RING MODULATOR/DEMODULATOR TABIOI

TENTATIVE DATA

The TAB101 is a monolithic integrated circuit comprising a 4-transistor modulator/demodulator circuit. The circuit, being made on a single crystal, ensures a great similarity in the characteristics of the individual transistors and optimal tracking of their parameters with temperature variation. Consequently, the TAB101 gives better balancing and therefore less carrier leakage than a conventional circuit.

The use of transistors instead of diodes provides a better isolation between input and output circuits.

	QUICK REFERENCE DATA		
I _{СВО}	Collector-base leakage current $V_{CB}^{=5.0V, T_{amb}} = 25^{\circ}C$	< 100	nA
V _{BE1} -V _{BE2}	Base-emitter voltage difference between transistors Tr1-Tr2 $V_{CB1}^{=V}_{CB2}^{=5.0V}_{CB1}^{=150\mu A}$	<5.0	mV
V _{BE3} -V _{BE4}	Base-emitter voltage difference between transistors Tr3-Tr4 $V_{CB3}^{=V}_{CB4}^{=5.0V}_{=5.0V}$ $-I_{E3}^{=-I}_{E4}^{=150\mu A}$	<5.0	mV
h _{FB1} -h _{FB2}	Common base current amplification difference between transistors $Tr1-Tr2$ $V_{CB1}=V_{CB2}=5.0V$, $-I_{E1}=-I_{E2}=150\mu A$	<0.008	
h _{FB3} -h _{FB4}	Common base current amplification difference between transistors Tr3-Tr4 ${\rm ^{V}_{CB3}} = {\rm ^{V}_{CB4}} = 5.0 {\rm ^{V}},$ ${\rm ^{-I}_{E3}} = {\rm ^{-I}_{E4}} = 150 \mu {\rm A}$	<0.008	,

OUTLINE AND DIMENSIONS

Conforms to J.E.D.E.C. TO-74 B.S. 3934 SO-44/SB10-1

RATINGS

Limiting values of	operation	according	to the	absolute	maximum	system.

Electrical (each transistor)

Electri	cai (eaci	transistor)				
$v_{_{\mathrm{CB}}}$	o max.	Collector-base voltage		10)	v
${ m v}_{ m EBO}^{ m max}$		Emitter-base voltage		Ę	5.0	v
v_{cs}	max.	Collector-substrate voltage		12	2	v
I _C m	ax.	Collector current		10)	mA
Power (4 transi	stors)				
$\mathbf{P}_{ ext{tot}}$	max.	Total power dissipation		100)	mW
Temper	ature					
$^{ m T}_{ m stg}$	min.			-3	5	°C
Ç,	max.			+12	5	°C
•		operating)		-2	5	°C
T _{amb} max. (operating)			+100)	°C	
CHARACTERISTICS (Each transistor, T _{amb} = 25°C)						
Static characteristics			Min.	Typ.	Max	к.
V _{(BR)CBO}		tor-base breakdown voltage uA, I _E =0	10		-	v
V _{CE(sust)}		tor-emitter sustaining voltage μA , $I_B = 0$	9.0	-	-	v
V _{(BR)EBO}		r-base breakdown voltage 0μΑ, I _C =0	5.0	_	_	v
V _{(BR)CS}	Collect	tor-substrate b r eakdown voltag pµA	e 12	-	-	v
I_{CBO}		tor-base leakage current 5.0V, I _E =0	. -	5.0	100	nA
I _{EBO}		r-base leakage current	***	5.0	100	nA
I _{CS}	Collect V _{CS} = 9	or-substrate leakage current 0.5V	-	5.0	100	nA

RING MODULATOR/DEMODULATOR TABIOI

CHARA CT ER	ISTICS (cont'd)	Min.	тур.	Max.	
Static characteristics					
$^{ m h}_{ m FE}$	Large signal forward current transfer ratio ${}^{1}\mathrm{C}^{=150\mu A},~{}^{1}\mathrm{CE}^{=5.0V}$	20	75	-	
Dynamic char	acteristics				
$\mathbf{f}_{\mathbf{T}}$	Transition frequency - $I_E = 150 \mu A$, $V_{CB} = 5.0 V$, $f = 35 MHz$	-	100	- MHz	
N	Spot noise factor f=1.0kHz, Bandwidth=200Hz, R source =1.8k Ω , -I =150 μ A, V CB	_	-	10 dB	
Matching of tr	ransistors				
V _{BE1} -V _{BE2}	Base-emitter voltage difference between transistors Tr1-Tr2 $V_{CB1}=V_{CB2}=5.0V,\\ -I_{E1}=-I_{E2}=150\mu\text{A}$	-	2.0	5.0 mV	
$v_{ m BE3}^{-v}_{ m BE4}$	Base-emitter voltage difference between transistors Tr3-Tr4 $V_{CB3} = V_{CB4} = 5.0V,$ $-I_{E3} = -I_{E4} = 150 \mu A$	_	2.0	5.0 mV	
^h FB1 ^{-h} FB2	Common base current amplification difference between transistors Tr1-Tr. $V_{CB1}=V_{CB2}=5.0V, \\ -I_{E1}=-I_{E2}=150\mu A$	2	0.002	0.008	
h _{FB3} -h _{FB4}	Common base current amplification difference between transistors Tr3-Tr $V_{CB3} = V_{CB4} = 5.0V$, $-I_{E3} = -I_{E4} = 150 \mu A$	4	0.002	0.008	
Operating conditions (see typical circuit on page 5)					
P _{out} /P _{in}	Conversion gain $f_c = 34kHz$, $f_a = 1kHz$, $V_{in} = 0.4V$	_	-0.75	- dB	
P _{oc}	Carrier leakage power f = 34kHz	-	3.0	- nW	

OUTLINE AND DIMENSIONS

Pins

- 1. Substrate
- Collector Trl and Tr4 2.
- Base Tr1 3.
- 4. Emitter Tr1 and Tr3
- 5. Base Tr3 and Tr4
- Collector Tr2 and Tr3 6.
- 7. Base Tr2
- Emitter Tr2 and Tr4 8.
- N.C. 9.
- 10. N.C.

A	8.64	8.90	9.40	
В	7.75	8.15	8.50	
С	-	-	5.33	
D	-	5.08	_	
E	-	0.40	-	
F	12.7	-	-	←
G	-	0.43	-	•

Millimetres

Nom. Max.

Min.

Pin 1 connected to envelope and substrate $10 \text{ pins on } 360^{\text{O}} \text{ spaced}$ equally

CIRCUIT DIAGRAM

RING MODULATOR/DEMODULATOR TABIOI

TYPICAL CIRCUIT

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

