Boolean Algebra Theorems

Operations with 0 and 1

$$X + 0 = X$$
 $X \cdot 1 = X$ $X + 1 = 1$ $X \cdot 0 = 0$

Idempotent laws

$$X + X = X X \cdot X = X$$

Involution law

$$(X')' = X$$

Complement Laws

$$X + X' = 1 X \cdot X' = 0$$

Commutative Laws

$$XY = YX$$
 $X + Y = Y + X$

Associative Laws

$$(XY)Z = X(YZ) = XYZ$$
 $(X + Y) + Z = X + (Y + Z) = X + Y + Z$

Distributive Laws

$$X(Y+Z) = XY + XZ X + YZ = (X+Y)(X+Z)$$

DeMorgan's Laws

$$(X + Y)' = X'Y'$$
 $(XY)' = X' + Y'$

Uniting Theorems

$$XY + XY' = X \qquad (X+Y)(X+Y') = X$$

Absorption Theorems

$$X + XY = X X(X + Y) = X$$

Elimination Theorems

$$X + X'Y = X + Y X(X' + Y) = XY$$

Consensus Theorems

$$XY + X'Z + YZ = XY + X'Z$$
 $(X + Y)(X' + Z)(Y + Z) = (X + Y)(X' + Z)$

Factoring Theorems

$$(X + Y)(X' + Z) = XZ + X'Y'$$
 $XY + X'Z = (X + Z)(X' + Y)$

Duality

$$(X+Y+Z+\cdots)^D=XYZ\cdots$$
 $(XYZ\cdots)^D=X+Y+Z+\cdots$

XOR Gate: X Theorems for exclusive-OR (3-8) $X \oplus 0 = X$ (3-9) $X \oplus 1 = X'$ (3-10) $X \oplus X = 0$ (3-11) $X \oplus X' = 1$ (commutative law) (3-12) $X \oplus Y = Y \oplus X$ (3-13) $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$ (associative law) (3-14)(distributive law) $X(Y \oplus Z) = XY \oplus XZ$ $(X \oplus Y)' = X \oplus Y' = X' \oplus Y = XY + X'Y'$ (3-15)Theorems for exclusive-NOR $X \odot 0 = X'$ $X \odot 1 = X$ $X \odot X = 1$

 $\begin{array}{l} X\odot 0=X'\\ X\odot 1=X\\ X\odot X=1\\ X\odot X'=0\\ X\odot Y=Y\odot X\\ (X\odot Y)\odot Z=X\odot (Y\odot Z)=X\odot Y\odot Z \end{array} \qquad \text{(commutative law)}\\ (X\odot Y)'=X\oplus Y=X'Y+XY' \end{array}$

* Equivalence operation (=):

0 = 0 = 1 0 = 1 = 0 1 = 0 = 01 = 1 = 1 € X = Y = 1 iff X=Y

Equivalence gate is also called NOR gate lexclusive NOR GAE)

NOR Gate:

