

Interpolation in First-Order Logic with Equality

Bernhard Mallinger

Technische Universität Wien Institut für diskrete Mathematik und Geometrie Forschungsgruppe: Computational Logic Betreuer: Ass.Prof. Stefan Hetzl

Masterstudium: Computational Intelligence

Craig Interpolation

Theorem (Craig). Let A and B be first-order formulas such that $\models A \supset B$ where A contains red and gray symbols and B contains of blue and gray symbols. Then there is an interpolant I containing of gray symbols for A and B such that:

- $ightharpoonup \models A \supset I$
- $\vdash I \supset B$

⇒ Interpolants give a concise logical summary of the implication

Applications of Craig Interpolation

Theoretical:

Proof of Beth's Definability Theorem

Practical:

- Program analysis: Detect loop invariants
- Model checking: Overapproximate set of reachable states

Aim and Scope of the Thesis

Give comprehensive account of existing techniques and extend them:

- Model-theoretic proof
- Reduction to first-order logic without equality
- Interpolant extraction from resolution proofs

Model-theoretic proof

- Non-constructive proof:
 - Let T_A and $T_{\neg B}$ be theories extending A and $\neg B$
 - ▶ Build model from maximal consistent intersection of T_A and $T_{\neg B}$ (assuming the non-existence of interpolants) $\Rightarrow A \land \neg B$ satisfiable
- ► Related to Robinson's Joint Consistency Theorem

Reduction to first-order logic without equality [1]

Translate equality and function symbols:

Add theory of equality:

$$arphi \; o \; T_E \supset arphi^*$$

⇒ Then calculate interpolant in reduced logic

Interpolant extraction from proofs in two phases [2]

Proof:

Extract propositional interpolarity polant structure from proof

Propositional Interpolant:

 $\dots Q(f(c),c)\dots$

Replace colored function and constant symbols

Prenex
First-Order
Interpolant:

 $\exists x_3 \forall x_5 \dots Q(x_5, x_3) \dots$

Interpolant extraction from proofs in one phase

Proof:

Non-Prenex

First-Order

Interpolant:

Contributions

- We introduced the one phase extraction approach.
- We showed that the number of quantifier alternations in the interpolant corresponds to the number of color alternations in terms.

References

William Craig. Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem. *Journal of Symbolic Logic*, 22(3):250–268, 1957.

Kontakt: b.mallinger@gmx.at