Importing Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
from matplotlib import rcParams
import warnings
In [5]
warnings.filterwarnings(action='ignore')
warnings.warn('this is a warning!')
```

Reading the Dataset

In [6]:

data = pd.read_csv(r'C:\Users\Cloud\Desktop\water quality
analysis\Data\water_dataX.csv',encoding='ISO-8859-1',low_memory=False)

Analysing the Data

In [7]:
data.head()

	Station code	LOCATION	S STATE	Temp	D.O. (mg/l)	PH	CONDUCT IVITY (µmhos/c m)	B.O. D. (mg /l)	NITRATE NAN N+ NITRITE NANN (mg/l)	FECAL COLIFO RM (MPN/ 100ml)	TOTAL COLIFOR M (MPN/1 00ml)Me an	Year
0	1393	DAMANGA NGA AT D/S OF MADHUBA N, DAMAN	DAMA N & DIU	30.6	6.7 v., 7.5	₹ _\ 5	203	NA N	0.1	11	27	2014
1	1399	ZUARI AT D/S OF PT. WHERE KUMBARJR IA CANAL JOI	GOA	29.8	5.7	7.2	189	2	0.2	4953	8391	2014
2	1475	ZUARI AT PANCHAW ADI	GOA	29.5	6.3	6.9	179	1.7	0.1	3243	5330	2014
3	3181	RIVER ZUARI AT BORIM BRIDGE	GOA	29.7	5.8	6.9	64	3.8	0.5	5382	8443	2014
4	3182	RIVER ZUARI AT MARCAIM JETTY	GOA	29.5	5.8	7.3	83	1.9	0.4	3428	5500	2014

year

count 1991.000000

mean 2010.038172

std 3.057333

min 2003.000000

25% 2008.000000

50% 2011.000000

75% 2013.000000

max 2014.000000

data.info()

RangeIndex: 1991 entries, 0 to 1990
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	STATION CODE	1991 non-null	object
1	LOCATIONS	1991 non-null	object
2	STATE	1991 non-null	object
3	Temp	1991 non-null	object
4	D.O. $(mg/1)$	1991 non-null	object
5	PH	1991 non-null	object
6	CONDUCTIVITY (µmhos/cm)	1991 non-null	object
7	B.O.D. $(mg/1)$	1991 non-null	object
8	NITRATENAN N+ NITRITENANN (mg/l)	1991 non-null	object
9	FECAL COLIFORM (MPN/100ml)	1991 non-null	object
10	TOTAL COLIFORM (MPN/100ml)Mean	1991 non-null	object
11	year	1991 non-null	int64

dtypes: int64(1), object(11)
memory usage: 186.8+ KB

In [10]:

data.shape

Out[10]:

(1991, 12)

Checking for missing values

In [11]:
data.isnull().any()

Out[11]:

```
STATION CODE
                                     False
LOCATIONS
                                     False
STATE
                                     False
Temp
                                     False
D.O. (mg/1)
                                     False
                                     False
CONDUCTIVITY (umhos/cm)
                                     False
B.O.D. (mg/1)
                                    False
NITRATENAN N+ NITRITENANN (mg/l)
                                   False
FECAL COLIFORM (MPN/100ml)
                                    False
TOTAL COLIFORM (MPN/100ml) Mean
                                    False
year
                                     False
dtype: bool
                                                                        In [12]:
data.isnull().sum()
                                                                       Out[12]:
STATION CODE
                                     0
                                     0
LOCATIONS
STATE
                                     0
                                     0
Temp
D.O. (mg/1)
                                     0
                                     0
CONDUCTIVITY (µmhos/cm)
                                     \cap
B.O.D. (mq/1)
                                     0
NITRATENAN N+ NITRITENANN (mg/l)
                                     0
FECAL COLIFORM (MPN/100ml)
                                     \cap
TOTAL COLIFORM (MPN/100ml) Mean
                                     0
year
dtype: int64
                                                                        In [13]:
data.dtypes
STATION CODE
                                     object
LOCATIONS
                                     object
STATE
                                     object
Temp
                                     object
D.O. (mg/1)
                                     object
                                     object
CONDUCTIVITY (µmhos/cm)
                                     object
B.O.D. (mg/1)
                                     object
NITRATENAN N+ NITRITENANN (mg/l)
                                    object
FECAL COLIFORM (MPN/100ml)
                                     object
TOTAL COLIFORM (MPN/100ml) Mean
                                    object
year
                                      int64
dtype: object
data['Temp']=pd.to numeric(data['Temp'],errors='coerce')
data['D.O. (mg/l)']=pd.to numeric(data['D.O. (mg/l)'],errors='coerce')
data['PH']=pd.to numeric(data['PH'],errors='coerce')
data['B.O.D. (mg/l)']=pd.to numeric(data['B.O.D. (mg/l)'],errors='coerce')
data['CONDUCTIVITY (µmhos/cm)']=pd.to numeric(data['CONDUCTIVITY
(µmhos/cm)'],errors='coerce')
data['NITRATENAN N+ NITRITENANN (mg/l)']=pd.to numeric(data['NITRATENAN N+
NITRITENANN (mg/l)'],errors='coerce')
data['TOTAL COLIFORM (MPN/100ml)Mean']=pd.to numeric(data['TOTAL COLIFORM
(MPN/100ml)Mean'],errors='coerce')
```

```
data.dtypes
```

```
STATION CODE
                                       object
LOCATIONS
                                       object
STATE
                                      object
Temp
                                      float64
                                     float64
D.O. (mg/1)
                                     float64
                                     float64
CONDUCTIVITY (µmhos/cm)
B.O.D. (mq/1)
                                     float64
NITRATENAN N+ NITRITENANN (mg/l)
                                     float64
FECAL COLIFORM (MPN/100ml)
                                      object
TOTAL COLIFORM (MPN/100ml) Mean
                                     float64
year
                                       int64
dtype: object
                                                                         In [15]:
data.isnull().sum()
                                                                        Out[15]:
STATION CODE
                                        0
LOCATIONS
                                        0
STATE
                                        0
Temp
                                       92
D.O. (mg/1)
                                       31
                                       8
PΗ
CONDUCTIVITY (umhos/cm)
                                       25
B.O.D. (mq/1)
                                      43
NITRATENAN N+ NITRITENANN (mg/l)
                                     225
FECAL COLIFORM (MPN/100ml)
                                       0
TOTAL COLIFORM (MPN/100ml) Mean
                                     132
                                        0
year
dtype: int64
Fill the Null Values
                                                                         In [16]:
data['Temp'].fillna(data['Temp'].mean(),inplace=True)
data['D.O. (mg/l)'].fillna(data['D.O. (mg/l)'].mean(),inplace=True)
data['PH'].fillna(data['PH'].mean(),inplace=True)
data['CONDUCTIVITY (umhos/cm)'].fillna(data['CONDUCTIVITY
(µmhos/cm)'].mean(),inplace=True)
data['B.O.D. (mg/l)'].fillna(data['B.O.D. (mg/l)'].mean(),inplace=True)
data['NITRATENAN N+ NITRITENANN (mg/l)'].fillna(data['NITRATENAN N+
NITRITENANN (mg/l)'].mean(),inplace=True)
data['TOTAL COLIFORM (MPN/100ml)Mean'].fillna(data['TOTAL COLIFORM
(MPN/100ml)Mean'].mean(),inplace=True)
                                                                         In [17]:
data.drop(["FECAL COLIFORM (MPN/100ml)"],axis=1,inplace=True)
Renaming the Column Names
                                                                         In [18]:
data=data.rename(columns = {'D.O. (mg/l)': 'do'})
data=data.rename(columns = {'CONDUCTIVITY (\u03bcmhos/cm)': 'co'})
data=data.rename(columns = {'B.O.D. (mg/l)': 'bod'})
data=data.rename(columns = {'NITRATENAN N+ NITRITENANN (mg/l)': 'na'})
```

```
data=data.rename(columns = {'TOTAL COLIFORM (MPN/100ml)Mean': 'tc'})
data=data.rename(columns = {'STATION CODE': 'station'})
data=data.rename(columns = {'LOCATIONS': 'location'})
data=data.rename(columns = {'STATE': 'state'})
data=data.rename(columns = {'PH': 'ph'})
                                                                                  In [19]:
data
stationlocationstateTempdophcobodnatcyear01393DAMANGANGA AT D/S OF MADHUBAN, DAMANDAMAN &
DIU30.6000006.77.5203.06.9400490.10000027.0201411399ZUARI AT D/S OF PT. WHERE KUMBARJRIA CANAL
JOI...GOA29.8000005.77.2189.02.0000000.2000008391.0201421475ZUARI AT
PANCHAWADIGOA29.5000006.36.9179.01.7000000.1000005330.0201433181RIVER ZUARI AT BORIM
BRIDGEGOA29.7000005.86.964.03.8000000.5000008443.0201443182RIVER ZUARI AT MARCAIM
JETTYGOA29.5000005.87.383.01.9000000.4000005500.02014.......19861330TAMBIRAPARANI AT
ARUMUGANERI, TAMILNADUNAN26.2098147.9738.07.22.7000000.518000202.0200319871450PALAR AT
VANIYAMBADI WATER SUPPLY HEAD WORK,
T...NAN29.0000007.5585.06.32.6000000.155000315.0200319881403GUMTI AT U/S SOUTH
TRIPURA,TRIPURANAN28.0000007.698.06.21.2000001.623079570.0200319891404GUMTI AT D/S SOUTH TRIPURA,
TRIPURANAN28.0000007.791.06.51.3000001.623079562.0200319901726CHANDRAPUR, AGARTALA D/S OF
HAORA RIVER, TRIPURANAN29.0000007.6110.05.71.1000001.623079546.02003
1991 rows × 11 columns
Water Quality Index (WQI) Calculation
a)Claculation of pH
                                                                                  In [20]:
data['npH']=data.ph.apply(lambda x: (100 if(8.5)=x)=7)
                                     else(80 if(8.6>=x>=8.5) or (6.9>=x>=6.8)
                                        else (60 if(8.8>=x>=8.6) or (6.8>=x>=6.7)
                                            else(40 if(9>=x>=8.8) or
(6.7 >= x >= 6.5)
                                                 else 0)))))
b)calculation of dissolved oxygen
                                                                                  In [21]:
data['ndo'] = data.do.apply(lambda x: (100 if(x>=6))
                                     else(80 if(6>=x>=5.1)
                                        else (60 \text{ if}(5)=x>=4.1)
                                            else(40 if(4>=x>=3)
                                                 else 0)))))
c)calculation of total coliform
                                                                                  In [22]:
data['nco']=data.tc.apply(lambda x: (100 if(5>=x>=0))
                                     else(80 if(50>=x>=5)
                                        else (60 if(500>=x>=50)
                                            else(40 if(10000>=x>=500)
                                                 else 0)))))
d)calculation of B.D.O
                                                                                  In [23]:
data['nbdo']=data.bod.apply(lambda x:(100 if(3 \ge x \ge 0)
                                     else(80 if(6>=x>=3)
```

```
else (60 if(80>=x>=6)
   else(40 if(125>=x>=80)
        else 0)))))
```

In [26]:

```
e)calculation of electric conductivity
```

f)calculation of nitrate

Calculation of Water Quality Index WQI

RE

data['wph']=data.npH*0.165
data['wdo']=data.ndo*0.281
data['wbdo']=data.nbdo*0.234
data['wec']=data.nec*0.009
data['wna']=data.nna*0.028
data['wco']=data.nco*0.281
data['wqi']=data.wph+data.wdo+data.wbdo+data.wec+data.wna+data.wco
data

st at io n	lo ca ti on	state	Te m p	do	p h	c 0	b o d	na	tc		n b d o	n e c	n n a	w p h	w d o	w b d o	w e c	w n a	w c o	w q i	
		KUM BARJ RIA CAN AL JOI																			
2	14 75	ZUAR I AT PANC HAW ADI	G O A	29. 50 00 00	6 . 3	6. 9	1 7 9. 0	1.7 00 00 0	0.1 00 00 0	5 3 3 0. 0		1 0 0	6	1 0 0	1 3	2 8. 1 0	2 3. 4 0	0 5 4	2 . 8	1 1. 2 4	7 9. 2 8
3	31 81	RIVER ZUAR I AT BORI M BRID GE	G O A	29. 70 00 00	5 8	6. 9	6 4. 0	3.8 00 00 0	0.5 00 00 0	8 4 4 3. 0		8 0	1 0 0	1 0 0	1 3 2	2 2. 4 8	1 8. 7 2	0 9 0	2 . 8	1 1. 2 4	6 9. 3 4
4	31 82	RIVER ZUAR I AT MAR CAIM JETTY	G O A	29. 50 00 00	5 8	7. 3	8 3. 0	1.9 00 00 0	0.4 00 00 0	5 5 0 0. 0		1 0 0	8 0	1 0 0	1 6 5	2 2. 4 8	2 3. 4 0	0 7 2	2 . 8	1 1. 2 4	7 7. 1 4
1 9 8 6	13 30	TAM BIRA PARA NI AT ARU MUG ANER I, TAMI LNAD U	N A N	26. 20 98 14	7 9	7 3 8. 0	7. 2	2.7 00 00 0	0.5 18 00 0	2 0 2. 0		1 0 0	1 0 0	1 0 0	0 . 0	2 8. 1 0	2 3. 4 0	0 9 0	2 . 8	1 6. 8 6	7 2. 0 6

st at io n	lo ca ti on	state	Te m p	do	p h	c 0	b o d	na	tc	•••	n b d o	n e c	n n a	w p h	w d o	w b d o	w e c	w n a	w c o	w q i	
1 9 8 7	14 50	PALA R AT VANI YAM BADI WAT ER SUPP LY HEAD WOR K, T	N A N	29. 00 00 00	7 . 5	5 8 5. 0	6. 3	2.6 00 00 0	0.1 55 00 0	3 1 5. 0		1 0 0	1 0 0	1 0 0	0 . 0	2 8. 1 0	2 3. 4 0	0 . 9 0	2 . 8	1 6. 8 6	7 2. 0 6
1 9 8 8	14 03	GUM TI AT U/S SOUT H TRIP URA, TRIP URA	N A N	28. 00 00 00	7 6	9 8. 0	6. 2	1.2 00 00 0	1.6 23 07 9	5 7 0. 0		1 0 0	1 0 0	1 0 0	0 . 0	2 8. 1 0	2 3. 4 0	0 9 0	2 . 8	1 1. 2 4	6 6. 4 4
1 9 8 9	14 04	GUM TI AT D/S SOUT H TRIP URA, TRIP URA	N A N	28. 00 00 00	7 7	9 1. 0	6. 5	1.3 00 00 0	1.6 23 07 9	5 6 2. 0		1 0 0	1 0 0	1 0 0	0 . 0	2 8. 1 0	2 3. 4 0	0 9 0	2 . 8	1 1. 2 4	6 6. 4 4
1 9 9 0	17 26	CHA NDR APUR , AGAR TALA D/S OF HAO RA RIVER , TRIP URA	N A N	29. 00 00 00	7 6	1 1 0. 0	5. 7	1.1 00 00 0	1.6 23 07 9	5 4 6. 0		1 0 0	1 0 0	1 0 0	0 . 0	2 8. 1 0	2 3. 4 0	0 . 9 0	2 . 8	1 1. 2 4	6 6. 4 4

Water Quality Index (WQI) Calculation

```
a)Claculation of pH
```

```
In [20]:
data['npH']=data.ph.apply(lambda x: (100 if(8.5)=x)=7)
                                     else(80 if(8.6>=x>=8.5) or (6.9>=x>=6.8)
                                        else (60 \text{ if} (8.8 \ge x \ge 8.6) \text{ or } (6.8 \ge x \ge 6.7)
                                             else(40 if(9>=x>=8.8) or
(6.7 >= x >= 6.5)
                                                  else (0)))))
b)calculation of dissolved oxygen
                                                                                   In [21]:
data['ndo'] = data.do.apply(lambda x: (100 if(x>=6)
                                      else(80 if(6>=x>=5.1)
                                        else (60 \text{ if} (5 >= x >= 4.1)
                                             else(40 if(4>=x>=3)
                                                  else (0))))))
c)calculation of total coliform
                                                                                   In [22]:
data['nco']=data.tc.apply(lambda x: (100 if(5>=x>=0)
                                      else(80 \text{ if}(50 >= x >= 5)
                                        else (60 if(500>=x>=50)
                                             else(40 if(10000>=x>=500)
                                                  else 0)))))
d)calculation of B.D.O
                                                                                   In [23]:
data['nbdo']=data.bod.apply(lambda x:(100 if(3>=x>=0)
                                      else(80 if(6>=x>=3)
                                        else (60 \text{ if} (80 >= x >= 6)
                                             else(40 if(125>=x>=80)
                                                  else ((())))))
e)calculation of electric conductivity
                                                                                   In [24]:
data['nec']=data.co.apply(lambda x:(100 if(75>=x>=0)
                                      else(80 if(150 >= x >= 75)
                                        else (60 if(225>=x>=150)
                                             else(40 if(300>=x>=225)
                                                  else 0)))))
f)calculation of nitrate
                                                                                   In [25]:
data['nna']=data.na.apply(lambda x:(100 if(20>=x>=0)
                                      else(80 if(50>=x>=20)
                                        else (60 \text{ if} (100 >= x >= 50)
                                             else(40 if(200>=x>=100)
                                                  else 0)))))
Calculation of Water Quality Index WQI
                                                                                   In [26]:
data['wph']=data.npH*0.165
data['wdo']=data.ndo*0.281
```

```
data['wbdo']=data.nbdo*0.234
data['wec']=data.nec*0.009
data['wna']=data.nna*0.028
data['wco']=data.nco*0.281
data['wqi']=data.wph+data.wdo+data.wbdo+data.wec+data.wna+data.wco
data
```

stationlocationstateTempdophcobodnatc...nbdonecnnawphwdowbdowecwnawcowqi01393DAMANGANGA AT D/S OF MADHUBAN, DAMANDAMAN &

DIU30.6000006.77.5203.06.9400490.10000027.0...606010016.528.1014.040.542.822.4884.4611399ZUARI AT D/S OF PT. WHERE KUMBARIRIA CANAL

JOI...GOA29.8000005.77.2189.02.0000000.2000008391.0...1006010016.522.4823.400.542.811.2476.9621475ZUARI AT

PANCHAWADIGOA29.5000006.36.9179.01.7000000.1000005330.0...1006010013.228.1023.400.542.811.2479.28331 81RIVER ZUARI AT BORIM

BRIDGEGOA29.7000005.86.964.03.8000000.5000008443.0...8010010013.222.4818.720.902.811.2469.3443182RIVER ZUARI AT MARCAIM

TAMILNADUNAN26.2098147.9738.07.22.7000000.518000202.0...1001001000.028.1023.400.902.816.8672.0619871 450PALAR AT VANIYAMBADI WATER SUPPLY HEAD WORK,

T...NAN29.0000007.5585.06.32.6000000.155000315.0...1001001000.028.1023.400.902.816.8672.0619881403GUMTI AT U/S SOUTH

TRIPURA,TRIPURANAN28.0000007.698.06.21.2000001.623079570.0...1001001000.028.1023.400.902.811.2466.4419 891404GUMTI AT D/S SOUTH TRIPURA,

TRIPURANAN28.0000007.791.06.51.3000001.623079562.0...1001001000.028.1023.400.902.811.2466.4419901726C HANDRAPUR, AGARTALA D/S OF HAORA RIVER,

TRIPURANAN29.0000007.6110.05.71.1000001.623079546.0...1001001000.028.1023.400.902.811.2466.44

1991 rows \times 24 columns

Calculation of overall WQI for each year

```
In [27]:
average = data.groupby('year')['wqi'].mean()
average.head()
                                                                        Out[27]:
year
2003 66.239545
2004
       61.290000
        73.762689
2005
2006
        72.909714
2007
        74.233000
Name: wqi, dtype: float64
Data Visualization
```

Univariate analysis

a)displot

```
In [28]:
sns.displot(data.Temp)
plt.show()
sns.displot(data.Temp)
plt.show()
```


sns.displot(data.do)
plt.show()

sns.displot(data.bod)
plt.show()

sns.displot(data.na)
plt.show()

sns.displot(data.na)
plt.show()

sns.displot(data.year)
plt.show()

sns.displot(data.year)
plt.show()

b)countplot

sns.countplot(data.ph)
plt.show()

sns.distplot(data.npH)
plt.show()

In [33]:

sns.distplot(data.nco)
plt.show()

sns.distplot(data.nec)
plt.show()

c)pie chart

In [37]:
plt.pie(data.year.value_counts(),[0.1,0,0,0,0,0,0,0,0,0,0],labels=[2012,2
013,2014,2011,2010,2009,2008,2007,2005,2006,2003,2004],autopct='%1.1f%%')
plt.title('YEAR')
plt.show()


```
plt.pie(data.wph.value_counts(),[0,0.2,0,0,0],labels=[16.5,0.0,13.2,6.6,9.9
],autopct='%1.1f%%')
plt.title('wph')
plt.show()
```


plt.pie(data.wec.value_counts(),labels=[0,0.90,0.72,0.54,0.36],autopct='%1.
1f%%')
plt.title('wec')
plt.show()

plt.pie(data.nbdo.value_counts(),labels=[100,60,80,0,40],autopct='%1.1f%%')
plt.title('nbdo')
plt.show()

plt.pie(data.wco.value_counts(),labels=[11.24,16.86,0,22.48,28.10],autopct=
'%1.1f%%')
plt.title('wco')
plt.show()

nbdo

Bivariate analysis a)Line plot

sns.lineplot(data.ph,data.do)
plt.show()

In [42]:

sns.lineplot(data.co,data.bod)
plt.show()

sns.lineplot(data.na,data.tc)
plt.show()

sns.lineplot(data.npH, data.ndo)
plt.show()

sns.lineplot(data.nco,data.nbdo)
plt.show()

sns.lineplot(data.nec,data.nna)
plt.show()

sns.lineplot(data.wph,data.wdo)
plt.show()

sns.lineplot(data.wbdo,data.wec)
plt.show()

sns.lineplot(data.wna,data.wco)
plt.show()

b)Scatter plot

sns.scatterplot(data.ph,data.bod)
plt.show()

30000

ph

20000

40000

50000

60000

70000

sns.scatterplot(data.co,data.do)
plt.show()

10000

In [51]:

sns.scatterplot(data.bod,data.na)
plt.show()

sns.scatterplot(data.co,data.tc)
plt.show()

sns.scatterplot(data.npH, data.nbdo)
plt.show()

sns.scatterplot(data.nco,data.nna)
plt.show()

sns.scatterplot(data.nco,data.nna)
plt.show()

sns.scatterplot(data.nco,data.nna)
plt.show()

sns.scatterplot(data.nbdo,data.nec)
plt.show()

sns.scatterplot(data.wph,data.wec)
plt.show()

sns.scatterplot(data.wdo,data.wbdo)
plt.show()

sns.scatterplot(data.wbdo,data.wco)
plt.show()

sns.scatterplot(data.wec,data.wna)
plt.show()

Multivariate analysis

data.hist(figsize=(17,17))
plt.show()

In [63]:

Label Encoding

from sklearn.preprocessing import LabelEncoder

In [65]:

In [64]:

le=LabelEncoder()

In [66]:

data.location=le.fit_transform(data.location)
data.state=le.fit_transform(data.state)
data.head()

 $station location state Tempdoph cobodnatc...nbdonecnnaw phwdowbdowecwnaw cowqi01393832130.66.77.5203.06.\\9400490.127.0...606010016.528.1014.040.542.822.4884.46113996645129.85.77.2189.02.00000000.28391.0...1006010016.522.4823.400.542.811.2476.96214756655129.56.36.9179.01.7000000.15330.0...1006010013.228.1023.400.542.8$

$5 \text{ rows} \times 24 \text{ columns}$

Finding correlation matrix using Heatmap

In [67]:

1.0

- 0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

```
plt.figure(figsize=(20,20))
sns.heatmap(data.corr(),annot=True)
plt.show()
```



```
df=data.drop(['nco','npH','ndo','nbdo','nec','nna','location','state','stat
ion','wph','wdo','wbdo','wec','wna','wco','Temp'],axis=1)
```

In [69]:

df

na bod

1991 rows \times 8 columns

-0.265051

bod -0.349332 Name: wqi, dtype: float64

```
In [70]:
df.to_csv('df')

In [71]:
df.corr().wqi.sort_values(ascending=False)

Out[71]:
wqi    1.000000
do    0.678756
year    0.180629
ph    -0.059461
co    -0.104916
tc    -0.133946
```