OBJECTIVOS DOS PROJECTOS DE ESTRUTURAÇÃO DE DADOS

- ► ADEQUAÇÃO AOS OBJETOS
- ► INTEGRIDADE/ RIGOR
- **▶** DISPONIBILIDADE
- ► FACILIDADE DE ACTUALIZAÇÃO E PESQUISA
- ARMAZENAMENTO EFICIENTE

OS TRÊS NÍVEIS DE INFORMAÇÃO

OS TRÊS VÉRTICES DA GESTÃO DE INFORMAÇÃO

- Análise funcional da informação
- Desenvolvimento da aplicação que gere a aplicação
- Representação da informação

CONCEITO DE BASE DE DADOS

Colecção de Dados que representam um negócio

Entidades (Produtos, Armazéns, Clientes, ...) Relações entre entidades (a venda de produtos a um cliente)

SGBD - Sistema de Gestão de Base de Dados

Programa para suportar a gestão e utilização dos dados

Visão geral de assuntos no universo das bases de dados

Desenho/ Projeto de Base de Dados

 Como descrever um negócio em termos da informação armazenada num SGBD

Análise de Dados

 Como responder a questões sobre o negócio através da pesquisa da informação sobre a base de dados

Concorrência e Robustez

- Como permite o SGBD o acesso concorrente a vários utilizadores?
- Como protege a informação das falhas do sistema?

Eficiência e escalabilidade

- Como o SGBD consegue armazenar muita informação e responder às pesquisas de forma eficiente?

PERSPECTIVA HISTÓRICA

primeiro SGBD de aplicação genérica

- IDS Integrated Data Store (GE 1960s)
- usava um modelo de dados em rede

primeiro SGBD desenvolvido pela IBM para servir de base a aplicações de gestão de informação IBM

- IMS Information Management System (IBM, fins anos 1960)
- usava um modelo de dados hierárquico

criação do modelo de dados actualmente mais usado pelos SGBD

- modelo de dados relacional (Edgar Codd IBM research 1970)
- provocou o desenvolvimento de vários SGBD baseados nesse modelo
- iniciou a comercialização em grande escala de SGBD e suas aplicações
- os SGBD comerciais tornaram-se prática corrente da gestão de informação nas empresas

Consolidação dos SGBD e aparecimento do standard SQL (década de 1980)

- os SGBD passam a ser usados universalmente
- linguagem de pesquisa universal: SQL Structured Query Language, para bases de dados relacionais (IBM system R)
- standardização do SQL (fins 1980)
- desenvolvimento de transacções e concorrência num SGBD (James Gray)

Avanços em várias áreas dos SGBD (década 1990, início sec XXI)

- linguagens de pesquisa mais poderosas
- modelos de dados mais ricos (objecto, object-relational)
- suporte de análise complexa de dados de cada parte da empresa

- imagens e texto em SGBD
- Datawarehouses e análise de dados especializada

- Baan, SAP, Navision, ...
- oferecem suporte a processos típicos de organizações e empresas
- armazenam os dados em SGBD relacionais
- adaptam o funcionamento a diferentes empresas parametrização
- diminuem o custo em relação a um desenvolvimento de raiz

Entrada dos SGBD na era da internet e sites dinâmicos

 A informação Web deixa de estar armazenada em ficheiros e passa a estar armazenada num SGBD usando-se o SQL para pesquisas e transforma-se o resultado em HTML/ XML

ARMAZENAMENTO - DOIS MODOS

- > FICHEIROS INDIVIDUAIS
- > BASE DE DADOS

Sistema Controlado de Informação

Características do modo de armazenamento

- **FICHEIROS:**
 - Rapidez do projecto e construção
 - Conceitos mínimos de disponibilidade e segurança
 - Dificuldade de evolução
 - Alterações no armazenamento obrigam a alterações no código
 - Obriga a REDUNDÂNCIA

Maior tempo de actualização

BASE DE DADOS:

Motor de Base de Dados - SGBD, capaz de:

Criar

Actualizar

Modificar

Disponibilizar

Partilhar

Manter consistência

- Facilidade de evolução
- Permite criar vistas de dados (Views) sem preocupações com a estrutura

Todos os dados juntos
 Vulnerabilidade

Dificuldade balancear:

Facilidade de Acesso

Espaço Armazenamento

CONCEITOS DE DADOS

As relações 1-1 e N-M correspondem a visões incompletas e imperfeitas do Negócio e terão de ser sempre exploradas, percebidas e transformadas em relações 1-N.

REGISTOS

CHAVES

Campos que identificam o registo

Primária: Um registo

Secundárias: Colecção de Registos

METADADOS

Informação que descreve campos, registos e suas relações

DIAGRAMA: ENTIDADE - RELAÇÃO

ORGANIZAÇÃO

FICHEIROS - Colecções de Registos

TIPO (quanto aos dados):

MASTER	Registos estáveis		
	Campos muito alteráveis		
TABELAS	Registos e campos estáveis		
TRANSACÇÕES	Alteram os Masters		
TRABALHO	Temporários		
IMPRESSÃO			

ORGANIZAÇÃO:

Sequencial	Registos com ordem física			
Directo	Registos com ordem lógica (encadeados)			
Hashed	Acesso directo ao registo a partir da chave			
Indexados	Chaves em ficheiros separados			
Sequencial - Indexada	Registos em blocos por ordem física. Os blocos têm índice			

BASE DE DADOS

MODELO LÓGICO DE DADOS

DIFERENTES FORMAS DE VER OS DADOS

MODELO FÍSICO

COMO ARMAZENAR/ RELACIONAR/ ACEDER

ESTRUTURA: 3 FORMAS PRINCIPAIS

HIERARQUICO (ÁRVORE)

- Cada entidade não tem mais que uma entidade ascendente
- Só comporta relações 1:M ou 1:1

REDE

- Cada entidade pode ter qualquer número de subordinados ou superiores
- As entidades ligam-se por cadeias

❖ RELACIONAL

 Consiste numa ou mais tabelas bidimensionais (Relações) onde as linhas são os registos e as colunas os atributos

Em que difere da folha de cálculo?

DIFERE:

- Volume de informação
- Permite ligar duas ou mais tabelas que aparecem como uma única
- Minimiza REDUNDÂNCIA

MODELO HIERARQUICO

* GRANDE DEPENDÊNCIA ENTRE A DESCRIÇÃO DA ESTRUTURA DE DADOS E A MANEIRA COMO ESTÃO REGISTADOS

***** EXEMPLO: STOCKS

ASSOCIAÇÃO: FORNECEDORES

PRODUTOS

CONTEÚDO DA BASE

	F_COD	F_NOME	F_MOR					
	F1	RUI	PORTO					
,	ſ	P_COD	P_NOME	P_COR	P_PESO	V_PUNIT	V_QMIN	V_ATRASO
		P1	PREGO	AZUL	12	3	10	15
ı		P2	PARAFUSO	VERM	17	4	12	30
ı		P3	PORCA	VERDE	17	5	5	0
		P4	PERNO	AMARELO	14	2	10	15
1		P5	CARRETO	AZUL	15	7	12	15
ı	F2	EVA	BRAGA					
ı		P1	PREGO	AZUL	12	3	10	15
ı		P3	PORCA	VERDE	17	6	8	15
								<u>.</u>

{ Segmento Fornecedores { Segmento Produtos

CADA SEGMENTO PRODUTO ESTÁ ASSOCIADO A UM OU MAIS SEGMENTOS FORNECEDOR

UNIDADE DE ACESSO: SEGMENTO

- NÃO SE PODE ACEDER A UM SEGMENTO SEM ACEDER
 PRIMEIRO AO SEU SUPERIOR HIERÁRQUICO
- PARA LISTAR OS PRODUTOS É NECESSÁRIO ANALISAR PARA CADA FORNECEDOR A SUA LISTA DE PRODUTOS
- NÃO HÁ UMA FORMULAÇÃO NATURAL DAS PERGUNTAS PARA OBTER OS DADOS DA BASE

QUESTÕES CURIOSAS

- PARA INSERIR UM PRODUTO PARA O QUAL NÃO SE CONHECE
 O FORNECEDOR HÁ QUE CRIAR UM FICTÍCIO.
- SE SUPRIMIR UM FORNECEDOR TODOS OS SEUS PRODUTOS DESAPARECEM, MESMO OS QUE SÃO ÚNICOS.
- A ACTUALIZAÇÃO DE UM PRODUTO OBRIGA A PERCORRER TODOS OS FORNECEDORES

SOLUÇÃO: BASE RELACIONAIS

MODELO EM REDE

DESENVOLVIMENTO DO MODELO HIERÁRQUICO PARA DESCREVER AS RELAÇÕES (m:n) E DIMINUIR O CONSTRANGIMENTO DA HIERARQUIA

RELAÇÃO: VENDER

F_COD	P_COD	V_PUNIT	V_QMIN	V_ATRASO
F1	P1	3	10	15
F1	P2	4	12	30
F1	Р3	5	5	0
F2	P1	3	10	15
F2	Р3	6	8	15

A ESTRUTURA EM REDE PERMITE UTILIZAR RELAÇÕES (m:n)

OS ELEMENTOS DA REDE SÃO OS REGISTOS E NO EXEMPLO

ENCONTRAMOS 3 TIPOS: FORNECEDOR

PRODUTO

VENDER

PARA DESCREVER A RELAÇÃO ASSOCIAMOS FORNECEDOR A VENDER E VENDER A PRODUTO

UM REGISTO PODE TER VÁRIOS SUPERIORES HIERÁRQUICOS

USAM-SE CADEIAS DE APONTADORES

MODELO RELACIONAL

- → REPRESENTA A BASE DE DADOS COMO UMA COLEÇÃO DE RELAÇÕES.
- ◆ CADA RELAÇÃO ASSEMELHA-SE A UMA TABELA DE VALORES.
- CADA LINHA DA TABELA REPRESENTA UMA COLEÇÃO DE VALORES RELACIONADOS - TUPLE.
- **O NOME DA COLUNA DESIGNA-SE POR ATRIBUTO.**
- O TIPO DE DADOS QUE DESCREVE O TIPO DE VALORES EM CADA COLUNA É DESIGNADO POR **DOMÍNIO**.

PARA QUE O MODELO RELACIONAL SEJA ÚTIL E MANEJÁVEL TEM DE ESTAR NORMALIZAÇÃO:

TRANSFORMAÇÃO DAS VISÕES COMPLEXAS DOS DADOS E DOS SEUS SUPORTES NUMA COLECÇÃO ESTÁVEL DE ESTRUTURAS SIMPLES

A alternativa à normalização é: pensar normalizado!

VANTAGENS DE UM SGBD

► INDEPENDÊNCIA DOS DADOS

Permite um acesso padrão e uma visão arrumada da informação, para que as aplicações possam ser o mais independente possível dos dados

ACESSO A DADOS EFICIENTE E DINÂMICO

Inclui estruturas de armazenamento e implementa métodos de acesso e estratégias de optimização genéricas e muito eficientes

► INTEGRIDADE E SEGURANÇA DOS DADOS

Ajuda na utilização de regras de integridade e controlo de acessos de utilizadores

ADMINISTRAÇÃO DOS DADOS

Permite a parametrização de perfis de acesso e estratégias de optimização

ACESSOS CONCORRENTES

Prevê a existência de múltiplos utilizadores

► RECUPERAÇÃO DE FALHAS

Mantêm mecanismos que permitem refazer a informação de forma íntegra

► REDUÇÃO TEMPO DESENVOLVIMENTO DE APLICAÇÕES