

Geografické informační systémy

Rastrové a vektorové analýzy

8. května 2015

Autor: Pavel Macenauer,

xmacen02@stud.fit.vutbr.cz

Fakulta Informačních Technologií Vysoké Učení Technické v Brně

Obsah

1	Cíl pr	e	2
2	Imple	entace	2
		é metody	
		Slope	
	3.2	Shaded relief	3
		Orain	
4	Výsled	y	5
	4.1	Možnosti programu	5
Liter	atura		10

1 Cíl práce

Cílem této práce je vybrat si, nastudovat a naimplementovat několik netriviální rastrových nebo vektorových analytických metod. Vybrány byly metody slope, drain a shaded relief, tedy metody pro svah, odtok vody a reliéf krajiny.

2 Implementace

Nástroj pro rastrové analýzy je naimplementován v jazyce C++ se závislostí na knihovnu GDAL¹, open-sourcové knihovně pro čtení a zápis rastrových GIS formátů.

3 Rastrové metody

3.1 Slope

Strmost svahu se pro každou buňku počítá na 3x3 uzemí v okolí dané buňky, kde pokud je některá buňka tohoto území nedefinovaná (typicky na okrajích), je výsledná hodnota určena jako 0.

Vzorec pro výpočet svahu kombinuje změnu nadmořské výšky v horizontálním (východzápad) a vertikálním směru (jih-sever) a to následovně:

$$slope_{rad} = arctg(\sqrt{(\frac{dz}{dx})^2 + (\frac{dz}{dy})^2})$$
 (1)

V praxi je vzorec implementován jako rozdíl hodnot vrchních a spodních 3 bodů, kde prostřední je započítán 2x, resp. pravých a levých. Pseudokód je popsán v (1).

```
[dz/dx] = ((c + 2f + i) - (a + 2d + g) / (8 * x_resolution)]

[dz/dy] = ((a + 2b + c) - (g + 2h + i) / (8 * y_resolution)]

slope = arctg(sqrt([dz/dx] * [dz/dx] + [dy/dx] * [dy/dx]))
```

Obrázek 1: Pseudokód výpočtu svahu.

Hodnoty jsou popsány v (2) a x_resolution, resp. y_resolution značí velikosti/rozlišní buněk v horizontálním, resp. vertikálním směru.

¹Geospatial Data Abstraction Library, http://www.gdal.org/

Obrázek 2: 3x3 území pro výpočet strmosti svahu

3.2 Shaded relief

Reliéf krajiny se opět vypočte na základě výškové mapy, polohy slunce nad horizontem (0-90 stupňů) a azimutu slunce na východ od severu (0-360 stupňů, ve směru hodinových ručiček). Ve (2) se jedná o altitude a azimuth.

Nejprve je třeba vypočítat svah a aspekt ve stupních (výpočet svahu je v 3.1):

$$slope_{deg} = 90 - slope_{rad} \cdot \frac{180}{\pi}$$

 $aspect = arctg(\frac{\frac{dz}{dy}}{\frac{dz}{dx}})$

Výpočet reliéfu je pak následující:

$$shadedrelief = sin(altitude \cdot \frac{\pi}{180}) \cdot sin(slope_{deg} \cdot \frac{\pi}{180})$$

$$+cos(altitude \cdot \frac{\pi}{180}) \cdot cos(slope_{deg} \cdot \frac{\pi}{180})$$

$$cos((azimuth - 90) \cdot \frac{\pi}{180} - aspect)$$

3.3 Drain

Odtok je rastrová analýza na výškové mapě, která značí kudy by z daného místa odtékala voda, což je nejen užitečné samo o sobě, ale je i základem pro spousty dalších analýz jako zjišťování záplavových oblastí.

Samotný výpočet probíhá tak, že se vždy hledá lokální minimum v okolí daného bodu a to do té doby, dokud existuje, pak se algoritmus zastáví. Jedná se tedy svým způsobem o prohledávání do hloubky.

115	112	110	100	99	100
113	125	107	106	95	100
99	120	104	105	104	93
88	100	93	95	90	92
85	100	94	85	82	93
100	100	100	100	101	100

Obrázek 3: Průběh výpočtu odtoku

Výpočet je ukázán na (3), kdy se vždy najde minimum na okolí 3x3 kolem dané buňky, kde daná hodnota je menší, než hodnota kolem které hledáme. Následně se pokračuje s nalezenou buňkou jako středem a to do té doby, dokud v okolí existuje nějaká menší hodnota. Pokud již neexistuje algoritmus skončí, protože už není kam by voda stékala.

4 Výsledky

- Repository: https://github.com/mmaci/vutbr-fit-gis-raster-analysis-tool
- Programová dokumentace: http://gis.maciste.cz
- Testovací balíček obsahující potřebné dll, win32 binary a testovací DEM: http://gis.maciste.cz/gistool.zip

4.1 Možnosti programu

- -i --input [filename] Input file (supports GeoTiff). (required)
- -o --output [filename] Output file. (required)
- -m --method [slope/shaded_relief/drain] (required)
- -c --coords [filename] Name of input filename with coords for drain method.
- -x [number] X-coord for drain method.
- -y [number] Y-coord for drain method

Obrázek 4: Slope nad celou DEM ČR

Obrázek 5: Detail metody slope

Obrázek 6: Shaded relief nad celou DEM ČR

Obrázek 7: Detail metody shaded relief

Obrázek 8: Detail metody drain, jako vstup je seznam bodů, výstupem jsou jednotlivé odtoky

Literatura

[1] ArcGIS Help 10.1. http://resources.arcgis.com/en/help/main/10.1/index.html.
[2] GIS Modeling - Terrain Analysis. http://www.colorado.edu/geography/class_homepages/geog_4203_s08/class6_TerrainAnSlopeAspect.pdf.
[3] Portál FreeGIS. http://freegis.fsv.cvut.cz/gwiki/Port%C3%A11_FreeGIS.
[4] GRASS manual. http://grass.osgeo.org/grass64/manuals.
[5] GRASS source codes. https://svn.osgeo.org/grass/grass/branches/releasebranch_6_4/.