Representative Works — Annex

Up to five selected outputs & justifications

Luís Kalchhauser Cunha

2025-08-25

Justifications

1. Living on a volcano's edge: genetic isolation of an extremophile terrestrial metazoan (2014)

Heredity 112(2):132-142. DOI: 10.1038/hdy.2013.84

Authors: Cunha, L.; Montiel, R.; Novo, M.; Orozco-Terwengel, P.; Rodrigues, A.; Morgan, A.J.; Kille, P.

This article investigates **genetic isolation and adaptation of an extremophile metazoan in volcanic environments**, applying population genetic markers and comparative analyses at mitochondrial and nuclear genome levels.

I contributed to genotyping, dataset curation, and statistical inference in R, building expertise in genetics of adaptation to extreme environments and population structure analysis.

2. Amazonian earthworm biodiversity is heavily impacted by ancient and recent human disturbance (2023)

Science of The Total Environment 895:165087. DOI: 10.1016/j.scitotenv.2023.165087 Authors: Conrado, A.C.; Demetrio, W.C.; Stanton, D.W.; Bartz, M.L.; James, S.W.; Santos, A.; da Silva, E.; et al. and Cunha, L.

This large international collaboration demonstrates how human land-use history drives biodiversity patterns in Amazonian earthworms, integrating DNA barcoding, ecological surveys, and advanced statistical models.

My role included leading the **field and lab work** but also contributing to **bioinformatic processing of sequence data and ecological genetics analysis**, emphasizing skills in **biodiversity genomics and large-scale data integration**.

3. Identifying conserved polychaete molecular markers of metal exposure (2021)

Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 240:108913. DOI: 10.1016/j.cbpc.2020.108913

Authors: Etxabe, A.G.; Pini, J.M.; Short, S.; Cunha, L.; Kille, P.; Watson, G.J.

This work identifies **transcriptome-derived biomarkers of metal exposure in polychaetes**, using RNA-Seq analysis of *Alitta virens*. Comparative bioinformatics highlighted conserved molecular responses across taxa.

I contributed to the analysis of RNA-Seq data, marker validation, and interpretation of functional pathways, strengthening expertise in environmental transcriptomics and stress genomics.

4. Coping with extremes: How Epigenetic and Molecular Adaptations Enable Earthworms to Thrive in Volcanic Soils (Preprint, 2025)

bioRxiv. DOI: 10.1101/2025.07.24.666578

Authors: Rimington, O.; Novo, M.; Hodson, M.E.; Camarinho, R.; Viveiros, F.; Silva, C.; Arruda, H.; Rodrigues, A.S.; Bruford, M.; Short, S.; Morgan, A.J.; Spurgeon, D.; Kille, P.; Cunha, L.

This preprint explores epigenetic and molecular adaptations of earthworms in volcanic soils, integrating genome-wide methylation profiling and transcriptomic analyses.

I was responsible for integrating sequencing pipelines and population epigenomic analysis, reflecting skills in epigenetics, stress adaptation, and reproducible workflows highly relevant to the Genetics & Genomics focus of the UA call:contentReferenceoaicite:0.

5. A large set of microsatellites for the highly invasive earthworm *Amynthas corticis* (2017)

Applied Soil Ecology 119:152-155. DOI: 10.1016/j.apsoil.2017.05.029 Authors: Cunha, L.; Thornber, A.; Kille, P.; Morgan, A.; Novo, M.

This publication describes the development of **SSR markers from low-coverage genomes** to study invasive *Amynthas corticis*. Markers were validated and proposed for monitoring invasion dynamics and population structure.

I led the design and validation of SSR panels, PCR protocols, and downstream analysis, consolidating expertise in molecular marker development and applied population genetics.