Filter design using window function method

Varun Balaji and Ajay Shrihari

Problem Statement

- Design a band-pass filter using window function method in MATLAB
- Apply designed filter to mixed sine wave signal
- Establish simulation model using MATLAB
- Observe and verify performance of simulation model from waveforms using oscilloscope in SIMULINK

Mathematics used

- Impulse response: h(n)
- Number of points on filter: N
- Transfer function of filter:

$$\mathrm{H}(\mathrm{z}) = \sum_{\mathrm{n}=0}^{\mathrm{N}-1} \mathrm{h}(\mathrm{n}) z^{-\mathrm{n}}$$

• Taking z transform:

$$y(n) = \sum_{m=0}^{N-1} h(m)x(n-m)$$

Math

Based on this, we have 3 ways of representing the convolution sum expressions:

• Direct Form

• Cascade Form

Math

- Linear structure
- Even

X(n) Z^{-1} $Z^{$

Odd

Math (continued)

Requirements of project

- Implement the FIR filter with Kaiser Window with given specs using the Filter Designer tool in MATLAB to serve as a baseline. (completed)
- Code the Windows from scratch and experiment with different windows using different filter orders.
- Perform a comparative analysis of the different windows and their uses like the table given below. Plot graphs of each.

Window function	Over band width (P/N)	Minimum stopband attenuation (dB)	Sidelobe peak amplitude (dB)
Rectangle	4	21	13
Triangle	8	25	25
Hann	8	44	31
Hamming	8	53	41
Kaiser (β=5.6)	7.442	60	51
Blackman	12	74	71

Input signal and its FFT

Low pass FIR filter frequency response

Frequency responses of low pass FIR filter with windows

Angle responses of low pass FIR filter with windows

High pass FIR filter frequency response

Frequency responses of high pass FIR filter with windows

Angle responses of high pass FIR filter with windows

Band pass FIR filter frequency response

Frequency responses of band pass FIR filter with windows

Angle responses of band pass FIR filter with windows

