An Introduction to Probability

Conditional Probability

Martin Summer 20 January, 2025

Conditional Probability

Conditional Probability

- Conditional probability is a basic tool of probability theory.
- Particularly relevant in **Finance** for analyzing dependencies and risk.
- Often obscured by complex terminology despite simple ideas.

Motivation: A Striking Scenario

Motivation: A Striking Scenario

- Imagine evaluating the safety of a bond portfolio:
 - Bonds are highly rated and diversified.
 - During a global recession:
 - Defaults occur, unraveling the portfolio.
 - Losses mount unexpectedly.
- Key lesson: Underestimating event connections leads to catastrophic risks.
- Conditional probability enables us to model dependencies effectively.

Why Conditional Probability Matters

Why Conditional Probability Matters

- Mastering conditional probability is crucial for:
 - Pricing financial instruments.
 - Assessing credit risk.
 - Making informed investment decisions.
- Neglecting it can lead to systemic failures:
 - Example: The 2007-2008 financial crisis.

Case Study: The Financial Crisis (2007-2008)

Case Study: The Financial Crisis (2007-2008)

- Revealed the dangers of assuming independence between events.
- Highlighted failures in structured finance:
 - Underestimation of dependencies.
 - Misjudgment of risk profiles.
- Reference: For a comprehensive discussion, see [Tooze 2018].

Understanding Structured Finance

Understanding Structured Finance

Bonds:

- Financial instruments with fixed payments and default risks.
- Ratings by agencies like Moody's and Standard & Poor's:
 - High grade (AAA, AA) to speculative (BB, B) and default danger (CCC, C).

Rating Category	Moody's	Standard & Poor's
High grade	Aaa	AAA
	Aa	AA
Medium grade	Α	Α
	Baa	BBB
Speculative grade	Ba	BB
	В	В
Default danger	Caa	CCC
	Ca	CC
	С	C/D

Pooling and Tranching: An Innovation

Pooling and Tranching: An Innovation

Structured finance:

- Pools risky assets.
- Divides cash flows into tranches with distinct risk profiles.
- Enables creation of investment-grade securities from speculative-grade assets.
- Example products:
 - Mortgage-backed securities (MBS).
 - Variants using similar financial engineering concepts.

Simplified Example

Simplified Example

- Based on Karl Schmedder's course on probability.
- Illustrates structured finance and its relation to probability.
- Develops an intuitive understanding of pooling, tranching, and conditional dependencies.

A Simple Event Tree for One Bond

A Simple Event Tree for One Bond

- Consider a single bond paying €1 at maturity in the future.
 - Default probability: 10% (P(D) = 0.1).
 - Non-default probability: 90% (P(N) = 0.9).
- Payoff structure:
 - No Default (N): €1.
 - Default (D): €0.
- Graphically represented as an event tree:

Understanding the Event Tree

Understanding the Event Tree

- Nodes represent states of the bond:
 - t = 0: Initial state.
 - t = 1: Outcomes (N or D).
- Probabilities:
 - P(N) = 0.9.
 - P(D) = 0.1.
- Analogy:
 - Coin toss with unequal probabilities:
 - Heads: 90% (No Default).
 - Tails: 10% (Default).
- Probabilistic interpretation:
 - Random experiment with outcomes N and D.

Combining Two Bonds: Independence Assumption

Combining Two Bonds: Independence Assumption

- Portfolio of two bonds.
- Independence Assumption:
 - Defaults occur independently.
 - Default of one bond does not influence the other.
- Simplifies calculations:
 - Default probabilities remain uncorrelated.
 - $\bullet \quad \mathsf{Example:} \ P(D_1 \cap D_2) = P(D_1) \cdot P(D_2).$
- Historically justified by:
 - Diversification.
 - Uncorrelated defaults under normal conditions.

Systemic Risks: Challenges to Independence

Systemic Risks: Challenges to Independence

- Systemic risks disrupt independence:
 - Defaults become correlated during crises.
 - Shared macroeconomic factors increase joint defaults.
- Example: 2008 financial crisis:
 - Rising mortgage defaults driven by economic downturn.
 - Increased correlation in bond defaults.
- Critical thinking reveals:
 - Diversification alone cannot guarantee safety.
 - Assumption of independence is fragile.

Event Tree for Two Bonds

Event Tree for Two Bonds

- Two independent bonds:
 - Combine event trees of individual bonds.
 - Visualized as a double event tree.

Figure 2

Pooling and Tranching:
Independent Risks

Pooling and Tranching: Independent Risks

- Re-engineering risk profiles:
 - Pool payoffs of two bonds.
 - Create two new securities:
 - 1. Pays €1 except when both bonds default.
 - 2. Pays €0 except when both bonds do not default.
- Probabilities:
 - Both bonds default: $P(D_1 \cap D_2) = 0.1 \cdot 0.1 = 0.01$.
 - Both bonds do not default: $P(N_1 \cap N_2) = 0.9 \cdot 0.9 = 0.81.$

Figure 3

Pooling and Tranching: Dependent

Risks

Pooling and Tranching: Dependent Risks

- What happens if independence does not hold?
 - Default probabilities change:
 - $P(D_2 \mid D_1) = 0.6$.
 - $\bullet \ P(D_2 \mid N_1) = 0.044.$
- Increased correlation during systemic events:
 - Shared risks drive joint defaults.

Figure 4

Impact of Dependence on Risk Profiles

Impact of Dependence on Risk Profiles

- Dependent risks change probabilities:
 - Both bonds default: $P(D_1) \cdot P(D_2 \mid D_1) = 0.1 \cdot 0.6 = 0.06$.
 - Six times higher than under independence.
- Structured finance products fail:
 - Investment-grade tranches lose their safety.
 - Junk plus junk remains junk.

Lessons from Structured Finance

Lessons from Structured Finance

1. Diversification:

Assets must be from independent sectors.

2. Macroeconomic Stability:

• Low systemic risk is crucial.

3. Transparent Modeling:

- Dependencies must be accounted for.
- Neglecting these led to flawed models and systemic failures during the 2008 crisis.

Conditional Probability

Conditional Probability

- Conditional probability formalizes how the probability of one event changes when another event is known to occur.
- It provides a framework for understanding dependencies quantitatively.

Definition: Conditional Probability

Definition: Conditional Probability

Definition: Conditional Probability

Let \boldsymbol{B} be an event with positive probability. For an arbitrary event A, the **conditional probability** of A given B is:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \text{ provided } P(B) \neq 0$$

Undefined Conditional Probabilities

Undefined Conditional Probabilities

- Conditional probabilities are **undefined** when the conditioning event B has P(B)=0.
- This distinction is:
 - Irrelevant for discrete sample spaces.
 - Crucial in the general theory.

Clarifying Conditional Probabilities

Clarifying Conditional Probabilities

- Conditional probabilities represent a **notation** change:
 - Probabilities adjust to reflect known conditions.
- Example: Revisit the financial crisis scenario:
 - Highlighted how dependencies can amplify systemic risk.

The Probability Tree and Conditional Probabilities

The Probability Tree and Conditional Probabilities

- A probability tree is labeled with edge probabilities:
 - Representing marginal and conditional probabilities at each level.
 - At t = 0

•
$$P(B_1 = N) = 0.9$$
, $P(B_1 = D) = 0.1$

- At t = 1
 - $P(B_2 = N | B_1 = N) = 0.956,$ $P(B_2 = D | B_1 = N) = 0.044$
 - $\quad \ \ P(B_2=N\,|\,B_1=D)=0.4,\ P(B_2=D\,|\,B_1=D)=0.6.$

Defining Probabilities in R

Defining Probabilities in R

Probabilities defined from the probability tree:

```
# Define the probabilities
# Marginal probabilities for B_1
P_N <- 0.9 # Probability that B_1 does not default
P_D <- 0.1 # Probability that B_1 defaults
# Conditional probabilities for B_2 given B_1
P N given N <- 0.8604/0.9
# B_2 does not default given B_1 does not default
P D given N <-0.0396/0.9
# B_2 defaults given B_1 does not default
P_N_{given_D} < -0.4
# B_2 does not default given B_1 defaults
P_D_{given_D} < -0.6
```

Computing Joint Probabilities

Computing Joint Probabilities

• Joint probabilities, $P(A \cap B)$, are calculated using the multiplication rule:

$$P(A \cap B) = P(A \mid B) \cdot P(B).$$

```
# Calculate joint probabilities

P_NN <- P_N * P_N_given_N # Both bonds do not default

P_ND <- P_N * P_D_given_N # B_1 does not default, B_2 default

P_DN <- P_D * P_N_given_D # B_1 defaults, B_2 does not default

P_DD <- P_D * P_D_given_D # Both bonds default</pre>
```

Simulating Bond Portfolio Defaults

Simulating Bond Portfolio Defaults

Goal:

- Simulate a bond portfolio with two types of bonds (B1 and B2).
- Reproduce a portfolio where default probabilities align with the given contingency table.

Key Concepts:

- Joint probabilities from the contingency table.
- Unconditional and conditional probabilities.

Set up simulation parameters

Set up simulation parameters

```
N <- 5000 # Total number of bonds
P_DD <- 0.06 # P(X = D, Y = D)
P_DN <- 0.04 # P(X = D, Y = N)
P_ND <- 0.04 # P(X = N, Y = D)
P_NN <- 0.86 # P(X = N, Y = N)

# Verify probabilities sum to 1
stopifnot(abs(P_DD + P_DN + P_ND + P_NN - 1) < 1e-6)</pre>
```

```
# Simulate joint outcomes based on the contingency table
simulate_defaults <- function(N, probs) {</pre>
  sample(
    c("DD", "DN", "ND", "NN"),
    size = N,
    replace = TRUE,
    prob = probs
```

```
# Generate portfolio data
portfolio <- data.frame(</pre>
  BondID = 1:N,
 BondType = sample(c("B1", "B2"), N,
                     replace = TRUE, prob = c(0.5, 0.5)
# Assign joint default outcomes
portfolio$JointOutcome <-</pre>
  simulate defaults(N, c(P DD, P DN, P ND, P NN))
portfolio$X_Defaulted <-
  portfolio$JointOutcome %in% c("DD", "DN")
portfolio$Y_Defaulted <-
  portfolio$JointOutcome %in% c("DD", "ND")
```

```
# Compute unconditional probabilities
P_X_D <- mean(portfolio$X_Defaulted) # P(X = D)</pre>
P_Y_D <- mean(portfolio$Y_Defaulted) # P(Y = D)</pre>
# Compute conditional probabilities
P X given Y D <-
  mean(portfolio$X_Defaulted[portfolio$Y_Defaulted])
\# P(X = D \mid Y = D)
P Y given X D <-
  mean(portfolio$Y Defaulted[portfolio$X Defaulted])
\# P(Y = D \mid X = D)
```

```
# Display results
cat("Unconditional Probabilities:\n")
cat("P(X = D):", round(P_X_D, 4), "\n")
cat("P(Y = D):", round(P_Y_D, 4), "\n\n")

cat("Conditional Probabilities:\n")
cat("P(X = D | Y = D):", round(P_X_given_Y_D, 4), "\n")
cat("P(Y = D | X = D):", round(P_Y_given_X_D, 4), "\n")
```

```
# Verify calibration matches input probabilities
calibration_check <- table(portfolio$JointOutcome) / N
expected_probs <- c(P_DD, P_DN, P ND, P NN)
calibration result <- data.frame(
  JointOutcome = names(calibration check),
  Frequency = as.numeric(calibration_check),
  Expected = expected_probs
print(calibration_result)
```

Key Takeaways

Conditional Probability:

- Computed as the relative frequency in a subset of rows where the condition holds.
- E.g., P(X = D | Y = D) focuses only on rows where Y_Defaulted is TRUE.

Calibration:

 Simulated frequencies align closely with expected probabilities from the contingency table.

Practical Application:

 Demonstrates how dependency structures in default risks are modeled.

Advanced R Concepts

Advanced R Concepts

In this section, we explore advanced R programming concepts:

- 1. **Environments**: How R evaluates and stores variables.
- 2. **Scoping Rules**: How R resolves variable names.
- 3. **Closures**: Functions that retain the environment where they were created.

Environments

Environments

- An environment in R stores objects (variables, functions, etc.).
- The **global environment** stores user-created objects.
- Local variables can override global ones in specific functions.

Example: Global and Local Variables

Local override

```
# Global interest rate
interest rate <- 0.05
# Function to calculate interest
calculate_interest <- function(principal, rate = interest_
  interest <- principal * rate
  return(interest)
}
# Global calculation
```

global_interest <- calculate_interest(1000)</pre>

local_interest <- calculate_interest(1000, rate = 0.07)</pre>

38

Scoping Rules

Scoping Rules

- R uses lexical scoping to find variables:
 - Searches the closest environment first.
 - Moves outward to enclosing environments.

Example: Nested Functions

```
# Global default rates
default rates \leftarrow c(AAA = 0.01, BBB = 0.02, Junk = 0.05)
# Function for conditional default
conditional_default <- function(rating) {</pre>
  local default rates <- c(
    AAA = unname(default rates["AAA"]),
    BBB = unname(default_rates["BBB"]),
    Junk = unname(default rates["Junk"])
  return(local default rates[rating])
```

Lookup Tables

Lookup Tables

- Lookup tables map inputs to outputs.
- Example: Default probabilities for credit ratings.

Benefits:

- 1. Centralizes data for easy updates.
- 2. Avoids repetitive conditional statements.

Closures

Closures

- Closures are functions that retain their creation environment.
- Used to create dynamic and reusable functions.

Example: Probability Calculator Factory

```
# Function factory
probability_calculator_factory <- function(event_probability)</pre>
  function(conditional_probability) {
    joint_probability <- event_probability * conditional_pr</pre>
    return(joint_probability)
# Create calculators
junk_calculator <- probability_calculator_factory(0.05)</pre>
bbb calculator <- probability calculator factory(0.02)
# Calculate joint probabilities
junk_joint <- junk_calculator(0.1)</pre>
bbb joint <- bbb calculator(0.2)
```

Analyzing Closures

Analyzing Closures

1. Function Factory:

- Takes event_probability as input.
- Returns a function for calculating joint probabilities.

2. Reusable Calculators:

- junk_calculator for Junk bonds.
- bbb_calculator for BBB bonds.

3. Encapsulation:

Parameters are "locked in" during function creation.

Bayes' Rule: A Cornerstone of

Probability

Bayes' Rule: A Cornerstone of Probability

- Bayes' Rule provides a systematic method for updating probabilities based on new evidence.
- Formula:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- Explanation:
 - A: Observed evidence.
 - *B*: Hypothesis or prior belief.

Deriving Bayes' Rule

Deriving Bayes' Rule

- From the Multiplication Rule:
 - 1. $P(B|A)P(A) = P(A \cap B)$
 - 2. $P(A|B)P(B) = P(A \cap B)$
 - Equating and dividing by P(A):

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

 Significance: Ties prior beliefs to evidence using conditional probabilities.

Speck of Sand: An Intuitive

Illustration

Speck of Sand: An Intuitive Illustration

- A square of area 1 represents the sample space.
- Circle B represents the event with area P(B).
- A speck of sand falls randomly in the square.

Updating Beliefs

Updating Beliefs

- New Information:
 - The speck is known to land in another circle A inside the square.
- Question:
 - What is P(B|A), the probability that the speck is in B, given it is inside A?

Overlap Between A and B

Overlap Between A and B

• The updated probability P(B|A) depends on the overlap of B and A:

$$P(B|A) = \frac{\text{Area of } A \cap B}{\text{Area of } A} = \frac{P(A \cap B)}{P(A)}$$

Small Overlap: Low Probability

Small Overlap: Low Probability

Large Overlap: High Probability

Large Overlap: High Probability

Bayesian Interpretation

Bayesian Interpretation

- Terms:
 - P(B): Prior probability.
 - P(A|B): Likelihood.
 - P(A): Normalizing constant.
- Process:
 - 1. Start with prior P(B).
 - 2. Add evidence P(A|B).
 - 3. Compute updated belief P(B|A).

Project Overview

Problem Description

- A bank is evaluating a loan application.
- Goal: Estimate the likelihood of default using historical data.
- Key probabilities provided:
 - 1. Default Rates:
 - P(D) = 0.04 (default probability).
 - P(ND) = 0.96 (non-default probability).
 - 2. Low Credit Score:
 - P(L|D) = 0.7 (probability of low credit score given default).
 - P(L|ND) = 0.1 (probability of low credit score given non-default).
- Objective:
 - Compute the posterior probability of default given a low credit score, P(D|L).

Key Questions

- 1. Compute P(D|L) Theoretically:
 - Use Bayes' Rule:

$$P(D|L) = \frac{P(L|D) \cdot P(D)}{P(L|D) \cdot P(D) + P(L|ND) \cdot P(ND)}$$

- 2. Simulate the Scenario in R:
 - Create a dataset of 10,000 customers.
 - $\, \bullet \,$ Assign default status based on P(D) and simulate credit scores.
- 3. Compute P(D|L) Empirically:
 - Calculate P(D|L) using simulated data and compare with the theoretical result.
- 4. Visualize Results:
 - Plot theoretical vs. simulated probabilities.