Sound Classification

Cough, Laugh, Sigh, Sneeze, Sniff, Throat Clear

Motivation

Speech recognition is all around us:

- Siri, Alexa, Google Home
- Youtube or Zoom captioning
- Customer service...
- And many more (<u>wiki/Speech_recognition</u>)

Motivation

Speech recognition is all around us:

- Siri, Alexa, Google Home
- Youtube or Zoom captioning
- Customer service...
- And many more (<u>wiki/Speech_recognition</u>)

- Automatic speech recognition (ASR) is hard
 - o people make tons of noises unrelated to speech
 - o cough, laugh, sigh, sneeze, sniff, throat clear

- Automatic speech recognition (ASR) is hard
 - people make tons of noises unrelated to speech
 - o cough, laugh, sigh, sneeze, sniff, throat clear

• Goal is to train a neural network that takes in short audio files and classifies it as one of the noises listed above (success: accuracy > 90%)

- Automatic speech recognition (ASR) is hard
 - o people make tons of noises unrelated to speech
 - o cough, laugh, sigh, sneeze, sniff, throat clear

• Goal is to train a neural network that takes in short audio files and classifies it as one of the noises listed above (success: accuracy > 90%)

- Automatic speech recognition (ASR) is hard
 - o people make tons of noises unrelated to speech
 - o cough, laugh, sigh, sneeze, sniff, throat clear

• Goal is to train a neural network that takes in short audio files and classifies it as one of the noises listed above (success: accuracy > 90%)

Hope is that this could eventually be paired with ASR

About our data

- \sim 21,000 audio files
- $\sim 3,000$ contributors
- Typically 2-7 seconds long
- Included some info about contributors:
 - o Age
 - Gender
 - Country
 - Language

Cough •

Laugh •

Sigh •

Sneeze •

Sniff •

Throat Clear

I don't think that means what you think it means...

Labeled as a sigh: •

Image provided by Vecteezy

MFCC CNN Model Performance

• Big numbers on diagonal

- Big numbers on diagonal
 - o Good!

- Big numbers on diagonal
 - o Good!
- Small numbers off diagonal

- Big numbers on diagonal
 - o Good!
- Small numbers off diagonal
 - o Good!

- Big numbers on diagonal
 - o Good!
- Small numbers off diagonal
 - o Good!

• Labels some throat clears as coughs

Mel Spectrogram CNN Model Performance

Mel Spectrogram Conv. Neural Network Performance

- Big numbers on diagonal
 - o Good!
- Small numbers off diagonal
 - o Good!

Mel Spectrogram Conv. Neural Network Performance

- Big numbers on diagonal
 - o Good!
- Small numbers off diagonal
 - o Good!

- Has more general trouble:
 - o Sneeze
 - o Sniff
 - Throat clearing

Our production model will be...

Our production model will be...

The MFCCs Convolutional Neural Network!

Our production model will be...

The MFCCs Convolutional Neural Network! (the first one)

Distribution of Ages For Correct and Incorrect Predictions

Distribution of Confidence For Correct and Incorrect Predictions

Confidence Levels For Correct Predictions

Conclusions

• We built a strong model but did not meet our goal of 90% accuracy (~87%)

• Developed a Streamlit App to share the model

• Identified where the model had the most trouble (coughs and throat clears)

Next Steps

• Collect data on other sounds to diversify the classification

- Collect more (properly labeled) audio samples for coughs and throat clears
 - Add this into Streamlit

- Look into applying on longer clips through segmenting data or sliding window
 - Strengthen/support speech recognition

To Streamlit!

Image provided by Vecteezy