1. Number Systems

Chapt. 2

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Etc.

Conversion Among Bases

• The possibilities:

pp. 40-46

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

Decimal to Decimal (just for fun)

Next slide...

Binary to Decimal

Binary to Decimal

Technique

- Multiply each bit by 2^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Bit "0"
$$(1101.01)_{2} = 1 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 1 \times 1 + 0 \times 2 + 1 \times 4 + 1 \times 8 + 0 \times 1/2 + 1 \times 1/4$$

$$= 1 + 0 + 4 + 8 + 0 + 0.25$$

$$= (13.25)_{10}$$

Octal to Decimal

Octal to Decimal

• Technique

- Multiply each bit by 8^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

$$(126.4)_8 = 6 \times 8^0 + 2 \times 8^1 + 1 \times 8^2 + 4 \times 8^{-1}$$

$$= 6 \times 1 + 2 \times 8 + 1 \times 64 + 4 \times 1/8$$

$$= 6 + 16 + 64 + 0.5$$

$$= (86.5)_{10}$$

Hexadecimal to Decimal

Hexadecimal to Decimal

- Technique
 - Multiply each bit by 16^n , where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

$$(A18.C)_{16} = 8 \times 16^{0} + 1 \times 16^{1} + 10 \times 16^{2} + 12 \times 16^{-1}$$

 $= 8 \times 1 + 1 \times 16 + 10 \times 256 + 12 \times 1/16$
 $= 8 + 16 + 2560 + 0.75$
 $= (2584.75)_{10}$

Decimal to Binary

Decimal to Binary

Technique

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1
- Etc.

$$125_{10} = ?_2$$

Octal to Binary

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

$$705_8 = ?_2$$

$$705_8 = 111000101_2$$

Hexadecimal to Binary

Hexadecimal to Binary

- Technique
 - Convert each <u>hexadecimal</u> digit to a 4-bit equivalent binary representation

$$10AF_{16} = ?_2$$

$$10AF_{16} = 0001000010101111_2$$

Decimal to Octal

Binary

Hexadecimal

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

$$1234_{10} = ?_8$$

Decimal to Hexadecimal

Decimal to Hexadecimal

- Technique
 - Divide by <u>16</u>
 - Keep track of the remainder

$$1234_{10} = ?_{16}$$

Binary to Octal

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

Example

$$1011010111_2 = ?_8$$

 $1011010111_2 = 1327_8$

Binary to Hexadecimal

Decimal Octal

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

Example

$$1010111011_2 = ?_{16}$$

 $1010111011_2 = 2BB_{16}$

Octal to Hexadecimal

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

Example

$$1076_8 = ?_{16}$$

 $1076_8 = 23E_{16}$

Hexadecimal to Octal

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

Example

$$1F0C_{16} = ?_{8}$$

 $1F0C_{16} = 17414_{8}$

• Convert the following decimal numbers to binary, Octal, and Hexa-Decimal

•
$$(25)_{10} = (11001)_2 (31)_8 (19)_{16}$$

•
$$(33)_{10} = (100001)_2 (41)_8 (21)_{16}$$

•
$$(44)_{10} = (101100)_2 (54)_8 (2C)_{16}$$

- Convert the following Binary Numbers to Decimal, Octal, Hexa-Decimal
- $(1001011)_2 = (75)_{10} = (113)_8 = (4B)_{16}$
- $(111011)_2 = (57)_{10} = (73)_8 = (3B)_{16}$
- $(1001101101)2=(621)_{10}=(1155)_8=(26D)_{16}$

- Convert from Octal to Binary, Decimal, and Hexa-Decimal
- $(2457)_8 = (0101001011111)_2 = (815)_{10}$ = $(52F)_{16}$
- $(356)_8 = (011101110)_2 = (238)_{10} = (EE)_{16}$
- $(1237)_8 = ?$

- Convert from Hexa-Decimal to binary,
 Decimal, and Octal
- $(13F)_{16} = (1001111111)_2 = (319)_{10} = (477)_8$
- $(3FC)_{16} = (111111111100)_2 = (1020)_{10} = (1774)_8$
- $(5231)_{16} = ?$

Exercise – Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!

Skip answer

Answer

Exercise – Convert ...

Answer

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Binary Addition and Subtraction

Binary addition:-

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Binary subtraction:-

А	В	Difference	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Binary Addition

- Two *n*-bit values
 - Add individual bits
 - Propagate carries
 - E.g.,

Binary Subtraction

• Subtract

1101

_

1001

0100

Multiplication (1 of 3)

• Decimal (just for fun)

$$\begin{array}{r}
 35 \\
 \times 105 \\
 \hline
 175 \\
 000 \\
 \hline
 35 \\
 \hline
 3675 \\
 \end{array}$$

Multiplication (2 of 3)

• Binary, two 1-bit values

A	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Multiplication (3 of 3)

- Binary, two *n*-bit values
 - As with decimal values
 - -E.g.,

	1110
X	1011
	1110
1	110
00	00
111	0
1001	1010

Fractions

• Decimal to decimal (just for fun)

$$3.14 \Rightarrow 4 \times 10^{-2} = 0.04$$
 $1 \times 10^{-1} = 0.1$
 $3 \times 10^{0} = 3$
 3.14

Fractions

Binary to decimal

10.1011 => 1 x
$$2^{-4} = 0.0625$$

1 x $2^{-3} = 0.125$
0 x $2^{-2} = 0.0$
1 x $2^{-1} = 0.5$
0 x $2^{0} = 0.0$
1 x $2^{1} = 2.0$
2.6875

Fractions

Exercise – Convert ...

Decimal	Binary	Octal	Hexa- decimal
29.8			
	101.1101		
		3.07	
			C.82

Don't use a calculator!

Skip answer

Answer

Exercise – Convert ...

Answer

Decimal	Binary	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

Thank you

