EUROPEAN PATENT OFFICE

1

Patent Abstracts of Japan

PUBLICATION NUMBER

08225462

PUBLICATION DATE

03-09-96

APPLICATION DATE

30-11-95

Ala Pro Met Ala Giu Gly Gly Gly Gln Asn His His Glu Val Val Lys 10

APPLICATION NUMBER

07312562

Phe Met Asp Val Tyr Gin Arg Ser Tyr Cys His Pre Hic Giu Thr Leu

25

APPLICANT: TOAGOSEI CO LTD;

Val Asp lic Phe Gin Giu Tyr Pro Asp Glu ile Giu Tyr lie Phe Lys

40

INVENTOR: MATSUMOTO TOMOE;

Pro Ser Cys Val Pro Leu Met Arg Cys Gly Cly Cys Cys Asn Asp Glu

55

Gly Leu Glu Cys Val Pro Thr Glu Glu Ser Asn Ile Thr Mei Gla He 75

A61K 39/00 A61K 38/22 A61K 38/22 A61K 38/22 A61K 38/22 // C07K 14/485 70

C07K 14/515

Met Arg Ile Lys Pro His Gln Gly Gln His Ile Gly Glu Met Ser Phe 90

Leu Gln His Asn Lys Cys Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg

1.00

115

105

TITLE

INT.CL.

VACCINE

Gln Glu Asn Pro Cys Gly Pro Cys Ser

ABSTRACT: PURPOSE: To provide a vaccine which contains a cell growth factor having cell growth activity specific to vascular endothelial cells and is useful in prophylaxis and remedy to diseases caused by neo-vascularization, particularly showing prophylactic and remedial effect on cancer occurrence.

> CONSTITUTION: This vaccine has a cell growth factor having a cell growth actively specific to vascular endothelial cells or a fragment thereof. As the cell growth factor described above, are cited preferably vascular endothelial cell growth factor/vascular permeation factor (VEGF/VPF). This vaccine is prepared, for example, by using as an adjuvant the Freund's complete adjuvant to the human VEGF/VPF 121 having the amino acid sequence shown in the formula, expressed in insect cells using Baculovirus vector.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許山願公開番号

特開平8-225462

(43)公開日 平成8年(1996)9月3日

(51) Int.Cl. ⁶	識別記号 广	下内整理番号	FI			技術表示箇所
A 6 1 K 39/00	ADU		A 6 1 K	39/00	ADUH	
38/22	ABG 85	517-4H	C 0 7 K	14/485		
	ABL 85	517-41·I		14/515		
	ABN		A 6 1 K	37/24	ABG	
	ABX				ABL	
		審查請求	未請求 請求	でである。 C) L (全 7 頁)	最終頁に続く
(21)出願番号	特願平7-312562		(71)出願。			
				東亞合成村		· I
(22)出願日	平成7年(1995)11月30)日			区四新橋1丁目14	番1号
			(72)発明和			
(31)優先権主張番号	特願平6-298718				喬区成増3-37-	1 - 202
(32)優先日	平6(1994)12月1日		(72)発明			
(33)優先権主張国	日本(JP)			茨城県つ	くば市大久保2番	東亞合成株式
				会社つく	ば研究所内	
			(72)発明	哲 松本 友原	恵	
				茨城県つ	くば市大久保2番	東亞合成株式
				会社つく	ば研究所内	
			(74)代理。	人 弁理士 5	平木 祐輔 (外	1名)

(54) 【発明の名称】 ワクチン

(57)【要約】

【構成】 血管内皮細胞に対する特異的細胞増殖促進活性を有する細胞増殖因子又はその断片を含む血管新生に起因する疾患の治療もしくは予防用ワクチン。

【効果】 本発明のワクチンは、血管新生に起因する疾 患の発症抑止効果並びに治療効果を個体に付与すること ができる。

【特許請求の範囲】

【請求項1】 血管内皮細胞に対する特異的細胞増殖促進活性を有する細胞増殖因子又はその断片を含む血管新生に起因する疾患の治療もしくは予防用ワクチン。

【請求項2】 細胞増殖因子が血管内皮細胞増殖因子である請求項1記載のワクチン。

【請求項3】 血管新生に起因する疾患が癌である請求項1又は2記載のワクチン。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、血管新生に起因する疾患に対するワクチン、特には癌ワクチンに関わるものであり、より詳しくは血管内皮細胞に対する特異的細胞増殖促進活性を有する細胞増殖因子、特には血管内皮細胞増殖因子を主要抗原成分とした免疫療法剤に関わるものであり、固形癌を初めとする各種疾患の治療、発症(再発を含む)抑止等の目的に使用されるものである。【0002】

【従来の技術】高等動物においては、抗原と称される物質が生体内に入り込んできた場合に抗体と呼ばれる物質 20 を生成する能力が備わっていることが知られている。この目的は自己に害を及ぼす恐れのある物質又は生物、即ち抗原から生体を保護することにある。これは侵入した抗原を特異的に認識し、その抗原を分解、中和、不活性化することによって生体を保護しようとするものである。

【0003】近年の免疫学の著しい進歩によって、侵入してきたあらゆる種類の抗原に対していかに巧妙に特異抗体が生成され、種々の免疫担当細胞が動員され、目的を達するのか、といういわゆる免疫応答の仕組みが次々 30 に明らかにされてきており、その仕組みの巧妙さ及び複雑さには目を見張る物がある。それらについては、例えば、「免疫学」(小山次郎、大沢利昭編集、南江堂発行)等に詳細に説明されている。

【0004】免疫応答機構の最も驚嘆すべき点の一つに、一度侵入した抗原を記憶し、再度同じ抗原が侵入した場合に極めて迅速、有効に免疫応答を誘起するという性質がある。この性質を利用したもので、すでに人類の福祉に貢献している技術がワクチン又は予防接種と呼ばれるものである。旧来、ヒトは一度感染した疫病には二 40度かかりにくいということが経験的に認知されていたが、これを医療行為に役立てたジェンナーの種痘は、あまりにも有名な出来事である。

【0005】以降ワクチン接種、予防接種は様々な応用をみることになり、予防医学上極めて有効な手だてとして現在も広く行われている。この技術は、不活性化した感染性生物又は感染性生物の構成物質の一部を予めヒトに接種し擬似感染を成立させることによって、本当の感染時に生体内に記憶された免疫応答を有効に引き出し感染症に対する耐性を発揮させるというものである。

【0006】以上述べてきたようにワクチン技術は感染 症分野での極めて有効な手法として発達してきている。 さらに近年の研究の成果により、免疫応答機構は生体内 に生ずる各種新生物生成疾患即ち癌の発症に於いても重要な役割を担っているのではないかと考えられるように なってきた。即ちある種の免疫担当細胞は常に生体の全ての細胞と物体とを監視し非自己と判断された細胞を排除する機能を担っており、形質転換を起こした細胞即ち 腫瘍細胞の発生もこれら監視機構によって常時チェック されており、発生した腫瘍細胞の多くは悪性な癌となる 以前に排除されているのではないかという考えがあり、この機構は癌細胞を傷害するキラーT細胞はじめ単核食 細胞マクロファージ、好中球、NK細胞などが司る主に 細胞性免疫と呼ばれるしくみによって成り立っていることが明らかとなってきた。

【0007】これらの知見からさらに一歩進めて癌免疫を積極的に治療に応用しようという癌免疫療法という考えが提唱されるに至った。その中身としては、上に述べた感染症に対するワクチンと原理的に共通な能動免疫療法、即ち不活化させた癌細胞やその成分を接種することによって抗癌効果を引き出そうというものや、免疫賦活療法、即ち免疫応答機構そのものを非特異的に活性化させて抗癌免疫効果を高めよう、といったものがあげられる。

【0008】ここに述べたような癌抗原と免疫機構を応用した癌免疫療法は癌治療の新しい試みとして研究されているが、多くの場合癌抗原は各々の癌細胞に特有のものであることや必ずしも全ての癌の系で発現しているとは限らない点、さらには感染症に対する免疫反応のような強い効果が得られないことや、癌細胞自体が癌免疫の成立を逃れる機構を有している場合があることなどの問題点を有しており、一般的な療法としての有用性は今後の進展を待たねば結論できないものである。

【0009】腫瘍の治療法として現在広く用いられているものの多くは、化学療法であれ、放射線療法であれ上述の癌免疫療法であれ腫瘍細胞そのものをターゲットとしたものがほとんどである。薬剤の投与による腫瘍に対する選択的攻撃は、腫瘍細胞が他の正常な細胞に比べてはるかに活発に分裂、増殖を繰り返しているという性状に依るところが大きい。即ち細胞の増殖機構そのものを破棄、ないしは阻害することによって標的細胞を殺すという目的を達成するものである。

【0010】一方、固形腫瘍の増殖を抑制する方法に、その栄養ならびに酸素の供給源を断つ、いわゆる兵糧資めのアイディアが提唱されてきた。即ち腫瘍細胞そのものを攻撃することなく、栄養や酸素の枯渇状態におとしいれ、結果として腫瘍の増殖抑止、そして退縮という治療効果をあげるというものである。この手法の具体的な標的として、腫瘍に到達している血管があげられる。

【0011】一般に細胞が悪性転化し癌細胞が発生した

としても、その増殖は初期においては非常にゆっくりし たものであると言われている。報告によると発生した腫 瘍は血管の到達無しには直径2㎜以上には増殖しないと さえ言われている (M. A. Gimbrone et al., J. Exp. M ed. 136, 261, 1972)。ところがこの病変部位にひとた び血管が到達すると、無尽蔵な栄養と酸素の供給を得た 腫瘍は爆発的に増殖を開始するのみならず、その血管を 介して遠隔転移なども起こすことになる。このことが血 管新生は腫瘍の進行、転移と切っても切れない関係にあ ると言われる由縁である。癌細胞が発生するとそれに向 10 かって周囲の血管から新たに分岐した新生血管が癌細胞 に向かって遊走することが観察されており、この現象か ら癌細胞は血管の新生、遊走を誘起するなんらかの因子 を出しているのではないかと考えられるようになり、癌 血管新生因子 (Tumor Angiogenesis Factor:TAF)の存在 が提唱されてきた (J. Folkman, Cancer Research 46, 467, 1986).

【0012】一方、血管の新生を誘起する、あるいは血 管の構成細胞である血管内皮細胞の増殖を促進させる物 質として、酸性線維芽細胞増殖因子 (acidic fibroblas t growth factor:aFGF), 塩基性線維芽細胞增殖因子 (ba sic fibroblast growth factor:bFGF), 上皮增殖因子(Epidermal growth factor :EGF), 血小板由来内皮細胞增 殖因子(platalet-drived endothelial cell growth fac tor:PD-BCGF),血管内皮細胞增殖因子/血管透過性因子 (vascular endothelial cell growth factor/vascular permeability:VEGF/VPF),胎盤由来增殖因子(Plaseuta growth factor:PIGF)等多くの物質が報告されているが (reviwed R. Bicknell and A.L. Harris, Eur. J. Cance r 27, 6, 781, 1991)、これらのどの物質がどの様な機 作で前述のTAFの作用を担っているのかは判ってはな い。本発明者らは、これら因子の中でVEGF/VPFが細胞外 分泌に係わるシグナルペプチドを有すること、ならびに テストしたほとんど全ての癌細胞で発現が見られること に注目し、VEGF/VPFが腫瘍血管新生になんらかの係わり が有るのではないかという仮説をたて研究を行った。そ の結果VEGF/VPFの作用は腫瘍細胞そのものに対してでは なく血管内皮細胞特異的に発揮され、生体内では血管の 新生を促すことがわかった。さらにはこのVEGF/VPFの作 用を抗VEGF/VPFポリクローナル抗体で抑制することによ 40 って生体内での腫瘍の増殖を抑えることが出来ることを 見いだした(S. Kondo et al., Biochemical and Biophy sical Research Communications 194, 1234, 1993). 又、それに先だって米国のKimらは、抗VEGF/VPF中和モ ノクローナル抗体によって生体内での腫瘍の増殖を抑制 することができることを示した(K. J. Kim et al., Na ture362, 841, 1993)。これらの結果はVEGP/VPFと特異 的に結合しその働きを妨害する、いわゆる液性免疫成分 である抗体を生体内に投与する事によって腫瘍の増殖を 抑制できることを示したものである。

【0013】そこで本発明者らは、ウサギやマウスを免疫する事によって得た抗VEGF/VPF抗体を他の個体に投与することによって抗腫瘍性が得られるのであれば、腫瘍を発生する個体そのものの免疫系をVEGF/VPFを抗原として刺激することによって、当該個体由来の抗VEGP/VPF抗体を生成させ、結果として当該個体に抗腫瘍性を付与できるのではないかと考え研究を行ったのである。

[0014]

【発明が解決しようとする課題】即ち、本発明者らは、 生体に備わった免疫応答機構をより広く癌の治療に応用 するべく、固形癌の増殖、浸潤、転移に深く関与すると される腫瘍血管の新生機構に着目し癌ワクチンについて の研究を行い、各種の疾患に適用できる本発明を完成し たのである。

[0015]

【課題を解決するための手段】本発明は、血管内皮細胞に対する特異的細胞増殖促進活性を有する細胞増殖因子又はその断片を含む血管新生に起因する疾患の治療もしくは予防用ワクチンに関するものである。上記細胞増殖因子としては血管内皮細胞増殖因子又は血管透過性因子と呼称されている因子が、又、血管新生に起因する疾患としては癌が特に有効なものとして挙げられる。なお、以下、血管透過性因子(Vascular Permeability Factor)は VPFと、血管内皮細胞増殖因子(Vascular Endothelial Growth Factor)は VGEFと、それぞれ略す。

[0016]

【発明の実施の形態】本発明のワクチンは、血管新生が 関与する疾病を治療及び予防すること、特に固形腫瘍の 発症抑止効果並びに抗腫瘍効果を個体に付与することが できるものである。本発明における血管内皮細胞に対す る特異的細胞増殖促進活性を有する細胞増殖因子として は、前記した下記のものが例として挙げられるが、これ らに限定されるものではない。

【0017】即ち、酸性線維芽細胞増殖因子(acidic fibroblast growth factor:aFGF),塩基性線維芽細胞増殖因子(basic fibroblast growth factor:bFGF),上皮増殖因子(Epidermal growth factor:EGF),血小板由来内皮細胞増殖因子(platalet-drived endothelial cell growth factor:PD-ECGF),血管内皮細胞増殖因子/血管透過性因子(vascular endothelial cell growth factor/vascular permeability:VBGF/VPF),胎盤由来増殖因子(Plaseuta growth factor:PIGF)等である。

【0018】又、それらの断片としては、それぞれの因子のポリペプチドから誘導されるものや化学合成によって作成された当該因子のアミノ酸配列の一部を含む合成ペプチドでであって、当該因子に対する免疫抗体を作らし得るものが挙げられる。なお、血管内皮細胞に対する特異的細胞増殖促進活性を有する細胞増殖因子の一つであるVEGFのエピトープに相当するペプチドの一部(例えば、TryProAspGluIleGluTryIlePheLyeのアミノ酸配列を

10

有するペプチド)は既に本発明者らによって見いださ れ、特願平6-125569号等に記載されている。

【0019】これらの中でも、特にVEGF/VPFは腫瘍血管 新生に於いて主要な役割を担う因子であり、かつ多くの 腫瘍細胞によって分泌されていると考えられるようにな ってきたものであり、VEGF/VPFを抗原とするワクチンは 固形癌一般に対してその増殖、転移を抑制する効果が期 待できる免疫療法薬剤である。さらに、VEGF/VPFを抗原 としてワクチン接種を行うことの優位性としては以下の ようなことが挙げられる。

【0020】先ず第一に、前記したように腫瘍の発生に は血管新生が必須であると考えられており、血管新生無 しには腫瘍増殖は極めて緩慢であり、かつ生育する大き さにも上限があるという点にある。即ち固形癌発症の必 須項目である腫瘍血管新生を予め個体をVEGF/VPFで免疫 しておくことによって完全に止めるまでもなく遅れさせ ることができ、結果として発生した腫瘍細胞が死滅する ことがないにせよ疾病としての癌発症と認識されるまで には膨大な時間が稼げることになる。例えば、生体内の ある細胞が形質転換を起こし、突然変異を起こしながら 20 分裂を続け、最終的に血管の新生を伴った癌という疾病 に進展するのに数年から数十年の時間を要するとされて いるが、この期間を数倍に伸ばすことができれば、細胞 変異の発生から疾病としての癌成立までにヒトの寿命に 対してかなりの期間がかかることになり、特殊な例を除 いて癌発症が中高年に集中していることを考えれば、こ の期間の意味は極めて大きく、本発明によれば、病気と しての癌に有効であるために完璧な作用を要さないとい うことになり、他の療法に比べて寛容度の大きいものと なるのである。

【0021】第二に、上に述べた発症抑止効果に加え て、癌の退縮効果をも期待できる点である。実験的に担 癌動物に抗VEGF/VPF抗体を投与することによって得られ る効果の大部分は、抗体投与によってVEGF/VPF活性が中 和されることによるものであると考えられ、この様な効 果は生体内での投与抗体の存在量に依存しており、多く の場合蛋白性の高分子の生体内半減期は短いことから、 一過性のものであると考えられる。従って抗体投与によ る治療にはしばしば反復投与が行われている。

【0022】一方本発明による場合は理論的に抗体は生 40 体内で供給されることからその効果は持続性であると考 えられ、VEGP/VPFの中和効果は継続して発揮されること が期待できるものである。さらに、本発明によればワク チン接種された個体に抗原刺激に対する一連の免疫応答 がもれなく備わっていることが予想され、抗体によるVE GF/VPF活性の中和効果にとどまらず、細胞性免疫機構か ら補体活性化機構までを含んだ免疫応答が抗原提示細胞 に対して発動されることが期待される。生体内で腫瘍が 増殖する状況でVEGF/VPF抗原を提示する細胞としては、 種々の免疫組織染色の結果から、VEGF/VPFを産生する腫 50

瘍細胞そのものに加え、VEGF/VPFを細胞表面受容体に結 合させた腫瘍血管の内皮細胞が知られている。すなわち 腫瘍免疫の攻撃対象として、腫瘍細胞そのもの、さらに はその腫瘍に酸素や栄養素を供給している腫瘍血管細胞 が考えられることになる。これらの結果として腫瘍血管 の新生抑止作用に加えて、既に形成されている腫瘍その ものやその腫瘍血管を直接の標的とする腫瘍壊死効果も 得られることが期待される。

6

【0023】本発明のワクチンは、固形腫瘍以外の血管 新生が関与する疾病も治療及び予防することができるも のである。例えば、アテローム性動脈硬化病の血管新生 をこのワクチンにより抑制し、治療することができる。 又、高脂血症の人に投与することによりアテローム性動 脈硬化病の発症を抑制することができ、心筋梗塞や脳梗 塞の発病を予防することができる。さらに、慢性関節リ ウマチは関節内に血管が新生することにより発症する疾 患であり、この患者は、この血管新生が進むことにより 僧悪するのであるが、慢性関節リウマチの患者にこのワ クチンを投与することにより、症状の憎悪を抑制するこ とが期待できるうえ、慢性関節リウマチの発症の原因も 血管新生と考えられるため治療にもつながるものと期待 される。又、糖尿病患者に対して、このワクチンを投与 すると、糖尿症性網膜病や腎症の発症を抑制することが 期待できる。即ち、糖尿症性網膜病にVPFが関与してい ることが報告されており、VPFをワクチンにより除くこ とにより発症を抑制することが期待できる。

【0024】その他、血管新生が関与する疾病として網 膜中心静脈閉塞症、後水晶体線維増殖症、緑内障、老人 性円板状黄斑変性症、眼腫瘍、トラコーマ、未熟児網膜 症、角膜移植に伴う血管新生、乾せん、化膿性肉芽腫 瘍、血管腫、肥大性はん痕、肉芽及び浮腫性硬化症状等 が挙げられ、このワクチンはこれらの疾病の治療及び予 防が期待できる。

[0025]

30

【実施例】以下にバキュロウイルスベクターを用いて昆 虫細胞で発現させたヒトVEGF/VPF121を抗原に、フロイ ントのコンプリートアジュバントをアジュバントとして 用いた実施例を述べるが、本発明は、抗原、アジュバン トにこの様なものを用いた場合に限定されるものではな い。例えば、VEGF/VPF抗原としてはヒト以外の動物種由 来のVBGF/VPF、ヒト由来であっても121アミノ酸残基数 以外の長さのVEGF/VPF、上記方法以外の方法で調製した 各種VEGF/VPF、さらには化学合成によって作成されたVE GF/VPFアミノ酸配列の一部を含む合成ペプチドで免疫抗 体を作らし得るものが含まれる。なお、ヒトVBGF/VPF12 1は配列番号1のアミノ酸配列を有するポリペプチドで ある。

【0026】アジュバントとしては百日咳菌ワクチン、 溶連菌製剤、内毒素リポ多糖体、BCG、水酸化アルミ ニウム等があげられる。又、生体内での抗原性の増強の 7

ためにVEGF/VPFを熱や酸などによって変性させたもの、 あるいはVEGF/VPFを他の蛋白や高分子物質と結合させた もの、さらには他の蛋白と融合させたキメラ蛋白なども 用いられる。

【 0 0 2 7】 〔実施例 1〕 ワクチン接種したマウスへ の癌移植実験

本発明ワクチンの腫瘍増殖抑制への効果を見るために、マウス(C57BL/6)にワクチン接種を行い、抗VEGF/VPF抗体価の上昇を確認した後にマウスルイス肺癌(LLC)を移植し、ワクチン接種群と非接種群とでLLCの増殖を比較 10した。

【0028】ワクチン接種

8 週令の雄マウス(C57BL/6) 5 匹に、初回(0週)は0.0 2mg/mouseのVEGF/VPFを0.1ml のフロイントのコンプリ ートアジュバント[Freund's complete adjuvant (DIFCO 製)]と共に全容量0.2ml にて腹腔内に、2回目(1週) と3回目 (2週) は0.02mg/mouseのVEGF/VPFを0.1ml の フロイントのインコンプリートアジュバント[Freund's incomplete adjuvant (DIFCO製)]と共に全容量0.2ml に て腹腔内に、それぞれ投与した(ワクチン接種群)。対 照として初回(0週)にフロイントのインコンプリート アジュバント0.1ml を水と共に全容量0.2ml にて腹腔内 に、2回目(1週)と3回目(2週)はフロイントのイ ンコンプリートアジュバントを水と共に全容量0.2ml に て腹腔内に投与した群(アジュバント対照群)、とリン 酸緩衝液生理食塩水(PBS) 0.2ml のみを初回(0週)、 2回目(1週)と3回目(2週)に腹腔内に投与した群 (パファー対照群) とを準備した。

【0029】抗体価の推移

ワクチンを接種することによって未梢血中の抗VEGF/VPF 抗体価が上昇しているかどうか(抗体陽性化:すなわち ワクチンによる陽転)を調べる目的で、それぞれの群の 各個体から0、1、2、3、5、7、9週に部分採血を 行い、血中の抗VEGF/VPF抗体価を調べた。すなわち採取 した未梢血を直ちに遠心分離し血漿を得、血漿を0.1%BS A-PBS (0.1%ウシ血清アルブミン含有リン酸緩衝液生理 食塩水)で1000倍に希釈し、VEGF/VPF蛋白を固定化して ある樹脂イムノアッセイプレートに0.1ml ずつ分注し、 固定化してあるVEGF/VPF蛋白に抗VEGF/VPF抗体を特異的 に結合させた。結合した抗VEGF/VPF抗体量を予め酵素標 識した抗マウスIgG抗体を使って検出した(いわゆる広 く行われている酵素免疫測定法によった)。かかる方法 によって調べられた各マウスの血中抗VEGF/VPF抗体価の 平均値の推移を図1に示す。すなわち、図1はワクチン 接種したマウスへの癌移植実験に於けるマウス血中抗VE GF/VPF抗体価の平均値の推移をワクチン接種群(●)、 アジュバント対照群(○)、バッファー対照群(△)そ れぞれについてプロットしたグラフを示すものである。 この図からワクチン接種群では7週目を頂点とした顕著 な抗体価の上昇が観察され、一方バッファー対照群では 50

全ての期間に渡って全く変化は観察されなかった。アジュバント対照群では7、9週目に緩やかな抗体価の上昇か観察されたが、これはフロイントのアジュバントの備え持つ性質である免疫反応の非特異的活性化の影響であるうと考えられた。

【0030】固形癌移植と増殖の追跡

未梢血中の抗体価は第7週目に頂点を越えたと考えられたため、9週目にLLC固形癌の移植を行い、以降癌の増殖を追跡した。予め別のマウスの中で十分に生育させておいたLLC固形癌を3×3×3mmの大きさに切り揃え、1群5匹のワクチン接種群、アジュバント対照群、バッファー対照群のマウス皮下に移植した。

【0031】癌の増殖は移植後6、9、13日目に測定し、腫瘍容積=短径×短径×長径÷2の計算方法で求めた。それぞれの群における癌の増殖の平均値の推移を図2に示す。すなわち、図2はワクチン接種したマウスへの癌移植実験に於ける癌の増殖の平均値の推移をワクチン接種群(●)、アジュバント対照群(○)、バッファー対照群(△)それぞれについてプロットしたグラフである。この図からワクチン接種群では他の群に比べて顕著な増殖の抑制が観察された。

【0032】統計解析

観察されたワクチン接種群における増殖抑制が統計学上有意な差であるのかどうかをスチューデントのTーテスト(Student's t-test)にて検定した。その結果6、9、13日目何れの時点においてもワクチン接種群はバッファー対照群、アジュバント対照群いずれに対しても有意に増殖が抑制されている状態であるという結果となった(p<0.05:有意)。バッファー対照群とアジュバント対照群との比較では、アジュバント対照群の方が若干増殖が遅いように見受けられたが、統計学上の有意差は見い出されなかった。以上の研究結果から、本発明すなわちVEGF/VPFを主成分とする瓶ワクチンはマウスにおける固形癌移植のモデル系においてその有効性を示すことが明らかとなった。

【0033】 〔実施例2〕 ワクチン接種したマウスへ の癌転移実験

本発明ワクチンの腫瘍転移抑制への効果を見るために、マウス(C57BL/6)にワクチン接種を行い、抗VEGF/VPF抗 か価の上昇を確認した後にマウス固形癌(B16F1)を尾静脈より接種し、ワクチン接種群と非接種群とで肺に形成された転移巣の数を比較した。

【0034】ワクチン接種

8週令の雄マウス(C57BL/6)10匹に実施例1と同様に ワクチン接種を行い、対照も同様に、アジュバント対照 群とバッファー対照群とを準備した。

【0035】抗体価の推移

ワクチン接種マウスの抗体価の推移が実施例1と同様であるかを確認するため、5週(抗体価の顕著な上昇が観察された時点)と9週(抗体価の低下が観察された時

点)に部分採血を行い、実施例1に示した方法で血中の抗VBGF/VPF抗体価を調べた。各マウスの血中の抗VEGF/VPF抗体価の平均値の推移を図3に示す。すなわち、図3はワクチン接種したマウスへの癌転移実験に於けるマウス血中抗VEGF/VPF抗体価の平均値の推移をワクチン接種群(■)、アジュバント対照群(●)、バッファー対照群(△)それぞれについてプロットしたグラフである。この図から、ワクチン接種群の抗体価は5週目では著しい上昇が、9週目には低下が観察され、ワクチン接種マウスの抗体価の推移は実施例1と同様であることが確認された。

【0036】 固形癌細胞の接種と転移巣数

9週目に、DMEM 10%FBSを用いて培養したB16F1細胞を5×10⁶個/mlになるよう調製し、これを0.2mlずつ(1×10 ⁶個/マウス)、1 群 1 0 匹のワクチン接種群、アジュバント対照群、バッファー対照群のマウスの尾静脈より血管内投与を行い、1 1週目に肺への生着コロニー数を測定した。それぞれの群における生着コロニー数の平均値を図4に示す。すなわち、この図はワクチン接種したマウスへの癌転移実験に於ける癌の生着コロニー数の平均値を20ワクチン接種群、アジュバント対照群、バッファー対照群それぞれについてプロットしたグラフである。この図からワクチン接種群では他の群に比べて顕著な転移抑制効果が観察された。

【0037】統計解析

観察されたワクチン接種群における癌の転移抑制効果が統計上有意な差であるのかどうかをスチューデントのTーテストにて検定した。その結果、ワクチン接種群はアジュバント対照群、バッファー対照群いずれに対しても有意に転移が抑制されていることが解った(アジュバン 30ト対照群 p(0.05;有意、バッファー対照群 p(0.001;有意)。アジュバント対照群とバッファー対照群との比較では、アジュバント対照群の方が若干転移巣が少ないように見受けられたが、統計学上の有意差は見い出されなかった。

100

[0038]

【発明の効果】本発明のワクチン、特にVEGF/VPFを含む ワクチンを生体に接種することにより生体そのものの持 つ免疫応答を引き出し、その結果VEGF/VPFが重要な役割 を果たしていると考えられている順瘍増殖に於ける血管 新生を抑制し、腫瘍や腫瘍血管を攻撃し、抗腫瘍効果が 得られるものであり、さらに、以下のような効果も期待 できる。

10

【0039】1. 個体に予めVBGF/VPFを含むワクチンを 接種しておくことによって、自然発生的に生成してくる 腫瘍を大きくさせない、腫瘍の顕在化を著しく遅延させ るという、疾病としての癌発症の予防効果が期待でき る。

2. 癌転移は原発性の癌由来の癌細胞が異所に於いて増殖することによって成立する。この場合にも移転成立、すなわち異所での癌細胞増殖、のカギを握っているものが、血管新生であると考えられ、外科的に癌を切除の前後に、VEGF/VPFを含むワクチン接種を行っておくことによって、原発性の癌の場合と同様に異所に於いて生成してくる癌腫を大きくさせない、癌腫の顕在化を著しく遅延させるという、癌転移の予防効果が期待できる。

【0040】3.癌細胞の多くはVEGF/VPFを生成し、腫瘍血管の内皮細胞上に近傍の癌から分泌されたと思われるVEGF/VPFの蓄積が観察されることが知られており、これら癌細胞そのものや腫瘍血管内皮細胞が細胞障害性免疫応答の標的となりうる。そこで既に腫瘍血管の新生を伴う固形癌の治療にも、癌免疫療法の一つとして本ワクチン接種が有効であると期待できる。

[0041]

30 【配列表】

配列番号:1

配列の長さ:121 配列の型:アミノ酸

配列の型: アミノ酸 トポロジー: 直鎖状

配列の種類:タンパク質

110

配列:

Ala Pro Met Ala Glu Gly Gly Gly Gln Asn His His Glu Val Val Lys

1 5 10 15

Phe Met Asp Val Tyr Gln Arg Ser Tyr Cys His Pro Ile Glu Thr Leu

20 25 30

Val Asp Ile Phe Gln Glu Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys

35 40 45

Pro Ser Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn Asp Glu

50 55 60

Gly Leu Glu Cys Val Pro Thr Glu Glu Ser Asn Ile Thr Met Gln Ile

65 70 75 80

Met Arg Ile Lys Pro His Gln Gly Gly Gln His Ile Gly Glu Met Ser Phe

85 90 95

Leu Gln His Asn Lys Cys Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg

--592---

105

11

Gln Glu Asn Pro Cys Gly Pro Cys Ser

【図面の簡単な説明】

【図1】マウス血中抗VEGF/VPF抗体価の平均値の推移を 示す図である。

【図2】 癌の増殖の平均値の推移を示す図である。

【図3】マウス血中抗VEGF/VPF抗体価の平均値の推移を示す図である。

12

【図1】癌の生着コロニー数の平均値を示す図である。

【図1】

【図2】

【図3】

【図4】

フロントページの続き

(51) Int.Cl.⁶
// C 0 7 K 14/485

識別記号

庁内整理番号

(週)

FΙ

A61K 37/24

技術表示箇所 ABN

ABX

14/515

--593---