

Max 3-SAT

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Enunciado

Dado

Un conjunto de n variables $\{x_1, x_2, ... x_n\}$

Un conjunto de k clausulas $C=(x_i \lor x_j \lor x_k)$ conjugadas

Con

Cada clausula tiene 3 variables distintas y sin contener la misma variable y su negada

Queremos saber

La cantidad máximas de cláusulas que se pueden satisfacer

Planteo

Es una variante de 3-SAT: MAX-3SAT

Intentamos maximizar y no determinar si se puede satisfacer toda la expresión

Se ha demostrado

Que corresponde a un problema NP-HARD

Propondremos

Utilizar un algoritmo de aproximación randomizado

Propuesta

Nuestro algoritmo

Es muy simple!

Para cada variable x_i

Determinaremos su valor 0 o 1 en forma aleatoria e independiente

La probabilidad de que una variable x_i esté "activada"

$$Pr(X_i=1) = \frac{1}{2}$$

Número de esperado de clausulas satisfechas

Sea

Z la variable aleatoria igual al número de clausulas satisfechas

Z_i la variable aleatoria con valor 0 o 1 de acuerdo a si la clausula i esta satisfecha

Entonces

$$Z = Z_1 + Z_2 + \ldots + Z_k$$

Queremos

Determinar el numero de clausulas satisfechas esperados E[Z]

Nro de esperado de clausulas satisfechas (cont.)

Como

$$E[Z] = E[Z_1 + Z_2 + ... + Z_k] = E[Z_1] + E[Z_2] + ... + E[Z_k]$$

Con

$$E[Z_i] = Pr[C_i=1]$$

Como las variables son independientes

$$Pr[C_i=1] = 1 - Pr[C_i=0] = 1 - \frac{1}{2}3 = \frac{7}{8}$$

Entonces

$$E[Z] = k^* \frac{7}{8}$$

Esperamos que una asignación aleatoria satisfaga a un % de las clausulas

Nro de esperado de clausulas satisfechas (cont.)

Como

No se pueden satisfacer mas de k clausulas

Y

Esperamos satisfacer % de ellas

Entonces

El numero de <u>esperado</u> de clausulas satisfechas mediante una asignación aleatoria esta dentro de un factor de aproximación de ½ del optimo

Una afirmación fuerte

Para

cualquier expresión de 3SAT

Donde

Cada clausula tiene 3 variables distintas y sin contener la misma variable y su negada

Existe

Una asignación de verdad que satisface al menos % de las clausulas

Esperando una buena asignación

Este método

No garantiza % de clausulas satisfechas!

(podría ser menos, podría ser más)

Solo

Indica que es probable y esperable

¿Como puedo garantizar este resultado

En tiempo polinómico?

Repetición del problema

Podemos

Repetir la asignación de variables aleatorias

Hasta

Conseguir el piso de 1/8 k clausulas satisfechas

Pero...

No sabemos cual sera el número esperado de repeticiones

Una demostración previa...

Si

Repetimos la ejecución de pruebas independientes de un experimento

Cada una de ellas

Con probabilidad p>0

Entonces

El numero de pruebas esperado antes del primer éxito es 1/p

Demostración

Sea

Variable v tal que Pr(v=exito)=p y Pr(v=fallo)=1-p

X la repetición de v un numero de veces hasta el éxito

Entonces

La probabilidad de lograr el éxito en j iteraciones

$$Pr[X=j] = (1-p)^{j-1}p$$

$$E[X] = \sum_{j=0}^{\infty} j * Pr[X = j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} * p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^{j} = \frac{p}{1-p} * \frac{1-p}{p^{2}}$$

$$E[X] = \frac{1}{p}$$

Determinación de cantidad de repeticiones

Si logramos demostrar

Que la probabilidad de asignación de 1/8 k de las clausulas es al menos p

Entonces

La cantidad de pruebas a realizar esperadas será 1/p

Que valor tomará p?

Queremos mostrar que es inversamente polinomial en función de n y k

 $\rightarrow 1/f(n,k)$

Determinación de cantidad de repeticiones (cont.)

Llamaremos

P_j a la probabilidad que una asignación aleatoria satisfaga exactamente j clausulas (con j=0,1,...,k)

Queremos saber

$$p = \sum_{j \ge 7k/8} Pr[P_j]$$

Sabemos que el valor esperado de clausulas satisfechas

$$E[P] = \sum_{j=0}^{k} j * Pr[P_j] = \frac{7}{8}k$$
 Lo calculamos antes!

$$\sum_{j < 7k/8} j * Pr[P_j] + \sum_{j \ge 7k/8} j * Pr[P_j] = \frac{7}{8}k$$

Determinación de cantidad de repeticiones (cont.)

Llamaremos k'

Al mayor de los números enteros estrictamente menor a 78k

Entonces

$$\frac{7}{8}k = \sum_{j < 7k/8} j * Pr[P_j] + \sum_{j \ge 7k/8} j * Pr[P_j] \le \sum_{j < 7k/8} k ' * Pr[P_j] + \sum_{j \ge 7k/8} k * Pr[P_j]$$

$$\le k ' * \sum_{j < 7k/8} Pr[P_j] + k * \sum_{j \ge 7k/8} Pr[P_j] = k ' * (1-p) + k * p \le k ' + k * p$$
1-p

$$\frac{7}{8}k \leq k' + k * p$$

Determinación de cantidad de repeticiones (cont.)

Continuando

$$\frac{7}{8}k \le k' + kp \qquad kp \ge \frac{7}{8}k - k'$$

Por como elegimos k'

$$\frac{7}{8}k - k' \ge \frac{1}{8}$$

Entonces

$$p \ge \frac{\frac{7}{8}k - k'}{k} \ge \frac{1}{8k}$$

Conclusión

Como

la probabilidad de asignación de 1/8 k de las clausulas es al menos p=1/8 k

Entonces (dada la propiedad antes vista)

El numero de pruebas esperado antes del primer éxito es 8k

De esta forma conformando

Un %-algoritmo de aproximación randomizado

Presentación realizada en Enero de 2021