LABORATORY WORK №1 INTRODUCTION TO MODELLING

Objective

Familiarize yourself with the Simulink software environment and basic methods for modeling linear electrical circuits.

Theoretical information

A mathematical model of a linear electric circuit as a linear stationary system can be represented in the form of a scalar differential equation of the *nth* order (input-output model) or in the form of a system of *n* differential equations of the 1st order (input-state-output model).

The input-output model has the form

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1\dot{y} + a_0y = b_mu^{(m)} + b_{m-1}u^{(m-1)} + \dots + b_1\dot{u} + b_0u,$$
(1)

where y is the output variable, u is the input signal, n is the order of the system, m is the order of the derivative of the output variable, which explicitly depends on u ($m \le n$), a_j , b_j are constant coefficients.

Provided that $m \le n$, the input-state-output model can be represented as

$$\begin{cases} \dot{x}_{1} = \alpha_{11}x_{1} + \alpha_{12}x_{2} + \dots + \alpha_{1n}x_{n} + \beta_{1}u, \\ \dot{x}_{2} = \alpha_{21}x_{1} + \alpha_{22}x_{2} + \dots + \alpha_{2n}x_{n} + \beta_{2}u, \\ \dots \\ \dot{x}_{n} = \alpha_{n1}x_{1} + \alpha_{n2}x_{2} + \dots + \alpha_{nn}x_{n} + \beta_{n}u, \\ y = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n}, \end{cases}$$
(2)

where x_j are the coordinates of the state vector, α_{ij} and β_j are constant coefficients. System (2) can be represented in a compact vector-matrix form

Lab work task

- 1. In accordance with the task option (table 1), build a simulation circuit of a linear electrical circuit using the elements of the Simscape library Electrical (Simscape / Foundation Library / Electrical).
- 2. Write down all component equations for this circuit.
- 3. Write down all topological equations for this circuit.
- 4. Get the state-space model of the electric circuit with the given coordinates of the state vector (Table 2).

- 5. Carry out Simulink simulation of the circuit and the state-space model under the input actions indicated in Table 1 and zero initial conditions. The model must be compiled using integration, summation and amplification blocks.
- 6. Obtain "input-output" model for the given characteristics of the electrical circuit in the form of transfer functions.
- 7. Carry out Simulink simulation of the circuit and the resulting transfer functions under the input actions specified in Table 1 (source voltage waveform) and zero initial conditions. The duration of the observation interval is chosen independently.
- 8. Carry out the simulation of the circuit and the state-space model with zero input action and non-zero initial conditions specified in Table 2.

Report content

- 1. Equivalent circuit and simulation circuit of a linear electrical circuit.
- 2. Description of the procedure for obtaining models "input-output" (point 6 of the lab work task).
- 3. Simulation results (point 6 of the lab work task). Compare the graphs of transients of the simulation circuit and the "input-output" models.
- 4. Description of the procedure for obtaining the state-space model (point 4 of the lab work task).
- 5. Simulation results (points 7 and 8 of the lab work task). Compare the graphs of transients of the simulation circuit and the state-space models.
- 6. Conclusions.

Schemes

Table 1

			Circuit parameters		Source voltage waveform	
Option	Scheme	R ₁ , [Ohm]	R ₂ , [Ohm]		ω=50*2*π	
1	1	10	15	1	30	$e(t)=21$, $e(t)=E_m \sin(\omega t)$
2	2	5	50	2	80	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
3	1	15	20	5	35	$e(t)=5$, $e(t)=E_m\sin(\omega t)$
4	2	25	150	3	25	$e(t)=12$, $e(t)=E_m\sin(\omega t)$

5	3	25	35	10	20	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
6	1	12	15	20	10	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
7	2	20	1000	20	20	$e(t)=18$, $e(t)=E_m \sin(\omega t)$
8	1	15	25	3	10	$e(t) = 36$, $e(t) = E_m \sin(\omega t)$
9	2	50	100	300	20	$e(t) = 21$, $e(t) = E_m \sin(\omega t)$
10	3	10	200	15	30	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
11	1	8	15	15	15	$e(t)=5$, $e(t)=E_m\sin(\omega t)$
12	2	20	10	150	20	$e(t) = 20$, $e(t) = E_m \sin(\omega t)$
13	1	17	28	4	12	$e(t)=8$, $e(t)=E_m\sin(\omega t)$
14	2	40	30	30	120	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
15	3	15	150	15	45	$e(t) = 26$, $e(t) = E_m \sin(\omega t)$
16	1	20	80	100	100	$e(t)=14$, $e(t)=E_m \sin(\omega t)$
17	2	10	5	10	25	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
18	1	10	12	8	15	$e(t)=10$, $e(t)=E_m \sin(\omega t)$
19	2	60	20	20	60	$e(t)=5$, $e(t)=E_m\sin(\omega t)$
20	3	12	120	12	24	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
21	1	30	50	200	20	$e(t) = 20$, $e(t) = E_m \sin(\omega t)$
22	2	25	15	15	25	$e(t)=36$, $e(t)=E_m\sin(\omega t)$
23	1	20	80	8	15	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
24	2	50	25	25	60	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
25	3	15	15	1	30	$e(t)=6$, $e(t)=E_m\sin(\omega t)$
26	1	300	500	300	400	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
27	2	1	11	11	111	$e(t) = 22$, $e(t) = E_m \sin(\omega t)$
28	1	80	80	15	15	$e(t)=18$, $e(t)=E_m \sin(\omega t)$
29	2	70	110	250	25	$e(t)=30$, $e(t)=E_m\sin(\omega t)$
thirty	3	12	240	24	12	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
31	1	10	15	1	30	$e(t) = 21$, $e(t) = E_m \sin(\omega t)$
32	2	5	50	2	80	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
33	1	15	20	5	35	$e(t)=5$, $e(t)=E_m \sin(\omega t)$
34	2	25	150	3	25	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
35	3	25	35	10	20	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
36	1	12	15	20	10	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
37	2	20	1000	20	20	$e(t)=18$, $e(t)=E_m \sin(\omega t)$
38	1	15	25	3	10	$e(t)=36$, $e(t)=E_m\sin(\omega t)$

39	2	50	100	300	20	$e(t)=21, e(t)=E_m \sin(\omega t)$
40	3	10	200	15	30	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
41	1	8	15	15	15	$e(t)=5$, $e(t)=E_m\sin(\omega t)$
42	2	20	10	150	20	$e(t)=20$, $e(t)=E_m\sin(\omega t)$
43	1	17	28	4	12	$e(t)=8$, $e(t)=E_m \sin(\omega t)$
44	2	40	30	30	120	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
45	3	15	150	15	45	$e(t) = 26$, $e(t) = E_m \sin(\omega t)$
46	1	20	80	100	100	$e(t)=14$, $e(t)=E_m \sin(\omega t)$
47	2	10	5	10	25	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
48	1	10	12	8	15	$e(t)=10$, $e(t)=E_m \sin(\omega t)$
49	2	60	20	20	60	$e(t)=5$, $e(t)=E_m\sin(\omega t)$
50	3	12	120	12	24	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
51	1	30	50	200	20	$e(t)=20$, $e(t)=E_m\sin(\omega t)$
52	2	25	15	15	25	$e(t)=36$, $e(t)=E_m\sin(\omega t)$
53	1	20	80	8	15	$e(t)=48$, $e(t)=E_m \sin(\omega t)$
54	2	50	25	25	60	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
55	3	15	15	1	30	$e(t)=6$, $e(t)=E_m\sin(\omega t)$
56	1	300	500	300	400	$e(t)=12$, $e(t)=E_m\sin(\omega t)$
57	2	1	11	11	111	$e(t)=22$, $e(t)=E_m\sin(\omega t)$
58	1	80	80	15	15	$e(t)=18$, $e(t)=E_m\sin(\omega t)$
59	2	70	110	250	25	$e(t)=30$, $e(t)=E_m\sin(\omega t)$
60	3	12	240	24	12	$e(t)=50$, $e(t)=E_m\sin(\omega t)$
61	1	10	15	1	30	$e(t)=21$, $e(t)=E_m \sin(\omega t)$
62	2	5	50	2	80	$e(t)=24$, $e(t)=E_m \sin(\omega t)$
63	1	15	20	5	35	$e(t)=5$, $e(t)=E_m \sin(\omega t)$
64	2	25	150	3	25	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
65	3	25	35	10	20	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
66	1	12	15	20	10	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
67	2	20	1000	20	20	$e(t)=18$, $e(t)=E_m \sin(\omega t)$
68	1	15	25	3	10	$e(t)=36$, $e(t)=E_m \sin(\omega t)$
69	2	50	100	300	20	$e(t)=21, e(t)=E_m \sin(\omega t)$
70	3	10	200	15	30	$e(t)=48$, $e(t)=E_m \sin(\omega t)$
71	1	8	15	15	15	$e(t)=5$, $e(t)=E_m \sin(\omega t)$
72	2	20	10	150	20	$e(t)=20$, $e(t)=E_m\sin(\omega t)$

73	1	17	28	4	12	$e(t)=8$, $e(t)=E_m \sin(\omega t)$
74	2	40	30	30	120	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
75	3	15	150	15	45	$e(t)=26$, $e(t)=E_m \sin(\omega t)$
76	1	20	80	100	100	$e(t)=14$, $e(t)=E_m\sin(\omega t)$
77	2	10	5	10	25	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
78	1	10	12	8	15	$e(t)=10$, $e(t)=E_m\sin(\omega t)$
79	2	60	20	20	60	$e(t)=5$, $e(t)=E_m\sin(\omega t)$
80	3	12	120	12	24	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
81	1	30	50	200	20	$e(t) = 20$, $e(t) = E_m \sin(\omega t)$
82	2	25	15	15	25	$e(t)=36$, $e(t)=E_m\sin(\omega t)$
83	1	20	80	8	15	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
84	2	50	25	25	60	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
85	3	15	15	1	30	$e(t)=6$, $e(t)=E_m\sin(\omega t)$
86	1	300	500	300	400	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
87	2	1	11	11	111	$e(t)=22$, $e(t)=E_m\sin(\omega t)$
88	1	80	80	15	15	$e(t)=18$, $e(t)=E_m \sin(\omega t)$
89	2	70	110	250	25	$e(t)=30$, $e(t)=E_m\sin(\omega t)$
90	3	12	240	24	12	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
91	1	10	15	1	30	$e(t)=21$, $e(t)=E_m \sin(\omega t)$
92	2	5	50	2	80	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
93	1	15	20	5	35	$e(t)=5$, $e(t)=E_m \sin(\omega t)$
94	2	25	150	3	25	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
95	3	25	35	10	20	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
96	1	12	15	20	10	$e(t) = 24$, $e(t) = E_m \sin(\omega t)$
97	2	20	1000	20	20	$e(t)=18$, $e(t)=E_m \sin(\omega t)$
98	1	15	25	3	10	$e(t)=36$, $e(t)=E_m \sin(\omega t)$
99	2	50	100	300	20	$e(t)=21$, $e(t)=E_m\sin(\omega t)$
100	3	10	200	15	30	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
101	1	8	15	15	15	$e(t)=5$, $e(t)=E_m\sin(\omega t)$
102	2	20	10	150	20	$e(t)=20$, $e(t)=E_m\sin(\omega t)$
103	1	17	28	4	12	$e(t)=8$, $e(t)=E_m \sin(\omega t)$
104	2	40	30	30	120	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
105	3	15	150	15	45	$e(t) = 26$, $e(t) = E_m \sin(\omega t)$
106	1	20	80	100	100	$e(t)=14$, $e(t)=E_m \sin(\omega t)$

107	2	10	5	10	25	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
108	1	10	12	8	15	$e(t)=10$, $e(t)=E_m\sin(\omega t)$
109	2	60	20	20	60	$e(t)=5$, $e(t)=E_m\sin(\omega t)$
110	3	12	120	12	24	$e(t)=24$, $e(t)=E_m\sin(\omega t)$
111	1	30	50	200	20	$e(t)=20$, $e(t)=E_m\sin(\omega t)$
112	2	25	15	15	25	$e(t)=36$, $e(t)=E_m\sin(\omega t)$
113	1	20	80	8	15	$e(t) = 48$, $e(t) = E_m \sin(\omega t)$
114	2	50	25	25	60	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$
115	3	15	15	1	30	$e(t)=6$, $e(t)=E_m\sin(\omega t)$
116	1	300	500	300	400	$e(t)=12$, $e(t)=E_m \sin(\omega t)$
117	2	1	11	11	111	$e(t)=22$, $e(t)=E_m\sin(\omega t)$
118	1	80	80	15	15	$e(t)=18$, $e(t)=E_m \sin(\omega t)$
119	2	70	110	250	25	$e(t)=30$, $e(t)=E_m\sin(\omega t)$
120	3	12	240	24	12	$e(t) = 50$, $e(t) = E_m \sin(\omega t)$

Table 2

Ontion	Models "input-	State-space model			
Option	output"	State vector	Initial conditions		
1	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 0.5 & 10 \end{bmatrix}^T$		
2	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 10 \end{bmatrix}^T$		
3	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_L(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 4 \end{bmatrix}^T$		
4	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$		
5	$W_1(s) = \frac{I_2(s)}{E(s)},$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1.5 & 20 \end{bmatrix}^{T}$		

	$W_2(s) = \frac{U_c(s)}{E(s)}$		
6	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{C}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
7	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 0.7 & -5 \end{bmatrix}^T$
8	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 40 \end{bmatrix}^T$
9	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & -1 \end{bmatrix}^T$
10	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 10 & 20 \end{bmatrix}^T$
11	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
12	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_C(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^{T}$
13	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 8 & 5 \end{bmatrix}^T$
14	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 15 & 5 \end{bmatrix}^T$

15	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$
16	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 2.5 & -2.5 \end{bmatrix}^T$
17	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 14 \end{bmatrix}^T$
18	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_L(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 3 \end{bmatrix}^T$
19	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 8 & 5 \end{bmatrix}^T$
20	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$
21	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 15 & 5 \end{bmatrix}^T$
22	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_C(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$
23	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_L(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$
24	$W_1(s) = \frac{I_1(s)}{E(s)},$	$X = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 5 \end{bmatrix}^T$

	. ()		
	$W_2(s) = \frac{I_3(s)}{E(s)}$		
25	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$
26	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_C(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
27	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -3 & 1 \end{bmatrix}^T$
28	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$
29	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$X = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & -1 \end{bmatrix}^T$
thirty	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
31	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 0.5 & 10 \end{bmatrix}^T$
32	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 10 \end{bmatrix}^T$
33	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 4 \end{bmatrix}^T$

34	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
35	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1.5 & 20 \end{bmatrix}^T$
36	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
37	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 0.7 & -5 \end{bmatrix}^T$
38	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 40 \end{bmatrix}^T$
39	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & -1 \end{bmatrix}^T$
40	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 10 & 20 \end{bmatrix}^T$
41	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
42	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_C(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
43	$W_1(s) = \frac{l_2(s)}{E(s)},$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 8 & 5 \end{bmatrix}^T$

	()		
	$W_2(s) = \frac{U_L(s)}{E(s)}$		
44	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 15 & 5 \end{bmatrix}^T$
45	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$
46	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 2.5 & -2.5 \end{bmatrix}^T$
47	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 14 \end{bmatrix}^T$
48	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_L(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 3 \end{bmatrix}^T$
49	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 8 & 5 \end{bmatrix}^T$
50	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$
51	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 15 & 5 \end{bmatrix}^T$
52	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_C(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$

	T		
53	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$
54	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$X = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 5 \end{bmatrix}^T$
55	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$
56	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
57	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_C(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -3 & 1 \end{bmatrix}^T$
58	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_L(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$
59	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$X = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & -1 \end{bmatrix}^T$
60	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
61	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 0.5 & 10 \end{bmatrix}^T$
62	$W_1(s) = \frac{I_2(s)}{E(s)},$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 10 \end{bmatrix}^T$

	11 (c)		
	$W_2(s) = \frac{U_c(s)}{E(s)}$		
63	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 4 \end{bmatrix}^T$
64	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$x = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
65	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1.5 & 20 \end{bmatrix}^T$
66	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
67	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 0.7 & -5 \end{bmatrix}^T$
68	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_L(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 40 \end{bmatrix}^T$
69	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & -1 \end{bmatrix}^T$
70	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 10 & 20 \end{bmatrix}^T$
71	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$

72	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
73	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 8 & 5 \end{bmatrix}^T$
74	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$x = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 15 & 5 \end{bmatrix}^T$
75	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$
76	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 2.5 & -2.5 \end{bmatrix}^T$
77	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 14 \end{bmatrix}^T$
78	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_L(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 3 \end{bmatrix}^T$
79	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 8 & 5 \end{bmatrix}^T$
80	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$
81	$W_1(s) = \frac{I_2(s)}{E(s)},$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 15 & 5 \end{bmatrix}^T$

	$W_2(s) = \frac{U_c(s)}{E(s)}$		
82	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$
83	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$
84	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 5 \end{bmatrix}^T$
85	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$
86	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
87	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -3 & 1 \end{bmatrix}^T$
88	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$
89	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & -1 \end{bmatrix}^T$
90	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{C}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$

91	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 0.5 & 10 \end{bmatrix}^T$
92	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 10 \end{bmatrix}^T$
93	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 4 \end{bmatrix}^T$
94	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$x = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
95	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1.5 & 20 \end{bmatrix}^T$
96	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
97	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 0.7 & -5 \end{bmatrix}^T$
98	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 40 \end{bmatrix}^T$
99	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & -1 \end{bmatrix}^T$
100	$W_1(s) = \frac{l_2(s)}{E(s)},$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 10 & 20 \end{bmatrix}^T$

	$W_2(s) = \frac{U_c(s)}{E(s)}$		
101	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
102	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
103	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 8 & 5 \end{bmatrix}^T$
104	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$x = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 15 & 5 \end{bmatrix}^T$
105	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$
106	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 2.5 & -2.5 \end{bmatrix}^T$
107	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 14 \end{bmatrix}^T$
108	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 2 & 3 \end{bmatrix}^T$
109	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 8 & 5 \end{bmatrix}^T$

110	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$
111	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 15 & 5 \end{bmatrix}^T$
112	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$
113	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$
114	$W_1(s) = \frac{I_1(s)}{E(s)},$ $W_2(s) = \frac{I_3(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 5 \end{bmatrix}^T$
115	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$
116	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_c(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} -1 & -6 \end{bmatrix}^T$
117	$W_1(s) = \frac{I_2(s)}{E(s)},$ $W_2(s) = \frac{U_C(s)}{E(s)}$	$x = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$X = \begin{bmatrix} -3 & 1 \end{bmatrix}^T$
118	$W_{1}(s) = \frac{l_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{L}(s)}{E(s)}$	$X = \begin{bmatrix} i_2 & U_L \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$
119	$W_1(s) = \frac{I_1(s)}{E(s)},$	$\mathbf{x} = \begin{bmatrix} i_1 & i_3 \end{bmatrix}^T$	$x = \begin{bmatrix} 3 & -1 \end{bmatrix}^T$

	$W_2(s) = \frac{I_3(s)}{E(s)}$		
120	$W_{1}(s) = \frac{I_{2}(s)}{E(s)},$ $W_{2}(s) = \frac{U_{c}(s)}{E(s)}$	$\mathbf{x} = \begin{bmatrix} i_2 & U_C \end{bmatrix}^T$	$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$