

第5章 网络层

为什么需要网络层?

- 数据链路层已解决的问题 解决了相邻节点间数据帧的传输问题。
- 数据链路层未解决的问题
 - 异构网络互联(跨局域网连接和资源共享)
 - 互联网主机标识问题
 - 互联网中主机间路由选择问题(最佳路径)
 - 互联网中数据转发的问题(分组转发)

网络层应该向运输层提供怎样的服务?

- 争论点:"面向连接"还是"无连接"?
- 争论焦点的实质就是:在计算机通信中,可靠交付应当由谁来负责? 是网络还是端系统?
- 一种观点:让网络负责可靠交付。通信之前先建立虚电路,以保证 双方通信所需的一切网络资源。如果再使用可靠传输的网络协议, 就可使所发送的分组无差错按序到达终点,不丢失、不重复。

5.1 网络层概述

网络层应该向运输层提供怎样的服务?

另一种观点:网络层向上只提供简单灵活的、无连接的、尽最大努力 交付的数据报服务。网络在发送分组时不需要先建立连接,每一个分 组(即IP数据报)独立发送,与其前后的分组无关(不编号)。网络 层不提供服务质量的承诺,即所传送的分组可能出错、丢失、重复和 失序(不按序到达终点),当然也不保证分组传送的时限。**主机运输** 层负责可靠交付,使得网络的造价大大降低,运行灵活。

5.1 网络层概述

虚电路服务与数据报服务的对比

对比的方面	虚电路服务	数据报服务	
思路	可靠通信应当由网络来保证	可靠通信应当由用户主机来保证	
连接的建立	必须有	不需要	
终点地址	仅在连接建立阶段使用,每个 分组使用短的虚电路号	每个分组都有终点的完整地址	
分组的转发	属于同一条虚电路的分组均按 照同一路由进行转发	每个分组独立选择路由进行转发	
当结点出故障时	所有通过出故障的节点的虚电 路均不能工作	出故障的节点可能会丢失分组 , 一些路由可能会发生变化	
分组的顺序	总是按发送顺序到达终点	到达终点时不一定按发送顺序	
端到端的差错处 理和流量控制	可以由网络负责,也可以由用 户主机负责	由用户主机负责	

网络层的功能

- 网络层提供不可靠、无连接、尽力而为的数据报传送服务。
- IP的主要功能
 - 寻址能够跨越任意类型的网络对设备进行唯一寻址。
 - > 路由选择
 - · 以单个IP数据报为基础,确定某个IP数据报到达目标主机需要 经过哪些路由器。
 - 可以由源主机决定,也可以由IP数据报所途径的路由器决定。
 - > 分段与重组
 - IP数据报在实际传输过程中所经过的物理网络帧的最大长度可能不同,当长的IP数据报需要经过短帧子网时,要对其进行分段与重组。
 - 重组工作由目标主机完成。

网际协议(IP)

- 网际协议(IP)是TCP/IP协议族中最为核心的协议,提供的是不可 靠、无连接、尽力而为的数据报传送服务。
 - IP数据报格式
 - IP地址
- 版本
 - > IPv4
 - > IPv6

- 口 IP数据报各字段是如何确定的?
- 口 IP数据报中哪些字段与IP分片有关?
- 口 IP分片后IP数据报中哪些字段的值会发生变化?

- 一个 IPv4 数据报由首部和数据两部分组成。
- 首部的前一部分是固定长度, 共 20 字节, 是所有 IPv4 数据报必须具有的。
- 在首部的固定部分的后面是一些可选字段,其长度是可变的。

- 一个 IPv4 数据报由首部和数据两部分组成。
- 首部的前一部分是固定长度,共 20 字节,是所有 IPv4 数据报必须具有的。
- 在首部的固定部分的后面是一些可选字段,其长度是可变的。

- 一个 IPv4 数据报由首部和数据两部分组成。
- 首部的前一部分是固定长度,共 20 字节,是所有 IPv4 数据报必须具有的。
- 在首部的固定部分的后面是一些可选字段,其长度是可变的。

图中数据最高位在左边记为0位;最低位在右边记为31位。在网络中传输数 据时,先传输0~7位,最后传输24~31位。TCP/IP协议首部中所有的二进 制数在网络中传输时都要求以这种顺序进行,因此把它称为网络字节顺序。

- 版本——占4位,指IP协议的版本。
- 目前的 IP 协议版本号为 4 (即 IPv4)。

首部长度——占4位,可表示的最大数值是15个单位(一个单位为 4 字节), 因此 IP 的首部长度的最大值是 60 字节。如果数据报的首 部长度不是4字节的整数倍,必须利用最后的填充字段加以填充。

区分服务——占8位,用来获得更好的服务。

区分服务——占8位,用来获得更好的服务。

IPv4 数据报格式--优先权

优先级	定义	使用		
000	Routine (常规)	默认标记值		
001	Priority (优先)	公米/+		
010	Immediate (快速)	给数据业务使用		
011	Flash (闪速)	语音控制数据使用		
100	Flash Override (疾速)	由视频会议和视频流使用		
101	Critic (关键)	推荐给语音数据使用		
110	Internetwork Control (网间控制)	一般保留给网络控制数据		
111	Network Control (网络控制)	使用,如路由		

IPv4 数据报格式--ToS

- 1000 -- minimize delay #最小延迟
- 0100 -- maximize throughput #最大吞吐量
- 0010 -- maximize reliability #最高可靠性
- 0001 -- minimize monetary cost #最小费用
- 0000 -- normal service #一般服务

● IP首部中的ToS字段,只能表示一种服务类别,也就是:这4bit字段中,最

多只能有一个bit字段为1。

应用程序	最小时延	最大吞吐量	最高可靠性	最小费用	16进 制值
Telnet/Rlogin	1	0	0	0	0x10
FTP		0	0	0	0x10
控制	1	0	0	0	0x10
数据	0	1		0	0x08
任意块数据	0	1	0	0	1
TFTP	1	0	0	. 0	0x10
SMTP					
命令阶段	1	0	0	0	0x10
数据阶段	0	1	0	0	0x08
DNS		_		_	
UDP查询	1	0	0	. 0	0x10
TCP查询	0	0	0	0	0x00
区域传输	0	1	0	0	0x08
ICMP				ļ	1 1
差错	0	0	0	0	0x00
查询	0	0	0	.0	0x00
任何IGP	0	0	1	0	0x04
SNMP	0	0	1	0	0x04
BOOTP	0	0	0	0	0x00
NNTP	0	0	0	1	0x02

总长度——占 16 位,指首部和数据之和的长度,单位为字节,因 此数据报的最大长度为 65535 字节。总长度必须不超过数据链路层 的最大传送单元MTU。

为什么要设置 总长度字段?

标识——占 16 位,是一个计数器,用来产生 IP 数据报的标识,通 常每发送一份报文它的值就会加1。当数据报长度超过网络的MTU 而必须分片时,标识字段的值就被<mark>复制</mark>到所有的数据报片的标识字 段中,相同的标识字段值使分片后的各数据报片最后能正确地重组 为原来的数据报。

这三个字段与IP分片有关,IP数据报总长度 超过MTU时,IP数据报需要分片。

标识——占 16 位,是一个计数器,用来产生 IP 数据报的标识,通 常每发送一份报文它的值就会加1。当数据报长度超过网络的MTU 而必须分片时,标识字段的值就被复制到所有的数据报片的标识字 段中,相同的标识字段值使分片后的各数据报片最后能正确地重组 为原来的数据报。

标志——占 3 位,目前只有两位有意义。标志字段中的最低位记为 MF(More Fragment), MF=1表示后面还有分片的数据; MF=0表示最后一个数据报片。标志字段中间的一位记为DF (Don't Fragment),其含义是不能分片(DF=1),只有当 DF=0时才允许分片。

片偏移——占 13 位,指出较长的分组在分片后某片在原分组中的相对位置,即相对于用户数据字段的起点,该片从何处开始。以8个字节为偏移单位,即每个分片的长度一定是8字节(64bit)的整数倍。

