(19) World Intellectual Property Organization International Bureau

English

THE RUNNER PRODUCTION OF THE RESERVE TO BE SHOWN AND THE STATE OF THE

(43) International Publication Date 8 July 2004 (08.07.2004)

(10) International Publication Number WO 2004/056459 A1

(51)	International Patent Classification7: D01D 5/24, B01D 71/06	B01D 69/08,
------	--	-------------

(21) International Application Number:

PCT/SE2003/001985

(22) International Filing Date:

(25) Filing Language: English

(26) Publication Language:

(30) Priority Data:

0203857-8 20 December 2002 (20.12.2002) SE

(71) Applicant (for all designated States except US): GAM-BRO LUNDIA AB [SE/SE], P.O. Box 10101, S-220 10 Lund (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GÖHL, Hermann

[DE/DE]; Rosengarten 2, D-72406 Bisingen (DE), BUCK. Reinhold [DE/DE]; Kirchstrasse 24, 88422 Alleshausen (DE)

(74) Agents: AHLBERG, Camilla et al.; Gambro Intellectual Property Department, P.O. Box 10101, S-220 10 Lund

- 17 December 2003 (17.12.2003) (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU. CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
 - (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PERMSELECTIVE MEMBRANE AND PROCESS FOR MANUFACTURING THEREOF

of the hollow fiber has pores in the range of 0.5-3 µm and the numbers of said pores in the outer surface are in the range of 10,000 to 150, 000 pores per mm2, preferably in the range of 18, 000 to 100, 000 pores per mm2 and most preferably in the range of 20, 000 to 100, 000 pores per mm². The present invention further relates to a process for the preparation of said membrane and use of said membrane in hemodialysis, hemodiafiltration and hemofiltration, and in dialysis and filtration in general, for example in water purification or dehydration.

WO 2004/056459 A1

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

PERMSELECTIVE MEMBRANE AND PROCESS FOR MANUFACTURING THEREOF

Technical field of the present invention

The present invention relates to a permselective asymmetric hollow fiber membrane suitable for, for example, hemodialysis, to a process for manufacturing such a membrane and to the use thereof. The membrane according to the present invention comprises at least one hydrophobic polymer and at least one hydropholic polymer.

Membranes of the above kind present special

advantages when they are used in connection with
different kinds of medical treatments, such as
hemodialysis, hemofiltration and hemodiafiltration. They
may, however, also be used in dialysis and filtration in
general, for example in water purification or

15 dehydration.

Background of the invention

Membranes of the above kind are described in detail in, for example, EP-A-0 568 045, EP-A-0 168 783, EP-B-0 082 433, and WO 86/00028. These membranes are manufactured from polymeric synthetic materials, they have asymmetric structure with high diffusive permeability (clearance) and have water filtration capability with ultrafiltration in the range of low flux to high flux. In EP-A-0 305 787, a 3-layer structure membrane and filter with corresponding performance, is disclosed.

The membranes according to prior art are well
performing, but still have some space for improvement and
optimization. The areas of improvable properties are that
the fibers are difficult to handle, they stick together

and adhere to each other, which cause problems during manufacturing of dialysers, specifically when potting them in polyurethane (PUR). Further, the permeability of the fibers is still improvable. Thus, the diffusive

- 5 permeability (clearance) for different molecular weight substances in the range of urea can be improved, as well as to a higher extent the permeability for substances with middle molecular weight range, like β_2 -M, factor D and others, but with low albumin permeability.
- To achieve a high permeability for the substances with low and middle molecular weight on the one hand and on the other hand have a low permeability for albumin, is one of the requirements put on dialysis membranes. This characteristic is called "selectivity". The selectivity
- 15 of prior art membranes still needs to be improved.

Summary of the invention

100,000 pores per mm2.

30

The object of the present invention is to improve hollow fiber membranes comprised of at least one

20 hydrophobic polymer and at least one hydrophilic polymer, being suitable for, for example, hemodialysis. This object is achieved by a hollow membrane with an outer surface having pores in the size range of 0,5 to 3 µm and having number of said pores in the range of 10,000 to

25 150,000 pores per mm², preferably in the range of 18,000 to 100,000 pores per mm², most preferably 20,000 to

A further object of the present invention is to provide a process for the preparation of the membrane according to the present invention.

This object is achieved by a solvent phase inversion spinning process, comprising the steps of

2.5

3

 a) said at least one hydrophobic polymer and said at least one hydrophilic polymer are dissolved in at least one solvent to form a polymer solution,

b) said formed polymer solution is extruded through an outer ring slit of a nozzle with two concentric openings.

- c) a center fluid is extruded through the inner opening of the nozzle, thereafter
- d) said membrane is washed and preferably dried.

 According to the present invention the polymer solution coming out through the outer slit opening is, on the outside of the precipitating fiber, exposed to a humid steam/air mixture comprising a solvent in a content of between 0,5 and 10 % by weight related to the water

Yet another object of the present invention is to provide use of the membrane according to the invention in hemodialysis, hemodiafiltration, hemofiltration, and in dialysis and filtration in general, for example for water purification or dehydration.

Other objects, features, advantages and preferred embodiments of the present invention will become apparent from the following detailed description when taken in conjunction with the enclosed scanning micrographs and the appended claims.

Brief description of the drawings

Preferred embodiments of the present invention will now be described in more detail, reference bing made to the enclosed drawings, in which:

Fig. 1 and 2 show scanning electron microscopic pictures of the outer surface of membranes according to preferred embodiments of the present invention.

1

Fig. 3 shows a scanning electron microscopic picture of the outer surface of a comparative membrane.

Fig. 4 shows a scanning electron microscopic picture of a cross section of the membrane structre according to a preferred embodiment of the invention.

Detailed description of the invention

The present invention improves the deficiencies of prior art membranes by a membrane with a unique outer surface of the hollow fiber membranes.

The outer layer is characterized by homogenous and open pore structure with a defined surface roughness. The openings of the pores are in the size range of 0,5-3 µm, further the number of said pores on the outer surface is in the range of 10,000 to 150,000 pores per mm², preferably in the range of 18,000 to 100,000 pores per mm², and most preferably in the range of 20,000 to 100,000 pores per mm². In the enclosed scanning micrographs you can see micrograph pictures of the outer surface of a hollow fiber according to the invention (Fig. 1 and Fig. 2), where you clearly see the pores of the outer surface. In Fig. 3, you can see the outer surface of a hollow fiber, which is not according to the invention.

25 An outer surface like the one according to the present invention provides for many advantages.

One advantage is that it provides for a hollow fiber membrane, which is non-sticky and is easy to handle. This leads to less cracks and holes in the fibers during the manufacturing process, which in turn leads to less scrap in the manufacturing process.

Another advantage is that the hollow fiber has less tendency to adhere to the hollow fibers lying close to it

15

in the bundle, this due to the high numbers of said pores over the surface. Thus, the dialysate surrounding the hollow fibers during use has enhanced access to the hollow fibers when they are less inclined to adhere to each others, and during the potting of the hollow fibers the potting material, usually PUR, also has enhanced access to the individual hollow fibers providing a proper

Still another advantage is that the high numbers of said pores gives enhance access for the polyurethane (PUR) during potting to penetrate through the membrane outside part into the structure of the membrane. The penetration of PUR into the structure gives a safe fixation of the membrane and herewith a leakage free potting of fibers.

and more reliable potting around each hollow fiber.

This specific surface on the outside of the hollow fiber is achieved by modifying the spinning polymer solution composition only in the outer section of the hollow fiber membrane wall by penetration of water from a very specific steam/air/solvent atmosphere into the first 1-15 µm of polymer solution layer just before the precipitation from the inside arrives at this layer. The penetration occurs in less than 0.5 seconds.

The surrounding of the fiber when the fiber is built
25 up after the nozzle needs determined conditions, like
humidity, temperature, volume of steam flux, defined
selected composition of the polymer solution, viscosity,
temperature and a certain composition and condition of
the center fluid. This from two sides performed
30 precipitation of the fiber (from the inner and outer
side) allows achieving the structure as described above.
In a preferred embodiment of the present invention, the
membrane has a unique and very specific four-layer

structure having a diffusive permeability of urea of 15- 17×10^{-4} cm/sec measured at 37°C. The diffusive permeability was measured according to E. Klein, F. Holland, A. Lebeouf, A. Donnaud, J.K. Smith, "Transport and Mechanical Properties of Hemodialysis Hollow Fibers", Journal of Membrane Science 1 (1976) 371-396, especially

and Mechanical Properties of Hemodialysis Hollow Fibers", Journal of Membrane Science 1 (1976) 371-396, especially pages 375-379. In Fig. 4, a scanning micrograph is shown over this preferred four-layer structure. The inner layer of the four-layer structure, i.e. the blood contacting layer and the inner surface of the hollow fiber membrane,

layer and the inner surface of the hollow fiber membrane, is a separation layer in form of a dense rather thin layer having, in a preferred embodiment, a thickness less than 1 µm and a pore size in the nano-scale range. To achieve high selectivity the pore channels with the

15 responsible pore diameters are short (<0,1 $\mu m)\,.$ The pore channel diameter has a very low variation in size.

Pore size can be made in different ranges, e.g. for a low flux membrane in the range of 5-10 nm, and for a high flux membrane between 5 and 20 nm, preferably 7 to 12. This different pore size creates a membrane which has a cut off e.g. for low flux of about 5,000 Dalton and for high flux of about 40,000 Dalton in the presence of whole blood. The cut off is defined as a molecular weight, which is rejected by the membrane. The defined pore structure is achieved by selection of the composition of the polymer, the composition and condition of the precipitation media in the center fluid and by the condition and composition of the surrounding environment of the fiber leaving the spinning nozzle.

30 The next layer in the hollow fiber membrane is the second layer having the form of a sponge structure and, in a preferred embodiment of the present invention, a thickness of about 1 to 15 µm and serving as a support

for said first layer. Then, there is the third layer having the form of a finger structure. It provides like a framework a mechanical stability on the one hand; on the other hand it has through the high void volume a very low

resistance of transport of molecules through the membrane. During the process the voids are filled with water and the water gives a lower resistance for diffusion and convection than a matrix with a sponge-filled structure having a lower void volume. Accordingly, the third layer gives the membrane a mechanical stability and has, in a preferred embodiment of the present invention, a thickness of 20 to 60 mm.

The fourth layer in this preferred embodiment of the present invention is the outer layer, with the outer 15 surface according to above. This fourth layer has in a preferred embodiment a thickness of about 1 to 10 µm.

This four-layer design together with the avoiding of fiber cracks and leakages give a high selectivity, which means, a high potential to separate molecules, which are 20 close in their size, for example, to separate albumin from β_2 -microglobulin and Factor D.

A preferred embodiment of the membrane according to the present invention consists of 65-95 % by weight of said at least one hydrophobic polymer and 5-35 % by weight of said at least one hydrophilic polymer.

Said at least one hydrophobic polymer is preferably chosen from the group consisting of polyamide (PA), polyaramide (PAA), polyarylethersulphone (PAES), polyethersulphone (PES), polysulphone (PSU),

30 polyarylsulphone (PASU), polycarbonate (PC), polyether, polyurethane (PUR), polyetherimide and copolymers of said polymers, preferably polyethersulphone or a mix of polyarylethersulphone and polyamide.

Said at least one hydrophilic polymer is preferably chosen from the group consisting of polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyglycolmonoester, water soluble cellulosic derivates, polysorbate and polyethylene-polypropylene oxide copolymers, preferably polyvinylpyrrolidone.

In a preferred embodiment of the process according to the present invention the temperature of the humid steam/air mixture is at least 15°C, preferably at least 30°C, and at most 75°C, preferably at most 60°C.

Further, the relative humidity in the humid steam/air mixture is between 60 and 100%.

10

20

In preferred embodiment of the present invention the humid steam/air mixture comprise a solvent in a content of between 0,5 and 5 % by weight related to the water content.

In an even more preferred embodiment of the present invention the humid steam/air mixture comprise a solvent in a content of between 2 and 3 % by weight related to the water content.

The effect of the solvent in the temperature controlled steam atmosphere is to control the speed of precipitation of the fibres. If less solvent is employed the outer surface will obtain a more dense surface, and if more solvent is used the outer surface will be more open structure. By controlling the amount of solvent within the temperature controlled steam atmosphere surrounding the precipitating membrane, the amount and size of the pores on the outer surface of the membrane are controlled, i. e. the size of the openings of the pores are in the range of 0.5-3 µm and the number of said pores are in the range of 10,000 to 150,000 pores per

9

 mm^2 , preferably 18,000 to 100,000 pores per mm^2 , and most preferably 20,000 to 100,000 pores per mm^2 .

The polymer solution, used in the process of the present invention preferably consists of 10-20 % by. weight of the at least one hydrophobic polymer, 3-11 % by weight of the at least one hydrophilic polymer, 66-86 % by weight solvent and 1-5 % by weight suitably additives. Suitably additives comprise for example in one preferred embodiment coagulation fluid chosen form the group of

The solvent, used in the process of the present invention preferably is chosen from the group comprising n-methylpyrrolidon (NMP), dimethylacetamide (DMAC), dimethylsulphoxide (DMSO), dimethylformamide (DMF),

15 butyrolactone and mixtures of said solvents.

water, glycerol and/or other alcohols.

In one preferred embodiment said center fluid includes a part of said at least one hydrophilic polymer. Further, it could include at least one of the abovementioned solvents and precipitation medium chosen from 0 the group of water, glycerol and other alcohols. Most preferably the center fluid consist of 45-70 % by weight precipitation medium, 30-55 % by weight of solvent and 0-5 % by weight of said at least one hydrophilic polymer.

The present invention will now be described in more
detail in the examples below. The examples are only given
by way of illustration and are not to be interpreted as
limiting the scope of protection of the present
invention.

30 Example 1

10

A polymer solution is prepared by mixing 13,5% of polyarylethersulphone, 0,5% of polyamide, 7,5% of PVP K30 and 78,5% of NMP. A mixture of 59% water and 41% NMP

serves as center fluid. The viscosity of the polymer solution, measured at a temperature of 22 $^{\circ}$ C, is 4,230 mPas.

Center fluid is heated to 55°C and pumped towards a

5 two-component hollow fiber spinneret. The polymer
solution is leaving the spinneret through an annular slit
with an outer diameter of 0,5 mm and an inner diameter of
0,35 mm. The center fluid is leaving the spinneret in the
center of the annular polymer solution tube in order to
10 start the precipitation of the polymer solution from the
inside and to determine the inner diameter of the hollow
fiber.

At the same time the two components (polymer solution and center fluid) are entering a space separated from the room atmosphere. The space is called spinning shaft. A mixture of steam (100°C) and air (22°C) is injected into the spinning shaft. The temperature in the spinning shaft is adjusted by the ratio of steam and air at 49°C and a relative humidity of 99,5% and the solvent 20 content therein was adjusted to 3,9% by weight related to the water content. The solvent was NMP. The length of the spinning shaft is 890 mm. By the aid of gravity and a motor-driven roller, the hollow fiber is drawn from top to bottom, from spinneret through the spinning shaft into a water bath in vertical direction. The spinning velocity is 50 m/min. The hollow fiber is subsequently led through a cascade of water bathes and temperatures increasing from 20 to 90°C. The wet hollow fiber membrane leaving the water-rinsing bath is dried in a consecutive online drying step. After a texturizing step, the hollow fiber is collected on a spinning wheel in the shape of a bundle. After introducing the bundle into a dialyser

11

housing, it is potted with polyurethane, ends are cut, on both sides of the dialyser a header is fixed to the housing, the dialyser is rinsed with hot water and dried with air. During this last drying step, an amount of 17 g of residual water per m² effective membrane area is left on the dialyser. After labeling and packaging, the dialyser is steam-sterilized within the package in an autoclave at 121°C for 25 min.

A scanning micrograph of the outer surface of the hollow fiber according to example 1 is shown in Fig. 1. The hollow fiber according to this example had 62,500 pores in the range of 0,5 to 3 μm per mm².

15 Example 2

10

25

Hollow fibers were manufactured according to example 1 with the exception that less steam was used in the spinning shaft. The temperature in the spinning shaft was adjusted by the ratio of steam and air at 37°C and a relative humidity of 84%. The content of solvent (NMP) was adjusted to 2,4 % by weight related to the water content.

A scanning micrograph of the outer surface of the hollow fiber according to example 2 is shown in Fig. 2. The hollow fiber according to this example had 18,700 pores in the range of 0,5 to 3 μm per mm².

Example 3 (comparative)

30 Hollow fibers were manufactured according to example 1 with the exception that no steam was used in the

12

spinning shaft. The temperature in the spinning shaft was 26 °C and the relative humidity was 55%.

A scanning micrograph of the outer surface of the hollow fiber according to example 3 is shown in Fig. 3.

The hollow fiber according to this example had 3,650 pores in the range of 0.5 to 3 μm per mm².

The hollow fibers produced according to the examples

1 to 3 were then evaluated concerning scrapped fibers
bundles, clearance urea and selectivity myoglobulin/albumin. The results are presented in the table below.

The method used for determining clearance urea and
selectivity myoglobulin/albumin (by measuring sieving

to coefficients) was EN 1283.

Examples 1 and 2 are according to the invention, while example 3 not is according to the invention and is only given for comparison.

	Scrapped	Clearance	Selectivity
Example	fiber bundles	urea	myoglobulin-
	(%)	ml/min	/albumin
1	0,1	272	16
2	6	252	8
3	48	208	5

20

5

The advantages of the membrane according to the present invention over prior art are that it has higher selectivity, higher diffusive permeability, improved handling properties, improved potting properties, high versatility for different types of membranes (low flux, mid flux and high flux etc.) and shows a higher rate of

13

defect-free fibers, although there are high asymmetries and high numbers of weight in the membrane structures.

It will be readily apparent to one skilled in the art that various substitutions and modifications may be 5 made to the present invention disclosed herein without departing from the scope and spirit of the present invention.

14 CLAIMS

- 1. A permselective asymmetric hollow fiber membrane being suitable for, for example, hemodialysis, comprised 5 of at least one hydrophobic polymer and at least one hydrophilic polymer, c h a r a c t e r i z e d in that an outer surface of the hollow fiber membrane has pores in the range of 0,5-3 µm, and that the numbers of said pores on the outer surface are in the range of 10,000 to 100,000 pores per mm², preferably in the range of 18,000 to 100,000 pores per mm², most preferably in the range of 20,000 to 100,000 pores per mm².
- 2. A membrane according to claim 1, wherein said membrane has a four layer structure comprising a first 15 inner separation layer in form of a dense rather thin layer, a second layer in the form of a sponge structure, a third layer in form of a finger structure, and a fourth outer layer in form of a sponge layer having the outer surface according to claim 1.
- 20 3. A membrane according to claim 2, wherein said membrane has a diffusive permeability of urea of 15-17 x 10⁻⁴ cm/sec measured at 37°C.
- 4. A membrane according to claim 2 or claim 3, wherein said first separation layer has a thickness less than 1 μm, said second layer has a thickness of about 1 to 15 μm, said third layer has a thickness of about 20 to 60 μm, and said fourth layer has a thickness of about 1 to 10 μm.
- 5. A membrane according to anyone of claims 1-4, 30 wherein it consists of 65-95 % by weight of said at least one hydrophobic polymer and 5-35 % by weight of said at least one hydrophilic polymer.

- 6. A membrane according to anyone of the claims 1-5, wherein said at least one hydrophobic polymer is chosen from the group consisting of polyamide (PA), polyaramide (PAA), polyarylethersulphone (PAES), polyethersulphone (PES), polysulphone. (PSU), polyarylsulphone (PASU), polyarylsulphone (PASU), polycarbonate (PC), polyether, polyurethane (PUR), polyetherimide and copolymers of said polymers, preferably polyethersulphone or a mix of polyarylethersulphone and polyamide.
- 7. A membrane according to anyone of the claims 1-6, wherein the at least one hydrophilic polymer is chosen from the group consisting of polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyglycolmonoester, water soluble cellulosic derivates, polysorbate and polyethylene-polypropylene oxide copolymers, preferably polytinylpyrrolidone
 - polywinylpyrrolidone.

 8. Process the preparation of a membrane according to anyone of claims 1-7 by solvent phase inversion
- 20 a) said at least one hydrophobic polymer and said at least one hydrophilic polymer are dissolved in at least one solvent to form a polymer solution,

spinning, comprising the steps of

25

- b) said formed polymer solution is extruded through an outer ring slit of a nozzle with two concentric openings,
- c) a center fluid is extruded through the inner opening of the nozzle, thereafter
 d) said membrane is washed and preferably dried,
 c h a r a c t e r i z e d in that the polymer solution
 coming out through the outer slit opening is, on the outside of the precipitating fiber, exposed to a humid steam/air mixture comprising a solvent in a content of

1.5

20

between 0,5 and 10% by weight related to the water content.

- .9. Process according to claim 8, wherein the solvent content within the humid steam/air mixture is between 0,5 and 5 % by weight related to the water content.
- 10. Process according to claim 8, wherein the solvent content within the humid steam/air mixture is between 2 and 3 % by weight related to the water content.
- 11. Process according anyone of claims 8 to 10, 10 wherein the temperature of the humid steam/air mixture is at least 15°C, preferably at least 30°C, and at most 75 °C, preferably at most 60°C.
 - 12. Process according to anyone of claims 8 to 11, wherein the relative humidity in the humid steam/air mixture is between 60 and 100%.
 - 13. Process according to any of claims 8-12, wherein the polymer solution consists of 10-20 % by weight of the at least one hydrophobic polymer, 3-11 % by weight of the at least one hydrophilic polymer, 66-86 % by weight solvent and 1-5 % by weight suitable additives.
 - 14. Process according to anyone of claims 8-13, wherein the polymer solution comprise 1-5 % by weight coagulation fluid chosen from the group of water, glycerol or other alcohols.
- 25 15. Process according to anyone of claims 8-14, wherein said solvent is chosen from the group comprising n-methylpyrrolidon (NMP), dimethylacetamide (DMAC), dimethylsulphoxide (DMSO), dimethylformamide (DMF), buturolactone and mixtures of said solvents.
- 30 16. Process according to anyone of claims 8-15, wherein said center fluid includes a part of said at least one hydrophilic polymer.

17

- 17. Process according to anyone of claims 8-16, wherein said center fluid includes at least one solvent chosen from the group comprising n-methylpyrrolidon (NMP), dimethylacetamide (DMAC), dimethylsulphoxide
- 5 (DMSO), dimethylformamide (DMF), butyrolactone and mixtures of said solvents.
 - 18. Process according to anyone of claims 8-17, wherein said center fluid includes precipitation medium chosen form the group water, glycerol and other alcohols.
- 10 19. Process according to anyone of claims 8-18, wherein said center fluid consist of 45-70 % by weight precipitation medium, 30-55 % by weight solvent and 0-5% said at least one hydrophilic polymer.
- 20. Use of a membrane according to anyone of claims 15 1-7 in hemodialysis, hemodiafiltration, and hemofiltration.
 - 21. Use of a membrane according to anyone of claims 1-7 in dialysis and filtration.
- 22. Use of a membrane manufactured according to any 20 of claims 8-19 in hemodialysis, hemodiafiltration, and hemofiltration.
 - 23. Use of a membrane manufactured according to any of claims 8-19 in dialysis and filtration.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (second sheet) (January 2004)

International application No.
PCT/SE 2003/001985

	INTERMATI	SHAL SLAKON KEI	roki	PCT/SE 200	3/001985		
Α.	A. CLASSIFICATION OF SUBJECT MATTER						
IP	IPC7: B01D 69/08, D01D 5/24, B01D 71/06 According to International Patent Classification (IPC) or to both national classification and IPC						
В.	TELDS SEARCHED						
Mini	mum documentation searched	(classification system followed	by classification symbols	9			
IP	C7: B01D, D01D	,					
Doc	mentation searched other than	n minimum documentation to t	the extent that such docur	ments are included	in the fields searched		
SE	DK,FI,NO classes	as above					
Elect	ronic data base consulted duri	ng the international search (nar	me of data base and, whe	re practicable, sear	ch terms used)		
EP	D-INTERNAL, WPI DA	TA					
C. 1	OCUMENTS CONSIDE	RED TO BE RELEVANT					
Cate	gery* Citation of docume	nt, with indication, where ap	ppropriate, of the relev	ant passages	Relevant to claim No		
X	(03.11.19 line 29	EP 0568045 A1 (KURARAY CO., LTD.), 3 November 1993 (03.11.1993), page 7, line 16 - line 18; page 11, line 29 - page 12, line 5; page 12, line 22 - line 25					
Y	i						
1							
Y	EP 0305787 A1 8 March 1	EP 0305787 A1 (GAMBRO DIALYSATOREN GMBH & CO.KG), 8 March 1989 (08.03.1989), the whole document			13-14		
1							
A	EP 0168783 A1 (22.01.19	EP 0168783 A1 (FRESENIUS AG), 22 January 1986 (22.01.1986), The whole document			13-14		
1	1						
1							
	Further documents are listed in the continuation of Box C.						
"A" 1							
"B"							
The considered novel or cannot be considered to involve an inventive							
cite to establish the publication date of another thaten or other apout i reason (as specified). "O" comment referring to an oral disclosure, use, exhibition or other menure.							
"P" (
Date of the actual completion of the international search Date of mailing of the international search report							
8 M	arch 2004		1 5	-04- 2C94	,		
	and mailing address of the	iSA/	Authorized officer				
	Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Susanna Lindfors/Fls						
	nile No. +46 8 666 02 86		Susanna Lindfe Telephone No. +4	16 8 782 25 00			

INTERNATIONAL SEARCH REPORT Information on patent family members

ormation on patent family members 27/02/

International application No. 27/02/2004 PCT/SE 2003/001985

EF	0568045	A1	03/11/1993	SE	0568045 T3	
1				CA	2094749 A.C	30/10/1993
l				CN	1032043 B	19/06/1996
ı				CN	1087841 A	15/06/1994
ļ				DE	69305567 D,T	17/04/1997
1				ES	2093310 T	16/12/1996
1				GR	3021445 T	31/01/1997
1				JP	3117575 B	18/12/2000
1				JP	6165926 A	14/06/1994
J				RU	2113273 C	20/06/1998
				us	5340480 A	23/08/1994
EP	0305787	A1	08/03/1989	DE	3875203 A,T	12/11/1992
l				ES	2035194 T	16/04/1993
(JP	1094901 A	13/04/1989
ĺ				JP	3047403 B	29/05/2000
1				SE	460521 B,C	23/10/1989
l				SE	8703367 A	01/03/1989
l				US	4935141 A	19/06/1990
EP	0168783	A1	22/01/1986	SE	0168783 T3	
ł				AT	107189 T	15/07/1994
}				BR	8503391 A	08/04/1986
				CA	1294745 A,C	28/01/1992
				DE	3426331 A	30/01/1986
1				DE	3587850 D	00/00/0000
				ES	545300 A	01/02/1986
				ES	8605686 A	16/09/1986
				HR	920394 A,B	30/06/1996
				JР	2782583 B	06/08/1998
				JР	2916446 B	05/07/1999
				JР	5054373 B	12/08/1993
				JP	7278948 A	24/10/1995
				JP	10121324 A	12/05/1998
				JР	61093801 A	12/05/1986
				YU	116885 A	31/10/1988