27 Σεπτεμβρίου 2016

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ΄ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ

ΘΕΜΑ Α'

 ${f A'.1}$ Έστω μια συνάρτηση f ορισμένη σ' ένα διάστημα Δ και x_0 εσωτερικό σημείο του Δ . Αν η f παρουσιάζει τοπικό ακρότατο στο x_0 και είναι παραγωγίσιμη σ αυτό το σημείο τότε να δείξεις οτι $f'(x_0) = 0$.

Μονάδες 10

Α'.2 Να δώσεις τη γεωμερτρική ερμηνεία του θεωρήματος Rolle.

Μονάδες 5

A'.3 Να χαρακτηρίσεις τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ).

 ${\bf a'}.$ Αν $z\in \mathbb{C}^*,$ τότε οι εικόνες των $z,-iz,\frac{z}{i^2}$ ανήκουν στον ίδιο κύκλο με κέντρο O(0,0).

$$\beta'. \lim_{x \to -\infty} \int_0^x e^t dt = 1$$

 $\mathbf{\gamma'}$. Μια συνάρτηση $f:A \to \mathbb{R}$ είναι 1-1 όταν για οποιαδήποτε $x_1,x_2 \in A$ ισχύει η συνεπαγωγή

$$x_1 = x_2 \Rightarrow f(x_1) = f(x_2)$$

 δ' . Αν οι συναρτήσεις f, g έχουν όριο στο x_0 και ισχύει f(x) < g(x) κοντά στο x_0 τότε

$$\lim_{x \to x_0} f(x) < \lim_{x \to x_0} g(x)$$

 $m{\epsilon'}$. Αν f,g συναρτήσεις ορισμένες στο \mathbb{R}^* με f'(x)=g'(x) για $x\in\mathbb{R}$ τότε υπάρχει σταθερά c τέτοια ώστε

$$f(x) = g(x) + c$$

Μονάδες 10

ΘΕΜΑ Β'

Αν για τους μιγαδικούς z=a+i και $u=rac{\beta-i}{\beta+i}$, με $a,\beta\in\mathbb{R}$, ισχύει

$$z + 2u - \overline{z} = 0$$
 kai $z + \overline{z} = 2ui$

τότε να αποδείξεις ότι:

B'.1
$$a = β = 1$$
 και $z + u = 1$

Μονάδες 7

Β'.2 Η εικόνα του u κινείται στον μοναδιαίο κύκλο.

Μονάδες 4

B'.3 Η εικόνα του $w = \left(\frac{z}{u}\right)^3$ ανήκει στη διχοτόμο της γωνίας του 1ου και 3ου τεταρτημορίου στο μιγαδικό Μονάδες 7

$$\mathbf{B'.4} \left| \frac{w^3}{z - w - 2u} \right| = 16$$

Μονάδες 7

ΘΕΜΑ Γ'

Έστω η παραγωγίσιμη συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ για την οποία ισχύει :

$$f^3(x) + f(x) = 2e^x - 2x$$

Να δείξεις ότι:

 Γ' .1 $f(x) \ge 1$ για κάθε $x \in \mathbb{R}$. Μονάδες 9

 Γ' .2 Η εξίσωση $x + 1 - xe^{f(x)} = 0$ έχει μια τουλάχιστον ρίζα x_0 στο διάστημα (0, 1). Μονάδες 7

ΘΕΜΑ Δ'

Δίνεται η συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ για την οποία ισχύουν :

iii. $\int_0^a f(t) dt = 4$ i. Είναι δύο φορές παραγωγίσιμη στο \mathbb{R} .

ii. f(x) > 0 για κάθε $x \in \mathbb{R}$. iv. $g(x) = \int_0^x f(t) dt \cdot \int_x^a f(t) dt$, $x \in \mathbb{R}$.

Να δείξεις οτι:

 $\Delta'.1 g(x) = -\left(\int_0^x f(t)dt - 2\right)^2, x \in \mathbb{R}.$ Μονάδες 7

 $\Delta'.2$ Υπάρχει ένα τουλάχιστον $\xi \in (0,a)$, ώστε $\int_0^\xi f(t)\mathrm{d}t = 2$ και $\int_a^\xi f(t)\mathrm{d}t = -2$ Μονάδες 8

 Δ' .3 Η συνάρτηση g παρουσιάζει μέγιστο στο σημείο ξ . Μονάδες 5

 $\Delta'.4 \lim_{x \to \xi} \frac{4 - g(x)}{(x - \xi)^2} = f^2(\xi)$ Μονάδες 5