Problem 1

In the circuit below, where L = 2 mH and R = 2 k Ω ,

- (a) Determine how the input impedance $Z(j\omega) = \frac{V_i(j\omega)}{I_i(j\omega)}$ behaves at extremely high and low frequencies.
- (b) Find an expression for the impedance.
- (c) Show that this expression can be manipulated into the form $Z(j\omega) = R \left[1 + j \frac{\omega L}{R} \right]$.
- (d) Determine the frequency $\omega = \omega_c$ for which the imaginary part of the expression in part c is equal to 1.
- (e) Estimate the magnitude and phase angle of $Z(j\omega)$ at $\omega = 10^5$ rad/s, 10^6 rad/s, and 10^7 rad/s.

Problem 2

In the circuit below: $R_1 = 1.3 \text{ k}\Omega$, $R_2 = 1.9 \text{ k}\Omega$, and $C = 0.5182 \text{ }\mu\text{F}$.

- (a) Determine how the voltage transfer function $H_V(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$ behaves at extremes of high and low frequencies.
- (b) Obtain an expression for the voltage transfer function and show that it can be manipulated into the form $H_v(j\omega) = \frac{H_o}{1 + jf(\omega)}$ where $H_0 = \frac{R_2}{R_1 + R_2}$ and $\omega R_1 R_2 C$

$$f(\omega) = \frac{\omega R_1 R_2 C}{R_1 + R_2}.$$

(c) Determine the frequency at which $f(\omega) = 1$ and the value of H_0 .

Problem 3

Are the filters shown below low-pass, high-pass, band-pass, or band-stop (notch) filters?

Problem 4

Determine if each of the circuits shown below is a low-pass, high-pass, band-pass, or band-stop (notch) filter.

