2021 Spring MAS 365 Chapter 7: Iterative Techniques in Matrix Algebra

Donghwan Kim

KAIST

Mar/23,25,30, Apr/1, 2021

- 1 7.1 Norms of Vectors and Matrices
- 2 7.2 Eigenvalues and Eigenvectors
- 3 7.3 The Jacobi and Gauss-Seidel Iterative Techniques
- 4 7.4 Relaxation Techniques for Solving Linear Systems
- 5 7.5 Error Bounds and Iterative Refinement
- 6 7.6 The Conjugate Gradient Method

Measuring Distances

- The objective of iterative techniques (in Chapter 2) is to find a way to minimize the difference between the approximations and the exact solution.
- We need to determine a way to measure the distance between n-dimensional column vectors.

Chapter 7 1 / 101

Vector Norms and Distances

Definition 1

A **vector norm** on \mathbb{R}^n is a function, $||\cdot||$, from \mathbb{R}^n to \mathbb{R} with the following properties:

- 1. $||\boldsymbol{x}|| \geq 0$ for all $\boldsymbol{x} \in \mathbb{R}^n$,
- 2. $||\mathbf{x}|| = 0$ if and only if $\mathbf{x} = \mathbf{0}$,
- 3. $||\alpha x|| = |\alpha| ||x||$ for all $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^n$,
- 4. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$.

Definition 2

The l_2 and l_{∞} norms for the vectors $\boldsymbol{x}=(x_1,x_2,\ldots,x_n)^t$ are defined by

$$||x||_2 = \left\{\sum_{i=1}^n x_i^2\right\}^{1/2} \quad \text{and} \quad ||x||_\infty = \max_{1 \le i \le n} |x_i|.$$

Chapter 7 2 / 10

Definition 3

If $x = (x_1, x_2, \dots, x_n)^t$ and $y = (y_1, y_2, \dots, y_n)^t$ are vectors in \mathbb{R}^n , the l_2 and l_{∞} distances between x and y are defined by

$$||x-y||_2 = \left\{\sum_{i=1}^n (x_i-y_i)^2
ight\}^{1/2} \quad \text{and} \quad ||x-y||_\infty = \max_{1 \le i \le n} |x_i-y_i|.$$

Chapter 7 3 / 101

Ex. The linear system

$$3.3330x_1 + 15920x_2 - 10.333x_3 = 15913,$$

 $2.2220x_1 + 16.710x_2 + 9.6120x_3 = 28.544,$
 $1.5611x_1 + 5.1791x_2 + 1.6852x_3 = 8.4254$

has the exact solution $\boldsymbol{x}=(1,1,1)^t$, and Gaussian elimination performed using five-digit rounding arithmetic and partial pivoting produces the approximate solution

$$\tilde{\boldsymbol{x}} = (1.2001, 0.9991, 0.92538)^t.$$

Determine the l_2 and l_{∞} distances between the exact and approximate solutions.

Sol. Measurements of $x- ilde{x}$ are given by

$$||\boldsymbol{x} - \tilde{\boldsymbol{x}}||_2 = [(0.2001)^2 + (0.00009)^2 + (0.07462)^2]^{1/2} = 0.21356,$$

 $||\boldsymbol{x} - \tilde{\boldsymbol{x}}||_{\infty} = \max\{0.2001, 0.00009, 0.07462\} = 0.2001.$

Chapter 7 4 / 101

Definition 4

A sequence $\{x^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n is said to **converge** to x with respect to the norm $||\cdot||$ if, given any $\epsilon>0$, there exists an integer $N(\epsilon)$ such that $||x^{(k)}-x||<\epsilon$, for all $k\geq N(\epsilon)$.

Theorem 1

The sequence of vectors $\{x^{(k)}\}$ converges to x in \mathbb{R}^n with respect to the l_∞ norm if and only if $\lim_{k\to\infty} x_i^{(k)} = x_i$, for each $i=1,2,\ldots,n$.

Theorem 2

For each
$$x \in \mathbb{R}^n$$
, $||x||_{\infty} \leq ||x||_2 \leq \sqrt{n}||x||_{\infty}$.

Chapter 7 5 / 10

Ex. Show that

$$\boldsymbol{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, x_4^{(k)})^t = \left(1, 2 + \frac{1}{k}, \frac{3}{k^2}, e^{-k} \sin k\right)^t$$

converges to $x = (1, 2, 0, 0)^t$ with respect to the l_{∞} and l_2 norm.

Chapter 7 6 / 101

Sol. Given any $\epsilon > 0$, there exists an integer $N(\epsilon/2)$ with the property that

$$||oldsymbol{x}^{(k)}-oldsymbol{x}||_{\infty}<rac{\epsilon}{2},$$

whenever $k \geq N(\epsilon/2)$. By Theorem 2, this implies that

$$||x^{(k)} - x||_2 \le \sqrt{4}||x^{(k)} - x||_{\infty} \le 2(\epsilon/2) = \epsilon,$$

when $k \geq N(\epsilon/2)$. So $\{ {m x}^{(k)} \}$ also converges to ${m x}$ with respect to the l_2 norm.

rter 7 7 / 101

• It can be shown that all norms on \mathbb{R}^n are equivalent with respect to convergence; that is, if $||\cdot||$ and $||\cdot||'$ are any two norms on \mathbb{R}^n and $\{\boldsymbol{x}^{(k)}\}_{k=1}^{\infty}$ has the limit \boldsymbol{x} with respect to $||\cdot||$, then $\{\boldsymbol{x}^{(k)}\}_{k=1}^{\infty}$ also has the limit \boldsymbol{x} with respect to $||\cdot||'$.

Chapter 7 8 / 101

Matrix Norms and Distances

 \bullet We also need methods for determining the distance between $n\times n$ matrices.

Definition 5

A matrix norm on the set of all $n \times n$ matrices is a real-valued function, $||\cdot||$, defined on this set, satisfying for all $n \times n$ matrices A and B and all real numbers α :

- 1. $||A|| \ge 0$,
- 2. |A| = 0, if and only if A is the zero matrix,
- 3. $||\alpha A|| = |\alpha| \, ||A||$,
- 4. $||A + B|| \le ||A|| + ||B||$,
- 5. $||AB|| \le ||A|| ||B||$.

Chapter 7 9 / 10:

Theorem 3

If $||\cdot||$ is a vector on \mathbb{R}^n , then

$$||A|| = \max_{||\boldsymbol{x}||=1} ||A\boldsymbol{x}|| = \max_{\boldsymbol{z} \neq \boldsymbol{0}} \frac{||A\boldsymbol{z}||}{||\boldsymbol{z}||}$$

is a (natural or induced) matrix norm.

Corollary 1

For any vector $z \neq 0$, matrix A and any natural norm $||\cdot||$, we have

$$||Az|| \le ||A|| \cdot ||z||.$$

Chapter 7 10 / 101

- The measure given to a matrix under a natural norm describes how the matrix stretches unit vectors relative to that norm. The maximum stretch is the norm of the matrix
- The matrix norms have the form

the
$$l_{\infty}$$
 norm: $||A||_{\infty} = \max_{||\boldsymbol{x}||_{\infty}=1} ||A\boldsymbol{x}||_{\infty},$

the
$$l_2$$
 norm: $||A||_2 = \max_{||x||_2=1} ||Ax||_2$.

Chapter 7 11 / 101

• An illustration of the norms when n=2 is shown below for the matrix

$$A = \left[\begin{array}{cc} 0 & -2 \\ 2 & 0 \end{array} \right].$$

Chapter 7 12 / 101

ullet An illustration of the norms when n=2 is shown below for the matrix

$$A = \left[\begin{array}{cc} 0 & -2 \\ 2 & 0 \end{array} \right].$$

Chapter 7 13 / 101

Theorem 4

If $A = (a_{ij})$ is an $n \times n$ matrix, then

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

Ex. Determine $||A||_{\infty}$ for the matrix

$$A = \left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1 \end{array} \right].$$

- Sol. Since $\sum_{j=1}^3 |a_{1j}|=4$, $\sum_{j=1}^3 |a_{2j}|=4$ and $\sum_{j=1}^3 |a_{3j}|=7$, we have $||A||_{\infty}=7$.
 - Q. How about l_2 norm of a matrix?

Chapter 7 14 / 10

- 1 7.1 Norms of Vectors and Matrices
- 2 7.2 Eigenvalues and Eigenvectors
- 3 7.3 The Jacobi and Gauss-Seidel Iterative Techniques
- 4 7.4 Relaxation Techniques for Solving Linear Systems
- 5 7.5 Error Bounds and Iterative Refinement
- 6 7.6 The Conjugate Gradient Method

Eigenvalues and Eigenvectors

Definition 6

If A is a square matrix, the characteristic polynomial of A is defined by

$$p(\lambda) = \det\{A - \lambda I\} \,.$$

Definition 7

If p is the characteristic polynomial of the matrix A, the zeros of p are **eigenvalues** of the matrix A. If λ is an eigenvalue of A and $x \neq 0$ satisfies $(A - \lambda I)x = 0$, then x is an **eigenvector** of A corresponding to the eigenvalue λ .

er 7 15 / 101

Spectral Radius

Definition 8

The spectral radius $\rho(A)$ of a matrix A is defined by

$$\rho(A) = \max |\lambda|$$
, where λ is an eigenvalue of A .

(For complex
$$\lambda = \alpha + \beta i$$
, we define $|\lambda| = (\alpha^2 + \beta^2)^{1/2}$.)

Theorem 5

If A is an $n \times n$ matrix, then

- 1. $||A||_2 = [\rho(A^t A)]^{1/2}$,
- 2. $\rho(A) \leq ||A||$, for any natural norm $||\cdot||$.

Proof

2. Suppose λ is an eigenvalue of A with eigenvector x and ||x||=1. Then $Ax=\lambda x$ and

$$|\lambda| = |\lambda| \cdot ||x|| = ||\lambda x|| = ||Ax|| \le ||A|| \, ||x|| = ||A||.$$

So,
$$\rho(A) = \max |\lambda| \le ||A||$$
.

Chapter 7 16 /

Convergent Matrices

 In studying iterative matrix techniques, it is of particular importance to know when powers of a matrix become small.

Definition 9

We call $n \times n$ matrix A convergent if

$$\lim_{k\to\infty} (A^k)_{ij} = 0, \quad \text{for each } i = 1, 2, \dots, n \text{ and } j = 1, 2, \dots, n.$$

Theorem 6

The following statements are equivalent.

- 1. A is a convergent matrix.
- 2. $\lim_{n\to\infty} ||A^n|| = 0$, for some natural norm.
- 3. $\lim_{n\to\infty} ||A^n|| = 0$, for all natural norms.
- **4**. $\rho(A) < 1$.
- 5. $\lim_{n\to\infty} A^n x = 0$. for every x.

Chapter 7 17 / 10

- 1 7.1 Norms of Vectors and Matrices
- 2 7.2 Eigenvalues and Eigenvectors
- 3 7.3 The Jacobi and Gauss-Seidel Iterative Techniques
- 4 7.4 Relaxation Techniques for Solving Linear Systems
- 5 7.5 Error Bounds and Iterative Refinement
- 6 7.6 The Conjugate Gradient Method

Iterative Methods

- Iterative techniques are seldom used for solving linear systems of small dimension since the time required for sufficient accuracy exceeds that required for direct techniques.
- For large systems with a high percentage of 0 entries, however, iterative techniques are efficient in terms of both computer storage and computation.
- Systems of this type arise frequently in circuit analysis and in the numerical solution of boundary-value problems and partial-differential equations.

Chapter 7 18 / 101

Iterative Methods

- Jacobi's method
- Gauss-Seidel method
- An iterative technique to solve the $n \times n$ linear system Ax = b starts with an initial approximation $x^{(0)}$ to the solution x and generates a sequence of vectors $\{x^{(k)}\}_{k=0}^{\infty}$ that converges to x.

Chapter 7 19 / 101

Jacobi's Method

• The Jacobi iterative method is obtained by solving the *i*th equation in Ax = b for x_i to obtain (provided $a_{ii} \neq 0$)

$$x_i = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j + b_i \right], \quad \text{for } i = 1, 2, \dots, n.$$

Chapter 7 20 / 101

Jacobi's Method

 \bullet For each $k\geq 1,$ generate the components $x_i^{(k)}$ of $x^{(k)}$ from the components of $x^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1\\j \neq i}}^n a_{ij} x_j^{(k-1)} + b_i \right], \quad \text{for } i = 1, 2, \dots, n.$$

Chapter 7 21 / 101

Ex. The linear system Ax = b given by

$$\begin{split} E_1 \ : \ & 10x_1 - x_2 + 2x_3 = 6, \\ E_2 \ : \ & -x_1 + 11x_2 - x_3 + 3x_4 = 25, \\ E_3 \ : \ & 2x_1 - x_2 + 10x_3 - x_4 = -11, \\ E_4 \ : \ & 3x_2 - x_3 + 8x_4 = 15 \end{split}$$

has the unique solution $\boldsymbol{x}=(1,2,-1,1)^t$. Use Jacobi's iterative technique to find approximation $\boldsymbol{x}^{(k)}$ to \boldsymbol{x} starting with $\boldsymbol{x}^{(0)}=(0,0,0,0)^t$ until

$$\frac{||\boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)}||_{\infty}}{||\boldsymbol{x}^{(k)}||_{\infty}} < 10^{-3}.$$

Chapter 7 22 / 101

Sol. We first solve equation E_i for x_i , for each i = 1, 2, 3, 4, to obtain

$$x_1 = \frac{1}{10}x_2 - \frac{1}{5}x_3 + \frac{3}{5},$$

$$x_2 = \frac{1}{11}x_1 + \frac{1}{11}x_3 - \frac{3}{11}x_4 + \frac{25}{11},$$

$$x_3 = -\frac{1}{5}x_1 + \frac{1}{10}x_2 + \frac{1}{10}x_4 - \frac{11}{10},$$

$$x_4 = -\frac{3}{8}x_2 + \frac{1}{8}x_3 + \frac{15}{8}.$$

We then have $oldsymbol{x}^{(1)}$ given by

$$\begin{split} x_1^{(1)} &= \frac{1}{10} x_2^{(0)} - \frac{1}{5} x_3^{(0)} + \frac{3}{5} = 0.6000, \\ x_2^{(1)} &= \frac{1}{11} x_1^{(0)} + \frac{1}{11} x_3^{(0)} - \frac{3}{11} x_4^{(0)} + \frac{25}{11} = 2.2727, \\ x_3^{(1)} &= -\frac{1}{5} x_1^{(0)} + \frac{1}{10} x_2^{(0)} + \frac{1}{10} x_4^{(0)} - \frac{11}{10} = -1.1000, \\ x_4^{(1)} &= -\frac{3}{8} x_2^{(0)} + \frac{1}{8} x_3^{(0)} + \frac{15}{8} = 1.8750. \end{split}$$

Chapter 7 23 / 101

• Additional iterates $x^{(k)}=(x_1^{(k)},x_2^{(k)},x_3^{(k)},x_4^{(k)})^t$, are generated in a similar manner and are presented below.

k	0	1	2	3	4	5	6	7	8	9	10
$x_1^{(k)}$	0.0000	0.6000	1.0473	0.9326	1.0152	0.9890	1.0032	0.9981	1.0006	0.9997	1.0001
$x_2^{(k)}$	0.0000	2.2727	1.7159	2.053	1.9537	2.0114	1.9922	2.0023	1.9987	2.0004	1.9998
$x_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103	-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
$x_4^{(k)}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214	0.9944	1.0036	0.9989	1.0006	0.9998

Terminated after ten iterations because

$$\frac{||\boldsymbol{x}^{(10)} - \boldsymbol{x}^{(9)}||_{\infty}}{||\boldsymbol{x}^{(10)}||_{\infty}} = \frac{8.0 \times 10^{-4}}{1.9998} < 10^{-3}.$$

In fact, $||\boldsymbol{x}^{(10)} - \boldsymbol{x}||_{\infty} = 0.0002$.

Chapter 7 24 / 101

- In general, iterative techniques for solving linear systems involve a process that converts the system Ax = b into an equivalent system of the form x = Tx + c for some fixed matrix T and vector c.
- \bullet After the initial vector $m{x}^{(0)}$ is selected, the sequence of approximate solution vectors is generated by computing

$$\boldsymbol{x}^{(k)} = T\boldsymbol{x}^{(k-1)} + \boldsymbol{c}$$

for each $k = 1, 2, 3, \ldots$, reminiscent of the fixed-point iteration.

Q. What are T and c for Jacobi's method?

Chapter 7 25 / 101

- ullet D: the diagonal matrix whose diagonal entries are those of A
- ullet -L: the strictly lower-triangular part of A
- \bullet -U: the strictly upper-triangular part of A

$$A = \left[\begin{array}{cccc} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{array} \right] - \left[\begin{array}{ccccc} 0 & \cdots & \cdots & 0 \\ -a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{array} \right] - U$$

Chapter 7 26 / 101

ullet The equation $Aoldsymbol{x}=(D-L-U)oldsymbol{x}=oldsymbol{b}$ is then transformed into

$$D\boldsymbol{x} = (L+U)\boldsymbol{x} + \boldsymbol{b},$$

and, if D^{-1} exists, that is, if $a_{ii} \neq 0$ for each i, then

$$\boldsymbol{x} = D^{-1}(L+U)\boldsymbol{x} + D^{-1}\boldsymbol{b}.$$

The matrix form of the Jacobi iterative technique is

$$\boldsymbol{x}^{(k)} = \underbrace{D^{-1}(L+U)}_{T_i} \boldsymbol{x}^{(k-1)} + \underbrace{D^{-1}\boldsymbol{b}}_{\boldsymbol{c}_j}.$$

Chapter 7 27 / 101

- To avoid $a_{ii} = 0$, one should reorder the equations.
- ullet To speed up, one should rearrange so that a_{ii} is as large as possible. Why?
- Jacobi's method: For each $k \geq 1$, generate the components $x_i^{(k)}$ of ${\boldsymbol x}^{(k)}$ from the components of ${\boldsymbol x}^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j^{(k-1)} + b_i \right], \quad \text{for } i = 1, 2, \dots, n.$$

Q. Can we do better?

Chapter 7 28 / 101

The Gauss-Seidel Method

- For i>1, the components $x_1^{(k)},\dots,x_{i-1}^{(k)}$ of ${\boldsymbol x}^{(k)}$ have already been computed.
- Gauss-Seidel iterative method updates as

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} + b_i \right]$$

for each $i = 1, 2, \ldots, n$.

Chapter 7 29 / 101

The Gauss-Seidel Method (cont'd)

Ex. Use the Gauss-Seidel iterative technique to find approximate solutions to

$$10x_1 - x_2 + 2x_3 = 6,$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25,$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11,$$

$$3x_2 - x_3 + 8x_4 = 15,$$

starting with $\boldsymbol{x} = (0,0,0,0)^t$ and iterating until

$$\frac{||\boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)}||_{\infty}}{||\boldsymbol{x}^{(k)}||_{\infty}} < 10^{-3}.$$

Chapter 7 30 / 101

The Gauss-Seidel Method (cont'd)

Sol. Gauss-Seidel method updates as

$$\begin{split} x_1^{(k)} &= \frac{1}{10} x_2^{(k-1)} - \frac{1}{5} x_3^{(k-1)} + \frac{3}{5}, \\ x_2^{(k)} &= \frac{1}{11} x_1^{(k)} + \frac{1}{11} x_3^{(k-1)} - \frac{3}{11} x_4^{(k-1)} + \frac{25}{11}, \\ x_3^{(k)} &= -\frac{1}{5} x_1^{(k)} + \frac{1}{10} x_2^{(k)} + \frac{1}{10} x_4^{(k-1)} - \frac{11}{10}, \\ x_4^{(k)} &= -\frac{3}{8} x_2^{(k)} - \frac{1}{8} x_3^{(k)} + \frac{15}{8}. \end{split}$$

Chapter 7 31 / 101

The Gauss-Seidel Method (cont'd)

• Gauss-Seidel method then generates the values below.

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.030	1.0065	1.0009	1.0001
$x_{2}^{(k)}$ $x_{3}^{(k)}$ $x_{4}^{(k)}$	0.0000	2.3272	2.037	2.0036	2.0003	2.0000
$x_3^{(k)}$	0.0000	-0.9873	-1.014	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Terminated after five iterations because

$$\frac{||\boldsymbol{x}^{(5)} - \boldsymbol{x}^{(4)}||_{\infty}}{||\boldsymbol{x}^{(5)}||_{\infty}} = \frac{0.0008}{2.000} = 4 \times 10^{-4} < 10^{-3},$$

which requires twice less iterations than Jacobi's method.

Chapter 7 32 / 101

• Gauss-Seidel iterative method updates as

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} + b_i \right]$$

for each i = 1, 2, ..., n.

ullet To write the Gauss-Seidel method in a matrix form $m{x}^{(k)} = T m{x}^{(k-1)} + m{c}$, multiply the equation by a_{ii} and rearrange it as

$$a_{i1}x_1^{(k)} + a_{i2}x_2^{(k)} + \dots + a_{ii}x_i^{(k)} = -a_{i,i+1}x_{i+1}^{(k-1)} - \dots - a_{in}x_n^{(k-1)} + b_i,$$

for each $i = 1, 2, \ldots, n$.

Chapter 7 33 / 1

Writing all equations gives

$$\begin{array}{lll} a_{11}x_1^{(k)} & = -a_{12}x_2^{(k-1)} - a_{13}x_3^{(k-1)} - \cdots - a_{1n}x_n^{(k-1)} + b_1 \\ a_{21}x_1^{(k)} + a_{22}x_2^{(k)} & = & -a_{23}x_3^{(k-1)} - \cdots - a_{2n}x_n^{(k-1)} + b_2 \\ & \vdots & & \vdots & & \vdots \\ a_{n1}x_1^{(k)} + a_{n2}x_2^{(k)} + \cdots + a_{nn}x_n^{(k)} & = & b_n \end{array}$$

Chapter 7 34 / 101

 \bullet With the definitions of D,L,U , Gauss-Seidel method can be represented by

$$(D-L)\boldsymbol{x}^{(k)} = U\boldsymbol{x}^{(k-1)} + \boldsymbol{b}$$

and

$$x^{(k)} = \underbrace{(D-L)^{-1}U}_{T_q} x^{(k-1)} + \underbrace{(D-L)^{-1}b}_{c_g}$$

for each $k = 1, 2, \ldots$

• For the lower-triangular matrix D-L to be nonsingular, it is necessary and sufficient that $a_{ii} \neq 0$, for each $i=1,2,\ldots,n$.

Chapter 7 35 / 101

- Reordering is also useful in Gauss-Seidel method.
- For some examples, we have seen that Gauss-Seidel method is superior to the Jacobi method.
- This is almost always true, but there are linear systems, where Jacobi method converges, but Gauss-Seidel method does not.

Chapter 7 36 / 101

General Iteration Methods

 To study the convergence of general iteration techniques, we need to analyze the formula

$$x^{(k)} = Tx^{(k-1)} + c$$
, for each $k = 1, 2, ...,$

where $x^{(0)}$ is arbitrary.

Chapter 7 37 / 101

Lemma 1

If the spectral radius satisfies $\rho(T) < 1$, then $(I - T)^{-1}$ exists, and

$$(I-T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j,$$

Proof We first prove that $(I-T)^{-1}$ exists.

Because $Tx = \lambda x$ is true when $(I-T)x = (1-\lambda)x$, we have λ as an eigenvalue of T when $1-\lambda$ is an eigenvalue of I-T. Since $|\lambda| \leq \rho(T) < 1$, $\lambda = 1$ is not an eigenvalue of T, and thus 0 cannot be an eigenvalue of I-T. Hence, $(I-T)^{-1}$ exists.

Chapter 7 38 / 101

Proof Let $S_m = I + T + T^2 + \cdots + T^m$. Then

$$(I-T)S_m = I - T^{m+1}$$

and, since T is convergent, Theorem 6 implies that

$$\lim_{m \to \infty} (I - T)S_m = \lim_{m \to \infty} (I - T^{m+1}) = I.$$

Thus,

$$(I-T)^{-1} = \lim_{m \to \infty} S_m = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j.$$

39 / 101

Theorem 7

For any $x^{(0)} \in \mathbb{R}^n$, the sequence $\{x^{(k)}\}_{k=0}^\infty$ defined by

$$x^{(k)} = Tx^{(k-1)} + c$$
, for each $k \ge 1$,

converges to the unique solution of x = Tx + c if and only if $\rho(T) < 1$.

Proof First assume that $\rho(T) < 1$. Then,

Chapter 7 40 / 101

Proof To prove the converse, we will show that for any $z \in \mathbb{R}^n$, we have $\lim_{k \to \infty} T^k z = 0$, which is equivalent to $\rho(T) < 1$.

Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Define $x^{(0)} = x - z$, and, for $k \ge 1$, $x^{(k)} = Tx^{(k-1)} + c$. Then, $\{x^{(k)}\}$ converges to x. Also,

Chapter 7 41 / 101

Corollary 2

If ||T|| < 1 for any natural matrix norm and c is a given vector, then the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ defined by $x^{(k)} = Tx^{(k-1)} + c$ converges, for any $x^{(0)} \in \mathbb{R}^n$, to a vector $x \in \mathbb{R}^n$, with x = Tx + c, and the following error bounds hold:

- 1. $||x x^{(k)}|| \le ||T||^k ||x^{(0)} x||$,
- 2. $||\boldsymbol{x} \boldsymbol{x}^{(k)}|| \le \frac{||T||^k}{1 ||T||} ||\boldsymbol{x}^{(1)} \boldsymbol{x}^{(0)}||$.

Chapter 7 42 / 101

- Jacobi's method: $T_j = D^{-1}(L+U)$
- Gauss-Seidel method: $T_g = (D-L)^{-1}U$
- If $\rho(T_j)$ or $\rho(T_g)$ is less than 1, then the corresponding sequence $\{x^{(k)}\}_{k=0}^{\infty}$ will converge to the solution x of Ax = b.

Chapter 7 43 / 101

Definition 10

The $n \times n$ matrix A is said to be diagonally dominant when

$$|a_{ii}| \ge \sum_{\substack{j=1\\j \ne i}}^n |a_{ij}|$$
 holds for each $i = 1, 2, \dots, n$.

A diagonally dominant matrix is said to be strictly diagonally dominant when

$$|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}|$$
 holds for each $i = 1, 2, \dots, n$.

Theorem 8

A strictly diagonally dominant matrix A is nonsingular. Moreover, in this case, Gaussian elimination can be performed on any linear system of the form Ax = b to obtain its unique solution without row or column interchanges.

Chapter 7 44 / 101

Theorem 9

If A is strictly diagonally dominant, then for any choice of $x^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequence $\{x^{(k)}\}_{k=0}^{\infty}$ that converge to the unique solution of Ax = b.

Chapter 7 45 / 101

• For any matrix T and any $\epsilon>0$, there exists a natural norm $||\cdot||$ with the property that

$$\rho(T) \le ||T|| \le \rho(T) + \epsilon.$$

By Theorem 9 and above statement, we have

$$||x^{(k)} - x|| \approx \rho(T)^k ||x^{(0)} - x||.$$

• Thus, we would like to select the iterative technique with minimal $\rho(T) < 1$ for a particular system Ax = b.

Chapter 7 46 / 101

- No general results exist to tell which of the two techniques, Jacobi or Gauss-Seidel, will be most successful for an arbitrary linear system.
- However, for some special cases, the answer is known.

Theorem 10

If $a_{ij} \leq 0$, for each $i \neq j$ and $a_{ii} > 0$, for each i = 1, 2, ..., n, then one and only one of the following statements holds:

- 1. $0 \le \rho(T_a) < \rho(T_i) < 1$
- 2. $1 < \rho(T_j) < \rho(T_g)$
- 3. $\rho(T_j) = \rho(T_g) = 0$
- 4. $\rho(T_i) = \rho(T_a) = 1$.

Chapter 7 47 / 101

- 1 7.1 Norms of Vectors and Matrices
- 2 7.2 Eigenvalues and Eigenvectors
- 3 7.3 The Jacobi and Gauss-Seidel Iterative Techniques
- 4 7.4 Relaxation Techniques for Solving Linear Systems
- 5 7.5 Error Bounds and Iterative Refinement
- 6 7.6 The Conjugate Gradient Method

Residual Vector

- Accelerating convergence can be achieved by choosing a method whose associated matrix has minimal spectral radius.
- For such purpose, we need to first introduce a new means of measuring the amount by which an approximation differs from the true solution to the system.

Definition 11

Suppose $\tilde{x} \in \mathbb{R}^n$ is an approximation to the solution of the linear system defined by Ax = b. The **residual vector** for \tilde{x} with respect to this system is $r = b - A\tilde{x}$.

Chapter 7 48 / 101

Iterative Method and Residual Vector

- ullet In procedures such as the Jacobi or Gauss-Seidel methods, a residual vector $oldsymbol{r}$ is associated with each calculation.
- ullet The true objective of those procedures is to generate a sequence of approximations that makes the residual vectors $m{r}$ to rapidly converge to zero.

Chapter 7 49 / 101

Let

$$\mathbf{r}_{i}^{(k)} = (r_{1i}^{(k)}, r_{2i}^{(k)}, \dots, r_{ni}^{(k)})^{t}$$

be the residual vector for the Gauss-Seidel method, corresponding to $oldsymbol{x}_i^{(k)}$ defined by

$$\boldsymbol{x}_i^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k-1)}, \dots, x_n^{(k-1)})^t.$$

Chapter 7 50 / 101

ullet The mth component of $oldsymbol{r}_i^{(k)}$ is

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i}^n a_{mj} x_j^{(k-1)}$$

$$= b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i+1}^n a_{mj} x_j^{(k-1)} - a_{mi} x_i^{(k-1)}$$

for each $m = 1, 2, \ldots, n$.

ullet In particular, the ith component of $oldsymbol{r}_i^{(k)}$ is

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)}$$

Chapter 7 51 / 101

 \bullet Recall that in the Gauss-Seidel method, $x_i^{(k)}$ is chosen to be

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right],$$

which is equivalent to

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}.$$

Chapter 7 52 / 101

ullet Consider $oldsymbol{r}_{i+1}^{(k)}$, associated with $oldsymbol{x}_{i+1}^{(k)}$,

$$r_{i,i+1}^{(k)} = b_i - \sum_{j=1}^{i} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}$$
$$= b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k)}$$

that is $\mathbf{0}$, implying that the Gauss-Seidel chooses each $x_i^{(k)}$ in such a way that the ith component of $\mathbf{r}_{i+1}^{(k)}$ is zero.

• However, choosing $x_i^{(k)}$ so that one coordinate of the residual vector is zero is not necessarily the most efficient way to reduce to the norm of the vector $\mathbf{r}_{i+1}^{(k)}$. Then how?

Chapter 7 53 / 101

Relaxation Methods

Consider modifying the Gauss-Seidel procedure as

$$x_i^{(k)} = x_i^{(k-1)} + w \frac{r_{ii}^{(k)}}{a_{ii}}$$

for a positive w, which is called **relaxation methods**.

- Methods with 0 < w < 1 are called **under-relaxation methods**.
- Methods with 1 < w are called **over-relaxation methods**, or **SOR** (for successive over-relaxation).

Chapter 7 54 / 101

SOR method can be rewritten as

$$x_i^{(k)} = (1 - w)x_i^{(k-1)} + \frac{w}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right]$$

and

$$a_{ii}x_i^{(k)} + w\sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = (1-w)a_{ii}x_i^{(k-1)} - w\sum_{j=i+1}^n a_{ij}x_j^{(k-1)} + wb_i,$$

for each i = 1, 2, ..., n.

ullet Considering all n equations, we have the vector form

$$(D - wL)\mathbf{x}^{(k)} = [(1 - w)D + wU]\mathbf{x}^{(k-1)} + w\mathbf{b}.$$

Chapter 7 55 / 101

The matrix form of SOR is then

$$\boldsymbol{x}^{(k)} = \underbrace{(D - wL)^{-1}[(1 - w)D + wU]}_{T_w} \boldsymbol{x}^{(k-1)} + \underbrace{w(D - wL)^{-1}\boldsymbol{b}}_{\boldsymbol{c}_w}.$$

Chapter 7 56 / 101

Ex. The linear system Ax = b given by

$$4x_1 + 3x_2 = 24,$$

$$3x_1 + 4x_2 - x_3 = 30,$$

$$-x_2 + 4x_3 = -24$$

has the solution $(3,4,-5)^t$. Compare the iterations from the Gauss-Seidel method and the SOR method with w=1.25 using $\boldsymbol{x}^{(0)}=(1,1,1)^t$ for both methods.

Sol. For each $k=1,2,\ldots$, the equations for the Gauss-Seidel method are

$$x_1^{(k)} = -0.75x_2^{(k-1)} + 6,$$

$$x_2^{(k)} = -0.75x_1^{(k)} + 0.25x_3^{(k-1)} + 7.5,$$

$$x_3^{(k)} = 0.25x_2^{(k)} - 6.$$

Chapter 7 57 / 101

Sol. Then the equations for the SOR method with w=1.25 are

$$\begin{split} x_1^{(k)} &= -0.25x_1^{(k-1)} - 0.9375x_2^{(k-1)} + 7.5, \\ x_2^{(k)} &= -0.9375x_1^{(k)} - 0.25x_2^{(k-1)} + 0.3125x_3^{(k-1)} + 9.375, \\ x_3^{(k)} &= 0.3125x_2^{(k)} - 0.25x_3^{(k-1)} - 7.5. \end{split}$$

Chapter 7 58 / 101

Sol. The first seven iterates for each method are listed below.

k	0	1	2	3	4	5	6	7	k
$x_1^{(k)}$	1	5.250000	3.1406250	3.0878906	3.0549316	3.0343323	3.0214577	3.0134110 x	.(k)
$x_2^{(k)}$	1	3.812500	3.8828125	3.9267578	3.9542236	3.9713898	3.9821186	3.9888241 x	(k)
$x_3^{(k)}$	1	-5.046875	-5.0292969	-5.0183105	-5.0114441	-5.0071526	-5.0044703	-5.0027940 x	.(k) '3

ullet For the iterates to be accurate to seven decimal places, the Gauss-Seidel requires 34 iterations, while the SOR with w=1.25 requires 14 iterations.

Chapter 7 59 / 101

Q. How should we choose w?

Theorem 11

If $a_{ii} \neq 0$, for each i = 1, 2, ..., n, then $\rho(T_w) \geq |w-1|$. This implies that the SOR method can converge only if 0 < w < 2.

Proof Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of T_w . Then

$$\begin{split} \prod_{i=1}^n \lambda_i &= \det T_w = \det \left((D-wL)^{-1} [(1-w)D + wU] \right) \\ &= \det^{-1} \{D-wL\} \det \{ (1-w\}D + wU) \\ &= \det D^{-1} \det \{ (1-w\}D) \\ &= (a_{11} \cdots a_{nn})^{-1} (1-w)^n (a_{11} \cdots a_{nn}) = (1-w)^n. \end{split}$$

Thus,

$$\rho(T_w) = \max_{1 \le i \le n} |\lambda_i| \ge |1 - w|,$$

so 0 < w < 2 (i.e., |1 - w| < 1) is required for the SOR method to converge.

Chapter 7

Theorem 12

If A is a positive definite matrix and 0 < w < 2, then the SOR method converges for any choice of initial approximate vector $x^{(0)}$.

Theorem 13

If A is positive definite and tridiagonal, then $\rho(T_g) = [\rho(T_j)]^2 < 1$, and the optimal choice of w for the SOR method is

$$w = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}}.$$

With this choice of w, we have $\rho(T_w) = w - 1$.

Chapter 7 61 / 101

Ex. Find the optimal choice of \boldsymbol{w} for the SOR method for the positive definite and tridiagonal matrix

$$A = \left[\begin{array}{ccc} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{array} \right].$$

Chapter 7 62 / 101

- 1 7.1 Norms of Vectors and Matrices
- 2 7.2 Eigenvalues and Eigenvectors
- 3 7.3 The Jacobi and Gauss-Seidel Iterative Techniques
- 4 7.4 Relaxation Techniques for Solving Linear Systems
- 5 7.5 Error Bounds and Iterative Refinement
- 6 7.6 The Conjugate Gradient Method

Error Bounds

- ullet Small ||r|| where $r=b-A ilde{x}$ does not necessarily mean $||x- ilde{x}||$. When?
- Ex. The linear system Ax = b given by

$$\begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3.0001 \end{bmatrix}$$

has the unique solution $\boldsymbol{x}=(1,1)^t$. Determine the residual vector for the poor approximation $\tilde{\boldsymbol{x}}=(3,-0.0001)^t$.

Chapter 7 63 / 101

Error Bounds (cont'd)

The solution is the intersection of the nearly parallel lines

$$l_1: x_1 + 2x_2 = 3$$
 and $l_1: 1.0001x_1 + 2x_2 = 3.0001$

• The point (3, -0.0001) lies on l_2 , and lies close to l_1 , even though it differs significantly from the solution.

• How can we identify such characteristic from the system?

Chapter 7 64 / 101

Error Bounds (cont'd)

Theorem 14

Suppose that \tilde{x} is an approximation to the solution of Ax = b, A is a nonsingular matrix, and r is the residual vector for \tilde{x} . Then for any natural norm,

$$||x - \tilde{x}|| \le ||r|| \cdot ||A^{-1}||$$

and if $x \neq 0$ and $b \neq 0$,

$$\frac{||x - \tilde{x}||}{||x||} \le ||A|| \cdot ||A^{-1}|| \frac{||r||}{||b||}.$$

Chapter 7 65 / 101

Condition Numbers

- The previous theorem implies that $||A^{-1}||$ and $||A|| \cdot ||A^{-1}||$ provide an indication of the connection between the residual vector and the accuracy of the approximation.
- The relative error $||x \tilde{x}||/||x||$ is of most interest, which is bounded by the product of $||A|| \cdot ||A^{-1}||$ with the relative residual.

Definition 12

The condition number of the nonsingular matrix A relative to a norm $||\cdot||$ is

$$K(A) = ||A|| \cdot ||A^{-1}||.$$

Chapter 7 66 / 101

Condition Numbers (cont'd)

We then have

$$||\boldsymbol{x} - \tilde{\boldsymbol{x}}|| \leq K(A) \frac{||\boldsymbol{r}||}{||A||} \quad \text{and} \quad \frac{||\boldsymbol{x} - \tilde{\boldsymbol{x}}||}{||\boldsymbol{x}||} \leq K(A) \frac{||\boldsymbol{r}||}{||\boldsymbol{b}||}.$$

ullet For any nonsingular matrix A and natural norm $||\cdot||$,

$$1 = ||I|| = ||A \cdot A^{-1}|| \le ||A|| \cdot ||A^{-1}|| = K(A).$$

- $K(A) \approx 1$: A is well-conditioned,
- $K(A) \gg 1$: A is ill-conditioned.
- Conditioning in this context refers to the relative security that a small residual vector implies a correspondingly accurate approximate solution.

Chapter 7 67 / 101

Condition Numbers (cont'd)

Ex. Determine the condition number for the matrix

$$A = \left[\begin{array}{cc} 1 & 2 \\ 1.0001 & 2 \end{array} \right]$$

Sol. Since

$$A^{-1} = \left[\begin{array}{cc} -10000 & 10000 \\ 5000.5 & -5000 \end{array} \right],$$

we have

$$||A||_{\infty} = \max\{|1|+|2|, |1.001|+|2|\} = 3.0001 \quad \text{and} \quad ||A^{-1}||_{\infty} = 20000.$$

Thus, for the infinity norm, $K(A) = 20000 \times 3.0001 = 60002$, so making accuracy decisions based on the residual of an approximation should be avoided.

Chapter 7 68 / 101

Perturbed Linear System

• In practice, the entries a_{ij} and b_j will be perturbed by an amount δa_{ij} and δb_j , causing the linear system

$$(A + \delta A)\boldsymbol{x} = \boldsymbol{b} + \delta \boldsymbol{b}$$

to be solved instead of Ax = b.

• Even when exact A and ${\bf b}$ are used, rounding errors can cause $||{\bf x} - \tilde{{\bf x}}||$ to be large.

Chapter 7 69 / 101

Perturbed Linear System (cont'd)

Theorem 15

Suppose A is nonsingular and

$$||\delta A|| < \frac{1}{||A^{-1}||}.$$

The solution \tilde{x} to $(A + \delta A)\tilde{x} = b + \delta b$ approximates the solution x of Ax = b with the error estimate

$$\frac{||\boldsymbol{x} - \tilde{\boldsymbol{x}}||}{||\boldsymbol{x}||} \le \frac{K(A)||A||}{||A|| - K(A)||\delta A||} \left(\frac{||\delta \boldsymbol{b}||}{||\boldsymbol{b}||} + \frac{||\delta A||}{||A||}\right)$$

• If A is well-conditioned, then small changes in A and b produce correspondingly small changes in the solution x.

Chapter 7 70 / 101

- 1 7.1 Norms of Vectors and Matrices
- 2 7.2 Eigenvalues and Eigenvectors
- 3 7.3 The Jacobi and Gauss-Seidel Iterative Techniques
- 4 7.4 Relaxation Techniques for Solving Linear Systems
- 5 7.5 Error Bounds and Iterative Refinement
- **6** 7.6 The Conjugate Gradient Method

Conjugate Gradient Method

- As a Direct Method: in general, Gaussian elimination with pivoting is superior.
- As an Iterative Method: when solving large sparse systems, particularly
 with nonzero entries occurring in predictable patterns, it is preferred over
 Gaussian elimination and the previously-discussed iterative methods.

Chapter 7 71 / 101

Inner Product

- Assume that A is (symmetric and) positive definite.
- Use the inner product notation

$$\langle \boldsymbol{x},\, \boldsymbol{y} \rangle = \boldsymbol{x}^t \boldsymbol{y},$$

where x and y are n-dimensional vectors.

Theorem 16

For any vectors x, y, z and any real number α , we have

- $\bullet \ \langle \boldsymbol{x},\,\boldsymbol{y}\rangle = \langle \boldsymbol{y},\,\boldsymbol{x}\rangle$
- $\langle \alpha \boldsymbol{x}, \, \boldsymbol{y} \rangle = \langle \boldsymbol{x}, \, \alpha \boldsymbol{y} \rangle = \alpha \, \langle \boldsymbol{x}, \, \boldsymbol{y} \rangle$
- $\langle \boldsymbol{x}, \, \boldsymbol{x} \rangle \geq 0$
- $\langle x, x \rangle = 0$ if and only if x = 0.

Chapter 7 72 / 101

Inner Product (cont'd)

• When A is positive definite,

$$\langle \boldsymbol{x}, A\boldsymbol{x} \rangle = \boldsymbol{x}^t A \boldsymbol{x} > 0$$

unless x = 0.

• Since A is symmetric, we have $x^tAy = x^tA^ty = (Ax)^ty$, so we have for each x and y

$$\langle A\boldsymbol{x},\,\boldsymbol{y}\rangle=(A\boldsymbol{x})^t\boldsymbol{y}=\boldsymbol{x}^tA^t\boldsymbol{y}=\boldsymbol{x}^tA\boldsymbol{y}=\langle \boldsymbol{x},\,A\boldsymbol{y}\rangle.$$

Chapter 7 73 / 101

Linear System and Minimization

Theorem 17

The vector x^* is a solution to the positive definite linear system Ax = b if and only if x^* produces the minimal value of

$$g(\mathbf{x}) = \langle \mathbf{x}, A\mathbf{x} \rangle - 2 \langle \mathbf{x}, \mathbf{b} \rangle.$$

Proof Let x and $v \neq 0$ be fixed vectors and t a real number variable. We have

$$g(\boldsymbol{x} + t\boldsymbol{v}) = \langle \boldsymbol{x} + t\boldsymbol{v}, A\boldsymbol{x} + tA\boldsymbol{v} \rangle - 2\langle \boldsymbol{x} + t\boldsymbol{v}, \boldsymbol{b} \rangle$$

$$= \langle \boldsymbol{x}, A\boldsymbol{x} \rangle + t\langle \boldsymbol{v}, A\boldsymbol{x} \rangle + t\langle \boldsymbol{x}, A\boldsymbol{v} \rangle + t^2\langle \boldsymbol{v}, A\boldsymbol{v} \rangle - 2\langle \boldsymbol{x}, \boldsymbol{b} \rangle - 2t\langle \boldsymbol{v}, \boldsymbol{b} \rangle$$

$$= \underbrace{\langle \boldsymbol{x}, A\boldsymbol{x} \rangle - 2\langle \boldsymbol{x}, \boldsymbol{b} \rangle}_{g(\boldsymbol{x})} - 2t\langle \boldsymbol{v}, \boldsymbol{b} - A\boldsymbol{x} \rangle + t^2\langle \boldsymbol{v}, A\boldsymbol{v} \rangle$$

• Define the quadratic function h in t by

$$h(t) = q(\boldsymbol{x} + t\boldsymbol{v}).$$

Chapter 7 74 / 10

Linear System and Minimization (cont'd)

Proof h has a minimal value when

$$h'(t) = -2 \langle \boldsymbol{v}, \boldsymbol{b} - A\boldsymbol{x} \rangle + 2t \langle \boldsymbol{v}, A\boldsymbol{v} \rangle = 0,$$

and thus when

$$\hat{t} = \frac{\langle \boldsymbol{v}, \boldsymbol{b} - A\boldsymbol{x} \rangle}{\langle \boldsymbol{v}, A\boldsymbol{v} \rangle}.$$

We then have

$$\begin{split} h(\hat{t}) &= g(\boldsymbol{x} + \hat{t}\boldsymbol{v}) = g(\boldsymbol{x}) - 2\hat{t} \left\langle \boldsymbol{v}, \, \boldsymbol{b} - A\boldsymbol{x} \right\rangle + \hat{t}^2 \left\langle \boldsymbol{v}, \, A\boldsymbol{v} \right\rangle \\ &= g(\boldsymbol{x}) - 2\frac{\left\langle \boldsymbol{v}, \, \boldsymbol{b} - A\boldsymbol{x} \right\rangle}{\left\langle \boldsymbol{v}, \, A\boldsymbol{v} \right\rangle} \left\langle \boldsymbol{v}, \, \boldsymbol{b} - A\boldsymbol{x} \right\rangle + \left(\frac{\left\langle \boldsymbol{v}, \, \boldsymbol{b} - A\boldsymbol{x} \right\rangle}{\left\langle \boldsymbol{v}, \, A\boldsymbol{v} \right\rangle}\right)^2 \left\langle \boldsymbol{v}, \, A\boldsymbol{v} \right\rangle \\ &= g(\boldsymbol{x}) - \frac{\left\langle \boldsymbol{v}, \, \boldsymbol{b} - A\boldsymbol{x} \right\rangle^2}{\left\langle \boldsymbol{v}, \, A\boldsymbol{v} \right\rangle}. \end{split}$$

Chapter 7 75 / 101

Linear System and Minimization (cont'd)

Proof So for any vector $v \neq 0$, we have $g(x + \hat{t}v) < g(x)$ unless $\langle v, b - Ax \rangle = 0$, in which case $g(x) = g(x + \hat{t}v) = h(\hat{t})$.

- " \Rightarrow ": Suppose x^* satisfies $Ax^* = b$. Then $\langle v, b Ax^* \rangle = 0$ for any vector v, and g(x) cannot be smaller than $g(x^*)$. Thus x^* minimizes g.
- ullet " \Leftarrow ": Suppose x^* minimizes g. Then for any vector v, we have

$$g(\boldsymbol{x}^* + \hat{t}\boldsymbol{v}) \ge g(\boldsymbol{x}^*).$$

Thus
$$\langle \boldsymbol{v}, \boldsymbol{b} - A\boldsymbol{x}^* \rangle = 0$$
, implying that $A\boldsymbol{x}^* = \boldsymbol{b}$.

Chapter 7 76 / 101

Search Direction

• Let r = b - Ax be the residual vector associated with x and

$$t = \frac{\langle \boldsymbol{v}, \, \boldsymbol{b} - A\boldsymbol{x} \rangle}{\langle \boldsymbol{v}, \, A\boldsymbol{v} \rangle} = \frac{\langle \boldsymbol{v}, \, \boldsymbol{r} \rangle}{\langle \boldsymbol{v}, \, A\boldsymbol{v} \rangle}.$$

If $r \neq 0$ and if v and r are not orthogonal, then

$$x + tv$$

gives a smaller value for g than $g(\boldsymbol{x})$ and is presumably closer to \boldsymbol{x}^* than is \boldsymbol{x} .

er 7 77 / 101

Search Direction (cont'd)

• Let $x^{(0)}$ be an initial approximation to x^* , and let $v^{(1)} \neq 0$ be an initial search direction. For $k = 1, 2, 3, \ldots$, we compute

$$t_k = rac{\langle oldsymbol{v}^{(k)}, oldsymbol{b} - Aoldsymbol{x}^{(k-1)}
angle}{\langle oldsymbol{v}^{(k)}, Aoldsymbol{v}^{(k)}
angle} \ oldsymbol{x}^{(k)} = oldsymbol{x}^{(k-1)} + t_k oldsymbol{v}^{(k)}$$

and choose a new search direction $v^{(k+1)}$.

Q. How should we choose the search direction?

Chapter 7 78 / 101

Search Direction (cont'd)

 \bullet The gradient of g is

$$\nabla g(\boldsymbol{x}) = 2(A\boldsymbol{x} - \boldsymbol{b}) = -2\boldsymbol{r}$$

where r is the residual vector for x.

- The direction of greatest decrease in the value of g(x) is the direction given by $-\nabla g(x)$.
- The method of steepest descent (also known as the gradient descent method) uses

$$v^{(k+1)} = r^{(k)} = b - Ax^{(k)},$$

which has slow convergence.

Chapter 7 79 / 101

A-Orthogonality Condition

• Alternatively, use a set of nonzero direction vectors $\{m{v}^{(1)},\dots,m{v}^{(n)}\}$ that satisfy

$$\langle \boldsymbol{v}^{(i)}, A\boldsymbol{v}^{(j)} \rangle = 0, \quad \text{if } i \neq j.$$

Q. Why?

- This is called an A-orthogonality condition, and the set of vectors $\{v^{(1)}, \ldots, v^{(n)}\}$ is said to be A-orthogonal.
- One can show that a set of A-orthogonal vectors associated with the positive definite matrix A is linearly independent.

Chapter 7 80 / 101

Theorem 18

Let $\{v^{(1)}, \dots, v^{(n)}\}$ be an A-orthogonal set of nonzero vectors associated with the positive definite matrix A, and let $x^{(0)}$ be arbitrary. Define

$$t_k = rac{\langle oldsymbol{v}^{(k)}, oldsymbol{b} - Aoldsymbol{x}^{(k-1)}
angle}{\langle oldsymbol{v}^{(k)}, Aoldsymbol{v}^{(k)}
angle} \quad ext{and} \quad oldsymbol{x}^{(k)} = oldsymbol{x}^{(k-1)} + t_koldsymbol{v}^{(k)},$$

for k = 1, 2, ..., n. Then assuming exact arithmetic, $Ax^{(n)} = b$.

Proof Since, for each
$$k=1,2,\ldots,n$$
, ${m x}^{(k)}={m x}^{(k-1)}+t_k{m v}^{(k)}$, we have

$$A\mathbf{x}^{(n)} = A\mathbf{x}^{(n-1)} + t_n A\mathbf{v}^{(n)}$$

$$= (A\mathbf{x}^{(n-2)} + t_{n-1}A\mathbf{v}^{(n-1)}) + t_n A\mathbf{v}^{(n)}$$

$$\vdots$$

$$= A\mathbf{x}^{(0)} + t_1 A\mathbf{v}^{(1)} + t_2 A\mathbf{v}^{(2)} + \dots + t_n A\mathbf{v}^{(n)}.$$

Chapter 7 81 / 101

Proof We then have, for each k,

$$\langle A\boldsymbol{x}^{(n)} - \boldsymbol{b}, \, \boldsymbol{v}^{(k)} \rangle = \langle A\boldsymbol{x}^{(0)} - \boldsymbol{b}, \, \boldsymbol{v}^{(k)} \rangle + t_1 \, \langle A\boldsymbol{v}^{(1)}, \, \boldsymbol{v}^{(k)} \rangle + \dots + t_n \, \langle A\boldsymbol{v}^{(n)}, \, \boldsymbol{v}^{(k)} \rangle$$

$$= \langle A\boldsymbol{x}^{(0)} - \boldsymbol{b}, \, \boldsymbol{v}^{(k)} \rangle + t_1 \, \langle \boldsymbol{v}^{(1)}, \, A\boldsymbol{v}^{(k)} \rangle + \dots + t_n \, \langle \boldsymbol{v}^{(n)}, \, A\boldsymbol{v}^{(k)} \rangle$$

$$= \langle A\boldsymbol{x}^{(0)} - \boldsymbol{b}, \, \boldsymbol{v}^{(k)} \rangle + t_k \, \langle \boldsymbol{v}^{(k)}, \, A\boldsymbol{v}^{(k)} \rangle,$$

where the last equality uses the A-orthogonality.

Chapter 7 82 / 101

Proof Since
$$t_k \langle \boldsymbol{v}^{(k)}, A\boldsymbol{v}^{(k)} \rangle = \langle \boldsymbol{v}^{(k)}, \boldsymbol{b} - A\boldsymbol{x}^{(k-1)} \rangle$$
, we have
$$\begin{aligned} t_k \langle \boldsymbol{v}^{(k)}, A\boldsymbol{v}^{(k)} \rangle \\ &= \langle \boldsymbol{v}^{(k)}, \boldsymbol{b} - A\boldsymbol{x}^{(0)} + A\boldsymbol{x}^{(0)} - A\boldsymbol{x}^{(1)} + \dots - A\boldsymbol{x}^{(k-2)} + A\boldsymbol{x}^{(k-2)} - A\boldsymbol{x}^{(k-1)} \rangle \\ &= \langle \boldsymbol{v}^{(k)}, \boldsymbol{b} - A\boldsymbol{x}^{(0)} \rangle + \langle \boldsymbol{v}^{(k)}, A\boldsymbol{x}^{(0)} - A\boldsymbol{x}^{(1)} \rangle + \dots + \langle \boldsymbol{v}^{(k)}, A\boldsymbol{x}^{(k-2)} - A\boldsymbol{x}^{(k-1)} \rangle \\ &= \langle \boldsymbol{v}^{(k)}, \boldsymbol{b} - A\boldsymbol{x}^{(0)} \rangle - t_1 \langle \boldsymbol{v}^{(k)}, A\boldsymbol{v}^{(1)} \rangle - \dots - t_{k-1} \langle \boldsymbol{v}^{(k)}, A\boldsymbol{v}^{(k-1)} \rangle \\ &= \langle \boldsymbol{v}^{(k)}, \boldsymbol{b} - A\boldsymbol{x}^{(0)} \rangle \end{aligned}$$

where the third equality uses $Ax^{(i)} = A(x^{(i-1)} + t_i v^{(i)})$, and the last equality uses the A-orthogonality.

Chapter 7 83 / 101

Proof Thus.

$$\langle A\boldsymbol{x}^{(n)} - \boldsymbol{b}, \, \boldsymbol{v}^{(k)} \rangle = \langle A\boldsymbol{x}^{(0)} - \boldsymbol{b}, \, \boldsymbol{v}^{(k)} \rangle + t_k \, \langle \boldsymbol{v}^{(k)}, \, A\boldsymbol{v}^{(k)} \rangle$$

= $\langle A\boldsymbol{x}^{(0)} - \boldsymbol{b}, \, \boldsymbol{v}^{(k)} \rangle + \langle \boldsymbol{v}^{(k)}, \, \boldsymbol{b} - A\boldsymbol{x}^{(0)} \rangle = 0.$

Hence the vector $A \boldsymbol{x}^{(n)} - \boldsymbol{b}$ is orthogonal to the A-orthogonal set of vectors $\{\boldsymbol{v}^{(1)},\ldots,\boldsymbol{v}^{(n)}\}$. Since the set $\{\boldsymbol{v}^{(1)},\ldots,\boldsymbol{v}^{(n)}\}$ is linearly independent, there is a collection of constants a_1, \ldots, a_n with

$$A\boldsymbol{x}^{(n)} - \boldsymbol{b} = \sum_{i=1}^{n} a_i \boldsymbol{v}^{(i)}.$$

Then,

$$\langle A\boldsymbol{x}^{(n)} - \boldsymbol{b}, A\boldsymbol{x}^{(n)} - \boldsymbol{b} \rangle = \sum_{i=1}^{n} a_i \langle A\boldsymbol{x}^{(n)} - \boldsymbol{b}, \boldsymbol{v}^{(i)} \rangle = 0,$$

which implies that $Ax^{(n)} - b = 0$.

Chapter 7

Ex. The linear system

$$4x_1 + 3x_2 = 24,$$

$$3x_1 + 4x_2 - x_3 = 30,$$

$$-x_2 + 4x_3 = -24$$

has the exact solution $x^* = (3, 4, -5)^t$. Show that the method in Theorem 18 with $x^{(0)} = (0, 0, 0)^t$ and an A-orthogonal set of vectors

$$\mathbf{v}^{(1)} = (1,0,0)^t$$
, $\mathbf{v}^{(2)} = (-3/4,1,0)^t$, $\mathbf{v}^{(3)} = (-3/7,4/7,1)^t$.

produces this exact solution after three iterations.

Chapter 7 85 / 101

Sol. We then have

$$\mathbf{r}^{(1)} = \mathbf{b} - A\mathbf{x}^{(1)} = (0, 12, -24)^{t}, \quad t_{1} = \frac{\langle \mathbf{v}^{(2)}, \mathbf{r}^{(1)} \rangle}{\langle \mathbf{v}^{(2)}, A\mathbf{v}^{(2)} \rangle} = \frac{48}{7},$$
$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + t_{1}\mathbf{v}^{(2)} = (6, 0, 0)^{t} + \frac{48}{7} \left(-\frac{3}{4}, 1, 0 \right)^{t} = \left(\frac{6}{7}, \frac{48}{7}, 0 \right)^{t}.$$

Finally,

$$\mathbf{r}^{(2)} = \mathbf{b} - A\mathbf{x}^{(2)} = \left(0, 0, -\frac{120}{7}\right)^t, \quad t_2 = \frac{\langle \mathbf{v}^{(3)}, \mathbf{r}^{(2)} \rangle}{\langle \mathbf{v}^{(3)}, A\mathbf{v}^{(3)} \rangle} = -5,$$

$$\mathbf{x}^{(3)} = \mathbf{x}^{(2)} + t_2\mathbf{v}^{(3)} = \left(\frac{6}{7}, \frac{48}{7}, 0\right)^t + (-5)\left(-\frac{3}{7}, \frac{4}{7}, 1\right)^t = (3, 4, -5)^t.$$

Chapter 7 86 / 101

Conjugate Direction Method

• The use of A-orthogonal set $\{v^{(1)},\ldots,v^{(n)}\}$ of direction vectors gives what is called a **conjugate direction** method.

Theorem 19

The residual vectors $\mathbf{r}^{(k)}$, where $k=1,2,\ldots,n$, for a conjugate direction method, satisfy the equations

$$\langle \boldsymbol{r}^{(k)}, \, \boldsymbol{v}^{(j)} \rangle = 0$$
, for each $j = 1, 2, \dots, k$.

- The conjugate gradient method chooses the search directions $\{v^{(k)}\}$ during the iterative process so that the residual vectors $\{r^{(k)}\}$ are mutually orthogonal.
- Q. How can we choose such search directions $\{v^{(k)}\}$?

Chapter 7 87 / 10

Conjugate Gradient Method

- ullet Start with $oldsymbol{x}^{(0)}$ and use the steepest descent direction $oldsymbol{r}^{(0)} = oldsymbol{b} Aoldsymbol{x}^{(0)}.$
- Assume that the conjugate directions $v^{(1)},\dots,v^{(k-1)}$ and the approximations $x^{(1)},\dots,x^{(k-1)}$ have been computed with

$$\boldsymbol{x}^{(k-1)} = \boldsymbol{x}^{(k-2)} + t_{k-1} \boldsymbol{v}^{(k-1)},$$

where

$$\langle \boldsymbol{v}^{(i)}, A \boldsymbol{v}^{(j)} \rangle = 0$$
 and $\langle \boldsymbol{r}^{(i)}, \boldsymbol{r}^{(j)} \rangle = 0$, for $i \neq j$.

• If $x^{(k-1)}$ is the solution Ax=b, we are done. Otherwise, $r^{(k-1)}=b-Ax^{(k-1)}\neq 0$ and Theorem 19 implies that

$$\langle \boldsymbol{r}^{(k-1)}, \, \boldsymbol{v}^{(i)} \rangle = 0$$

for each i = 1, 2, ..., k - 1.

Chapter 7 88 / 101

Conjugate Gradient Method: How to Choose $oldsymbol{v}^{(k)}$

ullet We generate $oldsymbol{v}^{(k)}$ using $oldsymbol{r}^{(k-1)}$ as

$$v^{(k)} = r^{(k-1)} + s_{k-1}v^{(k-1)},$$

and choosing s_{k-1} so that

$$\langle \boldsymbol{v}^{(k-1)}, A\boldsymbol{v}^{(k)} \rangle = 0.$$

Q. Why?

7 89 / 101

Conjugate Gradient Method: How to Choose $oldsymbol{v}^{(k)}$ (cont'd)

ullet Since $Aoldsymbol{v}^{(k)} = Aoldsymbol{r}^{(k-1)} + s_{k-1}Aoldsymbol{v}^{(k-1)}$ and

$$\langle \boldsymbol{v}^{(k-1)}, A \boldsymbol{v}^{(k)} \rangle = \langle \boldsymbol{v}^{(k-1)}, A \boldsymbol{r}^{(k-1)} \rangle + s_{k-1} \langle \boldsymbol{v}^{(k-1)}, A \boldsymbol{v}^{(k-1)} \rangle,$$

we have $\langle \boldsymbol{v}^{(k-1)}, A\boldsymbol{v}^{(k)} \rangle = 0$ when

$$s_{k-1} = -\frac{\langle \boldsymbol{v}^{(k-1)}, A\boldsymbol{r}^{(k-1)} \rangle}{\langle \boldsymbol{v}^{(k-1)}, A\boldsymbol{v}^{(k-1)} \rangle}$$

- We can also show that such s_{k-1} guarantees $\langle \boldsymbol{v}^{(k)}, A\boldsymbol{v}^{(i)} \rangle = 0$, for each $i=1,2,\ldots,k-2$. Thus $\{\boldsymbol{v}^{(1)},\ldots,\boldsymbol{v}^{(k)}\}$ is an A-orthogonal set.
- ullet This implies the **mutual orthogonality** of $\{m{r}^{(k)}\}$, e.g.,

$$\langle \boldsymbol{r}^{(k)}, \, \boldsymbol{r}^{(k-1)} \rangle = \langle \boldsymbol{r}^{(k)}, \, \boldsymbol{v}^{(k)} - s_{k-1} \boldsymbol{v}^{(k-1)} \rangle = 0.$$

Chapter 7 90 / 101

Conjugate Gradient Method: How to Choose t_k

ullet Having chosen $oldsymbol{v}^{(k)}$, we have

$$\begin{split} t_k &= \frac{\langle \boldsymbol{v}^{(k)}, \, \boldsymbol{r}^{(k-1)} \rangle}{\langle \boldsymbol{v}^{(k)}, \, A \boldsymbol{v}^{(k)} \rangle} = \frac{\langle \boldsymbol{r}^{(k-1)} + s_{k-1} \boldsymbol{v}^{(k-1)}, \, \boldsymbol{r}^{(k-1)} \rangle}{\langle \boldsymbol{v}^{(k)}, \, A \boldsymbol{v}^{(k)} \rangle} \\ &= \frac{\langle \boldsymbol{r}^{(k-1)}, \, \boldsymbol{r}^{(k-1)} \rangle}{\langle \boldsymbol{v}^{(k)}, \, A \boldsymbol{v}^{(k)} \rangle} + s_{k-1} \frac{\langle \boldsymbol{v}^{(k-1)}, \, \boldsymbol{r}^{(k-1)} \rangle}{\langle \boldsymbol{v}^{(k)}, \, A \boldsymbol{v}^{(k)} \rangle} \\ &= \frac{\langle \boldsymbol{r}^{(k-1)}, \, \boldsymbol{r}^{(k-1)} \rangle}{\langle \boldsymbol{v}^{(k)}, \, A \boldsymbol{v}^{(k)} \rangle}, \end{split}$$

where the last equality uses Theorem 19, $\langle {m v}^{(k-1)}, {m r}^{(k-1)}
angle = 0.$

Chapter 7 91 / 101

Conjugate Gradient Method (cont'd)

In summary, we have

$$r^{(0)} = b - Ax^{(0)}, \quad v^{(1)} = r^{(0)},$$

and, for k = 1, 2, ..., n,

$$t_k = \frac{\langle \boldsymbol{r}^{(k-1)}, \, \boldsymbol{r}^{(k-1)} \rangle}{\langle \boldsymbol{v}^{(k)}, \, A \boldsymbol{v}^{(k)} \rangle}, \quad \boldsymbol{x}^{(k)} = \boldsymbol{x}^{(k-1)} + t_k \boldsymbol{v}^{(k)}, \quad \boldsymbol{r}^{(k)} = \boldsymbol{r}^{(k-1)} - t_k A \boldsymbol{v}^{(k)},$$
$$s_k = \frac{\langle \boldsymbol{r}^{(k)}, \, \boldsymbol{r}^{(k)} \rangle}{\langle \boldsymbol{r}^{(k-1)}, \, \boldsymbol{r}^{(k-1)} \rangle}, \quad \boldsymbol{v}^{(k+1)} = \boldsymbol{r}^{(k)} + s_k \boldsymbol{v}^{(k)}.$$

Chapter 7 92 / 101

Conjugate Gradient Method (cont'd)

Convergence Rate of Steepest Descent Method

ullet Steepest descent method (where $abla g(oldsymbol{x}^{(k)}) = -2oldsymbol{r}^{(k)}$)

$$t_k = \frac{\langle r^{(k-1)}, r^{(k-1)} \rangle}{\langle r^{(k-1)}, Ar^{(k-1)} \rangle}, \quad x^{(k)} = x^{(k-1)} + t_k r^{(k-1)}$$

Equivalent to the steepest descent method with an exact line search

$$\boldsymbol{x}^{(k)} = \underset{\boldsymbol{x} \in \mathbb{R}^n}{\min} \{ g(\boldsymbol{x}) \ : \ \boldsymbol{x} = \boldsymbol{x}^{(k-1)} - t \nabla g(\boldsymbol{x}^{(k-1)}), \ t \in \mathbb{R} \}$$

This has a rate

a rate
$$g(\boldsymbol{x}^{(k)}) - g(\boldsymbol{x}^*) \leq \left(\frac{K(A) - 1}{K(A) + 1}\right)^{2k} (g(\boldsymbol{x}^{(0)}) - g(\boldsymbol{x}^*)).$$

94 / 101

Convergence Rate of Conjugate Gradient Method

Conjugate gradient method is equivalent to

$$m{x}^{(k)} = \underset{m{x} \in \mathbb{R}^n}{\min} \{ g(m{x}) : \mbox{$m{x} = m{x}^{(k-1)} + t m{v}^{(k)}, \ t \in \mathbb{R} \}$$

$$= \arg \min \{ g(m{x}) : \mbox{$m{x} \in m{x}^{(0)} + \mathrm{span}\{\nabla g(m{x}^{(0)}), \dots, \nabla g(m{x}^{(k-1)})\} \}$$

$$\mathbf{x} \in \mathbb{R}^n$$

$$= \arg \min\{g(\mathbf{x}) : \mathbf{x} = \mathbf{x}^{(k-1)} - \alpha \nabla g(\mathbf{x}^{(k-1)}) + \beta(\mathbf{x}^{(k-1)} - \mathbf{x}^{(k-2)}), \alpha, \beta \in \mathbb{R}\}$$

 $= \underset{\boldsymbol{x} \in \mathbb{R}^n}{\arg\min} \{g(\boldsymbol{x}) \ : \ \boldsymbol{x} = \boldsymbol{x}^{(k-1)} - \alpha \nabla g(\boldsymbol{x}^{(k-1)}) + \beta (\boldsymbol{x}^{(k-1)} - \boldsymbol{x}^{(k-2)}), \alpha, \beta \in \mathbb{R} \}$

Conjugate gradient method has a rate

$$g(\boldsymbol{x}^{(k)}) - g(\boldsymbol{x}^*) \le 4\left(\frac{\sqrt{K(A)} - 1}{\sqrt{K(A)} + 1}\right)^{2k} (g(\boldsymbol{x}^{(0)}) - g(\boldsymbol{x}^*)).$$

Of course, after n iterations, conjugate gradient method will find the exact solution.

> Chapter 7 95 / 101

Preconditioning

- If the matrix A is ill-conditioned, the conjugate gradient method is highly susceptible to rounding errors.
- In such case, one could apply conjugate gradient method to another positive definite matrix with a smaller condition number, rather than A.
- Note that it should be easy to find the solution of the original linear system from the solution of the another linear system.

Chapter 7 96 / 101

ullet Multiply on each side by a nonsingular matrix C^{-1} as

$$\tilde{A} = C^{-1}A(C^{-1})^t,$$

which preserves the positive definiteness, with a hope that \tilde{A} has a smaller condition number compared to A.

• Then, consider the linear system

$$\tilde{A}\tilde{x} = \tilde{b}$$

where $\tilde{\boldsymbol{x}} = C^t \boldsymbol{x}$ and $\tilde{\boldsymbol{b}} = C^{-1} \boldsymbol{b}$. We have

$$\tilde{A}\tilde{x} = (C^{-1}A(C^{-1})^t)(C^tx) = C^{-1}Ax = C^{-1}b.$$

ter 7 97 / 10

Ex. Find the eigenvalues and condition number of the matrix

$$A = \begin{bmatrix} 0.2 & 0.1 & 1 & 1 & 0 \\ 0.1 & 4 & -1 & 1 & -1 \\ 1 & -1 & 60 & 0 & -2 \\ 1 & 1 & 0 & 8 & 4 \\ 0 & -1 & -2 & 4 & 700 \end{bmatrix}$$

and compare with those of the preconditioned matrix

$$\tilde{A} = D^{-1/2}AD^{-1/2}$$
, where $D = \text{diag}\{[0.2 \ 4 \ 60 \ 8 \ 700]\}$.

Sol. Eigenvalues of A: 700.031, 60.0284, 0.0570757, 8.33545, 3.74533

Eigenvalues of \tilde{A} : 1.88052, 0.156370, 0.852686, 1.10159, 1.00884

$$K(A)=13961.7 \text{ and } K(\tilde{A})=16.1155 \label{eq:Kappa}$$

Chapter 7 98 / 101

Ex. Compare the Jacobi, Gauss-Seidel, SOR, (Preconditioned) Conjugate Gradient method on the linear system Ax = b with

$$A = \begin{bmatrix} 0.2 & 0.1 & 1 & 1 & 0 \\ 0.1 & 4 & -1 & 1 & -1 \\ 1 & -1 & 60 & 0 & -2 \\ 1 & 1 & 0 & 8 & 4 \\ 0 & -1 & -2 & 4 & 700 \end{bmatrix} \quad \text{and} \quad \boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}.$$

er 7 99 / 101

Sol. The solution is

 $x^* = (7.859713071, 0.4229264082, -0.07359223906, -0.5406430164, 0.01062616286)^t$

Method	Number of Iterations	$\mathbf{x}^{(k)}$	$\ \mathbf{x}^* - \mathbf{x}^{(k)}\ _{\infty}$
Jacobi	49	(7.86277141, 0.42320802, -0.07348669, -0.53975964, 0.01062847) ^t	0.00305834
Gauss-Seidel	15	(7.83525748, 0.42257868, -0.07319124, -0.53753055, 0.01060903) ^t	0.02445559
SOR ($\omega = 1.25$)	7	$(7.85152706, 0.42277371, -0.07348303, -0.53978369, 0.01062286)^t$	0.00818607
Conjugate Gradient	5	(7.85341523, 0.42298677, -0.07347963, -0.53987920, 0.008628916) ^t	0.00629785
Conjugate Gradient (Preconditioned)	4	(7.85968827, 0.42288329, -0.07359878, -0.54063200, 0.01064344) ^t	0.00009312

Q. How should we choose C^{-1} other than $C = \operatorname{diag}\{[a_{11} \cdots a_{nn}]\}$?

Chapter 7 100 / 101

Preconditioning: How to choose C^{-1}

Corollary 3

The matrix A is positive definite if and only if A can be factored in the form LL^t , where L is lower triangular with nonzero diagonal entries.

ullet Consider a Cholesky factorization $A=LL^t.$ Letting C=L yields

$$\tilde{A} = C^{-1}A(C^{-1})^t = L^{-1}LL^t(L^{-1})^t = I.$$

$$C_{\text{th}}$$

ullet In practice, we choose C pprox L (perhaps by ignoring some small entries in A when computing Cholesky factorization) yielding

$$\tilde{A} \approx I$$

Chapter 7 101 / 101