Intervals, Transformations, and Slope Solution (version 37)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9, -3) \cup (1, 7)$
Negative	$(-3,1) \cup (7,10)$
Increasing	$(-9, -4) \cup (-2, 4)$
Decreasing	$(-4, -2) \cup (4, 10)$
Domain	(-9, 10)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 37)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=63$ and $x_2=78$. Express your answer as a reduced fraction.

$$\frac{f(78) - f(63)}{78 - 63} = \frac{95 - 89}{78 - 63} = \frac{6}{15}$$

The greatest common factor of 6 and 15 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{2}{5}$$

2