$$K_2^*(1430)$$

$$I(J^P) = \frac{1}{2}(2^+)$$

We consider that phase-shift analyses provide more reliable determinations of the mass and width.

K*(1430) MASS

CHARGED ONLY, WITH FINAL STATE $K\pi$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1425.6± 1.5 OUR			cala f			COMMENT
					1.1.	
1420 ± 4	1587	BAUBILLIER	84 B	HBC	_	$8.25 K^- p \rightarrow$
						$\overline{\mathcal{K}}{}^0\pi^-$ p
$1436 \ \pm \ 5.5$	400	^{1,2} CLELAND	82	SPEC	+	30 $K^+ p \to K_S^0 \pi^+ p$
$1430 \ \pm \ 3.2$	1500	^{1,2} CLELAND	82	SPEC	+	$50 K^+ p \rightarrow K_S^{0} \pi^+ p$
$1430 \ \pm \ 3.2$	1200	^{1,2} CLELAND	82	SPEC	_	50 $K^+ p \rightarrow K_S^{0} \pi^- p$
1423 ± 5	935	TOAFF	81	НВС	_	$6.5 K^- p \rightarrow$
						$\overline{K}^0\pi^-p$
1428.0 ± 4.6		³ MARTIN	78	SPEC	+	$10 K^{\pm} p \rightarrow K_{S}^{0} \pi p$
1423.8 ± 4.6		³ MARTIN	78	SPEC	_	$10 \ K^{\pm} p \rightarrow \ K_{S}^{0} \pi p$
$1420.0 \pm \ 3.1$	1400	AGUILAR	71 B	HBC	_	3.9,4.6 K ⁻ p
$1425 \ \pm \ 8.0$	225	^{1,2} BARNHAM	71 C	HBC	+	$K^+ p \rightarrow K^0 \pi^+ p$
1416 ± 10	220	CRENNELL	69 D	DBC	_	$3.9 \underline{K}^- N \rightarrow$
1414 12.0	60	¹ LIND	69	НВС		$\frac{\overline{K}^0\pi^-N}{9K^+p\to K^0\pi^+p}$
1414 ± 13.0				_	+	
1427 ± 12	63	¹ SCHWEING	68	HBC	_	$5.5 K^- p \rightarrow \overline{K} \pi N$
1423 ± 11.0	39	¹ BASSANO	67	HBC	_	$4.6-5.0 \ K^- p \rightarrow$
						$\overline{\mathcal{K}}{}^0\pi^-$ p
● ● We do not u	ise the follo	owing data for ave	rages,	fits, lim	its, et	C. ● ● ●
$1423.4\pm\ 2\ \pm 3$	24809±	⁴ BIRD	89	LASS	_	11 $K^- p \rightarrow \overline{K}^0 \pi^- p$

1423.4
$$\pm$$
 2 \pm 3 24809 \pm 4 BIRD 89 LASS $-$ 11 $K^- p \rightarrow \overline{K}{}^0 \pi^- \mu$

NEUTRAL ONLY

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
1432.4± 1.3 OUR	AVERAGE					
$1431.2 \pm 1.8 \pm 0.7$	7				$11 K^- p \rightarrow K^- \pi^+ n$	
$1434 \ \pm \ 4 \ \pm \ 6$					$11~K^- p \rightarrow ~\overline{K}^0 \pi^+ \pi^- n$	
$1433 \ \pm \ 6 \ \pm 10$					$11~K^- p ightarrow ~\overline{K}{}^0 2\pi n$	
1471 ± 12		⁵ BAUBILLIER	82 B	HBC	8.25 $K^- p \rightarrow N K_S^0 \pi \pi$	
$1428 \ \pm \ 3$		⁵ ASTON	81 C	LASS	$11 \ K^- p \rightarrow \ K^- \pi^{\overset{\checkmark}{+}} n$	
$1434 \ \pm \ 2$					13 $K^{\pm} p \rightarrow p K \pi$	
1440 ± 10		⁵ BOWLER	77	DBC	$5.5 K^+ d \rightarrow K\pi pp$	
• • • We do not us	• • We do not use the following data for averages, fits, limits, etc. • •					
1428.5+ 3.9	1786 +	⁶ AUBERT	07Ak	BABR	10.6 $e^+e^- \to$	

1428.5 ± 3.9	$1786 \pm \\127$	⁶ AUBERT	07A	BABR	$10.6 \begin{array}{l} e^+ e^- \rightarrow \\ K^{*0} {K^{\pm}} \pi^{\mp} \gamma \end{array}$
$1420 \ \pm \ 7$	300	HENDRICK	76	DBC	8.25 $K^+ N \rightarrow K^+ \pi N$
1421.6 ± 4.2	800				3.6 $K^- p \to K^- \pi^+ n$
1420.1 ± 4.3		⁷ LINGLIN	73	HBC	2-13 $K^+ p \to K^+ \pi^- X$
$1419.1 \pm \ 3.7$	1800	AGUILAR			
$1416 \ \pm \ 6$	600	CORDS			$9 K^+ n \rightarrow K^+ \pi^- p$
1421.1 ± 2.6	2200	DAVIS	69	HBC	12 $K^+ p \rightarrow K^+ \pi^- X$

K₂*(1430) WIDTH

CHARGED ONLY, WITH FINAL STATE $K\pi$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
98.5± 2.7 OUR	FIT Erro	or includes scale fac	tor of	1.1.		
98.5± 2.9 OUR	AVERAGE	Error includes so	cale fa	ctor of 1	L.1.	
109 ± 22	400	^{8,9} CLELAND	82	SPEC	+	30 $K^+ p \to K_S^0 \pi^+ p$
124 ± 12.8	1500	^{8,9} CLELAND	82	SPEC	+	30 $K^+ p \rightarrow K_S^0 \pi^+ p$ 50 $K^+ p \rightarrow K_S^0 \pi^+ p$
113 \pm 12.8	1200	^{8,9} CLELAND	82	SPEC	_	$50 K^+ p \rightarrow K_S^0 \pi^- p$
85 ± 16	935	TOAFF	81	HBC	_	$6.5 K^-p \rightarrow$
						$\overline{K}^0\pi^-p$
96.5 ± 3.8		MARTIN	78	SPEC	+	$10 \ K^{\pm} p \rightarrow \ K_{S}^{0} \pi p$
97.7 ± 4.0		MARTIN	78	SPEC	_	$10 K^{\pm} p \rightarrow K_{5}^{0} \pi p$ $10 K^{\pm} p \rightarrow K_{5}^{0} \pi p$
$94.7^{ightarrow 15.1}_{-12.5}$	1400	AGUILAR	71 B	НВС	_	3.9,4.6 K ⁻ p

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

98
$$\pm$$
 4 \pm 4 25k ¹⁰ BIRD 89 LASS $-$ 11 $K^- p \rightarrow \overline{K}{}^0 \pi^- p$

NEUTRAL ONLY

VALU	E (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
109	± 5 OU	R AVERAGE	Error includes sc	ale fa	ctor of 1	1.9. See the ideogram below.
116.	5± 3.6± 1					$11 K^- p \rightarrow K^- \pi^+ n$
129	± 15 ± 15		¹¹ ASTON	87	LASS	$11~{\it K}^- p ightarrow ~{\overline {\it K}}^0 \pi^+ \pi^- n$
131	± 24 ± 20					$11 \ K^- p \rightarrow \overline{K}^0 2\pi n$
143	± 34		¹¹ BAUBILLIER	82B	HBC	8.25 $K^- p \rightarrow N K_S^0 \pi \pi$
98	± 8		¹¹ ASTON	81C	LASS	$11 K^- p \rightarrow K^- \pi^+ n$
140	± 30					$6 K^- p \rightarrow \overline{K}^0 \pi^+ \pi^- n$
98	± 5		¹¹ ESTABROOKS	78	ASPK	$13 K^{\pm} p \rightarrow pK\pi$

• • • We do not use the following data for averages, fits, limits, etc. • • •

113.7± 9.2	$1786\pm\\127$	¹² AUBERT	07A	BABR	$^{10.6}$ $^{e^+}_{K^{*0}}$ $^{e^-}_{K^{\pm}}$ $^{\pi^{\mp}}_{\gamma}$
125 ± 29	300	⁸ HENDRICK	76	DBC	8.25 $K^+ N \rightarrow K^+ \pi N$
116 ± 18	800	MCCUBBIN	75	HBC	3.6 $K^- p \to K^- \pi^+ n$
61 ± 14		¹³ LINGLIN	73	HBC	2-13 $K^+ p \to K^+ \pi^- X$
$116.6^{+10.3}_{-15.5}$	1800	AGUILAR	71 B	НВС	3.9,4.6 K ⁻ p
144 ± 24.0	600	⁸ CORDS	71	DBC	$9 K^+ n \rightarrow K^+ \pi^- p$
101 ± 10	2200	DAVIS	69	HBC	12 $K^+ p \to K^+ \pi^- \pi^+ p$

 $^{^{1}}$ Errors enlarged by us to Γ/\sqrt{N} ; see the note with the $K^{*}(892)$ mass.

 $^{^2}$ Number of events in peak re-evaluated by us.

³ Systematic error added by us.

⁴ From a partial wave amplitude analysis.

 $^{^{5}\,\}mathrm{From}\,$ phase shift or partial-wave analysis.

⁶ Systematic errors not estimated.

⁷ From pole extrapolation, using world K^+p data summary tape.

⁸ Errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

K*(1430) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$	$K\pi$	$(49.9 \pm 1.2) \%$	_
Γ_2	$K^*(892)\pi$	$(24.7 \pm 1.5) \%$	
Γ ₃	$K^*(892)\pi\pi$	$(13.4\pm2.2)~\%$	
Γ_4	$K \rho$	$(8.7\pm0.8)\%$	S=1.2
Γ_5	$K \omega$	$(2.9\pm0.8)\%$	
Γ ₆	$K^+ \gamma$	$(2.4\pm0.5)\times10^{-3}$	S=1.1
Γ ₇	$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 10^{-1}$	S=1.3
Γ ₈	$m{K}\omega\pi$	$< 7.2 \times 10^{-4}$	4 CL=95%
Γ ₉	$K^0\gamma$	< 9 × 10 ⁻⁴	4 CL=90%

⁹ Number of events in peak re-evaluated by us.

¹⁰ From a partial wave amplitude analysis.

 $^{^{11}}$ From phase shift or partial-wave analysis.

¹² Systematic errors not estimated.

¹³ From pole extrapolation, using world K^+p data summary tape.

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, and 10 branching ratios uses 31 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=20.2$ for 24 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)	Scale factor
$\overline{\Gamma_1}$	$K\pi$	49.1 ±1.8	_
Γ_2	$K^*(892)\pi$	24.3 ± 1.6	
Γ_3	$K^*(892)\pi\pi$	13.2 ± 2.2	
Γ_4	$K \rho$	$8.5~\pm0.8$	1.2
Γ_5	$K\omega$	$2.9~\pm0.8$	
Γ_6	$K\omega \ K^+\gamma$	0.24 ± 0.05	1.1
Γ ₇	$K\eta$	$0.15 {}^{+ 0.33}_{- 0.10}$	1.3

K₂*(1430) PARTIAL WIDTHS

K₂*(1430) BRANCHING RATIOS

$\Gamma(K\pi)/\Gamma_{total}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.499±0.012 OUR FIT					
0.488 ± 0.014 OUR AV					
$0.485 \pm 0.006 \pm 0.020$	¹⁴ ASTON		LASS		$11 K^- p \rightarrow K^- \pi^+ n$
0.49 ± 0.02	¹⁴ ESTABROOKS	78	ASPK	\pm	$13 K^{\pm} p \rightarrow p K \pi$
$\Gamma(K^*(892)\pi)/\Gamma(K$	(π)				Γ_2/Γ_1
VALUE	•		TECN	<u>CHG</u>	COMMENT
0.496±0.034 OUR FIT					
0.47 ± 0.04 OUR AV	ERAGE				
0.44 ± 0.09	ASTON	84 B	LASS	0	$11~K^- p ightarrow ~\overline{K}^0 2\pi n$
$0.62\ \pm0.19$	LAUSCHER	75	HBC	0	10,16 $K^- p \to K^- \pi^+ n$
0.54 ± 0.16	DEHM	74	DBC	0	$4.6 K^+ N$
$0.47\ \pm0.08$	AGUILAR	71 B	HBC		$3.9,4.6 K^- p$
$0.47\ \pm0.10$	BASSANO	67	HBC	-0	$4.6,5.0 K^- p$
$0.45\ \pm0.13$	BADIER	65 C	HBC	_	3 K ⁻ p
-() (-()					
$\Gamma(K\omega)/\Gamma(K\pi)$					Γ_5/Γ_1
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.059±0.017 OUR FIT					
0.070±0.035 OUR AV	ERAGE				
0.05 ± 0.04	AGUILAR		HBC		$3.9,4.6 K^- p$
0.13 ± 0.07	BASSOMPIE	. 69	HBC	0	5 K ⁺ p
$\Gamma(K ho)/\Gamma(K\pi)$					Γ_4/Γ_1
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.174±0.017 OUR FIT	F Error includes s	cale f	actor of	1.2.	
$0.150^{+0.029}_{-0.017}$ OUR AV	'ERAGE				
0.18 ± 0.05	ASTON	84B	LASS	0	$11 \ K^- p \rightarrow \ \overline{K}{}^0 2\pi n$
$0.02 \begin{array}{c} +0.10 \\ -0.02 \end{array}$	DEHM	74	DBC	0	4.6 $K^+ N$
0.16 ± 0.05	AGUILAR	71 B	НВС		3.9,4.6 K ⁻ p
0.14 ± 0.10	BASSANO	67	HBC	-0	4.6,5.0 K ⁻ p
0.14 ± 0.07	BADIER			-	3 K ⁻ p
0.11 ±0.01	D, (DILIK	000	1.50		
$\Gamma(K\rho)/\Gamma(K^*(892)$	$\pi)$				Γ_4/Γ_2
VALUE	DOCUMENT ID		TECN	CHG	
0.350±0.031 OUR FI7	Error includes				
0.354±0.033 OUR AV	ERAGE Error ind	ludes	scale fa	ctor of	1.4. See the ideogram below.
$0.293 \pm 0.032 \pm 0.020$	ASTON	87	LASS	0	$11 \ K^- p \rightarrow \ \overline{K}{}^0 \pi^+ \pi^- n$
0.38 ± 0.09	BAUBILLIER				$8.25 \ K^{-} p \rightarrow N K_{S}^{0} \pi \pi$
0.39 ± 0.03	DAUM		CNTR		$63 K^- p \rightarrow K^- 2\pi p$
0.05 ±0.05	DAOM	OIC	CIVIII		00 K p / K 2Kp

$\Gamma(K\omega)/\Gamma(K^*(892)\pi$	-)					Γ_5/Γ_2
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
0.118±0.034 OUR FIT 0.10 ±0.04	FIELD	67	НВС	_	3.8 K ⁻ p	
$\Gamma(K\eta)/\Gamma(K^*(892)\pi)$) DOCUMENT ID		TECN	CHG	COMMENT	Γ_7/Γ_2
0.006 ^{+0.014} _{-0.004} OUR FIT	Error includes so	cale f	actor c	of 1.2.		
0.07 ± 0.04	FIELD	67	HBC	_	3.8 K ⁻ p	
$\Gamma(K\eta)/\Gamma(K\pi)$ VALUE CL%	DOCUMENT	- ID		TECN	CHG COMMENT	Γ_7/Γ_1
0.0030 +0.0070 OUR FIT Error includes scale factor of 1.3.						
0 ± 0.0056	15 ASTON		88B I	LASS	– 11 K ⁻ p –	→ K ⁻ ηp
• • • We do not use the	e following data fo	or ave	erages,	fits, lin	nits, etc. • • •	
<0.04 95 <0.065 <0.02	AGUILAR- ¹⁶ BASSOMF BISHOP	PIE		НВС	3.9,4.6 K ⁻ 5.0 K ⁺ p 3.5 K ⁺ p	p
$\Gamma(K^*(892)\pi\pi)/\Gamma_{\text{tot}}$	$\Gamma(K^*(892)\pi\pi)/\Gamma_{\text{total}}$ Γ_3/Γ					
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DOCUMENT ID		TECN	CLIC	COMMENT	- •

0.134 ± 0.022 OUR FIT

 0.12 ± 0.04

HBC

 $3 K^- p \rightarrow p \overline{K}^0 \pi \pi \pi$

Created: 5/30/2017 17:20

 $^{17}\,\mathrm{GOLDBERG}$

 $\Gamma(K^*(892)\pi\pi)/\Gamma(K\pi)$ Γ_3/Γ_1 DOCUMENT ID TECN CHG COMMENT 0.27 ± 0.05 OUR FIT 4 $K^- p \rightarrow p \overline{K}^0 \pi \pi \pi$ 16,17 JONGEJANS 78 HBC 0.21 ± 0.08 $\Gamma(K\omega\pi)/\Gamma_{\text{total}}$ Γ_8/Γ DOCUMENT ID VALUE (units 10^{-3}) TECN COMMENT JONGEJANS HBC $4 K^- p \rightarrow p \overline{K}^0 4\pi$ 95 78 < 0.72

K₂(1430) REFERENCES

AUBERT	07AK	PR D76 012008	B. Aubert et al.	(BABAR Collab.)
ALAVI-HARATI	02B	PRL 89 072001	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
BIRD	89	SLAC-332	P.F. Bird	` (SLAC)
ASTON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	88B	PL B201 169	D. Aston <i>et al.</i>	(SLAC, NAGO, CINC, INUS)
ASTON	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
CARLSMITH	87	PR D36 3502	D. Carlsmith <i>et al.</i>	(EFI, SACL)
ASTON	84B	NP B247 261	D. Aston et al.	(SLAC, CARL, OTTA)
BAUBILLIER	84B	ZPHY C26 37	M. Baubillier <i>et al.</i>	(BIRM, CERN, GLAS+)
BAUBILLIER	82B	NP B202 21	M. Baubillier <i>et al.</i>	(BIRM, CERN, GLAS+)
CIHANGIR	82	PL 117B 123	S. Cihangir et al.	(FNAL, MINN, ROCH)
CLELAND	82	NP B208 189	W.E. Cleland <i>et al.</i>	(DURH, GEVA, LAUS+)
ASTON	81C	PL 106B 235	D. Aston et al.	(SLAC, CARL, OTTA) JP
DAUM	81C	NP B187 1	C. Daum et al.	(AMST, CERN, CRAC, MPIM+)
TOAFF	81	PR D23 1500	S. Toaff et al.	(ANL, KANS)
ETKIN	80	PR D22 42	A. Etkin <i>et al.</i>	(BNL, CUNY) JP
ESTABROOKS		NP B133 490	P.G. Estabrooks <i>et al.</i>	(MCGI, CARL, DURH+)
Also	10	PR D17 658	P.G. Estabrooks <i>et al.</i>	(MCGI, CARL, DURH+)
JONGEJANS	78	NP B139 383	B. Jongejans <i>et al.</i>	(ZEEM, CERN, NIJM+)
MARTIN	78	NP B134 392	A.D. Martin <i>et al.</i>	(DURH, GEVA)
BOWLER	77	NP B126 31	M.G. Bowler <i>et al.</i>	(OXF)
GOLDBERG	76	LNC 17 253	J. Goldberg	(HAIF)
HENDRICK	76	NP B112 189	K. Hendrickx <i>et al.</i>	(MONS, SACL, PARIS+)
LAUSCHER	75	NP B86 189	P. Lauscher <i>et al.</i>	(ABCLV Collab.) JP
MCCUBBIN	75	NP B86 13	N.A. McCubbin, L. Lyc	
DEHM	74	NP B75 47	G. Dehm <i>et al.</i>	(MPIM, BRUX, MONS, CERN)
LINGLIN	73	NP B55 408	D. Linglin	(CERN)
AGUILAR	71B	PR D4 2583	M. Aguilar-Benitez, R.I	()
BARNHAM	71C	NP B28 171	K.W.J. Barnham et al.	
CORDS	71	PR D4 1974	D. Cords et al.	(PURD, UCD, IUPU)
BASSOMPIE	69	NP B13 189	G. Bassompierre <i>et al.</i>	(CERN, BRUX) JP
BISHOP	69	NP B9 403	J.M. Bishop <i>et al.</i>	(WISC)
CRENNELL	69D	PRL 22 487	D.J. Crennell <i>et al.</i>	(BNL)
DAVIS	69	PRL 23 1071	P.J. Davis <i>et al.</i>	(LRL)
LIND	69	NP B14 1	V.G. Lind et al.	(LRL) JP
SCHWEING	68	PR 166 1317	F. Schweingruber et al.	()
Also		Thesis	F.L. Schweingruber	(NWES, NWES)
BASSANO	67	PRL 19 968	D. Bassano <i>et al.</i>	(BNL, SYRA)
FIELD	67	PL 24B 638	J.H. Field <i>et al.</i>	` (UCSD)
BADIER	65C	PL 19 612	J. Badier <i>et al</i> .	(EPOL, SACL, AMST)
				(, , , -)

¹⁴ From phase shift analysis.

 $^{^{15}}$ ASTON 88B quote < 0.0092 at CL=95%. We convert this to a central value and 1 sigma error in order to be able to use it in our constrained fit. 16 Restated by us.

¹⁷ Assuming $\pi\pi$ system has isospin 1, which is supported by the data.