

RECENTION RESIDENCE ARISE MORKSHOP

What is Machine Learning?

Field of study that gives the computers the ability to learn without being explicitly programmed

or in layman terms

"Making machines intelligent"

MILESTONES IN MACHINE LEARNING

ALPHA GO:

- Go is an ancient Chinese game which originated more than 2500 years ago
- There are more possible positions in Go than there are atoms in the universe!!!
- Go is played primarily through intuition unlike chess which is played by logic

ML ML EVERYWHERE!!!

- Google, Facebook and Microsoft and many other tech giants are researching on ML
- ML have a widespread applications
 - Medical applications such as Classification of EMG signals,
 Detecting malignant tumours,...
 - Signal Processing applications such as speech recognition, machine translation, Face Recognition
 - Robotic applications
 - Data Analytics
 - and many more ...

The ML Process

Establishing model accuracy

TYPES OF ML

SUPERVISED LEARNING

Types of Supervised learning

What do we mean by learning?

Learning = Minimizing a function

Regression

Regression

Unsupervised Learning

Unsupervised Learning

Unsupervised Learning

NEURAL NETWORKS(SUPERVISED)

Copying from Nature -- Nothing New, Really !!!

Basic Building block :: A Neuron

Neuron, Perceptron and MLP

E.g. Sigmoid Astivation Function

Loss or Objective

Objective: Find out the best parameters which will minimizes the loss.

$$W^* = arg \min_{W} \sum_{i=1}^{N} L(x_i^n, y_i; W)$$
 Weight Vector

$$z_i = \frac{1}{2} \parallel x_i^n - y_i \parallel_2^2$$

E.g. Squared Loss

HOW DO NEURAL NETWORKS LEARN

Gradient Descent

Workhorse for modern Deep Neural Networks!

Gradient descent

Let θ be the parameters (a,b) and let $J(\theta)$ be the cost function.

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

ŀ

Learning rate

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Gradient descent procedure

- Choose high learning rate and perform GD
- If learning diverges, divide learning rate by 10
- Perform GD

Other methods to select learning rate also exist

LET'S SEE AN EXAMPLE

Image Understanding

Caption: "Two

pizzas sitting

on top of a stove top oven"

Caption:

"A group of people shopping at an outdoor market."

Image Understanding

DAQUAR

Q: What is the object close to the wall?

A: whiteboard

Q: What is the object in front of the sofa?

A: table

DAQUAR

Q: What is the largest object?

A: sofa

Q: How many windows are there?

A: 2

Impact in many vision tasks ..

Human

Semantic

Face Recognition

Classification:Alex Net

Basic Approach

Face Verification

Same YES person?

C = l

$$X_2$$

$$l \in L = \{l_1 = "YES", l_2 = "NO"\}$$

To predict if the two input images $X_1 \& X_2$ are of same person Goal: or not.

Challenge: Variation in Lighting, occlusion, pose, expression, multiple faces. Different people in and test set.

ADVANCED NEURAL NETWORKS

- CONVOLUTIONAL NEURAL NETWORKS
- RECURRENT NEURAL NETWORKS
- GENERATIVE ADVERSERIAL NETWORKS

ML RESOURCES

- Coursera Machine learning Courses by Andrew ng
- http://neuralnetworksanddeeplearning.com/
 - Online book by Michael Nielsen
- http://cs231n.github.io/
 - Courses by Stanford University