

Arm Cortex-X3 (MP141)

Software Developer Errata Notice

Date of issue: 07-Mar-2023

Non-Confidential Document version: 11.0

This document contains all known errata since the rOpO release of the product.

Non-confidential proprietary notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with [®] or [™] are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2023 Arm® Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product status

The information in this document is for a product in development and is not final.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on Arm Cortex-X3 (MP141), create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be offensive. Arm strives to lead the industry and create change.

If you find offensive language in this document, please email terms@arm.com.

Contents

r1p0 implementat	ion fixes	8			
Introduction		9			
Scope		9			
Categorization	n of errata	9			
Change Control		10			
Errata summary ta	able	16			
Errata description	s	22			
Category A		22			
Category A (ra	ure)	22			
Category B		23			
2070301	Disabling of data prefetcher with outstanding prefetch TLB miss might cause a deadlock	23			
2133701	Trace data might get overwritten in TRBE FILL mode	25			
2138930	The CPP instruction will apply to an incorrect EL context	26			
2147714	A CFP instruction might not invalidate the correct resources	27			
2156436	Enabling TRBE might cause a data write to a page with the wrong ASID when owning Exception level is EL1	28			
2184829	Instruction cache contents might be corrupted when a speculative instruction fetch is initiated for non-cacheable page	30			
2188426	Update to MPMM Configuration might not modify MPMM behavior	31			
2214778	PDP deadlock due to CMP/CMN + B.AL/B.NV fusion	32			
2222929	TRBE might cause a data write to an out-of-range address which is not reserved for TRBE	33			
2266875	A CFP instruction might execute with incorrect upper ASID or VMID bits	34			
2302506	Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch	35			
2313909	Denied power down request might prevent completion of future power down request	36			
2372204	Translation table walk folding into an L1 prefetch might cause data corruption	37			
2390455	5 A continuous stream of incoming DVM syncs may cause TRBE to prevent the core from forward progressing				
2615812	Entry into the Full Retention power mode might cause corruption on Itag and BTB RAMs	39			
2641945	L1 hardware prefetcher might cause deadlock	40			
2701951	The core might fetch stale instruction from memory when both Stage 1 Translation and Instruction Cache are Disabled with Stage 2 forced Write-Back	41			

274	2421	Page crossing access that generates an MMU fault on the second page could result in a livelock	43			
274	3088	The core might deadlock during powerdown sequence	44			
277	79509	The PE might generate memory accesses using invalidated mappings after completion of a DVM SYNC operation	45			
Catego	ry B (ra	re)	45			
Catego	ry C		46			
188	80119	Noncompliance with prioritization of Exception Catch debug events	46			
207	'3992	Tag Check Fault might not be reported for some Vector Load instructions with SP as base register	48			
210	8450	Speculative access to a recently unmapped physical address previously containing page tables might occur	49			
211	3892	L2 tag single-bit ECC error might cause deadlock when using the SIP prefetcher	50			
211	5480	L1D_CACHE_INVAL and L2D_CACHE_INVAL PMU events fail to increment for SnpPreferUnique and SnpPreferUniqueFwd	51			
211	5856	Data abort on SVE first fault load might be routed to incorrect Exception level	52			
211	7121	MPAM value associated with instruction fetch might be incorrect	53			
211	7589	Hardware prefetcher PMU events count incorrectly	54			
211	9356	6 L2 data RAM or L2 TQ data RAM might fail to report ECC errors				
214	1643	A64 WFI or A64 WFE executed in Debug state suspends execution indefinitely	56			
214	2812	PMU Event MEM_ACCESS_CHECKED_WR, 0x4026 counts incorrectly and MEM_ACC_CHECKED 0x4024 might be incorrect	58			
214	3137	Some SVE PMU events count incorrectly	59			
215	4264	FAR_ELx contents for a Data Abort exception on SVE first fault contiguous load instruction due to Tag Check fail might be incorrect	61			
215	9151	Direct access of L2 data RAMs using RAMINDEX returns incomplete data	62			
216	5452	PMU_HOVFS event is not always exported when self-hosted trace is disabled	63			
217	79550	An SError might not be reported for an atomic store that encounters data poison	64			
218	39539	64 bit source SVE PMULLB/T not considered Cryptography instruction	65			
222	27172	Streaming writes to memory mapped Non-shareable and write-back might cause data corruption because of reordering	66			
223	80110	Reads of DISR_EL1 incorrectly return 0s while in Debug State	67			
223	31012	Incorrect sampling of SPE events "Partial predicate" and "Empty predicate" for SVE instruction with no vector operands	68			
223	32775	Read or write from Secure EL1 for ICV_BPR1_EL1 register might not work	69			
223	3619	Lower priority exception might be reported when abort condition is detected at both stages of translation	70			
222	84039	DRPS instruction is not treated as LINDEFINED at FLO in Debug state	71			

Arm Cortex-X3 (MP141) Software Developer Errata Notice

2237091	ESR_ELx contents for a Data Abort exception might be incorrect when an L1D tag double bit error is encountered	72
2240293	TRBE might use incorrect Cacheability attributes for TRBE data when address translation is disabled	73
2240363	Incorrect sampling of SPE events "Partial predicate" and "Empty predicate" for SVE instruction with vector operands in certain configurations	74
2243142	L1 MTE Tag poison is not cleared	75
2243856	ELR_ELx[63:48] might hold incorrect value when PE disables address translation	76
2252367	L1 Data poison is not cleared by a store	77
2275209	SPE, PMU event for full/partial/empty/not full predicate might be incorrect for some SVE instructions	78
2277321	PMU L1D_CACHE_REFILL_OUTER is inaccurate	80
2299191	L2 tag RAM double-bit ECC error might lead to the PE not responding to a forwarding snoop	81
2302585	CSSELR_EL1.TnD is RAZ/WI when CSSELR_EL1.InD == 0x1	82
2307825	ESR_ELx.ISV can be set incorrectly for an external abort on translation table walk	83
2312833	ESR_ELx contents for a Data Abort exception might be incorrect when a data double bit error or external abort is encountered	84
2343688	STALL_BACKEND_MEM, Memory stall cycles AMU event count incorrectly	85
2351560	ERXPFGCDN_EL1 register is incorrectly written on Warm reset	86
2359164	Incorrect read value for Performance Monitors Configuration Register	87
2390828	PMU MEM_ACCESS_CHECKED_RD and MEM_ACCESS_CHECKED_WR inaccurate	88
2391679	Software-step not done after exit from Debug state with an illegal value in DSPSR	89
2409463	Incorrect read value for Performance Monitors Control Register	90
2409683	Incorrect sampling of SPE events "tlb_access" for an unaligned SVE load instruction with no active elements	91
2441604	PMU STALL_SLOT_BACKEND and STALL_SLOT_FRONTEND events count incorrectly	92
2612736	Read to dump the instruction cache contents while in Debug state results in deadlock	93
2652014	FAR_ELx contents for a Data Abort exception on SVE first fault contiguous load instruction due to Tag Check fail might be incorrect	94
2676363	Execution of STG instructions in close proximity might cause loss of MTE allocation tag data	95
2693826	MTE tag check fail seen on first half of a cache-line crossing load does not get reported	96
2693832	MTE checked load might read an old value of allocation tag by not complying with address dependency ordering	97

Arm Cortex-X3 (MP141) Software Developer Errata Notice

2704518	Incorrect value reported for SPE PMU event SAMPLE_FEED	98
2712633	Incorrect read value for Performance Monitors Configuration Register EX field	99
2728439	TRBE buffer write translation out of context may have incorrect memory attributes	100
2736659	AMU Event 0x0011, Core frequency cycles might increment incorrectly when the core is in WFE state	101
2755355	Incorrect value reported for SPE PMU event 0x4000 SAMPLE_POP	102
2798803	Incorrect decoding of SVE version of PRF* scalar plus scalar instructions	103
2799686	ECC errors in MTE allocation tags may lead to silent data corruption in tag values	105
2813383	PE might fail to detect multiple uncorrectable ECC errors in the L1 data cache tag RAM $$	106
2813407	Incorrect timestamp value reported in SPE records when timestamp capture is enabled	107

r1p0 implementation fixes

Note the following errata might be fixed in some implementations of r1p0. This can be determined by reading the REVIDR_EL1 register where a set bit indicates that the erratum is fixed in this part.

REVIDR_EL1[0]	2641945 L1 hardware prefetcher might cause deadlock
---------------	---

Note that there is no change to the MIDR_EL1 which remains at r1p0. Software will identify this release through the combination of MIDR_EL1 and REVIDR_EL1.

Introduction

Scope

This document describes errata categorized by level of severity. Each description includes:

- The current status of the erratum.
- Where the implementation deviates from the specification and the conditions required for erroneous behavior to occur.
- The implications of the erratum with respect to typical applications.
- The application and limitations of a workaround where possible.

Categorization of errata

Errata are split into three levels of severity and further qualified as common or rare:

Category A	A critical error. No workaround is available or workarounds are impactful. The error is likely to be common for many systems and applications.
Category A (Rare)	A critical error. No workaround is available or workarounds are impactful. The error is likely to be rare for most systems and applications. Rare is determined by analysis, verification and usage.
Category B	A significant error or a critical error with an acceptable workaround. The error is likely to be common for many systems and applications.
Category B (Rare)	A significant error or a critical error with an acceptable workaround. The error is likely to be rare for most systems and applications. Rare is determined by analysis, verification and usage.
Category C	A minor error.

Change Control

Errata are listed in this section if they are new to the document, or marked as "updated" if there has been any change to the erratum text. Fixed errata are not shown as updated unless the erratum text has changed. The **errata summary table** identifies errata that have been fixed in each product revision.

07-Mar-2023: Changes in document version v11.0

No new or updated errata in this document version.

16-Dec-2022: Changes in document version v10.0

ID	Status	Area	Category	Summary
2742421	New	Programmer	Category B	Page crossing access that generates an MMU fault on the second page could result in a livelock
2743088	New	Programmer	Category B	The core might deadlock during powerdown sequence
2779509	New	Programmer	Category B	The PE might generate memory accesses using invalidated mappings after completion of a DVM SYNC operation
2728439	New	Programmer	Category C	TRBE buffer write translation out of context may have incorrect memory attributes
2736659	New	Programmer	Category C	AMU Event 0x0011, Core frequency cycles might increment incorrectly when the core is in WFE state
2755355	New	Programmer	Category C	Incorrect value reported for SPE PMU event 0x4000 SAMPLE_POP
2798803	New	Programmer	Category C	Incorrect decoding of SVE version of PRF* scalar plus scalar instructions
2799686	New	Programmer	Category C	ECC errors in MTE allocation tags may lead to silent data corruption in tag values
2813383	New	Programmer	Category C	PE might fail to detect multiple uncorrectable ECC errors in the L1 data cache tag RAM
2813407	New	Programmer	Category C	Incorrect timestamp value reported in SPE records when timestamp capture is enabled

10-Aug-2022: Changes in document version v9.0

ID	Status	Area	Category	Summary
2302506	Updated	Programmer	Category B	Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch
2701951	New	Programmer	Category B	Core might fetch stale instruction from memory when both Stage 1 Translation and Instruction Cache are Disabled with Stage 2 forced Write-Back
2652014	New	Programmer	Category C	FAR_ELx contents for a Data Abort exception on SVE first fault contiguous load instruction due to Tag Check fail might be incorrect
2676363	New	Programmer	Category C	Execution of STG instructions in close proximity might cause loss of MTE allocation tag data
2693826	New	Programmer	Category C	MTE tag check fail seen on first half of a cache-line crossing load does not get reported
2693832	New	Programmer	Category C	MTE checked load might read an old value of allocation tag by not complying with address dependency ordering
2704518	New	Programmer	Category C	Incorrect value reported for SPE PMU event SAMPLE_FEED
2712633	New	Programmer	Category C	Incorrect read value for Performance Monitors Configuration Register EX field

02-May-2022: Changes in document version v8.0

ID	Status	Area	Category	Summary
2266875	Updated	Programmer	Category B	A CFP instruction might execute with incorrect upper ASID or VMID bits
2302506	Updated	Programmer	Category B	Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch
2313909	Updated	Programmer	Category B	Denied power down request might prevent completion of future power down request
2372204	Updated	Programmer	Category B	Translation table walk folding into an L1 prefetch might cause data corruption
2390455	Updated	Programmer	Category B	A continuous stream of incoming DVM syncs may cause TRBE to prevent the CPU from forward progressing
2615812	New	Programmer	Category B	Entry into the Full Retention power mode might cause corruption on Itag and BTB RAMs
2641945	New	Programmer	Category B	L1 hardware prefetcher might cause deadlock
2231012	Updated	Programmer	Category C	Incorrect sampling of SPE events "Partial predicate" and "Empty predicate" for SVE instruction with no vector operands
2233619	Updated	Programmer	Category C	Lower priority exception might be reported when abort condition is detected at both stages of translation
2252367	Updated	Programmer	Category C	L1 Data poison is not cleared by a store
2275209	Updated	Programmer	Category C	SPE, PMU event for full/partial/empty/not full predicate might be incorrect for some SVE instructions
2277321	Updated	Programmer	Category C	PMU L1D_CACHE_REFILL_OUTER is inaccurate

ID	Status	Area	Category	Summary
2299191	Updated	Programmer	Category C	L2 tag RAM double-bit ECC error might lead to the PE not responding to a forwarding snoop
2302585	Updated	Programmer	Category C	CSSELR_EL1.TnD is RAZ/WI when CSSELR_EL1.InD == 0x1
2307825	Updated	Programmer	Category C	ESR_ELx.ISV can be set incorrectly for an external abort on translation table walk
2312833	Updated	Programmer	Category C	ESR_ELx contents for a Data Abort exception might be incorrect when a data double bit error or external abort is encountered
2343688	New	Programmer	Category C	STALL_BACKEND_MEM, Memory stall cycles AMU event count incorrectly
2351560	New	Programmer	Category C	ERXPFGCDN_EL1 register is incorrectly written on Warm reset
2359164	New	Programmer	Category C	Incorrect read value for Performance Monitors Configuration Register
2390828	New	Programmer	Category C	PMU MEM_ACCESS_CHECKED_RD and MEM_ACCESS_CHECKED_WR inaccurate
2391679	New	Programmer	Category C	Software-step not done after exit from Debug state with an illegal value in DSPSR
2409463	New	Programmer	Category C	Incorrect read value for Performance Monitors Control Register
2409683	New	Programmer	Category C	Incorrect sampling of SPE events "tlb_access" for an unaligned SVE load instruction with no active elements
2441604	New	Programmer	Category C	PMU STALL_SLOT_BACKEND and STALL_SLOT_FRONTEND events count incorrectly
2612736	New	Programmer	Category C	Read to dump the instruction cache contents while in Debug state results in deadlock

17-Dec-2021: Changes in document version v7.0

ID	Status	Area	Category	Summary
2302506	New	Programmer	Category B	Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch
2372204	New	Programmer	Category B	Translation table walk folding into an L1 prefetch might cause data corruption
2390455	New	Programmer	Category B	A continuous stream of incoming DVM syncs may cause TRBE to prevent the CPU from forward progressing

03-Nov-2021: Changes in document version v6.0

ID	Status	Area	Category	Summary
2313909	New	Programmer	Category B	Denied power down request might prevent completion of future power down request
2233619	New	Programmer	Category C	Lower priority exception might be reported when abort condition is detected at both stages of translation
2275209	New	Programmer	Category C	SPE, PMU event for full/partial/empty/not full predicate might be incorrect for some SVE instructions
2299191	New	Programmer	Category C	L2 tag RAM double-bit ECC error might lead to the PE not responding to a forwarding snoop
2302585	New	Programmer	Category C	CSSELR_EL1.TnD is RAZ/WI when CSSELR_EL1.InD == 0x1
2307825	New	Programmer	Category C	ESR_ELx.ISV can be set incorrectly for an external abort on translation table walk
2312833	New	Programmer	Category C	ESR_ELx contents for a Data Abort exception might be incorrect when a data double bit error or external abort is encountered

08-Sep-2021: Changes in document version v5.0

ID	Status	Area	Category	Summary	
2266875	New	Programmer	Category B	A CFP instruction might execute with incorrect upper ASID or VMID bits	
2232775	New	Programmer	Category C	Read or write from Secure EL1 for ICV_BPR1_EL1 register might not work	
2277321	New	Programmer	Category C	PMU L1D_CACHE_REFILL_OUTER is inaccurate	

05-Aug-2021: Changes in document version v4.0

ID	Status	Area	Category	Summary
2133701	Updated	Programmer	Category B	Trace data might get overwritten in TRBE FILL mode
2138930	Updated	Programmer	Category B	The CPP instruction will apply to an incorrect EL context
2147714	New	Programmer	Category B	A CFP instruction might not invalidate the correct resources
2156436	Updated	Programmer	Category B	Enabling TRBE might cause a data write to a page with the wrong ASID when owning Exception level is EL1
2184829	New	Programmer	Category B	Instruction cache contents might be corrupted when a speculative instruction fetch is initiated for non-cacheable page
2188426	New	Programmer	Category B	Update to MPMM Configuration might not modify MPMM behavior
2214778	New	Programmer	Category B	PDP deadlock due to CMP/CMN + B.AL/B.NV fusion
2222929	New	Programmer	Category B	TRBE might cause a data write to an out-of-range address which is not reserved for TRBE
2073992	Updated	Programmer	Category C	Tag Check Fault might not be reported for some Vector Load instructions with SP as base register
2108450	Updated	Programmer	Category C	Speculative access to a recently unmapped physical address previously containing page tables might occur
2113892	Updated	Programmer	Category C	L2 tag single-bit ECC error might cause deadlock when using the SIP prefetcher

ID	Status	Area	Category	Summary	
2115480	Updated	Programmer	Category C	L1D_CACHE_INVAL and L2D_CACHE_INVAL PMU events fail to increment for SnpPreferUnique and SnpPreferUniqueFwd	
2115856	Updated	Programmer	Category C	Data abort on SVE first fault load might be routed to incorrect Exceptio level	
2117589	Updated	Programmer	Category C	Hardware prefetcher PMU events count incorrectly	
2119356	Updated	Programmer	Category C	L2 data RAM or L2 TQ data RAM might fail to report ECC errors	
2141643	Updated	Programmer	Category C	A64 WFI or A64 WFE executed in Debug state suspends execution indefinitely	
2143137	Updated	Programmer	Category C	Some SVE PMU events count incorrectly	
2142812	Updated	Programmer	Category C	PMU Event MEM_ACCESS_CHECKED_WR, 0x4026 counts incorrectly and MEM_ACC_CHECKED 0x4024 might be incorrect	
2154264	Updated	Programmer	Category C	FAR_ELx contents for a Data Abort exception on SVE first fault contiguous load instruction due to Tag Check fail might be incorrect	
2159151	Updated	Programmer	Category C	Direct access of L2 data RAMs using RAMINDEX returns incomplete data	
2165452	Updated	Programmer	Category C	PMU_HOVFS event is not always exported when self-hosted trace is disabled	
2179550	New	Programmer	Category C	An SError might not be reported for an atomic store that encounters data poison	
2189539	New	Programmer	Category C	64 bit source SVE PMULLB/T not considered Cryptography instruction	
2227172	New	Programmer	Category C	Streaming writes to memory mapped Non-shareable and write-back might cause data corruption because of reordering	
2230110	New	Programmer	Category C	Reads of DISR_EL1 incorrectly return 0s while in Debug State	
2231012	New	Programmer	Category C	Incorrect sampling of SPE events "Partial predicate" and "Empty predicate" for SVE instruction with no vector operands	
2236039	New	Programmer	Category C	DRPS instruction is not treated as UNDEFINED at ELO in Debug state	
2237091	New	Programmer	Category C	ESR_ELx contents for a Data Abort exception might be incorrect when an L1D tag double bit error is encountered	
2240363	New	Programmer	Category C	Incorrect sampling of SPE events "Partial predicate" and "Empty predicate" for SVE instruction with vector operands in certain configurations	
2240293	New	Programmer	Category C	TRBE might use incorrect Cacheability attributes for TRBE data when address translation is disabled	
2243142	New	Programmer	Category C	L1 MTE Tag poison is not cleared	
2243856	New	Programmer	Category C	ELR_ELx[63:48] might hold incorrect value when PE disables address translation	
2252367	New	Programmer	Category C	L1 Data poison is not cleared by a store	

10-Jun-2021: Changes in document version v3.0

ID	Status	Area	Category	Summary	
2156436	New	Programmer	Category B	Enabling TRBE might cause a data write to a page with the wrong ASID when owning Exception level is EL1	
2143137	New	Programmer	Category C	Some SVE PMU events count incorrectly	
2154264	New	Programmer	Category C	FAR_ELx contents for a Data Abort exception on SVE first fault contiguous load instruction due to Tag Check fail might be incorrect	
2159151	New	Programmer	Category C	Direct access of L2 data RAMs using RAMINDEX returns incomplete data	
2165452	New	Programmer	Category C	PMU_HOVFS event is not always exported when self-hosted trace is disabled	
1880119	New	Programmer	Category C	Noncompliance with prioritization of Exception Catch debug events	

30-Apr-2021: Changes in document version v2.0

ID	Status	Area	Category	Summary	
2070301	New	Programmer	Category B	Disabling of data prefetcher with outstanding prefetch TLB miss might cause a deadlock	
2133701	New	Programmer	Category B	Trace data might get overwritten in TRBE FILL mode	
2138930	New	Programmer	Category B	The CPP instruction will apply to an incorrect EL context	
2073992	New	Programmer	Category C	Tag Check Fault might not be reported for some Vector Load instructions with SP as base register	
2108450	New	Programmer	Category C	Speculative access to a recently unmapped physical address previously containing page tables might occur	
2113892	New	Programmer	Category C	L2 tag single-bit ECC error might cause deadlock when using the SIP prefetcher	
2115480	New	Programmer	Category C	L1D_CACHE_INVAL and L2D_CACHE_INVAL PMU events fail to increment for SnpPreferUnique and SnpPreferUniqueFwd	
2115856	New	Programmer	Category C	Data abort on SVE first fault load might be routed to incorrect Exception level	
2117121	New	Programmer	Category C	MPAM value associated with instruction fetch might be incorrect	
2117589	New	Programmer	Category C	Hardware prefetcher PMU events count incorrectly	
2119356	New	Programmer	Category C	L2 data RAM or L2 TQ data RAM might fail to report ECC errors	
2141643	New	Programmer	Category C	A64 WFI or A64 WFE executed in Debug state suspends execution indefinitely	
2142812	New	Programmer	Category C	PMU Event MEM_ACCESS_CHECKED_WR, 0x4026 counts incorrectly and MEM_ACC_CHECKED 0x4024 might be incorrect	

26-Feb-2021: Changes in document version v1.0

No errata in this document version.

Errata summary table

The errata associated with this product affect the product versions described in the following table.

ID	Area	Category	Summary	Found in versions	Fixed in version
2070301	Programmer	Category B	Disabling of data prefetcher with outstanding prefetch TLB miss might cause a deadlock	r0p0, r1p0, r1p1, r1p2	Open
2133701	Programmer	Category B	Trace data might get overwritten in TRBE FILL mode	rOpO	r1p0
2138930	Programmer	Category B	The CPP instruction will apply to an incorrect EL context	rOpO	r1p0
2147714	Programmer	Category B	A CFP instruction might not invalidate the correct resources	rOpO	r1p0
2156436	Programmer	Category B	Enabling TRBE might cause a data write to a page with the wrong ASID when owning Exception level is EL1	r0p0	r1p0
2184829	Programmer	Category B	Instruction cache contents might be corrupted when a speculative instruction fetch is initiated for non-cacheable page	rOpO	r1p0
2188426	Programmer	Category B	Update to MPMM Configuration might not modify MPMM behavior	rOpO	r1p0
2214778	Programmer	Category B	PDP deadlock due to CMP/CMN + B.AL/B.NV fusion	rOpO	r1p0
2222929	Programmer	Category B	TRBE might cause a data write to an out-of-range address which is not reserved for TRBE	rOpO	r1p0
2266875	Programmer	Category B	A CFP instruction might execute with incorrect upper ASID or VMID bits	r0p0, r1p0	r1p1
2302506	Programmer	Category B	Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch	r0p0, r1p0, r1p1	r1p2
2313909	Programmer	Category B	Denied power down request might prevent completion of future power down request	r0p0, r1p0	r1p1
2372204	Programmer	Category B	Translation table walk folding into an L1 prefetch might cause data corruption	r0p0, r1p0	r1p1

ID	Area	Category	Summary	Found in versions	Fixed in version
2390455	Programmer	Category B	A continuous stream of incoming DVM syncs may cause TRBE to prevent the CPU from forward progressing	r0p0, r1p0	r1p1
2615812	Programmer	Category B	Entry into the Full Retention power mode might cause corruption on Itag and BTB RAMs	r0p0, r1p0, r1p1	r1p2
2641945	Programmer	Category B	L1 hardware prefetcher might cause deadlock	r0p0, r1p0	r1p1
2701951	Programmer	Category B	Core might fetch stale instruction from memory when both Stage 1 Translation and Instruction Cache are Disabled with Stage 2 forced Write-Back	r0p0, r1p0, r1p1	r1p2
2742421	Programmer	Category B	Page crossing access that generates an MMU fault on the second page could result in a livelock	r0p0, r1p0, r1p1	r1p2
2743088	Programmer	Category B	The core might deadlock during powerdown sequence	r0p0, r1p0, r1p1	r1p2
2779509	Programmer	Category B	The PE might generate memory accesses using invalidated mappings after completion of a DVM SYNC operation	r0p0, r1p0, r1p1	r1p2
1880119	Programmer	Category C	Noncompliance with prioritization of Exception Catch debug events	r0p0, r1p0, r1p1, r1p2	Open
2073992	Programmer	Category C	Tag Check Fault might not be reported for some Vector Load instructions with SP as base register	rOpO	r1p0
2108450	Programmer	Category C	Speculative access to a recently unmapped physical address previously containing page tables might occur	rOpO	r1p0
2113892	Programmer	Category C	L2 tag single-bit ECC error might cause deadlock when using the SIP prefetcher	rOpO	r1p0
2115480	Programmer	Category C	L1D_CACHE_INVAL and L2D_CACHE_INVAL PMU events fail to increment for SnpPreferUnique and SnpPreferUniqueFwd	rOpO	r1p0
2115856	Programmer	Category C	Data abort on SVE first fault load might be routed to incorrect Exception level	rOpO	r1p0
2117121	Programmer	Category C	MPAM value associated with instruction fetch might be incorrect	r0p0, r1p0, r1p1, r1p2	Open

ID	Area	Category	Summary	Found in versions	Fixed in version
2117589	Programmer	Category C	Hardware prefetcher PMU events count incorrectly	rOpO	r1p0
2119356	Programmer	Category C	L2 data RAM or L2 TQ data RAM might fail to report ECC errors	rOpO	r1p0
2141643	Programmer	Category C	A64 WFI or A64 WFE executed in Debug state suspends execution indefinitely	r0p0	r1p0
2142812	Programmer	Category C	PMU Event MEM_ACCESS_CHECKED_WR, 0x4026 counts incorrectly and MEM_ACC_CHECKED 0x4024 might be incorrect	r0p0	r1p0
2143137	Programmer	Category C	Some SVE PMU events count incorrectly	rOpO	r1p0
2154264	Programmer	Category C	FAR_ELx contents for a Data Abort exception on SVE first fault contiguous load instruction due to Tag Check fail might be incorrect	rOpO	r1p0
2159151	Programmer	Category C	Direct access of L2 data RAMs using RAMINDEX returns incomplete data	r0p0	r1p0
2165452	Programmer	Category C	PMU_HOVFS event is not always exported when self-hosted trace is disabled	r0p0	r1p0
2179550	Programmer	Category C	An SError might not be reported for an atomic store that encounters data poison	r0p0	r1p0
2189539	Programmer	Category C	64 bit source SVE PMULLB/T not considered Cryptography instruction	r0p0	r1p0
2227172	Programmer	Category C	Streaming writes to memory mapped Non-shareable and write-back might cause data corruption because of reordering	r0p0	r1p0
2230110	Programmer	Category C	Reads of DISR_EL1 incorrectly return Os while in Debug State	rOpO	r1p0
2231012	Programmer	Category C	Incorrect sampling of SPE events "Partial predicate" and "Empty predicate" for SVE instruction with no vector operands	r0p0, r1p0	r1p1
2232775	Programmer	Category C	Read or write from Secure EL1 for ICV_BPR1_EL1 register might not work	rOpO	r1p0

ID	Area	Category	Summary	Found in versions	Fixed in version
2233619	Programmer	Category C	Lower priority exception might be reported when abort condition is detected at both stages of translation	r0p0, r1p0	r1p1
2236039	Programmer	Category C	DRPS instruction is not treated as UNDEFINED at ELO in Debug state	rOpO	r1p0
2237091	Programmer	Category C	ESR_ELx contents for a Data Abort exception might be incorrect when an L1D tag double bit error is encountered	rOpO	r1p0
2240293	Programmer	Category C	TRBE might use incorrect Cacheability attributes for TRBE data when address translation is disabled	r0p0	r1p0
2240363	Programmer	Category C	Incorrect sampling of SPE events "Partial predicate" and "Empty predicate" for SVE instruction with vector operands in certain configurations	rOpO	r1p0
2243142	Programmer	Category C	L1 MTE Tag poison is not cleared	r0p0	r1p0
2243856	Programmer	Category C	ELR_ELx[63:48] might hold incorrect value when PE disables address translation	rOpO	r1p0
2252367	Programmer	Category C	L1 Data poison is not cleared by a store	r0p0, r1p0	r1p1
2275209	Programmer	Category C	SPE, PMU event for full/partial/empty/not full predicate might be incorrect for some SVE instructions	r0p0, r1p0	r1p1
2277321	Programmer	Category C	PMU L1D_CACHE_REFILL_OUTER is inaccurate	r0p0, r1p0	r1p1
2299191	Programmer	Category C	L2 tag RAM double-bit ECC error might lead to the PE not responding to a forwarding snoop	r0p0, r1p0	r1p1
2302585	Programmer	Category C	CSSELR_EL1.TnD is RAZ/WI when CSSELR_EL1.InD == 0x1	r0p0, r1p0	r1p1
2307825	Programmer	Category C	ESR_ELx.ISV can be set incorrectly for an external abort on translation table walk	r0p0, r1p0	r1p1
2312833	Programmer	Category C	ESR_ELx contents for a Data Abort exception might be incorrect when a data double bit error or external abort is encountered	r0p0, r1p0	r1p1
2343688	Programmer	Category C	STALL_BACKEND_MEM, Memory stall cycles AMU event count incorrectly	r0p0, r1p0	r1p1

ID	Area	Category	Summary	Found in versions	Fixed in version
2351560	Programmer	Category C	ERXPFGCDN_EL1 register is incorrectly written on Warm reset	r0p0, r1p0	r1p1
2359164	Programmer	Category C	Incorrect read value for Performance Monitors Configuration Register	r0p0, r1p0	r1p1
2390828	Programmer	Category C	PMU MEM_ACCESS_CHECKED_RD and MEM_ACCESS_CHECKED_WR inaccurate	r0p0, r1p0	r1p1
2391679	Programmer	Category C	Software-step not done after exit from Debug state with an illegal value in DSPSR	r0p0, r1p0, r1p1, r1p2	Open
2409463	Programmer	Category C	Incorrect read value for Performance Monitors Control Register	r0p0, r1p0	r1p1
2409683	Programmer	Category C	Incorrect sampling of SPE events "tlb_access" for an unaligned SVE load instruction with no active elements	r0p0, r1p0	r1p1
2441604	Programmer	Category C	PMU STALL_SLOT_BACKEND and STALL_SLOT_FRONTEND events count incorrectly	r0p0, r1p0	r1p1
2612736	Programmer	Category C	Read to dump the instruction cache contents while in Debug state results in deadlock	r0p0, r1p0, r1p1	r1p2
2652014	Programmer	Category C	FAR_ELx contents for a Data Abort exception on SVE first fault contiguous load instruction due to Tag Check fail might be incorrect	r0p0, r1p0, r1p1	r1p2
2676363	Programmer	Category C	Execution of STG instructions in close proximity might cause loss of MTE allocation tag data	r0p0, r1p0, r1p1	r1p2
2693826	Programmer	Category C	MTE tag check fail seen on first half of a cache-line crossing load does not get reported	r0p0, r1p0, r1p1	r1p2
2693832	Programmer	Category C	MTE checked load might read an old value of allocation tag by not complying with address dependency ordering	r0p0, r1p0, r1p1	r1p2
2704518	Programmer	Category C	Incorrect value reported for SPE PMU event SAMPLE_FEED	r0p0, r1p0, r1p1	r1p2
2712633	Programmer	Category C	Incorrect read value for Performance Monitors Configuration Register EX field	r0p0, r1p0, r1p1	r1p2

ID	Area	Category	Summary	Found in versions	Fixed in version
2728439	Programmer	Category C	TRBE buffer write translation out of context may have incorrect memory attributes	r0p0, r1p0, r1p1, r1p2	Open
2736659	Programmer	Category C	AMU Event 0x0011, Core frequency cycles might increment incorrectly when the core is in WFE state	r0p0, r1p0, r1p1, r1p2	Open
2755355	Programmer	Category C	Incorrect value reported for SPE PMU event 0x4000 SAMPLE_POP	r0p0, r1p0, r1p1	r1p2
2798803	Programmer	Category C	Incorrect decoding of SVE version of PRF* scalar plus scalar instructions	r0p0, r1p0, r1p1	r1p2
2799686	Programmer	Category C	ECC errors in MTE allocation tags may lead to silent data corruption in tag values	r0p0, r1p0, r1p1, r1p2	Open
2813383	Programmer	Category C	PE might fail to detect multiple uncorrectable ECC errors in the L1 data cache tag RAM	r0p0, r1p0, r1p1	r1p2
2813407	Programmer	Category C	Incorrect timestamp value reported in SPE records when timestamp capture is enabled	r0p0, r1p0, r1p1	r1p2

Errata descriptions

Category A

There are no errata in this category.

Category A (rare)

There are no errata in this category.

Category B

2070301

Disabling of data prefetcher with outstanding prefetch TLB miss might cause a deadlock

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r1p1, r1p2. Open.

Description

If the data prefetcher is disabled (by an MSR to CPUECTLR register) while a prefetch TLB miss is outstanding, the processor might deadlock on the next context switch.

Configurations Affected

All configurations are affected.

Conditions

- MSR write to CPUECTLR register that disables the data prefetcher.
- A TLB miss from the prefetch TLB is outstanding.

Implications

If the above conditions are met, a deadlock might occur on the next context switch.

Workaround

• Workaround option 1:

If the following code surrounds the MSR, it will prevent the erratum from happening:

- o CPP
- o DSB
- ISB
- MSR CPUECTLR disabling the prefetcher
- o ISB
- Workaround option 2:

Place the data prefetcher in the most conservative mode instead of disabling it. This will greatly reduce prefetches but not eliminate them. This is accomplished by writing the following bits to the

Version: 11.0

value indicated:

• ECTLR2[14:11], PF_MODE= 4'b1001

Trace data might get overwritten in TRBE FILL mode

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Trace Buffer memory size is defined using base pointer and limit pointer in the Trace Buffer Extension (TRBE) programming model. In trace buffer fill mode, TRBE is expected to generate an interrupt and stop the collection of trace after reaching the limit pointer. Due to this erratum, under some microarchitecture conditions, TRBE might roll back to the base pointer after generating an interrupt and continue to write at the base pointer, and up to three cache lines after the base pointer before the collection stops.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. ETE and TRBE are enabled.
- 2. ETE is in a trace allowed region.
- 3. TRBLIMITR_EL1[2:1] is programmed to 2'b00.

Implications

Due to this erratum, trace data present at the base pointer location and up to three cache lines after the base pointer might get overwritten. The current write pointer also increments by same number of cache line locations.

Workaround

Software can program 256 bytes of ignore packets starting from the base pointer and offset the write pointer TRBPTR_EL1 by 256 bytes before enabling TBE. That ensures oldest trace is not corrupted.

The CPP instruction will apply to an incorrect EL context

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

The CPP instruction will not operate on the desired EL as encoded in the instruction.

Configurations Affected

This erratum affects all configurations.

Conditions

1. A CPP instruction is executed.

Implications

The CPP instruction will cause the hardware prefetcher to invalidate the hardware prefetcher state associated with an EL other than the EL encoded in the instruction.

Workaround

Set CPUACTLR5_EL1[44] which will cause the CPP instruction to invalidate hardware prefetcher state trained from any EL.

A CFP instruction might not invalidate the correct resources

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Executing a CFP instruction under certain conditions might not invalidate resources specified by the instruction.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. A CFP instruction is executed.
- 2. The Exception level specified in the instruction is ELO.
- 3. HCR EL2.TGE==1 and HCR EL2.E2H==1.

Implications

If the previous conditions are met, then the CFP instruction might not invalidate branch predictor resources associated with ELO context managed by EL2.

Workaround

This erratum can be avoided by setting CPUACTLR_EL1[22]=1. Setting CPUACTLR_EL1[22] will cause the CFP instruction to invalidate all branch predictor resources regardless of context.

Using this workaround might cause the PE to encounter another erratum. Please refer to erratum ID 2243856 "ELR_ELx[63:48] might hold incorrect value when PE disables address translation" for more details.

Enabling TRBE might cause a data write to a page with the wrong ASID when owning Exception level is EL1

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

The Trace Buffer Extension (TRBE) can be used by software to store trace packets from Embedded Trace Extension (ETE) unit to memory. The TRBE unit interfaces with the MMU for translating a virtual address to a physical address. Once a physical address is available, the TRBE unit sends trace packets to the L2 unit to be stored to the memory. The TRBE unit requests a new translation to the MMU when a virtual address crosses the 4K page boundary. Due to this erratum, if a pending translation request from Exception level ELO or EL1 is serviced after the PE switches context to Exception level EL2, then translation with an incorrect ASID might be provided to the TRBE unit. This can lead to a write to a page with the incorrect ASID.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The TRBE is enabled.
- 2. Owning Exception level is EL1.
- 3. TRBLIMITR_EL1.nVM is set to 0, such that the trace buffer pointer addresses are virtual addresses in the EL1&0 translation regime using the current ASID from TTBRx_EL1. This means that the page is marked nG (non-global page).
- 4. The TRBE unit requests a memory translation request.
- 5. Before the above memory translation request completes, a context switch occurs from ELO or EL1, to EL2.

Implications

If the above conditions are met, under certain microarchitectural conditions, incorrect physical address and page attributes from a different ASID might be provided to the TRBE unit. The TRBE might then write to memory using incorrect page attributes from another ASID, leading to a write that is not expected.

Workaround

The software should use global pages (nG=0) for the pages that are used by the TRBE to store data when owning Exception level is EL1.

Instruction cache contents might be corrupted when a speculative instruction fetch is initiated for non-cacheable page

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

When the CPU initiates a speculative instruction fetch from a memory location with a non-cacheable memory, the response might be incorrectly written into the instruction cache. This written data might corrupt the instructions associated with an unrelated address. When the CPU fetches the instruction from this corrupted instruction cache line, the CPU might execute incorrect instructions.

Configurations Affected

The erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. The CPU initiates a speculative instruction fetch from a memory location with a non-cacheable Normal memory or a Device memory. This memory location is not marked as execute-never.
- 2. An older branch instruction in the program order is newly identified in the front-end pipeline. This branch flushes the frontend pipeline.

Implications

When the above conditions are met with certain rare timing events, the instruction cache line associated with a different address might be modified by the response for the memory location with a non-cacheable memory. If the CPU reads instruction from this address, then the CPU might execute incorrect instructions stored in the instruction cache.

Workaround

Setting CPUACTLR_EL1[14] disables regional clock gating for the instruction fetch unit. This workaround might cause additional power in the clock tree for the instruction fetch unit. This workaround has no performance impact.

2188426 Update to MPMM Configuration might not modify MPMM behavior

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Attempts to modify the MPMM state (MPMM enable or MPMM gear) by completing an SPR write or Utility bus write to an MPMM-related configuration register will not change the internal MPMM state. A second write of the same data is required to affect the change.

Configurations Affected

All configurations are affected.

Conditions

This erratum occurs under either of the the following conditions:

- 1. An MSR write occurs to the MPMM control registers.
- 2. A Utility bus write occurs to the MPMM control registers.

Implications

The first MPMM control register write with a new value will not affect the behavior of the MPMM logic.

Workaround

MSR or Utility bus writes to the MPMM control registers should be repeated twice with the same written data value in order for the write to affect the logic.

2214778 PDP deadlock due to CMP/CMN + B.AL/B.NV fusion

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

When Performance Defined Power (PDP) is enabled, a Compare (CMP) or Compare negative (CMN) instruction followed by a conditional branch of form B.AL or B.NV might cause a deadlock.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. PDP configuration is enabled.
- 2. Execution of CMP/CMN, followed by B.AL/B.NV.

Implications

If above conditions are met, then a deadlock might result, requiring a reset of the processor.

Workaround

This erratum can be avoided by setting CPUACTLR5_EL1[17] to 1 and applying following patch. These instructions are not expected to be present in the code often, so any performance impact should be minimal. The code sequence should be applied early in the boot sequence prior to any of the possible errata conditions being met.

```
LDR x0,=0x0
MSR S3_6_c15_c8_0,x0; MSR CPUPSELR_EL3, X0
LDR x0,=0x005400000E
MSR S3_6_c15_c8_2,x0; MSR CPUPOR_EL3, X0
LDR x0,=0x00FF00001E
MSR S3_6_c15_c8_3,x0; MSR CPUPMR_EL3, X0
LDR x0,=0x8000000003FF
MSR S3_6_c15_c8_1,x0; MSR CPUPCR_EL3, X0
LDR x0,=0x8000000003FF
MSR S3_6_c15_c8_1,x0; MSR CPUPCR_EL3, X0
LSB
```

TRBE might cause a data write to an out-of-range address which is not reserved for TRBE

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Trace buffer memory size is defined using base pointer and limit pointer in Trace Buffer Extension (TRBE) programming model. TRBE is expected to wrap to base pointer without crossing the limit pointer. Because of this erratum, under some conditions, TRBE might generate a write to the next virtually addressed page following the last page of TRBE address space.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Embedded Trace Extension (ETE) and TRBE are enabled.
- 2. ETE is in trace allowed region.
- 3. TRBE current pointer is at last page of Trace buffer.
- 4. TRBE requests translation for the last page.
- 5. LS indicates to TRBE that it is unable to service the translation request.

Implications

When previous conditions are met under rare microarchitectural conditions, TRBE might incorrectly generate a data write to the next virtually addressed page following the last page of Trace Buffer. This can lead to data corruption if that page is currently used by another application and result in loss of trace up to 64 bytes.

Workaround

The software can mark as not valid the next page following the last TRBE page, meaning the errant access will generate a Translation Fault buffer management event. This will prevent the data corruption but will not prevent the loss of trace data.

A CFP instruction might execute with incorrect upper ASID or VMID bits

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

The upper 8 bits of ASID or VMID might be incorrect for a CFP instruction.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. A CFP is executed with EL0 target execution context and {HCR_EL2.TGE, HCR_EL2.E2H} is {1,1} and TCR_EL2.AS=0.
- 2. A CFP is executed at EL2 or EL3 and the target execution context is EL0 or EL1 and VTCR_EL2.VS=0.

Implications

If either of the previous conditions are met, then the CFP instruction might not invalidate branch predictor resources associated with ELO or EL1 contexts.

Workaround

This erratum can be avoided by setting CPUACTLR_EL1[22]=1. Setting CPUACTLR_EL1[22] will cause the CFP instruction to invalidate all branch predictor resources regardless of context.

Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r1p1 Fixed in r1p2.

Description

A Processing Element (PE) executing a PLDW or PRFM PST instruction that lies on a mispredicted branch path might cause a second PE executing a store exclusive to the same cache line address to fail continuously.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. One PE is executing store exclusive.
- 2. A second PE has branches that are consistently mispredicted.
- 3. The second PE instruction stream contains a PLDW or PRFM PST instruction on the mispredicted path that accesses the same cache line address as the store exclusive executed by the first PE.
- 4. PLDW/PRFM PST causes an invalidation of the first PE's caches and a loss of the exclusive monitor.

Implications

If the above conditions are met, the store exclusive instruction might continuously fail.

Workaround

Set CPUACTLR2_EL1[0] to 1 to force PLDW/PFRM ST to behave like PLD/PRFM LD and not cause invalidations to other PE caches. There might be a small performance degradation to this workaround for certain workloads that share data.

Denied power down request might prevent completion of future power down request

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

If a Processing Element (PE) initiates a power down request that is ultimately denied due to an external event, a future power down request might fail to complete.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. PE initiates a power down request (ON to OFF state transition) by setting CORE_PWRDN_EN and executing a WFI instruction.
- 2. PE completes the hardware flush of its caches.
- 3. An event, such as an external interrupt, causes an abort of the power down request.
- 4. PE returns to the ON state without performing a hardware reset.

Implications

If the above conditions are met, the PE might fail complete a subsequent power down request resulting in a deadlock.

Workaround

This erratum can be avoided by setting CPUACTLR2_EL1[36] to 1 before the power-down sequence that includes setting the CORE_PWRDN_EN bit, and executing a WFI. This bit should be cleared on exiting WFI by any mechanism other than reset.

Translation table walk folding into an L1 prefetch might cause data corruption

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0. Fixed in r1p1.

Description

A translation table walk that matches an existing L1 prefetch with a read request outstanding on CHI might fold into the prefetch, which might lead to data corruption for a future instruction fetch.

Configurations Affected

This erratum affects all configurations

Conditions

1. In specific microarchitectural situations, the PE merges a translation table walk request with an older hardware or software prefetch L2 cache miss request.

Implications

If the previous conditions are met, an unrelated instruction fetch might observe incorrect data.

Workaround

Disable folding of demand requests into older prefetches with L2 miss requests outstanding by setting CPUACTLR2_EL1[40] to 1.

A continuous stream of incoming DVM syncs may cause TRBE to prevent the core from forward progressing

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0. Fixed in r1p1.

Description

A continuous stream of incoming *Distributed Virtual Memory* (DVM) syncs might cause the *Trace Buffer Extension* (TRBE) to prevent the core from forward progressing, while executing a WFx.

Configurations Affected

This erratum affects all configurations.

Conditions

The erratum occurs if all the following conditions are met:

- The Processing Element (PE) executes a WFE or WFI instruction.
- TRBE is in use and needs to write trace data to its buffer.
- A continuous stream of DVM sync operations is received from other PEs.

Implications

When all of the above conditions are met, the PE might be prevented from entering WFE or WFI, and the pending WFE or WFI operation cannot be interrupted.

Workaround

Entry into the Full Retention power mode might cause corruption on Itag and BTB RAMs

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

If a core enters in Full Retention power mode, then the *Chip Enable* (CE) pin of Itag RAM or BTB RAM might be set. Physical RAMs don't support such states, so it leads to corruption when the core comes back to normal power mode and tries to reuse the RAM content.

Configurations Affected

This erratum affects all configurations.

This erratum affects implementations where RAM contents might be corrupted if the CE pin is asserted during retention.

Conditions

The erratum occurs if all the following conditions apply:

- The Processing Element (PE) enters the FULL RET power state.
- The Itag or BTB RAMs are placed into a low-power mode during the PE FULL RET power state.
- The PE power state transitions back to ON without going through the OFF power state.

Implications

If the conditions are met, the RAM contents of the itag and BTB RAMs might be corrupted. As a result, the PE might:

- Fetch and execute incorrect opcodes as a result of itag corruption.
- Predict incorrect targets from corrupted BTB RAMs.

Workaround

This erratum can be avoided by the firmware on power-on by disabling use of the Full Retention power mode in the core (setting IMP_CPUPWRCTLR_EL1.WFI_RET_CTRL to 0b000 and IMP_CPUPWRCTRL_EL1.WFE_RET_CTRL to 0b000).

L1 hardware prefetcher might cause deadlock

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

Clock gating logic in the L2 cache might cause internal interface signals to remain asserted, leading to unexpected operation of one of the L1 data cache hardware prefetchers.

Configurations Affected

This erratum affects all configurations

Conditions

Hardware prefetching is enabled.

Implications

If the previous condition is met, unexpected operation, including deadlock, might occur.

Workaround

Disable the affected L1 data cache prefetcher by setting CPUACTLR6_EL1[41] to 'b1. Doing so will incur a performance penalty of ~1%.

Contact Arm for an alternate workaround that impacts power.

The core might fetch stale instruction from memory when both Stage 1
Translation and Instruction Cache are Disabled with Stage 2 forced Write-Back

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

If a core is fetching instructions from memory while stage 1 translation is disabled and instruction cache is disabled, the core ignores Stage 2 forced Write-Back indication programmed by HCR_EL2.FWB and makes a Non-cacheable, Normal memory request. This may cause the core to fetch stale data from memory subsystem.

Configurations Affected

This erratum might affect system configurations that do not use Arm interconnect IP.

Conditions

The erratum occurs if all the following conditions apply:

- The Processing Element (PE) is using EL1 translation regime.
- Stage 2 translation is enabled (HCR EL2.VM=1).
- Stage 1 translation is disabled (SCTLR EL1.M=0).
- Instruction cache is enabled from EL2 (HCR_EL2.ID=0).
- Instruction cache is disabled from EL1 (SCTLR_EL1.I=0).

Implications

If the conditions are satisfied, the core makes all instruction fetch requests as Non-cacheable, Normal memory regardless of stage 2 translation output even if Stage 2 Forced Write-back is enabled. This might cause the core to fetch stale data from memory because Non-cacheable memory access does not probe any of cache hierarchy (e.g., Level-2 cache). If the bypassed cache hierarchy contains data modified by other initiators, stale data might be fetched from memory.

Workaround

For Hypervisor, initiating appropriate cache maintenance operations as if the core does not support stage 2 Forced Write-back feature. The cache maintenance operation should be initiated when new memory is allocated to a guest OS. This operation writeback the modified data in intermediate caches to point of coherency.

Page crossing access that generates an MMU fault on the second page could result in a livelock

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

Under unusual micro-architectural conditions, a page crossing access that generates a *Memory Management Unit* (MMU) fault on the second page can result in a livelock.

Configurations Affected

All configurations are affected.

Conditions

This erratum occurs under all of the following conditions:

- 1. Page crossing load or store misses in the *Translation Lookaside Buffer* (TLB) and needs a translation table walk for both pages.
- 2. The table walk for the second page results in an MMU fault.

Implications

If the above conditions are met, under unusual micro-architectural conditions with just the right timing, the core could enter a livelock. This is expected to be very rare and even a slight perturbation due to external events like snoops could get the core out of livelock.

Workaround

This erratum can be avoided by setting CPUACTLR5_EL1[56:55] to 2'b01.

The core might deadlock during powerdown sequence

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

While powering down the *Processing Element* (PE), a correctable L2 tag ECC error might cause a deadlock in the powerdown sequence.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. Error detection and correction is enabled through ERXCTLR_EL1.ED=1.
- 2. PE executes more than 24 writes to Device-nGnRnE or Device-nGnRE memory.
- 3. PE executes powerdown sequence as described in the Technical Reference Manual (TRM).

Implications

If the above conditions are met, the PE might deadlock during the hardware cache flush that automatically occurs as part of the powerdown sequence.

Workaround

Add a DSB instruction before the ISB of the powerdown code sequence specified in the TRM.

The PE might generate memory accesses using invalidated mappings after completion of a DVM SYNC operation

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r1p1. Fixed in r1p2.

Description

The *Processing Element* (PE) might generate memory accesses using invalidated mappings after completion of a *Distributed Virtual Memory* (DVM) SYNC operation.

Configurations Affected

All configurations are affected.

Conditions

This erratum can occur on a PE (PE0) only if the affected TLBI and subsequent DVM SYNC operations are broadcast from another PE (PE1). The TLBI and DVM SYNC operations executed locally by PE0 are not affected.

Implications

When this erratum occurs, after completion of a DVM SYNC operation, the PE can continue generating memory accesses through mappings that were invalidated by a previous TLBI operation.

Workaround

The erratum can be avoided by setting CPUACTLR3_EL1[47]. Setting this chicken bit might have a small impact on power and negligible impact on performance.

Category B (rare)

There are no errata in this category.

Category C

1880119

Noncompliance with prioritization of Exception Catch debug events

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r1p1, r1p2. Open.

Description

ARMv8.2 architecture requires that Debug state entry due to an Exception Catch debug event (generated on exception entry) occur before any asynchronous exception is taken at the first instruction in the exception handler. An asynchronous exception might be taken as a higher priority exception than Exception Catch and the Exception Catch might be missed altogether.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Debug Halting is allowed.
- 2. EDECCR bits are configured to catch exception entry to ELx.
- 3. A first exception is taken resulting in entry to ELx.
- 4. A second, asynchronous exception becomes visible at the same time as exception entry to ELx.
- 5. The second, asynchronous exception targets an Exception level ELy that is higher than ELx.

Implications

If the above conditions are met, the core might recognize the second exception and not enter Debug state as a result of Exception Catch on the first exception. When the handler for the second exception completes, software might return to execute the first exception handler, and assuming the core does not halt for any other reason, the first exception handler will be executed and entry to Debug state via Exception Catch will not occur.

Workaround

When setting Exception Catch on exceptions taken to an Exception level ELx, the debugger should do either or both of the following:

- 1. Ensure that Exception Catch is also set for exceptions taken to all higher Exception Levels, so that the second (asynchronous) exception generates an Exception Catch debug event.
- 2. Set Exception Catch for an Exception Return to ELx, so that when the second (asynchronous) exception handler completes, the exception return to ELx generates an Exception Catch debug event.

Additionally, when a debugger detects that the core has halted on an Exception Catch to an Exception level ELy, where y > x, it should check the ELR_ELy and SPSR_ELy values to determine whether the exception was taken on an ELx exception vector address, meaning an Exception Catch on entry to ELx has been missed.

Tag Check Fault might not be reported for some Vector Load instructions with SP as base register

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Memory access generated by some Vector Load instructions with Stack Pointer (SP) as base register are incorrectly treated as Tag Unchecked access instead of Tag Checked access.

Configurations Affected

This erratum affects all configurations where the **BROADCASTMTE** pin is HIGH.

Conditions

- 1. MTE is enabled
- 2. One of the following instruction with SP as base register generates a memory access to a page that is marked MTE tagged:
 - Post-indexed variants of SIMD LD1 (single or multiple structure)
 - Post-indexed variants of SIMD LD1R
 - Post-indexed variants of SIMD LD2 (single or multiple structure)
 - Post-indexed variants of SIMD LD2R
 - Post-indexed variants of SIMD LD3 (single or multiple structure)
 - Post-indexed variants of SIMD LD3R
 - Post-indexed variants of SIMD LD4 (single or multiple structure)
 - Post-indexed variants of SIMD LD4R

Implications

If the above conditions are met, the Processing Element (PE) might not report a Tag Check Fault as the memory access is incorrectly treated as Tag Unchecked access.

Workaround

There is no workaround for this erratum.

Speculative access to a recently unmapped physical address previously containing page tables might occur

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

If the memory containing page tables is unmapped or the cacheable attribute is changed while there are pending hardware prefetches to that table, the read requests might illegally occur after a **DSB** instruction.

Configurations Affected

All configurations are affected.

Conditions

This erratum occurs under the following conditions:

- A table walk occurs.
- The hardware prefetcher generates a cacheable request to adjacent cache lines, allocating the L2 cache.
- The physical address containing the page tables is unmapped or the cacheable attribute is changed.

Implications

If the above conditions are met, an illegal read might occur in a short window of time after the **DSB** instruction. Arm believes this will not cause incorrect execution in any practical system.

Workaround

No workaround is required.

L2 tag single-bit ECC error might cause deadlock when using the SIP prefetcher

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

A single-bit ECC error in the L2 tag RAM that affects a SIP hardware prefetcher request might cause the PE to deadlock.

Configurations Affected

All configurations are affected.

Conditions

This erratum occurs under the following conditions:

- 1. The L2 cache detects a single-bit ECC error in the L2 tag RAM.
- 2. The SIP hardware prefetcher issues a request to the L2 cache.

Implications

If the above conditions are met and in rare timing circumstances, the PE might encounter data corruption or a deadlock.

Workaround

In most situations, a workaround is not necessary due to the rarity of the required conditions.

To rule out this erratum as a cause for incorrect system behavior, the following workaround can be used: Force the L2 tag into inline ECC correction mode by setting CPUACTLR2_EL1[46] to 1. This setting incurs a small performance penalty due to an increase in L2 latency of one cycle.

L1D_CACHE_INVAL and L2D_CACHE_INVAL PMU events fail to increment for SnpPreferUnique and SnpPreferUniqueFwd

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

When the PE receives a SnpPreferUnique or SnpPreferUniqueFwd snoop from the interconnect, it might not correctly count the L1 data cache and L2 cache invalidations that result.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. PE receives SnpPreferUnique or SnpPreferUniqueFwd from the coherent interconnect.
- 2. PE invalidates the L1 data cache and L2 cache.

Implications

If the above conditions are met, the L1D_CACHE_INVAL event will fail to increment and the L2D_CACHE_INVAL event might fail to increment. The relative infrequency of the necessary conditions means that the L1D_CACHE_INVAL and L2D_CACHE_INVAL events are still meaningful.

Workaround

Data abort on SVE first fault load might be routed to incorrect Exception level

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Under certain conditions, data abort on SVE first fault load might be routed to incorrect Exception level.

Configurations Affected

All configurations are affected.

Conditions

All of the following conditions must be met:

- 1. First active lane of SVE first fault load crosses a page boundary.
- 2. Translation table walk for the second page generates an external abort.
- 3. Memory tagging is enabled and access to bytes on the first page generates a tag check fail.
- 4. SCR EL3.EA or HCR EL2.TEA bits are set.

Implications

If the above conditions are met, data abort will not get routed to the correct Exception level. If this scenario occurred at ELO/EL1/EL2 and SCR_EL3.EA bit is set, data abort will not get routed to EL3. Likewise if this scenario occurred at ELO/EL1 and HCR_EL2.TEA bit is set and SCR_EL3.EA bit is not set, data abort will not get routed to EL2. The potential impact of this erratum to a practical system is considered to be very minor, given the precondition of an unrecoverable error.

Workaround

There is no workaround for this erratum.

MPAM value associated with instruction fetch might be incorrect

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r1p1, r1p2. Open.

Description

Under some scenarios, the MPAM value associated with an instruction fetch request might be incorrect when context changes.

Configurations Affected

This erratum affects all configurations.

Conditions

1. An Instruction fetch request is attempted before a context switch but is not completed until after a context switch.

Implications

The MPAM value associated with the instruction fetch request might be incorrect.

Workaround

2117589 Hardware prefetcher PMU events count incorrectly

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

The following PMU events do not count correctly:

- 0x191, Number of cycles in which the hardware prefetcher is in the more aggressive mode.
- 0x192, Number of cycles in which the hardware prefetcher is in the less aggressive mode.
- 0x193, Number of cycles in which the hardware prefetcher is in the most conservative mode.

Configurations Affected

This erratum affects all configurations.

Conditions

One of the PMU event counters is configured to count any of the following events:

- 0x191
- 0x192
- 0x193

Implications

The counter values for these events will not be correct and therefore cannot be used.

Workaround

2119356 L2 data RAM or L2 TQ data RAM might fail to report ECC errors

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

When the L2 cache is configured for specific ECC granule sizes, it might fail to report a detected single-bit ECC error in the L2 data RAM or L2 TQ data RAM.

Configurations Affected

This erratum affects all configurations.

Conditions

1. L2 cache detects a single-bit ECC error in the L2 data RAM or in the L2 TQ data RAM, in a protection granule that is already marked as poisoned due to a deferred error from another agent.

Implications

If the above condition is met, then the PE might fail to report the single-bit ECC error in the RAS error log registers. This might cause a small loss in diagnostic capability.

Workaround

A64 WFI or A64 WFE executed in Debug state suspends execution indefinitely

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Executing an A64 WFI or WFE instruction while in Debug state results in suspension of execution, and execution cannot be resumed by the normal WFI or WFE wake-up events while in Debug state.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The Processing Element (PE) is in Debug state and in AArch64 Execution state.
- 2. A WFI or WFE instruction is executed from EDITR.

Implications

If the above conditions are met, the PE will suspend execution.

This is not thought to be a serious erratum, because an attempt to execute a WFI or WFE instruction while in Debug state is not expected.

For WFI executed in Debug state, execution can only resume by any of the following:

- A Cold or Warm reset
- A Restart request trigger event from the Cross Trigger Interface (CTI) causing exit from Debug state, followed by a WFI wake-up event

For WFE executed in Debug state, execution can only resume by any of the following:

- A Cold or Warm reset
- A Restart request trigger event from the CTI causing exit from Debug state, followed by a WFE wake-up event
- An external event that sets the Event Register. Examples include executing an SEV instruction on another PE in the system or an event triggered by the Generic Timer.

Workaround

A workaround is unnecessary, because an attempt to execute a WFI or WFE instruction while in Debug state is not expected.

PMU Event MEM_ACCESS_CHECKED_WR, 0x4026 counts incorrectly and MEM ACC CHECKED 0x4024 might be incorrect

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

The PMU Event MEM_ACCESS_CHECKED_WR, 0x4026 does not count correctly, and MEM_ACC_CHECKED 0x4024 might not count correctly.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. One of the PMU event counters is configured to count event 0x4026 or 0x4024.
- 2. MTE is enabled.
- 3. SCTLR ELx.ATA=1
- 4. A store instruction is executed that generates a memory-write access that is Tag Checked.

Implications

The counter values for these events will not be correct and therefore cannot be used reliably.

Workaround

2143137 Some SVE PMU events count incorrectly

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

The following Performance Monitoring Unit (PMU) events do not count correctly:

- 0x8074, SVE PRED SPEC, SVE predicated operations speculatively executed
- 0x8075, SVE_PRED_EMPTY_SPEC, SVE predicated operations with no active predicates, operations speculatively executed
- 0x8076, SVE_PRED_FULL_SPEC, SVE predicated operations with all active predicates, operations speculatively executed
- 0x8077, SVE_PRED_PARTIAL_SPEC, SVE predicated operations with partially active predicates, operations speculatively executed

Configurations Affected

This erratum affects all configurations.

Conditions

One of the PMU event counters is configured to count any of the following events:

- 0x8074
- 0x8075
- 0x8076
- 0x8077

Implications

Load and store operations due to SVE instructions are not counted by any of these events. The counter values for these events will only reflect predicated SVE data processing operations. For example, this means that the ratios of each of the 0x8075-0x8077 event values to the 0x8074 event value will not be as expected because load and store operations are not included. However, the types of predicate used by data processing operations will still be usefully indicated.

Workaround

This erratum has no workaround.

FAR_ELx contents for a Data Abort exception on SVE first fault contiguous load instruction due to Tag Check fail might be incorrect

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

An SVE first fault contiguous load instruction that encounters a Tag Check fail when accessing the first active element and a watchpoint match on one of the non-first active elements can generate a Data abort exception with incorrect value in FAR ELx.

Configurations Affected

All configurations are affected.

Conditions

This erratum occurs under all of the following conditions:

- 1. Memory tagging and watchpoints are enabled.
- 2. An SVE first fault contiguous load instruction accesses memory and generates a Data Abort exception due to Tag Check fail on the first active element.
- 3. There is a watchpoint match on one of the non-first active elements.

Implications

If the above conditions are met, a Data Abort exception will be generated with an incorrect value in FAR_ELx. ESR_ELx will indicate Synchronous Tag Check Fault. The FAR_ELx value could be anything between the start address of the access up to twice the access size.

Workaround

This erratum has no workaround.

Direct access of L2 data RAMs using RAMINDEX returns incomplete data

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

A direct access to the L2 data RAM using the RAMINDEX function returns incomplete data in the DDATA2 register.

Configurations Affected

All configurations are affected.

Conditions

This erratum occurs under the following condition:

1. Direct access to internal memory targeting L2 data RAM is executed.

Implications

A direct access to the L2 data RAM will result in zeros on DDATA2_EL3[19:16]. These bits should contain ECC[15:12] corresponding to Data[127:64], but instead contain zeros.

Workaround

2165452 PMU_HOVFS event is not always exported when self-hosted trace is disabled

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

PMU_HOVFS is a PMU event that can be exported to the ETM. Exporting this event is disabled if TRFCR_EL2.E2TRE == 0b0, but this setting only applies when self-hosted trace is enabled. Due to this erratum, the event is never exported when TRFCR_EL2.E2TRE == 0b0, including when self-hosted trace is disabled.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The ETM is configured to use PMU_HOVFS as an external input event.
- 2. Self-hosted trace is disabled and TRFCR EL2.E2TRE == 0b0.

Implications

Overflows of PMU counters reserved by EL2 might not be visible.

Workaround

To use the PMU_HOVFS as an external input event when self-hosted trace is disabled, ensure TRFCR_EL2.E2TRE is set to 1 (0b1).

An SError might not be reported for an atomic store that encounters data poison

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Under certain conditions, an atomic store that encounters data poison might not report an SError.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. An atomic store that is unaligned to its data size but within a 16-byte boundary accesses memory.
- 2. The atomic store accesses multiple L1 data banks such that not all banks have data poison.

Implications

If the above conditions are met, an SError might not be reported although poisoned data is consumed. Note that the data remains poisoned in the L1 and will be reported on the next access.

Workaround

This erratum has no workaround.

64 bit source SVE PMULLB/T not considered Cryptography instruction

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

64 bit source element variants of SVE PMULLB and PMULLT are incorrectly classified as non-cryptography instructions. When the **CRYPTODISABLE** pin is asserted, 64 bit source SVE PMULLB or SVE PMULLT instructions are executed rather than taking the expected undefined instruction exception. In addition to this, when the CRYPTODISABLE pin is deasserted, PMU counts for CRYPTO_SPEC (PMU event 0x77) do not include 64 bit source SVE PMULLB and PMULLT in their counts.

Configurations Affected

This erratum affects all configurations.

Conditions

Cryptodisable

- 1. **CRYPTODISABLE** pin is high.
- 2. 64 bit source SVE PMULLB or SVE PMULLT is executed.

PMU Counts

- 1. **CRYPTODISABLE** pin is low.
- 2. PMU Enabled to count PMU EVENT 0x77 (CRYPTO SPEC).
- 3. 64 bit source SVE PMULLB or SVE PMULLT is executed.

Implications

If the above conditions are met, then the instructions will be executed instead of taking the undefined exception that is required by Arm architecture.

In addition, the PMU counter for the CRYPTO_SPEC event (PMU EVENT 0x77) will not increment for 64 bit source SVE PMULLB PMULLT instructions.

Workaround

Streaming writes to memory mapped Non-shareable and write-back might cause data corruption because of reordering

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Writes to contiguous bytes might be combined into one streaming write of 64 bytes. If such writes are performed to memory mapped Non-shareable and write-back, then two streaming writes to the same physical address might be performed in the wrong order.

Configurations Affected

This erratum affects all configurations.

Conditions

Write stream operations to memory mapped Non-shareable and write-back, or shareable can allocate the L2 cache without issuing a request on the CHI interface. This creates the possibility of two concurrent pending WriteNoSnpFull transactions of the same cache line on CHI, without the proper sequencing to guarantee the order they are performed.

Implications

If the above conditions are met, then the combined writes might be performed in the wrong order as determined by the sequential execution model.

Workaround

This erratum can be avoided by mapping all write-back memory as Inner or Outer Shareable.

2230110 Reads of DISR_EL1 incorrectly return 0s while in Debug State

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

When the Processing Element (PE) is in Debug State, reads of DISR_EL1 from EL1 or EL2 with SCR_EL3.EA=0x1 will incorrectly return 0s.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The PE is executing in Debug State at EL1 or EL2, with SCR EL3.EA=0x1.
- 2. The PE executes an MRS to DISR_EL1.

Implications

If the above conditions are met, then the read of DISR_EL1 will incorrectly return 0s.

Workaround

No workaround is expected to be required.

Incorrect sampling of SPE events "Partial predicate" and "Empty predicate" for SVE instruction with no vector operands

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0. Fixed in r1p1.

Description

Under certain circumstances, the SPE events E[17] "Partial predicate" and E[18] "Empty predicate" might not be captured as required.

Configurations Affected

This erratum affects all configurations.

Conditions:

1. SPE samples an SVE instruction with no vector operands.

Implications

If the above conditions are met, then the SPE events E[17] "Partial predicate" and E[18] "Empty predicate" might not be captured for the given instruction.

Workaround

Read or write from Secure EL1 for ICV_BPR1_EL1 register might not work

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Valid access to ICV_BPR1_EL1 from Secure EL1 when ICV_CTLR_EL1.CBPR is set to 1 should modify ICV_BPR0_EL1 on writes and return the value from ICV_BPR0_EL1 on reads. Instead, reads of ICV_BPR1_EL1 return ICV_BPR0_EL1 plus one, saturated to 0b111. Writes to ICV_BPR1_EL1 are ignored.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. The PE is in Secure state in the EL1 exception level.
- 2. ICV CTLR EL1.CBPR is set to 1.
- 3. A valid read or write access to ICV_BPR1_EL1 occurs.

Implications

If the above conditions are met, then an incorrect value might be returned on read or a valid write might be ignored potentially, affecting the priority of interrupts in the CPU.

Workaround

This erratum has no workaround.

Lower priority exception might be reported when abort condition is detected at both stages of translation

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

When a permission fault or unsupported atomic fault is detected in the second stage of translation during stage 1 translation table walk, and there is a higher priority alignment fault due to SCTLR_EL1.C bit not being set, then Data Abort might be generated reflecting the lower priority fault.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs when all the following conditions apply:

- 1. The core executes an atomic, load/store exclusive, or load-acquire/store-release instruction.
- 2. SCTLR_EL1.C bit is not set and access is not aligned to size of data element.
- 3. A permission fault or unsupported atomic fault is detected in the second stage of translation during stage 1 translation table walk.

Implications

If the previous conditions are met, a Data Abort exception will be generated and incorrectly routed to EL2 with Data Fault Status Code (DFSC) of permission fault or unsupported atomic fault, when it should have been routed to EL1 with DFSC of alignment fault.

Workaround

This erratum has no workaround.

2236039 DRPS instruction is not treated as UNDEFINED at EL0 in Debug state

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

In Debug state, DRPS is not treated as an UNDEFINED instruction.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The Processing Element (PE) is in Debug state.
- 2. PE is executing at ELO.
- 3. PE executes DRPS instruction.

Implications

If the above conditions are met, then the PE will incorrectly execute DRPS as NOP instead of treating it as an UNDEFINFED instruction.

Workaround

ESR_ELx contents for a Data Abort exception might be incorrect when an L1D tag double bit error is encountered

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

When an L1D tag double bit error is encountered, a Data Abort exception might be reported with an incorrect fault type of Synchronous Tag Check Fault in the ESR_ELx register under unusual micro architectural conditions.

Configurations Affected

This erratum affects all configurations with the BROADCASTMTE pin asserted.

Conditions

This erratum occurs under all of the following conditions:

- 1. Memory tagging is enabled.
- 2. A precise checked access due to a load instruction encounters L1D tag double bit error.

Implications

If the previous conditions are met, a Data Abort exception will be generated with an incorrect Data Fault Status Code (DFSC) of Synchronous Tag Check Fault in the ESR_ELx register when it should have been Synchronous External Abort.

If this scenario occurred at ELO/EL1/EL2 and SCR_EL3.EA bit is set, then Data Abort will not get routed to EL3.

Likewise if this scenario occurred at ELO/EL1 and HCR_EL2.TEA bit is set, then Data Abort will not get routed to EL2. A fatal RAS error will still be reported.

Workaround

This erratum has no workaround.

TRBE might use incorrect Cacheability attributes for TRBE data when address translation is disabled

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Under certain conditions, Trace Buffer Extension (TRBE) might use incorrect Cacheability attributes for TRBE data when address translation is disabled.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. TRBE is enabled with TRBLIMITR EL1.nVM == 1.
- 2. TRBMAR_EL1.Attr is programmed to use Cacheable attributes.
- 3. MDCR EL2.E2TB = 2'b00 (EL2 owning)
- 4. HCR EL2.CD=1 and HCR EL2.VM=1
- 5. PE is executing at EL=1 or EL=0.
- 6. TRBE writes data to memory.

Implications

When the above conditions are met, PE might incorrectly use Non-Cacheable attribute instead of Cacheable attribute from TRBMAR_EL1.Attr[3:0] for TRBE data. Trace data might be lost if the memory location used by TRBE is present in cache when this write happens.

Workaround

Incorrect sampling of SPE events "Partial predicate" and "Empty predicate" for SVE instruction with vector operands in certain configurations

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Under certain circumstances, SPE events E[17] "Partial predicate" and E[18] "Empty predicate" might not be captured as required.

Configurations Affected

This erratum affects configurations with VEC_2X128=0.

Conditions:

- 1. Vector unit in the core is configured with 4 VX pipes.
- 2. SPE samples an SVE instruction with vector operands.

Implications

If the above conditions are met, then SPE event E[17] "Partial predicate" and E[18] "Partial predicate" might not be reliably captured for the given instruction.

Workaround

2243142 L1 MTE Tag poison is not cleared

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

The MTE Tag poison is not cleared by an STG or DC G[Z]VA instruction.

Configurations Affected

This erratum affects all configurations with the **BROADCASTMTE** pin asserted.

Conditions

This erratum occurs under the following conditions:

- 1. A Processing Element (PE) accesses a line that encounters poison on the MTE Tag.
- 2. The PE executes an STG or DC G[Z]VA to the same 16-byte address.

Implications

If the above conditions are met, then the MTE Tag poison does not get cleared in the L1 Tag.

Workaround

ELR_ELx[63:48] might hold incorrect value when PE disables address translation

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

When the CPU executes an exception return in order to switch context and the new context satisfies certain rare conditions, the top 16 bits of ELR_ELx might track an incorrect value.

Configurations Affected

The erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. CPUACTLR EL1[22] is set to 1.
- 2. The PE executes an ERET, ERETAA or ERETAB instruction to switch to a new context.
- 3. Either stage 1 or stage 2 translation was enabled when ERET is executed. After ERET, both stage 1 and stage 2 translations are turned off.
- 4. ELR_ELx[63:48] specified by ERET is neither 0x0000 (all zero) nor 0xffff (all one).

Implications

When the above conditions are met, the PE takes instruction abort (address size fault) or asynchronous exception after ERET without executing the instruction in the context specified by ERET. After the exception is taken, ELR_ELx specified by ERET should hold the same value because no instruction is executed. However, PE might modify ELR ELx[63:48] to zero.

ERET with non-zero ELR_ELx[63:48] causes an address size fault during address translation disabled because the CPU supports less than 256TB physical address space. Arm also assumes the new context is controlled by privileged software (for example, Hypervisor) because translation is turned off. Therefore, software can hit this erratum only when the system software uses this malicious address in the ELR_ELx register.

Workaround

Version: 11.0

2252367

L1 Data poison is not cleared by a store

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0. Fixed in r1p1.

Description

The L1 Data poison is not cleared by a store under certain conditions.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. A Processing Element (PE) executes a store that does not write a full word to a location that has data marked as poison.
- 2. The PE executes another store that writes to all bytes that contain data poison before the previous store is globally observable.

Implications

If the above conditions are met, then the poison bit in the L1 Data cache does not get cleared.

Workaround

This erratum can be avoided by inserting a DMB before and after a word-aligned store that is intended to clear the poison bit.

SPE, PMU event for full/partial/empty/not full predicate might be incorrect for some SVE instructions

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

The SPE, PMU events for full/partial/empty/not full predicate capture the cases where an instruction reads a full, not full, partial, or empty value for governing predicate according to the size of the instruction. Under certain circumstances, the event might be incorrectly captured.

Configurations Affected

This erratum affects all configurations.

Conditions

- PMU is configured to sample events for SVE_PRED_EMPTY_SPEC (0x8075), SVE_PRED_FULL_SPEC (0x8076), SVE_PRED_NOT_FULL_SPEC (0x8079), or SVE_PRED_PARTIAL_SPEC (0x8077).
- One of these SVE conversion instructions is executed: SCVTF, UCVTF, FCTVZU, FCVTZS, FCVT, FCVTXNT, or FCVTNT.
- Governing predicate used by instruction has a different value than All-Active or All-Empty.

or

- SPE samples one of these SVE conversion instructions: SCVTF, UCVTF, FCTVZU, FCVTZS, FCVT, FCVTXNT, or FCVTNT.
- Governing predicate used by instruction has a different value than All-Active or All-Empty.

Implications

If the previous conditions are met, the following events might be incorrectly captured:

- SPE event E[17] "Partial predicate"
- SPE event E[18] "Empty predicate"
- PMU event SVE PRED EMPTY SPEC (0x8075)
- PMU event SVE PRED FULL SPEC (0x8076)
- PMU event SVE_PRED_NOT_FULL_SPEC (0x8079)
- PMU event SVE PRED PARTIAL SPEC (0x8077)

Workaround

2277321 PMU L1D_CACHE_REFILL_OUTER is inaccurate

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0. Fixed in r1p1.

Description

The L1D_CACHE_REFILL_OUTER PMU event 0x45 is inaccurate due to ignoring refills generated from a system cache. The L1D_CACHE_REFILL PMU event 0x3 should be the sum of PMU events L1D_CACHE_REFILL_INNER 0x44 and L1D_CACHE_REFILL_OUTER 0x45, however, due to the inaccuracy of L1D_CACHE_REFILL_OUTER 0x45 it is possible that this might not be the case.

Note: L1D_CACHE_REFILL PMU event 0x3 does accurately count all L1D cache refills, including refills from a system cache.

Configurations Affected

This erratum affects all configurations which implement a system cache.

Conditions

This erratum occurs under the following conditions:

1. The L2 inner cache is allocated with data transferred from a system cache.

Implications

When the previous condition is met, the L1D_CACHE_REFILL_OUTER PMU event 0x45 does not increment properly.

Workaround

The correct value of L1D_CACHE_REFILL_OUTER PMU event 0x45 can be calculated by subtracting the value of L1D_CACHE_REFILL_INNER PMU event 0x44 from L1D_CACHE_REFILL PMU event 0x3.

L2 tag RAM double-bit ECC error might lead to the PE not responding to a forwarding snoop

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

A double-bit ECC error in a cache line containing Memory Tagging Extensions (MTE) tags might result in the L1 and L2 caches becoming out-of-sync with respect to MTE tag validity. This can lead to a situation in which the L1 evicts dirty MTE tags to the L2 as part of a fill/evict sequence or a snoop. If this eviction satisfies an external forwarding snoop, the RN-F might fail to provide legal responses which might lead to a deadlock.

Configurations Affected

This erratum affects all configurations using the Memory Tagging Extensions.

Conditions

When using MTE, under specific microarchitectural and timing conditions, an L2 double-bit ECC error in the L2 tag RAMs might allow the L1 data cache to later evict a cache line with dirty MTE tags. The erratum occurs if the eviction satisfies an external snoop of one of these types:

- SnpUniqueFwd
- SnpCleanFwd
- SnpSharedFwd
- SnpNotSharedDirtyFwd
- SnpPreferUniqueFwd

Implications

If the previous conditions are met, the PE might provide an SnpRespDataFwded response to the HN-F, but fail to provide a CompData response to the original requester, leading to a system deadlock.

Workaround

2302585 CSSELR_EL1.TnD is RAZ/WI when CSSELR_EL1.InD == 0x1

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

In some contexts when CSSELR_EL1.InD == 0x1, CSSELR_EL1.TnD is defined to be RESO. In other contexts when CSSELR_EL1.InD == 0x0, CSSELR_EL1.TnD is defined to be R/W. When a bit is RESO in some contexts and R/W in other contexts, then it cannot be implemented as RAZ/WI for RESO contexts.

In affected products, CSSELR_EL1.TnD is incorrectly treated as RAZ/WI instead of the correct R/W behavior when CSSELR_EL1.InD == 0x1.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. The PE is executing with CSSELR_EL1.InD == 0x1.
- 2. The PE attempts to read or write CSSELR_EL1.TnD.

Implications

Reads of CSSELR EL1.TnD will return 0x0 and writes will be ignored.

Workaround

This erratum is not expected to require a workaround.

ESR_ELx.ISV can be set incorrectly for an external abort on translation table walk

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

When a data double bit error or external abort is encountered during a translation table walk, a synchronous exception is reported with the ISV bit set in the ESR ELx register.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following condition:

1. A data double bit error or external abort is encountered during a translation table walk, and a synchronous exception is reported.

Implications

If the previous condition is met, the ESR_ELx.ISV bit will be set. The ESR[23:14] bits are set with the correct syndrome for the instruction making the access. That is SAS, SSE, SRT, SF, and AR are all set according to the instruction.

Workaround

ESR_ELx contents for a Data Abort exception might be incorrect when a data double bit error or external abort is encountered

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

When a data double bit error or external abort is encountered on one half of an unaligned load, a Data Abort exception might be reported with an incorrect fault type of Synchronous Tag Check Fault in the ESR ELx register. This occurs under unusual micro-architectural conditions.

Configurations Affected

This erratum affects all configurations with the BROADCASTMTE pin asserted.

Conditions

This erratum occurs under all of the following conditions:

- 1. Memory tagging is enabled.
- 2. A precise checked access due to an unaligned load instruction encounters a data double bit error or external abort.

Implications

If the previous conditions are met, a Data Abort exception will be generated with an incorrect Data Fault Status Code (DFSC) of Synchronous Tag Check Fault in the ESR_ELx register, when it should have been Synchronous External Abort.

If this scenario occurred at ELO/EL1/EL2, and the SCR_EL3.EA bit is set, then the Data Abort will not get routed to EL3.

Likewise, if this scenario occurred at ELO/EL1, and the HCR_EL2.TEA bit is set, then the Data Abort will not get routed to EL2. A RAS error will still be reported.

Workaround

2343688 STALL_BACKEND_MEM, Memory stall cycles AMU event count incorrectly

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

The following Activity Monitor Unit (AMU) event does not count correctly:

• 0x4005, STALL_BACKEND_MEM. The counter counts cycles in which the PE is unable to dispatch instructions from the frontend to the backend of the PE. It is due to a backend stall caused by a miss in the last level of cache within the PE clock domain. This event is counted by AMEVCNTR03.

Configurations Affected

This erratum affects all configurations.

Conditions

• AMU is enabled

Implications

The counter values for the event will not be correct and therefore cannot be used reliably.

Workaround

2351560 ERXPFGCDN_EL1 register is incorrectly written on Warm reset

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

The ERXPFGCDN_EL1 register is written a reset value of 0 at both cold and Warm reset, when it should only be reset at Cold reset.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs when a Warm reset occurs.

Implications

If the previous condition is met, the value of ERXPFGCDN_EL1 will not be preserved across a Warm reset.

Workaround

Incorrect read value for Performance Monitors Configuration Register

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0. Fixed in r1p1.

Description

The Performance Monitors Configuration Register (PMCFGR) returns an incorrect read value for the CCD field.

Configurations Affected

This erratum affects all configurations.

Conditions

1. Debugger reads the PMCFGR register.

Implications

The PMCFGR.CCD field incorrectly reports the value 0x1 indicating that Cycle counter has prescale, instead of the expected value of 0x0, since the field is RAZ if AArch32 isn't supported.

Workaround

2390828 PMU MEM_ACCESS_CHECKED_RD and MEM_ACCESS_CHECKED_WR inaccurate

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

The MEM_ACCESS_CHECKED_RD and MEM_ACCESS_CHECKED_WR PMU events increment incorrectly when accessing a tagged page, but is inactive due to SVE predication.

Configurations Affected

This erratum affects configurations with BROADCASTMTE=1.

Conditions

This erratum occurs if the following conditions apply:

- 1. a load or store access crosses a page-boundary
- 2. one unaligned half accesses a page that is MTE tagged, but is inactive due to SVE predication
- 3. the other unaligned half accesses a page that is not MTE tagged

Implications

If the previous conditions are met, the PMU event might increment inaccurately.

Workaround

Software-step not done after exit from Debug state with an illegal value in DSPSR

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r1p1, r1p2. Open

Description

On exit from Debug state, PSTATE.SS is set according to DSPSR.SS and DSPSR.M. If DSPSR.M encodes an illegal value, then PSTATE.SS should be set according to the current Exception level. When the erratum occurs, the PE always writes PSTATE.SS to 0.

Configurations Affected

This erratum affects all configurations.

Conditions

- Software-step is enabled in current Exception level
- DSPSR.M encodes an illegal value, like:
 - M[4] set
 - M is a higher Exception level than current Exception level
 - M targets EL2 or EL1, when they are not available
- DSPSR.D is not set
- DSPSR.SS is set

Implications

If the previous conditions are met, then, on exit from Debug state the PE will directly take a Software-step Exception, without stepping an instruction as expected from DSPSR.SS=1.

Workaround

Incorrect read value for Performance Monitors Control Register

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

The Performance Monitors Control Register (PMCR_ELO) and the External Performance Monitor Control Register (PMCR) might return an incorrect read value for the X field.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Software writes a nonzero value to the PMCR_ELO.X, or debugger writes a nonzero value to the PMCR.X
- 2. Software reads the PMCR_ELO register, or debugger reads the PMCR register

Implications

The PMCR_EL1.X or PMCR.X field incorrectly reports the value 0x1, indicating exporting of events in an IMPLEMENTATION DEFINED PMU event export bus is enabled. The expected value is 0x0, as the implementation does not include a PMU event export bus.

Workaround

Incorrect sampling of SPE events "tlb_access" for an unaligned SVE load instruction with no active elements

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

Under certain circumstances, the SPE events E[4] "TLB Access" might not be captured as required.

Configurations Affected

This erratum affects all configurations.

Conditions

SPE samples an unaligned SVE load instruction with no active elements.

Implications

If the previous conditions are met, then the SPE events E[4] "TLB Access" might not be consistent with the PMU event 0x0025 (L1D_TLB). Note that PMU event 0x0025 (L1D_TLB) is accurate.

Workaround

2441604 PMU STALL_SLOT_BACKEND and STALL_SLOT_FRONTEND events count incorrectly

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, and r1p0. Fixed in r1p1.

Description

The following Performance Monitoring Unit (PMU) events do not count correctly:

- 0x3D, STALL SLOT BACKEND, no operation sent for execution on a slot due to the backend
- 0x3E, STALL_SLOT_FRONTEND, no operation sent for execution on a slot due to the frontend

Configurations Affected

This erratum affects all configurations.

Conditions

One of the PMU event counters is configured to count any of the following events:

- 0x3D, STALL SLOT BACKEND
- 0x3E, STALL_SLOT_FRONTEND

Implications

When operations are stalled in the processing element's dispatch pipeline slot, some of those slot stalls are counted as frontend stalls when they should have been counted as backend stalls, rendering PMU events 0x3D (STALL_SLOT_BACKEND) and 0x3E (STALL_SLOT_FRONTEND) inaccurate. The PMU event 0x3F (STALL_SLOT) does still accurately reflect its intended count of "No operation sent for execution on a slot".

Workaround

Version: 11.0

2612736

Read to dump the instruction cache contents while in Debug state results in deadlock

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

In Debug state, an access to read the instruction cache data contents using SYS_IMP_RAMINDEX will not complete and will deadlock any ITR transactions that follow.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs if all the following conditions apply:

- 1. The PE enters Debug state.
- 2. User sets SYS_IMP_RAMINDEX RAM_ID field to 0x1 in order to select the read of instruction cache contents, and performs the read.

Implications

The instruction cache read deadlocks, and the debugger might lose control.

Workaround

This erratum can be avoided by the debugger if the instruction cache is not read when the core is in Debug state.

FAR_ELx contents for a Data Abort exception on SVE first fault contiguous load instruction due to Tag Check fail might be incorrect

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

A Scalable Vector Extension (SVE) first fault contiguous load instruction that encounters a Tag Check fail when accessing the first active element and a watchpoint match on one of the non-first active elements can generate a Data abort exception with incorrect value in FAR_ELx.

Configurations Affected

All configurations are affected.

Conditions

This erratum occurs under all of the following conditions:

- 1. Memory tagging and watchpoints are enabled.
- 2. An SVE first fault contiguous load instruction accesses memory and generates a Data Abort exception due to Tag Check fail on the first active element.
- 3. There is a watchpoint match on one of the non-first active elements.

Implications

If the above conditions are met, a Data Abort exception will be generated with an incorrect value in FAR_ELx. ESR_ELx will indicate Synchronous Tag Check Fault.

Workaround

Execution of STG instructions in close proximity might cause loss of MTE allocation tag data

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

Under certain rare micro-architectural conditions, two or more STG instructions that access the same cacheline but different 32-bytes might not write the *Memory Tagging Extension* (MTE) allocation tag to memory in the presence of an ECC error to the same cache index.

Configurations Affected

This erratum affects all configurations where the BROADCASTMTE pin is HIGH.

Conditions

- 1. Memory tagging is enabled.
- 2. Two or more STG instructions are executed in close proximity to the same cache line.
- 3. The STG instructions access different 32-bytes locations.
- 4. An L2 fill for a different cacheline but to the same index has a single bit data error that could have otherwise caused a capacity evict of the cacheline accessed by the STG instructions

Implications

If the above conditions are met, then under specific micro-architectural conditions, the MTE allocation tag might not be written to memory, resulting in a silent corruption of the MTE tag.

Workaround

If desired, this erratum can be avoided by setting CPUACTLR5 EL1[13] to 1.

Note: setting CPUACTLR5_EL1[13] to 1 is expected to result in a small performance degradation for workloads that use MTE (approximately 1.6% when using MTE imprecise mode, 0.9% for MTE precise mode).

MTE tag check fail seen on first half of a cache-line crossing load does not get reported

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

Under some unusual microarchitectural conditions, tag check fail seen on first half of a cache-line crossing load does not get reported.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under all of the following conditions:

- 1. Memory tagging is enabled
- 2. Cache-line crossing load is executed that fails tag check on first half of the access
- 3. Unusual microarchitectural conditions occur

Implications

If the above conditions are met, precise checked loads that see tag mismatch will not report an exception and imprecise checked loads will not update the TFSR register.

Workaround

MTE checked load might read an old value of allocation tag by not complying with address dependency ordering

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

Under some unusual micro-architectural conditions, checked load might read an old value of allocation tag by not complying with address dependency ordering.

Configurations Affected

All configurations are affected.

Conditions

The erratum occurs when all the following apply:

- 1. Initially, memory location M has allocation tag A.
- 2. Processing Element x (PEx) stores to M using allocation tag A.
- 3. PEy changes the allocation tag of M from A to B.
- 4. PEx makes a checked load from M using allocation tag A, with a dependency such that it should observe allocation tag B.

Implications

If the above conditions are met, PEx may not observe the new allocation tag for the memory location and may fail to report a tag check fail.

Workaround

2704518 Incorrect value reported for SPE PMU event SAMPLE_FEED

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r1p1, Fixed in r1p2.

Description

Under certain conditions when a CMP instruction is followed by a Branch, the SAMPLE_FEED PMU event 0x4001 is not reported.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Statistical Profiling Extension (SPE) sampling is enabled.
- 2. SPE samples a CMP instruction, which is followed immediately by a BR instruction.

Implications

If the above conditions are met, then the SAMPLE_FEED event may not be incremented.

For most expected use cases, the inaccuracy is not expected to be significant.

Workaround

Incorrect read value for Performance Monitors Configuration Register EX field

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

The Performance Monitors Configuration Register (PMCFGR) might return an incorrect read value for the EX field.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs when the software reads the PMCFGR register.

Implications

The PMCFGR.EX field incorrectly reports the value 0x1, indicating exporting of events in an IMPLEMENTATION DEFINED PMU event export bus is enabled. The expected value is 0x0, as the implementation does not include a PMU event export bus.

Workaround

TRBE buffer write translation out of context may have incorrect memory attributes

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r1p1, and r1p2. Open.

Description

When TRBLIMITR_EL1.nVM = 1, TBE_OWNING_EL = EL1, and TRBE requests a translation while the *Processing Element* (PE) is executing in EL2 or EL3, and cache is disabled by HCR_EL2.CD = 1, memory attribute may not be Non-cacheable.

Configurations affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. TRBLIMITR EL1.nVM is set to 1.
- 2. MDCR EL2.E2TB is set to 0b10 or 0b11.
- 3. HCR EL2.CD is set to 1.
- 4. The PE is executing in EL2 or EL3.
- 5. TRBE requests a translation for a buffer write.

Implications

Memory attributes for any write access by TRBE to that translation may not be forced to Non-cacheable.

Workaround

Use of HCR_EL2.CD is not expected to be common. If a workaround is needed, do not allow TRBE to be given to a VM machine.

AMU Event 0x0011, Core frequency cycles might increment incorrectly when the core is in WFE state

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r1p1, r1p2. Open.

Description

The core frequency cycles Activity Monitor Unit (AMU) event may not count correctly when the core is in Wait For Event (WFE) state and the clocks in the core are enabled.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. The architected activity monitor counter register 0 (AMEVCNTR00) is enabled.
- 2. The core executes WFE instructions.
- 3. The clocks in the core are never disabled, or
- 4. The clocks in the core are temporarily enabled without causing the core to exit WFE state due to one of the following events:
 - A system snoop request that must be serviced by the core L1 data cache or the L2 cache.
 - A cache or Translation Lookaside Buffer (TLB) maintenance operation that must be serviced by the core L1 instruction cache, L1 data cache, L2 cache, or TLB.
 - An access on the Utility bus interface.
 - A Generic Interrupt Controller (GIC) CPU access or debug access through the Advanced Peripheral Bus (APB) interface.

Implications

The core frequency cycles AMU event will continue to increment when clocks are enabled even though the core is in WFE state. Arm expects this to be a minor issue as the resulting discrepancies will likely be negligible from the point of view of consuming these counts in the system firmware at the 1ms level.

Workaround

Incorrect value reported for SPE PMU event 0x4000 SAMPLE_POP

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

Under certain conditions the SAMPLE_POP PMU event 0x4000 might continue to count after SPE profiling has been disabled.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Statistical Profiling Extension (SPE) sampling is enabled.
- 2. Performance Monitoring Unit (PMU) event counting is enabled.
- 3. SPE buffer is disabled, either directly by software, or indirectly via assertion of PMBIRQ, or by entry into Debug state.

Implications

If the previous conditions are met, then the SAMPLE_POP event might reflect an overcounted value. The impact of this erratum is expected to be very minor for actual use cases, as SPE sampling analysis is typically performed independently from PMU event counting.

Workaround

If a workaround is desired, then minimization of potential overcounting of the SAMPLE_POP event can be realized via software disable of any PMU SAMPLE_POP event counters whenever SPE is disabled, and also upon the servicing of a PMBIRQ interrupt. For profiling of ELO workloads, software can further reduce exposure to overcounting by configuring the counter to not count at Exception levels of EL1 or higher.

Incorrect decoding of SVE version of PRF* scalar plus scalar instructions

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r1p1. Fixed in r1p2.

Description

Scalar plus Scalar forms of the *Scalable Vector Extension* (SVE) PRF may not prefetch from the correct address. The address should be Xn + Xm << scalar, but is instead calculated as Xn. This affects the following instructions:

- PRFB (scalar plus scalar)
- PRFH (scalar plus scalar)
- PRFW (scalar plus scalar)
- PRFD (scalar plus scalar)

Configurations Affected

This erratum affects all configurations.

Conditions

1. Any of the above instructions are executed without trapping when Xm != 0x0

Implications

All affected instructions are software prefetches which do not affect architectural state in any way (including suppression of any translation faults). Thus this erratum will not affect the functional operation of the CPU. Since these instructions are likely to be used in contexts where Xn is fixed and Xm is incrementing, it is unlikely that the erroneous prefetches would result in undesired cache pollution or reduction in memory bandwidth because the instructions will simply continuously prefetch the same address.

Workaround

No workaround is expected to be necessary, but if one is specifically needed, the programmer can use an ADD, and then one of the immediate forms of SVE PRF, which are unaffected. These instructions are:

- PRFB (scalar plus immediate)
- PRFH (scalar plus immediate)

Version: 11.0

- PRFW (scalar plus immediate)
- PRFD (scalar plus immediate)

ECC errors in MTE allocation tags may lead to silent data corruption in tag values

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r1p1, and r1p2. Open.

Description

Streaming writes that require *Memory Tagging Extension* (MTE) tags for tag checking or merging with data receive allocations tags that are flagged as poisoned may lead to the *Processing Element* (PE) caching data and tags with no indication that the tags are poisoned. This may lead to silent data corruption on the allocation tags.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. The PE performs a streaming write (a write of 64 contiguous bytes gathered from multiple store or DC ZVA operations).
- 2. Streaming write requires MTE tag check or hits in the PE caches to a line that contains MTE allocation tags.
- 3. MTE allocations tags contain an indication of an error (uncorrectable ECC error or poison flag).

Implications

If the above conditions are met, the PE might merge the streaming write data and the MTE allocation tags containing an error and write data and allocation tags to a cache without marking the tags as poisoned. This can lead to silent data corruption to future consumers of the MTE allocation tags, which may result in incorrect MTE tag check results. The net effect is an increase in the SDC FIT rate of the PE.

There is still substantial benefit being gained from the ECC logic.

Workaround

PE might fail to detect multiple uncorrectable ECC errors in the L1 data cache tag RAM

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r1p1. Fixed in r1p2.

Description

Under certain conditions, the *Processing Element* (PE) might fail to report multiple uncorrectable *Error Correction Code* (ECC) errors that occur in the L1 data cache tag RAM.

Configurations affected

This erratum affects all configurations.

Conditions

- 1. The PE detects and reports an uncorrectable ECC error in the L1 data cache tag RAM.
- 2. The PE detects a second uncorrectable ECC error in the L1 data cache tag RAM and an uncorrectable ECC error in the L1 data cache data RAM.

Implications

If the previous conditions are met, then the PE might fail to report the second uncorrectable ECC error in the L1 data cache tag RAM and the address recorded in ERROADDR might have an incorrect value. The ECC error occurring in the L1 data cache data RAM is reported correctly.

Workaround

No workaround is necessary. This erratum represents a condition where multiple uncorrectable ECC errors occur in a short period of time. While the PE does not report the errors correctly, ECC still provides a valuable mechanism for error detection and correction.

Incorrect timestamp value reported in SPE records when timestamp capture is enabled

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r1p1. Fixed in r1p2.

Description

The timestamp value that is captured in the Statistical Profiling Extension (SPE) records may be incorrect.

Configurations Affected

This erratum affects all configurations.

Conditions

1. Timestamp capture is enabled for SPE records at the appropriate Exception level by setting PMSCR EL1.TS or PMSCR EL2.TS.

Implications

If the above conditions are met, then the timestamp value reported in the SPE records might be stale (off by one tick) or zero in some cases.

Workaround