CS6161: Design and Analysis of Algorithms (Fall 2020)

Linear Programming (II)

Instructor: Haifeng Xu

Outline

➤ How to Write Dual Program of LP

➤ Duality, and Examples

Recall Linear Programs (LPs)

> A special type of mathematical optimization programs

```
minimize (or maximize) f(x)
subject to x \in X
```

- x: decision variable
- f(x): objective function
- *X*: feasible set/region
- Optimal solution, optimal value
- \triangleright Simple example: minimize x^2 , s.t. $x \in [-1,1]$

Q: Why we can figure out optimal solution even there are infinitely many options?

Because the problem has structures

Recall Linear Programs (LPs)

> A special type of mathematical optimization programs

maximize $c^T \cdot x$ subject to $a_i \cdot x \leq b_i \qquad \forall i = 1, \cdots, m$ $x_j \geq 0 \qquad \forall j = 1, \cdots, n$

 x_j s are variables Standard form

A natural application

- *n* products, *m* raw materials
- Every unit of product j uses a_{ij} units of raw material i
- There are b_i units of material i available
- Product j yields profit c_i per unit
- Factory wants to maximize profit subject to available raw materials

Recall Linear Programs (LPs)

> A special type of mathematical optimization programs

maximize	$c^T \cdot x$	
subject to	$a_i \cdot x \le b_i$ $x_j \ge 0$	$\forall i = 1, \cdots, m$ $\forall j = 1, \cdots, n$

 x_j s are variables Standard form

>Any LP in general form can be converted to an equivalent LP in standard form

Geometric Interpretation

Primal LP

$\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} \\ a_i^T x \leq b_i, & \forall i \in C_1 \\ a_i^T x = b_i, & \forall i \in C_2 \\ x_j \geq 0, & \forall j \in D_1 \\ x_j \in \mathbb{R}, & \forall j \in D_2 \end{array}$

Dual LP

min
$$b^T \cdot y$$

s.t. $\overline{a}_j y \geq c_j$, $\forall j \in D_1$
 $\overline{a}_j y = c_j$, $\forall j \in D_2$
 $y_i \geq 0$, $\forall i \in C_1$
 $y_i \in \mathbb{R}$, $\forall i \in C_2$

Note:

- >There are good reasons to call this "Dual" and for why it has this form
- ➤ But for now, let's just see, *mechanically*, how this dual is generated
 - In HW, you will be asked to write dual of an LP by exercising the rule

Primal LP

$\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} \\ \boldsymbol{y_i} \colon & a_i^T x \leq b_i, \quad \forall i \in C_1 \\ \boldsymbol{y_i} \colon & a_i^T x = b_i, \quad \forall i \in C_2 \\ & x_j \geq 0, \quad \forall j \in D_1 \\ & x_j \in \mathbb{R}, \quad \forall j \in D_2 \end{array}$

```
min b^T \cdot y

s.t. \overline{a}_j y \ge c_j, \quad \forall j \in D_1

\overline{a}_j y = c_j, \quad \forall j \in D_2

y_i \ge 0, \quad \forall i \in C_1

y_i \in \mathbb{R}, \quad \forall i \in C_2
```

- \triangleright Each dual variable y_i corresponds to a primal constraint $a_i^T x \leq (\text{or} =) b_i$
 - Inequality constraint ⇒ nonnegative dual variable
 - Equality constraint ⇒ unconstrained dual variable

Primal LP

$\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} \\ y_i \colon & a_i^T x \leq b_i, \quad \forall i \in C_1 \\ y_i \colon & a_i^T x = b_i, \quad \forall i \in C_2 \\ & x_j \geq 0, \quad \forall j \in D_1 \\ & x_j \in \mathbb{R}, \quad \forall j \in D_2 \end{array}$

```
min b^T \cdot y

s.t.

x_j \colon \overline{a}_j y \ge c_j, \quad \forall j \in D_1

x_j \colon \overline{a}_j y = c_j, \quad \forall j \in D_2

y_i \ge 0, \quad \forall i \in C_1

y_i \in \mathbb{R}, \quad \forall i \in C_2
```

- \triangleright Each dual variable y_i corresponds to a primal constraint $a_i^T x \leq (\text{or} =) b_i$
 - Inequality constraint ⇒ nonnegative dual variable
 - Equality constraint ⇒ unconstrained dual variable
- \triangleright Each dual constraint $\bar{a}_i y \ge (\text{or} =) c_i$ corresponds to a primal variable x_i
 - Unconstrained variable ⇒ equality dual constraint
 - Nonnegative variable ⇒ Inequality dual constraint

Primal LP

$max c^T \cdot x$ s.t. $x_i \in \mathbb{R}, \quad \forall j \in D_2$

Dual LP

This is how \bar{a}_i is generated:

 x_1 x_2 x_3 x_4 Primal constraint: row a_i^T a_{11} b_1 a_{12} a_{13} a_{14} b_2 a_{21} a_{22} a_{23} a_{24} b_3 a_{31} a_{32} a_{33} a_{34} c_1 c_2 c_3 c_4

Primal LP

$\begin{aligned} & \text{max} \quad c^T \cdot x \\ & \text{s.t.} \\ & \textbf{\textit{y}}_i \colon \quad a_i^T x \leq b_i, \quad \forall i \in C_1 \\ & \textbf{\textit{y}}_i \colon \quad a_i^T x = b_i, \quad \forall i \in C_2 \\ & \quad x_j \geq 0, \quad \forall j \in D_1 \\ & \quad x_j \in \mathbb{R}, \quad \forall j \in D_2 \end{aligned}$

Dual LP

min
$$b^T \cdot y$$

s.t.
 $x_j \colon \overline{a}_j y \ge c_j, \quad \forall j \in D_1$
 $x_j \colon \overline{a}_j y = c_j, \quad \forall j \in D_2$
 $y_i \ge 0, \quad \forall i \in C_1$
 $y_i \in \mathbb{R}, \quad \forall i \in C_2$

This is how \bar{a}_i is generated:

Dual var y

- 1	x_1	x_2	x_3	x_4	
y_1	a_{11}	$a_{12} \ a_{22} \ a_{32}$	a_{13}	a_{14}	b_1
y_2	a_{21}	a_{22}	a_{23}	a_{24}	b_2
y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

Primal LP

 $\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} \\ \textbf{\textit{y}}_i \colon & a_i^T x \leq b_i, \quad \forall i \in C_1 \\ \textbf{\textit{y}}_i \colon & a_i^T x = b_i, \quad \forall i \in C_2 \\ & x_j \geq 0, \quad \forall j \in D_1 \\ & x_j \in \mathbb{R}, \quad \forall j \in D_2 \end{array}$

This is how \bar{a}_j is generated:

Dual LP

min
$$b^T \cdot y$$

s.t.
 $x_j \colon \overline{a}_j y \geq c_j, \quad \forall j \in D_1$
 $x_j \colon \overline{a}_j y = c_j, \quad \forall j \in D_2$
 $y_i \geq 0, \quad \forall i \in C_1$
 $y_i \in \mathbb{R}, \quad \forall i \in C_2$

Dual constraint: column \bar{a}_i

Dual Linear Program: Standard Form

Primal LP

$$\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} & Ax \leq b \\ x \geq 0 \end{array}$$

Dual LP

min
$$b^T \cdot y$$

s.t. $A^T y \ge c$
 $y \ge 0$

- $\succ c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
- $> y_i$ is the dual variable corresponding to primal constraint $A_i x \leq b_i$
- $> A_j^T y \ge c_j$ is the dual constraint corresponding to primal variable x_j

Remark:

- > This is easier to write, at least mechanically
- Result in an equivalent dual (may not look exactly the same)
- ➤ Thus, another way to write dual: (1) convert any LP to standard form; (2) use the above formula

Interpretation I: Economic Interpretation

Recall the optimal production problem

- $\triangleright n$ products, m raw materials
- Figure Every unit of product j uses a_{ij} units of raw material i
- \triangleright There are b_i units of material i available
- \triangleright Product j yields profit c_i per unit
- > Factory wants to maximize profit subject to available raw materials

Interpretation I: Economic Interpretation

Primal LP

min $b^T \cdot v$

$$\max c^{T} \cdot x$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \forall i \in [m]$$

$$x_{j} \geq 0, \forall j \in [n]$$

min
$$b^T \cdot y$$

s.t. $\sum_{i=1}^m a_{ij} y_i \ge c_j$, $\forall j \in [n]$
 $y_i \ge 0$, $\forall i \in [m]$

Dual LP

j: product indexi: material index

Dual LP corresponds to the buyer's optimization problem, as follows:

- >Buyer wants to directly buy the raw material
- \triangleright Dual variable y_i is buyer's proposed price per unit of raw material i
- > Dual price vector is feasible if factory is incentivized to sell materials
- > Buyer wants to spend as little as possible to buy raw materials

Interpretation I: Economic Interpretation

Primal LP

$$\max c^{T} \cdot x$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad \forall i \in [m]$$

$$x_{j} \geq 0, \qquad \forall j \in [n]$$

$$\begin{aligned} & \text{min} \quad b^T \cdot y \\ & \text{s.t.} \quad \sum_{i=1}^m a_{ij} \ y_i \geq c_j, \quad \forall j \in [n] \\ & y_i \geq 0, \qquad \quad \forall i \in [m] \end{aligned}$$

Interpretation II: Finding Best Upperbound

> Consider the simple LP from previous 2-D example

maximize
$$x_1+x_2$$
 subject to $x_1+2x_2\leq 2$ $2x_1+x_2\leq 2$ $x_1,x_2\geq 0$

- >We found that the optimal solution was at $(\frac{2}{3}, \frac{2}{3})$ with an optimal value of $\frac{4}{3}$.
- >What if, instead of finding the optimal solution, we sought to find an upperbound on its value by combining inequalities?
 - Each inequality implies an upper bound of 2
 - Multiplying each by 1 and summing gives $x_1 + x_2 \le 4/3$.

Interpretation II: Finding Best Upperbound

Primal LP

 $\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} & Ax \leq b \\ & x \geq 0 \end{array}$

Dual LP

min
$$b^T \cdot y$$

s.t. $A^T y \ge c$
 $y \ge 0$

 \triangleright Multiplying each row i by y_i and summing gives the inequality

$$y^T A x \le y^T b$$

(now we see why $y_i \ge 0$ when $a_i x \le b_i$ but $y_i \in \mathbb{R}$ when $a_i x = b_i$)

► When $c^T \le y^T A$, we have

$$c^T x \le y^T A x \le y^T b$$

i.e., $y^T b$ is an upper bound on $c^T x$ for every feasible x

➤ The dual LP can be interpreted as finding the best upperbound on the primal that can be achieved this way.

Properties of Duals

> Duality is an inversion

Fact: Given any primal LP, the dual of its dual is itself.

Proof: homework exercise

Primal LP

$$\begin{aligned} & \max \quad c^T \cdot x \\ & \text{s.t.} \\ & a_i^T x \leq b_i, \quad \forall i \in C_1 \\ & a_i^T x = b_i, \quad \forall i \in C_2 \\ & x_j \geq 0, \quad \forall j \in D_1 \\ & x_j \in \mathbb{R}, \quad \forall j \in D_2 \end{aligned}$$

min
$$b^T \cdot y$$

s.t. $\overline{a}_j y \geq c_j$, $\forall j \in D_1$
 $\overline{a}_j y = c_j$, $\forall j \in D_2$
 $y_i \geq 0$, $\forall i \in C_1$
 $y_i \in \mathbb{R}$, $\forall i \in C_2$

Outline

➤ How to Write Dual Program of LP

➤ Duality, and Examples

Weak Duality

Primal LP

Dual LP

min
$$b^t \cdot y$$

s.t. $A^t y \ge c$
 $y \ge 0$

Theorem [Weak Duality]: For any primal feasible x and dual feasible y, we have $c^T \cdot x \leq b^T \cdot y$

This should not be a surprise to you; Recall

Flow-Cut Weak Duality: Let f be any flow and (A, B) be any cut. Then $val(f) \le cap(A, B)$.

Weak Duality

Primal LP

 $\begin{array}{ll} \max & c^t \cdot x \\ \text{s.t.} & Ax \leq b \\ & x \geq 0 \end{array}$

Dual LP

min
$$b^t \cdot y$$

s.t. $A^t y \ge c$
 $y \ge 0$

Theorem [Weak Duality]: For any primal feasible x and dual feasible y, we have $c^T \cdot x \leq b^T \cdot y$

Corollary:

- ➤ If primal is unbounded, dual is infeasible
- ➤ If dual is unbounded, primal is infeasible
- If primal and dual are both feasible, then
 OPT(primal) ≤ OPT(dual)

obj value of dual
obj value of primal

Weak Duality

Primal LP

Dual LP

min
$$b^t \cdot y$$

s.t. $A^t y \ge c$
 $y \ge 0$

Theorem [Weak Duality]: For any primal feasible x and dual feasible y, we have $c^T \cdot x \leq b^T \cdot y$

Corollary: If x is primal feasible and y is dual feasible, and $c^T \cdot x = b^T \cdot y$, then both are optimal.

Interpretation of Weak Duality

Economic Interpretation:

If prices of raw materials are set such that there is incentive to sell raw materials directly, then factory's total revenue from sale of raw materials would exceed its profit from any production.

Upperbound Interpretation:

The method of rescaling and summing rows of the Primal indeed givens an upper bound of the Primal's objective value (well, self-evident...).

Proof of Weak Duality

Primal LP

 $\begin{array}{ll} \max & c^t \cdot x \\ \text{s.t.} & Ax \leq b \\ & x \geq 0 \end{array}$

$$\begin{array}{ll} \min & b^t \cdot y \\ \text{s.t.} & A^t y \geq c \\ & y \geq 0 \end{array}$$

$$y^T \cdot b \ge y^T \cdot Ax = x^T \cdot A^T y \ge x^T \cdot c$$

Strong Duality

Theorem [Strong Duality]: If either the primal or dual is feasible and bounded, then so is the other and OPT(primal) = OPT(dual).

... I thought there was nothing worth publishing until the Minimax Theorem was proved.

John von Neumann

Interpretation of Strong Duality

Economic Interpretation:

There exist raw material prices such that the factory is indifferent between selling raw materials or products.

Upperbound Interpretation:

The method of scaling and summing constraints yields a tight upperbound for the primal objective value.

> Recall the max flow problem

One flow variable x_e for each edge e:

> Recall the max flow problem

One flow variable x_e for each edge e:

$$\begin{array}{ll} & O(v) \text{: set of edges outward from } v \\ \max & \sum_{e \in O(s)} x_e - \sum_{e \in I(s)} x_e & I(v) \text{: set of edges inward to } v \\ \text{s.t.} & \sum_{e \in O(v)} x_e = \sum_{e \in I(v)} x_e \text{, } \forall v \neq s \text{, } t \\ & x_e \leq c_e, \forall e \in E \\ & x_e \geq 0, \forall e \in E \end{array}$$

> Recall the max flow problem

One flow variable x_e for each edge e:

max
$$\sum_{e \in O(s)} x_e - \sum_{e \in I(s)} x_e$$
 Objective: maximize total flow out from s s.t. $\sum_{e \in O(v)} x_e = \sum_{e \in I(v)} x_e$, $\forall v \neq s, t$ $x_e \leq c_e, \forall e \in E$ $x_e \geq 0, \forall e \in E$

> Recall the max flow problem

One flow variable x_e for each edge e:

$$\begin{aligned} &\max \quad \sum_{e \in O(s)} x_e - \sum_{e \in I(s)} x_e \\ &\text{s.t.} \quad \sum_{e \in O(v)} x_e = \sum_{e \in I(v)} x_e \text{, } \forall v \neq s, t \end{aligned} \quad \begin{aligned} &\text{Flow conservation constraint} \\ &x_e \leq c_e, \forall e \in E \\ &x_e \geq 0, \forall e \in E \end{aligned}$$

> Recall the max flow problem

One flow variable x_e for each edge e:

$$\begin{array}{ll} \max & \sum_{e \in O(s)} x_e - \sum_{e \in I(s)} x_e \\ \text{s.t.} & \sum_{e \in O(v)} x_e = \sum_{e \in I(v)} x_e \text{, } \forall v \neq s \text{, } t \\ & x_e \leq c_e, \forall e \in E \\ & x_e \geq 0, \forall e \in E \end{array}$$
 Capacity constraint and non-negativity

Primal LP

$\max \quad \sum_{e \in O(s)} x_e - \sum_{e \in I(s)} x_e$ s.t. $\sum_{e \in O(v)} x_e = \sum_{e \in I(v)} x_e, \ \forall v \neq s, t$ $x_e \leq c_e, \forall e \in E$ $x_e \geq 0, \forall e \in E$

$$\min \sum_{e \in E} c_e z_e$$
s.t.
$$y_v - y_u \le z_e, \ \forall e = (u, v) \in E$$

$$y_s = 0$$

$$y_t = 1$$

$$z_e \ge 0, \ \forall e \in E$$

- \triangleright Dual variable describes fraction z_e of each edge to "fractionally" cut
- ▶ Dual constraints require that in total at least 1 edge is cut on every path from s to t

•
$$\sum_{(u,v)\in P} z_{uv} \ge \sum_{(u,v)\in P} (y_v - y_u) = y_t - y_s = 1$$

$$\min \sum_{e \in E} c_e z_e$$
s.t.
$$y_v - y_u \le z_e, \ \forall e = (u, v) \in E$$

$$y_s = 0$$

$$y_t = 1$$

$$z_e \ge 0, \ \forall e \in E$$

- \triangleright Claim: every integral s-t cut (S,T) is feasible for dual
- > Proof:
 - Setting $y_u = 0$ for $u \in S$, $y_u = 1$ for $u \in T$,
 - $z_e = y_v y_u = 1$ iff e = (u, v) is cut; $z_e = 0$ otherwise

Primal LP

$\max \sum_{e \in O(s)} x_e - \sum_{e \in I(s)} x_e$ s.t. $\sum_{e \in O(v)} x_e = \sum_{e \in I(v)} x_e, \ \forall v \neq s, t$

Dual LP

$$\min \sum_{e \in E} c_e z_e$$
s.t.
$$y_v - y_u \le z_e, \ \forall e = (u, v) \in E$$

$$y_s = 0$$

$$y_t = 1$$

$$z_e \ge 0, \ \forall e \in E$$

- Ford-Fulkerson implies: max flow = min integral cut ≥ min fractional cut
- ➤ Weak duality implies: max flow ≤ min fractional cut
- ➤ These two inequalities must achieve =, thus

min integral cut = min fractional cut

i.e., Dual always has an integral optimal solution

Thus min (integral) cut can be computed by solving dual LP as well. 35

Primal LP

$\max \sum_{e \in O(s)} x_e - \sum_{e \in I(s)} x_e$ s.t. $\sum_{e \in O(v)} x_e = \sum_{e \in I(v)} x_e, \ \forall v \neq s, t$ $x_e \leq c_e, \forall e \in E$ $x_e \geq 0, \forall e \in E$

$$\min \sum_{e \in E} c_e z_e$$
s.t.
$$y_v - y_u \le z_e, \ \forall e = (u, v) \in E$$

$$y_s = 0$$

$$y_t = 1$$

$$z_e \ge 0, \ \forall e \in E$$

- > To sum up: max-flow min-cut can both also be solved by LP
- Their equality is just a special case of LP duality
- There are many other such examples in combinatorial optimization (e.g., shortest paths, bipartite matching, etc.)

Thank You

Haifeng Xu
University of Virginia

hx4ad@virginia.edu