CS/B.TECH (ECE/IT/EE (O)/EEE/ICE)/SEM-3/M(CS)-312/08/(09) 3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 NUMERICAL METHODS AND PROGRAMMING

SEMESTER - 3

				[Part] Martin . 70
Time: 3 Hours]		The second second		[Full Marks : 70'

		GROUP - A		
	(Multip	ple Choice Type	Questions)	
**	•			
Cho	oose the correct alternative	s for any ten of th	ne following :	$10\times1=10$
Ŋ	Which of the following re	elations is true?		
	a) $E=1+\Delta$	b)	$E = 1 - \Delta$	
	c) $E = 1/\Delta$	d)	None of these.	
ii)	By evaluating $\int_{0}^{1} \frac{dx}{1+x}$	2 by a numerica	l integration method,	we can obtain an
	approximate value of			
	a) log _e 2	b)	π	
	c) e	d)	log ₁₀ 2.	
iii)	If a be the actual value	e and e be its es	timated value, the fo	ormula for relative
	error is			
	a) $\frac{a}{e}$	b)	$\frac{ a-e }{a}$ $\frac{ a-e }{e}$	
	c) $\frac{(e-a)}{e}$	d)	$\frac{ a-e }{e}$.	
iv)	in Trapezoidal rule, the	portion of curve	is replaced by	
	a) straight line	b)	circular path	
	c) parabolic path	d)	none of these.	

CS/B.TECH (ECE/IT/EE (O)/EEE/ICE)/SEM-3/M(CS)-312/08/(09) 4

- v) The error involved in 4 th order R-k method is given by
 - a) $O(h^2)$

b) $O(h^4)$

 $^{\circ}$ c) $O(h^3)$

- d) $O(h^5)$.
- vi) An $n \times n$ matrix A is said to be diagonally dominant if

a)
$$\left| a_{ii} \right| \leq \sum_{\substack{j=1\\i\neq j}}^{n} \left| a_{ij} \right|$$

b)
$$\left| a_{ii} \right| < \sum_{\substack{j=1 \ i \neq j}}^{n} \left| a_{ij} \right|$$

c)
$$\left| a_{ii} \right| > \sum_{\substack{j=1 \ i \neq j}}^{n} \left| a_{ij} \right|$$

d)
$$\left| a_{ii} \right| \ge \sum_{\substack{j=1\\i\neq j}}^{n} \left| a_{ij} \right|.$$

vii) Find the output of the following program:

main()

{

char a, b;

$$a = b'$$
;

$$b = a$$
;

printf("b = $%c\n$ ", b);

}

a) a

b) *b*

c) garbage value

d) none of these.

33502 (10/12)

CS/B.TECH (ECE/TT/EE (0)/EEE/ICE)/SEM-3/M(CS)-312/08/(09) 5

viii) Lagrange's interpolation formula is used for

- a) equispaced arguments only
- b) unequispaced arguments only
- c) both equispaced and unequispaced arguments
- d) none of these.

ix) If f(3) = 5 and f(5) = 3, then the linear interpolation function f(x) is

a) f(x) = 8 - x

- b) f(x) = 8 + x
- c) $f(x) = x^2$
- d) $f(x) = x + x^2 + 8$.

x) If $f(x) = \frac{1}{x}$, the divided difference [a, b, c] is

a) $\frac{1}{a+b+c}$

b) $\frac{1}{aba}$

- c) $\frac{1}{a^2 + b^2}$
- d) $\frac{1}{a+b-c}$.

xi) If $\frac{dy}{dx} = x + y$ and y(1) = 0, then y(1.1) according to Euler's method is

$$[h=0.1]$$

a) 0.1

b) 0.3

c) 0.5

d) 0.9.

xii) Which one of the following results is correct?

a) $\Delta x^n = nx^{n-1}$

b) $\Delta x^{(n)} = nx^{n-1}$

c) $\Delta^n e^x = e^x$

d) $\Delta \cos x = -\sin x$.

xiii) In the method of iteration the function $\phi(x)$ must satisfy

a) $|\phi'(x)| < 1$

b) $| \phi'(x) | > 1$

- c) $|\phi_{x}(x)| = 1$
- d) $| \phi'(x) | = 2$.

CS/B.TECH (ECE/IT/EE (0)/EEE/ICE)/SEM-3/M(CS)-312/08/(09) 6

The inherent error for Simpson's $\frac{1}{3}$ rd rule of integration is as (the notations have their usual meanings)

a)
$$-\frac{nh^5}{180} f''(x_0)$$
 b) $-\frac{nh^5}{140} f^{to}(x_0)$

b)
$$-\frac{nh^5}{140} f^{tv} (x_0)$$

c)
$$-\frac{nh^3}{12} f''(x_0)$$

(Δ – ∇) x^2 is equal to (the notations have their usual meanings)

a)
$$h^2$$

b)
$$-2h^2$$

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

From the following table find the values of f (12) by Newton's divided difference 2. interpolation formula:

x:	11	13	14	18	19	21
f(x):	1342	2210	2758	5850	6878	9282

Solve the following system by Matrix Inversion Method:

$$2x + y + z = 10$$

$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16.$$

4. a) Evaluate the missing terms in the following table:

x :	0	1	2	3	4	5
f(x):	0	_	8	15		35

What is ternary operator? Give an example. b)

Solve by Taylor's series method $\frac{dy}{dx} = 2x + 3y^2$ given y = 0 when x = 0 at , 5. x = 0.2

Using Euler's method obtain the solution of $\frac{dy}{dx} = x - y$, with y(0) = 1 and h = 0.2 at x = 0.4.

CS/B.TECH (ECE/IT/EE (O)/EEE/ICE)/SEM-3/M(CS)-312/08/(09) 7

- . 6. Find the first approximation of the root lying between 0 and 1 of the equation $x^3 + 3x 1 = 0$ by Newton-Raphson formula.
- 7. Find y'(x), y''(x), given

x:	0	1	2	3	4
f(x):	1	1	15	40	85

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

8. a) From the following table, estimate the number of students who obtained marks between 40 and 45:

Marks :	30 - 40	40 - 50	50 - 60	60 - 70	70 – 80
No. of Students :	31	42	51	35	31

b) Using Newton divided difference formula, evaluate f(8) and f(15) given:

X:	4	5	7	10	11	13
f(X):	48	100	294	900	1210	2028

7 + 8

- 9. a) Find the positive real root of $x^3 = 18$ using the bisection method of 4 iterations.
 - b) Find the root of the equation $x^3 + x^2 + x + 7 = 0$ using Regula Falsi method.
 - c) A curve passes through the points as given in the following table. Find the area bounded by the curve, x-axis, x = 1 and x = 9:

x	1	2	3	4	5	6	7	8	9
Y	0.2	0.7	1	1.3	1.5	1.7	1.9	2.1	2.3

5 + 5 + 5

- 10. a) Write a program in C to solve the equation $x^3 3x 5 = 0$ within (1, 2) by Bisection method correct up to 3 places of decimal.
 - b) Write a program in C using recursive function to calculate the sum of all digits of any number.
 8 + 7

33502 (10/12)

CS/B.TECH (ECE/IT/EE (0)/EEE/ICE)/SEM-3/M(CS)-312/08/(09) 8

- 11. a) Evaluate $\int_{0}^{1} xe^{x} dx$ by using Trapezoidal rule taking n = 6.
 - b) Use Lagrange's interpolation formula to find the value of f(x) for x 0, given the following:

x :	- 1	- 2	2	4
f(x):	- 1	- 9	11	69

c) Prove that Newton-Raphson method has a quadratic convergence.

5 + 5 + 5

12. a) Solve the following system of equations by L-U Factorization Method:

$$x_1 + x_2 - x_3 = 2$$

 $2x_1 + 3x_2 + 5x_3 = -3$
 $3x_1 + 2x_2 - 3x_3 = 6$.

b) Solve the following set of equations by Gauss-Seidel method correct to 2 places of decimal:

$$9x - 2y + z = 50$$

 $x + 5y - 3z = 18$
 $-2x + 2y + 7z = 19$.

c) Write a C program to approximate a real root of the following equation :

 $4 * \sin(x) = e^x$ by Bisection method.

5 + 5 + 5

- 13. a) Write a C program to interpolate a given function at a specified argument by Lagrange's interpolation formula.
 - b) Find the value of $\log 2^{1/3}$ from $\int_{0}^{1} \frac{x^{2}}{1+x^{3}} dx$ using Simpson's $\frac{1}{3}$ rd rule with n=4.
 - c) Calculate the approximate value of $\int_{0}^{\pi/2} \sin x \, dx$ by Composite Trapezoidal Rule

by using 11 ordinates. Also compare it with the actual value of the integral.

5 + 5 + 5

END