Fondamenti dell'Informatica

1 semestre

Quiz sugli automi a pila

Prof. Giorgio Gambosi

Problema 1: Definire un automa a pila che riconosca il linguaggio $L=\{a^nb^m\mid n\geq 0, m\geq 0, n\neq m\}$ sull'alfabeto $\Sigma=\{a,b\}.$

Problema 2: Definire un automa a pila che riconosca il linguaggio $L=\{a^nb^m\mid m\leq n\leq 2m\}$ sull'alfabeto $\Sigma=\{a,b\}.$

Problema 3: Definire un automa a pila che riconosca il linguaggio $L = \{w \in \{a,b\}^* \mid w \text{ ha un numero di b doppio rispetto al numero di a}.$

Problema 4: Definire un automa a pila che riconosca il linguaggio $L=\{a^nb^mc^l\mid n\geq 0, m\geq 0, l\geq 0, l\leq n+m\}$ sull'alfabeto $\Sigma=\{a,b\}$.

Problema 5: Definire un automa a pila che riconosca le espressioni parentetiche corrette.

Problema 6: Si consideri la seguente grammatica context free \mathcal{G} :

$$\begin{array}{ccc} S & \rightarrow & aAA \\ A & \rightarrow & aS \mid bS \mid a \end{array}$$

Definire un automa a pila che accetta il linguaggio L(G).

Problema 7: Si consideri la seguente grammatica context free \mathcal{G} :

$$S \rightarrow A \mid SS \mid [S]$$

$$A \rightarrow \varepsilon \mid AA \mid (A)$$

Definire un automa a pila che accetta il linguaggio L(G).

Problema 8: Si consideri l'automa a pila con le seguenti transizioni:

$$\delta(q_0, 0, Z_0) = \{(q_0, AZ_0)\}
\delta(q_0, 0, A) = \{(q_0, AA)\}
\delta(q_0, 1, A) = \{(q_0, \varepsilon)\}$$

- 1. Descrivere il linguaggio accettato per stato finale, supponendo che q_0 sia lo stato finale.
- 2. Si supponga di aggiungere alle precedenti la transizione $\delta(q_0,\varepsilon,Z_0)=\{(q_0,\varepsilon)\}$: descrivere il linguaggio accettato per pila vuota dall'automa così ottenuto.

Problema 9: Si consideri la seguente grammatica context free A:

Definire un automa a pila che accetta il linguaggio $L(\mathcal{A})$.

Problema 10: Si consideri il linguaggio composto da tutte le stringhe in $\{0,1\}^*$ aventi stesso numero di 0 e 1.

- 1. Definire un automa a pila che accetti tale linguaggio per pila vuota.
- 2. Derivare da tale automa una grammatica CF che generi il linguaggio in questione.

Problema 11: Si consideri il linguaggio composto da tutte le stringhe in $\{a, b\}^*$ aventi un numero di a almeno pari al numero di b. Definire un automa a pila che accetti tale linguaggio.

Problema 12: Si consideri il linguaggio composto da tutte le stringhe corrispondenti ad espressioni parentetiche bilanciate con tre tipi di parentesi: (), [], {}. Definire un automa a pila che accetti tale linguaggio.

Problema 13: Si consideri la seguente grammatica context free \mathcal{G}_{t} con assioma S:

$$\begin{array}{ccc} S & \rightarrow & aAA \\ A & \rightarrow & aS \mid bS \mid a \end{array}$$

Definire un automa a pila che accetta il linguaggio $L(\mathcal{G})$. Mostrare i passi eseguiti dall'automa per accettare la stringa abaabaaabaaa.

Problema 14:(Prova d'esame del 30-1-2006). Si consideri il linguaggio $L = \{a^nb^{2n}|n>0\}$. Definire un automa a pila che accetti il linguaggio L. Mostrare la computazione di accettazione, da parte di tale automa, della stringa abb.

Problema 15:(Prova d'esame del 18-6-2007). Sia $L \subseteq \{a,b\}^*$ il linguaggio di tutte le stringhe contenenti un numero di a maggiore o uguale del numero di b. definire un automa a pila che riconosca L, descrivendone il modo di operare.

Problema 16:(Prova d'esame del 12-9-2007). Definire un automa a pila che accetti il linguaggio $L \subset \{1, +, = \}^*$ definito come $L = \{1^n + 1^m = 1^{n+m}, n \ge 1, m \ge 1\}$.

Problema 17:(Prova d'esame del 12-9-2007). Sia data la grammatica seguente, con assioma S:

$$\begin{array}{ccc} S & \rightarrow & a \mid b \mid XX \mid XY \mid YX \\ X & \rightarrow & a \mid XX \\ Y & \rightarrow & b \mid YY \end{array}$$

Costruire un NPDA che accetti il linguaggio generato dalla grammatica.

Problema 18:(Prova d'esame del 24-1-2008). Dato l'alfabeto $\Sigma=\{(,),a,b\}$, definire una automa a pila (deterministico o non deterministico) che riconosca tutte le stringhe corrispondenti a espressioni parentetiche bilanciate su Σ .

Problema 19:(Prova d'esonero del 25-2-2015). Si definisca un automa a pila (eventualmente non deterministico) che accetti il linguaggio $L = \{a^rb^sc^t|t=r-s\}$.

Problema 20:(Prova d'esonero del 4-3-2016). Definire un automa a pila che accetti il linguaggio

$$L = \{a^n b^m | 1 \le n \le m\}$$

per pila vuota.

Problema 21:(Prova d'esame del 18-7-2016). Si consideri il linguaggio

$$L = \{w \# x | w, x \in \{0,1\}^+, w^R \text{ è suffisso di } x\}$$

Si verifichi che L è context free definendo un automa a pila che lo accetta.

Problema 22:(Prova d'esame del 17-2-2016). Definire un automa a pila che accetta per stato finale il linguaggio composto dalle stringhe $w \in \{0,1\}^+$ contenenti uno stesso numero di 0 e di 1.