

.

.....

.

 \bullet

ONE LOVE. ONE FUTURE.

School of Electronics and Telecommunications Electronics Devices – ET2015E

Chapter 4. Digital logics

Tutor: Assoc. Prof. Nguyen Tien Dzung

Department: Electronics and Computer Engineering

Emai: tiendungbk@gmail.com; dzung.nguyentien@hust.edu.vn

Mobile: 0988.355.343

Office: 94 Le Thanh Nghi, R102, C-Bulding (Tại chức)

Outline

- 4.1. Fundamentals of a logic algebra: number systems, logic variable and logic functions, Boolean algebra and properties
- 4.2. Representation of a logic function: truth table, logic function expression, Karnaugh table
- 4.3. Basic logical gates: AND, OR, NOT, NAND, NOR, XOR
- 4.4. Minimization of a logic function: algebraic method, K-table based method
- 4.5. Implementation of a logic function using logic gates: OR-AND, AND-OR, NAND-NAND, NOR-NOR
- 4.6. Some typical logic applications

4.1. Fundamentals of a logic algebra

1. Numeral system:

- a) Base or radix of a number system: $X_{10} = \sum_{i=0}^{n-1} a_i d^i$, where d^i is weighting
- ✓ Decimal: d = 10; digits $a_i = 0$ to 9 well-known number system
- ✓ Binary: d = 2; digits $a_i = 0.1$ or bits or FALSE/TRUE
- ✓ Hexadecimal: d = 16, digits $a_i = 0$ to 9 + letters A, B, C, D, E, F
- ✓ Octal: d = 8, digits $a_i = 0$ to 7
- b) Conversion between number system:
- ✓ 2 to 10: $1101_2 = 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 8 + 4 + 0 + 1 = 13_{10}$, (2ⁱ weighting)
- ✓ 10 to 2: $13_{10} = 8 + 4 + 0 + 1 = 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 1101_2$
- \checkmark Example: $14_{10} = X_2$? $113_{10} = X_2$?
- c) Binary numeral system and Boolean algebra:
- ✓ Boolean algebra: Logical operations with bits
- ✓ Logical constant, variable, function: take values in set {0, 1} (e.g. A, F(A, B))
- ✓ Basic logical functions: AND (A AND B or F = A.B), OR (A OR B or F = A+B), NOT (or $F = \overline{A}$)

4.1. Fundamentals of a logic algebra (cont.)

- d) Properties of Boolean algebra
- ✓ Relation between logic constants:
 - AND: 0.0 = 0, 0.1 = 0, 1.0 = 0, 1.1 = 1
 - OR: 0+0=0, 0+1=1, 1+0=1, 1+1=1
 - NOT: $\bar{0} = 1$, $\bar{1} = 0$
- ✓ Relation between logic variables: assuming variables A, B, C ...
 - AND: 0.A = 0, A.0 = 0, A.1 = A, 1.A = A
 - OR: 0+A=A, A+0=A, 1+A=1, A+1=1,
 - Involution: $\bar{A} = A$
 - Idempotence: A.A = A, A + A = A
 - Complement: $\bar{A} + A = 1$, $\bar{A} \cdot A = 0$
 - Association: A.B + A.C = A(B+C), A + B + C = (A + B) + C = A + (B + C)
 - Distribution: A(B+C) = A.B + A.C
- ✓ Useful relations:
 - A. $(B + \bar{B}) = A$. 1 = A; A. $(\bar{A} + B) = A$. $\bar{A} + A$. B = 0 + A. B = A. B; A. (A + B) = AB; A + A. B = B;

4.1. Fundamentals of a logic algebra (cont.)

- ✓ De Morgan theorem: Applying for multiple variables
 - $\overline{A.B} = \overline{A} + \overline{B}$; $\overline{A+B} = \overline{A}.\overline{B}$
 - AND ⇔ OR, variable ⇔ negated variable
- ✓ Example:
 - $\overline{A(B+C)} = A + \overline{\overline{B+C}} = A + B + C$
 - $\overline{(A+B)(B+C)(A+C)} = \overline{A+B} + \overline{B+C} + \overline{A+C} = \overline{A}\overline{B} + \overline{B}\overline{C} + \overline{A}\overline{C}$
 - $\overline{A}(\overline{B+C}) = \overline{A} + \overline{B+C} = A+B+C$
 - $\bullet \ \overline{AB} + \overline{AB} = ?$
 - $A\overline{B}C + B\overline{C} = ?$
 - $\overline{(A\overline{B} + \overline{A}B)} \overline{\overline{B}(\overline{A}CD + \overline{A}C\overline{D})} = ?$

Truth table, Logic expression, Karnaugh table

- a) True table: list all 2ⁿ variable combination of a n-variable function and corresponding outputs
 - ✓ n = 2: possible 2^2 = 4 variable combinations = $\bar{A}\bar{B}$, $\bar{A}B$, $A\bar{B}$, $A\bar{B}$ corresponding to 00, 01, 10, 11 logical combinations
 - ✓ n = 3: possible 2^3 = 8 variable combinations = $\bar{A}\bar{B}\bar{C}$, $\bar{A}\bar{B$
 - ✓ n = 4: possible 2^4 = 16 variable combinations

	A	В	F
$\bar{A}\bar{B}$: 00 \Rightarrow 0	0	0	1
$\bar{A}B:01\Rightarrow 1$	0	1	1
$A\bar{B}$: $10 \Rightarrow 2$	1	0	0
$AB: 11 \Rightarrow 3$	1	1	0
\Rightarrow	• F =	· ĀB -	+ ĀB

e combinations				
$\bar{A}\bar{B}\bar{C}$: 000 \Rightarrow 0	0	0	0	1
$\bar{A}\bar{B}C:001\Rightarrow 1$	0	0	1	1
$\bar{A}B\bar{C}$: 010 \Rightarrow 2	0	1	0	0
$\bar{A}BC:011 \Rightarrow 3$	0	1	1	0
$A\bar{B}\bar{C}$: $100 \Rightarrow 4$	1	0	0	0
$A\bar{B}C:101\Rightarrow 5$	1	0	1	0
$AB\bar{C}$: 110 \Rightarrow 6	1	1	0	1
$ABC: 111 \Rightarrow 7$	1	1	1	1
$\Rightarrow F = \overline{A}\overline{B}\overline{C} +$	A BC	+ AE	$\overline{\overline{C}} + \overline{C}$	ABC

A	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1

A	В	C	D	F
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1.1.	1	1	0	1
1	1	1	1	0

$$\Rightarrow$$
 F = ?

✓ Question: 1) If function F is given. Show the True table. 2) If F = A + BC, show its true table. 3) Show \bar{F}

- b) Logic expression: canonical form vs non-canonical form
 - ✓ Sum of Product (SoP): sum of minterm m_i , where i is the order of the corresponding variable combination
 - Example: $F = \overline{AB} + \overline{AB} = m_0 + m_1$ or $F = \{m_0, m_1\}$; $F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} = m_0 + m_1 + m_6 + m_7$ or $F = \{m_0, m_1, m_6, m_7\}$
 - Question:
 - 1) If $F = \{m_1, m_3, m_5, m_7, m_8, m_{10}, m_{12}, m_{14}\}$, show the canonical form of F and Truth table
 - 2) If F = A + BC show the canonical SoP of F and its Truth table
 - ✓ Product of Sum (PoS): Product of maxterm M_i , where $m_i = \overline{M_i}$ or $M_i = \overline{m_i}$
 - ✓ Example: $F = M_0 M_1 = \overline{m_0}$. $\overline{m_1} = \overline{\overline{AB}}$. $\overline{\overline{AB}} = (A + B)$. $(A + \overline{B}) \rightarrow M_0 = A + B$, $M_1 = A + \overline{B}$
 - ✓ Question:
 - 1) If canonical SoP of $F = \{m_0, m_1, m_6, m_7\}$, show its canonical PoS
 - 2) If F = (A + B)(B + C)(A + C), determine the canonical PoS of F
 - ✓ Non-canonical form: OR-AND or AND-OR → convert to canonical form
 - ✓ Question:
 - 1) $F = A + BC \rightarrow SoP? PoS?$
 - 2) $F = (A + B)(B + C)(A + C) \rightarrow SoP, PoS$?
 - 3) $F = \overline{(A\overline{B} + \overline{A}B)} \overline{\overline{B}(\overline{A}CD + \overline{A}C\overline{D})} \rightarrow SoP, PoS?$

c) Karnaugh table: arrange minterms in array where number of cells is 2ⁿ for n-variable function
✓ Karnaugh table of logic variables: gray code and neighborhood property

$$\overline{A} = m_0 + m_1 = \overline{A} \, \overline{B} + \overline{A} B$$

$$A = m_2 + m_3 = A \, \overline{B} + A B$$

$$\overline{B} = m_0 + m_2 = \overline{A} \, \overline{B} + A \overline{B}$$

$$B = m_1 + m_3 = \overline{A} B + A B$$

$$\bar{A} = m_0 + m_1 + m_3 + m_2 = \bar{A} \, \bar{B} \, \bar{C} + \bar{A} \, \bar{B} \, C + \bar{A} B C + \bar{A} B \, \bar{C}$$

$$\bar{A} = m_4 + m_5 + m_7 + m_6 = A \, \bar{B} \, \bar{C} + A \, \bar{B} \, C + A B C + A B \bar{C}$$

$$B = m_4 + m_5 + m_7 + m_6 = A \, \bar{B} \, \bar{C} + A \, \bar{B} \, C + A B C + A B \bar{C}$$

$$BC = m_3 + m_7 = \bar{A} B C + A B C = B C$$

$$AC = m_5 + m_7 = \bar{A} B C + \bar{A} B C = \bar{A} C$$

$$\bar{A}B = m_3 + m_2 = \bar{A} B C + \bar{A} B \bar{C} = \bar{A} B$$

A =? B = ? C =? D = ?

$$AB =? BD =? BC =? AD =?$$

$$A\overline{B} =? \overline{B}D =? B\overline{C} =? \overline{A} \overline{D} =?$$

$$ABC =? A\overline{B}D =? B\overline{C}D =? \overline{A}B\overline{D} =?$$

$$\overline{A} \overline{B}D =? \overline{B} \overline{C}D =? A\overline{C}D =? \overline{B}C\overline{D} =?$$

- ✓ Karnaugh table of logic function:
 - Convert the logic function just to OR-AND form
 - Determine the number of logic variables and show the Karnaugh table
 - Fill 1's in Karnaugh table in the cells corresponding to each product in OR-AND form
 - Other cells will be filled by 0's
 - Karnaugh table is ready
 - Example:

F = A + B

 $F = \overline{A}B + BC + AC$

	•		' -		
F BO	$C_{00}^{\overline{C}}$	01	C 11	C 10	
0	0	1	0	0	
1	1	1	1	1	
	Ī	3	I	3	•

$$F = A + \overline{B}C$$
 $F = (A + B)(B + C)(A + C)$

$$\overline{F} = \overline{(A+B)(B+C)(A+C)} = \overline{A}\,\overline{B} + \overline{B}\,\overline{C} + \overline{A}\,\overline{C}$$

 \overline{A} Hint: Karnaugh table of \overline{F} , then \rightarrow F

• Question:

- 1) Determine Karnaugh table of F
- 2) Determine canonical form of \overline{F}

Question: Determine Karnaugh tables of the following logic functions

$$F = A + \overline{B}C + \overline{A}B\overline{D} + A\overline{B}C\overline{D}$$

$$F = \overline{(A + \overline{B})(B + \overline{C})(C + \overline{D})(\overline{A} + D)} \qquad F = (A\overline{B} + \overline{A}B) \overline{\overline{B}(\overline{A}CD + \overline{A}C\overline{D})}$$

$$F = \overline{(A\overline{B} + \overline{A}B)} \, \overline{\overline{B}} (\overline{A}CD + \overline{A}C\overline{D})$$

4.3. Basic logical gates

a. Example for 2-input:

 \checkmark AND: F = AB

A	В	F	A
	0	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1	0	$\stackrel{\text{A}}{=}$ $\stackrel{\text{A}}{=}$ $\stackrel{\text{A}}{=}$ $\stackrel{\text{A}}{=}$
1	<u>0</u> 1	<u>0</u> 1	$\begin{array}{c} A \\ B \\ C \end{array} \longrightarrow F$

$$\checkmark$$
 OR: $F = A + B$

A	В	F	$\mathbf{A} \longrightarrow \mathbf{F}$
0	0	0	$A \longrightarrow F$
0	1	1	
1	0	1	$\begin{pmatrix} A \\ P \end{pmatrix}$
1	1	1	Б

$$\checkmark$$
 NOT: $F = \overline{A}$

A	F	
0	1	A — >—
1	0	

✓ NAND: $F = \overline{A.B}$

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

✓ NOR: $F = \overline{A + B}$

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

✓ XOR:
$$F = A\overline{B} + \overline{A}B$$

Question: 1) Implement function $F = \overline{A.B.C}$ using 2-input NAND gates

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Question: 2) Implement function $F = \overline{A + B + C}$ using 2-input NOR gates

4.4. Minimization of a logic function

4. Minimization of logic function

a. Type of logic function expression: utilization in function implementation using desired gates

```
✓ OR-AND: F = \overline{A}B + BC + AC = X + Y + Z
✓ AND-OR: F = (A + B)(B + C)(A + C) = X.Y.Z
```

- ✓ NAND-NAND: $F = \overline{\overline{A}B}$. \overline{BC} . $\overline{AC} = \overline{X}$. Y. Z
- ✓ NOR-NOR: $F = \overline{\overline{A + B} + \overline{B} + \overline{C} + \overline{A} + \overline{C}} = \overline{X + Y + Z}$
- b. Optimization concept
- ✓ Output optimization in OR-AND form
- ✓ Fewest number of products in the OR-AND form
- ✓ Fewest number of variables/negated variables in each product above
- ✓ Optimization methods:
 - Algebraic method: Utilization of Boolean algebra to minimize a logic function, but not guaranteed
 - Karnaugh-table based method: Obvious and intuitive minimization of a logic function

4.4. Minimization of a logic function (cont.)

- a. Algebraic optimization method:
- ✓ Utilization of properties in Boolean algebra and flexible use of De Morgan theorem
- ✓ Example:
- $F = A\overline{B}C + A\overline{B}\overline{C} = A\overline{B}(C + \overline{C}) = A\overline{B}$
- $F = A(BC + \overline{B}\overline{C}) + A(\overline{BC + \overline{B}\overline{C}}) = A((BC + \overline{B}\overline{C}) + (\overline{BC + \overline{B}\overline{C}})) = A$
- $F = A\overline{B} + A\overline{B}CD(\overline{AB} + \overline{BD}) = A\overline{B}(1 + CD[\overline{AB} + \overline{BD}] = A\overline{B}$
- b. Karnaugh-table based method: Follow the following steps
- Step 1: Represent logic function F in Karnaugh table (KT)
- Step 2: Group 2^k neighbor cells containing 1's following the rules (of course, always there is exception!)
 - Group size as largest as possible
 - Groups must not be nested
 - o All 1's cells in KT must be included in a group
 - o 1's cells may be re-used in grouping, however these cells must be included in different groups
- Step 3: Assign each group to the corresponding product of variable/negated variables
- Step 4: The minimization function is an OR-AND form of the products above
- Notes: The corner cells are neighbors; the end-most cells in a row or a column are also neighbors.

4.4. Minimization of a logic function (cont.)

Example:

Question: Minimization of F

4.5. Implementation of a logic function using logic gates

a. OR-AND expression form: Typical output from minimization process

$$F = AB + \bar{A}\,\bar{B}$$

$$F = ABC + \bar{A} \bar{B} \bar{C} + AB\bar{C} + \bar{A}BC$$

b. AND-OR expression:

$$F = (A + B)(\bar{A} + \bar{B})$$

$$F = \bar{A}BC + AB + \bar{A}\bar{B}C + B\bar{C}$$

$$F = (A + B)(B + C)(A + C)$$

4.5. Implementation of a logic function using logic gates (cont.)

c. NAND-NAND expression: Derive to OR-AND expression and apply De Morgan to get NAND-NAND form

d. NOR-NOR expression: Derive OR-AND of \overline{F} . Take negation of \overline{F} to get $\overline{\overline{F}} = F$, and apply De Morgan 1st time. Take involution of F to result $\overline{\overline{F}}$ and apply De Morgan 2nd time for first negation to get NOR-NOR form

Question: Implement function F using NOR gate

Question: Implement function F_{NOR-NOR} using 2-input NOR gates only

OR – AND of
$$\overline{F} = \overline{A}B + \overline{B}C + A\overline{C}$$

Negation of $\overline{F} \Rightarrow \overline{\overline{F}} = F = \overline{\overline{A}B + \overline{B}C + A\overline{C}} = \overline{\overline{A}B}.\overline{\overline{B}C}.\overline{A}\overline{\overline{C}} = (A + \overline{B})(B + \overline{C})(\overline{A} + C)$

Involution of
$$F \Rightarrow \overline{\overline{F}} = F = \overline{(\overline{A} + \overline{B})(\overline{B} + \overline{C})(\overline{\overline{A}} + C)} = \overline{\overline{A} + \overline{B} + \overline{B} + \overline{C} + \overline{\overline{A}} + C}$$

4.5. Implementation of a logic function using logic gates (cont.)

Example: Determine logic function of the following logic circuits

4.6. Some typical logic applications

- a. One-bit half adder: Determine Truth table
 - a_i, b_i: i-th bits of binary numbers A and B to be added
 - S_i: Sum bit, adding bits a_i and b_i
 - C_i: carry bit

 $S_i = \overline{a}_i b_i + a_i \overline{b}_i$

$$C_i = a_i b_i$$

b. One-bit full adder: Determine Truth table

$$S_i =$$

$$C_i =$$

	a _i			b _i					C _{i-1}					S_i					C_{i}								
	•	•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•		•	•	•	•
	•	•	•	•	•		•	•	•	•	ľ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •
	•	•	•	•	•		•	•	•	•	ľ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
ı	•	•	•	•	•	•	•	•	•	•	ľ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•		•	•	•	•	ľ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•		•	•	•	•	ľ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •
	•	•	•	•	•		•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•

Question: 8-bit adder implementation

4.6. Some typical logic applications

- a. Comparator: Compare two binary number
- b. Binary Coded Decimal (BCD): encode numbers 0-9 to corresponding binary outputs
- c. 7-segment coder: encode number 0-9 to monitor in led-segments
- d. Carry-Look-Ahead adder (CLA): Fast implementation of an n-bit adder

HUST

THANK YOU!