

PHENIX results on Levy analysis of three particle Bose-Einstein correlation functions

BROOKHAVEN NATIONAL LABORATORY

Attila Bagoly (Eötvös University, Budapest) for the PHENIX Collaboration

The PHENIX experiment at RHIC

• Charged pion ID from ~ 0.2 to 2 GeV/c

Introduction to three particle Bose-Einstein correlations

- Invariant momentum distributions: $N_1(p_i), N_2(p_1, p_2), N_3(p_1, p_2, p_3)$
- The definition of the correlation function:

$$C_n(p_1, \dots, p_n) = \frac{N_n(p_1, \dots, p_n)}{N_1(p_1) \cdots N_1(p_n)}$$
, for chaotic emission: $N_n(x_1, \dots, x_n) = \int \prod_{i=1}^n S(x_i, p_i) |\Psi_n(\{x_i\})|^2 d^4x_1 \dots d^4x_n$

- S(x,p) source function (usually assumed to be Gaussian Levy is more general)
- Ψ_n n-particle wave function interaction free case: symmetrized combination of plane waves $\to C_n^{(0)}$
- Coordinate transformation: $q_{ij} = p_i p_j \Longrightarrow C_3(q_{12}, q_{13}, q_{23})$ for various $p_T = |p_{T1} + p_{T2} + p_{T3}|/3$
- Longitudinal co-moving system of triplet: $k_{ij} = |q_{ij}^{LCMS3}|$
- Three dimensional correlation function: $C_3(k_{12}, k_{13}, k_{23})$

Final state interactions, pion production mechanisms

- Identical charged pions Coulomb interaction distort the simple picture
- Coulomb-corrected correlation: $C_3(k_{12}, k_{13}, k_{23}) = K_3(k_{12}, k_{13}, k_{23}) \cdot C_3^{(0)}(k_{12}, k_{13}, k_{23})$
- Coulomb-correction from Generalized Riverside [1, 2]: $K_3(k_{12}, k_{13}, k_{23}) \approx K_1(k_{12})K_1(k_{13})K_1(k_{23})$
- Resonance pions contribute to the full source: $S = S_{\text{core}} + S_{\text{halo}}$
- Reduce the measurable correlation function to $C_2(0) = 1 + \lambda_2$ with $\lambda_2 = f_c^2 = \left(\frac{\text{core}}{\text{core+halo}}\right)^2 [3, 4]$
- Non-chaotic emission also possible; coherent fraction: $p_c = \frac{\text{coherent}}{\text{coherent+incoherent}}$

The Levy-distribution and the three particle correlation strength

• Generalized Gaussian from anomalous diffusion: Levy-distribution, $\alpha=2$: Gauss, $\alpha=1$: Cauchy

$$\mathcal{L}(\alpha, R, r) = (2\pi)^{-3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$$

• Interaction free correlation function with Levy source:

$$C_3^{(0)}(k_{12}, k_{13}, k_{23}) = 1 + \ell_3 e^{-0.5(|2k_{12}R|^{\alpha} + |2k_{13}R|^{\alpha} + |2k_{23}R|^{\alpha})} + \ell_2 \left(e^{|2k_{12}R|^{\alpha}} + e^{|2k_{13}R|^{\alpha}} + e^{|2k_{23}R|^{\alpha}}\right)$$

- Three particle correlation strength: $\lambda_3 \equiv C_3(k_{12} = k_{13} = k_{23} = 0) 1 = \ell_3 + 3\ell_2$
- Core-Halo independent parameter: $\kappa_3 = (\lambda_3 3\lambda_2)/(2\lambda_2^{3/2})$, where $\lambda_2 \equiv C_2(k=0) 1$ (two particle corr. strength)

Correlation strength λ_3 is within core-halo + chaotic emission range of [0,5] for all m_T

Core-halo independent parameter κ_3 vs m_T : $\kappa_3 \neq 1$ is statistically significant

Partial coherence (p_c) vs fractional core (f_c)

- Simple theoretical model [5]: $\lambda_2(f_c, p_c)$, $\lambda_3(f_c, p_c)$
- Measured $\lambda_2^{\text{meas.}} \rightarrow$

 $\lambda_2^{\text{meas.}} = \lambda_2(f_c, p_c) \Longrightarrow f_c(p_c) \text{ (green lines)}$

• Measured $\lambda_3^{\text{meas.}} \rightarrow$

 $\lambda_3^{\text{meas.}} = \lambda_3(f_c, p_c) \Longrightarrow f_c(p_c) \text{ (blue lines)}$

• Example 2D plot at $m_T = 0.36 \text{ GeV}/c^2$:

Summary

- 3 pion B-E correlations with Levy-source are shown
- Good agreement with data
- λ_3 within Core-Halo + chaotic emission limits (0-5)
- λ_2 , λ_3 are consistent within 1σ region on (f_c, p_c) plots
- Core-Halo + chaotic emission $\kappa_3 = 1$
- Statistically significant deviation from $\kappa_3 = 1$
- Statistically significant exclusion region: analyzed at $m_T = 0.36 \text{ GeV}/c^2$
 - $-f_c < 0.82$ can be excluded
 - $-p_c > 0.5$ can be excluded
 - Small $(p_c < 0.5)$ partial coherence cannot be excluded
- Further m_T regions will be investigated
- m_T dependent exclusion limits on f_c, p_c to be analyzed

References

- [1] M. M. Aggarwal et al. (WA98 Collaboration) Phys. Rev. Lett. 85 2895 (2000)
- [2] J. Adams et al. (STAR Collaboration) Phys. Rev. Lett. 91 262301 (2003)
- [3] J. Bolz et al., Phys.Rev. D47 (1993) 3860
- [4] T. Csörgő et al., Z.Phys. C71 (1996) 491
- [5] T. Csörgő, Heavy Ion Physics 15 (2002) 1

A.B. was supported by the ÚNKP-16-2 New National Excellence program of the Ministry of Human Capacities