ASSIGNMENT I, ALGEBRA II, HKU, SPRING 2021 DUE AT 10PM ON MONDAY FEBRUARY 01, 2021

- (1) Show a non-zero commutative ring with finitely many elements is a field if and only if it is an integral domain.
- (2) Let $n \geq 1$ be any integer. Describe all the units in the ring $\mathbb{Z}/n\mathbb{Z}$, and show that every non-zero element in $\mathbb{Z}/n\mathbb{Z}$ is either a unit or a zero divisor.
- (3) Show that $(\mathbb{Z}[\sqrt{-1}], v)$ is an Euclidean domain, where

$$\mathbb{Z}[\sqrt{-1}] = \{m + n\sqrt{-1} : m, n \in \mathbb{Z}\}\$$

is the ring of Gauss integers and $v: \mathbb{Z}[\sqrt{-1}] \setminus \{0\} \longrightarrow \mathbb{N}$ is given by

$$v(m + n\sqrt{-1}) = m^2 + n^2, \quad m + n\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}] \setminus \{0\}.$$

(4) Consider the sub-ring $D = \mathbb{Z}[\sqrt{2}]$ of \mathbb{R} , where

$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}\$$

with the function $v: D\setminus\{0\} \to \mathbb{N}$ given by $v(a+b\sqrt{2})=|a^2-2b^2|$. Show that (D,v) is an Euclidean domain.

- (5) For a commutative ring R, denote by R^* the group of all units in R. Show that the group $(\mathbb{Z}/7\mathbb{Z})^*$ is cyclic and find one of its generators.
- (6) Describe all the irreducible elements in $\mathbb{Z}[\sqrt{-1}]$; Classify all prime ideals and all maximal ideals of $\mathbb{Z}[\sqrt{-1}]$.
- (7) Describe all the irreducible elements in $\mathbb{R}[x]$; Classify all prime ideals and all maximal ideals of $\mathbb{R}[x]$.
- (8) Suppose that R is a PID but is not a field. Show that R[x] is not a PID.
- (9) Describe all ideals, prime ideals, and maximal ideals of the ring $\mathbb{Z}/n\mathbb{Z}$ for any integer $n \geq 2$.
- (10) Compute a greatest common divisor in $\mathbb{Z}[\sqrt{-1}]$ of 14 + 2i and 21 + 26i.