Nomenclature

A. Sets		
С	Set of costumers	
Н	Set of hours of the day	
N	Set of all nodes	
S	Set of scenarios	
B. Index		
h	Hour index	
i	Origin node index	
j	Destination node index	
S	Scenario index	
q	Charging station node index	
C. Parameters		
α	Net present value	
δ	Energy consumption/distance	
ϕ	Interest rate	
λ	Penalty weight for electric vehicle operating time	
η^c	Battery charging efficiency	
η^d	Battery discharging efficiency	
η^{CH}	Electric vehicle charging efficiency	
η^{dE}	Electric vehicle discharging efficiency	
$\pi_{\scriptscriptstyle S}$	Probability of each scenario s	
$ar{ au}$	Maximum operating time of electric vehicle	
ω	Battery percentage at the start and end of the day	
c_b	Cost of a battery unit	
c_d	Cost of traveling unit distance	
c_p	Cost of photovoltaic panel unit	
c_{fuel}	Average fuel cost	
C^f	Average fuel consumption	
d_{ij}	Distance between nodes i and j	
$E^{BAT,nom}$	Nominal battery power	
f	Emission of carbon dioxide factor	
N ^{years}	Number of years of electric vehicle battery useful life	
N^{days}	Number of working days in the year	
$P^{BAT,nom}$	Nominal power of each battery	

\overline{P}^{EV}	Maximum charging power of electric vehicle	
SOC_0	Electric vehicle initial state of charge	
\overline{SOC}	Maximum state of charge of the electric vehicle	
<u>SOC</u>	Minimum state of charge of the electric vehicle	
t^{dep}	Departure time from the depot	
v	Constant speed of the electric vehicle	
D. Variables		
eta_h	Binary variable that is active if the vehicle arrives at the station at the hour h and	
	0 otherwise.	
ε	Emissions of carbon dioxide	
γ_{hs}	Binary variable that is 1 if the electric vehicle is at the charging station at the hour	
	h and 0 otherwise, at scenario s	
Δ_{ij}	Continuous variable for linearization of the calculation of the state of charge of	
	the electric vehicle between nodes i and j	
Δ_{ij}^t	Continuous variable for linearizing the calculation of electric vehicle travel time	
	between nodes i and j	
$ au_s^{CH}$	Electric vehicle charging time in scenario s	
E_{hs}^{BAT}	Battery energy in h at scenario s	
E_{fuel}	Expense fuel	
$P_{hs}^{BAT,c}$	Battery charge power in h at scenario s	
$P_{hs}^{BAT,d}$	Battery discharge power in h at scenario s	
P_{hs}^{EV}	Electric vehicle charge power in h at scenario s	
SOC_j	Electric vehicle state of charge at node <i>j</i>	
t_j	Electric vehicle arrival time at node <i>j</i>	
U_i	Auxiliary integer variable to eliminate subroutes	
x_{ij}	Binary variable of the state of arc ij : 1 if it is traveled and 0 otherwise	
у	Integer variable of the number of batteries of the sizing	
Z	Integer variable of the number of panels of the sizing	