Espaço de fases Dinâmica Hamiltoniana Ensemble Microcanónico Dinâmica Molecular Sistema de Lennard-Jones Teorema do Virial Dinâmicas Estocásticas

Modelação e Física Estatística Descrição micro e macro de um sistema físico

António Luís Ferreira

April 13, 2021

Espaço de fases Dinâmica Hamiltoniana Ensemble Microcanónico Dinâmica Molecular Sistema de Lennard-Jones Teorema do Virial Dinâmicas Estocásticas

Temas

- Espaço de fases
- Dinâmica Hamiltoniana
- 3 Ensemble Microcanónico
- 4 Dinâmica Molecular
- Sistema de Lennard-Jones
- Teorema do Virial
- Dinâmicas Estocásticas

Partículas clássicas numa caixa

- Hamiltoniano, $\mathscr{H} = \sum_{i=1}^{3N} \frac{p_i^2}{2m} + V(q_1, ..., q_{3N}).$
- Espaço de fases, $\underline{\mathscr{P}} = (q_1,...,q_{3N},p_1,...,p_{3N})$
- Elemento de volume $d\vec{r}^N d\vec{p}^N = dq_1 \cdots dq_{3N} \cdots dp_1 \cdots dp_{3N}$ com dimensão física Ação= [E]x[T]
- Contagem de estados microscópicos, $d\mu = \frac{d\vec{r}^N d\vec{p}^N}{h^{3N}}$ onde h é uma constante desconhecida com dimensões de Ação
- Estado Macroscópico: Número de partículas, N, Volume, V,
 Energia total, E

Dinâmica Hamiltoniana

• Equações do movimento
$$\begin{cases} \dot{q_i} = \frac{\partial \mathscr{H}}{\partial p_i} = \frac{p_i}{m} \end{cases}$$

$$\dot{p_i} = -\frac{\partial \mathscr{H}}{\partial q_i} = \frac{p_i}{m}$$

• Reversibilidade temporal: se
$$\left\{ egin{array}{l} t'=-t \ q_i'=q_i \ p_i'=-p_i \end{array}
ight.$$

movimento não se alteram

Conservação de Energia,

$$\frac{d\mathcal{H}}{dt} = \frac{\partial \mathcal{H}}{\partial t} + \sum_{i=1}^{3N} \left[\frac{\partial \mathcal{H}}{\partial \rho_i} \dot{\rho}_i + \frac{\partial \mathcal{H}}{\partial q_i} \dot{q}_i \right] = 0$$

• Superfície Equienergética, $S_F = \{ \mathscr{P} : \mathscr{H}(\mathscr{P}) = E \}$

Propriedades da dinâmica

- ullet As trajectórias, $\underline{\mathscr{P}_t}$, são linhas na superficie S_E que se não intersectam
- Não é possível com uma linha preencher uma superfície.
- Teorema de Poincaré: para t suficientemente longo $\underline{\mathscr{P}_t}$ passa arbitrariamente perto de um qualquer $\underline{\mathscr{P}_0}$
- Teorema de Liouville: Quando o dominio \mathscr{D} do espaço de fases evolui para o dominio \mathscr{D}_t o volume <u>mantém-se constante</u>,

$$V_{\mathscr{D}_{\mathsf{t}}} = V_{\mathscr{D}}$$

Propriedades da dinâmica

- ullet Domínio invariante, ${\mathscr D}:{\mathscr D}$ e ${\mathscr D}_t$ coincidem para qualquer tempo
- Integral de fase sobre um domínio \mathscr{D} : $\int_{\mathscr{D}} f(\mathscr{\underline{P}}) d\mu$ para uma função $f(\mathscr{\underline{P}})$ arbitrária
- ullet Se ${\mathscr D}$ é invariante o integral de fase é independente do tempo
- Camada Equienergética, \mathscr{D}_E formada pelos pontos $\{\mathscr{\underline{P}}\colon E\leq \mathscr{H}(\mathscr{\underline{P}})\leq E+\triangle E\}$ é um domínio invariante.
- Número de estados na camada equienergética: $\Omega(N,V,E) = \int_{\mathscr{D}_E} d\mu$.

Ergodicidade

- Média de fase: $\langle f \rangle = \frac{1}{\Omega(\textit{N},\textit{V},\textit{E})} \int_{\mathscr{D}_{\textit{E}}} f(\mathscr{P}) d\mu$
- Média temporal: $ar{f} = \lim_{T o \infty} rac{1}{T} \int_0^T f(\mathscr{P}_{\mathsf{t}}) dt$
- Sistema é ergódico se $\langle f \rangle = \bar{f}$
- Para um sistema ergódico, dada uma região \mathscr{R} contida em \mathscr{D}_{E} a fração de tempo que o sistema passa em \mathscr{R} , $T_{\mathscr{R}}/T$, para $T_{\mathscr{R}}$ e T grandes, é dada pela razão dos volumes $\frac{T_{\mathscr{R}}}{T} = \frac{V_{\mathscr{R}}}{V_{D_E}}$

Ensemble estatístico microcanónico (MC)

- Conjunto de M (com $M \to \infty$) sistemas idênticos, isolados mecânicamente e termicamente do exterior e portanto no mesmo macroestado, (N, V, E).
- Média de fase e média no ensemble MC são essencialmente a mesma quantidade.
- A probabilidade de encontrar um sistema do ensemble MC numa vizinhança do ponto $\underline{\mathscr{P}}$, é $P_{MC}(\underline{\mathscr{P}})\mathrm{d}\mu = \frac{d\mu}{\Omega}$ se $\underline{\mathscr{P}} \in \mathscr{D}_{\mathrm{E}}$ e $P_{MC}(\underline{\mathscr{P}}) = 0$ se $\underline{\mathscr{P}} \notin \mathscr{D}_{\mathrm{E}}$ (distribuição uniforme em \mathscr{D}_{E}).

Ensemble estatístico microcanónico (MC)

- Define-se a Entropia associada a $P_{MC}(\underline{\mathscr{P}})$ como $S_{MC}(N,V,E) = -k_B \int_{\mathscr{D}_E} P_{MC}(\underline{\mathscr{P}}) \log P_{MC}(\underline{\mathscr{P}}) \, \mathrm{d}\mu$ ou seja $S_{MC}(N,V,E) = k_B \log \Omega(N,V,E)$ toma o valor máximo possível e k_B é a constante de Boltzmann.
- Em geral $\mathscr{D}_{\mathsf{t}} \underset{t \to \infty}{\to} \mathscr{D}_{\infty} \neq \mathscr{D}_{\mathsf{E}}$
- $P(\underline{\mathscr{P}},t) \underset{t \to \infty}{\to} P(\underline{\mathscr{P}},\infty)$ não se aproxima de $P_{MC}(\underline{\mathscr{P}})$ mas verifica-se que $\int_{\mathscr{D}_t} f(\underline{\mathscr{P}}) d\mu \underset{t \to \infty}{\to} \int_{\mathscr{D}_E} f(\underline{\mathscr{P}}) d\mu$ para funções $f(\underline{\mathscr{P}})$ com sentido físico

Equilibrio Termodinâmico

- Segunda lei da termodinâmica
 - Se o Ensemble está fora do equilíbrio, $S = -k_B \int_{\mathscr{D}_E} P(\mathscr{\underline{P}}) \log P(\mathscr{\underline{P}}) \, \mathrm{d}\mu$ então $S \leq S_{MC}$ e ocorrem espontaneamente processos que o conduzem ao equilibrio aumentando a entropia, $\triangle S \geq 0$. Ex: Gás ideal num volume $V_0 < V$.
 - A entrada de energia no sistema, na forma de calor, $\triangle Q$ faz variar a entropia do sistema, $\triangle S \geq \triangle Q/T$ onde T é a temperatura. k_B tem dimensões [E]/[T]. Para uma entrada de calor pequena sem produção de trabalho, temos dE = dQ = TdS
- Relação entre temperatura e entropia, $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{V,N}$

Dinâmica Molecular

Simulação computacional

N~1000 particulas

• Leap-frog
$$\begin{cases} q'_i = q_i + dt \frac{p_i(t)}{m} + \frac{dt^2}{2} \frac{F_i}{m} \\ p'_i = p_i + \frac{dt}{2} (F'_i + F_i) \end{cases}$$

integração numérica de um sistema de equações diferenciais

- $[q'_i, p'_i] = G^{dt}(\{q_i, p_i\})$
- Reversibilidade temporal, $[q_i(t), -p_i(t)] = G^{dt}(\{q'_i, -p'_i\})$

$$\begin{cases}
q_i(t+2dt) = q'_i - dt \frac{p'_i}{m} + \frac{dt^2}{2} \frac{F'_i}{m} \\
p_i(t+2dt) = -p'_i + \frac{dt}{2} (F_i (\{q_i(t+2dt)\}) + F'_i)
\end{cases}$$

Algoritmo Leap-Frog

•
$$q_i(t+2dt) = q_i + dt \frac{p_i}{m} + \frac{dt^2}{2} \frac{F_i}{m} - dt \frac{p_i}{m} - \frac{dt^2}{2m} (F'_i + F_i) + \frac{dt^2}{2} \frac{F'_i}{m} = q_i$$

•
$$p_i(t+2dt) = -p_i - \frac{dt}{2}(F'_i + F_i) + \frac{dt}{2}(F_i + F'_i) = -p_i$$

• Transformação: $[x_1,x_2]
ightarrow [f_1(x_1,x_2),f_2(x_1,x_2)]$, temos

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix}$$

$$ullet$$
 Conservação de áreas, $\left|J\left(rac{\left[\left\{q_i',p_i'
ight\}
ight]}{\left[\left\{q_i,p_i
ight\}
ight]}
ight)
ight|=1$

Algoritmo Leap-Frog

• passo 1:
$$[q_i, p_i] \rightarrow [q_i, p_i + \frac{dt}{2}F_i]$$
, temos

$$|J_1| = \begin{vmatrix} 1 & 0 \\ \frac{dt}{2} \frac{\partial F_i}{\partial q_j} & 1 \end{vmatrix} = 1$$

$$\begin{bmatrix} q_i \rightarrow q_i \\ P_i \rightarrow p_i + \frac{\Delta t}{\tau} F_i \end{bmatrix}$$

• passo 2:
$$[q_i,p_i] o \left[q_i + dt \frac{p_i}{m},p_i\right]$$
, temos $|J_2| = \left|egin{array}{c} 1 & rac{dt}{m} \\ 0 & 1 \end{array}\right| = 1$

• passo 3:
$$[q_i, p_i] \rightarrow [q_i, p_i + \frac{dt}{2}F_i]$$
, temos

• passo 3:
$$[q_i, p_i] \rightarrow [q_i, p_i + \frac{dt}{2}F_i]$$
, temos
$$|J_3| = \begin{vmatrix} 1 & 0 \\ \frac{dt}{2}\frac{\partial F_i}{\partial q_i} & 1 \end{vmatrix} = 1$$

$$|q_i \rightarrow q_i + \frac{dt}{2}F_i|$$

Potencial de Lennard-Jones

•
$$V_{LJ}(r) = 4\varepsilon \left[\left(\frac{r}{\sigma} \right)^{-12} - \left(\frac{r}{\sigma} \right)^{-6} \right]$$

Modelo LJ

o j

Figure: Potencial de Lennard-Jones

• Forças
$$F(r) = -\frac{dV_{LJ}}{dr} = 48\varepsilon\sigma \left[\left(\frac{r}{\sigma} \right)^{-13} - \frac{1}{2} \left(\frac{r}{\sigma} \right)^{-7} \right];$$

 $F_X(r) = F(r) \frac{x}{r} F_Y(r) = F(r) \frac{y}{r}$

Teorema do Virial

- Considere-se a quantidade $G(t) = \sum_{i=1}^{3N} q_i p_i$.
- Temos $\frac{dG}{dt} = \sum_{i=1}^{3N} (\dot{q}_i p_i + q_i \dot{p}_i) e^{\sum_{i=1}^{3N} \dot{q}_i p_i} = 2E_C$

$$\sum_{i=1}^{3N} q_i \dot{p}_i = \sum_{k=1}^{N} \vec{r}_k . \vec{F}_k .$$

- A média temporal de $\frac{dG}{dt}$ é nula: $\frac{1}{\tau} \int_0^{\tau} \frac{dG}{dt} dt = \frac{G(\tau) G(0)}{\tau} \xrightarrow[\tau \to \infty]{} 0$ dado que G(t) toma valores limitados.
- dado que G(t) toma valores limitados.

 Então $2\overline{E_C} = -\sum_{k=1}^N \overline{r_k} \cdot \overline{F_k}$ Frit + Frit
- A força nas partículas tem uma componente interna (entre partículas) e uma componente externa (força das paredes do recipiente).

Teorema do Virial

- $\sum_{k=1}^{N} \vec{r}_{k} \cdot \vec{F}_{k}^{\text{ext}} = \int_{S} \vec{r} \cdot \left(-Pd\vec{S} \right)$ pelo teorema da divergência (Gauss) $\int_{S} \vec{r} Pd\vec{S} = P \int_{V} \vec{\nabla} \cdot \vec{r} \, dV = 3PV$.
- Então $PV = \frac{2}{3}\overline{E_C} + \frac{1}{3}\sum_{k=1}^{N}\overline{\vec{r}_k.\vec{F}_k^{int}}$
- A energia cinética média por partícula, $\overline{E_C}/N$ é uma medida direta da temperatura, $\frac{2}{3N}\overline{E_C} = k_BT$.
- Num gás ideal $\vec{F}_{\nu}^{int} = 0$ e $PV = Nk_BT$ sem interações
- Devido ás condições fronteira periódicas é necessário usar:

$$\begin{split} \bullet & \; \sum_{k=1}^{N} \vec{r}_{k}.\vec{F}_{k}^{int} = \sum_{k=1}^{N} \sum_{l \neq k} \vec{r}_{k}.\vec{F}_{k,l}^{int} = \\ & \frac{1}{2} \sum_{k=1}^{N} \sum_{l \neq k} (\vec{r}_{k}.\vec{F}_{k,l}^{int} + \vec{r}_{l}.\vec{F}_{l,k}^{int}) = \\ & = \frac{1}{2} \sum_{k=1}^{N} \sum_{l \neq k} (\vec{r}_{k} - \vec{r}_{l}).\vec{F}_{k,l}^{int} = \sum_{k=1}^{N} \sum_{l > k} (\vec{r}_{k} - \vec{r}_{l}).\vec{F}_{k,l}^{int} \\ \text{ou seja } \sum_{k=1}^{N} \vec{r}_{k}.\vec{F}_{k}^{int} = \sum_{k=1}^{N} \sum_{l > k} r_{kl} F_{k,l}^{int} \end{split}$$