Problem 1

Order the following function by growth rate. n!, $n^2 + \sqrt{n} \log^{10} n$, $n^{1/3}$, $\log^{100} n$, n^3 , 2^n , $10^{\sqrt{n}}$, $2^{\log n}$, $2^{2\log n}$, $2^{\sqrt{\log n}}$, 128, 128n. Indicate which functions at the same rate (all logarithms are base 2). For example, if you are asked to order n, 2n, $2n^2$, then your answer should be " $n = \Theta(2n)$, $2n = o(2n^2)$ ".

Problem 2

Solve the following recurrence equations, expressing the answer in Big-Oh notation. Assume that Tn is constant for sufficiently small n.

- (a) T(n) = T(n/2) + 100
- (b) $T(n) = 8T(n/2) + n^2$
- (c) $T(n) = 8T(n/2) + n^3$
- (d) $T(n) = 8T(n/2) + n^4$
- (e) T(n) = T(n-1) + logn
- (f) T(n) = T(n-3) + n

Problem 3

You implemented a quadratic time algorithm for a problem P. On a test run, your algorithm takes 50 seconds for inputs of size 1000. Your classmate found a clever algorithm solving the same problem with a running time $O(n^{3/2})$. However, the faster algorithm takes 150 seconds for input of size 1000. Explain how can this happen. If you need to solve a problem of size 4000, which algorithm you should use? What about input of size 10,000? Explain your answers (assume low-order terms are negligible).

Problem 4

Recall that in the testing safe height to drop a cellphone problem we discussed in the class, the goal is to find out the maximum safe height to drop a cellphone without breaking it. In the class we saw that if the maximum safe height is n, then in the worst case we can perform n tests if there is only one cellphone and $2\sqrt{n}$ tests if there are two cellphones. Give an algorithm to minimize the number of tests if there are k cellphones available (assume k is constant). How many tests do you need to perform?

Problem 5

You are given a set of n numbers. Give an $O(n^2)$ algorithm to decide if there exist three numbers a, b, and c in the set such that a + b = c (Hint: sort the numbers first).