MATA22 W11 SOL

MAT A22: Linear Algebra 1 for Mathematical Sciences (Winter 2022)

Welcome to Week 11 of the course. Questions? Thoughts? Comments?

Readings:

- > 7.3 Isomorphism and Composition
- LADR: 3.A The Vector Space of Linear Maps
- LADR: 3.B Null Spaces and Ranges
- LADR: 3.C Matrices

News and Reminders:

Assignment #6 is due Thursday April 7th at 13:00

2/10

The Space of Linear Maps

Definition (LAWA p.52)

If V and W are vector spaces then $\mathcal{L}(V, W)$ is the set of all linear maps from V to W.

Question

Suppose that W has operations \boxplus and \boxdot and additive identity $\vec{0}_W$.

- 1. Identify the operations on $\mathcal{L}(V,W)$ that make it in to a vector space.
- 2. What is the additive identity of $\mathcal{L}(V, W)$?

TA Notes:

- ▶ Suppose $V = \text{span}\{v_1\}$.
- ▶ For any linear map $T \in \mathcal{L}(V, V)$ we get: $T(v_1) \in V = \text{span}\{v_1\} \Rightarrow T(v_1) = t_1v_1$.
- ▶ Picking $k = t_1$ gives T(v) = kv for all $v \in V$.

3/10

We can take advantage of the operations in the vector space W and the fact that the images of every element in $\mathcal{L}(V,W)$ are subsets of W. For $T_1,T_2\in\mathcal{L}(V,W)$, we will define addition as

$$(T_1 + T_2)(\vec{v}) = T_1(\vec{v}) \boxplus T_2(\vec{v})$$

For $T \in \mathcal{L}(V, W)$ and $r \in \mathbb{R}$, And scalar multiplication as

$$(rT)(\vec{v}) = r \boxdot T(\vec{v})$$

Proof of vector space:

A1. Let
$$T_1, T_2 \in \mathcal{L}(V, W)$$
. Let $\vec{v}_1, \vec{v}_2 \in V$ and $r \in \mathbb{R}$

$$(T_1 + T_2)(\vec{v}_1) = T_1(\vec{v}_1) \boxplus T_2(\vec{v}_1) \in W \qquad \text{(this proves } T_1 + T_2 : V \to W)$$

$$(T_1 + T_2)(\vec{v}_1 + r\vec{v}_2) = T_1(\vec{v}_1 + r\vec{v}_2) \boxplus T_2(\vec{v}_1 + r\vec{v}_2)$$

$$= T_1(\vec{v}_1) \boxplus r \boxdot T_1(\vec{v}_2) \boxplus T_2(\vec{v}_1) \boxplus r \boxdot T_2(\vec{v}_2) \text{ (linearity of } T_1, T_2)$$

$$= (T_1(\vec{v}_1) \boxplus T_2(\vec{v})) \boxplus r \boxdot (T_1(\vec{v}_2) \boxplus T_2(\vec{v}_2)) \qquad \text{(prop. of } \boxplus, \boxdot)$$

$$= (T_1 + T_2)(\vec{v}_1) \boxplus r \boxdot (T_1 + T_2)(\vec{v}_2)$$

$$\text{(this proves linearity of } T_1 + T_2)$$

So $T_1 + T_2 \in \mathcal{L}(V, W)$ and so $\mathcal{L}(V, W)$ is closed under +

A2. Let $T_1, T_2 \in \mathcal{L}(V, W)$. Then, for any $\vec{v} \in V$,

$$\begin{aligned} (T_1+T_2)(\vec{v}) &= T_1(\vec{v}) \boxplus T_2(\vec{v}) \\ &= T_2(\vec{v}) \boxplus T_1(\vec{v}) \\ &= (T_2+T_1)(\vec{v}) \end{aligned} \qquad \text{(commutativity of } \boxplus)$$
 So $T_1+T_2=T_2+T_1$

A3. Let $T_1, T_2, T_3 \in \mathcal{L}(V, W)$. Then, for any $\vec{v} \in V$,

$$\begin{split} \big(T_1 + (T_2 + T_3)\big)(\vec{v}) &= T_1(\vec{v}) \boxplus (T_2 + T_3)(\vec{v}) \\ &= T_1(\vec{v}) \boxplus \big(T_2(\vec{v}) \boxplus T_3(\vec{v})\big) \\ &= \big(T_1(\vec{v}) \boxplus T_2(\vec{v})\big) \boxplus T_3(\vec{v}) \\ &= (T_1 + T_2)(\vec{v}) \boxplus T_3(\vec{v}) \\ &= \big((T_1 + T_2) + T_3\big)(\vec{v}) \end{split} \tag{associativity of } \boxminus$$

A4. We define $0_{\mathcal{L}(V,W)}$ as the map:

$$0_{\mathcal{L}(V,W)}(\vec{v}) = \vec{0}_W \quad \text{ for all } \vec{v} \in V$$

Let $T \in \mathcal{L}(V, W)$ and $\vec{v} \in V$. Observe that

$$\begin{split} \big(T + 0_{\mathcal{L}(V,W)}\big)(\vec{v}) &= T(\vec{v}) \boxplus 0_{\mathcal{L}(V,W)}(\vec{v}) \\ &= T(\vec{v}) \boxplus \vec{0}_W \\ &= T(\vec{v}) \end{split} \qquad \text{(additive identity of W)} \\ \text{Thus } T + 0_{\mathcal{L}(V,W)} &= T. \end{split}$$

A5. Let $T \in \mathcal{L}(V, W)$. We define $-T \in \mathcal{L}(V, W)$ as

$$(-T)(\vec{v}) = -(T(\vec{v}))$$
 for each $\vec{v} \in V$ (we skip showing $-T \in \mathcal{L}(V, W)$)

Let $T \in \mathcal{L}(V, W)$ and $\vec{v} \in V$. Observe that

$$(T + (-T))(\vec{v}) = T(\vec{v}) \boxplus (-T)(\vec{v})$$

$$= T(\vec{v}) \boxplus -(T(\vec{v}))$$

$$= \vec{0}_{W}$$

$$= 0_{\mathcal{L}(V,W)}(\vec{v})$$
Thus $T + (-T) = 0_{\mathcal{L}(V,W)}$

S1. Let $r \in \mathbb{R}$, $\vec{v} \in V$ and $T \in \mathcal{L}(V, W)$. Then

$$(rT)(\vec{v}) = r \boxdot T(\vec{v}) \in W$$

So $rT: V \to W$. Now linearity!

Let $\vec{v}_1, \vec{v}_2 \in V$ and $k \in \mathbb{R}$. Then

$$rT(\vec{v}_1 + k\vec{v}_2) = r \boxdot T(\vec{v}_1 + k\vec{v}_2)$$

$$= r \boxdot (T(\vec{v}_1) \boxplus k \boxdot T(\vec{v}_2)) \qquad \text{(linearity of } T_1)$$

$$= r \boxdot T(\vec{v}_1) \boxplus r \boxdot (k \boxdot T(\vec{v}_2)) \qquad \text{(distributivity of } \boxdot)$$

$$= (rT)(\vec{v}_1) \boxplus k \boxdot (r \boxdot T(\vec{v}_2)) \qquad \text{(associativity of } \boxdot)$$

$$= (rT)(\vec{v}_1) \boxplus k \boxdot (rT)(\vec{v}_2)$$
So $rT \in \mathcal{L}(V, W)$

S2. Let $a \in \mathbb{R}$ and $T_1, T_2 \in \mathcal{L}(V, W)$. Then, for any $\vec{v} \in V$,

$$(a(T_1 + T_2))(\vec{v}) = a \boxdot (T_1 + T_2)(\vec{v})$$

$$= a \boxdot (T_1(\vec{v}) \boxplus T_2(\vec{v}))$$

$$= a \boxdot T_1(\vec{v}) \boxplus a \boxdot T_2(\vec{v})$$

$$= (aT_1)(\vec{v}) \boxplus (aT_2)(\vec{v})$$

$$= (aT_1 + aT_2)(\vec{v})$$
So $a(T_1 + T_2) = aT_1 + aT_2$ (distributivity of \boxdot)

S3. Let $a, b \in \mathbb{R}$ and $T \in \mathcal{L}(V, W)$. Let $\vec{v} \in V$, then

$$((a+b)T)(\vec{v}) = (a+b) \boxdot T(\vec{v})$$

$$= a \boxdot T(\vec{v}) \boxplus b \boxdot T(\vec{v})$$
 (distributivity of \boxdot over scalar +)
$$= (aT)(\vec{v}) \boxplus (bT)(\vec{v})$$

$$= (aT+bT)(\vec{v})$$
So $(a+b)T = aT+bT$

S4. Let $a, b \in \mathbb{R}$ and $T \in \mathcal{L}(V, W)$. Let $\vec{v} \in V$, then

$$(a(bT))(\vec{v}) = a \boxdot (bT)(\vec{v})$$

$$= a \boxdot (b \boxdot T(\vec{v}))$$

$$= (ab) \boxdot T(\vec{v})$$

$$= ((ab)T)(\vec{v})$$
(© properties in W)
$$= ((ab)T)(\vec{v})$$
So $a(bT) = (ab)T$

S5. Let $T \in \mathcal{L}(V, W)$. Then

$$(1T)(\vec{v}) = 1 \boxdot T(\vec{v})$$
$$= T(\vec{v})$$
So $1T = T$

One-Dimensional Vector Spaces

Question

Suppose that V is one dimensional.

Show that every $T \in \mathcal{L}(V, V)$ has the form T(v) = kv for some k.

TA Notes:

- ▶ Suppose $V = \text{span}\{v_1\}$.
- ▶ For any linear map $T \in \mathcal{L}(V, V)$ we get: $T(v_1) \in V = \text{span}\{v_1\} \Rightarrow T(v_1) = t_1v_1$.
- ▶ Picking $k = t_1$ gives T(v) = kv for all $v \in V$.

4/10

Since V has dimension 1, there exists a basis $\{\vec{v}_1\}$ for V. Let $T \in \mathcal{L}(V,V)$ and $\vec{v} \in V$. Since $\vec{v} \in V$ and $T: V \to V$, we must have $T(\vec{v}) \in V$. So, there exists $a,b \in \mathbb{R}$ such that $\vec{v} = a\vec{v}_1$ and $T(\vec{v}) = b\vec{v}_1$. Thus

$$T(\vec{v}) = T(a\vec{v}_1)$$

$$= aT(\vec{v}_1)$$

$$= a(b\vec{v}_1)$$

$$= b(a\vec{v}_1)$$

$$= b\vec{v}$$

$$(T(\vec{v}) = b\vec{v}_1)$$

So take k = b and you will have $T(\vec{v}) = k\vec{v}$ for any $\vec{v} \in V$

Products

Definition (LADR p.55)

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ then $ST \in \mathcal{L}(U, W)$ is given:

$$ST(u) = S(T(u))$$

(This will turn out to be the product of the matrices for S and T.)

Question

Verify that $ST \in \mathcal{L}(U, W)$. Check linearity and that the composition makes sense.

5/10

1. Let $S, T \in \mathcal{L}(U, W)$ and let $u \in U$. Then

$$ST(u) = S(T(u))$$

= $S(v)$
 $\in W$
So $ST: U \to W$ $(T(u) \in V \text{ by definition of } T)$

2. Let $S, T \in \mathcal{L}(U, W)$ and let $u_1, u_2 \in U$ and $r \in \mathbb{R}$

$$ST(u_1 + ru_2) = S(T(u_1 + ru_2))$$

$$= S(T(u_1) + rT(u_2))$$
 (linearity of T)
$$= S(T(u_1)) + rS(T(u_2))$$
 (linearity of S)
$$= ST(u_1) + rST(u_2)$$

So ST is linear! Meaning $ST \in \mathcal{L}(U, W)$

Towards Matrices

Question

Suppose that $\dim(V) = n$ and $\dim(W) = k$. Informally show that $\dim(\mathcal{L}(V, W)) = nk$.

- ▶ Pick bases on both sides. $V = \text{span}\{v_1, ..., v_n\}$ and $W = \text{span}\{w_1, ..., w_k\}$.
- ► $T(v) = T(t_1v_1 + \cdots + t_nv_n) = t_1T(v_1) + \cdots + t_nT(v_n)$. The output of each $T(v_i)$ has at most k non-zero coefficients.
- ▶ Any linear map is determind by *nk* coefficients.

The formal proof is to define the basic maps $T_{ij}(v_i) = w_j$ where v_i is sent to w_j and every other basis element is sent to zero. You then must show these span and are linearly independent.

Suppose $\{v_1, \dots, v_n\}$ is a basis for V and $\{w_1, \dots, w_k\}$ is a basis for W. Let $T \in \mathcal{L}(V, W)$ and $v \in V$. Then

6/10

$$\begin{split} T(v) &= T(a_1v_1 + \dots + a_nv_n) \\ &= a_1T(v_1) + \dots + a_nT(v_n) \\ &= a_1\big(b_{1,1}w_1 + \dots + b_{1,k}w_k\big) + \dots + a_n\big(b_{n,1}w_1 + \dots + b_{n,k}w_k\big) \\ &= a_1b_{1,1}w_1 + \dots + a_1b_{1,k}w_k + \dots + a_nb_{n,1}w_1 + \dots + a_nb_{n,k}w_k \end{split}$$

Notice that the value of T(v) is determined completely by nk coefficients:

Trotice that the value of 1 (v) is determined to				
	1	2	•••	n
1	$a_1b_{1,1}$	$a_2b_{2,1}$		$a_n b_{n,1}$
2	$a_1b_{1,2}$	$a_2b_{2,2}$		$a_n b_{n,2}$
:	:	:	••	:
k	$a_1b_{1,k}$	$a_2b_{2,k}$	•••	$a_n b_{n,k}$

Find a Linear Dependence

Question

Consider the linear maps $T^k \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ given by powers of:

$$T = \begin{bmatrix} 4 & 1 \\ 2 & -1 \end{bmatrix}$$

The powers of T are linearly dependent because $\mathcal{L}(\mathbb{R}^2,\mathbb{R}^2)$ is finite dimensional. Find a linear dependence.

TA Note: Computing powers we get:

$$T^0 = I$$
 $T = \begin{bmatrix} 4 & 1 \\ 2 & -1 \end{bmatrix}$ $T^2 = \begin{bmatrix} 18 & 3 \\ 6 & 3 \end{bmatrix} = 3 \begin{bmatrix} 6 & 1 \\ 2 & 1 \end{bmatrix}$

This gives:

$$\begin{bmatrix} 4 & 1 \\ 2 & -1 \end{bmatrix}^2 - 3 \begin{bmatrix} 4 & 1 \\ 2 & -1 \end{bmatrix} + 6I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

7/10

Notice that $\{T^0, T^1, T^2, ...\}$ is an infinite set of vectors in $\mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$. We argued previously that $\dim(\mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)) = 2 \cdot 2 = 4$. So, it is definitely linearly dependent.

$$T^{0} = I$$

$$T = \begin{bmatrix} 4 & 1 \\ 2 & -1 \end{bmatrix}$$

$$T^{2} = \begin{bmatrix} 18 & 3 \\ 6 & 3 \end{bmatrix}$$

Set up independence relation:

$$c_0 T^0 + c_1 T + c_2 T^2 = \vec{0}$$

This gives linear system:

$$c_0 + 4c_1 + 18c_2 = 0$$

$$c_1 + 3c_2 = 0$$

$$2c_1 + 6c_2 = 0$$

$$c_0 - c_1 + 3c_2 = 0$$

Non-trivial solution: $c_0 = -6$, $c_1 = -3$, $c_2 = 1$

Give an Example (1)

Question

Give an example of a linear map T with dim(null(T)) = 3 and dim(image(R)) = 2.

TA Note: Let $T: \mathbb{R}^5 \to \mathbb{R}^5$.

$$T \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Let $T: V \to W$ be a linear map. By Rank-Nullity Theorem (Fundamental Theorem of Linear Transformations),

$$\dim(\operatorname{null}(T)) + \dim(\operatorname{image}(T)) = \dim V$$

 $\Rightarrow \dim V = 3 + 2 = 5$

8/10

Let's take V to be the easiest 5-dimensional vector space: \mathbb{R}^5 Since image(T) $\subseteq W$, we need W to be at least 2-dimensional. Let's take $\mathbb{R}^2 = W$

Then define $T: \mathbb{R}^5 \to \mathbb{R}^2$ as

$$T\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

1. We first show that $\dim(\text{null}(T)) = 3$.

We want to solve $T(\vec{x}) = \vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. We will show that $\left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$ is a basis for the null

space.

Let
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \in \operatorname{null}(T)$$
. Then $T(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Note then that $x_1 = x_2 = 0$. So $x = \begin{bmatrix} 0 \\ 0 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$.

We now suppose

$$x = c_1 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 \\ 0 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Thus $c_1 = x_3$, $c_2 = x_4$, $c_3 = x_5$ is the unique linear combination of the vectors in

$$\left\{ \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}, \text{ proving the null space has dimension 3.}$$

- 2. By Rank-Nullity, we must have $\dim(\text{null}(T)) + \dim(\text{image}(T)) = 5$
 - \Rightarrow 3 + dim(image(T)) = 5
 - $\Rightarrow \dim(\mathrm{image}(T)) = 2$

Give an Example (2)

Question

Give an example of a linear map $T \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^4)$ with $\dim(\operatorname{null}(T)) = \dim(\operatorname{image}(T))$.

TA Note: Let $T: \mathbb{R}^4 \to \mathbb{R}^4$.

$$\mathcal{T} \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \end{bmatrix}$$

9/10

By Rank-Nullity, notice that

$$\dim(\operatorname{null}(T)) + \dim(\operatorname{image}(T)) = \dim(\mathbb{R}^4)$$

- $\Rightarrow 2 \dim(\text{null}(T)) = 4$
- $\Rightarrow \dim(\operatorname{null}(T)) = 2$

So we need a transformation with nullity 2 and rank 2. Let's take

$$T\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \end{bmatrix}$$

1. We first show that $\dim(\text{null}(2)) = 3$.

We want to solve $T(\vec{x}) = \vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. We will show that $\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a basis for the null space.

Let
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \text{null}(T)$$
. Then $T(x) = \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Note then that $x_1 = x_3 = 0$. So $x = \begin{bmatrix} 0 \\ x_2 \\ 0 \\ x_4 \end{bmatrix}$. We

now suppose
$$x = c_1 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 \\ x_2 \\ 0 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ c_1 \\ 0 \\ c_2 \end{bmatrix}$$

Thus $c_1 = x_2$, $c_2 = x_4$ is the unique linear combination of the vectors in $\{\begin{bmatrix} 0\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\end{bmatrix} \}$, proving the null space has dimension 2.

- 2. By Rank-Nullity, we must have $\dim(\text{null}(T)) + \dim(\text{image}(T)) = 4$
 - \Rightarrow 2 + dim(image(T)) = 4
 - $\Rightarrow \dim(\mathrm{image}(T)) = 2$

Prove There is No Example (2)

Question

Prove there is no example of a linear map $T \in \mathcal{L}(\mathbb{R}^5,\mathbb{R}^5)$ with

$$\mathsf{dim}(\mathsf{null}(T)) = \mathsf{dim}(\mathsf{image}(T))$$

TA Note: By rank-nullity:

$$5 = \dim(\mathbb{R}^5) = \dim(\mathsf{null}(\mathcal{T})) + \dim(\mathsf{image}(\mathcal{T}))$$

However, dimension is always a whole number and five is odd. Therefore, there is no such map.

Suppose, for contradiction, there is such $T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^5)$. By rank-nullity,

$$\dim \left(\operatorname{null}(T)\right) + \dim \left(\operatorname{image}(T)\right) = \dim(\mathbb{R}^5)$$

 $\Rightarrow 2 \dim(\text{null}(T)) = 5$

10/10

$$\Rightarrow \dim(\operatorname{null}(T)) = \frac{5}{2} \notin \mathbb{Z}$$

We obtain a contradiction since dimension must be an integer! So such a \mathcal{T} cannot exist.