Chapitre 5 La Lune

La Lune

Satellite naturel de la Terre

Diamètre: 3.475 km (Terre 12.756 km)

Distance moyenne / Terre: 384.400 km

Le système Terre-Lune

Vu par la sonde NEAR à une distance de 400.000 km

Distance Terre-Lune

Varie de 356.375 km à 406.720 km (Tailles et distance respectées)

Distance Terre-Lune

En voiture, à 100 km/h de moyenne Sans interruption, un aller prendrait 6 mois

La Lune

Révolution 27 1/3 jours

Rotation 27 1/3 jours

Temps entre 2 nouvelles lunes 29 1/2 jours (révolution synodique)

Révolution sidérale

Révolution synodique

Lune croissante

Lune croissante

Le matin, le soleil se lève, la lune est sous l'horizon

La Lune invisible, masquée par les rayon du Soleil, traverse le ciel

Le soir après le coucher du Soleil, la Lune devient visible

La Lune se couche quelques heures après le Soleil

La Lune décroissante

2 et $\frac{1}{2}$ semaines plus tard

La Lune est à droite du Soleil

Le matin, la Lune se lève avant le Soleil

Pour l'observateur

Le matin, la Lune se lève avant le Soleil

Pour l'observateur

La Lune est invisible le reste de la journée

Pour l'observateur

Le soir, elle se couche avant le Soleil

La Lune ment

Lune croissante

La Lune ment

Lune décroissante

Les phases de la Lune

La lumière cendrée

Les phases de la Lune

La lumière cendrée

Attraction du Soleil

Et de la Lune

1 tour en 27 1/3 jours

1 tour en 23 h 56 mn

Déplacement apparent de l'onde de marée

Mouvement de la Terre vers l'onde de marée

Mouvement de la Terre vers l'onde de marée

Onde de marée

Périodicité et amplitude locales liées à la géométrie des côtes

Actions antagonistes de la Lune et de la rotation de la Terre sur la masse d'eau

Ralentissement de la rotation de la Terre par effet de marée

Rotation de la Lune

La Lune tourne sur elle-même

Rotation de la Lune

Mais présente toujours la même face à la Terre

Rotation de la Lune

Avec des oscillations : les librations

Mer des Crises

Mer des Crises

du Latin Libra = Balance

59% de la surface de la Lune est visible

Inclinaison de l'axe de rotation de la Lune

Visibilité du pôle Sud

Visibilité du pôle Nord

Libration en latitude

Excentricité de l'orbite

Libration en longitude

Lune Terre

Taille et rotation de la Terre

Terre Lune

Libration en longitude

Librations physiques

Librations pôles-pôles

Librations physiques

Librations bord à bord

Somme des librations

La Lune

Inclinaison équateur / orbite : 6°,7

Libration géométrique

Inclinaison orbite / écliptique : 5,1°

Veriodicité des éclipses

Inclinaison orbite/écliptique

Angle de 5,1°

Eclipse de Soleil

Si nouvelle Lune au moment où la ligne des nœuds coïncide avec la direction Terre-Soleil

Eclipse de Soleil

Vu de la Terre

Vu de la Terre

Eclipse totale de Soleil

Eclipse totale de Soleil

Dans la zone de totalité

Zone de totalité très étroite

Dans la zone de l'éclipse partielle

Zone d'éclipse partielle très étendue

Eclipse annulaire de Soleil

Eclipse annulaire de Soleil

16 février 1999, Australie

Si pleine Lune au moment où la ligne des nœuds coïncide avec la direction Terre-Soleil

Conditions moins drastiques
Taille de la Terre >> Taille de la Lune

Vu de la Terre

Vu de la Terre

Les rayons du Soleil sont réfractés par l'atmosphère terrestre

Zone de visibilité très étendue

Régression de la ligne des noeuds

Intersection des 2 plans

Régression de la ligne des noeuds

Période de 18,6 ans

Critère de latitude de la nouvelle Lune


```
|L| < 1,42° : éclipse certaine
|L| > 1,58° : pas d'éclipse
1,42° < |L| < 1,58° : éclipse possible
```


Critère de longitude du Soleil au moment de la nouvelle Lune

Critère du diamètre apparent du Soleil et de la Lune

Eléments de Bessel

Périodicité

Les théories du mouvement de la Lune

Astron. Astrophys. 190, 342-352 (1988)

ELP 2000-85: a semi-analytical lunar ephemeris adequate for historical times

M. Chapront-Touzé and J. Chapront

Service des Calculs et de Mécanique Céleste du Bureau des Longitudes, UA 707, 77, avenue Denfert Rochereau, F-75014 Paris, France

Received March 30, accepted June 22, 1987

Summary. New expressions for mean lunar arguments are obtained. With respect to ELP 2000-82, the main improvement consists in computing secular terms proportional to powers 3 and 4 of time. Such terms arise from secular variations of solar eccentricity and longitude of perigee, Earth figure effects and tidal

longer periods. For ancient observations, the internal precision of the Truncated Tables issued from ELP 2000 (Chapront and Chapront-Touzé, 1982) would be sufficient if it were almost constant over a long time span. The truncation level of the Tables is 0.01, leading to maximum error of 0.75 over one century with a total amount of about one thousand terms for the three coordinates.

La Lune physique

```
Masse : 0,012 (Terre : 1)
```

: 1/81

 $: 7,35 \ 10^{19}$ tonnes

Pesanteur: 0,16 (Terre: 1)

La Lune physique

Atmosphère: Néant

Température à la surface

En moyenne

Jour: + 105°C Nuit: - 153 °C

Extrêmes

La formation de la Lune

La formation de la Lune

La topographie de la Lune

Face visible

La topographie de la Lune

Toutes les formations topographiques sont nommées

Premier quartier

Premier quartier

Pleine Lune

Dernier quartier

Dernier quartier

La face cachée

La face cachée

La face cachée

Les mers

Les montagnes

Les cratères

Formation des cratères

Micro-cratère à la surface d'une roche lunaire

Cratère d'impact sur la Terre

Cratère avec piton central

Cratère avec piton central

L'exploration de la Lune

Programme Apollo

25 mai 1961 John F. Kennedy Discours devant le Congrès

Programme Apollo

16 juillet 1969

Programme Apollo

16 juillet 1969