

WHAT IS CLAIMED IS:

1. An optical device, comprising:

2 a membrane configured to be electrically deformable and
3 reflective and positioned over a cavity located within a substrate;

4 a transmissive spacer coupled to said substrate and located
5 over said cavity; and

6 a lens coupled to said transmissive spacer and optically
7 aligned with said membrane.

2 2. The optical device as recited in Claim 1 further
comprising a fiber holder coupled to said lens.

3 3. The optical device as recited in Claim 1 wherein said
membrane is located over a first substrate having a first alignment
mark and said transmissive spacer is formed from a second substrate
having a second alignment mark that corresponds to said first
alignment mark to provide alignment of said first substrate with
said second substrate.

4. The optical device as recited in Claim 1 wherein said
2 transmissive spacer comprises a material selected from the group
3 consisting of:

4 silicon;
5 ceramic;
6 fused silica; and
7 infrared-transparent optical glass.

5. The optical device as recited in Claim 1 wherein said
2 transmissive spacer forms a lumen between said lens and said
3 membrane and wherein said lumen contains air or an inert atmosphere
4 or wherein at least a partial vacuum exists between said lens and
5 said membrane.

6. The optical device as recited in Claim 1 wherein said
2 transmissive spacer has a thickness substantially equal to a focal
3 length of said lens.

7. The optical device as recited in Claim 1 further
2 comprising terminals on an exterior of said optical device and
3 connected to said membrane and configured to provide an electrical
4 current to said membrane.

8. A method of manufacturing an optical device, comprising:

2 positioning a membrane configured to be electrically
3 deformable and reflective over a cavity located within a substrate;
4 coupling a transmissive spacer to said substrate such that
5 said transmissive spacer is located over said cavity; and
6 coupling a lens to said transmissive spacer and optically
7 aligned with said membrane.

9. The method as recited in Claim 8 wherein positioning

2 further includes positioning a plurality of said membranes over a
3 corresponding one of a plurality of cavities located in said
4 substrate, and wherein coupling a transmissive spacer further
5 includes coupling a transmissive spacer to each of said membranes,
6 and coupling a lens includes coupling a lens to each of said
7 transmissive spacers, and the method further includes coupling a
8 fiber holder to each of said lenses.

10. The method as recited in Claim 8 further comprising

2 coupling a fiber holder to said lens.

11. The method as recited in Claim 8 wherein said membrane is
2 formed on a first substrate having a first alignment mark, and said
3 transmissive spacer is formed from a second substrate having a
4 second alignment mark, and wherein coupling said transmissive
5 spacer includes coupling said second substrate to said first
6 substrate by using said first and second alignment marks.

12. The method as recited in Claim 8 wherein coupling a lens
2 includes coupling a lens that has focal length substantially equal
3 to a thickness of said transmissive spacer.

T0066220000000000000000

13. An optical system, comprising:

2 an optical transmitter;

3 an optical receiver; and

4 an optical device array, including:

5 membranes each configured to be electrically deformable
6 and reflective and positioned over a corresponding one of a
7 plurality of cavities located within a substrate;

8 a transmissive spacer coupled to said substrate and
9 located over each of said cavities; and

10 a lens coupled to each of said transmissive spacers and
11 optically aligned with each of said membranes.

14. The optical system as recited in Claim 13 further
comprising a fiber holder coupled to each of said lenses.

15. The optical system as recited in Claim 13 wherein said
2 membranes are located over a first substrate having a first
3 alignment mark and said transmissive spacers are formed from a
4 second substrate having a second alignment mark that corresponds to
5 said first alignment mark to provide alignment of said first
6 substrate with said second substrate.

16. The optical system as recited in Claim 13 wherein each of
2 said transmissive spacers comprises a material selected from the
3 group consisting of:

4 silicon;
5 ceramic;
6 fused silica; and
7 infrared-transparent optical glass.

17. The optical system as recited in Claim 13 wherein each of
2 said transmissive spacers forms a lumen between each of said lenses
3 and each of said membranes and wherein each of said lumens contains
4 air or an inert atmosphere or wherein at least a partial vacuum
5 exists between each of said lenses and said membranes.

18. The optical system as recited in Claim 13 where each of
2 said transmissive spacers has a thickness substantially equal to a
3 focal length of each of said lenses.

19. The optical system as recited in Claim 13 further
2 comprising terminals on an exterior of said device and connected to
3 each of said membranes and configured to provide an electrical
4 current to each of said membranes.

20. The optical system as recited in Claim 13 wherein said
2 optical system further includes an optical switch and said optical
3 forms a part of said optical switch.