חורף תשע״ב 10/2/2012 הטכניון – הפקולטה למדעי המחשב גרפיקה ממוחשבת – 234325

מרצה: פרופ׳ חיים גוטסמן

מתרגל: רועי פורן

מבחן סיום

שם:
: מסי סטודנט

: הנחיות

- 1. בבחינה שלפניכם 7 דפים כולל דף זה. בדקו זאת.
 - 2. עליכם לענות על כל 4 השאלות.
 - 3. כתבו בקצרה. כל המאריך גורע!
 - 4. משך הבחינה: **180 דקות**
 - 5. יש לכתוב את כל התשובות בטופס הבחינה.
 - 6. יש להגיש את טופס הבחינה.
 - 7. כל חומר עזר (לא אלקטרוני) מותר.

בהצלחה

נקודות	שאלה
25	1
25	2
25	3
25	4
100	סהייכ

שאלה 1 (25 נק')

ניתן להגדיר פונקציה מעריכית של קווטרניונים (quaternion) בצורה הבאה:

$$q = (s, v)$$

$$\exp(q) = \exp(s) \left(\cos ||v||, \frac{v}{||v||} \sin ||v|| \right) \qquad (*)$$

א. (8 נק.) הוכח ש-(*) מתלכד עם ההגדרות המקובלות עבור המקרים הפרטיים ש-q הוא מספר ממשי או מספר מרוכב. תוכל להעזר בנוסחת אוילר עבור מספר מרוכבים:

$$\exp(i\theta) = \cos\theta + i\sin\theta$$

ב. $(9 \, \text{ig.})$ הוכח: אם נגדיר את הוקטור התלת-מימדי n והסקלר θ כך ש-

$$s = \|q\|\cos\theta$$
 וגם $v = n\|v\| = v\|q\|\sin\theta$

אזי מתקיים

$$q = ||q|| \exp(n\theta)$$

ג. (8 נק.) הוכח שאם q הוא אופרטור מימדי v שאורכו q הוא אופרטור הסיבוב פרטור הוכח מביב v בזוית v בזוית v הראה כמסקנה שאופרטור הסיבוב בזוית v סביב כיוון כשלהוא הוא אופרטור הזהות.

פתרון:

א.

$$\exp(c) = \exp(c)[\cos 0, (0, 0, 0)] = \exp(c)$$

$$\begin{split} &\exp(z) = \exp(\alpha + i\beta) = \exp(\alpha) \exp(i\beta) = \exp(\alpha) (\cos\beta + i\sin\beta) \\ &= \exp(\alpha) [\cos\beta, (\sin\beta, 0, 0)] = \exp(\alpha) [\cos\left|\beta\right|, (\operatorname{sgn}(\beta) \sin\left|\beta\right|, 0, 0)] \\ &= \exp(\alpha) [\cos\left|\beta\right|, (\frac{\beta}{\left|\beta\right|} \sin\left|\beta\right|, 0, 0)] \end{split}$$

ב.

$$n = \frac{\mathbf{v}}{\|\mathbf{v}\|} \to \|\mathbf{n}\| = 1, \|\mathbf{n}\theta\| = \theta$$
$$\|\mathbf{q}\| \exp(\mathbf{n}\theta) = \|\mathbf{q}\| \exp(0)[\cos\|\mathbf{n}\theta\|, \mathbf{n}\sin\|\mathbf{n}\theta\|] = \|\mathbf{q}\|[\cos\theta, \mathbf{n}\sin\theta] = (\mathbf{s}, \mathbf{v}) = \mathbf{q}$$

:v אם וקטור יחידה בכיוון n- אם נסמן ב עשורכו $\theta/2$ אורכו v הוא וקטור חידה ביוון q ג.

$$\exp(\boldsymbol{q}) = \exp([0,\boldsymbol{v}]) = \exp(0)[\cos\tfrac{\theta}{2},\boldsymbol{n}\sin\tfrac{\theta}{2}]$$

.v הוא אטפרטור הסיבוב בזוית θ סביב הציר דרך exp(g) ולכן

שאלה 2 (25 נק')

נתונה סדרת נקודות ל t_i וקטורי נגזרת במישור, וסדרה מתאימה של וקטורי נגזרת נתונה נתונה בקורה ל t_i וכך במישור, וסדרה מתאים לקלט לקלט זה הוא עקום פרמטרי נקודות אלו. כפי שנלמד בקורס, הספליין של הרמיט (Hermite) שמתאים לקלט זה הוא עקום פרמטרי פולינומיאלי קובי למקוטעין (cubic piecewise polynomial) שעובר דרך כל הנקודות שנגזרתו ב t_i הוא t_i הוא שנגזרתו ב-ל

 p_i במישור: עבור סדרת נקודות עבור סדרת עבור: עבור עבור עבור: עבור אהגדרה של ספליין קטמול-רום (Catmull-Rom) עבור סדרת נקודות p_i הספליין פנימי (דהיינו בנייה של הספליין (נ. ב $(p_{i+1}-p_{i-1})/2$ ע"מ לקבל עקומה בין הנקודות עבור הסדרות p_i ו- p_i ע"מ לקבל עקומה בין הנקודות עבור הסדרות ונגדיר עבור היא ספליין קטמול-רום היא ספליין קרדינלי (cardinal). בבנייה דו נגדיר בנייה בור קבוע בתחום בור $t_i=c(p_{i+1}-p_{i-1})/2$

- א. (12 נק.) מדוע הבחירה עבור t_i של ספליין קטמול-רום היא טבעית? מהם היתרונות והחסרונות של השימוש בספליין קטמול-רום לבניית אינטרפולנט דרך סדרת נקודות במישור לעומת השימוש בבנייה של ספליין קובי טבעי (שגם היא נלמדה בקורס)?
- ב. (13 נק.) מה האפקט של שינוי הפרמטר בהגדרת הספליין הקרדינלי? בפרט, כיצד תראה התוצאה ב. (13 נק.) מאוד קרוב ל-20 רמז: כיצד יראה ספליין הרמיט עבור שתי נקודות p_1 ו- p_2 כאשר עבור ערך p_1 מאוד קרוב ל- p_2 רמז: כיצד יראה ספליין הרמיט עבור שתי נקודות p_2 וו p_1 (p_2 וו p_3 רמז: p_4 וו p_4 רמז: כיצד יראה ספליין הרמיט עבור שתי נקודות p_4 וו p_4 רמז: כיצד יראה ספליין הרמיט עבור שתי נקודות p_4 וו p_4 רמז: כיצד יראה ספליין הקרדינלי.

פתרון:

- א. הבחירה טבעית כי הנגזרת בנקודה תהיה השיפוע שבין שני הנקודות הסמוכות לה. יתרונות: ספליין ק-ר הוא מקומי וספלין קובי טבעי הוא גלובלי. חסרון: ספליין ק-ר הוא בעל רציפות C1 בלבד לעומת רציפות C2 של ספליין קובי טבעי.
- ב. האפקט של הקטנת c ל-0 הוא ל"מתוח" את הספליין בין הנקודות, עד שהוא הופך לקו שבור (polyline). האפקט של הקטנת $t_1||t_2||$, $t_3||t_3||$, אזי התוצאה היא שניתן לראות בנוסחאות של ספליין הרמיט בין שתי נקודות שאם $t_3||t_3||t_3||t_3||t_3||t_3|$ אינטרפולנט ליניארי בין שתי הנקודות (משקולות r ו- $t_3||t_3||t_3||t_3|$).

שאלה 3 (25 נק')

- יו- (p_1,p_2,p_3) הם הם קודקודיהם ב- \mathbb{R}^3 , אשר מנוונים לא מנוונים ב- T_1 ו- T_1 יהיו T_1 יהיו T_2 . (כלומר המקיימת T_2). הראו כי קיימת טרנספומציה אפינית T_1 המעבירה את T_2 . (כלומר המקיימת T_2). האם הטרנפורמציה יחידה? נמק. T_2 מקן צורך לכתוב את T_3 באופן מפורש. T_3
- ב. (8) נק.) מיקמו בסצינה שלושה כדורים זהים בייצוג פוליגונלי, אשר מרכזיהם בקודקודי (7). כעת, הפעילו על הכדורים את הטרנפורמציה (7). תארו מה התרחש בסצינה. האם תשובתך תשתנה אם נוסיף את ההנחה שהמשולשים חופפים?

ג. (8) נקודה במישור המשולש T_1 אשר הקואורדינטות ביחס ל- T_1 אשר ביחס ל-ביחס ל- T_1 הן נקודה במישור במישור מישור חבאריצנטריות שלה באריצנטריות שלה ביחס ל- (α,β,γ) . הראו כי הנקודה (α,β,γ) .

פתרון:

- א. טענה: אפשר להראות שניתן להעביר כל משולש למשולש קנוני שקודקודיו (0,0,0),(0,1,0),(0,1,0),(1,0,0). נראה מענה: אפשר להראות שניתן להעביר כל משולש למשולש כך ש- p_1 יעבור ל- p_1 . ראשית, בלי הגבלת הכלליות, נזיז את המשולש כך ש- p_2 תהיה על ציר p_2 תהיה על ציר p_3 ובנוסף, נסובב את המשולש כך שיעבור למישור p_2 יישארו במקום ו- p_3 תעבור להיות על ציר p_3 . כל מה שנותר לעשות ניבע טרנספורמצית p_3 תעבור ל- p_3 תעבור מטריצות אפיניות הפיכות, ומכפלתן תעביר את p_3 למשולש הקנוני.
- T_1 ל- T_1 מעבירה את T_1^{-1} מעבירה אז T_1 למשולש הקנוני. אז הטרנספורמציות שמעבירות את T_1 ל T_1 למשולש מכיל את מישור המשולש.
- ב. מרכזי הכדורים וזה נכון גם אם המשולשים T_2 , אבל הכדורים לא ישארו בהכרח כדורים וזה נכון גם אם המשולשים ב. חופפים.

ג.

$$Ap = A(\alpha p_1 + \beta p_2 + \gamma p_3) = \alpha Ap_1 + \beta Ap_2 + \gamma Ap_3 = \alpha q_1 + \beta q_2 + \gamma q_3$$

שאלה 4 (25 נק')

נתונה הסצינה הבאה:

- (2,0,0) מקור אור נקודתי הנמצא בנקודה (1.0.0).
- (-1,0,0) מקור אור מקבילי המכוון בכיוון 2
- .3 כדור בעל רדיוס 1 הנמצא בראשית הצירים.
- 4. מצלמה הנמצאת על ציר בנקודה (0,0,2) ומכוונת בכיוון z –. הצבעים של מקורות האור והכדור זהים. אין עוד אף תאורה נוספת בסצינה, והרקע הוא שחור.
 - א. (5 נק.) צייר סקיצה של הסצינה.
- ב. (7 נק.) בהנחה שהכדור דיפוסיבי לחלוטין, היכן על הכדור נמצאת הנקודה המוארת ביותר ביחס לכל אחד ממקורות האור? כיצד מיקום המצלמה משפיע על תשובתך?
 - ג. (7 נק.) עבור איזה מקור אור יתקבל בתמונה מהמצלמה יותר פיקסלים שחורים? נמק!
- ד. (6 נק.) ענה על השאלה מסעיף ב' בהנחה שהכדור ספקולרי לחלוטין. התייחס גם למקרה בו המצלמה אורתוגרפית וגם למקרה בו היא פרספקטיבית.
 - ה. צבעי התמונה לאחר רינדור, נראים שונה כאשר היא מוצגת על גבי שני מסכים שונים. הסבר מדוע.

פתרון:

- ב. בשני המקרים הנקודה (1,0,0) היא בעלת עוצמת ההארה הגדולה ביותר, מכיוון שבה משטח הכדור מאונך לכיוון האור.
- ג. מקור האור המקבילי יאיר בדיוק חצי מהכדור, והמקור הנקודתי יאיר פחות מכך. לכן עבור המקור הנקודתי נקבל יותר פיקסלים שחורים ברינדור.
 - ד. ההארה תהיה מקסימלית כאשר קרן ממקור האור תוחזר ישירות למצלמה.
 - $\frac{1}{2}(\sqrt{2},\sqrt{2})$ מצלמה אורתוגרפית, מקור מקבילי: משיקולי סימטריה הנקודה היא 1.
- על הנקודה על y- מצלמה אורתוגרפית, מקור נקודתי: משיקולי סימטריה, ה-y של הנקודה צריך להיות y- נסמן את הנקודה על $(x,z)=(\cos\theta,\sin\theta)$. נקבל (לפי הסימונים של משוואת התאורה)

$$\begin{split} \Rightarrow R &= 2\big(\hat{L}\cdot\hat{N}\big)\hat{N} - \hat{L} = \frac{1}{\|L\|}(2(L\cdot N)N - L) \\ 2(L\cdot N)N - L &= 2\big((\cos\theta,\sin\theta - 2)\cdot(\cos\theta,\sin\theta)\big)(\cos\theta,\sin\theta) - (\cos\theta,\sin\theta - 2) \\ &= 2(\cos^2\theta + \sin^2\theta - 2\sin\theta)(\cos\theta,\sin\theta) - (\cos\theta,\sin\theta - 2) \\ &= 2(1-2\sin\theta)(\cos\theta,\sin\theta) - (\cos\theta,\sin\theta - 2) \\ &= (2(1-2\sin\theta)\cos\theta - \cos\theta,2(1-2\sin\theta)\sin\theta - \sin\theta + 2) \\ &= \big((1-4\sin\theta)\cos\theta,(1-4\sin\theta)\sin\theta + 2\big) \end{split}$$

תאורה מקסימלית תתקבל כאשר R יהיה בכיוון z בלבד, כלומר כאשר

$$(1 - 4\sin\theta)\cos\theta = 0 \Rightarrow 1 - 4\sin\theta = 0 \Rightarrow \sin\theta = \frac{1}{4} \Rightarrow \cos\theta = \frac{\sqrt{15}}{4}$$

מצלמה פרספקטיבית מקור מקבילי: זהה למקרה הקודם מצלמה פרספקטיבית, מקור נקודתי: זהה למקרה הראשון.