

Prática Nº7 - SEL0606

Alunos (Bancada 5): Vitor Alexandre Garcia Vaz - 14611432 Gabriel Dezejácomo Maruschi - 14571525

Sumário

1	HILL	odução)
	1.1	Objetivos	3
	1.2	Flip-Flops	3
2	Mat	teriais e métodos	1
	2.1	Interface	4
	2.2	Flip-Flop JK	•
	2.3	Flip-Flop Tipo T	6
	2.4		γ
3	,	aclusão	
•	3.1	Cicuito RTL	
	3.2	Número de células lógicas	
	3.3	Funcionamento do Flip-Flop tipo D	
		Functionamento do Flip-Flop tipo JK	
	3.4	• • •	
	3.5	Funcionamento do Flip-FLop tipo T	2
L	ısta	de Imagens	
	1	Tabela verdade do FF-JK	3
	2	Tabela verdade do FF-T	3
	3	Tabela verdade do FF-D	1
	4	Kit DE10-LITE	1
	5	Código da interface	5
	6	Código do FF JK	
	7	Código do FF T	
	8	Código do FF D	
	9	Visualização geral do circuito formado	
	10	Visualização do circuito referente ao Flip-Flop tipo D	
	11	Visualização do circuito referente ao Flip-Flop tipo JK	
	12	Visualização do circuito referente ao Flip-Flop tipo T	
	13	Resumo de funcionamento	
	14	Simulação de funcionamento da FPGA para flip-flop tipo D	
	15	Simulação de funcionamento da FPGA para flip-flop tipo JK	
	16	Simulação de funcionamento da FPGA para flip-flop tipo T	₹

1 Introdução

1.1 Objetivos

Nesta prática do Laboratório de Sistemas Digitais, implementamos os Flip-Flops JK, Tipo-D e Tipo-T na linguaguem VHDL no software Quartus, e testamos no kit DE10-LITE (MAX 10 10M50DAF484C7G) bem como no software ModelSim.

Flip-Flops são unidades básicas dos circuitos Sequenciais, sendo fundamentais para desenvolver diversos módulos da área de Arquitetura de Computadores.

1.2 Flip-Flops

De maneira geral, a análise dos diferentes tipos de Flip-Flops consiste em analisar a interação do sinal de saída \mathbf{Q} com os sinais de entrada. Nos tipos apresentados hoje, trabalhamos com FF que apresentam dependência do sinal de clock, transmitindo mudanças para a saída \mathbf{Q} apenas nas bordas de subida de Clock.

FF JK

O Flip-Flop JK funciona com a lógica de Set, Reset e Toggle da saída Q.

Possui as entradas J, K e Clk (clock). A tabela verdade abaixo evidencia a relação das entradas com a saída:

Figure 1: Tabela verdade do FF-JK

J	K	Q	C	Q^*
0	0	0	Z	0 Hold
0	0	1	Л	1
0	1	0	Л	0 Reset
0	1	1	Л	0
I	0	0	\mathbf{T}	1 Set
1	0	1	л	1
1	1	0	Л	I Toggle
1	1	1	л	0

Fonte: V. P. Nelson, Digital Logic Circuit analysis and design. 1995

FF T

O Flip-Flop T é basicamente um FF JK com as entradas \mathbf{J} e \mathbf{K} ligadas em um único sinal de controle, renomeado \mathbf{T} , de Toggle. Como visto na seção anterior, ao ativar T (J e K simultaneamente), inverte-se o sinal apresentado anteriormente em Q. A tabela verdade é demonstrada abaixo.

Figure 2: Tabela verdade do FF-T

T	Q	Q^*	
;	0	1 0	Toggle Toggle

Fonte: V. P. Nelson, Digital Logic Circuit analysis and design. 1995

FF D

O Flip-Flop tipo D possui apenas as entradas **D** e **Clk** e comporta-se espelhando o sinal de D na saída Q nos eventos de borda de subida do clock. A tabela verdade é demonstrada abaixo.

Figure 3: Tabela verdade do FF-D

D	Q	C	Q^*	
0	0	구	0	Store 0
1	0	六	1	Store 1
1	1	Л	1	

Fonte: V. P. Nelson, Digital Logic Circuit analysis and design. 1995

2 Materiais e métodos

O código utilizado para desenvolver os módulos dos Flip-Flops foi escrito em VHDL e compilado no Quartus. A fim de testá-los no DE10-LITE, desenvolvemos também um interface cujo objetivo foi redirecionar os sinais dos pinos para os módulos e vice-versa.

2x20 Altera MAX 10 **GPIO** 10M50DAF484C7G 4-bit Resistor VGA Accelerometer Arduino Connector 5V Power USB-Blaster 64MB SDRAM Button x2 5V/GND 2-Pin Header LED x10 7-Segment Switch x10 Display x6

Figure 4: Kit DE10-LITE

Fonte: DE10-Lite User Manua

2.1 Interface

A interface, codificada como é mostrado abaixo, direciona as entradas e saídas para as portas e leds do kit DE10-LITE:

Figure 5: Código da interface

Para todas as chamadas dos módulos, as entradas de Clock e Clear, **clk** e **cr**, respectivamente, foram direcionados para os botões 0 e 1 do kit. Entretanto, para os sinais de controle de cada um dos Flip-Flops convencionou-se:

```
• FF-JK: J = \text{Chave } 3 \text{ (SW(3))}; K = \text{Chave } 2 \text{ (SW(2))}; Q = \text{Led } 1 \text{ (LEDR(1))}.
```

- FF-D: D = Chave 1 (SW(1)); Q = Led 2 (LEDR(2)).
- FF-T: T = Chave 9 (SW(9)); Q = Led 9 (LEDR(9)).

2.2 Flip-Flop JK

O módulo do código do Flip-Flop JK conta com as, anteriormente explicadas, entradas \mathbf{j} , \mathbf{k} e \mathbf{cr} . Esta última é um Clear assíncrono, cujo funcionamento é

$$cr=1\Rightarrow q=0$$

em qualquer momento da execução, independente do clock. A arquitetura conta com a estruturação de um PROCESS, com sensibilidade nos sinais de ${\bf clk}$ e ${\bf cr}$. Assim que o PROCESS é iniciado, caso ${\bf cr}$ esteja em 1, ${\bf qs}$ (uma variável intermediária para ${\bf q}$) recebe 0. A outra alternativa é uma mudança em clock, a qual causará a avaliação de um novo sinal para ${\bf qs}$ caso esteja em uma borda de subida. Por fim, ${\bf q}$ recebe o sinal de ${\bf qs}$.

Figure 6: Código do FF JK

2.3 Flip-Flop Tipo T

O módulo do Flip-Flop tipo T possui as entradas já citadas anteriormente para esse tipo além da entrada de Clear. O funcionamente da arquitetura é similar ao do FF JK, mudando apenas a equação característica que avalia mudanças no sinal de **q** quando as condições de borda de subida de clock são supridas.

Figure 7: Código do FF T

2.4 Flip-Flop Tipo D

Assim como os anteriores, o módulo do Flip-Flop tipo D também possui as entradas citadas na introdução e a entrada de Clear assíncrono. Na arquitetura, utilizamos também a contrução com PROCESS e IF, ELSIF. Quando as condições de clock são atingidas, **q** recebe o sinal de **d**, assim como deve ser.

Figure 8: Código do FF D

3 Conclusão

3.1 Cicuito RTL

A partir do código em VHDL feito em laborratório, e usando a ferramenta de síntese disponibilizada pelo quartus, o seguinte circuito geral foi obtido :

Figure 9: Visualização geral do circuito formado

Fonte: os autores

t_ff:TFF

Ademais, foram obtidos os seguintes circuitos referentes, respectivamente, aos flip-flops tipo D, JK e T:

Fonte: os autores

Figure 11: Visualização do circuito referente ao Flip-Flop tipo JK

Figure 12: Visualização do circuito referente ao Flip-Flop tipo T

Fonte: os autores

3.2 Número de células lógicas

Ademais, por meio do resumo do funcionamento e constituição do circuito descrito em VHDL no software (fig13), chegamos à conclusão de que o circuito sintetizado apresentou um uso de 4 células lógicas e 22 pinos do dispositivo reconfigurável (FPGA).

Figure 13: Resumo de funcionamento

3.3 Funcionamento do Flip-Flop tipo D

Referentemente ao flip-flop tipo D, elaborado através do código da fig.8, implementamos este circuito sequencial em uma FPGA através da interface com o kit DE10-LITE (fig.5) e , desse modo, simulamos o funcionamento da FPGA através do software ModelSim, já que a dupla não pode, por questões de tempo, tirar as fotos do circuito funcionando em sala de aula.

Após a simulação, obtemos as seguintes relações de sinais digitais de clock (botão KEY(0)), reset (botão KEY(1)), sinal de entrada D (SW(1)) e sinal saída Q (LEDR(1)) :

| Most | 100 ps | 100

Figure 14: Simulação de funcionamento da FPGA para flip-flop tipo D

Fonte: os autores

Através da figura, é possível notar que, de forma correspondente à esperada pelo grupo após a elaboração

dos códigos de descrição, a saída Q, após toda borda positiva de clock, adquire o mesmo valor da entrada D, fato o qual evidencia o adequado funcionamento do circuito, já que ele corresponde à tabela verdade referente a tal flip-flop (fig.3).

3.4 Funcionamento do Flip-Flop tipo JK

Em sequência, em relação ao flip-flop tipo JK - elaborado através do código da fig.6 - também implementamos este circuito sequencial na mesma FPGA através da interface com o kit DE10-LITE (fig.5) e , desse modo, simulamos o funcionamento da FPGA através do software ModelSim.

Após a simulação, obtemos as seguintes relações de sinais digitais de clock (botão KEY(0)), reset (botão KEY(1)), sinal de entrada J (SW(3)), sinal de entrada K (SW(2)) e sinal saída Q (LEDR(2)) :

Figure 15: Simulação de funcionamento da FPGA para flip-flop tipo JK

Fonte: os autores

Por meio de tal visualização, é possível notar que, de forma correspondente à esperada pelo grupo após a elaboração dos códigos de descrição, a saída Q, após toda borda positiva de clock: é mantida se J=0 e $\bar{K}=1$; é igual a 0 se J=0 e $\bar{K}=0$; é igual 1 se J=1 e $\bar{K}=1$; e, por último, é invertida se J=1 e $\bar{K}=0$. Fatos os quais evidenciam o adequado funcionamento do circuito, pois está em conformidade com a tabela verdade referente a tal flip-flop (fig.3).

3.5 Funcionamento do Flip-FLop tipo T

Por fim, tratando-se do flip-flop tipo T - elaborado através do código da fig.7 - implementamos este circuito sequencial na mesma FPGA através da interface com o kit DE10-LITE (fig.5) e , posteriormente, simulamos o funcionamento da FPGA através do software ModelSim.

Após a simulação, obtemos as seguintes relações de sinais digitais de clock (botão KEY(0)), reset (botão KEY(1)), sinal de entrada T (SW(0)) e sinal saída Q (LEDR(0)) :

Figure 16: Simulação de funcionamento da FPGA para flip-flop tipo T

Por meio de tal visualização, é possível notar que, de forma correspondente à esperada pelo grupo após a elaboração dos códigos de descrição, a saída Q, após toda borda positiva de clock, é mantida se T=0 e é invertida se T=1. Fatos os quais evidenciam o adequado funcionamento do circuito, já que os resultados estão em conformidade com a tabela verdade referente a tal flip-flop (fig.2).