QUÍMICA

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

Com massas atômicas referidas ao isótopo 12 do carbono

1																	18
1 H 1.01	2											13	14	15	16	17	2 He 4,0
3 Li 6,94	4 Be 9,01											5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 CI 35,5	18 Ar 39,9
19 K	20 Ca	21 Sc 45.0	22 Ti	23 V 50.9	24 Cr 52.0	25 Mn 54,9	26 Fe 55.8	27 Co 58,9	28 Ni 58.7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91.2	41 Nb 92,9	42 Mo 95,9	43 Tc (98)	44 Ru 101	45 Rh 102,9	46 Pd 106,4	47 Ag 107,8	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,7	52 Te 127,6	53 126,9	54 Xe 131,3
55 Cs 132,9	56 Ba 137,3	57-71 Série dos Lantanidios	72 Hf 178,5	73 Ta	74 W 183,8	75 Re 186,2	76 Os 190,2	77 r 192,2	78 Pt 195	79 Au 197	80 Hg 200,5	81 TI 204,3	82 Pb 207,2	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Série dos Actinídios	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)			(1			
			Série	dos Lan	tanídios								C				
Número Atômico Símbolo		nico	57 La 139	58 Ce 140	59 Pr 141	60 Nd 144,2	61 Pm (145)	62 Sm 150,3	63 Eu 152	64 Gd 157,2	65 Tb 159	66 Dy 162,5	67 Ho 165	68 Er 167,2	69 Tm 169	70 Yb 173	71 Lu 175
	a Atômi	ca	Série	dos Act	inídios						X						
() N	o de ma	ssa do	89 Ac (227)	90 Th 232,0	91 Pa 231	92 U 238	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Informações para a resolução de questões

- 1. Algumas cadeias carbônicas nas questões de química orgânica foram desenhadas na sua forma simplificada apenas pelas ligações entre seus carbonos. Alguns átomos ficam, assim, subentendidos.
- 2. As ligações com as representações e line indicam, respectivamente, ligações que se aproximam do observador e ligações que se afastam do observador.

26. Amostras de três substâncias foram testadas a fim de verificar seu comportamento ao serem aquecidas. As observações realizadas no decorrer do experimento constam no quadro abaixo.

Substâncias	Aspecto na temperatura ambiente	Observações durante o aquecimento	Aspecto após retorno à temperatura ambiente
I	Sólido cinza metálico	Emissão de luz branca intensa	Pó branco com propriedades físicas diferentes das apresentadas pela substância I
П	Sólido cristalino branco	Formação de um líquido	Sólido cristalino branco com propriedades físicas iguais às da substância II
Ш	Líquido incolor	Formação de vapores que são recolhidos em um balão	Líquido incolor com propriedades físicas iguais às da substância III

Os processos que ocorreram com as substâncias I, II e III durante o aquecimento podem ser denominados, respectivamente,

- (A) fusão, ebulição e condensação.
- (B) combustão, fusão e ebulição.
- (C) pulverização, liquefação e condensação.
- (D) combustão, liquefação e vaporização.
- (E) pulverização, ebulição e vaporização.
- Considere o enunciado abaixo e as três propostas para completá-lo.

Em dada situação, substâncias gasosas encontram-se armazenadas, em idênticas condições de temperatura e pressão, em dois recipientes de mesmo volume, como representado abaixo.

Gás carbônico (CO₂)

Recipiente 1

Gás nitrogênio(N₂)

+
Gás oxigênio(O₂)

Recipiente 2

Nessa situação, os recipientes 1 e 2 contêm

- 1 o mesmo número de moléculas.
- 2 a mesma massa de substâncias gasosas.
- 3 o mesmo número de átomos de oxigênio.

Quais propostas estão corretas?

- (A) Apenas 1.
- (B) Apenas 2.
- (C) Apenas 3.
- (D) Apenas 2 e 3.
- (E) 1, 2 e 3.

28. Fabricantes de pigmentos para tatuagens deverão brevemente obter registro de seus produtos junto aos órgãos oficiais. A preocupação com as normas para essas tintas decorre do fato de muitos pigmentos apresentarem derivados de metais pesados, o que pode provocar efeitos adversos à saúde. Atualmente, pode ser encontrado HgS no pigmento vermelho, PbCrO₄ no amarelo e Cr₂O₃ no verde.

Assinale a propriedade compartilhada pelos metais Hg (mercúrio), Pb (chumbo) e Cr (cromo).

- (A) Apresentam altos valores de potenciais de ionização.
- (B) Têm seus elétrons distribuídos em um mesmo número de camadas eletrônicas.
- (C) Reagem vigorosamente com a água, formando óxidos.
- (D) Apresentam elevados valores de eletronegatividade.
- (E) Podem apresentar mais de um estado de oxidação.

29. A partir do século XIX, a concepção da ideia de átomo passou a ser analisada sob uma nova perspectiva: a experimentação. Com base nos dados experimentais disponíveis, os cientistas faziam proposições a respeito da estrutura atômica. Cada nova teoria atômica tornava mais clara a compreensão da estrutura do átomo.

Assinale, no quadro abaixo, a alternativa que apresenta a correta associação entre o nome do cientista, a fundamentação de sua proposição e a estrutura atômica que propôs.

	Cientista	Fundamentação	Estrutura atômica
(A)	John Dalton	Experimentos com raios catódicos, que foram interpretados como um feixe de partículas carregadas negativamente denominadas elétrons, os quais deviam fazer parte de todos os átomos	O átomo deve ser um fluido homogêneo e quase esférico, com
(B)	Niels Bohr	Leis ponderais que relacionavam entre si as massas de substâncias participantes de reações	Os elétrons movimentam-se em torno do núcleo central positivo em órbitas específicas com níveis energéticos bem definidos.
(C)	Ernest Rutherford	Experimentos envolvendo o fenômeno da radioatividade	O átomo é constituído por um núcleo central positivo, muito pequeno em relação ao tamanho total do átomo, porém com grande massa, ao redor do qual orbitam os elétrons com carga negativa.
(D)	Joseph Thomson	Princípios da teoria da mecânica quântica	A matéria é descontínua e formada por minúsculas partículas indivisíveis denominadas átomos.
(E)	Demócrito	Experimentos sobre condução de corrente elétrica em meio aquoso	Os átomos são as unidades elementares da matéria e comportam- se como se fossem esferas maciças, indivisíveis e sem cargas.

30. A Via Láctea tem gosto de framboesa: astrônomos alemães descobriram metanoato de etila, substância química que dá à framboesa seu sabor característico, em uma nuvem de poeira próximo ao centro da Via Láctea. Mas, se astronautas fossem até lá, não poderiam deliciar-se com ela, pois a nuvem também é formada por cianeto de propila, um veneno letal.

Fonte: Superinteressante, n. 266, p. 32, jun. 2009.

Observe as fórmulas das substâncias referidas no texto e os carbonos nelas assinalados.

Os carbonos assinalados com os números 1, 2 e 3 apresentam, respectivamente, geometria molecular do tipo

- (A) trigonal plana, tetraédrica e linear.
- (B) linear, trigonal plana e tetraédrica.
- (C) linear, tetraédrica e linear.
- (D) trigonal plana, trigonal plana e tetraédrica.
- (E) tetraédrica, linear e trigonal plana.
- **31.** Um cubo de gelo flutua em um copo com água. Tal fenômeno ocorre porque a água no estado sólido é menos densa que a água no estado líquido, visto que a água apresenta a particularidade de aumentar de volume quando solidifica.

Qual das afirmações abaixo apresenta uma justificativa adequada para esse fenômeno?

- (A) Na água líquida, as interações intermoleculares se dão através de ligações de hidrogênio, enquanto no gelo essas interações são do tipo Van der Waals, mais fracas, o que resulta em maior afastamento entre as moléculas.
- (B) O gelo é mais volumoso porque nele as moléculas de água se organizam em posições bem definidas em uma rede cristalina hexagonal, a qual ocupa um espaço maior que a disposição pouco ordenada dessas moléculas no estado líquido.
- (C) No estado sólido, as baixas temperaturas provocam uma significativa diminuição da polaridade das moléculas de água, o que contribui para um maior afastamento entre elas.
- (D) Quando passa ao estado sólido, a água aprisiona em sua rede cristalina átomos de oxigênio, transformando suas moléculas em H₂O₂ , que são mais volumosas que as de H₂O.
- (E) Durante a formação dos cristais de gelo, ocorre alteração da geometria molecular das moléculas de água, que passa de angular para linear, a fim de permitir um melhor ajuste das moléculas aos nós da rede cristalina.

32. Observe a reação representada abaixo, que pode ser utilizada para obtenção de cobre metálico.

$$3 \text{ CuO} + 2 \text{ NH}_3 \rightarrow 3 \text{ Cu} + \text{N}_2 + 3 \text{H}_2\text{O}$$

Utilizando essa reação, foram realizados dois experimentos, nos quais se partiu de quantidades diferentes dos reagentes, na ausência de produtos. As massas iniciais dos reagentes e as massas finais dos produtos foram cuidadosamente pesadas. Essas massas, em gramas, encontram-se no quadro abaixo.

Everimentes	Substânc	ias iniciais	Subs	tâncias ol	Ohaansa		
Experimentos	CuO	NH ₃	Cu	N ₂	H ₂ O	Observação	
1	477	m ₁	381	56	108	Não foi observado nenhum excesso	
2	954	m ₂	762	112	216	Excesso de 50 g de NH ₃	

A análise desses dados permite concluir que as massas m_1 e m_2 da espécie NH_3 apresentam a relação indicada na alternativa

- (A) $m_2 = m_1 \times 2$.
- (B) $m_2 = (m_1 \times 2) 50$.
- (C) $m_2 = (m_1 \times 2) + 50$.
- (D) $m_2 = m_1 + (2 \times 50)$.
- (E) $m_2 = m_1 (2 \times 50)$.
- 33. O gás hilariante recebe essa denominação pois sua inalação provoca uma leve euforia, com contrações faciais involuntárias semelhantes ao riso.
 - O gás hilariante, representado na equação química abaixo como substância **X**, pode ser preparado em laboratório, com aquecimento, a partir da seguinte reação.

$$(NH_4)_2SO_4 + 2 KNO_3 \rightarrow K_2SO_4 + 4 H_2O + 2 X$$

A fórmula e o nome químico adequado para o gás hilariante são, respectivamente,

- (A) NO e óxido de mononitrogênio.
- (B) NO₂ e dióxido de nitrogênio.
- (C) NO₃ e óxido nítrico.
- (D) N₂O e monóxido de dinitrogênio.
- (E) N₂O₅ e peróxido de nitrogênio.

34. Em fogo provocado por sódio metálico não devem ser utilizados extintores de incêndio à base de gás carbônico, pois esse gás pode reagir com o metal aquecido, conforme a equação química abaixo.

$$4 \text{ Na} + 3 \text{ CO}_2 \rightarrow 2 \text{ Na}_2 \text{CO}_3 + \text{C}$$

Assinale a afirmação correta sobre essa reação e as substâncias nela envolvidas.

- (A) Essa é uma reação de auto-oxirredução.
- (B) Na reação, os átomos de sódio sofrem oxidação, enquanto a totalidade dos átomos de oxigênio sofre redução.
- (C) No sódio metálico, os átomos de sódio apresentam estado de oxidação +1.
- (D) Na reação, a totalidade dos átomos de carbono sofre redução.
- (E) Os átomos de carbono presentes no CO₂ apresentam o mesmo estado de oxidação que os átomos de carbono presentes no Na₂CO₃.

35. A lagarta-rosada (Pectinophora gossypiella) é considerada uma das pragas mais importantes do algodoeiro. Armadilhas de feromônio sexual à base de gossyplure permitem o monitoramento da infestação e a consequente redução das aplicações de inseticidas.

Observe a estrutura da molécula de gossyplure.

Considere as seguintes afirmações a respeito dessa molécula.

- I Ela apresenta 18 átomos de carbono.
- II Ela apresenta duas ligações duplas C=C com configuração geométrica cis.
- III- Trata-se de um éster cujo grupamento ligado ao oxigênio é uma cadeia alifática insaturada.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) Apenas I e III.

36. O fosfato de oseltamivir foi desenvolvido e produzido pelos laboratórios Roche sob o nome comercial de Tamiflu e tem sido amplamente utilizado na pandemia de gripe A (H1N1). Trata-se de um pró-fármaco, pois não possui atividade viral. No organismo, ele é biotransformado em carboxilato de oseltamivir, que é ativo contra os vírus influenza A e B.

A estrutura do fosfato de oseltamivir está representada abaixo.

Fosfato de oseltamivir

A respeito do fosfato de oseltamivir, é correto afirmar que ele

- (A) contém em sua estrutura os grupos metila, etila e sec-butila.
- (B) apresenta carbonos assimétricos.
- (C) apresenta um anel aromático tetrassubstituído.
- (D) tem estrutura inteiramente planar.
- (E) n\u00e3o \u00e9 hidrossol\u00edvel, devido \u00e0 presen\u00f3a do grupo fosfato.

37. Numa aula de química, o professor colocou num copo de Becker 50 mL do solvente X, 50 mL do solvente Y e 200 mg do composto Z. Após agitação vigorosa, foi obtido o sistema bifásico representado a seguir.

O composto Z havia sido retirado de uma prateleira em que só havia como reagentes químicos o benzoato de sódio (C_6H_5COONa) e o benzoato de etila ($C_6H_5COOCH_2CH_3$).

A tabela abaixo mostra duas propriedades de solventes disponíveis que poderiam ter sido utilizados nesse experimento.

	Solventes							
Propriedades	Clorofórmio	Etanol	Hexano	Água				
Miscibilidade em água	Praticamente imiscível	Totalmente miscível	Imiscível					
Densidade (g/mL)	1,48	0,71	0,66	1,00				

Considerando-se os dados da tabela, os solv<mark>entes X e Y e o</mark> composto Z utilizados no experimento foram, respectivamente,

- (A) hexano, água e benzoato de etila.
- (B) água, hexano e benzoato de sódio.
- (C) clorofórmio, água e benzoato de sódio.
- (D) água, clorofórmio e benzoato de etila.
- (E) etanol, água e benzoato de sódio.
- **38.** Ao serem descobertos e identificados, muitos compostos orgânicos isolados de vegetais receberam nomes em função da espécie em que foram encontrados. Em alguns casos, esse "batismo" do novo composto levou a nomes peculiares, como, por exemplo, os casos do megaphone e do clitoriacetal, que estão presentes nas raízes da *Aniba megaphylla* e da *Clitoria macrophylla*, respectivamente.

Observe a estrutura dos dois compostos referidos.

$$H_3CO$$
 H_3CO
 H_3C

As funções orgânicas comuns às estruturas do megaphone e do clitoriacetal são

- (A) ácido carboxílico, éter e fenol.
- (B) álcool, cetona e éster.
- (C) álcool, éster e fenol.
- (D) álcool, cetona e éter.
- (E) cetona, éter e fenol.

39. Observe abaixo a estrutura do aspartame, um composto usado como adoçante.

Aspartame

Considere as seguintes afirmações sobre esse composto.

- I Por ser um adoçante, o aspartame é considerado um glicídio.
- II Por possuir ligação peptídica, o aspartame pode ser classificado como proteína.
- III- Um dos aminoácidos que origina o aspartame apresenta fórmula HO₂CCH₂CH(NH₂)CO₂H,

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) Apenas I e III.

40. Observe a figura que segue, que representa duas reações consecutivas. Na primeira, o composto C₉H₁₀O, na presença de catalisador e aquecimento, perde água, levando à formação do indeno. Na segunda reação, o indeno reage com Br₂, levando à formação do composto C₉H₈Br₂.

$$C_9H_{10}O$$

$$\begin{array}{c} \triangle \\ -H_2O \end{array}$$
indeno
$$\begin{array}{c} Br_2 \\ C_9H_8Br_2 \end{array}$$

Assinale a alternativa que apresenta os compostos C₉H₁₀O e C₉H₈Br₂, respectivamente.

41. O atleta Michael Phelps é considerado um fenômeno na natação. Contribui para esse sucesso uma particularidade metabólica que lhe confere uma recuperação fora do comum. Enquanto a maior parte dos nadadores, depois das competições, apresenta uma média de 10 milimols de ácido lático por litro de sangue, o nadador campeão apresenta apenas 5,6 milimols.

Fonte: Veja, n. 2073, p. 122, 13 ago. 2008.

As concentrações de ácido lático $(C_3H_6O_3)$, em gramas por litro de sangue, que correspondem, respectivamente, a $10 \,$ milimols/L e $5,6 \,$ milimols/L, são de aproximadamente

- (A) 1×10^{-1} e 5.6×10^{-1} .
- (B) 1×10^{-3} e 5.6×10^{-3} .
- (C) 4.5×10^{-1} e 2.5×10^{-1} .
- (D) 9×10^{-1} e 5×10^{-1} .
- (E) 9×10^{-3} e 5×10^{-3} .
- **42.** Um laboratorista preparou 100 mL de uma solução aquosa contendo 4,0 g de NaOH, e um colega seu preparou uma solução aquosa de igual volume, mas contendo 4,0 g de KOH.

Sobre essa situação, são feitas as seguintes afirmações.

- I A primeira solução é mais básica que a segunda.
- II Ambas as soluções requerem 50 mL de HCℓ 2,0 mol L⁻¹ para a sua neutralização.
- III- A primeira solução apresenta pH = 14.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) Apenas I e III.

43. Assinale a alternativa que completa corretamente as lacunas no texto abaixo, na ordem em que aparecem.

Dois copos contendo igual volume de líquido são colocados sob uma campânula impermeável, como na figura que segue.

O copo 1 contém água do mar e o copo 2 água pura. Com o tempo, o líquido do copo 1 apresentará um volume líquido do copo 2. Esse fato se explica pelo efeito

- (A) maior que o tonoscópico
- (B) menor que o tonoscópico
- (C) igual ao osmótico
- (D) maior que o osmótico
- (E) menor que o osmótico
- 44. Observe a seguinte tabela.

Ligação	ΔH (kJ mol ⁻¹)
C-H	412
C-C	348
C = C	612
H-H	436

De acordo com as entalpias de ligação relacionadas na tabela, qual será a variação de entalpia da reação de hidrogenação do trans-2-buteno?

- (A) -124 kJ mol^{-1} .
- (B) -80 kJ mol^{-1} .
- (C) $+ 44 \text{ kJ mol}^{-1}$.
- (D) $+ 80 \text{ kJ mol}^{-1}$.
- (E) + 124 kJ mol^{-1} .

45. Observe as quatro equações termoquímicas abaixo.

$$\begin{split} &\text{CaO (s)} + \text{H}_2\text{O} (\ell) \rightarrow \text{Ca(OH)}_2 (\text{s}) \qquad \Delta \text{H}_{\text{I}} \\ &\text{S (rômb.)} + \text{O}_3 (\text{g}) \rightarrow \text{SO}_3 (\text{g}) \qquad \Delta \text{H}_{\text{II}} \\ &\text{C (graf.)} + \text{O}_2 (\text{g}) \rightarrow \text{CO}_2 (\text{g}) \qquad \Delta \text{H}_{\text{III}} \\ &\text{6 C (graf.)} + 3 \text{ H}_2 (\text{g}) \rightarrow \text{C}_6\text{H}_6 (\ell) \qquad \Delta \text{H}_{\text{IV}} \end{split}$$

Com base nessas informações, assinale a alternativa correta.

- (A) Os calores envolvidos nas reações correspondem todos a entalpias de formação.
- (B) ΔH_I corresponde a um calor de neutralização.
- (C) ΔH_{III} e ΔH_{IV} são calores de formação.
- (D) ΔH_{II} e ΔH_{III} são calores de combustão.
- (E) ΔH_I corresponde a um calor de solubilização.

46. Observe o gráfico abaixo, no qual a concentração do reagente e do produto de uma reação elementar A → B foi monitorada em função do tempo.

Assinale a alternativa correta a respeito dessa reação.

- (A) A reação ultrapassa o equilíbrio, porque a concentração final do produto é maior do que a do reagente.
- (B) A velocidade de desaparecimento de A é sempre igual à velocidade de formação de B.
- (C) A velocidade de formação de B torna-se maior que a velocidade de desaparecimento de A após o ponto em que as curvas se cruzam.
- (D) A velocidade da reação direta é igual à velocidade da reação inversa no ponto em que as curvas se cruzam.
- (E) A lei cinética para essa reação é v = k [A] [B].

47. Considere a reação abaixo, que está ocorrendo a 556 K.

$$2 \text{ HI } (g) \rightarrow H_2 (g) + I_2 (g)$$

Essa reação tem a sua velocidade monitorada em função da concentração, resultando na seguinte tabela.

[HI] (mol L ⁻¹)	Veloc. (mol L ⁻¹ s ⁻¹)
0,01	3.5×10^{-11}
0,02	14 × 10 ⁻¹¹

Nessas condições, o valor da constante cinética da reação, em L mol⁻¹ s⁻¹, é

- (A) 3.5×10^{-11} .
- (B) 7.0×10^{-11} .
- (C) 3.5×10^{-9} .
- (D) 3.5×10^{-7} .
- (E) 7.0×10^{-7} .

48. A reação de síntese do iodeto de hidrogênio, representada a seguir, é muito utilizada em estudos de equilíbrio químico.

$$H_2 + I_2 = 2 HI$$

Essa reação atinge o equilíbrio químico após um tempo suficientemente longo. Depois de atingido o equilíbrio, no tempo t₁, é adicionada uma dada quantidade de H₂.

Assinale o gráfico que melhor representa a evolução das concentrações com o tempo.

49. Observe a reação química que segue.

$$NO_2(g) + CO(g) \rightarrow CO_2(g) + NO(g)$$

Nessa reação, apenas o NO2 (g) apresenta coloração vermelho-castanha; os demais reagentes e produtos são incolores.

Considere as seguintes afirmações a respeito dessa reação, que se realiza isotermicamente.

- I Ao se partir de uma mistura equimolar de NO₂ e CO, chega-se, após um tempo suficientemente longo, a uma mistura com a mesma coloração a que se chegaria caso se partisse de uma mistura equimolar de CO₂ e NO.
- II Ao se partir de uma mistura de dois mols de NO₂ e 1 mol de CO, chega-se a uma mistura com a mesma coloração a que se chegaria caso se partisse de uma mistura equimolar dos reagentes.
- III- No equilíbrio, as velocidades das reações direta e inversa são iguais e, portanto, a coloração do sistema não mais se altera.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) Apenas I e III.
- **50.** A eletrólise de uma solução aquosa concentrada de cloreto de sódio é uma reação de grande importância. A partir de reagentes simples e baratos, essa reação permite a obtenção de cloro e hidrogênio gasosos, entre outros produtos.

Observe os potenciais-padrão de redução abaixo.

$$C\ell_2(g) + 2e^-$$
 = $2C\ell^-(aq)$ $e^\circ = 1,36 \text{ V}$
 $O_2(g) + 4H^+(aq) + 4e^-$ = $2H_2O(\ell)$ $e^\circ = 1,23 \text{ V}$
 $2H^+(aq) + 2e^-$ = $H_2(g)$ $e^\circ = 0,00 \text{ V}$
 $2H_2O(\ell) + 2e^-$ = $H_2(g) + 2OH^-(aq)$ $e^\circ = -0,83 \text{ V}$
 $Na^+(aq) + e^-$ = $Na(s)$ $e^\circ = -2,71 \text{ V}$

Assinale a afirmação correta sobre a célula eletrolítica envolvida nesse processo de eletrólise.

- (A) O pH da solução aumenta à medida que a reação prossegue.
- (B) O potencial que ela fornece é de 1,36 V.
- (C) A reação anódica é: $2 H_2O(\ell) + 2 e^- \Rightarrow H_2(g) + 2 OH^-(aq)$.
- (D) Ocorre deposição de sódio metálico no cátodo.
- (E) Hidrogênio e cloro são liberados no mesmo eletrodo.