Байесовский выбор субоптимальной структуры модели глубокого обучения

О. Ю. Бахтеев

Диссертация на соискание ученой степени кандидата физико-математических наук 05.13.17 — Теоретические основы информатики Научный руководитель: д.ф.-м.н. В.В. Стрижов

Московский физико-технический институт 28 ноября 2019 г.

Выбор структуры модели глубокого обучения

Цель: предложить метод выбора структуры модели глубокого обучения. **Задачи**

- Предложить критерии оптимальной и субоптимальной сложности модели глубокого обучения.
- Предложить алгоритм построения модели субоптимальной сложности и оптимизации параметров.

Исследуемые проблемы

- Большое число параметров и гиперпараметров модели, высокая вычислительная сложность оптимизации.
- Оправнять по правити прави

Методы исследования

Рассматривается графовое представление нейронной сети. Используются методы вариационного байесовского вывода. Для получения модели субоптимальной сложности используется метод автоматического определения релевантности параметров с использоваением градиентных методов оптимизации гиперпараметров и структурных параметров модели.

Проблема выбора оптимальной структуры

Правдоподобие моделей с избыточным числом параметров значимо не меняется при их удалении.

Глубокое обучение предполагает оптимизацию моделей с заведомо избыточной сложностью.

Модель глубокого обучения

Определение

Моделью $f(\mathbf{w}, \mathbf{x})$ назовем дифференцируемую по параметрам \mathbf{w} функцию из множества признаковых описаний объекта во множество меток:

$$\mathbf{f}: \mathbb{X} \times \mathbb{W} \to \mathbb{Y}$$
,

где \mathbb{W} — пространство параметров функции \mathbf{f} .

Особенность задачи выбора модели *глубокого обучения* — значительное число параметров моделей приводит к неприменимости ряда методов оптимизации и выбора структуры модели (AIC, BIC, кросс-валидация).

Модель определяется параметрами ${f W}$ и структурой ${f \Gamma}.$

Структура задает набор суперпозиций, входящих в модель и выбирается согласно статистическим критериям сложности модели.

Эмпирические оценки статистической сложности модели:

- число параметров;
- 2 число суперпозиций, из которых состоит модель.

Выбор структуры: двуслойная нейросеть

Модель ${f f}$ задана **структурой** ${f \Gamma}=[\gamma^{0,1},\gamma^{1,2}].$

Модель:
$$\mathbf{f}(\mathbf{x}) = \mathbf{softmax}\left((\mathbf{w}_0^{1,2})^\mathsf{T} \mathbf{f}_1(\mathbf{x})\right), \quad \mathbf{f}(\mathbf{x}) : \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad \mathbf{x} \in \mathbb{R}^n.$$

$$\mathbf{f}_1(\mathbf{x}) = \gamma_0^{0,1} \mathbf{g}_0^{0,1}(\mathbf{x}) + \gamma_1^{0,1} \mathbf{g}_1^{0,1}(\mathbf{x}),$$

где $\mathbf{w} = [\mathbf{w}_0^{0,1}, \mathbf{w}_1^{0,1}, \mathbf{w}_0^{1,2}]^\mathsf{T}$ — матрицы параметров, $\{\mathbf{g}_0^{0,1}, \mathbf{g}_1^{0,1}, \mathbf{g}_0^{1,2}\}$ — обобщенно-линейные функции скрытых слоев нейросети.

Графовое представление модели глубокого обучения

Заданы:

- $oldsymbol{1}$ ациклический граф (V, E);
- ② для каждого ребра $(j,k) \in E$: вектор базовых дифференцируемых функций $\mathbf{g}^{j,k} = [\mathbf{g}_0^{j,k}, \dots, \mathbf{g}_{c}^{j,k}]$ мощности $K^{j,k}$;
- 3 для каждой вершины $v \in V$: дифференцируемая функция агрегации \mathbf{agg}_v .
- **4** Функция ${\bf f} = {\bf f}_{|V|-1}$, задаваемая по правилу

$$\mathbf{f}_{\nu}(\mathbf{w}, \mathbf{x}) = \mathsf{agg}_{\nu}\left(\left\{\langle \gamma^{j,k}, \mathbf{g}^{j,k} \rangle \circ \mathbf{f}_{j}(\mathbf{x}) | j \in \mathsf{Adj}(\nu_{k})\right\}\right), \nu \in \{1, \dots, |V|-1\}, \quad \mathbf{f}_{0}(\mathbf{x}) = \mathbf{x}$$
(1)

и являющаяся функцией из признакового пространства $\mathbb X$ в пространство меток $\mathbb Y$ при значениях векторов, $\gamma^{j,k} \in [0,1]^{K^{j,k}}$.

Определение

Граф (V,E) со множестом векторов базовых функций $\{\mathbf{g}^{j,k},(j,k)\in E\}$ и функций агрегаций $\{\mathbf{agg}_v,v\in V\}$ назовем *параметрическим семейством моделей* \mathfrak{F} .

Утверждение

Для любого значения $oldsymbol{\gamma}^{j,k} \in [0,1]^{\kappa^{j,k}}$ функция $\mathbf{f} \in \mathfrak{F}$ является моделью.

Ограничения на структурные параметры

Примеры ограничений для одного структурного параметра $\gamma, |\gamma|=3.$

На вершинах куба

На вершинах симплекса

Внутри куба

Внутри симплекса

Априорное распределение параметров

Определение

Априорным распределением параметров \mathbf{w} и структуры $\mathbf{\Gamma}$ модели \mathbf{f} назовем вероятностное распределение $\mathbf{p}(\mathbf{W},\mathbf{\Gamma}|\mathbf{h},\boldsymbol{\lambda}):\mathbb{W}\times\mathbb{\Gamma}\times\mathbb{H}\to\mathbb{R}^+,$ где \mathbb{W} — множество значений параметров модели, $\mathbb{\Gamma}$ — множество значений структуры модели.

Определение

Гиперпараметрами $h \in \mathbb{H}$ модели назовем параметры распределения $p(w, \Gamma | h, f)$ (параметры распределения параметров модели f).

Модель f задается следующими величинами:

- lacktriangle Параметры lacktriangle $\in \mathbb{W}$ задают суперпозиции $f_{
 u}$, из которых состоит модель f.
- ullet Структурные параметры $oldsymbol{\Gamma} = \{\gamma^{j,k}\}_{(j,k)\in E} \in \mathbb{F}$ задают вклад суперпозиций $oldsymbol{f}_v$ в модель $oldsymbol{f}$.
- ullet Гиперпараметры $oldsymbol{h} \in \mathbb{H}$ задают распределение параметров и структурных параметров модели.
- lacktriangle **Метапараметры** $oldsymbol{\lambda} \in \mathbb{A}$ задают вид оптимизации модели.

Априорное распределение на структуре модели

Каждая точка на симплексе задает модель.

Распределение Гумбель-софтмакс: $\Gamma \sim \mathsf{GS}(\mathsf{s}, \lambda_{\mathsf{temp}})$

 $\lambda_{\mathsf{temp}} = 0.995$

 $\lambda_{\text{temp}} = 5.0$

Распределение Дирихле: $\Gamma \sim \mathsf{Dir}(\mathsf{s}, \lambda_{\mathsf{temp}})$

$$\lambda_{\mathsf{temp}} = 0.995$$

 $\lambda_{\mathsf{temp}} = 5.0$

Байесовский выбор модели

Базовая модель:

- параметры модели $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \alpha^{-1}),$
- гиперпараметры модели $h = [\alpha]$.

Предлагаемая модель:

- параметры модели $\mathbf{w}_r^{j,k} \sim \mathcal{N}(0, (\gamma_r^{j,k})^2 (\mathbf{A}_r^{j,k})^{-1}), \, \mathbf{A}_r^{j,k}$ диагональная матрица параметров, соответствующих базовых функций $\mathbf{g}_r^{j,k}, \ (\mathbf{A}_r^{j,k})^{-1} \sim \text{inv-gamma}(\lambda_1, \lambda_2),$
- структурные параметры модели $\Gamma = \{\gamma^{j,k}, (j,k) \in E\},\ \gamma^{j,k} \sim \mathsf{GS}(\mathsf{s}^{j,k}, \lambda_{\mathsf{temp}}),$
- гиперпараметры модели
 h = [diag(A), s],
- ullet метапараметры $\lambda_1, \lambda_2, \lambda_{\mathsf{temp}}.$

Обоснованность как статистическая сложность

Статистическая сложность модели f:

$$\mathsf{MDL}(\mathbf{y}, \mathbf{f}) = -\log p(\mathbf{h}|\mathbf{f}) - \log p(\hat{\mathbf{w}}|\mathbf{h}, \mathbf{f}) - \log (p(\mathbf{y}|\mathbf{X}, \hat{\mathbf{w}}, \mathbf{f})\delta\mathfrak{D}),$$

где $\delta\mathfrak{D}$ — допустимая точность передачи информации о выборке \mathfrak{D} .

Оптимизация параметров **w** производится согласно **апостериорному распределению параметров**:

$$L = \log p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \mathbf{h}, \lambda) \propto \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{h}, \lambda) + \log p(\mathbf{w}|\mathbf{h}, \lambda).$$

Оптимизация гиперпараметров производится в согласно **апостериорному** распределению гиперпараметров:

$$Q = \log p(\mathbf{f}|\mathbf{X}, \mathbf{y}) \propto \log p(\mathbf{h}|\lambda) + \log \int \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \lambda)p(\mathbf{w}|\mathbf{h}, \lambda)d\mathbf{w}}{(\mathbf{h}|\mathbf{x}, \mathbf{w})} d\mathbf{w}.$$

Вариационная нижняя оценка обоснованности

Интеграл обоснованности невычислим аналитически.

Обоснованность модели:

$$p(\mathbf{y}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda}) = \iint_{\mathbf{w},\Gamma} p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma}) p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda}) d\mathbf{w} d\boldsymbol{\Gamma}.$$

Определение

Вариационными параметрами модели $\theta \in \Theta$ назовем параметры распределения q, приближающие апостериорное распределение параметров и структуры $p(\mathbf{w}, \Gamma | \mathbf{X}, \mathbf{y}, \mathbf{h}, \lambda)$:

$$q \approx \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma})p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})}{\iint\limits_{\mathbf{w}', \mathbf{\Gamma}'} p(\mathbf{y}|\mathbf{X}, \mathbf{w}', \mathbf{\Gamma}')p(\mathbf{w}', \mathbf{\Gamma}'|\mathbf{h}, \boldsymbol{\lambda})d\mathbf{w}'d\mathbf{\Gamma}'}.$$

Получим нижнюю оценку $\log \hat{p}(\mathbf{y}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ интеграла

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \lambda) \ge \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{h}, \lambda) - \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w}, \mathbf{\Gamma})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda)).$$

Она совпадает с интегралом обоснованности при

$$D_{\mathsf{KL}}(q(\mathsf{w},\mathsf{\Gamma})|p(\mathsf{w},\mathsf{\Gamma}|\mathsf{y},\mathsf{X},\lambda,\mathsf{h}))=0.$$

Задача выбора модели

Зададим вариационное распределение $q=q_{\mathbf{w}}q_{\Gamma}$ с параметрами θ , приближающие апостериорное распределение $p(\mathbf{w},\Gamma|\mathbf{X},\mathbf{y},\mathbf{h},\boldsymbol{\lambda})$ параметров и структуры.

Определение

 Φ ункцией потерь $L(\theta|\mathbf{y},\mathbf{X},\mathbf{h},\lambda)$ назовем дифференцируемую функцию, качество модели на обучающей выборки при параметрах θ распределения q.

Функцией валидации Q($\mathbf{h}|\mathbf{y},\mathbf{X},\theta,\lambda$) назовем дифференцируемую функцию, качество модели при векторе θ , заданном неявно.

 $\it 3$ адачей выбора модели $\it f$ назовем двухуровневую задачу оптимизации:

$$\mathbf{h}^* = rg \max_{\mathbf{h} \in \mathbb{H}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*, \boldsymbol{\lambda}),$$

где $heta^*$ — решение задачи оптимизации

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}).$$

Обобщающая задача

Задачу выбора модели $\mathbf{h}^*, \boldsymbol{\theta}^*$ назовем обобщающей на множестве $U_{\boldsymbol{\theta}} \times U_{\boldsymbol{h}} \times U_{\boldsymbol{\lambda}} \subset \mathbb{R}^u \times \mathbb{H} \times \mathbb{A}$, если выполнены условия:

- Область параметров, гиперпараметров и метапараметров не является пустым или точкой.
- $oldsymbol{2}$ Для каждого $oldsymbol{\mathsf{h}} \in U_{h}$ и каждого $oldsymbol{\lambda} \in U_{\lambda}$ решение $oldsymbol{ heta}^*$ определено однозначно.
- **3** Критерий непрерывности: L, Q непрерывны по метапараметрам.
- **④ Критерий** перехода между структурами: существует константа $K_3>0$, такая, что для произвольных локальных оптимумов $\mathbf{h}_1,\mathbf{h}_2$ задачи оптимизации Q, полученных при метапараметрах λ и удовлетворяющих неравенствам

$$\begin{split} D_{\mathsf{KL}}\left(\rho(\pmb{\Gamma}|\pmb{\mathsf{h}}_1,\pmb{\lambda})|\rho(\pmb{\Gamma}|\pmb{\mathsf{h}}_1,\pmb{\lambda})\right) &> \mathcal{K}_3, D_{\mathsf{KL}}\left(\rho(\pmb{\Gamma}|\pmb{\mathsf{h}}_1,\pmb{\lambda})|\rho(\pmb{\Gamma}|\pmb{\mathsf{h}}_2,\pmb{\lambda})\right) > \mathcal{K}_3, \\ Q(\pmb{\mathsf{h}}_1|\pmb{\lambda}) &> Q(\pmb{\mathsf{h}}_2|\pmb{\lambda}), \end{split}$$

существует значение метапараметров $oldsymbol{\lambda}'
eq oldsymbol{\lambda}$, такое, что

- $oldsymbol{0}$ соответствие между вариационными параметрами $oldsymbol{ heta}^*(\mathbf{h}_1), oldsymbol{ heta}^*(\mathbf{h}_2)$ сохраняется при $oldsymbol{\lambda}',$
- $oldsymbol{2}$ выполняется неравенство $Q(oldsymbol{\mathsf{h}}_1|oldsymbol{\lambda}') < Q(oldsymbol{\mathsf{h}}_2|oldsymbol{\lambda}').$

Обобщающая задача

Задачу выбора модели $\mathbf{h}^*, \boldsymbol{\theta}^*$ назовем обобщающей на множестве $U_{\theta} \times U_h \times U_{\lambda} \subset \mathbb{R}^u \times \mathbb{H} \times \mathbb{A}$, если выполнены условия:

- **⑤** Критерий максимизации правдоподобия выборки: существует $\lambda \in U_{\lambda}$ и $K_1 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров $h_1, h_2 \in U_h, Q(h_1) Q(h_2) > K_1$: выполнено: $\mathsf{E}_{g(\mathsf{w}, \Gamma|\theta^*(h_1))} \mathsf{log} p(\mathsf{y}|\mathsf{X}, \mathsf{w}, \Gamma) > \mathsf{E}_{g(\mathsf{w}, \Gamma|\theta^*(h_2))} \mathsf{log} p(\mathsf{y}|\mathsf{X}, \mathsf{w}, \Gamma).$
- **(6)** Критерий минимизации параметрической сложности модели: существует $\lambda \in U_{\lambda}$ и $K_2 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров $\mathbf{h}_1, \mathbf{h}_2 \in U_h, Q(\mathbf{h}_1) Q(\mathbf{h}_2) > K_2$, сложность первой модели меньше, чем второй.
- Тритерий максимизации обоснованности модели: существует значение гиперпараметров λ , такое что оптимизация задачи эквивалента оптимизации вариационной оценки обоснованности модели:

$$\mathbf{h}^* \propto \arg\max \mathsf{E}_{q(\mathbf{w}, \Gamma|\theta)} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \Gamma) - D_{\mathsf{KL}} \big(q(\mathbf{w}, \Gamma|\theta) || p(\mathbf{w}, \Gamma|\mathbf{h}, \boldsymbol{\lambda}) \big) + \log p(\mathbf{h}|\boldsymbol{\lambda}),$$

$$\theta^* = \arg \min D_{\mathsf{KL}}(q|p(\mathsf{w}, \Gamma|\mathsf{y}, \mathsf{X}, \mathsf{h}, \lambda)).$$

Анализ задач выбора моделей

Теорема [Бахтеев, 2019]

Следующие задачи выбора модели не являются обобщающими:

- ① критерий максимума правдоподобия: $\max_{\theta} \mathsf{E}_q \mathsf{log} p(\mathsf{y}|\mathsf{X}, \theta, \lambda_{\mathsf{temp}}, \mathsf{f});$
- 2 критерий максимума апостериорной вероятности $\max_{\theta} \mathsf{E}_q \mathsf{log} p(\mathbf{y}|\mathbf{X}, \theta, \mathbf{f}) p(\theta|\mathbf{h}, \lambda_{\mathsf{temp}});$
- $egin{align*} \begin{subarray}{ll} \begin{subarr$
- $m{\Phi}$ кросс-валидация $\max_{\mathbf{h}} \mathsf{E}_q \mathsf{log} p(\mathbf{y}_{\mathsf{valid}} | \mathbf{X}_{\mathsf{valid}}, \boldsymbol{\theta}^*, \lambda_{\mathsf{temp}}, \mathbf{f}),$ $m{\theta}^* = \mathsf{arg} \max_{\boldsymbol{\theta}} \mathsf{E}_q \mathsf{log} p(\mathbf{y}_{\mathsf{train}} | \mathbf{X}_{\mathsf{train}}, \boldsymbol{\theta}, \lambda_{\mathsf{temp}}, \mathbf{f}) p(\boldsymbol{\theta} | \mathbf{h}).$
- **®** BIC: $\max_{\theta} \mathsf{E}_q \mathsf{log} p(\mathbf{y}|\mathbf{X}, \theta, \lambda_{\mathsf{temp}}, \mathbf{f}) \frac{1}{2} \mathsf{log}(|\mathbb{W}||\theta_i : \mathsf{D}_{\mathsf{KL}}\left(q(w_i)|p(w_i|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) < \lambda|;\right)$
- \bigcirc перебор структуры модели: $\max \Gamma' \max_{\theta} \mathbb{E}_q \log p(\mathbf{y}|\mathbf{X}, \theta, \lambda_{\text{temp}}, \mathbf{f}) \mathbb{I}(q(\Gamma\Gamma = p'), \Gamma)$, где p' распределение на структуре (метапараметр).

Предлагаемая задача оптимизации

Теорема [Бахтеев, 2018]

Тогда следующая задача является обобщающей:

$$\begin{split} \mathbf{h}^* &= \operatorname*{arg\,max}_{\mathbf{h}} Q = \\ &= \lambda_{\mathsf{likelihood}}^{\mathsf{Q}} \mathsf{E}_{q(\mathbf{w}, \Gamma | \boldsymbol{\theta}^*)} \mathsf{log}_{} \; p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) - \\ &- \mathsf{prior}_{\mathsf{Q}} \mathsf{D}_{\mathit{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}^*) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) - \\ &- \sum_{p' \in \mathfrak{P}, \lambda \in \lambda_{\mathsf{Q}}^{\mathsf{struct}}} \lambda \mathsf{D}_{\mathit{KL}} \big(p(\boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) | p' \big) + \mathsf{log} p(\mathbf{h} | \boldsymbol{\lambda}), \end{split}$$

where

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} L = \mathsf{E}_q \!\log\,p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma},\mathbf{h},\boldsymbol{\lambda}) \\ &- \mathsf{L}_{\boldsymbol{\theta}}^{\mathsf{prior}} \mathsf{D}_{\mathsf{KL}} \big(q^*(\mathbf{w},\boldsymbol{\Gamma}) || p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda}) \big). \end{aligned}$$

Оптимизационная задача обобщает алгоритмы оптимизации: оптимизация правдоподобия и обоснованности, последовательное увеличение и снижение сложности модели, полный перебор структуры.

$$\lambda_{\mathsf{struct}}^Q = [0; 0; 0].$$

$$\lambda_{\mathsf{struct}}^Q = [1; 0; 0].$$

$$\lambda_{ ext{struct}}^Q = [1; 1; 0].$$

Адекватность задачи оптимизации

Теорема, [Бахтеев, 2018]

Пусть задано параметрическое множество вариационных распределений: $q(\theta)$. Пусть $\lambda_{\text{likelihood}}^L = \lambda_{\text{prior}}^L = 1, \lambda_{\text{struct}}^Q = 0$. Тогда:

- ① Предлагаемая задача оптимизации доставляет максимум апостериорной вероятности гиперпараметров с использованием вариационной оценки обоснованности: $\log \hat{p}(\mathbf{y}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda}) + \log p(\mathbf{h}|\boldsymbol{\lambda}) \to \max_{\mathbf{h}} \mathbf{x}.$
- 2 Вариационное распределение q приближает апостериорное распределение $p(\mathbf{w}, \Gamma | \mathbf{y}, \mathbf{X}, \mathbf{h}, \lambda, \mathbf{f})$ наилучшим образом:

 $D_{\mathsf{KL}}(q||p(\mathsf{w},\mathsf{\Gamma}|\mathsf{y},\mathsf{X},\mathsf{h},\pmb{\lambda})) o \min_{\pmb{ heta}}.$

Пусть также распределение q декомпозируется на два независимых распределения для параметров \mathbf{w} и структуры $\mathbf{\Gamma}$ модели \mathbf{f} :

$$q = q_{\mathsf{w}}q_{\mathsf{\Gamma}}, q_{\mathsf{\Gamma}} \approx p(\mathsf{\Gamma}|\mathsf{y},\mathsf{X},\mathsf{h},\lambda), q_{\mathsf{w}} \approx p(\mathsf{w}|\mathsf{\Gamma},\mathsf{y},\mathsf{X},\mathsf{h},\lambda).$$

Если существуют значения вариационных параметров, такие что $q(\mathbf{w}) = p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda}),\ q(\mathbf{\Gamma}) = p(\mathbf{\Gamma}|\mathbf{h},\boldsymbol{\lambda}),$ то решение задачи оптимизации для функции L доставляет эти значения.

Оператор оптимизации

Определение

Назовем *оператором оптимизации* T выбор вектора параметров heta' по параметрам предыдущего шага heta.

Оператор стохастического градиентного спуска:

$$\hat{m{ heta}} = m{ au} \circ m{ au} \circ m{ au} \circ m{ au} \circ m{ au} (m{ heta}_0, \mathbf{h}) = m{ au}^\eta (m{ heta}_0, \mathbf{h}), \quad \mathsf{где} m{ au}(m{ heta}, \mathbf{h}) = \ = m{ heta} - \lambda_\mathsf{lr}
abla \left(- m{L}(m{ heta}, \mathbf{h}) |_{\widehat{\mathfrak{D}}}
ight),$$

 $\lambda_{
m lr}$ — длина шага градиентного спуска, $heta_0$ — начальное значение параметров heta, $\hat{\mathfrak{D}}$ — случайная подвыборка исходной выборки \mathfrak{D} .

Перепишем итоговую задачу оптимизации:

$$\mathbf{h}' = T^{\eta}(Q, \mathbf{h}, T^{\eta}(L, \boldsymbol{\theta}_0, \mathbf{h})),$$

где $heta_0$ — начальное значение heta.

Теорема, [Бахтеев, 2019]

Пусть $\frac{\lambda_{\text{prior}}^{V}}{\lambda_{\text{Q}}^{Q}}=\lambda_{\text{prior}}^{L}.$ Тогда задача оптимизации представима в виде одноуровневой задач.

Оптимизация гиперпараметров: пример

Исследованы градиентные методы оптимизации гиперпараметров.

Эксперименты: WISDM

Эксперименты: MNIST

Эксперименты: MNIST

Добавление гауссового шума $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$:

 $\sigma = \text{0.1}$

 $\sigma = 0.25$

$$\sigma = 0.5$$

Нижняя вариационная оценка обоснованности на основе мультистарта

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda}) \geq \mathsf{E}_{q(\mathbf{W})} \mathsf{log} \ p(\mathbf{y},\mathbf{w}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda}) - \mathsf{E}_{q_{\mathbf{w}}}(-\mathsf{log}(q_{\mathbf{w}})).$$

Теорема [Бахтеев, 2016]

Пусть L — функция потерь, градиент которой —

непрерывно-дифференцируемая функция с константой Липшица С.

Пусть $\theta = [\mathbf{w}^1, \dots, \mathbf{w}^k]$ — начальные приближения оптимизации модели, $\lambda_{\operatorname{Ir}}$ — шаг градиентного спуска.

Тогда разность энтропий на смежных шагах оптимизации приближается следующим образом:

$$\mathsf{E}_{q_{\mathbf{w}}^{\tau}}(-\mathsf{log}(q_{\mathbf{w}}^{\tau})) - \mathsf{E}_{q_{\mathbf{w}}^{\tau-1}}(-\mathsf{log}(q_{\mathbf{w}}^{\tau-1})) \approx \frac{1}{k} \sum_{r=1}^{k} \left(\lambda_{\mathsf{lr}} \mathit{Tr}[\mathbf{H}(\mathbf{w}^{r})] - \lambda_{\mathsf{lr}}^{2} \mathit{Tr}[\mathbf{H}(\mathbf{w}^{r})\mathbf{H}(\mathbf{w}^{r})] \right),$$

где ${\bf H}$ — гессиан минус функции потерь -L, $q_{\bf w}^{\tau}$ — распределение $q_{\bf w}^{\tau}$ в момент оптимизации τ .

Градиентный спуск как вариационная оценка обоснованности модели

Эмпирическое распределение на точках старта оптимизации — вариационное распределение.

Градиентный спуск не оптимизирует оценку обоснованности.

-56.9 90 -57.0 000 -57.1 2 -57.2 2 -57.2 2 -57.2 3 -0.09 3 -0.09 3 -0.09

2000

4000

Количество итераций оптимиз25 / 34

0.07

0.06

0.05 0.04 0.03 0.02 0.01

Снижение вариационной оценки

обоснованности — начало переобучения.

Контрольная выборка

10000

Переобучение

Анализ обобщающей задачи оптимизации

Теорема, [Бахтеев, 2018]

Пусть $\lambda_{ extstyle{prior}}^{ extstyle{L}}>0, m\gg0, rac{m}{\lambda_{ extstyle{prior}}^{ extstyle{L}}}\in\mathbb{N}.$ Тогда оптимизация функции

$$L = \mathsf{E}_q \dot{\mathsf{log}} \ p(\mathsf{y}|\mathsf{X},\mathsf{w},\mathsf{\Gamma}) - \lambda_{\mathsf{prior}}^L \mathsf{D}_{\mathsf{KL}}(q||p(\mathsf{w},\mathsf{\Gamma}|\mathsf{h},\boldsymbol{\lambda})$$

эквивалентна минимизации $\mathsf{E}_{\hat{\mathbf{X}},\hat{\mathbf{y}}\sim p(\mathbf{X},\mathbf{y})}\mathsf{D}_{\mathit{KL}}(q||p(\mathbf{w},\mathbf{\Gamma}|\hat{\mathbf{X}},\hat{\mathbf{y}},\mathbf{h},\lambda))$, где $\hat{\mathbf{X}},\hat{\mathbf{y}}$ — случайные подвыборки мощностью $\frac{1}{N}$ из генеральной совопкупности.

Определение

Параметрической сложностью модели назовем минимальную дивергенцию между априорным и вариационным распределением:

$$C_p = \min_{\mathbf{L}} D_{\mathsf{KL}}(q||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda)).$$

Теорема, [Бахтеев, 2018]

Пусть $\lambda_{\text{struct}}^Q = \mathbf{0}$. Пусть $\theta_1, \theta_2, \mathbf{h}_1, \mathbf{h}_2$ — результаты оптимизации при разных значениях гиперпараметров $\lambda_{\text{prior}_1}^Q, \lambda_{\text{prior}_2}^Q, \lambda_{\text{prior}_1}^Q > \lambda_{\text{prior}_2}^Q$ на компакте U. Пусть функция $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \theta, \lambda)$ является вогнутой на U при $\lambda_{\text{prior}_2}^Q$. Тогда:

$$C_{p}(\theta_{1}|U_{h}, \lambda_{1}) - C_{p}(\theta_{2}|U_{h}, \lambda_{2}) < \frac{\lambda_{\mathsf{prior}}^{\mathsf{L}}}{\lambda_{\mathsf{prior}_{2}}^{\mathsf{Q}}} (\lambda_{\mathsf{prior}_{2}}^{\mathsf{Q}} - \lambda_{\mathsf{prior}}^{\mathsf{L}}) C,$$

Анализ параметрической сложности

Определение

Относительной вариационной плотностью назовем отношение:

$$\rho(w|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}) = \frac{q_{\mathbf{w}}(\mathsf{mode}\; p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}))}{q_{\mathbf{w}}(\mathsf{mode}\; q_{\mathbf{w}})}$$

Теорема, [Бахтеев, 2018]

Пусть заданы компактные множества $U_{\mathbf{h}} \subset \mathbb{H}, U_{\theta_{\mathbf{w}}} \subset \mathbb{O}_{\mathbf{w}}, U_{\theta_{\Gamma}} \subset \mathbb{O}_{\Gamma}$, вариационное и априорное распределение $q_{\mathbf{w}}(\mathbf{w}|\Gamma,\theta_{\mathbf{w}}), \ p(\mathbf{w}|\Gamma,\mathbf{h},\lambda)$ являются абсолютно непрерывным и унимодальным на U_{θ} с совпадающей модой и матожиданием. Пусть мода и матожидание априорного распределения не зависят от гиперпараметров \mathbf{h} и структуры Γ .

Пусть задана бесконечная последовательность векторов вариационных параметров $m{ heta}[1], m{ heta}[2], \dots, m{ heta}[i], \dots \in U_{m{ heta}}$, такая, что $\lim_{i o \infty} C_p(m{ heta}[i]|U_{\mathbf{h}}, m{\lambda}) = 0$. Тогда:

$$\lim_{i\to\infty}\mathsf{E}_{q_{\Gamma}(\Gamma|\theta_{\Gamma}[i])}\rho(\mathbf{w}|\Gamma,\theta_{\mathbf{w}}[i],\mathbf{h}[i],\boldsymbol{\lambda})^{-1}=1, \\ \mathbf{h}[i]=\arg\min D_{\mathsf{KL}}\big(q(\mathbf{w},\Gamma|\theta_{i})||\rho(\mathbf{w},\Gamma|\mathbf{h},\boldsymbol{\lambda})\big).$$

Результаты, выносимые на защиту

- Предложен метод байесовского выбора субоптимальной структуры модели глубокого обучения с использованием автоматического определения релевантности параметров.
- Предложены критерии оптимальной и субоптимальной сложности модели глубокого обучения.
- 3 Предложен метод графового описания моделей глубокого обучения.
- Финаров предложено обобщение задачи оптимизации структуры модели, включающее ранее описанные методы выбора модели:
 - ▶ оптимизация обоснованности;
 - последовательное увеличение сложности модели;
 - ▶ последовательное снижение сложности модели;
 - ▶ полный перебор вариантов структуры модели.
- Предложен метод оптимизации вариационной оценки обоснованности на основе мультистарта оптимизации модели.
- Предложен алгоритм оптимизации параметров, гиперпараметров и структурных параметров моделей глубокого обучения.
- Исследованы свойства оптимизационной задачи при различных значениях метапараметров. Рассмотрены ее асимптотические свойства.

Список работ автора по теме диссертации

Публикации ВАК

- 1 Bakhteev, O., Kuznetsova, R., Romanov, A. and Khritankov, A. A monolingual approach to detection of text reuse in Russian-English collection // In 2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT) (pp. 3-10). IEEE.
- 2 Бахтеев О.Ю., Попова М.С., Стрижов В.В. Системы и средства глубокого обучения в задачах классификации. // Системы и средства информатики. 2016. № 26.2. С. 4-22.
- (3) Romanov, A., Kuznetsova, R., Bakhteev, O. and Khritankov, A. Machine-Translated Text Detection in a Collection of Russian Scientific Papers. // Computational Linguistics and Intellectual Technologies. 2016.
- Bakhteev, O. and Khazov, A., 2017. Author Masking using Sequence-to-Sequence Models // In CLEF (Working Notes). 2017.
- Бахтеев О.Ю., Стрижов В.В. Выбор моделей глубокого обучения субоптимальной сложности. // Автоматика и телемеханика. 2018. №8. С. 129-147.
- Огальцов А.В., Бахтеев О.Ю. Автоматическое извлечение метаданных из научных PDF-документов. // Информатика и её применения. 2018.
- Смердов А.Н., Бахтеев О.Ю., Стрижов В.В. Выбор оптимальной модели рекуррентной сети в задачах поиска парафраза. // Информатика и ее применения. 2019.
- 8 Грабовой А.В., Бахтеев О.Ю., Стрижов В.В. Определение релевантности параметров нейросети. // Информатика и её применения. 2019.
- 9 Bakhteev O., Strijov V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms // Annals of Operations Research. 2019.

Выступления с докладом

- "Восстановление панельной матрицы и ранжирующей модели в разнородных шкалах", Всероссийская конеренция «57-я научная конеренция МФТИ», 2014.
- 2 "Выбор модели глубокого обучения субоптимальной сложности с использованием вариационной оценки правдоподобия", Международная конференция «Интеллектуализация обработки информации», 2016.
- 3 "Градиентные методы оптимизации гиперпараметров моделей глубокого обучения", Всероссийская конференция «Математические методы распознавания образов ММРО», 2017.
- (4) "Детектирование переводных заимствований в текстах научных статей из журналов, входящих в РИНЦ", Всероссийская конференция «Математические методы распознавания образов ММРО», 2017.
- "Байесовский выбор наиболее правдоподобной структуры модели глубокого обучения", Международная конференция «Интеллектуализация обработки информации». 2018.

Иллюстративный пример

Цель эксперимента: проверка анализируемых свойств предлагаемой модели оптимизации.

Модель f — ансамбль трех моделей:

- **1** $\mathbf{g}_0^{0,1} = tanh(wx);$
- **2** $\mathbf{g}_1^{0,1} = tanh(\mathbf{w}^{\mathsf{T}}[x, x^2, \dots, x^{10}]);$
- **3** $\mathbf{g}_2^{0,1} = w$.

Рассматривалось поведение оптимизируемой функции при калибровке $\lambda_{\mathsf{temp}}, \lambda_{\mathsf{prior}}^{\mathsf{L}}.$

Эксперимент при $\lambda_{\mathrm{temp}} \ll 1, \lambda_{\mathrm{prior}}^{\mathbf{L}} \ll 1$

Эксперимент при $\lambda_{\mathsf{temp}} \ll 1, \lambda_{\mathsf{prior}}^{\mathsf{L}} \gg 1$

Эксперимент при $\lambda_{\mathrm{temp}}\gg 1, \lambda_{\mathrm{prior}}^{\mathbf{L}}\ll 1$

Эксперимент при $\lambda_{\mathrm{temp}}\gg 1, \lambda_{\mathrm{prior}}^{\mathbf{L}}\gg 1$

Эксперимент при $\lambda_{ exttt{temp}} = 1, \lambda_{ exttt{prior}}^{ exttt{L}} = 1$

