Übungsblatt 2 – Vorgehensmodelle

Luca M. Schmidt

1. V-Modell für Papierfliegerproduktion

Firma: Grenzebach BSH GmbH Logo: Grenzebach BSH GmbH Corporate Design Logo Nr. 3 Farben: Blau und Silber

Projektplan

- Projektziel: Herstellung eines Papierfliegers gemäß bereitgestellter Anleitung, bestehend aus Hauptkörper und Heckleitwerk, mit Logo/Farben der Grenzebach BSH GmbH
- Ressourcen: 1 Blatt DIN A4 Papier, Schere, Stifte/Drucker für Logo/Farben
- Vorgehen: Anwendung des V-Modells
- Zeitrahmen: ca. 30 Minuten (gemäß Aufgabenstellung)

Liste der Anforderungen (Systemspezifikation)

- V-1: Der Flieger muss exakt nach der gegebenen schriftlichen Anleitung gefaltet werden
- V-2: Benötigtes Material ist 1 Blatt DIN A4 Papier und eine Schere
- V-3: Der Flieger besteht aus zwei Teilen: Hauptkörper (aus Quadrat gefaltet) und Heckleitwerk (aus abgeschnittenem Streifen gefaltet)
- V-4: Der Flieger muss das Logo der Grenzebach BSH GmbH (in schwarz/rot) tragen
- V-5: Der Flieger soll nach Fertigstellung grundlegende Gleitflugeigenschaften besitzen

Systemarchitektur

- Komponente 1: Hauptkörper/Flügel
- · Funktion: Erzeugt Auftrieb, bildet die Grundstruktur
- Basis: Quadratisches Papierstück, gefaltet nach Schritten 1-15 der Anleitung
- Schnittstelle: Aufnahmeöffnung für Heckleitwerk
- Komponente 2: Heckleitwerk/Schwanz
- · Funktion: Stabilisiert den Flug
- Basis: Papierstreifen (Rest vom DIN A4 Blatt), gefaltet nach Schritten 16-21 der Anleitung.
- Schnittstelle: Spitze zum Einführen in Komponente 1
- **Design:** Logo/Farben werden auf dem Papier angebracht (z.B. vor dem Falten auf das spätere Quadrat drucken oder nach dem Falten aufmalen)

Testspezifikation der Module (Beispiele)

- Modul: Hauptkörper/Flügel
- MF-1: Prüfung der Faltung zum Quadrat (exakte Kanten)
- MF-2: Prüfung der korrekten Faltung der "Ziehharmonika"-Struktur (Falten 3 auf 1, 4 auf 2, 5 auf 1)
- MF-3: Prüfung der korrekten Faltung der Spitzen zur Mitte
- Modul: Heckleitwerk/Schwanz
- MS-1: Prüfung der korrekten Dimensionen des abgeschnittenen Streifens
- MS-2: Prüfung der korrekten Faltung des Streifens (Halbierung, Spitzen zur Mittellinie)
- MS-3: Prüfung der Form der Spitze für das Einführen

Testspezifikation des Systems (Beispiele)

- SP-1 (Integrationstest): Das Heckleitwerk lässt sich korrekt und bis zur vorderen Spitze in den Hauptkörper einschieben und sitzt fest
- SP-2 (Validierung Design): Visuelle Prüfung: Logo und Farben sind korrekt platziert und sichtbar
- SP-3 (Funktionstest): Flugtest: Flieger wird gerade gehalten und geworfen. Beobachtung: Gleitet der Flieger über eine kurze Distanz (z.B. > 2 Meter)?
- SP-4 (Vollständigkeitstest): Alle Faltschritte der Anleitung wurden sichtbar umgesetzt

Abnahme-Report (Beispiele)

- Abnahmekriterium AK-1: Flieger entspricht der Anleitung und besteht aus 2 Teilen (V-1, V-3). Ergebnis:
- Bestanden / Nicht Bestanden
- Abnahmekriterium AK-2: Logo und Farben der AeroFalz GmbH sind korrekt angebracht (V-4). Ergebnis: Bestanden / Nicht Bestanden
- Abnahmekriterium AK-3: Integration der Teile erfolgreich (SP-1). Ergebnis: Bestanden / Nicht Bestanden
- Abnahmekriterium AK-4: Grundlegende Flugfähigkeit nachgewiesen (SP-3). Ergebnis: Bestanden / Nicht Bestanden
- Gesamturteil: Produkt abgenommen / Produkt nicht abgenommen (mit Begründung)

2. Inkrementelle Softwareentwicklung

a. Warum ist sie so gut für Geschäftssysteme?

- Schneller Nutzen: Wichtige Funktionen kommen rasch zum Einsatz, was einen schnelleren Return on Investment ermöglicht
- Anpassungsfähigkeit: In der Geschäftswelt ändern sich Anforderungen ständig inkrementelle Entwicklung passt sich diesen Änderungen viel leichter an
- Frühes Feedback: Nutzer können schon früh mit dem System arbeiten und wertvolles Feedback geben, bevor man zu weit in die falsche Richtung läuft
- Risiken verteilen: Statt alles auf eine Karte zu setzen, verteilt man Risiken clever auf kleinere Etappen
- Smarte Priorisierung: Man kann sich zuerst auf das konzentrieren, was wirklich wichtig ist

b. Warum passt sie nicht so gut zu Echtzeitsystemen?

- Verzahnte Komponenten: Bei Echtzeitsystemen hängt alles eng zusammen wie bei einem Uhrwerk. Da kann man nicht einfach ein Zahnrad nach dem anderen austauschen, ohne dass der Takt durcheinander gerät
- Systemweite Anforderungen: Dinge wie garantierte Reaktionszeiten oder Sicherheit betreffen das ganze
 System. Das ist, als müsste ein Haus schon bewohnbar sein, wenn erst das Fundament und ein Teil der Wände stehen
- Aufwändige Integration: Jede neue Komponente erfordert eine komplette Überprüfung des Zeitverhaltens als würde man nach jedem neuen Möbelstück prüfen müssen, ob die Tür noch aufgeht
- Tragfähige Basis nötig: Echtzeitsysteme brauchen eine solide, durchdachte Architektur von Anfang an. Man kann nicht einfach mit einem Gerüst beginnen und hoffen, dass sich der Rest später von selbst ergibt

3. SE mit Wiederverwendung

- Aktivität 1: Anforderungsspezifikation: Definition dessen, was das System leisten soll (wie bei anderen Modellen auch)
- Aktivität 2: Analyse der Komponenten: Gleichzeitige Suche nach existierenden, wiederverwendbaren Komponenten
- Notwendigkeit der Zweiteilung:
 - o Die frühzeitige Identifikation verfügbarer Komponenten beeinflusst die Anforderungsdefinition direkt
 - Anders als bei traditionellen Modellen werden Anforderungen nicht nur nach Kundenwünschen definiert, sondern iterativ an vorhandene Komponenten angepasst
 - o Diese Verzahnung maximiert das Wiederverwendungspotenzial und minimiert den Entwicklungsaufwand
 - Nur durch parallele Betrachtung beider Aspekte kann eine optimale Balance zwischen gewünschter Funktionalität und effizientem Ressourceneinsatz erreicht werden