TFT-LCD 绘图加速控制芯片

High Performance TFT-LCD Graphics Controller

▶ 芯片介绍

LT7381 是一款高效能 TFT-LCD 图形加速显示芯片。其主要的功能就是协助 MCU 将所要显示到 TFT 屏的内容传递给 TFT 驱动器(Driver),并且提供图形加速、PIP(Picture-in-Picture)、几何图形绘图等功能,提供了多样的图形显示模式,而 LT7381 也支持非常宽广的显示分辨率,可以由320*240(QVGA)到 1024*768(XGA),显示屏则支持 16/18/24bits的 RGB 接口。

LT7381 支持各种 MCU 接口,包括 SPI、I2C 的串口,或者是 8 位、16 位并行接口。为了达到多层次高分辨率的显示效果,LT7381 内 32Mb 显示内存,

,可以支持从每像素 1bit 的 2 灰阶到高达每像素 24bits 的 16M 颜色显示。同时要减少动画显示的 MCU 在软件操作上的负担,LT7381 内建几何绘图引擎,支持画点、画线、画曲线、椭圆、三角形、矩形、圆角矩形等功能,同时内嵌的硬件图形加速引擎 (BTE) 提供了命令类型的图形操作,如显示旋转、画面镜射、画中画 (PIP/子母画面) 及图形混合透明显示等功能,能够提升产品的显示效能,如果使用高速的 SPI 接口更能减少 MCU I/O口的需求。LT7381 的显示功能非常适合用在有 TFT-LCD 屏的电子产品上,如家电、多功能事务机、工业设备、工业控制、电子仪器、医疗设备、人机接口、检测设备等产品。

🖸 内部方块图

图 A-1: LT7381 内部方块图

▶ 系统应用方块图

图 A-2: LT7381 系统方块图

型号信息

表 A-1: 型号说明

型 号	封 装	封 装 内 建 显 示 内 存		色彩
LT7381	LQFP-128	32Mb	1024*768	16.7M 色

▶ 芯片脚位图

图 A-3: LT7381 引脚图 (LQFP-128Pin)

▶ 功能简介

MCU 界面

- 支持 8 位或 16 位的 8080 或是 6800 并口接口。
- 支持 3 线或 4 线 SPI 串口接口。
- 支持 I2C 串口接口。

显示内存

■ 内建 32Mb 的显示内存。

显示色彩数据格式

■ 1bpp : 单色 (1bit/像素)。

■ 8bpp : 彩色 RGB 3:3:2 (1 byte/像素)。 ■ 16bpp : 彩色 RGB 5:6:5 (2bytes/像素)。

■ 24bpp: 彩色 RGB 8:8:8 (3bytes/像素或是

4bytes/像素)。

➤ Index 2:6 (64 索引色/像素, 含透明度属性)

αRGB 4:4:4:4 (4,096 索引色/像素,含透明 度属性)

面板接口与分辨率

■ 支持 16、18、24bits RGB 接口面板。

■ 支持的分辨率:

QVGA: 320*240 *16/18/24bits TFT 屏WQVGA: 480*272 *16/18/24bits TFT 屏

➤ VGA : **640*480** *16/18/24bits TFT 屏

➤ WVGA: **800*480** *16/18/24bits TFT 屏

> SVGA : **800*600** *16/18/24bits TFT 屏

> QHD : **960*540** *16/18/24bits TFT 屏

> WSVGA: **1024*600** *16/18/24bits TFT 屏

> XGA : 1024*768 *16/18/24bits TFT 屏

显示功能

■ 支持使用者可自行定义4个32*32的图形光标。

■ 提供虚拟显示功能:虚拟显示可显示大于 LCD 面板大小的图像,这样图像可以在任何方向上 轻松滚动。

■ 提供画中画 (PIP) 显示: 支持两个 PIP 视窗区域: 启用的 PIP 视窗显示在主视窗的上层,而 PIP1 视窗显示在 PIP2 视窗的上层。

- 支持多重显示功能:可以在显示缓冲区之间切 换主显示视窗,达到简单的动画显示效果。
- 支持唤醒时迅速显图像功能。
- 支持镜像和旋转、垂直与水平翻转显示功能。
- 彩带显示 (Color Bar Display) : 在没有对内 部显示内存写入数据的情况下仍然可以以彩带 的方式显示, 默认分辨率为 640*480 像素。

区块传输引擎 (BitBLT)

- 内建 2D BitBLT 引擎。
- 提供带光栅运算的复制图像功能。
- 提供颜色深度转换。
- 实心填充和图案填充功能:
 - ▶ 提供用户定义的 8*8 图像或 16*16 图像。
- 提供两个图像合成一个图像功能:
 - ▶ 色度键控功能 (Chroma-Keying): 根据 透明度将图像与指定的 RGB 颜色混合
 - ▶ 图形混合透明模式 (Window Alpha Blending):根据指定区域内的透明度将两个图像混合。
 - ▶ 像素混合透明模式 (Dot Alpha Blending):根据 RGB 格式及透明度将 两个图像混合。

几何图形加速器

■ 提供画点、线、曲线、椭圆、三角形、矩形、 圆角矩形等绘图功能。

显示文字功能

- 内建 ISO/IEC 8859-1/2/4/5 的 8*16、12*24、 16*32 字型。
- 支持使用者自定义半型字角与全型字 (8*16、 12*24、16*32)。
- 提供可程序文字光标。
- 支持垂直与水平放大字型 (*1, *2, *3, *4 倍)。
- 支持文字 90 度旋转。

I2C Master 界面

- 提供 I2C 接口与外部 I2C 装置连接。
- 提供标准传输模式 (100kbps) 与快速传输模式 (400kbps)。

PWM 界面

- 内建 2 组 16bits 计数器。
- 可程序化的工作周期定。

GPIO 与矩阵键盘

- 提供可程序化的 GPIO 或 5*5 矩阵键盘接口。
- 支持长按键及重复键功能。
- 提供按键唤醒。

省电模式

- 提供 3 种省电模式: 待机 (Standby)、休眠 (Suspend) 与睡眠 (Sleep) 模式。
- 支持使用 MCU、按键唤醒。

时钟 (Clock)

■ 内建可程序化 PLL, 提供内部时钟、外部 LCD 时钟、内部显示内存时钟。

复位方式

■ 提供电源启动复位、外部硬件复位和软件命令复 位。

电源供应

- VDD 电压: 3.3V +/- 0.3V。
- 内建 1.8V LDO。

封装型式

■ LQFP-128Pin 封装。

工作温度

■ -40°C~85°C。

ៀ 引脚信号说明

MCU 接口设定信号 (3 根引脚)

表 A-2: MCU 接口设定信号

脚号	引脚名称	I/O	功 能 说 明								
			MCU :	接口设定							
				PSM[2:0]	MCU 接口模式						
				0 0 X	选择并口 8 位或 16 位的 8080 模式						
				0 1 X	选择并口 8 位或 16 位的 6800 模式						
9~11	PSM[2:0]	I		100	选择串口 3 线式 SPI 模式						
									101	选择串口 4 线式 SPI 模式	
				11X	选择串口 I2C 模式						
				ICU 接口设置	是为并行模式,则 PSM[0] 为外部中断输	旧人					
			脚。								

MCU 并口信号 (22 根引脚)

表 A-3: MCU 并口信号

脚号	引脚名称	I/O	功 能 说 明
35~25, 22~18	DB[15:0]	Ю	MCU 数据总线 当与 MCU 连接接口设定为并口模式时,这些数据总线作为与 MCU 的数据传送接口。 DB[15:8] 在 8 位的并口模式下可以设定当作 GPIO 接口使用。 DB[7:0] 也是共享脚位。如果设定为串口模式时,这些数据总线 将作为串口信号使用。请参考表 A-4「MCU 串口信号」说明。
13	CS# GPIB[0]	I	片选信号 CS# = 0,代表 MCU 对 LT7381 进行命令或是数据读写周期。 如果 MCU 接口设置为串口模式,则此脚位可以设置为 GPIB[0], 有内部拉高电阻。
14	RD# EN GPIB[1]	I	读取控制信号 在 8080 并口模式,此引脚为 RD#信号,RD# = 0,代表 MCU 对 LT7381 进行数据读取或是状态读取周期。 在 6800 并口模式,此引脚为 EN 信号,EN = 1,代表 MCU 对 LT7381 的控制处于使能(Enable)周期。 如果 MCU 接口设置为串口模式,则此脚位可以设置为 GPIB[1], 有内部拉高电阻。
15	WR# RW# GPIB[2]	I	写入控制信号 在8080 并口模式,此引脚为WR#信号,WR# = 0,代表MCU 对LT7381 进行命令写入或是数据写入周期。 在6800 并口模式,此引脚为RW#信号,RW# = 1,代表MCU 对LT7381 进行数据读取或是状态读取周期。RW# = 0,代表 MCU对LT7381 进行命令写入或是数据写入周期。 如果MCU接口设置为串口模式,则此脚位可以设置为GPIB[2], 有内部拉高电阻。
16	Α0	I	命令或数据选择信号 A0 = 0, 代表 MCU 对 LT7381 进行状态读取或是命令写入周期。 A0 = 1, 代表 MCU 对 LT7381 进行数据读取或是数据写入周期。
36	INT#	0	中断输出信号 当设定的中断条件发生,此引脚变成低电位,用来产生一中断输 出告知 MCU。
17	WAIT#	0	等待输出信号 当 MCU 对 LT7381 进行读写控制时, 如果 LT7381 处于忙碌状态, 会将 WAIT#变成低电位,用来告知 MCU 进入等待周期。

MCU 串口信号 (8 根引脚)

表 A-4: MCU 串口信号

脚号	引脚名称	I/O	功 能 说 明
27	SCLK (DB[7])	I	串口时钟信号 当与 MCU 连接接口设定为串口模式 (SPI 或 I2C) 时,此引脚为串口时钟信号。 这是一个与并口数据线 DB[7] 共享的引脚。
26	SDI I2C_SDA (DB[6])	I	4线 SPI 数据输入、I2C 数据信号 在串口 4线 SPI 模式,SDI 代表串口数据输入,也就是接收来自 MCU 的 MOSI 输出信号。 在串口 I2C 模式,I2C_SDA 代表 I2C 的数据引脚。 此引脚在 3线 SPI 模式下未被使用,请接到地(GND)。
25	SDO SD I2CA[5] (DB[5])	Ю	4线 SPI 数据输出、3线 SPI 数据信号、I2C 地址选择信号 在串口 4线 SPI 模式,SDO 代表串口数据输出到 MCU 的 MISO 输入端。 在串口 3线 SPI 模式,SD 代表 3线 SPI 的双向资料引脚。 在串口 I2C 模式,此引脚为 I2C 装置地址 bit[5]。 这是一个与并口数据线 DB[5] 共享的引脚。
22	SCS# I2CA[4] (DB[4])	I	SPI 片选信号、I2C 地址选择信号 在串口 SPI 模式,SCS#代表 SPI 片选信号。 在串口 I2C 模式,此引脚为 I2C 装置地址 bit[4]。 这是一个与并口数据线 DB[4] 共享的引脚。
21~18	I2CA[3:0] (DB[3:0])	I	I2C 地址选择信号 在串口 I2C 模式,这些引脚为 I2C 装置地址 bit[3:0]。 这些是与并口数据线 DB[3:0] 共享的引脚。在 3 线 SPI 模式下未 被使用,请接到地(GND)。

PWM 信号 (2 根引脚)

表 A-5: PWM 信号

引脚名称	1/0	功 能 说 明
PWM[0] INITDIS GPIOC[7]	1/0	功能说明 PWM #0 输出信号 此为一个可程序化的 PWM 输出信号,可以用来控制 TFT 屏的背光或是其他元件。PWM 的输出模式可经由寄存器设定来。 PWM[0] 这根引脚在复位(Reset)周期被当成INITDIS「开机显示」引脚,复位时会被检测是否为默认的低电位,如果是则「开机显示」功能被禁止,如果有外部上拉电阻,则复位周期时会检测到高电位,那么「开机显示」功能被使能(Enable)。
CCLK		此引脚与GPIOC[7] 共享,如果PWM被禁能,默认GPIOC[7] 是输入功能或是输出系统时钟信号(CCLK)。
	PWM[0] INITDIS GPIOC[7]	PWM[0] INITDIS GPIOC[7]

表 A-5: PWM 信号 (续)

脚号	引脚名称	1/0	功 能 说 明
			PWM #1 输出信号
91	PWM[1]	10	此为一个可程序化的 PWM 输出信号,可以用来控制 TFT 屏的背
			光或是其他元件。PWM 的输出模式可经由寄存器设定来。

按键矩阵信号 (10 根引脚)

表 A-6: 按键矩阵信号

脚号	引脚名称	I/O	功 能 说 明
101, 107, 100, 99, 92	KI[4:0] I2CMCK	I	按键矩阵的数据输入信号 引脚内建 Pull-Up 电阻。 提示: KI[4:1] 与 PD[8]、PD[2:0] 共享, 因此当数字 TFT-LCD 接 口被设成 24bits 模式,按键矩阵功能将无效。 KI[0] 在使用 I2C Master 时为 I2CMCK 功能。
120,108, 119,118, 128	KO[4:0] I2CMDA	0	按键矩阵的数据输出信号 引脚为 Open-Drain 输出模式。 提示: KO[4:1] 与 PD[9]、PD[18:16] 共享, 因此当数字 TFT-LCD 接口被设成 24bits 模式,按键矩阵功能将无效。 KO[0] 在使用 I2C Master 时为 I2CMDA 功能。

LCD 屏接口信号 (28 根引脚)

表 A-7: LCD 屏接口信号

脚号	引脚名称	I/O	功 能 说 明
			LCD 屏幕扫描时钟信号
96	PCLK	0	屏幕扫描时钟信号连接至通用的 TFT 驱动接口讯号。此信号为内
			部 SPLL 驱动产生。
02	93 VSYNC	0	LCD 垂直同步信号
95			垂直同步信号 VSYNC 连接至通用的 TFT 驱动接口讯号。
94	HCVNC	0	LCD 水平同步信号
94	94 HSYNC		水平同步讯号 HSYNC 连接至通用的 TFT 驱动接口讯号。
05	95 PDE	0	LCD 屏幕数据使能
95			此信号为连接至通用 TFT 驱动接口的数据有效或数据使能信号。

表 A-7: LCD 屏接口信号 (续)

脚号	引脚名称	I/O	功 能 说 明												
			LCI	D 数据总线											
			输出	出数据至 TF	T-LCD 屏的	数据总线,可	可经由寄存器	器来设定连接 棒							
			对应	的 RGB 总	线。										
						TFT-LCD	Interface								
				Pin	11b	10b	01b	00b							
				Name	(GPIO)	(16bits)	(18bits)	(24bits)							
				PD[0]	GF	PIOD[0] / KI	[1]	В0							
				PD[1]	GF	PIOD[1] / KI	[2]	B1							
				PD[2]	GPIOD[6] / KI[4]	B0	B2							
				PD[3]	GPIOE[0]	В0	B1	В3							
				PD[4]	GPIOE[1]	B1	B2	B4							
				PD[5]	GPIOE[2]	B2	В3	B5							
			PD[6]	GPIOE[3]	В3	B4	B6								
			PD[7]	GPIOE[4]	B4	B5	B7								
			PD[8]	GPIOD[2] / KI[3]		[3]	G0								
127~123	DD (00 0)	IO		PD[9]	GPIOD[3] / KO[3]		G1								
120~112 108~99	20~112 PD[23:0]			PD[10]	GPIOE[5]	G0	G0	G2							
100~99											PD[11]	GPIOE[6]	G1	G1	G3
					PD[12]	GPIOE[7]	G2	G2	G4						
				PD[13]	GPIOF[0]	G3	G3	G5							
				PD[14]	GPIOF[1]	G4	G4	G6							
				PD[15]	GPIOF[2]	G5	G5	G7							
							PD[16]		PIOD[4] / KC		R0				
				PD[17]		IOD[5] / KO		R1							
				PD[18]	_	7] / KO[4]	R0	R2							
				PD[19]	GPIOF[3]	R0	R1	R3							
			PD[20]	GPIOF[4]	R1	R2	R4								
			PD[21]	GPIOF[5]	R2	R3	R5								
			PD[22]	GPIOF[6]	R3	R4	R6								
			4	PD[23]	GPIOF[7]	R4	R5	R7							
				置为 18bpp				共享。例如 LC 被定义为 GPIO							

GPIO 信号 (28 根引脚)

表 A-8: 通用 IO 口信号

脚号	引脚名称	1/0	功 能 说 明
35~28	GPIOA[7:0]	Ю	GPIO 输出/输入信号 GPIOA[7:0] 为通用型 I/O,这些引脚与 DB[15:8] 共享,只有 MCU 设成 8 位并口模式或串口模式时 GPIOA 才可以使用。这些 引脚的输出模式可经由寄存器设定来。
92, 128, 16~13	GPIB[4], GPOB[4], GPIB[3:0]	Ю	GPIO 输出/输入信号 GPIB[4] 的输出数据与 KI[0] 共享引脚; GPOB[4] 的输出数据与 KO[0] 共享引脚; GPIB[3:0] 的输入信号与{ A0, WR#, RD#, CS# } 共享引脚。GPIB[3:0] 只提供读取功能,并只有在 MCU 设 成串口模式才可以使用。这些引脚的输出模式可经由寄存器设定 来。
90	GPIOC[7]	Ю	GPIO 输出/输入信号 GPIOC[7] 的输出数据与 PWM[0] 共享引脚。 GPIOC[7] 功能只有在 PWM 的功能被禁止时才能使用,此引脚 的输出模式可经由寄存器设定来。
120, 101 119, 118 108, 107 100, 99	GPIOD[7:0]	Ю	GPIO 输出/输入信号 GPIOD[7:0] 与 PD[18, 2, 17, 16, 9, 8, 1, 0] 共享引脚, GPIOD[5,4,1,0] 只有在 LCD 屏幕数据总线设成 16 或 12bits 时 才能使用, GPIOD[7,6,3,2] 则只有在 LCD 屏幕数据总线设成 16bits 时才能使用。这些引脚的输出模式可经由寄存器设定来。

复位与测试信号 (4根引脚)

表 A-9: 复位与测试信号

脚号	引脚名称	1/0	功 能 说 明
			复位输入信号
12	RST#	I/O	当 RST# = 0 时,并且维持 256 个时钟周期长度,LT7381 将产生
			复位动作。
			测试模式信号
			这些引脚是提供给 LT7381 在测试时使用,正常使用应连接到地
6~8	TEST[2:0]	I	(GND) 。
			如果TEST[0] 为1时,则内部PLL被禁能,芯片的时钟信号将由外
			部引脚提供。

电源与时钟信号 (23 根引脚)

表 A-10: 电源与时钟信号

脚号	引脚名称	I/O	功 能 说 明
1	ΧI	I	晶振 (Crystal) / 时钟信号 输入 此引脚连接至外部晶振,为内部晶振电路输入信号,当使用有源 晶振或是外部时钟信号可以由此脚输入。晶振频率 (OSC) 范围 在 4MHz ~ 12MHz 之间。
2	ХО	0	晶振(Crystal)输出 此引脚连接至外部晶振,为内部晶振电路输出信号。
4, 63, 111	VDD_C	PWR	内核电源输出 每根 VDD_C 引脚必须外接一个 1uF 和一个 0.1uF 滤波电容到地。
3, 23, 42, 62, 75, 88, 97, 109, 121	VDD	PWR	3.3V 电源输入
5, 24, 43~50, 64~70, 76~80, 89 98, 110, 122	VSS	PWR	GND 接地

下表是 LT7381 系列支持的 MCU 接口对应表:

表 A-11: LT7381 系列支持的 MCU 接口

No.	MCU 接 口 模 式	LT7381	
1	并口 8 位的 8080 模式	٧	
2	并口 16 位的 8080 模式	V	
3	并口 8 位的 6800 模式	V	
4	并口 16 位的 6800 模式	V	
5	串口 3 线式 SPI 模式	V	
6	串口 4 线式 SPI 模式	V	
7	串口 I2C 模式	V	

▶ 封装信息

■ LT7381 (LQFP-128pin)

图 B-1: 128Pin LQFP 外观尺寸图

表 B-1: 128Pin LQFP 尺寸参数

Symbol	Millimeter			Cumple of	Millimeter		
	Min.	Nom.	Max	Symbol	Min.	Nom.	Max
A	-	-	1.60	D1	13.9	14.0	14.1
A1	0.05	-	0.15	E	15.8	16.0	16.2
A2	1.35	1.40	1.45	E1	13.9	14.0	14.1
A3	0.59	0.64	0.69	eB	15.05	-	15.35
b	0.14	-	0.22	е	0.40BSC		
b 1	0.13	0.16	0.19	L	0.45	-	0.75
С	0.13	-	0.17	L1	1.00REF		
c1	0.12	0.13	0.14	θ	0		7
D	15.8	16.00	16.2				