SEMINARUL 4

Spații vectoriale

1. Fie K un corp comutativ şi $n \in \mathbb{N}^*$; notăm $K^n = K \times K \times ... \times K$ şi definim operațiile $+: K^n \times K^n \to K^n, : K \times K^n \to K^n; \forall \alpha = (\alpha_1, ... \alpha_n), b = (b_1, ... b_n) \in K^n, \forall \alpha \in K$:

$$a + b = (a_1 + b_1, \dots, a_n + b_n)$$

$$\alpha \cdot a = (\alpha a_1, \dots, \alpha a_n).$$

Arătați că față de aceste operații Kⁿ este un K - spațiu vectorial.

2. Considerăm mulțimea $\mathbb{R}_+^* = \{ a \in \mathbb{R} \mid a > 0 \}$. Arătați că \mathbb{R}_+^* este spațiu vectorial peste corpul \mathbb{R} în raport cu operațiile :

$$x \oplus y = x \cdot y$$
$$\alpha \odot x = x^{\alpha},$$

 $\forall x, y \in \mathbb{R}_+^*, \forall \alpha \in \mathbb{R}.$

- 3. Pe mulţimea \mathbb{R}^3 definim operaţiile (1) $\mathbf{x} + \mathbf{y} = (\mathbf{x}_1 + \mathbf{y}_1, \mathbf{x}_2 + \mathbf{y}_2, \mathbf{x}_3 + \mathbf{y}_3), \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}, \ (2)$ $\alpha \mathbf{x} = (\alpha \mathbf{x}_1, \mathbf{0}, \alpha \mathbf{x}_3), \ \forall \alpha \in \mathbb{R}, \forall \mathbf{x} \in \mathbb{R}^3, \ (3) \ \alpha \mathbf{x} = (\alpha \mathbf{x}_1, \alpha \mathbf{x}_2, \mathbf{x}_3) \ \forall \alpha \in \mathbb{R}, \forall \mathbf{x} \in \mathbb{R}^3.$ Formează \mathbb{R}^3 un \mathbb{R} spaţiu vectorial faţă de operaţiile (1) şi (2)? Dar faţă de (1) şi (3)?
- 4. Fie K un corp şi fie A o mulţime. Pe mulţimea $K^A = \{f \mid f \colon A \to M\}$ se definesc operaţiile $+ \colon K^A \times K^A \to K^A, \, \forall f,g \in K^A \colon f+g \colon A \to K, \, (f+g)(\alpha) = f(\alpha) + g(\alpha) \, \text{şi} \, \cdot \colon K \times K^A \to K^A, \, \forall \alpha \in K, \, \forall f \in K^A \colon \, \alpha f \colon A \to K, \, (\alpha f)(\alpha) = \alpha f(\alpha).$

Arătați că față de aceste operații K^A este un K - spațiu vectorial.

- 5. Fie $(K, +, \cdot)$ un corp comutativ, $K' \leq K$. Arătați că:
 - a) K este un K'- spațiu vectorial față de adunarea din K și față de restricția înmulțirii din $K, :: K' \times K \to K$.
 - b) Orice K spațiu vectorial este un $K^{'}$ spațiu vectorial față de restricțiile înmulțirii cu scalari.
- 6. Fie V un K spațiu vectorial, $\alpha \in K$ și $\nu \in V$. Arătați că :
 - a) $\alpha 0 = 0 \nu = 0$;
 - b) $\alpha(-x) = (-\alpha)x = -\alpha x$;
 - c) dacă $\alpha \neq 0$ și $x \neq 0$, atunci $\alpha x \neq 0$.
- 7. Fie $\mathfrak p$ un număr prim, V un spațiu vectorial peste $\mathbb Z_{\mathfrak p}.$
 - a) Arăți că $\underbrace{x + x + \ldots + x}_{p-ori} = 0, \forall x \in V.$
 - b) Poate fi înzestrat (\mathbb{Z} , +) cu o structură de \mathbb{Z}_p spațiu vectorial?

1

8. Verificați dacă operațiile

$$\oplus \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}, x \oplus y = \sqrt[5]{x^5 + y^5}$$

$$\odot \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \alpha \odot x = \sqrt[5]{\alpha} \cdot x$$

determină pe \mathbb{R} o structură de \mathbb{R} - spațiu vectorial.