ALGORYTMY I STRUKTURY DANYCH

IIUWr. II rok informatyki

1. (0,5pkt) Rozwiąż z dokładnością do Θ następującą rekurencję:

$$T(n) = \left\{ \begin{array}{cc} 1 & \text{dla } n = 1 \\ 2T(n/2) + n/\log n & \text{dla } n > 1 \end{array} \right.$$

- 2. (1,5pkt) Mówimy, że tablica A[1..n] ma $element\ większościowy$, jeśli więcej niż połowa jej elementów ma tę samą wartość. Ułóż algorytm, który sprawdza, czy dana tablica ma element większościowy i jeśli tak jest, wyznacza jego wartość. Załóż, że na elementach można wykonywać jedynie porównania typu "czy A[i] = A[j]?" i koszt każdego takiego porównania jest stały, natomiast nie można wykonywać porówań typu "A[i] < A[j]?". Rozważ dwie strategie Dziel i Zwyciężaj, zaczynające się od:
 - (a) Podziel A na dwie "połowy"...
 - (b) Pogrupuj elementy z A w pary. Pórównaj elementy w każdej parze. Jeśli są różne, usuń tę parę z tablicy, jeśli są równe - usuń jeden z nich a drugi pozostaw ...
- 3. (2pkt) Dana jest tablica liczbowa A[1..n] i zbiór S par indeksów $(p_1, k_1), \ldots, (p_r, k_r)$. Ułóż algorytm, odpowiadający na pytania o największy wspólny dzielnik liczb $\{A[p_i], \ldots, A[k_i]\}$, dla $i=1,\ldots,r$, oparty na następującej strategii Dziel i Zwyciężaj:
 - ciag zapytań dzielimy na trzy podzbiory:
 - $-S_M = \{(p,k) \in S : p \le n/2 \le k\}$

 - $-S_L = \{(p, k) \in S : p \le k < n/2\}$ $S_R = \{(p, k) \in S : n/2$
 - odpowiadamy na pytania z S_M ,
 - rekurencyjnie wykonujemy algorytm dla zbiorów S_L i S_R .
- 4. (2pkt) Danych jest n prostych $l_1, l_2, \ldots l_n$ na płaszczyźnie ($l_i = a_i x + b_i$), takich że żadne trzy proste nie przecinają się w jednym punkcie. Mówimy, że prosta l_i jest widoczna z punktu p jeśli istnieje punkt q na prostej l_i , taki że odcinek \overline{pq} nie ma wspólnych punktów z żadną inną prostą $l_j \ (j \neq i)$ poza (być może) punktami p i q.

Ułóż algorytm znajdujący wszystkie proste widoczne z punktu $(0,+\infty)$.

- 5. (2pkt) Zaproponuj modyfikację algorytmu Karatsuby, która oblicza kwadrat danej liczby. Rozważ podział liczby na k części:
 - dla k=2,
 - dla k=3.

Postaraj się, by stałe używane przez algorytm były jak najmniejsze.

Czy dla ustalonego k można otrzymać algorytm podnoszenia do kwadratu, który jest asymptotycznie szybszy od algorytmu mnożenia?

- 6. (1,5pkt) Dane jest drzewo binarne (możesz założyć dla prostoty, że jest to pełne drzewo binarne), którego każdy wierzchołek v_i skrywa pewną liczbę rzeczywistą x_i . Zakładamy, że wartości skrywane w wierzchołkach są różne. Mówimy, że wierzchołek v jest minimum lokalnym, jeśli wartość skrywana w nim jest mniejsza od wartości skrywanych w jego sąsiadach.
 - Ułóż algorytm znajdujący lokalne minimum odkrywając jak najmniej skrywanych wartości.

- 7. Dane jest nieukorzenione drzewo z naturalnymi wagami na krawędziach oraz liczba naturalna ${\cal C}$
 - (a) (2pkt) Ułóż algorytm obliczający, ile jest par wierzchołków odległych od siebie o C.
 - (b) (\mathbb{Z} 2,5pkt) Jak w punkcie (a), ale algorytm ma działać w czasie $O(n \log n)$.

UWAGA: Można zadeklarować tylko jeden z punktów (a), (b).

- 8. (1pkt) Inwersjq w ciągu $A = a_1, \ldots, a_n$ nazywamy parę indeksów $1 \le i < j \le n$, taką że $a_i > a_j$. Pokaż jak można obliczyć liczbę inwersji w A podczas sortowania przez scalanie.
- 9. (2pkt) Niech P_n będzie zbiorem przesunięć cyklicznych ciągu n-elementowego o potęgi liczby 2 nie większe od n. Pokaż konstrukcję sieci przełączników realizujących przesunięcia ze zbioru P_n . Uwagi:
 - \bullet Możesz założyć, że n jest potęgą dwójki albo szczególną potęgą dwójki, albo . . .
 - Sieć Beneša-Waksmana jest dobrym rozwiązaniem wartym Opkt (tzn. nic niewartym).
- 10. (**Z** 2pkt) Dekompozycją centroidową nazywamy następujący proces: dla danego drzewa <math>T na n wierzchołkach znajdź wierzchołek $u \in T$ taki, że każda spójna składowa $T \setminus \{u\}$ ma rozmiar co najwyżej n/2, a następnie powtórz rozumowanie w każdej z tych spójnych składowych (o ile zawierają więcej niż jeden wierzchołek). Taka dekompozycja może być w naturalny sposób reprezentowana jako drzewo T' na n wierzchołkach, którego korzeniem jest u. Naiwna implementacja powyższej procedury działa w czasie $O(n \log n)$. Ułóż algorytm, który konstruuje T' w czasie O(n).