~ Seminar 4 ~

- **Lema de pompare** pentru limbaje regulate (REG) [continuare]
- Exemple:

```
L4 = \{x \cdot x^R \mid x \in \{a, b\}^*\} \notin REG (discutat alegerea cuvântului \alpha)

L5 = \{x \cdot x \mid x \in \{a, b\}^*\} \notin REG (discutat alegerea cuvântului \alpha)
```

Obs: (R = reversed) Cuvântul \mathbf{w}^R este oglindirea cuvântului \mathbf{w} , de exemplu $(abc)^R = cba$.

→ Pentru L4:

- -- Cuvântul $\alpha = a^p a^p = a^{2p} = (aa)^p$ NU este o alegere bună (pentru acest α putem desena un AFD având un circuit de 2 de a).
- Dacă $\boldsymbol{v} = \boldsymbol{a^{2k}} => |\beta| = |u \cdot v^i \cdot w| = |u \cdot v \cdot w| + |v|^{(i-1)} =$ = $|a^{2p+(2k)*(i-1)}| = 2*(p+k*(i-1))$ este **par** (adică $\beta \in L_4$), $\forall i \geq 0$ (NU avem contradicție cu condiția 3 din lemă).
- Dacă $v = a^{2k+1} = |\beta| = |a^{2p+(2k+1)*(i-1)}| = 2*(p+k*(i-1))+(i-1)$ este **impar**, adică $\beta \notin L_4$ (contradicție cu condiția 3 din lemă) <=> i este par (de exemplu alegem i = 0).

Concluzie: Dacă există descompuneri ale lui α (forme ale lui v) pentru care NU putem obține contradicție, înseamnă că demonstrația nu este corectă și trebuie ales un alt α .

- -- Cuvântul $\alpha = a^p bba^p$ este o alegere bună (pentru acest α nu putem desena un AFD).
- Dacă $v = a^k$ alegem $i = 2 \Rightarrow \beta = a^{p+k}bba^p \notin L_4$ pentru că $1 \leq k \leq p$ (din primele două condiții din lemă).

Concluzie: Avem un singur caz de descompunere a lui α (o singură formă a lui v), am obținut contradicție, deci demonstrația este corectă.

→ Pentru L5:

- -- Cuvântul $\alpha = a^p b a^p b$ este o alegere bună (pentru acest α nu putem desena un AFD). Avem <u>un singur caz</u> de descompunere a lui α .
- Dacă $v = a^k$ alegem $i = 2 \Rightarrow \beta = a^{p+k}ba^pb \notin L_5$ pentru că $1 \leq k \leq p$ (din primele două condiții din lemă). Deci avem contradicție și demonstrația este corectă.
- -- Cuvântul $\alpha = ba^pba^p$ este tot o alegere bună (pentru acest α nu putem desena un AFD), dar avem mai multe cazuri de descompunere a lui α .
- Dacă $\overline{\boldsymbol{v} = \boldsymbol{b}\boldsymbol{a}^k}$ (cu $0 \le k \le p-1$) alegem $i = 0 \Longrightarrow \beta = a^{p-k}ba^p \notin L_5$.
- Dacă $v = a^k$ (cu $1 \le k \le p$) alegem $i = 2 \Longrightarrow \beta = ba^{p+k}ba^p \notin L_5$.

Concluzie: Avem contradicție pe fiecare caz posibil de descompunere, deci demonstrația este corectă.

• Exemplu:

$$L6 = \left\{ \boldsymbol{a^{n^2}} | \boldsymbol{n} \ge \boldsymbol{1} \right\} = \left\{ a^1, a^4, a^9, a^{16}, a^{25}, a^{36}, \dots \right\} \notin REG$$

Obs: Proprietatea cuvintelor din limbajul L_6 este aceea că sunt formate doar din litere de "a" și lungimea lor este un număr pătrat perfect. Deci pentru a obține contradicția ($\beta \notin L_6$) trebuie să arătăm că lungimea lui β **nu** poate fi un pătrat perfect.

<u>Demonstrație:</u> Presupunem prin reducere la absurd că L₆ este limbaj regulat. Atunci $\exists p \in \mathbb{N}$ și putem aplica lema de pompare. (În continuare negăm afirmația lemei.)

Alegem cuvântul $\alpha = a^{p^2} \in L_6$, cu $|\alpha| = p^2 \ge p$, $\forall p \in \mathbb{N}$ (deci lungimea cuvântului respectă ipoteza lemei). Conform lemei, cuvântul poate fi scris sub forma $\alpha = u \cdot v \cdot w$.

Observăm că toate cuvintele din L₆ sunt formate doar din litere de "a". Atunci notăm $v = a^k$. Din condițiile (1) și (2) ale lemei avem $1 \le |v| \le p$. Deci $1 \le |a^k| \le p$, adică $1 \le k \le p$ (*).

De asemenea, condiția (3) din lema spune că $u \cdot v^i \cdot w \in L_6$, $\forall i \geq 0$. Alegem i = 2 și avem cuvântul $\beta = u \cdot v^2 \cdot w$ de lungime $|\beta| = |u \cdot v^2 \cdot w| = |u \cdot v \cdot w| + |v| = |\alpha| + |v| = p^2 + |v| = p^2 + k$.

Conform (*), avem $1 \le k \le p$ (adunăm peste tot p^2) $<=> p^2 + 1 \le p^2 + k \le p^2 + p$. Dar $p^2 < p^2 + 1$ și $p^2 + p < (p+1)^2$. Rezultă că $p^2 < p^2 + k < (p+1)^2$, adică $p^2 < |\beta| < (p+1)^2$. Deci $|\beta|$ nu poate fi pătrat perfect (pentru că este inclus strict între două pătrate perfecte consecutive) $=> \beta \notin L_6$, contradicție cu condiția (3) din lema), deci presupunerea făcută este falsă și L_6 nu este limbaj regulat.

> Expresii regulate (RegEx)

Definiție: Se numește familia expresiilor regulate peste Σ și se notează RegEx(Σ) mulțimea de cuvinte peste alfabetul $\Sigma \cup \{(,), +, \cdot, *, \emptyset, \lambda\}$ definită recursiv astfel:

- i) $\emptyset, \lambda \in RegEx$ și $\alpha \in RegEx, \forall \alpha \in \Sigma$.
- ii) Dacă $e_1, e_2 \in RegEx$, atunci $(e_1 + e_2) \in RegEx$. (reuniune)
- iii) Dacă $e_1, e_2 \in RegEx$, atunci $(e_1 \cdot e_2) \in RegEx$. (concatenare)
- iv) Dacă $e \in RegEx$, atunci $(e^*) \in RegEx$. (stelare)
- Precedența operațiilor: () > * > · > + (paranteze > stelare > concatenare > reuniune)

 Obs: În evaluarea unei expresii regulate se ține cont în primul rând de paranteze, iar apoi
 ordinea în care se evaluează operațiile este: stelare, apoi concatenare, apoi reuniune.

 (Dacă vreți să fiți siguri că nu le încurcați, puteți să faceți o analogie cu operațiile aritmetice,
 unde se evaluează întâi ridicarea la putere, apoi înmulțirea și apoi adunarea.)
- Reamintim din seminarul 1:

$$\begin{split} L &= L_1 \cup L_2 = \{ w \mid w \in L_1 \; sau \; w \in L_2 \} \\ L &= L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1 \; \$i \; w_2 \in L_2 \} \\ L &= (L_1)^* = \{ \lambda \} \cup \bigcup_{n \geq 1} \; \{ w_1 w_2 \ldots w_n \mid w_i \in L_1, \forall \; 1 \leq i \leq n \} \end{split}$$

➤ Algoritm: Transformarea RegEx → AFN-λ

Pentru fiecare caz din definiția RegEx vom construi câte un automat finit echivalent.

Caz i)

RegEx	$e = \emptyset$	$e = \lambda$	$e = a$, unde $a \in \Sigma$
Limbaj	$L = \emptyset$	$L = {\lambda}$	$L = \{a\}$
Automat Finit	q0	qo	q0 a q1

În cazurile ii), iii) și iv) presupunem că pentru expresia regulată e_k și limbajul $L(e_k)$, $k \in \{1, 2\}$ avem deja automate finite $AF(L(e_k)) = (Q_k, \Sigma_k, q_{0k}, F_k, \delta_k)$, cu $Q_1 \cap Q_2 = \emptyset$ (stări disjuncte).

Desenăm schema unui automat punând în evidență starea inițială q_{0k} și mulțimea stărilor finale F_k . Dreptunghiul M_k include toate celelalte stări și tranzițiile automatului.

Vom construi automatele pentru operațiile de reuniune, concatenare și stelare.

• Exemplu: Desenați 3 automate finite pentru $L_1 = a^*$, $L_2 = bc^*$, $L_3 = ac$, apoi folosind algoritmii pentru reuniune, concatenare, stelare și ținând cont de paranteze și de ordinea operațiilor, desenați automatul pentru $L_4 = (a^* + bc^*) \cdot (ac)^* = (L_1 + L_2) \cdot (L_3)^*$.

ightharpoonup Algoritm: Transformarea AFN- $\lambda \rightarrow \text{RegEx}$

Definiție: Se numește AFE (automat finit extins), $M = (Q, \Sigma, et, q_0, F)$, unde, la fel ca la celelalte automate finite, Q este mulțimea stărilor, Σ este alfabetul, q_0 este starea inițială, F este mulțimea stărilor finale. Aici (în locul funcției de tranziție) avem funcția de etichetare $et: Q \times Q \to RegEx(\Sigma)$.

Notăm et(p,q) prin e_{pq} (expresia regulată asociată săgeții de la starea p la starea q)

Ideea algoritmului este de a transforma automatul finit într-un automat finit extins și apoi a elimina una câte una stările până ajungem la o expresie regulată echivalentă cu automatul inițial.

• Algoritm:

Pas 1: Transformăm automatul finit dat într-un AFE astfel: dacă de la starea q_x către starea q_y există *mai multe tranziții*, atunci le înlocuim cu *expresia regulată* obținută prin reunirea (operatorul "+") simbolurilor de pe acele tranziții.

$$et(q_x, q_y) = \{w \in REX(\Sigma) \mid w = a_1 + a_2 + \dots + a_n ; q_y \in \delta(q_x, a_i), a_i \in (\Sigma \cup \{\lambda\}), \forall i \in \{1, \dots, n\}\}$$

- Pas 2: Dacă starea inițială este și finală sau dacă există săgeți care vin către starea inițială, atunci se adaugă la automat o nouă stare care va fi inițială și va avea o săgeată cu expresia λ către fosta stare inițială.
- **Pas 3:** Dacă există mai multe stări finale sau dacă există săgeți care pleacă din vreo stare finală, atunci se adaugă la automat o nouă stare care va fi unica finală și va avea săgeți cu expresia λ din toate fostele stări finale către ea.
- Pas 4: În orice ordine, se elimină pe rând, una câte una, toate stările în afară de cea inițială și cea finală, astfel:
- \rightarrow Presupunem că vrem să eliminăm starea \mathbf{q} și că există săgeți cu etichetele (expresiile regulate) $et(p, \mathbf{q})$, $et(\mathbf{q}, \mathbf{s})$ și eventual bucla cu $et(\mathbf{q}, \mathbf{q})$.
- \rightarrow Atunci obținem noua etichetă (expresie regulată) de pe săgeata de la starea p la starea s:
 - [(fosta etichetă directă de la p la s) sau (Ø dacă nu există săgeată directă)]
 reunită cu
 - [(eticheta de la p la q) concatenată cu
 (stelarea etichetei buclei de la q la q, sau λ dacă bucla nu există) concatenată cu
 (eticheta de la q la s)]. (Vezi desenul de mai jos.)

Pas 5: Atunci când rămân doar două stări, expresia obținută între starea inițială și cea finală este răspunsul final (o expresie regulată echivalentă cu automatul finit dat).

• Observatii:

(1) La pas 4, pentru starea q pe care dorim să o eliminăm (împreună cu toate săgețile lipite de ea), trebuie să găsim orice "predecesor" $p \neq q$ (adică există o săgeată de la p la q) și orice "succesor" $s \neq q$ (adică există săgeată de la q la s). Deci făcând abstracție de eventuala buclă a lui q, căutăm și grupăm orice săgeată care intră spre q cu orice săgeată care iese din q și astfel obținem expresia regulată de pe săgeata de la p la s cu formula explicată mai sus. Atenție, dacă p = s, înseamnă că vom obține o buclă.

→ Vrem să eliminăm q și avem un p ("predecesor") și un s ("succesor").

- (2) Dacă una din expresii conține reuniune ("+"), atunci *o includem între paranteze*, pentru a se executa întâi acea reuniune și abia apoi concatenarea cu expresiile de pe alte săgeți. Fiecare expresie obținută între *p* și *s* încercăm să o *simplificăm* cât mai mult folosind formulele de mai jos.
- (3) În funcție de *ordinea* în care alegem să eliminăm stările la pasul 4, vom obține o anumită expresie, dar toate sunt echivalente între ele. *Sfat:* În general, eliminăm starea care are momentan cele mai puține săgeți pentru a calcula cât mai puține drumuri.

Atenție să nu confundați semnul "+" dintre expresii (folosit pentru *reuniunea* lor) cu semnul "+" pus la putere (folosit pentru *concatenare repetată*, cel puțin puterea 1).

Obs: Algoritmul de mai sus descoperă și *reunește expresiile regulate corespunzătoare tuturor drumurilor de la starea inițială la o stare finală*. Puteți verifica asta pe exemplele următoare, comparând automatul finit dat cu expresia regulată obținută la finalul algoritmului.

• Câteva formule utile

- (A) $e \cdot \emptyset = \emptyset$ și $\emptyset \cdot e = \emptyset$ (\emptyset este pentru concatenare cum este 0 pentru înmulțire)
- (B) $e \cdot \lambda = e$ și $\lambda \cdot e = e$ (λ este pentru concatenare cum este 1 pentru înmulțire)
- (C) $e^* \cdot e = e^+ \sin e \cdot e^* = e^+$ (Dar e^+ nu va fi folosită în RegEx pt că nu respectă definiția lor.)
- (D) $\{e_1, e_2\}^* = (e_1 + e_2)^* = (e_1^* \cdot e_2^*)^*$ (Formulă valabilă pentru oricâte expresii, nu doar 2.)
- (E) $e_1 \cdot (e_2 + e_3) = (e_1 \cdot e_2) + (e_1 \cdot e_3)$ și $(e_1 + e_2) \cdot e_3 = (e_1 \cdot e_3) + (e_2 \cdot e_3)$
- (F) $e + \emptyset = \emptyset + e = e$ (Ø este pentru reuniune cum este 0 pentru adunare)
- (G) $\emptyset^* = {\lambda}$ (conform definiției stelării) și $\lambda^* = \lambda$ (conform formulei B de mai sus)
- (H) Dacă $e_1 \supseteq e_2$, atunci $e_1 + e_2 = e_2 + e_1 = e_1$. (De exemplu: $a + ab^* = ab^*$)
- (I) În loc de $\lambda + (e)^+ = \lambda + e \cdot e^*$ scriem e^* .

• Exemplu rezolvat:

Să se transforme următorul automat finit într-o expresie regulată echivalentă.

Pas 1 (AF \rightarrow AFE):

=> Reunim tranzițiile aflate pe aceeași săgeată.

Pas 2 (Verificăm starea inițială:

- să nu fie stare finală și
- să nu vină săgeți către ea)

=> adăugăm o nouă stare inițială cu λ către fosta stare inițială.

Pas 3 (Verificăm starea finală:

- să fie unica finală și
- să nu plece săgeți din ea)
- => adăugăm o nouă unică stare finală spre care vin λ din fostele stări finale.

Pas 4 (eliminăm q2):

$$=> et(q_1, q_3) = et(q_1, q_3) + et(q_1, q_2) \cdot (et(q_2, q_2))^* \cdot et(q_2, q_3)$$

Pas 4 (eliminăm q1):

$$=> et(q_0, q_3) = et(q_0, q_3) + et(q_0, q_1) \cdot (et(q_1, q_1))^* \cdot et(q_1, q_3)$$

• Exemplu: [discutat la seminar]
Să se transforme următorul automat finit într-o expresie regulată echivalentă.

~ Temă ~

EX_1: Demonstrați că următoarele limbaje nu sunt regulate, folosind lema de pompare.

$$L7 = \{a^{2^n} \mid n \ge 0\} = \{a^1, a^2, a^4, a^8, a^{16}, a^{32}, a^{64}, ...\} \notin REG$$

$$L8 = \{a^n \mid n \text{ număr prim}\} = \{a^2, a^3, a^5, a^7, a^{11}, a^{13}, a^{17}, a^{19}, a^{23}, ...\} \notin REG$$

(Încercați să redactați demonstrațiile fără să aveți sub ochi alte exemple, să verificați dacă ați înțeles și reținut structura acestor demonstrații cu lema de pompare.)

EX_2: Desenați 5 automate finite (cu stări disjuncte) pentru $L_1 = b^* \cdot a \cdot (bc)^*$, $L_2 = \lambda + c$, $L_3 = (a+c)^*$, $L_4 = b^* \cdot c \cdot (a+b)$, $L_5 = (c+a) \cdot (c+b) \cdot a^*$, apoi folosind algoritmii pentru reuniune, concatenare, stelare și ținând cont de paranteze și de ordinea operațiilor, desenați automatul pentru $L_6 = ((L_1 + L_2)^* + (L_3 \cdot L_4)^*) \cdot L_5$.

EX_3: Să se transforme următorul automat finit într-o expresie regulată echivalentă. (*Pentru pașii 1+2+3 puteți să desenați un singur graf, apoi la pasul 4 pentru eliminarea fiecărei stări desenați câte un graf separat.)*

- (Exerciții recapitulative)
- → Închiderea limbajelor regulate la operatii (complement; intersectie, diferentă, reuniune)

Obs: Dacă limbajul regulat L este acceptat de un <u>AFD complet definit</u> (fără tranziții lipsă) $AFD(L) = (Q, \Sigma, \delta, q_0, \mathbf{F})$, atunci putem construi un AFD care să accepte complementul lui L $(\Sigma^* \setminus L)$ prin interschimbarea stărilor finale cu cele nefinale $AFD(\overline{L}) = (Q, \Sigma, \delta, q_0, Q \setminus \mathbf{F})$.

Obs: Dacă limbajele regulate L_1 și L_2 sunt acceptate de 2 automate <u>AFD complet definite</u> $AFD(L_1) = (Q_1 = \{q_0, q_1, ...\}, \Sigma, \delta_1, \boldsymbol{q_0}, F_1)$ și $AFD(L_2) = (Q_2 = \{r_0, r_1, ...\}, \Sigma, \delta_2, \boldsymbol{r_0}, F_2)$, atunci putem construi un AFD cu stări obținute prin *produs cartezian între mulțimile de stări* ale celor 2 automate: $AFD(L) = (Q, \Sigma, \delta, (\boldsymbol{q_0}, \boldsymbol{r_0}), F)$ având

- stările $Q = Q_1 \times Q_2 = \{(\boldsymbol{q}_i, \boldsymbol{r}_j) \mid q_i \in Q_1 \text{ si } r_j \in Q_2\},$
- tranzițiile $\delta\left(\left(q_i,r_j\right),x\right)=\left(\boldsymbol{\delta_1}(q_i,x),\boldsymbol{\delta_2}(r_j,x)\right), \forall \left(q_i,r_j\right) \in Q, \forall x \in \Sigma,$
- starea inițială (q_0, r_0) (perechea formată din cele două stări inițiale),
- stările finale F depind dacă automatul acceptă limbajul:
- \checkmark (intersecție) $L = L_1 \cap L_2 = \{ w \in \Sigma^* \mid w \in L_1 \text{ si } w \in L_2 \} \Rightarrow F = F_1 \times F_2$
- $\begin{array}{c} \checkmark \quad (diferenț\breve{a}) \; L = L_1 \backslash L_2 = \{ w \in \Sigma^* \mid w \in L_1 \; \text{\rm yi} \; w \not\in L_2 \} => F = F_1 \times (Q_2 \backslash F_2) \\ \text{sau} \; L = L_2 \backslash L_1 = \{ w \in \Sigma^* \mid w \not\in L_1 \; \text{\rm yi} \; w \in L_2 \} => F = (Q_1 \backslash F_1) \times F_2 \\ \end{array}$
- ✓ (reuniune) $L = L_1 \cup L_2 = \{ w \in \Sigma^* \mid w \in L_1 \text{ sau } w \in L_2 \} => F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$

Obs: Toate limbajele de la EX_4 și EX_5 sunt definite peste alfabetul $\Sigma = \{a, b\}$.

EX_4: Pentru fiecare limbaj L dat, desenați un <u>AFD complet definit</u> care să accepte L (scrieți alături care ar fi stările finale F), dar pe graf setați stările finale F' astfel încât să accepte \overline{L} (complementul limbajul L dat).

(a)
$$L = \{ w \mid w \in a^*b^* \}$$

(b)
$$L = \{ w \mid w \in (ab^+)^* \}$$

(c)
$$L = \{ w \mid w \in a^* \cup b^* \}$$

EX_5: Pentru L1 și L2 limbaje regulate date, desenați două <u>AFD complet definite</u> (peste alfabetul $\Sigma = \{a, b\}$) având stări disjuncte. Desenați AFD-ul cu stări obținute prin produs cartezian între stările automatelor pentru L1 și L2 (în această ordine), apoi scrieți alături care ar fi stările finale pentru a accepta limbajele:

$$L3 = L1 \cap L2$$
, $L4 = L1 \setminus L2$, $L5 = L2 \setminus L1$, $L6 = L1 \cup L2$.

- (a) $L1 = \{w \mid |w|_a \text{ este par}\}\$ si $L2 = \{w \mid w \text{ conține } 1 \text{ sau } 2 \text{ de } b\}$
- **(b)** $L1 = \{w \mid w \text{ începe cu un } a\}$ și $L2 = \{w \mid w \text{ conține cel mult un } b\}$
- (c) $L1 = \{w \mid |w|_a \text{ este impar}\}\$ şi $L2 = \{w \mid w \text{ se termină cu un } b\}$