k-Medoids Clustering

Sudipto Ghosh

M.Sc. CS Semester I Department of Computer Science University of Delhi

March 12, 2023

Motivation

- In k-means clustering, we calculate the arithmetic cluster means and calculate distance from every other point to the cluster means. The cluster mean does not necessarily correspond to a data point.
- Can we pick some actual data point as representative elements of clusters, and calculate distances from them?

k-Medoids Clustering

- Partitioning is performed based on the principle of minimizing the sum of residuals between each data point and its corresponding representative.
- Absolute Error Criterion is used

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} dist(p, o_i)$$

where E is the sum of absolute error for all objects p in the dataset and o_i is the representative point of cluster C_i .

Comparison b/w k-Means and k-Medoids

- k-Medoids method is more robust than k-Means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean.
- Complexity of each iteration in the k-Medoid method is $O(k \cdot (n-k)^2)$. For large databases where n and k are very high, such computations become costlier than k-Means.
- Both methods require the user to specify k the number of clusters.

- Partitioning Around Medoids.
- Approaches the clustering problem in an iterative, greedy way.
- Like the *k*-Means algorithm, the initial representatives are chosen arbitrarily.
- Next, we consider whether replacing a representative by a non-representative point would improve the clustering quality.
- All possible replacements are carried out. The process continues until the quality of the resultant clustering cannot be improved by any replacement. Complexity is given by $O(k \cdot (n-k)^2)$.
- PAM works well for small databases but not for larger databases. To deal with larger datasets, sampling-based methods can be used.

Sudipto Ghosh k-Medoids Clustering March 12, 2023 5 / 18

PAM

- Arbitrarily choose k-objects in D as initial representatives
- Until Convergence
 - Assign each remaining object to the cluster with the nearest representative.
 - **2** Randomly select a non-representative object o_{random} .
 - **3** Compute the total cost S, of swapping representative point o_j with o_{random} .
 - If S < 0 then swap o_j with o_{random} to form the new set of k-representatives.

p --+
o_{random}

(b) Reassigned

 θ_i

Data objectCluster centerBefore swappingAfter swapping

- (a) Reassigned to o_i
- (b) Reassigned to o_{random}
- (c) No change

(d) Reassigned to o_{random}

CLARA

- Clustering LARge Applications.
- Instead of taking the whole dataset into consideration, CLARA uses a random sample of the dataset.
- The PAM algorithm is then applied to compute the best medoids from the sample.
- CLARA builds clustering from multiple random samples and returns the best clustering as the output.

8 / 18

CLARA

- Complexity of computing the medoids on a random sample is given by $O(ks^2 + k(n-k))$, where s is the sample size, k is the no. of clusters and n is |D|.
- Effectiveness of CLARA depends on the sample size.
- If an object is one of the best *k*-medoids but is not selected during sampling, CLARA will never find the best clustering.

9 / 18

CLARANS

- Clustering Large Applications based upon RANdomized Search.
- Presents a tradeoff betweem the cost and effectiveness of using random samples to obtain clustering.

CLARANS

- lacktriangle Arbitrarily select k objects in the dataset as the initial medoids.
- Randomly select a current medoid x and an object y that is not one of the current medoids.
- Replace x by y if it improves the absolute error criterion. Conduct such Randomized Search / times.
- The set of current medoids after the I steps is considered a local optimum.
- Repeat this randomized process m-times and return the best local optimal as the final result.

Х	У
8	7
3	7
4	9
9	6
8	5
5	8
7	3
8	4
7	5
4	5

Х	У
8	7
3	7
4	9
9	6
8	5
5	8
7	3
8	4
7	5
4	5

Х	у	$d(o, c_1)$	$d(o, c_2)$
8	7	6	2
3	7	3	7
4	9	4	8
9	6	6	2
8	5	-	-
5	8	4	6
7	3	5	6 3
8	4	5	1
7	5	3	1
4	5	-	-

$$[(4,5), (3,7), (4,9), (5,8)]$$

$$[(8,7), (9,6), (8,5), (7,3), (8,4), (7,5)]$$

$$Cost = (3+4+4) + (3+1+1+2+2) = 20$$

4日ト 4個ト 4 差ト 差 りなべ

Х	у	$d(o, c'_1)$	$d(o, c'_2)$
8	7	6	3
3	7	3	8
4	9	4	9
9	6	6	3
8	5	4	1
5	8	4	7
7	3	5	2
8	4	-	-
7	5	3	2
4	5	-	-

New Cost =
$$(3 + 4 + 4) + (2 + 2 + 1 + 3 + 3) = 22$$

New Cost > Cost \implies Undo Swap
 \therefore (8, 5) and (4, 5) are the final medoids

References

[1] Jiawei Han, Micheline Kamber, and Jian Pei. "10 - Cluster Analysis: Basic Concepts and Methods". In: Data Mining (Third Edition). Ed. by Jiawei Han, Micheline Kamber, and Jian Pei. Third Edition. The Morgan Kaufmann Series in Data Management Systems. Boston: Morgan Kaufmann, 2012, pp. 443–495. ISBN: 978-0-12-381479-1. DOI: https://doi.org/10.1016/B978-0-12-381479-1.00010-1. URL: https://www.sciencedirect.com/science/article/pii/B9780123814791000101.

4 D > 4 A D > 4 B > 4 B > 9 Q P