

Pragmatic Deep Learning for image labelling
- An application to a travel recommendation engine

主讲人: Dataiku数据科学家 Alexandre Hubert

Outline

▲ Introduction and Context

AKA: Image for BI on steroids

Dataiku

Data Science Software Editor of *Dataiku DSS*

- Founded in 2013
- 90 + employees, 100 + clients
- Paris, New-York, London, San Francisco, Singapore

Key Figures

E-business vacation retailer

Negotiate the best prize for their clients

Discount luxury

18 Millions of clients.Hundreds of sales opened everyday

Sale Image is paramount Purchase is impulsive

Specificities

République Dominicaine / Punta Cana

Bonheurs pour petits et grands avec réductions enfant Hôtel Dreams Palm Beach Punta Cana 5*

Pérou / Lima, Lac Ticaca, Machu Picchu

Aventures mythiques en Terre Inca

A partir de 1 689 €

Highly temporary sales

- -> Classical recommender system fail
- -> Time event linked (Christmas, ski, summer)

Expensive Product

-> Few recurrent buyers

Circuit Les Merveilles du Pérou en 8 nuits

-> Appearance counts a lot

Iterative Building of a Recommender System

Basic Recommendation Engines

COLLABORATIVE FILTERING

CONTENT BASED

Other Factors

POPULARITY

Liked by many, recommend to all!

RETARGETING

EXTERNAL FACTORS

One Meta Model to Rule Them All

Machine learning to optimize purchasing probability

Recommender system for Home Page Ordering

UBatch Scoring every night

Why use Image?

A picture is worth a thousand words

We want do distinguish

« Ski »

« Sun and Beach »

Integrating Image Information

Image Labelling For Recommendation Engine

Pragmatic Deep learning for "Dummies"

Using Deep Learning models

Common Issues

"I don't have a deep leaning expert"

"I don't have labelled data" (or too few)

"I don't have the time to wait for model training"

Solution 1 : Pre trained models

"I don't have (or few) labelled data"

-> Is there similar data?

US

PLACES DATABASE

205 categories 2.5 M images

SUN DATABASE

307 categories 110 K images

Solution 1 : Pre trained models

If there is open data, there is an open pre trained model!

- Kudos to the community
- Check the licensing

Example with Places (Caffe Model Zoo):

swimming_pool/outdoor: 0.65

inn/outdoor: 0.06

tower: 0.53 skyscraper: 0.26

Solution 2: Transfer Learning

Solution 2: Transfer Learning

Leverage existing knowledge!

Post Treatment & Results

Using Images information for BI on steroids

(Or how we transfer the labelling information)

Labels post-processing

Issue with our approach:

Complementary information

	label	proba
0	islet	0.432458
1	coast	0.198517
2	sandbar	0.164784
3	ocean	0.084271
4	sky	0.059474

Redondant information

	label	proba
0	conference_center	0.334199
1	conference_room	0.317581
2	auditorium	0.203089
3	ballroom	0.091975
4	banquet_hall	0.038570

Solution: NMF Matrix Factorization

Dimension Reduction Sparsity Balancedness Explicability

Image content detection

Topic scores determine the importance of topics in an image

TOPIC	TOPIC SCORE (%)
Golf course – Fairway – Putting green	31
Hotel – Inn – Apartment building outdoor	30
Swimming pool – Lido Deck – Hot tub outdoor	22
Beach – Coast - Harbor	17

TOPIC	TOPIC SCORE (%)
Tower – Skyscraper – Office building	62
Bridge – River – Viaduct	38

Results?

1) Visits:

- France and Morocco
- Pool displayed

2) First Recommendation

- Mostly France & Mediterranean
- Fails to display pools

3) Only Images recommendation

- Pool all around the world
- Does not respect budget
- 4) Third column = Right Mix

Orecom)

1)

2)

3)

Conclusion

Do iterative data science!

Start simple and grow Evaluate at each steps Image labelling = BI on steroids

Deep Learning

Don't start from scratch!
Is there existing data?
Is there a pre-trained model?

Transfer Learning

Kick-start your project Gain time and money Any Data Scientist can do it

What's next?

Learned along the way

For ski sales, indoor pictures performs better

Attractiveness = % visits with tag / % sales with tag

What's Next?

Kenya

Berlin

What's Next? Customize the Image!

Kenya

Prague

Berlin

Cambodia

Thank you for your attention!

