Lesson 21 (LeNet) LeNet⁷ is on of the earliest convolutional networks. It was designed for OCR (optical character recognition) tasks.

(a) Assume LeNet is to be trained using the MNIST_train_1000.npz dataset. Determine the shape of the following tensors. Assume parameters are stored in single precision (4 bytes each). How much memory (in megabytes) is needed to store the trained parameters of LeNet for the MNIST_train_1000.npz dataset.

aarascr.			
	X		
Layer 1	\mathbf{W}_0		
	\mathbf{b}_0		
	\mathbf{Z}_1		
	\mathbf{A}_{11}		
	\mathbf{A}_{12}		
Layer 2	\mathbf{W}_1		
	\mathbf{b}_1		
	\mathbf{Z}_2		
	\mathbf{A}_{21}		
	\mathbf{A}_{22}		
	\mathbf{A}_{23}		
Layer 3	\mathbf{W}_2		
	\mathbf{b}_2		
	\mathbf{Z}_3		
	\mathbf{A}_3		
Layer 4	\mathbf{W}_3		
	\mathbf{b}_3		
	$\hat{\mathbf{Y}}$		
	$\hat{\mathbf{P}}$		
		Total	

- (b) Define LeNet in Keras and check your answers to part (a) using Kera's .summary() method.
- (c) Train LeNet and use MNIST_test_1000.npz to evaluate the accuracy of LeNet. Compare LeNet's accuracy rate to a baseline accuracy rate and a human accuracy rate.

⁷LeCun et al., Gradient-Based Learning Applied to Document Recognition, Proc. IEEE 86(11): 2278–2324, 1998.