Notes

September 12, 2014

assignment

1.4 #16

 $[a] \in \mathbb{Z}_n$. [a] is nilpotent if $[a]^k = 0$ for some $k \ge 1$. zero is always nilpotent. show that \mathbb{Z}_n has no nonzero nilpotents iff n has no factor that is a square. if n has no square factors then the prime factorization consists of distinct primes to the power of one only.

proof

 \Rightarrow

Assume that \mathbb{Z}_n has no nonzero nilpotents. by contradiction assume that there exists some prime p such that $p^2|n$. write $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_t^{\alpha_t}$ at least one $\alpha_i\geq 1$. choose $a=p_1p_2\dots p_t$. then $[a]^{\max\alpha}=[0]$. and $[a]\neq 0$, contradiction because n|a so n is square free.

 \Leftarrow assume $n = p_1 p_2 \dots p_t \ \forall p_i$ are distinct. take $[a] \in \mathbb{Z}_n$ and assume $[a]^k = [0]$. then $n|a^k$ and $p_1 p_2 \dots p_t | a^k$. $\forall p_i, p_i | a^k$. For every i $p_i | a$ therefore $p_1 p_2 \dots p_t | a$ and n|a so [a] = [0].

last time

 $[a]_n$ is invertible iff (a,n)=1 a non-zero element of \mathbb{Z}_n is either invertible or a zero-divisor

proof

let $[a]_n \in \mathbb{Z}_n$, $n \not | a$. if (n,a) = 1 thne $[a]_n$ is invertible. if (n,a) = d > 1 then $[a]_n [\frac{n}{d}] = [0]_n$ because $a \frac{n}{d} = \frac{a}{d} n$ so $a \frac{n}{d}$ is a multiple of n. $d > 1 \to d \neq 0$.

consequence

the following are equivalent:

- 1. n is prime
- 2. [0] is the only zero divisor of \mathbb{Z}_n .
- 3. every nonzero element of \mathbb{Z}_n is invertible.

proof

if n prime, (n, a) = 1 for 0 < a < n

euler function

if $n \in \mathbb{Z}^+$ $\mathcal{P}(n) =$ the number of positive integers in $\{1, 2, ..., n\}$ that are relatively prime to n.

example

 $\mathcal{P}(6) = 2$ (because 1 and 5). observe $\mathcal{P}(n)$ is the number of invertible elements in \mathbb{Z}_n .

notation

$$\mathbb{Z}_n^* = \{[a]_n : [a]_n \text{ is invertible}\}. \text{ so } \mathcal{P}(n) = |\mathbb{Z}_n^*|$$

proposition

 \mathbb{Z}_n^* is closed under multiplication.

proof

let
$$[a]_n, [b]_n \in \mathbb{Z}_n^*$$
 then $[a]_n[a']_n = [1]$ and similarly $[b]_n[b']_n = [1]$ then $[a]_n[b]_n[a']_n[b']_n = [1]_n$

exercise

if $n = p_1^{\alpha 1} \dots p_t^{\alpha t}, \alpha i \ge 1$ distinct primes

eulers thm

if (a, n) = 1 then $a^{\mathcal{P}(n)} \equiv 1 \mod n$.

proof

 $\mathbb{Z}_n^* = \{[a_1], [a_2], \dots, [a_{\mathcal{P}(n)}]\}$. now consider $\{[aa_1], [aa_2], \dots, [aa_{\mathcal{P}(n)}]\} \in \mathbb{Z}_n^*$. These are distinct elements.

$$[aa_i]=[aa_j]$$
 multiply by the inverse of a
$$[a]^{-1}[aa_i]=[a]^{-1}[aa_j]$$

$$[a_i]=[a_j]$$

so
$$\{[aa_1], [aa_2], \dots, [aa_{\mathcal{P}(n)}]\} = \mathbb{Z}_n^*$$

note that the two lists are permutations of eachother.
then $[a_1][a_2] \dots [a_n] = [aa_1][aa_2] \dots [aa_{\mathcal{P}(n)}]$