



# TABLE of CONTENTS



What is StackOverflow? Motivation and Objective



RESULTS

Visualizations, Findings, Model Performance



#### **METHODOLOGY**

Data, tools, models, evaluation



#### **CONCLUSION**

Application, Future Work









### INTRODUCTION

- What is StackOverflow?
- Motivation: A kinder, more productive learning experience
- Goal: Classify a comment as condescending or not condescending







### **METHODOLOGY**

- Data: Stack Overflow Data from Kaggle
- Tools: Numpy, Pandas, Matplotlib, Seaborn,
   Sklearn, Vader, nltk, scipy, gensim
- Topic Modeling: LSA, NMF
- Classification: kNN, Logistic Regression, Random Forests
- Model Evaluation: emphasis on recall, but with context of confusion matrix





**Latent Semantic Model** 



#### **TOPIC ONE**

use, code, would, question, answer, like, think, c, also, need, want, using, time, get, work, example, could, mean, say, see, know, much

#### **TOPIC TWO**

jpeg, ocaml, postgresql,
words, case-insensitive,
-tiers, n-tiers, associative,
foo, controlchars.quote, age,
href=, cryptography

#### **TOPIC THREE**

asked, good, perfectly, accepted, answered, correct, subjective, post, voted, help, yes, wrong, upvote, google, original





#### **Latent Semantic Model**

#### 1: Further Questions

use, code, would, question, answer, like, think, c, also, need, want, using, time, get, work, example, could, mean, say, see, know, much

#### 2: Technical

jpeg, ocaml, postgresql,
words, case-insensitive,
-tiers, n-tiers, associative,
foo, controlchars.quote, age,
href=, cryptography

#### **3: Reviewing Comments**

asked, good, perfectly, accepted, answered, correct, subjective, post, voted, help, yes, wrong, upvote, google, original



Non-negative Matrix
Factorization



#### **TOPIC ONE**

mean, string, new, example, different, best, statement, name, read, work, say, get, words, foo, syntax, var, f, x, file, variable, upvote, phrase

#### **TOPIC TWO**

code, use, would, think, like, c, need, time, way, want, could, good, method, get, function, c++, type, object, say, example, better

#### **TOPIC THREE**

question, answer, asked, good, one, answers, would, valid, c++, ask, vote, perfectly, accepted, nice, different, wrong, better



Non-negative Matrix Factorization



#### **TOPIC ONE**

mean, string, new, example, different, best, statement, name, read, work, say, get, words, foo, syntax, var, f, x, file, variable, upvote, phrase

#### **TOPIC TWO**

code, use, would, think, like, c, need, time, way, want, could, good, method, get, function, c++, type, object, say, example, better

#### **TOPIC THREE**

question, answer, asked, good, one, answers, would, valid, c++, ask, vote, perfectly, accepted, nice, different, wrong, better



Final Model: Latent
Semantic Model w/TF-IDF



#### 1: Further Questions

use, code, would, question, answer, like, think, c, also, need, want, using, time, get, work, example, could, mean, say, see, know, much

#### 2: Technical

jpeg, ocaml, postgresql,
words, case-insensitive,
-tiers, n-tiers, associative,
foo, controlchars.quote, age,
href=, cryptography

#### **3: Reviewing Comments**

asked, good, perfectly, accepted, answered, correct, subjective, post, voted, help, yes, wrong, upvote, google, original 03

## RESULTS: classification



#### **Baseline Model**

Let this model predict the majority class every time

accuracy score: 89.07%

precision score: 0.00%

recall score: 0.00%

f1 score: 0.00%



## RESULTS: classification

#### Final Model

kNN (k=3), with upsampled, scaled data and lower

decision threshold

accuracy score: 71.47%

precision score: 18.14%

recall score: 45.88%

f1 score: 26.00%









### CONCLUSION

#### Application

 Place warning to choose words more kindly if comment detected as condescending

#### • Further Work:

- Get rid of technical terms
- Look at other classification model
- More data





## Thank You!

Slides by Slidesgo





sensible human brains are becoming a rarity these days if you're ever even tempted to use it, quit engineering now Your co-workers are going to hate you And if you purchase that domain I will never be able to look at you the same way again

#### kNN(k=3)

**Logistic Regression** 

**Random Forests** 

accuracy score: 74.55%

precision score: 14.01%

recall score: 25.88%

**f1 score**: 18.18%

accuracy score: 10.93%

precision score: 10.93%

recall score: 100.00%

**f1 score**: 19.70%

accuracy score: 86.25%

precision score: 15.62%

recall score: 5.88%

**f1 score**: 8.55%



For easy comparison of classification models performance (before lowering decision threshold)

#### kNN(k=3)

**Logistic Regression** 

accuracy score: 71.47%

precision score: 18.14%

recall score: 45.88%

**f1score**: 26.00%

Final model

Confusion Matrix: kNN



accuracy score: 10.93%

precision score: 10.93%

recall score: 100.00%

**f1 score**: 19.70%

Same results



For easy comparison of classification models performance (after lowering decision threshold)