rms voltage:
$$V_{rms} = \frac{V_m}{\sqrt{2}} = 7.071 \text{ V}$$

Wednesday, March 16,2016

and average power

$$P_{avg} = \frac{V_{rms}^2}{R} = \frac{(7.071)^2}{10} = 5\omega$$

Let's also sketch the instantaneous power P(t)

$$P(t) = \frac{V^2(t)}{R} = \frac{100}{10} \cos^2(100017 t - 60^\circ)$$

Use the trig identity $\cos^2(x) = \frac{1}{2} \left[1 + \cos(2x) \right]$

Phasors

When dealing with sinusoidal voltages and currents, we need a convenient way to add them to satisfy KVL, KCL.

Consider:

Let
$$V_1(t) = 10 \cos(\omega t)$$

 $V_2(t) = 5 \cos(\omega t - 30^\circ)$
 $V_3(t) = 5 \cos(\omega t + 90^\circ)$

KVL must be satisfied by this circuit over all time $-V(t) + V_1(t) + V_2(t) + V_2(t) = D$

50 $V(t) = 10 \cos(\omega t) + 5 \cos(\omega t - 30^{\circ}) + 5 \cos(\omega t + 90^{\circ})$

How do we manipulate thix to get the desired from $v(t) = V_m \cos(\omega t + \theta)$? What are V_m and θ ? Help!

For this, we instead express voltages and currents in terms of phasors.

Let $V_1(t) = V_1 \cos(\omega t + \theta_1)$ Usually fixed in value throughout the circuit for an analysis problem.

We have a pair of independent parameters describing the voltage:

V₁ - magnitude (amplitude)

0, - Phase angle

BASIC IDEA: Represent as a vector on a plane: then add the vector lengths.

Examples of phasor representation:

Va(t) = $V_a \cos(\omega t + \theta_a)$ $V_a = V_a / \theta_a$ $V_b(t) = V_b \sin(\omega t + \theta_b)$ $V_b = V_b \cos(\omega t + \theta_b - 90^\circ)$ $V_b = V_b / \theta_b - 90^\circ$ phase angle.

Similarly, for currents

 $i_c(t) = I_c \cos(\omega t + \theta_c)$ \iff $\tilde{I}_c = I_c / \theta_c$

To manipulate phasors, we need to use complex numbers.

Complex numbers - review

We express and manipulate phasors as complex numbers. Complex numbers involve "imaginary" numbers.

Mathematicians: $i = \sqrt{-1}$

Engineers: i is current, so $j = \sqrt{-1}$

E.g., complex number x = 2 + j4real part imaginary part

Im [x] = 4 Imaginary part Real

Re[x] = 2

Real part

The complex conjugate of x:

x is a point on the complex plane.

denotes complex conjugate $x^* = 2 - j4$ flip sign of Im[x]

Rectangular and polar forms of complex numbers

 $X = M \angle O$ (polar) $Im[X] \rightarrow Im$