Krótki przewodnik po tabelach generowanych w markdown przy pomocy funkcji kable z pakietu knitr na podstawie danych z R

Zbyszek Marczewski Wtorek, 9 czerwca 2015 r.

Contents

$\operatorname{Wst} olimits_{\operatorname{Int}} olimits_{Int$	1
Od autora	1
Tylko "knitr"	2
Tabele "kable"	2
PDF, HTML, MsWord i dalej	2
Opis argumentów funkcji kable	3
Działanie argumentów funkcji na przykładzie tabeli w formacie $\mathit{markdown}$	3
Przykładowy zbiór danych: mtcars	3
Ustawienia domyślne funkcji kable	4
Tabela bez nazwy wierszy	5
Tabela z zaokrągleniem liczb do 2 cyfr po przecinku	5
Tabela z wyrównaniem do lewej	6
Tabela z kombinacją różnych wyrównań i zaokrągleń w kolumnach	7
Uwagi końcowe	8

Wstęp

Od autora

Znalezienie sposobu na umieszczenie tabel z wynikami z R w raporcie generowanym przy użyciu *knitr* zajęło mi bardzo dużo czasu i kosztowało mnie sporo nerwów. Nikomu nie życzę tej drogi przez mękę. Dlatego też zamieszcza poniżej moje spostrzeżenia dotyczące generowania tabel w rmarkdown. Mam nadzieję, że dzięki temu unikniecie przynajmniej niektórych moich błędów.

Tylko "knitr"

Klasyczny, tradycyjny sposób wstawiania tabel do dokumentów generowanych przez *knitr* polega na zastosowaniu funkcji **xtable** z pakietu *xtable*. Nie będę o tym mówił z kilku powodów, przy czym wymienię tylko jeden wcale nie najważniejszy. Otóż nie omówię działania funkcji **xtable** ponieważ nie pochodzi ona z pakietu *knitr*. Jest czymś zewnętrznym, dodatkowym, i jak się zaraz okaże, niepotrzebnym (chyba, że mamy jekieś bardzo specyficzne wymagania dotyczące tabel). Pakiet *knitr* sam bardzo dobrze radzi sobie z większością tabel.

Tabele "kable""

W dalszej części tego dokumentu znajdują się tabele wygenerowane przy użyciu funkcji **kable** z pakietu *knitr*. To rozwiązanie nie jest, o ile wiem, bardzo popularne. Przez lata wszyscy uczyli się korzystania z funkcji **xtable** i w związku w sieci bardzo łatwo można znaleźć opis jej działania wraz z przykładami. Na **kable** natknąłem się więc kiedyś przypadkiem, w trakcie jednej z moich licznych walk z tabelami. Od razu przypadła mi do gustu prostota tej funkcji, która oczywiście przekłada się też na pewne ograniczenia.

Funkcja **kable** działa trochę inaczej niż jej "pierwowzór" **table**. Nie generuje tabel z danych lecz "drukuje" gotowe dane do tabeli markdown. Co ważne **kable** wyświetla jedynie obiekty klasy "data.frame" lub "matrix". To oznacza, że aby przedstawić wynik naszych obliczeń w tabeli, musimy go sprowadzić do jednej z tych dwóch klas.

PDF, HTML, MsWord i dalej

Jak wiadomo *knitr* daje możliwość tworzenia dokumentów w różnych formatach. Funkcja **kable** bez problemy umie się do tego dostosować. Aby to zademonstrować **ten dokument** został wygenerowany w czterech wersjach na podstawie jednego pliku "Tabele_markdown.Rmd":

- dokument html "Tabele_markdown.html"
- dokument PDF "Tabele markdown.pdf"
- dokument md (markdown) "Tabele markdown.md"
- domument MSWord "Tabele markdown.docx"

W "nagłówku" pliku "Tabele_markdown.Rmd" znajduje się opis formatów w jakich możemy z niego generować dokumenty. Robumy to używając przycisku "knitr" w RStudio (odpowiednio: "PDF", "Word" lub "HTML"), albo wpisując w **KONSOLI** R komendę: $rmarkdown:render("Tabele_rmarkdown.Rmd", "..."). W miejsce trzech kropek wstawiamy po kolei odpowiednio (zachowując cudzysłów):$

- word document
- pdf document
- md document
- html_document

W ten sposób możemy otrzymać 4 różne dokumenty z 4 różnymi formatowaniami tabel. Teoretycznie można też podać R komendę $rmarkdown:render("Tabele_rmarkdown.Rmd", "all")$ i w ten sposób wygenerować wszystkie dokumenty jednoczśnie, ale niestety u mnie to nie działa. W przypadku generowania dokumentów przy pomocy poleceń w konsoli może pojawić się problem z kodowaniem. Jeżeli plik źródłowy .Rmd jest kodowany w UTF-8, a systemowe kodowanie to WINDOWS 1253 (tak jest w moim przypadku) to w dokumentach generowanych przy pomocy polecenia z konsoli zamiast polskich znaków pojawią się krzaki.

Oczywiście nie ma konieczności generowania wszystkich dokumentów na raz. Można sobie wybrac jeden.

Opis argumentów funkcji kable

kable(x, format, digits = getOption("digits"), row.names = NA, align, output = TRUE, ...)

- x obiekt R (macierz lub ramka danych), który chcemy wyświetlić jako tabelę w naszym dokumencie
- format obiekt typu *charakter*; można wybrać następujące wartości
 - "latex" dla dokumnetów LaTeX
 - "html" dla dokumentów html
 - "markdown" dla dokumntu markdown
 - "pandoc" dla dokumnetów LaTeX
 - "rst" też dla dokumentów word
- digits jak łatwo się domyślić chodzi o zaaokrąglenia liczb (przekazywane do funkcji round()); można
 wpisać jedną liczbę dla całej tabeli lub wektor liczb, aby zdefiniować różne zaokrąglenia dla poszczególnych kolumn
- row.names czy wyświetlać nazwy wierszy; TRUE / FALSE
- align wyrównanie tekstu w kolumanch; domyślnie liczby do prawej, a reszta do lewej
 - "l" do lewej;
 - "c" do środka;
 - "r" do prawej;
- output czy wpisywać wynik do konsoli

Działanie argumentów funkcji na przykładzie tabeli w formacie markdown

UWAGA !!! Funkcja kable wyświetli tabele tylko jeżeli w ustawieniach bloku kodu (chunk options) results='asis'

Przykładowy zbiór danych: mtcars

mtcars

```
##
                        mpg cyl disp hp drat
                                                   wt qsec vs am gear carb
## Mazda RX4
                       21.0
                              6 160.0 110 3.90 2.620 16.46
                              6 160.0 110 3.90 2.875 17.02
## Mazda RX4 Wag
                       21.0
## Datsun 710
                       22.8
                              4 108.0 93 3.85 2.320 18.61
                                                                          1
## Hornet 4 Drive
                       21.4
                              6 258.0 110 3.08 3.215 19.44
                                                                          1
## Hornet Sportabout
                       18.7
                              8 360.0 175 3.15 3.440 17.02
                                                                     3
                                                                          2
## Valiant
                       18.1
                              6 225.0 105 2.76 3.460 20.22
                                                                     3
## Duster 360
                       14.3
                              8 360.0 245 3.21 3.570 15.84
## Merc 240D
                       24.4
                              4 146.7
                                       62 3.69 3.190 20.00
                                                                          2
## Merc 230
                       22.8
                              4 140.8 95 3.92 3.150 22.90
## Merc 280
                       19.2
                              6 167.6 123 3.92 3.440 18.30
## Merc 280C
                       17.8
                              6 167.6 123 3.92 3.440 18.90
                                                                          4
## Merc 450SE
                       16.4
                              8 275.8 180 3.07 4.070 17.40
                                                                     3
                                                                          3
                              8 275.8 180 3.07 3.730 17.60
                                                                     3
## Merc 450SL
                       17.3
                                                                          3
## Merc 450SLC
                              8 275.8 180 3.07 3.780 18.00 0
                       15.2
```

```
## Cadillac Fleetwood 10.4
                             8 472.0 205 2.93 5.250 17.98
## Lincoln Continental 10.4
                             8 460.0 215 3.00 5.424 17.82
                                                           0
                                                                  3
                                                                       4
                                                             0
                             8 440.0 230 3.23 5.345 17.42
## Chrysler Imperial
                      14.7
## Fiat 128
                             4 78.7 66 4.08 2.200 19.47
                      32.4
                                                                       1
## Honda Civic
                      30.4
                             4 75.7 52 4.93 1.615 18.52
                                                                       2
## Toyota Corolla
                      33.9
                             4 71.1 65 4.22 1.835 19.90
                                                                       1
                                                             1
## Toyota Corona
                             4 120.1 97 3.70 2.465 20.01
                      21.5
                             8 318.0 150 2.76 3.520 16.87
                                                                       2
## Dodge Challenger
                      15.5
                                                             0
## AMC Javelin
                      15.2
                             8 304.0 150 3.15 3.435 17.30
                                                           0
                                                              0
                                                                  3
                                                                       2
## Camaro Z28
                                                                  3
                                                                       4
                      13.3
                             8 350.0 245 3.73 3.840 15.41
                                                             0
## Pontiac Firebird
                      19.2
                             8 400.0 175 3.08 3.845 17.05
                                                                       2
                      27.3
                                                                  4
## Fiat X1-9
                             4 79.0 66 4.08 1.935 18.90
                                                                       1
                                                             1
                             4 120.3 91 4.43 2.140 16.70 0
                                                                  5
                                                                       2
## Porsche 914-2
                      26.0
                                                             1
                                                                  5
                                                                       2
## Lotus Europa
                      30.4
                             4 95.1 113 3.77 1.513 16.90
## Ford Pantera L
                      15.8
                             8 351.0 264 4.22 3.170 14.50 0 1
                                                                  5
                                                                       4
## Ferrari Dino
                      19.7
                             6 145.0 175 3.62 2.770 15.50
                                                           0
                                                             1
                                                                  5
                                                                       6
## Maserati Bora
                      15.0
                             8 301.0 335 3.54 3.570 14.60
                                                           0
                                                                  5
                                                                       8
                                                             1
                                                                       2
## Volvo 142E
                      21.4
                             4 121.0 109 4.11 2.780 18.60
```

Ustawienia domyślne funkcji kable

knitr::kable(head(mtcars,20), format = "markdown")

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
$\rm Merc~280C$	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
$\rm Merc~450SE$	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
$\rm Merc~450SLC$	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
-----	-----	------	----	------	----	------	----	----	------	------

Tabela bez nazwy wierszy

knitr::kable(head(mtcars,20), format = "markdown", row.names = FALSE)

mpg cyl disp hp drat wt qsec vs am gear carb 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 24.4 4											
21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4	carb	gear	am	vs	qsec	wt	drat	hp	disp	cyl	mpg
22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4	4	4	1	0	16.46	2.620	3.90	110	160.0	6	21.0
21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 16.4 8 275.8 180 3.07 3.730 17.60 0 0 3 3	4	4	1	0	17.02	2.875	3.90	110	160.0	6	21.0
18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 4	1	4	1	1	18.61	2.320	3.85	93	108.0	4	22.8
18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 17.3 8 275.8 180 3.07 3.780 18.00 0 0 3 3 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 4	1	3	0	1	19.44	3.215	3.08	110	258.0	6	21.4
14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4	2	3	0	0	17.02	3.440	3.15	175	360.0	8	18.7
24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4	1	3	0	1	20.22	3.460	2.76	105	225.0	6	18.1
22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4	4	3	0	0	15.84	3.570	3.21	245	360.0	8	14.3
19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1	2	4	0	1	20.00	3.190	3.69	62	146.7	4	24.4
17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 </td <td>2</td> <td>4</td> <td>0</td> <td>1</td> <td>22.90</td> <td>3.150</td> <td>3.92</td> <td>95</td> <td>140.8</td> <td>4</td> <td>22.8</td>	2	4	0	1	22.90	3.150	3.92	95	140.8	4	22.8
16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2	4	4	0	1	18.30	3.440	3.92	123	167.6	6	19.2
17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2	4	4	0	1	18.90	3.440	3.92	123	167.6	6	17.8
15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2	3	3	0	0	17.40	4.070	3.07	180	275.8	8	16.4
10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2	3	3	0	0	17.60	3.730	3.07	180	275.8	8	17.3
10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2	3	3	0	0	18.00	3.780	3.07	180	275.8	8	15.2
14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2	4	3	0	0	17.98	5.250	2.93	205	472.0	8	10.4
32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2	4	3	0	0	17.82	5.424	3.00	215	460.0	8	10.4
30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2	4	3	0	0	17.42	5.345	3.23	230	440.0	8	14.7
	1	4	1	1	19.47	2.200	4.08	66	78.7	4	32.4
33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1	2	4	1	1	18.52	1.615	4.93	52	75.7	4	30.4
	1	4	1	1	19.90	1.835	4.22	65	71.1	4	33.9

Tabela z zaokrągleniem liczb do 2 cyfr po przecinku

knitr:: kable(head(mtcars,20) , format ="markdown", digits=2)

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.62	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.88	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.32	18.61	1	1	4	1

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.21	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.44	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.46	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.57	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.19	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.15	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.44	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.44	18.90	1	0	4	4
$\rm Merc~450SE$	16.4	8	275.8	180	3.07	4.07	17.40	0	0	3	3
$\rm Merc~450SL$	17.3	8	275.8	180	3.07	3.73	17.60	0	0	3	3
$\rm Merc~450SLC$	15.2	8	275.8	180	3.07	3.78	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.25	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.42	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.34	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.20	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.62	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.84	19.90	1	1	4	1

Tabela z wyrównaniem do lewej

knitr:: kable(head(mtcars,20), format ="markdown", align = "1")

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1

Tabela z kombinacją różnych wyrównań i zaokrągleń w kolumnach

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.9	2.6	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.9	2.9	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.8	2.3	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.1	3.2	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.1	3.4	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.8	3.5	20.22	1	0	3	1
Duster 360	14.3	8	360	245	3.2	3.6	15.84	0	0	3	4
Merc 240D	24.4	4	147	62	3.7	3.2	20.00	1	0	4	2
Merc 230	22.8	4	141	95	3.9	3.1	22.90	1	0	4	2
Merc 280	19.2	6	168	123	3.9	3.4	18.30	1	0	4	4
Merc 280C	17.8	6	168	123	3.9	3.4	18.90	1	0	4	4
Merc 450SE	16.4	8	276	180	3.1	4.1	17.40	0	0	3	3
Merc 450SL	17.3	8	276	180	3.1	3.7	17.60	0	0	3	3
$\rm Merc~450SLC$	15.2	8	276	180	3.1	3.8	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472	205	2.9	5.2	17.98	0	0	3	4
Lincoln Continental	10.4	8	460	215	3.0	5.4	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440	230	3.2	5.3	17.42	0	0	3	4
Fiat 128	32.4	4	79	66	4.1	2.2	19.47	1	1	4	1
Honda Civic	30.4	4	76	52	4.9	1.6	18.52	1	1	4	2
Toyota Corolla	33.9	4	71	65	4.2	1.8	19.90	1	1	4	1

Uwagi końcowe

W powyższych przykładach nie dodano tutułów do tabel. Jest to sposodowane zastosowaniem w funkcji **kable** dla argumentu format wartości markdown, który nie daje takiej możliwości. Żeby zobaczyć, jak działa dodawania tytułu na przykładzie dokumentu PDF lub HTML przejdź do przykładów: Tabela_rmarkdown_tytuly/Tabela_rmarkdown_tytuly/PDF.pdf lub Tabela_rmarkdown_tytuly/Tabela_rmarkdown_tytuly

Aby zobaczyć, jak tworzyć tabele w dokumnetach PDF generowanych bezpośrednio z LaTeX, bez udziału rmarkdown czyli przy użyciu narzędzie **Sweave**, przejdź do pliku <u>Tabela_LaTeX/Tabela_LaTeX.pdf</u>