2. Hardwareaufbau

2.1 Basiskomponenten

Fahrzeuge

- 1. Ebener Untergrund -> Räder
- 2. Geländer -> Laufmaschinen
- 3. Rohre -> Kettenantriebe
- 4. Fassaden -> Saugnäpfe
- 5. Ebener Untergrund -> Räder
- 6. Geländer -> Laufmaschinen
- 7. Rohre -> Kettenantriebe
- 8. Fassaden -> Saugnäpfe
- 9. Katastrophenroboter -> alle

a wird in der Vorlesung besprochen

b - e Literatur

Flugzeuge

- Klassischer Triebwerskantrieb mit Flügeln
- Multicopter
- Computer gesteuerte unbemannte Luftfahrzeuge (C-UAV)
- > wir konzentrieren uns auf Multicopter

2.2 Multisensorik Erfassung der Umwelt

Odometrie

Radposition, Geschwindigkeit und Weg

Inertialgeber

Beschleunigung, Verbesserung der Odometriedaten

Taktile Sensoren

Bumper, Anwesenheitserfassung, Notabschaltung

Sonar

Entfernung mit Ultraschall, kegelförmige Signalausbreitung, Öffnungswinkel 5° - 30°, Ringabdeckung

Laserscanner

Entfernung Laserlicht, Öffnungswinkel vernachlässsigbar, Reflektorerkennung

Radar

Entfernung, elektromagnetische Wellen, 2,5 GHz, Variation Frequenzen (Short/Long Range), Relativgeschwindigkeiten

2. Hardwareaufbau 1

Distanzkamera

3D-Abstandsprofil, Time-of-Flight-Messung oder Mustererkennung

Farbkamera

Farbbilder, Pan-Tilt-Zoom, Erkennung Farbbereiche und Kanten, Entfernung Stereokamera

GNSS

Satellitennavigation, Genauigkeit 2m / 2cm

2.3 Aktoren

Veränderunge der Umwelt

Manipulatioren mit Freiheitsgraden

-> 2 DOF Gruppen im Labor (Greifer + Lift)

Antriebskonzepte Räder -> Handout (Moodle)

- Differentialantrieb
 - o 2 DOF x, yaw
 - o Angetrieben durch Gleichstrommotoren
- Fahr-/Drehmodul
 - o 2 DOF Rad -> 3 DOF Plattform
- Mecanum-Rad
 - o Kräfte in 2 Richtungen durch Walzen an den Rädern
 - o Nur auf Ebenem Grund nutzbar, sehr anfällig für Schmutz, starke Vibrationen, starker bodenverschleiß
 - Störanfällig

2. Hardwareaufbau 2