Deep Learning with {torch} cheat sheet

{torch} is based on Pytorch, a framework popular among deep learning researchers.

{torch}'s GPU acceleration allows to implement fast machine learning algorithms using its convenient interface, as well as a vast range of use cases, not only for deep learning, according to Its flexibility and its low level API.

It is part of an ecosystem of packages to interface with specific dataset like {torchaudio} for timeseries-like, {torchvision} for image-like, and {tabnet} for tabular data. It is complemented by {lux} for a higher-level programming interface

https://torch.mlverse.org/

https://mlverse.shinyapps.io/torch-tour/

INSTALLATION

The torch R package uses the C++ libtorch library. You can install the prerequisites directly from R.

https://torch.mlverse.org/docs/articles/installation.html

```
install.packages("torch")
library(torch)
                          See ?install_torch for
install_torch()
                           GPU instructions
```

Working with torch models

DEFINE A NN MODULE dense ← nn_module("no_biais_dense_layer", initialize = function(in_f, out_f) { self\$w ← nn_parameter(torch_randn(in_f, out_f)) forward = function(x) { torch_mm(x, self\$w) Create a nn module names no_biais_dense_layer

ASSEMBLE MODULES INTO NETWORK

 $model \leftarrow dense(4, 3)$ Instantiate a network from a single module

model ← nn_sequential(dense(4,3), nn_relu(), nn_dropout(0.4), dense(3,1), nn_sigmoid())

Instantiate a sequential network with multiple layers

MODEL FIT

model\$train() Turns on gradient update with_enable_grad({ y_pred ← model(trainset) loss \leftarrow (y_pred - y)\$pow(2)\$mean() loss\$backward() Detailed training loop step (alternative)

EVALUATE A MODEL

model\$eval() with_no_grad({ model(validationset) Perform forward operation with no gradient update

OPTIMIZATION

optim_sgd() Stochastic gradient descent optimiser

optim_adam() ADAM optimiser

CLASSIFICATION LOSS FUNCTION

nn_cross_entropy_loss() nn_bce_loss() nn_bce_with_logits_loss() (Binary) cross-entropy losses nn_nll_loss() Negative log-likelihood loss nn_margin_ranking_loss() nn_hinge_embedding_loss() nn_multi_margin_loss() nn_multilabel_margin_loss() (Multiclass) (multi label) hinge losses

REGRESSION LOSS FUNCTION

nn_l1_loss() L1 loss nn_mse_loss() MSE loss nn_ctc_loss() Connectionist Temporal Classification loss nn_cosine_embedding_loss() Cosine embedding loss nn_kl_div_loss() Kullback-Leibler divergence loss nn_poisson_nll_loss() Poisson NLL loss

OTHER MODEL OPERATIONS

summary() Print a summary of a torch model

torch_save(); torch_load() Save/Load models to files

load_state_dict() Load a model saved in python

Neural-network layers

CORE LAYERS nn_linear() Add a linear transformation NN layer to an input nn_bilinear() to two inputs nn_sigmoid(), nn_relu()

nn_dropout() nn_dropout2d() nn_dropout3d() Applies Dropout to the input

nn_batch_norm1d() nn_batch_norm2d() nn_batch_norm3d() Applies batch normalisation to the weights

CONVOLUTIONAL LAYERS

nn_conv1d() 1D, e.g. temporal convolution

nn_conv_transpose2d() Transposed 2D (deconvolution)

nn_conv2d() 2D, e.g. spatial convolution over images

nn_conv_transpose3d() Transposed 3D (deconvolution) nn_conv3d() 3D, e.g. spatial convolution over volumes

nnf_pad() Zero-padding layer

CC BY SA Christophe Regouby • torch 0.9.0 • Updated: 2023-02

Tensor manipulation

TENSOR CREATION

tt <- torch_rand(4,3,2) uniform distrib.

 $tt \leftarrow torch_randn(4,3,2)$ unit normal distrib. $tt \leftarrow torch_randint(1,7,c(4,3,2))$ uniform integers within [1,7)

Create a random values tensor with shape

 $tt \leftarrow torch_ones(4,3,2)$ torch_ones_like(a)

Create a tensor full of 1 with given shape, or with the same shape as 'a'. Also torch_zeros, torch_full, torch_arange,...

tt\$ndim tt\$shape tt\$dtype [1] 3 torch_Float [1] 432 tt\$requires_grad tt\$device

torch_device(type='cpu') [1] FALSE Get 't' tensor shape and attributes

tt\$stride() [1] 6 2 1

jump needed to go from one element to the next in each dimen-

tt ← torch_tensor(a,

dtype=torch_float(), device= "cuda") Copy the R array 'a' into a tensor of float on the

a ← as.matrix(tt\$to(device="cpu")

TENSOR SLICING

tt[1:2, -2:-1,] Slice a 3D tensor tt[5:N, -2:-1, ..]

Slice a 3D or more tensor, N for last

tt[1:2, -2:-1, 1:1] tt[1:2, -2:-1, 1, keep=TRUE] Slice a 3D and keep the unitary dim.

tt[1:2, -2:-1, 1] Slice by default remove unitary dim.

tt[tt > 3.1] Boolean filtering (flattened result)

TENSOR CONCATENATION

torch_stack() Stack of tensors

torch_cat() Assemble tensors

torch_split(2)
split tensor in sections of size 2

torch_split(c(1,3,1))
split tensor into explicit sizes

TENSOR SHAPE OPERATIONS

tt\$unsqueeze(1) torch_unsqueeze(tt,1) Add a unitary dimension to tensor

tt\$squeeze(1) torch_squeeze(tt,1)

"tt" as first dimension

Remove first unitary dimension to tensor "tt"

torch_reshape() \$view()

Change the tensor shape, (tentatively) without with copy or

torch_flatten() Flattens an input

torch_transpose()

torch_movedim(c(1,2)) switch dimension 1 with 2

torch_movedim(c(1,2,3), c(3,1,2)) move dim 1 to dim 3, dim 2 to 1, dim 3 to 2 torch_permute(c(3,1,2)) Only provide the target dimension order

torch_flip(1) flip values along dim 1

torch_flip(2)

both dims

TENSOR VALUES OPERATIONS

Operations with two tensors

\$pow(2), \$log(), \$exp(), \$abs(), \$floor(), \$round(), \$cos(), \$fmod(3), \$fmax(1), \$fmin(3) torch_clamp(tt, min=0.1, max=0.7) Element-wise operations on a tensor

\$eq(), \$ge(), \$le() Element-wise comparison

\$to(dtype = torch_long()) Mutate values type

\$sum(dim=1), \$mean(), \$max() Aggregation functions on a single tensor \$amax()

torch_repeat_interleave() Repeats the input n times

rchaudio rchvision luz torch

The "Hello, World!" of deep learning

Pre-trained models

Torch applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

NATIVE R MODELS

library(torchvision) resnet34 ← model_resnet34(pretrained=TRUE) Resnet image classification model

resnet34_headless \leftarrow nn_prune_head(resnet34, 1) Remove top layer of a model

IMPORTING FROM PYTORCH

{torchvisionlib} allows you to import a pytorch model without recoding its nn modules in R. This is done in two steps

1- instantiate the model in Python, script it, and save it: import torch import torchvision

model = torchvision.models.segmentation. fcn_resnet50(pretrained = True) model.eval()

scripted_model = torch.jit.script(model) torch.jit.save(scripted_model, "fcn_resnet50.pt")

2- load and use the model in R: library(torchvisionlib) model ← torch::jit_load("fcn_resnet50.pt")

Troubleshooting

HELPERS

with_detect_anomaly()

Provides insight of a nn_module() behaviour

Callbacks

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training.

```
TRAINING AN IMAGE RECOGNIZER ON MNIST DATA 5 0 4 /
           # load MNIST images through a data loader
           library(torchvision)
            train_ds ← mnist_dataset( root = " ~/.cache",
              download = TRUE,
              transform = torchvision::transform_to_tensor
           test_ds ← mnist_dataset( root = " ~/.cache",
              train = FALSE,
              transform = torchvision::transform_to_tensor
           train_dl ← dataloader(train_ds, batch_size = 32,
              shuffle = TRUE)
           test_dl ← dataloader(test_ds, batch_size = 32)
           # defining the model and layers
           net ← nn module(
            "Net",
            initialize = function() {
             self$fc1 \leftarrow nn_linear(784, 128)
             self$fc2 \leftarrow nn_linear(128, 10)
            forward = function(x) {
             x %>% torch_flatten(start_dim = 2) %>%
              self$fc1() %>% nnf_relu() %>%
              self$fc2() %>% nnf_log_softmax(dim = 1)
           model \leftarrow net()
           # define optimizer
           optimizer ← optim_sgd(model$parameters, lr = 0.01)
           # train (fit)
           for (epoch in 1:10) {
            train_losses \leftarrow c()
            test_losses \leftarrow c()
            for (b in enumerate(train_dl)) {
             optimizer$zero_grad()
             output ← model(b[[1]]$to(device = device))
             loss ← nnf_nll_loss(output, b[[2]]$to(device = device))
             loss$backward()
             optimizer$step()
             train_losses ← c(train_losses, loss$item())
            for (b in enumerate(test_dl)) {
             model$eval()
             output \leftarrow model(b[[1]]$to(device = device))
             loss ← nnf_nll_loss(output, b[[2]]$to(device = device))
             test_losses \leftarrow c(test_losses, loss$item())
             model$train()
```