DATA SCIENCE MODEL EVALUATION METRICS

EVALUATION METRICS 2

Regression:

Root Mean Squared Error

Classification:

- Confusion Matrix
- ROC Curve (and AUC)

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

- Used for regression problems
- Square root of the mean of the squared errors
- Easily interpretable (in the "y" units)
- "Punishes" larger errors

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Example: $y_true = [100, 50, 30]$ $y_preds = [90, 50, 50]$ RMSE = np.sqrt((10**2 + 0**2 + 20**2)/3) = 12.88

Confusion Matrix: table to describe the performance of a classifier

	Actual:	Actual:
n=165	YES	NO
Predicted:		
YES	100	10
Predicted:		
NO	5	50

Example: Test for presence of disease YES = positive test = True = 1 NO = negative test = False = 0

- How many classes are there?
- How many patients?
- How many predictions of disease?
- How many patients actually have the disease?

n=165	Actual: YES	Actual: NO	
Predicted:			
YES	TP = 100	FP = 10	110
Predicted:			
NO	FN = 5	TN = 50	55
	105	60	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

Misclassification Rate (Error Rate):

- Overall, how often is it wrong?
- 1 accuracy = 1 0.91 = 0.09

n=165	Actual: YES	Actual: NO	
	TLS	NO	
Predicted:			
YES	TP = 100	FP = 10	110
Predicted:			
NO	FN = 5	TN = 50	55
	105	60	

Precision:

• *TP / predicted yes = 100/110 = 0.91*

True Positive Rate:

- $TP/actual\ yes = 100/105 = 0.95$
- "sensitivity" or "recall"

False Positive Rate:

• $FP / actual \ no = 10/60 = 0.17$

Specificity:

• 1 - FPR = 1 - 0.17 = 0.83

ROC CURVE / AUC

Email Number	Score	True Label
5	0.93	Spam
8	0.91	Spam
2	0.84	Spam
1	0.6	Ham
7	0.54	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Every email gets a spamminess score.

Choosing a cut-off, this becomes a classification.

How do we choose a cut-off?
How do we evaluate the ranking without choosing a cut-off?

Email Number	Score	True Label
5	0.93	Spam
8	0.91	Spam
2	0.84	Spam
1	0.6	Ham
7	0.54	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

DATA SCIENCE