b. Heat flows through a uniform bar of length l which has its side insulated and the temperature at the ends kept at zero. If the initial temperature at the interior points of the bar is given by x, $0 \le x \le l$, find the temperature distribution in the bar at time t.

Find the Fourier transform of $\frac{x}{x^2+x^2}$.

3 4 1.2

31MF3-21MAB201T

- 8 3 4 1,2 b. Evaluate $\int_{0}^{\infty} \frac{dx}{\left(x^2 + a^2\right)\left(x^2 + b^2\right)}$ using Fourier transforms.
- 25. a. Find $Z^{-1} \left[\frac{z^2 + 2z}{z^2 + 2z + 4} \right]$ using long division method.
 - b. Find the Z-transform of $\frac{1}{(n+1)(n+2)}$, n > 0. 8 2 5 1,2
 - Marks BL CO PO $PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Question
 - 4 2 1,2 26. Determine the first 3 harmonics of the fourier series for the following data.

x	0	$\pi/6$	$2\pi/6$	$3\pi/6$	$4\pi/6$	$5\pi/6$	π
y	2.34	2.2	1.6	0.83	0.51	0.88	2.34

15 4 3 1,2 27. A rod 30 cm long has its ends A and B kept at 20°C and 80°C respectively, until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0°C and kept so. Find the resulting temperature function u(x,t) taking x=0 at A.

* * * *

Reg. No.														
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech. / M.Tech (Integrated) DEGREE EXAMINATION, MAY 2023 Third Semester

21MAB201T - TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted from the academic year 2021 - 2022 & 2022 - 2023)

Note:

Time: 3 Hours

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- Part B and Part C should be answered in answer booklet.

$$PART - A (20 \times 1 = 20 Marks)$$
Marks BL CO PO

- 1 1 1 1,2 1. The complete integral of z = px + qy + 2pq is
 - (A) z = ax + by + 2ab
- (B) z = a(x+y) + 2ba
- (C) z = ax + by + 2c
- (D) z = ax by + a
- The complementary function of $\left(D^2 + DD' 2D'^2\right)z = x^2y$ (A) $z = \phi_1(y x) + \phi_2(y 2x)$ (B) $z = \phi_1(y + x) + \phi_2(y + 2x)$ (C) $z = \phi_1(y x) + \phi_2(y + 2x)$ (D) $z = \phi_1(y + x) + \phi_2(y 2x)$

- 3. The particular integral of $(D^2 2DD')z = e^{2x}$

(A) $e^{-2x}/2$ (C) $x^2e^{2x}/2$

- (D) $e^{2x}/4$
- 4. The complete integral of $\sqrt{p} + \sqrt{q} = 1$ (A) z = ax + by(C) $z = ax + (1 \sqrt{a})^2 y + c$
 - (B) z = a(x+y)+b
- (D) z = ax by + a
- 5. tan x is periodic function with period (A) π
 - (B) $\pi/2$

(C) 2π

- (D) 4π
- 6. Which of the following is an even function?
- 1 2 1.2

(A) $\sin x$

(B) x(D) x^2

(C) e^x

- 7. The RMS value of f(x) = x in $-1 \le x \le 1$ is

1 2 1,2

Max. Marks: 75

1 1 1 1,2

1 1 1,2

1 1 1 1,2

1 1 2 1,2

(A) 1

(C) 1 $\sqrt{3}$ (D) -1

8.	If $f(x)$ is discontinuous at $x=a$, the		1	1	2	1,2
	(A) $\left[f\left(a^{-}\right) - f\left(a^{+}\right) \right] / 2$	(B) $f(a^-)-f(a^+)$				
	(C) $\left[f\left(a^{+}\right) - f\left(a^{+}\right) \right] / 3$	(D) $\left[f\left(a^{-}\right) + f\left(a^{+}\right) \right] / 2$				
9.	One dimensional heat equation is us		1	1	3	1,2
	(A) Density (C) Time	(B) Temperature(D) Displacement				
10.	How many initial and boundary $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$	conditions are required to solv	ve ¹	1	3	1,2
	$\frac{\partial t^2}{\partial x} = \frac{\partial x^2}{\partial x}$	(B) Three				
	(C) Five	(D) Four				
11.	One dimensional wave equation is		1	1	3	1,2
	(A) $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$	(B) $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$		9		
	(C) $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$	$\frac{\text{(D)}}{\frac{\partial^2 u}{\partial x^2}} = \alpha \frac{\partial^2 u}{\partial x^2}$				
	$\frac{\partial}{\partial t} = \alpha \frac{\partial}{\partial x^2}$	$\frac{1}{\partial x^2} = \alpha \frac{1}{\partial t^2}$				
12.	Heat flows fromtemperature	e.	1	1	3	1,2
	(A) Higher to lower	(B) Uniform				
	(C) Lower to higher	(D) Stable				
13.	The Fourier transform of a function	f(x) is	1	1	4	1,2
	(A) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{ist}dt$	(B) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$				
	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{isx}dx$	(D) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(s)e^{isx}dx$				
	$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{1}f(t)e^{-t}dx$	$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(s)e^{-i\alpha x}$		and a	-	
14.	Fourier sine transform of $f(x)$ is		1	1	4	1,2
	(A) $\sqrt{2} \int_{0}^{\infty} f(x) dx dx$	(B) $\sqrt{2} \int_{0}^{\infty} f(x) dx$				
	(A) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(s) \sin sx dx$	(B) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$				₹Ē
	(C) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin x dx$	(D) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos sx dx$				
	$V\pi_0^{J}$	$\forall \pi \stackrel{j}{0} =$				
15.	F[f(x-a)] =		1	1	4	1,2
	(A) $e^{ias}F(a)$	(B) $e^{iax}F(x)$				
	(C) $e^{i\alpha x}F(a)$	(D) $e^{ias}F(s)$				

16.	$F^{-1}[F(s).G(s)] =$		1	1	4	1,2
		f(x)+g(x)				
		f(x) - g(x)				
_17.	$Z^{-1}\left[\frac{1}{z-a}\right] =$		1	1	5	1,2
	E 2					
		a^{n+1}				
	(C) a^{n-1} (D	na^n				
18.	Z[f(n)*g(n)]=	VI.	1	i	5	1,2
	(A) $F(z)G^{-1}(z)$ (B)	$F^{-1}(z)G^{-1}(z)$				
		$F^{-1}(z).G(z)$				
10	-	e en allenia v	1	1	5	12
19.	$Z^{-1}\left[\frac{z}{z-a}\right]$				4	1,4
) a				
	(C) a^n (D)	a^{n-1}				
20.	-n	· · · · · · · · · · · · · · · · · · ·	1	1	5	1,2
	The poles of $\phi(z) = \frac{z^n}{(z-1)(z-2)}$ are					
	(A) $z=1, z=0$ (B)	z=1, z=2				
	(C) $z=0, z=2$ (D)	0) z=0				
	$PART - B (5 \times 8 = 40)$	Marks)	Marks	BL	e co	PO
	Answer ALL Ques	•				
21. a.	8	2	1	1,2		
	(OR)					
b.	Solve $\left(D^3 - 7DD^2 - 6D^3\right)z = \sin(x + 1)$	2v).	8	2	. 10	1,2
		- <i>y</i>).				
22. a.	Express $f(x) = (\pi - x)^2$ as a Fourier ser	$x = x < 2\pi$	8	3	2	1,2
h	(OR) Find the half range sine series of $f(x)$ =	br(r-1) in $0 < r < 1$	8	3	2	1,2
o.	ind the half range sine series of $f(x)$	$\operatorname{KL}(x-i)$ in $0 \le x \le i$.				
23. a.	A tightly stretched string of length 'l' ha		8	3	3	1,2
	t=0, the string is in the form $f(x)$:					
	displacement at any point on the string a any time t>0.	t a distance 'x' from one end and at				
	2					

(OR)