Brian KYAMJO Homework 6 Derivation of Linear multistep (LMI) methods Unt = unt + k [7f(tn+2, unt2) -2f(tn+1, unt) +f(tn, un) Derive this method Using any technique you desire. u(tn+3) = u(tnn) + (tm3
f(t,uit)) dt u'lt) = flyu) Be Conndor a borgramore polynomial Lj(t)= [t-to]... [t-tjri] [t-tjri]... (t-tn) (tj-te)---(tj-tj-i)(tj-tj+i)···(tj-tn) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$ f(t, u(t)) dt = Lo(t) dt f" + (tn+3) Lo(t) dt f" + (Lo(t) dt f" + 3 tout with from 1 de for Lott) = (t-tn-1) (t-tn-2) (turturi) (turture) , k is the time Step Lett) = (+-tn-1) (+-two)

therefore

) Drow the Sterrit for this mothod.

1 7

tuto []

.

 $000 \beta_2 = \frac{7}{3}$

tom = 7 0 &= -43

co Bo=1/3

c) Determine if this method is two-stable.

For a method to be an zono-stable, \w\ \leq 1, to

 $f(w) = w^3 - w = 0$

W(W2-1) 20

w=0, w=11

Its clear that I wil £1, hence the method is ten

d) Determine if this method is consistent. For a method to be consistent g(1)=0 and p'(1) = o(1). So o(w)= 72w2- 3w+3 5C1) = 2 P(w) = w3-w => p(w) = 3w2-1 3'(1)=3-1=2 so there reis 2 gall) and gap = 0, hence it is e) Determine if the me that Converges. from Lax thrown, If the method is both Stable and Consistent than It converges, there fore our method converges. of Determine the order of occurring of this method. The bound fruit contrar groom to given by T(t) = Co + Gu'lt) + Cau'lt) + Call'(t) + ---(g= 1) (h+2 k+--+ P21) (h+2 k+-+ P21) Some the mothered is Comstant, then Co = 0 and G= So C2 = 1 (1-9) - (-73 + 143) =0 () = 1/6 (29-1) - 1/2 (-1/3 + 2/3) =0

there fore the order of Convergence, P=3

a)
$$u_{\mathbf{k}} = \alpha u_{\mathbf{x} \mathbf{x} \mathbf{x}}$$
, $\theta \mathbf{Z} \mathbf{x} \leq 1$, $t \neq 0$
 $u(\mathbf{x}, \mathbf{x}) = f(\mathbf{x})$, $u(\mathbf{x}, \mathbf{t}) = g(\mathbf{t})$, $u(\mathbf{x}, \mathbf{t}) = g(\mathbf{t})$

Up Using forward difference for Up extress

ollo

$$\frac{u_{y}^{m}-u_{y}^{n}}{\Delta t}=\frac{x}{2}\left[\nabla u_{y}^{m}+\nabla_{y}u_{y}^{n}\right]$$

Girm Ut = & Uxx,

(francista - face francis

4. Linaon Stability amalysis Ut + $U_{xxx} = 0$, $0 \le x \le 1$, $\pm 7/0$ 10: 4040) = g(x), Be: perbehi U(x,t+k)- u(xt) + - /2 u(x-2h,t) + u(x-h,t)-u(xth,t)+/2 u(xth,t)= $u_{i}^{\text{ort}} - u_{i}^{\text{o}} = \frac{k}{k^{3}} \left[\frac{1}{2} u_{i-2}^{n} - u_{i-1}^{n} + u_{i+1}^{n} + - \frac{1}{2} u_{i+2}^{n} \right]$ $U_{3}^{n+1} - U_{3}^{n} = r \left[U_{3+1}^{n} - U_{3-1}^{n} + \frac{1}{2} \left[U_{3-2}^{n} - U_{3+2}^{n} \right] - 0 \right]$ Using von Newman Stability analysis $U_j^n = E^n e^{ikj' \Delta X}$ Reguerton O becomes = r Eneik(j+1) xx = eneik(j-1) dx + 1/2 (Eneik(j-2) dx Eneiklitz DX) E-1=r[eiksx ==iksx + ½ (==iksx)] but $e^{ik\Delta x} - e^{ik\Delta x} = 2iSmi(k\Delta x)$ $-2ik\Delta x$ $= 2iSmi(k\Delta x)$ $e^{ik\Delta x} = -2iSmi(ak\Delta x)$ E-1= r (21smf kax) = ism (24AX))

$$E-1 = ir (2Sin (kAX) - Sin (2kAX))$$

$$E = 1 + ir (2Sin (kAX) - Sin (2kAX))$$

$$but Sin (2kAX) = 2Sin kAX Corbax$$

$$E = 1 + 2vr. Sin (kAX) (1 - Cos(kAX))$$

$$E = 1 - 2ir Sin (kAX) (Cos(kAX) - 1)$$

$$181 = |1 - 2vr. Sin (kAX) (Cos(kAX) - 1)|$$

$$161 = |1 - 2vr. Sin (kAX) (Cos(kAX) - 1)|$$

 $|\mathcal{E}| = 1 + 4r^2 \operatorname{Sm}^2(k\Delta X) \left(\operatorname{Co}(k\Delta X) - 1 \right)^2$ Since $0 \leq \operatorname{Sm}^2(k\Delta X) \leq 1$ and that $4r^2 \operatorname{Sm}^2(k\Delta X) \left(\operatorname{Co}(k\Delta X) - 1 \right)^2 > 0$

then

So, since (E) \$1, than the scheme a unionalition Uniforble. thus should never be used, since it will

b) Ut + Usexel =0 $U_4 = -U_{50000}$ $U_4 = U_{5}^{n+1} - U_{5}^{n} = U_{5}^{n+1} - U_{5}^{n}$ Δt

Unix = Witi - 2 Wi + Wi-1

$$U_{NXXX} = \frac{U_{NH}^{n} - 2U_{N}^{n} + U_{N-1}^{n}}{\Delta x^{n}}$$

$$U_{NXXX} = \frac{\partial}{\partial x} \left(\frac{U_{N+2}^{n} - U_{N+1}^{n}}{\Delta x} - 2 \left(\frac{U_{N+1}^{n} - U_{N-1}^{n}}{\Delta x} \right) + \left(\frac{U_{N+2}^{n} + U_{N-1}^{n}}{\Delta x} \right) \right)$$

$$U_{XXX} = \frac{1}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2U_{N+1}^{n} - 2U_{N+1}^{n} + U_{N-1}^{n}}{\Delta x} + \frac{U_{N-2}^{n} + U_{N-2}^{n}}{\Delta x} \right)$$

$$U_{XXX} = \frac{1}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2U_{N+1}^{n} + U_{N-1}^{n}}{\Delta x^{n}} + \frac{U_{N-2}^{n} - U_{N-2}^{n}}{\Delta x^{n}} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\left(\frac{1}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2U_{N+1}^{n} + 2U_{N-1}^{n}}{\Delta x^{n}} - 2 \left(\frac{U_{N+1}^{n} - U_{N-1}^{n}}{\Delta x^{n}} \right) - U_{N-2}^{n} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\frac{X_{N+2}^{n}}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+1}^{n} - U_{N-1}^{n}}{\Delta x^{n}} \right) - U_{N-2}^{n} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\frac{X_{N+2}^{n}}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+1}^{n} - U_{N-1}^{n}}{\Delta x^{n}} \right) - U_{N-2}^{n} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\frac{X_{N+2}^{n}}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+1}^{n} - U_{N-1}^{n}}{\Delta x^{n}} \right) - U_{N-2}^{n} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\frac{X_{N+2}^{n}}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+1}^{n} - U_{N-1}^{n}}{\Delta x^{n}} \right) - U_{N-2}^{n} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\frac{X_{N+2}^{n}}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+1}^{n} - U_{N-1}^{n}}{\Delta x^{n}} \right) - U_{N-2}^{n} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\frac{X_{N+2}^{n}}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+2}^{n} - U_{N-1}^{n}}{\Delta x^{n}} \right) - U_{N-2}^{n} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\frac{X_{N+2}^{n}}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+2}^{n}}{\Delta x^{n}} \right) - U_{N-2}^{n} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\frac{X_{N+2}^{n}}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+2}^{n}}{\Delta x^{n}} \right) - U_{N-2}^{n} \right)$$

$$U_{N+1}^{n+1} - U_{N}^{n} = -\frac{X_{N+2}^{n}}{\Delta x^{n}} \left(\frac{U_{N+2}^{n} - 2 \left(\frac{U_{N+2$$

With-Uj = -r (Uj+2-2 (Uj+1 - Uj-1) - Uj-2)

Shore r = st

Ars

$$U_{1}^{NT} - U_{1}^{N} + \Gamma \left(U_{1+2}^{N} - 2 \left(U_{1+1}^{N} - U_{1-1}^{N} \right) - U_{1-2}^{N} \right) = 0$$

$$U(x_{1} + t_{1}k) - U(x_{1}t) + \Gamma \left(u(x_{1} + x_{1}k_{1}, t_{1}) - 2 \left(u(x_{1} + x_{1}k_{1}, t_{1}) - u(x_{1} - k_{1}t_{1}) \right) - U(x_{1} - k_{1}t_{1}) \right)$$

$$- U(x_{1} - x_{1}k_{1}, t_{1}) = 0$$

$$\frac{U(x_1+t_k)-U(x_1+t_k)-U(x_1+t_k)-U(x_2+t$$

0Z26 £1, £7,0 1C: U(210) = g(20), Be: persolve.

Y was

il a v wast.

77.5

5. Ware equation of Show that the two-way wave equation Utt = 62 Uxx, 0 = 22 4 21, 120 + 70, U(x10) = f(21), 4= (x0) = g(x), Can be transformed into Ut + Vx = D V4 + C2Ux = 0 let Ut = - Ux Utt = - T(Ux) = c2Uxx UAN- 2/4),150 4 orlys 2(UK) = -12(U2) - 2 (U'+) = 0 (crux) -U+ = C2UX =P U+ = - C2UX Ut + Ux =0 Ut + CMX = D 9++ A9x=D = 9 24=- X2x

From $9_{t} + 49_{x} = 0 = 9$ $9_{t} = -49_{x}$ from $9_{t} + 9_{x} = 0$ and $9_{t} + 9_{t}^{2} = 0$ $X = \begin{pmatrix} 0 & 1 \\ 0^{2} & 0 \end{pmatrix}$

$$2_{t} = F(2_{A}),$$

$$d_{t} = 2_{j}^{n}$$

$$d_{t} = 2_{j}^{n} + \frac{1}{2}F(d_{t}) = 2_{j}^{n} - \frac{1}{2}A(2_{x})_{j}^{n}$$

$$d_{t} = 2_{j}^{n} + \frac{1}{2}F(d_{t}) = 2_{j}^{n} + \frac{1}{2}F(2_{j}^{n} - \frac{1}{2}A(2_{x})_{j}^{n})$$

$$d_{t} = (1 - \frac{1}{2}A) 2_{j}^{n} + \frac{1}{2}F(2_{x})_{j}^{n}$$

$$d_{t} = 2_{j}^{n} + \frac{1}{2}F(2_{x})$$

$$d_{t} = (1 - \frac{1}{2}A) 2_{j}^{n} + \frac{1}{2}F(2_{x})_{j}^{n}$$

$$form$$

$$f(d_{t}) = 2_{j}^{n} + \frac{1}{2}F(2_{t}) + 2_{j}^{n}F(2_{t}) + F(2_{t}) + F(2_{t})$$

$$f(d_{t}) = F(2_{j}^{n}) = -A 2_{j}^{n}$$

$$f(d_{t}) = F(2_{j}^{n} - \frac{1}{2}A(2_{x})_{j}^{n}) = -A(2_{j}^{n} - \frac{1}{2}A(2_{x})_{j}^{n})$$

$$f(d_{t}) = -(A - \frac{1}{2}A^{2} + \frac{1}{2}A^{2}) 2_{j}^{n} - \frac{1}{2}A^{2} + (2_{x})_{j}^{n}$$

$$f(d_{t}) = -(A - \frac{1}{2}A^{2} + \frac{1}{2}A^{2}) 2_{j}^{n} - \frac{1}{2}A^{2} + (2_{x})_{j}^{n}$$

$$f(d_{t}) = -(A - \frac{1}{2}A^{2} + \frac{1}{2}A^{2}) 2_{j}^{n} - \frac{1}{2}A^{2} + (2_{x})_{j}^{n}$$

$$\frac{f_{0}m_{0}}{2^{n}} = 2^{n} + \frac{k}{6} \left(f(d_{0}) + 2f(d_{0}) + 2f(d_{0}) + F(d_{0}) \right)$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-A_{2}^{n} + 2f(A_{0}) + \frac{kA^{2}}{2} (2x)^{n} \right] + 2\left(-(A - \frac{kA^{2}}{2})^{2} (2x)^{n} \right)$$

$$- \frac{k^{2}A^{2}}{4} (2x)^{n} + -(A - kA^{2} + \frac{kA^{2}}{2})^{2} (2x)^{n} + \frac{k^{2}A^{2}}{4} (2x)^{n} \right)$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-3A_{0}^{n} + \frac{kA^{2}}{2} (2x)^{n} - 2A_{0}^{n} + \frac{kA^{2}}{2} (2x)^{n} \right]$$

$$- A_{0}^{n} + \frac{kA^{2}}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{2}(2x)^{n} + 2kA^{2} (2x)^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} + \frac{k}{6} \left[-(A_{0}^{n} - kA^{n} + 2kA^{n} + 2kA^{n} + 2kA^{n} + 2kA^{n} \right]$$

$$\frac{g_{0}m_{0}}{g_{0}} = 9^{n} +$$

1.4