

Escuela de Ingeniería de Sistemas

PROGRAMA DEL CURSO: Mecánica Racional

TIPO: Obligatoria PRELACIÓN: Cálculo 20, Física 11

CÓDIGO: ISBMRA UBICACIÓN: 3^{er} semestre

TPLU: 3 2 0 4 CICLO: Básico

JUSTIFICACIÓN

La mecánica racional es una materia formativa, fundamental en la formación de cualquier ingeniero.

OBJETIVOS

- Desarrollar en el estudiante capacidad para analizar y resolver problemas de la Mecánica Estática y de la Mecánica Dinámica, en forma sistemática y lógica.
- Capacitar al estudiante para comprender los fenómenos físicos relacionados con vectores, equilibrio de fuerzas en partículas y en cuerpos rígidos, momentos de inercia, potencial y cantidad de movimiento, cinemática y cinética de partículas, de sistemas de partículas, de cuerpos rígidos, del movimiento plano y en el espacio de cuerpos rígidos.

CONTENIDO PROGRAMÁTICO

Unidad I: Estática de partículas

- Tema 1. Conceptos y principios fundamentales de la mecánica.
- Tema 2. Sistemas de unidades.
- Tema 3. Fuerzas en el plano.
- Tema 4. Componentes rectangulares de una fuerza.
- Tema 5. Composición de fuerzas concurrentes.
- Tema 6. Fuerzas en el espacio.
- Tema 7. Componentes rectangulares de una fuerza en el espacio.
- Tema 8. Composición de fuerzas concurrentes en el espacio.
- Tema 9. Sistema general de fuerzas coplanares.
- Tema 10. Método analístico y método gráfico.

Unidad II: Cuerpos rígidos

- Tema 1. Cuerpos rígidos.
- Tema 2. Fuerzas internas y externas.
- Tema 3. Producto vectorial de dos vectores.
- Tema 4. Momento de una fuerza respecto a un punto.
- Tema 5. Producto escalar de dos vectores.
- Tema 6. Triple producto escalar de tres vectores.
- Tema 7. Momento de una fuerza respecto a un eje.
- Tema 8. Momento de un par.
- Tema 9. Pares equivalentes.

Unidad III: Equilibrio de los cuerpos rígidos

- Tema 1. Equilibrio de los sistemas.
- Tema 2. Diagrama de cuerpo libre.
- Tema 3. Ecuaciones de condición.
- Tema 4. Equilibrio de un cuerpo rígido en dos dimensiones.
- Tema 5. Equilibrio de un cuerpo rígido en tres dimensiones.

Unidad IV: Fuerzas en vigas y cables

- Tema 1. Fuerzas internas en barras.
- Tema 2. Diferentes tipos de cargas y apoyos en vigas.
- Tema 3. Fuerza cortante y momento de flexión en una viga.
- Tema 4. Diagramas de fuerzas cortantes y momento de flexión.
- Tema 5. Cables con cargas distribuidas.
- Tema 6. Cable parabólico.
- Tema 7. Catenaria.

Unidad V: Momentos de inercia

- Tema 1. Centros de gravedad y centroides de cuerpos bidimensionales.
- Tema 2. Centro de gravedad de cuerpos tridimensionales.
- Tema 3. Centroide de un volumen.
- Tema 4. Momentos de inercia de un área.
- Tema 5. Momento polar de inercia.
- Tema 6. Momento de inercia de una masa.
- Tema 7. Ejes principales de inercia.

Unidad VI: Dinámica de partículas

- Tema 1. Elementos de análisis vectorial.
- Tema 2. Segunda ley del movimiento de Newton.
- Tema 3. Ecuaciones de movimiento.
- Tema 4. Equilibrio dinámico.
- Tema 5. Principio de D'Alembert.
- Tema 6. Movimiento del centro de masa de un sistema de partículas.
- Tema 7. Movimiento debido a una fuerza central.

Unidad VII: Cinemática de partículas

- Tema 1. Trabajo de una fuerza.
- Tema 2. Principio de trabajo y energía.
- Tema 3. Potencia y eficiencia.
- Tema 4. Energía y potencial.
- Tema 5. Fuerzas conservativas.
- Tema 6. Conservación de la energía.
- Tema 7. Gradiente, divergencia y rotación.

Unidad VIII: Cinética de cuerpos rígidos

- Tema 1. Translación.
- Tema 2. Rotación alrededor de un eje fijo.
- Tema 3. Movimiento general en el plano.

- Tema 4. Centro instantáneo de rotación.
- Tema 5. Aceleración de Coriolis.

Unidad IX: Cantidad de movimiento de los cuerpos rígidos

- Tema 1. Impulso y cantidad de movimiento lineal.
- Tema 2. Conservación de la cantidad de movimiento.
- Tema 3. Impulso y cantidad de movimiento angular.
- Tema 4. Conservación de la cantidad de movimiento angular.

Unidad X: Vibraciones mecánicas

- Tema 1. Vibraciones sin amortiguamiento.
- Tema 2. Vibración libre de cuerpos rígidos.
- Tema 3. Vibraciones forzadas.
- Tema 4. Vibraciones amortiguadas.
- Tema 5. Analogías eléctricas.

METODOLOGÍA DE ENSEÑANZA

La enseñanza de este curso se realizará a través de clases teórico-prácticas.

RECURSOS

- Recursos multimedia: proyector multimedia, proyector de transparencias
- Computadora portátil
- Guías disponibles en publicaciones de la Facultad de Ingeniería
- Uso de Internet

EVALUACIÓN

Serán evaluados los siguientes aspectos:

- Participación en clase
- Evaluación del conocimiento teórico-práctico a través de pruebas parciales escritas

BIBLIOGRAFÍA

Abreu R. (1986), Mecánica Racional (Dinámica), Publicaciones de la Facultad de Ingeniería, ULA.

Beer, Ferdinand and Johsnston, Russell (1997), Mecánica Vectorial para Ingenieros (Estática), McGraw-Hill

Beer, Ferdinand and Johsnston, Russell (1997), Mecánica Vectorial para Ingenieros (Dinámica), McGraw-Hill

Huang, T., Mecánica para Ingenieros, Tomo I: Estática, Tomo II: Dinámica.