# Approximate Graph Coloring

Alunos: Ramsés Carvalho e Jorge Serrão



### Artigo Karger, Motwani, Sudan, 1998.

# Approximate Graph Coloring by Semidefinite Programming

No artigo é estudado o problema de colorir k – grafos com o menor número possível de cores, para solucionar este problema é posto um algoritmo de tempo polinomial aleatório, que colore um grafo de 3 cores em n vértices com um mínimo de cores  $\{O(D^{1/3}) \log^{1/2} D\log n\}, O(n^{1/4}) \log^{1/2} n\}$  onde D é o grau máximo de qualquer vértice.

Semicoloração: Um k-semicolorizável de um grafo G é uma atribuição de k cores para pelo menos metade de seus vértices de forma que não haja dois vértices adjacentes com a mesma cor. Se um algoritmo A pode ki-semicolorir qualquer subgrafo i-vértice do grafo G em tempo randomizado polinomial, onde ki aumenta com i, então A pode ser usado para O(kn log n)-cor G.

# Artigo Karger, Motwani, Sudan, 1998.

# Approximate Graph Coloring by Semidefinite Programming

Arredondamento por partições de hiperplano: Considera-se um hiperplano H. É dito no artigo que para separar dois vetores se eles não estão no mesmo lado do hiperplano. Para qualquer aresta  $\{i,j\} \in E$ , nós dizemos que o hiperplano H corta a beira se ele separa o vetor vi e vj. Usando o algoritmo de Wigderson o algoritmo pode ser melhorado passando de  $O(n^0,613)$  cores para  $O(n^0,387)$  cores.

**Teoria da dualidade:** por definição dado um grafo G = (V, E) em n vértices, um vetor estrito de coloração k de G é uma atribuição de vetores unitários ui do espaço  $R^n$  para cada vértice  $i \in V$ , de modo que para quaisquer dois vértices adjacentes  $i \in J$  o produto escalar de seus vetores satisfaz a igualdade (ui, uj) = -1/(k1).

## Artigo Karger, Motwani, Sudan, 1998.

Approximate Graph Coloring by Semidefinite Programming O segundo teorema do capitulo 9 estabelece que os grafos têm uma grande lacuna entre seu vetor de número cromático e os números cromáticos reais.

Seja  $n=(n \mid r)$  denotam o número de vértices do grafoK(m,r,t). Para r=m/2 e t=m/8, o grafo K(m,r,t) é vetor de 3 cores, mas tem um número cromático de pelo menos  $n^0,0113$ .

 $X >= (1,007864) \land g n = n \land g1,007864 \approx n \land 0,0113$ 

# Artigo Karger, Motwani, Sudan, 1998.

## Approximate Graph Coloring by Semidefinite Programming

O terceiro teorema fala que existe um grafo kneser K(m,r,t) que é um vetor de 3 cores mas tem um número cromático excedendo  $n^0,016101$ , onde  $n=(m\mid n)$  denota o número de vértices no grafo.

Usando o teorema de Milner é possível provar que o expoente do número cromático é pelo menos.

1- 
$$(m - t)\log 2m/(m - t) + (m + t)\log 2m/(m + t)$$

$$2((m - r)\log m/(m - r) + r \log m/r)$$

#### Algoritmo Guloso

```
(Somatorio(\Sigma) de cr=1 até v)^*((Somatorio(\Sigma) de i=adj[v].begin() até adj[v].end()) + includition <math>(Somatorio(\Sigma) de i=adj[v].begin() = adj[v].end())
 (Somatorio(\Sigma) de cr=1 até v) + (Somatorio(\Sigma) de i=adj[v].begin() até adj[v].end())
  (Somatorio(\Sigma) de cr=1 até v)^*(adj[u].end() - adj[u].begin() +1) + (Somatorio(\Sigma) de
             cr=1 até v)^*v + (Somatorio(\Sigma) de cr=1 até <math>v)^*(adj[u].end() - adj[u].begin() + 1)
            vadj[u].end() - vadj[u].begin() + v + v^2 + vadj[u].end() - vadj[u].begin() + v
                                                                                                         v^2 + 2vadj[u].end() - 2vadj[u].begin() + 2vadj[u].end() - 2vadj[u].begin() + 2vadj[u].end() - 2vadj[u].begin() + 2vadj[u].end() - 2vadj[u].begin() + 2vadj[u].end() - 2vadj[u
                                                                                                                                                                                  O(v^2) ou O(n^2)
```



## Algoritmo Backtracking

$$\begin{split} & \big( \text{Somatorio} \big( \Sigma \big) \ de \ i = 1 \ at\'{e} \ v \big) \ ^* \ \big( \text{somatorio} \big( \Sigma \big) \ de \\ & j = i + 1 \ at\'{e} \ v \big) \ + \ T(i) = \big\{ \ 1 \ i = v \mid T(i+1) \ + 1 \ i < v \, \big\} \end{split}$$

Parte 1

(somatorio(
$$\Sigma$$
) de i=1 até v) \* (v-i) v(v+1)/2 -> (v^2)/2 + v/2 (v^2) - (v^2)/2 + v/2 (v^2)/2 + v/2

# Artigo Karger, Motwani, Sudan, 1998.

Approximate Graph Coloring by Semidefinite Programming

$$T(i) = T(i+1) + 1$$

$$T(i) = [T(i+2) + 1] + 1$$

$$T(i) = T(i+2) + 2$$

$$T(i) = [T(i+3) + 1] + 2$$

$$T(i) = T(i+3) + 3$$

$$T(i) = T(i+k) + k$$

Assume:  $i+k = v \log o k = v - i$ 

#### Casos de Teste

- Melhor caso: quando nenhum vértice é conectado a alguma aresta, assim só haverá uma cor.
- Pior caso: quando cada vértice do grafo é conectado com cada um dos outros vértice, assim haverá uma cor diferente para cada vértice.
- Caso médio: foi gerado um grafo que conecta os vértices aleatoriamente, e com a metade da quantidade de arestas de cada do pior caso.

## Resultados

| Test<br>e N° | Vértices | Arestas<br>(pior/ médio) | Algoritmo Guloso: Tempo - Nº Cores<br>(melhor/ pior/ médio) | Algoritmo BackTracking: Tempo - Nº Cores<br>(melhor/ pior/ médio) |
|--------------|----------|--------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|
| 1            | 4        | 16/8                     | 0.071 s - 1 cor/ 0.078 s - 4 cores/<br>0.085 s - 3 cores    | 0.079 s - 1 cor/ 0.076 s - 4 cores/ 0.075 s - 2 cores             |
| 2            | 10       | 100/50                   | 0.082 s-1 cor/0.072 s - 10 cores/<br>0.078 s - 5 cores      | 0.078 s - 1 cor/2.913 s - 10 cores/ 2.592 s - 5 cores             |
| 3            | 12       | 144/72                   | 0.071 s-1 cor/0.081 s - 12 cores/<br>0.067 s - 5 cores      | 0.071 s - 1 cor/ timelimitout/ timelimitout                       |
| 4            | 100      | 10^4/5x10^3              | 0.063 s-1cor/0.074s - 100 cores/<br>0.080 s - 27 cores      | 0.077 s - 1 cor/ timelimitout/ timelimitout                       |
| 5            | 10000    | 10^8/10^7                | 0.081 s-1 cor/ alloc error/ 18.677s -<br>294 cores          | execution error/ execution error                                  |

## Algoritmo Guloso



### Algoritmo backtracking



# Obrigado

