Second Law of Entanglement Manipulation with Entanglement Battery

arxiv:2405.10599

Ray Ganardi

2024.10.02

NTU

Collaborators

Tulja Varun Kondra

Heinrich Heine University Düsseldorf

Nelly H. Y. Ng

NTU

Alexander Streltsov

University of Warsaw Polish Academy of Sciences

Second law and reversibility

Second law of thermodynamics

$$\Delta S \geq 0$$

Second law and reversibility

Second law of thermodynamics

$$\Delta S \ge 0$$

$$S(\rho) \leq S(\sigma)$$
 iff. $\rho \to \sigma$ adiabatically [Lieb Yngvasson, Phys Rep 1999]

Second law and reversibility

Second law of thermodynamics

$$\Delta S \ge 0$$

$$S(\rho) \leq S(\sigma)$$
 iff. $\rho \to \sigma$ adiabatically [Lieb Yngvasson, Phys Rep 1999]

Carnot's theorem

An engine runs at the optimal efficiency iff. it is reversible

Entanglement

Entanglement

1-way LOCC

$$\Lambda(\rho) = \sum_{ij} (A_i \otimes B_{ij}) \rho (A_i \otimes B_{ij})^{\dagger}$$
 with $\sum_i A_i^{\dagger} A_i = \mathbf{1} = \sum_j B_{ij}^{\dagger} B_{ij}$.

Separable states

$$\rho = \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}.$$

4

Asymptotic transformation rate

$$R(\rho \to \sigma) = \sup \left\{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \right\}$$

Asymptotic transformation rate

$$R(\rho \to \sigma) = \sup \{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \}$$

Reversibility

$$R(\rho \to \sigma)R(\sigma \to \rho) = 1$$

Asymptotic transformation rate

$$R(\rho \to \sigma) = \sup \{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \}$$

Reversibility

$$R(\rho \to \sigma)R(\sigma \to \rho) = 1$$

Second law

$$R(\rho \to \sigma) = \frac{R(\rho \to \Phi)}{R(\sigma \to \Phi)}$$

Asymptotic transformation rate

$$R(\rho \to \sigma) = \sup \{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \}$$

Reversibility

$$R(\rho \to \sigma)R(\sigma \to \rho) = 1$$

Second law

$$R(\rho \to \sigma) = \frac{R(\rho \to \Phi)}{R(\sigma \to \Phi)}$$

Is entanglement reversible?

Asymptotic transformation rate

$$R(\rho \to \sigma) = \sup \{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \}$$

Reversibility

$$R(\rho \to \sigma)R(\sigma \to \rho) = 1$$

Second law

$$R(\rho \to \sigma) = \frac{R(\rho \to \Phi)}{R(\sigma \to \Phi)}$$

Is entanglement reversible?

No, because of bound entanglement [Horodecki Phys Lett A 1997, Horodecki PRL 1998,

Vidal Cirac PRL 2001]

$$R(\rho \rightarrow \Phi) = 0$$
, but $R(\Phi \rightarrow \rho) < \infty$

Can we make entanglement reversible?

 Brandão-Plenio connected this to hypothesis testing through generalized Stein's lemma [Brandão Plenio Nat Phys 2008, Brandão Plenio CMP 2010, Berta et al Quantum 2023]

- Brandão-Plenio connected this to hypothesis testing through generalized Stein's lemma [Brandão Plenio Nat Phys 2008, Brandão Plenio CMP 2010, Berta et al Quantum 2023]
- PPT entanglement theory is not reversible [Wang Duan PRL 2017].

- Brandão-Plenio connected this to hypothesis testing through generalized Stein's lemma [Brandão Plenio Nat Phys 2008, Brandão Plenio CMP 2010, Berta et al Quantum 2023]
- PPT entanglement theory is not reversible [Wang Duan PRL 2017].
- Non-entangling maps is not reversible [Lami Regula Nat Phys 2023].

- Brandão-Plenio connected this to hypothesis testing through generalized Stein's lemma [Brandão Plenio Nat Phys 2008, Brandão Plenio CMP 2010, Berta et al Quantum 2023]
- PPT entanglement theory is not reversible [Wang Duan PRL 2017].
- Non-entangling maps is not reversible [Lami Regula Nat Phys 2023].
- Hermitian-preserving maps is reversible [Wang et al arxiv 2023] (although they deal with PPT entanglement)

- Brandão-Plenio connected this to hypothesis testing through generalized Stein's lemma [Brandão Plenio Nat Phys 2008, Brandão Plenio CMP 2010, Berta et al Quantum 2023]
- PPT entanglement theory is not reversible [Wang Duan PRL 2017].
- Non-entangling maps is not reversible [Lami Regula Nat Phys 2023].
- Hermitian-preserving maps is reversible [Wang et al arxiv 2023] (although they deal with PPT entanglement)
- Probabilistic transformations are reversible [Regula Lami Nat Comm 2024]

- Brandão-Plenio connected this to hypothesis testing through generalized Stein's lemma [Brandão Plenio Nat Phys 2008, Brandão Plenio CMP 2010, Berta et al Quantum 2023]
- PPT entanglement theory is not reversible [Wang Duan PRL 2017].
- Non-entangling maps is not reversible [Lami Regula Nat Phys 2023].
- Hermitian-preserving maps is reversible [Wang et al arxiv 2023] (although they deal with PPT entanglement)
- Probabilistic transformations are reversible [Regula Lami Nat Comm 2024]

Any physical, non-probabilistic setting?

Defined on the level of state transformations

Defined on the level of state transformations

Not non-entangling as a map, although it is on the level of state transformations

Defined on the level of state transformations

Not non-entangling as a map, although it is on the level of state transformations

Is it reversible?

Defined on the level of state transformations

Not non-entangling as a map, although it is on the level of state transformations

Is it reversible?

No. PPT bound entangled states are still bound entangled [Lami et al PRA 2024]

If E is additive, then

$$E(\rho)+E(\tau)=E(\rho\otimes\tau)\geq E(\sigma\otimes\tau')=E(\sigma)+E(\tau'),$$
 so $E(\rho)\geq E(\sigma)$ if E is finite

If E is additive, then

$$E(\rho)+E(\tau)=E(\rho\otimes\tau)\geq E(\sigma\otimes\tau')=E(\sigma)+E(\tau'),$$
 so $E(\rho)\geq E(\sigma)$ if E is finite

With a nice E, this might be reversible

If E is additive, then

$$E(\rho)+E(\tau)=E(\rho\otimes\tau)\geq E(\sigma\otimes\tau')=E(\sigma)+E(\tau'),$$
 so $E(\rho)\geq E(\sigma)$ if E is finite

With a nice E, this might be reversible

Squashed entanglement works [Christandl Winter JMP 2004, Li Winter CMP 2014, Alicki Fannes J Phys A 2004]

Results

Theorem 1 (single-copy)

Choose ${\cal E}$ as a finite and additive entanglement measure.

Then, ρ can be transformed to σ with a battery iff. $E(\rho) \geq E(\sigma)$

Results

Theorem 1 (single-copy)

Choose ${\cal E}$ as a finite and additive entanglement measure.

Then, ρ can be transformed to σ with a battery iff. $E(\rho) \geq E(\sigma)$

Proof:

- (\Rightarrow) use properties of E
- (\Leftarrow) prepare σ in the battery, then swap by LOCC

Results

Theorem 1 (single-copy)

Choose ${\cal E}$ as a finite and additive entanglement measure.

Then, ρ can be transformed to σ with a battery iff. $E(\rho) \geq E(\sigma)$

Proof:

- (\Rightarrow) use properties of E
- (\Leftarrow) prepare σ in the battery, then swap by LOCC

Theorem 2 (reversibility)

Choose E as a finite, additive, and asymptotically continuous entanglement measure.

Then

$$R(\rho \to \sigma) = \frac{E(\rho)}{E(\sigma)}$$

9

Thermodynamics

Problem

How to get a second law in quantum thermodynamics, in a single shot setting?

Thermodynamics

Problem

How to get a second law in quantum thermodynamics, in a single shot setting?

Catalytic transformations between energy-incoherent states are governed by free energy [Müller PRX 2018]

How to extend to coherent states?

Thermodynamics

Problem

How to get a second law in quantum thermodynamics, in a single shot setting?

Catalytic transformations between energy-incoherent states are governed by free energy [Müller PRX 2018]

How to extend to coherent states?

Theorem 3

 ρ can be transformed to σ with a battery iff. $F(\rho) \geq F(\sigma)$, where $F(\rho) = k_B T(S(\rho\|\gamma) - \log Z)$

• Single measure on battery is artificial

Single measure on battery is artificial
 Yes, but there is a single distinguished measure in any reversible theory

- Single measure on battery is artificial
 Yes, but there is a single distinguished measure in any reversible theory
- Consistency with [Lami Regula Nat Phys 2023]

- Single measure on battery is artificial
 Yes, but there is a single distinguished measure in any reversible theory
- Consistency with [Lami Regula Nat Phys 2023]
 These are non-entangling transformations, not operations

- Single measure on battery is artificial
 Yes, but there is a single distinguished measure in any reversible theory
- Consistency with [Lami Regula Nat Phys 2023]
 These are non-entangling transformations, not operations
- Does it prove generalized quantum Stein's lemma?

- Single measure on battery is artificial
 Yes, but there is a single distinguished measure in any reversible theory
- Consistency with [Lami Regula Nat Phys 2023]
 These are non-entangling transformations, not operations
- Does it prove generalized quantum Stein's lemma?
 No, but reversibility is a separate question
 Retracted proof [Yamasaki Kuroiwa arxiv 2024]
 Two more recent proofs [Hayashi Yamasaki arxiv 2024, Lami arxiv 2024]

Summary

• Physical, non-probabilistic entanglement reversibility with battery

Summary

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

Summary

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

What's next

ullet Thermal operations + battery $\stackrel{?}{=}$ Gibbs operations [Tajima Takagi arxiv 2024]

Summary

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

What's next

- ullet Thermal operations + battery $\stackrel{?}{=}$ Gibbs operations [Tajima Takagi arxiv 2024]
- Minimum resource needed in the battery

Summary

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

What's next

- Thermal operations + battery $\stackrel{?}{=}$ Gibbs operations [Tajima Takagi arxiv 2024]
- Minimum resource needed in the battery
- Catalysis: use monotones to quantify how valuable the catalyst is!

Summary

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

What's next

- Thermal operations + battery $\stackrel{?}{=}$ Gibbs operations [Tajima Takagi arxiv 2024]
- Minimum resource needed in the battery
- Catalysis: use monotones to quantify how valuable the catalyst is!

Thank you! arxiv:2405.10599

