Machine Learning - MIRI Master (Final quiz - June 1, 2017)

Name:

Instructions:

- tick clearly the claims that you think are true with a $\sqrt{}$
- \bullet tick **clearly** the claims that you think are **false** with a \times
- \bullet if you want to "withdraw" an already ticked box, black it out as \blacksquare (it will count now as unanswered)
- all questions are equally weighted (the headings define blocks of ten questions each)
- there is no obligation to answer individual questions, but at least half (**five**) questions in each block must be answered
- individual question grading: correct answers count +1 point, incorrect answers count -1 point; no answer counts 0 points (there are 60 questions = 60 points maximum)
- \bullet letting S be the number of points, the overall grade is obtained as

$$f(S) = 10 \exp\left(\frac{S}{60} - 1\right)$$

- deliver just these sheets back
- time: 2h

1.	Con	aplexity control and all that jazz.	
		Based on training data alone, there is no means of choosing which model is better Complexity control is only necessary when data is high-dimensional The empirical error in the training set is always smaller (or equal) than the empirical error in	1. True 2. False 3. False
	<u> </u>	Using a larger training data set reduces the chances to obtain an overfitted model Regularization is intended to penalize models that are less complex than needed Cross-validation is mainly used for model selection purposes L_2 -regularization does not produce sparsity, as opposed to L_1 -regularization	4. True 5. False 6. True 7. True 8. True
	<u> </u>	Reducing the hypothesis (model) space is a way of controlling complexity The VC dimension of a two-class linear classifier is a linear function of data dimension	
		The VC dimension of a two-class classifier is always a finite integer	
2.		esian classifiers.	1. True
		The Bayes formula transforms prior distributions into posterior distributions The numerator in Bayes formula is enough to perform classification, by taking simply the maximum over the classes	2. True3. False4. True5. True
		The Bayes classifier is the best possible classifier when the classes are Gaussian	6.
		The Bayes classifier is the best possible classifier when the true priors are known	7. False
		For normally distributed classes, Bayesian classifiers turn out to be quadratic discriminant functions	8. True 9.False 10. False
		For normally distributed classes, equal posterior probabilities yield linear discriminant functions	
		The Naive-Bayes classifier does not make assumptions about data distribution for continuous variables	
		The kNN classifier requires tuning of the number of neighbours, because we have a finite data sample ${\bf r}$	
		$\sum_{a} P(a b)P(b) = P(b)$, where A, B are discrete random variables	
		$\sum_{b} P(a b) = \sum_{a} P(b a)$, where A, B are discrete random variables	
3.	Max	kimum Likelihood and GLMs.	
		The likelihood is a function of the parameters for a given choice of data sample Logistic regression does not make assumptions about input data distribution	1. True 2. True 3. True
		Linear regression assumes normally distributed outputs, conditioned on the inputs	4.
		In a GLM, the model tries to predict the expected value of the target using a linear function of the predictors and a suitable interface function	5. True 6. False 7. False
		We can obtain an error function as the negative log-likelihood of a problem	8. False

☐ The likelihood is a function of the parameters for a given choice of data sample
☐ Logistic regression does not make assumptions about input data distribution
\Box Linear regression assumes normally distributed outputs, conditioned on the inputs
☐ In a GLM, the model tries to predict the expected value of the target using a linear function of the predictors and a suitable interface function
\square We can obtain an error function as the negative log-likelihood of a problem
\Box The regression function is the best possible predictor, in the sense that it would achieve $zero$ $bias$
\Box The regression function is the best possible predictor, in the sense that it would achieve <i>zero variance</i>
\Box The regression function is the best possible predictor, in the sense that it would achieve zero

noise

9. False

	In statistics, bias and variance are related concepts: they represent the distribution of errors in the training and test sets, respectively	
	that works in practice	
4. Ne u	ıral networks.	
	An MLP needs no regularization, because backpropagation prevents arbitrary growth of the	
_	weights	
	We can convert a non-linear model into a linear one by giving values to the non-linear adaptive	
	parameters The body continuous action of a given differentiable continuous and a given differentiable continuous actions actions and a given differentiable continuous actions and a given differentiable continuous actions acti	
J	The backpropagation algorithm computes the partial derivatives of a given differentiable error function with respect to the network weights	1. False
	The backpropagation algorithm must be coupled with an optimization method (update rule)	2. False
	to make it a learning algorithm for a neural network	3. True 4. True
	The backpropagation algorithm is mainly used to compute the gradient vector of the error function at each step	5. True
	The nature of the target variable dictates the activation function for the output neurons	6. True 7. False
	The activation function for the hidden neurons could be a linear function to facilitate learning	8. True
	Both RBF and MLP neural networks can have one or more hidden layers of neurons	9. True 10. False
		10. 1 alse
ne using drop out few neur	Regularization makes little sense in neural networks, because they are non-linear models	
5. Ker	nels and SVMs.	
٥	The kernel function defines kernel matrices whose elements are always non-negative	1. False
	Any positive linear combination of a number of kernel functions is a kernel function	depends on function
	By choosing a valid kernel, we get an Euclidean distance in some Hilbert space	2. False 3. False
	In SVMs, the Lagrange coefficients α_n are positive for the support vectors and negative for the rest (the non support vectors)	4. False 5. False 6. True
PCA 🗖	In order to "kernelize" a learning algorithm, this must be supervised to get meaningful targets	7. True 8. False
	The cost parameter (C) in a SVM has a role similar to that of a regularization parameter	9. False
	Increasing the value of C in a SVM (and everything else being equal), the margin cannot increase	
	Increasing the value of C in a SVM (and everything else being equal), the number of support vectors can increase	
	A positive semi-definite matrix may have negative elements in the main diagonal	
	The VC dimension of a SVM depends on the kernel function it uses	
6. Mis	cellaneous.	
٥	The E-M algorithm refines a suboptimal solution obtained by k-means until a global optimum is found	1. False 2.
٥	A Gaussian mixture model assumes that the data has been generated by a "big" Gaussian that can be decomposed as a finite mixture	3. 4. True
	The k-means algorithm will discover the true clusters in the data, if given enough prototypes	5. False 6. False
٦	Bagging methods are based on the fact that, for unstable learners, variance can be greatly reduced with little or no increase in bias	7. False 8. False
	A Random Forest is "random" because decision trees are random learners (meaning that a	9. True 10. False

single tree changes if we "execute" the algorithm again) data randomly feature subset taken

	A Random Forest is "random" because the $data$ used in $each$ $decision$ $node$ come from a different bootstrap resample		
☐ In Machine Learning, the lack of predictive variables can be compensated by more traidata; in other words, there is no limit on the achievable predictive performance of a mod we can gather enough data if feature less, by adding data we cannot improve performance			
	We should optimize the number of folds in cross-validation, and separately for each modeling technique false, sab model ma euttai number of fold use garcha, euta ma euta arko ma arko gardaina		
	In Machine Learning, better pre-processing can make a large impact on learning, and therefore on predictive performance $$		
	In a noiseless setting, at least theoretically speaking, there is no need for regularization		