

Microelectronic Systems

DLX Microprocessor: Design & Development Final Project Report

Master degree in Electronics Engineering Master degree in Computer Engineering

Referents: Prof. Mariagrazia Graziano, Giovanna Turvani

Authors: Group 52 name1, name2

October 17, 2023

Contents

1	Inti	roduct	ion
	1.1	Specif	fications
2	Fun	ctiona	al schema
			path
	2.2	Funct	ional blocks
		2.2.1	Control unit
			Register file
		2.2.3	ALU
		2.2.4	Hazard detection unit
		2.2.5	Forwarding unit

CHAPTER 1

Introduction

1.1 Specifications

CHAPTER 2

Functional schema

2.1 Datapath

Figure 2.1: sus

2.2 Functional blocks

2.2.1 Control unit

2.2.2 Register file

2.2.3 ALU

The ALU of the DLX operates on two inputs: DATA1 and DATA2. The function to be computed on the operands is selected by a third input FUNC that receives a code representing it and the result is sent to the output OUTALU. A list of currently implemented functions follows. The implementation of each operation is behavioural unless specified otherwise.

Addition

ALUOUT = DATA1 + DATA2

A P4 adder is present inside the ALU to perform additions. Further details on its implementation together with the VHDL description are included in lab 2's zip file.

Subtraction

ALUOUT = DATA1 - DATA2

The P4 adder is also used for subtractions, by means of negating one of the inputs and setting the carry-in input of the adder to 1.

Multiplication

 $ALUOUT = DATA1 \cdot DATA2$

Multiplication is executed on the operands fully but the result is still word size: the most significant half of the computed value is discarded.

AND

 $ALUOUT = DATA1 \land DATA2$

OR

 $ALUOUT = DATA1 \lor DATA2$

XOR

 $ALUOUT = DATA1 \oplus DATA2$

Logical Shift Left

 $ALUOUT = DATA1 \ll DATA2$

Logical Shift Right

 $ALUOUT = DATA1 \gg DATA2$

Set equal

if(DATA1 == DATA2) then ALUOUT = 1 else 0

Set not equal

 $if(DATA1 \neq DATA2) then ALUOUT = 1 else 0$

Set greater than or Equal (signed and unsigned)

 $if(DATA1 \ge DATA2) then ALUOUT = 1 else 0$

Set greater than (signed and unsigned)

if(DATA1 > DATA2) then ALUOUT = 1 else 0

Set less than or Equal (signed and unsigned)

 $if(DATA1 \leq DATA2) then ALUOUT = 1 else 0$

Set less than (signed and unsigned)

 $\it if(DATA1 < DATA2) then ALUOUT = 1 else 0$

2.2.4 Hazard detection unit

2.2.5 Forwarding unit