Exercice 61

Boet
$$a_7-1$$
 et $m \in \mathbb{N}^+$, $I_m = \int_0^{+\infty} \infty^a e^{-m\infty} dx$

- Det fm: x+0 xe mx fm est continue sur Jo,+00 t
- . Au voisimage de 2-0+00 , $x^{\alpha}e^{-mx}$ on par oroissances comparées
- . Au noisimage de $x \to \infty$, $x^{\alpha} e^{-Mx}$ $x^{\alpha} e^{-Mx}$ $x^{\alpha} e^{-Mx}$ Ox $\int_{0}^{1} \left(\frac{1}{x}\right)^{x} dx$ connerge pour -a < 1 soit a > -1

Donc 4mein * Im existe

 $\begin{array}{ll}
\text{Soft } m \in \mathbb{N}^{+} & \text{I}_{m} = \int_{-\infty}^{+\infty} e^{-m\alpha} \, d\alpha \\
&= \int_{0}^{+\infty} \left(\frac{\mu}{m}\right)^{\alpha} e^{-\mu} \, d\mu \\
&= \int_{0}^{+\infty} \left(\frac{\mu}{m}\right)^{\alpha} e^{-\mu} \, d\mu \\
&= \int_{0}^{+\infty} u^{\alpha} e^{-\mu} \, d\mu
\end{array}$

changement de variable u = mx du = mdoc

Ox 5 = $\int_{0}^{+\infty} u^{\alpha} e^{-itt} du$ est une intégrale convergente avec les mêmesourgementsque (2)

Some $I_m = O\left(\frac{1}{m^{\alpha+1}}\right)$ $\alpha+1>0$ 0 0 0 0 0

On pouvait également utiliser la convergence simple de f_n vers 0, et le théorème de convergence dominée avec $|f_n| <= f_1$