A n将部分 => 1A\*1=1A1~-1 ル· O(A) +o M· 由 A·A\*=|A|·In、|A\*|=|A|\*\* 星生 @ 1A100 M. 716 (A\*100 器 (A\*) +o, M(A\*) + 存在. 由 A·A\*= |A|·In=0, 故 A=0,则 A\*=0. 过与 |A\*1 to 矛盾, 故 |A\*100. M 1A\* 1= 1A1" = > 1 2 2 绿上,1A\*(=1A1"-1 对从1所的两AX至、

- 1. 设 A 为 n 阶对称矩阵, B 为 n 阶反对称矩阵, 证明:
  - (1) B<sup>2</sup> 是对称矩阵;
  - (2) AB-BA 是对称矩阵, AB+BA 是反对称矩阵。
  - ID 由 B 为 n 附 反对标矩阵. 知  $-B = B^T$   $(B^2)^T = (BB)^T = B^T \cdot B^T = (-B)(-B) = B^2$ . 故 B 是 对 标 关 E 阵
  - D A<sup>T</sup>=A. -B=B<sup>T</sup>

    (AB-BA)<sup>T</sup>= B<sup>T</sup>. A<sup>T</sup>- A<sup>T</sup>. B<sup>T</sup>= -B·A + A·B = AB-BA.

    放得证 AB-BA是对称矩阵.

    (AB+BA)<sup>T</sup>= B<sup>T</sup>. A<sup>T</sup>+ A<sup>T</sup>. B<sup>T</sup>= -BA-AB = -(AB+BA)

    放得证 AB+BA是反对称矩阵.
- 2. 判断下列矩阵是否可逆,如可逆,求其逆矩阵。

(1) 
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,其中  $a,b,c,d$  满足  $ad-bc=1$ ;

$$(2) \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

(I). 
$$\begin{vmatrix} a & b \end{vmatrix} = ad - bC = \begin{vmatrix} + 0 & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = + & = +$$

(3) 
$$\{\zeta_B = \begin{bmatrix} 0 & 2 & -3 \\ 0 & 0 & 2 \end{bmatrix}, |B| = 1 + 0 欧矩阵可能
$$B^{-1} = \frac{B^*}{|B|} = \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$$$

3. 设 $A^3 = 2I$ ,证明A + 2I可逆,并求 $(A + 2I)^{-1}$ 。

$$A^{3}+8J = (A+2I)(A^{2}-2A+4J) = 10J$$
 $(A+2J)(A^{2}-2A+4J) = J$ 
 $(A+2J)^{4}=J$ 
 $(A+2J)^{4}=J$ 
 $(A^{2}-2A+4J)$ 
 $(A+2J)^{4}=J$ 

4. 设矩阵  $A \cap B$  满足关系式 AB = A + 2B, 其中  $A = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ \vdots & 0 & 0 \end{bmatrix}$ , 求 B.

$$A^{-2E} = \begin{bmatrix} 4 & 23 \\ 1 & 10 \end{bmatrix} - 2 \begin{bmatrix} 100 \\ 001 \end{bmatrix} = \begin{bmatrix} 2 & 23 \\ 1 & 21 \end{bmatrix}, \quad A = \begin{bmatrix} 4 & 24 \\ 1 & 23 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} 4 & 23 \\ 1 & 23 \end{bmatrix} - 2 \begin{bmatrix} 100 \\ 001 \end{bmatrix} = \begin{bmatrix} 2 & 23 \\ 1 & 21 \end{bmatrix}, \quad A = \begin{bmatrix} 2 & -140 \\ 1 & 23 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} 4 & 23 \\ -1 & 23 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E} = \begin{bmatrix} -1 & 43 \\ -1 & 53 \end{bmatrix}$$

$$A^{-2E}$$

$$B = (A - 2\bar{t})^{-1} \cdot A = \begin{bmatrix} 3 & -8 & 1 \\ 2 & -9 & -6 \\ -2 & 12 & 9 \end{bmatrix}$$

1. 设矩阵 
$$A \cdot B A = 2BA - 8I$$
, 其中  $A = \begin{bmatrix} 1 & 2 & -2 \\ 0 & -2 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ ,  $A \cdot B A$  的伴随矩阵, 求  $B$ .

$$h+1 = \begin{bmatrix} 2 & 2 & -2 \\ 0 & -1 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 4 & -6 \\ 0 & -4 & 8 \\ 0 & 0 & 2 \end{bmatrix}$$



2. 设 $A \setminus B$  为n 阶方阵,若AB = A + B,证明A - I 可逆且AB = BA。