Partie II: exercice

 μ_2 , are $\mu_2 > \mu_1$, et une variance égale à I. Les probabilités a priori sont notées π_1 et π_2 . On consider an problème de discrimination à deux classes $\Omega = \{\omega_1, \omega_2\}$ et une variable $X \in \mathbb{R}$. On suppose que la variable X suit dans une chaque classe une loi normale avec les espérances μ_1 et Fortes de calculs au brouillon et ne reportez que les grandes lignes du raisonnement et les procession residets intermedianes.

00						***************************************
φ la fonction de	yes €* (on notera	la probabilité c réduite).	onner l'expression littérale de la probabilition de la loi normale centrée-réduite).			

1041