Lógica Proposicional

Profa. Maely Moraes

Livro base: Souza, João Nunes, Lógica para Ciência da Computação, Editora Campus, 9ª tiragem.

Lógica Proposicional

Relações semânticas entre os conectivos da Lógica Proposicional

Conjuntos de Conectivos Completos

Definição 5.1 (conjunto de conectivos completo)

Seja Ψ um conjunto de conectivos.

Ψ é um conjunto completo se as condições a seguir são satisfeitas.

Dada uma fórmula H do tipo

$$\neg P$$
, $(P_1 \lor P_2)$, $(P_1 \land P_2)$, $(P_1 \land P_2)$, $(P_1 \leftrightarrow P_2)$,

então é possível determinar uma outra fórmula G, tal que:

G é equivalente a H,

G contém apenas conectivos do conjunto Ψ e os símbolos $P_1^{\tilde{i}}$ e $P_2^{\tilde{i}}$ presentes em H.

Conjuntos de Conectivos Completos

ullet Proposição 5.1 (Equivalência entre ightarrow e os conectivos ¬, igvee),

O conectivo → pode ser expresso semanticamente pelos conectivos ¬ e ∨.

 $(P \rightarrow Q)$ equivale a $(\neg P \ V \ Q)$

Proposição 5.2 (Equivalência entre ∧ e os conectivos ¬,
 ∨)

O conectivo \land pode ser expresso semanticamente pelos conectivos \neg e \lor .

 $(P \land Q)$ equivale a $\neg (\neg P \lor \neg Q)$

Proposição 5.3 (Equivalência entre
 ← e os conectivos ¬, ∨)

O conectivo \leftrightarrow pode ser expresso semanticamente pelos conectivos \neg e \lor .

$$(P \leftrightarrow Q)$$

equivale a
 $\neg (\neg (\neg P \lor Q) \lor \neg (\neg Q \lor P))$

• Proposição 5.4 (conjunto de conectivos completo)

O conjunto {¬, ∨} é completo.

• **Proposição 5.5 (regra de substituição)** Sejam E_g, E_h, G e H fórmulas da Lógica Proposicional tais que: G e H são subfórmulas de E_g e E_h respectivamente. E_h é obtida de E_g substituindo todas as ocorrências da fórmula G em E_g por H. Se G equivale a H, então E_g equivale a E_h .

Relação semântica entre conectivos

 Proposição 5.7 (relação semântica entre conectivos) Seja E uma fórmula da Lógica Proposicional. Então existe uma fórmula E1, equivalente a E, que possui apenas os conectivos ¬ e V e os símbolos proposicionais e de verdade presentes em E.

Relação semântica entre conectivos

Definição 5.2 (conectivo nand)

O conectivo nand é definido pela correspondência:

$$(P nand Q) = (\neg (P \land Q)$$

Relação semântica entre conectivos

Proposição 5.8 (equivalência entre ¬ e {nand})
 O conectivo ¬ pode ser expresso semanticamente pelo conectivo nand.

¬P equivale a (P nand P)

Proposição 5.9 (equivalência entre ∨ e {nand})

O conectivo V pode ser expresso semanticamente pelo conectivo nand.

(P V Q)
equivale a
(P nand P) nand (Q nand Q)

Proposição 5.10 (conjunto de conectivo completo)
 O conjunto {nand} é completo.

Proposição 5.11 (relação semântica entre conectivos)

Seja E uma fórmula qualquer da Lógica Proposicional.

E pode ser expressa,
equivalentemente,
utilizando apenas o conectivo nand
e os símbolos proposicionais e de verdade presentes
em E.

Definição 5.3 (conectivo nor)

O conectivo nor é definido pela correspondência:

$$(P nor Q) = (\neg (P \lor Q)$$

Proposição 5.12 (conjunto de conectivo completo)

O conjunto {nor} é completo.

Proposição 5.13 (relação semântica entre conectivos)

Seja E uma fórmula qualquer da Lógica Proposicional. E pode ser expressa, equivalentemente, utilizando apenas o conectivo nor e os símbolos proposicionais e de verdade presentes em E.

Redefinição do alfabeto da Lógica Proposicional

- Definição 5.4 (alfabeto na forma simplificada) O alfabeto da Lógica Proposicional é constituído por:
 - símbolos de pontuação: (,);
 - símbolo de verdade: false;
 - símbolos proposicionais: P, Q, R, S, P₁, Q₁, R₁, S₁, P₂, Q₂ ...;
 - conectivos proposicionais: ¬, ∨.

Formas normais

Definição 5.5 (literal)

Um literal, na Lógica Proposicional, é um símbolo proposicional ou sua negação.

Formas normais

- Definição 5.6 (forma normal)
 - Há dois tipos de formas normais:
 - Uma fórmula H está na forma normal disjuntiva (fnd) se é uma disjunção de conjunção de literais.
 - Uma fórmula H está na forma normal conjuntiva (fnc) se é uma conjunção de disjunção de literais.