Title

Contents

1	Thu	rsday, November 05															2	,
	1.1	Projective Nullstellensatz															3	,

Thursday, November 05

Today: projective spaces. We defined $\mathbb{P}^n_{/k} := k^{n+1} \setminus \{0\} / \sim$ where $x \sim \lambda x$ for all $x \in k^{\times}$, which we identified with lines through the origin in k^{n+1} . We have homogeneous coordinates $p = [x_0 : \cdots : x_n]$.

We say an ideal is homogeneous iff for all $f \in I$, the homogeneous part $f_d \in I$ for all d. In this case $V_p(I) \subset \mathbb{P}^n_{/k}$ defined as the vanishing locus of all homogeneous elements of I is well-defined. Think of this as the "projective version" of a vanishing locus.

Similarly we defined $I_p(S)$ defined as the ideal generated by all homogeneous $f \in k[x_1, \dots, x_n]$ such that f(x) = 0 for all $x \in S$.

Remark 1.0.1.

Observe that $V_a(I)$ defined as the cone over $V_p(I)$ is the set of points in $\mathbb{A}^{n+1} \setminus \{0\} \cup \{0\}$ which map to $V_p(I)$.

We have an alternative definition of a cone in \mathbb{A}^{n+1} , characterized as a closed subset C which is closed under scaling, so $kC \subseteq C$.

Proposition 1.0.1.

- If $S \subset k[x_1, \dots, x_n]$ is a set of homogeneous polynomials, then $V_a(S)$ is a cone since it is closed and closed under scaling. This follows from the fact that $f(x) = 0 \iff f(\lambda x) = 0$ for $\lambda \in k^{\times}$ when f is homogeneous.
- If C is a cone, then its affine ideal $I_a(C)$ is homogeneous.

Proof (?).

Let $f \in I_a(C)$, then f(x) = 0 for all $x \in C$. Since C is closed under scaling, $f(\lambda x) = 0$ for all $x \in C$ and $\lambda \in k^{\times}$. Decompose $f = \sum_{d} f_d$ into homogeneous pieces, then

$$x \in C \implies 0 = f(\lambda x) = \sum \lambda^d f_d(x).$$

Fixing $x \in C$, the quantities $f_d(x)$ are constants, so the resulting polynomial in λ vanishes for all λ . But since k is infinite, this forces $f_d(x) = 0$ for all d, which shows that $f_d \in I_a(C)$.

Lemma 1.1(?).

There is a bijective correspondence

•

Proof (?).

 $\mathbb{P}V_a(S) = V_p(S)$ for any set S of homogeneous polynomials, and $C(V_p(S)) = V_a(S)$, where $V_p(S)$ is a cone by part (a) of the previous proposition. Conversely, every cone is the variety associated to some homogeneous ideal.

1.1 Projective Nullstellensatz

Definition 1.1.1 (Irrelevant Ideal).

The homogeneous ideal $I_0 := (x_0, \dots, x_n) \subset k[x_1, \dots, x_n]$ is denoted the **irrelevant ideal**.

Proposition 1.1.1 (Projective Nullstellensatz).

- a. For all $X \subseteq \mathbb{P}^n$, $V_p(I_p(X)) = X$.
- b. For all homogeneous ideal $J \subset k[x_1, \dots, x_n]$ such that (importantly) $\sqrt{J} \neq I_0$, $I_p(V_p(J)) = \sqrt{J}$.

Proof (of a).

- \supset : If we let I denote the ideal of all homogeneous polynomials vanishing on X, then this certainly contains X.
- \subset : This follows from part (b), since $X = V_p(J)$ implies that $(V_p I_p V_p)(J) = V_p(\sqrt{J}) = V_p(J) = X$, since taking roots of homogeneous polynomials doesn't change the vanishing locus.

 $Proof\ (of\ b).$

That $I_p(V_p(J)) \supset \sqrt{J}$ is obvious, since $f \in \sqrt{J}$ vanishes on $V_p(J)$.

Checl

It remains to show $\sqrt{J} \subset I_p(V_p(J))$, but we can write $I_p(V_p(J))$ as $\langle f \in k[x_1, \cdots, x_n] \rangle$ the set of homogeneous polynomials vanishing on $V_p(S)$, which is equal to those vanishing on $V_a(J) \setminus \{0\}$.

But since $I_p(\cdots)$ is closed, this is equal to the f that vanish on $\overline{V_a(J) \setminus \{0\}}$, which is only equal to $V_a(J)$ iff $V_a(J) \neq \{0\}$.

Figure 1: Image

By the affine Nullstellensatz,

$$V_a(J) = \{0\} \iff \sqrt{J} = I_0.$$

Thus $I_p(V_p(J)) = \langle f \mid$ homogeneous vanishing on $V_a(J) \rangle$. Using the fact that $V_a(J)$ is a cone, its ideal is homogeneous and thus generated by homogeneous polynomials by part (b) of the previous proposition. Thus

$$I_p(V_p(J)) = I_a(V_a(J)) = \sqrt{J},$$

4

where the last equality follows from the affine Nullstellensatz.

Corollary 1.1.1(?).

There is an order-reversing bijection

Remark 1.1.1.

1 THURSDAY, NOVEMBER 05

A better definition of a cone over $X\subset \mathbb{P}^n_{/k}$ is $\overline{\pi^{-1}(X)}\subset \mathbb{A}^{n+1}_{/k}$ where

$$\pi: \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$$
$$[x_0, \cdots, x_n] \mapsto [x_0 : \cdots : x_n].$$

Definition 1.1.2 (Projective coordinate ring).

Given $X \subset \mathbb{P}^n$ a projective variety, the **projective coordinate ring** of X is given by

$$S(X) := k[x_1, \cdots, x_n]/I_p(X).$$

Remark 1.1.2.

This is a graded ring since $I_p(X)$ is homogeneous. This follows since the quotient of a graded ring by a homogeneous ideal yields a grading on the quotient.

Remark 1.1.3.

Projective subvarieties of projective varieties are given by $Y \subset X \subset \mathbb{P}^n$ where X is a projective variety. We have a topology on X where the closed subsets are projective subvarieties.