- Topology
 - Definitions:
 - Hausdorff
 - Normal
 - Final topology
 - Initial topology
 - Relative Topology
 - Product Topology
 - Base
 - o Subbase
 - Quotient Topology
 - Regular
 - Finite Intersection Property
 - Totally Bounded
 - Equicontinuous
 - Pointwise totally bounded
 - Locally Compact Hausdorff
 - Nets
 - Convergence(Nets)
 - Theorems/Propositions:
 - Main Theorems:
 - Urysohn's Lemma
 - Tietze Extension Theorem
 - Tychonoff's Theorem
 - Pointwise totally bounded + Equicontinuous implies Totally bounded(Core of Arzela Ascoli)
 - Compactness
 - Compact + Closed implies Compact for Relative Topology
 - Compact + Hausdorff implies Closed
 - Compact + Hausdorff implies Normal
 - Continuous + Compact implies Compact Image
 - Subset of Compact subset of metric space is totally bounded
 - Compact implies Complete
 - Complete + Totally Bounded implies Compact
 - LCH Theorems: Let (X, \mathcal{T}) be LCH.

- If $C\subseteq X$ is compact, there exists $\mathcal O$ with $C\subseteq \mathcal O$ and $\bar{\mathcal O}$ compact.
- If $C\subseteq X$ is compact, $\mathcal O$ open, $C\subseteq \mathcal O$, then there exists U open with $C\subseteq U$, $\bar U$ compact
- If $C\subseteq X$ compact, $\mathcal O$ open, $C\subseteq \mathcal O$, then there exists $f:X\to [0,1]$ continuous with $f|_C=1, f|_{\mathcal O^c}=0.$
- Extras:
 - Any metric space is normal
- Measure Theory/Integration
 - Definitions:
 - Finite Additivity
 - Ring
 - Algebra
 - \bullet σ -ring
 - Countably Additive
 - Pre-ring/Semi-ring
 - Left-continuous
 - Pre-measure
 - Monotone
 - Countably Subadditive
 - Outer Measure
 - Given a family of subsets of $X, \mathcal{F}, \mu^*(A) = \inf\{\sum \mu(F_j) : F_j \in F, A \subseteq \bigcup F_j\}.$
 - Hereditary σ -ring
 - Measurable(Carathedory) Sets
 - Complete Measure
 - A measure ν is complete if given any nullset A in $\mathcal{M}(\nu)$ for any $B \subseteq A$ with $\nu(B) = 0$, $B \in \mathcal{M}(\nu)$.
 - Lebesgue-Stietjes Measure
 - \bullet σ -finite
 - $\begin{tabular}{l} \blacksquare & \mbox{A measure μ on a σ-ring S is σ-finite if, for $E\in\mathcal{S}$, there exists $\{F_j\}_1^\infty$ with $\mu(F_j)<\infty$ and $E\subseteq\bigcup_{j=1}^\infty F_j$.} \end{tabular}$
 - Measure Space
 - Simple measurable *B*-valued function(SMF)
 - Simple μ -integrable function(SIF)
 - *S* measurable
 - Almost Uniform Convergence/Cauchy
 - Convergence/Cauchy in Measure

- Separable Range
 - Contains a countable dense set
 - There exists a sequence $\{x_n\}_{n=1}^{\infty}$ of elements of the space so that every non-empty open-subset of the space contains at least 1 element of the sequence.
- $\|\cdot\|_1 = \int_X \|f\|_B d\mu.$
- Convergence/Cauchy in Mean
- μ -integrable
- $\mathcal{L}^1(X, \mathcal{S}, \mu, B)$ is the set of $\mu integrable$ functions.
- $lacksquare f\in \mathcal{L}^1$, $\int f d\mu = \lim \int f_n d\mu$.
- Carrier, C_f
- lacksquare Indefinite Integral, $\mu_f(E)=\int_E \chi_E f(x) d\mu.$
- Locally *S*-measurable
 - $A \subseteq X$ is locally S measurable if $A \cap E \in S$ whenever $E \in S$.
 - X is locally S measurable if $X \setminus E$ is S-measurable.

Theorems:

- Measure Theory:
 - ullet $\mu_lpha([a,b))=lpha(b)-lpha(a)$ on $\mathcal{P}=\{[a,b):a< b\in\mathbb{R}\}$ is countably additive. [Done]
 - If $\mu:\mathcal{P} o\mathbb{R}^+$ is finitely additive, $E\supseteq\bigoplus_{k=1}^nF_j$, for $E,F_j\in\mathcal{P}$, then $\mu(E)\geq\sum\mu(F_j)$. [Done]
 - If $\mathcal P$ is a semiring and $\mu:\mathcal P\to\mathbb R^+$ is countably additive, then μ is countably subadditive. [Done]
 - μ^* is monotone, countably sub additive [done]
 - If $\mathcal P$ is a semiring, μ a premeasure on $\mathcal P$ is countably additive, μ^* is the corresponding outer measure on $\mathcal H(\mathcal P)$. For $E\in\mathcal P$, $\mu^*(E)=\mu(E)$. [done]
 - $\mathcal{M}(\nu)$ is a σ -ring, and $\nu|_{\mathcal{M}}$ is countably additive. [done]
 - Let (\mathcal{P}, μ) be a premeasure. Let $\mathcal{H}(\mathcal{P})$ have outer measure μ^* . Then $\mathcal{P} \subseteq \mathcal{M}(\mu^*)$. [done]
 - If (\mathcal{P}, μ) is σ -finite, for any σ -ring \mathcal{S} with $\mathcal{S}(\mathcal{P}) \subseteq \mathcal{S} \subseteq \mathcal{M}(\mu^*)$ and any extension μ' of μ , then $\mu'(F) = \mu^*(F)$ for any $F \in \mathcal{S}$. [done]
 - Let (X, \mathcal{S}, μ) be a measure space. Let $\{E_j\} \subseteq \mathcal{S}$ be increasing. If $E = \bigcup^{\infty} E_j$, then $\mu(E) = \lim \mu(E_j)$. [done]
 - Construction of a non-measurable set[done]
- Integration:
 - If f,g are SMF, then f+g is SMF. [done]
 - If f,g are SIF, then f+g is SIF. [done]
 - Properties of $\mathcal{M}(X, \mathcal{S}, B)$ (S measurable functions):
 - Closure under addition and scalar multiplication
 - If $f \in \mathcal{M}(X,\mathcal{S},B)$ and if $h \in \mathcal{M}(X,\mathcal{S},\mathbb{R}/\mathbb{C})$, then $hf \in \mathcal{M}(X,\mathcal{S},B)$.

- If $f \in \mathcal{M}(X, \mathcal{S}, B)$, then the range of f is separable.
- If $\{f_n\}$ are a sequence of functions with separable range, then $f_n \to f$ has separable range.
- Let $\{f_n\}$ be a sequence of B-valued functions on X with the property that for any open set $U \subseteq B$, $f^{-1}(U \setminus \{0\}) \in \mathcal{S}$. Then $f_n \to f$ has this property.
 - Corollary 1. If $f \in \mathcal{M}(X, \mathcal{S}, B)$, then for any open $U \subseteq B$, $f^{-1}(U \setminus \{0\}) \in \mathcal{S}$.
 - lacktriangledown Corollary 2. If f:X o B is the pointwise limit of $\{f_n\}\subseteq \mathscr{M}(X,\mathcal{S},B)$, then $f\in\mathcal{S}.$
- Let (X, \mathcal{S}, B) be given. If $f: X \to B$ has separable range and $f^{-1}(U \setminus \{0\}) \in \mathcal{S}$ for all open $U \subseteq B$, then $f \in \mathcal{M}(X, \mathcal{S}, B)$.
 - Corollary 1. $\mathcal{M}(X, \mathcal{S}, B)$ is "closed" under taking pointwise limits of sequences.
- Egoroff's Theorem: Let (X, \mathcal{S}, μ) be a measure space. Let $\{f_n\}$ be a sequence of B-valued functions. If $\{f_n\}$ converges almost everywhere on $E \in \mathcal{S}$, where $\mu(E) < \infty$, then for every $\epsilon > 0$, there exists $F \subseteq E$ with $\mu(E \setminus F) < \epsilon$ so that $\{f_n\} \to f$ uniformly on F.
- lacksquare If $f_n o f$ almost uniformly on E, then $\{f_n\} o f$ almost everywhere.
- (B-complete)If $\{f_n\}$ is almost uniformly cauchy on $E \in \mathcal{S}$, then there is a function f defined almost everywhere on E such that on $F \subseteq E$ with $\mu(E \setminus F) = 0$ such that $\{f_n\}$ converges almost uniformly on F.
- If $\{f_n\}$ is a sequence of ISF and is cauchy for $\|\cdot\|_1$, then it is Cauchy in measure.
- The Riesz-Weyl Theorem: Let $\{f_n\} \in \mathcal{M}(\mathcal{S}, X, \mu, B)$ that is cauchy in measure. Then there exists a subsequence that is almost uniformly cauchy.
 - Rapidly Cauchy Sequence
 - $\bullet \ E_j = \{x: \|f_{n_{j+1}} f_{n_j}\| > 1/2^j\}.$
 - lacksquare Take $E=igcup C_{f_n}$, $F=E\setminus igcup_{j=j_0}^\infty E_j.$
- $lacksquare ext{If } \{f_n\} \in M o f ext{ almost uniformly on } E ext{, then } \{f_n\} o f ext{ in measure.}$
- If $\{f_n\} o f$ in measure and $\{f_n\} o g$ in measure, then f=g almost everywhere.
- If $\{f_n\}$ is cauchy in measure and a subsequence $\{f_{n_j}\} o f$ in measure, then $\{f_n\} o f$ in measure.
- If f_n,g_n are mean cauchy sequences of ISF with $\|f_n-g_n\|_1 \to 0$, and $f_n \to f$ in measure, then $\{g_n\} \to f$ in measure.
- If $\{f_n\}$, $\{g_n\}$ are mean cauchy sequences of ISF and they both converge to f in meausre, then $\{f_n\}$, $\{g_n\}$ are equivalent.
- If $\{f_n\}$ is a MCS of ISFs then $\{\int f_n d\mu\}$ is a mean cauchy seuquece in B.
- \mathcal{L}^1 is a vector space.
- \mathcal{L}^1 is complete(so, is a Banach space).

- lacksquare Let $f\in \mathcal{L}^1(X,\mathcal{S},\mu,B).$
 - C_f is σ -finite.
 - $lacksquare ext{If } f \in \mathcal{L}^1(\dots,\mathbb{R}), E \in \mathcal{S} ext{ with } X_E \leq f ext{, then } \mu(E) < \infty.$
- If $\{f_n\}\in L^1$ cauchy in mean, then cauchy in measure.
- μ_f is a B-valued measure(finite measure).
- (Strong Absolute Continuity) If $f \in \mathcal{L}^1$, then for any $\epsilon > 0$, there exists $\delta > 0$ with the property that if $\mu(E) < \delta$, $\|\mu_f(E)\| < \epsilon$.
- Lebesgue Dominated Convergence Theorem: Let $\{f_n\} \in \mathcal{L}^1(X,\mathcal{S},\mu,B)$ such that $\{f_n\} \to f$ almost everywhere. If there is a $g \in \mathcal{L}^1(X,S,\mu,\mathbb{R})$ with $\|f_n(x)\| \leq g(x)$ for all x, for all n, then $\{f_n\}$ is mean-cauchy.
- Monotone Convergence Theorem: Let $\{f_n\} \in \mathcal{L}^1(X,S,\mu,\mathbb{R})$ that is monotonically increasing. If there is c so that $\int f_n < c$, for all n, then $\{f_n\}$ is mean cauchy.
- If $f \in \mathcal{M}(X, \mathcal{S}, \mu, \mathbb{R})$, $f \geq 0$. If f is not integrable, set $\int f d\mu = \infty$. If there is $g \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$ such that $\|f(x)\|_B \leq g(x)$ almost everywhere, then $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$.
 - Force the lebesgue
- o Extra:
 - Examples/Counterexamples
 - A mean-cauchy sequence that doesn't converge pointwise for any point on a given measure space.
- L^p spaces
 - o Definitions:
 - L^p space
 - $\blacksquare \| \cdot \|_p$
 - o Theorems:
 - L^p is a vector space.
 - $\|\cdot\|_p$ is a norm for $1 \leq p < \infty$.
 - Young's Inequality
 - Holder's Inequality
 - Minkowski's Inequality
 - Fatou's Lemma
 - L^p is complete.
 - For a ring R that generates S, $ISF(X,R,\mu,B)$ is dense in $L^p(X,S,\mu,B)$ for $1 \le p < \infty$.
 - $C_c(\mathbb{R})$ (compact support) is dense in $L^p(X, \mathcal{S}, \mu, B)$ for $1 \leq p < \infty$.
- Product Measures
 - o Definitions:
 - lacksquare $\mathcal{S}\otimes\mathcal{T}$

- \blacksquare $\mu \otimes \nu$
- Theorems:
 - Tonelli's Theorem
 - Fubini's Theorem