1 Typed λ_{lvar} calculus

Given a set D, let \mathbb{D} be a 4-tuple $(D, \sqcup_D, \bot_D, \top_D)$, and let there be a function $incomp(d) := \forall d' \in D. (d' \neq d \Rightarrow d \sqcup d' = \top_D)$ that models \sqcup -incompatibility among elements of \mathbb{J} , i.e $\mathbb{J} = \{d \in D | incomp(d)\}.$

1.1 Syntax

Types and environments

```
\begin{array}{rcl} T,U & \coloneqq & \mathbf{1} & \text{unit} \\ & \mid & T \times U & \text{product} \\ & \mid & T \to U & \lambda & \text{abstraction} \\ & \mid & \mathcal{J} & \text{threshold set, where } \mathcal{J} \subseteq \mathbb{J} \\ & \mid & \mathcal{D}^d & \text{values } d \text{ in } D \text{ indexed by } \bigsqcup d \\ & \mid & \mathcal{L}^d_{\mathcal{D}} & \text{locations (indexed by } d) \text{ of values in } \mathcal{D}^d \\ \hline \Gamma & \coloneqq & \cdot & \text{empty environment} \\ & \mid & x:T & \text{environment extension} \end{array}
```

Terms and Status bits

Stores and Configurations

 $C := \langle M \mid S \rangle$ programs are pairs of terms and store error runtime crashes

Values

$$\begin{array}{lll} V,W &\coloneqq & l & \text{locations} \\ & \mid & J & \text{threshold set} \\ & \mid & (B,d) & \text{states, where } D \text{ is the distinguished set, and } d \in D \\ & \mid & \lambda x.M & \lambda \text{ abstraction} \\ & \mid & () & \text{unit} \\ & \mid & (M,N) & \text{product} \end{array}$$

Constants

$$K :=$$
 new allocate new LVar | freeze LVar | get read threshold from LVar | **put** add value to LVar

Evaluation Context

$$\begin{array}{cccc} E & := & \square \\ & \mid & V & E \\ & \mid & E & V \\ & \mid & (V, E) \\ & \mid & (E, V) \\ & \mid & \operatorname{let} () = E \operatorname{in} M \\ & \mid & \operatorname{let} (x, y) = E \operatorname{in} M \end{array}$$

1.2 Type System

1.3 Operational semantics

E-Lam
$$\langle (\lambda x.M) \ V \ | \ S \rangle$$
 $\longrightarrow \langle M\{V/x\} \ | \ S \rangle$
E-Unit $\langle \det() = () \text{ in } M \ | \ S \rangle$ $\longrightarrow \langle M \ | \ S \rangle$
E-Pair $\langle \det(x,y) = (V,W) \text{ in } M \ | \ S \rangle$ $\longrightarrow \langle M\{V/x\}\{W/y\} \ | \ S \rangle$
E-New $\langle \text{new} \ | \ S \rangle$ $\longrightarrow \langle l \ | \ S, l \mapsto (0, \bot) \rangle$
E-Freeze $\langle \text{freeze} \ | \ S, l \mapsto (b, d) \rangle$ $\longrightarrow \langle d \ | \ S, l \mapsto (1, d) \rangle$

$$\frac{\text{E-Put}}{s = (b, d)} \quad s' = (b, d') \quad s \sqcup s' \neq \top \\ \overline{\langle \text{put} \ l \ d' \ | \ S, l \mapsto s \rangle} \longrightarrow \langle s' \ | \ S, l \mapsto s' \rangle$$

$$\frac{\text{E-Put-Err}}{\langle \text{put} \ l \ d' \ | \ S, l \mapsto s \rangle} \quad s' = \top \\ \overline{\langle \text{put} \ l \ d' \ | \ S, l \mapsto s \rangle} \longrightarrow \text{error}$$

$$\frac{\text{E-Get}}{\langle \text{get} \ l \ J \ | \ S, l \mapsto (b, d) \rangle} \longrightarrow \langle d' \ | \ S, l \mapsto (b, d) \rangle$$

$$\frac{\text{E-Pair}}{\langle (M, N) \ | \ S \rangle} \longrightarrow \langle M' \ | \ S' \rangle \quad \langle N \ | \ S \rangle \longrightarrow \langle N' \ | \ S'' \rangle$$

$$\frac{\langle M \ | \ S \rangle}{\langle M \ | \ S \rangle} \longrightarrow \langle M' \ | \ S' \rangle \quad \langle M \ | \ S \rangle \longrightarrow \langle N' \ | \ S'' \rangle$$

$$\frac{\text{E-App}}{\langle M \ | \ S \rangle} \longrightarrow \langle M' \ | \ S' \rangle \longrightarrow \langle M' \ N' \ | \ S' \sqcup S'' \rangle$$

$$\frac{\text{E-Lift}}{\langle E[M] \ | \ S \rangle} \longrightarrow_{E} \langle E[M'] \ | \ S \rangle$$

1.4 Syntax sugar

$$\begin{aligned} & \text{T-RunLVar} \\ & \frac{\Gamma \vdash M : \mathcal{L}_{\mathcal{D}}^d \rightarrow ()}{\Gamma \vdash \text{runLVar } M : \mathcal{D}^d} \end{aligned}$$

E-RunLVar $m \longrightarrow (\lambda l. let () = M l in freeze l) new$

2 Metatheory of Typed λ_{lvar} calculus

2.1 Translation to λ_{LVar} from typed λ_{lvar}

Definition 1. A translation is a function $\zeta: C \to \sigma$, such that:

Add partialorder rules for state s, where s = (b, d).

- it should maintain the same number of steps in C when translated into σ ;
- it should not introduce sequentialisation.

```
\zeta(error)
                                                                                 = error
\zeta(\langle \mathbf{get}\ l\ J\ |\ S\rangle)
                                                                                = \langle S ; \mathbf{get} \ l \ P \rangle
                                                                                                                                                                     where p_1 \cong s and P \cong J
                                                                                = \langle S ; \mathbf{put}_i l \rangle
\zeta(\langle \mathbf{put} \ l \ d' \mid S \rangle)
                                                                                                                                                                     where u_{p_i} := \lambda d_i . d \sqcup d_i
\zeta(\langle \mathbf{new} \mid S \rangle)
                                                                                = \langle S ; \mathbf{new} \rangle
                                                              = \langle S ; \mathbf{freeze} \ l \rangle
= \langle S ; (\lambda x.e) \ v \rangle
= \langle S : e e' \rangle
\zeta(\langle \mathbf{freeze} \ l \mid S \rangle)
\zeta(\langle (\lambda x.M) \ V \mid S \rangle)
\zeta(\langle M \ N \mid S \rangle)
\zeta(\langle () \mid S \rangle)
                                                                           = \langle S ; () \rangle
\begin{array}{lll} \zeta(\langle \mathbf{let}\; () = M \; \mathbf{in} \; N \; | \; S \rangle) & = & \langle S \; ; \; (\lambda().e) \; e' \rangle \\ \zeta(\langle (M,N) \; | \; S \rangle) & = & \langle S \; ; \; (\lambda x.\lambda y.\lambda f.u) \rangle \end{array}
                                                                                = \langle S ; (\lambda x. \lambda y. \lambda f. fxy) e e' \rangle
\zeta(\langle \mathbf{let} (x, y) = M \mathbf{in} N \mid S \rangle) = \langle S ; e (\lambda x. \lambda y. e') \rangle
\zeta(\langle M \mid S, l \mapsto (0, d) \rangle) \hspace{1cm} = \hspace{1cm} \langle S[l \mapsto (d, \mathtt{false})] \hspace{1cm} ; \hspace{1cm} e \rangle
                                                                      = \langle S[l \mapsto (d, \texttt{true})]; e \rangle
\zeta(\langle M \mid S, l \mapsto (1, d) \rangle)
```

Lemma 1 (Translation, Typed $\lambda_{lvar} \rightsquigarrow \lambda_{LVar}$). For any translation ζ ,

- if $C \longrightarrow C'$ and $\sigma \hookrightarrow \sigma'$ and $\zeta(C) = \sigma$, then $\zeta(C') = \sigma'$;
- if $C \longrightarrow_E C'$ and $\sigma \mapsto \sigma'$ and $\zeta(C) = \sigma$, then $\zeta(C') = \sigma'$.

Proof. By induction on the structure of C.

Case. $C = \langle \mathbf{error} \mid S \rangle$, $\sigma = \langle S ; \mathbf{error} \rangle$.

C and σ cannot step. Hence, the translation is vacuously valid.

Case. $C = \langle \mathbf{get} \ l \ J \mid S \rangle, \ \sigma = \langle S \ ; \ \mathbf{get} \ l \ P \rangle.$

Given the operational semantics, C steps to $C' = \langle s' \mid S, l \mapsto (b, d) \rangle$. And given λ_{LVar} 's operational semantics, σ steps to $\sigma' = \langle S ; p_2 \rangle$. Applying $\zeta(C')$, we get $\langle S ; p_2 \rangle$. Hence, the translation is valid.

Case. $C = \langle \mathbf{put} \ l \ d' \mid S \rangle, \ \sigma = \langle S \ ; \ \mathbf{put}_i \ l \rangle.$

Given the operational semantics, C can either error or take a step.

Sub-case. $C' = \langle s' \mid S, l \mapsto s' \rangle$

Given λ_{LVar} 's operational semantics, σ steps to $\sigma' = \langle S ; p_2 \rangle$ if $d \sqcup d_i \neq \top$, which is exactly the same as applying ζ to C'.

Sub-case. $C' = \mathbf{error}$

Given λ_{LVar} 's operational semantics, σ steps to $\sigma' = \mathbf{error}$ if $d \sqcup d_i = \top$, which

is exactly the same as applying ζ to C'.

Hence, the translation is valid.

Case.
$$C = \langle \mathbf{new} \mid S \rangle, \ \sigma = \langle S ; \ \mathbf{new} \rangle$$

Case.
$$C = \langle \mathbf{freeze} \mid S \rangle, \, \sigma = \langle S \; ; \; \mathbf{freeze} \rangle$$

Case.
$$C = \langle (M, N) \mid S \rangle, \ \sigma = \langle S ; (\lambda x. \lambda y. \lambda f. fxy) \ e \ e' \rangle$$

Case.
$$C = \langle \mathbf{let}(x, y) = M \mathbf{in} N \mid S \rangle$$
, $\sigma = \langle S ; e'(\lambda x. \lambda y. e) \rangle$

2.2 Determinism

Determinism proof as stated in Kuper'15.

Definition 2. Permutation

Definition 3. Permutation of an expression

Definition 4. Permutation of a store

Definition 5. Permutation of configurations

Lemma 2.

Permutability

Lemma 3.

Internal Determinism

Lemma 4.

Strong Confluence

Lemma 5.

Confluence

Theorem 1.

Determinism

2.3 Type safety

Theorem 2.

Progress

Theorem 3.

Preservation

Corollary 1.

 $Type\ Safety$