Daty laboratoriów: 10.03.2020 r. 17.03.2020 r. 24.03.2020 r.	Laboratorium Sterowania Procesami Dyskretnymi	Prowadzący: Mgr inż. Radosław Idzikowski
Termin:	Temat ćwiczenia:	Wykonali:
WT 9:15		Michał Jaroszczuk
	Problem RPQ	241546
		Radosław Glenc
		241588

1. Tabela z wynikami

	Permutacja naturalna	Sortowanie po r		Schrage z przerwaniami	Schrage na	Schrage z przerwaniami na kolejce priorytetowej	
data10							
Cmax	927	746	687	641	687	641	
Time [s]	0,0000035	0,000048	0,000154	0,0002188	0,0004622	0,0002594	
PRD(π) [%]	44,62	16,38	7,18	0	7,18	0	
data20							
Cmax	1905	1594	1288	1257	1288	1257	
Time [s]	0,0000089	0,000032	0,0005714	0,0005445	0,0013896	0,0004756	
PRD(π) [%]	50,36	25,81	1,66	-0,79	1,66	-0,79	
data50							
Cmax	2843	1915	1516	1492	1516	1492	
Time [s]	0,0000147	0,000054	0,002027	0,0009116	0,006253	0,001062	
PRD(π) [%]	90,55	28,35	1,61	0	1,61	0	
data100							
Cmax	5324	3936	3078	3070	3078	3070	
Time [s]	0,0000484	0,0001512	0,005855	0,001875	0,02575	0,002029	
PRD(π) [%]	73,42	28,21	0,27	0	0,27	0	
	data200						
Cmax	11109	8210	6416	6398	6416	6398	
Time [s]	0,00009	0,0004429	0,08007	0,005048	0,08008	0,004515	
PRD(π) [%]	73,63	28,32	0,28	0	0,28	0	
data500							
Cmax	26706	19609	14819	14785	14822	14785	
Time [s]	0,0001744	0,0007543	0,1171	0,02588	0,4433	0,006798	
PRD(π) [%]	80,63	32,63	0,23	0	0,25	0	

2. Wykresy

3. Wnioski:

- Algorytm Schrage'a działający z przerwaniami jest algorytmem optymalnym.
 Całkowity czas Cmax przy jego użyciu jest najkrótszy. Działa on też w najkrótszym czasie rzeczywistym;
- Zwykłe posortowanie po czasie przygotowania "r" może dać dosyć dobre rezultaty w krótki czasie wykonania algorytmu. Oznacza to, że kiedy potrzebny jest szybko działający ale mało dokładny algorytm należy zastosować sortowanie po "r";
- Ciężko ocenić czy algorytmy Schraga zaimplementowane na kolejkach priorytetowych działają szybciej od tych wykorzystujących strukturę <vector>. Byłoby to możliwe przy przeprowadzeniu serii prób na większych zestawach danych. Wydaje się jednak, że działają one dłużej, ponieważ przy każdym dołożeniu danych do kolejki musi się ona posortować;