Energy Mix Commitment Optimization model

Julian Florez

March 17, 2022

Sets

T set of total time from $[0,\max Time]$ - maxTime furthest out to optimize for P set of power technology sources which we are optimizing the mix for

Parameters

 l_p LCOE of deploying power technology p e_p environmental cost associated with power technology p $m_{p,t}$ max generating capacity for power technology p at time t d_t demand at time t for the energy system

Decision Variables

 $x_{p,t}$ generation for power technology p at time t

Optimization Model

Objective

$$\min \quad \sum_{p \in P} \sum_{t \in T} x_{p,t} (l_p + e_p) \tag{1}$$

S.t.

$$\sum_{p \in P} x_{p,t} \ge d_t \qquad \forall T \tag{2}$$

$$x_{p,t} \le m_{p,t} \qquad \forall P, T \tag{3}$$

$$x_{p,t} \ge 0$$
 $\forall P, T$ (4)

(5)

Objective and Constraint Explanations

- 1. minimize system operating costs which are: LCOE + environmental cost
- 2. cumulative generation from all power technologies at every single timestep should meet or exceed demand
- 3. generation from each power source can't exceed its maximum available capacity at each timestep
- 4. generation for each power source must be non negative

When Geothermal is widely deployed in mix

If: $Geothermal_{LCOE} < (NG_{LCOE} + NG_{envCost})$ true Geothermal will be the widely deployed tech, else NG used up to capacity and then geotherm