Universidad Nacional Autónoma de México Facultad de Ciencias Estructuras de Datos Notación Asintótica

Yessica Janeth Pablo Martínez, yessica_j_pablo@ciencias.unam.mx

30 de septiembre de 2021

1. Introducción

Abstracción del tiempo de ejecución en el cual se identifican términos importantes de las funciones que representan tiempo de ejecución de algoritmos y se e eliminan los irrelevantes términos de menor magnitud (**como constantes**). Se pretende simplificar funciones de tiempo de ejecución con lo cual se obtiene la complejidad de un algoritmo (**Desempeño computacional**).

.-Definición (Notación O-grande): Sean f(n) y g(n) funciones de complejidad. Decimos que f(n) es O-grande de g(n) y g(n) representa una cota asintótica superior para f(n) si $\exists c \in \mathbb{R}^+$ y $\exists n_0 \in \mathbb{N} \cup \{0\}$ tales que $\forall_n \geq n_0 : 0 \leq f(n) \leq c \cdot g(n)$.

.-Realizamos cada demostración en base a la definición de la Notación O-grande.

Ejemplos:

1. Sea
$$f(n) = 3n + 4$$
, $g(n) = n$, P.D que $f(n) = 3n + 4 \in O(g(n))$

Demostración:

Para $n \ge 4$ (esto es porque cuando f(n) = 0 vemos que el mínimo valor que queda es 4, por lo que $n \ge 4$), luego tenemos que $n_0 = n \ge 4$, por lo que

$$f(n) = 3n + 4 \le 3n + n$$

=4n

Por lo tanto $f(n) = 3n + 4 \in O(g(n))$

2. Sea
$$f(n) = 5n^2 + 15 \in O(n^2)$$
, P.D que $\exists c \in \mathbb{R}^+ \text{ y } \exists n_0 \in \mathbb{N} \cup \{0\}$

Demostración:

Sea
$$5n^2 + 15 < c \cdot n^2$$
, $\forall n > n_0$

Para $n \ge 1$ se tiene que $15n \ge 15$ y $15n^2 \ge 15n \ge 15$

 \Rightarrow

$$5n^2 + 15 < 5n^2 + 15n^2$$
, $\forall n > 1$

$$=20n^{2}$$

 \Rightarrow esto es igual a $\mathbf{20}n^2$ con $c = \mathbf{20}$ y $n_0 = \mathbf{1}$

Por lo tanto $f(n) \in O(n^2)$

3. Sea $f(n) = 6nlog_2(n) + 3n \in O(n^2)$, P.D que $f(n) \in O(n^2)$

Demostración:

Tenemos que $log_2(n) \le 2^n$, $\forall n \ge 1$

$$\Rightarrow log_2(n) \le n, \quad \forall n \ge 1$$

 \Rightarrow Multiplicamos 6n por ambos lados (el 6n que teníamos por definición)

$$6n \cdot log_2(n) \le 6n \cdot n, \quad \forall n \ge 1$$

Por otra parte $3n \le 3n^2$, $\forall n \ge 0$.

Por lo tanto

$$6n \cdot log_2(n) + 3n \le 6n^2 + 3n^2$$
$$= 9n^2, \quad \forall n \ge 1$$

 \Rightarrow esto es igual a $\mathbf{9}n^2$ con $c=\mathbf{9}$ y $n_0=\mathbf{1}$

Por lo tanto $f(n) \in O(n^2)$