MTH210 — Discrete Mathematics II

Content by Week

1	Sequences and Series	2
	1.1 Sums and Products	2
2	Mathmatical Induction2.1 Recursion2.2 Strong Induction	
3	Placeholder	5
4	Placeholder	5
5	Placeholder	5
6	Placeholder	5
7	Placeholder	5
8	Placeholder	5

1 Sequences and Series

A **sequence** is an ordered set of numbers.

 $2,4,6,8,10\ldots$ is an example of a sequence of positive numbers. a_1,a_2,a_3,\ldots,a_n denotes an infinite sequence.

- A sequence is defined **analytically** if each term a_i is defined by some function $f(i) = a_i$
- A sequence is defined **recursively** if the first k terms are given **explicitly** and the rest are given through a recursive function $a_n = f(a_{n-1}, a_{n-2}, \dots, a_{n-k})$ for n > k.
- Even if two sequences are equal for small indexes, does not indicate that they don't diverge at some further point.

A **series** is the sum of all the terms in a sequence.

If m and n are integers and $m \leq n$, the symbol $\sum_{k=m}^{n} a_k$ is the summation from k, defined as:

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \dots + a_n$$

- We call k the **index** of the summation.
- m is the **lower limit** of the summation.
- n is the **upper limit** of the summation.

1.1 Sums and Products

If m and n are integers and $m \le n$, the symbol $\prod_{k=m}^{n} a_k$ is read as product from k equals m to n of a sub k, it can be written as:

$$\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \times \dots \times a_n$$

Theorem 1.1. The following properties hold for any integer $n \ge m$, given a_m, \ldots and b_m, \ldots sequences of real numbers.

•
$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$

•
$$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} (c \cdot a_k)$$
, given some constant c

$$\bullet \ (\prod_{k=m}^{n} a_k) \cdot (\prod_{k=m}^{n} b_k) = \prod_{k=m}^{n} (a_k \cdot b_k)$$

Theorem 1.2. The binomial theorem, also called n choose r is computed by using the following formula for $0 \le r \le n$:

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

2 Mathmatical Induction

Mathematical Induction is a two-step process, Take a statement in the form "For every integer $n \ge a$, a property P(n) holds true". We then apply the following:

- 1. The first step is called the **Basis Step**, this is where you show that the condition P of your starting point a, is true \rightarrow Show that P(a) is true.
- 2. The second step is called the **Inductive Step**, you show that for every integer $k \ge a$, if P(k) is true, then P(k+1) must also be true.
 - (a) To perform this step, we must suppose that P(k) holds, where $k \ge a$ (Inductive Hypothesis), therefore P(k+1) must be true.

To write an inductive proof formally, we must clearly state all steps and assumptions, take the following example:

Prove. For every integer
$$n \ge 1, 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$
 by **Induction**:

Proof. Basis Step (Base Case):

Let
$$n = 1, P(1)$$
 holds because $\frac{1(1+1)}{2} = \frac{1(2)}{2} = 1$

Inductive Step:

Let n = k with $k \ge 1$. Suppose that P(k) is true (inductive hypothesis). Thus we can show:

$$1 + 2 + \dots + k + (k+1) = (1 + 2 + \dots + k) + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$$

$$= \frac{k^2 + k}{2} + \frac{2k + 2}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

Thus $1+2+\cdots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$ (notice how this is in the form $1+2+\cdots+n=\frac{n(n+1)}{2}$). Therefore we can conclude that P(k+1) is true.

2.1 Recursion

Given a recursively defined sequence a_i , find an analytical formula using the following steps:

- 1. Find an explicit formula for a_i by making educated guesses.
- 2. Prove that the formula holds through induction.

Take the following example:

Prove. Given
$$b_0 = 1, b_n = \frac{b_n - 1}{1 - b_n - 1}$$
 for $n > 1$

Proof. Make an assumption for the formula of b_n , take the following guess:

$$b_n = \frac{1}{n+1}$$
 for $n \ge 0$ (Conjecture)

Basis Case:

Let
$$n = 0.P(0)$$
 is known to be true as $b_0 = 1 = \frac{1}{0+1}$

Inductive Step:

Let n = k with $k \ge 0$. Assume that P(k) is true (inductive hypothesis). Thus we can show:

$$b_{k+1} = \frac{b_k}{1 + b_k}$$

$$= \frac{\frac{1}{k+1}}{1 + \frac{1}{k+1}}$$

$$= \frac{\frac{1}{k+1}}{\frac{k+2}{k+1}}$$

$$= \frac{1}{k+2}$$

$$= \frac{1}{(k+1)+1}$$

Hence P(k+1) must be true.

2.2 Strong Induction

Strong induction follows the same steps as normal/weak induction, with the difference that the basis step may contain proofs for several values and P(n) is assumed not just for a single n but for all values n through k, only then is the truth of P(k+1) proved. The steps for strong induction are as follows:

Let P(n) be a property that is defined for integers n, let a,b be fixed integers such that $a \leq b$. Suppose the following statements:

- 1. $P(a), P(a+1), \ldots, P(b)$ are all true. (Basis Step)
- 2. For every integer $k \ge b$, if P(i) is true for each integer i from a through k, then P(k+1) is true. (**Inductive Step**)

then the statement "For every integer $n \ge a, P(n)$ " is true. The supposition that P(i) is true is the inductive hypothesis in this case.

Prove. Given a sequence a_i ,

$$a_0 = 12, a_1 = 29$$
 $a_n = 5a_{n-1} - 6a_{n-2}$

Show that for all $n \geq 0$,

$$a_n = 5 \cdot 3^n + 7 \cdot 2^n$$

Proof. Proceed by induction on n.

Basis Step: We take that P(0) and P(1) are true.

Inductive Step: Let n = k + 1. Assume P(i) is true for $k \ge i \ge 0$ (inductive Hypothesis). Thus:

$$\begin{aligned} a_k &= 5 \cdot 3^k + 7 \cdot 2^k \\ a_{k-1} &= 5 \cdot 3^{k-1} + 7 \cdot 2^{k-1} \\ a_{k+1} &= 5(5 \cdot 3^k + 7 \cdot 2^k) - 6(5 \cdot 3^{k-1} + 7 \cdot 2^{k-1}) \\ &= 25 \cdot 3^k + 35 \cdot 2^k - 30 \cdot 3^{k-1} - 42 \cdot 2^{k-1} \\ &= 25 \cdot 3^k + 35 \cdot 2^k - 10 \cdot 3^k - 21 \cdot 2^k \\ &= 15 \cdot 3^k + 14 \cdot 2^k \\ &= 5 \cdot 3^{k+1} + 7 \cdot 2^{k+1} \end{aligned}$$

Hence P(k+1) is true.

- 3 Placeholder
- 4 Placeholder
- 5 Placeholder
- 6 Placeholder
- 7 Placeholder
- 8 Placeholder