REPORT

Shyam Nandan 20172088

λ is the regularization parameter for the logistic regression but sklearn Inverse of regularization strength 'C'. So, the below plots are produced with different value C.

L1 loss Accuracy on test data with L1 penalty: 95.20% [Parameters - tolerance = 0.1, C = 10]

Observation

As we can from the above plots as the C value increases the weights tend to distribute and in case of 0.01 the solution is sparse which suggests only few elements present in W are taking part in making decision whereas for $C \ge 1$ the weights are more distributed and regularized.

<u>L2 loss</u>
Accuracy on test data with L2 penalty: 96.26%
[Parameters - tolerance = 0.01, C = 0.01]

Observation

From the above plots we can infer that as the value of C increases the weights tend to learn a pattern which becomes prominent for values greater than C>= 1. For higher values of C we do not see any prominent change indicating the elements of weights tends to saturate faster . But, in the case L2 loss we see that the classifier is learning a pattern to classify weights whereas the pattern is not so prominent in L1 loss.