COT 6405 ANLYSIS OF ALGORITHMS

A Survey of Common Running Times

Computer & Electrical Engineering and Computer Science Department Florida Atlantic University

Common order of growth functions

Asymptotic Notation	Description
$\Theta(1)$	constant
Θ(lg lgn)	log log
Θ(lgn)	log
$\Theta(n^c), \ 0 < c < 1$	sublinear
$\Theta(n)$	linear
Θ(nlgn)	nlogn
$\Theta(n^2)$	quadratic
$\Theta(n^3)$	cubic
$\Theta(n^k)$, $k \geq 1$	polynomial
$\Theta(c^n)$, $c > 1$	exponential
Θ(n!)	factorial
$\Theta(n^n)$	

Sublinear Time

- RT is asymptotically smaller than linear
- Reading the input takes linear time
- Occurs when:
 - Input "queried" indirectly rather than read completely
 - Try to minimize the number of queries

Example problem

Given a sorted array A of n numbers, determine whether a given number x belongs to the array.

- traverse the array $\Rightarrow \Theta(n)$
- the *binary search algorithm* takes $\Theta(\log n)$

Linear Time ⊕(n)

- One-pass or a constant number of passes through the input elements
- Example problems
 - Find the max/min of n numbers
 - Merge two sorted arrays into one sorted array

O(nlogn) Time

- A very common RT
- Any algorithm that splits its input into two equal-sized pieces, solve each piece recursively, then combine the two solutions in linear time
- Example: Merge-Sort algorithm

$$T(n) = 2 \cdot T(n/2) + \Theta(n)$$

$$T(n) = \Theta(nlogn)$$

Quadratic Time, $\Theta(n^2)$

Example problem

Given n points in the plane, find the closest pair of points.

```
for each input point (x_i, y_i)

for each other input point (x_j, y_j)

compute distance d = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}

if d is < than the current min, then min = d

return min
```

$$RT = \Theta(n^2)$$

Polynomial Time, O(nk) where k - constant

Example problem

Given a graph G with n nodes, find whether G has an independent set of size k.

A set S of nodes in G, S \subseteq V, is <u>independent</u> if no two nodes in S are joined by an edge.

 $S = \{a, g, j, d\}$ is an independent set of size 4

Polynomial Time, O(nk) where k - constant

Solution

- Take all the groups of k nodes and check if any group forms an independent set
- The number of groups of k nodes is $\binom{n}{k} = \Theta(n^k)$
- To check if a set of k nodes forms an independent set takes $\binom{k}{2}$ = $\Theta(k^2)$

• Since k is constant, the total $RT = \Theta(n^k)$

Exponential Time, $\Theta(c^n)$ where c - constant

Example problem

Given a graph G with n nodes, find an independent set of maximum size

Solution

- Take all groups of nodes, and check if it forms an independent set
- Return the independent set of maximum size

RT analysis

- The number of groups is 2ⁿ
- To check that a set of k nodes (1≤ k ≤ n) is independent set takes (k) = Θ(k²)
- The total RT = $\Theta(2^n n^2)$

Factorial Time, ⊕(n!)

Example problem - Traveling Salesman Problem

Given a set of n cities, with distances between all pairs of cities, what is the shortest tour that visits all cities?

NP – complete problem

Solution: enumerate all possible tours, then chose the shortest one

• The total RT = $\Theta(n!)$