GateAssignment1

1

EE24BTECH11048-NITHIN.K

1 Q.21 to Q.75 carry two marks each.

- 1) The solid phase of an element follows van der Waals bonding with inter-atomic potential $V(r) = -\left(\frac{P}{r^6}\right) + \left(\frac{Q}{r^{12}}\right)$, where P and Q are constants. The bond length can be expressed as

 - b) $\left(\frac{Q}{P}\right)^{-6}$ c) $\left(\frac{P}{2Q}\right)^{-6}$ d) $\left(\frac{P}{Q}\right)^{-6}$
- 2) Consider the atomic packing factor (APF) of the following crystal structures:
 - P. Simple Cubic
 - Q. Body Centred Cubic
 - R. Face centred Cubic
 - S. Diamond
 - T. Hexagonal Close Packed

Which two of the above structures have equal APF?

- a) P and O
- b) S and T
- c) R and S
- d) R and T
- 3) In a powder diffraction pattern recorded from a face-centred cubic sample using x-rays, the first peak appears at 30°. The second peak will appear at
 - a) 32.8°
 - b) 33.7°
 - c) 34.8°
 - d) 35.3°
- 4) Variation of electrical resistivity ρ with temperature T of three solids is sketched(on different scales) in the figure, as curves P, Q and R. Which one of the following statements describes the variations most appropriately?

Fig. 4.1

- a) P is for a superconductor, and R for a semiconductor.
- b) Q is for a superconductor, and P for a conductor.
- c) Q is for a superconductor, and R for a conductor.
- d) R is for a superconductor, and P for a conductor.
- 5) An extrinsic semiconductor sample of cross-section A and length L is doped in such a way that the doping concentration varies as $N_D(x) = N_0 exp\left(-\frac{x}{L}\right)$, where N_0 is a constant. Assume that the mobility μ of the majority carriers remain constant. The resistance R of the sample is given by

 - a) $R = \frac{L}{A\mu e N_0} [exp(1.0) 1]$ b) $R = \frac{L}{\mu e N_0} [exp(1.0) 1]$ c) $R = \frac{L}{A\mu e N_0} [exp(-1.0) 1]$ d) $R = \frac{L}{A\mu e N_0}$
- 6) A ferromagnetic mixture of iron and copper having 75% atoms of Fe exhibits a saturation magnetisation of $1.3 \times 10^6 Am^{-1}$. Assume that the total number of atoms per unit voulume is $8 \times 10^{28} m^{-3}$. The magnetic moment of an iron atom, in terms of the Bohr Magneton, is
 - a) 1.7
 - b) 2.3
 - c) 2.9
 - d) 3.8
- 7) Half life of a radio-isotope is 4×10^8 years. If there are 10^3 radioactive nuclei in a sample today, the number of such nuclei in the sample 4×10^9 years ago were
 - a) 128×10^{3}
 - b) 256×10^{3}
 - c) 512×10^3
 - d) 1024×10^3
- 8) In the deuterium + tritium (d+t) fusion more energy is released as compared to deuterium + deuterium (d + d) fusion because
 - a) tritium is radioactive.
 - b) more nucleons participate in fusion.
 - c) the Coulomb barrier is lower for the d+t system than d+d system.
 - d) the reaction product ⁴He is more tightly bound.

- 9) According to the shell model the ground state spin of the ^{17}O nucleus is

 - a) $\frac{3}{2}^{+}$ b) $\frac{5}{2}^{+}$
 - c)
 - d)
- 10) A relativistic particle travles a length of 3×10^{-3} m in air before decaying. The decay process of the particle is dominated by
 - a) strong interactions.
 - b) electromagnetic interactions.
 - c) weak interactions.
 - d) gravitational interactions.
- 11) The strange baryon Σ^+ has the quark structure
 - a) uds
 - b) uud
 - c) uus
 - d) $u\bar{s}$
- 12) A neutron scatters elastically from a heavy nucleus. The initial and final states of the neutron have the
 - a) same energy.
 - b) same energy and linear momentum.
 - c) same energy and angular momentum.
 - d) same linear and angular momentum.
- 13) The circuit shown is based on ideal operational amplifiers. It acts as a

Fig. 13.1

- a) subtracter.
- b) buffer amplifier.
- c) adder.
- d) divider.
- 14) Identify the function F generated by the logic network shown

Fig. 14.1

- a) F = (X + Y)Z
- b) $F = Z + Y + \bar{Y}X$
- c) F = ZY(Y + X)
- d) F = XYZ
- 15) In the circuits shown, the ports Q_1 and Q_2 are in the state $Q_1 = 1$, $Q_2 = 0$. The circuit is now subjected to two complete clock pulses. The state of these ports now becomes

Fig. 15.1

- a) $Q_2 = 1, Q_1 = 0$
- b) $Q_2 = 0, Q_1 = 1$
- c) $Q_2 = 1, Q_1 = 1$
- d) $Q_2 = 0, Q_1 = 0$
- 16) The registers Q_D , Q_C , Q_B and Q_A shown in the figure are initially in the state 1010 respectively. An input sequence $S_1 = 0101$ is applied. After two clock pulses, the state of the shift registerds (inthesamesequence $Q_DQ_CQ_BQ_A$) is

Fig. 16.1

- a) 1001
- b) 0100
- c) 0110
- d) 1010
- 17) For the circuit shown, the potential difference (in Volts) across R_L is

Fig. 17.1

- a) 48b) 52c) 56d) 65