Univerzální modul pro operační zesilovače

Jakub Kákona, kaklik@mlab.cz 29. srpna 2016

Abstrakt

Vstupní modul s ochranou proti vysokému napětí. Může být použit v režimu se společnou zemí či s galvanickým oddělením. Je použitelný jak pro digitální, tak i pro analogové signály.

Obsah

1	Technické parametry	2
2	Popis konstrukce 2.1 Zapojení	
3	Výroba a testování 3.0.1 Osazení	4

1 Technické parametry

Parametr	Hodnota	Poznámka
Napájecí napětí Ext.POWER	5 až 12V	

2 Popis konstrukce

2.1 Zapojení

Modul konstrukčně umožňuje realizaci různých zapojení signálních vstupů. Konkrétní volba zapojení je na znalostech konstruktéra. Schéma modulu obsahuje pouze konstrukčně uvažované zapojení součástek.

2.2 Mechanická konstrukce

Modul klasicky předpokládá uchycení na čtyřech šroubech. Tento způsob uchycení může být problematický v případech, kdy hrozí časté vypojování a zapojování vodičů v prostřední části modulu. V takovém případě opora krajních šroubů proti základní desce nemusí být dostatečná a je vhodné modul dodatečně podložit například vytištěným plastovým dílem.

3 Výroba a testování

Plošný spoj je navržen jak pro ruční pájení, tak i pro osazování pomocí pasty. Modul se testuje optickou kontrolou spojů a následným připojením na laboratorní zdroj s omezením proudu.

3.0.1 Osazení

Modul je možné osadit i ručně. Rozložení součástek je na Obr. 1. Pozice vyhrazené pro součástky v pouzdru 0805 lze použít i vícenásobně, což znamená, že například kondenzátory a rezistory lze letovat na sebe. Toto řešení usnadňuje realizaci dolních propustí a dalších zapojení kde jsou využity paralelní RC obvody.

Obrázek 1: Osazovací plán horní a spodní strany plošného spoje

Pro ukázku jsou zde uvedeny dvě základní možnosti osazení modulu. První varianta uvedená v tabulce 1 je určena pro realizaci digitálního galvanicky odděleného vstupu.

Takové zapojení je užitečné v případech, kde máme digitální signalizační signál vyvedený z nějakého průmyslového čidla. Ten má proto dobře definované logické úrovně, ale vzhledem k provoznímu prostředí na něm mohou být nebezpečné poruchy. Mikrokontrolér je potřeba před temito často vysokonapěťovými poruchami chránit a k tomu slouží právě toto zapojení.

Druhé možné zapojení v tabulce 2 má podobné ochranné vlastnosti jako to předchozí, ale místo digitálního výstupu se na vstup připojuje mechanický spínač. Takový případ vyžaduje odlišné zapojení, protože je to pasivní signální prvek a navíc kontakty mechanického spínače musí být pro dobrý kontakt čištěny proudem. K tomu slouží kapacita, která se nabíjí na napájecí napětí a při sepnutí spínače se vybije do odporů kontaktů, kde způsobí proudouvý náraz, který vede k velmi slabému natavení kontaktů a jejich lepšímu spojení. Takovým způsobem pak k modulu lze připojovat i velmi masivní spínače určené pro výkonové aplikace, nebo standardní nástěnné světelné spínače. Minimální vhodná velikost kapacit osazených v modulu ale samozřejmě závisí na rozměrech kontaktů. Hodnota uvedená v tabulce je vyzkoušena pro běžný nástenný světelný spínač.

Počet	Označení	Тур	Pouzdro
8	-	C1,C2,C3,C4,C5,C6,C7,C8	C0805
8	P6SMB13A	D1,D3,D5,D7,D9,D11,D13,D15	SMB
8	LED3mm/SMD	D2,D4,D6,D8,D10,D12,D14,D16	LED3
1	JUMP2X3	J1	JUMP2X3
9	ARK210/2	J2,J4,J6,J8,J10,J12,J14,J16,J18	ARK210/2
1	-	Ј3	JUMP2X4
8	JUMP2X1	J19,J20,J21,J22,J23,J24,J25,J26	JUMP2X1
8	LTV357T_SMD	Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8	MFSOP6
1	-	R1	R1206
8	10k	R2,R9,R14,R23,R28,R37,R42,R49	R0805
8	-	R3,R10,R15,R24,R29,R38,R45,R52	R0805
8	10	R4,R11,R18,R25,R32,R39,R46,R53	R0805
8	1k	R5,R12,R19,R26,R33,R40,R47,R54	R0805
8	-	R6,R13,R20,R27,R34,R41,R48,R55	R0805
8	-	R7,R16,R21,R30,R35,R43,R50,R56	R1206

Tabulka 1: Seznam součástek pro případ zapojení galvanicky odděleného digitálního vstupu.

Reference

Počet	Označení	Тур	Pouzdro
8	470nF	C1,C2,C3,C4,C5,C6,C7,C8	C0805
8	P6SMB13A	D1,D3,D5,D7,D9,D11,D13,D15	SMB
8	LED3mm/SMD	D2,D4,D6,D8,D10,D12,D14,D16	LED3
1	JUMP2X3	J1	JUMP2X3
9	ARK210/2	J2,J4,J6,J8,J10,J12,J14,J16,J18	ARK210/2
1	JUMP2X4	Ј3	JUMP2X4
8	JUMP2X1	J19,J20,J21,J22,J23,J24,J25,J26	JUMP2X1
8	LTV357T_SMD	Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8	MFSOP6
1	0R	R1206	
8	10k	R2,R9,R14,R23,R28,R37,R42,R49	R0805
8	1k	R3,R10,R15,R24,R29,R38,R45,R52	R0805
8	10	R4,R11,R18,R25,R32,R39,R46,R53	R0805
8	1k	R5,R12,R19,R26,R33,R40,R47,R54	R0805
8	_	R6,R13,R20,R27,R34,R41,R48,R55	R0805
8	1k	R7,R16,R21,R30,R35,R43,R50,R56	R1206

Tabulka 2: Seznam součástek pro případ připojení mechanického spínače.