Data from the ULYSSES FINAL ARCHIVE

Open •	風							ulys		_heliocentric_data		9.txt					
									~/PUI-fun	/Ulysses/Trajectory/traj	ectory_data						
			tor and Ec Mean Orbit				50										
			ses wrt Ea					nd Equir	ox of 1	950							
YYY MM	nn vv	VV DOV	/ JD	ши	MM SS	ESP	SPE	SEP	R	R	dR	V	lat	RA	DEC	long	
UTC]	00 11	11 001	1 30		nn 33	[deg]	[deg]	[deg]	[AU]	[km]	[km/s]	[km/s]	[deg]	[deg]	[deg]	[deg]	
990 10	07 19	90 286	9 2448171.	5 00	00 00	0.08	97.86	82.06	0.999	149497071.034	-2.512	41.092	6.35	12.98	0.01	0.08	
			1 2448172.						0.998	149301115.851	-2.035	40.987	6.32	14.34	0.06	0.46	
990 10	09 19	90 282	2 2448173.	5 00	00 00	0.83	97.43	81.74	0.997	149145073.980	-1.577	40.996	6.28	15.70	0.10	0.83	
990 10	10 19	90 283	3 2448174.	5 00	00 00	1.20	96.17	82.63	0.996	149028578.950	-1.119	41.008	6.24	17.06	0.15	1.21	
990 10	11 19	90 284	4 2448175.	5 00	00 00	1.58	94.86	83.56	0.996	148951687.780	-0.661	41.017	6.20	18.42	0.20	1.59	
			5 2448176.				93.54	84.50	0.995	148914448.678	-0.201	41.020	6.15	19.78	0.24	1.96	
990 10	13 19	90 286	5 2448177.	5 00	00 00	2.33	92.21	85.46	0.995	148916887.222	0.258	41.019	6.10	21.14	0.29	2.34	
990 10	14 19	90 287	7 2448178.	5 00	00 00	2.71	90.88	86.42	0.996	148958991.852	0.717	41.012	6.05	22.51	0.34	2.72	
1990 10				- 00	-00-00	2.00	-00-54	07.00		bollo	lat.	** ***		00 07	0.00		
1990 10 1990 10		Open▼ Æ helio.dat -/PUI-fun/Ulvsses/Trajectory data															
990 10	18 Yea	ar DOY	HR MN SC		Eart	١	Sun	Sun	Heli	ioc. Heliograph	. He	lioc.	Helioc.	9	olar		Т
990 10					Sun		S/C	Earth	Rar	nge Latitude	Rt.	Asc.	Ecliptic	Lor	gitude		
990 10					S/C	E	arth	S/C					Lat.	wr1	Earth		
1990 10					- 1												
1990 10					[deg	l L	deg]	[deg]	L/	AU] [deg]	L	deg]	[deg]		deg]		
1990 10	23 199	90 296	00 00 00		5.9	3 7	3.96	95.11	1.0	0100 5.42		999.	0.75		999.		
990 10	25 19	90 297	00 00 00		6.2		7.64	96.11		0127 5.34		999.	0.79		999.		
000 10	26 199	90 298	00 00 00		6.5		5.31	97.11		0154 5.25		999.	0.83		999.		
000 10	27 199	90 299	00 00 00		6.8		1.99	98.12		0187 5.16		999.	0.87		999.		
000 10	20 199	90 300	00 00 00		7.1		3.67	99.14	1.0	227 5.07	-	999.	0.91		999.		
000 10	20 199	90 301	00 00 00		7.4	3 7	2.35	100.20	1.6	261 4.98	-	999.	0.95		999.		
998 18	30 199	90 302	00 00 00		7.7	5 7	1.03	101.20		301 4.89	-	999.	0.99		999.		
000 10	21 199	90 303	00 00 00		8.0	4 6	9.72	102.20	1.0	348 4.79	-	999.	1.03		999.		
000 11	01 199	90 304	00 00 00		8.3		3.41	103.30		394 4.69		999.	1.07		999.		
99A 11	92 199	90 305	00 00 00		8.5		7.10	104.40		9441 4.60		999.	1.10		999.		
000 11	92 199	90 306	00 00 00		8.7	3 6	5.79	105.40	1.0	9488 4.50	-	999.	1.14		999.		
000 11	04 199	90 307	00 00 00		9.0		1.49	106.50		9542 4.40		999.	1.17		999.		
000 11	05 199	90 308	00 00 00		9.2		3.19	107.59		593 4.29		5.19	1.20	9	.240		
000 11	06 199	90 309	00 00 00		9.4		1.90	108.69		0648 4.19		6.38	1.24		.440		
			00 00 00		9.6		0.60	109.79		706 4.09		7.57	1.27		.620		

Coordinate Systems

There seem to be two options for coordinate systems:

- · Heliocentric Inertial (HCI) system
- Heliocentric Aries Ecliptic (HAE) system

≠ Earth Spin Vector

Ulysses' 1st Orbit

Ecliptic System – Latitude

Ecliptic System – Latitude

Ecliptic System – Latitude

Ecliptic System - Longitude

Equatorial System

Equatorial System – Latitude

Equatorial System – Longitude

Equatorial System – Latitude calculated

Equatorial System – Longitude calculated

Equatorial System - Longitude - B1950 vs. J2000

Equatorial System - Latitude - B1950 vs. J2000

Aspect Angle

Aspect angle:

$$\varphi=25^\circ, \vartheta=-10^\circ$$

SPICE Reference Frame Kernel

Heliocentric Inertial (HCI) Frame

Two-Vector Frame Concepts - 3

Navigation and Ancillary Information Facility

- · Secondary Vector
 - A specified positive or negative axis of the two-vector frame is aligned with the component of the secondary vector orthogonal to the primary vector.
 - » The frame kernel creator associates with this vector one of the axis designations { +X, -X, +Y, -Y, +Z, -Z }, where the axis is orthogonal to that associated with the primary vector.

Definition of the Heliocentric Inertial frame:

All vectors are geometric: no aberration corrections are

The solar rotation axis is the primary vector: the Z axis points in the solar north direction (IAU SUN frozen at J2000 epoch).

The ascending node on the ecliptic of J2000 of the IAU_SUN equator forms the X axis. *** N.B this is accomplished by using the +Z axis of the ecliptic of J2000 as the secondary vector and HCI +Y as the secondary axis

The Y axis is Z cross X, completing the right-handed reference frame.

\begindata

```
FRAME HCI
                             = 1810420
FRAME 1810420 NAME
                             = 'HCT'
FRAME 1810420 CLASS
                             = 5
FRAME 1810420 CLASS ID
                             = 1810420
FRAME 1810420 CENTER
FRAME 1810420 RELATIVE
                             = '12000'
FRAME 1810420 DEF STYLE
                             = 'PARAMETERIZED'
FRAME 1810420 FAMILY
                             = 'TWO-VECTOR'
FRAME 1810420 FREEZE EPOCH
                            = |a2000-JAN-01/12:00:00
FRAME 1810420 PRI AXIS
FRAME 1810420 PRI VECTOR DEF = 'CONSTANT'
FRAME 1810420 PRT FRAME
                             = 'TAIL SIIN'
FRAME 1810420 PRI SPEC
                             = 'RECTANGULAR'
FRAME 1810420 PRI VECTOR
                            = (0, 0, 1)
FRAME 1810420 SEC AXIS
                            = 'Y'
FRAME 1810420 SEC VECTOR DEF = 'CONSTANT'
FRAME 1810420 SEC FRAME
                            = 'ECLIPJ2000'
FRAME 1810420 SEC SPEC
                            = 'RECTANGULAR'
FRAME 1810420 SEC VECTOR
                            = (0, 0, 1)
```

Aspect Angle

Aspect angle:

$$\varphi=25^\circ, \vartheta=-10^\circ$$