Classification Project: Predicting Default Risk in Commercial Loans

Prof. Cristian López Del Alamo September 5, 2025

Introduction to the Problem

The objective of this project is to build a **multiclass classification** model to predict the default risk level of clients applying for a commercial loan. The goal is not only to avoid high-risk clients, but to optimize the profitability of the loan portfolio, safely approving low and medium-risk clients while minimizing default losses. The database consists of **20,000 instances** and **35 features** per instance, classified as **0: Low**, **1: Medium**, and **2: High**.

Database

Download the database:

- Training Dataset
- Testing Dataset

Feature Names

The features are divided into three main categories:

1. Financial Information (15 features)

- annual_income: Total client income in the last year.
- total_debt: Amount of accumulated debt.
- income_to_debt_ratio: Ratio between income and debt.
- loan_amount: Amount of the requested loan.
- $\bullet~interest_rate :$ Interest rate offered for the loan.
- open_credit_lines: Number of active credit accounts.
- average_bank_balance: Average balance in the client's accounts.
- per_capita_family_income: Average income per family member.
- \bullet $credit_bureau_score$: Official credit score.
- *job_tenure_months*: Time the client has been in their current job.
- net_worth: Value of assets minus liabilities.
- fixed_monthly_expenses: Recurring monthly expenses.
- working_capital: Difference between current assets and liabilities.
- monthly_savings_capacity: Amount of money the client can save. investment_income: Income generated from investments.

2. Payment History (10 features)

- late_payments_last_6_months: Number of delayed payments.
- historical_arrears_days: Average days of payment delay.

- credit_utilization_percentage: Percentage of credit limit used.
- on_time_payments_last_12_months: Number of on-time payments.
- historical_debts_paid_off: Number of debts the client has fully settled.
- maximum_payment_delay_days: The longest payment delay the client has had.
- number_of_closed_accounts: Credit accounts that have been closed.
- on_time_payment_ratio: Ratio of on-time payments.
- recent_credit_inquiries: Number of times the credit history has been checked.
- changes_in_payment_habits: Variability in the client's payment patterns.

3. Demographic and Behavioral Data (10 features)

- age: Client's age.
- educational_level: Client's formal education level.
- marital_status: Marital status.
- number_of_dependents: Number of people financially dependent on the client.
- home_ownership: Whether the client owns, rents, or has a mortgage.
- home_type: Type of property.
- residence_tenure_months: Time the client has lived at their current address.
- employment_sector: Industry sector in which they work.
- number_of_jobs_last_5_years: Employment stability.
- monthly_transaction_frequency: Number of monthly bank transactions.

Project Challenges

This project is particularly challenging for students for the following reasons:

- 1. **Multiclass Classification**: The task is not binary, which requires a deeper analysis of the confusion matrix and per-class evaluation metrics.
- 2. **High Dimensionality**: With 35 features, students must consider feature selection or reduction to avoid overfitting.
- 3. Cost of Errors: A model that incorrectly classifies a "High" risk client as "Low" has a much higher financial cost than an error in another direction.
- 4. **Interpretability**: Students must go beyond accuracy and explain why their model made certain decisions, identifying the most important features.

Project Development Phases

- 1. **Data Analysis and Preprocessing**: Load the data, perform an exploratory analysis, and normalize or standardize the numerical features.
- 2. **Feature Selection and Reduction**: Use methods like PCA or feature importance from tree models to simplify the dataset.
- 3. **Modeling**: Train various classification algorithms, such as Logistic Regression, Support Vector Machines (SVM), and Random Forests.
- 4. **Evaluation and Optimization**: Use metrics like *Precision*, *Recall*, and *F1-Score* to evaluate performance. Perform cross-validation and hyperparameter optimization.
- 5. **Conclusions**: Present the findings, justify the model design decisions, and discuss the interpretability of the results.

Evaluation Rubric

The project evaluation will be based on a total of 20 points, distributed as follows:

Criterion	Score	Performance Level
1. Data Understanding and Preprocessing	5 pts	
Exploratory Data Analysis (EDA)	2 pts	0-1.0 pts: Limited or superficial EDA. 1.5 pts: Adequate exploration and visualization. 2.0 pts: Exhaustive EDA with analysis of relationships and clear visualizations.
Data Cleaning and Preparation	3 pts	0-1.0 pts: Inadequate preprocessing. 2.0 pts: Adequate preprocessing. 3.0 pts: Robust preprocessing and exploration of feature engineering.
2. Modeling and Training	6 pts	
Model Selection and Application	3 pts	0-1.0 pts: Use of a single model without justification. 2.0 pts: Use of multiple models, but with flaws in the application. 3.0 pts: Optimal implementation and justification of at least three models.
Dimensionality Handling	3 pts	0-1.0 pts: High dimensionality problem not addressed. 2.0 pts: Feature selection/reduction techniques applied effectively. 3.0 pts: Comparison and justification of the impact of different techniques.
3. Evaluation and Optimization	5 pts	
Use of Evaluation Metrics	2 pts	0-1.0 pts: Only accuracy is reported. 1.5 pts: Use of appropriate metrics. 2.0 pts: Deep analysis of the confusion matrix and the implications of errors.
Model Optimization	3 pts	0-1.0 pts: No hyperparameter optimization was performed. 2.0 pts: Basic optimization with cross-validation. 3.0 pts: Comparison of multiple optimization techniques that improved performance.
4. Report and Conclusions	4 pts	
Report Clarity and Structure	2 pts	0-1.0 pts: Disorganized or incomplete report. 1.5 pts: Well-structured report, but without justification. 2.0 pts: Clear, logical report that follows the requested academic format.
Business Interpretation	2 pts	 0-1.0 pts: Superficial interpretation of the results. 1.5 pts: The results are interpreted in the context of the problem. 2.0 pts: A detailed analysis of the model's interpretability is performed, suggesting business strategies.

Report Submission Format

For the final report submission, groups must use the LATEX template from the **Institute of Electrical** and **Electronics Engineers (IEEE)**. This format ensures a professional and standardized presentation, crucial for communication in the scientific and technical fields.

• Link for downloading the IEEE LATEX template: https://www.ieee.org/conferences/publishing/templates.html