Kvantumalgoritmusok bioinformatikai alkalmazása Protein folding & Molecular docking

Nemkin Viktória

Témavezető: dr. Friedl Katalin

Gyógyszergyártás = A rossz lyukak betömése.

(b) Protein folding (Hemoglobin)

"Protein folding" kvantumos modellje

• Protein:

- Aminosavakból alkotott lánc.
 - ★ Piros = Hidrofób ("vízkerülő").
 - ★ Kék = Poláris ("vízszerető").
- Hajtogatás: 3D kockarács pontjain.
- Cél: Minimális energiájú elhelyezés (NP-nehéz).

Kódolás:

Origóból, lépésenként
6 irány = 6 kvantumbit (qubit).

Orákulum:

Energiaviszonyok lepontozása.

Egy összehajtogatott protein.¹

¹Forrás: Traykov et al. (2018). Protein Folding in 3D Lattice HP Model Using Heuristic Algorithm.

Kvantumalgoritmusok a megoldáshoz

Grover-algoritmus

- Strukturálatlan keresés.
- Klasszikusan O(N): minden lehetséges megoldás végignézése.
- **Kvantumosan** $O(\sqrt{N})$: "kvantum párhuzamosság" kihasználása.

Kvantumséták

- Strukturált keresés.
- ▶ Gráf:
 - Csúcsai: lehetséges hajtogatások.
 - * Élei: apró transzformációk.
- → Kettő kombinálása.

Kvantumséták szimulációja (128 csúcsú kör)

Kvantumséták szimulációja (4D, 16 csúcsú hiperkocka)

Grover keresés memóriahasználata

Lánc	Qubitek	Regiszter	Operátor	
n	6(n-1)	$2^{6(n-1)}\cdot 16B$	$2^{12(n-1)}\cdot 16B$	

Grover keresés memóriahasználata

Lánc	Qubitek	Regiszter	Operátor
п	6(n-1)	$2^{6(n-1)} \cdot 16B$	$2^{12(n-1)} \cdot 16B$
2	6	1 KB	64 KB
3	12	64 KB	256 MB
4	18	4 MB	1 TB
5	24	256 MB	4 PB
6	30	16 GB	16384 PB
7	36	1 TB	67108864 PB

Grover keresés memóriahasználata

Lánc	Qubitek	Regiszter	Operátor
n	6(n-1)	$2^{6(n-1)} \cdot 16B$	$2^{12(n-1)} \cdot 16B$
2	6	1 KB	64 KB
3	12	64 KB	256 MB
4	18	4 MB	1 TB
5	24	256 MB	4 PB
6	30	16 GB	16384 PB
7	36	1 TB	67108864 PB

- Optimalizációk (regiszer és operátor esetében is):
 - ► Ritka mátrixos tárolás:
 - ★ IBM Qiskit, Google Cirq, stb.
 - ★ Nem mindig ritkák a mátrixok.
 - Döntési fa alapú adatszerkezet:
 - ★ Újabb kutatási irány.
 - ★ Nem mindig segít.

Megoldás: "On-the-fly" és "Függvény-alapú" operátorok

Lánc	Qubitek	Regiszter	Operátor	''On-the-fly''	''Függvény-alapú''
n	6(n-1)	$2^{6(n-1)} \cdot 16B$	$2^{12(n-1)} \cdot 16B$	= Regiszter.	Nem kell tárolni.
2	6	1 KB	64 KB	1 KB	0 B
3	12	64 KB	256 MB	64 KB	0 B
4	18	4 MB	1 TB	4 MB	0 B
5	24	256 MB	4 PB	256 MB	0 B
6	30	16 GB	16384 PB	16 GB	0 B
7	36	1 TB	67108864 PB	1 TB	0 B

Megoldás: "On-the-fly" és "Függvény-alapú" operátorok

Lánc	Qubitek	Regiszter	Operátor	''On-the-fly''	''Függvény-alapú''
n	6(n-1)	$2^{6(n-1)} \cdot 16B$	$2^{12(n-1)} \cdot 16B$	= Regiszter.	Nem kell tárolni.
2	6	1 KB	64 KB	1 KB	0 B
3	12	64 KB	256 MB	64 KB	0 B
4	18	4 MB	1 TB	4 MB	0 B
5	24	256 MB	4 PB	256 MB	0 B
6	30	16 GB	16384 PB	16 GB	0 B
7	36	1 TB	67108864 PB	1 TB	0 B

- Qiskit, stb. nyílt forráskódúak...
- ...de szerves része a kódnak az operátor tárolása
- ullet ightarrow saját szimulátor implementáció.

Eredmények

- Kvantumséták szimulációja
 - Szimulátor szoftver reguláris gráfokra → cikk.
- Memóriaoptimalizált szimulátor keretrendszer
 - ► Ha a regiszter 2x belefér a memóriába akkor az egész algoritmus is.
 - Regiszterek:
 - * Ritka mátrixos tárolás.
 - * Tetszőleges célregiszterek: qubit és index leképzés.
 - Operátorok:
 - ★ "On-the-fly": Hadamard, Grover.
 - ★ "Függvény-alapú": Sum, MC-NOT.
 - Könnyen bővíthető architektúra.

Jövőbeli tervek

- Protein folding algoritmus implementálása.
- Döntési fa alapú regisztertárolás kipróbálása.
- Kvantumséta szimulátor algoritmus átemelése a szimulátor keretrendszerbe.

Forráskódok

- MIT licensz
 - Kvantumséták: https://github.com/nemkin/quantum-walk
 - ► Memóriaoptimalizálás: https://github.com/nemkin/qmem

Köszönöm a figyelmet!

Bíráló kérdései - 1.

A szerző említi (30. oldal), hogy ha egy gráf szomszédsági mátrixa felírható permutációk összegeként, akkor létezik rá kvantumbolyongás. Tudna mondani egy vagy több feltételt vagy példát, hogy ez milyen mátrixokra/gráfokra teljesül?

- (Érmés típusú kvantumbolyongás.)
- *d*-reguláris gráfokra teljesül.
- Képzeljük el páros gráfként: Szomszédsági mátrix sorai és oszlopai a színosztályok, él ott van ahol 1-es a cella értéke.
- Ebben van teljes párosítás = egy permutáció.
- ullet Kiveszem, d-1-reguláris lesz, ismétlem amíg elfogynak az élek.
- Más gráfokra nem teljesülhet, mert *d* db permutáció összege biztosan *d*-reguláris szomszédsági mátrix lesz.
- Más gráfokat kiegészítünk élekkel, amíg d-regulárisak nem lesznek.

Bíráló kérdései - 2.

Az 5.6. ábrán a következők vannak ábrázolva: "Quantum [...] hitting and mixing times". Mi ennek a két fogalomnak a definíciója? (Nem találtam a dolgozatban.)

- Klasszikus fogalmak általánosítása kvantumosan.
- Itt egyetlen bolyongónak van valószínűségi eloszlása, ami fix szabályok szerint terjed, csak a mérés pillanatában van véletlen.
- Hitting time: Kezdőcsúcsból indulva a megtett lépések száma, amíg először nem 0 valószínűséggel van a bolyongó az adott csúcsban.
- Mixing time: Kezdőcsúcsból indulva a megtett lépések minimális száma, amíg a bolyongó eloszlása a stacionáriustól minden pontban ε -ra van.