1 Apparent Balanced Growth in \mathfrak{c} and $\operatorname{cov}(c, \boldsymbol{p})$

Section 4.2 demonstrates some propositions under the assumption that, when an economy satisfies the GIC, there will be constant growth factors $\Omega_{\mathfrak{c}}$ and Ω_{cov} respectively for \mathfrak{c} (the average value of the consumption ratio) and $\mathrm{cov}(c, \boldsymbol{p})$. In the case of a Szeidlinvariant economy, the main text shows that these are $\Omega_{\mathfrak{c}} = 1$ and $\Omega_{\mathrm{cov}} = G$. If the economy is Harmenberg- but not Szeidl-invariant, no proof is offered that these growth factors will be constant.

1.1 $\log c$ and $\log (\operatorname{cov}(c, \boldsymbol{p}))$ Grow Linearly

Figures 1 and 2 plot the results of simulations of an economy that satisfies Harmenberg- but not Szeidl-invariance with a population of 4 million agents over the last 1000 periods (of a 2000 period simulation). The first figure shows that $\log \mathfrak{c}$ increases apparently linearly. The second figure shows that $\log(-\text{cov}(c, \boldsymbol{p}))$ also increases apparently linearly. (These results are produced by the notebook ApndxBalancedGrowthcNrmAndCov.ipynb).

¹For an exposition of our implementation of Harmenberg's method, see this supplemental appendix.

Figure 1 Appendix: $\log \mathfrak{c}$ Appears to Grow Linearly

Figure 2 Appendix: $\log (-\cos(c, p))$ Appears to Grow Linearly