Generating Safe Trajectories in Stochastic Dynamic Environments

CS4099: Major Software Project

Author:
Alexander Wallar

Supervisor:
Dr. Michael Weir

I declare that the material submitted for assessment is my own work except where credit is explicitly given to others by citation or acknowledgement. This work was performed during the current academic year except where otherwise stated.

The main text of this project report is NNN words long, including project specification and plan.

In submitting this project report to the University of St Andrews, I give permission for it to be made available for use in accordance with the regulations of the University Library. I also give permission for the title and abstract to be published and for copies of the report to be made and supplied at cost to any bona fide library or research worker, and to be made available on the World Wide Web. I retain the copyright in this work.

Contents

1	Introduction							
2	Context Survey							
3	Ethics							
4	Software Development Framework							
5	Objectives							
6 Planner Methodology								
	6.1	Potential Fields	9					
	6.2	Space-time Roadmap	9					
	6.3	Probabilistic Roadmap With Best First Search	9					
7	Des	ign	10					
	7.1	Agents	10					
	7.2	Planning Algorithm	10					
8	Imp	blementation	13					
9	Experimental Setup							
	9.1	Metrics	14					
10	sults	15						
	10.1	Safety	15					
		10.1.1 Variance	16					
	10.2	Computational Time	16					
		10.2.1 Variance	16					

•	71	\neg	\Tr	\mathbf{r}	ואר	TS
			N	ır	1. I N	

11 Discussion	18
12 Acknowledgements	19

Introduction

Context Survey

Ethics

Software Development Framework

Objectives

$$J(C) = \int_{C} \exp\left(P_A(x, y, t_0, t_m)\right) ds$$
(5.1)

Planner Methodology

- 6.1 Potential Fields
- 6.2 Space-time Roadmap
- 6.3 Probabilistic Roadmap With Best First Search

Design

7.1 Agents

$$P_a(x, y, t_0, t_m) = \int_{t_0}^{t_m} \mathcal{N}(\zeta_a(t), \alpha \cdot (t - t_0)^2 + \beta, x, y) \cdot (t_m - t)^{\gamma} dt$$
 (7.1)

Where $\mathcal{N}(\mu, \sigma^2, x, y)$ is the evaluation of a 3D normal distribution centered at (μ_x, μ_y) with a variance of σ^2 at (x, y).

$$P_A(x, y, t_0, t_m) = \frac{\sum_{a \in A} P_a(x, y, t_0, t_m)}{|A|}$$
(7.2)

$$\zeta_a(t) = \begin{cases}
I_a + \int_{T_a}^t \dot{\zeta}_a(\lambda) \, d\lambda & \text{if } t \ge T_a \\
\tilde{\zeta}_a(t) & \text{if } t < T_a
\end{cases}$$
(7.3)

$$\tilde{\zeta}_a(t) = I_a^{(0)} + \int_0^t \dot{\zeta}_a(\lambda) + \rho \,d\lambda \tag{7.4}$$

7.2 Planning Algorithm

$$C_A(i,j) = \int_0^1 \exp\left(P_A(x(\lambda), y(\lambda), i_t, j_t) + 1\right) \cdot ||i - j||_2 \,\mathrm{d}\lambda \tag{7.5}$$

Where $x(\lambda) = (j_x - i_x) \cdot \lambda + i_x$ and $y(\lambda) = (j_y - i_y) \cdot \lambda + i_y$ are the parametric equations of the line from i to j.

Figure 7.1: Cost distributions indicating the likelihood that an agent will be at a certain location within a given time interval. These figures show how this distribution changes over time (left to right, top to bottom)

Algorithm 1 ROADMAP(n, d, w, h, O)

Input:

- n: Maximum number of samples
- d: Maximum distance between neighbouring nodes
- O: Set of obstacles

Output:

An unweighted graph of points describing the connectivity of the environment

```
1: for i=1 to n do

2: q \leftarrow \text{RANDOMPOINT2D}(w,h)

3: if \bigwedge_{o \in O} \neg \text{COLLISION}(o,q) then

4: V \leftarrow V \cup \{q\}

5: for all q_i \in V do

6: for all q_j \in V do

7: if q_i \neq q_j \wedge ||q_i - q_j|| \leq d then

8: E \leftarrow E \cup \{(q_i, q_j)\}

9: return (V, E)
```

Algorithm 2 GETPATH $(n, d, w, h, \delta, p, g, O, A, R)$

Input:

```
n: Maximum number of samples for the roadmap
```

d: Maximum distance between neighbouring nodes in the roadmap

w: Width of the scene

h: Height of the scene

Output:

```
1: (V, E) \leftarrow \text{Roadmap}(n, d, w, h, O)
 2: \Pi \leftarrow \emptyset
 3: q \leftarrow p
 4: while ||BACK(\Pi) - g||_2 > R do
        \pi \leftarrow \text{SearchGraph}(V, E, R, A, q, g)
        for all i \in \pi do
 6:
           \Pi \leftarrow \Pi \cup \{i\}
 7:
            for all a \in A do
 8:
               STEP(a)
 9:
10:
            if \bigvee_{a \in A} ||\zeta_a(i_t) - \zeta_a(i_t)|| > \delta then
               for all a \in A do
11:
                  UPDATE(\zeta_a, \tilde{\zeta_a})
12:
13:
               q \leftarrow i
               break
15: return \Pi
```

Algorithm 3 SearchGraph(V, E, R, A, p, g)

```
1: Q \leftarrow \text{PriorityQueue}()
 2: D \leftarrow \text{Dictionary}()
 3: \Pi \leftarrow \text{Dictionary}()
 4: Insert(Q, p, 0)
 5: while \neg \text{Empty}(Q) do
        q, w \leftarrow \text{Pop}(Q)
 7:
        if ||q-q||_2 \leq R then
           return BacktrackPath(p, g, \Pi)
 8:
        N \leftarrow \text{GetTemporalNeighbours}(V, E, q)
 9:
        for all n \in N do
10:
11:
           \Pi_n \leftarrow q
           c \leftarrow \psi \cdot C_A(q, n) + \omega \cdot D_n
12:
           D_n \leftarrow D_n + 1
13:
           Q \leftarrow \text{Insert}(Q, n, c)
14:
```

Algorithm 4 GetTemporalNeighbours(V, E, q)

```
\begin{array}{l} \text{1: } S \leftarrow \emptyset \\ \text{2: } N \leftarrow \text{Neighbours}(V, E, q) \\ \text{3: } \textbf{for all } n \in N \textbf{ do} \\ \text{4: } t \leftarrow ||q - n||_2/s + q_t \\ \text{5: } S \leftarrow S \cup \{(n_x, n_y, t)\} \end{array}
```

Algorithm 5 BacktrackPath (p, g, Π)

```
1: q \leftarrow g

2: S \leftarrow \text{STACK}()

3: while \Pi_q \neq p do

4: S \leftarrow \text{PUSH}(S, q)

5: q \leftarrow \Pi_q

6: S \leftarrow \text{PUSH}(S, p)

7: return S
```

Implementation

Experimental Setup

Algorithm 6 PF(q, g, O, A, R)

```
1: q_{min} \leftarrow q
2: p_{min} \leftarrow \infty
3: \theta \leftarrow 0
4: while \theta \leq 2\pi do
5: q' \leftarrow q + \delta t \cdot s \cdot \text{ROT}(\theta)
6: p \leftarrow U_{rep}(q', O \cup A) + U_{att}(q', g)
7: if p < p_{min} then
8: p_{min} \leftarrow p
9: q_{min} \leftarrow q'
10: \theta \leftarrow \theta + \delta \theta
11: if ||q_{min} - g|| < R then
12: return \{p_{min}\}
13: return \{q_{min}\} \cup \text{PF}(q_{min}, g, O, R)
```

9.1 Metrics

$$MinDist(\Pi) = \min_{t \in \mathcal{T}} \min_{a \in A} ||\zeta_a(t) - \Pi(t)||$$
(9.1)

$$MaxCost(\Pi) = \max_{t \in \mathcal{T}} P_A(\Pi(t))$$
 (9.2)

$$AvgCost(\Pi) = \int_{\mathcal{T}} P_A(\Pi(t)) dt$$
(9.3)

Results

10.1 Safety

Figure 10.1: Plots showing how the average minimum distance to the obstacles changes as the speed increases for various amounts of obstacle position uncertainties

Figure 10.2:

Figure 10.3:

Figure 10.4:

Figure 10.5:

10.1.1 Variance

10.2 Computational Time

10.2.1 Variance

Figure 10.6:

Figure 10.7: Plots showing how the computational time changes as the speed increases for various amounts of obstacle position uncertainties

Figure 10.8:

Discussion

Acknowledgements