

relation between type theory and category theory

Contents

1. Idea

2. Overview

3. Theorems

Context

Type theory

Category theory

First-order logic and hyperdoctrines

<u>Dependent type theory and locally cartesian closed</u> <u>categories</u>

Type theories

Category of contexts

Internal language

Homotopy type theory and locally cartesian closed $(\infty,1)$ -categories

<u>Univalent homotopy type theory and elementary</u> $(\infty, 1)$ -toposes

- 4. Related concepts
- 5. References

1. Idea

<u>Type theory</u> and certain kinds of <u>category theory</u> are closely related. By a <u>syntax-semantics duality</u> one may view type theory as a formal <u>syntactic</u> language or <u>calculus</u> for category theory, and conversely one may think of category theory as providing

<u>semantics</u> for type theory. The flavor of category theory used depends on the flavor of type theory; this also extends to <u>homotopy</u> <u>type theory</u> and certain kinds of $(\infty,1)$ -category theory.

2. Overview

flavor of type theory	equivalent to	flavor of category theory	
intuitionistic propositional logic/simply-typed lambda calculus		cartesian closed category	
multiplicative intuitionistic linear logic		symmetric <u>closed</u> monoidal category	(various authors since ~68)
<u>first-order logic</u>		<u>hyperdoctrine</u>	(<u>Seely 1984a</u>)
classical linear logic		star-autonomous category	(<u>Seely 89</u>)
extensional <u>dependent type</u> <u>theory</u>		locally cartesian closed category	(<u>Seely 1984b</u>)
homotopy type theory without univalence (intensional M-L dependent type theory)		locally cartesian closed (∞,1)- category	(<u>Cisinski</u> 12-(<u>Shulman</u> 12)
homotopy type theory with higher inductive types and univalence		elementary (∞,1)- topos	see <u>here</u>
dependent linear type theory		indexed monoidal category (with	(<u>Vákár 14</u>)

flavor of type	equivalent	flavor of category	
theory	to	theory	
		comprehension)	

$\frac{computational \ trinitarianism}{+ programs \ as \ proofs} + \frac{relation \ type \ theory/category \ theory}{}$

logic	category theory	type theory
true	terminal object/(-2)- truncated object	h-level 0-type/unit type
false	initial object	empty type
proposition	(-1)-truncated object	h-proposition, mere proposition
proof	generalized element	<u>program</u>
cut rule	composition of classifying morphisms / pullback of display maps	substitution
cut elimination for implication	counit for hom-tensor adjunction	beta reduction
introduction rule for <u>implication</u>	unit for hom-tensor adjunction	eta conversion
logical conjunction	<u>product</u>	<u>product type</u>
disjunction	coproduct ((-1)-truncation of)	sum type (bracket type of)
implication	internal hom	function type
negation	internal hom into initial object	<u>function type</u> into <u>empty</u> <u>type</u>

<u>logic</u>	category theory	type theory
universal quantification	dependent product	dependent product type
existential quantification	<u>dependent sum</u> ((-1)- <u>truncation</u> of)	<u>dependent sum type</u> (<u>bracket type</u> of)
<u>equivalence</u>	path space object	<u>identity type</u>
<u>equivalence class</u>	quotient	<u>quotient type</u>
induction	colimit	inductive type, W-type, M-type
higher induction	<u>higher colimit</u>	higher inductive type
coinduction	limit	coinductive type
<u>completely</u> <u>presented set</u>	discrete object/0- truncated object	<u>h-level 2-type/preset/h-set</u>
<u>set</u>	internal 0-groupoid	Bishop set/setoid
<u>universe</u>	object classifier	type of types
<u>modality</u>	closure operator, (idemponent) monad	modal type theory, monad (in computer science)
<u>linear logic</u>	(<u>symmetric</u> , <u>closed</u>) <u>monoidal category</u>	linear type theory/quantum computation
proof net	string diagram	<u>quantum circuit</u>
(absence of) contraction rule	(absence of) <u>diagonal</u>	no-cloning theorem
	synthetic mathematics	domain specific embedded programming language

3. Theorems

We discuss here formalizations and proofs of the relation/equivalence between various flavors of type theories and the corresponding flavors of categories.

- First order logic and hyperdoctrines
- <u>Dependent type theory and locally cartesian closed categories</u>
- Homotopy type theory and locally cartesian closed $(\infty,1)$ categories
- <u>Univalent homotopy type theory and elementary (∞,1)-toposes</u>

First-order logic and hyperdoctrines

Theorem 3.1. The functors

- Cont, that form a <u>category of contexts</u> of a <u>first-order theory</u>;
- Lang, that forms the <u>internal language</u> of a <u>hyperdoctrine</u>

constitute an equivalence of categories

FirstOrderTheories
$$\stackrel{\text{Lang}}{\longleftrightarrow}$$
 Hyperdoctrines .

(<u>Seely, 1984a</u>)

Dependent type theory and locally cartesian closed categories

We discuss here how <u>dependent type theory</u> is the syntax of which <u>locally cartesian closed categories</u> provide the <u>semantics</u>. For a dedicated discussion of this (and the subtle <u>coherence</u> issues involved) see also at <u>categorical model of dependent types</u>.

Theorem 3.2. There are <u>2-functors</u>

- Cont, that forms a <u>category of contexts</u> of a <u>Martin-Löf</u> <u>dependent type theory;</u>
- Lang that forms the <u>internal language</u> of a <u>locally cartesian</u> <u>closed category</u>

that constitute an equivalence of 2-categories

$$\underbrace{\text{MLDependentTypeTheories}}_{\text{Cont}} \underbrace{\overset{\text{Lang}}{\simeq}}_{\text{Cont}} \text{LocallyCartesianClosedCategories} .$$

This was originally claimed as an <u>equivalence of categories</u> (<u>Seely, theorem 6.3</u>). However, that argument did not properly treat a subtlety central to the whole subject: that <u>substitution</u> of <u>terms</u> for <u>variables</u> composes strictly, while its <u>categorical semantics</u> by <u>pullback</u> is by the <u>very nature</u> of pullbacks only defined up to <u>isomorphism</u>. This problem was pointed out and ways to fix it were given in (<u>Curien</u>) and (<u>Hofmann</u>); see <u>categorical model of dependent types</u> for the latter. However, the full equivalence of categories was not recovered until (<u>Clairambault-Dybjer</u>) solved both problems by promoting the statement to an <u>equivalence of 2-categories</u>, see also (<u>Curien-Garner-Hofmann</u>). Another approach to this which also works with <u>intensional identity types</u> and hence with <u>homotopy type theory</u> is in (<u>Lumsdaine-Warren 13</u>).

We now indicate some of the details.

Type theories

For definiteness, self-containedness and for references below, we say what a <u>dependent type theory</u> is, following (<u>Seely, def. 1.1</u>).

Definition 3.3. A **Martin-Löf** <u>dependent type theory</u> T is a <u>theory</u> with some <u>signature</u> of dependent function symbols with values in types and in terms (...) subject to the following rules

1. type formation rules

1. 1 is a type (the <u>unit type</u>);

- 2. if a, b are terms of type A, then (a = b) is a type (the equality type);
- 3. if A and B[x] are types, B depending on a <u>free variable</u> of type A, then the following symbols are types
 - 1. $\prod_{a:A} B[a]$ (<u>dependent product</u>), written also $(A \to B)$ if B[x] in fact does not depend on x;
 - 2. $\sum_{a:A} B[a]$ (dependent sum), written also $A \times B$ if B[x] in fact does not depend on x:
- 2. term formation rules
 - 1. $* \in 1$ is a term of the unit type;
 - 2. (...)
- 3. equality rules
 - 1. (...)

Category of contexts

Definition 3.4. Given a <u>dependent type theory</u> T, its <u>category of</u> <u>contexts</u> Con(T) is the category whose

- <u>objects</u> are the <u>types</u> of *T*;
- $\underline{\text{morphisms}} f: A \to B \text{ are the } \underline{\text{terms}} f \text{ of } \underline{\text{function type}} A \to B.$

Composition is given in the evident way.

Proposition 3.5. Con(T) has finite limits and is a <u>cartesian closed</u> <u>category</u>.

(Seely, prop. 3.1)

Proof. Constructions are straightforward. We indicated some of them.

Notice that all <u>finite limits</u> (as discussed there) are induced as soon as there are all <u>pullbacks</u> and <u>equalizers</u>. A <u>pullback</u> in Con(T)

$$\begin{array}{ccc} P & \rightarrow & A \\ \downarrow & & \downarrow^f \\ B & \stackrel{\mathsf{g}}{\rightarrow} & C \end{array}$$

is given by

$$P \simeq \sum_{a:A} \sum_{b \in B} (f(a) = g(b)).$$

The equalizer

$$P \to A \stackrel{f}{\underset{g}{
ightarrow}} B$$

is given by

$$P = \sum_{a:A} (f(a) = g(a)).$$

Next, the <u>internal hom/exponential object</u> is given by <u>function type</u>

$$[A,B]\simeq (A\to B)\ .$$

Proposition 3.6. Con(T) is a <u>locally cartesian closed category</u>.

(Seely, theorem 3.2)

Proof. Define the Con(T)-indexed <u>hyperdoctrine</u> P(T) by taking for $A \in \text{Con}(T)$ the category P(T)(A) to have as objects the A-dependent <u>types</u> and as morphisms $(a:A \vdash X(a):\text{type}) \rightarrow (a:A \vdash Y(a):\text{type})$ the terms of dependent function type $(a:A \vdash t:(X(a) \rightarrow Y(a)))$.

This is cartesian closed by the same kind of argument as in the previous proof. It is now sufficient to exhibit a compatible equivalence of categories with the slice category $\operatorname{Con}(T)_{/A}$.

$$Con(T)_{/A} \simeq P(T)(A)$$
.

In one direction, send a morphism $f:X\to A$ to the dependent type

$$a: A \vdash f^{-1}(a) := \sum_{x : X} (a = f(x)).$$

Conversely, for $a:A \vdash X(a)$ a dependent type, send it to the projection $\sum_{a:A} X(a) \to A$.

One shows that this indeed gives an equivalence of categories which is compatible with base change ($\underline{\text{Seely, prop. } 3.2.4}$).

Definition 3.7. For T a dependent type theory and C a locally cartesian closed category, an <u>interpretation</u> of T in C is a morphism of locally cartesian closed categories

$$Con(T) \rightarrow C$$
.

An interpretation of T in another dependent type theory T' is a morphism of locally cartesian closed categories

$$Con(T) \rightarrow Con(T')$$
.

Internal language

Proposition 3.8. Given a <u>locally cartesian closed category</u> C, define the corresponding <u>dependent type theory</u> Lang(C) as follows

- the non-dependent types of Lang(C) are the <u>objects</u> of C;
- ullet the A-dependent types are the morphisms B o A;
- a context $x_1:X_1,x_2:X_2,\cdots,x_n:X_n$ is a tower of morphisms

- the terms $t[x_A]:B[x_A]$ are the <u>sections</u> $A \to B$ in $C_{/A}$
- the <u>equality type</u> $(x_A = y_A)$ is the <u>diagonal</u> $A \to A \times A$

• ...

Homotopy type theory and locally cartesian closed $(\infty,1)$ -categories

All of the above has an analog in $(\infty,1)$ -category theory and homotopy type theory.

Proposition 3.9. Every <u>presentable</u> and <u>locally cartesian closed</u> $(\infty,1)$ -category has a presentation by a <u>type-theoretic model category</u>. This provides the <u>categorical semantics</u> for <u>homotopy type theory</u> (without, possibly, the <u>univalence axiom</u>).

This includes in particular all (∞ -stack-) (∞ ,1)-toposes (which should in addition satisfy <u>univalence</u>). See also at <u>internal logic of an (∞ ,1)-topos</u>.

Some form of this statement was originally formally conjectured in (Joyal 11), following (Awodey 10). For more details see at <u>locally cartesian closed (∞ ,1)-category</u>.

Univalent homotopy type theory and elementary $(\infty,1)$ -toposes

More precise information can be found on the <u>homotopytypetheory</u> <u>wiki</u>.

A (<u>locally presentable</u>) <u>locally Cartesian closed (∞ ,1)-category</u> (as <u>above</u>) which in addition has a system of <u>object classifiers</u> is an $((\infty,1)-\text{sheaf-})(\infty,1)-\text{topos}$.

It has been conjectured in (Awodey 10) that this object classifier is the categorical semantics of a univalent type universe (type of types), hence that homotopy type theory with univalence has categorical semantics in $(\infty,1)$ -toposes. This statement was proven for the canonical $(\infty,1)$ -toposes ∞ Grpd in (Kapulkin-Lumsdaine-Voevodsky 12), and more generally for $(\infty,1)$ -presheaf $(\infty,1)$ -toposes over elegant Reedy categories in (Shulman 13).

In these proofs the <u>type-theoretic model categories</u> which interpret the homotopy type theory syntax are required to provide type universes that behave strictly under pullback. This matches the usual syntactically convenient universes in type theory (either a la Russell or a la Tarski), but more difficult to implement in the categorical semantics. More flexibly, one may consider syntactic <u>type universes weakly à la Tarski</u> (<u>Luo 12</u>, <u>Gallozzi 14</u>). These are more complicated to work with syntactically, but should have interpretations in a (<u>type-theoretic model categories</u> presenting) any (∞ ,1)-topos. Discussion of <u>univalence</u> in this general flexible sense is in (<u>Gepner-Kock 12</u>). For the general syntactic issue see at

• model of type theory in an (infinity,1)-topos

While $(\infty,1)$ -sheaf $(\infty,1)$ -toposes are those currently understood, the basic type theory with univalent universes does not see or care about their <u>local presentability</u> as such (although it is used in other places, such as the construction of <u>higher inductive types</u>). It is to be expected that there is a decent concept of <u>elementary $(\infty,1)$ -topos</u> such that <u>homotopy type theory</u> with <u>univalent type universes</u> and some supply of <u>higher inductive types</u> has categorical semantics precisely in <u>elementary $(\infty,1)$ -toposes</u> (as conjectured in <u>Awodey 10</u>). But the fine-tuning of this statement is

currently still under investigation.

Notice that this statement, once realized, makes (or would make) Univalent HoTT+HITs a sort of homotopy theoretic refinement of foundations of mathematics in topos theory as proposed by William Lawvere. It could be compared to his elementary theory of the category of sets, although being a type theory rather than a theory in first-order logic, it is more analogous to the internal type theory of an elementary topos.

4. Related concepts

- categorical model of dependent types
- syntax-semantics duality
- computational trinitarianism
- <u>Awodey's conjecture</u>

5. References

An elementary exposition of in terms of the <u>Haskell programming</u> <u>language</u> is in

• WikiBooks, <u>Haskell/The Curry-Howard isomorphism</u>

The <u>equivalence of categories</u> between <u>first order theories</u> and <u>hyperdoctrines</u> is discussed in

• R. A. G. Seely, Hyperdoctrines, natural deduction, and the Beck condition, Zeitschrift für Math. Logik und Grundlagen der Math. (1984) (pdf)

The <u>categorical model of dependent types</u> and initiality is discussed in

• Simon Castellan, Dependent type theory as the initial category with families, 2014 (pdf)

which was formalized inside type theory with set quotients of <u>higher inductive types</u> in:

• <u>Thorsten Altenkirch</u>, Ambrus Kaposi, *Type Theory in Type Theory using Quotient Inductive Types*, (2015) (pdf), (formalisation in Agda).

Surveys inclue

- <u>Tom Hirschowitz</u>, *Introduction to categorical logic* (2010) (<u>pdf</u>) (see the discussion building up to the theorem on <u>slide 96</u>)
- Roy Crole, *Deriving category theory from type theory*, Theory and Formal Methods 1993 Workshops in Computing 1993, pp 15-26
- <u>Maria Maietti</u>, *Modular correspondence between dependent* type theories and categories including pretopoi and topoi, Mathematical Structures in Computer Science archive Volume 15 Issue 6, December 2005 Pages 1089 1149 (<u>pdf</u>)

The equivalence between <u>linear logic</u> and <u>star-autonomous</u> <u>categories</u> is due to

• R. A. G. Seely, Linear logic, *-autonomous categories and cofree coalgebras, Contemporary Mathematics 92, 1989. (pdf, ps.gz)

and reviews/further developments are in

- G. M. Bierman, What is a Categorical Model of Intuitionistic Linear Logic? (web)
- Andrew Graham Barber, Linear Type Theories, Semantics and Action Calculi, 1997 (web, pdf)
- <u>Paul-André Melliès</u>, Categorial Semantics of Linear Logic, in Interactive models of computation and program behaviour, Panoramas et synthèses 27, 2009 (pdf)

For <u>dependent linear type theory</u> see

• <u>Matthijs Vákár</u>, Syntax and Semantics of Linear Dependent Types (arXiv:1405.0033)

An <u>adjunction</u> between the category of <u>type theories</u> with <u>product</u> <u>types</u> and <u>toposes</u> is discussed in chapter II of

• <u>Joachim Lambek</u>, P. Scott, *Introduction to higher order categorical logic*, Cambridge University Press (1986).

The <u>equivalence of categories</u> between <u>locally cartesian closed</u> <u>categories</u> and <u>dependent type theories</u> was originally claimed in

• R. A. G. Seely, Locally cartesian closed categories and type theory, Math. Proc. Camb. Phil. Soc. (1984) 95 (pdf)

following a statement earlier conjectured in

• <u>Per Martin-Löf</u>, *An intuitionistic theory of types: predicative part*, In Logic Colloquium (1973), ed. H. E. Rose and J. C. Shepherdson (North-Holland, 1974), 73-118. (<u>web</u>)

The problem with strict substitution compared to weak pullback in this argument was discussed and fixed in

- <u>Pierre-Louis Curien</u>, Substitution up to isomorphism, Fundamenta Informaticae, 19(1,2):51-86 (1993)
- Martin Hofmann, On the interpretation of type theory in locally cartesian closed categories, Proc. CSL '94, Kazimierz, Poland. Jerzy Tiuryn and Leszek Pacholski, eds. Springer LNCS, Vol. 933 (<u>CiteSeer</u>)

but in the process the equivalence of categories was lost. This was finally all rectified in

• <u>Pierre Clairambault</u>, <u>Peter Dybjer</u>, *The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories*, in *Typed lambda calculi and applications*, Lecture Notes in Comput. Sci. 6690, Springer 2011 (<u>arXiv:1112.3456</u>)

and

• <u>Pierre-Louis Curien</u>, <u>Richard Garner</u>, <u>Martin Hofmann</u>, Revisiting the categorical interpretation of dependent type theory (pdf)

Another version of this which also applies to <u>intensional identity</u> <u>types</u> and hence to <u>homotopy type theory</u> is in

- <u>Peter LeFanu Lumsdaine</u>, <u>Michael Warren</u>, *An overlooked coherence construction for dependent type theory*, CT2013 (pdf)
- <u>Peter LeFanu Lumsdaine</u>, <u>Michael Warren</u>, The local universes model: an overlooked coherence construction for dependent type theories (<u>arXiv:1411.1736</u>)

The analogous statement relating <u>homotopy type theory</u> and <u>locally cartesian closed (infinity,1)-categories</u> was formally conjectured around

• <u>André Joyal</u>, *Remarks on homotopical logic*, Oberwolfach (2011) (pdf)

following earlier suggestions by <u>Steve Awodey</u>. Explicitly, the suggestion that with the <u>univalence</u> axiom added this is refined to $(\underline{\infty}, 1)$ -topos theory appears around

• Steve Awodey, Type theory and homotopy (pdf)

Details on this higher categorical semantics of <u>homotopy type</u> <u>theory</u> are in

• <u>Michael Shulman</u>, *Univalence for inverse diagrams and homotopy canonicity*, Mathematical Structures in Computer Science, Volume 25, Issue 5 (*From type theory and homotopy theory to Univalent Foundations of Mathematics*) June 2015 (arXiv:1203.3253, doi:/10.1017/S0960129514000565)

with lecture notes in

- Mike Shulman, Categorical models of homotopy type theory, April 13, 2012 (pdf)
- <u>André Joyal</u>, *Remarks on homotopical logic*, Oberwolfach (2011) (<u>pdf</u>)
- <u>André Joyal</u>, *Categorical homotopy type theory*, March 17, 2014 (<u>pdf</u>)

See also

- <u>Chris Kapulkin</u>, *Type theory and locally cartesian closed quasicategories*, Oxford 2014 (<u>video</u>)
- <u>Chris Kapulkin</u>, <u>Peter LeFanu Lumsdaine</u>, The homotopy theory of type theories (<u>arXiv:1610.00037</u>)
- <u>Chris Kapulkin</u>, <u>Karol Szumilo</u>, <u>Internal Language of Finitely Complete</u> (∞,1)-categories (<u>arXiv:1709.09519</u>)
- <u>Valery Isaev</u>, Algebraic Presentations of Dependent Type Theories (arXiv:1602.08504)
- <u>Valery Isaev</u>, Morita equivalences between algebraic dependent type theories (<u>arXiv:1804.05045</u>)

Models specifically in (constructive) cubical sets are discussed in

- Marc Bezem, <u>Thierry Coquand</u>, Simon Huber, *A model of type theory in cubical sets*, 2013 (web, pdf)
- Ambrus Kaposi, <u>Thorsten Altenkirch</u>, *A syntax for cubical type theory* (<u>pdf</u>)
- Simon Docherty, A model of type theory in cubical sets with connection, 2014 (pdf)

A precise definition of <u>elementary (infinity,1)-topos</u> inspired by giving a natural equivalence to <u>homotopy type theory</u> with <u>univalence</u> was then proposed in

• <u>Mike Shulman</u>, *Inductive and higher inductive types* (2012) (pdf)

Categorical semantics of <u>univalent type universes</u> is discussed in

- Steve Awodey, Type theory and homotopy (2010) (pdf)
- <u>Chris Kapulkin</u>, <u>Peter LeFanu Lumsdaine</u>, <u>Vladimir Voevodsky</u>, *The Simplicial Model of Univalent Foundations* (arXiv:1211.2851)
- <u>Michael Shulman</u>, The univalence axiom for elegant Reedy presheaves (<u>arXiv:1307.6248</u>)
- <u>David Gepner</u>, <u>Joachim Kock</u>, <u>Univalence in locally cartesian</u> closed ∞-categories (<u>arXiv:1208.1749</u>)
- <u>Denis-Charles Cisinski</u>, *Univalent universes for elegant models of homotopy types* (<u>arXiv:1406.0058</u>)

Proof that all $\underline{\infty}$ -stack $(\underline{\infty},1)$ -topos have <u>presentations</u> by <u>model</u> <u>categories</u> which interpret (provide <u>categorical semantics</u>) for <u>homotopy type theory</u> with <u>univalent type universes</u>:

• Michael Shulman, All $(\infty, 1)$ -toposes have strict univalent universes (arXiv:1904.07004).

Discussion of weak Tarskian homotopy type universes is in

- Zhaohui Luo, Notes on Universes in Type Theory, 2012 (pdf)
- <u>Cesare Gallozzi</u>, Constructive Set Theory from a Weak Tarski Universe, MSc thesis (2014) (pdf)

A discussion of the correspondence between type theories and categories of various sorts, from lex categories to toposes is in

• Maria Emilia Maietti, *Modular correspondence between dependent type theories and categories including pretopoi and topoi*, Math. Struct. in Comp. Science (2005), vol. 15, pp. 1089-1149 (gzipped ps) (doi)

Last revised on April 16, 2019 at 05:48:41. See the <u>history</u> of this page for a list of all contributions to it.

Edit Back in time (70 revisions) See changes History Cite Print TeX Source