Deep Learning pour prédire les effets post-radiothérapie

Soutenance finale Projet 3A HSB

Thomas Ménard et **Clara Cousteix**, encadré.e.s par Mahmoud Bentriou, Sarah Lemler et Véronique Letort-Lechevalier

Table des matières

Introduction

Contexte et enjeux

Matériel

Présentation des différents datasets utilisés

Méthodes

Analyses de survie, Machine Learning et Deep Learning

Résultats

Prédiction de maladie cardiaque par Machine et Deep Learning

Introduction : Contexte et objectifs

Quelques chiffres clés

Nouveaux cancers de l'enfant diagnostiqués chaque année en France

80%

des cancers de l'enfant guéris, parfois non sans effets nocifs

11%

Des patients sont diagnostiqués avec une maladie cardiaque 40 ans après le traitement

3 principaux traitements

Divers traitements existent:

- La chirurgie
- La radiothérapie
- La chimiothérapie

peut avoir des effets secondaires graves:

- Ratiothérapeutique : L'irradiation détruit les cellules cancéreuses tout en préservant le mieux possible les tissus sains
- Risque de déclencher une maladie cardiaque suite à un traitement anti-cancéreux

Objectif: Prédire l'apparition de maladie cardiaque chez des patients traités par radiothérapie pour un cancer de l'enfant

Pour cela, on utilise des méthodes d'analyse de données :

- Etablir de premiers résultats par Machine Learning
- ✓ Améliorer la prédiction grâce au Deep Learning

П.

Présentation de nos données

Cohorte FCCSS: French Childhood Cancer Survivor Study

- Etude coordonnée par une équipe épidémiologie des radiations à l'Institut Gustave Roussy
- Rassemble 7670 patients traités pour un cancer de l'enfant
- But: Etudier les <u>effets à long terme</u> des traitements et leurs facteurs de risque. Suivi sur parfois plus de 50 ans.
- Données très variées :
 - > **Données administratives** : centre de soin, identifiant du patient, date de naissance
 - > **Données temporelles** : date de diagnostic, date du dernier suivi
 - Données cliniques: Type de cancer, traitements de reçus, dose de médicaments de chimiothérapie, métastases éventuelles, rechute, maladie cardiaque (fig1)

Courbes de survie Kaplan Meier

Fig 1: un traitement avec <u>radiothérapie</u> a un impact significatif sur l'apparition d'une maladie cardiaque de haut grade (p-value < 0.05)

Traitement avec et sans agents alkylants ou d'anthracylines ou de vinca-alcaloïdes

Fig 2 : un traitement avec <u>chimiothérapie</u> a un impact significatif sur l'apparition d'une maladie cardiaque (p-value < 0.05)

Courbes de survie Kaplan Meier

Fig 3 : la position du cancer primaire, dans le cadre de la radiothérapie, semble avoir un impact significatif sur l'apparition d'une maladie cardiaque (p-value < 0.05)

Résultat: Les analyses de survie montrent que certains facteurs peuvent avoir un impact significatif pour l'apparition de maladies cardiaques

Histogramme dose-volume

- Représente la distribution de rayonnement sous forme de quantiles. Ex : 80% du cœur a reçu au moins 60% de la dose (Fig1) Permet de caractériser un rayonnement
- Plusieurs volumes d'intérêt : cœur, oreillettes G/D, ventricules G/D, myocarde
- Lien entre les indicateurs dose-volume et la cohorte FCCSS : 3943 patients, dont 282 avec pathologie cardiaque
- Prédiction des effets sur le cœur à partir des indicateurs dose-volume : Machine Learning
- Limite : pas d'information sur la localisation de la zone irradiée

Matrice de dose 3D

- Matrice de dose : reconstitution 3D du volume irradié (cœur) pendant les séances de radiothérapie. Données + informatives
- Image NIFTI: voxels représentés en nuances de gris (Fig 1)
- Format type image : il faudra utiliser desCNN
- Lien entre matrices de doses et la cohorte
 FCCSS: 3943 patients, dont 282 avec
 pathologie cardiaque

Figure 1 : Matrice de dose 3D visualisée avec ITK-SNAP

Sélection de patients pour l'étude

Sélection des patients pour l'étude

- Deux groupes de patients sélectionnés pour la suite de l'étude.
 - > Temps de censure > 40 ans : <u>1378 patients</u>
 - > Temps de censure > 50 ans : <u>579 patients</u>
- Partage en trois datasets : train/validation/test, stratifiés sur le label :
 - > Train = 60 %
 - Validation = 20 %
 - > Test = 20 %

III.

Méthodes

Machine Learning et Deep Learning

Dataset déséquilibré

- Resampling: oversampling de la classe minoritaire ou undersampling de la classe majoritaire [1]
- Reweighting: inclure des poids dans la loss pour prendre en compte le caractère déséquilibré du dataset [1]
- Bootstrap : Méthode de resampling poussée, illustrée ci-contre

Figure : Schéma Bootstrap

Méthodes de Machine Learning

Données d'entrées : indicateurs dose-volume

- Algorithmes de Machine Learning
 - Random Forest : ensemble d'arbres de décision indépendants en bagging
 - > XGBoost: ensemble d'arbres de décision en boosting
 - LightGBM: inspiré de XGBoost, grandit « leaf-wise »

Réseaux de neurones

 Données d'entrées : matrices de doses 3D + variables cliniques

Réseaux :

- Réseau linéaire : fully connected network
- **Réseau convolutionnel** : CNN à 6 couches
- Réseau multi-chemin : prend en entrée doses 3D et variables cliniques [2], voir schéma ci-contre
- Loss: Cross Entropy Loss Weighted
- Optimizer : Adam + L2-régularisation

Fig: Illustration du réseau multi-chemin [2]

Métriques de performance

Balanced Accuracy: notée BA, optimisée pour les datasets déséquilibrés.

$$BA = \frac{TPR + TNR}{2}$$
, avec $TPR = \frac{TP}{TP + FN}$ et $TNR = \frac{TN}{TN + FP}$

 Recall: aussi dit Rappel, capacité du modèle à identifier correctement les instances positives

$$Recall = \frac{TP}{TP + FN}$$

Un recall élevé est souvent souhaité dans des applications médicales (détection de maladie)

- AUC of the ROC curve : notée AUC, résume la performance d'un modèle de classification, entre spécificité et sensibilité
- Matrice de confusion

Figure: illustration d'une courbe ROC

IV.

Résultats

Machine Learning et Deep Learning

Machine Learning – tous les résultats

40 ans	Random Forest			XGBoost			LightGBM			
40 ans	ВА	Rappel	AUC	BA	Rappel	AUC	ВА	Rappel	AUC	
Validation set	65%	35%	0,73	69%	52%	0,71	68%	49%	0,72	

50 ans	Random Forest			XGBoost			LightGBM			
ou ans	ВА	Rappel	AUC	ВА	Rappel	AUC	BA	Rappel	AUC	
Validation set	81%	70%	0,88	78%	70%	0,83	78%	70%	0,84	

Machine Learning – Matrices de confusion – 40 ans

Machine Learning – Matrices de confusion – 50 ans

Deep Learning - tous les résultats

40 ans	Réseau Linéraire			Réseau Convolutionnel			Multipath Network			
40 ans	BA	Rappel	AUC	BA	Rappel	AUC	BA	Rappel	AUC	
Validation set	67%	53%	NA	69%	56%	NA	71%	67%	NA	

50 ans	Réseau Linéraire			Réseau Convolutionnel			Multipath Network			
50 ans	BA	Rappel	AUC	BA	Rappel	AUC	BA	Rappel	AUC	
Validation set	80%	70%	NA	85%	73%	NA	86%	79%	NA	

Deep Learning – Temps de censure 40 ans

40 ans	Réseau Linéraire			Réseau Convolutionnel			Multipath Network			
40 ans	BA	Rappel	AUC	BA	Rappel	AUC	BA	Rappel	AUC	
Validation set	67%	53%	NA	69%	56%	NA	71%	67%	NA	

Réseau Linéaire

Réseau Convolutionnel

Multipath Network

Deep Learning – Temps de censure 50 ans

50 ans Validation set	Réseau Linéraire			Réseau	ı Convolu	utionnel	Multipath Network			
ou ans	BA	Rappel	AUC	ВА	Rappel	AUC	ВА	Rappel	AUC	
Validation set	80%	70%	NA	85%	73%	NA	86%	79%	NA	

Réseau Linéaire

Réseau Convolutionnel

Multipath Network

Deep Learning – Matrices de confusion – 40 ans

Deep Learning – Matrices de confusion – 50 ans

Conclusion sur les résultats

Machine Learning :

- Random Forest donne les meilleurs résultats pour le validation set
- Manque de robustesse du dataset de test

Deep Learning :

- Multipath Network donne de meilleurs résultats sur le validation set
- Perte de performance sur le test set qui questionne

Comparaison des deux méthodes

- La différence en Balanced Accuracy est légère (2-3%), mais différence marquée pour le score de rappel (~10%), à l'avantage des réseaux de neurones
- Meilleure prédiction des individus positifs : primordial dans le médical !
- Les résultats pour $T_{censure} > 50$ sont globalement meilleurs que pour $T_{censure} > 40$ car dataset plus équilibré

Perspectives

Quelques pistes pour de futurs travaux :

- Comprendre la différence entre le test set et le validation set : étudier le profil des patients mal classés
- Rendre les réseaux de neurones plus généralisables : cross-validation, plus de régularisation, ...
- Inclure plus de variables cliniques : normaliser les données, peut-être faire de la sélection de variables
- Proposer des réseaux de neurones plus profond, avec ou sans transfer learning
- Améliorer la prise en compte du caractère déséquilibré

Merci

Avez-vous des questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Storyset**

Bibliographie

- AL Appelt, B Elhaminia, A Gooya, A Gilbert, and M Nix. Deep learning for radiotherapy outcome prediction using dose data—a review – 2022.
- Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority over-sampling technique 2002.
- Issam El Naqa and Martin J Murphy. Machine and Deep Learning in Oncology, Medical Physics and Radiology – 1991.
- Bulat Ibragimov, Diego AS Toesca, Yixuan Yuan, Albert C Koong, Daniel T Chang, and Lei Xing.
 Neural networks for deep radiotherapy dose analysis and prediction of liver sbrt outcomes 2019.
- David G Kleinbaum, Mitchel Klein, David G Kleinbaum, and Mitchel Klein. Kaplan-meier survival curves and the log-rank test. Survival analysis: a self-learning text 2012.
- CAO, Kaidi, WEI, Colin, GAIDON, Adrien, et al. Learning imbalanced datasets with labeldistribution-aware margin loss. Advances in neural information processing systems, 2019, vol. 32.

ANNEXES

1. Résultats

Annexe 1 – Résultats test set ML

40 one	Random Forest			XGBoost			LightGBM		
40 ans	ВА	Rappel	AUC	ВА	Rappel	AUC	ВА	Rappel	AUC
Validation set	65%	35%	0,73	69%	52%	0,71	68%	49%	0,72
Test set	68%	88%	0,76	63%	86%	0,75	62%	86%	0,73

50 ans	Random Forest BA Rappel AUC 81% 70% 0,88				XGBoos	t	LightGBM		
	BA	Rappel	AUC	BA	Rappel	AUC	ВА	Rappel	AUC
Validation set	81%	70%	0,88	78%	70%	0,83	78%	70%	0,84
Test set	54%	42%	0,54	57%	47%	0,54	56%	47%	0,54

Annexe 2 – Résultats test set DL

40 ans	Réseau Linéraire			Réseau Convolutionnel			Multipath Network		
40 ans	BA	Rappel	AUC	BA	Rappel	AUC	BA	Rappel	AUC
Validation set	67%	53%	NA	69%	56%	NA	71%	67%	NA
Test set	66%	54%	0.69	65%	43%	0.56	54%	52%	0.50

50 ans Validation set Test set	Réseau Linéraire			Réseau Convolutionnel			Multipath Network		
50 ans	BA	Rappel	AUC	BA	Rappel	AUC	BA	Rappel	AUC
Validation set	80%	70%	NA	85%	73%	NA	86%	79%	NA
Test set	68%	58%	0.72	76%	67%	0.58	60%	65%	0.55

Annexe 3 – Analyse de survie

Annexe 4 – Analyse en composantes principales

