Работа 1.3.2 Определение модуля кручения

Валеев Рауф Раушанович группа 825

29 сентября 2018 г.

Цель работы: измерение углов закручивания в зависимости от приложенного момента сил, расчет модулей кручения и сдвига при статическом закручивании стержня, определение тех же модулей для проволоки по измерениям периодов крутильных колебаний подвешенного на ней маятника (динамическим методом).

В работе используется: в первой части: исследуемый стержень, отсчетная труба со шкалой, рулетка, микрометр, набор грузов; во второй части: проволока из иследуемого материала, грузы, секундомер, микрометр, рулетка, линейка.

Определение модуля кручения стержня статистическим методом

- 1. Измеряем R цилиндра (табл.1).
- 2. Устанавливаем зрительную трубку таким образом, чтобы в нее четко было видно отражение шкалы в зеркальце З. Измеряем расстояние от зеркальца З до шкалы. Определяем диаметр стержня С и шкива Д.
- 3. Увеличивая нагрузку на нитях H, снимаем зависимость аналогично 2 части 1.3.1 $\phi = \phi(M)$. Проделаем эксперимент в обратном порядке, постепенно уменьшая велечину закручивающего момента. Повторяем измерения не менее трех раз (табл. 1).
- 4. Результаты эксперимента изображаем графически в координатах (ϕ, M) . При помощи этих графиков определяем велечину модуля кручения f.

phi	0,022	0,051	0,084	0,104	0,104	0,085	0,055	0,031
М,Н*м	0,1047	0,210	0,314	0,409	0,409	0,314	0,210	0,105
phi	0,022	$0,\!054$	0,087	0,110	0,110	0,087	0,060	0,030
М,Н*м	0,1047	0,210	0,314	0,409	0,409	0,314	0,210	0,105
phi	0,021	0,049	0,079	0,103	0,103	0,084	0,060	$0,\!025$
М,Н*м	0,1047	0,210	0,314	0,409	0,409	0,314	0,210	$0,\!105$

Таблица 1: Зависимость угла от массы

	Значение	σ	ε
f кг/рад	3,68	0,47	0,13
$G *10^{10} H/m^2$	9,31	0,34	0,04

Таблица 2: Значения

5. Используя формулу

$$G = \frac{2lf}{\pi R^4}$$

, где M=mgr, где $r=5,23\pm0,01cm$ - радиус нижнего диска; Вычисляем модуль сдвига. Сравниваем полученное значение с табличным.

Зависимость удлинения проволоки от нагрузки

