Table 1: Parameters for the cholera model.

	$\hat{ heta}$	$ heta_{ m low}$	$ heta_{ ext{high}}$
γ	20.80	10.00	40.00
ϵ	19.10	0.20	30.00
m	0.06	0.03	0.60
$\beta_{\mathrm{trend}} \times 10^2$	-0.50	-1.00	0.00
eta_1	0.75	-4.00	4.00
eta_2	6.38	0.00	8.00
eta_3	-3.44	-4.00	4.00
eta_4	4.23	0.00	8.00
eta_5	3.33	0.00	8.00
eta_6	4.55	0.00	8.00
ω_1	-1.69	-10.00	0.00
ω_2	-2.54	-10.00	0.00
ω_3	-2.84	-10.00	0.00
ω_4	-4.69	-10.00	0.00
ω_5	-8.48	-10.00	0.00
ω_6	-4.39	-10.00	0.00
σ	3.13	1.00	5.00
au	0.23	0.10	0.50
S_0	0.62	0.00	1.00
I_0	0.38	0.00	1.00
$R_{1,0}$	0.00	0.00	1.00
$R_{2,0}$	0.00	0.00	1.00
$R_{3,0}$	0.00	0.00	1.00

 $\hat{\theta}$ is the MLE reported by [?]. Three parameters were fixed ($\delta=0.02,\ N_s=6$ and k=3) following [?]. Units are year⁻¹ for $\gamma,\epsilon,m,\beta_{\rm trend}$ and δ ; all other parameters are dimensionless. $\theta_{\rm low}$ and $\theta_{\rm high}$ are the lower and upper bounds for a hyper-rectangle used to generate starting points for the search. Nonnegative parameters ($\gamma,\ \epsilon,\ m,\ \sigma,\ \tau$) were logarithmically transformed for optimization. Unit scale parameters ($S_0,\ I_0,\ R_{1,0},\ R_{2,0},\ R_{3,0}$) were optimized on a logistic scale. These parameters were rescaled using the known population size to give the initial state variables, e.g., $S(t_0)=S_0\{S_0+I_0+R_{1,0}+R_{2,0}+R_{3,0}\}^{-1}P(t_0)$.