

MATH 3333 PRACTICE PROBLEM SET 4

Problem 1. Determine whether each of the subset given below is a subspace of \mathbb{R}^4 and if so, find a spanning set.

(a)
$$\left\{ \begin{bmatrix} 0 \\ a \\ b \\ c \end{bmatrix} \middle| a, b \text{ and } c \text{ are real numbers} \right\}$$

Solution: Let
$$S = \left\{ \begin{bmatrix} 0 \\ a \\ b \\ c \end{bmatrix} \middle| a, b \text{ and } c \text{ are real numbers} \right\}$$

In other words, S is the set of vectors in \mathbb{R}^4 which has 0 as the first coordinate.

If we take
$$a = b = c = 0$$
 then $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \in \mathcal{S}$

Take
$$u = \begin{bmatrix} 0 \\ a_1 \\ b_1 \\ c_1 \end{bmatrix} \in \mathcal{S}$$
 and $v = \begin{bmatrix} 0 \\ a_2 \\ b_2 \\ c_2 \end{bmatrix} \in \mathcal{S}$

Then $u + v = \begin{bmatrix} 0 \\ a_1 + a_2 \\ b_1 + b_2 \\ c_1 + c_2 \end{bmatrix} \in \mathcal{S}$ because the first coordinate of $u + v$ is 0.

Let
$$r$$
 be any scalar. Then $r.u = \begin{bmatrix} 0 \\ ra_1 \\ rb_1 \\ rc_1 \end{bmatrix} \in \mathcal{S}$ because the first coordinate of $r.u$ is 0.

To find a spanning set,
$$u = \begin{bmatrix} 0 \\ a_1 \\ b_1 \\ c_1 \end{bmatrix} = a_1 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + b_1 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

So any vector in \mathcal{S} can be written as a linear combination of $\left\{\begin{bmatrix}0\\1\\0\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\\1\end{bmatrix}\right\}$

On the other hand, we can clearly see, any linear combination of these vectors have the first coordinate 0 and hence should belong to S.

We can conclude $S = span \left\{ \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$

(b) $\left\{ \begin{bmatrix} 1 \\ a \\ b \\ c \end{bmatrix} \middle| a, b \text{ and } c \text{ are real numbers} \right\}$

Solution: $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ is not in this subset. So it cannot be a subspace of \mathbb{R}^4 .

(c) $\left\{ \begin{bmatrix} a \\ b \\ c \\ 0 \end{bmatrix} \middle| a - 2b + 3c = 0 \right\}$

Solution: Let $S = \left\{ \begin{bmatrix} a \\ b \\ c \\ 0 \end{bmatrix} \middle| a - 2b + 3c = 0 \right\}$

Take a = b = c = 0. Then it satisfies the equation a - 2b + 3c = 0.

Then $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \in \mathcal{S}$

Take $u = \begin{bmatrix} a_1 \\ b_1 \\ c_1 \\ 0 \end{bmatrix} \in \mathcal{U}$ and $v = \begin{bmatrix} a_2 \\ b_2 \\ c_2 \\ 0 \end{bmatrix} \in \mathcal{U}$

Then we have $a_1 - 2b_1 + 3c_1 = 0$ and $a_2 - 2b_2 + 3c_2 = 0$.

Then
$$u + v = \begin{bmatrix} a_1 + a_2 \\ b_1 + b_2 \\ c_1 + c_2 \\ 0 \end{bmatrix} \in \mathcal{S}$$
 because
$$(a_1 + a_2) - 2(b_1 + b_2) + 3(c_1 + c_2) = (a_1 - 2b_1 + 3c_1) + (a_2 - 2b_2 + 3c_2) = 0 + 0 = 0$$

Let r be any scalar. Then $r.u = \begin{vmatrix} ra_1 \\ rb_1 \\ rc_1 \\ 0 \end{vmatrix} \in \mathcal{S}$ because

the first coordinate of $ra_1 - 2rb_1 + 3rc_1 = r(a_1 - 2b_1 + 3c_1) = r \times 0 = 0$

So S is a subspace of \mathbb{R}^4 .

To find a spanning set, take any vector $u = \begin{bmatrix} 0 \\ a_1 \\ b_1 \\ c \end{bmatrix} \in \mathcal{S}$. Then $a_1 - 2b_1 + 3c_1 = 0 \Rightarrow$ $a_1 = 2b_1 - 3c_1.$

So we can write
$$u$$
 as $u = \begin{bmatrix} 0 \\ a_1 \\ b_1 \\ c_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2b_1 - 3c_1 \\ b_1 \\ c_1 \end{bmatrix} = b_1 \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 0 \\ -3 \\ 0 \\ 1 \end{bmatrix}$

So any vector in S can be written as a linear combination of $\left\{ \begin{bmatrix} 0\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-3\\0\\0 \end{bmatrix} \right\}$

On the other hand, a linear combination of these vectors takes the form

On the other hand, a linear combination of these vectors takes the form
$$r_1 \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} + r_2 \begin{bmatrix} 0 \\ -3 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2r_1 - 3r_2 \\ r_1 \\ r_2 \end{bmatrix} \in \mathcal{S} \text{ because } (2r_1 - 3r_2) - 2r_1 + 3r_2 = 0.$$
 We can conclude $\mathcal{S} = span \left\{ \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -3 \\ 0 \\ 0 \end{bmatrix} \right\}$

(d)
$$\left\{ \begin{bmatrix} a \\ 0 \\ b \\ 0 \end{bmatrix} \middle| \quad a^2 = b^2 \right\}$$

Solution: Let
$$S = \left\{ \begin{bmatrix} a \\ 0 \\ b \\ 0 \end{bmatrix} \middle| a^2 = b^2 \right\}$$

This is not a subspace. To see this,

Take
$$a=1$$
 and $b=1$. Then $a^2=b^2$. Hence the vector $u=\begin{bmatrix} a\\0\\b\\0\end{bmatrix}=\begin{bmatrix} 1\\0\\1\\0\end{bmatrix}\in\mathcal{U}$

Take $a=1$ and $b=-1$. Then $a^2=b^2$. Hence the vector $u=\begin{bmatrix} a\\0\\b\\0\end{bmatrix}=\begin{bmatrix} 1\\0\\-1\\0\end{bmatrix}\in\mathcal{U}$

But $u+v=\begin{bmatrix} 2\\0\\0\end{bmatrix}\notin\mathcal{U}$ because $2^2\neq 0^2$

(e)
$$\left\{ \begin{bmatrix} 2a \\ 0 \\ a-2 \\ b \end{bmatrix} \middle| a \text{ and } b \text{ are real numbers} \right\}$$

Solution: This is not a subspace because we cannot find values for a and b such that

$$\begin{bmatrix} 2a \\ 0 \\ a-2 \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \text{ Hence } \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \notin \mathcal{S}$$

(f)
$$\left\{ \begin{bmatrix} 2a \\ 0 \\ b-2 \\ c \end{bmatrix} \middle| a, b \text{ and } c \text{ are real numbers} \right\}$$

Solution: Let
$$S = \left\{ \begin{bmatrix} 2a \\ 0 \\ b-2 \\ c \end{bmatrix} \middle| a, b \text{ and } c \text{ are real numbers} \right\}$$

Take
$$a = 0, b = 2, c = 0$$
 then
$$\begin{bmatrix} 2a \\ 0 \\ b - 2 \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \in \mathcal{S}$$

Take
$$u = \begin{bmatrix} 2a_1 \\ 0 \\ b_1 - 2 \\ c_1 \end{bmatrix} \in \mathcal{S}$$
 and $v = \begin{bmatrix} 2a_2 \\ 0 \\ b_2 - 2 \\ c_2 \end{bmatrix} \in \mathcal{S}$
Then $u + v = \begin{bmatrix} 2a_1 + 2a_2 \\ 0 \\ b_1 + b_2 - 4 \end{bmatrix}$

If we take
$$a = a_1 + a_2$$
, $b = b_1 + b_2 - 2$ and $c = c_1 + c_2$
then
$$\begin{bmatrix} 2a \\ 0 \\ b - 2 \\ c \end{bmatrix} = \begin{bmatrix} 2a_1 + 2a_2 \\ 0 \\ b_1 + b_2 - 4 \\ c_1 + c_2 \end{bmatrix} = u + v$$

So, $u + v \in \mathcal{S}$

Let s be any scalar. Then
$$s.u = \begin{bmatrix} 2sa_1 \\ 0 \\ s(b_1 - 2) \\ sc_1 \end{bmatrix}$$

If we take $a = sa_1$, $b = sb_1 - 2s + 2$ and $c = sc_1$

then
$$\begin{bmatrix} 2a \\ 0 \\ b-2 \\ c \end{bmatrix} = \begin{bmatrix} 2sa_1 \\ 0 \\ sb_1-2s+2-2 \\ sc_1 \end{bmatrix} = \begin{bmatrix} 2sa_1 \\ 0 \\ sb_1-2s \\ sc_1 \end{bmatrix} = s.u$$

Hence $s.u \in \mathcal{S}$.

So, \mathcal{S} is a subspace of \mathbb{R}^4 .

Now we want to find a spanning set for S. Take any vector in S.

$$\begin{bmatrix} 2a \\ 0 \\ b-2 \\ c \end{bmatrix} = a \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} + (b-2) \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
So $S \subseteq span \left\{ \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$

On the other hand, a linear combination of these vectors takes the form

$$r_{1} \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} + r_{2} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + r_{3} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2r_{1} \\ 0 \\ r_{2} \\ r_{3} \end{bmatrix}$$

If we take
$$a=r_1,b=r_2+2,c=r_3$$
 then
$$\begin{bmatrix} 2r_1\\0\\r_2\\r_3 \end{bmatrix} = \begin{bmatrix} 2a\\0\\b-2\\c \end{bmatrix} \in \mathcal{S}$$

We can conclude
$$S = span \left\{ \begin{bmatrix} 2\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$$

(g)
$$\left\{ \begin{bmatrix} r \\ 0 \\ s \\ 0 \end{bmatrix} \middle| r^2 + s^2 = 0 \text{ and } r \text{ and } s \text{ are real numbers} \right\}$$

Solution: As I'm typing solutions, I realized this is not a good problem. The only way

$$r^2 + s^2$$
 is equal to 0 is if $r = s = 0$. So the only vector in this subset is $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. So it is a

subspace and a spanning set would be
$$\left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right\}$$

Problem 2. Let S and T be two subspaces of \mathbb{R}^n . Show that $S \cap T$ is also a subspace of \mathbb{R}^n . Solution: This was proved in the class. Please refer to your class notes

Problem 3. Let u_1, u_2, \ldots, u_k be vectors in \mathbb{R}^n and \mathcal{S} be a subspace of \mathbb{R}^n that contains all those vectors. Show that $span\{u_1, u_2, \ldots u_k\} \subseteq \mathcal{S}$.

Solution: Any vector in $span\{u_1, u_2, \dots u_k\}$ takes the form $p = r_1u_1 + r_2u_2 + \dots r_ku_k$.

Since $u_i \in \mathcal{S}$ and \mathcal{S} is a subspace $\Rightarrow r_i u_i \in \mathcal{S}$.

So, for i = 1, 2, ..., k we have $r_i u_i \in \mathcal{S}$.

Since \mathcal{S} is a subspace, addition of any two vectors in \mathcal{S} should also be in \mathcal{S} .

This means $r_1u_1+r_2u_2 \in \mathcal{S}$. Then $(r_1u_1+r_2u_2)+r_3u_3$ should also be in \mathcal{S} for the same reason. Continuing this way, we see that $p=r_1u_1+r_2u_2+\ldots r_ku_k \in \mathcal{S}$. Hence for any $p \in span\{u_1,u_2,\ldots u_k\}$ belongs to \mathcal{S} .

Therefore $span\{u_1, u_2, \dots u_k\} \subseteq \mathcal{S}$.

Problem 4. Let u, v and w be three vectors in \mathbb{R}^n . Show the following.

```
(a) span\{u, v\} = span\{u, v, u - 2v\}
    Solution: Let p = r_1 u + r_2 v \in span\{u, v\}.
    We can write p = r_1 u + r_2 v + 0(u - 2v) \in span\{u, v, u - 2v\}
    Hence span\{u, v\} \subset span\{u, v, u - 2v\}
    On the other hand, let q = s_1u + s_2v + s_3(u - 2v) \in span\{u, v, u - 2v\}. We can write
    q = (s_1 - s_3)u + (s_2 - 2s_3)v \in span\{u, v\}
    Hence span\{u, v, u - 2v\} \subset span\{u, v\}
    We conclude span\{u, v\} = span\{u, v, u - 2v\}
(b) span\{u, v, w\} = span\{u - 2v, v, w\} = span\{5u, 2v, v - w\}
    Solution: Let p = r_1 u + r_2 v + r_3 w \in span\{u, v, w\}.
    We can write p = r_1(u - 2v) + 2r_1v + r_2v + r_3w = r_1(u - 2v) + (2r_1 + r_2)v + r_3w \in
    span\{u-2v,v,w\}
    Hence span\{u, v, w\} \subset span\{u - 2v, v, w\}
    On the other hand, let q = s_1(u - 2v) + s_2v + s_3w \in span\{u - 2v, v, w\}.
    We can write q = s_1 u + (s_2 - 2s_1)v + s_3 w \in span\{u, v, w\}
    Hence span\{u-2v,v,w\} \subset span\{u,v,w\}
    We conclude span\{u - 2v, v, w\} = span\{u, v, w\}
```

You can prove the remaining equation similarly.

Problem 5. Show that any set of vectors with the zero vector is linearly dependent. **Solution:** This was discussed in the class. Please refer to your class notes.

Problem 6. Determine whether the sets given below are linearly independent or not.

(a)
$$\left\{ \begin{bmatrix} 1\\-1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\0\\3 \end{bmatrix}, \begin{bmatrix} 1\\9\\-6\\6 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 2\\3\\0 \end{bmatrix}, \begin{bmatrix} 1\\9\\-6 \end{bmatrix} \right\}$$

Solution: To answer problem 6 part a and b, write the vectors in the given set as columns of a matrix and then compute the RRE form of the matrix.

If the rank = number of vectors then the set is linearly independent.

If the rank < number of vectors then the set is linearly dependent.

Problem 7. Find a basis and write down the dimension of the following subspaces of \mathbb{R} .

(a)
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \middle| a+b=c+d \right\}$$

Solution: Let S be this subspace.

Any vector in S can be written as $\begin{bmatrix} a \\ b \\ c \\ a+b-c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$

$$\Rightarrow \mathcal{S} \subset span \left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix} \right\}$$

On the other hand, any linear combination of vectors $\begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix}$ takes the form

$$r_{1} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + r_{2} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + r_{3} \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \\ r_{1} + r_{2} - r_{3} \end{bmatrix} \in \mathcal{S} \text{ because } r_{1} + r_{2} = r_{3} + (r_{1} + r_{2} - r_{3})$$
Therefore, we have $\mathcal{S} = span \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} \right\}$

If we can show, this set is linearly independent then it will be a basis for S.

To show this, we create a matrix A which has these vectors as its columns.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} \text{ has the RRE form } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

So rank of
$$A=3=$$
 number of vectors.

Hence the set $\left\{ \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1\\-1 \end{bmatrix} \right\}$ is linearly independent.

It follows $\left\{ \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix} \right\}$ is a basis of \mathcal{S} .

Hence dim(S) = 3

(b)
$$\left\{ \begin{bmatrix} a+b \\ a-b \\ b \\ a \end{bmatrix} \middle| a,b \in \mathbb{R} \right\}$$

Solution: By following the same steps as in part (a), you can show that the set \langle is a basis for this subspace and its dimension is 2.

(c)
$$\left\{ \begin{bmatrix} a+2b\\2a+4b\\0\\-a-2b \end{bmatrix} \middle| a,b \in \mathbb{R} \right\}$$

By following the same steps as in part (a), you can first show that the set $S = span \left\{ \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\4\\0\\-2 \end{bmatrix} \right\}$

The next part is to check if this set is linearly independent. To check this, we create a matrix A which has these vectors as its columns.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 0 & 0 \\ -1 & -2 \end{bmatrix} \text{ has the RRE form } \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

So rank of A=1<2= number of vectors. So this set of vectors is linearly dependent. Then how do we find a basis for S?

Note that $S = span \left\{ \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\4\\0\\-2 \end{bmatrix} \right\} = col(A)$. This means all we need is a basis for

the column space of A. We can find one by looking at the RRE form of A. The RRE form has a leading 1 in the first column. So the first column of A must form a basis for col(A) = S.

So, a basis for S would be $\begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}$

 $dim(\mathcal{S}) = 1$

Problem 8. Solve the following linear system by using elementary row operations.

$$x_2 - 6x_3 + 5x_4 = -7$$

$$x_1 + 2x_3 - x_4 = 5$$

$$3x_1 + x_2 + 2x_4 = 8$$

Solution: The augmented matrix is

$$\left[\begin{array}{ccc|ccc}
0 & 1 & -6 & 5 & -7 \\
1 & 0 & 2 & -1 & 5 \\
3 & 1 & 0 & 2 & 8
\end{array}\right]$$

By $R_3 \rightarrow R_3 - 3R_2$ have

$$\begin{bmatrix}
0 & 1 & -6 & 5 & | & -7 \\
1 & 0 & 2 & -1 & | & 5 \\
0 & 1 & -6 & 5 & | & -7
\end{bmatrix}$$

Then $R_3 \to R_3 - R_1$ followed by $R_1 \leftrightarrow R_2$ yields

$$\left[\begin{array}{ccc|ccc|c}
1 & 0 & 2 & -1 & 5 \\
0 & 1 & -6 & 5 & -7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5 - 2s + t \\ -7 + 6s - 5t \\ s \\ t \end{bmatrix}$$

Answer the following.

Let
$$A = \begin{bmatrix} 0 & 1 & -6 & 5 \\ 1 & 0 & 2 & -1 \\ 3 & 1 & 0 & 2 \end{bmatrix}$$

(a) Find bases for the column space, row space and the null space of A.

Solution: The RRE form of A is $\begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -6 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ A basis for Row(A) is $\left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -6 \\ 5 \end{bmatrix} \right\}$

The RRE form of A has leading 1s in the first and second columns. So the first and second columns of A form a basis for Col(A); a basis for Col(A) is $\left\{ \begin{bmatrix} 0\\1\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2s + t \\ 6s - 5t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 6 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -5 \\ 0 \\ 1 \end{bmatrix}$$

The general solution to AX = 0 is given by Hence a basis for Null(A) is $\left\{ \begin{array}{c} -2 \\ 6 \\ 1 \\ 0 \end{array}, \begin{bmatrix} 1 \\ -5 \\ 0 \\ 1 \end{array} \right\}$

(b) Determine whether the vector $v = \begin{bmatrix} -7 \\ 5 \\ 8 \end{bmatrix}$ is in the column space of A. If so, write v as a linear combination of the columns of A.

Solution: If
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \end{bmatrix}$$
 then $AX = x_1 \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -6 \\ 2 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$

We have already seen AX = v has infinitely many_solutions. Hence there are x_1, x_2, x_3 and x_4 such that $AX = x_1 \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -6 \\ 2 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix} = v = \begin{bmatrix} -7 \\ 5 \\ 8 \end{bmatrix}$

This means the vector v can be written as a linear combination of columns of A

Hence $v \in Col(A)$.

Problem 9. Find a basis for $span\{u_1, u_2, u_3, u_4\}$

where
$$u_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 11 \\ 10 \\ 7 \end{bmatrix}$ and $u_4 = \begin{bmatrix} 7 \\ 6 \\ 4 \end{bmatrix}$

Solution: Create a matrix A such that columns of A are x_1, x_2, x_3 and x_4 .

$$A = \begin{bmatrix} 1 & 3 & 11 & 7 \\ 2 & 2 & 10 & 6 \\ 2 & 1 & 7 & 4 \end{bmatrix}$$

Then $span\{x_1, x_2, x_3, x_4\} = Col(A)$

By
$$R_2 \to R_2 - 2R_1$$
 and $R_3 \to R_3 - 2R_1$ we obtain
$$\begin{bmatrix} 1 & 3 & 11 & 7 \\ 0 & -4 & -12 & -8 \\ 0 & -5 & -15 & -10 \end{bmatrix}$$

By
$$R_2 \to R_2/-4$$
 and $R_3 \to R_3/-5$, we have
$$\begin{bmatrix} 1 & 3 & 11 & 7 \\ 0 & 1 & 3 & 2 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

By
$$R_3 \to R_3 - R_2$$
, we have
$$\begin{bmatrix} 1 & 3 & 11 & 7 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This is a row-echelon form. It has leading 1s in column 1 and 2. Hence the column 1 and 2 of A forms a basis for $Col(A) = span\{x_1, x_2, x_3, x_4\}.$

Hence
$$\left\{ \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}$$
 is a basis for $span\{x_1, x_2, x_3, x_4\}$

Problem 10. Let $u_1, u_2, \ldots u_{15}$ be vectors in \mathbb{R}^{15} . Construct a matrix A such that columns of A are $u_1, u_2, \ldots u_{14}$ and u_{15} .

(a) What is the size of A? Solution: 15×15

For each of the following cases, determine whether the set of vectors $\{u_1, u_2, \dots u_{15}\}$ is linearly independent or not.

- (b) If the rank of A is 15. Solution: Linearly independent because rank(A) = No. of vectors
- (c) If the rank of A is 14. Solution: Linearly dependent because rank(A) < No. of vectors
- (d) If the rank of A^T is 12. **Solution:** Linearly dependent because $rank(A^T) = rank(A) < No.$ of vectors
- (e) If the determinant of A is 12. **Solution:** Linearly independent because $|A| \neq 0 \Rightarrow \operatorname{rank}(A) = 15 = \text{No. of vectors}$
- (f) If the determinant of A^T is 0.01 **Solution:** Linearly independent because $|A^T| = |A| \neq 0 \Rightarrow \operatorname{rank}(A) = 15 = \operatorname{No.}$ of vectors

Problem 11. Let u_1, u_2 and u_3 be three vectors in \mathbb{R}^n such that the set $\{u_1, u_2, u_3\}$ is linearly independent.

If u_4 is another vector in \mathbb{R}^n such that x_4 is NOT in $span\{u_1, u_2, u_3\}$, show that the set $\{u_1, u_2, u_3, u_4\}$ is linearly independent.

Hint: We do not know the value of n or the coordinates of the vectors. So we cannot create a matrix A with these vectors as its columns.

So, the only way to show this is to use the actual definition of linear independence. Set

$$r_1u_1 + r_2u_2 + r_3u_3 + r_4u_4 = 0$$

and try to show the only way this can happen is when $r_1 = r_2 = r_3 = r_4 = 0$.

First figure out what happens if $r_4 = 0$. Then think about the case when $r_4 \neq 0$.

Solution: Set

$$c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 = 0$$

. If $c_4 \neq 0$ then we have $c_4x_4 = -c_1x_1 - c_2x_2 - c_3x_3$. By dividing by c_4 we have

$$x_4 = \left(\frac{-c_1}{c_4}\right) x_1 + \left(\frac{-c_2}{c_4}\right) x_2 + \left(\frac{-c_3}{c_4}\right) x_3$$

This means x_4 can be written as a linear combination of x_1, x_2 and x_3 . Hence $x_4 \in span\{x_1, x_2, x_3\}$.

But this is not true as it is given $x_4 \notin span\{x_1, x_2, x_3\}$. Hence it is not possible for c_4 to be not zero.

So $c_4 = 0$. Then we have

$$c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 = c_1x_1 + c_2x_2 + c_3x_3 = 0$$

. Since $\{x_1, x_2, x_3\}$ is linearly independent, all of c_1, c_2 and c_3 should also be equal to 0.

This means $c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 = 0 \Rightarrow c_1 = c_2 = c_3 = c_4 = 0$.

Hence the set $\{x_1,x_2,x_3,x_4\}$ is linearly independent.