Quiz, 10 questions

Correct

Come from the same distribution

	Come from different distributions cal aspects of deep learning Question identical to each other (same (x,y) pairs)	9/10 points (90%)
	Have the same number of examples	
×	0 / 1 point	
	our Neural Network model seems to have high variance, what of the following would mising things to try?	l be
	Increase the number of units in each hidden layer	
7	his should not be selected	
	Get more training data	
٦	his should be selected	
	Get more test data	
ı	Jn-selected is correct	
	Make the Neural Network deeper	
1	his should not be selected	
	Add regularization	
(Correct	

for app dev set	Practical aspects of deep learning Ouiz, 1604 assemble on an automated check-out kiosk for a supermarket, and are building a (elassifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)				
\checkmark	Increase the regularization parameter lambda				
Corre	ect				
	Decrease the regularization parameter lambda				
Un-se	elected is correct				
	Get more training data				
Corre	ect				
	Use a bigger neural network				
Un-se	elected is correct				
~	1 / 1 point				
5. What is	s weight decay?				
	The process of gradually decreasing the learning rate during training.				
\bigcirc	Gradual corruption of the weights in the neural network if it is trained on noisy data.				
\bigcirc	A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.				
	A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.				

~	1/1 point			
6. What h	nappens when you increase the regularization hyperparameter lambda?			
	Weights are pushed toward becoming smaller (closer to 0)			
Correct				
\bigcirc	Weights are pushed toward becoming bigger (further from 0)			
	Doubling lambda should roughly result in doubling the weights			
\bigcirc	Gradient descent taking bigger steps with each iteration (proportional to lambda)			
~	1/1 point			
7. With th	ne inverted dropout technique, at test time:			
	You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training			
Correct				
\bigcirc	You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.			
	You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training			
\bigcirc	You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.			

Practical aspects of deep learning

9/10 points (90%)

Quiz,	, 10 questions	1 / 1
		poin

8.

Increasing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the following: (Check the two that apply)

Increasing the regularization effect

Un-selected is correct

Reducing the regularization effect

Correct

Causing the neural network to end up with a higher training set error

Un-selected is correct

Causing the neural network to end up with a lower training set error

Correct

1/1 point

).

Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)

Gradient Checking

Un-selected is correct

Xavier initialization

Practical aspects of deep learning

Quiz, 10 questions

9/10 points (90%)

,	• •				
<u> </u>	L2 regularization				
Correct					
	Data augmentation				
Correct					
	Exploding gradient				
Un-selected is correct					
<u> </u>	Dropout				
Correct					
	Vanishing gradient				
Un-selected is correct					
~	1 / 1 point				
10. Why do	10. Why do we normalize the inputs x ?				
\bigcirc	It makes the parameter initialization faster				
\bigcirc	It makes it easier to visualize the data				
\bigcirc	Normalization is another word for regularizationIt helps to reduce variance				
	It makes the cost function faster to optimize				

Pract ical aspects	of deep	learning
---------------------------	---------	----------

Quiz, 10 questions (90%)

9/10 points

 \sim \sim \sim