

Russa Biswas, Radina Sofronova, Mehwish Alam, and Harald Sack

Motivation

What are the types of the following entities?

Violin

Lisbon

Yellow billed duck

Instrument

City

Motivation

What are the types of the following entities?

Motivation

Coarse grained Type information in DBpedia at a glance

Classes	#Total entities	Percentage of entities with more fine grained type			
dbo:Person	1,818,072	36.6%			
dbo:Scientist	25,760	3.5%			
dbo:Settlement	581,293	68.3%			
dbo:Company	109,629	13.9%			

Related Work

Proposed Approach

- Three different word embedding models are used to model the KGs
 - Word2Vec
 - FastText
 - GloVe
- Entity Typing is done based on these 3 word embedding models separately and are compared against each other.

Embeddings

Input: <dbr:Albert_Einstein, dbo:birthPlace, dbr:Ulm>. <dbr:Albert_Einstein, dbo:field, dbr:Physics>.

words

Sentences

Embedding models are trained on triples with **Object Properties**

Word2Vec:
Continuous Bag
of Words
(CBOW)
approach is used.

FastText:
Continuous Bag
of Words
(CBOW)
approach is used.

GloVe:
Word
co-occurrence
matrix is used to
learn the model.

Pipeline of the Unsupervised Approach

Unsupervised approach is based on the vector similarity between the class vector and entity vector

Generation of Class Vectors

Supervised Approach - 1D CNN

Datasets

1. **Dataset 1**:

- a. 59 less popular classes with the following characteristics:
 - i. 15 classes that have less than 500 entities per class,
 - ii. 20 classes that have entities between 500 and 1000 entities per class,
 - iii. 24 classes have more than 1000 entities per class,
 - iv. Max. no. of entities per class in this dataset is 500, and
 - v. Min. no. of entities per class in this dataset is 276.
- 2. **Dataset 2**: 86 classes with 2k entities per class.
- Dataset 3: 81 classes with 4k entities per class.

Results

Datasets	Models (Results in Percentage Accuracy)								
	Word2Vec			FastText			GloVe		
	Vector Si	milarity	•		Vector Similarity		Vector Similarity		CNINI
	Hits@3	Hits@1	CNN	Hits@3	Hits@1	CNN	Hits@3	Hits@1	CNN
Dataset 1	47.83	28.46	56	29.81	17.44	54	7.07	3.54	53.7
Dataset 2	58	39.4	58.4	43.81	31.16	56	15.9	8.2	55
Dataset 3	58	39.7	62	44.3	31.4	59	16.2	8.4	55.8

Results - Comparison with SDType

Test Dataset: The common entities between our dataset and the entities for which SDType model[1] predicts a change are considered.

Datasets	#Test Entities	SDType	Vector Similarity (Accuracy in Percentage)						
			Word2Vec		FastText		GloVe		
			Hits@1	Hits@3	Hits@1	Hits@3	Hits@1	Hits@3	
Dataset 1	7425	83.35	32	63.78	12.58	25.87	2.8	11.04	
Dataset 2	57467	80.43	46.94	69.53	38	61.8	16.37	30.4	
Dataset 3	109948	81.22	48.21	71.6	39.54	64.14	17.07	31.58	

Conclusion and Future Work

- Word embeddings when applied on the Knowledge Graphs can be efficiently used for the task of Entity Type Prediction.
- Word2Vec proves to be the best word embedding approach out of the three word embedding approaches used in KGs.
- Supervised approach, 1D CNN works better than the unsupervised approach for the task
- In Future Work, more information from the DBpedia such as **Datatype properties** are to be explored for the type prediction task.

References

Literature:

- 1. Melo A, Paulheim H, Völker J. Type prediction in RDF knowledge bases using hierarchical multilabel classification. InProceedings of the 6th International Conference on Web Intelligence, Mining and Semantics 2016 Jun 13 (p. 14). ACM.
- 2. Jin H, Hou L, Li J, Dong T. Attributed and Predictive Entity Embedding for Fine-Grained Entity Typing in Knowledge Bases. InProceedings of the 27th International Conference on Computational Linguistics 2018 Aug (pp. 282-292).
- 3. Paulheim H, Bizer C. Type inference on noisy rdf data. In International semantic web conference 2013 Oct 21 (pp. 510-525). Springer, Berlin, Heidelberg.
- 4. Moniruzzaman AB, Nayak R, Tang M, Balasubramaniam T. Fine-grained Type Inference in Knowledge Graphs via Probabilistic and Tensor Factorization Methods. In The World Wide Web Conference 2019 May 13 (pp. 3093-3100). ACM.
- 5. Pirrò G. Explaining and suggesting relatedness in knowledge graphs. In International Semantic Web Conference 2015 Oct 11 (pp. 622-639). Springer, Cham.

Images:

https://en.wikipedia.org/wiki/Lisbon#/media/File:Montagem_de_Lisboa.png

https://en.wikipedia.org/wiki/Violin#/media/File:Violin VL100.png

https://en.wikipedia.org/wiki/Yellow-billed_duck#/media/File:Yellow-billed_Duck_Plettenbergbay_RWD.jpg

Thank you

Homepage: https://www.fiz-karlsruhe.de/en/forschung/lebenslauf-und-publikationen-russa-biswas

Email id: russa.biswas@fiz-karlsruhe.de

Twitter: <u>@russa.biswas</u>

