

ME 563: Nonlinear Finite Elements

Application of the Finite Element Method to Real World Problems

Application: Ball-Plate Impact with "Failure"

This tutorial accompanies covers a basic example of a ball being fired at an aluminum plate. An element deletion criterion is defined and therefore the plate ruptures and allows the ball to pass through

1. Geometry Import

Import the geometry in the form of a step file - **ball-plate.sat** located on Github.

git clone https://github.com/rhk12/ball-impact

File-> Import-> Part, Scale the part by 0.001 to make it in meters.

Should look like this:

2. Material and section properties

Start to define the material properties – go into the properties module

Define two materials – **Steel** which will only have linear properties and **Aluminum** which will have yield and post yield behavior.

As the problem is dynamic we also need to define a density for both.

1. **Steel** – Young's Modulus = 210e9 Pa and Poisson's Ratio = 0.3, density = 7800 kg/m³

2. <u>Aluminum</u> – Young's Modulus = 70e9 Pa and Poisson's Ratio = 0.3, density = 2500 kg/m³

A simple bi-linear material plasticity definition is used. Initial yield stress is set at 100e6 Pa with

Add the Ductile Damage option. Element deletion criteria: Displacement at failure (damage evolution) is defined using the Suboption button.

3. Define Sections

A simple steel section (solid., homogeneous) is defined and applied to the ball.

A homogeneous shell section is defined for the plate.

Assign sections:

For Al:

And assign the part to the section for the steel block too.

4. Create an assembly

Instance the parts in the assembly module. Module: Assembly Model: Model-1 Step: 🗐 Initial Create Instance Create instances from: Parts C Models Parts ball-plate-1 ball-plate-2 Instance Type Dependent (mesh on part) C Independent (mesh on instance) Note: To change a Dependent instance's mesh, you must edit its part's mesh. Auto-offset from other instances Apply Cancel

5. Define the analysis step

Select the parts/models to instance from the dialog

Create a dynamic explicit step and include Nlgeom. Set the time period = 0.001 s

6. Define the Interactions (contact conditions)

The "catch all" general contact with the default All* with self option provides all the contact settings necessary. In this case a global interaction property defining a coefficient of friction of 0.1 is used.

7. Define loads and restraints

Fix the plate at the edge in all degrees of freedom.

The ball is given an initial velocity, predefined field > mechanical > velocity. Ensure the entire ball is selected and not just the outer surface, this is best done using the assembly display options dialog to hide the plate. Define the Velocity: V3 = 40m/s.

8. Output Requests ↑ ↑ ○ □ □ □ □ Edit Field Output Request F-Output-1 number of steps Step-1 written to ODB rocedure: Dynamic, Explicit Model Results ▼ □ Exterior only Domain: Whole model Model Database Frequency: Evenly spaced time intervals 🔻 Interval: 100 □ 🎎 Models (1) Timing: Output at approximate times ▼ <u> Model-1</u> 🕀 🦺 Parts (2) ₩ Materials (2) S Calibrations S,SVAVG,PE,PEVAVG,PEEQ,PEEQVAVG,LE,U,V,A,RF,CSTRESS,EVF,STATUS ± ♣ Sections (2) Profiles ☑ Contact Assembly ⊕ 🚾 Steps (2) ▶ ☐ Energy 🗄 👺 Field Output Requests (1) Failure/Fracture F-Output-1 ☐ Thermal ⊟் ௸ States (1) Porous media/Fluids Step-1 (Create History Output Requests (1) ☐ Acoustics Time Points ✓ Volume/Thickness/Coordinates 📙 ALE Adaptive Mesh Constraints √ State/Field/User/Time ⊞ Interactions (1) Interaction Properties (For correct □ SDV, Solution dependent state variables FV, Predefined field variables Contact Controls
Contact Initializations ☐ MFR, Predefined mass flow rates □ UVARM, User-defined output variables 🎢 Contact Stabilizations element A total of 2 parts have been created.

The model database has deletion "/gpfs/work/r/r
The interaction property "IntProp-1" has been created.

The interaction "Int-1" has been created. □ EMSF, Element mass scaling factor DENSITY, Material density DENSITYVAVG, Volume-averaged material density (Eulerian only) STATUS, Status (some failure and plasticity models; VUMAT) Output for rebar Output at shell, beam, and layered section points: • Use defaults • Specify: ✓ Include local coordinate directions when available ☐ Apply filter: Antialiasing OK Cancel

9. Create the Mesh

Mesh the ball. Use seed of .0028

Assign tet mesh for ball:

Use a mesh seed size of 0.001 for the plate:

10. Create a job and then submit it using PBS

Submit the job and run a data check:

write the input file:

Open a terminal and ssh to aci-b. Navigate to your directory. Submit pbs script:

```
7 14:55 Job-1.log
rwxrwx--- 1 rhk12 rhk12 collab
                                     917 Feb
                                 917508 Feb
rw-rw---- 1 rhk12 rhk12_collab
                                              7 14:57 Job-1.inp
rw-rw---- 1 rhk12 rhk12 collab
                                  344064 Feb
                                              7 15:14 app4 v1.cae
rw-rw---- 1 rhk12 rhk12 collab
                                   10341 Feb
                                              7 15:14 abaqus.rpy
rw-rw---- 1 rhk12 rhk12 collab
                                   10734 Feb
                                              7 15:14 app4 v1.jnl
rw-r---- 1 rhk12 rhk12_collab
                                     281 Feb
                                              7 15:24 abaqus.pbs
rhk12@aci-lgn-007 ball-impact]$ qsub -A open abaqus.pbs
```

Monitor the job:

```
rhk12@aci-lgn-007 ball-impact]$ qstat -u rhk12
torque01.util.production.int.aci.ics.psu.edu:
                                                                                                             Elap
                                                                                                Req'd
ob ID
                        Username
                                    0ueue
                                              Jobname
                                                               SessID NDS
                                                                                                Time
                                                                                                             Time
.0536102.torque01.util rhk12
                                    open
                                              abaqus.pbs
                                                                                              00:30:00 Q
 rhk12@aci-lgn-007 ball-impact]
```

11. Open the results file and plot the results

Once the job is complete, go to the visualization module and open the ODB file:

baqus/Explicit 6.14-2 Tue Mar 01 14:59:40 EST 2016

Use the frame selector to quickly move through the time steps:

In the undeformed configuration you can see the fully damaged/ deleted elements:

