CAPSTONE PROJECT PRESENTATION

ALY6140: ANALYTICS SYSTEMS TECHNOLOGY

Group C:

Ebiere Adegbesan Abiodun Wale-Adebowale Lishan Wang Racheal Chidera Ezeja

TABLE OF CONTENTS

- > INTRODUCTION
- > GOALS AND QUESTIONS
- > DATASET OVERVIEW
- > ANALYSIS, DESCRIPTION AND DATA EXTRACTION
- > DATA CLEANUP
- > EXPLORATOTY DATA ANALYSIS
- > NUMERICAL/STATISTICAL DESCRIPTIVE ANALYSIS
- > PREDICTIVE ANALYSIS
- > INTERPRETATION AND CONCLUSION

We aim to answer the following questions:

- What is the age distribution of customers in the dataset?
- Which job types show the highest success rates in the marketing campaign?
- How do economic indicators impact the outcomes of the marketing campaign?
- Is there a significant variation in campaign success across different education levels?
- Does the presence of a housing or personal loan affect a customer's decision to subscribe to a term deposit?

DATASET DESCRIPTION

The **bank marketing campaigns** dataset describes the results of marketing campaigns conducted by a bank in Portugal. The campaigns primarily involved direct phone calls, where clients were offered the opportunity to place a term deposit. The outcome of these efforts is captured in the target variable: if the client agrees to place a deposit, the target is marked as 'yes', otherwise as 'no'.

- Shape: 41118 rows and 21 columns
- Lable Y/N: has the client subscribed to a term deposit? (Binary: 'yes', 'no').
- Numerical features(9): age, duration, campaign, pdays, previous, emp. Var. Rate, cons. Price. Idx, cons. Conf. Idx, euribor3m, nr. Employed
- Categorital features(10): job, marital, education, default, housing, loan, contact, month, day_of_week, poutcome
- Missing values: none


```
# Load the dataset
import requests
url = 'https://www.dropbox.com/scl/fi/f2dooq1g1cbojkfpi93dc/Bank-marketing-campaign-CSV.csv?rlkey=dazyqp68mohqlqmo4o8yyrdd8&st=b6
res = requests.get(url)
with open('bank_campaign_sheet.csv','wb') as file:
   file.write(res.content)
# Read the CSV file into a DataFrame
bank_campaign = pd.read_csv('bank_campaign_sheet.csv')
# Display the first few rows of the DataFrame
bank campaign.head()
```


HEAD DISPLAY OF THE DATASET

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	***	campaign	pdays	previous	poutcome	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed	у
0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mon	910	1	999	0	nonexistent	1.1	93.994	-36.4	4.857	5191.0	no
1	57	services	married	high.school	unknown	no	no	telephone	may	mon		1	999	0	nonexistent	1.1	93.994	-36.4	4.857	5191.0	no
2	37	services	married	high.school	no	yes	no	telephone	may	mon		1	999	0	nonexistent	1.1	93.994	-36.4	4.857	5191.0	no
3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon	810	1	999	0	nonexistent	1.1	93.994	-36.4	4.857	5191.0	no
4	56	services	married	high.school	no	no	yes	telephone	may	mon	***	1	999	0	nonexistent	1.1	93.994	-36.4	4.857	5191.0	no

rows x 21 columns

• **DATA SHAPE**: THE NUMBER OF ROWS AND COLUMNS IN THE DATASET.

• **DATATYPES**: VERIFICATION OF THE DATA TYPES FOR EACH FEATURE.

```
Out[b]: age
                            int64
                           object
        job
        marital
                           object
        education
                           object
        default
                           object
        housing
                           object
                           object
        loan
        contact
                           object
        month
                           object
        day_of_week
                           object
        duration
                            int64
        campaign
                            int64
                            int64
        pdays
        previous
                            int64
                           object
        poutcome
                          float64
        emp.var.rate
        cons.price.idx
                          float64
        cons.conf.idx
                          float64
        euribor3m
                          float64
        nr.employed
                          float64
                           object
        dtype: object
```

In [12]: ▶ bank_campaign.shape

Out[12]: (41188, 21)

In [9]: # Display summary statistics
bank_campaign.describe()

Out[9]:

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000
mean	40.02406	258.285010	2.567593	962.475454	0.172963	0.081886	93.575664	-40.502600	3.621291	5167.035911
std	10.42125	259.279249	2.770014	186.910907	0.494901	1.570960	0.578840	4.628198	1.734447	72.251528
min	17.00000	0.000000	1.000000	0.000000	0.000000	-3.400000	92.201000	-50.800000	0.634000	4963.600000
25%	32.00000	102.000000	1.000000	999.000000	0.000000	-1.800000	93.075000	-42.700000	1.344000	5099.100000
50%	38.00000	180.000000	2.000000	999.000000	0.000000	1.100000	93.749000	-41.800000	4.857000	5191.000000
75%	47.00000	319.000000	3.000000	999.000000	0.000000	1.400000	93.994000	-36.400000	4.961000	5228.100000
max	98.00000	4918.000000	56.000000	999.000000	7.000000	1.400000	94.767000	-26.900000	5.045000	5228.100000

DATA CLEANUP

• HANDLING MISSING VALUES: THE DATASET WAS CHECKED FOR MISSING VALUES, BUT NONE WAS PRESENT.

```
In [10]: ▶ # Check for missing values
             print('Data columns with null values:', bank_campaign.isnull().sum(), sep='\n')
             Data columns with null values:
             iob
             marital
             education
             default
             housing
             loan
             contact
             month
             day_of_week
             duration
             campaign
             pdays
             previous
             poutcome
             emp.var.rate
             cons.price.idx
             cons.conf.idx
             euribor3m
```


Outlier detection and handling:

Outliers in numerical features were identified using the interquartile range (IQR) method.

```
# Handling outliers using the IQR method
numerical_features = ['age', 'campaign', 'pdays', 'previous', 'emp.var.rate',
                      'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed']
for feature in numerical_features:
   Q1 = bank_campaign_encoded[feature].quantile(0.25)
   Q3 = bank_campaign_encoded[feature].quantile(0.75)
    IQR = Q3 - Q1
   lower_bound = Q1 - 1.5 * IQR
   upper_bound = Q3 + 1.5 * IQR
    bank_campaign_encoded = bank_campaign_encoded[(bank_campaign_encoded[feature] >= lower_bound) &
                                                  (bank_campaign_encoded[feature] <= upper_bound)]</pre>
# Display the updated shape after handling outliers
print("Updated Dataset Shape:", bank_campaign_encoded.shape)
Updated Dataset Shape: (24919, 55)
```


CATEGORY COUNT

DISTRIBUTION OF CATEGORIES WITHIN EACH CATEGORICAL FEATURE.

Job:	
job	
admin.	10422
blue-collar	9254
technician	6743
services	3969
management	2924
retired	1720
entrepreneur	1456
self-employed	
housemaid	1060
unemployed	1014
student	875
unknown	330
Name: count, d	type: int64
Marital:	
marital	
married 24	
single 11	
	612
	7.7.7.
unknown	80
unknown	80
unknown Name: count, d	80
unknown Name: count, d	80
unknown Name: count, d Education: education	80 type: int64
unknown Name: count, d 	80 type: int64 ree 12168
unknown Name: count, d Education: education university.deg high.school	80 type: int64 ree 12168 9515
unknown Name: count, d Education: education university.deg high.school basic.9y	80 type: int64 ree 12168 9515 6045
unknown Name: count, d' Education: education university.degi high.school basic.9y professional.co	80 type: int64 ree 12168 9515 6045 ourse 5243
unknown Name: count, d' Education: education university.deg high.school basic.9y professional.co	80 type: int64 ree 12168 9515 6045
unknown Name: count, d' Education: education university.deg high.school basic.9y professional.co	80 type: int64 ree 12168 9515 6045 ourse 5243 4176 2292
unknown Name: count, d' Education: education university.degr high.school basic.9y professional.co basic.4y basic.6y unknown	80 type: int64 ree 12168 9515 6045 ourse 5243 4176
Name: count, do name: count, do name: count, do name: education university.deg high.school basic.9y professional.co	80 type: int64 ree 12168 9515 6045 ourse 5243 4176 2292

```
Default:
default
no
           32588
unknown
           8597
Name: count, dtype: int64
Housing:
housing
           18622
unknown
            990
Name: count, dtype: int64
loan
           33950
no
           6248
yes
unknown
Name: count, dtype: int64
Contact:
contact
cellular
             26144
telephone
            15044
Name: count, dtype: int64
Month:
month
      13769
       7174
jul
        6178
jun
        5318
nov
        4191
apr
        2632
        718
         570
mar
         546
         182
Name: count, dtype: int64
```

```
...........
Day_of_week:
day_of_week
    8134
    7827
Name: count, dtype: int64
...........
Poutcome:
poutcome
nonexistent
          35563
failure
          4252
          1373
success
Name: count, dtype: int64
...........
    36548
Name: count, dtype: int64
------
```

11

A significant majority (88.73%) of the customers did not subscribe to the term deposit, while only a small fraction (11.27%) did.

After applying SMOTE, both classes (0 and 1) have roughly equal representation in the dataset.

```
# Check the distribution of the target variable (showing if the dataset is balanced)
class distribution = bank campaign['y encoded'].value counts(normalize=True) * 100
print("Class distribution (in percentage):\n", class distribution)
Class distribution (in percentage):
 v encoded
     88.734583
     11.265417
Name: proportion, dtype: float64
from imblearn.over sampling import SMOTE
# Define features and target
X = bank campaign.drop(['y', 'y encoded'], axis=1)
y = bank_campaign['y_encoded']
# One-Hot Encode categorical variables
X = pd.get dummies(X, drop first=True)
# Apply SMOTE to balance the dataset
smote - SMOTE(random state-42)
X balanced, y balanced = smote.fit resample(X, y)
# Check the distribution after SMOTE
balanced_class_proportion = pd.Series(y_balanced).value_counts(normalize=True) * 100
print(balanced class proportion)
y encoded
     50.0
     50.0
Name: proportion, dtype: float64
                                                                            12
```

QUESTION 1 WHAT IS THE AGE DISTRIBUTION OF CUSTOMERS IN THE DATASET?

Insight: the customer age distribution is concentrated around young to middle-aged adults, particularly between 25 and 40 years old.

EXPLORATORY DATA ANALYSIS

QUESTION 2 WHICH JOB TYPES SHOW THE HIGHEST SUCCESS RATES IN THE MARKETING CAMPAIGN?

	No	Yes	Success Rate
job			
admin.	9070	1352	0.129726
blue-collar	8616	638	0.068943
entrepreneur	1332	124	0.085165
housemaid	954	106	0.100000
management	2596	328	0.112175
retired	1286	434	0.252326
self-employed	1272	149	0.104856
services	3646	323	0.081381
student	600	275	0.314286
technician	6013	730	0.108260
unemployed	870	144	0.142012
unknown	293	37	0.112121

QUESTION 4 IS THERE A
SIGNIFICANT VARIATION IN
CAMPAIGN SUCCESS ACROSS
DIFFERENT EDUCATION LEVELS?

Insight: Illiterate individuals have the highest campaign success rate, followed by those with a university degree. Other education levels have lower success rates, indicating a potential gap in targeting these groups effectively.

QUESTION 5 DOES THE PRESENCE OF A HOUSING OR PERSONAL LOAN AFFECT A CUSTOMER'S DECISION TO SUBSCRIBE TO A TERM DEPOSIT?

Customers with housing loans are slightly more likely to subscribe to a term deposit, while those with unknown housing loan statuses show the lowest success rates.

LOGISTIC REGRESSION

0	variable age	VIF 16 047296
1	duration	2.011044
2	campaign	1.921499
3	pdays	44.413175
4	previous	2.001464
5	emp.var.rate	28.910219
6	cons.price.idx	22561.123124
7	cons.conf.idx	120.086975
8	euribor3m	226.237349
9	nr.employed	26746.634212

LOGISTIC REGRESSION

```
Lasso Logistic regression coefficients:
[ 1.57275335 -0.39363192 0.08927271 0.05468542 0.
            1.18396944 0.
                                       0.32814042 0.03901773
  0.
                      0.75400731 0.89328973 0.
                                                    0.01856352
                                0.83871999 1.29789019 0.68414577
  0.40528481 0.90824975 0.
 -0.03662284 0.
                      0.
                                0.48307411 0.
                                                    0.04206057
                                0. 0.2659565 1.20807046
 -0.36141473 0. 0.
 -0.1752708 0. 1.01620986 0.26986051 0.80023776 0.88889439
  0.92246756 0.85452446 0.
                                1.54043124]]
```

• LOGISTIC REGRESSION

Accuracy score: 0.9061060695882165 Classification report:								
	precision	recall	f1-score	support				
0	0.90	0.92	0.91	11005				
1	0.92	0.89	0.90	10924				
accuracy			0.91	21929				
macro avg	0.91	0.91	0.91	21929				
weighted avg	0.91	0.91	0.91	21929				
_								

GRADIENT BOOSTING

Gradient Boosting Accuracy: 0.9350175566601304 Confusion Matrix: [[10043 962] [463 10461]] Classification Report:								
	precision	recall	f1-score	support				
0	0.96	0.91	0.93	11005				
1	0.92	0.96	0.94	10924				
accuracy			0.94	21929				
macro avg	0.94	0.94	0.93	21929				
weighted avg	0.94	0.94	0.93	21929				

RANDOM FOREST

Random Forest Confusion Mat [[10400 605 [368 10556	rix:	0.95562953	16703908		
Classificatio	n Report:				
	precision	recall	f1-score	support	
0	0.97	0.95	0.96	11005	
1	0.95	0.97	0.96	10924	
accuracy			0.96	21929	
macro avg	0.96	0.96	0.96	21929	
weighted avg	0.96	0.96	0.96	21929	

CONCLUSION

- The Random Forest model outperforms both Logistic Regression and Gradient Boosting, making it the best predictive model among the three.
- The insights from this analysis provide a foundation for ongoing refinement and optimization of marketing strategies

REFERENCES

- HASTIE, T., FRIEDMAN, J., & TIBSHIRANI, R. (2001). THE ELEMENTS OF STATISTICAL LEARNING: DATA MINING, INFERENCE, AND PREDICTION.
- SPRINGER.JAMES, G. M., WITTEN, D., HASTIE, T. J., & TIBSHIRANI, R. (2013). AN INTRODUCTION TO STATISTICAL LEARNING: WITH APPLICATIONS IN R. SPRINGER.PROVOST, F., & FAWCETT, T. (2013). DATA SCIENCE FOR BUSINESS: WHAT YOU NEED TO KNOW ABOUT DATA MINING AND DATA-ANALYTIC THINKING.
- O'REILLY MEDIA.TUKEY, J. W. (1977). EXPLORATORY DATA ANALYSIS. ADDISON-WESLEY PUB. CO.

