Computer Organization & Architecture (COA) GTU # 3140707





# Input-Output Organization



**Prof. Krunal D. Vyas**Computer Engineering Department
Darshan Institute of Engineering & Technology,

Rajkot Krunal.vyas@darshan.ac.in

**9601901005** 







- Asynchronous Data Transfer
- Modes Of Transfer
- Priority Interrupt
- DMA
- Input-Output Processor (IOP)
- Questions asked in GTU exam









# Asynchronous Data Transfer



### **Asynchronous Data Transfer**

- Asynchronous data transfer between two independent units requires that control signals be transmitted between the communicating units to indicate the time at which data is being transmitted.
- ☐ Two ways of achieving
  - 1. Strobe
  - 2. Handshaking



#### **Strobe Method**

#### ☐ 1.1 Source initiated Strobe

# Source unit Strobe Data Bus Destination unit





#### ☐ 1.2 Destination initiated Strobe





Strobe



#### 2.1 Source initiated Handshake







#### 2.2 Destination initiated Handshake







#### **Asynchronous Serial Transfer**

#### ☐ Rules for transmission

- 1. When a character is not being sent, the line is kept in the 1-state.
- 2. The initiation of a character transmission is detected from the start bit, which is always 0.
- 3. The character bits always follow the start bit.
- 4. After the last bit of the character is transmitted, a stop bit is detected when the line returns to the 1-state for at least one bit time.









## **Modes Of Transfer**



#### **Modes of Transfer**

- ☐ Data transfer between the central computer and I/O devices may be handled in a variety of modes.
- □ Some modes use the CPU as an intermediate path; others transfer the data directly to and from the memory unit.
- ☐ Data transfer to and from peripherals may be handled in one of three possible modes:
  - 1. Programmed I/O
  - 2. Interrupt-initiated I/O
  - 3. Direct memory access (DMA)



## Programmed I/O







## Interrupt-initiated I/O

- ☐ An alternative to the CPU constantly monitoring the flag is to let the interface inform the computer when it is ready to transfer data.
- ☐ While the CPU is running a program, it does not check the flag.
- ☐ However, when the flag is set, the computer is momentarily interrupted from proceeding with current program and is informed of the fact that the flag has been set.
- ☐ The CPU deviates from what it is doing to take care of the input or output transfer.
- ☐ After the transfer is completed, the computer returns to the previous program to continue what it was doing before the interrupt.







# **Priority Interrupt**



## **Priority Interrupt (Daisy-Chaining Technique)**

- Determines which interrupt is to be served first when two or more requests are made simultaneously
- Also determines which interrupts are permitted to interrupt the computer while another is being serviced.
- ☐ Higher priority interrupts can make requests while servicing a lower priority interrupt.







# DMA (Direct Memory Access)



### **DMA (Direct Memory Access)**

- ☐ The transfer of data between a fast storage device such as magnetic disk and memory is often limited by the speed of the CPU.
- ☐ Removing the CPU from the path and letting the peripheral device manage the memory buses directly would improve the speed of transfer.
- ☐ This transfer technique is called direct memory access (DMA).
- ☐ During DMA, CPU is idle and has no control of the memory buses.
- ☐ A DMA controller takes over the buses to manage the transfer directly between the I/O device and memory.



#### **DMA Controller**

#### DMA Controller

- ☐ DMA controller Interface which
  allows I/O transfer
  directly between
  Memory and
  Device, freeing
  CPU for other tasks
- ☐ CPU initializes DMA Controller by sending memory address and the block size (number of words).









# Input-Output Processor (IOP)



## **Input-Output Processor (IOP)**





## CPU – IOP Communication







## Questions asked in GTU exam



#### Questions asked in GTU exam

- 1. Explain daisy chain priority interrupt.
- 2. Explain the DMA operation.
- 3. What is the use of IOP? Explain its communication with CPU.
- 4. Explain asynchronous data transfer using timing diagrams.
- 5. Differentiate isolated I/O and memory mapped I/O.
- 6. Differentiate Programmed I/O and Interrupt initiated I/O.
- 7. What are the advantages of Serial Data Transmission of data?
- 8. Briefly explain source initiated transfer using handshaking.
- 9. Enlist possible modes of data transfer to and from peripherals.

