1 Integrals Yielding the Natural Logarithmic Function

Date: Term 1, Fall '23

Notes: A.L. Maagma

DEFINITION. Since the natural logarithm is undefined for negative numbers, you will often encounter expressions of the form $\ln |u|$. Hence, for derivatives involving absolute values, if u is a differentiable function of x such that $u \neq 0$, then

$$\frac{d}{dx}[\ln|u|] = \frac{u'}{u}$$

EXAMPLE 1.0.0. Evaluate the equation $\int \frac{1}{u} du$.

$$= \ln |u| + C$$

DEFINITION. For any rational number $n \neq -1$,

$$\int u^n \, du = \frac{u^{n+1}}{n+1} + C$$

However, for any rational number n = -1,

$$\int u^n \, du = \ln|u| + C$$

EXAMPLE 1.0.1. Evaluate the equation $\int \frac{2}{x} dx$.

EXAMPLE 1.0.2. Evaluate the equation $\int \frac{dx}{4x-1}$.

EXAMPLE 1.0.3. Find the area of the region on the x-axis and the line x = 3, bounded by the graph of

$$y = \frac{x}{x^2 + 1}$$

EXAMPLE 1.0.4. Evaluate the equation $\int \frac{x+1}{x^2+2x} dx$.

EXAMPLE 1.0.5. Evaluate the equation $\int \frac{\sec^2 x}{\tan x} dx$.

EXAMPLE 1.0.6. Evaluate the equation $\int \frac{\ln x}{x} dx$.

NOTE. The integrals to which this formula or rules can be applied may appear in disguised form. For instance, when a rational function has a numerator of degree greater than or equal to that of the denominator, division may reveal a form to which you can apply the rule.

EXAMPLE 1.0.7. Evaluate the equation $\int \frac{x^2+x+1}{x^2+1} dx$.

EXAMPLE 1.0.8. Evaluate the equation $\int_0^2 \frac{x^2+2}{x+1} dx$.

2 Integrals Involving Logarithmic Functions

EXAMPLE 2.0.1. Evaluate the equation $\int \frac{\log_{10} x}{x}$.

EXAMPLE 2.0.2. Evaluate the equation $\int \frac{(\log_3 x)^2}{x}$.

3 Integral of Trigonometric Functions

EXAMPLE 3.0.1. Evaluate the equation $\int \tan x \, dx$.

$$= -\int \frac{-\sin x}{\cos x} dx$$

$$= -\int \frac{du}{u}$$

$$= -\ln |u| + C$$

$$= -\ln |\cos x| + C$$

$$= \ln |(\cos x)^{-1}| + C$$

$$= \ln |\sec x| + C$$

EXAMPLE 3.0.2. Evaluate the equation $\int \cot x \, dx$.

$$= \int \frac{\cos x}{\sin x} dx \qquad u = \sin x$$

$$= \int \frac{du}{u} \qquad du = \cos x dx$$

$$= \ln|u| + C$$

$$= \ln|\sin x| + C$$