1 Definitions

1.0.1 Metric Space

A **metric** on X is a function

$$d: X \times X \to \mathbb{R}$$

such that

- 1. Nonnegative $d(x,y) \geq 0$ for all $x,y \in X$.
- $2. \ d(x,y) = 0 \iff x = y.$
- 3. Symmetric d(x, y) = d(y, x).
- 4. Triangle Inequality $d(x,y) \leq d(x,z) + d(z,y)$

1.0.2 Linear Space

A linear space aka vector space defines a **norm** on X

$$||\cdot||:X\to\mathbb{R}$$

such that

- 1. Nonnegative $||x|| \ge 0$ for all $x \in X$.
- 2. $||x|| = 0 \iff x = 0.$
- 3. Scalar multiplication $||\lambda x|| = |\lambda| \cdot ||x||$
- 4. Triangle Inequality $||x + y|| \le ||x|| + ||y||$

There is a corresponding metric induced by the norm.

A sequence (x_n) converges to $x \in X$ if for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $d(x_n, x) < \epsilon$ for all $n \geq N$.

A sequence (x_n) is **Cauchy** if for all $\epsilon > 0$ there is $N \in \mathbb{N}$ such that $d(x_m, x_n) < \epsilon$ for all $m, n \geq N$.

A metric space (X, d) is **complete** if every Cauchy sequence in X converges to a limit in X.

 $G \subset X$ is **open** if for all $x \in G$ there exists r > 0 such that $B_r(x) \subset G$. $F \subset G$ is **closed** if the complement F^C is open.

 \bar{A} , the **closure** of A is the smallest closed set containing A.

 $K \subset X$ is **sequentially compact** if every sequence in K contains a subsequence that converges in K.

 $K \subset X$ is **compact** if every open cover of K has a finite subcover.

A subset of X is **totally bounded** if there exists a finite ϵ net for every $\epsilon > 0$.

 $A \subset X$ is **dense** in X if $\bar{A} = X$.

A subset of X is **separable** if it has a countable dense subset. Compact metric spaces are separable.

A subset of X is **precompact** if its closure in X is compact. \iff Subset is totally bounded.

1.0.3 Theorems

A subset of a metric space is complete if and only if it is closed.

A subset of a metric space is compact if and only if it is complete and totally bounded.

Continuous functions on a compact set are uniformly continuous.

The image of a compact set under a continuous function is compact.

1.1 Functions

A function $f: X \to Y$ is **continuous** at $x_0 \in X$ if for all $\epsilon > 0$ there exists $\delta > 0$ such that $d_X(x, x_0) < \delta$ implies $d_Y(f(x), f(x_0)) < \epsilon$. Equivalently:

- 1. There is a ball of positive radius δ around a point x_0 that is mapped into the ball of radius ϵ around $f(x_0)$.
- 2. $\lim_{x \to x_0} f(x) = f(x_0)$

A function $f: X \to Y$ is **uniformly continuous** on X if for all $\epsilon > 0$ there exists $\delta > 0$ such that $d_X(x,y) < \delta$ implies $d_Y(f(x),f(y)) < \epsilon$ for all $x,y \in X$.

The **sup norm** or L^{∞} norm between functions on \mathbb{R} is defined as

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$

A sequence of bounded, real valued functions (f_n) on a metric space **converges uniformly** to a function f if

$$\lim_{n=rightarrow\infty} ||f_n - f|| = 0$$

C(K), the space of continuous functions on a compact metric space K is complete.

Weierstrass Approximation The set of polynomials is dense in C([a,b]).