Name: Vivele Visuanath Page 1. UFID: 98337168. Programming Assignment -2 (Decrivations) Neural Network Basics The Sigmoid function is $f(x) = \frac{1}{1+e^{-x}}$. Let $g(x) = 1+e^{-x}$ Now, $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \times \frac{\partial g}{\partial x}$ = -1 $(1+e^{-\chi^2})$ $= (1+e^{-\chi})^2 \cdot e^{-\chi}$ $= e^{-\chi} \cdot f(\chi)$ $= \left(\frac{1}{(n)} - 1\right) \left(\frac{2}{n}\right)$ = f(x)(1-f(x)) $\frac{1}{\sqrt{dx}}\left(f(x)\right)=\frac{1}{dx}\left(\frac{1}{1+c-x}\right)=f(x)\left(1-f(x)\right)$ (Aus.) Esult unplinented in 91-signaid py

Manager Aviv smill Pag 2 Word2 Vec Softmax Cost And Gradient. Given a predicted word vedor it, I word prediction is made with softmax function it word vec: $\hat{y}_i = P_r(\omega_i | \hat{\lambda}, u_{\omega_i \dots | v|}) = \exp(u_{\omega_i} \hat{\lambda})$ $= \exp(u_{\omega_i} \hat{\lambda})$ $= \exp(u_{\omega_i} \hat{\lambda})$ Now, the grestion states that we are to assume cross-cutropy nost a applied to This prediction. Therefore, applying cross-entropy cost, we get J(î, w) = -log (ewiñ) = - log e wir + log \(\int \equip \frac{1}{2} \) e \(\int \frac{1}{2} \) \(\int \frac{1}{2} \) = - with + log \(\frac{1}{2} \) e \(\frac{1}{2} \) \(\frac{1}{2} \)

Let $z_j = w_j^T r$ and 2[j=i] which is an indicator function indicating j=i means the function value = 1 & 0 otherwise. Then, $\partial J = e^{2k} - 1 \cdot [k=i]$ $\frac{\partial^2 z}{\partial z} = \frac{1}{2} \cdot \frac{1}{$ $= \underbrace{\Xi}_{k=1} \underbrace{\omega_{i}(e^{2k} - 1[k=i])}_{j=1}$ $\frac{\partial \omega_{k}}{\partial \omega_{k}} = \frac{\partial \omega_{k}}{\partial \omega_{k}} = \frac{\partial \omega_{k}}{\partial \omega_{k}}$ $\frac{5}{2\sqrt{3}} = \frac{2}{x} \left(\frac{2}{e^{2}} - 1 \left[\frac{1}{x} = 2 \right] \right)$ $\frac{1}{2\sqrt{x}} \left(\frac{1}{x} = 2 \right)$ $\frac{1}{2\sqrt{x}} \left(\frac{1}{x} = 2 \right)$ $\frac{1}{2\sqrt{x}} \left(\frac{1}{x} = 2 \right)$ Result implemented in 93-wordswa. py

Q3.3 Word2Vcc

2. Negative Sampling Loss.

Let z = win & let I[j=i] mean that

the function evaluates to 1 of j-i & o otherwise.

For itk:

 $\frac{\partial J}{\partial z_i} = -\frac{\partial}{\partial z_i} \left(\cos \left(\sigma(z_i') \right) \right)$

 $= -\sigma'(z_i) = -\delta(z_i)(1-\sigma(z_i))$ $= -\sigma'(z_i) = -\delta(z_i)(1-\sigma(z_i))$

= 0(21)-1

For ick:

 $\frac{\partial J}{\partial z_i} = -\frac{\sigma'(z_i)}{\sigma(-z_i)}$

= O(-Zi)(1-o(-Zi)) - O(-Zi)

Mage 5 $= |-\sigma(-2i)| = \sigma(2i)$ We see that this is the prediction over them, through chair surle, $\frac{\partial J}{\partial \omega_j} = \frac{\partial J}{\partial z_j} = \left(\sigma(\omega_j^T \hat{z}) - 1 \left(j = i\right)\right)^{-1}$ much cheaper to civaluate because we don't med to sum over the whole vocabulary, only 11 samples. (Sur