

# Jaguar Motor Controller (Stellaris® Brushed DC Motor Control Module with CAN) 217-3367

# **Ordering Information**

| Product<br>Number | Description                                                                                    |
|-------------------|------------------------------------------------------------------------------------------------|
| 217-3367          | Stellaris® Brushed DC Motor Control<br>Module with CAN (217-3367) for Single-Unit<br>Packaging |





#### **Contents**





Figure 1. Brushed DC Motor Control Module



Figure 2. Mechanical Drawing

# **General Description**

The Jaguar motor control module is a variable speed control for 12 V and 24 V brushed DC motors at up to 40 A continuous current. The motor control module includes high performance CAN networking as well as a rich set of control options and sensor interfaces, including analog and quadrature encoder interfaces.

The high-frequency pulse width modulator (PWM) enables the DC motor to run smoothly and quietly over a wide speed range. The Jaguar uses highly optimized software and a powerful 32-bit Stellaris microcontroller to implement open-loop speed control as well as closed-loop control of speed, position, or motor current.







#### Overview

The Jaguar motor control board provides the following features:

- Controls brushed 12 V and 24 V DC motors up to 40 A continuous
- · Controller Area Network (CAN) interface at 1 Mbit/s
- Industry-standard servo (PWM) speed input interface
- RS232 to CAN bridge
- · Limit switch, encoder, and analog inputs
- Fully enclosed module includes cooling fan
- Flexible configuration options with simple source file modification
- Easy to customize—full source code and design files available

#### **Detailed Features**

This section describes the Jaguar's features in detail:

- · Quiet control of brushed DC motors
  - 15 kHz PWM frequency
- Three options for Speed control
  - Industry-standard R-C servo type (PWM) interface
  - Controller Area Network (CAN) interface
  - RS232 serial interface
- CAN communication
  - Multicast shared serial bus for connecting systems in electromagnetically noisy environments
  - 1M bits/s bit rate
  - CAN protocol version 2.0 A/B
  - Full configurability of module options
  - Real-time monitoring of current, voltage, speed, and other parameters
  - Firmware update
- RS232 serial communication
  - Bridges RS232 port to a CAN network
  - Directly interfaces to a PC serial port or National Instruments cRIO
- Automatic Output Ramp mode



- · Status LED indicates Run, Direction, and Fault conditions
- Motor brake/coast selector
- Limit switch inputs for forward and reverse directions
- Quadrature encoder input (QEI)
  - Index input
  - 5 V supply output to encoder
- Analog input
  - Accepts 10 k potentiometer or 0-3 V input
- · Screw terminals for all power wiring
- Headers (0.1 inch pitch) for all control signals



Figure 4. Detailed Drawing of the Jaguar Motor Control Module







# **Operational Specifications**

The following tables provide the operation specifications for the Jaguar motor control board.

WARNING – Do not exceed the maximum supply voltage of 30  $\rm V_{\rm DC}$ . Doing so will cause permanent damage to the module.

**Table 1. Power Supply** 

| Parameter                                                    | Min              | Тур   | Max             | Units |
|--------------------------------------------------------------|------------------|-------|-----------------|-------|
| Supply voltage range (V <sub>IN</sub> )                      | 5.5 <sup>a</sup> | 12/24 | 30              | Vdc   |
| Supply voltage absolute maximum                              | _                | _     | 35 <sup>b</sup> | Vdc   |
| Supply current (motor off, fan off) (V <sub>IN</sub> = 12 V) | _                | 35    | _               | mA    |
| Supply current (motor off, fan on) (V <sub>IN</sub> = 12 V)  | _                | 105   | _               | mA    |
| Under-voltage detect threshold                               | _                | 6.0   | _               | Vdc   |

a. Power supply requires  $V_{IN} \ge 7.0 V_{DC}$  to start up.

**Table 2. Motor Output** 

| Parameter                                       | Min | Тур    | Max      | Units |
|-------------------------------------------------|-----|--------|----------|-------|
| Motor voltage <sup>a</sup>                      | 0   | _      | $V_{IN}$ | V     |
| Motor current - continuous                      | _   | _      | 40       | Α     |
| Motor current – for 2 seconds                   | _   | _      | 60       | Α     |
| Motor current – peak at starting                | _   | _      | 100      | А     |
| PWM frequency                                   | _   | 15.625 | _        | kHz   |
| PWM resolution                                  | _   | 0.1    | _        | %     |
| Output current for resistive loads <sup>b</sup> | _   | _      | 30       | Α     |

a. The motor voltage is controlled by using a pulse-width modulated waveform.

**Table 3. Environment** 

| Parameter                   | Min | Тур | Max | Units |
|-----------------------------|-----|-----|-----|-------|
| Operating temperature range | 0   | _   | 50  | °C    |
| Storage temperature range   | -25 | _   | 85  | °C    |
| Fan on temperature          | _   | 42  | _   | °C    |
| Fan off temperature         | _   | 38  | _   | °C    |

b. Exceeding this limit, even momentarily, will cause permanent damage.

b. The output current for resistive loads is continuous and the value shown is the maximum value.



Table 4. Servo-Style Speed Input

| Parameter                                                  | Min    | Тур  | Max     | Units |
|------------------------------------------------------------|--------|------|---------|-------|
| Minimum pulse width <sup>a,b</sup>                         | 0      | 0.67 |         | ms    |
| Neutral pulse width <sup>b</sup>                           | _      | 1.5  | _       | ms    |
| Maximum pulse width <sup>b,c</sup>                         | _      | 2.33 | _       | ms    |
| Servo signal period                                        | 5.0125 | _    | 29.985  | ms    |
| Valid pulse width range                                    | 0.5    | _    | 2.50625 | ms    |
| Duty cycle range                                           | _      | _    | 50      | %     |
| Digital high-level input current                           | 2      | 5    | 25      | mA    |
| Digital low-level input current                            | _      | _    | 0.3     | mA    |
| Watchdog time-out                                          | _      | 100  | _       | ms    |
| Voltage isolation (servo+/- to other signals) <sup>d</sup> | _      | _    | 40      | V     |

a. Sets full-speed in reverse.

**Table 5. Analog Input** 

| Parameter                                            | Min | Тур    | Max | Units |
|------------------------------------------------------|-----|--------|-----|-------|
| Analog input voltage                                 | 0   | _      | 3   | V     |
| Potentiometer value                                  | _   | 10     | _   | kΩ    |
| Potentiometer reference voltage (+ pin) <sup>a</sup> | 2.9 | 3.0    | 3.1 | V     |
| Measurement resolution                               | _   | 10-bit | _   | bits  |
| Measurement rate                                     | _   | 15.625 | _   | kHz   |

a. With 10  $k\Omega$  potentiometer connected.

Table 6. Voltage, Current, and Temperature Measurement

| Parameter                               | Min | Тур     | Max | Units |
|-----------------------------------------|-----|---------|-----|-------|
| Temperature measurement accuracy        | _   | +/- 6   | _   | °C    |
| Supply voltage measurement accuracy     | _   | +/- 0.3 | -   | V     |
| Motor current measurement accuracy ≥ 8A | _   | +/- 1   | -   | Α     |
| Motor current measurement accuracy < 8A | _   | +/- 2   | -   | Α     |
| Measurement resolution                  | _   | 10      | -   | bits  |
| Measurement rate                        | -   | 15.625  | -   | kHz   |

b. These are the default values. Pulse-width range can be calibrated for different values. See the servo PWM calibration procedure on page 12.

c. Sets full-speed in forward direction.

d. The servo input is optically isolated.

Table 7. Brake/Coast Input

| Parameter                                     | Min  | Тур | Max | Units |
|-----------------------------------------------|------|-----|-----|-------|
| Digital low-level input voltage <sup>a</sup>  | -0.3 | _   | 1.3 | V     |
| Digital high-level input voltage <sup>b</sup> | 2.0  | 3.3 | 5.0 | V     |
| Digital input pull-down resistor              | _    | 200 | _   | kΩ    |
| Response time                                 | _    | 64  | _   | μs    |
| Power on Pin 1 (3.3 V)                        | _    | ı   | 25  | mA    |

a. Selects Brake mode.

Table 8. Quadrature Encoder Input (QEI)

| Parameter                                     | Min  | Тур | Max  | Units |
|-----------------------------------------------|------|-----|------|-------|
| Digital low-level input voltage <sup>a</sup>  | -0.3 | _   | 1.3  | V     |
| Digital high-level input voltage <sup>a</sup> | 2.0  | 3.3 | 5.0  | V     |
| Digital input pull-down resistor              | _    | 10  | _    | kΩ    |
| Encoder rate <sup>b</sup>                     | DC   | _   | 1    | М     |
| Encoder supply voltage                        | 4.90 | 5.0 | 5.10 | V     |
| Encoder supply current                        | _    | _   | 100  | mA    |

a. Applies to A, B, and Index inputs.

**Table 9. CAN Interface** 

| Parameter                                                 | Min     | Тур | Max | Units |
|-----------------------------------------------------------|---------|-----|-----|-------|
| Bit rate                                                  | 0.0133a | 1   | 1   | Mbps  |
| Recommended bus termination <sup>b</sup>                  | _       | 100 | _   | Ω     |
| Absolute maximum CANH, CANL voltage                       | -27     | _   | 40  | V     |
| Watchdog time-out                                         | _       | 100 | _   | ms    |
| Number of nodes per network <sup>c</sup> (protocol limit) | 1       | 1   | 63  | #     |
| Number of nodes per network (physical limit)              | 1       | _   | 16  | #     |
| Total cable length                                        | _       | _   | 2.0 | ft    |
| Total duble length                                        |         |     | 6.1 | m     |

a. Limited by fail-safe CAN transceiver SN65HVD1050.

b. Selects Coast mode.

b. Measured in transitions per second.

b. Two terminations per network.

c. Must be a valid ID range.

Table 10. RS232 Interface

| Parameter                          | Min | Тур     | Max | Units |
|------------------------------------|-----|---------|-----|-------|
| Baud rate                          | _   | 115,200 | _   | Baud  |
| Format                             | _   | 8, n, 1 | _   |       |
| Watchdog time-out                  | _   | 100     | _   | ms    |
| RXD Absolute Maximum Voltage Range | -25 | _       | +25 | V     |
| TXD High-level output voltage      | 5   | 5.4     | _   | V     |
| TXD Low-level output voltage       | -5  | -5.4    | _   | V     |
| RXD Positive-going threshold       | _   | 1.9     | _   | V     |
| RXD Negative-going threshold       | _   | 1.4     | _   | V     |

**Table 11. Limit Switch Interface** 

| Parameter                                     | Min  | Тур | Max  | Units |
|-----------------------------------------------|------|-----|------|-------|
| Digital low-level input voltage <sup>a</sup>  | -0.3 | _   | 1.36 | V     |
| Digital high-level input voltage <sup>b</sup> | 2.0  | 3.3 | 5.0  | V     |
| Pull-up resistor                              | _    | 10  | _    | kΩ    |
| Response time                                 | _    | 64  | _    | μs    |

a. Motor enabled state.

# Servo-style PWM Input

The Jaguar incorporates support for speed and direction control using the standard servo-style interface found on many radio-control receivers and robot controllers. See the electrical specifications for default timing of this signal.

#### **Electrical Interface**

The Servo PWM input is electrically isolated from other circuits using an optocoupler. The Jaguar datasheet contains electrical specifications, including common-mode voltage limits, for the input stage.

Figure 5. Jaguar's Servo PWM Input Stage



The on-board resistor (R2) has been selected to allow a signal of only a few volts to drive the optocoupler. At 3.3 V or more, it is advisable to add additional series resistance to limit the current into the LED. The PWM input stage is essentially a current-driven device, so the threshold for a logic high-level input is defined in milli-amps. Some recommended values for an external resistor are listed in Table 12.

b. Motor disabled state.

Table 12. Recommended External Resistor Values

| PWM Signal Level | External Series Resistor Value |
|------------------|--------------------------------|
| 2.5 V            | 0Ω (none)                      |
| 3.0 V            | 0Ω - 150Ω                      |
| 5.0 V            | 560Ω                           |
| 12 V             | 2.2kΩ                          |

### **Power Supply**

The Jaguar is designed primarily for use with 12 V or 24 V sealed lead-acid batteries, although other power sources can be used as long as the voltage range is not exceeded. See the Brushed DC Motor Control Reference Design Kit (RDK) User's Manual for more detail.

NOTE: The Jaguar does not have reverse polarity input protection.

#### **Motor Selection**

The Jaguar operates 12 V or 24 V brushed DC motors. Typical motors include the BI802-001A model from CIM and the RS-555PH-3255 model from Mabuchi. Some very small DC motors or motors in lightly loaded applications may have a limited useful speed range.

The Jaguar can also drive resistive loads with some de-rating to allow for increased ripple current inside the module.

# **Operating Modes**

The Jaguar can be controlled using either the servo-style PWM input or the CAN interface. Table 13 compares the capabilities of the two control methods.

**Table 13. Comparison of Control Methods** 

|                              | Control Method        |               |
|------------------------------|-----------------------|---------------|
|                              | Servo-Style PWM Input | CAN Interface |
| Speed Control                | Yes                   | Yes           |
| Analog Position Control      | No                    | Yes           |
| Encoder Position Control     | No                    | Yes           |
| Configurable Parameters      | No                    | Yes           |
| Voltage, Current Measurement | No                    | Yes           |
| Limit Switches               | Yes                   | Yes           |
| Coast/Brake Feature          | Yes                   | Yes           |
| Firmware Update              | No                    | Yes           |

The Jaguar does support the simultaneous use of CAN for monitoring and the servo-style input for speed.

NOTE: See the Jaguar Getting Started Guide for additional calibration information.



#### **Default Parameters**

Table 14 lists the default configuration of the Jaguar. Parameters can be modified using CAN commands or by modifying the software source code. Parameters changed using CAN commands are volatile and must be reloaded if power is cycled.

**Table 14. Default Factory Configuration** 

| Parameter          | Default Value                         |
|--------------------|---------------------------------------|
| Acceleration rate  | Instantaneous change                  |
| Deceleration rate  | Instantaneous change                  |
| Motor Control mode | Open-loop speed control using voltage |

### Wiring

The Jaguar is controlled using either a servo-type PWM source, CAN bus, or RS232 interface. Figure 6 shows a typical, simple wiring arrangement with power, motor, PWM control, and optional limit-switch connections. Basic servo-style PWM control is enabled by default and does not require CAN configuration. Figure 7 on page 10 shows an advanced wiring configuration using the CAN interface. Wiring for position sensing using both a position potentiometer and a quadrature encoder is detailed. Although two sensor types are shown, the Jaguar software supports control and monitoring of only one sensor at a time.

Figure 6. Basic Wiring with a Servo-Style Speed Command





Figure 7. Basic RS232/CAN-Based Control Wiring Diagram



#### **Mechanical Details**

Figure 8 shows the Jaguar physical dimensions. The module has two 0.175" (4.5 mm) diameter mounting holes as shown in Figure 8.

Figure 8. Mechanical Drawing



The Jaguar should be mounted so that the vents in the top and sides of the module are not restricted in any way. A clearance of  $\frac{1}{2}$  inch should be maintained around the module.

#### **Status LED**

Table 15 lists all of the LED status and fault codes for Normal Operating, Fault, and Calibration or CAN conditions. Fault information is prioritized, so only the highest priority fault will be indicated.

**Table 15. Normal Operating Conditions** 

| LED State                     | Module Status                                                   |  |
|-------------------------------|-----------------------------------------------------------------|--|
| Normal Operating Conditions   |                                                                 |  |
| Solid Yellow                  | Neutral (speed set to 0)                                        |  |
| Fast Flashing Green           | Forward                                                         |  |
| Fast Flashing Red             | Reverse                                                         |  |
| Solid Green                   | Full-speed forward                                              |  |
| Solid Red                     | Full-speed reverse                                              |  |
| Fault Conditions              |                                                                 |  |
| Slow Flashing Yellow          | Loss of servo or Network link                                   |  |
| Fast Flashing Yellow          | Invalid CAN ID                                                  |  |
| Slow Flashing Red             | Voltage, Temperature, or Limit Switch fault condition           |  |
| Slow Flashing Red and Yellow  | Current fault condition                                         |  |
| Calibration or CAN Conditions |                                                                 |  |
| Flashing Red and Green        | Calibration mode active                                         |  |
| Flashing Red and Yellow       | Calibration mode failure                                        |  |
| Flashing Green and Yellow     | Calibration mode success                                        |  |
| Slow Flashing Green           | CAN ID assignment mode                                          |  |
| Fast Flashing Yellow          | Current CAN ID (count flashes to determine ID)                  |  |
| Flashing Yellow               | CAN ID invalid (that is, Set to 0) awaiting valid ID assignment |  |

# **Jumper Settings**

Figure 9 shows the factory-default jumper settings.

Figure 9. Default Factory Jumper Settings



#### **Fault Detection**

The Jaguar detects and shuts down the motor if any of the following conditions are detected:

- \* Power supply under-voltage
- \* Over temperature
- \* Over current
- \* Loss of CAN/RS232 or servo-style speed link
- \* Limit switch activated in the current direction of motion

The LED indicates a fault state during the fault condition and for three seconds after the fault is cleared (except for the limit switch and link faults, which are instantaneous).

#### **Calibration**

To accommodate variation in the timing of the supplied signal, the Jaguar has a calibrate feature that sets new values for full-forward, full-reverse, and points in between.

Follow these steps to initiate calibration:

- 1. Hold down the user switch for five seconds.
- 2. Set the controller to send a full-forward signal.
- 3. Set the controller to send a full-reverse signal.
- 4. Set the controller to send a neutral signal.

The Jaguar samples these signals and centers the speed range and neutral position between these limits. See the *Jaguar Getting Started Guide* for complete calibration procedure information.

#### **CAN Communication**

The Controller Area Network (CAN) provides a powerful interface for controlling one or more Jaguar or MDL-BDC modules.

#### **Protocol**

The CAN protocol used by the Jaguar includes the following capabilities:

- · Firmware update over CAN
- · Read supply voltage, motor voltage, temperature, and current
- Set motor voltage or target position
- Set control mode to speed or position

Each Jaguar module on the CAN bus is accessed using an assigned ID number. The ID number defaults to 1, but can be changed by sending a CAN assign ID command to the bus.

#### Connectors

The Jaguar has a 6P6C socket and a 6P4C socket for daisy-chaining CAN between modules using standard cables. The CAN signals on the two sockets are hard-wired to each other. Figure 10 shows the pin assignments of each connector.

Each end of the CAN network must be properly terminated. Terminator resistors can be between  $100\Omega$  and  $120\Omega$ . For more complex networks,  $100\Omega$  is recommended because it accelerates the return of differential signaling to a valid recessive state.

Figure 10. NET Connector Pin Assignments





6P4C CAN Socket Viewed from Top (Tab down)

#### **RS232 Communication**

The Jaguar supports a full set of network control and configuration functions over a standard RS232C serial interface. The command protocol is essentially the same as the protocol used on the CAN interface allowing the Jaguar to automatically bridge all commands between the RS232 and CAN interfaces.

RS232 signals are implemented on the left-side NET connector. See Figure 10 for pin assignment information.

# Coast/Brake Input

The Coast/Brake input selects the dynamic behavior of the motor controller when decelerating or stopping. In the coast setting, the Jaguar allows the current in the motor to decay slowly, providing a more gradual deceleration. In the brake setting, the Jaguar uses switching to oppose current generated by the motor which results in much faster deceleration.

The brake setting also provides some additional holding capability in the stopped position. However, it should not be regarded as a safety or mechanical brake of any sort.

By default, the brake input is set using a jumper. Network commands can override the jumper setting, allowing the control mode to be changed dynamically. An external control signal can be connected to provide the same capability. Table 7 on page 6 lists the electrical requirements of an external control signal.

Pin 1 of the brake/coast connector can supply a small amount of 3.3 V power to an external device, as long as the device is located adjacent to the Jaguar module. See Table 7 on page 6 for electrical limits.

### **Analog Input**

The analog input accepts a 0-3 V sensor signal for implementing position control mode. Position control can also be implemented with a single- or multi-turn potentiometer. Potentiometers with continuous rotation are not supported. The Jaguar contains a built-in bias pin for use with  $10k\Omega$  potentiometers. If another potentiometer value or analog source is used, it must have a 0-3 V range.

If the P, I, and D parameters are positive (or zero), the Jaguar expects that a forward condition (+ voltage on White terminal, - voltage on Green) will generate an increasing voltage on the analog input.

If the P, I, and D parameters are positive (or zero), the Jaguar expects that a forward condition (+ voltage on White terminal, - voltage on Green) will generate a decreasing voltage on the analog input.

The analog input is not electrically isolated.

Table 5 on page 6 lists the electrical requirements of an external control signal.

### **Encoder Input**

In position control mode, the Jaguar accepts position commands over the network, and then uses an internal PID controller to autonomously move the motor to the specified position.

The QEI software position count changes on each pulse of the Encoder A input. For example, a 360° movement of a 100 pulse-per-revolution (PPR) encoder will result in a 100-count change in the position value. PPR is sometimes referred to as the number of lines that an encoder has.

The relationship between the Encoder B input and the Encoder A input determines whether the position counter increments or decrements.

An edge on the Index ("I") input resets the position counter to zero.

The Jaguar supports a wide range of shaft encoders. Encoder electrical parameters are detailed in Table 8 on page 6.

If the P, I, and D parameters are positive (or zero), the Jaguar expects that a forward condition (+ voltage on White terminal, - voltage on Green) will generate increasing counts on the encoder interface. Increasing counts occur when the rising (or falling) edge of the A input leads the rising (or falling) edge of the B input.

If the P, I, and D parameters are negative (or zero), the Jaguar expects that a forward condition {+ voltage on White terminal, - voltage on Green) will generate increasing counts on the encoder interface. Decreasing counts occur when the rising (or falling) edge of the B input leads the rising (or falling) edge of the A input.

The Jaguar can supply 5 V power to an encoder.

### **Limit Switch Inputs**

Two limit switch inputs provide a method for immediate shut-down of the motor. The inputs expect typically-closed contacts - one for each direction of rotation. See Table 11 on page 7 for electrical specifications.

### **Firmware Update**

The Jaguar firmware can be updated over CAN and RS232. The capability to update the Jaguar firmware can be added to most Host controllers by implementing the necessary protocol. If you are not developing a CAN host controller, the BDC-COMM application provides firmware update from a Windows PC.

For additional information on the firmware update procedure, see the *Jaguar Getting Started Guide*,

# **Additional Information**

The following documents are available for download at www.vexrobotics.com/vexpro

- Jaguar Getting Started Guide
- · BDC·COMM User's Guide
  - Schematics and 811-of-Matcria.Js (BOM)
  - Detailed functional description
  - Firmware update, configuration, and operation