Package 'SignatureEstimation'

April 26, 2017

Type Pa	ckage
	compose a tumor sample and estimate the signature exposures with bootstrap or simulated analing distribution
Version	1.0.0
Author	Xiaoqing Huang, Damian Wojtowicz
Maintai	ner Xiaoqing Huang <hxq.1001@gmail.com></hxq.1001@gmail.com>
tio tur po	tion Given a tumor sample profile with the frequencies or the proportions of 96 mutanal context types, the package can decompose the tumor catalogue into the known signates with certain intensities of signature exposures, by choosing decomse method quadratic programming or simulated annealing, and also provide the bootstrap disbution or simulated annealing distribution of the exposures
Depends	R (>= 3.3.1)
License	GPL (>= 2)
_	quadprog, enSA
Encodin	g UTF-8
LazyDa	ta true
Roxyger	Note 6.0.1.9000
R top	ics documented:
	bootstrapSigExposures
	decomposeQP
	decomposeSA
	findSigExposures
	suboptimalSigExposures
Index	5

2 decomposeQP

 $bootstrap Sig Exposures \ \ bootstrap Sig Exposures \ Function \ This \ function \ allows \ to \ obtain \ the \\ bootstrap \ distribution \ of \ the \ signature \ exposures \ of \ a \ certain \ tumor \\ sample$

Description

bootstrapSigExposures Function This function allows to obtain the bootstrap distribution of the signature exposures of a certain tumor sample

Usage

```
bootstrapSigExposures(m, P, R, mutation.count = NULL,
  decomposition.method = decomposeQP, ...)
```

Arguments

Ρ

m observed turmor profile vector for a patient/sample, 96 by 1. It can be mutation counts, or mutation probabilities.

signature profile matrix, 96 by N (N = # signatures, COSMIC: N=30).

R The number of bootstrap replicates.

mutation.count if m is a vector of counts, then mutation.count equals the summation of all the counts. If m is probabilities, then mutation.count has to be specified.

decompostion.method

which method is selected to get the optimal solution: decomposeQP or decomposeSA

Examples

```
bootstrapSigExposures(tumorBRCA[,1], signaturesCOSMIC, 100, 2000, decomposeQP)
sigsBRCA = c(1,2,3,5,6,8,13,17,18,20,26,30)
bootstrapSigExposures(tumorBRCA[,1], signaturesCOSMIC[,sigsBRCA], 10, 1000, decomposeQP)
```

decomposeQP

decomposeQP Function

Description

This function allows to get the optimal solution by using dual method to solve the quadratic programming problem.

Usage

```
decomposeQP(m, P, ...)
```

decomposeSA 3

Arguments

m	observed turmor profile vector for a single patient/sample, 96 by 1. m is normalized.
Р	signature profile matrix, 96 by $N(N = \# \text{ signatures, COSMIC: } N=30)$
control	some control parameter that can be passed into the solve.OP function

Examples

```
decomposeQP(tumorBRCA[,1], signaturesCOSMIC)
```

omposeSA Function

Description

This function allows to get the optimal solution by using simulated annealing to solve the optimization problem.

Usage

```
decomposeSA(m, P, control = list())
```

Arguments

m	observed turmor profile vector for a single patient/sample, 96 by 1. m is normalized.
P	signature profile matrix, 96 by N(N = # signatures, COSMIC: N=30)
control	some control parameter that can be passed into the GenSA function

Examples

```
decomposeSA(tumorBRCA[,1], signaturesCOSMIC)
```

findSigExposures	findSigExposures Function wrapper function This function allows to
	obtain the optimal solution by specifying quadratic programming or
	simulated annealing to solve the optimization problem.
	O II

Description

findSigExposures Function wrapper function This function allows to obtain the optimal solution by specifying quadratic programming or simulated annealing to solve the optimization problem.

Usage

```
findSigExposures(M, P, decomposition.method = decomposeQP, ...)
```

Arguments

M observed turmor profile matrix for all the patient/sample, 96 by G. G is the num-

ber of patients. Each column can be mutation counts, or mutation probabilities.

Each column will be normalized to sum up to 1.

P signature profile matrix, 96 by N(N = # signatures, COSMIC: N=30)

decompostion.method

which method is selected to get the optimal solution: decomposeQP or decom-

poseSA

Examples

```
E1 = findSigExposures(tumorBRCA, signaturesCOSMIC, decomposeQP)
sigsBRCA = c(1,2,3,5,6,8,13,17,18,20,26,30)
E2 = findSigExposures(tumorBRCA, signaturesCOSMIC[, sigsBRCA], decomposeQP)
E3 = findSigExposures(tumorBRCA[, 1:10], signaturesCOSMIC, decomposeSA, list(maxit=1000, temperature=100))
E4 = findSigExposures(tumorBRCA[, 1:10], signaturesCOSMIC[, sigsBRCA], decomposeSA, list(maxit=2000))
E5 = findSigExposures(round(tumorBRCA*10000), signaturesCOSMIC, decomposeQP)
```

suboptimalSigExposures

suboptimalSigExposures Function This function allows to obtain the simulated annealing distribution of the signature exposures of a certain tumor sample

Description

suboptimalSigExposures Function This function allows to obtain the simulated annealing distribution of the signature exposures of a certain tumor sample

Usage

```
suboptimalSigExposures(m, P, R, optimal.error = NULL,
   suboptimal.factor = 1.05, control = list())
```

Arguments

m observed turmor profile vector for a patient/sample, 96 by 1. It can be mutation

counts, or mutation probabilities.

P signature profile matrix, 96 by N(N = # signatures, COSMIC: N=30)

R The number of replicates/trials of simulated annealing.

optimal.error if it is NULL, then use SA method to obtain. Or you can provide one.

suboptimal.factor

suboptimal error.

control some control parameter that can be passed into the function

mutation.count if m is a vector of counts, then mutation.count equals the summation of all the

counts. If m is probabilities, then mutation.count has to be specified.

Examples

```
suboptimalSigExposures(tumorBRCA[,1], signaturesCOSMIC, 100, optimal.error = NULL, 1.05)
```

Index

```
*Topic 'simulated
    suboptimalSigExposures, 4
*Topic \mathbf{QP}
    findSigExposures, 3
*Topic SA
    {\tt findSigExposures, 3}
*Topic annealing'
    suboptimalSigExposures, 4
*Topic annealing
    decomposeSA, 3
*Topic bootstrap
    bootstrapSigExposures, 2
*Topic method:
    {\tt findSigExposures, 3}
*Topic optimal
    findSigExposures, 3
*Topic or
    {\tt findSigExposures, 3}
*Topic programming
    decomposeQP, 2
*Topic quadratic
    decomposeQP, 2
*Topic simulated
    decomposeSA, 3
*Topic suboptimal
    suboptimal SigExposures, 4
{\tt bootstrapSigExposures, 2}
decomposeQP, 2
decomposeSA, 3
findSigExposures, 3
suboptimalSigExposures, 4
```