

# SCHOOL OF COMPUTER AND COMMUNICATION SCIENCES

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

# Computer Vision Laboratory Unseen Spacecraft Pose Estimation

Baseline implementation of a generalizable 6DoF object pose estimator with target models included

Bachelor's Thesis in Computer Science

Author: Jérémy Chaverot

Supervisor: Prof. Dr. Mathieu Salzmann

Advisor: PhD. Andrew Price, PhD. Chen Zhao

Semester: Fall 2023

| that I hav | confirm that I am<br>we compiled it in<br>ent by the advisor | my own words |  |             |      |
|------------|--------------------------------------------------------------|--------------|--|-------------|------|
| Lausanne   | , Switzerland, 05.                                           | .01.24       |  | Jérémy Chav | erot |
|            |                                                              |              |  |             |      |

#### Acknowledgments

Before we dive into the real subject, I would like to make a few acknowledgements. First and foremost I must thank my advisors Andrew Price and Chen Zhao for accepting my request to write a Bachelor's Thesis under their guidance. I am grateful to have been able to practice my skills with them, and can only hope that the feeling is mutual. Moreover I would also like to thoroughly thank my friends and family for supporting me in my academic journey, despite a rather unstable start in my studies.



#### **Contents**

| Αc       | knowledgments                                                                                                             | ii                 |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
| Αb       | ostract                                                                                                                   | iii                |  |  |  |  |
| 1        | Introduction  1.1 Problem statement  1.1.1 The settings  1.1.2 The goal  1.2 The work environment: Scitas Izar            | 1<br>1<br>1<br>1   |  |  |  |  |
| 2        | Scientific papers review 2.1 Some ML models                                                                               | <b>2</b><br>2<br>2 |  |  |  |  |
| 3        | Gen6D: formal description  3.1 The dectector                                                                              | <b>3</b> 3 3       |  |  |  |  |
| 4        | Implementation of the model 4.1 The data loader 4.2 The issues 4.2.1 Issue No. 1 4.3 Their solutions 4.3.1 Solution No. 1 | <b>4</b> 4 4 4 4   |  |  |  |  |
| 5        | Presentation of the results 5.1 Visual results                                                                            | <b>5</b><br>5<br>5 |  |  |  |  |
| 6        | Ways of improvements         6.1 Track No. 1                                                                              | <b>6</b><br>6      |  |  |  |  |
| 7        | Conclusion                                                                                                                | 7                  |  |  |  |  |
| Αb       | Abbreviations                                                                                                             |                    |  |  |  |  |
| Appendix |                                                                                                                           |                    |  |  |  |  |

#### 1 Introduction

- 1.1 Problem statement
- 1.1.1 The settings
- **1.1.2** The goal
- 1.2 The work environment: Scitas Izar

# 2 Scientific papers review

- 2.1 Some ML models
- 2.2 Gen6D: Pros and cons

## 3 Gen6D: formal description

- 3.1 The dectector
- 3.2 The selector
- 3.3 The refiner

# 4 Implementation of the model

- 4.1 The data loader
- 4.2 The issues
- 4.2.1 Issue No. 1
- 4.3 Their solutions
- 4.3.1 Solution No. 1

### 5 Presentation of the results

- 5.1 Visual results
- 5.2 Accuracy

# 6 Ways of improvements

- 6.1 Track No. 1
- 6.2 Track No. 2

### Conclusion

#### **Abbreviations**

