Seminario 1. Problemas del tema 1

Electrónica Digital

Prof. Juan J. Pombo García

Aplicación

Robot "sigue-líneas" simplificado

Diseñar un circuito de control con lógica combinacional para esta aplicación Dar una solución que sólo utilice puertas NAND de 2 entradas

Cuestiones de álgebra booleana (I)

$$a+0 = \underline{a}$$

$$a \cdot 0 = \underline{0}$$

$$a+a = \underline{1}$$

$$a+a = \underline{a}$$

$$a+ab = \underline{a} \cdot (1+b) = \underline{a} \cdot 1 = \underline{a}$$

$$a+ab = (\underline{a}+\overline{a}) \cdot (\underline{a}+b) = \underline{a}+b$$

$$a(\overline{a}+b) = (\underline{a}+\overline{a}) \cdot b = \underline{b}$$

$$ab+ab = (\underline{a}+\overline{a}) \cdot b = \underline{b}$$

$$(\overline{a}+\overline{b})(\overline{a}+b) = \overline{a}+(\overline{b}+b) = \overline{a}$$

Cuestiones de álgebra booleana (II)

$$y + y\overline{y} = \underline{\qquad}$$

$$xy + x\overline{y} = \underline{\qquad} \times (\underline{y} + \overline{y}) = \underline{\times}$$

$$x + y\overline{x} = \underline{\qquad} \times (\underline{d} + \underline{y}) = \overline{\times}$$

$$(w + x + y + z)y = \underline{y} + \underline{w} + \overline{z} + \underline{z} + \underline{z$$

Cuestiones de álgebra booleana (III)

$$(x + \overline{y})(x + y) = \underline{\times} + (\overline{\gamma} \cdot \underline{\gamma}) = \underline{\times}$$

$$w + [w + (wx)] = \underline{w}$$

$$x[x + (xy)] = \underline{\times}$$

$$\overline{(x + \overline{x})} = \overline{\overline{\times}} \cdot \overline{\overline{\times}} = \underline{\times} \cdot \underline{\times} = \underline{\times}$$

Convertir a sumas de productos (I)

$$(x+y+z)(\overline{x}+z) =$$

$$\times \cdot \overline{y} + \times \cdot \overline{z} + y \cdot \overline{x} + y \cdot \overline{z} + z \cdot \overline{z} =$$

$$y \cdot \overline{x} + z \cdot (x+y+\overline{x}+1) =$$

$$y \cdot \overline{x} + z \cdot (x+y+\overline{x}+1) =$$

Convertir a sumas de productos (II)

$$(\overline{x} + y + z) \cdot (\overline{y} + z) =$$

$$(\overline{z} \cdot \overline{y} \cdot \overline{z}) \cdot (\overline{y} + z) = \times \cdot \overline{y} \cdot \overline{z} \cdot \overline{y} + \times \cdot \overline{y} \cdot \overline{z} =$$

$$\times \cdot \overline{y} \cdot \overline{z}$$

Convertir a sumas de productos (III)

$$\overline{xyz}.\overline{xyz} =$$

$$(\overline{x} + \overline{y} + \overline{z}) \cdot (\overline{x} + \overline{y} + \overline{z}) =$$

$$\overline{x} + \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z} + \overline{y} \cdot \overline{x} + \overline{z} \cdot \overline{y} + \overline{z} \cdot \overline{z} =$$

$$L. \text{ de abs.} (\overline{z} + (\overline{z} \cdot \overline{y}) + ...)$$

$$= \overline{x} \cdot \overline{y} + \overline{y} \cdot \overline{x} + \overline{z}$$

Sistemas de numeración

El sistema decimal:

3586.265

$$3586 = 6 \times 100 + 8 \times 101 + 5 \times 102 + 3 \times 103 = 6 + 80 + 500 + 3000 = 3586$$

 $265 = 2 \times 10^{-1} + 6 \times 10^{-2} + 5 \times 10^{-3} = 0.2 + 0.06 + 0.005 = 0.265$

Convertir de binario a decimal:

1001:
$$4.2^3 + 0.2^7 + 0.2^7 + 1.2^6 = 9$$

1001.0101:
$$1.2^{3} + 0.2^{7} + 0.2^{7} + 1.2^{9} + 0.2^{7} + 1.2^{7} + 0.2^{7} + 1.2^{7} + 1.2^{7} = 9^{1} 3125$$

Sistemas de numeración

Convertir a binario.

Diseño: Circuito conversor de binario a Gray (I)

D[Binary				Gray Code			
	b_3	b_2	b_1	b_0	g ₃	g ₂	g_1	g ₀
۵	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	1	1	1	1
11	1	0	1	1	1	1	1	0
12	1	1	0	0	1	0	1	0
13	1	1	0	1	1	0	1	1
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	0	0	0
		-	0.0					

Diseño: Ahora Gray a Binario

Binary				Gray Code			
b_3	b_2	b_1	b_0	g ₃	g_2	g_1	g ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

Conversión inversa

Código Gray

Aplicaciones del código Gray:

- Conversores analógico-digital
- Corrección de errores en comunicaciones digitales
- Encoders de posición
- Minimización de circuitos

No aplicable:

- No apto como representación numérica estándar por ser poco adecuado para aritmética.

Obtener circuito

а	b	С	S
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	0
1	1	1	0

A partir de la tabla de verdad obtener la expresión booleana, simplificar y obtener un circuito sólo con puertas NAND

