

JLX19264G-925-PN 使用说明书

是 录

序号	内容标题	页码
1	概述	2
2	特点	2
3	外形及接口引脚功能	3~4
4	基本原理	5
5	技术参数	5~6
6	时序特性	6~10
7	指令功能及硬件接口与编程案例	11~末
		页

电话: 0755-29784961 Http://www.jlxlcd.cn 1

1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX19264G-925 型液晶模块由于使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX19264G-925 可以显示 192 列*64 行点阵单色图片,或显示 12 个/行*4 行 16*16 点阵的汉字,或显示 24 个/行*8 行 5*8 点阵的英文、数字、符号。

2. JLX19264G-925 图像型点阵液晶模块的特性

- 2.1结构轻、薄、带背光、PCB。
- 2.2 IC 采用 ST7525, 功能强大, 稳定性好
- 2.3 功耗低: 当电压为 3.3V 时,功耗低:不带背光 1.32mW(3.3V*0.4mA),带背光不大于 333mW(3.3V*100.4mA):
- 2.4 显示内容:
 - (1) 192*64 点阵单色图片,或其它小于 192*64 点阵的单色图片:
 - (2) 可选用 16*16 点阵或其他点阵的图片来自编汉字,按照 16*16 点阵汉字来计算可显示 12 字*4 行:
 - (3) 按照 8*16 点阵汉字来计算可显示 24 字*4 行;
 - (4) 按照 5*8 点阵汉字来计算可显示 32 字*8 行:
- 2.5 指令功能强:可软件调对比度、正显/反显转换、行列扫描方向可改(可旋转 180 度使用)。
- 2.6接口简单方便:并行、串行、IIC接口;
- 2.7 工作温度宽:-20℃ +70℃;
- 2.8 储存温度宽:-30℃ +80℃:

3. 外形尺寸及接口引脚功能

图 1. 外形尺寸

模块的接口引脚功能:

引线号	符号	名 称	功 能						
1	NC	NC	空脚						
2	NC	NC	空脚						
3	NC	NC	空脚						
4	NC	NC	空脚						
5	LEDA	背光电源	供电电源正极(同 VDD 电压)						
6	VSS	接地	OV						
7	VDD	电路电源	供电电源正极接(5V或3.3V购买时须选择3.3V还是5.0供电)						
8	AO (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为 "CD") IIC 接口时:接 VDD						
9	RST	复位	低电平复位,复位完成后,回到高电平,液晶模块开始工作						
10	CS	片选	低电平片选						
			IIC 接口时:接 VDD						
11	D7	I/0	并行接口时: 数据总线 DB7						
			IIC/串行接口时:接 VDD						
12	D6	I/0	并行接口时: 数据总线 DB6						
			IIC/串行接口时:接 VDD						
13	D5	I/0	并行接口时:数据总线 DB5 IIC/串行接口时:接 VDD						
14	D4	I/0	并行接口时:数据总线 DB4 IIC/串行接口时:为 SCK 串行时钟(D0 和 D4 短接)						
15	D3	1/0	并行接口时: 数据总线 DB3 IIC/串行接口时: 为 SDA 串行数据 (D1、D2、D3 短接)						
16	D2	I/0	并行接口时: 数据总线 DB2						
		2, 0	IIC/串行接口时: 为 SDA 串行数据 (D1、D2、D3 短接)						
17	D1	I/0	并行接口时: 数据总线 DB1						
			IIC/串行接口时:为 SDA 串行数据(D1、D2、D3 短接)						
18	D0	I/0	并行接口时: 数据总线 DB0						
			IIC/串行接口时:为 SCK 串行时钟(DO和 D4 短接)						
19	E(/RD)	6800 时序:使能	并行接口时并且选择 6800 时序时: 使能信号, 高电平有效.						
		8080 时序:读	并行接口时并且选择 8080 时序时: 读数据, 低电平有效.						
			IIC/串行接口时:接 VDD						
20	R/W (/WR)	6800 时序:读/写	并行接口时并且选择 6800 时序时: H:读数据 L:写数据						
	i	İ	1						
		8080 时序:写	并行接口时并且选择 8080 时序时,写数据, 低电平有效.						

表 1: 模块的接口引脚功能

4. 基本原理

4.1 液晶屏(LCD)

在 LCD 上排列着 192×64 点阵, 192 个列信号与驱动 IC 相连, 64 个行信号也与驱动 IC 相连, IC 邦定在 LCD 玻璃上(这种加工工艺叫 COG).

4.2 工作电图:

电路框图

图 2: JLX19264G-925 图像点阵型液晶模块的电路框图

4. 2 背光参数

该型号液晶模块带 LED 背光源。它的性能参数如下:

背光板可选择白色。

正常工作电流为: 48~120mA (LED 灯数共 6 颗);

工作电压: 3.0V

5. 技术参数

5.1 最大极限参数(超过极限参数则会损坏液晶模块)

名称	符号		标准值					
		最小	典型	最大				
电路电源	VDD - VSS	-0.3		3.6	V			
工作温度		-20		+70	$^{\circ}\mathbb{C}$			
储存温度		-30		+80	$^{\circ}$ C			

表 2: 最大极限参数

5.2 直流 (DC) 参数

11/10 (1-1) D JA						
名 称	符号	测试条件		单位		
			MIN	TYPE	MAX	
工作电压	VDD		2.4	3. 3	3. 6	V
背光工作电压	VLED		2.9	3. 0	3. 1	V
输入高电平	VIH	_	0.8xVDD		VDD	V

输入低电平	VIO	_	VSS		0.6	V
输出高电平	VOH	IOH = 0.2 mA	0.8xVDD		VDD	V
输出低电平	V00	100 = 1.2 mA	VSS		0.2xVDD	V
模块工作电流	IDD	VDD = 3.0V	_		0.3	mA
背光工作电流	ILED	VLED=3.0V	48	90	120	mA

表 3: 直流 (DC) 参数

6. 读写时序特性

6.1 串行接口:

从 CPU 写到 ST7525 (Writing Data from CPU to ST7525)

图 3. 从 CPU 写到 ST7525 (Writing Data from CPU to ST7525)

6.2 串行接口: 时序要求 (AC 参数):

写数据到 ST7525 的时序要求:

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		110	-	
SCL "H" pulse width	SCL	tSHW		40	-	
SCL "L" pulse width		tSLW		40	-	
Address setup time	A0	tSAS		10	-	
Address hold time	Au	tSAH		10	-	ns
Data setup time	SDA	tSDS		20	-	
Data hold time	SDA	tSDH		10	-	
CS0 setup time	CS0	tCSS		20	-	
CS0 hold time	CS0	tCSH		10	-]

表 4

6.3 并行接口: (8080)

从 CPU 写到 ST7525(Writing Data from CPU to ST7525)

图 4. 从 CPU 写到 ST7525 (Writing Data from CPU to ST7525)

6.4 并行接口: 时序要求(AC 参数):

写数据到 ST7525 的时序要求: (8080 系列 MPU)

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time	A0	tAW8		5	-	
Address hold time	Au	tAH8		10	-	
System write cycle time		tCYC8		190	-	
Write L pulse width	WR	tCCLW		80	-	
Write H pulse width		tCCHW		80	-	ns
Read L pulse width	/DD	tCCLR		100	-	
Read H pulse width	/RD	tCCHR		100	-	
Data setup time (Write)	D[7:0]	tDS8		60	-	
Write Data hold time (Write)	D[7:0]	tDH8		5	-	

表 5

6.5 并行接口: (6800)

从 CPU 写到 ST7525 (Writing Data from CPU to ST7525)

图 5. 从 CPU 写到 ST7525 (Writing Data from CPU to ST7525)

6.6 并行接口: 时序要求(AC 参数):

写数据到 ST7525 的时序要求: (6800 系列 MPU)

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Control setup time	A0	tAW6		5	-	
Control hold time	R/W	tAH6		10	-	
System cycle time		tCYC6		190	-	
Enable H pulse width (WRITE)		tEWHW		80	-	
Enable L pulse width (WRITE)	Е	tEWLW		100	-	ns
Enable H pulse width (READ)		tEWHR		100	-	
Enable L pulse width (READ)		tEWLR		100	-	
Write data setup time	D[7:0]	tDS6		60	-	
Write data hold time	D[7:0]	tDH6		5	-	

表 6

6.7 IIC接口:

从 CPU 写到 ST7525 (Writing Data from CPU to ST7525)

图 6. 从 CPU 写到 ST7525 (Writing Data from CPU to ST7525)

6.8 IIC 接口: 时序要求 (AC 参数):

写数据到 ST7525 的时序要求:

lts	Ciamal	Compleal	Condition	Ratir	Unit	
Item	Signal	Symbol	Condition	Min.	Max.	Unit
SCL clock frequency		fSCL		-	400	kHZ
SCL clock low period	SCL	tLOW		1.3	-	
SCL clock high period		tHIGH		0.6	-	
Data set-up time		tSU;Data		0.1	-	
Data hold time		tHD;Data		0	0.9]
Setup time for a repeated START condition	SDA	tSU;STA		0.6	-	us
Start condition hold time	SDA	tHD;STA		0.6	-	
Setup time for STOP condition		tSU;STO		0.6	-	
Bus free time between a STOP and START		tBUF		0.1	-	1
Signal rise time		tr		20+0.1Cb	300	-
Signal fall time	SCL	tf		20+0.1Cb	300	ns
Capacitive load represented by each bus line	SDA	Cb		-	400	pF
Tolerable spike width on bus		tSW		-	50	ns

表 7

6.9 电源启动后复位的时序要求 (RESET CONDITION AFTER POWER UP):

图 7: 电源启动后复位的时序

表 8

Item	Symbol	Condition	Min.	Max.	Unit
Reset time	tR		-	1	me
Reset "L" pulse width	tRW		1	-	ms

7. 指令功能:

7.1 指令表

下表是 "ST7525" IC 支持的指令:

CD:0:指令; 1:数据 W/R: 0:写; 1:读 D7~D0:有用的数据位; -: 不必理会的 表 9.

	COMMAND TABLE											
INSTRUCTION	A0	R/W			C	OMMA	ND BYT	E			DESCRIPTION	
morksorisk	((RWR)	D7	D6	D 5	D4	D3	D2	D1	D0	DESORII HOR	
Write Data	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data to DDRAM	
Read Data	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from DDRAM Only for parallel interface and I ² C	
Read Status Byte	0	1	ID0	MX	MY	WA	DE	0	0	0	Read status byte	
(parallel interface)	,	'	0	0	0	0	0	0	ID2	ID1	Only for parallel interface	
Set Column Address LSB	0	0	0	0	0	0	CA3	CA2	CA1	CA0	Set column address of RAM	
Set Column Address MSB	0	0	0	0	0	1	CA7	CA6	CA5	CA4		
Set Scroll Line	0	0	0	1	SL5	SL4	SL3	SL2	SL1	SL0	Specify line address for the 1 st display line of DDRAM (vertical scrolling)	
Set Page Address	0	0	1	0	1	1	PA3	PA2	PA1	PA0	Set page address of RAM	
Set Contrast	0	0	1	0	0	0	0	0	0	1	2-byte instruction. Set Vop	
			EV7	EV6	EV5	EV4	EV3	EV2	EV1	EV0	voltage	
Set Partial Screen Mode	0	0	1	0	0	0	0	1	0	PS	PS=1: Enable partial mode	
Set RAM Address Control	0	0	1	0	0	0	1	AC2	AC1	AC0	Set column and page address behavior	
Set Frame Rate	0	0	1	0	1	0	0	0	FR1	FR0	Set frame frequency	
Set All Pixel ON	0	0	1	0	1	0	0	1	0	AP	Set all display segments on	
Set Inverse Display	0	0	1	0	1	0	0	1	1	IN∀	Set inverse display	
Set Display Enable	0	0	1	0	1	0	1	1	1	PD	PD=0: Chip is in power down mode	
Scan Direction	0	0	1	1	0	0	0	MY	MX	0	Set COM and SEG scan direction	
Software Reset	0	0	1	1	1	0	0	0	1	0	Set software reset	
NOP	0	0	1	1	1	0	0	0	1	1	No operation	
Set Bias	0	0	1	1	1	0	1	0	BR1	BR0	Set internal bias circuit	
	_	_	1	1	1	1	0	0	0	1	2-byte instruction. Set	
Set COM End	0	0	-		CEN5	CEN4	CEN3	CEN2	CEN1	CEN0	display duty	
			1	1	1	1	0	0	1	0	Set partial start for partial	
Partial Start Address	0	0			DST5	DST 4	DST 3	DST 2			display screen	
			1	1	1	1	0	0	1	1	Set partial end for partial	
Partial End Address	0	0	-		DEN5	DEN4	DEN3	DEN2		DEN0	display screen	
	_		1	1	1	1	0	0	0	0	Set test command table	
Test Control	0	0							H1	H0		

Serial Read Command Table (Enabled only in 4 line SPI)												
INSTRUCTION	A0	R/W	COMMAND BYTE								DESCRIPTION	
INSTRUCTION AU		(RWR)	D7	D6	D 5	D4	D3	D2	D1	D0	DESCRIPTION	
	0	0	1	1	1	1	1	1	1	0		
Read Status Byte	0	1	ID0	MX	MY	WA	DE	0	0	0	Read status byte	
	0	'	0	0	0	0	0	0	ID2	ID1	1	
Read Data	0	0	1	1	1	1	1	1	1	1	Read data from DDRAM	
Reau Data	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Troug data from DDIVAWI	

7.3 点阵与 DD RAM(显示数据存储器)地址的对应关系

请留意页的定义: PAGE, 与平时所讲的"页"并不是一个意思, 在此表示 8 个行就是一个"页", 一个 192*64 点阵的屏分为 8 个"页", 从第 0 "页"到第 7 "页"。

DB7--DB0 的排列方向:数据是从下向上排列的。最低位 D0 是在最上面,最高位 D7 是在最下面。每一位(bit)数据对应一个点阵,通常"1"代表点亮该点阵,"0"代表关掉该点阵.如下图所示:

D0	0	1	1	1	 0
D1	1	0	0	0	0
D2	0	0	0	0	0
D3	0	1	1	1	 0
D4	1	0	0	0	 0
-					

Display data RAM (**显示数据存储器**)

Liquid crystal display (液晶屏)

7.4 初始化方法

用户所编的显示程序, 开始必须进行初始化, 否则模块无法正常显示, 过程请参考程序

点亮液晶模块的步骤

正确地接线

根据说明书正确地与开发板连接,连接的线包括:液晶模块电源线、背光电源线、10端口(接口) 10端口包括:并口时:CS、RESET 、 RW、E、RS、DO--D7, 串口时: CS、SCLK、SDA、RESET、RS

背光给合适的直流电可以点亮,但液晶 屏里面没有程序,只给电不能让液晶屏 显示(我们通常说"点亮"),程序须 另外编写,并烧录(下载)到单片机里 液晶模块才能工作。

7.5 程序举例:

液晶模块与 MCU(以 8051 系列单片机为例)接口图如下:

图 8. 串行接口

7.5.1 程序

```
JLX19264G-925-PN-S
//
    串行接口
    驱动 IC 是:ST7525
#include <reg52.h>
#include <intrins.h>
#include 〈Chinese code. h〉 //此文件购买后联系销售人员索要
sbit cs1=P1^1:
                //对应 LCD 的 CS
sbit reset=P1^0; //对应LCD的RST
sbit rs=P3^0;
                //对应 LCD 的 RS
sbit sclk=P3<sup>1</sup>; //对应LCD的SCK
sbit sid=P3^2;
               //对应 LCD 的 SDA
sbit key=P2^0;
//延时1
void delay(int i)
int j, k;
 for (j=0; j < i; j++)
 for (k=0; k<110; k++);
//写指令到 LCD 模块
void transfer_command(int datal)
    char i;
    cs1=0;
    rs=0;
    for (i=0; i<8; i++)
       sc1k=0;
       if (data1&0x80) sid=1;
       else sid=0;
       sc1k=1;
       data1=data1<<=1;</pre>
    }
    cs1=1;
//写数据到 LCD 模块
void transfer_data(int data1)
```

```
char i;
   cs1=0:
   rs=1;
   for (i=0; i<8; i++)
       sc1k=0;
       if(data1&0x80) sid=1;
       else sid=0;
       sc1k=1:
       data1=data1<<=1;</pre>
   cs1=1;
void waitkey()
repeat:
   if (key==1) goto repeat;
   else delay(2500);
//LCD 模块初始化
void initial lcd()
                  //低电平复位
   reset=0;
   delay(100);
   reset=1;
                     //复位完毕
   delay(200);
   transfer_command(0xe2); //软复位
   delay(200);
   transfer_command(0x2f); //打开内部升压
   delay(200);
   transfer_command(0xa0); //
   transfer_command(0x81); //微调对比度
   transfer_command(0x79); //微调对比度的值,可设置范围 0x00~0xFF
   transfer_command(0xeb); //1/9偏压比(bias)
   transfer command(0xc4); //行列扫描顺序: 从上到下
   transfer_command(0xaf); //开显示
void lcd_address(uchar page, uchar column)
   column=column-1;
                                           //我们平常所说的第 1 列,在 LCD 驱动 IC 里是第 0 列。
所以在这里减去1.
   page=page-1;
                                        //设置页地址。每页是8行。一个画面的64行被分成8个页。
   transfer_command(0xb0+page);
```

```
我们平常所说的第1页,在 LCD 驱动 IC 里是第0页,所以在这里减去1
   transfer command(((column>>4)&0x0f)+0x10); //设置列地址的高 4 位
   transfer_command(column&0x0f);
                                            //设置列地址的低 4 位
//全屏清屏
void clear screen()
   unsigned char i, j;
   for (i=0; i<8; i++)
       lcd address (1+i, 1);
       for (j=0; j<192; j++)
           transfer_data(0x00);
void display_graphic_192x64(uchar *dp)
   uchar i, j;
   for (i=0; i<8; i++)
       lcd address(i+1, 1);
       for (j=0; j<192; j++)
           transfer_data(*dp);
           dp++;
//显示 32x32 点阵图像、汉字、生僻字或 32x32 点阵的其他图标
void display_graphic_32x32(uchar page, uchar column, uchar *dp)
   uchar i, j;
   for (j=0; j<4; j++)
       lcd_address(page+j, column);
       for (i=0; i<32; i++)
           transfer_data(*dp); //写数据到LCD,每写完一个8位的数据后列地址自动加1
           dp++;
       }
```

```
//显示 16x16 点阵图像、汉字、生僻字或 16x16 点阵的其他图标
void display_graphic_16x16(uchar page, uchar column, uchar *dp)
    uchar i, j;
    for (j=0; j<2; j++)
       lcd_address(page+j, column);
        for (i=0; i<16; i++)
           transfer_data(*dp); //写数据到LCD, 每写完一个8位的数据后列地址自动加1
           dp++;
//写入一组 16x16 点阵的汉字字符串(字符串表格中需含有此字)
//括号里的参数: (页,列,汉字字符串)
void display_string_16x16(uchar page, uchar column, uchar reverse, uchar *text)
    uchar i, j, k, data1;
    uint address;
    j = 0;
    while (\text{text}[j] != ' \setminus 0')
       i=0;
       address=1;
       while(Chinese_text_16x16[i]> 0x7e )
           if(Chinese\_text\_16x16[i] == text[j])
               if(Chinese\_text\_16x16[i+1] == text[j+1])
                   address = i*16;
                   break;
           i +=2;
        if (column>191)
           column = 0;
           page +=2;
        if(address !=1)
```

```
for (k=0; k<2; k++)
                lcd_address(page+k, column);
                for (i=0; i<16; i++)
                    if(reverse==1) data1=~Chinese_code_16x16[address];
                    else data1=Chinese_code_16x16[address];
                    transfer_data(data1);
                    address++;
                }
            j +=2;
        }
        else
            for (k=0; k<2; k++)
                lcd_address(page+k, column);
                for (i=0; i<16; i++)
                {
                    if(reverse==0) transfer_data(0x00);
                    else transfer_data(0xff);
                }
            j++;
        column += 16;
//显示 8x16 点阵图像、ASCII,或 8x16 点阵的自造字符、其他图标
void display_graphic_8x16(uchar page, uchar column, uchar *dp)
    uchar i, j;
    for (j=0; j<2; j++)
        lcd_address(page+j, column);
        for (i=0; i<8; i++)
                                                //写数据到LCD,每写完一个8位的数据后列地址自动加1
            transfer_data(*dp);
            dp++;
```

```
//显示 8x16 的点阵的字符串,括号里的参数分别为(页,列,字符串指针)
void display_string_8x16_2(uchar page, uchar column, uchar reverse, uchar *text)
    uchar datal;
    uint i=0, j, k, n;
    while(text[i]>0x00)
        if((text[i]>=0x20)\&\&(text[i]<=0x7e))
            j=text[i]-0x20;
            for (n=0; n<2; n++)
                lcd_address(page+n, column);
                for (k=0; k<8; k++)
                     if(reverse==1) data1=~ascii_table_8x16[j][k+8*n];
                     else datal=ascii_table_8x16[j][k+8*n];
                     transfer_data(data1);
                if(reverse==0) transfer_data(0x00);
                         transfer_data(0xff);
                else
            i++;
            column+=8;
        }
        else
        i++:
        if (column>127)
            column=0;
            page+=2;
void display_string_8x16(uint page, uint column, uchar *text)
    uint i=0, j, k, n;
    while (\text{text[i]} > 0 \times 00)
        if((text[i] \ge 0x20) \&\&(text[i] \le 0x7e))
            j=text[i]-0x20;
            for (n=0; n<2; n++)
```

```
lcd_address(page+n, column);
                for (k=0; k<8; k++)
                    transfer_data(ascii_table_8x16[j][k+8*n]);//显示 5x7 的 ASCII 字到 LCD 上, y 为页
地址,x为列地址,最后为数据
            i++:
            column += 8;
        else
        i++;
//显示一串 5x8 点阵的字符串
//括号里的参数分别为(页,列,是否反显,数据指针)
void display_string_5x8(uint page, uint column, uchar reverse, uchar *text)
    uchar i=0, j, k, data1;
    while(text[i]>0x00)
        if((text[i]>=0x20)&&(text[i]<=0x7e))
            j=text[i]-0x20;
            lcd_address(page, column);
            for (k=0; k<5; k++)
                if(reverse==1) data1=~ascii_table_5x8[j][k];
                        data1=ascii_table_5x8[j][k];
                transfer_data(data1);
            if(reverse==1) transfer_data(0xff);
                    transfer_data(0x00);
            else
            i++;
            column += 6;
        }
        else
        i++;
void display_string_5x8_1(uint page, uint column, uchar *text)
    uint i=0, j, k;
    while (\text{text[i]} > 0 \times 00)
```

```
if((text[i])=0x20)&&(text[i]<0x7e))
            j=text[i]-0x20;
            lcd address(page, column);
            for (k=0; k<5; k++)
                transfer_data(ascii_table_5x8[j][k]);//显示 5x7 的 ASCII 字到 LCD 上, y 为页地址, x 为
列地址,最后为数据
            i++;
            column += 6;
        }
        else
        i++;
void main(void)
    while(1)
        initial_lcd();
        clear screen();
                                                     //clear all dots
        display_graphic_192x64(bmp2);
        waitkey();
        clear screen();
                                                     //clear all dots
        display_graphic_192x64(bmp1);
        waitkey();
        clear_screen();
        display string 5x8(1, 1, 1, "
                                               MENU
                                                                         //显示 5x8 点阵的字符串,括
号里的参数分别为(页,列,是否反显,数据指针)
        display string 5x8(3, 1, 0, "
                                      Select>>>>");
        display_string_5x8(3, 100, 1, "1. Graphic
        display_string_5x8(4, 100, 0, "2. Chinese
                                                      ");
        display_string_5x8(5, 100, 0, "3. Movie
                                                      ");
        display_string_5x8(6, 100, 0, "4. Contrast
                                                      ");
        display string 5x8(7, 100, 0, "5. Mirror
                                                      ");
                                                                       "):
        display_string_5x8(8, 1, 1, "
                                    PRE
                                             USER
                                                      DEL
                                                               NEW
        display_string_5x8(8,59,0,"");
        display_string_5x8(8,94,0,"");
        display string 5x8(8, 97+48, 0, "");
        waitkey();
    clear_screen();
        display_string_8x16_2(1, 1, 1, "--");
        display_string_16x16(1, 17, 1, "→粉尘测试
                                                      ");
        display_string_16x16(3, 33, 0, "一般测试");
```

```
display_string_16x16(5, 33, 0, "校准模式");
       display string 16x16(7, 33, 0, "充电模式 ↓");
      waitkey();
       clear screen();
       display graphic 32x32(1, 49, cheng1);
       display_graphic_32x32(1,89,gon);
       display_graphic_16x16(6, 1, zhuang1);
                                             //在第5页,第1列显示单个汉字"状"
                                             //在第5页,第17列显示单个汉字"态"
       display_graphic_16x16(6, (1+16), tail);
//
       display graphic 8x16(6, (1+16*2), mao hao);
                                             //在第5页,第25列显示单个字符":"
       display graphic 16x16(6, (1+16*2+8), shi1);
                                             //在第5页,第41列显示单个汉字"使"
       display graphic 16x16(6, (1+16*3+8), yong1);
                                             //在第5页,第49列显示单个汉字"用"
       display graphic 8x16(6, (89), num0);
                                             //在第5页,第89列显示单个数字"0"
       display_graphic_8x16(6, (89+8*1), num0);
                                             //在第 5 页, 第 97 列显示单个数字"0"
                                             //在第5页,第105列显示单个字符":"
       display graphic 8x16(6, (89+8*2), mao hao);
       display_graphic_8x16(6, (89+8*3), num0);
                                             //在第5页,第113列显示单个数字"0"
       display graphic 8x16(6, (89+8*4), num0);
                                             //在第5页,第121列显示单个数字"0"
       waitkey();
       clear screen();
                                                 //clear all dots
       display_string_8x16(1, 1, "(<\"0123456abt^`!@#$%^\">)");//在第1页,第1列显示字符串
       display_string_8x16(3, 1, "{[(<\" '&* |\\@#_-+=' \">)]}");//在第*页,第*列显示字符串
       display string 5x8 1(6, 1, "[ABCDEFGHIJKLMNOPQRSTUVWXYZabcd]");
       display string 5x8 1(7,1,"(abcdefghijklmnopgrstuvwxyzabcd)");
       display_string_5x8_1(8, 1, "{[(<\" '&*|\@abcde012#_-+=' \">)]}");
       waitkey();
       clear screen();
       display_string_16x16(1,1,1,"欢迎光临晶联讯");
       display_string_16x16(3, 1, 0, " 欢迎光临晶联讯");
       display_string_16x16(5, 1, 0, "
                                  欢迎光临晶联讯");
       display_string_16x16(7, 1, 0, "
                                   欢迎光临晶联讯");
      waitkey();
```

cs1=0;


```
图 9. 并行接口
               并行程序与串行只是接口定义、写数据和命令不一样,其它都一样
并行程序:
#include <reg52.h>
#include <intrins.h>
sbit cs1=P3^2:
                  //对应 LCD 的 CS
sbit reset=P3<sup>1</sup>;
                  //对应 LCD 的 RST
sbit rs=P3<sup>0</sup>;
                  //对应 LCD 的 RS
sbit e=P3<sup>5</sup>;
                  //对应 LCD 的 RD (E)
sbit wr=P3<sup>4</sup>;
                  //对应 LCD 的 WR
sbit key=P2^0;
                  /*按键接口, P2.0 口与 GND 之间接一个按键*/
//写指令到 LCD 模块
void transfer_command(int data1)
   cs1=0;
   rs=0;
   wr=0;
   e=0;
   P1=data1;
   e=1;
   e=0;
   P1=0x00;
   cs1=1;
//写数据到 LCD 模块
void transfer_data(int data1)
```

```
rs=1;
wr=0;
e=0;
P1=data1;
e=1;
e=0;
P1=0x00;
cs1=1;
```


图 10. IIC 接口 IIC 程序与串、并行接口定义、写数据和命令不一样,取模代码是一样的

IIC 程序:

```
// 液晶演示程序 JLX19264G-925, IIC 接口!
// 驱动 IC 是:ST7525

#include <reg52.h>
#include <intrins.h>

sbit reset=P3^2; //对应 LCD 的 RST
sbit scl=P3^1; //对应 LCD 的 SCK(D0)
sbit sda=P3^0; //对应 LCD 的 SDA(D1)
sbit key=P2^0;

void delay_us(int i);

void delay(int i);
```

JLX19264G-925-PN

```
int j, k;
 for(j=0; j \le i; j++)
 for (k=0; k<110; k++);
//延时 2
void delay_us(int i)
 int j,k;
 for(j=0; j < i; j++)
 for (k=0; k<10; k++);
void waitkey()
repeat:
     if(key==1)goto repeat;
     else delay(400);
void transfer(int datal)
     int i;
     for (i=0; i<8; i++)
         sc1=0;
          if (data1&0x80) sda=1;
         else sda=0;
         sc1=1;
          sc1=0;
         data1=data1<<1;
          sda=0;
          scl=1;
          sc1=0;
void start_flag()
                   /*START FLAG*/
     scl=1;
     sda=1;
                   /*START FLAG*/
     sda=0;
                   /*START FLAG*/
void stop_flag()
     scl=1;
                   /*STOP FLAG*/
                   /*STOP FLAG*/
     sda=0;
     sda=1;
                   /*STOP FLAG*/
//写命令到液晶显示模块
void transfer_command(uchar com)
     start_flag();
     transfer(0x7c);
     transfer(com);
     stop_flag();
```

```
IIIX ®
```

```
//写数据到液晶显示模块
void transfer_data(uchar dat)
{
    start_flag();
    transfer(0x7e);
    transfer(dat);
    stop_flag();
```

