GIẢI TÍCH SỐ

Nguyễn Xuân Việt Đức - 22280012

Bài tập thực hành - Giữa kì

• 1. Đầu vào

- Điểm bắt đầu: a=-1

- Điểm kết thúc: b=1

- Số đoạn chia: $n=100\,$

– Điều kiện biên: y(1) = 2

• 2. Đầu ra

- Mảng các điểm x trong khoảng từ a đến b.
- Giá trị xấp xỉ y tương ứng với các giá trị x.
- Đồ thị so sánh giữa nghiệm xấp xỉ y và nghiệm chính xác y_{exact} .

• 3. Các bước thực hiện

- Bước 1: Khởi Tao Tham Số
 - * Xác định các tham số đầu vào: a, b, n, y(1).
- Bước 2: Tính Toán Delta X
 - * Tính khoảng cách giữa các điểm x theo công thức:

$$\Delta x = \frac{b-a}{n}$$

- Bước 3: Tạo Mảng Các Điểm x
 - $\ast\,$ Khởi tạo mảng x với các giá trị:

$$x_i = a + i \cdot \Delta x$$
 với $i = 0, 1, \dots, n$

- Bước 4: Định Nghĩa Hàm func(x,y)
 - * Định nghĩa hàm func(x, y):

$$f(x,y) = \frac{x(1+x^2)}{y^2}$$

- Bước 5: Khởi Tạo Mảng \boldsymbol{y}

* Khởi tạo mảng y để chứa các giá trị xấp xỉ:

$$y[n] = y(1) = 2$$

- * Gán giá trị 0 cho các phần tử còn lại trong mảng y.
- Bước 6: Tính Toán Giá Trị y
 - * Sử dụng vòng lặp để tính toán các giá trị của y từ n-1 đến 0:

$$y[i] = y[i+1] - \Delta x \cdot func(x[i+1], y[i+1])$$
 với $i = n-1, n-2, \dots, 0$

- Bước 7: Tính Nghiệm Chính Xác
 - \ast Định nghĩa hàm tính nghiệm chính xác:

$$y_{\text{exact}}(x) = \left(\frac{3}{2}x^2 + \frac{3}{4}x^4 + \frac{23}{4}\right)^{1/3}$$

- Bước 8: Tính Sai Số
 - * Tính sai số giữa nghiệm xấp xỉ và nghiệm chính xác:

Sai số =
$$|y[i] - y_{\text{exact}}(x[i])|$$

```
import numpy as np
import matplotlib.pyplot as plt

a = -1
b = 1
n = 100
y_1 = 2

deltaX = (b - a) / n

x = np.zeros(n + 1)
for i in range(n + 1):
    x[i] = a + i * deltaX

1 usage new *
def func(x, y):
    return x * (1 + x**2) / y**2
```

Output:

Bảng so sánh kết quả:				
x	Xấp xỉ	Chính xác	Sai số	
-1.0000	1.991202	2.000000	0.008798	- 1
-0.9000	1.945225	1.953692	0.008467	
-0.8000	1.906384	1.914497	0.008112	
-0.7000	1.874175	1.881922	0.007748	
-0.6000	1.848011	1.855397	0.007386	
-0.5000	1.827272	1.834308	0.007036	
-0.4000	1.811345	1.818049	0.006704	
-0.3000	1.799669	1.806057	0.006388	
-0.2000	1.791773	1.797858	0.006085	
-0.1000	1.787303	1.793088	0.005786	
0.0000	1.786044	1.791524	0.005480	
0.1000	1.787934	1.793088	0.005154	
0.2000	1.793062	1.797858	0.004796	
0.3000	1.801665	1.806057	0.004392	
0.4000	1.814116	1.818049	0.003933	
0.5000	1.830897	1.834308	0.003411	
0.6000	1.852572	1.855397	0.002825	
0.7000	1.879745	1.881922	0.002178	
0.8000	1.913017	1.914497	0.001480	
0.9000	1.952945	1.953692	0.000747	
1.0000	2.000000	2.000000	0.000000	

