Computer Vision and Image Processing

Gil Ben-Artzi

Motion Field and Optical Flow

- Motion field 3D motion in the real world
- Optical flow Pixel movement in the image,
 which is the result of motion field projection

• The movement of **pixels**

- For each pixel we have a vector describing:
 - The direction of its motion
 - The velocity of it's motion across the image

Horizontal translation

Forward motion

Rotation

Horizontal translation

Closer objects appear to move faster!!

Optical Flow: Brightness Constancy

Time = t

$$I(x,y,t) =$$

Time = t+dt

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

Optical flow calculation

- Assumptions
 - The intensity of a given object point does not change between frames. This is called brightness consistency.
- Let's assume <u>large</u> regions share the same intensity

Optical Flow - Brightness constancy

• Given images I_1 and I_2 , we can find the translation (u,v) that will minimize the squared error $E(u,v) = \sum \sum (I_1(x,y) - I_2(x+u,y+v))^2$

 Average over area of overlap

 Can also search for rotations: (u,v,α)

Cross Correlation

Starting from the SSD

$$E(u,v) = \sum \sum (I_1(x,y) - I_2(x+u,y+v))^2$$

- Since
- $(a-b)^2 = a^2 2ab + b^2$
- We can write

$$E(u,v) = \sum_{x} \sum_{y} I_1^2 - 2\sum_{x} \sum_{y} I_1(x,y) \cdot I_2(x+u,y+v) + \sum_{x} \sum_{y} I_2^2$$

• Since ΣI_1^2 and ΣI_2^2 are almost constant, minimizing the SSD maximizes the cross-correlation $\Sigma I_1 I_2$

$$C(u,v) = \sum_{x} \sum_{y} I_1(x,y) \cdot I_2(x+u,y+v)$$

Normalized Cross Correlation

Given two images I₁ and I₂, search for the translation (x, y) maximizing the cross-correlation

$$C(u, v) = \sum_{x} \sum_{y} I_1(x, y) \cdot I_2(x + u, y + v)$$

 Normalized Cross Correlation eliminates additions and multiplications effects

$$NC(u,v) = \frac{\sum (I_1(x,y) - \hat{I}_1) \cdot (I_2(x+u,y+v) - \hat{I}_2)}{\sqrt{\sum (I_1(x,y) - \hat{I}_1)^2} \sqrt{\sum (I_2(x,y) - \hat{I}_2)^2}}$$

Limitation (Search Based)

- Discrete accuracy: checking every possible translation
- Complexity increases exponentially with numbers of parameters
 - Translation: (u,v) Complexity is N^2
 - Rotations: (u,v,α) Complexity is N^3
 - Zoom: (u,v,α,s) Complexity is N^4

How Can We Improve?

- Add Assumption: Small motion
- Small means approximately less than 1 pixel
 - We can use Taylor approximation for the differences between the image

Lucas-Kanade: Taylor Approximation

Local Taylor approximation in 1D:

$$f(x+h) \approx f(x) + f'(x) \cdot h$$

Local Taylor approximation in 2D for images:

$$f(x+u, y+v) \approx f(x, y) + \frac{\partial f}{\partial x} \cdot u + \frac{\partial f}{\partial v} \cdot v$$

Optical Flow – LK

• MSE when shifting I_2 relative to I_1 by (u,v):

$$E(u,v) = \sum \sum [I_2(x+u,y+v) - I_1(x,y)]^2$$

• To simplify, we look at a single pixel (No $\sum \sum$) and use Taylor approximation

$$E(u,v) = \left[I_{2}(x+u,y+v) - I_{1}(x,y)\right]^{2} \approx$$

$$\left[I_{2}(x,y) + \frac{\partial I_{2}}{\partial x} \cdot u + \frac{\partial I_{2}}{\partial y} \cdot v - I_{1}(x,y)\right]^{2} =$$

$$(I_{x} \cdot u + I_{y} \cdot v + I_{t})^{2}$$

$$where \quad I_{x} = \frac{\partial I_{2}}{\partial x}; \quad I_{y} = \frac{\partial I_{2}}{\partial y}; \quad I_{t} = I_{2} - I_{1};$$

Optical Flow - Lucas Kanade(LK)

- LK presented a simple way to solve the brightness constancy (BC) equation
- But it only works for small motion
 - The key idea for small motion we can linearize the equation and solve them easily
- We are given two images I_1 , I_2 and our goal is to find (u,v) the displacement of each pixel

Our cost function:
$$E(u, v) = \sum_{x,y} (I_x u + I_y v + I_t)^2$$

Our goal: $\min_{u,v} E(u,v)$

Optical Flow - LK

- The LK optical flow equation: $I_{\chi}u + I_{y}v = -I_{t}$
 - $-I_x$: The x derivative of image I_2
 - $-I_v$: The y derivative of image I_2
 - $-I_t$: The image difference I_2 I_1
- How to solve?

$$I_x u + I_y v = -I_t$$
 \longrightarrow $\left[I_x \quad I_y \right]_v^u = -I_t$

The problems

- We have one equations, but two unknowns
- What it means:

The Aperture Problem

The Aperture Problem

The Aperture Problem

Add additional Constraint

Add local smoothness assumption

Same optical flow for the entire block

Lucas Kanade (LK)

$$I_x u + I_y v = -I_t$$
 \longrightarrow $\left[I_x \quad I_y \right]_v^u = -I_t$

Assume constant (u,v) in small neighborhood

$$\begin{bmatrix} I_{x1} I_{y1} \\ I_{x2} I_{y2} \\ \vdots \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t1} \\ I_{t2} \\ \vdots \end{bmatrix}$$

LK - 5x5 Window

$$\begin{bmatrix} I_{x}(\mathbf{p}_{1}) & I_{y}(\mathbf{p}_{1}) \\ I_{x}(\mathbf{p}_{2}) & I_{y}(\mathbf{p}_{2}) \\ \vdots & \vdots \\ I_{x}(\mathbf{p}_{25}) & I_{y}(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(\mathbf{p}_{1}) \\ I_{t}(\mathbf{p}_{2}) \\ \vdots \\ I_{t}(\mathbf{p}_{25}) \end{bmatrix}$$

$$A \qquad d \qquad b$$

$$25 \times 2 \qquad 2 \times 1 \qquad 25 \times 1$$

How to solve: generic approach

$$E(u,v) = \sum_{x,y} (I_x \cdot u + I_y \cdot v + I_t)^2$$

• Finding (u,v) by setting derivatives to zero:

$$\frac{\partial E}{\partial u} = \sum_{x,y} I_x \cdot (I_x \cdot u + I_y \cdot v + I_t) = 0$$

$$\frac{\partial E}{\partial v} = \sum_{x,y} I_y \cdot (I_x \cdot u + I_y \cdot v + I_t) = 0$$

$$\left[\sum_{x,y} I_x \cdot I_x \sum_{x,y} I_x \cdot I_y \right] \begin{bmatrix} u \\ v \end{bmatrix} = - \left[\sum_{x,y} I_x \cdot I_t \right]$$

$$\left[\sum_{x,y} I_y \cdot I_x \sum_{x,y} I_y \cdot I_y \right] \begin{bmatrix} u \\ v \end{bmatrix} = - \left[\sum_{x,y} I_x \cdot I_t \right]$$

Lukas-Kanade optical flow

We have over constrained equation set:

Solution: solve least squares problem

Python: np.dot(numpy.linalg.pinv(A),b)

Matlab: pinv(A)*b

Least Square

Given:
$$A \quad d = b$$
25×2 2×1 25×1

minimum least squares solution given by solution (in d) of:

$$(A^T A) d = A^T b$$

$$2 \times 2 \quad 2 \times 1 \quad 2 \times 1$$

$$\begin{bmatrix} \sum_{t=1}^{T} I_{x} I_{x} & \sum_{t=1}^{T} I_{x} I_{y} \\ \sum_{t=1}^{T} I_{x} I_{y} & \sum_{t=1}^{T} I_{y} I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{t=1}^{T} I_{x} I_{t} \\ \sum_{t=1}^{T} I_{y} I_{t} \end{bmatrix}$$

$$A^{T}A$$

$$A^{T}b$$

The summations are over all pixels in the K x K window

The solution matrix is $(A^{\top}A)^{-1}A^{\top}b$

LK Optical flow

T solution involves the inverse of:

$$A^{T} A = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

When is this solvable?

- A^TA should be invertible
- A^TA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- A^TA should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Solutions

Homogenous area = singular matrix, rank 0

Solutions

• Edge = singular, rank 1

Solutions

• Textured area = invertible matrix!

Putting it all together

- Select the target window to track
 - Can be every pixel or a specific window
- Use LK/Corr to look for in the next image
- The (u,v) are the requested offsets

Small Motion is a realistic assumption?

Is this motion small enough?

Probably not—it's much larger than one pixel
How might we solve this problem?

The problem: Small motion assumption

- We need a way to measure by small movement even if the movement is larger
 - Use iterative approach
 - Use multi scale estimation

Iterative LK approach

• Compute image derivatives
$$I_x$$
, I_y . Set u , v to 0.
• Compute once
$$A = \begin{bmatrix} \sum I_x \cdot I_x & \sum I_x \cdot I_y \\ \sum I_y \cdot I_x & \sum I_y \cdot I_y \end{bmatrix}$$

- Iterate until convergence (I, ≈0):

- compute
$$b = \begin{bmatrix} \sum_{I_x \cdot I_t} I_x \cdot I_t \\ \sum_{I_y \cdot I_t} I_y \cdot I_t \end{bmatrix}, I_t(x, y) = I_2(x, y) - I_1(x + u, y + v)$$

Solve equations to compute residual motion

$$A \cdot \begin{bmatrix} du \\ dv \end{bmatrix} = -b$$

- Update total motion with residual motion: u+=du, v+=dv
- Warp I_2 towards I_1 with total motion (u,v).

Why Iterative Approach?

- Compute the image derivatives only once
- Has two stages in each iteration:
 - Motion Estimation
 - Warping
- Works even with poor motion estimation, as long as it reduces the residual error
- Warping of one image towards the other is done from original image using total motion, and not from previous image using residual motion. (Repetitive warping blurs!)

Limitations

- Using iterative LK assumes we are in proximity of the solution
- If the motion is too large it might not converge
- How can we improve it?

Multiscale (Coarse-to-fine) Estimation

Iterative & Multiscale approach

Horn-Schuck (HS) Optical Flow

- Lucas-Kanade method is based on local regions
- What if we would like to solve for the (u,v) displacement of all the pixels at once?
 - So now we have for each pixel: $u_{(x,y)}$, $v_{(x,y)}$
- HS presented such a cost function with a solution

Horn-Schunck (HS) Optical Flow

- They add an assumption
 - Neighboring pixels move together= same $u_{(x,y)}$, $v_{(x,y)}$ for nearby pixels
 - This is called **smoothness** assumption or **regularization**
- Note that we also assumed such an assumption in LK but we use it per block

HS Optical Flow

- They defined a new error (cost) function
- The regular one is now called the data term

$$\sum_{\Omega} [u \cdot I_x + v \cdot I_y + I_t]^2$$

 But they added the smoothness term/constraint

$$\sum_{\Omega} u_x^2 + u_y^2 + v_x^2 + v_y^2$$

Data term vs. Smoothness term

HS Optical Flow

The final error function to minimize is

$$\sum_{\Omega} [u \cdot I_{x} + v \cdot I_{y} + I_{t}]^{2} + \lambda \sum_{\Omega} u_{x}^{2} + u_{y}^{2} + v_{x}^{2} + v_{y}^{2}$$

where $\lambda > 0$ is a balance between how important is the data term relative to smoothness term

HS vs. LK

HS

LK

http://eric-yuan.me/coarse-to-fine-optical-flow/

HS vs. LK vs. Pyramids LK

