Sciences Industrielles de

l'Ingénieur

Application

Révisions – Rapports de transmission

Savoirs et compétences :

Train épicycloïdal – Type 1 – Sécateur Pellenc

D'après ressources de Florestan Mathurin.

Objectif

Vérifier les performances d'un réducteur.

Le moteur tourne à la vitesse de rotation N_1 = 1400 tr/min le (le rotor est lié au planétaire 1). La vis à billes liée au porte-satellite 4 tourne à la vitesse de rotation $N_4 = 350$ tr/min. On note Z_1 le nombre dents du planétaire 1, \mathbb{Z}_2 celui du satellite 2 et \mathbb{Z}_3 celui de la couronne liée au bâti.

1

Question 1 Déterminer alors le rapport de réduction du train épicycloïdal $\omega(4/0)/\omega(1/0)$ en fonction de Z_1 et

Question 2 Faire l'application numérique et déterminer une relation entre Z_1 et Z_3 . Sachant que $Z_1 = 19$ en déduire Z_3 .

Question 3 Sachant que les roues dentées du train ont les mêmes modules, déterminer une relation géométrique entre les diamètres des éléments dentés d_1 , d_2 , d_3 puis en déduire une relation entre Z_2 , Z_1 , Z_3 (condition d'entraxe). Calculer la valeur de Z_2 .

Soupape

Le dessin ci-dessous représente la commande d'ouverture d'une soupape montée sur une moto HONDA 125 CG.

Un dessin simplifié de cette commande est donné sur le document format A3.

Elle comprend:

- un bâti 0 considéré comme fixe;
- une came 1 tournant à 250 rad/s autour d'un point fixe A:
- un linguet **2** ayant un mouvement de rotation autour d'un point fixe *B*;
- une tige de culbuteur **3** transmettant le mouvement à la partie haute du cylindre;
- un culbuteur 4 destiné à inverser le sens du mouvement. Le culbuteur 4 tourne autour d'un point fixe C;
- une soupape 5.

Le dessin est représenté à l'échelle **1,5 : 1**. On veut calculer, pour la configuration donnée, la vitesse de déplacement de la soupape.

Question 1 Calculer la norme $V(I \in 1/0)$ en mm/s.

Question 2 Dessiner la sur le document A3 en adoptant l'échelle : $20 \ mm/s \leftrightarrow 1 \ mm$.

Question 3 En justifiant vos résultats, trouver graphiquement les vitesses suivantes : $\overrightarrow{V(J \in 5/0)}$.

Question 4 Expliquer en dessinant à main levée un croquis du mécanisme à échelle réduite comment trouver le centre instantané de rotation du mouvement 3/0.

Question 5 Situer approximativement la position de ce CIR.

Echelle 1,5 : 1

Commande de soupape