Minimize SSE for Least Square Method

Wei Cao

2018/05/17

The following proof was introduced by Eric Iksoon (1996).

The standard bivariate linear regression model: $Y_i = \alpha + \beta X + \epsilon$, where i = 1, ..., n, then we can rewrite it as $e_i = Y_i - a - bX_i$, where a and b can be any estimators of α and β , respectively. Here, \overline{Y} and \overline{X} denote the respective sample means of Y_i and X_i ; X_i and Y_i denote deviation of X_i and Y_i . We can work out the lower bound for SSE(a, b) that is the error sum of squares as a function of a and b.

$$SSE(a,b) = \sum [Y_i - a - bX_i]^2$$

$$= \sum [(\overline{Y} + y_i) - a - b(\overline{X} + x_i)]^2$$

$$= \sum [q - (bx_i - y_i)]^2$$

$$= nq^2 + \sum (bx_i - y_i)^2$$

$$= nq^2 + \sum (b^2x_i - 2bx_iy_i + y_i^2)$$

$$= nq^2 + \left(b^2 - 2b\frac{\sum x_iy_i}{\sum x_i^2} + \frac{\sum y_i^2}{\sum x_i^2}\right) \sum x_i^2$$

$$= nq^2 + \left(b^2 - 2b\frac{\sum x_iy_i}{\sum x_i^2} + \left[\frac{\sum x_iy_i}{\sum x_i^2}\right]^2 - \left[\frac{\sum x_iy_i}{\sum x_i^2}\right]^2 + \frac{\sum y_i^2}{\sum x_i^2}\right) \sum x_i^2$$

$$= nq^2 + \left(b - \frac{\sum x_iy_i}{\sum x_i^2}\right)^2 \sum x_i^2 + \sum y_i^2 \left(1 - \left(\frac{\sum x_iy_i}{\sqrt{\sum x_i^2 \sum y_i^2}}\right)^2\right)$$

$$\geq \sum y_i^2 \left(1 - \left(\frac{\sum x_iy_i}{\sqrt{\sum x_i^2 \sum y_i^2}}\right)^2\right)$$

The conditions for SSE lower bound is that the two nonnegative items are all zeros. Then we have two equations:

$$q = \overline{Y} - \hat{a} - \hat{b}\overline{X} = 0$$
$$\hat{b} - \frac{\sum x_i y_i}{\sum x_i^2} = 0$$

then,

$$\hat{a} = \overline{Y} - \hat{b}\overline{X}$$

$$\hat{b} = \frac{\sum x_i y_i}{\sum x_i^2}$$

where $\hat{a_0}$ and $\hat{a_1}$ shown in the MOOCS slides are \hat{a} and \hat{b}

References

Eric Iksoon, I. (1996), A Note On Derivation of the Least Squares Estimator, Working Papers 199611, University of Hawaii at Manoa, Department of Economics.

 $\textbf{URL:}\ \textit{https://ideas.repec.org/p/hai/wpaper/199611.html}$