Data Mining Association Rules: Advanced Concepts and Algorithms

Lecture Notes for Chapter 7

Introduction to Data Mining

Fang Zhou

Continuous and Categorical Attributes

How to apply association analysis to non-asymmetric binary variables?

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	Concern
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	$65 \mathrm{K}$	8	2	No
Female	 26	85K	12	1	No

Example of Association Rule:

{Gender=Male, Age \in [21,30)} \rightarrow {No of hours online \geq 10}

Example: Internet Usage Data

Gender	Level of	State	Computer	Online	Chat	Online	Privacy
	Education		at Home	Auction	Online	Banking	Concerns
Female	Graduate	Illinois	Yes	Yes	Daily	Yes	Yes
Male	College	California	No	No	Never	No	No
Male	Graduate	Michigan	Yes	Yes	Monthly	Yes	Yes
Female	College	Virginia	No	Yes	Never	Yes	Yes
Female	Graduate	California	Yes	No	Never	No	Yes
Male	College	Minnesota	Yes	Yes	Weekly	Yes	Yes
Male	College	Alaska	Yes	Yes	Daily	Yes	No
Male	High School	Oregon	Yes	No	Never	No	No
Female	Graduate	Texas	No	No	Monthly	No	No

{Level of Education=Graduate, Online Banking=Yes}

→ {Privacy Concerns = Yes}

 Introduce a new "item" for each distinct attributevalue pair

		T. 1	T3 1	T2.1	_	ъ.	D :
Male	Female	Education	Education	Education		Privacy	Privacy
		= Graduate	= College	= High School		= Yes	= No
0	1	1	0	0		1	0
1	0	0	1	0		0	1
1	0	1	0	0		1	0
0	1	0	1	0		1	0
0	1	1	0	0		1	0
1	0	0	1	0		1	0
1	0	0	0	0		0	1
1	0	0	0	1		0	1
0	1	1	0	0		0	1

- Some attributes can have many possible values
 - Many of their attribute values have very low support
 - Potential solution: Aggregate the low-support attribute values

- Distribution of attribute values can be highly skewed
 - Example: 85% of survey participants own a computer at home
 - Most records have Computer at home = Yes
 - Computation becomes expensive; many frequent itemsets involving the binary item (Computer at home = Yes)
 - Potential solution:
 - discard the highly frequent items
- Computational Complexity
 - Avoid generating candidate itemsets that contain more than one item from the same attribute

Handling Continuous Attributes

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	Concern
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	65K	8	2	No
Female	 26	85K	12	1	No

Example of Association Rule:

```
{Gender=Male, Age ∈ [21,30)} \rightarrow {No of hours online ≥ 10} {Age ∈ [21,35),Salary ∈ [70k,120k)} \rightarrow Buy {Age ∈ [21,30), Chat Online = Yes} \rightarrow No of hours online: \mu=14, \sigma=4
```

Handling Continuous Attributes

- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based

Discretization-based Methods

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	Concern
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	65K	8	2	No
Female	 26	85K	12	1	No

Discretization-based Methods

• Unsupervised:

Equal-width binning

- <1 2 3> <4 5 6> <7 8 9>
- Equal-frequency binning <
 - <1 2 > <3 4 5 6 7 > < 8 9>

Cluster-based

Supervised discretization

Continuous attribute, v

bin₃

	1	2	3	4	5	6	7	8	9
Chat Online = Yes	0	0	20	10	20	0	0	0	0
Chat Online = No	150	100	0	0	0	100	100	150	100

 $\overbrace{\text{in}_1} \quad \overline{\text{bin}_2}$

Pattern A: $Age \in [10, 15) \longrightarrow Chat Online = Never$ Pattern B: $Age \in [26, 41) \longrightarrow Chat Online = Never$ Pattern C: $Age \in [42, 48) \longrightarrow Online Banking = Yes$

- Interval too wide (e.g., Bin size= 30)
 - May merge several disparate patterns
 - Patterns A and B are merged together
 - May lose some of the interesting patterns
 - Pattern C may not have enough confidence
- Interval too narrow (e.g., Bin size = 2)
 - Pattern A is broken up into two smaller patterns
 - Can recover the pattern by merging adjacent subpatterns
 - Pattern B is broken up into smaller patterns
 - Cannot recover the pattern by merging adjacent subpatterns
 - Some windows may not meet support threshold

- Size of the discretized intervals affect support & confidence
 - If intervals too small
 - may not have enough support
 - If intervals too large
 - may not have enough confidence
- Potential solution: use all possible intervals

Discretization: all possible intervals

Number of intervals = k
Total number of Adjacent intervals = k(k-1)/2

Execution time

- If the range is partitioned into k intervals, there are O(k²) new items
- If an interval [a,b) is frequent, then all intervals that subsume [a,b) must also be frequent
 - ◆ E.g.: if {Age ∈[21,25), Chat Online=Yes} is frequent, then {Age ∈[10,50), Chat Online=Yes} is also frequent
- Improve efficiency:
 - Use maximum support to avoid intervals that are too wide

Redundant rules

```
R1: {Age \in [18,20), Gender=Male} \rightarrow {Chat Online=Yes}
```

R2: {Age \in [18,23), Gender=Male} \rightarrow {Chat Online=Yes}

If both rules have the same support and confidence,
 prune the more specific rule (R1)

• Example:

{Income > 100K, Online Banking=Yes} \rightarrow Age: μ =34

- Rule consequent consists of a continuous variable, characterized by their statistics
 - mean, median, standard deviation, etc.

Approach:

- Withhold the target attribute from the rest of the data
- Extract frequent itemsets from the rest of the attributes
 - Binarized the continuous attributes (except for the target attribute)
- For each frequent itemset, compute the corresponding descriptive statistics of the target attribute
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
- Apply statistical test to determine interestingness of the rule

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	Concern
Female	 26	90K	20	4	Yes
Male	 51	$135 \mathrm{K}$	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	$100 \mathrm{K}$	10	1	No
Male	 41	$65 \mathrm{K}$	8	2	No
Female	 26	85K	12	1	No

Frequent Itemsets:

{Male, Income > 100K} {Income < 30K, No hours ∈[10,15)} {Income > 100K, Online Banking = Yes}

Association Rules:

```
\label{eq:male_model} \begin{split} &\{\text{Male, Income} > 100\text{K}\} \rightarrow \text{Age: } \mu = 30 \\ &\{\text{Income} < 40\text{K, No hours } \in [10,15)\} \rightarrow \text{Age: } \mu = 24 \\ &\{\text{Income} > 100\text{K,Online Banking} = \text{Yes}\} \\ & \rightarrow \text{Age: } \mu = 34 \end{split}
```

...

- How to determine whether an association rule interesting?
 - Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:

$$A \Rightarrow B: \mu$$
 versus $\overline{A} \Rightarrow B: \mu'$

- Statistical hypothesis testing:
 - Null hypothesis: H0: $\mu' = \mu + \Delta$
 - ♦ Alternative hypothesis: H1: $\mu' > \mu + \Delta$
 - ◆ Z has zero mean and variance 1 under null hypothesis

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

• Example:

r: Browser=Mozilla ∧ Buy=Yes → Age: μ=23

- Rule is interesting if difference between μ and μ ' is more than 5 years (i.e., Δ = 5)
- For r, suppose n1 = 50, s1 = 3.5
- For r' (complement): n2 = 250, s2 = 6.5

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11$$

- For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
- Since Z is greater than 1.64, r is an interesting rule

Non-discretization methods

Document-term matrix:

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Example:

W1 and W2 tends to appear together in the same document

Non-discretization methods

- Data contains only continuous attributes of the same "type"
 - e.g., frequency of words in a document

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

- Potential solution:
 - Convert into 0/1 matrix and then apply existing algorithms
 - lose word frequency information
 - Discretization does not apply as users want association among words not ranges of words

Min-Apriori

- How to determine the support of a word?
 - If we simply sum up its frequency, support count will be greater than total number of documents!
 - ◆ Normalize the word vectors e.g., using L₁ norms
 - Each word has a support equals to 1.0

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Min-Apriori

New definition of support:

$$\sup(C) = \sum_{i \in T} \min_{j \in C} D(i, j)$$

TID	W1	W2	W3	W4	W5
				0.00	
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1,W2,W3)

$$= 0 + 0 + 0 + 0 + 0.17$$

$$= 0.17$$

- Support increases monotonically as the normalized frequency of a word increases
- Support increases monotonically as the number of documents that contain the word increases

Anti-monotone property of Support

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1) =
$$0.4 + 0 + 0.4 + 0 + 0.2 = 1$$

Sup(W1, W2) = $0.33 + 0 + 0.4 + 0 + 0.17 = 0.9$
Sup(W1, W2, W3) = $0 + 0 + 0 + 0 + 0.17 = 0.17$

Support has an anti-monotone property.

Concept Hierarchies

Multi-level Association Rules

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - ◆ e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.
 are indicative of association between milk and bread
 - Rules at higher level of hierarchy may be too generic
 - e.g., food->electronics