Segunda lista de exercícios de cálculo 2

Sistemas de Informação - 2008

- 1. Se f(1) = 12, f' é continua e $\int_1^4 f'(x)dx = 17$, qual é o valor de f(4)?
- 2. Ache a integral indefinida
- (a) $\int (3e^{u} + \sec^{2} u) du$ (b) $\int \frac{\sin 2x}{\sin x} dx$ (c) $\int x^{2} (x^{3} + 5)^{2} dx$ (d) $\int e^{\cos t} \sin t dt$ (e) $\int \frac{e^{x}}{e^{x} + 1} dx$ (f) $\int \frac{\cos(\frac{\pi}{x})}{x^{2}} dx$

- $(g) \int \frac{\sin x}{1+\cos^2 x} dx$
- 3. Calcule:

- Calcule: (a) $\int_{0}^{1} (3 + x\sqrt{x}) dx$ (b) $\int_{1}^{2} \frac{4+u^{2}}{u^{3}} du$ (c) $\int_{\ln 3}^{\ln 6} 8e^{x} dx$ (d) $\int_{-2}^{3} |x^{2} 1| dx$ (e) $\int_{-1}^{2} |x x^{2}| dx$ (f) $\int_{1}^{2} \frac{y + 5y^{7}}{y^{3}} dy$ (g) $\int_{4}^{9} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^{2} dx$ (h) $\int_{0}^{\pi} x \cos(x^{2}) dx$ (i) $\int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\cos^{2} x} dx$ (j) $\int_{e}^{e^{4}} \frac{1}{x\sqrt{\ln x}} dx$ (l) $\int_{0}^{\frac{1}{2}} \frac{\sin^{-1} x}{\sqrt{1 x^{2}}} dx$ (m) $\int_{0}^{a} x\sqrt{a^{2} x^{2}} dx$
- 4. Calcule $\int_0^1 (x\sqrt{1-x^4})dx$ fazendo uma substituição e interpretando a integral resultante em termos de área. (Dica: $x^2+y^2=r^2$ descreve um círculo de raio r).
- 5. Sabendo-se que f é contínua e $\int_0^4 f(x)dx = 10$, determine $\int_0^2 f(2x)dx$.
- 6. Fazendo a substituição $u=\pi-x$, é fácil mostrar que $\int_0^\pi x f(\sin x) dx = \frac{\pi}{2} \int_0^\pi f(\sin x) dx$. Usando esta igualdade calcule a integral $\int_0^\pi \frac{x \sin x}{1+\cos^2 x} dx$.
- 7. Avalie a integral usando a integração por partes.
- (a) $\int u \sin 2u \ du$ (b) $\int \sin^{-1} x \ dx$ (c) $\int t^3 e^t \ dx$ (d) $\int e^{-\theta} \cos 2\theta \ d\theta$
- (e) $\int_0^1 (x^2 + 1)e^{-x} dx$ (f) $\int_1^4 \sqrt{t} \ln t dt$ (g) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \csc^2 x dx$
- 8. Primeiro faça uma substituição e então use a integração por partes para avaliar a integral.
 - (a) $\int x^5 e^{x^2} dx$
- (b) $\int_{\sqrt{\pi}}^{\sqrt{\pi}} \theta^3 \cos(\theta^2) dx$
- 9. (a) Prove a fórmula de redução
 - $\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$
 - (b) Avalie $\int \cos^2 x \ dx$. (c) Avalie $\int \cos^4 x \ dx$.

10. Quais das seguintes integrais é imprópria? Justifique. (a) $\int_1^2 \frac{1}{2x-1} dx$ (b) $\int_0^1 \frac{1}{2x-1} dx$ (c) $\int_{-\infty}^\infty \frac{\sin x}{1+x^2} dx$

11. Determine se cada integral é convergente ou divergente. Avalie aquelas

- 12. Use o Teorema da comparação para determinar se a integral é convergente ou divergente.

(a) $\int_{1}^{\infty} \frac{\cos^2 x}{1+x^2} dx$ (b) $\int_{0}^{1} \frac{e^{-x}}{\sqrt{x}} dt$ (c) $\int_{1}^{\infty} \frac{x}{\sqrt{1+x^6}} dx$ (d) $\int_{0}^{\frac{\pi}{2}} \frac{1}{x \sin x} dx$

13. Determine os valores de p para os quais a integral converge. Avalie a integral nestes casos.

(a) $\int_{e}^{\infty} \frac{1}{x(\ln x)^p} dx$

 $(b) \int_0^1 x^p \ln x \ dx$