I. BACKGROUND

Suppose that we have a SDP

maximize
$$C \cdot \Omega$$

s.t. $C \cdot A_j = b_j \ (j = 1, \dots, m)$
 $C \ge 0.$ (1)

corresponding to the problem of finding comb C for N-dimensional Hermitian matrices Ω, A_1, \ldots, A_m . Suppose that the task is to confirm whether the answer is exactly 1 or less than 1 (e.g. checking the existence of deterministic exact protocol). Then we only need to check whether a semidefinite $C \neq 0$ satisfying $C \cdot \Omega = 1$ and $C \cdot A_j = b_j$ exists. By defining an orthonormal basis $A'_0, A'_1, \ldots, A'_m, A'_{m+1}, \ldots, A'_{N^2-1}$ of the space of $N \times N$ matrix such that $\operatorname{span}(A'_0, A'_1, \ldots, A'_m) = \operatorname{span}(\Omega, A_1, \ldots, A_m), A'_j \cdot A'_k = \delta_{j,k} \ (j, k \in \{0, \ldots, N^2 - 1\}),$ and all A'_j are Hermitian, this problem is rephrased as the problem of finding a semidefinite matrix $C \neq 0$ expressed as

$$C = \sum_{j=0}^{m} b'_{j} A'_{j} + \sum_{k=m+1}^{N^{2}-1} c_{k} A'_{k}$$
 (2)

where b'_j is the coefficient defined from $C \cdot A'_j = b'_j$ $(j \in \{0, ..., m\})$ which is calculated from $C \cdot A_j = b_j$ and $C \cdot \Omega = 1$ and the definition of A'_j , and c_j is an arbitrary real number. This problem is rephrased as checking the following statement:

$$\exists C \ge 0 \text{ s.t. } C \in \text{span}(B, A'_{m+1}, \dots A'_{N^2-1}) \setminus \{0\} \qquad \left(B := \sum_{j=0}^m b'_j A'_j\right).$$
 (3)

Indeed, when the conditions $C \cdot A_j = b_j$ correspond to the comb condition, then $I \in \text{span}(A'_0, \dots, A'_m)$ thus trB > 0 and A'_k $(k \in \{m+1, \dots, N^2-1\})$ will be all traceless. Thus, the only way in which there exists a semidefinite $C \neq 0$ in Eq. (3) is that the coefficient of B is positive.

Let us denote the projection of matrices M onto the subspace $\operatorname{span}(A_1,\ldots,A_m)$ as Q'(M). Also, let us denote the projection of M onto the subspace $\operatorname{span}(B,A'_{m+1},\ldots,A'_{N^2-1})$ as P(M) and define Q(M):=M-P(M). Now, suppose that we can calculate the projection Q'(M) for any matrix M in a small runtime by using the symmetry in the subspace $\operatorname{span}(A_1,\ldots,A_m)$. Then, if we know at least one matrix B_{pre} satisfying $B_{\operatorname{pre}}\cdot\Omega=1$ and $B_{\operatorname{pre}}\cdot A_j=b_j$ $(j=1,\ldots,m)$, we can calculate P(M),Q(M) of any matrix M as

$$\Omega' = (\Omega - Q'(\Omega)) / \|(\Omega - Q'(\Omega))\|_{2}$$

$$B = Q'(B_{\text{pre}}) + \Omega' \text{tr}(\Omega' \cdot B_{\text{pre}})$$

$$B' = B / \|B\|_{2}$$

$$P(M) = M - (Q'(M) + \Omega' \text{tr}(\Omega' \cdot M)) + B' \text{tr}(B'M)$$

$$Q(M) = M - P(M)$$

$$(4)$$

where $\Omega' := \Omega/\|\Omega\|_2$ and $B' := B/\|B\|_2$.

II. METHOD

Lemma 1. For the function $F(\rho) := \rho \cdot Q(\rho) = \|Q(\rho)\|_2^2$ on the space of the quantum state $\{\rho \geq 0 \mid \operatorname{tr} \rho = 1\}$ (introduced not for the physical reason, but for mathematical convenience), the necessary and sufficient condition that Eq. (3) holds is $\min_{\rho} F(\rho) = 0$

Indeed, if $F(\rho_0) = 0$ for a ρ_0 , then $Q(\rho_0) = 0$, thus a nonzero semidefinite matrix ρ_0 is in span $(B, A'_{m+1}, \dots, A'_{N^2-1})$. Also, if $\min_{\rho} F(\rho) > 0$, then for ρ_0 giving the minimum, $Q(\rho_0)$ is a nonzero semidefinite matrix in the complementary

subspace of span $(B, A'_{m+1}, \dots, A'_{N^2-1})$ (since $\rho_0 \in \operatorname{argmin}_{\rho}(\rho \cdot Q(\rho)) \to \rho_0 \in \operatorname{argmin}_{\rho}(\rho \cdot Q(\rho_0))$), thus there cannot be a semidefinite matrix in span $(B, A'_{m+1}, \dots, A'_{N^2-1})$.

For the function f of a Hermitian matrix H defined as

$$f(H) := \frac{\text{tr}[Q(H^2)^2]}{[\text{tr}(H^2)]^2},\tag{5}$$

(which corresponds to $||Q(\rho)||_2^2$ of $\rho := H^2/\mathrm{tr}(H^2)$), its derivative along axis M (another Hermitian matrix) is calculated as

$$\frac{\mathrm{d}}{\mathrm{d}x}\Big|_{x=0} f(H+xM) = 2\left(\frac{\{H, Q(H^2)\}}{[\mathrm{tr}(H^2)]^2} - \frac{2\mathrm{tr}[Q(H^2)^2]H}{[\mathrm{tr}(H^2)]^3}\right) \cdot M := G(H) \cdot M. \tag{6}$$

As an experiment, I try to conduct an SDP to check whether simulating U^T of qutrit unitary U using ordered comb with input $U^* \to U \to U^*$ is possible or not. The condition

$$\forall U, \text{ tr}\left[\left\{(J_{U^*})_{12} \otimes (J_U)_{34} \otimes (J_{U^*})_{56}\right\}^T C_{01234567}\right] = (J_{U^T})_{07} \tag{7}$$

is equivalent to the following simpler condition

$$C \cdot \Omega = 1$$

$$\Omega := \frac{1}{9} \sum_{i} J_{U_{i}} \otimes J_{U_{i}^{*}} \otimes J_{U_{i}} \otimes J_{U_{i}^{T}}$$
(8)

for a set of U_j for which $J_{U_j} \otimes J_{U_j^*} \otimes J_{U_j} \otimes J_{U_j^T}$ spans the full space spanned by $J_U \otimes J_{U^*} \otimes J_U \otimes J_{U^T}$ with all unitary U.

Also, the condition for ordered comb is expressed as

$$C \cdot (H_{012345} \otimes L_6 \otimes I_7) = 0$$

$$C \cdot (H_{0123} \otimes L_4 \otimes I_{567}) = 0$$

$$C \cdot (H_{01} \otimes L_2 \otimes I_{34567}) = 0$$

$$C \cdot (L_0 \otimes I_{1234567}) = 0,$$
(9)

where L refers to all matrices that are orthogonal to the identity (namely traceless) and H to all matrices (both with/without trace). together with the normalization condition

$$C \cdot I_{01234567} = 81. \tag{10}$$

Now, the projection Q' of matrix $M_{01234567}$ onto the subspace spanned by $H_{012345} \otimes L_6 \otimes I_7, H_{0123} \otimes L_4 \otimes I_{567}, H_{01} \otimes L_2 \otimes I_{34567}, L_0 \otimes I_{1234567}$ in Eq. (9) and $I_{01234567}$ in Eq. (10) is written as

$$Q'(M) := Q'_{7}(M) + Q'_{5}(M) + Q'_{3}(M) + Q'_{1}(M) + T(M) =: Q'_{comb}(M) + T(M)$$

$$Q'_{7}(M) := {}_{7}M - {}_{67}M$$

$$Q'_{5}(M) := {}_{567}M - {}_{4567}M$$

$$Q'_{3}(M) := {}_{34567}M - {}_{234567}M$$

$$Q'_{1}(M) := {}_{1234567}M - {}_{01234567}M$$

$$T(M) := {}_{01234567}M,$$
(11)

which is efficiently computable.

Now, in order to find a matrix B_{pre} such that $B_{\text{pre}} \cdot \Omega = 1$, $Q'_{\text{comb}}(B_{\text{pre}}) = 0$, and $B_{\text{pre}} \cdot I = 81$, the following equations can be used:

$$[H_{1} - Q'_{\text{comb}}(H_{1})] \cdot \Omega = a$$

$$[H_{1} - Q'_{\text{comb}}(H_{1})] \cdot I = b$$

$$[H_{2} - Q'_{\text{comb}}(H_{2})] \cdot \Omega = c$$

$$[H_{2} - Q'_{\text{comb}}(H_{2})] \cdot I = d$$
(12)

where a,b,c,d are real numbers and H_1,H_2 are randomly chosen Hermitian matrices. Note that both $[H_1-Q'_{\rm comb}(H_1)]$ and $[H_2-Q'_{\rm comb}(H_2)]$ have zero Q'_7,Q'_5,Q'_3 , and Q'_1 values. By adding $[H_1-Q'_{\rm comb}(H_1)]$ and $[H_2-Q'_{\rm comb}(H_2)]$ with coefficients h_1,h_2 obtained by

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} := \begin{pmatrix} a & c \\ b & d \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 81 \end{pmatrix}, \tag{13}$$

we can obtain a B_{pre} .

Now, we can obtain the projector Q onto the subspace defined as $[(\text{subspace on which } Q' \text{ projects}) \oplus \{\Omega\}]^{\perp} \oplus \{B\}$ as

$$\Omega' = (\Omega - Q'(\Omega)) / \|\Omega - Q'(\Omega)\|_{2}
B = Q'(B_{\text{pre}}) + (B_{\text{pre}} \cdot \Omega') \Omega'
B' = B / \|B\|_{2}
P(M) = M - (Q'(M) + (M \cdot \Omega') \Omega') + (M \cdot B') B'
Q(M) = M - P(M) = Q'(M) + (M \cdot \Omega') \Omega' - (M \cdot B') B'.$$
(14)