OSM Bootcamp Lecture 4

John Stachurski

2018

Computational Aspects of Simulation

See

• Wk2_Dynamics/efficient_inventory_dynamics.ipynb

Stationary Distributions and Stationarity

Some marginal distributions have the special property of being fixed under updating

These are called stationary

More precisely, ψ^* is **stationary** for our model if

$$(X,\xi) \stackrel{\mathcal{D}}{=} \psi^* \times \phi \quad \Longrightarrow \quad F(X,\xi) \stackrel{\mathcal{D}}{=} \psi^*$$

Example. Recall again the AR(1) model

$$X_{t+1} = \rho X_t + b + \sigma \xi_{t+1}, \qquad \{\xi_t\} \stackrel{\text{\tiny IID}}{\sim} N(0,1)$$

If $\psi_t = N(\mu_t, s_t^2)$, then

$$\psi_{t+1} = N(\mu_{t+1}, s_{t+1}^2)$$

where

$$\mu_{t+1} = \rho \mu_t + b$$
 and $s_{t+1}^2 = \rho^2 s_t^2 + \sigma^2$

(Why?)

Suppose now that $-1 < \rho < 1$ and

$$\mu_t = \frac{b}{1 - \rho}$$
 and $s_t = \frac{\sigma}{\sqrt{1 - \rho^2}}$

Then

$$\mu_{t+1} = \rho \mu_t + b = \rho \frac{b}{1-\rho} + b = \frac{b}{1-\rho} = \mu_t$$

Similarly, $s_{t+1} = s_t$ (check it)

Hence, $\psi_{t+1} = \psi_t$ and ψ_t is a stationary distribution

Some models have no stationary distribution

Example. Consider the AR(1) model

$$X_{t+1} = \rho X_t + b + \sigma \xi_{t+1}$$
, where $\{\xi_t\} \stackrel{\text{\tiny IID}}{\sim} N(0,1)$

Suppose now that $\rho \geqslant 1$.

Then

$$\operatorname{var} X_{t+1} = \rho^2 \operatorname{var} X_t + \sigma^2 > \operatorname{var} X_t$$

Since the variance is always changing, the marginal distributions must be changing

Figure: ψ_1

Figure: ψ_2

Figure: ψ_3

Figure: ψ_4

Figure: ψ_5

Figure: ψ_6

Asymptotic Stationarity

Some models have the property that

- 1. they have a unique stationary distribution ψ^*
- 2. $\psi_t \to \psi^*$ as $t \to \infty$ regardless of the initial condition

Such models are called **globally stable**

Example. For the linear AR(1) model

$$X_{t+1} = \rho X_t + b + \sigma \xi_{t+1}$$
, where $\{\xi_t\} \stackrel{\text{IID}}{\sim} N(0,1)$

asymptotic stability holds if and only if $-1 < \rho < 1$

Global stability can fail because of insufficient mixing

Example. The Azariadis-Drazen version of the Solow-Swan growth model

$$k_{t+1} = h(k_t)\xi_{t+1}$$

where

- $\xi_t \in [\xi^\ell, \xi^u]$
- h has a jump

Here there is path dependence rather than global stability

To regain stability, we need $\underline{\text{more mixing}}$

Ergodicity

Globally stable Markov models have a special property: Ergodicity

Consider again the model

$$X_{t+1} = F(X_t, \xi_{t+1}), \quad \text{where } \{\xi_t\} \stackrel{\text{\tiny IID}}{\sim} \phi$$

Suppose globally stable with stationary distribution ψ^*

Then, for any "nice" function $h \colon \mathbb{X} \to \mathbb{R}$ and any initial condition x_0 ,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n h(X_t) = \int h(x)\psi^*(x) dx$$

with probability one

How can we use

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} h(X_t) = \int h(x) \psi^*(x) \, \mathrm{d}x ?$$

Example. With h(x) = x we get

$$\frac{1}{n} \sum_{t=1}^{n} X_{t} \to \int x \, \psi^{*}(x) \, \mathrm{d}x = \text{mean of stationary dist}$$

Example. With $B \subset \mathbb{X}$ and $h(x) = \mathbb{1}\{x \in B\}$ we get

$$\frac{1}{n} \sum_{t=1}^{n} \mathbb{1}\{X_t \in B\} \to \int \mathbb{1}\{x \in B\} \, \psi^*(x) \, \mathrm{d}x = \psi^*(B)$$

Example. Consider the consumption model of Schorfheide, Song and Yaron, Econometrica, 2018

$$g_t := \ln(C_{t+1}/C_t) = \mu_c + z_t + \sigma_{c,t} \eta_{c,t+1},$$

where

$$z_{t+1} = \rho z_t + (1 - \rho^2)^{1/2} \sigma_{z,t} v_{t+1},$$

$$\sigma_{i,t} = \varphi_i \bar{\sigma} \exp(h_{i,t}),$$

$$h_{i,t+1} = \rho_{h_i} h_i + \sigma_{h_i} \xi_{i,t+1}, \quad i \in \{z, c\}$$

shocks are IID standard normal

This model is complicated — how can we understand it?

Fact. If ρ , ρ_{h_c} and ρ_{h_z} are all in (0,1), then this model is globally stable

Therefore it has a unique stationary distribution and is ergodic

We can learn about the stationary distribution by simulation

Example. For the mean of stationary consumption, simulate and compute

$$\frac{1}{n} \sum_{t=1}^{n} g_t$$

• see Wk2_Dynamics/sim_ssy_consumption.ipynb

Extra reading

Review linear state space models by reading

• https://lectures.quantecon.org/py/linear_models.html

Read the discussions of

```
• stationarity \int_{\Gamma_i}^{\Gamma_i} \int_{\Gamma_i}^{\Gamma_i}
```

• ergodicity - cross sectional are equal to sample paths time society avenues

