

ECUALIZACIÓN BIDIMENSIONAL DE CANALES MULTIPORTADORA

Jorge Pires

Departamento de Electrónica. Facultad de Ingeniería. UNPSJB.

Jornadas de Electrónica y Ciencias de la Computación. Agosto 2020

OFDM: Orthogonal Frequency Division Multiplexing

FDM vs OFDM

¿Se usa OFDM?

IEEE 802.11g

Power Line Communication (PLC) lo usa también

¿Cómo se hace OFDM?

Se modula cada portadora ortogonal

Se suman todas las portadoras

$$x[n] = \sum_{k=0}^{N-1} X[k]e^{\frac{i2\pi kn}{N}}$$

IFFT!!

FFT en receptor

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-\frac{i2\pi kn}{N}}$$

Qué bueno...

Espectralmente eficiente

El canal se vuelve "plano"

Ecualización sencilla (?)

Fácil implementación (FFT, IFFT)

Los malos de la película

ISI: Interferencia Inter-Símbolo
Ocasionada por caminos múltiples,
dispersión temporal

ICI: Interferencia Inter-portadora
Ocasionada por corrimientos en
frecuencia y movimiento (Efecto
Doppler)

Canales "desafiantes"

Canales "desafiantes"

Los malos de la película

ISI ICI

Los malos de la película

ISI IZI ICI

Matrices de interferencia

$$H^{(|Z|)} =$$

$$\mathbf{x}^{(i)} = \mathbf{H}^{(ICI)} \cdot \mathbf{s}^{(i)} + \mathbf{H}^{(IZI)} \cdot \mathbf{s}^{(i-1)} + \boldsymbol{\omega}^{(i)}$$

Matrices de interferencia: DFT en 2D de respuesta al impulso

$$\tilde{H}^{(i,p)}(d,k) = \frac{1}{N} \sum_{n} \sum_{l=0}^{N_h-1} h^{(i)}(n,l) b_n a_{pN_s+n-l} \times e^{-j2\frac{\pi}{N}d(n-N_0)} e^{-j2\frac{\pi}{N}k(l-pN_s)}$$

$$H^{(i,p)}(d,k) = \tilde{H}^{(i,p)}(d_k,k),$$

Modelo del sistema

Supuestos:

- Sincronización
- CSI en rx
- ¿Complejidad?

El ecualizador arma un trellis

¿Trellis?

Algoritmo BCJR

Ecualizador en frecuencia

8 bits de estado

2 bits de entrada

Crea trellis en frecuencia

Combate ICI y algo de IZI

Ecualizador en tiempo

5 bits de estado

5 bits de entrada

Crea trellis en tiempo

Combate IZI y algo de ICI

Arquitectura del turbo - ecualizador

Algoritmo BJCR

Calcula probabilidades "a posteriori": a, β, γ, σ

$$Pr\{u=0|\mathbf{x}\}\ Pr\{u=1|\mathbf{x}\}$$

Compara símbolo recibido con todos los posibles símbolos

Encuentra el símbolo más probable (menor prob. de error)

Detalles horrorosos: L.Bahl, J.Cocke, F.Jelinek, and J.Raviv, "Optimal Decoding of Linear Codes for minimizing symbol error rate", IEEE Transactions on Information Theory, 1974

¡Diversidad Doppler!

¡Diversidad temporal!

Trabajos futuros

Implementación y pruebas reales

Manejo de la complejidad

Estimación de canales móviles. ¿Redes neuronales?

Conclusiones / contribuciones

Arquitectura innovadora de ecualización 2D

Simulaciones para canales altamente móviles

Mejor que otros ecualizadores en BER

Diversidad Doppler: Es bueno contar con algo de ICI

Diversidad temporal: Es bueno contar con algo de IZI

Su consulta no me molesta...

