Bonding Polymers and Glasses

Nilesh Prakash Gurao

Associate Professor

Department of Materials Science and Engineering Indian Institute of Technology Kanpur Co-ordinates: FB-408, 6688, npgurao@iitk.ac.in

The elemental palette

Elements and their structure

Н																	He
453.69														NI NI		_	ble.
Li bcc	Be hcp											В	С	N	0	F	Ne
370.87	923											933.47					
Na Na	Mg											933.47 Al	Si	Р	s	CI	Ar
bcc	hcp											fcc	0,	av		O,	0
336.53		1814	1941	2183	2180	1519	1811	1768	1728	1357.8	692.68	301.91					
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
bcc	fcc	hcp	hcp	bcc	bcc		bcc	hcp	fcc	fcc							
312.46	1050	1799	2128	2750	2896	2430	2607	2237	1828	1235	594	430	505	904			
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
bcc	fcc	hcp	hcp	bcc	bcc	hcp	hcp	fcc	fcc	fcc							
302	1000		2506	3290	3422	3186	3306	2446	1768	1337.33	234.32	577	600.61	544.7	527		
Cs	Ва	*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
bcc	bcc		hcp	bcc	bcc	hcp	hcp	fcc	fcc	fcc		hcp	fcc				
	973																
Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
	bcc																

https://www.angelo.edu/faculty/kboudrea/periodic/physical_metals.htm

Metals

- Usually solid at room temperature (mercury is an exception)
- High luster (shiny) Metallic appearance
- Good conductors of heat and electricity
- Easy forming (can be bent and pounded into thin sheets)
- Readily lose electrons

https://www.thoughtco.com/metals-nonmetals-and-metalloids-periodic-table-

608867#:~:text=The%20line%20begins%20at%20boro n,are%20termed%20metalloids%20or%20semimetals.

Metalloids

- Dull or shiny
- Usually conduct heat and electricity, though not as well as metals
- Often make good semiconductors

Metalloids

- Often exist in several forms
- May gain or lose electrons in reactions

Non metals

- Dull appearance
- Usually brittle
- Poor conductors of heat and electricity
- Usually less dense, compared to metals
- Usually low melting point of solids, compared with metals
- Tend to gain electrons in chemical reactions

Bonding

- Solid state matter comprises of atoms attached by a bond
- Different type of bonds
- Most elements are metallic in the periodic table
- > Compounds contain more than one element
- > Different size, electronegativity and electronic structure
- Balls of different sizes
- Springs of different type and strength

Metallic Bonding

- Metals contain free electrons
- Metal ions in a sea of electron (electron cloud)
- Non directional close packing
- Metals and alloys

Adapted from Fig. 2.11, Callister 6e.

Ionic Bonding

- > Bonds between ions instead of atoms
- Electron transfer
- Positive and negative ions
- Cations and anions Na⁺ and Cl⁻
- ➤ Large difference in electronegativity leads to electron transfer
- Sodium is a metal and chlorine a non metal
- ➤ Different sizes of ions

https://gardenandplate.com/sodiumchloride.html

Space group Fm-3m Cl⁻ at FCC and Na⁺ at octahedral

http://www.chemistry.wustl.edu/~edudev/Lab Tutorials/Water/PublicWaterSupply/PublicWat erSupply.html

- Energy required to remove an electron from its orbital and bring to free-space i.e. not a part of any atom is known as lonization energy or lonization potential
- First ionization energy is energy required to remove the outermost electron i.e. the electron in the outermost orbital of a neutral atom
- Energy required to take a free-electron and place it into the outer-orbital of a neutral atom is known as electron affinity
- ➤ Ionic bonds are formed between elements with small ionization energy and high electron affinity or, between electropositive and electronegative elements

Low Energy

INCREASING ELECTRON AFFINITY

I H Hydrogen 1,00794																	He
3	-4											5	6	7	8	9	10
Li	Be											В	С	N	О	F	Ne
Labora 6.941	Regitate 9.012182											10.811	Carbon 12,0107	Strogen 14,00674	Osygen 15,9994	Planeter 18,9984032	20.179
11	12											13	14	15	16	17	18
Na Solien 2,989716	Mg 24,3050			20				0.00		V000 D-000		Al 26.981538	Si 58.0855	P Phosphorus 30,973761	S Salte 32,066	Cl Offene 35.4527	Ar Aspen 30.948
19	20	21	22	23	. 24	25	26	27	28	29	30	31	32	33	34	35	36
K Vanyasa	Ca factors 40.018	Sc Sondan 44,953910	Ti Titanian 47,867	V Vanidien 50.9415	Cr Chromium 51,9961	Mn Manganose 54.938049	Fe lion 25,645	Co Cital: 58.933200	Ni Noted 58,4654	Cu Copper 63,546	Zn. 65.39	Ga Gatham 69,723	Ge Germanian 72,41	As Attente 34,92160	Se Selement T8.96	Br tround 79.904	Kr Stypes 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb hatsdam 85,4678	Sr Sensolium 87.62	Y Varion 68.90565	Zr Znoomies 91,224	Nb Notion 92,90638	Mo Molyhdonan 95,94	Tc Technosium (96)	Ru Rotheniera 101.07	Rh Rhothars 102,90550	Pd Polludore 106.42	Ag save 107,8682	Cd Caterior 112,411	In Intern 114.818	Sn 118,710	Sb 121,760	Te	I lotes 126,90447	Xe Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	-86
Cs Contact 32,90545	Ba Barrier 137,327	La tantonan 138,9055	Hf Referen 178.49	Ta (180,9479	W Issaelen 183.84	Re Rhonium 186,207	Os 990.23	Ir 192.217	Pt Photogram 195,078	Au 196,96655	Hg Status 200.59	TI Balian 204 3833	Pb tred 207.2	Bi (famolic 208 98038	Po Polomium (209)	At Astalone (210)	Rn 84444 (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	olasios.	Store is	128835	10-10-100
Fr function (223)	Ra Radium (226)	Ac Actionism (227)	Rf Restaurier deute (261)	Db Datesiani (262)	Sg Seaborpoon (263)	Bh fictation (262)	Hs Hansian (285)	Mt Statement (266)	(269)	(272)	(277)		nsom 1-0				

Predominant bonding in Ceramics

Give up electrons

Acquire electrons

Adapted from Fig. 2.7, Callister & Rethwisch 8e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

energy gained as
 An electron is accepted
 by an electronegative
 atom

Since $z_1 = +1$ for Na⁺ and $z_2 = -1$ for Cl⁻

$$E_A = -\frac{e^2}{4\pi\varepsilon_o r} = -\frac{A}{r}$$
 Negative energy means attraction only. Will the atoms collapse on themselves?

No, there is also repulsive energy (e.g. e-e repulsion)

$$E_R = \frac{B}{r^n}$$
 B and n depend on atoms involved. In many cases $n \sim 8$.

16

$$W = \frac{-Az_1z_2e^2}{r} + \frac{B}{r^m} + \Delta E$$

Coulombic attraction

Coulombic repulsion (a short range force)

Difference between the energy spent in removing an electron and energy gained by putting an extra electron, or difference between ionization energies.

A condition of
$$\frac{\partial W}{\partial r} = 0$$
 is used to find

the equilibrium distance and bond-energy

Figure 2.8 Comparison of the bonding force curve and the bonding energy curve for a $Na^+ - Cl^-$ pair. Since F = dE/da, the equilibrium bond length (a_0) occurs where F = 0 and E is a minimum (see Equation 2.5).

The potential energy of the crystal having one mole of NaCl is given by

$$W = \left[\frac{-Az_1z_2e^2}{r}\alpha + \frac{B}{r^m} + \Delta E\right]N_A$$

Madelung constant

- Ceramics have ionic bonding
- Oxides, carbides, borides
- Extremely important class of engineering materials
- Much more than a grain of salt!

Pauling's rules

- Ionic bond between cations and anions of different size and charge
- Anions are generally bigger than cations
- Co-ordination number is important for charge neutrality
- Prof. Linus Pauling came up with 5 rules

Rule 1

A coordination polyhedron of anions is formed about each cation. The cation-anion distance equaling the sum of their characteristic packing radii and their radius ratio determining both the nature of the coordination polyhedron and therefore the coordination number of the cation.

$r_{\rm C}/r_{\rm A}$	Coord. #	Angle	Config.	Image	Example
0.000-0.155	2	180°	Linear	00	(HF ₂) ⁻¹
0.155-0.225	3	120°	Trigonal planar	8	(CO ₃) ⁻²
0.225-0.414	4	109.47°	Tetrahedral	2	(SiO ₄) ⁻⁴
0.414-0.732	4	90°	Square planar	20	(CuO ₄) ⁻⁶
				66	

0.414-0.732	6	90°	Octahedral	4	(NaCl ₆) ⁻⁵
0.732-1.000	8	70.53°	Square - bipyramid	8	(CsClg)-7
1.000	12	60°	Closest- packed		(KO ₁₂) ⁻²³

Rule 2

- An ionic structure will be stable to the extent that the sum of the strengths, S, of the electrostatic bonds that reach an anion from adjacent cations equals the charge, Z_A, on that anion
- $ightharpoonup Z_A = \sum S$ (Strength of an electrostatic bond $S = Z_C/CN$).

Z_C is valence of the cation and CN is the co-ordination number of the cation

Rule 3

- Polyhedra sharing and stability of structures
- Vertex sharing > Edge sharing > Face sharing
- Severe for cations with larger charge and low co-ordination number

Rule 4 to 6

- 4. In a crystal structure containing different cations, those of high valency and small coordination number tend not to share polyhedron elements with each other
- 5. The number of essentially different kinds of constituents in a crystal tends to be small
- 6. Prewitt's addendum: Given that the chemical formula for a crystal is charge balanced, then the sum of the coordination numbers of the cations must equal the sum of the coordination numbers of the anions

Properties and applications

- High melting point and brittle
- Ionic solids have structural and functional applications
- Furnace refractory to sensors and fuel cells

Covalent bonding

- Sharing of electrons
- Similar or comparable electronegativities
- Directional in nature
- Formed along the direction of orbital (sigma bond) or perpendicular to it (pi bond)

- Silicon, Gallium Arsenide drive semiconductor industry
- Diamond as abrasive

Adapted from Fig. 2.10, Callister 6e.

Pauling electronegativity

Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons

Fluorine has a value of 4 on the Pauling scale (highest) while

Very few compounds show pure ionic or covalent bonding.
Usually the bonds are of mixed nature

% ionic character = { 1- exp[-(0.25)(χ_A - χ_B)²]}x100

 $\chi_A \& \chi_B$ are electronegativities of the atoms forming that bond. Important as electronic properties affected by \$ ionic character

- Metallic-covalent mixed bonding: example, transition metals involving *dsp* bonding orbitals.
- Metallic-ionic mixed bonding: example, intermetallic compounds such as NaZn₁₃

Electronegativity and Electron affinity

Comparison basis	Electronegativity	Electron Affinity
Define	The ability of atoms to attract electrons from outside	The amount of energy liberated when a molecule or neutral atom acquires an electron from outside
Applied to	Single-atom	Either an atom or molecule
Measured	Pauling units	Kj/mol or eV
Property	Qualitative	Quantitative
Example	Fluorine	Chlorine

Secondary or Physical bonds

- In these bonds electron transfer or sharing does not take place
- van der Waals bonds

London forces (Induced dipoles)

Debye interaction(Induced – permanent dipole)

Hydrogen bonds (between permanent dipoles)

Van der Waals

 Dipole-dipole interaction: secondary bond between molecules with permanent dipole moments

Type Bond Energy Comments Variable Metallic large-Tungsten Nondirectional (metals) small-Mercury Large! Ionic **Nondirectional (ceramics) Variable Directional** Covalent large-Diamond semiconductors, ceramics small-Bismuth polymer chains) **Directional** inter-chain (polymer) **Secondary** smallest inter-molecular

Confluence of PHY, CHM, MAT. SCI.

- Symmetry and bonding decides properties at the atomistic scales
- Atomistic simulations using First principles
- Molecular dynamics and statics
- Solve newtons equation at atomic level
- Develop potential from electronic structure
- Employ in molecular dynamics
- Computational materials science

Polymers

- Polymers are high molecular weight compounds obtained by repeated union of simple molecules
- Poly means many mer means unit
- Macromolecules

- Produced by polymerization of monomers
- Natural and synthetic polymers
- Wood, rubber, polysaccharides, proteins are natural
- Polyethylene, Styrene, polymers are everywhere
- Recycling is an issue
- Biodegradable polymers

Humans don't mess with things you can't fix!

As you sow, so shall you reap

https://www.goshennews.com/opinion/the-latest-editorial-cartoon/image_82f1c6d8-7fe4-11ea-961e-f7a1a3154d1c.html

My car is costlier and bigger than yours

My car or well bicycle is environmentally better than yours......

"A developed country is not a place where the poor have cars. It's where the rich use public transportation" – Gustavo Petro, Mayor of Bogotá

Semester over, course completed, degree obtained, job done, let me photobomb my FB, Twitter and Insta with my big bad mean machine

Fulfilled my parent's wish to get ahead of the our neighbour but what about the Earth, well who cares?

- PolymerizationAdditionCondensationCopolymerization
- Biodegradable polymers

Addition polymerization

- Addition polymerization comprises of addition of monomers to each other such that the product contains all atoms of the starting monomers
- Comprises of three steps

 Initiation mostly through free radicals
 Propagation radicals join to form a large radical
 Termination after formation of a macromolecule
 without an unpaired electron

Initiation

$$R_2 \longrightarrow 2R$$
.

Propagation

$$R \cdot + CH_2 = CH_2 \longrightarrow R - CH_2 - CH_2 \cdot$$
 $R - CH_2 - CH_2 \cdot + CH_2 = CH_2 \longrightarrow$
 $R - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 \cdot$

Termination

$$R+CH_2-CH_2\xrightarrow{n}CH_2CH_2\cdot + R+CH_2-CH_2\xrightarrow{m}CH_2CH \longrightarrow$$

$$R+CH_2-CH_2\xrightarrow{n}CH_2CH_2-CH_2CH_2+CH_2-CH_2\xrightarrow{m}R$$

H Ethylene to
H Polyethylene

Propylene to Polypropyline

Condensation polymerization

- A small portion of the monomer molecule is not incorporated in the final product in condensation polymerization
- Monomers are held by certain bonds (like amide) and a molecule is eliminated
- Polyester, polyamide nylon 66

Coolymerization

Copolymerization is a process in which mixture of two different monomers forms a product that contains both the monomers as building blocks

Styrene butadiene rubber

Acrylonitrile Butadiene Styrene ABS

ng1 nilesh guao, 20-09-2020

Molecular weight

• Molecular weight, M_i: Mass of a mole of chains.

$$\overline{M}_n = \frac{\text{total wt of polymer}}{\text{total # of molecules}}$$

$$\overline{M}_n = \sum x_i M_i$$

$$\overline{M}_w = \sum w_i M_i$$

 $\overline{M_w}$ is more sensitive to higher molecular weights

Molecular weight calculation

Example: average mass of a class

N _i	M_i	X i	Wi
# of students	mass (lb)		
1	100	0.1	0.054
1	120	0.1	0.065
2	140	0.2	0.151
3	180	0.3	0.290
2	220	0.2	0.237
1	380	0.1	0.204
		\overline{M}_n	\overline{M}_{w}
		186 lb	216 lb

$$\overline{M}_n = \sum x_i M_i$$

$$\overline{M}_w = \sum w_i M_i$$

Degree of polymerization, n

$$n$$
 = number of repeat units per chain

H H H H H H H H H H H H

H-C-C-C-C-C-C-C-C-C-C-H

 n_i = 6

$$DP = \frac{\overline{M_n}}{m}$$

Thermoplastic polymers

- Long chain molecules held together by secondary bonds
- Secondary bonds become weaker, the material softens
- Easy to mould
- Not suitable for high temperature applications
- Lower strength at room temperature

Thermoset polymers

- > 3 dimensional network of covalent bonds
- Do not soften at high temperature
- React with atmospheric oxygen and degrade
- These are relatively hard & rigid at RT
- Example Bakelite

$$CH_2$$
 CH_2
 CH_2

$$\begin{array}{c} \text{HO} \\ \text{H}_2\text{C} \\ \text{OH} \\ \text{OH} \\ \text{CH}_2 \\ \text{OH} \\ \text{CH}_2 \\ \text{OH} \\ \text{OH} \\ \text{CH}_2 \\ \text{OH} \\ \text{OH$$

Advanced polymers

Ultrahigh molecular weight polyethylene (UHMWPE) Molecular weight ~4 x 10⁶ g/mol

Excellent properties for variety of applications bullet-proof vest, golf ball covers, hip joints, etc.

Polymethylmethacrylate (PMMA): bone and dental cement, contact lenses

Polytetrafluoroethylene (PTFE), Polyurethane, Polyvinylchloride (PVC) **UHMWPE**

Adapted from chapteropening photograph, Chapter 21, Callister's Materials Science and Engineering, Adapted Version.

- Organic light emitting diodes
- Organic solar cells
- Conducting polymers

- Crystalline: Long range orderSingle crystalPolycrystalline
- Amorphous: Absence of long range order
- Semi-crystalline: Crystalline + Amorphous

- Crystalline materials like metals, alloys, ionic solids and covalent compounds in solid state have anisotropic properties
- Polycrystals have lower anisotropy
- >Amorphous materials can be truly isotropic
- ➤ Solar cell of silicon
- Crystalline or amorphous
- Engineering of defects

Glasses

- From chai ki pyali to Gorilla glass on your mobile
- Absence of long range order
- Amorphous phase
- Supercooled liquid
- Nucleation and growth of crystals in solid state
- Avoid nucleation
- Possible to obtain Metallic glasses

- Range of melting point
- Kinetic definition of glass is T_g, the glass transition temperature
- ➤ The glass—liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials) from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased

- Crystalline silicon dioxide is quartz
- Quartz is crystalline
- > (SiO₄)⁴⁻ tetrahedron in chiral stacking

- Silicate glasses made of sand (SiO₂₎
- Amorphous SiO4 tetrahedral network
- ➤ Borosilicate B₂O₃ and SiO₂
- Soda lime glass Na₂O₃, CaO, SiO₂

https://en.wikipedia.org/wiki/Quartz

- Glasses have isotropic properties and are an important class of amorphous materials
- Metallic glasses like CuZr offer excellent isotropic mechanical properties like high strength
- Possible to achieve higher cooling rate for larger cross sections
- Bulk metallic glasses for structural applications