Geometrie und Topologie

Siehe GitHub

22. Oktober 2013

Inhaltsverzeichnis

Inhaltsverzeichnis		2
	Topologische Grundbegriffe I.1. Topologische Räume	4
St	tichwortverzeichnis	5

Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 geschrieben. Es beinhaltet Vorlesungsnotizen von Studenten zur Vorlesung von Prof. Dr. Herrlich.

Es darf jeder gerne Verbesserungen einbringen!

Topologische Grundbegriffe

I.1. Topologische Räume

Definition 1

Ein **topologischer Raum** ist ein Paar (X, \mathfrak{T}) bestehend aus einer Menge X und $\mathfrak{T} \subseteq \mathcal{P}(X)$ mit folgenden Eigenschaften

- (i) $\emptyset, X \in \mathfrak{T}$
- (ii) Sind $U_1, U_2 \in \mathfrak{T}$, so ist $U_1 \cap U_2 \in \mathfrak{T}$
- (iii) Ist I eine Menge und $U_i \in \mathfrak{T}$ für jedes $i \in I$, so ist $\bigcup_{i \in I} U_i \in \mathfrak{T}$

Die Elemente von \mathfrak{T} heißen **offene Teilmengen** von X.

Beispiele 1

- 1) $X = \mathbb{R}^n$ mit der euklidischen Metrik. $U \subseteq \mathbb{R}^n$ offen \Leftrightarrow für jedes $x \in U$ gibt es r > 0, sodass $B_r(x) = \{ y \in \mathbb{R}^n \mid d(x,y) < r \} \subseteq U$
- 2) Allgemeiner: (X, d) metrischer Raum
- 3) X Menge, $\mathfrak{T} = \{\emptyset, X\}$ heißt "triviale Menge"
- 4) X Menge, $\mathfrak{T} = \mathcal{P}(X)$ heißt "diskrete Topologie"
- 5) $X := \mathbb{R}, \mathfrak{T}_Z := \{ U \subseteq \mathbb{R} \mid \mathbb{R} \setminus U \text{ endlich } \} \cup \{ \emptyset \} \text{ heißt "Zariski-Topologie"}$ Beobachtung: $U \in \mathfrak{T}_Z \Leftrightarrow \exists f \in \mathbb{R}[X], \text{ sodass } \mathbb{R} \setminus U = V(f) = \{ x \in \mathbb{R} \mid f(x) = 0 \}$
- 6) $X := \mathbb{R}^n, \mathfrak{T}_Z = \{U \subseteq \mathbb{R}^n | \text{Es gibt Polynome } f_1, \dots, f_r \in \mathbb{R}[X_1, \dots, X_n] \text{ sodass } \mathbb{R}^n \setminus U = V(f_1, \dots, f_r)\}$
- 7) $X = \{0,1\}, \mathfrak{T} = \{\emptyset, \{0,1\}, \{0\}\}\}$ abgeschlossene Mengen: $\emptyset, \{0,1\}, \{1\}$

Definition 2

Sei (X,\mathfrak{T}) ein topologischer Raum, $x \in X$.

Eine Teilmenge $U \subseteq X$ heißt **Umgebung** von x, wenn es ein $U_0 \in \mathfrak{T}$ gibt mit $x \in U_0$ und $U_0 \subseteq U$.

Definition 3

Sei (X,\mathfrak{T}) ein topologischer Raum, $M\subseteq X$ eine Teilmenge.

- a) $M^{\circ} := \{ x \in M \mid M \text{ ist Umgebung von } x \}$ heißt **Inneres** oder **offener Kern** von M.
- b) $\overline{M}:=\bigcup_{\substack{M\subseteq A\\A\text{ abgeschlossen}}}A$ heißt abgeschlossene Hülle oder Abschluss von M.
- c) $\partial M := \overline{M} \setminus M^{\circ}$ heißt **Rand** von M.

I. Topologische Grundbegriffe

d) M heißt **dicht** in X, wenn $\overline{M} = X$ ist.

Stichwortverzeichnis

```
Abschluss, 4
dicht, 5
Inneres, 4
Kern
offener, 4
Menge
triviale, 4
Offen, 4
Rand, 4
Topologie
diskrete, 4
Zariski, 4
Topologischer Raum, 4
Umgebung, 4
```