Определение 1. Пусть (a_n) — числовая последовательность. Формальное выражение $a_1+a_2+a_3+\ldots=\sum_{n=1}^\infty a_n$ называется *рядом.* Число $s_n=a_1+a_2+\cdots+a_n$ называется *n-ой частичной суммой* ряда.

Говорят, что ряд $\sum_{n=1}^{\infty} a_n$ сходится и имеет сумму A, если существует $\lim_{n\to\infty} s_n = A$. Тогда пишут $\sum_{n=1}^{\infty} a_n = A$. Если предел $\lim_{n\to\infty} s_n$ не существует, то говорят, что ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Задача 1. Пусть $a_n \geqslant 0$ при $n \in \mathbb{N}$. Докажите, что ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда ограничено множество его частичных сумм $\{s_n \mid n \in \mathbb{N}\}$, причём в этом случае $\sum_{n=1}^{\infty} a_n = \sup\{s_n \mid n \in \mathbb{N}\}$.

Задача 2. Какие из следующих рядов сходятся? Найдите их суммы.

- a) $\sum_{n=1}^{\infty} (-1)^n$; 6) $\sum_{n=1}^{\infty} \frac{1}{2^n}$; B) (геометрическая прогрессия) $\sum_{n=1}^{\infty} \frac{1}{q^n}$, $q \in \mathbb{R}$, $q \neq 0$;
- \mathbf{r}) (гармонический ряд) $\sum_{n=1}^{\infty} \frac{1}{n}$; д) $\sum_{n=1}^{\infty} \frac{n}{2^n}$; \mathbf{e})* $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$; \mathbf{w}) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Задача 3. а) Докажите, что если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} a_n = 0$. Верно ли обратное?

б) (*Критерий Коши сходимости ряда*.) Докажите, что ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда для любого $\varepsilon > 0$ существует такое N, что из $n \geqslant m > N$ (где $n, m \in \mathbb{N}$) следует $|a_m + a_{m+1} + \dots + a_n| < \varepsilon$.

Задача 4. Верно ли, что если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся, то сходится ряд $\sum_{n=1}^{\infty} a_n b_n$?

Задача 5. Сходятся ли следующие ряды: а) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$; б) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$; в) $\sum_{n=1}^{\infty} \frac{1}{n^2}$;

Задача 6. Докажите: а) ряд $\sum_{n=1}^{\infty} \frac{1}{n!}$ сходится; б) $\sum_{n=1}^{\infty} \frac{1}{n!} = e$; в) $e - \sum_{n=1}^{m} \frac{1}{n!} < \frac{1}{m! \, m}$; г) число e ирранионально.

Задача 7. Пусть $a_n\geqslant 0$ при всех $n\in\mathbb{N}$ и $\sigma\colon\mathbb{N}\to\mathbb{N}$ — взаимно однозначное отображение (перестановка натурального ряда). Тогда $\sum\limits_{n=1}^\infty a_n=\sum\limits_{n=1}^\infty a_{\sigma(n)}$ (то есть если сходится ряд в левой части равенства, то сходится и ряд в правой части, причём их суммы равны; если ряд в левой части расходится, то и ряд в правой части расходится).

Задача 8*. Пусть p_n-n -е простое число, $n\in\mathbb{N}$

- а) Докажите, что $\lim_{n\to\infty} \left(\frac{1}{1-1/p_1^2} \cdot \dots \cdot \frac{1}{1-1/p_n^2} \right) = \sum_{n=1}^{\infty} \frac{1}{n^2}.$
- **б)** Существует ли предел $\lim_{n\to\infty} \left(\frac{1}{1-1/p_1} \cdot \dots \cdot \frac{1}{1-1/p_n}\right)$? **в)** Сходится ли ряд $\sum_{n=1}^{\infty} \frac{1}{p_n}$?

Задача 9*. а) Пусть γ_k — сумма ряда $\sum\limits_{n=2}^{\infty} \frac{1}{n^k}$. Найдите сумму $\sum\limits_{k=2}^{\infty} \gamma_k$.

б) (Эйлер.) Пусть A — множество всех целых чисел, представимых в виде n^k , где n,k — целые числа, большие 1. Найдите сумму $\sum_{a \in A} \frac{1}{a-1}$.