Chap. 2 Symmetric Encryption and Message Confidentiality

- Cryptography and Cryptanalysis
- Symmetric Encryption Algorithms
- Modes of Operation
- Key Distribution

Cryptography

Cryptography relies on

- Ciphers: mathematical functions used for encryption and decryption of a message
- Encryption: the process of disguising a message in such a way as to hide its substance
- Ciphertext: an encrypted message
- Decryption: the process of returning an encrypted message back into plaintext.

Ciphers

- ☐ The security of a cipher which depends on the secrecy of its *restricted* algorithm is not good
 - When a user leaves a group, the algorithm must change; designing a new alg. is difficult
 - Secrecy can be broken by people smarter than you
- Modern cryptography relies on keys
 - key: a selected value from a large set (a key-space); (e.g.) a 1024-bit key => 2¹⁰²⁴ values!
 - Security is based on secrecy of the key, not the details of the algorithm
 - Change of authorized participants requires only a change in key

Cryptosystem

- Conventional cryptosystem
 - Secret-key cryptosystem, symmetric cryptosystem

- □ Public-key cryptosystem
 - Asymmetric cryptosystem

Cryptosystem

 \square For some message M, let's denote the encryption of that message into cipher text using key k as

$$C = E_k(M)$$

□ Similarly, the decryption into plain text as

$$M = D_k(C)$$

□ Symmetric key algorithms

$$D_k(E_k(M)) = M$$

□ Public-key algorithms

$$D_{k2}(E_{k1}(M)) = M$$

Example Ciphers

☐ Shift cipher:

- k-shift cipher: each plaintext character is replaced by a character k to the right
- When k=3, it's a Caesar cipher: "Watch out for Brutus!" => "Zdwfk rxw iru Euxwxv!"
- Only 25 choices! Not hard to break by brute force

■ Substitution Cipher:

 each character in plaintext is replaced by a corresponding character of ciphertext

```
plaintext code: a b c d e f g h i f k l m n o p q r s t u v w x y z ciphertext code: m n b v c x z a s d f g h j k l p o i u y t r e w q
```

- Cryptanalysis
 - the science of recovering the plaintext of a ciphertext without access to the key
- □ Encryption algorithm is open to the public (known to the opponents !!!)
- □ Cryptanalyst
 - knows the encryption and decryption algorithm
 - has many information except keys
 - uses computers and his intelligence

□ Ciphertext-only attack

- Attacker has to recover the plaintext from only the ciphertext
- Brute-force attack: trying all possible keys

□ Known-plaintext attack

 Some pairs of the (ciphertext, plaintext) are known for the secret key or analysts know when certain plaintext patterns will appear in a message

□ Chosen-plaintext attack

The attacker can access the cryptosystem and get some (plaintext, ciphertext) pairs for the plaintexts chosen by him

☐ Chosen text attack

- The attacker can know some (plaintext, ciphertext)
 pairs for the plaintexts chosen by him, and also
- some (ciphertext, plaintext) pairs for the ciphertexts chosen by him

□ Ideally, the attacker has to use brute force in an exhaustive search of the key-space

- □ Unconditionally secure cryptosystem:
 - The ciphertext generated by the system does not contain enough information to determine the plaintext, no matter how much ciphertext is available

□ Computationally secure cryptosystem

- The time required to break the cipher exceeds the useful lifetime of the information
- The cost of breaking the cipher exceeds the value of the encrypted information

- ☐ It is the complexity of launching the attack that secures us:
 - Data complexity: a large number of expected inputs (e.g., ciphertext) required
 - Storage complexity: a large amount of storage units required
 - Processing complexity: a large number of computations required

- □ A simple substitution cipher over a natural language can not be so difficult
 - (e.g.) "Vkj'u muumbf. Rc mocj'u ocmvw."
 - Hangman game:

- Special characters (spaces and punctuations) are not encrypted
- Frequency of each letter is different in normal English texts:
 - "e" and "t" are the most frequent:
- □ You can also analyze clusters of letters
 - Analyze the frequency of two-letter combinations (digram)
 - "th" and "he" are common: of the 26² digrams, the top 15 account for 27% of all occurrences

- □ A simple substitution cipher over a natural language is not so difficult
 - (e.g.) "Vkj'u muumbf. Rc mocj'u ocmvw."

```
"Don't attack. We aren't ready."
```

Polyalphabetic ciphers

- □ Substitutions with a single alphabet
 - → monoalphabetic substitutions
- □ A more complex alternative is to use different substitution mappings on various portions of the plaintext
 - → Polyalphabetic substitutions

Polyalphabetic ciphers: Vigenère ciphers

- □ Vigenère cipher:
 - each character of plaintext is encrypted with a different cipher key using Vigenère tableau
- □ E.g.: key="deceptive"

```
Plaintext: becarefuliamahacker
```

Key : <u>deceptive</u> deceptive

Ciphertext: E I E E G

Vigenère ciphers

Vigenère table

Breaking the Vigenère cipher

■ Kasiski method

- Cipher keys with length t is repeatedly used with period t
- → if we find the period, we can attack each shift cipher independently

□ Ciphertext:

QER ASX AS SD QER SKFWD WE QER SDFWED

with high probability:

Plaintext: t h e t h e k m n k m n distance=10

Breaking the Vigenère cipher

☐ We must look for occurrences in the ciphertext that is repeated in a multiple of the cipher key

- ☐ Period = 10
 - Key length: 10 or divisor of 10

Breaking the Vigenère cipher

- We can apply statistical measures, like autocorrelation, to the ciphertext
 - Intuitively, guess key length is less than L
 - For each letter of ciphtertext, C_i , count how often $C_i = C_{i+T}$, where 1 < T < L
 - Plot the counts for all T's, the period will appear as a spike on the graph

Permutation/Transposition

- □ Permutation: take the input, rearrange the output in a specific way; also referred to as *transposition*
 - (e.g.) Write the letters in a rectangle, row by row, and reading it column by column

```
1 3 2 4 5 6 7 8

the launch code is in the desk

n the desk
```

- = thh eoh hct lde aed uie nss cik
- ☐ Using the technique simply is weak as it preserves the frequencies of the letters

Permutation

☐ A double permutation

```
3 2 4 5 6 7 8
thelaunc
hcodeisi
nthedesk
```

```
3 2 4 5 6 7 8
thheohhc
tldeaedu
iensscik
```

→ thheohhctldeaeduiensscik
→ ttihlehdneesoashechdicuk

- □ Product cipher:
 - Use two cipher alg. and apply cipher alg. β after α
 - modern ciphers combine permutations and substitutions

Fiestel Cipher Structure

- □ Repetition of substitution and permutation
- □ Block cipher structure
 - Block size : 2w bits
 - F: round function (combination of permutation and substitution)

Symmetric Cipher Algorithms

□ Block ciphers

- Plaintext is treated as n-bit blocks of data
- Ciphertext is the same length as plaintext

☐ Stream ciphers

- Encrypts one bit/byte at a time
- Often easier to analyze mathematically

DES (Digital Encryption Standard)

- □ Adopted by the US NIST in 1976 as a standard
- □ A 16-round of substitutions and permutations
- ☐ Block size : 64-bits
- □ Key size : 56-bit key is transformed in to 16 48-bit subkeys
- □ Same algorithm for encryption and decryption (sub-keys are used in reverse order for decryption)

- □ Key generation
- ☐ An initial permutation (IP)
- □ 16 rounds of manger function (f)
 - Expansion permutation of input
 - S-box substitution
 - P-box permutation

$$-> L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus F(R_{i-1}, K_{i})$$

□ A final permutation (IP⁻¹)

Single round of DES

		S[6]														
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
3	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

□ S-boxes

- DES uses 8 (4 row, 16 column) S-boxes
- Each S-box contains 64 4-bit values
- 6 input bits yields 4 output bits
- Example: Given bits 110011 as input and S-box 6 from DES

Take first and last bits "11" to choose row 3
Take middle four bits "1001" to choose column 9
The value from S-box 6 of DES is 5 ("0101")
Substitute "0101" for "110011"

- Avalanche effect:
 - small change in the plaintext or the key produce a significant change in the ciphertext
- □ Key space is too small
 - 56 bit keys provide 2^{56} possible keys \rightarrow successfully attacked by brute force
- □ DES cracker by EFF:
 - attack possible in less than 1 day

Triple DES

- ☐ Triple-DES (using 3 keys)
 - Choose two different 64-bit keys K₁, K₂ and K₃
 - $C = E_{k3}(D_{k2}(E_{k1}(P)))$
 - $P = E_{k1}(D_{k2}(E_{k3}(C)))$
 - Provides us with a key space of 2¹⁶⁸ possible keys
- ☐ Triple-DES (using 2 keys)
 - Choose two different 64-bit keys K₁ and K₂
 - $C = E_{k1}(D_{k2}(E_{k1}(P)))$
 - Provides us with a key space of 2¹¹² possible keys

AES (Advanced Encryption Standard)

- □ Designed to replace DES by NIST at November 2001
- □ Design goal: efficiency, flexibility, security
- □ Rijndael (by J. Daemen and V. Rijmen)
- Low memory requirements (smart cards)
- □ Block size : 128 bits
- □ Flexible key size: 128, 192, 256 bits
- Variable number of rounds

Basic structure

- □ Block size : 128 (4*N_b) bits
- □ Key size : 4*N_k
 - $N_k = 4 \text{ (AES-128)}$
 - $N_k = 6 \text{ (AES-192)}$
 - $N_k = 8 \text{ (AES-256)}$
- Number of rounds:
 - $N_r = 6 + \max(N_b, N_k)$

□ Key expansion

- Set 0: arrange the key as 4-octet columns
- Set i: expands the keys of set (i-1)
- $C_i = 1, 2, 4, 8, 10, 20, 40, 80, 1b, 36$ where i = 1 to 10
- Expanded keys: $4 * N_b * (N_r + 1)$

AES state

- □ A rectangular array of octets which consists of N_b 4octet columns
- □ Initialized from the (4*N_b) octets of the input
- \square The state is transformed in N_r rounds: before round 1, between rounds, and after round N_r
- \square Each round transforms the state by \oplus -ing the next $(4*N_b)$ octets from the expanded key => read out as columns
- ☐ The final state is read out column by column (the output)

Rounds (encryption)

- 1. Each octet of the state has the S-box applied to it
- 2. Row 1 of the state is rotated left 1 column, Row 2 of the state is rotated left (2+ LN_b/8_) column
 - Row 3 of the state is rotated left $(3 + \lfloor N_b/8 \rfloor)$ column
- 3. Each column of the state has MixColumn applied to it (round N_r omits this operation)

Basic operations

- □ ⊕: Bitwise-XOR
- □ SubBytes operation: an octet-to-octet substitution
- ☐ ShiftRows operation
- ☐ MixColumn operation : replaces a 4-octet column with another 4-octet column

The operations are reversible:

- □ ⊕: reversible (easy)
- □ S-box operation: inverse S-box
- ShiftRows operation: inverse ShiftRows operation
- MixColumn operation: inverse MixColumn table

- □ SubBytes operation
- □ Octet-byoctet substitution
- □ (e.g) 5b -> 39

☐ ShiftRows operation

$$\begin{bmatrix} s_{0.0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1.0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2.0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3.0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = = = > \begin{bmatrix} s_{0.0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1.1} & s_{1,2} & s_{1,3} & s_{1,0} \\ s_{2.2} & s_{2,3} & s_{2,0} & s_{2,1} \\ s_{3.3} & s_{3,0} & s_{3,1} & s_{3,2} \end{bmatrix}$$

- MixColumn operation
- □ Column by column substitution using table lookup

		right (low-order) nibble															
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	00	02	04	06	08	0a	0c	0e	10	12	14	16 0h	18	la od	1c 0e	1e 0f
		00	01	02	03	04	05	06	07	08	09	0a 0a	0b 0b	0c	D0	0e	0f
		00	03	06	05	0c	Of	0a	09	18	1b	1e	1d	14	17	12	11
	1	20	22	24	26	28 14	2a 15	2c 16	2e 17	30	32 19	34 1a	36 1b	38 1c	3a 1d	3c 1e	3e 1f
		10	11	12	13	14	15	16	17	18	19	1a	1b	10	1d	le	1f
		30	33	36	35	3c	3f	3a	39	28	2b	2e	2d	24	27	22	21
		40 20	42 21	22	46 23	48	4a 25	4c 26	4e 27	50 28	52 29	54 2a	56 2b	58 2c	5a 2d	5c 2e	5e 2f
	2	20	21	22	23	24	25	26	27	28	29	2a	2b	2c	2d	2e	2f
(high-order) nibble		60	63	66	65	6c	6f	6a	69	78	7b	7e	7d	74	77	72	71
	3	60 30	62 31	64	66 33	68 34	6a 35	6c 36	6e 37	70 38	72 39	74 3a	76 3b	78 3c	7a 3d	7c 3e	7e 3f
		30	31	32	33	34	35	36	37	38	39	3a	3b	3c	3d	3e	3f
		50 80	53 82	56 84	55 86	5c 88	5f 8a	5a 8c	59 8e	90	4b	4e	4d 96	98	47 9a	42 9c	41 9e
	4	40	41	42	43	44	45	46	47	48	49	4a	4b	4c	4d	4e	4f
		40	41	42	43	44	45	46	47	48	49	4a	4b	4c	4d	4e	4f
		c0 a0	c3 a2	c6	c5 a6	cc a8	cf aa	ac	c9 ae	d8 b0	db b2	de b4	dd b6	d4 b8	d7 ba	d2 bc	d1 be
	5	50	51	52	53	54	55	56	57	58	59	5a	5b	5c	5d	5e	5f
		50	51 £3	52 f6	53 £5	54 fc	55 ff	56 fa	57 f9	58 e8	59 eb	5a ee	5b ed	5c e4	5d e7	5e e2	5f el
		f0 c0	c2	c4	c6	c8	ca	CC	ce	d0	d2	d4	d6	d8	da	dc	de
	6	60	61	62	63	64	65	66	67	68	69	6a	6b	6c	6d	6e	6f
		60 a0	61 a3	62 a6	63 a5	64 ac	65 af	66 aa	67 a9	68 b8	69 bb	6a be	6b bd	6c b4	6d b7	6e b2	6f b1
		e0	e2	e4	e6	e8	ea	ec	ee	fO	f2	f4	f6	f8	fa	fc	fe
	7	70	71	72	73	74 74	75 75	76 76	77	78 78	79 79	7a 7a	7b 7b	7c 7c	7d 7d	7e 7e	7f 7f
		70	71 93	72 96	73 95	90	9f	9a	99	88	8b	8e	8d	84	87	82	81
		1b	19	1f	1d	13	11	17	15	0b	09	Of	0d	03	01	07	05
	8	80	81	82	83	84	85 85	86	87 87	88	89	8a 8a	8b 8b	8c 8c	8d 8d	8e 8e	8f 8f
		9b	98	9d	9e	97	94	91	92	83	80	85	86	8f	8c	89	8a
left	9	3b	39	3f	3d	33	31	37	35 97	2b 98	29 99	2f 9a	2d 9b	23 9c	21 9d	27 9e	25 9f
9		90	91	92 92	93	94	95 95	96 96	97	98	99	9a	9b	90	9d	9e	9f
		ab	a8	ad	ae	a7	a4	a1	a2	b3	b0	b5	b6	bf	bc	b9	ba
	a	5b a0	59 a1	5f a2	5d a3	53 a4	51 a5	57 a6	55 a7	4b a8	49 a9	4f aa	4d ab	43 ac	41 ad	47 ae	45 af
		a0	a1	a2	a3	a4	a5	a6	a7	a8	a9	aa	ab	ac	ad	ae	af
		fb	f8	fd	fe	£7	f4	f1	f2	e3	e0 69	e5 6f	e6 6d	ef 63	ec 61	e9	65
	b	7b b0	79 b1	7f b2	7d b3	73 b4	71 b5	77 b6	75 b7	6b b8	b9	ba	bb	bc	bd	be	bf
		b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	ba	bb	bc	bd	be	bf
		cb 9b	99	cd 9f	ce 9d	c7	91	97	c2 95	d3 8b	d0 89	d5 8f	8d	df 83	dc 81	d9 87	da 85
	С	co	c1	c2	c3	c4	c5	c6	c7	c8	c9	ca	cb	CC	cd	ce	cf
		c0	c1	c2	c3	c4 57	c5 54	c6 51	c7 52	c8 43	c9 40	ca 45	cb 46	cc 4f	cd 4c	ce 49	cf 4a
		5b bb	58 b9	5d bf	5e bd	b3		b7	b5	ab	a9	af	ad	a3	a1	a7	a5
	d	d0	d1	d2	d3	d4	d5	d6	d7	d8	d9	da	db	dc	dd	de	df
		d0 6b	d1 68	d2 6d	d3 6e	d4 67	d5 64	d6	d7 62	d8	d9 70	da 75	76	dc 7f	dd 7c	de 79	df 7a
		db	d9	df	dd	d3	dl	d7	d5	cb	c9	cf	cd	c3	c1	c7	c5
	е	e0	e1	e2	e3	e4	e5	e6	e7	e8	e9	ea	eb	ec	ed	ee	ef
		e0 3b	e1 38	e2 3d	e3 3e	e4 37	e5 34	e6 31	e7 32	e8 23	e9 20	25	eb 26	ec 2f	ed 2c	ee 29	ef 2a
	f	fb	f9	ff	fd	f3	f1	f7	f5	eb	e9	ef	ed	e3	e1	e7	e5
		f0	f1	f2	f3	f4	f5	f6	f7	f8	f9	fa	fb	fc	fd	fe	ff
		f0 0b	f1 08	f2 0d	f3 0e	f4	f5 04	f6 01	f7	f8	f9	fa 15	fb 16	fc 1f	fd 1c	fe 19	la
		32	1 50	1 3 0	, ,,	, ,	, , ,	, ,,,,,	, , , ,	, ,,,,	, ,,,	1		-			

- Decryption: perform the inverse of each operation in the opposite order and use the rounds keys in reverse order
- ☐ Each of the basic operations are reversible

Inverse Rounds (decryption)

- 1. Each octet of the state has the inverse S-box applied to it
- 2. Row 1 of the state is rotated right 1 column, Row 2 of the state is rotated right $(2 + \lfloor N_b/8 \rfloor)$ column, Row 3 of the state is rotated right $(3 + \lfloor N_b/8 \rfloor)$ column
- 3. Each column of the state has inverse MixColumn applied to it (round N_r omits this operation)

□ ECB (Electronic Code Book)

- Each block of plaintext is encrypted independently.
- A simple substitution : $C_i = E_k(P_i)$, $P_i = D_k(C_i)$
- Subject to block replay attack

□ ECB mode

□ CBC (Cipher Block Chaining)

- Adds a feedback mechanism to the cipher
- Plaintext patterns are concealed by XORing this block of P with the previous block of C :

$$C_i = E_k(P_i \oplus C_{i-1}), P_i = D_k(C_i) \oplus C_{i-1}$$

- Requires an IV (Initialization vector) : $C_1 = E_k(P_1 \oplus IV)$
- Resistant against block replay attack

□ CBC (Cipher Block Chaining)

CFB (Cipher FeedBack)

CFB (Cipher FeedBack)

OFB (Output FeedBack)

CTR (Counter) mode

- □ Different counter value is used to encrypt each plaintext
- ☐ Used in ATM and IPSec
- Advantages: efficient and ciphertext block can be processed in random-access pattern

Random Number Generation

- Many security algorithms make use of random numbers (nonces)
 - Generation of keys in public-key encryption algorithms like
 RSA and DH algorithms
 - OTP (One-time password)
 - Generation of a symmetric key for use as a temporary session key; used in a number of networking applications such as TLS, Wi-Fi, e-mail security, and IPsec
 - In key distribution scenarios, random numbers are used for handshaking to prevent replay attacks: Kerberos, SSL

Random Number Generation

□ Requirements

Randomness

- The distribution of bits in the sequence should be uniform
- Frequency of occurrence of ones and zeros should be approximately the same

Unpredictability

- No one subsequence in the sequence can be inferred from the others
- an opponent should not be able to predict future elements of the sequence based on earlier elements

Random Number Generation

☐ True-random (TRNG) and Pseudo-random(PRNG) number generators

Placement of Encryption Function

■ Networks are vulnerable to eavesdropping

□ Encryption is the effective way to protect from

eavesdropping

☐ Link level encryption

□ End-to-end encryption

Placement of Encryption Function

☐ Link level encryption

- Each pair of nodes must share a unique key
- The packet must be decrypted at each node for routing

□ End-to-end encryption

- User data is encrypted, but packet header is delivered in the clear
- Provides a degree of authentication

Traffic Analysis

- ☐ Traffic analysis attack
 - Message patterns, message quantity
 - Identifiers of partners
 - Frequency of communications
 - Etc.
- □ Counter measure
 - Traffic padding
 - Tunneling : end-point concealing

Key Distribution

□ Key distribution using key distribution center (KDC)

□ For large
networks, a
hierarchy of
KDCs may be
used

Key Distribution

- ☐ Transparent Key Distribution
 - In a end-to-end encryption using a connectionoriented protocol

Key Distribution

- □ Decentralized Key Distribution
 - Shared master secret b/w peers
 - Decentralized key distribution requires n(n-1)/2
 master keys for a configuration with n end systems

