Esercizi proiettivià (Maggio 2009)

Esercizio 1. Determinare la proiettività ϕ in $\mathbb{P}^1(\mathbb{R})$ che manda il punto $A = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ in $A' = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, il punto $B = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ in $B' = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ e il punto $C = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ in $C' = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Soluzione. Imponiamo che la proiettività verifichi le condizioni richieste:

$$\rho_1\left(\begin{array}{c} 3 \\ 1 \end{array}\right) = \left(\begin{array}{c} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \quad \rho_2\left(\begin{array}{c} 4 \\ 0 \end{array}\right) = \left(\begin{array}{c} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} -1 \\ 1 \end{array}\right), \quad \left(\begin{array}{c} -1 \\ 1 \end{array}\right) = \left(\begin{array}{c} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} 1 \\ 0 \end{array}\right)$$

da cui otteniamo

$$\begin{cases} 3\rho_1 = b \\ \rho_1 = d \\ 4\rho_2 = -a + b \\ 0 = c - d \\ a = -1 \\ c = 1 \end{cases} \Rightarrow \begin{cases} a = -1 \\ b = 3 \\ c = 1 \\ d = 1 \end{cases},$$

cio
è ϕ è la proiettività determinata dalla matrice
 $\left(\begin{array}{cc} -1 & 3 \\ 1 & 1 \end{array}\right)$. \Box

Esercizio 2. Determinare eventuali punti fissi e rette fisse della proiettività ϕ in $\mathbb{P}^2(\mathbb{R})$ rappresentata dalla seguente matrice:

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right).$$

Spiegare perchè ogni proiettività ϕ di $\mathbb{P}^2(\mathbb{R})$ ha almeno un punto fisso.

Soluzione. I punti fissi di ϕ si determinano dagli autovettori di A. Si vede immediatamente che abbiamo un solo autovalore $\lambda=2$ con molteplicità algebrica 3. La dimensione dell'autospazio corrispondente V_2

è 1 e precisamente
$$V_2 = Span \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
. Dunque ϕ ha un unico punto fisso $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Abbiamo già detto che i punti fissi della proiettività si determinano con gli autovettori. In $\mathbb{P}^2(\mathbb{R})$ una proiettività è definita da una matrice 3×3 , dunque $p_A(\lambda)$ ha grado 3, cioè ha sempre almeno uno zero in \mathbb{R} . Quindi A ha sempre almeno un autovettore e ϕ almeno un punto fisso.

Esercizio 3. Determinare eventuali punti fissi e rette fisse della proiettività ϕ in $\mathbb{P}^2(\mathbb{R})$ rappresentata dalla seguente matrice:

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -1 & 3 & -1 \\ 0 & 0 & 2 \end{array}\right).$$

Soluzione. $p_A(\lambda) = (\lambda - 2)^3$. Dunque abbiamo un unico autovalore $\lambda = 2$. L'autospazio corrispondente ha dimensione 2, precisamente $V_2 = Span\left\{\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}\right\}$. Abbiamo cioè un piano di autovettori, dunque una retta fissa:

$$r: \mu \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right) + \nu \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right).$$

Esercizio 4. Sia ϕ la proiettività ϕ in $\mathbb{P}^2(\mathbb{R})$ determinata dalla matrice

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -1 & 3 & -1 \\ 0 & 0 & 2 \end{array}\right).$$

Verificare che la retta $r: x_1 = 0$ è una retta unita, mentre $s: x_3 = 0$ è una retta di punti fissi.

Soluzione. Possiamo risolvere l'esercizio "manualmente", cioè vediamo come si muovono i punti sulle due rette in base alla proiettività. Abbiamo che

$$r: \left\{ \begin{array}{l} x_1 = 0 \\ x_2 = t \\ x_3 = s \end{array} \right. \quad \text{e} \quad r: \left\{ \begin{array}{l} x_1 = t \\ x_2 = s \\ x_3 = 0 \end{array} \right.$$

Dunque $\phi \begin{pmatrix} 0 \\ t \\ s \end{pmatrix} = \begin{pmatrix} 0 \\ t+2s \\ s \end{pmatrix}$ e $\phi \begin{pmatrix} t \\ s \\ 0 \end{pmatrix} = \begin{pmatrix} t \\ s \\ 0 \end{pmatrix}$. Cioé r è una retta unita, mentre s è una retta di punti fissi.

Possiamo risolvere ugualmente l'esercizio studiando gli au
ovettori di ${\cal A}.$

Osservazione 5. La proiettività ϕ dell'esercizio precedente lascia fissa la retta impropria $x_3 = 0$, cioè è un' affinità. Rispetto al sistema di riferimento fissato un'affinità è rappresentata da una matrice della forma

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{pmatrix},$$

 $con a_{11}a_{22} - a_{12}a_{22} \neq 0 e a_{33} \neq 0.$

Esercizio 6. Determinare eventuali punti fissi e retta fisse nella proiettività ϕ in $\mathbb{P}^2(\mathbb{R})$ determinata dalla seguente matrice:

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Soluzione. Gli autovalori di A sono $\lambda_{1,2}=2$ e $\lambda_3=1$. Inoltre dim $V_2=1$ e $V_2=Span\left\{\begin{pmatrix}1\\0\\0\end{pmatrix}\right\}$ e

$$V_1 = Span \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
. Dunque ci sono due punti fissi determinati dai due autovettori.

Esercizio 7. Determinare la proiettività ϕ in $\mathbb{P}^2(\mathbb{R})$ tale che

$$\phi \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \phi \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \phi \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \phi \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Soluzione. Possiamo calcolare facilmente la matrice A della proiettività inversa. Infatti abbiamo

$$\rho_1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}, \quad \rho_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}, \quad \rho_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix},$$

da cui ricaviamo

$$A = \left(\begin{array}{ccc} 0 & 1 & \rho_3 \\ \rho_1 & 2 & \rho_3 \\ 0 & \rho_2 & 0 \end{array} \right).$$

Inoltre deve essere

$$\left(\begin{array}{c} 1\\ -1\\ 0 \end{array}\right) = A \left(\begin{array}{c} 1\\ 1\\ 1 \end{array}\right),$$

cioè

$$\begin{cases} \rho_1 = 1 \\ \rho_1 + \rho_3 = -1 \\ \rho_2 = -1 \end{cases} \implies A = \begin{pmatrix} 0 & 1 & 1 \\ -2 & 2 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Invertendo A otteniamo la matrice associata alla ϕ :

$$A^{-1} = \left(\begin{array}{ccc} 1/2 & -1/2 & 0\\ 0 & 0 & -1\\ 1 & 0 & 0 \end{array}\right).$$

Esercizio 8. 1) Determinare la proiettività ϕ in $\mathbb{P}^2(\mathbb{R})$ tale che

$$\phi\begin{pmatrix}1\\2\\1\end{pmatrix}=\begin{pmatrix}2\\1\\1\end{pmatrix},\quad \phi\begin{pmatrix}3\\-1\\0\end{pmatrix}=\begin{pmatrix}0\\0\\2\end{pmatrix},\quad \phi\begin{pmatrix}1\\1\\0\end{pmatrix}=\begin{pmatrix}2\\3\\4\end{pmatrix},\quad \phi\begin{pmatrix}0\\0\\1\end{pmatrix}=\begin{pmatrix}0\\1\\1\end{pmatrix}.$$

2) Determinare $\phi(r)$, dove $r : x_1 + x_2 + x_3 = 0$.

Soluzione. Consideriamo ϕ come la composizione di due proiettività ψ e φ più semplici da determinare e tali che

$$\psi\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}1\\2\\1\end{pmatrix},\quad\psi\begin{pmatrix}0\\1\\0\end{pmatrix}=\begin{pmatrix}3\\-1\\0\end{pmatrix},\quad\psi\begin{pmatrix}0\\0\\1\end{pmatrix}=\begin{pmatrix}1\\1\\0\end{pmatrix},\quad\psi\begin{pmatrix}1\\1\\1\end{pmatrix}=\begin{pmatrix}0\\0\\1\end{pmatrix}.$$

$$\varphi\left(\begin{array}{c}1\\0\\0\end{array}\right)=\left(\begin{array}{c}2\\1\\1\end{array}\right),\quad \varphi\left(\begin{array}{c}0\\1\\0\end{array}\right)=\left(\begin{array}{c}0\\0\\2\end{array}\right),\quad \varphi\left(\begin{array}{c}0\\0\\1\end{array}\right)=\left(\begin{array}{c}2\\3\\4\end{array}\right),\quad \varphi\left(\begin{array}{c}1\\1\\1\end{array}\right)=\left(\begin{array}{c}0\\1\\1\end{array}\right).$$

Allora $\phi = \varphi \circ \psi^{-1}$. Procedendo come nell'esercizio precedente otteniamo le matrici A_1 e A_2 associate rispettivamente a ψ e φ :

$$A_1 = \begin{pmatrix} 1 & 3/4 & -7/4 \\ 2 & -1/4 & -7/4 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{e} \quad A_2 = \begin{pmatrix} -2 & 0 & 2 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{pmatrix}$$

Allora la matrice A associata a ϕ è il prodotto $A_2A_1^{-1}$, cioè

$$A = \left(\begin{array}{rrr} 2 & 6 & 0 \\ 3 & 9 & -14 \\ 11 & 5 & -14 \end{array}\right).$$

2) Per ottenere l'immagine della retta r determiniamo la ϕ^{-1} , la cui matrice è

$$A^{-1} = \left(\begin{array}{ccc} 2 & -3 & 3\\ 4 & 1 & -1\\ 3 & -2 & 0 \end{array}\right),$$

da cui otteniamo

$$\phi(r): (2x_1' - 3x_2' + 3x_3') + (4x_1' + x_2' - x_3') + (3x_1' - 2x_2') = 0,$$

cioè la retta $9x'_1 - 4x'_2 + 2x'_3 = 0$.