$carry Select_add Sub_on Board$

Corso di ASE anno 18/19

Gruppo 14
PREVITERA GABRIELE
PENNONE MIRKO
PENNA SIMONE

Contents

1	Clas	s Index		1
	1.1	Class	ist	 . 1
2	File	Index		3
	2.1	File Lis	t	 . 3
3	Clas	s Docu	mentation	5
	3.1	anode	s_manager Entity Reference	 . 5
		3.1.1	Detailed Description	 . 5
		3.1.2	Member Data Documentation	 . 5
			3.1.2.1 IEEE	 . 6
			3.1.2.2 STD_LOGIC_1164	 . 6
	3.2	carryS	elect_adder Entity Reference	 . 6
	3.3	carryS	elect_addSub Entity Reference	 . 7
	3.4	carryS	elect_addSub_onBoard Entity Reference	 . 7
		3.4.1	Detailed Description	 . 8
		3.4.2	Member Data Documentation	 . 8
			3.4.2.1 IEEE	 . 8
			3.4.2.2 STD_LOGIC_1164	 . 9
	3.5	carryS	elect_cell Entity Reference	 . 9
	3.6	cathod	es_manager Entity Reference	 . 9
		3.6.1	Detailed Description	 . 10
		3.6.2	Member Data Documentation	 . 10
			3631 IEEE	10

ii CONTENTS

		3.6.2.2 STD_LOGIC_1164
3.7	clock_c	divisor Entity Reference
	3.7.1	Detailed Description
	3.7.2	Member Data Documentation
		3.7.2.1 STD_LOGIC_1164
3.8	counte	r_UpMod2n_Re_Sr Entity Reference
	3.8.1	Detailed Description
	3.8.2	Member Data Documentation
		3.8.2.1 STD_LOGIC_1164
3.9	display	7_7_segmenti Entity Reference
	3.9.1	Detailed Description
3.10	full_add	der Entity Reference
	3.10.1	Detailed Description
	3.10.2	Member Data Documentation
		3.10.2.1 IEEE
		3.10.2.2 STD_LOGIC_1164
3.11	mux2_	1 Entity Reference
	3.11.1	Detailed Description
	3.11.2	Member Data Documentation
		3.11.2.1 STD_LOGIC_1164
3.12	overflo	w_checker Entity Reference
	3.12.1	Detailed Description
	3.12.2	Member Data Documentation
		3.12.2.1 STD_LOGIC_1164
3.13	registe	r_d_Re_Ar Entity Reference
	3.13.1	Detailed Description
	3.13.2	Member Data Documentation
		3.13.2.1 STD_LOGIC_1164
3.14	rippleC	Carry_adder Entity Reference
	3.14.1	Detailed Description
	3.14.2	Member Data Documentation
		3.14.2.1 c_in
		3.14.2.2 c_out
		3.14.2.3 S
		3.14.2.4 STD_LOGIC_1164
		3.14.2.5 width
		3.14.2.6 Y

CONTENTS

4	File	Documentation	21
	4.1	carrySelect_adder.vhd File Reference	21
		4.1.1 Detailed Description	21
	4.2	carrySelect_addSub.vhd File Reference	21
		4.2.1 Detailed Description	22
	4.3	display_7_segmenti.vhd File Reference	22
		4.3.1 Detailed Description	22
Inc	dex		23

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

entity anodes_manager	
Permette di gestire gli anodi associati ad ogni cifra(digit) di un display a 7 segmenti.	
Per accendere la cifra giusta(digit) è necessario che l'anodo sia 0, poichè gli anodi sono pilotati	
da segnali 0-attivi	5
entity carrySelect_adder	6
entity carrySelect_addSub	7
entity carrySelect_addSub_onBoard	
Uncomment the following library declaration if instantiating any Xilinx primitives in this code	7
entity carrySelect_cell	9
entity cathodes_manager	9
entity clock_divisor	
Filtra i fronti del clock ad una frequenza "clock_frequency_in" per averli ad una frequenza più	
bassa "clock_frequency_out"	10
entity counter_UpMod2n_Re_Sr	11
entity display_7_segmenti	12
entity full_adder	13
entity mux2_1	
Definisco il componente e la sua interfaccia	14
entity overflow_checker	15
entity register_d_Re_Ar	
Registro di dimensione "dimension" che prende in ingresso un dato D e lo memorizza	16
entity rippleCarry_adder	18

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

carrySelect adder.vhd	
• -	
Sommatore Carry Select	21
carrySelect_addSub.vhd	
Sommatore Carry Select in grado di effettuare anche l'operazione di sottrazione	21
display_7_segmenti.vhd	
Display a 7 segmenti	22

File Index

Chapter 3

Class Documentation

3.1 anodes_manager Entity Reference

Permette di gestire gli anodi associati ad ogni cifra(digit) di un display a 7 segmenti. Per accendere la cifra giusta(digit) è necessario che l'anodo sia 0, poichè gli anodi sono pilotati da segnali 0-attivi.

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Ports

• select_digit in STD_LOGIC_VECTOR(2 downto 0)

anodes_manager input: seleziona digit

enable_digit in STD_LOGIC_VECTOR(7 downto 0)

anodes_manager input: abilita digit

anodes out STD_LOGIC_VECTOR(7 downto 0)

anodes_manager output: digit da accendere

3.1.1 Detailed Description

Permette di gestire gli anodi associati ad ogni cifra(digit) di un display a 7 segmenti.

Per accendere la cifra giusta(digit) è necessario che l'anodo sia 0, poichè gli anodi sono pilotati da segnali 0-attivi.

3.1.2 Member Data Documentation

3.1.2.1 IEEE

```
TEEE [Library]
FEDERICO II , CORSO DI ASE 18/19, Gruppo 14 -
3.1.2.2 STD_LOGIC_1164
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

· anodes_manager.vhd

3.2 carrySelect_adder Entity Reference

Libraries

IEEE

architecture dataflow of anodes_manager end

Use Clauses

• STD_LOGIC_1164

Generics

M NATURAL:= 4

M parallelismo dei ripplecarry adder.

P NATURAL:= 2

P parallelismo delle celle dell carry select Come metto M e P, marco e co fanno la stima dei tempi e mettono solo (M*P) da cui ricavano poi M e P io direi di fare una versione con M e P espliciti e una versione come l'hanno fatta loro, ma su quella.

Ports

```
    A in STD_LOGIC_VECTOR(((M *P)-1)downto 0)
        input addendo
    B in STD_LOGIC_VECTOR(((M *P)-1)downto 0)
        input addendo
    c_in in STD_LOGIC
        input carry in ingresso
    S out STD_LOGIC_VECTOR(((M *P)-1)downto 0)
        output somma
    c_out out STD_LOGIC
        output carry in uscita
```

The documentation for this class was generated from the following file:

· carrySelect_adder.vhd

3.3 carrySelect_addSub Entity Reference

Libraries

IEEE

Use Clauses

- STD_LOGIC_1164
- math_real
- · numeric_std

Generics

- M NATURAL:= 4
- P NATURAL:= 2

P parallelismo delle celle dell carry select Come metto M e P, marco e co fanno la stima dei tempi e mettono solo width da cui ricavano poi M e P io direi di fare una versione con M e P espliciti e una versione come l'hanno fatta loro, ma su quella.

Ports

```
• A in STD_LOGIC_VECTOR(((M*P)-1)downto 0)
```

input addendo

• B in STD_LOGIC_VECTOR(((M*P)-1)downto 0)

input addendo

- subtract in STD_LOGIC
- S out STD_LOGIC_VECTOR(((M*P)-1)downto 0)

output somma

- overflow out STD_LOGIC
- · c out out STD_LOGIC

output carry in uscita

The documentation for this class was generated from the following file:

• carrySelect_addSub.vhd

3.4 carrySelect_addSub_onBoard Entity Reference

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Generics

```
    M NATURAL:= 4
```

P NATURAL:= 4

P parallelismo delle celle dell carry select.

Ports

- clock in STD_LOGIC
- enable_a in STD_LOGIC
- enable_b in STD_LOGIC
- subtract in STD_LOGIC
- input in STD_LOGIC_VECTOR(((M*P)-1)downto 0)

input addendo

- overflow out STD_LOGIC
- c_out out STD_LOGIC
- anodes out STD_LOGIC_VECTOR(7 downto 0)
- cathodes out STD_LOGIC_VECTOR(7 downto 0)

output carry in uscita

3.4.1 Detailed Description

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Uncomment the following library declaration if using arithmetic functions with Signed or Unsigned values

3.4.2 Member Data Documentation

3.4.2.1 IEEE

IEEE [Library]

Company: Engineer:

Create Date: 12:36:14 02/21/2019 Design Name: Module Name: carrySelect_addSub_onBoard - Behavioral

Project Name: Target Devices: Tool versions: Description:

```
3.4.2.2 STD_LOGIC_1164
```

```
STD_LOGIC_1164 [Package]
```

Revision: Revision 0.01 - File Created Additional Comments:

The documentation for this class was generated from the following file:

• carrySelect_addSub_onBoard.vhd

3.5 carrySelect_cell Entity Reference

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width NATURAL:= 4

Ports

- A in STD_LOGIC_VECTOR((width- 1)downto 0)
- B in STD_LOGIC_VECTOR((width- 1)downto 0)
- c_in in STD_LOGIC
- S out STD_LOGIC_VECTOR((width- 1)downto 0)
- c_out out STD_LOGIC

The documentation for this class was generated from the following file:

· carrySelect cell.vhd

3.6 cathodes_manager Entity Reference

Libraries

• IEEE

Use Clauses

- STD_LOGIC_1164
- NUMERIC_STD

Ports

```
    select_digit in STD_LOGIC_VECTOR( 2 downto 0 )
        cathodes_manager input: seleziona digit su cui mostrare la cifra
    values in STD_LOGIC_VECTOR( 31 downto 0 )
        cathodes manager input: valore da mostrare (codifica esadecimale)
```

dots in STD_LOGIC_VECTOR(7 downto 0)

cathodes_manager input: punto da accendere per la parte decimale

cathodes out STD_LOGIC_VECTOR(7 downto 0)

cathodes_manager output: catodo da accendere

3.6.1 Detailed Description

Permette di gestire l'abilitazione dei catodi associati ad ogni segmento omologo di ogni cifra(digit) di un display a 7 segmenti.

Per accendere il giusto segmento è necessario che il catodo sia 0, poichè i catodi sono pilotati da segnali 0-attivi.

3.6.2 Member Data Documentation

```
3.6.2.1 IEEE
```

```
IEEE [Library]
```

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 -

3.6.2.2 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

· cathodes_manager.vhd

3.7 clock_divisor Entity Reference

Filtra i fronti del clock ad una frequenza "clock_frequency_in" per averli ad una frequenza più bassa "clock_← frequency out".

Libraries

IEEE

architecture behavioral of cathodes_manager end

Use Clauses

• STD_LOGIC_1164

Generics

• clock_frequency_in integer:= 100000000

frequenza del clock in ingresso

clock_frequency_out integer:= 1000

frequenza del clock in uscita

Ports

• enable in STD_LOGIC

clock_divisor input: segnale enable

• reset_n in STD_LOGIC

clock_divisor input: segnale reset

clock_freq_in in STD_LOGIC

clock_divisor input: segnale di clock in ingresso

clock_freq_out out STD_LOGIC

clock_divisor output: segnale di clock in uscita

3.7.1 Detailed Description

Filtra i fronti del clock ad una frequenza "clock_frequency_in" per averli ad una frequenza più bassa "clock_ frequency_out".

3.7.2 Member Data Documentation

3.7.2.1 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018><15/10/2018><log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

· clock_divisor.vhd

3.8 counter_UpMod2n_Re_Sr Entity Reference

Libraries

IEEE

architecture behavioral of clock_divisor end

Use Clauses

- STD_LOGIC_1164
- numeric_std

Generics

- n NATURAL:= 1
- enable_level STD_LOGIC:=' 1 '

Ports

• enable in STD_LOGIC

enable input

reset_n in STD_LOGIC

reset input

clock in STD_LOGIC

clock input

count_hit out STD_LOGIC

count hit output

• COUNTS out STD_LOGIC_VECTOR((n-1)downto 0)

COUNT output.

3.8.1 Detailed Description

Contatore modulo 2 alla N. Il conteggio viene effettuato sul fronte di salita del clock e il reset è sincrono.

3.8.2 Member Data Documentation

```
3.8.2.1 STD_LOGIC_1164
```

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

• counter_UpMod2n_Re_Sr.vhd

3.9 display_7_segmenti Entity Reference

Libraries

IEEE

architecture behavioral of counter_UpMod2n_Re_Sr end

Use Clauses

• STD_LOGIC_1164

Ports

• enable in STD_LOGIC

enable del componente

• clock in STD_LOGIC

clock

reset in STD_LOGIC

reset 1-attivo

values in STD_LOGIC_VECTOR(31 downto 0)

Stringa di bit del valore da mostrare.

dots in STD_LOGIC_VECTOR(7 downto 0)

Segnali che permette di pilotare i punti.

• enable_digit in STD_LOGIC_VECTOR(7 downto 0)

Segnali che attiva le digit.

anodes out STD_LOGIC_VECTOR(7 downto 0)

Uscita che pilota gli anodi.

cathodes out STD_LOGIC_VECTOR(7 downto 0)

Uscita che pilota i catodi.

3.9.1 Detailed Description

Componente che permette di pilotare fino a 4 digit ricevendo il valore da mostrare sul display come sequenza di bit

The documentation for this class was generated from the following file:

· display 7 segmenti.vhd

3.10 full_adder Entity Reference

Libraries

IEEE

Use Clauses

STD_LOGIC_1164

Ports

X in STD_LOGIC

full_adder input : addendo

Y in STD_LOGIC

full_adder input : addendo

• C_in in STD_LOGIC

full_adder input : carry in ingresso

• S out STD_LOGIC

full_adder output : sommaC_out out STD_LOGIC

full_adder output : carry

3.10.1 Detailed Description

Descrizione Somma i 3 bit in ingresso (2 addendi e 1 carry in ingresso). In uscita abbiamo il risultato della somma sul bit S e il riporto sul bit C.

3.10.2 Member Data Documentation

```
3.10.2.1 IEEE
```

IEEE [Library]

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 -

3.10.2.2 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018><15/10/2018><log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

· full adder.vhd

3.11 mux2_1 Entity Reference

definisco il componente e la sua interfaccia

Libraries

IEEE

architecture dataflow of full_adder end

Use Clauses

• STD_LOGIC_1164

Generics

width natural:= 1
 parallelismo dell' I/O del multiplexer

Ports

```
    SEL in STD_LOGIC
        mux2_1 input: selezione
    A in STD_LOGIC_VECTOR((width - 1 )downto 0 )
        mux2_1 input: A
    B in STD_LOGIC_VECTOR((width - 1 )downto 0 )
        mux2_1 input: B
    X out STD_LOGIC_VECTOR((width - 1 )downto 0 )
        mux2_1 output: X
```

3.11.1 Detailed Description

definisco il componente e la sua interfaccia

Descrizione Quando l'ingresso SEL è basso, l'uscita assume il valore del segnale A, altrimenti quando il segnale SEL è alto l'uscita assume il valore del segnale B.

3.11.2 Member Data Documentation

```
3.11.2.1 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <14/11/2018> <13/11/2018> <log> create
```

The documentation for this class was generated from the following file:

mux2_1.vhd

3.12 overflow_checker Entity Reference

Libraries

IEEE

architecture dataflow of mux2_1 end

Use Clauses

• STD_LOGIC_1164

Ports

· a in STD_LOGIC

bit più significativo (segno) di A

• b in STD_LOGIC

bit più significativo (segno) di B

subtract in STD_LOGIC

bit di operazione: 1 se sottrazione, 0 se addizione

s in STD_LOGIC

bit più significativo (segno) di S

overflow out STD_LOGIC

bit alto se ho una condizione di overflow

3.12.1 Detailed Description

Descrizione La macchina controlla se vi è overflow nel risultato confrontando le cifre più significative (segno) dei due operandi e del risultato con subtract. Ho overflow in caso di:

- · somma di due positivi con risultato negativo
- · somma di due negativi con risultato positivo
- · differenza di positivo e negativo con risultato negativo
- · differenza di negativo e positivo con risultato positivo

3.12.2 Member Data Documentation

```
3.12.2.1 STD_LOGIC_1164
```

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

· overflow_checker.vhd

3.13 register_d_Re_Ar Entity Reference

Registro di dimensione "dimension" che prende in ingresso un dato D e lo memorizza.

Libraries

IEEE

architecture behavioural of overflow_checker end

Use Clauses

• STD_LOGIC_1164

Generics

```
    dimension NATURAL:= 8
        definisce il parallelismo del registro
    reset_level STD_LOGIC:=' 1 '
        definisce il livello reset
    load_level STD_LOGIC:=' 1 '
```

definisce il livello enable

Ports

```
    clock in STD_LOGIC
```

```
register_d_Re_Ar input : segnale di clock per sincronizzare
```

load in STD_LOGIC

```
register_d_Re_Ar input : segnale enable
```

reset in STD_LOGIC

```
register_d_Re_Ar input : segnale reset
```

d in STD_LOGIC_VECTOR(dimension - 1 downto 0)

```
register_d_Re_Ar input : inpput data
```

• q out STD_LOGIC_VECTOR(dimension - 1 downto 0)

```
register_d_Re_Ar input : output data
```

3.13.1 Detailed Description

Registro di dimensione "dimension" che prende in ingresso un dato D e lo memorizza.

3.13.2 Member Data Documentation

```
3.13.2.1 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <16/11/2018> <16/11/2018> <log> create
```

The documentation for this class was generated from the following file:

register_d_Re_Ar.vhd

3.14 rippleCarry_adder Entity Reference

Libraries

IEEE

architecture behavioral of register_d_Re_Ar end

Use Clauses

• STD_LOGIC_1164

Generics

• width NATURAL:= 8

Ports

```
    X in STD_LOGIC_VECTOR(width - 1 downto 0)
```

- Y in STD_LOGIC_VECTOR(width 1 downto 0)
- c_in in STD_LOGIC
- S out STD_LOGIC_VECTOR(width 1 downto 0)
- c_out out STD_LOGIC

rippleCarry_adder output: carry

3.14.1 Detailed Description

Descrizione Somma le 2 stringe di bit in ingresso (2 addendi) e 1 bit (carry in ingresso). Caratterizzato da una serie di full_adder in cascata che propagano il riporto.

In uscita abbiamo il risultato della somma sul bit S e il riporto sul bit C.

3.14.2 Member Data Documentation

```
3.14.2.1 c_in
c_in in STD_LOGIC [Port]
rippleCarry_adder input: addendo
3.14.2.2 c_out
c_out out STD_LOGIC [Port]
rippleCarry_adder output: carry
rippleCarry_adder output: somma
```

```
3.14.2.3 S

S out STD_LOGIC_VECTOR(width - 1 downto 0 ) [Port]

rippleCarry_adder input: carry in ingresso

3.14.2.4 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen

3.14.2.5 width

width NATURAL:= 8 [Generic]

usato per definire il parallelismo del rippleCarry_adder

3.14.2.6 Y

y in STD_LOGIC_VECTOR(width - 1 downto 0 ) [Port]

rippleCarry_adder input: addendo
```

The documentation for this class was generated from the following file:

· rippleCarry_adder.vhd

Chapter 4

File Documentation

4.1	carrySelect_adder.vnd File Reference		
Somm	natore Carry Select.		
Entitio	es		
•	carrySelect_adder entity		
4.1.1	Detailed Description		
Somm	Sommatore Carry Select.		
Author	Gabriele Previtera, Mirko Pennone, Simone Penna		
Date	04/03/2019		
Version	n 0.2		

4.2 carrySelect_addSub.vhd File Reference

Dependencies: Nothings

Sommatore Carry Select in grado di effettuare anche l'operazione di sottrazione.

22 File Documentation

Entities

• carrySelect_addSub entity

4.2.1 Detailed Description

Sommatore Carry Select in grado di effettuare anche l'operazione di sottrazione.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.3 display_7_segmenti.vhd File Reference

Display a 7 segmenti.

Entities

· display_7_segmenti entity

4.3.1 Detailed Description

Display a 7 segmenti.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

Index

anodes_manager, 5 IEEE, 5
STD_LOGIC_1164, 6
c_in rippleCarry_adder, 18
c_out rippleCarry_adder, 18
carrySelect_addSub, 7
carrySelect_addSub.vhd, 21 carrySelect_addSub_onBoard, 7
IEEE, 8
STD_LOGIC_1164, 8 carrySelect_adder, 6
carrySelect_adder.vhd, 21 carrySelect_cell, 9
cathodes_manager, 9
IEEE, 10 STD LOGIC 1164, 10
clock_divisor, 10
STD_LOGIC_1164, 11 counter_UpMod2n_Re_Sr, 11
STD_LOGIC_1164, 12
display_7_segmenti, 12 display_7_segmenti.vhd, 22
full_adder, 13 IEEE, 14 STD_LOGIC_1164, 14
IEEE
anodes_manager, 5 carrySelect_addSub_onBoard, 8 cathodes_manager, 10 full_adder, 14
mux2_1, 14 STD_LOGIC_1164, 15
overflow_checker, 15 STD_LOGIC_1164, 16
register_d_Re_Ar, 16 STD_LOGIC_1164, 17
rippleCarry_adder, 18 c_in, 18
c_out, 18 S, 18
STD_LOGIC_1164, 19 width, 19

```
Y, 19
S
    rippleCarry_adder, 18
STD_LOGIC_1164
    anodes_manager, 6
    carry Select\_add Sub\_on Board, \, 8
    cathodes_manager, 10
    clock_divisor, 11
    counter_UpMod2n_Re_Sr, 12
    full_adder, 14
    mux2_1, 15
    overflow_checker, 16
    register_d_Re_Ar, 17
    rippleCarry_adder, 19
width
    rippleCarry_adder, 19
Υ
    rippleCarry_adder, 19
```