Solución de ecuaciones no lineales

Método de bisección

Dr. Manuel Adrian Acuña Zegarra

Solución de ecuaciones no lineales

Un bebedero de longitud L, presenta como sección transversal un semicírculo de radio r.

Cuando este es llenado con agua hasta una distancia h de su capacidad máxima, el volumen (V) del agua es representado por la ecuación:

Solución de ecuaciones no lineales

$$V = L \left[rac{\pi r^2}{2} - r^2 \arcsin\left(rac{h}{r}
ight) - h \left(r^2 - h^2
ight)^{1/2}
ight] \ .$$

Determine la profundidad máxima del agua en el bebedero, si $L=10\text{m},\ r=1\text{m}$ y $V=12.4\text{m}^3.$

Solución:

- ▶ En la gráfica se observa que la profundidad máxima del agua en el bebedero está dada por r h.
- ► Al reemplazar los datos del problema se tiene:

$$12.4 = 10 \left[\frac{\pi}{2} - \arcsin(h) - h \left(1 - h^2 \right)^{1/2} \right]$$
.

- Se emplea para obtener una aproximación de una raíz, o solución, de una ecuación de la forma f(x) = 0.
- ▶ El método se basa en emplear iterativamente el teorema de Bolzano, el cual garantiza que dada una función f continua en el intervalo [a,b], tal que $f(a) \times f(b) < 0$, entonces existe al menos un número $p \in (a,b)$ tal que f(p) = 0.

Para llevar a cabo este método, se siguen los siguientes pasos:

- ▶ Paso 1: Verificar que la función f cumpla las condiciones del teorema de Bolzano en el intervalo propuesto [a, b].
- ▶ Paso 2: Encontrar el punto medio del intervalo [a, b] y escoger el subintervalo que contenga a la raíz buscada. Para hacer esto último, aplicaremos nuevamente el teorema de Bolzano sobre este nuevo intervalo.
- ▶ Paso 3: Aplicar el paso 2 a nuestro nuevo intervalo y proseguir con este procedimiento en cada nuevo intervalo generado.

Definimos a la tolerancia como un valor $\epsilon > 0$, tal que

$$|p_n - p_{n-1}| < \epsilon,$$
 $\frac{|p_n - p_{n-1}|}{|p_n|} < \epsilon, \quad p_n \neq 0, \quad o$
 $|f(p_n)| < \epsilon.$

donde p_n es el valor obtenido en el n-ésima iteración al aplicar el método de bisección. En el caso de que se conozca la solución exacta, en las dos primeras desigualdades se sustituirá el valor de p_n por p y el de p_{n-1} por p_n .

Es importante mencionar que usualmente se considera que el error relativo es un mejor criterio para relacionar con el valor de tolerancia, puesto que existen casos en donde:

- i) $p_n p_{n-1}$ tienda a cero, pero la aproximación difiera mucho de la raíz exacta, o
- ii) $f(p_n)$ sea muy cercano a cero, pero la aproximación aún se encuentra lejos de la raíz buscada.

Ejemplos

1. Aplique el método de bisección para aproximar la solución de $x^2=2$ cuando $x\in[1,2]$. Considere una tolerancia igual a 0.0001.

Ejemplos

- 1. Aplique el método de bisección para aproximar la solución de $x^2=2$ cuando $x\in[1,2]$. Considere una tolerancia igual a 0.0001.
- 2. Resolver la pregunta inicial de la clase, al considerar que cuando $h \in [0,1]$ y se tenga una tolerancia igual a 0.00001.

Ejemplos

- 1. Aplique el método de bisección para aproximar la solución de $x^2=2$ cuando $x\in[1,2]$. Considere una tolerancia igual a 0.0001.
- 2. Resolver la pregunta inicial de la clase, al considerar que cuando $h \in [0,1]$ y se tenga una tolerancia igual a 0.00001.
- 3. Aplique el método de bisección para aproximar la solución de $cos(x) \sqrt{x} = 0$ cuando $x \in [0, \pi/4]$. Considere una tolerancia igual a 0.0005.