Prova 1 Lógica para Computação - MATA47

João Lucas Lima de Melo

October 22, 2021

Questão 1. Seja a fórmula $\varphi = x \vee \neg y \to x \to z$. As subfórmulas e as inserções de parênteses de φ são dadas por:

$$x \vee \neg y \to x \to z$$

$$(x \vee \neg y) \to x \to z$$

$$(x \vee \neg y) \to (x \to z)$$

$$\varphi = ((x \vee \neg y) \to (x \to z))$$

$$\varphi = ((x \vee \neg y) \to (x \to z))$$

$$(x \vee \neg y) \qquad (x \to z)$$

Questão 2. A relação de satisfabilidade $\vDash \subseteq 2^v \times Fm$ entre valorações e fórmulas é dada por:

$$v \vDash \varphi : \Leftrightarrow v(\varphi) = 1$$
$$v \nvDash \varphi : \Leftrightarrow v(\varphi) = 0$$

Seja $\Phi\subseteq Fm$ um conjunto de fórmulas. Estendemos a definição de satisfabilidade para $\Phi, \forall \varphi\in \Phi$, da seguinte forma:

$$v \models \Phi :\Leftrightarrow v \models \varphi$$

Definimos ainda $\operatorname{Mod}(\Phi) := \mathbf{v} \in 2^v | v \models \Phi$ como o conjunto de todos os modelos de Φ .

Por fim, uma fórmula ψ consequência lógica de um conjunto de fórmulas $\Phi(\Phi \Vdash \psi)$ se $Mod(\Phi) \subseteq Mod(\{\psi\})$.

Tendo em vista as definições apresentadas, seguimos com a prova pelo ciclo de implicações.

1. $i \Rightarrow ii$

Seja Φ , um conjunto de fórmulas, insatisfazível, isto é, $Mod(\Phi) = \emptyset$ Por definição, \emptyset está contido em qualquer conjunto.

Portanto, $\forall \varphi, Mod(\Phi) \subseteq Mod(\{\varphi\}).$

Por definição de consequência lógica, portanto, temos:

$$\Phi \Vdash \varphi, \forall \varphi \in \Phi$$

2. $ii \Rightarrow iii$

Seja Φ um conjunto de fórmulas e φ uma fórmula tal que $\Phi \Vdash \varphi, \forall \varphi \in \Phi$. De imediato, basta adotar $\varphi = \bot$ para afirmar que

$$\Phi \Vdash \bot$$

3. iii \Rightarrow i

Por definição de consequência lógica,

$$\Phi \Vdash \perp \text{ se } Mod(\Phi) \subseteq Mod(\{\bot\})$$

⊥ nunca é satisfeita por nenhuma valoração. Ou seja,

$$v \not\models \bot : \Leftrightarrow v(\bot) = 0$$

Dessa forma,

$$Mod(\{\bot\}) = \emptyset$$

Já que

$$\begin{array}{l} \Phi \Vdash \bot, \\ \Phi \Vdash \bot \text{ se } Mod(\Phi) \subseteq Mod(\{\bot\}), \\ Mod(\{\bot\}) = \varnothing, \end{array}$$

temos, portanto,

$$Mod(\Phi) = \emptyset$$
, isto é, Φ é insatistafatível.

Questão 3. Seguindo as definições de Fórmula Normal Disjuntiva e Fórmula Normal Conjuntiva, segue o desenvolvimento de φ :

$$\varphi = \neg p \lor q \to \neg (r \to q)$$

$$\Leftrightarrow \neg p \lor q \to \neg (\neg r \lor q)$$

$$\Leftrightarrow \neg p \lor q \to (r \land \neg q)$$

$$\Leftrightarrow \neg (\neg p \lor q) \lor (r \land \neg q)$$

$$\Leftrightarrow (p \land \neg q) \lor (r \land \neg q) \text{ FND}$$

$$\Leftrightarrow ((p \land \neg q) \lor r) \land ((p \land \neg q) \lor \neg q)$$

$$\Leftrightarrow ((p \lor r) \land (\neg q \lor r)) \land ((p \land \neg q) \lor \neg q)$$

$$\Leftrightarrow (p \lor r) \land (\neg q \lor r) \land (\neg q)$$

$$\Leftrightarrow (p \lor r) \land (\neg q) \text{ FNC}$$

Questão 4.

1. $\Phi \vdash \varphi \rightarrow \psi$.

Por hipótese, vale $\Phi \vdash \varphi \rightarrow \psi$.

 $2. \ \Phi \cup \{\varphi\} \vdash \varphi \rightarrow \psi.$

Uma vez que $\Phi \subseteq \Phi \cup \{\varphi\}$, vale $\Phi \cup \{\varphi\} \vdash \varphi \to \psi$.

3. $\Phi \cup \{\varphi\} \vdash \varphi$.

Temos que $\varphi \in \Phi \cup \{\varphi\}$, conjunto de premissas da conclusão da consequência lógica φ . Portanto, vale $\Phi \cup \{\varphi\} \vdash \varphi$.

4. $\Phi \cup \{\varphi\} \vdash \psi$.

Atestamos a validade de $\Phi \cup \{\varphi\} \vdash \varphi \in \Phi \cup \{\varphi\} \vdash \varphi \to \psi$ nos itens anteriores. Dessa forma, basta aplicar a regra da inferência, Modus Ponens, às fórmulas. Dessa forma, podemos inferir $\Phi \cup \{\varphi\} \vdash \psi$.

Questão 5. Temos as premissas $\Delta \vdash \varphi$, $\Delta \cup \{\varphi\} \vdash \psi$ e conclusão $\Delta \vdash \psi$. Assumimos as premissas como verdadeiras. Por definição de consequência lógica, temos que:

$$Mod(\Delta) \subseteq Mod(\{\varphi\})$$

 $Mod(\Delta \cup \{\varphi\}) \subseteq Mod(\{\psi\})$

Pelo exposto anteriormente, temos que $Mod(\Delta) \subseteq Mod(\Delta \cup \{\varphi\}) \subseteq Mod(\{\psi\})$. Portanto, $Mod(\Delta) \subseteq Mod(\{\psi\})$. Isto é, $\Delta \vdash \psi$.