MATH5425 exam 2019

There were 5 questions worth 10 marks each. Students were asked to complete 4 questions.

Question 1 (10 marks)

Let G = (V, E) be a connected graph.

- (a) Let $e \in E$ be an edge of G. Prove that there is a spanning tree in G which contains e.
- (b) Let T, T' be distinct spanning trees in G. Prove that there is a finite sequence

$$T = T_0, T_1, \ldots, T_r = T'$$

such that T_0, T_1, \ldots, T_r are distinct spanning trees in G, and for $i = 0, 1, \ldots, r - 1$, the tree T_{i+1} is obtained from T_i by deleting one edge and inserting another.

Question 2 (10 marks)

(We went through this in lectures at the end of Chapter 7!)

Recall that $K_{a,b}$ is the complete bipartite graph with a vertices in one part and b vertices in the other.

- (a) Prove that every red/blue-colouring of the edges of $K_{3,7}$ contains a monochromatic copy of $K_{2,2}$.
- (b) Provide a red/blue-colouring of the edges of $K_{2,7}$ with no monochromatic copy of $K_{2,2}$. Explain why your colouring has the required property.
- (c) Provide a red/blue-colouring of the edges of $K_{3,6}$ with no monochromatic copy of $K_{2,2}$. Explain why your colouring has the required property.

Question 3 (10 marks)

Consider the binomial random graph model G(n, p). Let X = X(n, p) be the number of unordered pairs of distinct vertices with no common neighbour. That is,

$$X = |\{\{i,j\} : 1 \le i < j \le n, \ N(i) \cap N(j) = \emptyset\}|$$

where N(v) denotes the (random) neighbourhood of vertex v in $G \in G(n, p)$.

- (a) Calculate $\mathbb{E}X$, with careful explanation.
- (b) Prove that $\mathbb{E}X \leq \exp(2 \ln n (n-2)p^2)$.
- (c) Define a function $p:\mathbb{Z}^+ \to (0,1)$ such that
 - $p(n) \to 0$ as $n \to \infty$, and
 - in G(n, p(n)) we have $\mathbb{E}X \to 0$ as $n \to \infty$.

Justify your choice of p.

Question 3, continued...

- (d) Let $p: \mathbb{Z}^+ \to (0,1)$ be any function which satisfies the conditions required in part (c).
 - (i) Prove that a.a.s. the diameter of $G \in G(n, p(n))$ is at most 2.
 - (ii) Is it true that a.a.s., the diameter of $G \in G(n, p(n))$ is exactly 2? Explain your answer.

Question 4 (10 marks)

Parts (a) and (b) of this question are unrelated.

(a) Recall that q(H) denotes the number of odd components in a graph H, that is, the number of components of odd order.

Let G = (V, E) be a graph with n vertices. Suppose that M is a maximum matching of G.

Fix $S \subseteq V$ and let M' be the set of all edges in $M \cap E(G - S)$. That is, M' is the set of edges in M which are disjoint from S.

- (i) Prove that at most n |S| q(G S) vertices of G are matched by M'.
- (ii) Hence prove that $|M| \leq \frac{1}{2}(n+|S|-q(G-S))$.

Question 4, continued...

(b) Prove that if

$$\binom{n}{k} 3^{1-\binom{k}{2}} < 1$$

then there exists a colouring of the edges of K_n with 3 colours without a monochromatic copy of K_k . Justify each step carefully.

Question 5 (10 marks)

In this question we will show that Tutte's Theorem about 3-connected graphs cannot be extended to 4-connected graphs.

- (a) Suppose that G is a planar graph and e is an edge of G. Let G' = G/e be the graph obtained from G by contracting the edge e. Prove that G' is planar.
- (b) Consider the graph H shown below.

Enough to consider a+b; a+C, a+d (notate picture)

Show 34 Indep paths between er's Theorem, or any ected. Pariz of

>> 4-10nn.

(i) Using (the Global Version of) Menger's Theorem, or otherwise, prove that *H* is 4-connected.

Question 5(b), continued...

(b) Consider the graph H shown below.

H is planar

(ii) Prove that there is no sequence of 4-connected graphs S_{Ω}

$$G_0, G_1, \ldots, G_r$$
 such that $G_0 = K_{\overline{1}}$ and $G_r = H_{\overline{1}}$

Solution

• G_{i+1} has an edge e such that $G_i = G_{i+1}/e$, for $i = 0, \ldots, r-1$.

contractions from H to K5.

