2.2 The Limit of a Sequence

1. (a) What happens if we reverse the order of the quantifiers in Definition 2.2.3?

Definition: A sequence (x_n) verconges to x if there exists an $\varepsilon > 0$ such that for all $N \in \mathbb{N}$ is it true that $n \geq N$ implies $|x_n - x| < \varepsilon$.

i. Give an example of a vercongent sequence.

 $x_n = \frac{1}{n}$ verconges to 1.

Proof.

Let $\varepsilon = 2$.

Let $N \in \mathbb{N}$ be arbitrary.

For every
$$n \ge N$$
, $\left| \frac{1}{n} - 1 \right| = \left| 1 - \frac{1}{n} \right| = 1 - \frac{1}{n} \le 1 < 2 = \varepsilon$.

ii. Is there an example of a vercongent sequence that is divergent? The divergent sequence $x_n = (-1)^n$ verconges to 1.

Proof.

Let $\varepsilon = 3$.

Let $N \in \mathbb{N}$ be arbitrary.

For every
$$n \ge N, |(-1)^n - 1| \le 2 < 3 = \varepsilon$$
.

iii. Can a sequence verconge to two different values?

Yes. For example, $x_n = \frac{1}{n}$ verconges to 1 (already shown above) and also 2.

Proof.

Let $\varepsilon = 2$.

Let $N \in \mathbb{N}$ be arbitrary.

For every
$$n \ge N$$
, $\left| \frac{1}{n} - 2 \right| = \left| 2 - \frac{1}{n} \right| = 2 - \frac{1}{n} < 2 = \varepsilon$.

iv. What exactly is being described in this strange definition?

A vercongence sequence is a bounded sequence.

2. Verify, using the definition of converge of a sequence, that the following sequences converge to the proposed limit.

(a)
$$\lim \frac{2n+1}{5n+4} = \frac{2}{5}$$
.

Proof.

Let $\varepsilon > 0$ be arbitrary.

By the ArP, there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \varepsilon$.

For every
$$n \ge n_0$$
, $\left| \frac{2n+1}{5n+4} - \frac{2}{5} \right| = \left| \frac{10n+5-10n-8}{5(5n+4)} \right| = \left| \frac{-3}{5(5n+4)} \right| = \frac{3}{5} \cdot \frac{1}{5n+4} < \frac{3}{5} \cdot \frac{1}{5n} = \frac{3}{25} \cdot \frac{1}{n} < \frac{1}{n} \le \frac{1}{n_0} < \varepsilon$.

(b)
$$\lim \frac{2n^2}{n^3+3} = 0$$
.

Proof.

Let $\varepsilon > 0$ be arbitrary.

By the ArP, there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \frac{\varepsilon}{2}$, and so $\frac{2}{n_0} < \varepsilon$.

For every
$$n \ge n_0$$
, $\left| \frac{2n^2}{n^3 + 3} - 0 \right| = \left| \frac{2n^2}{n^3 + 3} \right| = \frac{2n^2}{n^3 + 3} < \frac{2n^2}{n^3} = \frac{2}{n} \le \frac{2}{n_0} < \varepsilon$.

(c)
$$\lim \frac{\sin(n^2)}{\sqrt[3]{n}} = 0$$
.

Proof.

Let $\varepsilon > 0$ be arbitrary.

By the ArP, there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \varepsilon$.

For every
$$n \ge n_0$$
, $\left| \frac{\sin(n^2)}{\sqrt[3]{n}} - 0 \right| = \left| \frac{\sin(n^2)}{\sqrt[3]{n}} \right| \le \frac{1}{\sqrt[3]{n}} \le \frac{1}{n} \le \frac{1}{n_0} < \varepsilon$.

3. Describe what we would have to demonstrate in order to disprove each of the following statements.

(a) At every college in the United States, there is a student who is at least seven feet tall.

Find a college in the United States in which every student is less than seven feet tall.

(b) For all colleges in the United States, there exists a professor who gives every student a grade of either A or B.

Find a college in the United States in which every professor gives a student a grade that is not an A and is not a B.

(c) There exists a college in the United States where every student is at least six feet tall.

Show that every college in the United States has a student that is less than six feet tall.

- 4. Give an example of each or state that the request is impossible. For any that are impossible, give a compelling argument for why that is the case.
 - (a) A sequence with an infinite number of ones that does not converge to one.

 $(x_n) = ((-1)^n) = (-1, 1, -1, 1, -1, 1, \dots)$ has an infinite number of ones, but diverges.

(b) A sequence with an infinite number of ones that converges to a limit not equal to one.

This is impossible.

Proof.

By contradiction.

Suppose (x_n) is a sequence with an infinite number of ones that converges to a limit not equal to 1.

Let (x_{n_k}) be a subsequence of (x_n) such that n_k is the k^{th} one in (x_n) .

Since $x_{n_k} = 1$ for every $k \in \mathbb{N}$, $\lim x_{n_k} = 1$.

Thus, (x_n) also converges to 1, but this contradicts the assumption that its limit is not equal to 1.

(c) A divergent sequence such that for every $n \in \mathbb{N}$ it is possible to find n consecutive ones somewhere in the sequence.

$$(x_n) = (0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, \dots)$$

5. Let [[x]] be the greatest integer less than or equal to x. For example, $[[\pi]] = 3$ and [[3]] = 3. For each sequence, find $\lim a_n$ and verify it with the definition of convergence.

(a)
$$a_n = [[5/n]]$$

$$\lim a_n = 0$$

Proof.

Let $\varepsilon > 0$ be arbitrary.

Let
$$n_0 = 6$$
.

For
$$n \ge n_0$$
, $\left| \left[\left[\frac{5}{n} \right] \right] - 0 \right| = \left| \left[\left[\frac{5}{n} \right] \right] \right| = \left[\left[\frac{5}{n} \right] \right] = 0 < \varepsilon$.

(b)
$$a_n = [[(12 + 4n)/3n]]$$

 $\lim a_n = 1$

Proof.

Let $\varepsilon > 0$ be arbitrary.

Let
$$n_0 = 7$$
.

For
$$n \ge n_0$$
, $\left| \left[\left[\frac{12+4n}{3n} \right] \right] - 1 \right| = \left| \left[\left[\frac{12+4n}{3n} - 1 \right] \right] \right| = \left| \left[\left[\frac{12+4n-3n}{3n} \right] \right] \right|$
= $\left| \left[\left[\frac{12+n}{3n} \right] \right] \right| = \left[\left[\frac{12+n}{3n} \right] \right] = 0 < \varepsilon$.

Reflecting on these examples, comment on the statement following Definition 2.2.3 that "the smaller the ε -neighborhood, the larger N may have to be."

These examples show that after a certain n_0 value (or N value in the words of the statement), the values of the sequence are equal to the limit value, regardless of the ε -value.

6. Prove Theorem 2.2.7. To get started, assume $(a_n) \to a$ and also that $(a_n) \to b$. Now argue a = b.

Proof.

Let $\varepsilon > 0$ be arbitrary.

Suppose $a, b \in \mathbb{R}$ and $\lim a_n = a$ and $\lim a_n = b$.

Then there exists $n_1 \in \mathbb{N}$ such that for all $n \geq n_1, |a_n - a| < \frac{\varepsilon}{2}$.

Then there exists $n_2 \in \mathbb{N}$ such that for all $n \geq n_2, |a_n - b| < \frac{\varepsilon}{2}$.

Let $n_0 = \max\{n_1, n_2\}.$

Then for all $n \ge n_0$, $|a - b| = |a - a_n + a_n - b| \le |a_n - a| + |a_n - b|$ $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Thus, a - b = 0, and so a = b.

7. Here are two useful definitions:

- (a) A sequence (a_n) is eventually in a set $A \subseteq \mathbb{R}$ if there exists an $N \in \mathbb{N}$ such that $a_n \in A$ for all $n \geq N$.
- (b) A sequence (a_n) is frequently in a set $A \subseteq \mathbb{R}$ if, for every $N \in \mathbb{N}$, there exists an $n \geq N$ such that $a_n \in A$.
 - i. Is the sequence $(-1)^n$ eventually or frequently in the set $\{1\}$?
 - A. Frequently

Proof.

Let $N \in \mathbb{N}$ be arbitrary.

If N is even, then let n = N, and so n is even.

If N is odd, then let n = N + 1, and so n is even.

Then
$$a_n = (-1)^n = 1 \in \{1\}.$$

B. Not eventually

Proof.

By contradiction.

Suppose a_n is eventually in A.

Then there exists $N \in \mathbb{N}$ such that for every $n \geq N, a_n \in A$.

If N is even, then let m = N + 1, and so m is odd.

If N is odd, then let m = N + 2, and so m is odd.

Since $m \geq N$, then it must be that $m \in A$.

However, $a_m = (-1)^m = -1 \notin A$, which is a contradiction.

ii. Which definition is stronger? Does frequently imply eventually or does eventually imply frequently?

Eventually is stronger, and eventually implies frequently:

Proof.

Suppose (a_n) is a sequence that is eventually in a set $A \subseteq \mathbb{R}$.

Then there exists $n_0 \in \mathbb{N}$ such that for every $n \geq n_0, a_n \in A$.

Let $N \in \mathbb{N}$ be arbitrary.

If $N \ge n_0$, let n = N, and so $n \ge N$.

If $N < n_0$, let $n = n_0$, and so $n \ge N$.

Thus, $a_n \in A$.

Therefore, (a_n) is a sequence that is frequently in a set $A \subseteq \mathbb{R}$.

iii. Give an alternate rephrasing of Definition 2.2.3B using either frequently or eventually. Which is the term we want?

Definition 2.2.3B. A sequence (a_n) converges to a if, given any ε -neighborhood $V_{\varepsilon}(a)$ of a, there exists a point in the sequence after which all the terms are in $V_{\varepsilon}(a)$.

Alternate rephrasing. A sequence (a_n) converges to a if, given any ε -neighborhood $V_{\varepsilon}(a)$ of a, (a_n) is eventually in $V_{\varepsilon}(a)$.

- iv. Suppose an infinite number of terms of a sequence (x_n) are equal to 2.
 - A. Is (x_n) necessarily eventually in the interval (1.9, 2.1)? Not necessarily, as $x_n = (-1)^n + 1$ has terms that are oscillating between 0 and 2, and so there are an infinite number of 2s in (x_n) , but there is no $N \in \mathbb{N}$ at and after which there are no 0s in (x_n) .
 - B. Is it frequently in (1.9, 2.1)? Yes, for every $N \in \mathbb{N}$, we can find an $n \geq N$ such that $a_n = 2 \in (1.9, 2.1) = A$.
- 8. For some additional practice with nested quantifiers, consider the following invented definition:

Let's call a sequence (x_n) zero-heavy if there exists $M \in \mathbb{N}$ such that for all

 $N \in \mathbb{N}$ there exists n satisfying $N \leq n \leq N + M$ where $x_n = 0$.

(a) Is the sequence $\{0, 1, 0, 1, 0, 1, \ldots\}$ zero heavy? Yes.

Proof.

Let M = 1.

Let $N \in \mathbb{N}$ be arbitrary.

If N is odd, then let n = N, and so $N \le n \le N + 1 = N + M$ and n is odd and $x_n = 0$.

If N is even, then let n = N + 1, and so $N \le n \le N + 1 = N + M$ and n is odd and $x_n = 0$.

Therefore, $\{0, 1, 0, 1, 0, 1, \ldots\}$ is zero heavy.

- (b) If a sequence is zero-heavy does it necessarily contain an infinite number of zeros? If not, provide a counterexample. Yes.
- (c) If a sequence contains an infinite number of zeros, is it necessarily zero-heavy? If not, provide a counterexample.

No. For example:

$$x_n = \begin{cases} 0 & \text{if } n \text{ is a perfect square} \\ 1 & \text{otherwise} \end{cases}$$

Proof.

Let $M \in \mathbb{N}$ be arbitrary.

Let $k \in \mathbb{N}$ be such that k > M.

Let $N = k^2 + 1$.

Then $k^2 + 1 \le N + M = k^2 + 1 + M < k^2 + k + 1 < k^2 + 2k + 1 < (k+1)^2$.

Then for every n satisfying $N \leq n \leq N + M, x_n = 1$.

Therefore, (x_n) is not zero-heavy.

(d) Form the logical negation of the above definition. That is, complete the sentence: A sequence is not zero-heavy if

A sequence is not zero-heavy if for every $M \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that for every n satisfying $N \leq n \leq N + M, x_n \neq 0$.