

证 明

本证明之附件是向本局提交的下列专利申请副本

申 请 日: 2003. 09. 27

申 请 号: 03143358. 8

申 请 类 别: 发明

发明创造名称: 《混进方法HJF》及其新一代电子计算机

申 请 人: 李志中

发明人或设计人: 李志中、徐菊园

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

中华人民共和国
国家知识产权局局长

王素川

2004 年 5 月 9 日

BEST AVAILABLE COPY

权利要求书

一、 独立权利要求

(一) 前序部分——本发明“《混进方法 HJF》及其新一代电子计算机”中的《混进方法 HJF》是初等数学中关于有理数运算的算法。它与现有数学方法一样，涉及到数的表达、进位、集合等内容，涉及到 $+ - \times \div$ 乘方等有理数运算。以此《混进方法 HJF》设计的新一代电子计算机与现有电子计算机同样可进行有理数运算。不同之处，在于下面特征部分。

(二) 特征部分——

- 1、具有特殊性质的混数、进位行及其《混进方法 HJF》。
- 2、新一代电子计算机全面采用《混进方法 HJF》。为此，还专门设计了“对冲”、“划 Q”逻辑线路以及“多重运算器”。

二、 从属权利要求（与上述权利要求编号一致）

- 1、采用混数、进位行及其《混进方法 HJF》来设计、制造各种仪表、仪器、设备（如：计算机、密码机等等）的权利。
- 2、采用《混进方法 HJF》的新一代电子计算机的各种文献形式记录、传播的权利。

(注：“文献”是指人类的知识用文字、符号、声像等记录保存下来，并且交流材料的一切物质形态载体。)

说 明 书

技术领域：初等数学及电子计算机

背景技术：在电子计算机中有大量的数值运算。这些数一般均采用普通二进制数制{=}来表示。其负数常以原码、反码、补码、移码之类来表示。在现有计算机中运算均以二个数运算，而无法实现“多重运算”。所谓“多重运算”是指多于二个数同时进行加减。它们都不包含“对冲”及“划 Q”的专用逻辑线路。所谓“对冲”，即仅符号相反的两数相加，其和为零；所谓“划 Q”，即 Q 进位的两数相加时，若其按位加和为零，但产生与两数符号一致的进位。

在采用其他{Q}等普通数制的电子计算机中，存在相应的许多复杂性。<三>

能否采用一种创新的数制，在现有元器件及技术的基础上，在设备量相近的情况下，发明一种新一代电子计算机，大大提高电子计算机的运算速度呢？

发明内容：

(一) 要解决的技术问题

①要创新数制。

②要提高运算速度。

(二) 解决问题的技术方案

①首创{=*}、{+*}等混数数制，从而诞生了新一代电子计算机数值运算的体系。[请参见说明书附件一《混进方法 H J F》]

②首创《进位行方法》

解决电子计算机运算体系，提高运算速度的关键之一是快速处理进位。于是，我们创建了《进位行方法》。[请参见说明书附件一《混进方法 H J F》]。

应用《进位行方法》可以明显地加快电子计算机的运算速度。

③首创《混进方法 H J F》

[请参见说明书附件一《混进方法 H J F》]。

应用混数可以大大地加快有理数运算的速度。混数与《进位行方法》并用则互相促进，作用又更加增强。于是，合并称为“混数、进位行方法”。鉴于其特别重要性，专门称为《混进方法 H J F》。

(三) 本发明的有益效果是：

①首创{=*}、{+*}等混数数制，从而开创了新一代电子计算机。

[参见说明书附件二《新一代电子计算机》]

②首创《混进方法 H J F》，从而显著提高了数值运算速度。

③《混进方法 H J F》使其新一代电子计算机具有了空前的品质。它是电子计算机领域内一个里程碑式的重大突破！

说明书

附件一

《混进方法 HFJ》

摘要——本文在初等数学中，首创如下新概念、新方法：

- 1、《进位行方法》
- 2、混Q进制 $\{Q^*\}$ ，特别是 $\{=*\}$ 及 $\{+*\}$
- 3、《混进方法 HFJ》

关键词——数、数制、运算、进位

目 录

前 言

1、《进位行方法》

1.1 进位与《进位行方法》

1.2 《进位行方法》分析

2、混数及混数数制

2.1 《数制理论》

2.2 混数及混数数制

2.3 《混Q进制》 $\{Q^*\}$ 和《普通混Q进制》 $\{\text{普}Q^*\}$

3、《混进方法 HFJ》及其《混十进制》四则运算

3.1 $\{+*\}$ 的加法

3.2 $\{+*\}$ 的减法

3.3 $\{+*\}$ 的乘法

3.4 $\{+*\}$ 的除法

4、《混十进制》 $\{+*\}$ 与《普通十进制》 $\{+\}$ 的关系

4.1 $\{+\}$ 与 $\{+*\}$ 数的转换法则

4.2 $\{+\}$ 与 $\{+*\}$ 对照表及其说明

4.3 $\{+\}$ 与 $\{+*\}$ 关系分析

5、《混进方法 HFJ》的应用

5.1 《混进方法 HFJ》是一种优异的运算方法

5.2 《小学数学教科书》

5.3 新一代电子计算机

6、结论

附：参考资料目录

前 言

四则运算是数的最基本运算。正如恩格斯所说：“四则（一切数学的要素）。 \leftrightarrow ”加法又是四则运算的最基本的运算。因此，我们理所当然应当对四则运算，尤其是对加法运算给予特别的关注。当前电子计算机中数学的四则运算，首先是加法，有许多不尽如人意之处。主要表现为运算速度慢，不能“多重运算”；在减法中，未能充分利用负数的作用，而且，不能“连减”。尤其在加减混合运算中，不能一步到位；在乘法中，加法的缺点更加扩大严重；在除法中，上述缺点依旧。总之，在最小的数体——有理数体中，四则运算情况并不满意。

能否加以改进？从根本上加以改进？

《混数、进位行方法》专称为《混进方法 HFJ》，由此应运而生。

1、《进位行方法》

1.1 进位与《进位行方法》

在电子计算机中，运算速度的提高关键之一，就在于“进位”。进位的获得，进位的存

贮以及进位的参与运算都是至关重要的。“进位”就是争“速度”。在笔算中，还直接影响到“出错率”。

所谓《进位行方法》就是，在运算过程中，将产生的进位存放在参与运算的位置，然后直接进行运算的方法。通常，将同运算层各位上的进位排列成一行，称为“进位行”。（运算层的概念，见下节）

举例如下，设两普通十进制数求和，算式以竖式求和如图一：

为简化起见，这里将横竖式合写。个位运算 $(6+8)=14$ ，其进位 1 写于下一行的高一位上。依此类推。

图中二数相加时，各位上不计进位的求和，称为“按位加 \oplus ”。其和称为“按位和”。按位和的运算行，称为“ \oplus 行”。

各进位排成的行，称为“进位行”。由 \oplus 行与进位行组成“运算层”。

图中一些“+”号已省去。以后可以知道，在《混进方法 HJP》中，各个“运算层”只存在一种运算，这就是“+”。故可以不必在运算层中写出“+”号。

1. 2 《进位行方法》分析

1.2.1 二数求和的分析

采用《进位行方法》的加法运算由上节可知：

- ① 两数相加时，每一位上只有二个数相加，不可能二个以上数相加；
- ② 在进位行中直接标示进位，不存在任何困难；
- ③ 验算十分方便。

[引理一] 两数相加时，任意位上要么有进位记为 1，要么无进位记为 0；

[引理二] 两数相加时，任意位上的 \oplus 和可为 0~9 之一。但是，当该位上有向高位进位时，该位上的 \oplus 和只能为 0~8 之一，而不能为 9。

由[引理一]和[引理二]可得：

[定理一] 两数相加时，当且仅当某位上没有向高位进位时，该位上的 \oplus 和才可能出现 9。

1.2.2 层次概念及运算层

设两数求和。算式为右式

由图一可见，运算是分层次进行的，每一运算层，仅完成一项简单运算。

这就是运算的“层次”概念，运算层将一个运算解剖成微运算、子运算。

“层次”概念在数学中是基本概念。《进位行方法》正是建立在此概念基础上。以往的加法运算方法，本质上也隐含“层次”概念。因此，《进

$$123456 + 345678 = 469134$$

$$\begin{array}{r} 345678 \\ \hline 468024 \end{array}$$

$$\begin{array}{r} \dots \oplus \text{行} \\ 111 \dots \text{进位行} \\ \hline 469134 \end{array} \quad \left. \begin{array}{l} \text{运算层} \\ \text{进位行} \end{array} \right\}$$

1. 1 图一

$$\begin{array}{r} 5843029 + 4746979 = 10590008 \\ 4746979 \quad 5843029 \\ \hline 9589998 \quad + 4746979 \\ 010001 \quad \text{运算层} \\ \hline 10590008 \end{array} \quad \begin{array}{l} 9589998 \\ 1 \quad \text{第一运算层} \\ \hline 0589908 \end{array}$$

$$\begin{array}{r} 1 \quad \text{第二运算层} \\ \hline 10589008 \end{array} \quad \begin{array}{l} 1 \quad \text{第三运算层} \\ \hline 10580008 \end{array}$$

$$\begin{array}{r} 1 \quad \text{第四运算层} \\ \hline 10590008 \end{array}$$

1.3 图二

位行方法》中的“层次”从总体上看，并未增加运算的复杂性。反之，以往的方法由于隐含了“层次”，反而进一步增加了运算的复杂性。这一点，也进一步造成以往运算易出错，造成运算速度被明显降低。两者对比，就会一清二楚。

在《进位行方法》中，两数相加的各个运算层，可以合并为一个运算层。如图二，请见进一步分析。

1.2.3 唯一的运算层

两数相加时，特别情况下会出现多次运算层。各层有如下关系成立。

【引理三】二数相加，当某位前一运算层上有进位时，其后各运算层上均不可能出现进位。（由引理一、二得）

【引理四】二数相加，当某位后一运算层上有进位时，其前各运算层上必无进位。（由引理一、二得）

【定理二】二数相加时，同一位各运算层上，要么都无进位，要么只能有一个进位。（由引理三、四得）

【推论】可以将全部各层进位行合并为一个进位行，各运算层合并为一个运算层。（也可将非第一运算层的进位以小圆圈标示。见图二）

1.2.4 三数及三数以上求和分析

设三数求和，算式为 $231+786+989=2006$ （见图三）

操作要点：

① “划十”的运用：

a、同一位上两数和为“十”时，可在算式中将两数字以斜线划去，然后在高位上补1。

b、同一位上两数和为“十几”时，也可以将两数字划去，然后在高位上补1，在本位上补“几”。

c、同一位上几数和为20、30、40……等时，可将几数字均划去，然后在高位上补2、3、4……等。

② 同一位上，只分别取二个数二二求和，并加以记录。因此，可考虑“配对”的技巧。

又，设六数求和。算式为 $786+666+575+321+699+999=4046$

③ 多个数相加，会出现二个及二个以上的运算层。为了减少运算层数，同一位上的同一运算层空位中，进位及 \oplus 位数可以任意占位。

④ 尽量减少运算层。

a、较小的数，直接合并算；

b、尽量在“配对”中进位；

c、尽量减少在第一运算层上相加数的个数，尽量使第二及二以上运算层不出现。

⑤ 同一位上，“相同数”、“连续数”等可直接获得“部分和”。

⑥ 设有 m 个数求和。 $(m \geq 2)$ 的自然数。总运算层以 n 来表示。 $(n$ 为非负整数)。则：

$$\begin{array}{r} 231 \\ 786 \\ +989 \\ \hline 2006 \end{array}$$

1.3 图 三

$$\begin{array}{r} 786 \\ 666 \\ 575 \\ 321 \\ 699 \\ 999 \\ + \\ \hline 4046 \end{array}$$

1.3 图 四

$$\left\{ \begin{array}{l} n_{m_0}=0 \text{ (通常 } n=0, 1, 2, \text{ 而以 } n=1 \text{ 为最常见)} \\ n_{m_0}=\left\{ \begin{array}{l} m/2, \quad m \text{ 为偶数时} \\ m+1/2, \quad m \text{ 为奇数时} \end{array} \right. \end{array} \right.$$

2、混数及混数数制

1. 1 《数制理论》

2.1.1 按同一种规则记录数，便于用来在一个数系统中进行运算的数的制度，称为“记数系统的制度”。简称为“数制”。一个数的质，首先就是由其所属的数制来决定的。恩格思指出：“单个的数在记数法中已经得到了某种质，而且质是依照这种记数法来决定的。”“一切数的定律都取决于所采用的记数法，而且被这个记数法所决定。”

《数制理论》就是研究数制的生成、分类、分析、比较、变换等以及数在各邻近学科与实践中应用的科学。它是数学的基础理论之一。

数制是数的属性。不存在没有所属数制的数，也不存在没有所属数的数制。

2. 1. 2 位值制数制

设，构造一个数系的数由各不相同位置上的“数符”来表示。“数符”又称“数字”，通常从右向左水平排列，其相应的数值由低（小）到高（大）。这种每个数位上的数字给定一个单位值（又称“位值”），由此来表示整个数系中每一个数的数制，称为“位值制数制”。

我们以下讨论的数制，都是“位值制数制”。简称为“数制”。所讨论的数均约定为整数。

2.1.3 数制有三大要素：数位 I ，数元集 Z_i 和权 L_i 。

a、数位 I ，表示数制中数的各位数字的位置。以 I （序数）从右自左来表示。即， $i=1, 2, 3, \dots$ 表示该数的第 1, 2, 3, \dots 位。

b、数元集 Z_i ，表示第 i 位上的“数元”组成的集合。同一数制系统中，各个数同一位上不同符号的全体，组成一个该位上的数符集。该数符集中的元素，称为“数的元素”。简称为“数元”。因此，该数符集称为“数元集”。

数元集 Z_i 可以随着 i 的取值不同而不同，也可以相同。

数元集 Z_i 中的数元可为实数或其他多种多样。以 a_j 来表示数元 (a_1, a_2, a_3, \dots) 以 $i a j$ 表示第 i 位上数元 a_j (j 为自然数)。

数元集 Z_i 的基数 P_i (P_i 为自然数) 表示了集的元素总数。它“不但决定它自己的质，而且也决定其他一切数的质。” $\therefore P_i$ 的取值不同，标示了数元集 Z_i 的变化。各位上的 P_i 均相同，则称为“单一基数”；否则，称为“混合基数”。相应的数制，称为“单一数制”及“混合数制”。

c、权 L_i ，表示第 i 位上的位值大小。特称此位值为“权 L_i 。”

L_i 为实数（由于复数集非有序体，故不采用），不同的 L_i ，就决定了不同的位值。

在“编码理论”中，“编码”的主要特征就在于权 L_i 。

实际中常见的权 L_i 采用所谓“幂权”。即，令 $L_i = Q_i^{(i-1)}$, Q_i 为实数。为便于计算起见，常取 Q_i 为自然数。常见各位 L_i 均为幂权，而且成等比 Q 的数制。 Q 称为数制幂权的“底数”或数制的“底数”。底数 Q 的不同，决定了不同的 L_i ，从而决定了不同的数值。通常，称这种数制为“ Q 进制”。

另一种常用的权 L_i 采用“等权”，即各位上的权相同。

2.2 混数及混数数制

根据上述数制的三大要素，数制可以有无穷无尽的种类。

当数元集 Z_i 中，基数 P_i 各位均相同时， $P_i=P_{i+1}=P$ 称为“单一基数”；各位上 P_i 不同时，称为“混合基数”。与此相应的数制称为“单一数制”和“混合数制”。

当 $Q=2, 3, 10$ 等时，相应的数制就被称为“二进制”、“三进制”、“十进制”等。

一个数制：当 $p=Q$ 时，自然数在该数制可以连续唯一的形态表达，称为“连续数制”，又称“普通数制”；

当 $P>Q$ 时，自然数在该数制可以连续，但有时以多种形态表达，称为“重复数制”；

当 $P<Q$ 时，自然数在该数制只能断续的形态表达，称为“断续数制”。

当数元集 Z_i 中，含数元 0 时，该相应数制被称为“含 0 数制”；

当数元集 Z_i 中，全部数元为连续整数时，该相应数制被称为“整数段数制”；

当数元集 Z_i 中，既有正数元，又有负数元时，相应数制被称为“混数数制”，混数数制中的数，称为“混数”。“混数”中既有正数元又有负数元的数，称“纯混数”。

当数元集 Z_i 中，正负数元是相反数时，相应数制称为“对称数制”；显然，“对称数制”是“混数数制”的一种。

2.3 混 Q 进制 {Q*} 和普通混 Q 进制普 {Q*}

在《数制理论》中，一个数制的名称采用“ $Z_i L_i$ ”。例如 $\{0, 1, 2\}$ 三进制；或者 Z_i 以文字表明其特征。[注：本人已研究的资料《数制理论》尚待发表。]

对于普通十进制，在《数制理论》中，它的名称是：

“单一基数 $P=10$ 的、含 0 的、整数段、非负不对称的十进制”。可写为 $\{+, \text{含 } 0, \text{ 整数段, 非负}\}$ 十进制，或者写为 $\{0, 1, 2, \dots, 9\}$ 十进制。一般情况下，我们进一步缩写为 $\{+\}$ ，称为“普通十进制”。

对于“普通二进制”在《数制理论》中，它的名称是：

“单一基数 $P=2$ 的，含 0 的，整数段，非负不对称的二进制”。可写为 $\{=, \text{含 } 0, \text{ 整数段, 非负}\}$ 二进制，或者写为 $\{0, 1\}$ 二进制。一般情况下，我们进一步缩写为 $\{=\}$ ，称为“普通二进制”。

本文《混数、进位行方法》（简称《混进方法 HJF》）中的混数数制在《混数理论》中，它的名称是：

“单一基数 $P=19$ 的，含 0 的，整数段，对称的十进制”。可写为 $\{\text{十九, 含 } 0, \text{ 整数段, 对称}\}$ 十进制，或者写为 $\{0, \pm 1, \pm 2, \dots, \pm 9\}$ 十进制。一般情况下，我们进一步缩写为 $\{+\ast\}$ ，称为《混十进制》（用于有理数运算教科书等时）。或者，“单一基数 $P=3$ 的，含 0 的，整数段，对称的二进制”。可写为 $\{\text{三, 含 } 0, \text{ 整数段, 对称}\}$ 二进制，或者写为 $\{0, \pm 1\}$ 二进制。一般情况下，我们进一步缩写为 $\{=\ast\}$ ，称为《混二进制》（用于研制新型电子计算机等时）。同样，对于 $\{0, \pm 1, \dots, \pm (Q-1)\}$ Q 进制缩写为 $\{Q\ast\}$ ，称为《混 Q 进制》。

在混数数制中，另一类普通数制为“ Q ，含 0 整数段，对称 Q 进制”，称为“含 0，整数段，对称，普通 Q 进制”，又称为“普通混 Q 进制” {普 $Q\ast$ }。其中典型的是 $\{1, 0, 1\}$ 三进制，称为“普通混三进制” {普 $3\ast$ }。显然，普通混 Q 进制中 Q 只能为奇数。

3.《混进方法 HJF》及其《混十进制》四则运算。

采用混数和《进位行方法》来进行有理数运算的方法，称为《混数、进位行方法》，简称为《混进方法 HJF》。当用于《小学数学教科书》中时，采用的是{+*} 混十进制的《混进方法 HJF》。当用于电子计算机中时，采用的是{-*} 混二进制等。

2. 1 {+*} 的加法

例 $\bar{1}\bar{2}\bar{3} + \bar{4}\bar{5}\bar{6} = \bar{4}\bar{2}\bar{7}$ 如图一

图中求得和为 $\bar{5}\bar{7}\bar{3}$ 。当需要转化为普通十进制 {+} 数时，和为 427。

一般来说，所求和 $\bar{5}\bar{7}\bar{3}$ 不必转化（特别是作为计算过程中间结果时）。确需转化时，方法见 4.1 转换法则。

$$\begin{array}{r} 1\bar{2}\bar{3} \\ + \bar{4}\bar{5}\bar{6} \\ \hline \bar{5}\bar{7}\bar{3} \\ - 5\bar{2}\bar{6} \\ \hline \bar{1}\bar{1} \\ 4\bar{2}\bar{7} \end{array}$$

3.1 图一

3.2 {+*} 的减法

3.2.1 例 $\bar{1}\bar{2}\bar{3} - \bar{4}\bar{5}\bar{6} = \bar{1}\bar{2}\bar{3} + \bar{4}\bar{5}\bar{6} = \bar{3}\bar{3}\bar{9}$

首先化为加法来运算，这是由于混数的特性所决定。这一来，实际计算中，加减就合并为加法了。这就消除了通常连加减的困难。

例 $112 + 56 - 32 - 85 + 67 - 46 = 72$ 见图一

3.2.2 约混。这是指二数求和时，同一位上的相反数可以消去。也可称为“对消”或“对冲”。在算式中，可以斜线划去。

3.3 {+*} 的乘法

例 $2\bar{3}\bar{8} \times \bar{8}\bar{9} = 12\bar{5}02$

3.4 {+*} 的除法

例 $5728 \div 23 = 249 \dots \dots 1$

要点：

① 图一采用原普通除法，现采用四则统一算式如图二

② 图中 $57 - 23 \times 2 = 57 + \bar{2}\bar{3} \times 2 = 57 + \bar{4}\bar{6}$ 也就是说，由于采用混数可使除法中的“减”过程变为“加”的过程。

③ 例 $12\bar{5}02 \div \bar{2}\bar{3} = \bar{8}\bar{9}$ （见图三）

这是 3.3 图一的逆运算。我们为了去掉“减”过程的思路，可以如图四令被除数变号，然后，整个“减”过程完全变成“加”过程。这可使整个运算的复杂性进一步降低。

以后，我们的除法就以此来进行。但，应该注意，此时若出现余数则要将该余数变号后，才是最终运算结果的余数。

4、《混十进制》{+*} 与《普通十进制》{+} 的关系。

4. 1 {+*} 与 {+} 数的转换法

$$\begin{array}{r} 2\bar{3}\bar{8} \\ \times \bar{8}\bar{9} \\ \hline \bar{1}\bar{8}\bar{2} \\ \bar{1}\bar{2}\bar{4} \\ \bar{6}\bar{4} \\ \hline 1\bar{2}\bar{6} \\ 1\bar{2}\bar{1}\bar{0}\bar{2} \\ \hline \bar{6} \\ 1\bar{2}\bar{5}\bar{0}\bar{2} \\ \hline \end{array}$$

3.3 图一

3.2 图

$$\begin{array}{r} 249 \\ \hline 23 | 5728 \\ 46 \\ \hline 112 \\ 92 \\ \hline 208 \\ 207 \\ \hline 1 \\ \hline \end{array} \quad \begin{array}{r} 5728 \\ \hline 23 | 57 \\ 46 \\ \hline 112 \\ 92 \\ \hline 208 \\ 207 \\ \hline 1 \\ \hline \end{array}$$

3.4 图一

3.4 图二

这里指整数的情况，例如 {+*} 382296 = {+} 221716(图一)。

① 原混数的各位中，凡正数字（或 0）的照写，如 $\times 2 \times \times 6$ ；

凡负数字则在其相反数与所求的转换数字之和为 9，如 $\times 1 \times 70 \times$ 。这就获得 312706。

② 原混数的各位中，在连续负数字的最低位右侧划一垂线段，这就将原混数及①所得数分为三段。

③ 对于原混数末位为正（或 0）的段，则相

应①所得数即为相应的结果。对于原混数末位为负的段中，其正数部分（包括 0）所对应的①所得数，在最低位加 1；其负数部分所对应的①所得数，在最低位加 1。

于是，获得数 {+} 221716 即为所求结果。

(注：当不致误解时，分段线可不划。)

4.2 {+*} 与 {+} 对照表及其说明

0=0=00=000=...=0=0+
1=1=19=199=...=19
2=2=18=198=...=198
3=3=17=197=...=197
4=4=16=196=...=196
5=5=15=195=...=195
6=6=14=194=...=194
7=7=13=193=...=193
8=8=12=192=...=192
9=9=11=191=...=191
10=10=10=190=...=190
11=11=11=191=...=191

$$\begin{array}{r} \overline{1\ 2\ 5\ 0\ 2} \\ \hline \overline{2\ 3\ 8} \\ 8 | \overline{1\ 2\ 5\ 0} \\ \overline{6\ 4\ 4} \\ \hline \overline{1\ 2\ 6} \\ \overline{1\ 5\ 4} \\ \hline \overline{2} \\ 9 | \overline{1\ 5\ 4\ 8} \\ \overline{8\ 8\ 8} \\ \hline \overline{1\ 8\ 8} \\ \overline{8\ 8\ 0} \end{array}$$

$$\begin{array}{r} \overline{3\ 8} | \overline{2\ 2\ 9\ 6} \\ \hline \overline{3\ 1} | \overline{2\ 7\ 0\ 6} \\ \overline{1\ 1\ 1} \quad \overline{1} \\ \hline \overline{2\ 2\ 1\ 7\ 1\ 6} \end{array}$$

4.1 图一

3.4 图三

0=0=00=000=...=0=0-
1=1=19=199=...=19
2=2=18=198=...=198
3=3=17=197=...=197
4=4=16=196=...=196
5=5=15=195=...=195
6=6=14=194=...=194
7=7=13=193=...=193
8=8=12=192=...=192
9=9=11=191=...=191
10=10=10=190=...=190
11=11=11=191=...=191

说明：

式中 $\bar{9}$ 表示为 9 的二次取负数（二次以上从略）、余数同此。

① 式中 0_+ 、 0_- 分别为从正负方向趋近于 0 所获得的 0；

② 式中 $\bar{9}$ 表示连续任意位之一的 9，读作“延 9”。这种数，可以称为“延数”。余数同此；

③ 式中 $\dot{0}$ 仅仅是定义为 “ $0 \dots 0$ ” 的，形式上表达方便的式样；

④ $0=\bar{0}$ ，由数 10 的两种表达形式可知。

4.3 {+} 与 {+*} 关系分析

4.3.1 {+} 数是 {+*} 数的一部分，{+} 数集是 {+*} 数集的子集：

{+} 数 \subset {+*} 数，即 {+*} 数对 {+} 数有包含关系。

4.3.2 {+} 数与 {+*} 数的关系是“一多对应”关系，而不是“一一对应”关系。正由于此，{+*} 就获得了多样处理的灵活性。这是 {+*} 运算中多样性、快速性的原因。从这一点来说，{+*} 具有较强的功能。

4.3.3 {+*} 数转换为 {+} 数，只能化为相应唯一的一个数。这是因为，{+*} 数可经 {+} 数加减直接获得，而 {+} 数加减运算后的结果是唯一的。反之，{+} 数也只能化为相应唯一的一组 {+*} 数。所以，这种 {+} 数的“一”与 {+*} 数的“一”组两者是“一一对应”关系。

由此，可建立一种 {+*} 数与 {+} 数的互为映射关系。

由于变换是集到自身上的对应，所以：

{+} 与 {+*} 数是“一一变换”。对于运算系统来说，{+} 与 {+*} 数系统是“自同构”。相应 {+} 数的各种运算，亦在 {+*} 数系统中成立。

4.3.4 {+*} 中 $P > Q$ ，因而在该数制中自然数有时会出现多种形态表达，这正是该数制灵活性所在，它使运算得以简便快捷。也可以说 {+*} 是以多样性来换取了灵活性。

{+} 中 $P=Q$ ，因而在该数制中，自然数是连续唯一形态表达，它没有这种多样性，也缺少了相应的灵活性。

可以这么说，本发明的关键正是在此。有了它，才有了《混进方法 HFJ》，才有了“有理数运算教科书”。有了它，才有了新一代电子计算机发明。

应当指出，显然，上述对 {+} 及 {+*} 的分析，完全相应于 {Q} 及 {Q*} 的分析，因为 {+} 与 {Q} 是同构的。由此可知，① {Q} 数与 {Q*} 数的关系是“一多对应”，而不是“一一对应”。②同时，{Q} 中的“一”个数与相应的 {Q*} 中的“一”组数两者之间是“一一对应”关系。③ {Q} 与 {Q*} 数系统是“自同构”。相应 {Q} 数系统的各种运算，亦在 {Q*} 数系统中成立。

5、《混进方法 HFJ》的应用

3.1 《混进方法 HFJ》是一种优异的运算方法。

《混进方法 HFJ》的理论和实践证明，它把混数与“进位行方法”紧密结合在一起，正好互补，互相促进，作用大大加强。于是 $+ - \times \div$ 四则运算（也就是有理数运算）全面、系统地改观。

《混进方法 HFJ》作为一种特别优异的运算方法，必将获得广泛的应用。

5.2 《小学数学教科书》

这是应用《混进方法 HFJ》的第一个产品，也是一个广泛应用到全世界每个人的基础产品。易教易学，省时省力。它大约可以使整个《小学数学教科书》原六年的时间缩短为三年时间。而且，在与过去同样条件下，学得轻松愉快。它有利于千秋万代的数学教育基业。

5.3 新一代电子计算机

四则运算是一切运算的基础，显然也是电子计算机的基础。

采用《混进方法 HFJ》的 {+*} 等新一代电子计算机得以诞生。[参见说明书附件二“新一代电子计算机”]

6：结论

综合上述，可有如下简明结论：

- ① 《混进方法 HJF》在有理数运算中使运算速度大大加快；
- ② 正在申请发明专利的“《混数、进位行方法》及其有理数运算教科书”易教、易学、易用、易记。它正是适应于当前教育大变革时机的产物，具有特别重要的意义。
- ③ 混数及其《混进方法 HJF》使新一代电子计算机得以诞生。

附 参考资料目录

(一) 自然辩证法 恩格斯 中共中央 马克思、恩格斯、列宁、斯大林著作编译局译

——人民出版社 1971 年 8 月第一版

(二) 《混数、进位行方法》及其有理数运算教科书 李志中
——发明专利，申请号 0312 2702.3

(三) 电子数字计算机的运算器 M.A.卡尔采夫著 金成梁译
——科学出版社 北京 1963 年 3 月一版一印

新一代电子计算机

(一) 新一代电子计算机是在 $\{-\}$ 数制电子计算机基础上，将原来采用的 $\{-\}$ 数制改变成包含它本身在内的 $\{+\}$ 数制。

如现有的电子计算机为 $\{+\}$ 数制的，则将原来所采用的 $\{+\}$ 数制改变成包含它本身在内的 $\{++\}$ 数制。

如现有的电子计算机为 $\{Q\}$ 数制的，则将所采用的 $\{Q\}$ 数制改变成包含它本身在内的 $\{Q^*\}$ 数制。

(二) 当具备三态存贮器或在存贮量较小的专用计算机中，可以设计新一代电子计算机采用数制为 $\{Q^*\}$ ，特别是 $\{-^*\}$ ，也可能采用另一类混数数制，即“含 0、整数段、对称”数元集的 $\{1, 0, -1\}$ 三进制等奇数普通数制。

(三) 新一代电子计算机的运算采用《混进方法 HJF》，即，混二进制 $\{-\}$ 的《混进方法 HJF》，或混十进制 $\{++\}$ 的《混进方法 HJF》，或者，其他混 Q 进制 $\{Q^*\}$ 的《混进方法 HJF》。

另一方面，亦可采用 $\{1, 0, -1\}$ 三进制的《混进方法 HJF》，或者，其他“含 0、整数段、对称”数元集的奇数普通数制的《混进方法 HJF》。

(四) 新一代电子计算机总逻辑框图如下：

图 新一代计算机系统的总逻辑框图

当采用 $\{-^*\}$ 运算时（其他混数数制类似），在运算及其控制中，采用 $\{1, 0, -1\}$ 三态进行。其中， $1, -1$ 的正负号以一位 $\{-\}$ 符号表示，其权为 0。

当采用 $\{Q^*\}$ 运算时，新一代电子计算机在运算数字的界面上，只需加上特别简单的 $\{Q^*\}$ 转换到 $\{Q\}$ 即可。这一点在技术上不存在任何困难。原则上，新一代电子计算机其内外存及输入输出端与现有 $\{Q\}$ 电子计算机完全一样（包括程序在内）。这其中的原因就在于全部 $\{Q\}$ 数本身均为 $\{Q^*\}$ 数所包含。在这种意义上，现代 $\{Q\}$ 数制电子计算机本来就是 $\{Q^*\}$ 电子计算机的特况。即， $\{Q^*\}$ 数= $\{Q\}$ 数+纯 $\{Q^*\}$ 数。

(五) 新一代电子计算机系统中，采用“多重运算器”。例如，采用“六重运算器”。所谓“六重运算器”，即将 6 个数放入 6 个寄存器中，一次性完成加减运算。同时，乘法本质上原来就是连续加法，除法本质上原来就是连续减法。因此，在乘除中，新一代电子计算机亦可运用多重加减来处理。[参见附件一《混进方法 HJF》]

(六) 新一代电子计算机采用“对冲”及“划 Q”逻辑。所谓“对冲”，即仅符号相反的两数

相加，其和为零。所谓“划 Q”，即 Q 进位的两数相加时，“若其按位加和为零，但产生进位（与两数符号一致）。”“对冲”及“划 Q”逻辑线路在技术上是简单成熟的。

小结：

- 一、新一代电子计算机在技术上是切实可行的。新一代电子计算机是混数电子计算机，是《混进方法 HJF》电子计算机。
- 二、新一代电子计算机的诞生，使现代各种电子计算机的运算速度大大提高。以六重运算器为例，粗略地估算将使运算速度提高五倍。也就是说，原 20 万次/s 的提高到到 100 万次/s 左右；原 20 亿次/s 的提高到 100 亿次/s 左右。

这是电子计算机领域的一个里程碑式的重大突破。

考虑到今天以及未来电子计算机在人类生活、科研、经济活动中及在政治、军事等领域中的广泛应用及重大意义，那么，新一代电子计算机的用途和价值就是不言而喻的了。

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.