轨检数据分析软件需求说明书

尽量用 python 编软件

先做一个单纯的处理软件,处理后的数据需要另存为文件,每次打开软件数据库 都是空白的。

1. 软件主页

建立 GUI 软件界面 (图 1), 软件主页图 1 中各部分说明如下:

- "1": 软件任意界面中均含有此三个按键, 其中:
 - "1.1": 单击"主页", 回到图 1界面;
 - "1.2": 单击"文件", 出现数据的目录索引, 可手动选择导入单个 csv 文件或 csv 文件所在路径的整个文件夹; (数据说明见第 2 章)
 - 导入文件后,提取出数据的基本信息,并列表显示(图 1);
 - "1.3": 单击"功能模块", 选择进入的软件模块, 即"4.1"、"4.2"
- "2": 勾选方框,选择列表中的数据,其中:
 - "2.1": 全选列表中数据:
 - "2.2": 选择本行数据;

图 1 软件主页

"3":下拉菜单可对本列数据进行筛选,可手动输入筛选条件或勾选,检测日期的筛选如下图:

"4": 选择数据后(可选择多行),单击进入该模块: "4.1" "数据查看"模块; "4.2" "单元质量分析"模块。

2. 数据说明

2.1. 文件名说明

shitai

- CSTS-TAIYUANNAN-SHIJIAZHUANG-16052017-181714-1_fix.csv
- CSTS-TAIYUANNAN-SHIJIAZHUANG-28052017-182250-1_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-01072016-182224-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-04062014-080109-1_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-05092014-052847-1_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-06022016-181946-0 fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-06092013-075936_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-07082014-053258-1_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-08012018-183250-0 fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-08032018-183124-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-08042015-173641-0 fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-09022018-192819-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-09032019-172913-0 fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-09102018-182609-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-09112017-181834-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-09112018-180612-0 fix.csv
- STS-TAIYUAN-SHIJIAZHUANG-09112016-180012-0_1ix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-09122017-181529-0 fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-10012013-074638_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-10012017-182430-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-10102014-053648-1(236-5)_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-10112014-053629-1(236-5)_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-11012016-182030-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-11042017-182121-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-11052015-174119-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-11052018-183015-0_fix.csv
- CSTS-TAIYUAN-SHIJIAZHUANG-11062015-173451-0_fix.csv

文件名说明:

文件名片段	实际意义	解析结果案例	解析要求
CSTS	轨检编号	/	不需要
TAIYUAN	起始站 (太原)	TAIYUAN	提取出
SHIJIAZHUANG	终点站 (石家庄)	SHIJIAZHUANG	提取出
02092014	日期	2014年09月02日	提取出
173451	时分秒	/	不需要

2.2. 数据参数说明

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р
1	distance	G_Lprf	G_Rprf	G_LaIn	G_RaIn	G_Gage	G_XIvI	G_Warp_1	G_Vacc	G_Lacc_1	G_LprfLW_3	G_RprfLW_3	G_LaInLW_3	G_RaInLW_3	G_Speed	G_Cant
2	10.00025	0.55	-0.18	-0.17	0.03	0.2	0.68	-1.48	0.0028	-0.0368	2.85	1.78	-0.51	-0.2	129	-147.13
3	10.0005	0.56	-0.27	-0.11	0	0.28	0.93	-1.38	0.0035	-0.0373	2.85	1.89	-0.51	-0.2	129	-146.91
4	10.00075	0.52	-0.18	-0.05	0	0.34	1.11	-1.13	0.0048	-0.0379	2.83	1.88	-0.49	-0.25	129	-146.75
5	10.001	0.47	-0.23	-0.03	-0.07	0.47	1.24	-0.88	0.0062	-0.0381	2.73	1.89	-0.43	-0.27	129	-146.41
6	10.00125	0.34	-0.25	-0.03	-0.15	0.56	1.24	-0.62	0.0062	-0.0384	2.66	1.73	-0.41	-0.37	129	-146.41
7	10.0015	0.23	-0.44	-0.02	-0.21	0.64	1.24	-0.49	0.0062	-0.0386	2.52	1.71	-0.4	-0.46	129	-146.38
8	10.00175	0.05	-0.5	0	-0.23	0.68	1.24	-0.31	0.0031	-0.0386	2.48	1.69	-0.4	-0.51	129	-146.47
0	10.000	0	0.56	0.01	0.21	0.64	1.00	0.2	0.0012	0.0272	າາຄ	1.51	0.27	0.55	120	1.46.00

InGraph查看软件=WinDBC (GJ-6)=中文名
L Prof SC=G Lprf=左高は 甲波
R_Prof_SC=G_Rprf=右高低_中波
L_Align_SC=G_Laln=左轨向_中波
R Align SC=G Raln=右轨向 中波
Gage=G_Gage=轨距
Superelevation=G_Cant=超高
Crosslevel=G Xlvl=水平
Short_Twist=G_Warp_1=三角坑
Curvature=G_Cvtr=曲率
LACC=G_Lacc_1=车体横向加速度
VACC=G_Vacc=车体垂向加速度
Speed=G_Speed=速度
ALD=G_ALD=地面标志
L_Prof_SC_70=G_LprfLW_1=左高低_70长波
R_Prof_SC_70=G_RprfLW_1=右高低_70长波
L_Align_SC_70=G_LalnLW_1=左轨向_70长波
R_Align_SC_70=G_RalnLW_1=右轨向_70长波
L_Prof_SC_120=G_LprfLW_3=左高低_120长波
R_Prof_SC_120=G_RprfLW_3=右高低_120长波
L_Align_SC_120=G_LalnL₩_3=左轨向_120长波▮
R_Align_SC_120=G_RalnLW_3=右轨向_120长波
Gage_Rate=G_Gage_rate=轨距变化率
Curvature_Rate=G_Cvtr_rate=曲率变化率
Lacc_Rate=G_Lacc_rate=横加变化率
Gage_L=G_GL=单边轨距左
Gage R=G GR=单边轨距右

信息对照表如下:

名称	对应意思	单位
distance	里程	km
G_Lprf	左高低-中波	mm
G_Rprf	右高低-中波	mm
G_Laln	左轨向-中波	mm
G_Raln	右轨向-中波	mm
G_Gage	轨距	mm
G_Xlvl	水平	mm
G_Warp_1	三角坑	mm
G_Vacc	车体垂向加速度	m/s2

G_Lacc_1	车体横向加速度	m/s2
G_Speed	速度	km/h
G_Cant	超高	
G_LprfLW_3	左高低-120 长波	
G_RprfLW_3	右高低-120 长波	
G_LalnLW_3	左轨向-120 长波	
G_RalnLW_3	右轨向-120 长波	

2.3. 需要提取的参数

序号	参数	处理要求	数据来源
1	检测日期	按从早到晚排序;并计算出每个日期与最早 日期的间隔月份数(保留1位小数)。	CSV 文件名
2	里程		
3	左高低-中波		
4	右高低-中波		
5	左轨向-中波	提取并存入数据库	CSV 内部数据
6	右轨向-中波	(英秋并行/文数始/年 	CSV内的数值
7	轨距		
8	水平		
9	三角坑		

3. 数据查看模块

在主页界面(图 1)点击"数据查看"后,进入数据查看模块图 2。图 2 界面上部分为数据列表,下部分显示波形图。该界面(图 2)各部分说明如下:

图 2 数据查看模块

- "1": 勾选本行数据, 最多选择一条;
- "2": 下拉菜单可对本列数据进行筛选,可输入筛选条件或勾选,同主页界面中的筛选功能;
- "3": 勾选数据后,单击"显示波形图",下方区域将显示波形图像,其中 X 轴为里程 (km), Y 轴为参数值;
- "4":单击参数列表中的图例,将显示对应的波形;曲线为不同颜色、不同标记的实线;
- "5": 在红色虚线框内,向上/下滑动鼠标,波形图可放大/缩小; 单击左键并按住, 左右移动鼠标, 波形图可随之滑动; 单击右键, 可选择保存当前视图的波形图 (JPG 格式) 到指定文件路径;
- "6": 拉动可选择图中显示的里程范围;
- "7": 单击可选择导出当前视图的波形图 (JPG 格式)。

4. 单元质量分析模块

本模块界面如图 3,上方可选择需要分析的数据,下方显示数据列表及图像。图 3 各部分功能说明如下:

- "1": 选择当前行数据进行后续分析,只能选一行;
- "2": 下拉菜单可选择线路(只能选择一条线路)、检测日期范围及里程范围;
- "3": 用户输入单元区段长度(此处以 200m 为例),单击"开始"键,软件后台开始处理数据,先剔除异常值后再划分单元区段(处理要求详见第 4.1 节);左侧进度条显示完成进度百分比;处理完成后,处理过的数据可以保存在后台,下一次勾选时不需要再次处理,可直接显示在当前模块中;单击"保存"键,后续分析中将使用处理后的数据;单击"另存为",保存处理后的数据至指定路径(.xlsx格式):每个参数保存进一张工作簿,每一张工作簿表格如下图(以左高低-中波标准差为例):

左高低-中波 单元区段 标准差 检测日期	10.2km-10.4km	
2013年01月10日		
2013年01月21日		
2013年02月17日		
2013年03月14日		
2013年03月25日		

"4": 单击图 3 中的 "查看波形图"或"趋势图"或"单元质量分析",分别进

入对应模块,即图 3、图 4、错误!未找到引用源。。

图 3 单元质量分析模块-1

4.1. 单元区段数据处理的要求

1. 剔除异常值及划分单元区段:

序号	参数	处理要求	数据来源
1	检测日期	/	第1章中已导入 并完成处理
2	里程	按设定的区段长度划分数据。此处以 200m 为例进行说明:从最小里程开始,每隔 200m 划分为一个单元区段,例如:10.0km(含)-10.2(不含)km 为第一段,10.2km(含)-10.4(不含)km 为第二段,以此类推。	
3	左高低-中波		第1章中导入的
4	右高低-中波		数据
5	左轨向-中波	剔除异常值:按里程数从小到大,相邻两点	
6	右轨向-中波	变化率若超过 3‰,判定其中较大值为异常	
7	轨距	 值,替换为前后两个值的均值。	
8	水平	恒,首次/划时/四四门 电切场值。 	
9	三角坑		

- 2. 对每个单元区段,分别计算以下参数:
 - a. 上表中参数 3~9 的标准差,即: ①左高低-中波、②右高低-中波、③左轨向-中波、④右轨向-中波、⑤轨距、⑥水平、⑦三角坑;
 - b. 每个区段中以下复合参数:
 - ①高低标准差=(左高低-中波的标准差)+(右高低-中波的标准差);
 - ②TOI=a 中 7 项参数的标准差之和,即:(左高低-中波的标准差)+(右

高低-中波的标准差)+(左轨向-中波的标准差)+(右轨向-中波的标准差)+(轨距的标准差)+(水平的标准差)+(三角坑的标准差);

4.2. 查看波形图

该模块界面如图 3, 各部分功能说明如下:

- "5": 勾选本行数据, 最多选择一条:
- "6": 下拉菜单可对本列数据进行筛选,可输入筛选条件或勾选,同主页界面中的筛选功能;
- "7": 勾选数据后,单击"确定",下方区域将显示剔除异常值后的波形图像,其中剔除的点用红线显示;波形图的 X 轴为里程 (km), Y 轴为参数值;
- "8": 单击参数列表中的图例,将显示对应的波形;曲线为不同颜色、不同标记的实线;
- "9": 在红色虚线框内,向上/下滑动鼠标,波形图可放大/缩小; 单击左键并按住, 左右移动鼠标, 波形图可随之滑动; 单击右键, 可选择保存当前视图的波形图 (JPG 格式) 到指定文件路径;
- "10": 拉动可选择图中显示的里程范围:
- "11": 单击可选择导出当前视图的波形图 (JPG 格式)。

4.3. 趋势图

"趋势图"模块界面如图 4,各部分功能说明如下:

图 4 单元质量分析模块-2

"5": 下拉菜单可选择需要分析的单元区段(只能选一个区段),如 10.0km-10.2km

区段;则下表中显示该区段按检测日期从早到晚排序后的参数值,如图 4;

"6": 可拉动查看更多行数据;

"7": 单击"导出",可导出当前两个列表中的数据(CSV 格式,表格如下图)到指定文件路径,默认文件名为"xx km-xx km 单元区段波形标准差及 TQI.csv";

单元区段里程	10.0k	m-10.2km								
检测日期	间隔 月数	左高低-中 波标准差	右高低-中 波标准差	左轨向-中 波标准差	右轨向-中 波标准差	轨距标 准差	水平标 准差	三角坑 标准差	高低标 准差	TQI
2013年01月10日	0.0									
2013年01月21日	0.4									
2013年02月17日	1.3									
2013年03月14日	2.1									
2013年03月25日	2.5									
2013年04月12日	3.1									
2013年04月25日	3.5									

"8": 窗口可最小化,最大化,或拉动调整大小;

"9": 下拉菜单可选择需要在图中显示的单元区段及参数;

"10":为带数据点的折线图,x 轴为时间间隔(月)(即各检测日期与最早检测日期的间隔月份数,保留1位小数),y 轴为9中所选参数;单击右键,可选择保存当前视图的波形图(JPG格式)到指定文件路径;

"11": 可设置图中坐标轴的范围及刻度单位,并选择显示数据标签与否;

"12": 单击 "导出",可导出当前图形到指定文件路径(JPG格式)。

4.4. 单元质量分析

"单元质量分析"模块如错误!未找到引用源。所示,分为"单元区段分析"及"批量分析"两大块,各部分功能说明如下:

图 5 单元质量分析模块-3.1

- "4": 下拉菜单选择需要在右图中显示的单元区段(单选)及参数(可多选); 勾选后,即显示错误!未找到引用源。下方右侧图像;
- "5": 单击出现图 6 中灰色方框: 可手动填写, 或导入 CSV 文件(该功能暂时缺失);
- "5.1": 下拉输入捣固日期的年月日(可选范围 2000 年~2050 年,01~12 月,1~31 日),输入一条日期,点击"确定",即保存入软件数据库; 若输入有误,可以在图像中选中后选择删除; 当前区段错误!未找到引用源。的数据随即依据输入的 n 个捣固日期,分为 n+1 段,以便后续分析;
 - "5.2": 单击选择文件路径,导入 CSV 文件(该功能暂时不编写);
 - "5.3": 勾选显示方框,即在图中显示捣固日期虚直线,如图 6下方右侧图

像,若不勾选,则不显示,但不影响分段分析, 本灰色方框可以最小化/放大/关闭。

5.1.下拉輸入捣固日期的年月日(可选范围2000年-2050年,01-12月,1-31日),输入一条日期,点击"确定",即保存入软件数据库;当前区段的数据随即依据输入的n个捣固日期,分为n+1段,以便后续分析;

"5.2":单击选择文件路径,导入CSV文件(该功能暂时不编写); "5.3":勾选显示方框,即在图中显示捣固日期虚直线,如图 6下方右 侧图像;若不勾选,则不显示,但不影响分段分析;

图 6 单元质量分析模块-3.2

"6":单击进行单元劣化速率分析,对图 6 中显示的数据分段进行线性拟合,并显示拟合曲线、拟合公式、决定系数(R^2);(如下图)

"7":点击对上方所选的数据进行批量分析,此处可分析得到上方所选里程范围内所有单元区段(而单元区段分析只能分析某一个单元区段),如图 7 所示:

图 7 单元质量分析模块-3.2

"7.1"、"7.2" 功能同本节的"5.1"、"5.2";

"7.3"单击"导出结果",后台批量进行劣化速率分析,完成后弹出选择文件路径方框:

清选择存储路径 :	
------------------	--

选择路径后,分析结果(CSV 文件)将开始保存至指定路径,完成后弹出提示框:

导出成功!

保存的数据格式如下图:

数据最早日期 捣固日期1

日期	·		10km-10.2km	10.2km-10.4km	10.4km-10.6km
2013年01月	10日	2014年03月14日	k11	k21	k31
2014年03月	14日	2014年12月21日	k12	k22	k32
捣固日期	1	捣固日期2			

"8": 单击右键,可选择保存当前视图的波形图(JPG 格式)到指定文件路径。