Tableau périodique des éléments

Tableau de Mendeleïev

	1 IA																	18 VIIIA
1	1 2.20 1s H Hydrogène 1.00784–1.00811	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	${\displaystyle \mathop{He}_{{\scriptstyle \begin{array}{c} \text{H\'elium} \\ 4.002602(2) \end{array}}}^{1s}}$
2	3 0.98 2s Li Lithium 6.938–6.997	Li Be Lithium Béryllium Sy Sy symbole Nom Nom Nom Nom to repet the sc : sous-couche électronique Sy : symbole Nom Nom to repet de l'élément										5 2.04 2p B Bore 10.806-10.821	6 2.55 2p C Carbone 12.0096–12.0116	7 3.04 2p N Azote 14.00643- 14.00728	8 3.44 2p O Oxygène 15.99903- 15.99977	9 3.98 2p F Fluor 18.998403163(6)	10 2p Ne Néon 20.1797(6)	
3	11 0.93 3s Na Sodium 22.98976928(2)	12 1.31 3s Mg Magnésium 24.304–24.307	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	13 1.61 3 <i>p</i> Al Aluminium 26.9815385(7)	14 1.90 3 <i>p</i> Si Silicium 28.084–28.086	15 2.19 3p P Phosphore 30.973761998(5)	16 2.58 3p S Soufre 32.059-32.076	17 3.16 3 <i>p</i> Cl Chlore 35.446-35.457	18 3p Ar Argon 39.948(1)
4	$\begin{matrix} 19 & 0.82 & 4\mathfrak{s} \\ & \mathbf{K} \\ & \text{Potassium} \\ & 39.0983(1) \end{matrix}$	20 1.00 4s Ca Ca Calcium 40.078(4)	21 1.36 3 <i>d</i> Sc Scandium 44.955908(5)	22 1.54 3 <i>d</i> Ti Titane 47.867(1)	23 1.63 3 <i>d</i> V Vanadium 50.9415(1)	24 1.66 3 <i>d</i> * Cr Chrome 51.9961(6)	$\begin{array}{ccc} 25 & 1.55 & 3d \\ \hline Mn \\ \text{Manganèse} \\ & 54.938044(3) \end{array}$	26 1.83 3 <i>d</i> Fe Fer 55.845(2)	27 1.88 3 <i>d</i> Co Cobalt 58.933194(4)	28 1.91 3 <i>d</i> Ni Nickel 58.6934(4)	29 1.90 3 <i>d*</i> Cu Cuivre 63.546(3)	30 1.65 3 <i>d</i> 2n Zinc 65.38(2)	31 1.81 4p Ga Gallium 69.723(1)	32 2.01 4p Ge Germanium 72.630(8)	33 2.18 4 <i>p</i> As Arsenic 74.921595(6)	34 2.55 4p Se Sélénium 78.971(8)	35 2.96 4p Br Brome 79.901-79.907	36 3.00 4p Kr Krypton 83.798(2)
5	37 0.82 5s Rb Rubidium 85.4678(3)	38 0.95 5s Sr Strontium 87.62(1)	39 1.22 4 <i>d</i>	40 1.33 4 <i>d</i> Zr Zirconium 91.224(2)	41 1.6 4 <i>d*</i> Nb Niobium 92.90637(2)	42 2.16 4 <i>d</i> * Mo Molybdène 95.95(1)	$\begin{array}{ccc} 43 & 1.9 & 4d \\ & Tc \\ & \text{Techn\'etium} \\ & & & & & & & & & & & & & & & & & & $	44 2.2 4 <i>d*</i> Ru Ruthénium 101.07(2)	45 2.28 4 <i>d*</i> Rh Rhodium 102.90550(2)	46 2.20 4 <i>d*</i> Pd Palladium 106.42(1)	47 1.93 4 <i>d*</i> Ag Argent 107.8682(2)	48 1.69 4 <i>d</i> Cd Cadmium 112.414(4)	49 1.78 5 <i>p</i> In Indium 114.818(1)	50 1.96 5 <i>p</i> Sn Étain 118.710(7)	$\begin{array}{c} 51 2.05 5p \\ \mathbf{Sb} \\ \text{Antimoine} \\ 121.760(1) \end{array}$	52 2.1 5p Te Tellure 127.60(3)	53 2.66 5 <i>p</i> I Iode 126.90447(3)	$ \begin{array}{ccc} & 2.60 & 5p \\ & Xe \\ & Xénon \\ & 131.293(6) \end{array} $
6	55 0.79 6s Cs Césium 132.90545196(6)	56 0.89 6s Ba Baryum 137.327(7)	* Lanthanides	72 1.3 5 <i>d</i> Hf Hafnium 178.49(2)	73 1.5 5 <i>d</i> Ta Tantale 180.94788(2)	74 2.36 5 <i>d</i> W Tungstène 183.84(1)	75 1.9 5 <i>d</i> Re Rhénium 186.207(1)	76 2.2 5 <i>d</i> Os Osmium 190.23(3)	77 2.20 5 <i>d</i> Ir Iridium 192.217(3)	78 2.28 5 <i>d</i> * Pt Platine 195.084(9)	79 2.54 5 <i>d*</i> Au Or 196.966569(5)	80 2.00 5 <i>d</i> Hg Mercure 200.592(3)	81 1.62 6 <i>p</i> T1 Thallium 204.382–204.385	82 1.87 6 <i>p</i> Pb Plomb 207.2(1)	83 2.02 6 <i>p</i> Bi Bismuth 208.98040(1)	Po Polonium (209)	85 2.2 6 <i>p</i> At Astate (210)	86 2.2 6p Rn Radon (222)
7	${ m Fr} \ { m Fr} \ { m Francium} \ { m (223)}$	$egin{array}{ccc} 88 & 0.9 & 7s \\ \mathbf{Ra} \\ \mathrm{Radium} \\ \mathrm{(226)} \end{array}$	** Actinides	\mathbf{Rf} Rutherfordium (261)	Db	$\begin{array}{cc} 106 & 6d \\ \mathbf{Sg} \\ \mathrm{Seaborgium} \\ ^{(269)} \end{array}$	$ \begin{array}{cc} $	${ m Hs} \atop { m Hassium} \atop { m (269)}$	\mathbf{Mt}	Ds	$ m Rg m _{Roentgenium}$	Cn	Nh	Fl Flérovium (289)	Mc	\mathbf{Lv} Livermorium (293)	Ts	Og Oganesson (294)
	■ Métal alcalin ■ Métal alcalino-terreux ■ Métal ■ Métalloïde ■ Non-métal		*	57 1.1 5 <i>d*</i> La Lanthane 138.90547(7)	58 1.12 4 <i>f</i> * Ce Cérium 140.116(1)	59 1.13 4f Pr Praséodyme 140.90766(2)	60 1.14 4f Nd Néodyme 144.242(3)	61 1.13 4f	62 1.17 4f Sm Samarium 150.36(2)	63 1.2 4f Eu Europium 151.964(1)	64 1.2 4f* Gd Gadolinium 157.25(3)	65 1.1 4f Tb Terbium 158.92535(2)	66 1.22 4f Dy Dysprosium 162.500(1)	67 1.23 4 <i>f</i> Ho Holmium 164.93033(2)	68 1.24 4f Er Erbium 167.259(3)	69 1.25 4f Tm Thulium 168.93422(2)	70 1.1 4 <i>f</i> Yb Ytterbium 173.045(10)	71 1.27 4f Lu Lutécium 174.9668(1)
Non-méta Halogène Gaz nobl Lanthani		Actinide	**	89 1.1 6 <i>d*</i> Ac Actinium (227)	90 1.3 5f* Th Thorium 232.0377(4)	91 1.5 5 <i>f*</i> Pa Protactinium 231.03588(2)	92 1.38 5f* U Uranium 238.02891(3)	93 1.36 5 <i>f</i> *	94 1.28 5 <i>f</i> Pu Plutonium (244)	95 1.13 5 <i>f</i>	96 1.28 5 <i>f</i> * Cm Curium (247)	97 1.3 5 <i>f</i> Bk Berkélium (247)	$\begin{array}{ccc} 98 & 1.3 & 5f \\ \textbf{Cf} \\ \text{Californium} \\ \text{\tiny (251)} \end{array}$	99 1.3 5 <i>f</i> Es Einsteinium (252)	100 1.3 5 <i>f</i> Fm Fermium (257)	$\begin{array}{ccc} 101 & 1.3 & 5f \\ \hline \mathbf{Md} \\ \mathrm{Mend\acute{e}l\acute{e}vium} \\ (258) \end{array}$	102 1.3 5 <i>f</i> No Nobélium (259)	103 1.3 5 <i>f</i> Lr Lawrencium (266)

Les poids atomiques standards sont issus de la Commission on Isotopic Abundances and Atomic Weights (ciaaw.org/atomic-weights.htm). Une astérisque (*) apposée à une sous-couche électronique indique une exception (au principe d'Aufbau) dans la configuration des électrons à l'état fondamental.