Confidence Intervals

置信区间

Confidence Intervals

For an arbitrary random variable Y and constant c > 0,

$$P[|Y - \mu_Y| \ge c] \le \frac{\mathsf{Var}[Y]}{c^2}.$$

.

$$P[|M_n(X) - \mu_X| < c] \ge 1 - \frac{\text{Var}[X]}{nc^2} = 1 - \alpha$$
 (1)

Equation (10.35) contains two inequalities.

· One inequality,

$$|M_n(X) - \mu_X| < c, (2)$$

defines an event.

- This event states that the sample mean is within $\pm c$ units of the expected value.
- \bullet The length of the interval that defines this event, 2c units, is referred to as a confidence interval.
- The other inequality states that the probability that the sample mean is in the confidence interval is at least 1α .
- We refer to the quantity 1α as the *confidence coefficient*.
- If α is small, we are highly confident that $M_n(X)$ is in the interval $(\mu_X c, \mu_X + c)$.

Example 10.7 Problem

Suppose we perform n independent trials of an experiment and we use the relative frequency $\hat{P}_n(A)$ to estimate P[A]. Find the smallest n such that $\hat{P}_n(A)$ is in a confidence interval of length 0.02 with confidence 0.999.

$$P[|M_n(X) - \mu_X| < c] \ge 1 - \frac{Var[X]}{nc^2} = 1 - \alpha$$

$$P[|\hat{P}_n(A) - P[A]| < c] \ge 1 - \frac{P[A](1 - P[A])}{nc^2}$$
 $p(1 - p) \le 0.25$

Example 10.7 Solution

Recall that $\widehat{P}_n(A)$ is the sample mean of the indicator random variable X_A . Since X_A is Bernoulli with success probability P[A], $E[X_A] = P[A]$ and $Var[X_A] = P[A](1 - P[A])$. Since $E[\widehat{P}_n(A)] = P[A]$, Theorem 10.5(b) says

$$P[|\hat{P}_n(A) - P[A]| < c] \ge 1 - \frac{P[A](1 - P[A])}{nc^2}.$$
 (1)

In Example 10.6, we observed that $p(1-p) \le 0.25$ for $0 \le p \le 1$. Thus $P[A](1-P[A]) \le 1/4$ for any value of P[A] and

$$P[|\widehat{P}_n(A) - P[A]| < c] \ge 1 - \frac{1}{4nc^2}.$$
 (2)

For a confidence interval of length 0.02, we choose c=0.01. We are guaranteed to meet our constraint if

$$1 - \frac{1}{4n(0.01)^2} \ge 0.999. \tag{3}$$

Thus we need $n \ge 2.5 \times 10^6$ trials.

Example 10.8 Problem

Suppose we perform n independent trials of an experiment. For an event A of the experiment, calculate the number of trials needed to guarantee that the probability the relative frequency of A differs from P[A] by more than 10% is less than 0.001.

Example 10.8 Solution

In Example 10.7, we were asked to guarantee that the relative frequency $\widehat{P}_n(A)$ was within c=0.01 of P[A]. This problem is different only in that we require $\widehat{P}_n(A)$ to be within 10% of P[A]. As in Example 10.7, we can apply Theorem 10.5(a) and write

$$P\left[\left|\widehat{P}_n(A) - P\left[A\right]\right| \ge c\right] \le \frac{P\left[A\right]\left(1 - P\left[A\right]\right)}{nc^2}.$$
 (1)

We can ensure that $\widehat{P}_n(A)$ is within 10% of P[A] by choosing $c=0.1\,P[A]$. This yields

$$P\left[\left|\widehat{P}_{n}(A) - P\left[A\right]\right| \ge 0.1 P\left[A\right]\right] \le \frac{(1 - P\left[A\right])}{n(0.1)^{2} P\left[A\right]} \le \frac{100}{n P\left[A\right]},\tag{2}$$

since $P[A] \leq 1$. Thus the number of trials required for the relative frequency to be within a certain percentage of the true probability is inversely proportional to that probability.

Example 10.9 Problem

Theorem 10.5(b) gives rise to statements we hear in the news, such as,

Based on a sample of 1103 potential voters, the percentage of people supporting Candidate Jones is 58% with an accuracy of plus or minus 3 percentage points.

The experiment is to observe a voter at random and determine whether the voter supports Candidate Jones. We assign the value X=1 if the voter supports Candidate Jones and X=0 otherwise. The probability that a random voter supports Jones is $\mathsf{E}[X]=p$. In this case, the data provides an estimate $M_n(X)=0.58$ as an estimate of p. What is the confidence coefficient $1-\alpha$ corresponding to this statement?

Example 10.9 Solution

Since X is a Bernoulli (p) random variable, $\mathsf{E}[X] = p$ and $\mathsf{Var}[X] = p(1-p)$. For c = 0.03, Theorem 10.5(b) says

$$P[|M_n(X) - p| < 0.03] \ge 1 - \frac{p(1-p)}{n(0.03)^2} = 1 - \alpha.$$
(1)

We see that

$$\alpha = \frac{p(1-p)}{n(0.03)^2}. (2)$$

Keep in mind that we have great confidence in our result when α is small. However, since we don't know the actual value of p, we would like to have confidence in our results regardless of the actual value of p. Because $\text{Var}[X] = p(1-p) \leq 0.25$. We conclude that

$$\alpha \le \frac{0.25}{n(0.03)^2} = \frac{277.778}{n}.\tag{3}$$

Thus for n=1103 samples, $\alpha \le 0.25$, or in terms of the confidence coefficient, $1-\alpha \ge 0.75$. This says that our estimate of p is within 3 percentage points of p with a probability of at least $1-\alpha = 0.75$.

Interval Estimates

- A confidence interval estimate of a parameter consists of a range of values and a probability that the parameter is in the stated range.
- If the parameter of interest is r, the estimate consists of random variables A and B, and a number α , with the property

$$P[A \le r \le B] \ge 1 - \alpha. \tag{1}$$

- In this context, B-A is called the *confidence interval* and $1-\alpha$ is the *confidence coefficient*.
- Since A and B are random variables, the confidence interval is random.
- The confidence coefficient is now the probability that the deterministic model parameter r is in the random confidence interval.
- An accurate estimate is reflected in a low value of B-A and a high value of $1-\alpha$.

More on Interval Estimates

- In most practical applications of confidence-interval estimation, the unknown parameter r is the expected value $\mathsf{E}[X]$ of a random variable X and the confidence interval is derived from the sample mean, $M_n(X)$, of data collected in n independent trials.
- In this context, Equation (10.35) can be rearranged to say that for any constant c>0,

$$P[M_n(X) - c < E[X] < M_n(X) + c] \ge 1 - \frac{Var[X]}{nc^2}.$$
 (1)

• In comparing Equations (10.45) and (10.46), we see that

$$A = M_n(X) - c, B = M_n(X) + c, (2)$$

and the confidence interval is the random interval $[M_n(X) - c, M_n(X) + c]$.

• Just as in Theorem 10.5, the confidence coefficient is still $1 - \alpha$, where $\alpha = \text{Var}[X]/(nc^2)$.

Example 10.10 Problem

Suppose X_i is the *i*th independent measurement of the length (in cm) of a board whose actual length is b cm. Each measurement X_i has the form

$$X_i = b + Z_i, \tag{1}$$

where the measurement error Z_i is a random variable with expected value zero and standard deviation $\sigma_Z=1$ cm. Since each measurement is fairly inaccurate, we would like to use $M_n(X)$ to get an accurate confidence interval estimate of the exact board length. How many measurements are needed for a confidence interval estimate of b of length 2c=0.2 cm to have confidence coefficient $1-\alpha=0.99$?

$$P[M_n(X) - c < E[X] < M_n(X) + c] \ge 1 - \frac{Var[X]}{nc^2}$$

$$P[M_n(X) - 0.1 < b < M_n(X) + 0.1] \ge 1 - \frac{1}{n(0.1)^2}$$

Example 10.10 Solution

Since $E[X_i] = b$ and $Var[X_i] = Var[Z] = 1$, Equation (10.46) states

$$P[M_n(X) - 0.1 < b < M_n(X) + 0.1] \ge 1 - \frac{1}{n(0.1)^2} = 1 - \frac{100}{n}.$$
 (1)

Therefore, $P[M_n(X) - 0.1 < b < M_n(X) + 0.1] \ge 0.99$ if $100/n \le 0.01$. This implies we need to make $n \ge 10{,}000$ measurements. We note that it is quite possible that $P[M_n(X) - 0.1 < b < M_n(X) + 0.1]$ is much less than 0.01. However, without knowing more about the probability model of the random errors Z_i , we need 10,000 measurements to achieve the desired confidence.

Theorem 10.14

Let X be a Gaussian (μ,σ) random variable. A confidence interval estimate of μ of the form

$$M_n(X) - c \le \mu \le M_n(X) + c$$

has confidence coefficient $1 - \alpha$, where

$$\alpha/2 = Q(c\sqrt{n}/\sigma) = 1 - \Phi(c\sqrt{n}/\sigma).$$

Proof: Theorem 10.14

We observe that

$$P[M_n(X) - c \le \mu_X \le M_n(X) + c] = P[\mu_X - c \le M_n(X) \le \mu_X + c]$$

$$= P[-c \le M_n(X) - \mu_X \le c]. \tag{1}$$

Since $M_n(X) - \mu$ is the Gaussian $(0, \sigma/\sqrt{n})$ random variable,

$$P[M_n(X) - c \le \mu \le M_n(X) + c] = P\left[\frac{-c}{\sigma/\sqrt{n}} \le \frac{M_n(X) - \mu}{\sigma/\sqrt{n}} \le \frac{c}{\sigma/\sqrt{n}}\right]$$
$$= 1 - 2Q\left(\frac{c\sqrt{n}}{\sigma}\right). \tag{2}$$

Thus $1 - \alpha = 1 - 2Q(c\sqrt{n}/\sigma)$.

Example 10.11 Problem

 Z_i is a random variable with expected value and standard deviation $\sigma_Z=1$ cm.

In Example 10.10, suppose we know that the measurement errors Z_i are iid Gaussian random variables. How many measurements are needed to guarantee that our confidence interval estimate of length 2c=0.2 has confidence coefficient $1-\alpha \geq 0.99$?

$$M_n(X) - c \le \mu \le M_n(X) + c$$

confidence coefficient $1 - \alpha$, where

$$\alpha/2 = Q(c\sqrt{n}/\sigma) = 1 - \Phi(c\sqrt{n}/\sigma)$$

Example 10.11 Solution

As in Example 10.10, we form the interval estimate

$$M_n(X) - 0.1 < b < M_n(X) + 0.1.$$
 (1)

The problem statement requires this interval estimate to have confidence coefficient $1-\alpha \geq 0.99$, implying $\alpha \leq 0.01$. Since each measurement X_i is a Gaussian (b,1) random variable, Theorem 10.14 says that $\alpha = 2Q(0.1\sqrt{n}) \leq 0.01$, or equivalently,

$$Q(\sqrt{n}/10) = 1 - \Phi(\sqrt{n}/10) \le 0.005. \tag{2}$$

In Table 4.2, we observe that $\Phi(x) \geq 0.995$ when $x \geq 2.58$. Therefore, our confidence coefficient condition is satisfied when $\sqrt{n}/10 \geq 2.58$, or $n \geq 666$.

Example 10.12 Problem

Y is a Gaussian random variable with unknown expected value μ but known variance σ_Y^2 . Use $M_n(Y)$ to find a confidence interval estimate of μ_Y with confidence 0.99. If $\sigma_Y^2=10$ and $M_{100}(Y)=33.2$, what is our interval estimate of μ formed from 100 independent samples?

$$P[M_n(Y) - c \le \mu \le M_n(Y) + c] = 1 - \alpha$$

Example 10.12 Solution

With $1 - \alpha = 0.99$, Theorem 10.14 states that

$$P[M_n(Y) - c \le \mu \le M_n(Y) + c] = 1 - \alpha = 0.99, \tag{1}$$

where

$$\alpha/2 = 0.005 = 1 - \Phi\left(\frac{c\sqrt{n}}{\sigma_Y}\right). \tag{2}$$

This implies $\Phi(c\sqrt{n}/\sigma_Y)=0.995$. From Table 4.2, $c=2.58\sigma_Y/\sqrt{n}$. Thus we have the confidence interval estimate

$$M_n(Y) - \frac{2.58\sigma_Y}{\sqrt{n}} \le \mu \le M_n(Y) + \frac{2.58\sigma_Y}{\sqrt{n}}.$$
 (3)

If $\sigma_Y^2 = 10$ and $M_{100}(Y) = 33.2$, our interval estimate for the expected value μ is $32.384 \le \mu \le 34.016$.

Quiz 10.5

X is a Bernoulli random variable with unknown success probability p. Using n independent samples of X and a central limit theorem approximation, find confidence interval estimates of p with confidence levels 0.9 and 0.99. If $M_{100}(X) = 0.4$, what is our interval estimate?

$$M_n(X) - c \le p \le M_n(X) + c$$

confidence coefficient $1 - \alpha$, where

$$\alpha/2 = Q(c\sqrt{n}/\sigma) = 1 - \Phi(c\sqrt{n}/\sigma)$$

Joint Random Variable

Joint Cumulative Distribution Function

Joint cumulative distribution function of random variables X and Y is

$$F_{X,Y}(x,y) = P[X \le x, Y \le y]$$

Properties:

For any pair of random variables, X, Y,

(a)
$$0 \le F_{X,Y}(x,y) \le 1$$
,

(b)
$$F_{X,Y}(\infty,\infty)=1$$
,

(c)
$$F_X(x) = F_{X,Y}(x,\infty)$$
,
(d) $F_Y(y) = F_{X,Y}(\infty,y)$,
(e) $F_{X,Y}(x,-\infty) = 0$,

(d)
$$F_Y(y) = F_{X,Y}(\infty, y)$$
,

(e)
$$F_{X,Y}(x,-\infty) = 0$$
,

(f)
$$F_{X,Y}(-\infty,y)=0$$
,

(g) If
$$x \le x_1$$
 and $y \le y_1$, then

$$F_{X,Y}(x,y) \le F_{X,Y}(x_1,y_1)$$

Joint Probability Mass Function

• Joint probability mass function of discrete random variables X and Y is

$$P_{X,Y}(x,y) = P[X = x, Y = y]$$

• Probability of the event $\{(X,Y) \in B\}$ is

$$P[B] = \sum_{(x,y)\in B} P_{X,Y}(x,y)$$

Marginal probability mass function:

$$P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x,y) \qquad P_Y(y) = \sum_{x \in S_X} P_{X,Y}(x,y)$$

$P_{X,Y}(x,y)$	y = 0	y = 1	y = 2	$P_X(x)$	
x = 0	0.01	0	0	0.01	١
x = 1	0.09	0.09	0	0.18	
x = 2	0	0	0.81	0.81	
$P_Y(y)$	0.10	0.09	0.81		

Joint Probability Density Function

Joint probability density function of continuous random variables X and Y is

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}, \qquad F_{X,Y}(x,y) = \int_{-\infty}^x \int_{-\infty}^y f_{X,Y}(u,v) dv du$$

Properties

(a)
$$f_{X,Y}(x,y) \ge 0$$
 for all (x,y) , (b) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$.

• Probability of the event $\{(X,Y) \in B\}$ is

$$P[B] = \iint_{B} f_{X,Y}(x,y) dx dy$$

 $P[B] = \iint_{B} f_{X,Y}(x,y) dxdy \qquad f_{X,Y}(x,y) = \begin{cases} c & x \ge 0, y \ge 0, x + y \le 1\\ 0 & otherwise \end{cases}$

• Marginal probability density function:
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy \,, \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Independence, Covariance and Correlation

Random variable X and Y are independent if and only if

Discrete:
$$[E]P_{X,Y}(x,y) = P_X(x)P_Y(y)$$

Continuous:
$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
.

Covariance of two random variables X and Y is

$$Cov[X, Y] = E[(X - \mu_X)(Y - \mu_Y)].$$

$$Cov[X,Y] = E[X \cdot Y] - \mu_X \mu_Y$$

Correlation coefficient of two random variables X and Y is

$$\rho_{X,Y} = \frac{\operatorname{Cov}\left[X,Y\right]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}} = \frac{\operatorname{Cov}\left[X,Y\right]}{\sigma_X\sigma_Y}.$$

Correlation of X and Y is

$$r_{X,Y} = E[XY]$$

Cov >0, =0, <0. Independent = uncorrelated ?

Expectation

For random variables X and Y, the expected value of W=g(X,Y) is

Discrete:
$$[E] E[W] = \sum_{x \in S_X} \sum_{y \in S_Y} g(x, y) P_{X,Y}(x, y)$$

Continuous:
$$\mathsf{E}[W] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dx \, dy.$$

Properties

$$\mathsf{E} \, [X+Y] = \mathsf{E} \, [X] + \mathsf{E} \, [Y] \, .$$

$$\mathsf{Var} \, [X+Y] = \mathsf{Var} \, [X] + \mathsf{Var} \, [Y] + 2 \, \mathsf{E} \, [(X-\mu_X)(Y-\mu_Y)] \, .$$

Exercise Problem

Random variables X and Y have the joint PMF

$$P_{X,Y}(x,y) = \begin{cases} cxy & x = 1,2,3,4; y = 1,3\\ 0 & otherwise \end{cases}$$

What is the value of c? 1.

Hint: $\sum_{X,Y} P_{X,Y}(x,y) = 1$

2. What is P[Y < X]? Hint:

3. What is P[Y>X]? Hint:

What is P[Y=X]? 4.

Really? Hint:

5. Find the marginal PMF $P_X(x)$ and $P_Y(y)$.

Hint:

 $P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x,y) \qquad P_Y(y) = \sum_{x \in S_Y} P_{X,Y}(x,y)$

6. Determine if X and Y independent. Justify your answer. Hint:

 $P_{X,Y}(x,y) = P_X(x)P_Y(y)$?

Exercise Problem

Random variables X and Y have the joint PMF

$$P_{X,Y}(x,y) = \begin{cases} cxy & x = 1,2,3,4; y = 1,3\\ 0 & otherwise \end{cases}$$

- 1. Find the expected value of W=Y/X? $\mathbf{E}[W] = \sum_{x \in S_X} \sum_{y \in S_Y} g(x,y) P_{X,Y}(x,y)$
- 2. Find the correlation $r_{X,Y}$ $r_{X,Y} = E[XY]$
- 3. Find covariance Cov[X,Y]. $Cov[X,Y] = E[X \cdot Y] \mu_X \mu_Y$
- 4. Find the correlation coefficient, $\rho_{X,Y}$. $\rho_{X,Y} = \frac{\operatorname{Cov}\left[X,Y\right]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}} = \frac{\operatorname{Cov}\left[X,Y\right]}{\sigma_{X}\sigma_{Y}}.$
- 5. Find the variance Var[X+Y]. Var[X+Y] = Var[X] + Var[Y] + 2Cov(X,Y)

Bivariate Gaussian Random Variables

Random variables X and Y have a bivariate Gaussian probability density function if

$$f_{X,Y}(x,y) = \frac{\exp\left[-\frac{\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - \frac{2\rho_{X,Y}(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2}{2(1-\rho_{X,Y}^2)}\right]}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho_{X,Y}^2}},$$

Probability density function of random variable X and Y

$$f_X(x) = \frac{1}{\sigma_X \sqrt{2\pi}} e^{-(x-\mu_X)^2/2\sigma_X^2}, \qquad f_Y(y) = \frac{1}{\sigma_Y \sqrt{2\pi}} e^{-(y-\mu_Y)^2/2\sigma_Y^2}.$$

Linear combination of Gaussian distribution is still a Gaussian distribution