BONUS12

by

Nathan Marian Dzbenski M.S. May 2016, Old Dominion University

A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

PHYSICS

OLD DOMINION UNIVERSITY May 2020

Approved by:

Gail Dodge (Director)

Ian Balitsky (Member)

Balsa Terzic (Member)

Stefen Bultmann (Member)

Holly Gaff (Member)

ABSTRACT

BONUS12

Nathan Marian Dzbenski Old Dominion University, 2018 Director: Dr. Gail Dodge

TODO: To be updated later!

Copyright, 2018, by Nathan Marian Dzbenski, All Rights Reserved.

iv

TODO: Hail Satan.

ACKNOWLEDGEMENTS

TODO: Thanks to everyone...

TABLE OF CONTENTS

			P	age
LIS	ST O	F TAB	LES	viii
LIS	ST O	F FIGU	JRES	ix
Ch	apter			
1.	INT	RODUC	CTION	1
0	DIIX	rataa t	CODMALICM	0
2.			FOR CERLICITIES	2
	2.1		EON STRUCTURE	2
	2.2		TRON-SCATTERING KINEMATICS	2
	2.3		ric regime	2
	2.4		NANCE REGION	2
	2.5		INELASTIC SCATTERING	2
	2.6		QUARK-PARTON MODEL	2
	2.7	•	TUM CHROMODYNAMICS	2
	2.8		RIMENT MOTIVATION	2
		2.8.1	NUCLEON STRUCTURE-FUNCTION RATIO F_N^2/F_P^2	2
	2.9		CULTIES IN EXTRACTING F_N^2/F_P^2 FROM DEUTERIUM	2
		2.9.1	BOUND NUCLEON STRUCTURE	2
		2.9.2	BACKGROUNDS	2
3.	SIM	ULATI	ON AND DEVELOPMENT	3
	3.1	SIMUI	LATION OF THE BONUS12 RTPC	3
		3.1.1	GEOMETRY	3
		3.1.2	MATERIALS	3
		3.1.3	PHYSICS PROCESSES	3
		3.1.4	ELECTRIC AND MAGNETIC FIELDS	3
		3.1.5	ELECTRON DRIFT PATH	3
		3.1.6	DIGITIZATION ROUTINES	3
		3.1.7	EVENT RECONSTRUCTION	3
	3.2	CONS	TRUCTION OF THE BONUS12 RTPC	3
		3.2.1	TARGET	3
		3.2.2	CATHODE AND GEM FOILS	3
		3.2.3	READOUT PAD BOARD	3
		3.2.4	SUPPORT RIBS AND SPINES	3
		3.2.5	ELECTRONICS AND TRANSLATION BOARDS	4
		3.2.6	DATA ACQUISITION	
			GAS SYSTEM AND SLOW CONTROLS	

	3.3	SIMULATION AND DEVELOPMENT OF THE DRIFT GAS MON-
		ITORING SYSTEM
		3.3.1 PURPOSE
		3.3.2 GEOMETRY
		3.3.3 MATERIALS
		3.3.4 HARDWARE
		3.3.5 CONSTRUCTION
		3.3.6 TESTING
4.	EXP	PERIMENTAL SETUP
	4.1	CONTINUOUS ELECTRON BEAM ACCELERATOR FACILITY :
	4.2	CEBAF LARGE ACCEPTANCE SPECTROMETER
		4.2.1 CENTRAL TIME OF FLIGHT
		4.2.2 SOLENOID MAGNET
		4.2.3 HIGH-THRESHOLD CHERENKOV COUNTER
		4.2.4 DRIFT CHAMBERS
		4.2.5 TORUS MAGNET
		4.2.6 LOW-THRESHOLD CHERENKOV COUNTER
		4.2.7 FORWARD TIME OF FLIGHT
		4.2.8 PRE-SHOWER CALORIMETER
	4.3	BONUS12 RTPC
E	DAT	'A ANALYSIS
5.	5.1	INCLUSIVE DIS WITH RUN GROUP A DATA
	5.1 - 5.2	DATA PROCESSING
	5.2 5.3	CALIBRATION
	5.4	CUTS AND CORRECTIONS
	$5.4 \\ 5.5$	KINEMATIC COVERAGE AND DATA BINNING
	5.6	ACCEPTANCE CORRECTION
	5.0 - 5.7	
	5.8	
		BACKGROUND SUBTRACTION
		RADIATIVE CORRECTIONS
	3.11	SYSTEMATIC ERROR EVALUATION
6.	RES	ULTS
RE	EFER	ENCES 8
A T	بمتردر	DICEG
Αŀ	'PEN	DICES
* **	TT 4	

LIST OF TABLES

Table Page

LIST OF FIGURES

Figure

INTRODUCTION

PHYSICS FORMALISM

- 2.1 NUCLEON STRUCTURE
- 2.2 ELECTRON-SCATTERING KINEMATICS
- 2.3 ELASTIC REGIME
- 2.4 RESONANCE REGION
- 2.5 DEEP INELASTIC SCATTERING
- 2.6 THE QUARK-PARTON MODEL
- 2.7 QUANTUM CHROMODYNAMICS
- 2.8 EXPERIMENT MOTIVATION
- 2.8.1 NUCLEON STRUCTURE-FUNCTION RATIO F_N^2/F_P^2
- 2.9 DIFFICULTIES IN EXTRACTING ${\cal F}_N^2/{\cal F}_P^2$ FROM DEUTERIUM
- 2.9.1 BOUND NUCLEON STRUCTURE
- 2.9.2 BACKGROUNDS

SIMULATION AND DEVELOPMENT

~ -	OTA ETTE	ACCIONI	OF TITE	DOBITIO 40	DTDC
3.1	SIMUL	ATTON	OF THE	BONUS12	$\mathbf{R}\mathbf{T}\mathbf{P}\mathbf{C}$

- **3.1.1 GEOMETRY**
- 3.1.2 MATERIALS
- 3.1.3 PHYSICS PROCESSES
- 3.1.4 ELECTRIC AND MAGNETIC FIELDS
- 3.1.5 ELECTRON DRIFT PATH
- 3.1.6 DIGITIZATION ROUTINES
- 3.1.7 EVENT RECONSTRUCTION
- 3.2 CONSTRUCTION OF THE BONUS12 RTPC
- **3.2.1 TARGET**
- 3.2.2 CATHODE AND GEM FOILS
- 3.2.3 READOUT PAD BOARD
- 3.2.4 SUPPORT RIBS AND SPINES

3.2.5 ELECTRONICS AND TRANSLATION BOARDS

- 3.2.6 DATA ACQUISITION
- 3.2.7 GAS SYSTEM AND SLOW CONTROLS
- 3.3 SIMULATION AND DEVELOPMENT OF THE DRIFT GAS MONITORING SYSTEM
- **3.3.1 PURPOSE**
- **3.3.2 GEOMETRY**
- 3.3.3 MATERIALS
- 3.3.4 HARDWARE
- 3.3.5 CONSTRUCTION
- **3.3.6 TESTING**

EXPERIMENTAL SETUP

4.1	CONTINUOUS	ELECTRON	\mathbf{BEAM}	ACCELER.	ATOR.	FACILITY

- 4.2 CEBAF LARGE ACCEPTANCE SPECTROMETER
- 4.2.1 CENTRAL TIME OF FLIGHT
- 4.2.2 SOLENOID MAGNET
- 4.2.3 HIGH-THRESHOLD CHERENKOV COUNTER
- 4.2.4 DRIFT CHAMBERS
- 4.2.5 TORUS MAGNET
- 4.2.6 LOW-THRESHOLD CHERENKOV COUNTER
- 4.2.7 FORWARD TIME OF FLIGHT
- 4.2.8 PRE-SHOWER CALORIMETER
- 4.2.9 ELECTROMAGNETIC CALORIMETER
- 4.3 BONUS12 RTPC

DATA ANALYSIS

5.1]	\mathbf{INCL}	USIVE	DIS	WITH	RUN	GROUP	Α	\mathbf{DATA}
--------	-----------------	-------	-----	------	-----	-------	---	-----------------

- 5.2 DATA PROCESSING
- 5.3 CALIBRATION
- 5.4 CUTS AND CORRECTIONS
- 5.5 KINEMATIC COVERAGE AND DATA BINNING
- 5.6 ACCEPTANCE CORRECTION
- 5.7 ELECTRON DETECTION EFFICIENCY
- 5.8 BACKGROUND SUBTRACTION
- 5.9 CROSS SECTION CALCULATION
- 5.10 RADIATIVE CORRECTIONS
- 5.11 SYSTEMATIC ERROR EVALUATION

RESULTS

REFERENCES

VITA

Nathan Marian Dzbenski Department of Physics Old Dominion University Norfolk, VA 23529

TODO: To be updated later!

Typeset using \LaTeX .