ઉકેલ

પ્રકરણ 1

1. આકૃતિમાં દર્શાવેલ નેટવર્ક સંતુલિત વ્હીસ્ટનબ્રિજ હોવાથી નેટવર્કનો સમતુલ્ય અવરોધ $\mathbf{R}^1=3$ Ω લૂપનો અવરોધ $\mathbf{1}$ Ω હોવાથી,

પરિપથનો અસરકારક અવરોધ R=3+1=4 Ω થશે.

લૂપમાં પ્રેરિત emf, $\varepsilon = Blv$

લૂપમાં પ્રવાહ I = $\frac{\epsilon}{R}$ = $\frac{Bl\nu}{R}$

 $\Rightarrow v = \frac{IR}{Bl}$ પરથી v શોધો.

2. ચુંબકીય ક્ષેત્ર ગૂંચળાના પૃષ્ઠને લંબ હોવાથી, $\therefore \theta = 0^\circ$

∴ ચુંબકીય ફ્લક્સ φ = ABcos0 = AB

 $\mathbf{B}_1 = 0.1 \ \mathrm{Wbm^{-2}}$ હોય, ત્યારે પ્રારંભિક ક્લક્સ $\phi_1 = \mathbf{AB}_1$

 $B_2^{}=~0.2~{
m Wbm^{-2}}$ થાય, ત્યારે અંતિમ ક્લક્સ $\phi_2^{}=~{
m AB}_2^{}$

ક્લક્સનો ફેરફાર $\Delta \phi = \phi_2 - \phi_1 = A(B_2 - B_1)$

સરેરાશ પ્રેરિત emf $<\epsilon>=N\frac{\Delta}{\Delta t}$ સૂત્રનો ઉપયોગ કરી ગણો.

3. (i) 0°થી 90° ભ્રમણ દરમિયાન,

$$\phi_1 = BA\cos 0^\circ = BA$$

$$\phi_2 = BA\cos 90^\circ = 0$$

સરેરાશ પ્રેરિત emf < ϵ > = $-\frac{N\Delta\phi}{\Delta t}$ = $-\frac{N(\phi_2-\phi_1)}{t}$

$$t=rac{\mathrm{T}}{4}$$
 Ysai $=-rac{\mathrm{N}(\mathrm{0-BA})}{\left(rac{\mathrm{T}}{4}
ight)}=rac{4\mathrm{NBA}}{\mathrm{T}}$

(ii) (90° થી 180°) ભ્રમણ દરમિયાન,

 $\phi_1 = BA\cos 90^\circ = 0, \ \phi_2 = BA\cos 180^\circ = -BA, \ t = \frac{T}{4}$

$$<\epsilon> = -\frac{N\Delta}{\Delta t} = -\frac{N(0 - BA)}{\left(\frac{T}{4}\right)},$$

$$<\varepsilon> = \frac{+4\text{NBA}}{\text{T}}$$

તે જ પ્રમાણે (iii) અને (iv)ના કિસ્સામાં પ્રેરિત < ϵ > = $\frac{-4 \mathrm{NBA}}{\mathrm{T}}$ મળશે.

 $oldsymbol{4}$. તારથી x અંતરે, dx પહોળાઈનો અને b લંબાઈનો એક પૃષ્ઠખંડ કલ્પો.

તારથી x અંતરે, I પ્રવાહધારિત લાંબા તારને કારણે ઉદ્ભવતું ચુંબકીય ક્ષેત્ર, $\mathbf{B}=\frac{\mu_0\mathbf{I}}{2\pi x}$ ઉપર્યુક્ત પૃષ્ઠખંડ સાથે સંકળાયેલ ચુંબકીય ફ્લક્સ,

$$d\phi = AB = \frac{\mu_0 I}{2\pi x} (bdx)$$

લૂપ સાથે સંકળાયેલ કુલ ચુંબકીય ફ્લક્સ શોધવા માટે $d\phi$ નું x=a થી $x=\mathrm{L}+a$ વચ્ચે સંકલન કરો.

5. $l = 2 \text{ m}, d = 20 \text{ m}, B = 0.7 \times 10^{-4} \text{ T}$

ઍન્ગલ ઑફ ડિપ $\phi=60^\circ$

ગતિના સમીકરણ $v^2 = 2gd$ નો ઉપયોગ કરી સળિયાનો વેગ (v) શોધો.

$$B_h = B\cos\phi = (0.7 \times 10^{-4})\cos 60^{\circ} = 0.35 \times 10^{-4} \text{ T}$$

હવે, $\varepsilon = \mathrm{B}_h v l$ સૂત્ર વાપરી સળિયામાં ઉત્પન્ન થતું પ્રેરિત emf શોધો.

6. જ્યારે સળિયાનો વેગ ν હોય ત્યારે, સળિયામાં પ્રેરિત emf $\epsilon=\mathrm{B}\nu l$

સળિયામાં પ્રેરિત પ્રવાહ $I = \frac{\varepsilon}{R} = \frac{B \nu l}{R}$

સળિયા પર, તેની ગતિની વિરુદ્ધ લાગતું બળ,

$$F_{B} = BIl = \frac{B^{2}v_{t}l^{2}}{R}$$

જ્યારે આ બળ સળિયાના વજન જેટલું થાય, ત્યારે પ્રવેગ શૂન્ય થાય અને પછી સળિયો અચળ ટર્મિનલવેગ (v_i) થી ગતિ ચાલુ રાખે.

$$\therefore mg = \frac{B^2 v_t l^2}{R}$$
 પરથી v_t શોધો.

7. ધારો કે, t સમયે \mathbf{L}_1 અને \mathbf{L}_2 ઇન્ડક્ટરમાંથી વહેતા પ્રવાહનાં મૂલ્યો અનુક્રમે \mathbf{I}_1 અને \mathbf{I}_2 છે અને તેમના ફેરફારના દર અનુક્રમે $\left(\frac{d\mathbf{I}_1}{dt}\right)$ અને $\left(\frac{d\mathbf{I}_2}{dt}\right)$ છે.

ઇન્ડક્ટર L₁ના બે છેડા વચ્ચે ઉદ્ભવતું p.d.

$$\varepsilon = -L_1 \frac{dI_1}{dt} \implies \frac{dI_1}{dt} = -\frac{\varepsilon}{L_1}$$

ઇન્ડક્ટર L₁ના બે છેડા વચ્ચે

$$\varepsilon = -L_2 \frac{dI_2}{dt} \implies \frac{dI_2}{dt} = -\frac{\varepsilon}{L_2}$$

ઇન્ડક્ટર્સના તંત્રનું સમતુલ્ય ઇન્ડક્ટન્સ L હોય તો,

 $\varepsilon = - \mathcal{L} \frac{d \mathcal{I}}{dt}$ જયાં $\mathcal{I} = \mathcal{H}$ ખ્ય પરિપથમાં t સમયે

વહેતો પ્રવાહ

$$\rightarrow \varepsilon = -L\frac{d}{dt}(I_1 + I_2)$$

$$\rightarrow \; \epsilon \; = \; - L \bigg(\frac{d {\rm I}_1}{dt} + \frac{d {\rm I}_2}{dt} \bigg) \, \mbox{માં} \quad \frac{d {\rm I}_1}{dt} \quad \mbox{અને} \quad \frac{d {\rm I}_2}{dt} \, - \mbox{માં} \quad \mbox{મૂક્ષી} \quad L \quad \mbox{મેળવો}. \label{eq:epsilon}$$

8. 🛦 ગૂંચળું

$$N_A = 600$$

$$N_B = 300$$

$$I_A = 3.0 A$$

$$\phi_{\rm B} = 9 \times 10^{-5} \text{ Wb}$$

$$\varphi_A \,=\, 1.2\,\times\,10^{-\!4}~Wb$$

(i) ગૂંચળા Aનું આત્મ-પ્રેરકત્વ

$$L_A = \frac{\Phi_A}{I_A} = \frac{N_A \Phi_A}{I_A} = \frac{600 \times 1.2 \times 10^{-4}}{3} = 2.4 \times 10^{-2} \text{ H} = 24 \text{ mH}$$

(ii) ગૂંચળા A અને Bથી બનતા તંત્રનું અન્યોન્ય પ્રેરકત્વ,

$$M_{BA}=rac{\Phi_{A}}{I_{A}}=rac{9 imes 10^{-5}}{3}=3 imes 10^{-5}~H=30~\mu H$$
 સૂત્રોનો ઉપયોગ કરો.

9. ટોરોઇડલ રિંગના વર્તુળની ત્રિજ્યા $r_1 = 10 imes 10^{-2} \; \mathrm{m}$

ટોરોઇડલ રિંગના આડછેદની ત્રિજયા $r_2=2 imes 10^{-2}~\mathrm{m}$

વાઇન્ડિંગમાં આંટાઓની સખ્યા $N=1.5 \times 10^4$

ટોરોઇડલ રિંગમાં ચુંબકીય ક્ષેત્ર,
$$B=\mu_0 n I=rac{\mu_0 N I}{2\pi r_1}$$

ટોરોઇડલ રિંગ સાથે સંકળાયેલ કુલ ફૂલક્સ

$$\Phi = NAB$$

$$\Phi = N(\pi r_2^2) \left(\frac{\mu_0 NI}{2\pi r_1} \right)$$

રિંગનું ઇન્ડક્ટન્સ $L=rac{\phi}{I}$ પરથી શોધો.

10. ધારો કે R ત્રિજ્યાની મોટી લૂપમાંથી I પ્રવાહ વહે છે. આ પ્રવાહને લીધે મોટી લૂપના કેન્દ્ર આગળ ઉદ્ભવતું ચુંબકીય ક્ષેત્ર.

$$B = \frac{\mu_0 I}{2R}$$

r ત્રિજ્યાની નાની લૂપ સાથે સંકળાતું ફ્લક્સ,

$$\Phi = AB$$

$$\Phi = (\pi r^2) \left(\frac{\mu_0 I}{2R} \right)$$

બંને લૂપના તંત્રનું અન્યોન્ય પ્રેરકત્વ,

 $\mathbf{M} = \frac{\mathbf{\Phi}}{\mathbf{I}}$ સૂત્રનો ઉપયોગ કરી ગણો.

પ્રકરણ 2

1. લેમ્પનો અવરોધ $R=\frac{V^2}{P}$ માં V અને Pનાં (રેટિંગનાં) મૂલ્યો મૂકી અવરોધ શોધો. બલ્બમાંથી પસાર થઈ શકતો મહત્તમ પ્રવાહ $I=\frac{P}{V}$ માં P અને Vના મૂલ્યો (રેટિંગ પરથી) મૂકી પ્રવાહ શોધો. બલ્બને 220 Vના ઉદ્દગમ સાથે જોડતાં આ મહત્તમ પ્રવાહ જેટલો પ્રવાહ પસાર થાય, તો તે સંપૂર્ણ રીતે પ્રકાશિત થાય. આ હેતુ માટે બલ્બની સાથે શ્રેણીમાં ચોકકોઇલ (એક ખાસ પ્રકારનું ઇન્ડક્ટર જ છે.) મૂકવી જોઈએ. આદર્શ રીતે ચોક કોઇલમાં કોઈ પાવરનો વ્યય થતો નથી અને પ્રવાહ નિયંત્રિત કરી શકાય છે. આમ, આ L-R એ.સી. પરિપથ બને છે.

$$\therefore I_{rms} = \frac{V_{rms}}{\sqrt{R^2 + \omega^2 L^2}}$$

માંથી Lને સૂત્રનો કર્તા બનાવી તેના માં R, $\omega=2\pi f$. જયાં f=50 Hz, $V_{rms}=220$ V, $I_{rms}=$ મહત્તમ પ્રવાહનાં મૂલ્યો મૂકી L શોધો.

2. L-C-R શ્રેણી એ.સી. પરિપથ માટે $|Z| = \sqrt{R^2 + (X_L - X_C)^2}$

જ્યાં
$$X_L^{}=\omega L=2\pi fL$$
 અને $X_C^{}=rac{1}{\omega C}=rac{1}{2\pi fC}$

પરથી |Z| શોધો. અવરોધના બે છેડા વચ્ચેનો વૉલ્ટેજ $= I_{ms}R$ શોધો.

3. ટ્યૂન કરવું એટલે પરિપથને અનુનાદ સ્થિતિમાં લાવવો. અનુનાદ સ્થિતિમાં

$$\omega L = \frac{1}{\omega C}$$
 એટલે $\omega = \frac{1}{\sqrt{LC}}$

$$\therefore f = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$

ઉકેલો

$$\therefore C = \frac{1}{4\pi^2 f^2} \frac{1}{L}$$

માં $f=800 imes 10^3$ Hz મૂકી C શોધો. તે જ રીતે $f=1200 imes 10^3$ Hz મૂકી C શોધો. C ના આ બે મૂલ્યો ચલ કૅપેસિટરની રેન્જ દર્શાવે છે. એટલે કે Cનાં બે મૂલ્યો વચ્ચેનાં મૂલ્યો વડે $800~\mathrm{kHz}$ અને $1200~\mathrm{kHz}$ વચ્ચેની આવૃત્તિ માટે પરિપથમાં ટ્યૂનિંગ મેળવી શકાય છે.

4. (1)
$$I_{max}=\sqrt{2}\,I_{rms}=\sqrt{2}\,\frac{V_{rms}}{|Z|}$$
માં V_{rms} અને $Z=\sqrt{R^2+\omega^2L^2}$ નો ઉપયોગ કરી I_{max} શોધો.
$$\omega=2\pi f$$

(2)
$$\tan\delta = \frac{\omega L}{R}$$
 પરથી δ શોધો. સમય-તફાવત $= \frac{\delta (\text{in rad})}{\omega}$ (રેડિયનમાં) પરથી સમય તફાવત શોધો.

5. (1)
$$\frac{\varepsilon_s}{\varepsilon_p} = \frac{N_s}{N_p}$$
 પરથી ε_s શોધો.

(2)
$$\epsilon_p \mathrm{I}_p = \epsilon_s \mathrm{I}_s \Rightarrow \mathrm{I}_p = \frac{\epsilon_s}{\epsilon_p} \mathrm{I}_s = \frac{\mathrm{N}_s}{\mathrm{N}_p} \mathrm{I}_s$$
 પરથી I_p શોધો.

(3) આઉટપુટ પાવર =
$$\mathbf{\epsilon}_{s}\mathbf{I}_{s}$$
 ઇનપુટ પાવર = $\mathbf{\epsilon}_{p}\mathbf{I}_{p}$

6. પાવર =
$$V_{rms}I_{rms}\cos\delta$$

પરંતુ
$$I_{rms} = \frac{V_{rms}}{|Z|},$$

$$\therefore$$
 પાવર = $\frac{V_{rms}^2}{\mid Z\mid}\cos\delta$ જયાં $\mid Z\mid^2=R^2+(X_L-X_C)^2$ પરથી પાવર શોધો.

પાવરફૅક્ટર $\cos\!\delta = \frac{R}{|Z|}$ પરથી પાવરફૅક્ટર શોધો.

7. આવર્તકાળના અર્ધચક્ર પર Vનું સરેરાશ મૂલ્ય

$$= \frac{1}{T/2} \int_{0}^{T/2} V dt = \frac{2}{T} \int_{0}^{T/2} V_m \sin \omega t dt$$

$$= \frac{2V_m}{T} \left[-\frac{\cos \omega t}{\omega} \right]_0^{\frac{7}{2}} = \frac{2V_m}{T} \left[-\cos \frac{2\pi}{T} \frac{T}{2} + \cos \left(\frac{2\pi}{T} 0 \right) \right]$$

$$= \frac{2V_m}{T^{\frac{2\pi}{m}}}(1 + 1)$$

$$=\frac{2V_m}{\pi}$$

8. અતે $t=0,\ {\rm V}=0$ દર્શાવે છે કે, વૉલ્ટેજને sine વિધેય વડે દર્શાવી શકાય. $\therefore\ {\rm V}={\rm V}_m{\rm sin}\omega t$, જયાં ${\rm V}_m=100\ {\rm V}$ આપેલ છે. $t=\frac{1}{100\pi}\,{\rm s},\ {\rm V}=2\ {\rm V}$ તથા $\omega=2\pi f$ મૂકી f શોધો.

- 9. અતે $V=V_m cos\omega t$(i) તથા $I=\frac{V_m}{|Z|}cos(\omega t-\delta)$ (ii) દ્વારા ઇન્ડક્ટર ધરાવતા એ.સી. પરિપથ માટે $|Z|=\omega L$, $\delta=\frac{\pi}{2}$ વળી, $\omega=2\pi f$ આ મૂલ્યો સમીકરણ (ii)માં મૂકી, Iનું સમીકરણ મેળવો.
- 10. $P = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos \delta Hi \cos \delta = \frac{R}{\sqrt{R^2 + X_C^2}}$

 ${\rm X_C}=~30~\Omega,~{\rm R}=~40~\Omega,~{\rm V}_m=~220~{\rm V}$ તથા ${\rm I}_m=~4.4~{\rm A}$ મૂકી પાવર તથા પાવર-ફેક્ટર ગણો.

- 11. મહત્તમ વીજપ્રવાહ $I_m=rac{V_m}{|Z|}$ જ્યાં $|Z|=\sqrt{R^2+(\omega L)^2}$ $\omega=2\pi f$ માં મૂલ્યો મૂકી I_m શોધો.
- 12. I^2 ના rms મૂલ્ય માટે $I^2 = (I_1 sin\omega t \ + \ I_2 cos\omega t)^2$ નું વિસ્તરણ કરો. આ વિસ્તરણ પરથી

$$\therefore \langle I^2 \rangle = I_1^2 \langle \sin^2 \omega t \rangle + I_2^2 \langle \cos^2 \omega t \rangle + 2I_1I_2 \langle \sin \omega t \cos \omega t \rangle$$

હવે
$$\left\langle \cos^2 \omega t \right\rangle \; = \; \left\langle \sin^2 \omega t \right\rangle \; = \; \frac{1}{2} \; \;$$
તથા $\left\langle \sin \omega t \cos \omega t \right\rangle \; = \; 0$

$$\therefore \langle I^2 \rangle = \frac{I_1^2}{2} + \frac{I_2^2}{2} + 0$$

$$\therefore I_{rms} = \sqrt{\frac{I_1^2 + I_2^2}{2}}$$

13. મુક્ત LC દોલનોના પ્રાકૃતિક કોણીય આવૃત્તિ $\omega_0 = \frac{1}{\sqrt{LC}}$ માં L અને Cનાં મૂલ્યો મૂકી $\omega_0 = \frac{1}{\sqrt{LC}}$ ગણો.

प्रक्रिश 3

1. (a)
$$\lambda = \frac{2\pi}{k}$$
, $f = \frac{\omega}{2\pi}$

(b)
$$E_0 = B_0 c$$

સમીકરણ પરથી તરંગનો વેગ (c) ઋણ X-અક્ષની દિશામાં છે, અને ચુંબકીય ક્ષેત્ર Y-અક્ષ પર ધન છે. \vec{c} ની દિશા ($\vec{E} \times \vec{B}$)ની દિશા મુજબ હોવાથી $\vec{E} = E_0 \hat{k} \equiv E_z \hat{k}$.

ઉકેલો

- 2. I = $\frac{\text{પાવર}}{\text{ક્ષેત્રફળ}} = \frac{\text{પાવર}}{4\pi r^2}, r = 1 \text{ m}$
- 3. (a) $B_0 = \frac{E_0}{c}$,

(b)
$$I = \varepsilon_0 c E_{rms}^2 = \varepsilon_0 c \left(\frac{E_0}{\sqrt{2}}\right)^2$$
,

- (c) પાવર = I imes ક્ષેત્રફળ = I imes $4\pi r^2$
- 4. $I = \varepsilon_0 c E_{rms}^2 = \frac{P_S}{4\pi r^2}$

$$\therefore \ \, \mathbf{E}_{rms} = \ \, \sqrt{\frac{\mathbf{P}_{S}}{4\pi r^{2} \, \mathbf{\varepsilon}_{0} c}}$$

$$B_{rms} = \frac{E_{rms}}{c}$$

 $\mathbf{5}$. તરંગની તીવ્રતા $\mathbf{I} = \mathbf{\epsilon}_0 c \mathbf{E}_{rms}^2$

$$\therefore$$
 ઊર્જા = પાવર \times સમય (સમય $t=1$ s)

એકમ સમયમાં મળતું વેગમાન

$$\Delta p = \frac{\Delta U}{c}$$

રેડિયેશન-દબાણ
$$= \frac{\Delta P}{Rinter}$$

- **6.** (a) ઊર્જાઘનતા માટે $ho_{_{
 m E}} = \, rac{1}{2} \epsilon_{_0} E_{_0}^2$ સમીકરણનો ઉપયોગ કરો.
 - (b) નળાકારમાં સમાયેલી ઊર્જા માટે $\Delta U = \rho_{_E} imes V$ નો ઉપયોગ કરો.
 - (c) વિકિરણની તીવ્રતા માટે $I = \rho_{\rm E} c$ નો ઉપયોગ કરો.
 - (d) સંપૂર્ણ શોષણ માટે એક સેકન્ડમાં નળાકારને મળતું વેગમમન $\Delta p = rac{\Delta \mathrm{U}}{c}$.
 - (e) વિકિરણનું દબાણ શોધવા $p = \frac{\Delta p}{\mathrm{A}}$ નો ઉપયોગ કરો.

प्रકरश 4

- 1. અપ્રકાશિત શલાકા માટે $\frac{x_n d}{D} = (2n-1)\frac{\lambda}{2}$ પરથી λ ગણો.
- 2. પ્રકાશિત શલાકા માટે $\frac{x_n d}{D} = n\lambda$

અપ્રકાશિત શલાકા માટે $\frac{x_m d}{D} = (2n-1)\frac{\lambda}{2}$

 \therefore આ શલાકાઓ વચ્ચેનું અંતર $x_m - x_n$.

- $\frac{3}{D}$ સમીકરણ $\frac{x_n d}{D} = n\lambda$ નો ઉપયોગ કરવો.
- 4. $\overline{x_1} = \frac{\lambda D}{d}$ અને $\overline{x_2} = \frac{\lambda (D + 50)}{d}$ $\therefore \lambda = \frac{(\overline{x_2} \overline{x_1})d}{50}$
- 5. $t_2 t_1 = nT = n\left(\frac{1}{f}\right)$ (આપેલ છે.)

પથ તફાવત = r_2 - r_1 = $c(t_2$ - $t_1)$ = c imes $\frac{n}{f}$ = n λ

- **6.** આકૃતિ પરથી, પથ તકાવત = ${
 m SS}_2{
 m P}$ ${
 m SS}_1{
 m P}$ = $({
 m SS}_2$ ${
 m SS}_1)$ + $(r_2$ $r_1)$ = 0.25λ + $\frac{xd}{{
 m D}}$ = $\frac{\lambda}{4}$ + $\frac{xd}{{
 m D}}$
 - (i) સહાયક વ્યતિકરણ માટે

$$\frac{\lambda}{4} + \frac{xd}{D} = n\lambda \Rightarrow \lambda \left(n - \frac{1}{4}\right) = \frac{xd}{D}$$

(ii) વિનાશક વ્યતિકરણ માટે

$$\frac{\lambda}{4} \ + \ \frac{xd}{D} \ = \ (2n \ - \ 1) \frac{\lambda}{2} \ \Rightarrow \ \frac{\lambda}{2} \left(2n \ - \ \frac{3}{2}\right) \ = \ \frac{xd}{D}$$

7. સમીકરણ $d\sin\theta = n\lambda$ પરથી, $\sin\theta = \frac{n}{2}$ ($d = 2\lambda$).

પણ $\sin \theta \leq 1 \implies n \leq 2$, અર્થાત્ $n=0,\ 1$ અને 2.

- 8. $\frac{xd}{D} = n\lambda$ સૂત્રનો ઉપયોગ કરો.
- 9. અહીં, d << D.</p>

પથ તફાવત =
$$(D^2 + d^2)^{\frac{1}{2}} - D$$

$$= D \left(1 + \frac{d^2}{D^2}\right)^{\frac{1}{2}} - D$$

=
$$D\left(1 + \frac{d^2}{2D^2}\right)^{\frac{1}{2}} - D$$
 (:: d >> D)

$$=\frac{d^2}{2D}$$

વિનાશક વ્યતિકરણ માટે $\frac{d^2}{2\mathrm{D}} = (2n-1)\frac{\lambda}{2}$

$$\therefore \lambda = \frac{d^2}{D(2n-1)}$$

$$n=1$$
 માટે $\lambda=rac{d^2}{\mathrm{D}}$

$$n=2$$
 માટે $\lambda=rac{d^2}{3\mathrm{D}}$ વગેરે.

10. સમક્ષિતિજ ઘટકોનો સરવાળો લેતાં, $E_0 + E_0 \cos 60^\circ + E_0 \cos (-30^\circ) = 2.37 E_0$

શિરોલંબ ઘટકોનો સરવાળો લેતાં, 0 + $\rm E_0 sin 60^o$ + $\rm E_0 sin (-30^o)$ = $0.366 \rm E_0$

હવે,
$$E_R = \sqrt{(2.37E_0)^2 + (0.366E_0)^2} = 2.4 E_0$$

અને કળા, $\beta = \tan^{-1} \left(\frac{0.366E_0}{2.37E_0}\right) = 8.8^\circ$

- 11. વિવર્તન મહત્તમ માટે $d\sin\theta = (2n + 1)\frac{\lambda}{2}$
- 12. દ્વિતીય મહત્તમની પહોળાઈ = દ્વિતીય અને તૃતીય લઘુતમો વચ્ચેનું અંતર વિવર્તન લઘુતમ માટે, $d\sin\theta = n\lambda$ વળી, નાના θ (rad માં), $\sin\theta \approx \tan\theta$
- 13. (i) પ્રવાહીનો વક્રીભવનાંક, $n_1 = \frac{\lambda}{\lambda'}$ જ્યાં, $\lambda =$ હવામાં પ્રકાશની તરંગલંબાઈ

$$\therefore \lambda' = \frac{\lambda}{n_1} = \frac{6300 \,\text{Å}}{1.33}$$

હવે,
$$\bar{x} = \frac{\lambda D}{d} = \frac{6300 \times 10^{-10}}{1.33 \times 10^{-3}} \times 1.33$$

$$\therefore \ \overline{x} = 0.63 \times 10^{-3} \text{ m}$$

(ii) આકૃતિ (a) પરથી, $d=v_1t_1;$ અહીં, $n_1=$ પ્રવાહીનો વકીભવનાંક $v_1=$ તરંગની પ્રવાહીમાં ઝડપ પણ, $v_1n_1=$ C

વેશ,
$$v_1 n_1 = C$$

$$\therefore v_1 n_1 t_1 = c t_1 = r_1$$
તે જ રીતે, આકૃતિ (b) પરથી,

$$v_2 n_2 t_2 = c t_2 = r_2 (2)$$

$$r_2 - r_1 = \frac{\lambda}{2}$$

સમીકરણ (1) અને (2), $d = \frac{\lambda}{2(n_2 - n_1)}$.

(a) પ્રારંભિક સ્થિતિ

(b) અંતિમ સ્થિતિ

0

પ્રકરણ 5

હાઇડ્રોજન પરમાશુમાં n મુખ્ય ક્વૉન્ટમ-અંક ધરાવતી કક્ષાની ત્રિજ્યા,

$$r = \frac{n^2 h^2 \in_0}{\pi m e^2}$$

અને આ કક્ષામાં ઇલેક્ટ્રૉનની ઝડપ,

$$v = \frac{e^2}{2 \epsilon_0 nh}$$

કક્ષીય ઇલેક્ટ્રૉનની આવૃત્તિ,

$$f = \frac{1}{T} = \frac{v}{2\pi r} = \frac{me^4}{4\epsilon_0^2 n^3 h^2}$$

અથવા

$$f = \frac{me^4}{8\epsilon_0^2 ch^3} \times \frac{2c}{n^3}$$

$$=\frac{2Rc}{n^3}$$

n = 2 માટે $f = 8.23 \times 10^{14} \ {
m sec^{-1}}$

∴ સરેરાશ જીવનકાળ દરમિયાન થતા પરિભ્રમણોની સંખ્યા,

$$(8.23 \times 10^{14}) \times (10^{-8}) = 8.23 \times 10^{6}$$

2. (i) $\frac{1}{\lambda} = R\left(\frac{1}{n_k^2} - \frac{1}{n_i^2}\right)$

(ii)
$$E = \frac{hc}{\lambda}$$

- 3. $\frac{1}{\lambda} = R = \left(\frac{1}{2^2} \frac{1}{3^2}\right)$ સૂત્ર પરથી.
- 4. $\frac{1}{\lambda} = R\left(\frac{1}{2^2} \frac{1}{n^2}\right)$ સૂત્ર પરથી પ્રથમ બામર શ્રેણી અને તે પરથી લાયમન શ્રેણી માટે ગણતરી કરો. અત્રે નોંધો કે R આપેલ નથી.
- 5. (i) ફાઇન-સ્ટ્રક્ચર અચળાંક αનું પારિમાણિક સૂત્ર મેળવો.
 - (ii) તેની કિંમત શોધો.
 - (iii) હાઇડ્રોજન પરમાણુ માટે $\mathbf{E}_n = -\frac{me^2}{8{\epsilon_0}^2 h^2 n^2}$ છે.

હવે, $4\pi^2c^2$ વડે ગુણી અને ભાગતાં, $\mathbf{E}_n=\frac{-mc^2\alpha^2}{2n^2}$ મળે.

(iv) કોણીય વેગમાન, $l=mvr=rac{h}{2\pi}$

$$\therefore v = \frac{\hbar}{\left(\frac{mn^2h^2 \in_0}{\pi Ze^2m}\right)} \ (\because \ r = \frac{n^2h^2 \in_0}{\pi Ze^2m})$$

(હવે α નું સૂત્ર વાપરતાં $\nu=\alpha_c$ મળે.)

6. હાઇડ્રોજન પરમાશુની બંધન-ઊર્જા, $|\mathbf{E}| = + 21.76 \times 10^{-19} \, \mathrm{J}$

હાઇડ્રોજન વાયુની સરેરાશ ગતિ-ઊર્જા = $\frac{3}{2}k_{\mathrm{B}}\mathrm{T}$

$$\therefore \frac{3}{2}k_{\rm B}T = 21.76 \times 10^{-19}$$

$$\therefore T = 1.05 \times 10^5 \text{ K}$$

7.
$$E = \frac{-me^4}{8\epsilon_0^2 h^2} \frac{Z^2}{n^2}$$

 He^+ આયન માટે Z=2, n=1.

વળી,
$$\frac{-me^4}{8 \in_0^2 h^2} = 13.6 \text{ eV}$$
 (જ્ઞાતિકિંમત)

8. H_{β} -રેખા (એટલે કે, $n=4 \to n=2$)ના ઉત્સર્જન માટે ઇલેક્ટ્રૉનને પહેલાં n=4 કક્ષામાં ઉત્તેજિત કરવો પડે.

તેથી આ બે કક્ષાનાં ઊર્જા-તફાવત જેટલી ઊર્જા આપવી પડે.

🥦 Li⁺ આયનની કુલ ઊર્જા,

$$E_{tot} = 2 \times \left[\frac{1}{2} m v^2 - \frac{3e^2}{4\pi \epsilon_0 r'} \right] + \frac{e^2}{4\pi \epsilon_0 (2r')}$$

પરંતુ
$$\frac{1}{2}mv^2 = \frac{1}{8\pi\epsilon_0} \frac{3e^2}{r'}$$

27.7

$$r' = \frac{n^2 h^2 \in_0}{\pi m Z e^2}$$

$$\therefore E_{tot} = \frac{-15}{n^2} \left(\frac{me^4}{8 \epsilon_0^2 h^2} \right) = -204 \text{ eV } (\because n = 1 અને \frac{me^4}{8 \epsilon_0^2 h^2} = 13.6 \text{ eV})$$

 $\mathbf{E}_{tot}^{exp} = 198.09 \; eV \; (આપેલ છે.) \; \therefore \; \% \;$ ત્રૃદિ = 2.98%

10. કુલ ઊર્જા, E = $\frac{1}{2}mv^2 + \frac{1}{2}m\omega^2r^2$ (∵ $k = m\omega^2$) = mv^2 (∵ $v = r\omega$)

કોણીય વેગમાન $mvr=nrac{h}{2\pi}$ \therefore $mv^2=n\hbarrac{v}{r}$ \therefore $E=n\hbarrac{v}{r}=n\hbar\omega.$

11. મોઝેલેના નિયમાનુસાર K_{α} -રેખા માટે $\frac{1}{\lambda} = R(Z-1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2}\right)$

12. K_{α} -રેખા L-કક્ષામાંથી K-કક્ષામાં થતી ઇલેક્ટ્રૉનની સંક્રાંતિને અનુરૂપ હોય છે, તેને અનુરૂપ તરંગલંબાઈ $\frac{hc}{\lambda_{k_{\alpha}}} = (78 \times 10^3 - 12 \times 10^3) \times (1.6 \times 10^{-19}) \text{ J} \therefore \lambda_{K_{\alpha}} = 0.188 \text{ Å}$ K રેખા M-કક્ષામાંથી L-કક્ષામાં ઇલેક્ટ્રૉનની થતી સંક્રાંતિને અનુરૂપ હોય છે. તેની તરંગલંબાઈ

 K_{β} રેખા M-કક્ષામાંથી L-કક્ષામાં ઇલેક્ટ્રૉનની થતી સંક્રાંતિને અનુરૂપ હોય છે, તેની તરંગલંબાઈ $\lambda_{K_{\beta}}=0.165$ Å

પ્રકરણ 6

- 🚺 કોઈ પ્રક્રિયામાં કુલ બંધન-ઊર્જામાં વધારો થાય-તો તે પ્રક્રિયામાં ઊર્જા ઉત્પન્ન થાય (છૂટી પડે !)
 - (a) Y \rightarrow 2Z પ્રક્રિયા માટે, Yની કુલ બંધન-ઊર્જા = $8.5 \times 60 = 510 \text{ MeV}$ 2Zની કુલ બંધન-ઊર્જા = $2(5.0 \times 30) = 300 = \text{MeV}$ અહીં, કુલ બંધન-ઊર્જા ઘટે છે. તેથી ઊર્જાનું ઉત્સર્જન થશે નહીં.
 - (b) W \rightarrow 2Y પ્રક્રિયા માટે, Wની કુલ બંધન-ઊર્જા = $8 \times 120 = 960 \text{ MeV}$ 2Yની કુલ બંધન-ઊર્જા = $2(8.5 \times 60) = 1020 \text{ MeV}$. અહીં, કુલ બંધન-ઊર્જા ઘટે છે. તેથી ઊર્જાનું ઉત્સર્જન થશે નહીં.
- 2. બંને ઉત્સર્જનને અનુરૂપ કુલ ક્ષય-નિયતાંક λ_{ι} એ λ_{lpha} + λ_{eta} ના સરવાળા જેટલો થાય.

$$\therefore \ \lambda_t = \frac{1}{1600} + \frac{1}{400} = \frac{1}{320} \ \text{Yr}^{-1} \ \therefore \ \tau_{\frac{1}{2}}(\text{total}) = \frac{0.693}{\lambda_t} = \frac{0.693}{\frac{1}{320}} = 221.76 \ \text{Yr}.$$

75 % ન્યુક્લિયસ ક્ષય પામે, તો 25 % બચે

$$\therefore \frac{N}{N_0} = \frac{25}{100} = \frac{1}{4} \qquad \qquad \therefore \frac{1}{4} = \left(\frac{1}{2}\right)^{\frac{t}{\tau}} \frac{1}{2}$$

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{t}{\tau}} \frac{t}{2} \qquad \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^{\frac{t}{\tau}} \frac{t}{2}$$

$$\therefore \frac{t}{\tau_{1/2}} = 2 \therefore t = 2(\tau_{\frac{1}{2}}) = 443.52 \text{ Yr}$$

$$2(\frac{1}{2}mv^2) + 0 = 0 + \frac{kq^2}{r_0}$$

$$2(1.8 \times 10^3 \times 1.6 \times 10^{-19}) = \frac{(9 \times 10^9)(1.6 \times 10^{-19})^2}{r_0} \therefore r_0 = 4 \times 10^{-14} \text{ m}$$

- 4. જો અર્ધ-આયુ x hr હોય તો,
 - 0 સમયે ઍક્ટિવિટી = 16000 counts/min
 - x hr બાદ ઍક્ટિવિટી = 8000 counts/min
 - 2x hr બાદ ઍક્ટિવિટી = 4000 counts/min
 - 3x hr બાદ ઍક્ટિવિટી = 2000 counts/min
 - 4x hr બાદ ઍક્ટિવિટી = 1000 counts/min
 - 5x hr બાદ ઍક્ટિવિટી = 500 counts/min
 - \therefore 5x = 240 min \therefore x = 48 min

5. 226 g રેડિયમમાં 6.02×10^{23} પરમાણુ હોય

$$\therefore 1 g$$
માં $\frac{6.02 \times 10^{23}}{226} = N પરમાણુ હોય.$

$$\tau_{\frac{1}{2}} \; = \; \frac{0.693}{\lambda} \qquad \qquad \therefore \; \; \lambda \; = \; \frac{0.693}{\tau_{\frac{1}{2}}} \; = \; \frac{0.693}{4.98 \times 10^{10}} \; \; \mathrm{s}^{-1}$$

$$I = \lambda N = \left(\frac{0.693}{4.98 \times 10^{10}} \times \frac{6.02 \times 10^{23}}{226}\right) = 3.7 \times 10^{10}$$
 વિભંજન / $s = 1$ Ci

6. મુક્ત અવસ્થામાં બધા ન્યુક્લિયોન્સનું કુલ દળ = $\mathbf{Z}m_p$ + $\mathbf{N}m_n$ = 17 × 1.00783 + 18 × 1.00866 = 35.28899 u.

દળસતિ =
$$\Delta m = Zm_p + Nm_n - M_{\text{nucleus}} = 35.28899 - 34.9800 = 0.30899 u$$

$$\therefore$$
 ન્યુક્લિયોન દીઠ બંધન-ઊર્જા = $\frac{287.66}{35}$ = $8.219 \frac{MeV}{-44 ક્લિયોન}$

7. R = R₀A^{$\frac{1}{3}$} \therefore (6.6 fm) = (1.1 fm)A^{$\frac{1}{3}$} \therefore A = 216 = ન્યુક્લિયોનની સંખ્યા \therefore ન્યુક્લિયસનું દળ = 216 \times 1.0088 u = 216 \times 1.0088 \times 1.66 \times 10⁻²⁷ kg ન્યુક્લિયસનું કદ = $\frac{4}{3}\pi$ R³ = $\frac{4}{3}$ (3.14)(6.6 \times 10⁻¹⁵)³ m³

$$\therefore$$
 ન્યુક્લિયસની ઘનતા $\rho = \frac{\varepsilon \sigma}{\varepsilon \varepsilon} = \frac{(216)(1.008)(1.66 \times 10^{-27})}{\left(\frac{4}{3}\right)(3.14)(6.6 \times 10^{-15})^3} = 3 \times 10^{17} \text{ kg/m}^3$

8.
$$I = \lambda N \implies 8000 = \lambda(8 \times 10^7) : \lambda = 10^{-4} \text{ s}^{-1},$$

$$\tau_{\frac{1}{2}} = \frac{0.693}{\lambda} = \frac{0.639}{10^{-4}} = 6930 \text{ s.}$$

9. 2 g , H^2 માં ન્યુક્લિયસની સંખ્યા = 6.02×10^{23}

∴ 1000 g of
$$_{1}\mathrm{H}^{2}$$
માં ન્યુક્લિયસની સંખ્યા = $\frac{6.02 \times 10^{23} \times 1000}{2}$

$$= 3.01 \times 10^{26}$$

$$2$$
્ર H^2 ના સંલયનથી $3.27 \times 10^6 \times 1.6 \times 10^{-19}$ J ઊર્જા મળે.

$$\therefore 3.01 \times 10^{26} \, _{1}{
m H}^{2}$$
ના સંલયનથી મળતી ઊર્જા = $\frac{3.27 \times 10^{6} \times 1.6 \times 3.01 \times 10^{26}}{2} \, {
m J}$

100 Wનો બલ્બ
$$t$$
 સેકંડ અજવાળે, તો ખર્ચાતી ઊર્જા = $(100)(t)$ J

$$\therefore 100 \ t = \frac{3.27 \times 10^6 \times 1.6 \times 10^{-19} \times 3.01 \times 10^{26}}{2} \ \therefore \ t = \frac{7.874 \times 10^{11} \,\text{s}}{3.16 \times 10^7 \,\text{s/year}} = 24917 \ \text{Yr}$$

પ્રકરણ 7

1.
$$n_e=6\times 10^{19}~\mathrm{m}^{-3}$$
, કંદ = $10^{-2}\times 10^{-2}\times 2\times 10^{-2}=2\times 10^{-6}~\mathrm{m}^{-3}$ શુદ્ધ અર્ધવાહક માટે, $n_e=n_h=6\times 10^{19}~\mathrm{m}^{-3}$ \therefore હોલની સંખ્યા = $2\times 10^{-3}~\mathrm{m}^{-3}=n_h\times$ કંદ = $6\times 10^{19}\times 2\times 10^{-6}=12\times 10^{13}$

- 2. $n_i=1.5 \times 10^{16}~{
 m m}^{-3}$ મેજોરિટી ચાર્જકેરિયર્સ $n_h=4.5 \times 10^{22}~{
 m m}^{-3}$, માઈનોરીટી ચાર્જકેરિયર્સ $n_e=?$ હવે, $n_i^{~2}=n_e n_h$ અને n_e ની ગણતરી કરો.
- 3. વાપરો $E_g=rac{hc}{\lambda}$ 4. વાપરો $E_g=rac{hc}{\lambda}$
- 5. d=400 nm, $E=5\times 10^5$ V/m બેરિયર સ્થિતિમાન $V_0=Ed=5\times 10^5\times 4\times 10^{-7}=0.2$ V મુક્ત ઇલેક્ટ્રૉનની લઘુતમ ઊર્જા = $V_0=0.2$ eV.
- 6 . (1) $V_{A} > V_{B}$, માટે D_{1} ડાયોડ ફોરવર્ડ બાયસ અને D_{2} રિવર્સ બાયસ થશે, તેથી A અને B વચ્ચેનો અવરોધ $R_{AB} = 50$ Ω .
 - (2) $V_B > V_A$, માટે D_1 રિવર્સ બાયસ અને D_2 ફોરવર્ડ બાયસ થશે. $\therefore \ \, A \ \, \mbox{એન } B \ \, \mbox{વચ્ચેનો અવરોધ } R_{AB} = 50 \ \, \Omega.$
- 7. $R_L = 10 \text{ k } \Omega$, $A_V = 200$, $r_i = 10 \text{ k } \Omega$
 - (1) $A_V = -g_m R_L$ માટે ગણતરી કરો g_m (2) $g_m = \frac{\beta ac}{r_i} = \frac{A_i}{r_i}$ વાપરો અને ગણતરી કરો A_i
- 8. $I_C=18.6$ mA, $I_C=?$, $\alpha=?$ $I_C=0.93$ I_E માટે ગણતરી કરો. I_E અને $I_B=I_E-I_C$ માટે ગણતરી કરો I_B વાપરો. $\alpha=\frac{I_C}{I_E}$ ગણતરી કરો α .
- 9. $\Delta V_{BE} = 200 \times 10^{-3} \text{V}$, $\Delta V_{CE} = 200 \text{ } \mu\text{A}$, $r_i = ?$, $A_V = ?$

$$r_i = \frac{\Delta V_{BE}}{\Delta I_B} = \frac{200 \times 10^{-3}}{200 \times 10^{-6}} = 1000 \ \Omega$$
 $A_V = \frac{\Delta V_{CE}}{\Delta V_{BE}} = \frac{2}{200 \times 10^{-3}} = 10$

- $\textbf{10.} \quad \text{પાવર ગેઈન } \mathbf{A_{\mathrm{p}}} = \ \mathbf{A_{\mathrm{V}}} \mathbf{A}_{i} = \ (-g_{m} \mathbf{R_{\mathrm{L}}}) \ \ \mathbf{A}_{i} = \ \left(\frac{\Delta \mathbf{I_{\mathrm{C}}}}{\Delta \mathbf{V_{\mathrm{BE}}}}\right) \mathbf{R_{\mathrm{L}}} \mathbf{A}_{i}. \quad \text{હવે ગણતરી કરો } \mathbf{R_{\mathrm{L}}}.$
- 11. ઇનપુટ પરિપથ માટે $V_{BB}=I_BR_B+V_{BE}$ ગણતરી કરવા આ સમીકરણ વાપરો I_B આઉટપુટ સરકિટ માટે $V_{CC}=V_{CE}+I_CR_L\ I_C$ ની ગણતરી માટે હવે પ્રવાહબદ્ધ $A_i=rac{I_C}{I_D}$.

ઉકેલો

12. ઇનપુટ પ્રવાહ માટે

$$V_{CC}-I_{B}R_{B}-V_{BE}=0$$
 \therefore $V_{BE}=V_{CC}-I_{B}R_{B}=6-5\times 10^{-6}~(1\times 10^{6})=1~V$ આઉટપુટ પ્રવાહ માટે $V_{CC}-I_{C}R_{L}-V_{CE}=0$ \therefore $V_{CE}=V_{CC}-I_{C}R_{L}=6-(5\times 10^{-3}\times 1.1\times 10^{3})=0.5~V$

$$\beta ac$$
 $\beta A_{p} \cdot r_{i}$ 2000×1000

13. $A_{p} = A_{V} \cdot A_{i} = g_{m} R_{L} A_{i} : A_{p} = \frac{\beta ac}{r_{i}} = R_{L} A_{i} : R_{L} = \frac{A_{p} \cdot r_{i}}{A_{i} \cdot A_{i}} = \frac{2000 \times 1000}{100 \times 100} = 200 \Omega$

પ્રકરણ 8

1. ક્ષેત્રફળ $A = \pi d_T^2 = \pi (2h_T R)$

એન્ટેનાની ઊંચાઈ
$$h_{\mathrm{T}}=\frac{\mathrm{A}}{2\pi\mathrm{R}}=\frac{3140}{2\times3.14\times6400}=0.078125~\mathrm{km}=78.125~\mathrm{m}$$

- 2. ક્ષેત્રફળ $A = \pi d_T^2 = \pi (2h_T R) = 3.14 \times 2 \times 81 \times 6400 \times 10^3$ $= 3255552 \times 10^3 \text{ m}^2 = 3255.552 \text{ km}^2$
- 3. $E_C = 12 \text{ V}, m_a = 0.75, E_m = ?$

$$m_a = \frac{E_m}{E_C}$$
 : $E_m = m_a \times E_C = 0.75 \times 12 = 9 \text{ V}$

4. $e = 100(1 + 0.6 \sin 6280t)\sin 2\pi \times 10^6 t$ $\exists t$

$$e = E_{\rm C}(1 + m_a \sin \omega_m t) \sin \omega_c t$$
 સાથે સરખાવતાં,

$$m_a = 0.6$$
, $\omega_m = 6280$ rad/s, $\omega_c = 2\pi \times 10^6$ rad/s

$$\therefore f_m = \frac{\omega_m}{2\pi} = \frac{6280}{2\pi} = 10^3 \text{ Hz} = 1 \text{ kHz}$$

$$f_c = \frac{\omega_{\rm C}}{2\pi} = \frac{2\pi \times 10^6}{2\pi} = 10^6 \text{ Hz} = 1000 \text{ kHz}$$

LSBની આવૃત્તિ =
$$f_c - f_m = 1000 - 1 = 999 \, \, \mathrm{kHz}$$

USBની આવૃત્તિ =
$$f_c$$
 + f_m = 1000 + 1 = 1001 kHz

ભૌતિકવિજ્ઞાન-IV