Elaborato di

Calcolo Numerico

Giovanni Bindi - 5530804 - giovanni.bindi@stud.unifi.it Gabriele Gemmi - 5602433 - gabriele.gemmi@stud.unifi.it Gabriele Puliti - 5300140 - gabriele.puliti@stud.unifi.it

March 3, 2017

Contents

1	Can	itolo 1																											3
	1.1	Esercizio	1.1.		 																			 					3
	1.2	Esercizio																											3
	1.3	Esercizio																											3
	1.4	Esercizio																											3
	1.5	Esercizio																											4
	1.6	Esercizio																											4
	1.7	Esercizio																											5
	1.8	Esercizio		-	 						 -													 					5
	1.9	Esercizio																											5
		Esercizio																											5
		Esercizio																											5
		Esercizio																											5
		Esercizio																											5
	1.10	L'SCI CIZIO	1.10	•	 • •	•	•	•	•	•	 •	•	• •	•	•	•	•	 ٠	•	•	•	 •	•	 •	•	•	• •	٠	0
2	Cap	itolo 2																											6
	2.1	Esercizio	2.1 .		 																								6
	2.2	Esercizio	2.2 .		 																			 					6
	2.3	Esercizio	2.3 .		 																			 					7
	2.4	Esercizio	2.4 .		 																								7
	2.5	Esercizio	2.5 .		 																								8
	2.6	Esercizio	2.6 .		 																								8
	2.7	Esercizio	2.7 .		 																								8
	2.8	Esercizio	2.8 .		 																								8
9	Con	:+ala 9																											8
3	-	itolo 3 Esercizio	0 1																										_
	$\frac{3.1}{3.2}$																												8
		Esercizio																											8
	3.3	Esercizio																											8
	3.4	Esercizio																											8
	3.5	Esercizio																											8
	3.6	Esercizio																											8
	3.7	Esercizio																											8
	3.8	Esercizio																											8
	3.9	Esercizio																											8
		Esercizio																											8
		Esercizio																											8
		Esercizio																											8
		Esercizio																											8
		Esercizio																											8
	3.15	Esercizio	3.15		 																								8

3.16	Esercizio	3.16																	 			8
3.17	Esercizio	3.17																	 			8
3.18	Esercizio	3.18																	 			8
3.19	Esercizio	3.19																	 			8
3.20	Esercizio	3.20																	 			8
3.21	Esercizio	3.21																	 			8

1 Capitolo 1

1.1 Esercizio 1.1

Per definizione di metodo iterativo convergente si ha che

$$\lim_{k \to +\infty} x_k = x^*$$

Supponendo la funzione $\Phi(x_n)$ uniformemente continua vale

$$\lim_{k \to +\infty} \Phi(x_k) = x^* = \Phi(\lim_{k \to +\infty} x_k) = x^*$$

Per definizione é $\Phi(x_n) = x_{k+1}$ e quindi

$$\lim_{k \to +\infty} \Phi(x_k) = \lim_{k \to +\infty} x_{k+1} = x^*$$

Da cui otteniamo che x^* e' un punto fisso per la funzione $\Phi(x_n)$, ovvero che $x^* = \Phi(x^*)$.

1.2 Esercizio 1.2

Dal momento che le variabili intere di 2 byte in Fortran vengono gestite in Modulo e Segno, la variabile n, inizializzata con

```
1 integer*2 n
```

1.3 Esercizio 1.3

Per definizione si ha che la precisione di macchina u per arrotondamento e' data da $u=\frac{1}{2}b^{1-m}$. Se b=8, m=5 si ha $u=\frac{1}{2}\cdot 8^{-4}=1,2207031\cdot 10^{-4}$

1.4 Esercizio 1.4

Il seguente codice in Python

```
import scipy
    import numpy, math
 3
    x 0 = 0
    h = []
    for i in range(1,13):
6
7
               h. append (math. pow(10, -i))
8
9
    def psi(x,j):
10
               return (math. exp(x+j) - math. exp(x))/j
11
12
               print str(h.index(i)+1)+
                                                 + \operatorname{str}(\operatorname{psi}(x \ 0, i)) +
13
                   + \operatorname{str}(p\operatorname{si}(x_0, i) -1)
```

restituisce questo output:

i	x_i	y_i
1	1.05170918076	0.0517091807565
2	1.00501670842	0.00501670841679
3	1.00050016671	0.000500166708385
4	1.00005000167	$5.0001667141 \mathrm{e}\text{-}05$
5	1.00000500001	5.00000696491e- 06
6	1.00000049996	$4.99962183653 \mathrm{e}\text{-}07$
7	1.00000004943	4.94336802603e- 08
8	0.999999993923	-6.07747097092e-09
9	1.00000008274	8.27403709991e- 08
10	1.00000008274	8.27403709991e-08
11	1.00000008274	8.27403709991e-08
12	1.00008890058	8.8900582341 e-05

Graficando il contenuto della tabella su di un piano XY abbiamo che

magari rendiamo piu carino il grafico ed aumentiamo la scala per le ultime iterazioni in cui la funzione oscilla tra e-8 e e-5 $\,$

1.5 Esercizio 1.5

1.6 Esercizio 1.6

Il seguente codice MATLAB

```
format long
 2
     x = [2, 1.5];
     y = [];
 3
 4
     rad = sqrt(2)
 5
 6
     \begin{array}{cccc} \textbf{for} & i & = & 2\!:\!15 \end{array}
          x(i+1) = ((x(i)*x(i-1) +2)/(x(i) + x(i-1)));
 8
     end
9
     \begin{array}{ll} \textbf{for} & i=1:15 \end{array}
           y(i) = x(i) - rad;
11
12
     end
```

produce la seguente curva (non so se e' lui o il .py, da ricontrollare)

1.7 Esercizio 1.7

Abbiamo che $u=\frac{1}{2}b^{1-m}\approx 4.66\cdot 10^{-10},$ supponendo che la base sia b=2 otteniamo

$$m = 1 - log_2(4.66 \cdot 10^{-10}) \approx 31.99$$

Quindi necessitiamo di 32 cifre per la mantissa.

1.8 Esercizio 1.8

Supponendo b = 10 si ha, per entrambi i casi

- troncamento : $m = 1 log_{10}u \approx -log_{10}u$
- arrotondamento : $m = 1 log_102u = 1 log_{10}2 log_10u \approx -log_{10}u$

1.9 Esercizio 1.9

- 1.10 Esercizio 1.10
- 1.11 Esercizio 1.11
- 1.12 Esercizio 1.12
- 1.13 Esercizio 1.13

Il seguente codice é in in Python

```
import scipy as sp
   import numpy as np
   import math
3
   import matplotlib.pyplot as plt
6
   x = np.arange((2/3), 2, 0.002)
7
   y = np.empty(1000, dtype=np.float64)
8
9
   for i in range (1,1000):
            y[i] = (\text{math.log}(abs(3*(1-x[i]) + 1))/2 + x[i]*x[i] + 1)
11
12
   1 = 4.0/3
   m = (math.log(abs(3*(1-l) + 1))/2 + l*l + 1)
13
14
   print l
15
16
   print m
17
18
   | plt.plot(x,y)
  plt.savefig('es13.png')
19
```

e plotta la funzione

chiaro che son tutti grafici da rifare

2 Capitolo 2

2.1 Esercizio 2.1

```
%Definire una procedura iterativa basata sul metodo di Newton per
%determinare sqrt(alpha)

x_0 = 3;
alpha = x_0;
z = NewtonSqrt(3, 3, 200, 0.1)
```

2.2 Esercizio 2.2

```
%Definire una procedura iterativa basata sul metodo di Newton per %determinare sqrt(alpha)
```

2.3 Esercizio 2.3

Versione MATLAB

```
%Definire una procedura iterativa basata sul metodo di Newton per
%determinare sqrt(alpha)

x_0 = 3;
alpha = x_0;

z = SecNSqrt(3, 3, 3, 200, 0.0001);
```

Verisione Python

```
import numpy as np
2
   import math
3
4
   def secanti (n, alpha, x0, imax, tolx):
5
            print x0 = +str(x0)
6
            x = ((x0+alpha/x0)/2.0)
7
            print x1 = +str(x)
8
            i = 1
            while ((i < imax) & (math.fabs(x-x0) > tolx)):
9
                     i = i + 1
11
                     x1 = (f(x,n,alpha)*x0 - x*f(x0,n,alpha))/(f(x,n,alpha) - f(x,n,alpha))
                         x0, n, alpha))
12
                     x0 = x
13
                     x=x1;
14
                     print x+str(i)+=+str(x)
15
16
   def f(x,n,alpha):
17
            return pow(x,n) - alpha
18
   secanti(2.0,2.0,2.0,7,0.000001)
19
```

2.4 Esercizio 2.4

Versione MATLAB

Verisione Python

- 2.5 Esercizio 2.5
- 2.6 Esercizio 2.6
- 2.7 Esercizio 2.7
- 2.8 Esercizio 2.8
- 3 Capitolo 3
- 3.1 Esercizio 3.1
- 3.2 Esercizio 3.2
- 3.3 Esercizio 3.3
- 3.4 Esercizio 3.4
- 3.5 Esercizio 3.5
- 3.6 Esercizio 3.6
- 3.7 Esercizio 3.7
- 3.8 Esercizio 3.8
- 3.9 Esercizio 3.9
- 3.10 Esercizio 3.10
- 3.11 Esercizio 3.11
- 3.12 Esercizio 3.12
- 3.13 Esercizio 3.13
- 3.14 Esercizio 3.14
- 3.15 Esercizio 3.15
- **3.16** Esercizio **3.16**
- 3.17 Esercizio 3.17
- 3.18 Esercizio 3.18
- 3.19 Esercizio 3.19
- 3.20 Esercizio 3.20
- 3.21 Esercizio 3.21