

Introduction to Machine Learning [Fall 2022]

Linear Regression (Part 2)

September 15, 2022

Lerrel Pinto

Topics for today

More advanced linear regression.

Linear Regression (example)

https://online.stat.psu.edu/stat462/node/101/

Linear Regression (example)

https://online.stat.psu.edu/stat462/node/101/

Linear Regression (example)

https://online.stat.psu.edu/stat462/node/101/

Linear Regression

- Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \mathbb{R}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \mathbb{R}^1)$ corresponds to a data point.
 - $n \rightarrow \#$ of data points, $d \rightarrow \#$ of features / input dim.

Linear Regression

- Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \mathbb{R}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \mathbb{R}^1)$ corresponds to a data point.
 - $n \rightarrow \#$ of data points, $d \rightarrow \#$ of features / input dim.
- Goal: to find $\overrightarrow{w} \in \mathbb{R}^d$ such that $\langle \overrightarrow{w}, \overrightarrow{x} \rangle = y$
 - Minimize $||X^T\overrightarrow{w} Y||^2$

Linear Regression

- Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \mathbb{R}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \mathbb{R}^1)$ corresponds to a data point.
 - $n \rightarrow \#$ of data points, $d \rightarrow \#$ of features / input dim.
- Goal: to find $\overrightarrow{w} \in \mathbb{R}^d$ such that $\langle \overrightarrow{w}, \overrightarrow{x} \rangle = y$
 - Minimize $||X^T\overrightarrow{w} Y||^2$
- Solution: $\overrightarrow{w} = (XX^{\mathsf{T}})^{-1}XY$
 - Easy way to remember $\overrightarrow{w} = (X^{\mathsf{T}})^+ Y$

Linear Regression (non-linear?)

• Vanilla linear regression (OLS) assumes that: $y = \overrightarrow{w}^{\mathsf{T}} x$

Linear Regression (non-linear?)

- Vanilla linear regression (OLS) assumes that: $y = \overrightarrow{w}^{\mathsf{T}} x$
- What if we want to model non linear relationship:

$$y = \overrightarrow{w_1}^\mathsf{T} x + \overrightarrow{w_2}^\mathsf{T} x^2 + \overrightarrow{w_3}^\mathsf{T} x^3 + \dots + \overrightarrow{w_p}^\mathsf{T} x^p$$

• Is there an easy way to do this?

Linear Regression (non-linear?)

- Vanilla linear regression (OLS) assumes that: $y = \overrightarrow{w}^{\mathsf{T}} x$
- What if we want to model non linear relationship:

$$y = \overrightarrow{w_1}^\mathsf{T} x + \overrightarrow{w_2}^\mathsf{T} x^2 + \overrightarrow{w_3}^\mathsf{T} x^3 + \dots + \overrightarrow{w_p}^\mathsf{T} x^p$$

- Is there an easy way to do this?
 - Define new variable: $z = [x, x^2, x^3, \dots, x^p]$
 - Do vanilla linear regression: $y = \overrightarrow{w}^{\mathsf{T}} z$

Linear Regression (bias vs variance)

Slide credit: Pascal Wallisch

Linear Regression (bias vs variance)

Slide credit: Pascal Wallisch

Bias vs variance tradeoff

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

Bias vs variance tradeoff

- How do we know if a model has high bias or variance?
- How do we find the balance?
 - Algorithms, Validation, prior knowledge

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

Scratchpad

- OLS: Minimize $||X^T\overrightarrow{w} Y||^2$
 - Solution: $\overrightarrow{w} = (XX^{\mathsf{T}})^{-1}XY$

- OLS: Minimize $||X^T\overrightarrow{w} Y||^2$
 - Solution: $\overrightarrow{w} = (XX^{\mathsf{T}})^{-1}XY$
- Ridge Regression: Minimize $||X^T\overrightarrow{w} Y||^2$ such that $||\overrightarrow{w}||^2 \le c^2$

- OLS: Minimize $||X^T\overrightarrow{w} Y||^2$
 - Solution: $\overrightarrow{w} = (XX^{\mathsf{T}})^{-1}XY$
- Ridge Regression: Minimize $||X^T\overrightarrow{w} Y||^2$ such that $||\overrightarrow{w}||^2 \le c^2$

https://towardsdatascience.com/ridge-regression-for-better-usage-2f19b3a202db

- OLS: Minimize $||X^T\overrightarrow{w} Y||^2$
 - Solution: $\overrightarrow{w} = (XX^{\mathsf{T}})^{-1}XY$
- Ridge Regression: Minimize $||X^T\overrightarrow{w} Y||^2$ such that $||\overrightarrow{w}||^2 \le c^2$
 - Loss function: $(\|X^{\mathsf{T}}\overrightarrow{w} Y\|^2 + \lambda \|\overrightarrow{w}\|^2)$
 - Solution: $\overrightarrow{w} = (XX^{\mathsf{T}} + \lambda \mathbf{I})^{-1}XY$

https://towardsdatascience.com/ridge-regression-for-better-usage-2f19b3a202db

Lasso Regression

- OLS: Minimize $||X^T\overrightarrow{w} Y||^2$
 - Solution: $\overrightarrow{w} = (XX^{\mathsf{T}})^{-1}XY$

Lasso Regression

- OLS: Minimize $||X^T\overrightarrow{w} Y||^2$
 - Solution: $\overrightarrow{w} = (XX^{\mathsf{T}})^{-1}XY$
- Ridge Regression: Minimize $||X^T\overrightarrow{w} Y||^2$ such that $||\overrightarrow{w}||_1 \le c$
 - Loss function: $(\|X^T\overrightarrow{w} Y\|^2 + \lambda \|\overrightarrow{w}\|_1)$
 - Solution: From numerical methods.

Lasso Regression

• OLS: Minimize $||X^T\overrightarrow{w} - Y||^2$ • Solution: \overrightarrow{w} Ridge Regressic Loss function Lasso Regression Ridge Regression

• Solution: From numerical methods.

https://towardsdatascience.com/ridge-regression-for-better-usage-2f19b3a202db

Anscombe's quartet

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Anscombe's quartet

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of $x: s_x^2$	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of $y: s_y^2$	4.125	±0.003
Correlation between x and y	0.816	to 3 decimal places
Linear regression line	y = 3.00 + 0.500x	to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression $:R^2$	0.67	to 2 decimal places

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Anscombe's quartet

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of $x: s_x^2$	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of $y:s_y^2$	4.125	±0.003
Correlation between x and y	0.816	to 3 decimal places
Linear regression line	y = 3.00 + 0.500x	to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression $:R^2$	0.67	to 2 decimal places

Takeaway: Visualize your data!!

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Extrapolation

MY HOBBY: EXTRAPOLATING

https://xkcd.com/605/

Extrapolation

MY HOBBY: EXTRAPOLATING

Takeaway: Don't trust your model outside the training data distribution

https://xkcd.com/605/

Noise in data

Large feature size

Additional Reading

- https://www.mit.edu/~6.s085/notes/lecture3.pdf
- https://www.coconino.edu/resources/files/pdfs/academics/sabbatical-reports/kate-kozak/chapter_10.pdf

Questions?