Machine Learning Lecture 11: Embeddings

Iurii Efimov

Outline

- 1. NLP introduction
- 2. Text preprocessing
- 3. Feature extraction:
 - a. Bag-of-Words
 - b. Bag-of-Ngrammes
 - c. TF-IDF
- 4. Word embeddings
- 5. Word2vec

Natural Language Processing

girafe

Natural language processing

- Text classification tasks:
 - Sentiment analysis
 - Spam filtering
 - Fake news detection
 - Topic prediction
 - #hashtag prediction

Example: sentiment analysis

Text classification in general

features

Text classification in general

Text classification in general

features

Text preprocessing

girafe ai

Tokenization

- Split the input into tokens
- Tokens:
 - words
 - o symbol
 - o morpheme
 - 0 ...

Token normalization

Token normalization

Stemming:

- removing and replacing suffixes
- get to the root of the word (stem)

Token normalization

Lemmatization:

- Get base or dictionary form of a word (lemma)

Stemming: Porter vs Lancaster

Porter stemmer

- Published in 1979
- Base starting option

Lancaster stemmer

- Published in 1990
- The most aggressive
- Easy adding of your own rules

Snowball stemmer (Porter 2)

- Based on Porter
- More aggressive
- Most popular option now

Stemming: Example

Porter's stemmer:

- Heuristics, applied one-by-one:
 - SSES SS (dresses dress)
 - IES I (ponies poni)
 - S <empty> (dogs dog)
- What's wrong?
 - Overstemming and understemming

Overstemming

- University
- Universal
- Universities
- Universe

Univers

Understemming

Lemmatization

- Lemmatizer from NLTK:
 - Tries to resolve word to its dictionary form
 - Based on **WordNet** database
 - For the best results feed part-of-speech tagger

What is WordNet?

Handful tools for preprocessing

- NLTK
 - nltk.stem.SnowballStemmer
 - nltk.stem.PorterStemmer
 - nltk.stem.WordNetLemmatizer
 - nltk.corpus.stopwords
- BeautifulSoup (for parsing HTML)
- Regular Expressions (import re)
- <u>Pymorphy2</u>

What's left

- Capital Letters
- Punctuation
- Contractions (e.g, etc.)
- Numbers (dates, ids, page numbers)
- Stop-words ("the", "is", etc.)
- Tags

How to improve BOW?

- Use n-gramms instead of words!

The brown dog plays with a little cat

The brown dog lays a little cat plays with

Do we need all this bigramms?

Meaningful n-gramms are often called collocations

How to detect meaningful n-gramms?

Collocations: first step

- Delete:

- <u>High-frequency n-gramms</u>
 - Articles, prepositions
 - Auxiliary verbs (to be, to have, etc.)
 - General vocabulary
- <u>Low-frequency n-gramms</u>
 - Typos
 - Combinations that occur 1-2 times in a text

Feature extraction

girafe

the dog is on the table

Problems

- No information about words order
- Word vectors are huge and sparse
- Word vectors are not normalized
- Same words can take different forms

0

TF-IDF

- **Term Frequency (tf):** gives us the frequency of the word in each document in the corpus.

$$tf(t,d) = f_{t,d}$$

- **Inverse Document Frequency (idf):** used to calculate the weight of rare words across all documents in the corpus. The words that occur rarely in the corpus have a high IDF score.

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D : t \in d\}|}$$

N: total number of documents in the corpus N=|D| $|\{d\in D:t\in d\}|$: number of documents where the term t

- **Sentence A:** The car is driven on the road.
- **Sentence B:** The truck is driven on the highway

(each sentence is a separate document)

Word	TF		IDF	TF * IDF	
	Α	В		Α	В
The	1/7	1/7			
Car	1/7	0			
Truck	0	1/7			
Is	1/7	1/7			
Driven	1/7	1/7			
On	1/7	1/7			
The	1/7	1/7			
Road	1/7	0			
Highway	0	1/7			

Word	TF		IDF	TF * IDF	
	Α	В		Α	В
The	1/7	1/7	log(2/2)=0		
Car	1/7	0	log(2/1)=0.3		
Truck	0	1/7	log(2/1)=0.3		
Is	1/7	1/7	log(2/2)=0		
Driven	1/7	1/7	log(2/2)=0		
On	1/7	1/7	log(2/2)=0		
The	1/7	1/7	log(2/2)=0		
Road	1/7	0	log(2/1)=0.3		
Highway	0	1/7	log(2/1)=0.3		

Word	TF		IDF	TF * IDF	
	Α	В		Α	В
The	1/7	1/7	log(2/2)=0	0	0
Car	1/7	0	log(2/1)=0.3	0.043	0
Truck	0	1/7	log(2/1)=0.3	0	0.043
Is	1/7	1/7	log(2/2)=0	0	0
Driven	1/7	1/7	log(2/2)=0	0	0
On	1/7	1/7	log(2/2)=0	0	0
The	1/7	1/7	log(2/2)=0	0	0
Road	1/7	0	log(2/1)=0.3	0.043	0
Highway	0	1/7	log(2/1)=0.3	0	0.043

from sklearn.feature_extraction.text import TfidfVectorizer

Word Embeddings

girafe ai

One-hot vectors

Problems:

- Huge vectors
- VERY sparse
- No semantics or word similarity information included

```
Rome Paris word V

Rome = [1, 0, 0, 0, 0, 0, ..., 0]

Paris = [0, 1, 0, 0, 0, 0, ..., 0]

Italy = [0, 0, 1, 0, 0, 0, ..., 0]

France = [0, 0, 0, 1, 0, 0, ..., 0]
```

Distributional semantics

Does vector similarity imply semantic similarity?

"You shall know a word by the company it keeps"

Matrix factorization

- Input: PMI, word cooccurrences, etc.
- Method: dimensionality reduction (SVD)
- Output: word similarities

Collocations: first step

- Delete:

- <u>High-frequency n-gramms</u>
 - Articles, prepositions
 - Auxiliary verbs (to be, to have, etc.)
 - General vocabulary
- Low-frequency n-gramms
 - Typos
 - Combinations that occur 1-2 times in a text

Collocations: context is all you need

- Co-Occurrence counters in a window of fixed size
 - states for the number of times we've seen word u and word v together in the window
- Better solution: Pointwise Mutual Information (PMI)

$$PMI = log \frac{p(u, v)}{p(u)p(v)} = log \frac{n_{uv}n}{n_{u}n_{v}}$$

- Much better solution: Positive PMI (pPMI)

$$pPMI = \max(0, PMI)$$

Learning word vectors

girafe ai

Embeddings: intuition

What is king - man + woman?

Embeddings: intuition

So king - man + woman = queen! QUEEN KING WOMAN

Word2vec (Mikolov et al. 2013) - a framework for learning word embeddings

42

Source Text	Training Samples
The quick brown fox jumps over the lazy dog. \Longrightarrow	(the, quick) (the, brown)
The quick brown fox jumps over the lazy dog	(quick, the) (quick, brown) (quick, fox)
The quick brown fox jumps over the lazy dog	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(fox, quick) (fox, brown) (fox, jumps) (fox, over)

neurons

Word Vector Lookup Table!

- Word vectors with 300 components
- Vocabulary of 10,000 words.
- Weight matrix with 300 x 10,000 = 3 million weights each!
- Training is too long and computationally expensive

HOW TO FIX IT?

Basic approaches:

- 1. Treating common word pairs or phrases as single "words" in their model.
- 2. Subsampling frequent words to decrease the number of training examples.
- 3. Modifying the optimization objective with a technique they called "Negative Sampling", which causes each training sample to update only a
- small percentage of the model's weights.

Word2vec: Subsampling

Subsampling frequent words.

 w_i is the word, $z(w_i)$ is the fraction of this word in the text

Graph for (sqrt(x/0.001)+1)*0.001/x

 $P(w_i)$ is the probability of keeping the word:

$$P(w_i) = (\sqrt{\frac{z(w_i)}{0.001}} + 1) \cdot \frac{0.001}{z(w_i)}$$

Word2vec: Negative Sampling

- Error is computed only for a few rods. All other words have zero error, so no updates by the backprop mechanism.
- More frequent words are selected to be negative samples more often. The probability for a selecting a word is just it's weight divided by the sum of weights for all words.

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=0}^{n} (f(w_j)^{3/4})}$$

Word2vec: two models

Continuous BOW (CBOW)

Predict center word from (bag of) context words

$$p(w_i | w_{i-h}, ..., w_{i+h})$$

- Predicting one word each
- time
- Relatively fast

Skip-gram

Predict context ("outside") words (position independent) given center word

$$p(w_{i-h}, \dots w_{i+h}|w_i)$$

- Predicting context by one word
- Much slower
- Better with infrequent words

Word2vec: Skip-gram

Word2vec: CBOW

Word2vec: Contrastive

Simplify the approaches above:

Consider only one **positive pair** of words and **a few negative pairs**.

$$log\sigma(v_{w_o}^\mathsf{T} v_{w_t}) + \sum_{\substack{i=0\\w_i \in P_n(\omega)}} log\sigma(-v_{w_i}^\mathsf{T} v_{w_t})$$

GloVe: visualizations

Word2vec: word analogies

King - man + woman = queen
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$x \qquad y \qquad y' \qquad target$$

$$\cos(x-y+y',target) \rightarrow \max_{target}$$

Summary

- Word vectors are simply vectors of numbers that represent the meaning of a word
- Approaches:
 - One-hot encoding
 - Bag-of-words models
 - Counts of word / context co-occurrences
 - o TF-IDF
 - o Predictions of context given word (skip-gram neural network models, e.g.
 - word2vec)

Revise

- 1. NLP introduction
- 2. Text preprocessing
- 3. Feature extraction:
 - a. Bag-of-Words
 - b. Bag-of-Ngrammes
 - c. TF-IDF
- 4. Word embeddings
- 5. Word2vec

Thanks for attention!

Questions?

