Stat 202C Homework #2 (10 points)

Due: June 9th on CCLE.

Problem 1. Consider the Markov kernel for the five families living in a pacific island, that we studied in HW1.

$$K_0 = \begin{pmatrix} 0.2, & 0.8, & 0.0, & 0.0, & 0.0 \\ 0.3 & 0.0, & 0.4, & 0.0, & 0.3 \\ 0.1, & 0.4, & 0.0, & 0.5, & 0.0 \\ 0.0, & 0.0, & 0.4, & 0.2, & 0.4 \\ 0.0, & 0.0, & 0.3, & 0.6, & 0.1 \end{pmatrix}$$

This transition matrix defines a directed graph $G = \langle V, E \rangle$ where $V = \{1, 2, 3, 4, 5\}$ is the set of states, and $E = \{e = (x, y) : K(x, y) > 0\}$ is a set of directed edges. You know invariant probability $\pi(x)$ for the five states $x \in \{1, 2, 3, 4, 5\}$; and λ_{slem} in HW1.

Now let's try to verify the bounds of λ_{slem} by the following two concepts that we studied in class – bottleneck and conductance. Since we have only 5 states, we can calculate the two quantities by enumerating all the paths and subsets in a brute-forth way.

1. Which edge e = (x, y) is the bottleneck of G? (you may make a guess based on the graph connectivity first, and then calculate by its definition); and calculate the Bottleneck κ of the graph G. Verify the Poincaré inequality:

$$\lambda_{\text{slem}} \leq 1 - \frac{1}{\kappa}.$$

2. Calculate the Conductance h of the graph G. Verify the Cheeger's inequality:

$$1 - 2h \le \lambda_{\text{slem}} \le 1 - \frac{h^2}{2}.$$

3. Now, since we know π , we can design the "dream" matrix K^* that converges in one step. Then $\lambda_{\text{slem}} = 0$ for K^* . Rerun your code above to calculate the Conductance h for K^* . Verify the Cheeger's inequalities.

Problem 2. For problem 1 above, we have the invariant probability π and the dream matrix K^* . Now we design a Metropolised Gibbs sampler for π . Each time, it proposes 4 possible states to move, excluding its current state. The proposal probability for each candidate state i is proportional to it probability $\pi(i)$, and then the proposal is accepted by a Metropolis step. Calculate the new transition matrix K_{MGS} .

Check whether K_{MGS} dominates K_2 in the Pushin order:

$$K_{\text{MGS}}(x,y) \ge K^*(x,y), \forall x \ne y.$$

I.e. the off-diagonal elements of K_{MGS} are no less than that of K^* . Simulate 500 samples X(1), ..., X(500) from K^* and K_{MGS} respectively.

- 1. Calculate, plot and compare the auto-correlations $Corr(\tau)$ from the two sequences above for $\tau = 1, 2, 3, 4, ..., 10$. Which transition matrix has lower auto-correlation? [The auto-correlation is the correlation of two variables X(i) and $X(i + \tau)$ with i being a moving index.]
- 2. Suppose we estimate the expectation $\theta = \sum_i \pi(x) x^2$ using the 500 samples from each Markov chain simulation respectively, which transition matrix yields better estimate?