数学分析选讲-微分学

Kui Wang

2021年4月9日

摘要

本学期《数学分析选讲》课程的微分学内容共三次线下课,两次线上自 学课.

- (1) 线下课程的计划安排:
 - Lecture 1. 微分中值定理及其高维推广 (Apr. 12);
 - Lecture 2. Taylor 公式及其应用 (Apr. 19);
 - Lecture 3. 隐函数及导数的坐标变换公式 (Apr. 26).
- (2) 线上自学课程的计划安排:
 - Lecture 4. 凸函数与不等式;
 - Lecture 5. 极值.
 - 在线课程链接 (百度网盘, 提取码:suda):
 - https://pan.baidu.com/s/1t1NmWeltggQLMWCrTKmysA

特别说明:由于这学期课时所限,原本 5 次课的内容需要压缩到 3 次课,故微分学中凸函数与不等式、极值这两个章节需要大家自学 (考试不涉及这两个专题中的内容,同时这两部分的作业也无需完成).

作业提交: 三次作业提交的截止日期分别时 Apr. 19、Apr. 26、May 5 中午 12:00 前, 不接受任何迟交作业的理由. 每次作业将随机挑 2 到 3 个题目来评分, 所得的成绩将折算为微分学部分的平时分. 提交方式: 拍照并合并成一个 PDF 发送至邮箱: 489300413@qq.com, 同时要在文件中体现学号信息.

显录

1	微分	中值定理及其高维推广	-								3
	1.1	微分中值定理		 		 					3

目录	2
----	---

	1.2	L'Hospital 法则
	1.3	多元函数驻点与可微
	1.4	作业
2	Tay	lor 公式及其应用
	2.1	Taylor 公式
	2.2	Taylor 展开的应用
	2.3	多元 Taylor 展开及其应用
	2.4	作业
3	隐函	数存在定理 1
	3.1	隐函数存在定理
	3.2	坐标变换下求导公式
	3.3	作业
4	凸函	数与不等式 1
	4.1	凸函数
	4.2	几类不等式
	4.3	作业
5	极值	i 2
	5.1	无条件极值 2
	5.2	条件极值
	5.3	极值与不等式
	5.4	WEAT COMMENT OF THE PROPERTY O

1 微分中值定理及其高维推广

1.1 微分中值定理

定理 1.1 (Fermat 定理). 若函数 f(x) 在 x_0 处可导, 且在 x_0 处取得极值, 则 $f'(x_0) = 0$.

定理 1.2 (Rolle 定理). 若函数 f(x) 在 [a,b] 上连续, (a,b) 可导, 且 f(a) = f(b). 则至少存在一个 $\xi \in (a,b)$ 使得 $f'(\xi) = 0$.

定理 1.3 (Lagrange 定理). 若 f(x) 在 [a,b] 上连续, (a,b) 可导,则至少存在一个 $\xi \in (a,b)$ 使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

定理 1.4 (Cauchy 定理). 若函数 f(x), g(x) 在 [a,b] 上连续, (a,b) 可导,则 至少存在一个 $\xi \in (a,b)$ 使得

$$f'(\xi)\Big(g(b) - g(a)\Big) = g'(\xi)\Big(f(b) - f(a)\Big)$$

注 1.1. (1) Rolle 定理、Lagrange 定理及 Cauchy 定理等价.

(2) Lagrange 定理的结果可表示为

$$f(b) - f(a) = f'(\xi)(b - a)$$
(1.1)

即可将函数值的增量写成函数在某点的导数值乘以自变量差的形式,该公式是处理函数值增量时常用的技巧.

(3) 微分中值定理: Rolle 定理、Lagrange 定理以及 Cauchy 定理可用来证明类似"存在 ξ , 使得等式成立"的题目. 除此之外,还有连续函数介值定理、Fermat 定理以及积分中值定理.

例 1.1. 用 Rolle 定理证明 Cauchy 中值定理.

例 1.2 (无穷区间上的 Rolle 定理). 设 f(x) 在 $[a, +\infty)$ 上连续, $(a, +\infty)$ 上 可导. 若 $\lim_{x\to +\infty} f(x) = f(a)$, 则存在 $\xi \in (a, +\infty)$ 使得 $f'(\xi) = 0$.

例 1.3 (Darboux 定理). 设 f(x) 在区间 (a,b) 上可导, $a < x_1 < x_2 < b$. 若 C 为介于 $f'(x_1)$ 与 $f'(x_2)$ 之间的任意一个数,则存在 $\xi \in (x_1,x_2)$ 使得 $f'(\xi) = C$.

例 1.4 (单侧导数极限定理). 设 f(x) 在 (a,b) 上可导, 且 f(x) 在 a 处右连续. 若 $\lim_{x\to a^+} f'(x)$ 存在, 则 f(x) 在 x=a 处右导数 $f'(a^+)$ 存在, 且

$$f'(a^+) = \lim_{x \to a^+} f'(x).$$

例 1.5. 设 f(x) 在 [a,b] 上连续, (a,b) 上二次可导, f(a)=f(b)=0. 则对 $\forall c\in(a,b)$ 存在 $\xi\in(a,b)$ 使得

$$f(c) = \frac{f''(\xi)}{2}(c-a)(c-b).$$

例 1.6. 设 f(x) 在 \mathbb{R} 上可导, f(0) = 0. 若存在常数 A > 0, 使得 $|f'(x)| \le A|f(x)|$. 证明 $f(x) \equiv 0$, $\forall x \in \mathbb{R}$.

例 1.7. 设 f(x) 在 \mathbb{R} 上二次可导, $|f(x)| \le 1$, $f^2(0) + (f'(0))^2 = 4$. 证明: 存在 $\xi \in \mathbb{R}$ 使得 $f(\xi) + f''(\xi) = 0$.

1.2 L'Hospital 法则

定理 1.5 (L'Hospital 法则). 设 f(x), g(x) 在 a 的某去心邻域内可导,且 $g'(x) \neq 0$. 若 $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ (i.e. $\frac{0}{0}$ 型), $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在或无穷大.则

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

注 1.2. 如将 $x \to a$ 换成半侧极限或者趋于无穷大, L'Hospital 法则仍成立; 极限为 $\frac{*}{\infty}$ 型, L'Hospital 法则也成立.

例 1.8. 证明 L'Hospital 法则对 $\frac{*}{\infty}$ 型极限也成立. 即若 f(x), g(x) 在 a 的某去心邻域内可导, $g'(x) \neq 0$, 且 $\lim_{x \to a} g(x) = \infty$. 若 $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在或无穷大,则有

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

例 1.9. 设 f''(0) 存在. 证明:

$$\lim_{h \to 0} \frac{f(2h) - 2f(0) + f(-2h)}{4h^2} = f''(0).$$

1.3 多元函数驻点与可微

定理 1.6 (高维 Fermat 定理). 若 z = f(x,y) 在 (x_0,y_0) 处取得极值且在该点处偏导数存在,则 (x_0,y_0) 为 f(x,y) 的驻点,即 $\nabla f(x_0,y_0) = \overrightarrow{0}$.

定理 1.7 (高维 Rolle 定理). 若 z = f(x,y) 在有界闭区域 D 上连续, 且在 D 内部 Int D 偏导存在. 若 f(x,y) 在 ∂D 上取得常数, 则 f(x,y) 在 Int D 中存在一个驻点 (x_0,y_0) .

例 1.10. 设 D 是 \mathbb{R}^2 中一个开区域. 若函数 u(x,y) 及 v(x,y) 在 D 上连续且偏导存在. 若满足

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}, \quad u^2 + v^2 = c$$

其中 c 为常数. 证明 u(x,y), v(x,y) 在 D 上恒为常数.

例 1.11. 设 z = f(x,y) 在单位圆盘 $D = \{(x,y): x^2 + y^2 \le 1\}$ 上连续且一阶偏导存在. 若 $\forall (x,y) \in D$ 有 $|f(x,y)| \le 1$, 证明: 存在 $(x_0,y_0) \in \operatorname{Int} D$ 使 得 $|\nabla f(x_0,y_0)| < 4$.

定义 1.1. 设 z = f(x,y) 在 (x_0,y_0) 某邻域内有定义, 若存在常数 A,B 使得

$$\Delta z = A\Delta x + B\Delta y + o(\Delta \rho)$$

则称 z = f(x,y) 在 (x_0,y_0) 处可微,且 $dz := A\Delta x + B\Delta y$ 称为 z = f(x,y) 在 (x_0,y_0) 处的全微分.其中

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \quad \mathcal{R} \quad \Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}.$$

定理 1.8. 若 z = f(x,y) 在 (x_0,y_0) 处可微,则 z = f(x,y) 在 (x_0,y_0) 处偏导存在,且

$$dz(x_0, y_0) = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$$

注 1.3. 上述定理说明多元函数可微,则偏导存在;而反之则不一定成立,即偏导存在不一定有函数可微. 若偏导存在且连续,则函数可微.

例 1.12. 设

$$f(x,y) = \begin{cases} xy \sin\frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0. \end{cases}$$

证明: (1) $f_x(0,0)$, $f_y(0,0)$ 都存在; (2) $f_x(x,y)$, $f_y(x,y)$ 在 (0,0) 处不连续; (3) f(x,y) 在 (0,0) 处可微.

1.4 作业

作业 1.1. 设 f(x) 在 \mathbb{R} 上有界且二次可导. 证明 f''(x) 在 \mathbb{R} 上有零点.

作业 1.2. 设函数 f(x) 在 \mathbb{R} 上可导. 若有

$$\lim_{x \to +\infty} f'(x) = a > 0 \quad \text{if } \mathcal{R} \quad \lim_{x \to -\infty} f'(x) = b < 0.$$

证明: $\lim_{x \to \infty} f(x) = \infty$.

作业 1.3. 设 f(x), g(x) 在 $[a, \infty)$ 上可导, $g'(x) \neq 0$, $\lim_{x \to +\infty} g(x) = \infty$, 且极限 $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$ 存在或无穷. 证明

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

作业 1.4. 设 f(x) 在 [a,b] 上 n+1 次可导,且 $f^{(k)}(a)=f^{(k)}(b)=0$ $(k=0,1,\cdots,n)$. 证明存在 $\xi\in(a,b)$ 使得 $f(\xi)=f^{(n+1)}(\xi)$.

作业 1.5. 证明函数 $f(x) = e^{-x^2} \int_0^x \sqrt{x} e^{x^2} \sin x \, dx$ 在 $[0, +\infty)$ 上有界.

作业 1.6. 设 f(x) 在 [a,b] 上三次可导,且 f'(a) = f'(b) = 0. 证明存在 $\xi \in (a,b)$ 使得

$$f(a) - f(b) = \frac{f'''(\xi)}{12}(a-b)^3.$$

作业 1.7. 设函数 f(x) 在 [0,4] 上连续, (0,4) 上可导, 且在 (0,4) 上满足 |f(x)| < 1. 证明存在 $\xi \in (0,4)$ 使得

$$(f'(\xi))^2 + f^2(\xi) < 1.$$

作业 1.8. 举例说明 (以二元为例)

- 1. f(x,y) 在一点处偏导存在, 但不连续;
- 2. f(x,y) 在一点处连续但偏导不存在.

作业 1.9. 设 $f(x,y) = |x-y|\varphi(x,y)$, 其中 $\varphi(x,y)$ 在 (0,0) 的一个邻域上有定义. 问 $\varphi(x,y)$ 满足什么样的条件时有:

- 1. f(x,y) 在 (0,0) 处连续?
- 2. f(x,y) 在 (0,0) 处偏导存在?
- 3. f(x,y) 在 (0,0) 处可微?

2 Taylor 公式及其应用

2.1 Taylor 公式

设 f(x) 在 x_0 处有 n 阶导数, 定义以 x_0 为中心的 n 次多项式

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k.$$

由 $P_n(x)$ 的定义显然有

$$P_n(x_0) = f(x_0), P'_n(x_0) = f'(x_0), \dots, P_n^{(n)}(x_0) = f^{(n)}(x_0).$$

记

$$R_n(x) := f(x) - P_n(x)$$

即有

$$f(x) = P_n(x) + R_n(x)$$

$$= f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + R_n(x)$$
(2.1)

称公式 (2.1) 为 f(x) 在 x_0 处的 n 阶 Taylor 展开, $R_n(x)$ 称为 n 阶余项. 公式 (2.1) 在 f(x) 的定义域内成立.

定理 2.1 (带有 Peano 余项的 Taylor 公式). 若 f(x) 在 x_0 处有 n 阶导数,则有

$$R_n(x) = o\Big((x - x_0)^n\Big),\,$$

即

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o\left((x - x_0)^n\right). \tag{2.2}$$

注 2.1. 称公式 (2.2) 为 f(x) 在 x_0 处带有 Peano 余项的 n 阶 Taylor 展开式. 注意到余项 $R_n(x) = o\left((x-x_0)^n\right)$, 仅在 x_0 的某个小邻域内才有意义,故而带有 Peano 余项的 Taylor 展开式适用于 x_0 附近。

定理 2.2 (带有 Lagrange 余项的 Taylor 公式). 若 f(x) 在 x_0 的某邻域 $U(x_0)$ 内有 n+1 次导数,则对于 $\forall x \in O(x_0)$, $\exists \xi \text{ (介于 } x_0 \text{ 与 } x \text{ 之间)}$ 使得

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1},$$

即

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}.$$
(2.3)

令 $\xi = x_0 + \theta(x - x_0)$, 上式可写为: 存在 $\theta \in (0,1)$ 使得

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} (x - x_0)^{n+1}.$$

注 2.2. 称公式 (2.3) 为 f(x) 在 x_0 处带有 Lagrange 余项的 n 阶 Taylor 展开式. 注意到带有 Lagrange 余项的 Taylor 展开式成立的条件是 f(x) 在 $U(x_0)$ 内有 n+1 次导数, 以及对任意的 $x \in U(x_0)$ 都成立.

若在公式 (2.2),(2.3) 中取 $x_0=0$ 有

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n), \tag{2.4}$$

以及存在 $\theta \in (0,1)$ 使得

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}.$$
 (2.5)

其中 (2.4) 和 (2.5) 分别称为带有 Peano 余项和 Lagrange 余项的 n 阶 Maclaurin 展开式.

例 2.1. 设 f(x) 在 \mathbb{R} 上无穷次可微, 且对任意的正整数 n 有 $f(\frac{1}{n}) = 0$.

- 1. 证明对 $\forall n \ f^{(n)}(0) = 0$.
- 2. 若对 $\forall n, x \in \mathbb{R}$ 都有 $|f^{(n)}(x)| \leq M$, 证明 $f(x) \equiv 0$.

注 2.3. 上例中若导数有界的条件去掉,则结论不一定成立,如:

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} \sin \frac{\pi}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

例 2.2. 证明 sin 1 是无理数.

注 2.4 (基本初等函数 Maclaurin 展开式).

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \dots + \frac{1}{n!}x^{n} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{(-1)^{n}}{(2n+1)!}x^{2n+1} + o(x^{2n+1})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n}}{(2n)!}x^{2n} + o(x^{2n})$$

$$\frac{1}{1-x} = 1 + x + \dots + x^{n} + o(x^{n})$$

$$\frac{1}{1+x} = 1 - x + \dots + (-1)^{n}x^{n} + o(x^{n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \dots + \frac{(-1)^{n}x^{n+1}}{n+1} + o(x^{n+1})$$

$$\frac{1}{1+x^{2}} = 1 - x^{2} + \dots + (-1)^{n}x^{2n} + o(x^{2n})$$

$$\arctan x = x - \frac{x^{3}}{3} + \dots + \frac{(-1)^{n}x^{2n+1}}{2n+1} + o(x^{2n+1})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^{2} + \dots + C_{\alpha}^{n}x^{n} + o(x^{n})$$

$$\sharp \Phi C_{\alpha}^{n} := \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}.$$

 α n:

2.2 Taylor 展开的应用

注 2.5. Taylor 公式是关于函数 f(x) 及其导数 $f^{(n)}(x)$ 关系的**等式**, 故在处理函数及其导数的问题时, Taylor 展开式是常用的工具. 利用 Taylor 公式的关键是: 在何点展开及展开到第几项, 这一般可以从题干中看出来. 事实上微分中值定理也是 Taylor 公式的特殊情形.

例 2.3. 求极限

$$\lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x}.$$

例 2.4. 设 f(x) 在 [a,b] 上三阶可导, 证明存在 $\xi \in (a,b)$ 使得

$$f(b) = f(a) + f'(\frac{a+b}{2})(b-a) + \frac{1}{24}f'''(\xi)(b-a)^3.$$

例 2.5. 设 f(x) 在 [0,1] 上连续, (0,1) 上二阶可导且满足 $|f''(x)| \ge 1$. 若 f(0) = f(1) = 0. 证明

$$\max_{[0,1]} |f(x)| \ge \frac{1}{8}.$$

例 2.6. 设 f(x) 在 $(0,+\infty)$ 上二次可导,若 $\lim_{x\to +\infty} f(x)$ 存在且 f''(x) 在 $(0,+\infty)$ 上有界. 证明 $\lim_{x\to +\infty} f'(x)=0$.

2.3 多元 Taylor 展开及其应用

设 $u(x)=u(x_1,x_2,\cdots,x_n)$ 是 \mathbb{R}^n 上的 n 元函数, $x^0=(x_1^0,x_2^0,\cdots,x_n^0)$ 为 \mathbb{R}^n 中一个固定点. 记

$$\Delta x := x - x^0 = (x_1 - x_1^0, x_2 - x_2^0, \cdots, x_n - x_n^0)$$

及定义一元函数

$$g(t) := u(x^0 + t\Delta x),$$

则有 $g(0)=u(x^0)$ 及 g(1)=u(x). 故由一元函数 g(t) 在 0 处的 Taylor 公式可得到 u(x) 的 Taylor 展开

$$u(x) = g(1) = g(0) + g'(0) + \frac{g''(0)}{2!} + \dots + \frac{g^{(n)}(0)}{n!} + \frac{g^{(n+1)}(\theta)}{(n+1)!}.$$
 (2.6)

直接计算可得

$$g'(0) = \sum_{i=1}^{n} \frac{\partial u(x^{0})}{\partial x_{i}} (x_{i} - x_{i}^{0}) = \nabla u(x_{0}) \cdot (\Delta x)^{T},$$

以及

$$g''(0) = \frac{d}{dt}|_{t=0} \left(\nabla u(x_0 + t\Delta x) \cdot (\Delta x)^T \right) = (\Delta x) \cdot \nabla^2 u(x_0) \cdot (\Delta x)^T$$

其中 $\nabla^2 u := \left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right)$ 为函数 u 的 Hessian 矩阵.

特别地在公式 (2.6) 中取 n=2, 我们就得到多元函数的 2 阶 Taylor 展 开公式

$$u(x) = u(x_0) + \nabla u(x_0) \cdot (\Delta x)^T + \frac{1}{2} (\Delta x) \cdot \nabla^2 u(x_0) \cdot (\Delta x)^T + o(|\Delta x|^2).$$
 (2.7)

例 2.7. 求函数 u = xy + yz 在 (0,0,0) 处增长最快的方向.

例 2.8. 设 f(x,y) 在 $D: x^2 + y^2 \le 1$ 上有连续偏导数.

1. 求 f(x,y) 在 ∂D 上关于外法向 \mathbf{n} 的方向导数 $\frac{\partial f}{\partial \mathbf{n}}$.

2. 若
$$\frac{\partial f}{\partial n}\Big|_{\partial D}$$
 < 0, 证明 $f(x,y)$ 在 Int D 内取到最大值.

例 2.9. 设 $D \in \mathbb{R}^2$ 中有界光滑闭区域, $u(x,y) \in D$ 上的连续函数, 且在 Int D 上有二阶连续偏导数且满足如下的偏微分方程

$$\Delta u = u$$

其中 Δ 是 Laplace 算子, 定义为 $\Delta u := u_{xx} + u_{yy}$.

- 1. 当 $u|_{\partial D} \ge 0$ 时,证明 $u|_{D} \ge 0$; (椭圆偏微分方程的极值原理)
- 2. 当 $u|_{\partial D} > 0$ 时,证明 $u|_{D} > 0$. (椭圆偏微分方程的强极值原理)

2.4 作业

作业 2.1. 求下列函数极限

1.
$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$$
 2. $\lim_{x \to 0} \left((1+x)^{\frac{1}{3}} - 1 \right)^{\arcsin x}$.

作业 2.2. 确定 a, b 使得当 $x \to 0$ 时, $f(x) = x - (a + b \cos x) \sin x$ 是尽可能高阶的无穷小.

作业 2.3. 求 $f(x,y) = \frac{\cos x}{\cos y}$ 在 (0,0) 处的二阶 Taylor 展开.

作业 2.4. 设 f(x) 在 \mathbb{R} 上无穷次可微, 且任意的正整数 n 有 $f(\frac{1}{n}) = \frac{n^2}{n^2+1}$. 求 $f^{(n)}(0)$.

作业 2.5. 设 f(x) 在 [a,b] 上有二阶导数,且 f'(a) = f'(b) = 0. 证明: 存在 $\xi \in (a,b)$ 使得

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

作业 2.6. 设 f(x) 在 [0,1] 上二阶可导,且满足有 $|f(x)| \le 1, |f''(x)| < 2$. 证明当 $x \in [0,1]$ 时有 $|f'(x)| \le 3$.

作业 2.7. 设 f(x) 在 \mathbb{R} 上二阶可导,且 $\forall x \in \mathbb{R}$ 有 $|f(x)| \leq M_0$, $|f''(x)| \leq M_2$. 证明 $\forall x \in \mathbb{R}$ 有 $|f'(x)| \leq \sqrt{2M_0M_2}$.

作业 2.8. 设 f(x) 在 [0,1] 上有二阶导数, f(0)=f(1)=0, 且 $\max_{0\leq x\leq 1}f(x)=2$. 证明: $\inf_{0\leq x\leq 1}f''(x)\leq -16$.

作业 2.9. 设 f(x,y) 在 \mathbb{R}^2 上可微, 且

$$\lim_{(x,y)\to(\infty,\infty)} x f_x(x,y) + y f_y(x,y) = a > 0.$$

证明: f(x,y) 在 \mathbb{R}^2 上取到最小值.

12

3 隐函数存在定理

3.1 隐函数存在定理

定理 3.1 (隐函数存在定理). 若函数 F(x,y,u,v), G(x,y,u,v) 满足如下条件:

- 1. $F(x_0, y_0, u_0, v_0) = G(x_0, y_0, u_0, v_0) = 0$;
- 2. F 和 G 在 (x_0, y_0, u_0, v_0) 的某邻域内有连续的偏导数;
- $3. F \setminus G$ 在 (x_0, y_0, u_0, v_0) 处关于变量 u, v 的 Jacobi 行列式

$$J := \det \begin{pmatrix} F_u & F_v \\ G_u & G_v \end{pmatrix} \Big|_{(x_0, y_0, u_0, v_0)} \neq 0.$$

则存在 $p_0 := (x_0, y_0)$ 的一个邻域 $U(p_0)$,使得

$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0, \end{cases}$$

在 $U(p_0)$ 内可唯一确定隐函数组

$$\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases},$$

满足 $u_0 = u(x_0, y_0), v_0 = v(x_0, y_0),$ 且 u(x, y), v(x, y) 在 $U(p_0)$ 具有一阶连续偏导数, 满足

$$\begin{cases} F_x + F_u u_x + F_v v_x = 0 \\ G_x + G_u u_x + G_v v_x = 0 \end{cases} \quad \text{i.} \quad \begin{cases} F_y + F_u u_y + F_v v_y = 0 \\ G_y + G_u u_y + G_v v_y = 0 \end{cases}.$$

注 3.1. 隐函数求导方法:

- Step 1. 由题目确定因变量与自变量: 因变量的个数就是方程的个数,同时由隐函数组及所求的 (偏) 导数确定因变量及自变量.
- Step 2. 方程 (组) 两边同时对自变量求导数得到关于所求导数的方程组. 求导过程中, 其他自变量的导数为零, 因变量的导数要保留.

Step 3. 解方程组得到所求 (偏) 导数.

例 3.1 (反函数存在定理). 设 u = f(x,y)m, v = g(x,y) 在 (x_0,y_0) 某邻域内连续且有一阶偏导,且满足

$$\frac{\partial(f,g)}{\partial(x,y)} := \det \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \Big|_{(x_0,y_0)} \neq 0.$$

证明方程组 $\begin{cases} u = f(x,y) & \text{在 } (x_0,y_0) \text{ 对应点 } (u_0,v_0) \text{ 的某个邻域内确定} \\ v = g(x,y) & \text{一组反函数 } x = x(u,v), y = y(u,v), 并求反函数的偏导数. \end{cases}$

例 3.2. 设 u = f(x - ut, y - ut, z - ut), g(x, y, z) = 0. 求 u_x, u_y .

例 3.3. 设 z = f(x,y) 具有二阶连续偏导数,且 $\frac{\partial f}{\partial y} \neq 0$. 证明 f(x,y) = 1 为一直线的充要条件是:

$$f_y^2 f_{xx} - 2f_x f_y f_{xy} + f_{yy} f_x^2 = 0.$$

3.2 坐标变换下求导公式

定理 3.2. 设 z = f(x,y) 有一阶连续偏导,作变量代换 $\begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}$. 则 f 的偏导数在坐标 u,v 下有如下的公式

$$\begin{cases} \frac{\partial f}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial f}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} \end{cases}$$
(3.1)

其中 u_x, y_y, v_x, v_y 是函数组 $\begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$ 所确定的反函数组 $\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$ 的偏导数.

证明. 公式 (3.1) 本质上是复合函数 f(x,y)=z(u,v), u=u(x,y), v=v(x,y) 的求导公式, 即

$$f_x = z_u u_x + z_v v_x \quad \coprod \quad f_y = z_u u_y + z_v v_y.$$

14

注 3.2. 一阶导数再求导数可得高阶导数坐标变换公式, 如

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial x})
= (z_u u_x + z_v v_x)_x
= (z_{uu} u_x + z_{uv} v_x) u_x + z_u u_{xx} + (z_{vu} u_x + z_{vv} v_x) v_x + z_v v_{xx}
= z_{uu} u_x^2 + 2z_{uv} u_x v_x + z_{vv} v_x^2 + z_u u_{xx} + z_v v_{xx},$$

类似地

$$\frac{\partial^2 f}{\partial y^2} = z_{uu} u_y^2 + 2z_{uv} u_y v_y + z_{vv} v_y^2 + z_u u_{yy} + z_v v_{yy},$$

以及

$$\frac{\partial^2 f}{\partial y \partial x} = z_{uu} u_y u_x + z_{uv} (u_x v_y + u_y v_x) + z_{vv} v_y v_x + z_u u_{xy} + z_v v_{xy}.$$

例 3.4. 设 f(x,y) 满足方程

$$(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2 = \frac{1}{\sqrt{x^2 + y^2}}.$$

若作变换 $x=uv,y=\frac{1}{2}(u^2-v^2)$, 求 z=f(x,y) 在 u,v 坐标下所满足的方程.

例 3.5. 设 z = f(x,y) 满足 $x^2 f_x + y^2 f_y = f^2$. 若有

$$\begin{cases} x = t \\ y = \frac{t}{1+tu} \end{cases}$$

$$z = \frac{t}{1+tv}$$

试求 v = v(t, u) 所满足的微分方程.

例 3.6. 设函数 z = f(x,y) 有二阶连续偏导数且满足方程

$$\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} = 0.$$

$$(1)$$
 用变量代换
$$\begin{cases} u=x-y & \\ u=x+y \end{cases}$$
 将上述方程化为以 u,v 为自变量的方程;

(2) 己知
$$f(x,2x) = x, f_x(x,2x) = x^2,$$
求 $f(x,y)$

15

例 3.7. 设 f(x,y) 在 \mathbb{R}^2 上有一阶连续偏导. 已知 f(x,y) = 0 为 8 字形的 曲线, 问 f(x,y) 至少有几个驻点?

例 3.8. 设 f(x,y), g(x,y) 为 \mathbb{R}^2 上具有一阶连续偏导的函数, 且满足

$$\frac{\partial f}{\partial x}\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}\frac{\partial g}{\partial x} \neq 0.$$

设 D 为 \mathbb{R}^2 中有界闭区域. 试证在 D 中满足方程组 $\begin{cases} f(x,y)=0 \\ g(x,y)=0 \end{cases}$ 的点至多有限个.

3.3 作业

作业 3.1. 设方程组

$$\begin{cases} x^3 + y^3 + z^3 = 3xyz \\ x + y + z = a \end{cases}$$

确定的隐函数组 y = y(x), z = z(x). 求 $\frac{dy}{dx}$ 及 $\frac{d^2y}{dx^2}$.

作业 3.2. 设 $A = (a_{ij})_{n \times n}$ 是正交矩阵, f(y) 为定义在 \mathbb{R}^n 上的二次可微函数. 记 F(x) = f(Ax), 证明:

$$\sum_{i=1}^{n} (\frac{\partial f}{\partial y_i})^2 = \sum_{i=1}^{n} (\frac{\partial F}{\partial x_i})^2 \quad \text{v.t.} \quad \sum_{i=1}^{n} \frac{\partial^2 f}{\partial y_i^2} = \sum_{i=1}^{n} \frac{\partial^2 F}{\partial x_i^2}.$$

作业 3.3. 设函数 z = f(x, y) 可微. 证明:

1. 若有 $xf_x + yf_y = 0$. 证明在极坐标下函数 $z = z(\theta)$, 即只与 θ 有关.

2. 若有 $yf_x - xf_y = 0$. 证明在极坐标下函数 z = z(r), 即只与 r 有关.

作业 3.4. 证明 2 维 Laplace 算子 $\Delta:=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ 在极坐标下为:

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}.$$

作业 3.5. 设 f(x,y) 满足方程

$$a\frac{\partial^2 f}{\partial x^2} + 2b\frac{\partial^2 f}{\partial x \partial y} + c\frac{\partial^2 f}{\partial y^2} = 0$$

其中 $b^2-ac=0, c\neq 0$. 若作变换 $\begin{cases} u=x+\alpha y \\ v=x+\beta y \end{cases}$. 问如何选择 α,β 才能

作业 3.6. 设 $f: \mathbb{R}^2 \to \mathbb{R}$ 有连续的偏导数. 证明存在连续的单射 $g: [0,1] \to$ \mathbb{R}^2 使得 $f \circ g$ 为常数.

作业 3.7. 设 f(x,y) 有二阶连续偏导数, 且 $f_{xx}f_{yy} - (f_{xy})^2 \neq 0$. 证明变换

$$\begin{cases} u = f_x(x, y) \\ v = f_y(x, y) \\ w = -z + x f_x(x, y) + y f_y(x, y) \end{cases}$$

存在唯一的逆变换

$$\begin{cases} x = g_u(u, v) \\ y = g_v(u, v) \\ z = -w + ug_u(u, v) + vg_v(u, v) \end{cases}$$

作业 3.8. 已知函数 z = f(x, y) 具有二阶连续偏导数, 算子 A 定义为

$$A(f) := x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}.$$

(1) 求
$$A(f - A(f))$$
.

(2) 求 $x^2 f_{xx} + 2xy f_{xy} + y^2 f_{yy} = 0$ 在坐标变换 $\begin{cases} u = y/x \\ v = x - y \end{cases}$ 下的方程.

4 凸函数与不等式

凸函数 4.1

定义 4.1. 设 f(x) 为区间 I 上的函数. 若 $\forall x_1, x_2 \in I, \forall \alpha \in (0,1)$ 都有

$$f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2),$$

则称 f(x) 为区间 I 上的凸函数 f(x) 在区间 f(x) 上的图像是凹的f(x)若上式中是严格小于,则称 f(x) 为区间 I 上的严格凸函数; 若上式中不等 号反向, 则称 f(x) 为区间 I 上的凹函数.

命题 4.1. 下列条件等价.

- (1). f(x) 为区间 I 上的凸函数.
- (2). 对于 I 中任意的 $x_1 < x_2 < x_3$ 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

进一步,对于任意的 $x_1 < x_2 < x_3 < x_4$ 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_4) - f(x_3)}{x_4 - x_3}.$$

- (3). 若函数 f 在 I 上可微, 则 f'(x) 在 I 上单调递增.
- (4). 若函数 f 在 I 上可微, $\forall x_0 \in I$ 都有

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0).$$

(5). 若函数 f 在 I 上二次可微,则 $\forall x \in I$

$$f''(x) \ge 0.$$

例 4.1. 设 f(x),g(x) 为 (a,b) 上的凸函数. 证明函数

$$h(x) = \max\{f(x), g(x)\}\$$

为 (a,b) 上的凸函数.

例 4.2. 若 f(x) 为 [a,b] 上的凸函数,则

$$\max_{x \in [a,b]} f(x) = \max\{f(a), f(b)\};$$

若 f(x) 为 [a,b] 上的凹函数,则

$$\min_{x \in [a,b]} f(x) = \min\{f(a), f(b)\}.$$

例 4.3. 设 f(x) 是 (a,b) 上的凸函数, 证明函数 f(x) 在 (a,b) 上连续.

例 4.4. 设 f(x) 是 $(-\infty, +\infty)$ 上的有界凸函数, 证明函数 f(x) 为常函数.

4.2 几类不等式

例 4.5 (Jensen Inequality). 设 f(x) 为区间 I 上的凸函数, 对于任意的 $x_1, x_2, \dots, x_n \in I$, $\forall \alpha_1, \alpha_2, \dots, \alpha_n > 0$ 满足 $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$. 证明:

$$f(\sum_{k=1}^{n} \alpha_k x_k) \le \sum_{k=1}^{n} \alpha_k f(x_k).$$

注 4.1 (积分形式 Jensen Inequality 不等式). 设 f(x) 为区间 [a,b] 上凸函数,g(x) 为 [a,b] 上非负函数满足 $\int_a^b g(x) dx = 1$. 则

$$f\left(\int_a^b xg(x) dx\right) \le \int_a^b f(x)g(x) dx.$$

例 4.6 (Generalized Arithmetic-Geometric Mean Inequality). 对于 $\forall x_1, x_2, \dots, x_n > 0$, $\forall \alpha_1, \alpha_2, \dots, \alpha_n > 0$ 满足 $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$. 证明

$$\prod_{k=1}^{n} x_k^{\alpha_k} \le \sum_{k=1}^{n} \alpha_k x_k.$$

并且等号成立当且仅当 $x_1 = x_2 = \cdots = x_n$.

例 4.7 (Young Inequality). 对于 $\forall a,b>0, \forall p,q>1$ 满足 $\frac{1}{p}+\frac{1}{q}=1$. 证明

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q},$$

并且等号成立当且仅当 $a^p = b^q$.

例 4.8 (Hölder Inequality). $\forall x_1, x_2, \cdots, x_n > 0, \ \forall y_1, y_2, \cdots, y_n > 0.$ p, q > 1 为任意的常数满足 $\frac{1}{p} + \frac{1}{q} = 1.$ 证明:

$$\sum_{k=1}^{n} x_k y_k \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} y_k^q\right)^{\frac{1}{q}}$$

并且等号成立当且仅当 x_k^p, y_k^q 成比例.

例 4.9 (Minkowski Inequality). $\forall x_1, x_2, \dots, x_n > 0, \ \forall y_1, y_2, \dots, y_n > 0.$ $\forall p > 1$. 证明:

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}.$$

并且等号成立当且仅当 x_k, y_k 成比例.

注 4.2. 对于可积函数空间 (以区间 [a,b] 上的积分为例), 可定义函数 f(x),g(x) 的内积:

$$\langle f, g \rangle := \int_{a}^{b} f(x)g(x) \, dx,$$

则 f(x) 在 [a,b] 上的 L^p 范数定义为:

$$||f||_{L^p} := \left(\int_0^b |f(x)|^p dx\right)^{\frac{1}{p}}.$$

则有如下积分形式的不等式:

- Hölder Inequality. $|\langle f, g \rangle| \leq ||f||_{L^p} \cdot ||g||_{L^q} \ (\frac{1}{p} + \frac{1}{q} = 1, p, q > 1)$. 等号成立当且仅当 $|f|^p = c|g|^q$ 在 [a, b] 几乎处处成立.
- Minkowski Inequality. $||f+g||_{L^p} \leq ||f||_{L^p} + ||g||_{L^p}$ (p > 1). 等号成立 当且仅当 f = cg 在 [a,b] 几乎处处成立.

例 4.10 (Jordan Inequality). 证明 $\forall x \in [0, \frac{\pi}{2}]$ 有

$$\frac{2}{\pi}x \le \sin x \le x.$$

例 4.11. 设函数 f(x) 在 $(0,+\infty)$ 上为严格凸函数,且 $f(0^+)=0$. 证明 $\frac{f(x)}{x}$ 在 $(0,+\infty)$ 上严格单调增加.

例 4.12. 设函数 $f(x)=(1+\frac{1}{x})^{x+\alpha}$. 证明当 $\alpha\geq\frac{1}{2}$ 时, f(x) 在 $(0,+\infty)$ 上 严格单调递减; 当 $\alpha<\frac{1}{2}$ 时, f(x) 在 x 充分大时严格单调递增.

4.3 作业

作业 4.1. 设函数 f(x) 在 $[0,+\infty)$ 上为凸函数, 且 f(0)=0. 证明对任意的正数 x_1,x_2 有

$$f(x_1 + x_2) \ge f(x_1) + f(x_2).$$

作业 4.2. 设 f(x) 为 \mathbb{R} 上凸函数满足 $\lim_{x\to\infty}\frac{f(x)}{x}=0$. 证明 f(x) 为常值函数.

作业 4.3. 设 f(x) 为 [a,b] 上凸函数, $c \in (a,b)$. 若有 f(a) = f(c) = f(b). 证明 f(x) 在 [a,b] 上为常值函数.

作业 4.4. 设 f(x) 为 $[a, +\infty)$ 上非负的可微函数,且 f(x) 为凹函数.证明:对于任意的 $x \ge a$ 有 $f'(x) \ge 0$.

作业 4.5. 证明 $\forall x > 0$ 有

$$\frac{1}{x(1+x)} > \ln^2(1+\frac{1}{x}).$$

作业 4.6 (Karamata Inequality). 证明对于 x > 0 且 $x \ne 1$ 有

$$\frac{\ln x}{x-1} \le x^{-\frac{1}{2}}.$$

作业 4.7. 证明对于 $\forall x > 0, y > 0$ 有

$$x^{y} + y^{x} > 1$$
.

20

5 极值

5.1 无条件极值

设 f(x) 为开区域 $D \subset \mathbb{R}^n$ 上的一个 n 元函数, $x = (x_1, x_2, \dots, x_n)$.

定理 5.1 (必要条件). 设 f(x) 在 x^0 处偏导存在. 若 f 在 x^0 处取得极值,则 x^0 为 f(x) 的驻点,即 $\nabla f(x^0) = \vec{0}$.

若 x^0 为 f(x) 的驻点, 则 f(x) 在 x^0 处的二阶 Taylor 展开

$$f(x) = f(x^{0}) + \frac{1}{2}(x - x^{0}) \cdot \nabla^{2} f(x^{0}) \cdot (x - x^{0})^{T} + o(|x - x^{0}|^{2}).$$

记 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ 为矩阵 $\nabla^2 f(x^0)$ 的 n 个特征值, 则有

定理 5.2 (充分条件). 若 x^0 为 f(x) 的驻点, $\nabla^2 f(x^0)$ 存在, λ_i 如上. 则

- $1 \leq \lambda_1 \lambda_n > 0$ 时, f(x) 在 x^0 处取极值. 并且当 $\lambda_1 > 0$ 时取极小值; 当 $\lambda_n < 0$ 时取极大值:
- 2 当 $\lambda_1 \lambda_n < 0$ 时, f(x) 在 x^0 处不取极值;
- 3 当 $\lambda_1 \lambda_n = 0$ 时,无法直接由二阶导数判断 x^0 是否为极值. (如 $\lambda_1 = 0$,则应看函数在对应的特征方向 $\vec{V_1}$ 上是否为极值,此时是一元函数,用高阶导数判断即可).
- **例 5.1.** 求函数 $f(x,y) = x^4 + y^4 x^2 2xy y^2$ 的驻点,并判断其是否为极值点。

注 5.1 (最值的方法).

- 1. 求出所求区域内部的可能的极值点 (驻点及导数不存在的点);
- 2. 求出函数在区域边界上可能的极值点 (条件极值). 如果是无界区域,则应考虑函数在无穷边界上函数值的性质 (如比较在无穷的边界上的函数值与内部函数值大小);
- 3. 比较 1 和 2 中所求点的函数值大小.
- 注 5.2. 多元函数最值也可转化成对各个变量累次求最值, 如:

$$\max_{(x,y)} f(x,y) = \max_{x} \max_{y} f(x,y) = \max_{y} \max_{x} f(x,y)$$

5 极值 21

例 5.2. 当 $x \ge 1$, $y \ge 0$ 时, 证明:

$$xy \le x \ln x - x + e^y$$
.

例 5.3. 求由方程 $2x^2 + y^2 + z^2 + 2xy - 2x - 2y - 4z + 4 = 0$ 所确定的函数 z = z(x, y) 的极值.

5.2 条件极值

目标函数:

$$f(x_1, x_2, \cdots, x_n)$$

约束条件:

$$\varphi_i(x_1, x_2, \cdots, x_n) = 0$$

其中 $1 \le i \le m \ (m < n)$.

注 5.3 (Lagrange 乘子法).

1. 根据目标函数以及约束条件构造 Lagrange 函数 (n+m 元):

$$L(x_1, \dots, x_n, \lambda_1, \dots, \lambda_m) := f(x_1, \dots, x_n) + \sum_{i=1}^m \lambda_i \varphi_i(x_1, \dots, x_n)$$

- 2. 求 Lagrange 函数的驻点, 即原问题可能的极值点;
- 3. 利用定理 1.2 中的充分条件判断第 2 步中的驻点是否是极值点 (方法: 需要将 m 个约束条件看成隐函数组,从而得到 $x_i = x_i(x_{m+1}, \cdots, x_n)$, $1 \le i \le m$,带入目标函数后,得到 n-m 元的无条件极值,再根据定理 1.2 的充分条件判断是否是极值点),或者比较 2 中所求点的函数值,求出目标函数的最值.

例 5.4. 用 Lagrange 乘子法求解例 5.3.

例 5.5. 求函数 $z=x^2+\sqrt{2}xy+2y^2$ 在 $D:x^2+2y^2\leq 4$ 上的最大值与最小值.

例 5.6. 求椭球面 $\frac{x^2}{3} + y^2 + \frac{z^2}{2} = 1$ 被过原点平面 2x + y + z = 0 所截椭圆的面积.

5 极值 22

5.3 极值与不等式

例 5.7. 在 $\sum_{i=1}^{n} x_i = 1$, $x_i > 0$ $(1 \le i \le n)$ 条件下求函数 $u = \prod_{i=1}^{n} x_i^{\alpha_i}$ 的最大值. 其中 α_i 为正常数.

例 5.8. 设函数 F(x,y) 在 \mathbb{R}^2 上有连续的偏导数,F(x,y)=0 是不自相交的封闭曲线 Γ . 设 $F_x^2+F_y^2\neq 0$ 在 Γ 上处处不成立. 证明: 若 AB 是 Γ 的极大弦,则 Γ 在 A, B 处的两条切线平行.

例 5.9. 证明对于任何正数 a,b,c 都有

$$ab^2c^3 \le 108\left(\frac{a+b+c}{6}\right)^6.$$

例 5.10 (Hadamard Inequality). 设 $A := (a_{ij})$ 为 n 阶可逆方阵. 证明:

$$(\det A)^2 \le \prod_{i=1}^n (\sum_{j=1}^n a_{ij}^2),$$

并且等号成立当且仅当 AA^T 为对角阵.

5.4 作业

作业 5.1. 求函数 $z = x^2 - xy + y^2$ 在 D: |x| + |y| < 1 上的最值.

作业 5.2. 过椭圆 $3x^2 + 2xy + 3y^2 = 1$ 上任一点作此椭圆的切线,求切线与两坐标轴所围成三角形面积的最小值.

作业 5.3. 求曲面 $4x^2 + 4y^2 - z^2 = 1$ 与平面 x + y - z = 0 的交线在 xOy 面上的投影所围区域的面积.

作业 5.4. 用条件极值的方法证明 Hölder 不等式

$$\sum_{k=1}^{n} a_k b_k \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}}$$

其中 $a_k, b_k > 0, p, q > 1$ 且 $\frac{1}{p} + \frac{1}{q} = 1$.

作业 5.5. 设函数 F(x,y,z) 在 \mathbb{R}^3 上有一阶连续偏导数,S 是由 F(x,y,z) = 0 确定的不自交的光滑封闭曲面. 设 $F_x^2 + F_y^2 + F_z^2 \neq 0$ 在 S 上处处成立. 若 A,B 是 S 上使得 S 上任两点距离的最大值点. 证明 S 在 A,B 处的两个切平面平行,且均垂直干 A 和 B 的连线.