INTRODUCCION FreeMat / MATLAB / Octave

En esta CLASE 2 se desarrollan los siguientes contenidos:

- FUNCIONES NO POLINOMICAS
 - INTRINSECAS: SENO, COSENO, LOG
 - OTRAS
 - DEFINIRLAS
 - HALLAR CEROS O RAICES
 - GRAFICAR
- RESOLUCION SISTEMAS ECUACIONES LINEALES (SEL)
 - MATRICES Y VECTORES
 - RESOLUCION GRAFICA

Antes de comenzar a utilizar esta ayuda (archivo pdf) arranque el programa MATLAB o FreeMat.

Coloque las ventanas en simultáneo, en MOSAICO HORIZONTAL como observa en la figura, de modo de poder leer en la derecha y realizar los comandos (escribirlos) de esta lección.

FUNCIONES NO POLINOMICAS

FUNCIONES INTRINSECAS: SIN, COS, LOG

Como graficar otro tipo de funciones:

*LOG devuelve el logaritmo natural, para hallar el log decimal se debe usar LOG10

Se pueden graficar dos funciones en el mismo eje.

Primero se debe:

^{*} graficar las funciones usando: comando hold on y plot o bien un solo plot.

>>alfa=0:0.5:2*pi	% Este comando genera un vector de 13 valores. pi es un valor propio o
	intrínseco

>>plot(alfa,y, alfa, z) % Se grafican ambas funciones.

Observar hay dos pares de valores, un par es (alfa, y) y el otro es (alfa, z).

^{*} generar un vector **alfa**, con valores desde 0 a 2π , o sea se definen 13 valores de ángulos, usando el operador dos puntos.

^{*} calcular los valores del seno (variable y) y del coseno (variable z) para cada alfa.

Líneas más gruesas

Para dibujar con un trazo más grueso se puede agregar el parámetro LineWidth,2 al final de los pares de valores graficados

```
>>plot( alfa ,y, alfa , z , 'Linewidth' , 2 )
```

Otra opción para el plot:

```
>>alfa=0:0.5:2*pi
```

>>y= sin(alfa)

>>z= cos(alfa)

>>plot(alfa,y)

>>hold on

>>plot(alfa, z)

FUNCIONES NO POLINOMICAS Comando inline

Para definir y/o graficar una función <u>que no es un polinomio</u> ni una función trigonométrica, se puede definir como función 'en línea' y llamarla por ejemplo f(x). Luego puede ser utilizada, cuando la necesitemos, con sólo asignarla a una variable para un valor o varios valores de x, que son los argumentos que la función utiliza.

Conviene usar inline para definir funciones que se van a usar muchas veces en una sesión de trabajo.

>>nombredelafuncion=inline('expresión de la función')

<u>Ejemplo 11:</u> si se quiere definir una función potencial (x elevado a un exponente no entero), x elevado a la 2.5: $y = x^{2.5}$ y se la quiere evaluar en el intervalo [0, 2], con un salto o incremento dx de 0.2

Se debe *definir con inline* una función que llamaremos f1 (se puede llamar de distintas formas) pero No se pueden usar nombres de funciones propias de Matlab como: sin, cos, abs, log etc. Por eso generalmente se usa la letra f seguida de un número.

```
>> f1=inline('x.^2.5') % se define la función potencial. Observar el punto luego de la x!!!! >> x=0:0.2:2 %se definen todos los valores de x >> ypot= f1(x) % se asigna a la variable ypot todos los valores de f1, para todos los x
```

Nota: si NO se pone el punto antes del operador ^ la función f1 servirá solamente para calcular valores únicos o determinado de x. Por ejemplo >>f1(3) o bien f1(a), si la variable a=5, pero será sólo un valor.

SI NO SE PONE EL PUNTO no calculará para una serie de valores o vector x.

Ejemplos de uso del comando inline

ans=

Definir con Matlab o Freemat las siguientes funciones:

```
Ejemplo 12: y=f(x)=sen^2(x) se define:
      >> f2=inline('sin(x).^2') % ojo no se define como las trigonométricas seno y coseno!
f2 =
   Inline function:
f2(x) = \sin(x).^2
Ejemplo 13: y = f(x) = sen^2(x) + cos^2(x) (recordar que siempre da 1, cualquiera sea x)
>> f3=inline('sin(x).^2+cos(x).^2')
>>f3(0)
ans=
>>f3(1)
              % 1 es un radián. Recordar que las funciones trigonométricas en Matlab
                 operan con ángulos expresados en radianes
```

En estos ejemplos usamos **funciones propias de Matlab (sin , cos)** y las asignamos a una función definida por nosotros que llamamos f2 y f3

Comando fzero

fzero calcula la (o las) raíces de una ecuación NO POLINOMICA.

Funciona similar a *roots* (pero *roots* sirve sólo para hallar raíces de polinomios)

Se debe:

- * definir la función
- * dar un valor **próximo a la raíz**, para que a partir de ella Matlab "busque" la solución (es parecida a la Herramienta Buscar Objetivo de Excel). Para saber qué valor próximo tomar, convendrá primero graficar la función para así poder observar las cercanías de la/s raíz/ces.

Ejemplo 14: Hallar la raíz de la ecuación: $\sqrt{x} - 2 = 0$

En Matlab/freemat la función raíz cuadrada es sqrt

sqrt(x) - 2 = 0 (la solución es 4 pues la raíz cuadrada de 4 es 2)

Usamos aquí un ejemplo sencillo para visualizar bien la solución

PASOS EN MATLAB:

1) Se define en fecua la función con inline, podría tener otro nombre:

```
>>fecua = inline( 'sqrt(x) - 2' )
```

2) Para saber donde está la raíz aproximadamente, se **grafica la función** sqrt(x) – 2 entre x= 0 y x=5, y se observa **donde la curva corta el eje x (y=0).** En este ejemplo se observa perfectamente que es en el valor x=4

Entonces se usa fzero, dando 3 (podría ser 2.5 ó 3.5) como valor próximo a la raíz:

```
>>raíz=fzero(fecua,3)
ans=
4
```

Marcar la solución en el eje x (ya se explicó en clase 1)

Para marcar en la gráfica la raíz (x=4) se usa el comando PLOT. Previo uso de hold on!!

```
>> hold on
>>plot ( [4 4] , [-1 +1] ) % traza una línea vertical en x=4 desde y=-1 hasta y=+1
```

Matrices y Vectores con Matlab y Octave. Operaciones básicas con Matrices

Como escribir una matríz en Matlab

Recordar que la norma es ponerles nombres en mayúsculas.

Se escriben sus elementos por filas, separados por comas o espacios en blanco.

Para cambiar de fila se escribe un punto y coma (;) y todo se encierra todo entre corchetes.

Si tenemos la matriz A dada por:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Para escribirla en Matlab usamos el comando:

Transpuesta de una matriz, el operador apóstrofe

La matriz transpuesta de A se obtiene escribiendo A con un apóstrofe

```
>>B = A' % B es la matriz transpuesta de A
B =
1 3
2 4
```

Como escribir un vector en Matlab

Se quiere escribir un vector FILA, por ejemplo, el vector $\mathbf{vf} = \begin{bmatrix} 1 & 3 \end{bmatrix}$

>>vf = [1 3] % Es un vector fila pues se separan los elementos por espacios o comas

Y si se quiere definir el vector columna vc:

$$vc = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Se escribe:

>>vc = [1;3] % se separan por; pues es un vector columna

Otra forma es trasponer el vector fila vf usando el operador apóstrofe:

>>vc=vf '

Solución de un Sistema de Ecuaciones Lineales (SEL) con MATLAB

Tenemos el sistema algebraico de ecuaciones de 2x2 que, como ya sabemos cada ecuación representa una recta:

$$\begin{cases} 1 x_1 - 1 x_2 = -1 \\ 1 x_1 + 1 x_2 = 7 \end{cases}$$

Esto en forma **matricial** se escribe como la operación entre la matríz A y el vector x para dar el vector b:

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$$

En Algebra lineal verá que se expresa como: A * x = b donde A es la matríz de coeficientes, x y b son vectores de incógnitas y de términos independientes, respectivamente.

Para resolver este sistema con Matlab/Octave/FreeMat, hay que:

- √ definir a la matríz de coeficientes o matríz A
- √ definir el vector b (como vector columna)
- ✓ utilizar el operador \ (premultiplicar por la inversa)

Como se resuelve un SEL con Matlab

1º) Tomemos el sistema anterior.

Escribir el comando para definir la matriz de coeficientes (se puede llamar A):

```
>> A = [1-1; 1 1]
A=
1 -1
```

2º) Escribir el vector columna b (o términos independientes del sistema)

Observar que el vector b (columna) se debe escribir separando los elementos por punto y coma ;

```
>>b = [-1;7]
b = -1
7
```

3º) Utilizar el operador \ para resolver el problema. Se escribe entonces:

```
>>x = A \setminus b % Obtenemos así los valores de x_1 = 3 y x_2 = 4 que son la solución del sistema x = 3.0000
4.0000
```

Los resultados pueden verificarse. Para ello se plantea calcular A * x, y ver si se obtiene b:

>> A * x % Verificación

ans =

-1

7 % vemos que son los valores del vector b.