שיעור 5 מרחבים ווקטורי

5.1 מרחבים וווקטורים

באלגברה וווקטור במישור תמיד מתחיל בנקודה (0,0). לכן כל וווקטור במישור תמיד מתחיל בנקודה (0,0). לכן (x,y)

 \mathbb{R}^2 לקבוצת כל הוווקטורים במישור מסמנים

 \mathbb{R}^2 -פעולות ב

:חיבור וווקטורים (1

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$$

:2 כפל של וווקטור בסקלר:

$$\alpha \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}$$

 \mathbb{R}^3 -באופן דומה ניתן להגדיר פעולות בין וווקטורים ב

$$\mathbb{R}^3 = \{(x, y, z) | x, y, z \in \mathbb{R}\}$$

מיבור וווקטורים: (1

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

2) כפל של וווקטור בסקלר:

$$\alpha \cdot (x, y, z) = (\alpha x, \alpha y, \alpha z)$$

 $:\mathbb{R}^n$ באופן כללי נגדיר מרחב וווקטורי

\mathbb{R}^n הגדרה 5.1 מרחב וווקטורי

מספרים מספרים מל כל הסטים מn מספרים ממשיים: \mathbb{R}^n

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) | x_1, \dots, x_n \in \mathbb{R} \}$$
.

 $:\mathbb{R}^n$ -באות בין וווקטורים ב-

:חיבור וווקטורים (1

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

2) כפל של וווקטור בסקלר:

$$\alpha \cdot (x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$$

 \mathbb{R} בדוגמאות האלה הסקלרים שייכים לשדה

 \mathbb{Q} , \mathbb{C} , \mathbb{Z}_p למשל, אחר, לשדה להשתייך יכולים יכולים הסקלרים אחר, למשל

 $:\mathbb{F}$ מעל שדה מווקטורי מעל שדה ניתן הגדרה כללית של

${\mathbb F}$ מרחב וווקטורי מעל שדה 5.2 הגדרה

קבוצה לא ריקה V נקראת מרחב וווקטורי (מ"ו) מעל שדה $\mathbb F$ אם מתקיימים הבאים (האיברים של בקראת מרחב וווקטורים $u, \mathsf v, w \in V$ ווקטורים לכל וווקטורים ואיברי $\mathbb F$ נקראים סקלרים). לכל וווקטורים וווקטורים ואיברי וווקטורים ואיברי אים סקלרים).

- $u + v \in V$ (1)
- $\alpha\,u\in V$ קיים וווקטור (2)
- (חוק החילוף). u + v = v + u (3)
- (4) (חוק הקיבוץ). (u + v) (u + v) (און הקיבוץ).
- $ar{0}+u=u+ar{0}=u$ מתקיים, מתקיים (5) כך שלכל הנקרא וווקטור (הנקרא וווקטור האפס) כך סיים וווקטור
 - $.u+(-u)=ar{0}$ כך ש- $-u\in V$ קיים $u\in V$ לכל (6)
 - $(\alpha\beta)u = \alpha(\beta u)$ (7)
 - $.(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$ (8)
 - $.\alpha(u+v) = \alpha u + \alpha v$ (9)
 - $1 \cdot u = u$ (10) (כאשר $1 \cdot u = u$

5.2 דוגמאות מרכזיות של מרחבים וווקטורים

 \mathbb{F}^n דוגמה 5.1

 ${\mathbb F}$ מרחב הוווקטורים מעל שדה

$\mathbb{R}^{m imes n}$ דוגמה 5.2 דוגמה

. עם איברים ממשיים היא עם $m \times n$ מסדר מסדר קבוצת כל המטריצות מסדר

 \mathbb{R} לכל שתי מטריצות מסדר m imes n מוגדרת פעולת חיבור וכל מטריצה ניתן להכפיל בסקלר השייך ל

 $\mathbb R$ קל לבדוק שכל האקסיומות של מרחב וווקטורי מתקיימות. לכן זה מרחב וווקטורי מעל

$\mathbb{C}^{m imes n}$ דוגמה 5.3 דוגמה

 $\mathbb C$ באופן דומה קבוצת כל המטריצות מסדר m imes n עם איברים מרוכבים היא מרחב ווקטורי מעל

$\mathbb{F}^{m imes n}$ דוגמה 5.4 דוגמה

 $\mathbb F$ באופן כללי קבוצת כל המטריצות מסדר m imes n עם איברים משדה היא מרחב ווקטורי מעל השדה

דוגמה 5.5

. יוקטורי. עם מקדמים עם מקדמים השייכים לשדה $\mathbb{F}[x]$, שמסומנת ב- $\mathbb{F}[x]$ היא מרחב ווקטורי.

 \mathbb{F} -ם מוגדרות פעולות חיבור פולינומים וכפל של פולינומים בסקלר השייך ל

כל האקסיומות של מרחב וווקטורי מתקיימות.

$F(\mathbb{R})$ 5.6 דוגמה

קבוצת הפונקציות הממשיות שמסומנת ב-

$$F(\mathbb{R}) = \{ f : f : \mathbb{R} \mapsto \mathbb{R} \}$$

היא מרחב ווקטורי.

 \mathbb{R} מוגדרות פעולות חיבור פונקציות וכפל פונקציה בסקלר מתוך

נגדיר חיבור וכפל בסקלר כפי שהוגדרו בחדו"א. לכל $f,g\in F(\mathbb{R})$ ולכל $lpha\in\mathbb{R}$

$$(f+g)(x) = f(x) + g(x) , \forall x \in \mathbb{R} ,$$

$$(\alpha \cdot f)(x) = \alpha \cdot f(x) , \forall x \in \mathbb{R} ,$$

f(x)=0 וווקטור האפס הוא הפונקציה

קבוצה זו עם הפעולות הללו היא מרחב וווקטורי.

דוגמה 5.7

 $:P_1,P_2\in\mathbb{R}[x]$ נתונים הפולינומים של

$$P_1 = 7 + 5x + 3x^3 + 4x^7 \in \mathbb{R}[x]$$
, $P_2 = 6 + 4x + 8x^2 + 3x^7 + 9x^{13} \in \mathbb{R}[x]$,

 $lpha \cdot P_1$ ו- $P_1 + P_2$ את חשבו הסקלר מילר הסקלר הסקלר lpha = 3

פתרון:

11

$$P_1 + P_2 = (7 + 5x + 3x^3 + 4x^7) + (6 + 4x + 8x^2 + 3x^7 + 9x^{13})$$

= $(7 + 6) + (5 + 4)x + (0 + 8)x^2 + (3 + 0)x^3 + (4 + 3)x^7 + (0 + 9)x^{13}$ $\in \mathbb{R}[x]$,

 $: \alpha = 3$ נתון הסקלר

$$\alpha \cdot P_1 = 13 + 9x + 8x^2 + 3x^3 + 7x^6 + 9x^{13}$$

$$= 3 \cdot (7 + 5x + 3x^3 + 4x^7)$$

$$= (3 \cdot 7) + (3 \cdot 5)x + (3 \cdot 3)x^3 + (3 \cdot 4)x^7$$

$$= 21 + 15x + 9x^3 + 12x^7 \in \mathbb{R}[x] .$$

דוגמה 5.8

 $f,g\in F(\mathbb{R})$ נתונות הפונקציות

$$f(x) = \sin x$$
, $g(x) = 2x + 19$,

(f+g)(x) ו- $(7\cdot f)(x)$ חשבו את

פתרון:

 $F(\mathbb{R})$ -שתיהן פונקציות השייכות ל

$$(f+g)(x) = \sin x + 2x + 19$$
.

מתקיים:

$$(7 \cdot f)(x) = 7 \cdot \sin x \qquad \forall x \in \mathbb{R}$$

דוגמה 5.9 מ

 $F(\mathbb{R})$ יהו וווקטור האפס של

פתרון:

פונקצית האפס: פונקציית האפס,

$$O(x) = 0$$
 , $\forall x \in \mathbb{R}$.

שימו לב שאכן לכל f+O=f מתקיים מהכן לכל

$$(f+O)(x) = f(x) + O(x) = f(x) + 0 = f(x) \qquad \forall x \in \mathbb{R} .$$

הנגדי של f זו הפונקציה -f שפעולתה

$$((-1)\cdot f)(x) = (-1)\cdot f(x) = -f(x) , \qquad \forall x \in \mathbb{R} .$$