

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08255981 A

(43) Date of publication of application: 01.10.96

(51) Int. CI

H05K 3/46

(21) Application number: 07057465

(22) Date of filing: 16.03.95

(71) Applicant:

FUJITSU LTD

(72) Inventor:

KAWANO HIROYASU

TANI MOTOAKI

(54) FORMATION METHOD OF CIRCUIT BOARD AND CIRCUIT BOARD

(57) Abstract:

PURPOSE: To obtain a formation method in which a fine pattern can be formed and in which a glass substrate is endowed wit thermal conductivity by a method wherein a light blocking film is formed on the surface of the glass substrate, photosensitive resin is applied, patterned and hardened, an insulation layer is formed and a circuit is formed on the insulation layer.

CONSTITUTION: A light blocking film 2 composed of Al is formed on the whole face of a glass substrate 1 by a DC sputtering operation, and the light blocking film 2 is coated with photosensitive resin composed of polyimide. Then, an insulation layer 5 comprising a prescribed pattern is formed via a glass mask. Then, a metal layer for a circuit is formed on the insulating layer 5. In addition, the metal layer for the circuit is coated with a photoresist, and the photoresist is formed via a precuring treatment, a UV ray exposure operation, a developing treatment and the like. Then, by making use of the photoresist as a mask. an etching treatment is executed, and a circuit 6 is formed. When the multiple

reflection of UV rays is prevented by the light blocking film 2, a fine pattern can be formed.

COPYRIGHT: (C) 1996, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-255981

(43)公開日 平成8年(1996)10月1日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ		技術表示箇所
H05K	3/46		6921-4E	H05K	3/46	N
			6921-4E			T
			6921-4E	·		U

		審査請求	未請求 請求項の数2 OL (全 6 頁)			
(21)出願番号	特顯平7-57465	(71) 出願人	000005223 富士通株式会社			
(22)出顧日	平成7年(1995)3月16日	(72)発明者	神奈川県川崎市中原区上小田中4丁目1番			
		(72)発明者	富士通株式会社内 谷 元昭 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内			
		(74)代理人	弁理士 野河 信太郎			

(54) 【発明の名称】 回路基板形成方法及び回路基板

(57)【要約】

【構成】 本発明の回路基板形成方法は、ガラス基板 1上へ光遮断膜2を形成する工程、前記膜2上に感光性 樹脂3を塗布し、パターニングし、硬化さすことにより 絶縁層5を形成する工程、絶縁層5上に回路用金属を積 層し、パターニングすることにより回路6を形成する工程からなり、絶縁層5を形成する工程及び回路6を形成する工程をこの順で少なくとも1回行うことを特徴とする。

【効果】 回路基板を支持する基板としてガラス基板を使用するに際し、感光性材料の微細なパターン形成を可能とし、加えて、放熱性(熱伝導性)を向上させた回路基板を得ることができる。

【特許請求の範囲】

【請求項1】 ガラス基板の表面に光を遮断する膜を形成する工程、前記膜上に感光性樹脂を塗布し、パターニングし、硬化さすことにより絶縁層を形成する工程、絶縁層上に回路用金属を積層し、パターニングすることにより回路を形成する工程からなり、絶縁層を形成する工程及び回路を形成する工程をこの順で少なくとも1回行うことを特徴とする回路基板形成方法。

【請求項2】 熱伝導性の良い膜と回路基板上に形成される電子部品とが、サーマルヴィアを介して接続されてなる回路基板。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、回路基板形成方法及び 回路基板に関する。更に詳しくは、本発明は、回路基板 を支持する基板としてガラス基板を使用するに際し、感 光性材料の微細なパターン形成を可能とし、加えて、放 熱性(熱伝導性)を向上させた回路基板形成方法及び回 路基板に関する。

[0002]

【従来の技術】近年の電子機器の小型化・軽量化に伴い、プリント回路基板の多層化や電子部品の表面実装に代表される実装方式の高密度化が進行している。また、ICに代表される電子部品の高機能化・小型化や、マルチチップモジュール(MCM)に代表される回路基板の高機能化・小型化も進行している。

【0003】特に、回路基板に関して、多層配線方式及び狭ピッチ配線方式による薄型化・高機能化が進められている。このような回路基板の薄型化に関して、窒化アルミニウム又はアルミナ(酸化アルミニウム)等のセラミック基板、A1やCu等の金属基板、ガラス基板等の平滑な板材の上に絶縁層(厚さ数 μ m)と回路(厚さ数 μ m)を交互に積層した多層配線方式の高密度実装用の回路基板が注目を集めている。

【0004】上記、回路基板の製造工程において、微細なヴィアホールや配線の形成に際し、UV(紫外線)光による感光性材料の露光処理が必要となるため、製造上、露光ギャップの観点から、基板は反りが小さい(数十μm以下)ことを必須条件とする。このような観点から使用する基板は、シリコンウェハやガラス基板が適しており、更にコスト的な観点から、ガラス基板が適している。

【0005】ガラス基板上へは、次のように回路が形成される。まず、ガラス基板上に絶縁層を形成するための感光性材料(感光性ポリイミドやフォトレジスト等)を塗布する。次に、感光性材料にパターニングを施すが、この際、ガラスマスクを介してUV光により露光処理し、感光性材料に溶解度の差を生じさせて、現像工程を経てパターニングすることにより絶縁層を形成する。次いで、絶縁層上に回路用金属を積層し、パターニングを

施し回路を形成する。なお、絶縁層及び回路の形成は、 繰り返し行われ、多層回路基板が形成される。

[0006]

【発明が解決しようとする課題】しかし、上記従来の方法では、ガラス基板の上面と下面の間でUV光の多重反射が生じるため、本来、感光性材料のUV光が照射されるべきではない部位にUV光が照射されてしまい、その結果感光性材料の溶解度差が生じにくくなって、微細なパターンが形成できないという問題が生じていた。そこで、ホログラムや液晶ディスプレイの分野では、ガラス基板下面側にUV光反射防止膜を形成してUV光をガラス基板下面で吸収させることにより多重反射を防いでいた。

【0007】また、ガラス基板は、他の基板材料に比べて放熱性(熱伝導性)に劣るという問題を抱えていた。 上記課題を鑑み、本発明の発明者らは鋭意検討の結果、ガラス基板を用いる際のUV光の多重反射を防止し、微細なパターンの形成を可能にすると共に、ガラス基板の放熱性(熱伝導性)を向上させた回路基板形成方法及び回路基板を見いだし本発明に至った。

[0008]

【課題を解決するための手段】かくして本発明によれば、ガラス基板の表面に光を遮断する膜を形成する工程、前記膜上に感光性樹脂を塗布し、パターニングし、硬化さすことにより絶縁層を形成する工程、絶縁層上に回路用金属を積層し、パターニングすることにより回路を形成する工程からなり、絶縁層を形成する工程及び回路を形成する工程をこの順で少なくとも1回行うことを特徴とする回路基板形成方法が提供される。

【0009】更に、本発明によれば、熱伝導性の良い膜と回路基板上に形成される電子部品とが、サーマルヴィアを介して接続されてなる回路基板も提供される。本発明に使用されるガラス基板は、特に限定されず、公知のガラス基板を使用することができる。このガラス基板は、表面が梨子地化処理されていることが、光を遮断する膜(以下光遮断膜と称する)との密着性(アンカー効果)が向上するので好ましい。また、梨子地化処理において、表面粗さは、Ra=10~50nmが特に好ましい。なお、ガラス基板への密着性に優れる光遮断膜を使用する場合は、梨子地化処理を行わなくてもよい。

【0010】次いで、上記ガラス基板は、表面の有機物の除去を主目的として、イソプロピルアルコール(IPA)、エタノール、メタノール、アセトン、トリクロロエチレン、トリクロロエタン、メチレンクロライド等の有機溶剤、リン酸塩、けい酸塩、炭酸ナトリウム、水酸化ナトリウム等のアルカリ水溶液を使用して洗浄処理

(脱脂) に付すことが好ましい。また、洗浄処理時に超 音波を印加すれば、洗浄効率が上がるのでさらに好まし い。

【0011】この後、ガラス基板の表面に光遮断膜が形

成される。光遮断膜は、図2のようにガラス基板の片面・ に形成してもよく、図3のようにガラス基板の表面全体 を覆うよう形成してもよい。なお、図2及び3中1はガ ラス基板、2は光遮断膜を意味する。このように、光遮 断膜をガラス基板上に形成することにより、感光性樹脂 のパターニング時のUV光の多重反射が防止できる。ま た、光遮断膜が熱伝導性の良い膜である場合には、回路 基板の放熱性(熱伝導性)を向上させることができる。 本発明に使用できる光遮断膜の材質は、UV光の透過を 遮断できれば、特に限定されない。ここで光遮断膜は、 金属からなることが特に好ましい。具体的には、光遮断 膜は、Ti, Cr, Al, Ni、W, Mo, Ta及びC uからなる金属を少なくとも1つ含むことが好ましい。 更に、上記金属と合金を形成しうるFe, Au等も含ま せることができる。この内、Ti、Al、Cェが特に好 ましい。また、光遮断膜の厚さは、パターニング時のU V光の波長及び光遮断膜の種類により異なるが、少なく とも3 μ m以上、特に3~10 μ mとすることが好まし い。 3 μ m以上とすることにより、UV光の多重反射防 止に加えて、放熱性(熱伝導性)をより向上させること ができる。

【0012】光遮断膜は、化学気相成長法(CVD)、 真空蒸着、イオンプレーティング、スパッタリング等の 真空製膜法、電気めっき、無電界めっき等の湿式めっき 法により形成することができる。ここで、ガラス基板の 片面に光遮断膜を形成するには、真空製膜法が好まし く、ガラス基板の表面全体を覆うように光遮断膜を形成 するには、湿式めっき法が好ましい。

【0013】上記のように光遮断膜が形成されたガラス基板上には、多層配線を形成するために所望のパターンからなる絶縁層及び回路が積層される。ここで絶縁層の形成には、ポリイミド樹脂、エポキシ樹脂、ベンゾシクロブテン(BCB)樹脂等の感光性樹脂が使用できる。また絶縁層の厚さは、 $10~20\mu$ mが好ましい。 10μ mより小さい場合、十分な絶縁性が得られないので好ましくなく、 20μ mより大きい場合、製造時間がかかると共に薄膜化の要請に応えられないからである。

【0014】絶縁層の積層方法は、特に限定されず公知の方法をいずれも使用することができ、例えば、スピンコータ、ローラコータ、ディップコータ、スプレー等を用いて塗布し、プリキュア工程に付し、ガラスマスクを介してUV露光処理を施し、現像及びフルキュア工程に付すことにより所望のパターンの絶縁層を積層できる。本発明ではガラス基板上に光遮断膜が形成されているので、UV露光処理時に、UV光が多重反射して本来照射されるべきでない領域に照射されることを防ぐことができる。従って、絶縁層に形成されるヴィアホールの直径を、光遮断膜がない場合と比較して、約1/3程度にすることができる。

【0015】一方、回路は公知の回路用金属を上記絶縁

層上に積層し、フォトレジスト等を使用したパターニングにより形成することができる。なお、この積層工程により、絶縁層に形成されているヴィアホールにも回路用金属が充填される。回路用金属としては、例えば、Al, Cu, Au, Mo及びW等が挙げられ、これらの合金も使用することができる。また、Si等を数%添加することも可能である。回路用金属は、Al, Cuが特に好ましい。回路の厚さは、下地である絶縁層の種類にもよるが $1\sim5\mu$ mが好ましい。 1μ mより小さい場合、絶縁層の影響を受け回路の抵抗が高くなるので好ましくなく、 5μ mより大きい場合、製造時間がかかるため好ましくない。

【0016】回路用金属の積層方法は、特に限定されず公知の方法をいずれも使用することができ、例えば、CVD、真空蒸着、イオンプレーティング、スパッタリング等の真空製膜法、湿式めっき法等により形成することができる。回路用金属は積層された後、パターニングのためにフォトレジストが塗布され、所望のパターンを形成することによりエッチングマスクが形成され、エッチング処理に付される。エッチング方法は、特に限定されず公知の方法を使用することができる。例えば、塩化第二銅、塩化第二鉄、過酸化水素/硫酸、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等のエッチャントを使用したウエットエッチングが挙げられる。

【0017】上記、感光性樹脂及び回路用金属は、パターニングしつつ交互に複数層形成することにより、絶縁層及び回路からなる多層回路とすることができる。また、最上層には、回路用金属が露出しており、この回路用金属に電子部品が載置され、接続される。本発明に使用できる電子部品としては、ICチップ、LSIチップ、抵抗チップ、コンデンサチップ等の回路基板に通常使用される電子部品が挙げられる。

【0018】また、本発明では熱伝導性の良い膜と回路基板上に形成される電子部品とが、サーマルヴィアを介して接続されてなる回路基板を提供することができる。サーマルヴィアを介して電子部品に発生する熱を熱伝導性の良い膜に伝えることにより逃がすことができる。例えば、サーマルヴィアを設けることにより、サーマルヴィアの材質、形状及び大きさによっても相違するが約10℃程度熱を低減することができる。このサーマルヴィアは、回路用金属と同じ材質からなることが好ましく、絶縁層及び回路と同時に形成することができる。

[0019]

【作用】本発明の回路基板形成方法は、ガラス基板の表面に光遮断膜を形成する工程、前記膜上に感光性樹脂を塗布し、パターニングし、硬化さすことにより絶縁層を形成する工程、絶縁層上に回路用金属を積層し、パターニングすることにより回路を形成する工程からなり、絶縁層を形成する工程及び回路を形成する工程をこの順で少なくとも1回行うことを特徴とするので、微細パター

ンの形成が可能となり、更にガラス基板への放熱性 (熱 伝導性) が付与される。この理由は次の通りである。

【0020】即ち、ガラス基板は厚みが存在しかつUV光を透過させる。そのため、光遮断膜のないガラス基板の場合、図9に示すように、ガラス基板下面でUV光が反射する。この反射光はガラス基板の上面と下面の間で多重反射し、本来UV光が照射されるべきでない感光性樹脂の部位にUV光が照射される。このUV光により感光性樹脂の光反応が促進し、必要でない部位に絶縁膜が形成され微細なパターンの形成が困難であった。これに対して、本発明ではガラス基板に光遮断膜が形成されているので、図4に示すように、UV光の多重反射は起こらず、所望する微細パターンの形成が可能となる。なお図4及び図9中4はマスクを意味する。

【0021】また、光遮断膜を、真空蒸着、イオンプレーティング、スパッタリング、化学気相成長法(CVD)、湿式めっき法により形成することにより、簡便に光遮断膜が形成される。更に、光遮断膜が、Ti, Cr, Al, Ni, W, Mo, Ta及びCuからなる元素を少なくとも1つ含むことにより、UV光の遮光及びガラス基板の放熱性が向上する。

【0022】また、光遮断膜がないガラス基板を使用した回路基板と比較して、より微細な回路を有し、かつ放熱性(熱伝導性)が向上した回路基板が提供される。更に、回路基板が、熱伝導性の良い膜と回路基板上に形成される電子部品とが、サーマルヴィアを介して接続されてなることにより、最上層に形成される電子部品で発生した熱が金属膜に伝わりやすくなるので、放熱性(熱伝導性)に優れた回路基板が提供される。

[0023]

【実施例】

実施例

図1は本発明の実施例における断面図であり、光遮断膜の形成されたガラス基板上に多層回路を形成したものである。図中、1はガラス基板、2は光遮断膜、5は絶縁層、6は回路、7はサーマルヴィア、8はヴィアホール、9はICチップをそれぞれ示している。以下、図5(a)~図8(b)を使用して、図1の回路基板形成方法を更に詳細に説明する。

【0024】まず、光遮断膜とガラス基板との密着性を向上させるため、濃い強アルカリ溶液(NaOH)にガラス基板1を浸漬して、ガラス基板1の表面を梨子地化した(表面粗さ $Ra=10\sim50$ nm)。このガラス基板1の表面の有機物を除去すること(脱脂)を主目的として、有機溶剤であるIPAを使用して洗浄処理に付した(図5(a)及び図5(b))。

【0025】次に、Alからなる光遮断膜2を、DCスパッタリングにより、ガラス基板1全面に厚さ5μmで形成した。形成の際の基板温度は室温とした(図5

(c))。次いで、光遮断膜2上にポリイミドからなる

感光性樹脂 3 を塗布した(図 6 (a))。この感光性樹脂 3 をプリキュア処理した後、ガラスマスク 4 を介して U V ながりますを施し、現像及びフルキュア工程を経た後、所望のパターンを有する厚さ 5 μ mの絶縁層 5 を形成した(図 6 (b)及び図 7 (a))。この時、最小の直径が 1 0 μ mの微細なサーマルヴィア 7 (又はヴィアホール 8)が形成できた。

【0026】次に、絶縁層5上にスパッタリングにより厚さ3 μ mの回路用金属(Al-Si合金)11を形成した(図7(b))。回路用金属11上にフォトレジストを塗布し、プリキュア処理・UV光露光・現像処理・フルキュア処理を経て、所望のパターンにフォトレジスト10を形成した(図7(c)及び図8(a))。次に、フォトレジスト10をエッチングマスクとしてエッチング処理に付し、所望のパターンの回路6を形成した(図8(b))。ここでエッチング処理には、リン酸を主成分とする混合酸溶液が、エッチング用の溶液として使用された。

【0027】この後、図6(a)~図8(b)の工程を繰り返し、電子部品としてICチップ9を載置、接続することにより、図1に示す如きサーマルヴィア7を有する回路基板を得ることができた。得られた回路基板のサーマルヴィア7を介してICチップ9から発生する熱を、光遮断膜2に伝え、放熱させたところ、ICチップ9の温度はチップの補償温度よりも約10℃低くすることができた。

【0028】比較例

光遮断膜2を形成しないこと以外は、上記実施例と同様 にして回路基板を形成した。得られた回路基板のヴィア ホール8の最小の直径は30μmであった。

[0029]

【発明の効果】本発明の回路基板形成方法は、ガラス基板上へ光遮断膜を形成する工程、前記膜上に感光性樹脂を塗布し、パターニングし、硬化さすことにより絶縁層を形成する工程、絶縁層上に回路用金属を積層し、パターニングすることにより回路を形成する工程からなり、絶縁層を形成する工程及び回路を形成する工程をこの順で少なくとも1回行うことを特徴とするので、微細パターンの形成が可能となり、更にガラス基板へ放熱性(熱伝導性)を付与することができる。

【0030】また、光遮断膜を、真空蒸着、イオンプレーティング、スパッタリング、化学気相成長法(CVD)、湿式めっき法により形成することにより、簡便に光遮断膜を形成することができる。更に、光遮断膜が、Ti, Cr, Al, Ni, W, Mo, Ta及びCuからなる元素を少なくとも1つ含むことにより、UV光の遮光及びガラス基板の放熱性の向上が実現できる。

【0031】また、光遮断膜がないガラス基板を使用した回路基板と比較して、より微細な回路を有する回路基板を提供することができる。更に、回路基板が、熱伝導

性の良い膜と回路基板上に形成される電子部品とをサーマルヴィアを介して接続されている構造を有しているので、最上層に形成される電子部品で発生した熱が熱伝導性の良い膜に伝わりやすくなるので、放熱性(熱伝導性)に優れた回路基板を提供することができる。

【図面の簡単な説明】

【図1】本発明の回路基板の概略断面図である。

【図2】本発明の回路基板形成方法において、光遮断膜が被覆されたガラス基板の一例である。

【図3】本発明の回路基板形成方法において、光遮断膜が被覆されたガラス基板の一例である。

【図4】本発明の回路基板形成方法におけるUV光照射時のUV光の挙動を示す概略図である。

【図5】本発明の回路基板形成方法の概略工程図である。

【図6】本発明の回路基板形成方法の概略工程図である。

【図7】本発明の回路基板形成方法の概略工程図であ

る。

【図8】本発明の回路基板形成方法の概略工程図である。

【図9】従来の回路基板形成方法におけるUV光照射時のUV光の挙動を示す概略図である。

【符号の説明】

- 1 ガラス基板
- 2 光遮断膜
- 3 感光性樹脂
- 4 マスク
- 5 絶縁層
- 6 回路
- 7 サーマルヴィア
- 8 ヴィアホール
- 9 ICチップ
- 10 フォトレジスト
- 11 回路用金属

【図7】

【図8】

【図9】

(b)

(c)

6

(P)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-255981

(43)Date of publication of application: 01.10.1996

(51)Int.Cl.

H05K 3/46

(21)Application number: 07-057465

(71)Applicant: FUJITSU LTD

(22)Date of filing:

16.03.1995

(72)Inventor: KAWANO HIROYASU

TANI MOTOAKI

(54) FORMATION METHOD OF CIRCUIT BOARD AND CIRCUIT BOARD

(57)Abstract:

PURPOSE: To obtain a formation method in which a fine pattern can be formed and in which a glass substrate is endowed wit thermal conductivity by a method wherein a light blocking film is formed on the surface of the glass substrate, photosensitive resin is applied, patterned and hardened, an insulation layer is formed and a circuit is formed on the insulation layer.

CONSTITUTION: A light blocking film 2 composed of Al is formed on the whole face of a glass substrate 1 by a DC sputtering operation, and the light blocking film 2 is coated with photosensitive resin composed of polyimide. Then, an insulation layer 5 comprising a prescribed pattern is formed via a glass mask. Then, a metal layer for a circuit is formed on the insulating layer 5. In

addition, the metal layer for the circuit is coated with a photoresist, and the photoresist is formed via a precuring treatment, a UV ray exposure operation, a developing treatment and the like. Then, by making use of the photoresist as a mask. an etching treatment is executed, and a circuit 6 is formed. When the multiple reflection of UV rays is prevented by the light blocking film 2, a fine pattern can be formed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] this invention relates to the circuit board formation method and the circuit board. Furthermore, this invention relates to the circuit board formation method and the circuit board which support the circuit board and which faced as a substrate using the glass substrate, and made detailed pattern formation of a photosensitive material possible, in addition raised thermolysis nature (thermal conductivity) in detail.

[0002]

[Description of the Prior Art] The densification of the mounting method represented by multilayering of a printed circuit board and the surface mount of electronic parts is advancing with a miniaturization and lightweight-izing of electronic equipment in recent years. Moreover, advanced features and a miniaturization of the electronic parts represented by IC, and advanced features and a miniaturization of the circuit board represented by the multi chip module (MCM) are also advancing.

[0003] Especially, thin-shape-izing and advanced features by the multilayer-interconnection method and the ** pitch wiring method are advanced about the circuit board. The circuit board for the high density assembly of the multilayer-interconnection method which carried out the laminating of the circuit (several micrometers in thickness) to the insulating layer (several micrometers in thickness) by turns attracts attention about thin-shape-izing of such the circuit board on smooth plates, such as metal substrates, such as ceramic substrates, such as aluminium nitride or an alumina (aluminum oxide), aluminum, and Cu, and a glass substrate.

[0004] In the manufacturing process of the above and the circuit board, since exposure processing of a photosensitive material by UV (ultraviolet rays) light is needed on the occasion of formation of a detailed veer hole or wiring, a substrate makes an indispensable condition a thing with small (dozens of micrometers or less) curvature from a viewpoint of an exposure gap on manufacture. The silicon wafer and the glass substrate are suitable and, as for the substrate used from such a viewpoint, the glass substrate is suitable from a still cost-viewpoint.

[0005] A circuit is formed in up to a glass substrate as follows. First, the photosensitive material (a photosensitive polyimide, photoresist, etc.) for forming an insulating layer on a glass substrate is applied. Next, although patterning is performed to a photosensitive material, in this case, carry out exposure processing by UV light through a glass mask, a photosensitive material is made to produce the difference of solubility, and an insulating layer is formed by carrying out patterning through a development process. subsequently, an insulating-layer top -- a circuit -- public funds -- the laminating of the group is carried out, patterning is performed, and a circuit is formed In addition, as for formation of an insulating layer and a circuit, a repeat line crack and a multilayered circuit board are formed.

[Problem(s) to be Solved by the Invention] However, by the above-mentioned conventional method, since the multiple echo of UV light arose between the upper surfaces and the inferior surfaces of tongue of a glass substrate, originally, UV light will be irradiated by the part by which UV light of a

photosensitive material should not be irradiated, as a result, it was hard coming to generate the solubility difference of a photosensitive material, and the problem that a detailed pattern could not be formed had arisen. Then, in the field of the hologram or the liquid crystal display, the multiple echo was prevented by forming UV light reflex prevention film in a glass-substrate inferior-surface-of-tongue side, and making UV light absorb on the glass-substrate inferior surface of tongue.

[0007] Moreover, the glass substrate had the problem that it was inferior to thermolysis nature (thermal conductivity) compared with other substrate material. The artificers of this invention found out the circuit board formation method and the circuit board which raised the thermolysis nature (thermal conductivity) of a glass substrate, and resulted in this invention while they prevented the multiple echo of UV light at the time of using a glass substrate in view of the above-mentioned technical problem as a result of wholeheartedly examination and enabled formation of a detailed pattern.

[Means for Solving the Problem] The process which forms the film which intercepts light on the surface of a glass substrate in this way according to this invention, the aforementioned film top -- a photopolymer -- applying -- patterning -- carrying out -- hardening **** -- the process which forms an insulating layer by things -- By carrying out the laminating of the metal for circuits, and carrying out patterning on an insulating layer, it consists of a process which forms a circuit and the circuit board formation method characterized by performing the process which forms the process which forms an insulating layer, and a circuit once [at least] in this order is offered.

[0009] Furthermore, according to this invention, the circuit board with which it comes to connect a thermally conductive good film and the electronic parts formed on the circuit board through a thermal veer is also offered. Especially the glass substrate used for this invention is not limited, but a well-known glass substrate can be used for it. Since adhesion (anchor effect) of this glass substrate with the film (an optical interception film is called below) with which that the front face is *****--ization-processed intercepts light improves, it is desirable. Moreover, in *****-ized processing, especially surface roughness has desirable Ra=10-50nm. In addition, when using the optical interception film which is excellent in the adhesion to a glass substrate, it is not necessary to perform *****-ized processing.

[0010] Subsequently, as for the above-mentioned glass substrate, it is desirable to give washing processing (degreasing) by making removal of the surface organic substance into a key objective using alkaline-water solutions, such as organic solvents, such as isopropyl alcohol (IPA), ethanol, a methanol, an acetone, a trichloroethylene, trichloroethane, and methylene chloride, phosphate, silicate, a sodium carbonate, and a sodium hydroxide. Moreover, if an ultrasonic wave is impressed at the time of washing processing, since washing efficiency will increase, it is still more desirable.

[0011] Then, an optical interception film is formed on the surface of a glass substrate. An optical interception film may be formed in one side of a glass substrate like drawing 2, and may carry out method formation of a wrap of the whole front face of a glass substrate like drawing 3. In addition, drawing 2 and 1 in three mean a glass substrate, and 2 means an optical interception film. Thus, the multiple echo of UV light at the time of patterning of a photopolymer can be prevented by forming an optical interception film on a glass substrate. Moreover, when an optical interception film is a thermally conductive good film, the thermolysis nature (thermal conductivity) of the circuit board can be raised. The quality of the material of the optical interception film which can be used for this invention will not be especially limited, if transparency of UV light can be intercepted. Especially an optical interception film has a metal to a desirable bird clapper here. As for an optical interception film, specifically, it is desirable that at least one metal which consists of Ti, Cr, aluminum, nickel, W, Mo, Ta, and Cu(s) is included. Furthermore, Fe, Au, etc. which can form the above-mentioned metal and an alloy can be included. Among this, Ti, aluminum, and especially Cr are desirable. Moreover, although the thickness of an optical interception film changes with the wavelength of UV light at the time of patterning, and kinds of optical interception film, it is desirable to be especially referred to as 3-10 micrometers at least 3 micrometers or more. In addition to multiple reflection prevention of UV light, by being referred to as 3 micrometers or more, thermolysis nature (thermal conductivity) can be raised more.

[0012] An optical interception film can be formed by the wet galvanizing methods, such as the vacuum producing-film methods, such as a chemical-vapor-deposition method (CVD), vacuum deposition, ion plating, and sputtering, electroplating, and non-electric-field plating. Here, in order to form an optical interception film in one side of a glass substrate, the vacuum producing-film method is desirable, and in order to form an optical interception film so that the whole front face of a glass substrate may be worn, the wet galvanizing method is desirable.

[0013] In order to form a multilayer interconnection on the glass substrate with which the optical interception film was formed as mentioned above, the laminating of the insulating layer and circuit which consist of a desired pattern is carried out. Photopolymers, such as polyimide resin, an epoxy resin, and a benz-cyclo-butene (BCB) resin, can be used for formation of an insulating layer here. Moreover, insulating layer thickness has desirable 10-20 micrometers. It is because it cannot respond [when smaller than 10 micrometers] to the request of thin-film-izing preferably while production time starts, when larger than 20 micrometers, since sufficient insulation is not acquired.

[0014] Especially the laminating method of an insulating layer is not limited, but each well-known method can be used for it, for example, it applies it using a spin coater, a roller coater, a dip coater, a spray, etc., is given to a pulley cure process, performs UV exposure processing through a glass mask, and can carry out the laminating of the insulating layer of a desired pattern by giving development and a full cure process. In this invention, since the optical interception film is formed on the glass substrate, it can prevent the field which UV light reflects multiply at the time of UV exposure processing, and originally should not be irradiated at it irradiating. Therefore, the diameter of the veer hole formed in an insulating layer can be made into about about 1 / 3 as compared with the case where there is no optical interception film.

[0015] the circuit where a circuit is well-known on the other hand -- public funds -- the laminating of the group can be carried out on the above-mentioned insulating layer, and it can form by patterning which used the photoresist etc. in addition, the veer hole currently formed in the insulating layer of this laminating process -- a circuit -- public funds -- it fills up with a group As a metal for circuits, aluminum, Cu, Au, Mo, W, etc. are mentioned, and these alloys can also be used, for example. Moreover, it is also possible to add Si etc. several%. Especially the metal for circuits has aluminum and desirable Cu. Although the thickness of a circuit is based also on the kind of insulating layer which is a ground, its 1-5 micrometers are desirable. Since it is influenced of an insulating layer and resistance of a circuit becomes high when smaller than 1 micrometer, when larger than 5 micrometers, for this reason, production time is not desirable preferably.

[0016] Especially the laminating method of the metal for circuits cannot be limited, but each well-known method can be used for it, for example, it can form it by the vacuum producing-film methods, such as CVD, vacuum deposition, ion plating, and sputtering, the wet galvanizing method, etc. After the laminating of the metal for circuits is carried out, a photoresist is applied for patterning, by forming a desired pattern, an etching mask is formed and it is given to etching processing. Especially the etching method is not limited but a well-known method can be used for it. For example, the wet etching which used etchant, such as a cupric chloride, a ferric chloride, a hydrogen peroxide/sulfuric acid, an ammonium persulfate, a sodium persulfate, and potassium persulfate, is mentioned.

[0017] Let them be the multilayer circuit which consists of an insulating layer and a circuit by forming two or more layers by turns, carrying out patterning of the above, a photopolymer, and the metal for circuits. moreover -- the best layer -- a circuit -- public funds -- a group -- exposing -- **** -- this circuit -- public funds -- electronic parts are laid and connected to a group As electronic parts which can be used for this invention, the electronic parts usually used for the circuit boards, such as IC chip, an LSI chip, a resistance chip, and a capacitor chip, are mentioned.

[0018] Moreover, in this invention, a thermally conductive good film and the electronic parts formed on the circuit board can offer the circuit board which it comes to connect through a thermal veer. It can miss by telling the heat generated in electronic parts through a thermal veer to a thermally conductive good film. For example, by preparing a thermal veer, although it is different with the quality of the material, configuration, and size of a thermal veer, heat can be reduced by about about 10 degrees C. this

thermal veer -- a circuit -- public funds -- the same quality of the material as a group to a bird clapper -- desirable -- an insulating layer and a circuit -- simultaneously, it can form [0019]

[Function] The process in which the circuit board formation method of this invention forms an optical interception film on the surface of a glass substrate, the aforementioned film top -- a photopolymer -- applying -- patterning -- carrying out -- hardening **** -- the process which forms an insulating layer by things -- Since it is characterized by performing the process which forms the process which consists of a process which forms a circuit by carrying out the laminating of the metal for circuits, and carrying out patterning on an insulating layer, and forms an insulating layer, and a circuit once [at least] in this order Formation of a detailed pattern is attained and the thermolysis nature (thermal conductivity) to a glass substrate is given further. This reason is as follows.

[0020] That is, thickness exists and a glass substrate makes UV light penetrate. Therefore, in the case of a glass substrate without an optical interception film, as shown in <u>drawing 9</u>, UV light reflects on the glass-substrate inferior surface of tongue. This reflected light is reflected multiply between the upper surfaces and the inferior surfaces of tongue of a glass substrate, and UV light is irradiated by the part of the photopolymer by which UV light originally should not be irradiated. The photoreaction of a photopolymer promoted by this UV light, the insulator layer was formed in the part which is not required, and formation of a detailed pattern was difficult. On the other hand, in this invention, since the optical interception film is formed in the glass substrate, as shown in <u>drawing 4</u>, the multiple echo of UV light does not happen but the formation of the detailed pattern for which it asks of it is attained. In addition, <u>drawing 4</u> and 4 in <u>drawing 9</u> mean a mask.

[0021] Moreover, an optical interception film is formed simple by forming an optical interception film by vacuum deposition, ion plating, sputtering, the chemical-vapor-deposition method (CVD), and the wet galvanizing method. Furthermore, shading of UV light and the thermolysis nature of a glass substrate improve by including at least one element with which an optical interception film consists of Ti, Cr, aluminum, nickel, W, Mo, Ta, and Cu.

[0022] Moreover, as compared with the circuit board which used the glass substrate without an optical interception film, the circuit board whose thermolysis nature (thermal conductivity) has a more detailed circuit and improved is offered. Furthermore, since it becomes easy for the heat which the circuit board generated with the electronic parts which a thermally conductive good film and the electronic parts formed on the circuit board are connected through a thermal veer, and are formed in the best layer of a bird clapper to get across to a metal membrane, the circuit board excellent in thermolysis nature (thermal conductivity) is offered.

[0023]

[Example]

Example drawing 1 is a cross section in the example of this invention, and forms a multilayer circuit on the glass substrate with which the optical interception film was formed, the inside of drawing, and 1 -- a glass substrate and 2 -- in a circuit and 7, a thermal veer and 8 show the veer hole and 9 shows [an optical interception film and 5 / an insulating layer and 6] IC chip, respectively Hereafter, drawing 5 (a) - drawing 8 (b) are used, and the circuit board formation method of <u>drawing 1</u> is explained still in detail. [0024] First, in order to raise the adhesion of an optical interception film and a glass substrate, the glass substrate 1 was flooded with the deep strong-base solution (NaOH), and the front face of a glass substrate 1 was ******-ized (surface roughness Ra=10-50nm). Washing processing was given using IPA which is an organic solvent by making to remove the organic substance of the front face of this glass substrate 1 (degreasing) into a key objective (drawing 5 (a) and drawing 5 (b)). [0025] Next, the optical interception film 2 which consists of aluminum was formed by 5 micrometers in thickness all over glass-substrate 1 by DC sputtering. Substrate temperature in the case of formation was made into the room temperature (<u>drawing 5</u> (c)). Subsequently, the photopolymer 3 which consists of a polyimide was applied on the optical interception film 2 (drawing 6 (a)). After having performed UV exposure processing through the glass mask 4 after carrying out pulley cure processing of this photopolymer 3, and passing through development and a full cure process, the insulating layer 5 with a

thickness of 5 micrometers which has a desired pattern was formed (<u>drawing 6</u> (b) and <u>drawing 7</u> (a)). At this time, the detailed thermal veer 7 (or veer hole 8) whose minimum diameter is 10 micrometers has been formed.

[0026] next, an insulating-layer 5 top -- sputtering -- a circuit with a thickness of 3 micrometers -- public funds -- the group (aluminum-Si alloy) 11 was formed (drawing 7 (b)) The photoresist was applied on the metal 11 for circuits, and the photoresist 10 was formed in the desired pattern through pulley cure processing, UV light exposure, a development, and full cure processing (drawing 7 (c) and drawing 8 (a)). Next, etching processing was given by having used the photoresist 10 as the etching mask, and the circuit 6 of a desired pattern was formed (drawing 8 (b)). The mixed acid solution which makes a phosphoric acid a principal component was used for etching processing as a solution for etching here. [0027] Then, the process of drawing 6 (a) - drawing 8 (b) was able to be repeated, and the circuit board which has the **** thermal veer 7 shown in drawing 1 was able to be obtained by laying the IC chip 9 and connecting as electronic parts. When the heat generated from the IC chip 9 through the thermal veer 7 of the obtained circuit board was told to the optical interception film 2 and made to radiate heat, temperature of the IC chip 9 was able to be made lower about 10 degrees C than the compensation temperature of a chip.

[0028] The circuit board was formed like the above-mentioned example except not forming the example light interception film 2 of comparison. The minimum diameter of the veer hole 8 of the obtained circuit board was 30 micrometers.

[0029]

[Effect of the Invention] The process at which the circuit board formation method of this invention forms an optical interception film in up to a glass substrate, the aforementioned film top -- a photopolymer -- applying -- patterning -- carrying out -- hardening **** -- the process which forms an insulating layer by things -- Since it is characterized by performing the process which forms the process which consists of a process which forms a circuit by carrying out the laminating of the metal for circuits, and carrying out patterning on an insulating layer, and forms an insulating layer, and a circuit once [at least] in this order Formation of a detailed pattern is attained and thermolysis nature (thermal conductivity) can be further given to a glass substrate.

[0030] Moreover, an optical interception film can be formed simple by forming an optical interception film by vacuum deposition, ion plating, sputtering, the chemical-vapor-deposition method (CVD), and the wet galvanizing method. Furthermore, improvement in shading of UV light and the thermolysis nature of a glass substrate is realizable by including at least one element with which an optical interception film consists of Ti, Cr, aluminum, nickel, W, Mo, Ta, and Cu.

[0031] Moreover, the circuit board which has a more detailed circuit can be offered as compared with the circuit board which used the glass substrate without an optical interception film. Furthermore, since it becomes easy for the heat generated with the electronic parts formed in the best layer since the circuit board had the structure where a thermally conductive good film and the electronic parts formed on the circuit board were connected through the thermal veer to get across to a thermally conductive good film, the circuit board excellent in thermolysis nature (thermal conductivity) can be offered.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the outline cross section of the circuit board of this invention.

[Drawing 2] In the circuit board formation method of this invention, it is an example of the glass substrate with which the optical interception film was covered.

[Drawing 3] In the circuit board formation method of this invention, it is an example of the glass substrate with which the optical interception film was covered.

[Drawing 4] It is the schematic diagram showing the behavior of UV light at the time of UV light irradiation in the circuit board formation method of this invention.

[Drawing 5] It is outline process drawing of the circuit board formation method of this invention.

[Drawing 6] It is outline process drawing of the circuit board formation method of this invention.

[Drawing 7] It is outline process drawing of the circuit board formation method of this invention.

[Drawing 8] It is outline process drawing of the circuit board formation method of this invention.

[Drawing 9] It is the schematic diagram showing the behavior of UV light at the time of UV light irradiation in the conventional circuit board formation method.

[Description of Notations]

- 1 Glass Substrate
- 2 Optical Interception Film
- 3 Photopolymer
- 4 Mask
- 5 Insulating Layer
- 6 Circuit
- 7 Thermal Veer
- 8 Veer Hole
- 9 IC Chip
- 10 Photoresist
- 11 Metal for Circuits

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 5]

(P)

[Drawing 7]

[Translation done.]