

 $Head to \underline{www.savemyexams.com} for more a we some resources$

Effects of Forces

Question Paper

Course	CIE IGCSE Physics
Section	1. Motion, Forces & Energy
Topic	Effects of Forces
Difficulty	Medium

Time Allowed 40

Score /29

Percentage /100

Question la

A student stretches a spring by adding different loads to it. She measures the length of the spring for each load. She plots a graph of the results.

Fig. 2.1 shows the graph of her results.

Use the graph to determine:

(i) the length of the spring without a load

$Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

	length =cn	า [1]
(ii)	the length of the spring with a load of 4.0 N	
(iii)	length =cm the extension due to a 4.0 N load.	า [1]
	extension =cn	
Question	1b	
Complete t	the sentence about effects of forces. Choose words from the box.	
	colour friction pressure shape size speed	
_	a spring with a load is an example of how a force can change the and the of an object.	
	[2 mai	'ks]

Question 2a

Fig. 3.1 shows the vertical forces on a rocket.

Calculate the resultant force on the rocket.

	[3 marks]
direction =	
resultant force =	N

Question 2b

Fig. 3.2 shows the speed and direction of motion of an object at a point in time.

Fig. 3.2

The resultant force on the object is zero for 10 seconds.

Deduce the speed and direction of motion after 5 seconds. Indicate the speed and direction of the object by drawing a labelled arrow next to the object in Fig. 3.3.

0

Fig. 3.3

[1 mark]

Question 3a

Fig. 3.1 shows a spring with no load attached. Fig. 3.2 shows the same spring with a load attached.

Describe how a student can determine the extension of the spring. You may draw on Fig. 3.1 and Fig. 3.2 as part of your answer.

[3 marks]

Question 3b

The student plots a graph of load against extension, as shown in Fig. 3.3.

Fig. 3.3

(i) Determine the extension produced by a load of 7.5 N.

extension = cm [1]

(ii) Determine the load that would produce an extension of 10.0 cm.

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

	load =	N [1]
		[2 marks]
Question 3c		
Calculate the mass that has a weight of 6.0 N.		
	mass =	ka
	111055 –	[3 marks]

Question 4a

Fig. 3.1 shows the horizontal forces acting on a swimmer.

Fig. 3.1

(i) Calculate the size and direction of the resultant horizontal force on the swimmer.

[1]

[1]

(ii) State the name of the 110 N force on the swimmer.

(iii) Fig. 3.2 shows the horizontal forces acting on the swimmer as he moves forwards a short time later.

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

Fig. 3.2

Describe and explain the motion of the swimmer.

[2] **[4 marks]**

Question 4b

Another swimmer weighs 700N. He stands on a diving board, as shown in Fig. 3.3.

Fig. 3.3

Calculate the moment of the swimmer's weight about point P.

moment = N m [3 marks]

Question 5a

Extended tier only

A car travels around a circular track at constant speed.

Explain why it is incorrect to describe the circular motion as having constant velocity.

[1 mark]

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Question 5b

Extended tier only

A force is required for the car to maintain the circular motion.

Explain why a force is required.

[2 marks]

Question 5c

Extended tier only

State the direction in which the force acts for objects in circular motion.

[1 mark]

Question 5d

Extended tier only

State the name of this force for the car on the track.

[1 mark]