```
In [2]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing,svm from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression
```

In [3]: df=pd.read_csv(r"C:\Users\Sudheer\AppData\Local\Temp\Temp1_archive (1).zip\USA_Housing.csv")
df

Out[3]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386
						•••	
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Williams\nFPO AP 30153-7653
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 9258, Box 8489\nAPO AA 42991- 3352
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Tracy Garden Suite 076\nJoshualand, VA 01
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace\nFPO AE 73316
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 George Ridges Apt. 509\nEast Holly, NV 2

5000 rows × 7 columns

In [4]: df.head()

Out[4]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

Non-Null Count Dtype # Column --------Avg. Area Income 5000 non-null float64 Avg. Area House Age 5000 non-null float64 Avg. Area Number of Rooms 5000 non-null float64 Avg. Area Number of Bedrooms float64 5000 non-null Area Population 5000 non-null float64 Price 5000 non-null float64 Address 5000 non-null object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

```
In [7]: df.describe()
```

Out[7]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

```
In [8]: df.columns
```

```
Out[8]: Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'], dtype='object')
```

In [9]: sns.pairplot(df)

Out[9]: <seaborn.axisgrid.PairGrid at 0x242d1688100>


```
In [10]: sns.displot(df['Price'])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x242d51f3c10>

In [11]: sns.displot(df['Area Population'])

Out[11]: <seaborn.axisgrid.FacetGrid at 0x242d6b69570>

In [12]: [['Avg. Area Income','Avg. Area House Age','Avg. Area Number of Rooms','Avg. Area Number of Bedrooms','Area Population','Price']]

```
In [13]: sns.heatmap(Housedf.corr())
Out[13]: <Axes: >
                                                                                                                 - 1.0
                           Avg. Area Income -
                                                                                                                 - 0.8
                       Avg. Area House Age -
                                                                                                                  0.6
                Avg. Area Number of Rooms -
            Avg. Area Number of Bedrooms -
                                                                                                                  0.4
                             Area Population -
                                                                                                                  0.2
                                        Price
                                                  Avg. Area Income
                                                            Avg. Area House Age
                                                                      Avg. Area Number of Rooms
                                                                               Avg. Area Number of Bedrooms
                                                                                          Area Population
In [14]: | x=Housedf[['Avg. Area Income','Avg. Area House Age','Avg. Area Number of Rooms',
                       'Avg. Area Number of Bedrooms', 'Area Population']]
           y=df['Price']
In [15]: from sklearn.model_selection import train_test_split
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101)
In [16]: | from sklearn.linear_model import LinearRegression
           lm=LinearRegression()
          lm.fit(x_train,y_train)
Out[16]: TinearRegression
           LinearRegression()
In [17]: print(lm.intercept_)
           -2641372.6673013885
In [19]: coeff_df=pd.DataFrame(lm.coef_,x.columns,columns=['coefficient'])
          coeff_df
Out[19]:
                                            coefficient
                                            21.617635
                       Avg. Area Income
                     Avg. Area House Age
                                        165221.119872
              Avg. Area Number of Rooms
                                        121405.376596
                                           1318.718783
            Avg. Area Number of Bedrooms
```

Area Population

15.225196

```
In [20]: predictions=lm.predict(x_test)
plt.scatter(y_test,predictions)
```

Out[20]: <matplotlib.collections.PathCollection at 0x242d6d83700>

In [23]: sns.displot((y_test,predictions),bins=50)

Out[23]: <seaborn.axisgrid.FacetGrid at 0x242d6e2d6f0>


```
In [25]: from sklearn import metrics
    print('MAE:',metrics.mean_absolute_error(y_test,predictions))
    print('MSE:',metrics.mean_squared_error(y_test,predictions))
    print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 81257.55795855928 MSE: 10169125565.897568 RMSE: 100842.0823163503

```
In [26]: from sklearn.linear_model import Ridge,RidgeCV, Lasso
from sklearn.preprocessing import StandardScaler
```

```
In [27]: df=df[['Avg. Area House Age','Price']]
    df.columns=['Age','Pri']
    plt.figure(figsize = (10, 10))
    sns.heatmap(df.corr(), annot = True)
```

Out[27]: <Axes: >

In []: