Основе веб програмирања

Борисав Живановић (borisavz)

17. децембар 2022.

Садржај

- Основни појмови мрежног програмирања
- Клијент-сервер архитектура
- Еволуција веб апликација
- 4 НТТР протокол
- Рад са базом података
- Архитектура веб апликације
- Аутентификација и ауторизација

Packet switching I

- Потребно је да поруку пошаљемо примаоцу
- Директна веза са сваким примаоцем није остварива
- Идеја: повезивање пошиљаоца/примаоца у мрежу, дељење комуникационог канала
- Решење: комутација пакета (packet switching)
 - Поруку изделимо на пакете
 - Пакетима додамо заглавље (header) са адресом пошиљаоца и примаоца
 - Систем зна путање до примаоца
 - Поруку шаљемо пакет по пакет
 - Само један пакет заузима комуникациони канал
 - Пакети могу да путују различитим путањама кроз мрежу, да дођу у различитом редоследу до примаоца, или да нестану

Packet switching II

Слика: комутација пакета (packet switching)

Internet Protocol I

- Како би комуницирали у мрежи, потребно је да сваки учесник у комуникацији има додељену **јединствену** адресу
- Поруци придружујемо заглавље (header) које садржи:
 - Адресу пошиљаоца (source address)
 - Адресу примаоца (destination address)
 - Додатна поља (верзија IP протокола, flags, TTL, checksum, ...)
- Захваљујући овом заглављу систем зна коме да проследи поруку
- У одговори су адресе пошиљаоца и примаоца замењене!

Internet Protocol II

Слика: упрошћена структура IP пакета

DNSI

- Проблем: све више сервера на мрежи
- Није практично памтити сваку адресу у бројчаном облику
- Идеја: систем за придруживање имена, сличан телефонском именику
- Решење: DNS (Domain Name System)
 - ІР адреси додељујемо симболичко име (домен)
 - Домени су хијерархијски (структура стабла)
 - DNS је одговоран за одређени део хијерархије
 - Као одговор враћа IP адресу или адресу одговорног DNS сервера
 - Морамо знати IP адресу DNS сервера!

DNS II

Слика: DNS упит

Transmission Control Protocol I

- Решили смо проблем адресирања уређаја на мрежи...
- …али нисмо проблеме редоследа пристиглих пакета и нестајања пакета
- Додатни проблем: шта ако имамо више мрежних апликација на истом рачунару, како да проследимо поруку одговарајућој апликацији?

Transmission Control Protocol II

- Решење: TCP (Transmission Control Protocol)
 - Додајемо додатно заглавље на нашу поруку
 - Заглавље садржи source и destination port (слично адреси пошиљаоца и примаоца, али се односи на апликацију), sequence number (редослед поруке)
 - Уколико пакет нестане, шаље се поново
 - Оперативни систем осигурава да само једна апликација користи одређени порт

Transmission Control Protocol III

Слика: енкапсулација пакета

Transmission Control Protocol IV

C	lient	Server	% of all Packets in trace	% of all Bytes in trace
Connection - Set-up	SYN	20000000	4	0.5-0.7
	SYN+ACI	C	4	0.5-0.7
	ACK		4	0.5-0.7
Data Transfer	HTTP GE	Tillian in the second	6	5-6
	::::HTTP respo	nse:	40	83-88
	ACK	*********	30	3-5
Connection Release	FIN+ACK		3	>1
	FIN+ACK		3	0.4
	ACK		2	0.4
time t	additio	nal ACKs	2.3	0.2-0.5
	rese	t by client	~1	0.1-0.4
'	reset	by server	~1	0.1

Слика: Ток ТСР комуникације

User Datagram Protocol I

- Успостављање конекције траје одређено време
- За поруке које стају у један пакет, можемо користити једноставнији UDP (User Datagram Protocol)
- Задржавамо адресирање апликација, али губимо гаранцију испоруке
- DNS користи UDP

User Datagram Protocol II

Слика: енкапсулација пакета

User Datagram Protocol III

Слика: Садржај заглавља