Deep Learning Introduction

About Me

- Author and Technologist
- Worked for TI, Magma, Apache, Cadence, Paripath and now AITS.
- 20 years n EDA/CAD/ML industry
- www.linkedin.com/in/srohit0/ in
- medium.com/@srohit0
- gr.ae/TWGSt9
- github.com/srohit0
- twitter.com/srohit

Course Overview

- □ Pre-requisites
 - ☐ basic computer science principles and skills
 - Probability theory
 - Multivariable calculus and Linear algebra
- Applied course with emphasis on real life projects

- Math and programming makes it fun and challenging
- ☐ Make friends for study groups for projects.
- ☐ Reference Book :
 - ☐ Machine Intelligence, Rohit Sharma, 2018.
 - srohit0.github.io/mida/

Homework	Quiz	Midterm Project	Final Project	Final Exam	Participation	Total
5%	15%	20%	25%	30%	5%	100%

Material

- ☐ Text Book:
 - Machine Intelligence by Rohit Sharma
- ☐ References Material:
 - Python Machine Learning, 2nd Edition, by Sebastian Raschka
 - Deep Learning, by Ian Goodfellow
- Software
 - Python
 - ☐ Google Colab or Jupyter notebook

Mid Term Projects Reminder

Mid Tern Project Submission Date – Nov 29th, 2019

Elbow Method for optimal value of k in KMeans

Credit: Maggie

Homework

Question

Find Eigenvalues and Eigenvectors of the matrix

$$\begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix}$$

Answer

Eigenvalue	Eigenvector
$\lambda = 0$	$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$
$\lambda = 3(2 + \sqrt{6})$	$ \begin{pmatrix} 6\sqrt{6} - 11 \\ 4 + 3\sqrt{6} \\ 19 \end{pmatrix} $
$\lambda = 3(2 - \sqrt{6})$	$\begin{pmatrix} -11 - 6\sqrt{6} \\ -3\sqrt{6} + 4 \\ 19 \end{pmatrix}$

Image Color Quantization

- Color Quantization is a lossy compression technique achieved by compressing a range of values to a single quantum value.
- Color quantization reduces the number of colors used in an image;
- Most bitmap editors and many operating systems have built-in support for color quantization.
- Median cut algorithm is typically used in practice.
- ☐ In this example, we use Kmeans algorithm for familiarity reasons.

Notebook: https://colab.research.google.com/drive/1VSVmCMj-HPAMRo4t11bVqcn-I4DE9ecg

Deep Learning Introduction

What are networks?

■ Network is a group of entities interconnected in an arbitrarily ordered fashion to exchange information.

- Popular examples
 - ☐ Social networks (e.g. Facebook),
 - ☐ Professional networks (e.g. LinkedIn),
 - ☐ Road, Railway and port networks,
 - ☐ Electrical circuit networks (e.g. parasitic network),
 - □ Communication networks (e.g. switched telephone network),
 - ☐ Computer networks (e.g. the internet)

What are neural networks?

☐ When Entities in a network is represented with neurons, it is called neural network.

- □ Neuron is a fancy term for a computational node that performs set of mathematical operations with an offset on the information it is fed as input.
- □ Arbitrary combination of multiplication and addition has the ability to generate any expression, So a=w*x+b is used for generality.

What is deep learning?

- ☐ Hypothesis is created using a compute graph aka neural network.
- Relies on the structure of network to compute and propagate values forward.
- ☐ Optimization is non-trivial, since error gradient isn't radially available to find next step.

a=w*x+b

Deep Learning Terminology?

□ Neurons
 □ Compute Graph
 □ Backward Propagation
 □ Error Gradient
 □ Model Parameters
 □ Activation functions
 □ Perceptron
 □ Forward Propagation
 □ Exploding Gradients

Why Deep Learning?

- ☐ Why Now?
 - Data
 - Compute Power
 - Algorithms
- Performance superiority

Types and Application

- Neural Network Types
 - ☐Feed Forward
 - ■Recurrent Neural Network
 - □ Self Organizing Neural Network
- Applications
 - Prediction
 - Classification
 - **□**Clustering
 - Optimization

Human Vision vs Deep Vision

- Video on the right is an effort to convince you that deep learning vision is superior to human vision in many ways.
- □ Human vision system is continuously under training.

Linear Feed Forward Neural Network

Compute Function Y for the network shown in the figure.

Linear Feed Forward Neural Network

Compute Function Y for the network shown in the figure.

$$a^{1}=x$$

$$z^{2}=(w^{1})^{T}.a^{1}+b^{1}.$$

$$a^{2}=sigmoid(z^{2})$$

$$z^{3}=(w^{2})^{T}.a^{2}+b^{2}$$

$$a^{3}=sigmoid(z^{3})$$

$$\hat{Y}=a^{3}$$

Here, superscript T denotes transpose operator and sigmoid is given as: $\frac{1}{1+e^{-z}}$

https://playground.tensorflow.org/

Backward Propagation

- ☐ Chain Rule
- □ Computing Error Gradients
- ■Backprop algorithm
- ■Vanishing Gradients
- **□**Exploding Gradients
- Workarounds
 - ☐ Gradient Clipping
 - Regularization

hi@ai-techsystems.com

Al Tech Systems

Putting Al-First

105 Serra Way, #251 +1-408-372-7405

Milpitas, CA, 95035

www.ai-techsystems.com

#251 Milpitas, CA, 95035 www.ai-techsystems.com

+1-408-372-7405

