# BasicR Course 15 – 19 February 2021

DAY 2

Molecular Biotechnology - Master







# **COURSE INSTRUCTOR**

## **RAJBIR NATH BATRA**



**MSc** Applied Statistics





**PhD** Mathematical Genomics and Medicine





Marie Sklodowska Curie

Fellow





# DAY 2 AND 3

# Data Import

# Wrangling

- Tidy + Manipulating
- Summarizing
- Cleaning

## **Exploration**

- Visualization
- Descriptive Statistics

### Statistical Inference

- Foundation of inference
- Basic statistical tests
- Linear regression



# DAY 2 AND 3

## Data Import

# Wrangling

- Tidy + Manipulating
- Summarizing
- Cleaning

## **Exploration**

- Visualization
- Descriptive Statistics

#### Statistical Inference

- Foundation of inference
- Basic statistical tests
- Linear regression

## **FOCUS IS ON APPLICATION IN R**

#### **NOT A STATISTICS COURSE**

#### Course does not cover:

- Principles of study design
   Types of experiments/ studies
   Reducing bias in study design
- Statistical theory

   Probability and random variables
   Statistical distributions
   Central Limit Theorem
  - Hypothesis testing
  - Type1 and Type 2 error
  - Test statistic and standard error
  - Confidence intervals and p-values



# DAY 2

# tidyverse



- Data Import
- Wrangling
   Tidying, Cleaning, Summarizing
- Exploration
   Visualization and Descriptive Statistics

#### tidyverse

- All packages within tidyverse use the same language/ grammar
- Designed for streamlined data exploration and analysis
- Rigid and expects data to be in specific format

#### Can also use Base R

More flexible than tidyverse



# IMPORTING DATA

# METHODS OF DATA IMPORT

- Import electronic spreadsheets
- Datasets stored as R objects (via packages)
- Download files from the internet using R
- •

# IMPORTING SPREADSHEETS

#### Txt/ csv file

#### murders.csv ~ state,abb,region,population,total Alabama, AL, South, 4779736, 135 Alaska, AK, West, 710231, 19 Arizona, AZ, West, 6392017, 232 Arkansas, AR, South, 2915918, 93 California, CA, West, 37253956, 1257 Colorado, CO, West, 5029196, 65 Connecticut, CT, Northeast, 3574097, 97 Delaware, DE, South, 897934, 38 District of Columbia, DC, South, 601723, 99 Florida, FL, South, 19687653, 669 Georgia, GA, South, 9920000, 376 Hawaii, HI, West, 1360301, 7 Idaho, ID, West, 1567582, 12 Illinois, IL, North Central, 12830632, 364 Indiana, IN, North Central, 6483802, 142 Iowa, IA, North Central, 3046355, 21 Kansas, KS, North Central, 2853118,63 Kentucky, KY, South, 4339367, 116 Louisiana, LA, South, 4533372, 351 Maine, ME, Northeast, 1328361, 11 Maryland, MD, South, 5773552, 293 Massachusetts, MA, Northeast, 6547629, 118 Michigan, MI, North Central, 9883640, 413 Minnesota, MN, North Central, 5303925, 53 Mississippi, MS, South, 2967297, 120 Missouri, MO, North Central, 5988927, 321 Montana, MT, West, 989415, 12 Nebraska, NE, North Central, 1826341, 32 Nevada, NV, West, 2700551,84

#### Excel file

| _ A            | В   | С            | D          | E     | F | G | н |
|----------------|-----|--------------|------------|-------|---|---|---|
| state          | abb | region       | population | total |   |   |   |
| Alabama        | AL  | South        | 4779736    | 135   |   |   |   |
| Alaska         | AK  | West         | 710231     | 19    |   |   |   |
| Arizona        | AZ  | West         | 6392017    | 232   |   |   |   |
| Arkansas       | AR  | South        | 2915918    | 93    |   |   |   |
| California     | CA  | West         | 37253956   | 1257  |   |   |   |
| Colorado       | co  | West         | 5029196    | 65    |   |   |   |
| Connecticut    | СТ  | Northeast    | 3574097    | 97    |   |   |   |
| Delaware       | DE  | South        | 897934     | 38    |   |   |   |
| District of Co | DC  | South        | 601723     | 99    |   |   |   |
| 1 Florida      | FL  | South        | 19687653   | 669   |   |   |   |
| 2 Georgia      | GA  | South        | 9920000    | 376   |   |   |   |
| Hawaii         | HI  | West         | 1360301    | 7     |   |   |   |
| 4 Idaho        | ID  | West         | 1567582    | 12    |   |   |   |
| 5 Illinois     | IL  | North Centra | 12830632   | 364   |   |   |   |
| 6 Indiana      | IN  | North Centra | 6483802    | 142   |   |   |   |
| 7 Iowa         | IA  | North Centra | 3046355    | 21    |   |   |   |
| 8 Kansas       | KS  | North Centra | 2853118    | 63    |   |   |   |
| Kentucky       | KY  | South        | 4339367    | 116   |   |   |   |
| Louisiana      | LA  | South        | 4533372    | 351   |   |   |   |
| 1 Maine        | ME  | Northeast    | 1328361    | 11    |   |   |   |
| Maryland       | MD  | South        | 5773552    | 293   |   |   |   |
| Massachuset    | MA  | Northeast    | 6547629    | 118   |   |   |   |
| 4 Michigan     | MI  | North Centra | 9883640    | 413   |   |   |   |
| Minnesota      | MN  | North Centra | 5303925    | 53    |   |   |   |
| Mississippi    | MS  | South        | 2967297    | 120   |   |   |   |
| 7 Missouri     | МО  | North Centra | 5988927    | 321   |   |   |   |
| Montana        | MT  | West         | 989415     | 12    |   |   |   |
| 9 Nebraska     | NE  | North Centra | 1826341    | 32    |   |   |   |

HEADER - The first row contains column names rather than data.

# **IMPORTING SPREADSHEETS**

# **readr** library

The following functions are available to read-in spreadsheets:

| Function   | Format                                          | Typical suffix |
|------------|-------------------------------------------------|----------------|
| read_table | white space separated values                    | txt            |
| read_csv   | comma separated values                          | csv            |
| read_csv2  | semicolon separated values                      | CSV            |
| read_tsv   | tab delimited separated values                  | tsv            |
| read_delim | general text file format, must define delimiter | txt            |



https://github.com/rafalab/dsbook←

# **IMPORTING SPREADSHEETS**

# readxl library

The package provides functions to read-in Microsoft Excel formats:

| Function   | Format                 | Typical suffix |
|------------|------------------------|----------------|
| read_excel | auto detect the format | xls, xlsx      |
| read_xls   | original format        | xls            |
| read_xlsx  | new format             | xlsx           |

https://github.com/rafalab/dsbook←

# WRANGLING -TIDY + MANIPULATING

# **TIDY FORMAT**

#### **Tidy format**

Hadley Wickham defines "tidy data" for data storage by analysts

### DOs

16 February 2021

- 1. Each variable forms a column, and that column contains one "type" of data
- 2. Each observation forms a row
- Each type of observational unit forms a table

## DON'Ts

- Column headers contain values, rather than names
- Multiple variables are stored in a single column
- Variables are stored in both rows and columns
- Multiple observational types are stored in a single table
- A single observational unit is stored in multiple tables.

http://vita.had.co.nz/papers/tidy-data.pdf



# TIDY FORMAT

| country | year | m014 | m1524 | m2534 | m3544 | m4554 | m5564 | m65 | mu | f014 |
|---------|------|------|-------|-------|-------|-------|-------|-----|----|------|
| AD      | 2000 | 0    | 0     | 1     | 0     | 0     | 0     | 0   | _  | _    |
| AE      | 2000 | 2    | 4     | 4     | 6     | 5     | 12    | 10  | _  | 3    |
| AF      | 2000 | 52   | 228   | 183   | 149   | 129   | 94    | 80  | _  | 93   |
| AG      | 2000 | 0    | 0     | 0     | 0     | 0     | 0     | 1   | _  | 1    |
| AL      | 2000 | 2    | 19    | 21    | 14    | 24    | 19    | 16  | _  | 3    |
| AM      | 2000 | 2    | 152   | 130   | 131   | 63    | 26    | 21  | _  | 1    |
| AN      | 2000 | 0    | 0     | 1     | 2     | 0     | 0     | 0   | _  | 0    |
| AO      | 2000 | 186  | 999   | 1003  | 912   | 482   | 312   | 194 | _  | 247  |
| AR      | 2000 | 97   | 278   | 594   | 402   | 419   | 368   | 330 | _  | 121  |
| AS      | 2000 | _    | _     | _     | _     | 1     | 1     | _   | _  | _    |

Table 9: Original TB dataset. Corresponding to each 'm' column for males, there is also an 'f' column for females, f1524, f2534 and so on. These are not shown to conserve space. Note the mixture of 0s and missing values (—). This is due to the data collection process and the distinction is important for this dataset.

http://vita.had.co.nz/papers/tidy-data.pdf

# **TIDY FORMAT**

| country | year | $\operatorname{column}$ | cases | $\operatorname{country}$ | year | sex          | age     | cases |
|---------|------|-------------------------|-------|--------------------------|------|--------------|---------|-------|
| AD      | 2000 | m014                    | 0     | AD                       | 2000 | m            | 0-14    | 0     |
| AD      | 2000 | m1524                   | 0     | AD                       | 2000 | $\mathbf{m}$ | 15-24   | 0     |
| AD      | 2000 | m2534                   | 1     | AD                       | 2000 | $\mathbf{m}$ | 25 - 34 | 1     |
| AD      | 2000 | m3544                   | 0     | AD                       | 2000 | $\mathbf{m}$ | 35-44   | 0     |
| AD      | 2000 | m4554                   | 0     | AD                       | 2000 | $\mathbf{m}$ | 45-54   | 0     |
| AD      | 2000 | m5564                   | 0     | AD                       | 2000 | $\mathbf{m}$ | 55-64   | 0     |
| AD      | 2000 | m65                     | 0     | AD                       | 2000 | $\mathbf{m}$ | 65 +    | 0     |
| AE      | 2000 | m014                    | 2     | AE                       | 2000 | $\mathbf{m}$ | 0-14    | 2     |
| AE      | 2000 | m1524                   | 4     | AE                       | 2000 | $\mathbf{m}$ | 15-24   | 4     |
| AE      | 2000 | m2534                   | 4     | AE                       | 2000 | $\mathbf{m}$ | 25 - 34 | 4     |
| AE      | 2000 | m3544                   | 6     | AE                       | 2000 | $\mathbf{m}$ | 35-44   | 6     |
| AE      | 2000 | m4554                   | 5     | AE                       | 2000 | $\mathbf{m}$ | 45-54   | 5     |
| AE      | 2000 | m5564                   | 12    | AE                       | 2000 | $\mathbf{m}$ | 55-64   | 12    |
| AE      | 2000 | m65                     | 10    | AE                       | 2000 | $\mathbf{m}$ | 65+     | 10    |
| AE      | 2000 | f014                    | 3     | AE                       | 2000 | f            | 0-14    | 3     |

(a) Molten data

(b) Tidy data

Table 10: Tidying the TB dataset requires first melting, and then splitting the column column into two variables: sex and age.

http://vita.had.co.nz/papers/tidy-data.pdf

# **TIBBLE**

#### Introduced to data.frame

| •          | as.data.frame(dat)   |     |               |            |      |
|------------|----------------------|-----|---------------|------------|------|
| L          | state                |     |               | population |      |
| P          | Alabama              | AL  | South         | 4779736    | 135  |
| 2          | Alaska               | AK  | West          | 710231     | 19   |
| В          | Arizona              | AZ  | West          | 6392017    | 232  |
| *          | Arkansas             | AR  | South         | 2915918    | 93   |
| 5          | California           | CA  | West          | 37253956   | 1257 |
| 6          | Colorado             | CD  | West          | 5829196    | 65   |
| 7          | Connecticut          | СT  | Northeast     | 3574097    | 97   |
| *          | Delaware             | DE  | South         | 897934     | 38   |
| э          | District of Columbia | DC  | South         | 601723     | 99   |
| 10         | Florida              | FL  | South         | 19687653   | 669  |
| 11         | Georgia              | GA  | South         | 9920000    | 376  |
| 12         | Hawaii               | ΗI  | West          | 1368381    | 7    |
| 13         | Idaho                | ID  | West          | 1567582    | 12   |
| 14         | Illinois             | IL. | North Central | 12838632   | 364  |
| 15         | Indiana              | IN  | North Central | 6483882    | 142  |
| 16         | Iowo                 | IA  | North Central | 3846355    | 21   |
| 17         | Kansas               | KS  | North Central | 2853118    | 63   |
| 18         | Kentucky             | KY  | South         | 4339367    | 116  |
| 19         | Louisiana            | LA  | South         | 4533372    | 351  |
| 20         | Maine                | ME  | Northeast     | 1328361    | 11   |
| 21         | Maryland             | MD  | South         | 5773552    | 293  |
| 22         | Massachusetts        | MA. | Northeast     | 6547629    | 118  |
| 23         | Michigan             | MI  | North Central | 9883640    | 413  |
| 24         | Minnesota            | MN  | North Central | 5303925    | 53   |
| 25         | Mississippi          | MS  | South         | 2967297    | 120  |
| 26         | Missouri             |     | North Central | 5988927    | 321  |
| 27         | Montana              | MT  | West          | 989415     | 12   |
| 28         | Nebraska             |     | North Central | 1826341    | 32   |
| $\epsilon$ | Nevado               | NV  | West          | 2700551    | 84   |

https://github.com/rafalab/dsbook←

# **TIBBLE**

#### Introduced to data.frame

| 38         Oregon         OR         West         383187           39         Pennsylvania         PA         Northeast         1278237           48         Rhode Island         RI         Northeast         105256           41         South Carolina         SC         South         462536           42         South Dakota         SD North Central         81418           43         Tennessee         TN         South         634618           44         Texas         TX         South         2514556           45         Utah         UT         West         276388           46         Vermont         VT         Northeast         62574           47         Virginia         VA         South         800182           48         Washington         WA         West         672454           49         West Virginia         WV         South         185299           50         Wisconsin         WI North Central         568698 | 36 | Ohio           | ОH | North Central | 11536504 | 310 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------|----|---------------|----------|-----|
| 39         Pennsylvania         PA         Northeast         1278237           40         Rhode Island         RI         Northeast         105256           41         South Carolina         SC         South         462536           42         South Dakota         SD North Central         81418           43         Tennessee         TN         South         634610           44         Texas         TX         South         2514556           45         Utah         UT         West         276388           46         Vermont         VT         Northeast         62574           47         Virginia         VA         South         800102           48         Washington         WA         West         672454           49         Mest Virginia         WV         South         185299           50         Wisconsin         WI North Central         568698                                                                    | 37 | 0klahoma       | ОK | South         | 3751351  | 111 |
| 40         Rhode Island         RI         Northeast         105256           41         South Carolina         SC         South         462536           42         South Dakota         SD North Central         81418           43         Tennessee         TN         South         634610           44         Texas         TX         South         2514556           45         Utah         UT         West         276388           46         Vermont         VT         Northeast         62574           47         Virginia         VA         South         808182           48         Washington         WA         West         672454           49         West Virginia         WV         South         185299           50         Wisconsin         WI North Central         568698                                                                                                                                                   | 38 | Oregon         | OR | West          | 3831874  | 36  |
| 41         South Carolina         SC         South         462536           42         South Dakota         SD North Central         81418           43         Tennessee         TN         South         634610           44         Texas         TX         South         2514556           45         Utah         UT         West         276388           46         Vermont         VT         Northeast         62574           47         Virginia         VA         South         800182           48         Washington         WA         West         672454           49         West Virginia         WV         South         185299           50         Wisconsin         WI North Central         568698                                                                                                                                                                                                                                 | 39 | Pennsylvania   | PA | Northeast     | 12782379 | 457 |
| 42         South Dakota         SD North Central         81418           43         Tennessee         TN         South         634610           44         Texas         TX         South         2514556           45         Utah         UT         West         276388           46         Vermont         VT         Northeast         62574           47         Virginia         VA         South         800102           48         Washington         WA         West         672454           49         West Virginia         WV         South         185299           58         Wisconsin         WI North Central         568698                                                                                                                                                                                                                                                                                                             | 40 | Rhode Island   | RI | Northeast     | 1052567  | 16  |
| 43 Tennessee TN South 634618<br>44 Texas TX South 2514556<br>45 Utah UT West 276388<br>46 Vermont VT Northeast 62574<br>47 Virginia VA South 888182<br>48 Washington WA West 672454<br>49 West Virginia WV South 185299<br>58 Wisconsin WI North Central 568698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41 | South Carolina | SC | South         | 4625364  | 207 |
| 44         Texas         TX         South         2514556           45         Utah         UT         West         276388           46         Vermont         VT         Northeast         62574           47         Virginia         VA         South         888182           48         Washington         WA         West         672454           49         West Virginia         WV         South         185299           58         Wisconsin         WI North Central         568698                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42 | South Dakota   | SD | North Central | 814180   | 8   |
| 45         Utch         UT         West         276388           46         Vermont         VT         Northeast         62574           47         Virginia         VA         South         808182           48         Washington         WA         West         672454           49         West Virginia         WV         South         185299           58         Wisconsin         WI North Central         568698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43 | Tennessee      | TN | South         | 6346105  | 219 |
| 46 Vermont VT Northeast 62574<br>47 Virginia VA South 800102<br>48 Washington WA West 672454<br>49 West Virginia WV South 185299<br>50 Wisconsin WI North Central 568698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44 | Texas          | TX | South         | 25145561 | 885 |
| 47 Virginia VA South 800102<br>48 Washington WA West 672454<br>49 West Virginia WV South 185299<br>50 Wisconsin WI North Central 560698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45 | Utah           | UT | West          | 2763885  | 22  |
| 48 Washington WA West 672454<br>49 West Virginia WV South 185299<br>50 Wisconsin WI North Central 568698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46 | Vermont        | VT | Northeast     | 625741   | 2   |
| 49 West Virginia WV South 185299<br>50 Wisconsin WI North Central 568698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47 | Virginia       | VA | South         | 8001024  | 258 |
| 50 Wisconsin WI North Central 568698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48 | Washington     | WA | West          | 6724548  | 93  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49 | West Virginia  | w  | South         | 1852994  | 27  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 | Wisconsin      | WI | North Central | 5686986  | 97  |
| 51 Wyoming WY West 56362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51 | Wyoming        | WY | West          | 563626   | 5   |

#### tibble are like data.frame



#### More properties

• Displays better

| state                | abb  | region    | population       | total |
|----------------------|------|-----------|------------------|-------|
|                      |      |           |                  |       |
| 1. Alabama           | AL.  | South     | 4 <u>779</u> 736 | 135   |
| 2 Alaska             | AK   | West      | 718231           | 19    |
| 3 Artzona            | AZ   | West      | 6392817          | 232   |
| Arkansas             | AR   | South     | 2 <u>915</u> 918 | 93    |
| 5 California         | CA   | West      | 37253956         | 1257  |
| √ Colorado           | CO   | West      | 5829196          | 65    |
| 7 Connecticut        | ст   | Northeast | 3574897          | 97    |
| Delaware             | DE   | South     | 897934           | 38    |
| District of Columbia | DC . | South     | 601723           | 99    |
| ∂ Florida            | FL   | South     | 19687653         | 669   |

- Subsets of tibbles are tibbles
- Tibbles can have complex entries
- Tibbles can be grouped

https://github.com/rafalab/dsbook←

# WRANGLING with dplyr

# dplyr is a grammar of data manipulation

- mutate() adds new variables that are functions of existing variables
- select() picks variables based on their names.
- filter() picks cases based on their values.
- summarise() reduces multiple values down to a single summary.
- arrange() changes the ordering of the rows.

```
pipe: %>%
```

dataset

 $\rightarrow$  select

 $\rightarrow$  filter

in R

dataset %>% select %>% filter

https://dplyr.tidyverse.org/



# WRANGLING with dplyr

#### One table verbs

Arrange rows by column values arrange() count() tally() add\_count() Count observations by group add\_tally() distinct() Subset distinct/unique rows Subset rows using column values filter() mutate() transmute() Create, modify, and delete columns pull() Extract a single column relocate() Change column order rename() rename\_with() Rename columns Subset columns using their names and types select() summarise() summarize() Summarise each group to fewer rows slice() slice\_head() slice\_tail() Subset rows using their positions slice\_min() slice\_max()

#### Two table verbs

#### Grouping

group\_by() ungroup()

Group by one or more variables

Select grouping variables

rowwise()

Group input by rows

https://dplyr.tidyverse.org

dplyr cheatsheet - <a href="https://rstudio.com/resources/cheatsheets/">https://rstudio.com/resources/cheatsheets/</a>



slice\_sample()

# SUMMARISE - 1 NUMERICAL VARIABLE

#### HISTOGRAM – graphical

- Histograms provide a view of the data density.
   Higher bars represent where the data are relatively more common.
- Histograms are especially convenient for describing the *shape* of the data distribution.
- The chosen bin width can alter the story the histogram is telling.

# Can use summarise() function for numerical summaries like Mean, Standard deviation

https://www.openintro.org/book/os/

#### Age (years) in patients



# SUMMARISE - 1 CATEGORICAL VARIABLE

#### **TABLE**

 A table summarizes data for one categorical variable with frequency and proportions (%)

| In general would you say your health is: | Frequency | Percentage | Cumulative % |
|------------------------------------------|-----------|------------|--------------|
| Excellent                                | 31        | 2.46       | 2.46         |
| Very good                                | 155       | 12.3       | 14.76        |
| Good                                     | 494       | 39.21      | 53.97        |
| Fair                                     | 430       | 34.13      | 88.1         |
| Poor                                     | 150       | 11.9       | 100          |
| Total                                    | 1,260     | 100        |              |

# Can use table() function for numerical summaries

#### **BAR PLOT - graphical**

- A bar plot is a common way to display a single categorical variable.
- Pie chart is not recommended since we cannot compare areas as accurately as heights.



# EXERCISE

Day2\_1.ImportingandWrangling\_Exercise.Rmd

# WRANGLING – CLEANING DATA

# DATA CLEANING

- Follows a tidy data structure
- Remove duplicate rows/values
- Error-free (e.g. free of misspellings)
- Variables should have appropriate data type
- e.g. numeric, character, factor etc
- Factors (categorical/ ordinal) should have relevant levels
- Remove incorrect/ non-relevant outliers
- Missing data should be set as NA

23

# EXERCISE

Day2\_2\_Cleaning\_Exercise.Rmd

# EXPLORATION – VISUALISATION WITH GGPLOT2

# **VISUALISATION** with ggplot2



3 main building blocks to ggplot



- 1. Data
  - US Gun Murders in 2010
- 2. Geometric object (type of plot)
  Scatter plot (x and y)
- 3. Aesthetic mapping
  - 2 layers points + labels of states
  - colored by Region
- 4. Other elements
  - Scale logged
  - Dotted Line of best fit
  - Legend
  - Style and background theme

https://github.com/rafalab/dsbook←

# EXPLORATION – DESCRIPTIVE STATISTICS

#### Data Visualization with ggplot2



#### Basics

gaplet2 is based on the grammar of graphics, the idea that you can build every graph from the same few components: a data set, a set of geoms-visual marks that represent data points, and a coordinate



To display data values, map variables in the data set. to seathetic properties of the geom like size, color, and x and y locations.



Build a graph with **qplot()** or **ggplot()** 



colorby + cts, y = hwy, color + cyl, data + mpg, geom + "point") Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults.

#### ggplot(data = mpg, aes(x = cty, y = hwyl)

Begins a plot that you finish by adding layers to. No defaults, but provides more control than opiotil.

gost of Emp., ses(hwy, ctyl) +. geom point (seul collor = cyl 1) + groom smooth( met had w'll of) a coord\_cartes(arc) + scale\_color\_gradient() + there but I

Add a new lawer to a plot with a grown. "() or start. "I) function. Each provides a grom, a set of aesthetic mappings, and a default stat. and position adjustment.

#### last\_plot()

Returns the last plot

#### ggsave("plot.png", width = 5, height = 5)

Saves last plot as 5'x 5'file named 'plot png' in working directory. Matches file type to file extension.

#### Geoms - tise a grow to represent data points, use the grow's aesthetic properties to represent variables. Each function returns a layer.

#### One Variable

#### Continuous

a <- ggplot(mpg, aes/hwy()



a - geom\_area(stat = "bin") x, y, alpha, color, fill, linetype, size b + geom\_ansalaes(y + .density.), stat + "bin").



a " geom\_density(kernel = "gaussian") x, y, alpha, color, fill, linetype, size, weight b+geom\_density(sesty+.county.3)



a geam dotplipt() x, y, alpha, color, fill



a " geom freqpoly()





a - geom\_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight b + grom\_histogram(aesly = \_density\_)!



Discrete b <- ggplot(mpg, aes/f())

geom bar() s, alpha, color, fill, linetype, size, weight.

#### **Graphical Primitives**





c \* geom\_polygon(ses(group \* group()) x, y, alpha, color, fill, linetype, size

#### d <- ggplot(economics, aes)date, unemploy()</p>



d + geom\_path(incend="butt", linespin="round", linemitre=1) x, y, alpha, color, linetupe, size



d + geom\_ribban(ses)/minnunemplay - 900. ymax-unemploy = 9000 x, ymax, ymin, alpha, color, fill, linetype, size

#### e-r-ggplot(seals, aes(x = long, y = lat))



geom\_segment[ses] send = long = delta\_long, vend = lat + delta\_lat() x, send, y, yend, alpha, color, linetype, size



geom\_rect(aesixmin = long, ymin = lat, smax=long = delta\_long, ymax = lat + delta\_lat() smax, smin, ymax, ymin, alpha, color, fill, Inetape, size

#### Two Variables

#### Continuous X, Continuous Y f <- ggplot(mpg, aes(cty, hwy))





x, y, alpha, color, fill, shape, size



geom\_point() x, y, alpha, color, fill, shape, size



geom\_quantile() x, y, alpha, color, linetype, size, weight



geom\_rug[sides = "bl") alpha, color, linetupe, size



geom\_smeeth(model = lm) x, y, alpha, color, fill, linetype, size, weight



geom\_text(sesilabel = ctyl)

x, y, label, alpha, angle, color, family, foreface, hjust, lineheight, size, vjust.

#### Discrete X, Continuous Y g <- ggplot(mpg, aesiclass, hwyl)



geom\_bar(stat = "identity") x, y, alpha, color, fill, linetype, size, weight



geom\_bosploti) lower, middle, upper, x, ymax, ymin, alpha, color, fill, linetype, shape, size, weight



geom\_detplot(binaxis = "y". stackdir = "center"]



x, y, alpha, color, fill



peom\_wiolin(scale = "area") x, y, alpha, color, fill, linetype, size, weight

#### Discrete X, Discrete Y h <- ggplotidiamonds, aesicut, colorii



geom\_jitter() x, x, alpha, color, fill, shape, size

#### Continuous Bivariate Distribution i <- ggplot(movies, aes/year, rating)



geom\_bin2d(binwidth = cl5, 0.5)) emax, umin, umax, umin, alpha, color, fill, Inetype, size, weight.



geom\_density2d() x, y, alpha, colour, linetype, size



geom\_hex() x, y, alpha, colour, fill size

#### Continuous Function

j «- ggplot/economics, aes/date, unemploy/)



geom\_area() x, y, alpha, color, fill, linetype, size





geom\_step(direction = "hv") x, x, alpha, color, linetype, size



df <- data.frame(gsp = c("W", "B"), fit = 4:5, se = 1:2) k = ggplotidf, aes(grp, fit, ymin = fit-se, ymax = fit-se))



k + geom\_crossbar(fatten + 2) x, y, ymax, ymin, alpha, color, fill, linetype,



k = geom\_errorbar() x, ymax, ymin, alpha, color, linetupe, size. width lalso geom\_errorberh()



k = geom\_linerange() x, ymin, ymax, alpha, color, linetupe, size



k = geom\_pointrange() x, y, ymin, ymax, alpha, color, fill, linetype,

#### shape, size

data +-data frame(murder = USArrestsSMurder, map ~ map\_data("state")



 e. geologidata, aestfill r inunder? + geom\_map(sestmon\_id = statel, map = map) + expand limits(v=maptiong.y=maptist) map, id. alpha, color, fill, linetype, size

#### Three Variables

seels5z < with(seels, sgrt(delta, long\*2 + delta, lat\*2)) m <- ggplot(seals, aes(long, lat))



geom\_raster(sesifili = zi, hjust=0.5, viust=0.5, interpolate=FALSE) x, y, alpha, fill



geom\_tile(ses(iii - z)) c.y. alpha. color, fill, linetype, size

\* geom\_contour(ses[r = r]) x, y, z, alpha, colour, linetype, size, weight

Learn more of discs.ggplotQ.org = pprintQ 0.9.3.1 = Updated: 5/25

# EXERCISE

Day2\_3\_Visualisationwithggplot2\_Exercise.Rmd

# **NUMERICAL - DESCRIPTIVE STATISTICS**

## **DISTRIBUTIONS**

What is a distribution

- describes the frequency (or probability) of occurrence for a given value
- describes the shape of the data

Probability distributions for Continuous variables e.g. Normal, skewed Frequency distributions for Discrete variables e.g. Poisson, Binomial



Vital in determining which statistical tests are applicable

PARAMETRIC (based on the specific distributional assumptions) – easy to model

NON-PARAMETRIC – no assumptions on distribution – not easy to model

# **TYPES OF DISTRIBUTIONS**



https://www.openintro.org/book/os/

# NORMAL DISTRIBUTION

- Unimodal and symmetric, bell shaped curve
- 2 parameters
  - i. MEAN  $(\mu)$  measure of central tendency
  - ii. STANDARD DEVIATION ( $\sigma$ ) measure of spread

These characteristics allow the use of parametric statistical tests on normal distributions



# DIFFERENT NORMAL DISTRIBUTIONS

- 2 parameters can be different to give different shapes
  - i. MEAN  $(\mu)$  measure of central tendency
  - ii. STANDARD DEVIATION ( $\sigma$ ) measure of spread



# **TESTING FOR NORMALITY**

# **QQ PLOT**

Graphically determines if a data sets come from a specified distribution e.g. *Normal distribution* 



# 4. Quantile-Quantile Plot

# **QQ-plot**

- •Graphically determines if two data sets come from populations with a common distribution.
- Used to test for normality

Quantile is the fraction (or percent) of points below a given value. i.e. 0.2 quantile has 20% of value this point and 80% of values above this point.

#### Advantage

- the sample sizes do not need to be equal.
- reveals distributional aspects such as shifts in scale, location, change in symmetry.



# NON-NORMAL DISTRIBUTIONS

MEDIAN - value that splits the data in half. 50<sup>th</sup> percentile

Q1 – 1<sup>st</sup> quartile – 25<sup>th</sup> percentile

Q3 – 3<sup>rd</sup> quartile – 75<sup>th</sup> percentile

INTERQUARTILE RANGE (IQR)
Between Q1 and Q3 is the middle 50% of the data.

IQR = Q3 - Q1

#### **OUTLIERS**

- Identify extreme skew in the distribution.
- Identify data collection and entry errors.
- Provide insight into interesting features of the data.

#### **BOX PLOT**



https://www.openintro.org/book/os/



# ROBUST STATISTICS

Mean is affected by outliers. Median is more robust



- for symmetric distributions it is more helpful to use the mean and SD to describe the centre and spread
- for skewed distributions it is more helpful to use median and IQR to describe the centre and spread

# TRANSFORMING SKEWED DATA

When data are extremely skewed, transforming them could

- make the data normally distributed
- PRO: allows use of parametric statistical tests that make modelling easier
- CON: However, interpretation will be trickier

#### LOG TRANSFORMATION

A common transformation is the log transformation for positively skewed data

- takes values between  $(0, \infty)$  and converts it to the range  $(-\infty, \infty)$
- the transformed data becomes symmetric about mean (closer to normal)







# SUMMARISE - RECAP

#### **BAR PLOT – NUMERICAL VARIABLE**

# Density 7 60 Age 40 80 100 20

#### Age (years) in patients

#### **BAR PLOT – CATEGORICAL VARIABLE**



# **ASSOCIATION – 2 NUMERICAL VARIABLES**

#### **SCATTER PLOT**

are useful for visualizing the relationship between two numerical variables.

Association between total number of murders and population of US states



Appear to be linearly and positively associated: as population increases, total number of murders increases.

# **ASSOCIATION – 2 CATEGORICAL VARIABLES**

#### **CONTINGENCY TABLE**

 A table that summarizes data for two categorical variables is called a contingency table.

The contingency table below shows the distribution of survival and ages of passengers on the Titanic.

|     |       | Sı   | ırvival  |       |
|-----|-------|------|----------|-------|
|     |       | Died | Survived | Total |
| ۸۵۵ | Adult | 1438 | 654      | 2092  |
| Age | Child | 52   | 57       | 109   |
|     | Total | 1490 | 711      | 2201  |
|     |       |      |          |       |

#### **BAR PLOT/ MOSAIC**

- A bar plot is a common way to display a single categorical variable.
- A bar plot where proportions instead of frequencies are shown is called a relative frequency bar plot.
- A mosaic plot has width in proportion to the marginal total (row or column).



https://www.openintro.org/book/os/



# ASSOCIATION – 1 NUMERICAL AND 1 CATEGORICAL VARIABLE

#### **SIDE-BY-SIDE BOX PLOTS**

A Boxplot is a method for graphically depicting groups of numerical data through their quartiles

Association between gas mileage and number of gears in the car

Distribution of Gas Mileage

# 

Number of Gears

# EXERCISE

Day2\_4\_DescriptiveStatistics\_Exercise.Rmd

# DAY 2 AND 3

# Data Import

# Wrangling

- Tidy + Manipulating
- Summarizing
- Cleaning

## **Exploration**

- Visualization
- Descriptive Statistics

### Statistical Inference

- Foundation of inference
- Basic statistical tests
- Linear regression

