Part1

1 Using ADT Device Xplore, plot the following design charts vs $\frac{GM}{ID}$ for both PMOS and NMOS. Set VDS = VDD/3 and L = 0.18u, 0.5u: 0.5u:

1.1 GM/GDS NMOS

1.2 ID/W NMOS

1.3 GM/CGG

NMOS

1.4 VGS

Nmos

PART2

1 DETAILED DESIGN PROCEDURE AND HAND ANALYSIS.

1.1 DESIGN OF INPUT PAIR

CHARTS:

1.2 DESIGN OF MIRROR LOAD

design of Miller boads.
We Assumed Sas = Sas 1,6 MS
9d5=JD => (A>6,25)
tofinal Florthe Chalt we should
assume In so we Assumed In - 15
Ethyle Value So ve pare Save the Verl
In would achieve the Vernivment)
We so und that = 0,6 Wage -

CHARTS:

1.3 DESIGN OF TAIL CURRENT SOURCE

CHARTS:

2 A TABLE SHOWING W, L, gm,ID, gm/ID, VDSsat, Vov = VGS - VTH, and V*=2ID/gm of all transistors (as calculated from g m/ID curves)

TRANS	W	L	GM	ID	GM/ID	VDSsat	VOV	VSTAR
Input	4.657u	0.7u	160u	10u	16	44.6m	340.9m	125m
pair								
MIRROR	4.446u	0.6u	95u	10u	9.5	74.9m	444.2m	211.9m
LOAD								
TAIL	with 20u	1.8u	300u	20u	15	216.5m	-298.4m	134.7m
CURRENT	20.88							
SOURCE	with 10u							
	10.44u							

PART3

1 SCHEMATIC OF THE OTA WITH DC NODE VOLTAGES CLEARLY ANNOTATED

The tail current source transistor is made of array of two transistors and the sizing shown is of one of the unit transistor of them.

- 1.1 USE VICM AT THE MIDDLE OF THE CMIR. (1.5+0.8)/2=1.15V
- 1.2 IS THE CURRENT (AND GM) IN THE INPUT PAIR EXACTLY EQUAL? YES, id=9.972u gm=162.9u
- 1.3 WHAT IS DC VOLTAGE AT VOUT? WHY?1.167v,as VOUT=VDD-VGS(0) and M0 follow M1 and it is diode connected so VGS(0)=VGS(1)=VDS, 1.8-0.632=1.167 V

2 DIFF SMALL SIGNAL CCS:

2.1 USE AC ANALYSIS (1Hz:10GHz, LOGARITHMIC, 10 POINTS/DECADE).

2.2 SET VIDAC = 1 AND VICMAC = 0 & USE VICM AT THE MIDDLE OF THE CMIR.

· 🛊	VICM	1.15
· 🗗	VICMAC	0
· 🛱	VID	0
· 🛱	VIDAC	1

2.3 PLOT DIFF GAIN (IN DB) VS FREQUENCY.

2.4 COMPARE SIMULATION RESULTS WITH HAND CALCULATIONS IN A TABLE

lab7_part234_1	AO	61.2		
lab7_part234_1	AO_DB	35.73		
lab7_part234_1	BW	83.35K		
lab7_part234_1	fu	5.12M		
lab7_part234_1	GBW	5.101M		
lab7_part234_1	dB20(VF("/VOUT	<u>~</u>		

	simulated	Analytical
A0	61.2	53.45
A0_DB	35.73 db	34.5 db
BW	83.35k	94.8k
GBW	5.12M	5.07M
Fu	51.01M	5.07M

3 CM SMALL SIGNAL CCS

3.1 PLOT CM GAIN IN DB VS FREQUENCY.

3.2 Compare simulation results with hand calculations in a table.

	SIMULATOR	ANALYTICAL
AVCM	-42.8 db	-50.8 db

4 CMRR:

4.1 PLOT CMRR IN DB VS FREQUENCY AT VICM AT THE MIDDLE OF THE CMIR.

4.2 Compare simulation results with hand calculations in a table.

	SIMULATOR	ANALYTICAL
CMRR	78.24 db	85.3 db

5 DIFF LARGE SIGNAL CCS:

5.1 USE DC SWEEP (NOT PARAMETRIC SWEEP) VID = -VDD:1m:VDD. YOU MUST USE A SMALL STEP (1mV) BECAUSE THE GAIN REGION IS VERY SMALL (STEEP SLOPE).

5.2 PLOT VOUT vs VID.

- 5.3 From the plot, what is the value of Vout at VID = 0? Why?
- 1.167, Which is the dc operating point (vicm) as VID=0, the current is equal in the two halves at this point so Vout follow Vf.
- 5.4 PLOT THE DERIVATIVE OF VOUT VS VID. COMPARE THE PEAK WSOITH AVD.

Here is the peak is 61.55, but Avd=61.2

6 CM LARGE SIGNAL CCS (REGION VS VICM):

6.1 USE DC SWEEP (NOT PARAMETRIC SWEEP) VICM = 0:10m:VDD.

6.2 PLOT "REGION" OP PARAMETER VS VICM FOR THE INPUT PAIR AND THE TAIL CURRENT SOURCE.

- 6.3 FIND THE CM INPUT RANGE (CMIR). COMPARE WITH HAND ANALYSIS IN A TABLE.
- 1.8-670.79m=1.13 V

HAND ANALYSIS: 1.5-0.8=0.7 V

	sim	Hand analysis
CMIR	1.13	0.7

6.4 PLOT "REGION" OP PARAMETER VS VICM FOR THE INPUT PAIR AND THE TAIL CURRENT SOURCE (O CUT-OFF, 1 TRIODE, 2 SAT, 3 SUBTH, AND 4 BREAKDOWN). PLOT THE RESULTS OVERLAID ON THE RESULTS OF THE PREVIOUS METHOD (10% REDUCTION OF GBW).

7 (OPTIONAL) CM LARGE SIGNAL CCS (GBW VS VICM)

7.1

7.2 Annotate the CM input range. Calculate the input range as the range over which the GBW is within 90% of the max GBW, i.e., 10% reduction in GBW2 .

The input range= 1.8-0.676=1.124 V

Part4:

1 SCHEMATIC OF THE OTA WITH DC OP POINT CLEARLY ANNOTATED IN UNITY GAIN BUFFER CONFIGURATION. USE VIN = CMIR-LOW + 50MV.

- 1.1 IS THE CURRENT (AND GM) IN THE INPUT PAIR EXACTLY EQUAL? WHY?

 NO, because of the feedback make The output voltage deviates from its CM level Since the gain is finite (Verror=5mv)
- 1.2 CALCULATE THE MISMATCH IN ID AND GM.

$$ID = \frac{9.897 - 9.555}{9.555} = 0.0357 = 3.57\%$$

$$gm = \frac{160.3 - 156.6}{156.6} = 0.023 = 2.36\%$$

2 LOOP GAIN:

2.1 PLOT LOOP GAIN IN DB AND PHASE VS FREQUENCY

2.2 COMPARE DC GAIN AND GBW WITH THOSE OBTAINED FROM OPEN-LOOP SIMULATION. COMMENT

	OPEN-LOOP	LOOP GAIN
DC GAIN	35.73 db	35.75 DB
GBW	5.12M	5.10 M

The dc gain of loop gain is higher than open loop because of mismatch happend, but BW in open-loop is higher so GBW in open-loop is higher than loop gain case but they are approximately equal.

2.3 COMPARE SIMULATION RESULTS WITH HAND CALCULATIONS IN A TABLE

	ANALYTICAL	SIMULATION
DC GAIN	β Aol and $\beta = 1$	35.75 DB
	=34.5 db (the value we	
	ANALYTICALY calculated	
	above)	
GBW	5.07 M	5.10 M
	$\beta = 1$	
	same as Open loop we	
	calculated above	