

Schletter, Inc.		35° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Fround Snow Load, $P_g =$	30.00 psf	
d Roof Snow Load, P _s =	14.43 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.64	
$C_e =$	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 11.34 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.200	
Cf+ BOTTOM	=	1.200 2.000 (Pressure)	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.200	applica analy hem are canace.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

Allowable Stress Design, ASD

1.2D + 1.6S + 0.8W

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>104.17</u>	<u>5424.08</u>	k
Compressive Load =	<u>3113.65</u>	4473.98	k
Lateral Load =	20.54	3841.39	k
Moment (Weak Axis) =	0.04	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 138889.2 in-lbs Resisting Force Required = 2104.38 lbs A minimum 132in long x 27in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3507.30 lbs to resist overturning. Minimum Width = Weight Provided = 5383.13 lbs Sliding 922.93 lbs Force = Use a 132in long x 27in wide x 18in tall Friction = 0.4 Weight Required = 2307.33 lbs ballast foundation to resist sliding. Resisting Weight = 5383.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 922.93 lbs Cohesion = 130 psf Use a 132in long x 27in wide x 18in tall 24.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2691.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	<u>27 in</u>	<u>28 in</u>	29 in	<u>30 in</u>	
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.25 \text{ ft}) =$	5383 lbs	5583 lbs	5782 lbs	5981 lbs	

ASD LC	1.0D + 1.0S			1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W						
Width	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in
FA	1231 lbs	1231 lbs	1231 lbs	1231 lbs	985 lbs	985 lbs	985 lbs	985 lbs	1512 lbs	1512 lbs	1512 lbs	1512 lbs	71 lbs	71 lbs	71 lbs	71 lbs
F _B	1113 lbs	1113 lbs	1113 lbs	1113 lbs	1955 lbs	1955 lbs	1955 lbs	1955 lbs	2166 lbs	2166 lbs	2166 lbs	2166 lbs	-2602 lbs	-2602 lbs	-2602 lbs	-2602 lbs
F _V	205 lbs	205 lbs	205 lbs	205 lbs	1703 lbs	1703 lbs	1703 lbs	1703 lbs	1408 lbs	1408 lbs	1408 lbs	1408 lbs	-1846 lbs	-1846 lbs	-1846 lbs	-1846 lbs
P _{total}	7727 lbs	7926 lbs	8125 lbs	8325 lbs	8324 lbs	8523 lbs	8722 lbs	8922 lbs	9060 lbs	9260 lbs	9459 lbs	9658 lbs	699 lbs	819 lbs	938 lbs	1058 lbs
M	3652 lbs-ft	3652 lbs-ft	3652 lbs-ft	3652 lbs-ft	2730 lbs-ft	2730 lbs-ft	2730 lbs-ft	2730 lbs-ft	4342 lbs-ft	4342 lbs-ft	4342 lbs-ft	4342 lbs-ft	3691 lbs-ft	3691 lbs-ft	3691 lbs-ft	3691 lbs-ft
е	0.47 ft	0.46 ft	0.45 ft	0.44 ft	0.33 ft	0.32 ft	0.31 ft	0.31 ft	0.48 ft	0.47 ft	0.46 ft	0.45 ft	5.28 ft	4.51 ft	3.93 ft	3.49 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft						
f _{min}	231.7 psf	231.2 psf	230.7 psf	230.3 psf	276.1 psf	274.0 psf	272.1 psf	270.3 psf	270.4 psf	268.5 psf	266.7 psf	265.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	392.7 psf	386.4 psf	380.6 psf	375.2 psf	396.5 psf	390.1 psf	384.1 psf	378.6 psf	461.8 psf	453.0 psf	444.9 psf	437.3 psf	941.8 psf	235.9 psf	165.2 psf	140.3 psf

Maximum Bearing Pressure = 942 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 809.4 \text{ ft-lbs}$

Resisting Force Required = 719.45 lbs S.F. = 1.67

Weight Required = 1199.08 lbs Minimum Width = 27 in in Weight Provided = 5383.13 lbs A minimum 132in long x 27in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		27 in			27 in			27 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	285 lbs	708 lbs	285 lbs	744 lbs	2003 lbs	744 lbs	83 lbs	207 lbs	83 lbs	
F _V	3 lbs	0 lbs	3 lbs	9 lbs	0 lbs	9 lbs	1 lbs	0 lbs	1 lbs	
P _{total}	6949 lbs	5383 lbs	6949 lbs	7088 lbs	5383 lbs	7088 lbs	2032 lbs	5383 lbs	2032 lbs	
М	10 lbs-ft	0 lbs-ft	10 lbs-ft	28 lbs-ft	0 lbs-ft	28 lbs-ft	3 lbs-ft	0 lbs-ft	3 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	
f _{min}	279.7 psf	217.5 psf	279.7 psf	283.4 psf	217.5 psf	283.4 psf	81.7 psf	217.5 psf	81.7 psf	
f _{max}	281.9 psf	217.5 psf	281.9 psf	289.4 psf	217.5 psf	289.4 psf	82.5 psf	217.5 psf	82.5 psf	

Maximum Bearing Pressure = 289 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 27in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	2.395 k	Maximum $\overline{\text{Axial Load}} = 3.570 \text{ k}$
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>32%</u>	Utilization = $\frac{48\%}{}$
Diagonal Strut		
Maximum Axial Load =	2.424 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>33%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 53.78 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 1.076 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.103 \text{ in} \\ \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 138 \text{ in}$$

$$J = 0.432$$

$$381.773$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.0 \text{ ksi}$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 138 \\ J &= & 0.432 \\ 242.785 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 28.3 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = \varphi b[Bbr-mDbr*h/t]$$

 $\varphi F_L = 43.2 \text{ ksi}$

$$\begin{array}{ccc} \phi F_L St = & 25.1 \text{ ksi} \\ Ix = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ y = & 41.015 \text{ mm} \\ Sx = & 1.335 \text{ in}^3 \end{array}$$

2.788 k-ft

 $M_{max}St =$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_I &= 29.4 \text{ ksi} \end{split}$$

$$\varphi F_L =$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

4.14
$$L_{b} = 88.9$$

$$J = 1.08$$

$$161.829$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F C Y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

 $\phi F_1 = 29.2$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dt}\right)^{2}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.1 \text{ ksi}$$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.16.1

3.4.18
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \ ksi \\ lx = & 984962 \ mm^4 \\ & 2.366 \ in^4 \\ y = & 43.717 \ mm \\ Sx = & 1.375 \ in^3 \\ M_{max} St = & 3.363 \ k\text{-ft} \end{array}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ Iy = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

 $P_{max} =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
1.88 in²

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_y}{a}Fcy\right)^2$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$31 = 0.3140$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

0.621 in³

$$M_{max}St = 1.460 \text{ k-ft}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$m = 0.65$$

 $C_0 = 27.5$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

 $P_{max} =$

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2})}]$	$\varphi(S) = \varphi(S) + $
$\phi F_L = 29.6 \text{ ksi}$	$\phi F_L = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

A.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

3.4.16.1

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{(\text{LbSc})/(\text{Cb*}\sqrt{(\text{lyJ})/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$J = 78.03$$
 $J = 0.942$

$$\left(Bc - \frac{\theta_y}{\theta_b}Fcy\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{by}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$1.6Dp$$
 S2 = 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

 $\phi F_L = 43.2 \text{ ksi}$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$|x| = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ & \text{ly} = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \\ & M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83271 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \phi \text{F}_{\text{L}} &= & \phi \text{Fcy} \\ \phi \text{F}_{\text{L}} &= & 33.25 \text{ ksi} \\ \phi \text{F}_{\text{L}} &= & 8.94 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 9.21 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Υ	-32 97	-32 97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-37.962	-37.962	0	0
2	M14	У	-37.962	-37.962	0	0
3	M15	V	-63.27	-63.27	0	0
4	M16	٧	-63.27	-63.27	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	85.415	85.415	0	0
2	M14	٧	66.434	66.434	0	0
3	M15	V	37.962	37.962	0	0
4	M16	V	37 962	37 962	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	744.893	2	1039.849	2	.802	1	.003	1	Ö	1	Ó	1
2		min	-926.545	3	-1267.936	3	.05	15	0	15	0	1	0	1
3	N7	max	.043	9	993.32	1	899	15	002	15	0	1	0	1
4		min	144	2	51.802	15	-15.802	1	03	1	0	1	0	1
5	N15	max	.204	3	2395.114	1	0	1	0	1	0	1	0	1
6		min	-1.558	2	108.374	15	0	3	0	10	0	1	0	1
7	N16	max	2785.592	2	3441.52	2	0	15	0	15	0	1	0	1
8		min	-2954.918	3	-4172.372	3	0	14	0	1	0	1	0	1
9	N23	max	.043	9	993.32	1	15.802	1	.03	1	0	1	0	1
10		min	144	2	51.802	15	.899	15	.002	15	0	1	0	1
11	N24	max	744.893	2	1039.849	2	05	15	0	15	0	1	0	1
12		min	-926.545	3	-1267.936	3	802	1	003	1	0	1	0	1
13	Totals:	max	4273.532	2	9142.89	1	0	1						
14		min	-4807.744	3	-6261.849	3	0	10						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	147.095	1	358.879	2	-11.393	15	.002	3	.352	1	0	1
2			min	8.173	15	-570.411	3	-205.668	1	011	2	.02	15	0	3
3		2	max	147.095	1	251.616	2	-8.774	15	.002	3	.12	1	.621	3
4			min	8.173	15	-401.393	3	-158.326	1	011	2	.007	15	39	2
5		3	max	147.095	1	144.353	2	-6.156	15	.002	3	001	12	1.026	3
6			min	8.173	15	-232.376	3	-110.983	1	011	2	052	1	643	2
7		4	max	147.095	1	37.144	1	-3.537	15	.002	3	008	12	1.215	3
8			min	8.173	15	-63.359	3	-63.64	1	011	2	164	1	759	2
9		5	max	147.095	1	105.658	3	918	15	.002	3	012	12	1.188	3
10			min	8.173	15	-70.173	2	-16.297	1	011	2	215	1	738	2
11		6	max	147.095	1	274.676	3	31.045	1	.002	3	011	15	.945	3
12			min	8.173	15	-177.437	2	1.215	12	011	2	205	1	58	2
13		7	max	147.095	1	443.693	3	78.388	1	.002	3	008	15	.486	3
14			min	8.173	15	-284.7	2	3.833	12	011	2	135	1	285	1
15		8	max	147.095	1	612.71	3	125.731	1	.002	3	0	10	.148	2
16			min	8.173	15	-391.963	2	6.451	12	011	2	005	1	189	3
17		9	max	147.095	1	781.728	3	173.074	1	.002	3	.186	1	.717	2
18			min	8.173	15	-499.226	2	9.07	12	011	2	.008	12	-1.08	3
19		10	max	147.095	1	606.489	2	-11.688	12	.002	3	.437	1	1.424	2
20			min	8.173	15	-950.745	3	-220.416	1	011	2	.021	12	-2.187	3
21		11	max	147.095	1	499.226	2	-9.07	12	.011	2	.186	1	.717	2
22			min	8.173	15	-781.728	3	-173.074	1	002	3	.008	12	-1.08	3
23		12	max	147.095	1	391.963	2	-6.451	12	.011	2	0	10	.148	2
24			min	8.173	15	-612.71	3	-125.731	1	002	3	005	1	189	3
25		13	max	147.095	1	284.7	2	-3.833	12	.011	2	008	15	.486	3
26			min	8.173	15	-443.693	3	-78.388	1	002	3	135	1	285	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	I	Axial[lb]	LC					Torque[k-ft]	LC			z-z Mome	LC
27		14	max		1	177.437	2	-1.215	12	.011	2	011	15	.945	3
28			min	8.173	15	-274.676	3	-31.045	1	002	3	205	1	58	2
29		15	max	147.095	1	70.173	2	16.297	1	.011	2	012	12	1.188	3
30			min	8.173	15	-105.658	3	.918	15	002	3	215	1	738	2
31		16	max	147.095	1	63.359	3	63.64	1	.011	2	008	12	1.215	3
32			min	8.173	15	-37.144	1	3.537	15	002	3	164	1	759	2
33		17	max	147.095	1	232.376	3	110.983	1	.011	2	001	12	1.026	3
34			min	8.173	15	-144.353	2	6.156	15	002	3	052	1	643	2
35		18	max	147.095	1	401.393	3	158.326	1	.011	2	.12	1	.621	3
36			min	8.173	15	-251.616	2	8.774	15	002	3	.007	15	39	2
37		19	max	147.095	1	570.411	3	205.668	1	.011	2	.352	1	0	1
38			min	8.173	15	-358.879	2	11.393	15	002	3	.02	15	0	3
39	M14	1	max	62.695	1	375.416	2	-11.707	15	.006	3	.396	1	0	1
40	IVIT		min	3.491	15	-448.988	3	-211.347	1	008	2	.022	15	0	3
41		2	max	62.695	1	268.152	2	-9.088	15	.006	3	.156	1	.491	3
42			min	3.491	15	-318.777	3	-164.005		008	2	.009	15	411	2
43		3		62.695	1	160.889	2	-6.47	15	.006	3	0	3	.815	3
44		3	max	3.491			3	-116.662	1	008	2	023	1	685	2
		4	min		15	-188.565									
45		4	max	62.695	1	53.626	2	-3.851	15	.006	3	007	12	.972	3
46		_	min	3.491	15	-58.353	3	-69.319	1_	008	2	142	1	822	2
47		5	max	62.695	1	71.858	3	-1.232	15	.006	3	011	12	.964	3
48			min	3.491	15	-54.311	1_	-21.976	1	008	2	2	1_	822	2
49		6	max	62.695	1	202.07	3	25.366	1_	.006	3	011	15	.789	3
50			min	3.491	15	-160.9	2	.915	12	008	2	198	1	685	2
51		7	max	62.695	1	332.282	3	72.709	1	.006	3	008	15	.447	3
52			min	3.491	15	-268.164	2	3.533	12	008	2	136	1	411	2
53		8	max	62.695	1	462.493	3	120.052	1	.006	3	0	15	.01	1
54			min	3.491	15	-375.427	2	6.151	12	008	2	012	1	06	3
55		9	max	62.695	1	592.705	3	167.395	1	.006	3	.171	1	.555	1
56			min	3.491	15	-482.69	2	8.769	12	008	2	.007	12	735	3
57		10	max	62.695	1	589.953	2	-11.388	12	.006	3	.415	1	1.236	1
58			min	3.491	15	-722.917	3	-214.737	1	008	2	.02	12	-1.575	3
59		11	max	62.695	1	482.69	2	-8.769	12	.008	2	.171	1	.555	1
60			min	3.491	15	-592.705	3	-167.395		006	3	.007	12	735	3
61		12	max	62.695	1	375.427	2	-6.151	12	.008	2	0	15	.01	1
62			min	3.491	15	-462.493	3	-120.052	1	006	3	012	1	06	3
63		13	max	62.695	1	268.164	2	-3.533	12	.008	2	008	15	.447	3
64			min	3.491	15	-332.282	3	-72.709	1	006	3	136	1	411	2
65		14	max	62.695	1	160.9	2	915	12	.008	2	011	15	.789	3
66			min	3.491	15	-202.07	3	-25.366	1	006	3	198	1	685	2
67		15			1	54.311	1	21.976	1	.008	2	011	12	.964	3
68		10	min	3.491	15	-71.858	3	1.232	15	006	3	2	1	822	2
69		16	max		1	58.353	3	69.319	1	.008	2	007	12	.972	3
70		10	min	3.491	15	-53.626	2	3.851	15	006	3	142	1	822	2
71		17	max		1	188.565	3	116.662	1	.008	2	0	3	.815	3
72		17		3.491		-160.889	2	6.47	15		3	023	1	685	2
		10	min		15					006			•		
73		18	max		1	318.777	3	164.005	1	.008	2	.156	1_	.491	3
74		40	min	3.491	15	-268.152	2	9.088	15	006	3	.009	15	411	2
75		19	max		1	448.988	3	211.347	1	.008	2	.396	1	0	1
76	NAA C	4	min	3.491	15	-375.416	2	11.707	15	006	3	.022	15	0	3
77	M15	1	max		15	550.05	2	-11.704	15		2	.396	1_	0	2
78			min	-66.228	1_	-252.605	3	-211.311	1_	006	3	.022	15	0	3
79		2	max	-3.687	15	391.046	2	-9.085	15	.009	2	.156	1	.277	3
80			min	-66.228	1	-180.603	3	-163.968		006	3	.009	15	601	2
81		3	max		15	232.042	2	-6.467	15	.009	2	0	3	.462	3
82			min		1	-108.601	3	-116.626		006	3	023	1	999	2
83		4	max	-3.687	15	73.038	2	-3.848	15	.009	2	007	12	.554	3

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]			LC		LC
84			min	-66.228	1_	-36.599	3	-69.283	1	006	3	142	1	-1.194	2
85		5	max	-3.687	<u> 15</u>	35.404	3	-1.229	15	.009	2	011	12	.555	3
86			min	-66.228	1	-85.966	2	-21.94	1	006	3	201	1	-1.186	2
87		6	max	-3.687	15	107.406	3	25.403	1	.009	2	011	15	.464	3
88			min	-66.228	1	-244.97	2	.955	12	006	3	198	1	975	2
89		7	max	-3.687	15	179.408	3	72.745	1	.009	2	008	15	.281	3
90			min	-66.228	1	-403.974	2	3.573	12	006	3	136	1	56	2
91		8	max	-3.687	15	251.41	3	120.088	1	.009	2	0	15	.058	2
92			min	-66.228	1	-562.978	2	6.192	12	006	3	012	1	0	15
93		9	max	-3.687	15	323.413	3	167.431	1	.009	2	.171	1	.879	2
94			min	-66.228	1	-721.982	2	8.81	12	006	3	.007	12	362	3
95		10	max	-3.687	15	880.986	2	-11.428	12	.009	2	.415	1	1.903	2
96			min	-66.228	1	-395.415	3	-214.774	1	006	3	.02	12	821	3
97		11	max	-3.687	15	721.982	2	-8.81	12	.006	3	.171	1	.879	2
98			min	-66.228	1	-323.413	3	-167.431	1	009	2	.007	12	362	3
99		12	max	-3.687	15	562.978	2	-6.192	12	.006	3	0	15	.058	2
100		12	min	-66.228	1	-251.41	3	-120.088	1	009	2	012	1	0	15
101		13	max	-3.687	15	403.974	2	-3.573	12	.006	3	008	15	.281	3
102		10	min	-66.228	1	-179.408	3	-72.745	1	009	2	136	1	56	2
103		14	max	-3.687	15	244.97	2	955	12	.006	3	011	15	.464	3
104		14	min	-66.228	1	-107.406	3	-25.403	1	009	2	198	1	975	2
105		15	max	-3.687	15	85.966	2	21.94	1	.006	3	011	12	.555	3
106		13	min	-66.228	1	-35.404	3	1.229	15	009	2	201	1	-1.186	2
107		16		-3.687	15	36.599	3	69.283	1	.006	3	007	12	.554	3
		10	max		15 1	-73.038	2		15	009			1		
108		17	min	-66.228	•			3.848			2	142		-1.194	2
109		17	max	-3.687	<u>15</u>	108.601	3	116.626	1	.006	3	0	3	.462	3
110		40	min	-66.228	1_	-232.042	2	6.467	15	009	2	023	1	999	2
111		18	max	-3.687	<u>15</u>	180.603	3	163.968	11	.006	3	.156	1	.277	3
112		40	min	-66.228	1_	-391.046	2	9.085	15	009	2	.009	15	601	2
113		19	max	-3.687	<u>15</u>	252.605	3	211.311	1	.006	3	.396	1	0	2
114	N440	4	min	-66.228	1_	-550.05	2	11.704	15	009	2	.022	15	0	3
115	M16	1	max	-8.826	<u>15</u>	534.069	2	-11.402	15	.008	1	.354	1	0	2
116			min	-158.562	1_	-240.393	3	-205.898	1_	009	3	.02	15	0	3
117		2	max	-8.826	15	375.065	2	-8.784	15	.008	1	.121	1	.261	3
118			min	-158.562	1_	-168.391	3	-158.556	1_	009	3	.007	15	<u>581</u>	2
119		3	max	-8.826	<u>15</u>	216.061	2	-6.165	15	.008	1	002	12	.43	3
120			min	-158.562	1_	-96.389	3	-111.213	1_	009	3	051	1	<u>958</u>	2
121		4	max	-8.826	<u>15</u>	57.057	2	-3.546	15	.008	1	008	12	.507	3
122		_		-158.562	_1_	-24.386	3	-63.87	1_	009	3	163	1	-1.133	2
123		5	max	-8.826	<u>15</u>	47.616	3_	928	15	.008	1	012	12	.493	3
124				-158.562	_1_	-101.947	2	-16.527	1	009	3	214	1	-1.104	2
125		6	max		<u>15</u>	119.618	3	30.815	1	.008	1	011	15	.386	3
126				-158.562	_1_	-260.951	2	1.343	12	009	3	205	1_	872	2
127		7	max		15	191.62	3	78.158	1	.008	1	008	15	.187	3
128			min	-158.562	_1_	-419.955	2	3.961	12	009	3	136	1	437	2
129		8	max		<u>15</u>	263.623	3_	125.501	1	.008	1	0	10	.201	2
130				-158.562	_1_	-578.959	2	6.579	12	009	3	006	1	104	3
131		9	max		<u>15</u>	335.625	3	172.844	1	.008	1_	.185	1	1.042	2
132				-158.562	1_	-737.963	2	9.198	12	009	3	.009	12	487	3
133		10	max		15	896.967	2	-11.816	12	.008	1	.436	1	2.087	2
134				-158.562	1_	-407.627	3	-220.186		009	3	.022	12	962	3
135		11	max		15	737.963	2	-9.198	12	.009	3	.185	1	1.042	2
136			min	-158.562	1_	-335.625	3	-172.844	1	008	1	.009	12	487	3
137		12	max		15	578.959	2	-6.579	12	.009	3	0	10	.201	2
138			min	-158.562	1_	-263.623	3	-125.501	1	008	1	006	1	104	3
139		13	max		15	419.955	2	-3.961	12	.009	3	008	15	.187	3
140			min	-158.562	1	-191.62	3	-78.158	1	008	1	136	1	437	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
141		14	max	-8.826	<u>15</u>	260.951	2	-1.343	12	.009	3_	011	15	.386	3
142			min	-158.562	_1_	-119.618	3	-30.815	1	008	1_	205	1	872	2
143		15	max	-8.826	15	101.947	2	16.527	1	.009	3	012	12	.493	3
144				-158.562	_1_	-47.616	3	.928	15	008	1_	214	1	-1.104	2
145		16	max	-8.826	15	24.386	3	63.87	1	.009	3	008	12	.507	3
146			min	-158.562	_1_	-57.057	2	3.546	15	008	1_	163	1	-1.133	2
147		17	max	-8.826	<u>15</u>	96.389	3	111.213	1	.009	3	002	12	.43	3
148			min	-158.562	_1_	-216.061	2	6.165	15	008	_1_	051	1	958	2
149		18	max	-8.826	15	168.391	3	158.556	1	.009	3	.121	1	.261	3
150			min	-158.562	_1_	-375.065	2	8.784	15	008	1_	.007	15	581	2
151		19	max	-8.826	<u>15</u>	240.393	3	205.898	1	.009	3_	.354	1	0	2
152			min	-158.562	<u>1</u>	-534.069	2	11.402	15	008	1_	.02	15	0	3
153	<u>M2</u>	1	max	867.812	2	2.016	4	.498	1	0	12	0	3	0	1
154			min	-1084.334	3	.474	15	.028	15	0	1_	0	1	0	1
155		2	max	868.332	2	1.897	4	.498	1	0	12	0	1	0	15
156			min	-1083.943	3	.446	15	.028	15	0	1_	0	15	0	4
157		3	max	868.853	2	1.779	4	.498	1	0	12	0	1	0	15
158			min	-1083.553	3	.418	15	.028	15	0	1	0	15	001	4
159		4	max	869.374	2	1.66	4	.498	1	0	12	0	1	0	15
160			min	-1083.162	3	.391	15	.028	15	0	1	0	15	002	4
161		5	max	869.894	2	1.541	4	.498	1	0	12	0	1	0	15
162			min	-1082.772	3	.363	15	.028	15	0	1	0	15	003	4
163		6	max	870.415	2	1.422	4	.498	1	0	12	0	1	0	15
164			min	-1082.381	3	.335	15	.028	15	0	1	0	15	003	4
165		7	max	870.936	2	1.303	4	.498	1	0	12	.001	1	0	15
166			min	-1081.991	3	.307	15	.028	15	0	1	0	15	004	4
167		8	max	871.456	2	1.184	4	.498	1	0	12	.001	1	0	15
168			min	-1081.6	3	.279	15	.028	15	0	1	0	15	004	4
169		9	max	871.977	2	1.065	4	.498	1	0	12	.001	1	001	15
170			min	-1081.209	3	.251	15	.028	15	0	1	0	15	004	4
171		10	max	872.498	2	.947	4	.498	1	Ö	12	.002	1	001	15
172			min	-1080.819	3	.223	15	.028	15	0	1	0	15	005	4
173		11	max	873.018	2	.828	4	.498	1	0	12	.002	1	001	15
174			min	-1080.428	3	.185	12	.028	15	0	1	0	15	005	4
175		12	max	873.539	2	.712	2	.498	1	0	12	.002	1	001	15
176		12	min	-1080.038	3	.139	12	.028	15	0	1	0	15	005	4
177		13	max	874.06	2	.62	2	.498	1	0	12	.002	1	001	15
178		10	min	-1079.647	3	.092	12	.028	15	0	1	0	15	006	4
179		14	max	874.581	2	.527	2	.498	1	0	12	.002	1	001	15
180		17	min	-1079.257	3	.046	12	.028	15	0	1	0	15	006	4
181		15		875.101	2	.434	2	.498	1	0	12	.002	1	001	15
182		10	min	-1078.866	3	014	3	.028	15	0	1	0	15	006	4
183		16		875.622	2	.342	2	.498	1	0	12	.003	1	001	15
184		10		-1078.476	3	084	3	.028	15	0	1	.003	15	006	4
185		17	max		2	.249	2	.498	1	0	12	.003	1	006 001	15
186		17	min		3	153	3	.028	15	0	1	.003	15	001	4
187		18		876.663	2	.156	2	.498	1	0	12	.003	1	006 001	15
188		10		-1077.695	3	223	3	.028	15	0	1	.003	15	006	4
189		19		877.184	_	.064	2	.498	1	0	12	.003	1	006 001	15
		19		-1077.304	2		3		15						
190	MO	4	min		3	292 7.66		.028		0	1_	0	15	006	4
191	M3	1		616.964	2	7.66	4	.416	1	0	<u>15</u>	0	1	.006	4
192		2		-766.005	3	1.801	<u>15</u>	.023	15	0	1_	0	15	.001	15
193		2		616.794	2	6.899	4	.416	1	0	<u>15</u>	0	1	.003	2
194				-766.133	3	1.622	15	.023	15	0	1_	0	15	0	12
195		3	max		2	6.138	4_	.416	1	0	<u>15</u>	0	1	.001	2
196				-766.261	3	1.443	15	.023	15	0	1_	0	15	001	3
197		4	max	616.453	2	5.377	4	.416	1	0	15	.001	1	0	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-766.389	3	1.264	15	.023	15	0	1	0	15	002	3
199		5	max	616.283	2	4.616	4	.416	1	0	15	.001	1	0	15
200			min	-766.516	3	1.085	15	.023	15	0	1	0	15	004	4
201		6	max	616.112	2	3.855	4	.416	1	0	15	.001	1	001	15
202			min	-766.644	3	.907	15	.023	15	0	1	0	15	006	4
203		7	max		2	3.094	4	.416	1	0	15	.002	1	002	15
204			min	-766.772	3	.728	15	.023	15	0	1	0	15	007	4
205		8	max	615.772	2	2.333	4	.416	1	0	15	.002	1	002	15
206			min	-766.9	3	.549	15	.023	15	0	1	0	15	008	4
207		9	max	615.601	2	1.572	4	.416	1	0	15	.002	1	002	15
208			min	-767.027	3	.37	15	.023	15	0	1	0	15	009	4
209		10	max		2	.811	4	.416	1	0	15	.002	1	002	15
210			min	-767.155	3	.191	15	.023	15	0	1	0	15	01	4
211		11	max	615.261	2	.176	2	.416	1	0	15	.002	1	002	15
212			min	-767.283	3	159	3	.023	15	0	1	0	15	01	4
213		12	max	615.09	2	167	15	.416	1	0	15	.002	1	002	15
214			min	-767.411	3	711	4	.023	15	0	1	0	15	01	4
215		13	max	614.92	2	346	15	.416	1	0	15	.003	1	002	15
216			min	-767.538	3	-1.472	4	.023	15	0	1	0	15	009	4
217		14	max	614.749	2	524	15	.416	1	0	15	.003	1	002	15
218			min	-767.666	3	-2.232	4	.023	15	0	1	0	15	009	4
219		15	max		2	703	15	.416	1	0	15	.003	1	002	15
220			min	-767.794	3	-2.993	4	.023	15	0	1	0	15	008	4
221		16	max		2	882	15	.416	1	0	15	.003	1	001	15
222			min	-767.922	3	-3.754	4	.023	15	0	1	0	15	006	4
223		17	max		2	-1.061	15	.416	1	0	15	.003	1	001	15
224			min	-768.049	3	-4.515	4	.023	15	0	1	0	15	004	4
225		18	max	614.068	2	-1.24	15	.416	1	0	15	.004	1	0	15
226			min	-768.177	3	-5.276	4	.023	15	0	1	0	15	002	4
227		19	max	613.898	2	-1.419	15	.416	1	0	15	.004	1	0	1
228			min	-768.305	3	-6.037	4	.023	15	0	1	0	15	0	1
229	<u>M4</u>	1	max		1_	0	1	9	15	0	1	.003	1	0	1
230			min	50.877	15	0	1	-16.231	1	0	1	0	15	0	1
231		2	max		1_	0	1	9	15	0	1	.002	1	0	1
232			min	50.928	15	0	1	-16.231	1	0	1	0	15	0	1
233		3	max	990.595	1	0	1	9	15	0	1	0	12	0	1
234			min	50.98	15	0	1	-16.231	1	0	1	0	1	0	1
235		4	max	990.765	1_	0	1_	9	15	0	1	0	15	0	1
236			min	51.031	15	0	1	-16.231	1	0	1	002	1	0	1
237		5	max		1	0	1	9	15	0	1	0	15	0	1
238			min		15	0	1	-16.231	1_	0	1	004	1	0	1
239		6	max		1	0	1	9	15	0	1	0	15	0	1
240		L_	min	51.134	15	0	1	-16.231	1_	0	1	006	1	0	1
241		7		991.276	1	0	1	9	15	0	1	0	15	0	1
242			min	51.185	15	0	1	-16.231	1_	0	1	008	1	0	1
243		8		991.447	1	0	1	9	15	0	1	0	15	0	1
244			min	51.237	15	0	1	-16.231	1_	0	1	01	1	0	1
245		9		991.617	1_	0	1_	9	15	0	1	0	15	0	1
246			min		15	0	1	-16.231	1	0	1	011	1	0	1
247		10		991.787	1	0	1	9	15	0	1	0	15	0	1
248			min		15	0	1	-16.231	1_	0	1	013	1	0	1
249		11		991.958	1	0	1	9	15	0	1	0	15	0	1
250			min	51.391	15	0	1	-16.231	1_	0	1	015	1	0	1
251		12		992.128	1	0	1	9	15	0	1	0	15	0	1
252			min	51.442	15	0	1	-16.231	1_	0	1	017	1	0	1
253		13		992.298	1	0	1	9	15	0	1	001	15	0	1
254			min	51.493	15	0	1	-16.231	1	0	1	019	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec	I	Axial[lb]								y-y Mome			1 1
255		14	max		1_	0	1	9 16.221	<u>15</u>	0	<u>1</u> 1	001	<u>15</u>	0	1
256 257		15	min	51.545 992.639	<u>15</u> 1	0	1	-16.231 9	<u>1</u> 15	0	1	021 001	15	0	1
258		13	max	51.596	15	0	1	-16.231	1	0	1	023	1	0	1
259		16	max	992.809	1	0	1	9	15	0	1	023	15	0	1
260		10	min	51.648	15	0	1	-16.231	1	0	1	024	1	0	1
261		17	max	992.98	1	0	1	9	15	0	1	001	15	0	1
262		- ' '	min	51.699	15	0	1	-16.231	1	0	1	026	1	0	1
263		18	max		1	0	1	9	15	0	1	002	15	0	1
264			min	51.75	15	0	1	-16.231	1	0	1	028	1	0	1
265		19	max	993.32	1	0	1	9	15	Ö	1	002	15	0	1
266			min	51.802	15	0	1	-16.231	1	0	1	03	1	0	1
267	M6	1	max	2810.319	2	2.151	2	0	1	0	1	0	1	0	1
268			min	-3570.279	3	.34	12	0	1	0	1	0	1	0	1
269		2	max	2810.839	2	2.058	2	0	1	0	1	0	1	0	12
270			min	-3569.889	3	.294	12	0	1	0	1	0	1	0	2
271		3	max	2811.36	2	1.966	2	0	1	0	1	0	1	0	12
272			min	-3569.498	3	.248	12	0	1	0	1	0	1	001	2
273		4	max	2811.881	2	1.873	2	0	1	0	1	0	1	0	12
274			min	-3569.108	3	.201	12	0	1	0	1	0	1	002	2
275		5	max	2812.401	2	1.78	2	0	1	0	1	0	1	0	12
276			min	-3568.717	3	.155	12	0	1	0	1	0	1	003	2
277		6	max	2812.922	2	1.688	2	0	1	0	1	0	1	0	12
278			min	-3568.327	3	.109	12	0	1	0	1	0	1	003	2
279		7	max	2813.443	2	1.595	2	0	1	0	1	0	1	0	12
280			min	-3567.936	3	.048	3	0	1	0	1	0	1	004	2
281		8	max	2813.964	2	1.503	2	0	1	0	1	0	1	0	12
282			min	-3567.546	3	021	3	0	1	0	1	0	1	005	2
283		9	max	2814.484	2	1.41	2	0	1	0	1	0	1	0	12
284			min	-3567.155	3	09	3	0	1	0	1	0	1	005	2
285		10	max	2815.005	2	1.317	2	0	1_	0	1	0	1	0	12
286			min	-3566.765	3	16	3	0	1_	0	1	0	1	006	2
287		11	max	2815.526	2	1.225	2	0	_1_	0	1	0	1	0	12
288			min	-3566.374	3	229	3	0	1	0	1	0	1	006	2
289		12	max	2816.046	2	1.132	2	0	1_	0	_1_	0	1	0	3
290			min	-3565.984	3	299	3	0	1	0	1	0	1	006	2
291		13		2816.567	2	1.039	2	0	_1_	0	_1_	0	1	0	3
292				-3565.593	3	368	3	0	1_	0	1_	0	1	007	2
293		14		2817.088	2	.947	2	0	1	0	_1_	0	1	0	3
294			min	-3565.203	3	438	3	0	1_	0	1	0	1	007	2
295		15		2817.608	2	.854	2	0	_1_	0	_1_	0	1	0	3
296			min	-3564.812	3	507	3	0	1_	0	1	0	1	007	2
297		16		2818.129	2	.762	2	0	_1_	0	1	0	1	0	3
298				-3564.422	3	577	3	0	1_	0	1_	0	1	008	2
299		17	max		2	.669	2	0	1_	0	1	0	1	0	3
300			min		3	646	3	0	1_	0	1	0	1	008	2
301		18		2819.17	2	.576	2	0	_1_	0	_1_	0	1	0	3
302				-3563.641	3_	716	3	0	_1_	0	1_	0	1	008	2
303		19		2819.691	2	.484	2	0	_1_	0	1	0	1	.001	3
304				-3563.25	3	785	3	0	1_	0	1	0	1	008	2
305	M7	1		2386.944	2	7.695	4	0	1_	0	1	0	1	.008	2
306			min	-2421.286	3_	1.807	15	0	_1_	0	1	0	1	001	3
307		2		2386.773	2	6.934	4	0	_1_	0	1	0	1	.006	2
308				-2421.413	3	1.628	15	0	1_	0	1_	0	1	003	3
309		3		2386.603	2	6.173	4	0	1_	0	1	0	1	.004	2
310				-2421.541	3	1.449	15	0	1_	0	1	0	1	004	3
311		4	max	2386.433	2	5.412	4	0	_1_	0	_1_	0	1	.001	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

312		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
314						3			0	1	0	1	0	1	005	3
316			5	max		2			0		0	1	0	1		
316						3		15	0				0			
318			6	max												
318								15	0			1	0	1		
319			7					_				<u> </u>				
320				_						•						$\overline{}$
321			8										_			
322												1		1		
323			9							-						
325										1		1	0	1		
325			10	max		2			0			1	0	1	002	
326				min												
327			11	max		2			0	1	0	1	0	1		15
328				min		3	582		0	1	0	1	0	1	01	
339			12	max		2	057		0	1	0	1	0	_1_	002	15
330				min	-2422.691	3	-1.027		0	1	0	1	0	1	01	_
331	329		13	max	2384.9	2	34		0	1	0	1	0	_1_	002	15
332	330			min	-2422.819	3	-1.471	3	0	1	0	1	0	1	009	4
15	331		14	max	2384.729	2	519	15	0	1	0	1	0	1	002	15
334	332					3	-2.198	4	0	1	0	1	0	1	009	4
335	333		15	max		2	698	15	0	1	0	1	0	1	002	15
336						3	-2.959		0	1	0	1	0	1	007	
337	335		16	max		2	877	15	0	1	0	1	0	1	001	15
338	336			min	-2423.202	3	-3.72	4	0	1	0	1	0	1	006	4
18	337		17	max		2	-1.055	15	0	1	0	1	0	1	001	15
340	338			min	-2423.33	3	-4.481	4	0	1	0	1	0	1	004	4
341	339		18	max	2384.048	2	-1.234	15	0	1	0	1	0	1	0	15
342	340			min	-2423.457	3	-5.242	4	0	1	0	1	0	1	002	4
343 M8 1 max 2392.048 1 0 1 0 1 0 1 0 1 0 1 0 1 344	341		19	max	2383.878	2	-1.413	15	0	1	0	1	0	1	0	1
344 min 107.449 15 0 1 <t< td=""><td>342</td><td></td><td></td><td>min</td><td>-2423.585</td><td>3</td><td>-6.003</td><td>4</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	342			min	-2423.585	3	-6.003	4	0	1	0	1	0	1	0	1
345	343	M8	1	max	2392.048	1	0	1	0	1	0	1	0	1	0	1
346	344			min	107.449	15	0	1	0	1	0	1	0	1	0	1
347 3 max 2392.388 1 0 1 0 1 0 1 0 1 348 min 107.552 15 0 1<	345		2	max	2392.218	1	0	1	0	1	0	1	0	1	0	1
348 min 107.552 15 0 1 <t< td=""><td>346</td><td></td><td></td><td>min</td><td>107.501</td><td>15</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	346			min	107.501	15	0	1	0	1	0	1	0	1	0	1
349 4 max 2392.559 1 0 1	347		3	max	2392.388	1	0	1	0	1	0	1	0	1	0	1
350	348			min	107.552	15	0	1	0	1	0	1	0	1	0	1
351 5 max 2392.729 1 0 1	349		4	max	2392.559	1	0	1	0	1	0	1	0	1	0	1
352	350			min	107.604	15	0	1	0	1	0	1	0	1	0	1
353 6 max 2392.899 1 0 1	351		5	max	2392.729	1	0	1	0	1	0	1	0	1	0	1
354 min 107.706 15 0 1 <t< td=""><td>352</td><td></td><td></td><td>min</td><td>107.655</td><td>15</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	352			min	107.655	15	0	1	0	1	0	1	0	1	0	1
355 7 max 2393.07 1 0 <td< td=""><td>353</td><td></td><td>6</td><td>max</td><td>2392.899</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></td<>	353		6	max	2392.899	1	0	1	0	1	0	1	0	1	0	1
356 min 107.758 15 0 1 <t< td=""><td>354</td><td></td><td></td><td>min</td><td>107.706</td><td>15</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	354			min	107.706	15	0	1	0	1	0	1	0	1	0	1
356 min 107.758 15 0 1 <t< td=""><td></td><td></td><td>7</td><td>max</td><td>2393.07</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>			7	max	2393.07	1	0	1	0	1	0	1	0	1	0	1
357 8 max 2393.24 1 0 1 <				min	107.758	15	0	1	0	1	0	1	0	1	0	1
359 9 max 2393.41 1 0 1 <	357		8	max	2393.24	1	0	1	0	1	0	1	0	1	0	1
359 9 max 2393.41 1 0 1 <	358			min	107.809	15	0	1	0	1	0	1	0	1	0	1
360 min 107.861 15 0 1 <t< td=""><td></td><td></td><td>9</td><td>max</td><td></td><td></td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>			9	max			0	1	0	1	0	1	0	1	0	1
361 10 max 2393.581 1 0 1 0 1 0 1 0 1 362 min 107.912 15 0 1 0 1 0 1 0 1 0 1 363 11 max 2393.751 1 0 1 0 1 0 1 0 1 0 1 0 1 364 min 107.963 15 0 1 0 1 0 1 0 1 0 1 0 1 365 12 max 2393.921 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 108.015 15 0 1 0 1 0 1 0 1 0 1 0 1 367 13 max 2394.092 1 0 1 0 1 0 1 0 1 0 1 0 1								1	0	1		1	0	1		1
362 min 107.912 15 0 1 <t< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td></t<>			10					1		1		1		1		1
363 11 max 2393.751 1 0 1						15		1		1		1		1		1
364 min 107.963 15 0 1 <t< td=""><td></td><td></td><td>11</td><td>_</td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td></t<>			11	_				1		1		1		1		1
365 12 max 2393.921 1 0 1 0 1 0 1 0 1 0 1 366 min 108.015 15 0 1 0 1 0 1 0 1 0 1 367 13 max 2394.092 1 0 1 0 1 0 1 0 1								1		1		1				
366 min 108.015 15 0 1 0 1 0 1 0 1 0 1 367 13 max 2394.092 1 0 1 0 1 0 1 0 1			12							1		1		1		
367 13 max 2394.092 1 0 1 0 1 0 1 0 1 0 1								_								
			13													_

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC		LC	_	LC
369		14		2394.262	1_	0	1	0	1	0	1	0	1	0	1
370		4.5	min	108.118	15	0	1_	0	1	0	1_	0	1	0	1
371		15		2394.432	1_	0	1	0	1	0	1	0	1	0	1
372		4.0		108.169	15	0		0	•	0		0		0	
373		16		2394.603	1_	0	1	0	1	0	1	0	1	0	1
374		17	min	108.22	<u>15</u>	0		0	•	0		0	1	0	-
375		17		2394.773	1_	0	1	0	1_	0	1	0		0	1
376		40	min	108.272	15	0	1_	0	1_	0	1_	0	1	0	1
377		18		2394.943	1_	0	1	0	1	0	1_	0	1_	0	1
378		40	min	108.323	15	0	1_	0	1	0	1_	0	1_	0	1
379		19		2395.114	1_	0	1	0	1	0	1	0	1	0	1
380			min	108.374	<u>15</u>	0	1	0	1_	0	1	0	1	0	1
381	M10	1	max	867.812	2	2.016	4	028	15	0	1_	0	1	0	1
382			min	-1084.334	3	.474	15	498	1	0	12	0	3	0	1
383		2	max	868.332	2	1.897	4	028	15	0	1_	0	15	0	15
384			min	-1083.943	3	.446	15	498	1	0	12	0	1	0	4
385		3	max	868.853	2	1.779	4	028	15	0	1	0	15	0	15
386			min	-1083.553	3	.418	15	498	1	0	12	0	1	001	4
387		4	max	869.374	2	1.66	4	028	15	0	1_	0	15	0	15
388			min	-1083.162	3	.391	15	498	1	0	12	0	1	002	4
389		5	max	869.894	2	1.541	4	028	15	0	_1_	0	15	0	15
390			min	-1082.772	3	.363	15	498	1	0	12	0	1	003	4
391		6	max	870.415	2	1.422	4	028	15	0	1_	0	15	0	15
392			min	-1082.381	3	.335	15	498	1	0	12	0	1	003	4
393		7	max	870.936	2	1.303	4	028	15	0	1	0	15	0	15
394			min	-1081.991	3	.307	15	498	1	0	12	001	1	004	4
395		8	max	871.456	2	1.184	4	028	15	0	1	0	15	0	15
396			min	-1081.6	3	.279	15	498	1	0	12	001	1	004	4
397		9	max	871.977	2	1.065	4	028	15	0	1	0	15	001	15
398			min	-1081.209	3	.251	15	498	1	0	12	001	1	004	4
399		10	max	872.498	2	.947	4	028	15	0	1	0	15	001	15
400			min	-1080.819	3	.223	15	498	1	0	12	002	1	005	4
401		11	max	873.018	2	.828	4	028	15	0	1	0	15	001	15
402			min	-1080.428	3	.185	12	498	1	0	12	002	1	005	4
403		12	max	873.539	2	.712	2	028	15	0	1	0	15	001	15
404			min	-1080.038	3	.139	12	498	1	0	12	002	1	005	4
405		13	max	874.06	2	.62	2	028	15	0	1	0	15	001	15
406			min	-1079.647	3	.092	12	498	1	0	12	002	1	006	4
407		14	max	874.581	2	.527	2	028	15	0	1	0	15	001	15
408			min	-1079.257	3	.046	12	498	1	0	12	002	1	006	4
409		15		875.101	2	.434	2	028	15	0	1	0	15	001	15
410			min	-1078.866	3	014	3	498	1	0	12	002	1	006	4
411		16	max		2	.342	2	028	15	0	1	0	15	001	15
412				-1078.476	3	084	3	498	1	0	12	003	1	006	4
413		17	max		2	.249	2	028	15	0	1	0	15	001	15
414		17	min	-1078.085	3	153	3	498	1	0	12	003	1	006	4
415		18		876.663	2	.156	2	028	15	0	1	0	15	001	15
416		10		-1077.695	3	223	3	498	1	0	12	003	1	006	4
417		19		877.184	2	.064	2	028	15	0	1	0	15	001	15
418		13	min	-1077.304	3	292	3	498	1	0	12	003	1	006	4
419	M11	1		616.964	2	7.66	4	023	15	0	1	003 0	15	.006	4
420	IVI I I			-766.005	3	1.801	15	023 416	1	0	15	0	1	.001	15
421		2		616.794	2	6.899	4	023	15	0	13 1	0	15	.003	2
				-766.133			15	023 416	1	0	15	0	1		12
422		2			3	1.622			-	_		_	_	0	
423		3	max		2	6.138	4	023	<u>15</u> 1	0	1_	0	15	.001	3
424		1		-766.261	3	1.443	15	416	_	0	<u>15</u>	0	1 1 5	001	_
425		4	max	616.453	2	5.377	4	023	15	0	_1_	0	15	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-766.389	3	1.264	15	416	1	0	15	001	1	002	3
427		5	max		2	4.616	4	023	15	0	1	0	15	0	15
428			min	-766.516	3	1.085	15	416	1	0	15	001	1	004	4
429		6	max	616.112	2	3.855	4	023	15	0	1	0	15	001	15
430			min	-766.644	3	.907	15	416	1	0	15	001	1	006	4
431		7	max	615.942	2	3.094	4	023	15	0	1	0	15	002	15
432			min	-766.772	3	.728	15	416	1	0	15	002	1	007	4
433		8	max	615.772	2	2.333	4	023	15	0	1	0	15	002	15
434			min	-766.9	3	.549	15	416	1	0	15	002	1	008	4
435		9	max	615.601	2	1.572	4	023	15	0	1	0	15	002	15
436			min	-767.027	3	.37	15	416	1	0	15	002	1	009	4
437		10	max		2	.811	4	023	15	0	1	0	15	002	15
438			min	-767.155	3	.191	15	416	1	0	15	002	1	01	4
439		11	max	615.261	2	.176	2	023	15	0	1	0	15	002	15
440			min	-767.283	3	159	3	416	1	0	15	002	1	01	4
441		12	max	615.09	2	167	15	023	15	0	1	0	15	002	15
442			min	-767.411	3	711	4	416	1	0	15	002	1	01	4
443		13	max	614.92	2	346	15	023	15	0	1	0	15	002	15
444			min	-767.538	3	-1.472	4	416	1	0	15	003	1	009	4
445		14	max	614.749	2	524	15	023	15	0	1	0	15	002	15
446			min	-767.666	3	-2.232	4	416	1	0	15	003	1	009	4
447		15	max	614.579	2	703	15	023	15	0	1	0	15	002	15
448			min	-767.794	3	-2.993	4	416	1	0	15	003	1	008	4
449		16	max	614.409	2	882	15	023	15	0	1	0	15	001	15
450			min	-767.922	3	-3.754	4	416	1	0	15	003	1	006	4
451		17	max	614.238	2	-1.061	15	023	15	0	1	0	15	001	15
452			min	-768.049	3	-4.515	4	416	1	0	15	003	1	004	4
453		18	max	614.068	2	-1.24	15	023	15	0	1	0	15	0	15
454			min	-768.177	3	-5.276	4	416	1	0	15	004	1	002	4
455		19	max	613.898	2	-1.419	15	023	15	0	1	0	15	0	1
456			min	-768.305	3	-6.037	4	416	1	0	15	004	1	0	1
457	M12	1	max	990.254	1	0	1	16.231	1	0	1	0	15	0	1
458			min	50.877	15	0	1	.9	15	0	1	003	1	0	1
459		2	max	990.424	1	0	1	16.231	1	0	1	0	15	0	1
460			min	50.928	15	0	1	.9	15	0	1	002	1	0	1
461		3	max	990.595	1	0	1	16.231	1	0	1	0	1	0	1
462			min	50.98	15	0	1	.9	15	0	1	0	12	0	1
463		4	max	990.765	1	0	1	16.231	1	0	1	.002	1	0	1
464			min	51.031	15	0	1	.9	15	0	1	0	15	0	1
465		5	max	990.936	1	0	1	16.231	1	0	1	.004	1	0	1
466			min	51.082	15	0	1	.9	15	0	1	0	15	0	1
467		6	max	991.106	1	0	1	16.231	1	0	1	.006	1	0	1
468			min	51.134	15	0	1	.9	15	0	1	0	15	0	1
469		7	max	991.276	1	0	1	16.231	1	0	1	.008	1	0	1
470			min	51.185	15	0	1	.9	15	0	1	0	15	0	1
471		8	max	991.447	1	0	1	16.231	1	0	1	.01	1	0	1
472			min	51.237	15	0	1	.9	15	0	1	0	15	0	1
473		9	max	991.617	1	0	1	16.231	1	0	1	.011	1	0	1
474			min	51.288	15	0	1	.9	15	0	1	0	15	0	1
475		10	max	991.787	1	0	1	16.231	1	0	1	.013	1	0	1
476			min	51.339	15	0	1	.9	15	0	1	0	15	0	1
477		11	max	991.958	1	0	1	16.231	1	0	1	.015	1	0	1
478			min	51.391	15	0	1	.9	15	0	1	0	15	0	1
479		12	max	992.128	1	0	1	16.231	1	0	1	.017	1	0	1
480			min	51.442	15	0	1	9.	15	0	1	0	15	0	1
481		13	max		1	0	1	16.231	1	0	1	.019	1	0	1
482			min	51.493	15	0	1	.9	15	0	1	.001	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
483		14	max		1	0	1	16.231	1	0	1	.021	_1_	0	1
484			min	51.545	15	0	1	.9	15	0	1	.001	15	0	1
485		15	max	992.639	1	0	1	16.231	1	0	1	.023	<u>1</u>	0	1
486			min	51.596	15	0	1	.9	15	0	1	.001	15	0	1
487		16	max	992.809	1	0	1	16.231	1	0	1	.024	1	0	1
488			min	51.648	15	0	1	.9	15	0	1	.001	15	0	1
489		17	max	992.98	1	0	1	16.231	1	0	1	.026	1	0	1
490			min	51.699	15	0	1	.9	15	0	1	.001	15	0	1
491		18	max	993.15	1	0	1	16.231	1	0	1	.028	1	0	1
492			min	51.75	15	0	1	.9	15	0	1	.002	15	0	1
493		19	max	993.32	1	0	1	16.231	1	0	1	.03	1	0	1
494			min	51.802	15	0	1	.9	15	0	1	.002	15	0	1
495	M1	1	max	205.676	1	570.375	3	-8.172	15	0	1	.352	1	.002	3
496			min	11.393	15	-358.244	2	-146.882	1	0	3	.02	15	011	2
497		2	max	206.497	1	569.495	3	-8.172	15	0	1	.275	1	.178	2
498		_	min	11.641	15	-359.418	2	-146.882	1	0	3	.015	15	299	3
499		3	max	476.584	3	424.247	2	-8.146	15	0	3	.197	1	.359	2
500		3	min	-272.698	2	-416.828	3	-146.672	1	0	2	.011	15	588	3
		1													
501		4	max	477.2	3	423.073	2	-8.146	15	0	3	.12	1_	.146	1
502		_	min	-271.877	2	-417.708	3	-146.672	1_	0	2	.007	15	367	3
503		5	max	477.816	3	421.9	2	-8.146	15	0	3	.043	1_	003	15
504			min	-271.055	2	-418.588	3	-146.672	1_	0	2	.002	15	147	3
505		6	max	478.433	3	420.727	2	-8.146	15	0	3	002	15	.074	3
506			min	-270.233	2	-419.468	3	-146.672	1	0	2	035	1	31	2
507		7	max	479.049	3	419.553	2	-8.146	15	0	3	006	<u>15</u>	.296	3
508			min	-269.412	2	-420.348	3	-146.672	1	0	2	112	1_	532	2
509		8	max	479.665	3	418.38	2	-8.146	15	0	3	011	15	.518	3
510			min	-268.59	2	-421.228	3	-146.672	1	0	2	19	1_	753	2
511		9	max	498.593	3	44.12	2	-11.637	15	0	9	.109	1	.604	3
512			min	-175.548	2	.359	15	-209.412	1	0	3	.006	15	863	2
513		10	max		3	42.946	2	-11.637	15	0	9	0	15	.589	3
514			min	-174.727	2	.005	15	-209.412	1	0	3	001	1	886	2
515		11	max	499.825	3	41.773	2	-11.637	15	0	9	006	15	.574	3
516			min	-173.905	2	-1.41	4	-209.412	1	0	3	112	1	908	2
517		12	max	518.69	3	281.995	3	-7.95	15	0	2	.187	1	.5	3
518			min	-99.524	10	-508.913	2	-143.285	1	0	3	.01	15	806	2
519		13	max	519.306	3	281.115	3	-7.95	15	0	2	.111	1	.352	3
520		10	min	-98.839	10	-510.086	2	-143.285	1	0	3	.006	15	537	2
521		14	max	519.922	3	280.235	3	-7.95	15	0	2	.036	1	.203	3
522		17	min	-98.154	10	-511.259	2	-143.285	1	0	3	.002	15	268	2
523		15		520.538	3	279.355	3	-7.95	15	0	2	002	15	.056	3
524		13				-512.433		-143.285		0	3	04	1		9
525		16	min max	-97.47 521.154	<u>10</u> 3	278.475		-7.95	15	0	2	04	15	019 .273	2
		10					3	-143.285			3	115	1 <u>1</u>		3
526		17	min		10	-513.606	2			0				091	
527		17		521.771	3	277.594	3	-7.95	15	0	2	011	<u>15</u>	.545	2
528		40	min	-96.1	10	-514.78	2	-143.285		0	3	191	1_	238	3
529		18	max		15	535.778	2	-8.827	15	0	3	015	<u>15</u>	.274	2
530		4.0	min	-206.714	1_	-239.592	3	-158.768		0	2	27	1_	118	3
531		19		-11.402	15	534.604	2	-8.827	15	0	3	02	15	.009	3
532			min	-205.892	1	-240.472	3	-158.768	1	0	2	354	1_	008	1
533	<u>M5</u>	1		440.818	1	1901.32	3	0	1	0	1	0	1_	.022	2
534			min	23.377	12	-1208.998	2	0	1	0	1	0	1	003	3
535		2	max		1	1900.44	3	0	1	0	1	0	1	.66	2
536			min		12	-1210.172	2	0	1	0	1	0	1_	-1.006	3
537		3	max	1538.928	3	1311.249	2	0	1	0	1	0	1	1.269	2
538			min	-986.985	2	-1362.303	3	0	1	0	1	0	1	-1.969	3
539		4	max	1539.544	3	1310.075	2	0	1	0	1	0	1	.596	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-986.163	2	-1363.183	3	0	1	0	1	0	1	-1.25	3
541		5	max	1540.16	3	1308.902	2	0	1	0	1_	0	1	0	9
542			min	-985.342	2	-1364.064	3	0	1	0	1	0	1	531	3
543		6	max	1540.776	3	1307.729	2	0	1	0	1	0	1	.189	3
544			min	-984.52	2	-1364.944	3	0	1	0	1	0	1	804	2
545		7	max	1541.393	3	1306.555	2	0	1	0	1	0	1	.91	3
546			min	-983.699	2	-1365.824	3	0	1	0	1	0	1	-1.494	2
547		8	max	1542.009	3	1305.382	2	0	1	0	1	0	1	1.631	3
548			min	-982.877	2	-1366.704	3	0	1	0	1	0	1	-2.183	2
549		9		1576.696	3	146.976	2	0	1	0	1	0	1	1.873	3
550				-792.77	2	.357	15	0	1	0	1	0	1	-2.488	2
551		10		1577.312	3	145.803	2	0	1	0	1	0	1	1.82	3
552				-791.949	2	.003	15	0	1	0	1	0	1	-2.565	2
553		11	_	1577.928	3	144.629	2	0	1	0	1	0	1	1.768	3
554				-791.127	2	-1.219	4	0	1	0	1	0	1	-2.642	2
555		12		1612.742	3	916.085	3	0	1	0	1	0	1	1.555	3
556		12		-601.032	2	-1604.276	2	0	1	0	1	0	1	-2.367	2
557		13		1613.358	3	915.205	3	0	1	0	1	0	1	1.072	3
558		10		-600.21	2	-1605.45	2	0	1	0	1	0	1	-1.52	2
559		14	_	1613.974	3	914.325	3	0	1	0	1	0	1	.589	3
560		14		-599.389	2	-1606.623	2	0	1	0	1	0	1	673	2
561		15		1614.59	3	913.445	3	0	1	0	1	0	1	.175	2
562		13		-598.567	2	-1607.797	2	0	1	0	1	0	1	005	4
		16							1		1		1		
563		16		1615.207	3_	912.565	3	0	1	0	1	0	1	1.024	2
564		47	min	-597.745	2	-1608.97	2	0	_	0	1	0		375	3
565		17		1615.823	3	911.685	3	0	1	0		0	1	1.873	2
566		40		-596.924	2	-1610.143	2	0	1	0	1_	0	1	856	3
567		18	max		12	1798.339	2	0	1	0	1	0	1	.965	2
568		40		-441.206	1_	-814.909	3	0	1	0	1_	0	1	447	3
569		19	max	-23.631	12	1797.166	2	0	1	0	1	0	1	.016	1
570	140	4		-440.385	1_	-815.789	3	0	1	0	1	0	1	<u>017</u>	3
571	<u>M9</u>	1		205.676	_1_	570.375	3	146.882	1	0	3	02	15	.002	3
572			min	11.393	<u>15</u>	-358.244	2	8.172	15	0	1_	352	1	011	2
573		2	max		_1_	569.495	3	146.882	1	0	3	015	15	.178	2
574			min	11.641	<u>15</u>	-359.418	2	8.172	15	0	_1_	275	1	299	3
575		3	max		3	424.247	2	146.672	1	0	2	011	15	.359	2
576			min	-272.698	2	-416.828	3	8.146	15	0	3	197	1	588	3
577		4	max	477.2	3_	423.073	2	146.672	1	0	2	007	15	.146	1
578			min	-271.877	2	-417.708	3	8.146	15	0	3	12	1	367	3
579		5	max		3	421.9	2	146.672	1	0	2	002	15	003	15
580				-271.055		-418.588			15		3	043	1	147	3
581		6		478.433	3	420.727	2	146.672	1_	0	2	.035	1	.074	3
582				-270.233	2	-419.468	3	8.146	15	0	3	.002	15	31	2
583		7	max	479.049	3	419.553	2	146.672	1	0	2	.112	1	.296	3
584			min	-269.412	2	-420.348	3	8.146	15	0	3	.006	15	532	2
585		8	max	479.665	3	418.38	2	146.672	1	0	2	.19	1	.518	3
586			min	-268.59	2	-421.228	3	8.146	15	0	3	.011	15	753	2
587		9	max	498.593	3	44.12	2	209.412	1	0	3	006	15	.604	3
588			min	-175.548	2	.359	15	11.637	15	0	9	109	1	863	2
589		10	max		3	42.946	2	209.412	1	0	3	.001	1	.589	3
590				-174.727	2	.005	15	11.637	15	0	9	0	15	886	2
591		11		499.825	3	41.773	2	209.412	1	0	3	.112	1	.574	3
592				-173.905	2	-1.41	4	11.637	15	0	9	.006	15	908	2
593		12	max		3	281.995	3	143.285	1	0	3	01	15	<u></u>	3
594			min	-99.524	10	-508.913	2	7.95	15	0	2	187	1	806	2
595		13		519.306	3	281.115	3	143.285	1	0	3	006	15	.352	3
596				-98.839	10	-510.086	2	7.95	15	0	2	111	1	537	2
000			1111111	00.003	10	010.000		1.00	10	U				.001	

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	519.922	3	280.235	3	143.285	1	0	3	002	15	.203	3
598			min	-98.154	10	-511.259	2	7.95	15	0	2	036	1	268	2
599		15	max	520.538	3	279.355	3	143.285	1	0	3	.04	1	.056	3
600			min	-97.47	10	-512.433	2	7.95	15	0	2	.002	15	019	9
601		16	max	521.154	3	278.475	3	143.285	1	0	3	.115	1	.273	2
602			min	-96.785	10	-513.606	2	7.95	15	0	2	.006	15	091	3
603		17	max	521.771	3	277.594	3	143.285	1	0	3	.191	1	.545	2
604			min	-96.1	10	-514.78	2	7.95	15	0	2	.011	15	238	3
605		18	max	-11.65	15	535.778	2	158.768	1	0	2	.27	1	.274	2
606			min	-206.714	1	-239.592	3	8.827	15	0	3	.015	15	118	3
607		19	max	-11.402	15	534.604	2	158.768	1	0	2	.354	1	.009	3
608			min	-205.892	1	-240.472	3	8.827	15	0	3	.02	15	008	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.002	1	.087	2	.008	3 7.369e-3	2	NC	1_	NC	1
2			min	0	15	012	3	004	2 -1.415e-3	3	NC	1_	NC	1
3		2	max	.001	1	.398	3	.068	1 8.616e-3	2	NC	5	NC	3
4			min	0	15	161	1	.004	15 -1.584e-3	3	673.811	3	4134.473	1
5		3	max	.001	1	.729	3	.168	1 9.864e-3	2	NC	5	NC	3
6			min	0	15	352	1	.01	15 -1.753e-3	3	372.414	3	1662.346	1
7		4	max	.001	1	.93	3	.255	1 1.111e-2	2	NC	15	NC	3
8			min	0	15	462	1	.014	15 -1.922e-3	3	292.98	3	1090.775	1
9		5	max	0	1	.976	3	.3	1 1.236e-2	2	NC	15	NC	5
10			min	0	15	475	1	.017	15 -2.091e-3	3	279.374	3	923.963	1
11		6	max	0	1	.87	3	.291	1 1.361e-2	2	NC	5	NC	5
12			min	0	15	395	1	.017	15 -2.26e-3	3	312.835	3	952.441	1
13		7	max	0	1	.645	3	.23	1 1.485e-2	2	NC	5	NC	5
14			min	0	15	241	1	.013	15 -2.429e-3	3	420.4	3	1206.879	1
15		8	max	0	1	.358	3	.135	1 1.61e-2	2	NC	5	NC	3
16			min	0	15	052	1	.008	15 -2.598e-3	3	745.581	3	2065.298	1
17		9	max	0	1	.14	2	.04	1 1.735e-2	2	NC	4	NC	2
18			min	0	15	.004	15	004	10 -2.767e-3	3	2493.5	3	7154.807	1
19		10	max	0	1	.217	2	.026	3 1.86e-2	2	NC	3	NC	1
20			min	0	1	018	3	017	2 -2.936e-3	3	2127.458	2	NC	1
21		11	max	0	15	.14	2	.04	1 1.735e-2	2	NC	4	NC	2
22			min	0	1	.004	15	004	10 -2.767e-3	3	2493.5	3	7154.807	1
23		12	max	0	15	.358	3	.135	1 1.61e-2	2	NC	5	NC	3
24			min	0	1	052	1	.008	15 -2.598e-3	3	745.581	3	2065.298	1
25		13	max	0	15	.645	3	.23	1 1.485e-2	2	NC	5	NC	5
26			min	0	1	241	1	.013	15 -2.429e-3	3	420.4	3	1206.879	1
27		14	max	0	15	.87	3	.291	1 1.361e-2	2	NC	5	NC	5
28			min	0	1	395	1	.017	15 -2.26e-3	3	312.835	3	952.441	1
29		15	max	0	15	.976	3	.3	1 1.236e-2	2	NC	15	NC	5
30			min	0	1	475	1	.017	15 -2.091e-3	3	279.374	3	923.963	1
31		16	max	0	15	.93	3	.255	1 1.111e-2	2	NC	15	NC	3
32			min	001	1	462	1	.014	15 -1.922e-3	3	292.98	3	1090.775	1
33		17	max	0	15	.729	3	.168	1 9.864e-3	2	NC	5	NC	3
34			min	001	1	352	1	.01	15 -1.753e-3	3	372.414	3	1662.346	1
35		18	max	0	15	.398	3	.068	1 8.616e-3	2	NC	5	NC	3
36			min	001	1	161	1	.004	15 -1.584e-3	3	673.811	3	4134.473	1
37		19	max	0	15	.087	2	.008	3 7.369e-3	2	NC	1	NC	1
38			min	002	1	012	3	004	2 -1.415e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.184	3	.007	3 4.363e-3	2	NC	1	NC	1
40			min	0	15	29	2	003	2 -3.159e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
41		2	max	0	1	.563	3	.048	1	5.28e-3	2	NC	5_	NC	2
42			min	0	15	64	2	.003	15	-3.89e-3	3	727.633	3	5901.585	1
43		3	max	0	1	.88	3	.137	1	6.197e-3	2	NC	<u>15</u>	NC	3
44		_	min	0	15	938	2	.008	15		3	396.057	3	2037.176	
45		4	max	0	1	1.094	3	.221	1	7.114e-3	2	9742.331	15	NC 4057,000	3
46		_	min	0	15	-1.148	2	.012	15	-5.351e-3	3	303.072	3	1257.622	1
47		5	max	0	1	1.184	3	.269	1_45	8.031e-3	2	8750.271	15	NC	5
48		_	min	0	15	-1.254	2	.015	15	-6.082e-3	3	275.921	3	1030.72	1
49		6	max	0	1	1.15	3	.267	1_45	8.948e-3	2	8861.867	15	NC 4040 F00	5
50		-	min	0	15	-1.254	2	.015	15	-6.812e-3	3	285.47	3	1040.592	1
51		7	max	0	1	1.016	3	.214	1	9.864e-3	2	9938.407	15	NC	5
52		_	min	0	15	<u>-1.167</u>	2	.012		-7.543e-3	3	314.806	2	1299.408	1
53		8	max	0	1	.826	3	.127	1	1.078e-2	2	NC 070,000	<u>15</u>	NC	3
54			min	0	15	-1.028	2	.008		-8.273e-3	3	373.983	2	2197.471	1
55		9	max	0	1	.646	3	.039	1	1.17e-2	2	NC 450,440	5_	NC 7404 400	2
56		40	min	0	15	891	2	004	10	-9.004e-3	3	459.418	2	7484.103	
57		10	max	0	1	.563	3	.023	3	1.261e-2	2	NC 544.00	5	NC NC	1
58		4.4	min	0	1	826	2	016	2	-9.734e-3	3	514.89	2	NC NC	1
59		11	max	0	15	.646	3	.039	1	1.17e-2	2	NC 450,440	5_	NC 7404400	2
60		40	min	0	1	891	2	004	10	-9.004e-3	3	459.418	2	7484.103	1
61		12	max	0	15	.826	3	.127	1	1.078e-2	2	NC 272,002	15	NC	3
62		40	min	0	1	-1.028	2	.008	15	-8.273e-3	3	373.983	2	2197.471	1
63		13	max	0	15	1.016	3	.214	1	9.864e-3	2	9938.407	<u>15</u>	NC	5
64		4.4	min	0	1	-1.167	2	.012		-7.543e-3	3	314.806	2	1299.408	
65		14	max	0	15	1.15	3	.267	1	8.948e-3	2	8861.867	<u>15</u>	NC	5
66		4.5	min	0	•	-1.254	2	.015	15		3	285.47	3	1040.592	1
67		15	max	0	15	1.184	3	.269	1	8.031e-3	2	8750.271	15	NC	5
68		4.0	min	0	1	-1.254	2	.015	15		3	275.921	3	1030.72	1
69		16	max	0	15	1.094	3	.221	1	7.114e-3	2	9742.331	15	NC 4057 COO	3
70 71		17	min	0	15	<u>-1.148</u> .88	3	.012 .137	15	-5.351e-3	2	303.072 NC	<u>3</u> 15	1257.622 NC	3
72		17	max	0	1	938	2	.008	15	6.197e-3 -4.621e-3	3	396.057	3	2037.176	1
		10	min	-	15		3	.048				NC		NC	2
73		18	max	0	1	.563	2		1	5.28e-3 -3.89e-3	2	727.633	<u>5</u> 3	5901.585	
74		10	min	0		<u>64</u>	3	.003	15		3		<u>ა</u> 1		1
75 76		19	max	0	15	.184 29	2	.007 003	2	4.363e-3 -3.159e-3	3	NC NC	1	NC NC	1
77	M15	1	min	0	15	<u>29</u> .186	3	.003	3	2.788e-3		NC NC	1	NC	1
78	IVITO		max	0	1	289	2	003	2	-4.584e-3	<u>3</u>	NC NC	1	NC NC	1
		2	min	0	15	<u>269</u> .425	3	.049	1	3.439e-3		NC NC	5	NC NC	2
79 80			max	0	1	764	2	.003	15	-5.551e-3	2	580.946		5875.937	1
81		3	max	0	15	.629	3	.137		4.091e-3			15		3
82		3	min	0	1	-1.164	2	.008				315.621		2032.089	
83		4	max	0	15	.774	3	.222	1	4.743e-3	3	9756.137	15	NC	3
84		-	min	0	1	-1.436	2	.013	_	-7.487e-3	2	240.719		1255.237	
85		5	max	0	15	.848	3	.27	1	5.394e-3	3	8764.68	15	NC	5
86		-	min	0	1	-1.555	2	.015	<u> </u>	-8.454e-3	2	217.988	2	1028.991	1
87		6	max	0	15	.851	3	.267	1	6.046e-3	3	8879.616	15	NC	5
88		-	min	0	1	-1.524	2	.015		-9.422e-3	2	223.623	2	1038.831	1
89		7	max	0	15	.796	3	.214	1	6.697e-3	3	9963.858	15	NC	5
90			min	0	1	-1.368	2	.012		-1.039e-2	2	255.973	2	1296.792	1
91		8	max	0	15	.704	3	.128	1	7.349e-3	3	NC	15	NC	3
92			min	0	1	-1.141	2	.008	_	-1.136e-2	2	323.979	2	2190.521	1
93		9	max	0	15	.613	3	.039	1	8.001e-3	3	NC	5	NC	2
94		3	min	0	1	925	2	003	_	-1.232e-2	2	434.469	2	7409.44	1
95		10	max	0	1	<u>925</u> .57	3	.021	3	8.652e-3	3	NC	5	NC	1
96		10	min	0	1	824	2	015	2	-1.329e-2	2	516.215	2	NC NC	1
97		11	max	0	1	.613	3	.039	1	8.001e-3	3	NC	5	NC	2
JI		111	παλ	U		.010	J	.008		0.0016-3	J	INC	J	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

99		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
100	98			min	0	15	925	2	003	10 -1.232e-2	2	434.469	2	7409.44	1
101			12			_									3
102															1
103			13												5
104															1
105			14												5
106	-		ļ.,_		_										1
107			15		_	_									5
108															1
100			16												3
1110															1
111			17			_									3
112			ļ.,		· ·										
113			18												2
114															1
115			19		_										1_
116															1
117		<u> </u>	1_		_										1_
118				min	002								•		1
119			2		_										3
120															
121			3												3
122				min	001						2				1
123			4		-	15									3
124				min	001										1
125			5	max	0								<u>15</u>		5
126				min	0	_			.017		2		2		1
127			6	max	0	15					3		5_		5
128				min	0	1							2		1
129			7												5
130				min		•									1
131 9 max 0 15 .092 1 .041 1 1.244e-2 3 NC 1 NC 2 132 min 0 1 114 3 002 10 -1.339e-2 2 4942.994 3 6894.612 1 133 10 max 0 1 .186 2 .018 3 1.34e-2 3 NC 4 NC 1 134 min 0 1 166 3 014 2 -1.431e-2 2 2510.016 1 NC 1 135 11 max 0 1 .092 1 .041 1 1.244e-2 3 NC 1 NC 1 136 min 0 15 114 3 002 10 -1.339e-2 2 4942.994 3 6894.612 1 137 12 max 0 1 .004 12 .136 1<			8	max	0						3_				3
132				min	0			2			2		2		1
133 10 max 0 1 .186 2 .018 3 1.34e-2 3 NC 4 NC 1 134 min 0 1 166 3 014 2 -1.431e-2 2 2510.016 1 NC 1 135 11 max 0 1 .092 1 .041 1 1.244e-2 3 NC 1 NC 2 136 min 0 15 114 3 002 10 -1.339e-2 2 4942.994 3 6894.612 1 137 12 max 0 1 .004 12 .136 1 1.148e-2 3 NC 5 NC 3 138 min 0 15 176 2 .008 15 -1.247e-2 2 1092.137 2 2047.801 1 139 13 max 0 1 <			9	max	0	15	.092		.041		3		_1_		2
134 min 0 1 166 3 014 2 -1.431e-2 2 2510.016 1 NC 1 135 11 max 0 1 .092 1 .041 1 1.244e-2 3 NC 1 NC 2 136 min 0 15 114 3 002 10 -1.339e-2 2 4942.994 3 6894.612 1 137 12 max 0 1 .004 12 .136 1 1.148e-2 3 NC 5 NC 3 138 min 0 15 176 2 .008 15 -1.247e-2 2 1092.137 2 2047.801 1 139 13 max 0 1 .132 3 .231 1 1.052e-2 3 NC 5 NC 5 140 min 0 15 453				min	0	1							3		1
135 11 max 0 1 .092 1 .041 1 1.244e-2 3 NC 1 NC 2 136 min 0 15 114 3 002 10 -1.339e-2 2 4942.994 3 6894.612 1 137 12 max 0 1 .004 12 .136 1 1.148e-2 3 NC 5 NC 3 138 min 0 15 176 2 .008 15 -1.247e-2 2 1092.137 2 2047.801 1 139 13 max 0 1 .132 3 .231 1 1.052e-2 3 NC 5 NC 5 140 min 0 15 453 2 .013 15 -1.155e-2 2 520.506 2 1203.131 1 141 14 max 0 1			10	max	0								4		1_
136 min 0 15 114 3 002 10 -1.339e-2 2 4942.994 3 6894.612 1 137 12 max 0 1 .004 12 .136 1 1.148e-2 3 NC 5 NC 3 138 min 0 15 176 2 .008 15 -1.247e-2 2 1092.137 2 2047.801 1 139 13 max 0 1 .132 3 .231 1 1.052e-2 3 NC 5 NC 5 140 min 0 15 453 2 .013 15 -1.155e-2 2 520.506 2 1203.131 1 141 max 0 1 .239 3 .291 1 9.562e-3 3 NC 5 NC 5 142 min 0 15 676 2				min	0	1		3	014		2		1_		1
137 12 max 0 1 .004 12 .136 1 1.148e-2 3 NC 5 NC 3 138 min 0 15 176 2 .008 15 -1.247e-2 2 1092.137 2 2047.801 1 139 13 max 0 1 .132 3 .231 1 1.052e-2 3 NC 5 NC 5 140 min 0 15 453 2 .013 15 -1.155e-2 2 520.506 2 1203.131 1 141 max 0 1 .239 3 .291 1 9.562e-3 3 NC 5 NC 5 142 min 0 15 676 2 .016 15 -1.062e-2 2 366.383 2 951.638 1 143 15 max 0 1 .297			11		0		.092		.041		3				2
138 min 0 15 176 2 .008 15 -1.247e-2 2 1092.137 2 2047.801 1 139 13 max 0 1 .132 3 .231 1 1.052e-2 3 NC 5 NC 5 140 min 0 15 453 2 .013 15 -1.155e-2 2 520.506 2 1203.131 1 141 14 max 0 1 .239 3 .291 1 9.562e-3 3 NC 5 NC 5 142 min 0 15 676 2 .016 15 -1.062e-2 2 366.383 2 951.638 1 143 15 max 0 1 .297 3 .3 1 8.602e-3 3 NC 15 NC 5 144 min 0 15 788				min	0	15									1
139 13 max 0 1 .132 3 .231 1 1.052e-2 3 NC 5 NC 5 140 min 0 15 453 2 .013 15 -1.155e-2 2 520.506 2 1203.131 1 141 14 max 0 1 .239 3 .291 1 9.562e-3 3 NC 5 NC 5 142 min 0 15 676 2 .016 15 -1.062e-2 2 366.383 2 951.638 1 143 15 max 0 1 .297 3 .3 1 8.602e-3 3 NC 15 NC 5 144 min 0 15 788 2 .017 15 -9.703e-3 2 318.883 2 924.538 1 145 16 max .001 1 .293 3 .254 1 7.641e-3 3 NC 15 NC 3			12							1 1.148e-2				NC	3
140 min 0 15 453 2 .013 15 -1.155e-2 2 520.506 2 1203.131 1 141 14 max 0 1 .239 3 .291 1 9.562e-3 3 NC 5 NC 5 142 min 0 15 676 2 .016 15 -1.062e-2 2 366.383 2 951.638 1 143 15 max 0 1 .297 3 .3 1 8.602e-3 3 NC 15 NC 5 144 min 0 15 788 2 .017 15 -9.703e-3 2 318.883 2 924.538 1 145 16 max .001 1 .293 3 .254 1 7.641e-3 3 NC 15 NC 3 146 min 0 15 76				min											
141 14 max 0 1 .239 3 .291 1 9.562e-3 3 NC 5 NC 5 142 min 0 15 676 2 .016 15 -1.062e-2 2 366.383 2 951.638 1 143 15 max 0 1 .297 3 .3 1 8.602e-3 3 NC 15 NC 5 144 min 0 15 788 2 .017 15 -9.703e-3 2 318.883 2 924.538 1 145 16 max .001 1 .293 3 .254 1 7.641e-3 3 NC 15 NC 3 146 min 0 15 76 2 .014 15 -8.781e-3 2 329.807 2 1092.944 1 147 17 max .001 1 .223 3 .167 1 6.681e-3 3 NC 5 NC <td< td=""><td></td><td></td><td>13</td><td>_</td><td>0</td><td></td><td>.132</td><td></td><td></td><td></td><td>3</td><td></td><td>5</td><td></td><td>5</td></td<>			13	_	0		.132				3		5		5
142 min 0 15 676 2 .016 15 -1.062e-2 2 366.383 2 951.638 1 143 15 max 0 1 .297 3 .3 1 8.602e-3 3 NC 15 NC 5 144 min 0 15 788 2 .017 15 -9.703e-3 2 318.883 2 924.538 1 145 16 max .001 1 .293 3 .254 1 7.641e-3 3 NC 15 NC 3 146 min 0 15 76 2 .014 15 -8.781e-3 2 329.807 2 1092.944 1 147 17 max .001 1 .223 3 .167 1 6.681e-3 3 NC 5 NC 3 148 min 0 15 587															1
143 15 max 0 1 .297 3 .3 1 8.602e-3 3 NC 15 NC 5 144 min 0 15 788 2 .017 15 -9.703e-3 2 318.883 2 924.538 1 145 16 max .001 1 .293 3 .254 1 7.641e-3 3 NC 15 NC 3 146 min 0 15 76 2 .014 15 -8.781e-3 2 329.807 2 1092.944 1 147 17 max .001 1 .223 3 .167 1 6.681e-3 3 NC 5 NC 3 148 min 0 15 587 2 .009 15 -7.859e-3 2 415.924 2 1668.652 1 149 18 max .002 1 .099 3 .068 1 5.721e-3 3 NC 5 NC 3			14		0						3		5		5
144 min 0 15 788 2 .017 15 -9.703e-3 2 318.883 2 924.538 1 145 16 max .001 1 .293 3 .254 1 7.641e-3 3 NC 15 NC 3 146 min 0 15 76 2 .014 15 -8.781e-3 2 329.807 2 1092.944 1 147 17 max .001 1 .223 3 .167 1 6.681e-3 3 NC 5 NC 3 148 min 0 15 587 2 .009 15 -7.859e-3 2 415.924 2 1668.652 1 149 18 max .002 1 .099 3 .068 1 5.721e-3 3 NC 5 NC 3					_										1
145 16 max .001 1 .293 3 .254 1 7.641e-3 3 NC 15 NC 3 146 min 0 15 76 2 .014 15 -8.781e-3 2 329.807 2 1092.944 1 147 17 max .001 1 .223 3 .167 1 6.681e-3 3 NC 5 NC 3 148 min 0 15 587 2 .009 15 -7.859e-3 2 415.924 2 1668.652 1 149 18 max .002 1 .099 3 .068 1 5.721e-3 3 NC 5 NC 3			15	max	0	_					3		<u>15</u>		5
146 min 0 15 76 2 .014 15 -8.781e-3 2 329.807 2 1092.944 1 147 17 max .001 1 .223 3 .167 1 6.681e-3 3 NC 5 NC 3 148 min 0 15 587 2 .009 15 -7.859e-3 2 415.924 2 1668.652 1 149 18 max .002 1 .099 3 .068 1 5.721e-3 3 NC 5 NC 3				min							2		2		1
147 17 max .001 1 .223 3 .167 1 6.681e-3 3 NC 5 NC 3 148 min 0 15 587 2 .009 15 -7.859e-3 2 415.924 2 1668.652 1 149 18 max .002 1 .099 3 .068 1 5.721e-3 3 NC 5 NC 3	145		16	max	.001		.293		.254	1 7.641e-3	3	NC	15		3
148 min 0 15 587 2 .009 15 -7.859e-3 2 415.924 2 1668.652 1 149 18 max .002 1 .099 3 .068 1 5.721e-3 3 NC 5 NC 3	146			min	0	15	76	2	.014	15 -8.781e-3	2	329.807	2	1092.944	1
149 18 max .002 1 .099 3 .068 1 5.721e-3 3 NC 5 NC 3			17		.001						3		5		3
				min		15									
	149		18	max	.002		.099		.068	1 5.721e-3	3	NC	5		3
150 min 0 15291 2 .004 15 -6.938e-3 2 749.346 2 4164.768 1	150			min	0	15			.004		2	749.346	2	4164.768	1
	151		19	max	.002	1	.077	2	.006		3	NC	1	NC	1
						15						NC	1		1
		M2	1		.006						15		1		2
	154				008	3	013	3	0	15 -3.391e-4	1	NC	1	6793.04	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
155		2	max	.006	2	.006	2	.01	1	-1.78e-5	15	NC	1	NC	2
156			min	008	3	012	3	0	15	-3.208e-4	1	NC	1	7403.739	1
157		3	max	.006	2	.005	2	.009	1	-1.679e-5	15	NC	1	NC	2
158			min	007	3	012	3	0	15	-3.024e-4	1	NC	1	8130.611	1
159		4	max	.005	2	.004	2	.009	1	-1.577e-5	15	NC	1	NC	2
160			min	007	3	012	3	0	15	-2.841e-4	1	NC	1	9004.177	1
161		5	max	.005	2	.003	2	.008	1	-1.475e-5	15	NC	1_	NC	1
162			min	006	3	011	3	0	15	-2.657e-4	1	NC	1	NC	1
163		6	max	.005	2	.002	2	.007	1	-1.373e-5	15	NC	_1_	NC	1
164			min	006	3	011	3	0	15	-2.473e-4	1	NC	1	NC	1
165		7	max	.004	2	00	2	.006	1	-1.271e-5	15	NC	_1_	NC	1
166			min	005	3	011	3	0	15	-2.29e-4	<u>1</u>	NC	<u>1</u>	NC	1
167		8	max	.004	2	0	2	.005	1	-1.169e-5	15	NC	1	NC	1
168			min	005	3	01	3	0	15	-2.106e-4	1_	NC	1_	NC	1
169		9	max	.004	2	0	2	.004	1	-1.067e-5	<u>15</u>	NC	_1_	NC	1
170		4.0	min	004	3	01	3	0	15	-1.923e-4	1_	NC	1	NC	1
171		10	max	.003	2	001	15	.004	1	-9.656e-6	<u>15</u>	NC	1	NC	1
172		4.4	min	004	3	009	3	0	15	-1.739e-4	1_	NC	1_	NC NC	1
173		11	max	.003	2	001	15	.003	1	-8.638e-6	15	NC	1	NC	1
174		40	min	004	3	008	3	0	15	-1.556e-4	1_	NC NC	1_	NC NC	1
175		12	max	.003	2	001	15	.002	1	-7.619e-6	<u>15</u>	NC NC	1	NC NC	1
176		13	min	003	3	007	15	<u> </u>	15	-1.372e-4	1_	NC NC	<u>1</u> 1	NC NC	1
177 178		13	max min	.002 003	3	001 007	3	002 0	1 15	-6.601e-6 -1.189e-4	<u>15</u> 1	NC NC	1	NC NC	1
179		14		003 .002	2	007 001	15	.001	1	-1.169e-4 -5.582e-6	•	NC NC	1	NC NC	1
180		14	max min	002	3	001 006	3	<u>.001</u>	15	-1.005e-4	<u>15</u> 1	NC NC	1	NC NC	1
181		15	max	002 .001	2	006 001	15	0	1	-4.564e-6	15	NC NC	+	NC NC	1
182		13	min	002	3	005	4	0	15	-8.216e-5	1	NC NC	1	NC	1
183		16	max	.002	2	<u>003</u> 0	15	0	1	-3.545e-6	15	NC	1	NC	1
184		10	min	001	3	004	4	0	15	-6.38e-5	1	NC	1	NC	1
185		17	max	0	2	<u>.00+</u>	15	0	1	-2.527e-6	15	NC	1	NC	1
186			min	0	3	003	4	0	15	-4.545e-5	1	NC	1	NC	1
187		18	max	0	2	0	15	0	1	-1.508e-6	15	NC	1	NC	1
188			min	0	3	001	4	0	15	-2.71e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	-4.9e-7	15	NC	1	NC	1
190			min	0	1	0	1	0	1	-8.743e-6	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	1.24e-6	1	NC	1	NC	1
192			min	0	1	0	1	0	1	7.02e-8	15	NC	1	NC	1
193		2	max	0	3	0	15	0	15	3.046e-5	1_	NC	1_	NC	1
194			min	0	2	002	4	0	1	1.689e-6	15	NC	1	NC	1
195		3	max	0	3	00	15	00	15		_1_	NC	_1_	NC	1
196			min	0	2	004	4	0	1	3.308e-6	15	NC	1_	NC	1
197		4	max	.001	3	001	15	0	1	8.889e-5	1_	NC	1	NC NC	1
198		_	min	0	2	006	4	0	3	4.927e-6	15	NC	1_	NC NC	1
199		5	max	.001	3	002	15	0	1	1.181e-4	1_	NC	1	NC	1
200			min	001	2	008	4	0	12	6.546e-6	15	NC NC	1_	NC NC	1
201		6	max	.002	3	002	15	0	1	1.473e-4	1_	NC	1	NC NC	1
202		7	min	001	2	01	4	0	12	8.164e-6		9241.259	4_	NC NC	1
203		7	max	.002	3	003	15	0	1	1.765e-4	1_	NC 7002 492	1_1	NC NC	1
204		0	min	002	2	012	4	0	15	9.783e-6		7992.182	4	NC NC	1
205		8	max	.003	3	003	15	0	1	2.058e-4	1_	NC 7223,525	2	NC NC	1
206		0	min	002 .003	3	013 003	15	<u> </u>	15	1.14e-5 2.35e-4	<u>15</u> 1	7223.525 NC	<u>4</u> 5	NC NC	1
207 208		9	max min	003	2	003 014	4	0	1 15	2.35e-4 1.302e-5		6775.144	<u>5</u>	NC NC	1
209		10	max	.002	3	014 003	15	.002	1	2.642e-4	<u>15</u> 1	NC	<u>4</u> 5	NC NC	1
210		10	min	003	2	003 014	4	<u>2</u> 0	15	1.464e-5		6569.946	<u>5</u>	NC NC	1
211		11	max	.003	3	003	15	.002	1	2.934e-4	1 <u>15</u>	NC	5	NC NC	1
411			πιαχ	.004	J	003	LIJ	.002	<u> </u>	2.3046-4		INC	<u> </u>	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	003	2	014	4	0	15	1.626e-5	15	6577.968	4	NC	1
213		12	max	.004	3	003	15	.003	1	3.226e-4	_1_	NC	3	NC	1
214			min	003	2	014	4	0	15	1.788e-5	15	6804.881	4	NC	1
215		13	max	.004	3	003	15	.003	1	3.519e-4	_1_	NC	2	NC	1
216			min	004	2	<u>013</u>	4	0	15	1.95e-5	15	7295.655	4_	NC	1
217		14	max	.005	3	003	15	.004	1	3.811e-4	1_	NC	1	NC	1
218		45	min	004	2	012	4	0	15	2.112e-5		8157.316	4	NC	1
219		15	max	.005	3	002	15	.005	1	4.103e-4	1_	NC 0004 075	1_	NC	1
220		4.0	min	004	2	<u>01</u>	4	0	15	2.273e-5		9624.975	4	NC NC	1
221		16	max	.006	3	002 008	15	.006	15	4.395e-4	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min	004 .006	3		15	<u>0</u> .008		2.435e-5 4.687e-4	<u>15</u>	NC NC	1	NC NC	1
224		17	max	005	2	001 006	4	<u>.008</u>	15	2.597e-5	<u>1</u> 15	NC NC	1	NC NC	1
225		18	min max	.005	3	<u>006</u> 0	15	.009	1	4.979e-4	1 <u>1</u>	NC NC	1	NC NC	2
226		10	min	005	2	004	1	<u>.009</u>	15	2.759e-5	15	NC	1	9800.507	1
227		19	max	.005	3	004	10	.011	1	5.272e-4	1	NC	1	NC	2
228		13	min	005	2	002	1	0	15	2.921e-5	15	NC	1	8366.174	1
229	M4	1	max	.002	1	.005	2	0	15	1.726e-4	1	NC	1	NC	3
230	IVIT	'	min	0	15	007	3	011	1	9.581e-6	15	NC	1	2309.985	1
231		2	max	.002	1	.005	2	0	15	1.726e-4	1	NC	1	NC	3
232			min	0	15	007	3	01	1	9.581e-6	15	NC	1	2504.69	1
233		3	max	.002	1	.004	2	0	15	1.726e-4	1	NC	1	NC	3
234			min	0	15	006	3	009	1	9.581e-6	15	NC	1	2736.884	1
235		4	max	.002	1	.004	2	0	15	1.726e-4	1	NC	1	NC	3
236			min	0	15	006	3	008	1	9.581e-6	15	NC	1	3016.225	1
237		5	max	.002	1	.004	2	0	15	1.726e-4	1	NC	1	NC	3
238			min	0	15	005	3	007	1	9.581e-6	15	NC	1	3355.843	1
239		6	max	.002	1	.004	2	0	15	1.726e-4	1	NC	1	NC	3
240			min	0	15	005	3	007	1	9.581e-6	15	NC	1	3773.948	1
241		7	max	.002	1	.003	2	0	15	1.726e-4	1_	NC	1_	NC	3
242			min	0	15	005	3	006	1	9.581e-6	15	NC	1	4296.389	
243		8	max	.001	1	.003	2	0	15	1.726e-4	_1_	NC	_1_	NC	2
244			min	0	15	004	3	005	1	9.581e-6	15	NC	1_	4960.859	
245		9	max	.001	1	.003	2	0	15	1.726e-4	_1_	NC	_1_	NC	2
246			min	0	15	004	3	004	1	9.581e-6	15	NC	_1_	5824.088	1
247		10	max	.001	1	.003	2	0	15	1.726e-4	_1_	NC	_1_	NC	2
248			min	0	15	003	3	004	1	9.581e-6	<u>15</u>	NC	1_	6974.728	1
249		11	max	.001	1	.002	2	0	15	1.726e-4	_1_	NC	1_	NC	2
250		40	min	0	15	003	3	003	1_	9.581e-6	15	NC	1_	8557.746	
251		12	max	0	1	.002	2	0	15	1.726e-4	1_	NC	1_	NC NC	1
252		40	min	0	15	003	3	002		9.581e-6			1	NC NC	1
253		13	max	0	1	.002	2	0		1.726e-4	1_	NC	1	NC	1
254		1.1	min	0	15	002	2	002	1 1 5	9.581e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
255		14	max	0	15	.001	3	0	1	1.726e-4	1_		1	NC NC	1
256 257		15	min	<u> </u>	1	002 .001	2	001 0	15	9.581e-6 1.726e-4	<u>15</u> 1	NC NC	1	NC NC	1
258		15	max min	0	15	002	3	0	1	9.581e-6	15	NC	1	NC	1
259		16	max	0	1	<u>002</u> 0	2	0		1.726e-4	1	NC	1	NC	1
260		10	min	0	15	001	3	0	1	9.581e-6	15	NC	1	NC	1
261		17	max	0	1	<u>001</u> 0	2	0	15	1.726e-4	1 <u>5</u>	NC NC	1	NC NC	1
262		17	min	0	15	0	3	0	1	9.581e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.726e-4	1	NC	1	NC	1
264		10	min	0	15	0	3	0	1	9.581e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.726e-4	1	NC	1	NC	1
266		1.0	min	0	1	0	1	0	1	9.581e-6	15	NC	1	NC	1
267	M6	1	max	.021	2	.029	2	0	1	0	1	NC	3	NC	1
268	Ţ		min	026	3	041	3	0	1	0	1	2649.683	2	NC	1
							_						_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
269		2	max	.02	2	.026	2	0	1	0	_1_	NC	3	NC	1
270			min	025	3	038	3	0	1	0	<u>1</u>	2920.389	2	NC	1
271		3	max	.019	2	.024	2	0	1	0	1_	NC	3	NC	1
272			min	023	3	036	3	0	1	0	1_		2	NC	1
273		4	max	.017	2	.021	2	0	1	0	_1_	NC	3	NC	1
274			min	022	3	034	3	0	1	0	1_	3653.624	2	NC	1
275		5	max	.016	2	.019	2	0	1	0	1_	NC	3	NC	1
276			min	021	3	032	3	0	1	0	1_	4157.043	2	NC	1
277		6	max	.015	2	.016	2	0	1	0	1	NC	1_	NC	1
278			min	019	3	03	3	0	1	0	1_	4794.081	2	NC	1
279		7	max	.014	2	.014	2	0	1	0	1_	NC	1_	NC	1
280			min	018	3	027	3	0	1	0	1_	5615.886	2	NC	1
281		8	max	.013	2	.011	2	0	1_	0	_1_	NC	1_	NC	1
282			min	016	3	025	3	0	1	0	1_	6701.092	2	NC	1
283		9	max	.012	2	.009	2	0	1	0	_1_	NC	<u>1</u>	NC	1
284			min	015	3	023	3	0	1	0	1_	8175.768	2	NC	1
285		10	max	.01	2	.008	2	0	1	0	1	NC	1	NC	1
286			min	013	3	021	3	0	1	0	1_	NC	1_	NC	1
287		11	max	.009	2	.006	2	0	1	0	1_	NC	1_	NC	1
288			min	012	3	018	3	0	1	0	1_	NC	1	NC	1
289		12	max	.008	2	.004	2	0	1	0	_1_	NC	<u>1</u>	NC	1
290			min	01	3	016	3	0	1	0	1_	NC	1_	NC	1
291		13	max	.007	2	.003	2	0	1	0	1_	NC	1_	NC	1
292			min	009	3	014	3	0	1	0	1	NC	1	NC	1
293		14	max	.006	2	.002	2	0	1	0	1	NC	1_	NC	1
294			min	007	3	011	3	0	1	0	1	NC	1	NC	1
295		15	max	.005	2	0	2	0	1	0	1	NC	1	NC	1
296			min	006	3	009	3	0	1	0	1	NC	1	NC	1
297		16	max	.003	2	0	2	0	1	0	1	NC	1	NC	1
298			min	004	3	007	3	0	1	0	1	NC	1	NC	1
299		17	max	.002	2	0	2	0	1	0	1	NC	1	NC	1
300			min	003	3	005	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	2	0	2	0	1	0	1	NC	1	NC	1
302			min	001	3	002	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	.001	3	0	15	0	1	0	1	NC	1	NC	1
308			min	001	2	003	3	0	1	0	1	NC	1	NC	1
309		3	max	.002	3	0	15	0	1	0	1	NC	1	NC	1
310			min	002	2	005	3	0	1	0	1	NC	1	NC	1
311		4	max	.003	3	001	15	0	1	0	1	NC	1	NC	1
312			min	003	2	007	3	0	1	0	1	NC	1	NC	1
313		5	max	.005	3	002	15	0	1	0	1	NC	1	NC	1
314			min	005	2	009	3	0	1	0	1	NC	1	NC	1
315		6	max	.006	3	002	15	0	1	0	1	NC	1	NC	1
316			min	006	2	011	3	0	1	0	1	9447.209	4	NC	1
317		7	max	.007	3	003	15	0	1	0	1	NC	1	NC	1
318			min	007	2	013	3	0	1	0	1	8157.038	4	NC	1
319		8	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
320			min	008	2	014	3	0	1	0	1	7362.558	4	NC	1
321		9	max	.009	3	003	15	0	1	0	1	NC	1	NC	1
322		3	min	009	2	003 015	3	0	1	0	1		4	NC NC	1
323		10		009 .01	3	015 003	15	0	1		1	NC	1	NC NC	1
324		10	max		2		3	0	1	0	1	6682.353	4	NC NC	1
		11	min	01	3	015			1						
325		11	max	.012	_ პ	003	15	0		0	1_	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

....

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			, LC
326			min	011	2	016	3	0	1	0	1	6685.049	4	NC	1
327		12	max	.013	3	003	15	0	1	0	<u>1</u>	NC	<u>1</u>	NC	1
328			min	013	2	015	3	0	1	0	1	6910.864	4	NC	1
329		13	max	.014	3	003	15	0	1	0	_1_	NC	1_	NC	1
330			min	014	2	015	3	0	1	0	1	7404.946	4	NC	1
331		14	max	.015	3	003	15	0	1	0	1	NC	1_	NC	1
332			min	015	2	014	3	0	1	0	1	8275.467	4	NC	1
333		15	max	.016	3	002	15	0	1	0	1	NC	1_	NC	1
334			min	016	2	013	3	0	1	0	1	9760.473	4	NC	1
335		16	max	.017	3	002	15	0	1	0	1	NC	1	NC	1
336			min	017	2	012	3	0	1	0	1	NC	1	NC	1
337		17	max	.019	3	001	15	0	1	0	1	NC	1	NC	1
338			min	018	2	01	3	0	1	0	1	NC	1_	NC	1
339		18	max	.02	3	0	10	0	1	0	1	NC	1	NC	1
340			min	019	2	008	3	0	1	0	1	NC	1	NC	1
341		19	max	.021	3	.001	10	0	1	0	1	NC	1	NC	1
342			min	021	2	007	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	1	.02	2	0	1	0	1	NC	1	NC	1
344			min	0	15	022	3	0	1	0	1	NC	1	NC	1
345		2	max	.005	1	.019	2	0	1	0	1	NC	1	NC	1
346			min	0	15	021	3	0	1	0	1	NC	1	NC	1
347		3	max	.005	1	.018	2	0	1	0	1	NC	1	NC	1
348			min	0	15	02	3	0	1	0	1	NC	1	NC	1
349		4	max	.005	1	.017	2	0	1	0	1	NC	1	NC	1
350			min	0	15	018	3	0	1	0	1	NC	1	NC	1
351		5	max	.004	1	.016	2	0	1	0	1	NC	1	NC	1
352			min	0	15	017	3	0	1	Ö	1	NC	1	NC	1
353		6	max	.004	1	.015	2	0	1	0	1	NC	1	NC	1
354			min	0	15	016	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	1	.013	2	0	1	0	1	NC	1	NC	1
356			min	0	15	015	3	0	1	0	1	NC	1	NC	1
357		8	max	.003	1	.012	2	0	1	0	1	NC	1	NC	1
358			min	0	15	013	3	0	1	0	1	NC	1	NC	1
359		9	max	.003	1	.011	2	0	1	0	1	NC	1	NC	1
360		Ĭ	min	0	15	012	3	0	1	0	1	NC	1	NC	1
361		10	max	.003	1	.01	2	0	1	0	1	NC	1	NC	1
362		10	min	0	15	011	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	1	.009	2	0	1	0	1	NC	1	NC	1
364			min	0	15	01	3	0	1	0	1	NC	1	NC NC	1
365		12	max	.002	1	.008	2	0	1	0	1	NC	1	NC	1
366		12	min	0	15	009	3	0	1	0	1	NC	1	NC	1
367		13	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
368		13	min	0	15	007	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.006	2	0	1	0	1	NC	1	NC NC	1
370		14	min	0	15	006	3	0	1	0	1	NC	1	NC NC	1
371		15	max	.001	1	.004	2	0	1	0	1	NC	1	NC NC	1
372		13	min	0	15	00 4	3	0	1	0	1	NC	1	NC NC	1
373		16		0	1	.003	2	0	1	0	+	NC NC	1	NC NC	1
		10	max	0	15	004	3	0	1	0	1	NC NC	1	NC NC	1
374		47	min						1						1
375		17	max	0	1 15	.002	3	0	1	0	<u>1</u> 1	NC NC	1	NC NC	1
376		40	min			002			•		•		•		-
377		18	max	0	1	.001	2	0	1	0	1	NC NC	1_	NC NC	1
378		40	min	0	15	001	3	0	1	0	1	NC NC	1_	NC NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1_	NC NC	1
380	1440		min	0	1	0	1	0	1_	0	1	NC NC	1	NC NC	1
381	M10	1	max	.006	2	.007	2	0	15	3.391e-4	1_	NC	1	NC 0700 04	2
382			min	008	3	013	3	011	1	1.882e-5	15	NC	1	6793.04	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
383		2	max	.006	2	.006	2	0	15	3.208e-4	1_	NC	1	NC	2
384			min	008	3	012	3	01	1	1.78e-5	15	NC	1_	7403.739	
385		3	max	.006	2	.005	2	0	15	3.024e-4	1_	NC	1	NC	2
386		4	min	007	3	012	3	009	1	1.679e-5	<u>15</u>	NC NC	1_	8130.611	1
387		4	max	.005	2	.004	3	0	15	2.841e-4	1_	NC NC	<u>1</u> 1	NC	2
388		-	min	007 .005	2	012		009 0	15	1.577e-5	<u>15</u>	NC NC	1	9004.177 NC	1
390		5	max	005 006	3	.003 011	3	008	1	2.657e-4	<u>1</u> 15	NC NC	1	NC NC	1
391		6	min max	.005	2	.002	2	_ 008 0	15	1.475e-5 2.473e-4	<u>15</u> 1	NC NC	1	NC NC	1
392		0	min	006	3	011	3	007	1	1.373e-5	15	NC	1	NC	1
393		7	max	.004	2	0	2	<u>007</u> 0	15	2.29e-4	1	NC	1	NC	1
394			min	005	3	011	3	006	1	1.271e-5	15	NC	1	NC	1
395		8	max	.004	2	0	2	0	15	2.106e-4	1	NC	1	NC	1
396			min	005	3	01	3	005	1	1.169e-5	15	NC	1	NC	1
397		9	max	.004	2	0	2	0	15	1.923e-4	1	NC	1	NC	1
398			min	004	3	01	3	004	1	1.067e-5	15	NC	1	NC	1
399		10	max	.003	2	001	15	0	15	1.739e-4	1	NC	1	NC	1
400			min	004	3	009	3	004	1	9.656e-6	15	NC	1	NC	1
401		11	max	.003	2	001	15	0	15	1.556e-4	1	NC	1	NC	1
402			min	004	3	008	3	003	1	8.638e-6	15	NC	1	NC	1
403		12	max	.003	2	001	15	0	15	1.372e-4	1	NC	1	NC	1
404			min	003	3	007	3	002	1	7.619e-6	15	NC	1	NC	1
405		13	max	.002	2	001	15	0	15	1.189e-4	1	NC	1	NC	1
406			min	003	3	007	3	002	1	6.601e-6	15	NC	1	NC	1
407		14	max	.002	2	001	15	0	15	1.005e-4	1_	NC	1_	NC	1
408			min	002	3	006	3	001	1	5.582e-6	15	NC	1	NC	1
409		15	max	.001	2	001	15	0	15	8.216e-5	1_	NC	_1_	NC	1
410			min	002	3	005	4	0	1	4.564e-6	15	NC	1_	NC	1
411		16	max	.001	2	0	15	0	15	6.38e-5	_1_	NC	_1_	NC	1
412			min	001	3	004	4	0	1	3.545e-6	15	NC	1_	NC	1
413		17	max	0	2	0	15	0	15	4.545e-5	1_	NC	1_	NC	1
414		10	min	0	3	003	4	0	1	2.527e-6	15	NC	1_	NC	1
415		18	max	0	2	0	15	0	15	2.71e-5	1_	NC NC	1_	NC NC	1
416		40	min	0	3	001	4	0	1	1.508e-6	<u>15</u>	NC NC	1_	NC NC	1
417		19	max	<u> </u>	1	<u> </u>	1	<u>0</u> 	1	8.743e-6	1_	NC NC	<u>1</u> 1	NC NC	1
419	M11	1	min	0	1	0	1	0	1	4.9e-7 -7.02e-8	<u>15</u> 15	NC NC	1	NC NC	1
420	IVI I I		max	0	1	0	1	0	1	-1.24e-6	1	NC NC	1	NC NC	1
421		2	min max	0	3	0	15	0	1	-1.24e-6 -1.689e-6	15	NC NC	1	NC NC	1
422			min	0	2	002	4	0	15	-3.046e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0	1	-3.308e-6			1	NC	1
424			min	0	2	004	4	0		-5.968e-5	1	NC	1	NC	1
425		4	max	.001	3	001	15	0	3	-4.927e-6		NC	1	NC	1
426			min	0	2	006	4	0	1	-8.889e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	0	12	-6.546e-6		NC	1	NC	1
428			min	001	2	008	4	0	1	-1.181e-4	1	NC	1	NC	1
429		6	max	.002	3	002	15	0	12	-8.164e-6	15	NC	1	NC	1
430			min	001	2	01	4	0	1	-1.473e-4	1	9241.259	4	NC	1
431		7	max	.002	3	003	15	0	15	-9.783e-6	15	NC	1	NC	1
432			min	002	2	012	4	0	1	-1.765e-4	1	7992.182	4	NC	1
433		8	max	.003	3	003	15	0	15	-1.14e-5	15	NC	2	NC	1
434			min	002	2	013	4	0	1	-2.058e-4	1	7223.525	4	NC	1
435		9	max	.003	3	003	15	0	15		15	NC	5	NC	1
436			min	002	2	014	4	001	1	-2.35e-4	1	6775.144	4	NC	1
437		10	max	.003	3	003	15	00	15	-1.464e-5	15	NC	5	NC	1
438			min	003	2	014	4	002	1	-2.642e-4	1_	6569.946	4	NC	1
439		11	max	.004	3	003	15	00	15	-1.626e-5	15	NC	5	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	003	2	014	4	002	1	-2.934e-4	1	6577.968	4	NC	1
441		12	max	.004	3	003	15	0	15		15	NC	3	NC	1
442			min	003	2	014	4	003	1	-3.226e-4	1_	6804.881	4	NC	1
443		13	max	.004	3	003	15	0	15	-1.95e-5	15	NC	2	NC	1
444			min	004	2	<u>013</u>	4	003	1	-3.519e-4	1_	7295.655	4_	NC	1
445		14	max	.005	3	003	15	0	15		<u>15</u>	NC	1	NC NC	1
446		45	min	004	2	012	4	004	1	-3.811e-4	1_	8157.316	4	NC NC	1
447		15	max	.005	3	002	15	0	15		<u>15</u>	NC 0004 075	1_	NC NC	1
448		4.0	min	004	2	<u>01</u>	4	005	1	-4.103e-4	1_	9624.975	4	NC NC	1
449		16	max	.006	3	002 008	15	0 006	15	-2.435e-5	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450		17	min	004 .006	3		15	<u>006</u> 0	15	-4.395e-4 -2.597e-5	1_	NC NC	1	NC NC	1
451 452		17	max	005	2	001 006	4	008	1	-4.687e-4	<u>15</u> 1	NC NC	1	NC NC	1
452		18	max	.005	3	<u>006</u> 0	15	_ 008	15		15	NC NC	1	NC NC	2
454		10	min	005	2	004	1	009	1	-4.979e-4	1	NC	1	9800.507	1
455		19	max	.005	3	004	10	<u>009</u> 0	15		15	NC	1	NC	2
456		13	min	005	2	002	1	011	1	-5.272e-4	1	NC	1	8366.174	1
457	M12	1	max	.002	1	.005	2	.011	1	-9.581e-6		NC	1	NC	3
458	IVIIZ	•	min	0	15	007	3	0		-1.726e-4	1	NC	1	2309.985	1
459		2	max	.002	1	.005	2	.01	1	-9.581e-6	15	NC	1	NC	3
460			min	0	15	007	3	0	15		1	NC	1	2504.69	1
461		3	max	.002	1	.004	2	.009	1	-9.581e-6	15	NC	1	NC	3
462			min	0	15	006	3	0	15	-1.726e-4	1	NC	1	2736.884	1
463		4	max	.002	1	.004	2	.008	1	-9.581e-6	15	NC	1	NC	3
464			min	0	15	006	3	0	15	-1.726e-4	1	NC	1	3016.225	1
465		5	max	.002	1	.004	2	.007	1	-9.581e-6	15	NC	1	NC	3
466			min	0	15	005	3	0	15		1	NC	1	3355.843	1
467		6	max	.002	1	.004	2	.007	1	-9.581e-6	15	NC	1	NC	3
468			min	0	15	005	3	0	15	-1.726e-4	1	NC	1	3773.948	1
469		7	max	.002	1	.003	2	.006	1	-9.581e-6	<u>15</u>	NC	1_	NC	3
470			min	0	15	005	3	0	15		1_	NC	1	4296.389	
471		8	max	.001	1	.003	2	.005	1	-9.581e-6	15	NC	_1_	NC	2
472			min	0	15	004	3	0	15	-1.726e-4	1_	NC	1_	4960.859	
473		9	max	.001	1	.003	2	.004	1	-9.581e-6	<u>15</u>	NC	_1_	NC	2
474			min	0	15	004	3	0	15	-1.726e-4	_1_	NC	_1_	5824.088	1
475		10	max	.001	1	.003	2	.004	1	-9.581e-6	<u>15</u>	NC	_1_	NC	2
476			min	0	15	003	3	0	15		_1_	NC	1_	6974.728	1
477		11	max	.001	1	.002	2	.003	1	-9.581e-6		NC	1_	NC	2
478		40	min	0	15	003	3	0		-1.726e-4	1_	NC	1_	8557.746	
479		12	max	0	1	.002	2	.002	1	-9.581e-6	<u>15</u>	NC	1_	NC NC	1
480		40	min	0	15	003	3	0		-1.726e-4		NC NC	1	NC NC	1
481		13	max	0	1	.002	2	.002	1	-9.581e-6	15	NC NC	1	NC NC	1
482		1.1	min	0	15	002	2	0		-1.726e-4	1 =	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0 0	15	.001	3	.001	1 1 5	-9.581e-6		NC NC	1	NC NC	1
484 485		15	min max	0	1	002 .001	2	<u> </u>	1 <u>5</u>	-1.726e-4 -9.581e-6	1_	NC NC	1	NC NC	1
486		15	min	0	15	002	3	0		-1.726e-4	1	NC	1	NC	1
487		16	max	0	1	<u>002</u> 0	2	0	1	-9.581e-6		NC	1	NC	1
488		10	min	0	15	001	3	0		-1.726e-4	1	NC	1	NC	1
489		17	max	0	1	<u>001</u> 0	2	0	1	-1.726e-4 -9.581e-6	15	NC NC	1	NC NC	1
490		17	min	0	15	0	3	0		-1.726e-4	1	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	-9.581e-6	-	NC	1	NC	1
492		10	min	0	15	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-9.581e-6	•	NC	1	NC	1
494			min	0	1	0	1	0	1	-1.726e-4	1	NC	1	NC	1
495	M1	1	max	.008	3	.087	2	.002	1	1.624e-2	1	NC	1	NC	1
496			min	004	2	012	3	0	15		3	NC	1	NC	1
											_		_		

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
497		2	max	.008	3	.04	2	0	15	7.941e-3	2	NC	4_	NC	1_
498			min	004	2	002	3	008	1	-1.371e-2	3	2461.613	2	NC	1
499		3	max	.008	3	.013	3	0	15	4.895e-6	<u>10</u>	NC	5	NC	2
500			min	004	2	01	2	011	1	-2.439e-4	1	1184.998	2	9048.764	1
501		4	max	.008	3	.04	3	0	15	4.305e-3	2	NC	5	NC	2
502			min	004	2	067	2	011	1	-4.841e-3	3	746.819	2	9735.565	1
503		5	max	.008	3	.073	3	0	15	8.657e-3	2	NC	5	NC	1
504			min	004	2	127	2	007	1	-9.541e-3	3	538.252	2	NC	1
505		6	max	.008	3	.11	3	0	15	1.301e-2	2	NC	15	NC	1
506			min	004	2	185	2	003	1	-1.424e-2	3	423.485	2	NC	1
507		7	max	.008	3	.145	3	0	1	1.736e-2	2	NC	15	NC	1
508			min	004	2	237	2	0	12	-1.894e-2	3	355.806	2	NC	1
509		8	max	.007	3	.174	3	.001	1	2.171e-2	2	9296.327	15	NC	1
510			min	004	2	278	2	0	15	-2.364e-2	3	315.806	2	NC	1
511		9	max	.007	3	.193	3	0	15	2.504e-2	2	8681.966	15	NC	1
512			min	003	2	304	2	0	1	-2.373e-2	3	294.997	2	NC	1
513		10	max	.007	3	.2	3	0	1	2.769e-2	2	8495.046	15	NC	1
514			min	003	2	312	2	0	12	-2.076e-2	3	288.913	2	NC	1
515		11	max	.007	3	.195	3	0	1	3.034e-2	2	8681.647	15	NC	1
516			min	003	2	303	2	0	15	-1.779e-2	3	296.089	2	NC	1
517		12	max	.007	3	.178	3	0	15	2.961e-2	2	9295.669	15	NC	1
518			min	003	2	276	2	001	1	-1.482e-2	3	319.165	2	NC	1
519		13	max	.007	3	.152	3	0	15	2.376e-2	2	NC	15	NC	1
520			min	003	2	233	2	0	1	-1.186e-2	3	364.056	2	NC	1
521		14	max	.006	3	.118	3	.003	1	1.792e-2	2	NC	15	NC	1
522			min	003	2	178	2	0	15	-8.899e-3	3	441.233	2	NC	1
523		15	max	.006	3	.08	3	.007	1	1.208e-2	2	NC	5	NC	1
524			min	003	2	119	2	0	15	-5.937e-3	3	575.028	2	NC	1
525		16	max	.006	3	.042	3	.01	1	6.232e-3	2	NC	5	NC	1
526		10	min	003	2	059	2	0	15	-2.976e-3	3	824.975	2	NC	1
527		17	max	.006	3	.005	3	.011	1	7.001e-4	1	NC	5	NC	2
528			min	003	2	005	2	0	15	-1.383e-5	3	1363.879	2	9403.568	1
529		18	max	.006	3	.039	2	.007	1	1.246e-2	2	NC	4	NC	1
530		10	min	003	2	028	3	0	15	-5.243e-3	3	2920.047	2	NC	1
531		19	max	.006	3	.077	2	0	15	2.495e-2	2	NC	1	NC	1
532		10	min	003	2	058	3	002	1	-1.066e-2	3	NC	1	NC	1
533	M5	1	max	.026	3	.217	2	0	1	0	1	NC	1	NC	1
534	IVIO		min	017	2	018	3	0	1	0	1	NC	1	NC	1
535		2	max	.026	3	.098	2	0	1	0	1	NC	5	NC	1
536			min	018	2	.002	3	0	1	0	1	971.711	2	NC	1
537		3	max	.026	3	.042	3	0	1	0	1	NC	5	NC	1
538			min	018	2	034	2	0	1	0	1	459.876	2	NC	1
539		4	max	.025	3	.12	3	0	1	0	1	9484.435	15	NC	1
540		-	min	025	2	12 19	2	0	1	0	1	283.689	2	NC	1
541		5	max	.025	3	.222	3	0	1	0	+	6645.124	15	NC NC	1
542		J	min	025 017	2	357	2	0	1	0	1	200.935	2	NC NC	1
543		6	max	.024	3	.335	3	0	1	0	1	5120.351	15	NC	1
544		U	min	024 017	2	522	2	0	1	0	1	156.041	2	NC NC	1
545		7		.024	3	<u>522 </u>	3	0	1	0	1		15	NC NC	1
			max		2				1		1				1
546		0	min	016		671	2	0	1	0	•	129.878 3726.034	<u>2</u>	NC NC	
547		8	max	.023	3	.535	3	0		0	1		<u>15</u>	NC NC	1
548		0	min	016	2	79	2	0	1	0	1	114.565	2	NC NC	1
549		9	max	.023	3	.593	3	0	1	0	1		<u>15</u>	NC NC	1
550		40	min	016	2	865	2	0	1	0	1_	106.672	2	NC NC	1
551		10	max	.022	3	.613	3	0	1	0	1	3383.569	<u>15</u>	NC NC	1
552		4.4	min	015	2	891	2	0	1	0	1_	104.368	2	NC NC	1
553		11	max	.022	3	.597	3	0	1	0	_1_	3462.969	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

Mem	nber	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
554			min	015	2	865	2	0	1	0	<u>1</u>	107.078	2	NC	1
555		12	max	.021	3	.546	3	0	1	0	<u>1</u>		<u>15</u>	NC	1
556			min	015	2	786	2	0	1	0	1	115.884	2	NC	1
557		13	max	.02	3	.463	3	0	1	0	1	4239.457	15	NC	1
558			min	015	2	659	2	0	1	0	1	133.275	2	NC	1
559		14	max	.02	3	.359	3	0	1	0	1	5121.428	15	NC	1
560			min	014	2	502	2	0	1	0	1	163.644	2	NC	1
561		15	max	.019	3	.243	3	0	1	0	1		15	NC	1
562			min	014	2	332	2	0	1	0	1	217.37	2	NC	1
563		16	max	.019	3	.125	3	0	1	0	1		15	NC	1
564			min	014	2	165	2	0	1	0	1	320.436	2	NC	1
565		17	max	.018	3	.014	3	0	1	0	1	NC	5	NC	1
566			min	014	2	018	2	0	1	0	1	549.265	2	NC NC	1
567		18		.018	3	.094	1	0	1	0	1	NC	5	NC NC	1
		10	max						1						1
568		40	min	<u>014</u>	2	08	3	0		0	1_	1211.555	2	NC NC	_
569		19	max	.018	3	.186	2	0	1	0	1	NC NC	1	NC	1
570	_		min	014	2	<u>166</u>	3	0	1	0	1_	NC	1_	NC	1
571 M	9	_1_	max	.008	3	.087	2	0	15	2.77e-2	3	NC	1_	NC	1
572			min	004	2	012	3	002	1	-1.624e-2	1_	NC	1	NC	1
573		2	max	.008	3	.04	2	.008	1	1.371e-2	3	NC	4	NC	1_
574			min	004	2	002	3	0	15	-7.941e-3	2	2461.613	2	NC	1
575		3	max	.008	3	.013	3	.011	1	2.439e-4	1	NC	5	NC	2
576			min	004	2	01	2	0	15	-4.895e-6	10	1184.998	2	9048.764	1
577		4	max	.008	3	.04	3	.011	1	4.841e-3	3	NC	5	NC	2
578			min	004	2	067	2	0	15	-4.305e-3	2	746.819	2	9735.565	1
579		5	max	.008	3	.073	3	.007	1	9.541e-3	3	NC	5	NC	1
580			min	004	2	127	2	0	15	-8.657e-3	2	538.252	2	NC	1
581		6	max	.008	3	.11	3	.003	1	1.424e-2	3		15	NC	1
582			min	004	2	185	2	0	15	-1.301e-2	2	423.485	2	NC NC	1
583		7	max	.004	3	.145	3	0	12	1.894e-2	3	NC	15	NC NC	1
584				004	2	237	2	0	1	-1.736e-2	2	355.806	2	NC NC	1
		0	min												-
585		8	max	.007	3	.174	3	0	15	2.364e-2	3		15	NC	1
586			min	004	2	278	2	001	1	-2.171e-2	2	315.806	2	NC	1
587		9	max	.007	3	.193	3	0	1	2.373e-2	3		<u>15</u>	NC	1
588			min	003	2	304	2	0	15	-2.504e-2	2	294.997	2	NC	1
589		<u>10</u>	max	.007	3	.2	3	00	12	2.076e-2	3_		<u>15</u>	NC	1_
590			min	003	2	312	2	0	1	-2.769e-2	2	288.913	2	NC	1
591		<u>11</u>	max	.007	3	.195	3	0	15	1.779e-2	3		<u>15</u>	NC	1
592			min	003	2	303	2	0	1	-3.034e-2	2	296.089	2	NC	1
593		12	max	.007	3	.178	3	.001	1	1.482e-2	3	9295.669	15	NC	1
594			min	003	2	276	2	0	15	-2.961e-2	2	319.165	2	NC	1
595		13	max	.007	3	.152	3	0	1	1.186e-2	3	NC	15	NC	1
596			min	003	2	233	2	0	15	-2.376e-2	2	364.056	2	NC	1
597		14	max	.006	3	.118	3	0			3	NC	15	NC	1
598			min	003	2	178	2	003		-1.792e-2	2	441.233	2	NC	1
599		15	max	.006	3	.08	3	<u>.005</u>	15	5.937e-3	3	NC	5	NC	1
600		10	min	003	2	119	2	007	1	-1.208e-2	2	575.028	2	NC	1
601		16		.006	3	.042	3	<u>007</u> 0	15	2.976e-3	3	NC	5	NC NC	1
		10	max		2						2		2		1
602		47	min	003		059	2	01	1	-6.232e-3		824.975		NC NC	
603		17	max	.006	3	.005	3	0	15	1.383e-5	3	NC	5	NC 0400 FC0	2
604		40	min	003	2	005	2	<u>011</u>	1	-7.001e-4	1_	1363.879	2	9403.568	1
605		18	max	.006	3	.039	2	0	15	5.243e-3	3	NC	4	NC	1
606			min	003	2	028	3	007	1	-1.246e-2	2	2920.047	2	NC	1
607		19	max	.006	3	.077	2	.002	1	1.066e-2	3	NC	1_	NC	1_
608			min	003	2	058	3	0	15	-2.495e-2	2	NC	1_	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.