always false regardless of the truth values of its "atomic" propositions.
- A contradiction is a proposition which is false by virtue of logic.
- A compound proposition that is neither a tautology nor a contradiction is called a contingency.

5:

Example

- Which of the following propositions are tautology?
 - "Sara has red hair"
 - Not a tautology; it is not necessarily either true or false
 - □ "1 ≠ 2"
 - Not a tautology; it's truth is based the our number system
 - "Sara has red hair or she does not have red hair"
 - This is a tautology

56

Example

р	¬ p	<i>p</i> ∨ ¬ <i>p</i>	p∧¬p
T	F	T	F
F	T	T	F

- $p \lor \neg p$ is a tautology.
- $p \land \neg p$ is a contradiction.

Propositional Equivalences

- Definition: Two wffs p and q are logically equivalent (denoted $p \Leftrightarrow q$ or $p \equiv q$), if they have the same truth values in all possible cases.
- In other words, the wff p and q are logically equivalent whenever the proposition $p \leftrightarrow q$ is a tautology.

58

Example: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $q \wedge r \mid p \vee (q \wedge r) \mid p \vee q \mid p \vee r \mid$ $(p \lor q) \land (p \lor r)$ Т T F T T T F T F F T T F T F F F Т F 4

Homework#1

- Page 13, Problem 8
 - \Box Let *p* and *q* be the propositions
 - □ *p* : I bought a lottery ticket this week.

 - Express each of these propositions as an English sentence.
 - □ **a)** $\neg p$ **b)** $p \lor q$ **c)** $p \to q$
 - □ **d)** $p \land q$ **e)** $p \leftrightarrow q$ **f**) $\neg p \rightarrow \neg q$
 - \square **g)** $\neg p \land \neg q \mathbf{h}) \neg p \lor (p \land q)$

5

Homework#1

- Page 14, Problem 16
 - Determine whether these biconditionals are true or
 - □ false
 - a) 2 + 2 = 4 if and only if 1 + 1 = 2.
 - **b)** 1 + 1 = 2 if and only if 2 + 3 = 4.
 - \mathbf{c} **c)** 1 + 1 = 3 if and only if monkeys can fly.
 - **d)** 0 > 1 if and only if 2 > 1.

5

Homework#1

- Page 14, Problem 18
 - Determine whether each of these conditional statements
 - □ is true or false.
 - \Box a) If 1 + 1 = 3, then unicorns exist.
 - **b)** If 1 + 1 = 3, then dogs can fly.
 - **c)** If 1 + 1 = 2, then dogs can fly.
 - **d)** If 2 + 2 = 4, then 1 + 2 = 3.

5

Homework#1

- Page 15, Problem 32
 - Construct a truth table for each of these compound propositions.
- **b)** $p \leftrightarrow \neg p$
- \Box **c)** $p \oplus (p \lor q)$
- $\mathbf{d)}\;(p\wedge q)\to (p\vee q)$