#### HW<sub>6</sub>

# **CPTS 453 | HW6**

### CHARLES NGUYEN, 011606177

#### 1. Tree Tight Bounds

Non-parent vertices are leaf nodes. Thus the tree has  $N=10^{12}$  leaves. This tree has height H.

Given some m-arv tree, where  $m \in \mathbb{N}^+$ .

A. Tight lowerbound  $\Omega(H) = 0$  for any 0-ary trees. This is an ensemble of totally disconnected nodes.

B. H is maximal for 1-ary tree, however the tight upper bound must also obey the condition that the trees has  $N=10^{12}$  leaves. Since any 1-ary trees have only a single leaf node, we choose m=2 for binary trees. Thus, the upper bound for H is the height of complete binary trees of N leaves:

$$\theta(H) = \lceil log_2(N+V) \rceil$$
, where V are missing leaves of the full tree.

Then, the tight upperbound of H is:

$$\Theta(H) = \lceil log_2(N) \rceil$$

C. Tight lowerbound for H for rooted binary trees with N leaves is also:

$$\Omega(H) = \lceil log_2(N) 
ceil$$

D. Tight upper bound for H for n-ary rooted binary trees with N leaves. Assuming that the tree is nontrivial like in (A), for n = N, all N leaves are connected to a single root node. Thus, the tight lower bound is the height of n-ary tree is:

$$\Omega(H)=1.$$

#### 2. Tree Shape

#### **△** Rules

- Binary root tree (T, r)
- each tree's vertex is a finite string over  $\{0,1\}$ , i.e. some binary number
- root is  $v_0$
- if  $v_i$  ends at 0, then left-child is  $v_0$  and right-child is  $v_1$ .
- if  $v_i$  ends at 1, then the only child is  $v_0$ .

A. Draw levels 0 through 4of this tree, with the vertices labeled properly.



B. Make a conjecture of how to compute the number of vertices at a given level.

Because this tree is amputated on exactly one branch for every level, the number of vertices in the tree can be calculated as:

$$V=2l+1,\quad {
m where}\ l={
m levels}$$

## 3. k-Colorable

Where k=3 for the given graph,



The graph contains cycles so no k-coloring can exists for k. Thus, it's not 3-colorable.

## 4. Chromatic Polynomial

Given the graph, we call it *X*:



#### Solution

This graph is the disjoint union  $X = G \sqcup H$  of the following two graphs:



G



Н

where G is a 2-regular graph of order 4 ( $K_4$ ), and H is a 2-regular graph of order 3 ( $K_3$ ).

We then have,

$$p_{G\sqcup H}(k)=p_G(k)\cdot p_H(k)$$

where,

$$p(k) = egin{cases} rac{k!}{(k-n)!} & k \geq n \ (1) \ 0 & k < n \ (2) \end{cases}$$

Beacuse  $(k = 3) < (n_G = 4)$  and  $(k = 3) \ge (n_H = 3)$ , we have,

$$p_{G\sqcup H}(k)=0\cdot p_H(k)=0$$