Clustering Unsupervised data analysis

Mathieu Lagrange & Diana Mateus mathieu.lagrange@univ-nantes.fr

Table of contents

- 1. Introduction
- 2. Parametric, cost-based clustering
- 3. Parametric, model-based clustering
- 4. Model Selection

Outline

- 1 Introduction
- 2 Parametric, cost-based clustering
 - K-Means
 - K-Medoids
 - Kernel K-Means
 - Spectral Clustering
 - Comparison
- 3 Parametric, model-based clustering
 - Mixture Models
- 4 Model Selection

What is clustering?

Definition (Clustering)

Given *n* unlabelled data points, separate them into *K* clusters.

Dilemma!

- What is a Cluster? (Compact vs. Connected)
- ⊱ How many K clusters? (Parametric vs. Non-parametric)
- Soft vs. Hard clustering. (Model vs. Cost based)
- Data representation. (Vector vs. Similarities)
- Classification vs. Clustering.
- Stability.

Parametric, model-based clustering

Applications

- Retrieval
- ⊱ Compression
- ⊱ Segmentation
- ⊱ Pattern Recognition
- .. _ع

Notation

- $\mathcal{L}^T = \{x_1, x_2, ..., x_N\} \in \mathbb{R}^{d \times N}$ is the data set.
- \vdash d is the feature dimension of x_i .
- $\succeq N$ is the number of instances.
- K is the number of clusters.
- $\nabla = \{C_1, C_2, ..., C_K\}$, where C_k is a partition of \mathcal{X} .
- \succeq $c(x_i)$ is the label/cluster of instance x_i .
- r_{nk} where n is the index of instance and k is the index of cluster.

Objective

Find the clusters ∇ minimizing the cost function $\mathcal{L}(\nabla)$.

Parametric, cost-based clustering

Parametric: *K* is defined.

Cost-based: It is hard-clustering based on the cost function. Selected Algorithms:

- ⊱ K-Means
- ⊱ K-Medoids
- Kernel K-Means
- Spectral Clustering

K-Means

1 Initialize: Pick K random samples from the dataset \mathcal{X}^T as the cluster centroids $\mu_k = \{\mu_1, \mu_2, ..., \mu_K\}$.

Parametric, model-based clustering

- **2** Assign Points to the clusters: Partition data points \mathcal{X}^T into K clusters $\nabla = \{C_1, C_2, ..., C_K\}$ based on the Euclidean distance between the points and centroids (searching for the closest centroid).
- **3** Centroid update: Based on the points assigned to each cluster, a new centroid is computed μ_k .
- 4 Repeat: Do step 2 and 3 until convergence.
- **5 Convergence**: if the cluster centroids barley change, or we have compact and/or isolated clusters. Mathematically, when the cost (distortion) function

$$\mathcal{L}(\nabla) = \sum_{k=1}^{K} \sum_{i \in C_k} ||x_i - \mu_k||^2$$
 is minimum.

Practical issues:

a) The initialization. b) Pre-processing.

Introduction K-Means

Example

K-Means

Example

K-Means

Example

Parametric, model-based clustering

K-Means

K-Means – Algorithm

```
input: Data points \mathcal{X}^T = \{x_1, x_2, ..., x_N\}, number of clusters K
output: Clusters, \nabla = \{C_1, C_2, ..., C_K\}
```

Parametric, model-based clustering

Pick K random samples as the cluster centroids μ_k .

repeat

```
for i = 1 to N do
c(x_i) = \min_{k \in K} ||x_i - \mu_k||_2^2
                                         %Assign points to clusters
end
for k = 1 to K do
\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i
                                          %Update the cluster centroid
```

until convergence;

K-Medoids

K-Medoids I

⊱ K-Medoids algorithm:

1 Initialize: Pick K random samples from the dataset X^T as the medoids $\mu_k = \{\mu_1, \mu_2, ..., \mu_K\}.$

Parametric, model-based clustering

- **2** Assign Points to the clusters: Partition data points \mathcal{X}^{I} into K clusters $\nabla = \{C_1, C_2, ..., C_K\}$ based on the dissimilarity (Manhattan) distance between the points and medoids (searching for the min. dissimilarity).
- 3 Medoids update: Based on the points assigned to each cluster, swap the medoid with a new data point and compute the cost. (undo the swap if the cost is getting increased).
- **Repeat:** Do step 2 and 3 until convergence.
- **6** Convergence: if the cluster medoids barley change. Mathematically, when the cost (distortion) function $\mathcal{L}(\nabla) = \sum_{k=1}^{K} \sum_{i \in C_k} \|x_i - \mu_k\|$ is minimum.

K-Medoids

K-Medoids II

Parametric, model-based clustering

Figure: K-Means vs. K-Medoids

Kernel K-Means I

Definition

It is a generalization of the standard K-Means algorithm.

- What happens if the clusters are not linearly separable?
- Fuclidean distance vs. Geodesic distance.

Figure: Spiral and Jain datasets

Kernel K-Means II

- ⊱ K-Means can not be applied right away.
- \succeq Map the data points $x_i \in \mathcal{X}^T$ to a high dimensional feature space \mathcal{M} using a nonlinear function $\phi(x_i)$.
- Assume the clusters in the high dimensional feature space (RKHS) is linearly separable, hence K-Means can be applied.
- E The cost function would be

$$\mathcal{L}_{\mathcal{K}}(\nabla) = \sum_{k=1}^{K} \sum_{i \in C_k} \left\| \phi(x_i) - \phi(\mu_k) \right\|^2,$$

where
$$\|\phi(x_i) - \phi(\mu_k)\|^2 = \phi(x_i)^T \cdot \phi(x_i) - 2\phi(x_i)^T \cdot \phi(\mu_k) + \phi(\mu_k)^T \cdot \phi(\mu_k)$$
.

Kernel K-Means III

- \succeq Using the kernel trick, $K_{ij} = \phi(x_i)^T \cdot \phi(x_j)$, the Euclidean distance in $\mathcal{L}_{\mathcal{K}}(\nabla)$ can be computed easily using any kernel function K_{ij} without explicitly knowing the nonlinear transformation $\phi(x_i)$.
- Examples of kernel functions (positive semidefinite)
 - **1** Hom. Polynomial kernel: $K_{ij} = (x_i^T x_j)^{\delta}$
 - **2** Inho. Polynomial kernel: $K_{ij} = (x_i^T x_j + \gamma)^{\delta}$
 - 3 Gaussian kernel: $K_{ij} = e^{\frac{-\|x_i x_j\|^2}{2\sigma^2}}$
 - 4 Laplacian kernel $K_{ii} = e^{\frac{-||x_i x_j||}{\sigma}}$
 - **5** Sigmoid kernel: $K_{ij} = \tanh(\gamma(x_i^T x_i) + \theta)$

Kernel K-Means – Algorithm

```
input: Data points \mathcal{X}^T = \{x_1, x_2, ..., x_N\}, Kernel matrix K_{ii},
          number of clusters K
output: Clusters, \nabla = \{C_1, C_2, ..., C_K\}
Pick K random samples as the cluster centroids \mu_k.
repeat
    for i = 1 to N do
         for k = 1 to K do
            Compute \|\phi(x_i) - \phi(\mu_k)\|^2 using K_{ij}
         end
        c(x_i) = \min_{k \in K} \left\| \phi(x_i) - \phi(\mu_k) \right\|^2
    end
    for k = 1 to K do
    \mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i
    end
until convergence;
```


Spectral Clustering

Graph - Overview

- Fully connected, undirected, and wighted graph with N vertices
- \mathcal{E} The graph is represented by $G = \{v, \mathcal{E}, \omega\}$, where v is a set of vertices N, \mathcal{E} is a set of edges, and ω is a set of weights are assigned using a heat kernel as follows to build the Adjacency matrix W

$$W_{ij} = \begin{cases} e^{-\frac{\|x_i - x_j\|_2^2}{\sigma^2}} & e_{ij} \in \varepsilon \\ 0 & else \end{cases}$$

- $\vdash \text{ The degree matrix } D, \text{ where its diagonal elements } D_{ij} = \sum_{i} W_{ij}$
- Compute the Normalized graph Laplacian Matrix

$$\tilde{\mathcal{L}} = I - D^{-1/2} W D^{-1/2}$$

Spectral Clustering – Algorithm

input: Normalized Laplacian Matrix $\tilde{\mathcal{L}}$, number of clusters K **output:** Clusters, $\nabla = \{C_1, C_2, ..., C_K\}$

Parametric, model-based clustering

Compute the firsts K eigenvectors $U = \{u_1, u_2, ..., u_K\} \in \mathbb{R}^{n \times K}$ of

Compute \tilde{U} by normalising the rows to norm 1.

Do K-Means on $\tilde{U} \in \mathbb{R}^{n \times K}$ such that your data points are the rows vectors which have K-dimensions or simply: $\mathcal{D} \leftarrow \tilde{U}^T$.

Pick K random samples as the cluster centroids μ_k .

repeat

```
for i = 1 to n do
     |c(x_i) = \min_{k \in K} ||x_i - \mu_k||_2^2
                                            %Assign points to clusters
    end
    for k = 1 to K do
    \mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i
                                             %Update the cluster centroid
    end
until convergence;
```


Comparison

Comparison

Algorithm	Data Rep.	Comp.	Out.	Cent.
K-Means	Vectors	Low	No	$\notin \mathcal{X}^{T}$
K-Medians	Vectors	High	No	$ otin \mathcal{X}^{T}$
K-Medoids	Similarity	High	Yes	$\in \mathcal{X}^{\mathcal{T}}$
Kernel K-Means	Kernel	High	N/A	$ otin \mathcal{X}^{T}$
Spectral Clustering	Similarity	High	N/A	$ otin \mathcal{X}^{T}$

Comparison

Comparison

https://scikit-

Parametric: *K* and the density function are defined (i.e. Gaussian)

Model-based: It is soft-clustering based on the mixture density f(x).

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x), \quad \text{s.t.} \quad \pi_k \ge 0, \sum_{K} \pi_k = 1,$$

where $f_k(x)$ is the component of mixture. f(x) is a Gaussian Mixture Model (GMM) when $f_k(x) \sim \mathcal{N}(x; \mu_k, \sigma_k^2)$. Degree of Membership:

$$\gamma_{ki} = P[x_i \in C_k] = \frac{\pi_k f_k(x_i)}{f(x_i)}$$

GMM Parameter: $\theta = \{\pi_{1:K}, \mu_{1:K}, \sigma_{1:K}\}.$

Selected Algorithm to estimate the parameter: EM-Algorithm.

Mixture Models

Expectation-Maximization (EM) Algorithm

- \vdash Given data points \mathcal{X}^T sampled i.i.d from an unknown distribution f
- We need to model the distribution using Maximum Likelihood (ML) principle (log-likelihood):

$$l(\theta) = \ln f_{\theta}(\mathcal{X}) = \sum_{i=1}^{N} \ln f_{\theta}(x_i)$$

$$l(\theta) = \sum_{i=1}^{N} \ln \sum_{k=1}^{K} \pi_k f_k(x_i)$$

The objective: $\theta^{ML} = argmax_{\theta}l(\theta)$

Figure: GMM Clustering

000

EM – Algorithm

input: data points \mathcal{X}^T , number of clusters K**output:** Parameters, $\theta^{ML} = \{\pi_{1\cdot K}, \mu_{1\cdot K}, \sigma_{1\cdot K}\}$

Initialize the parameters θ at random.

repeat

```
for i = 1 to N do
       for k=1 to K do \gamma_{ik}=rac{\pi_k f_k(x_i)}{f(x_i)}
                                                                                          %E-Step
end
for k = 1 to K do
\pi_{k} = \frac{1}{N} \sum_{i=1}^{N} \gamma_{ik}  %M-S

\mu_{k} = \frac{1}{N\pi_{k}} \sum_{i=1}^{N} \gamma_{ik} x_{i}

\sigma_{k} = \frac{1}{N\pi_{k}} \sum_{i=1}^{N} \gamma_{ik} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{T}
                                                                                          %M-Step
end
```

until convergence;

Mixture Models

Gmms in action

Introduction

Selecting K

Determining the number of clusters K is a model selection problem that can be answered depending on the application

- ⊱ quantization: rate/distortion tradeoff
- density estimation: bias/variance tradeoff
- ⊱ cluster analysis: data fitness

Data fitness

- Many indicators can be considered to estimate the goodness of fit.
- But it is usually make sense to consider the one considered during the clustering.
- Usually some sort of average intra cluster distance
- \vdash The problem with this kind of criterion is that the average intra class distance $D_K(X)$ over the dataset X decreases monotonously with K.
- need for some sort of normalization.

The Silhouette

The silhouette value for each point is a measure of how similar that point is to points in its own cluster, when compared to points in other clusters.

- ⊱ The silhouette value for the *i*th point, S_i , is defined as $S_i = \frac{(b_i a_i)}{\max(a_i, b_i)}$
- \succeq where a_i is the average distance from the ith point to the other points in the same cluster as i,
- \succeq and b_i is the minimum average distance from the ith point to points in a different cluster, minimized over clusters.

Silhouette

The gap statistic

The idea of the gap statistic

- \vdash is to standardize $D_K(X)$
- by comparing it with is expectation under an appropriate null reference of the distribution of the data.

3

$$Gap_K(X) = \frac{D_K(X)}{D_K(null)}$$

The gap statistic

The gap statistic

Selecting the right null distribution can be of importance.

- ⊱ plain: sample uniformly over the range of observed data
- pca-projected: project the uniform samples over the dataset distribution using pca projection.

Acknowledgment

This course is based on

⊱ slides of Shadi Albarqouni

