

A1 - Analysis

- 1. Gegeben ist die Funktionenschar f_k mit $f_k(x)=\frac{x+k}{\mathrm{e}^x}$, $x\in\mathbb{R}$, $k\in\mathbb{R}$. Material 1 enthält Graphen von Funktionen der Schar.
 - 1.1 Berechnen Sie die Nullstellen der Scharfunktionen. Geben Sie für die Graphen in Material 1 die zugehörigen ganzzahligen Parameterwerte von k an.

(4P)

1.2 Berechnen Sie jeweils nur anhand der notwendigen Bedingung die Extrem- und Wendestellen der Schar und zeigen Sie, dass für alle Funktionen der Schar die Extremstelle stets genau in der Mitte von Null- und Wendestelle liegt.

(5P)

1.3 Skizzieren Sie in Material 1 die Kurve, die die Hochpunkte verbindet, und leiten Sie für die Ortskurve der Hochpunkte die zugehörige Funktionsgleichung her.

(4P)

1.4 Zeigen Sie, dass für jede Scharfunktion f_k die 2. Ableitungsfunktion f_k'' ebenfalls eine Funktion der Schar ist. Ermitteln Sie, durch welche Abbildungen der Graph von f_k'' aus dem Graphen von f_k hervorgeht.

(4P)

2.

2.1 Berechnen Sie mithilfe partieller Integration (Produktintegration) eine Stammfunktionenschar F_k von f_k . [zur Kontrolle: $F_k(x) = -(x+k+1) \cdot e^{-x}$]

(5P)

2.2 Untersuchen Sie rechnerisch, ob die Graphen der Schar mit der *x*-Achse eine Fläche einschließen, die einen endlichen Inhalt hat, und geben Sie diesen gegebenenfalls an.

(6P)

3. Man erhält aus der Funktionenschar f_k durch geeignete Verschiebung jedes Graphen parallel zur x-Achse eine neue Funktionenschar g_k , deren Graphen alle durch den Ursprung gehen (Material 2). Zeigen Sie, dass der Term für g_k sich als $g_k(x) = x \cdot e^{k-x}$ schreiben lässt.

(4P)

- 4. Gewisse Wachstumsprozesse lassen sich durch Graphen wie in Material 2 beschreiben. In Material 3 ist die Gewichtszunahme von jungen Hunden graphisch dargestellt. Die zugrunde liegenden Daten lassen sich durch abgeänderte Funktionen der Funktionenschar g_k (vgl. Aufgabe 3) gut approximieren.
 - 4.1 Beschreiben Sie die in den Graphen von Material 3 enthaltenen Aussagen im Sachzusammenhang. Auf Unterschiede zwischen den einzelnen Graphen soll nicht eingegangen werden.

(2P)

4.2 Leiten Sie eine abgeänderte Funktion aus der Schar g_k her, die das Wachstum der Schäferhunde

(6P)

Material 1

Material 2

Material 3

Gewichtszunahme in Gramm/Tag

http://www1.royal-canin.de

Für den Schäferhund können dem Diagramm folgende Werte entnommen werden:

Gewichtszunahme (in g/Tag)
100
150
165
130
95
45
20