Dérivabilité Opérations sur les nombres dérivés MPSI 2

 $I \subset \mathbb{R}$ est un intervalle non vide et non réduit à un point.

Propriété 0.0.1

Soit $x_0 \in I$.

- L'ensemble \mathcal{E} des applications définies sur I à valeurs réelles et dérivables en x_0 est un espace vectoriel sur \mathbb{R} . (\mathcal{E} est non vide et stable par combinaisons linaires).
- $\Phi \colon \mathcal{E} \longrightarrow \mathbb{R}$ est une forme linéaire.

$$f \longmapsto f'(x_0)$$

Propriété 0.0.2

Soit x_0 un élément de I.

Soit f et g deux fonctions numériques définies sur I et dérivables en x_0 . Alors :

- $f \times g$ est dérivable en x_0 et $(f \times g)'(x_0) = (f' \times g + g' \times f)(x_0)$.
- Si $g(x_0) \neq 0$ alors il existe un réel strictement positif α tel que :

$$\forall x \in \left] x_0 - \alpha, x_0 + \alpha \right[\cap I, g\left(x\right) \neq 0$$

 $Sur\]x_0 - \alpha, x_0 + \alpha[\cap I, \frac{f}{g} \ \grave{a} \ un \ sens, \frac{f}{g} \ est \ d\acute{e}rivable \ en \ x_0 \ et$

$$\left(\frac{f}{g}\right)'(x_0) = \left(\frac{f' \times g - g' \times f}{g^2}\right)(x_0)$$

Propriété 0.0.3

Soit g définie sur I, dérivable en x_0 .

Soit f définie sur un intervalle contenant g(I) et dérivable en $g(x_0)$.

Alors $f \circ g$ à un sens sur I, est dérivable en x_0 et :

$$(f \circ g)'(x_0) = (g' \times f' \circ g)(x_0)$$

Théorème des fonctions réciproques

- Si f est définie sur I, continue sur I et strictement monotone sur I, alors f réalise une bijection de I sur l'intervalle f(I).
- Soit $x_0 \in I$. Si de plus f est dérivable en x_0 et $f'(x_0) \neq 0$ alors l'application réciproque f^{-1} est dérivable en $f(x_0)$ et on a:

$$f^{-1}\left(f\left(x_{0}\right)\right) = \frac{1}{f'\left(x_{0}\right)}$$