3. AutoDL for TSF

Marco Zanotti

University Milano-Bicocca

3. AutoDL for TSF

- 1. The TSF Problem
- 2. NAS & HPO
- 3. AutoDL for TSF
- 4. Conclusions

1. The TSF Problem

Time series forecasting (TSF) is the task of predicting future values of a given sequence based on previously observed values.

3. AutoDL for TSF

The TSF problem may be essentially identified by the following aspects:

3. AutoDL for TSF

- Prediction objective: point forecasting vs probabilistic forecasting
- **Forecast horizon**: short-term vs long-term forecasting
- ▶ Input-Output dimension: univariate vs multivariate forecasting
- **Forecasting task**: single-step vs multi-step forecasting

Nowadays, the TSF problem is usually faced with **Deep Learning models** (RNN, LSTM). However, the design of these models is a challenging task due to:

- **model architecture**: the choice of the model architecture is crucial for the performance of the model
- hyperparameters: the selection of the optimal hyperparameters is also extremely relevant for the model's performance
- **computational cost**: the search for the best model architecture and hyperparameters is resource expensive

To deal with these issues, the authors proposed a new framework for Automated Deep Learning for TSF.

2. NAS & HPO

Neural Architecture Search (NAS) is a technique that automates the design of neural network architectures and it is based on three main components:

- ▶ Search Space defines which architectures can be considered
- ➤ **Search Strategy** details how to explore the search space, dealing with the exploration-exploitation trade-off
- ▶ Performance Estimation Strategy is the process to estimate the architecture performance on test data

Hyperparameter Optimization (HPO) is the process of finding the best set of hyperparameters for a given model.

2. NAS & HPO

Bayesian Optimization (BO) is a **sample efficient method** for HPO that is based on two main components:

- a probabilistic surrogate model to approximate the objective function (usually a Gaussian Process or a Tree-based model)
- an acquisition function to deal with the trade-off between exploration and exploitation (e.g., Expected Improvement, Confidence Bounds, etc.)

The **Combined Algorithm Selection and Hyperparameter** (CASH) approach consists of a sequential learning process that first selects the most promising algorithms and then optimizes for their optimal hyperparameter configurations.

In the context of DL models, a CASH approach:

- uses NAS to search over a variety of architectures (the search process is usually performed via BO with Random Forest as surrogate model, since the search space is conditional and high-dimensional)
- adopts BO to optimize the hyperparameters of the models

3. AutoDL for TSF

1. The TSF Problem

11/20

1 The TSF Problem

Recent years have witnessed great efficiency improvements in AutoDL systems but little attention has been paid to general automatic framework for TSF

3 AutoDI for TSE

The authors proposed a new framework for **Automated Deep Learning for TSF** that:

- uses NAS to search over a variety of state-of-the-art TSF architectures
- adopts BO to optimize the hyperparameters of the models (with a **CASH** approach)
- explores multi-fidelity optimization to reduce the computational cost of the search process

Automatic Forecasting Pipeline

The proposed framework is based on a **forecasting pipeline** that:

- first, it automatically **prepares the data** and splits each sequence into training, validation, and test sets
- ▶ then, the optimizer searches for desirable architectures and hyperparameters from the search space
- finally, a weighted ensemble of the top k selected configurations is used to evaluate the final predictions on the test set

Search Space

SOTA architectures for TSF can be decomposed into two parts:

- the encoder processes the input sequence (past target values) and embeds them into a latent space
- the **decoder** processes the latent embedding and future features and generates a sequence of scalar values through the output layer

3. AutoDL for TSF

14/20

1. The TSF Problem

Based on encoder-decoder architectures, the final search space contains many TSF algorithms, such as NBEATS, DeepAR, TFT.

3. AutoDL for TSE

Encoder		Decoder	auto-regressive	Architecture Class
Flat Encoder	MLP	MLP	No	Feed Forward Network
	N-BEATS	N-BEATS	No	N-BEATS [46]
Seq. Encoder	RNN/Transformer	RNN/Transformer	Yes	Seq2Seq [9]
			No	TFT [38]
		MLP	Yes	DeepAR [50]
			No	MQ-RNN [57]
	TCN	MLP	Yes	DeepAR [50]/WaveNet [45]
			No	MQ-CNN [57]

Network encoder may be sequential or flat.

Forecasting architecture may be autoregressive or not.

Marco Zanotti

Hyperparameter Optimization

The loss function is optimized on the validation set via **BO**. Since training deep neural networks requires lots of computational resources, multi-fidelity optimization is used to reduce the computational cost of the search process:

- it allows to train the model with different budget types (number of epochs, time series length and number of series)
- starting with the lowest budget setup and gradually assigning higher budgets to well-performing configurations
- it prevents the optimizer from investing too many resources on the poorly performing configurations and allows to focus on the most promising ones

4. Conclusions

1. The TSF Problem

17 / 20

- ▶ The authors proposed a framework for AutoDL in the context of TSF to efficiently search for the best model architectures and hyperparameters
- ▶ The search space is based on state-of-the-art TSF algorithms formulated as an encoder-decoder architecture
- Empirical results show that the proposed framework is able to outperform the state-of-the-art methods on a variety of datasets
- ▶ The optimal choice of budget type is dataset specific and the most important hyperparameters are related to the optimizer of the neural network and its learning rate

Bibliografy

Deng D., Florian K., Hutter F., Bischl B. & Lindauer M., 2022, 'Efficient Automated Deep Learning for Time Series Forecasting', arXiv.

Elsken T., Metzen J. H. & Hutter F., 2019, 'Neural Architecture Search: A Survey', Journal of Machine Learning Research, 20 1-21

He X., Zhao K. & Chu X., 2021, 'AuoML: A Survey of the State-of-the-Art', Knowledge-Based Systems, 212

Meisenbacher S., et al., 2022, 'Review of Automated Time Series Forecasting Pipelines', WIREs Data Mining and Knowledge Discovery

Thank you!