

Научно-производственный центр «Видикор»

Оборудование для построения цифровой сети передачи телевизионного трафика на базе IP-каналов

www.vidicor.ru, 2012 r.

Оглавление

1.	Задачи	3
2.	Архитектура системы	
3.	Основные принципы	
4.	Техническое решение	
5.	Технические характеристики	
	По SDI входам и выходам	
	По аналоговым и отдельным цифровым входам и выходам	
	Сетевой интерфейс	
	Параметры передачи	
	 Таблицы измерений параметров сквозного тракта передачи-приёма видео «Vidicor Video System»	
	КАНАЛ ИЗОБРАЖЕНИЯ	
	Управление системой	5
6.	Примеры спецификаций	5
	Интерфейс управления технического администратора	
7.	Срок поставки оборудования и программных средств	6
8.	Гарантийные обязательства	6
9.	Апробированность систем, построенных на базе компонентов «Vidicor Video System»	7
10	. Подробнее о системе	7
11	. Некоторые клиенты НПЦ «Видикор»	8

1. Задачи

Оборудование для построения цифровой сети передачи аналогового и цифрового телевизионного трафика на базе IP-каналов предназначено, в первую очередь, для применения в области профессионального телевидения для внутригородской и междугородней трансляции телепрограмм. Передача осуществляется с качеством видео STV 576i, HDTV 720p, FullHDTV 1080i, с количеством каналов звука до 8.

Компоненты системы обеспечивают:

- передачу видео и аудио сигнала (как от аналоговых, так и от цифровых источников) через IP-сеть одному или нескольким получателям,
- выдачу на аналоговый или цифровой выход видео и аудио сигнала, полученного через IP-сеть,
- удалённое управление из центра управления маршрутами передачи трафика (вручную и/или по расписанию).

Оборудование может использоваться и для построения систем телеприсутствия и сетей интернет-телевещания.

2. Архитектура системы

На рисунке показан пример использования оборудования для простейшей случая двусторонней связи между двумя точ-ками

Второй пример – сеть с четырьмя точками передачи/приёма видео и звука. Средства управления позволяют информационно соединить точки передачи и точки приёма произвольным образом (включая получение сигналов, передаваемых какойлибо точкой, несколькими точками) вручную или по расписанию.

3. Основные принципы

- Система обеспечивает:
 - о Дуплексную двустороннюю связь (для проведения двусторонних телемостов),
 - о Многостороннюю связь (для проведение многосторонних телемостов),
 - о Многоадресное вещание,
 - о удалённое центральное управление оборудованием в точках, не имеющих технического персонала.
- Система имеет модульное построение с возможностью наращивания возможностей системы (например, система может не комплектоваться модулями аналогового захвата и вывода изображения и звука).
- Возможно подключения источников и получателей с любыми типовыми аналоговыми и цифровыми интерфейсами.
- обеспечивается работа не только в <u>STV 576i</u>, но и с перспективными стандартами изображения <u>HDTV 720p</u>, и <u>FullHDTV 1080i</u>.

- Обеспечивается возможность <u>обновления «математики»</u> системы видеосвязи в процессе эксплуатации при развитии технологий в отрасли (добавление новых средств кодирования, новых функций, новых средств защищённости от потерь данных и других) без изменений в аппаратуре.
- Поддерживается протокол конфиденциальной связи *VPN*.
- Система допускает включение/выключение электропитания блоков произвольным образом, система не может быть повреждена вирусами и некорректными действиями пользователя (администратора) в меню управления.

4. Техническое решение

Ядро предлагаемой системы видеосвязи — блок кодирования-декодирования видео и звука, «видеопроцессор» <u>Vidicor-BTP/FullHD</u> с входом и выходом SDI. Блок осуществляет захват видео и аудиосигналов, их сжатие с синхронизацией потоков, передачу в Интернет, прием из IP сети, декомпрессию с синхронизацией потоков, выдачу видео и аудио сигналов на выход. При необходимости захвата или вывода аналоговых сигналов используются SDI-конверторы.

5. Технические характеристики

По SDI входам и выходам

- Вход видео SDI:1x10 бит, переключаемый SD/HD.
- Выход видео SDI:1x10 бит, переключаемый SD/HD.
- Вход видео оптоволоконный: опционально.
- Выход видео оптоволоконный: опционально.
- Поддерживаемые форматы видео: 625i PAL, 720p HD и 1080i HD.
- Вход звука SDI:8-канальный встроенный SD и HD.
- Выход звука SDI:8-канальный встроенный SD и HD.
- Вход звука оптоволоконный: опционально.
- Выход звука оптоволоконный: опционально.
- Поддержка величин потоков: SD SDI и HD SDI.
- Вход синхронизации: Blackburst в SD и HD форматах 1080i50 и 720p50, TriSync во всех HD форматах.
- Поддерживаемые SD форматы: 625/25 PAL; HD форматы: 1080PsF24, 1080i50, 720p50
- SDI Compliance: SMPTE 259M, 292/296M.
- Сэмплинг видео: 4:2:2
- Точность цвета:4:2:2 10-бит
- Цветовое пространство: 4:2:2 YUV
- Поддержка SDI-метаданных: чтение VITC для 3:2, захват VANC и проигрывание с использованием до 3-х видеострок, HD RP188.
- Частота сэмплирования аудио: 48кГц, 24 бита.

По аналоговым и отдельным цифровым входам и выходам

- Вход звука аналоговый: 2 профессиональных балансных аналоговых канала с разъёмами «Джек 6.3».
- Выход звука аналоговый: 2 профессиональных балансных аналоговых канала с разъёмами «Джек 6.3».
- Вход звука аналоговый: 2 профессиональных балансных цифровых канала AES/EBU с разъёмами «Джек 6.3».
- Выход звука аналоговый: 2 профессиональных балансных цифровых канала AES/EBU с разъёмами «Джек 6.3».
- Вход видео аналоговый: компонентный, композитный и S-Video.
- Выход видео аналоговый: компонентный SD, компонентный HD, композитный и S-Video.
- Поддерживаемые стандарты: 625/25 PAL (625i50), 1080PsF24, 1080i50, 720p50, опционально -- 625/25 SECAM (625i50)
- Точность цвета по аналоговому сигналу: 4:2:2
- Цветовое пространство по аналоговому сигналу: YUV

Сетевой интерфейс

- 1xLAN/Ethernet 10/100/1000 Мбит/с (RJ-45).
- Протоколы: TCP, UDP.
- Протоколы видеокомпрессии: MPEG-2 и MPEG-4.

Параметры передачи

- Протоколы видеокомпрессии: MPEG-2, MPEG-4, H.264.
- Битрейт передачи видео: 2..25 Мбит/с.
- Протоколы аудиокомпрессии: MPEG-2 Layer 3.
- Битрейт передачи звука: 96..320 кбит/с для режима стерео.

Таблицы измерений параметров сквозного тракта передачи-приёма видео «Vidicor Video System»

Ниже приводятся результаты измерения параметров сквозного тракта («Таблицы измерений качественных показателей ТВ передатчиков 1, 2, 3 группы»), проведённые в ОАО «Ростелеком».

КАНАЛ ИЗОБРАЖЕНИЯ

№	Измеряемый параметр	Метод изм-я. Пункт ПТЭ		а ПТЭ СВТ по группам		Измеренная
п/п			1	2	3	величина
1	Перекос плоской части прямоугольных импульсов частоты полей, %, не более	6.5.4.1.	4	3	3	-0.2
2	Перекос плоской части прямоугольных импульсов частоты строк, %, не более	6.5.4.2.	3	2	2	0.4
3	Различие в усилении сигналов яркости и цветности %, не более	6.5.4.6 б.	+20/-25	+15/-20	□12	-11
4	Расхождение во времени сигналов яркости и цветности, нс, в пределах	6.5.4.7.	□50	□50	□50	19
5	Коэффициент нелинейных искажений сигнала яркости, %, не более	6.5.5.1 б.	20	15	12	3.3
6	Дифференциальное усиление, %, не более	6.5.5.3 б.	15	10	10	14.5
7	Дифференциальная фаза, град., не более	6.5.5.4.	□7	□5	□5	5.6
8	Отношение сигнала яркости к взвешенному значению флуктуационной помехи, дБ	6.5.6.1.			56	55.2_
9	Отношение сигнала яркости к фоновой помехе, дБ	6.5.6.3.	37	42	44	1.6
10	Переходная характеристика согласно трафарета	рис. п.6.2			Соотв.	

Управление системой

- Локальное управление с подсоединяемых к видеопроцессору видеомонитора и мыши.
- Удалённое непосредственное управление через веб-интерфейс.
- Удалённое групповое управление с центрального пульта, возможна установка расписаний переключений.
- Мониторинг передаваемых видео и аудио сигналов.

6. Примеры спецификаций

Комплект оборудования центральной точки. Типы, параметры, цены остальных элементов могут варьироваться в весьма широких пределах в зависимости от класса вычислителя и типа видео-аудиоинтерфейов. В случае однонаправленной передачи аналогового сигнала в передающей точке достаточно иметь видеопроцессор и преобразователь «Analog to SDI», а в принимающей — видеопроцессор и преобразователь «SDI to Analog». Для двунаправленной дуплексной связи аналогового сигнала в каждой точке необходимо иметь и по 2 конвертора (передающий, и принимающий).

№	Марка, фотография	Назначение	Цена, руб.
1	Видеопроцессор "Vidicor BTP/HD", CPU Intel Core i7-920 2.66 ГГц, FullHDTV 1080i	Передача и приём цифровых видео и звука HD SDI через IP-сеть с выполнением синхронизации потоков.	170000

www.vidicor.ru

2	Конвертор HDSDI⇔{S-Video+S/PDIF} "Преобразователь «Blackmagic-Design Mini Converter Analog to SDI»"	Конвертирование аналогового видеосигнала (Composite или S-Video) и цифрового звука AES/EBU в HD SDI	25000
3	Преобразователь «Blackmagic-Design Mini Converter SDI to Analog»	Конвертирование HD SDI в аналоговый видеосигнал (Composite и S-Video) и цифровой звук AES/EBU	25000
4	Двунаправленный конвертор «Blackmagic-Design BroadCast Converter»	Конвертирование аналогового видеосигнала (Composite или S-Video) и цифрового звука AES/EBU в HD SDI и обратно	45000
5	(опция) Цифровой транскодер-коммутатор XDR-ES (PAL/SECAM)	Транскодирование из SECAM и в SECAM	45000

Интерфейс управления технического администратора

7. Срок поставки оборудования и программных средств

Поставка оборудования: 1 месяц с момента поступления средств на расчётный счёт поставщика.

8. Гарантийные обязательства

Гарантийный срок на видеопроцессоры «Vidicor» – 1.5 года.

9. Апробированность систем, построенных на базе компонентов «Vidicor Video System»

Примеры организаций и мероприятий, где используются системы, построенные на видеопроцессорах «Vidicor»:

- ОАО «Ростелеком»,
- пресс-центры «ИТАР-ТАСС» и «Интерфакс» для проведения пресс-конференций с видеомостами,
- на видеопроцессорах «Vidicor» базируются видеосистемы комплексов залов заседаний Законодательного Собрания Челябинской области, Народного Хурала Республики Бурятия, Пермской области, Магнитогорского городского Собрания депутатов, областной Думы Свердловской области, администрации Курганской области и Курганской областной Думы, Тюменской городской Думы и Администрации г. Тюмени, Тюменской областной Думы, Законодательного Собрания и Правительства Оренбургской области, Законодательного Собрания Омской области.
- на системе построен «Виртуальный концертный зал» при Свердловской государственной академической филармонии ежедневные многокамерные многопотоковые трансляции в форматах камер до FullHDTV.
- видеопроцессоры «Vidicor» используются для проведения лекций, докладов, совместных обсуждений, в образовании и науке в НИЯУ «МИФИ», МГТУ им. Баумана, Математическом институте РАН им. Стеклова, Белорусском госуниверситете, УрФУ, УрГГУ, РГППУ и др.
- видеопроцессоры «Vidicor» используются для проведения медицинских консультаций и консилиумов в НИИ косметологии и пластической хирургии МЗ РФ, Научно-реабилитационном центре «Бонум», Уральском Центре медицины катастроф, МНТК «Микрохирургия глаза»,
- МЧС в Якутии, Военизированная горноспасательная часть Урала,
- Видеосвязь энергосистемы Гродно построена на данном оборудовании,
- прямые трансляции со всех выставок вооружений в Н.Тагиле, начиная с 2002 г., прямая спутниковая трансляция с выставки вооружений с полигона в Красноармейске на большие экраны на ВВЦ,
- на использовании системы «Vidicor» основаны встречи с населением Председателя Счетной палаты РФ,
- трансляции со съезда «Единой России»,
- трансляции и видеомосты с Российских экономических форумов в Екатеринбурге, в Красноярске,
- прямые спутниковые трансляции с форума движения «НАШИ» на Селигере, техническое обеспечение функционирования «полевой» телекомпании.

10. Подробнее о системе

С дополнительной информацией по системам телеприсутствия «Видикор» можно ознакомиться здесь:

http://vidicor.ru/BTP_Manual.pdf - системы телеприсутствия,

http://vidicor.ru/Vidicor_BTV.pdf – система для проведения телемостов и IP-телевещаения,

http://vidicor.ru/VidicorTP eq.pdf – комплект для оснащения малобюджетной точки телеприсутствия,

http://vidicor.ru/Sight.pdf - системы окон телеприсутствия,

http://vidicor.ru/VShU.pdf – пример корпоративной видеосети 1,

http://vidicor.ru/star.pdf – пример корпоративной видеосети 2,

http://vidicor.ru/Vidicor_Proc_QuickStart.pdf - видеопроцессор: быстрое начало,

http://vidicor.ru/manual_proc.pdf - видеопроцессор: руководство пользователя,

http://vidicor.ru/manual multiserv.pdf – мультисервер: руководство пользователя,

 $\underline{\text{http://vidicor.ru/Parameters.pdf}}$ – параметры.

11. Некоторые клиенты НПЦ «Видикор»

Научно-производственный центр "Видикор"

Россия, г. Екатеринбург, ул. Тургенева, 13, оф. 703 http://www.vidicor.ru, mailto:vpro@vidicor.ru, тел. +7-343-3720640, +7-912-2829871 Генеральный директор д.ф.-м.н., профессор Владимир Валентинович Прохоров