Топология. Лекция

19 октября 2024 г.

 $\underline{\mathrm{Def}}\ (X, au)$ - тп. $B_x \subset au$ база окрестностей в точке x, если в каждой окр-ти точки x содержится некоторая окрестность из B_x

<u>Def</u> Тополог. прос-во удовлетворяет

- 1) 1-ой аскиоме счётности, если в каждой точке существует счетная база окр-ей
- 2) 2-ой аксиоме счетности, если в прос-ве существует счетная база

 $\underline{\operatorname{Ex}}\ (X,t_d)$ топология метрического пр-ва с метрикой d $B_x=\{B_r(x)\mid r\in\mathbb{Q}$ - счётная база окр-тей в т. х

 $\underline{\mathrm{Def}}$ мн-во (X, au) называется сепарабельным, если существует счетное множество А $\mid \overline{A} = X$

 $\underline{\mathrm{Def}}\ A\subset (X, au)$ - всюдо плотное, если $\overline{A}=X$

 $\underline{\mathrm{Ex}}\;(\mathbb{R}, au_0)$ - сепарабельно, т.к. $\overline{\mathbb{Q}}=\mathbb{R}$

<u>Th1</u> Просторанство удовлетворяющее 2-ой аксиоме счётности - сепарабельно <u>Proof</u> $\Sigma = \{B_n \mid n \in \mathbb{N} \}$ - счётная база

$$\Pi \text{усть} A = \{a_n \mid a_n \in B_n \ \forall n\}$$

$$\Pi \text{роверим } \overline{A} = X$$

$$\forall x \in X \ \forall U_x \implies \exists B_n \mid x \in B_n \subset U_x$$

$$\implies \exists a_n \in A \mid a_n \in B_n \implies U_x \cap A \supset \{a_n\} \implies U_x \cap \forall \neq \varnothing \implies \overline{A} = X$$

 $\mathbf{\underline{Ex}}\ (X, au_z)$ - несчетное мн-во

Тогда любое счетное множество пересекается с каждым отрытым множеством

Тогда (X, τ_z) сепарабельно

Докажем, что в (X, τ_z) не выполнена 2-я акс. счетности

М. от противного

Пусть существует счётная база $V_n, n \in \mathbb{N}$

Пусть $M_0 \in X$

$$\bigcap_{i \in I} U_i, \ U_i$$
 - окр т. M_0

Докажем, что

$$\bigcap_{i \in I} U_i = \{M_0\}$$

Пусть $M_1 \in \bigcap_{i \in I} U_i$. Пусть $U_{i_0} = X \setminus \{M_1\}$

$$\implies \bigcap_{i \in I} U_i = \{M_0\}$$

Пусть \tilde{U}_i - эл-ты счетной базы, содержащие точку M_0

$$\implies \bigcap_{j \in \mathbb{N}} \tilde{U}_j = \{M_0\}$$

$$C\left(\bigcap_{j\in\mathbb{N}}\tilde{U}_j\right)=C\{M_0\}$$

$$\bigcup_{j\in\mathbb{N}}(C\tilde{U}_j)=C\{M_0\}$$

$$|C(M_0)|\text{ - несчётное мн-во}$$

$$|C(\tilde{U}_j|<\infty$$

$$\bigcup_{j\in\mathbb{N}}(C\tilde{U}_j)=|\mathbb{N}|$$

 $\underline{\mathrm{Def}}$ Мн-во A называется нигде не плотным, если $Int\overline{A}=\varnothing$

$$\frac{\underline{\mathrm{Ex}}}{\mathbb{Z}} \mathbb{Z} \subset (\mathbb{R}, \tau_0)$$
$$\overline{\mathbb{Z}} = \mathbb{Z}$$
$$Int\mathbb{Z} = \varnothing$$

 $\frac{\mathrm{Th.2}}{\mathrm{Proof}}$ Мн-во А нигде не плотно $\iff \overline{C\overline{A}} = X$ $\stackrel{\mathrm{Proof}}{=} 1. \implies$: Метод от противного

Пусть $C\overline{A} \neq X$, т.е $\exists x \notin C\overline{A}$

$$\implies \exists U_x \mid U_x \cap C\overline{A} = \varnothing \implies U_x \subset \overline{A} \implies x \in IntA$$

 $2. \iff : M.$ от противного

Пусть $Int\overline{A} \neq \emptyset$

$$\implies x \in Int\overline{A} \implies \exists U_x \subset \overline{A} \implies U_x \cap C\overline{A} = \varnothing \implies x \notin \overline{C\overline{A}}$$

 $\underline{\text{Th.3}}$ А нигде не плотно $\iff \overline{Int(CA)} = X$

<u>Proof</u> Достаточно доказать $Int(CA) = C\overline{A}$

1. $Int(CA) \subset C\overline{A}$

$$\forall x \in Int(CA) \implies \exists U_x \subset CA \implies U_x \cap A = \varnothing \implies X \notin \overline{A} \implies x \in C\overline{A}$$

2. то же в обратном порядке

<u>Тh.4</u> А нигде не плотно $\iff \forall U \in \tau \ \exists V \in \tau \mid V \subset U \mid V \cap A = \emptyset$ (1)

Proof 1. A нигде не плотно $\stackrel{?}{\Longrightarrow}$ (1)

$$Int\overline{A} = \emptyset$$

М от противного

$$\exists U \in \tau \mid \forall V \in \tau, \ V \subset U \implies V \cap A \neq \emptyset$$

$$\forall x \in U \implies x \in \overline{A} \implies U \subset \overline{A} \implies x \in Int\overline{A}$$

2. (1) $\Longrightarrow Int\overline{A} = \emptyset$

М. от противного

Пусть $\exists x \in Int\overline{A}$

$$\Longrightarrow U_x \subset \overline{A} \Longrightarrow$$
 противоречие с условием (1)

§6. Аксиомы отделимости

 $\underline{\mathrm{Def}}$ Окр-тью мн-ва A в (X, τ) называется любое открытое мн-во, содержащие мн-во A

Def Говорят, что в т.п. выполняется аксиома отделимости:

- $1)\ T_0$ если для любой пары различных точек, по крайней мере у одной из них существует окрестность не содержащая вторую
- 2) T_1 если для любой пары разл точек, у каждой из этих точек суещствует окр-ть не содержащая другую точку
- 3) T_2 если для любой пары разл точек, существуют непересекающиеся окр-ти

 T_2 - аксиома Хауздорфа

- 4) T_3 если для любой точки из замкнутого мн-ва не содержащего данную точку существуют непересекающеся окрестности
- 5) T_4 если для любых двух непересекающихся замкнутых мн-в существуют неперес. окр-ти Обозн $(X,\tau)\in T_i$ в (X,τ) выполнена T_i

 $\underline{\mathrm{Def}}\ (X, \tau) \in T_1 \cap T_3$ - регулярные пространства

 $\underline{\mathrm{Def}}\ (X, au)\in T_1\cap T_4$ - нормальное пр-во

 $\underline{\mathrm{Th.1}}(\mathrm{Урнсон})$ Топ. пр-во со 2-ой акс. сч. метризуемо \iff оно нормально

 $\underline{\mathrm{Ex}} \ (\mathbb{R}, \tau_{(a, +\infty)})$

Th.1 $(X, \tau_d) \in T_2$

Proof Пусть $a \neq b$, d(a,b) = d

$$U_a = B_{d/3}(a)$$

$$U_b = B_{d/3}(b)$$

$$B_{d/3}(a) \cap B_{d/3}(b) = \varnothing$$

М от противного. Пусть $\exists c \in B_{d/3}(a) \cap B_{d/3}(b)$

$$d = d(a,b) \le d(a,b) + d(c,b) < \frac{d}{3} + \frac{d}{3} = \frac{2}{3}d$$

<u>Тh.2</u> В Хауздорфовом пр-ве сходящаяся пос-ть имеет единственный предел

 $\underline{\operatorname{Proof}}$ Пусть a_n - пос-ть $\lim_{n \to \infty} a_n = a$

 $\lim_{n\to\infty} a_n = b$

Пусть
$$U_a \cap U_b = \emptyset$$

$$\exists N_1 \mid \forall n > N_1 \implies a_n \in U_a$$

$$\exists N_2 \mid \forall n > N_2 \implies a_n \in U_b$$

 $\implies \forall n > \max\{N_1, N_2\}$ противоречие

 $\underline{\text{Th.3}}$ Пусть $(X, \tau) \in T_1 \iff \forall$ точка замкнута

 $\underline{\text{Proof}}\ 1) \implies : (X, \tau) \in T_1$

$$a \in X \{a\}$$
 - замкуто $C\{a\}$ открыто

$$\forall b \in C\{a\} \stackrel{T_1}{\Longrightarrow} \exists U_b \not\ni \{a\} \implies U_b \subset C\{a\}$$

2) <= :

$$\forall b \in C\{a\} \implies \exists U_b \subset C\{a\} \implies \begin{cases} U_b \not\ni a \\ C\{b\} \in \tau, C\{b\} = U_a \end{cases} \implies T_1$$