Anomaly/Outlier detection methods

What are outliers?

- Outlier: A data object that deviates significantly from the normal objects as if it were generated by a
 different mechanism
 - Eg: Unusual credit card purchases, sports: Michael Jordan, Wayne Gretzky, ...
- Outliers are different from the noise data
- Outliers are interesting: It violates the mechanism that generates the normal data
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

Challenges of Outlier Detection

- Modeling normal objects and outliers properly
 - Hard to enumerate all possible normal behaviors in an application
 - The border between normal and outlier objects is often a gray area
- Application-specific outlier detection
 - Choice of distance measure among objects and the model of relationship among objects are often application-dependent
 - E.g., clinic data: a small deviation could be an outlier; while in marketing analysis, larger fluctuations
- Handling noise in outlier detection
 - Noise may distort the normal objects and blur the distinction between normal objects and outliers. It may
 help hide outliers and reduce the effectiveness of outlier detection

DBSCAN Algorithm

DBSCAN

- DBSCAN is a density-based algorithm.
- DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise
- Density based Clustering locates regions of high density that are separated from one another by regions of low density
 - Density = number of points within a specified radius (Eps)

Terms used in DBSCAN

- A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
- A noise point is any point that is not a core point or a border point.

DBSCAN

- Any two core points that are within a distance Eps of one another are put in the same cluster
- Any border point that is close enough to a core point is put in the same cluster as the core point
- Noise points are highlighted

DBSCAN: Core, Border and Noise Points

Parameters

- minPts
 - minPts = 1 does not make sense since every point is already its own cluster
 - minPts should usually be at least 3. If a larger value is possible, it is better.
 - Larger the dataset size, the higher minPts value
- Eps
 - If Eps is chosen too small, a large part of the dataset will not be clustered.
 - If Eps is chosen too big, a large part of the dataset will be in the same cluster.
 - In general, smaller values of Eps are preferred.

DBSCAN Algorithm

Given a set of points $S=\{x_1,x_2,...,x_n\} \in R^D$

- 1. Choose values for Minpts > 0 and Eps > 0
- 2. $A_i = \{x \in S : d(x_i, x) \le Eps\}; i = 1, 2, ..., n$
- 3. If $|A_i|$ < Minpts ignore the point
- 4. Take union of A_i and A_j if $A_i \cap A_j \neq \Phi$
- 5. Repeat 4 till no union take place

DBSCAN Algorithm

- Eliminate incorrect points
- Perform clustering on the remaining points

```
current\_cluster\_label \leftarrow 1
for all core points do
  if the core point has no cluster label then
    current\_cluster\_label \leftarrow current\_cluster\_label + 1
    Label the current core point with cluster label current_cluster_label
  end if
  for all points in the Eps-neighborhood, except i^{th} the point itself do
    if the point does not have a cluster label then
       Label the point with cluster label current_cluster_label
    end if
  end for
end for
```

Core, Border and Noise Points

Advantages of DBSCAN

- Need not specify the number of clusters
- Can find arbitrarily shaped clusters and clusters surrounded by other clusters
- Requires just two parameters
- minPts and Eps can be set by a domain expert
- Mostly insensitive to the ordering of points in database

Complexity

- <u>Time Complexity</u>: O(n²)
 - Each point needs to be determined if it's a core point or not
 - Can be reduced to O(nlogn) in lower dimensions using efficient data structures (n is the number of objects to be clustered)
- Space Complexity: O(n)

When does DBSCAN work well?

Can handle clusters of different shapes and sizes

When does DBSCAN NOT work well?

(MinPts=4, Eps=9.75)

Original Points

• High-dimensional data

Summary of DBSCAN: The Good

- Can detect arbitrary shapes
- Not very sensitive to noise
- Great at outlier detection
- Complexity is not too bad
- The most commonly used clustering algorithm besides k-Means

Summary of DBSCAN: The Bad

- Does not work well with high dimensional data
- Parameter selection can be tricky
- Needs domain knowledge to an extent

DBSCAN code from scratch in Python

- https://github.com/eriklindernoren/ML-From Scratch/blob/master/mlfromscratch/unsupervised learning/dbscan.py
- Code along with detailed explanation:

https://becominghuman.ai/dbscan-clustering-algorithm-

implementation-from-scratch-python-9950af5eed97

