

Rational Synthesis of *meso*- or β- Fluoroalkylporphyrin Derivatives via Halo-fluoroalkylporphyrin Precursors: Electronic and Steric Effects on Regioselective Electrophilic Substitution in 5-Fluoroalkyl-10,20-diarylporphyrins

Li-Mei Jin,^{†,‡} Liang Chen,[†] Juan-Juan Yin,[§] Jin-Ming Zhou,^{||} Can-Cheng Guo,*,[†] and Qing-Yun Chen*,^{†,‡}

College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China, Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu 200032, China, Nanobiology Medicine Department, Shanghai Applied Physical Institute, Chinese Academy of Sciences, 2019 Jialuo Road 201800, China, and Center of Computer Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu 200032, China

Chenqy@mail.sioc.ac.cn

Received August 9, 2005

Electrophilic nitration, formylation or bromination of metalated 5-fluoroalkyl-10,20-diphenylporphyrin (fluoroalkyl = CF₃, ClCF₂CF₂, n-C₆F₁₃) proceeded with high regioselectivity, exclusively affording corresponding meso-substituted porphyrins, while the iodination reaction mainly took place at the adjacent β site giving 2-iodo-10-fluoroalkyl-5,15-diphenylporphyrin. Suzuki, Sonogashira, and trifluoromethylation reactions of the obtained 5-bromo-15-fluoroalkyl-10,20-diphenylporphyrins or 2-iodo-10-fluoroalkyl-5,15-diphenylporphyrins could perform smoothly to give the corresponding various meso- or β -functionalized fluoroalkylated porphyrin derivatives. Accordingly, two meso-to-meso butadiyne-bridged bisporphyrin dimers and two β -to- β butadiyne-linked dimeric porphyrins were prepared by the coupling reactions of 5-ethynyl-15-fluoroalkyl-10,20-diphenylporphyrins and 2-ethynyl-10-fluoroalkyl-5,15-diphenylporphyrins, respectively.

Introduction

Per(poly)fluoroalkylporphyrins and their metallic complexes have been shown to possess unique properties in catalysis, materials, and medical applications et cetera.¹ For example, DiMagno and co-workers have shown that the 5,10,15,20-

tetrakis(heptafluoropropyl)porphyrin ligand was successfully used as a fluorocarbon-soluble sensitizer for the photooxidation of allylic alcohols to hydroperoxide under a fluorous biphase system.² Pandey and colleagues have found that the fluorinated porphyrins, as compared with the corresponding nonfluorinated analogues, generally have higher PDT efficacy.³ The existing elegant procedures for the synthesis of symmetric fluoroalkylporphyrins are usually almost all variations on the same theme,

^{*} To whom correspondence should be addressed.

[†] Hunan University.

[‡] Key Laboratory of Organofluorine Chemistry, Chinese Academy of Sciences.

[§] Nanobiology Medicine Department, Chinese Academy of Sciences.

Center of Computer Chemistry, Chinese Academy of Sciences.

^{(1) (}a) The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 6. (b) Kumadaki, I.; Ando, A.; Omote, M. J. Fluorine Chem. 2001, 109, 67–81. (c) Brown, K. L. Chem. Rev. 2005, 105, 2075–2149. (d) Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103, 2457–2473. (e) Wasielewski, M. R. Chem. Rev. 1992, 92, 435–461.

⁽²⁾ DiMagno, S. G.; Dussault, P. H.; Schultz, J. A. J. Am. Chem. Soc. **1996**, 118, 5312-5313.

^{(3) (}a) Li, G.; Chen, Y.; Missert, J. R.; Rungta, A.; Dougherty, T. J.; Grossman, Z. D.; Pandey, R. K. *J. Chem. Soc., Perkin Trans. I* 1999, 1785–1787. (b) Pandey, S. K.; Gryshuk, A. L.; Graham, A.; Ohkubo, K.; Fukuzumi, S.; Dobhal, M. P.; Zheng, G.; Ou, Z.; Zhan, R.; Kadish, K. M.; Oseroff, A.; Ramaprasad, S.; Pandey, R. K. *Tetrahedron* 2003, *59*, 10059–10073

that is, the condensation of fluoroalkylpyrroles and fluoroalkylaldehydes under acidic conditions.⁴ Recently, we found that a modified sulfinatodehalogenation system (Na₂S₂O₄/NaHCO₃/ DMSO) or metal (e.g., copper powder) was suitable for synthesizing the symmetrical and asymmetrical fluoroalkylporphyrins from easily available synthetic porphyrins and commercial per(poly)fluoroalkyl iodides (R_d).⁵ For example, treatment of tetraarylporphyrins/R₄I with Na₂S₂O₄ or copper powder afforded the mono β -fluoroalkylporphyrins in moderate to good yields.^{5a-c} Similarly, fluoroalkylation of 5,15-diarylporphyrins under sulfinatodehalogenation conditions provided an access to prepare both mono-, meso-, and β -fluoroalkylated porphyrins.^{5e} Because of the relatively large size and high electron deficiency of the fluoroalkyl group, the resultant 5-fluoroalkyl-10,20diarylporphyrins, as compared with other 5,10,15-triarylporphyrins, would be expected to display some interesting characteristics in regioselective electrophilic substitution reactions. Herein we present the results.

Results and Discussion

1. Electrophilic Substitution of 5-Fluoroalkyl-10,20-diphenylporphyrins. To gain insight into the reactivity of the mono meso fluoroalkylated porphyrins, some electrophilic substitutions, such as nitration, formylation, bromination, and iodination, were investigated.

The treatment of 5-perfluorohexyl-10,20-diphenylporphinatocopper(II) (Cu1c)^{5e} with 4 equiv of Cu(NO₃)₂/Ac₂O (acetic anhydride)6 at 30 °C for 24 h, followed by demetalation with H₂SO₄, resulted in meso-NO₂-substituted compound 2 exclusively with no corresponding β -NO₂-substituted product being detected. Similarly, following the standard formylation procedure, ⁷ 5-(2-chlorotetrafluoroethyl)-10,20-diphenylporphinatocopper(II) (Cu1b)^{5e} or Cu1c reacted with DMF/POCl₃ in 1,2dichloroethane at 50 °C for 12h, followed by hydrolysis with saturated NaOAc (aq), and then demetalation with H₂SO₄ afforded meso-formylated porphyrins **3b** and **3c** respectively. The ¹H NMR spectrum showed no formation of a β -CHOsubstituted product. As expected, treating 5-trifluromethyl-10,20diphenylporphinatozinc(II) (Zn1a), § 5-(2-chlorotetrafluoroethyl)-10,20-diphenylporphinatozinc(II) (**Zn1b**)^{5e} or 5-perfluorohexyl-10,20-diphenylporphinatozinc(II) (**Zn1c**)^{5e} with 1.1 equiv

of N-bromosuccimimide (NBS) in dichloromethane at room temperature for 10 min resulted in the formation of corresponding meso-brominated products Zn4a, Zn4b, and Zn4c with high regioselectivity, respectively. While NBS reacted with corresponding free base porphyrins, for example, 5-perfluorohexyl-10,20-diphenylporphyrin (**1c**),^{5e} the main meso bromoporphyrin (70%) along with a small amount of β -bromoporphyrin (20%), as determined by the ¹H NMR spectrum, was obtained. Contrary to the high meso-site selectivity of nitration, formylation, and bromination, the iodination of free base 1c with 1.1 equiv of phenyliodide bistrifluoroacetate (PIFA)/I₂, according to Dolphin's method, mainly afforded β -iodoporphyrin **5c** with only a small amount of *meso*-iodoporphyrin **5 cm** (Scheme 1).¹⁰ The molar ratio of the two isomers, determined by ¹H NMR spectra, was about 7:1; moreover, they could be separated by long column chromatography despite their close polarity. Furthermore, the ¹H NMR spectra of such compounds are quite distinctive and indicative of their structures. As shown in Figure 1A, the ¹H NMR spectrum of compound **5c** illustrates the formation of the β -iodinated product. In the meso-proton region, only one meso-proton resonance is present (10.3 ppm). Seven different sets of β -hydrogen resonances are observed between 8.0 and 10.0, and among them, the β -proton adjacent to the iodine shows clearly a singlet at 9.01 ppm, and the singlet at −2.90 ppm belongs to the N−H proton resonance. Because of its symmetric structure, meso-iodoporphyrin 5cm gives a relatively simple ¹H NMR spectrum: only four sets of doublet resonances are exhibited in the β -proton region. Notably, its N-H-proton resonance peak is split into a doublet (-2.35,-2.45 ppm).

The position of iodine in compound $\bf 5c$ was further confirmed by NOESY (Figure 2). The fact that no correlation peak of the protons of $\bf H^3$ and $\bf H^{20}$ can be found in the NOESY spectrum indicated that iodine was attached at the 2 position of the macrocycle. Similar results were also obtained from the iodination of 5-trifluoromethyl-10,20-diphenylporphyrin ($\bf 1a$)⁸ and 5-(2-chlorotetrafluoroethyl)-10,20-diphenylporphyrin ($\bf 1b$)^{5e} (Experimental Section). This is similar to that of the fluoroalkylation of 5-fluoroalkyl-10,20-diphenylporphyrins. The second fluoroalkyl group was introduced onto the meso and β positions in almost equal yield.^{5e} However, for other meso-triaryl-substituted porphyrins, for example, iodination or fluoroalkyl group was mainly attached to the remaining meso position.^{5d,11}

As seen in Table 1,¹² the fluoroalkyl groups (CF₃, *n*-C₆F₁₃, etc.) are substantially larger than phenyl, so the fluoroalkylated macrocycles become more compressed compared to 5,10,15-triphenylporphyrin. Additionally, iodination is more sensitive to steric effects than other reactions, such as formylation, nitration, and bromination, etc., because iodine has the highest

^{(4) (}a) Wijesekera, T. P. Can. J. Chem. 1996, 74, 1868–1871. (b) DiMagno, S. G.; Williams, R. A.; Therien, M. J. J. Org. Chem. 1994, 59, 6943–6948. (c) Kaesler, R. W.; LeGoff, E. J. Org. Chem. 1982, 47, 5243–5246. (d) Woller, E. K.; DiMagno, S. G. J. Org. Chem. 1997, 62, 1588–1593. (e) DiMagno, S. G.; Wertsching, A. K.; Ross, G. R. J. Am. Chem. Soc. 1995, 117, 8279–8280. (f) Takeuchi, T.; Gray, H. B.; Goddard, W. A. J. Am. Chem. Soc. 1994, 116, 9730–9732. (g) Moore, K. T.; Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 1999, 121, 5196–5209. (h) Taniguchi, M.; Ra, D.; Mo, G.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2001, 66, 7342–7354. (i) Pozzi, G.; Montanari, F.; Quici, S. Chem. Commun. 1997, 69–70. (j) Barkigia, K. M.; Battioni, P.; Riou, V.; Mansuy, D.; Fajer, J. Chem. Commun. 2002, 956–957.

^{(5) (}a) Jin, L. M.; Zeng, Z.; Guo, C. C.; Chen, Q. Y. J. Org. Chem. **2003**, 68, 3912–3917. (b) Zeng, Z.; Liu, C.; Jin, L. M.; Guo, C. C.; Chen, Q. Y. Eur. J. Org. Chem. **2005**, 306–316. (c) Jin, L. M.; Chen, L.; Guo, C. C.; Chen, Q. Y. J. Porphyrins Phthalocyanines **2005**, 9, 109–120. (d) Chen, L.; Jin, L. M.; Guo, C. C.; Chen, Q. Y. Synlett **2005**, 963–970. (e) Jin, L. M.; Chen, L. Yin, J. J.; Guo, C. C.; Chen, Q. Y. J. Fluorine Chem. **2005**, 126, 1321–1326.

⁽⁶⁾ Giraudeau, A.; Callot, H. J.; Jordan, J.; Ezhar, I.; Gross, M. J. Am. Chem. Soc. 1979, 101, 3857–3862.

⁽⁷⁾ Brockmann, H., Jr.; Bliesener, K.-M.; Inhoffen, H. H. *Liebigs Ann. Chem.* **1968**, *718*, 148–161.

⁽⁸⁾ Jin, L. M.; Chen, L.; Yin, J. J.; Guo, C. C.; Chen, Q. Y. Eur. J. Org. Chem. 2005, 3994–4001.

⁽⁹⁾ Boyle, R. W.; Johnson, C. K.; Dolphin, D. J. Chem. Soc., Chem. Commun. 1995, 527–528.

⁽¹⁰⁾ When the corresponding zincated porphyrins were used as starting materials, meso, meso linked bisporphyrins were exclusively formed. For details about the synthesis of such meso, meso linked bisporphyrins, see ref 8.

^{(11) (}a) Shultz, D. A.; Gwaltney, K. P.; Lee, H. *J. Org. Chem.* **1998**, 63, 769–774. (b) Odobel, F.; Suzenet, F.; Blart, E.; Quintard, J.-P. *Org. Lett.* **2000**, 2, 131–134. (c) Yu, L.; Lindsey, J. S. *Tetrahedron* **2001**, 57, 9285–9298. (d) Odobel, F.; Suresh, S.; Blart, E.; Nicolas, Y.; Quintard, J.-P.; Janvier, P.; Questel, J.-Y. L.; Illien, B.; Rondeau, D.; Richomme, P.; Haupl, T.; Wallin, S.; Hammarstrom, L. *Chem.—Eur. J.* **2002**, *8*, 3027–3046. (e) Tomizaki, K.; Lysenko, A. B.; Taniguchi, M.; Lindsey, J. S. *Tetrahedron* **2004**, 60, 2011–2023.

⁽¹²⁾ Taft, R. W., Jr.; Lewis, I. C. Tetrahedron 1959, 5, 210-232.

SCHEME 1. Some Electrophilic Reactions of Fluoroalkylporphyrins^a

^a Reagents and conditions: (a) (i) Cu(NO₂)₂, AcOH, Ac₂O, 35 °C, 24 h; (ii) H₂SO₄, rt, 5 min, total yield: 80%. (b) (i) DMF/POCl₃, CH₂Cl₂, reflux, 12 h; (ii) NaOAc(aq), 75 °C, 1 h; (iii) H₂SO₄, CH₂Cl₂, rt, 30 min, total yield: 90–95%. (c) NBS, CH₂Cl₂, rt, 1 h, 90–95%. (d) I₂, PIFA, CH₂Cl₂, 1 h, 60–70%.

FIGURE 1. ¹H NMR spectra of β -iodofluoroalkylporphyrin **5c** (A, only β proton and N-H proton peaks are shown) and *meso*-iodofluoroalkylporphyrin **5cm** (B, only β proton and N-H proton peaks are shown).

steric constant among the substituents (NO_2 , Br, I). Thus, it is understandable that iodine was mainly attached to the less steric position, namely, the 2 position of the porphyrins in the above iodination reactions. These results are also consistent with Dolphin's observations of further iodination of 5-iodo-10,20-diphenylporphyrin.¹³

2. Transformation of Regio-haloporphyrins. Halogenated porphyrins are one type of very useful precursors for synthesizing porphyrin derivatives otherwise inaccessible. Many elegant metal-mediated methods have been developed for functionalizing porphyrins from bromo and iodoporphyrin precursors. ¹⁴ But such transformations are all limited to the meso positions

probably because halogenation has only taken place at the meso position for 5,10,15-triarylporphyrins. As mentioned above, we have successfully developed high regioselective halogenation at the meso and β positions of 5-fluoroalkyl-10,20-diphenylporphyrins. The different regioselective halogenated porphyrins obtained would be expected to provide useful precursors for synthesizing various regional-functional-porphyrin derivatives and new kinds of push—pull chromorphores.

The meso-halogenated bromo and iodoporphyrins under standard trifluoromethylation conditions¹⁵ could be smoothly converted into corresponding meso trifluoromethylated porphyrins. Thus, treatment of zincated *meso*-bromo-fluoroalkylporphyrin **Zn4a** and **Zn4b** with 10 equiv of FSO₂CF₂CO₂Me in DMF at 100 °C in the presence of 10 equiv of CuI for 2 h resulted in corresponding trifluoromethylated products **6a** and **6b** in ∼80% yield. Meanwhile, following standard Sonogashira reaction conditions, ¹⁶ treating **Zn4b** or **Zn4c** with 5 equiv of HC≡C−R in the presence of 10 mol % Pd(PPh₃)Cl₂ and CuI in THF and triethylamine(TEA) at room temperature for 2h afforded green pigment **7** in >90% yield (Scheme 2).

To evaluate the reactivity of 2-iodo-10-fluoroalkyl-5,15-diphenylporphyrins, trifluoromethylation, Sonogashira, and Suzuki reactions were also investigated. For example, treatment of zincated β -iodoporphyrin **Zn5b** (M = Zn, R_f = ClC₂F₄-) with 10 equiv of FSO₂CF₂CO₂Me in DMF at 100 °C in the presence of 10 equiv of CuI for 1 h, followed by demetalation with 36% HCl resulted in β -trifluoromethylated product **8b** in

⁽¹³⁾ Dolphin observed in the iodination of 5,15-diphenylporphyrin that 1.5 equiv of bis(trifluoroacetoxy)iodobenzene-iodine (1.2:1) gave monoiodo-5,15-diphenylporphyrin in yields greater than 70% after separation from the contaminating diiodo-5,15-diphenylporphyrin. NMR examination of the two iodination products revealed that whereas the first iodination takes place at one of the two available meso positions the second substitution occurs not at the remaining meso position but indiscriminately at a β position resulting in a mixture of regioisomers. 9

⁽¹⁴⁾ Vicente, M. G. H. In *The Porphyrin Handbook;* Kadish, K. M., Smith, K. M., Guilard, R., Eds. Academic Press: San Diego, CA, 2000. Vol. 1, pp 159–161.

^{(15) (}a) Chen, Q. Y.; Wu, S. W. *J. Chem. Soc.*, *Chem. Commun.* **1989**, 705–706. (b) Chen, Q. Y.; Yang, G. Y.; Wu, S. W. *J. Fluorine Chem.* **1991**, 55, 291–298. (c) Duan, J. X.; Su, D. B.; Wu, J. P.; Chen, Q. Y. *J. Fluorine Chem.* **1994**, 66, 167–169.

⁽¹⁶⁾ Yeung, M.; Ng, A. C. H.; Drew, M. G. B.; Vorpagel, E.; Breitung, E. M.; McMahon, R. J.; Ng, D. K. P. J. Org. Chem. 1998, 63, 7143-7150.

FIGURE 2. NOSEY spectrum of 5c. (Only the aromatic region is shown.)

TABLE 1. Steric Constants for the Substituents

no.	substituent	Es^a
1	Н	0.00
2	C_6H_5	-1.01
3	NO_2	-1.01
4	Br	-1.16
5	CF ₃	-2.40
6	I	-1.40

^a Es is the steric constant defined by Taft from ref 12.

90% yield. Both Sonogashira and Suzuki reactions¹⁷ were also readily performed. Namely, compound **10** was easily obtained in >90% yield by the reaction of the zincated β -iodoporphyrin with HC \equiv C-R. Mixing the free base of β -iodoporphyrin **5c** (M = H₂, $R_f = C_6F_{13}$ -) with PhB(OH)₂ in the presence of 10 mol % Pd(PPh₃)₄ and K₂CO₃ in toluene at 100 °C for 2 h afforded compound **9** in 90% yield (Scheme 3).

3. Synthesis of meso, meso- or β , β -Butadiyne-Linked Bis-(fluoroalkylporphyrins). With the meso- and β -trimethylsilylethynyl substituted porphyrins in hand, some further transformations were carried out. After desilvlation with (n-Bu)₄NF, the resulting ethynylporphyrins 11, 12 could couple in the presence of PdCl₂(PPh₃)₂/CuI/air to produce meso-to-meso and β -to- β butadiyne-linked bisporphyrins 13 and 14 in high yield, respectively (Scheme 4). The UV-visible and fluorescence spectra of such bisporphyrins are shown in Figure 3. As seen in Figure 3, both compounds **Zn13b** and **Zn14b** exhibit B-bandregion absorptions that span a near-constant window of the solar spectrum (400–550 nm), though their respective Soret regions that are strongly dependent on the nature of porphyrin-toporphyrin connectivity. The wavelength of the lowest-energy $\pi - \pi^*$ transition displays a similar relationship to butadiynyl bridging topology: altering the mode of connectivity for the butadiyne from meso-to-meso to β -to- β results in a shift of the lowest-energy Q-type transition from 694.0 to 607.0 nm. The same phenomenon was also observed in the emission spectrum. The meso-to-meso linked-bisporphyrin dimer **Zn13b** exhibits an emission band at 700.0 nm, which is a longer wavelength than that observed for the fluorescence emission of the less electronically coupled, β -to- β linked dimeric porphyrin **Zn14b** (616.5 nm). Similar results have been observed previously in corresponding but adiynyl-bridged nonfluorinated porphyrins by Therien and co-workers. $^{\rm 18}$

In conclusion, the electrophilic aromatic substitution reactions, such as formylation, nitration, and bromination of 5-fluoroalkyl-10,20-diphenylporphyrin and its metalated derivatives, mainly take place at the remaining meso position, whereas iodination occurs primarily at the β site. Several simple procedures of regioselective syntheses of various meso- and β -functionalized fluoroalkylporphyrins from corresponding halogenated precursors have also been demonstrated. Among these, the first direct access to porphyrins bearing a trans arrangement (5,15) of perfluoroalkyl and alkyne functional groups is presented. These substitution patterns are expected to be useful in building new alkyne-linked arrays with interesting properties.

Experimental Section

Nitration of Copper(II) 5-Perfluorohexyl-10,20-diphenylporphyrin (Cu1c). Cu(NO₃)₂·3H₂O (45 mg) in Ac₂O (4.5 mL) was added to Cu1c (80 mg) dissolved in a mixture of CHCl₃ (75 mL) and acetic acid (1.5 mL). The reaction mixture was stirred at room temperature for 24 h, and TLC (petroleum ether/CH₂Cl₂ = 3:1) showed no starting material. The solution was subsequently washed with water and aqueous K_2CO_3 and dried over Na₂SO₄. The organic layer was treated with H₂SO₄ (0.5 mL) at room temperature for 30 min and then washed with water, dried over Na₂SO₄, and evaporated to dryness. The residue was purified by flash chromatography (silica gel, 300–400 mesh, petroleum ether/CH₂Cl₂ = 5:1). The main band was collected and evaporated to dryness to give purple solid 2 (63 mg, 80%, recrystallized from CHCl₃—methanol).

5-Nitro-15-(perfluorohexyl)-10,20-diphenylporphyrin (2). ¹H NMR (CDCl₃, 300 MHz) δ : 9.49 (m, 2H), 9.32 (d, J = 4.9 Hz, 2H), 8.94 (t, J = 5.4 Hz, 4H), 8.16 (d, J = 7.2 Hz, 4H), 7.85–7.76 (m, 6H), -2.87 (s, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ : -75.57 (m, 2F), -76.80 (t, J = 9 Hz, 3F), -111.20 (m, 2F), -117.17 (m, 2F), -118.50 (m, 2F), -122.05 (m, 2F). MS(MALDI) m/z: 826.6 (M⁺). UV-vis λ_{max} (log ϵ , CH₂Cl₂): 415 (5.32), 514 (4.14), 556 (4.13), 590 (3.88), 650 (4.08). Anal. calcd for $C_{38}H_{20}F_{13}N_5O_2$: C, 55.28; H, 2.44; N, 8.48; found: C, 55.30; H, 2.82; N, 8.27.

Formylation of Copper(II) 5-Fluoroalkyl-10,20-diphenylporphyrins. DMF (0.3 mL) was cooled to 5–10 °C, POCl₃ (0.4 mL) was added under N₂, and the mixture was stirred for 15 min. The ice bath was removed, and the solution was stirred for another 15

^{(17) (}a) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866–867. (b) Suzuki, A. Pure Appl. Chem. 1985, 57, 1749–1758.

^{(18) (}a) Lin, V. S. Y.; DiMagno, S. G.; Therien, M. J. *Science* **1994**, 264, 1105–1111. (b) Lin, V. S. Y.; Therien, M. J. *Chem.—Eur. J.* **1995**, 1, 645–651.

SCHEME 2. Transformation of meso-Halogenated Porphyrins^a

^a Reagents and conditions: (a) (i) FSO₂CF₂CO₂Me, CuI, DMF, 100 °C, 2 h; (ii) concd HCl, 10 min, 80%. (b) Alkyne, PdCl₂(PPh₃)₂, CuI, Et₃N, THF, rt, 2 h, 90–95%.

SCHEME 3. Some Transformations of β -Iodinated Porphyrins^a

$$\begin{array}{c} \text{Ph} \\ \text{NH} \\$$

^a Reagents and conditions: (a) (i) FSO₂CF₂CO₂Me, CuI, DMF, 100 °C, 2 h; (ii) HCl (36% aq), 90%. (b) PhB(OH)₂, Pd(PPh₃)₄, K₂CO₃, toluene, 100 °C, 4 h, 90%. (c) Alkyne, PdCl₂(PPh₃)₂, CuI, Et₃N, THF, rt, 2 h, 95%.

SCHEME 4. Synthesis of Butadiyne-Linked Bis(fluoroalkylporphyrin)^a

^a Reagents and conditions: (a) (n-Bu)₄NF, THF, rt 1 h, quantitative. (b) PdCl₂(PPh₃)₂, CuI, air, Et₃N, THF, rt, 30 min, 93-97%.

min. Dry dichloromethane (5 mL) was then added, and the reagent was cooled to 0-5 °C. This solution was added dropwise to a solution of **Cu1b** (100 mg, 0.152 mmol) in CH₂Cl₂ (25 mL). The mixture was stirred at 45 °C overnight. Then a saturated solution of NaOAc (40 mL) was added, and the mixture was stirred at 70

°C for 1 h, after which the organic phase was separated, washed with water, and dried over Na₂SO₄, and the solvent was evaporated. Column chromatography on silica (CH₂Cl₂/hexanes, 1:2) afforded **Cu3b** (99 mg, 95%). The treatment of a solution of **Cu3b** (50 mg, 0.073 mmol) in CH₂Cl₂ (50 mL) with H₂SO₄ (0.2 mL) at room

FIGURE 3. Electronic absorption and fluorescene emission spectra of butadiyne-bridged bisporphyrins **Zn13b** (A) and **Zn14b** (B) in THF solution ($c = 6.9925 \, \mu\text{M}$) at room temperature.

temperature for 30 min, following the preliminary workup (wash with water, remove solvent by rotary evaporation), resulted in **3b** quantitatively.

Copper(II) 5-Formyl-15-(2-chlorotetrafluoroethyl)-10,20-diphenylporphyrin (Cu3b). MS(MALDI) m/z: 685.1 ([M]⁺). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 418 (9), 561 (0.3), 607 (1). HRMS(MALDI) calcd for C₃₅H₁₉N₄OF₄³⁵Cl⁶³Cu: 685.0474; found: 685.0491.

5-Formyl-15-(2-chlorotetrafluoroethyl)-10,20-diphenylporphyrin (3b). 1 H NMR (CDCl₃, 300 MHz) δ : 12.49 (s, 1H), 10.03 (d, J = 4.7 Hz, 2H), 9.50 (m, 2H), 8.98 (d, J = 5.1 Hz, 2H), 8.88 (d, J = 5.5 Hz, 2H), 8.17 (d, J = 7.0 Hz, 4H), 7.82 (m, 6H), -2.33 (s, 1H), -2.43 (s, 1H). 19 F NMR (CDCl₃, 282 MHz) δ : -64.33 (s, 2F), -79.28 (s, 2F). 13 C NMR (CDCl₃, 75 MHz) δ :194.3, 148.3, 146.9, 145.9, 145.0, 141.8, 140.7, 140.6, 138.6, 134.5, 134.4, 134.4, 134.2, 133.4, 131.1, 128.9, 128.5, 128.44, 128.37, 128.30, 127.1, 126.9, 126.8, 125.3, 122.9, 109.7. MS(ESI) m/z: 626.15 ([M + 2]+). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 420 (13), 525 (0.5), 568 (1.1), 608 (0.3), 664 (1). HRMS(MALDI) calcd for C₃₅H₂₁N₄-OF₄³⁵Cl·H+: 625.1413; found: 625.1448.

Copper(II) 5-Formyl-15-(perfluorohexyl)-10,20-diphenylporphyrin (Cu3c). Similarly, the reaction of Cu1c (64 mg, 0.076 mmol) with DMF (0.15 mL) and POCl₃ (0.2 mL) and purification by column chromatography on silica (CH₂Cl₂/hexanes, 1:2) afforded Cu3c (60 mg, 90%).

MS(ESI) m/z: 870.20 (MH⁺). UV-vis λ_{max} (log ϵ , CH₂Cl₂): 418 (5.55), 558 (4.06), 604 (4.52). HRMS(MALDI) calcd for C₃₉H₁₉N₄-OF₁₃⁶³Cu: 869.0642; found: 869.0667.

5-Formyl-15-(perfluorohexyl)-10,20-diphenylporphyrin (3c). The title compound was obtained quantitatively from Cu3c by treating it with H₂SO₄.

¹H NMR (CDCl₃, 300 MHz) δ: 12.51 (s, 1H), 10.04 (d, J = 4.8 Hz, 2H), 9.47 (m, 2H), 8.99 (d, J = 5.1 Hz, 2H), 8.89 (d, J = 5.6 Hz, 2H), 8.19–8.15 (m, 4H), 7.86–7.77 (m, 6H), -2.35 (s, 1H), -2.45 (s, 1H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -81.3 (m, 2F), -81.7 (m, 3F), -116.1 (m, 2F), -121.8 (m, 2F), -123.3 (m, 2F), -125.8 (m, 2F). MS(ESI) m/z: 809.25 (MH⁺). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 418(13), 524(0.5), 566(1.1), 664(1). HRMS(MALDI) calcd for C₃₉H₂₁N₄OF₁3·H⁺: 809.1581; found: 809.1581.

Bromination of Zinc(II) 5-Fluoroalkyl-10,20-diphenylporphyrins. A sample of Zn1a (50 mg, 0.084 mmol) and NBS (16 mg, 0.09 mmol) was stirred in CHCl₃ (50 mL) and pyridine (0.1 mL) at room temperature for 10 min. The resulting mixture was washed with water, dried over Na₂SO₄, and evaporated to yield a purple solid. ¹⁹F and ¹H NMR analysis of the crude products indicated no formation of the β-brominated product. Recrystalization from CH₂Cl₂/hexanes yielded Zn4a (53 mg, 95%).

Zinc(II) 5-Bromo-15-trifluoromethyl-10,20-diphenylporphyrin (Zn4a). ¹H NMR (DMSO- d_6 , 300 MHz) δ : 9.66 (d, J=4.7 Hz, 2H), 9.58–9.53 (m, 2H), 8.84 (d, J=5.3 Hz, 2H), 8.75 (d, J=5.0 Hz, 2H), 8.17–8.14 (m, 4H), 7.87–7.79 (m, 6H). ¹⁹F NMR (DMSO- d_6 , 282 MHz) δ : -33.16 (t, J=3.0 Hz, 3F). ¹³C NMR (DMSO- d_6 , 75 MHz) δ : 151.35, 149.53, 148.99, 148.97, 148.80,

142.30, 134.62, 134.50, 133.93, 133.24, 130.68 (q, $J_{C-F} = 7$ Hz), 128.42, 127.25, 122.91, 108.14. MS(MALDI) m/z: 670.0 (M⁺). UV—vis λ_{max} (relative intensity, CH₂Cl₂): 421 (46), 555 (2.1), 589 (1). HRMS(MALDI) calcd for $C_{33}H_{18}N_4F_3^{79}Br^{65}Zn$: 669.9953; found: 669.9963.

Zinc(II) 5-Bromo-15-(2-chlorotetrafluoroethyl)-10,20-diphenylporphyrin (Zn4b). Similarly, the title compound was obtained from the reaction of Zn1b (30 mg, 0.045 mmol) and NBS (9 mg, 0.05 mmol) in 90% yield (30 mg).

¹H NMR (CDCl₃, 300 MHz) δ: 9.55 (d, J = 3.8 Hz, 4H), 8.91 (d, J = 4.1 Hz, 2H), 8.76 (d, J = 3.8 Hz, 2H), 8.09 (m, 4H), 7.75 (m, 6H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -63.09 (s, 2F), -74.83 (s, 2F). MS(MALDI) m/z: 736.0 (M⁺). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 419 (36), 552 (1.6), 584 (1). HRMS(MALDI) calcd for C₃₄H₁₈N₄F₄³⁵Cl⁷⁹Br⁶⁵Zn·H⁺: 736.9704; found: 736.9674.

Zinc(II)5-Bromo-15-perfluorohexyl-10,20-diphenylporphyrin (Zn4c). The title compound was obtained from the reaction of Zn1c (30 mg, 0.035 mmol) and NBS (7 mg, 0.039 mmol) in 90% yield (29 mg).

¹H NMR (CDCl₃, 300 MHz) δ: 9.68 (d, J = 4.5 Hz, 2H), 9.46 (m, 2H), 8.91 (d, J = 4.8 Hz, 2H), 8.82 (d, J = 4.8 Hz, 2H), 8.20–8.10 (m, 4H), 7.79–7.71(m, 6H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: –76.59 (m, 2F), –81.02 (t, J = 10.8 Hz, 3F), –115.14 (m, 2F), –121.45 (m, 2F), –122.79 (m, 2F), –126.31 (m, 2F). MS(MALDI) m/z: 920.0 (M⁺). UV–vis λ_{max} (log ϵ , CH₂Cl₂): 418 (5.62), 551 (4.25), 584 (4.06). HRMS(MALDI) calcd for C₃₈H₁₈N₄⁶⁵ZnF₁₃⁷⁹Br: 919.9793; found: 919.9770.

Iodination of 5-Fluoroalkyl-10,20-diphenylporphyrins. A sample of **1a** (100 mg, 0.19 mmol), I_2 (28 mg, 0.11 mmol), and PIFA (47 mg, 0.11 mmol) was stirred in CH_2Cl_2 (50 mL) at room temperature for 1 h. The resulting mixture was washed with saturated $Na_2S_2O_3$ solution, dried over Na_2SO_4 , and evaporated to yield a purple solid. ¹⁹F and ¹H NMR analysis of the crude products indicated about a 1:6 product ratio (meso-iodinated porphyrin versus β-iodinated porphyrin). The obtained residue was further purified by chromatography (silica gel, 300–400 mesh, CH_2Cl_2 /hexanes = 1:20 by vol), and the main band was collected to give **5a** (84 mg, 68%).

2-Iodo-10-trifluoromethyl-5,15-diphenylporphyrin (**5a**). ¹H NMR (CDCl₃, 300 MHz) δ : 10.34 (s, 1H), 9.76 (m, 1H), 9.55 (m, 1H), 9.45 (d, J = 4.8 Hz, 1H), 9.09 (d, J = 5.2 Hz, 1H), 9.06 (s, 1H), 9.01 (d, J = 4.3 Hz, 1H), 8.92 (d, J = 4.7 Hz, 1H), 8.23–8.18 (m, 4H), 7.84–7.81 (m, 6H), -2.91 (s, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ : -35.41(s, 3F). ¹³C NMR (CDCl₃, 75 MHz) δ :141.62, 141.37, 141.16, 140.97, 135.60, 134.50, 134.43, 132.21, 131.32, 130.80, 130.34, 129.43, 129.19, 128.26, 128.17, 126.97, 126.91, 121.36, 120.40, 108.31. MS(ESI) m/z: 657.25(MH⁺). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 413 (107), 511 (7.6), 545 (2.6), 582 (2.8), 637 (1). Anal. calcd for C₃₃H₂₀F₁₃IN₄*0.5H₂O: C, 59.56; H, 3.18; N, 8.44; found: C, 59.59; H, 3.70; N, 8.82.

2-Iodo-10-(2-chlorotetrafluoroethyl)-5,15-diphenylporphyrin (5b). The title compound was obtained from the reaction of 1b(100 mg, 0.17 mmol), $I_2(22 \text{ mg}, 0.09 \text{ mmol})$, and PIFA (37 mg, 0.09 mmol) in 60% yield (74 mg).

¹H NMR (CDCl₃, 300 MHz) δ :10.28 (s, 1H), 9.62 (m, 1H), 9.43 (m, 1H), 9.39 (d, J = 4.6 Hz, 1H), 9.04 (d, J = 5.1 Hz, 1H), 9.00 (s, 1H), 8.95 (d, J = 4.3 Hz, 1H), 8.87 (d, J = 5.1 Hz, 1H), 8.17 – 8.14 (m, 4H), 7.83 – 7.74 (m, 6H), −2.97 (s, 2H). ¹9F NMR (CDCl₃, 282 MHz) δ : −64.08 (s, 2F), −77.18 (s, 2F). ¹3C NMR (CDCl₃, 75 MHz) δ : 141.76, 141.72, 141.47, 135.75, 134.42, 134.36, 131.46, 129.33, 128.29, 128.17, 126.91, 126.84, 121.18, 120.47, 108.37. MS(ESI) m/z: 723.05 (MH⁺). UV−vis λ_{max} (log ϵ , CH₂Cl₂): 413 (5.39), 512 (4.2), 546 (3.77), 582 (3.78), 6.36 (3.48). Anal. calcd for C₃₄H₂₀ClF₄IN₄: C, 56.49; H, 2.79; N, 7.75; found: C, 56.06; H, 3.14; N, 7.40.

Zinc(II) 2-Iodo-10-(2-chlorotetrafluoroethyl)-5,15-diphenylporphyrin (Zn5b). Treating 5b (30 mg, 0.04 mmol) with Zn(OAc)₂ (91 mg, 0.4 mmol) in CH₂Cl₂ (30 mL)/CH₃OH (5 mL) at room temperature for 1 h, following the preliminary workup (wash with water, remove solvent by rotary evaporation), resulted in Zn5b quantitatively.

¹H NMR (CDCl₃, 300 MHz) δ : 9.97 (s, 1H), 9.66–9.63 (m, 2H), 9.12 (s, 1H), 9.10 (d, J = 4.8 Hz, 1H), 9.04 (d, J = 3.5 Hz, 1H), 9.02 (d, J = 4.8 Hz, 1H), 8.81(d, J = 4.3 Hz, 1H), 8.17–8.11 (m, 4H), 7.85–7.77 (m, 6H). ¹9F NMR (CDCl₃, 282 MHz) δ : −63.07 (s, 2F), −74.44 (s, 2F). ¹3C NMR (CDCl₃, 75 MHz) δ : 151.41, 150.77, 150.41, 150.33, 149.63, 149.10, 148.83, 147.66, 142.13, 141.95, 139.69, 134.37, 134.33, 133.93, 133.01, 132.41, 132.08, 127.99, 127.87, 126.77, 126.70, 121.89, 120.89, 108.94, 93.19. MS(MALDI) m/z: 784.0 (M $^+$). UV $^-$ vis λ_{max} (log ϵ , CH₂-Cl₂): 414 (5.54), 544 (4.18), 577 (4.08). HRMS(MALDI) calcd for C₃₄H₁₈ 3 SClF₄IN₄ 6 Szn: 783.9487; found: 783.9520.

2-Iodo-10-perfluorohexyl-5,15-diphenylporphyrin (**5c**) and **5-Iodo-10-perfluorohexyl-5,15-diphenylporphyrin** (**5cm**). A sample of **1c** (100 mg, 0.13 mmol), I₂ (19 mg, 0.07 mmol), and PIFA (30 mg, 0.07 mmol) were stirred in CH₂Cl₂ (50 mL) at room temperature for 1 h. The resulting mixture was washed with saturated Na₂S₂O₃ solution, dried over Na₂SO₄, and evaporated to yield a purple solid. ¹⁹F and ¹H NMR analysis of the crude products indicated about a 1:7 product molar ratio (meso-iodinated porphyrin versus β-iodinated porphyrin). The obtained residue was further purified by chromatography (silica gel, 300–400 mesh, CH₂Cl₂/hexanes = 1:20 by vol) to produce two bands. The first band resulted in **5cm** (12 mg, 10%), and the second main band resulted in **5c** (82 mg, 70%).

5cm: ¹H NMR (CDCl₃, 300 MHz) δ: 9.57 (d, J = 4.5 Hz, 2H), 9.38 (m, 2H), 8.87 (d, J = 5.0 Hz, 2H), 8.75 (d, J = 4.1 Hz, 2H), 8.17–8.09 (m, 4H), 7.82–7.76 (m, 6H), −2.37 (s, 1H), −2.43 (s, 1H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: −80.26 (m, 2F), −80.74 (m, 3F), −115.43 (m, 2F), −121.14 (m, 2F), −122.47 (m, 2F), −126.02 (m, 2F). MS(MALDI) m/z: 907.3 (M⁺). UV−vis λ_{max} (log ϵ , CH₂-Cl₂): 419 (5.38), 518 (4.12), 553 (3.98), 592 (3.68), 649 (3.75). Anal. calcd for C₃₈H₂₀F₁₃IN₄: C, 50.35; H, 2.22; N, 6.18; found: C, 50.22; H, 2.82; N, 5.73.

5c: ¹H NMR (CDCl₃, 300 MHz) δ: 10.33 (s, 1H), 9.59 (m, 1H), 9.44 (d, J = 4.4 Hz, 1H), 9.37 (m, 1H), 9.06 (d, J = 5.3 Hz, 1H), 9.02 (s, 1H), 8.98 (d, J = 5.1 Hz, 1H), 8.89 (d, J = 4.7 Hz, 1H), 8.18–8.16 (m, 4H), 7.84–7.75 (m, 6H), -2.94 (s, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -78.84 (m, 2F), 81.08 (m, 3F), -115.62 (m, 2F), -121.45 (m, 2F), -122.77 (m, 2F), -126.32 (m, 2F). MS(MALDI) m/z: 907.3 (M⁺). UV-vis λ_{max} (log ϵ , CH₂-Cl₂): 414 (5.47), 512 (4.30), 547 (3.97), 581 (3.93), 636 (3.65). Anal. calcd for C₃₈H₂₀F₁₃IN₄: C, 50.35; H, 2.22; N, 6.18; found: C, 50.34; H, 2.91; N,5.84.

Zinc(II) 2-Iodo-10-perfluorohexyl-5,15-diphenylporphyrin (**Zn5c**). The title compound was obtained by the reaction of **5c** (50 mg, 0.055 mmol) and Zn(OAc)₂ (121 mg, 0.55 mmol) in CH₂-Cl₂ (50 mL)/CH₃OH (5 mL) quantitatively.

¹H NMR (CDCl₃, 300 MHz) δ: 10.24 (s, 1H), 9.57 (m, 2H), 9.34 (d, J = 4.6 Hz, 1H), 9.17 (s, 1H), 9.05 (d, J = 5.0 Hz, 1H), 9.04 (d, J = 5.2 Hz, 1H), 8.94 (d, J = 4.6 Hz, 1H), 8.16–8.14 (m, 4H), 7.84–7.76 (m, 6H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -76.20 (m, 2F), -80.57 (m, 3F), -114.62 (m, 2F), -120.92 (m, 2F),

-122.28 (m, 2F), -125.80 (m, 2F). MS(MALDI) m/z: 968.0 (M⁺). UV—vis $\lambda_{\rm max}$ (relative intensity, CH₂Cl₂): 414 (28), 544 (1.2), 576 (1). HRMS(MALDI) m/z: calcd for C₃₈H₁₈N₄F₁₃I⁶⁵Zn: 967.9655; found: 967.9646.

Reactions of Zinc(II) 5-Bromo-15-fluoroalkyl-10,20-diphenylporphyrins. Trifluoromethylation of Zn4. A sample of Zn4a (30 mg, 0.044 mmol) was treated with excess FSO₂CF₂CO₂Me (26 μ L, 0.44 mmol) and CuI (90 mg, 0.44 mmol) in DMF (3 mL) and HMPA (3 mL) at 100 °C for 8 h. After the mixture was cooled to room temperature, CH₂Cl₂ (50 mL) was added, and the mixture was washed with water. The organic phase was separated and dried (Na₂SO₄). The solvent was removed under reduced pressure to afford a purple solid. The crude product was dissolved in CH₂Cl₂, treated with concentrated HCl (1 mL) at room temperature for 10 min, and then washed with water and purified by column chromatography (300–400 mesh silica, CH₂Cl₂/hexanes (1:10)) to give 6a (21 mg, 80%).

5,15-Bis(trifluoromethyl)-10,20-diphenylporphyrin (6a). ¹H NMR (CDCl₃, 300 MHz) δ : 9.61 (m, 4H), 8.92 (d, J = 5 Hz, 4H), 8.16 (m, 4H), 7.81 (m, 6H), -2.65 (s, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ : -37.3 (s, 6F). MS(MALDI) m/z: 599.1 (MH⁺). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 410 (24), 512 (1.3), 547 (1.2), 590 (0.6), 644 (1). HRMS(MALDI) calcd for C₃₄H₂₀N₄F₆·H⁺: 599.1665; found: 599.1671.

5-Trifluoromethyl-15-(2-chlorotetrafluoroethyl)-10,20-diphenylporphyrin (6b). Similarly, following the general procedure for the synthesis of **6a**, the reaction of **Zn4b** (40 mg, 0.054 mmol) with FSO₂CF₂CO₂Me (32 μ L, 0.54 mmol) and CuI (110 mg, 0.54 mmol) and demetalation with 36% HCl afforded **6b** (28 mg, 80%).

¹H NMR (CDCl₃, 300 MHz) δ: 9.61 (m, 2H), 9.52 (m, 2H), 8.91 (d, J = 5.2 Hz, 4H), 8.17 (d, J = 6.8 Hz, 4H), 7.80 (m, 6H), -2.50 (s, 1H), -2.63 (s, 1H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -37.2 (m, 3F), -64.01 (s, 2F), -79.29 (s, 2F). MS(MALDI) m/z: 664.1 (M⁺). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 410 (21), 511 (1.1), 547 (1.1), 591 (0.5), 645 (1). HRMS(MALDI) calcd for C₃₅H₂₀N₄F₇³⁵Cl·H⁺: 665.1338; found: 665.1347.

Typical Procedure for Sonogashira Coupling Reaction between Zn4 and Alkynes. Zinc(II) 5-Trifluoromethyl-15-phenylethynyl-10,20-diphenylporphyrin (Zn7ab). A mixture of Zn4a (30 mg, 0.044 mmol), Pd(PPh₃)₂Cl₂ (4 mg), CuI (2 mg), 1-ethynylbenzene (44 mg, 0.44 mmol), and triethylamine (4.5 mL) was stirred in THF (30 mL) at room temperature under N₂ for 2 h. The resulting greenish solution was evaporated to dryness, and the residue was purified by flash chromatography (silica gel, CH₂Cl₂/hexanes, 1:1) to afford Zn7ab (29 mg, 95%).

¹H NMR (DMSO- d_6 , 300 MHz) δ: 9.82 (d, J = 4.8 Hz, 2H), 9.57–9.54 (m, 2H), 8.84 (d, J = 5.1 Hz, 2H), 8.81 (d, J = 4.8 Hz, 2H), 8.19–8.13 (m, 6H), 7.86–7.83 (m, 6H), 7.65–7.60 (m, 3H). ¹⁹F NMR (DMSO- d_6 , 282 MHz) δ: -33.54 (s, 3F). ¹³C NMR (DMSO- d_6 , 75 MHz) δ: 151.15, 150.55, 149.64, 148.21, 142.32, 134.60, 134.16, 132.97, 132.15, 132.11, 130.69, 130.52, 129.72, 129.57, 128.43, 127.30, 123.41, 123.19, 103.05, 97.64, 92.63. MS-(MALDI) m/z: 692.1 (M⁺). UV–vis λ_{max} (relative intensity, CH₂Cl₂): 435 (14), 566 (0.6), 609 (1). HRMS(MALDI) calcd for C₄₁H₂₃N₄F₃⁶⁵Zn: 692.1161; found: 692.1185.

Zinc(II) 5-(2-Chlorotetrafluoroethyl)-15-trimethylsilylethynyl-10,20-diphenylporphyrin (Zn7ba). Similarly, following the general procedure for the synthesis of Zn7ab, the reaction of Zn4b (40 mg, 0.054 mmol) with ethynyltrimethylsilane (54 mg, 0.54 mmol) afforded Zn7ba (39 mg, 93%). Demetalation with 36% HCl resulted in corresponding free base 7ba quantitatively.

¹H NMR (CDCl₃, 300 MHz) δ: 9.72 (d, J = 4.3 Hz, 2H), 9.61 (m, 2H), 8.99 (d, J = 4.9 Hz, 2H), 8.89 (d, J = 4.3 Hz, 2H), 8.18 (d, J = 6.2 Hz, 4H), 7.81 (m, 6H), 0.66 (s, 9H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -63.37 (s, 2F), -75.26 (s, 2F). ¹³C NMR (CDCl₃, 75 MHz) δ: 151.6, 150.8, 149.9, 149.6, 142.9, 142.4, 134.4, 133.6, 132.6, 132.0, 131.9, 131.8, 129.8, 128.1, 127.8, 126.6, 122.6, 122.4, 107.1, 102.9, 102.8, 0.4. MS(MALDI) m/z: 754.1 (M⁺). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 428 (18), 562 (0.7), 602 (1).

HRMS(MALDI) calcd for $C_{39}H_{27}N_4F_4^{35}ClSi^{65}Zn \cdot H^+$: 755.0994; found: 755.0966. Anal. calcd for $C_{39}H_{27}N_4F_4ClSiZn \cdot 0.5H_2O$: C, 61.18; H, 3.69; N, 7.32; found: C, 61.49; H, 4.14; N, 6.5.

5-(2-Chlorotetrafluoroethyl)-15-trimethylsilylethynyl-10,20-diphenylporphyrin (**7ba**). ¹H NMR (CDCl₃, 300 MHz) δ: 9.61 (d, J = 4.8 Hz, 2H), 9.46 (m, 2H), 8.88 (d, J = 5.1 Hz, 2H), 8.81 (d, J = 4.3 Hz, 2H), 8.18–8.16 (m, 4H), 7.84–7.77 (m, 6H), 0.62 (s, 9H), -2.40 (s, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -64.19 (s, 2F), -78.34 (s, 2F). ¹³C NMR (CDCl₃, 75 MHz) δ: 141.92, 134.32, 133.43, 130.58, 128.16, 126.77, 122.00, 105.83, 104.09, 0.25. MS-(MALDI) m/z: 692.2 (M⁺). UV–vis λ_{max} (log ϵ , CH₂Cl₂): 422 (5.23), 525 (3.97), 564 (4.15), 602 (3.65), 659 (3.89). HRMS-(MALDI) calcd for C₃₉H₃₀N₄F₄³⁵ClSi: 693.1859; found: 693.1840.

Zinc(II) 5-(2-Chlorotetrafluoroethyl)-15-phenylethynyl-10,20-diphenylporphyrin (Zn7bb). Similarly, following the general procedure for the synthesis of Zn7ab, the reaction of Zn4b (48 mg, 0.065 mmol) with 1-ethynylbenzene (66 mg, 0.65 mmol) afforded Zn7bb (46 mg, 95%).

¹H NMR (CDCl₃, 300 MHz) δ: 9.76 (d, J = 4.8 Hz, 2H), 9.56 (m, 2H), 8.95 (d, J = 5.0 Hz, 2H), 8.89 (d, J = 4.5 Hz, 2H), 8.18 (d, J = 6.4 Hz, 4H), 7.98 (d, J = 6.9 Hz, 2H), 7.80 (m, 6H), 7.50 (m, 3H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -63.45 (s, 2F), -75.3 (s, 2F). ¹³C NMR (CDCl₃, 75 MHz) δ: 151.3, 150.6, 150.1, 150.0, 149.5, 142.4, 134.6, 134.3, 133.6, 132.5, 132.1, 131.9, 131.8, 131.7, 131.6, 128.7, 127.8, 126.6, 123.8, 122.6, 97.3, 92.1. MS(MALDI) m/z: 758.1 (M⁺). UV – vis $\lambda_{\rm max}$ (relative intensity, CH₂Cl₂): 436 (14), 567 (0.6), 620 (1). HRMS(MALDI) calcd for C₄₂H₂₃N₄⁶⁵ZnF₄-Cl: 758.0833; found: 758.0878.

Zinc(II) 5-Perfluorohexyl-15-trimethylsilylethynyl-10,20-diphenylporphyrin (Zn7ca). Similarly, the reaction of Zn4c (50 mg, 0.054 mmol) with ethynyltrimethylsilane (54 mg, 0.54 mmol) afforded Zn7ca (48 mg, 95%).

¹H NMR (CDCl₃, 300 MHz) δ: 9.69 (d, J = 4.1 Hz, 2H), 9.45 (m, 2H), 8.90 (d, J = 5.1 Hz, 2H), 8.85 (d, J = 4.9 Hz, 2H), 8.17–8.07 (m, 4H), 7.80–7.73 (m, 6H), 0.61 (s, 9H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -76.7 (m, 2F), -81.02 (t, J = 9.7 Hz, 3F), -115.16 (m, 2F), -121.50 (m, 2F), -122.74 (m, 2F), -125.31 (m, 2F). ¹³C NMR (CDCl₃, 75 MHz) δ: 151.72, 150.90, 150.04, 149.59, 142.15, 134.30, 133.79, 132.70, 131.98, 131.76, 131.69, 127.93, 126.70, 122.79, 106.78, 103.46, 0.27. MS(MALDI) m/z: 938.1 (M⁺). UV–vis λ_{max} (relative intensity, CH₂Cl₂): 427 (16), 561 (0.6), 601 (1). HRMS(MALDI) calcd for C₄₃H₂₇N₄⁶⁵ZnF₁₃Si: 938.1083; found: 938.1078.

Reactions from 2-Iodo-10-fluoroalkyl-5,15-diphenylporphyrin. Trifluoromethylation of Zinc(II) 2-Iodo-10-fluoroalkyl-5,15-diphenylporphyrins. A sample of Zn5a (30 mg, 0.042 mmol) was treated with FSO₂CF₂CO₂Me (25 μ L, 0.42 mmol) and CuI (90 mg, 0.42 mmol) in DMF (5 mL) at 100 °C for 2 h. After the mixture was cooled to room temperature, CH₂Cl₂ (50 mL) was added, and the mixture was washed with water. The organic phase was separated and dried (Na₂SO₄). The residue was dissolved in 30 mL of CH₂Cl₂, and then 0.5 mL of HCl (36%) was added. The mixture was stirred at room temperature for 10 min and then washed with water, and the solvent was removed under reduced pressure to afford a purple solid, which was recrystallized from CH₂Cl₂/CH₃OH to give **8a** (23 mg, 90%).

2,10-Bis(trifluoromethyl)-5,15-diphenylporphyrin (8a). 1 H NMR (CDCl₃, 300 MHz) δ : 10.44 (s, 1H), 9.75 (m, 2H), 9.39 (d, J=4.7 Hz, 1H), 9.27 (s, 1H), 9.08 (m, 2H), 8.98 (d, J=4.9 Hz, 1H), 8.18 (t, J=7.5 Hz, 4H), 7.82 (m, 6H), -2.9 (s, 2H). 19 F NMR (CDCl₃, 282 MHz) δ : -35.74 (s, 3F), -52.94 (s, 3F). MS-(MALDI) m/z: 599.1 (MH⁺). UV-vis λ_{max} (relative intensity, CH₂-Cl₂): 411 (77), 511 (4), 547 (1.7), 583 (1.7), 638 (1). HRMS-(MALDI) calcd for C_{34} H₂₀N₄F₆·H⁺: 599.1665; found: 599.1677.

2-Trifluoromethyl-10-(2-chlorotetrafluoroethyl)-5,15-diphenylporphyrin (8b). The title compound was obtained by the reaction of **Zn5b** (30 mg, 0.038 mmol) with FSO₂CF₂CO₂Me (22 μ L, 0.38 mmol) and CuI (77 mg, 0.38 mmol), followed by demetalation with HCl (36%) in 90% yield (25 mg). ¹H NMR (CDCl₃, 300 MHz) δ :

10.45 (s, 1H), 9.63 (m, 1H), 9.46 (d, J = 4.9 Hz, 2H), 9.12 (s, 1H), 9.08 (d, J = 5.3 Hz, 1H), 9.00 (d, J = 4.9 Hz, 1H), 8.90 (d, J = 5.1 Hz, 1H), 8.20 (d, J = 6.8 Hz, 4H), 7.82 (m, 6H), -2.88 (s, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -52.64 (m, 3F), -63.68 (s, 2F), -76.82 (s, 2F). MS(MALDI) m/z: 664.1 (M⁺). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 410 (76), 511 (4.1), 547 (1.8), 582 (1.6), 638 (1). Anal. calcd for C₃₅H₂₀ClF₇N₄·2CH₃OH: C, 60.20; H, 4.22; N, 7.39; found: C, 60.52; H, 4.41; N, 7.25.

Suzuki Reaction of 5c. A mixture of **5c** (50 mg, 0.055 mmol), Pd(PPh₃)₄ (4 mg), KCO₃ (2 mg), and PhB(OH)₂ (33 mg, 0.28 mmol) was stirred in toluene (40 mL) at 80 °C under N₂ for 2 h. The resulting solution was evaporated to dryness, and the residue was purified by flash chromatography (300–400 mesh silica gel, CH₂-Cl₂/pentane, 1:10) to afford **9** (42 mg, 90%).

5-Perfluorohexyl-10,13,20-triphenylporphyrin (9). ¹H NMR (CDCl₃, 300 MHz) δ: 10.35 (s, 1H), 9.50 (m, 2H), 9.28 (d, J = 4.2 Hz, 1H), 9.00 (d, J = 5.8 Hz, 1H), 8.98 (s, 1H), 8.90 (d, J = 5.8 Hz, 2H), 8.24 (d, J = 7.4 Hz, 5H), 7.80–7.67 (m, 10H), -2.81 (s, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -78.80 (m, 2F), -81.03 (m, 3F), -115.37 (m, 2F), -121.38 (m, 2F), -122.72 (m, 2F), -126.26 (m, 2F). MS(MALDI) m/z: 857.35 (M⁺). UV-vis λ_{max} (log ϵ , CH₂Cl₂): 637 (3.68), 582 (3.93), 545 (3.98), 510 (4.29), 414 (5.48). Anal. calcd for C₄₄H₂₅F₁₃N₄: C, 61.68; H, 2.92; N, 6.54; found: C, 61.88; H, 3.15; N, 6.33.

Sonogashira Coupling Reaction of Zn5. A mixture of **Zn5b** (50 mg, 0.06 mmol), Pd(PPh₃)₂Cl₂ (4 mg), CuI (2 mg), ethynyltrimethylsilane (60 mg, 0.6 mmol), and triethylamine (4 mL) was stirred in THF (40 mL) at room temperature under N₂ for 2 h. The resulting light brown solution was evaporated to dryness, and the residue was purified by flash chromatography (300–400 mesh silica gel, THF/pentane, 1:20) to afford **Zn10ba** (43 mg, 95%). Demetalation with concentrated HCl afforded the corresponding free base **10ba** quantitatively.

Zinc(II) 2-Trimethylsilylethynyl-10-(2-chlorotetrafluoroethyl)5,15-diphenylporphyrin (Zn10ba). ¹H NMR (CDCl₃, 300 MHz) δ: 10.45 (s, 1H), 9.61 (m, 2H), 9.39 (d, J = 4.5 Hz, 1H), 9.07 (s, 1H), 9.02 (d, J = 4.8 Hz, 2H), 8.94 (d, J = 4.6 Hz, 1H), 8.19–8.15 (m, 4H), 7.84–7.74 (m, 6H), 0.57 (s, 9H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -63.09 (s, 2F), -74.39 (s, 2F). ¹³C NMR (CDCl₃, 75 MHz) δ: 151.75, 150.49, 149.71, 149.17, 149.12, 148.71, 142.45, 142.25, 134.90, 134.40, 134.35, 133.91, 133.77, 133.15, 132.48, 127.86, 127.77, 127.69, 126.67, 126.65, 126.22, 126.20, 121.89, 121.54, 106.92, 103.80, 100.17, 0.201. MS(MALDI) m/z: 754.1 (M⁺). UV-vis λ_{max} (log ϵ , CH₂Cl₂): 418 (5.67), 548 (4.32), 582 (4.36). HRMS(MALDI) calcd for C₃₉H₂₇N₄F₄³⁵ClSi⁶⁵Zn: 754.0916; found: 754.0911.

2-Trimethylsilylethynyl-10-(2-chlorotetrafluoroethyl)-5,15-diphenylporphyrin (10ba). ¹H NMR (CDCl₃, 300 MHz) δ : 10.51 (s, 1H), 9.63 (m, 2H), 9.47 (d, J = 4.0 Hz, 1H), 9.07 (d, J = 4.9 Hz, 1H), 9.00 (d, J = 4.2 Hz, 1H), 8.96 (s, 1H), 8.91 (d, J = 5.0 Hz, 1H), 8.23–8.18 (m, 4H), 7.85–7.77 (m, 6H), 0.57 (s, 9H), -2.86 (s, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ : -63.94 (m, 2F), -77.0 (m, 2F). ¹³C NMR (CDCl₃, 75 MHz) δ : 141.79, 141.55, 136.76, 135.48, 134.44, 134.38, 131.54, 129.64, 128.24, 128.16, 126.90, 126.86, 121.34, 120.94, 106.18, 104.38, 99.90, 0.32. MS-(MALDI) m/z: 692.2 (M⁺). UV-vis λ_{max} (log ϵ , CH₂Cl₂): 417 (5.44), 515 (4.34), 551 (4.13), 587 (4.02), 641 (3.80). HRMS-(MALDI) calcd for $C_{39}H_{30}N_4F_4^{35}$ CISi: 693.1859; found: 693.1842.

Zinc(II) 2-Phenylethynyl-10-(2-chlorotetrafluoroethyl)-5,15-diphenylporphyrin (Zn10bb). Similarly, the reaction of Zn5b (50 mg, 0.06 mmol) with 1-ethynylbenzene (60 mg, 0.6 mmol) afforded Zn10bb (43 mg, 95%).

¹H NMR (CDCl₃, 300 MHz) δ: 10.53 (s, 1H), 9.61 (m, 2H), 9.39 (d, J = 4.5 Hz, 1H), 9.10 (s, 1H), 9.02 (m, 2H), 8.94 (d, J = 3.9 Hz, 1H), 8.20 (m, 4H), 7.91 (d, J = 7.2 Hz, 2H), 7.79 (m, 6H), 7.49 (m, 3H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -63.38 (s, 2F), -74.59 (s, 2F). ¹³C NMR (CDCl₃, 75 MHz) δ: 151.7, 150.5, 149.7, 149.5, 149.2, 148.6, 142.6, 142.4, 134.4, 134.1, 133.7, 132.9, 132.4, 131.9, 131.8, 131.6, 131.4, 128.7, 128.6, 127.8, 127.7, 126.7, 126.6,

126.3, 123.6, 121.8, 121.5, 106.9, 98.0, 84.9. MS(MALDI) m/z: 758.0895 (M⁺). UV-vis λ_{max} (relative intensity, CH₂Cl₂): 424 (15), 553 (0.8), 587 (1). HRMS(MALDI) calcd for C₄₂H₂₃N₄⁶⁵ZnF₄³⁵Cl: 758.0833; found: 758.0865.

Zinc(II) 2-Trimethylsilylethynyl-10-perfuorohexyl-5,15-diphenylporphyrin (Zn10ca). Similarly, the reaction of Zn5c (50 mg, 0.052 mmol) with ethynyltrimethylsilane (52 mg, 0.52 mmol) afforded Zn10ca (46 mg, 95%). The corresponding free base 10ca was obtained quantitatively by demetalation with concentrated HCl-(aq).

¹H NMR (CDCl₃, 300 MHz) δ: 10.46 (s, 1H), 9.67–9.64 (m, 2H), 9.40 (d, J = 4.5 Hz, 1H), 9.10 (s, 1H), 9.07 (d, J = 5.0 Hz, 1H), 9.06 (d, J = 5.3 Hz, 1H), 8.97 (d, J = 4.5 Hz, 1H), 8.21–8.17 (m, 4H), 7.86–7.77 (m, 6H), 0.59 (s, 9H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -76.82 (s, 2F), -81.02 (s, 2F), -115.11 (s, 2F), -121.38 (s, 2F), -122.71 (s, 2F), -126.25 (s 2F). MS(MALDI) m/z: 938.1 (M⁺). UV-vis λ_{max} (log ϵ , CH₂Cl₂): 418 (5.67), 548 (4.32), 582 (4.36). HRMS(MALDI) calcd for C₄₃H₂₇N₄F₁₃Si⁶⁵Zn: 938.1083; found: 938.1078.

2-Trimethylsilylethynyl-10-perfuorohexyl-5,15-diphenylporphyrin (**10ca**). 1 H NMR (CDCl₃, 300 MHz) δ : 10.45 (s, 1H), 9.57 (m,1H), 9.45 (d, J=4.8 Hz, 1H), 9.40 (m, 1H), 9.05 (d, J=5.0 Hz, 1H), 8.98 (d, J=4.9 Hz, 1H), 8.94 (s, 1H), 8.90 (d, J=5.0 Hz, 1H), 8.22–8.16 (m, 4H), 7.84–7.76 (m, 6H), 0.56 (s, 9H), –2.82 (s, 2H). 19 F NMR (CDCl₃, 282 MHz) δ : –78.6 (m, 2F), –80.88 (t, J=10.3 Hz, 3F), –115.2 (m, 2F), –121.2 (m, 2F), –122.5 (m, 2F), –126.1 (m, 2F). 13 C NMR (CDCl₃, 75 MHz) δ : 141.73, 141.49, 136.53, 135.45, 134.41, 134.34, 131.63, 129.67, 128.28, 128.22, 128.14, 126.88, 126.84, 121.38, 121.03, 106.30, 104.39, 99.86, 0.26. MS(MALDI) m/z: 877.2 (M⁺). UV—vis λ_{max} (relative intensity, CH₂Cl₂): 417 (64), 515 (4.5), 551 (2.6), 585 (2), 639 (1). HRMS(MALDI) calcd for: C₄₃H₃₀N₄F₁₃Si: 877.2027; found: 877.2005.

Synthesis of meso-to-meso and β -to- β Butadiyne-Linked Bisporphyrins. Desilylation of Zn7 and Zn10. To a solution of Zn7ba (50 mg, 0.066 mmol) in CH₂Cl₂ (30 mL), a solution of (n-Bu)₄NF (1 M, 1 mL, in THF) was added. The mixture was stirred at room temperature for 30 min, then water (30 mL) was added, and the reaction mixture was stirred at room temperature for another 30 min. The organic layer was separated, evaporated to dryness, and then recrystallized from CH₂Cl₂/petane to afford Zn11b (40 mg, 90%).

Zinc(II) 5-Ethynyl-15-(2-chlorotetrafluoroethyl)-10,20-diphenylporphyrin (**Zn11b**). ¹H NMR (CDCl₃, 300 MHz) δ: 9.72 (d, J = 4.5 Hz, 2H), 9.61 (m, 2H), 8.99 (d, J = 4.6 Hz, 2H), 8.92 (d, J = 4.3 Hz, 2H), 8.17 (d, J = 6.0 Hz, 4H), 7.82–7.74 (m, 6H), 4.16 (s, 1H). ¹⁹F NMR (CDCl₃) δ: -63.49 (s, 2F), -75.28 (s, 2F). MS-(MALDI) m/z: 682.1 (M⁺). UV-vis λ_{max} (log ϵ , THF): 426 (5.35), 565 (4.04), 602 (4.1). HRMS(MALDI) calcd for $C_{36}H_{19}N_4F_{4-35}Cl^{65}Zn$: 682.0520; found: 682.0519.

5-Ethynyl-15-(2-chlorotetrafluoroethyl)-10,20-diphenylporphyrin (11b). The title compound was obtained quantitatively by demetalation of **Zn11b** with concentrated HCl(aq).

¹H NMR (CDCl₃, 300 MHz) δ: 9.63 (d, J = 5.2 Hz, 2H), 9.48 (m, 2H), 8.89 (d, J = 5.1 Hz, 2H), 8.83 (d, J = 4.9 Hz, 2H), 8.17 (d, J = 6.6 Hz, 4H), 7.84–7.76 (m, 6H), 4.24 (s, 1H), -2.49 (brs, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -63.48 (s, 2F), -75.29 (s, 2F). ¹³C NMR (CDCl₃, 75 MHz) δ: 141.91, 134.29, 133.43, 132.31, 130.80, 130.48, 128.16, 126.77, 121.94, 85.46, 84.50. MS(MALDI) m/z: 620.1 (M⁺). UV-vis λ_{max} (log ϵ , CH₂Cl₂): 416 (5.3), 513 (4.11), 549 (3.79), 5.85 (3.71), 639 (3.43). HRMS(MALDI) calcd for C₃₆H₂₂N₄F₄³⁵Cl: 621.1464; found: 621.1435.

Zinc(II) 5-Ethynyl-15-perfluorohexyl-10,20-diphenylporphyrin (**Zn11c**). Similarly, the title compound was obtained quantitatively by the desilylation of **Zn7ca** (50 mg, 0.053 mmol) with (*n*-Bu)₄NF (1 M, 1 mL, in THF).

 1 H NMR (CDCl₃, 300 MHz) δ: 9.73 (m, 2H), 9.56 (m, 2H), 9.02 (d, J = 4.8 Hz, 2H), 8.94 (d, J = 4.9 Hz, 2H), 8.18–8.14 (m, 4H), 7.83–7.78 (m, 6H), 4.16 (s, 1H). 19 F NMR (CDCl₃, 282 MHz)

δ: -77.16 (m, 2F), -80.86 (t, J = 10 Hz, 3F), -115.06 (m, 2F), -121.27 (m, 2F), -122.60 (m, 2F), -126.17 (m, 2F). MS(MALDI) m/z: 866.1 (M⁺). UV-vis $λ_{max}$ (log ε, THF): 426 (5.55), 564 (4.21), 601 (4.33). HRMS(MALDI) calcd for $C_{40}H_{19}N_4^{65}ZnF_{13}$: 866.0688; found: 866.0699.

Zinc(II) 2-Ethynyl-10-(2-chlorotetrafluoroethyl)-5,15-diphenylporphyrin (Zn12b). Similarly, the title compound was obtained quantitatively by desilylation of Zn10ba (50 mg, 0.066 mmol) with (*n*-Bu)₄NF (1 M, 1 mL, in THF), followed by demetalation with 36% HCl(aq) to obtain the corresponding free base 12b quantitatively.

¹H NMR (CDCl₃, 300 MHz) δ: 10.13 (s, 1H), 9.64 (m, 2H), 9.12 (d, J = 4.5 Hz, 1H), 9.07–9.04 (d+s, overlapped, 3H), 8.85 (d, J = 4.3 Hz, 1H), 8.18–8.12 (m, 4H), 7.84–7.76 (m, 6H), 4.01 (s, 1H). ¹⁹F NMR (CDCl₃, 282 MHz) δ: -63.14 (s, 2F), -74.58 (s, 2F). ¹³C NMR (CDCl₃, 75 MHz) δ: 151.77, 150.52, 149.79, 149.17, 148.97, 148.94, 148.50, 142.11, 141.93, 135.28, 134.33, 133.96, 133.09, 132.54, 132.28, 132.25, 132.13, 132.03, 131.99, 131.88, 128.00, 127.89, 126.77, 126.73, 125.06, 122.06, 121.65, 119.96, 106.60, 85.87, 78.85. MS(MALDI) m/z: 682.1 (M⁺). UV–vis λ_{max} (log ϵ , CH₂Cl₂): 417 (5.56), 547 (4.18), 581 (4.14). HRMS-(MALDI) calcd for C₃₆H₁₉N₄F₄³⁵Cl⁶⁵Zn: 682.0520; found: 682.0546.

2-Ethynyl-10-(2-chlorotetrafluoroethyl)-5,15-diphenylporphyrin (12b). ¹H NMR (CDCl₃, 300 MHz) δ : 10.50 (s, 1H), 9.62 (m, 1H), 9.46 (m, 1H), 9.41 (d, J = 4.8 Hz, 1H), 9.06 (d, J = 5.6H, 1H), 8.97–8.95 (s + d, overlapped, 2H), 8.89 (d, J = 5.3 Hz, 1H), 8.21–8.17 (m, 4H), 7.84–7.76 (m, 6H), 4.06 (s, 1H), -2.85 (s, 2H). ¹⁹F NMR (CDCl₃, 282 MHz) δ : -63.14 (s, 2F), -74.58 (s, 2F). MS(MALDI) m/z: 620.1 (M⁺). UV-vis λ_{max} (log ϵ , CH₂-Cl₂): 416 (5.3), 513 (4.11), 549 (3.79), 5.85 (3.71), 639 (3.43). HRMS(MALDI) calcd for $C_{36}H_{22}N_4F_4^{35}$ Cl: 621.1464; found: 621.1435.

Zinc(II) 2-Ethynyl-10-perfluorohexyl-5,15-diphenylporphyrin (**Zn12c**). Similarly, the title compound was obtained quantitatively by desilylation of **Zn10ca** (50 mg, 0.053 mmol) with Bu₄NF (1 M, 1 mL, in THF).

¹H NMR (CDCl₃, 300 MHz) δ: 10.44 (s, 1H), 9.56 (m, 2H), 9.35 (d, J = 4.6 Hz, 1H), 9.09 (s, 1H), 9.04 (d, J = 5.4 Hz, 1H), 9.03 (d, J = 5.2 Hz, 1H), 8.93 (d, J = 4.5 Hz, 1H), 8.18 (m, 4H), 7.82–7.76 (m, 6H), 4.05 (s, 1H). ¹9F NMR (CDCl₃, 282 MHz) δ: -76.14 (m, 2F), -80.61 (m, 3F), -114.64 (m, 2F), -120.92 (m, 2F), -122.25 (m, 2F), -125.80 (m, 2F). ¹3C NMR (CDCl₃, 75 MHz) δ: 151.89, 150.60, 149.79, 149.10, 148.94, 148.54, 142.34, 142.13, 135.31, 134.39, 134.36, 134.32, 133.97, 133.19, 132.54, 127.91, 127.81, 126.69, 126.66, 125.00, 122.06, 121.65, 106.93, 85.70, 79.07. MS(MALDI) m/z: 866.1 (M⁺). UV – vis λ_{max} (log ϵ , CH₂Cl₂): 416 (5.18), 546 (3.82), 579 (3.81). HRMS(MALDI) calcd for C₄₀H₁₉N₄F₁₃⁶⁵Zn: 866.0688; found: 866.0692. Anal. calcd for C₄₀H₁₉N₄F₁₃Zn: C, 55.35; H, 2.21; N, 6.45; found: C, 55.14; H, 2.76; N, 5.67.

Synthesis of Dimer Zn13b. A mixture of **Zn11b** (30 mg, 0.04 mmol), $Pd(PPh_3)_2Cl_2$ (2 mg), CuI(1 mg), and triethylamine (2 mL) was stirred in THF (20 mL) at room temperature under air for 1 h. The resulting green solution was passed through a short pad column of silica gel and then evaporated to dryness, and the residue was recrystallized from CH_2Cl_2 /pentane to afford **Zn13b** (28 mg, 93%).

¹H NMR (THF- d_8 , 300 MHz) δ: 9.85 (d, J=4.5 Hz, 4H), 9.43 (m, 4H), 8.85 (d, J=4.3 Hz, 4H), 8.79 (d, J=5.1 Hz, 4H), 8.13–8.10 (m, 8H), 7.71–7.67 (m, 12H). ¹9F NMR (THF- d_8 , 282 MHz) δ: -64.26 (s, 2F), -75.78 (s, 2F). ¹3C NMR (THF- d_8 , 75 MHz) δ: 150.47, 148.77, 148.06, 141.00, 132.43, 131.29, 130.69, 129.76, 129.63, 129.06, 126.28, 126.12, 125.81, 124.57, 121.16, 99.01, 85.88, 80.47. MS(MALDI) m/z: 1362.2 (M⁺). UV-vis λ_{max} (log ϵ , THF): 422 (4.96), 448 (5.11), 481 (4.86), 567 (4.03), 617 (4.09), 643 (4.33), 694 (4.37). HRMS(MALDI) calcd for: $C_{72}H_{36}$ -N₈F₈3⁵Cl₂6⁵Zn₂: 1362.0890; found: 1362.0910.

Synthesis of Dimer Zn13c. A mixture of **Zn11c** (30 mg, 0.035 mmol), Pd(PPh₃)₂Cl₂ (2 mg), CuI (1 mg), and triethylamine (2 mL) was stirred in THF (20 mL) at room temperature under air for 1 h.

The resulting green solution was passed through a short pad column of silica gel and then evaporated to dryness, and the residue was recrystallized from CH₂Cl₂/pentane to afford **Zn13c** (29 mg, 97%).

¹H NMR (THF- d_8 , 300 MHz) δ : 10.00 (d, J = 4.5 Hz, 2H), 9.63 (m, 2H), 9.00 (d, J = 4.6 Hz, 2H), 8.96 (d, J = 4.5 Hz, 2H), 8.25 (d, J = 6.3 Hz, 4H), 7.86–7.81 (m, 6H). ¹⁹F NMR (THF- d_8 , 282 MHz) δ : -77.40 (m, 2F), -81.88 (t, J = 10.0 Hz, 3F), -115.32 (m, 2F), -121.63 (m, 2F), -123.06 (m, 2F), -126.71 (m, 2F). ¹³C NMR (THF- d_8 , 75 MHz) δ : 150.46, 148.83, 148.04, 140.91, 132.44, 131.51, 130.75, 129.16, 125.86, 124.60, 121.34, 85.82, 80.51. MS(MALDI) m/z: 1730.2 (M⁺). UV-vis λ_{max} (log ϵ , THF): 424 (4.98), 447 (5.0), 481 (4.7), 566 (4.14), 614 (4.17), 642 (4.3), 694 (4.25). HRMS(MALDI) calcd for C₈₀H₃₆N₈⁶⁵Zn₂F₂₆: 1730.1225; found: 1730.1198.

Synthesis of Dimer Zn14b. A mixture of **Zn12b** (20 mg, 0.027 mmol), Pd(PPh₃)₂Cl₂ (2 mg), CuI (1 mg), and triethylamine (2 mL) was stirred in THF (20 mL) at room temperature under air for 1 h. The resulting light-brown solution was passed through a short pad column of silica gel and then evaporated to dryness, and the residue was recrystallized from CH₂Cl₂/pentane to afford **Zn14b** (19 mg, 95%).

¹H NMR (THF- d_8 , 300 MHz) δ : 10.57 (s, 2H), 9.47 (d, J = 4.4 Hz, 6H), 9.11 (s, 2H), 8.89 (d, J = 5.4 Hz, 2H), 8.86 (d, J = 5.1 Hz, 2H), 8.79 (d, J = 4.5 Hz, 2H), 8.15–8.08 (m, 8H), 7.75–7.67 (m, 12H). ¹⁹F NMR (THF- d_8 , 282 MHz) δ : −66.67 (s, 4F), −76.85 (s, 4F). ¹³C NMR (THF- d_8 /CDCl₃, 75 MHz) δ : 150.42, 148.97, 148.15, 147.58, 147.17, 147.04, 146.91, 140.87, 140.70, 133.59, 133.57, 132.49, 132.46, 131.69, 131.41, 130.44, 129.82, 129.78, 125.90, 125.72, 124.67, 124.58, 122.33, 120.12, 119.48, 104.95, 80.71, 78.05. MS(MALDI) m/z: 1362.1 (M⁺). UV−vis λ_{max} (log ϵ , THF): 428 (5.31), 450 (5.06), 480 (4.79), 564 (4.37), 607 (4.63). HRMS(MALDI) calcd for C₇₂H₃₆N₈F₈³⁵Cl₂⁶⁵Zn₂: 1362.0890; found: 1362.0910.

Synthesis of Dimer Zn14c. A mixture of **Zn12c** (20 mg, 0.023 mmol), Pd(PPh₃)₂Cl₂ (2 mg), CuI (1 mg), and triethylamine (2 mL) was stirred in THF (20 mL) at room temperature under air for 1 h. The resulting light-brown solution was passed through a short pad column of silica gel and then evaporated to dryness, and the residue was recrystallized from CH₂Cl₂/pentane to afford **Zn14c** (19 mg, 95%).

¹H NMR (THF- d_8 , 300 MHz) δ: 10.58 (s, 2H), 9.48 (d, J=4.2 Hz, 2H), 9.41 (s, 4H), 9.12 (s, 2H), 8.91 (d, J=5.1 Hz, 2H), 8.88 (d, J=4.7 Hz, 2H), 8.80 (d, J=4.5 Hz, 2H), 8.16–8.09 (m, 8H), 7.75–7.67 (m, 12H). ¹¹F NMR (THF- d_8 , 282 MHz) δ: -76.41 (m, 2F), -81.59 (t, J=9.9 Hz, 3F), -115.06 (m, 2F), -121.41 (m, 2F), -122.84 (m, 2F), -126.52 (m, 2F). ¹³C NMR (THF- d_8 , 75 MHz) δ: 152.51, 150.87, 150.05, 149.65, 149.02, 148.87, 148.80, 142.78, 142.59, 135.40, 134.38, 133.48, 132.22, 131.44, 131.23, 127.93, 127.80, 127.61, 126.53, 126.43, 124.09, 122.32, 121.63, 107.01, 82.31, 79.79. MS(MALDI) m/z: 1730.1 (M+). UV-vis $\lambda_{\rm max}$ (relative intensity, THF): 425 (5.8), 447 (3.1), 475 (1.4), 559 (0.6), 600 (1). HRMS(MALDI) calcd for C₈₀H₃₆N₈F₂₆65Zn₂: 1730.1225; found: 1730.1224.

Acknowledgment. This research was supported by the National Nature Science Foundation of China (Nos. 20272026 and D200302010). We are also grateful to Dr. Ji-Chang Xiao and Dr. Chang-Ge Zhen for helpful discussions.

Supporting Information Available: Characterization data (¹H, ¹⁹F, and ¹³C NMR spectra) for all new porphyrins. This material is available free of charge via the Internet at http://pubs.acs.org.

JO051672G