

Comunicações por Computador Cap 4 - Redes Locais de Computadores

Universidade do Minho
Grupo de Comunicações por Computador
Departamento de Informática

Universidade do Minho Escola de Engenharia Departamento de Informática

Tecnologias LAN

- Exemplos de tecnologias usadas em LANs:
 - Ethernet (IEEE 802.3), Fast Ethernet (IEEE 802.3u), Gigabit Ethernet (IEEE 802.3z), ...
 - Wireless LAN (IEEE 802.11 b/g/n/ac/...)

Token Ring (IEEE 802.5), Token Bus (IEEE 802.4)
Distributed Queue Dual Bus (DQDB) (IEEE 802.6)
Fiber Distributed Data Interface (norma ANSI)
Asynchronous Transfer Mode (ATM) (ITU-T)

...

Universidade do Minho
Escola de Engenharia
Departamento de Informática

protocolos: nível de ligação de dados

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Protocolos: nível de ligação de dados

- O nível de ligação é dividido em 2 sub-níveis
 - Logical Link Control (LLC) (IEEE 802.2)
 - endereço de nível lógico (LSAP LLC Service Access Point)
 - pode suportar primitivas orientadas ou não à conexão
 - Medium Access Control (MAC)
 - varia com o tipo de LAN, i.e., cada LAN tem um sub-nível MAC próprio
 - determina quem acede ao meio

Escola de Engenharia
Departamento de Informática

protocolos: nível de ligação de dados

Encapsulamento

- Um LLC protocol data unit (L-PDU) contém informação de controlo e dados que a entidade LLC transmissora envia à entidade LLC receptora
- Na transmissão,
 - o sub-nível MAC encapsula cada L-PDU, adicionando o seu próprio header (cabeçalho) e trailer (terminação)

- Na recepção,
 - o sub-nível MAC remove o *header* e *trailer* de cada MAC-PDU e entrega o LPDU ao sub-nível superior.

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Resolução de endereços Rede/MAC

TCP/IP

ARP - Protocolo de Resolução de Endereços

- ARP (Address Resolution Protocol) mapeia um endereço de rede (e.g., endereço IP) no endereço MAC (e.g., Ethernet) que lhe corresponde.
- RFC 826: An Ethernet Address Resolution Protocol
- Operação:
 - local à LAN
 - não usa encapsulamento IP
 - o EtherType ARP é: 0x0806
 - ARP-PDUs: ARP Request e ARP Reply

TCP/IP ARP - PDU

2 bytes	Tipo de hardware		
2	Tipo de protocolo		
1+1	Comp do endereço hardware Comp do endereço protocolar	bytes —	
2	Operação		
6	Endereço de Hardware da estação de origem (sender)		
4	Endereço Protocolar da estação de origem (sender)		
6	Endereço de Hardware da estação de destino (target)		
4	Endereço Protocolar da estação de destino (target)		

DA - Destination Address SA - Source Address TF - Type Field

Data

8

CRC

DA

SA

TF

TCP/IP ARP - Operação

1.Quem tem o endereço MAC da estação 129.1.1.4?

3.Aqui está o meu Endereço MAC

[Naugle98]

- ARP Request é enviado em broadcast
- ARP Reply é enviado em unicast à estação requerente, que mantém temporariamente a resolução na cache de ARP

TCP/IP ARP - Operação

Exemplo de cache ARP

ROUTER > show ip arp				
Protocol Address Age (minutes) Hardware Addr Type Interface				
Internet 193.136.20.67	27 Ø0a0.c98d.6ffc ARPA FastEthernet0	/1		
Internet 193.136.20.105	236 00a0.c98d.78a0 ARPA FastEthernet0)/1		
Internet 193.136.20.7	10 00a0.c98f.4229 ARPA FastEthernet0)/1		
Internet 193.136.20.3	6 004f.4907.285a ARPA FastEthernet0)/1		
Internet 192.168.88.65	- 0005.9bf0.74e0 ARPA FastEthernet)/0		
Internet 192.168.88.66	107 0005.3246.8dc1 ARPA FastEthernet	0/0		
Internet 193.136.20.254	0 000a.8a97.7480 ARPA FastEthernet	0/1		

LCC Universidade do Minho 10

Ethernet IEEE802.3

LCC-CC

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ethernet

Desenho original da Rede Ethernet - Bob Metcalfe 1976

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ethernet: Definição da trama (MAC)

- características genéricas:
 - Preamblo: 7 octetos [1010..10] para sincronismo de bit
 - Start of Frame Delimiter: 1 oct [10101011] padrão sincronismo de trama
 - Endereços de Destino e de Origem: 6 octetos (endereço ethernet)
 - Tipo/Compr: 2 octetos, definem o protocolo nos Dados
 - Dados: 46 a 1500 octetos, contém o PDU do protocolo encapsulado
 - FCS: 4 octetos, Frame Check Sequence para control de erros
- Endereços: endereço da estação emissora e receptora / broadcast

Universidade do Minho Escola de Engenharia Departamento de Informática

Ethernet: Definição da trama (MAC)

- Campo Tipo/Comprimento
 - se valor ≤ 0 x05DC (1500)
 - é interpretado como **comprimento** do campo de dados e
 - o campo de dados contém a camada de ligação LLC e
 - trama é designada IEEE 802.3 Ethernet
 - se $\underline{\text{valor}} > 0 \times 0600 \quad (1536)$
 - é interpretado como **ethertype** (tipo de protocolo)
 - valor identifica o protocolo contido no campo de dados
 - trama é designada **Ethernet II** (RFC 894)

LCC-CC

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ethernet: trama Ethernet II

- encapsula o protocolo definido pelo valor do campo Ethertype
- valores geridos pela XEROX (detém direitos do ethernet).

LCC-CC

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ethernet: trama IEEE 802.3 e LLC-PDU

- encapsula a sub-camada de ligação LLC (Logical Link Control)
- os endereços designam-se:

D-LSAP (Destination-Logical Service Access Point)

S-LSAP (Source-Logical Service Access Point)

Universidade do Minho Escola de Engenharia Departamento de Informática

Ethernet

- características genéricas:
 - trama máxima: 1518 octetos; trama mínima: 64 octetos
 - MTU: maximum transfer unit é 1500 octetos
 - entrega segundo o paradigma do melhor-esforço
 - método de acesso ao meio: CSMA/CD (carrier sense multiple access/colision detection) -> LAN partilhada

LCC-CC

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ethernet: acesso ao meio e colisões

Ethernet: o acesso múltiplo é contencioso e há detecção de colisões

A inicia transmissão

continua transmissão

C inicia transmissão

t_p : C detecta colisão

2.t_p: C detecta colisão

 $t_p = d/v =$ tempo de propagação fim a fim no meio de Tx d = comprimento do meio de Tx v = velocidade de propagação no meio

LCC-CC

Escola de Engenharia

Departamento de Informática

Ethernet: Controlo de acesso ao meio

- Detecção de colisão
 - baseada no tempo de ida-e-volta (round trip) de uma trama
 - é necessário garantir um tamanho mínimo de trama que assegure a detecção de colisão no pior caso possível
 - Jamming: Para garantir que outras estações se apercebam da ocorrência de colisão, a que detecta deve forçar uma transmissão de alguns bits antes de parar de transmitir, i.e. reforçar a colisão para garantir que ela é detectada por todos os intervenientes.
- No ethernet a trama de jam é designada de jam signal

Ethernet: Controlo de acesso ao meio: CSMA/CD

Carrier Sense Multiple Access/Collision Detection (CSMA/CD)

```
acesso ao meio:
```

<u>se</u> meio está activo (detecção de portadora)

então acesso ao meio (aguarda até meio estar livre)

senão transmite(trama)||detecta (tx e lança processo de detecção)

<u>se</u> detecta = colisão (detecção de colisão)

então transmite(jam); (aborta transmissão, reforça colisão)

K:=K+1; (conta as colisões)

espera(K); (espera tempo aleatório, backoff)

acesso ao meio (tenta novamente o acesso)

senão K:=0

Escola de Engenharia
Departamento de Informática

Ethernet: Controlo de acesso ao meio

- Após transmissão de uma trama mais do que uma estação pode estar à espera de uma oportunidade de transmissão
- Consequência: Se houver mais do que uma estação a aguardar o fim de uma transmissão, quando tal suceder, a colisão é certa. Para reduzir colisões:

Após uma colisão, as estações envolvidas esperam (retraem) um tempo aleatório $\mathbf{n} \times \mathbf{t}_p$ (que, com alguma probabilidade será diferente para cada uma) antes de acederem novamente ao meio para retransmitir.

Escola de Engenharia Departamento de Informática

Ethernet: Controlo de acesso ao meio

 Algoritmo de retracção exponencial binária truncada (truncated binary exponential backoff algorithm):

espera(K)

- retorna um tempo de atraso n x t_p em que n é um inteiro aleatório uniformemente distribuído no intervalo [0,2^K-1] e K é o número de colisões anteriores
- Valor máximo K_{max}
 - = 16 (16 colisões consecutivas)

Universidade do Minho Escola de Engenharia Departamento de Informática

Ethernet

- Características genéricas:
 - ritmo de transmissão: 10 Mbps, 100 Mbps ...
 - meio de transmissão: UTP, cabo coaxial, fibra
 - 10BASE-5; 10BASE-2; 10BASE-T; 10BASE-F
 - 100BASE-TX; 100BASE-FX; ...
- Gerações mais recentes:
 - 1Gbps (1000BASE-...)
 - 10Gbps (10GBASE-...)
 - Auto-negociação
 - Jumbo frames

Ethernet: características físicas gerais

Parâmetro	10BASE5	10BASE2	10BASE-F	10BASE-T
Seg.Máximo	500m	185m	400-2000m	100m
Topologia	barramento	barramento	estrela	estrela
Meio	coax grosso	coax fino	MMF	UTP
Conector	NICBD15	BNC	ST ou SC	RJ-45
Diâmetro	10mm	5mm	Ordem dos μm	5
•••				

Redes Locais de Computadores Universidade do Minho

Fast Ethernet

Fast Ethernet (IEEE 802.3u)

Parâmetro	100BASE -TX	100BASE -FX	100BASE -T4
Distância	100m	100m	100m
Topologia	estrela	estrela	estrela
Meio	UTP5/STP	MMF/SMF	UTP3/4/5
Nº Pares	2	2 fibras	4
Full Duplex	Sim	Sim	Não

Redes Locais de Computadores Universidade

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Gigabit Ethernet

Gigabit Ethernet (IEEE 802.3z)

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 $\mu)$ or multimode (50, 62.5 $\mu)$
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Escola de Engenharia Departamento de Informática

• LAN:

- Acesso e partilha de recursos locais:
 - servidores, equipamentos especializados, etc
- Comunicação para cooperação entre processos
 - computação distribuída
- Acesso a redes alargadas ou internet

interface partilhada para ligação a redes externas

Escola de Engenharia

Departamento de Informática

Topologias LAN

- Topologias LAN mais frequentes:
 - barramento, anel, estrela e árvore
 - usam meios de transmissão variados:

UTP, cabo coaxial, fibra óptica, ...

- podem usar repetidores para extensão do meio de transmissão e seu isolamento físico/eléctrico
- utilização de equipamento específico para redução de colisões e melhorar desempenho (bridge, switch)

Arvore

LCC-CC

Equipamentos de Interligação: Repetidor ou HUB

- Repetidor
 - opera ao nível físico (OSI), equipamento passivo
 - não interpreta as tramas
 - monitorização contínua de sinais e sua regeneração
 - repete tudo o que "ouve"
 - permite cobrir maiores distâncias
 - permite maior flexibilidade no desenho da rede
 - usado LANs, MANs, WANs

Ex. HUB Ethernet

Equipamentos de Interligação: Bridge

- Bridge
 - opera ao nível da ligação lógica (OSI)
 - ligação por interface de rede; tem endereço físico
 - interpreta o formato das tramas; faz aprendizagem
 - permite isolar tráfego
 - divide o domínio colisão
 - configuração transparente
 - em configuração multipla, evita ciclos infinitos (Algoritmo Spanning Tree)

Acção	ListaSeg1	ListaSeg2
boot	-	-
U-V	U	-
V-U	U,V	-
Z-all	U,V	Z
Y-V	U,V	Z,Y
Y-X	U,V	Z,Y
X-W	U,V	Z,Y,X
W-Z	U,V,W	Z,Y,X

Processo de Aprendizagem em **bridging transparente**

Equipamentos de Interligação: Switch

- Switch
 - mais de 2 interfaces
 - capacidade aprendizagem como as *bridges*
 - permite paralelismo
 - requer buffering adequado
 - reduz carga na rede
 - aumenta desempenho
 - pode validar endereços MAC
 - cria LANs virtuais
 - usado em LAN, MAN e WAN

Universidade do Minho Escola de Engenharia Departamento de Informática

Tecnologias LAN

- LAN de Acesso Partilhado (shared LAN)
 - as estações disputam a largura de banda existente
 - a transmissão no meio é difundida por todas as estações
 - por definição, uma LAN é um domínio de entrega directa de tramas entre estações, designado por domínio de colisão.
 - as estações recebem a trama com um atraso mínimo
 - o **método de acesso** partilhado varia com a topologia:
 - acesso contencioso: barramento e estrela com hub-repetidor
 - acesso ordenado: anel e barramento com testemunho (token)
 - o desempenho de uma LAN varia com o tipo de aplicações e com o número de estações interligadas

Universidade do Minho Escola de Engenharia Departamento de Informática

Tecnologias LAN

- LAN Comutada (switched LAN)
 - mais comum
 - é introduzido um comutador para criar e isolar sub-domínios de colisão dentro de um domínio de entrega directa
 - o comutador de LAN filtra a difusão em função dos endereços da estação de destino das tramas (<u>função bridging</u>)
 - Vantagens :
 - maior largura de banda agregada por redução das colisões
 - consequentemente, melhor desempenho

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Tecnologias LAN

LAN Comutada (switched LAN)

- 3 domínios de colisão: LAN L1, LAN L2 e LAN L3
- 1 domínio de entrega directa: a LAN comutada
- 9 estações na mesma LAN comutada
- 1 porta do comutador ligada a cada LAN Li

Universidade do Minho Escola de Engenharia Departamento de Informática

Tecnologias LAN

- LAN Virtual Comutada (switched VLAN)
 - as estações ligam directamente ao comutador
 - certos comutadores tem a capacidade de associar conjuntos de portas em diferentes sub-dominios de colisão constituindo LANs virtuais
 - as LAN virtuais não existem externamente ao comutador mas são construidas internamente por configuração do comutador
 - o princípio de funcionamento é idêntico ao da LAN Comutada
 - as estações ligam-se ao comutador normalmente em ponto-a-ponto full-duplex

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Tecnologias LAN

LAN Virtual Comutada (switched VLAN)

- 2 domínios de colisão: VLAN L1 e VLAN L2
- 1 domínio de entrega directa: a VLAN comutada
- 4 estações na mesma LAN comutada
- 1 porta do comutador ligada a cada estação portas do comutador associadas por configuração formando LANs virtuais

Ponto da situação e revisão de conceito Universidade do Minho Escola de Engenharia Departamento de Informática

- Cap. 1 Transmissão e Comunicação de Dados
- Cap. 2 Elementos de Protocolos Controlo da Ligação de Dados
- Cap. 3 e 4 Redes Locais Cabladas e Wireless
- Cap. 5 Protocolos TCP/IP