Chapter 1 Introduction

Slides Adapted from 'Data Communications and Networking'
5th Edition book by By Behrouz A. Forouzan

Introduction

- Data communications and networking
 - Change the way we do business and the way we live
 - Business decisions have to be made more quickly
 - Decision depends on immediate access to accurate information
 - Business today rely on computer networks and internetworks
 - We need to know:
 - How networks operate
 - What types of technologies are available
 - Which design best fills which set of needs

Introduction

- Development of the PC changes a lot in business, industry, science and education.
- Similar revolution is occurring in data communication and networking
 - ► Technologies advances are making it possible for communications links to carry more and faster signals
 - Services are evolving to allow the use of this expanded capacity
 - ▶ For example telephone services extended to have:
 - ▶ Conference calling, Call waiting
 - ▶ Voice mail, Caller ID

Communication:

- Means sharing information
 - ► Local (face to face) or remote (over distance)
- ▶ Telecommunication
 - ▶ Telephone, telegraph and television
 - Means communication at a distance
 - Tele is Greek for far

Data:

- Refers to information
 - Presented in any form
 - Agreed upon by the parties (creating & using)

Data communication: is the exchange of data between two devices via some form of transmission medium.

- Communication system made up of a combination of hardware and software
- Effectiveness of data communication system depends on:
 - Delivery: The system must deliver data to correct destination. Data received by the intended user only
 - 2. Accuracy: The system must deliver data accurately (no change).
 - Data changed & uncorrected is unusable

- 3. Timeliness: The system must deliver data in timely manner
 - Data arrived late are useless
 - ▶ In the same order (video and audio) & without delay (Real time transmission)
- 4. Jitter: Variation in the packet arrival time (uneven quality in the video is the result)

A data communication system is made up of five components

- Message: the information (data) to be communicated
 - Consist of text, numbers, pictures, audio, or video
- Sender: the device that sends the data message
 - Computer, workstation, telephone handset, video camera, ...
- 3. Receiver: the device that receives the message
 - Computer, workstation, telephone handset, television,

- 4. Medium: The physical path by which a message travels from sender to receiver
 - twisted pair, coaxial cable, fiber-optic, radio waves

- 5. Protocol: a set of rules that govern data communications
 - An agreement between the communicating devices
 - Devices may be connected but not communicating (no protocol)

- Communication between two devices can be:
 - ▶ Simplex
 - ▶ Half-Duplex
 - ► Full-Duplex

- Simplex (one way street)
 - ▶ The communication is unidirectional
 - Only one device on a link can transmit; the other can only receive
 - Use the entire capacity of the channel to send data
 - Example: Keyboards, Monitors

- Half-Duplex (one-lane with two-directional traffic)
 - ► Each station can both transmit and receive, but not at the same time
 - When one device is sending, the other can only receive, and vice versa
 - ► The entire capacity of a channel is taken over by the transmitting device
 - ▶ Example: Walkie-talkies

- ► Full-Duplex (Duplex) (two-way street)
 - ▶ Both stations can transmit and receive at same time
 - Signals going in either direction sharing the capacity of the link
 - ▶ Sharing can occur in two ways:
 - ▶ Link has two physically separate transmission paths
 - One for sending and the other for receiving
 - ► The capacity of the channel is divided between signals travelling in both directions
 - Example: Telephone network

Full-Duplex (Duplex)

Network: A set of devices (nodes) connected by communication links

Node: computer, printer, or any other device capable of sending and/or receiving data generated by other nodes on the network.

- Distributed Processing :
 - Most networks used it
 - Task is divided among multiple computers instead of one single large computer

▶ Network Criteria

- Network must meet a certain number of criteria
- The most important of the network criterions are:
 - Performance
 - Reliability
 - Security

- Performance
 - Transit time: A mount of time required for a message to travel from one device to another
 - Response time: Elapsed time between an inquiry and a response

- Performance
 - Performance depends on :
 - 1- Number of users: large number slow response time.
 - 2- Type of transmission medium: fiber-optic cabling faster than others cables.
 - 3- Capabilities of the connected hardware: affect both the speed and capacity of transmission.
 - 4- Efficiency of the software: process data at the sender and receiver and intermediate affects network performance.

- Performance
 - Performance is evaluated by two contradictory networking metrics:
 - Throughput (high): a measure of how fast we can actually send data through a network
 - Delay (low)

- Reliability
 - Reliability is measured by:
 - 1. Frequency of failure
 - Recovery time of a network after a failure
 - 3. Network's robustness in a catastrophe: protect by good back up network system

Security

- Protecting data from unauthorized access
- Protecting data from damage and development
- Implementing policies and procedures for recovery from breaches and data losses (Recovery plan)

Networks - Physical Structures:

- ▶ Type of connection
 - Network: Two or more devices connected through links
 - ► Link: Communication pathway that transfers data from one device two another
 - Two devices must be connected in some way to the same link at the same time. Two possible types:
 - ▶ Point-to-Point
 - ► Multipoint

- ▶ Point-to-Point
 - Dedicated link between two devices
 - ► Entire capacity of the link is reserved for transmission between those two devices
 - ▶ Use an actual length of wire or cable

a. Point-to-point

- ▶ Point-to-Point
 - Other options, such as microwave or satellite is possible
 - ► Example: Television remote control

- Multipoint (multidrop)
 - More than two devices share a single link
 - Capacity is shared
 - Channel is shared either spatially or temporally
 - Spatially shared: if devices use link at same time
 - ▶ Timeshare: if users must take turns

b. Multipoint

Networks - Physical Topology

- ▶ The way a network is laid out physically
 - ▶ Two or more links form a topology
 - ► The topology of a network is the geometric representation of the relationship of all the links and linking devices (nodes) to one another.
 - ► Four topologies: Mesh, Star, Bus, and Ring

▶ Mesh

- ► Every link is dedicated point-to-point link
- ► The term dedicated means that the link carries traffic only between the two devices it connects

- Mesh
 - To link n devices fully connected mesh has: n (n - 1) / 2 physical channels (Full-Duplex)
 - Every Device on the network must have

- Mesh
 - ► Example:

number of ports per device = n - 1 = 8 - 1 = 7

Mesh

- Advantages
 - ► Each connection carry its own data load (no traffic problems)
 - ► A mesh topology is robust
 - ▶ Privacy or security
 - ▶ Fault identification and fault isolation

- Mesh:
 - Disadvantages
 - ▶ Big amount of cabling
 - ▶ Big number of I/O ports
 - ▶ Installation and reconnection are difficult
 - ▶ Sheer bulk of the wiring can be greater than the available space
 - ▶ Hardware connect to each I/O could be expensive
- Mesh topology is implemented in a limited fashion; e.g., as backbone of hybrid network

▶ Star:

- Dedicated point-to-point to a central controller (Hub)
- No direct traffic between devices
- ▶ The control acts as an exchange

Star

- Advantages
 - Less expensive than mesh (1 Link + 1 port per device)
 - ► Easy to install and reconfigure
 - ▶ Less cabling
 - Additions, moves, and deletions required one connection
 - ▶ Robustness: one fail does not affect others
 - ► Easy fault identification and fault isolation

- Star
 - Disadvantages
 - Dependency of the whole topology on one single point (hub)
 - ► More cabling than other topologies (ring or bus)
- Used in LAN

Bus

- ▶ It is multipoint
- One long cable acts as a backbone
- Used in the design of early LANS, and Ethernet LANs

Bus

- Nodes connect to cable by drop lines and taps
- ▶ Signal travels along the backbone and some of its energy is transformed to heat
- Limit of number of taps and the distance between taps

Bus

- Advantages
 - ► Ease of installation
 - Less cables than mesh, star topologies
- Disadvantages
 - ▶ Difficult reconnection and fault isolation (limit of taps)
 - ▶ Adding new device requires modification of backbone
 - ► Fault or break stops all transmission
 - ► The damaged area reflects signals back in the direction of the origin, creating noise in both directions

Ring

- ► Each device has dedicated point-to-point connection with only the two devices on either side of it
- ➤ A signal is passed along the ring in one direction from device to device until it reaches its destination
- Each devices incorporates a Repeater

Ring

- Advantages
 - ► Easy of install and reconfigure
 - ▶ Connect to immediate neighbors
 - Move two connections for any moving (Add/Delete)
 - ► Easy of fault isolation
- Disadvantage
 - Unidirectional
 - ▶ One broken device can disable the entire network. This weakness can be solved by using a dual ring or a switch capable of closing off the break

- Hybrid Topology
 - Example: having a main star topology with each branch connecting several stations in a bus topology

Categories of Networks

- Network Category depends on its size
- ▶ Two primary categories
 - ► LAN: Covers area < 2miles
 - ▶ WAN: Can be worldwide
 - MAN: Between LAN & WAN, span 10s of miles

Local Area Network (LAN)

- Privately owned
- Links devices in the same office, building, or campus
- ► Simple LAN: 2 PCs & 1 printer in home or office
- Size is limited to a few kilometers
- Allow resources to be shared (hardware, software, or data)

Local Area Network (LAN)

An isolated LAN connecting 12 computers to a hub in a closet

Local Area Network (LAN)

- ► LAN is distinguished by:
 - Size (# users of OS, or licensing restrictions), transmission medium (only one type), topology (bus, ring, star)
 - Each host in a LAN has an
 - ▶ Identifier, an address, that uniquely defines the host in the LAN. A packet sent by a host
 - ▶ To another host carries both the source host's and the destination host's addresses.
- Data rates (speed):
 - ► Early: 4 to 16 mbps
 - ▶ Today: 100 to 1000 mbps

LAN using either a common cable or a switch

a. LAN with a common cable (past)

b. LAN with a switch (today)

Wide Area Networks (WAN)

 Provides long-distance transmission of data over large geographic areas (country, continent, world)

WAN

- ► A WAN has a wider geographical pan, spanning a town, a state, a country, or even the world.
- ► A WAN interconnects connecting devices such as switches, routers, or modems.
- A LAN is normally privately owned by the organization that uses it;
- A WAN is normally created and run by communication companies and leased by an organization that uses it

Wide Area Networks (WAN)

- ► Point-to-point WAN
 - a network that connects two communicating devices through a transmission media (cable or air)

Switched WAN

- A netork with more than two ends; used in the backbone of global communication today
- A combination of several point-to-point wans that are connected byswitches.

Wide Area Networks (WAN)

a. Switched WAN

b. Point-to-point WAN

Switched WAN

- A switched WAN is a network with more than two ends
- Combination of several point-to-point WANs that are connected by switches.

Metropolitan Area Networks (MAN)

- Size between LAN and WAN
- Inside a town or a city
- Example: the part of the telephone company network that can provide a high-speed DSL to the customer

Interconnection of Networks: Internetworks

Two or more networks connected together

President

The Internet

- Internet has revolutionized many aspects of our daily lives.
- ▶ It has affected the way we do business as well as the way we spend our leisure time.
- Internet is a communication system that has brought a wealth of information to our fingertips and organized it for our use
- An internet is 2 or more networks that can communicate with each other
- ► The Internet is a collaboration of more than hundreds of thousands of interconnected networks

The Internet

► Internet Today

- Made of many LANs and WANs
- Every day new networks area added and removed
- Internet services Providers (ISPs) offer services to the end users
 - International service providers
 - ► National service providers
 - Regional service providers
 - ► Local service providers

The Internet

a. Structure of a national ISP

b. Interconnection of national ISPs

Hierarchical organization of the Internet

Switching

- An internet is a switched network in which a switch connects at least two links together.
- A switch needs to forward data from a network to another network when required.
- ► Types:
 - Circuit-switched and
 - Packet-switched networks

Switching

Circuit-Switched Network

- ▶ A dedicated connection, called a circuit, is always available between the two end systems;
- The switch can only make it active or inactive

Circuit-Switched Network

- Circuit switching was very common in telephone networks in the past
- The switches used in this example have forwarding tasks but no storing capability.
- A circuit-switched network is efficient only when it is working at its full Capacity
- Most of the time, it is inefficient because it is working at partial capacity

Packet-Switched Network

- ► The communication between the two ends is done in blocks of data called packets.
- This allows us to make the switches function for both storing and forwarding

Because a packet is an independent entity that can be stored and sent later.

Packet-Switched Network

- ▶ A router in a packet-switched network has a queue that can store and forward the Packet.
- ▶ If packets arrive at one router when the line is already working at its full capacity, the packets should be stored and forwarded in the order they arrived.
- Packet-switched network is more efficient than a circuits witched network, but the packets may encounter some delays.

Protocols and Standards

- Protocol synonymous with rule
- ► Standards: agreed-upon rules
- Protocols
 - A protocol is a set of rules that govern data communications
 - Defines What, How, and When it is communicated

Protocols and Standards

and this of a profession.

- Syntax: structure or format of data
 - ► Example: 8-bits address of sender, 8-bits address of receiver
- ▶ **Semantics:** meaning of each section of bits
 - ► Example: Does the address is a route to be taken or the final destination of the message
- ▶ **Timing:** when data should be sent and how fast they can be sent
 - Example: sender produces data at 100 Mbps but the receiver can process data at only 1 Mbps ⇒ overload and data loose

- Essential in creating and maintaining an open and competitive market for equipment manufactures
- Guaranteeing national and international interoperability of data and telecommunication technology and processes
- Providing guidelines to manufacturers, vendors, government agencies, and other service providers to ensure the kind of interconnectivity necessary in today's marketplace and in international communications

- Two categories
 - De facto: not approved by an organized body but adopted as standards through widespread use
 - De jure: Legislated by an officially recognized body

- Standards are developed through the cooperation of:
 - Standards Creation Committees
 - ▶ ISO, ITU-T, CCITT, ANSI, IEEE, EIA
 - ► Forums
 - Created by special-interest groups
 - Present their conclusions to the standards bodies
 - Regulatory Agencies
 - Ministry of Telecommunication and Information Technology (KSA)
 - Purpose: Protecting the public by regulating radio, television, and communication

Internet standards

- Tested thoroughly tested specification that is useful to be adhered to by those who work with the Internet
- Formalized regulation that must be followed
- Specification become Internet standard
 - ▶ Begins as Internet draft for 6 months
 - ▶ Upon recommendation from the Internet authorities draft published as Request for Comment (RFC)
 - RFC is edited, assigned a number, and made available to all interested parties

Summary

- A data communications system must transmit data to the correct destination in an accurate and timely manner.
- ► A network is a set of communication devices connected by media links.
- ► Topologies: Devices may be arranged in a mesh, star, bus, or ring topology.
- A network can be categorized as a local area network or a wide area network.

Test Your knowledge

- The five components of a data communication system are
- Line configurations (or types of connections) are.....
- The number of cables for each type of network is:
 - a. Mesh: -----
 - b. Star: -----
 - c. Ring: -----
 - d. Bus: -----
- ► An internet is-----

Test Your knowledge

What mode of data flow the following exhibits shows?

- What are the three criteria necessary for an effective and efficient network?
- Name the four basic network topologies