

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
13 May 2004 (13.05.2004)

PCT

(10) International Publication Number
WO 2004/039354 A1

- (51) International Patent Classification⁷: **A61K 9/107**, 41/00, 31/409, 9/127
- (21) International Application Number: **PCT/CA2003/001690**
- (22) International Filing Date: 31 October 2003 (31.10.2003)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
60/422,873 1 November 2002 (01.11.2002) US
- (71) Applicant (*for all designated States except US*): **MIRADOR DNA DESIGN INC.** [CA/CA]; 269, rue Prince, Montréal, Québec J3C 2N4 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): **SÉVIGNY, Pierre** [CA/CA]; 404-501 McGill, Montréal, Québec H2Y 2G1 (CA). **BIELEFELD-SÉVIGNY, Martina** [CA/CA]; 404-501 McGill, Montréal, Québec H2Y 2G1 (CA).
- (74) Agent: **OGILVY RENAULT**; Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (*regional*): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/039354 A1

(54) Title: MICELLE COMPOSITIONS CONTAINING PEGYLATED PHOSPHOLIPIDS AND A PHOTOSENSITIZER

(57) Abstract: The present invention relates to a non-toxic dipolar solvent for chromogenic substrate for detecting presence of lacZ gene and/or gene activity, which comprises a stabilizing amount of a solubilizing agent. The present invention also relates to a method for inducing lac operon in screening assay, comprising the step of contacting an agar plate with at least one essential oil in a concentration sufficient to induce the lac operon. The present invention further relates to a method for detecting the presence of bacteria, comprising the step of contacting an agar plate with at least one essential oil in a concentration sufficient to induce detection of the bacteria.

MICELLE COMPOSITIONS CONTAINING PEGYLATED PHOSPHOLIPIDS AND A PHOTOSENSITIZER

BACKGROUND OF THE INVENTION5 (a) Field of the Invention

This invention relates a non-toxic solvent for preparing chromogenic substrate solution and uses thereof.

(b) Description of Prior Art

Many of the cloning and expression vectors in current use (e.g. 10 the pUC series) carry a short segment of *E. coli* DNA that contains the regulatory sequences and the coding information for the first 146 amino acids of the β -galactosidase gene (*lacZ*). Embedded in this coding region is a polycloning site that does not disrupt the reading frame but results in the harmless interpolation of a small number of amino acids into the 15 amino-terminal fragment of β -galactosidase. Vectors of this type are used in host cells that code for the carboxy-terminal portion of β -galactosidase. Although neither the host-encoded nor the plasmid-encoded fragments are themselves active, they can associate to form an enzymatically active protein. This type of complementation, in which deletion mutants of the 20 operator-proximal segment of the *lacZ* gene are complemented by β -galactosidase-negative mutants that have the operator-proximal region intact, is called α -complementation. The Lac⁺ bacteria that result from α -complementation are easily recognized because they form blue colonies in the presence of the chromogenic substrate 5-Bromo-4-chloro-3-indoxyl- β - 25 D-galactopyranoside (X-gal) (Horwitz et al. 1964. Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3-indoxyl- β -D-galactopyranosides. J. Med. Chem. 7:574.). However, insertion of a fragment of foreign DNA into the polycloning site of the plasmid almost invariably results in the production of an amino-terminal 30 fragment that is not capable of α -complementation. Bacteria carrying recombinant plasmids therefore form white colonies. The development of this simple color test has greatly simplified the identification of recombinants constructed in plasmid vectors of this type. It is easily possible to screen many thousands of colonies visually and to recognize

colonies that carry putative recombinant plasmids. The structure of these plasmids is then verified by restriction analysis of mini-preparations of plasmid DNA.

To a pre-made LB agar plate containing the appropriate antibiotics, a quantity of a stock solution of X-gal (20 mg/ml in dimethylformamide (DMF) or Dimethyl sulfoxide (DMSO)) and a quantity of a solution of isopropylthio- β -D-galactoside (IPTG) is added. The stock solution of X-gal is usually prepared by dissolving X-gal in dimethylformamide or Dimethyl sulfoxide which is a toxic solvent presenting also the drawback of providing solutions that are not stable through time.

IPTG is an important addition to the blue-white screening. The vectors carrying a segment of DNA derived from the lac operon of *E. coli* that codes for the amino-terminal fragment of β -galactosidase can be induced by isopropylthio- β -D-galactoside (IPTG). Bacteria exposed to the gratuitous inducer IPTG synthesize both fragments of the enzyme and form blue colonies when plated on media containing the chromogenic substrate 5-Bromo-4-chloro-3-indoxyl- β -D-galactopyranoside (X-gal).

It would be highly desirable to be provided with new solvents that are non toxic for preparing chromogenic substrate solutions used in screening assays, these solvents providing an extended stability of the chromogenic substrate solution.

SUMMARY OF THE INVENTION

In accordance with the present invention there is provided a non-toxic dipolar solvent for chromogenic substrate for detecting presence of lacZ gene and/or lacZ gene activity, which comprises a stabilizing amount of a solubilizing agent.

The solvent in accordance with a preferred embodiment of the present invention, wherein the solvent is a microemulsion.

The solvent in accordance with a preferred embodiment of the present invention, wherein the solubilizing agent is at least one selected from the group consisting of 1-Methylpyrrolidone (NMP), N'-dimethyl propylene urea (DMPU), Propylene carbonate (PC) and essential oil.

The solvent in accordance with a preferred embodiment of the present invention, wherein the essential oil is present in an effective solubilizing concentration for dissolving the chromogenic substrate.

- The solvent in accordance with a preferred embodiment of the
- 5 present invention, wherein the essential oil is selected from the group consisting of *Abies alba*, *Aniba roseodora*, *Cedrus atlantica*, *Citrus aurantifolia*, *Citrus aurantium*, *Citrus bergamia*, *Citrus limon*, *Citrus paradisi*, *Citrus reticulata*, *Citrus sinensis*, *Cupressus sempervirens*, *Juniperus communis*, *Juniperus virginiana*, *Picea mariana*, *Pinus sylvestris*,
- 10 *Ravensara aromatica*, *Rosmarinus officinalis*, citrus extracts, pine terpenoids, conifers extracts, limonene oil and linseed oil.

In accordance with the present invention, there is provided a composition for detecting the presence of lacZ gene and/or lacZ gene activity comprising the solvent of the present invention and an effective amount of chromogenic substrate.

In accordance with the present invention, there is provided a method for inducing lac operon in screening assay, comprising the step of contacting an agar plate with at least one essential oil in a concentration sufficient to induce the lac operon.

20 The method in accordance with a preferred embodiment of the present invention, the lac operon being induced in one selected from the group consisting of *E. Coli*, *Bacillus subtilis*, phage, or *in situ* tissues.

25 In accordance with the present invention, there is provided a method for detecting the presence of bacteria, comprising the step of contacting an agar plate with at least one essential oil in a concentration sufficient to induce detection of the bacteria.

For the purpose of the present invention the following terms are defined below.

30 The term "chromogenic substrate" is intended to mean a substrate that produce a color when contacted with an appropriate reagent. The chromogenic substrate can be one of, but not limited to, X-Gal and IPTG.

All references herein are hereby incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates a bacterial culture exhibiting a strong blue color indicative of lac operon induction without the presence of IPTG when X-gal dissolved in essential oils;

5 Fig. 2 illustrates the results of plating a ligation/transformation onto LB plates containing X-gal dissolved in dimethylformamide (DMF);

Fig. 3 illustrates the results of plating a ligation/transformation onto LB plates containing X-gal dissolved in NMP and methanol;

10 Fig. 4 illustrates the results of plating a ligation/transformation onto LB plates containing X-gal dissolved in NMP, sea pine turpentine and methanol; and

Fig. 5 illustrates the results of plating a ligation/transformation onto LB plates containing X-gal solution aged of 16 months;

15 Fig. 6 illustrates the aging of LB plates at 4°C, room temperature, 37°C and 65°C (in the clockwise direction); and

Figs. 7A-7C illustrate LB plates after 2 weeks at various temperatures.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, there is provided non-toxic solvents for dissolving and stabilizing enzyme substrate used in screening assays.

One enzyme substrate widely used is X-gal, which is a dipolar molecule having the formula I:

5-Bromo-4-chloro-3-indoxyl-beta-D-galactopyranoside

The X-gal solutions prepared with a non-toxic dipolar solvent of the present invention, for example 1-Methylpyrrolidone (NMP), N'-dimethyl 35 propylene urea (DMPU), Propylene carbonate (PC), essential oils or a

combination of these, are very stables. In solution at 4°C, the X-gal will keep its activity for more than 6 months. If used to be poured in agar plates containing the proper antibiotic, these plates will remain active and usable for at least 3 months.

5 As an example of its non-toxicity, NMP is known as rapidly absorbed and eliminated. It is currently used intravenously in horses as a preanaesthetic. It is also used as an excipient in topical pharmaceutical formulations in human medicine and in cosmetics.

10 Essential oil mixes can be used to create a dipolar environment allowing X-gal dissolution. For instance, a combination of citrus extracts, pine terpenoids, limonene and linseed oil was shown to create an environment allowing the proper dissolution of X-gal.

15 Non-toxic micro emulsions can also be used to dissolve X-gal. A micro emulsion is a thermodynamically stable dispersion of one liquid phase into another, stabilized by an interfacial film of surfactant. This dispersion may be either oil-in-water or water-in-oil. Micro emulsions are typically clear solutions, as the droplet diameter is approximately 100 nanometers or less. The interfacial tension between the two phases is extremely low. Emulsions are in contrast unstable, the suspended droplets 20 will eventually agglomerate and the dispersed phase will phase separate. Emulsion droplet sizes are much larger, typically one micron or more, resulting in a cloudy or milky dispersion. The nature of an emulsion may depend on the mixing of the ingredients and the amount of energy put into the mixing process.

25 A combination of essential oil was extracted with chloroform in order to remove part of the oil phase, and create a semi-precipitated emulsion. For example, 20ml of citrus extract, pine terpenoids, limonene oils and linseed oil was mixed with 20ml of Chloroform by vigorously shaking in a 50ml falcon tube. The resulting mix was let stand for 30 approximately one day, and then the upper phase was transferred to a 15ml falcon tube. The obtained phase is a milky emulsion. It dissolves X-gal very well. If we let stand the milky phase for approximately one week, it will show the development of 5 distinct phases. Isolating each phases, it was interesting to observe that only phase # 2, the milky sub-phase, then

still an emulsion, can be used as an active solution to dissolve X-gal. The active phase is yellow milky cloudy in appearance. Using 500 µl completely dissolve 0.01g of X-gal; however, it gives a very opaque and viscous solution in appearance.

5 Micro emulsions are proper to create dipolar environment allowing a complete dissolution of X-gal. A mixture of oil, egg yolk or lecithine and acetic acid was sufficient to dissolve X-gal and show blue bacteria when used for its function as spread on an agar surface. Linseed oil, which has an average composition of different fatty acids (C16:0
10 palmitic acid 4-9%, C18:0 stearic acid 2-4%, C18:1 oleic acid 14-39%, C18:2 linoleic acid 7-19%, C18:3 linolenic acid 35-66%) is a known carrier for lipophilic molecules (as essential oils) and can act as a compound of the oily phase of the emulsion.

15 A micro emulsion is ideally made of a non-polar liquid mixed with a polar liquid in the presence of a surfactant or amphiphile, which is ideally a molecule carrying both polar and non-polar charges. In our situation, the surfactant, or amphiphilic molecule is X-gal. The role of the surfactant is to reduce the interfacial tension between two partially miscible or immiscible fluids below that obtained when no surfactant is present.

20 As shown in Table 1, variation in the composition of the micro-emulsion has an impact on the temperature flash point, which is a concern for transportation purposes.

Table 1

X-Gal with	Flash point (°C)
10% water / 90% NMP	> 93
5% water / 95% NMP	88
1% seapine / 10% water / 89% NMP	76
1% seapine / 99% NMP	73
10% seapine / 90% NMP	47.5

As well, IPTG is a usual and relatively essential addition to the cloning process. Omitting IPTG from the growth medium will decrease the expression level from plac, blue /white selection is usually not possible in the absence of IPTG. *E. coli* lac operon consists of a promoter, a 5 transcriptional regulatory site called the operator (o), a CAP binding site (c), and three structural genes (lacZ, lacY and lacA) that are transcribed as a single polycistronic mRNA. Transcription of the lac operon is regulated by the lac repressor protein (lacI) which is encoded on a gene physically linked to the lac operon. lac operon inducers, such as IPTG, deactivate the 10 lac repressor protein resulting in transcriptional de-repression of the lac operon. It is possible to artificially induce the lac operon using a nonmetabolizable allolactose analogue, isopropylthiogalactoside (IPTG), which binds to the lac repressor protein.

It is shown here that essential oils are replacing IPTG to induce 15 the lac operon. It was found that compositions comprising essential oils not only dissolves X-gal, but also enhances the blue color without the need of IPTG. Among different tested essential oils, the most interesting alternative to IPTG is a small amount of the essential oil Sea Pine. Other 20 essential oils extracted from spruce, pine or other conifers are also candidate to replace IPTG. Using such oil instead of IPTG represent different benefits, being non-toxic, all natural, easily biodegradable, low cost and most importantly, already as a liquid solution, ready to use.

Monoterpenes and sesquiterpenes were shown to be successful 25 in dissolving X-gal and replacing IPTG in screening clones using the blue/white X-gal selection method.

In addition to X-gal , it is also possible to dissolve IPTG with the same solutions for cloning with bacterial systems needing that stimulation (see Table 2 for examples). These same solutions allow stable dissolution 30 of Ampicillin, Tetracyclin and Chloramphenicol, providing an approach wherein a complete solution is available to the user. To dissolve Kanamycin, a solution with a base of micelles in aqueous solution is essential.

Table 2

Strain	(lacZ)M15	lacIq	F'	Cam R	Kan R	Str R	Tet R	Comments
DH5-alpha	x							Invitrogen; (lacZYA)U169
DH5-alpha E	x							Invitrogen; (lacZYA)U169
DH5-alpha F'	x		x					Invitrogen; (lacZYA)U169
DH5-alpha T1R	x							Invitrogen; (lacZYA)U169
DH10B	x							Invitrogen
DH10Bac	x							Invitrogen; for producing recombinant baculovirus molecules
DH10B T1 R	x							Invitrogen
GeneHogs	x							Invitrogen; D10B derivative
INV-alpha F'	x		x					Invitrogen, (lacZYA)U169
JM83	x				x			ATCC 35607
Select 96	x							Promega
TB1	x				x			NEB; comes with pMAL system
TOP10	x							Invitrogen
TOP10/P3	x				x	x	x	Invitrogen; AMP R
ABLE C	x	x	x		x		x	Stratagene; lower plasmid copy number
ABLE K	x	x	x		x		x	stratagene; lower plasmid copy number
AD494								
BB4	x	x	x				x	=LE392.23
BMH 71-18 mutS	x	x	x				x	
DH5-alpha F' IQ	x	x	x		x			Invitrogen
DH-alpha FT	x	x	x				x	Invitrogen; (lacZYA)U169
DH11S	x	x	x					Invitrogen; mainly for ssDNA production with phagemid/m13
DH12S	x	x	x				x	Invitrogen
Electro Ten blue	x	x	x		x		x	Stratagene
ER1727	x	x	x		x	x		NEB
ER2267	x	x	x					NEB
ER2738	x	x	x					NEB
INV110	x	x			x	x		Invitrogen; to produce unmethylated DNA
JM101	x	x	x					ATCC33876

- 9 -

Strain	(lacZ)M15	IacIq	F'	Cam R	Kan R	Str R	Tet R	Comments
BL21 (DE3)							x	for prot expression; some also Cam R or Kan R
BNN93								
C600								ATCC 23724
CJ236			x	x				
DB3.1								Invitrogen; for propagating vector with ccdB gene
DH1								ATCC 33849
DH5 alpha MCR								Invitrogen; (lacZYA)U169

In a preferred embodiment of the present invention, individual LB plates are prepared adding 100 µl of X-gal solution to the surface of a LB plate being at room temperature and spreading evenly across the surface. The plate is dried before use. X-gal containing LB + Amp plates are stable 5 for up to 90 days when stored at 4°C.

Batches can be prepared by aseptically adding X-gal solution directly to melted LB agar (temperature 50°C). 100 µl of the solution should be used for every Petri dish. For example, for each 500 ml add 10 2000 µl of X-gal solution. Mix well (for 3 to 5 minutes) and pour as you normally would. Let cool. X-gal LB plates are stable for at least 3 months when stored at 4°C. X-gal can be added before or after the addition of selective antibiotics to the medium. For best mixing results, a magnetic stir bar should be added during the autoclaving process or a sterile magnetic stir bar could be aseptically added after autoclaving.

15 In a preferred embodiment of the present invention, X-gal solution is prepared as follow:

NMP or DMPU only

Add 7 ml of either NMP or DMPU to 1 gram of X-gal. Stir until dissolved and bring to 10 ml with NMP or DMPU (whichever is already 20 used).

NMP or DMPU with essential oil

Add 3.5 ml of either NMP or DMPU to 1 gram of X-gal. Stir until dissolved and bring to 5 ml with NMP or DMPU (whichever is already used). Mix with 5 ml of essential oil until thoroughly mixed.

NMP/methanol solution

Add 7 ml of either NMP or DMPU to 1 gram of X-gal and stir until dissolved. Bring to 10 ml with NMP or DMPU (whichever is already used). Add 90 ml of methanol and mix thoroughly.

5

Example 1**Essential oils as solvent and IPTG replacement**

Using 0.01 g X-gal in 500 µl of TURPENOID NATURAL® (comprising a combination of citrus extracts, pine terpenoids, limonene and linseed oil) provides excellent dissolution of X-gal and without affecting bacterial growth. It also provides a strong blue color without the need of IPTG, as shown in Fig. 1.

Example 2**Dissolution of X-gal**

10 mg of X-gal powder were successfully dissolved in the
15 solvents described in the Table 3 below.

Table 3

Mix	T1-
Citrus lemon/Citrus sinensis	700 µl
Pinus pinaster	300 µl
Mix	T2-
Cupressus sempervirens	50 µl
Pinene (Sigma)	50 µl
Campher oil	100 µl
Citrus sinensis	800 µl
Mix	T3-
NMP	100 µl
<i>Methanol (only to increase total volume):</i>	900 µl
% NMP :	10%
Mix	T4-
PC	200 µl
<i>Methanol (only to increase total volume):</i>	400 µl
% PC :	33%

Example 3**Dissolution in NPM and NMP/methanol**

A 10X X-gal/NMP solution could be stored at -20°C without freezing. Over time, the solution will take a very pale yellow color that does not seem to darken over time. A 10X X-gal/NMP solution is easily diluted to 1X in anhydrous methanol or 95% ethanol. When diluted in methanol or ethanol, the solution will not freeze.

When the 1X X-gal/NMP/methanol is stored for 16 weeks at 4°C, there is no loss in X-gal activity as measured by applying 100 µl to a LB plate, streaking *E. coli* pUC19 transfecant, incubation at 37°C and examination for blue colonies after 16 hours.

Tables 4 and 5 are showing the results obtained by testing the activity of X-gal in solution with different solvent on a weekly basis. In Table 4, the tested solutions were stored at 4°C. At weekly intervals, 100 µl was applied to an LB+Amp plate and streaked with *E. coli* containing pUC19. The plate was incubated overnight at 37°C. The following morning the plate was examined for blue colonies. In Table 5, LB + Amp plates were prepared and stored at 4°C. At weekly intervals, a plate was removed and streaked with *E. coli* containing pUC19. The plate was incubated at 37°C overnight. The blueness of the colonies was then scored.

Table 4
Weekly Testing of X-gal/NMP/Methanol solution

Week	Test Results
0	+
1	+
2	+
3	+
4	+
5	+
6	+
7	+
8	+
9	+
10	+
11	+

Week	Test Results
12	+
13	+
14	+
15	+
16	+
17	+
18	+
19	+
20	+

Table 5
Weekly testing of X-gal/NMP or X-gal/NMP/oil

Date	NMP plate	Oil+NMP plate
0	+	+
1	+	+
2	+	+
3	+	+
4	+	+
5	+	+
6	+	+
7	+	+
8	+	+
9	+	+
10	+	+
11	+	+
12	+	+
13	+	+
14	+	+

5

Example 4

Dissolution with Essential Oils

It was shown that when X-gal was first dissolved in NMP, mixed one to one with essential oil, and then diluted in methanol to 10 mg/ml the mixture would ultimately yield colonies that are darker blue than when X-gal is made up in dimethylformamide.

This work was repeated and expanded to include other essential oils. The oils tested were: Natural Orange Terpene Solvent (Eco-House);

Blue Gum Eucalyptus Organic (Divine Essense); Atlas cedarwood (Pranarom); Sea Pine Turpentine (Pranarom) and Natural Turpenoid.

In this experiment, a 100 mg/ml solution of X-gal in NMP was prepared. A one to one mix with each essential oil was then made using 5 this solution. The net X-gal concentration is now 50 mg/ml. This solution was then dilute 5X with 100% methanol such that the final concentration of X-gal is 10 mg/ml. One hundred microliters of this solution is then applied per LB plate.

As a control, 50 μ l of a 20 mg/ml solution of X-gal dissolved in 10 dimethylformamide was applied to one LB plate.

E. coli containing pUC19 was streaked onto each "X-gal spread" LB plate for isolated colonies. The plates were incubated at 37°C overnight. After incubation, the growth on each X-gal plate was scored for blueness. The ranking was as follows (least blue to most blue): A (least); 15 B and X-gal/DMF; C, D and E (most blue).

The results showed that when either Atlas Cedarwood, Sea Pine Turpenine or Natural Turpenoid were mixed with X-gal/NMP/methanol there was an enhanced blueness of the *E. Coli* pUC containing bacteria.

During assays with Sea Pine Turpentine, the amount of Sea Pine 20 Turpentine added to the X-gal/NMP solution was serially diluted one in two four times, mixed with methanol and then spread onto LB plates. The amount of X-gal added to each plate was the same. The plates were then streaked with *E coli* containing pUC19 and incubated overnight.

An examination of the plates showed that the bluest colonies 25 were those obtained with the original amount of Sea Pine Turpentine gave the deepest blue color.

In the previous experiments, the final X-gal concentration was 10 mg/ml. The concentration of X-gal was reduced to 7.5, 5 and 2.5 mg/ml. Plates were prepared and streaked. The net result was that there was a 30 significant drop in blue coloration when the X-gal was dropped from 7.5 to 2.5 mg/ml. In a preferred embodiment of the present invention, X-gal is in a concentration of 10 mg/ml.

Ligation assays were performed using lambda DNA digested with PstI and pUC19 digested with PstI and CIAP treated. The completed ligation was transformed into DH5 α and plated onto LB plates containing:

- (a) X-gal dissolved in Dimethylformamide
- 5 (b) X-gal dissolved in NMP and methanol
- (c) X-gal dissolved in NMP, Sea Pine Turpentine and methanol

The plates were incubated overnight. The results for a, b and c are shown in Figs. 2, 3 and 4, respectively. For all three plating, there were both white and blue colonies. Moreover, it is shown that the blues colonies 10 of Fig. 4 are of a more intense blue than the ones of Figs. 2 and 3.

It is possible to incorporate X-gal directly in molten LB agar. To test this with the X-gal solution of the present invention, 500 ml of LB agar was made, autoclaved and cooled to about 50°C. To this 2 ml of a 10 mg/ml X-gal/NMP/SeaPine/methanol solution was added and mixed. Upon 15 the addition of the X-gal solution, there was a cloudy appearance throughout the agar as it mixed. Mixing for 3 to 4 minutes did not disperse the cloudiness. However, when the plates were poured, the cloudiness dispersed upon cooling and solidification. A slight surface cloudiness was noted several hours later when the plates were inverted for incubation 20 overnight at room temperature. However, the next day the plates looked normal.

One plate was used to streak a white and a blue colony and incubated overnight at 37°C.

Two plates were left at 25°C. These two plates served as 25 shipping simulators. The plates were tested after 5 days and were streaked with a blue and white colony and incubated overnight.

Aging studies have been set up for the liquid product both with and without Sea Pine Turpentine. The studies conducted with the X-gal/NMP/methanol solution shown that the product is stable for 17 weeks 30 at 4°C with only a minor pale yellow color developing over time. This has being conducted at the same time with the X-gal/NMP/SeaPine/methanol product.

Example 5**Aging studies**

X-gal solution using NMP and/or essential oil were shown to have an improve shelf-life. Table 6 is providing life span of X-gal solutions.

5

Table 6

Temperature	Time
4°C	16 months
Room temperature	4 months
37°C	1 month
65°C	1 month

Moreover, it had been found that XGal Petri dishes were still active when conserved at 4°C during as long as 12 months.

Method and results

Longest-term recipe is 1st June of 2002 in amber bottles and
10 stored at 4°C. The recipe is 10% NMP and 90% methanol. The solution was last test Sept 25 2003 and found to be functioning fine (see Fig. 5). Currently, only a pale yellow color and not crystals.

X-gal containing LB plates were prepared July 30 2002. Two sets of plates were poured and stored at 4°C only. The first set was X-gal dissolved in NMP then an equal volume of natural turpenoid extract was added followed by ethanol. The final X-gal concentration in the solution was 10 mg/ml. Ampicillin prepared in water was added separately to the molten agar before pouring.

Each week one plate was removed, streaked with pUC/DH5α and DH5α and incubated at 37°C overnight. During the course of the experiment, the streaked pUC/DH5α always turned blue and the DH5α did not grow. Up until July 30 2003, both Ampicillin and X-gal were functioning.

Tables 7-9 provide results from more aging studies performed
25 with solutions in accordance with the present invention

Table 7
10% NMP

Main Ingredients	May 12	June 3	June 9	June 13	June 27	July 8	Aug 5	Aug 15	Sept 22
No crystals, clear solution Ok	Clear, no crystals	Yellow, no crystals	Yellow, no crystals ok	Yellow, no crystals ok	Yellow color, no crystals, ok	Slightly yellow, no crystals ok			
X-gal (ethanol) May 5, 2003	Clear, no crystals Ok	Clear, no crystals ok	Clear, no crystals ok	Clear, no crystals ok	Clear, no crystals ok	Clear, no crystals ok	Clear, no crystals	Clear, no crystals	Clear, no crystals
X-gal (methanol) May 1, 2003	Clear, no crystals Ok	Yellow color, no crystals Ok	yellow color, no crystals Ok	yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok
Ampicillin + X-gal May 6, 2003	Yellow, No crystals, Ok Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok
Amp in NMP + X-gal May 15, 2003	NA	Pale yellow Ok Ok	Yellow, no crystals Ok, ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok	Yellow, no crystals Ok
Chloramphenic ol IPTG (low) + X-gal May 5, 2003	Pale yellow, no crystals, Ok, ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok
Chloramphenic ol IPTG (high) + X-gal May 5, 2003	Pale yellow, no crystals, Ok, ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok	Pale yellow, no crystals Ok
Tetracycline* + X-gal (April 4, 2003)	Yellow, no crystals, No growth of DH5 α	Yellow, clear, no crystals, No growth of DH5 α	Darker yellow, no crystals	Darker yellow, no crystals	Darker yellow, no crystals	Dark yellow, no crystals	Dark yellow, no crystals	Yellow, no crystals, ok ok	Yellow, no crystals, ok ok

Main Ingredients	May 12	June 3	June 9	June 13	June 27	July 8	Aug 5	Aug 15	Sept 22
Tetracycline (low) + X-gal (May 5 , 2003)	Yellow, no crystals	Yellow, no crystals	Yellow, no crystals Ok Ok	Yellow, no crystals Ok Ok	Yellow, no crystals Ok, ok	Yellow, no crystals	Yellow, no crystals	Yellow, no crystals	Yellow, no crystals Ok Ok
Tetracycline (high) + X-gal (May 5 , 2003)	Yellow, no crystals	Yellow, no crystals	Yellow, no crystals Ok, ok	Yellow, no crystals Ok, ok	Yellow, no crystals Ok Ok	Yellow, no crystals	Yellow, no crystals	Yellow, no crystals	Yellow, no crystals Ok Ok

Table 8

AGING TEST #1

Formulations		Start date	Aging test (# weeks)	Result	Aging test (# weeks)
DMF + X-Gal	RT	17-Sep-03	1 week	Appearance of soln: clear, Intensity 4+	4 weeks
	-20	mid-july-03	~9 weeks	Appearance of soln: clear, Intensity 4+	~ 12 weeks
BT lot no. 024 (25% NMP)	65C	17-Sep-03	1 week	Appearance of soln: yellow, Intensity 4+	4 weeks
	37C	17-Sep-03	1 week	Appearance of soln: light yellow, Intensity 4+	4 weeks
	RT	21-Aug-03	5 weeks	Appearance of soln: clear, Intensity 4+	8 weeks
	4C	5-Aug-03	~7 weeeks	Appearance of soln: clear, Intensity 4+	~ 10 weeks
BT lot no. 004	RT	21-Aug-03	5 weeks	Appearance of soln: light yellow, Intensity 4+	8 weeks
	4C	18-Feb-03	~31 weeks	Appearance of soln: light yellow, Intensity 4+	~ 34 weeks
BT Amp, lot 019	RT	21-Aug-03	5 weeks	Appearance of soln: yellow, Intensity 3+	8 weeks
	4C	16-May-03	~18 weeks	Appearance of soln: yellow, Intensity 3+	~ 21 weeks

All were tested with DH5 + TrueBlue
BT lot no. 024 (25% NMP) has an intensity rated higher than others probably because the resulting evaporation made it more []

Table 9

AGING TEST NEW FORMULATIONS		Start date	Week 2	Result	W4 (M1)
Formulations					
A + X-Gal / IPTG	65C	28-Sep-03	14-Oct-03	Appearance of soln: VERY yellow, Intensity 3+	28-Oct-03
	37C	28-Sep-03	14-Oct-03	Appearance of soln: light yellow, Intensity 4+	28-Oct-03
	RT	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	4C	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	-20	28-Sep-03			28-Oct-03
D + X-Gal / IPTG	65C	28-Sep-03	14-Oct-03	Appearance of soln: VERY yellow, Intensity 3+	28-Oct-03
	37C	28-Sep-03	14-Oct-03	Appearance of soln: light yellow, Intensity 4+	28-Oct-03
	RT	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	4C	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	-20	28-Sep-03			28-Oct-03
K + X-Gal / IPTG	65C	28-Sep-03	14-Oct-03	Appearance of soln: brown-orange, Intensity 3+	28-Oct-03
	37C	28-Sep-03	14-Oct-03	Appearance of soln: yellow, Intensity 4+	28-Oct-03
	RT	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	4C	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	-20	28-Sep-03			28-Oct-03
BT PLUS lot no. 028, 25% NMP	65C	28-Sep-03	14-Oct-03	Appearance of soln: greenish-brown, Intensity 3+	28-Oct-03
	37C	28-Sep-03	14-Oct-03	Appearance of soln: light yellow, Intensity 4+	28-Oct-03
	RT	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	4C	26-Aug-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	-20	28-Sep-03			28-Oct-03
DMF + X-Gal / IPTG	65C	28-Sep-03	14-Oct-03	Appearance of soln: orange, Intensity ---	28-Oct-03
	37C	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	RT	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	4C	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	-20	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
DMSO + X-Gal / IPTG	65C	28-Sep-03	14-Oct-03	Appearance of soln: greenish-brown, Intensity ---	28-Oct-03
	37C	28-Sep-03	14-Oct-03	Appearance of soln: light yellow, Intensity 4+	28-Oct-03
	RT	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	4C	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03
	-20	28-Sep-03	14-Oct-03	Appearance of soln: clear, Intensity 4+	28-Oct-03

Test 14 oct was done with DH5 + TrueBlue

Test 28 oct was done with XL1 + PUC (also solutions are 65C were rought back to 1400uL)

In Fig. 6, dishes from the BT lot no. 024, as described in Table 8 are illustrated. The two top left dish was conserved at 4°C, the top right dish was conserved at room temperature, the bottom left dish was conserved at 37°C and the bottom right dish was conserved at 65°C.

5 In Fig. 7A, dishes from the lot A, as described in Table 9, are illustrated. The top dish was conserved two weeks at 4°C, the bottom left dish was conserved two weeks at 37°C and the bottom right dish was conserved two weeks at 65°C.

10 In Fig. 7B, dishes from the lot 028, as described in Table 9, are illustrated. The top dish was conserved two weeks at 4°C, the bottom left dish was conserved two weeks at 37°C and the bottom right dish was conserved two weeks at 65°C.

15 In Fig. 7C, dishes from the lot DMSO, as described in Table 9, are illustrated. The top dish was conserved two weeks at -20°C, the bottom left dish was conserved two weeks at 37°C and the bottom right dish was conserved two weeks at 65°C.

20 While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as follows in the scope of the
25 appended claims.

WHAT IS CLAIMED IS:

1. A non-toxic dipolar solvent for chromogenic substrate for detecting presence of lacZ gene and/or lacZ gene activity, which comprises a stabilizing amount of a solubilizing agent.
2. The solvent of claim 1, wherein said solvent is a microemulsion.
3. The solvent of claim 1, wherein said solubilizing agent is at least one selected from the group consisting of 1-Methylpyrrolidone (NMP), N'-dimethyl propylene urea (DMPU), Propylene carbonate (PC) and essential oil.
4. The solvent of claim 1, wherein said essential oil is present in an effective solubilizing concentration for dissolving said chromogenic substrate.
5. The solvent of any one of claims 3 and 4, wherein said essential oil is selected from the group consisting of *Abies alba*, *Aniba roseodora*, *Cedrus atlantica*, *Citrus aurantifolia*, *Citrus aurantium*, *Citrus bergamia*, *Citrus limon*, *Citrus paradisi*, *Citrus reticulata*, *Citrus sinensis*, *Cupressus sempervirens*, *Juniperus communis*, *Juniperus virginiana*, *Picea mariana*, *Pinus sylvestris*, *Ravensara aromatica*, *Rosmarinus officinalis*, citrus extracts, pine terpenoids, conifers extracts, limonene oil and linseed oil.
6. The solvent of claim 1, wherein said chromogenic substrate is selected from the group consisting of X-Gal and IPTG.
7. A composition for detecting the presence of lacZ gene comprising the solvent of any one of claims 1-6 and an effective amount of chromogenic substrate.
8. A method for inducing lac operon in screening assay, comprising the step of contacting an agar plate with at least one essential oil in a concentration sufficient to induce said lac operon.
9. The method of claim 8, said lac operon being induced in one selected from the group consisting of *E. Coli*, *Bacillus subtilis*, phage, or *in situ* tissues.
10. The method of claim 8, wherein said essential oil is selected from the group consisting of *Abies alba*, *Aniba roseodora*, *Cedrus*

atlantica, Citrus aurantifolia, Citrus aurantium, Citrus bergamia, Citrus limon, Citrus paradisi, Citrus reticulata, Citrus sinensis, Cupressus sempervirens, Juniperus communis, Juniperus virginiana, Picea mariana, Pinus sylvestris, Ravensara aromatica, Rosmarinus officinalis, citrus extracts, pine terpenoids, conifers extracts, limonene oil and linseed oil.

11. A method for detecting the presence of bacteria, comprising the step of contacting an agar plate with at least one essential oil in a concentration sufficient to induce detection of said bacteria.

12. The method of claim 11, wherein said essential oil is selected from the group consisting of Abies alba, Aniba roseodora, Cedrus atlantica, Citrus aurantifolia, Citrus aurantium, Citrus bergamia, Citrus limon, Citrus paradisi, Citrus reticulata, Citrus sinensis, Cupressus sempervirens, Juniperus communis, Juniperus virginiana, Picea mariana, Pinus sylvestris, Ravensara aromatica, Rosmarinus officinalis, citrus extracts, pine terpenoids, conifers extracts, limonene oil and linseed oil.

1 / 3

FIGURE - 1FIGURE - 2FIGURE - 3

2/3

FIG - 4FIG - 5FIG - 6

3/3

~~FIG - 7A~~~~FIG - 7B~~~~FIG - 7C~~

INTERNATIONAL SEARCH REPORT

International Application No
PCT/CA 02/01690

A. CLASSIFICATION OF SUBJECT MATTER				
IPC 7	A61K9/107	A61K41/00	A61K31/409	A61K9/127

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, Y	<p>WO 02/083097 A (SINGH DEV MITRA RANJI ; BOCH RONALD E (CA); QLT INC (CA); KARMADI IMAN) 24 October 2002 (2002-10-24) page 5, line 5 - page 6, line 12</p> <p>-----</p>	1-13
Y	<p>WO 01/08660 A (PHILBERT MARTIN A ; AYLOTT JONATHAN W (US); MONSON ERIC E (US); UNIV M) 8 February 2001 (2001-02-08) page 14, line 25 - line 29 page 28, line 4 - line 29 page 32, line 9 - page 33, line 25 example 11</p> <p>-----</p> <p>-/-</p>	1-13

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

24 March 2004

Date of mailing of the International search report

16/04/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Giménez Miralles, J

INTERNATIONAL SEARCH REPORT

International Application No

PCT/CA 02/01690

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 96/23524 A (COCKBAIN JULIAN R M ; FUGLAAS BJORN (NO); KLAIVENESS JO (NO); RONGVED P) 8 August 1996 (1996-08-08) page 22, paragraph 2 page 24, last paragraph – page 25, paragraph 1 example 7 -----	1-13
Y	WO 01/55151 A (JAPAN SCIENCE & TECH CORP ; AIDA TAKUZO (JP); JIANG DONG LIN (JP); OHN) 2 August 2001 (2001-08-02) See family member EP 1 253 150 A for translation. abstract -----	1-13
Y	SOU K ET AL: "Poly(ethylene glycol)-Modification of the Phospholipid Vesicles by Using the Spontaneous Incorporation of Poly(ethylene glycol)-Lipid into Vesicles" BIOCONJUGATE CHEMISTRY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, vol. 11, no. 3, 14 April 2000 (2000-04-14), pages 372-379, XP002209415 ISSN: 1043-1802 See "Results and discussion" page 374 page 376, left-hand column -----	1-13
Y	PERKINS W R ET AL: "NOVEL THERAPEUTIC NANO-PARTICLES (LIPOCORES): TRAPPING POORLY WATER SOLUBLE COMPOUNDS" INTERNATIONAL JOURNAL OF PHARMACEUTICS, AMSTERDAM, NL, vol. 200, no. 1, 25 April 2000 (2000-04-25), pages 27-39, XP001159101 ISSN: 0378-5173 the whole document -----	1-13
Y	EDWARDS K ET AL: "EFFECT OF POLYETHYLENEGLYCOL-PHOSPHOLIPIDS ON AGGREGATE STRUCTURE IN PREPARATIONS OF SMALL UNILAMELLAR LIPOSOMES" BIOPHYSICAL JOURNAL, NEW YORK, US, US, vol. 73, July 1997 (1997-07), pages 258-266, XP001098663 ISSN: 0006-3495 page 259, left-hand column -----	1-13
	-/-	

INTERNATIONAL SEARCH REPORT

National Application No
PCT/CA 02/01690

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	ISHIDA T ET AL: "A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs" FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 460, no. 1, 22 October 1999 (1999-10-22), pages 129-133, XP004342732 ISSN: 0014-5793 page 130, left-hand column -----	1-13
Y	JOHNSON M ET AL: "PHASE BEHAVIOR AND AGGREGATE STRUCTURE IN MIXTURES OF DIOLEOYLPHOSPHATIDYLETHANOLAMINE AND POLY(ETHYLENE GLYCOL)-LIPIDS" BIOPHYSICAL JOURNAL, vol. 80, January 2001 (2001-01), pages 313-323, XP002274832 page 321 -----	1-13
Y	WO 01/54666 A (ALZA CORP) 2 August 2001 (2001-08-02) the whole document -----	1-13
A	US 6 043 237 A (BUSSANICH MARCELLO NICK ET AL) 28 March 2000 (2000-03-28) column 7, line 46 - column 12, line 42 -----	1-13
A	EP 0 569 113 A (QUADRA LOGIC TECH INC) 10 November 1993 (1993-11-10) the whole document -----	1-13

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/CA 02/01690

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 02083097	A	24-10-2002	US	2002156062 A1		24-10-2002
			WO	02083097 A2		24-10-2002
			CA	2439500 A1		24-10-2002
			EP	1377274 A2		07-01-2004

WO 0108660	A	08-02-2001	AU	6376100 A		19-02-2001
			EP	1206288 A2		22-05-2002
			WO	0108660 A2		08-02-2001

WO 9623524	A	08-08-1996	AU	4545896 A		21-08-1996
			BR	9607012 A		28-10-1997
			CA	2212257 A1		08-08-1996
			DE	69622693 D1		05-09-2002
			DE	69622693 T2		03-04-2003
			EP	0808175 A1		26-11-1997
			ES	2182960 T3		16-03-2003
			FI	973208 A		01-10-1997
			WO	9623524 A1		08-08-1996
			HU	9900610 A2		28-07-1999
			JP	10513175 T		15-12-1998
			NO	973542 A		01-10-1997
			US	2003157021 A1		21-08-2003

WO 0155151	A	02-08-2001	JP	3422481 B2		30-06-2003
			JP	2001206885 A		31-07-2001
			JP	3425111 B2		07-07-2003
			JP	2001206886 A		31-07-2001
			EP	1253150 A1		30-10-2002
			WO	0155151 A1		02-08-2001
			US	2003153547 A1		14-08-2003

WO 0154666	A	02-08-2001	AU	3467001 A		07-08-2001
			CA	2398514 A1		02-08-2001
			CN	1396822 T		12-02-2003
			EP	1274399 A1		15-01-2003
			JP	2003521366 T		15-07-2003
			NO	20023139 A		23-09-2002
			WO	0154666 A1		02-08-2001
			US	2001033861 A1		25-10-2001

US 6043237	A	28-03-2000	AU	737204 B2		09-08-2001
			AU	5220298 A		03-07-1998
			CA	2273010 A1		18-06-1998
			WO	9825610 A1		18-06-1998
			CN	1246054 A		01-03-2000
			EP	0948329 A1		13-10-1999
			HU	0000576 A2		28-11-2000
			JP	2001505885 T		08-05-2001
			KR	2000057510 A		15-09-2000
			NO	992808 A		09-08-1999
			NZ	336196 A		27-10-2000
			PL	333951 A1		31-01-2000
			US	6248734 B1		19-06-2001
			ZA	9711104 A		10-07-1998

EP 0569113	A	10-11-1993	AT	151984 T		15-05-1997
			CA	2087902 A1		06-08-1993
			DE	69310014 D1		28-05-1997

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/CA 02/01690

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0569113	A		DE 69310014 T2	06-11-1997
			DK 569113 T3	20-05-1997
			EP 0569113 A1	10-11-1993
			ES 2100452 T3	16-06-1997
			GR 3023906 T3	30-09-1997
			JP 3020372 B2	15-03-2000
			JP 6122628 A	06-05-1994
			KR 9707303 B1	07-05-1997
			MX 9300560 A1	01-09-1993
			US 6074666 A	13-06-2000

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
13 May 2004 (13.05.2004)

PCT

(10) International Publication Number
WO 2004/039354 A1

(51) International Patent Classification⁷: **C12Q 1/18**

CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/CA2003/001690

(22) International Filing Date: 31 October 2003 (31.10.2003)

(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

(30) Priority Data:
60/422,873 1 November 2002 (01.11.2002) US

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(71) Applicant (for all designated States except US): **MIRADOR DNA DESIGN INC.** [CA/CA]; 269, rue Prince, Montréal, Québec J3C 2N4 (CA).

(48) Date of publication of this corrected version:

8 July 2004

(72) Inventors; and
(75) Inventors/Applicants (for US only): **SÉVIGNY, Pierre** [CA/CA]; 404-501 McGill, Montréal, Québec H2Y 2G1 (CA). **BIELEFELD-SÉVIGNY, Martina** [CA/CA]; 404-501 McGill, Montréal, Québec H2Y 2G1 (CA).

(74) Agent: **OGILVY RENAULT**; Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(15) Information about Correction:

see PCT Gazette No. 28/2004 of 8 July 2004, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/039354 A1

(54) Title: SOLVENT FOR CHROMOGENIC SUBSTRATE SOLUTION

(57) Abstract: The present invention relates to a non-toxic dipolar solvent for chromogenic substrate for detecting presence of lacZ gene and/or gene activity, which comprises a stabilizing amount of a solubilizing agent. The present invention also relates to a method for inducing lac operon in screening assay, comprising the step of contacting an agar plate with at least one essential oil in a concentration sufficient to induce the lac operon. The present invention further relates to a method for detecting the presence of bacteria, comprising the step of contacting an agar plate with at least one essential oil in a concentration sufficient to induce detection of the bacteria.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/CA 03/01690A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12Q1/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98/50566 A (LEBEL SUZANNE ; SLILATY STEVE N (CA)) 12 November 1998 (1998-11-12) the whole document ---	8-12
A	EP 0 410 655 A (MYCOGEN CORP) 30 January 1991 (1991-01-30) the whole document ---	8-12
X	EP 0 354 027 A (ENVIROSOLV INC) 7 February 1990 (1990-02-07) claims 1,8 ---	1-7
X	EP 0 950 403 A (ATRIX LAB INC) 20 October 1999 (1999-10-20) see claim 9 - a microemulsion; claim 10 - NMP and propylene carbonate; examples 1 and 2 ---	1-3
	-/-	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

4 May 2004

Date of mailing of the International search report

14/05/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Scott, J

INTERNATIONAL SEARCH REPORT

International Application No
PCT/CA 03/01690

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 317 042 A (NARAYANAN KOLAZI S) 31 May 1994 (1994-05-31) abstract -----	1-3
X	US 4 596 770 A (PARHAM MARC ET AL) 24 June 1986 (1986-06-24) abstract -----	1-3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA 03/01690

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 1-7 partially because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-7 partially

Present claims 1 and 7 pertain to products - namely a solvent (claim 1) and a composition (claim 7) these claims cover an extremely large number of possible products. Support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the products claimed. Moreover there are many clarity problems with regard to the claims, which also make the scope covered by the claims even broader.

The terms which give particular clarity problems are :

non-toxic
chromogenic substrate
solubilizing agent
essential oil

Claim 1 seems to define a product (the solvent) in terms of the use to which it is put (i.e. for chromogenic substrate / for detecting the presence of lacZ)

"a stabilizing amount of a solubilizing agent" is a result to be achieved it is not clear whether an essential oil is an essential feature of the invention, and whether it is used in combination with NMP, DMPU and PC

Claim 1 can thus be seen as a non-toxic dipolar solvent comprising some solubilizing agent. Even looking at the more restrictive dependent claim 3, this can be seen as a non-toxic dipolar solvent containing NMP, DMPU, PC or essential oil, and mixtures thereof. A claim such as this would have so many novelty destroying documents that it is not meaningful to cite them all on the search report.

In the present case, the claims so lack support and are so unclear, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the solvent of claim 1 and the composition of claim 7, in so far as the chromogenic substrate is present, and it is X-Gal or IPTG; and the solvent contains one of the group listed in claim 3 as the solubilizing agent; and the solvent is suitable for detecting the presence of lacZ or lacZ activity.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/CA 03/01690

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 9850566	A 12-11-1998	AU	741630 B2		06-12-2001
		AU	7275298 A		27-11-1998
		CA	2289235 A1		12-11-1998
		EP	10055559 A1		07-06-2000
		JP	2001523972 T		27-11-2001
		US	6127171 A		03-10-2000
		WO	9850566 A1		12-11-1998
		US	6500619 B1		31-12-2002
EP 0410655	A 30-01-1991	US	5169760 A		08-12-1992
		AU	629370 B2		01-10-1992
		AU	5912990 A		31-01-1991
		CA	2020106 A1		28-01-1991
		EP	0410655 A1		30-01-1991
		JP	3076582 A		02-04-1991
		ZA	9005390 A		26-06-1991
EP 0354027	A 07-02-1990	EP	0354027 A2		07-02-1990
		PT	91380 A		08-03-1990
EP 0950403	A 20-10-1999	EP	0950403 A2		20-10-1999
		JP	11343228 A		14-12-1999
US 5317042	A 31-05-1994	US	5071463 A		10-12-1991
		US	5160528 A		03-11-1992
		US	5156666 A		20-10-1992
		AU	651073 B2		14-07-1994
		AU	6731590 A		18-07-1991
		BR	9007911 A		15-09-1992
		CA	2021886 A1		12-06-1991
		DE	69033682 D1		08-02-2001
		DE	69033682 T2		31-05-2001
		EP	0505378 A1		30-09-1992
		JP	2995087 B2		27-12-1999
		JP	5504556 T		15-07-1993
		US	5389688 A		14-02-1995
		WO	9108665 A1		27-06-1991
		US	5354726 A		11-10-1994
		US	5250499 A		05-10-1993
		US	5283229 A		01-02-1994
		US	5176736 A		05-01-1993
		US	5326789 A		05-07-1994
		US	5298529 A		29-03-1994
		US	5266590 A		30-11-1993
		US	5338762 A		16-08-1994
		AU	656568 B2		09-02-1995
		AU	1419392 A		07-09-1992
		CA	2097707 A1		13-08-1992
		DE	69229169 D1		17-06-1999
		DE	69229169 T2		18-11-1999
		EP	0574492 A1		22-12-1993
		JP	3307930 B2		29-07-2002
		JP	6505270 T		16-06-1994
		US	5300529 A		05-04-1994
		WO	9213454 A1		20-08-1992
US 4596770	A 24-06-1986	BR	8506762 A		23-09-1986
		CA	1246443 A1		13-12-1988

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/CA 03/01690

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 4596770	A	EP	0185057 A1	25-06-1986
		FI	860463 A	31-01-1986
		JP	62500882 T	09-04-1987
		WO	8505688 A1	19-12-1985
		ZA	8504170 A	29-01-1986

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.