Sequences and Series

Kh notes

Contents

1	Intr	roduction (Number Sequences)	2
2	Arit 2.1 2.2	thmetic Sequences Ex 5B.1	3 3
3		ometric Sequences	7
4		Ex 5C	8 11
		Ex 5D	11
5	Fina	ancial Mathematics	11
	5.1	Compound Interest	11
		5.1.1 Ex 5E.1	12
	5.2	Inflation	12
		5.2.1 Ex 5E.2	12
	5.3	Real Value of an Investment	12
		5.3.1 Ex 5E.3	12
	5.4	Depreciation	12
		5.4.1 Ex 5E.4	12
	5.5	Using Financial Models	12
		5.5.1 Ex 5E.5	12
6	Seri	ies	12
	6.1	Sigma Notation	12
		6.1.1 Ex 5F	
	6.2	Arithmetic Series	12
		6.2.1 Ex 5G	12
	6.3	Finite Geometric Series	12
		6.3.1 Ex 5H	12
	6.4	Infinite Geometric Series	12
		6.4.1 Ex 5I	12

1 Introduction (Number Sequences)

Grains of rice problem.

How do we define this problem mathematically?

 \bullet Create a number sequence for each square: $1,2,4,8,16,...,2^{62},2^{63}$

• Consider relations between the number in each square: $s_2=2s_1$, or $s_9=2^8$

• Create a formula for each square: $s_n = 2^{n-1}$

• Communicate the idea of summing : $1+2+4+8+16, +...+, 2^{62}+2^{63}=\sum_{i=1}^{64}2^{i-1}$

• Actually solve the problem $1 + 2 + 4 + 8 + 16, +...+, 2^{62} + 2^{63} = ?$

Consider:

$$1+1+2+4+8 = 2+2+4+8$$

$$= 2(1+1+2+4)$$

$$= 2(2+2+4)$$

$$= 2(2(1+1+2))$$

$$= 2(2(2+2))$$

$$= 2(2(2(1+1)))$$

$$= 2(2(2(2))) = 24$$

2 Arithmetic Sequences

An example of an arithmetic sequence is:

$$14, 17, 20, 23, \dots$$

An arithmetic sequence has a common difference between the terms (in this case 3)

- We need to be able to descibe the sequence:

 The sequence has a first term of 14 and increases by 3 each time
- We define u_n to be the n^{th} term of the sequence
- Unless otherwise stated u_1 is the first term.
- We define d as the common difference $(d = u_{n+1} u_n)$.
- $\{u_n\}$ represents the whole sequence.

Note: the sequence is linear (so the difference is the gradient).

$$u_4 = 23$$
$$u_3 = 20$$
$$u_2 = 17$$

$$u_1 = 14$$

The middle of any three consectutive terms is the arithmetic mean of the other two terms.

General term formula:

$$u_n = u_1 + (n-1)d$$

(this can then be simplified to a 'y = mx + c' form)

2.1 Ex 5B.1

- Showing and proving a sequence is arithmetic,
- Finding terms
- \bullet Working with k
- Inserting terms between

Example Questions: 5B·1 12. Find k given the consecutive 7. A sequence is defined by $u_n = 71 - 70$ 2k+18,-2-k, 2k+2 a) prove the sequence is arithmetic Show un+1-un=d u2 - u1 = u3 - u2 $u_{n+1} - u_n = 71 - 7(n+1) - 71 - 7n$ -2-k-(2k+18) = 2k+2-(-2-k) -2-1c-26-18 = 2k+2+2+k -20-3k = 3k + 4= 71 - 7n - 7 - 71 + 7n = -7 = -3.56k = -24 k=-4 check: 10,2,-6 So un - un = -3.5 fr all n E Z' d = -8 b) $u_n = \frac{71}{2} - \frac{7n}{3}$ Other notes: Could have: $u_1 = \frac{7!}{7} - \frac{7}{2} = \frac{64}{3} = 32$ 2k+2+2k+18 = -2-k d = -7 4k+20 = -4-2k 6 k = -24 c) $u_{75} = 71 - 7(75) = -227$ 00 u2 - u1 = u2 - u2 d) Un <-200 $2u_2 - u_1 = u_3$ 71-71 <-200 2 (-2-1c) - (2k+18) = 2k+2 -4-21c-21c-18=21c+2 71-71 < -400 - 22 - 4/c = 2k+2 7n > 71 + 4006K = -24 71 > 471 1>67 = for n > 68 un < - 200 check u68 = 71-7(68) = - 202.5

Find the general term un for the arithmetic sequence $u_5 = -2$ and $u_{12} = -12\frac{1}{2}$ 15. Insert six numbers between - 1 and so all 8 are in an arithmetic sequence us = a + 4d ce = - 1 U12 = a + 11 d ug = -1+7d a + 4d = -2 $a + 11d = -\frac{25}{2}$ -1 + 7d = 32-7d = +21 0 - 2 7d = 33 $d = \frac{+21}{2} \times -\frac{1}{7} = -\frac{3}{2}$ d = 33 from 0 = -2 - 4d $= -2 - 4(-\frac{3}{2})$ $U_n = -1 + (n-1)\frac{33}{7}$ = -2 +6 = 4 or $d = \frac{u_8 - u_1}{7} = \frac{33}{7}$ $u_n = 4 - (n-1)\frac{3}{2}$ Test: us = 4 - (5-1) 3 = 4 - 6 = -2 $u_{12} = 4 - (12 - 1)\frac{3}{2}$ = 4-33 = 8-33 =-25 = -12=

2.2 Ex 5B.2

 \bullet Approximations using arithmetic sequences

3 Geometric Sequences

An example of a geometric sequence is:

$$3, 6, 12, 24, 48, \dots$$

In this case the difference between each term is not constant, but we can observe that each term is $2 \times$ the previous term. So we have

$$u_{n+1} = 2u_n$$

$$\Rightarrow \frac{u_{n+1}}{u_n} = 2$$

and

$$u_1 = 3$$

$$u_2 = 2 \times 3$$

$$u_3 = 2 \times 2 \times 3$$

$$u_4 = 2 \times 2 \times 2 \times 3$$

$$\Rightarrow u_n = 3 \times (2)^{n-1}$$

A geometric sequence has a **common ratio** between the terms. In general:

$$\frac{u_{n+1}}{u_n} = r$$

The first term is (generally) u_1

$$u_n = u_1 r^{n-1}$$

Behaviour of some sequences with different values of r

3.1 Ex 5C

- Finding common ratio
- \bullet Showing a sequence is geometric
- $\bullet\,$ Finding the general formula and terms.
- \bullet k problems
- $\bullet\,$ Finding the general formula, given two terms

Example Questions.

Ex 5c
5.
a) Show that the sequence
12, -6, 3, -3/2, ...
is geometric
b) Find un and us

a) $\frac{-6}{12} = \frac{-1}{2}$ and each term is $\frac{-1}{2} \times \text{ the previous term.}$

b) $u_n = 12(-\frac{1}{2})^{n-1}$ $u_{13} = 12(-\frac{1}{2})^{12}$ = 12 = 12 = 12

10. The first 3 terms of a geometric sequence are |k-1|, 6, 3k

a) Find possible terms for le

b) For each k find the next term in the sequence.

a)
$$\frac{6}{k-1} = \frac{3k}{6}$$
 $\frac{36}{k-1} = \frac{3k}{6}$
 $\frac{36}{k-1} = \frac{3k$

b) Sequences

$$|c=4|$$
 $r=\frac{6}{3}=2$, $u_1=|c-1|=3$
 $u_1=3(2)^{n-1}$

$$\Gamma = \frac{6}{-4} = -\frac{3}{2}, \quad u_1 = k-1 = -4$$

$$U_n = -4\left(-\frac{3}{2}\right)^{n-1}$$

$$u_4 = -4 \left(-\frac{3}{2}\right)^3$$
$$= -4 \times -27$$

$$\frac{2}{2} - \frac{27}{2} = -13\frac{1}{2}$$

Find the general term, I Un of the geometric Sequence which has U3=8, u6=-1 Un = u, - 1-1 8 = u, r² () -1 = u, r⁵ (2) (2) u, r = -1 8 r3 = -1 r= 3-1 = -1 2 $u_1 = \frac{8}{r^2} = \frac{8}{\left(-\frac{1}{2}\right)^2}$ $= 8 \times \frac{4}{1} = 32$ $U_n = 32 \left(-\frac{1}{2}\right)^{n-1}$

4 Growth and Decay

Starter Questions:

- 1. A school had 1200 students and a year later this has increased by 8% . How many students are now in the school?
- 2. Mary buys a car for \$40,000 and in one year its price has decreased by 12%. What is the value of it now?
- 3. The population of Sydney is currently 5.2 million. If it increases at a rate of 1.25% annually, what will the population be after 3 years?

Problem:

3 fruit flies arrive at fruit bowl that has been left out on the kitchen bench. The number of fruit flies increases by 50% every 20 minutes.

How many fruit flies will there be after 2 hours?

Because we want to have a starting value at 'time 0' we start our sequence at u_0 and have the general term:

$$u_n = 3(1.5)^n$$

And more generally, in growth and decay problems we use

$$u_n = u_0 r^n$$

4.1 Ex 5D

5 Financial Mathematics

5.1 Compound Interest

$$u_n = u_0(1+i)^n$$

 u_0 Initial Investment (Principal)

i Interest rate per compounding period

n Number of periods

 u_n The final value of the investment

- 5.1.1 Ex 5E.1
- 5.2 Inflation
- 5.2.1 Ex 5E.2
- 5.3 Real Value of an Investment
- 5.3.1 Ex 5E.3
- 5.4 Depreciation
- 5.4.1 Ex 5E.4
- 5.5 Using Financial Models
- 5.5.1 Ex 5E.5
- 6 Series
- 6.1 Sigma Notation
- 6.1.1 Ex 5F
- 6.2 Arithmetic Series
- 6.2.1 Ex 5G
- 6.3 Finite Geometric Series
- 6.3.1 Ex 5H
- 6.4 Infinite Geometric Series
- 6.4.1 Ex 5I