Branch: CSE/IT

Batch: Hinglish

Discrete Mathematics Set Theory

DPP-09

[MCQ]

- 1. The poset $[D_{12}; |]$ is
 - (a) a lattice.
 - (b) a join semi lattice but not a meet semi lattice.
 - (c) a meet semi lattice but not a join semi lattice.
 - (d) not a semi lattice.

[MCQ]

2. Consider the Lattice.

 $L = \{x, a, b, c, d, e, y\}$ shown below.

Which of the following is a sub-Lattice of L?

- (a) $\{x, a, b, y\}$
- (b) $\{x, a, e, y\}$
- (c) $\{x, c, d, y\}$
- (d) $\{x, a, c, y\}$

[MCQ]

- 3. Which of the following statements is false, for the Lattice $[P(A); \subseteq]$
 - (a) The upper bound of $[P(A); \subseteq]$ is A.
 - (b) The lower bound of $[P(A); \subseteq]$ is \emptyset .
 - (c) The upper bound of $[N; \leq]$ does not exist, where N is set of all positive integers.
 - (d) The lower bound of $[N; \le]$ is 0

[MCQ]

- 4. Which of the following is not true
 - (a) $[P(A); \subseteq]$ is a distributive lattice.
 - (b) In a distributive lattice if $b \wedge c = 0$ then $b \leq c$
 - (c) If L is a bounded distributive lattice, the complements are unique, if they exist.
 - (d) Every distributive lattice is a Complemented lattice.

[MCQ]

- **5.** Which of the following posets is not a Lattice.
 - (a) $[\{1, 3, 6, 9, 12\}; |]$
 - (b) [{1, 5, 25, 125}; |]
 - (c) $[\{1, 2, 4, 8, 16\}; |]$
 - (d) $[Z; \geq]$

Answer Key

1. (a) 2. (b)

3. (d)

4. (d) 5. (a)

Hints and Solutions

1. (a)

 D_{12} = {1, 2, 3, 4, 6, 12}

If n is any +ve integer, then the poset $[D_n: |]$ is a lattice.

2. (b)

(a)

Let $L_1 = \{x, a, b, y\}$. The Hasse Diagram of L_1 is

The lub of a and b in the given lattice = c

The lub of a and b in $L_1 = y$

 \therefore L₁ is not a sub lattice of L.

(b)

The Hasse diagram of $L_2 = \{x, a, e, y\}$ is

L₂ is a sub lattice of L

(c)

The Hasse diagram of the subset

 $L_3 = \{x, c, d, y\}$ is shown below

The glb of c and d in L = a

The glb of c and d in L3 = x

 \therefore L₃ is not a sublattice.

(d)

 $L_4 = \{x, a, c, y\}$

L₄ is a totally ordered set.

L₄ is a sub lattice of L.

3. (d)

For the lattice $[P(A); \subseteq]$, the upper bound is A and lower bound is ϕ .

.. Options (a) and (b) are true.

(c)
$$N = \{1, 2, 3, 4, \dots \infty\}$$

The upper bound is the largest positive integer which does not exist.

(d)
$$N = \{1, 2, 3, 4,\infty\}$$

The lower bound of $[N; \leq] = 1$

4. (d)

 $[N; \leq]$ is a totally ordered set and therefore a distributive lattice. But N is not a complemented lattice because the upper bound of the lattice does not exist.

5. (a)

The Hasse Diagram of the poset is

There are 2 maximal elements 9 and 12.

: lub of 9 and 12 does not exist.

Hence, the poset is not a lattice.

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{for more questions, kindly visit the library section: Link for web: } \frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4