Diskrete Strukturen Pflichtserie 11

Nikita Emanuel John Fehér, 3793479

17. Januar 2025 09:15-10:45 Dietzschold, Johannes

11.1

Sei $\phi: A \to B$ ein Homomorphismus zwischen kommutativen Gruppen. Sei $\ker(\phi) \subset A$ wie folgt definiert: $\ker(\phi) := \{x \in A : \phi(x) = 0_B\}$. Zeigen Sie dass $\ker(\phi)$ ist eine Untergruppe von A. (D.h. Sie müssen zeigen dass a) $0_A \in \ker(\phi)$, b) wenn $x \in \ker(\phi)$ dann auch $-x \in \ker(\phi)$, und c) wenn $x, y \in \ker(\phi)$ dann auch $x + y \in \ker(\phi)$. ($\ker(\phi)$ heißt auch "kern von ϕ ")

- a) Da ϕ Homomorphismus $\implies \phi(0_A) = 0_B$ $\implies 0_A \in \ker(\phi)$
- b) Angenommen $x \in \ker(\phi) \implies \phi(x) = 0_B$ Da ϕ Homomorphismus $\implies \phi(-x) = -\phi(x) = -0_B$ $\implies -x \in \ker(\phi)$
- c) Angenommen $x, y \in \ker(\phi) \implies \phi(x) = 0_B$ und $\phi(y) = 0_B$ Da ϕ Homomorphismus: $\phi(x+y) = \phi(x) + \phi(y) = 0_B + 0_B = 0_B$ $\implies x+y \in \ker(\phi)$

Da alle drei Bedingungen erfüllt sind gilt: $ker(\phi)$ Untergruppe A

11.2

Zeigen Sie dass ein Homomorphismus $\phi:A\to B$ injektiv ist gdw. $\ker(\phi)=\{0_A\}$

"
$$\Rightarrow$$
": Annahme: ϕ ist injektiv $\Rightarrow \phi(x_1) = \phi(x_2) \Rightarrow x_1 = x_2$ sei $x_2 = 0_A : \phi(x_1) = \phi(0_A) \Rightarrow x_1 = 0_A$ $\Rightarrow \ker(\phi) = \{0_A\}$
"
 \Leftarrow ": Annahme: $\ker(\phi) = \{0_A\}$

- Sei $\phi(x_1) = \phi(x_2)$ für $x_1, x_2 \in A$
- Da ϕ Homomorphismus: $\phi(x_1) \phi(x_2) = \phi(x_1 x_2)$
- Aus $\phi(x_1) = \phi(x_2)$ folgt: $\phi(x_1 x_2) = 0_B$
- $x_1 x_2 \in \ker(\phi) \implies \ker(\phi) = \{0_A\}$ $\implies x_1 - x_2 = 0_A \implies x_1 = x_2$

11.3

Seien (M,+) and (N,+) zwei kommutative Gruppen. Sei $\phi:M\to N$ eine Abbildung mit der Eigenschaft dass $\forall x,y\in M$ haben wir $\phi(x+y)=\phi(x)+\phi(y)$. Zeigen Sie dass $\phi(0_M)=0_N$ und $\forall x\in M\phi(-x)=-\phi(x)$.

• Zeige $\phi(0_M) = 0_N$ Setze $x = 0_M, y = 0_M$:

$$\phi(x+y) = \phi(x) + \phi(y)$$

$$\implies \phi(0_M + 0_M) = \phi(0_M) + \phi(0_M)$$

$$\implies \phi(0_M) = \phi(0_M) + \phi(0_M) \qquad |-\phi(0_M)|$$

$$0_N = \phi(0_M)$$

• Zeige $\forall x \in M : \phi(-x) = -\phi(x)$

$$\begin{aligned} x + (-x) &= 0_M & |\phi()| \\ &\Longrightarrow \phi(x + (-x)) &= \phi(0_M) \\ &\Longrightarrow \phi(x) + \phi(-x) &= \phi(0_M) & |\phi(0_M) &= 0_N \\ &\Longrightarrow \phi(x) + \phi(-x) &= 0_N & |-\phi(x)| \\ &\Longrightarrow \phi(-x) &= -\phi(x) \end{aligned}$$