			/	M_{\perp}	A E	= l	58	3 [ec	tan	e 1	6			
						Λ	JOU.		<i>ec</i> :	2	02	24			
A	n	oun	cen	Ne1	45		4	ee)	K	8	•	all	17.		lup,
							la	dic	14	+	H		1/	pul	lup
									8	-	DA)WA	M	aneuve
											Pour	W O W			
							Po	o F	Hue	ınh.	1	Ob	1	's see	k 9
						+11	15	6) U	1	20	a ic	h F	-1,4	k 9 1212
											Ρ,•		1	<i>-</i> U	012
						•	1/	-	Re:	7a 1	(DH	l ta	40	49
							M	an	6	5 6	7 0 10		λF	1/2	k 9 2146
											oc y			, u	יו וני
							ok	8	dis	5 <i>[]</i> []	55/0	MS		>	
						W			Hon					1	
					3		α,	201	view	.)	Λ	1:1.	100	n	
									5						
		da	115	/)	hic.	-4.	10 C	(Lux				10		
	0			V	yu		003		TW	Lali			/4)	
									> 1		*	hy.			
					0	•									
	VCI	(+	T	YV	く	l									

determine "theoretical min turn Radius" W/s = 76.84 l/6+2 CL max = 1.2 K = 0.08Sca level conditions -> p = 0.00238 sly/ft3 $T/\omega = 0.3795$ CD,P = 0.015 $T_{min} = \frac{\sqrt{\chi}}{\sqrt{2}} = \frac{4 \, \text{k} \, (\text{W}_{S})}{\sqrt{1 - 4 \, \text{k} \, (\text{W}_{S})}}$ $g_{p}(\frac{1}{\text{W}}) \sqrt{1 - 4 \, \text{k} \, (\text{W}_{S})}$ - 4 008 (7684 lb/c+2)

(322
$$\frac{44}{5^2}$$
) (0.00238 $\frac{54}{64^3}$) (0.3795).

$$\sqrt{1 - 4(0.08)} \frac{0.015}{(0.3795)^2}$$
= 86| ft "theoretical min"

Is this feasible? \Rightarrow is it safe? \Rightarrow is the load factor Reasonable

 \Rightarrow is this $\forall r_{min}$ feasible?

 \Rightarrow is it to low or too high?

$$r_{min} = \sqrt{2 - 4 \frac{KCop}{(7/w)^2}} = \sqrt{2 - 4 \frac{(0.08)(0.015)}{(0.3795)^2}} = 1.4$$

using t/w = 0.3795 be cause TAMAX is higher, Ncimax $C_L = 2nW$ check 2.1.4.76.84 th 0.00238 stug 165ft 3.32

giver a velocity -> what is the min safe turn Radius? Nstruct
Solve nthrust
Solve nclmax whichever is Smallest

-> nsafe

L> min Safe Radius @ given U quiz T Stability & control topics shevell Ch. 16 1. Stability: ability of Aircraft to Return to equilibrium condition after a disturbance

	4	eal	uil	ibri	w	u	1		2	F		0				
											-					
														60	dy	
															8	
	Sta	thic	: S	fa	638	ile	, :		Wl	0 N		Go	rce	<		
			m					0.0	\	a		bol	dy			
			v N					to,								
		040	Pho	_			a		Sta	7		<i>(6</i>				
									J (C							
														>		
$\lambda_{\mathbf{x}}$					*											
7	7											K			11	
		25	ا اماء	0		/	//		í	-		/ ·	461	- 1 0		
		٦٢	abl				716	utr	ac			u	15t	asi		
٦.			(_	21	a 6 '		A		A	\bigcap	0.0	•	يو لمر	.1.	<i>. .</i> .	
יע	ria	M	10	ا <i>ل</i> ا	1	PW	3	- 2.1	a	. ۲ -	<i>U</i>	a		4W	band	Ł
		H	re C	b (ody	•		\et	wn	3	40) ,	eqi	UXO	band	1
			a H	⁄•େ			SON	æ	ナシ	ne	P	e~i	5 OL			

Troll (banking) yaw Ty y Changing 6 degrees of freedom - motion along X, y, Z axis -Rotate around: y axis (Roll)
y axis (pitch) Zaxis (yaw) . + monert defined as:

contributing to moncent T, D contributions to moment are negligible assume conditions for long: tudinal static
Stability? Stable if Con becomes more negative w/ d or Cz increases -> restores the pitching monient prevent stalling · dCM < 0

tall & CG lt = distance between ac of wing & a.c. tail MF = monnent contribution due to fuselage MacH Small, negligible E McG = Mw + MH + MF = Macw + Lw-X - LH·lH + MF CMCG = M = Cmac + CiwX - Ci SHILH NH F CMF

