MAT02026 - Inferência B

Lista 4 - TRV assintótico. IC como testes, valor p e RVM

Exercício 1 Seja X_1 uma única observação obtida da distribuição $Beta(\theta,1)$

- a) Mostre que X_1^{θ} é uma quantidade pivotal.
- b) Construa um intervalo com 95% de confiança utilizando a quantidade pivotal X_1^{θ} .
- c) Assuma *a piori* $\theta \sim Gama(\alpha = 1, \beta)$, encontre um intervalo 1α de credibilidade para θ . Compare os intervalos.
- d) Comente sobre as suposições para construirmos intervalos segundo as duas abordagens.
- e) Teste de hipóteses frequentistas e bayesianos também podem ser construídos com base nos intervalos de confiança e de credibilidade, respectivamente. Gere uma amostra de tamanho n=1 da distribuição Beta(1,5;1) e teste a hipótese $H_0: \theta=1$ contra $H_1: \theta \neq 1$.
- f) Calcule o valor p para os testes acima. Justifique os cálculos e interprete os valores p.

Exercício 2 Quiz sobre valor p.

- a) Qual o significado do valor p na prática? Como a ciência tem utilizado o valor p para criar suas teorias? Cite exemplos.
- b) Porque o uso do valor p tem sido muito criticado recentemente?
- c) Qual sua conclusão sobre o problema. Indique alternativas ao valor p.

Exercício 3 Seja X_1, \ldots, X_n uma amostra aleatória de uma população com distribuição $N(\mu, \sigma^2)$

- a) Se μ é desconhecido e σ^2 , mostre que $Z=\sqrt{n}(\overline{X}-\mu_0)/\sigma$ é um teste de Wald para $H_0:\mu=\mu_0$.
- b) Se σ^2 é desconhecido e μ é conhecido, encontre a Estaistica de Wald para testar $H_0: \sigma = \sigma_0$.

Exercício 4 Seja X_1, \ldots, X_n uma amostra aleatória da distribuição Exponencial (θ) , suponha que queremos testar $H_0: \theta \leq 1$.

- a) Mostre que o TRV rejeita H_0 quando $\sum X_i < c$.
- b) Qual o valor de c para $\alpha = 0.05$.
- c) Construa o teste assintótico da razão de verossimilhança e o teste de Wald e compare com o teste exato.
- d) Gere aleatoriamente uma amostra de n=20 e $\theta=1.5$ de uma distribuição exponencial. Calcule os testes de Wald, verosmilhança assintótico e teste de verossimilhança exato para essa amostra. Repita o experimento 100 vezes e indique quantas vezes rejeita-se a H_0 a um nível de significância de 5%. Compare os resultados.

Exercício 5 Seja X_1, \ldots, X_n uma amostra aleatória de uma distribuição de Poisson (λ) .

a) Seja $\lambda_0>0,$ encontre um teste de Wald de tamanho α para

$$H_0: \lambda = \lambda_0 \text{ versus } H_1: \lambda \neq \lambda_0$$

- b) Calcule o TRV para as hipóteses acima.
- c) Calcule o TRV assintótico para as hipóteses acima.
- d) Calcule o Teste de Wald para as hipóteses acima.
- e) Seja $\lambda = 1$ e $\lambda_0 = 0.8$, n = 20 e $\alpha = 0.05$. Simule X_1, X_2, \ldots, X_n de uma distribuição de Poisson (λ) e calcule os testes acima. Repita esse procedimento 100 vezes, calcule quantas vezes a hipótese nula foi rejeitada. Qual o valor do do erro tipo I para cada um dos testes?

Exercício 6 Verifique se as as distribuicoes dos exercícios 3, 4 e 5 possuem razão de verossimilhança monótona.

Exercício 7 Construa o teste uniformemente mais poderoso de tamanho α para:

- 1. Exercício 3 letra a, em que $H_0: \mu \leq \mu_0$.
- 2. Exercício 4, em que $H_0: \theta \leq 1$.
- 3. Exercício 5 em que $H_0: \lambda \leq \lambda_0$.