

T PBÀIGING V TLI UK THU T2

TB2015-01-13

Ban biên so n:

Ch biên: ThS. V V n Khánh Thành viên: ThS. Ph m V n Tr ng

NAM NH, 2015

L I NÓI U

Ngày nay khoa h c công ngh phát tri n c bi t là khoa h c v t li u. Vì v y, ã phát tri n nhi u lo i v t li u s d ng trong ngành ch t o c khí nh v t li u kim lo i, v t li u b t, v t li u ceramic, polyme và compozit... V t li u k thu t 2 là môn h c nghiên c u v t ch c, tính ch t c a v t li u, và ph m vi ng d ng các lo i c a chúng.

Trong m i công vi c c a c nhân, k s c khí, t vi c quy t nh ph ng án thi t k , tính toán k t c u cho n gia công, ch t o, l p ráp, v n hành máy, thi t b , t t th y u có liên quan m t thi t n l a ch n và s d ng v t li u. i u quan tr ng nh t i v i ng i h c là ph i n m c c tính và tính công ngh c a các v t li u k trên có th l a ch n và s d ng chúng t t nh t và h p lý, t các yêu c u c tính ra v i chi phí gia công ít nh t, giá thành r và có th ch p nh n c.

Nh m áp ng m c tiêu ào t o theo h c ch tín ch, ngành c khí t i tr ng i h c S ph m k thu t Nam nh theo xu h ng phát tri n c a khu v c, nhóm tác gi biên so n t p bài gi ng V t li u k thu t 2. T p bài gi ng c dùng gi ng d y và làm tài li u chính cho sinh viên h i h c và Cao ng k thu t h c t p, ngoài ra có th dùng làm tài li u tham kh o cho các chuyên ngành k thu t khác.

Trong quá trình biên so n, nhóm tác gi ã c g ng s d ng nh ng hi u bi t và kinh nghi m c ng nh th c t Vi t Nam tích l y c trong quá trình công tác gi ng d y và th c ti n, ng th i tham kh o ch ng trình gi ng d y c ng nh các sách giáo khoa v v t li u h c các tr ng i h c xu t b n trong nh ng n m g n ây.

NHÓM TÁC GI

M CL C

DANH M C HÌNH V	v
DANH M C CÁC B NG	vii
CH NG. NHI TLUY N VÀ CÁC PH NG PHÁP HÓA B N B M TTHÉP.	1
1.1. Nhi t luy n	1
1.1.1. nh ngh a và c i m chung c a nhi t luy n	1
1.1.2. Các chuy n bi n khi nung nóng thép-S t o thành austenit	1
1.1.3. Các chuy n bi n x y ra khi gi nhi t	3
1.1.4. Các chuy n bi n c a austennit khi làm ngu i	4
1.2. và th ng hóa thép	9
1.2.1. thép	9
1.2.2. Th ng hoá thép	11
1.3. Tôi thép	12
1.3.1. nh ngh a và m c ích	12
1.3.2. Ch n nhi t tôi	12
1.3.3. T c tôi t i h n và th m tôi	13
1.3.4. Các ph ng pháp tôi th tích và công d ng. Các môi tr ng tôi	15
1.3.5. C – nhi t luy n	18
1.4. Ram thép	20
1.4.1. nh ngh a và m c ích	
1.4.2. Các ph ng pháp ram	
1.5. Các khuy t t t x y ra khi nhi t luy n	21
1.5.1. Bi n d ng và n t	21
1.5.2. Ôxy hoá và thoát Cacbon	22
1.5.3. c ng không t	23
1.5.4. Tính giòn cao	23
1.6. Các ph ng pháp hóa b n b m t thép	
1.6.1. Ph ng pháp c h c	
1.6.2. Ph ng pháp nhi t luy n b m t	
1.6.3. Ph ng pháp hóa nhi t luy n	
Câu h i ôn t p	
CH NG 2. THÉP VÀ GANG	
2.1.Thép Cacbon	
2.1.1.Thành ph n hóa h c	
2.1.2. nh h ng c a Cacbon n t ch c và tính ch t c a thép Cacbon	
2.1.3. nh h ng c a các nguyên t khác	
2.1.4. Phân lo i thép Cacbon	40

2.1.5. Ký hi u và công d ng c a các nhóm thép Cacbon	42
2.1.6. u nh c i m c a thép cacbon	44
2.2. Thép h p kim	45
2.2.1. Tác d ng c a nguyên t h p kim	46
2.2.2. Phân lo i thép h p kim	59
2.2.3. Ký hi u thép h p kim	60
2.3. Thép cán nóng thông d ng	60
2.3.1. Thành ph n và tính ch t	60
2.3.2. Nhóm thép Cacbon	62
2.3.3. Nhóm thép h p kim vi l ng	62
2.3.4. Nhóm thép hai pha i ngh ch (ferit-Mactenxit)	63
2.3.5. Nhóm thép h p kim th p	63
2.4. Thép k t c u	64
2.4.1. Khái ni m, c i m và phân lo i thép k t c u	64
2.4.2. Thép th m Cacbon	65
2.4.3. Thép hóa t t	67
2.4.4. Thép àn h i	68
2.5. Thép d ng c	69
2.5.1. Khái ni m và phân lo i	69
2.5.2. Thép dao c t	69
2.5.3. Thép khuôn d p ngu i	74
2.5.4. Thép khuôn d p nóng	75
2.5.5. Thép làm d ng c o l ng	76
2.6. Thép và h p kim c bi t	77
2.6.1. Thép và h p kim có tính ch ng mài mòn cao	77
2.6.2. Thép không g	80
2.6.3. Thép và h p kim ch u nhi t (làm vi c nhi t cao)	85
2.7. Các lo i gang	88
2.7.1. c i m chung c a gang	88
2.7.2. T ch c t vi và c tính c a các lo i gang	91
Câu h i ôn t p	99
CH NG 3. H P KIM MÀU VÀ B T	100
3.1. Nhôm và h p kim nhôm	100
3.1.1. Nh ng c tính ch y u c a nhôm	100
3.1.2. Phân lo i và ký hi u	100
3.1.3. Nhôm s ch k thu t	102
3.1.4. H p kim nhôm bị n d ng	102

3.1.5. H p kim nhôm bi n d ng không hóa b n b ng nhi t luy n	102
3.1.6. H p kim nhôm bi n d ng hóa b n b ng nhi t luy n	104
3.1.7. H p kim nhôm úc	106
3.2. ng và h p kim ng	108
3.2.1. ng	108
3.2.2. Latông	110
3.2.3. Brông	112
3.3. H p kim tr t	114
3.3.1. Yêu cu ivih p kim làm tr t	114
3.3.2. H p kim tr t có nhi t ch y th p.	115
3.3.3. H p kim tr t có nhi t ch y cao	115
3.4. H p kim b t	116
3.4.1. Khái ni m chung	116
3.4.2. V t li u c t và mài	117
3.4.3. V tli uk tc u	120
3.4.4. H p kim x p và th m	122
Câu hiônt p	125
CH NG 4. V T LI U VÔ C (CERAMIC)	126
4.1. C u trúc c a v t li u vô c	
4.1.1. Liên k t nguyên t trong v t li u vô c	127
4.1.2. Tr ng thái tinh th và tr ng thái vô nh hình	127
4.1.3. V t li u a pha và a tinh th	130
4.2. Tính ch t c h c	131
4.3. Các lo i v t li u vô c và ng d ng	132
4.3.1. G m và v t li u ch u l a	132
4.3.2. Th y tinh và g m th y tinh	133
4.3.3. Xi m ng và bê tông	134
4.4. S n xu t và x lý các lo i v t li u vô c	136
Câu h i ôn t p	138
CH NG 5. V T LI U POLYME	139
5.1. S n xu t v t li u polyme	140
5.1.1. Nguyên v t li u	140
5.1.2. Các ph ng pháp t ng h p polyme	140
5.2. Gia công v t li u polyme	143
5.2.1. Tính ch t gia công c a v t li u polyme	143
5.2.2. To hình không phoi v t li u polyme	145
5.2.3. C t	146

5.2.4. Ghép	147
5.2.5. Ph b m t	149
Câu h i ôn t p	150
CH NG 6. V T LI U COMPOZIT	151
6.1. Khái ni m v compozit	151
6.1.1. Khái ni m	151
6.1.2. Phân lo i	151
6.2. Compozit h t	152
6.3. Compozit c t s i	153
6.4. Compozit c u trúc	154
Câu hiônt p	156
CH NG 7. N MÒN VÀ BOV V TLIU	157
7.1. Khái ni m chung v n mòn kim lo i	157
7.2. C ch n mòn i n hoá	157
7.2.1. Các ph n ng i n hóa	157
7.2.2. Xu th n mòn	158
7.2.3. Các d ng n mòn i n hóa	159
7.3. B o v ch ng n mòn	165
7.3.1. S n ph	165
7.3.2. B o v i n hóa	166
7.3.3. n mòn hóa h c	167
7.4. n mòn khô và cách ch ng n mòn khô	168
Câu h i ôn t p	169
TÀILL IITHAMKH O	170

DANH M C HÌNH V

Hình 1.1. Các thông s c tr ng c a quá trình nhi t luy n	1
Hình 1.2. Gi n pha Fe-C (ph n thép)	2
Hình 1.3. Gi n chuy n bi n ng nhi t P c a thép cùng tích	2
Hình 1.4. Quá trình t o m m và phát tri n m m austenit t peclit t m	3
Hình 1.5. S phát tri n austenit, I di truy n h t nh , II di truy n h t l n	3
Hình 1.6. Gi n T-T-T c a thép cùng tích	4
Hình 1.7. T ch c t vi c a xoobit tôi	5
Hình 1.8. T ch c t vi c a trôxit tôi	5
Hình 1.10. Gi n chuy n bi n austenit làm ngu i liên t c	6
Hình 1.11. T c tih n to thành t ch c Mactenxit	8
Hình 1.12. Ki u m ng mactenxit và t ch c maxtenxit	8
Hình 1.13. ng cong ng h c chuy n bi n mactenxit	8
Hình 1.14. c ng tôi ph thu c %C	9
Hình 1.15. Kho ng nhi t ca, th ng hoá và tôi ca thép cacbon	13
Hình 1.16. S gi i thích th m tôi	14
Hình 1.17. Chi u sâu l p tôi c ng c a m t s lo i thép	14
Hình 1.18. Thí nghi m tôi u mút (xác nh th m tôi)	15
Hình 1.19. Ph ng pháp tôi	
Hình 1.20. ng ngu i lý t ng khi tôi	
Hình 1.21. T ch c t vi c a maxtenxit và austenit d	
Hình 1.22. T ch c t vi c a trôxit ram	
Hình 1.23. T ch c t vi c a xoocbit ram	
Hình 1.24. Nung nóng và tôi c m ng	25
Hình 1.25. Nguyên lý làm vi c c a vòng c m ng	
Hình 1.26. M ts lo i vòng c m ng	
Hình 1.27. C u t o c a ng n l a	
Hình 1.28. H p th m C th r n	
Hình 1.29. S lò th m cacbon b ng d u h a	
Hình 1.30. Gi n Fe-N	
Hình 2.1. nh h ng c a cacbon n c tính c a thép cacbon tr ng thái	
Hình 2.2. S cut oc a thi úc thép sôi (a) và thép l ng (b)	
Hình 2.3. Gi n pha s t – nguyên t h p kim	
Hình 2.4. Gi n pha s t – nguyên t h p kim	
Hình 2.5. nh h ng c a nguyên t h p kim n c tính c a ferit	
Hình 2.6. S chuy n d ch c a ng cong ch 'C' c a nguyên t h p kim	
Hình 2.7. S bi u di n s gi m t c tôi t i h n (a) và s t ng th m tôi (b)c a

thép h p kim so v i thép cacbon $(V_{th1} \text{ và } V_{th2})$ là t c tôi t i h n, còn 1 và	ı 2 là
th m tôi l n l t c a thép cacbon và thép h p kim	53
Hình 2.8. Quan h gi a dai va p và nhi t ram	58
Hình 2.8. ng cong ch 'C' c a các lo i thép	59
Hình 2.12. Quy trình nhi t luy n k t thúc thép gió 80W18Cr4VMo	73
Hình 2.13. T ch c t vi c a gang xám	91
Hình 2.14. T ch c t vi c a gang c u	94
Hình 2.15. T ch c t vi gang d o	96
Hình 3.1. Phân lo i h p kim Al theo gi n pha	101
Hình 3.2. T ch c h p kim tr t	114
Hình 4.1. Kh n ng liên k t t o v t li u vô c	126
Hình 4.2. Các d ng c u trúc silicat	128
Hình 4.3. S c u trúc	130
Hình 6.1. S minh h a c u t o compozit	151
Hình 6.2. S phân b c t s i	153
Hình 6.3. S s p x p các l p c s khi t o ra compozit c u trúc d ng l p	155
Hình 6.4. S c u t o compozit c u trúc d ng t m ba l p	156
Hình 7.1. n mòn ti p xúc (galvanic)	
Hình 7.2. n mòn khe	160
Hình 7.3. C ch n mòn khe	160
Hình 7.4. M $$ t $$ d $$ ng $$ n mòn mím n $$ c(1-Vùng $$ n mòn, 2-L $$ p $$ g $$ s $$ t)	161
Hình 7.5. n mòn vùng l ng ng	161
Hình 7.6. Các d ng n mòn l	162
Hình 7.7. n mòn 1 c a thép th n g trong ion $C1^-$	162
Hình 7.8. n mòn tinh gi i c a thép không r	163
Hình 7.9. n mòn n t biên gi i h t thép không r	163
Hình 7.10. n mòn do ng 1 c	164
Hình 7.11. n mòn l a ch n (s phân rã c a h p kim)	164
Hình 7.12. n mòn mài mòn	165
Hình 7.13. B o v cat t b ng protector	166
Hình 7.14. S bov ng d n d i t b ng dòng i n ngoài	167
Hình 7.15. Nguyên lý dùng anôt tr	167

DANH M C CÁC B NG

В	ng 1.1. T c làm ngu i trong các môi tr ng khác nhau	17
В	ng 1.2. Khí th m c a Nga	31
В	ng 1.3. Khí th m c a Hoa K	31
В	ng 2.1. C tính quy nh c a các mác thép cacbon ch t l ng th ng	42
В	ng 2.2. c tính tác d ng c a m t s nguyên t h p kim trong thép	56
В	ng 7.1. Th i n c c c a các kim lo i	158
В	ng 7.2. Áil c c a m t s kim lo i i v i oxy và l u hu nh	168

CH NG 1

NHI T LUY N VÀ CÁC PH NG PHÁP HÓA B N B M T THÉP 1.1. Nhi t luy n

1.1.1. nh ngh a và c i m chung c a nhi t luy n

a. nh ngh a

Nhi t luy n là quá trình nung nóng kim lo i hay h p kim n nhi t xác nh, gi t i ó m t th i gian thích h p (gi nhi t) r i làm ngu i v i t c nh t nh làm thay i t ch c do ó nh n c c tính và các tính ch t theo yêu c u.

c i m c a nhi t luy n ó là không làm nóng ch y và bi n d ng s n ph m, k t qu c ánh giá b ng bi n i c a t ch c t vi và tính ch t.

b. Các thông s c tr ng cho nhi t luy n

Hình 1.1. Các thông s c tr ng c a quá trình nhi t luy n

- + Nhi t nung nóng (t_n) là nhi t cao nh t mà quá trình nhi t luy n ph i t t i.
- + Th i gian gi nhi t (gn) là th i gian duy trì chi ti t t i nhi t nung nóng.
- + T c ngu i (V_{ngu i}) là t c gi m nhi t theo th i sau khi gi nhi t.
 - c. K t qu c a m t quá trình nhi t luy n
- + c ng là yêu c u quan tr ng nh t và d dàng xác nh c, nó liên quan n các ch tiêu b n, d o, dai...
- + T ch c t vi bao g m c u t o pha, kích th c h t, chi u sâu l p hoá b n...
- + bi n d ng, cong vênh, thông th ng bi n d ng, cong vênh khi nhi t luy n th ng nh và n m trong gi i h n cho phép. Tuy nhiên trong m t s tr ng h p yêu c u r t kh t khe, c n ph i ki m tra chúng.[7]

1.1.2. Các chuy n bi n khi nung nóng thép-S t o thành austenit

a) C s xác nh chuy n bi n khi nung

D a vào gi n (hình 1.2) nh n th y nhi t th ng m i thép u c u t o b i hai pha c b n là ferit (F) và xêmentit (Xê) (trong $ó P = [F + X\hat{e}]$).

- Thép cùng tích có t ch c là P, thép tr c cùng tính và sau cùng tích có t ch c là P+F và P+X \hat{e}_{II} .