$$x^4 - 3x^2 - 3 = 0$$

$$3x^2 = x^4 - 3$$

$$x = \sqrt{\frac{x^4 - 3}{3}}$$

 $x \in [1,2]$ için bu fonksiyon tanımsız dolayısıyla başka x değeri aramalıyız.

$$x^4 = 3x^2 + 3$$

$$x = (3x^2 + 3)^{1/4}$$

$$g(x) = (3x^2 + 3)^{1/4}$$

$$g(1) = 1.56508$$

$$g(2) = 1.96798$$

 $g \in C[1, 2]$ and $g(x) \in [1, 2]$ for all $x \in [1, 2]$ then the function g has a fixed point in [1, 2].

$$g'(x) = \frac{3}{2}x(3x^2 + 3)^{-3/4}$$

$$g'(1) = 0.391271$$

$$g'(2) = 0.349865$$

g'(1), k değeri olarak kullanıldığında

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0| \le 10^{-2}$$

$$p_0 = 1$$

$$p_1 = g(p_0) = 1.56508$$

Olarak seçilip formülde değerler yerine yazıldığında görülürkü iterasyon en az 6 kere tekrar etmelidir.

p_0	p_1	$ p_o - p_1 $
1	1.595084	0.595084
1.595084	1.793572	0.228488
1.793572	1,885943	0.092370
1,885943	1.922847	0.036904
1.922847	1.937507	0.014659
1.937507	1.943316	<u>0.005809</u>

$$p_n = g(p_n-1), \quad n \ge 1$$

Sarı ile işaretli alanda değer 10^{-2} den küçük olduğu için durduk.

 $p_6 = 1.943316$ için bu accurate'ye ulaştık.