Stat 201A, Fall 2024: Lab 3

Conceptual review

- How are the LLN and CLT different? How are they related?
- How are the exponential and gamma distributions related?

Problem 1

Noodle decide to improve her ability to calculate integrals. Each day she flips a coin until she gets tails. If she gets tails in 3 or less flips, she will calculate 10 integrals. If she needs strictly more than 3 flips to get tails she will calculate 60 integrals. After a full year passes, estimate the probability that Noodle has solved more than 6000 integrals.

Problem 2

Here is a limit theorem that one can prove without complicated tools. Suppose that X_1, X_2, \ldots are i.i.d. random variables with distribution Exp(1), and let $M_n = \max(X_1, \dots, X_n)$. Show that for any $x \in \mathbb{R}$ we have

$$\lim_{n\to\infty} \mathbb{P}(M_n - \ln(n) \le x) = \exp(-e^{-x}).$$

This is called the *Gumbel distribution*.

Problem 3

Prove that the Exponential Distribution is the only distribution on $(0, \infty)$ that satisfies:

$$\mathbb{P}(X > a + b | X > b) = \mathbb{P}(X > a), \forall a, b > 0.$$

Problem 4

In the lectures, we used the MGF to prove the following results regarding convergence in distribution.

• Let $G_n \sim \text{Geometric}\left(\frac{\lambda}{n}\right)$, where $\lambda > 0$, and n = 1, 2, 3, ...Define $X_n = \frac{G_n}{n}$. As $n \to \infty$, X_n converges in distribution to an Exponential distribution with rate λ :

$$X_n \xrightarrow{d} \operatorname{Exp}(\lambda)$$

• Let $F_{r,n} \sim \text{NB}\left(r,\frac{\lambda}{n}\right)$, where $\lambda > 0$ and n = 1,2,3,... Define $X_n = \frac{F_{r,n}}{n}$. As $n \to \infty$, X_n converges in distribution to a Gamma distribution with shape r and rate λ :

$$X_n \xrightarrow{d} \text{Gamma}(r, \lambda)$$

1. Apply MGF and use similar strategies discussed in the lecture to prove the following. Let $W_n \sim \text{Bin}\left(n,\frac{\lambda}{n}\right)$ represent a binomial random variable with probability $\frac{\lambda}{n}$, then W_n converges in distribution to a Poisson dis-

$$W_n \xrightarrow{d} Poi(\lambda)$$

2. Conduct simulations to show the convergence in distribution for three results above.

Problem 5

The MGF of a random variable *X* is given by

tribution with parameter λ :

$$M_X(t) = \frac{c}{1-t} - \frac{2}{1-t}$$
 for $|t| < 1$

- 1. Find the value of *c*.
- 2. Find $\mathbb{E}[X]$.
- 3. Find $\mathbb{E}[X^2]$.