Support Vector Machines

EE219: Large Scale Data Mining

Professor Roychowdhury

Jan 25, 2017

Summary

- Review
 - SVM basics
 - Calculate the margin
- Hard-margin SVM
 - Dual problem and optimal solution
- Soft-margin SVM
 - Hinge loss
 - Dual problem and optimal solution
- Nonlinear
 - Lifting a vector
 - Gram matrix
 - Kernel

Review SVM: basics

Support Vector Machine is a supervised learning model trained for classification or regression tasks. When it is a binary classifier, it is trained to find a hyperplane such that the distance from it to the nearest datapoint on both side is maximized.

- ▶ distance between $w^Tx b = 1$ and $w^Tx b = -1$ is $\frac{2}{w^Tw}$
- ▶ maximize margin means minimize $\frac{1}{2}w^Tw$
- when the slack variable is considered, the objective function to minimize will be $\frac{1}{2}w^Tw + \lambda \sum_{i=1}^{n} \epsilon_i$

Review SVM: calculate the margin

Point A on I₁ and Point B on I₂ satisfy:

$$w^{T}(c_1w) + b = -1$$
 (1)
 $w^{T}(c_2w) + b = 1$ (2)

► The distance D(A, B) between point A,B is also the distance between line l_1, l_2 :

$$D(A, B) = ||c_2w - c_1w||_2$$

$$= (c_2 - c_1) ||w||_2$$

$$\stackrel{\text{d}}{=} \frac{2}{w^T w} ||w||_2$$

$$= \frac{2}{||w||_2}$$

▶ (1) - (2) to get ①

Hard-margin SVM: Dual problem

As stated in previous lecture, for the binary classification problem, when N samples are linear separable, it can be written as Nconstraints in an optimization problem.

$$y_i = \begin{cases} 1 & \text{if } x_i \in C_1 \\ -1 & \text{if } x_i \in C_2 \end{cases}$$

For max margin classifier, it can be transformed into a minimization problem with cost function: $\frac{1}{2}w^Tw$. Then the whole problem can be solved through dual problem.

Primal problem

minimize: $\frac{1}{2}w^Tw$

s.t.
$$y_i(w^Tx_i + b) \ge 1$$
, $i = 1, ..., N$ s.t. $\alpha \ge 0$ and $y^T\alpha = 0$

Dual problem

maximize: $-\frac{1}{2}\alpha^T Q\alpha + 1^T \alpha$

s.t.
$$\alpha \geq 0$$
 and $y^T \alpha = 0$

Hard-margin SVM: maxizing the margin

- the Lagrange function for the primal problem can be written as $L(w, b, \alpha) = \frac{1}{2}w^Tw + \sum_{i=1}^{N} \alpha_i(1 y_i(w^Tx_i + b))$
- $lpha \in \mathbb{R}^N$ is the Lagrange multiplier $(\alpha_i \geq 0)$, we hope to minimize maximize $L(w,b,\alpha)$, the optimal value is equal to that in maximize minimize $L(w,b,\alpha)$ when it satisfies Slater's condition, which means strictly feasible in this problem.
- ▶ $\frac{\partial L}{\partial w} = 0$, then $w = \sum_{i=1}^{N} \alpha_i y_i x_i$. $\frac{\partial L}{\partial b} = 0$, then $\sum_{i=1}^{N} \alpha_i y_i = 0$.
- substitute w into $L(w, b, \alpha)$, we will get

$$L(w, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \alpha_i y_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j$$
$$= \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

Hard-margin SVM: dual problem for maxizing the margin

Let $Q_{ij} = y_i y_j x_i^T x_j$, then $L(w, b, \alpha) = 1^T \alpha - \frac{1}{2} \alpha^T Q \alpha$. So the dual problem can be formulated as

maximize
$$\mathbf{1}^{T} \alpha - \frac{1}{2} \alpha^{T} Q \alpha$$

subject to $\alpha_{i} \geq 0, i = 1, \dots, N$
 $y^{T} \alpha = 0$

Hard-margin SVM: optimal solution

► When w, b is the optimal solution for the primal problem, complementary slackness condition is satisfied:

- $\alpha_i = 0$
- $v_i(w^Tx_i + b) = 1$
- ▶ Vectors x_i for which $y_i(w^Tx_i + b) = 1$ are called **support vectors**. Support vectors lie on the margin. For each x_i , there is a corresponding $\alpha_i > 0$, let it be $\alpha_i^*(i = 1, \dots, n)$.
- $w^* = \sum_{i=1}^n \alpha_i y_i x_i = \sum_{i=1}^N \alpha_i^* y_i x_i$
- $b^* = y_j w^{*T} x_j = y_j \sum_{i=1}^{N} y_i \alpha_i^* x_i^T x_j$
- ▶ given a new $x \in \mathbb{R}^n$, we classify it based on decision function:c(x) = $sgn(w^{*T}x + b^*) = sgn(\sum_{i=1}^{N} \alpha_i^* y_i x_i^T x + b^*)$

Soft-margin SVM: Hinge Loss

SVM are extended with hinge loss to handle cases where training data are not linearly seperable. For a training data's label $y=\pm 1$, the hinge loss of the prediction f(x) is defined as $\max(0,1-yf(x))$. It is also called soft-margin SVM since it allows some datapoints on the wrong size with penalty 1-yf(x) in the objective function. Note here the penalty for datapoint on the right side is still 0.

Soft-margin SVM: dual problem with slack variables

 $\epsilon_i > 0, i = 1, N$

Primal problem

minimize:
$$\frac{1}{2}w^Tw + \gamma \sum_{i=1}^N \epsilon_i$$

 $s.t. \ y_i(w^Tx_i + b) \ge 1 - \epsilon_i, \ i = 1, ..., N$

Dual problem

maximize: $-\frac{1}{2}\alpha^TQ\alpha + 1^T\alpha$

N
$$s.t. \ 0 \le \alpha \le \gamma \mathbf{1},$$

$$y^{\mathsf{T}} \alpha = 0$$

▶ Similarly, the Lagrange function for the primal problem can be written as $L(w, b, \alpha, \lambda) =$

$$\frac{1}{2}w^Tw + \sum_{i=1}^N \alpha_i(1 - y_i(w^Tx_i + b)) + \gamma 1^T\epsilon - \sum_{i=1}^N \lambda_i\epsilon_i$$

- ▶ $\frac{\partial L}{\partial w} = 0$, then $w = \sum_{i=1}^{N} \alpha_i y_i x_i$. $\frac{\partial L}{\partial b} = 0$, then $\sum_{i=1}^{N} \alpha_i y_i = 0$
- ▶ for $\epsilon_i \geq 0$, $\frac{\partial L}{\partial \epsilon} = 0$, then $\gamma \alpha_i \lambda_i = 0$ and since $\lambda_i \geq 0$, it can be simplified as $\gamma \alpha_i \geq 0$ to remove variable λ_i .

Nonlinear –lifting a vector

- ▶ It's important to use nonlinear classifier because sometimes the data are not linearly separable.
- There are several ways to lift a vector, for example, through polynomial or exponential transformation of the original vector.
- $\mathbf{x}_i \in \mathbb{R}^n \to \phi(\mathbf{x}_i) \in \mathbb{R}^m (m > n)$
 - ▶ For example, in polynomial transformation
 - $\mathbf{x} = [x_1 \ x_2 \dots x_n]^T$, $\phi(\mathbf{x}) = [x_1 \ x_2 \dots x_1 x_2 \dots x_{n-1} x_n]^T$, here the dimension m of the new feature will equal $n + \binom{n}{2}$.
 - ► The decision function c(x) can be written as $sgn(w^T\phi(x) + b)$.

Gram matrix and kernel

- ▶ Q is called Gram matrix
- ▶ In the linear case, $Q_{ij} = y_i y_j x_i^T x_j$
- ▶ After lifting the vector, $Q_{ij} = y_i y_i \phi(x_i)^T \phi(x_i)$
- Decision function:

$$c(x) = sgn(w^{*T}\phi(x) + b)$$
$$= sgn(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \phi(x_{i})^{T} \phi(x) + b^{*})$$

- ▶ Let $k_{ij} = \phi(x_i)^T \phi(x_j)$,then $k : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ is called kernel.
 - For example, Gaussian Kernel: $k_{ij} = \exp(-\beta \|x_i x_j\|^2)$, then $c(x) = sgn(\sum_{i=1}^{n} \alpha_i^* y_i \exp(-\beta \|x_i x\|^2) + b^*)$
 - Gaussian kernel is widely used and you can choose different kernels. Kernel method is computationally efficient.

SVM regression

▶ SVM regression uses ϵ -insensitive loss function proposed by Vapnik(1995):

$$L_{\epsilon}(y, f(x, w)) = \begin{cases} 0 & \text{if } |y - f(x, w)| \leq \epsilon \\ |y - f(x, w)| - \epsilon & \text{otherwise.} \end{cases}$$

- ▶ Training samples inside ϵ region will have no penalty and deviation of training samples outside the region will be measured by slack variables ϵ_i, ϵ_i^*
- For *N* observations $(y_1, x_1) \cdots (y_N, x_N)$, the optimization problem can be written as:

