Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2035 - Álgebra Moderna - Catedrático: Ricardo Barrientos 26 de agosto de 2022

Tarea 14

Problemas 1, 3 y 4, sección 3.5.

Sección 3.5

Problema 1 (Problema 1). Let R be a ring with unit element, R not necessarily commutative, such that the only right-ideals of R are (0) and R. Prove that R is a division ring.

Demostración. Debemos probar que R es un anillo de división, es decir que para cada elemento $a \in R - \{0\}, aa^{-1} = 1$. Tenemos dos casos:

- Si R = (0), el resultado es trivial
- Si $R \neq (0)$, sea $x \in R \{0\}$, el cual es un ideal derecho xR y $x = x \cdot 1 \in xR$, $xR \neq 0$. Entonces tenemos $xR = R \implies \exists y \in R \ni x \cdot y = 1$.

Por lo tanto, R es un anillo de división.

Problema 2 (Problema 3). Let J be the ring of integers, p a prime number, and (p) the ideal of J consisting of all multiples of p. Prove

• J/(p) is isomorphic to J_p , the ring of integers módp.

Demostración. Debemos probar que J/(p) es isomorfo a J_p . Proponemos una función $\phi: J/(p) \to J_p$ de la forma

$$\phi((p) + n) = n \bmod p$$

Entonces, comprobaremos las siguientes propiedades:

• Función bien definida.

$$\circ$$
 Sea $\phi((p) + n) \in J_n, \forall (p) + n \in J/(p)$.

o Supóngase que $(p) + n = (p) + n_0$ y por la hipótesis tenemos que (p) es el ideal de J que consiste en todos los múltiplos de p, es decir que $n = n_0 + kp, \forall k \in \mathbb{Z}$. Ahora bien, tenemos:

$$\phi((p) + n) = n \mod p$$

$$= n \mod p$$

$$= (n_0 + kp) \mod p$$

$$= n_0 \mod p$$

$$= \phi((p) + n_0)$$

Por lo tanto, hemos probado las dos propiedades para ser una función bien definida.

- Ahora bien, intentaremos probar que ϕ es isomorfismo, primero demostrando que es homomorfismo y luego que es inyectivo.
 - \circ Sea ϕ un homomorfismo, tal que:
 - 1. Para la suma. Sea

$$\phi([(p) + n_1] + [(p + n_2)]) = \phi((p) + [n_1 + n_2])$$

$$= (n_1 + n_2) \mod p$$

$$= n_1 \mod p + n_2 \mod p$$

$$= \phi((p) + n_1) + \phi((p) + n_2)$$

2. Para la multiplicación. Sea

$$\phi([(p) + n_1] \cdot [(p + n_2)]) = \phi((p) + [n_1 \cdot n_2])$$

$$= (n_1 \cdot n_2) \mod p$$

$$= (n_1 \mod p) \cdot (n_2 \mod p)$$

$$= \phi((p) + n_1) \cdot \phi((p) + n_2)$$

Por lo tanto, ϕ es un homomorfismo para la suma y la multiplicación.

• Ahora bien, demostraremos que también se cumple la inyectividad. Se a

$$\phi((p) + n_1) = \phi((p) + n_2)$$

$$n_1 \equiv n_2 \mod p$$

$$n_1 - n_2 \equiv 0 \mod p$$

$$n_1 - n_2 = kp \quad k \in \mathbb{Z}$$

De esto, tenemos que $n_1 - n_2 \in (p)$, lo que nos permite concluir que:

$$\phi((p) + n_1) = \phi((p) + n_2)$$

Por lo tanto, se cumple una de las definición de isomorfismo para J/(p) y J_p

• Using Theorem 3.5.1 and part (a) of this problem, that J_p is a field.

Demostración. En clase demostramos que en el anillo de los enteros $(J, +, \cdot)$, (p) es un ideal maximal de J si y solo si p es primo \Longrightarrow por el teorema 3.5.1, J/(p) es un campo, pero por el inciso (a) de este problema $J/(p) \approx J_p$. Por lo tanto, J_p es un campo.