CARNEGIE MELLON UNIVERSITY DATA, INFERENCE & APPLIED MACHINE LEARNING (COURSE 18-785) ASSIGNMENT 3

INSTRUCTIONS

- Submissions should be made via canvas.
- **Single** Python/MATLAB code file(.ipynb or .m) [**Do not Submit checkpoints for .ipynb**]. In addition, each line of code should be documented by text. This demonstrates that the code is unique and owned by the student.
- Assignment report(.pdf) with full evidence that the assignment was completed by the student and demonstrate a full understanding of each step in the process including textual descriptions of each result (statistics, table, graph etc) represents and insights that can be gained.
- Indicate the libraries you have used in your code at the beginning of the report (After the title page).
- Using ChatGPT for any assignment is not allowed as it could lead to being flagged for plagiarism.
- Data files (as given).

Submission process:

- 1. Put source code file and data files in a single folder
- 2. Name of the folder should be the same as your andrew ID
- 3. Zip this folder and attach the zipped file on assignment submission page (CANVAS)
- 4. After attaching zipped file, click on "Add Another File" from assignment submission page and **attach your report**
- 5. Submit your assignment

N.B. This process will allow us to compile your reports in **Turnitin** to check for plagiarism.

Specific reasons for a submission being classified as incomplete include:

- Failure to correctly name your folder with your Andrew ID
- Failure to correctly name your report, and code file with andrewID_DIAML_AssignmentNo. For example, mcsharry_DIAML_Assignment1, mcsharry_DIAML_Assignment2 and mcsharry_DIAML_Assignment3.
- A missing report describing the steps, results, and insights
- A missing dataset required for running the code
- A missing code file such as .ipynb or .m file
- An error in the file path needed to run the code

The student is responsible for checking that their submission is complete. Students will lose 10% as for late submission even if the submission is repaired during the 24 hours after the deadline has passed, and receive 0 for the assignment if it is not repaired.

The submission deadline is on Monday 02, October, 2023 17:59 Eastern Time (ET) /

Monday 02, October, 2023 23:59 Rwandan Time (CAT).

No.	Question				Format	Value
1	Daily energy intake in kJ was measured for 11 women (Altman, 1991):				Six numbers	20%
	5260, 5470, 5640, 6180, 6390, 6515, 6805, 7515, 7515, 8230, 8770.				Two	
	We wish to investigate whether the women's energy intake deviates				qualitative	
	systematically from a recommended value of 7725 kJ. Assuming this				answers.	
	data comes from a normal distribution; use a t-test to test whether the					
	distribution might have a mean of 7725 kJ. Explain whether a left-tail,					
	right-tail or two-tailed test is appropriate. Give the sample mean, sample					
	standard deviation, standard error of the mean (SEM), t statistic, degrees					
	of freedom and p-value. Finally explain if the null hypothesis is rejected					
	or not.					
2	A Guinness Overall Enjoyment Score (GOES) was used to test if				Qualitative	20%
	Guinness served in an Irish pub tastes significantly better than pints				answers; t	
	served elsewhere around the globe. Pints consumed in Ireland received a				statistic;	
	mean GOES score of 74, while the average GOES score for Guinness				p-value and	
	tasted elsewhere was 57. The full results were as follows:				code.	
	Location	Sample Size		Standard Deviation		
	Ireland	42	74	7.4		
	Elsewhere	61	57	7.1		
3						
	Is this difference of 74 versus 57 significant, or is it simply due to					
	natural, random variation? Use a t-test and explain whether a					
	one-sample, two-sample or paired test is appropriate. Show the steps of					
	calculating the t statistic and explain whether a left-tailed, right-tailed or					
	two-tailed test is required. Give the resulting p-value.				G 1	200
	Use data from the World Bank Indicators for 2013 to study the				Graph,	20%
	relationship between Fertility rate, total (births per woman) versus GDP				Correlation	
	per capita PPP (current international \$). Make a carefully labelled				coefficient.	
	graph with one dot per country. Estimate the correlation coefficient and				Interpretation.	
	give your interpretation.					
4	Load in monthly average house price data in pounds sterling (£) from				Two graphs	20%
+	Jan 1991 to Dec 2016. Download the data from here (choose the file UK				Two graphs, Three	2070
	monthly indices (Post '91)). Graph the time series and label it carefully.				qualitative	
	Construct the autocorrelation function (ACF) of the monthly returns				answers.	
	defined as $r(t) = [p(t)/p(t-1)]-1$ and show the values for lags of one up to				, and were.	
	20 using a bar-graph. Indicate the values of the ACF using horizontal					
	lines that would correspond to a statistically significant result at p<0.05.					
	From the ACF of monthly data is there evidence of seasonality? Is there					
	a trend in the time series? What is the annualized return over this period					
	as a percentage?					
5	Load in the FTSE100 index from here (ticker = ^FTSE) over the same				Graph.	20%
	period (01-Jan-1991 to 31-Dec-2016). Plot the cumulative returns from				Average	
	the House market (using the price data from question 4) and the				Annualized	
	FTSE100 index on the same graph with the time series normalized such				return.	
	that each starts at 100 in Jan-1991. What is the average annualized				Qualitative	
	i iliai cacii stai	its at 100 m jai	1-1ノノ1・	What is the average annualized	Quantum	1
				have been better to invest in a UK	answer.	