

# Ансамбли моделей

### Воробьёва Мария

- maria.vorobyova.ser@gmail.com
- @SparrowMaria



### План лекции



- 1) Бустинг. Виды
- 2) Градиентный бустинг

## Повторение



Бэггинг. Финальный алгоритм формировался как усреднение по всем алгоритмам.

Все алгоритмы были равнозначны

$$a(x) = \frac{1}{T} \sum_{i=1}^{T} a_i(x)$$

Минусы такого подхода:

- все алгоритмы должны быть независимы
- все взвешивается одним и тем же коэффициентов

## Как появился бустинг?



В 1995 году Йоав Фройнд (Yoav Freund) и Роберт Шапир (Robert Schapire) предложили более общую схему для композиции алгоритмов – с разными весами

$$a(x) = \sum_{i=1}^{T} w_i a_i(x)$$
, где  $w_i$  - это веса,  $a_i(x)$  - это базовые алгоритмы



Yoav Freund



Robert Schapire



- 1. **Инициализация весов**: На первом шаге, каждому обучающему примеру присваивается начальный вес w [i] = 1/N, где N общее количество обучающих примеров. Эти веса определяют, насколько каждый пример важен для обучения
- 2. Итеративный процесс (Последовательное обучение базовых моделей:):
  - Adaboost строит ансамбль из нескольких базовых моделей (называемых "слабыми учениками"), часто используют решаюшие пни.
  - Алгоритм последовательно обучает базовые модели на основе весовых коэффициентов и ошибок предыдущих моделей.



На каждой итерации (рассмотрим на примере классификации):

- 1. Обучается базовая модель  $a_t$  на обучающих данных с весами w[i]
- 2. Вычисляется взвешенная ошибка  $e_t$  базовой модели  $a_t$  на текущих весах, как сумма весов тех примеров, на которых модель ошиблась

$$e_t = \sum_{i=1}^N w[i] \cdot \delta(y[i], a_t(x[i]))$$

где  $\delta(y[i], a_t(x[i])$  индикативная функция, равная 1, если  $y[i] \neq a_t(x[i])$  и равная 0, если  $y[i] = a_t(x[i])$  y[i] фактические значения у на объектах

3. Вычисляется вес для базовой модели  $\alpha_t = \frac{1}{2} \ln \left( \frac{1 - e_t}{e_t} \right)$ 



4. Вычисляется вес для базовой модели

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - e_t}{e_t} \right)$$

5. Обновляются веса обучающих примеров:

$$w[i] = w[i] \cdot \exp(-\alpha_t \cdot y[i] \cdot a_t(x[i]))$$

6. Веса нормализуются так, чтобы сумма стала равна 1

$$w_i = \frac{w_i}{\sum_{i=1}^N w[i]}$$



Ансамбль моделей А(х) создается путем взвешенной комбинации предсказаний базовых

моделей а(х):

$$A(x) = \sum_{t=1}^{T} \alpha_t \cdot a_t(x)$$

жадная стратегия - все, что было ранее найдено, фиксируется и никак не меняется





1) Инициализация весов (на первой итерации все наблюдения равны для нас)

| x  | Y  | weights |
|----|----|---------|
| 24 | -1 | 0.2     |
| 96 | 1  | 0.2     |
| 2  | 1  | 0.2     |
| 10 | -1 | 0.2     |
| 5  | 1  | 0.2     |

2) Применим первый базовый алгоритм - решаюший пень: x<10

| x  | Y  | weights | predictions |
|----|----|---------|-------------|
| 24 | -1 | 0.2     | -1          |
| 96 | 1  | 0.2     | -1          |
| 2  | 1  | 0.2     | 1           |
| 10 | -1 | 0.2     | -1          |
| 5  | 1  | 0.2     | 1           |

## innoboriz

#### 3) Подсчет ошибки

| x  | Y  | weights | predictions | incorrect_predictions |
|----|----|---------|-------------|-----------------------|
| 24 | -1 | 0.2     | -1          | False                 |
| 96 | 1  | 0.2     | -1          | True                  |
| 2  | 1  | 0.2     | 1           | False                 |
| 10 | -1 | 0.2     | -1          | False                 |
| 5  | 1  | 0.2     | 1           | False                 |

#### взвешенная ошибка 0.2

считаем вес для базовой модели по формуле  $\alpha_t = \frac{1}{2} \ln \left( \frac{1-e_t}{e_t} \right)$  ,

для наших данных вес для базовой модели равен 0.693



3) пересчитываем веса по формуле  $w[i] = w[i] \cdot \exp(-\alpha_t \cdot y[i] \cdot a_t(x[i]))$ 

| x  | y  | weights | predictions | incorrect_predictions | weights_upd |
|----|----|---------|-------------|-----------------------|-------------|
| 24 | -1 | 0.2     | -1          | False                 | 0.1         |
| 96 | 1  | 0.2     | -1          | True                  | 0.4         |
| 2  | 1  | 0.2     | 1           | False                 | 0.1         |
| 10 | -1 | 0.2     | -1          | False                 | 0.1         |
| 5  | 1  | 0.2     | 1           | False                 | 0.1         |

4) нормализуем веса, так чтобы их сумма стала равна 1

| x  | Y  | weights | predictions | incorrect_predictions | weights_upd | weights_upd_norm |
|----|----|---------|-------------|-----------------------|-------------|------------------|
| 24 | -1 | 0.2     | -1          | False                 | 0.1         | 0.125            |
| 96 | 1  | 0.2     | -1          | True                  | 0.4         | 0.500            |
| 2  | 1  | 0.2     | 1           | False                 | 0.1         | 0.125            |
| 10 | -1 | 0.2     | -1          | False                 | 0.1         | 0.125            |
| 5  | 1  | 0.2     | 1           | False                 | 0.1         | 0.125            |



Там, где наш базовый алгоритм ошибся, вес увеличился сильнее всего, для объектов, где алгоритм

не ошибся, вес снизился

Далее процесс повторяем

| x  | y  | weights | predictions | incorrect_predictions | weights_upd | weights_upd_norm |
|----|----|---------|-------------|-----------------------|-------------|------------------|
| 24 | -1 | 0.2     | -1          | False                 | 0.1         | 0.125            |
| 96 | 1  | 0.2     | -1          | True                  | 0.4         | 0.500            |
| 2  | 1  | 0.2     | 1           | False                 | 0.1         | 0.125            |
| 10 | -1 | 0.2     | -1          | False                 | 0.1         | 0.125            |
| 5  | 1  | 0.2     | 1           | False                 | 0.1         | 0.125            |

Процесс обучения AdaBoost останавливается после выполнения заранее заданного числа

**итераций (слабых учителей)** или когда достигается **удовлетворительная точность** на обучающем наборе данных. Также может применяться **ранняя остановка**, если дополнительные итерации не улучшают производительность алгоритма.

# AdaBoost. Игрушечный пример









https://proproprogs.ru/ml/ml-vvedenie-v-boosting-algoritm-adaboost-pri-klassifikacii

## AdaBoost. Можно ли его улучшить?



Можно использовать разные функции потерь

$$L(y,f(x)) = \exp(-y\cdot f(x))$$
 - Экспоненциальная функция потерь (AdaBoost)  $L(y,f(x)) = \ln(1+\exp(-2y\cdot f(x)))$  - Логарифмическая функция потерь (LogitBoost)

$$L(y, f(x)) = (y - f(x))^2$$
 - Квадратичная функция потерь (GentleBoost)

$$L(y, f(x)) = \exp\left(-\frac{(y-f(x))^2}{2\sigma^2}\right)$$
 - Гауссовская функция потерь (BrownBoost):

## AdaBoost. Можно ли его улучшить?



#### Jerome Isaac Friedman



Можно придумать много других функций для разработки (синтеза) новых алгоритмов бустинга. И здесь возникает естественный вопрос. А можно ли создать универсальный алгоритм бустинга, который бы работал с произвольной гладкой и дифференцируемой функцией потерь?

Оказывается ДА, можно!

И такой подход получил название градиентного бустинга.

Впервые градиентный бустинг представил Jerome Friedman (Джером Фридман) в 1999 году

## Градиентный бустинг. Алгоритм



#### 1. Инициализация:

- $\circ$  Инициализировать ансамбль средним предсказанием:  $F_0(x) = avg$ .
- $\circ$  Вычислить начальные остатки:  $r_{i0}=y_i-F_0(x_i)$ , где  $y_i$  истинное значение,  $x_i$  обучающий пример.

#### 2. Для каждой итерации t от 1 до T, где T - количество базовых моделей:.

- а. Обучение базовой модели  $a_t$  на обучающих данных, предсказывающей остатки  $r_{it}$ .
- b. Вычислить множитель  $\gamma_t$  путем решения задачи оптимизации:

$$\gamma_t = \arg\min_{\gamma} \sum_{i=1}^N L(y_i, F_{t-1}(x_i) + \gamma \cdot a_t(x_i))$$

где L - функция потерь (например, квадратичная),  $y_i$  - истинное значение,

 $F_{t-1}(x_i)$  - предсказание ансамбля на предыдущей итерации,  $a_t(x_i)$  - предсказание базовой модели  $a_t$  .

- с. Обновить ансамбль:  $F_t(x) = F_{t-1}(x) + \gamma_t \cdot a_t(x)$ .
- d. Обновить остатки:  $r_{it} = y_i F_t(x_i)$ .
- 3. **Окончательное предсказание:** Итоговое предсказание для нового примера x:  $F_T(x) = F_0(x) + \sum_{t=1}^T \gamma_t \cdot a_t(x)$

# Градиентный бустинг. ДЕМО





https://colab.research.google.com/drive/1\_fWOmF8Dm8hv-YFOREC4BkWOmnHak-zl?usp=sharing

### Градиентный бустинг & градиентный спуск



#### Градиентный спуск:

- . Градиентный спуск используется **для оптимизации функции**, минимизируя её по направлению наискорейшего убывания градиента
- . Веса параметров модели (например, веса в линейной регрессии) обновляются в направлении, противоположном градиенту функции потерь, с учетом некоторого коэффициента (learning rate).

#### Градиентный бустинг:

- . Градиентный бустинг строит ансамбль слабых моделей, таких как деревья решений. Каждое следующее дерево обучается на остатках предыдущей композиции моделей
- . **Градиенты функции потерь по остаткам** на каждой итерации указывают на то, **какие направления** требуется **скорректировать в ансамбле,** чтобы улучшить его предсказания.
- . Новая слабая модель добавляется к ансамблю таким образом, чтобы она аппроксимировала градиент функции потерь. Это делается с учетом градиента и при помощи оптимизации, чтобы новая модель учла ошибки, допущенные предыдущими моделями.

Таким образом, хотя оба метода используют градиенты, их цели и подходы к применению градиентов различны.

Градиентный спуск - это метод оптимизации, а градиентный бустинг - метод построения ансамблей моделей, который использует градиенты для коррекции предсказаний ансамбля на каждом шаге.

## Градиентный бустинг. Можно ли улучшить?



XGBoost, которая расшифровывается как Extreme Gradient Boosting (Экстремальный градиентный бустинг), предложенной Тяньци Ченом и Карлосом Гестрином в 2014 году.



- 1) Из 29 победивших решений на Kaggle за 2015 год, в 17 использовался XGBoost
- В восьми из этих 17 решений использовался только XGBoost, а в остальных девяти XGBoost в сочетании с нейросетями.

## XGBoost. Что улучшили?



#### Улучшения алгоритма:

Использует вторые производные. Разбиение узлов дерева: Для выбора наилучшего
разбиения (или узла) на каждом этапе построения дерева, XGBoost рассчитывает оптимальное
разбиение на основе прироста функции потерь. Прирост функции потерь можно оценить с
помощью градиентов и Гессианов. Формула для расчета прироста ΔLoss для разбиения узла:

$$\Delta ext{Loss} = rac{1}{2} \left( rac{(G^2)_{left}}{H_{left} + \lambda} + rac{(G^2)_{right}}{H_{right} + \lambda} - rac{(G^2)}{H + \lambda} 
ight) - \gamma$$

где:

- G сумма градиентов.
- *H* сумма Гессианов.
- λ L2-регуляризация.
- $\gamma$  штраф за сложность дерева.

## XGBoost. Что улучшили?



#### Улучшения алгоритма:

#### 1. Апроксимационный поиск точек расщепления (глобальный метод):

- і. расчет квантилей
- іі. дальше этот набор точек предлагается на каждом следующем этапе
- 2. **Параллелизация**: В XGBoost построение деревьев основано на параллелизации. Это возможно благодаря взаимозаменяемой природе циклов, используемых для построения базы для обучения: внешний цикл перечисляет листья деревьев, внутренний цикл вычисляет признаки
- 3. **Кросс-валидация:** Алгоритм использует свой собственный метод кросс-валидации на каждой итерации. То есть, нам не нужно отдельно программировать этот поиск и определять количество итераций бустинга для каждого запуска
- 4. **Регуляризация:** Штрафует сложные модели, используя как регуляризацию LASSO (L1), так и Ridge-регуляризацию (L2), для того, чтобы избежать переобучения.

