

Paris @ emlyon

Harnessing AI Safely: Addressing the Challenges of Autonomous Systems

Al Potter

Autonomous Irrigation 2.0:

Explainable Al for Sustainable & Secure Farming

Ensuring transparency, fairness, and efficiency in irrigation across Southern Europe

Latha, Sarah, Himanshu, Juyeon

Farming under Pressure: Water Scarcity, Al Gaps & Food Security Risks in Southern Europe

Challenges in Southern European Irrigation Systems (Citrus & Wheat Farming)

Unpredictable rainfall and drought cycles threaten

Crop Security & Quality (Ensuring stable yield, avoiding droughts & improving plant health)

Unfair Water Distribution

Unstable Food Security

Untrustable Al

(Building trust in Al-driven irrigation decisions for farmers)

Without a reliable, autonomous system, irrigation remains inefficient & unsustainable in Southern Europe

Why Irrigation Still Fails: The Risks & Al Gaps

Problem	Key Risk (What's going wrong?)	Why Al Fails? (The Gap in Current Systems)
	X AI misjudges water needs	
Crop Security & Quality	→ Citrus & wheat crops loss & lower quality	Al lacks real-time soil & weather data (decisions are outdated)
	X Water access remains unequal	
Sustainability & Fairness		Al doesn't consider local water policies (unfair distribution)
	X Al fails to adapt to regional crises	
Food Security at Scale	→ Droughts impact citrus & wheat production	Al can't predict regional shortages (climate shocks unaccounted)
	X AI is a black box	
Explainability & Al Trust	→ Farmers don't trust or follow it	Al recommendations are unclear (Farmers don't trust the system)

• In Spain, citrus farmers follow Al-based water allocation, but sudden heatwaves disrupt their expected yield due to inaccurate predictions.

Methodology: How We Approach the Problem

- Research-Based Analysis → Studied Al-driven irrigation challenges across France, Spain & Italy
- Case Studies → Evaluated existing Al irrigation projects (John Deere, Lacroix, Todo...)
- Technical Framework → Studied explainable AI (XAI) techniques for agriculture
- Policy Review → Analyzed European Green Deal, water governance & Al regulations

References & citations: TODO: link of git/notion

The Solution – Trustworthy, Transparent AI for Smarter Irrigation

Problem	How We Fix It	What This Solves
✓ Crop Security & Quality	Al uses real-time weather, soil & crop health data	Citrus & wheat farmers receive accurate and timely irrigation recommendations
Sustainability & Fairness	Al follows water policies & ensures fair allocation	✓ Prevents overuse & ensures equitable irrigation
Food Security at Scale	Al predicts climate risks & adjusts irrigation strategies	Protects citrus & wheat food supply by preventing drought-related losses
Explainability & Al Trust	LLM-powered chatbot + expert-driven AI decisions	✓ Farmers understand AI recommendations & trust the system

Our Technical Approach: Al-Driven Irrigation Decision-Making

Technical Pipeline – From Data to Al-Driven Irrigation

Al Innovations: LLM + RAG + GAN for Smart Irrigation

- LLMs (Large Language Models) → Help farmers interpret Al suggestions in natural language, adapting to Spain & Italy's local contexts
- RAG (Retrieval-Augmented Generation) → Al retrieves real-time weather, soil, and water data to optimize irrigation in drought-prone regions
- GAN (Generative Adversarial Networks) → Al generates simulated crop growth scenarios to fine-tune irrigation strategies or predict drought events for citrus & wheat

Our Technical Approach: Al-Driven Irrigation Decision-Making

Problem Solved	Real-World Improvement	Metric of Success
1 Toblem Solved	iteai-vvoria improvement	Wethic of Success
✓ Crop Security & Quality	✓ Healthier citrus & wheat crops with better water precision	Higher yield per hectare
Sustainability & Fairness	✓ 30% less water waste by balancing usage in Spanish & Italian farms	Water savings per farm
Food Security at Scale	✓ Predicts drought risks & prevents shortages in citrus & wheat farming	Reduction in crop failure rates
	✓ Farmers understand AI decisions & adopt tech	Increased AI adoption by farmers

Companies Driving Al-Powered Irrigation

- LACROIX → AI-powered connected water management for remote irrigation control
- InstaDeep → Al startup partnering with Syngenta to optimize crop & irrigation models
- Koan Irrigation → Provides real-time irrigation & fertilization control with minimal water usage
- IBM & FAO Smart Agriculture → Al-driven tools for global farm water management
 - + How can industry collaborations advance fair & transparent Al adoption in agriculture?

Expanding AI-Driven Irrigation: The Road Ahead

- Deploy Al solutions in more Southern European farms, covering additional crops.
- Integrate ????-based water tracking for better transparency in irrigation.
- Enhance policy alignment with EU agricultural regulations to improve farmer adoption.
- Introduce localized Al interfaces in Spanish, Italian & Portuguese to boost usability.
 - Scaling AI for better sustainability, fairness, and trust in irrigation

DEMO

Recorded demo

The Future of AI in Irrigation: Smarter, Fairer, & More Sustainable

- Al must be explainable, accountable, and adaptable.
- Farmers, developers, and policymakers must collaborate to ensure fair Al adoption.
- The future of food security depends on AI that is transparent and accessible to all.
- With AI that farmers can understand and trust, irrigation in Southern Europe moves from being a risk to a solution.
- Al that ensures Citrus & Wheat farmers receive sustainable water access, food security, and trust in technology.

Click to add text Click to add text

- Click to add text
- Click to add text
- Click to add text

- 1.
- 2.
- 3.

