# Non-linearity in Parametric Bandits: the Logistic Bandit case

joint work with M. Abeille<sup>1</sup>, C. Calauzènes<sup>1</sup> and O. Fercoq<sup>2</sup>

<sup>1</sup> Criteo AI Lab

<sup>2</sup> LTCI TelecomParis





#### **Presentation Outline**

- Goal. Study non-linearity in sequential decision making problem.
  - Logistic Bandit: theoretical qualities.
    - Simple extension of the Linear Bandit.
    - → Isolates the effect of non-linearity.
  - Logistic Bandit: practical relevance.
    - Model real-life problems with binary feedback.
    - → news recommandation, clinical trials, ...
- · Logistic Bandit: high-level contributions.
  - Improved algorithms with enhanced performances.
  - ▶ New theoretical insights: non-linearity makes the problem easier.

#### Warm-Up: Linear Bandits

Repeated game with structured feedback.



- Motivation. Generalizes the classical Multi-Arm Bandit setting
  - encode similarities between actions.
  - handle infinite number of actions.
  - ▶ handle contextual information  $x_t$ :  $f(\phi(\mathbf{a_t}, x_t)^\mathsf{T} \theta_{\star})$ .

• Goal. Minimize cumulative regret; with  $\mathbf{a}_{\star} = \operatorname{argmax}_{a \in \mathcal{A}} \mathbf{a}^{\mathsf{T}} \mathbf{\theta}_{\star}$ :

$$\mathsf{Regret}_{\theta_{\star}}(T) := T_{\mathbf{a_{\star}}}^{\mathsf{T}} \theta_{\star} - \sum_{t=1}^{\mathsf{T}} \mathbf{a_{t}}^{\mathsf{T}} \theta_{\star} .$$

- $\rightsquigarrow$  objective: Regret<sub> $\theta$ </sub>  $(T) \leq T^{\alpha}$  for  $\alpha < 1$ .
- → balance exploitation and exploration.

• Goal. Minimize cumulative regret; with  $\mathbf{a}_{\star} = \operatorname{argmax}_{a \in \mathcal{A}} \mathbf{a}^{\mathsf{T}} \mathbf{\theta}_{\star}$ :

$$\mathsf{Regret}_{\theta_{\star}}(T) := T_{\mathbf{a_{\star}}}^{\mathsf{T}} \theta_{\star} - \sum_{t=1}^{T} \mathbf{a_{t}}^{\mathsf{T}} \theta_{\star} \ .$$

- $\rightsquigarrow$  objective: Regret<sub> $\theta_{+}$ </sub> $(T) \leq T^{\alpha}$  for  $\alpha < 1$ .
- → balance exploitation and exploration.

• Solved: minimax-optimal and efficient algorithms.

Regret(
$$T$$
) =  $\widetilde{\mathcal{O}}(d\sqrt{T})$ ,

where  $\widetilde{\mathcal{O}}$  hides only logarithmic dependencies.

- Exploration/exploitation trade-off vs. optimism in face of uncertainty.
  - ▶ Learning is performed via ordinary least-squares:

$$\hat{\theta}_t := \mathsf{V}_t^{-1} (\sum_{s=1}^{t-1} r_s a_s) \quad \text{ where } \quad \mathsf{V}_t^{-1} = \sum_{s=1}^t a_s a_s^\mathsf{T} + \lambda \mathsf{I}_d \;.$$

- Exploration/exploitation trade-off vs. optimism in face of uncertainty.
  - ▶ Learning is performed via ordinary least-squares:

$$\hat{\theta}_t := \mathsf{V}_t^{-1}(\sum_{s=1}^{t-1} r_s a_s) \quad \text{ where } \quad \mathsf{V}_t^{-1} = \sum_{s=1}^t a_s a_s^\mathsf{T} + \lambda \mathsf{I}_d \;.$$

Planning by resorting to confidence sets:

$$egin{aligned} oldsymbol{ heta_{\star}} \in \mathcal{C}_t(\delta) = \left\{ heta, \ \left\| heta - \hat{ heta}_t 
ight\|_{\mathbf{V}_t}^2 \leq d \log(t/\delta). 
ight\} \end{aligned} \quad ext{with proba. at least } 1 - \delta \end{aligned}$$

and enforcing optimism:

the hard part

play 
$$a_{t+1} \in \operatorname{argmax}_{a \in \mathcal{A}} \max_{\theta \in \mathcal{C}_{\epsilon}(\delta)} a^{\mathsf{T}} \theta$$
.

#### The Logistic Bandit

• Motivations. The Linear Bandit setting has (many) limitations;

- Theoretical: towards rich reward models.
  - The real world is fundamentally non-linear.
  - → Does the same principle work?
  - → Will it be optimal?

- ► Practical:
  - ★ The Linear Bandit covers only continuous rewards.
  - What about binary rewards (click, sale, success)?

#### The Logistic Bandit

Repeated game with structured binary feedback.



#### The Logistic Bandit

Repeated game with structured binary feedback.



• Regret. The agent tries to minimize its cumulative pseudo-regret:

$$\mathsf{Regret}_{\theta_{\star}}(T) := T\mu(\mathbf{a_{\star}}^{\mathsf{T}}\theta_{\star}) - \sum_{t=1}^{T}\mu(\mathbf{a_{t}}^{\mathsf{T}}\theta_{\star}) \;.$$

#### The Learning Problem (ctn'd)

• Reward model. Minimalist non-linear extension from the linear bandit.





$$\mathbb{E}[\mathbf{r_t}|\mathbf{a_t}] = (1 + \exp(-\mathbf{a_t}^\mathsf{T}\boldsymbol{\theta_\star}))^{-1}$$

- Exploration-exploitation. Same recipe:
  - Learning: maximum likelihood (logistic regression).
  - ▶ Planning: Optimism through confidence sets.
- Additional challenge. Non-linearity: information vs. regret.

- Level of non-linearity = conditioning.
  - ► How flat are the tails.



• Important quantities. The level of non-linearity is problem-dependent.

- Level of non-linearity = conditioning.
  - How flat are the tails.



- Important quantities. The level of non-linearity is problem-dependent.
  - $\blacktriangleright$  Historically characterized by a constant  $\kappa_A$ :

$$m{\kappa_{\mathcal{A}}} := rac{1}{\min_{\mathbf{a} \in \mathcal{A}} \dot{\mu}(\mathbf{a}^{\mathsf{T}} m{ heta_{\star}})}$$
 .

- Level of non-linearity = conditioning.
  - ► How flat are the tails.



- **Important quantities.** The level of non-linearity is problem-dependent.
  - $\blacktriangleright$  Historically characterized by a constant  $\kappa_A$ :

$$m{\kappa}_{\mathcal{A}} := rac{1}{\min_{m{a} \in \mathcal{A}} \dot{\mu}(m{a}^{\mathsf{T}}m{ heta}_{\star})}$$
 .

► The more non-linear the reward, the bigger.

- Level of non-linearity = conditioning.
  - ► How flat are the tails.



- Important quantities. The level of non-linearity is problem-dependent.
  - $\blacktriangleright$  Historically characterized by a constant  $\kappa_A$ :

$$m{\kappa_{\mathcal{A}}} := rac{1}{\min_{\mathbf{a} \in \mathcal{A}} \dot{\mu}(\mathbf{a}^{\mathsf{T}} m{ heta_{\star}})}$$
 .

- ► The more non-linear the reward, the bigger.
- ▶ Typically  $\kappa_{\mathcal{A}} \ge \exp(\|\theta_{\star}\|)$ ! In practical case;  $\kappa_{\mathcal{A}} \sim 10^3$ .

#### Previous approaches

- A lot of existing work on the logistic bandit: [Filippi et al. 2010; Li et al 2017; Kveton et al. 2019; Dong et al. 2019];
- All rely on a global linearization approach.

#### Previous approaches

- A lot of existing work on the logistic bandit: [Filippi et al. 2010; Li et al 2017; Kveton et al. 2019; Dong et al. 2019];
- All rely on a global linearization approach.
- Information vs. regret: worst of both world!
  - ► Confidence set (at algorithmic design time):

$$\pmb{\theta}_{\star} \in \mathcal{C}_t(\delta) = \left\{\theta, \ \left\|\theta - \hat{\theta}_t\right\|_{\mathbf{V}_t}^2 \leq \pmb{\kappa}_{\mathcal{A}} d \log(t/\delta)\right\} \quad \text{ with proba. at least } 1 - \delta$$

#### Previous approaches

- A lot of existing work on the logistic bandit: [Filippi et al. 2010; Li et al 2017; Kveton et al. 2019; Dong et al. 2019];
- All rely on a global linearization approach.
- Information vs. regret: worst of both world!
  - ► Confidence set (at algorithmic design time):

$$oldsymbol{ heta}_\star \in \mathcal{C}_t(\delta) = \left\{ heta, \ \left\| heta - \hat{ heta}_t 
ight\|_{\mathbf{V}_t}^2 \leq \kappa_{\mathcal{A}} d \log(t/\delta) 
ight\} \quad ext{ with proba. at least } 1 - \delta$$

► Prediction error (at analysis time):

$$\mu(\mathbf{a}^\mathsf{T} \boldsymbol{\theta}_\star) - \mu(\mathbf{a}^\mathsf{T} \boldsymbol{\theta}) \leq \mathbf{a}^\mathsf{T} (\boldsymbol{\theta}_\star - \boldsymbol{\theta})/4$$
.

#### Previous approaches (ctn'd)

- Global linearization ⇒ disappointing results!
  - ▶ Poor regret guarantees.

$$\mathsf{Regret}_{\theta_{\star}}(T) = \widetilde{\mathcal{O}}\left(\kappa_{\mathcal{A}}d\sqrt{T}\right)$$
.

- Because the algorithms are over-explorative.
- ▶ Disappointing story about the effects of non-linearity.
- The more non-linear the problem, the larger the regret!

#### Previous approaches (ctn'd)

- Global linearization ⇒ disappointing results!
  - ▶ Poor regret guarantees.

$$\mathsf{Regret}_{\theta_{\star}}(T) = \widetilde{\mathcal{O}}\left(\kappa_{\mathcal{A}}d\sqrt{T}\right)$$
.

- Because the algorithms are over-explorative.
- ▶ Disappointing story about the effects of non-linearity.
- The more non-linear the problem, the larger the regret!

- Our goal is to improve this with:
  - ▶ Enhanced confidence sets for  $\theta_{+}$ .
  - ▶ Improvement treatment of the local behavior of the reward signal.

#### Improved confidence set

• Let  $H_t(\theta) = \sum_{s=1}^{t-1} \dot{\mu}(a_s^\mathsf{T}\theta)a_sa_s^\mathsf{T} + \lambda \mathsf{I}_d$ ; then

$$heta_\star \in \mathcal{E}_t(\delta) := \left\{ heta, \ \left\| heta - \hat{ heta}_t 
ight\|_{\mathsf{H}_t( heta)}^2 \leq d \log(t/\delta) 
ight\} \, ext{ with proba } \, \geq 1 - \delta \; .$$

- Based on a new concentration inequality for self-normalized process.
- Smaller than  $C_t(\delta)$  by at least  $\sqrt{\kappa_A}$ .
- Undergoes convex relaxation for tractability.

#### Improved confidence set



Figure: Visualization of two-dimensional Logistic bandit confidence sets.

• Smaller confidence set  $\Rightarrow$  less explorative algorithm, better performance.

#### Improved algorithm and analysis

• We use the same recipe for enforcing optimism:

$$\mathsf{play}\ \textit{a}_t = \mathsf{argmax}_{\textit{a} \in \mathcal{A}} \max_{\theta \in \mathcal{E}_t(\delta)} \mu \big( \textit{a}^\mathsf{T} \theta \big) \ .$$

#### Improved algorithm and analysis

• We use the same recipe for enforcing optimism:

play 
$$a_t = \operatorname{argmax}_{a \in \mathcal{A}} \max_{\theta \in \mathcal{E}_t(\delta)} \mu(a^\mathsf{T}\theta)$$
.

• We introduce a new analysis for the Logistic Bandit:

#### Improved algorithm and analysis

• We use the same recipe for enforcing optimism:

$$\mathsf{play} \ \textit{a}_t = \mathsf{argmax}_{\textit{a} \in \mathcal{A}} \max_{\theta \in \mathcal{E}_t(\delta)} \mu(\textit{a}^\mathsf{T}\theta) \ .$$

- We introduce a new analysis for the Logistic Bandit:
  - Leverage the self-concordance property of the logistic function.
  - Allows for a local treatment of the non-linearity.
  - Strikes the right balance between information and regret.

#### Regret guarantees

• Enhanced regret guarantee; denote at the best action:

$$\mathsf{Regret}_{\theta_\star}(T) = \widetilde{\mathcal{O}}\left(d\sqrt{\dot{\mu}(\mathbf{a}_\star^\mathsf{T}\theta_\star)\,T}\right) \;.$$

#### Regret guarantees

Enhanced regret guarantee; denote a<sub>⋆</sub> the best action:

$$\mathsf{Regret}_{\theta_\star}(T) = \widetilde{\mathcal{O}}\left(d\sqrt{\dot{\mu}(\mathbf{a}_\star^\mathsf{T}\theta_\star)T}\right) \;.$$

- Illustration for the unit ball arm-set:  $\dot{\mu}(\mathbf{a}_{\star}^{\mathsf{T}}\theta_{\star}) = 1/\kappa_{\mathcal{A}} \approx \exp(-\|\theta_{\star}\|)$ .
  - ► The regret is:

$$\mathsf{Regret}_{ heta_{\star}}(T) = \widetilde{\mathcal{O}}\left(d\sqrt{T/\kappa_{\mathcal{A}}}
ight) \; .$$

▶ Improvement by  $\kappa_A^{3/2} \approx \exp(3\|\theta_\star\|/2)!$ 

#### Regret guarantees

Enhanced regret guarantee; denote a<sub>⋆</sub> the best action:

$$\mathsf{Regret}_{\theta_\star}(T) = \widetilde{\mathcal{O}}\left(d\sqrt{\dot{\mu}(\mathbf{a}_\star^\mathsf{T}\theta_\star)T}\right) \;.$$

- Illustration for the unit ball arm-set:  $\dot{\mu}(\mathbf{a}_{\star}^{\mathsf{T}}\theta_{\star}) = 1/\kappa_{\mathcal{A}} \approx \exp(-\|\theta_{\star}\|)$ .
  - ► The regret is:

$$\mathsf{Regret}_{ heta_{\star}}(T) = \widetilde{\mathcal{O}}\left(d\sqrt{T/\kappa_{\mathcal{A}}}
ight) \; .$$

- ▶ Improvement by  $\kappa_A^{3/2} \approx \exp(3\|\theta_\star\|/2)!$
- This rate is minimax-optimal w.r.t d, T and  $\kappa_A$ .

#### Effects of non-linearity

- Non-linearity seems to be beneficial!
  - ▶ The larger  $\kappa_A$ , the smaller the regret!
- Not entirely true; non-linearity can impact a transitory phase.
  - ▶ Second-order term of the regret.
  - ightharpoonup Happens before highly rewarding areas of  ${\cal A}$  are identified.

$$\mathsf{Regret}_{\theta_\star}(T) = \widetilde{\mathcal{O}}\left(d\sqrt{\dot{\mu}(a_\star^\mathsf{T} heta_\star)T} + R^\mathsf{transitory}(T)
ight) \ .$$





#### Effects of non-linearity

- Non-linearity seems to be beneficial!
  - ▶ The larger  $\kappa_A$ , the smaller the regret!
- Not entirely true; non-linearity can impact a transitory phase.
  - ▶ Second-order term of the regret.
  - ightharpoonup Happens before highly rewarding areas of  ${\cal A}$  are identified.

$$\mathsf{Regret}_{\theta_\star}(T) = \widetilde{\mathcal{O}}\left(d\sqrt{\dot{\mu}(\mathsf{a}_\star^\mathsf{T}\theta_\star)T} + R^\mathsf{transitory}(T)
ight) \ .$$







#### Effects of non-linearity

- Non-linearity seems to be beneficial!
  - ▶ The larger  $\kappa_A$ , the smaller the regret!
- Not entirely true; non-linearity can impact a transitory phase.
  - ▶ Second-order term of the regret.
  - ightharpoonup Happens before highly rewarding areas of  ${\cal A}$  are identified.

$$\mathsf{Regret}_{\theta_\star}(T) = \widetilde{\mathcal{O}}\left(d\sqrt{\dot{\mu}(a_\star^\mathsf{T} heta_\star)T} + R^\mathsf{transitory}(T)
ight) \ .$$







$$R^{ ext{transitory}}(T) = \tilde{\mathcal{O}}(1)$$

#### **Empirical performances**

• Compared with the GLM-UCB of [Filippi et al. 2010].





Empirical comparison of GLM-UCB and OFULog on two LogB toy experiments. The regret curves are averaged over 50 independent runs. Standard-deviation is reported in shaded colors around the averaged cumulative regret. The arm-set  ${\cal A}$  is composed of 40 arms drawn uniformly at random in the 2-dimensional ball at the beginning of each run.

## Empirical performances (ctn'd)

• Check the impact of non-linearity:



Figure: Comparing the effect of non-linearity on GLM-UCB and OFULog by varying the level of non-linearity in a Logistic Bandit setting.

## Thank you!

#### Some references

#### Previous work (most relevant)

- Filippi et al. Parametric Bandits: the Generalized Linear case. NeurIPS, 2010.
- Li et al. Provably Optimal Algorithms for Generalized Linear Bandits. ICML, 2017.
- Dong et al. On the Performance of Thompson Sampling on Logistic Bandits. COLT, 2019.

#### · Material for this talk was taken from:

- F., Abeille, Calauzènes and Fercoq. Improved Optimistic Algorithms for Logistic Bandits. ICML, 2020.
- Abeille, F. and Calauzènes. Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits. AISTATS, 2021.

#### • Extension to non-stationary settings.

- Russac, F., Cappé, Garivier. Self-Concordant Analysis of Generalized Linear Bandits with Forgetting AISTATS, 2021.
- ► F., Russac, Abeille and Calauzènes. Regret Bounds for Generalized Linear Bandits under Parameter Drift. *ALT*, 2021.