

C.21. Autre exemple, en français cette fois

C.22. Sémantique compositionnelle : principes

Le sens d'une expression composée est fonction du sens de ses parties (Frege) et de leur assemblage syntaxique (Montague)

(Catégorie syntaxique)*	=	Type sé	mantique
<i>S</i> *	=	t	une phrase est une proposition
np*	=	е	un groupe nominal est une entité/individu
n*	=	$e \rightarrow t$	un nom commun est une propriété des entités
$(A\backslash B)^* = (B/A)^*$	=	$A \rightarrow B$	propage la traduction

C.23. Des constantes pour les opérations logiques

Constant	Туре
Ξ	$(e \rightarrow t) \rightarrow t$
\forall	$(e \rightarrow t) \rightarrow t$
\wedge	$t \rightarrow (t \rightarrow t)$
V	$t \rightarrow (t \rightarrow t)$
\supset	$t \rightarrow (t \rightarrow t)$

C.24. Des constantes pour les prédicats du langage

La dénotation des mots requiert des prédicats :

aime	$\lambda x \lambda y$ (aime y) x	$x: e, y: e, aime: e \rightarrow (e \rightarrow t)$			
« aime » est un prédicat binaire					
Garance	λP (P Garance)	$P: e \rightarrow t$, Garance: e			
« Garance » est décrite comme					
les propriétés de « Garance »					

C.25. Sémantique à la Montague : algorithme

- 1. analyse syntaxique preuve de S
- 2. conversion en lambda terme de type t sur e et t
- 3. insertion des lambda terme lexicaux (même type)
- 4. réduction
 - \rightarrow terme de type t
 - = formule logique
 - = sens de la phrase analysée

C.26. Exemple de calcul sémantique : les enfants prendront une pizza

mot	catégorie syntaxiqueu				
	type sémantique u*				
	sémantique : λ -term of type u^*				
	x ^v signifie x (variable, constante) de type v				
les	$(S/(np \setminus S))/n$ (subject)				
	$((S/np)\backslash S)/n$ (object)				
	(e ightarrow t) ightarrow ((e ightarrow t) ightarrow t)				
	$\lambda P^{e \to t} \lambda Q^{e \to t} (\forall^{(e \to t) \to t} (\lambda x^e (\Rightarrow^{t \to (t \to t)} (P x)(Q x))))$				
une	$((S/np)\backslash S)/n$ (object)				
	$(S/(np \setminus S))/n$ (subject)				
	$(e \rightarrow t) \rightarrow ((e \rightarrow t) \rightarrow t)$				
	$\lambda P^{e \to t} \lambda Q^{e \to t} \left(\exists^{(e \to t) \to t} \left(\lambda x^e (\wedge^{t \to (t \to t)} (P x) (Q x)) \right) \right)$				
enfant(s)	n				
	e ightarrow t				
	$\lambda x^e(ext{enfant}^{e o t}x)$				
pizza	n				
	$ extbf{e} ightarrow t$				
	$\lambda x^e(\mathtt{pizza}^{e o t}\ x)$				
prendront	$(np \backslash S)/np$				
	e ightarrow (e ightarrow t)				
	$\lambda y^e \ \lambda x^e \ ((\mathtt{prendront}^{e o (e o t)} \ x)y)$				

C.27. Analyse syntaxique ∃∀

Il y a deux analyse syntaxique possibles. Une :

 $\exists \forall$

$$\frac{\frac{(S/(np \backslash S))/n \quad n}{(S/(np \backslash S))} /_e \quad \frac{(np \backslash S)/np \quad [np]^1}{(np \backslash S)} /_e}{\frac{S}{S/np} /_i(1)} \quad \frac{((S/np) \backslash S)/n \quad n}{(S/np) \backslash S} \backslash_e}{S}$$

C.28. Syntaxe $\rightarrow \lambda$ -terme sémantique de la phrase

 $\exists \forall$

$$\frac{ (\mathbf{e} \rightarrow \mathbf{t}) \rightarrow (\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{t} \qquad (\mathbf{e} \rightarrow \mathbf{t})}{(\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{t}} \qquad \rightarrow_{e} \qquad \frac{\mathbf{e} \rightarrow \mathbf{e} \rightarrow \mathbf{t} \qquad [\mathbf{e}]^{1}}{\mathbf{e} \rightarrow \mathbf{t}} \rightarrow_{e} \qquad \frac{\mathbf{une} \qquad pizza}{(\mathbf{e} \rightarrow \mathbf{t}) \rightarrow (\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{t} \qquad (\mathbf{e} \rightarrow \mathbf{t})} \rightarrow_{e} \qquad \qquad \\ \frac{\mathbf{e} \rightarrow \mathbf{t}}{\mathbf{e} \rightarrow \mathbf{t}} \rightarrow_{i} (1) \qquad \qquad \frac{(\mathbf{e} \rightarrow \mathbf{t}) \rightarrow (\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{t} \qquad (\mathbf{e} \rightarrow \mathbf{t})}{(\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{t}} \rightarrow_{e} \qquad \rightarrow_{e}$$

Le λ -terme correspondant est :

$$\exists \forall = (\textit{une pizza})(\lambda o^{e}(\textit{les enfants})(\textit{prendront o}))$$

Il faut encore:

- 1. insérer les lambda terme lexicaux et
- 2. réduire/calculer

C.29. Calculs, par étapes 1/2

```
(une pizza)
= (\lambda P^{e \to t} \lambda Q^{e \to t} (\exists^{(e \to t) \to t} (\lambda x^e (\wedge^{t \to (t \to t)} (P x) (Q x)))))(\lambda z^e (\text{pizza}^{e \to t} z))
= (\lambda Q^{e \to t} (\exists^{(e \to t) \to t} (\lambda x^e (\wedge^{t \to (t \to t)} ((\lambda z^e (\mathtt{pizza}^{e \to t} z)) x) (Q x)))))
=(\lambda\,Q^{e\to t}\;(\exists^{(e\to t)\to t}\;(\lambda x^e(\wedge^{t\to (t\to t)}((\mathtt{pizza}^{e\to t}\;x)))(Q\;x))))
(les enfants)
= (\lambda P^{e \to t} \lambda Q^{e \to t} (\forall^{(e \to t) \to t} (\lambda x^e (\Rightarrow^{t \to (t \to t)} (P x)(Q x)))))(\lambda u^e (\texttt{enfant}^{e \to t} u))
= (\lambda Q^{e \to t} (\forall^{(e \to t) \to t} (\lambda x^e (\Rightarrow^{t \to (t \to t)} ((\lambda u^e (\texttt{enfant}^{e \to t} u)) x)(Q x)))))
=(\lambda Q^{e\to t}\ (\forall^{(e\to t)\to t}\ (\lambda x^e(\Rightarrow^{t\to (t\to t)}\ (\texttt{enfant}^{e\to t}\ x)(Q\ x)))))
(les\ enfants)(prendront\ o) =
(\lambda Q^{e \to t} (\forall^{(e \to t) \to t} (\lambda w^e (\Rightarrow^{t \to (t \to t)} (\text{enfant}^{e \to t} w)(Q w)))))((\lambda y^e \lambda x^e ((\text{prendront}^{e \to (e \to t)} x))))))
= (\lambda Q^{e \to t} (\forall^{(e \to t) \to t} (\lambda w^e (\Rightarrow^{t \to (t \to t)} (\texttt{enfant}^{e \to t} w) (Q w)))) (\lambda x^e ((\texttt{prendront}^{e \to (e \to t)} x) o))
= \forall^{(e \to t) \to t} (\lambda w^e (\Rightarrow^{t \to (t \to t)} (\texttt{enfant}^{e \to t} \ w) ((\lambda x^e \ ((\texttt{prendront}^{e \to (e \to t)} \ x) \ o)) \ w)))
= \forall^{(e \to t) \to t} \ (\lambda w^e (\Rightarrow^{t \to (t \to t)} (\texttt{enfant}^{e \to t} \ w) (((\texttt{prendront}^{e \to (e \to t)} \ w) \ o))))
```


C.30. Calculs, par étapes 2/2

```
 \begin{array}{l} (\textit{une pizza})(\lambda o \; (\textit{les enfants})(\textit{prendront } o)) \\ = (\lambda Q^{e \to t} \; (\exists^{(e \to t) \to t} \; (\lambda x^e (\wedge^{t \to (t \to t)}((\textit{pizza}^{e \to t} \; x)))(Q \; x)))) \\ \qquad (\lambda o \forall^{(e \to t) \to t} \; (\lambda w^e (\Rightarrow^{t \to (t \to t)} \; (\textit{enfant}^{e \to t} \; w)(((\textit{prendront}^{e \to (e \to t)} \; w) \; o)))))) \\ = (\exists^{(e \to t) \to t} \; (\lambda x^e (\wedge^{t \to (t \to t)}((\textit{pizza}^{e \to t} \; x))) \\ \qquad ((\lambda o \forall^{(e \to t) \to t} \; (\lambda w^e (\Rightarrow^{t \to (t \to t)} \; (\textit{enfant}^{e \to t} \; w)(((\textit{prendront}^{e \to (e \to t)} \; w) \; o))))) \; x)))) \\ = (\exists^{(e \to t) \to t} \; (\lambda x^e (\wedge^{t \to (t \to t)}((\textit{pizza}^{e \to t} \; x))) \\ \qquad (\forall^{(e \to t) \to t} \; (\lambda w^e (\Rightarrow^{t \to (t \to t)} \; (\textit{enfant}^{e \to t} \; w)((\textit{prendront}^{e \to (e \to t)} \; w) \; x))))))) \end{array}
```

ce qui s'écrit communément :

 $\exists x. \ pizza(x) \land \forall w. \ (enfant(w) \Rightarrow prendront(w, x))$

C.31. Avec l'autre analyse syntaxique...

 $\forall \exists$

$$\frac{[np]^1 \frac{(np \backslash S)/np \quad [np]^2}{(np \backslash S)} \backslash_e}{\frac{S}{S/np} / i(2)} \frac{\frac{((S/np) \backslash S)/n \quad n}{(S/np) \backslash S} \backslash_e}{\frac{(S/(np \backslash S))/n \quad n}{(S/np \backslash S)} \backslash_e} \backslash_e}{\frac{S}{np \backslash S} \backslash_i(1)} /_e}$$

Qui correspond à l'analyse :

 $\forall \exists$

 λ -terme de la phrase :

$$\forall \exists = (les \ enfants)(\lambda s. \ (une \ pizza)(\lambda o \ ((prendront \ o) \ s)))$$

on insère les λ -termes lexicaux et on calcule

((une pizza) et (les enfants) déjà faits)

C.32. Calculs (bis repetita placent)

ce qui s'écrit communément :

$$\forall u. \ enfants(u) \Rightarrow \exists .x \ pizza(x) \land prendront(u, x)$$