OLEDS

EIN VORTRAG VON STEVEN BECKER

AGENDA

- Was sind organische Festkörper?
- Was sind organische Halbleiter?
- Funktionsprinzip von OLEDS
- Optimierung von OLEDS
- OLEDS in der Anwendung

ORGANISCHE FESTKÖRPER

Verbindungen mit C-Atomen als wesentlichen Strukturelementen die π -Elektronensysteme im Gerüst enthalten

Hier einen Benzolring reinmalen

π -ELEKTRONENSYSTEME

Ethene

SP² - HYBRIDISIERUNG

C - Grundzustand

$$1s^22s^22p^2$$

sp² – Hybridisierung

HYBRIDISIERUNG VON ETHENE

sp - Orbitale

HYBRIDISIERUNG VON ETHENE

p - Orbitale

ORGANISCHE HALBLEITER

2 Arten von organischen Halbleitern

Soll ich hier noch eine Abbildung von Polymer und Polymere reinpacken?

ORGANISCHE HALBLEITER

- Van der Waals gebunden
- Valenzband -- Highest Occupied Molecular Orbital (HOMO)

• Leitungsband -- Lowest Unoccupied Molecular Orbital (LUMO)

HOMO & LUMO von Ethene²

ANREGUNGSZUSTÄNDE

Physics of Organic Semiconductors, Wolfgang Brütting, 2005, Wiley-VCH; 2. Molecular Orbital Analysis of Ethene Dimerisation, Dr. Ian Hunt, University of Calgary, http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch10/ch10-6-4.html