Task 1:

1.1.1:

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.NUMERIC STD.ALL;
entity Algorithm Lab 2A tb is
end Algorithm Lab 2A tb;
-- test bench is a 2 stage process
-- input test process resets the circuit and inputs to known
--values, the 16 different iterations of large input values through
-- 4 inputs A,B,C and D are tested and the result is output 2 clk
-- cycles later. The mathematical function that is conducted is:
-- O <= (A*3 + B*C)/D + C +5.
architecture Behavioral of Algorithm_Lab_2A_tb is
-- Constants
constant data size : integer := 16;
constant wait period : time := 500ns;
constant clk_period : time := 120ns;
constant process two wait : time := 1000ns;
--input signals
signal clk : STD LOGIC;
signal rst : STD LOGIC;
signal A : STD LOGIC VECTOR (data size-1 downto 0);
signal B : STD LOGIC VECTOR (data size-1 downto 0);
signal C : STD_LOGIC_VECTOR (data_size-1 downto 0);
signal D : STD_LOGIC_VECTOR (data_size-1 downto 0);
--output signals
signal 0 : STD LOGIC VECTOR (data size*2-1 downto 0);
type test_vector is record
--Input test vectors
A : STD_LOGIC_VECTOR (data_size-1 downto 0);
B : STD LOGIC VECTOR (data_size-1 downto 0);
C : STD_LOGIC_VECTOR (data_size-1 downto 0);
D : STD_LOGIC_VECTOR (data_size-1 downto 0);
-- Output test vectors
O: STD LOGIC VECTOR (data size*2-1 downto 0);
end record;
--test vector inputs and outputs
-- tests each of the 16 different variations
-- of the individual inputs being large or small values
type test_vector_array is array (natural range <>) of test_vector;
constant test_vectors : test_vector_array := (
-- A
              В
-- Large D
 (X"0043", X"0097",
                                     X"0001",
                         X"0004",
                                                       X"0000032E"),
-- Large D
 (X"D010", X"0020",
                         X"0005",
                                     X"FFFF",
                                                       X"0000000C"),
-- Large C
  (X"0095", X"0013",
                         X"F209",
                                      X"000A",
                                                       X"0002BE18"),
-- large C large D
 (X"0015", X"0031",
                         X"FOFO",
                                     X"FF34",
                                                      X"0000F123"),
 -- large B
  (X"0000", X"F563",
                         X"0000",
                                     X"0026",
                                                       X"00000005"),
```

```
-- large B and D
 (X"0025", X"F0E0", X"0056", X"F365", X"000000B0"),
-- Large B and large C
 (X"0058", X"FF98",
                     X"F689",
                                 X"0036",
                                                X"048FDE22"),
-- Large B, large C and large D
 (X"0045", X"FDEC", X"FC35", X"FF46",
                                                X"0001F719"),
-- Large A
 (X"FBFA", X"0009", X"0005", X"0001",
                                                X"0002F425"),
-- Large A, Large D
 (X"FC4A", X"0009", X"0005", X"F195",
                                                X"0000000D"),
-- Large A, Large C
 (X"F9C9", X"0134",
                     X"F209", X"000A",
                                                X"001E5BAC"),
-- Large A, large C large D
 (X"F3B1", X"0031", X"F0F0", X"0023",
                                                X"00025728"),
-- Large A, large B
 (X"F9AF", X"FBDA", X"0000", X"0012",
                                                X"000029A2"),
-- Large A, large B and D
 (X"FF45", X"F0E0", X"0087", X"FAFF",
                                                X"00000110"),
-- Large A, Large B and large C
 (X"FBD3", X"F8E2", X"F9B4",
                                 X"00F4",
                                                X"00FFB009"),
-- Large A, Large B, large C and large D
 (X"FFFF", X"FFFF", X"FFFF", X"FFFF",
                                            X"00010004"));
begin
UUT: entity work.algorithm
--maps data size to 16 bits
GENERIC MAP ( data size => data size)
   PORT MAP (clk => clk ,
            rst => rst,
                => A,
            Α
                => B,
            В
            C
                => C,
               => D,
            D
               => 0 );
            0
-- Clock process
clk process :process
begin
clk <= '0';
wait for clk period/2;
clk <= '1':
```

```
-- test process 1
-- resets the circuit and sets inputs to known values
-- inputs all test vectors from test array one set per clk cycle
-- inputs change each clk cycle.
TEST INPUT : process
begin
-- wait 500 ns for global reset tot finish set by Xilinx
wait for wait period;
-- waits until falling edge of clock cycle
wait until falling edge(clk);
-- set inputs to known values and resets system
       <= '1';
       <= x"0000";
       <= x"0000";
R
 С
      <= x"0000";
      <= x"0001";
 D
 wait for clk period;
 -- stop reset signal
 rst <= '0';
 wait for clk period;
-- test all inputs A, B, C, D vectors
-- from test vector array within a loop
-- for loop to assert each line of test vectors array
-- number of iterations of loop matches the size of the test vector
-- array
  for i in test_vectors'range loop
       A <= test_vectors(i).A;
       B <= test_vectors(i).B;</pre>
       C <= test_vectors(i).C;</pre>
       D <= test_vectors(i).D;</pre>
       wait for clk period;
   end loop;
 wait; --waits forever
 end process;
 -- test process 2
 -- delays process beginning as the output is delayed by
 -- 2 clk cycles after the inititialisation and reset of system
 -- process begins after this point and tests output values to the
 -- original input vectors.
 TEST OUTPUT : process
 -- wait 500 ns for global reset to finish set by Xilinx
 wait for wait period;
 -- waits until falling clk edge furthest possible point from register
 -- value changes
 wait until falling edge(clk);
```

```
--wait for four clock periods two for the reset and initial values to
 --be set to a known value and two for the 2 clk cycle offset due to the
-- input and output registers.
wait for clk period*4;
-- for loop to assert each line of test vectors array
-- number of iterations of loop matches the size of the test vector
-- array
for i in test vectors'range loop
assert ( 0 <= test vectors(i).0);</pre>
-- report the values of all inputs and outputs in the case of wrong predicted values
with formatting
 report CR &
 "test vectors value "
                          & integer'image(i) & CR & CR &
 "for inputs" & CR &
 "A: "
               & integer 'image(to integer(unsigned(test vectors(i).A))) & CR &
 "B: "
               & integer 'image(to_integer(unsigned(test_vectors(i).B))) & CR &
 "C: "
               & integer 'image(to integer(unsigned(test vectors(i).C))) & CR &
 "D: "
               & integer 'image(to_integer(unsigned(test_vectors(i).D))) & CR & CR
 "for outputs"
                   & CR &
 "Actual value"
                   & CR &
 "O: "
                   & integer 'image(to integer(unsigned(O))) & CR &
 "Predicted value" & CR &
                   & integer 'image(to integer(unsigned(test vectors(i).0))) & CR
  severity error; -- only reports errors does NOT stop the program if errors detected
  -- allows next values to be held in input and output registers
  wait for clk period;
  end loop;
  wait; --waits forever
 end process;
end Behavioral;
```

Name	Value	0 ns	200 ns	400 ns	600 ns		800 ns	1	1,00
Inputs									
¹⊌ clk	0				1 1				
¼ rst	0								
> 🥞 A[15:0]	65535		U		X	0		67 X	53264
> 🥞 B[15:0]	65535		υ		X	0	X 1	.51	32
> 🥞 C[15:0]	65535		υ		X	0		4	5
> 🥞 D[15:0]	65535		U		X	1		X	65535
Output									
> ™ O[31:0]	65540	U	х			0		5	
Internal Signals									
> 🥞 INTA[15:0]	ffff		טטטט		X	00	00	0043	, X
> 🥞 INTB[15:0]	ffff		טטטט			00	00	0097	
> 🥞 INTC[15:0]	ffff		טטטט			00	00	0004	
> 🥞 INTD[15:0]	ffff		טטטט		\square		0001		
> 🥞 INT1[17:0]	196605		Х					201	
> 🥞 INT2[31:0]	429483622		Х					604	
> 🥞 INT3[31:0]	65534		х		\square			805	\bot χ_1
> 🥞 INT4[31:0]	0		х		\square			805	
> 🥞 INT5[31:0]	65535		х		\square			809	
> 🥞 INTO[31:0]	65540		х					814	

Name	Value	600 n	s	300 ns		1,000 p	5. I.	1,200	ns	1,400 n	s 1
Inputs											
୍ଷ clk	0										
₩ rst	0										
■ A[15:0]	65535	U (0	X 67	, X	53264	X 1	49	21	0	37 X 3
■ B[15:0]	65535	U (0	15	1	32	X 1	.9	49 \ 62	819	61664 X 654
₹ C[15:0]	65535	U (0	X 4	X_	5	61:	961 61	L680	0 X	86 (631
₹ D[15:0]	65535	ט	1		=	65535	X 1	.0 65	332	38	62309 \ 5
Output											
™ O[31:0]	65540	×	X o X	5		X 8	14	12	179736	61731	X 5
Internal Signals											
■ INTA[15:0]	ffff	שטש	0000	X	0043	X do	010	0095	0015	X 0000	0025
₹ INTB[15:0]	ffff	טטטט	0000	X	0097	χ οσ	020	0013	0031	f563	f0e0
₹ INTC[15:0]	ffff	שעש	0000	X	0004	χ οσ	005	f209	f0f0	0000	0056
™ INTD[15:0]	ffff	שעש	X	0001		X fi	fff	000a	ff34	0026	f365
₹ INT1[17:0]	196605	×	0	X	201	159	9792	447	63	χ .	111
₹ INT2[31:0]	429483622	х	0	X	604	X 1	60	1177259	3022320	χ .	5303104
₹ INT3[31:0]	65534	х	0	X	805	159	9952	1177706	3022383	χ .	5303215
₹ INT4[31:0]	0	х	0	X	805		2	117770	46	χ •	85
₹ INT5[31:0]	65535	×	V 0	X	809		7	179731	61726	χ ο	171
■ INTO[31:0]	65540	х	5		814	ΤΥ	L2	X 179736	X 61731	X 5	X 176

Name	Value	1,400 ns	[1,600 ns	1,800	ns	2,000 ns	2	,200 ns	2,400	ns
Inputs											
¼ clk	0										
₩ rst	0										
> 🥞 A[15:0]	65535	0 X 3	7 X	88 X 6	9 645	645	86 X 63:	945 (62	385 (639	919 653	349
> 🥞 B[15:0]	65535	62819 \ 616	64 X 6	5432 X 650	004	9	Х 3:	08 / 4	49 \ 644	174 616	564
> 🥞 C[15:0]	65535	0 X 8	5 X 6:	3113 X 64!	565	5	X 61	961 (61	.680 \ (13	35
> 🥞 D[15:0]	65535	38 X 623	109 X	54 (653	350)	L X 618	45 / 1	o X ;	35 / 1	8 / 642	255
Output											
> NG O[31:0]	65540	61731	5	X 176	76537378	(128793 X	193573	13	1989548	153384	χΠ
Internal Signals											
> 🥞 INTA[15:0]	ffff	0000	0025	0058	0045	fbfa	fc4a	f9c9	(f3bl	f9af	χΠ
> 🥞 INTB[15:0]	ffff	(f563	f0e0	ff98	fdec	000)9	0134	0031	fbda	$\sqrt{\Box}$
> 🥞 INTC[15:0]	ffff	0000	0056	f689	fc35	000)5	f209	f0f0	0000	
> 🥞 INTD[15:0]	ffff	0026	f365	0036	ff46	0001	f195	000a	0023	0012	χo
> 🥞 INT1[17:0]	196605	(0	111	264	207	193518	193758	191835	187155	191757	Х□
> 🥞 INT2[31:0]	429483622	(0	5303104	X4129609816	4196983260	45	;	19083988	3022320		Х□
> 🥞 INT3[31:0]	65534	X 0	5303215	X4129610080	4196983467	193563	193803	19275823	3209475	191757	
> 🥞 INT4[31:0]	0	(o	85	76474260	64223	193563	3	1927582	91699	10653	Χo
> 🥞 INT5[31:0]	65535	(o	171	76537373	128788	193568	8	1989543	153379	10653	Χo
> 🥞 INTO[31:0]	65540	(5	176	76537378	(128793)	193573 X	13	1989548	153384	10658	⋊╗

N	Name	Value	2,200 ns
	Inputs		
	୍ଷ clk	0	
	ใ₀ rst	0	
>	₹ A[15:0]	65535	
>	™ B[15:0]	65535	□ \ 49 \ 64474 \ 61664 \ 63714 \ 65535
>	₹ C[15:0]	65535	□ X 61680 X 0 X 135 X 63924 X 65535
>	₹ D[15:0]	65535	10 35 18 64255 244 65535
	Output		
>	™ O[31:0]	65540	13 1989548 153384 10658 272 16756745 65540
	Internal Signals		
>	■ INTA[15:0]	ffff	f9c9 X f3b1 X f9af X ff45 X fbd3 X fffff
>	■ INTB[15:0]	ffff	0134 X 0031 X fb3a X f0e0 X f8e2 X fffff
>	₹ INTC[15:0]	ffff	f209 X f0f0 X 0000 X 0087 X f9b4 X ffff
>	₹ INTD[15:0]	ffff	000a X 0023 X 0012 X faff X 00f4 X ffff
>	₹ INT1[17:0]	196605	191835 X 187155 X 191757 X 196047 X 193401 X 196605
>	₹ INT2[31:0]	429483622	19083988 3022320 0 8324640 4072853736 4294836225
>	₹ INT3[31:0]	65534	19275823 X 3209475 X 191757 X 8520687 X 4073047137 X 65534
>	₹ INT4[31:0]	0	1927582 / 91699 / 10653 / 132 / 16692816 / 0
>	₹ INT5[31:0]	65535	1989543 / 153379 / 10653 / 267 / 16756740 / 65535
>	➡ INTO[31:0]	65540	1989548 X 153384 X 10658 X 272 X 16756745 X 65540

```
Error:
test vectors value 0
for inputs
A: 67
B: 151
C: 4
D: 1
for outputs
Actual value
0: 814
Predicted value
0: 814
Time: 1080 ns Iteration: 1 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test_vectors value 1
for inputs
A: 53264
B: 32
C: 5
D: 65535
for outputs
Actual value
0: 12
Predicted value
0: 12
Time: 1200 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test_vectors value 2
for inputs
A: 149
B: 19
C: 61961
D: 10
for outputs
Actual value
O: 179736
Predicted value
O: 179736
Time: 1320 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 3
for inputs
A: 21
B: 49
C: 61680
D: 65332
for outputs
Actual value
O: 61731
Predicted value
O: 61731
```

```
Time: 1440 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
Error:
test vectors value 4
for inputs
A: 0
B: 62819
C: 0
D: 38
for outputs
Actual value
0: 5
Predicted value
0: 5
Time: 1560 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 5
for inputs
A: 37
B: 61664
C: 86
D: 62309
for outputs
Actual value
O: 176
Predicted value
0: 176
Time: 1680 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 6
for inputs
A: 88
B: 65432
C: 63113
D: 54
for outputs
Actual value
O: 76537378
Predicted value
O: 76537378
Time: 1800 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 7
for inputs
A: 69
B: 65004
C: 64565
D: 65350
for outputs
Actual value
O: 128793
Predicted value
0: 128793
```

```
Time: 1920 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
test vectors value 8
for inputs
A: 64506
B: 9
C: 5
D: 1
for outputs
Actual value
0: 193573
Predicted value
O: 193573
Time: 2040 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 9
for inputs
A: 64586
B: 9
C: 5
D: 61845
for outputs
Actual value
0: 13
Predicted value
Time: 2160 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 10
for inputs
A: 63945
B: 308
C: 61961
D: 10
for outputs
Actual value
O: 1989548
Predicted value
O: 1989548
Time: 2280 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
test vectors value 11
for inputs
A: 62385
B: 49
C: 61680
D: 35
for outputs
Actual value
O: 153384
Predicted value
0: 153384
```

```
Time: 2400 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
Error:
test vectors value 12
for inputs
A: 63919
B: 64474
C: 0
D: 18
for outputs
Actual value
O: 10658
Predicted value
O: 10658
Time: 2520 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 13
for inputs
A: 65349
B: 61664
C: 135
D: 64255
for outputs
Actual value
O: 272
Predicted value
O: 272
Time: 2640 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 14
for inputs
A: 64467
B: 63714
C: 63924
D: 244
for outputs
Actual value
O: 16756745
Predicted value
0: 16756745
Time: 2760 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
test vectors value 15
for inputs
A: 65535
B: 65535
C: 65535
D: 65535
for outputs
Actual value
O: 65540
Predicted value
O: 65540
Time: 2880 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
```

Tcl Console M	lessages Lo	og Reports Design Ru	ns ×										? .	_ 0 6
Q 🛨 🖨	[4 ≪	▶ » + %												
Name	Constraints	Status	WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	LUT	FF	BRAMs	URAM	DSP
synth_1	constrs_1	synth_design Complete!								897	96	0.00	0	0
√ impl_1	constrs_1	route_design Complete!	29.183	0.000	0.610	0.000	0.000	0.108	0	886	96	0.00	0	0

Figure 1 designs run tab up to dsp

1.1.3: Print out a screenshot of the "Design Runs" tab, showing all columns up to "DSP".

In your own words, and in relation to the lecture material, explain how the WNS is calculated. What is the maximum frequency at which the circuit can run, according to the tools?

Worst negative slack is the time left over from the time period asked for by the user (time asked for 120ns - time taken to complete circuit) the time taken for the circuit to process through the critical path i.e. the longest path through the circuit.

Time asked for = 120ns

Worst Time Slack = 29.183ns

Critical path time = 90.817ns = 120ns - 29.183ns

Maximum frequency = $\frac{1}{Critical\ path\ Time} = \frac{1}{90.817ns} = 190,817,000,000$ Hz

Name	Value		950 ns	1,000 ns	1,050 ns	1,100 ns	1,150 ns	1,200 ns	1,250 ns	1,300 ns	1,350 ns	1,400 ns	1,450 ns 1,500 ns
Inputs													
ଧି₀ clk	1												
¹ଌ rst	0												
> 🤏 A[15:0]	0	67	X	53264	\square	149			21	\square X	0	X	37
> 🥞 B[15:0]	0	151		32	\square	19			49	\square X	62819	X	61664
> 🥞 C[15:0]	0	4		5		61961			61680	\square X	0		86
> 🥞 D[15:0]	1	1		65535	X	10			65332	X	38	X	62309
Output													
> ™ O[31:0]	5		5	Ха	814	Х	(a	12	X⊨	179736	Ж	617	y31 X 0
Internal Signals													
> 🖥 INTB[15:0]	0		151	χ ₀	32	Χt)	19	χ ₀	49	χ	628	19 💢
> 🔻 INTC[15:0]	0		4	X	5	Χt) e	1961	χ ₀	61680	χ	0	
> 考 INTD[15:0]	1		1	XG	65535	Xτ		10	XΒ	65332	χ.	38	χ
> 🔏 INT4[31:0]	0		805			2		1177	70		46		0
> 🔧 INTO[31:0]	5		814			12		1797	736	6	1731		5
				,				-					

Name	Value	2,600 r	ıs 2,650 ₁	ns 2,700 ns	2,750 ns	2,800 ns	2,850 ns	2,900 ns
Inputs								
¹⅓ clk	1							
ଅ₀ rst	0							
> 🤏 A[15:0]	0	64467				65535		
> 🥞 B[15:0]	0	63714				65535		
> 🥞 C[15:0]	0	63924				65535		
> 🥞 D[15:0]	1	244				65535		
Output								
> 🥞 O[31:0]	5	10658 🔀	272	Д	16756745	χь		65540
Internal Signals								
> 🥞 INTB[15:0]	0	e10 X0	63714	χ ₀		65535		
> 🥞 INTC[15:0]	0	135 🔀	63924	χ ₀		65535		
> 🥞 INTD[15:0]	1	640 🔀	244	χ.		65535		
> 考 INT4[31:0]	0	132	16	692816			0	
> 考 INTO[31:0]	5	272	16	756745	(65540	

```
run 5 us
Error:
test vectors value 0
for inputs
A: 67
B: 151
C: 4
D: 1
for outputs
Actual value
0: 814
Predicted value
0: 814
Time: 1080 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 1
for inputs
A: 53264
B: 32
C: 5
D: 65535
for outputs
Actual value
0: 12
Predicted value
Time: 1200 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 2
for inputs
A: 149
B: 19
C: 61961
D: 10
for outputs
Actual value
O: 179736
Predicted value
O: 179736
Time: 1320 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
test vectors value 3
for inputs
A: 21
B: 49
C: 61680
D: 65332
for outputs
Actual value
O: 61731
Predicted value
0: 61731
```

```
Time: 1440 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
test vectors value 4
for inputs
A: 0
B: 62819
C: 0
D: 38
for outputs
Actual value
0: 5
Predicted value
0: 5
Time: 1560 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 5
for inputs
A: 37
B: 61664
C: 86
D: 62309
for outputs
Actual value
O: 176
Predicted value
0: 176
Time: 1680 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 6
for inputs
A: 88
B: 65432
C: 63113
D: 54
for outputs
Actual value
O: 76537378
Predicted value
O: 76537378
Time: 1800 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
test vectors value 7
for inputs
A: 69
B: 65004
C: 64565
D: 65350
for outputs
Actual value
O: 128793
Predicted value
0: 128793
```

```
Time: 1920 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
test vectors value 8
for inputs
A: 64506
B: 9
C: 5
D: 1
for outputs
Actual value
0: 193573
Predicted value
0: 193573
Time: 2040 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 9
for inputs
A: 64586
B: 9
C: 5
D: 61845
for outputs
Actual value
0: 13
Predicted value
Time: 2160 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 10
for inputs
A: 63945
B: 308
C: 61961
D: 10
for outputs
Actual value
O: 1989548
Predicted value
O: 1989548
Time: 2280 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 11
for inputs
A: 62385
B: 49
C: 61680
D: 35
for outputs
Actual value
0: 153384
Predicted value
0: 153384
```

```
Time: 2400 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
Error:
test vectors value 12
for inputs
A: 63919
B: 64474
C: 0
D: 18
for outputs
Actual value
0: 10658
Predicted value
0: 10658
Time: 2520 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 13
for inputs
A: 65349
B: 61664
C: 135
D: 64255
for outputs
Actual value
0: 272
Predicted value
O: 272
Time: 2640 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 14
for inputs
A: 64467
B: 63714
C: 63924
D: 244
for outputs
Actual value
O: 16756745
Predicted value
0: 16756745
Time: 2760 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 15
for inputs
A: 65535
B: 65535
C: 65535
D: 65535
for outputs
Actual value
O: 65540
Predicted value
O: 65540
Time: 2880 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
```

1.1.5:

Try to explain why some internal signals are not available for observation and why some are. Comment on and explain the output of the simulation, particularly the behaviour of INTO and of the output, relating it to the material covered in the lectures.

The missing internal signals 1-5 have been optimised out of the circuit for efficiency to meet the timing requested by the user through the running of the implementation onto the virtual circuit. The Internal signals that have not been optimised are the ones connected to the inputs and outputs meaning they are required to connected the internal circuit to the ports. The INTO and the output O are the same value but the output is delayed by 1 clock cycle this is due to them being within different cut sets and requiring a register between so that the function of the circuit is realised but the output value is held for 1 clock cycle. The means that the entire circuit has a delay but the makes the inputs and outputs more stable.

1.1.6 Print out a screenshot of the timing simulation window, zoomed in to display, in readable format, all inputs and the outputs, as well as INTO, in unsigned decimal format. Include the console output

Name	Value	1	620 ns	630 ns	640 ns	650 ns	660 ns	670 ns	680 ns
Inputs									
ଧ₀ clk	1								
୳₀ rst	0								
> 🥞 A[15:0]	149			67		X		53264	
> ■ B [15:0]	19			151		X		32	
C[15:0]	61961			4		X		5	
→ ™ D[15:0]	10			1		X		65535	
Output									
> ™ O[31:0]	814				5				X 22
Internal Signals									
> ₹ INTB[15:0]	32		0	χ ₀		151			χ ₀
→ NTC[15:0]	5		0	X		4			X
> ₹ INTD[15:0]	65535				1				χα
> ■ INT4[31:0]	14		0	X (% %)	1.28 % 1 :	**** ********************************	80	5	× ×
→ NTO[31:0]	28		5	X 9 X X	XX 2 X	8 (X 0 K0X		814	X

					709.103 ns								
Name	Value	695 ns	700 ns	705 ns	710 ns	715 ns	720 ns	725 ns	730 ns	735 ns	740 ns	745 ns	750 ns 7
Inputs													
ଧି₀ clk	0												
ใ <mark>₀ rst</mark>	0												
> 🤏 A[15:0]	149	53264	X				1	49					21
> 🥞 B[15:0]	19	32	X					19					49
> 🥞 C[15:0]	61961	5	X				61	961					61680
> 🥞 D[15:0]	10	65535	X					10					65332
Output													
> 🤏 O[31:0]	814				814				X 4-			9	
Internal Signals													
> % INTB[15:0]	32				32				X Þ		19		
> NTC[15:0]	5				5				χ υ		6196		
> = INTD[15:0]	65535				65535				X□		10		
> % INT4[31:0]	15871												
> 🥞 INTO[31:0]	103314	MERS EDIVING	Service of the servic	(: 148) : 348					∍∭⊘X3XXX XX	10 1 113	H KLIMI V	11.980 E EE	8 0 8 1 81

Name	Value		795 ns	800 ns	805 ns	810 ns	815 ns	820 ns	825 ns	830 ns	835 ns	840 ns	845 ns	850 ns	85
Inputs															
¹₀ clk	0														Ι
¹₀ rst	0														
™ A[15:0]	149		21	*				ı						37	T
™ B[15:0]	19		49	X				62:	19					61664	Ŧ
₹ C[15:0]	61961	-	1680	X										86	Ŧ
₹ D[15:0]	10	-	5332	X				3	8					62309	Ŧ
Output		65332													
™ O[31:0]	814					167198				XX.		6	1723		Ī
Internal Signals															
₹ INTB[15:0]	32					49				X (m)		62819			T
₹ INTC[15:0]	5					51680				X (m)		0			Ŧ
₹ INTD[15:0]	65535					55332				Χ□		38			Ŧ
₹ INT4[31:0]	15871	142 3/1	9 .0 00 (1000)	TOTAL TAX A STATE OF THE	() (1/2/4 (2/2) (1/4/4)	CA XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	X 0 \\ XXX	_ X 0\\\\\\\\ X \\\\\X	(X 0X0X X X	47	1 2 A		000 MCW M		E¥.
™ INTO[31:0]	103314	16 8	8 ' X	0.00	300 2:55 5	2 NOV 100 C	332.0VAVAY			78 - V V					

Name	Value	895 ns	900 ns	905 ns	910 ns	915 ns	920 ns	925 ns	930 ns	935 ns	940 ns	945 ns	950 ns	955 ns
Inputs														
¹⊌ clk	0													
∿ rst	0													
> 🥞 A[15:0]	149	37	X					88					X	69
> 🥞 B[15:0]	19	61664	X				6	5432					χ 6	5004
> 🥞 C[15:0]	61961	86	X				6	31.13					X 6	4565
> 🥞 D[15:0]	10	62309	X					54					X 6	5350
Output														
> N O[31:0]	814				1577				X			188		
Internal Signals														
> 3 INTB[15:0]	32				61664				ΧÞ			65432		
> 🖥 INTC[15:0]	5				86				Ж			63113		
> 🥞 INTD[15:0]	65535				62309				Χū			54		
> 3 INT4[31:0]	15871	XX 80000		MANAGA WAXAA	AND DOX XXX	()) () () () () () () () () (XXX 88 XXX 0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		M 1227 1228 M			
> 🥞 INTO[31:0]	103314		: : 									1 2 3 10		78 :

Name	Value	945 ns	950 ns	955 ns	960 ns	965 ns	970 ns	975 ns	980 ns	985 ns	990 ns	995 ns	1,000 ns	1,005 ns
Inputs														
¼ clk	0													
¹ೌ rst	0													
₹ A[15:0]	149	88	X				6						X	64506
™ B[15:0]	19	65432	X				650	04					X	9
₹ C[15:0]	61961	63113	X				645	65					X	5
₹ D[15:0]	10	54	X				653	50					X	1
Output														
™ O[31:0]	814				188				X			76536715		
Internal Signals														
™ INTB[15:0]	32				65432				X□			55004		
₹ INTC[15:0]	5				63113				χ ₀			54565		
₹ INTD[15:0]	65535				54				Xe			55350		
™ INT4[31:0]	15871	N	ANNA TOTAL		0.00	1.7000000000		(1)	XXX XX XXXXX	7 - 25 # 92 5 7 25 6 920 2 1 7 - 10 5 6 5 112 2 7 - 10 5 6 5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0.00 \ 0.00 0 1000	(00) Head
₹ INTO[31:0]	103314		14 11		8 8 8	! (1 1 EW 7 3 3	7 : 1 M	200	,				93

Name	Value		995 ns	1,000 ns	1,005 ns	1,010 ns	1,015 ns	1,020 ns	1,025 ns	1,030 ns	1,035 ns	1,040 ns	1,045 ns	1,050 ns	1,05
Inputs															
⅓ clk	0														
¼ rst	0														
₹ A[15:0]	149		69	χ				64	506					64586	
₹ B[15:0]	19	6	5004	X					9						
₹ C[15:0]	61961	6	4565	X					5						_
₹ D[15:0]	10	6	5350	X					1.					61845	
Output															
™ O[31:0]	814					76536715)/// (1			128800		
Internal Signals															
₹ INTB[15:0]	32					55004				Ж		9			
₹ INTC[15:0]	5					54565				Жш		5			T
₹ INTD[15:0]	65535					65350				X -		1			\top
₹ INT4[31:0]	15871	- 10 (0 × 3 × 3 × 3					*****************	(A)				10 10 11 11 11 11 11 11 11 11 11 11 11 11 11			
■ INTO[31:0]	103314		* !\$ ¹ \$			(A)// 2 (1 1 2 0						H E VOIO			

Name	Value	1,05	95 ns	1,100 ns	1,105 ns	1,110 ns	1,115 ns	1,120 ns	1,125 ns	1,130 ns	1,135 ns	1,140 ns	1,145 ns	1,150 ns	1,155 n
Inputs															
¹⊌ clk	0														
¼ rst	0														
> 🥞 A[15:0]	149	64586	5	X				63	945					62385	
> 🥞 B[15:0]	19	9		X				3	08					49	
> 🥞 C[15:0]	61961	5		X				61	961					61680	
> 🥞 D[15:0]	10	61845	5	X					10					35	
Output															
> 🤏 O[31:0]	814					163951				XX ₽			7		
Internal Signals															
> 考 INTB[15:0]	32					9				Жо		308			
> 🥞 INTC[15:0]	5					5				Жо		61961			
> 🔏 INTD[15:0]	65535					61845				X□		10			
> 🖥 INT4[31:0]	15871	XII) COM I W	1200000 10			(acada xaa		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5 X 10 X X C	3 740	400 1 (2.7 1/2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1000 T	W. W. W.
> 3 INTO[31:0]	103314		1 M 390	D WWW I			***		15 0		WH MAN	IN S SMAR	86 5 17	17 26 7 2 1	i Meeting

Name	Value	1,145 ns	1,150 ns	1,155 ns	1,160 ns	1,165 ns	1,170 ns	1,175 ns	1,180 ns	1,185 ns	1,190 ns	1,195 ns	1,200 ns	1,205 ns
Inputs														
¹७ clk	0													
¹७ rst	0													
₹ A[15:0]	149	63945	X				62	385					6	3919
₹ B[15:0]	19	308	_					49					6	4474
₹ C[15:0]	61961	61961	_				61	680					-	0
₹ D[15:0]	10	10	=					3.5					-	18
Output														
™ O[31:0]	814				7				***			1989799		
Internal Signals														
™ INTB[15:0]	32				308				% o			49		
■ INTC[15:0]	5				61961				χ ₀			61680		
₹ INTD[15:0]	65535				10				X□			35		
₹ INT4[31:0]	15871	MCC CONTRACTO	N (3) (9) (1) (1) (1)	22. 5776 (19 00)	(† 13210000000	51 (0.05 (1.05))	636×××	William XXIII	X (4) X(3) X(3) X(4) X(4) X(4) X(4) X(4) X(4) X(4) X(4	9881991 I	X 020000 2	3 300 000	30 000 01 000	ak yawaya i
■ INTO[31:0]	103314											38 3 9		

Name	Value	1,195	ns	1,200 ns	1,205 ns	1,210 ns	1,215 ns	1,220 ns	1,225 ns	1,230 ns	1,235 ns	1,240 ns	1,245 ns	1,250 ns	1,255 ns
Inputs															
⅓ clk	0														
₩ rst	0														
> 🤏 A[15:0]	149	62:	385	X				63	19					6	5349
> 🥞 B[15:0]	19	4	.9	X				64	74					6	1664
> 🥞 C[15:0]	61961	61	680	X					,					X	135
> 🥞 D[15:0]	10	3	:5	X				1	8					6	4255
Output															
> 🥞 O[31:0]	814					1989799				XX			153202		
Internal Signals															
> 🥞 INTB[15:0]	32					49				Ж		ϵ	4474		
> 🥞 INTC[15:0]	5					61680				Ж			0		
> 🤏 INTD[15:0]	65535					35				X□			18		
> 🥞 INT4[31:0]	15871	XXXXX). YAM I	HOW GIOWE					XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000 - 19 12 12 10 2000 - 19 12 12 12 12 12 12 12 12 12 12 12 12 12	Carlos Carlos Albanas		(1.000)
> 🥞 INTO[31:0]	103314														

Name	Value	1,240 ns	1,245 ns	1,250 ns	1,255 ns	1,260 ns	1,265 ns	1,270 ns	1,275 ns	1,280 ns	1,285 ns	1,290 ns	1,295 ns	1,300 ns
Inputs														
ଧ₀ clk	0													
⅓ rst	0													
> 🤏 A[15:0]	149		53919	X				65	349					64467
> 🥞 B[15:0]	19	-	54474	<u> </u>				61	.664					63714
> 🥞 C[15:0]	61961		0					1	.35					63924
> 🥞 D[15:0]	10		18	X				64	12:55					244
Output														
> ™ O[31:0]	814					1.53202				X		159	39	
Internal Signals														
> NTB[15:0]	32				644	4				Ж		61664		
> 🥞 INTC[15:0]	5				0					X p		135		
> = INTD[15:0]	65535				18					X□		64255		
> NT4[31:0]	15871	V		e days (Areka - aria - empra Colon (Areka - aria - empra	digalogi ya	100,000,000	over to streyto.	Maria No. 20 M	CONTRACTOR	X0XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Total Constitution		6100010 (1 000 0	8 400 (
> 🥞 INTO[31:0]														Mas ii dh

Name	Value	1,290 ns	1,295 ns	1,300 ns	1,305 ns	1,310 ns	1,315 ns	1,320 ns	1,325 ns	1,330 ns	1,335 ns	1,340 ns	1,345 ns	1,350 ns
Inputs														
¹⊌ clk	0													
୍ଷ rst	0													
→ N[15:0]	149	65	349	X				64	1467					65535
→ N B[15:0]	19	61	664					63	3714					65535
→ N C[15:0]	61961	1	35					63	3924					65535
→ N D[15:0]	10	64	255					2	244					65535
Output														
→ O [31:0]	814					15939				***		286	,	
Internal Signals														
→ NTB[15:0]	32				6.	1664				χ ₀		63714		
→ NTC[15:0]	5]	135				Ж		63924		
→ NTD[15:0]	65535				64	1255				Х□		244		
→ ■ INT4[31:0]	15871	(18 11113) 	# 10/01/16 11 /03/0	XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Xexes Xe xes X	*	XXXXX XXXX XXXX	MOX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		1) 132			**************************************	and the superior section and the section of the sec
→ NTO[31:0]												8 3 172 8 1		

Name	Value	1,430 ns	1,435 ns	1,440 ns	1,445 ns	1,450 ns	1,455 ns	1,460 ns	1,465 ns	1,470 ns	1,475 ns	1,480 ns	1,485 ns	1,490 ns
Inputs														
¼ clk	0													
¹ೌ rst	0													
> 🤏 A[15:0]	149							65535						
> 🥞 B[15:0]	19							65535						
> 🥞 C[15:0]	61961							65535						
> 🥞 D[15:0]	10							65535						
Output														
> ¾ O[31:0]	814	16760230					65854					X	6554	0
Internal Signals														
> 🥞 INTB[15:0]	32							65535						
> 🥞 INTC[15:0]	5							65535						
> 🥞 INTD[15:0]	65535							65535						
> 🥞 INT4[31:0]	15871	XXX X EXX3XX	XX X:0XX X X	7XXXXXXIX					0					
> 🥞 INTO[31:0]	103314	X XX (X) X (X) X (X)		X	50 X					55540				

Na	ıme	Value		1,	480 ns	· .	1,485 ns	1,490 ns	1,495 ns	1,500 ns	1,505 ns	1,510 ns	1,51
Ir	nputs												
ų	₀ clk	0											
u	₀ rst	0											
> =	¼ A[15:0]	149									6553	5	
> =	⊌ B[15:0]	19									6553	5	
> =	᠖C[15:0]	61961									6553	5	
> =	⊌ D[15:0]	10									6553	5	
C	Output												
> =	⊌ O[31:0]	814	65	854		X (n)						65540	
Ir	nternal Signals												
> =	⊌ INTB[15:0]	32									6553	5	
> =	¥ INTC[15:0]	5									6553	5	
> =	⊌ INTD[15:0]	65535									6553	5	
> =	⊌ INT4[31:0]	15871									0		
> =	¥ INTO[31:0]	103314									6554)	

```
Error:
test_vectors value 0
for inputs
A: 67
B: 151
C: 4
D: 1
for outputs
Actual value
0: 814
Predicted value
0: 814
Time: 700 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test_vectors value 1
for inputs
A: 53264
B: 32
C: 5
D: 65535
for outputs
Actual value
0: 9
Predicted value
Time: 750 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
Error:
test_vectors value 2
for inputs
A: 149
B: 19
C: 61961
D: 10
for outputs
Actual value
0: 167198
Predicted value
0: 179736
Time: 800 ns Iteration: 0 Process: /Algorithm Lab 2A_tb/TEST_OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
Error:
test_vectors value 3
for inputs
A: 21
B: 49
C: 61680
D: 65332
for outputs
Actual value
O: 61723
Predicted value
0: 61731
```

```
Time: 850 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
Error: Assertion violation
Time: 900 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
Error:
test vectors value 4
for inputs
A: 0
B: 62819
C: 0
D: 38
for outputs
Actual value
0: 157
Predicted value
0: 5
Time: 900 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error: Assertion violation
Time: 950 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
Error.
test vectors value 5
for inputs
A: 37
B: 61664
C: 86
D: 62309
for outputs
Actual value
0: 188
Predicted value
0: 176
Time: 950 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
Error:
test_vectors value 6
for inputs
A: 88
B: 65432
C: 63113
D: 54
for outputs
Actual value
O: 765367
Predicted value
O: 76537378
Time: 1 us Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
INFO: [USF-XSim-96] XSim completed. Design snapshot 'Algorithm Lab 2A tb time impl' loaded.
INFO: [USF-XSim-97] XSim simulation ran for 1000ns
launch_simulation: Time (s): cpu = 00:00:46; elapsed = 00:01:06. Memory (MB): peak = 1801.133; gain 
= 1000.711
run 5 us
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
Error: Assertion violation
Time: 1050 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
test vectors value
```

```
for inputs
A: 69
B: 65004
C: 64565
D: 65350
for outputs
Actual value
0: 128800
Predicted value
O: 128793
Time: 1050 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
test_vectors value 8
for inputs
A: 64506
B: 9
C: 5
D: 1
for outputs
Actual value
0:16395
Predicted value
0: 193573
Time: 1100 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
Error:
test vectors value 9
for inputs
A: 64586
B: 9
C: 5
D: 61845
for outputs
Actual value
0:
Predicted value
0: 13
Time: 1150 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
Error: Assertion violation
Time: 1200 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
Error:
test vectors value 10
for inputs
A: 63945
B: 308
C: 61961
D: 10
for outputs
Actual value
O: 1989799
Predicted value
O: 1989548
Time: 1200 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
Error:
test vectors value 11
```

```
for inputs
A: 62385
B: 49
C: 61680
D: 35
for outputs
Actual value
0: 153202
Predicted value
O: 153384
Time: 1250 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
Error: Assertion violation
Time: 1300 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test_vectors value 12
for inputs
A: 63919
B: 64474
C: 0
D: 18
for outputs
Actual value
0: 15939
Predicted value
0: 10658
Time: 1300 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
Error: Assertion violation
Time: 1350 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
Error:
test_vectors value 13
for inputs
A: 65349
B: 61664
C: 135
D: 64255
for outputs
Actual value
0: 286
Predicted value
0: 272
Time: 1350 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 145: Timing violation in
scope
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
Error: Assertion violation
Time: 1400 ns Iteration: 0 Process: /Algorithm Lab 2A tb/TEST OUTPUT
Error:
test vectors value 14
for inputs
A: 64467
B: 63714
C: 63924
D: 244
for outputs
Actual value
O: 16760230
Predicted value
O: 16756745
```

```
Time: 1400 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
WARNING: "C:\Xilinx\Vivado\2017.4\data/verilog/src/unisims/FDRE.v" Line 142: Timing violation in scope
Error: Assertion violation
Time: 1450 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
Error:
test_vectors value 15

for inputs
A: 65535
B: 65535
C: 65535
D: 65535
D: 65535
for outputs
Actual value
O: 65540

Time: 1450 ns Iteration: 0 Process: /Algorithm_Lab_2A_tb/TEST_OUTPUT
```

Comment on and explain the output of the simulation, particularly the behaviour of INTO and of the output, relating it to the material covered in the lectures.

The Combinational logic that leads the computation of the equation does not have enough time to process all of the larger sums this is due to the critical paths minimum time required is not met due to the simulated clock period being to low. This low timing value forces the output register to input (INTO)the current value of the combinational logic which is not correct in most cases this causes the output of the register to be incorrect causing the circuit to be invalid. These incorrect values held within the registers cause setup and hold time violations.

Task 2

1.2.1

Tcl Console M	essages Lo	og Reports Design Runs	× Timi	ing										
Q ¥ ♦		▶ » + %												
Name	Constraints	Status	WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	LUT	FF	BRAMs	URAM	DSP
✓ ✓ synth_1	constrs_1	synth_design Complete!								897	96	0.00	0	0
✓ impl_1	constrs_1	route_design Complete!	3.414	0.000	0.700	0.000	0.000	0.110	0	886	96	0.00	0	0

Figure 2 85ns period xdc file

Time asked for = 85ns

Worst Time Slack = 3.414

Critical path time = 81.586ns= 85ns - 3.414ns

Maximum frequency =
$$\frac{1}{Critical\ Path\ Time} = \frac{1}{81.586ns} = 12257005\ Hz$$

Calculate frequency

Tcl Console M	lessages Lo	og Reports Design Runs	× Timing											
Q		▶ » + %												
Name	Constraints	Status	WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	LUT	FF	BRAMs	URAM	DSP
∨ ✓ synth_1	constrs_1	synth_design Complete!								897	96	0.00	0	0
✓ impl_1	constrs_1	route_design Complete!	0.297	0.000	0.599	0.000	0.000	0.111	0	885	96	0.00	0	0

Figure 3 80ns period xdc file

Calculate frequency

Time asked for = 80ns

Worst Time Slack = 0.297

Critical path time = 79.703 = 80ns - 0.297ns

Maximum frequency =
$$\frac{1}{Critical\ Path\ Time} = \frac{1}{79.703ns} = 1254579\ Hz$$

Tcl Console M	lessages Lo	og Reports Design Runs	× Timing											
Q ¥ ♦		▶ » + %												
Name	Constraints	Status	WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	LUT	FF	BRAMs	URAM	DSP
✓ ✓ synth_1	constrs_1	synth_design Complete!								897	96	0.00	0	0
√ impl_1	constrs_1	route_design Complete!	0.232	0.000	1.030	0.000	0.000	0.111	0	886	96	0.00	0	0

Figure 4 75ns period xdc file

Calculate frequency

Time asked for = 75ns

Worst Time Slack = 0.232

Critical path time = 74.768 = 75ns - 0.232ns

Maximum frequency =
$$\frac{1}{Critical\ Path\ Time} = \frac{1}{74.768ns} = 13374705\ Hz$$

Tcl Console	Messages L	.og Reports	Design Runs ×	Timing												
Q ¥ ♦	≪	▶ >> +	%													
Name	Constraints	Status		١	WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	LUT	FF	BRAMs	URAM	DSP
✓ ✓ synth_1	constrs_1	synth_design (Complete!									897	96	0.00	0	0
√ impl_1	constrs_1	route_design (Complete, Failed Tin	ning!	-3.951	-110.914	1.216	0.000	0.000	0.112	0	895	96	0.00	0	0

Figure 5 70ns period xdc file

Failed to process due to timing constraints.

why the WNS changes and what happens when the timing requirements are not met

Relate this to what you see in the timing simulations.

THE Worst Negative Slack changes because the implementation of the gates on the chip, as you request less time the software is required to be more efficient, in this case the physical position of the gates move closer together reducing the length of the connections optimizing the circuit further than previously within the combinational logic specifically. When the Timing requirements are not met the WNS & TNS give negative values as in Figure 5 70ns period xdc filethis means that the circuit cannot be optimised for the desired time.

Figure 7 85 ns

Figure 6 75ns

In the timing simulations such as section 1.1.6 show what can happen when the timing simulations do not have enough time to process the values through the combinational circuit. Unfortunately, the time is not enough in most cases so the output register takes in the current value of the internal output value at the time of the rising clock edge but that value is not currently stable as the combinational circuit is still processing the correct values. This causes the output register to output the wrong values making the circuit invalid.

Task 3

1.3.1 Print out the modified VHDL code. Add comments within the VHDL to illustrate its operation and your modifications (in particular, their effect on the critical path). Print out a screenshot of the "Design Runs" tab, showing all columns up to "DSP", and comment on the comparison between the WNS value here and in the pre-modification case

```
-- Company: University of York
-- Engineer: Gianluca Tempesti
-- Create Date:
                   11:57:50 10/25/2012
-- Design Name:
                   Algorithm - Behavioral
-- Module Name:
-- Project Name: Digital Engineering Labs 2-3
-- Target Devices: Any device - Tested on XC6SLX45-3CSG32
-- Tool versions: Tested on ISE 14.2 / Vivado 2017.4.1 -- Description: Base circuit for pipeline labs
-- Revision:
-- Revision 0.01 - File Created
-- Revision 0.02 - File updated 04/12/2015
-- Revision 0.03 - Vivado update and test
-- Revision 0.04 - re-arranged of first and final additions30/01/2020 OAF-S
-- Additional Comments:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.NUMERIC STD.ALL;
use work.DigEng.all;
-- Algorithm entity
-- Synchronous calculator of the equation
-- O <= (A*3 + B*C)/D + C +5
-- 6 inputs, standard clk and reset
-- Inputs A, B, C, D std logic vector inputs of values
-- to computate.
-- output O is result of the equation.
-- 5 registers total
-- 4 at innputs one for each value input A, B, C and D
-- 1 at output 0
-- Computation of equation takes 2 clk clyes
-- first to register inputs
-- second to register at output
-- UPDATE reduces critical path length:
-- old critical path had 2 additions in sequential order
--before output reg while the new crtitcal path moves one
-- of the additions from the the critical path and is
-- computed earlier
entity algorithm is
    generic (data size : integer := 16);
    Port (A: in STD_LOGIC_VECTOR (data_size-1 downto 0);
B: in STD_LOGIC_VECTOR (data_size-1 downto 0);
C: in STD_LOGIC_VECTOR (data_size-1 downto 0);
D: in STD_LOGIC_VECTOR (data_size-1 downto 0);
            O : out STD LOGIC VECTOR (data size*2-1 downto 0);
            clk: in STD LOGIC;
            rst : in STD LOGIC);
end algorithm;
```

```
architecture Behavioral of algorithm is
-- internal input signals "data size" bits long to match inputs
signal INTA, INTB, INTC, INTD : UNSIGNED (data size-1 downto 0);
-- internal input signals "data size" +1 bits long
-- extra bit to account for multiplication of INTA by 3
signal INT1 : UNSIGNED (data size+1 downto 0);
-- internal input signals "data size"-1 bits long
-- this allows for multiplication and division of
-- any value of the same vector size
signal INT2 : UNSIGNED (data size*2-1 downto 0);
signal INT3 : UNSIGNED (data size*2-1 downto 0);
signal INT4 : UNSIGNED (data_size*2-1 downto 0);
-- original INT5 signal
--signal INT5 : UNSIGNED (data size*2-1 downto 0);
-- modified INT5 signal
-- INT5 data size reduced from 32 bit to the required 17 bits
signal INT5 : UNSIGNED (data size downto 0);
signal INTO : UNSIGNED (data size*2-1 downto 0);
begin
-- setup for individual input registers for inputs A,B, C & D
-- All Synchronous with reset to zero when reset signal active,
-- NO enable signals required.
input regs: process (clk) is
begin
  if rising edge(clk) then
  -- resets internal signals below to zero
    if rst = '1' then
      INTA <= (others => '0');
     INTB <= (others => '0');
      INTC <= (others => '0');
     INTD \langle = (0 \Rightarrow '1', others \Rightarrow '0'); -- aggregate notation
      INTD <= to unsigned(1,INTD'length); -- type conversion notation
    else
    -- connects inputs to internal signal values
     INTA <= unsigned(A);</pre>
     INTB <= unsigned(B);</pre>
     INTC <= unsigned(C);</pre>
     INTD <= unsigned(D);</pre>
    end if;
  end if;
end process input regs;
-- equation maths defined per internal signals
-- INT1 result of INTA multiplied by 3
INT1 <= INTA * to unsigned(3, 2);</pre>
-- INT2 result of INTB multiplied INTC
INT2 <= INTB * INTC;</pre>
-- INT3 equal to sum of INT1 & INT2
INT3 <= INT1 + INT2;</pre>
-- INT4 result of INT3 divided by INTD
INT4 <= INT3 / INTD;</pre>
```

```
-- original INT5 connection
--INT5 <= INTC + INT4;
--INTO <= INT5 + to unsigned(5, INT5'length);
-- modified INT5 signal connection
-- edited to match Task 3
-- unsigned value 5 added to C
INT5 <= INTC + to unsigned(5, INT5'length);</pre>
--result of usigned 5 + INTC added to INT5
INTO <= INT5 + INT4;</pre>
-- output register.
-- synchronous.
-- output = 0 at rising clk edge
-- when input reset is active.
-- output = INTO at rising clk edge.
output regs: process (clk) is
begin
  if rising edge(clk) then
   if rst = '1' then
     0 <= (others => '0');
     0 <= std logic vector(INTO);</pre>
   end if;
 end if;
end process output regs;
end Behavioral;
```


and comment on the comparison between the WNS value here and in the pre-modification case.

No change in any of the values this is most likely due to the fact that adders are extremely fast in processing the circuit. If it was a divider or a multiplier that had moved from the critical path the WNS value would change.