RĪGAS TEHNISKĀ UNIVERSITĀTE ELEKTRONIKAS UN TELEKOMUNIKĀCIJU FAKULTĀTE ELEKTRONIKAS PAMATU KATEDRA

Signālu teorijas pamati

Laboratorijas darbs № 2
"Iepazīšanās ar periodisku signālu izvērsi trigonometrisku funkciju Furjē rindā"

ETF, 2. kurss, REBM01 Romans Bogdanovs 151REB096

Mājas darbs

6. variants

Trigonometrisku funkciju Furjē rinda

$$\begin{split} &\frac{1}{2}a_0 = 2\int_0^{1/4} 1\,dt + 2\int_0^{1/8} 1\,dt = \frac{3}{4} \\ &a_n = 4\int_0^{1/4} \cos(2\pi nt)\,dt + 4\int_0^{1/8} \cos(2\pi nt)\,dt = \frac{2}{\pi n}\left(\sin\left(\frac{\pi n}{2}\right) + \sin\left(\frac{\pi n}{4}\right)\right) \\ &s(t) = \frac{3}{4} + \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{1}{n}\left(\sin\left(\frac{\pi n}{2}\right) + \sin\left(\frac{\pi n}{4}\right)\right)\cos(2\pi nt) \end{split}$$

$\frac{1}{2}a_0$	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}
$\frac{3}{4}$	$\frac{\sqrt{2}+2}{\pi}$	$\frac{1}{\pi}$	$\frac{\sqrt{2}-2}{3\pi}$	0	$\frac{2-\sqrt{2}}{5\pi}$	$-\frac{1}{3\pi}$	$\frac{-\sqrt{2}-2}{7\pi}$	0	$\frac{\sqrt{2}+2}{9\pi}$	$\frac{1}{5\pi}$
0.75	1.09	0.32	-0.06	0	0.04	-0.11	-0.16	0	0.12	0.06

Amplitūdu spektrs

Kompleksu eksponentfunkciju Furjē rinda

$$\frac{1}{2}C_0 = \frac{1}{2}a_0 = \frac{3}{4}$$

$$\frac{1}{2}C_n = \int_{-1/4}^{1/4} e^{-j2\pi nt} dt + \int_{-1/8}^{1/8} e^{-j2\pi nt} = \frac{1}{\pi n} \left(\frac{e^{\frac{j\pi n}{2}} - e^{\frac{-j\pi n}{2}}}{j2} + \frac{e^{\frac{j\pi n}{4}} - e^{\frac{-j\pi n}{4}}}{j2} \right) = \frac{1}{\pi n} \left(\sin\left(\frac{\pi n}{2}\right) + \sin\left(\frac{\pi n}{4}\right) \right)$$

$$s(t) = \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{1}{n} \left(\frac{e^{\frac{j\pi n}{2}} - e^{\frac{-j\pi n}{2}}}{j2} + \frac{e^{\frac{j\pi n}{4}} - e^{\frac{-j\pi n}{4}}}{j2} \right) e^{j2\pi nt}$$

Divpusīgais amplitūdu spektrs

Atskaite

Darbā izmantotā blokshēma

Simulēšanas laika parametri

Iegūtās oscilogrammas

Secinājumi

Laboratorijas darbā trigonometrisku funkciju Furjē rinda tika izmantota signālu formēšanai. Šim nolūkam tika izmantoti sinusoidāla sprieguma avoti ar amplitūdām vienādām aprēķinātiem Furjē rindas koeficientiem. Pēc summēšanas ir iegūts izejas spriegums, kas tuvināti atbilst sintezējamam signālam. Pēc oscilogrammām var redzēt, ka jo lielāks locekļu skaits, jo labāka atbilstība.

Amplitūdu spektrs iegūtais ar SystemView atbilst apreķinātam. Atšķirība ir tikai nulltās harmonikas vertībai, jo spektra iegūšanai programma izmanto Furjē transformāciju.