

596: Machine Learning Term Project Nrithya, Liz, Xiqiao, Akash and Rohith



### **TED Data Analysis**

Dec 20, 2017

# What is TED?







How to overcome bias

TED Talk: Learn about the danger of bias and how to address these unconscious attitudes, boldly









Joel Jackson / Transport entrepreneur

The history of human

#### **Descriptive Findings**



- Looking at TED.com the videos are ordered by newest released first
  - 2017 2006
- Transcripts, Details,
  Favoriting, and Rating
  Features
  - Controlled List
- Commenting and
   Discussions are encouraged
   and are Monitored for Spam

#### **Initial Descriptive Findings**



- "Do schools kill creativity?"
- "How to escape education's death valley"



 Culture, Global Issues, Business, Science

### **Business questions**



#### **Data Processing and Curation**

#### Aggregate Data

- Unix and Excel to separate columns
  - REGEX, grep, and pivot tables
- R to clean/curate remaining data
  - Incomplete data, unix timestamps, string manipulation

#### Prioritize Metrics

- Ratings
- Tags/Themes
- Number of views
- Number of comments
- Duration
- Number of Languages

# QUESTION 1 PREDICTING VIEWS & COMMENTS

Using linear regression and artificial neural networks to predict the number of views and the number of comments a video will receive.



#### **Linear Regression - Relationship**



#### Videos clustered between

0 - 10,000,000 views

**0** - **1,000** seconds

0 - 40 languages

#### **Linear Regression - Predicting Views**

#### Views = 11741.1(duration) + 112232.3(languages) - 2339034.6

| Correlation | Duration | Language |
|-------------|----------|----------|
| Views       | 0.38     | .005     |



#### **Linear Regression - Predicting comments**

#### Comments = -.01693 + 0.1351(duration) - 0.0005035(views) + 5.991(languages)

| Correlation | Views | Duration | Language |
|-------------|-------|----------|----------|
| Comments    | 0.53  | 0.32     | .014     |



#### **Artificial Neural Networks - Views**

#### Model: Views ~ Durations + Languages + Ratings



MSE: 6283596155909

#### **Artificial Neural Networks - Comments**

#### Model: Comments ~ Duration + Languages + Ratings



MSE: 4068261144209

# QUESTION 2 VIDEO POPULARITY GROUPS

Unsupervised clustering using K-means to group videos according to the popularity, determining with the number of its views, comments, and languages available.



#### K-means clustering : Clusters

#### Model: Popularity ~ Views + comments + languages

75 : 25 data split

- Four clusters of sizes:
  - 318, 10, 2167, 55

Between\_SS / Total\_SS = 84.7 %



#### K-means: Findings

- The majority of the spots are highly concentrated on the left side of the plot, which
  indicates that most of the videos share similar popularity according to the number of
  its views, comments, and languages available.
- On the other hand, a few spots are spread apart in the center and on the right of the plot, which demonstrates there are small number of videos that have different popularity compared to the majority.

# QUESTION 3 UNDERSTANDING IMPACT

Using KNN & Random Forest to classify videos based on views, comments, and ratings



#### **Understanding Ratings**

| RATINGS                                                       | METRIC | IMPACT         |
|---------------------------------------------------------------|--------|----------------|
| Beautiful, Fascinating, Jaw-dropping,<br>Inspiring, Ingenious | 4      | High Impact    |
| Informative, Courageous, Persuasive,<br>Funny                 | 3      | Good<br>Impact |
| OK, Long-winded                                               | 2      | Neutral        |
| Confusing, Obnoxious, Unconvincing                            | 1      | Bad Impact     |

- 14 Rating options
- Viewer can choose one, more than one, or all

• 4-level metric to understand ratings.

#### **KNN**

Model: Metric ~ (Ratings + View + Comments + Duration + Language)

First 75:25 Neighbors- 3 Accuracy- 50% Second 75:25 Neighbors- 5 Accuracy- 55%

#### **Random Forest**

Model: Metric ~ (Ratings + View + Comments + Duration + Language)

First 70:30

Trees: 500

Accuracy: 86%

Second 60:40

Trees: 500

Accuracy: 87%

# QUESTION 4 CLUSTERING FOR RECOMMENDATION

Using Agglomerative & Divisive Clustering to classify videos based on tags for better recommendations



#### **Understanding Tags**

- 147 unique tags
- Approximately 10 to 20 tags on each video
- Recommend videos with viewer's choice of tags.
- 2 of the top most tags-"technology" and "culture"

| TAGS                | LABEL |
|---------------------|-------|
| Technology          | 01    |
| Culture             | 10    |
| Technology, Culture | 11    |



#### **Agglomerative**

**Model:** Tag Labels ~ Views+Comments+Duration+Languages+Ratings

No of clusters : 3

Height : 70

Accuracy : 56%



#### **Divisive**

**Model:** Tag Labels ~ Views+Comments+Duration+Languages+Ratings

No of clusters : 3 Height : 160 Accuracy : 57%



# Limitations

- Limited analysis scope due to finite numerical variables
  - Lot of categorical variables
- Time span of videos Comparing views of 2006 to 2017
  - Exposure on videos
  - Number of Tags have changed after 2013
- Data restricted to 2,550 unique entries with skewed clusters.

# **Summary**

- We found that the data was skewed and that was difficult to manage due to different exposure on videos and topics
- We used the 'tags', 'views', 'topic' to forecast the popularity of the talks and increase viewership
- Having more dimensional aspects like Rating out of 5, Likes, etc.
   can help analysts create better models to predict the viewership

# THANKS!

**ANY QUESTIONS?** 

