

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем та технологій

Лабораторна робота №2 з дисципліни Аналіз даних з використанням мови Python

Виконав: Перевірила:

студент групи IA-24: ст. викладач Криворучек В.С. Тимофєєва Ю.С. Тема: Статистичний аналіз даних

Мета роботи: Ознайомитись з основними функціями бібліотеки NumPy та SciPy для описової статистики, перевірки статистичних гіпотез, кореляційного аналізу та лінійної регресії.

Хід роботи

Завдання:

- 1. Яка середня кількість дітей в сім'ї і її відхилення?
- 2.Перевірити чи нормально розподілені доходи.
- 3. Чи ϵ зв'язок між витратами на пальне та витратами на транспорт?
- 4. Побудувати лінійну регресійну модель залежності витрат на їжу від доходу.

Код програми:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import shapiro, pearsonr, linregress
import statsmodels.api as sm
# Завантаження даних
file path = "Budget.csv"
data = pd.read csv(file path)
if 'Unnamed: 0' in data.columns:
    data = data.drop(columns=['Unnamed: 0'])
print("\n===== Перші 5 рядків даних =====")
print(data.head().to string(index=False))
# 1. Розражунок середньої кількості дітей та стандартного відхилення
mean children = data['children'].mean()
std children = data['children'].std()
print("\n===== Кількість дітей у сім'ї =====")
print(f"Середня кількість дітей: {mean children:.2f}")
print(f"Стандартне відхилення: {std children:.2f}\n")
# 2. Перевірка нормальності розподілу доходів
stat, p = shapiro(data['income'])
print("==== Перевірка нормальності доходів (Шапіро-Уілк) =====")
print(f"Статистика тесту: {stat:.3f}")
print(f"p-вначення: {p:.3f}")
if p > 0.05:
    print("Доходи мають нормальний розподіл. (H0 не відхиляється) \n")
    print("Доходи НЕ мають нормального розподілу. (H0 відхиляється)n")
# Візуалізація розподілу доходів
plt.figure(figsize=(12, 5))
```

```
plt.subplot(1, 2, 1)
sns.histplot(data['income'], bins=20, kde=True, color='blue')
plt.title("Гістограма доходів")
plt.xlabel("Доходи")
plt.subplot(1, 2, 2)
sns.boxplot(x=data['income'], color='blue')
plt.title("Вохрlоt доходів")
plt.xlabel("Доходи")
plt.show()
# 3. Кореляція між витратами на пальне та транспорт
corr coef, p value = pearsonr(data['wfuel'], data['wtrans'])
print("==== Кореляція між витратами на пальне та транспорт =====")
print(f"Коефіцієнт Пірсона: {corr coef:.3f}")
print(f"p-значення: {p value:.3f}")
if p value < 0.05:
    print("Є статистично значущий зв'язок між витратами на пальне та
транспортом. (H0 відхиляється) \n")
else:
    print("Статистично значущого зв'язку немає. (НО не
відхиляється) \n")
# 4. Лінійна регресія: витрати на їжу від доходу
X = data['income']
y = data['wfood']
X const = sm.add constant(X)
model sm = sm.OLS(y, X const).fit()
print("===== Лінійна регресія: витрати на їжу ~ дохід =====")
print(model sm.summary())
# Візуалізація регресії
plt.figure(figsize=(8, 6))
sns.regplot(x='income', y='wfood', data=data, color='blue',
line kws={'color': 'red'})
plt.xlabel('Дохід')
plt.ylabel('Витрати на їжу')
plt.title('Регресія: витрати на їжу від доходу')
plt.show()
```

Результат виконання:

```
===== Перші 5 рядків даних =====
wfood wfuel wcloth walc wtrans wother totexp income age children
0.4272 0.1342 0.0000 0.0106 0.1458 0.2822
                                              50
                                                     130
                                                          25
                                                                     2
0.3739 0.1686 0.0091 0.0825 0.1215 0.2444
                                                                    2
                                              90
                                                     150
                                                          39
0.1941 0.4056 0.0012 0.0513 0.2063 0.1415
                                             180
                                                     230
                                                           47
0.4438 0.1258 0.0539 0.0397 0.0652 0.2716
                                              80
                                                     100
                                                          33
0.3331 0.0824 0.0399 0.1571 0.2403 0.1473
                                                          31
                                              90
                                                     100
===== Кількість дітей у сім'ї =====
Середня кількість дітей: 1.60
Стандартне відхилення: 0.49
```

===== Перевірка нормальності доходів (Шапіро-Уілк) =====

Статистика тесту: 0.882

р-значення: 0.000

Доходи НЕ мають нормального розподілу. (НО відхиляється)

===== Кореляція між витратами на пальне та транспорт =====

Коефіцієнт Пірсона: -0.199

р-значення: 0.003

€ статистично значущий зв'язок між витратами на пальне та транспортом. (НО відхиляється)

===== Лінійна регресі	ія: витрати на їжу	~ дохід =====		
	OLS Regress	ion Results		
			=======	
Dep. Variable:	wfood	R-squared:		0.151
Model:	OLS	Adj. R-squared:		0.147
	Least Squares			38.60
		Prob (F-statistic):		
Time:	12:15:35	Log-Likelihood:		213.52
No. Observations:	219	AIC:		-423.0
Df Residuals:	217	BIC:		-416.3
Df Model:	1			
Covariance Type:				
		+ 0.1+1		0.0751
	r staerr 	t P> t		0.9/5]
const 0.4631	1 0.017 27	.484 0.000	0.430	0.496
income -0.0007	7 0.000 -6	.213 0.000	-0.001	-0.000
======================================			=======	
Omnibus:		Durbin-Watson:		2.023
Prob(Omnibus):		Jarque-Bera (JB):		3.148
Skew:		Prob(JB):		0.207
Kurtosis:	2.935	Cond. No.		397.
			======	=======
Notes:				
[1] Standard Errors a	assume that the cov	ariance matrix of th	e errore	is correctly
[1] Ocumula En ors	assome that the cov	arrance matrix or th	C CITOTS	10 00110000
Process finished with	n exit code 0			

Кількість дітей в середньому ≈ 1.6 , невелика варіація між сім'ями. Доходи не мають нормального розподілу, що варто враховувати в майбутньому аналізі. Є слабкий, але значущий негативний зв'язок між витратами на пальне та транспорт. Збільшення доходу зменшує частку витрат на їжу, але модель пояснює лише 15.1% варіації.

Висновок: У ході виконання даної лабораторної роботи я ознайомився з основними функціями бібліотеки NumPy та SciPy для описової статистики, перевірки статистичних гіпотез, кореляційного аналізу та лінійної регресії.