Transmission and Distribution Overview and Materials Research Wish List

Joe E. Schatz

August 26, 2015

Electricity Infrastructure

Strategic Focus Areas

- Specifically limiting discussions to Transmission and Distribution Applications
 - Supporting technology such as generation, robotics, distributed resources, and analytics/visualization not included, but have their own materials wish lists

Substation Transformers

Other Substation Equipment

Transmission Infrastructure

Transmission System Applications

Types of Advanced Conductors

1. Metal Core

2. Carbon Fiber Core

3. Metallic Carbon Fiber Core

Evaluation Different for Different Type

Distribution System Applications

GR-13-07 Unbalanced Static Current Compensator

GRid-connected Advanced Power Electronic Systems

Objective

- Eliminate negative- and zero-sequence current components in substation transformers (upstream currents) by balancing the load in each line of a three-phase distribution system.
- Achieve unity power factor at the substation by compensating for downstream reactive loads
- Demonstrate viability of the equipment with a scaled-down prototype.

Technical Approach

- Attach each feeder phase to an H-bridge inverter coupled using a distribution transformer
- Develop a single-phase α-β/D-Q reference frame-based current controller to compensate for real and reactive powers separately
- Using Matlab/SIMULINK™ software evaluate the controller for full and scaled-down prototypes
- Construct and test a scaled-down prototype

Schematic Diagram

Sensors - - - Everywhere

Discussion

