1 (a) The drag force D on an object of cross-sectional area A, moving with a speed v through a fluid of density ρ , is given by

$$D = \frac{1}{2} C \rho A v^2$$

where C is a constant.

Show that C has no unit.

[2]

- **(b)** A raindrop falls vertically from rest. Assume that air resistance is negligible.
 - (i) On Fig. 1.1, sketch a graph to show the variation with time *t* of the velocity *v* of the raindrop for the first 1.0s of the motion.

Fig. 1.1

[1]

(ii) Calculate the velocity of the raindrop after falling 1000 m.

velocity = $m s^{-1}$ [2]

(c)	In practice, air resistance on raindrops is not negligible because there is a drag force.
	This drag force is given by the expression in (a).

(i)	State an equation	relating t	the f	forces	acting	on	the	raindrop	when	it is	falling	a
	terminal velocity.											

[1]

- (ii) The raindrop has mass 1.4×10^{-5} kg and cross-sectional area 7.1×10^{-6} m². The density of the air is 1.2 kg m⁻³ and the initial velocity of the raindrop is zero. The value of C is 0.60.
 - 1. Show that the terminal velocity of the raindrop is about $7 \,\mathrm{m \, s^{-1}}$.

[2]

2. The raindrop reaches terminal velocity after falling approximately 10 m. On Fig. 1.1, sketch the variation with time t of velocity v for the raindrop. The sketch should include the first 5 s of the motion.

[2]

2	(a)	Sta	te Newton's second law.
			[1]
	(b)	ball	all of mass $65\mathrm{g}$ hits a wall with a velocity of $5.2\mathrm{ms^{-1}}$ perpendicular to the wall. The rebounds perpendicularly from the wall with a speed of $3.7\mathrm{ms^{-1}}$. The contact time ne ball with the wall is $7.5\mathrm{ms}$.
		Cal	culate, for the ball hitting the wall,
		(i)	the change in momentum,
			change in momentum = Ns [2]
		(ii)	the magnitude of the average force.
			force = N [1]
	(c)	(i)	the collision in (b) between the ball and the wall, state how the following apply:
			1. Newton's third law,
			[2]
			2. the law of conservation of momentum.
			[1]
		(ii)	State, with a reason, whether the collision is elastic or inelastic.
			[41]

3	(a)	With reference to the arrangement of atoms, distinguish between metals, polymers and
		amorphous solids.

metals:		 	
amorphous	solids:		

(b) On Fig. 3.1, sketch the variation with extension *x* of force *F* to distinguish between a metal and a polymer.

Fig. 3.1

[2]

[3]

4	Fig. 4.1 end.	shows an arrangement for producing stationary waves in a tube that is closed at one
		Fig. 4.1
	(a) Exp	plain how waves from the loudspeaker produce stationary waves in the tube.
		[3]
	(b) One	e of the stationary waves that may be formed in the tube is represented in Fig. 4.2.
		PS
		Fig. 4.2
	(i)	Describe the motion of the air particles in the tube at
		1. point P,
		[1]
		2. point S.
	(ii)	The speed of sound in the tube is 330 m s ⁻¹ and the frequency of the waves from
	, ,	the loudspeaker is 880 Hz. Calculate the length of the tube.
		length = m [3]

5 Fig. 5.1 shows a 12V power supply with negligible internal resistance connected to a uniform metal wire AB. The wire has length 1.00 m and resistance 10 Ω . Two resistors of resistance 4.0 Ω and 2.0 Ω are connected in series across the wire.

Fig. 5.1

Currents $I_{\rm 1},\,I_{\rm 2}$ and $I_{\rm 3}$ in the circuit are as shown in Fig. 5.1.

(a) (i) Kirchhoff's first law to state a relationship between I_1 , I_2 and I_3 .

.....[1]

(ii) Calculate I_1 .

*I*₁ = A [3]

(iii) Calculate the ratio x, where

 $x = \frac{\text{power in metal wire}}{\text{power in series resistors}}$.

$$x = \dots [3]$$

(b) Calculate the potential difference (p.d.) between the points C and D, as shown in Fig. 5.1. The distance AC is 40 cm and D is the point between the two series resistors.

6	(a)	State Hooke's law.
		[1]
	(b)	A spring is attached to a support and hangs vertically, as shown in Fig. 6.1. An object M of mass 0.41 kg is attached to the lower end of the spring. The spring extends until M is at rest at R.
		spring
		M M
		R
		Fig. 6.1
		The spring constant of the spring is $25\mathrm{N}\mathrm{m}^{-1}$. Show that the extension of the spring is about 0.16 m.
		ro1
	(c)	[2] The object M in Fig. 6.1 is pulled down a further 0.060 m to S and is then released. M, just as it is released,
		(i) state the forces acting on M,
		[1]
		(ii) calculate the acceleration of M.
		acceleration = ms ⁻² [3]

	3110 3110 3110 3110 3110 3110 3110 3110	
	$^{3}_{2}$ He + $^{3}_{2}$ He \rightarrow He + 2 p + 13.8 MeV	-
(a)	Complete the nuclear equation.	[2
(b)	By reference to this reaction, explain the meaning of the term <i>isotope</i> .	
		[2
(c)	State the quantities that are conserved in this nuclear reaction.	
		[2
(d)	Radiation is produced in this nuclear reaction.	
	State	
	(i) a possible type of radiation that may be produced,	r4:
	(ii) why the energy of this radiation is less than the 13.8 MeV given in the	
		[1]
(e)	Calculate the minimum number of these reactions needed per second to p of 60 W.	roduce powei