1

明細書

レジスト組成物、積層体、及びレジストパターン形成方法

技術分野

本発明は、支持体上にレジストパターンを形成した後、前記レジストパターン上に、水溶性ポリマーを含有する水溶性被覆形成剤からなる水溶性被覆を設け、前記水溶性被覆を加熱して収縮させることによって、前記レジストパターンの間隔を狭小させるシュリンクプロセスを行うレジストパターン形成方法において好適に用いられるレジスト組成物、前記レジスト組成物を用いた積層体及びレジストパターン形成方法に関する。

本願は、2003年7月9日に出願された特願2003-194256号に対し優先権を主張し、その内容をここに援用する。

背景技術

近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩により急速に微細化が進んでいる。微細化の手法としては一般に露光光源の短波長化が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザ(248nm)が導入され、さらに、ArFエキシマレーザ(193nm)が導入され始めている。

微細な寸法のパターンを再現可能な高解像性の条件を満たすレジスト材料の1 つとして、酸の作用によりアルカリ可溶性が変化するベース樹脂と、露光により 酸を発生する酸発生剤を有機溶剤に溶解した化学増幅型レジスト組成物が知られ ている(例えば、特許文献1参照)。

KrFエキシマレーザーリソグラフィーにおいては、化学増幅型レジストのベース樹脂として、KrFエキシマレーザー(248nm)に対する透明性が高いポリヒドロキシスチレンやその水酸基を酸解離性の溶解抑制基で保護したものが一般的に用いられてきた。しかし、これらの樹脂は193nm付近における透明性が不十分である。

そのため、現在、様々な組成のArF用レジストが提案されており、その中で最も一般的な<math>ArF用レジストのベース樹脂として、193nm付近の透明性が高い(メタ)アクリル樹脂が知られている。

一方、近年、微細化の速度がますます加速するなかで、最近では、100nm 以下のラインアンドスペース、さらには70nm以下のアイソレートパターンを 形成可能な解像度が求められる。そのため、レジスト材料の面からの超微細化対 応策に加え、パターン形成方法の面からも、レジスト材料のもつ解像度の限界を 超える技術の研究・開発が行われている。

そのような微細化技術の1つとして、最近、通常のリソグラフィー技術によりレジストパターンを形成した後、前記レジストパターンに熱処理を行い、パターンサイズを微細化するサーマルフロープロセスが提案されている。サーマルフローは、ホトリソグラフィー技術により一旦レジストパターンを形成した後、レジストを加熱し、軟化させ、パターンの隙間方向にフローさせることにより、レジストパターンのパターンサイズ、つまり、レジストが形成されていない部分のサイズ(ホールパターンの孔径やラインアンドスペース(L&S)パターンのスペース幅など)を小さくする方法である。

例えば特許文献2では、基板上にレジストパターンを形成した後、熱処理を行い、レジストパターンの断面形状を矩形から半円状へと変形させ底辺長を増大させることにより、微細なパターンを形成する方法が開示されている。

また特許文献3では、レジストパターンを形成した後、その軟化点の前後に加熱し、レジストの流動化によりそのパターンサイズを変化させて微細なパターンを形成する方法が開示されている。

また特許文献4、5には、上記サーマルフロープロセスとは異なり、加熱により水溶性樹脂を収縮(シュリンク)させ、微細パターンを形成する方法が開示されている。

特許文献1:特開2002-162745号公報

特許文献2:特開平1-307228号公報

特許文献3:特開平4-364021号公報

特許文献4:特開平2003-107752号公報

特許文献5:特開平2003-142381号公報

しかしながら、このようなサーマルフロープロセスにおいては、現像後の加熱によりレジストをフローさせるため、レジストパターン側壁の断面形状が崩れて 垂直性(矩形性)が悪化するという問題があった。

シュリンクプロセスは、レジストをフローさせないので、サーマルフロープロセス等に比べ、矩形性が良好なレジストパターンを得ることができる。しかしこれまでシュリンクプロセスで用いられているレジストは、i線やKrFレジストであり、ArFレジストに用いられるようなメタアクリル酸エステル単位から誘導される構成単位を主単位として含む樹脂を用いたレジストに使用するとその長所であるレジストパターンの微細化が困難であった。

よって、本発明は、レジストパターンを形成した後に加熱等の処理を行うことにより前記レジストパターンを狭小させるシュリンクプロセスにおいて、良好なレジストパターンを形成することができるレジスト組成物、前記レジスト組成物を用いた積層体及びレジストパターン形成方法を提供することを課題とする。

発明の開示

本発明者らは、レジストパターンの微細解像性をより向上させるために検討を 行った結果、特定の範囲内のTgを有する(メタ)アクリル樹脂をベース樹脂と して含有するレジスト組成物を用いることにより、その目的が達成されることを 見出し、本発明を完成させた。

すなわち、前記課題を解決する本発明の第1の態様は、支持体上に、レジスト組成物からなるレジスト層を設け、前記レジスト層にレジストパターンを形成した後、前記レジストパターン上に、水溶性ポリマーを含有する水溶性被覆形成剤からなる水溶性被覆を設け、前記水溶性被覆を加熱して収縮させることによって、前記レジストパターンの間隔を狭小させるシュリンクプロセスに用いられる、酸の作用によりアルカリ可溶性が変化する樹脂成分(A)と、露光により酸を発生する酸発生剤成分(B)とを含むレジスト組成物であって、

前記(A)成分が、(メタ)アクリル酸エステルから誘導される構成単位を含有 し、かつ120~170℃の範囲内のガラス転移温度を有する樹脂 4

であるレジスト組成物である。

前記課題を解決する本発明の第2の態様は、支持体上に、前記第1の発明のレジスト組成物から形成されるレジストパターンと水溶性ポリマーを含有する水溶性被覆形成剤からなる水溶性被覆とが積層されている積層体である。

前記課題を解決する本発明の第3の態様は、支持体上に、レジスト組成物からなるレジスト層を設け、前記レジスト層にレジストパターンを形成した後、前記レジストパターン上に、水溶性ポリマーを含有する水溶性被覆形成剤からなる水溶性被覆を設け、前記水溶性被覆を加熱して収縮させることによって、前記レジストパターンの間隔を狭小させるシュリンクプロセスを行うレジストパターン形成方法であって、前記レジスト組成物として、前記第1の態様のレジスト組成物を用いるレジストパターン形成方法である。

発明を実施するための最良の形態

以下、本発明の実施形態を説明する。

本明細書中、「(メタ) アクリル酸」とは、メタクリル酸とアクリル酸の総称である。「(メタ) アクリレート」とは、メタクリレートとアクリレートの総称である。「構成単位」とは、重合体を構成するモノマー単位を示す。「(メタ) アクリル酸エステルから誘導される構成単位」を(メタ) アクリレート構成単位ということがある。「ラクトン単位」とは、単環又は多環式のラクトンから1個の水素原子を除いた基である。

≪シュリンクプロセスを行うレジストパターン形成方法、及び積層体≫

上述のような、サーマルフロープロセスにおける矩形性の問題に対し、本出願人は、支持体上にレジストパターンを形成した後、前記レジストパターン上に水溶性被覆を形成し、前記水溶性被覆を加熱処理することによって収縮(シュリンク)させ、その熱収縮作用を利用してレジストパターンのサイズを狭小せしめるシュリンクプロセスを提案している(特許文献4、特願2002-080517等)。

シュリンクプロセスは、レジストパターンを水溶性被覆で被覆した後、加熱処

理により前記水溶性被覆を熱収縮させ、その熱収縮作用によりレジストパターン間の間隔を狭小させる方法である。

サーマルフロープロセスにおいては、レジストをフローさせるので、矩形性が 悪化するという問題のほかに、同一基板上に複数のパターンを形成した際のパタ ーンとパターンとの間隔(ピッチ)の違いによって、各パターンの狭小量が異な り、得られるパターンサイズが同一基板上で異なるという、狭小量のピッチ依存 性の問題などがある。しかし、シュリンクプロセスは、レジストをフローさせな いので、サーマルフロープロセス等に比べ、矩形性が良好なレジストパターンを 得ることができる。ピッチ依存性も良好である。

本発明のレジスト組成物は、このような、レジストパターン形成後にシュリン クプロセスを行うレジストパターン形成方法、及び支持体上に、レジスト組成物 から形成されるレジストパターンと、水溶性ポリマーを含有する水溶性被覆形成 剤からなる水溶性被覆が積層されている積層体において好適に用いられる

シュリンクプロセスを行うレジストパターン形成方法は、例えば以下のように して行うことができる。

まず、シリコンウェーハのような支持体上に、レジスト組成物をスピンナーなどで塗布し、 $80\sim150$ $\mathbb C$ の温度条件下、プレベークを $40\sim120$ 秒間、好ましくは $60\sim90$ 秒間施し、レジスト膜を形成する。これに例えばArF露光装置などにより、ArFエキシマレーザー光を所望のマスクパターンを介して選択的に露光した後、 $80\sim150$ $\mathbb C$ の温度条件下、PEB(露光後加熱 post exposure baking)を $40\sim120$ 秒間、好ましくは $60\sim90$ 秒間施す。次いでこれをアルカリ現像液、例えば $0.05\sim10$ 質量%、好ましくは $0.05\sim3$ 質量%のテトラメチルアンモニウムヒドロキシド水溶液を用いて現像処理する。このようにして、マスクパターンに忠実なレジストパターンを得ることができる。

支持体としては、特に限定されず、従来公知のものを用いることができ、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたものなどを例示することができる。

基板としては、例えばシリコンウェーハ、銅、クロム、鉄、アルミニウムなど の金属製の基板や、ガラス基板などが挙げられる。 配線パターンの材料としては、例えば銅、ハンダ、クロム、アルミニウム、ニッケル、金などが使用可能である。

支持体とレジスト組成物の塗布層との間には、有機系または無機系の反射防止膜を設けることもできる。

露光に使用する光源としては、特にArFxキシマレーザーに有用であるが、それより長波長のKrFxキシマレーザーや、それより短波長の F_2 レーザー、EUV (極紫外線)、VUV (真空紫外線)、電子線、X線、軟X線などの放射線に対しても有効である。

次いで、レジストパターンの現像後に、レジストパターンのパターンサイズを 狭小するシュリンクプロセスを行う。

シュリンクプロセスでは、まず、支持体上に形成されたレジストパターン上に、 水溶性ポリマー等を含む水溶性被覆形成剤を塗布し、好ましくはレジストパター ン全体の表面上に水溶性被覆を形成して積層体を形成する。

水溶性被覆形成剤を塗布した後に、80~100℃の温度で30~90秒間、 支持体にプリベークを施してもよい。

塗布方法は、レジスト層等を形成するために従来用いられている公知の方法に 従って行うことができる。すなわち、例えばスピンナー等により、上記被覆形成 剤の水溶液をレジストパターン上に塗布する。

水溶性被覆の厚さとしては、ホトレジストパターンの高さと同程度あるいはそれを覆う程度の高さが好ましく、通常、0.1~0.5μm程度が適当である。

次いで、得られた積層体に対して熱処理を行って、水溶性被覆を熱収縮させる。 この水溶性被覆の熱収縮作用により、前記水溶性被覆に接するレジストパターン の側壁同士が互いに引き寄せられ、レジストパターン中のレジストのない部分(パ ターン間)の間隔が狭められる。その結果、パターンの微小化を行うことができ る。

シュリンクプロセスにおいて、加熱処理は、水溶性被覆が収縮する温度であって、従来のサーマルフロープロセスにおけるレジストが熱流動を起さない加熱温度及び加熱時間で行う。

加熱温度は、支持体上に形成したレジストパターンが、加熱処理により自発的

に流動(フロー)し始める温度(流動化温度)よりも $3\sim50$ \mathbb{C} 、好ましくは $5\sim30$ \mathbb{C} 程度低い温度の範囲で加熱するのが好ましい。さらに、水溶性被覆のシュリンク力も考慮すると、好ましい加熱処理は、通常、好ましくは $80\sim160$ \mathbb{C} 程度、より好ましくは $130\sim160$ \mathbb{C} 程度の温度範囲である。

レジストパターンの流動化温度は、レジスト組成物に含まれる成分の種類や配合量によってそれぞれ異なる。

加熱時間は、加熱温度によっても変わるが、通常、30~90秒間程度である。 この後、パターン上に残留する水溶性被覆は、水系溶剤、好ましくは純水によ り10~60秒間洗浄することにより除去する。水溶性被覆は、水での洗浄除去 が容易であり、支持体及びレジストパターン上から完全に除去することができる。 本発明のレジストパターン形成方法及び積層体においては、上述のようなレジ ストパターン形成方法及び積層体において、以下に説明する本発明のレジスト組

≪レジスト組成物≫

成物を用いる。

本発明のレジスト組成物は、(A) 成分と(B) 成分とを含み、(A) 成分が、(メタ) アクリレート構成単位を含有し、かつ120~170℃の範囲内のガラス転移温度を有するものであれば、ネガ型であってもポジ型であってもよい。

(A) 成分がアルカリ可溶性樹脂と架橋剤を含有する場合はいわゆるネガ型であり、(A) 成分がアルカリ可溶性となり得る樹脂を含有する場合はいわゆるポジ型のレジスト組成物である。本発明のレジスト組成物は、好ましくはポジ型である。

ネガ型の場合、レジストパターン形成時に露光により(B)成分から酸が発生すると、前記酸が作用して、(A)成分と架橋剤間で架橋が起こり、アルカリ不溶性となる。前記架橋剤としては、例えば、通常は、メチロール基又はアルコキシメチル基を有するメラミン、尿素又はグリコールウリルなどのアミノ系架橋剤が用いられる。

·(A) 成分

本発明は、前記(A)成分として、(メタ)アクリレート構成単位を含有し、か

WO 2005/006078 PCT/JP2004/009997

8

つ、 $120\sim170$ \mathbb{C} 、好ましくは $130\sim160$ \mathbb{C} 、さらに好ましくは $140\sim160$ \mathbb{C} の範囲内のガラス転移温度(\mathbb{T}_g)を有する樹脂を用いる。

Tgがこのような温度の樹脂を含む本発明のレジスト組成物は、上述のようなシュリンクプロセス用として好適である。このようなTgの範囲を越える樹脂やTgより低い温度の分解点を有する樹脂も適用できない。

Tgが12.0~170℃の樹脂が、シュリンクプロセス用として好適である理由としては、以下のことが考えられる。

すなわち、一般に、レジスト組成物を用いてレジストパターンを形成する際には、プレベークや露光後加熱(PEB)が行われている。プレベーク時には、レジスト組成物中に含まれる有機溶媒等を揮発させてレジスト層を成膜するため、80~150℃程度の温度で加熱する必要がある。PEB時には、(B)成分から十分な量の酸を発生させるために、80~150℃程度の温度で加熱する必要がある。しかし、ベース樹脂のTgが120℃未満であると、前記ベース樹脂を含むレジスト組成物を用いて得られるレジストは、流動化温度が低く、耐熱性が低下してしまう。そのため、プレベークやPEB時の加熱によって、レジストが柔らかくなってしまうため、矩形性の良好なレジストパターンが形成できないと考えられる。したがって、矩形性の良好なレジストパターンを形成することが困難であると考えられる。

一方、シュリンクプロセスは、レジストパターン上に積層した水溶性被覆を収縮させることにより、レジストパターンを引っ張って、パターンサイズを狭小させる方法である。レジストを引っ張って移動させるためには、レジストを、フローしない程度に軟化させる必要がある。そのため、シュリンクプロセスにおいては、レジストの流動化温度よりもわずかに低い程度の温度の加熱処理を行うことが望ましい。そのため、レジストの流動化温度が高いほど、加熱処理温度も高くなる。

しかし、水溶性被覆に含まれる水溶性ポリマーの耐熱性の上限は170℃程度であるため、それより高い温度で加熱すると、シュリンク力が低下したり、均一に収縮しなくなったり、自己架橋してしまう。その結果、パターンサイズを十分に狭小させることができなくなったり、同一基板内に形成された複数のレジスト

パターンの狭小量にむらが生じて均一な形状とならなかったり、水洗により水溶性被覆を除去した後、その一部がレジストパターン上に残ってしまうなどの問題が生じる。

本発明者らが検討したところ、従来よりArF用レジストのベース樹脂として 用いられているメタアクリル酸エステル単位から誘導される構成単位を主単位と して含む樹脂、すなわちメタアクリル酸エステル単位から誘導される構成単位8 0モル%以上の(メタ)アクリル樹脂は、170を超え~200℃程度の温度に 加熱すると熱分解してしまい、レジストパターンの形状が悪化することがわかっ た。

これに対し、本発明では、Tgが170℃以下の樹脂を用いるので、(A)成分を含むレジスト組成物を用いて得られるレジストがフローを生じることなく軟化する温度範囲が、水溶性被覆のシュリンク力が発揮される温度範囲と重なるようになる。そのため、矩形性の良好なレジストパターンを形成するためのシュリンクプロセス用として好適であると考えられる。

ベース樹脂の熱分解も生じないので、ベース樹脂の熱分解に伴うレジスト層の 膜減りなども生じず、レジストパターン形状がさらに良好なものとなる。

- (A) 成分においては、(メタ) アクリレート構成単位を好ましくは10~100 モル%、より好ましくは40~100 モル%含むことが望ましく、特に、1000 モル%含むことが好ましい。これにより、1000 スェアに適したレジストが得られる。
- (A)成分のTgを120~170Cの範囲内に調節する手段としては、例えば、大別して、以下の(1)及び(2)の方法が挙げられる。
- (1)(A)成分におけるアクリレート構成単位とメタクリレート構成単位との比率を調節する方法。(2)(メタ)アクリレート構成単位の側鎖を選択する方法。
- (1) アクリレート構成単位とメタクリレート構成単位との比率を調節する方法 樹脂中に含有されるメタクリレート構成単位の比率を高くするほど、前記樹脂 のTgを高くすることができ、一方、アクリレート構成単位の比率が高くするほ ど、前記樹脂のTgを低くすることができる。

したがって、アクリレート構成単位と、メタクリレート構成単位の両方を、所

望のTgとなる比率で含有させることにより、(A)成分を調製することができる。

(A) 成分中のアクリレート構成単位とメタクリレート構成単位の比率は、Tgが $120\sim170$ $^{\circ}$ Cの範囲内となる組み合わせで含まれていればその形態は特に限定されない。

Tgを $120\sim170$ $\mathbb C$ の範囲内とするためのアクリレート構成単位:メタクリレート構成単位の比率(モル比)は、側鎖の種類等によってもTgは変化するが、(A) 成分中のアクリレート構成単位:メタクリレート構成単位の比率(モル比)は、 $40\sim70:60\sim30$ 、より好ましくは $40\sim60:60\sim40$ である。アクリレート構成単位 100%でもよい。

上述のような(A)成分として、より具体的には、例えば以下の様な形態を挙げることができる。

- (i) アクリレート構成単位と、メタクリレート構成単位の両方を有する共重 合体(A1)、
- (i i) 前記共重合体(A1)と、アクリレート構成単位とメタクリレート構成単位の一方を有し、他方を有さない重合体とを含む混合樹脂(A2-1)、又はアクリレート構成単位を含み、かつメタクリレート構成単位を含まない重合体と、メタクリレート構成単位を含み、かつアクリレート構成単位を含まない重合体とを含む混合樹脂(A2-2)のいずれか一方の混合樹脂(A2)。

混合樹脂(A2)が、アクリレート構成単位のみからなる重合体とメタクリレート構成単位のみからなる重合体との混合樹脂であると、Tgを調節しやすいという利点がある。この場合、アクリレート構成単位からなる重合体:メタクリレート構成単位からなる重合体(質量比)は、側鎖の種類によってもTgは変化するが、好ましくは80~20:20~80、より好ましくは40~60:60~40である。

共重合体(A1)、混合樹脂(A2)としては、それぞれ、種類の異なる構成単位を2種以上組み合わせたものであってもよい。

- (2) (メタ) アクリレート構成単位の側鎖を選択する方法
 - (A) 成分を構成する (メタ) アクリレート構成単位の側鎖を選択することに

よってもTgを調節することができる。

例えば、側鎖として後述するようなラクトン単位を有する(メタ)アクリレート構成単位を含む樹脂の場合、そのラクトン単位の種類によってTgが変化する。例えば、(メタ)アクリル酸の γープチロラクトンエステルから誘導される (メタ)アクリレート構成単位 (以下、GBL構成単位という)からなる樹脂と、(メタ)アクリル酸のノルボルナンラクトンエステルから誘導される (メタ)アクリレート構成単位 (以下、NL構成単位という)からなる樹脂とでは、前者のTgのほうが、後者のTgよりも低くなる。

したがって、例えば、Tgを低下させたい場合には、(A)成分を構成する樹脂に、GBL構成単位を導入することにより、(A)成分のTgを低下することができる。

逆に、Tgを高くしたい場合には、(A)成分を構成する樹脂に、NL構成単位を導入することにより、(A)成分のTgを高くすることができる。

- (A) 成分は、GBL構成単位とNL構成単位の両方を含む樹脂を含有していてもよい。この場合、(A) 成分中のGBL構成単位:NL構成単位との比率(重量比)は、(A) 成分中のメタクリレート構成単位とアクリレート構成単位との比率や他の構成単位の種類等によっても異なるが、好ましくは80:20~20:80、より好ましくは40:60~60:40である。このような比率とすると、
 - (A) 成分のTgを120~170℃の範囲内に調節しやすく、好ましい。

ヒドロキシエチルメタクリレートのような鎖状(メタ)クリル酸エステルはTgを下げる単位であるので、この単位を適宜導入することによってもTgを調整できる。

(A) 成分中のGBL構成単位及びNL構成単位の割合は、他の構成単位とのバランスを考慮して、後述の構成単位(a2)の範囲内とする。

このような樹脂としては、例えば、GBL構成単位を含み、かつNL構成単位を含まない重合体と、NL構成単位を含み、かつGBL構成単位を含まない重合体とを含む混合樹脂(A-3)を挙げることができる。

当然のことながら、上述した(1)と(2)の方法を両方組み合わせて(A)成分を調製することも可能である。

本発明のレジスト組成物は、上述したように、好ましくはポジ型である。ポジ型の場合、(A)成分はいわゆる酸解離性溶解抑制基を有するアルカリ不溶性のものであり、露光により(B)成分から酸が発生すると、前記酸が前記酸解離性溶解抑制基を解離させることによりアルカリ可溶性となる。

ポジ型の場合、(A)成分は、具体的には、例えば以下の構成単位(a 1)を含む樹脂が好ましい。

(a 1):酸解離性溶解抑制基を有する(メタ)アクリレート構成単位。

この樹脂は、さらに、任意に下記構成単位(a2)~(a4)を含んでいてもよい。

(a2):ラクトン単位を有する(メタ)アクリレート構成単位。

(a3): 水酸基を有する (メタ) アクリレート構成単位。

(a4):前記構成単位(a1)~(a3)以外の他の構成単位。

[構成単位 (a 1)]

構成単位(a1)の酸解離性溶解抑制基は、露光前の(A)成分全体をアルカリ不溶とするアルカリ溶解抑制性を有すると同時に、露光後に酸発生剤から発生した酸の作用により解離し、この(A)成分全体をアルカリ可溶性へ変化させる基である。

酸解離性溶解抑制基としては、例えばArFエキシマレーザーのレジスト組成物用の樹脂において、多数提案されているものの中から適宜選択して用いることができる。一般的には、(メタ)アクリル酸のカルボキシル基と環状又は鎖状の第3級アルキルエステルを形成するものが広く知られている。

構成単位(a1)としては、特に、脂肪族多環式基を含有する酸解離性溶解抑制基を含む構成単位を含むことが好ましい。脂肪族多環式基としては、ArFレジストにおいて、多数提案されているものの中から適宜選択して用いることができる。例えば、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどから1個の水素原子を除いた基などを例示できる。

具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、 テトラシクロドデカンなどのポリシクロアルカンから1個の水素原子を除いた基 などが挙げられる。

これらの中でもアダマンタンから1個の水素原子を除いたアダマンチル基、ノルボルナンから1個の水素原子を除いたノルボルニル基、テトラシクロドデカンから1個の水素原子を除いたテトラシクロドデカニル基が工業上好ましい。

具体的には、構成単位(a1)が、以下の一般式(I)、(II)又は(III) から選択される少なくとも1種であると好ましい。

(式中、Rは水素原子又はメチル基、R¹は低級アルキル基である。)

$$\begin{pmatrix} C \\ H_2 \\ O \\ R^3 \end{pmatrix} = \begin{pmatrix} R^2 \\ & & & \\ & & \\ & & & \\ &$$

(式中、Rは水素原子又はメチル基、 R^2 及び R^3 はそれぞれ独立して低級アルキル基である。)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$$

(式中、Rは水素原子又はメチル基、R⁴は第3級アルキル基である。)

式(I)中、R¹としては、炭素数1~5の低級の直鎖又は分岐状のアルキル 基が好ましく、メチル基、エチル基、プロピル基、イソプロピル基、nーブチル 基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル 基などが挙げられる。中でも、炭素数2以上、好ましくは2~5のアルキル基が 好ましく、この場合、メチル基の場合に比べて酸解離性が高くなる傾向がある。 工業的にはメチル基又はエチル基が好ましい。

式(II)中、 R^2 及び R^3 は、それぞれ独立に、好ましくは炭素数 $1\sim 5$ の低級アルキル基であると好ましい。このような基は、2-メチルー2-アダマンチル基より酸解離性が高くなる傾向がある。

より具体的には、 R^2 、 R^3 は、それぞれ独立して、上記 R^1 と同様の低級の直鎖状又は分岐状のアルキル基が挙げられる。中でも、 R^2 、 R^3 が共にメチル基である場合が工業的に好ましい。

式(III)中、R⁴は、tertーブチル基や tert-アミル基のような第3級アルキル基であり、tertーブチル基である場合が工業的に好ましい。

基一COOR⁴は、式中に示したテトラシクロドデカニル基の3又は4の位置に結合していてよいが、異性体として共に含まれるのでこれ以上は特定できない。 (メタ) アクリレート構成単位のカルボキシル基残基は、テトラシクロドデカニル基の8又は9の位置に結合していてよいが、上記と同様に、異性体として共に含まれるので特定できない。

構成単位(a 1)は、(A)成分の全構成単位の合計に対して20~60モル%、 好ましくは30~50モル%含まれていることが望ましい。下限値以上とするこ とにより、ポジ型レジスト組成物として用いたときに、ポリマーの溶解性が酸の 作用によって変化しやすく解像性に優れる。上限値をこえると他の構成単位との バランス等の点からレジストパターンと基板との密着性が劣化するおそれがある。

[構成単位 (a 2)]

ラクトン単位、つまり単環又は多環式のラクトンから水素原子1つを除いた基 は極性基であるため、構成単位(a2)は、(A)成分をポジ型レジスト組成物と して用いたときに、レジスト膜と基板の密着性を高めたり、現像液との親水性を 高めたりするために有効である。

構成単位(a2)は、このようなラクトン単位を備えていれば特に限定するものではないが、前記ラクトン単位が、以下の一般式(IV)又は(V)から選択される少なくとも1種であると好ましい。

前記構成単位(a2)として、さらに具体的には、例えば以下の構造式で表される(メタ)アクリレート構成単位が挙げられる。

· · · (i)

(式中、Rは水素原子又はメチル基である。)

· · · (ii)

(式中、Rは水素原子又はメチル基である。)

· • • (iii)

(式中、Rは水素原子又はメチル基である。)

$$\begin{pmatrix} C \\ H_2 \\ O \end{pmatrix} = \begin{pmatrix} C \\ C \\ H_2 \\ O \end{pmatrix}$$

 $\cdot \cdot \cdot (iv)$

(式中、Rは水素原子又はメチル基、mは0又は1である。)

これらの中でも、 α 炭素にエステル結合を有する (メタ) アクリル酸の γ –ブ チロラクトンエステル (一般式 (ii)) 又はノルボルナンラクトンエステル (一般 式 (i)) が、特に工業上入手しやすく好ましい。

構成単位(a2)は、(A)成分を構成する全構成単位の合計に対して、20~60モル%、より好ましくは30~50モル%含まれていると好ましい。下限値より小さいと、解像性が低下し、上限値をこえるとレジスト溶剤に溶けにくくな

るおそれがある。

[構成単位 (a 3)]

前記構成単位(a3)は水酸基を含有するため、構成単位(a3)を用いることにより、(A)成分全体の現像液との親水性が高まり、露光部におけるアルカリ溶解性が向上する。したがって、構成単位(a3)は解像性の向上に寄与する。

構成単位(a3)としては、例えばArFエキシマレーザーのレジスト組成物用の樹脂において、多数提案されているものの中から適宜選択して用いることができ、例えば水酸基含有脂肪族多環式基を含むことが好ましい。

脂肪族多環式基としては、前記構成単位 (a 1) の説明において例示したもの と同様の多数の脂肪族多環式基から適宜選択して用いることができる。

具体的に、構成単位(a3)としては、水酸基含有アダマンチル基(水酸基の数は好ましくは $1\sim3$ 、さらに好ましくは1である。)や、カルボキシル基含有テトラシクロドデカニル基(カルボキシル基の数は好ましくは $1\sim3$ 、さらに好ましくは1である。)を有するものが好ましく用いられる。

特に、水酸基含有アダマンチル基が好ましく用いられる。具体的には、構成単位(a3)が、以下の一般式(VI)で表される構成単位であると、耐ドライエッチング性が上昇し、パターン断面形状の垂直性を高める効果を有するため、レジストパターン形状がさらに向上し、好ましい。

(式中、Rは水素原子又はメチル基である。)

構成単位(a3)は、他の構成単位のバランスの点等から、(A)成分を構成する全構成単位の合計に対して、5~50モル%、好ましくは10~40モル%含まれていると好ましい。

[構成単位 (a 4)]

構成単位(a4)は、上述の構成単位(a1)~(a3)に分類されない他の構成単位であれば特に限定するものではない。すなわち酸解離性溶解抑制基、ラクトン単位、水酸基を含有しないものであればよい。例えば脂肪族多環式基を有する(メタ)アクリレート構成単位などが好ましい。この様な構成単位を用いると、ポジ型レジスト組成物用として用いたときに、孤立パターンからセミデンスパターン(ライン幅1に対してスペース幅が1.2~2のラインアンドスペースパターン)の解像性に優れ、好ましい。

脂肪族多環式基は、例えば、前記の構成単位(a1)の場合に例示したものと同様のものを例示することができ、ArFポジ型レジスト材料やKrFポジ型レジスト材料等として従来から知られている多数のものが使用可能である。

特にトリシクロデカニル基、アダマンチル基、テトラシクロドデカニル基から 選ばれる少なくとも1種以上であると、工業上入手し易いなどの点で好ましい。

これら構成単位(a4)として、具体的には、下記式(VII)~(IX)の構造のものを例示することができる。

(式中Rは水素原子又はメチル基である)

(式中Rは水素原子又はメチル基である)

(式中Rは水素原子又はメチル基である)

構成単位(a4)は、(A)成分を構成する全構成単位の合計に対して、1~30 モル%、好ましくは5~20モル%含まれていると、孤立パターンからセミデンスパターンの解像性に優れ、好ましい。

(A) 成分の構成単位は、構成単位 (a 1) に対し構成単位 (a 2) \sim (a 4) を用途等によって適宜選択して組み合わせて用いてよく、特に、構成単位 (a 1) \sim (a 3) を全て含むものが、耐エッチング性、解像性、レジスト膜と基板との密着性などから好ましい。

例えば、構成単位(a1)~(a3)を含む三元系の場合は、構成単位(a1)は全構成単位中20~60モル%、好ましくは30~50モル%とし、構成単位(a2)は全構成単位中20~60モル%、好ましくは30~50モル%、(a3)

は全構成単位中5~50モル%、好ましくは10~40モル%とすると、耐エッチング性、解像性、密着性、レジストパターン形状の点で好ましい。

用途等に応じて構成単位(a1)~(a4)以外の構成単位を組み合わせて用いることも可能である。

さらに詳しくは、(A) 成分は、構成単位として、アクリレート構成単位と、メタクリレート構成単位の一方あるいは両方を含むものであり、解像度、レジストパターン形状などの点から、以下の共重合体(イ)、(ロ) 及びそれらの混合樹脂が好ましい。

上付文字aはアクリレート構成単位、上付文字mはメタクリレート構成単位を示す。

共重合体(イ):酸解離性溶解抑制基を有するアクリレート構成単位(a 1 ª)、ラクトン単位を有するアクリレート構成単位(a 2 ª)及び水酸基含有基を有するアクリレート構成単位(a 3 ª)を含む共重合体

構成単位(a 1 °) と構成単位(a 2 °) と構成単位(a 3 °) の比率(モル比)を、20~60:20~60:10~40、より好ましくは30~50:30~50:20~40とすると、共重合体(イ)のTgが100~140℃となり、好ましい。

共重合体(ロ):酸解離性溶解抑制基を有するメタクリレート構成単位(a 1 m)、ラクトン単位を有するメタクリレート構成単位(a 2 m)及び水酸基含有基を有するアクリレート構成単位(a 3 m)を含む共重合体

構成単位(a 1 m) と構成単位(a 2 m) と構成単位(a 3 a) の比率(モル比)を、20~60:20~60:10~40、より好ましくは30~50:30~50:10~30とすると、共重合体(ロ)のTgが120~180℃となり、好ましい。

特に、共重合体(イ)及び(ロ)の混合樹脂の場合、共重合体(イ)及び(ロ)の混合比率(質量比)は、特に制限はないが、80~20:20~80、より好ましくは40~60:60~40とすると、シュリンクプロセスと好適なTgの範囲が得られるので好ましい。

この混合樹脂においては、共重合体(イ)及び(ロ)のラクトン単位のうち、

WO 2005/006078 PCT/JP2004/009997

22

一方が γ ープチロラクトンから誘導される基であり、他方がノルボルナンラクトンから誘導される基であることが、耐エッチング性に優れる点で好ましい。

(A) 成分の質量平均分子量(Mw)(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算)は、特に限定するものではないが、好ましくは5000~30000、さらに好ましくは7000~15000とされる。この範囲よりも大きいとレジスト溶剤への溶解性が悪くなり、小さいとレジストパターン断面形状が悪くなるおそれがある。

Mw/数平均分子量 (Mn) は、特に限定するものではないが、好ましくは $1.0\sim6.0$ 、さらに好ましくは $1.5\sim2.5$ である。この範囲よりも大きいと解像性、パターン形状が劣化するおそれがある。

なお(A)成分は、前記構成単位(a1)~(a4)にそれぞれ相当するモノマー等を、アゾビスイソブチロニトリル(AIBN)のようなラジカル重合開始剤を用いる公知のラジカル重合等により容易に製造することができる。

·(B) 成分

- (B) 成分としては、従来化学増幅型レジストにおける酸発生剤として公知の ものの中から任意のものを適宜選択して用いることができる。
- (B) 成分の具体例としては、ジフェニルヨードニウムトリフルオロメタンスルホネート、(4ーメトキシフェニル)フェニルヨードニウムトリフルオロメタンスルホネート、ビス (pーtertーブチルフェニル) ヨードニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、(4ーメトキシフェニル)ジフェニルスルホニウムトリフルオロブタンスルホネート、(4ーメチルフェニル)ジフェニルスルホニウムノナフルオロブタンスルホネート、(pーtertーブチルフェニル)ジフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロブタンスルホネート、ビス (pーtertーブチルフェニル) ヨードニウムノナフルオロブタンスルホネート、ビス (pーtertーブチルフェニル) ヨードニウムノナフルオロブタンスルホネートなどのオニウム塩などを挙げることができる。これらのなかでもフッ素化アルキルスルホン酸イオンをアニオンとするスルホニム塩が好ましい。

(B) 成分は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 その配合量は、(A) 成分100質量部に対し、0.5~30質量部、好ましくは1~10質量部とされる。0.5質量部未満ではパターン形成が十分に行われないし、30質量部を超えると均一な溶液が得られにくく、保存安定性が低下する原因となるおそれがある。

本発明のレジスト組成物は、前記(A)成分と前記(B)成分と、後述する任意の成分を、好ましくは有機溶剤に溶解させて製造する。

有機溶剤としては、前記(A)成分と前記(B)成分を溶解し、均一な溶液とすることができるものであればよく、従来化学増幅型レジストの溶剤として公知のものの中から任意のものを1種又は2種以上適宜選択して用いることができる。

例えば、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2ーヘプタノンなどのケトン類や、エチレングリコール、エチレングリコールをノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジプロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール、又はジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル又はモノフェニルエーテルなどの多価アルコール類及びその誘導体や、ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類などを挙げることができる。これらの有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。

特に、プロピレングリコールモノメチルエーテルアセテート(PGMEA)と、プロピレングリコールモノメチルエーテル(PGME)、乳酸エチル(EL)、γーブチロラクトン等のヒドロキシ基やラクトンを有する極性溶剤との混合溶剤は、レジスト組成物の保存安定性が向上するため、好ましい。溶剤の使用量は特に限定されないが、基板等に塗布可能な濃度とされる。例えば、本発明ポジ型レジスト組成物を構成する固形分(溶剤(C)を取り去ったとき固体として残る成分を2~20質量%、更には3~15質量%の範囲で含む量が好ましい。

本発明のレジスト組成物においては、レジストパターン形状、引き置き経時安定性(post exposure stability of the latent image formed by the pattern wise exposure of the resist layer)などを向上させるために、さらに任意の成分として含窒素有機化合物を配合させることができる。この含窒素有機化合物は、既に多種多様なものが提案されているので、公知のものから任意に用いればよいが、第2級低級脂肪族アミンや第3級低級脂肪族アミンが好ましい。

ここで低級脂肪族アミンとは炭素数5以下のアルキルまたはアルキルアルコールのアミンを言い、この第2級や第3級アミンの例としては、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジーnープロピルアミン、トリーnープロピルアミン、トリペンチルアミン、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミンなどが挙げられるが、特にトリエタノールアミンのようなアルカノールアミンが好ましい。

これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 これらのアミンは、(A) 成分に対して、通常 0.01~2質量%の範囲で用い られる。

前記含窒素有機化合物の配合による感度劣化を防ぎ、またレジストパターン形状、引き置き安定性、感度調整等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキン酸若しくはその誘導体を含有させることができる。含窒素有機化合物とこれらの酸成分は併用することもできるし、いずれか1種を用いることもできる。

有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、 安息香酸、サリチル酸などが好適である。

リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ・n・ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルのような誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸・ジ・n・ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸及びそれらのエステルのような誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルのような誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。

WO 2005/006078 PCT/JP2004/009997

25

これらの酸成分は、(A) 成分100質量部当り0.01~5.0質量部の割合で用いられる。

本発明のレジスト組成物には、さらに所望により混和性のある添加剤、例えば レジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面 活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤などを添加 含有させることができる。

≪水溶性被覆形成剤≫

本発明に用いられる水溶性被覆形成剤は、水溶性ポリマーを含有する。

このような水溶性ポリマーを含有する水溶性被覆形成剤は、シュリンクプロセス用として好適に用いられる。

水溶性ポリマーとしては、特に、工業上の点から、アクリル系重合体、ビニル 系重合体、セルロース系誘導体、アルキレングリコール系重合体、尿素系重合体、 メラミン系重合体、エポキシ系重合体、アミド系重合体から、上述のようなモノ マーを構成単位として含む重合体を選択して用いることが好ましい。

アクリル系重合体とは、アクリル系モノマーを含有する重合体を意味し、ビニル系重合体とは、ビニル系モノマーを含有する重合体を意味し、セルロース系重合体とは、セルロース系モノマーを含有する重合体を意味し、アルキレングリコール系重合体とは、アルキレングリコール系モノマーを含有する重合体を意味し、メラミン系重合体とは、メラミン系を含有する重合体を意味し、メラミン系重合体とは、メラミン系モノマーを含有する重合体を意味し、エポキシ系重合体とは、エポキシ系モノマーを含有する重合体を意味し、アミド系重合体とは、アミド系モノマーを含有する重合体を意味し、アミド系重合体とは、アミド系モノマーを含有する重合体を意味する。

これらの重合体は、単独で用いても、2種以上を混合して用いてもよい。

アクリル系重合体としては、例えば、アクリル酸、アクリルアミド、アクリル酸メチル、メタクリル酸、メタクリル酸メチル、N, Nージメチルアクリルアミド、N, Nージメチルアミノプロピルメタクリルアミド、N, Nージメチルアミノプロピルアクリルアミド、Nージメチルアミノエチルメタクリレート、N, Nージエチルアミノ

エチルメタクリレート、N, Nージメチルアミノエチルアクリレート、アクリロイルモルホリン等のモノマーから誘導される構成単位を有する重合体または共重合体が挙げられる。

ビニル系重合体としては、例えば、モルフォリン、Nービニルピロリドン、ビニルイミダブリジノン、酢酸ビニル等のモノマーから誘導される構成単位を有する重合体または共重合体が挙げられる。

セルロース系誘導体としては、例えばヒドロキシプロピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースへキサヒドロフタレート、ヒドロキシプロピルメチルセルロース、チルセルロースアセテートサクシネート、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロール、セルロールアセテートへキサヒドロフタレート、カルボキシメチルセルロース、エチルセルロース、メチルセルロース等が挙げられる。

アルキレングリコール系重合体としては、例えば、エチレングリコール、プロピレングリコール等のモノマーの付加重合体または付加共重合体などが挙げられる。

尿素系重合体としては、例えば、メチロール化尿素、ジメチロール化尿素、エチレン尿素等のモノマーから誘導される構成単位を有するものが挙げられる。

メラミン系重合体としては、例えば、メトキシメチル化メラミン、メトキシメ チル化イソブトキシメチル化メラミン、メトキシエチル化メラミン等のモノマー から誘導される構成単位を有するものが挙げられる。

さらに、エポキシ系重合体、ナイロン系重合体などの中で水溶性のものも用いることができる。

中でも、アルキレングリコール系重合体、セルロース系重合体、ビニル系重合体、アクリル系重合体の中から選ばれる少なくとも1種を含む構成とするのが好ましく、特には、pH調整が容易であるという点からアクリル系重合体が最も好ましい。さらには、アクリル系モノマーと、アクリル系モノマー以外のモノマーとの共重合体とすることが、加熱処理時にホトレジストパターンの形状を維持しつつ、ホトレジストパターンサイズを効率よく狭小させることができるという点

WO 2005/006078 PCT/JP2004/009997

27

から好ましい。

特に、加熱時の収縮の割合が大きいことから、プロトン供与性を有するモノマーとしてNービニルピロリドン、プロトン受容性を有するモノマーとしてアクリル酸を含む水溶性ポリマーが好ましい。すなわち、水溶性ポリマーが、アクリル酸から誘導される構成単位とビニルピロリドンから誘導される構成単位とを有するものであることが好ましい。

水溶性ポリマーは、共重合体として用いる場合、構成成分の配合比は特に限定 されるものでないが、混合物として用いる場合、特に経時安定性を重視するなら、 アクリル系重合体の配合比を、それ以外の他の構成重合体よりも多くすることが 好ましい。経時安定性の向上は、アクリル系重合体を上記のように過多に配合す る以外に、pートルエンスルホン酸、ドデシルベンゼンスルホン酸等の酸性化合 物を添加することにより解決することも可能である。

水溶性被覆形成剤としては、さらに、界面活性剤を含むことが好ましい。界面 活性剤としては、特に限定されるものでないが、上記水溶性ポリマーに添加した 際、溶解性が高く、懸濁を発生せず、ポリマー成分に対する相溶性がある、等の 特性が必要である。このような特性を満たす界面活性剤を用いることにより、水 溶性被覆形成剤をレジストパターン上に塗布する際の気泡(マイクロフォーム) 発生と関係があるとされる、ディフェクトの発生を効果的に防止することができ る。

具体的には、Nーアルキルピロリドン系界面活性剤、第4級アンモニウム塩系 界面活性剤、およびポリオキシエチレンのリン酸エステル系界面活性剤の中から 選ばれる少なくとも1種が好ましく用いられる。

Nーアルキルピロリドン系界面活性剤としては、下記一般式(X)で表される ものが好ましい。

(式中、R²¹は炭素原子数6以上のアルキル基を示す)

前記Nーアルキルピロリドン系界面活性剤として、具体的には、Nーへキシルー2ーピロリドン、Nーペプチルー2ーピロリドン、Nーオクチルー2ーピロリドン、Nーデシルー2ーピロリドン、Nーデシルー2ーピロリドン、Nーデシルー2ーピロリドン、Nーデシルー2ーピロリドン、Nードデシルー2ーピロリドン、Nードデシルー2ーピロリドン、Nードデシルー2ーピロリドン、Nートリデシルー2ーピロリドン、Nーテトラデシルー2ーピロリドン、Nーペンタデシルー2ーピロリドン、Nーペナクデシルー2ーピロリドン、Nーペプタデシルー2ーピロリドン、Nーオクタデシルー2ーピロリドン等が挙げられる。中でもNーオクチルー2ーピロリドン(「SURFADONE LP100」; ISP社製)が好ましく用いられる。

第4級アンモニウム系界面活性剤としては、下記一般式(XI)で表されるものが好ましい。

[式中、 R^{22} 、 R^{23} 、 R^{24} 、 R^{25} はそれぞれ独立にアルキル基またはヒドロキシアルキル基を示し(ただし、そのうちの少なくとも1つは炭素原子数 6 以上のアルキル基またはヒドロキシアルキル基を示す); X^- は水酸化物イオンまたはハロゲンイオンを示す〕

前記第4級アンモニウム系界面活性剤として、具体的には、ドデシルトリメチ

ルアンモニウムヒドロキシド、トリデシルトリメチルアンモニウムヒドロキシド、 テトラデシルトリメチルアンモニウムヒドロキシド、ペンタデシルトリメチルア ンモニウムヒドロキシド、ヘキサデシルトリメチルアンモニウムヒドロキシド、 ヘプタデシルトリメチルアンモニウムヒドロキシド、オクタデシルトリメチルア ンモニウムヒドロキシド等が挙げられる。中でも、ヘキサデシルトリメチルアン モニウムヒドロキシドが好ましく用いられる。

ポリオキシエチレンのリン酸エステル系界面活性剤としては、下記一般式(XII)で示されるものが好ましい。

$$R^{26}O$$
— $(CH_2CH_2O)_n$ P
OH
OH
(XII)

(式中、 R^{26} は炭素原子数 $1\sim10$ のアルキル基またはアルキルアリル基を示し; R^{27} は水素原子または(CH_2CH_2O) R^{26} (ここで R^{26} は上記で定義したとおり)を示し; nは $1\sim20$ の整数を示す)

前記ポリオキシエチレンのリン酸エステル系界面活性剤としては、具体的には「プライサーフA212E」、「プライサーフA210G」(以上、いずれも第一工業製薬(株)製)等として市販されているものを好適に用いることができる。

界面活性剤の配合量は、水溶性被覆形成剤の総固形分に対して0.1~10質量%程度とするのが好ましく、特には0.2~2質量%程度である。上記配合量範囲を外れた場合、塗布性の悪化に起因する、面内均一性の低下に伴うパターンの収縮率のバラツキ、あるいはマイクロフォームと呼ばれる塗布時に発生する気泡に因果関係が深いと考えられるディフェクトの発生といった問題が生じるおそれがある。

水溶性被覆形成剤には、不純物発生防止、pH調整等の点から、所望により、 さらに水溶性アミンを配合してもよい。

前記水溶性アミンとしては、25 \mathbb{C} の水溶液における p K a (酸解離定数) が 7. $5 \sim 13$ のアミン類が挙げられる。具体的には、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2-(2-r) (2-r) ストキシ)

WO 2005/006078 PCT/JP2004/009997

エタノール、N, Nージメチルエタノールアミン、N, Nージエチルエタノールアミン、N, Nージブチルエタノールアミン、Nーメチルエタノールアミン、Nーエチルエタノールアミン、Nープチルエタノールアミン、Nーメチルジエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン等のアルカノールアミン類;ジエチレントリアミン、トリエチレンテトラミン、プロピレンジアミン、N, Nージエチルエチレンジアミン、1, 4ーブタンジアミン、Nーエチルーエチレンジアミン、1, 2ープロパンジアミン、1, 3ープロパンジアミン、1, 6ーへキサンジアミン等のポリアルキレンポリアミン類;2ーエチルーへキシルアミン、ジオクチルアミン、トリブチルアミン、トリプロピルアミン、トリアリルアミン、ベプチルアミン、シクロへキシルアミン等の脂肪族アミン;ベンジルアミン、ジフェニルアミン等の芳香族アミン類;ピペラジン、Nーメチルーピペラジン、メチルーピペラジン、ヒドロキシエチルピペラジン等の環状アミン類等が挙げられる。中でも、沸点140℃以上(760mmHg)のものが好ましく、例えばモノエタノールアミン、トリエタノールアミン等が好ましく用いられる。

水溶性アミンを配合する場合、水溶性被覆形成剤の総固形分に対して0.1~30質量%程度の割合で配合するのが好ましく、特には2~15質量%程度である。0.1質量%未満では経時による液の劣化が生じるおそれがあり、一方、30質量%超ではホトレジストパターンの形状悪化を生じるおそれがある。

また水溶性被覆形成剤には、ホトレジストパターンサイズの微細化、ディフェクトの発生抑制などの点から、所望により、さらに非アミン系水溶性有機溶媒を配合してもよい。

前記非アミン系水溶性有機溶媒としては、水と混和性のある非アミン系有機溶媒であればよく、例えばジメチルスルホキシド等のスルホキシド類;ジメチルスルホン、ジエチルスルホン、ビス(2ーヒドロキシエチル)スルホン、テトラメチレンスルホン等のスルホン類; N, Nージメチルホルムアミド、Nーメチルホルムアミド、N, Nージメチルアセトアミド、Nーメチルアセトアミド、N, Nージエチルアセトアミド等のアミド類; Nーメチルー2ーピロリドン、Nーエチルー2ーピロリドン、Nープロピルー2ーピロリドン、Nーヒドロキシメチルー

2ーピロリドン、Nーヒドロキシエチルー2ーピロリドン等のラクタム類; 1,3ージメチルー2ーイミダゾリジノン、1,3ージエチルー2ーイミダゾリジノン類; エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、アセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、グロピレングリコール、プロピレングリコール・プロピレングリコール、2,3ーブチレングリコール等の多価アルコール類およびその誘導体が挙げられる。中でも、ホトレジストパターンサイズの微細化、ディフェクト発生抑制の点から多価アルコール類およびその誘導体が好ましく用いられる。非アミン系水溶性有機溶媒は1種または2種以上を用いることができる。

非アミン系水溶性有機溶媒を配合する場合、水溶性ポリマーに対して0.1~30質量%程度の割合で配合するのが好ましく、特には0.5~15質量%程度である。上記配合量が0.1質量%未満ではディフェクト低減効果が低くなりがちであり、一方、30質量%超ではホトレジストパターンとの間でミキシング層を形成しがちとなり、好ましくない。

水溶性被覆形成剤は、3~50質量%濃度の水溶液として用いるのが好ましく、5~20質量%濃度の水溶液として用いるのが特に好ましい。濃度が3質量%未満では基板への被覆不良となるおそれがあり、一方、50質量%超では、濃度を高めたことに見合う効果の向上が認められず、取扱い性の点からも好ましくない。

水溶性被覆形成剤は、上記したように溶媒として水を用いた水溶液として通常 用いられるが、水とアルコール系溶媒との混合溶媒を用いることもできる。アル コール系溶媒としては、例えばメチルアルコール、エチルアルコール、プロピル アルコール、イソプロピルアルコール等の1価アルコール等が挙げられる。これ らのアルコール系溶媒は、水に対して30質量%程度を上限として混合して用い られる。

この様な構成により得られる水溶性被覆形成剤を、シュリンクプロセスを行う レジストパターン形成方法に用いて得られるレジストパターンの形状は、矩形性 の良好なものである。同一基板内に形成された複数のレジストパターンを形成す る際に、狭小量のばらつきによって生じる形状のむらが少なく、均一なパターン サイズのレジストパターンを形成することができる。

実施例

. 次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例に よって限定されるものではない。配合量は特記しない限り質量%である。

実施例1

2-xチルー2-yダマンチルアクリレート/一般式 (i) のノルボルナンラクトンアクリレート (Rは水素原子) /一般式 (VI) の3-ヒドロキシー1-アダマンチルアクリレート (Rは水素原子) (30/50/20 (モル比)) の混合物 0.25 モルを、500 m 1 のメチルエチルケトン (MEK) に溶解し、これにAIBNO.01 mo1 を加えて溶解した。得られた溶液を、 $65\sim70$ でに加熱し、この温度を3時間維持した。その後、得られた反応液を、よく撹拌したイソプロパノール3 L中に注ぎ、析出した固形物を300 m 1 のMEKに溶解し、よく撹拌したメタノール3 L中に注ぎ、析出した固形物を300 m 1 のMEKに溶解し、よく撹拌したメタノール3 L中に注ぎ、析出した固形物を300 m 1 のMEKに溶解し、よく撹拌したメタノール3 L中に注ぎ、析出した固形物を300 m 1 のMEKに溶解し、乾燥させて、質量平均分子量 (Mw) = 10000、Mw/Mn = 2.0、Tg = 約130 100 の樹脂 X を得た。

2-メチルー2-アダマンチルメタクリレート/一般式(iii)の $\gamma-$ ブチロラクトンメタクリレート(Rはメチル基)/一般式(VI)の3-ヒドロキシー1-アダマンチルアクリレート(Rは水素原子)(40/40/20(モル比))の混合物 0.25 モルを用い、同様にして、質量平均分子量(Mw)=1000、Mw/Mn=1.8、<math>Tg=約170 Cの樹脂 Y を得た。

樹脂Xと樹脂Yを50:50 (質量比)で混合し、Tg=約150℃の混合樹・脂((A) 成分)を得た。

得られた混合樹脂 100 質量部に、トリフェニルスルホニウムノナフルオロブタンスルホン酸塩((B) 成分)3.0 質量部、トリエタノールアミン0.15 質量部、PGMEA: EL(1:1)の混合溶媒 900 質量部を加えて溶解させ、これを孔径0.05 μ mのフィルターでろ過を行い、ポジ型レジスト組成物を調製した。

得られたレジスト組成物をスピンナーを用いてシリコンウェーハ上に塗布し、ホットプレート上で115℃、90秒間プレベークし、乾燥することにより、膜厚350nmのレジスト層を形成した。

ついで、ArF露光装置NSR-S302 (ニコン社製; NA (開口数) = 0. 60, σ = 0. 75) により、ArFエキシマレーザー(193nm)を、マスクパターンを介して選択的に照射した。

100℃、90秒間の条件でPEB処理し、さらに23℃にて2.38質量% テトラメチルアンモニウムヒドロキシド水溶液で60秒間パドル現像し、その後 20秒間水洗して乾燥した。

このホトレジストパターンの形成により、孔径140nmのホールパターンを 形成した。

次に、このホールパターン上に、アクリル酸とビニルピロリドンのコポリマー (アクリル酸:ビニルピロリドン=2:1 (質量比)) 10g、トリエタノールアミン0.9g およびN-アルキルピロリドン系界面活性剤として「SURFADONE LP100」(ISP社製) 0.02gを純水に溶解し、全体の固形分濃度を8.0質量%とした水溶性被覆を塗布して積層体とした。積層体の水溶性被覆の膜厚(基板表面からの高さ)は200nmであった。この積層体に対し、145℃で60秒間加熱処理(シュリンクプロセス)を行った。続いて23℃で純水を用いて水溶性被覆を除去した。

その結果、ホールパターンは、現像直後の垂直性の高い断面形状を維持したまま約20nm狭小し、矩形性の良好な孔径120nmのホールパターンが得られた。

同一基板内に形成された複数のホールパターンはいずれも、形状や孔径にバラッキのない均一なものであった。

実施例2

次いで、PEBを90℃に変えた以外は、実施例1と同様にレジストパターンを形成し、孔径140nmのホールパターンを得た。

最後に、実施例1と同様に水溶性被覆を設けたシュリンクプロセスを行ったところ、垂直性の高い断面形状を維持したまま約20nm狭小し、矩形性の良好な孔径120nmのホールパターンが得られた。同一基板内に形成された複数のホールパターンはいずれも、形状や孔径にバラツキのない均一なものであった。

比較例1

実施例1の混合樹脂に代えて、2ーメチルー2ーアダマンチルメタクリレート /一般式(iii)の γープチロラクトンメタクリレート(Rはメチル基)/一般式(VI)の3ーヒドロキシー1ーアダマンチルメタクリレート(Rはメチル基)(40/40/20(モル比))の混合物0.25モルを用い、実施例1と同様にして得られた、質量平均分子量(Mw)=10000、Mw/Mn=2.0、前記樹脂のTgは、2ーメチルー2ーアダマンチルメタクリレートが175℃で分解してしまうため、測定できなかった。この樹脂を用いた以外は実施例1と同様にして、露光から現像まで行い孔径140nmのホールパターンを形成した。

次いで、実施例1と同様にして、同様のシュリンクプロセスを行った。

その結果、145℃の加熱温度では、レジストパターンのパターン間隔が狭小 しなかった。

これは、加熱温度がTgよりもかなり低かったので、レジストが硬いままであ

り、水溶性被覆によるシュリンク力では、レジストパターンのパターン間隔を狭 小させることができなかったためと考えられる。

比較例2

加熱温度を145℃から165℃に変更した以外は比較例1と同様の操作を行った。その結果、水溶性被覆はシュリンクしなかった。これに加えて、純水による水溶性被覆の除去操作後に、水溶性被覆の一部が基板上に残っていた。

これは、加熱温度が高いため、水溶性被覆の自己架橋が生じてしまったためと考えられる。

これらの結果から、ベース樹脂として、(メタ) アクリル酸エステルから誘導される構成単位を含有し、かつ120~170℃の範囲内のガラス転移温度を有する樹脂を含むレジスト組成物を用いることにより、シュリンクプロセスにおいて、矩形性の良好なレジストパターンを形成できることは明らかである。このレジスト組成物を用いると、得られるレジストパターンは、水溶性被覆の残存がない、形状の良好なものである。このレジスト組成物を用いると、同一基板内に複数のレジストパターンを形成した際のピッチ依存性も小さく、同一基板内の複数のパターンを、狭小量にバラツキなく、均一に形成することができる。

産業上の利用の可能性

以上述べたように、本発明においては、レジストパターンを形成した後に加熱 等の処理を行うことにより前記レジストパターンを狭小させるシュリンクプロセ スにおいて、良好なレジストパターンを形成することができ、本発明は産業上き わめて有効である。

請求の範囲

1. 支持体上に、レジスト組成物からなるレジスト層を設け、前記レジスト層に レジストパターンを形成した後、前記レジストパターン上に、水溶性ポリマーを 含有する水溶性被覆形成剤からなる水溶性被覆を設け、前記水溶性被覆を加熱し て収縮させることによって、前記レジストパターンの間隔を狭小させるシュリン クプロセスに用いられる、酸の作用によりアルカリ可溶性が変化する樹脂成分 (A)と、露光により酸を発生する酸発生剤成分(B)とを含むレジスト組成物・ であって、

前記 (A) 成分が、(メタ) アクリル酸エステルから誘導される構成単位を含有し、かつ $120\sim170$ $\mathbb C$ の範囲内のガラス転移温度を有する樹脂であるレジスト組成物。

- 2. 前記(A)成分が、アクリル酸エステルから誘導される構成単位と、メタクリル酸エステルから誘導される構成単位の両方を有する請求項1記載のレジスト組成物。
- 3. 前記(A)成分が、アクリル酸エステルから誘導される構成単位と、メタクリル酸エステルから誘導される構成単位の両方を有する共重合体を含む請求項1記載のレジスト組成物。
- 4. 前記(A)成分が、

アクリル酸エステルから誘導される構成単位とメタクリル酸エステルから誘導される構成単位の両方を有する重合体と、アクリル酸エステルから誘導される構成単位とメタクリル酸エステルから誘導される構成単位の一方を有し、他方を有さない重合体とを含む混合樹脂、又は

アクリル酸エステルから誘導される構成単位を含み、かつメタクリル酸エステルから誘導される構成単位を含まない重合体と、メタクリル酸エステルから誘導

される構成単位を含み、かつアクリル酸エステルから誘導される構成単位を含まない重合体とを含む混合樹脂のいずれか一方である請求項1に記載のレジスト組成物。

5. 前記(A)成分が、

酸解離性溶解抑制基を有するアクリル酸エステルから誘導される構成単位(a 1 ª)、ラクトン単位を有するアクリル酸エステルから誘導される構成単位(a 2 ª)及び水酸基含有基を有するアクリル酸エステルから誘導される構成単位(a 3 ª)を含む共重合体(イ)と、

酸解離性溶解抑制基を有するメタクリル酸エステルから誘導される構成単位 (a 1 ^m)、ラクトン単位を有するメタクリル酸エステルから誘導される構成単位 (a 2 ^m) 及び水酸基含有基を有するアクリル酸エステルから誘導される構成単位 (a 3 ^a) を含む共重合体 (ロ) との混合樹脂を含む請求項4に記載のレジスト組成物。

6. 前記(A)成分が、

(メタ) アクリル酸の γーブチロラクトンエステルから誘導される (メタ) アクリレート構成単位を含み、かつ (メタ) アクリル酸のノルボルナンラクトンエステルから誘導される (メタ) アクリレート構成単位を含まない重合体と、

(メタ) アクリル酸のノルボルナンラクトンエステルから誘導される(メタ) アクリレート構成単位を含み、かつ(メタ) アクリル酸の γーブチロラクトンエステルから誘導される (メタ) アクリレート構成単位を含まない重合体とを含む 混合樹脂である請求項1に記載のレジスト組成物。

- 7. 前記(B)成分が、フッ素化アルキルスルホン酸イオンをアニオンとする オニウム塩である請求項1に記載のレジスト組成物。
- 8. さらに、含窒素有機化合物を含む請求項1に記載のレジスト組成物。

WO 2005/006078 PCT/JP2004/009997

38

- 9. 支持体上に、請求項1に記載のレジスト組成物から形成されるレジストパターンと、水溶性ポリマーを含有する水溶性被覆形成剤からなる水溶性被覆とが 積層されている積層体。
- 10. 支持体上に、レジスト組成物からなるレジスト層を設け、前記レジスト層にレジストパターンを形成した後、前記レジストパターン上に、水溶性ポリマーを含有する水溶性被覆形成剤からなる水溶性被覆を設け、前記水溶性被覆を加熱して収縮させることによって、前記レジストパターンの間隔を狭小させるシュリンクプロセスを行うレジストパターン形成方法であって、

前記レジスト組成物として、請求項1に記載のレジスト組成物を用いるレジストパターン形成方法。

- 11. 前記水溶性ポリマーが、アクリル系重合体、ビニル系重合体、セルロース系誘導体、アルキレングリコール系重合体、尿素系重合体、メラミン系重合体、エポキシ系重合体、アミド系重合体からなる群から選択される少なくとも1種である請求項10記載のレジストパターン形成方法。
- 12. 前記水溶性ポリマーが、アクリル酸から誘導される構成単位とビニルピロリドンから誘導される構成単位とを有するものである請求項11記載のレジストパターン形成方法。
- 13. さらに、前記水溶性被覆形成剤が水溶性アミン及び/又は界面活性剤を含有する請求項10に記載のレジストパターン形成方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/009997

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ G03F7/039, 7/40, H01L21/027					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEA			· ·		
Minimum docum	entation searched (classification system followed by class	ssification symbols)			
Int.Cl ⁷ G03F7/039, 7/40, H01L21/027					
Documentation se	earched other than minimum documentation to the exten	t that such documents are included in the	fields searched		
•			·		
Electronic data ba	ase consulted during the international search (name of d	ata base and, where practicable, search te	ms used)		
ļ	•		·		
C DOCINGN	TS CONSIDERED TO BE RELEVANT				
			· · · · · · · · · · · · · · · · · · ·		
Category*	Citation of document, with indication, where app		Relevant to claim No.		
X Y	JP 2002-40661 A (Toray Indust 0.6 February, 2002 (06.02.02),	tries, Inc.),	1-3,7,9 .8,10-13		
	Claim 1; Par. Nos. [0033], [0	051], [0056] to	. 0, 10-15		
]	[0063] (Family: none)				
1	(ramily, none)		•		
X	JP 2000-330287 A (Toshiba Con	rp.),	1-3,7-9		
Y A	30 November, 2000. (30.11.00), Par. Nos. [0083], [0093], [00	971; full text	10-13 4-6		
	(Family: none)	,	. 0		
A	JP 2003-149812 A (Fuji Photo	Film Co Ltd.)	4-6		
\	21 May, 2003 (21.05.03),		- -		
	Full text (Family: none)				
	(ramity, none)				
	cuments are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "T" "A" document defining the general state of the art which is not considered to be of particular relevance		"T" later document published after the into date and not in conflict with the applic the principle or theory underlying the i	ation but cited to understand		
"E" earlier applie filing date	cation or patent but published on or after the international	"X" document of particular relevance; the considered novel or cannot be consi			
"L" document w	which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other	step when the document is taken alone			
special reaso	on (as specified) ferring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such	step when the document is		
"P" document pr	ublished prior to the international filing date but later than	being obvious to a person skilled in the	e art		
the priority date claimed "&" document member of the same patent family					
	al completion of the international search	Date of mailing of the international sear			
08 October, 2004 (08.10.04) 26 October, 2004 (26.10.04)					
	g address of the ISA/	Authorized officer			
Japane	se Patent Office				
Facsimile No. Telephone No.					
Form PCT/ISA/210 (second sheet) (January 2004)					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/009997

C (Continuation)). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	JP 2002-296779 A (Fuji Photo Film Co., Ltd.), 19 October, 2002 (19.10.02), Full text (Family: none)	4-6	
Y	JP 2003-142381 A (Tokyo Ohka Kogyo Co., Ltd.), 16 May, 2003 (16.05.03), Claims; examples & WO 03/40831 A1 & EP 1452922 A1	10-12	
¥ [']	WO 03/040832 Al (Tokyo Ohka Kogyo Co., Ltd.), 15 May, 2003 (15.05.03), Claims; examples & EP 1452923 Al	10-12	
	·	,	

A. 発明の属 Int.Cl ⁷	。 はする分野の分類(国際特許分類(IPC)) 「 G03F 7/039、7/40、H01L2	21/027	·		
B. 調査を行った分野 調査を行った最小限資料 (国際特許分類 (IPC)) Int. Cl ⁷ G03F 7/039、7/40、H01L21/027					
最小限資料以外の資料で調査を行った分野に含まれるもの					
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)					
	ると認められる文献		•		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	関連する 請求の範囲の番号		
X Y	JP 2002-40661 A (東 2002.02.06,請求項1,[(ファミリーなし)		1-3, 7, 9 8, 10-13		
X Y A	JP 2000-330287 A (株式会社東芝) 2000.11.30, [0083], [0093], [0097]全文 (ファミリーな し)		1-3, 7-9 10-13 4-6		
A	JP 2003-149812 A 2003.05.21,全文, (ファ		4-6		
区 C 欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の選解のために引用するもの「X」特に関連のある文献であって、当該文献のみで発明して、当時である文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの「Y」特に関連のある文献であって、当該文献と他の1以文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献					
国際調査を完了した日 08.10.2004 国際調査報告の発送日 26.10.2004					
日本	の名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 伊藤 裕美 電話番号 03-3581-1101	2H 9515 内線 3230		

C (緯き)	関連すると認められる文献			
引用文献の		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP 2002-296779 A (富士写真フイルム株式会社)	請求の範囲の番号 4-6		
	2002.10.19,全文, (ファミリーなし)			
Y	JP 2003-142381 A (東京応化工業株式会社) 2 003.05.16,特許請求の範囲、実施例 &WO 03/4 0831 A1	10-12		
	&EP 1452922 A1			
Y·	WO 03/040832 A1 (東京応化工業株式会社) 20 03.05.15,特許請求の範囲、実施例 &EP 14529 23 A1	10-12		
	N. Carter of the Control of the Cont			
	·	·		