Package 'GDILM.SIR'

June 4, 2024

Title Inference for Infectious Disease Transmission in SIR Framework
Version 1.2.1
Description Model and estimate the model parameters for the spatial model of individual-level infectious disease transmission in Susceptible-Infected-Recovered (SIR) framework.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.1
LazyData true
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
Imports mvtnorm, psych, stats, MASS, numDeriv, Matrix
Depends R (>= 2.10)
NeedsCompilation no
Author Ruwani Herath [aut, cre], Leila Amiri [ctb], Mahmoud Torabi [ctb]
Maintainer Ruwani Herath <ruwanirasanjalih@gmail.com></ruwanirasanjalih@gmail.com>
Repository CRAN
Date/Publication 2024-06-04 17:30:14 UTC
Contents
Area_Level_Data Individual_Level_Data Realdata_Finalmodel Simulation_Finalmodel Sim_Estpar Sim_Loglik TwoWeek
Index 10

Area_Level_Data

Area level data

Description

The data which describes the sociodemographic characters (proportion of indigenous people, proportions of immigrants, proportion of low education, median household income) for 96 regions.

Usage

Area_Level_Data

Format

A data frame with 96 rows and 5 columns:

RHDA Region name

Percentage_of_immigrants percentage of immigrants in each region

Percentage_of_indigenous percentage of indigenous people in each region

Proporton_of_Low_education proportion of persons 15+ who have not graduated high school

Income median household income ...

Individual_Level_Data Individual level data

Description

The data which describes the Individual characteristics (gender, age group, infected status) and corresponding area details for 700 individuals.

Usage

Individual_Level_Data

Format

A data frame with 700 rows and 8 columns:

Disease_Status Disease status of the individual

Region The regioal health authority of the individual

Gender Gender of the individual

Age_Group Age group of the individual

Postal_code postal code which the individual belong to

Longitde longitude of the region

Latitude latitude of the region

Region_Number Region number assigned for each regional health authority ...

Realdata_Finalmodel 3

 ${\tt Realdata_Final model}$

This function is used to estimate model parameters

Description

This function is used to estimate model parameters

Usage

```
Realdata_Finalmodel(
  ITER,
  ZZ,
 lambda0,
  sigma0,
 Di,
 D,
  n,
  time,
  tau,
  lambda,
 alpha0,
 q1,
 q2,
  cov1,
  cov2,
  phi,
  delta0,
 Nlabel,
 npar,
  Ι
)
```

Arguments

ITER	Number of iterations
zz	Number of Regions
lambda0	Spatial dependence
sigma0	precision
Di	Euclidean distance between susceptible individual and infectious individual
D	Neighborhood structure
n	total number of individuals
time	time
tau	tau
lambda	lambda ###

alpha0	intercept
q1	Number of variables corresponding to individual level data
q2	Number of variables corresponding to area level data
cov1	Individual level covariates
cov2	Area level covariates
phi	Spatial random effects
delta0	Spatial parameter
Nlabel	Label for each sample from the area
npar	number of parameters
I	Identity matrix

Value

Numerical values for estimates

Examples

```
\label{eq:realdata_Finalmodel} Realdata\_Finalmodel(2,4,0.2,0.5,\\ matrix(runif(400,min = 4,max = 20),nrow=20, byrow = TRUE),\\ matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),20,10,\\ sample(c(0,1),replace = TRUE, size = 20),rep(3,20),0.4,6,5,\\ matrix(runif(120, 0, 1),nrow=20,byrow=TRUE),\\ matrix(runif(20, 0, 1),nrow=4,byrow=TRUE),runif(4,min = 0, max = 1),2,\\ rep(1:4,each=5),15,diag(4))\\ \end{cases}
```

Simulation_Finalmodel This function can use to estimate the model parameters using the initial values.

Description

This function can use to estimate the model parameters using the initial values.

Usage

```
Simulation_Finalmodel(
   ITER,
   zz,
   lambda0,
   sigma0,
   Di,
   g,
   nSample,
   d,
```

Simulation_Finalmodel

5

```
n,
time,
tau,
lambda,
alpha0,
beta10,
beta20,
cov1,
cov2,
phi,
delta0,
Nlabel,
D,
I
```

Arguments

ITER Number of iterationszz Number of Regions

lambda0 initial value for Spatial dependence

sigma0 initial value for the precision of spatial random effects

Di Euclidean distance between susceptible individual and infectious individual

g Number of rows in the lattice nSample Number of individuals in each cell

d infectious time units

n total number of individuals

time time

tau the set of infectious individuals at time t in the zth area lambda a vector containing the length of infectious period

alpha0 initial value for the intercept

beta10 initial value for the parameter corresponding to the covariate associated with

susceptible individual

beta20 initial value for the parameter corresponding to the area-level covariates corre-

sponding to area

cov1 a vector of covariates associated with susceptible individual cov2 a vector of area-level covariates corresponding to area

phi Spatial random effects delta0 Spatial parameter

Nlabel Label for each sample from the area

D matrix reflecting neighborhood structure

I Identity matrix

6 Sim_Estpar

Value

the estimated values for the model parameters

Examples

```
\label{eq:simulation_Finalmodel} Simulation\_Finalmodel(2,4,0.2,0.5,\\ matrix(runif(1600,min=4,max=20),nrow=40,byrow=TRUE),2,10,3,40,10,\\ sample(c(0,1),replace=TRUE,size=40),rep(3,40),0.4,1,1,runif(40,0,1),\\ runif(4,0,1),runif(4,min=0,max=1),2,rep(1:4,each=10),\\ matrix(c(0,-1,0,-1,-1,0,-1,0,-1,0,-1,-1,-1,0),nrow=4,byrow=TRUE),\\ diag(4))
```

Sim_Estpar

Calculating the estimated values for the parameters using log-likelihood function

Description

Calculating the estimated values for the parameters using log-likelihood function

Usage

```
Sim_Estpar(
  Nlabel,
  phi,
  Di,
  alpha1,
  delta,
  lambda1,
  sigma1,
  beta1,
  beta2,
  ZZ,
  time,
  n,
  tau,
  lambda,
  I,
  D,
  cov1,
  cov2
)
```

Sim_Estpar 7

Arguments

Nlabel Label for each sample from the area

phi Spatial random effects

Di Euclidean distance between susceptible individual and infectious individual

alpha1 intercept

delta Spatial parameter
lambda1 Spatial dependence

sigma1 precision of spatial random effects

beta1 the parameter corresponding to the covariate associated with susceptible indi-

vidual

beta2 the parameter corresponding to the covariate associated with area

zz Number of areas

time Time

n Total number of individuals

tau the set of infectious individuals at time t in the zth area

lambda a vector containing the length of infectious period

I identity matrix

D Neighborhood structure

cov1 Individual level covariates

cov2 Area level covariates

Value

a list of the solutions for the estimations of the parameters

Examples

```
Sim_Estpar(rep(1:4,each=5),runif(4,min = 0, max = 1),

matrix(runif(400,min=4,max=20),nrow=20,byrow = TRUE),0.4,3,0.2,0.5,1,1,4,10,

20,sample(c(0,1),replace = TRUE, size = 20),rep(3,20),diag(4),

matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),

runif(20, 0, 1),runif(4, 0, 1))
```

Sim_Loglik

 Sim_Loglik

This function calculates the value of the log-likelihood function

Description

This function calculates the value of the log-likelihood function

Usage

```
Sim_Loglik(
 Nlabel,
  phi,
 Di,
  alpha1,
  delta,
  lambda,
  sigma1,
 beta1,
 beta2,
  time,
  n,
  zz,
  tau,
  lambda1,
  I,
 D,
  cov1,
 cov2
)
```

Arguments

Nlabel	Label for each sample from the area
phi	Spatial random effects
Di	Euclidean distance between susceptible individual and infectious individual
alpha1	intercept
delta	Spatial parameter
lambda	a vector containing the length of infectious period
sigma1	precision of spatial random effects
beta1	the parameter corresponding to the covariate associated with susceptible individual
beta2	the parameter corresponding to the covariate associated with area
time	time
n	Total number of individuals

TwoWeek 9

ZZ	Number of areas		
tau	the set of infectious individuals at time t in the zth area		
lambda1	Spatial dependence		
I	Identity matrix		
D	matrix reflecting neighborhood structure		
cov1	Individual level covariates		
cov2	Area level covariates		

Value

a numeric value for the log-likelihood

Examples

```
\begin{split} & \text{Sim\_Loglik}(\text{rep}(1:4,\text{each=5}), \; \text{runif}(4,\text{min} = 0, \; \text{max} = 1), \\ & \text{matrix}(\text{runif}(400,\text{min=4},\text{max=20}),\text{nrow=20},\text{byrow=TRUE}),0.4, \; 2,\text{rep}(3,20),0.5,1,1, \\ & 10,20,4,\text{sample}(c(0,1),\text{replace} = \text{TRUE}, \; \text{size} = 20),0.6,\text{diag}(4), \\ & \text{matrix}(c(0,-1,0,-1,-1,0,-1,0,-1,0,-1,-1,-1,0),\text{nrow=4},\text{byrow=TRUE}), \\ & \text{runif}(20, \; 0, \; 1), \; \text{runif}(4, \; 0, \; 1)) \end{split}
```

TwoWeek	TwoWeek	

Description

The simulated data for the date diagnosed and tau

Usage

TwoWeek

Format

A data frame with 700 rows and 2 columns:

date_diagnosed The date which the disease diagnosed

V2 the week

...

Index

```
* datasets
    Area_Level_Data, 2
    Individual_Level_Data, 2
    TwoWeek, 9

Area_Level_Data, 2

Individual_Level_Data, 2

Realdata_Finalmodel, 3

Sim_Estpar, 6
Sim_Loglik, 8
Simulation_Finalmodel, 4

TwoWeek, 9
```