Accuracy of original MPM

Lisa Wobbes, Roel Tielen December 9, 2015

Outline

- "Original" MPM
- Numerical accuracy
- Benchmarks
 - Vibrating bar
 - Oedometer
- Accuracy of FEM
- Grid crossing

"Original" MPM

- Modified Lagrangian algorithm
- Euler-Cromer time integration
- Piecewise linear basis functions
- No additional interventions

"Original" MPM

- Modified Lagrangian algorithm
- Euler-Cromer time integration
- Piecewise linear basis functions
- No additional interventions
- Own MATLAB implementation

Numerical accuracy

Numerical Approximation

$$u_{ex} = u_{num} + O(\Delta x^n) + O(\Delta t)$$

RMS Error

$$Error_{RMS} = \sqrt{\frac{1}{n_p} \left(\sum_{p=1}^{n_p} u_{num}(x_p, t) - u_{ex}(x_p, t) \right)^2}$$

Accuracy in displacement

For $\Delta t \to 0$, the order of accuracy is equal to n, i.e. the reduction of Δx by a factor of 2 decreases the RMS error by 2^n .

Vibrating bar

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial x^2}$$

Boundary conditions:

$$u(0,t)=0$$

$$\frac{\partial u}{\partial x}(L,t)=0$$

Initial conditions:

$$u(x,0)=0$$

$$\frac{\partial u}{\partial t}(x,0) = v_0 \sin\left(\frac{\pi x}{2L}\right)$$

Oedometer

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial^2 y} - g$$

Boundary conditions:

$$u(0,t)=0$$

$$\frac{\partial u}{\partial y}(H,t) = \frac{p_0}{E}$$

Initial conditions:

$$u(y,0)=0$$

$$\frac{\partial u}{\partial t}(y,0) = 0$$

Accuracy: vibrating bar

Accuracy: oedometer

	MPM(1)	MPM(4)	MPM(10)
4	$-7.4132 \cdot 10^{-2}$	$-8.0707 \cdot 10^{-3}$	-1.1566 ·10 ⁻²
8	$-4.5493 \cdot 10^{-2}$	$-1.0011 \cdot 10^{-2}$	$-5.8929 \cdot 10^{-3}$
16	$4.2368 \cdot 10^{-2}$	$-1.9708 \cdot 10^{-3}$	$8.9231 \cdot 10^{-4}$
32			$4.6725 \cdot 10^{-4}$

Table: $u_{num}(h) - u_{num}(2h)$ as a function of h.

Richardson's extrapolation

The accuracy α is obtained from

$$\frac{u_{num}(2h) - u_{num}(4h)}{u_{num}(h) - u_{num}(2h)} = 2^{\alpha}.$$

FEM: vibrating bar

FEM: oedometer

Grid-crossing

Grid-crossing: properties of shape functions

Grid crossing: internal force

$$\begin{split} F_{i+1}^{int} &\approx \sum_{p=1}^{n_i} \nabla N_i(\xi_p) \sigma_p \Omega_p + \sum_{p=1}^{n_{i+1}} \nabla N_i(\xi_p) \sigma_p \Omega_p \\ F_{i+1}^{int} &\approx \sigma \Omega(n_i - n_{i+1}) \\ \begin{cases} F_{i+1}^{int} &= 0, & \text{if } n_i = n_{i+1} \\ F_{i+1}^{int} &\neq 0, & \text{otherwise} \end{cases} \end{split}$$

Grid crossing: internal force

Grid crossing: vibrating bar

Figure: No grid crossing (30 elements).

Grid crossing: vibrating bar

Figure: Grid crossing (60 elements).

Oedometer: position

Oedometer: velocity

Settings: vibrating bar

	Symbol	Value	Unit
Length	L	25	m
Tension	Ε	100	Pa
Density	ρ	1	kg/m ³
Maximum velocity	v_0	0.1	m/s
Time step	Δt	$1\cdot 10^{-3}$	S
Measurement time ¹	t	0.5	S
PPC^2		4	

Settings: oedometer

	Symbol	Value	Unit
Height	L	1	m
Young's modulus	Ε	$1 \cdot 10^5$	Pa
Density	ρ	$1 \cdot 10^3$	kg/m ³
Load	p_0	0	Pa
Gravitational acceleration	g	9.81	m/s ²
Time step	Δt	$1\cdot 10^{-3}$	S
Measurement time ¹	t	0.5	S
Position particle ¹	x_p	≈ 0.5	m
Number of elements ²	,	30	
PPC^2		10	

Settings: Steffen

	Symbol	Value	Unit
Length	L	1	m
Tension	Ε	100	Pa
Density	ρ	100	kg/m³
Load	p_0	0.7	Pa
Gravitational acceleration	8	0	m/s^2
Time step	Δt	$1 \cdot 10^{-2}$	S
Domain		1.15	m
Number of elements		20	
PPC		10	

