KNC 401 COMPUTER SYSTEM SECURITY

Module 8.1 UNIT-IV-PartII

By Dr. Alok Katiyar Email:alok.katiyar@ipec.org.in

Computer System Security (KNC401)

Unit-IV-Part-II

Public Key Distribution Real World Protocol

Alok Katiyar
CSE Department, IPEC

Public Key Distribution

Public Key Distribution

- Every user has his/her own public key and private key.
- Public keys are all published in a database.
- Sender and receiver agree on a cryptosystem.
- Sender gets receiver's public key from the db.
- Sender encrypts the message and sends it.
- · Receiver decrypts it using his/her private key.
- What can be a problem?

Matching keys to owners

- Insecurity of TCP/IP
 - No authentication
 - No privacy/confidentiality
 - Repudiation possible
- Public key cryptography not enough
- Need to match keys to owners
- Need infrastructure and certificate authorities

Public Key Infrastructure (PKI)

- As defined by Netscape:
 - "Public-key infrastructure (PKI) is the combination of software, encryption technologies, and services that enables enterprises to protect the security of their communications and business transactions on the Internet."
 - Integrates digital certificates, public key cryptography, and certification authorities
- Two major frameworks
 - -X.509
 - PGP (Pretty Good Privacy)

Certification Authorities (CAs)

Certification Authorities (cont.)

- Guarantee connection between public key and end entity
 - Man-In-Middle no longer works undetected
 - Guarantee authentication and non-repudiation
 - Privacy/confidentiality not an issue here
 - Only concerned with linking key to owner
- · Distribute responsibility
 - Hierarchical structure

Digital Certificates

- Introduced by IEEE-X.509 standard (1988)
- Originally intended for accessing IEEE-X.500 directories
 - Concerns over misuse and privacy violation gave rise to need for access control mechanisms
 - X.509 certificates addressed this need
- From X.500 comes the Distinguished Name (DN) standard
 - Common Name (CN)
 - Organizational Unit (OU)
 - Organization (O)
 - Country (C)
- Supposedly enough to give every entity on Earth a unique name

Obtaining Certificates

Obtaining Certificates

- 1. Alice generates Apriv Apub and AID, Signs (Apub, AID) with Apriv
 - Proves Alice holds corresponding Apriv
 - Protects {A_{pub}, A_{ID}} en route to CA
- 2. CA verifies signature on {A_{pub}, A_{ID}}
 - Verifies A_{ID} offline (optional)
- 3. CA signs {A_{pub}, A_{ID}} with CA_{priv}
 - Creates certificate
 - Certifies binding between A_{pub} and A_{ID}
 - Protects {Apub, Ap) en route to Alice
- 4. Alice verifies {A_{pub}, A_{ID}} and CA signature
 - Ensures CA didn't alter {A_{pub}, A_{ID}}
- 5. Alice and/or CA publishes certificate

PKI: Risks

- Certificates only as trustworthy as their CAs
 - Root CA is a single point of failure
- PKI only as secure as private signing keys
- DNS not necessarily unique
- Server certificates authenticate DNS addresses, not site contents
- CA may not be authority on certificate contents
 - i.e., DNS name in server certificates

Real World Protocol

- Secure Sockets Layer (SSL)
 - Client/server authentication, secure data exchange
- Secure Multipurpose Internet Mail Extensions Protocol (S/MIME), PGP
- Secure Electronic Transactions (SET)
- Internet Protocol Secure Standard (IPSec)
 - Authentication for networked devices

Basics Steps

- Authenticate (validate the other side)
- Key agreement/exchange (agree on or exchange a secret key)
- Confidentiality (exchange encrypted messages)
- Integrity (proof message not modified)
- Nonrepudiation (proof you got exactly what you want)

Secure Sockets Layer (SSL)

- Developed by Netscape
- Provides privacy
 - Encrypted connection
 - Confidentiality and tamper-detection
- · Provides authentication
 - Authenticate server
 - Authenticate client optionally

Secure Sockets Layer (cont.)

- Lies above transport layer, below application layer
 - Can lie atop any transport protocol, not just TCP/IP
 - Runs under application protocols like HTTP, FTP, and TELNET

SSL: Server Authentication

SSL: Client Authentication

Network Security - Terminology

Network Security

- Application layer
 - E-mail: PGP, using a web-of-trust
 - Web: HTTP-S, using a certificate hierarchy
- Transport layer
 - Transport Layer Security/ Secure Socket Layer
- Network layer
 - IP Sec
- Network infrastructure
 - DNS-Sec and BGP-Sec

Basic Security Properties

- · Confidentiality:
- Authenticity:
- · Integrity:
- Availability:
- Non-repudiation:
- · Access control:

Basic Security Properties

- Confidentiality: Concealment of information or resources
- Authenticity: Identification and assurance of origin of info
- Integrity: Trustworthiness of data or resources in terms of preventing improper and unauthorized changes
- Availability: Ability to use desired information or resource
- Non-repudiation: Offer of evidence that a party indeed is sender or a receiver of certain information
- Access control: Facilities to determine and enforce who is allowed access to what resources (host, software, network, ...)

Encryption and MAC/Signatures

Confidentiality (Encryption)

Sender:

- · Compute C = Eng (M)
- Send C

Receiver:

Recover M = Dec_K(C)

Auth/Integrity (MAC/Signature)

Sender:

- Compute s = Sig_K(Hash (M))
- Send <M, s>

Receiver:

- Compute s' = Ver_K(Hash (M))
- Checks' == s

These are simplified forms of the actual algorithms

Email Security, Certificates

Email Security: Pretty Good Privacy (PGP)

Sender and Receiver Keys

- If the sender knows the receiver's public key
 - Confidentiality
 - Receiver authentication

- If the receiver knows the sender's public key
 - Sender authentication
 - Sender non-repudiation

Sending an E-Mail Securely

- Sender digitally signs the message
 - Using the sender's private key
- Sender encrypts the data
 - Using a one-time session key
 - Sending the session key, encrypted with the receiver's public key

Public Key Certificate

- Binding between identity and a public key
 - "Identity" is, for example, an e-mail address
 - "Binding" ensured using a digital signature
- Contents of a certificate
 - Identity of the entity being certified
 - Public key of the entity being certified
 - Identity of the signer
 - Digital signature
 - Digital signature algorithm id

Web of Trust for PGP

- Decentralized solution
 - Protection against government intrusion
 - No central certificate authorities
- Customized solution
 - Individual decides whom to trust, and how much
 - Multiple certificates with different confidence levels
- Key-signing parties!
 - Collect and provide public keys in person
 - Sign other's keys, and get your key signed by others

HTTP Threat Model

- Eavesdropper
 - Listening on conversation (confidentiality)
- Man-in-the-middle
 - Modifying content (integrity)
- Impersonation

Bogus website (authentication, confidentiality)

wire sluk

21

HTTP-S: Securing HTTP

- HTTP sits on top of secure channel (SSL/TLS)
 - https://vs. http://
 - TCP port 443 vs 80
- All (HTTP) bytes encrypted and authenticated
 - No change to HTTP itself!

Learning a Valid Public Key

- What is that lock?
 - Securely binds domain name to public key (PK)
 - If PK is authenticated, then any message signed by that PK cannot be forged by non-authorized party
 - Believable only if you trust the attesting body
 - Bootstrapping problem: Who to trust, and how to tell if this message is actually from them?

Hierarchical Public Key Infrastructure

- Public key certificate
 - Binding between identity and a public key
 - "Identity" is, for example, a domain name
 - Digital signature to ensure integrity
- · Certificate authority
 - Issues public key certificates and verifies identities
 - Trusted parties (e.g., VeriSign, GoDaddy, Comodo)
 - Preconfigured certificates in Web browsers

Public Key Certificate

85

Security Protocol

TLS: Transport Layer Secuirty
SSL: Secure Security Layer
IP Seuirty
MAC Secuirty

Transport Layer Security (TLS)

Based on the earlier Secure Socket Layer (SSL) originally developed by Netscape

TLS Handshake Protocol

- Send new random value, list of supported ciphers
- Send pre-secret, encrypted under PK
- Create shared secret key from pre-secret and random
- Switch to new symmetrickey cipher using shared key

 Send new random value, digital certificate with PK

- Create shared secret key from pre-secret and random
- Switch to new symmetrickey cipher using shared key

Comments on HTTPS

- HTTPS authenticates server, not content
 - If CDN (Akamai) serves content over HTTPS, customer must trust Akamai not to change content
- Symmetric-key crypto after public-key ops
 - Handshake protocol using public key crypto
 - Symmetric-key crypto much faster (100-1000x)
- HTTPS on top of TCP, so reliable byte stream
 - Can leverage fact that transmission is reliable to ensure: each data segment received exactly once
 - Adversary can't successfully drop or replay packets

Module 7.10 IP Security

IP Security

- · There are range of app-specific security mechanisms
 - eg. TLS/HTTPS, S/MIME, PGP, Kerberos, ...
- But security concerns that cut across protocol layers

Computer System Security(KNC401) by Dr.
Alok Katiyar

92

IPSec

General IP Security framework

- Allows one to provide
 - Access control, integrity, authentication, originality, and confidentiality
- Applicable to different settings
 - Narrow streams: Specific TCP connections
 - Wide streams: All packets between two gateways

IPSec

- General IP Security framework
- Allows one to provide
 - Access control, integrity, authentication, originality, and confidentiality
- Applicable to different settings
 - Narrow streams: Specific TCP connections
 - Wide streams: All packets between two gateways

IPSec Uses

Benefits of IPSec

- If in a firewall/router:
 - -Strong security to all traffic crossing perimeter
 - Resistant to bypass
- Below transport layer
 - -Transparent to applications
 - Can be transparent to end users
- Can provide security for individual users

IP Security Architecture

- Specification quite complex
 - Mandatory in IPv6, optional in IPv4
- Two security header extensions:
 - Authentication Header (AH)
 - Connectionless integrity, origin authentication
 - MAC over most header fields and packet body
 - Anti-replay protection
 - Encapsulating Security Payload (ESP)
 - · These properties, plus confidentiality

Encapsulating Security Payload (ESP)

- Transport mode: Data encrypted, but not header
 - After all, network headers needed for routing!
 - Can still do traffic analysis, but is efficient
 - Good for host-to-host traffic
- Tunnel mode: Encrypts entire IP packet
 - Add new header for next hop
 - Good for VPNs, gateway-to-gateway security

Replay Protection is Hard

- Goal: Eavesdropper can't capture encrypted packet and duplicate later
 - Easy with TLS/HTTP on TCP: Reliable byte stream
 - But IP Sec at packet layer; transport may not be reliable
- IP Sec solution: Sliding window on sequence #'s
 - All IPSec packets have a 64-bit monotonic sequence number
 - Receiver keeps track of which segno's seen before
 - [lastest windowsize + 1, latest]; windowsize typically 64 packets
 - Accept packet if
 - segno > latest (and update latest)
 - . Within window but has not been seen before
 - If reliable, could just remember last, and accept iff last + 1

Module 7.11 DNS Security

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
- Labeled A through M

DoS attacks on DNS Availability

- Feb. 6, 2007
 - Botnet attack on the 13 Internet DNS root servers
 - Lasted 2.5 hours
 - None crashed, but two performed badly:
 - g-root (DoD), I-root (ICANN)
 - Most other root servers use anycast

Denial-of-Service Attacks on Hosts

×40 amplification

Denial-of-Service Attacks on Hosts

×40 amplification

Preventing Amplification Attacks

DNS Integrity: Cache Poisoning

- Was answer from an authoritative server?
 - Or from somebody else?
- DNS cache poisoning
 - Client asks for www.evil.com
 - Nameserver authoritative for www.evil.com returns additional section for (www.cnn.com, 1.2.3.4, A)
 - Thanks! I won't bother check what I asked for

DNS Integrity: DNS Hijacking

- To prevent cache poisoning, client remembers:
 - The domain name in the request
 - A 16-bit request ID (used to demux UDP response)
- DNS hijacking
 - 16 bits: 65K possible IDs
 - What rate to enumerate all in 1 sec? 64B/packet
 - -64*65536*8 / 1024 / 1024 = 32 Mbps

Let's strongly believe the answer! Enter DNSSEC

- DNSSEC protects against data spoofing and corruption
- DNSSEC also provides mechanisms to authenticate servers and requests
- DNSSEC provides mechanisms to establish authenticity and integrity

PK-DNSSEC (Public Key)

- The DNS servers sign the hash of resource record set with its private (signature) keys
 - Public keys can be used to verify the SIGs
- Leverages hierarchy:
 - Authenticity of name server's public keys is established by a signature over the keys by the parent's private key
 - In ideal case, only roots' public keys need to be distributed out-ofband

Verifying the Tree

Question: www.cnn.com ?

Conclusions

- Security at many layers
 - Application, transport, and network layers
 - Customized to the properties and requirements
- Exchanging keys
 - Public key certificates
 - Certificate authorities vs. Web of trust
- Next time
 - Interdomain routing security