Theorem. Every string is perfectly cromulent

Proof: Let w be an arbitrary string.

Assume, for every string x such that |x| < |w|, that x is perfectly cromulent. There are two cases to consider.

• Suppose $w = \varepsilon$.

Therefore, w is perfectly cromulent.

Suppose w = ax for some symbol a and string x.
 The induction hypothesis implies that x is perfectly cromulent.

Therefore, w is perfectly cromulent.

In both cases, we conclude that w is perfectly cromulent.

Lemma: For all strings w, y, z: (woy) == wo(y = 2)

Proof: Let w, y, z be arbitrary strings.

IH: Assume (xoy). z = x. (y. z) For all strings x shorter than w.

There are two cases:

•
$$W = E$$
 $(w \cdot y) \cdot Z = (E \cdot y) \cdot Z$ $(w = E)$
 $= y \cdot Z$ $(def \cdot)$
 $= w \cdot (y \cdot Z)$ $(w = E)$

· w= dx for some symbol 2 + stringx

$$(w \cdot y) = = ((a \cdot x) \cdot y) \cdot z \qquad (w = a \cdot x)$$

$$= (a \cdot (x \cdot y) \cdot z) \qquad (def \cdot g)$$

$$= a \cdot (x \cdot (y \cdot z)) \qquad (def \cdot g)$$

$$= (a \cdot x \cdot (y \cdot z)) \qquad (def \cdot g)$$

$$= (a \cdot x \cdot (y \cdot z)) \qquad (def \cdot g) \qquad (w = a \cdot g)$$

Therefore, (wox) = wo(yoz)

LANGUAGES = sets of strings over Z

 $\mathcal{Z}^* = \underline{all} \text{ strings over } \mathcal{Z}$

{ BMO} Whas even # of 1s\$ = { e, 00, 101, ... }

EFINN, JAKE, ICEKINGS

{we Eo, 13* | w is binary for prime #5

L = AUB

All Pythen programs

L=ANB

All Python programs that as bop

 $L = \overline{A} = \Sigma^* \setminus A$

L= A·B = {x·y | xe A and ye B} & FIRST, SECOND, THEROJ. & BASE, PLACEJ EOJ* · £13*

 $\emptyset \cdot L = \emptyset$

EE3.L=L

L* - Kleene star = { E3 UL U LoL UL. L. U. -- -

WEL* => W=E OF W=XY
for some XEL
YELX

Is L* always infinite?

 $\mathcal{O}^* = \{ \varepsilon \} \vee \mathcal{O} \cup \mathcal{O} \circ \mathcal{O} \cup \cdots - = \{ \varepsilon \}$ $\{ \varepsilon \}^* = \{ \varepsilon \} \cup \{ \varepsilon \cdot \varepsilon \} \cup \cdots - \cdots = \{ \varepsilon \}$

Lemma 2.1. The following identities hold for all languages A, B, and C:

(a)
$$A \cup B = B \cup A$$
.

(b)
$$(A \cup B) \cup C = A \cup (B \cup C)$$
.

(c)
$$\emptyset \bullet A = A \bullet \emptyset = \emptyset$$
.

(d)
$$\{\varepsilon\} \cdot A = A \cdot \{\varepsilon\} = A$$
.

(e)
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
.

(f)
$$A \cdot (B \cup C) = (A \cdot B) \cup (A \cdot C)$$
.

(g)
$$(A \cup B) \cdot C = (A \cdot C) \cup (B \cdot C)$$
.

Lemma 2.2. The following identities hold for every language L:

(a)
$$L^* = \{\varepsilon\} \cup L^+ = L^* \cdot L^* = (L \cup \{\varepsilon\})^* = (L \setminus \{\varepsilon\})^* = \{\varepsilon\} \cup L \cup (L^+ \cdot L^+).$$

(b)
$$L^+ = L \cdot L^* = L^* \cdot L = L^+ \cdot L^* = L^* \cdot L^+ = L \cup (L^+ \cdot L^+).$$

(c)
$$L^+ = L^*$$
 if and only if $\varepsilon \in L$.

Lemma 2.3 (Arden's Rule). For any languages A, B, and L such that $L = A \cdot L \cup B$, we have $A^* \cdot B \subseteq L$. Moreover, if A does not contain the empty string, then $L = A \cdot L \cup B$ if and only if $L = A^* \cdot B$.

Alternating Os and 1s

Good: c, 1, 0, 101, 010101, 01010, ___

$$\begin{array}{ll} \varepsilon \\ + 0 & (10) * (1+\varepsilon) \\ + 1 & (01) * (0+\varepsilon) \end{array} = (0+\varepsilon) & (10) * (1+\varepsilon) \\ \end{array}$$

A regular expression tree for 0*0 + 0*1(10*1 + 01*0)*10*

Proof: Let *R* be an arbitrary regular expression.

Assume that **every regular expression smaller than** R is perfectly cromulent. There are five cases to consider.

• Suppose $R = \emptyset$.

Therefore, R is perfectly cromulent.

Suppose R is a single string.

Therefore, *R* is perfectly cromulent.

Suppose R = S + T for some regular expressions S and T.
 The induction hypothesis implies that S and T are perfectly cromulent.

Therefore, R is perfectly cromulent.

Suppose R = S • T for some regular expressions S and T.
 The induction hypothesis implies that S and T are perfectly cromulent.

Therefore, *R* is perfectly cromulent.

Suppose R = S* for some regular expression. S.
 The induction hypothesis implies that S is perfectly cromulent.

Therefore, R is perfectly cromulent.

In all cases, we conclude that w is perfectly cromulent.