Epreuve disponible sur www.emergencetechnocm.com

Ministère des Enseignements Secondaires

Spécialité : $F_{1-2-3-4-5-7-8}$,CI Office du Baccalauréat du Cameroun **Épreuve**: Mathématiques Durée: 3 heures Coefficient: 3 L'épreuve comporte deux exercices et un problème sur deux pages. **EXERCICE 1:** 4 points On considère la suite (U_n) définie par : $U_0 = 1$ et pour tout entier naturel n, $U_{n+1} = \frac{U_n + 2}{U_n}$. **EXERCICE 1:** 4 points 1. Calculer U_1, U_2, U_3 et U_4 . **2.** On pose $V_n = \frac{U_n - 2}{U_n + 1}$. (a) Montrer que (V_n) est une suite géométrique dont on précisera le premier terme et la raison. 1pt (b) Exprimer V_n , puis U_n , en fonction de n. 1pt (c) Déterminer la limite de la suite (U_n) . 1pt **EXERCICE 2:** 5 points Les parties A et B de cet exercice sont indépendantes. A/ L'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soit (S) l'ensemble des points M(x, y, z) tels que $x^2 + y^2 + z^2 + 2x + 4y - 2z + 1 = 0$. 1. Montrer que (S) est une sphère dont on précisera le centre Ω et le rayon r. 0,5pt **2.** (a) Vérifier que le point A(-1,0,2) appartient à (S). 0,25pt (b) Donner une équation du plan tangent à (S) en A. 0,5pt **3.** Soit (P) le plan d'équation z = 2. (a) Calculer la distance du point Ω au plan (P). 0,5pt (b) Montrer que l'intersection de (S) et (P) est un cercle dont on précisera le centre et le rayon. 0,75pt**B**/ Le plan complexe est rapporté au repère orthonormé (O, \vec{u}, \vec{v}) . On considère le point K(2,0). A tout point M(x,y) différent de K et d'affixe z, on associe le point M'(x,y') d'affixe $z' = \frac{z+2}{z-2}$, où z = x+iy et z' = x'+iy'. 1. Écrire z' sous forme algébrique. 0,75pt 2. Soit (H) l'ensemble des points M tels que z' soit imaginaire pur. (a) Montrer que (H) est une partie d'une hyperbole dont on précisera les sommets et les asymptotes. 1pt **(b)** Tracer (*H*). 0,75pt

Examen: Baccalauréat Session: 2016

PROBLEME: 11 points

Les parties A et B du problème sont indépendantes.

PARTIE A: 8,5 points

On considère la fonction f définie sur \mathbb{R} par $f(x) = x - \frac{e^x - 3}{e^x + 1}$ et on note (C_f) la courbe représentative de f dans le plan rapporté au repère orthonormé (O, \vec{i}, \vec{j}) (unité sur les axes : 2cm)

- **1.** (a) Calculer les limites de $f \grave{a} \infty$ et $\grave{a} + \infty$. 0,5pt
 - **(b)** Montrer que la droite (D_1) d'équation y = x + 3 est asymptote à (C_f) à $-\infty$. **0,5pt** On admet que la droite (D_2) d'équation y = x - 1 est asymptote à (C_f) à $+\infty$.
- **2.** (a) Vérifier que pour tout réel x, on a : $f'(x) = \left(\frac{e^x 1}{e^x + 1}\right)^2$. 0,5pt (b) Dresser le tableau de variations de f. 0,75pt
- 3. (a) Montrer que le point I(0,1) est le centre de symétrie de la courbe (C_f) . 0,5pt
 - (b) Donner une équation de la tangente (T) à (C_f) au point I. 0,25pt
- **4.** Étudier la position de la courbe (C_f) par rapport à la droite d'équation y = 1. 0,5pt
- 5. Montrer que l'équation f(x) = 0 admet une solution unique α telle que

$$-2,8 < \alpha < -2,7.$$
 0,5pt

- 2pts
- 6. Tracer (C_f) , ses asymptotes et la tangente (T). 7. (a) Vérifier que pour tout réel x, $f(x) = x + 3 \frac{4e^x}{e^x + 1}$. 0,5pt
 - (b) En déduire les primitives de f sur \mathbb{R} . 0,5pt
- **8.** Soit λ un réel strictement positif. On note (E_{λ}) le domaine du plan limité par la courbe (C_f) , la droite (D_2) et les droites d'équations respectives x = 0 et $x = \lambda$.
 - (a) Hachurer (E_2) sur le graphique de la question 4. 0,5pt
 - **(b)** Calculer en cm^2 et en fonction de λ , l'aire \mathscr{A}_{λ} de (E_{λ}) . 0,5pt
 - (c) Calculer la limite quand λ tend vers $+\infty$ de \mathscr{A}_{λ} . 0,5pt

PARTIE B: 2,5 points

On considère les équations différentielles : (E_1) : 2y''- y'- y = 2; (E_2) : 2y''- y'- y = 0.

- 1. Montrer qu'il existe une fonction constante f_0 solution de (E_1) . 0,5pt
- 2. Montrer qu'une fonction f est solution de (E_1) si, et seulement si, $f f_0$ est solution de (E_2) . 0,5pt
- **3.** Résoudre (E_2) . 1pt
- **4.** En déduire les solutions de (E_1) . 0,5pt