Analyse von Funktionen

Generell

Eine Funktion kann vielfältig analysiert werden. Vorraussetzung sind dabei die Ableitungen bis einschließlich der 3. Ableitung.

Nullstellen

Die Nullstellen der Ursprungsfunktion können in mehreren Verfahren oder Kombination dieser bestimmt werden. Diese sind

- Umformung(z. B. Ausklammern)
- pq-Formel
- Taschenrechner(solve)
- Polynomdivision(nicht behandelt)

Da die Umformung schwer einzugrenzen ist und die Lösung mit dem Taschenrechner einfach, wird nur die pq-Formel betrachtet.

Die pq-Formel lässt sich nur auf Quadratische Funktionen bzw. Funktionen des 2. Grades anwenden. Dabei muss der Vorfaktor a aus der Normalform $ax^2 + bx + c$ 1 sein. b wird im Folgenden als p bezeichnet, c als q.

Die pq-Formel lautet:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2 - q}$$

Das Einsetzen ergibt in die Formel ergibt dann die Nullstellen der Funktion.

Wenn man von der Funktion $f(x)=x^2+4x+2$ ausgeht, dann ist die zugehörige pq-Formel

$$x_{1,2} = -\frac{4}{2} \pm \sqrt{(\frac{4}{2})^2 - 2}$$

Diese lässt sich vereinfachen zu

$$x_{1,2} = -2 \pm \sqrt{4-2}$$

Ist allerdings die Summe unter der Wurzel negativ, so gibt es keine Lösungen.

y-Achsenabschnitt

Der y-Achsenabschnitt ist der Wert der Funktion an der Stelle x=0. Er bezeichnet denn Schnittpunkt des Graphen mit der y-Achse und lässt sich durch Einsetzen von Null in die Ursprungsfunktion berechnen.

Extrempunkte

Wendepunkte

Symmetrie

Funktions graph

Verhalten im Unendlichen

Definitionsbereich

Wertebereich

Monotonie

Monotonie

Krümmung

Tangengleichung

Normalengleichung