# In [1]:

#importing libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, normalize
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
#importing dataset
creditcard\_df = pd.read\_csv('D:\\Data Science for Business Package\\2. Marketing Dep creditcard\_df

### Out[1]:

|        | CUST_ID                | BALANCE     | BALANCE_FREQUENCY | PURCHASES | ONEOFF_PURCHASES |  |
|--------|------------------------|-------------|-------------------|-----------|------------------|--|
| 0      | C10001                 | 40.900749   | 0.818182          | 95.40     | 0.00             |  |
| 1      | C10002                 | 3202.467416 | 0.909091          | 0.00      | 0.00             |  |
| 2      | C10003                 | 2495.148862 | 1.000000          | 773.17    | 773.17           |  |
| 3      | C10004                 | 1666.670542 | 0.636364          | 1499.00   | 1499.00          |  |
| 4      | C10005                 | 817.714335  | 1.000000          | 16.00     | 16.00            |  |
|        |                        |             |                   |           |                  |  |
| 8945   | C19186                 | 28.493517   | 1.000000          | 291.12    | 0.00             |  |
| 8946   | C19187                 | 19.183215   | 1.000000          | 300.00    | 0.00             |  |
| 8947   | C19188                 | 23.398673   | 0.833333          | 144.40    | 0.00             |  |
| 8948   | C19189                 | 13.457564   | 0.833333          | 0.00      | 0.00             |  |
| 8949   | C19190                 | 372.708075  | 0.666667          | 1093.25   | 1093.25          |  |
| 8950 ı | 8950 rows × 18 columns |             |                   |           |                  |  |
| 4      |                        |             |                   |           | <b>&gt;</b>      |  |

#### In [2]:

```
#features
 2 # CUSTID: Identification of Credit Card holder
 3 # BALANCE: Balance amount left in customer's account to make purchases
4 # BALANCE_FREQUENCY: How frequently the Balance is updated, score between 0 and 1 (1
 5
   # PURCHASES: Amount of purchases made from account
 6 # ONEOFFPURCHASES: Maximum purchase amount done in one-go
   # INSTALLMENTS_PURCHASES: Amount of purchase done in installment
7
  # CASH_ADVANCE: Cash in advance given by the user
9
   # PURCHASES_FREQUENCY: How frequently the Purchases are being made, score between 0
10 # ONEOFF PURCHASES FREQUENCY: How frequently Purchases are happening in one-go (1 =
11 # PURCHASES_INSTALLMENTS_FREQUENCY: How frequently purchases in installments are bei
   # CASH ADVANCE_FREQUENCY: How frequently the cash in advance being paid
13 # CASH_ADVANCE_TRX: Number of Transactions made with "Cash in Advance"
14 # PURCHASES TRX: Number of purchase transactions made
15 # CREDIT_LIMIT: Limit of Credit Card for user
16 # PAYMENTS: Amount of Payment done by user
17 # MINIMUM_PAYMENTS: Minimum amount of payments made by user
18 # PRC_FULL_PAYMENT: Percent of full payment paid by user
19 # TENURE: Tenure of credit card service for user
```

#### In [3]:

1 creditcard\_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8950 entries, 0 to 8949
Data columns (total 18 columns):

| #  | Column                           | Non-Null Count | Dtype   |
|----|----------------------------------|----------------|---------|
|    |                                  |                |         |
| 0  | CUST_ID                          | 8950 non-null  | object  |
| 1  | BALANCE                          | 8950 non-null  | float64 |
| 2  | BALANCE_FREQUENCY                | 8950 non-null  | float64 |
| 3  | PURCHASES                        | 8950 non-null  | float64 |
| 4  | ONEOFF_PURCHASES                 | 8950 non-null  | float64 |
| 5  | INSTALLMENTS_PURCHASES           | 8950 non-null  | float64 |
| 6  | CASH_ADVANCE                     | 8950 non-null  | float64 |
| 7  | PURCHASES_FREQUENCY              | 8950 non-null  | float64 |
| 8  | ONEOFF_PURCHASES_FREQUENCY       | 8950 non-null  | float64 |
| 9  | PURCHASES_INSTALLMENTS_FREQUENCY | 8950 non-null  | float64 |
| 10 | CASH_ADVANCE_FREQUENCY           | 8950 non-null  | float64 |
| 11 | CASH_ADVANCE_TRX                 | 8950 non-null  | int64   |
| 12 | PURCHASES_TRX                    | 8950 non-null  | int64   |
| 13 | CREDIT_LIMIT                     | 8949 non-null  | float64 |
| 14 | PAYMENTS                         | 8950 non-null  | float64 |
| 15 | MINIMUM_PAYMENTS                 | 8637 non-null  | float64 |
| 16 | PRC_FULL_PAYMENT                 | 8950 non-null  | float64 |
| 17 | TENURE                           | 8950 non-null  | int64   |

dtypes: float64(14), int64(3), object(1)

memory usage: 1.2+ MB

# In [4]:

1 creditcard\_df.describe()

# Out[4]:

|       | BALANCE      | BALANCE_FREQUENCY | PURCHASES    | ONEOFF_PURCHASES | INSTALLI |
|-------|--------------|-------------------|--------------|------------------|----------|
| count | 8950.000000  | 8950.000000       | 8950.000000  | 8950.000000      | _        |
| mean  | 1564.474828  | 0.877271          | 1003.204834  | 592.437371       |          |
| std   | 2081.531879  | 0.236904          | 2136.634782  | 1659.887917      |          |
| min   | 0.000000     | 0.000000          | 0.000000     | 0.000000         |          |
| 25%   | 128.281915   | 0.888889          | 39.635000    | 0.000000         |          |
| 50%   | 873.385231   | 1.000000          | 361.280000   | 38.000000        |          |
| 75%   | 2054.140036  | 1.000000          | 1110.130000  | 577.405000       |          |
| max   | 19043.138560 | 1.000000          | 49039.570000 | 40761.250000     |          |
| 4     |              |                   |              |                  | •        |

### In [5]:

```
#visualizing null values
sns.heatmap(creditcard_df.isnull(), yticklabels = False, cbar = False, cmap="Blues")
```

# Out[5]:

#### <AxesSubplot: >



#### In [6]:

```
creditcard_df.isnull().sum()
Out[6]:
CUST_ID
                                       0
BALANCE
                                       0
BALANCE_FREQUENCY
                                       0
PURCHASES
                                       0
ONEOFF_PURCHASES
                                       0
                                       0
INSTALLMENTS_PURCHASES
CASH_ADVANCE
                                       0
PURCHASES_FREQUENCY
                                       0
ONEOFF PURCHASES FREQUENCY
                                       0
PURCHASES_INSTALLMENTS_FREQUENCY
                                       0
CASH_ADVANCE_FREQUENCY
                                       0
CASH_ADVANCE_TRX
                                       0
PURCHASES_TRX
                                       0
CREDIT_LIMIT
                                       1
PAYMENTS
                                       0
MINIMUM_PAYMENTS
                                     313
PRC_FULL_PAYMENT
                                       0
                                       0
TENURE
dtype: int64
In [7]:
    # Fill up the missing elements
    creditcard_df.loc[(creditcard_df['MINIMUM_PAYMENTS'].isnull() == True), 'MINIMUM_PAY
  3
In [8]:
 1 # Fill up the missing elements
    creditcard_df.loc[(creditcard_df['CREDIT_LIMIT'].isnull() == True), 'CREDIT_LIMIT']
In [9]:
 1 # checking duplicate values
    creditcard_df.duplicated().sum()
Out[9]:
```

0

# In [10]:

1 creditcard\_df.head()

# Out[10]:

|   | CUST_ID | BALANCE     | BALANCE_FREQUENCY | PURCHASES | ONEOFF_PURCHASES | INS. |
|---|---------|-------------|-------------------|-----------|------------------|------|
| 0 | C10001  | 40.900749   | 0.818182          | 95.40     | 0.00             |      |
| 1 | C10002  | 3202.467416 | 0.909091          | 0.00      | 0.00             |      |
| 2 | C10003  | 2495.148862 | 1.000000          | 773.17    | 773.17           |      |
| 3 | C10004  | 1666.670542 | 0.636364          | 1499.00   | 1499.00          |      |
| 4 | C10005  | 817.714335  | 1.000000          | 16.00     | 16.00            |      |
| 4 |         |             |                   |           |                  | •    |

# In [11]:

- 1 #droping feature
- 2 creditcard\_df.drop("CUST\_ID", axis = 1, inplace= True)
- creditcard\_df

# Out[11]:

|                        | BALANCE     | BALANCE_FREQUENCY | PURCHASES | ONEOFF_PURCHASES | INSTALLME |
|------------------------|-------------|-------------------|-----------|------------------|-----------|
| 0                      | 40.900749   | 0.818182          | 95.40     | 0.00             |           |
| 1                      | 3202.467416 | 0.909091          | 0.00      | 0.00             |           |
| 2                      | 2495.148862 | 1.000000          | 773.17    | 773.17           |           |
| 3                      | 1666.670542 | 0.636364          | 1499.00   | 1499.00          |           |
| 4                      | 817.714335  | 1.000000          | 16.00     | 16.00            |           |
|                        |             |                   |           |                  |           |
| 8945                   | 28.493517   | 1.000000          | 291.12    | 0.00             |           |
| 8946                   | 19.183215   | 1.000000          | 300.00    | 0.00             |           |
| 8947                   | 23.398673   | 0.833333          | 144.40    | 0.00             |           |
| 8948                   | 13.457564   | 0.833333          | 0.00      | 0.00             |           |
| 8949                   | 372.708075  | 0.666667          | 1093.25   | 1093.25          |           |
| 8950 rows × 17 columns |             |                   |           |                  |           |
| 4                      |             |                   |           |                  |           |

#### In [12]:

```
plt.figure(figsize=(10,50))
    for i in range(len(creditcard_df.columns)):
      plt.subplot((len(creditcard_df.columns)), 1, i+1)
 3
 4
      sns.distplot(creditcard_df[creditcard_df.columns[i]], kde_kws={"color": "b", "lw":
 5
      plt.title(creditcard_df.columns[i])
 6
 7
    plt.tight_layout()
 8
C:\Users\Pradeep\AppData\Local\Temp\ipykernel_25616\747322071.py:4: Use
rWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.1
4.0.
Please adapt your code to use either `displot` (a figure-level function
similar flexibility) or `histplot` (an axes-level function for histogra
ms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (http
s://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)
  sns.distplot(creditcard_df[creditcard_df.columns[i]], kde_kws={"colo
r": "b", "lw": 3, "label": "KDE"}, hist_kws={"color": "g"})
C:\Users\Pradeep\AppData\Local\Temp\ipykernel_25616\747322071.py:4: Use
rWarning:
```

# In [13]:

```
#correlation plot
f, ax = plt.subplots(figsize = (20, 20))
sns.heatmap(creditcard_df.corr(), annot = True)
4
```

# Out[13]:

#### <AxesSubplot: >



# In [14]:

```
#scaling the data
scaler = StandardScaler()
creditcard_df_scaled = scaler.fit_transform(creditcard_df)
```

# In [15]:

```
#elbow plot for no of clusters
 2
   scores_1 = []
 4
   range_values = range(1, 20)
 5
 6
   for i in range_values:
     kmeans = KMeans(n_clusters = i)
 7
      kmeans.fit(creditcard_df_scaled)
 8
 9
      scores_1.append(kmeans.inertia_)
10
plt.plot(scores_1, 'x-')
plt.title('Finding the right number of clusters')
13 plt.xlabel('Clusters')
14 plt.ylabel('Scores')
15 plt.show()
16
```

- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87

0: FutureWarning: The default value of `n\_init` will change from 10 to 'au
to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning
warnings.warn(

C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(

C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(

C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(





#### In [16]:

```
1 #apply KMEANS
2 kmeans = KMeans(8)
3 kmeans.fit(creditcard_df_scaled)
4 labels = kmeans.labels_
```

C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(

1.23631700e+00

#### In [17]:

```
print(kmeans.cluster centers .shape)
    print("centroid point\n", kmeans.cluster_centers_)
(8, 17)
centroid point
 [[-1.20442106e-01 4.02699267e-01 5.79851494e-01 7.03609956e-01
   7.81975316e-02 -3.33108401e-01 9.98102693e-01 1.91406317e+00
  2.13137767e-01 -4.22686809e-01 -3.36697878e-01 6.64851547e-01
  4.68463996e-01 1.72617202e-01 -1.56173965e-01 4.63366546e-01
  2.74995888e-011
 [-7.00762713e-01 -2.14030902e+00 -3.09740586e-01 -2.34356396e-01
  -3.01708455e-01 -3.20376411e-01 -5.53141715e-01 -4.41318119e-01
  -4.38249132e-01 -5.21411574e-01 -3.76356028e-01 -4.18151679e-01
  -1.73838959e-01 -1.91518868e-01 -2.56660487e-01 2.88039803e-01
  2.02767206e-01]
 [ 5.45478694e-03
                  4.03039463e-01 -3.54119574e-01 -2.38698657e-01
  -3.98669620e-01 -1.04268851e-01 -8.40918849e-01 -3.82633698e-01
  -7.51078473e-01 8.72301669e-02 -3.96464753e-02 -4.77542444e-01
  -3.07989926e-01 -2.53183607e-01 -1.31176639e-02 -4.55115693e-01
  2.73532981e-01]
 [ 1.10639616e+00 4.75193093e-01 2.59960254e+00 1.86486936e+00
  2.72075736e+00 -1.22047896e-01 1.16917640e+00 1.57834607e+00
  1.29097192e+00 -2.61630966e-01 -1.21752321e-01
                                                  3.25571270e+00
  1.34920399e+00 1.53000655e+00 6.17127927e-01 2.47010309e-01
  3.35231702e-01]
 [ 1.66021988e+00 3.96119231e-01 -2.22143812e-01 -1.57786787e-01
                  1.98178259e+00 -4.83145870e-01 -2.11910088e-01
  -2.35440730e-01
  -4.24003122e-01 1.91150544e+00 1.90809584e+00 -2.71298441e-01
  1.00452777e+00 7.89642588e-01 5.41194989e-01 -3.95893013e-01
  7.50189565e-02]
 [-3.58012219e-01 3.32525127e-01 -2.95407248e-02 -2.40512089e-01
  3.71816764e-01 -3.61514344e-01 9.96780085e-01 -3.80547652e-01
  1.20778087e+00 -4.71384129e-01 -3.59029975e-01 1.95018510e-01
  -2.59745161e-01 -2.12570099e-01 -2.98669130e-02 3.13075087e-01
  2.55465614e-01]
 [-3.34901439e-01 -3.49885235e-01 -2.87298367e-01 -2.12974259e-01
  -2.87679154e-01 6.80198997e-02 -2.03948289e-01 -2.84236496e-01
  -2.27466186e-01
                  3.07808330e-01 -1.79210756e-04 -3.87811550e-01
  -5.62208511e-01 -3.91666335e-01 -2.08921003e-01 1.27483622e-02
  -3.19766866e+001
 [ 1.86590651e+00 3.32878117e-01 1.25968437e+01
                                                  1.31111821e+01
  5.69638874e+00 -4.17760945e-03 1.03332159e+00 2.17063444e+00
  8.66220718e-01 -4.76183389e-01 -2.14853617e-01
                                                  4.56655817e+00
```

3.17419740e+00 8.99113558e+00 1.06481726e+00

2.95702050e-01]]

#### In [18]:

```
cluster_centers = pd.DataFrame(data = kmeans.cluster_centers_, columns = [creditcard
cluster_centers
```

### Out[18]:

|   | BALANCE   | BALANCE_FREQUENCY | PURCHASES | ONEOFF_PURCHASES | INSTALLMENTS_ |
|---|-----------|-------------------|-----------|------------------|---------------|
| 0 | -0.120442 | 0.402699          | 0.579851  | 0.703610         |               |
| 1 | -0.700763 | -2.140309         | -0.309741 | -0.234356        |               |
| 2 | 0.005455  | 0.403039          | -0.354120 | -0.238699        |               |
| 3 | 1.106396  | 0.475193          | 2.599603  | 1.864869         |               |
| 4 | 1.660220  | 0.396119          | -0.222144 | -0.157787        |               |
| 5 | -0.358012 | 0.332525          | -0.029541 | -0.240512        |               |
| 6 | -0.334901 | -0.349885         | -0.287298 | -0.212974        |               |
| 7 | 1.865907  | 0.332878          | 12.596844 | 13.111182        |               |
| 4 |           |                   |           |                  | <b>&gt;</b>   |

#### In [19]:

```
# In order to understand what these numbers mean, Let's perform inverse transformati
cluster_centers = scaler.inverse_transform(cluster_centers)
cluster_centers = pd.DataFrame(data = cluster_centers, columns = [creditcard_df.colucter_centers]
cluster_centers
```

# Out[19]:

|   | BALANCE     | BALANCE_FREQUENCY | PURCHASES    | ONEOFF_PURCHASES | INSTALLMENT |
|---|-------------|-------------------|--------------|------------------|-------------|
| 0 | 1313.784751 | 0.972666          | 2242.066489  | 1760.285787      |             |
| 1 | 105.896392  | 0.370251          | 341.439298   | 203.453753       |             |
| 2 | 1575.828506 | 0.972747          | 246.622905   | 196.246490       |             |
| 3 | 3867.345034 | 0.989840          | 6557.295728  | 3687.738545      |             |
| 4 | 5020.082361 | 0.971108          | 528.591155   | 330.543621       |             |
| 5 | 819.302614  | 0.956043          | 940.090620   | 193.236564       |             |
| 6 | 867.405752  | 0.794386          | 389.387444   | 238.943722       |             |
| 7 | 5448.201718 | 0.956126          | 27916.555652 | 22354.314348     |             |
| 4 |             |                   |              |                  | •           |

#### In [20]:

```
# concatenate the clusters labels to our original dataframe
creditcard_df_cluster = pd.concat([creditcard_df, pd.DataFrame({'cluster':labels})],
creditcard_df_cluster.head()
```

#### Out[20]:

|   | BALANCE     | BALANCE_FREQUENCY | PURCHASES | ONEOFF_PURCHASES | INSTALLMENT |
|---|-------------|-------------------|-----------|------------------|-------------|
| 0 | 40.900749   | 0.818182          | 95.40     | 0.00             |             |
| 1 | 3202.467416 | 0.909091          | 0.00      | 0.00             |             |
| 2 | 2495.148862 | 2 1.000000        | 773.17    | 773.17           |             |
| 3 | 1666.670542 | 0.636364          | 1499.00   | 1499.00          |             |
| 4 | 817.714335  | 1.000000          | 16.00     | 16.00            |             |
| 4 |             |                   |           |                  | •           |

#### In [21]:

```
# Obtain the principal components
pca = PCA(n_components=2)
principal_comp = pca.fit_transform(creditcard_df_scaled)
principal_comp
```

### Out[21]:

#### In [22]:

```
# Create a dataframe with the two components
pca_df = pd.DataFrame(data = principal_comp, columns =['pca1','pca2'])
pca_df.head()
```

#### Out[22]:

|   | pca1      | рса2      |
|---|-----------|-----------|
| 0 | -1.682221 | -1.076446 |
| 1 | -1.138298 | 2.506498  |
| 2 | 0.969681  | -0.383503 |
| 3 | -0.873629 | 0.043177  |
| 4 | -1.599434 | -0.688579 |

# In [23]:

```
# Concatenate the clusters labels to the dataframe
pca_df = pd.concat([pca_df,pd.DataFrame({'cluster':labels})], axis = 1)
pca_df.head()
```

# Out[23]:

|   | pca1      | pca2      | cluster |
|---|-----------|-----------|---------|
| 0 | -1.682221 | -1.076446 | 2       |
| 1 | -1.138298 | 2.506498  | 4       |
| 2 | 0.969681  | -0.383503 | 0       |
| 3 | -0.873629 | 0.043177  | 2       |
| 4 | -1.599434 | -0.688579 | 2       |

# In [24]:

```
plt.figure(figsize=(10,10))
ax = sns.scatterplot(x="pca1", y="pca2", hue = "cluster", data = pca_df, palette =['
plt.show()
```



#### In [25]:

```
from tensorflow.keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, Ba
   from tensorflow.keras.models import Model, load_model
   from tensorflow.keras.initializers import glorot_uniform
   from keras.optimizers import SGD
 5
 6
   encoding_dim = 7
7
8
   input_df = Input(shape=(17,))
9
10
11
   # Glorot normal initializer (Xavier normal initializer) draws samples from a truncat
12
   x = Dense(encoding_dim, activation='relu')(input_df)
13
   x = Dense(500, activation='relu', kernel_initializer = 'glorot_uniform')(x)
   x = Dense(500, activation='relu', kernel_initializer = 'glorot_uniform')(x)
15
16
   x = Dense(2000, activation='relu', kernel_initializer = 'glorot_uniform')(x)
17
   encoded = Dense(10, activation='relu', kernel_initializer = 'glorot_uniform')(x)
18
19
   x = Dense(2000, activation='relu', kernel_initializer = 'glorot_uniform')(encoded)
20
21
   x = Dense(500, activation='relu', kernel_initializer = 'glorot_uniform')(x)
22
   decoded = Dense(17, kernel_initializer = 'glorot_uniform')(x)
23
24
25
   # autoencoder
   autoencoder = Model(input_df, decoded)
26
27
   #encoder - used for our dimention reduction
28
29
   encoder = Model(input_df, encoded)
30
31
   autoencoder.compile(optimizer= 'adam', loss='mean_squared_error')
32
```

#### In [26]:

```
autoencoder.fit(creditcard df scaled, creditcard df scaled, batch size = 128, epochs
Epoch 1/25
Epoch 2/25
70/70 [============= ] - 3s 43ms/step - loss: 0.2705
Epoch 3/25
Epoch 4/25
70/70 [=============== ] - 3s 44ms/step - loss: 0.1836
Epoch 5/25
Epoch 6/25
Epoch 7/25
70/70 [============== ] - 3s 46ms/step - loss: 0.1321
Epoch 8/25
70/70 [============== ] - 4s 58ms/step - loss: 0.1238
Epoch 9/25
Epoch 10/25
Epoch 11/25
70/70 [============== ] - 3s 47ms/step - loss: 0.1081
Epoch 12/25
Epoch 13/25
Epoch 14/25
70/70 [============= ] - 3s 40ms/step - loss: 0.0900
Epoch 15/25
Epoch 16/25
Epoch 17/25
70/70 [=============== ] - 3s 42ms/step - loss: 0.0789
Epoch 18/25
70/70 [================ ] - 3s 41ms/step - loss: 0.0712
Epoch 19/25
Epoch 20/25
70/70 [=============== ] - 3s 40ms/step - loss: 0.0664
Epoch 21/25
70/70 [=============== ] - 3s 47ms/step - loss: 0.0646
Epoch 22/25
Epoch 23/25
Epoch 24/25
Epoch 25/25
```

#### Out[26]:

<keras.callbacks.History at 0x218ceb769a0>

# In [27]:

```
pred = encoder.predict(creditcard_df_scaled)
print(len(pred))
```

280/280 [=========] - 2s 7ms/step 8950

# In [28]:

```
scores_2 = []
 2
 3
   range_values = range(1, 20)
 5
   for i in range_values:
    kmeans = KMeans(n_clusters= i)
 6
 7
     kmeans.fit(pred)
     scores_2.append(kmeans.inertia_)
 8
 9
10 plt.plot(scores_2, 'bx-')
plt.title('Finding right number of clusters')
12 plt.xlabel('Clusters')
13 plt.ylabel('scores')
14 plt.show()
```

- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
  0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(
- C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87

0: FutureWarning: The default value of `n\_init` will change from 10 to 'au
to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning
warnings.warn(

C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(

C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(

C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(



#### In [29]:

```
plt.plot(scores_1, 'bx-', color = 'r')
plt.plot(scores_2, 'bx-', color = 'g')
```

C:\Users\Pradeep\AppData\Local\Temp\ipykernel\_25616\3067751309.py:1: UserW arning: color is redundantly defined by the 'color' keyword argument and the fmt string "bx-" (-> color='b'). The keyword argument will take precede nce.

plt.plot(scores\_1, 'bx-', color = 'r')

C:\Users\Pradeep\AppData\Local\Temp\ipykernel\_25616\3067751309.py:2: UserW arning: color is redundantly defined by the 'color' keyword argument and the fmt string "bx-" (-> color='b'). The keyword argument will take precede nce.

plt.plot(scores\_2, 'bx-', color = 'g')

#### Out[29]:

[<matplotlib.lines.Line2D at 0x218d08d96d0>]



# In [30]:

```
1 kmeans = KMeans(4)
2 kmeans.fit(pred)
3 labels = kmeans.labels_
4 y_kmeans = kmeans.fit_predict(creditcard_df_scaled)
```

C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(

C:\Users\Pradeep\anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:87
0: FutureWarning: The default value of `n\_init` will change from 10 to 'au to' in 1.4. Set the value of `n\_init` explicitly to suppress the warning warnings.warn(

#### In [31]:

```
df_cluster_dr = pd.concat([creditcard_df, pd.DataFrame({'cluster':labels})], axis =
df_cluster_dr.head()
```

#### Out[31]:

|   | BALANCE     | BALANCE_FREQUENCY | PURCHASES | ONEOFF_PURCHASES | INSTALLMENT |
|---|-------------|-------------------|-----------|------------------|-------------|
| 0 | 40.900749   | 0.818182          | 95.40     | 0.00             | _           |
| 1 | 3202.467416 | 0.909091          | 0.00      | 0.00             |             |
| 2 | 2495.148862 | 1.000000          | 773.17    | 773.17           |             |
| 3 | 1666.670542 | 0.636364          | 1499.00   | 1499.00          |             |
| 4 | 817.714335  | 1.000000          | 16.00     | 16.00            |             |
| 4 |             |                   |           |                  | •           |

#### In [32]:

```
pca = PCA(n_components=2)
prin_comp = pca.fit_transform(pred)
pca_df = pd.DataFrame(data = prin_comp, columns =['pca1','pca2'])
pca_df.head()
```

# Out[32]:

|   | pca1      | pca2      |
|---|-----------|-----------|
| 0 | -1.792409 | -0.329980 |
| 1 | 0.594816  | 1.449199  |
| 2 | -0.427213 | -0.965590 |
| 3 | -0.833271 | 0.035266  |
| 4 | -1.744368 | -0.176150 |

#### In [33]:

```
pca_df = pd.concat([pca_df,pd.DataFrame({'cluster':labels})], axis = 1)
pca_df.head()
```

# Out[33]:

|   | pca1      | pca2      | cluster |
|---|-----------|-----------|---------|
| 0 | -1.792409 | -0.329980 | 0       |
| 1 | 0.594816  | 1.449199  | 1       |
| 2 | -0.427213 | -0.965590 | 0       |
| 3 | -0.833271 | 0.035266  | 0       |
| 4 | -1.744368 | -0.176150 | 0       |

# In [34]:

```
plt.figure(figsize=(10,10))
ax = sns.scatterplot(x="pca1", y="pca2", hue = "cluster", data = pca_df, palette =['
plt.show()
```



# In [ ]:

1