$$tgd = \frac{sind}{cosl}$$

$$cAgd = \frac{cosd}{sind}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$\frac{2}{2} \cdot \frac{2}{6} = \frac{a}{6}$$

$$\frac{3}{3}$$

$$\frac{2}{3}$$

$$\frac{2}{3}$$

$$\frac{2}{3}$$

$$\frac{2}{3}$$

$$\frac{2}{3}$$

$$\frac{2}{3}$$

$$\frac{2}{3}$$

$$\frac{2}{3}$$

$$\frac{2}{3}$$

## Задачи

- Найдите синус, косинус и тангенс углов A и B треугольника ABC с прямым углом C, если: a) BC=8, AB=17; б) BC=21, AC=20; в) BC=1, AC=2; г) AC=24, AB=25.
- 592 Постройте угол  $\alpha$ , если: a)  $\operatorname{tg} \alpha = \frac{1}{2}$ ; б)  $\operatorname{tg} \alpha = \frac{3}{4}$ ; в)  $\cos \alpha = 0,2$ ; г)  $\cos \alpha = \frac{2}{3}$ ; д)  $\sin \alpha = \frac{1}{2}$ ; е)  $\sin \alpha = 0,4$ .
- 593 Найдите: а)  $\sin \alpha$  и  $tg \alpha$ , если  $\cos \alpha = \frac{1}{2}$ ; б)  $\sin \alpha$  и  $tg \alpha$ , если  $\cos \alpha = \frac{2}{3}$ ; в)  $\cos \alpha$  и  $tg \alpha$ , если  $\sin \alpha = \frac{\sqrt{3}}{2}$ ; г)  $\cos \alpha$  и  $tg \alpha$ , если  $\sin \alpha = \frac{1}{4}$ .

157 Подобные треугольники

$$2^{2} + 7^{2} - AB^{2}$$
 $5 = AB^{2}$ 
 $AB = \sqrt{5}$ 

1) 
$$\sin \angle A = \frac{CB}{OLB} = \frac{1}{VE}$$

$$COS \angle A = \frac{ac}{ab} = \frac{2}{VE}$$

$$Lg \angle A = \frac{cB}{ac} = \frac{1}{2}$$

COSLB=60=15 +3/2B=60=15 +3/2B=100

593 Найдите: а) 
$$\sin \alpha$$
 и  $tg \alpha$ , если  $\cos \alpha = \frac{1}{2}$ ; б)  $\sin \alpha$  и  $tg \alpha$ , если  $\cos \alpha = \frac{2}{3}$ ; в)  $\cos \alpha$  и  $tg \alpha$ , если  $\sin \alpha = \frac{\sqrt{3}}{2}$ ; г)  $\cos \alpha$  и  $tg \alpha$ , если  $\sin \alpha = \frac{1}{4}$ .

Tadakı

Прямоугольный треугольник



Теорема Пифагора:  $a^2 + b^2 = c^2$ 

Основное тригонометрическое тождество:  $\sin^2 \alpha + \cos^2 \alpha = 1$ 

a) 
$$Sin^2 d + cos d = 1$$
  
 $cos d = \frac{1}{2}$ 

$$Sin^{2} d + \frac{1}{2} = \frac{1}{7}$$

$$Sin^{2} d = \frac{1}{7} - \frac{1}{7} = \frac{1}{7} - \frac{3}{7} = \frac{3}{7}$$

$$Sin d = \sqrt{3} = \sqrt{3} = \frac{3}{7}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

Некоторые значения тригонометрических функций

|               | Не      | котор | ые значе             | ния триг             | онометр              | ических | функци | ИЙ   |      |
|---------------|---------|-------|----------------------|----------------------|----------------------|---------|--------|------|------|
| α             | градусы | 0°    | 30°                  | 45°                  | 60°                  | 90°     | 180°   | 270° | 360° |
| $\sin \alpha$ |         | 0     | 1/2                  | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1       | 0      | -1   | 0    |
| cosα          |         | 1     | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0       | -1     | 0    | 1    |
|               | tgα     | 0     | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           | -       | 0      | -    | 0    |

 $\frac{1}{2} = \sqrt{3}$   $\frac{2}{3} = 60^{\circ}$ mire

- 594 В прямоугольном треугольнике один из катетов равен b, а противолежащий угол равен  $\beta$ . а) Выразите другой катет, противолежащий ему угол и гипотенузу через b и  $\beta$ . б) Найдипе их значения, если b=10 см,  $\beta=50^{\circ}$ .
- 595 В прямоугольном треугольнике один из катетов равен b, а прилежащий к нему угол равен  $\alpha$ . а) Выразите второй катет, прилежащий к нему острый угол и гипотенузу через b и  $\alpha$ . б) Найдите их значения, если b=12 см,  $\alpha=42^{\circ}$ .
- 596 В прямоугольном треугольнике гипотенуза равна c, а один из острых углов равен  $\alpha$ . Выразите второй острый угол и катеты через c и  $\alpha$  и найдите их значения, если c=24 см, а  $\alpha=35^{\circ}$ .
- Катеты прямоугольного треугольника равны a и b. Выразите через a и b гипотенузу и тангенсы острых углов треугольника и найдите их значения при  $a=12,\ b=15.$
- 598 Найдите площадь равнобедренного треугольника с углом  $\alpha$  при основании, если: а) боковая сторона равна b; б) основание равно a.
- 599 Найдите площадь равнобедренной трапеции с основаниями 2 см и 6 см, если угол при большем основании равен α.
- Насыпь шоссейной дороги имеет в верхней части ширину 60 м. Какова ширина насыпи в нижней её части, если угол наклона откосов равен 60°, а высота насыпи равна 12 м (рис. 209)?



5) b=12; 2=42°