Practice problems.

(1) Suppose $f,g \in \mathcal{O}(\mathbb{D})$ are non-vanishing and

$$\frac{f'(1/n)}{f(1/n)} = \frac{g'(1/n)}{g(1/n)} \quad \text{for all large } n \in \mathbb{N}.$$

How are f, g related?

- (2) Determine all $f \in \mathcal{O}(\mathbb{C})$ which satisfy the bound $|f(z)| \leq e^{xy}$ for every $z = x + iy \in \mathbb{C}$.
- (3) Show that there is a holomorphic function f defined near the origin with f(0) = 0 such that $f(z)\cos(f(z)) = z$ for all z near 0. Find the first 3 non-zero terms in the power series of f.
- (4) Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{O}(\mathbb{D})$. Suppose $|a_k| = 2^k \sup_{|z|=1/2} |f(z)|$ for some $k \ge 0$. Prove that $f(z) = a_k z^k$.
- (5) Suppose $f \in \mathcal{O}(\mathbb{D})$ satisfies f(0) = 0 and |f(z) + zf'(z)| < 1 for all $z \in \mathbb{D}$. Show that $|f(z)| \le |z|/2$ for all $z \in \mathbb{D}$.
- (6) Determine all bounded $f \in \mathcal{O}(\mathbb{H})$ such that $f(i/n) = e^{-n}$ for all n.
- (7) (i) Show that every odd entire function $f : \mathbb{C} \to \mathbb{C}$ is surjective unless f is the constant function 0.
 - (ii) Does there exist a non-affine entire function $f : \mathbb{C} \to \mathbb{C}$ such that f is surjective but f' is not?
- (8) Suppose f is non-vanishing and holomorphic in the punctured disk \mathbb{D}^* . Prove that there are $n \in \mathbb{Z}$ and $g \in \mathcal{O}(\mathbb{D}^*)$ such that $f(z) = z^n \exp(g(z))$ for all $z \in \mathbb{D}^*$.
- (9) Suppose $f = u + iv \in \mathcal{O}(\mathbb{C})$ with |uv| bounded. Show that f is constant. What if we replace the condition with $u(z) \neq v(z)$ for all $z \in \mathbb{C}$?

- (10) Let $f \in \mathcal{O}(\mathbb{C})$ and f(0) = 0, f'(0) = 1. Suppose the sequence of iterates $f^{\circ n} = \underbrace{f \circ \cdots \circ f}_{n \text{ times}}$ is normal in some neighborhood of 0. Show that f = id.
- (11) Suppose f is bounded and holomorphic in $\{z \in \mathbb{C} : 0 < \text{Re}(z) < 1\}$ and $\text{Im}(f(z)) \to 0$ as z tends to any point on the boundary lines Re(z) = 0 and Re(z) = 1. Show that f is constant.
- (12) Suppose f is holomorphic in a neighborhood of $\overline{\mathbb{D}}$, with f(0) = 4 and $\sup_{|z|=1} |f(z)| \leq e^2$. Find the largest possible number of zeros of f in the disk $\mathbb{D}(0,2/3)$.
- (13) Show that for every $c \in \mathbb{C}$ the equation $\sin z = cz$ has infinitely many solutions in z.
- (14) Let $p, q \in \mathbb{D}$ and $f : \mathbb{D} \to \mathbb{D}$ be holomorphic with f(p) = q. What are the largest and smallest |f'(p)| could be? Justify your answers.
- (15) Let $f_n \in \mathcal{O}(\mathbb{D})$ and suppose $f(z) = \lim_{n \to \infty} f_n(z)$ exists for every $z \in \mathbb{D}$. If $|f_n 1| \ge 1$ in \mathbb{D} for every n, show that $f_n \to f$ compactly in \mathbb{D} (in particular, the pointwise limit f must be holomorphic in \mathbb{D}).

Hints.

- (1) Use the identity theorem.
- (2) Apply Liouville's theorem to a suitable function.
- (3) The function $g(w) = w \cos w$ has non-zero derivative at w = 0.
- (4) This is the case of equality in Cauchy's estimates. Parseval's formula may be helpful.
- (5) Consider g(z) = zf(z). It smells like the Schwarz lemma, doesn't it?
- (6) Use the characterization of zeros of bounded holomorphic functions in \mathbb{D} , or equivalently in \mathbb{H} (compare Theorem 8.34, Example 8.35, and problem 6 in HW 2).
- (7) For (i), use Picard's theorem. The answer to (ii), which is affirmative, should be easy in view of (i).
- (8) Assuming this representation for f and considering f'/f gives you a clue as to what n should be. Looking at the function $f(z)/z^n$ then shows you how to find g.
- (9) Use Liouville's theorem or Picard's theorem.
- (10) If $f \neq \text{id}$, it must have a power series expansion $f(z) = z + az^k + O(z^{k+1})$ for some $k \geq 2$ and $a \neq 0$. In this case what would be the power series of $f^{\circ n}(z)$?
- (11) Use repeated Schwarz reflections.
- (12) Bound the number of zeros using Jensen's formula (see Corollary 8.31) or use Blaschke products (see problems 17/18 in chapter 4).
- (13) Apply Picard's great theorem to a suitable function.
- (14) Reduce to the Schwarz lemma.
- (15) Postcompose the f_n with a suitable Möbius transformation and apply Montel's theorem.