EQE512-Calendar

Monday, October 12, 2020 12:36 AM

	Week	Date	Remark Lectures		
	1	5/10	Intro	Defining the solution methods in engineering calcula of algorithms (Gerber beams analysis)	
	(2)	12/10	Theory	Introduction to Programming: PYTHON, Jupyter (Fur	
	3	19/10	Theory	Development of computer algorithms (Determinate	
	4	26/10	Theory	Development of algorithms for parametric calculation (Design of the Determinate Single Degree Freedom S Combinations)	
	5	2/11	Theory	Visualization of the Parametric Analysis Computation constant ductility in nonlinear systems)	
	6	9/11	Theory	Displacement and Force Method in Structural Analyst Displacement Matrices)	
	7	16/11	Theory	Construction of the System Stiffness Matrix (Determ	
	8	23/11	Midterm	Moving loads, Midterm Exam	
	9	30/11	Theory	Development of solution algorigthm using displacem	
	10	7/12	Theory	Development of solution algorigthm using force met	
	11	14/12	Theory	Development of solution algorigthm using direct me	
	12	21/12	Theory	Dynamic characteristics of the systems, computation	
	13	28/12	Theory	Free vibration Analysis and vibration modes (Multi D	
	14	4/1	Theory	Mod superposition and application in Earthquake En	
	15	11/1	TP	Term Project Presentations	
	1 6	18-29/01	Final Exam	Final Exam	

	Assignments	
tions using matrices and development	_	>No closs
ndemental Calculation Techniques	1	
Single Degree of Freedom systems)		Theory of
ns and optimal solution approach systems under Desing Load	2	> Matr. Fyth
ns (Iteratitve computation of the		
is (Calculation of the Force and	3	
inate Truss Systems) (OpenSeesPy)		
	Term Project	47 2 2 2000
ent method (Indeterminate beams)		1 Open series
hod (Indeterminate beams)	4	
thod (Indeterminate beams)		
s (SDOF)	5	
egree of Freedom Systems		
gineering (MDOF)		