CONVERSOR ANALOGICO DIGITAL

ADC

¿Por qué es importante un ADC?

- •Todos los microcontroladores almacenan información utilizando la lógica digital.
- Comprime la información a formato digital para un almacenamiento eficiente.
- Medio para almacenar datos digitales es más robusto.
- •La transferencia de datos digitales más eficiente.
- Proporciona un vínculo entre las señales del mundo real y de almacenamiento de datos.

A Student Chapter of the IEEE Circuits and Systems Society

Convertidor Analógico digital

Un dispositivo ADC fue creado para representar en una palabra digital el nivel de voltaje existente a la entrada de este. En otras palabras, para tomar una muestra de una señal análoga en un instante de tiempo, cuantificarla y darle un código digital (comúnmente binario) que representa la cantidad de niveles a los cuales pertenece la muestra.

A Student Chapter of the IEEE Circuits and Systems Society

Convertidor Analógico digital

Parámetros del ADC

- -Voltaje de referencia Vref+, Vref-
- -Resolución (bits del ADC) 8, 10, 12, 16, 24, 32 bits
- -Samples (muestras por segundo) KSps, MSps

Paso de Cuantización

$$\delta = \frac{(V \text{ref+}) - (V \text{ref-})}{2^{n} bits}$$

$$\delta = \frac{5v - 0v}{4} = 1.25 \text{ v}$$

Α	В	Voltaje
0	0	0 v
0	1	1.25 v
1	0	2.50 v
1	1	3.75 v

$$\delta = \frac{5v - 0v}{8} = 0.625 v$$

Α	В	С	Voltaje
0	0	0	0 v
0	0	1	0.625 v
0	1	0	1.250 v
0	1	1	1.875 v
1	0	0	2.5 v
1	0	1	3.125 v
1	1	0	3.75 v
1	1	1	4.37 v

A Student Chapter of the IEEE Circuits and Systems Society

¿Bits de un ADC?

Ejemplo ADC de 3 bits=8 valores (2^n)

A Student Chapter of the IEEE Circuits and Systems Society

ADC 10 bits

10-bits ADC = 2^10 = 1024 valores digitales

¿Cuál es el rango de voltaje entre cada valor digital?

$$\delta = V \text{ref} / 2^{\text{holits}}$$

$$\delta = 5V / 1024 = 4.88mV$$

```
0v = 00 00000000 0
```

$$9.76 \text{mv} = 00\,0000010$$

. . .

• • •

5v = 11 1111111 1023

A Student Chapter of the IEEE Circuits and Systems Society

ADC 12 bits

```
12-bits ADC = 2^12 = 4096 valores digitales
```

¿Cuál es el rango de voltaje entre cada valor digital?

$$\delta = V \text{ref} / 2^{\text{holits}}$$

$$\delta = 5V / 4,096 = 1.22mV$$

```
0v = 0000 0000000 0
```

$$2.44$$
mv = 0000 0000010 2

...

• • •

...

5v = 1111 1111111 4095

Relación de conversión para un ADC

$$Vin = \frac{(Vref+) - (Vref-)}{2^n bits} * valor convertido$$

Conversión Automatica

- Note 1: Sampling starts automatically after conversion.
 - 2: Conversion starts upon trigger event.
 - 3: Sampling starts automatically after conversion.
 - 4: Conversion starts upon trigger event.

Secuencia de conversión de muestras multicanal

A Student Chapter of the IEEE Circuits and Systems Society

Formato de salida

UART

Universidad Nacional de Ingeniería IEEE Student Branch

A Student Chapter of the IEEE Circuits and Systems Society

UART- ¿Qué es?

Es un periférico de comunicación serial capaz de enviar y recibir información. El módulo contiene el generador de clock, registros de corrimiento, y los buffers de datos necesarios para realizar transmisión y recepción de datos independiente de las rutinas de software.

Es utilizado para comunicar el microcontrolador con otros dispositivos externos como pueden ser sensores, módulos, computadoras u otro microcontrolador.

Paralelo vs Serial

Comunicación Paralela es más rápida pero requiere de más pines GPIO del microcontrolador

Comunicación Serial es más lenta pero requiere menos pines del Microcontrolador. Puede trabajar desde 1 o 2 pines.

Características del puerto serie

Compatible con el estándar RS232

Los puertos en el ordenador son denominados COM. Ej COM1,

COM2 etc.

Dos tipos de conectores establecidos por la norma RS232:

- c DB-25
 - DB-9

A Student Chapter of the IEEE Circuits and Systems Society

DB-9 pines

Para comunicarse con un microcontrolador es suficiente con tres líneas:

TX

RX

GND

A Student Chapter of the IEEE Circuits and Systems Society

RS-232 Example Transmission

Configuration: 8 - O - 1 (8 data bits, Odd Parity, 1 Stop Bit)

ASCII code for 'V': 0x56 (01010110b)

HI

LO

HSB PARITY STOP IDLE

+15V
+3V
-5V
-5V

MARK
-15V

A Student Chapter of the IEEE Circuits and Systems Society

MAX232

Convierte los niveles RS232 a voltajes TTL y viceversa.

MAX220, MAX232, MAX232A: Pin Configuration and Typical Operating Circuit

Formato de datos

Según la norma RS232, la información se envía en 4 partes:

Bit inicio (Start)

Byte de datos

Bit de paridad

Bit de parada (Stop)

Calculo de Baudio

Equation 3-1: UARTx Baud Rate (BRGH = 0)

$$Baud Rate = \frac{F_P}{16 \times (UxBRG + 1)} \dots (1)$$

$$UxBRG = \frac{F_P}{16 \times Baud\ Rate} - 1 \dots (2)$$

Note: FP denotes the instruction cycle clock frequency (Fosc/2).

Esquema de conexión con convertidor USB-Uart/TTL

Esquema de conexión con MAX232 y cable SERIAL

Conexión a otros dispositivos

Conexión a otros dispositivos

A Student Chapter of the IEEE Circuits and Systems Society

Trasmisor Serial

A Student Chapter of the IEEE Circuits and Systems Society

Recepción Serial

A Student Chapter of the IEEE Circuits and Systems Society

Registros

TABLE 4-13: UART1 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000	
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110	
U1TXREG	0224	_	_	_	_	_	_	_	UTX8	UART Transmit Register									
U1RXREG	0226	_	_	_	_	_	_	_	URX8	UART Received Register									
U1BRG	0228	Baud Rate Generator Prescaler												0000					

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: UART2 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL	_<1:0>	STSEL	0000	
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	1	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110	
U2TXREG	0234	_	_	_	_	_	_	_	UTX8	UART Transmit Register									
U2RXREG	0236	_	_	_	_	_	_	_	URX8	UART Receive Register									
U2BRG	0238	Baud Rate Generator Prescaler													0000				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IMUCHAS GRACIAS!

Telf: 943874659

Correo:

godo.electronica@gmail.com

