Exercices de vérification

- 1. Soit $f(x) = 3x^2 + 6x 3$ et g(x) = 4x 2. Évaluer les expressions suivantes (simplifier vos réponses).
 - a. f(-2)
 - b. f(2x-1)
 - c. f(g(x))
 - d. $g^{-1}(x)$
- 2. Étudier (domaine, image, signes, croissance, extrémums) la fonction f représentée sur la graphique suivant.

3. Calculer le domaine de la fonction $f(x) = \frac{\sqrt{x^2 + x - 6}}{x + 2}$

Réponses:

1. Afficher

a.
$$-3$$
 b. $12x^2 - 6$ c. $48x^2 - 24x - 3$ d. $g^{-1}(x) = \frac{x}{4} + \frac{1}{2}$

2. Afficher

$$dom f: -\infty, -3[\cup [-2, 5[\cup]5, \infty$$

 $imaf:] -2, \infty$
 $O.O.: (0, 1)$

Fonction
$$+:-\infty,-3[\ \cup\ [-2,4[\ \cup\]6,\infty$$

Fonction
$$-:$$
]4, 6[

Fonction nulle:
$$\{4,6\}$$

$$\text{Croissante}: -\infty, -3[\;\cup\;] -2, 0[\;\cup\;[0,2]\;\cup\;]5, \infty$$

Déroissante :
$$[2, 5[$$

Min. relatif :
$$\emptyset$$

Min. absolu :
$$\emptyset$$

3. Afficher

Contrainte 1:
$$x^2 + x - 6 \ge 0$$
, vrai si $x \in -\infty, -3$] $\cup [2, \infty[$.

Contrainte 2:
$$x + 2 \neq 0$$

 $x \neq -2$

$$dom f:]-\infty, -3] \cup [2, \infty[$$

$$dom f:]-\infty,-3]\cup[2,\infty[$$
 En effet: $-2\notin[-3,2]$, alors la contraintes $x\neq-2$ ne change rien.