

Register								
Number								

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Set - B

College of Engineering and Technology

School of Computing
Academic Year: 2021-22 (Even)

Course Code & Title : 18CSS202J - Computer Communications Duration : 100 Minutes (2 Periods)

Year & Sem : II Year / IV Sem Max Marks : 50

Course Articulation Matrix:

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
1	CO1	3	-	-	-	-	-	-	-	-	-	-	3
2	CO2	3	2	3	-	-	-	-	-	-	-	-	3
3	CO3	3	3	3	-	-	-	-	-	-	-	-	3
4	CO4	3	2	-	-	-	-	-	-	-	-	-	3
5	CO5	3	-	-	-	-	-	-	-	-	1	-	2
6	CO6	3	3	3	-	-	-	-	-	-	-	-	3

Part - A (20 x 1 = 20 Marks)

Instructions: 1) Answer ALL questions. 2) The duration for answering the part A is 30 minutes (this sheet will be collected after 30 minutes). 3) Encircle the correct answer 4) # denotes the type of the question is "fill in the blank"

	elected after 30 minutes). 3) Encircle the correct answer 4) $\#$ denotes	es the ty	pe or	tne que	estion	is "tiii in
the bl	Question	Marks	BL	СО	РО	PI Code
1	correction. A. Flow Control refers to methods of error detection and correction. Correction. Control refers to methods of error detection and correction. D. Data Control	1	1	4	1	1.7.1
2	In the sliding window method of flow control, the receiver window size when an ACK is sent. A. increases in C. doubles in D. remains its original	1	2	4	1	1.7.1
3	A sender has a sliding window of size 15. The first 10 frames are sent. How many frames are in the window now? A. 4 B. 5 C. 6 D. 10	1	3	4	2	2.6.3
4	The is the regulation of the amount of data that can be sent. A. Line discipline B. Flow control C. Error control D. Data flow	1	1	4	1	1.7.1
5#	ARQ stands forAutomatic repeat request	1	1	4	1	1.7.1
6	In the Protocol, if no acknowledgment for a frame has arrived, we resend all outstanding frames. A. Stop-and-Wait ARQ B. Go-Back-N ARQ C. Selective-Repeat ARQ D. both A & B	1	1	4	1	1.7.1
7	In block coding, the message is divided into blocks, each of k bits, called A. blockwords B. datawords C. blocks D. Data	1	2	4	2	2.6.3

8	The Hamming distance between equal codewords is A. 1 B. n C. 0 D. 2	1	1	4	1	1.7.1
9	In methods, no station is superior to another station and none is assigned the control over another A. random access C. channelization B. controlled access D. serial access	1	1	4	1	1.7.1
10	PPP consists ofcomponents A. One B. Two C. Three D. Four	1	1	4	1	1.7.1
11	In forwarding, the mask and destination addresses are both 0.0.0.0 in the routing table A. next-hop B. network-specific C. host-specific D. default	1	1	6	1	1.7.1
12	A routing table contains information entered manually. A. static B. dynamic C. hierarchical D. hybrid	1	1	6	1	1.7.1
13	The input and output ports of a router perform the layer functions of the router. A. physical and data link C. transport B. network D. session	1	1	6	1	1.7.1
14	The Routing Information Protocol is an intradomain routing based on routing. A. distance vector C. path vector D. vector	1	1	6	1	1.7.1
15	To create a neighborhood relationship, a router running BGP sends an message. A. open B. update C. keep alive D. connect	1	1	6	1	1.7.1
16	Which command displays RIP routing updates? A. Show IP route B. Debug IP rip C. Show protocols D. Debug IP route	1	1	6	1	1.7.1
17	Where are EIGRP successor routes stored? A. In the routing table only C. In the topology table only D. In the routing table and the topology table	1	1	6	1	1.7.1
18	Which routing method best describes BGP? A. distance vector B. link-state C. path-vector D) hybrid of link-state and distance vector	1	1	6	1	1.7.1
19	Count-to-Infinity problem occurs in A. distance vector routing	1	1	6	1	1.7.1
20	In OSPF header, which field is used to detect errors in the packet? A. Type B. Area ID C. Authentication type D. Checksum	1	1	6	1	1.7.1

Register								
Number								

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

College of Engineering and Technology

Set - B

School of Computing

Academic Year: 2021-22 (Even)

Test : CLA-T3 Date : 24-06-2022

Course Code & Title : 18CSS202J - Computer Communications **Duration** : 100 Minutes (2 Periods)

Year & Sem : II Year / IV Sem **Max Marks** : 50

Instr	Part – B (2 x 5 = 10 Marks) uctions: Answer ALL questions					
Q. No	Question	Marks	BL	СО	РО	PI Code
21	Compare and contrast byte-stuffing and bit-stuffing. Which technique is used in byte-oriented protocols and bit-oriented protocols?	5	2	4	1	1.7.1
	 Answer: ✓ Character-oriented protocols use byte-stuffing to be able to carry an 8-bit pattern that is the same as the flag. ✓ Byte-stuffing adds an extra character to the data section of the frame to escape the flag-like pattern. ✓ Bit-oriented protocols use bit-stuffing to be able to carry patterns similar to the flag. ✓ Bit-stuffing adds an extra bit to the data section of the frame whenever a sequence of bits is similar to the flag. 					
22	Contrast and compare distance vector routing with link state routing.	5	2	6	1	1.7.1
	 Answer: ✓ In distance vector routing each router sends all of its knowledge about an autonomous system to all of the routers on its neighboring networks at regular intervals. ✓ It uses a fairly simple algorithm to update the routing tables but results in a lot of unneeded network traffic. ✓ In link state routing a router floods an autonomous system with information about changes in a network only when changes occur. ✓ It uses less network resources than distance vector routing in that it sends less traffic over the network but it uses the much more complex Dijkstra Algorithm to calculate routing tables from the link state database. 					

Instructi	Part – C (2 x 10 = 20 Marks) ons: Answer ALL questions					
Q. No	Question	Marks	BL	СО	РО	PI Code
23. A	Illustrate the design mechanism for Stop-and-Wait Protocol and explain in detail with example. Answer: ✓ In Stop-and-Wait Protocol, the sender sends one frame, stops until it receives confirmation from the receiver (okay to go ahead), and then sends the next frame. ✓ We still have unidirectional communication for data frames, but auxiliary ACK frames (simple tokens of acknowledgment) travel from the other direction.	10	2	4	1	1.7.1
	Network Data link Physical Receive Send frame frame Data frame					
	Request from network layer Repeat forever Algorithm for sender site Repeat forever Algorithm for receiver site Event: Notification from physical layer Design of Stop-and- Wait Protocol					
	✓ The below figure shows an example of communication using this protocol. It is still very simple. Sender Receiver B Receiver Receiver B Receiver B					
	Request Frame Arrival Arrival Request Frame					
	Arrival Arrival Time Time					
	 ✓ The sender sends one frame and waits for feedback from the receiver. ✓ When the ACK arrives, the sender sends the next frame. ✓ Note that sending two frames in the protocol 					
	involves the sender in four events and the receiver in two events					
	Or					

23. B.i.	Assuming ev		he parity bit	for the data unit	2	3	4	2	2.6.3
	Dataword	Number of 1s	Parity	Codeword					
	1000000	1 (odd)	1	11000000					
23. B.ii.	the divisor programmed	oolynomial x ⁴	$+ X^2 + X$	+ x ² + x + 1 and + 1, Show the al at the sender	8	3	4	2	2.6.3
	Data	word $x^7 + x^5 +$	$x^2 + x + 1$						
	Divisor x ⁴ +x ² +x+	$1)\frac{x^{11}+x^9}{x^{11}+x^9+x^8+x^8+x^8+x^8+x^8+x^8+x^8+x^8+x^8+x^8$	$x + 1$ Qu $x^{6} + x^{5} + x^{6}$ x^{7} $x^{7} + x^{6} + x^{5} + x^{6}$ $x^{7} + x^{6} + x^{5} + x^{6}$ x^{7} $x^{7} + x^{5} + x^{6}$ x^{7} $x^{7} + x^{5} + x^{6}$	1 1 1 1+ X ³					
	Sender		X	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Codew	ord $x^{11} + x^9 + x^6$	$\frac{1}{10000000000000000000000000000000000$	emainder 1					
		- A A	X X						
24. A	example. Answer: ✓ In distant between distance. ✓ In this promaintains every now ✓ The table the desire route (ne) ✓ In the bel	rotocol, as the sa vector (table) at each node by sh	uting, the less is the route name imple) of minimalso guide nowing the less to a system of the less to	least-cost route e with minimum lies, each node um distances to s the packets to next stop in the em of five nodes	10	1	6	1	1.7.1
	node fron	C's table	r example,	B S table C S S S S S S S S S S S S S S S S S S					

	 ✓ Initialization ✓ The tables in Figure 22.14 are stable; each node knows how to reach any other node and the cost. ✓ At the beginning, however, this is not the case. Each node can know only the distance between itself and its immediate neighbors, those directly connected to it. ✓ So, for the moment, we assume that each node can send a message to the immediate neighbors and find the distance between itself and these neighbors To Cost Next A 0					
	 ✓ The above figure shows the initial tables for each node. ✓ The distance for any entry that is not a neighbor is 					
	marked as infinite (unreachable). ✓ Sharing: The whole idea of distance vector routing is the sharing of information between neighbors.					
	 ✓ In distance vector routing, each node shares its routing table with its immediate neighbors periodically and when there is a change ✓ Updating: When a node receives a two-column table from a neighbor, it needs to update its routing table 					
	Or				1	ı
24. B	 Describe the Border Gateway Protocol with example. Answer: ✓ Border Gateway Protocol (BGP) is an interdomain routing protocol using path vector routing. It first appeared in 1989 and has gone through four versions. ✓ The Internet is divided into hierarchical domains called autonomous systems ✓ We can divide autonomous systems into three categories: stub, multihomed, and transit. ✓ Stub AS: A stub AS has only one connection to another AS. The interdomain data traffic in a stub AS can be either created or terminated in the AS. The hosts in the AS can send data traffic to another ASs. The hosts in the AS can receive data coming from hosts in another ASs. 	10	2	6	1	1.7.1

- ✓ Transit AS: A transit AS is a multihomed AS that also allows transient traffic. Good examples of transit ASs are national and international ISPs (Internet backbones).
- ✓ Path Attributes: The path was presented as a list of autonomous systems, but is, in fact, a list of attributes.
- ✓ Each attribute gives some information about the path. The list of attributes helps the receiving router make a more-informed decision when applying its policy.
- ✓ Attributes are divided into two broad categories: well-known and optional. A well-known attribute is one that every BGP router must recognize. An optional attribute is one that needs not be recognized by every router.
- ✓ BGP Sessions: The exchange of routing information between two routers using BGP takes place in a session. A session is a connection that is established between two BGP routers only for the sake of exchanging routing information. To create a reliable environment, BGP uses the services of TCP.
- ✓ External and Internal BGP: If we want to be precise, BGP can have two types of sessions: external BGP (E-BGP) and internal BGP (I-BGP) sessions. The E-BGP session is used to exchange information between two speaker nodes belonging to two different autonomous systems. The I-BGP session, on the other hand, is used to exchange routing information between two routers inside an autonomous system.

Internal and external BGP sessions

√ The session established between AS1 and AS2 is an E-BOP session. The two speaker routers exchange information they know about networks in the Internet. However, these two routers need to collect information from other routers in the autonomous systems. This is done using I-BOP sessions

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

