Abgabe: 07.11.21, 10:00 Besprechung: KW45

PD Dr. Elmar Langetepe Christine Dahn Joshua Könen Institut für Informatik

Übungszettel 3

Aufgabe 3.1: Eigenschaften von Abbildungen

(4+4 Punkte)

- a) Geben Sie für die folgenden Abbildungen an, ob sie injektiv, surjektiv oder bijektiv sind.
 - i) $f_{\lambda} : \mathbb{R} \to \mathbb{R}$ mit $f_{\lambda}(x) = \lambda x$ für ein festes $\lambda \in \mathbb{R}$
 - ii) $h: \mathbb{R}^2 \to \mathbb{R}$ mit h(x,y) = xy für alle $(x,y) \in \mathbb{R}^2$
- b) Geben Sie eine bijektive Abbildung $f: \mathbb{N}_0 \to \mathbb{Z}$ an, und beweisen sie ihre Bijektivität.

Aufgabe 3.2: Verknüpfung von Abbildungen

(4+4 Punkte)

- a) Seien $f: N \to P$ und $g: M \to N$ Abbildungen. Zeigen Sie, dass dann auch die Verknüpfung $f \circ g: M \to P$ mit $(f \circ g)(x) = f(g(x))$ eine Abbildung ist.
- b) Sei $f: M \to N$ eine Abbildung. Unter welchen Voraussetzungen existiert eine Umkehrabbildung $f^{-1}: N \to M$ mit $(f^{-1} \circ f)(x) = x$ für alle $x \in M$ und $(f \circ f^{-1})(y) = y$ für alle $y \in N$? Definieren Sie eine Bedingung und zeigen Sie, dass diese sowohl hinreichend als auch notwendig ist!