

Logistic Regression and Decision Trees

Reminder: Regression

We want to find a **hypothesis** that explains the behavior of a **continuous** y

Regression for binary outcomes

Regression can be used to **classify**:

- Likelihood of heart disease
- Accept/reject applicants to Cornell Data Science based on affinity to memes

Estimate likelihood using regression, convert to binary results

Logistic Regression

- 1) Fits a linear relationship between the variables
- 2) Transforms the linear relationship to an estimate function of the **probability** that the outcome is 1.

$$P(x)=\frac{1}{1+e^{-(\beta_0+\beta_1x_1+\ldots+\beta_kx_k)}}$$
 (Recognize this?)
$$\ln{(\frac{P}{1-P})}=\beta_0+\beta_1x_1+\ldots+\beta_kx_k$$

Logistic Function

- Between 0 and 1
- X-axis spans (-inf, inf)

Threshold

Where between 0 and 1 do we draw the line?

- P(x) below threshold:
 predict 0
- P(x) above threshold: predict 1

Confusion Matrix

	P' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Sensitivity

Sensitivity = True Positive/ (True Positive + False Negative)

Also called **True Positive Rate**.

How many positives are correctly identified as positives?

Useful for:

- Airport security
- Initial diagnosis of fatal disease

https://cdn.theatlantic.com/assets/media/img/mt/2015/06/image42/lead_960.jpg?1433269612

Specificity

Specificity = True Negative/ (True Negative + False Positive)

Also called **True Negative Rate**.

How many negatives are correctly identified as negative?

Question:

Name some examples of situations where you'd want to have a high specificity.

Overall Accuracy and Error Rate

Overall accuracy - proportion of all predictions that are true positives and true negatives

Overall error rate - proportion of all predictions that are false positives and false negatives

Accuracy =
(True Positive + True
Negative)/Total

Error Rate =
(False Positive + False Negative)
/Total

Example

Given this confusion matrix, what is the:

- Specificity?
- Sensitivity?
- Overall error rate?
- Overall accuracy?

	p' (Predicted)	n' (Predicted)
P (Actual)	146	32
n (Actual)	21	590

Thresholds matter (a lot!)

What happens to the specificity when you have a

- Low threshold?
- High threshold?

https://sebastianraschka.com/images/faq/logisticregr-neuralnet/sigmoid.png

ROC Curve

Receiver Operating Character

- Visualization of trade-off
- Each point corresponds to specific threshold value

ROC plot for Sperm Deformity Index and Conception

Area Under Curve

$$AUC = \int ROC$$
-curve

Always between 0.5 and 1.

Interpretation:

- 0.5: Worst possible model
- 1: Perfect model

Implementing in R

- Construct a model using the glm() function
 - a) Specify family "binomial"
- 2) Use pROC package to:
 - a) Create an ROC object using roc()
 - b) Plot using plot() and pick a certain threshold value
 - c) Obtain AUC using auc()
- 3) Predict using predict() function and use

Case Study:

Predicting Supreme Court Decisions

And Justice For All

Let's build a model for predicting supreme court decisions.

- Dependent variable: Did the supreme court overturn the lower court's decision?
- Independent variables: various properties of the case

Article on FiveThirtyEight: http://53eig.ht/2mnLUI3

Let's Try Regression

Logistic Regression used on the courts using different predictor variables!

- If case is from 2nd circuit court: +1.66
- If case is from 4th circuit court: +2.82
- If lower court decisions were liberal:
 -1.22
- ...

Is this intuitive?

Review: Supervised Learning

Regression

"How much?"
Used for *continuous* predictions

Classification

"What kind?"
Used for discrete predictions

Pitfall of Regression

<u>Problem:</u> Regression models are **additive** and assume linearity, which won't help us much here.

This approach can lack **interpretability**, which is an important part of any useful model.

Instead: CART (Classification and Regression Trees)

- At each node, split on variables
- Each split maximizes reduction of sum of squares for regression trees
- Very interpretable
- Models a non-linear relationship!

Splitting the data

= red

= gray

How to grow trees(class. tres)

Gini Impurity

- 1 minus probability that random guess i (probability p_i) is correct
- Lower is better

$$1 - \sum p_i^2$$

Entropy

- Information theory concept
- Measures mixed-ness, unpredictability of population
- Lower is better

$$-\sum p_i \log p_i$$

O'Cloudera, Inc. Allrights reserved. 19

Implementing in R

- 1) Construct a model using the rpart() function
 - a) Specify classification ("class") or regression ("anova")
 - b) Specify tree depth, splits, complexity using control
- 2) Plot or print the complexity of model using
- 3) Prune the tree
- 4) Predict using predict() function
- 5) Pick a method/threshold to convert predictions to a final classification

Demo Time!

Coming Up

Your problem set: Project 1 released!

Next week: More advanced classification models

See you then!

