

Etude des preuves parallèles des SAT solveurs sous forme de grands graphes

Rohan Fossé

Laurent Simon

rohan.fosse@labri.fr

lsimon@labri.fr

LaBRI - Université de Bordeaux - UMR 5800

Le problème SAT

Définition

Soit $\Phi(a, b, ...)$ une formule logique. Existe-t-il une **affectation** des variables (a, b, ...) rendant Φ vraie?

En théorie

Théorème de Cook-Levin : SAT est NP-Complet.

- ⇒ Au cœur de la Hiérarchie Polynomiale
- \Rightarrow Au centre de la **la théorie de la complexité** (problème P = NP?)

En pratique

- Nombreuses applications critiques
- Problèmes de grande taille

Notations

Littéraux

Un littéral (a,b,\ldots) représente la variable booléenne x ou son complément $\neg x$

Clauses

Une clause est une disjonction de littéraux i.e:

$$C = a \lor b \lor .. \lor z$$

Formule

Une formule est une conjonction de clauses *i.e* :

$$\Phi = \mathit{C}_1 \wedge \mathit{C}_2 \wedge ... \wedge \mathit{C}_m$$

Exemple

$$\Phi = (a \vee \neg b) \wedge b \wedge (\neg a \vee \neg b)$$

La règle de résolution

Règle de résolution (Robinson 65)

Soit C_1 et C_2 deux clauses t.q :

$$C_1 = a \lor b \lor c \lor d$$

 $C_2 = \neg d \lor e \lor f$

La règle de résolution sur d donne :

$$\begin{array}{c}
C_1 & C_2 \\
(a \lor b \lor c \lor d) \land (\neg d \lor e \lor f) \\
\vdash a \lor b \lor c \lor e \lor f
\end{array}$$

Règle de résolution (Robinson 65)

Formellement,

Soit C_1 et C_2 deux clauses, la règle de résolution nous donne :

$$(C_1 \vee x) \wedge (C_2 \vee \neg x) \vdash C_1 \vee C_2$$

On appelle $C_1 \vee C_2$ le résolvant de $C_1 \vee x$ et $C_2 \vee \neg x$.

4

Règle de résolution (Robinson 65)

Formellement,

Soit C_1 et C_2 deux clauses, la règle de résolution nous donne :

$$(C_1 \vee x) \wedge (C_2 \vee \neg x) \vdash C_1 \vee C_2$$

On appelle $C_1 \vee C_2$ le résolvant de $C_1 \vee x$ et $C_2 \vee \neg x$.

Figure 1 – Représentation graphique de la résolution

Inconsistance

Correction et complétude de la résolution

Une formule F inconsistante : Clause vide (\square) peut être dérivée en partant des clauses de F.

Derivation : séquence de résolutions

Une preuve d'inconsistance représente la séquence de résolutions.

Dans cet exposé

Nous parlerons seulement des preuves d'inconsistance (les preuves de satisfiabilité correspondant à un assignement des variables).

Inconsistance

Correction et complétude de la résolution

Une formule Φ inconsistante : Clause vide (\square) peut être dérivée en partant des clauses de F.

Derivation : séquence de résolutions

Une preuve d'inconsistance représente la séquence de résolutions.

Formellement

La séquence de résolutions Γ_r de F est une séquence de clauses $C_1,...,C_m$ tel que :

- $C_m = \square$
- $\forall i \in [1, m-1], C_i \in F$

<u>**ου**</u> C_i est le résolvant de deux clauses C_j , C_k , j, $k \in [1, i-1]$

Formule

$$\Phi = (a \vee \neg b) \wedge b \wedge (\neg b \vee \neg a)$$

On peut représenter cette formule de la façon suivante :

a∨¬b

b

$$\neg b \lor \neg a$$

Formule

$$\Phi = (a \vee \neg b) \wedge b \wedge (\neg b \vee \neg a)$$

Formule

Formule

Les solveurs SAT modernes

 Φ : l'ensemble des clauses initiales

 Σ : l'ensemble des clauses apprises.

Algorithm 1 solveurs SAT modernes

```
Tant que \square \not\in \Phi \cup \Sigma faire C \leftarrow apprendreClause() \Sigma = \Sigma \cup C Si tropPlein(\Sigma) Alors \Delta = clausesAEffacer(\Sigma) \Sigma = \Sigma \setminus \Delta Fin Si
```

Formule

Soit $\Phi = C_1 \wedge C_2 \wedge ... \wedge C_{11}$, tq. $\forall i \in [1..11]$, C_i une clause quelconque.

On peut représenter cette formule de la façon suivante :

$$C_5$$

Graphe de résolution

Définition

Le graphe de résolution est un graphe orienté acyclique (ou **DAG**) tel que :

- Les feuilles sont les clauses initiales
- les noeuds internes sont les clauses apprises
- La racine est la clause vide

Preuve en séquentiel

Figure 2 - Preuve en séquentiel

Informations

Formule

clauses :

55585

variables :

50076

Conflits

conflits :

59792

Temps calcul: 6s

Graphe

sommets:

51274

arêtes :

960620

Les solveurs SAT modernes parallèles

 Φ : l'ensemble des clauses initiales Σ : l'ensemble des clauses apprises.

Algorithm 2 Les solveurs SAT modernes

```
Tant que \square \not\in \Phi \cup \Sigma faire C \leftarrow apprendre Clause() \Sigma = \Sigma \cup C Si trop Plein(\Sigma) Alors \Delta = clauses A Effacer(\Sigma) \Sigma = \Sigma \backslash \Delta Fin Si Fin Tant que
```

Les solveurs SAT modernes parallèles

 Φ : l'ensemble des clauses initiales

 Σ : l'ensemble des clauses apprises.

Algorithm 3 Les solveurs SAT modernes parallèles

```
Tant que \square \not\in \Phi \cup \Sigma faire
   C = apprendreClause()
   \Sigma = \Sigma \cup C
   Exporter(C)
   \Sigma = \Sigma \cup importerClause()
   Si tropPlein(\Sigma) Alors
      \Delta = clauseAEffacer(\Sigma)
      \Sigma = \Sigma \backslash \Delta
   Fin Si
Fin Tant que
```

Problématique

Reprenons la même résolution que précédemment, mais observons le comportement lorsque l'on utilise deux solveurs.

- 1^{er} solveur
- 2^{eme} solveur

- 1^{er} solveur
- 2^{eme} solveur

Parallélisation idéale

Figure 3 – Représentation d'une parallélisation idéale.

Parallélisation en pratique

Figure 4 – Représentation d'une parallélisation en pratique.

Les questions

Les questions

- Comprendre le type de graphe construit
- Existe-t-il des limites aux méthodes de parallélisation actuelle?
- Avons-nous une clusterisation lors de la recherche?
- Privilégier une méthode d'exploration ou d'intensification?

Représentation abstraite de la preuve

Représentation

Représentons une preuve **non-parallèle** par le schéma suivant.

Figure 5 – Représentation abstraite de la preuve

Représentation abstraite de la preuve

Représentation

La preuve **parallèle** est-elle plus large mais moins profonde?

Figure 6 - Représentation abstraite de la preuve

⇒ Peut-être privilégier une méthode d'exploration.

Forme de la preuve

Représentation

La preuve **parallèle** est-elle moins large?

Figure 7 – Représentation abstraite de la preuve

⇒ Peut-être privilégier une méthode d'intensification.

Les expériences

Conditions d'expériences

Le solveur SAT

Nous avons utilisé une version modifiée de **Glucose**, un solveur SAT co-developpé au **LaBRI**.

Problèmes utilisés

Les calculs ont été lancés sur un ensemble de problèmes qui sont :

- représentatifs des différents problèmes SAT,
- de taille raisonnable,
- des problèmes industriels.

Taille de la preuve

Etat de l'art

On ne sait pas si une augmentation du nombre de solveurs implique une augmentation de la taille de la preuve.

Intêret

Les solveurs SAT peuvent être certifiés grâce à leurs preuves, donc une petite preuve peut être intéressante.

Représentation des preuves

Informations

```
Formule # clauses: 55585 # variables: 50076 Conflits # conflits: 59792 Temps calcul: 6s Graphe # sommets: 51274
```

arêtes : 960620

Figure 8 - Preuve en séquentiel

Représentation des preuves

Informations

```
Formule
# clauses :
55585
# variables :
50076
Conflits
conflits/solveur:
8339
# conflits
totaux :
133424
Graphe
# sommets :
63301
# arêtes :
1213688
```

Figure 9 - Preuve avec 16 coeurs

La coreness

Le k-core

Le **k-core** d'un graphe orienté est un sous-graphe orienté maximal dans lequel chaque sommet à un degré sortant d'au moins k.

La coreness d'un sommet est k si il appartient au k-core mais pas au k+1-core.

Utilité de la mesure

La *coreness* permet d'étudier la densité d'un graphe dans des zones locales.

Conclusion

Pistes d'études

- Comprendre et analyser le k-core de la preuve,
- Prédire le coreness de la preuve,
- Prédiction des clauses importantes,

Merci de votre attention.

Graphe de départ : 0-core

Légende

• Degré sortant dans le k-core

1-core

Légende

- Degré sortant
- Coreness du sommet

2-core

Légende

- Degré sortant
- Coreness du sommet

3-core

Légende

- Degré sortant
- Coreness du sommet

La coreness maximale de ce graphe est de 3.