Introduction to multi-variable control

Tom Oomen

Delft Center for Systems and Control Delft University of Technology J.W.vanWingerden@TUDelft.nl

SC42145, 2024/25

Introduction

We consider:

$$\begin{bmatrix} y_1 \\ \vdots \\ y_\ell \end{bmatrix} = \begin{bmatrix} G_{11} & G_{12} & \dots & G_{1m} \\ G_{21} & G_{22} & \dots & G_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ G_{\ell 1} & G_{\ell 2} & \dots & G_{\ell m} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix}$$

- Interaction, one input can affect multiple outputs
- Main difference with SISO, input and output have a direction
- Main tool: Singular Value Decomposition (SVD)
- $GK \neq KG$
- No generalization of Bode's stability condition

Introduction

Transfer functions for MIMO systems

Cascade rule:

$$z = G_2 q$$
 and $q = G_1 u$
 $z = \underbrace{G_2 G_1}_{C} u$

Transfer functions for MIMO systems

Feedback Rule: $v = (I - L)^{-1} u$ with $L = G_2 G_1$

The plant: $y = G_1 (I - L)^{-1} u$

Push through rule: $G_1 (I - G_2 G_1)^{-1} = (I - G_1 G_2)^{-1} G_1$

Quiz: can you derive the transfer function?

Transfer functions for MIMO systems

For the output side:

S_O:
$$\frac{y}{d_1} = (I + GK)^{-1} = S = \frac{e}{r}$$
 and T_O: $\frac{y}{r} = GK(I + GK)^{-1} = T$

For the input side:

$$S_{I}$$
: $\frac{u+d_{2}}{d_{2}} = (I+KG)^{-1}$ and T_{I} : $-\frac{u}{d_{2}} = KG(I+KG)^{-1}$

Notion of directions

Gain of a system

SISO (independent of magnitude):

$$\frac{|y(\omega)|}{|d(\omega)|} = \frac{|G(j\omega)d(\omega)|}{|d(\omega)|} = |G(j\omega)|$$

How can we do this for MIMO? Sum up the magnitudes?

$$\frac{||y(\omega)|\,|_2}{||d(\omega)|\,|_2} = \frac{\sqrt{\sum_j |y_j(\omega)|^2}}{\sqrt{\sum_j |d_j(\omega)|^2}} = \frac{||G(j\omega)d(\omega)|\,|_2}{||d(\omega)|\,|_2}$$

This gain measure depends on direction of input

Max. gain given by:

$$\max_{d\neq 0} \frac{||G(j\omega)d(\omega)||_2}{||d(\omega)||_2} = \max_{||d||_2=1} ||G(j\omega)d(\omega)||_2 = \overline{\sigma}(G(j\omega))$$

Min. gain given by:

$$\min_{d\neq 0} \frac{||G(j\omega)d(\omega)||_2}{||d(\omega)||_2} = \min_{||d||_2=1} ||G(j\omega)d(\omega)||_2 = \underline{\sigma}(G(j\omega))$$

Gain of a system: Example

Define $d= \begin{vmatrix} d_{10} \\ d_{20} \end{vmatrix}$ with the following 5 inputs:

$$d_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad d_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad d_3 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \quad d_4 = \begin{bmatrix} 0.707 \\ -0.707 \end{bmatrix}, \quad d_5 = \begin{bmatrix} 0.6 \\ -0.8 \end{bmatrix},$$

We consider: $G = \begin{bmatrix} 5 & 4 \\ 3 & 2 \end{bmatrix}$

$$y_1 = \begin{bmatrix} 5 \\ 3 \end{bmatrix}, \quad y_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \quad y_3 = \begin{bmatrix} 6.36 \\ 3.54 \end{bmatrix}, \quad y_4 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \quad y_5 = \begin{bmatrix} -0.2 \\ 0.2 \end{bmatrix},$$

Note that $||d||_2 = 1$ and we have:

$$||y_1||_2 = 5.83, ||y_2||_2 = 4.47, ||y_3||_2 = 7.30, ||y_4||_2 = 1.00, ||y_5||_2 = 0.28$$

Notion of directions

Gain of a system: Example (cont'd)

Gain of a system: Example (cont'dd)

We can use the SVD

Eigenvalues as measure?

- Can only be computed for square matrices
- Can be really misleading

Let's consider:

$$G = \begin{bmatrix} 0 & 100 \\ 0 & 0 \end{bmatrix}$$

From eigenvalues one might conclude that the gain is zero

Note that:
$$d = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 results in $y = \begin{bmatrix} 100 \\ 0 \end{bmatrix}$

Eigenvalues are a poor measure and can not be captured in a matrix norm

Notion of directions

The Singular Value Decomposition

Let's consider a fixed frequency ω_o . Then, every matrix can be decomposed in:

$$G(\omega_o) = U\Sigma V^H$$

where:

- $\Sigma \in \ell \times m$
- $U \in \ell \times \ell$ Unitary matrix Output singular vectors
- $V \in m \times m$ Unitary matrix Input singular vectors

Structure for real-valued 2×2 matrix:

$$G = \underbrace{\begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} \cos \theta_2 & \pm \sin \theta_2 \\ -\sin \theta_2 & \pm \cos \theta_2 \end{bmatrix}}_{V^T}^{T}$$

The Singular Value Decomposition (cont'd)

Note that since V is unitary we have $GV = U\Sigma$ or:

$$G \begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_k \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & & 0 \\ 0 & \sigma_2 & & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & \sigma_k \end{bmatrix}$$

where $k = \min(m, \ell)$.

Max. gain given by:

$$\overline{\sigma}(G) \equiv \sigma_1(G) = \max_{d \neq 0} \frac{||Gd||_2}{||d||_2} = \frac{||Gv_1||_2}{||v_1||_2}$$

Min. gain given by:

$$\underline{\sigma}(G) \equiv \sigma_k(G) = \min_{d \neq 0} \frac{||Gd||_2}{||d||_2} = \frac{||Gv_k||_2}{||v_k||_2}$$

Gain of a system: Example (cont'ddd)

We can use the SVD (note that this also works for non-square plants)

$$G = \begin{bmatrix} 5 & 4 \\ 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0.872 & 0.490 \\ 0.490 & -0.872 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} 7.343 & 0 \\ 0 & 0.272 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} 0.794 & -0.608 \\ 0.608 & 0.794 \end{bmatrix}^{T}}_{V^{T}}$$

Singular values for performance

Sensitivity *S* provides useful information regarding the effectiveness of control.

For SISO systems this is defined as $\left|\frac{e}{r}\right|$

For MIMO we define $\frac{||e||_2}{||r||_2}$ where $||\cdot||_2$ represents the vector 2-norm

This gain depends on direction

We can bound it:

$$\underline{\sigma}(S(j\omega)) \le \frac{||e||_2}{||r||_2} \le \overline{\sigma}(S(j\omega))$$

In terms of performance it is reasonable to require that the gain is small for all directions (so look at $\overline{\sigma}(\omega)$)

Singular values for performance (cont'd)

Weighted Sensitivity design:

$$\overline{\sigma}(S(j\omega)) < 1/|w_P(j\omega)|, \forall \omega$$
 or $||w_PS||_{\infty} < 1$

Bandwidth, ω_B : Frequency where $\overline{\sigma}(S)$ crosses 0.7 from below

Note: the bandwidth is at least ω_B

Measure for directionality

- Condition Number Defined as: $\gamma \triangleq \frac{\overline{\sigma}(G)}{\sigma(G)}$
 - If large then ill-conditioned
 - High $\overline{\sigma}(G)$ no issue but low $\underline{\sigma}(G)$ can be an issue
 - Large condition number may indicate control issues
- Relative gain array (RGA) See next section

Relative Gain Array (RGA)

The Relative Gain Array is defined as:

$$RGA(G) = \Lambda(G) \triangleq G \times (G^{-1})^{T}$$

here \times represents the Hadamard product.

Example for a 2×2 matrix with g_{ij} :

$$\Lambda(G) = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} = \begin{bmatrix} \lambda_{11} & 1 - \lambda_{11} \\ 1 - \lambda_{11} & \lambda_{11} \end{bmatrix}$$

with
$$\lambda_{11} = \frac{1}{1 - \frac{g_{12}g_{21}}{g_{11}g_{22}}}$$

Note that the RGA is frequency dependent.

Interpretation: RGA as an interaction measure

$$\text{Let's consider: } \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \underbrace{\begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}}_{G} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \text{ and } \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{1}{\hat{g}_{1^1}} & \frac{1}{\hat{g}_{1^2}} \\ \frac{1}{\hat{g}_{21}} & \frac{1}{\hat{g}_{22}} \end{bmatrix}}_{G^{-1}} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Look at interaction between u_1 and y_1 :

- Other loops open $u_2=0$ and compute $\frac{\partial y_1}{\partial u_1}$.
- ② Other loops closed with perfect control $y_2=0$ and compute $\frac{\partial y_1}{\partial u_1}$. \hat{g}_{11}

$$\mathsf{RGA} = \begin{bmatrix} \frac{g_{11}}{\hat{g}_{11}} & \frac{g_{12}}{\hat{g}_{21}} \\ \frac{g_{21}}{\hat{g}_{12}} & \frac{g_{22}}{\hat{g}_{22}} \end{bmatrix} = G \times \left(G^{-1} \right)^T$$

We prefer to pair variables with an RGA of 1 (unaffected by other loops).

Pairing rules:

- Prefer pairings such that the rearranged system, with the selected pairings along the diagonal, has an RGA matrix close to identity at the frequencies around the bandwidth
- Avoid (if possible) pairing on negative steady-state RGA elements.

Other properties:

- RGA independent of scaling
- Rows and columns sum up to 1
- Use pseudo-inverse for non-square plants
- Plants with large RGA elements are ill-conditioned (> 10 difficult to control)

MIMO control

Two step procedure

The easiest way to control MIMO systems is by using a diagonal controller (Decentralized control).

The easiest way to do this is to decouple the system in a diagonal system $\hat{G}(s) = G(s)W_1$. How?

- Dynamic decoupling, $\hat{G}(s)=G(s)G(s)^{-1}$ where the controller is given by $\frac{k}{s}I$ (inversed based control)
- Steady state decoupling, $\hat{G}(s) = G(s)G(0)^{-1}$ which is a constant pre-compensator.
- Approximate decoupling, $\hat{G}(s) = G(s)G(j\omega_o)^{-1}$ typically ω_o is chosen close to the bandwidth
- Approximate decoupling with post-compensator, $\hat{G}(s) = \underbrace{U(j\omega_o)^T}_{W_2} G(s) \underbrace{V(j\omega_o)}_{W_1} \text{ typically } \omega_o \text{ is chosen close to the bandwidth}$

Typical approach:

MIMO control

$$||N||_{\infty} = \max_{\omega} \overline{\sigma}(N(j\omega)) < 1; \qquad N = \begin{bmatrix} W_p S \\ W_u K S \end{bmatrix}$$

- Design W_p , common choice $W_p=diag(w_{p,i})$ with $w_{p,i}=\frac{s/M_i+\omega_{Bi}}{s+\omega_{Bi}A_i}$ with $A_i\ll 1$
- Design W_u , common I or $W_u = s/(s + \omega_l)$ (so low penalty at low frequencies)
- To find suitable values, design a controller by hand (decoupling)
- Add more transfer functions to the objective function

Example

Let's consider:

$$G(s) = \frac{1}{\left(0.2s+1\right)\left(s+1\right)} \begin{bmatrix} 1 & 1\\ 1+2s & 2 \end{bmatrix}$$

Step response (y_1 and y_2):

Looking at the TF's there is no reason to assume that we have a RHP-zero. However, there is one at $z=0.5\,$

MIMO design

$$G(0.5) = \frac{1}{1.65} \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0.45 & 0.89 \\ 0.89 & -0.45 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} 1.92 & 0 \\ 0 & 0 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} 0.71 & 0.71 \\ 0.71 & -0.71 \end{bmatrix}}_{V^T}^{T}$$

The *blue* elements represent the input and output direction corresponding to a RHP-zero

MIMO zeros

MIMO zeros: z_i is a zero of G(s) if the rank of $G(z_i)$ is less than the normal rank of $G(z_i)$

Compute MIMO zeros:

$$G(s) = \begin{bmatrix} \frac{s-1}{s+1} & \frac{s-2}{s+2} \end{bmatrix}$$

$$G(s) = \begin{bmatrix} \frac{s-1}{s+1} & \frac{s-2}{s+2} \\ \frac{s-1}{s+2} & \frac{s-2}{s+1} \end{bmatrix}$$

What is the effect of a MIMO RHP-zero?

Example (cont'dd)

We solve:

$$||N||_{\infty} = \max_{\omega} \overline{\sigma}(N(j\omega)) < 1; \qquad N = \begin{bmatrix} W_P S \\ W_u K S \end{bmatrix}$$

with $W_u = I$, $W_p = diag(w_{Pi})$ with $w_{Pi} = \frac{s/M_i + \omega_{Bi}}{s + \omega_{Bi} A_i}$ with $A_i = 10^{-4}$

```
>>s=tf('s');
>>G=1/(0.2*s+1)/(s+1)*[11:1+2*s2];
>>wB1=0.25; % desired closed-loop bandwidth
>>wB2=0.25; % desired closed-loop bandwidth
>>A=1/1000: % desired disturbance attenuation inside bandwidth
>>M=1.5; % desired bound on hinfnorm(S)
>>Wp=[(s/M+wB1)/(s+wB1*A) 0; 0 (s/M+wB2)/(s+wB2*A)]; %
Sensitivity weight
>>Wu=eye(2); % Control weight
>>Wt=[] % Empty weight
>> [K, CL, GAM, INFO] = mixsyn (G, Wp, Wu, Wt);
```


Example (cont'ddd)

Design 1: $M_1 = M_2 = 1.5$, $\omega_{B1} = \omega_{B2} = 0.25$. $||N||_{\infty} = 2.80$

Design 2: $M_1 = M_2 = 1.5$, $\omega_{B1} = 0.25$, $\omega_{B2} = 25$. $||N||_{\infty} = 2.92$

Design 3: $M_1 = M_2 = 1.5$, $\omega_{B1} = 25$, $\omega_{B2} = 0.25$. $||N||_{\infty} = 6.70$

Example (cont'dddd)

Design 1: $M_1 = M_2 = 1.5$, $\omega_{B1} = \omega_{B2} = 0.25$. $||N||_{\infty} = 2.80$ Design 2: $M_1 = M_2 = 1.5$, $\omega_{B1} = 0.25$, $\omega_{B2} = 25$. $||N||_{\infty} = 2.92$ Design 3: $M_1 = M_2 = 1.5$, $\omega_{B1} = 25$, $\omega_{B2} = 0.25$. $||N||_{\infty} = 6.70$

Example 1: Spinning satellite
$$G(s) = \frac{1}{s^2+100}\begin{bmatrix} s-100 & 10s+10\\ -10s-10 & s-100 \end{bmatrix} \text{ system has poles at } s=\pm j10$$

Apply negative unity, *I*, feedback.

- NS: The closed loop system has two poles at s=-1
- NP:

RS: See next slide

Example 1: Spinning satellite (cont'd)

RS: We will consider diag. input uncertainty (present in every plant)

Consider opening one loop:

RS: We will consider diag. input uncertainty (present in every plant)

Always stable (for all input perturbations)

Example 1

Example 1: Spinning satellite (cont'dd)

Uncertainty in input is given by: $u_1' = (1 + \epsilon_1) u_1, \quad u_2' = (1 + \epsilon_2) u_2$

It is easy to show that the system is stable for $-1<\epsilon_1<\infty,\epsilon_2=0$ and $\epsilon_1=0,-1<\epsilon_2<\infty$

RS: For MIMO GM and PM do not provide RS information. Large $\overline{\sigma}(S)$ indicate robustness issues.

$$G(s) = \frac{1}{75s+1} \begin{bmatrix} 87.8 & 86.4 \\ 108.2 & -109.6 \end{bmatrix} \text{ with RGA } \forall \omega \begin{bmatrix} 35.1 & -34.1 \\ -34.1 & 35.1 \end{bmatrix}$$

Due to large elements in RGA difficult to control

Controller: inverse with integral action $K_{inv} = \frac{0.7}{s}G(s)^{-1}$

 NS: With inverse control you end up with decoupled two first order plants

• RS: No high $\overline{\sigma}(S)$ but high RGA values cause for concern (\Rightarrow)

Example 2: Distillation column (cont'd)

RS: We will consider diag. input uncertainty (typically 20% for process applications)

Uncertainty in input is given by: $u_1' = (1 + \epsilon_1) u_1$, $u_2' = (1 + \epsilon_2) u_2$

We have:
$$L(s) = \frac{0.7}{s} \begin{bmatrix} 1+\epsilon_1 & 0 \\ 0 & 1+\epsilon_2 \end{bmatrix}$$

Compute poles: $\det(I+L) = (s+0.7(1+\epsilon_1))(s+0.7(1+\epsilon_2))$. We can have up to 100% error in all the input channels

RP: Consider $u'_1 = 1.2u_1$, $u'_2 = 0.8u_2$

Example 2: Distillation column (cont'dd)

RP: Consider $u'_1 = 1.2u_1$, $u'_2 = 0.8u_2$

Reference, Nominal control, Uncertain Input, Uncertain I & O

RP From the response we can conclude that we don't have RP

Example 2: Distillation column (cont'ddd)

RS: Consider $u_1' = 1.15u_1$, $u_2' = 0.85u_2$ and $y_1' = 1.15y_1$, $y_2' = 0.85y_2$

Reference, Nominal control, Uncertain Input, Uncertain I & O

RS With additional output uncertainty also no RS

Conclusions from examples

- Example 1, excellent PM, GM for single loops but no RS Might have been expected from high $\overline{\sigma}(S)$
- ullet Example 2, good $\overline{\sigma}(S)$ good RS for input uncertainty but no RP The RGA can be seen as an indicator for bad diagonal control
- Example 2, bad RS if we also add output uncertainty

RGA and $\overline{\sigma}(S)$ are indicators for robustness but we need better tools for analysis and synthesis. Later we will develop tools for this within the \mathcal{H}_{∞} robust control framework using the structured singular value

Generalized Plant: Definition

(Note positive feedback)

Find a controller, K, which counteracts the influence of w on z (minimizing a certain norm e.g. \mathcal{H}_{∞} , \mathcal{H}_{2})

Generalized Plant: Example

Consider the following feedback structure:

$$w = \begin{bmatrix} d \\ r \\ n \end{bmatrix}$$
 , $v = r - y_m$, $z = y - r$

Generalized Plant: Example (cont'd)

$$P = \begin{bmatrix} I & -I & 0 & G \\ -I & I & -I & -G \end{bmatrix}$$

Generalized Plant: Mixed sensitivity

Can we also embed the Mixed sensitivity problem in this framework?

$$\min_{K} ||N||_{\infty} \quad N = \begin{bmatrix} W_{P}S \\ W_{T}T \\ W_{u}KS \end{bmatrix} \qquad P = \begin{bmatrix} W_{P} & W_{P}G \\ 0 & W_{T}G \\ 0 & W_{u} \\ \hline I & G \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$$

Generalized Plant: Mixed sensitivity (cont'd)

Code: (you need code from Section MIMO Design to run)

```
Uses the robust control toolbox
>>systemnames ='G Wp Wu Wt'; % Define systems
>>inputvar ='[w(2); u(2)]'; % Input generalized plant
>>input_to_G= '[u]';
>>input_to_Wu= '[u]';
>>input_to_Wt= '[G]';
>>input_to_Wp= '[w+G]';
>>outputvar= '[Wp; Wt; Wu; G+w]'; % Output generalized plant
>>svsoutname='P';
>>svsic:
>>[K2,CL2,GAM2,INFO2] = hinfsyn(P,2,2); % Hinf design
```


Generalized Plant: Closing the loop

We have:

$$P = \left[\begin{array}{c|c} P_{11} & P_{12} \\ \hline P_{21} & P_{22} \end{array} \right]$$

We have z = Nw if we close the loop u = Kv:

$$N = P_{11} + P_{12}K (I - P_{22}K)^{-1} P_{21} \triangleq F_l(P, K)$$

 $F_l(P,K)$ is called the lower Linear Fractional Transformation (LFT)

Generalized Plant

Generalized Plant: Robust control

What we are going to do later: Synthesis for robust control (Direct synthesis for RS and RP).

where Δ is a block diagonal matrix containing all the perturbations (typically $||\Delta||_\infty \le 1)$

