Midterm presentation

Automated recognition of NETs

Institute of Biochemistry - TiHo

Stakeholder

Interesting for anyone working in the NET field

Neutrophil Extracellular Traps

NETs

- Part of innate immune response mechanism
- Neutrophils perform programmed cell death (NETosis)
- NET: DNA backbone + (antimicrobial) proteins

How does our data look like?

Earlier attempts to automatise the NET counting

Goal to reach: precision of hand counting

Earlier attempts to automatise the NET counting

- Goal to reach: precision of hand counting
- Baseline models:
 - Semi automated with ImageJ

Brinkmann et al., 2013

Earlier attempts to automatise the NET counting

- Goal to reach: precision of hand counting
- Baseline models:
 - Semi automated with ImageJ
 - Fully automated with NETQUANT (MATLAB)

Mohanty et al., 2018

Earlier attempts to automatise the NET counting

- Goal to reach: precision of hand counting
- Baseline models:
 - Semi automated with ImageJ
 - Fully automated with NETQUANT (MATLAB)
- Overall poor performance of both models

Henneck et al., 2023

Two modelling approaches

- Use recall or F1 score as main metrics to capture maximum positives (recall) and also taking false negatives and false positives into account (F1).
- Continue with two different approaches:
 - Subimaging
 - Segmentation

Model 1: Subimaging

Get coordinates of nucleus centres in blue channel

Use coordinates to make subimages of three color image

Best model: subimaging

Results: VGG16, F1 Metrics

Classification	Report: precision	recall	f1-score	support	
NET_negative NET_positive	0.45 0.58	0.45 0.58	0.45 0.58	663 858	
accuracy macro avg weighted avg	0.51 0.52	0.51 0.52	0.52 0.51 0.52	1521 1521 1521	

Predicted class: NET_positive

Model 2: Instance segmentation

Image segmentation using detectron2

Model pipeline

Model Performance

```
Accumulating evaluation results...
DONE (t=0.02s).
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                          area=
                                                 all |
                                                       maxDets=100 ] = 0.571
Average Precision
                   (AP) @[ IoU=0.50
                                                 all
                                                       maxDets=100 ]
                                          area=
                                                                    = 0.759
Average Precision
                   (AP) @[ IoU=0.75
                                                 all I
                                                       maxDets=100 l
                                                                    = 0.671
                                          area=
Average Precision
                   (AP) @[ IoU=0.50:0.95 |
                                          area= small |
                                                       maxDets=100 l
                                                                    = 0.328
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                          area=medium
                                                       maxDets=100 l
                                                                    = 0.656
                                                                    = 0.171
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                          area= large |
                                                       maxDets=100 l
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                          area=
                                                 all I
                                                       maxDets = 1
                                                                    = 0.061
 Average Recall
                   (AR) @[ IoU=0.50:0.95
                                                 all I
                                                       maxDets= 10 l
                                                                    = 0.352
                                          area=
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                          area=
                                                 all | maxDets=100 ]
                                                                    = 0.634
Average Recall
                   (AR) @[ IoU=0.50:0.95 | area= small |
                                                       maxDets=100 l
                                                                    = 0.362
Average Recall
                   (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ]
                                                                    = 0.712
Average Recall
                   (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.263
[06/06 14:38:16 d2.evaluation.coco evaluation]: Evaluation results for bbox:
   AP
           AP50 I
                   AP75 I
                            APs
                                     APm
                                             APl
 :----:|:----:|:----:|:----:|
  57.115 | 75.888 | 67.085 | 32.785 | 65.619 |
[06/06 14:38:16 d2.evaluation.coco_evaluation]: Per-category bbox AP:
                      AP
                            category
                                        AP
                                                 category
                                                              AP
  category
                     :----|:----|:-----|:-----|
 microscopic_images | nan
                          | NETs
                                       | 44.660 | non-net
                                                            1 69.570
```

Best model: image segmentation

Best model: image segmentation

DFO_2h_DFO-Zeitkinetik_6

Outlook

- Model 1:
 - Work against overfitting (regularisation)
- Model 2:
 - Try yolo again with now available annotations
- Try DB scan as a third alternative
- Prepare webapp (turning into python script, streamlit)
- · Potential problems:
 - Heterogeneity of the dataset and the NETs

Thank you

NoW

Detailed image overview

	CTR stimulated	PMA stimulated	
RGB	12	7	19
GB	9	10	19
	21	17	38

NET heterogeneity

Problems with the NETs...

