

Definicja 1 Wektorem zaczepionym $\overrightarrow{P_1P_2}$ nazywamy uporządkowaną parę punktów (P_1, P_2) . P_1 nazywamy początkiem wektora lub punktem zaczepienia, P_2 - końcem wektora.

Wektor nazywamy **swobodnym**, jeśli jego początek nie jest umiejscowiony w określonym punkcie przestrzeni. Wektor taki **nie ulega zmianie** jeśli jego początek zostanie przesunięty pod warunkiem, że jego długość, kierunek i zwrot nie zmieniają się.

Każdy wektor zaczepiony można przekształcić w wektor swobodny zapominając o jego początku, a każdy wektor swobodny w zaczepiony wskazując konkretny punkt zaczepienia wektora.

Uwaga. Wektory swobodne \overrightarrow{a} i \overrightarrow{b} są równe jeśli ich współrzędne są równe:

$$\overrightarrow{a} = \overrightarrow{b} \Leftrightarrow a_x = b_x \wedge a_y = b_y \wedge a_z = b_z.$$

Oznaczenia. $|\overrightarrow{a}|$ - długość wektora, $|\overrightarrow{a}|=\sqrt{a_x^2+a_y^2+a_z^2}.$

Definicja 2 Wektor \overrightarrow{a} nazywamy wersorem, $gdy |\overrightarrow{a}| = 1$.

Kąt między niezerowymi wektorami \overrightarrow{a} i \overrightarrow{b} : Jeśli $\overrightarrow{a} = \overrightarrow{P_1P_2}$ i $\overrightarrow{b} = \overrightarrow{P_1P_3}$, to kąt między wektorami \overrightarrow{a} i \overrightarrow{b} (ozn. $\measuredangle(\overrightarrow{a},\overrightarrow{b})$) jest to **mniejszy** z kątów utworzonych przez półproste P_1P_2 i P_1P_3 .

Jeśli półproste P_1P_2 i P_1P_3 pokrywają się oraz wektory \overrightarrow{a} i \overrightarrow{b} mają ten sam zwrot, to $\angle(\overrightarrow{a}, \overrightarrow{b}) = 0$, jeśli zaś \overrightarrow{a} i \overrightarrow{b} mają przeciwne zwroty, to $\angle(\overrightarrow{a}, \overrightarrow{b}) = \pi$.

Działania: $[a_x, a_y, a_z] + \alpha \cdot [b_x, b_y, b_z] = [a_x + \alpha \cdot b_x, a_y + \alpha \cdot b_y, a_z + \alpha \cdot b_z], \ \alpha \in \mathbb{R}.$

Definicja 3 *Iloczyn skalarny* niezerowych wektorów \overrightarrow{a} i \overrightarrow{b} jest to liczba rzeczywista (ozn. $\overrightarrow{a} \circ \overrightarrow{b}$) równa: $|\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \angle(\overrightarrow{a}, \overrightarrow{b})$. Jeśli $\overrightarrow{a} = \overrightarrow{0}$ lub $\overrightarrow{b} = \overrightarrow{0}$, to przyjmujemy $\overrightarrow{a} \circ \overrightarrow{b} = 0$.

Własności iloczynu skalarnego

- 1. $|\overrightarrow{a} \circ \overrightarrow{b}| \leq |\overrightarrow{a}| \cdot |\overrightarrow{b}|$
- $2. \ \overrightarrow{a} \circ \overrightarrow{b} = \overrightarrow{b} \circ \overrightarrow{a}$
- 3. $(\overrightarrow{a} + \overrightarrow{b}) \circ \overrightarrow{c} = \overrightarrow{a} \circ \overrightarrow{c} + \overrightarrow{b} \circ \overrightarrow{c}$
- $4. \ (\lambda \cdot \overrightarrow{a}) \circ \overrightarrow{b} = \lambda \cdot (\overrightarrow{a} \circ \overrightarrow{b})$
- 5. $\overrightarrow{a} \circ \overrightarrow{a} \geqslant 0$, $\overrightarrow{a} \circ \overrightarrow{a} = 0 \Leftrightarrow \overrightarrow{a} = \overrightarrow{0}$
- 6. jeśli $\overrightarrow{a} = [a_x, a_y, a_z], \ \overrightarrow{b} = [b_x, b_y, b_z], \text{ to } \overrightarrow{a} \circ \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z.$

 $\textbf{Definicja 4} \ \textit{Wektory} \ \overrightarrow{a} \ \textit{i} \ \overrightarrow{b} \ \textit{sq ortogonalne}, \textit{jeśli} \ \overrightarrow{a} \circ \overrightarrow{b} = 0.$

Uwaga. Jeśli $\overrightarrow{a} \neq \overrightarrow{0}$ i $\overrightarrow{b} \neq \overrightarrow{0}$, to \overrightarrow{a} i \overrightarrow{b} są ortogonalne wtedy i tylko wtedy, gdy są prostopadłe.

Definicja 5 *lloczynem wektorowym* niezerowych wektorów \overrightarrow{a} i \overrightarrow{b} nazywamy wektor \overrightarrow{c} taki, że

1.
$$|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \angle (\overrightarrow{a}, \overrightarrow{b})$$

2. \overrightarrow{c} jest ortogonalny do \overrightarrow{a} i do \overrightarrow{b}

3.
$$je\dot{z}eli\ \overrightarrow{c} \neq \overrightarrow{0}$$
, to $\begin{vmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{vmatrix} > 0$, tzn . $uklad\ (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ $ma\ orientacje\ zgodna\ z\ ukladem\ OXYZ$.

 $Jeśli \overrightarrow{a} = \overrightarrow{0} lub \overrightarrow{b} = \overrightarrow{0}$, to przyjmuje się $\overrightarrow{c} = \overrightarrow{0}$.

Oznaczenie. $\overrightarrow{a} \times \overrightarrow{b}$ - iloczyn wektorowy.

Uwaga. $|\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \angle (\overrightarrow{a}, \overrightarrow{b})$ to pole równoległoboku rozpiętego na wektorach \overrightarrow{a} i \overrightarrow{b} .

Własności iloczynu wektorowego

(1)
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$$
 dla $\overrightarrow{a} \neq \overrightarrow{0}$ i $\overrightarrow{b} \neq \overrightarrow{0}$ \Leftrightarrow wektory \overrightarrow{a} i \overrightarrow{b} są kolinearne (tzn. $\overrightarrow{a} = \lambda \cdot \overrightarrow{b}$)

(2)
$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$$

(3)
$$(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$$

$$(4) \ (\lambda \cdot \overrightarrow{a}) \times \overrightarrow{b} = \lambda \cdot (\overrightarrow{a} \times \overrightarrow{b})$$

(5) jeśli
$$\overrightarrow{a} = [a_x, a_y, a_z], \overrightarrow{b} = [b_x, b_y, b_z], \text{ to } \overrightarrow{a} \times \overrightarrow{b} = \begin{bmatrix} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix}, - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix}, \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} = \begin{bmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix},$$
gdzie $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ - wersory osi (odpowiednio) OX, OY, OZ .

 $\textbf{Definicja 6} \ \textit{lloczynem mieszanym} \ \textit{wektor\'ow} \ \overrightarrow{a} \ , \ \overrightarrow{b} \ , \ \overrightarrow{c} \ \textit{nazywamy liczbę} \ (\overrightarrow{a} \times \overrightarrow{b}) \circ \overrightarrow{c} :$

$$(\overrightarrow{a} \times \overrightarrow{b}) \circ \overrightarrow{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}.$$

Uwaga. $|(\overrightarrow{a} \times \overrightarrow{b}) \circ \overrightarrow{c}|$ - objętość równoległościanu rozpiętego na wektorach \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .

Płaszczyzna w \mathbb{R}^3

Ax + By + Cz + D = 0 - równanie ogólne płaszczy
zny, gdzie $A^2 + B^2 + C^2 > 0$ i $\overrightarrow{n} = [A, B, C]$ - wektor normalny płaszczyzny (wektor prostopadły do płaszczyzny).

Odległość punktu $P_0(x_0, y_0, z_0)$ od płaszczyzny $\pi : Ax + By + Cz + D = 0$:

$$d(P_0, \pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Położenie dwóch płaszczyzn

Wzajemne położenie dwóch płaszczyzn π_1 i π_2 o równaniach:

$$A_1x + B_1y + C_1z + D_1 = 0$$

$$A_2x + B_2y + C_2z + D_2 = 0$$

badamy korzystając z twierdzenia Kroneckera-Capellego:

1.
$$\pi_1$$
 i π_2 są równoległe (i różne), gdy $r\left[\begin{array}{ccc} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{array} \right] = 1$ i $r\left[\begin{array}{ccc} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \end{array} \right] = 2$

2.
$$\pi_1$$
i π_2 pokrywają się, gdy $r\left[\begin{array}{cccc}A_1&B_1&C_1&D_1\\A_2&B_2&C_2&D_2\end{array}\right]=1$

3.
$$\pi_1$$
 i π_2 są nierównoległe, gdy $r \begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{bmatrix} = 2$. Wtedy przecinają się wzdłuż prostej

$$l: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

- równanie krawędziowe prostej.

Pęk płaszczyzn

Dana jest prosta
$$l: \left\{ \begin{array}{l} A_1x+B_1y+C_1z+D_1=0 \\ A_2x+B_2y+C_2z+D_2=0 \end{array} \right.$$
 Przez prostą l przechodzą inne płaszczyzny (pęk płaszczyzn). Można je opisać równaniem:

$$\lambda \cdot (A_1x + B_1y + C_1z + D_1) + \mu \cdot (A_2x + B_2y + C_2z + D_2) = 0,$$

gdzie $\lambda^2 + \mu^2 > 0$.

Prosta w \mathbb{R}^3

Równanie parametryczne prostej l przechodzącej przez punkt $P_0(x_0, y_0, z_0)$ i równoległej do wektora \overrightarrow{v} $[v_x, v_y, v_z]$

$$l: \left\{ \begin{array}{l} x = x_0 + t \cdot v_x \\ y = y_0 + t \cdot v_y \\ z = z_0 + t \cdot v_z \end{array} \right., \ t \in \mathbb{R}$$