E 126 - Answers to Class Problems - Fall 2020

Concurrent Force Systems

1-1.
$$F_R = 213 \text{ N}$$
; $\theta = 54.8^{\circ}$ (ccw from positive *x*-axis)

1-2.
$$\theta = 76.1^{\circ}$$
 (cw from positive x-axis)

1-3.
$$F_R = 463 \text{ lb}$$

1-4.
$$\theta = 21.3^{\circ}$$
; $F_1 = 869 \text{ N}$

1-5.
$$F_R = 161$$
 lb; $\theta = 38.3^{\circ}$ (cw from positive *x*-axis)

1-6.
$$F = 2.03 \text{ kN}$$
; $F_R = 7.87 \text{ kN}$

Moment of a Force about a Point

2-1.
$$M_O = -98.6 \text{ N-m}$$

2-2.
$$M_{O_FI} = +4125$$
 lb-ft; $M_{O_F2} = +2000$ lb-ft; $M_{O_FI} = +40$ lb-ft

2-3.
$$F_3 = 1592.7 \text{ N}$$

Moment of a Force about an Axis / Moment of a Couple

2-4.
$$M_z = 62$$
 lb-in

2-5.
$$M_R = -53.4$$
 lb-ft

Equivalent Force and Couple Systems

2-6.
$$F_R = 962 \text{ N}; \ \theta = 66.6^{\circ} \text{ (ccw from negative } x\text{-axis)}; \ M_{RA} = 551 \text{ N-m (cw)}$$

2-7.
$$F_R = 991.0 \text{ N}; \ \theta = 63^{\circ} \text{ (ccw from negative } x\text{-axis)}; \ M_{RA} = 800 \text{ N-m (ccw)}$$

2-8.
$$F_R = 420.5 \text{ N}$$
; $\theta = 33.7^{\circ}$ (cw from positive *x*-axis); $d = 5.07 \text{ m}$

Distributed Loads

2-9.
$$a = 7.5$$
 ft; $b = 9$ ft

2-10.
$$F = 2700 \text{ N}$$
 @ $x = 5.56 \text{ m}$

Concurrent/Particle Equilibrium

3-1.
$$F_{AB} = 4.91 \text{ kN}$$
; $F_{AD} = 4.25 \text{ kN}$

3-2.
$$F_1 = 339 \text{ N}; F_2 = 400 \text{ N}$$

3-3.
$$y = 1.768$$
 ft

3-4.
$$T_A = 1507 \text{ N}$$
; $T_B = 2970 \text{ N}$; $T_C = 2832 \text{ N}$; $T_D = 1416 \text{ N}$

3-5.
$$T = 200 \text{ kN}$$
; $\alpha = 6.44^{\circ}$

3-6.
$$F_{BC} = 145 \text{ N}; F_{BD} = 171 \text{ N}$$

3-7.
$$F_{BC} = 707.1 \text{ N (C)}$$
; $F_{AB} = 500 \text{ N (T)}$; $F_{AC} = 500 \text{ N (T)}$

2D Rigid Body Equilibrium

3-8.
$$A_x = 100 \text{ N} (\rightarrow)$$
; $A_y = 233 \text{ N} (\uparrow)$; $N_B = 200 \text{ N} (\checkmark)$

3-9.
$$A_x = 150 \text{ lb } (\leftarrow); A_y = 300 \text{ lb } (\uparrow); N_B = 150 \text{ lb } (\rightarrow)$$

3-10.
$$A_x = 0$$
; $A_y = 2$ kN (↑); $M_R = 11$ kN-m (ccw)

3-11.
$$R_A = 1.06 \text{ kN } (\nearrow); R_B = 1.42 \text{ kN } (\uparrow); R_C = 0.501 \text{ kN } (\rightarrow)$$

3-12.
$$F_{AB} = 0.864 \text{ kN } (\nearrow); C_x = 2.66 \text{ kN } (\leftarrow); C_y = 6.56 \text{ kN } (\downarrow)$$

3-13.
$$A_x = 33.4 \text{ lb } (\rightarrow); A_y = 61.3 \text{ lb } (\uparrow); T = 74.6 \text{ lb}$$

3-14.
$$A_x = 512.8 \text{ lb } (\rightarrow)$$
; $A_y = 638.9 \text{ lb } (\uparrow)$; $B = 598 \text{ lb } (50^\circ \text{ ccw from positive } x\text{-axis})$; $N_C = 199.5 \text{ lb } (\nwarrow)$

Normal and Shear Stress

4-1.
$$\sigma_{max} = 85.7 \text{ MPa}$$

4-2.
$$\tau_{avg} = 31.8 \text{ ksi}$$

4-3.
$$P_{max} = 113.7 \text{ kN}; P_{max} = 54.3 \text{ kN}$$

4-4.
$$\tau_A = 34.0 \text{ MPa}; \tau_B = 17.7 \text{ MPa}$$

4-5.
$$\sigma_{a-a} = 500 \text{ kPa}, \ \tau_{a-a} = 0; \ \sigma_{b-b} = 375 \text{ kPa}, \ \tau_{b-b} = 217 \text{ kPa}$$

4-6.
$$d_B = 1.18$$
 in; $d_C = 1.11$ in

Strain / Mechanical Properties of Materials

5-1.
$$d_{min} = 20.6$$
 mm; $t_{min} = 4.55$ mm

5-2.
$$\varepsilon_{AB} = -7.93 \times 10^{-3}$$
; $\gamma_{xy} = 0.0121 \text{ rad}$

5-3.
$$\Delta L_z = 120 \ \mu\text{m}$$
-; $\Delta L_x = -2.40 \ \mu\text{m}$; $\Delta L_y = -1.20 \ \mu\text{m}$

5-4.
$$E = 70.0 \text{ GPa}$$
; $\Delta d = 0.0415 \text{ mm}$

Axial Load and Deformation

6-1.
$$\delta_A = +0.0127$$
 in; $\delta_{B/C} = +0.00217$ in

6-2.
$$\delta_F = 0.225 \text{ mm } (\downarrow)$$

6-3.
$$t_{min} = 8.73 \text{ mm}$$

6-4.
$$\delta_{BC} = 0.102 \text{ mm}$$

6-5.
$$F_A = 16.6 \text{ kN}$$
; $F_B = 3.4 \text{ kN}$

6-6.
$$\sigma_{Al} = 0.637 \text{ ksi}; \ \sigma_{Br} = 0.955 \text{ ksi}$$

6-7.
$$\sigma_B = 12 \text{ ksi}$$
; $\sigma_D = 24 \text{ ksi}$; $\delta_B = 0.008 \text{ in}$; $\delta_D = 0.016 \text{ in}$

Trusses

7-1.
$$F_{AB} = 750 \text{ N (C)}$$
; $F_{AD} = 450 \text{ N (T)}$; $F_{BD} = 250 \text{ N (T)}$; $F_{BC} = 600 \text{ N (C)}$; $F_{CD} = 200 \text{ N (C)}$

7-2.
$$F_{AB} = 5000 \text{ lb (T)}$$
; $F_{AE} = 1000 \text{ lb (T)}$; $F_{BE} = 1666.7 \text{ lb (C)}$; $F_{DE} = F_{CD} = 2666.7 \text{ lb (C)}$; $F_{BC} = 3333.3 \text{ lb (T)}$; $F_{BD} = 2000 \text{ lb (T)}$

7-3.
$$F_{CD} = 50 \text{ kN (T)}$$
; $F_{HD} = 7.07 \text{ kN (C)}$; $F_{GD} = 5 \text{ kN (T)}$

7-4.
$$F_{DE} = 11.9 \text{ kN (C)}$$
; $F_{DJ} = 2.66 \text{ kN (T)}$; Zero-force members: BL, BK, CK, JE, EI, IF, FH

7-5.
$$F_{HC} = 150 \text{ kN (C)}$$
; $F_{BC} = 40 \text{ kN (C)}$; $F_{JD} = 0$; $F_{KD} = 102.1 \text{ kN (C)}$; $F_{LF} = 40 \text{ kN (T)}$

Frames and Machines

8-1.
$$C_x = 1230 \text{ N} (\rightarrow); C_y = 245 \text{ N} (\downarrow)$$

8-2.
$$A_x = 70 \text{ lb } (\rightarrow)$$
; $A_y = 8.75 \text{ lb } (\downarrow)$; $F_{BE} = 61.3 \text{ lb } (\downarrow)$; $C_x = 70 \text{ lb } (\leftarrow)$; $C_y = 70 \text{ lb } (\uparrow)$;

8-3.
$$B_x = 0$$
; $B_y = 1050$ lb (\downarrow); $C_x = 0$; $C_y = 1000$ lb (\uparrow); $F_E = 1500$ lb

8-4.
$$A_x = 577 \text{ N } (\rightarrow); A_y = 1000 \text{ N } (\uparrow); C_x = 577 \text{ N } (\leftarrow); C_y = 1000 \text{ N } (\uparrow)$$

8-5.
$$F_{DB} = 2.60 \text{ kN (C)}$$
; $F_{FB} = 1.94 \text{ kN (C)}$

8-6.
$$A_x = 300 \text{ N (} \leftarrow \text{)}; A_y = 300 \text{ N (} \uparrow \text{)}; C_x = 300 \text{ N (} \rightarrow \text{)}; C_y = 300 \text{ N (} \uparrow \text{)}$$

Geometric Properties of Areas

9-1.
$$x = 1.50$$
 in; $y = 2.00$ in

9-2.
$$x = 2.73$$
 in; $y = 1.42$ in

9-3.
$$I_x = 736 \text{ in}^4$$
; $I_y = 256 \text{ in}^4$; $I_{x'} = 136 \text{ in}^4$

9-4.
$$I_x = 37.5 \times 10^6 \text{ mm}^4$$
; $I_y = 53.7 \times 10^6 \text{ mm}^4$

Shear Force and Bending Moment Diagrams

10-1.
$$N_C = 0$$
; $V_C = -1$ kip; $M_C = 56.0$ kip-ft; $N_D = 0$; $V_D = -1$ kip; $M_D = 48.0$ kip-ft

10-2.
$$N_B = 0$$
; $V_B = 28.8$ kip; $M_C = -115$ kip-ft

Flexural Loading - Bending Stresses in Beams

- 11-1. $\sigma_{max} = -2206$ psi; Max bending stress occurs at top surface
- 11-2. $\sigma_{max} = 281$ MPa; Max bending stress occurs at the base C, on outer surface of the pipe

11-3.
$$\sigma_B = -11.2 \text{ MPa}; \sigma_D = 12.7 \text{ MPa}$$

11-4.
$$\sigma_{max} = -16.2 \text{ MPa}$$

Flexural Loading - Shear Stresses in Beams

12-1.
$$\tau_{max} = 1590 \text{ psi}; \ \tau_{web} = 1240 \text{ psi}; \ \tau_{flange} = 155 \text{ psi}$$

12-2.
$$\tau_{glue} = 4.88 \text{ MPa}$$

12-3.
$$(\sigma_{max})_T = 5198 \text{ psi}; (\sigma_{max})_C = 3464 \text{ psi}; \tau_F = 1082 \text{ psi}$$

Torsional Loading

13-1.
$$\tau_{out} = 345 \text{ kPa}; \ \tau_{in} = 276 \text{ kPa}$$

13-2.
$$\tau_A = 18.9 \text{ ksi}; \tau_B = 3.77 \text{ ksi}$$

13-3.
$$d_{min} = 0.858$$
 in. $\rightarrow 7/8$ in.

13-4.
$$f = 26.6 \text{ Hz}$$

13-5.
$$s_P = 21.2 \text{ mm}$$

13-6.
$$\varphi = 0.085 \text{ rad}$$

Stress Transformation

14-1.
$$\sigma_1 = 80 \text{ MPa}$$
; $\sigma_2 = -20 \text{ MPa}$; $\theta_p = 26.6^{\circ} \text{ (ccw)}$

14-2.
$$\sigma_1 = 1.67$$
 ksi; $\sigma_2 = -2.23$ ksi; $\tau_{max} = 1.95$ ksi

14-3.
$$\sigma_1 = 0.0723$$
 ksi; $\sigma_2 = -0.6833$ ksi