Скаларно произведение в геометричното пространство

Работим в геометричното пространство.

Определение 1 *Ъгъл между ненулевите вектори и и v* е ъгълът между произволни техни представители с общо начало. Означава се с $\langle (u, v) \rangle$.

Коректност: Трябва да се провери, че ъгълът не зависи от това коя точка сме взели за общо начало на представителите. Но това е ясно: Ако вземем представители с начало \overrightarrow{O} , а именно $\overrightarrow{OP} = u$ и $\overrightarrow{OQ} = v$, и с начало $\overrightarrow{O'}$, а именно $\overrightarrow{OP'} = u$ и $\overrightarrow{OQ'} = v$, то $\overrightarrow{OP} = \overrightarrow{O'P'}$ и $\overrightarrow{OQ} = \overrightarrow{O'Q'}$. В частност, $\overrightarrow{OP} \uparrow \uparrow \overrightarrow{O'P'}$ и $\overrightarrow{OQ} \uparrow \uparrow \overrightarrow{O'Q'}$ и следователно $\not \prec \left(\overrightarrow{OP}, \overrightarrow{OQ}\right) = \not \prec \left(\overrightarrow{O'P'}, \overrightarrow{O'Q'}\right)$.

Пример 1 При $u \neq 0$ имаме $\sphericalangle(u, u) = 0$.

Пример 2 При $u \neq 0$, $v \neq 0$ имаме $\langle (v, u) = \langle (u, v) \rangle$.

Оттук нататък считаме, че е фиксирана единична отсечка за измерване на дължини.

Определение 2 Базисът $e=(e_1,e_2,e_3)$ на линейното пространство на векторите в пространството се нарича *ортонормиран*, ако векторите e_1,e_2,e_3 са единични и взаимно перпендикулярни, тоест $|e_i|=1,\,i=1,2,3,\,$ и $\sphericalangle(e_i,e_j)=\frac{\pi}{2}$ при $i\neq j.$

Забележка 1 Ясно е, че съществуват ортонормирани базиси, защото съществуват три взаимно перпендикулярни прави и върху всяка от тях можем да вземем по един единичен вектор.

Теорема 1 Нека базисът $e=(e_1,e_2,e_3)$ на линейното пространство на векторите в пространството е ортонормиран и спрямо него векторът и има координати (x_1,x_2,x_3) . Тогава $|u|=\sqrt{x_1^2+x_2^2+x_3^2}$.

Доказателство: Нека O е произволна точка, точката P' е такава, че $\overrightarrow{OP'} = x_1e_1$, точката P'' е такава, че $\overrightarrow{P'P''} = x_2e_2$ и точката P е такава, че $\overrightarrow{P'P'} = x_3e_3$. Тогава $\overrightarrow{OP} = x_1e_1 + x_2e_2 + x_3e_3 = u$ и следователно |u| = |OP|.

Имаме $\overrightarrow{OP'}=x_1e_1\parallel e_1$ и значи точката P' е върху правата през O, която е колинеарна с e_1 . Също така $\overrightarrow{P'P''}=x_2e_2\parallel e_2$ и значи точката P'' е върху правата през P', която е колинеарна с e_2 . Следователно P'' е в равнината през O, която е компланарна с e_1 и e_2 . Тъй като $\overrightarrow{P''P'}=x_3e_3\parallel e_3$, то точката P е върху правата през P'', която е колинеарна с e_3 . Но e_3 е перпендикулярен на e_1 и e_2 , така че правата през P'', която е колинеарна с e_3 , е перпендикулярна на равнината през O, която е компланарна с e_1 и e_2 . Следователно триъгълникът OP''P е правоъгълен с прав ъгъл при върха P'' и по теоремата на Питагор получаваме $|OP|^2 = |OP''|^2 + |P''P|^2$.

Тъй като e_1 и e_2 са перпендикулярни, то правата през O, която е колинеарна с e_1 , и правата през P', която е колинеарна с e_2 , са перпендикулярни. Следователно триъгълникът OP'P'' е правоъгълен с прав ъгъл при върха P' и по теоремата на Питагор получаваме $|OP''|^2 = |OP'|^2 + |P'P''|^2$.

Значи

$$\begin{aligned} |u|^2 &= |OP|^2 = |OP'|^2 + |P'P''|^2 + |P''P|^2 = |x_1e_1|^2 + |x_2e_2|^2 + |x_3e_3|^2 \\ &= |x_1|^2 |e_1|^2 + |x_2|^2 |e_2|^2 + |x_3|^2 |e_3|^2 = x_1^2 \cdot 1^2 + x_2^2 \cdot 1^2 + x_3^2 \cdot 1^2 = x_1^2 + x_2^2 + x_3^2, \end{aligned}$$
 Toect $|u| = \sqrt{x_1^2 + x_2^2 + x_3^2}$.

Определение 3 Скаларно произведение на векторите u u v е числото $\langle u,v\rangle \in \mathbb{R}$, дефинирано по следния начин:

- а) Ако u = 0 или v = 0, то $\langle u, v \rangle = 0$.
- б) Ако $u \neq 0$ и $v \neq 0$, то $\langle u, v \rangle = |u||v|\cos \sphericalangle(u, v)$.

Забележка 2 Срещат се и други означения за скаларното произведение. Например uv, u.v, (u, v).

Забележка 3 Ако u=0 или v=0, то $\langle (u,v) \rangle$ не е дефиниран. Но тъй като дължината на нулевия вектор е 0, то в тоя случай $\langle u,v \rangle = 0 = |u||v|\cos\varphi$ каквото и да е φ . Следователно, ако се уговорим да считаме, че нулевият вектор и другите вектори сключват произволен ъгъл, то тогава $\langle u,v \rangle = |u||v|\cos \langle (u,v) \rangle$ за всички вектори u и v.

Пример 3 При $u \neq 0$ имаме $\langle u, u \rangle = |u||u|\cos \sphericalangle(u,u) = |u||u|\cos 0 = |u|^2$, а също и при u = 0 имаме $\langle u, u \rangle = 0 = |u|^2$.

Теорема 2 (критерий за перпендикулярност на вектори)

Ненулевите вектори и и v са перпендикулярни $\Leftrightarrow \langle u, v \rangle = 0$.

Доказателство:
$$\langle u, v \rangle = 0 \Leftrightarrow |u||v|\cos \sphericalangle(u, v) = 0$$

 $\Leftrightarrow \cos \sphericalangle(u, v) = 0$ (защото $|u| \neq 0, |v| \neq 0$) $\Leftrightarrow \sphericalangle(u, v) = \frac{\pi}{2} \Leftrightarrow u \perp v$.

Забележка 4 Ако приемем, че нулевият вектор е перпендикулярен на всеки вектор (което е в унисон с приемането, че сключва произволен ъгъл с всеки вектор — щом сключва произволен ъгъл значи сключва и прав ъгъл), то горната теорема е вярна и без изискването u и v да са ненулеви.

Теорема 3 Нека базист $e=(e_1,e_2,e_3)$ на линейното пространство на векторите в пространството е ортонормиран и спрямо него векторите и и v имат координати $u(x_1,x_2,x_3)$ и $v(y_1,y_2,y_3)$. Тогава $\langle u,v\rangle=x_1y_1+x_2y_2+x_3y_3$.

Доказателство: Ако u=0 или v=0, то всички x-ове са 0 или всички y-ци са 0 и следователно $\langle u,v\rangle=0=x_1y_1+x_2y_2+x_3y_3.$

Нека $u \neq 0$ и $v \neq 0$. Нека O е произволна точка, а точките P и Q са такива, че $\overrightarrow{OP} = u$ и $\overrightarrow{OQ} = v$.

По косинусовата теорема за триъгълника OPQ (която важи и за изродени триъгълници, тоест когато O, P, Q са на една права — виж по-долу Забележка 5) имаме

$$|PQ|^2 = |OP|^2 + |OQ|^2 - 2|OP||OQ|\cos \triangleleft POQ.$$

Тъй като $|OP|=|u|,\ |OQ|=|v|$ и $\sphericalangle POQ=\sphericalangle(u,v),$ то

$$|OP||OQ|\cos \not \subset POQ = |u||v|\cos \not \subset (u,v) = \langle u,v \rangle.$$

Освен това $\overrightarrow{PQ}=v-u$. Следователно $|v-u|^2=|PQ|^2=|u|^2+|v|^2-2\langle u,v\rangle,$ откъдето получаваме

$$\langle u, v \rangle = \frac{1}{2} (|u|^2 + |v|^2 - |v - u|^2).$$

Тъй като координатите на v-u спрямо базиса e са $(y_1-x_1,y_2-x_2,y_3-x_3)$, по Теорема 1 имаме

$$|u|^2 = x_1^2 + x_2^2 + x_3^2$$
, $|v|^2 = y_1^2 + y_2^2 + y_3^2$, $|v - u|^2 = (y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2$.

Следователно

$$\langle u, v \rangle = \frac{1}{2} \left(\left(x_1^2 + x_2^2 + x_3^2 \right) + \left(y_1^2 + y_2^2 + y_3^2 \right) - \left((y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2 \right) \right)$$

$$= \frac{1}{2} \left(2x_1y_1 + 2x_2y_2 + 2x_3y_3 \right) = x_1y_1 + x_2y_2 + x_3y_3.$$

Забележка 5 В училището косинусовата теорема вероятно е формулирана само за истински триъгълници. Тя обаче важи и за изродени триъгълници OPQ, тоест когато $O,\ P,\ Q$ са на една права, и доказателството в тоя случай е много просто: Ако O е между P и Q, то |PQ|=|OP|+|OQ| и $\sphericalangle POQ=\pi$. Следователно

$$\begin{split} |PQ|^2 &= (|OP| + |OQ|)^2 = |OP|^2 + |OQ|^2 + 2|OP||OQ| \\ &= |OP|^2 + |OQ|^2 - 2|OP||OQ|.(-1) = |OP|^2 + |OQ|^2 - 2|OP||OQ|\cos \pi \\ &= |OP|^2 + |OQ|^2 - 2|OP||OQ|\cos \sphericalangle POQ. \end{split}$$

Ако O не е между P и Q, тоест P и Q са от една и съща страна на O, то |PQ|=|OP|-|OQ| или |PQ|=|OQ|-|OP|, тоест |PQ|=||OP|-|OQ||, и $\not\sim POQ=0$. Следователно

$$|PQ|^2 = ||OP| - |OQ||^2 = (|OP| - |OQ|)^2 = |OP|^2 + |OQ|^2 - 2|OP||OQ|$$

$$= |OP|^2 + |OQ|^2 - 2|OP||OQ| \cdot 1 = |OP|^2 + |OQ|^2 - 2|OP||OQ| \cos 0$$

$$= |OP|^2 + |OQ|^2 - 2|OP||OQ| \cos \triangleleft POQ.$$

От Теорема 1, Теорема 2 и Теорема 3 веднага получаваме

Теорема 4 Нека базисът $e = (e_1, e_2, e_3)$ на линейното пространство на векторите в пространството е ортонормиран и спрямо него ненулевите вектори и и и имат координати $u(x_1, x_2, x_3)$ и $v(y_1, y_2, y_3)$. Тогава:

1.
$$u \perp v \Leftrightarrow x_1y_1 + x_2y_2 + x_3y_3 = 0$$
.

2.
$$\cos \sphericalangle(u,v) = \frac{x_1y_1 + x_2y_2 + x_3y_3}{\sqrt{x_1^2 + x_2^2 + x_3^2} \cdot \sqrt{y_1^2 + y_2^2 + y_3^2}}, moecm$$

$$\sphericalangle(u,v) = \arccos \frac{x_1y_1 + x_2y_2 + x_3y_3}{\sqrt{x_1^2 + x_2^2 + x_3^2} \cdot \sqrt{y_1^2 + y_2^2 + y_3^2}}.$$

Теорема 5 Скаларното произведение има следните (основни) свойства:

1.
$$\langle v, u \rangle = \langle u, v \rangle$$
 (симетричност)

$$2. \langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$$
 (адитивност по първия аргумент)

3.
$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$$
 за $\lambda \in \mathbb{R}$ (хомогенност по първия аргумент)

4.
$$\langle u, u \rangle > 0$$
 за $u \neq 0$ (положителност)

Доказателство: Ще докажем свойствата чрез координати. Това е най-вече заради второто свойство, чието доказателство чрез дефиницията е неприятно, докато с координати е тривиално. Останалите три се доказват лесно и с дефиницията, но и с координати доказателствата им са тривиални.

Нека сме фиксирали ортонормиран базис и спрямо него векторите u, v, w имат координати $u(x_1, x_2, x_3), v(y_1, y_2, y_3), w(z_1, z_2, z_3).$

- 1. Следва от Теорема 3, защото $\langle u,v\rangle=x_1y_1+x_2y_2+x_3y_3=y_1x_1+y_2x_2+y_3x_3=\langle v,u\rangle$. (Следва също и директно от дефиницията, защото $\sphericalangle(u,v)=\sphericalangle(v,u)$.)
- 2. Следва от Теорема 3, защото u+v има координати $(x_1+y_1,x_2+y_2,x_3+y_3)$ и следователно

$$\langle u + v, w \rangle = (x_1 + y_1)z_1 + (x_2 + y_2)z_2 + (x_3 + y_3)z_3$$

= $(x_1z_1 + x_2z_2 + x_3z_3) + (y_1z_1 + y_2z_2 + y_3z_3) = \langle u, w \rangle + \langle v, w \rangle.$

3. Следва от Теорема 3, защото λu има координати $(\lambda x_1, \lambda x_2, \lambda x_3)$ и следователно

$$\langle \lambda u, v \rangle = (\lambda x_1)y_1 + (\lambda x_2)y_2 + (\lambda x_3)y_3 = \lambda(x_1y_1 + x_2y_2 + x_3y_3) = \lambda\langle u, v \rangle.$$

(Може да се докаже лесно и с дефиницията като се внимава как се изразява $\sphericalangle(\lambda u,v)$ чрез $\sphericalangle(u,v)$ в зависимост от знака на λ .)

4. Следва от Теорема 3, защото $\langle u,u\rangle=x_1^2+x_2^2+x_3^2>0$, тъй като при $u\neq 0$ поне един от x-овете е различен от 0. (Следва също и директно от дефиницията, защото както видяхме в Пример 3 $\langle u,u\rangle=|u|^2>0$ при $u\neq 0$.)

Забележка 6 За u = 0 имаме $\langle u, u \rangle = 0$.

Забележка 7 Свойствата 2. и 3. в горната теорема заедно са еквивалентни на свойството

$$\langle \lambda u + \mu v, w \rangle = \lambda \langle u, w \rangle + \mu \langle v, w \rangle$$
 (линейност по първия аргумент)

Че линейността следва от 2. и 3. е ясно: Прилага се 2. и след това за всяко от събираемите се прилага 3.. Обратно, 2. следва като в линейността се вземе $\lambda=1$ и $\mu=1$, а 3. следва като в линейността се вземе $\mu=0$ и произволно v, например v=0.

Забележка 8 Поради симетричността на скаларното произведение, то е адитивно, хомогенно и линейно и по втория си аргумент. Така че скаларното произведение е билинейно, тоест линейно е и по двата си аргумента.

От Теорема 5 веднага получаваме

Следствие 1 Скаларното произведение на вектори в геометричното пространство е скаларно произведение в смисъла от курса по алгебра и следователно векторите в геометричното пространство образуват 3-мерно евклидово линейно пространство в смисъла от курса по алгебра.

Забележка 9 Всичко направено по-горе важи и в геометричната равнина (а и върху геометрична права), като навсякъде трябва да се махне третият базисен вектор и третата координата (а върху права — вторият и третият базисен вектор и втората и третата координата) и в Следствие 1 евклидовото линейно пространство е 2-мерно (а за права — 1-мерно).