# LA03\_Ex2\_KDE

### April 28, 2018

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
from scipy import stats
from sklearn.neighbors import KernelDensity
from statsmodels.nonparametric.kde import KDEUnivariate
from statsmodels.nonparametric.kernel_density import KDEMultivariate
```

#### 1 Task1

Compare the outcomes of different implementations of KDEs.

There are several options available for computing KDE in Python. - SciPy: gaussian\_kde. - Statsmodels: KDEUnivariate and KDEMultivariate. - Scikit-learn: KernelDensity.

### 1.1 1.1. Generate synthethic data and plot them

Generate synthetic dataset the distribution of which can be presented as a combination of three Gausian distributions with the following parameters:  $\mu_1$ =1,  $\sigma_1$ =1 and  $\mu_2$ =8,  $\sigma_2$ =2 and  $\mu_2$ =14,  $\sigma_2$ =1.5. Generate 1000 samples from the distribution.

Plot the pdf of this distribution and the generated samples.



#### 1.2 1.2. Use the generated samples to perform

### 1.2.1 1.2.1. KDE with Scipy



#### 1.2.2 1.2.2. Univariate KDE with Statsmodels

0.000

```
In [5]: """
    source:
    http://www.statsmodels.org/dev/examples/notebooks/generated/kernel\_density.html
    statsmod_univariate_kde = KDEUnivariate(samples)
    statsmod_univariate_kde.fit()
    plt.hist(samples, bins=samples.size//10, normed=True,
              label="Histogram of selected samples",color='lightgrey')
    plt.plot(statsmod_univariate_kde.support, statsmod_univariate_kde.density,
              label= 'Univariate KDE with Statsmodels')
    plt.legend(bbox_to_anchor = (1,1),loc= 2)
    plt.show()
                                                        Univariate KDE with Statsmodels
 0.175
                                                     Histogram of selected samples
 0.150
 0.125
 0.100
 0.075
 0.050
 0.025
```

15

20

10

#### 1.2.3 1.2.3. Multivariate KDE with Statsmodels



#### 1.2.4 1.2.4. KDE with Scikit-learn



## 1.3 Plot all four distributions on one figure.

0.100

0.075

0.025

```
In [8]: plt.hist(samples, bins=samples.size//10, normed=True,
              label="Histogram of selected samples",color='lightgrey')
    plt.plot(x,scipy_kde.evaluate(x),label = 'KDE with Scipy')
    plt.plot(statsmod_univariate_kde.support, statsmod_univariate_kde.density,
              label= 'Univariate KDE with Statsmodels')
    plt.plot(x, statsmod_multivariate_kde.pdf(x),
              label= 'Multivariate KDE with Statsmodels')
    plt.plot(x, np.exp(scikitlearn_kde.score_samples(x[:,np.newaxis])),
              label= 'KDE with Scikit-learn')
    plt.legend(loc=2,bbox_to_anchor=(1,1))
    plt.show()
                                                         KDE with Scipy
 0.175
                                                         Univariate KDE with Statsmodels
                                                         Multivariate KDE with Statsmodels
 0.150
                                                         KDE with Scikit-learn
 0.125
                                                     Histogram of selected samples
```