Presentation Topics 3

1. Prove that if $n \in \mathbb{N}$, then

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{2^n - 1} + \frac{1}{2^n} \ge 1 + \frac{n}{2}.$$

What does this mean if $n \to \infty$?

- 2. Define a sequence of numbers a_0, a_1, a_2, \ldots by setting $a_{n+1} = 2a_n a_n^2$ for all $n \ge 0$. Show that $a_n = 1 (1 a_0)^{2^n}$ for all $n = 0, 1, 2, \ldots$ What happens for different choices of a_0 ?
- 3. Prove that the following are equivalent for a nonempty set A:
 - A is countable.
 - There exist an injection $f: A \to \mathbb{N}$.
 - There exists a surjection $g: \mathbb{N} \to A$.
- 4. Show that, $|A| < |\mathcal{P}(A)|$, for any set A.
- 5. Prove that if $|A| \leq |B|$, then $|\mathcal{P}(A)| \leq |\mathcal{P}(B)|$. Prove that if |A| = |B|, then $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.
- 6. Let I be a countable set and $\{A_i\}_{i\in I}$ an I-indexed collection of sets. Prove that if all A_i are countably infinite, then so is $\bigcup_{i\in I} A_i$. Is the converse true?
- 7. Let $A, B \subseteq U$ with A countably infinite and B uncountable. Prove that $B \setminus A$ is uncountable. Give examples to show that if A, B are both uncountable, then $B \setminus A$ can be any of: empty, finite and nonempty, countably infinite, or uncountable.
- 8. Let A be an infinite set. Prove that $A, \mathcal{P}(A), \mathcal{P}(\mathcal{P}(A)), \ldots$ is an infinite list of infinite sets, all of which have different cardinalities. Find a set whose cardinality is greater than all of the sets on the list.

- 9. Let I be a set. Recall that $\prod_{i\in I}\mathbb{Z}$ is the set of all functions $I\to\mathbb{Z}$. Define $\bigoplus_{i\in I}\mathbb{Z}\subseteq\prod_{i\in I}\mathbb{Z}$ to be the subset consisting of those $f:I\to\mathbb{Z}$ such that f(i)=0 for all but finitely many $i\in I$. Prove that $\prod_{i\in I}\mathbb{Z}=\bigoplus_{i\in I}\mathbb{Z}$ if and only if I is finite. Prove that if I is countable, then so is $\bigoplus_{i\in I}\mathbb{Z}$.
- 10. Let $\{A_i\}_{i\in\mathbb{Z}^+}$ be a \mathbb{Z}^+ -indexed collection of sets. What are the most general conditions on the sets A_i for which $\prod_{i\in\mathbb{Z}^+}A_i$ is countable?
- 11. Let $\mathcal{C} \subset \mathcal{P}(\mathbb{N})$ be the collection of those subsets of \mathbb{N} that have at most 10 elements. Prove that \mathcal{C} is countable. Let $\mathcal{D} \subset \mathcal{P}(\mathbb{N})$ be the set of **finite** subsets of \mathbb{N} . Prove that \mathcal{D} is countable.
- 12. Show that there are uncountably many surjective functions $f: \mathbb{N} \to \mathbb{N}$.
- 13. Let ℓ_1, ℓ_2, \ldots be countably many lines in the plane \mathbb{R}^2 . Show that there is a point in \mathbb{R}^2 that does not lie on any of the lines ℓ_i . (Hint: Show that there is a line whose slope is different from the slopes of all the ℓ_i s).