

Eye-tracking à domicile, le machine learning au service des sciences cognitives

Antoine Lucas - Julien Petot - Flavie Thevenard

4 axes d'attaques pour concentrer les réflexions.

1 - Recueil des données

1.1 L'outil

Gaze recorder:

- reconnaissance du visage
- position des yeux
- trouver le regard

Points positifs	Points négatifs	
Gratuit	Qualité	
Sortie txt	Durée	
Facile a prendre en main	Contraignant (immobilité)	
Téléchargement simple	Peu de biblio	

1.2 Les stimuli

16 cockpits : interfaces homme-machine complexe

Critère de choix des Stimuli : design épuré, intégration de l'écran, ergonomie → Maximisation de la variabilité

1.3 Protocole

Résultat : 34 consommateurs x 16 stimuli

→ 544 individus statistiques

1.4 Vérification des données

Calibration : emplacement enregistrés de coordonnées réels

- Outil de discrimination de la qualité
- Travail "manuel" → manque automatisation

Tri: J'aime / J'aime pas → classes d'apprentissage

- Manque : Changement d'avis - 2e tri final

2 - Génération d'images : Inputs de notre classifieur

Données brutes

Données Translatées

Combinaison linéaire pondérée grâce aux vecteurs *"cluster → barycentre"*

Données corrigées

2.2 Présentation des données

2.2 Présentation des données

Chaque type de heatmap traduit une façon de coder l'information

Heatmaps statiques

Heatmaps dynamiques

Heatmaps sur AOI

Heatmaps signées

Normaliser les heatmaps

3 - Machine learning

3.1 Le modèle : CNN

<u>Heatmaps</u>: variables explicatives

3.2 Performances du modèle

Tableau comparatif des performances de notre classifieur selon le type de données

	Nombre d'image	Précision de classification
Heatmaps correctes corrigées	196	0.5
Heatmaps correctes non corrigés	196	0.5
Heatmaps parfaites non corrigées	57	0.5
Heatmaps simulées	100	0.99

4 - Interprétabilité

4.1 Algorithme

LIME (Local Interpretable Model-agnostic Explanations)

4.2 Résultats

Zones déterminantes

Label 2

Label: 2

Prochaines étapes:

Bilan:

On est déçus de ne pas pouvoir monter notre start-up dès demain

Merci à Mr.Lê et à Muriel ainsi qu'à tous ceux qui sont venus se cramer la rétine!

Merci pour votre attention!

4 axes d'attaques pour concentrer les réflexions.

1. Recueil de données

- a. L'outil
- b. Le protocole
- c. La donnée

Génération des inputs ML

- a. Développement d'une méthode de correction
- b. Application à nos données
- c. Autres idées de correction

3. ML

- a. le choix du modèle + forme des datas
- b. résultats

4. Interprétabilité

- a. interprétabilité et choix (parler des fakes datas?)
- 5. Comment améliorer le projet ?

1) Mise en situation - Prise en main et structure

- Problématique d'étude : L'interprétabilité en machine Learning permet-elle de comprendre des données subjectives et implicites tel que l'hédonisme dans le regard ?
- Objectif de la mise en œuvre
 - Reproductibilité
 - Générer des données de eye-tracking qui traduisent l'hédonisme
 - Interpréter des résultats de ML présentés comme images (LIME)

1) Mise en situation - Première semaine : fondation

- Les outils:
 - Des attentes logiciel :
 - · Webcam, forme données, gratuité
 - Nos moyens :
 - Des webcams intégrés et des caméras
 - Nos ordinateurs
 - R ou python
 - Ce qu'on aimerait :
 - Une caméra Tobi
- Envisager l'interprétation
 - Le regard traduit l'hédonisme ?
 - Chemin d'analyse du stimuli ? L'ordre ? La durée ?
 - Traduire ces idées en visualisation pour un algorithme

2) Recueil des données - le nudge

- Le nudge :
 - Incitation douce pour modifier le comportement
- Données implicites :
 - Conserver la dimension subjective
 - Le regard ne veut pas dire aimer
- Plusieurs tentatives:
 - Une vidéo « explicative »
 - Appréciation dichotomique
 - Expression faciale
 - Phrasé axé marketing et appréciation

2 - Recueil de donnée - questionnaire

- recueil de co-variables pouvant ajouter de l'information aux heatmaps obtenues
- Des variables sur l'importance des éléments d'un véhicule, propre aux produits mais évalués par un conso et des variables sur le consommateur et son rapport à la conduite
- retour conso sur le protocole, implicit et cognitif ont besoin d'une forme de validation

- typologie de conso et relier ça aux résultats et retour senso
- On a que des étudiants donc le panel manque peut etre de variétés mais ils ont un rapport difféent au fait de consuire : autant dans l'appréciation que dans l'usage que dans la multiplicité de leur véhicule (usage = ville ou campagne par ex)

2 - Recueil de donnée - limites

Critique protocole:

- stimuli papier ≠ stimuli sur écran numérique.
- changement d'avis pendant visualisation longue ⇒ étiquetage imparfait de nos stimulis
 - limite des perspectives d'études
- début du regard toujours au même endroit (fin de la calibration)
- tâche aliénante

Autres inputs possibles

- heatmaps temporelle → donner de la valence au temps.
- Heatmaps sur AOI.
- Normalisation par ind / cockpit pour donner plus d'importance au temps.

- heatmap signée → intégrer un commentaire conso sur chacune des heatmaps et demander à l'utilisateur les caractéristiques des zones d'intensité sur le liking
- ajouter des co-variables (questionnaire) en plus d'une image dans un modèle de ML.

2.3 Autre pistes de correction

Ce que l'on a fait : classification par ACP + HCPC des points

Ce que l'on pourrait faire :

- gaussienne pour apporter plus d'importance aux centres de chaque classes
- grilles de correction

Analyser la qualité de nos données :

- utiliser les 25 carrés pour evaluer la fiabilité des corrections appliqués.
- mise en place d'un score pour sélectionner les "belles" données.
- → exploiter uniquement les enregistrement bien calibrés

3.1 Les données en entrée

On a donc a un jeu de données avec :

- la variable réponse d'appréciation Y qualitative à 2 modalités : 16x34 observations
- les heatmaps générées pour les entrées de notre modèle : 16x34 tableau 3D

Vérifiez certaines hypothèses :

<u>FigureX</u>: <u>Effet des différents stimulis sur</u> <u>l'appréciation</u>

3.3 Données simulées

Label 1

Label 2

