ANÁLISIS NUMÉRICO MÉTODO POSICIÓN FALSA

Julián Ricardo Rizo Andrés Felipe Becerra

Andrés Mauricio Garcia M.

Andres Felipe Ramirez V.

Condiciones

Debe existir seguridad sobre la continuidad de la función f(x) en el intervalo [a,b]

f(a) y f(b) deben tener signos opuestos

$\cos(2x)^2-x^2$

```
Primer intervalo 0
Segundo Intervalo 1
Error torelable: 0.00000001
Iteracion-1, x2 = 0.54739876 and f(x2) = -0.08967393
Iteracion-2, x2 = 0.50235098 and f(x2) = 0.03530387
Iteracion-3, x2 = 0.51507613 and f(x2) = -0.00039935
Iteracion-4, x2 = 0.51493379 and f(x2) = -0.00000147
Iteracion-5, x2 = 0.51493327 and f(x2) = -0.00000001
Raiz requerida es: 0.51493327
```

Comprobación

```
y = lambda x : math.cos(2*x)**2 - x**2
print('%0.38f' % y(0.514933266590332561207787875900976))
```

-0.00000000539314920500189032281923573464

$f(x)=x\sin(x)-1 \text{ en } [-1,2]$


```
~ + Ⅲ 前 ^ ×
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
                                                  1: Python
Iteracion0-394525, x2 = 1.114157 and f(x2) = 0.000000
Iteracion 0-394526, x2 = 1.114157 and f(x2) = 0.000000
Iteracion0-394527, x2 = 1.114157 and f(x2) = 0.000000
Iteracion 0-394528, x2 = 1.114157 and f(x2) = 0.000000
Iteracion0-394529, x2 = 1.114157 and f(x2) = 0.000000
Iteraciono-394530, x2 = 1.114157 and f(x2) = 0.000000
Iteracion0-394531, x2 = 1.114157 and f(x2) = 0.000000
Iteracion0-394532, x2 = 1.114157 and f(x2) = 0.000000
Iteracion0-394533, x2 = 1.114157 and f(x2) = 0.000000
Iteracion0-394534, x2 = 1.114157 and f(x2) = 0.000000
Iteracion0-394535, x2 = 1.114157 and f(x2) = 0.000000
Interaction 0-394536, x^2 = 1.114157 and f(x^2) = 0.000000
                                                  Ln 6, Col 23 Spaces: 4 UTF-8 CRLF Python 🔊 🚨
```


$$F(X)=X^3 - 2X^2 + (4/3)^X - 8/27$$