

LOGISTIC REGRESSION

- We want to learn about Logistic Regression as a method for Classification.
- Some examples of classification problems:
 - Spam versus "Ham" emails
 - Loan Default (yes/no)
 - o Disease Diagnosis
- Above were all examples of Binary Classification

- The convention for binary classification is to have two classes 0 and 1.
- Let's walk through the basic idea for logistic regression.
- We'll also explain why it has the term regression in it, even though it's used for classification!

Background

 Imagine we plotted out some categorical data against one feature.

Background

• The X axis represents a feature value and the Y axis represents the probability of belonging to class 1.

We can't use a normal linear regression model on binary groups.
 It won't lead to a good fit:

We need a function that will fit binary categorical data!

 It would be great if we could find a function with this sort of behavior:

• The Sigmoid (aka Logistic) Function takes in any value and outputs it to be between 0 and 1.

 This means we can take our Linear Regression Solution and place it into the Sigmoid Function.

This results in a probability from 0 to 1 of belonging in the 1 class.

 We can set a cutoff point at 0.5, anything below it results in class 0, anything above is class 1.

We use the logistic function to output a value ranging from 0 to
1. Based off of this probability we assign a class.

Model Evaluation

- After you train a logistic regression model on some training data, you will evaluate your model's performance on some test data.
- You can use a confusion matrix to evaluate classification models.

Model Evaluation

- The main point to remember with the confusion matrix and the various calculated metrics is that they are all fundamentally ways of comparing the predicted values versus the true values.
- What constitutes "good" metrics, will really depend on the specific situation!

Model Evaluation

- We can use a confusion matrix to evaluate our model.
- For example, imagine testing for disease.

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Example: Test for presence of disease

NO = negative test = False = 0

YES = positive test = True = 1

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Misclassification Rate (Error Rate):

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

		predicted condition	
	total population	prediction positive	prediction negative
true	condition positive	True Positive (TP)	False Negative (FN) (type II error)
condition	condition negative	False Positive (FP) (Type I error)	True Negative (TN)

		predicted condition		
	total population	prediction positive	prediction negative	$= \frac{\Sigma \text{ condition positive}}{\Sigma \text{ total population}}$
true	condition positive	True Positive (TP)	False Negative (FN) (type II error)	True Positive Rate (TPR), Sensitivity, Recall, Probability of Detection $= \frac{\Sigma \text{ TP}}{\Sigma \text{ condition positive}}$
condition	condition negative	False Positive (FP) (Type I error)	True Negative (TN)	False Positive Rate (FPR), Fall-out, Probability of False Alarm $= \frac{\sum FP}{\sum \text{ condition negative}}$
	Accuracy $\Sigma TP + \Sigma TN$	Positive Predictive Value (PPV), $= \frac{\Gamma}{\Sigma} \frac{\Gamma}{\Gamma} = \frac{\Gamma}{\Sigma} \frac{\Gamma}{\Gamma}$	False Omission Rate (FOR) $= \frac{\Sigma \text{ FN}}{\Sigma \text{ prediction negative}}$	Positive Likelihood Ratio (LR+) $= \frac{TPR}{FPR}$
	$=$ Σ total population	False Discovery Rate (FDR) $= \frac{\Sigma \text{ FP}}{\Sigma \text{ prediction positive}}$	Negative Predictive Value (NPV) $= \frac{\Sigma \text{ TN}}{\Sigma \text{ prediction negative}}$	Negative Likelihood Ratio (LR–) $= \frac{FNR}{TNR}$

