

Apresentação Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

► Código: COMP0415

Ementa

- Representação de dados
- Noções básicas de arquitetura e organização de computadores
- Noções de linguagem de máquina
- Sistemas de memória: principal e cache
- Sistemas de interface e comunicação
- Medidas de desempenho
- Técnica de pipeline, arquiteturas superescalares, multiprocessadores e arquiteturas paralelas

- Objetivo geral
 - ► Fornecer todos os conceitos para entendimento da organização e do funcionamento de computadores, através de conceitos teóricos dos principais paradigmas existentes e atividades práticas que vão permitir uma consolidação de todos os conhecimentos

- Objetivos específicos
 - Apresentar conceitos de componentes de computadores, como memória, unidade central de processamento e operações de entrada e saída
 - Detalhar aspectos de funcionamento básicos, como a linguagem de máquina e software básico
 - Construir modelos de simulação de um computador de código aberto (RISC-V)
 - Analisar organizações de memória em cache e conceito de memória virtual
 - Abordar o conceito de paralelismo e multiprocessamento

- Conteúdo programado (primeira unidade)
 - Aula 01: Apresentação
 - Aula 02: Introdução
 - Aula 03: Memória e registradores
 - Aula 04: Operações bit a bit e lógicas
 - Aula 05: Aula prática
 - Aula 06: Aritmética binária
 - Aula 07: Aula prática
 - Aula 08: Controle de fluxo
 - Aula 09: Aula prática
 - Aula 10: Aula prática
 - Aula 11: Primeira prova

- Conteúdo programado (segunda unidade)
 - Aula 12: Software básico
 - Aula 13: Exceção e interrupção
 - Aula 14: Aula prática
 - Aula 15: Entrada e saída
 - Aula 16: Aula prática
 - Aula 17: Mecanismos de interconexão
 - Aula 18: Multiciclo e pipeline
 - Aula 19: Aula prática
 - Aula 20: Segunda prova

- Conteúdo programado (terceira unidade)
 - Aula 21: Hierarquia de memória
 - Aula 22: Aula prática
 - Aula 23: Memória virtual
 - Aula 24: Superescalar
 - Aula 25: Multiprocessamento
 - Aula 26: Aula prática
 - Aula 27: Avaliação de desempenho
 - Aula 28: Aula prática
 - Aula 29: Aula prática
 - Aula 30: Terceira prova

- Metodologia de ensino (sala de aula invertida)
 - Todo o material da disciplina, como apresentações, atividades práticas e/ou exemplos, será previamente disponibilizado em formato eletrônico aos alunos para realização das tarefas (hora-trabalho)

- Metodologia de ensino (sala de aula invertida)
 - ► Todo o material da disciplina, como apresentações, atividades práticas e/ou exemplos, será previamente disponibilizado em formato eletrônico aos alunos para realização das tarefas (hora-trabalho)
 - Os encontros presenciais serão exclusivos para discussões e dúvidas sobre o conteúdo programado (hora-aula), sendo de responsabilidade dos discentes o estudo prévio dos conceitos de cada aula

- Metodologia de ensino (sala de aula invertida)
 - Todo o material da disciplina, como apresentações, atividades práticas e/ou exemplos, será previamente disponibilizado em formato eletrônico aos alunos para realização das tarefas (hora-trabalho)
 - Os encontros presenciais serão exclusivos para discussões e dúvidas sobre o conteúdo programado (hora-aula), sendo de responsabilidade dos discentes o estudo prévio dos conceitos de cada aula
 - Nos momentos fora do horário das aulas presenciais, os alunos devem utilizar os meios de atendimento disponíveis de comunicação para esclarecer dúvidas ou reportar problemas

- Procedimentos de avaliação
 - ► Conjunto de *n* atividades *A*_{1,2,3} e provas teóricas *P*_{1,2,3} individuais^a (três unidades)

$$A_{1,2,3} = \sum_{i=1}^{n} \frac{A_{1,2,3_i}}{n} = [40\%, 70\%] e P_{1,2,3} = [30\%, 60\%]$$

Média final (MF)

$$MF = [(A_1 + P_1) + (A_2 + P_2) + (A_3 + P_3)] \div 3$$

^a A realização de atividades individuais práticas pode demandar a utilização de conta de usuário institucional. Por isto, os alunos devem solicitar a criação de sua respectiva conta ou verificar a disponibilidade de acesso, em caráter prévio a sua necessidade de utilização, sob pena de não poderem realizar a autenticação necessária e, consequentemente, não poderem submeter as atividades

- Procedimentos de avaliação
 - Conjunto de n atividades $A_{1,2,3}$ e provas teóricas $P_{1,2,3}$ individuais b (três unidades)

$$A_{1,2,3} = \sum_{i=1}^{n} \frac{A_{1,2,3_i}}{n} = [40\%, 70\%] e P_{1,2,3} = [30\%, 60\%]$$

- Média final (MF)
 - $MF = [(A_1 + P_1) + (A_2 + P_2) + (A_3 + P_3)] \div 3$

Para os discentes que realizarem presencialmente as atividades de avaliação, caberá ao Departamento de Computação (DCOMP) a disponibilização dos recursos necessários, como acesso a computador conectado à Internet. Já para os alunos que optarem por utilizarem seus próprios dispositivos remotamente, os mesmos aceitam os termos e condicões utilizados e assumem a responsabilidade por eventuais falha so u indisponibilidades

- Programa de recuperação de pontos
 - ▶ É permitido que uma atividade prática seja reavaliada depois do prazo, desde que o discente faça uma solicitação por escrito e que seja aplicada uma penalidade para o cálculo da nota recuperada

- Programa de recuperação de pontos
 - ▶ É permitido que uma atividade prática seja reavaliada depois do prazo, desde que o discente faça uma solicitação por escrito e que seja aplicada uma penalidade para o cálculo da nota recuperada
 - ▶ $A'_X = A_X \times 0$, 5^k , onde A_X é a nota obtida na avaliação, k é quantidade de unidades em atraso com relação ao prazo original e A'_X é nota recuperada da avaliação considerando a penalização

- ► Integridade acadêmica
 - Serão utilizadas ferramentas automatizadas para determinação de plágio, como forma de dissuasão de fraude e para aumentar a confiança dos resultados obtidos pelos processos avaliativos

- ► Integridade acadêmica
 - Serão utilizadas ferramentas automatizadas para determinação de plágio, como forma de dissuasão de fraude e para aumentar a confiança dos resultados obtidos pelos processos avaliativos
 - A resolução 09/2016/CONEPE/UFS define as normas para responsabilização pela prática de plágio

- ► Integridade acadêmica
 - Serão utilizadas ferramentas automatizadas para determinação de plágio, como forma de dissuasão de fraude e para aumentar a confiança dos resultados obtidos pelos processos avaliativos
 - A resolução 09/2016/CONEPE/UFS define as normas para responsabilização pela prática de plágio
 - A nota da atividade é invalidada (docente)

- ► Integridade acadêmica
 - Serão utilizadas ferramentas automatizadas para determinação de plágio, como forma de dissuasão de fraude e para aumentar a confiança dos resultados obtidos pelos processos avaliativos
 - A resolução 09/2016/CONEPE/UFS define as normas para responsabilização pela prática de plágio
 - A nota da atividade é invalidada (docente)
 - O discente é reprovado na disciplina (departamento)

- Integridade acadêmica
 - Serão utilizadas ferramentas automatizadas para determinação de plágio, como forma de dissuasão de fraude e para aumentar a confiança dos resultados obtidos pelos processos avaliativos
 - A resolução 09/2016/CONEPE/UFS define as normas para responsabilização pela prática de plágio
 - A nota da atividade é invalidada (docente)
 - O discente é reprovado na disciplina (departamento)
 - Pode causar a anulação do diploma (CONEPE)

- Bibliografia
 - Básica
 - Digital Design and Computer Architecture: RISC-V Edition, 1st Edition; Sarrah L. Hary and David M. Harris
 - Computer Organization and Design: The Hardware/Software Interface (RISC-V Edition), 2rd Edition; David A. Patterson and John L. Hennessy
 - RISC-V Assembly Language Programming: Unlock the Power of the RISC-V Instruction Set, 1st Edition; Stephen Smith
 - ► Introduction to the History of Computing: A Computing History Primer, 1st Edition; Gerard O'Reagan

- Bibliografia
 - Complementar
 - Computer Organization and Design: The Hardware/Software Interface, 3rd Edition; David A. Patterson and John L. Hennessy
 - Computer Organization and Architecture: Designing for Performance, 8th Edition; William Stallings
 - Structured Computer Organization, 5th Edition; Andrew S. Tanenbaum
 - A History of Modern Computing, 2nd Edition; Paul E. Ceruzzi