Take the exponential function $f(x) = b^x$. Suppose you are given a y > 0. Then how can you find the X such that $y = b^x$. In other words what is the inverse of the exponential function $f(x) = b^x$?

Def. The logarithm function with base b is $f(x) = \log_b X$ where $y = \log_b X$ if $x = b^y$.

Y = $\log_b X$ The exponent you need to raise b to g et x is y.

 $\frac{\mathcal{E}_{x}}{\log_{2}8} = \frac{?}{?}$ $\frac{Ans}{we \ Know} \quad 2^{\frac{3}{2}} = 8$ $So \quad \log_{2}8 = 3$

 $log_{q} 3 = 9$ $log_{q} 3 = 9$ $log_{q} 3 = 3$ $log_{q} 3 = \frac{1}{2}$

 $\log_5\left(\frac{1}{25}\right) = ?$ $\text{Am.} \qquad 5^? = \frac{1}{25}$ $\text{We know} \qquad 5^{-2} = \frac{1}{45}$ $\therefore \log_5\left(\frac{1}{25}\right) = -2$

Example

Write in logenithm form.

The exponent you need to haise 2 to get 16 is 4.

Thus, log 16 = 4

The exponent you need to raise 81 to get 9 is $\frac{1}{2}$.
Thus, $\log_{81} 9^2 \frac{1}{2}$.

The exponent you need to haise x to get z is a.

i. $\log_x z = a$.

Exercise:

$$\frac{1}{49} = 7^{-3}$$

Find

(a)
$$log_{169} | 3$$

het $log_{169} | 3 = x$.

Then, $l69^{x} = 13$
 $(13^{2})^{x} = 13$
 $13^{2x} = 13$

$$(13^2)^2 = 13$$

$$3^{2x} = 13$$

(13 2 = 169)

$$\Rightarrow$$
 $x = 1$

Exercise

$$log_5\left(\frac{1}{5}\right)$$

When the base b for the logarithm is e, we call it natural logarithm and loge is written as ln

Ex. Find en 1

Ans. $e^0 = 1$. Thus, $\ln 1 = 0$

en (-2)

Any. Let ln(-2) = X. Then $e^{x} = -2$

But ex is always positive. So this is undefined.

en (415) en (415) ≈ 6,0283

We will skip the transformation of graphs of logarithms. You should be able to do this whenever you encounter such a situation in Calculus or later in eige.

Domain of
$$f^{-1} = Range$$
 of f
Since $\log_b(x)$ is the inverse of b^{\times} , and range of b^{\times}
is $(0, \infty)$, the
Domain of $\log_b(x)$ is $(0, \infty)$

Exercise

Find domain of

(a)
$$f(x) = \log_b(x-4)$$

Soln: $x-4>0$
 $x>4$

Domain of $f(x) = (4, \infty)$

(b)
$$g(x) = \log_{1}(5-2x)$$

Soln. $5-2x \neq 0$
 $5 > 2x$
 $5/2 \neq x$

... Domain of $f = (-\infty), 5/2$

	Exercise:
	Find domain of the following logarithm functions:
(a)	Find domain of the following logarithm functions: $f(x) = \log_b(x+2)$ $g(x) = \log_b(3-5x)$
(b)	$q(x) = \log_{1}(3-5x)$