WHAT IS CLAIMED IS:

1	1. A method of designing an integrated circuit having digital and
2	analog circuit portions, said digital and analog circuit portions each having defined
3	functions, comprising:
4	providing an emulation circuit, which is capable of generating noise;
5	affixing said emulation circuit on a test substrate;
6	providing a version of said analog circuit portion having at least some of
7	said defined functions of said analog circuit portion;
8	affixing said analog circuit version on said test substrate; and
9	testing said analog circuit version.
1	2. The method of claim 1 further comprising modifying said analog
2	portion in response to said testing step.
1	3. The method of claim 2 further compromising:
2	repeating said affixing emulation circuit step, said analog circuit portion
3	providing step, said analog circuit portion version affixing step and said analog circuit
4	portion version testing circuit step so that a version of said analog circuit portion having
5	all of said defined functions of said analog circuit portion, with acceptable response to
6	said noise effects under operating conditions is obtained.
1	4. The method of claim 1 further comprising:
2	providing a version of said digital circuit portion having all of said defined
3	functions of said digital circuit portion; and
4	affixing said digital circuit portion version to an integrated circuit
5	including said version of said analog circuit portion having all of said defined functions of
6	said analog circuit portion, with acceptable response to said noise effects under operating
7	conditions.
1	5. The method of claim 4 wherein said digital circuit portion
2	providing step includes testing said defined functions of said digital circuit portion
3	separately from said analog circuit portion.

1 .	6. The method of claim 5 wherein said digital circuit portion testing	g
2	includes programming an FPGA for testing said defined functions of said digital circui	t
3	portion.	
1	7. The method of claim 5 wherein said digital circuit portion testing	g
2	includes simulating said defined functions of said digital circuit portion.	
1	8. The method of claim 1 wherein said emulation circuit comprises	at
2	least one array comprising at least one shift register.	
1	9. The method of claim 8, wherein said testing said analog circuit	
2	version is performed while alternately shutting off and turning on at least one array.	
1	10. The method of claim 8, wherein said shift register comprises:	
2	a plurality of flip-flops, each having a clock input for receiving a clock	
3	input signal, and each storing a data bit; and	
4	a plurality of interconnecting logic blocks, wherein said plurality of flip	-
5	flops couple to each other through said plurality of interconnecting logic blocks	
6	sequentially, and wherein said data bits form a data pattern.	
1	11. The method of claim 10, wherein said testing said analog circuit	
2	version is performed while applying a signal at said clock input.	
1	12. The method of claim 11, wherein said testing said analog circuit	
2	version is performed while varying said clock input signal.	
1	13. The method of claim 10 wherein said testing said analog circuit	
2	version is performed while varying said data pattern.	
1	14. The method of claim 10, wherein said interconnecting logic block	ks
2	comprise Exclusive-Or gates, and wherein said testing said analog circuit version is	
3	performed while varying said data pattern using said Exclusive-Or gates.	
1	15. The method of claim 10, wherein said interconnecting blocks	
2	comprise a plurality of logic paths, wherein each logic path is comprised of differing	
3	amounts of logic gates, and wherein said testing of said analog circuit portion is	
4	performed while alternately selecting from among said plurality of logic paths.	

1	16. The method of claim 10, wherein at least one of said flip-flops is
2	coupled to an equal number of pads through an equal number of output drivers, which
3	may be enabled and disabled.
1	17. The method of claim 16, wherein said testing of said analog circuit
2	portion is performed while enabling and disabling said output drivers.
1	18. The method of claim 1 wherein said analog circuit portion includes
2	an RF circuit subportion.
1	19. The method of claim 1, wherein a number of gates in said
2	emulation circuit is substantially equivalent to a number of gates in said digital circuit
3	portion.
1	20. An integrated circuit having digital and analog circuit portions, said
2	digital circuit portion comprising a digital noise emulation circuit, wherein said digital
3	noise emulation circuit comprises:
4	a control block;
5	at least one array, which comprises at least one shift register; and
6	a plurality of pads.
1	21. The integrated circuit of claim 20, wherein each array comprises a
2	plurality of flip-flops coupled to each other through interconnecting logic blocks.
1	22. The integrated circuit of claim 21, wherein said flip-flops and
2	interconnecting logic blocks are coupled sequentially.
1	23. The integrated circuit of claim 22 wherein said control block
2	comprises:
3	a plurality of configuration registers;
4	at least one input line;
5	a decoder block for selecting one of said configuration registers for
6	updating from said at least one input line.

portion in response to said testing.

1	24. The integrated circuit of claim 23, wherein said interconnecting
2	logic blocks comprise a plurality of logic paths, each path comprising a different amount
3	of logic gates.
1	25. The integrated circuit of 24, wherein said plurality of logic paths
2	are under control of one of said configuration registers.
1	26. The integrated circuit of claim 23, wherein said interconnecting
2	logic blocks comprise an Exclusive-Or gate.
1	27. The integrated circuit of claim 26, wherein said exclusive-or gates
2	receive at least one input from one of said configuration registers.
1	28. The integrated circuit of claim 23, wherein at least one flip-flops
2	couples to an equal number of said plurality of pads.
1	29. The integrated circuit of claim 28, wherein said at least one flip-
2	flops couples to an equal number of said plurality of pads though an equal number of
3	output drivers.
1	The integrated circuit of claim 29, wherein said output drivers ma
2	be enabled and disabled by one of said configuration registers.
1	31. A method of designing an integrated circuit having digital and
2	analog circuit portions, said digital and analog circuit portions each having defined
3	functions, comprising:
4	providing an emulation circuit, which is capable of generating noise, and
5	which comprises a plurality of logic elements;
6	affixing said emulation circuit on said integrated circuit;
7	providing a version of said analog circuit portion having at least some of
8	the defined functions of said analog circuit portion;
9	affixing said analog circuit version on said integrated circuit;
10	testing said analog circuit version.
1	32. The method of claim 31 further comprising modifying said analog

1	33. The method of claim 32 further compromising:
2	repeating said affixing emulation circuit step, said analog circuit portion
3	providing step, said analog circuit portion version affixing step and said analog circuit
4	portion version testing circuit step so that a version of said analog circuit portion having
5	all of said defined functions of said analog circuit portion, with acceptable response to
6	said noise effects under operating conditions is obtained.
1	34. The method of claim 31 further comprising reconnecting said logic
2	elements to provide for said digital portion.
1	35. The method of claim 31, wherein said noise generated by said
2	emulation circuit is substantially equivalent to said digital circuit portion.
1	36. An integrated circuit having digital and analog portions, designed
2	by a process comprising:
3	providing an emulation circuit, which generates noise;
4	affixing said emulator circuit on a test substrate;
5	providing a version of said analog circuit portion having at least sone of
6	said defined functions of said analog circuit portion;
7	affixing said analog circuit version on said test substrate; and
8	testing said analog circuit version.
1	37. The integrated circuit of claim 36, designed by a process further
2	comprising modifying said analog portion in response to said testing step.
1	38. The integrated circuit of claim 37, designed by a process further
2	compromising:
3	repeating said affixing emulation circuit step, said analog circuit portion
4	providing step, said analog circuit portion version affixing step and said analog circuit
5	portion version testing circuit step so that a version of said analog circuit portion having
6	all of said defined functions of said analog circuit portion, with acceptable response to
7	said noise effects under operating conditions is obtained.
1	39. The integrated circuit of claim 36, designed by a process further
2	comprising:

3	providing a version of said digital circuit portion having all of said defined
4	functions of said digital circuit portion; and
5	affixing said digital circuit portion version to an integrated circuit
5	including said version of said analog circuit portion having all of said defined functions of
7	said analog circuit portion, with acceptable response to said noise effects under operating
3	conditions.
1	40. The integrated circuit of claim 36 wherein said emulation circuit
2	has at least one array comprising at least one shift register.
1	41. The integrated circuit of claim 40, wherein said shift register
2	comprises:
3	a plurality of flip-flops, each having a clock input for receiving a clock
4	input signal, and each storing a data bit; and
5	a plurality of interconnecting logic blocks, wherein said plurality of flip-
6	flops couple to each other through said plurality of interconnecting logic blocks
7	sequentially, and wherein said data bits form a data pattern.
1	42. The integrated circuit of claim 36 wherein said analog circuit
2	portion includes an RF circuit subportion.
1	43. The integrated circuit of claim 36, wherein a number of gates in
2	said emulation circuit is substantially equivalent to a number of gates in said digital
3	circuit portion.