Delhi temperature timeseries data SARIMA model fitting

Here we are doing a time-series analysis of the daily temperature in the city of Delhi for the period of Jan 01, 1995 to Dec 31, 2019.

Reading the data

```
DelhiTemp <- read.csv(file = '../../Data/Delhi_temperature_1995_2020.csv')
```

Viewing the data

head(DelhiTemp)

```
Month Day Year Temperature
## 1
         1
              1 1995
                             50.7
## 2
         1
              2 1995
                             52.1
## 3
              3 1995
                             53.8
         1
              4 1995
                             53.7
         1
## 5
         1
              5 1995
                             54.5
## 6
              6 1995
                             54.3
```

Creating a date column from Month, Day and Year columns.

```
DelhiTemp$Date <- as.Date(with(DelhiTemp, paste(Year, Month, Day, sep="-")), "%Y-%m-%d")
```

Temperature vs. Date plot

```
Temp <- DelhiTemp$Temperature
Date <- DelhiTemp$Date
plot(Temp~Date)</pre>
```


Our

data shows clear yearly seasonality and their are some very large outliers (temperature~100) possibly because of missing data for those dates.

Outlier detection and missing value treatment

Identifying outliers and replacing them with backfilled values:

```
DelhiTemp$Temperature[DelhiTemp$Temperature < 0] <- NA
which(is.na(DelhiTemp$Temperature))

## [1] 88 1324 1370 1454 1455 1460 1461 1471 1580 1581 2310 2726 2727 2728 2729
## [16] 2856 4448 4449 4523 4623 4678 4724 5016 5175 5213 5586 5587 5588 5590 6004
## [31] 6005 6006 6007 6008 6710 6977 7670 7740 7777 7796 7935 7986 8145 8146 8405
## [46] 8661 8668 8719 8720 8722 8789 8880 8881 8883 8886 8902 8903 8904 8905

DelhiTemp$Temperature <- na.locf(DelhiTemp$Temperature, fromLast = TRUE)
which(is.na(DelhiTemp$Temperature))</pre>
```

integer(0)

Updated Temperature vs. Date plot

```
Temp <- DelhiTemp$Temperature
Date <- DelhiTemp$Date
plot(Temp~Date)</pre>
```


Binning

```
Binning temperatures to their mean monthly values
```

```
DelhiMonthlyTemp <- DelhiTemp %>% group_by(Year,Month) %>% summarize(Temperature = mean(Temperature))
```

`summarise()` has grouped output by 'Year'. You can override using the `.groups` argument.

head(DelhiMonthlyTemp);

```
## # A tibble: 6 x 3
               Year [1]
## # Groups:
##
      Year Month Temperature
##
     <int> <int>
                        <dbl>
## 1
     1995
               1
                         55.5
               2
                         62.4
## 2
     1995
               3
                         70.5
## 3
     1995
      1995
                4
                         83.1
## 4
## 5
      1995
               5
                         93.2
## 6
     1995
               6
                         95.8
```

Setting a new date column with just the month and year info

DelhiMonthlyTemp\$Date <- as.yearmon(paste(DelhiMonthlyTemp\$Year, DelhiMonthlyTemp\$Month), "%Y %m")

Monthly mean temperature vs. Date (Month) plot

```
Temp <- DelhiMonthlyTemp$Temperature
Date <- DelhiMonthlyTemp$Date
plot(Temp~Date,type="l")</pre>
```


Once again we see that the data shows clear seasonality but no variation in variance so differencing should be enough for taking care of the trend.

ACF and PACF plots

Let's first look at the auto-correlation function and the partial auto-correlation function plots.

```
Temp <- DelhiMonthlyTemp$Temperature
par(mfrow=c(2,1))</pre>
```


Lag

We see that the ACF also shows clear seasonality.

Guessing the right orders for (S)ARIMA model fitting

1. Differncing orders (d, D)

Non-seasonal and seasonal differencing -> diff(diff(data), 12)

plot(diff(diff(Temp),12),type="1")

the plot shows almost no-trends except for a few large peaks at the center which may be outliers => d=1, D=1. We can also use the AD Fuller test for checking the stationarity

```
\#diff\_data \leftarrow diff(diff(Temp), 12)
\#adf.test(diff\_data)
```

The test confirms that the data is stationary.

2. orders for the auro-regressive (AR) and Moving Average (MA) terms i.e. p and q

ACF and PACF for differenced data

```
par(mfrow=c(2,1))
acf(diff(diff(Temp),12),main='differed data ACF',50)
pacf(diff(diff(Temp),12),main='differed data PACF',50);
```

differnced data ACF

differnced data PACF

The ACF plot shows significant correlations at lag=1,11 and 12 while the PACF shows significant correlation for lag=1,11 and 12 The correlations at later parts may be due to seadonality

Finding best parameters using

1. Grid Search

Trying for different values of p,q,P,Q and note down AIC, SSE and p-value (for Ljun-box-test). We want high p-values and small AIC and SSE using parsimony principle (simpler the better) while searching

```
}
}
## 0 1 0 0 1 0 12 AIC= 1499.338
                                 SSE= 3099.001 p-VALUE= 8.952575e-08
## 0 1 0 0 1 1 12 AIC= 1320.604
                                 SSE= 1476.127
                                               p-VALUE= 8.894564e-07
## 0 1 0 0 1 2 12 AIC= 1320.109
                                 SSE= 1502.587
                                               p-VALUE= 1.212609e-06
## 0 1 0 1 1 0 12 AIC= 1392.531
                                 SSE= 2087.502
                                                p-VALUE= 1.215459e-06
## 0 1 0 1 1 1 12 AIC= 1319.835
                                 SSE= 1500.886
                                               p-VALUE= 1.226718e-06
## 0 1 0 1 1 2 12 AIC= 1320.854
                                 SSE= 1488.524 p-VALUE= 1.356503e-06
## 0 1 0 2 1 0 12 AIC= 1370.082
                                 SSE= 1901.339 p-VALUE= 7.147622e-07
## 0 1 0 2 1 1 12 AIC= 1321.25
                                SSE= 1485.317
                                               p-VALUE= 1.148136e-06
## 0 1 0 2 1 2 12 AIC= 1322.845
                                 SSE= 1486.992 p-VALUE= 1.336722e-06
## 0 1 0 3 1 0 12 AIC= 1349.824
                                 SSE= 1740.855
                                               p-VALUE= 4.246554e-06
## 0 1 0 3 1 1 12 AIC= 1322.842
                                 SSE= 1494.211
                                               p-VALUE= 1.265004e-06
## 0 1 0 4 1 0 12 AIC= 1344.303
                                 SSE= 1686.293
                                               p-VALUE= 3.323896e-06
## 0 1 1 0 1 0 12 AIC= 1409.009
                                 SSE= 2237.481 p-VALUE= 0.02513918
## 0 1 1 0 1 1 12 AIC= 1238.17
                                SSE= 1070.666 p-VALUE= 0.01793177
## 0 1 1 0 1 2 12 AIC= 1239.052
                                 SSE= 1060.471 p-VALUE= 0.01667548
## 0 1 1 1 1 0 12 AIC= 1319.848
                                 SSE= 1607.407
                                                p-VALUE= 0.01328627
## 0 1 1 1 1 1 12 AIC= 1239.027
                                 SSE= 1060.696
                                               p-VALUE= 0.01664074
## 0 1 1 1 1 2 12 AIC= 1240.96
                                SSE= 1061.698 p-VALUE= 0.01650034
## 0 1 1 2 1 0 12 AIC= 1295.577
                                 SSE= 1453.315
                                               p-VALUE= 0.007799349
## 0 1 1 2 1 1 12 AIC= 1240.994
                                 SSE= 1061.651
                                               p-VALUE= 0.01664093
## 0 1 1 3 1 0 12 AIC= 1282.807
                                 SSE= 1369.994
                                               p-VALUE= 0.001596375
## 1 1 0 0 1 0 12 AIC= 1460.192
                                 SSE= 2683.762
                                               p-VALUE= 5.570336e-05
## 1 1 0 0 1 1 12 AIC= 1288.522
                                 SSE= 1281.156
                                               p-VALUE= 2.515287e-05
## 1 1 0 0 1 2 12 AIC= 1289.366
                                 SSE= 1269.078
                                               p-VALUE= 2.049262e-05
## 1 1 0 1 1 0 12 AIC= 1361.389
                                 SSE= 1860.666
                                               p-VALUE= 7.996062e-05
## 1 1 0 1 1 1 12 AIC= 1289.222
                                 SSE= 1272.065
                                               p-VALUE= 2.021527e-05
## 1 1 0 1 1 2 12 AIC= 1290.516
                                 SSE= 1267.385
                                               p-VALUE= 2.03264e-05
## 1 1 0 2 1 0 12 AIC= 1338.392
                                 SSE= 1691.143 p-VALUE= 9.26347e-05
## 1 1 0 2 1 1 12 AIC= 1290.295
                                 SSE= 1270.33 p-VALUE= 2.401602e-05
## 1 1 0 3 1 0 12 AIC= 1324.173
                                 SSE= 1585.588
                                               p-VALUE= 6.74795e-05
                                               p-VALUE= 0.9964005
## 1 1 1 0 1 0 12 AIC= 1385.017
                                 SSE= 2016.254
                                               p-VALUE= 0.9779703
## 1 1 1 0 1 1 12 AIC= 1221.998
                                 SSE= 978.4572
## 1 1 1 0 1 2 12 AIC= 1223.462
                                 SSE= 972.9903
                                               p-VALUE= 0.9678169
## 1 1 1 1 1 0 12 AIC= 1298.865
                                 SSE= 1459.958
                                               p-VALUE= 0.9675623
## 1 1 1 1 1 1 12 AIC= 1223.441
                                 SSE= 972.6935 p-VALUE= 0.9671796
## 1 1 1 2 1 0 12 AIC= 1277.296
                                 SSE= 1331.71 p-VALUE= 0.9371032
  2. Using auto.arima()
y <- msts(Temp, seasonal.periods=c(12))
auto.arima(y, d = 1, D = 1, max.p = 5, max.q = 5, max.P = 5, max.Q = 5, max.order = 10,
                                                                                              start.p =
## Series: y
## ARIMA(5,1,0)(5,1,0)[12]
##
## Coefficients:
##
             ar1
                      ar2
                               ar3
                                        ar4
                                                 ar5
                                                         sar1
                                                                  sar2
                                                                           sar3
                  -0.4444
                                             -0.1488
##
         -0.5142
                           -0.3373
                                    -0.2261
                                                      -0.8628
                                                               -0.6184
                                                                        -0.4755
          0.0606
                   0.0653
                            0.0695
                                     0.0676
                                              0.0603
## s.e.
                                                       0.0625
                                                                0.0823
##
            sar4
                     sar5
##
         -0.2962
                  -0.1132
## s.e.
         0.0850
                   0.0654
```

```
## ## sigma^2 estimated as 4.656: log likelihood=-628.94 ## AIC=1279.88 AICc=1280.84 BIC=1320.13
```

Best-model

For some reason auto-arima is unable to reproduce the minimum value of AIC which was found in the grid-search method. From the grid-search the lowest AIC of 1221.998 is found for a 1,1,1,0,1,1,12 SARIMA model which also has a large enough p-value.

SARIMA(1,1,1,0,1,1,12) fitting results

```
sarima(Temp,1,1,1,0,1,1,12);
## initial value 1.191317
## iter
          2 value 0.898750
## iter
          3 value 0.873868
## iter
         4 value 0.851006
## iter
          5 value 0.826823
## iter
          6 value 0.797812
## iter
         7 value 0.748496
## iter
          8 value 0.742428
## iter
          9 value 0.739291
        10 value 0.737991
## iter
## iter
        11 value 0.735174
## iter
        12 value 0.733637
## iter
        13 value 0.733464
        14 value 0.733395
## iter
## iter
        15 value 0.733379
## iter
        16 value 0.733377
## iter
        17 value 0.733375
        18 value 0.733375
## iter
## iter 18 value 0.733375
## iter 18 value 0.733375
## final value 0.733375
## converged
## initial value 0.716771
## iter
          2 value 0.699040
          3 value 0.696613
## iter
## iter
          4 value 0.696121
## iter
          5 value 0.696043
          6 value 0.696041
## iter
## iter
          7 value 0.696040
## iter
          7 value 0.696040
## iter
          7 value 0.696040
## final value 0.696040
## converged
```



```
## $AICc
## [1] 4.100937
##
## $BIC
## [1] 4.149784
```

We see that the residuals are almost stationary and there is not much correlation left in the lags of the residuals, also the p-value of the Ljung-Box test is significant at almost all lags.

Forecasting using the best-model

```
model<-arima(x=Temp, order = c(1,1,1), seasonal = list(order=c(0,1,1), period=per))
par(mfrow=c(1,1))
plot(forecast(model,12)); # forecasting for the 12 months after the end of the dataset</pre>
```

Forecasts from ARIMA(1,1,1)(0,1,1)[12]

