网络技术与应用实验报告(六)

专业: 计算机科学与技术

学号: 2011188 姓名: 邵琦

- 网络技术与应用实验报告(六)
- 一、实验要求
 - 。 1.1 仿真环境下的NAT服务器配置
 - 。 1.2 在仿真环境下完成如下实验
- 二、仿真环境下的NAT服务器配置
 - 。 2.1 前期准备
 - 。 2.2 实验过程
 - 首先配置路由器接口IP地址并启动接口:
 - 然后建立路由器地址池并且设置内网与外网:
 - 测试网络连通性如下:
 - 观察网络地址映射表如下图所示:
 - 在内网主机上访问外网的Web服务器网址:
 - 在仿真环境的"模拟"方式中观察IP数据报在互联网中的传递过程,并对IP数据报的地址进行分析:
- 三、内部网络中放置一台Web服务器
 - 。 3.1 前期准备
 - 。 3.2 实验过程
 - 首先建立外网主机访问内网服务器接口:
 - 测试网络连通性:
 - 在外网主机上访问内网的Web服务器网址:
- 四、实验总结

一、实验要求

1.1 仿真环境下的NAT服务器配置

在仿真环境下完成NAT服务器的配置实验,要求如下:

- (1) 学习路由器的NAT配置过程。
- (2) 组建由NAT连接的内网和外网。
- (3) 测试网络的连通性, 观察网络地址映射表。
- (4) 在仿真环境的"模拟"方式中观察IP数据报在互联网中的传递过程,并对IP数据报的地址进行分析。

1.2 在仿真环境下完成如下实验

将内部网络中放置一台Web服务器,请设置NAT服务器,使外部主机能够顺利使用该Web服务。

二、仿真环境下的NAT服务器配置

2.1 前期准备

配置如下图所示:

配置主机A、B、C和Web服务器的IP地址:

PC或端口号	IPv4 Address	Subnet Mask	网关
--------	--------------	-------------	----

PC或端口号	IPv4 Address	Subnet Mask	网关
主机A	10.0.0.2	255.0.0.0	10.0.0.1
主机B	10.0.0.3	255.0.0.0	10.0.0.1
主机C	202.113.25.101	255.255.255.0	202.113.25.1
Web服务器	202.113.25.100	255.255.255.0	202.113.25.1

2.2 实验过程

首先配置路由器接口IP地址并启动接口:

然后建立路由器地址池并且设置内网与外网:

测试网络连通性如下:

可以发现用主机A ping 外网的Web服务器,如图所示网络连通。

观察网络地址映射表如下图所示:

在内网主机上访问外网的Web服务器网址:

在仿真环境的"模拟"方式中观察IP数据报在互联网中的传递过程,并对IP数据报的地址进行分析:

用主机A ping 主机PC2,可以看到其中一次数据包的传送路径如下图所示:

Simulation Panel					Ð	×
Event Li	st					
Vis.	Time(sec)	Last Device	At Device	Туре		
	0.000		PC0	ICMP		
	0.001	PC0	Switch0	ICMP		
	0.002	Switch0	Router1	ICMP		
	0.003	Router1	Switch1	ICMP		
	0.004	Switch1	PC2	ICMP		
	0.004	Switch1	Server0	ICMP		
	0.005	Server0	Switch1	ICMP		
	0.006	Switch1	Router1	ICMP		
	0.007	Router1	Switch0	ICMP		
	0.008	Switch0	PC0	ICMP		

可以看到数据包的传输路径完全正确。

三、内部网络中放置一台Web服务器

3.1 前期准备

在1的网络图的基础上,在内网添加一个Web服务器。配置如下图所示:

配置主机A、B、C和Web服务器的IP地址:

PC或端口号	IPv4 Address	Subnet Mask	网关
主机A	10.0.0.2	255.0.0.0	10.0.0.1
主机B	10.0.0.3	255.0.0.0	10.0.0.1
主机C	202.113.25.101	255.255.255.0	202.113.25.1
Web服务器0	202.113.25.100	255.255.255.0	202.113.25.1
Web服务器1	10.0.0.4	255.0.0.0	10.0.0.1

3.2 实验过程

首先建立外网主机访问内网服务器接口:

```
Router*config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #ip nat inside source static tcp 10.0.0.4 80 202.113.25.1 80
Router(config) #
```

测试网络连通性:

利用内网主机PC0 ping 外网的主机PC2,如下图所示网络连通:

在外网主机上访问内网的Web服务器网址:

四、实验总结

通过本次实验,我对路由器的NAT服务器配置有了更深入的了解与认识,对于Web服务器、内网和外网等相关知识有了比较深刻的理解。