Topic 9b: Second Order Differential Equations

9.5 SOLVING SECOND ORDER DIFFERENTIAL EQUATIONS

A second-order differential equation is called *linear* if it can be written as

$$y'' + p(x)y' + q(x)y = r(x)$$
 (1)

where p, q, r are any given function of x. Any second order differential equation that cannot be written in the above form is called nonlinear.

If r(x) = 0, equation (1) becomes

$$y'' + p(x)y' + q(x)y = 0 (2)$$

and is called homogeneous.

If r(x) is not identically zero, the equation is called *non-homogeneous*.

Example 1

$$y'' + 4y = e^{-x} \sin x$$
 --- non-homogeneous linear $d e$
 $(1 - x^2)y'' - 2xy' + 6y = 0$ --- homogeneous linear $d e$
 $x(y''y + y'^2) + 2y'y = 0$ --- homogeneous nonlinear $d e$

Theorem (Fundamental theorem for the homogeneous equation)

For a homogeneous linear differential equation (2), any linear combination of two solutions on an open interval I is again a solution of (2) on I. In particular, for such an equation, sums and constant multiples of solutions are again solutions.

Example 2

- 1. Verify that $y = e^x$ and $y = e^{-x}$ are solutions of the homogeneous linear differential equation y'' y = 0
- 2. Are $y = ce^x$, $y = de^{-x}$ and $y = ce^x + de^{-x}$ also solutions?

Solution:

1.

When $y = e^x$, $y' = e^x$ and $y'' = e^x$	When $y = e^{-x}$, $y' = -e^{-x}$ and $y'' = e^{-x}$
Hence $y'' - y = e^x - e^x = 0$	Hence $y''-y = e^{-x} - e^{-x} = 0$

Therefore, $y = e^x$ is a solution for the d.e.

Therefore, $y = e^{-x}$ is also a solution for the d.e.

2

When
$$y = ce^x$$
, $y' = ce^x$ and $y'' = ce^x$ When $y = de^{-x}$, $y' = -de^{-x}$ and $y'' = de^{-x}$. Hence $y'' - y = ce^x - ce^x = 0$ Hence $y'' - y = de^{-x} - de^{-x} = 0$ Therefore, $y = ce^x$ is a solution for the d.e.

Similarly,
$$y = ce^{x} + de^{-x}$$

$$y' = ce^{x} - de^{-x}$$

$$y'' = ce^{x} + de^{-x}$$

$$\therefore y'' - y = (ce^{x} + de^{-x}) - (ce^{x} + de^{-x}) = 0$$

Therefore, $y = ce^x + de^{-x}$ is another solution for the d.e.

Note: This theorem does not hold for the non-homogeneous equation or for a nonlinear equation.

General Solution

For second-order homogeneous linear equations (2), a *general solution* will be of the form

$$y = c_1 y_1 + c_2 y_2 \tag{3}$$

a linear combination of two (suitable) solutions involving two arbitrary constants c_1 , c_2 . These two solutions (y_1 and y_2) form a **basis** (or **fundamental** set) of solutions to the d.e. (2) on I.

Particular Solution

A particular solution of (2) on I is obtained if we assign specific values to c_1 and c_2 in (3).

Initial Value Problem

For second-order homogeneous linear equations, an *initial value problem* would consist of a homogeneous linear differential equation y'' + p(x)y' + q(x)y = 0 and two initial conditions $y(x_0) = K_0$, $y'(x_0) = K_1$,

Linear independence and dependence

Two functions $y_1(x)$, $y_2(x)$ are said to be linearly dependent on an interval I if there exist constants c_1 , c_2 not all zero, such that

$$c_1y_1(x) + c_2y_2(x) = 0$$

for every *x* in the interval.

It is said to be *linearly independent* on an interval I if it is not linearly dependent on the interval.

Example 3

The function $f_1(x) = \sin 2x$ and $f_2(x) = \sin x \cos x$ are linearly dependent on the interval $(-\infty, \infty)$ since

$$c_1 \sin 2x + c_2 \sin x \cos x = 0$$

is satisfied for every real x if we choose $c_1 = \frac{1}{2}$ and $c_2 = -1$.

Definition of a basis

A basis of solutions of (2) on an interval I is a pair y_1 , y_2 of *linearly independent* solutions of (2) on I.

9.5.1 HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

In this section, we show how to solve homogeneous second order linear equations

$$ay'' + by' + cy = 0 \tag{4}$$

where the coefficients $a(\neq 0)$, b and c are constants.

We try a solution of the form $y = e^{\lambda x}$. Then $y' = \lambda e^{\lambda x}$ and $y'' = \lambda^2 e^{\lambda x}$. Equation (4) becomes

$$a\lambda^{2}e^{\lambda x} + b\lambda e^{\lambda x} + ce^{\lambda x} = 0$$
$$(a\lambda^{2} + b\lambda + c)e^{\lambda x} = 0.$$

Because $e^{\lambda x}$ is never zero for real values of x,

$$a\lambda^2 + b\lambda + c = 0.$$

This latter equation is called the *auxiliary equation*, or *characteristic equation*.

The roots of the auxiliary equation are

$$\lambda_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}, \qquad \lambda_{2} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

With that, we obtain

Case I: two real roots if $b^2 - 4ac > 0$

Case II: a real double root if $b^2 - 4ac = 0$

Case III: complex conjugate roots if $b^2 - 4ac < 0$

Consider these three cases, namely, the solutions of the auxiliary equation corresponding to distinct real roots, real but equal roots, and a conjugate pair of complex roots.

<u>CASE 1</u>: DISTINCT REAL ROOTS ($\lambda_1 \neq \lambda_2$)

The general solution of (4) on \mathbf{R} is

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

where c_1 and c_2 are arbitrary constants.

Example 4

Find the general solution of y'' + 5y' + 6y = 0.

Solution:

The characteristic equation is

$$\lambda^2 + 5\lambda + 6 = 0$$
$$(\lambda + 2)(\lambda + 3) = 0$$

$$\lambda = -2$$
 or $\lambda = -3$. The roots are -2 and -3 .

Thus, the general solution is $y = c_1 e^{-2x} + c_2 e^{-3x}$.

<u>CASE II</u>: REPEATED REAL ROOTS ($\lambda_1 = \lambda_2$)

The general solution of (4) on \mathbf{R} is

$$y = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}$$

where c_1 and c_2 are arbitrary constants.

Example 5

Solve the differential equation y'' + 4y' + 4y = 0.

Solution:

The characteristic equation is

$$\lambda^{2} + 4\lambda + 4 = 0$$

$$(\lambda + 2)^{2} = 0 So \lambda = -2 (repeated)$$

Thus, the general solution is $y = c_1 e^{-2x} + c_2 x e^{-2x}$.

CASE III: CONJUGATE COMPLEX ROOTS (λ_1 , λ_2 are complex)

If λ_1 and λ_2 are complex, then we can write

$$\lambda_1 = \alpha + i\beta$$
 and $\lambda_2 = \alpha - i\beta$

where α and $\beta > 0$ are real.

Therefore, the general solution of (4) on \mathbf{R} is

$$y = Ae^{(\alpha+i\beta)x} + Be^{(\alpha-i\beta)x}$$

which can be expressed in the following form by using Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$

$$y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$$
$$= e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x).$$

where c_1 and c_2 are arbitrary constants.

Example 6

Find the general solution of y'' + 9y = 0.

Solution:

The characteristic equation is

$$\lambda^2 + 9 = 0$$
$$\lambda = \pm 3i$$

The general solution is $y = c_1 cos 3x + c_2 sin 3x$.

Summary of Case I, II, and III

$$ay'' + by' + cy = 0$$
 (4)

Case	Roots of	Basis of	General Solution of (4)
	characteristic equation	solutions of (4)	
	$a\lambda^2 + b\lambda + c = 0$		
I	Distinct real λ_1, λ_2	$e^{\lambda_1 x}, e^{\lambda_2 x}$	$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
п	Repeated real root $\lambda = \lambda_1 = \lambda_2$	$e^{\lambda x}, xe^{\lambda x}$	$y = (c_1 + c_2 x)e^{\lambda x}$
III	Complex conjugates $\lambda_1 = \alpha + i\beta$ $\lambda_2 = \alpha - i\beta$	$e^{\alpha x}\cos\beta x,$ $e^{\alpha x}\sin\beta x$	$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$ or $y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$

9.5.2 NON-HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

In this section, we show how to solve non-homogeneous linear differential equations

$$a y'' + b y' + c y = r(x)$$
 (5)

where a,b, and c are constants and $r(x) \neq 0$.

The corresponding homogeneous equation of (5) is

$$ay'' + by' + cy = 0 \tag{6}$$

It can be shown that the *general solution* of the non-homogeneous equation (5) is given by

$$y = y_h(x) + y_p(x) \tag{7}$$

where $y_h = c_1 y_1(x) + c_2 y_2(x)$ (also known as *complementary function*) is the general solution of the homogeneous equation (6) and y_p is a *particular solution* of (5).

Method of solving nonhomogeneous DE with constant coefficients

Step 1: Solve for homogeneous equation (6).

Step 2: Find any particular solution y_p of (5).

Step 3: Form general solution $y = y_h + y_p$

Example 7

Find a particular solution of y'' + 9y = 27.

Solution: Since r(x) = 27 we assume that a particular solution is given by $y_p = A$ where A is a constant. Substituting $y_p = A$ into the above DE and noting that y_p " = 0, we have

$$y_p$$
" + 9 $y_p = 0 + 9 A = 27$.

Therefore A = 3 and a particular solution is given by $y_p = 3$.

9.4.2.1 Method of Undetermined coefficients

The method of undetermined coefficient is a technique for determining a particular solution y_p .

Rules for the Method of Undetermined Coefficients

(a) Basic Rule.

If r(x) is one of the functions in the first column in the table below, choose the corresponding function y_p in the second column and determine its undetermined coefficients by substituting y_p and its derivatives into (5).

Term in $r(x)$	Choice for y_p
$ke^{\gamma x}$	Ce^{γ_X}
$kx^n (n=0,1,\cdots)$	$K_n x^n + K_{n-1} x^{n-1} + \dots + K_1 x + K_0$
$k\cos\omega x$	
$k \sin \omega x$	$\begin{cases} K\cos\omega x + M\sin\omega x \end{cases}$
$ke^{\alpha x}\cos\omega x$	
$ke^{\alpha x}\sin\omega x$	$ \begin{cases} e^{\alpha x} \left(K \cos \omega x + M \sin \omega x \right) \end{cases} $
$x^n \cos \omega x$	$(V, v^n + V, v^{n-1} + \dots + V)$ and so $V + (I, v^n + I, v^{n-1} + \dots + I)$ single
$x^n \sin \omega x$	$\left\{ (K_n x^n + K_{n-1} x^{n-1} + \dots + K_0) \cos \omega x + (L_n x^n + L_{n-1} x^{n-1} + \dots + L_0) \sin \omega x \right\}$

Example 8

Solve
$$y'' + 4y' - 2y = 2x^2 - 3x + 6$$
.

Solution:

Step 1. We first solve the associated homogeneous equation

$$y'' + 4y' - 2y = 0.$$

The characteristic equation is

$$\lambda^{2} + 4\lambda - 2 = 0$$

$$\lambda = \frac{-4 \pm \sqrt{16 + 8}}{2} = -2 \pm \sqrt{6}$$

$$\therefore y_{h} = c_{1}e^{(-2 + \sqrt{6})x} + c_{2}e^{(-2 - \sqrt{6})x}$$

Step 2. Solve for particular solution.

Since
$$r(x) = 2x^2 - 3x + 6$$
 is a quadratic polynomial, we assume $y_p = Ax^2 + Bx + C$.
Then $y_p' = 2Ax + B$ and $y_p'' = 2A$.

Substituting into the equation, we have

$$2A + 4(2Ax + B) - 2(Ax^2 + Bx + C) = 2x^2 - 3x + 6$$

Equating coefficients: -2A = 2, 8A - 2B = -3, 2A + 4B - 2C = 6

Solving:
$$A = -1, B = -\frac{5}{2}, C = -9$$

$$\therefore y_p = -x^2 - \frac{5}{2}x - 9$$

The general solution of the given equation is

$$y(x) = y_h + y_p = c_1 e^{(-2+\sqrt{6})x} + c_2 e^{(-2-\sqrt{6})x} - x^2 - \frac{5}{2}x - 9$$

(b) Sum Rule.

Step 3.

If r(x) consists of sum of m terms of the kind given in above table, the assumption for a particular solution of y_p consists of the sum of the trial forms $y_{p_1}, y_{p_2}, \dots, y_{p_m}$ corresponding to these terms

$$y_p = y_{p_1} + y_{p_2} + \dots + y_{p_m}$$
.

Example 9

Find the general solution of the equation

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 6y = e^{-2x} + 2 - x.$$

Solution:

Step 1. We first solve the associated homogeneous equation

The characteristic equation is

$$\lambda^{2} + 5\lambda - 6 = 0$$

$$(\lambda - 1)(\lambda + 6) = 0$$

$$\lambda = 1 \text{ or } \lambda = -6$$

$$\therefore y_{h} = c_{1}e^{x} + c_{2}e^{-6x}$$

Step 2. Solve for particular solution.

Since $r(x) = e^{-2x} + 2 - x$ is the sum of two types of functions from the table in (a) (viz. exponential + polynomial), we assume

$$y_{p_1} = Ae^{-2x}, \ y_{p_2} = Bx + C$$

Let $y_p = Ae^{-2x} + Bx + C$
 $y_p' = -2Ae^{-2x} + B$
 $y_p'' = 4Ae^{-2x}$

Substituting into the equation, we have

[You are required to fill in the intermediate steps.]

$$-12A = 1$$
, $-6B = -1$, $5B - 6C = 2$
 $A = -\frac{1}{12}$, $B = \frac{1}{6}$, $C = -\frac{7}{36}$
 $\therefore y_P = \dots$

Step 3. The general solution of the given equation is

$$y = y_h + y_p = c_1 e^x + c_2 e^{-6x} - \frac{e^{-2x}}{12} + \frac{x}{6} - \frac{7}{36}$$

(c) Modification Rule.

If a term in your choice for y_{p_i} contains terms that duplicate terms in y_h , then that y_{p_i} must be multiplied by x^n , where n is the smallest positive integer that eliminates that duplication.

Example 10

Find the general solution of the equation

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = e^t$$

Solution:

Step 1. We first solve the associated homogeneous equation

The characteristic equation is

$$\lambda^2 - 2\lambda + 1 = 0$$

$$(\lambda - 1)^2 = 1$$
 [You are required to fill in the intermediate steps.] $\therefore y_h = c_1 e^t + c_2 t e^t$

Step 2. Solve for particular solution.

Since $r(t) = e^t$ is a term in y_c , we assume

$$y_p = At^2e^t$$

$$y_p' = 2At e^t + A t^2 e^t$$

$$y_p'' = 2A e^t + 4At e^t + A t^2 e^t$$

[You are required to fill in the intermediate steps.]

Substituting into the equation, we have $A = \frac{1}{2}$

Step 3. The general solution of the given equation is

$$y = y_h + y_p = c_1 e^t + c_2 t e^t + \frac{1}{2} t^2 e^t$$
.

Example 11

Given that the function $y_1(x)=e^{-5x}$ and $y_2(x)=e^{2x}$ are both the solutions of the homogeneous equation, find the general solution of the equation

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = x(e^x + 1)$$

Solution:

Step 1. We first determine the solution of the associated homogeneous equation Since $y_1(x)=e^{-5x}$ and $y_2(x)=e^{2x}$ are both the solutions of the homogeneous equation

$$\therefore y_h = c_1 e^{-5x} + c_2 e^{2x}$$

Step 2. Solve for particular solution.

Since $r(x) = x (e^x + 1)$ is a combination of two functions, we assume

$$y_p = (Ax + B)e^x + Cx + D$$
 [Do you understand how the rules are applied?]

$$y_p' = (Ax + B)e^x + Ae^x + C$$

$$y_p'' = (Ax + B)e^x + 2Ae^x$$

[You are required to fill in the intermediate steps.]

Substituting into the equation, we have

$$A = -\frac{1}{6}$$
 $B = -\frac{5}{36}$ $C = -\frac{1}{10}$ $D = -\frac{3}{100}$

Step 3. The general solution of the given equation is
$$y = y_h + y_p = c_1 e^{-5x} + c_2 e^{2x} + \left(-\frac{1}{6}x - \frac{5}{36}\right) e^x - \frac{1}{10}x - \frac{3}{100}$$