Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1.4 ANALYSIS OF ALGORITHMS

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory

Types of analyses

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- · Need a model for "random" input.
- Provides a way to predict performance.

this course

Ex 1. Array accesses for brute-force 3-Sum.

Best: $\sim \frac{1}{2} N^3$

Average: $\sim \frac{1}{2} N^3$

Worst: $\sim \frac{1}{2} N^3$

Ex 2. Compares for binary search.

Best: ~ 1

Average: $\sim \lg N$

Worst: $\sim \lg N$

Theory of algorithms

Goals.

- Establish "difficulty" of a problem.
- Develop "optimal" algorithms.

Approach.

- Suppress details in analysis: analyze "to within a constant factor."
- Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.

Lower bound. Proof that no algorithm can do better.

Optimal algorithm. Lower bound = upper bound (to within a constant factor).

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1}{2} N^2$ $10 N^2$ $5 N^2 + 22 N \log N + 3N$:	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$	$10 N^{2}$ $100 N$ $22 N \log N + 3 N$ \vdots	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1/2}{N^{5}}$ N^{5} $N^{3} + 22 N \log N + 3 N$ \vdots	develop lower bounds

Theory of algorithms: example 1

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 1-SUM = "Is there a 0 in the array?"

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 1-Sum: Look at every array entry.
- Running time of the optimal algorithm for 1-SUM is O(N).

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries (any unexamined one might be 0).
- Running time of the optimal algorithm for 1-Sum is $\Omega(N)$.

Optimal algorithm.

- Lower bound equals upper bound (to within a constant factor).
- Ex. Brute-force algorithm for 1-SUM is optimal: its running time is $\Theta(N)$.

Theory of algorithms: example 2

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM.

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 3-SUM.
- Running time of the optimal algorithm for 3-SUM is $O(N^3)$.

Theory of algorithms: example 2

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM.

Upper bound. A specific algorithm.

- Ex. Improved algorithm for 3-Sum.
- Running time of the optimal algorithm for 3-SUM is $O(N^2 \log N)$.

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries to solve 3-Sum.
- Running time of the optimal algorithm for solving 3-SUM is $\Omega(N)$.

Open problems.

- Optimal algorithm for 3-Sum?
- Subquadratic algorithm for 3-SUM?
- Quadratic lower bound for 3-SUM?

Algorithm design approach

Start.

- Develop an algorithm.
- Prove a lower bound.

Gap?

- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).

Golden Age of Algorithm Design.

- 1970s-.
- · Steadily decreasing upper bounds for many important problems.
- Many known optimal algorithms.

Caveats.

- Overly pessimistic to focus on worst case?
- Need better than "to within a constant factor" to predict performance.

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 N ²	$10 N^{2}$ $10 N^{2} + 22 N \log N$ $10 N^{2} + 2 N + 37$	provide approximate model
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1/2}{N^2}$ $10 N^2$ $5 N^2 + 22 N \log N + 3N$	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$\mathbf{O}(N^2)$	$10 N^2$ $100 N$ $22 N \log N + 3 N$	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\mathbf{\Omega}(N^2)$	$\frac{1/2}{N^{5}}$ N 3 + 22 N log N + 3 N	develop lower bounds

Common mistake. Interpreting big-Oh as an approximate model. This course. Focus on approximate models: use Tilde-notation