

<u>Home</u>

<u>Gameboard</u>

Physics

Uncertainties

Essential Pre-Uni Physics E1.4

Essential Pre-Uni Physics E1.4

Skills

Quantity being measured	Absolute uncertainty	Heading of column in results table (with units)	Number of decimal places for measured values
A time where you are manually operating a stopwatch that reads to the nearest hundredth of a second.	(a)	(b)	(c)

Part A Absolute uncertainty

a) What is the absolute uncertainty in the tir	ıme'?
--	-------

 $\pm 0.1\,\mathrm{s}$

 $\pm 1 s$

 $\pm 0.1\,\mathrm{ms}$

Part B Column heading

b)) W	hat	is	the	headi	ng	of	the	col	umn	in t	he	resul	ts '	tab	leʻ	?
----	-----	-----	----	-----	-------	----	----	-----	-----	-----	------	----	-------	------	-----	-----	---

Time / s

Weight / kg

Length / m

Part C Decimal places

c) What is the number of decimal places for the measured values?

Essential Pre-Uni Physics E1.5

You measure the time taken for a pendulum to complete 20 full swings, using an electronic timer accurate to the nearest $0.1\,\mathrm{s}$. You then divide your answer by 20 to get the time for just 1 swing. What is the absolute uncertainty on your value for just 1 swing?

Gameboard:

STEM SMART Physics 39 - Uncertainties

Home Gameboard Physics Skills Uncertainties Essential Pre-Uni Physics E1.9

Essential Pre-Uni Physics E1.9

If you measured a resistance using an ohmmeter and obtained the following results, what would you do next? Give a value for the absolute uncertainty and the average that you would use for this set of results: $10.5\,\Omega$, $10.3\,\Omega$, $10.9\,\Omega$, $14.7\,\Omega$, $10.6\,\Omega$.

Repeat the anomalous 14.7Ω reading. Absolute uncertainty $=0.3\Omega$. Average reading $=10.6\Omega$
Repeat the whole experiment. Absolute uncertainty $=0.2\Omega$. Average reading $=10.5\Omega$
Repeat the anomalous 14.7Ω reading. Absolute uncertainty $=0.2\Omega$. Average reading $=10.5\Omega$
Repeat the whole experiment. Absolute uncertainty $=0.3\Omega$. Average reading $=10.6\Omega$

Gameboard:

STEM SMART Physics 39 - Uncertainties

Home Gameboard Physics Skills Uncertainties Essential Pre-Uni Physics E2.1

Essential Pre-Uni Physics E2.1

Your answer will be marked incorrect for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is $\pm~0.1$ would be inappropriate).

Please make sure that the unit of absolute uncertainty is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of $\pm~0.5\,\mathrm{mm}$ not $\pm~1\,\mathrm{mm}$.

Calculate the relative uncertainty, in percent, of:

Part A Length

a) A length of $50.4\,\mathrm{cm}$ measured using a metre rule to $\pm 0.5\,\mathrm{mm}$.

Part B Current

b) A current of $240\,\mathrm{mA}$ measured to the nearest milliamp.

Part C Time

c) A time of $0.62 \, \mathrm{s}$ measured using a stopwatch to the nearest $0.01 \, \mathrm{s}$.

Part D Angle

d) An angle of $43^{\circ}\,$ measured to the nearest degree with a protractor.

Part E Time

e) A time of $4\,\mathrm{minutes}\ 32\,\mathrm{seconds}$ measured to the nearest second.

Gameboard:

STEM SMART Physics 39 - Uncertainties

Home Gameboard Physics Skills Uncertainties Essential Pre-Uni Physics E2.6

Essential Pre-Uni Physics E2.6

Your answer will be marked incorrect for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is $\pm~0.1$ would be inappropriate).

Please make sure that the unit of absolute uncertainty is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of $\pm~0.5\,\mathrm{mm}$ not $\pm~1\,\mathrm{mm}$.

An experiment is conducted to find the acceleration of a dropped object (which should be $9.81\mathrm{ms^{-1}}$	2). The
measurement obtained is $9.62\mathrm{ms^{-2}}\pm1.5\%$. Is the experiment accurate?	

Yes

No

Gameboard:

STEM SMART Physics 39 - Uncertainties

Essential Pre-Uni Physics E3.1

You will be penalized for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is \pm 0.1).

Please make sure that the unit of absolute uncertainties is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of $\pm~0.5\,\mathrm{mm}$ not $\pm~1\,\mathrm{mm}$.

Calculate the relative uncertainty, in percent, of a resistance which is worked out from a voltage known to $3\,\%$ and a current known to $7\,\%$. (Equation: $R=\frac{V}{I}$)

Gameboard:

STEM SMART Physics 39 - Uncertainties

Essential Pre-Uni Physics E3.3

You will be penalized for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is \pm 0.1).

Please make sure that the unit of absolute uncertainties is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of $\pm~0.5\,\mathrm{mm}$ not $\pm~1\,\mathrm{mm}$.

Calculate the relative uncertainty, in percent, of the density of a cuboid block of iron whose lengths are known to 2% and whose mass is known to 0.1%. (Equation: $\frac{\text{mass}}{\text{volume}}$)

Gameboard:

STEM SMART Physics 39 - Uncertainties

Essential Pre-Uni Physics E3.4

You will be penalized for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is \pm 0.1).

Please make sure that the unit of absolute uncertainties is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of $\pm~0.5\,\mathrm{mm}$ not $\pm~1\,\mathrm{mm}$.

Calculate the relative uncertainty, in percent, of the time taken for a marble to fall by a distance known to 4%. (Equation: distance $= \frac{1}{2}gt^2$)

Gameboard:

STEM SMART Physics 39 - Uncertainties

Essential Pre-Uni Physics E3.5

You will be penalized for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is \pm 0.1).

Please make sure that the unit of absolute uncertainties is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of $\pm~0.5\,\mathrm{mm}$ not $\pm~1\,\mathrm{mm}$.

Calculate the relative uncertainty, in percent, of the resistivity of a constantan wire if the resistance is known to 8%, the diameter to 2% and the length to 5%. (Equation: resistivity $=\frac{RA}{L}$, where A is the cross sectional area.)

Gameboard:

STEM SMART Physics 39 - Uncertainties

Essential Pre-Uni Physics E4.6

You obtain the following results for the time period of a pendulum: $(561, 563, 569, 562, 565) \mathrm{ns}$. None of these
results are anomalous. You are then told that the accepted value is $560.5\mathrm{ns}$. Does this lie within your error bars?
Yes
○ No