Simulação de Gestão de Resíduos Sólidos Urbanos Baseada em Eventos Discretos

Mateus Farias¹, Eduardo Evelin¹

¹Instituto de Ensino Superior - iCEV Teresina – PI – Brazil

mateus_farias.santos@somosicev.com eduardo.noronha@somosicev.com

Abstract. This article presents a simulation system for urban solid waste management based on a discrete event architecture. The system models the generation, collection, transfer, and final disposal of waste in a city. The modular design, implemented in Java, enables the analysis of various logistical scenarios. The results show how simulation can support planning and optimization of real-world waste collection systems.

Resumo. Este artigo apresenta um sistema de simulação para o gerenciamento de resíduos sólidos urbanos baseado em uma arquitetura de eventos discretos. O sistema modela a geração, coleta, transferência e o descarte final do lixo em uma cidade. A arquitetura modular, implementada em Java, permite a análise de diferentes cenários logísticos. Os resultados mostram como a simulação pode apoiar o planejamento e a otimização de sistemas reais de coleta de resíduos.

1. Introdução

O crescimento populacional e a urbanização acelerada têm imposto grandes desafios à gestão de resíduos sólidos urbanos. Cidades de médio e grande porte enfrentam diariamente o problema de planejar e executar de forma eficiente a coleta, transporte e descarte de resíduos, de modo a minimizar impactos ambientais e sociais. Neste contexto, ferramentas computacionais de simulação tornam-se essenciais para modelar cenários, testar estratégias operacionais e embasar decisões logísticas.

Este artigo apresenta o desenvolvimento de um sistema de simulação baseado em eventos discretos para modelar a gestão de resíduos em um ambiente urbano. A proposta visa representar, de forma realista, a dinâmica da geração de lixo em diferentes zonas da cidade, a operação de caminhões de coleta e a utilização de estações de transferência, até o transporte final para o aterro sanitário. A arquitetura modular do sistema, implementada em Java, permite uma visualização clara das interações entre os componentes, bem como a realização de experimentos variando parâmetros como capacidade dos caminhões, número de viagens e horários de operação.

Por meio de múltiplas execuções do simulador, foi possível coletar métricas relevantes, como o tempo total de operação, o volume de lixo remanescente por zona e a eficiência das rotas de coleta. Os resultados indicam gargalos operacionais em algumas regiões da cidade, ao mesmo tempo em que revelam a efetividade da estratégia de rotas definida para zonas com menor acúmulo de resíduos. Com isso, a simulação se mostra uma ferramenta promissora para auxiliar o planejamento e a otimização de sistemas reais de coleta de lixo urbano.

2. Arquitetura do Sistema

O sistema desenvolvido adota uma arquitetura modular baseada em pacotes Java, cada um encapsulando funcionalidades específicas da simulação. Essa organização visa promover clareza, manutenibilidade e reutilização de código, além de facilitar a expansão do simulador para outros cenários logísticos.

A simulação é estruturada a partir do paradigma de eventos discretos, onde eventos são agendados e processados em ordem cronológica. Esse modelo permite representar com precisão a dinâmica das operações envolvidas na coleta e transporte de resíduos urbanos.

A seguir, são apresentados os principais pacotes e suas responsabilidades:

- **configsimulador**: Responsável pelas configurações globais da simulação e pela classe principal que orquestra a inicialização e execução do sistema.
- eventos: Contém a hierarquia de eventos que constituem a base do modelo de simulação. Inclui a classe abstrata Evento e o GerenciadorAgenda, que organiza a fila de eventos ordenada pelo tempo.
- **zonas**: Modela as regiões da cidade onde o lixo é gerado. Cada zona possui taxas de geração de resíduos diárias e está associada a uma estação de transferência.
- caminhoes: Define os veículos envolvidos na operação, como CaminhaoPequeno e CaminhaoGrande, com diferentes capacidades e funções na coleta e transporte de resíduos.
- estacoes: Representa as estações de transferência de lixo, que atuam como pontos intermediários entre as zonas urbanas e o destino final (aterro sanitário).
- **tads**: Implementa estruturas de dados personalizadas, como listas duplamente encadeadas e filas, utilizadas para organizar eventos e filas de espera nas estações.
- **timer**: Fornece utilitários para o controle de tempo da simulação, incluindo conversões de unidades e manipulação de horários.

Essa estrutura modular permite a simulação de forma eficiente e controlada, com destaque para o uso do GerenciadorAgenda, que processa os eventos conforme seu tempo de execução. A flexibilidade do sistema possibilita ajustes de parâmetros operacionais e cenários variados, como mudanças nas capacidades dos caminhões, horários de pico, rotas ou quantidade de resíduos gerados.

3. Metodologia

A simulação desenvolvida segue o paradigma de eventos discretos, no qual o tempo avança de evento em evento. Cada evento representa uma ação pontual no sistema, como a geração de lixo, a coleta por caminhões ou a transferência para estações.

A execução da simulação inicia-se com a configuração das zonas urbanas, estações de transferência e parâmetros globais. A classe principal Simulador é responsável por configurar e iniciar o sistema, incluindo a alocação inicial de resíduos nas zonas. A partir dessa configuração, são distribuídas rotas para os caminhões de coleta (caminhões pequenos), de modo que cada veículo atende uma ou mais zonas. As rotas são planejadas utilizando a classe DistribuirRota, considerando critérios de balanceamento de carga e cobertura geográfica.

Cada zona da cidade é definida com um intervalo de geração de lixo diário, permitindo simular a variabilidade natural da produção de resíduos. Essa geração é estocástica e realizada no início de cada execução. Os caminhões pequenos realizam a coleta diretamente nas zonas, com tempo de coleta proporcional à quantidade de lixo. Após atingirem sua capacidade máxima ou completarem o número permitido de viagens, seguem para a estação de transferência correspondente.Na estação, há uma fila de espera para descarregamento, controlada por uma estrutura de dados do tipo fila. Quando o volume acumulado na estação atinge o limite de carga de um CaminhaoGrande, este é despachado para o aterro sanitário.

A geração e o envio de caminhões grandes também são tratados como eventos, garantindo a consistência da dinâmica de transporte. Todos os eventos são organizados e executados pelo GerenciadorAgenda, que mantém uma lista ordenada cronologicamente. A execução de um evento pode agendar outros eventos futuros, como a chegada de um caminhão a uma estação ou o acionamento de um novo veículo. Os tempos de trajeto e operação são calculados considerando o horário do dia, com variações durante os períodos de pico. A classe Timer é responsável por esses cálculos, oferecendo suporte à conversão de unidades de tempo e controle de horários simulados.

Ao final da execução, são coletadas métricas como o tempo total da simulação, o volume de lixo remanescente em cada zona e a quantidade de viagens realizadas por cada tipo de caminhão. Esses dados são utilizados para avaliar a eficiência da operação sob diferentes cenários.

4. Resultados

Para avaliar o desempenho do sistema simulado, foram realizadas seis execuções independentes, utilizando os mesmos parâmetros estruturais. As variações ocorreram apenas nas quantidades iniciais de lixo geradas aleatoriamente em cada zona da cidade.

A Tabela 1 apresenta os valores iniciais de geração de lixo por zona em cada execução. Essa variabilidade inicial permite observar como diferentes condições de entrada impactam o comportamento da coleta e a eficiência geral do sistema.

Tabela 1. Geração inicial de lixo por zona (em toneladas)

Zona	Exec. 1	Exec. 2	Exec. 3	Exec. 4	Exec. 5	Exec. 6
Sul	40	23	29	38	33	37
Sudeste	26	26	28	28	27	29
Centro	19	20	15	19	13	18
Leste	18	23	23	20	25	23
Norte	30	17	23	16	18	19

Todas as execuções iniciaram às 07:00 com os caminhões pequenos percorrendo rotas predefinidas para coleta nas zonas. Após atingirem sua capacidade, os veículos seguiram para as estações A e B, onde descarregaram os resíduos nos caminhões grandes. O tempo de descarga foi, em média, de 5 minutos por tonelada. Já os caminhões grandes eram acionados sempre que o acúmulo nas estações atingia 20 toneladas.

A Tabela 2 apresenta o tempo total de simulação e a quantidade de lixo remanescente em cada zona ao final das seis execuções.

Tabela 2. Tempo total da simulação e lixo remanescente por zona

Métrica	Exec. 1	Exec. 2	Exec. 3	Exec. 4	Exec. 5	Exec. 6
Tempo Total	4h55	4h54	6h24	6h30	6h18	4h43
Sul	24	7	13	22	17	21
Sudeste	10	10	12	12	11	13
Centro	3	4	0	3	0	2
Leste	2	7	7	4	9	7
Norte	14	1	7	0	2	3

Observa-se que as zonas Centro e Norte apresentaram, em algumas execuções, remoção completa do lixo acumulado, indicando boa eficiência operacional nessas áreas. Por outro lado, a Zona Sul concentrou os maiores volumes remanescentes, sugerindo a existência de gargalos logísticos ou subdimensionamento da frota destinada à região.

Para visualizar melhor a distribuição média do lixo não coletado por zona, foi elaborado o gráfico da Figura 1, com base nas médias aritméticas obtidas na Tabela 2.

Figura 1. Distribuição média do lixo remanescente por zona (em toneladas)

A Figura 1 reforça os resultados numéricos: a Zona Sul foi, em média, a mais problemática em termos de resíduos não coletados, enquanto a Zona Centro apresentou a menor média de acúmulo. Esses dados podem orientar ajustes futuros na definição das rotas ou na alocação de recursos, como número de caminhões ou frequência de coleta por região.

5. Conclusão

Este trabalho apresentou o desenvolvimento e os resultados de uma simulação para o gerenciamento de resíduos sólidos urbanos, baseada em uma arquitetura de eventos discretos. O sistema modela de forma detalhada a geração de lixo, a coleta por caminhões pequenos, o transporte intermediário até estações de transferência e o envio final para o aterro por caminhões grandes.

A abordagem modular e parametrizável permite a execução de cenários variados, refletindo diferentes comportamentos operacionais. A simulação forneceu métricas relevantes como tempo total de operação, lixo remanescente por zona e desempenho dos veículos envolvidos. Os resultados mostraram que determinadas zonas, como Centro e Norte, tiveram bom desempenho em várias execuções, enquanto outras, como a zona Sul, enfrentaram dificuldades em eliminar totalmente os resíduos. Esses dados demonstram a utilidade da simulação como ferramenta de apoio ao planejamento e à otimização da logística de coleta.

Como trabalhos futuros, pretende-se incorporar ao simulador fatores como implementação gráfica com JavaFx, rotas dinâmicas baseadas em feedback em tempo real e análise multiobjetivo. Além disso, a simulação poderá ser expandida para incluir diferentes perfis de geração de resíduos ao longo da semana e sazonalidades. Com isso, a solução proposta se mostra promissora para apoiar gestores públicos e operadores logísticos na tomada de decisão sobre sistemas de coleta urbana.

Referências

SEKEFF, R. Atividade 01: Simulador de Coleta de Lixo para Teresina. Material da disciplina de Estruturas de Dados, iCEV, 2025.

FARIAS, M.; EVELIN, E. Simulação de Gestão de Resíduos Sólidos Urbanos Baseada em Eventos Discretos. Instituto de Ensino Superior – iCEV, Teresina – PI, 2025. Relatório técnico.