Lineaire Algebra en differentiaalvergelijkingen

College 5: Inwendigproduct op \mathbb{R}^n

J. Vermeer Les 5

Faculteit EWI

§1.2, 5.1, Het standaard inwendigproduct

Definitie: Als
$$\mathbf{u}\mathbf{v}\in\mathbb{R}^n$$
, $\mathsf{zeg}\;\mathbf{u}=\left[\begin{array}{c}u_1\\ \vdots\\ u_n\end{array}\right]$ en $\mathbf{v}=\left[\begin{array}{c}v_1\\ \vdots\\ v_n\end{array}\right]$, dan

wordt het inwendig product gedefinieerd door:

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \dots + u_n v_n = ! = \mathbf{u}^T \mathbf{v}$$

Pas op: $\mathbf{u} \cdot \mathbf{v}$ is een scalar!

Rekenregels:

Faculteit EWI

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

3.
$$(\mathbf{c}\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$$

4.
$$\mathbf{u} \cdot \mathbf{u} \ge 0$$
 en $\mathbf{u} \cdot \mathbf{u} = 0 \Rightarrow \mathbf{u} = \mathbf{0}$

Les 5

Lengte vector

Definitie: Als
$$\mathbf{u}=\left[\begin{array}{c} u_1 \\ \vdots \\ u_n \end{array}\right]\in\mathbb{R}^n$$
 dan wordt de lengte (of norm)

van u:

$$\|\mathbf{u}\| = \sqrt{u_1^2 + \dots + u_n^2} = ! = \sqrt{\mathbf{u} \cdot \mathbf{u}}$$

Rekenregels:

- 1. $\|\mathbf{u}\| = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$
- 2. $||c\mathbf{u}|| = |c| ||\mathbf{u}||$
- 3. $\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$ (Driehoeksongelijkheid)

Stelling. (Ongelijkheid Cauchy-Schwarz)

$$|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \|\mathbf{v}\|.$$

Les 5

Faculteit EWI

Ongelijkheid Cauchy-Schwarz

In \mathbb{R}^2 en \mathbb{R}^3 volgt Cauchy-Schwarz uit:

Stelling: In geldt: als θ de hoek tussen \mathbf{u} en \mathbf{v} dan:

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta.$$

Vanwege Cauchy-Schwarz kunnen we de hoek θ tussen twee vectoren in \mathbb{R}^n definiëren via:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Ook in \mathbb{R}^n geldt dus: $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$.

We zeggen ${\bf u}$ en ${\bf v}$ zijn orthogonaal of loodrecht als ${\bf u}\cdot{\bf v}=0.$

Notatie: $u \perp v$.

Een eenheidsvector is een vector met lengte 1.

ledere vector $\mathbf{u}
eq \mathbf{0}$ is te normeren op eenheidsvector. \Box

es 5

Orthogonaliteit I

Stelling: (Pythagoras) Als $\mathbf{u} \perp \mathbf{v} = 0$ dan

$$\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2.$$

Definitie: Stel a, b zijn vectoren in \mathbb{R}^n .

De loodrechte projectie van b op a (notatie: $proj_a(b)$ is dat scalaire veelvoud $c\mathbf{a}$ van a zodat $\mathbf{b} - c\mathbf{a} \perp \mathbf{a}$.

Stelling:
$$\operatorname{proj}_{\mathbf{a}}(\mathbf{b}) = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$$

Het getal $\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$ heet de Fourriercoëfficient.

Les 5

Faculteit EWI

TUDelft

Orthogonaliteit II

Definitie: De verzameling vectoren $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ in \mathbb{R}^n heet een orthogonale verzameling als $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ als $i \neq j$.

Als bovendien geldt: $\|\mathbf{v}_i\| = 1$ (alle i) dan heet de verzameling orthonormaal.

Stelling: Een verzameling orthogonale niet-nul vectoren in \mathbb{R}^n is lineair onafhankelijk.

Definitie: W een deelruimte van \mathbb{R}^n . De basis $B = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ van W heet een orthogonale basis als $\mathbf{b}_i \perp \mathbf{b}_j$ voor $i \neq j$. Als

bovendien $\|\mathbf{b}_i\| = 1$ (alle *i*) dan heet de basis orthonormaal.

Stelling: Als W een deelruimte van \mathbb{R}^n met orthogonale basis $B = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ dan geldt voor iedere $\mathbf{w} \in W$:

$$\mathbf{w} = \left(\frac{\mathbf{b}_1 \cdot \mathbf{w}}{\mathbf{b}_1 \cdot \mathbf{b}_1}\right) \mathbf{b}_1 + \dots + \left(\frac{\mathbf{b}_k \cdot \mathbf{w}}{\mathbf{b}_k \cdot \mathbf{b}_k}\right) \mathbf{b}_k$$

TUDelft

Orthogonale matrices I

Stelling: Als $A = [\mathbf{a}_1, \dots, \mathbf{a}_k]$ dan geldt:

$$A^{T}A = \begin{bmatrix} \mathbf{a}_{1} \cdot \mathbf{a}_{1} & \cdots & \mathbf{a}_{1} \cdot \mathbf{a}_{k} \\ \vdots & & \vdots \\ \mathbf{a}_{k} \cdot \mathbf{a}_{1} & \cdots & \mathbf{a}_{k} \cdot \mathbf{a}_{k} \end{bmatrix}$$

Gevolg: 1. De kolommen van A zijn orthogonaal als en slechts als A^TA een diagonaalmatrix is.

2. De kolommen van A zijn orthonormaal als en slechts als A^TA een eenheidsmatrix is.

Definitie Een matrix Q heet een orthogonale matrix als de matrix vierkant is met kolommen orthonormaal!

Voorbeeld: Een 3×3 matrix: ??

Les 5

Faculteit EWI

Orthogonale matrices II

Stelling: Laat Q een vierkante matrix zijn. Equivalent zijn:

- 1. Q is een orthogonale matrix.
- 2. Q heeft orthonormale kolommen.
- 3. $Q^TQ = I$
- 4. $Q^{-1} = Q^T$.
- $5. \ QQ^T = I$
- 6. *Q* heeft orthonormale rijen.
- 7. Q^T is een orthogonale matrix.

Stelling: Het product van twee orthogonale matrices is weer orthogonaal.

Les 5

Orthogonale matrices III

Stelling: Laat Q een orthogonale $n \times n$ matrix zijn. Dan geldt:

- 1. $||Q\mathbf{x}|| = ||\mathbf{x}||$, voor alle $\mathbf{x} \in \mathbb{R}^n$.
- 2. $Q\mathbf{x} \cdot Q\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$, voor alle $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Stelling: Laat Q een orthogonale $n \times n$ matrix zijn. Dan geldt:

- 1. $\det(Q) = \pm 1$.
- 2. Als λ een eigenwaarde van Q, dan $|\lambda|=1$.

Les 5

Faculteit EWI

TUDelft

§5.2 Orthogonale complement I

Definitie: Laat W een deelruimte zijn van \mathbb{R}^n en $\mathbf{x} \in \mathbb{R}^n$. We zeggen: x is orthogonaal met W, als $x \perp w$, voor alle $w \in W$.

Notatie: $\mathbf{x} \perp W$.

Definitie: Het orthogonaal complement van W is de verzameling

van alle $\mathbf{x} \in \mathbb{R}^n$ met $\mathbf{x} \perp W$.

Notatie: W^{\perp} .

Stelling: Laat W een deelruimte zijn van \mathbb{R}^n zijn.

- 1. W^{\perp} is een deelruimte van W.
- 2. $(W^{\perp})^{\perp} = W$.
- 3. $W \cap W^{\perp} = \{0\}.$
- 4. Als $W = \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_k\}$ dan $\mathbf{x} \in W^{\perp}$ als en slechts als $\mathbf{x} \perp \mathbf{a}_i$, voor $i = 1 \dots k$.

TUDelft

Orthogonale complement II

We willen het orthogonaal complement bepalen van een deelruimte W. Dat zal er van afhangen hoe W gegeven is als deelruimte.

 ${\cal W}$ kan gegeven zijn als kolomruimte van een matrix, of als nulruimte van een matrix.

Stelling: Laat A een $m \times n$ matrix zijn.

- 1. Als $W = \operatorname{Col}(A)$ dan $W^{\perp} = \operatorname{Nul}(A^T)$.
- 2. Als $W = \operatorname{Nul}(A)$ dan $W^{\perp} = \operatorname{Col}(A^T)$.

De 4 deelruimtes Col(A), Nul(A), $Col(A^T)$, $Nul(A^T)$ heten de vier elementaire deelruimtes geassocieerd met de matrix A. \Box

Les 5

Faculteit EWI

TUDelft

De decompositiestelling I

Stelling: Laat W een deelruimte zijn van \mathbb{R}^n en $\mathbf{x} \in \mathbb{R}^n$. Dan geldt: \mathbf{x} is te schrijven als $\mathbf{x} = \mathbf{w} + \mathbf{w}^\sharp$ met $\mathbf{w} \in W$ en $\mathbf{w}^\sharp \in W^\perp$. Bovendien geldt dat \mathbf{w} en \mathbf{w}^\sharp uniek zijn. Definitie:1. De vector \mathbf{w} het de orthogonale projectie van \mathbf{x} op W en wordt genoteerd met $\mathrm{proj}_W(\mathbf{x})$.

2.De vector \mathbf{w}^{\sharp} heet de component van \mathbf{x} loodrecht op W. Stelling: Als W een deelruimte van \mathbb{R}^n met orthogonale basis $B = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ dan geldt voor iedere $\mathbf{x} \in \mathbb{R}^n$:

$$\operatorname{proj}_{W}(\mathbf{x}) = \left(\frac{\mathbf{b}_{1} \cdot \mathbf{x}}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}}\right) \mathbf{b}_{1} + \dots + \left(\frac{\mathbf{b}_{k} \cdot \mathbf{x}}{\mathbf{b}_{k} \cdot \mathbf{b}_{k}}\right) \mathbf{b}_{k}$$

Les 5 12

Decompositiestelling II

M.b.v. de decompositiestelling kan men bewijzen: Stelling: Laat W een deelruimte zijn van \mathbb{R}^n . Dan geldt:

1.
$$(W^{\perp})^{\perp} = W$$
.

$$2. \dim(W) + \dim(W^{\perp}) = n.$$

We zullen de bewijzen niet bekijken.

Om te projecteren op een deelruimte W hebben we een orthogonale basis nodig op W. Probleem: hoe komen we daaraan? \Box

Les 5

Faculteit EWI

Aanbevolen opgaven

College 1	behandeld	aanbevolen opgaven
	§1.2, 5.1, 5.2	§1.2: 3,9,15,19,25,43
		§5.1: 3,9,15,17,19,21
		§5.2: 3,5,13

Les 5

