One Sided Limit

1.2.1 THEOREM Let a and k be real numbers.

(a)
$$\lim_{x \to a} k = k$$

$$(b) \lim_{x \to a} x = a$$

$$(c) \lim_{x \to 0^-} \frac{1}{x} = -\infty$$

(c)
$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$
 (d) $\lim_{x \to 0^+} \frac{1}{x} = +\infty$

THEOREM Let a be a real number, and suppose that

$$\lim_{x \to a} f(x) = L_1 \quad and \quad \lim_{x \to a} g(x) = L_2$$

That is, the limits exist and have values L_1 and L_2 , respectively. Then:

(a)
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L_1 + L_2$$

(b)
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L_1 - L_2$$

(c)
$$\lim_{x \to a} [f(x)g(x)] = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right) = L_1 L_2$$

(d)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L_1}{L_2}, \quad provided \ L_2 \neq 0$$

(e)
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L_1}$$
, provided $L_1 > 0$ if n is even.

Moreover, these statements are also true for the one-sided limits as $x \to a^-$ or as $x \to a^+$.

Question: Find the limits.

21.
$$\lim_{y \to 6^+} \frac{y+6}{y^2-36}$$

Answer:

The limit is $+\infty$.

Question: Find the limits.

25.
$$\lim_{x \to 4^{-}} \frac{3 - x}{x^2 - 2x - 8}$$

Answer:

The limit is $+\infty$.

Question: Find the limits.

28.
$$\lim_{x \to 3^-} \frac{1}{|x-3|}$$

Answer:

The limit is $+\infty$.

Question: Find the limits.

31. Let

$$f(x) = \begin{cases} x - 1, & x \le 3\\ 3x - 7, & x > 3 \end{cases}$$

Find

(a)
$$\lim_{x \to 3^{-}} f(x)$$
 (b) $\lim_{x \to 3^{+}} f(x)$ (c) $\lim_{x \to 3} f(x)$.

(b)
$$\lim_{x \to a} f(x)$$

(c)
$$\lim_{x \to 3} f(x)$$

Answer: