クォータニオン入門加筆

金谷一朗

2014年10月30日

目次

第0章	オリジナル版の内容のまとめ	7
0.1	実数・複素数・クォータニオン — 数	7
0.2	行列 — もうひとつの数	9
0.3	行列による2次元の回転と内積	11
0.4	複素数による 2 次元の回転	12
0.5	行列による3次元の回転と外積	14
0.6	クォータニオンによる3次元の回転	15
0.7	テンソルとスピノール	16
第1章	群について	19
1.1	群	19
1.2	回転群	19
1.3	代数	20
第2章	リー群(リー代数)について	21
2.1	行列の指数関数...................................	21
2.2	3 次元の回転の指数関数表示	22
2.3	リー代数	22
第3音	声について	25

記号一覧

- 実数 実数は小文字のローマ文字を使う. 例: a,b,c.
- 複素数 複素数は小文字のギリシャ文字を使う. 例: α, β, γ . ただし虚数単位は i で表す.
- **行列** 行列は大文字を使う。例: A,B,C. ただし単位行列は1で表し,零行列は0で表す。
- **クォータニオン** クォータニオンは大文字のギリシャ文字を使う。例: Φ, Ψ, Σ . ただし クォータニオン単位は I, J, K で表す。
- **ベクトル** ベクトルは太字を使う。ベクトルの表現として複素数、行列、クォータニオンを使うことがあるが、全て小文字のローマ文字を使う。例: a,b,c. 基底ベクトルは e で表す。
- **スピノール** スピノールは太字を使い、全て小文字のギリシャ文字を使う。例: ϕ, χ, ψ .
- 作用素 ベクトルに対する作用素は太字を使う。作用素の表現として複素数、行列、クォー タニオンを使うことがあるが、全て大文字のローマ文字を使う。例: A, B, C.
- **添字** 添字は i,j,k を用いる.
- **集合** 集合は太字の非イタリックのローマ文字を用いる。例: A,B,C.
- 関数 関数はローマ字の小文字で表す. 例: f,g,h.
- 微小量と無限小量 微小な量には接頭辞として Δ を使う。例: Δt . 無限小量には接頭辞として δ を使う。例: δt .
- **その他** ネイピア数は e で表す. クロネッカーのデルタは δ で表す. 円周率は π で表す. パウリ行列は σ で表す.

第0章

オリジナル版の内容のまとめ

0.1 実数・複素数・クォータニオン — 数

0.1.1 実数

C++ 言語では **double** 型に単項プラス, 単項マイナス, 和, 差, 積, 商の 6 個の演算子が定義されている。これを「**double** 型は**数としてのインタフェース**を持つ」と言う。

数としてのインタフェースは実際には次のリストに集約される。

和の演算子 a+bの + 演算子. C++ 言語の和演算子.

零元(ゼロ、和の単位元) 0+a=a+0=a であるような 0. C++ 言語のリテラル 0. **負元(和の逆元)** a に対して -a+a=0 となるような -a. C++ 言語の単項マイナス. **積の演算子** $a \cdot b$ の・演算子、普通は省略される. C++ 言語の積演算子.

単位元(イチ) 1a = a1 = a であるような 1. C++ 言語のリテラル 1.0.

逆元 a に対して $a^{-1}a=1$ であるような a^{-1} . C++ 言語ではデフォルトで用意されていないがラムダ式 [](double x) { return 1.0/x; } を用いて容易に実装可能である.

C++ 言語の double 型の元になっている**実数**は上述のインタフェースを持つ.上述の 6 個のインタフェースは

和 演算子, 単位元, 逆元

積 演算子, 単位元, 逆元

という3個ずつのインタフェースに分類できる.

和と積にはそれぞれ次の関係がある.

$$abc = (ab)c \tag{1}$$

$$= a(bc) \tag{2}$$

$$a + b + c = (a + b) + c$$
 (3)

$$= a + (b+c) \tag{4}$$

これを結合則と呼ぶ.

和と積が混在した場合は常に積が優先される.

$$ab + c = (ab) + c \tag{5}$$

和と積の間には次の関係が成り立つ.

$$a(b+c) = ab + ac (6)$$

$$(a+b)c = ac + bc (7)$$

これを分配則と呼ぶ.

零元(ゼロ,和の単位元)と任意の元との積は常に零元である.

$$0a = a0 = 0 \tag{8}$$

0.1.2 複素数

実数に限らず、**複素数**も上述の 6 個のインタフェース、結合則、分配則に従う。複素数とは実数単位 1 の時数倍と虚数単位 i の実数倍との和である。a,b を実数とすると、 $\alpha=1a+ib$ が複素数の一般形である。

虚数単位は次の性質を持つ.

$$i^2 = -1 \tag{9}$$

複素数は数としてのインタフェースに加えて次のインタフェースを持つ.

共役複素数 ある複素数 α が $\alpha=1a+ib$ であるとき $\alpha^*\equiv 1a-ib$ なる α^* を α の共役 複素数と呼ぶ.

複素数のノルム ある複素数 α について,

$$\|\alpha\| \equiv \sqrt{\alpha^* \alpha} \tag{10}$$

を α のノルムと呼ぶ. ノルムは「大きさ」という概念に近い.

複素数 α の逆数 (逆複素数) α^{-1} は次のように求めることが出来る.

$$\alpha^{-1} = \frac{\alpha^*}{\|\alpha\|^2} \tag{11}$$

0.1.3 クォータニオン

 $\Phi = 1a + Ib + Jc + Kd$ なる数 Φ を**クォータニオン**(四元数)と呼ぶ。ただし I,J,K はそれぞれクォータニオン単位であって、

$$I^2 = J^2 = K^2 = IJK = -1, IJ = -JI = K, JK = -KJ = I, KI = -IK = J$$
 (12)

であるとする.

クォータニオンは数としてのインタフェースに加えて次のインタフェースを持つ.

共**役クォータニオン** あるクォータニオン Φ が $\Phi=1a+Ib+Jc+Kd$ であるとき $\Phi^*\equiv 1a-Ib-Jc-Kd$ なる Φ^* を Φ の共役クォータニオンと呼ぶ.

クォータニオンのノルム ある $クォータニオン \Phi$ について,

$$\|\Phi\| \equiv \sqrt{\Phi^* \Phi} \tag{13}$$

を Φ のノルムと呼ぶ、ノルムは「大きさ」という概念に近い、

$$\Phi^{-1} = \frac{\Phi^*}{\|\Phi\|^2} \tag{14}$$

0.2 行列 — もうひとつの数

0.2.1 連立線形方程式と行列

未知数 x に関する線形方程式

$$ax + b = 0 (15)$$

の解は $x = -a^{-1}b$ である.

未知数 x_1, x_2 に関する連立線形方程式

$$a_{1,1}x_1 + a_{1,2}x_2 + b_1 = 0 (16)$$

$$a_{2,1}x_1 + a_{2,2}x_2 + b_2 = 0 (17)$$

の解について,新たな記号を発明して

$$\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (18)

と書き直し,

$$A \equiv \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}, X \equiv \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, B \equiv \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, 0 \equiv \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (19)

とすると、未知数 x_1, x_2 に関する連立線形方程式は

$$AX + B = 0 (20)$$

と書け、シンプルで美しく見える。演算規則をうまく調整すると、上述の連立線形方程式の解は $X = -A^{-1}B$ と書ける。このようにして作った A, B, X, 0 を**行列**と呼ぶ。

行列 A の逆行列 A^{-1} が存在するか否かの判定 (determinant) に**行列式**という演算子が使われる。行列 A の行列式は $\det A$ または |A| と書く.

0.2.2 正方行列

各要素が実数からなり、行と列の大きさが等しい行列を**実正方行列**と呼ぶ。実正方行列 を A とすると次のように書ける。

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & & & & & \\ \vdots & & \ddots & & & & \\ a_{i1} & & & a_{ij} & & & \\ \vdots & & & & \ddots & & \\ a_{n1} & & & & a_{nn} \end{bmatrix}$$

$$(21)$$

そこで実正方行列 A は,その要素と添字を使って $[a_{ij}]$ と書くこともある. 実正方行列には

- 和
- 零元
- 負元

が定義されている。行列 $[a_{ij}]$ と行列 $[b_{ij}]$ の和は

$$[a_{ij}] + [b_{ij}] \equiv [a_{ij} + b_{ij}] \tag{22}$$

であり,行列の零元(ゼロ行列)0 はすべての要素が0 であるような行列である. 行列 $[a_{ij}]$ と行列 $[b_{ij}]$ の積も定義されており

$$[a_{ij}][b_{ij}] \equiv \sum_{k=1}^{n} [a_{ik}b_{kj}]$$
 (23)

である。この定義から、積の単位元(単位行列)1は

$$1 \equiv \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & & & \\ \vdots & & \ddots & & \\ 0 & & & 1 \end{bmatrix}$$
 (24)

でなければならないことがわかる。単位行列 1 は $[\delta_{ij}]$ とも書く。デルタ記号を使うのは歴史的理由である。

0.2.3 直交行列とユニタリ行列

行列 $[a_{ij}]$ に対して,行と列を入れ替えた $[a_{ji}]$ は元の行列の**転置行列**と呼ばれる.転置行列は

$$[a_{ij}]^t \equiv [a_{ji}] \tag{25}$$

のような記号を使って表す. もし

$$[a_{ij}]^t = [a_{ij}] \tag{26}$$

であるならば、行列 $[a_{ij}]$ は**対称行列**である。もし

$$[a_{ij}]^t = -[a_{ij}] \tag{27}$$

であるならば、行列 $[a_{ij}]$ は**反対称行列**である.

実数の代わりに複素数を用いた正方行列を**複素正方行列**と呼ぶ。いま複素正方行列を $[\alpha_{ij}]$ で表すとき,その共役と転置を行った $[\alpha_{ji}^*]$ を共**役転置行列**と呼ぶ。共役転置行列を作る操作には特別な記号が割り当てられており,次のように表す。

$$[\alpha_{ij}]^{\dagger} \equiv [\alpha_{ii}^*] \tag{28}$$

もし

$$[a_{ij}]^{\dagger} = [a_{ij}] \tag{29}$$

であるならば、行列 $[\alpha_{ij}]$ は**エルミート行列**である。もし

$$[a_{ij}]^{\dagger} = -[a_{ij}] \tag{30}$$

であるならば、行列 $[\alpha_{ij}]$ は**反エルミート行列**である.

実正方行列 A について,もし

$$A^t A = 1 (31)$$

であるならば、行列 A は**直交行列**である。複素正方行列 A について、もし

$$A^{\dagger}A = 1 \tag{32}$$

であるならば、行列 A は**ユニタリ行列**である.

0.3 行列による 2 次元の回転と内積

0.3.1 ベクトル

ベクトルには

- 和
- 零元 (ゼロベクトル)
- 負元(逆ベクトル)

がある. またベクトルは実数倍が出来る.

ベクトルpのノルム $\|p\|$ という量を定義できる。ノルムの定義は複数あるが、最もよく用いられているものは、ベクトルをユークリッド空間における位置とみなし、その位置の原点からの距離とする定義である。

0.3.2 内積

二つのベクトル p,q の間に**内積**という演算が定義できる。内積は $\langle p,q \rangle$ で表す。ベクトルをユークリッド空間における位置 $\overrightarrow{OP},\overrightarrow{OQ}$ とみなしたとき,二つのベクトルのなす角度を t として,

$$\langle \boldsymbol{p}, \boldsymbol{q} \rangle \equiv \|\boldsymbol{p}\| \|\boldsymbol{q}\| \cos t \tag{33}$$

と定義するのが、最も一般的な内積の定義である。この定義に従えば、ベクトル p のノルム $\|p\|$ は

$$\|\boldsymbol{p}\| = \sqrt{\langle \boldsymbol{p}, \boldsymbol{p} \rangle} \tag{34}$$

である.

幾何学的な座標系を導入すると便利なことが多々ある。座標系を表すベクトルを**基底べクトル**と呼ぶ。基底ベクトルとしていま e_1, e_2 があるとする。

ベクトルpの成分を p_1, p_2 で表すと,

$$p_i = \langle \boldsymbol{p}, \boldsymbol{e}_i \rangle \tag{35}$$

である。ただしiは1,2である。ベクトルは成分と基底ベクトルから次のように合成できる。

$$\boldsymbol{p} = \sum_{i=1}^{2} p_i \boldsymbol{e}_i \tag{36}$$

基底ベクトルの組として正規直交系を選ぶとは

$$\|\mathbf{e}_1\| = \|\mathbf{e}_2\| = 1 \tag{37}$$

$$\langle \boldsymbol{e}_1, \boldsymbol{e}_2 \rangle = 0 \tag{38}$$

を満たすような e_1, e_2 を選ぶということである。一般には

$$\langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = \delta_{ij} \tag{39}$$

と書くことが多い.

0.3.3 ベクトルの回転

ベクトル \mathbf{p} の正規直交系での成分 p_1, p_2 を行列風に

$$\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} \tag{40}$$

と書くと便利なことがある。ベクトル p で表される位置(これを今後 \overrightarrow{OP} としよう)を原点まわりに t 回転させた位置(これは $\overrightarrow{OP'}$ とする)のベクトル p' の成分は次のように計算出来る。

$$\begin{bmatrix} p_1' \\ p_2' \end{bmatrix} = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} \tag{41}$$

証明はオリジナル版を参照.

ここで行列

$$T(t) \equiv \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \tag{42}$$

を導入し、ベクトルと行列を意図的に混同すると

$$\mathbf{p}' = \mathbf{T}(t)\mathbf{p} \tag{43}$$

という簡潔な式が得られる.ここで行列だとか成分だとかを一切忘れて,ベクトル p に作用するものとして T(t) を捉える.この T(t) は作用素と呼ばれる.

0.4 複素数による 2 次元の回転

0.4.1 複素数で表す2次元ベクトル

正規直交系の基底ベクトルとは

$$\langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = \delta_{ij} \tag{44}$$

を満たしてさえいればよい。もし内積の定義を都合よく選べば

$$e_1 = 1, e_2 = i$$
 (45)

なる座標系を作ることが出来る。実際この座標系は**複素座標系**またはガウス座標系と呼ばれる。ここに内積の定義として

$$\langle \alpha, \beta \rangle \equiv \alpha^* \beta \tag{46}$$

を採用した.

0.4.2 回転

複素座標系における回転の作用素 U(t) は次の形を取る.

$$U(t) = \cos t + i \sin t \tag{47}$$

...

$$\mathbf{p}' = \mathbf{U}(t)\mathbf{p} \tag{48}$$

オイラーの公式

$$\exp it = \cos t + i\sin t \tag{49}$$

を用いると、回転 U(t) は

$$U(t) = \exp it \tag{50}$$

とさらに簡潔に書ける.

0.4.3 ベクトルと行列と複素数の関係

2次元ベクトルが行列でも複素数でも書けるのは、基底ベクトルの取り方次第だからである。基底ベクトルに正規直交系を選ぶと便利であった。正規直交系とは基底ベクトル p_i が

$$\langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = \delta_{ij} \tag{51}$$

でありさえすればよく、内積をうまく定義してやれば自由に基底ベクトルを選べる.

行列スタイルを採用して

$$\boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \, \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{52}$$

としても良かったし、複素数スタイルを採用して

$$\boldsymbol{e}_1 = 1, \, \boldsymbol{e}_2 = i \tag{53}$$

としても良かった。どちらかと言えば複素数スタイルのほうが数としてのインタフェースを使えるので優れているとは言える。そこで数としてのインタフェースを保ちつつ行列も 使えないかと考えると

$$e_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, e_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 (54)

という基底ベクトルも良いことに気づくだろう。この場合 e_1 のほうは単位行列 1 と同じであるので、もうひとつの e_2 のほうを虚数単位 i に対応させて

$$i' \equiv \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \tag{55}$$

と名づけても構わない.

0.5 行列による 3 次元の回転と外積

0.5.1 外積

2次元のユークリッド空間を3次元に拡張するのはわけないことだ。とりわけ行列スタイルであればほとんど自動的に

$$\boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \, \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \, \boldsymbol{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \tag{56}$$

を採用すれば良いことがわかる。

ここで、3次元空間で非常にうまくいくトリックを導入する。次に述べる**外積**という演算を3次元ベクトル同士に定義する。

$$r = p \times q \tag{57}$$

ここにベクトルr はベクトルp およびq に直交し、そのノルムがベクトルp とベクトルq の張る平行四辺形に等しいとする。ベクトルr の向きは、右手で直交座標系を作り、ベクトルp を右手親指、ベクトルq を右手人差し指とした場合、右手中指の方向である。定義から、ベクトルp とベクトルq の角度をt としたときに

$$\|\boldsymbol{r}\| = \|\boldsymbol{p}\| \|\boldsymbol{q}\| \sin t \tag{58}$$

である.

外積は成分ごとに計算すると手っ取り早い.

$$\mathbf{p} \times \mathbf{q} = \begin{bmatrix} p_2 q_3 - p_3 q_2 \\ p_3 q_1 - p_1 q_3 \\ p_1 q_2 - p_2 q_1 \end{bmatrix}$$
 (59)

少しでもスタイリッシュにしたければ行列式を使うことは出来る.

$$\mathbf{p} \times \mathbf{q} = \det \begin{bmatrix} \mathbf{e}_1 & p_1 & q_1 \\ \mathbf{e}_2 & p_2 & q_2 \\ \mathbf{e}_3 & p_3 & q_3 \end{bmatrix}$$
(60)

三重積

$$p \times q \times r = q\langle p, r \rangle - r\langle p, q \rangle$$
 (61)

は大切な関係である.

0.5.2 回転

3次元ユークリッド空間の回転を考える。いま 3 軸まわりの回転だけを考えると,それは 2次元の回転と変わらない。3 軸まわりの t 回転を $T_3(t)$ とすると

$$T_3(t) = \begin{bmatrix} \cos t & -\sin t & 0\\ \sin t & \cos t & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 (62)

である. 同じく 2 軸まわりは

$$T_2(t) = \begin{bmatrix} \cos t & 0 & \sin t \\ 0 & 1 & 0 \\ -\sin t & 0 & \cos t \end{bmatrix}$$
 (63)

であり、1軸まわりは

$$T_1(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{bmatrix}$$
 (64)

である.

これらの回転行列のうち、ふたつを組み合わせれば3次元の回転は全て表現できる.

0.5.3 もう一つの回転

回転の計算に外積を使うことも出来る。ベクトル p をベクトル r まわりに t 回転させ たベクトル p' は

$$\mathbf{p}' = \mathbf{p}\cos t + \mathbf{r} \times \mathbf{p}\sin t + \mathbf{r}\langle \mathbf{r}, \mathbf{p}\rangle(1 - \cos t)$$
(65)

である。ただし ||r|| = 1 を仮定した。証明はオリジナル版を参照。

0.6 クォータニオンによる 3 次元の回転

0.6.1 パウリ行列

2次元の場合,正規直交系の基底ベクトルとして行列と複素数のどちらも選べた。3次元の場合の複素数に相当する基底ベクトルはあるだろうか。次の複素行列は3次元の正規直交基底であることが知られている。

$$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 (66)

これらの行列はパウリ行列と呼ばれている.

パウリ行列は様々な良い性質を持つ. 各々の行列の自乗は単位行列になる.

$$\sigma_1^2 = 1, \, \sigma_2^2 = 1, \, \sigma_3^2 = 1$$
 (67)

各々の行列の積は、残りの行列になる.

$$\sigma_1 \sigma_2 = \sigma_3, \ \sigma_2 \sigma_3 = \sigma_1, \ \sigma_3 \sigma_1 = \sigma_2 \tag{68}$$

この性質は、すなわち通常の行列積がベクトルの外積として使えることを示す。 内積...

パウリ行列を3次元ベクトルの基底にすることができる.

$$p = \sum_{i=0}^{3} p_i \sigma_i \tag{69}$$

パウリ行列を使った回転も可能であるが、その応用であるクォータニオンについて先に述べる。パウリ行列に関してはリー代数の章で再び述べる。

0.6.2 クォータニオン

パウリ行列に一工夫を加えると、クォータニオンが得られる.

$$\Phi = 1a + i\sigma_3 b + i\sigma_2 c + i\sigma_1 d \tag{70}$$

なる量 Φ はクォータニオンとしての性質をすべて持つ。また $i\sigma_3, i\sigma_2, i\sigma_1$ はクォータニオン単位の性質を持つ。そこで

$$\mathbf{e}_1 = i\sigma_3, \ \mathbf{e}_2 = i\sigma_2, \ \mathbf{e}_3 = i\sigma_1 \tag{71}$$

を基底ベクトルとして採用しよう.

ベクトルp をベクトルr まわりに t 回転させる演算子を U(r,t) とする。回転後のベクトルp' は演算子 U(r,t) を用いて

$$\mathbf{p}' = \mathbf{U}^*(\mathbf{r}, t)\mathbf{p}\mathbf{U}(\mathbf{r}, t) \tag{72}$$

のように計算できる。ここに

$$U(t) = 1\cos\frac{t}{2} + r\sin\frac{t}{2} \tag{73}$$

である。証明はオリジナル版にある。

0.6.3 球面線形補間

省略.

0.7 テンソルとスピノール

ベクトル $m{p}$ を成分で p_i と書いてみる。回転の演算子 $m{T}$ も成分で T_{ij} と書いてみる。ベクトルの回転は

$$p_{j}' = \sum_{i=1}^{N} T_{ij} p_{i} \tag{74}$$

である. 行列の書き方を用いると次のように書き直せる.

$$[p_i'] = [T_{ij}][p_i] \tag{75}$$

または

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \tag{76}$$

このように変換される p_i を 1 階の**テンソル**と呼ぶ。次のように変換されるテンソルもあり、これを 2 階テンソルと呼ぶ。

$$P'_{kl} = \sum_{i=1}^{N} \sum_{j=1}^{N} T_{ik} T_{jl} P_{ik}$$
(77)

この式を行列を用いて書くと、行列の演算の非対称性から若干の工夫が必要になる。結局

$$[P'_{ij}] = [T_{ij}]^t [P_{ij}] [T_{ij}] \tag{78}$$

0.7 テンソルとスピノール

または

$$P' = T^t P T \tag{79}$$

となる.

繰り返すと1階テンソルとは

$$p' = Tp \tag{80}$$

と変換される量である. 2階テンソルとは

$$P' = T^t P T \tag{81}$$

と変換される量である.

ここで 1 階テンソルはクォータニオンを使えば

$$p' = U^* p U \tag{82}$$

と書けたことを思い出そう。では

$$\phi' = U\phi \tag{83}$$

なる量 ϕ はあるだろうか.この ϕ こそが**スピノール**である.

スピノールは行列で表示できる.

$$\phi = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \tag{84}$$

共役スピノールを定義しておくと、スピノールの内積が計算しやすい。

$$\boldsymbol{\phi}^* = \begin{bmatrix} -\phi_2 & \phi_1 \end{bmatrix} \tag{85}$$

こうしておけば、スピノールの内積は

$$\langle \phi, \chi \rangle = \phi^* \chi \tag{86}$$

と演算できて都合が良い. 展開すると

$$\langle \phi, \chi \rangle = \phi^* \chi \tag{87}$$

$$= \begin{bmatrix} -\phi_2 & \phi_1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} \tag{88}$$

$$=\phi_1\chi_2 - \phi_2\chi_1 \tag{89}$$

であり、この量は回転に対して不変である.

スピノールは 2π 回転で符号が入れ替わる.

$$\phi = -U(2\pi)\phi\tag{90}$$

スピノールの掛け算の間にパウリ行列を挟むと楽しい.

$$p_i = \boldsymbol{\phi}^* \sigma_i \boldsymbol{\chi} \tag{91}$$

このようにして出来た p_i は1階3元テンソルとしての変換性を示す。いま

$$\sigma_0 \equiv 1 \tag{92}$$

を導入すると,

$$\langle \phi, \chi \rangle = \phi^* \sigma_0 \chi \tag{93}$$

$$p_i = \phi^* \sigma_i \chi \tag{94}$$

であるから $\langle \phi, \pmb{\chi} \rangle$ と p_i をひとつにして,4元のテンソル p_i ただし $i=\{0,1,2,3\}$ を考えても良い.

第1章

群について

1.1 群

集合 ${\bf A}$ の元 $a,b\in {\bf A}$ を考える。元 a,b を引数に取り、集合 ${\bf A}$ の元を返す関数 ${\bf \Phi}$ を考えよう。どういうわけか、人々は単に

$$\maltese(a,b) \tag{1.1}$$

と書くよりも

$$a \maltese b$$
 (1.2)

と書くことを好む。また \P のことを関数ではなくて**二項演算子**と呼ぶ。 さて、この二項演算子 \P について、

$$a \maltese b \in \mathbf{A} \tag{1.3}$$

であり、結合則

$$a \mathbf{H}(b \mathbf{H} c) = (a \mathbf{H} b) \mathbf{H} c \tag{1.4}$$

が成り立ち、次のような単位元 ϵ があり、

$$\epsilon \maltese a = a \maltese \epsilon = a \tag{1.5}$$

かつ逆元 a^{-1} ただし

$$a^{-1} \, \mathbf{H} \, a = \epsilon \tag{1.6}$$

が存在するとき、集合 A と演算子 ₩ をあわせて群と呼ぶ。

1.2 回転群

回転の演算子は群を作る. 2 次元の回転を考える. いま演算子 ❖ を回転の合成と考えると,

$$T(t) \maltese T(u) \equiv T(t+u) \tag{1.7}$$

と定義できる.

結合則が成り立つ.

$$T(t) \maltese (T(u) \maltese T(v)) = (T(t) \maltese (T(u)) \maltese T(v)$$
(1.8)

$$= T(t + u + v) \tag{1.9}$$

20 第1章 群について

単位元がある.

$$T(0) \maltese T(t) = T(t) \maltese T(0) = T(t)$$

$$(1.10)$$

逆元がある.

$$T(-t) \maltese T(t) = T(0) \tag{1.11}$$

というわけで回転の演算子 T と合成の演算子 A はひとつの群なのである.

1.3 代数

環.

第2章

リー群(リー代数)について

2.1 行列の指数関数

実数 a の指数関数 $\exp a$ は次のようにマクローリン展開できる.

$$\exp a = \sum_{i=0}^{\infty} \frac{a^i}{i!} \tag{2.1}$$

そこで行列 A についても、指数関数 $\exp A$ を次のように定義する.

$$\exp A \equiv \sum_{i=0}^{\infty} \frac{A^i}{i!} \tag{2.2}$$

ただし

$$A^0 = 1 \tag{2.3}$$

とする.

行列 i' に関してオイラーの公式が成り立つ.

$$\exp i't = 1\cos t + i'\sin t \tag{2.4}$$

パウリ行列 σ_i に関してもオイラーの公式が成り立つ.

$$\exp \sigma_i t = 1\cos t + \sigma_i \sin t \tag{2.5}$$

一例として、2次元の回転行列 T(t) を指数関数で描き直してみる.

$$T(t) = \exp i't \tag{2.6}$$

$$=\cos t + i'\sin t\tag{2.7}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cos t + \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \sin t \tag{2.8}$$

$$= \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \tag{2.9}$$

これはガウス平面を使った場合の回転と酷似していることがわかろう。ガウス平面では回転演算子 $m{U}(t)$ は

$$U(t) = \exp it \tag{2.10}$$

$$= \cos t + i \sin t \tag{2.11}$$

であった.

3 次元の回転の指数関数表示 2.2

行列の指数関数を使うと、回転行列も指数関数で作ることが出来る.

$$T_i = \exp I_i' t \tag{2.12}$$

ここに

$$I_1' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \tag{2.13}$$

$$I_{1}' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$I_{2}' = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$(2.13)$$

$$I_3' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \tag{2.15}$$

である. 行列 I_i' を 3 次元回転の**生成子**と呼ぶ.

 $|\Delta t| \ll 1 \, \mathcal{O} \, \mathcal{E}$ 8

$$\cos \Delta t \simeq 1, \sin \Delta t \simeq \Delta t$$
 (2.16)

であることを利用すると,

$$\boldsymbol{T}_{1}(\Delta t_{1})\boldsymbol{T}_{2}(\Delta t_{2})\boldsymbol{T}_{3}(\Delta t_{3}) = \begin{bmatrix} 1 & \Delta t_{3} & -\Delta t_{2} \\ -\Delta t_{3} & 1 & \Delta t_{1} \\ \Delta t_{2} & -\Delta t_{1} & 1 \end{bmatrix}$$
(2.17)

$$=1+\sum_{i=1}^{3}I_{i}'\Delta t_{i}$$
 (2.18)

となり,回転演算子を線形に出来る.

リー代数 2.3

ある行列 A の指数関数 $\exp At$ が群 G の元であるとする。すなわち

$$\exp At \in \mathbf{G} \tag{2.19}$$

であるとする。ここにtはパラメタである。

例えば行列 A として i' を用いた $\exp i't$ は 2 次元の回転行列である。この場合群 ${\bf G}$ は 2次元の回転群である.

行列 A として I'_i ただし $i = \{1, 2, 3\}$ という集合を選んだ $\exp I'_i t$ は 3 次元の回転行列 の集合になる。この場合群 G は 3 次元の回転群である。

行列 A の集合を群 G のリー代数と呼ぶ.

さて $|\Delta t| \ll 1$ のとき

$$\mathbf{p}' = \mathbf{T}(\Delta t)\mathbf{p} \tag{2.20}$$

$$= \exp(A\Delta t)\boldsymbol{p} \tag{2.21}$$

2.3 リー代数 **23**

として, テイラー展開をすると

$$\mathbf{p}' = (1 + A\Delta t + (\Delta t \mathcal{O} 2 \mathbf{x} \mathbf{y} \mathbf{L} \mathcal{O} \mathbf{q}))\mathbf{p}$$
 (2.22)

$$\simeq \boldsymbol{p} + A\Delta t \boldsymbol{p} \tag{2.23}$$

である.ここで

$$\Delta \boldsymbol{p} \equiv \boldsymbol{p}' - \boldsymbol{p} \tag{2.24}$$

と定義すると,

$$\Delta \boldsymbol{p} = \Delta t A \boldsymbol{p} \tag{2.25}$$

である.

上式は $\Delta t \rightarrow 0$ の極限を考えると理解しやすい. すなわち

$$\frac{d}{dt}\boldsymbol{p} = A\boldsymbol{p} \tag{2.26}$$

であり、行列 A すなわち群 \mathbf{G} のり一代数が無限小回転の構造を決定していることがわかる。 li ね l

第3章

束について