Stabilizing Grand Cooperation of Machine Scheduling Game via Setup Cost Pricing

Lindong Liu

School of Management; International Institute of Finance
University of Science and Technology of China

Co-authored with Zikang Li (PG Student, USTC)

NWPU-Online, July, 2020

Outline

- Preliminaries
- Motivation and Illustrative Example
- Models and Analyses
- Algorithms and Computations
- Extension and Generalization
- Conclusion

PRELIMINARIES

Cooperative Game

A **cooperative game** is defined by a pair (V, C):

- A set $V = \{1, 2, ..., v\}$ of players, grand colaition;
- A characteristic function C(S) = the minimum total cost achieved by the cooperation of members in coalition $S \in \mathbb{S} = 2^V \setminus \{\emptyset\}$.

The game requires:

• A cost allocation $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_v] \in \mathbb{R}^v$, where $\alpha_k =$ the cost allocated to each player $k \in V$.

Core

Define
$$\alpha(S) = \sum_{k \in S} \alpha_k$$
.

A cost allocation $\alpha \in \mathbb{R}^{\nu}$ is in the **core** if it satisfies:

- Budget Balance Constraint: $\alpha(V) = C(V)$;
- Coalition Stability Constraints: $\alpha(S) \leq C(S)$ for each $S \in \mathbb{S}$.

$$\begin{aligned} \operatorname{Core}(V,C) &= & \left\{ \alpha: \ \alpha(V) = C(V), \right. \\ & \left. \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\}, \ \alpha \in \mathbb{R}^v \right\}. \end{aligned}$$

Define
$$\alpha(S) = \sum_{k \in S} \alpha_k$$
.

A cost allocation $\alpha \in \mathbb{R}^{\nu}$ is in the **core** if it satisfies:

- Budget Balance Constraint: $\alpha(V) = C(V)$;
- Coalition Stability Constraints: $\alpha(S) \leq C(S)$ for each $S \in \mathbb{S}$.

$$\begin{aligned} \operatorname{Core}(V,C) &= & \left\{ \alpha : \ \alpha(V) = C(V), \right. \\ & \left. \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\}, \ \alpha \in \mathbb{R}^v \right\}. \end{aligned}$$

However, Core(V, c) can be empty.

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

• Subsidization: $\alpha(V) = C(V) - \theta$, ϵ -core;

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization: $\alpha(V) = C(V) \theta$, ϵ -core;
- Penalization: $\alpha(S) \leq C(S) + z$, least core;

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization: $\alpha(V) = C(V) \theta$, ϵ -core;
- Penalization: $\alpha(S) \leq C(S) + z$, least core;
- Simul. S & P: $\alpha(V) = C(V) \theta$ and $\alpha(S) \leq C(S) + z$, **PSF**;

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization: $\alpha(V) = C(V) \theta$, ϵ -core;
- Penalization: $\alpha(S) \leq C(S) + z$, least core;
- Simul. S & P: $\alpha(V) = C(V) \theta$ and $\alpha(S) \leq C(S) + z$, **PSF**;
- Inv. Opt.: Changing c to d such that Core(V, D) is non-empty.

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization: $\alpha(V) = C(V) \theta$, ϵ -core;
- Penalization: $\alpha(S) \leq C(S) + z$, least core;
- Simul. S & P: $\alpha(V) = C(V) \theta$ and $\alpha(S) \leq C(S) + z$, **PSF**;
- Inv. Opt.: Changing c to d such that Core(V, D) is non-empty.
- S. Caprara and Letchford (2010, MP), Liu et al. (2016, IJOC)
- P. Faigle et al. (2001, IJGT), Schulz and Uhan (2010, OR)
- P&S Liu et al. (2018, OR)
- Inv. Opt. Liu et al. (2020, under review)

ILLUSTRATIVE EXAMPLE

Example: Machine Scheduling Game (MSG)

Game of Parallel Machine Scheduling with Setup Cost:

- Grand coalition: $V = \{1, 2, 3, 4\}$;
- Processing times: $t_1 = 2$, $t_2 = 3$, $t_3 = 4$, $t_4 = 5$;
- Machine setup cost: $t_0 = 9.5$;
- c(S) for S ∈ S: minimizes the total completion time of jobs in S plus the machine setup cost;
- $\pi(N) = \pi(\{1,3\}) + \pi(\{2,4\}) = 38$ (SPT Rule).

Example: Empty Core

Coalitions	Cost
{1}	11.5
{2}	12.5
{3}	13.5
{4}	14.5
$\{1, 2\}$	16.5
$\{1, 3\}$	17.5
$\{1, 4\}$	18.5
$\{2, 3\}$	19.5
$\{2,4\}$	20.5
{3,4}	22.5
$\{1, 2, 3\}$	25.5
$\{1, 2, 4\}$	26.5
$\{1, 3, 4\}$	28.5
{2,3,4}	31.5
$\{1,2,3,4\}$	38

Example: Empty Core

Coalitions	Cost
{1}	11.5
{2}	12.5
{3}	13.5
{4}	14.5
$\{1, 2\}$	16.5
$\{1, 3\}$	17.5
$\{1, 4\}$	18.5
$\{2, 3\}$	19.5
$\{2, 4\}$	20.5
$\{3,4\}$	22.5
$\{1, 2, 3\}$	25.5
$\{1, 2, 4\}$	26.5
$\{1, 3, 4\}$	28.5
$\{2, 3, 4\}$	31.5
$\{1, 2, 3, 4\}$	38

Optimal Cost Allocation Problem

$$\max (\alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4}) = 37.25 < 38$$

$$s.t. \quad \alpha_{1} \le 11.5, \quad \cdots, \quad \alpha_{4} \le 14.5,$$

$$\alpha_{1} + \alpha_{2} \le 16.5, \quad \cdots, \quad \alpha_{3} + \alpha_{4} \le 22.5,$$

$$\cdots,$$

$$\alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} \le 38.$$

$$\alpha^* = [6; 8.75; 10.75; 11.75]$$

Models & Analyses

Definition

A cooperative TU game (V,c) is called an Identical Variable Parallel machine scheduling of Unweighted jobs(IVPU) if it satisfies the following formulations:

Definition

A cooperative TU game (V,c) is called an Identical Variable Parallel machine scheduling of Unweighted jobs(IVPU) if it satisfies the following formulations:

• Optimality: an initial feasible solution x^0 is optimal to D(V);

Definition

A cooperative TU game (V,c) is called an Identical Variable Parallel machine scheduling of Unweighted jobs(IVPU) if it satisfies the following formulations:

- Optimality: an initial feasible solution x^0 is optimal to D(V);
- Consistency: the social optimum is consistent C(V) = D(V);

Definition

A cooperative TU game (V,c) is called an Identical Variable Parallel machine scheduling of Unweighted jobs(IVPU) if it satisfies the following formulations:

- Optimality: an initial feasible solution x^0 is optimal to D(V);
- Consistency: the social optimum is consistent C(V) = D(V);
- Balancedness: the updated IM game (V, D) is balanced.

Definition

A cooperative TU game (V,c) is called an Identical Variable Parallel machine scheduling of Unweighted jobs(IVPU) if it satisfies the following formulations:

- Optimality: an initial feasible solution x^0 is optimal to D(V);
- Consistency: the social optimum is consistent C(V) = D(V);
- Balancedness: the updated IM game (V, D) is balanced.

$$\min_{\delta}\bigg\{f(\delta):\ d\in\mathbb{O},\ D(V)=C(V),\ dx^0=D(V),\ \delta=d-c\bigg\},$$

where $f(\delta) = \omega \times |\delta|$ (L₁ norm); \mathbb{O} is the Balanced Cost Vector Set.

Definition

A cooperative TU game (V,c) is called an Identical Variable Parallel machine scheduling of Unweighted jobs (IVPU) if it satisfies the following formulations:

Definition

A cooperative TU game (V,c) is called an Identical Variable Parallel machine scheduling of Unweighted jobs (IVPU) if it satisfies the following formulations:

$$c(s, P) = \min \sum_{k \in V} \sum_{j \in O} c_{kj} x_{kj} + P \sum_{k \in s} x_{k1}$$

$$s.t. \quad \sum_{j \in O} x_{kj} - y_k^s = 0, \forall k \in V,$$

$$\sum_{k \in V} x_{kj} \le m, \forall j \in O,$$

$$x_{kj} \in \{0, 1\}, \forall k \in V, \forall j \in O,$$

$$y_k^s = 1, k \in s; y_k^s = 0, k \notin s.$$

Properties

ALGORITHMS & COMPUTATIONS

... Algorithm

Computational Results

EXTENSION & GENERALIZATION

Machine Scheduling Game with Weighted Jobs

Pricing in General IM Games

Conclusions

- * Cooperative Game Theory:
 - New Instrument for Stabilization via Cost Adjustment.
- * Inverse Problem:
 - Constrained Inverse Optimization Problem.
- * Models, Solution Methods and Applications:
 - Several equivalent LP formulations;
 - Feasibility analyses & How to handle infeasibility;
 - Implementations on WMG and UFL games.

The End

Thank you!