referacik

dupa chuj

kurwa szmata

21.37

TENSORY chuje małe

k-tensor to funkcja k-liniowa $T:V^k\to\mathbb{R}$ dla V - przestrzeni liniowej nad \mathbb{R} . Zbiór wszystkich k-tensorów oznaczamy $\mathscr{T}^k(V)$ i wymagamy, żeby to była przestrzeń liniowa (dodawanie, mnożenie przez skalary ma śmigać)

Iloczyn tensorowy dla $S \in \mathcal{T}^j(V)$ oraz $T \in \mathcal{T}^k(V)$ to $S \otimes T \in \mathcal{T}^{j+k}(V)$ idefiniujemy go:

$$(S \otimes T)(v_1,...,v_{k+i}) = S(v_1,...,v_i) \cdot T(v_{i+1},...,v_{k+i}),$$

bo przecież S i T to tak naprawdę skalary, więc sprowadza się to do mnożenia skalarów, tylko musimy zmienić dziedzinę żeby śmigało :v

Jeśli $e_1,...,e_d$ jest bazą V, a $\phi_1,...,\phi_d$ jest jej bazą dualną, to zbiór wszystkich iloczynów tensorowych k elementów bazy dualnej jest **bazą przestrzeni** $\mathscr{T}^k(V)$.

Dla odzworowania liniowego f : V \to W definiujemy odwzorowanie liniowe f* : $\mathscr{T}^k(W) \to \mathscr{T}^k(V)$ jako

$$(f^*T)(v_1,...,v_k) = T(f(v_1),...,f(v_k))$$

Większe chuje, czyli TENSORY ALTERNUJĄCE

Tensor alternujący ω to taki, że dla dowolnego $\sigma \in S_k$ mamy

$$\omega(\mathsf{v}_{\sigma(1)},...,\mathsf{v}_{\sigma(k)}) = (\mathsf{sgn}(\sigma))\omega(\mathsf{v}_1,...,\mathsf{v}_k)$$

Przestrzeń liniową tensorów alternujących oznaczamy $\Omega^{k}(V)$

 $\text{Przekształcenie Alt}: \mathscr{T}^k(V) \to \Omega^k(V) \text{ definiowane Alt}(T)(v_1,...,v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} (\text{sgn}(\sigma)) T(v_{\sigma(1)},...,v_{\sigma(k)}) \text{ jest liniowe.}$

lloczyn zewnętrzny tensorów alternujących jest definiowany dla $\omega \in \Omega^k(V)$ i $\eta \in \Omega^j(V)$ jako

$$\omega \wedge \eta = \frac{(\mathsf{k} + 1)!}{\mathsf{k}! i!} \mathsf{Alt}(\omega \otimes \eta) \in \Omega^{\mathsf{k} + \mathsf{j}}(\mathsf{V})$$

Zbiór wszystkich k-krotnych iloczynów zewnętrznych ϕ_i jest **bazą przestrzeni** $\Omega^k(V)$.

Formalne chuje POLA I FORMY

Przestrzeń styczna w punkcie $p \in \mathbb{R}^d$ jest definiowana jako

$$T_p \mathbb{R}^d = \mathbb{R}_p^d := \{(p, v) : p, v \mathbb{R}^d\}$$