Supplementary Material of Meta-data Augmentation based Search Strategy through Generative Adversarial Network for AutoML Model Selection

1 Meta-features in MDASS

We collected a set of meta-features for each OpenML dataset, which are listed in 1. They are divided into five groups: simple, statistical, information-theoretic, complexity and landmarkers.

2 The hyperparameter optimization space in MDASS

We used 13 algorithms from scikit-learn. The hyperparameter optimization space of each algorithm is listed in Table 2.

3 Base learner setting for SAM

SAM uses average accuracy/RMSE on held-out training set using 10-fold cross-validation to determine which base learner is set from aforementioned learners. Figure 1 visualizes the process of base learner setting for accuracy-oriented metamodel. It presents the performance of base learners for each algorithm prediction in one of 10 hold-out-validation. Since accuracy-oriented meta-model is viewed as multi-output classification problem, we maximize the average accuracy of each base learner, and select the one with highest average accuracy for each algorithm selection. From Figure 1, we observe that the commonly used learner, KNN, is not the optimal for each algorithm selection consistently, e.g. KNN learner has the highest average accuracy on the prediction of passive aggressive algorithm while the penultimate lowest average accuracy on the prediction of linear SVM algorithm, so are the other learners. Therefore, it is greatly necessary to build appropriate learner for adapting different algorithm prediction to reach global optimal.

Similarly, we test the above different categories of learners for runtime-oriented meta-model. Since it is viewed as multi-output regression problem, we minimize the RMSE of each base learner, and select the one with lowest RMSE for each algorithm runtime prediction. Table 3 also shows the necessity of the SAM, since there exists no such thing as a universal learner outperforming other learners on all algorithm runtime prediction consistently. For example, the minimum RMSE of runtime prediction of Gaussian naive Bayes algorithm is 0.342 using Ridge learner, while decision tree algorithm is 0.874 using RF learner and SGD algorithm is 1.296 using SVR learner.

Table 1. The implemented meta-features in MDASS.

Category	No.	Meta-features
Category		number of instances
	$\frac{1}{2}$	log number of instances
	3	number of features
Simple Meta-features	4	log number of features
	5	dataset ratio
	6	log dataset ratio
	7	inverse dataset ratio
	8	inverse log dataset ratio
	9	number of classes
	10	number of outliers
	11	percent of outliers
	12	number of numerical features
	13	number of rategorical features
	14	ratio numerical to categorical
	15	ratio categorical to numerical
	16	kurtosis max
	17	kurtosis max kurtosis min
	18	kurtosis mini kurtosis mean
	19	kurtosis mean kurtosis std
	20	skewness max
	21	skewness max skewness min
	22	skewness min skewness mean
	23	skewness mean skewness std
	24	
	25	class probability min
	26	class probability max
Statistical Meta-features	26	class probability mean
		class probability std
	28 29	symbols min
		symbols max
	30	symbols mean
	31	symbols std
	32	symbols sum
	33	PCA 95%
	34	PCA kurtosis first pcn
	35	PCA skewness first pc
	36	correlation min
	37	correlation max
	38	correlation mean
	39	correlation std
	40	correlation of variation
Information Meta-features	41	class entropy
	42	noise signal ratio
Complexity Meta-feature	43	overlap volume
	44	landmarkerLDA
	45	landmarkerNaiveBayes
Landmarker Meta-features	46	landmarkerDecisionTree
Landmarker Weta-leatures	47	landmarkerRondomNode
	48	landmarkerDecisionNode
	49	landmarker1NN

Table 2. The algorithms and hyperparameter space

Algorithm Type	Hyperparameter names (values)			
	C: [0.03125, 100]			
	kernel: 'rbf', 'poly', 'sigmoid'			
	gamma: [3.0517578125e-5, 8]			
Kernel SVM	degree: $range(2, 6)$			
	coef0: [-1, 1]			
	tol: [1e-5, 1e-1]			
	shrinking: True, False			
	C: [0.03125, 32768]			
	penalty: 'l1', 'l2'			
Linear SVM	loss: 'hinge', 'squared_hinge'			
Linear SVIVI	multi_class: 'ovr'			
	tol: [1e-5, 1e-1]			
Gaussian naive Bayes				
	alpha: [1e-2, 100]			
Bernoulli naive Bayes	fit_prior: True, False			
KNN	n_neighbors: range(1, 100)			
	wights: 'uniform', 'distance'			
	p: range(1, 3)			
	$\frac{\text{max_depth: range}(1, 20)}{\text{max_depth: range}(1, 20)}$			
D 11 m	$\max_{\text{features: } [0.0, 1.0]}$			
	criterion: "gini", "entropy"			
Decision Tree	min_samples_leaf: range(1, 20)			
	min_samples_split: range(2, 20)			
	n_estimators: 100			
	criterion: "gini", "entropy"			
	$\max_{\text{features:}} [0.0, 1.0]$			
Random Forest	min_samples_leaf: range(1, 20)			
rtandom Forest	min_samples_split: range(1, 20)			
	bootstrap: True, False			
loss:	'hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron'			
1000.	alpha_sgd: [1e-7, 0.1]			
	11_ratio: [1e-9, 1]			
	penalty: 'l2','l1','elasticnet'			
	learning_rate: 'constant', 'optimal', 'invscaling'			
Adaboost	eta0: [1e-7, 1e-1]			
	tol: [1e-5, 1e-1]			
	average: [1,0]			
	power_t: [1e-5, 1]			
	epsion: [1e-5, 1e-1]			
	shrinkage_factor: [0, 1]			
	shrinkage: 'auto', 'manual'			
	n_components: range(1, max_features - 1)			
LDA	solver: 'svd', 'lsqr', 'eigen'			
	tol: [1e-5, 1e-1]			
QDA	reg_param: [0.0, 1.0]			
	C: [1e-5, 10]			
Passive Aggressive	loss: 'hinge', 'squared_hinge'			
	tol: [1e-5, 1e-1]			
	average: [1,0]			
	n_estimators: 100			
	criterion: "gini", "entropy"			
	$\max_{\text{depth: range}} (1, 20)$			
Extree Tree	$\max_{\text{features:}} [0.0, 1.0]$			
	min_samples_leaf: range(1, 20)			
	min_samples_split: range(2, 20)			
	bootstrap: True, False			

Fig. 1. The average accuracy of base learners for accuracy-oriented meta-model in one of 10 hold-out-validation

Table 3. The RMSE of base learners for runtime-oriented meta-model.

Algorithm Type	base learners			
Algorithm Type	Ridge	Kernel SVR	RF	
Kernel SVM	0.790	0.601	0.646	
Linear SVM	2.585	2.087	2.194	
Gaussian naive Bayes	0.342	0.372	0.348	
Bernoulli naive Bayes	0.275	0.258	0.257	
KNN	0.402	0.398	0.333	
Decision Tree	1.128	1.030	0.874	
Random Forest	0.637	0.669	0.526	
Adaboost	4.223	4.196	3.980	
$_{\mathrm{SGD}}$	1.710	1.296	1.305	
LDA	1.125	0.408	0.502	
QDA	1.316	0.606	0.502	
Passive Aggressive	0.781	0.498	0.490	
Extra Tree	0.220	0.229	0.233	