1. Hatcher

1.1. Exact Couples.

Definition 1.1 (Exact Couple). An exact couple is an exact sequence of abelian groups of the form

where i, j and k are group homomorphisms. Define $d: B \to B$ by $d = j \circ k$. Then $d^2 = j(kj)k = 0$, so $H(B) := \ker d/\operatorname{im} d$ is defined - in particular, since A and B are abelian, the quotient H(B) is well-defined and a group.

Definition 1.2 (Derived Couple). Out of a given exact couple, we can construct a new exact couple, called the *derived couple*:

where we define

- (1) A' = i(A) and B' = H(B).
- (2) i' is the induced map $i' := i|_{A'} : A' \to A'$ by i'(ia) = i(ia)
- (3) We define j' by j'a' = [ja] where a' = ia for some a in A.
- (4) k' is defined by $k'[b] = kb \in i(A)$.

With these definitions, the derived couple is an exact couple.

Exercise 1.3. Check that the maps are well-defined and that the derived sequence is exact.

Proof. We must check that j' and k' are well-defined maps.

Suppose $a' = ia = i\tilde{a}$. Then $a - \tilde{a} \in \ker i = \operatorname{im} k$ so $a - \tilde{a} = k[b]$. Hence Then

 $ja - j\tilde{a} = jk [b] = d [b] \in \text{im } d$, so $[ja] = [j\tilde{a}]$. Next, suppose $[b] = [\tilde{b}]$, so $b - \tilde{b} \in \text{im } d$, i.e., $b - \tilde{b} = jk(\bar{b})$. Then $kb - k\tilde{b} = kjk(\bar{b}) = 0$, so $k'[b] = k' \left[\tilde{b} \right]$.

Lastly, exactness at B': suppose k'[b] = 0. Then kb = 0, so by exactness of the original exact couple, there exists some $a \in A$ such that j(a) = b. Then let a' = i(a), so j'(a') = [j(a)] = [b], hence $\ker k' \subset \operatorname{im} j'$.

Conversely, k'j'(a') = k'[ja] = kja = 0, by exactness at B of the original couple.

Definition 1.4 (Spectral Sequence). A spectral sequence $(E_{*,*},d)$ (in homological Serre grading), starting on page $r_0 \ge 1$, consists of:

- (1) a bigraded group $(E_{p,q}^r)_{p,q\in\mathbb{Z}}$ for each $r\geq r_0$, called the r th page of the spectral sequence.
- (2) For all $r \geq r_0$ and $p, q \in \mathbb{Z}$ a map of abelian groups

$$d_{p,q}^r \colon E_{p,q}^r \to E_{p-r,q+r-1}^r$$

called the th differential which squares to zero in the sense that

$$d_{p-r,q+r-1}^r \circ d_{p,q}^r = 0$$

holds for all p, q, r.

(3) For all $r \geq r_0$ and $p, q \in \mathbb{Z}$, isomorphisms of abelian groups

$$E_{p,q}^{r+1} \cong \frac{\ker \left(d_{p,q}^r \colon E_{p,q}^r \to E_{p-r,q+r-1}^r \right)}{\operatorname{im} \left(d_{p+q,q-r+1}^r \colon E_{p+r,q-r+1}^r \to E_{p,q}^r \right)}$$

Definition 1.5. We say that a spectral sequence $(E_{*,*},d)$ converges to a graded abelian group H_* and write

$$E_{p,q}^2 \implies H_{p+q}$$

if there is a filtration

$$0 \subset F_n^0 \subset F_n^1 \subset \ldots \subset F_n^{n-1} \subset F_n^n = H_n$$

and isomorphisms $E_{p,q}^{\infty} \cong F_{p+q}^p/F_{p+q}^{p-q}$.

Note that if $(E_{*,*},d)$ is a first quadrant spectral sequence, then $E^{r+1}_{p,q} \cong E^r_{p,q}$ for $r > \max\{p,q+1\}$ because $d^r_{p,q}$ maps to the 0 group and $d_{p+r,q-r+1}$ comes from the 0 group.

Definition 1.6 (E^{∞} -page). For a first quadrant spectral sequence, we define the E^{∞} -page as:

$$E_{p,q}^{\infty} := E_{p,q}^r$$
, for $r \gg p, q$

Lemma 1.7. If

$$1 \to A \to B \to C \to 1$$

is a SES of groups, then $B = A \rtimes C$.

Theorem 1.8 (Leray-Serre spectral sequence). For every abelian group G and every fiber sequence

$$F \to E \to B$$

such that $\pi_1(B)$ acts trivially on $H_*(F;G)$, there is a natural, convergent Leray-Serre spectral sequence of signature

$$E_{p,q}^2 = H_p(B; H_q(F; G)) \implies H_{p+q}(E; G)$$

meaning that the $E_{p,q}^2$ page is given by $E_{p,q}^2 = H_p\left(B; H_p(F;G)\right)$ and there is a natural filtration

$$0 = F_{-1}^n \subset F_n^0 \subset \ldots \subset F_n^n = H_n(E; G)$$

and natural SES:

$$0 \to F_{p-1}^{p+q} \hookrightarrow F_p^{p+q} \twoheadrightarrow E_{p,q}^\infty \to 0$$

Note. The SES in Theorem 1.8 splits as

$$H_n(E;G) = F_n^n \cong F_{n-1}^n \rtimes E_{n,0}^\infty$$

$$\cong F_{n-2}^n \rtimes E_{n-1,1}^\infty \rtimes E_{n,0}^\infty$$

$$\vdots$$

$$\cong F_0^n \rtimes E_{1,n-1}^\infty \rtimes \ldots \rtimes E_{n,0}^\infty$$

$$\cong E_{0,n}^\infty \rtimes E_{1,n-1}^\infty \rtimes \ldots \rtimes E_{n,0}^\infty$$

Example 1.9. Suppose

$$F \to E \to B$$

is a fiber sequence and that $H_n(E;G)=0$ for an abelian group G. Then $E_{p,n-p}^{\infty}=0$ for all $0 \le p \le n$.

This can be seen because $F_n^n = H_n(E;G) = 0$, and $0 \subset F_n^0 \subset \ldots \subset F_n^n = 0$, hence $E_{p,n-p}^{\infty} \cong F_n^p/F_n^{p-1} \cong 0$.

Example 1.10. Suppose that the $E_{p,q}^{\infty}$ are abelian groups. Then the semidirect products reduce to normal direct products, so that

$$H_n(E;G) \cong \bigoplus_{p=0}^n E_{p,n-p}^{\infty}$$

For example, if G is a field, then $H_n(E;G)$ is a G-vector space, hence abelian, so each F_n^p being subgroups of $H_n(E;G)$ is abelian, so each $E_{p,q}^{\infty} \cong F_n^p/F_n^{p-q}$ is abelian.

- 1.2. Serre Classes. Let \mathcal{C} be one of the following classes of abelian groups:
 - (1) \mathcal{FG} , finitely generated abelian groups.
 - (2) \mathcal{T}_p , torsion abelian groups whose elements have orders divisible only by primes from a fixed set P of primes.
 - (3) \mathcal{F}_p , the finite groups in \mathcal{T}_p .

Note. P could be all primes and then \mathcal{T}_p would be all torsion abelian groups and \mathcal{F}_p would be all finite abelian groups.

Theorem 1.11. If X is simply-connected, then $\pi_n(X) \in \mathcal{C}$ for all n if and only if $H_n(X;\mathbb{Z}) \in \mathcal{C}$ for all n > 0. This holds also if X is path-connected and abelian, that is, the action of $\pi_1(X)$ on $\pi_n(X)$ is trivial for all $n \geq 1$.

Theorem 1.12 (Hurewicz module C). If a path-connected abelian space X has $\pi_i(X) \in C$ for i < n, then the Hurewicz homomorphism $h: \pi_n(X) \to H_n(X)$ is an isomorphism $\mod C$, meaning that the kernel and cokernel of h belong to C.

1.3. Supplements.

1.3.1. Naturality. Suppose we are given two fibrations and a map between them, a commutative diagram as below:

$$\begin{array}{ccc}
F & \longrightarrow X & \longrightarrow B \\
\downarrow & & \downarrow_{\tilde{f}} & \downarrow_{f} \\
F' & \longrightarrow X' & \longrightarrow B'
\end{array}$$

Suppose that the hypotheses of the LSSS are satisfied for both fibrations. Then the naturality properties are:

- (1) There are induced maps $f_*^r \colon E_{pq}^r \to E_{pq}^{'r}$ commuting with differentials, with f_*^{r+1} the map on homology induced by f_*^r .
- (2) The map $\tilde{f}_*: H_*(X;G) \to H_*(X';G)$ preserves filtrations, inducing a map on successive quotient groups which is the map f_*^{∞} .
- (3) Under the isomorphisms $E_{pq}^2 \cong H_p(B; H_q(F;G))$ and $E_{pq}^{'2} \cong H_p(B'; H_q(F';G))$, the map f_*^2 corresponds to the map induced by the maps $B \to B'$ and $F \to F'$.

1.4. Spectral Sequence Comparison.

Proposition 1.13. Suppose we have a map of fibrations as in the diagram:

$$\begin{array}{ccc}
F & \longrightarrow X & \longrightarrow B \\
\downarrow & & \downarrow_{\tilde{f}} & \downarrow_{f} \\
F' & \longrightarrow X' & \longrightarrow B'
\end{array}$$

and that both fibrations satisfy the hypothesis of trivial action for the Serre spectral sequence. Then if two of the three maps $F \to F', B \to B'$ and $X \to X'$ induce isomorphisms on H_* (-;R) with R a PID, so does the third.

1.5. Cohomology.

Theorem 1.14. For a fibration $F \to X \to B$ with B path-connected and $\pi_1(B)$ acting trivially on $H^*(F;G)$, there is a spectral sequence $\{E_r^{p,q}, d_r\}$ with:

- (1) $d_r : E_r^{p,q} \to E_r^{p+r,q-r+1}$ and $E_{r+1}^{p,q} = \ker d_r / \operatorname{im} d_r$ at $E_r^{p,q}$.
- (2) Stable terms $E_{\infty}^{p,n-p}$ isomorphic to the successive quotients F_p^n/F_{p+1}^n in a filtration $0 \subset F_n^n \subset \ldots \subset F_0^n = H^n(X;G)$ of $H^n(X;G)$.
- (3) $E_2^{p,q} \cong H^p(B; H^q(F;G)).$

1.6. Multiplicative structure.

Definition 1.15 (Weibel, multiplicative structure). Suppose that for r = a we are given a bigraded product

$$E_r^{p_1q_1} \times E_r^{p_2q_2} \to E_r^{p_1+p_2,q_1+q_2}$$

such that the differential d_r satisfies the Leibnitz relation

$$d_r(x_1x_2) = d_r(x_1)x_2 + (-1)^{p_1}x_1d_r(x_2), \quad x_i \in E_r^{p_iq_i}.$$

Then the product of two cycles (boundaries) is again a cycle (boundary), and by induction, we have the above product for every $r \geq a$. We shall call this a multiplicative structure on the spectral sequence.

When considering cohomology with coefficients in a ring R, we can construct a multiplicative structure on a spectral sequence with r=1 with the following properties:

(1) The product $E_2^{p,q} \times E_2^{s,t} \to E_2^{p+s,q+t}$ is $(-1)^{qs}$ times the standard cup product

$$H^{p}(B; H^{q}(F; R)) \times H^{s}(B; H^{t}(F; R)) \to H^{p+s}(B; H^{q+t}(F; R))$$

sending a pair of cocycles (φ, ψ) to $\varphi \smile \psi$ where coefficients are multiplied via the cup product $H^q(F;R) \times H^t(F;R) \to H^{q+t}(F;R)$.

(2) The cup product in $H^*(X;R)$ restricts to maps $F_p^m \times F_s^n \to F_{p+s}^{m+n}$. These induce quotient maps $F_p^m/F_{p+1}^m \times F_s^n/F_{s+1}^n \to F_{p+s}^{m+n}/F_{p+s+1}^{m+n}$ that coincide with the products $E_{\infty}^{p,m-p} \times E_{\infty}^{s,n-s} \to E_{\infty}^{p+s,m+n-p-s}$.

1.7. The Spectral Sequence of a Filtered Complex.

Definition 1.16 (Differential Complex). A differential complex K with differential operator D is an abelian group K together with a group homomorphism $D: K \to K$ such that $D^2 = 0$.

Let K be a differential complex with differential operator D. Usually K comes with a grading $K = \bigoplus_{k \in \mathbb{Z}} C^k$ and $D \colon C^k \to C^{k+1}$ increases the degree by 1, but the grading is not absolutely necessary.

Definition 1.17 (Subcomplex). A subcomplex K' of K is a graded subgroup such that $DK' \subset K'$.

Definition 1.18 (Filtration, Associated Graded Complex). A sequence of subcomplexes

$$K = K_0 \supset K_1 \supset K_2 \supset K_3 \supset \dots$$

is called a filtration on K. This makes K into a filtered complex, with associated graded complex

$$GK = \bigoplus_{p=0}^{\infty} K_p / K_{p+1}.$$

For notational reasons, we usually extend the filtration to negative indices by defining $K_p = K$ for p < 0.

Example 1.19. If $K = \bigoplus K^{p,q}$ is a double complex with horizontal operator δ and vertical operator d (which we assume to commute), we can form a single complex out of it by setting $C^k = \bigoplus_{p+q=k} K^{p,q}$ and then letting $K = \bigoplus C^k$ and the differential operator $D: C^k \to C^{k+1}$ to be $D = \delta + (-1)^p d$. Then letting

$$K_p = \bigoplus_{i \ge p} \bigoplus_{q \ge 0} K^{i,q}$$

we obtain a filtration on K.

Suppose now that we have a general filtered complex $K = K_0 \supset K_1 \supset ...$, and let A be the group defined by

$$A = \bigoplus_{p \in \mathbb{Z}} K_p.$$

Then A is again a differential complex with operator D. Let $i: A \to A$ be the inclusion $K_{p+1} \hookrightarrow K_p$ on each p. Let B be the cokernel of $i: A \to A$. Then $B = GK = \bigoplus_{p=0}^{\infty} K_p/K_{p+1}$, and we have an exact sequence

$$0 \to A \xrightarrow{i} A \xrightarrow{j} GK \to 0.$$

2. Weibel

3. Double and Total Complexes

Definition 3.1 (Double complex). A double complex (or bicomplex) in an abelian category \mathcal{A} is a family $\{C_{p,q}\}$ of objects of \mathcal{A} , together with maps

$$d^h : C_{p,q} \to C_{p-1,q}$$
 and $d^v : C_{p,q} \to C_{p,q-1}$

such that $d^h \circ d^h = d^v \circ d^v = d^v d^h + d^h d^v = 0$.

It is useful to picture the double complex as a lattice in which the maps d^h go horizontally, the maps d^v go vertically, and each square anticommutes.

Each row C_{*q} and each columns C_{p*} is a chain complex.

We say that the double complex C is bounded if C has only finitely many nonzero terms along each diagonal line p + q = n. For example, if C is concentrated in the first quadrant of the plane (a first quadrant double complex).

3.0.1. Sign Trick. Are the maps d^v and d^h maps in Ch? Because of anticommutativity, the chain map conditions fail, but we can construct chain maps f_{*q} from $C_{*,q}$ to $C_{*,q-1}$ by introducing signs:

$$f_{p,q} = (-1)^p d_{p,q}^v \colon C_{p,q} \to C_{p,q-1}.$$

Using this sign trick, we can identify the category of double complexes with the category Ch (Ch).

3.0.2. Total Complexes. To see why the anticommutativity condition $d^v d^h + d^h d^v = 0$ is useful, we define the total complexes $Tot(C) = Tot^{\prod}(C)$ and $Tot^{\oplus}(C)$ as follows:

Definition 3.2 (Total complexes). We define

$$\operatorname{Tot}^{\prod}(C)_n = \prod_{p+q=n} C_{p,q} \quad \text{and} \quad \operatorname{Tot}^{\oplus}(C)_n = \bigoplus_{p+q=n} C_{p,q}.$$

The formula $d = d^h + d^v$ define maps

$$d \colon \operatorname{Tot}^{\prod}(C)_n = \prod_{p+q=n} C_{p,q} \text{ and } d \colon \operatorname{Tot}^{\oplus}(C)_n \to \operatorname{Tot}^{\oplus}(C)_{n-1}$$

such that $d \circ d = 0$, making $\text{Tot}^{\Pi}(C)$ and $\text{Tot}^{\oplus}(C)$ into chain complexes.

Exercise 3.3. Check that $d = d^h + d^v$ define maps as claimed.

Solution. Let $(\alpha_{p,q}) \in \text{Tot}^{\prod}(C)_n$, so p+q=n. Then $d((\alpha_{p,q}))=d^h((\alpha_{p,q}))+d^v((\alpha_{p,q}))=(\alpha_{p-1,q})+(\alpha_{p,q-1})\in \prod_{p+q=n-1}C_{p,q}$. Clearly, this also works for direct products since the number of non-zero terms under d just multiplies by 2, hence is still finite. We also want to show that $d \circ d = 0$. For this, note that

$$\begin{split} d\circ d\left(\alpha\right) &= d\left(d^h(\alpha) + d^v(\alpha)\right) = d^h\left(d^h(\alpha) + d^v(\alpha)\right) + d^v\left(d^h(\alpha) + d^v(\alpha)\right) \\ &= d^hd^h(\alpha) + d^hd^v(\alpha) + d^vd^h(\alpha) + d^vd^v(\alpha) \\ &= 0. \end{split}$$

3.1. Terminology.

Definition 3.4 (Homology spectral sequence). A homology spectral sequence (starting with E^a) in an abelian category \mathcal{A} consists of the following data:

- (1) A family $\{E_{pq}^r\}$ of objects of \mathcal{A} defined for all integers p, q and $r \geq a$.
- (2) Maps $d_{pq}^r : E_{pq}^r \to E_{p-r,q+r-1}^r$ that are differentials in the sense that $d^r d^r = 0$, so that the "lines of slope -(r+1)/r" in the lattice E_{**}^r form chain
- (3) Isomorphisms between E_{pq}^{r+1} and the homology of E_{**}^r at the spot E_{pq}^r :

$$E_{pq}^{r+1} \cong \ker d_{pq}^r / \operatorname{im} d_{p+r,q-r+1}^r.$$

Note that E_{pq}^{r+1} is a subquotient of E_{pq}^r , and that each differential d_{pq}^r decreases the total degree by one.

Definition 3.5 (Total degree). The total degree of the term E_{pq}^r is n = p + q.

Example 3.6. A first quadrant (homology) spectral sequence is one with $E_{pq}^r = 0$ unless $p \geq 0$ and $q \geq 0$.

If we fix p and q, then $E_{pq}^r = E_{pq}^{r+1}$ for all large enough r (for $r > \max\{p, q+1\}$), because d^r landing in the (p,q) spot comes from the fourth quadrant, and the d^r leaving E^r_{pq} lands in the second quadrant. We write E^∞_{pq} for this stable value of E^r_{pq} .

Definition 3.7 (Dual Definition, Cohomology spectral sequence). A cohomology spectral sequence (starting with E_a) in A is a family $\{E_r^{pq}\}$ of objects $(r \geq a)$, together with maps d_r^{pq} going "to the right":

$$d_r^{pq} \colon E_r^{pq} \to E_r^{p+r,q-r+1}$$

which are differentials in the sense that $d_r d_r = 0$.

So it is the same thing as a homology spectral sequence, reindexed via E_r^{pq} = $E_{-p,-q}^r$, so that d_r increases the total degree p+q of E_{pq}^r by one.

Definition 3.8 (Bounded convergence). A homology spectral sequence is said to be bounded if for each n, there are only finitely many nonzero terms of total degree $n \text{ in } E^a_{**}.$

Exercise 3.9. Show that if E_{**} is a bounded homology spectral sequence, then for each p and q, there is an r_0 such that $E_{pq}^r = E_{pq}^{r+1}$ for all $r \ge r_0$.

Proof. If the spectral sequence has at most N non-vanishing terms of degree n on page r, say, then on the following pages, we have at most N non-vanishing terms of degree n again, since these are homologies of the terms of degree n on the previous pages.

Hence, for the bounded sequence, for each n, there exists $L(n) \in \mathbb{Z}$ such that $E_{p,n-p}^r=0$ for all $p\leq L(n)$ and all r. Similarly, there is a $T(n)\in\mathbb{Z}$ such that $E_{n-q,q}^{r} = 0$ for all $q \leq T(n)$ and all r.

Now we claim that $E_{p,q}^r = E_{p,q}^{\infty}$ for

$$r > \max\{p - L(p+q-1), q+1 - T(p+q+1)\}.$$

This is because we have

(1)
$$p-r < L(p+q-1)$$
, so $0 = E^r_{p-r,p+q-1-(p-r)} = E^r_{p-r,q+r-1}$, so $\ker d^r_{p,q} = E^r_{p,q}$, and

(2)
$$q-r+1 < T(p+q+1)$$
, so $0 = E_{(p+q+1)-(q-r+1),q-r+1} = E_{p+r,q-r+1}$, and hence $d_{p+r,q-r+1} \colon 0 = E_{p+r,q-r+1}^r \to E_{p,q}^r$ is 0 .

Thus

$$\begin{split} E^{r+1}_{pq} &= \ker d^r_{pq}/\operatorname{im} d^r_{p+r,q-r+1} \\ &= E^r_{pq}/0 \\ &= E^r_{pq} \end{split}$$

We write E_{pq}^{∞} for this stable value of E_{pq}^{r} .

Next, we say that a bounded spectral sequence converges to H_* if we are given a family of objects H_n of \mathcal{A} , each having a *finite* filtration

$$0 = F_s H_n \subset \ldots \subset F_{p-1} H_n \subset F_p H_n \subset \ldots \subset F_t H_n = H_n,$$

and we are given isomorphisms $E_{pq}^{\infty} \cong F_p H_{p+q}/F_{p-1} H_{p+q}$. The traditional symbolic way of describing such a bounded convergence is like this:

$$E_{pq}^a \implies H_{p+q}.$$

Similarly, a cohomology spectral sequence is called bounded if there are only finitely many nonzero terms in each total degree in E_a^{**} . In a bounded cohomology spectral sequence, we write E_{∞}^{pq} for the stable value of the terms E_r^{pq} and say the (bounded) spectral sequence converges to H^* if there is a *finite* filtration

$$0 = F^t H^n \subset \ldots \subset F^{p+1} H^n \subset F^p H^n \subset \ldots \subset F^s H^n = H^n,$$

so that

$$E^{pq}_{\infty} \cong F^p H^{p+q} / F^{p+1} H^{p+q}$$
.

Example 3.10. If a first quadrant homology spectral sequence converges to H_* , then each H_n has a finite filtration of length n+1:

$$0 = F_{-1}H_n \subset F_0H_n \subset \ldots \subset F_{n-1}H_n \subset F_nH_n = H_n.$$

The bottom piece $F_0H_n=E_{0n}^{\infty}$ of H_n is located on the y-axis, and the top quotient $H_n/F_{n-1}H_n\cong E_{n0}^{\infty}$ is located on the x-axis.

Note also that each arrow landing on the x-axis is zero, and each arrow leaving the y-axis is zero, hence E_{0n}^a is a subobject of E_{0n}^{∞} , and each E_{n0}^{∞} is a quotient of E_{n0}^a .

Definition 3.11 (Fiber and base terms, edge homomorphism). The terms E_{0n}^r on the y-axis are called the fiber terms, and the terms E_{n0}^r on the x-axis are called the base terms. The resulting maps $E_{0n}^a \to E_{0n}^\infty \subset H_n$ and $H_n \to E_{n0}^\infty \subset E_{n0}^a$ are known as the *edge homomorphisms* of the spectral sequence.

Similarly, if a first quadrant cohomology spectral sequence converges to H^* , then H^n has a finite filtration:

$$0 = F^{n+1}H^n \subset F^nH^n \subset \ldots \subset F^1H^n \subset F^0H^n = H^n.$$

In this case, the bottom piece $F^nH^n\cong E_{\infty}^{n0}$ is located on the x-axis, and the top quotient $H^n/F^1H^n\cong E^{0n}_\infty$ is located on the y-axis. In this case, the edge homomorphisms are the maps $E^{n0}_a\to E^{n0}_\infty\subset H^n$ and $H^n\to E^{0n}_\infty\subset E^{0n}_a$.

Definition 3.12 (Collapsing of spectral sequence). A (homology) spectral sequence collapses at $E^r(r \geq 2)$ if there is exactly one nonzero row or column in the lattice $\{E_{pq}^r\}$. If a collapsing spectral sequence converges to H_* , we can read the H_n off: H_n is the unique nonzero E_{pq}^r with p+q=n. The overwhelming majority of all applications of spectral sequences involve spectral sequences that collapse at E^1 or E^2

Exercise 3.13 (2 columns). Suppose that a spectral sequence converging to H_* has $E_{pq}^2 = 0$ unless p = 0, 1. Show that there are exact sequences

$$0 \to E_{1,n-1}^2 \to H_n \to E_{0n}^2 \to 0$$

Proof. We have $E_{p,n-p}^{\infty}\cong 0$ if p>1, so $F_pH_n/F_{p-1}H_n\cong 0$ whenever p>1, so $F_pH_n\cong F_{p-1}H_n$ for p>1. Hence $H_n=F_nH_n\cong F_1H_n$. Now, $E_{1,n-1}^{\infty}\cong H_n/F_0H_n$, and $E_{0n}^{\infty}\cong F_0H_n/F_{-1}H_n\cong F_0H_n$, so we have a SES

$$0 \to F_0 H_n \hookrightarrow H_n \to H_n / F_0 H_n \to 0$$

which thus becomes

$$0 \to E_{0n}^{\infty} \to H_n \to E_{1,n-1}^{\infty} \to 0$$

Furthermore, all differentials on pages E^r for $r \geq 2$ are 0, so $E_{0n}^{\infty} \cong E_{0n}^2$ and $E_{1,n-1}^{\infty} \cong E_{1,n-1}^2$. So we get a SES

$$0 \to E_{0n}^2 \to H_n \to E_{1,n-1}^2 \to 0.$$

Example 3.14 (2 rows). Suppose that a spectral sequence converging to H_* has $E_{pq}^2 = 0$ unless q = 0, 1. Show that there is a LES

$$\dots \to H_{p+1} \to E_{p+1,0}^2 \xrightarrow{d} E_{p-1,1}^2 \to H_p \to E_{p0}^2 \xrightarrow{d} E_{p-2,1}^2 \to H_{p-1} \to \dots$$

Proof. We have $\ker\left(d\colon E_{p,0}^2\to E_{p-2,1}^2\right)\cong E_{p,0}^\infty\cong H_p/F_{p-1}H_p$. Furthermore, $E_{p-1,1}^\infty\cong F_{p-1}H_p/F_{p-2}H_p\cong F_{p-1}H_p$ since $F_{p-k}H_p/F_{p-k-1}H_p\cong E_{p-k,k}^\infty\cong 0$ for $k\geq 2$ and $F_0H_p=0$. Hence we have a SES

$$0 \to F_{p-1}H_p \to H_p \to H_p/F_{p-1}H_p \to 0$$

which becomes

$$0 \to E_{p-1,1}^{\infty} \to H_p \to \ker d \to 0$$

Now $E_{p-1,1}^{\infty} \cong \operatorname{coker} \left(d \colon E_{p+1,0}^2 \to E_{p-1,1}^2\right)$, so we have

$$E_{p+1,0}^2 \xrightarrow{d} E_{p-1,1}^2 \to E_{p-1,1}^\infty \to 0$$

but the kernel of the cokernel map is the image of d, so

$$0 \to \text{im } d \to E_{p-1,1}^2 \to E_{p-1,1}^\infty \to 0$$

is exact. \Box

4.1. Introduction to Spectral Sequences. Consider the problem of computing the homology of the total chain complex $T_* = \text{Tot}(E_{**})$ where E_{**} is a first quadrant double complex.

Firstly, it is convenient to forget the horizontal differentials and add a superscript zero, retaining only the vertical differentials d^v along the columns E_{p*}^0 .

Let E_{pq}^{1} be the vertical homology $H_{q}\left(E_{p*}^{0}\right)$ at the (p,q) spot.

4.2. Filtrations.

Definition 4.1 (Filtered *R*-module). A filtered *R*-module is an *R*-module *A* with an increasing sequence of submodules $\{F_p\}_{p\in\mathbb{Z}}$ such that $F_pA \subset F_{p+1}A$ for all p and such that $\bigcup_p F_pA = A$ and $\bigcap_p F_pA = \{0\}$.

A filtration is said to be bounded if $F_pA = \{0\}$ for p sufficiently small and $F_pA = A$ for p sufficiently larger.

Definition 4.2 (Associated graded module). The associated graded module is defined by $G_pA = F_pA/F_{p-1}A$.

Definition 4.3 (Filtered chain complex). A filtered chain complex is a chain complex (C_*, ∂) together with a filtration $\{F_pC_i\}_{p\in\mathbb{Z}}$ of each C_i such that the differential preserves the filtration, i.e., s.t. $\partial (F_pC_i) \subset F_pC_{i-1}$.

Note that we, in particular, obtain an induced differential $\partial: G_pC_i \to G_pC_{i-1}$ by the universal property of cokernels

$$F_{p}C_{i} \xrightarrow{\partial} F_{p}C_{i-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{p-1}C_{i} \xrightarrow{\partial} F_{p-1}C_{i-1}$$

$$\downarrow^{\text{coker}} \qquad \downarrow^{\text{coker}}$$

$$G_{p}C_{i} \xrightarrow{\partial} G_{p}C_{i-1}$$

so we obtain an associated graded chain complex G_pC_* .

The filtration on C_* also induces a filtration on the homology of C_* by

$$F_p H_i(C_*) = \{ \alpha \in H_i(C_*) \mid (\exists x \in F_p C_i) : \alpha = [x] \}.$$

This filtration has associated graded pieces $G_pH_i(C_*)$ which, in favorable cases, determine $H_i(C_*)$.

4.3. **Example.** Suppose we have a chain complex C_* and a filtration consisting of a single F_0C_* , so $F_nC_*=0$ if n<0 and $F_nC_*=F_0C_*$ if $n\geq 0$. Then $G_nC_*=0$ for $n\neq 0$ and $G_0C_*=F_0C_*$ and