Define the sequence A_1, A_2, \ldots of matrices by the following recurrence:

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_{n+1} = \begin{pmatrix} A_n & I_{2^n} \\ I_{2^n} & A_n \end{pmatrix} \quad (n = 1, 2, \dots)$$

where I_m is the $m \times m$ identity matrix. Prove that A_n has n+1 distinct integer eigenvalues

where
$$I_m$$
 is the $m \times m$ identity matrix.
Prove that A_n has $n+1$ distinct integer eigenvalues $\lambda_0 < \lambda_1 < \ldots < \lambda_n$ with multiplicities $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$, respectively.