■ ahalev@ucdavis.edu | ② ahalev.github.io | ۞ ahalev | in ahalev

Education

University of California, Davis

2018-February 2024

Ph.D. Candidate, Applied Mathematics (ABD)

3.8 GPA

• Areas of expertise: machine learning, deep learning, reinforcement learning, exploratory data analysis, data visualization.

University of California, Davis

2020

M.S., APPLIED MATHEMATICS

3.7 GPA

University of North Carolina at Chapel Hill

2018

B.S., APPLIED MATHEMATICS (DOUBLE MAJOR: PHYSICS, MINOR: COMPUTER SCIENCE)

3.6 GPA (3.7 Major GPA)

Work Experience

Machine Learning Engineering Intern

Summer 2022

TRIPE

South San Francisco, CA

June 2020-February 2023

- Built and optimized machine learning models to detect transaction laundering rings using natural language processing, classification, and clustering methods, with a detection rate of over 94%.
- Prepared model for deployment, allowing prevention of over \$2 million in annual fines and \$350 thousand in monthly detection expenses.
- Developed and deployed self-supervised methods to finetune a BERT-based website encoding to predict risk factors of Stripe merchants.

Data Science Intern

TOTALENERGIES RESEARCH & TECHNOLOGY

San Francisco, CA

- · Collaborated with a team to develop pymgrid, an open-source microgrid simulator for reinforcement learning research.
- Designed deterministic and stochastic model-based control algorithms for optimal control of electrical microgrids.
- · Used linear algebra and data structure techniques to improve efficiency of major model predictive control algorithm by over 90%.

Machine Learning Intern Summer 2019

LACEWORK

Mountain View, CA

- Developed probabilistic models for anomaly detection in AWS CloudTrail events via a graph-theoretical approach.
- Employed linear algebra to reduce linear time iterative clustering algorithm to a constant time, exact formulation.

Research Projects

Genotype Prediction with Computer Vision

June 2023-Present

University of California Davis

Davis. CA

- Build computer vision models to predict gene alleles from retinal fundus images to allow for early intervention in macular degeneration.
- Transform and process retinal fundus images with laplacian filtering methods.
- Train multitask, ensemble and pretrained convolution neural network and vision transformer models for multiclass classification.

Swine Infection Prediction with Machine Learning

November 2021-June 2023

University of California Davis

Davis, CA

- · Built a complete data processing pipeline to extract, clean and use data from swine farms to predict and detect infections.
- Extracted features and performed feature selection via filter selection with correlation and wrapper methods.
- Trained and validated random forest, gradient boosting and MLP machine learning models to optimize performance.

Constrained Reinforcement Learning

March 2020-November 2021

University of California Davis

Davis, CA

- Developed constrained reinforcement learning algorithms to optimize the cost and minimize diesel fuel usage of running microgrids that were able to outperform traditional heuristic algorithms by over 70%.
- · Built safety-layer reinforcement learning algorithms to ensure constraint satisfaction of reinforcement learning policies.
- Benchmarked algorithms with heuristic models as well as model predictive controllers.

Publications

- A. Halev, B. Martínez-López, M. Clavijo, C. Gonzalez-Crespo, J. Kim, C. Huang, R. Robbins, and X. Liu. Infection prediction in swine populations with machine learning. *Scientific Reports*, in press.
- J. Kim, R. Rupasinghe, **A. Halev**, C. Huang, S. Rezaei, M. Clavijo, R. Robbins, B. Martínez-López and X. Liu. Predicting antimicrobial resistance of bacterial pathogens using time series analysis. *Frontiers in Microbiology* (14), 2023.
- Y. Liu, A. Halev, and X. Liu. Policy Learning with Constraints in Model-free Reinforcement Learning: A Survey. IJCAI, 2021.
- G. Henri, T. Levent, **A. Halev**, R. Alami and P. Cordier. pymgrid: An Open-Source Python Microgrid Simulator for Applied Artificial Intelligence Research. *NeurIPS Climate Change AI Workshop*, 2020.

• A. Halev, D. M. Harris. Bouncing ball on a vibrating periodic surface. Chaos (28:9), 2018.

Skills

Technologies Python, SQL, MATLAB, Mathematica, Excel, LTEX

Packages PyTorch, Pandas, Scikit Learn, Weights and Biases, NumPy, SciPy, Matplotlib

OCTOBER 15, 2023 AVISHAI S. HALEV · RÉSUMÉ