The Normal Distribution!

STAT 120

Day 14

No new concepts!

- We've covered the core ideas of intro stats:
 - EDA: using pictures and numbers to make sense of data
 - Estimation: estimating unknown parameters with confidence
 - Testing: assessing hypotheses with p-values
- Rest of the course covers more types of inference methods
 - Instead of using computer simulations to generate bootstrap/randomization distributions
 - Use probability models to do this

Density Curve

A *density curve* is a theoretical model to describe a distribution.

- Distribution for
 - Individual measurements in population (for a quantitative variable)
 - Sampling distribution for a statistic
- All density curves:
 - have an area under the curve of 1 (100%)
 - give proportions/percents as areas under the curve

Normal Distribution

A *normal distribution* has a symmetric bell-shaped density curve.

The Normal Model: $X \sim N(\mu, \sigma)$

- The mean and SD determine how a normal density curve looks.
- The normal model **parameters** are
 - μ = model mean (center)
 - $\sigma = \text{model SD (variability)}$

Example: A Population

Verbal SAT \sim N(580, 70)

How can we find areas under a normal density?

Calculus!

$$Area = \int_{a}^{b} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx$$

(1a) StatKey - Verbal SAT population

Example: Verbal SAT scores

- About 16% of people in this population had a score of 650 or higher.
- What score is the 25th percentile?
- without Statkey it will be a score below 580 (median & mean) and above 440 (2 SD below 580)
- using Statkey adjust the left-tail area to be 0.25.

(1b) StatKey - Verbal SAT population

Example: Verbal SAT scores

- What percent of the population had a score of 650 or higher?
- Using R enter:

```
> 1 - pnorm(650, 580, 70)
```

What score is the 25th percentile?

- Using R enter:
 - > qnorm(.25,580,70)

Finding Probabilities for $N(\mu, \sigma)$

Big Idea for Normal Models: All that really matters is the number of standard deviations from the mean.

About what proportion should be within one standard deviation of the mean?

Big Idea for Normal Models:

All we need is a z-score.

Standard Normal

$$\mu = 0, \ \sigma = 1 \rightarrow Z \sim N(0,1)$$

Connecting any Normal model to the standard normal model

Area below x =Area below z

Normal Approximation: Gender Difference Study 1

> dnorm(x-values, mean, sd)

QQ-plot: Gender Difference Study 1

Theoretical Quantiles

The difference between nice and smart scores follows a normal distribution.

-1

-2

Big question

- When have we already been using normal models??
 - Bootstrap distributions get confidence intervals if a bootstrap distribution is roughly bell-shaped
 - Randomization distributions many of these are bell-shaped.
- Normal models play a huge role in statistical inference.
- If we know the (bootstrap/randomization) standard error* then we can just use a normal model rather than a resampling model (which requires more computational effort).