Assignment - 9

- 1. Linear transformations from \mathbb{R}^2 to \mathbb{R}^2 are determined completely by looking at what they do to
 - $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Using this fact and looking at image of unit square, write matrix of following linear

transformations described geometrically.

- (a) Reflection through the x-axis.
- (b) Reflection through the y-axis.
- (c) Reflection through the line $x_2 = x_1$.
- (d) Reflection through the line $x_2 = -x_1$.
- (e) Reflection through the origin.

For each of the following linear transformation T, write matrix of T w.r.t. standard basis on both sides.

- 1. $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a vertical shear transformation that maps e_1 into $e_1 3e_2$, but leaves e_2 unchanged. (draw and try to understand shear transforation)
- 2. $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a horizontal shear transformation that maps e_2 into $e_2 + 2e_1$, but leaves e_1 unchanged. (draw and try to understand shear transforation)
- 3. $T: \mathbb{R}^2 \to \mathbb{R}^2$ linear transformation which rotates points **counterclockwise** about the origin through the angle $\frac{\pi}{2}$.
- 4. $T: \mathbb{R}^2 \to \mathbb{R}^2$ linear transformation which rotates points **clockwise** about the origin through the angle $\left(-\frac{3\pi}{2}\right)$.
- 5. $T: \mathbb{R}^2 \to \mathbb{R}^2$ linear transformation which rotates points **clockwise** about the origin through the angle $\left(-\frac{3\pi}{4}\right)$ and then reflects points through the x-axis.
- 6. $T: \mathbb{R}^4 \to \mathbb{R}^4$ linear transformation $T(x_1, x_2, x_3, x_4) = (x_1 + 2x_2, 0, 2x_2 + x_4, x_2 x_4)$
- 7. $T: \mathbb{R}^4 \to \mathbb{R}^2$ linear transformation $T(x_1, x_2, x_3, x_4) = (x_1 5x_2 + 4x_3, x_2 6x_3)$
- 8. $T: \mathbb{R}^4 \to \mathbb{R}$ linear transformation $T(x_1, x_2, x_3, x_4) = 3x_1 + 4x_3 2x_4$