CP32 MINICONTROL ZENTRALEINHEIT

KURZBESCHREIBUNG

Version: 1.0 (Juli 1992)

Herausgeber: Bernecker und Rainer Industrie-Elektronik GmbH.

Best. Nr.: MACP32KB-0

MINICONTROL ZENTRALEINHEIT CP32

Steckplätze	4
Technische Daten	5
Online-Schnittstelle	6
Anwenderschnittstelle	7
Status-LED	11
Befehlssatz	12
Mathematik-Routinen	13
Speicheraufteilung	16
System-Speicherstellen	17
First Scan-Flag	18
Batteriekontrolle	18
Zeittakte	19
Zeitimpulse	19
Echtzeituhr	20
Softwarezeiten	21
Inport/Outport Adresse \$3400	23
Zusätzliches Anwender-EEPROM	24
Inport Adresse \$3480	30
Runtime-Überwachung	31
Timerinterrupt-Routinen	31
Fehlermeldungen	32

EE32 - RAM/EEPROM-Anwenderprogrammspeicher

EP05 - EPROM-Anwenderprogrammspeicher

Anwenderprogrammspeicher

Internes RAM

Einschaltverhalten

Bestellnummern - Bestellbezeichnungen

Inhalt:

35

36

36

38 39

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

Die Zentraleinheit CP32 ist Bestandteil der MINICONTROL Grundeinheit C (Best.Nr. MCGE232-022).

STECKPLÄTZE

Die MINICONTROL Zentraleinheit CP32 darf nur auf dem grau gekennzeichneten Steckplatz betrieben werden:

TECHNISCHE DATEN

	CP32
Prozessor	6303
Bearbeitungszeit	ca. 4 ms / k Anweisungen
Anwenderprogrammspeicher Größe Art Ausführung	16 kByte RAM/EEPROM oder EPROM intern oder von vorne steckbar
EEPROM Erweiterungsspeicher	32 KByte
Status-LED	JA
Anzahl E/A digital analog	192 16
Serielle Schnittstellen Online-Schnittstelle Anwender-Schnittstelle	TTY TTY/RS485 (umschaltbar)
Anzahl 8 Bit-Speicher remanent nicht remanent	7168 7148 20
Anzahl 1 Bit-Speicher remanent nicht remanent	1000 500 500
Uhrzeit/Datum	Echtzeituhr
Hardware-Timer	24
Software-Timer	64
Zeittakte/Zeitimpulse	10 ms, 100 ms, 1 s, 10 s
Betriebstemperatur	0 bis 60 °C
Luftfeuchtigkeit	0 bis 95 %, nicht kondensierend
Batterieüberwachung	JA
Watchdog	JA

ONLINE-SCHNITTSTELLE

Zur Kommunikation mit dem Programmiergerät verfügt die Zentraleinheit über eine Online-Schnittstelle. Die Online-Schnittstelle ist eine TTY-Schnittstelle mit 62,5 kBaud, die für den Onlinebetrieb mit dem Programmiergerät verwendet werden kann.

Die Online-Schnittstelle ist an der Modulfront mit "PG" gekennzeichnet:

Pinbelegung der Online-Schnittstelle

	Pin	Funktion
6 0 1 2 3 4 5 5	1 2 3 4 5 6 7 8 9	TXD reserviert RXD RET Reset RET reserviert TXD RET RXD Reset reserviert

Online-Kabel

Online-Kabel Best. Nr.	für Interface/PG ¹⁾		
BRKAOL-0	BRIFPC-0 BRIFTO-0 BRADFOL		
BRKAOL2-0	BRIFCO-0		

¹⁾ Alle in diesem Handbuch beschriebenen PG-Funktionen beziehen sich auf das B&R-Programmiersystem V 5.0.

ANWENDER-SCHNITTSTELLE

Die Zentraleinheit CP32 verfügt über eine TTY/RS485-Anwenderschnittstelle (umschaltbar, galvanisch getrennt).

Hinweis: - Die maximale Übertragungsrate der TTY bzw. RS485 Schnittstelle ist 19200 Baud.

- Alle Schnittstellen sind schutzbeschaltet und besitzen ein Eingangsfilter.

UMSCHALTUNG TTY/RS485

Nach dem Einschalten ist die Schnittstelle auf TTY eingestellt. Die Umschaltung zwischen TTY und RS485 Schnittstelle erfolgt mit Bit 4 der Inport/Outport Adresse \$3400.

0 ... TTY 1 RS485

Wird die Schnittstelle in der Initialisierungsroutine umgeschaltet, ist darauf zu achten, daß die Verzögerung maximal 10 ms beträgt (Relaisverzögerung).

Beispiel: Umschalten der Schnittstelle von TTY auf RS485.

LD	# \$3400	ERD mit \$3400 laden
DXR		Indexregister auf Adresse \$3400 setzen
LAD	I 000	Inhalt in ERA laden
OD	# %00010000	Bit 4 auf 1 setzen
=	I 000	ERA in Adresse \$3400 speichern

SOFTWAREMÄSSIGE BEDIENUNG

Die softwaremäßige Bedienung der Anwenderschnittstelle erfolgt über die folgenden Register:

P 103	Programmregister
P 102	Befehlsregister
P 101	Statusregister
P 100	Datenregister

Initialisierung

Bei der Initialisierung werden Programmregister und Befehlsregister mit bestimmten Vorwahlwerten beschrieben. Dadurch werden Baudrate, Datenformat, Parity usw. festgelegt. Die Initialisierung wird nur ein mal unmittelbar nach dem Einschalten der SPS oder nach einem Reset durchgeführt.

Programmregister 7 0	SB	Anzahl Stopbits	0 1	1 Stopbit wenn DB=5 und kein Parity 1,5 Stopbits wenn DB=8 und Parity 1 Stopbit in allen anderen Fällen 2 Stopbits		
SB DB 1 BAUD P 103	DB	Anzahl Datenbits	00 01	8 Datenbits 10 6 Datenbits 7 Datenbits 11 5 Datenbits		
	BAUD	Baudrate	0001 0010 0011 0100 0101	50 0110 300 1011 3600 75 0111 600 1100 4800 109,92 1000 1200 1101 7200 134,58 1001 1800 1110 9600 150 1010 2400 1111 19200		
Befehlsregister 0	PAR	Parity	00 01 10 11	Parity ungerade (odd) Parity gerade (even) Parity-Bit beim Senden gesetzt Parity-Bit beim Senden gelöscht		
PAR P _{on} E RT 0 1 1 P 102	P _{on}	Parity ein/aus	0 1	Kein Parity-Test, Parity-Bit wird nicht generiert Parity-Test aktiv		
	E	Echo-Mode	0 1	Echo-Mode aus Echo-Mode ein, RT muß 0 sein		
	RT	RTS-Leitung ¹⁾	0 1	RTS high, nicht sendebereit RTS low, sendebereit TTY: RT = 1		

Beispiel: Initialisierung der Anwenderschnittstelle, Baudrate = 9600, 8 Datenbits, 1 Stopbit, Parity aus, Echo-Mode aus.

```
LB # %00011110 9600 Baud, 8 Datenbits, 1 Stopbit
LAD # %00001011 Parity aus, Echo-Mode aus
=D P 102 Programmregister & Befehlsregister
```

Wenn kein Sender aktiv und der Bus somit hochohmig ist, muß darauf geachtet werden, daß in diesem Zustand undefinierte Zeichen empfangen werden können.

Um den RS485 Sender einzuschalten muß das RT Bit auf 1 gesetzt werden. Ab jetzt läuft die Timerzeit ab. Wird kein Zeichen gesendet, schaltet der Sender nach ca. 300 ms wieder ab (hochohmig).

Nach Beschreiben des Datenregisters mit dem zu sendenden Byte muß das RT Bit wieder rückgesetzt werden. Der Bus bleibt bis zur vollständigen Sendung des Zeichens aktiv (die maximale RTS Verzögerung beträgt 5 µs).

Das Umschalten der Handshake-Leitung RTS von low auf high (von 1 auf 0) kann jederzeit erfolgen.

Statusregister

Das Statusregister liefert Informationen über den Zustand der seriellen Schnittstelle und eventuell aufgetretene Fehler. Der Zustand des Statusregisters muß bei jedem Sende- oder Empfangsvorgang berücksichtigt werden.

Statusregister	TR	Sender bereit	0 1	Sender sendet Zeichen Senderegister leer, Sender bereit, ein Zeichen zu senden
7 0 TR RF OV FE PE	RF	Zeichen empfangen	0 1	kein Zeichen empfangen Zeichen wurde empfangen
P 101	ov	Overrun-Fehler	0 1	kein Fehler Fehler. Der Empfänger wurde nicht rechtzeitig gelesen, bevor ein neues Zeichen empfangen wurde
	FE	Framing-Fehler	0 1	kein Fehler Fehler. Stop-Bit nicht erkannt.
	PE	Parity-Fehler	0 1	kein Fehler Fehler beim Parity-Test

Datenregister Das Datenregister hat zwei Funktionen:

- Ankommende Zeichen werden aus dem Datenregister ausgelesen
- Auszugebende Zeichen werden in das Datenregister geschrieben

Zeichen ausgeben

Vor dem Beschreiben des Datenregisters mit dem auszugebenden Zeichen ist zu überprüfen, ob der Sender bereit ist, ein Zeichen zu senden (Bit 4 im Statusregister muß 1 sein).

LB	P 101	Statusregister
BB	# %00010000	Sender bereit ?
SP0	NO	Sprung, wenn Sender nicht bereit
LAD	x xxx	auszugebendes Zeichen
=	P 100	Datenregister

Zeichen einlesen

Durch Auswerten des Bits 3 im Statusregister wird festgestellt, ob ein Zeichen empfangen wurde. Ist dieses Bit = 1, so wurde ein Zeichen empfangen. Die Bits 0 bis 2 des Statusregisters geben an, ob Übertragungsfehler aufgetreten sind (Parity-Fehler, Overrun-Fehler oder Framing-Fehler). Ist eines dieser Fehlerbits gesetzt, so ist das empfangene Zeichen ungültig. Das Datenregister muß aber auch im Fehlerfall ausgelesen werden, da dadurch die Fehlermeldung quittiert wird.

LB	P 101	Statusregister
BB	# %00001000	Zeichen empfangen ?
SP0	NO	Sprung, wenn kein Zeichen empfangen
LAD	P 100	Datenregister auslesen
BB	# %00000111	Übertragungsfehler aufgetreten ?
SN0	FAIL	Sprung, wenn Übertragungsfehler
:		Auswerten des empfangenen Zeichens

FAIL :

STATUS-LED

Die MINICONTROL Zentraleinheit CP32 ist mit einer Status-LED ausgestattet, die verschiedene Betriebszustände anzeigt.

Die folgenden Betriebszustände werden durch unterschiedliche Blinktakte angezeigt:

Blinktakt	Funktion		
н П	Anwenderprogramm läuft im RAM		
го —			
н	Zentraleinheit ist im HALT-Zustand		
LO —			
	Onlinekabel während PROM-Programmieren abgesteckt		
LO			
н ———	Fehler bei der Ausführung des Anwenderprogrammes		
LO			
н	Anwenderprogramm läuft im PROM		
. го			

BEFEHLSSATZ

In den MINICONTROL Zentraleinheiten wird ein 6303-Prozessor (Hitachi) verwendet. Das ist der selbe Prozessor, der auch in den Zentraleinheiten CP40 (MULTICONTROL), CP41 (MIDICONTROL) und in den PP40 Peripherieprozessoren (MULTICONTROL, MIDICONTROL) zur Anwendung kommt. Dadurch ist volle Software-Kompatibilität zu den anderen SPS-Systemen gegeben.

Eine vollständige Beschreibung des Befehlssatzes des 6303-Prozessors ist in der Kurzbeschreibung "AWL Befehlsbeschreibung" (Best. Nr. MAAWLKB-D - lieferbar Ende 1991) zu finden. In der Faltkarte "STL Instruction Set" (Best. Nr. MASTL-E) sind alle Befehle tabellarisch zusammengefaßt.

Diese Faltkarte enthält u.A. folgende Informationen:

- B&R- und MOTOROLA-Mnemonics
- Befehlsbeschreibung
- Mögliche Adressierungsarten
- Mögliche Adreßvorwahlen
- Länge und Dauer der Befehle
- Veränderte Flags

MATHEMATIK-ROUTINEN

Die MINICONTROL-Zentraleinheiten sind standardmäßig mit schnellen Fließkomma Mathematik-Routinen ausgestattet. Diese Routinen sind Bestandteil des Betriebssystemes. Sie werden durch Befehls-Mnemonics aus der Anweisungsliste aufgerufen. Neben den Grundrechenarten Addition, Subtraktion, Multiplikation, Division und Quadratwurzel stehen zahlreiche Umwandlungs- und Hilfsprogramme zur Verfügung (z.B. zum Vergleichen oder Kopieren). Zur Zahlendarstellung wird das genormte 4 Byte IEEE-Format verwendet. Eine detaillierte Beschreibung der Mathematik-Routinen ist in der Kurzbeschreibung MAAWLKB-D (lieferbar Ende 1991) zu finden.

ACHTUNG

MATHEMATIK-ROUTINEN DÜRFEN NICHT IN INTERRUPTPROGRAM-MEN VERWENDET WERDEN.

ZAHLENFORMATE

	Forma	at		Zahlenbereich
S EXP		MANTISSE 23 Bit Mantisse	0	-9,22 * 10 ¹⁸ bis -9,22 * 10 ⁻¹⁸ und 9,22 * 10 ⁻¹⁸ bis 9,22 * 10 ¹⁸
Absolut mit Vo		15 87 TETRAG	0	±2,15 * 10°
Absolut mit Vo	87 0 TBETRAG			±32767
Integer lang	24 23 16 2er-Kom	-	0	±2,15 * 10°
Integer kurz 15 14 S 2er-Ko	87 0			-32768 bis +32767

Bef.	Funktion	runkuon		Ausführungszeit	t Mögliche Fehlermeldungen													
		Operanden	Ergebnis	in μs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
MADD	OP1 := OP1 + OP2	OP1, OP2	OP1	209/690	•	•	Ť		<u> </u>	•	•		Ť	+	<u> </u>	•	1	H
MSUB	OP1 := OP1 - OP2	OP1, OP2	OP1	219/700	•	•				•	•		t			•	T	T
MMUL	OP1 := OP1 * OP2	OP1, OP2	OP1	209/803	•	•				•	•					•		Т
MDIV	OP1 := OP1 / OP2	OP1, OP2	OP1	190/1980	•	•	•			•	•		<u> </u>			•		T
MSQR	OP1 := SQR(OP1)	OP1	OP1	71/8065	•	•	Ť			•	•	•	\vdash	\vdash	t	•		\vdash
MSGN	OP1 := OP1 * (-1)	OP1	OP1	85/85	Ť	Ť				Ť	Ť	Ť	\vdash	\vdash		Ť	\vdash	╁
MCOP	OP2 := OP1	OP1	OP2	46/46	+		\vdash						\vdash	\vdash	\vdash		\vdash	\vdash
MEXG	OP1 ↔ OP2	OP1, OP2	OP2, OP1	76/76	+													₩
			0P1		+	\vdash	┢		•				\vdash	\vdash	\vdash			\vdash
LAL1	Lade OP1, abs. mit Vz. 4 Byte	(R)		190/339					-				-				-	-
LAL2	Lade OP2, abs. mit Vz. 4 Byte	(R)	OP2	190/339	+			-	•				-	┢	\vdash		-	₩
LAW1	Lade OP1, abs. mit Vz. 2 Byte	ERD	OP1	83/250	+		\vdash						\vdash	\vdash	\vdash			⊢
LAW2	Lade OP2, abs. mit Vz. 2 Byte	ERD	OP2	83/250	+	-	⊢		-				┢	┢	┢		-	⊢
LIL1	Lade OP1, int. 4 Byte	(R)	OP1	197/381	+	-	-		•				-	-	-		_	⊢
LIL2	Lade OP2, int. 4 Byte	(R)	OP2	194/378	1				•					_		<u> </u>	<u> </u>	_
LIW1	Lade OP1, int. 2 Byte	ERD	OP1	87/260	1									1	1		_	₩
LIW2	Lade OP2, int. 2 Byte	ERD	OP2	84/257										1				\vdash
LF1	Lade OP1, IEEE	(R)	OP1	88/125	•	_	_	_	_	•	•	_	\vdash	1	\vdash	•	_	\vdash
LF2	Lade OP2, IEEE	(R)	OP2	88/125	•					•	•					•		
CAF	ASCII - IEEE	(R)	OP1	280/2140	•					•	•		•					L
SAW	Speichere OP1, abs. mit Vz. 2 Byte	OP1	ERD	158/373				•								•		L
SAL	Speichere OP1, abs. mit Vz. 4 Byte	OP1	(R)	169/408				•								•		
SIW	Speichere OP1, int. 2 Byte	OP1	ERD	158/380				•								•		
SIL	Speichere OP1, int. 4 Byte	OP1	(R)	172/424				•								•		
SFX	Speichere OP1, IEEE	OP1	(R)	43/43														
CFA	OP1 - ASCII	OP1	(R)	352/7310	•			•		•	•					•		
CFA0	OP1 - ASCII mit Vornullen	OP1	(R)	310/7190	•			•		•	•					•		
CFEA	OP1 - ASCII mit Exp.	OP1	(R)	570/7140	•					•	•					•		
SFM1	Speichere OP1 in Speicher 1	OP1	MEM1	60/60														T
SFM2	Speichere OP1 in Speicher 2	OP1	MEM2	60/60	T										T		Т	一
SFM3	Speichere OP1 in Speicher 3	OP1	MEM3	60/60														\vdash
RFM1	Lade OP2 aus Speicher 1	MEM1	OP2	56/56	+	\vdash							\vdash	\vdash	t		\vdash	\vdash
RFM2	Lade OP2 aus Speicher 2	MEM2	OP2	56/56									\vdash	1			H	\vdash
RFM3	Lade OP2 aus Speicher 3	MEM3	OP2	56/56	+								-					\vdash
FM2B	Multiplikation 2 x 2 Byte	(R) int. 2 Byte, ERD	(C1048, 1049) 4 Byte	115/191	+								\vdash	\vdash				\vdash
FM3B				156/270	+								\vdash	\vdash				\vdash
FM4B	Multiplikation 3 x 2 Byte	(R) int. 3 Byte, ERD	(C1048, 1049) 5 Byte		+								-	-				\vdash
	Multiplikation 4 x 2 Byte	(R) int. 4 Byte, ERD	(C1048, 1049) 6 Byte	192/344	+		\vdash	•					\vdash	\vdash	\vdash			\vdash
CBCD	Binär - BCD	(ERD) abs. 3 Byte	(R) BCD 3 Byte	192/1180	+		\vdash	•					\vdash	\vdash	\vdash			\vdash
CBIN	BCD - Binär	(ERD) BCD 3 Byte	(R) abs. 3 Byte	112/223	+	\vdash	\vdash	_					\vdash	\vdash	\vdash		\vdash	\vdash
CIA	Binär - ASCII	(C1048, 1049)	(R)	380/2020				•					-				-	-
CIA0	Binär - ASCII mit Vornullen	(C1048, 1049)	(R)	310/1960	+			•		-	_		\vdash	\vdash	\vdash	-		₩
CBPP	Binär - physikalisch (Parameterber.)	(R)	(C1048, 1049)	2500/6700	•	\vdash	-	-	_	•	•		\vdash	\vdash	-	•	\vdash	₩
CBPQ	Binär - physikalisch (schnell)	ERD, (R)	ERD, OP1	780/1700	•	\vdash		-	\vdash	•	•		\vdash	₩	-	•	\vdash	+
CPBQ	Physikalisch - binär (schnell)	ERD, (R)	ERD, OP1	780/1500	•				_	•	•			1	1	•	_	₩
CBP	Binär - physikalisch	(C1046, 1047), (R)	(C1048, 1049), ERD, OP1	3400/8300	•	<u> </u>	_	_	_	•	•	_	-	1	_	•	⊢	₩
CPB	Physikalisch - binär	(C1046, 1047), (R)	(C1048, 1049), ERD, OP1	3400/8300	•	-	\vdash	_	_	•	•		\vdash	1	-	•	\vdash	\vdash
CIM	Inch - metrisch	(C1046, 1047), ERD	(R), ERD	307/472	_					_				_	\perp		•	•
CMI	Metrisch - Inch	(C1046, 1047), ERD	(R), ERD	307/472										1			•	•
FCOP	Speicherbereich kopieren	(R), ERD	(C1048, 1049)		1									1				_
FSMB	Speicher mit Byte-Werten laden	(R), ERD, C1052	(R)	48 + L * 12	1					\perp		\perp	\perp	┖	\perp			
FSMW	Speicher mit Wort-Werten laden	(R), ERD, C1052	(R)	48 + L * 14														
FCLR	Speicherbereich löschen	(R), ERD	(R)	48 + L * 12														
MCMP	OP1 mit OP2 vergleichen	OP1, OP2		201/223							Ĺ					•		Γ
MHIL	Wenn OP1 > OP2 dann OP1 := OP2	OP1, OP2	OP1	215/271												•		
MLOL	Wenn OP1 < OP2 dann OP1 := OP2	OP1, OP2	OP1	215/271	T								T			•		Т

FEHLERMELDUNGEN

Die in der Tabelle mit ● gekennzeichneten Fehlermeldungen sind für die jeweilige Funktion möglich. Tritt bei der Ausführung einer Routine ein Fehler auf, so wird das Carry-Flag gesetzt und die Speicherstelle C 1024 enthält die Fehlernummer.

Nr	Beschreibung
1	Bei einer Berechnung wurde der darstellbare Zahlenbereich überschritten
2	Bei einer Berechnung wurde der darstellbare Zahlenbereich unterschritten
3	Division durch 0
4	Bereichsüberschreitung beim Umwandeln von Zahlenformaten
5	Beschneidung des Lower Significant Byte (LSB) beim Laden von 4 Byte-Mantissen
6	Bereichsüberschreitung beim Laden von Zahlen
7	Bereichsunterschreitung beim Laden von Zahlen
8	Negativer Operand bei Quadratwurzelberechnung
9	Unzulässiges Zeichen bei Stringumwandlungsroutine
10	nicht verwendet
11	Unzulässiges Kommando (TRAP-Fehler wird ausgelöst)
12	Zahl nicht im Rechenbereich
13	Exponentfehler bei Inch-Metrisch- bzw. Metrisch-Inch-Umwandlung
14	Datenüberlauf bei Inch-Metrisch- bzw. Metrisch-Inch-Umwandlung

OPERANDEN UND SPEICHER

Speicherstelle(n)	Funktion
C 1024	Fehlernummer
C 1025	reserviert
C 1026 bis C 1029	Operand 1 (OP1)
C 1030 bis C 1033	Operand 2 (OP2)
C 1034 bis C 1037	Zwischenspeicher 1 (MEM1)
C 1038 bis C 1041	Zwischenspeicher 2 (MEM2)
C 1042 bis C 1045	Zwischenspeicher 3 (MEM3)
C 1046 bis C 1047	Quelladresse
C 1048 bis C 1049	Zieladresse
C 1050 bis C 1051	Länge
C 1052 bis C 1053	Daten

SPEICHERAUFTEILUNG

	_		·
\$0000-\$00FF Systemvariablen	\$4000	\$8000	\$C000
\$0100-\$01FF System-Stack			
\$0200-\$02FF KOP-Bereich			
\$0300-\$03FF KOP-Statustest			
\$0400			
0.70.70			
8 Bit-Datenspeicher			
(C 0000 bis C 7167)			
		4 70 4 4 4 77 77	
\$1FFF	A mayon domano onomin	1 Bit-Adressen (Eingänge, Ausgänge, Timer, 1 Bit-	Datri abaarratam
\$2000	Anwenderprogramm	Speicher)	Betriebssystem
		Speicher)	
reserviert			
\$2FFF			
\$3000			
P-Adressen			
\$33FF			
\$3400			
CPU I/O			
\$37FF			
\$3800			
zusätzliches Anwender			
EEPROM			
\$2EEE	ê TECE	¢DECE	(APPER
\$3FFF	\$7FFF	\$BFFF	\$FFFF

SYSTEM-SPEICHERSTELLEN

Einige 8 Bit-Speicher und 1 Bit-Speicher sind für Betriebssystemfunktionen reserviert. Diese dürfen vom Anwenderprogramm nicht bzw. nur eingeschränkt verwendet werden:

8 Bit-Speicher: C 0800 bis C 1499 1 Bit-Speicher: M 800 bis M 999

1 Bit-Speicher mit Adressen ab M 800, die für Betriebssystem-Sonderfunktionen verwendet sind, werden mit Adressen F Dxx bzw. Z Dxx eingegeben:

Adresse	Einzugeben als ¹⁾
M 800	F D00
M 801	F D01
:	:
M 899	F D99
M 900	Z D00
M 901	Z D01
:	:
M 999	Z D99

¹⁾ Das Programmiergerät erlaubt auch die Eingabe der M-Adresse, nach Abschluß der Eingabe mit ENTER wird die Adresse automatisch in die Form F Dxx oder Z Dxx umgewandelt. Z.B.:

Eingabe: M 820
Wird nach ENTER geändert in: F D20
Eingabe: M 980
Wird nach ENTER geändert in: Z D80

Im folgenden Abschnitt sind die System-Speicherstellen beschrieben, die vom Anwenderprogramm nur eingeschränkt verwendet werden dürfen:

Zulässi Lesen	ger Zugriff Schreiben	Adresse(n)	Funktion
		C 0800 bis C 0863	Vorteiler für Softwarezeiten
· ·		C 0899	First Scan-Flag
		C 0900 bis C 0963	Zähler für Softwarezeiten
		C 0972, C 0973	Timerinterrupt-Vektor
		C 0974, C 0975	Timerinterrupt-Zeit
		C 0978, C 0979	Trap-Vektor
V	~	C 0980 bis C 0984	Echtzeituhr
V	✓	C 0990	Breakpoint-Sonderfunktion
		C 0991 bis C 0993	Zähler/Teiler
		C 0998, C 0999	Runtime-Überwachung
· ·	V	C 1024 bis C 1053	Operanden u. Speicher der Mathematik-Routinen
		C 1054 bis C 1499	Reserviert für Standard-Funktionsbausteine
·	✓	F D00 bis F D63	Freigaben für Softwarezeiten
·	✓	F D85, F D86	Steuerbits für Echtzeituhr
\ \ \ \ \		Z D00 bis Z D63	Softwarezeiten
V		Z D64	First Scan-Flag
·		Z D80 bis Z D83	Zeittakte
/		Z D90 bis Z D93	Zeitimpulse
·		Z D99	Batteriekontrolle

FIRST SCAN-FLAG

Das First Scan-Flag ist eine 1 Bit-Speicherstelle (Z D64), die vom Betriebssystem automatisch während des ersten Programmzyklus auf 1 gesetzt wird, sonst ist dieses Flag 0. Das First Scan-Flag wird für Programminitialisierungen verwendet. Auch die Speicherstelle C 0899 liefert die First Scan-Funktion:

```
Z D64 First Scan-Flag (1 = erster Programmzyklus)
C 0899 First Scan-Flag (1 = erster Programmzyklus)
```

Beispiel:

```
INIT LAD Z D64 First Scan

SP0 INIR Sprung, wenn schon initialisiert

:
 : Initialisierungen
:
INIR RET
```

Im Funktionsplan kann das First Scan-Flag an den Enable-Eingang von Funktionsbausteinen angeschlossen werden, die nur ein mal während des ersten Programmzyklus ausgeführt werden sollen.

ACHTUNG:

Mit dem Kommando XFER des B&R Programmiersystemes können Programme ohne Unterbrechung des laufenden Anwenderprogrammes in den RAM-Speicher der Zentraleinheit übertragen werden. Der Anwender muß nach erfolgter Übertragung manuell mit einem Befehl vom Programmiergerät auf das neue Programm umschalten. In diesem Fall sind die First Scan-Speicherstellen während des ersten Programmzyklus des neuen Programmes nicht gesetzt!

BATTERIEKONTROLLE

Der Zustand der Batterie wird mit der 1 Bit-Speicherstelle Z D99 kontrolliert.

```
0 ... Batterie OK (Spannung > 2,85 V)
1 ... Batterie leer (Spannung < 2,60 V)
```

ZEITTAKTE

Zeittakte sind 1 Bit-Adressen, die vom Betriebssystem automatisch mit Blinktakten angesteuert werden:

Adresse	t1	t2	1]	
Z D80 Z D81	10 ms 40 ms	10 ms 60 ms					+
Z D82 Z D83	0,4 s 4 s	0,6 s 6 s		•	t ₁	t ₂	

ZEITIMPULSE

Zeitimpulse sind 1 Bit-Adressen, die vom Betriebssystem automatisch für die Dauer eines Programmzyklus auf 1 gesetzt werden.

t, ... Programmzyklus

ECHTZEITUHR

Wenn die SPS ausgeschaltet ist, läuft die Uhrzeit weiter (gepuffert von der Batterie im Netzteil).

Uhrzeit-Speicherstellen (alle Angaben in BCD):

C 0980	1/100 Sekunden (\$00 bis \$99)
C 0981	Sekunden (\$00 bis \$59)
C 0982	Minuten (\$00 bis \$59)
C 0983	Stunden (\$00 bis \$23)
C 0984	Tag (\$01 bis \$31)
C 0985	Monat (\$01 bis \$12)
C 0986	Jahr (\$00 bis \$99)
C 0987	Wochentag (1 bis 7)

Die Steuerung der Echtzeituhr erfolgt über zwei Speicherstellen:

```
F D85 Uhr ein/aus (1 = ein)
```

F D86 Uhr stellen ein/aus (0 = stellen ein)

Stellen der Echtzeituhr (Uhr muß eingeschaltet sein, d.h. F D85 muß 1 sein):

- Uhr stellen ein (F D86 löschen)
- Uhrzeit-Speicherstellen C 0980 bis C 0987 mit Uhrzeit/Datum laden
- F D86 wird beim nächsten Programmdurchlauf automatisch wieder gesetzt

SOFTWAREZEITEN

Die MINICONTROL-Zentraleinheiten verfügen über 64 Softwarezeiten, die als Anzugsverzögerung arbeiten. Jede Softwarezeit besteht aus folgenden Adressen:

F Dxx	Freigabe (Starten) der Softwarezeit. Durch Beschreiben dieser Speicher-
H I JYY	Freigane (Nigrien) der Nottwarezeit. Dijrch Beschreinen dieser Speicher-

stelle mit 1 wird die Softwarezeit xx (xx = 00 bis 63) gestartet. Diese Speicherstelle kann auch gelesen werden (z.B. um festzustellen, ob eine

Softwarezeit gestartet ist, oder nicht).

Z Dxx Ergebnis. Ist diese Speicherstelle 1, so ist die dazugehörige Softwarezeit

abgelaufen. Diese Speicherstelle kann nur gelesen werden. Das Zurück-

setzen erfolgt durch Löschen der Freigabe F Dxx.

Zxx n"nn Zeitdefinition. Mit der Anweisung Zxx wird die Dauer der Softwarezeit

in Sekunden und 1/100 Sekunden festgelegt. Diese Anweisung muß immer durchlaufen werden, sie steht deshalb meist am Anfang des An-

wenderprogrammes.

Zeitlicher Ablauf:

Nach Start der Softwarezeit xx durch Beschreiben der Freigabeadresse F Dxx mit 1 und Ablauf der mit der Zeitdefinition Zxx eingestellten Zeit t_w wird die Zeitadresse Z Dxx ebenfalls 1.

Nach dem Rücksetzen der Freigabeadresse F Dxx wird die Zeitadresse Z Dxx beim nächsten Durchlauf durch die Zeitdefinition Zxx zurückgesetzt. Die Rücksetzzeit t_{res} kann im ungünstigsten Fall einen Programmzyklus lang sein.

Beispiel:

5,5 Sekunden nach Betätigen eines Tasters (E 042) soll ein Motor (A 058) gestartet werden. Mit einem weiteren Taster (E 043) soll der Motor wieder gestoppt werden:

0000	Z10		5"50	Zeitdefinition
0001	LAD	N	E 042	Taster START
0002	PRS		M 100	Pos. Flanke von E 042
0003	EXO		M 100	Pos. Flanke von E 042
0004	RST		M 100	Pos. Flanke von E 042
0005	PRS		F D10	Start Motorverzögerung
0006	LAD		E 043	Taster STOP
0007	RST		F D10	Start Motorverzögerung
8000	LAD		Z D10	Motorverzögerung
0009	=		A 058	Motor
0010	END			

Das selbe Programmbeispiel kann auch mit einem Kontaktplan gelöst werden:

```
Zeitdefinition
0000
      Z10
            5"50
0001
                   Kontaktplan-Aufruf
      SPII
            KOP1
0002
      END
! M START FLANKE
                             M VERZ.
01 --I I---+-----(R)---
I M STOP
                             M WERZ
! Z D10
                             A 058
MOT EIN
                             MOTOR
```

Die Zeitdefinition Zxx muß bei jedem Programmdurchlauf genau ein mal durchlaufen werden. Wird sie nicht durchlaufen, so ist die Funktion der Softwarezeit nicht mehr gewährleistet, wird sie mehrmals je Programmzyklus durchlaufen, so ist die angegebene Zeit nicht korrekt.

Jede Softwarezeit belegt eine 8 Bit-Speicherstelle im Bereich von C 0800 bis C 0863, der als Vorteiler verwendet wird und eine weitere 8 Bit-Speicherstelle im Bereich von C 0900 bis C 0963 als Zähler. Die Zeitdefinition Zxx ist ein Softwareinterrupt, der ca. 0,5 ms dauert (bei Verwendung vieler Softwarezeiten Auswirkung auf die Programmzykluszeit beachten!).

INPORT/OUTPORT ADRESSE \$3400

ZUSÄTZLICHES ANWENDER-EEPROM

Dieses EEPROM ist 32 KByte groß. Es ist in 16 Blöcke zu je 2 KByte unterteilt. Der gewünschte Block wird mit den ersten 4 Bits des Inport/Outport Bytes (Adresse \$3400) definiert.

Beispiel: Definition von Block 6 des Zusatz-EEPROMs.

LD	# \$3400	ERD mit \$3400 laden
DXR		Indexregister auf Adresse \$3400 setzen
LAD	I 000	Inhalt in ERA laden
UND	# %11110000	Bit 0 bis 3 löschen
OD	# 006	Block 6 definieren
=	I 000	ERA in Adresse \$3400 speichern

DATENZUGRIFF AUF DAS ZUSÄTZLICHE ANWENDER-EEPROM

Der Anwender kann auf den selektierten Block des zusätzlichen Anwender-EEPROMs über die Adressen \$3800 bis \$3FFF zugreifen.

DATEN LESEN

Zum Lesen von Daten aus einem Block wird das AWL-Makro DFEE verwendet:

Übergabeparameter: Quelle ... Blocknummer in C 0881

Offset zu Adresse \$3800 in C 0882&

Ziel ... Indexregister

Datenlänge ... in Ergebnisregister D

Rückgabeparameter: Kein Fehler aufgetreten:

Carry = 0 ... Datentransfer OK

Fehler aufgetreten:

Carry = 1 ... Die Summe von Offset und Datenlänge liegt außer-

halb gültigem Bereich (> \$3FFF)

verwendete 8 Bit-Speicher: C 0866& ... Quelladresse

C 0868& ... Zieladresse

C 0884& ... aktuelle Datenlänge

```
DFEE =D
           C 0884 DATA 04
                                    aktuelle Datenlänge
     =R
           C 0868 & DEST 0
     T.D
           C 0882 DATA 02
                                    Offset
     UND
            # %00000111
                                    begrenzen auf 2k Byte / Block
     +D
            # $3800
                                    Startadresse EEPROM-Block
     -D
           C 0866 & SOURCE 0
     +D
            C 0884 DATA 04
                                    aktuelle Datenlänge
      -D
            # $3FFF
     J<=
           DFE0
     SEC
                                    Daten außerhalb gültigem Bereich
     RET
DFE0 LD
            # $3400
                                    Inport/Outport Adresse
     DXR
     LAD
           C 0881 DATA 01
     UND
            # %00001111
                                    Blocknummer auf 0 ... F begrenzen
           C 0881 DATA 01
     LAD
           I 000
     UND
            # %11110000
     OD
           C 0881 DATA 01
            I 000
                                    Block anwaehlen
```

```
LD
           C 0884 DATA 04
                                   aktuelle Datenlänge
     SRD
     JC0
           DFE1
                                   keine ungerade Datenlänge
     =D
           C 0884 DATA 04
                                   aktuelle Datenlänge
           C 0866 & SOURCE 0
     T.R
     TAD
           T 000
                                   erstes Byte lesen
     ΤR
           C 0866 & SOURCE
     =R
     T.R
           C 0868 & DEST 0
           T 000
                                   erstes Byte speichern
     TR
           C 0868 & DEST 0
     =P
           C 0884 DATA 04
                                   aktuelle Datenlänge
           C 0884 DATA 04
DFE1 =D
                                   aktuelle Datenlänge
     SP0
          DFE2
                                   fertiq
     T.R
           C 0866 & SOURCE 0
           I 000
                                   Daten lesen
     LD
     TR
     IR
           C 0866 & SOURCE 0
     =R
     LR
           C 0868 & DEST 0
     =D
           I 000
                                   Daten speichern
     IR
     IR
     =R
           C 0868 & DEST 0
     T.D
           C 0884 DATA 04
                                  aktuelle Datenlänge
     -D
           # 00001
     SPI
                                   noch nicht alle Daten kopiert
           DFE1
DFE2 CLC
                                   Datentransfer OK
     RET
```

Beispiel: Aus Block 4 werden ab der Adresse \$3A00 50 Bytes ausgelesen. Gespeichert werden die Daten ab C 2000.

LAD	# 004	Blocknummer 4
=	C 0881 DATA 00	
LD	# \$0200	Offset zu \$3800 (Quelladr. = \$3A00)
=D	C 0882 DATA 01	
LRK	C 2000 Zieladresse	
LD	# 00050	Datenlänge
SPU	DFEE	Daten aus Zusatz-EEPROM lesen
JC0	OK	
:		ERROR-Auswertung
:		

DATEN SCHREIBEN

Beim Schreiben von Daten in ein EEPROM ist zu beachten, daß dies im Gegensatz zum Schreiben in einen 1 oder 8 Bit-Speicherbereich mit einer gewissen Verzögerung geschieht.

Zum Schreiben von Daten in einen Block wird das AWL-Makro DTEE verwendet:

Das AWL-Makro DTEE eignet sich zum Programmieren von Parameterdaten, die sich während des Betriebes einer Anlage nicht ändern.

ACHTUNG: Wenn diese Daten auf das EEPROM geschrieben werden, wird das weitere Programm nicht bearbeitet!

Für das Beschreiben des EEPROMs während eines Programmdurchlaufes ist ein entsprechender Funktionsblock in Vorbereitung.

Übergabeparameter: Ouelle ... Indexregister

Ziel ... Blocknummer in C 0881

Offset zu Adresse \$3800 in C 0882&

Datenlänge ... in Ergebnisregister D

Rückgabeparameter: Kein Fehler aufgetreten:

Carry = 0 ... Datentransfer OK

C 0881 ... Blocknummer des nächsten freien Bytes C 0882& ... Offset zu \$3800 des nächsten freien Bytes

Fehler aufgetreten:

Carry = 1 ... Datentransfer fehlerhaft

ERA ... Fehlernummer:

1 - Datenlänge größer als freier Speicher

2 - EEPROM defekt

C 0881 ... Blocknummer der defekten Speicherstelle C 0882& ... Offset zu \$3800 der defekten Speicherstelle

verwendete 8 Bit-Speicher: C 0880 ... Runtime-Zähler

C 0884& ... aktuelle Datenlänge

C 0886& ... Quell-Pointer

```
DTEE =D C 0884 DATA 04
                                 aktuelle Datenlänge
          C 0866 & SOURCE 0
     -D
     T.D
          C 0882 DATA 02
                                 Offset
     UND # %0000111
                                 begrenzen auf 2k Byte / Block
          # $3800
                                 Startadresse EEPROM-Block
     +D
          C 0882 DATA 02
     =D
     +D
          C 0884 DATA 04
     -D
          # $3FFF
     J<= DTE5
*----
     LAD
         # 001
                                 ERROR ... Datenlänge größer als
                                          freier Speicher
     SEC
     RET
DTE5 LAD C 0998 CYCLE TIME COUNTER
         C 0886 DATA 06
     -
DTE3 LAD C 0886 DATA 06
          C 0998 CYCLE TIME COUNTER
          # $3400
     LD
                                 Inport/Outport Adresse
     DXR
          C 0881 DATA 01
     T.AD
     UND
          # %00001111
                                Blocknummer auf 0 ... F begrenzen
          C 0881 DATA 01
          т 000
     LAD
     TIND
          # %11110000
     ΩD
          C 0881 DATA 01
                                 Block anwaehlen
          I 000
          C 0866 & SOURCE 0
     LR
     LAD
         I 000
                                 Daten lesen
          C 0882 DATA 02
     LR
          I 000
                                 akt. Kopierdaten abspeichern
     ANS
     LD
          # 01500
          # 00001
                                Warteschleife
DTE0
     -D
     SNO
         DTE0
     AVS
*
         C 0880 DATA 00
                                 Runtimezaehler ruecksetzen
     CLR
          I 000
                                 Daten von EEPROM mit aktuellen
DTE1 LB
     AVB
                                 Kopierdaten vergleichen
     SP0
          DTE2
          C 0880 DATA 00
     INC
                                 Runtimezaehler erhoehen
     LB
          C 0880 DATA 00
     VB
          # 200
                                 mit Runtime MAX vergleichen
     SP< DTE1
          # 002
     LAD
     SEC
                                 ERROR .... EEPROM defekt
     RET
*_____
```

```
DTE2 LD
          C 0882 DATA 02
                                   MEM-Adresspointer erhoehen
     +D
           # 00001
     =D
          C 0882 DATA 02
     T.R
           C 0866 & SOURCE 0
     TR
     =R
           C 0866 & SOURCE 0
     LD
           C 0884 DATA 04
                                   aktuelle Datenlänge
     -D
           # 00001
                                   alle Daten kopiert ?
     =D
           C 0884 DATA 04
     SPO
           DTE4
     SPT
           DTE3
DTE4 CLC
                                   Datentransfer OK
     RET
```

Beispiel: In Block 8 werden ab der Adresse \$3B00 40 Bytes geschrieben. Die zu schreibenden Daten sind ab der Speicherstelle C 2500 gespeichert.

```
LAD
      # 008
                              Blocknummer 8
     C 0881 DATA 00
LD
     # $0300
                              Offset zu $3800 (Zieladr. = $3B00)
=D
     C 0882 DATA 01
LRK
     C 2500 Quelladresse
T.D
     # 00040
                              Datenlänge
SPII
     DTEE
                              Daten in Zusatz-EEPROM schreiben
JC0
     OK
                              ERROR-Auswertung
•
```

INPORT ADRESSE \$3480

RUNTIME-ÜBERWACHUNG

Mit der Runtime-Überwachung wird die maximal zulässige Programmzykluszeit von 100 ms überprüft. Ist ein Programmzyklus nach dieser Zeit noch nicht beendet, so wird das Anwenderprogramm gestoppt, und ein Software-Reset ausgelöst (alle Ausgänge werden zurückgesetzt). Ein Runtimefehler wird im Statustest des Programmiergerätes und durch Einschalten der Status-LED angezeigt.

TIMERINTERRUPT-ROUTINEN

Unabhängig von der Länge des Anwenderprogrammes wird alle 10 ms ein Interrupt ausgelöst und die sogenannte Timerinterrupt-Routine ausgeführt. Diese Betriebssystemfunktion wird für Sicherheits- und Diagnosefunktionen sowie für die Generierung von Softwarezeiten, Uhrzeitfunktionen, Zeittakten und Zeitimpulsen verwendet.

Der Timerinterruptvektor (die Adresse der Timerinterrupt-Routine) steht in C 0972, 0973. Die Timerinterrupt-Zeit ist in C 0974, 0975 gespeichert (Einheit µs). Timerinterrupt-Vektor und Timerinterrupt-Zeit dürfen vom Anwenderprogramm nicht geändert werden.

Zusätzlich zu den Betriebssystem-Funktionen kann der Anwender selbst einen oder zwei Programmteile zeitgesteuert ausführen lassen (User-Timerinterrupt-Routinen). Dazu werden die Timerinterrupt-Handler \$US1 und \$US2 verwendet. Die Parameter:

ERA Gewünschtes Zeitintervall in ms

R Anfangsadresse der User-Timerinterrupt-Routine

Aufruf: SPU SUS1 bzw. SPU SUS2

Die User-Timerinterrupt-Routine wird mit RET abgeschlossen. Unabhängig vom gewählten Zeitintervall für die User-Timerinterrupt-Routine wird die Betriebssystem-Timerinterrupt-Routine alle 10 ms ausgeführt.

ACHTUNG: Timerinterrupt-Routinen werden nicht ausgeführt, wenn die SPS im HALT-Zustand ist.

Zu häufiges Aufrufen von langen Timerinterrupt-Routinen kann die Programmzykluszeit wesentlich verlängern und zu Systemstörungen führen. Die Summe der Ausführungszeiten beider Timerinterrruptroutinen darf maximal 300 μs betragen.

In Timerinterrupt-Routinen dürfen keine Betriebssystem-Mathematikroutinen verwendet werden.

Zum Ausschalten einer aktivierten User-Timerinterrupt-Routine wird ERA mit 0 geladen und der Interrupt-Handler (\$US1 oder \$US2) erneut aufgerufen.

Beispiel:

Alle 3 ms soll der Zählerstand eines Abwärtszählers ausgelesen und mit 10000 verglichen werden. Bei Unterschreitung dieses Wertes soll ein Ausgang gesetzt werden. Der Timerinterrupt-Handler \$US1 wird nur ein mal in einer Initialisierungsroutine aufgerufen:

```
7 D64
                         First Scan
TNTT TAD
      SPO
            TNTR
            # 003
                         3 mg
      LAD
      T.RT.
            TEST
                         Adresse der Interrupt-Routine
      SPII
            SUS1
TNTR RET
TEST
      SPII
            READ
                         Zählerstand auslesen
            # 10000
                         Vergleich mit 10000
      -D
      JC0
            TESR
                         Zähler low!
      SET
            A 040
TESR RET
```

FEHLERMELDUNGEN

Alle Zentraleinheiten sind mit umfangreichen Sicherheits- und Diagnosefunktionen ausgestattet (z.B. Programm-Checksumtest bei Power-on). Im Fehlerfall wird das Anwenderprogramm angehalten, die Status-LED eingeschaltet und ein Software-Reset ausgelöst, d.h. alle digitalen Ausgänge werden gelöscht, alle analogen Ausgänge werden auf 0 V bzw. 0 mA zurückgesetzt. Falls ein Programmiergerät angeschlossen ist, wird im Statustest eine Klartext-Fehlermeldung angezeigt (z.B. RUNTIME-FEH-LER).

Die folgende Tabelle ist eine Übersicht über alle bei MINICONTROL Zentraleinheiten möglichen Fehlermeldungen:

Bezeichnung	Beschreibung/Ursachen	Abhilfe
Übertragungsfehler bei Download	Beim Übertragen eines Programmes vom Programmiergerät in die SPS (Download) tritt ein Fehler auf. Mögliche Ursachen: Die Onlineverbindung zwischen PG und SPS wird durch starke, elektromagnetische Störungen beeinträchtigt	Programm erneut in die SPS über- tragen. Im Wiederholungsfall wenn möglich Lichtleiteronlinekabel (FOL) verwenden.
Write Protect	Dieser Fehler tritt nur im Zusammenhang mit EP05 EPROM-Modulen auf. Ursache: Es wurde versucht, ein Programm mit RUN in ein EP05 EPROM-Modul in der Zentraleinheit zu übertragen	RAM-Programmspeichermodul verwenden.
Checksum-Fehler nach RUN	Ein mit RUN übertragenes Programm weist im RAM der SPS eine falsche Prüfsumme (Checksum) auf. Ursache: Programmspeicher defekt.	Programm erneut übertragen, im Wiederholungsfall EE32 tauschen
RAM zu klein	Dieser Fehler tritt nur im Zusammenhang mit RA02 RAM-Modulen auf. Ursache: Es wurde versucht, ein Programm, das auf 4k7 expandiert ist, in ein RA02-Modul zu übertragen.	Anderes Anwenderprogrammspei- chermodul verwenden.
Checksum-Fehler	Die Prüfsumme (Checksum) des Anwenderprogrammes ist nach Reset oder Power-on falsch. Mögliche Ursachen: Bei PROM-Programm PROM-Speicher defekt, bei RAM-Programm Batteriepufferung ausgefallen (leer oder defekt) oder Softwarefehler, der das Anwenderprogramm überschreibt.	Programm erneut übertragen. Im Wiederholungsfall Batteriepufferung überprüfen, Anwenderprogramm auf Softwarefehler untersuchen, Pro- grammspeichermodul tauschen.
Runtime-Fehler	Die zulässige Programmzykluszeit von 100 ms wurde überschritten. Mögliche Ursachen: Softwarefehler, zu viele Programmschleifen, Endlos- schleife.	Programmfehler beheben.

Bezeichnung	Beschreibung/Ursachen	Abhilfe
Pointer-Fehler	Beim Checksumtest während Power- on wurde festgestellt, daß Betriebs- systemvektoren nicht stimmen. Mögliche Ursachen: siehe "Check- sum-Fehler".	Siehe "Checksum-Fehler".
Kommunikations- fehler	Bei der Kommunikation zwischen dem Programmiergerät und der Zentraleinheit (RUN, Statustest) tritt ein Fehler auf. Mögliche Ursachen: Die Onlineverbindung zwischen PG und SPS wird durch starke, elektromagnetische Störungen beeinträchtigt.	Funktion wiederholen. Im Wiederholungsfall wenn möglich Lichtleiteronlinekabel (FOL) verwenden.
Store-Fehler	Unzulässiger Schreibbefehl auf ge- schützte Speicherbereiche (ab \$C000). Mögliche Ursachen: Fehler im An- wenderprogramm (Schreibbefehl mit indizierter Adressierung).	Programmfehler beheben.
Stapelzeiger-Fehler	Am Programm-Ende (END) steht der Stapelzeiger (Stackpointer) falsch. Mögliche Ursachen: Fehler im Anwenderprogramm (Unterprogramm nicht mit RET abgeschlossen, Fehler bei Verwendung des System-Stacks zur Datenspeicherung).	Programmfehler beheben.
Trap-Fehler	Unbekannter Prozessorbefehl Mögliche Ursachen: Fehler im Anwenderprogramm (z.B. Indizierter Sprung auf Datenbereich).	Programmfehler beheben.
Interrupt-Fehler	Durch unbefugten Zugriff auf Betriebssystem-Speicherbereiche (\$0000 bis \$0020) wurde ein nicht zulässiger Interrupt freigegeben und ausgelöst. Mögliche Ursachen: Fehler im Anwenderprogramm (Schreibbefehl mit indizierter Adressierung).	Programmfehler beheben.

ANWENDERPROGRAMMSPEICHER

Der Anwenderprogrammspeicher wird zur Speicherung des Anwenderprogrammes benötigt. Er wird in den dafür vorgesehenen - grau markierten - Steckplatz der Zentraleinheit gesteckt und mit der Befestigungsschraube arretiert.

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

Beide MINICONTROL Anwenderprogrammspeichermodule können auch in den Zentraleinheiten CP40 (MULTICONTROL), CP41 (MIDICONTROL), NTCP3# (M264) sowie in den Peripherieprozessoren PP40 eingesetzt werden.

INTERNES RAM

Das interne RAM ist **nur** zur Verwendung während der Inbetriebnahme oder zum Austesten von Programmen gedacht. Um das Programm nullspannungssicher zu speichern muß ein EE32 oder EP05 Speichermodul verwendet werden.

Übertragen eines Anwenderprogrammes in die Zentraleinheit (RUN):

Wenn sich beim Übertragen eines Anwenderprogrammes vom Programmiergerät in die Zentraleinheit kein externer Anwenderprogrammspeicher (EE32 oder EP05) in der CPU befindet, wird dieses im internen RAM der CPU gespeichert und gestartet.

EE32 - RAM/EEPROMANWENDERPROGRAMM-SPEICHERMODUL

Übertragen eines Anwenderprogrammes in die Zentraleinheit (RUN):

Beim Übertragen eines Anwenderprogrammes vom Programmiergerät in die Zentraleinheit wird dieses im RAM des EE32 gespeichert und gestartet, unabhängig davon, ob im EEPROM des EE32 ein anderes Programm gespeichert ist.

Programmieren des EEPROM-Speichers:

Mit einem Befehl aus dem EEPROM-Menü des Programmiergerätes wird die Zentraleinheit veranlaßt, das Programm vom RAM ins EEPROM des EE32 zu programmieren. Das Programmieren des EEPROMs kann auch bei laufendem Anwenderprogramm erfolgen. Ein EEPROM-Programmspeicher muß nicht gelöscht werden, er wird einfach mit dem neuen Programm überschrieben. Während des Programmierens des EE32 darf die SPS nicht ausgeschaltet werden.

Der WE/WP-Schalter des EE32 muß während des Programmierens auf WE (Write Enable) stehen.

Unterbrechungsfreies Übertragen eines Anwenderprogrammes in die Zentraleinheit (XFER):

Mit dem PG-Kommando XFER kann ein Anwenderprogramm in den RAM-Speicher des EE32 übertragen werden, ohne das im EEPROM-Speicher laufende Programm anzuhalten oder zu beeinflussen. Mit einem Befehl vom Programmiergerät kann zwischen den Programmen im RAM- und EEPROM-Speicher des EE32 umgeschaltet werden. Das Umschalten erfolgt synchron zum Programmzyklus, d.h. nach Absetzen des Umschaltbefehles wird der laufende Programmzyklus beendet und beim nächsten END auf den jeweils anderen Speicher umgeschaltet. Es erfolgt jedoch kein Reset, d.h. die Speicherstellen, die bei einem Software-Reset gelöscht werden (C 0000 bis C 0019), werden nicht verändert. Auch die First Scan-Speicherstelle C 0899 wird bei XFER und unterbrechungsfreiem Umschalten nicht gesetzt.

EP05 - EPROMANWENDERPROGRAMM-SPEICHERMODUL

Für die Programmierung des EP05 EPROM-Anwenderprogrammspeichers werden ein EPROM-Programmiergerät (Best.Nr. ECEP01-0) und ein EP05-Programmieradapter (Best.Nr. ECEPAD01-0) benötigt. Das Anwenderprogramm wird mit einem Befehl des B&R PROgrammierSYStemes als S-Record File abgespeichert und mit dem EPROM Programmer-Softwarepaket in den EPROM-Speicher programmiert. Das Softwarepaket ist im Lieferumfang des EPROM-Programmiergerätes enthalten.

EPROM-Speicher müssen vor dem Programmieren mit einer UV-Lampe gelöscht werden. Nach dem Programmieren sind die Löschfenster lichtundurchlässig zu verkleben:

Programm-Upload:

Anwenderprogramme können aus der MINICONTROL Zentraleinheit zurückgeladen werden, unabhängig davon, ob sie in einem EP05- oder EE32-Modul gespeichert sind. Das Zurückladen kann auch bei laufendem Anwenderprogramm erfolgen, in diesem Fall kann der Vorgang jedoch mehrere Minuten dauern.

Ein aus der Zentraleinheit zurückgeladenes Programm ist zwar lauffähig, im Programmiergerät stehen jedoch nicht mehr alle Informationen zur Verfügung. Es fehlen:

- Kontaktplanbilder
- Funktionsbausteinbilder
- Kommentare
- Klartextzuweisungen
- Datenformate in Tabellen

EINSCHALTVERHALTEN (POWER-ON)

