Diagnostic Accuracy, part 2 & Practice-Based Evidence

Evidence-Based Practice in Speech-Language Therapy (SHSC 2033)

Session 9

Thomas Klee & Elizabeth Barrett

Outline

- 1. Diagnostic accuracy: post-test probability
- 2. Practice-based evidence
- 3. Evidence from client preferences
- 4. Group discussion

Post-test Probability

Screening outcomes ¹

	Language delay	Language normal	Total
Screen +	10	2	12
Screen —	1	51	52
Total	11	53	64

¹Klee, Pearce, and Carson (2000)

Classification accuracy measures ²

```
# Example 1: calculate classification measures from Klee et al. (2000)
dat \leftarrow as.table(matrix(c(10, 2, 1, 51), nrow = 2, byrow = TRUE))
rval <- epi.tests(dat, conf.level = 0.95)
print(rval) # for point estimates and CIs rounded to 2 DPs
            Outcome +
                         Outcome -
                                       Total
## Test +
               10
                                          12
## Test -
                               51
                                          52
## Total
                               53
## Point estimates and 95 % CTs:
## Apparent prevalence
                                     0.19 (0.10, 0.30)
## True prevalence
                                     0.17 (0.09, 0.29)
## Sensitivity
                                      0.91 (0.59, 1.00)
## Specificity
                                      0.96 (0.87, 1.00)
## Positive predictive value
                                     0.83 (0.52, 0.98)
## Negative predictive value
                                     0.98 (0.90, 1.00)
## Positive likelihood ratio
                                      24.09 (6.11, 95.02)
## Negative likelihood ratio
                                     0.09 (0.01, 0.61)
```

²Calculated using *epiR* package of R (R Core Team, 2019; Stevenson, 2017)

What does **prevalence** refer to here?

• **Apparent** prevalence: $12/64 = .19^{-3}$

• **True** prevalence: 11/64 = .17 ⁴

Do these accurately reflect population values?

³Based on number of **test positives** in the sample.

⁴Based on number of **cases** in the sample.

Be careful...

- If the prevalence (base rate) of the disorder in the research sample is different from the prevalence in the population, the estimates reported for PPV and NPV will not be accurate.
- Notice the results of our sample.

Klee et al sample

```
# Example 1: calculate classification measures from Klee et al. (2000) dat <- as.table(matrix(c(10, 2, 1, 51), nrow = 2, byrow = TRUE)) rval <- epi.tests(dat, conf.level = 0.95) print(rval) # for point estimates and CIs rounded to 2 DPs
```

```
##
           Outcome +
                      Outcome -
                                   Total
## Test +
                                      12
## Test -
                            51
                                      52
## Total
                 11
                            53
                                      64
## Point estimates and 95 % CTs:
## -----
## Apparent prevalence
                                  0.19 (0.10, 0.30)
## True prevalence
                                  0.17 (0.09, 0.29)
## Sensitivity
                                   0.91 (0.59, 1.00)
## Specificity
                                    0.96 (0.87, 1.00)
## Positive predictive value
                                   0.83 (0.52, 0.98)
## Negative predictive value
                                  0.98 (0.90, 1.00)
## Positive likelihood ratio
                                  24.09 (6.11, 95.02)
                              0.09 (0.01, 0.61)
## Negative likelihood ratio
```

Summary

- Sensitivity and specificity aren't affected by prevalence.
- Neither are the likelihood ratios, since they are based on sensitivity and specificity.
 - LR+ = Sensitivity/(1 Specificity)
 - LR- = (1 Sensitivity)/Specificity
- This is why LRs are preferable to PPV and NPV.

	Condition	
	present	absent
Index test +	True positive	False positive
Index test —	False negative	True negative

- LR+ = Sensitivity / (1 Specificity)
- LR+ = proportion of TPs / proportion of FPs
- LR+ = proportion of (+) test results in those with the condition / proportion of (+) test results in those without the condition

Interpreting LRs ⁵

- LRs of > 10 or < 0.1 indicate large and often conclusive changes from **pre- to post-test probability**.
- LRs of 5 to 10 and 0.1 to 0.2 indicate moderate shifts in probability.
- LRs of 2 to 5 and 0.2 to 0.5 indicate small (but sometimes important) shifts in probability.
- LRs of 1 to 2 and 0.5 to 1 alter probability to a small (and rarely important) degree.

⁵Guyatt, Rennie, Meade, and Cook (2008, p. 208)

Post-test probability can be calculated if we know...

- 1. the LR associated with the test result
- 2. the pre-test probability of the condition ⁶

 $^{^{6}}$ taking the clinical setting and purpose into account (e.g., screening vs clinical assessment)

Basis of Bayes' theorem

We possess knowledge at any given point in time.

We encounter new information (data).⁷

We revise (update) our knowledge.

 $^{^{7}\}mathrm{Based}$ on our own experience, high quality research evidence, etc.

Bayes' theorem

"Bayes' theorem is concerned with conditional probability. That is, it tells us the probability that a theory or hypothesis is true if some event has happened." 8

"... by updating our initial belief about something with objective new information, we get a new and improved belief." ⁹

⁸Silver (2012, p. 243)

⁹McGrayne (2011, p. xi)

Applying Bayesian thinking to clinical measures

```
We possess knowledge at any given point in time.

Prior (pre-test) probability

We encounter new information (data).

LR

We revise (update) our knowledge.

Posterior (post-test) probability
```

LR Nomogram¹⁰

FIGURE 8-1 Momogram for converting pre-test likelihoods (lieft column) to post-test likelihoods tright column by drawing a straight line from the pre-test likelihood through the likelihood ratio for the test result (SI. (From Pagan TJ.) Nomogram for Bayes's theorem. N Engl J Med 4975/2932-57, with permission.)

 $^{^{10}}$ Estimate post-test probability with a ruler (Haynes, Sackett, Guyatt, & Tugwell, 2006, p. 285)

Estimate post-test probability with R 13

• Example: With a pre-test probability of 13%, ¹¹ what's the post-test probability of having the condition, given the test result?

```
library(epiR)
epi.nomogram(se = 0.90909091, sp = 0.96226415,
lr = NA, pre.pos = 0.13, verbose = FALSE)
```

- * Given a positive test result, the post-test probability of being disease positive is 0.78
- * Given a negative test result, the post-test probability of being disease negative 12 is 0.01

 $^{^{11}}$ Based on prevalence data reported in Beitchman et al (1986) and Tomblin et al (1996)

¹²I think this should read "disease positive".

¹³ with epiR package (R Core Team, 2019; Stevenson, 2017).

Interpretation

- Given a positive screening result, there is a 78% chance the child has the condition being screened for (language disorder).
- Given a negative screening result, there is a 1% chance the child has the condition.
- However, before concluding this, notice which pre-test probability these were based on.
 - ▷ Adjust the pre-test probability if the sample prevalence differs from the population.
 - Post-test probabilities are identical to PPV and NPV when the proportion of cases in the sample is the same as in the population.

```
library(epiR)
```

Post-test probability

```
epi.nomogram(se = 0.90909091, sp = 0.96226415,
lr = NA, pre.pos = 0.50, verbose = FALSE)
```

- * Given a positive test result, the post-test probability of being disease positive is 0.96
- * Given a negative test result, the post-test probability of being disease negative 14 is 0.09

 $^{^{14}}$ I think this should read "disease positive".

 $^{^{15}\}mathrm{Hv}$ pothetical clinical population where half those referred for assessment are diagnosed with language disorder

Estimate post-test probability with a leaf plot 16

 $^{^{16}}$ Coulthard and Coulthard (2019); data based on Klee et al. (2000).

Leaf plot for PSA results¹⁷

 $^{^{17}}$ Coulthard and Coulthard (2019)

Try it yourself with the person next to you

- Download leaf plot calculator from https://childhealthafrica.org/downloads.
- Open it in MS Excel.
- Enter the sensitivity and specificity values from Klee et al. (2000) study.
- Explore how different pre-test probabilities affect post-test probability.
- Discuss how varying these numbers affects how you interpret test results.

Estimate post-test probability with DocNomo

(Free for iOS devices. Values displayed are from another study.)

Practice-Based Evidence

Discussion

References

- "... the conscientious, explicit, and judicious integration of best available
 - 1. external evidence from systematic research,
 - 2. evidence internal to clinical practice, and
 - 3. evidence concerning the preferences of a fully informed patient." ¹⁸

Post-test probability

¹⁸Dollaghan (2007, p. 2)

Practice/patient-based evidence

"The applicability of the external evidence from even a very strong study to an individual patient will need to be tested rather than assumed." ¹⁹

¹⁹Dollaghan (2007, p. 115)

Practice/patient-based evidence

- How effective is this intervention with this client?
- Involves evaluating effectiveness of intervention with your own clients
- CAPE: Checklist for Appraising Patient/Practice Evidence
- "Not...a critical appraisal form but rather a checklist of issues to consider in seeking valid, important evidence from clinical practice." ²⁰

²⁰Dollaghan (2007, p. 115)

CAPE: foreground question

- P For your client or patient
- I is the intervention
- O associated with the outcome you've identified
- C compared with contrasting intervention condition?

- 1. Observational (A-B) or Experimental (e.g., A-B-A, alternating treatments, multiple baseline)?
- 2. Randomization (e.g., targets to conditions, order of conditions)?
- Stable baseline(s)?

Post-test probability

- 4. Adequate length of treatment phase(s)?
- 5. Treatment consistency, fidelity?
- 6. Potential nuisance factor(s)?
- 7. Valid and reliable measures?
- 8. Measures administered with blinding?

²¹Dollaghan (2007, p. 116)

- 1. Magnitude of treatment effect?
- 2. Evidence of maintenance, generalization, and social validity of treatment effect?
- 3. Substantial cost-benefit advantage?

Post-test probability

²²Dollaghan (2007, p. 116)

References

Client preferences

- Concerns "the preferences of fully informed patients relating to the clinical options they face" ²³
- Client-centered care
- Qualitative research can inform this area of clinical practice.
- Establish a common ground with your client.
- Prepare information on clinical options.
- CAPP: Checklist for Appraising Patient Preferences

²³Dollaghan (2007, p. 123)

- P For this client, once fully informed of costs, risks, benefits
 - I is one clinical option
- O a preferred outcome
- C compared with other clinical options?

Post-test probability

²⁴Dollaghan (2007, p. 128)

Useful resources²⁵

Checklists for clinicians (Dollaghan, 2007)

CAPE to appraise patient/practice evidence (p. 159) CAPP to appraise evidence on patient preferences (p. 161)

Description of diagnostic accuracy measures

http://www.students4bestevidence.net/ebm-for-diagnostic-tests/

Estimating post-test probability

Post-test probability

- https://ebm-tools.knowledgetranslation.net/ calculator/diagnostic/
- http://www.cebm.net/catmaker-ebm-calculators/
- https://itunes.apple.com/us/app/docnomo/ id901279945?mt=8
- R software's epiR package (Stevenson, 2017)

²⁵URLs checked on 2019-03-25

Group discussion

- Break up into your assigned groups and discuss:
 - 1. how you could begin to collect practice-based evidence with your own clients;
 - 2. how you could use CAPP with your own clients.

References I

- Coulthard, M. G., & Coulthard, T. (2019). The leaf plot: a novel way of presenting the value of tests. *British Journal of General Practice*, 1–2.
- Dollaghan, C. A. (2007). The handbook for evidence-based practice in communication disorders. Baltimore, MD: Paul H. Brookes Publishing Co.
- Guyatt, G., Rennie, D., Meade, M. O., & Cook, D. J. (2008). Users' guides to the medical literature: essentials of evidence-based clinical practice (2nd ed.). New York: McGraw Hill.
- Haynes, R. B., Sackett, D. L., Guyatt, G. H., & Tugwell, P. (2006). Clinical epidemiology: how to do clinical practice research (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.

References II

- Klee, T., Pearce, K., & Carson, D. K. (2000). Improving the positive predictive value of screening for developmental language disorder. *Journal of Speech, Language, and Hearing Research*, 43, 821–833.
- McGrayne, S. B. (2011). The theory that would not die: how Bayes' rule cracked the enigma code, hunted down Russian submaries & emerged triumphant from two centuries of controversy. New Haven, CT: Yale University Press.
- R Core Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
- Silver, N. (2012). The signal and the noise: why so many predictions fail but some don't. New York: Penguin Press.

References III

Stevenson, M. (2017). epiR: tools for the analysis of epidemiological data (R package version 0.9-93). Retrieved from https://cran.r-project.org/package=epiR