Lean Copilot: Large Language Models as Copilots for Theorem Proving in Lean

Peiyang Song¹, Kaiyu Yang¹, Anima Anandkumar¹

¹Caltech

NeuS 2025

Al for (Formal) Mathematics Reasoning

Formal reasoning (theorem proving)

- Proof can be rigorously checked by computers
- Formalization and theorem proving are labor-intensive
- Applications in math and formal verification

Lean's Mathlib

95K theorems, **1M** lines of code Analysis, algebra, combinatorics,

Theorem proving with machine learning

- Exciting recent progress on neural theorem proving
- But not readily accessible for Lean users!
 - Challenging integration into Lean's workflow
 - Unrealistic requirement of compute power & runtime

LLM-aided theorem proving

• Fully autonomously vs. as a copilot

·			
Method	Avg. # human-entered tactics (↓)	% theorems proved autonomously (\uparrow)	Avg. % proof steps automated (†)
AESOP	3.86	24.4%	40.1%
SUGGEST_TACTICS	3.10	45.2%	58.3%
SEARCH_PROOFS	2.08	63.7%	74.2%

- Work out of the box w\o changes to Lean's workflow
- Installed as a Lean package w\o additional setups

• User experience

- Simple usage: everything wrapped up as tactics
- Respond instantaneously on CPU-only laptops

LLM-based Proof Automation

• Tactic suggestion

- Allow to constrain output tactics with a prefix
- Perform type check and mark with different colors

• Proof search

- Combine LLM-generated steps with best-first search
- Produce multi-step proof certified correct

Premise selection

- Retrieve useful lemmas from Mathlib
- Provide type & docstring (if any) information
- Offer import & code preview for out-of-scope ones

Neural Network Inference in Lean

Native neural network inference

- Use different models / hyperparameters
- Support multiple platforms, w\ or w\ o GPUs
- Enable applications not limited to theorem proving
 - Text-to-text generation
 - Underlying tactic suggestion and proof search

- Text-to-vector encoding
 - Underlying premise selection

Server process for any models

- Allow users to bring their own models
- Provide a Python API server to run models externally