Naive Bayes

Boston University CS 506 - Lance Galletti

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

Recall $P(A|C) = \frac{P(A \cap C)}{P(C)}$

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

Bayes Theorem

$$P(A|C) = \frac{P(C|A)P(A)}{P(C)}$$

Bayes Theorem

$$P(A|C) = \frac{P(C|A)P(A)}{P(C)}$$

$$\frac{P(A \cap C)}{P(A)}$$

Bayes Theorem

$$P(A|C) = \frac{P(C|A)P(A)}{P(C)}$$

$$\frac{P(A \cap C)}{P(A)}$$

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

Given:

Meningitis causes a stiff neck 50% of the time

Given:

Meningitis causes a stiff neck 50% of the time

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)}$$

Given:

Meningitis causes a stiff neck 50% of the time

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)}$$

Given:

- Meningitis causes a stiff neck 50% of the time
- Prior probability of any patient having meningitis is 1/50,000
- Prior probability of any patient having a stiff neck is 1/20

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)}$$

Given an unknown example:

$$(A_1 = a_1, A_2 = a_2, ..., A_m = a_m)$$

Predict the class C that maximizes P(C | $A_1 = a_1$, $A_2 = a_2$, ..., $A_m = a_m$)

Predict the class C that maximizes P(C | $A_1 = a_1$, $A_2 = a_2$, ..., $A_m = a_m$)

Example: binary class {yes, no}

To classify unseen record (marital status = "married", income = 100k)

Predict the class C that maximizes P(C | $A_1 = a_1$, $A_2 = a_2$, ..., $A_m = a_m$)

Example: binary class {yes, no}

To classify unseen record (marital status = "married", income = 100k)

- Compute P(yes | marital status = "married" and income = 100k)
- Compute P(no | marital status = "married" and income = 100k)
- Compare and predict the class that has the highest prob given the attribute values

How do we estimate $P(C \mid A_1 = a_1, A_2 = a_2, ..., A_m = a_m)$ from the data?

$$P(C|A_1 \cap A_2 \cap \cdots \cap A_n)$$

How do we estimate $P(C \mid A_1 = a_1, A_2 = a_2, ..., A_m = a_m)$ from the data?

$$P(C|A_1 \cap A_2 \cap \cdots \cap A_n)$$

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

How do we estimate P(C | $A_1 = a_1$, $A_2 = a_2$, ..., $A_m = a_m$) from the data?

$$P(C|A_1 \cap A_2 \cap \dots \cap A_n) = \frac{P(A_1 \cap A_2 \cap \dots \cap A_n | C)P(C)}{P(A_1 \cap A_2 \cap \dots \cap A_n)}$$

How do we estimate P(C | $A_1 = a_1$, $A_2 = a_2$, ..., $A_m = a_m$) from the data?

$$P(C|A_1 \cap A_2 \cap \dots \cap A_n) = \frac{P(A_1 \cap A_2 \cap \dots \cap A_n | C)P(C)}{P(A_1 \cap A_2 \cap \dots \cap A_n)}$$

Does not depend on C

How do we estimate P(C | $A_1 = a_1$, $A_2 = a_2$, ..., $A_m = a_m$) from the data?

Maximizing $P(C|A_1A_2...A_n)$ is equivalent to maximizing

How do we estimate P(C | $A_1 = a_1$, $A_2 = a_2$, ..., $A_m = a_m$) from the data?

So how to we estimate $P(A_1A_2...A_n \mid C)P(C)$ from the data?

So how to we estimate $P(A_1A_2...A_n \mid C)P(C)$ from the data?

P(C) is easy - why?

So how to we estimate $P(A_1A_2...A_n \mid C)P(C)$ from the data?

P(C) is easy we can just count how many instances of each class we have

But $P(A_1A_2...A_n \mid C)$ is tricky because it requires knowing the **joint distribution** of the attributes...

Can we make some assumptions about the attributes in order to simplify the problem?

Assume that $A_1A_2...A_n$ are independent!

Then

$$P(A_1A_2...A_n | C) = P(A_1 | C) P(A_2 | C) ... P(A_n | C)$$

Can we estimate $P(A_i | C)$ from the data?

Assume that $A_1A_2...A_n$ are independent!

Then

$$P(A_1A_2...A_n | C) = P(A_1 | C) P(A_2 | C) ... P(A_n | C)$$

Can we estimate $P(A_i | C)$ from the data?

Yes! Just count the occurrence of A_i for that class.

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

$$P(C = Yes) = 3/10$$

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

P(Marital Status = "Single" | C = Yes)

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

P(Marital Status = "Single" | C = Yes)

Refund	Marital Status	Income	Class
No	Divorced	90k	Yes
No	Single	85k	Yes
No	Single	90k	Yes

P(Marital Status = "Single" | C = Yes) = 2/3

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

P(Marital Status = "Married" | C = No)

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

P(Marital Status = "Married" | C = No)

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Married	60k	No
Yes	Divorced	220k	No
No	Married	75k	No

P(Marital Status = "Married" | C = No) = 4/7

Form

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

 $P(Income = 120k \mid C = No)$

Continuous Attributes

- Binning / 2-way or multi-way split
 - Create new attribute for each bin
 - Issue is that these attributes are no longer independent
- Pdf estimation
 - Assume attribute follows a particular distribution (example: normal)
 - Use data to estimate the parameters of the distribution

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

 $P(Income = 120k \mid C = No)$

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

 $P(Income = 120k \mid C = No)$

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Married	60k	No
Yes	Divorced	220k	No
No	Married	75k	No

 $P(Income = 120k \mid C = No)$

Sample mean = 110 Sample variance = 2975

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Married	60k	No
Yes	Divorced	220k	No
No	Married	75k	No

 $P(Income = 120k \mid C = No)$

Sample mean = 110 Sample variance = 2975

$$P(Income = 120|No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{-\frac{(120-110)^2}{2(2975)}} = .0072$$

Putting it all together

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Test Record: X = (Refund = No, Married, Income = 120k)

P(X | Yes) =

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Test Record:

X = (Refund = No, Married, Income = 120k)

- P(X | No) = P(Refund = No | No)
 P(Married | No) P(Income=120k | No) =
 4/7 * 4/7 * .0072 = .0024
- P(X | Yes) =

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Test Record:

X = (Refund = No, Married, Income = 120k)

- P(X | No) = P(Refund = No | No)
 P(Married | No) P(Income=120k | No) =
 4/7 * 4/7 * .0072 = .0024
- P(X | Yes) = P(Refund = No | Yes)
 P(Married | Yes) P(Income=120k | Yes) =
 1 * 0 * 1.2 * 10⁻⁹ = 0

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Test Record:

X = (Refund = No, Married, Income = 120k)

- P(X | No) = P(Refund = No | No)
 P(Married | No) P(Income=120k | No) =
 4/7 * 4/7 * .0072 = .0024
- P(X | Yes) = P(Refund = No | Yes)
 P(Married | Yes) P(Income=120k | Yes) = 1 * 0 * 1.2 * 10⁻⁹ = 0

Since P(X | No)P(No) > P(X | Yes)P(Yes) => predict No

Limitation

If one of the conditional probabilities is zero, the entire expression becomes zero...

Original estimate of $P(A_i \mid C) = N_{ic} / N_{c}$

Laplace estimate : $P(A_i \mid C) = (N_{ic} + 1) / (N_c + constant)$

Question

Can you use Naive Bayes to predict class C based on the following two features:

- 1. Weight
- 2. Height