1.

2.

3.

Fonctions réelles d'une variable

réelle

4.1 Généralités

1. Définition: On appelle fonction réelle d'une variable réelle toute application de l'ensemble $E\subset\mathbb{R}$ dans un ensemble $F\subset\mathbb{R}$. On notera

$$f: E \rightarrow F$$

$$x \mapsto f(x)$$

x s'appelle l'antécédent et f(x) est l'image de x par f. On notera

$$f(E) = \{ f(x) / x \in E \}.$$

2. Graphe d'une fonction réelle (ou courbe représentative de f):

On appelle graphe d'une fonction $f:E\to F$ toute partie $\Gamma\left(f\right)$ du produit

cartésien $E \times F$ telle que

$$\Gamma(f) = \{(x, f(x)) / x \in E\}.$$

3. Domaine de définition d'une fonction:

Le domaine de définition d'une fonction f est l'ensemble des valeurs de $x \in E$ pour lesquelles la fonction f est bien définie. On note par D_f .

$$D_{f} = \left\{ x \in E/f\left(x\right) \in \mathbb{R} \right\}.$$

Exemple:

- 1. $f(x) = e^x, D_f = \mathbb{R}$.
- 2. $f(x) = \frac{1}{x}, D_f = \mathbb{R}^*$.
- 3. $f(x) = \frac{1}{\ln(x+2)}$,

$$D_f = \{x \in \mathbb{R}/x + 2 > 0 \text{ et } \ln(x+2) \neq 0\}$$

$$= \{x \in \mathbb{R}/x > -2 \text{ et } x + 2 \neq 1\}$$

$$= \{x \in \mathbb{R}/x > -2 \text{ et } x \neq -1\}$$

$$= [-2, -1] \cup [-1, +\infty[$$

3. f(x) = tgx

$$D_f = \left\{ x \in \mathbb{R}/x \neq (2k+1) \frac{\pi}{2}, k \in \mathbb{Z} \right\}$$

4. Parité d'une fonction:

Soit f une fonction définie sur un intervalle I symetrique par rapport à 0.

On dit que f est paire si $\forall x \in I; f(-x) = f(x)$.

On dit que f est impaire si $\forall x \in I; f(-x) = -f(x)$.

Remarque:

- 1. Si f est paire alors son graphe est symetrique par rapport à l'axe des ordonnées.
- 2. Si f est impaire alors son graphe est symetrique par rapport à l'origine.

Exemple:

$$f(x) = x^{2}$$
 est paire car $f(-x) = (-x)^{2} = x^{2} = f(x)$.

$$f(x) = x^{3}$$
 est impaire car $f(-x) = (-x)^{3} = -x^{3} = -f(x)$.

5. Périodicité d'une fonction:

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite périodique s'il existe T > 0 tel que $\forall x \in \mathbb{R}$, f(x+T) = f(x-T) = f(x). T est appelé période de f.

Remarque: Si T est une période de f alors tout nombre de la forme $kT, k \in \mathbb{N}^*$ est aussi une période de f.

Exemple:

$$f(x) = \sin x, T = 2\pi.$$

$$f(x) = x - [x], T = 1 \operatorname{car} f(x+1) = x+1 - [x+1] = x+1 - [x] - 1 = x + [x] = f(x).$$

$$f(x) = tgx, T = \pi \operatorname{car} f(x + \pi) = tg(x + \pi) = \frac{\sin(x + \pi)}{\cos(x + \pi)} = \frac{-\sin x}{-\cos x} = tgx.$$

Remarque: Si f est périodique alors il suffit de l'étudier sur un intervalle de longueur T et tracer le graphe. Le graphe complet se déduit du graphe précédent par des translations de valeurs (kT), $k \in \mathbb{Z}$.

Par exemple le graphe de la fonction $f(x) = \sin x$

6. Fonctions bornées, Fonctions monotones:

Fonctions bornées

Soit $f: E \to F$. On dira que

1. f est majorée si l'ensemble f(E) est majorée, c'est à dire

$$\exists M \in \mathbb{R}, \forall x \in E/f(x) \leq M.$$

2. f est minorée si l'ensemble $f\left(E\right)$ est minorée, c'est à dire

$$\exists m \in \mathbb{R}, \forall x \in E/f(x) \ge m.$$

3. f est bornée si elle est majorée et minorée (l'ensemble $f\left(E\right)$ est borrée), c'est à dire

$$\exists \alpha > 0, \forall x \in E/|f(x)| \le \alpha.$$

Exemple:

- 1. $f(x) = \sin x, -1 \le \sin x \le 1 \Rightarrow f$ bornée.
- 2. $f(x) = \frac{1}{x}, x \in]0,1]$, n'est pas bornée mais elle est minorée par 0.

Remarque:

Si f est majorée alors elle admet une borne supérieure

$$\sup_{x \in E} f(x) = \sup f(E) = \sup \{f(x) / x \in E\}.$$

Si f est minorée alors elle admet une borne inférieure

$$\inf_{x\in E}f\left(x\right) =\inf f\left(E\right) =\inf \left\{ f\left(x\right) /x\in E\right\} .$$

Fonctions monotones:

Soit $f: E \to F$. On dira que

1. f est croissante dans E si

$$\forall x, y \in E, x < y \Rightarrow f(x) \le f(y)$$
.

2. f est strictement croissante dans E si

$$\forall x, y \in E, x < y \Rightarrow f(x) < f(y).$$

3. f est décroissante dans E si

$$\forall x, y \in E, x < y \Rightarrow f(x) > f(y)$$
.

4. f est strictement décroissante dans E si

$$\forall x, y \in E, x < y \Rightarrow f(x) > f(y).$$

7. Opérations sur les fonctions réelles:

Soient f et g deux fonctions définies sur $E \subset \mathbb{R}$ dans \mathbb{R} .

1.
$$(f+q)(x) = f(x) + g(x)$$
.

2.
$$(\lambda f)(x) = \lambda f(x), \lambda \in \mathbb{R}$$
.

3.
$$(fg)(x) = f(x).g(x)$$
.

$$4. \left(\frac{1}{f}\right)(x) = \frac{1}{f(x)}.$$

4.2 Limite d'une fonction

Soit $f: I \subset \mathbb{R} \to \mathbb{R}$.

Définition: On dit qu'une fonction f définie au voisinage de x_0 (sauf peut être en x_0) a une limite $l \in \mathbb{R}$ au point x_0 si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - x_0| < \eta \Rightarrow |f(x) - l| < \varepsilon$$

et on écrit
$$\lim_{x\to x_0} f(x) = l$$
 ou $f\to l$.

c'est à dire

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - x_0| < \eta \Rightarrow |f(x) - l| < \varepsilon.$$

Exemple: 1. f(x) = 2x + 1

$$\lim_{x\to 2} 2x + 1 = 5 \Leftrightarrow \forall \varepsilon > 0, \exists \eta > 0, \forall x \in \mathbb{R}, |x-2| < \eta \Rightarrow |2x+1-5| < \varepsilon.$$

Soit $\varepsilon > 0$,

$$|2x - 4| = |2(x - 2)| = 2|(x - 2)| < 2\eta = \varepsilon \Rightarrow \eta = \frac{\varepsilon}{2}$$

Il suffit de prendre $\eta = \frac{\varepsilon}{2}$.

2. $f(x) = \frac{\sin x}{x}$ n'est pas définie en 0 mais admet une limite l = 1 en 0.

Remarque: 1. Pour prouver que f n'admet pas pour limite l quand $x \to x_0$, on peut prendre la négation, c'est à dire

$$\exists \varepsilon > 0, \forall \eta > 0, \exists x \in I, |x - x_0| < \eta \text{ et } |f(x) - l| \ge \varepsilon.$$

2. Si $\lim_{x\to x_0} f(x) = l$ alors on n'a pas toujours $f(x_0) = l$ ou $f(x_0)$ existe, par exemple

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{si } x \neq 0 \\ 2, & \text{si } x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = 1 \neq 2 = f(0).$$

Unicité de la limite:

Théorème: Si f admet une limite au point x_0 , cette limite est unique.

Preuve

Supposons que la fonction f admet deux limites l et l' au point x_0 , alors

$$\lim_{x \to x_{0}} f\left(x\right) = l \Leftrightarrow \forall \varepsilon > 0, \exists \eta_{1} > 0, \forall x \in I, |x - x_{0}| < \eta_{1} \Rightarrow |f\left(x\right) - l| < \frac{\varepsilon}{2}.$$

$$\lim_{x \to x_{0}} f\left(x\right) = l' \Leftrightarrow \forall \varepsilon > 0, \exists \eta_{2} > 0, \forall x \in I, |x - x_{0}| < \eta_{2} \Rightarrow |f\left(x\right) - l'| < \frac{\varepsilon}{2}.$$

Si on pose $\eta = \min(\eta_1, \eta_2)$, on obtient

$$|l - l'| = |l - f(x) + f(x) - l'|$$

$$\leq |l - f(x)| + |f(x) - l'|$$

$$\leq |f(x) - l| + |f(x) - l'|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

On a obtenu $\forall \varepsilon > 0, |l - l'| < \varepsilon \Leftrightarrow l - l' = 0 \Leftrightarrow l = l'.$

Limite à droite et à gauche:

Définition:

1. On dit que f admet une limite à droite au point x_0 si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, 0 < x - x_0 < \eta \Rightarrow |f(x) - l| < \varepsilon.$$

On notera
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0 + 0)$$
.

2. On dit que f admet une limite à gauche au point x_0 si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, -\eta < x - x_0 < 0 \Rightarrow |f(x) - l| < \varepsilon.$$

On notera
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0 - 0)$$
.

Exemple

$$f(x) = 1 + \frac{|x|}{x} = \begin{cases} 2, & \text{si } x > 0 \\ 0, & \text{si } x < 0 \end{cases}, \text{ on a } \lim_{\substack{x > 0 \\ x \to 0}} f(x) = 2, \lim_{\substack{x < 0 \\ x \to 0}} f(x) = 0.$$

Remarque:

.
Si
$$\lim_{x \to x_0} f(x) = l$$
 existe alors $\lim_{x \stackrel{\leq}{\to} x_0} f(x) = \lim_{x \stackrel{\leq}{\to} x_0} f(x) = l$.

. Inversement, si $\lim_{x \to x_0} f(x)$ et $\lim_{x \to x_0} f(x)$ existent et sont égales alors la limite de f existe, elle est égale à la valeur commune.

Limites infinies:

$$1. \lim_{x \to +\infty} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists A > 0, \forall x \in I, \in x > A \Rightarrow |f(x) - l| < \varepsilon.$$

$$2.\lim_{x \to -\infty} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists B < 0, \forall x \in I, \in x < B \Rightarrow |f(x) - l| < \varepsilon.$$

$$3.\lim_{x\to x_0} f\left(x\right) = +\infty \Leftrightarrow \forall A>0, \exists \eta>0, \forall x\in I, \in |x-x_0|<\eta \Rightarrow f\left(x\right)>A.$$

$$4. \lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \forall B < 0, \exists \eta > 0, \forall x \in I, \in |x - x_0| < \eta \Rightarrow f(x) < B.$$

$$5. \lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists B > 0, \forall x \in I, \in x > B \Rightarrow f(x) > A.$$

$$6. \lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall A < 0, \exists B > 0, \forall x \in I, \in x > B \Rightarrow f(x) < A.$$

7.
$$\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists B < 0, \forall x \in I, \in x < B \Rightarrow f(x) > A.$$

$$8. \lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall A < 0, \exists B < 0, \forall x \in I, \in x < B \Rightarrow f(x) < A.$$

Exemple: $f(x) = \frac{1}{(x-1)^2}$

$$\lim_{x \to 1} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists \eta > 0, \forall x \in I, \in |x - 1| < \eta \Rightarrow \frac{1}{(x - 1)^2} > A,$$

Soit A > 0, $\frac{1}{(x-1)^2} > A \Rightarrow (x-1)^2 < \frac{1}{A} \Rightarrow |x-1| < \frac{1}{A} = \eta$, il suffit de prendre $\eta = \frac{1}{A}$.

Théorème sur les limites

Théorème: Soit $f:[a,b] \to \mathbb{R}$, et $x_0 \in [a,b]$, alors

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow \forall (x_n)_n, x_n \in \lim_{x \to x_0} [a, b] / x_n \to x_0 \Rightarrow \lim_{n \to +\infty} f(x_n) = l.$$

Preuve

 (\Rightarrow) On a

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - x_0| < \eta \Rightarrow |f(x) - l| < \varepsilon.$$

et on a

$$x_n \to x_0 \Leftrightarrow \forall \varepsilon' > 0, \exists N_\varepsilon \in \mathbb{N}, \forall n > N_\varepsilon \Rightarrow |x_n - x_0| < \varepsilon',$$

pour
$$\varepsilon' = \eta$$
, on a $|x_n - x_0| < \eta \Rightarrow |f(x_n) - l| < \varepsilon$ donc $\lim_{n \to +\infty} f(x_n) = l$.

 (\Leftarrow) Par l'absurde. Supposons que $x_n \to x_0 \Rightarrow \lim_{n \to +\infty} f(x_n) = l$ et $\lim_{x \to x_0} f(x) \neq l$.

 $\exists \varepsilon > 0, \forall \eta > 0, \exists x \in I, |x - x_0| < \eta \text{ et } |f(x) - l| \ge \varepsilon, \text{ en particulier pour } \eta = \frac{1}{n} \Rightarrow \forall n \ge 1, \exists x_n \in [a, b]; |x_n - x_0| < \frac{1}{n} \text{ et } |f(x_n) - l| \ge \varepsilon,$

on a $\frac{1}{n} - x_0 < x_n < \frac{1}{n} + x_0$, c'est à dire $x_n \to x_0$, mais $f(x_n)$ ne tend pas vers l contradiction.

Remarque: On peut utiliser ce théorème pour démontrer la non existance de la limite d'une fonction.

Si il existe deux suites $(x_n), (y_n)$ qui ont la même limite mais $\lim_{n \to +\infty} f(x_n) \neq \lim_{n \to +\infty} f(y_n)$.

Si il existe une suite $(x_n)/x_n \to x_0$ mais $f(x_n)$ n'admet pas de limite.

Exemple:

1. $f(x) = \cos\left(\frac{\pi}{x^2}\right)$, montrons que f n'admet pas delimite en 0.

Posons $x_n = \frac{1}{\sqrt{2n}} \to 0etf(x_n) = \cos(2n\pi) = 1.$ $y_n = \frac{1}{\sqrt{2n+1}} \to 0etf(y_n) = \cos((2n+1)\pi) = -1$ $\lim_{n \to +\infty} f(y_n) \Rightarrow \lim_{x \to 0} f(x) \text{ n'exite pas.}$

2. $f(x) = \sin(\frac{1}{x})$, montrons que f n'admet pas delimite en 0.

Posons $x_n = \frac{1}{(2n+1)\frac{\pi}{2}} = \frac{2}{(2n+1)\pi} \to 0$ et $f(x_n) = \sin\left((2n+1)\frac{\pi}{2}\right) = (-1)^n$ qui admet deux limites 1 et -1 alors $\lim_{x\to 0} f(x)$ n'exite pas.

Proposition: Si f admet une limite en x_0 alors f est bornée au voisinage de x_0 .

Preuve

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - x_0| < \eta \Rightarrow |f(x) - l| < \varepsilon.$$

 $\forall x \in \left] x_0 - \eta, x_0 + \eta \right[\Rightarrow l - \varepsilon < f\left(x\right) < l + \varepsilon \Rightarrow f \text{ est bornée dans } \left] x_0 - \eta, x_0 + \eta \right[$ qui est un voisinage de x_0 .

Remarque: La réciproque n'est pas vraie. En effet, $f(x) = \cos\left(\frac{\pi}{x^2}\right)$ est bornée mais elle n'admet pas une limite en 0 (exemple précédent).

Opérations sur les limites:

Soient f et g deux fonctions définies sur $E \subset \mathbb{R}$ et admettant des limites finies let l' au point x_0 . Alors:

1.
$$\lim_{x \to x_0} f(x) + g(x) = l + l'$$
.

2.
$$\lim_{x \to x_0} (\lambda f)(x) = \lambda l, \lambda \in \mathbb{R}.$$

3.
$$\lim_{x \to x_0} f(x) . g(x) = l.l'$$
.

4.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l}{l'}, l' \neq 0.$$

5.
$$\lim_{x \to x_0} |f(x)| = |l|$$
.

Limite et relation d'ordre:

Soit $x_0 \in E$, f, g, h trois functions définies sur $]x_0 - \alpha, x_0 + \alpha[, \alpha > 0]$.

Théorème:

1.
$$f(x) < g(x) \Rightarrow \lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$
.

1.
$$f(x) < g(x) \Rightarrow \lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$
.
2.
$$\lim_{x \to x_0} f(x) = +\infty$$

$$\text{et } f(x) \le g(x)$$

$$\Rightarrow \lim_{x \to x_0} g(x) = +\infty.$$

$$\text{ot } g(x) \le g(x)$$

$$\Rightarrow \lim_{x \to x_0} g(x) = -\infty.$$

$$\text{et } g(x) \le f(x)$$

3.
$$\left. \begin{array}{l} \lim_{x \to x_0} f(x) = -\infty \\ \text{et } g(x) \le f(x) \end{array} \right\} \Rightarrow \lim_{x \to x_0} g(x) = -\infty.$$

4.
$$\left\{ f(x) \leq g(x) \leq h(x) \\ \text{et } \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = l \right\} \Rightarrow \lim_{x \to x_0} h(x) = l.$$

- 5. $\lim_{x \to x_0} f(x) = 0$ et g est bornée $\Rightarrow \lim_{x \to x_0} f(x) g(x) = 0$.
- 6. $\lim_{x \to x_0} f(x) = \infty$ et g est bornée $\Rightarrow \lim_{x \to x_0} f(x) + g(x) = \infty$.

Forme indéterminées:

Lorsque les limites ne sont pas finies, On a quatre formes indéterminées lorsque $x \to x_0$.

- 1. $\lim_{x\to x_0} f(x) = +\infty$ et $\lim_{x\to x_0} g(x) = -\infty$, f+g se présente sous la forme indéterminée $+\infty \infty$.
 - 2. $\lim_{x\to x_0} f(x) = 0$ et $\lim_{x\to x_0} g(x) = 0$, $\frac{f}{g}$ se présente sous la forme indéterminée $\frac{0}{0}$.
 - 3. $\lim_{x\to x_0} f(x) = \infty$ et $\lim_{x\to x_0} g(x) = \infty$, $\frac{f}{g}$ se présente sous la forme indéterminée $\frac{\infty}{\infty}$.
- 4. $\lim_{x\to x_0} f(x) = 0$ et $\lim_{x\to x_0} g(x) = \infty$, f.g se présente sous la forme indéterminée $0.\infty$.

Lorsque les limites sont finies, On a une formes indéterminée lorsque $x \to x_0$.

 $\lim_{x\to x_0} f\left(x\right) = 1 \text{ et } \lim_{x\to x_0} g\left(x\right) = 0, \ \left(f\left(x\right)\right)^{g\left(x\right)} \text{ se présente sous la forme indéterminée}$ $1^0.$

On résout le problème par des transformations élémentaires.

Exemple:

$$\lim_{x \to a} \frac{x^2 - a^2}{x^3 - a^3} = \frac{0}{0}, \text{ F.I.}$$

On a
$$x^2 - a^2 = (x - a)(x + a)$$

et
$$x^3 - a^3 = (x - a)(x^2 + ax + a^2)$$

$$\lim_{x \to a} \frac{x^2 - a^2}{x^3 - a^3} = \lim_{x \to a} \frac{(x - a)(x + a)}{(x - a)(x^2 + ax + a^2)}$$
$$= \lim_{x \to a} \frac{(x + a)}{(x^2 + ax + a^2)}$$
$$= \lim_{x \to a} \frac{2a}{3a^2} = \frac{2}{3a}.$$

4.3 Comparaison des fonctions au voisinage d'un point (notation de Landau)

Soient f et g deux fonctions définies dans un voisinage du point x_0 (sauf peut être en x_0).

Définition 1: On dit que la fonction f est négligeable devant g lorsque $x \to x_0$ et on écrit f = o(g) si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x(|x - x_0| < \delta \Rightarrow |f(x)| \le \varepsilon |g(x)|$$

ou bien pour $g(x) \neq 0$ au voisinage de x_0 ,

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x(|x - x_0| < \delta \Rightarrow \left| \frac{f(x)}{g(x)} \right| \le \varepsilon.$$

c'est à dire

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$$

Remarque:

1.
$$f = o(g) \Leftrightarrow f(x) = h(x)g(x)/h(x) \to 0$$
, quand $x \to x_0$.

2. Si
$$g(x) = 1, f = o(g) \Leftrightarrow \lim_{x \to x_0} f(x) = 0.$$

3. De la même façon, on définit f = o(g) au voisinage de ∞ .

Exemple:

1.
$$x^4 = o(x)$$
 en 0 car $\lim_{x \to 0} \frac{x^4}{x} = 0$.

2.
$$x = o(x^4)$$
 en $+\infty$ car $\lim_{x \to +\infty} \frac{x}{x^4} = 0$.

3.
$$x = o(e^x)$$
 en $+\infty$ car $\lim_{x \to +\infty} \frac{x}{e^x} = 0$.

Définition 2. On dit que la fonction f est dominée par g lorsque $x \to x_0$ et on écrit f = O(g) si

$$\exists k > 0, \exists \delta > 0, \forall x (|x - x_0| < \delta \Rightarrow |f(x)| \le k |g(x)|),$$

c'est à dire

$$\left| \frac{f(x)}{g(x)} \right|$$
 bornée au voisinage de x_0 .

Remarque:

- 1. Pour démontrer que f = O(g), il suffit de montrer que $\lim_{x \to x_0} \frac{f(x)}{g(x)} = l$. (car si elle admet une limite finie, elle est bornée).
 - 2. f = O(1) en $x_0 \Rightarrow f$ est bornée.
 - 3. Même définition pour $x_0 = \infty$.

Exemple:

1.
$$x \sin x = O(x)$$
 en $+\infty$ car $\left|\frac{x \sin x}{x}\right| = \left|\sin x\right| \le 1$ i.e. bornée.

2.
$$tgx = O(2x)$$
 en 0 car $\lim_{x\to 0} \frac{tgx}{2x} = \frac{1}{2} \Rightarrow \frac{tgx}{2x}$ bornée.

Les symboles o et O s'appellent notation de Landau.

Fonctions équivalentes:

Définition: Soient f et g deux fonctions définies au voisinage de x_0 sauf peut être en x_0 .

On dit que f est équivalente à g lorsque $x \to x_0$ et on note $f \sim^{x_0} g$ si

$$f - g = o(f), x \rightarrow x_0$$
.

ou encore $f(x) = g(x) U(x) / U(x) \rightarrow 1$ quand $x \rightarrow x_0$.

Remarque: Si f et g ne sont pas nulles au voisinage de x_0 alors

1.
$$f \sim {^{x_0}g} \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

$$2.f \sim x_0 g \Leftrightarrow f(x) = (1 + \varepsilon(x)) g(x) / \varepsilon(x) \to 0 \text{ lorsque } x \to x_0.$$

3. On peut définir l'équivalence au voisinage de ∞ de la même façon.

Exemple:

1.
$$\ln(1+x) \sim^0 x \operatorname{car} \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$
.

2.
$$\sin x \sim^0 x \text{ car } \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

3.
$$1 - \cos x \sim^0 \frac{x^2}{2} \operatorname{car} \lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{2}} = 1$$
.

4.
$$e^x - 1 \sim^0 x \operatorname{car} \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
.

Opérations sur les notations de Landau:

a) o et O.

1.
$$f = o\left(g\right) \underset{\Leftarrow}{\Rightarrow} f = O\left(g\right)$$
, car $f = o\left(g\right) \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \Rightarrow \frac{f(x)}{g(x)}$ bornée.

2.
$$f = O(g), h = O(g) \Rightarrow f + h = O(g) \Leftrightarrow O(g) + O(g) = O(g)$$
.

3.
$$f = o(g), h = o(g) \Rightarrow f + h = o(g) \Leftrightarrow o(g) + o(g) = o(g)$$
.

4.
$$f = o(g), h = o(1) \Rightarrow f.h = o(g) \Leftrightarrow o(g).o(1) = o(g)$$
.

5.
$$f = o(g), h = O(g) \Rightarrow f + h = O(g) \Leftrightarrow o(g) + O(g) = O(g)$$
.

6.
$$f = o(g), h = O(1) \Rightarrow f.h = O(g) \Leftrightarrow o(g)O(1) = O(g)$$
.

7.
$$f = o(g), h = O(f) \Rightarrow h = o(g) \Leftrightarrow O(o(g)) = o(g)$$
.

8.
$$f = O(g), h = o(f) \Rightarrow h = o(g) \Leftrightarrow O(o(g)) = o(g)$$
.

b)
$$\sim$$
 en x_0 .

$$\begin{cases}
f_1 \sim^{x_0} g_1 \\
f_2 \sim^{x_0} g_2
\end{cases} \Rightarrow f_1 f_2 \sim^{x_0} g_1 g_2.$$

$$\begin{cases}
f_1 \sim^{x_0} g_1 \\
f_2 \sim^{x_0} g_2
\end{cases} \Rightarrow \frac{f_1}{f_2} \sim^{x_0} \frac{g_1}{g_2}, f_2 \neq 0, g_2 \neq 0.$$

$$\begin{cases}
f_1 \sim^{x_0} g_1 \\
f_2 \sim^{x_0} g_2
\end{cases} \Rightarrow f_1 + f_2 \sim^{x_0} g_1 + g_2.$$

$$\begin{cases}
f_1 \sim^{x_0} g_1 \\
f_2 \sim^{x_0} g_2
\end{cases} \Rightarrow f_1 + f_2 \sim^{x_0} g_1 + g_2.$$
contre exemple:

contre exemple:

$$\cos x \sim^{0} x + 1
-1 \sim^{0} -1$$
mais $\cos x - 1 \nsim^{0} x$, $\operatorname{car} \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$.

Corollaire: Dans le calcule des limites, on peut remplacer une fonction par une fonction équivalente dans le produit et la division seulement. Ceci n'est pas vrai pour la somme.

Exemple:

1.
$$\lim_{x\to 0} \frac{(e^x-1)(tgx)^2}{x(1-cox)} = \frac{0}{0}$$
 F.I.

On a
$$e^x - 1 \sim^0 x$$
 et $tgx \sim^0 x$ et $1 - \cos x \sim^0 \frac{x^2}{2}$.

Donc

$$\lim_{x \to 0} \frac{(e^x - 1)(tgx)^2}{x(1 - cox)} = \lim_{x \to 0} \frac{x \cdot x^2}{x \cdot \frac{x^2}{2}} = 2.$$

2.
$$\lim_{x \to 0} \frac{\cos x - 1}{\left(\sqrt{\cos x} + 1\right) \ln\left(1 + (tgx)^2\right)} = \frac{0}{0} \text{ F.I.}$$

On a
$$\cos x - 1 \sim^0 -\frac{x^2}{2}$$
 et $\ln (1 + (tgx)^2) \sim^0 (tgx)^2 \sim^0 x^2$.

Donc

$$\lim_{x \to 0} \frac{\cos x - 1}{(\sqrt{\cos x} + 1)\ln(1 + (tgx)^2)} = \lim_{x \to 0} \frac{-\frac{x^2}{2}}{(\sqrt{\cos x} + 1)x^2} = \frac{1}{4}.$$

4.4 Fonctions continues

1. Continuité en un point:

Définitions:

1. Soit f une fonction définie sur $I\subset\mathbb{R}.$ On dit que f est continue en $x_0\in I$ si

$$\lim_{x \to x_0} f(x) = f(x_0).$$

c'est à dire

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I (|x - x_0| < \eta \Rightarrow |f(x) - f(x_0)| < \varepsilon).$$

Exemple:

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & \text{si } x \neq 0 \\ 0, & \text{si } x = 0 \end{cases}.$$

$$D_f = \mathbb{R}, x_0 = 0 \in D_f.$$

Continuité de f en 0.

$$\lim_{x\to 0} \underbrace{x^2}_{\to 0} \cos \frac{1}{x} = 0 = f(0) \text{ donc } f \text{ est continue en } 0.$$

2. On dit que la fonction f est continue à droite en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0).$$

c'est à dire

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I \ (0 \le (x - x_0) < \eta \Rightarrow |f(x) - f(x_0)| < \varepsilon).$$

3. De même, on dira que la fonction f est continue à gauche en x_0 si

$$\lim_{x \stackrel{\leq}{\to} x_0} f(x) = f(x_0).$$

c'est à dire

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I \left(-\eta < (x - x_0) \le 0 \Rightarrow |f(x) - f(x_0)| < \varepsilon \right).$$

4. f est continue en x_0 si et seulement si elle est continue à gauche et à droite en x_0 .

C'est à dire

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = f(x_0).$$

Exemple: f(x) = |x|, f(0) = 0.

Continuité de f en 0.

$$\lim_{\substack{x \to 0}} f(x) = \lim_{\substack{x \to 0}} |x| = \lim_{\substack{x \to 0}} x = 0 = f(0) \Rightarrow f \text{ est continue à droite en } 0.$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to 0 \\ x \to 0}} |x| = \lim_{\substack{x \to 0 \\ x \to 0}} x = 0 = f(0) \Rightarrow f \text{ est continue à gauche en } 0.$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to 0 \\ x \to 0}} f(x) = f(0).$$

D'où f est cotinue en 0.

5.
$$f$$
 est cotinue en $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \forall (x_n) \subset I/x_n \xrightarrow{x_0} x_0 \Rightarrow f(x_n) \xrightarrow{n \to +\infty} f(x_0)$.

Exemple:

1.

$$f(x) = \begin{cases} \cos \frac{1}{x}, & \text{si } x \neq 0 \\ 0, & \text{si } x = 0 \end{cases} . D_f = \mathbb{R}$$

Continuité en 0 :

 $\lim_{x\to 0}\cos\frac{1}{x} \not\equiv \text{ car pour } x_n = \frac{1}{n\pi} \to 0 \text{ et } \cos x_n = \cos n\pi = (-1)^n \Rightarrow f(x_n) \text{ n'admet}$ pas de limite alors f n'est pas continue en 0.

2.
$$f(x) = [x], D_f = \mathbb{R}$$
.

Continuité en
$$x_0 = k \in \mathbb{Z}, f(k) = [k] = k$$
.

Continuité en
$$x_0 = k \in \mathbb{Z}, f(k) = [k] = k$$
.
$$\lim_{\substack{x \to k \\ x \to k}} f(x) = \lim_{\substack{x \to k \\ x \to k}} [x] = k$$

$$\lim_{\substack{x \to k \\ x \to k}} f(x) = \lim_{\substack{x \to k \\ x \to k}} [x] = k - 1$$

$$\Rightarrow f \text{ n'est pas continue en } k \in \mathbb{Z}.$$

$$f(x) = \begin{cases} x^2, & \text{si } x \ge 0 \\ 1, & \text{si } x < 0 \end{cases} . D_f = \mathbb{R}$$

Continuité en $x_0 = 0, f(0) = 0^2 = 0.$

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to 0 \\ x \to 0}} x^2 = 0 = f(0) \implies f \text{ est continue à droite en } 0.$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to 0 \\ x \to 0}} 1 = 1 \neq 0 = f(0) \implies f \text{ n'est continue à gauche en } 0.$$

Continuité sur un intervalle:

On dit que f est continue sur un intervalle I si elle est continue en tout point de I.

Notation: On note l'ensemble des fonctions continues par C(I).

Opérations sur les fonctions continues:

Soient f et g deux fonctions continues en x_0 alors:

- 1. f + g est continue en x_0 .
- 2. (λf) est continue en $x_0, \lambda \in \mathbb{R}$.
- 3. f.g est continue en x_0 .
- 4. $\frac{f}{g}$ est continue en x_0 , si $g(x_0) \neq 0$.
- 5. |f| est continue en x_0 .
- 6. Si $f:I\to J$ et $g:J\to\mathbb{R}, x_0\in I$ telles que f est continue en x_0 et g est continue en $f(x_0)$ alors $g \circ f$ est continue en x_0 .

Preuve

f est continue en $x_0 \Leftrightarrow \forall \varepsilon > 0, \exists \eta > 0, \forall x \in I (|x - x_0| < \eta \Rightarrow |f(x) - f(x_0)| < \varepsilon)$. g est continue en $y_0 = f(x_0) \Leftrightarrow \forall \varepsilon > 0, \exists \eta' > 0, \forall y \in J (|y - y_0| < \eta' \Rightarrow |g(y) - g(y_0)| < \varepsilon)$.

Pour $\eta' > 0$, ob associe un $\eta > 0/x \in I, |x - x_0| < \eta \Rightarrow |f(x) - f(x_0)| < \eta' \Rightarrow |y - y_0| < \eta'$

Comme $x \in I$ alors $f(x) \in J$, donc

$$\forall \varepsilon > 0, \exists \eta > 0 \forall x \in I\left(\left|x - x_0\right| < \eta \Rightarrow \left|y - y_0\right| < \eta' \Rightarrow \left|g\left(y\right) - g\left(y_0\right)\right| < \varepsilon \Rightarrow \left|g\left(f\left(x\right)\right) - g\left(f\left(x_0\right)\right)\right| < \varepsilon\right)$$

Par suite $g \circ f$ est continue en x_0 .

Théorèmes fondamentales sur les fonctions continues:

Théorème 1. Toute fonction f continue sur un intervalle fermé borné [a,b] est une fonction bornée sur [a,b].

Théorème 2. Toute fonction f continue sur un intervalle fermé borné [a,b] atteint au moins une fois ses bornes, autrement dit $\exists x_1, x_2 \in [a,b] / f(x_1) = \sup_{x \in [a,b]} f(x), f(x_2) = \inf_{x \in [a,b]} f(x).$

Preuve: f continue sur $[a,b] \Rightarrow f$ est une fonction bornée, alors sup f(x) et inf f(x) existent.

Montrons qu'ils existent $x_1 \in [a, b]$ et $x_2 \in [a, b] / f(x_1) = \sup_{x \in [a, b]} f(x), f(x_2) = \inf_{x \in [a, b]} f(x)$.

Par l'absurde On pose $M = \sup_{x \in [a,b]} f(x)$ alors $\forall x \in [a,b], f(x) < M$.

La fonction $g(x) = \frac{1}{M - f(x)}$ continue sur [a, b] donc bornée, soit alors $C = \sup_{x \in [a, b]} g(x), C > 0$ car g > 0.

$$\forall x \in [a, b], g(x) \leq C \Leftrightarrow \forall x \in [a, b], \frac{1}{M - f(x)} \leq C \Rightarrow f(x) \leq \underbrace{M - \frac{1}{C}}_{\text{majorant} < M} \text{ contradic-}$$

tion car $M = \sup f(x)$ est le plus petit des majorants.

Théorème 3: (théorème des valeurs intermédiaires)

Soit f une fonction continue sur [a, b], si f(a) et f(b) sont de signes contraires, alors il existe au moins un point $c \in [a, b]$ tel que f(c) = 0.

$$\begin{cases} f \text{ continue sur } [a, b] \\ \Rightarrow \exists c \in [a, b] \text{ telque } f(c) = 0. \end{cases}$$

Exemple: $f(x) = x^5 - 3x +$

Montrer que l'équation f(x) = 0 admet au moins une solution sur [0, 1].

$$\begin{cases} f \text{ continue sur }]0,1[\text{ car c'est un polynôme} \\ & \Rightarrow \exists c \in]0,1[\text{ telque } f(c)=0. \end{cases}$$

Théorème 4. (Théorème des valeurs intermédiaires généralisé)

Soit $f:I\to\mathbb{R}$ une fonction continue, I étant un intervalle quelconque. Soient x_1 et x_2 deux éléments de $I/x_1 < x_2$ alors $\forall y \in]f(x_1), f(x_2)[, \exists x_0 \in]x_1, x_2[$ tel que $y = f(x_0).$

Preuve.

Soient $x_1, x_2 \in I, x_1 < x_2 \text{ et } y \in [f(x_1), f(x_2)].$

On pose $g: [x_1,x_2] \to \mathbb{R}$, g est continue sur $[x_1,x_2]$ car somme $x \mapsto g(x) = f(x) - y$ fonctions continues

de fonctions continues.

$$g(x_1) = f(x_1) - y < 0 \text{ car } f(x_1) < y < f(x_2).$$

$$g(x_2) = f(x_2) - y > 0 \text{ car } f(x_1) < y < f(x_2).$$

D'aprés le théorème 3, $\exists x_0 \in |x_1, x_2|/g(x_0) = 0 \Leftrightarrow f(x_0) - y = 0 \Leftrightarrow y = f(x_0)$.

Résultat:

 Image d'un intervalle fermé, borné par une fonction continue est un intervalle fermé, borné.

$$f: [a,b] \rightarrow \mathbb{R}$$
 continue, $f([a,b]) = [m,M], m, M \in \mathbb{R}$.

- 2. Image d'un intervalle par une fonction continue est un intervalle, en général, $f\left(\left[a,b\right]\right)\neq\left[f\left(a\right),f\left(b\right)\right].$
 - 3. f([a,b[)]) n'est pas toujours ouvert, borné.
 - 4. Si f est continue et monotone sur I. Alors

.
$$f([a,b]) = [f(a), f(b)]$$
 si f est croissante.

.
$$f([a,b]) = [f(b), f(a)]$$
 si f est décroissante.

.
$$f([a, +\infty[) = [f(a), \lim_{x \to +\infty} f(x)]]$$
 si f est croissante.
. $f([a, +\infty[) = [\lim_{x \to +\infty} f(x), f(a)]]$ si f est décroissante.

.
$$f(a, b) = \lim_{x \to a} f(x), \lim_{x \to b} f(x)$$
 si f est croissante.

.
$$f(a, b) = \lim_{x \to b} f(x)$$
, $\lim_{x \to a} f(x)$ si f est décroissante.

Prolongement par continuité:

Soit f une fonction définie sur un intervalle I sauf peut être en $x_0 \in I$. Supposons que f ait une limite finie l au point x_0 , la fonction \widetilde{f} définie par

$$\widetilde{f}(x) = \begin{cases} f(x), & \text{si } x \in I \setminus \{x_0\} \\ l, & \text{si } x = x_0 \end{cases}.$$

coïncide avec f sur $I \setminus \{x_0\}$ et continue en x_0 . On dira que \widetilde{f} est un prolongement par continuité de f au point x_0 .

Exemple:

1. $f(x) = \frac{\sin x}{x}$, $D_f = \mathbb{R}^*$, on a $0 \notin D_f$ et $\lim_{x \to 0} \frac{\sin x}{x} = 1$ alors f admet un prolonge-

ment par continuité en 0 défini par

$$\widetilde{f}(x) = \begin{cases} \frac{\sin x}{x}, & \text{si } x \neq 0 \\ 1, & \text{si } x = 0 \end{cases}.$$

2. $f(x) = \cos\left(\frac{1}{x-1}\right), 1 \notin D_f$ et $\lim_{x\to 1} \cos\left(\frac{1}{x-1}\right) \not\equiv$ alors f n'admet pas un prolongement par continuité en 1.

Contnuité uniformed'une fonction sur un intervalle

Définition: Une fonction f définie sur un intervalle I est dite uniformement continue sur I si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x', x'' \in I(|x' - x''| < \eta \Rightarrow |f(x') - f(x'')| < \varepsilon).$$

 η ne dépend que de ε seulement.

Remarque:

- 1. Toute fonction uniformement continue sur I est une fonction continue sur I. L'inverse est faux.
- 2. La continuité uniforme est la continuité sur tout l'intervalle, alors que la continuité sur l'intervalle I est la continuité en tout point de l'intervalle (η dépend de ε et x_0).

Exemple:

1. $f(x) = x^2$ continue uniformement sur [0,1], en effet,

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x', x'' \in]0, 1]; |x' - x''| < \eta \Rightarrow \begin{cases} |(x')^2 - (x'')^2| \le |(x' - x'')(x' + x'')| \\ \le 2|x' - x''| < \varepsilon. \\ \cos 0 < x' \le 1 \text{ et } 0 < x'' \le 1, 0 < x' + x'' \le 2 \end{cases}$$

Il suffit de prendre $\eta = \frac{\varepsilon}{2}$.

2. $f(x) = x^2$ continue sur $[0, +\infty[$ mais n'est pas uniformement continue sur $[0, +\infty[$, en effet,

$$\exists \varepsilon > 0, \forall \eta > 0, \exists x', x'' \in [0, +\infty[\left(|x' - x''| < \eta \text{ et } \left|(x')^2 - (x'')^2\right| \ge \varepsilon\right).$$

$$\exists x' = n, \exists x'' = n + \frac{1}{n} \in [0, +\infty[,$$

$$|x' - x''| = \frac{1}{n} < \eta$$
 et $\left| n^2 - \left(n^2 + \frac{1}{n^2} + 2 \right) \right| = \left| -\frac{1}{n^2} - 2 \right| = \frac{1}{n^2} + 2 > 2 = \varepsilon$.

3. $f(x) = \ln x$ continue sur $]0, +\infty[$ mais n'est pas uniformement continue sur $]0, +\infty[$, en effet,

$$\exists \varepsilon > 0, \forall \eta > 0, \exists x', x'' \in \left]0, +\infty \left[\left(\left|x' - x''\right| < \eta \text{ et } \left|\ln x' - \ln x''\right| \ge \varepsilon\right).\right.$$

$$\exists x' = \frac{\eta}{2}, x'' = \eta \in]0, +\infty[.$$

$$|x'-x''| = \frac{\eta}{2} < \eta \text{ et } \left| \ln \frac{\eta}{2} - \ln \eta \right| = \left| -\ln 2 \right| = \ln 2 = \varepsilon.$$

Théorème de Heine:

Soit f une fonction définie sur un intervalle fermé bornée [a, b] alors

f est continue sur $[a,b] \Leftrightarrow f$ est uniformement continue sur [a,b].

Fonctions Lipschitzienne:

Définition 1: Soit $f: I \to \mathbb{R}$ est dite Lipschitzienne, si

$$\exists k \geq 0, \forall x', x'' \in I; |f(x') - f(x'')| \leq k |x' - x''|.$$

Définition 2: Soit $f: I \to \mathbb{R}$ est dite contractante si elle est Lipschitzienne avec $0 \le k < 1$.

Théorème: Toute fonction Lipschitzienne est uniformement continue.

Preuve

$$\exists k \ge 0, |f(x') - f(x'')| \le k |x' - x''| < k\eta = \varepsilon.$$

Exemple
$$f: \ [1,+\infty[\ : \to \ [1,+\infty[\] \ ,$$

$$x \mapsto \sqrt{x}$$

$$|f(x')-f(x'')| = \left|\sqrt{x'}-\sqrt{x''}\right| = \left|\frac{x'-x''}{\sqrt{x'}+\sqrt{x''}}\right| \leq \frac{|x'-x''|}{\sqrt{x'}+\sqrt{x''}} \leq \frac{1}{2}\left|x'-x''\right|, \ \mathrm{car} \ x' \geq 1$$
 et
$$x'' \geq 1 \Rightarrow \sqrt{x'} + \sqrt{x''} \geq 2 \Rightarrow \frac{1}{\sqrt{x'}+\sqrt{x''}} \leq \frac{1}{2}.$$

Donc f est contractante.

Théorème du point fixe:

Soit f une fonction continue sur [a, b] et prend ses valeurs dans [a, b] $(f : [a, b] \rightarrow [a, b])$, alors il existe au moins un point $x_0 \in [a, b]$ tel que $\in f(x_0) = x_0$.

c'est à dire la droite y = x rencontre le graphe de f.

Preuve

On définit la fonction

$$g: [a,b] : \to \mathbb{R}$$

$$x \mapsto f(x) - x$$

g est continue sur [a, b] car somme de fonctions continues sur [a, b].

$$g\left(a\right)=f\left(a\right)-a\geq0\text{ car }a\leq f\left(a\right)\leq b.\left(f:\left[a,b\right]\rightarrow\left[a,b\right]\right)$$

$$g\left(b\right)=f\left(b\right)-b\leq0$$
 car $a\leq f\left(b\right)\leq b.\left(f:\left[a,b\right]\rightarrow\left[a,b\right]\right).$

Si
$$g(a) = 0$$
 alors $f(a) = a$ et $x_0 = a$.

Si
$$g(b) = 0$$
 alors $f(b) = b$ et $x_0 = b$.

Si
$$g\left(a\right) > 0$$
 et $g\left(b\right) < 0$ alors il existe $x_0 \in \left]a, b\right[/g\left(x_0\right) = 0 \Leftrightarrow f\left(x_0\right) = x_0'$.

(D'aprés le théorème des valeurs intermédiaires).

Théorème 1: Soit $f:[a,b] \to [a,b]$ une fonction contractante, alors f admet un point fixe et un seule.

Preuve

Puisque f est contractante sur [a, b] alors elle est uniformement continue sur [a, b] donc continue sur [a, b] et d'aprés le théorème du point fixe la fonction f admet un point fixe $x_0 = f(x_0)$.

Montrons que x_0 est unique. Par l'absurde. Supposons $\exists x_0, x_1 \in [a, b]/f(x_0) = x_0 \in f(x_1) = x_1/x_0 \neq x_1$.

 $\exists 0 \leq k < 1, |f(x_1) - f(x_0)| \leq k |x_1 - x_0| \Leftrightarrow |x_1 - x_0| \leq k |x_1 - x_0| \Leftrightarrow 1 \leq k$ contradiction car k < 1.

Théorème 2: Toute fonction strictement monotone sur un intervalle I est injective sur I.

Preuve

$$f$$
 injective sur $I \Leftrightarrow \forall x_1, x_2 \in I, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

Soit $x_1, x_2 \in I/x_1 \neq x_2$ alors soit $x_1 > x_2$ ou $x_1 < x_2$.

Supposons que
$$x_1 < x_2 \Rightarrow \begin{cases} f(x_1) < f(x_2) \text{ si } f \text{ est strictement croissante} \\ f(x_1) \neq f(x_2) \text{ si } f \text{ est strictement décroissante} \end{cases} \Rightarrow f(x_1) \neq f(x_2).$$

Théorème 3. Si la fonction f est définie et continue sur [a, b] et f est strictement monotone sur [a, b] et si f(a) . f(b) < 0 alors $\exists ! c \in]a, b[/f(c) = 0$.

Preuve

D'aprés le théorème des valeurs intermédiaires $\exists c \in [a, b]/f(c) = 0$.

Montrons que c est unique.

Supposons que $\exists c, c' \in]a, b[, c \neq c' \text{ et } f(c) = f(c').$

 $f\left(c\right)=f\left(c'\right)\Rightarrow c=c'$ car f est strictement monotone donc injective, alors c est unique.

4.5 Fonctions inverses des fonctions continues monotones

$\mathbf{sur}\ I$

Proposition 1: Si f est une fonction strictement monotone sur $X \subset \mathbb{R}$ alors f: $X \to f(X)$ est bijective et en plus f^{-1} est strictement monotone sur f(X) (même monotonie que f).

Preuve $f: X \to f(X)$ est surjective et puisque f est strictement monotone alors f est injective d'où f est bijective $\Leftrightarrow f^{-1}$ existe.

Montrons que f^{-1} est strictement monotone.

supposons que f est strictement croissante, alors $\forall x_1, x_2 \in X, \frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0$.

Soient $y_1, y_2 \in f(X)/y_1 < y_2 \Rightarrow \exists x_1, x_2 \in X/y_1 = f(x_1) \text{ et } y_2 = f(x_2) \text{ tels que}$ $f(x_1) < f(x_2)$.

 $\forall y_1, y_2 \in f(X)/y_1 < y_2, \frac{f^{-1}(y_1) - f^{-1}(y_2)}{y_1 - y_2} = \frac{x_1 - x_2}{f(x_1) - f(x_2)} > 0 \Leftrightarrow f^{-1} \text{ est strictement croissante.}$

Proposition 2: Soit I un intervalle quelconque de $\mathbb{R}, f: I \to \mathbb{R}$ strictement monotone alors

f continue sur $I \Leftrightarrow f(I)$ est un intervalle.

Théorème des fonctions inverses:

Si la fonction f est continue et strictement monotone sue I alors l'application

 $f:I\to f$ (i) est bijective et $f^{-1}:f$ $(I)\to I$ est continue et monotone sur f (I) (la même monotonie que f)

Preuve D'aprés la proposition I est strictement monotone sur $I \Rightarrow f: I \to f(I)$ est bijective et $f^{-1}: f(I) \to I$ est est strictement monotone sur f(I). Reste à montrer que f^{-1} est continue.

On a $f^{-1}(f(I)) = I$ d'aprés la proposition 2 f^{-1} est continue.

Fonctions trigonométriques inverses:

1. Fonction $x \mapsto \arcsin x$:

Soit

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$$

$$x \mapsto f(x) = \sin x$$

f est continue sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et strictement croissante sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ donc elle admet un inverse défini par

$$f^{-1}$$
 $\left[-1,1\right]$ \rightarrow $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ y \mapsto $f^{-1}\left(y\right)=\arcsin y$

D'où on a

$$\begin{pmatrix} y = \sin x \\ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{pmatrix} \Leftrightarrow \begin{pmatrix} x = \arcsin y \\ y \in [-1, 1] \end{pmatrix}$$

On a $\arcsin 0 = 0$, $\arcsin 1 = \frac{\pi}{2}$, $\arcsin \frac{\sqrt{3}}{2} = \frac{\pi}{3}$, $\arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{4}$.

2. Fonction $x \mapsto \arccos x$:

Soit

$$f: [0,\pi] \rightarrow [-1,1]$$

$$x \mapsto f(x) = \cos x$$

f est continue sur $[0,\pi]$ et strictement décroissante sur $]0,\pi[$ donc elle admet un inverse défini par

$$f^{-1}$$
 $[-1,1]$ \rightarrow $[0,\pi]$
$$y \mapsto f^{-1}(y) = \arccos y$$

D'où on a

$$\begin{pmatrix} y = \cos x \\ x \in [0, \pi] \end{pmatrix} \Leftrightarrow \begin{pmatrix} x = \arccos y \\ y \in [-1, 1] \end{pmatrix}$$

On a $\arccos 0 = \frac{\pi}{2}, \arccos 1 = 0, \arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}, \arccos \frac{\sqrt{2}}{2} = \frac{\pi}{4}.$

3. Fonction $x \mapsto arctgx$:

Soit

$$f:]-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow \mathbb{R}$$

$$x \mapsto f(x) = \cos x$$

f est continue sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ et strictement croissante sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ donc elle admet un inverse défini par

$$f^{-1} \quad \mathbb{R} \quad \to \qquad \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$
 $y \quad \mapsto \quad f^{-1} \left(y \right) = \operatorname{arct} gy$

D'où on a

$$\begin{pmatrix} y = tgx \\ x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right] \Leftrightarrow \begin{pmatrix} x = arctgy \\ y \in \mathbb{R} \end{pmatrix}$$

On a arctg0 = 0, $arctg1 = \frac{\pi}{4}$, $arctg(+\infty) = \frac{\pi}{2}$, $= arctg(-\infty) = -\frac{\pi}{2}$.

Fonctions hyperboliques et leur inverses:

1. Fonction *sh* **et** *ch* :

Définition: On appelle sinus hyperbolique (resp. cosinus hyperbolique) la fonction notée

$$shx = \frac{e^x + e^{-x}}{2}$$
 (resp. $chx = \frac{e^x - e^{-x}}{2}$).

Propriétés:

- 1. chx est une fonction paire, ch(-x) = chx.
- 2. shx est une fonction impaire, sh(-x) = -shx.
- $3. chx + shx = e^x.$
- 4. $chx shx = e^{-x}$.
- 5. $(chx)^2 (shx)^2 = 1$.
- 6. ch(x+y) = chxchy + shxshy.

7.
$$ch(x - y) = chxchy - shxshy$$
.

8.
$$sh(x+y) = shxchy + shychx$$
.

9.
$$sh(x - y) = shxchy - shychx$$
.

En particulier pour x = y.

$$ch2x = (chx)^2 + (shx)^2.$$

$$sh2x = 2shxchx.$$

$$(chx)^2 = \frac{ch(2x)+1}{2}, (shx)^2 = \frac{ch(2x)-1}{2}.$$

Variation:

ch étant paire et sh étant impaire, on peut se borner à les étudier dans l'intervalle $[0,+\infty[\,.$

La fonction *ch* est toujours positive.

La fonction sh est positive si x > 0 car $shx = \frac{e^x}{2} (1 - e^{-2x}) > 0$ si x > 0.

$$(chx)' = shx \text{ et } (shx)' = chx.$$

La fonction chx est strictement croissante sur $]0, +\infty[$ et la fonction shx est strictement croissante sur $[0, +\infty[$.

Fonction tangente hyperbolique:

On appelle fonction tangente hyperbolique (resp. cotangente hyperbolique) la fonction définie et notée par

$$thx = \frac{shx}{chx}, x \in \mathbb{R}(\text{ resp. } cothx = \frac{chx}{shx}, x \in \mathbb{R}^*).$$

Propriétés

1. Les fonctions thx et $\coth x$ sont impaires.

$$2. \ \frac{1}{(chx)^2} = 1 - (thx)^2.$$

3.
$$th(x+y) = \frac{thx + thy}{1 + thxthy}, th(x-y) = \frac{thx - thy}{1 + thxthy}, th2x = \frac{2thx}{1 + (thx)^2}.$$

Variation:

$$(thx)' = \frac{1}{(chx)^2} > 0, (\coth x)' = \frac{1}{(shx)^2} > 0.$$

$$\lim_{x \to +\infty} thx = 1 \text{ et } \lim_{x \to +\infty} \cot hx = 1.$$

Fonctions hyperboliques inverses:

1. Fonction arg chx:

La fonction chx est continue et strictement croissante sur $]0, +\infty[$ donc elle admet une fonction inverse continue et strictement croissante appelée argument cosinus hyperbolique notée arg chx.

On a
$$x = chy \Leftrightarrow y = \arg chx, y \ge 0$$
.

Expression au moyen de logarithme

$$y=\arg chx\Leftrightarrow x=chy \text{ et } shy=\sqrt{ch^2x-1}=\sqrt{x^2-1},$$
 or $chy+shy=e^y$ i.e. $x+\sqrt{x^2-1}=e^y\Leftrightarrow y=\ln\left(x+\sqrt{x^2-1}\right).$ d'où

$$\arg chx = \ln\left(x + \sqrt{x^2 - 1}\right).$$

2. Fonction $\arg shx$:

La fonction shx est continue et strictement croissante sur $[0, +\infty]$ donc elle admet une fonction inverse continue et strictement croissante appelée argument sinus hyperbolique notée arg shx.

On a
$$x = shy \Leftrightarrow y = \arg shx, y \ge 0$$
.

Expression au moyen de logarithme

$$y = \arg shx \Leftrightarrow x = shy \text{ et } chy = \sqrt{sh^2x + 1} = \sqrt{x^2 + 1},$$
 or $chy + shy = e^y$ i.e. $\sqrt{x^2 + 1} + x = e^y \Leftrightarrow y = \ln\left(x + \sqrt{x^2 + 1}\right).$

d'où

$$\arg shx = \ln\left(x + \sqrt{x^2 + 1}\right).$$

3. Fonction arg thx:

La fonction thx est continue et strictement croissante sur \mathbb{R} donc elle admet une fonction inverse continue et strictement croissante sur]-1,1[appelée argument tangente hyperbolique notée arg thx.

On a
$$x = thy \Leftrightarrow y = \arg thx, x \in]-1, 1[$$
.

Expression au moyen de logarithme

$$y = \arg t h x \Leftrightarrow x = t h y \text{ et } c h^2 y = \frac{1}{1 - t h^2 y} = \frac{1}{1 - x^2},$$

$$.s h^2 y = c h^2 y - 1 = \frac{1}{1 - t h^2 y} - 1 = \frac{t h^2 y}{1 - t h^2 y} = \frac{x^2}{1 - x^2},$$
 or $e^y = c h y + s h y \Rightarrow y = \ln \left(c h y + s h y \right) = \ln \left(\frac{1}{\sqrt{1 - x^2}} + \frac{x}{\sqrt{1 - x^2}} \right) = \ln \left(\frac{1 + x}{\sqrt{1 - x^2}} \right) = \ln \left(\frac{1 + x}{\sqrt{1 - x^2}} \right) = \ln \left(\frac{1 + x}{\sqrt{1 - x^2}} \right) = \ln \left(\frac{1 + x}{\sqrt{1 - x^2}} \right) = \ln \left(\frac{1 + x}{\sqrt{1 - x^2}} \right), |x| < 1.$ d'où

$$\arg thx = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right), |x| < 1.$$