

RICE YIELD AND COST In Relation to Factors of Production

Evidence from Regular Monitoring of Rice-Based Farm Household Survey (RBFHS) 2011-2012

Mary Grace C. Lapurga Flordeliza H. Bordey SED Staff

Objectives

Relate rice yield and cost to factors affecting production

Present costs and returns of rice production in 2011WS-2012DS

Demonstrate yield and cost variations across provinces and seasons

Outline of presentation

RBFHS 2011-2012 Data

2011 WS Harvest (Jul – Dec 2011)

n = 2,399

2012 DS Harvest (Jan – Jun 2012)

n = 2,051

Out of 13 typhoons that visited the country between July-December 2011, three of those traversed Nueva Ecija.

http://www.pagasa.dost.gov.ph/index.php/tropical-cyclone-information/25-tropical-cyclones/33-annual-tropical-cyclone-tracks#2011

Yield in relation to Water source

Yield in relation to Seed class

Yield in Relation to Crop establishment

Yield in relation to Nitrogen level

Yield in relation to Phosphate (P₂O₅) level

Yield in relation to Potassium oxide (K2O) level

Yield in relation to Pests management

2011 Wet season

Yield in relation to Pests management

2012 Dry Season

Yield in relation to Training participation

Yield in relation to Education

WHAT IF?

YIELD FUNCTION

Yield	Coefficient	
N		* * *
IN	0.0052	^ ^ ^
P_2O_5	-0.0001	
K ₂ O	0.0021	***
Herbicide	0.0028	* * *
Insecticide	-0.0028	***
Fungicide	0.0028	***
Other pesticides	-0.0013	**
Man-day	0.3446	***
Machine-day	0.0090	***
Seeds quantity	0.1197	***
NIS/CIS (1=yes)	0.2610	***
SSIS/natural (1=yes)	0.1396	***
Hybrid (1=yes)	0.3945	***
RS/CS (1=yes)	0.0879	***
Education (1=HS and up)	0.0013	
Training (1=yes)	0.0278	***
Season (1=DS)	0.1213	***
Farming experience (1= <u>></u> 15yrs)	0.0196	

>> indicates 0.005% increase in yield for every 1% increase in nitrogen (kg/ha)

indicates that yield is 30% higher for NIS/CIS users relative to non-users

>> indicates that yield is 48% higher for hybrid seeds users relative to non-users

^{**} Significant at 10%

^{***}Significant at 5%

Production Cost

2011WS = PhP 42,201

2012DS = PhP 44,908

2011WS = Php11.49/kg

2012DS = Php10.88/kg

Irrigated = PhP 46,029

Rainfed = PhP 33,978

COST FUNCTION

Cost/kg	Coefficient		
Yield	-0.679	***]>
Seed price	0.054	***	
N price	0.012	**	
P ₂ O ₅ price	-0.008		
K ₂ O price	0.022	***	
Herbicide price	-0.003		
Other pesticides price	-0.002		
Insecticide price	-0.009	***	
Fungicide	0.003		
Man-day price	0.098	***	
Machine-day price	-0.009	***]>
NIS/CIS (1=yes)	0.145	***	
SSIS/natural (1=yes)	0.085	***	
Hybrid (1=yes)	-0.079	***)>
RSCS (1=yes)	0.002		
Education (1= HS and up)	0.005		
Training (1=yes)	0.004		
Season (1=DS)	0.017	***	
Farming experience (1= \geq 15yrs)	-0.005		
_cons	7.311	***	_

indicates 0.679% decrease in cost/kg for every 1% increase in yield

0.009% decrease in cost/kg for every 1% increase in machine-day price

> cost/kg is 7.6% lower for hybrid seeds users relative to non-users

^{**} Significant at 10%

^{***}Significant at 5%

Costs & Returns from Rice Production

Returns from Rice Production by season

ITEMS	2011 WS	2012 DS
Yield (kg/ha)	3,673	4,129
Price per kg (PhP/kg)	13.23	14.23
Gross Revenue (PhP/ha)	48,582	58,777
Total Production Cost (PhP/ha)	42,201	44,908
Net profit		
from Rice Farming (PhP/ha)	6,381	13,868
from Rice Farming + Returns to Own Labor, Land, and Capital (PhP/ha)	20,788	29,116

Returns from Rice Production by ecosystem

ITEMS	Irrigated	Rainfed
Yield (kg/ha)	4,152	2,896
Price per kg (PhP/kg)	13.78	13.38
Gross Revenue (PhP/ha)	57,206	38,740
Total Production Cost (PhP/ha)	46,029	33,978
Net profit		
from Rice Farming (PhP/ha)	11,177	4,762
from Rice Farming + Returns to Own Labor, Land, and Capital (PhP/ha)	26,576	17,339

SUMMARY & CONCLUSION

Summary

Yield Enhancing

Use of high quality seeds
N & P₂O₅ fertilizer
application
Pesticide (except
insecticide) application
Access to irrigation
Training
Season

Cost Reducing

Higher yield
Machine-day price
Use of hybrid seeds
Insecticide Al price

Conclusion

The use of high quality seeds is still a significant factor (across season) that can further improve the yield.

Sufficient water supply also contributes to a significant increase in yield.

Efficient pests management, nutrient management and farmer's knowledge can also improve the yield.

Reducing labor cost, particularly harvesting and threshing, can lead to lower unit cost.

Given that farmers are spending this much for rice farming, increasing their yield is still a good strategy that can result to lower cost/kg.

Thank you.