Lecture 5

MALI, 2025

- Decision trees
- Random forests
- Gradient boosted trees





Step 1 Find the feature that is the <u>best predictor</u>
of your data

Step ?

Partition instances of your train data according
to that feature Step 3 Repeat 1-2 rewrsively Stop when - When all instances of a leaf belong to the same class - When there are no more ways to split. Let dominant dass deldy

## A LOAN IN THE BANK

| salary | Savings | debt           | class                     |
|--------|---------|----------------|---------------------------|
|        | +       | +              | V                         |
|        |         |                | 7.                        |
| +      | _       | , <del>_</del> | <b>√</b>                  |
|        | _       | +              | <u> </u>                  |
| +      |         | +              | <u></u>                   |
| 1      | +       | _              | $\overline{\hspace{1cm}}$ |
| +      | _       | _              | $\overline{\hspace{1cm}}$ |
|        | _       | +              | ·/.                       |
| Ŧ      | +       | +              |                           |
|        | _       | _              | 7.                        |
|        | +       |                | $\overline{V}$            |
|        |         | +              | <u>y</u> .                |
|        |         |                |                           |

Find best predictor using
Gini impurity index

(G(D)= /- Epix prob. of belonging to dass
detarted

$$G_{k} = \sum_{i}^{n_{1}} G(D_{i})$$
if we solt some ever position on feature k

$$G_{salary} = \frac{7}{12} \left( 1 - \left(\frac{2}{7}\right)^{2} - \left(\frac{5}{7}\right)^{2} - \left(\frac{5}{5}\right)^{2} - \left(\frac{5}{5}\right)^{2} \right)$$
How solary

low solary

Salary Li best predictor Granings - 0.31 lowest impurity Gdest = 0.47 recalculate

To learn a decision tree, the algorithm tries every possible yes/no question and goes for the best one - recursively

## **VISUALIZATION**





Decision trees are very prone to OVERATTIMG

# PRE-PRUNING

Hyperparameters
Max\_depth: max no. of questions in a branch max\_leaf\_nodes: nex no. of leaves MIN\_samples\_split: min no. of samples a rode must contain for the model to split it (criterion: default is Gini, others possible)

PROS Fasts Interpretable Easy to visualize

Easy to visualize

Invariant to data

Scaling Not really accurate Overfit, even with pre-priving

## ENSEMBLES OF DECISION TREES

method that combines multiple ML models to create more poverful models

Random forests (bagging)

a collection of slightly different decision trees that onerfit differently

Gradient boosted decision trees (boosting)

a sequence of trees where each tree this to correct the mistakes of the previous one

- Decision trees
- Random forests
- Gradient boosted trees

# RANDOM FORESTS



## RANDOMIZATION I: BOOTSTRAPPING

# features

|                       | $f_1$ | $f_2$ | $f_3$ | f <sub>4</sub> | $f_5$ | f <sub>6</sub> |
|-----------------------|-------|-------|-------|----------------|-------|----------------|
| <b>X</b> <sub>I</sub> | 45    | 5     | 21    | 45             | 15    | I              |
| X <sub>2</sub>        | 87    | 2     | 12    | 44             | 64    | 2              |
| <b>X</b> <sub>3</sub> | 24    | 8     | 15    | 43             | 36    | 3              |
| <b>X</b> <sub>4</sub> | 67    | 7     | 17    | 44             | 87    | 2              |
| <b>X</b> <sub>5</sub> | 13    | 5     | 12    | 44             | 65    | 3              |
| <b>x</b> <sub>6</sub> | 87    | 4     | 16    | 42             | 34    | I              |
| <b>X</b> <sub>7</sub> | 89    | 7     | 13    | 42             | 2     | 2              |
| <b>X</b> <sub>8</sub> | 68    | 3     | 14    | 43             | 54    | 3              |
| X <sub>9</sub>        | 35    | 6     | П     | 41             | 63    | 2              |



### A bootstrap dataset

|                       | $f_1$ | $f_2$ | $f_3$ | f <sub>4</sub> | <b>f</b> <sub>5</sub> | f <sub>6</sub> |
|-----------------------|-------|-------|-------|----------------|-----------------------|----------------|
| <b>X</b> <sub>7</sub> | 89    | 7     | 13    | 42             | 2                     | 2              |
| X <sub>9</sub>        | 35    | 6     | П     | 41             | 63                    | 2              |
| <b>X</b> <sub>4</sub> | 67    | 7     | 17    | 44             | 87                    | 2              |
| <b>x</b> <sub>8</sub> | 68    | 3     | 14    | 43             | 54                    | 3              |
| <b>X</b> <sub>7</sub> | 89    | 7     | 13    | 42             | 2                     | 2              |
| <b>x</b> <sub>2</sub> | 87    | 2     | 12    | 44             | 64                    | 2              |
| <b>X</b> <sub>3</sub> | 24    | 8     | 15    | 43             | 36                    | 3              |
| <b>X</b> <sub>3</sub> | 24    | 8     | 15    | 43             | 36                    | 3              |
| <b>x</b> <sub>8</sub> | 68    | 3     | 14    | 43             | 54                    | 3              |

## RANDOMIZATION I: BOOTSTRAPPING

#### Dataset for tree I

#### Dataset for tree 2

#### Dataset for tree 3

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>9</sub>        | 35 | 6              | П              | 41             | 63             | 2              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17             | 44             | 87             | 2              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |

|                       | fı | f <sub>2</sub> | <b>f</b> <sub>3</sub> | f <sub>4</sub> | <b>f</b> 5 | f <sub>6</sub> |
|-----------------------|----|----------------|-----------------------|----------------|------------|----------------|
| <b>x</b> <sub>6</sub> | 87 | 4              | 16                    | 42             | 34         | I              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14                    | 43             | 54         | 3              |
| <b>x</b> <sub>2</sub> | 87 | 2              | 12                    | 44             | 64         | 2              |
| <b>x</b> <sub>2</sub> | 87 | 2              | 12                    | 44             | 64         | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15                    | 43             | 36         | 3              |
| <b>x</b> <sub>7</sub> | 89 | 7              | 13                    | 42             | 2          | 2              |
| <b>x</b> <sub>4</sub> | 67 | 7              | 17                    | 44             | 87         | 2              |
| <b>x</b> <sub>2</sub> | 87 | 2              | 12                    | 44             | 64         | 2              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14                    | 43             | 54         | 3              |

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X                     | 45 | 5              | 21             | 45             | 15             | I              |
| X                     | 45 | 5              | 21             | 45             | 15             | I              |
| <b>x</b> <sub>6</sub> | 87 | 4              | 16             | 42             | 34             | I              |
| <b>X</b> <sub>5</sub> | 13 | 5              | 12             | 44             | 65             | 3              |
| <b>x</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |

Each tree is based on different bootstrap datasets

# RANDOMIZATION II: FEATURE SELECTION

#### **Dataset for tree I**

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>9</sub>        | 35 | 6              | П              | 41             | 63             | 2              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17             | 44             | 87             | 2              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |

For each node, randomly select a subset of features and ask the best question involving one of these features

e.g. f276?

# RANDOMIZATION II: FEATURE SELECTION

#### Dataset for tree I

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>9</sub>        | 35 | 6              | П              | 41             | 63             | 2              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17             | 44             | 87             | 2              |
| <b>X</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |

max\_features controls how large this subset is

max\_features = n\_features =) no randonness injected

max\_features = 1 forces the model to use a certain (random) feature

# RANDOMIZATION II: FEATURE SELECTION

#### Dataset for tree I

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>9</sub>        | 35 | 6              | П              | 41             | 63             | 2              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17             | 44             | 87             | 2              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |

A low value of max\_features

=) very different, very deep trees

A high value of max\_features

=) similar, shallow trees

A rule of thumb

n-fectures

### PREDICTIONS USING RANDOM FORESTS



# PROS AND CONS OF RANDOM FORESTS

**Pros** 

- Very poverful - Work well with little parameter truing Cons

- Different random

states = diff.

ferest

- Slower

- Difficult to interpret.

## TREES VS. FORESTS



Jupyter Notebook Decision Trees 2: Feature importance and ensembles of trees

- Decision trees
- Random forests
- Gradient boosted trees

# GRADIENT BOOSTED DECISION TREES

OR GRADIENT BOOSTED REGRESSION TREES OR GRADIENT BOOSTING MACHINES

Touild a sequence of trees where each tree tries to correct the mistakes of the previous

The very shallow trees ("weak learner")

## **HYPERPARAMETERS**

n estimators

how many trees in sequence?

how deep each tree should be

how strongly does each tree depend
On previous (~0.1-0.3 works well)

### **HOW DOES IT WORK?**

First tree

Second tree

and tree

Calculate residuds: 
$$r_2 = y - r_1(x)$$

Test a tree + (E) on residuals:

Fit a free to(Fi) on residuals:

Then 
$$T_2(x)=T_2(x)+yt_2(z)$$
ree

• *n*th tree

$$T_n(x) = T_{n-1}(x) + gt_n(r_n)$$

## CODING BOOSTED TREES



Jupyter Notebook Decision Trees 2: Feature importance and ensembles of trees
Jupyter Notebook Decision Trees 3: Gradient boosted trees for regression

## PROS AND CONS OF GRADIENT **BOOSTED DECISION TREES**

**Pros** 

One of the most powerful models out there

Cons

Requires careful parameter towing

## WHEN TO USE WHAT

Tree Forest Boosted tree

When

VISUALIZATION

RUBUSTNESS

ACCURACY

fast

slowest

s/over

is important



Explain how tree-based models work

- Make informed decisions about when each model is appropriate
- Implement tree-based models for classification and regression problems

