What is claimed is:

l

2

3

1	1. A method of manufacturing a microfabricated channel network, comprising:
2	providing a first planar substrate having a first surface;
3	depositing a first polymer layer on the first surface of the first substrate;
4	removing a first portion of the polymer layer to expose an area of the first surface of
5	the first substrate, removal of the first portion of the polymer layer providing one or more grooves
6	in the polymer layer that correspond to a desired channel pattern; and
7	overlaying a second planar substrate layer on the polymer layer to seal the one or
8	more grooves in the polymer layer as one or more channels in the desired channel pattern.
1	2. The method of claim 1, wherein the first polymer layer comprises a
\2	photoimagable polymer layer, and the removing step comprises:
$\frac{\sqrt{2}}{3}$	exposing first selected regions of the photoimagable polymer layer to effective levels
4	of electromagnetic radiation, the selected regions either corresponding to the first portion of the first
5	polymer layer or corresponding to the first polymer layer immediately surrounding but not
6	including the first portion; and
7	removing the first portion of the photo magable polymer layer.
1	3. The method of claim 2, wherein the photoimagable polymer comprises a
2	positive photoresist, and wherein the selected regions exposed in the exposing step correspond to
3	the first portion of the first polymer layer.
1	4. The method of claim 2, wherein the photoimagable polymer comprises a
2	negative photoresist, and wherein the selected regions exposed in the exposing step correspond to

negative photoresist, and wherein the selected regions exposed in the exposing step correspond to 3 the polymer layer immediately surrounding but not including the first portion.

5. The method of claim 2, wherein the exposing step comprises directing a light source at the photoimagable polymer layer through a mask, the mask comprising transparent

regions that correspond to the one or more channels of the desired channel pattern.

1	6.	The method of claim 2, wherein the exposing step comprises movably
2	directing the light se	ource at different portions of the photoimagable polymer layer.
1 2	7. source.	The method of claim 6, wherein the light source comprises a coherent light
	8.	The method of claim 6, wherein the light source comprises a laser.
1	9.	The method of claim 2, wherein the photoimagable polymer is selected from
2	photoimagable poly	rimides, photoimagable benzocyclobutenes, photoimagable epoxies, novolac
3	based positive photo	oresists, and cardo type photopolymers.
1	10.	The method of claim 2, wherein the depositing step comprises spin coating
2	the photoimagable j	polymer onto the first surface.
1	11.	The method of claim 2, wherein the depositing step comprises laminating the
2	photoimagable poly	mer onto the first surface.
1	12.	The method of claim 2, wherein the depositing step comprises spray coating
2	the photoimagable 1	polymer onto the first surface.
1	13.	The method of claim 2, wherein the photoimagable polymer layer is between
2	about 1 µm and abo	out 100 μm thick.
1	14.	The method of claim 2, wherein the photoimagable polymer layer is between
2	about 5 µm and abo	out 50 μm thick.
1	15.	The method of claim 2, wherein the irradiating step comprises directing light
2	at the predefined lo	cations of the photoimagable polymer layer, the light comprising light of a

wavelength between about 190 nm and about 430.

1	16. The method of claim 2, wherein the overlaying step comprises bonding the
2	second substrate layer to the layer of photoimagable polymer.
1	17. The method of claim 16, wherein the photoimagable polymer layer comprises
2	an adhesive surface and the bonding step comprises pressing the second substrate layer to the layer
3	of photoimagable polymer.
1	18. The method of claim 1, further comprising providing a groove in the first
2	surface of the first substrate.
1	19. The method of claim 18, wherein the groove in the first surface of the first
2	substrate intersects and is in fluid communication with the groove in the first polymer layer.
1	20. The method of claim 1, wherein a first surface of the second substrate is
2	overlaid on the polymer layer, and further comprising:
3	depositing a second polymer layer on a second surface of the second substrate
4	opposite the first surface of the second substrate;
5	removing a first portion of the second polymer layer to expose an area of the second
6	surface of the second substrate, removal of the first portion of the second polymer layer providing
7	one or more grooves in the second polymer layer that correspond to the desired channel pattern; and
8	overlaying a third planar substrate layer on the second polymer layer to seal the one
9	or more grooves in the second polymer layer as one or more channels in the desired channel pattern.
_	

21. The method of claim 1, wherein the polymer layer comprises a laser ablatable polymer layer, the first substrate comprises a non-ablatable substrate, and the removing step comprises laser ablating the first portion of the polymer layer to expose an area of the first surface of the first substrate.

- 1 22. The method of claim 21, wherein the polymer layer is selected from 2 polymethylmethacrylate, polycarbonate, polytetrafluoroethylene, polyvinylchloride,
- 3 polydimethylsiloxane, polysulfone, polystyrene, polymethylpentene, polypropylene, polyethylene,
- 4 polyvinylidine fluoride, and acrylonitrile-butadiene-styrene copolymer.

1	23. The method of claim 21, wherein the first substrate is selected from glass,	
2	quartz, fused silica and silicon.	
l	24. The method of claim 21, wherein the first substrate comprises a non-ablatable	
2	polymeric substrate that is not ablated under conditions used in ablation of the polymer layer.	
1	25. A microfluidic device, comprising:	
$\sqrt{2}$	a first substrate layer having a first surface;	
3	a first photoimagable polymer layer on the first surface of the first substrate, the	
4	photoimagable polymer layer having at least a first groove disposed therein in a desired location;	
5	and	
6	a second planar substrate layer having a first surface, the first surface of the second	
7	substrate layer mated with and overlaying the photoimagable polymer layer.	
1	26. The microfluidic device of claim 25, wherein at least one of the first and	
2	second planar substrates comprises glass.	
1	27. The microfluidic device of claim 25, wherein at least one of the first and	
2	second planar substrates comprises a polymeric material.	
1	28. The microfluidic device of claim 25, wherein the photoimagable polymer	
2	layer comprises a photoimagable polymer selected from photoimagable polyimides, photoimagable	
3	benzocyclobutenes, photoimagable epoxies, novolac based positive photoresists, and cardo type	
4	photopolymers.	
1	29. The microfluidic device of claim 28, wherein the photoimagable polymer	
2	comprises an adhesive upper surface.	
1	30. The microfluidic device of claim 25, wherein the photoimagable polymer	
2	layer is between about 1 and about 100 µm thick.	

2

- The microflui'dic device of claim 25, wherein the layer of photoimagable 1 31. 2 polymer comprises a plurality of grooves disposed therein. 1 32. The microfluidic device of claim 31, wherein the plurality of grooves 2 comprises at least two intersecting grooves. 1 33. The microfluidic device of claim 25, wherein the first and second substrate 2 layers are selected independently from silica based substrates, polymer substrates and ceramic 3 substrates. 34. The microfluidic device of claim 25, wherein at least one of the first and second substrates is selected from glass, quartz, fused silica and silicon. 1 35. The microfluidic device of claim 25, wherein at least one of the first and 2 second substrates is selected from polymethylmethacrylate, polycarbonate, polytetrafluoroethylene, 3 polyvinylchloride, polydimethylsiloxane, polysulfone, polystyrene, polymethylpentene, 4 polypropylene, polyethylene, polyvinylidine fludride, acrylonitrile-butadiene-styrene copolymer. 1 36. The microfluidic device of claim 25, wherein the polymer layer is between 2 about 1 and 100 µm thick. 1 37. The microfluidic device of claim 25, wherein the polymer layer is between 2 about 5 and about 50 µm thick. 1 38. The microfluidic device of claim 25, wherein the groove comprises an aspect
- 2 ratio (depth:width) greater than 1.
 - 39. The microfluidic device of claim 25, wherein the groove comprises an aspect ratio (depth:width) greater than 2.
- 1 40. The microfluidic device of claim 25, wherein the groove comprises an aspect 2 ratio (depth:width) greater than 5.

1	41. The microfluidic device of claim 25, wherein the groove comprises an aspect
2	ratio (depth:width) greater than 10.
i	42. The microfluidic device of claim 25, further comprising a second groove
2	disposed in at least one of the first surface of the first substrate or the first surface of the second
3	substrate.
1	43. The microfluidic device of claim 42, wherein the second groove intersects
2	and is in fluid communication with the first groove in the polymer layer.
$\int_{\mathbb{R}^{n}}$	i de la companya de
1	44. The microfluidic device of claim 25, further comprising:
2	a second photoimagable polymer layer disposed on a second surface of the second
3	substrate opposite the first surface of the second substrate, the second photoimagable polymer layer
4	having at least a second groove disposed therein in a desired location; and
5	a third planar substrate layer having a first surface, the first surface of the third
6	substrate layer mated with and overlaying the second photoimagable polymer layer.
1	45. A microfluidic device, comprising:
2	a first non-ablatable substrate layer having a first surface;
3	a first ablatable polymer layer on the first surface of the first substrate, the polymer
4	layer having at least a first groove laser ablated entirely through the polymer layer in a desired
5	location without affecting the first surface of the first substrate; and
6	a second planar substrate layer having a first surface, the first surface of the second
7	substrate layer mated with and overlaying the photoimagable polymer layer.
1	46. The microfluidic device of claim 45, wherein the first substrate comprises
2	glass.
1	47. The microfluidic device of claim 45, wherein the polymer layer is selected
	Fely-mer any or any or any or any

2

- polydimethylsiloxane, polysulfone, polystyrene, polymethylpentene, polypropylene, polyethylene, 3 4 polyvinylidine fluoride, acrylonitrile-butadiene-styrene copolymer. 1 48. The microfluidic device of claim 45, wherein at least one of the first and 2 second planar substrates comprises a non-ablatable polymeric material. 1 49. The microfluidic device of claim 45, wherein the polymer layer comprises a 2 plurality of grooves laser ablated therethrough. 50. The microfluidic device of claim 49, wherein the plurality of grooves 2 comprises at least two intersecting grooves. 1 51. The microfluidic device of claim 45, wherein the first and second substrate 2 layers are selected independently from silica based\substrates, polymer substrates and ceramic 3 substrates. 1 52. The microfluidic device of claim 45, wherein at least one of the first and 2 second substrates is selected from glass, quartz, fused silica and silicon. 1 53. The microfluidic device of claim 45, wherein at least one of the first and 2 second substrates is selected from polymethylmethacrylate, polycarbonate, polytetrafluoroethylene, 3 polyvinylchloride, polydimethylsiloxane, polysulfone, polystyrene, polymethylpentene, 4 polypropylene, polyethylene, polyvinylidine fluoride, acrylonitrile-butadiene-styrene copolymer, 5 provided that if the first substrate is non-ablatable under conditions in which the polymer layer is 6 ablated. 1 54. The microfluidic device of claim 45, further comprising a second groove 2 disposed in at least one of the first surface of the first substrate or the first surface of the second 3 substrate.
 - 55. The microfluidic device of claim 54, wherein the second groove intersects and is in fluid communication with the first groove in the polymer layer.