MA2001 LINEAR ALGEBRA

Linear Systems & Gaussian Elimination

Goh Jun Le / Wang Fei

gohjunle@nus.edu.sg / matwf@nus.edu.sg

Department of Mathematics Office: S17-06-25 / S17-06-16 Tel: 6601-1355 / 6516-2937

Introd	luction	2
Co	ontent	. 3
As	sessment	. 6
Linea	r Systems & Their Solutions	8
Lin	nes on the plane	. 9
Lin	near Equation	11
So	olutions of a Linear Equation	14
Lin	near System	20
Co	onsistency	23
Ex	amples	24
Eleme	entary Row Operations	31
Au	gmented Matrix	32
Ele	ementary Row Operations	34
Ro	ow Equivalent Matrices	39
Row-E	Echelon Form	41
Ro	ow-Echelon Form	42
Re	educed Row-Echelon Form	46
So	olve Linear System	49
Gaus	sian Elimination	58
Ro	ow Echelon Form	59
Ga	aussian Elimination	60
Ga	auss-Jordan Elimination	67
Co	onsistency	72

Geometric Interpretation	
Homogeneous Linear Systems	101
Homogeneous Linear Equations & Systems	
Geometric Interpretation	107

Introduction 2 / 110

What will we learn in Linear Algebra I?

- Why Linear Algebra?
 - o Linear:
 - Study lines, planes, and objects which are geometrically "flat".
 - The real world is too complicated. We may (have to) use "flat" objects to approximate the real world.
 - o Algebra:
 - The objects of study are generalization of numbers.
 - The operations on the objects include addition, subtraction, multiplication and more.

3/110

What will we learn in Linear Algebra I?

- Contents:
 - o Linear Equations & Gaussian Elimination.
 - Solve linear systems in systematical ways.
 - Determine the number of solutions of linear systems.
 - Matrices.
 - Definition and computations on matrices.
 - Determinant of square matrices.
 - o Vector Spaces.
 - Euclidean spaces.
 - Subspaces.
 - Bases and dimensions.
 - · Change of bases.

What will we learn in Linear Algebra I?

- Contents:
 - Vector Spaces Associated with Matrices.
 - Row spaces, column spaces and nullspaces.
 - o Orthogonality.
 - · Dot product.
 - · Orthogonal and orthonormal Bases.
 - o Diagonalization.
 - Eigenvalues and eigenvectors.
 - Diagonalization and orthogonal diagonalization.
 - · Quadratic Forms and Conic Sections.
 - Linear Transformation.
 - · Definition, ranges and kernels.
 - Geometric linear transformations.

5/110

Workload and Assessment

- Lessons are conducted physically in lecture theatres and seminar rooms.
 - Lecture Group 1:
 - Mondays and Wednesdays: 8:00–10:00 am.
 - o Lecture Group 2:
 - Tuesdays and Fridays: 8:00-10:00 am.

Recorded lectures will be uploaded to Canvas.

- Textbook:
 - Linear Algebra: Concepts & Techniques on Euclidean Spaces.
 - The E-version is available in NUS library.
 - The lecture notes is prepared based on the textbook.
 - o Tutorial questions are taken from exercises of the textbook.
 - · Refer to course outline for details.

Workload and Assessment

- Tutorials are conducted physically Week 3 Week 11.
 - Tutorial questions are taken from exercises of the textbook.
- Laboratory.
 - Students learn MATLAB to solve linear algebra problems.
 - o Download from https://ntouch.nus.edu.sg
 - o Notes are prepared by lecturers.
- Homework Assignments (25%).
 - o Four online homework assignments are submitted to Canvas.
- Mid-Term Test (25%).
 - The test is scheduled on Week 7 evening in MPSH (date TBC).
- Final Exam (50%).
 - The exam is scheduled on 25 April (Tuesday) 1:00–3:00 pm.

7 / 110

Linear Systems & Their Solutions

8/110

Lines on the plane

• Consider the *xy*-plane:

 \circ Every point on the xy-plane can be uniquely represented by a pair of real numbers (x_0, y_0) .

Lines on the plane

• Consider the *xy*-plane:

- \circ The points on a **straight line** are precisely all the points (x,y) on the xy-plane satisfying a linear equation
 - $\bullet \quad ax + by = c$

where a and b are not both zero.

10 / 110

Linear Equation

• A linear equation in n variables (unknowns) x_1, x_2, \ldots, x_n is an equation in the form

$$\circ \quad a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where a_1, a_2, \ldots, a_n and b are real constants.

• Note: In a linear equation, a_1, a_2, \ldots, a_n may be all zero.

$$\circ$$
 If $a_1 = \cdots = a_n = 0$ but $b \neq 0$, it is inconsistent.

• An equation that is not inconsistent is called **consistent**.

$$\circ$$
 If $a_1 = \cdots = a_n = 0$ and $b = 0$, it is a zero equation.

An equation that is not zero is called a zero equation.

For instance,

 \circ $0x_1 + 0x_2 = 1$ is an inconsistent equation;

$$\circ$$
 $0x_1 + 0x_2 = 0$ is a zero equation;

 \circ $2x_1 - 3x_2 = 4$ is a nonzero and consistent equation.

- The following equations are linear equations:
 - $\circ x + 3y = 7;$
 - $\circ \quad x_1 + 2x_2 + 2x_3 + x_4 = x_5;$
 - $x_1 + 2x_2 + 2x_3 + x_4 x_5 = 0$.
 - $y = x \frac{1}{2}z + 4.5;$
 - $-x + y + \frac{1}{2}z = 4.5$.
- The following equations are NOT linear equations:
 - $\circ \quad xy = 2;$
 - $\circ \quad \sin \theta + \cos \phi = 0.2;$
 - $\circ x_1^2 + x_2^2 + \dots + x_n^2 = 1;$
 - $\circ \quad x = e^y.$

12 / 110

Examples

• In the xyz-space, the linear equation

$$\circ \quad \boxed{ax + by + cz = d}$$

where a, b, c are not all zero, represents a plane.

For instance, x+y+z=1 represents a plane in the xyz-space.

Solutions of a Linear Equation

- Let $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ be a linear equation in n variables x_1, x_2, \ldots, x_n .
 - \circ For real numbers s_1, s_2, \ldots, s_n , if
 - $a_1s_1 + a_2s_2 + \dots + a_ns_n = b$,

then $x_1 = s_1, x_2 = s_2, \dots, x_n = s_n$ is a **solution** to the given linear equation.

- The set of all solutions is called the solution set.
 - The solution set of ax + by = c (in x, y), where a, b are not all zero, represents a straight line in xy-plane.
 - The solution set of ax + by + cz = d (in x, y, z), where a, b, c not all zero, represents a plane in xyz-space.
- An expression that gives the entire solution set is a **general solution**.

14 / 110

Examples

- Linear equation 4x 2y = 1 in variables x and y.
 - \circ x can take any arbitrary value, say t.

 - $\begin{array}{l} \bullet \quad x=t \Rightarrow y=2t-\frac{1}{2}. \\ \bullet \quad \text{General solution: } \begin{cases} x=t, \\ y=2t-\frac{1}{2}, \end{cases} \quad \text{where t is a parameter.}$
 - \circ *y* can take any arbitrary value, say *s*.

 - $y = s \Rightarrow x = \frac{1}{2}s + \frac{1}{4}.$ General solution: $\begin{cases} x = \frac{1}{2}s + \frac{1}{4}, \\ y = s, \end{cases}$ where s is a parameter.
- Different representations of the same solution set.

$$\circ \begin{cases} x = 1, \\ y = 1.5, \end{cases} \begin{cases} x = 1.5, \\ y = 2.5, \end{cases} \begin{cases} x = -1, \\ y = -2.5, \end{cases} \dots$$

- $x_1 4x_2 + 7x_3 = 5$ in three variables x_1, x_2, x_3 .
 - $\circ \quad x_2$ and x_3 can be chosen arbitrarily, say s and t.
 - $x_2 = s$ and $x_3 = t \Rightarrow x_1 = 5 + 4s 7t$.
 - \circ x_1 and x_2 can be chosen arbitrarily, say s and t.
 - $x_1 = s$ and $x_2 = t \Rightarrow x_3 = \frac{5}{7} \frac{1}{7}s + \frac{4}{7}t$.
 - $\begin{cases} x_1=s,\\ x_2=t,\\ x_3=\frac{5}{7}-\frac{1}{7}s+\frac{4}{7}t,\\ & -\frac{1}{7}s+\frac{4}{7}t, \end{cases}$ where s,t are arbitrary parameters.

16 / 110

Examples

- In xy-plane, x + y = 1 has a general solution
 - $\circ \quad (x,y) = (1-s,s)$, where s is an arbitrary parameter.

These points form a straight line in the xy-plane:

- In xyz-space, x + y = 1 has a general solution
 - \circ (x, y, z) = (1 s, s, t), where s, t are arbitrary parameters.

These points form a plane in xyz-space:

The projection of "the plane x+y=1 in xyz-space" on the xy-plane is "the line x+y=1 in xy-plane".

18 / 110

Examples

- The zero equation in n variables x_1, x_2, \ldots, x_n is
 - $\circ 0x_1 + 0x_2 + \cdots + 0x_n = 0$ (or simply 0 = 0).

The equation is satisfied by any values of x_1, x_2, \ldots, x_n .

- o The general solution is given by
 - $(x_1, x_2, \dots, x_n) = (t_1, t_2, \dots, t_n),$

where t_1, t_2, \ldots, t_n are arbitrary parameters.

- Let $b \neq 0$. An inconsistent equation in n variables x_1, x_2, \ldots, x_n :
 - $\circ \quad 0x_1 + 0x_2 + \cdots + 0x_n = b \text{ (or simply } 0 = b\text{)}.$

It is NOT satisfied by any values of x_1, x_2, \ldots, x_n .

o An inconsistent equation has NO solution.

Linear System

• A linear system (system of linear equations) of m linear equations in n variables x_1, x_2, \ldots, x_n is

$$\begin{array}{c}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m,
\end{array}$$

where a_{ij} and b_i are real constants.

- \circ a_{ij} is the **coefficient** of the variable x_j in the *i*th equation,
- \circ b_i is the constant term of the *i*th equation.
- If all a_{ij} and b_i are zero,
 - the linear system is called a zero system.

If some a_{ij} or b_i is nonzero,

• the linear system is called a nonzero system.

20 / 110

Linear System

• A linear system (system of linear equations) of m linear equations in n variables x_1, x_2, \ldots, x_n is

where a_{ij} and b_i are real constants.

- If $x_1 = s_1, x_2 = s_2, \dots, x_n = s_n$ is a solution to every equation of the linear system, then it is called a **solution** to the system.
 - The solution set is the set of all solutions to the linear system.
 - o A **general solution** is an expression which generates the solution set of the linear system.

- $\bullet \quad \text{Linear system} \left\{ \begin{array}{l} 4x_1 x_2 + 3x_3 = -1, \\ 3x_1 + x_2 + 9x_3 = -4. \end{array} \right.$
 - $\circ x_1 = 1, x_2 = 2, x_3 = -1$ is a solution to both equations, then it is a solution to the system.
 - $x_1 = 1, x_2 = 8, x_3 = 1$ is a solution to the first equation, but not a solution to the second equation; so it is not a solution to the system.

Problem: How to find a general solution to the system?

$$\circ \quad \text{For example, } \begin{cases} x_1=1+12t,\\ x_2=2+27t, \quad \text{where t is an arbitrary parameter.}\\ x_3=-1-7t, \end{cases}$$

22 / 110

Consistency

• Remark. In a linear system, even if every equation has a solution, there may not be a solution to the entire system.

$$\circ \quad \left\{ \begin{array}{l} x + y = 4, \\ 2x + 2y = 6. \end{array} \right.$$

$$\bullet \quad 2x + 2y = 6 \Rightarrow x + y = 3.$$

$$\bullet \quad x+y=4 \ \& \ x+y=3 \Rightarrow 4=3, \text{impossible!}$$

- **Definition**. A linear system is called
 - o consistent if it has at least one solution;
 - o inconsistent if it has no solution.
- Remark. A linear system has either
 - o no solution, or
 - o exactly one solution, or
 - o infinitely many solutions. (To be proved in Chapter 2.)

• Linear system in variables x,y of two equations:

$$\circ \begin{cases} a_1x + b_1y = c_1, & (L_1) \\ a_2x + b_2y = c_2. & (L_2) \end{cases}$$

Assume a_1, b_1 are not both zero, a_2, b_2 are not both zero.

o In xy-plane, each equation represents a straight line.

- o The system has no solution
 - $\Leftrightarrow L_1$ and L_2 are parallel but distinct.

24 / 110

Examples

• Linear system in variables x, y of two equations:

$$\circ \begin{cases} a_1x + b_1y = c_1, & (L_1) \\ a_2x + b_2y = c_2. & (L_2) \end{cases}$$

Assume a_1,b_1 are not both zero, a_2,b_2 are not both zero.

• In *xy*-plane, each equation represents a straight line.

- o The system has exactly one solution
 - $\Leftrightarrow L_1$ and L_2 are not parallel.

• Linear system in variables x, y of two equations:

$$\circ \begin{cases} a_1 x + b_1 y = c_1, & (L_1) \\ a_2 x + b_2 y = c_2. & (L_2) \end{cases}$$

Assume a_1, b_1 are not both zero, a_2, b_2 are not both zero.

o In xy-plane, each equation represents a straight line.

- o The system has infinitely many solutions
 - $\Leftrightarrow L_1$ and L_2 are the same line.

26 / 110

Examples

• Linear system in variables x, y, z of two equations:

$$\circ \begin{cases} a_1x + b_1y + c_1z = d_1, & (P_1) \\ a_2x + b_2y + c_2z = d_2. & (P_2) \end{cases}$$

Assume a_1, b_1, c_1 not all zero, a_2, b_2, c_2 not all zero.

 \circ Each equation represents a plane in xyz-space.

- o The system has no solution
 - $\Leftrightarrow P_1$ and P_2 are parallel but distinct.

• Linear system in variables x,y,z of two equations:

$$\circ \begin{cases} a_1x + b_1y + c_1z = d_1, & (P_1) \\ a_2x + b_2y + c_2z = d_2. & (P_2) \end{cases}$$

Assume a_1, b_1, c_1 not all zero, a_2, b_2, c_2 not all zero.

 \circ Each equation represents a plane in xyz-space.

o The system has infinitely many solutions

if P_1 and P_2 are the same plane.

28 / 110

Examples

• Linear system in variables x, y, z of two equations:

$$\circ \begin{cases} a_1x + b_1y + c_1z = d_1, & (P_1) \\ a_2x + b_2y + c_2z = d_2. & (P_2) \end{cases}$$

Assume a_1,b_1,c_1 not all zero, a_2,b_2,c_2 not all zero.

 \circ Each equation represents a plane in xyz-space.

o The system has infinitely many solutions

if P_1 and P_2 intersect at a straight line.

• Linear system in variables x, y, z of two equations:

$$\circ \begin{cases} a_1x + b_1y + c_1z = d_1, & (P_1) \\ a_2x + b_2y + c_2z = d_2. & (P_2) \end{cases}$$

Assume a_1, b_1, c_1 not all zero, a_2, b_2, c_2 not all zero.

- \circ Each equation represents a plane in xyz-space.
- 1. P_1 and P_2 represent the same plane

$$\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2 = d_1 : d_2.$$

2. P_1 and P_2 are parallel but distinct planes

$$\Leftrightarrow a_1: a_2 = b_1: b_2 = c_1: c_2 \neq d_1: d_2.$$

3. P_1 and P_2 intersect at a line

 $\Leftrightarrow a_1:a_2,b_1:b_2,c_1:c_2$ are not all the same.

30 / 110

Elementary Row Operations

31 / 110

Augmented Matrix

• A linear system in variables x_1, x_2, \ldots, x_n :

$$\circ \begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m,
\end{cases}$$

o The rectangular array of constants

is called the augmented matrix of the linear system.

• A linear system in y_1, y_2, \ldots, y_n with the same coefficients & constant terms has the same augmented matrix.

- $\text{ Linear system} \left\{ \begin{array}{l} x_1 + \ x_2 + 2x_3 = 9, \\ 2x_1 + 4x_2 3x_3 = 1, \\ 3x_1 + 6x_2 5x_3 = 0. \end{array} \right.$
 - \circ Augmented matrix: $\left(egin{array}{ccc|c} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{array} \right)$

This is also the augmented matrix for:

$$\begin{cases}
y_1 + y_2 + 2y_3 = 9, \\
2y_1 + 4y_2 - 3y_3 = 1, \\
3y_1 + 6y_2 - 5y_3 = 0.
\end{cases}$$

$$\bullet \quad \left\{ \begin{array}{l} \spadesuit + \heartsuit + 2 \clubsuit = 9, \\ 2 \spadesuit + 4 \heartsuit - 3 \clubsuit = 1, \\ 3 \spadesuit + 6 \heartsuit - 5 \clubsuit = 0. \end{array} \right.$$

33 / 110

Elementary Row Operations

- To solve a linear system, we perform operations:
 - o Multiply an equation by a nonzero constant.
 - o Interchange two equations.
 - Add a constant multiple of an equation to another.
 - $E_1 \mapsto E_1 + cE_2 = E_3$.
 - $E_3 \mapsto E_3 + (-c)E_2 = E_1$.
- In terms of augmented matrix, they correspond to operations on the rows of the augmented matrix:
 - Multiply a row by a nonzero constant.
 - o Interchange two rows.
 - o Add a constant multiple of a row to another row.
 - $R_1 \mapsto R_1 + cR_2 = R_3$.
 - $R_3 \mapsto R_3 + (-c)R_2 = R_1$.

Elementary Row Operations

- The operations on rows of an augmented matrix:
 - Multiply a row by a nonzero constant;
 - o Interchange two rows;
 - Add a constant multiple of a row to another row;

are called the elementary row operations.

• Remark. Interchanging two rows can be obtained by using the other two operations.

$$\begin{pmatrix} R_1 \\ R_2 \end{pmatrix} \xrightarrow{\text{add 2nd row to 1st row}} \begin{pmatrix} R_1 + R_2 \\ R_2 \end{pmatrix}$$

$$\xrightarrow{\text{add } (-1) \text{ times 1st row to 2nd row}} \begin{pmatrix} R_1 + R_2 \\ -R_1 \end{pmatrix}$$

$$\xrightarrow{\text{multiply 2nd row by } (-1)} \begin{pmatrix} R_1 + R_2 \\ R_1 \end{pmatrix}$$

$$\xrightarrow{\text{add } (-1) \text{ times 2nd row to 1st row}} \begin{pmatrix} R_2 \\ R_1 \end{pmatrix}$$

35 / 110

Example

 Compare operations of equations in a linear system and corresponding row operations of augmented matrix.

$$\circ \left\{ \begin{array}{l} x + y + 3z = 0 & (1) \\ 2x - 2y + 2z = 4 & (2) \\ 3x + 9y & = 3 & (3) \end{array} \right. \left. \left(\begin{array}{ll} 1 & 1 & 3 & 0 \\ 2 & -2 & 2 & 4 \\ 3 & 9 & 0 & 3 \end{array} \right) \right.$$

- Add (-2) times of (1) to (2) to obtain (4).
- Add (-2) times of first row to second row.

$$\circ \begin{cases}
x + y + 3z = 0 & (1) \\
-4y - 4z = 4 & (4) \\
3x + 9y = 3 & (3)
\end{cases}
\begin{pmatrix}
1 & 1 & 3 & 0 \\
0 & -4 & -4 & 4 \\
3 & 9 & 0 & 3
\end{pmatrix}$$

- Add (−3) times of (1) to (3) to obtain (5).
- $\bullet \quad {\rm Add} \; (-3) \; {\rm times} \; {\rm of} \; {\rm first} \; {\rm row} \; {\rm to} \; {\rm third} \; {\rm row}.$

$$\circ \quad \left\{ \begin{array}{l} x + y + 3z = 0 & (1) \\ -4y - 4z = 4 & (4) \\ 6y - 9z = 3 & (5) \end{array} \right. \left. \begin{array}{ll} 1 & 1 & 3 & 0 \\ 0 & -4 & -4 & 4 \\ 0 & 6 & -9 & 3 \end{array} \right)$$

 Compare operations of equations in a linear system and corresponding row operations of augmented matrix.

- Add (6/4) times of (4) to (5) to obtain (6).
- Add (6/4) times of second row to third row.

$$\circ \left\{ \begin{array}{cccc} x + y + 3z = 0 & (1) \\ -4y - 4z = 4 & (4) \\ -15z = 9 & (6) \end{array} \right. \left(\begin{array}{cccc} 1 & 1 & 3 & 0 \\ 0 & -4 & -4 & 4 \\ 0 & 0 & -15 & 9 \end{array} \right)$$

- (6) $\Rightarrow z = -3/5$.
- Substitute z = -3/5 into (4):

$$-4y - 4(-3/5) = 4 \Rightarrow y = -2/5.$$

- Substitute y = -2/5 and z = -3/5 into (1):
 - $x + (-2/5) + 3(-3/5) = 0 \Rightarrow x = 11/5.$

37 / 110

Example

• Compare operations of equations in a linear system and corresponding row operations of augmented matrix.

$$\circ \left\{ \begin{array}{l} x + y + 3z = 0 & (1) \\ -4y - 4z = 4 & (4) \\ 6y - 9z = 3 & (5) \end{array} \right. \left. \begin{array}{ll} 1 & 1 & 3 & 0 \\ 0 & -4 & -4 & 4 \\ 0 & 6 & -9 & 3 \end{array} \right)$$

- Add (6/4) times of (4) to (5) to obtain (6).
- Add (6/4) times of second row to third row.

$$\circ \left\{ \begin{array}{cccc} x + & y + & 3z = 0 & (1) \\ -4y - & 4z = 4 & (4) \\ & -15z = 9 & (6) \end{array} \right. \left. \begin{array}{ccccc} 1 & 1 & 3 & 0 \\ 0 & -4 & -4 & 4 \\ 0 & 0 & -15 & 9 \end{array} \right)$$

The given linear system has exactly one solution:

$$x = 11/5, y = -2/5, z = -3/5.$$

Note that this is the solution of every linear system in the procedure of solving the given linear system.

Row Equivalent Matrices

- **Definition**. Two **augmented matrices** are said to be **row equivalent** if one can be obtained from the other by a **series** of **elementary row operations**.
 - $\circ \quad oldsymbol{A} \stackrel{\mathsf{multiply a row by nonzero } c}{\longrightarrow} oldsymbol{B}.$
 - $lackbox{m{ullet}} m{B} \xrightarrow{\mathsf{multiply}} \mathsf{the same row by } 1/c \ m{A}.$
 - $\circ \hspace{0.4cm} A \xrightarrow{\mathsf{interchange two rows}} B.$
 - ullet $B \xrightarrow{ ext{interchange the two rows again}} A.$
 - $\circ \quad A \xrightarrow{\mathsf{add}\ c \ \mathsf{times}\ \mathsf{of}\ \mathsf{row}\ i \ \mathsf{to}\ \mathsf{row}\ j} B.$
 - ullet $B \xrightarrow{\operatorname{add} (-c) ext{ times of row } i ext{ to row } j} A.$

A is row equivalent to $B \Leftrightarrow B$ is row equivalent to A.

- $\circ \quad \boldsymbol{A} = \boldsymbol{A}_0 \to \boldsymbol{A}_1 \to \cdots \to \boldsymbol{A}_{k-1} \to \boldsymbol{A}_k = \boldsymbol{B}.$
- $\circ \quad \boldsymbol{B} = \boldsymbol{A}_k \to \boldsymbol{A}_{k-1} \to \cdots \to \boldsymbol{A}_1 \to \boldsymbol{A}_0 = \boldsymbol{A}.$

39 / 110

Row Equivalent Matrices

- Theorem (and Exercise). Let A, B, C be augmented matrices.
 - \circ **A** is row equivalent to **A**.
 - \circ A is row equivalent to B
 - \Rightarrow B is row equivalent to A.
 - $\circ \hspace{0.2cm} A$ is row equivalent to $B \And B$ is row equivalent to C
 - \Rightarrow A is row equivalent to C.
- ullet Theorem. Let A and B be augmented matrices of two linear systems. Suppose A and B are row equivalent.
 - Then the corresponding linear systems have the same set of solutions.
- Question. Given an augmented matrix A, how to find an row equivalent augmented matrix B which is of a simple (or the simplest) form?

Row-Echelon Form

- **Definition**. An augmented matrix is said to be in **row-echelon form** if the following properties are satisfied.
 - 1. The **zero rows** are grouped together at the bottom.

2. For any two successive nonzero rows, the first nonzero number (**leading entry**) in the lower row appears to the right of the first nonzero number in the higher row.

42 / 110

Row-Echelon Form

- **Definition**. Suppose an augmented matrix is in row-echelon form.
 - The leading entry of a nonzero row is a pivot point.
 - o A column of the augmented matrix is called a
 - pivot column if it contains a pivot point;
 - non-pivot column if it contains no pivot point.

o A pivot column contains exactly one pivot point.

- The following augmented matrices are in row-echelon form:
 - \circ (3 2 | 1)
 - $\circ \left(\begin{array}{c|cc} 1 & -1 & 0 \\ 0 & 1 & 0 \end{array}\right)$
 - $\circ \quad \left(\begin{array}{c|c|c} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$
 - $\circ \quad \left(\begin{array}{c|cc|c} -1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{array}\right)$
 - $\circ \quad \left(\begin{array}{ccc|c}
 0 & 1 & 2 & 8 & 1 \\
 0 & 0 & 0 & 4 & 3 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0
 \end{array}\right)$

44 / 110

Examples

- These augmented matrices are NOT in row-echelon form:
 - $\circ \quad \left(\begin{array}{c|c} 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)$
 - $\circ \quad \left(\begin{array}{cc|c} 0 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$
 - $\circ \quad \left(\begin{array}{c|cc|c} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 3 \end{array}\right)$
 - $\circ \quad \left(\begin{array}{c|cccc} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 3 \\ \hline 0 & 0 & 0 & 0 & 0 \end{array}\right)$

Reduced Row-Echelon Form

- **Definition**. Suppose an augmented matrix is in **row-echelon form**. It is in **reduced row-echelon form** if
 - 3. The leading entry of every nonzero row is 1;
 - Equivalently, every pivot point is 1.
 - 4. In each pivot column, except the pivot point, all other entries are 0.

46 / 110

Examples

- These are in reduced row-echelon form:
 - \circ (1 2 | 3)
 - $\circ \quad \left(\begin{array}{cc|c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$
 - $\circ \quad \left(\begin{array}{c|c|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$
 - $\circ \quad \left(\begin{array}{c|cc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{array}\right)$

• These row-echelon forms are NOT reduced:

48 / 110

Solve Linear System

- Suppose that the augmented matrix of a linear system is in (reduced) row-echelon form.
 - o Is it convenient to find a solution to the linear system?
- Example.

$$\circ \quad \text{Augmented matrix} \, \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{array} \right).$$

$$\circ \quad \text{Linear system} \left\{ \begin{array}{l} 1x_1 + 0x_2 + 0x_3 = 1 \\ 0x_1 + 1x_2 + 0x_3 = 2 \\ 0x_1 + 0x_2 + 1x_3 = 3. \end{array} \right.$$

$$\bullet \quad \text{Equivalently} \left\{ \begin{array}{ccc} x_1 & =1 \\ & x_2 & =2 \\ & & x_3 =3. \end{array} \right.$$

 $\circ \quad \text{The system has one solution } x_1=1, \, x_2=2, \, x_3=3.$

Solve Linear System

- Suppose that the augmented matrix of a linear system is in (reduced) row-echelon form.
 - o Is it convenient to find a solution to the linear system?
- Example.
 - $\circ \quad \text{Augmented matrix } \left(\begin{array}{cc|c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right).$
 - $\circ \quad \text{Linear system} \left\{ \begin{array}{l} 0x_1 + 0x_2 + 0x_3 = 0 \\ 0x_1 + 0x_2 + 0x_3 = 0. \end{array} \right.$
 - This is a zero system in three variables. It has infinitely many solutions
 - $x_1 = r, x_2 = s, x_3 = t$, where r, s, t are arbitrary parameters.

50 / 110

Solve Linear System

- Suppose that the augmented matrix of a linear system is in (reduced) row-echelon form.
 - o Is it convenient to find a solution to the linear system?
- Example.
 - $\circ \quad \text{Augmented matrix} \left(\begin{array}{cc|c} 3 & 1 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array} \right).$ $\circ \quad \text{Linear system} \left\{ \begin{array}{cc|c} 3x_1 + 1x_2 = 4 \\ 0x_1 + 2x_2 = 1 \\ 0x_1 + 0x_2 = 1 \end{array} \right.$

 - The last equation is inconsistent; so the system is inconsistent.

 $\bullet \quad \text{Augmented matrix} \left(\begin{array}{ccc|c} 1 & -1 & 0 & 3 & -2 \\ 0 & 0 & 1 & 2 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right).$

$$\circ \begin{cases}
1x_1 - 1x_2 + 0x_3 + 3x_4 = -2 \\
0x_1 + 0x_2 + 1x_3 + 2x_4 = 5 \\
0x_1 + 0x_2 + 0x_3 + 0x_4 = 0
\end{cases}$$

52 / 110

Examples

$$\begin{array}{c}
\circ & \begin{cases} x_1 - x_2 + 3x_4 = -2 \\ x_3 + 2x_4 = 5 \end{cases}
\end{array}$$

1. Let $x_4 = t$ and substitute into the second equation.

$$x_3 + 2t = 5 \Rightarrow x_3 = 5 - 2t$$
.

2. Substitute $x_4 = t$ into the first equation.

$$\circ \ x_1 - x_2 + 3t = -2.$$

$$\circ$$
 Let $x_2 = s$. Then $x_1 = -2 + s - 3t$.

Infinitely many solutions (s and t are arbitrary parameters)

$$x_1 = -2 + s - 3t, x_2 = s, x_3 = 5 - 2t, x_4 = t.$$

 $\bullet \quad \text{Augmented matrix} \left(\begin{array}{ccc|ccc|c} 0 & 2 & 2 & 1 & -2 & 2 \\ 0 & 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 2 & 4 \end{array} \right).$

$$\circ \begin{cases}
0x_1 + 2x_2 + 2x_3 + 1x_4 - 2x_5 = 2 \\
0x_1 + 0x_2 + 1x_3 + 1x_4 + 1x_5 = 3 \\
0x_1 + 0x_2 + 0x_3 + 0x_4 + 2x_5 = 4.
\end{cases}$$

54 / 110

Examples

 $\begin{array}{llll} \bullet & \text{Augmented matrix} \left(\begin{array}{ccc|c} 0 & 2 & 2 & 1 & -2 & 2 \\ 0 & 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 2 & 4 \end{array} \right). \\ \\ \circ & \left\{ \begin{array}{ccc|c} 2x_2 + 2x_3 + x_4 - 2x_5 = 2 \\ x_3 + x_4 + & x_5 = 3 \\ 2x_5 = 4. \end{array} \right. \end{array}$

$$\circ \begin{cases}
2x_2 + 2x_3 + x_4 - 2x_5 = 2 \\
x_3 + x_4 + x_5 = 3 \\
2x_5 = 4
\end{cases}$$

- 1. By the third equation, $2x_5 = 4 \Rightarrow x_5 = 2$.
- 2. Substitute $x_5 = 2$ into the second equation:

$$x_3 + x_4 + 2 = 3$$
, i.e., $x_3 + x_4 = 1$.

- \circ Let $x_4 = t$. Then $x_3 = 1 t$.
- 3. Substitute $x_5 = 2$, $x_3 = 1 t$, $x_4 = t$ into the first:

$$\circ 2x_2 + 2(1-t) + t - 2 \cdot 2 = 2$$
. So $x_2 = 2 + \frac{1}{2}t$.

 $\bullet \quad \text{Augmented matrix} \left(\begin{array}{cccc|c} 0 & 2 & 2 & 1 & -2 & 2 \\ 0 & 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 2 & 4 \end{array} \right).$

$$\circ \begin{cases}
2x_2 + 2x_3 + x_4 - 2x_5 = 2 \\
x_3 + x_4 + x_5 = 3 \\
2x_5 = 4.
\end{cases}$$

The system has infinitely many solutions

$$\begin{cases}
 x_1 = s \\
 x_2 = 2 + \frac{1}{2}t \\
 x_3 = 1 - t \\
 x_4 = t \\
 x_5 = 2,
\end{cases}$$

where s and t are arbitrary parameters.

56 / 110

Algorithm

- Suppose that the augmented matrix corresponding to a linear system is in row-echelon form.
 - 1. Set the variables corresponding to non-pivot columns to be arbitrary parameters.
 - 2. Solve the variables corresponding to pivot columns by back substitution (from last equation to first.)

Example.
$$\begin{cases} 0x_1 + 2x_2 + 2x_3 + x_4 - 2x_5 = 2 \\ x_3 + x_4 + x_5 = 3 \\ 2x_5 = 4. \end{cases}$$

- Variables corresponding to pivot columns: x_2 , x_3 , x_5 .
- Variables corresponding to non-pivot columns: x_1 , x_4 .
 - Set $x_1 = s$ and $x_4 = t$ as arbitrary parameters.
 - Solve $x_5 = 2$, $x_3 = 1 t$ and $x_2 = 2 + \frac{1}{2}t$.

Row Echelon Form

- ullet **Definition**. Let A and R be augmented matrices.
 - \circ Suppose that A is row equivalent to R.
 - i.e., R can be obtained from A by a series of elementary row operations.

$$A = A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k = R.$$

- 1. If R is in row-echelon form,
 - \circ R is called a row-echelon form of A.
- 2. If R is in reduced row-echelon form,
 - \circ R is called a reduced row-echelon form of A.
- ullet Solve a linear system with augmented matrix A
 - \Leftrightarrow solve a linear system with augmented matrix R.

59 / 110

Gaussian Elimination

- Given an augmented matrix, we need an algorithm to find its (reduced) row-echelon form of A.
- $\bullet \quad \textbf{Example.} \quad \left(\begin{array}{cccc|ccc|c} 0 & 0 & 0 & 2 & 4 & 2 & 8 \\ 0 & 1 & 2 & 4 & 5 & 3 & -9 \\ 0 & -2 & -4 & -5 & -4 & 3 & 6 \end{array} \right)$
 - 1. Find the **leftmost column** which is not entirely zero. $\begin{pmatrix} 0 & 0 & 0 & 2 & 4 & 2 & 8 \\ 0 & 1 & 2 & 4 & 5 & 3 & -9 \\ 0 & -2 & -4 & -5 & -4 & 3 & 6 \end{pmatrix}$
 - 2. Check the top entry of such column. If it is 0,
 - o replace it by a nonzero number by interchanging the top row with another row below.

$$\begin{pmatrix} 0 & 1 & 2 & 4 & 5 & 3 & -9 \\ 0 & 0 & 0 & 2 & 4 & 2 & 8 \\ 0 & -2 & -4 & -5 & -4 & 3 & 6 \end{pmatrix}$$

Gaussian Elimination

- Example. $\begin{pmatrix} 0 & 1 & 2 & 4 & 5 & 3 & -9 \\ 0 & 0 & 0 & 2 & 4 & 2 & 8 \\ 0 & -2 & -4 & -5 & -4 & 3 & 6 \end{pmatrix}$
 - 1. Find the leftmost column which is not entirely zero.
 - 2. If the top entry of such column is 0,
 - then replace it by a nonzero number by interchanging the top row with another row below.
 - 3. For each row below the top row,
 - \circ add a suitable multiple of the **top row** to it so that its **leading entry** becomes 0.

Add 2 times the first row to the third row:

61 / 110

Gaussian Elimination

- Example. $\begin{pmatrix} \hline 0 & 1 & 2 & 4 & 5 & 3 & -9 \\ \hline 0 & 0 & 0 & 2 & 4 & 2 & 8 \\ 0 & 0 & 0 & 3 & 6 & 9 & -12 \end{pmatrix}$
 - 4. Cover the top row and repeat the procedure to the matrix remained.

30

1. The 4th column is the leftmost nonzero column.

$$\circ \quad \left(\begin{array}{c|ccc|c} 0 & 1 & 2 & 4 & 5 & 3 & -9 \\ \hline 0 & 0 & 0 & 2 & 4 & 2 & 8 \\ 0 & 0 & 0 & 3 & 6 & 9 & -12 \end{array}\right)$$

- 2. The top entry is nonzero. No action.
- 3. Add -3/2 times the 2nd row to the 3rd row.

$$\circ \quad \left(\begin{array}{c|ccc|ccc|ccc|ccc} 0 & 1 & 2 & 4 & 5 & 3 & -9 \\ \hline 0 & 0 & 0 & 2 & 4 & 2 & 8 \\ 0 & 0 & 0 & 0 & 0 & 6 & -24 \end{array}\right)$$

4. This is in row-echelon form. Done!

Gaussian Elimination

- Gaussian Elimination. Use elementary row operations to reduce an augmented matrix to row-echelon form.
 - 1. Find the leftmost column which is not entirely zero.
 - 2. If the top entry of such column is 0,
 - o then replace it by a nonzero number by interchanging the top row with another row.
 - 3. For each row below the top row,
 - \circ add a suitable multiple of the top row to it so that its leading entry becomes 0.
 - 4. Cover the top row and repeat the procedure to the remained matrix.
 - o Continue this way until the entire matrix is in row-echelon form.

63 / 110

Example

$$\begin{array}{c}
2x_3 + 4x_4 + 2x_5 = 8 \\
x_1 + 2x_2 + 4x_3 + 5x_4 + 3x_5 = -9 \\
-2x_1 - 4x_2 - 5x_3 - 4x_4 + 3x_5 = 6
\end{array}$$

$$\circ$$
 Augmented matrix: $\left(\begin{array}{ccc|ccc|c} 0 & 0 & 2 & 4 & 2 & 8 \\ 1 & 2 & 4 & 5 & 3 & -9 \\ -2 & -4 & -5 & -4 & 3 & 6 \end{array} \right)$

We have found a row-echelon form

$$\circ \left(\begin{array}{ccc|ccc|ccc|ccc|ccc}
1 & 2 & 4 & 5 & 3 & -9 \\
0 & 0 & 2 & 4 & 2 & 8 \\
0 & 0 & 0 & 0 & 6 & -24
\end{array}\right)$$

It corresponds to the linear system

$$\circ \begin{cases}
 x_1 + 2x_2 + 4x_3 + 5x_4 + 3x_5 = -9 \\
 2x_3 + 4x_4 + 2x_5 = 8 \\
 6x_5 = -24
\end{cases}$$

• The given linear system has the same solution set as

1. Set the variables corresponding to non-pivot columns as arbitrary parameters.

$$\circ$$
 $x_2 = s$ and $x_4 = t$.

2. Solve the variables corresponding to pivot columns.

$$\circ$$
 $6x_5 = -24 \Rightarrow x_5 = -4$.

$$\circ$$
 $2x_3 + 4 \cdot t + 2(-4) = 8 \Rightarrow x_3 = 8 - 2t.$

$$x_1 + 2 \cdot s + 4(8 - 2t) + 5 \cdot t + 3(-4) = -9$$

$$x_1 = -29 - 2s + 3t.$$

65 / 110

Example

$$\begin{array}{c}
2x_3 + 4x_4 + 2x_5 = 8 \\
x_1 + 2x_2 + 4x_3 + 5x_4 + 3x_5 = -9 \\
-2x_1 - 4x_2 - 5x_3 - 4x_4 + 3x_5 = 6
\end{array}$$

This system has general solution

$$\begin{cases} x_1 = -29 - 2s + 3t \\ x_2 = s \\ x_3 = 8 - 2t \\ x_4 = t \\ x_5 = -4 \end{cases}$$

where s and t are arbitrary parameters.

Gauss-Jordan Elimination

- Suppose an augmented matrix is in row-echelon form. Is there an algorithm to get its **reduced** row-echelon form?
- Example. $\begin{pmatrix} 1 & 2 & 4 & 5 & 3 & -9 \\ 0 & 0 & 2 & 4 & 2 & 8 \\ 0 & 0 & 0 & 6 & -24 \end{pmatrix}.$
 - 1. All the pivot points must be 1.
 - $\circ \quad \mbox{Multiply } 1/2 \mbox{ to 2nd row, multiply } 1/6 \mbox{ to 3rd row.}$
 - $\circ \quad \left(\begin{array}{cccccccc} \mathbf{1} & 2 & \mathbf{4} & 5 & \mathbf{3} & -9 \\ 0 & 0 & \mathbf{1} & 2 & \mathbf{1} & 4 \\ 0 & 0 & 0 & 0 & \mathbf{1} & -4 \end{array}\right).$

67 / 110

Gauss-Jordan Elimination

- - 2. In each pivot column, all entries other than the pivot point must be 0.
 - \circ Add (-3) times 3rd row to 1st row, and add (-1) times 3rd row to 2nd row.

$$\left(\begin{array}{ccc|cccc}
1 & 2 & 4 & 5 & 0 & 3 \\
0 & 0 & 1 & 2 & 0 & 8 \\
0 & 0 & 0 & 0 & 1 & -4
\end{array}\right)$$

 \circ Add (-4) times 2nd row to 1st row.

$$\left(\begin{array}{ccc|cccc} 1 & 2 & 0 & -3 & 0 & -29 \\ 0 & 0 & 1 & 2 & 0 & 8 \\ 0 & 0 & 0 & 0 & 1 & -4 \end{array}\right).$$

Gauss-Jordan Elimination

- Gauss-Jordan Elimination. Use elementary row operations to reduce a matrix to reduced row-echelon form.
 - 1-4. Use Gaussian Elimination to get a row-echelon form.
 - 5. For each nonzero row, multiple a suitable constant so that the pivot point becomes 1.
 - 6. Begin with the last nonzero row, work backwards.
 - Add suitable multiple of each row to the rows above to introduce 0 above the pivot points.
- Remarks.
 - o Every matrix has a unique reduced row-echelon form.
 - (Can you prove it? It is very challenging!)
 - Every nonzero matrix has infinitely many (non-reduced) row-echelon forms.

69 / 110

Example

$$\begin{array}{c}
2x_3 + 4x_4 + 2x_5 = 8 \\
x_1 + 2x_2 + 4x_3 + 5x_4 + 3x_5 = -9 \\
-2x_1 - 4x_2 - 5x_3 - 4x_4 + 3x_5 = 6
\end{array}$$

$$\circ \quad \text{Augmented matrix:} \left(\begin{array}{ccc|c} 0 & 0 & 2 & 4 & 2 & 8 \\ 1 & 2 & 4 & 5 & 3 & -9 \\ -2 & -4 & -5 & -4 & 3 & 6 \end{array} \right)$$

We have found a reduced row-echelon form

$$\circ \quad \left(\begin{array}{ccc|ccc|c} 1 & 2 & 0 & -3 & 0 & -29 \\ 0 & 0 & 1 & 2 & 0 & 8 \\ 0 & 0 & 0 & 0 & 1 & -4 \end{array}\right)$$

It corresponds to the linear system

$$\circ \begin{cases}
 x_1 + 2x_2 & -3x_4 + = -29 \\
 & x_3 + 2x_4 & = 8 \\
 & x_5 = -4
\end{cases}$$

$$\begin{array}{c}
2x_3 + 4x_4 + 2x_5 = 8 \\
x_1 + 2x_2 + 4x_3 + 5x_4 + 3x_5 = -9 \\
-2x_1 - 4x_2 - 5x_3 - 4x_4 + 3x_5 = 6
\end{array}$$

It has the same solution set as the linear system

$$\circ \begin{cases}
 x_1 + 2x_2 & -3x_4 + = -29 \\
 & x_3 + 2x_4 & = 8 \\
 & x_5 = -4
\end{cases}$$

- 1. Set the variables corresponding to non-pivot columns as arbitrary parameters: $x_2=s$ and $x_4=t$.
- 2. Solve other variables:
 - $x_1 + 2s 3t = -29 \Rightarrow x_1 = -29 2s + 3t.$
 - $\circ \quad x_3 + 2t = 8 \Rightarrow x_3 = 8 2t.$
 - $x_5 = -4.$

71 / 110

Consistency

- Suppose that A is the augmented matrix of a linear system, and R is a row-echelon form of A.
 - When the system has no solution (i.e., is inconsistent)?
 - When the system has exactly one solution?
 - When the system has infinitely many solutions?
- Recall the procedure of finding solution:
 - 1. Set the variables corresponding to non-pivot columns as arbitrary parameters.
 - 2. Solve variables corresponding to pivot columns.

The procedure is valid as long as

- \circ Every row of $oldsymbol{R}$ corresponds to a consistent equation.
- o i.e., no row corresponds to an inconsistent equation:
 - $0x_1 + 0x_2 + \cdots + 0x_n = \otimes \leftarrow$ nonzero.

Consistency

- Suppose that A is the augmented matrix of a linear system, and R is a row-echelon form of A.
 - When the system has no solution (i.e., is inconsistent)?

Answer: There is a row in $oldsymbol{R}$ with the form

$$\circ$$
 (0 0 \cdots 0 \otimes), where \otimes is nonzero.

Or equivalently, the last column is a pivot column.

Note: Such a row must be the last nonzero row of R.

• Examples.

$$\circ \quad \begin{pmatrix} 3 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad \begin{pmatrix} 3 & 2 & 3 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

73 / 110

Consistency

- Suppose that A is the augmented matrix of a linear system, and R is a row-echelon form of A.
 - When the system has exactly one solution?
- Recall the procedure of finding solution:
 - 1. Set the variables corresponding to non-pivot columns as arbitrary parameters.
 - 2. Solve variables corresponding to pivot columns.

For consistency, the last column is non-pivot. We also need

• No variables corresponding to non-pivot columns.

Answer:

- o The last column is a non-pivot column, and
- o All other columns are pivot columns.

Consistency

- Suppose that A is the augmented matrix of a linear system, and R is a row-echelon form of A.
 - When the system has exactly one solution?

Answer:

- o The last column is a non-pivot column, and
- o All other columns are pivot columns.

Example: (Here \otimes are pivot points, which are nonzero.)

75 / 110

Consistency

- Suppose that A is the augmented matrix of a linear system, and R is a row-echelon form of A.
 - When the system has infinitely many solutions?

Answer:

- o The last column is a non-pivot column, and
- o Some other columns are non-pivot columns.

Note: The number of arbitrary parameters is the same as the number of non-pivot columns (except the last column).

• Examples:

$$\circ \quad \left(\begin{array}{ccc|cccc} 5 & 1 & 2 & 3 & 4 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{array}\right), \left(\begin{array}{cccc|cccc} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

Notations

- Notations for elementary row operations.
 - Multiply the *i*th row by (nonzero) constant k: kR_i .
 - Interchange the *i*th and the *j*th rows: $R_i \leftrightarrow R_j$.
 - Add k times the ith row to the jth row: $R_j + kR_i$.

Note:

- \circ $R_1 + R_2$ means "add the 2nd row to the 1st row".
- \circ $R_2 + R_1$ means "add the 1st row to the 2nd row".
- Example.

$$\circ \quad \begin{pmatrix} a \\ b \end{pmatrix} \xrightarrow{R_1 + R_2} \begin{pmatrix} a + b \\ b \end{pmatrix} \xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} a + b \\ -a \end{pmatrix}$$

$$\xrightarrow{R_1 + R_2} \begin{pmatrix} b \\ -a \end{pmatrix} \xrightarrow{(-1)R_2} \begin{pmatrix} b \\ a \end{pmatrix}.$$

77 / 110

Example 1

What is the condition so that the system is consistent?

$$\circ \begin{cases} x + 2y - 3z = a \\ 2x + 6y - 11z = b \\ x - 2y + 7z = c. \end{cases}$$

• The augmented matrix is
$$\begin{pmatrix} 1 & 2 & -3 & a \\ 2 & 6 & -11 & b \\ 1 & -2 & 7 & c \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 2 & -3 & a \\ 2 & 6 & -11 & b \\ 1 & -2 & 7 & c \end{pmatrix} \xrightarrow{R_2 + (-2)R_1} \begin{pmatrix} 1 & 2 & -3 & a \\ 0 & 2 & -5 & b - 2a \\ 1 & -2 & 7 & c \end{pmatrix}$$

$$\xrightarrow{R_3 + (-1)R_1} \begin{pmatrix} 1 & 2 & -3 & a \\ 0 & 2 & -5 & b - 2a \\ 0 & -4 & 10 & c - a \end{pmatrix}$$

$$\xrightarrow{R_3 + 2R_2} \begin{pmatrix} 1 & 2 & -3 & a \\ 0 & 2 & -5 & b - 2a \\ 0 & 0 & 0 & 2b + c - 5a \end{pmatrix}$$

• What is the condition so that the system is consistent?

$$\circ \begin{cases}
 x + 2y - 3z = a \\
 2x + 6y - 11z = b \\
 x - 2y + 7z = c.
\end{cases}$$

• A row-echelon form of the augmented matrix is

$$\circ \left(\begin{array}{ccc|c}
1 & 2 & -3 & a \\
0 & 2 & -5 & b - 2a \\
0 & 0 & 0 & 2b + c - 5a
\end{array}\right)$$

The system is consistent

 \Leftrightarrow the last column is non-pivot

$$\Leftrightarrow 2b + c - 5a = 0.$$

- o Moreover, suppose the system is consistent.
 - The 3rd column is non-pivot
 - Infinitely many solutions (one arbitrary parameter).

79 / 110

Example 2

• Find the number of solutions: $\begin{cases} x+2y+z=1\\ 2x+by+2z=2\\ 4x+8y+b^2z=2b \end{cases}$

Find a row-echelon form of augmented matrix.

$$\circ \quad \left(\begin{array}{ccc|ccc} 1 & 2 & 1 & 1 \\ 2 & b & 2 & 2 \\ 4 & 8 & b^2 & 2b \end{array}\right)$$

$$\xrightarrow{R_3 + (-4)R_1} \left(\begin{array}{ccc|c} 1 & 2 & 1 & 1 \\ 2 & b & 2 & 2 \\ 0 & 0 & b^2 - 4 & 2b - 4 \end{array} \right)$$

$$\xrightarrow{R_2 + (-2)R_1} \left(\begin{array}{ccc|c} 1 & 2 & 1 & 1 \\ 0 & b - 4 & 0 & 0 \\ 0 & 0 & b^2 - 4 & 2b - 4 \end{array} \right)$$

- Find the number of solutions: $\begin{cases} x+2y+z=1\\ 2x+by+2z=2\\ 4x+8y+b^2z=2b \end{cases}$
- Find a row-echelon form of augmented matrix.

$$\circ \quad \left(\begin{array}{cc|cc} 1 & 2 & 1 & 1 \\ 2 & b & 2 & 2 \\ 4 & 8 & b^2 & 2b \end{array}\right) \to \cdots \to \left(\begin{array}{cc|cc} 1 & 2 & 1 & 1 \\ 0 & b-4 & 0 & 0 \\ 0 & 0 & b^2-4 & 2b-4 \end{array}\right)$$

• If b=4, then we can continue

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & b - 4 & 0 & 0 \\ 0 & 0 & b^2 - 4 & 2b - 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 12 & 4 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 12 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 The second column and the last column are non-pivot. Infinitely many solutions (one parameter).

81 / 110

Example 2

• Find the number of solutions: $\begin{cases} x+2y+z=1\\ 2x+by+2z=2\\ 4x+8y+b^2z=2b \end{cases}$

Let $b \neq 4$. Row-echelon form: $\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & b-4 & 0 & 0 \\ 0 & 0 & b^2-4 & 2b-4 \end{pmatrix}$

No solution ⇔ The last column is a pivot column.

The last column is pivot $\Leftrightarrow 2b-4$ is the pivot point

$$\Leftrightarrow \begin{cases} b^2 - 4 = 0 \\ 2b - 4 \neq 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} b = 2 \text{ or } -2 \\ b \neq 2 \end{cases}$$
$$\Leftrightarrow b = -2.$$

- Find the number of solutions: $\begin{cases} x+2y+z=1\\ 2x+by+2z=2\\ 4x+8y+b^2z=2b \end{cases}$
- Let $b \neq 4$. Row-echelon form: $\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & b-4 & 0 & 0 \\ 0 & 0 & b^2-4 & 2b-4 \end{pmatrix}$
 - \circ Unique solution \Leftrightarrow Only the last column is non-pivot.

Only the last column is non-pivot

⇔ the first three columns are pivot

$$\Leftrightarrow \begin{cases} 1 \neq 0 \\ b - 4 \neq 0 \\ b^2 - 4 \neq 0 \end{cases}$$
$$\Leftrightarrow b \neq 4, \ b \neq -2, \ b \neq 2.$$

83 / 110

Example 2

- Find the number of solutions: $\left\{ \begin{array}{ll} x+2y+&z=&1\\ 2x+by+&2z=&2\\ 4x+8y+b^2z=2b \end{array} \right.$
- $\bullet \quad \text{Let } b \neq 4. \text{ Row-echelon form: } \left(\begin{array}{c|ccc} 1 & 2 & 1 & 1 \\ 0 & b-4 & 0 & 0 \\ 0 & 0 & b^2-4 & 2b-4 \end{array} \right)$
 - o Infinitely many solutions
 - ⇔ The last and some other columns are non-pivot.

last column is non-pivot $\Leftrightarrow b \neq -2$

some other columns are non-pivot
$$\Leftrightarrow \left\{ \begin{array}{l} 1 \neq 0 \\ b-4 \neq 0 \\ b^2-4=0 \end{array} \right.$$
 $\Leftrightarrow b=-2 \text{ or } b=2.$

- Find the number of solutions: $\begin{cases} x+2y+&z=1\\ 2x+by+&2z=2\\ 4x+8y+b^2z=2b \end{cases}$
- $\bullet \quad \text{Let } b \neq 4. \text{ Row-echelon form: } \left(\begin{array}{c|ccc} 1 & 2 & 1 & 1 \\ 0 & b-4 & 0 & 0 \\ 0 & 0 & b^2-4 & 2b-4 \end{array} \right)$
 - o Infinitely many solutions:
 - b = 4 or b = 2.
 - No solution:
 - b = -2.
 - o Exactly one solution:
 - $b \neq 4, b \neq -2, b \neq 2$.

85 / 110

Example 3

• Find the number of solutions: $\begin{cases} ax + y &= a \\ x + y + z = 1 \\ y + az = b \end{cases}$

$$\begin{pmatrix} a & 1 & 0 & a \\ 1 & 1 & 1 & 1 \\ 0 & 1 & a & b \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ a & 1 & 0 & a \\ 0 & 1 & a & b \end{pmatrix}$$

$$\xrightarrow{R_2 + (-a)R_1} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 - a & -a & 0 \\ 0 & 1 & a & b \end{pmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & a & b \\ 0 & 1 - a & -a & 0 \end{pmatrix}$$

$$\xrightarrow{R_3 + (a-1)R_2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & a & b \\ 0 & 0 & a^2 - 2a & (a-1)b \end{pmatrix}$$

- Find the number of solutions: $\left\{ \begin{array}{ll} ax+y &= a \\ x+y+z=1 \\ y+az=b \end{array} \right.$
- Row-echelon form: $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & a & b \\ 0 & 0 & a^2 2a & (a-1)b \end{pmatrix}$

No solution ⇔ last column is pivot

$$\Leftrightarrow a^2 - 2a = 0 \text{ and } (a-1)b \neq 0$$

$$\Leftrightarrow (a=0 \text{ or } a=2) \text{ and } (a \neq 1 \text{ and } b \neq 0)$$

$$\Leftrightarrow (a=0 \text{ or } a=2) \text{ and } b \neq 0.$$

87 / 110

Example 3

- Find the number of solutions: $\begin{cases} ax+y &= a \\ x+y+z=1 \\ y+az=b \end{cases}$
- Row-echelon form: $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & a & b \\ 0 & 0 & a^2 2a & (a-1)b \end{pmatrix}$

Unique solution \Leftrightarrow Only the last column is non-pivot

$$\Leftrightarrow a^2 - 2a \neq 0$$

$$\Leftrightarrow a \neq 0 \text{ and } a \neq 2.$$

Infinite solutions \Leftrightarrow last and some other columns are non-pivot

$$\Leftrightarrow a^2 - 2a = 0 \text{ and } (a-1)b = 0$$

$$\Leftrightarrow$$
 $(a = 0 \text{ or } a = 2) \text{ and } (a = 1 \text{ or } b = 0)$

$$\Leftrightarrow$$
 $(a = 0 \text{ or } a = 2) \text{ and } b = 0.$

- Find a cubic curve $y = a + bx + cx^2 + dx^3$ that contains points (0, 10), (1, 7), (3, -11), (4, -14).
 - \circ Substitute the (x, y)-coordinates into the cubic curve.
 - We obtain four equations in variables a, b, c, d:

$$\begin{cases}
10 = a + 0b + 0c + 0d \\
7 = a + 1b + 1c + 1d \\
-11 = a + 3b + 9c + 27d \\
-14 = a + 4b + 16c + 64d
\end{cases}$$

In the following, solve the linear system in a, b, c, d to complete the question.

• Augmented matrix: $\begin{pmatrix} 1 & 0 & 0 & 0 & 10 \\ 1 & 1 & 1 & 1 & 7 \\ 1 & 3 & 9 & 27 & -11 \\ 1 & 4 & 16 & 64 & -14 \end{pmatrix}$

89 / 110

Example 4

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | & 10 \\
1 & 1 & 1 & 1 & | & 7 \\
1 & 3 & 9 & 27 & | & -11 \\
1 & 4 & 16 & 64 & | & -14
\end{pmatrix}
\xrightarrow{R_2 + (-1)R_1}
\xrightarrow{R_3 + (-1)R_1}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 10 \\
0 & 1 & 1 & 1 & | & -3 \\
0 & 3 & 9 & 27 & | & -21 \\
0 & 4 & 16 & 64 & | & -24
\end{pmatrix}$$

$$\xrightarrow{R_3 + (-3)R_2}
\xrightarrow{R_4 + (-4)R_2}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 10 \\
0 & 1 & 1 & 1 & | & -3 \\
0 & 0 & 6 & 24 & | & -12 \\
0 & 0 & 12 & 60 & | & -12
\end{pmatrix}$$

$$\xrightarrow{R_4 + (-2)R_3}
\xrightarrow{R_4 + (-2)R_3}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 10 \\
0 & 1 & 1 & 1 & | & -3 \\
0 & 0 & 6 & 24 & | & -12 \\
0 & 0 & 0 & 12 & | & 12
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{6}R_3}
\xrightarrow{\frac{1}{12}R_4}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 10 \\
0 & 1 & 1 & 1 & | & -3 \\
0 & 0 & 1 & 4 & | & -2 \\
0 & 0 & 0 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | & 10 \\
1 & 1 & 1 & 1 & | & 7 \\
1 & 3 & 9 & 27 & | & -11 \\
1 & 4 & 16 & 64 & | & -14
\end{pmatrix} - \cdots \rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 10 \\
0 & 1 & 1 & 1 & | & -3 \\
0 & 0 & 1 & 4 & | & -2 \\
0 & 0 & 0 & 1 & | & 1
\end{pmatrix}$$

$$\xrightarrow{R_2 + (-1)R_4} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 10 \\
0 & 1 & 1 & 0 & | & -4 \\
0 & 0 & 1 & 0 & | & -6 \\
0 & 0 & 0 & 1 & | & 1
\end{pmatrix}$$

$$\xrightarrow{R_2 + (-1)R_3} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 10 \\
0 & 1 & 0 & 0 & | & 2 \\
0 & 0 & 1 & 0 & | & -6 \\
0 & 0 & 0 & 1 & | & 1
\end{pmatrix}$$

- Therefore, a = 10, b = 2, c = -6 and d = 1.
 - The cubic curve is $y = 10 + 2x 6x^2 + x^3$.

91 / 110

Geometric Interpretation

• Linear system of three equations in three variables x, y, z:

$$\circ \begin{cases}
a_{11}x + a_{12}y + a_{13}z = b_1 \\
a_{21}x + a_{22}y + a_{23}z = b_2 \\
a_{31}x + a_{32}y + a_{33}z = b_3
\end{cases}$$

Suppose that a_{i1}, a_{i2}, a_{i3} are not all zero, i = 1, 2, 3.

 \circ Each equation represents a plane in the xyz-space.

What is the reduced row-echelon form of the augmented matrix? What is the geometric interpretation?

- \circ The reduced row-echelon form R has three rows and four columns.
 - The system may be consistent.
 - The system may be inconsistent.

- ullet Assume that the system is consistent, i.e., the last column is of R is a non-pivot column.
 - o Each nonzero row contains exactly one pivot point.
 - o Each pivot column contains exactly one pivot point.

no. of nonzero rows = no. of pivot points = no. of pivot columns.

- 1. Suppose that $oldsymbol{R}$ has three nonzero rows.
 - o The first three columns are all pivot columns.

$$\circ \left(\begin{array}{ccc|c}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right)$$

The system has a unique solution.

The three planes meet at a common point.

93 / 110

Geometric Interpretation

- ullet Assume that the system is consistent, i.e., the last column is of R is a non-pivot column.
 - o Each nonzero row contains exactly one pivot point.
 - Each pivot column contains exactly one pivot point.

no. of nonzero rows = no. of pivot points = no. of pivot columns.

- 2. Suppose that $oldsymbol{R}$ has two nonzero rows.
 - o One of the first three columns is non-pivot.

$$\bigcirc \quad \left(\begin{array}{cc|cc} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{cc|cc} 1 & * & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{cc|cc} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \end{array} \right)$$

The system has infinitely many solutions with one arbitrary parameter.

The three planes meet at a straight line.

- ullet Assume that the system is consistent, i.e., the last column is of R is a non-pivot column.
 - Each nonzero row contains exactly one pivot point.
 - o Each pivot column contains exactly one pivot point.

no. of nonzero rows = no. of pivot points = no. of pivot columns.

- 3. Suppose that $oldsymbol{R}$ has one nonzero row.
 - o Only one of the first three columns is pivot.

$$\circ \quad \left(\begin{array}{ccc|ccc} 1 & * & * & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \left(\begin{array}{cccc|ccc} 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \left(\begin{array}{cccc|ccc} 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

The system has infinitely many solutions with two arbitrary parameters.

The three planes coincide.

95 / 110

Examples

$$\begin{cases}
 x + y + 2z = 1 \\
 x - y - z = 0 \\
 x + y - z = 2
\end{cases}$$

$$\begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 1 & -1 & -1 & | & 0 \\ 1 & 1 & -1 & | & 2 \end{pmatrix} \xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 0 & -2 & -3 & | & -1 \\ 0 & 0 & -3 & | & 1 \end{pmatrix}$$

$$\xrightarrow{\begin{pmatrix} (-\frac{1}{2})R_2 \\ (-\frac{1}{3})R_3 \end{pmatrix}} \begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 0 & 1 & \frac{3}{2} & | & \frac{1}{2} \\ 0 & 0 & 1 & | & -\frac{1}{3} \end{pmatrix}$$

$$\xrightarrow{R_1 + (-2)R_3} \begin{pmatrix} 1 & 1 & 0 & | & \frac{5}{3} \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -\frac{1}{3} \end{pmatrix}$$

$$\xrightarrow{R_1 + (-1)R_2} \begin{pmatrix} 1 & 0 & 0 & | & \frac{2}{3} \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -\frac{1}{3} \end{pmatrix}$$

x = 2/3, y = 1, z = -1/3. The planes meet at point (2/3, 1, -1/3).

97 / 110

Examples

- \circ Let z = t be an arbitrary parameter (non-pivot column).
 - $x + \frac{1}{2}t = \frac{1}{2} \Rightarrow x = \frac{1}{2} \frac{1}{2}t$.
 - $y + \frac{3}{2}t = \frac{1}{2} \Rightarrow y = \frac{1}{2} \frac{3}{2}t$.

- o The four planes intersect at the straight line
 - $(\frac{1}{2}-\frac{1}{2}t,\frac{1}{2}-\frac{3}{2}t,t)$, where t is an arbitrary parameter.

99 / 110

Examples

•
$$\begin{cases} x + y + 2z = 1 \\ 3x + 3y + 6z = 3 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 3 & 3 & 6 & 3 \end{pmatrix} \xrightarrow{R_2 + (-3)R_1} \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- \circ Let y = s and z = t be arbitrary parameters.
 - $x + s + 2t = 1 \Rightarrow x = 1 s 2t$.
- o The two planes are the same, parameterized by
 - (1-s-2t,s,t), where s,t are arbitrary parameters.

Homogeneous Linear Equations & Systems

• **Definition.** A linear equation in variables x_1, x_2, \ldots, x_n is called **homogeneous** if it is of the form

$$\circ \quad \boxed{a_1x_1 + a_2x_2 + \dots + a_nx_n = 0}$$

• A linear equation in x_1, x_2, \ldots, x_n is homogeneous

$$\Leftrightarrow x_1 = 0, x_2 = 0, \dots, x_n = 0$$
 is a solution.

• **Definition.** A linear system is **homogeneous** if every linear equation of the system is homogeneous.

• A linear system in x_1, x_2, \ldots, x_n is homogeneous

$$\Leftrightarrow x_1 = 0, x_2 = 0, \dots, x_n = 0$$
 is a solution.

This is the **trivial solution** of a homogeneous linear system.

Other solutions are called non-trivial solutions.

102 / 110

Example

- Find the equation $ax^2 + by^2 + cz^2 = d$ in the xyz-space which contains points (1, 1, -1), (1, 3, 3), (-2, 0, 2).
- Substitute (x, y, z) = (1, 1, -1), (1, 3, 3), (-2, 0, 2) to get three equations in a, b, c, d.

$$\circ \begin{cases} a+b+c=d\\ a+9b+9c=d\\ 4a+4c=d \end{cases}$$

This is a homogeneous system in a, b, c, d:

$$\circ \begin{cases} a+b+c-d=0\\ a+9b+9c-d=0\\ 4a+4c-d=0 \end{cases}$$

This is a nonnegative, $\begin{cases} a+b+c-d=0\\ a+9b+9c-d=0\\ 4a+4c-d=0 \end{cases}$ o Augmented matrix: $\begin{pmatrix} 1 & 1 & 1 & -1 & 0\\ 1 & 9 & 9 & -1 & 0\\ 4 & 0 & 4 & -1 & 0 \end{pmatrix}$

- Find the equation $ax^2+by^2+cz^2=d$ in the xyz-space which contains points (1,1,-1),(1,3,3),(-2,0,2).
- $\bullet \quad \left\{ \begin{array}{l} a+\ b+\ c-d=0 \\ a+9b+9c-d=0 \\ 4a \qquad +4c-d=0 \end{array} \right.$

$$\begin{pmatrix} 1 & 1 & 1 & -1 & | & 0 \\ 1 & 9 & 9 & -1 & | & 0 \\ 4 & 0 & 4 & -1 & | & 0 \end{pmatrix} \xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} 1 & 1 & 1 & -1 & | & 0 \\ 0 & 8 & 8 & 0 & | & 0 \\ 0 & -4 & 0 & 3 & | & 0 \end{pmatrix}$$

$$\xrightarrow{R_3 + \frac{1}{2}R_2} \begin{pmatrix} 1 & 1 & 1 & -1 & | & 0 \\ 0 & 8 & 8 & 0 & | & 0 \\ 0 & 0 & 4 & 3 & | & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{8}R_2} \begin{pmatrix} 1 & 1 & 1 & -1 & | & 0 \\ 0 & 0 & 4 & 3 & | & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{8}R_2} \begin{pmatrix} 1 & 1 & 1 & -1 & | & 0 \\ 0 & 1 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & \frac{3}{4} & | & 0 \end{pmatrix}$$

104 / 110

Example

- Find the equation $ax^2 + by^2 + cz^2 = d$ in the xyz-space which contains points (1,1,-1),(1,3,3),(-2,0,2).
- $\bullet \quad \left\{ \begin{array}{l} a+b+c-d=0 \\ a+9b+9c-d=0 \\ 4a +4c-d=0 \end{array} \right.$

$$\begin{pmatrix} 1 & 1 & 1 & -1 & 0 \\ 1 & 9 & 9 & -1 & 0 \\ 4 & 0 & 4 & -1 & 0 \end{pmatrix} - \cdots \rightarrow \begin{pmatrix} 1 & 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{3}{4} & 0 \end{pmatrix}$$
$$\frac{R_2 + (-1)R_3}{R_1 + (-1)R_3} \begin{pmatrix} 1 & 1 & 0 & -\frac{7}{4} & 0 \\ 0 & 1 & 0 & -\frac{3}{4} & 0 \\ 0 & 0 & 1 & \frac{3}{3} & 0 \end{pmatrix}$$
$$\frac{R_1 + (-1)R_2}{R_1 + (-1)R_2} \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{3}{4} & 0 \\ 0 & 0 & 1 & \frac{3}{4} & 0 \end{pmatrix}$$

- Find the equation $ax^2+by^2+cz^2=d$ in the xyz-space which contains points (1,1,-1),(1,3,3),(-2,0,2).
- $\bullet \quad \left\{ \begin{array}{l} a+\ b+\ c-d=0 \\ a+9b+9c-d=0 \\ 4a \qquad +4c-d=0 \end{array} \right.$

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & -1 & 0 \\ 1 & 9 & 9 & -1 & 0 \\ 4 & 0 & 4 & -1 & 0 \end{array}\right) - \cdots \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{3}{4} & 0 \\ 0 & 0 & 1 & \frac{3}{4} & 0 \end{array}\right)$$

- \circ Set d=t as an arbitrary parameter. Then
 - a = t, $b = \frac{3}{4}t$ and $c = -\frac{3}{4}t$.

For $t \neq 0$, the equation is $tx^2 + \frac{3}{4}ty^2 - \frac{3}{4}tz^2 = t$.

 $\circ \quad \text{It is equivalent to } x^2 + \tfrac{3}{4}y^2 - \tfrac{3}{4}z^2 = 1.$

106 / 110

Geometric Interpretation

ullet In the xy-plane, the homogeneous system of two equations

$$\circ \begin{cases}
 a_1 x + b_1 y = 0 & (L_1) \\
 a_2 x + b_2 y = 0 & (L_2)
\end{cases}$$

where a_1, b_1 not all zero, a_2, b_2 not all zero, represent straight lines through the origin O(0,0).

- o The system has only the trivial solution
 - $\Leftrightarrow L_1$ and L_2 are different.

• In the xy-plane, the homogeneous system of two equations

$$\circ \begin{cases} a_1 x + b_1 y = 0 & (L_1) \\ a_2 x + b_2 y = 0 & (L_2) \end{cases}$$

where a_1, b_1 not all zero, a_2, b_2 not all zero, represent straight lines through the origin O(0,0).

- o The system has non-trivial solutions
 - $\Leftrightarrow L_1$ and L_2 are the same.

108 / 110

Geometric Interpretation

ullet In xyz-space, the homogeneous system of two equations

$$\circ \begin{cases} a_1x + b_1y + c_1z = 0 & (P_1) \\ a_2x + b_2y + c_2z = 0 & (P_2) \end{cases}$$

where a_1,b_1,c_1 not all zero, a_2,b_2,c_2 not all zero, represent planes containing the origin O(0,0,0).

• The system has (infinitely many) non-trivial solutions.

o Case 1: The two planes are the same.

• In xyz-space, the homogeneous system of two equations

$$\circ \begin{cases} a_1x + b_1y + c_1z = 0 & (P_1) \\ a_2x + b_2y + c_2z = 0 & (P_2) \end{cases}$$

where a_1,b_1,c_1 not all zero, a_2,b_2,c_2 not all zero, represent plans containing the origin O(0,0,0).

 $\circ\quad$ The system has (infinitely many) non-trivial solutions.

 \circ Case 2: The two planes intersect at a straight line passing through O(0,0,0).