Dive into Deep Learning for NLP

4. Contextual Representations

Haibin Lin gluon-nlp.mxnet.io

13:15-14:15	Natural Language Processing and Deep Learning Basics
14:15-14:25	Break
14:25-15:15	Context-free Representations with Word Embeddings
15:15-15:55	Machine Translation and Sequence Generation
15:55-16:35	Contextual Representations with BERT
16:35-16:45	Break
16:45-17:15	Model Deployment with TVM

Context Matters: Retail Bank or River Bank?

1. I jog along the **bank** of Duwamish River every day.

2. I went to the **bank** to open a savings account.

Context Matters: Retail Bank or River Bank?

1. I jog along the **bank** of Duwamish River every day.

2. I went to the **bank** to open a savings account.

Context Matters: Retail Bank or River Bank?

1. I jog along the **bank** of Duwamish River every day.

2. I went to the **bank** to open a savings account.

With word embedding, the vector representing "bank" is the same in both sentences

Can we have representations that depend on the **context**?

Representations

- Context-free representation
 - CBOW/Skip-gram
 - FastText
- Contextual representation
 - ELMo: Embedding from Language Model
 - BERT: Bidirectional Embedding Representation from Transformers

BERT

Bidirectional Embedding from Transformers

General Language Understanding Evaluation (GLUE Benchmark)

Including datasets for:

- acceptability
- sentiment
- paraphrase
- sentence similarity
- natural language inference

Model	Avg Score	
CBOW	58.6	
BERT	80.5	

BERT

- Pre-training: learn contextual representation on large scale corpus
- 2. Fine-tuning: add a simple output layer on BERT and fine-tune with the task at hand

I love this movie

BERT Architecture

- A (big) Transformer encoder
- BERT Base
 - # blocks = 12
 - # parameters = 110M
- BERT Large
 - # blocks = 24
 - # parameter = 340M

BERT

BERT Pre-training

- Pre-training tasks:
 - masked language modeling
 - next sentence prediction
- Dataset: Wikipedia and BooksCorpus (>3B words)

Pre-training Task 1: Masked Language Model

Original sentence:

Deep learning is fun.

Masked sentence:

Deep learning [mask] fun.

 $loss = -\log p(is | deep, learning, [mask], fun)$

Pre-training Task 2: Next Sentence Prediction

Each example is a pair of sentences

is_next_sentence: NLP is fun. GluonNLP is awesome.

not_next_sentence: NLP is fun. Hello world.

Sentence level binary classification

Pre-training Task 2: Next Sentence Prediction

Pre-training Task 2: Next Sentence Prediction

Segment Embedding

BERT Fine-tuning

- BERT returns a (contextual) feature vector for each token
- Different fine-tuning tasks use a different set of vectors

Fine-tuning: Sentence Classification

Input: This movie is great

Output: positive

Fine-tuning: Sentence Classification

Feed the [CLS] token vector into a dense output layer.

Fine-tuning: Sentence Pair Classification

Input 0: The processor was announced in San Jose at the Forum.

Input_1: The processor was unveiled at the Forum in San Jose.

Output: is_paraphrase

Fine-tuning: Sentence Pair Classification

Feed the [CLS] token vector into a dense output layer.

Fine-tuning: Named Entity Recognition

Input: Jim bought 3000 shares of Amazon in 2006.

Output: [person] [organization] [time]

Fine-tuning: Named Entity Recognition

Feed each non-special token vector into a dense output layer

Input: Jim bought 3000 shares of Amazon in 2006. Output: [person] [organization] [time]

Fine-tuning: Question Answering

Given a question and a description text, find the answer, which is a text segment in the description

Input_0: AMLC 2019 is held in Seattle

Input_1: Where is AMLC held

Output: Seattle

Fine-tuning: Question Answering

Input_0: AMLC 2019 is held in Seattle

Input_1: Where is AMLC held

Output: Seattle

BERT in GluonNLP

from gluonnlp import model model.get_model("bert_12_768_12", dataset name="wiki cn cased"

w.amazon.com?BERT

book_corpus_wiki_en_cased openwebtext_book_corpus_wiki_en_uncased wiki_multilingual_uncased wiki_multilingual_cased **/** wiki_cn_cased scibert scivocab uncased scibert scivocab cased scibert basevocab uncased scibert basevocab cased ✓ biobert_v1.0_pmc_cased biobert_v1.0_pubmed_cased

book_corpus_wiki_en_uncased

biobert_v1.0_pubmed_pmc_case

biobert_v1.1_pubmed_cased

clinicalbert_uncased

ernie_baidu_cn_uncased

Available in **GluonNLP**

bert_12_768_12

bert_24_1024_16

 \checkmark

Х

Χ

Х

Х

Х

Χ

Χ

Х

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectiona arXiv preprint arXiv:1810.04805 (2018). gluon-nlp.mxnet.io

Х Х

BERT in GluonNLP

Source	Go	ogle	GluonNLP
Num layers	12	24	12
Dataset size (GB)	18	18	56
SST-2	93.5	94.9	95.3
RTE	66.4	70.1	73.6
QQP	71.2	72.1	72.3
SQuAD	88.5	90.9	91.0
STS-B	85.8	86.5	87.5
MNLI	83.4	85.9	84.9

BERT inference with GluonNLP

float32 inference

- BERT Base sentence classifier on Yahoo answers dataset
- with 4 cores on c5.12xlarge (out of 48 vCPUs)

Package	max_length	latency (ms)	accuracy
mxnet-mkl=1.4.1	256	178.04	74.6
latest mxnet	256	75.39	74.6

BERT inference with GluonNLP

float32 inference

- BERT Base sentence classifier on Yahoo answers dataset
- with 4 cores on c5.12xlarge (out of 48 vCPUs)

Package	max_length	latency (ms)	accuracy
mxnet-mkl=1.4.1	256	178.04	74.6
latest mxnet	256	75.39	74.6

int8 inference (coming soon)

- 1.7x latency reduction, 2.2x model size reduction
- <1% accuracy drop</p>

Demo: BERT for Question Answering

04_contextual_representation/question_answering.ipynb

