Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektronických měření

PROTOKOL O MĚŘENÍ

Název úlohy

ZESILOVAČ - OSCILÁTOR

Číslo úlohy

101-4R

Zadání

- 1. Podle přípravku nakreslete schéma zapojení selektivního nf zesilovače, označte všechny součástky a jejich jmenovité hodnoty.
- 2. Změřte a na mm papír zakreslete závislost modulu přenosu na frekvenci $A_u = f(f)$ u selektivního nf zesilovače nastavte $P_1 = 7$, $P_2 = 7$. Určete f_0 a šířku pásma pro pokles zesílení o 3 dB.
- 3. Realizujte oscilátor ze selektivního nf
 zesilovače vhodným propojením vstupu a výstupu. Pro $P_1=9$
a $P_2=7$ výstup na hranici limitace. Změřte tyto parametry výstupního napětí u_o oscilátoru: periodu, frekvenci, rozkmit, efektivní a střední hodnotu.
- 4. Nakreslete na mm papír graf výstupního napětí $u_o = f(t)$ oscilátoru. Změřené hodnoty z osciloskopu ověřte výpočtem, krok času zvolte $\frac{T}{8}$.
- 5. Změřte a vypočítejte krátkodobou stabilitu frekvence oscilátoru v časovém intervalu 10 minut.

Poř. č.	PŘÍJMEI	IENÍ a Jméno				Třída	Skupina	Školní rok	
26		VYKYDAL Jan				4A	3	2014	/2015
Datum měření		Datum	odevzdání	Počet listů		Klasifikace			
						příprava	meření	protokol	obhajoba
14.1.		21.1.		8					
Protokol o měření obsahuje:		Teoretický úvod		Ta	Tabulky naměřených a vypočtených hodnot				
		Schéma		Vzor výpočtu					
		Tabulka použitých přístrojů		Gr	Grafy				
		Postup měř	ŕení	Zá	věr				

Teoretický úvod

Selektivní zesilovač

Selektivní zesilovač je zařízení, určené k zesilování signálů úzké části spektra. K potlačení ostatních signálů se používá paralelní laděný obvod zapojený do kolektoru tranzistoru. Tento laděný obvod na rezonanční frekvenci má nejvyšší odpor, tudíž na rezonančním obvodu vzniká větší úbytek napětí než na frekvencích nerezonančních. Použité zapojení je ještě doplněno induktivní vazbou. Tato vazba umožňuje impedanční přizpůsobení obvodu. Tento způsob přizpůsobení je vhodnější, než navázat na kolektor přes vazební kondenzátor rezistor proti zemi, protože by se nám výstupní napětí dělilo mezi námi navázaný odpor a impedanci v kolektoru. Selektivní zesilovače nalézají své uplatnění například v audio technice, kde mohou sloužit k filtrování signálů určených pro různé reproduktory. Další využití tohoto zesilovače je v oscilátorech.

Oscilátor se selektivním zesilovačem

Pokud bychom chtěli vytvořit obvod, který by osciloval, založený na kladné zpětné vazbě, tak bychom museli splnit dvě oscilační podmínky. První podmínka je amplitudová. Říká že napěťový přenos zařízení ze kterého chceme udělat oscilátor musí být větší nebo roven jedné. V praxi musí být větší než jedna, protože na vedení dochází ke ztrátám. Navíc použité součástky mají do ideálních velmi daleko a mívají obvykle celou řadu parazitních vlastností. Druhá podmínka je fázová. Říká nám že výsledný fázový posuv obvodu musí být nula.

Šířka pásma selektivního zesilovače

Jak již bylo řečeno v prvním odstavci, selektivní zesilovač je určen k zecilování úské části spektra. Zesilované pásmo je dáno vztahem:

Vztah pro výpočet šířky pásma:

kde:

Horní a dolní mezní frekvence se poznají velmi snadno. Jsou definovány jako frekvence při nichž napěťový přenos klesne o 3~dB oproti mezní frekvenci.

Vztah pro výpočet napěťového přenosu:

 $A_u = \frac{U_O}{U_I} \tag{2}$

kde:

Odvození A_u pro pokles o 3 dB

 $a_{u} = 20 \log A_{u}$ $-3 = 20 \log A_{u}$ $10^{-\frac{3}{20}} = A_{u}$ (3)

kde:

Schémata

Schéma č. 1: Nastavení referenční úrovně vstupního signálu

Schéma č. 2: Měření závislosti $A_u = f(f)$

Schéma č. 3: Měření oscilátoru

Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Typ	Evidenční číslo	
M_1	milivoltmetr	TESLA BM-597	0210C	
M_2	osciloskop	RIGOL DS1052E	133001	
M_3	čítač	U2000	0179b	
FG	generátor funkcí	GFG-8217A	131101	
Z_1	regolovaltelný ss. zdroj	TESLA BK-127	0139	

Tabulka č. 1: Použité přístroje

Postup měření

Analýza obvodu

- Důkladně si prohlédneme měřící přípravek a identifikujeme jednotlivé součástky.
- Nakreslíme si schéma zapojení. Pokud bude přípravek promiňte mi ten výraz "nasoplený" jako většina přípravků, neobejdete se při analyzování obvodu bez DMM.
- Když máme schéma nakreslené, tak ještě dle prvního budu zadání doplníme hodnoty součástek.

Měření frekvenční závislosti $A_u = f(f)$

- Zapojíme obvod dle schématu č.1. a nastavíme R_1 a R_4 do poloh dle zadání.
- Na generátoru nastavíme frekvenci frekvenci od které chceme začít obvod zkoumat.
- Nastavíme si na generátoru požadovanou úroveň. V našem případě jsme zvolili jeden volt. Tuto úroveň budeme považovat za konstantní.

- Zapojíme schéma dle schématu č.2.
- Ladíme na generátoru frekvence a měříme pomocí milivoltmetru odezvu obvodu.
- Když rafička dosáhne maxima, tak si zapíšeme mezní frekvenci a výstupní napětí.
- \bullet Dle vztahu (3) si dopočítáme jaké napětí dosáhneme při poklesu o 3 dB.
- Ladíme generátor nad a pod mezní frekvenci až najdeme mezní frekvence. Poznáme je podle toho že milivoltmetr bude ukazovat námi spočítanou hodnotu napětí při poklesu o 3 dB.
- Lazením generátoru si obvod proměříme v okolí propouštěného pásma.

Měření oscilátoru

- \bullet Zapojíme obvod dle schématu č.3. a nastavíme R_1 a R_4 do poloh dle zadání.
- Pomocí digitálního osciloskopu a čítače změříme požadované veličiny.

Tabulky naměřených a vypočítaných hodnot

č.měření	f[kHz]	$U_O[V]$
1	1,00	1,50
2	1,10	2,10
3	1,20	2,80
4	1,30	3,20
5	1,40	3,40
6	1,50	3,10
7	1,60	3,00
8	1,70	2,80
9	1,80	2,70
10	1,90	2,40
11	2,60	1,00

Tabulka č. 2: Měření závislosti $A_u = f(f)$. Měřeno při $U_I = 1$ $V \Rightarrow A_u$ má stejnou hodnotu jako U_O , jen nemá jednotku, proto jej v tabulce neuvádím. Chyba pro měření milivoltmetrem je uvedena v dokumentaci, $\delta_{mv\%} = \pm 6\%$.

název měřené veličiny	měřená veličina	naměřená hodnota
dolní frekvence zesilovače	f_D	$1,1478 \ kHz$
rezonanční frekvence zesilovače	f_o	1,47675~kHz
horní frekvence zesilovače	f_H	1,9062~kHz
šířka pásma	В	758, 4~Hz

Tabulka č. 3: Důležité frekvenční parametry zesilovače.

název měřené veličiny	měřená veličina	naměřená hodnota
perioda	T	678~us
oscilační frekvence	f_o	$1,47675 \ kHz$
maximální hodnota napětí	U_{MAX}	4 V
rozkmit napětí	U_{PP}	7,84 V
efektivní hodnota napětí	U_{RMS}	2,77 V
střední hodnota napětí	U_{AVG}	17,3~mV

Tabulka č. 4: Měření základních parametrů oscilátoru pomocí digitálního osciloskopu.

ĺ	t [us]	0	100	200	300	400	500	600	700	800
	$u_{osc} [V]$	0	2	4	2	-2	-4	-3	0	3
ĺ	$u_{vyp} [V]$	0,000	3,201	3,839	1,403	-2,156	-3,989	-2,628	0,837	3,632

Tabulka č. 5: Měřené a teoretické časové průběhy napětí.

název frekvence	f[kHz]
f_1	1,4768
f_2	1,4805
f_3	1,4769
f_4	1,4768
f_5	1,4769
f_6	1,4768
f_7	1,4773
f_8	1,4768
f_9	1,4768
f_{10}	1,4769
f_{prum}	1,4773

Tabulka č. 6: Měření časové stability frekvence.

Vzory výpočtů

Výpočet šířky pásma provádím dosazením do vztahu (1):

$$B = f_H - f_D = 1,9062 - 1,1478 = \underline{758,4 \text{ } Hz}$$

Výpočet průměrné frekvence oscilátoru:

$$f_{prum} = \frac{\sum_{i=1}^{10} f_i}{10} \doteq \underline{1,4773~kHz}$$

Výpočet teoretické hodnoty výstupního napětí:

$$u(t) = U_{MAX} \sin(2\pi f t + \varphi) = 4 \sin(2\pi \cdot 1, 47675 \cdot 10^{-3} \cdot 0 + 0) = \underline{0 \ V}$$

Výpočet frekvenční stability:

$$stab = \frac{f_{MAX} - f_{MIN}}{f_{prum}} = \frac{1,4805 - 1,4768}{1,4773} = \frac{37}{14773} \doteq \underbrace{0,0025}_{}$$

Grafy

Závěr

Chyby měřících přístrojů

Procentuální chyba použitého milivoltmetru TESLA BM-579 je uvedena v katalogu pro námi použitý rozsah $(1-30~V)~\pm6~\%$. Jelikož byl použitý digitální osciloskop, tak v měřeném signálu bude chyby měření způsobená kvantováním. Chybu použitého osciloskopu RIGOL DS1052E se mi ale nepodařila nikde dohledat. Chyba použitého čítače U2000 bohužel na publicku také není k nalezení.

Zhodnocení

- 1. Analyzoval jsem obvod měřícího přípravku. Výstupem bylo schéma zapojení se jmenovitými hodnotami použitých prvků.
- 2. Na mm papír jsem zaznamenal frekvenční charakteristiku závislosti $A_u = f(f)$. Při měření byla zjištěna $f_D = 1,1478 \; kHz$ a $f_H = 1,9062 \; kHz$. S těchto údajů byla spočítána šířka pásma selektivního zesilovače $B = 758,4 \; Hz$.
- 3. Úpravou obvodu jsem získal ze selektivního zesilovače n
f oscilátor, který osciluje na průměrné frekvenci $f_{prum}=1,4773\ kHz$. Byli změřeny parametry zadané v bodu zadání 3 a přehledně shrnuty v tabulce číslo 4. Při měření bylo zjištěno že do výstupu je přimíchána stejnosměrná složka $U_{AVG}=17,3\ mV$.
- 4. Na milimetrový papír byl zakreslen graf výstupního napětí oscilátoru a to jak naměřených hodnot, tak i spočítaných hodnot teoretických. Bylo zjištěno že výstupní napětí zjevně obsahuje další harmonické, protože s teoretickým hodnotám úplně neodpovídá.
- 5. V posledním bobu zadání byla shrnuta stabilita frekvence oscilátoru, která byla stanovena výpočtem uvedeným výše. Koeficient frekvenční stabilizace vyšel 0,0025. Při měření nejvyšší naměřená frekvence byla $f_{MAX}=1,4805\ kHz$. Nejnižší naměřená frekvence dosáhla hodnoty $f_{MIN}=1,4768\ kHz$. Průměrná frekvence byla spočtena s deseti naměřených hodnot měřených v minutových intervalech zaznamenaných do tabulky číslo 6. Její hodnota je $f_{prum}=1,4773\ kHz$.