

第9章 用决策树预测电信用户离网

《Python数据科学:全栈技术详解》

讲师:Ben

自我介绍

- 天善商业智能和大数据社区 讲师 -Ben
- 天善社区 ID Ben_Chang
- https://www.hellobi.com 学习过程中有任何相关的问题都可以提到技术社区数据挖掘版块。

主要内容

- •决策树建模思路
- ·Quinlan系列决策树(ID3、C4.5、C8.0)建模原理
- ·CART建模原理
- •模型修剪
- •模型评估
- •随机森林与组合算法

决策树建模思路

生活中的决策行为

某大学BBS鹊桥板块女生相亲决策树

用决策树做催收策略模型

婚恋网站男性客户是否被相亲的模式表述

婚恋网站男性客户是否被相亲的模式表述

决策树算法概述

- 70年代后期至80年代初期, Quinlan开发了ID3算法(迭代的二分器);后来Quinlan改进了ID3算法,称为C4.5 算法,最近又发布了C8.0;
- 1984年,多位统计学家在著名的《Classification and regression tree》书里提出了CART算法;
- ID3和CART几乎同期出现,引起了研究决策树算法的旋风,至今已经有多种算法被提出。

什么是决策树?

- 决策树是以树型结构组织的规则集合
 - > 易于理解是如何预测
 - > 易于构建和可视化
 - > 简约表示和执行能力
 - > 是一个有效的数据挖掘技术

训练和应用决策树

训练集

客户 ID		开卡 时长				违约 标志
张三	有	3个 月	下降 40%	3	无	1
李四	无	6个 月	上升 30%	1	无	0
•••	•••					

预测集

客户 ID	曾经 逾期	开卡 时长	交易 趋势	无交 易月	曾破 产?	违约 违约
Α	无	4	下降 10%	0	无	?
В	无	6	下降 70%	3	有	?

训练集从何来?

从历史数据中产生训练集

通过观察3月-8月的客户行为及其9月-11月的违约情况

客户 ID	曾经 逾期	开卡 时长	交易 趋势	无交 易月	曾破 产?	违约 标志
张三	有	3个 月	下降 40%	3	无	1
李四	无	6个 月	上升 30%	1	无	0
	•••	•••	•••			•••

训练决策树

客户 ID		开卡 时长				违约 标志
张三	有	3个 月	下降 40%	3	无	1
李四	无	6个 月	上升 30%	1	无	0
•••	•••	•••	•••		•••	•••

产生预测集

客户 ID	曾经 逾期	开卡 时长	交易 趋势	无交 易月	曾破 产?	预测 违约
A	无	4	下降 10%	0	无	?
В	无	6	下降 70%	3	有	?

预测性数据挖掘示例——应用示例

决策树的路径

- 决策树的一条路径解释了预测
 - > 是对数据的探索
 - > 对数据轮廓的描述
 - > 能进行预测与分类
 - > 了解哪些变量最重要
 - > 能发现意料之外的模式

决策树建模基本原理

例子: 训练数据

AllElectronics公司客户购买电脑数据

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

例子: 期待输出的结果

寻找最纯净的分组方法

算法的核心问题

- 该按什么样的次序来选择变量(属性)?
- 最佳分离点(连续的情形)在哪儿?

拆分规则

Age:

表 - age * buys_computer						
		buys_c				
		no	合计			
age						
3140	频数	0	4	4		
<=30		3	2	5		
>40	频数	2	3	5		
合计	频数	5	9	14		

∆entropy (ID3、	∆Gini (CART)	Logworth (CHAID)
C4.5、C50)		
0.246	0.102	1.30

Income:

表 - ii	表 - income * buys_computer					
		buys_computer				
		no	yes	合计		
income						
high	频数	2	2	4		
low	频数	1	3	4		
medium	频数	2	4	6		
合计	频数	5	9	14		

0.029 0.016 0.74

Quinlan系列决策树建模原理 ID3、C4.5、C5.0

ID3决策树原理介绍

▶ID3的建模步骤:

一、建树

- 选择最有解释力度的变量
- 对于每个变量选择最优分割点

二、剪树

- 前向剪枝: 控制生成树的规模
- 后项剪枝: 删除没有意义的分组

ID3算法

• 信息增益计算

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$
 $Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$
 $Gain(A) = Info(D) - Info_A(D)$

ID3输入为分类变量:信息增益计算

$$Info(D) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.940 \text{ G}$$

$$Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}\right) + \frac{4}{14} \times \left(-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4}\right)$$

$$+ \frac{5}{14} \times \left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right)$$

$$= 0.694 \text{ G}$$

$$Gain(age) = Info(D) - Info_{age}(D) = 0.940 - 0.694 = 0.246 \text{ G}$$

Age属性的信息增益最高,故首先选择这个变量

ID3输入为分类变量:信息增益计算

Training data tuples from the AllElectronics customer database.

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

$$I(s_1, s_2) = I(9, 5) = -\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14} = 0.940$$

ID3输入为分类变量:信息增益计算

For
$$age = "<=30"$$
:
 $s_{11} = 2$ $s_{21} = 3$ $I(s_{11}, s_{21}) = 0.971$

$$s_{12} = 4$$
 $s_{22} = 0$ $I(s_{12}, s_{22}) = 0$

For $age = "31 \dots 40$ ":

$$s_{13} = 3$$
 $s_{23} = 2$ $I(s_{13}, s_{23}) = 0.971$

$$Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right) + \frac{4}{14} \times \left(-\frac{4}{4} \log_2 \frac{4}{4} - \frac{0}{4} \log_2 \frac{0}{4} \right)$$

$$+ \frac{5}{14} \times \left(-\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \right)$$

$$= 0.694 \text{ }$$

ID3输入为分类变量:构造第一层

因此,这种划分的信息增益

Information Gain

 $Gain(age) = Info(D) - Info_{age}(D) = 0.940 - 0.694 = 0.246$

类似地,可以计算 Gain(income) = 0.029 位,Gain(student) = 0.151 位, $Gain(credit_rating) = 0.048$ 位。由于 age 在属性中具有最高的信息增益,所以它被选作分裂属性。结点 N 用 age 标记,并且每个属性值生长出一个分枝。然后元组据此划分,如图 8.5 所示。注意,落在分区 $age = "middle_aged"$ 的元组都属于相同的类。由于它们都属于类 "yes",所以要在该分枝的端点创建一个树叶,并用 "yes" 标记。算法返回的最终决策树如图 8.2 所示。

ID3输入为分类变量:构造第一层

ID3输入为分类变量:构造第二层——继续在子树重复挑选变量的步骤

• 已经可以肉眼观察: 左侧student,右侧 credit_rating,下方直接输出叶子yes

ID3输入为分类变量:构造第二层——结果

ID3生成分类规则

IF
$$age = "<=30"$$
 AND $student = "no"$

IF
$$age = "<=30"$$
 AND $student = "yes"$

IF
$$age = "31 \dots 40"$$

ID3的缺点

• 倾向于选择水平数量较多的变量

• 输入变量必须是分类变量 (连续变量必须离散化)

C4.5

- •增加了连续变量二分法;
- 信息增益的方法倾向于首先选择因子数较多的变量
- •信息增益的改进:增益率

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2} \left(\frac{|D_{j}|}{|D|}\right)$$

$$GrianRate(A) = \frac{Grain(A)}{SplitInfo_{A}(D)}$$

单个分类或等级变量:决策树遍历搜索

对于分类变量,假设该输入变量有4个水平,则依次遍历所有的组合形式,计算熵增益率最大的那个组合方式

A1 v.s. A2 v.s. A3 v.s. A4

A1 A2 v.s. A3 v.s. A4

A1, A2, A3 v.s. A4

A1, A3 v.s. A2, A4

• • • • • •

分类变量 可以出多 分枝

说明: C4.5决策树不能处理等级变量,要么作为分类变量,要么作为连续变量。这需要分析人员提前设置好。设为因子类型即为分类变量,否则为连续变量。

单个连续或等级变量:决策树分割搜索

对于连续变量, 先等宽方式分为50组, 依次取阀值分割成两组, 计算熵增益率最大的那个分割方式

说明: C4.5决策树不能处理等级变量,要么作为分类变量,要么作为连续变量。这需要分析人员提前设置好。设为因子类型即为分类变量,否则为连续变量。

比较多个变量的优先级

假设都是连续变量,先各自做分割,并计算每个分割 的**熵增益率**。

分割点1 分割点2 分割点3

假设都是连续变量,先各自做分割,并计算每个分割的熵增益率。

比较每个变量所能达到的最大**熵增益率**,取最大的那个作为本次分割选择的变量,该变量对应最大**熵增益率**的分割点作为分割依据。

在X₁>W₁₀的组中,对X₁再进行遍历,计算**熵增益率**。

最大 **熵增益率**(x₁)的点为"分割点2" 0.04

在X₁>W₁₀的组中,对X₂再进行遍历,计算**熵增益率**。

在X₁>W₁₀的组中,比较每个变量所能达到的最大**熵增 益率**,取最大的那个作为本次分割选择的变量,该变量对应最大**熵增益率**的分割点作为分割依据。

北较多个变量的优先级

最终结果。

R中的C5.0算法(Python目前没有实现)

建树:

• 沿用C4.5的方法

剪枝:

- 前剪枝:
 - minCases叶子的最小样本量
 - winnow事先是否进行变量相关性筛选
- 后剪枝:
 - CF越小,要求模型的置信度越高
 - noGlobalPruning事后拆分规则有用性检验

主要创新处:

·纳入了Boost的方法,可以做组合模型

参考书:

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers

CART决策树建模原理

CART决策树原理介绍

▶CART的建模步骤:

一、建树

- 选择最有解释力度的变量
- 对于每个变量选择最优分割点

二、剪树

- 前向剪枝: 控制生成树的规模
- 后项剪枝: 删除没有意义的分组

基尼系数

赫希曼根据洛伦茨曲线提出的判断分配平等程度的指标。设实际收入分配曲线和收入分配绝对平等曲线之间的面积为A,实际收入分配曲线右下方的面积为B。并以A除以(A+B)的商表示不平等程度。这个数值被称为基尼系数或称洛伦茨系数。如果A为零,基尼系数为零,表示收入分配完全平等;如果B为零则系数为1,收入分配绝对不平等。收入分配越是趋向平等,洛伦茨曲线的弧度越小,基尼系数也越小,反之,收入分配越是趋向不平等,洛伦茨曲线的弧度越大,那么基尼系数也越大。另外,可以参看帕累托指数(是指对收入分布不均衡的程度的度量)。

假定一定数量的人口按收入由低到高顺序排队,分为人数相等的n组,从第1组到第i组人口累计收入占全部人口总收入的比重为wi,则说明:该公式是利用定积分的定义将对洛伦茨曲线的积分(面积B)分成n个等高梯形的面积之和得到的。

$$G = 1 - \frac{1}{n} \left(2 \sum_{i=1}^{n-1} W_i + 1 \right)$$

决策树建树原理

第1步:从众多输入变量中选择当前最佳分组变量

分类树:对于数值型输入变量。将数据按升序排列;然后,从小到大依次以相邻数值的中间值作为组限,将样本分成两组,并计算两组样本输出变量值的差异性,也称异质性。理想的分组应该尽量使两组输出变量值的异质性总和达到最小,即"纯度"最大,也就是使两组输出变量值的异质性随着分组而快速下降,"纯度"快速增加。CART采用Gini系数测度输出变量的异质性 其数学定义为:

$$G(t) = 1 - \sum_{j=1}^{k} p^{2}(j \mid t)$$

CART采用Gini系数的减少量 测度异质性下降的程度:

$$\Delta G(t) = G(t) - \frac{N_r}{N}G(t_r) - \frac{N_l}{N}G(t_l)$$

对于分类型输入变量。由于CART只能建立二叉树,对于多分类型输入变量,首先需将多类别合并成两个类别,形成超类;然后,计算两超类下输出变量值的异质性。

计算基尼系数

✓ GINI系数计算示例:

$$\checkmark gini(T) = 1 - \sum p_j^2 = 1 - \sum (\frac{n_j}{S})^2$$

5个红球

15个绿球

▶ Pj为类别j在样本T中出现的频率

S1,**S2**与**T1**,**T2**关系类似

- ► Nj为样本T中类别j的个数
- > S为T中样本的个数
- $\checkmark gini_{split}(T) = \frac{S_1}{S_1 + S_2} gini(T_1) + \frac{S_2}{S_1 + S_2} gini(T_2)$

划分1
$$gini(T) = 1 - \left(\frac{10}{10+20}\right)^2 - \left(\frac{20}{10+20}\right)^2 \approx 0.444$$

$$gini(T_1) = 1 - \left(\frac{5}{5+5}\right)^2 - \left(\frac{5}{5+5}\right)^2 = 0.5$$

$$gini(T_2) = 1 - \left(\frac{5}{5+15}\right)^2 - \left(\frac{15}{5+15}\right)^2 = 0.375$$

$$gini_{s1}(T) = \frac{5+5}{5+5+5+15} \times 0.5 + \frac{5+15}{5+5+5+15} \times 0.375 \approx 0.417$$

5个红球

5个绿球

20个绿球

$$\lim_{T \to T} gini(T) = 1 - \left(\frac{10}{10+20}\right)^2 - \left(\frac{20}{10+20}\right)^2 \approx 0.444$$

$$gini(T_2) = 1 - \left(\frac{3}{3+16}\right)^2 - \left(\frac{16}{3+16}\right)^2 \approx 0.266$$

$$gini_{s2}(T) = \frac{4+7}{4+7+3+16} \times 0.463 + \frac{3+16}{4+7+3+16} \times 0.266 \approx 0.338$$

CART算法

2、从分组变量的众多取值中,找到最佳分割点 最佳分割点的确定方法与最佳分组变量的确定是同时进行的。

计算示例

AllElectronics公司客户购买电脑数据

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

CART变量重要性选择

计算每个候选变量对被解释变量的重要性指标, CART使用的指标为基尼系数。

Age:

表 - age * buys_computer					
		buys_c			
		no	yes	合计	
age					
3140	频数	0	4	4	
<=30	频数	3	2	5	
>40	频数	2	3	5	
合计	频数	5	9	14	

∆entropy	∆Gini	Logworth
(ID3)	(CART)	(CHAID)

Income:

表 - income * buys_computer				
		buys_computer		
		no	yes	合计
income				
high	频数	2	2	4
low	频数	1	3	4
medium	频数	2	4	6
合计	频数	5	9	14

0.029 0.016 0.74

单个分类或等级变量:决策树遍历搜索

对于分类变量,假设该输入变量有4个水平,则依次组合成两组,计算基尼系数变化最大的那个组合方式

	t_1	t ₂	公米 本
a ₁			a_2
a ₂ , a ₃ , a ₄			a ₁ , a ₃ , a ₄
	t ₁	t ₂	t_1 , t_2
a_3			a_4
a ₁ , a ₂ , a ₄			a ₁ , a ₂ , a ₃

• • • • • •

说明: CART决策树不能处理等级变量,要么作为分类变量,要么作为连续变量。这需要分析人员提前设置好。设为因子类型即为分类变量,否则为连续变量。

单个连续或等级变量:决策树分割搜索

对于**连续**变量,先等宽方式分为50组,依次取阀值分割成两组,计算基尼系数变化最大的那个分割方式。

说明: CART决策树不能处理等级变量,要么作为分类变量,要么作为连续变量。这需要分析人员提前设置好。设为因子类型即为分类变量,否则为连续变量。

其处理方法和C50完全一致,不再赘述。

决策树方法总结

	C 50	CART	CHAID	
	只能是分类型	可以是分类型也可以是数值型	可以是分类型	
输出变量			也可以是数值型	
	只能建分类树	既可建分类树又 可建回归树	能够建立多叉树	
树	可建多叉树	只能建二叉树	能够建立多叉树	
确定最佳分组变	以信息熵为基础	以Gini系数和方	从统计显著性检 验角度确定	
量和分割点	通过计算信息增 益率确定	差作为选择依据		
决定决策树的标 准	主要根据叶子中植		, 从统计显著性检 验角度确定	
/臣	依据测试样本进行后剪枝		沙用 吳	

模型修剪——以CART为例

剪枝

在决策树创建时,由于数据中的噪音和离群点,许多分枝反映的是训练数据中的 异常。剪枝方法处理这种过分拟合的数据会影响模型的稳定性。通常使用统计度 量剪掉最不可靠的分枝。剪枝后的树更小、更简单、更容易理解。

剪枝策略:

一、预修剪

其目标是控制决策树充分生长,可以事先指定一些控制参数,包括:

- (1) 决策树最大深度。如果决策树的层数已经达到指定深度,则停止生长。
- (2) 树中父节点和子节点的最少样本量或比例。对于父节点,如果节点的样本量低于最小样本量或比例,则不再分组;对于子节点,如果分组后生成的子节点的样本量低于最小样本量或比例,则不必进行分组。
- (3) 树节点中输出变量的最小异质性减少量。如果分组产生的输出变量异质性变化量小于一个指定值,则不必进行分组。

剪枝

二、后剪枝

后修剪技术允许决策树充分生长,然后在此基础上根据一定的规则,剪去决策树中那些不具有一般代表性的叶节点或子树,是一个边修剪边检验的过程。在修剪过程中,应不断计算当前决策子树对测试样本集的预测精度或误差,并判断应继续修剪还是停止修剪。

- •CART采用的后修剪技术称为最小代价复杂性修剪法(Minimal Cost Complexity Pruning,MCCP)
- •MCCP有这样的基本考虑:首先,考虑的决策树虽然对训练样本有很好的预测精度,但在测试样本和未来新样本上不会仍有令人满意的预测效果;其次,理解和应用一棵复杂的决策树是一个复杂过程。因此,决策树修剪的目标是得到一棵"恰当"的树,它首先要具有一定的预测精度,同时决策树的复杂程度应是恰当的。

CART选择最终子树标准是: 选择交叉验证中错误最小的

模型复杂度

模型复杂度

调整模型的超参数。 類型模型模型的型型。 数型的型型的一个。 数据集型的一个。 数。 数。

CART的决策树修剪方法一总结

- •输入变量(自变量): 为分类型变量或连续型变量
- •输出变量(目标变量):为分类型变量(或连续型:回归分析)
- •连续变量处理: N等分离散化
- •树分枝类型:二分枝
- •分割指标: gini增益(分割后的目标变量取值变异较小,纯度高)
- •先剪枝:决策树最大深度、最小样本分割数、叶节点包含的最小样本数、复杂度系数最小值
- •后剪枝:使用最小代价复杂度剪枝法

更多商业智能BI和大数据精品视频尽在 www.hellobi.com

BI、商业智能 数据挖掘 大数据 数据分析师 Python R语言 机器学习 深度学习 人工智能 Hadoop Hive Tableau BIFE FTI 数据科学家 **PowerBI**

