Classification using Decision Tree in KNIME

Learning Objectives

Problem Description

By the end of this activity, you will be able to perform the following operations in KNIME:

Now that we have explored the data and looked at how to handle missing values, the next step is to build a

classification model to predict days with low humidity. Recall that low humidity is one of the weather conditions

that increase the dangers of wildfires, so it would be helpful to be able to predict low-humidity days. We will build a

- 1. Create a categorical variable from a numeric variable
- 2. Examine the summary statistics of a dataset
- 3. Build a workflow for a classification task using a decision tree

decision model to classify low-humidity days vs. non-low-humidity days based on weather conditions observed at 9am.

Steps

Prepare the data

Let's build a workflow to build a decision tree model to classify low-humidity days vs. days with normal or high

humidity. The model will be used to predict low-humidity days 1. Open KNIME, and below the example projects click on Create workflow in your local space

- 2. Drag the CSV Reader node onto the Workflow Editor. You can search for the File Reader node by typing "CSV
- Reader" in the search box in the Node Repository, or find it under IO. 3. Connect a Missing Value node to the CSV Reader node. This will handle the missing values that the dataset
- contains so the data can be analyzed properly. In the configure dialog, in the **Default** tab, choose **Remove Row*** to remove all rows with missing values. 4. As with the Data Exploration Hands-On, use the **Numeric Binner** node to create a new categorical variable
- with the condition "if relative_humidity_3pm < 25% then humidity_low is true, else humidity_not_low is true". • Locate the Numeric Binner node, which is in the Manipulation>More Advanced Nodes category. Drag it to the
- Workflow Editor, and connect it to the Missing Value node. • Open the Configure Dialog for the Numeric Binner node. Select **relative_humidity_3pm**, and **Add** 2 bins.
- Make one bin called "humidity_low" with the range -∞ to 25 excluding 25, and another called "humidity_not_low" with the range 25 to ∞. The endpoint brackets specify that humidity_low excludes 25.0, while humidity_not_low includes 25.0. This is necessary to capture the condition "if relative_humidity_3pm < 25% then low_humidity_day=1, else low_humidity_day=0". Click the checkbox to "Append new column" and name it low_humidity_day.

1. Connect a Statistics node to the output of the CSV Reader node.

2. Connect a **Statistics** node to the output of the **Numeric Binner** node.

values in the "Statistics AFTER filtering" node.

- 3. Execute and view both Statistics nodes, and you should see the resulting descriptive statistics in both.
- 4. There are missing values for many of the variables in the "Statistics BEFORE filtering" node, but zero missing
- 5. The distributions of each variable in both "Statistics BEFORE filtering" and "Statistics AFTER filtering" should be about the same. You can spot check a couple of variables by creating histograms, min, max, mean, and
- standard deviation. **Build a Decision Tree Workflow**

Decision Tree Learner

Column Filter

Missing Value CSV Reader

Column filter

Color by ...

S low_humidity_day

Wildcard Regex Type Manual

Nominal Range humidity_low humidity_not_low

Flow Variables Job Manager Selection Memory Policy

humidity_low 51.1 435 humidity_not_low 48.9 100.0 851 ▼ Chart: Color column: low_humidity_day

Save Your Workflow

Save your workflow using <control>-s on Windows or <command>-s.