

24th International Workshop on ECR Ion Source (ECRIS'20)

28-30th, September, 2020

Numerical Simulations of Plasma Dynamics in ECRIS Afterglow

<u>Li Lei</u>¹, Xiaolin Jin¹*, Jibo Li², Tao Huang¹, Zhonghai Yang¹ and Bin Li¹

- 1. Vacuum Electronics National Laboratory, University of Electronic Science and Technology of China, Chengdu
- 2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou

Email address: jinxiaolin@uestc.edu.cn

Layout of LAPECR1U

Critical Parameters

Cavity Radius	19 mm
Cavity Length	78 mm
Aperture Radius	6 mm
MW Mode	TE _{1,1}
MW Frequency	14.5 GHz
MW Power	500 W
ECR Magnetic Field	0.518 T
Plasma Species	Argon
Plasma Density	10 ¹² cm ⁻³

Simulation Scheme

Two-Step Simulation for A Stable Operation

Energetic Electrons

- Single Particle Simulation
- Electrons (~10 eV) uniformly distributed at first
- Coulomb Collision is considered with constant scattering factor
- Rejoin system as new particles when out of bounds
- Electrons are heated till average energy reaches 10 keV
- Distributions of the electrons are sent to the 2nd step as initiation

ECRIS Operation

- Implicit Particle-in-cell Simulation
- Cold Electrons (~10 eV) uniformly distributed at first
- lons (~1 eV) distributed due to quasineutrality
- Coulomb Collision is considered with computed local plasma density
- Secondary emission for electrons and absorption for ions when out of bounds
- Ionization is omitted, and in stead new particles are manually created

MW power is critical to the formation of the potential dip.

assuming that the energetic electron distribution still remain unchanged

Cold electrons by itself may not contribute much to the ECRIS afterglow.

Energetic Electrons at Power-off

Energetic electrons are less confined at power-on due to RF diffusion.

Next Works:

- I. Track energetic electrons in the simulation once an appropriate velocity distribution has been calculated.
- II. Consider multi charge state ions and step-wise ionization.
- III. Extend simulation time for diagnostics of ion dynamics.

Thanks for your attention!