SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

A State University recognized under Section 2 (f) & 12 (B) of UGC Act of 1956 Soft Computing (CSP 3035) Lab Exam Quiz $\bf AX$ Answer Key

Q.	1	In an MP (McCulloch-Pitts) neuron with inputs[1][1] and weights [0.5, 0.3, 0.4] and threshold $\theta=0.7$, what will be the output?
		 ○ a) 0 ● b) 1 ○ c) 0.9 ○ d) Cannot be determined
$\mathbf{Q}.$	2	Which of the following statements about McCulloch-Pitts neurons is INCORRECT?
		 a) They can implement basic logical functions like AND, OR b) They use binary inputs and outputs c) They can implement XOR function with a single neuron d) They have a fixed threshold value
Q.	3	If a Hebbian learning rule states "neurons that fire together, wire together," which of these weight update equations correctly represents this principle?
		$ \bigcirc a) \ \Delta w_{ij} = \eta(t_i - y_j)x_j \bullet b) \ \Delta w_{ij} = \eta \times x_i \times y_j \bigcirc c) \ \Delta w_{ij} = \eta \times x_i \times (t_i - y_i) \bigcirc d) \ \Delta w_{ij} = \eta \times (t_i - y_i)^2 \times x_i $
Q.	4	A single-layer perceptron has inputs $x = [2, -1, 3]$, weights $w = [0.5, 0.6, -0.3]$, and bias 0.4. What is the net input before applying the activation function?
		 ○ a) 0.5 ○ b) 0.9 ● c) -0.5 ○ d) 1.2
$\mathbf{Q}.$	5	Which of the following is TRUE about perceptron convergence?
		 a) A perceptron will converge for any classification problem b) A perceptron will converge only if the problem is linearly separable c) A perceptron will converge faster with a higher learning rate regardless of the problem d) A perceptron converges only if sigmoid activation is used
$\mathbf{Q}.$	6	How is an Adaline (Adaptive Linear Neuron) different from a Perceptron?
		 a) Adaline uses continuous activation function for learning but threshold function for final output b) Adaline can solve non-linearly separable problems while Perceptron cannot c) Adaline has multiple layers while Perceptron has only one d) Adaline uses the Hebbian learning rule while Perceptron uses delta rule
Q.	7	In Madaline Rule I with OR logic at the output, if the target output is 1 but the actual output is -1, which Adaline units will have their weights updated?
		 a) All Adaline units in the network b) Only the Adaline units with positive Zin values c) Only the Adaline units with negative Zin values d) No Adaline units will have their weights updated
$\mathbf{Q}.$	8	What is the derivative of the sigmoid activation function $f(x) = 1/(1 + e^{-x})$ used during

backpropagation?

		○ a)○ b)○ c)○ d)	$ \begin{array}{l} f'(x) = f(x) \\ f' = (x) = f(x) \times (1 - f(x)) \\ f'(x) = (1 - f(x))^2 \\ f'(x) = -f(x) \times log(f(x)) \end{array} $
Q	. 9		zzy set, an $\alpha - cut$ is defined as?
		● b c	The set of all elements whose membership value is exactly α) The set of all elements whose membership value is greater than or equal to α) The set of all elements whose membership value is less than α) The set of all elements whose membership value is equal to 1
Q.	10	What	is the membership value of an element that completely belongs to a fuzzy set?
		O O O	 a) 0 b) 0.5 c) 1 d) Cannot be determined without additional information
Q.	11	Which	component of a genetic algorithm evaluates the suitability of individuals in a population?
		OOOO	 a) Encoding Mechanism b) Fitness Function c) Crossover operator d) Mutation operator
Q.	12	Zin val	using a Madaline with AND logic at the output layer, if target = 1, output = -1, and lues for the three Adaline units are [0.5, -0.2, -0.6], weights attached to which Zin values updated?
			a) 0.5 only b0.2 and -0.6 only c) 0.5, -0.2 and -0.6 (all of them) d) None of them
Q.	13	Which	genetic operator combines genetic material from two parents?
		OOOO	 a) Mutation b) Crossover c) Selection d) Fitness evaluation
Q.	14	Zin val	using a Madaline with AND logic at the output layer, if target $=$ -1, output $=$ 1, and lues for the three Adaline units are $[0.3, 0.8, -0.5]$, weights attached to which Zin values updated?
		• 0 0	a) 0.3 and 0.8 only b) -0.5 only c) 0.8 only d) All of them
Q.	15	Which	defuzzification method uses the point of maximum membership value?
		OOOO	 a) Centroid b) Bisector c) Mean of maxima d) Weighted average