CHAPTER 10 - TREES

Our goal

11 Trees

11.1 Introduction to Trees

11.2 Applications of Trees

11.3 Tree Traversal

11.4 Spanning Trees

11.5 Minimum Spanning Trees

Some Tree Models

A Organizational Tree

Family tree

Introduction to Trees

DEFINITION 1

A tree is a connected undirected graph with no simple circuits.

FIGURE 2 Examples of Trees and Graphs That Are Not Trees.

Trees

Theorem.

An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Rooted trees

A *rooted tree* is a tree in which one vertex has been designated as the root

Terminologies

Terminologies

Full m-ary trees

Full m-ary trees

m=2: binary tree T

A full binary tree T

Binary tree

Properties of Trees

A tree with n vertices has n-1 edges #n: Number of nodes

- o For a full m-ary tree:
 - n = mi + 1
 - $n = i + \ell$

// i: Number of internal nodes

 $//\ell$: Number of leaves

Introduction to Trees...

- Level of a vertex: The length of the simple path from the root to this vertex.
- Height of Tree = the maximum of levels

Introduction to Trees...

A m-ary tree is called **balanced** if all leaves are at levels **h** or **h-1**. // h = height

h=4
All leaves are at levels
3, 4
→ Balanced

h=4
All leaves are at levels
2, 3, 4
→ Not Balanced

h=3
All leaves are at levels
3
→ Balanced

10.2- Applications of Trees

- Binary Search Trees
- Decision Trees
- Prefix Codes

Binary search tree

- A binary tree where each vertex is labeled with a key
- the key of a vertex is both larger than the keys of all vertices in its left subtree and smaller than the keys of all vertices in its right subtree.

Binary search tree - Add a new vertex

Constructing a binary search tree

Binary search tree for words: mango, cherry, grape, apple, guava, watermelon, satsuma, banana

smaller key →
go/add to the left
greater key →
go/add to the right

Algorithm for inserting an element to BST

ALGORITHM 1 Locating and Adding Items to a Binary Search Tree.

```
procedure insertion(T: binary search tree, x: item)
v := \text{root of } T
{a vertex not present in T has the value null}
                                                                 Complexity: O(logn)
while v \neq null and label(v) \neq x
                                                                   Proof: page 698
begin
  if x < label(v) then
     if left child of v \neq null then v := left child of v
     else add new vertex as a left child of v and set v := null
   else
     if right child of v \neq null then v := right child of v
     else add new vertex as a right child of v to T and set v := null
end
if root of T = null then add a vertex v to the tree and label it with x
else if v is null or label(v) \neq x then label new vertex with x and let v be this new vertex
\{v = \text{location of } x\}
```

Decision Trees

The Counterfeit Coin Problem.

- 8 coins, 1 fake coin (counterfeit, lighter) 12345678
- Use a two-pan balance scale to determine the lighter one.

Prefix Codes

- Introduction to Prefix Codes
- Huffman Coding Algorithm

Prefix Codes

- Construct a binary tree with a prefix code.
- ▶ sane will be store as
 111111011100 → 11 bits

<u>11111</u>10111100: s 11111<u>10</u>111100: a 1111110<u>11110</u>0: n 111111011110<u>0</u>: e

ASCII uses 32 bits to store sane

→ Compression factor: 32/11 ~ 3

Prefix Codes: Huffman Coding Algorithm

- Counting occurrences of characters in a text
 - → frequencies (probabilities) of each character.
- Constructing a binary tree representing prefix codes of characters.
- →The set of binary codes representing each character.
- → Coding source text

Prefix

Codes:

Coding

Huffman

Algorithm 26

Prefix Codes: Huffman Coding Algorithm

ALGORITHM 2 Huffman Coding.

procedure Huffman(C: symbols a_i with frequencies w_i , i = 1, ..., n)

F := forest of n rooted trees, each consisting of the single vertex a_i and assigned weight w_i while F is not a tree

begin

Replace the rooted trees T and T' of least weights from F with $w(T) \ge w(T')$ with a tree having a new root that has T as its left subtree and T' as its right subtree. Label the new edge to T with 0 and the new edge to T' with 1.

Assign w(T) + w(T') as the weight of the new tree.

end

{the Huffman coding for the symbol a_i is the concatenation of the labels of the edges in the unique path from the root to the vertex a_i }

Traversal Algorithms

- At a time, a vertex is visited
- Recursive algorithm
- Traversals are classified into:
 - Pre-order traversal.
 - In-order traversal.
 - Post-order traversal.

```
NLR
LNR
LRN
```

```
// N: root node
// L: left subtree
// R: right subtree
```

Tree traversals

Pre-order traversal:

N L R

a b c d

in-order traversal:

L N R

bacd

post-order traversal:

L R N

b c d a

Preorder traversal - example

procedure preorder(T: ordered rooted tree) r := root of T list r for each child c of r from left to right begin T(c) := subtree with c as its root preorder(T(c)) end

Inorder traversal - example


```
procedure inorder(T: ordered rooted tree)

r := root of T

if r is a leaf then list r

else

begin

l := first child of r from left to right

T(l) := subtree with l as its root

inorder(T(l))

list r

for each child c of r except for l from left to right

T(c) := subtree with c as its root

inorder(T(c))

end
```

Postorder traversals - examples

procedure postorder(T: ordered rooted tree) r := root of T for each child c of r from left to right begin T(c) := subtree with c as its root postorder(T(c)) end list r

Tree traversals - examples

Construct a binary search tree for the numbers:

8, 11, 3, 6, 9, 1, 13, 7, 21

What are the order of numbers after applying:

- preorder traversal
- inorder traversal
- postorder traversal?

Preorder traversal:

8 3 1 6 7 11 9 13 21

Inorder traversal:

1 3 6 7 8 9 11 13 21

Sorted

Postorder traversal:

1 7 6 3 9 21 13 11 8

Binary search tree

Infix, Prefix, and Postfix Notation

Expression Trees

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 10 A Binary Tree Representing $((x + y) \uparrow 2) + ((x - 4)/3)$.

Infix, Prefix, and Postfix Notation

Expression Trees

FIGURE 11 Rooted Trees Representing (x + y)/(x + 3), (x + (y/x)) + 3, and x + (y/(x + 3)).

Infix, Prefix, and Postfix Notation

Infix form:

```
operand_1 operator operand_2 x + y
```

Prefix form:

```
operator(operand_1,operand_2) + x y
```

Postfix form:

```
(operand_1, operand_2) operator x y +
```

- How to find prefix and postfix form from infix form?
 - (1) Draw expression tree.
 - (2) Using Preorder traverse → Prefix form Using Postorder traverse → Postfix form

Infix, Prefix, and Postfix Notation

Infix form

$$((x + y) \uparrow 2) + ((x - 4)/3)$$

Prefix form

$$+ + x y 2 / - x 4 3$$

Postfix form

$$xy + 2 \uparrow x 4 - 3/+$$

Infix, Prefix, and Postfix Notation

+ - * 2 3 5 / † 2 3 4

$$2 \uparrow 3 = 8$$

+ - * 2 3 5 / 8 4
 $8/4 = 2$
+ - * 2 3 5 2
 $2 = 3 = 6$
+ - 6 5 2
 $6 - 5 = 1$
+ 1 2
 $1 + 2 = 3$
Value of expression 3

FIGURE 12 Evaluating a Prefix Expression.

7 2 3 * - 4 ↑ 9 3 / +

$$2*3=6$$

7 6 - 4 ↑ 9 3 / +

 $1 4 ↑ 9 3 / +$
 $1^4=1$

1 9 3 / +

 $9/3=3$
 $1 3 +$
 $1+3=4$

Value of expression: 4

FIGURE 13 Evaluating a Postfix Expression.

Spanning trees

IP network

Multicast spanning tree

- Router
- Subnetwork
- Subnetwork with a receiving station

Spanning trees

Spanning trees

Definition.

Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing every vertex of G.

EXAMPLE 1 Find a spanning tree of the simple graph G shown in Figure 2.

Edge removed: $\{a, e\}$

(a)

FIGURE 2 The Simple Graph G.

Remov EdgesThat Form Simple Circuits.

THEOREM 1

A simple graph is connected if and only if it has a spanning tree.

Depth-First Search

FIGURE 6 The Graph G.

FIGURE 7 Depth-First Search of *G*.

The edges selected by depth-first search of a graph are called tree edges.

All other edges are called back edges.

FIGURE 8 The Tree Edges and Back Edges of the Depth-First Search in Example 4.

ALGORITHM 1 Depth-First Search.

```
procedure DFS(G): connected graph with vertices v_1, v_2, \ldots, v_n)
T := \text{tree consisting only of the vertex } v_1
visit(v_1)

procedure visit(v): vertex of G)
for each vertex w adjacent to v and not yet in T
add vertex w and edge \{v, w\} to T
visit(w)
```


FIGURE 6 The Graph G.

Backtracking Applications

- Graph Colorings
- Then-Queens Problem
- Sums of Subsets

Graph Colorings - example

FIGURE 11 Coloring a Graph Using Backtracking.

The n-Queens Problem

FIGURE 13 Find a Sum Equal to 39 Using Backtracking.

Breadth-First Search

FIGURE 9 A Graph G.

FIGURE 10 Breadth-First Search of *G*.

ALGORITHM 2 Breadth-First Search.

```
procedure BFS (G: connected graph with vertices v_1, v_2, \ldots, v_n) T := tree consisting only of vertex v_1 L := empty list put v_1 in the list L of unprocessed vertices while L is not empty remove the first vertex, v, from L for each neighbor w of v if w is not in L and not in T then add w to the end of the list L add w and edge \{v, w\} to T
```


FIGURE 9 A Graph G.

Minimum Spanning Trees

FIGURE 1 A Weighted Graph Showing Monthly Lease Costs for Lines in a Computer Network.

Which links should be made to ensure that there is a path between any two computer centers so that the total cost of the network is minimized?

I minimum spanning tree: a spanning tree that has the smallest possible sum of weights of its edges.

Algorithms for Minimum Spanning Trees

- Prim's algorithm (1957 by Robert Prim) (originally discovered by Vojtech Jarník in 1930).
- Choosing any edge with smallest weight, putting it into the spanning tree.
- Add to the tree edges of minimum weight that are incident to a vertex already in the tree, never forming a simple circuit with those edges already in the tree.
- ▶ Stop when n-I edges have been added.

ALGORITHM 1 Prim's Algorithm.

procedure Prim(G): weighted connected undirected graph with n vertices)

T := a minimum-weight edge

for i := 1 **to** n - 2

e := an edge of minimum weight incident to a vertex in T and not forming a simple circuit in T if added to T

T := T with e added

return T {T is a minimum spanning tree of G}

a	2	b	3	c	1	d
Ĭ		Ĭ		Ī		Ĭ
3		1		2		5
e •	4	f	3	g	3	h
		Ī		Ī		Ĭ"
4		2		4		3
	3		3		1	
i		j		\tilde{k}		ī

FIGURE 3 A Weighted Graph.

Choice	Edge	Weight
1	$\{b, f\}$	1
2	$\{a, b\}$	2
3	$\{f, j\}$	2
4	$\{a, e\}$	3
5	$\{i, j\}$	3
6	$\{f, g\}$	3
7	$\{c, g\}$	2
8	$\{c, d\}$	1
9	$\{g, h\}$	3
10	$\{h, l\}$	3
11	$\{k, l\}$	1
		Cotol: 24

Total:

Kruskal's algorithm (by Joseph Kruskal in 1956)

- Choose an edge in the graph with minimum weight.
- Add edges with minimum weight that do not form a simple circuit with those edges already chosen.
- ▶ Stop after n−I edges have been selected.

ALGORITHM 2 Kruskal's Algorithm.

```
procedure Kruskal(G): weighted connected undirected graph with n vertices) T := \text{empty graph} for i := 1 to n-1 e := \text{any edge in } G with smallest weight that does not form a simple circuit when added to T T := T with e added return T \ \{T \text{ is a minimum spanning tree of } G\}
```


FIGURE 5 A Minimum Spanning Tree Produced by Kruskal's Algorithm.

DFS

Summary

11 Trees

11.1 Introduction to Trees

11.2 Applications of Trees

11.3 Tree Traversal

11.4 Spanning Trees

11.5 Minimum Spanning Trees

▶ Thanks