Measurement of correlation of A pairs with the ATLAS detector

Hok-Chuen Cheng
(University of Michigan, Ann Arbor)

DPF 2015 Meeting UM, Ann Arbor August 4-8, 2015

Introduction

Λ⁰ (uds) Lightest baryon containing a strange quark

K. Heller (1990)

Mass = 1115.683 +/- 0.006 MeVMean life = $(2.632 +/- 0.020) \times 10^{-10} \text{ s}$

Parity-violating decay parameter

$$\alpha = 0.642 + (-0.013 (\Lambda^0 -> p\pi^-)$$

First measured at UMich!

Major decay channels

$$\mathcal{BR} (\Lambda^0 -> p\pi^-) = (63.9 +/- 0.5)\%$$

 $\mathcal{BR} (\Lambda^0 -> n\pi^0) = (35.8 +/- 0.5)\%$

Unresolved polarization puzzle

Some recent hyperon measurements at ATLAS

- $\triangleright \Lambda^0$ and anti- Λ^0 polarization (arXiv:1412.1692)
- \succ K_s and Λ ⁰ production (<u>arXiv:1111.1297</u>)
- $ho \alpha_b$ parity-violating asymmetry parameter and helicity amplitude for Λ^0_b decay (arXiv:1404.1071)

Source: PDG booklet (2012)

Motivation

- As a probe to ssbar and hence quarkantiquark pair production, e.g. Lund string model (arXiv:1108.5319)
- Previous measurements carried out at OPAL, DELPHI, SELEX and ALEPH at lower energies
- Fermi-Dirac correlation (identical fermions in vicinity forbidden to be in the same quantum state) between like-type Λ^0 hyperon pairs observed

S = 1 state

Decay angles

Decays:

$$\Lambda^0 \to p\pi^-, \bar{\Lambda}^0 \to \bar{p}\pi^+$$

Single particle decay angle PDF:

$$w(\cos\theta^*) = \frac{1}{2} \left(1 + \alpha P \cos\theta^* \right)$$

 α : parity-violation decay parameter

P: polarization in the direction of parent

2D joint decay angles PDF:

$$\frac{d^2N}{d\cos\theta_1 d\cos\theta_2} = \frac{N_{totol}}{4}(1 + P_1\alpha\cos\theta_1)(1 - P_2\alpha\cos\theta_2)$$
 for $\Lambda^0\bar{\Lambda}^0$

Spins anti-aligned:
$$(P_1, P_2) = (1, 1)$$
 or $(-1, -1) \rightarrow PDF \propto (1 - \alpha^2 \cos \theta_1 \cos \theta_2)$

Spins aligned:
$$(P_1, P_2) = (1, -1) \text{ or } (-1, 1) \rightarrow \text{PDF} \propto (1 + \alpha^2 \cos \theta_1 \cos \theta_2)$$

Spins anti-aligned

arXiv:1108.5319

 p_2

DPF2015 (hccheng@umich.edu)

Data and event selection

Data sample

- Data 2010, Vs = 7 TeV, collected at ATLAS
- Muon stream with trigger selection removed to maximize data statistics

Reconstruction and Selection

- ATLAS V0Finder is used to reconstruct secondary vertex
- $ightharpoonup \Lambda^0$ invariant mass, track quality, ho removal, K_s removal, A_0 and L_{xy} cuts (See backup for more details)

Selection results

V ⁰ type			$ar{\Lambda}^0 ar{\Lambda}^0$ ne event)	$\Lambda^0 ar{\Lambda}^0$ (uncorrelated)
Events	295k	140k	114k	4.9M

Analysis strategy

- 1. Build data-driven templates for different A's using uncorrelated sample, weighted by the factor (1 $A_{True}\alpha^2\cos\theta_1^{reco}\cos\theta_2^{reco}$)
- 2. Templates are weighted to kinematics of data iteratively
- 3. Correlation parameter $\langle \cos \theta_1 \cos \theta_2 \rangle \langle \cos \theta_1 \rangle \langle \cos \theta_2 \rangle$ is calculated for data and templates
- A is extracted from data as a function of Q

Iterative weighting

- Detector effects depend on kinematics of V⁰ pairs -> affect efficiency and acceptance as well as value of corr. para.
- 9 variables listed below were used to weight templates to data in bins of relative 4-momenta Q

Kinematics before and after weighting

Kinematics before and after weighting

Correlation parameter vs Q

- Correlation parameter defined as
 <cosθ₁cosθ₂> <cosθ₁> <cosθ₂>
- Calculated for data and template as a function of relative 4-momenta Q (Right)
- Structure caused by track p_T threshold (Below: test with toy MC for diff. cuts)

Template (A = -1)

6000

8000

-0.06

-0.08

2000

4000

10000

Q [MeV]

Extraction of A

- Bin-by-bin extraction of A, quadratic interpolation between templates
- A is extracted by looking for A_{True} where data and template interpolation curves cross (Green arrow below)
- Data and template statistical uncertainties computed by varying corr. para.
 of data and templates up and down by 1 σ respectively
- More templates at different A values to finalize our results

Extraction of A (Con't)

- **Unlike-type:** all consistent with A = 0 within statistical uncertainty for 0<Q<10 GeV (Top right plot)
- **Like-type:** deviation from A = 0 for Q<2 GeV (Bottom right plot)
- Data and template statistics added in quadrature
- Uncertainty dominated by data statistics

ATLAS Work in progress

Fermi-Dirac correlation

Our results (Right)

- Non-zero correlation for Q<2 GeV
- Depletion of differential XS for liketype events

ALEPH results (Below)

- Non-zero correlation for like-type events for Q<2 GeV
- Suppression of S=1 state

Systematic uncertainties

Ongoing work on systematics:

- ➤ Template statistics ✓
- Kinematic weighting
- Decay angle resolution
- ➤ Background
- Histogram binning
- ➤ Track p_T resolution
- ➤ Track p_T scale
- \triangleright Uncertainty of α parameter

Tested effect of **kinematic weighting** on uncorrelated (above) minbias sample and one weighted to A = 1 (below)

Summary

- ightharpoonup No correlation observed for Λ^0 $\bar{\Lambda}^0$ pairs, consistent with previous measurements
- Hints of non-zero correlation between like-type Λ⁰ hyperon pairs in small Q(< 2 GeV) region</p>
- Fermi-Dirac suppression observed for like-type Λ^0 hyperon pairs in the same region
- Ongoing work on systematic uncertainties
- Many other new hyperon physics results coming from ATLAS soon! (ATLAS <u>SoftQCD</u> public results)
- Stay tuned!

BACKUP

Decay Angle Distributions (Ellis, 2011)

arXiv:1108.5319

• Two dimensional decay distribution:

$$\frac{d^2N}{d\cos\theta_1d\cos\theta_2} = \frac{N_{totol}}{4}(1+P_1\alpha\cos\theta_1)(1-P_2\alpha\cos\theta_2)$$

- where $\alpha = 0.642 \pm 0.013$.
- For production via scalar 3P_0 or pseudoscalar 1S_0 coupling, the spins will be antialigned and we have either $P_1 = 1$, $P_2 = 1$ or $P_1 = -1$, $P_2 = -1$.
 - $\propto (1-\alpha^2\cos\theta_1\cos\theta_2)$
- For production via vector coupling, the spins will be aligned and we have either $P_1 = 1$, $P_2 = -1$ or $P_1 = -1$, $P_2 = 1$
 - $\propto (1+\alpha^2\cos\theta_1\cos\theta_2)$
- Hence, we define A as follow:
 - $w(\cos\theta_1,\cos\theta_2) = 1 + A\alpha^2\cos\theta_1\cos\theta_2$
 - where $A = \frac{N_{aligned} N_{antialigned}}{N_{total}}$.

Λ⁰ Selection

- Selection criteria for Λ^0 and $\overline{\Lambda^0}$
 - $1100 MeV < M_{\Lambda} < 1135 MeV$
 - $0.05 < \chi^2$ probability < 1
 - Number of Pixel and SCT hits on both track greater than 3
 - $A_0 < 3$
 - Fraction of the TRT high threshold hits < 0.14
 - Gamma Removal: $M_{\gamma\gamma} < 75 MeV$
 - Ks Removal: $480 MeV < M_{\pi\pi} < 515 MeV$
 - $L_{xy} > 15 mm$
 - $L_{xy}/\sigma_{L_{xy}} > 15$
- Selection criteria for candidate events
 - At least one Λ^0 and one $\overline{\Lambda^0}$ in each event.

Kinematic distributions

19

Extraction of A in first two bins (Q<2GeV) for like-type hyperon pairs

0 < Q < 1000 (MeV)

1000 < Q < 2000 (MeV)

Kinematics 0 < Q < 1000 (MeV)

Kinematics 0 < Q < 1000 (MeV)

Kinematics 1000 < Q < 2000 (MeV)

Kinematics 1000 < Q < 2000 (MeV)

Λ_b polarization measurement

D. Zhang, H. Cheng

