Hierarchical Models and MCMC Estimation

Bayes

Model

Complexity

MCMC Estimation

## Hierarchical Models and MCMC Estimation

February 21, 2013

### Overview

#### Multiparameter Bayes

Model

Model Complexity

MCMC Estimation

- Extend Bayesian inference for more complex models
  - Models with multiple unknowns/priors
  - Hieriarchical approach to model fitting
  - Regularization and 'shrinkage'
- Gibbs and Metropolis Algorithms for Markov Chain Monte Carlo (MCMC) posterior inference in R
  - Basic simulation inference
  - Bugs/Jags model language

## Multiparameter Bayesian Models

#### Multiparameter Bayes

- Consider a two-parameter model with  $\tilde{\theta} = \{\gamma, \delta\}$
- ullet We estimate  $ilde{ heta}$  by randomly sampling from the jointposterior  $p(\tilde{\theta}|y)$  distribution:

$$p(\tilde{\theta}|y) \propto p(\tilde{\theta})p(y|\tilde{\theta})$$
  
 $p(\gamma, \delta|y) \propto p(\gamma, \delta)p(y|\gamma, \delta)$ 

## Multiparameter Bayesian Models

#### Multiparameter Bayes

Hierarchica Models

Model Complexity  $\bullet$  Consider a two-parameter model with  $\tilde{\theta} = \{\gamma, \delta\}$ 

• We estimate  $\tilde{\theta}$  by randomly sampling from the *joint* posterior  $p(\tilde{\theta}|y)$  distribution:

$$p(\tilde{\theta}|y) \propto p(\tilde{\theta})p(y|\tilde{\theta})$$
  
 $p(\gamma, \delta|y) \propto p(\gamma, \delta)p(y|\gamma, \delta)$ 

- To proceed, we need to parameterize the:
  - joint prior:  $p(\gamma, \delta)$
  - joint likelihood:  $p(y|\gamma, \delta)$
- Use posterior inference to estimate  $\hat{\gamma}$  and  $\hat{\delta}$ , making sure to consider any dependences that arise

## Specify Joint Model

#### Multiparameter Bayes

Hierarchical Models

Model Complexity

MCMC Estimation • The joint likelihood is (usually) just the likelihood, e.g.,

$$y|\mu,\sigma^2 \sim N(y|\mu,\sigma^2)$$

where  $\mu$  and  $\sigma^2$  are the unknowns

• The main action is on parameterizing the joint prior  $p(\gamma, \delta)$ , e.g.,

$$p(\beta, \sigma^2) \propto \frac{1}{\sigma^2}$$

 Then perform marginal posterior inference on the resulting joint posterior

#### Multiparameter Bayes

Models Model

Model Complexity

MCMC Estimation

## Marginal Posterior Inference

- To estimate  $\hat{\gamma}$  we can (provisionally) treat  $\delta$  as a 'nuisance' parameter
  - We want to sample from the marginal distribution  $\hat{\gamma} = E[p(\gamma|y)]$
  - Target the conditional posterior  $p(\gamma|\delta,y)$ , since this embodies any dependencies between  $\gamma$  and  $\delta$

### Multiparameter Bayes

Model

Complexity

MCMC Estimation

## Marginal Posterior Inference

- To estimate  $\hat{\gamma}$  we can (provisionally) treat  $\delta$  as a 'nuisance' parameter
  - We want to sample from the marginal distribution  $\hat{\gamma} = E[p(\gamma|y)]$
  - Target the conditional posterior  $p(\gamma|\delta,y)$ , since this embodies any dependencies between  $\gamma$  and  $\delta$
- The marginal posterior  $p(\gamma|y)$  is the density of  $\gamma$  given the observed data when we hold  $\delta$  at its average:

$$p(\gamma|y) = \int p(\gamma, \delta|y) d\delta$$

• We can show this factorizes into:

$$p(\gamma|y) = \int p(\gamma|\delta, y)p(\delta|y)d\delta$$

Analytically or iteratively evaluate this integral



### Recall Diffuse Linear Model

#### Multiparameter Bayes

Models

Model Complexity

MCMC Estimation • We factored the joint posterior distribution  $p(\beta, \sigma^2|y)$  into its component conditional and marginal posteriors:

$$\beta | \sigma^2, y \sim N(\bar{y}, \frac{\sigma^2}{n})$$
  
 $\sigma^2 | y \sim \text{Inv-}\chi^2(n-1, s^2)$ 

• We iteratively sampled from  $\sigma^2|y$ , and then from  $\beta|\sigma^2,y$  (using previous  $\sigma^2$ ) to obtain posterior estimates for  $\beta$ , (implicitly) integrating over  $\sigma^2$ 

### Recall Diffuse Linear Model

#### Multiparameter Bayes

Hierarchica Models

Model Complexity

МСМС

• We factored the joint posterior distribution  $p(\beta, \sigma^2|y)$  into its component conditional and marginal posteriors:

$$\beta | \sigma^2, y \sim N(\bar{y}, \frac{\sigma^2}{n})$$
  
 $\sigma^2 | y \sim \text{Inv-}\chi^2(n-1, s^2)$ 

- We iteratively sampled from  $\sigma^2|y$ , and then from  $\beta|\sigma^2,y$  (using previous  $\sigma^2$ ) to obtain posterior estimates for  $\beta$ , (implicitly) integrating over  $\sigma^2$
- Analytically evaluating the integral  $p(\beta|y)$  yields:

$$\frac{\beta - \bar{y}}{s/\sqrt{n}} | y \sim t_{n-1}$$

#### Hierarchical Models

Model Complexity

MCMC Estimation

## Specify More Joint Structure

- Specify a joint prior  $p(\tilde{\theta})$  where  $\gamma$  and  $\delta$  each depends on additional parameters  $\tilde{\theta}_0 = \{\gamma_0, \delta_0\}$ 
  - The joint prior takes the general form  $p(\gamma, \delta, \gamma_0, \delta_0)$
  - Note that the joint likelihood is still  $p(y|\gamma,\delta)$
  - So the posterior is:

$$\begin{array}{ccc} p(\gamma, \delta, \gamma_0, \delta_0 | y) & \propto & p(\gamma, \delta, \gamma_0, \delta_0) p(y | \gamma, \delta) \\ p(\tilde{\theta}, \tilde{\theta}_0 | y) & \propto & p(\tilde{\theta}, \tilde{\theta}_0) p(y | \tilde{\theta}) \end{array}$$

### Hierarchical Models

Model Complexity

MCMC Estimation

- Specify a joint prior  $p(\tilde{\theta})$  where  $\gamma$  and  $\delta$  each depends on additional parameters  $\tilde{\theta}_0 = \{\gamma_0, \delta_0\}$ 
  - The joint prior takes the general form  $p(\gamma, \delta, \gamma_0, \delta_0)$
  - Note that the joint likelihood is still  $p(y|\gamma, \delta)$
  - So the posterior is:

$$\begin{array}{ccc} p(\gamma, \delta, \gamma_0, \delta_0 | y) & \propto & p(\gamma, \delta, \gamma_0, \delta_0) p(y | \gamma, \delta) \\ p(\tilde{\theta}, \tilde{\theta}_0 | y) & \propto & p(\tilde{\theta}, \tilde{\theta}_0) p(y | \tilde{\theta}) \end{array}$$

• Parameterize the joint prior in terms of the 'hyperparameters'  $\tilde{\theta}_0$  and model parameters  $\tilde{\theta}$ 

- Specify a joint prior  $p(\tilde{\theta})$  where  $\gamma$  and  $\delta$  each depends on additional parameters  $\tilde{\theta}_0 = \{\gamma_0, \delta_0\}$ 
  - The joint prior takes the general form  $p(\gamma, \delta, \gamma_0, \delta_0)$
  - Note that the joint likelihood is still  $p(y|\gamma,\delta)$
  - So the posterior is:

$$\begin{array}{ccc} p(\gamma, \delta, \gamma_0, \delta_0 | y) & \propto & p(\gamma, \delta, \gamma_0, \delta_0) p(y | \gamma, \delta) \\ p(\tilde{\theta}, \tilde{\theta}_0 | y) & \propto & p(\tilde{\theta}, \tilde{\theta}_0) p(y | \tilde{\theta}) \end{array}$$

- Parameterize the joint prior in terms of the 'hyperparameters'  $\tilde{\theta}_0$  and model parameters  $\tilde{\theta}$
- When  $\tilde{\theta}_0$  are unknown, we add additional structure through 'hyperprior' distributions, or prior distributions on the hyperparameters  $p(\tilde{\theta}_0)$

Hierarchical Models

• Add hyperprior distributions in terms of (known)  $\tilde{\theta}_{-1}$ hyperparameters:

• The joint prior takes the general form  $p(\hat{\theta}, \hat{\theta}_0, \hat{\theta}_{-1})$ 

• This factors:  $p(\tilde{\theta}, \tilde{\theta}_0, \tilde{\theta}_{-1}) = p(\tilde{\theta}_0, \tilde{\theta}_1) p(\tilde{\theta}|\tilde{\theta}_0, \tilde{\theta}_1)$ 

So the posterior is:

$$p(\tilde{\theta}, \tilde{\theta}_0, \tilde{\theta}_{-1}|y) \propto p(\tilde{\theta}_0, \tilde{\theta}_1) p(\tilde{\theta}|\tilde{\theta}_0, \tilde{\theta}_1) p(y|\tilde{\theta})$$

Multiparamete Baves

Hierarchical Models

Model Complexity

MCMC Estimation

- Add hyperprior distributions in terms of (known)  $\tilde{\theta}_{-1}$  hyperparameters:
  - The joint prior takes the general form  $p(\tilde{\theta}, \tilde{\theta}_0, \tilde{\theta}_{-1})$
  - This factors:  $p(\tilde{\theta}, \tilde{\theta}_0, \tilde{\theta}_{-1}) = p(\tilde{\theta}_0, \tilde{\theta}_1) p(\tilde{\theta}|\tilde{\theta}_0, \tilde{\theta}_1)$
  - So the posterior is:

$$p(\tilde{\theta}, \tilde{\theta}_0, \tilde{\theta}_{-1}|y) \propto p(\tilde{\theta}_0, \tilde{\theta}_1) p(\tilde{\theta}|\tilde{\theta}_0, \tilde{\theta}_1) p(y|\tilde{\theta})$$

• Hyperprior distributions may be defined recursively in terms of  $\tilde{\theta}_{-k}$ , for k=1,2,...K

Multiparamete Baves

### Hierarchical Models

Model Complexity

MCMC Estimation

- Add hyperprior distributions in terms of (known)  $\tilde{\theta}_{-1}$  hyperparameters:
  - The joint prior takes the general form  $p(\tilde{\theta}, \tilde{\theta}_0, \tilde{\theta}_{-1})$
  - This factors:  $p(\tilde{\theta}, \tilde{\theta}_0, \tilde{\theta}_{-1}) = p(\tilde{\theta}_0, \tilde{\theta}_1) p(\tilde{\theta}|\tilde{\theta}_0, \tilde{\theta}_1)$
  - So the posterior is:

$$p(\tilde{\theta}, \tilde{\theta}_0, \tilde{\theta}_{-1}|y) \propto p(\tilde{\theta}_0, \tilde{\theta}_1) p(\tilde{\theta}|\tilde{\theta}_0, \tilde{\theta}_1) p(y|\tilde{\theta})$$

- Hyperprior distributions may be defined recursively in terms of  $\tilde{\theta}_{-k}$ , for k=1,2,...K
- Repeatedly factorize the joint prior:

$$\begin{array}{ll} \rho(\tilde{\theta},\tilde{\theta}_{0},\tilde{\theta}_{-1}|y) & \propto & \rho(\tilde{\theta}_{0},\tilde{\theta}_{1})\rho(\tilde{\theta}|\tilde{\theta}_{0},\tilde{\theta}_{1})\rho(y|\tilde{\theta}) \\ & \propto & \rho(\tilde{\theta}_{1})\rho(\tilde{\theta}_{0}|\tilde{\theta}_{1})\rho(\tilde{\theta}|\tilde{\theta}_{0},\tilde{\theta}_{1})\rho(y|\tilde{\theta}) \end{array}$$

#### Hierarchical Models

Model Complexity

MCMC Estimation

## Hierarchical Linear Model

• The joint likelihood,  $p(y|\mu, \sigma^2)$ :

$$y|\mu,\sigma^2 \sim N(y|\mu,\sigma^2)$$

### Hierarchical Linear Model

• The joint likelihood,  $p(y|\mu, \sigma^2)$ :

$$y|\mu,\sigma^2 \sim N(y|\mu,\sigma^2)$$

• The joint prior,  $p(\mu, \sigma^2, \mu_0, \sigma_0^2, \tau_0^2)$ :

$$\mu | \sigma^2 \sim N(\mu_0, \sigma_0^2)$$
  
 $\sigma^2 \sim \text{Inv-}\chi^2(n-1, \tau_0^2)$ 

### Hierarchical Linear Model

• The joint likelihood,  $p(y|\mu, \sigma^2)$ :

$$y|\mu,\sigma^2 \sim N(y|\mu,\sigma^2)$$

• The joint prior,  $p(\mu, \sigma^2, \mu_0, \sigma_0^2, \tau_0^2)$ :

$$\mu | \sigma^2 \sim N(\mu_0, \sigma_0^2)$$
  
 $\sigma^2 \sim \text{Inv-}\chi^2(n-1, \tau_0^2)$ 

• The hyperpriors (with known  $\alpha, \beta, \mu_{-1}$  and  $\sigma_{-1}^2$ ):

$$\mu_0 | \sigma_0^2 \sim N(\mu_{-1}, \sigma_{-1}^2)$$
 $\sigma_0^2 \sim \text{Inv-Gamma}(\alpha, \beta)$ 
 $\tau_0^2 \sim \text{Inv-Gamma}(\alpha, \beta)$ 

### Hierarchical Linear Model

• The joint likelihood,  $p(y|\mu, \sigma^2)$ :

$$y|\mu,\sigma^2 \sim N(y|\mu,\sigma^2)$$

• The joint prior,  $p(\mu, \sigma^2, \mu_0, \sigma_0^2, \tau_0^2)$ :

$$\mu | \sigma^2 \sim N(\mu_0, \sigma_0^2)$$
  
 $\sigma^2 \sim \text{Inv-}\chi^2(n-1, \tau_0^2)$ 

• The hyperpriors (with known  $\alpha, \beta, \mu_{-1}$  and  $\sigma_{-1}^2$ ):

$$\mu_0 | \sigma_0^2 \sim N(\mu_{-1}, \sigma_{-1}^2)$$
 $\sigma_0^2 \sim \text{Inv-Gamma}(\alpha, \beta)$ 
 $\tau_0^2 \sim \text{Inv-Gamma}(\alpha, \beta)$ 

• The joint posterior,  $p(\mu, \sigma^2, \mu_0, \sigma_0^2, \tau_0^2 | y) \propto$ :  $p(\sigma_0^2) p(\tau_0^2) p(\mu_0 | \sigma_0^2) p(\mu | \mu_0, \sigma_0^2) p(\sigma^2 | \tau_0^2) p(\mu | \sigma^2) p(y | \mu, \sigma^2)$  Models

Model Complexity

MCMC Estimation

## Complexity and Model Fit

- Hierarchical models quickly become complex and analytically intractible – so what's is the upside?
- Highly flexible approach to model fitting

Models Model

Complexity

MCMC Estimation

## Complexity and Model Fit

- Hierarchical models quickly become complex and analytically intractible – so what's is the upside?
- Highly flexible approach to model fitting
  - Sufficiently hierarchical models can capture any amount of complexity in a data process
  - Can check for and avoid 'overfitting' data predicting very well in-sample well, but very poorly out-of-sample

## Complexity and Model Fit

- Hierarchical models quickly become complex and analytically intractible – so what's is the upside?
- Highly flexible approach to model fitting
  - Sufficiently hierarchical models can capture any amount of complexity in a data process
  - Can check for and avoid 'overfitting' data predicting very well in-sample well, but very poorly out-of-sample
- E.g., Fitting a polynomial function  $sin(2\pi x)$  for x on the domain of -1 to 0; (Bishop 2006)
- Use ridge regression to model an Mth-order polynomial with a penalty proportional to  $\lambda$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

## Complexity and Model Fit

Multiparamete Bayes

Hierarchical Models

#### Model Complexity

МСМС



### Multiparamete

Hierarchical Models

#### Model Complexity

MCMC Estimation

## Shrinkage





Table 1.2 Table of the coefficients  $\mathbf{w}^*$  for M=9 polynomials with various values for the regularization parameter  $\lambda$ . Note that  $\ln \lambda = -\infty$  corresponds to a model with no regularization, i.e., to the graph at the bottom right in Figure 1.4. We see that, as the value of  $\lambda$  increases, the typical magnitude of the coefficients gets smaller.

|               | $\ln \lambda = -\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|---------------|-------------------------|---------------------|-------------------|
| $w_0^{\star}$ | 0.35                    | 0.35                | 0.13              |
| $w_1^*$       | 232.37                  | 4.74                | -0.05             |
| $w_2^{\star}$ | -5321.83                | -0.77               | -0.06             |
| $w_3^*$       | 48568.31                | -31.97              | -0.05             |
| $w_4^*$       | -231639.30              | -3.89               | -0.03             |
| $w_5^*$       | 640042.26               | 55.28               | -0.02             |
| $w_6^{\star}$ | -1061800.52             | 41.32               | -0.01             |
| $w_7^{\star}$ | 1042400.18              | -45.95              | -0.00             |
| $w_8^*$       | -557682.99              | -91.53              | 0.00              |
| $w_9^*$       | 125201.43               | 72.68               | 0.01              |
|               |                         |                     |                   |

Multiparamete Bayes

Hierarchica Models

Model Complexity

MCMC Estimation  Hierarchical and multiparameter models can often be estimated using numerical sampling approaches

Multiparamete Baves

Model

Complexity

MCMC Estimation

- Hierarchical and multiparameter models can often be estimated using numerical sampling approaches
- Markov Chain Monte Carlo (MCMC) simulation
  - Standard practice for Bayesian inference
  - Draw  $\theta$  from an approximating distribution, then improve until the draws converge to the true posterior  $p(\theta|y)$
  - The draws form a Markov chain made using a probability distribution depending only on the previous draw  $\theta_{t-1}$
  - Convergence is due to the stepwise improvement in the approximating distribution

Hierarchica Models

Model Complexity

MCMC Estimation

## Gibbs Sampler

- Divide  $\theta$  into d components or subvectors, then draw  $\theta_1, \theta_2, ..., \theta_d$  parameters sequentially, holding the remaining subvectors at their previous values
- Bivariate normal distribution:

$$\left(\begin{array}{c}\theta_1\\\theta_2\end{array}\right)\bigg|\ y\sim N\left\{\left(\begin{array}{c}y_1\\y_2\end{array}\right),\left(\begin{array}{cc}1&\rho\\\rho&1\end{array}\right)\right\}$$

```
theta.gibbs.1 <- function(y,theta,p){
    rnorm(y[1]+p*(theta[2]-y[2]),1-p^2,n=1)}

theta.gibbs.2 <- function(y,theta,p){
    rnorm(y[2]+p*(theta[1]-y[1]),1-p^2,n=1)}

# four starting chains
y1=c(2.5,2.5); y2=c(-2.5,-2.5)
y3=c(2.5,-2.5); y4=c(-2.5,2.5)</pre>
```

## Gibbs Sampler

Multiparamete Bayes

Hierarchical Models

Model Complexity

MCMC Estimation

```
chains <- matrix(NA, 1000, 8); p <- .65
chains [1,] \leftarrow c(y1, y2, y3, y4); y \leftarrow c(0,0)
for(i in 2:1000){
 chains [i, c(1,3,5,7)] < -
 c(theta.gibbs.1(y,theta=chains[i-1,1:2],p),
   theta.gibbs.1(v,theta=chains[i-1,3:4],p),
   theta.gibbs.1(v,theta=chains[i-1,5:6],p),
   theta.gibbs.1(v,theta=chains[i-1,7:8],p))
 chains [i,c(2,4,6,8)] < -
 c(theta.gibbs.2(y,theta=chains[i,1:2],p),
   theta.gibbs.2(y,theta=chains[i,3:4],p),
   theta.gibbs.2(y,theta=chains[i,5:6],p),
   theta.gibbs.2(y,theta=chains[i,7:8],p))
burnin <- 500
```

## Gibbs Sampler

```
plot(chains[,1:2],col='white',
     vlim=c(-3,3), xlim=c(-3,3))
for(i in 2:100){lines(lty=2,col='red',
   x=c(chains[i-1,1], chains[i,1]),
   y=c(chains[i-1,2],chains[i,2]))}
for(i in 2:100){lines(lty=2,col='blue',
   x=c(chains[i-1,3], chains[i,3]),
   y=c(chains[i-1,4],chains[i,4]))}
for(i in 2:100){lines(lty=2,col='darkgreen',
   x=c(chains[i-1,5], chains[i,5]),
   y=c(chains[i-1,6],chains[i,6]))}
for(i in 2:100){lines(lty=2,col='darkorange',
   x=c(chains[i-1,7],chains[i,7]),
   y=c(chains[i-1,8],chains[i,8]))}
```

Multiparamete Bayes

Hierarchica Models

Model Complexity

MCMC Estimation

## The Metropolis Algorithm

 Gibbs generally requires tractible marginals – how do we sample from arbitrary posteriors?

- Gibbs generally requires tractible marginals how do we sample from arbitrary posteriors?
- The Metropolis Algorithm:
  - 1. Draw  $\theta^0$  from a symmetric starting distribution  $p(\theta^0|y)>0$

- Gibbs generally requires tractible marginals how do we sample from arbitrary posteriors?
- The Metropolis Algorithm:
  - 1. Draw  $\theta^0$  from a symmetric starting distribution  $p(\theta^0|y)>0$
  - 2. For subsequent draws t = 1, 2, ... T

- Gibbs generally requires tractible marginals how do we sample from arbitrary posteriors?
- The Metropolis Algorithm:
  - 1. Draw  $\theta^0$  from a symmetric starting distribution  $p(\theta^0|y) > 0$
  - 2. For subsequent draws t = 1, 2, ... T
    - a. Sample a proposal  $\theta^*$  from a jumping distribution  $J^t(\theta^*|\theta^{t-1})$ ; symmetric is  $J^t(\theta^*|\theta^{t-1}) = J^t(\theta^{t-1}|\theta^*)$

- Gibbs generally requires tractible marginals how do we sample from arbitrary posteriors?
- The Metropolis Algorithm:
  - 1. Draw  $\theta^0$  from a symmetric starting distribution  $p(\theta^0|y) > 0$
  - 2. For subsequent draws t = 1, 2, ... T
    - a. Sample a proposal  $\theta^*$  from a jumping distribution  $J^t(\theta^*|\theta^{t-1})$ ; symmetric is  $J^t(\theta^*|\theta^{t-1}) = J^t(\theta^{t-1}|\theta^*)$
    - b. Calculate the ratio of the densities:

$$r = \frac{p(\theta^*|y)}{p(\theta^{t-1}|y)}$$

## The Metropolis Algorithm

- Gibbs generally requires tractible marginals how do we sample from arbitrary posteriors?
- The Metropolis Algorithm:
  - 1. Draw  $\theta^0$  from a symmetric starting distribution  $p(\theta^0|y)>0$
  - 2. For subsequent draws t = 1, 2, ... T
    - a. Sample a proposal  $\theta^*$  from a jumping distribution  $J^t(\theta^*|\theta^{t-1})$ ; symmetric is  $J^t(\theta^*|\theta^{t-1}) = J^t(\theta^{t-1}|\theta^*)$
    - b. Calculate the ratio of the densities:

$$r = \frac{p(\theta^*|y)}{p(\theta^{t-1}|y)}$$

c. Set

$$\theta^t = \left\{ egin{array}{ll} heta^* & ext{with probability min}(r,1) \ heta^{t-1} & ext{otherwise} \end{array} 
ight.$$

## The Metropolis Algorithm

- Gibbs generally requires tractible marginals how do we sample from arbitrary posteriors?
- The Metropolis Algorithm:
  - 1. Draw  $\theta^0$  from a symmetric starting distribution  $p(\theta^0|v) > 0$
  - 2. For subsequent draws t = 1, 2, ... T
    - a. Sample a proposal  $\theta^*$  from a jumping distribution  $J^t(\theta^*|\theta^{t-1})$ ; symmetric is  $J^t(\theta^*|\theta^{t-1}) = J^t(\theta^{t-1}|\theta^*)$
    - b. Calculate the ratio of the densities:

$$r = \frac{p(\theta^*|y)}{p(\theta^{t-1}|y)}$$

c. Set

$$heta^t = \left\{ egin{array}{ll} heta^* & ext{with probability min}(r,1) \ heta^{t-1} & ext{otherwise} \end{array} 
ight.$$

• The transition distribution  $T^t(\theta^t|\theta^{t-1})$  is a mixture of a weighting given to  $J^t$  and a point mass at  $\theta^t = \theta^{t-1}$ 

Multiparamete Bayes

Model

MCMC Estimation

## Metropolis Bivariate Regression

```
set.seed(1005); x < - rnorm(n=40);
v < -.1 + 3.5*x + rnorm(n=40.sd=3)
loglike <- function(param){</pre>
  a = param[1]; b = param[2]; sds= param[3];
  sll \leftarrow dnorm(y, a + b*x, sd = sds, log = T);
  sum_sll <- sum(sll); return(sum_sll)}</pre>
prior <- function(param){</pre>
  a <- param[1]; b = param[2]; sds = param[3];
  apr \leftarrow dnorm(a, sd=6, log = T)
  bpr \leftarrow dnorm(b, sd=6, log = T)
  sdpr <- dunif(sds, min=0, max=30, log = T)</pre>
  return(apr+bpr+sdpr)}
poster <- function(param){</pre>
  return(loglike (param) + prior(param))}
```

Bayes

Models Model

Complexity MCMC

MCMC Estimation

# Metropolis Bivariate Regression

```
propose <- function(param){</pre>
  return (rnorm (3, mean=param, sd=c(1,1,0.5)))
runMCMC <- function(starts, iters){</pre>
  chain = matrix(NA,iters+1,3)
  probs = matrix(NA,iters+1,2)
  chain[1,] = starts
  for (i in 1:iters){
   prop = propose(chain[i,])
   probab = exp(poster(prop) - poster(chain[i,]))
   r=min(probab,1)
   ifs=sample(c(1,0),replace=F,
       prob=c(r,1-r), size=1)
   if(ifs==1){
     chain[i+1,] = prop
   } else if(ifs==0){
     chain[i+1,] = chain[i,]}}
  return(chain)}
```

Multiparamete Bayes

Hierarchical Models

Model Complexity

MCMC Estimation

## Bayesian Inference in R

- R has many packages to conduct and evaluate Bayesian inference
  - www.cran.r-project.org/web/views/Bayesian.html
  - 'MCMCPack'
  - 'mcmc'