

Internet of Things & Wireless Networks

Media Access - Lectures 5

(Matches Chapter 3 in the Course Book)

Olaf Landsiedel
Lecture today via Video from Jochen Schiller, FU Berlin

Summer Term 2020

Prof. Dr.-Ing Jochen H. Schiller Inst. of Computer Science Freie Universität Berlin Germany

Mobile Communications Chapter 3: Media Access

Motivation
SDMA, FDMA, TDMA, CDMA
Aloha, reservation schemes
Collision avoidance, MACA
Polling
Comparison

Motivation

Can we apply media access methods from fixed networks?

Example CSMA/CD

- -Carrier Sense Multiple Access with Collision Detection
- -send as soon as the medium is free, listen into the medium if a collision occurs (legacy method in IEEE 802.3)

Problems in wireless networks

- -signal strength decreases proportional to (at least) the square of the distance
- -the sender would apply CS and CD, but the collisions happen at the receiver
- -it might be the case that a sender cannot "hear" the collision, i.e., CD does not work
- -furthermore, CS might not work if, e.g., a terminal is "hidden"

Motivation - hidden and exposed terminals

Hidden terminals

- -A sends to B, C cannot receive A
- -C wants to send to B, C senses a "free" medium (CS fails)
- -collision at B, A cannot receive the collision (CD fails)
- -A is "hidden" for C

Exposed terminals

- -B sends to A, C wants to send to another terminal (not A or B)
- -C has to wait, CS signals a medium in use
- -but A is outside the radio range of C, therefore waiting is not necessary
- -C is "exposed" to B

Motivation - near and far terminals

Terminals A and B send, C receives

- -signal strength decreases proportional to the square of the distance
- -the signal of terminal B therefore drowns out A's signal
- -C cannot receive A

If C for example was an arbiter for sending rights, terminal B would drown out terminal A already on the physical layer

Also severe problem for CDMA-networks - precise power control needed!

Access methods SDMA/FDMA/TDMA

SDMA (Space Division Multiple Access)

- -segment space into sectors, use directed antennas
- -cell structure

FDMA (Frequency Division Multiple Access)

- -assign a certain frequency to a transmission channel between a sender and a receiver
- -permanent (e.g., radio broadcast), slow hopping (e.g., GSM), fast hopping (FHSS, Frequency Hopping Spread Spectrum)

TDMA (Time Division Multiple Access)

-assign the fixed sending frequency to a transmission channel between a sender and a receiver for a certain amount of time

The multiplexing schemes presented in chapter 2 are now used to control medium access!

-multiplexing scheme plus algorithm → Multiple Access method

FDD/FDMA - general scheme, example GSM

TDD/TDMA - general scheme, example DECT

Aloha/slotted aloha

Mechanism

Slotted Aloha

-random, distributed (no central arbiter), time-multiplex

sender C

-Slotted Aloha additionally uses time-slots, sending must always start at slot boundaries Aloha

DAMA - Demand Assigned Multiple Access

Channel efficiency only 18% for Aloha, 36% for Slotted Aloha

-assuming Poisson distribution for packet arrival and packet length

Reservation can increase efficiency to 80%

- -a sender reserves a future time-slot
- -sending within this reserved time-slot is possible without collision
- -reservation also causes higher delays
- -typical scheme for satellite links

Examples for reservation algorithms:

- -Explicit Reservation according to Roberts (Reservation-ALOHA)
- Implicit Reservation (PRMA)
- -Reservation-TDMA

Access method DAMA: Explicit Reservation

Explicit Reservation (Reservation Aloha):

- -two modes:
 - -ALOHA mode for reservation: competition for small reservation slots, collisions possible
 - -reserved mode for data transmission within successful reserved slots (no collisions possible)
- -it is important for all stations to keep the reservation list consistent at any point in time and, therefore, all stations have to synchronize from time to time

Access method DAMA: PRMA

Implicit reservation (PRMA - Packet Reservation MA):

- -a certain number of slots form a frame, frames are repeated
- -stations compete for empty slots according to the slotted aloha principle
- -once a station reserves a slot successfully, this slot is automatically assigned to this station in all following frames as long as the station has data to send
- -competition for this slots starts again as soon as the slot was empty in the last frame

Access method DAMA: Reservation-TDMA

Reservation Time Division Multiple Access

- -every frame consists of N mini-slots and x data-slots
- -every station has its own mini-slot and can reserve up to k data-slots using this mini-slot (i.e. x = N * k).
- -other stations can send data in unused data-slots according to a round-robin sending scheme (best-effort traffic)

MACA - collision avoidance

MACA (Multiple Access with Collision Avoidance) uses short signaling packets for collision avoidance

- -RTS (request to send): a sender request the right to send from a receiver with a short RTS packet before it sends a data packet
- -CTS (clear to send): the receiver grants the right to send as soon as it is ready to receive

Signaling packets contain

- -sender address
- -receiver address
- -packet size

Variants of this method can be found in IEEE802.11 as DFWMAC (Distributed Foundation Wireless MAC)

Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2018

MACA examples

MACA avoids the problem of hidden terminals

- -A and C want to send to B
- -A sends RTS first
- -C waits after receiving CTS from B

MACA avoids the problem of exposed terminals

- -B wants to send to A, C to another terminal
- now C does not have to wait for it, cannot receive CTS from A

Polling mechanisms

If one terminal can be heard by all others, this "central" terminal (a.k.a. base station) can poll all other terminals according to a certain scheme

-now all schemes known from fixed networks can be used (typical mainframe - terminal scenario)

Example: Randomly Addressed Polling

- -base station signals readiness to all mobile terminals
- -terminals ready to send can now transmit a random number without collision with the help of CDMA or FDMA (the random number can be seen as dynamic address)
- -the base station now chooses one address for polling from the list of all random numbers (collision if two terminals choose the same address)
- -the base station acknowledges correct packets and continues polling the next terminal
- -this cycle starts again after polling all terminals of the list

ISMA (Inhibit Sense Multiple Access)

Current state of the medium is signaled via a "busy tone"

- -the base station signals on the downlink (base station to terminals) if the medium is free or not
- -terminals must not send if the medium is busy
- -terminals can access the medium as soon as the busy tone stops
- -the base station signals collisions and successful transmissions via the busy tone and acknowledgements, respectively (media access is not coordinated within this approach)
- -mechanism used, e.g., for CDPD (USA, integrated into AMPS)

Access method CDMA

CDMA (Code Division Multiple Access)

- -all terminals send on the same frequency probably at the same time and can use the whole bandwidth of the transmission channel
- -each sender has a unique random number, the sender XORs the signal with this random number
- -the receiver can "tune" into this signal if it knows the pseudo random number, tuning is done via a correlation function

Disadvantages:

- -higher complexity of a receiver (receiver cannot just listen into the medium and start receiving if there is a signal)
- -all signals should have the same strength at a receiver

Advantages:

- -all terminals can use the same frequency, no planning needed
- -huge code space (e.g. 2³²) compared to frequency space
- -interferences (e.g. white noise) is not coded
- -forward error correction and encryption can be easily integrated

CDMA in theory (very simplified)

Sender A

- -sends $A_d = 1$, key $A_k = 010011$ (assign: "0" = -1, "1" = +1)
- -sending signal $A_s = A_d * A_k = (-1, +1, -1, -1, +1, +1)$

Sender B

- -sends $B_d = 0$, key $B_k = 110101$ (assign: "0" = -1, "1" = +1)
- -sending signal $B_s = B_d * B_k = (-1, -1, +1, -1, +1, -1)$

Both signals superimpose in space

- -interference neglected (noise etc.)
- $-A_s + B_s = (-2, 0, 0, -2, +2, 0)$

Receiver wants to receive signal from sender A

- -apply key A_k bitwise (inner product)
 - $-A_e = (-2, 0, 0, -2, +2, 0) \bullet A_k = 2 + 0 + 0 + 2 + 2 + 0 = 6$
 - -result greater than 0, therefore, original bit was "1"
- -receiving B

$$-B_e = (-2, 0, 0, -2, +2, 0) \bullet B_k = -2 + 0 + 0 - 2 - 2 + 0 = -6$$
, i.e. "0"

CDMA on signal level I (still pretty simplified)

Real systems use much longer keys resulting in a larger distance between single code words in code space.

CDMA on signal level II

CDMA on signal level III

CDMA on signal level IV

CDMA on signal level **V**

SAMA - Spread Aloha Multiple Access

Aloha has only a very low efficiency, CDMA needs complex receivers to be able to receive different senders with individual codes at the same time

Idea: use spread spectrum with only one single code (chipping sequence) for spreading for all senders accessing according to aloha

Problem: find a chipping sequence with good characteristics

Comparison SDMA/TDMA/FDMA/CDMA

Approach	SDMA	TDMA	FDMA	CDMA
Idea	segment space into cells/sectors	segment sending time into disjoint time-slots, demand driven or fixed patterns	segment the frequency band into disjoint subbands	spread the spectrum using orthogonal codes
Terminals	only one terminal can be active in one cell/one sector	all terminals are active for short periods of time on the same frequency	every terminal has its own frequency, uninterrupted	all terminals can be active at the same moment, uninterrupted
Signal separation	cell structure, directed antennas	synchronization in the time domain	filtering in the frequency domain	code plus special receivers
Advantages	very simple, increases capacity per km²	established, fully digital, flexible	simple, established, robust	flexible, less frequency planning needed, soft handover
Disadvantages	inflexible, antennas typically fixed	guard space needed (multipath propagation), synchronization difficult	inflexible, frequencies are a scarce resource	complex receivers, needs more complicated power control for senders
Comment	only in combination with TDMA, FDMA or CDMA useful	standard in fixed networks, together with FDMA/SDMA used in many mobile networks	typically combined with TDMA (frequency hopping patterns) and SDMA (frequency reuse)	higher complexity, lowered expectations; integrated with TDMA/FDMA

Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2018