Crittografia

Principi di crittografia

Integrità dei messaggi Protocolli di autenticazione Sicurezza nella pila di protocolli di Internet: PGP, SSL, IPSec

Prof. Filippo Lanubile

Elementi di crittografia

- **Crittografia:** procedimento di cifratura e decifratura dei messaggi basato su funzioni parametriche
- Testo in chiaro: messaggio originario
- Algoritmo di cifratura: effettua sostituzioni e trasformazioni sul testo in chiaro
- Testo cifrato: output dell'algoritmo di cifratura da trasmettere sul canale; risulta inintelligibile a un intruso
- Algoritmo di decifratura: effettua il lavoro inverso dell'algoritmo di cifratura
- Chiave: parametro dell'algoritmo di cifratura o decifratura

1

Classificazione dei sistemi crittografici

- Tipo di operazioni usate per trasformare il testo in chiaro in testo cifrato
 - Sostituzione:
 - Ogni elemento del testo in chiaro è trasformato in un altro elemento
 - Trasposizione:
 - Gli elementi del testo in chiaro sono riorganizzati
- Numero di chiavi (distinte) utilizzate
 - Chiave singola: crittografia a chiave simmetrica (o a chiave segreta)
 - Le chiavi del mittente e del destinatario sono identiche
 - Due chiavi: crittografia a chiave asimmetrica (o a chiave pubblica)
 - La chiave di cifratura è pubblica; la chiave di decifratura è privata
- Il modo in cui il testo in chiaro è elaborato
 - Cifrario a blocchi:
 - Elabora in blocchi di dimensione fissa
 - Cifrario a flusso:
 - Elabora senza una lunghezza predefinita

Prof. Filippo Lanubile

Esempio: cifrario di Cesare

- Tipo di operazioni:
 - sostituzione
- Numero di chiavi utilizzate:
 - Chiave singola (1 k 26)
- Modo in cui il testo in chiaro è elaborato:
 - cifrario a flusso

Plaintext letter: a b c d e f g h i j k l m n o p q r s t u v w x y z $C_1(k=5)$: f g h i j k l m n o p q r s t u v w x y z a b c d e $C_2(k=19)$: t u v w x y z a b c d e f g h i j k l m n o p q r s

Esempio: cifrario monoalfabetico

- Tipo di operazioni:
 - sostituzione
- Numero di chiavi utilizzate:
 - Chiave singola (26! pattern di sostituzione monoalfabetico)
- Modo in cui il testo in chiaro è elaborato:
 - cifrario a flusso

Plaintext letter: abcdefghijklmnopqrstuvwxyz Ciphertext letter: mnbvcxzasdfghjklpoiuytrewq

Figure 8.3 • A monoalphabetic cipher

Prof. Filippo Lanubile

Crittoanalisi

- Processo con cui si tenta di risalire al testo in chiaro o alla chiave usata
 - Diversi attacchi in base alle informazioni a disposizione dell'intruso
- Un algoritmo di cifratura è progettato per resistere a un attacco basato su testo in chiaro conosciuto
 - Per scoprire la chiave occorre provare tutte le chiavi possibili (attacco a forza bruta)

Un sistema di cifratura è computazionalmente sicuro se il testo cifrato soddisfa uno dei seguenti criteri:

- Il costo per rendere inefficace il cifrario supera il valore dell'informazione cifrata
- Il tempo richiesto per rendere inefficace il cifrario supera l'arco temporale in cui l'informazione è utile

Key Size (bits)	Number of Alternative Keys	Time required at 10 ⁶ Decryption/ <i>µ</i> s
32	$2^{32} = 4.3 \times 10^9$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	10 hours
128	$2^{128} = 3.4 \times 10^{38}$	5.4 x 10 ¹⁸ years
168	$2^{168} = 3.7 \times 10^{50}$	5.9 x 10 ³⁰ years

Crittografia a chiave simmetrica

- Mittente e destinatario condividono una chiave segreta
 - Come si concorda la chiave?
 (problema della distribuzione delle chiavi)

Prof. Filippo Lanubile

Crittografia a chiave simmetrica: **DES** DES: Data Encryption Standard Primo standard NIST Molto diffuso Round 2 Permuted Choice Left circular shift Attacchi noti solo a forza bruta Blocchi di 64 bit Chiave di 56 bit Operazioni base Permuted Chaics 2 Round 16 Permutazione iniziale 16 iterazioni intermedie identiche Permutazione finale Figure 2.3 General Depiction of DES Encryption Algorithm

Crittografia a chiave simmetrica: 3DES

Triple DES (o TDEA)

- Usa tre chiavi e tre esecuzioni di DES (cifra-decifra-cifra)
- Lunghezza effettiva della chiave: 168 (=3x56) bit
- Modalità Cipher block chaining (cifratura a blocchi concatenati)
 - Operazione di XOR sull'iesimo blocco in ingresso con il precedente blocco di testo cifrato

Figure 2.6 Triple DEA

C = EK3[DK2[EK1[P]]]

C = ciphertext
P = Plaintext

EK[X] = encryption of X using key K

DK[Y] = decryption of Y using key K

Prof. Filippo Lanubile

Crittografia a chiave simmetrica: AES

AES: Advanced Encryption Standard (Algoritmo di Rijndael)

- Scelto da NIST come sostituto di 3DES per migliorare in modo significativo l'efficienza
- Blocchi a 128 bit
- Chiavi a 128, 192 e 256 bit

Crittografia a chiave pubblica

- Le chiavi di cifratura e decifratura sono diverse
 - Mittente e destinatario non condividono una chiave segreta
- La chiave di cifratura pubblica è nota a tutti e quindi anche al mittente
- La chiave di cifratura privata è nota solo al destinatario

Figure 8.6 + Public key cryptography

Requisiti della crittografia a chiave pubblica

- E' computazionalmente facile generare una coppia di chiavi (chiave pubblica K_B⁺, chiave privata K_B⁻), cifrare e decifrare un messaggio tale che K_B⁻ (K_B⁺ (m)) = m
- Data K_B⁺, deve essere computazionalmente improponibile determinare K_B⁻
- Data K_B⁺ e il testo cifrato c, deve essere computazionalmente improponibile ricostruire il messaggio originario m
- Ciascuna delle due chiavi può essere utilizzata per la cifratura, usando l'altra per la decifratura:
 K_B- (K_B+ (m)) = m = K_B+ (K_B- (m))

Crittografia a chiave pubblica: RSA

- L'algoritmo più diffuso
- Inventato da Ron Rivest, Adi Shamir and Len Adleman al MIT nel 1977
- Si basa sul fatto che la scomposizione in fattori di numeri molto grandi è computazionalmente molto onerosa
- Resistente alla criptoanalisi con chiavi di almeno 1024 bit

Prof. Filippo Lanubile

RSA: scelta delle chiavi

- 1. Scegliere due numeri primi di valore elevato: p, q
 - Si raccomanda che pq sia di 1024 bit
- 2. Calcolare n = pq, z = (p-1)(q-1)
 - z è la funzione di Eulero di n
- 3. Scegliere e (con e < n) tale che non abbia fattori in comune con z
 - e, z sono "relativamente primi"
- 4. Scegliere *d* tale che ed-1 sia esattamente divisibile per z
 - ovvero: ed mod z = 1
- 5. $K_{B}^{+} = (e, n)$; $K_{B}^{-} = (d, n)$

RSA: cifratura e decifratura

Cifratura

Testo in chiaro: m < n $K_B^+ = (e, n)$

 $c = m^e \mod n$

Decifratura

Testo cifrato: c

 $K_{B}^{-} = (d, n)$

 $m = c^d \mod n$

Si dimostra che $m = (m^e \mod n)^d \mod n$

Prof. Filippo Lanubile

Dimostrazione: m = (m^e mod n)^d mod n

Teorema della teoria dei numeri:

se p e q sono primi e n = pq, allora:

$$x^y \mod n = x^y \mod (p-1)(q-1) \mod n$$

 $(m^e \mod n)^d \mod n = m^{ed} \mod n$

 $= m^{ed \mod (p-1)(q-1)} \mod n$ (usando il teorema sopra)

 $= m^1 \mod n$

(perché abbiamo scelto che e e d siano divisibili per (p-1)(q-1) con resto 1)

= m

RSA: esempio (1)

- 1. Scegliere due numeri primi di valore elevato: p, q
 - Bob sceglie p=5, q=7
- 2. Calcolare $n = p \times q$, z = (p-1)(q-1)
 - n=35, z=24
- 3. Scegliere e (con e < n) tale che non abbia fattori in comune con z
 - e=5
- 4. Scegliere *d* tale che ed-1 sia esattamente divisibile per z
 - d=29
- 5. $K_{B}^{+} = (e, n)$; $K_{B}^{-} = (d, n)$
 - $K_B^+ = (5, 35)$; $K_B^- = (29, 35)$

Prof. Filippo Lanubile

RSA: esempio (2)

Cifratura:
$$\frac{\text{lettera}}{\text{I}} \qquad \frac{\text{m}}{\text{12}} \qquad \frac{\text{m}^{\text{e}}}{\text{248832}} \qquad \frac{\text{c} = \text{m}^{\text{e}} \mod n}{17}$$

Decifratura:
$$\frac{c}{17}$$
 $\frac{c^d}{481968572106750915091411825223071697}$ $\frac{m = c^d \mod n}{12}$ lettera

Chiavi di sessione

- La crittografia a chiave pubblica è troppo costosa per cifrare testi lunghi
- E' in genere utilizzata per cifrare chiavi di sessione K_S da utilizzare per la crittografia a chiave simmetrica

 $c = (K_S)^e \mod n$

Prof. Filippo Lanubile

Crittografia

Principi di crittografia Integrità dei messaggi

Protocolli di autenticazione Sicurezza nella pila di protocolli di Internet: PGP, SSL, IPSec

Funzione hash crittografica

Utilizzata per la verifica dell'integrità di un messaggio

Dear Alice.
This is a VERY long letter since there is so much to say.....

Opgmdvboljrtnsd gghPPdogm;lcvkb

Many-to-one hash function

- Dato un messaggio in input m di lunghezza variabile produce una stringa di lunghezza fissa h = H(m)
 - h è detta hash value o message digest
- H è sicura se:
 - è libera da collisioni
 - è computazionalmente impossibile trovare due messaggi x e y tali che H(x) = H(y)

Bob

Figure 8.7 + Hash functions

- è unidirezionale
 - dato h = H(x), (con x sconosciuto), è impossibile determinare x

Prof. Filippo Lanubile

Una funzione hash non crittografica: Internet checksum

E' una funzione hash:

Crea sintesi di lunghezza fissa (16 bit)

È molti-a-uno							AS	CII		
• E moili-a-uno	N	1es	sag	e		R	epres	entati	on	
	I	0	U	1	4	19	4 F	55	31	
ma non è sicura	0	0		9		0	30	2E	39	
	9	В	0	В		9	42	4F	42	
 Non è difficile 					Ī	32	C1	D2	AC	Checksum
trovare altri messag	gi	С	h	Э						
utilizzano la stessa							AS			
ulilizzario la stessa	N	1es	sag	e		R	epres	entati	on	
checksum del	I	0	U	9	4	19	4 F	55	39	
		0		1		0	30	2E	31	
messaggio originale	9	В	0	В	3	9	42	4 F	42	
					1	32	C1	D2	AC	Checksum

Figure 8.8 • Initial message and fraudulent message have the same checksum!

Confronto di funzioni hash crittografiche

MD5

- Ideato da Ron Rivest
- Standard IETF (RFC 1321)
- Blocchi di 512 bit
- Digest di 128 bit
- Processo a 4 fasi di 16 passi ciascuna
- Ormai vulnerabile alla crittoanalisi

SHA-1

Secure hash algorithm

- Standard americano: NIST -FIPS PUB 180-1
- Blocchi di 512 bit
- Digest di 160 bit
- Processo a 4 fasi di 20 passi ciascuna
- Ciascun bit del digest è funzione di ogni bit del messaggio in ingresso
 - Per ottenere due messaggi con lo stesso digest: 2⁸⁰ operazioni

Prof. Filippo Lanubile

Codice di autenticazione dei messaggi: MAC

E' un valore da allegare al messaggio per verificare contemporaneamente l'autenticità e l'integrità del messaggio

- s è la chiave di autenticazione
- H(m+s) è il codice di autenticazione del messaggio (MAC)

Figure 8.9 • Message authentication code (MAC)

Codice di autenticazione dei messaggi: HMAC

- Variante del MAC con aggiunta di una funzione di hash crittografica
- Utilizzabile anche in combinazione con MD5 e SHA-1

Firma digitale

- Il mittente firma un messaggio con la propria chiave privata applicando un algoritmo di cifratura a chiave pubblica
- La firma è verificabile e non falsificabile:
 - il destinatario può dimostrare che Bob e nessun altro può aver firmato il documento
- Non ripudio: combinazione di integrità e autenticità

Figure 8.10 • Creating a digital signature for a document

Crittografia

Principi di crittografia Integrità dei messaggi

Protocolli di autenticazione

Sicurezza nella pila di protocolli di Internet: PGP, SSL, IPSec

Prof. Filippo Lanubile

Protocolli di autenticazione (0)

- I sistemi di identificazione personale sono basati su
 - qualcosa che io so
 - qualcosa che io posseggo
 - qualcosa che io sono (sistemi biometrici)
- In rete può essere necessario provare l'identità anche di apparati attivi
 - · Router, client, server
- Come provare l'identità di un'entità in rete basandosi esclusivamente sullo scambio di messaggi?
 - Mediante un protocollo di autenticazione
 - Es. Kerberos
 - Scenario: Bob vuole che Alice gli dimostri la sua identità

Crittografia

Principi di crittografia Integrità dei messaggi Protocolli di autenticazione

Sicurezza nella pila di protocolli di Internet: PGP, SSL, IPSec

Sicurezza a livello di applicazione: email (3)

Scenario: Alice e Bob sono interessati alla riservatezza, integrità del messaggio e all'autenticazione del mittente

Figure 8.24 * Alice uses symmetric key cyptography, public key cryptography, a hash function, and a digital signature to provide secrecy, sender authentication, and message integrity.

PGP

Pretty Good Privacy

- Ideato da Phil Zimmerman nel 1991 per rendere sicura l'email
- Assicura riservatezza, integrità del messaggio e autenticazione del mittente
 - Usa chiavi simmetriche di crittografia, chiavi pubbliche, funzioni hash
- Meccanismo di certificazione della chiave pubblica mediante rete di fiducia (web of trust)

```
---BEGIN PGP SIGNED MESSAGE----
      SHA1
Hash:
Bob:
Can I see you tonight?
Passionately yours, Alice
   --BEGIN PGP SIGNATURE-
Version: PGP for Personal Privacy 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+108gE4vB3mqJhFEvZF9t6n7G6m5Gw2
                                 ----BEGIN PGP MESSAGE----
                                 Version: PGP for Personal Privacy 5.0
Figure 8.25 • A PGP signed message
                                 u2R4d+/jKmn8Bc5+hgDsqAewsDfrGdszX68liKm5F6Gc4sDfcXyt
                                 RfdS10juHgbcfDssWe7/K=1KhnMikLo0+1/BvcX4t==Ujk9PbcD4
                                 Thdf2awQfgHbnmKlok8iy6gThlp
                                 ----END PGP MESSAGE
                                 Figure 8.26 + A secret PGP message
```

Secure Socket Layer (SSL)

- Ideato da Netscape per transazioni web
 - HTTPS equivale a HTTP basato su SSL/TLS
 - Well-known service con numero di porta 443
- Servizi di sicurezza
 - Riservatezza
 - Integrità
 - Autenticazione del server
 - Autenticazione del client (opzionale)

Ap	pplication (e.g., HTTP)
S	ecure transport layer
	TCP
	IP
	Subnet

- Standard di fatto per la sicurezza a livello di trasporto
 - Una variante di SSLv3 è stata standardizzata da IETF con il nome Transport Layer Security (TLS)

SSL: derivazione delle chiavi di sessione

- 4 chiavi generate a partire dal segreto condiviso (MS)
 - E_B: chiave di cifratura di sessione per i dati inviati da Bob ad Alice
 - E_A: chiave di cifratura di sessione per i dati inviati da Alice a Bob
 - M_B: chiave MAC di sessione per i dati inviati da Bob ad Alice
 - M_A: chiave MAC di sessione per i dati inviati da Alice a Bob
- Cifratura e algoritmi MAC negoziabili tra Bob e Alice

IPsec

IP security

- Un framework per consentire servizi di sicurezza a livello rete
 - Progettato sia per IPv4 che per IPv6
 - E' possibile realizzare reti virtuali private (VPN)
- SA: Associazione di sicurezza
 - Relazione unidirezionale tra sorgente e destinazione
 - Identificata da Security Parameter Index (SPI): 32 bit
- Protocollo di sicurezza
 - AH oppure ESP
- Gestione delle chiavi
 - Manuale
 - Automatica
 - Internet Security Association and Key Management Protocol (ISAKMP)
 - Protocollo Internet Key Exchange (IKE)

Prof. Filippo Lanubile

Protocollo AH: intestazione per l'autenticazione

- Fornisce l'autenticazione della sorgente e l'integrità dei dati ma non la riservatezza
- L'intestazione AH comprende:
 - SPI
 - identifica la SA
 - Digest del messaggio firmato dal mittente
 - autentica i dati
 - calcolato in base al datagramma IP originario
 - Campo intestazione successiva
 - specifica il tipo di dati (es.: TCP, UDP, ICMP)

Figure 8.30 • Position of AH header in IP datagram

- Utilizzato da TLS e IPsec per la generazione di chiavi di sessione
 - VPN, SSH, HTTPS
- Diffie-Hellman break by NSA

Prof. Filippo Lanubile

https://freedom-to-tinker.com/blog/haldermanheninger/how-is-nsa-breaking-so-much-crypto/