Babeş-Bolyai University, Faculty of Mathematics and Computer Science Computer Science Groups 911-917, Academic Year 2021-2022

Mathematical Analysis Exercise Sheet 11

51. Study the convergence of and (if convergent) compute the improper integrals

a)
$$\int_0^\infty \frac{\arctan x}{1+x^2} dx;$$

b)
$$\int_{2}^{\infty} \frac{x-1}{x^2+x+1} \mathrm{d}x;$$

c)
$$\int_0^1 (\ln x)^2 \, \mathrm{d}x.$$

52. a) Study the convergence of and compute $\int_0^\infty x^2 e^{-x} dx$.

b) Prove that $\int_0^\infty P(x)e^{-x}dx = P(0) + P'(0) + \cdots + P^{(n)}(0)$ where P is a polynomial function of degree $n \in \mathbb{N}$.

 ${\bf 53.}\ \ {\bf Compute\ the\ following\ integrals\ by\ embedding\ them\ in\ parametrized\ families\ and\ differentiating\ with\ respect\ to\ the\ parameter^1$

a)
$$\int_0^1 \frac{x^5 - 1}{\ln x} dx$$
; [Hint: consider $I(a) = \int_0^1 \frac{x^a - 1}{\ln x} dx$]

b)
$$\int_0^\infty \frac{\arctan 2x}{x(1+x^2)} dx. \text{ [Here } I(y) = \int_0^\infty \frac{\arctan xy}{x(1+x^2)} dx]$$

¹Assume that all improper (parametric) integrals are convergent.