Unifala Unifala Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Univer

Matemática atuarial

Seguros Aula 9

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/

SEGUROS DIFERIDOS

- Produtos atuariais.
 - Seguros de vida vitalício, seguro de vida temporário, seguro dotal puro e seguro dotal.
- Em alguns casos o segurado pode querer que a vigência se inicie alguns anos após a assinatura do contrato de seguro.
- \succ O valor que a seguradora deverá gastar, em média, com o segurado cujo produto começará a vigorar daqui a "m" anos.

- \blacktriangleright Pensemos, inicialmente, no seguro de vida vitalício que paga 1~u.m. Ao final do momento de morte do segurado.
- \succ Porém, esse seguro de vida começará a vigorar daqui a "m" anos.

$$b = \begin{cases} 0, & t = 0, 1, 2, \dots, m \\ 1, t = m, m + 1, m + 2, \dots \end{cases}$$

$$Z_T = \begin{cases} v^{T+1}, t = m, m+1, m+2, \dots \\ 0, & \text{caso contrário} \end{cases}$$

 \triangleright Caso em que T é discreto:

$$b = \begin{cases} 0 , t < m \\ 1, t \ge m \end{cases}$$

$$Z_T = \begin{cases} v^{T+1}, T \ge m \\ 0, \text{ caso contrário} \end{cases}$$

$$_{m|A_{x}} = E(Z_{T}) = \sum_{j=m}^{\omega-x-m} v^{j+1} {}_{j}p_{x}q_{x+j}$$

 \triangleright Fazendo j = m + t, tem-se:

$${}_{m|}A_{x} = \sum_{j=m}^{\omega-x-m} v^{j+1}{}_{j}p_{x}q_{x+j} = \sum_{t=0}^{\omega-x-m} v^{m+t+1} \underbrace{\sum_{m+t}^{\omega-x-m} p_{x}q_{x+m+t}}_{t=0}$$

Lembrando que
$$\underbrace{m+tp_x}_{m+t} = {}_{m}p_x \times {}_{t}p_{x+m}$$
, então $\underbrace{\sum_{m|A_x}}_{m+t} = \sum_{t=0}^{\omega-x-m} v^{m+t+1} {}_{m}p_x {}_{t}p_{x+m} {}_{q_{x+m+t}}$

$$a_{m|A_x} = v^m m p_x \sum_{t=0}^{\omega - x - m} v^{t+1} p_{(x+m)} q_{(x+m)+t}$$

$$_{m|}A_{x}=A_{x:\overline{m}|^{1}}A_{x+m}$$

Seguro de vida **vitalício** para uma pessoa de idade x + m

È, na verdade, o seguro de vida vitalício trazido a valor presente atuarial a data de hoje.

$$_{m|}A_{x} = _{m}E_{x}A_{x+m}$$

Outra forma de cálculo do mesmo seguro seria:

Seguro temporário por m anos, para uma pessoa de idade x. \leftarrow

Demonstração:

$$A_x = \sum_{t=0}^{\omega - x} v^{t+1} \,_t p_x q_{x+t}$$

$$A_{x} = \sum_{t=0}^{m-1} v^{t+1} {}_{t} p_{x} q_{x+t} + \sum_{t=m}^{\omega-x-m} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = A_{x^{1}:\overline{m|}} + {}_{m|}A_{x}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere a taxa de juros de 4% ao ano, o benefício unitário e as seguintes probabilidade de morte e então calcule o prêmio puro:

X	q_X	p_{x}	l_{x}
25	0,00037	0,99963	100000
26	0,00039	0,99961	99963
27	0,00040	0,99960	99924,01
28	0,00042	0,99958	99884,04
29	0,00044	0,99956	99842,09
30	0,00045	0,99955	99798,16
31	0,00046	0,99954	99753,25
32	0,00048	0,99952	99707,37
33	0,00049	0,99951	99659,51
34	0,00050	0,99950	99610,67
35	0,00052	0,99948	99560,87

Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere a taxa de juros de 4% ao ano, o benefício unitário e as seguintes probabilidade de morte e então calcule o prêmio puro:

X	q_X	p_{x}	l_x	
25	0,00037	0,99963	100000	$A_{25} = 0.1079694$
26	0,00039	0,99961	99963	
27	0,00040	0,99960	99924,01	$_{3 }A_{25} = A_{25} - A_{25^1:\overline{3 }}$
28	0,00042	0,99958	99884,04	2
29	0,00044	0,99956	99842,09	$A_{25^{1}:\overline{3} } = \sum v^{t+1} {}_{t}p_{25}q_{25+t} \approx 0.0010715$
30	0,00045	0,99955	99798,16	$\overline{t=0}$
31	0,00046	0,99954	99753,25	$_{3 }A_{25} \approx 0.1079694 - 0.0010715$
32	0,00048	0,99952	99707,37	4 ~ 0.106070
33	0,00049	0,99951	99659,51	$_{3 }A_{25}\approx 0.106978$
34	0,00050	0,99950	99610,67	Unitalž Unitalž Un
35	0,00052	0,99948	99560,87	$_{3 }A_{25} = v^3 _{3}p_{25}A_{28}$

 \triangleright Para o caso em que T é discreto:

$$b = \begin{cases} 0, \ t < m \\ 1, t \ge m \end{cases}$$

$$Z_T = \begin{cases} v^{T+1}, T \ge m \\ 0, \text{ caso contrário} \end{cases}$$

$$_{m|A_{x}} = \sum_{t=m}^{\omega-x-m} v^{t+1} \,_{t} p_{x} q_{x+t}$$

$$_{m|}A_{x}=v^{m}_{m}p_{x}A_{x+m}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

- a) Temporário por "n" anos.
- b) Seguro dotal puro.

Dado que b = 1 e T_x discreto.

Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade Federal d

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

a) Temporário por "n" anos.

Dado que b = 1 e T discreto.

Resp.:

O seguro temporário por n para uma pessoa de x anos (caso discreto)

$$A_{x^1:\overline{n}|} = \sum_{t=0}^{n-1} v^{t+1} {}_t p_x q_{x+t}$$

> Temporário

$$_{m|A_{x^{1}:\overline{n|}}} = \sum_{t=m}^{(m+n)-1} v^{t+1} {}_{t}p_{x}q_{x+t}$$

Fazendo t = m + l, então:

$$m|A_{x^1:\overline{n|}} = v^m \sum_{l=0}^{n-1} v^{l+1} m p_x l p_{x+m} q_{x+m+l}$$

$$m_l A_{x^1:\overline{n_l}} = v^m \, {}_{m} p_x \sum_{l=0}^{n-1} v^{l+1} \, {}_{l} p_{(x+m)} \, q_{(x+m)+l}$$

$$_{m|}A_{x^{1}:\overline{n|}}=v^{m}_{m}p_{x}A_{(x+m)^{1}:\overline{n|}}$$

$$_{m|A_{x^1:\overline{n}|}} = A_{x^1:\overline{m+n}|} - A_{x^1:\overline{m}|}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

b) Seguro dotal puro.

Dado que b = 1 e T discreto.

Resp.:

O dotal puro por n para uma pessoa de x anos (caso discreto).

$$A_{x:\overline{n}|^1} = v^n {}_n p_x$$

> Dotal Puro

SEGUROS Vida temporários DIFERIDOS

$$Z_T = \begin{cases} v^{T+1}, T \ge m \\ 0, \text{ caso contrário} \end{cases}$$

$$Z_T = \begin{cases} v^{T+1}, & m \le T < (m+n) \\ & 0, \text{caso contrário} \end{cases}$$

$$_{m|}A_{x} = \sum_{t=m}^{\omega-x-m} v^{t+1} {}_{t}p_{x}q_{x+t}$$

$$_{m|}A_{x}=v^{m}_{m}p_{x}A_{x+m}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

$$_{m|A_{x^{1}:\overline{n}|}} = \sum_{t=m}^{m+n-1} v^{t+1} _{t} p_{x} q_{x+t}$$

$$m|A_{x^1:\overline{n}|} = v^m m p_x A_{(x+m)^1:\overline{n}|}$$

$$_{m|A_{\mathcal{X}^{1}}:\overline{n|}}=A_{\mathcal{X}^{1}:\overline{m+n|}}-A_{\mathcal{X}^{1}:\overline{m|}}$$

Uma pessoa de 25 anos deseja fazer um seguro com benefício unitário que tenha cobertura de 5 anos, com 3 anos de carência. Considere a taxa de juros de 4% ao ano e a tábua AT-49 e então calcule o prêmio puro único.

Idade	q_X
25	0,00077
26	0,00081
27	0,00085
28	0,00090
29	0,00095
30	0,00100
31	0,00107
32	0,00114
33	0,00121
34	0,00130
35	0,00139

Logo queremos calcular $_{3|}A_{25^{1}:\overline{5|}}$

$$Z_T = \begin{cases} \left(\frac{1}{1+0.04}\right)^{T+1}, 3 \le T < 8\\ 0, \text{ caso contrário} \end{cases}$$

Idade	$q_X =_1 q_X$	$_{1}p_{x}=1{1}q_{x}$	$_{1}l_{x}=\frac{l_{x+1}}{p_{x}}$	$(m+n)-1$ $\sum_{n=0}^{\infty} n^{t+1} = n = 0$
25	0,00077	0,99923	100000	${}_{m }A_{x^{1}:\overline{n }} = \sum_{t=m} v^{t+1} {}_{t}p_{x}q_{x+t}$
26	0,00081	0,99919	99923	$(3+5)^{-1}$ (1) $t+1$
27	0,00085	0,99915	99842	$_{3 }A_{25^{1}:\overline{5} } = \sum_{t=3}^{(3+5)-1} \left(\frac{1}{1,04}\right)^{t+1} {}_{t}p_{25}q_{25}$
28	0,00090	0,99910	99757	$\overline{t=3}$
29	0,00095	0,99905	99667	
30	0,00100	0,99900	99572	$_{m }A_{x^1:\overline{n }} = v^m _{m}p_xA_{x^1+m:\overline{n }}$
31	0,00107	0,99893	99472	$m_1 \times m_1 = m_1 \times \pi + m_1 m_1$
32	0,00114	0,99886	99365	$(1)^3 \frac{5-1}{4} (1)^{t+1}$
33	0,00121	0,99879	99251	$_{3 A_{25^{1}:\overline{5} }} = \left(\frac{1}{104}\right)_{3}p_{25} \left(\frac{1}{104}\right)_{t}p_{28}$
34	0,00130	0,99870	99131	$_{3 }A_{25^{1}:\overline{5 }} = \left(\frac{1}{1,04}\right)^{3} _{3}p_{25} \sum_{t=0}^{5-1} \left(\frac{1}{1,04}\right)^{t+1} _{t}p_{28}$
35	0,00139	0,99861	99002	

SEGUROS VIDA DIFERIDOS – pago no momento da morte

> O valor presente atuarial vitalício diferido é:

$$b = \begin{cases} 0 \ , \ t < m \\ 1 \ , t \ge m \end{cases} \qquad Z_T = e^{-\delta T}, T \ge m$$

$$m|\bar{A}_x = \int_m^\infty e^{-\delta t} f_{T_x}(t) dt$$

> O valor presente atuarial temporário diferido é

$$b = \begin{cases} 0, & t < m \\ 1, & m \le t \le m+n \end{cases} \qquad Z_T = e^{-\delta T}, m \le T \le m+n$$

$$m|\bar{A}_{\chi^1:\bar{n}|} = \int_m^{m+n} e^{-\delta t} f_{T_{\chi}}(t) dt$$

Determine o valor do prêmio puro único a ser cobrado por um segurado que deseja contratar um seguro que pague $1\,u.m.$ no momento da morte, após 10 anos de carência. Considere que o tempo de vida adicional desse segurado tenha a seguinte função de densidade.

$$f_T(t) = 0.04e^{-0.04t}, t > 0$$

Considere também $\delta = 0.06$.

Unifal Unifal Unifal Unifal Unifal Unifal Unifal Unifal Unifal Universidade Federal de Alfenas Universidade Federal de Alfenas

$$_{10}|\bar{A}_{x}=\int_{10}^{\infty}e^{-0.06t}0.04e^{-0.04T}dt$$

$$_{10|}\bar{A}_{\chi} = \int_{10}^{\infty} e^{-0.06t} 0.04e^{-0.04t} dt = \int_{10}^{\infty} 0.04e^{-0.1t} dt$$

$$_{10|}\bar{A}_{x} = \lim_{t \to \infty} \left(-\frac{0,04}{0,1} e^{-0,1t} \right) + \frac{0,04}{0,1} e^{-0,1(10)}$$

$$_{10|}\bar{A}_{x}=0.147$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

Unifala Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade F

Matemática atuarial

Seguros Aula 10

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

EXEMPLO 1:

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

		(5+3)-1
Idade	q_X	$_{3 }A_{25^{1}:\overline{5 }} = \sum_{v^{j+1}} v^{j+1}{}_{j}p_{25}q_{25+}$
25	0,00077	
26	0,00081	j=3
27	0,00085	$_{3 }A_{25^{1}:\overline{5} } = v^{3} _{3}p_{25}A_{28^{1}:\overline{5} }$
28	0,00090	3 25 .5 31 25 .5
29	0,00095	$_{3 }A_{25^{1}:\overline{5} } = A_{25^{1}:\overline{5+3} } - A_{25^{1}:\overline{3} }$
30	0,00100	5 25 .5 25 .5 25 .5
31	0,00107	
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

		premio<- function(i, idade, n,b) {
		<pre>pxx <- c(1, cumprod(px[(idade+1):(idade+n-1)]))</pre>
		qxx <- c(qx[(idade+1):(idade+n)])
		v <- (1/(i+1)) ^(1:n)
miversidade i	rederal de Alfenas Onivers	_ Ax <- b* sum(v*pxx*qxx)
Idade	q_X	return (Ax)
25	0,00077	
26	0,00081	
27	0,00085	dotal<-function(i,idade,n,b){
		v <- 1/(i+1)^n
28	0,00090	npx <- prod(px[(idade+1):(idade+n)])
29	0,00095	Dt <- v*npx*b
30	0,00100	return(Dt) }
31	0,00107	
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

EXEMPLO 1:

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

Idade	q_X	$_{3 }A_{25^{1}:\overline{5} } = v^{3} _{3}p_{25}A_{28^{1}:\overline{5} }$	
25	0,00077	dotal(0.04,25,3,1) ×premio(0.04,28,5,1)	
26	0,00081		
27	0,00085		
28	0,00090	$_{3 }A_{25^{1}:\overline{5} } = A_{25^{1}:\overline{5+3} } - A_{25^{1}:\overline{3} }$	
29	0,00095	nitaiž Unitaiž Unitaiž Un	
30	0,00100	premio(0.04,25,8,1) –premio(0.04,25,3,1)	
31	0,00107		
32	0,00114		
33	0,00121		
34	0,00130		
35	0,00139	sidade Federal de Alfenas Universidade Federal de Alfenas Universidade Federal de Alfenas Universidade	

EXEMPLO 2:

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

	24_101	101	$_{3 }A_{25} = v^3 _{3}p_{25}A_{28}$
Idade	q_X		3 25 · 3F 2520
25	0,00077	????	
26	0,00081		
27	0,00085		
28	0,00090		$_{3 }A_{25} = A_{25} - A_{25^1:\overline{3 }}$
29	0,00095		ynijaiž Unijaiž Un
30	0,00100	????	
31	0,00107		
32	0,00114		
33	0,00121		
34	0,00130		
35	0,00139	versidade Federal de Alfenas Un	

EXEMPLO 2:

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

$$_{3|}A_{25} = v^3 \,_{3}p_{25}A_{28}$$

 $dotal(0.04,25,3,1) \times premio(0.04,28,max(Idade)-28,1)$

$$_{3|}A_{25} = A_{25} - A_{25^1:\overline{3|}}$$

premio(0.04,25,max(Idade)-25,1)-premio(0.04,25,3,1)

$$Z_{T} = v^{T+1}, T \ge 0$$

$$A_{x} = \sum_{t=0}^{\infty} Z_{T} t^{p_{x}} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0, 1, 2, \dots, n-1 \\ 0, T = n, n+1, \dots \\ 0, T = 0, 1, 2, \dots, n-1 \end{cases}$$

$$A_{x^{1}:n} = \sum_{t=0}^{n-1} Z_{T} t^{p_{x}} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0, 1, 2, \dots, n-1 \\ 0, T = 0, 1, 2, \dots, n-1 \end{cases}$$

$$A_{x^{n}:n} = \sum_{t=0}^{n-1} Z_{T} t^{p_{x}} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0, 1, \dots, n-1 \\ v^{n}, T = n, n+1, \dots \end{cases}$$

$$Z_{T} = v^{T+1}, T \ge m$$

$$M|A_{x} = \sum_{t=m}^{\infty} Z_{T} t^{p_{x}} q_{x+t}$$

$$M|A_{x} = v^{m} m^{p_{x}} A_{x+m}$$

$$M|A_{x} = v^{m} m^{p_{x}} A_{x+m}$$

$$M|A_{x} = A_{x} - A_{x^{1}:n}| = \sum_{t=m}^{\infty} Z_{T} t^{p_{x}} q_{x+t}$$

$$Z_{T} = v^{T+1}, T \ge m$$

$$Z_{T}$$

RELAÇÃO ENTRE O CASO DISCRETO E O CASO CONTÍNUO

Suposição

$$T = (K+1) - (1-S)$$

Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade Federal d

RELAÇÃO ENTRE O CASO DISCRETO E O CASO CONTÍNUO

- \succ Assumindo que T é independente de S e que $S \sim U_c(0,1)$.
- Considere o seguro de vida inteira pago no momento de morte:

$$\bar{A}_{x} = \int_{0}^{\infty} e^{-\delta t} t p_{x} \mu(x+t) dt = E(e^{-\delta T})$$

$$\bar{A}_{x} = E\{e^{-\delta[(K+1)-(1-S)]}\} = E[e^{-\delta(K+1)}e^{\delta(1-S)}]$$

RELAÇÃO ENTRE O CASO DISCRETO E O CASO CONTÍNUO

$$\bar{A}_{x} = E[v^{(K+1)}]E[e^{\delta(1-S)}]$$

$$\bar{A}_{x} = A_{x} \int_{0}^{1} e^{\delta(1-s)} ds$$

$$\bar{A}_{x} = A_{x} \frac{e^{\delta} - 1}{\delta}$$

Substituindo $e^{\delta} = 1 + i$,

$$\bar{A}_x = A_x \frac{(1+i)-1}{\delta}$$

$$\bar{A}_{x} = A_{x} \frac{i}{\delta}$$

Uma pessoa de 25 anos deseja fazer um seguro de **vida inteiro** que paga $1\,u.m.$ no momento da morte. Calcule o valor aproximado desse prêmio considerando que o prêmio pago para esse mesmo seguro com benefício pago ao final do ano de morte é de $A_{25}\approx 0,11242.$

Considere que o tempo de sobrevida desse segurado pode ser modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 5% ao ano.

Unifal Unifal Unifal Unifal Unifal Unifal Unifal Universidade Federal de Alfenas Universidade

Seguro de vida Inteiro

$$A_{25} = \sum_{t=0}^{90} \left(\frac{1}{1,05}\right)^{t+1} t p_{25} q_{25+t} \approx 0,11242$$

$$\bar{A}_{25} = A_{25} \frac{i}{\delta} = 0.11242 \left[\frac{0.05}{ln(1.05)} \right] \approx 0.1152076$$

Considerar uma pessoa de idade de 30 anos que decide fazer um seguro de vida vitalício que pague um benefício de 1 u.m. ao final do ano de morte. Admita $A_{30} \approx 0.28317$ e que i=5%.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Considerar uma pessoa de idade de 30 anos que decide fazer um seguro de vida vitalício que pague um benefício de 1 u.m. ao final do ano de morte. Admita $\bar{A}_{30}\approx 0,28317$ e que i=5%.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

$$A_{30} = \frac{\delta}{i}\bar{A}_{30} = \frac{ln(1,05)}{0,05}0,28317 \approx 0,2763182$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

RELAÇÃO ENTRE O CASO DISCRETO E O CASO CONTÍNUO

> Vitalício

$$\bar{A}_{x} = A_{x} \frac{i}{\delta}$$

> Temporário

$$\bar{A}_{x^1:\bar{n}|} = A_{x^1:\bar{n}|} \frac{i}{\delta}$$

> Misto

$$\bar{A}_{x:\bar{n}|} = A_{x^1:\bar{n}|} \frac{i}{\delta} + A_{x:\bar{n}|^1}$$

> Fracionado

$$A_{\chi}^{(m)} = \frac{iA_{\chi}}{i^{(m)}}$$

$$i^{(m)} = m \left[1 - (1+i)^{-\frac{1}{m}} \right] v^{-\frac{1}{m}}$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. Actuarial Mathematics, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

Unifais Unifais Unifais Unifais Unifais Unifais Universidade Federal de Alfenas Universidade F

Seguros com benefício crescente Aula 11

Unifais Unifais Universidade Federal de Alfenas Universidade F

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

Seguros com benefício crescente

Contratos de seguro com alta procura são aqueles em que o benefício pago pela seguradora varia conforme o tempo em relação a data do contrato.

Algumas opções nesse sentido são aquelas em que ocorre um acréscimo ou decréscimo no benefício (anual) de acordo com uma progressão aritmética.

A importância segurada aumenta segundo uma progressão aritmética.

Produtos Atuariais com benefício crescente

Seguro de vida

$$(IA)_{x} = \sum_{t=0}^{\omega - x} (1+t)v^{t+1} {}_{t}p_{x}q_{x+t} = \sum_{t=0}^{\omega - x} {}_{t|}A_{x}$$

$$(IA)_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} (1+t)v^{t+1} _{t} p_{x} q_{x+t} = \sum_{t=0}^{n-1} _{t|A_{x^{1}:\overline{n-t|}}}$$

Qual o valor do prêmio puro único de um seguro vitalício feito por uma pessoa de 110 anos, com benefício igual a 1 e crescente em 1 unidade ao ano? Considere um com taxa de juros de 4% ao ano e a tábua de vida AT-2000 masculina.

$$A_{110} \approx \$0,9403557$$

Unifais Unifais Unifais Unifais Unifais Unifais Universidade Federal de Alfenas Universidade F

Qual o valor do prêmio puro único de um seguro vitalício feito por uma pessoa de 110 anos, com benefício igual a 1 e crescente em 1 unidade ao ano? Considere um com taxa de juros de 4% ao ano e a tábua de vida AT-2000 masculina.

$$A_{110} \approx \$0,9403557$$

Solução:

$$(IA)_{110} = \sum_{t=0}^{5} {}_{t|}A_{110} = A_{110} + {}_{1|}A_{110} + {}_{2|}A_{110} + {}_{3|}A_{110} + {}_{4|}A_{110} + {}_{5|}A_{110} \approx 1,4482.$$

$$(IA)_{110} \approx 1,4482.$$

Calcule o valor do prêmio puro único de um seguro com cobertura de 5 anos feito por uma pessoa de 25 anos. Considere o benefício igual a 1 e crescente em 1 unidade ao ano, i=4% ao ano e utilize a tábua de vida AT-49 Masculina.

$$A_{25^1:\overline{5}|} \approx 0.003788.$$

Solução:

Calcule o valor do prêmio puro único de um seguro com cobertura de 5 anos feito por uma pessoa de 25 anos. Considere o benefício igual a 1 e crescente em 1 unidade ao ano, i=4% ao ano e utilize a tábua de vida AT-49 Masculina.

$$A_{25^1:\overline{5}|} \approx 0.003788.$$

Solução:

$$(IA)_{25^{1}:\overline{5}|} = \sum_{t=0}^{4} {}_{t}|A_{x^{1}:\overline{5-t}|} = A_{25^{1}:\overline{5}|} + {}_{1}|A_{25^{1}:\overline{4}|} + {}_{2}|A_{25^{1}:\overline{3}|} + {}_{3}|A_{25^{1}:\overline{2}|} + {}_{4}|A_{25:\overline{1}|}$$

$$(IA)_{25^{1}:\overline{5}|} \approx 0.01178.$$

Produtos Atuariais com benefício crescente

A notação para os seguros de vida vitalício e temporário, ambos com crescimento limitado ao ano k são, respectivamente, $\left(I_{\overline{k}|}A\right)_x$ e $\left(I_{\overline{k}|}A\right)_{x^1:\overline{n}|}$, sendo:

$$(I_{\overline{k|}}A)_{\chi} = (IA)_{\chi^1:\overline{k|}} + k \times {}_{k|}A_{\chi}$$

$$\left(I_{\overline{k}|A}\right)_{x^1:\overline{n}|} = (IA)_{x^1:\overline{k}|} + k \times {}_{k|A_{x^1:\overline{n-k}|}}$$

Produtos Atuariais com benefício crescente

$$(I\bar{A})_{x} = \int_{0}^{\infty} te^{-\delta t} t^{2} p_{x} \mu(x+t) dt = \int_{0}^{\infty} s_{|} \bar{A}_{x} ds.$$

$$(I\bar{A})_{x^{1}:\overline{n|}} = \int_{0}^{n} te^{-\delta t} p_{x}\mu(x+t)dt$$

$$(I\bar{A})_{\chi} = \frac{i}{\delta}(IA)_{\chi} \qquad (I\bar{A})_{\chi^{1}:\overline{n|}} = \frac{i}{\delta}(IA)_{\chi^{1}:\overline{n|}}$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. Actuarial Mathematics, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

