Analysis 1 - Übungsblatt 3

Wintersemester 2016/2017

Prof. Dr. Anna Marciniak-Czochra, Dr. Frederik Ziebell, Chris Kowall Internetseite: http://www.biostruct.uni-hd.de/Analysis1.php

Abgabe: 18. November, 11:00 Uhr in den Zettelkasten (1. Stock Mathematikon)

Aufgabe 3.1 4 Punkte

Sei A eine abzählbar unendliche Menge und B eine weitere Menge. Zeigen Sie

- (a) $B \subset A \Rightarrow B$ ist höchstens abzählbar, d.h. endlich oder abzählbar unendlich.
- (b) Gibt es eine surjektive Abbildung $f: A \to B$, dann ist B höchstens abzählbar.
- (c) Sind A_i für $i \in \mathbb{N}$ abzählbar unendliche Mengen, dann gilt:

 $\bigcup_{i\in\mathbb{N}}A_i\quad\text{ist abz\"{a}hlbar unendlich}.$

Aufgabe 3.2 4 Punkte

Eine Menge $M \subset \mathbb{R}$ heißt beschränkt, falls sie nach oben und unten beschränkt ist. Seien $A, B \subset \mathbb{R}$ nicht leere, beschränkte Mengen. Zeigen Sie folgende Aussagen für

$$A+B:=\{a+b\mid a\in A,b\in B\}\quad \text{sowie}\quad -A:=\{-a\mid a\in A\}.$$

- (a) $\sup(A+B) = \sup(A) + \sup(B)$
- (b) $\inf(A+B) = \inf(A) + \inf(B)$
- (c) $\sup(-A) = -\inf(A)$
- (d) $\inf(-A) = -\sup(A)$

Aufgabe 3.3 4 Punkte

(a) Beweisen Sie für das Maximum bzw. Minimum zweier Zahlen $x,y\in\mathbb{R}$ die Darstellung

$$\max\{x,y\} = \frac{x+y+|x-y|}{2}$$
 sowie $\min\{x,y\} = \frac{x+y-|x-y|}{2}$

und zeigen Sie $\max\{-x, -y\} = -\min\{x, y\}.$

(b) Beweisen Sie die folgenden Abschätzungen für alle $x,y\in\mathbb{R}$ und $\varepsilon>0$:

$$2|xy| \le \varepsilon x^2 + \varepsilon^{-1}y^2$$
 und $(x+y)^2 \le 2x^2 + 2y^2$.

(c) Zeigen Sie, dass für zwei positive reelle Zahlen x, y > 0 stets gilt:

$$\frac{x}{y} + \frac{y}{x} \ge 2.$$

Verifizieren Sie außerdem, dass im Falle $0 < m \le x, y \le M$ zusätzlich

$$\frac{x}{y} + \frac{y}{x} \le 2\frac{M}{m}$$

gilt.

Bitte wenden!

Aufgabe 3.4 4 Punkte

Betrachten Sie eine monoton steigende Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen, d.h. $a_{n+1}\geq a_n$ für alle $n\in\mathbb{N}$, welche zusätzlich nach oben beschränkt sei. Außerdem sei $(b_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge reeller Zahlen mit $b_{n+1}\leq b_n$ für alle $n\in\mathbb{N}$ sowie nach unten beschränkt. Beweisen Sie folgende Aussagen.

(a) Für jedes $\varepsilon > 0$ gibt es ein $m \in \mathbb{N}$ mit

$$|a_n - a| < \varepsilon \quad \forall \ n \in \mathbb{N}, n \ge m,$$

wobei $a := \sup\{a_n \mid n \in \mathbb{N}_0\}$ definiert sei. Dasselbe gilt für b_n anstatt a_n , wenn man a durch $b := \inf\{b_n \mid n \in \mathbb{N}_0\}$ ersetzt.

- (b) Die Folge $(c_n)_{n\in\mathbb{N}}$ mit $c_n:=\frac{n-1}{n}$ erfüllt die Voraussetzungen für eine der Folgen aus Aufgabenteil (a) und konvergiert gegen 1.
- (c) Für die rekursiv definierte Folge $(d_n)_{n\in\mathbb{N}}$ mit

$$d_1 := 2, \quad d_{n+1} := \frac{d_n}{2} + \frac{1}{d_n} \quad \text{für } n \in \mathbb{N}$$

gilt $d_n \in \mathbb{Q}, d_n^2 \geq 2$ sowie $d_n > 1$ für alle $n \in \mathbb{N}$ und die Folge ist monoton fallend.