Name and student number: Solutions

- 1. Let $A = \{a, b, c\}$ and let $R = \{(a, a), (a, c), (b, b), (b, c), (c, a), (c, b)\}$ define a relation on A. Determine whether the following statements are true or false. Explain your answer.
- [1] (a) For each $x \in A$, x R x.

This is false, since $c \in A$ but $(c, c) \notin R$.

[2] (b) For every $x, y \in A$, if x R y, then y R x.

This is true: we have both (a, c) and (c, a) as well as (b, c) and (c, b). The other two elements of R are (a, a) and (b, b), which are unchanged if we swap the the order. (If a R a, then a R a, etc. which is trivially true. It was enough to take note of the pairs where the two terms were different.)

[2] (c) For every $x, y, z \in A$, if x R y and y R z, then x R z.

This is false, since (a, c) and (c, b) belong to R, but $(a, b) \notin R$.

[1] (d) The relation R defines a function from A to A.

This is false, since for example both (a, a) and (a, c) are elements of R, and for a function, a cannot be related to two different elements.

2. Let $A = \{a, b\}$, and consider the relations $R_1 = \{(a, a), (b, b)\}$ and $R_2 = \{(a, a), (a, b)\}$. [4] Show that R_1 is an equivalence relation but R_2 is not. Is R_2 transitive?

 R_1 is clearly reflexive, and it's trivially symmetric and transitive: there are no ordered pairs containing different elements of A, and it's a tautology that if $a R_1 a$ then $a R_1 a$, etc.

 R_2 is not a equivalence relation since it's neither reflexive $(b \in A \text{ but } (b,b) \notin R)$ nor symmetric $((a,b) \in R_2 \text{ but } (b,a) \notin R_2)$. It's enough to point out just one of these two.

However, R_2 is transitive: we need to show that for all $x, y, z \in A$, if $(x, y) \in R_2$ and $(y, z) \in R_2$, then $(x, z) \in R_2$. The only possibility here for the "if" part is x = a, y = a, z = b (since we need the second coordinate of the first pair to match the first coordinate of the second pair), and it's certainly true that if $(a, a) \in R_2$ and $(a, b) \in R_2$, then $(a, b) \in R_2$.

(Note that transitivity for R_1 follows by taking x = y = z = a or x = y = z = b.)