Import Packages

In [98]: import pandas as pd
 pd.options.display.max_columns = 100
 import matplotlib.pyplot as plot

In [99]: | df = pd.read_csv("C:/Users/bgbai/OneDrive/Desktop/WomenOccupation2.csv")

In [100]: df.head()

Out[100]:

	Career Category	Total\nemployed	Women	White	Black or\nAfrican\nAmerican	Asian	Hispanic\nor Latino
0	Management professional and related occupations	63644.0	51.7	78.7	9.7	8.6	10.4
1	Management business and financial operations o	27143.0	44.6	81.7	8.8	6.7	10.9
2	Management occupations	18564.0	40.4	83.4	8.0	5.8	10.7
3	Chief executives	1669.0	29.3	88.0	4.3	5.4	7.4
4	General and operations managers	1057.0	30.5	84.4	7.1	4.5	12.4

In [202]: df.tail()

Out[202]:

	Career Category	Total\nemployed	Women	White	Black or\nAfrican\nAmerican	Asian	Hispanic\nor Latino
591	Laborers and freight stock and material movers	1995.0	4	4	18.6	4.0	28.0
593	Packers and packagers hand	640.0	4	4	25.9	8.0	32.5
594	Stockers and order fillers	1570.0	4	4	19.9	3.9	22.3
596	Refuse and recyclable material collectors	98.0	4	4	27.9	1.3	31.4
597	Other material moving workers	62.0	4	4	18.6	0.0	14.3

In [164]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 386 entries, 0 to 597
Data columns (total 7 columns):

Column Non-Null Count Dtype
--- O Career Category 386 non-null object

1 Total

employed 386 non-null float64

2 Women 386 non-null int64
3 White 386 non-null int64

4 Black or

African

American 386 non-null float64

5 Asian 386 non-null float64

6 Hispanic

or Latino 386 non-null float64 dtypes: float64(4), int64(2), object(1)

memory usage: 22.6+ KB

In [165]: df.describe()

Out[165]:

	Total\nemployed	Women	White	Black or\nAfrican\nAmerican	Asian	Hispanic\nor Latino
count	386.000000	386.0	386.0	386.000000	386.000000	386.000000
mean	1301.463731	4.0	4.0	11.938601	6.622798	16.574611
std	4841.220141	0.0	0.0	7.137211	6.971452	9.974093
min	50.000000	4.0	4.0	0.000000	0.000000	2.000000
25%	99.000000	4.0	4.0	7.000000	2.800000	9.925000
50%	195.500000	4.0	4.0	10.500000	4.700000	14.050000
75%	595.500000	4.0	4.0	15.950000	7.800000	21.175000
max	63644.000000	4.0	4.0	38.400000	76.700000	73.100000

In [166]: from skimpy import skim
 skim(df)

Data Summary

dataframe	Values
Number of rows	386
Number of columns	7

skimpy summary Data Types

Column Type	Count
float64	4
int64	2
object	1

number

	missin g	complet e rate	mean	sd	р0	p25	p75	p100
Total employe d	0.0	1.0	1300.0	4800.0	50.0	99.0	600.0	64000. 0
Women	0.0	1.0	4.0	0.0	4.0	4.0	4.0	4.0
White	0.0	1.0	4.0	0.0	4.0	4.0	4.0	4.0
Black or	0.0	1.0	12.0	7.1	0.0	7.0	16.0	38.0
African								
Ame Asian	0.0	1.0	6.6	7.0	0.0	2.8	7.8	77.0
Hispani	0.0	1.0	17.0	10.0	2.0	9.9	21.0	73.0
С		Ī						
or Latino								

- End

In [167]: df.plot()

Out[167]: <AxesSubplot:>


```
In [168]: df.columns
Out[168]: Index(['Career Category', 'Total\nemployed', 'Women', 'White',
                  'Black or\nAfrican\nAmerican', 'Asian', 'Hispanic\nor Latino'],
                 dtype='object')
In [169]: | df.Women.value_counts()
Out[169]: 4
                386
          Name: Women, dtype: int64
In [170]: def recode_Women(series):
              if series == '0':
                   return 0
              elif series == '1':
                  return 1
              elif series == '2':
                   return 2
              elif series == '3':
                   return 3
              else:
                   return 4
In [171]: | df['Women'] = df.Women.apply(recode Women)
In [172]: | df.White.value_counts()
Out[172]: 4
                386
          Name: White, dtype: int64
In [173]: | def recode_White(series):
              if series == '0':
                   return 0
              elif series == '1':
                   return 1
              elif series == '2':
                   return 2
              elif series == '3':
                   return 3
              else:
                   return 4
In [174]: | df['White'] = df.White.apply(recode_White)
```

Select X and Y, train-test split data

```
In [176]: df.isnull().sum()
Out[176]: Career Category
                                            0
           Total\nemployed
                                            0
           Women
                                            0
           White
                                            0
           Black or\nAfrican\nAmerican
                                            0
           Asian
                                            0
           Hispanic\nor Latino
                                            0
           dtype: int64
In [177]: df.shape
Out[177]: (386, 7)
In [178]: | df.dropna(inplace=True)
In [179]: X = df[['Total\nemployed', 'Women', 'White', 'Black or\nAfrican\nAmerican', 'Hist
In [180]: | X.head()
Out[180]:
              Total\nemployed Women White Black or\nAfrican\nAmerican
                                                                    Hispanic\nor Latino Asian
            0
                     63644.0
                                                                9.7
                                                                                 10.4
                                                                                        8.6
            1
                     27143.0
                                                                                 10.9
                                         4
                                                                8.8
                                                                                        6.7
            2
                      18564.0
                                                                8.0
                                                                                 10.7
                                                                                        5.8
            3
                       1669.0
                                         4
                                                                4.3
                                                                                 7.4
                                                                                        5.4
                       1057.0
                                         4
                                                                7.1
                                                                                 12.4
                                                                                        4.5
In [181]: y = df['Career Category']
In [182]: |y.head()
Out[182]: 0
                  Management professional and related occupations
                Management business and financial operations o...
           1
           2
                                             Management occupations
           3
                                                    Chief executives
                                    General and operations managers
           Name: Career Category, dtype: object
In [183]: | from sklearn.model_selection import train_test split
In [184]: | X_train, X_test, y_train, y_test = train_test_split(X, y)
```

##Predict and Model Metrics

```
In [185]: from sklearn.tree import DecisionTreeClassifier
In [186]: | clf = DecisionTreeClassifier(random_state=0)
In [187]: | clf.fit(X_train, y_train)
Out[187]: DecisionTreeClassifier(random_state=0)
In [188]: |
          prediction = clf.predict(X_test)
In [189]: | from sklearn.metrics import classification_report
In [190]: | classification_report(y_test, prediction)
          C:\Users\bgbai\anaconda3\lib\site-packages\sklearn\metrics\_classification.p
          y:1221: UndefinedMetricWarning: Precision and F-score are ill-defined and bei
          ng set to 0.0 in labels with no predicted samples. Use `zero_division` parame
          ter to control this behavior.
             _warn_prf(average, modifier, msg_start, len(result))
          C:\Users\bgbai\anaconda3\lib\site-packages\sklearn\metrics\_classification.p
          y:1221: UndefinedMetricWarning: Recall and F-score are ill-defined and being
          set to 0.0 in labels with no true samples. Use `zero_division` parameter to c
          ontrol this behavior.
            _warn_prf(average, modifier, msg_start, len(result))
```

Histograms

```
In [191]: import pandas as pd import seaborn as sns
```

```
In [192]: | sns.get_dataset_names()
Out[192]: ['anagrams',
            'anscombe',
            'attention',
            'brain_networks',
            'car_crashes',
            'diamonds',
            'dots',
            'exercise',
            'flights',
            'fmri',
            'gammas',
            'geyser',
            'iris',
            'mpg',
            'penguins',
            'planets',
            'taxis',
            'tips',
            'titanic']
```

In [193]: df['Women'].hist()

Out[193]: <AxesSubplot:>


```
In [194]: sns.histplot(df['Women'])
```

Out[194]: <AxesSubplot:xlabel='Women', ylabel='Count'>


```
In [195]: sns.histplot(df['Women'])
```

Out[195]: <AxesSubplot:xlabel='Women', ylabel='Count'>


```
In [196]: df['Total\nemployed'].hist()
```

Out[196]: <AxesSubplot:>


```
In [197]: sns.histplot(df['Total\nemployed'])
```

Out[197]: <AxesSubplot:xlabel='Total\nemployed', ylabel='Count'>


```
In [198]: df['White'].hist()
```

Out[198]: <AxesSubplot:>

Out[199]: <AxesSubplot:xlabel='White', ylabel='Count'>

In [200]: df['Black or\nAfrican\nAmerican'].hist()

Out[200]: <AxesSubplot:>

Out[152]: <AxesSubplot:xlabel='Black or\nAfrican\nAmerican', ylabel='Count'>

In [153]: df['Hispanic\nor Latino'].hist()

Out[153]: <AxesSubplot:>

In [154]: sns.histplot(df['Hispanic\nor Latino'])

Out[154]: <AxesSubplot:xlabel='Hispanic\nor Latino', ylabel='Count'>


```
In [155]: df['Asian'].hist()
```

Out[155]: <AxesSubplot:>


```
In [156]: sns.histplot(df['Asian'])
```

Out[156]: <AxesSubplot:xlabel='Asian', ylabel='Count'>


```
In [158]: continuous_vars = ['White', 'Black or\nAfrican\nAmerican', 'Hispanic\nor Latino'
```

In [159]: ## Select which columns to use and plot hists and scatters
sns.pairplot(df[continuous_vars])

Out[159]: <seaborn.axisgrid.PairGrid at 0xdc98fa0>


```
In [162]: sns.violinplot(df['Total\nemployed'])
```

C:\Users\bgbai\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments witho ut an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[162]: <AxesSubplot:xlabel='Total\nemployed'>

##Barplot

```
In [207]:
          df.groupby('White')['0'].mean().plot(kind='bar')
          KeyError
                                                     Traceback (most recent call last)
          <ipython-input-207-8c2a591e5f91> in <module>
          ----> 1 df.groupby('White')['0'].mean().plot(kind='bar')
          ~\anaconda3\lib\site-packages\pandas\core\groupby\generic.py in __getitem__(sel
          f, key)
             1536
                                   stacklevel=2,
             1537
                               )
          -> 1538
                           return super().__getitem__(key)
             1539
                      def _gotitem(self, key, ndim: int, subset=None):
             1540
          ~\anaconda3\lib\site-packages\pandas\core\base.py in __getitem__(self, key)
              230
                          else:
                               if key not in self.obj:
              231
                                   raise KeyError(f"Column not found: {key}")
          --> 232
              233
                               subset = self.obj[key]
              234
                               ndim = subset.ndim
          KeyError: 'Column not found: 0'
```

In []:		