

Enhancing charge transport in twodimensional inorganic-organic perovskites through fluorine substitution

Liz Stippell

PhD Candidate: University of Southern California

Dana and David Dornsife College of Letters, Arts and Sciences

Introduction and Background: Perovskites

The Search for Better Energy Materials: Two-Dimensional Perovskites

Question:an we impro

How can we improve the efficiency of 2D perovskites?

Answer:

Adjust the organic spacers to enhance charge transfer

Using Fluorine to Enhance Charge Transfer

Why the para-position?

Yan, G. Chemistry of Materials 2022, 34 (7), 3346-3356. Wang, Z. ACS Applied Materials & Interfaces 2022, 14 (6), 7917-7925.

Understanding Charge Transfer: Marcus Theory

Marcus rate \propto coupling (V_{kl})

Marcus rate \propto site energies⁻¹ $\left(\frac{1}{\lambda}\right)$

$$k_{Marcus} = \left(\frac{V_{kl}^{2}}{\hbar}\right) \sqrt{\frac{\pi}{\lambda k_{B}T}} exp\left(-\frac{(\Delta A + \lambda)^{2}}{4\lambda k_{B}T}\right) - - -$$

$$\lambda = \frac{\sigma^2}{2k_BT} \qquad \sigma = \langle (dE - \langle dE \rangle)^2 \rangle$$

$$\mu_{hopping} = \frac{eD}{k_B T} = \frac{ek_{Marcus}L^2}{k_B T}$$

Charge Carrier Hopping Mobility

Projection Diabatization Method (POD): Computing Nonadiabatic Couplings

Donor Energies

Acceptor Energies

Donor-Acceptor Couplings

Fluorine's Effects on Electronic Structure

Fluorinated

Fluorine's Effects on Marcus Rate: Nonadiabatic Coupling & Reorganization Energy

$$\lambda = \frac{\sigma^2}{2k_BT}$$
 $\sigma = \langle (dE - \langle dE \rangle)^2 \rangle$

HOMO ~ -2.5 eV

HOMO ~ -2.75

Putting the pieces together: charge transfer rates

Fluorine as a Structural Stabilizer

Average Displacement (Å)							
Pb	l	N	Н	С	F		Inorganic Crystals

Non-Fluorinated Fluorinated

Displacement decreases with addition of fluorine atoms

Results: Evidence of Hydrogen Bonding

Conclusions

Fluorine substitution enhances the PCE of the 2D perovskite **not** through coupling effects but through **reorganization energy and structural stabilization**.

	Organic Spacers	Inorganic Crystals
BZA	1.25	0.81
F-BZA	1.02	0.72

Acknowledgements

Collaborators:
Wei Li
Claudio Quarti
David Beljonne
Oleg Prezhdo