Laboratorio di computazione quantistica

Michele Grossi, PhD

Quantum Research - CERN CERN IT INNOVATION

Programma

- Lezione 1: Qiskit introduction
- Lezione 2: Quantum Algos and Noise
- Lezione 3: QC for Physics and QML
- Lezione 4: group project introduction
- Workshop: it's your turn

Agenda – Lezione 1

- Introduction IBM Q Lab
- Simple Exercise on Quantum Mechanics
- Homework

Problems for a quantum computer

Quantum chemistry, Material science and High energy physics

- Shor's Algorithm
- Grover's Algorithm

- Optimization
- Machine learning

Basics of the circuit model of quantum computing

Quantum bits

- Qubit: two-dimensional quantum system
- Hilbert space H with basis {|0>, |1>}
- Contrary to classical bits, it can be in a superposition

$$|\psi
angle = \cos\left(rac{ heta}{2}
ight)|0
angle + e^{i\phi}\sin\left(rac{ heta}{2}
ight)|1
angle$$

$$\vec{r} = \begin{pmatrix} \sin(\theta)\cos(\phi) \\ \sin(\theta)\sin(\phi) \\ \cos(\theta) \end{pmatrix}$$

Basics of the circuit model of quantum computing

- *n qubits*: Hilbert space is the tensor product
- Most general state in the computational basis

 A quantum state that cannot be factored as a tensor product of states of its local constituents is called entangled

$$|\psi\rangle = \sum_{i_1,\ldots,i_n=0}^1 c_{i_1\ldots i_n} |i_1\rangle \otimes \cdots \otimes |i_N\rangle$$

$$|\psi_{1}\rangle = \frac{1}{2}(|0\rangle \otimes |0\rangle + |0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$$

$$= \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$\Rightarrow \text{ product state}$$

$$|\psi_{2}\rangle = \frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$$

$$\Rightarrow \text{ entangled state (Bell state)}$$

Basics of the circuit model of quantum computin

Quantum gates

 Quantum mechanics is reversible, |ψ> undergoes unitary evolution under some (time-dependent) Hamiltonian H(t)

$$|\psi(t)\rangle = T \exp\left(-i\int_0^t ds \, H(s)\right) |\psi_0\rangle$$

Quantum gates are represented by unitary matrices

Typically gates only act on a few qubits in a nontrivial

way

Common single-qubit quantum gates

<i>X</i> – <i>X</i> –	$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$egin{array}{c} 0 angle ightarrow 1 angle \ 1 angle ightarrow 0 angle \end{array}$
Y — Y—	$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	$egin{array}{c} 0 angle ightarrow -i 1 angle \ 1 angle ightarrow i 0 angle \end{array}$
Z - Z -	$Z=egin{pmatrix}1&0\0&-1\end{pmatrix}$	$egin{array}{ l l l l l l l l l l l l l l l l l l l$

Common single-qubit quantum gates

$R_{x}(heta)$	$-R_{x}(\theta)$	$R_{\scriptscriptstyle X} = \exp\left(-irac{ heta}{2}X ight)$	
$R_y(\theta)$	$ R_y(\theta)$ $-$	$R_y = \exp\left(-irac{ heta}{2}Y ight)$	
$R_z(\theta)$	$-R_z(\theta)$	$R_z(heta) = \exp\left(-irac{ heta}{2}Z ight)$	
Hadamard	—[<i>H</i>]—	$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$	$ 0 angle ightarrow rac{1}{\sqrt{2}} \left(0 angle + 1 angle ight) \ 1 angle ightarrow rac{1}{\sqrt{2}} \left(0 angle - 1 angle ight)$

Common multi-qubits quantum gates

CNOT	$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	$egin{array}{l} 00 angle ightarrow 00 angle \ 01 angle ightarrow 01 angle \ 10 angle ightarrow 11 angle \ 11 angle ightarrow 10 angle \end{array}$
$R_{xx}(\theta)$ $-R_{xx}(\theta)$	$R_{xx}(heta) = \exp\left(-irac{ heta}{2}X\otimes X ight)$	
$R_{yy}(\theta)$ $ R_{yy}(\theta)$ $-$	$R_{yy}(\theta) = \exp\left(-i\frac{\theta}{2}Y \otimes Y\right)$	
$R_{zz}(\theta)$ $-R_{zz}(\theta)$	$R_{zz}(heta) = \exp\left(-irac{ heta}{2}Z\otimes Z ight)$	

Thanks!

michele.grossi@cern.ch

