ヒューマノイドロボット による高齢者のための トレーニングRTC

ユーザーマニュアル v1.4

2019/10/29 最終更新日 2019/12/06

新田怜香,大塚菜々,岡野憲,松日楽信人

芝浦工業大学工学部機械機能工学科知能機械システム研究室

目次

1 開発したシステム	2
1.1 はじめに	2
1.2 開発・動作環境	3
1.2.1 ソフトウェア	3
1.2.2 使用機器	3
1.3 システムの概要	4
2. 使用方法	6
2.1 ハードウェア準備	6
2.2 システムの起動	7
2.3 立ち上がり回数の設定	8
2.4 トレーニング	8
2.5 立ち上がり時間の表示	9
3. 開発した RTC	1 C
3.1 JudgeRTC	1 C
3.2 StandupRTC	12
3.3 GUIRTC	13
3.4 CalcRTC	15
3.5 CsvWritertc	16
参考	17
連絡先	17
修正居麻	17

1開発したシステム

1.1はじめに

平成 30 年において日本の 65 歳以上の人口は 3558 万人であり、総人口に占め る割合(高齢者率)は 28.1%となった. これは, 超高齢社会の基準となる 21% を上回っている,2060年には,高齢者率は 38,1%になると予想されている[1]. 高齢者が健康で自立した生活を送るためには日常的に運動することが必要であ る. また, 能動的な参加が必要となるリハビリの場面において良い結果をもたら すためにはモチベーションの維持・向上が必要不可欠と考えられている. しかし, 筋カトレーニングや体操は単調でかつ結果が 不明瞭なため モチベーションを 保つことが困難である。モチベーション向上のためには、肯定的な評価を含む励 ましや目標を示す言葉が効果的である[2]. さらに、リハビリを共に行うガイド 役が見本を見せることで,適切なリハビリ効果を得られる.今回は,このガイド 役としてヒューマノイドロボットを導入した. 本研究では、 高齢者の運動や、 リハビリの場面において,モチベーション向上のために一緒に運動し声掛けを 行う RTC 群 の 開発 を行 った. 立ち上がり動作を行い, 立つ, 座る動作のた びにヒューマノイドロボットがガイドと声掛けを行う. そして, 目標の回数まで 立ち上がり動作を行うと 1 回の立ち上がりに要した時間が表示される RTC 群 を開発した.

1.2開発・動作環境

1.2.1 ソフトウェア

- OpenRTM-aist1.1.2
- Visual Studio Code

修正 BSD ライセンスを適用する. 研究用途かつ利用者の責任の下でご使用ください.

1.2.2 使用機器

- ヒューマノイドロボット(NAO)
- PC
- 圧力センサ(FSR-408)
- arduino mega
- オーディオ機器

圧力センサ (FSR-408) を複数設置し足底にかかる荷重を測定するセンサ (以下足底センサ) を作成した. 足底センサを Fig.1 の示す. これにより立ち上がりや座り込みの検出をセンサの変化によって行う. また, 左右の足裏にかかる力の比などを見ることができる. すでに把持部に圧力センサを設置したハンドルでの実験を行ったが[3], 今回は立ち上がる際の足裏の前足部と後足部のバランスをみるため足底センサを用いた.

Fig.1 Sole sensor

1.3システムの概要

システムの概要図を Fig.2, Fig.3 に示す.

使用の流れは以下の通りである.

- ① 使用者による立ち上がり回数の入力
- ② 使用者が開始の合図を出す
- ③ NAO がガイド役となって立ち上がりトレーニングを行う.
- ④ NAO がアドバイスをする.
- ⑤ 立ち上がり回数が目標に到達するとトレーニングに要した時間が PC 上に表示される.

Fig.2 System flow

PortAudioInputRTCで音声を聞きとる.JuliusRTCで聞き取った言葉を判別し, SEATRTC で判別した言葉に対応した合図を出力する. 今回は「開始」の単語を 聞き取ると [kaishi] という文字を出力する. SerialConnectRTC で FSR センサ に繋がった arduino からセンサ値を読み取る. 読み取ったセンサの値は JudgeRTC と CsvWriteRTC に送られる. JudgeRTC では SerialConnectRTC からのセンサ値を読み取り、人が座っているか立っているかの判定を行う. 同時 に立ち上がる際の左右のバランスを計算する. JudgeRTC で判定された値は StandUpRTC に入り、その結果によって NAO の動きが変わる。始めに使用者 が座った状態で NAO が「今日も頑張りましょう」と励ましの言葉をかけ「僕み たいに立ってね」と言い立ち上がる。使用者が立ち上がると「上手に立てたね」 などの励ましの言葉や「重心が左に偏っています.」などのアドバイスをかける. 設定した回数立ち上がり動作を行うと StandUpRTC から CsvWriteRTC と MathRTC に終了の合図が出される、設定回数は変更可能である、CsvWriteRTC は終了の合図を受け取ると csv ファイルを close する. そして NAO が「お疲れ さまでした」と声をかける. MathRTC は書き込み終わった csv ファイルから時 間を取得し立ち上がりにかかった時間を計算、PCの画面に表示する. 青枠が既 存のコンポーネント,赤枠が開発したコンポーネントである.青枠の PortAudioInput, JuliusRTC, SEAT はコミュニケーション知能モジュールパッ ケージ OpenHRI からダウンロードすることができる[4]. SerialConnectRTC は本研究室で開発されたものである.

Fig.3 Developed components group

2. 使用方法

2.1 ハードウェア準備

- ① PC と NAO を有線 LAN (ソケット通信) で接続する
- ② 足底センサと PC を arduino を介して USB 接続する.
- ③ PC とオーディオ機器を接続する. Fig.4 に様子を示す.

(PC のマイクを用いると拾う音が多いため、オーディオ機器を用いる.)

Fig.4 Instrument placement

2.2 システムの起動

① "eclipse"を起動する. ワークスペースの選択では RTC のフォルダがあるワークスペースを選択する(Fig.5).

Fig.5 select workspace

- ② OPEN NAO CHEER.bat を開く.
- ③ "eclipse"の SystemEditor で "PortAudioInputRTC", "JuliusRTC"と "SEATRTC"の3つをFig.6のように port をつなぎ All activate する.

Fig.6 How to connect ports

④ Fig7がPC画面上に表示される.

2.3 立ち上がり回数の設定

- ① GUI 上のテキストボックスに自分が行う立ち上がり回数を記入する.
- ② 入力ボタンを押し, GUI 画面を閉じる.

Fig.7 Determination of the number of stand up

2.4 トレーニング

- ① 図のように NAO のガイドに合わせて立ち上がり動作を行う.
 - 1. NAO と使用者が共に着座した状態が初期姿勢である. 足底センサに足を乗せ「開始」と言う.
 - 2. NAO が「僕みたいに立ってみよう」と言い, 立ち上がる.
 - 3. 使用者が立ち上がると NAO が「上手. もう一回頑張ろう. 」と言い, 座る.
 - 4. 使用者が座る.2に戻る.

s 立ち上がり回数が目標に達すると NAO が「お疲れさまでした.」と言う. トレーニング中に片足に力がかかりすぎていると, NAO が「重心が偏っています.」と言い教えてくれる. また, 使用者の立ち上がり時間に合わせてNAO も立ち上がりの速度を変更する。

Fig.8 Training image

2.5 立ち上がり時間の表示

- ① 立ち上がり回数が目標に到達すると Fig9 のように今回のトレーニングに要した時間が表示される.
- ② 過去のフォルダを選択し、過去の時間を表示する.

Fig.9 result

3. 開発した RTC

3.1 JudgeRTC

JudgeRTC はセンサ値を受け取り、足底の力から人が立っている状態か座っている状態かを判定するためのコンポーネントである。Sign が SEATRTC の speechout から"kaishi"という文字を受け取ると、data が SerialConnect の sensor から受け取っている 0~1023 のアナログ値を受け取る。アナログ値を荷重に変換し、人が立っているか座っているかの判定を行う。立った状態では 1 を、座った状態では 0 を out が出力する。トレーニング開始前の準備でセンサ値が変化する可能性があるため、SEATRTC から開始の合図を受け取ると判定を開始することとした。今回は圧力センサの値を用いているが 6 軸力覚センサやフォースプレートなど、他のセンサの値も使用可能である。実際の測定値を Fid.4 に示す。

Table.1 JudgeRTC

JudgeRTC data sign			
Judge0			
InPort			
名称	データ型	機能	
data	RTC/TimedString	センサ値の取得	
sign	RTC/TimedString	開始合図の取得	
OutPort			
名称	データ型	機能	
out	RTC/TimedLong	立ち上がり座り込みの 判定結果を出力	

Fig.10 NAO and human state

Fig.10 の赤色の線が NAO の動きであり、残りの線が足底センサで測定した結果である。NAO は 0 の値の時立った状態であり、1 の時は座った状態である。

- ① NAO が立ち上がる.
- ② その後前足部の力(L-front, R-front)が増加し使用者が立ち上がる.
- ③ NAO が座る.
- ④ 使用者が座り,前足部の力が減少する.

3.2 StandupRTC

InPort

StandUpRTC は人の動きによって NAO に命令を出すコンポーネントである. まず, InPort の count が GUIRTC の OutPort の count から立ち上がり回数を受け取る. その後 InPort の judge が JudgeRTC の OutPort の out から o か 1 の数字を受け取る. 0 の場合人は座っている状態, 1 の場合人は立っている状態である. 0,1 の切り替えによって NAO に動く命令をソケット通信で送る. トレーニング中, InPort の sensor が SerialConnect の OutPort の sensor からセンサ値を受け取ることでトレーニング中に NAO が重心の傾きや速さを指導してくれる.

judge fin count sensor

StandUp0

Table.2 StandUpRTC

冶 称	ナータ型	機能
judge	RTC/TimedLong	立ち上がり判定の取得
count	RTC/TimedLong	立ち上がり回数の取得
sensor	RTC/TimedString	センサ値の取得
OutPort		
名称	データ型	機能
fin	RTC/TimedString	終了合図の取得
Configuration parameters		
名称	値	
NAO_IPaddress	127.0.0.1	
NAO_Port	9559	

北悠*台*匕

3.3 GUIRTC

GUIRTC は Fig.11, Fig.12 のように立ち上がり回数の入力とトレーニングに要した時間の表示を行う. 始めに Fig.11 の GUI に立ち上がり回数を数字で入力してもらう. Outport の count がその数字を出力する. InPort の Time は CalcRTC の OutPort の time から立ち上がりに要した時間を受け取り, Fig.12 のように表示する. また, トレーニングを複数日行っている場合, 過去の日付を選択することができ, 選択すると過去の時間も表示する.

Table.3 GUIRTC

Fig.11 entry number

Fig.12 result

3.4 CalcRTC

CalcRTC は StandUpRTC から終了の合図を受け取ると CsvWriteRTC が書き込んだ CSV ファイルを読み込み,トレーニングにかかった時間を計算する RTC である. InPort の fin で StandUpRTC から"fin"の文字を受け取るとトレーニング日がタイトルの csv ファイルを読み込みトレーニングに要した時間をOutPort の time が出力する.

Table.4 CalcRTC

CalcRTC			
Calc0			
InPort			
名称	データ型	機能	
fin	RTC/TimedString	終了合図の取得	
OutPort			
名称	データ型	機能	
time	RTC/TimedDouble	立ち上がり時間の出力	

1

3.5 CsvWritertc

sign

fin

sensor

CsvWriteRTC は csv ファイルにトレーニング結果を書き込む RTC である. SEATRTC から"kaishi"という文字列を InPort の sign が受け取ると Inport の sensor が SerialConnectRTC からセンサ値を 0~1023 のアナログ値で受け取る. アナログ値を荷重に変換し, csv ファイルに書き込む. Inport の fin が StandUpRTC の OutPort の fin から"fin"の文字列を受けとると csv ファイルへの書き込みを終了する. csv ファイルに書き込むことで, 過去の成果と比較することができる.

Sign sensor fin CsvWriteO

InPort
名称 デーク型 機能

RTC/TimedString

RTC/TimedString

RTC/TimedString

Table.5 CsvWriteRTC

開始合図の取得

センサ値の取得

終了合図の取得

参考

- [1] 内閣府:"令和元年版高齢社会白書(令和元年)"
- [2] 木菱由美子, 高橋由美子, 佐々木和人: "リハビリテーションにおける患者様への声かけについて",専門リハビリ第3巻, pp.25-29, 2004
- [3] 大塚菜々, 浅田郁弥, 岡野憲, 内藤佑太, 原田信太朗, 松日楽信人: "高齢者の習慣的な運動を支援する声掛け RTC", 第19回計測自動制御学会システムインテグレーション部門講演会, 2E1 03, 2019
- [4] OpenRTM-aist「コミュニケーション知能モジュールパッケージ OpenHRI」 最終閲覧日 2019/10/29URL:http://openrtc.org/OpenHRI/

連絡先

芝浦工業大学工学部機械機能工学科知能機械システム研究室

〒135-8548 東京都江東区豊洲 3-7-5

E-mail: ab16063<at>shibaura-it.ac.jp

matsuhir<at>shibaura-it.ac.jp

修正履歴

バージョン	発行日	改定内容
V1.2	2019/10/29	初版
V1.3	2019/12/02	3.1 JudgeRTC \succeq 3.2 StandUpRTC $\mathcal O$
		データ型を変更しました。
V1.4	2019/12/06	3.2 StandUpRTC のパラメーターを
		変更しました。