PRODUCT SPECIFICATION

GM71256

262,144 × 1BIT DYNAMIC RAM

Description

The GM71256 is high speed, high performance dynamic RAM, organized 262,144 and manufactured using advanced NMOS silicon-gate technology. The design is optimised for both high speed and low power dissipation.

The GM71256 features multiplexed addressing, and all input signals, include clocks, are TTL-compatible, input and output signals are the same polarity, and the 3-state output buffer is $\overline{\text{CAS}}$ controlled. The Hi-C single transistor memory cell is used to enhance signal margin and reduce the α particle included soft error. This device offers page mode operation which allows high speed random access memory cells within the same row.

The GM71256 features single power supply of $5V\pm10\%$ tolerance and is available a 16 pin plastic DIP or cerdip

Features

- 262,144 words × 1-bit organization
- 100/120/150 ns access time from RAS
- 50/60/75 ns access time from CAS
- 385/360/330 mW active power, Page Mode,
- 25 mW standby power
- Multiplexed address inputs
- ±10% power supply tolerance.
- · Read-Modify-Write capabilities
- RAS Only Refresh/Hidden Refresh
- Latched or high impedance output during refresh
- 256 refresh cycles /4ms
- Page Mode operation

Pin Configuration

Pin Description

V_{CC}	+5V Supply
D	Data In
D _{aux}	Data Out

A₀-A₈ Address Input (0-8)
W Write Enable
RAS Row Enable
CAS Column Enable

V_{SS} Ground NC No Connect

Absolute Maximum Ratings*

PARAMETER	SYMBOL	VALUE	UNIT
Voltage Range on V _{CC} Relative to V _{SS}	V _{cc}	-1.0 to +7.0	٧
Power Dissipation	PĎ	1.0	w
Case Operating Temperature Range	T _C	0 to 85	°C
Ambient Operating Temperature Range	T _A	0 to 70	°C
Storage Temperature Range **	T _{stq}		
Ceramic Package		-65 to +160	°C
Plastic Package		-55 to +120	°C
Short Circuit Output Current	los	50	mA

Maximum Ratings are defined as the limiting conditions that the user can apply to the device under all variations of circuit and environmental conditions. If any rating is exceeded, permanent damage to the device may result. Extended operation at any of these conditions may result in reduced reliability.

^{**} Bonding or soldering of the external pins of these devices can be performed safely at temperatures up to 300°C.

Recommended Opreating Conditions: $(T_A=0 \text{ to } 70^{\circ}\text{C})$

PARAMETER	SYMBOL	MIN	NOM	MAX	UNIT
Supply Voltages	V _{CC} V _{SS}	4.5 0	5.0 0	5.5 0	V V
Input Voltages* High Level—All Inputs (Logic 1) Low Level—All Inputs (Logic 0)	V _{IH} V _{IL}	2.4 -1.0		6.5 0.8	V V
Refresh Cycle Time**	t _{REF}	_	_	4.0	ms

^{*} Application of invalid levels may destroy stored information during that cycle as well as the first cycle using valid levels. Data out is indeterminate.

Figure 1. GM71256 Dynamic RAM Block Diagram

^{**} Addresses A0-A7 are used for refresh. A8 must be a valid one or zero.

Electrical Characteristics: ($V_{CC}=5V~\pm10\%,~V_{SS}=0V,~T_A=0~to~70^{\circ}C$)

DADAMETER	SYMBOL	GM712	256-10	GM712	256-12	GM712	256-15	UNIT
PARAMETER	SYMBOL	MIN	мах	MIN	MAX	MIN	MAX	ONIT
Output Voltages Low Level (I_{OL} =4.2mA) High Level (I_{OH} =-5.0mA)	V _{OL} V _{OH}	_ 2.4	0.4	_ 2.4	0.4	_ 2.4	0.4.	V V
Power Supply Currents Operating Current (Average Operating Current RAS & CAS Cycling t _{RC} =minimum)	l _{cci}	-	70*		65*	_	60*	mA
Standby Current (RAS=V _{IH} , Q=High Impedance)	I _{CC2}	_	4.5	_	4.5	_	4.5	mA
Refresh Current (Average Operating Current, Refresh Mode Operation) RAS Cycling, CAS=V _{IH} , t _{RC} =min.	I _{CC3}	_	55*	_	50°	_	45*	mA
Page Mode Current (Average Operating Current, Page Mode Operation, RAS=V _{IL} , CAS Cycling, t _{PC} =minimum)	I _{CC4}	_	50*	_	45*		40*	mA
Input Leakage Current (V _{CC} =5.5 V, V _I =0 to 6.5 V, All other leads at 0 V)	l _i	-10	10	-10	10	-10	10	μА
Output Leakage Current $(Q=High\ Impedance,\ V_Q=0\ to\ V_{CC})$	lo	-10	10	-10	10	-10	10	μА
Input Capacitance (A0-A8)**	C ₁₁	_	5	_	5	_	5	pF
Input Capacitance (D, W Leads)**	C ₁₂	_	5	_	5		5	pF
Input Capacitance (RAS, CAS Leads)**	C ₁₃	_	10	_	10	_	10	pF
Output Capacitance (Q Lead)**	Co	_	7	_	7	_	7	pF

^{*} Maximum occurs at $T_A=0$ °C, I_{CC1} , I_{CC3} , I_{CC4} , and I_{CC5} are specified with output open-circuited. * Parameter periodically sampled and not 100% tested.

Timing Characteristics: (V_{CC}=5V \pm 10%, V_{SS}=0V, T_A=0 to 70°C) (Notes 1, 2, and 3)

DECODINE ION	SV44DQI	JEDEC	GM71	256-10	GM71	256-12	GM71	256-15	UNIT
DESCRIPTION	SYMBOL	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	OIVII
Random Read/Write Cycle Time	t _{RC}	† _{RELREL}	200		220	-	260		ns
Access Time fror RAS (Notes 4 & 5)	t _{RAC}	t _{RELOV}		100		120	_	150	ns
Access Time from CAS (Notes 5 & 6)	t _{CAC}	t _{CELQV}		50	_	60	_	75	ns
Output Buffer Time Off Delay (Note 7)	t _{OFF}	t _{CEHOZ}	0	20	0	30	0	30	ns
Transition Time	t⊤	t _T	2	50	2	50	2	50	ns
RAS Precharge Time	t _{RP}	t _{REHREL}	90	_	90	-	100 150	10000	ns ns
RAS Pulse Width	t _{RAS}	t _{RELREH}	100	10000	120 60	10000	75	10000	ns
RAS Hold Time	t _{RSH}	TCELREH	50 50	10000	60	10000	75	10000	ns
CAS Pulse Width (Note 8)	tCAS	t _{CELCEH}	1	10000	120	10000	150	10000	ns
CAS Hold Time	t _{CSH}	t _{RELCEH}	100	-		60	25	75	ns
RAS to CAS Delay (Note 4)	t _{RCD}	TRELCEL	25	50	25	60	1		1 1
CAS to RAS Precharge Time	^t CRP	[CEHREL	0	_	0		0		ns
Row Address Setup Time	tasa	tRAVREL	0		0		0		ns
Row Address Hold Time	t _{RAH}	t _{RELRAX}	15	_	15		15	_	ns
Column Address Setup Time	tASC	t _{CAVCEL}	0	_	0		0	!	ns
Column Address Hold Time	t _{CAH}	t _{CELCAX}	20		25		30	_	ns
Column Address Hold Time Ref. to RAS	t _{AR}	t _{RELCAX}	75		90	_	105		ns
Read Command Hold Time Ref. to RAS	t _{RRH}	t _{REHWX}	10	_	10	_	10		ns
Read Command Setup Time	t _{RCS}	twhceL	0		0	-	0	_	ns
Read Command Hold Time Ref.	t _{RCH}	t _{CEHWX}	0		0	_	0	_	ns
Write Command Hold Time	t _{WCH}	t _{CELWX}	15	-	20	-	25	-	ns
Write Command Hold Time Ref. to RAS	t _{wcr}	t _{RELWX}	85		100	_	120	-	ns
Write Command Pulse Width	t _{WP}	twwh	15	-	20	_	25	_	ns
Write Command to RAS Lead Time	t _{RWL}	twireh	30	-	35	-	45	-	ns
Write Command to CAS Lead Time	t _{CWL}	twlceh	20	-	30		40	_	ns
Data In Setup Time	t _{DS}	† _{DVCEL}	0	_	0	_	0	-	ns
Data In Hold Time	ţoн	tCELDX	15	_	100		120	_	ns ns
Data In Hold Time Ref. to RAS Write Command Setup Time	t _{DHR}	t _{RELDX}	85	_		_	1		}
(Note 9)	twcs	twicel	0	_	0		0		ns
CAS to W Delay							0.5		_
(Read-Modify-Write) RAS to W Delay	tcwp	¹ CELWL	25	-	30	_	35	-	ns
(Read-Modify-Write) (Note 6) Data In Hold Time	t _{RWD}	t _{RELWL}	75	-	100	_	125	_	ns
(Read-Modify-Write) (Note 6)	t _{DH}	t _{WLDX}	20	_	20	_	20	-	ns
Data In Setup Time (Read-Modify-Write)	t _{DS}	t _{DVWL}	0	_	0	-	0	_	ns
Refresh Period	t _{REF}	t _R	-	4.0	-	4.0	-	4.0	ms
Cycle Time (Read-Modify-Write)	t _{RMW}	twrelrel	245		260		310	_	ns

	SV44DOL	JEDEC	JEDEC GM71256-10		GM71256-12		GM71256-15		UNIT
DESCRIPTION	SYMBOL	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	0
PAGE MODE OPTION									
Page Mode Cycle Time CAS Precharge Time	t _{PC}	t _{CELCEL}	120 45	_	130 50		145 60	_ _	ns ns

- 1. Timing specifications given assume t_{γ} = 5ns.
- 2. V_{IH} (min), V_{IL} (max) are reference levels for timing specifications or inputs signals. Transition times are to be measured between these reference levels.
- 3. An initial pause of 100 µs followed by a minimum of 8 refresh cycles is necessary after V_{CC} is applied, to achieve proper device operation. Address A0-A7 are used for refresh. A8 must be a valid one or zero.
- 4. For $t_{RELCEL} > t_{RELCEL}$ (max.), t_{RELOV} will increase by the amount that t_{RELCEL} (max.) is exceded. 5. Q load assumed to be equivalent to 2 TTL loads and 100 pF.

- 6. Assumes t_{RELCEL} ≥ t_{RELCEL} (max.)
 7. t_{CEHOZ} (max.) defines the time at which Q achieves the open circuit condition.
 8. CAS can be held at Logic 0 for an indefinite time for latched output during refresh. However, t_{RELRAX} must be increased to 100ns.
- 9. Non-restrictive operating parameter. If t_{WLCEL} ≥ t_{WLCEL} (min.), the cycle is an early write cycle and the dat out (Q) will remain an open circuit (high impedance) for the entire cycle. If $t_{CELWL} \ge t_{CELWL}$ (min.) and $t_{RELWL} \ge t_{RELWL}$ (min.), the cycle is a read-wifte cycle and the data out (Q) will validly reproduce the data contained in the selected cell. If neither of the above sets or conditions is satisfied, data out will be indeterminate.

Timing Waveforms

Figure 2 Read Cycle

Figure 3. Write Cycle (Early Write)

Figure 4. Read-Write/Read-Modify-Write Cycle

NOTE: Input \overline{CS} ≥V_{IH}, Input \overline{W} = Don't Care

Figure 5. RAS Only Refresh Cycle (Note 3)

Figure 6. Hidden Refresh Cycle (Notes 3 and 8)

Figure 7. Page Mode Read Cycle

Figure 8. Page Mode Write Cycle

Figure 9. Page Mode Read-Modify-Write Cycle

T-90-20

PACKAGE DIMENSION

PLASTIC DIP

(UNIT: INCHES)

SYMBOL	16	PIN	18	PIN	20	PIN	22	PIN
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	0.738	0.752	0.875	0.900	1.013	1.040	1.095	1.150
В	0.245	0.255	0.245 -	0.255	0.263	0.273	0.260	0.287
С	0.143	0.152	0.145	0.162	0.143	0.152	0.145	0.160
D	TYP. 0.018		TYP. 0.018		TYP. 0.018		TYP. 0.018	
F	TYP.	0.063	TYP. 0.060		TYP. 0.065		TYP. 0.060	
G	0.09	0.11	0.09	0.11	0.09	0.11	0.09	0.11
H	0.015	0.030	0.04	0.05	0.058	0.066		0.075
J	0.009	0.014	0.009	0.015	0.009	0.010	0.009	0.010
К	0.125	0.145	0.125	0.130	0.125	0.132	0.125	0.142
L	0.300	BSC	0.300	BSC	0.300	DBSC	0.300	
M	0′	10'	0'	10'	0'	10'	0'	10'
N	0.015	_	0.015		0.015		0.015	- 10

SYMBOL	24	PIN	28	PIN			<u> </u>	
OT MIDOL	MIN	MAX	MIN	MAX				·
Α	1.243	1.260	1.415	1.460				
В	0.535	0.545	0.535	0.545				
С	0.158	0.170	0.158	0.170				
D	TYP. 0.018		TYP. 0.018					
F	TYP. 0.060		TYP.	TYP. 0.060				
G	0.09	0.11	0.09	0.11				
Н	0.06	0.075	0.06	0.076				
j	0.009	0.015	0.009	0.015				
K	0.125	0.132	0.125	0.132			+	
L	0.600	0.625	0.600	0.620		 	 	
М	0′	10'	0'	10'		1	*	
N	0.008	_	0.008				~	

T-90-20

PACKAGE DIMENSION

CER DIP

(UNIT : INCHES)

CVMPOL	16	PIN	20	PIN	24	PIN	28 PIN	
SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
A	0.753	0.785	0.940	0.985	1.240	1.290	1.440	1.485
В	0.272	0.294	0.265	0.306	0.514	0.526	0.514	0.598
С	0.165	0.200	0.165	0.200	0.165	0.200		0.225
D	0.015	0.021	0.015	0.021	0.015	0.021	0.015	0.023
F	0.055	0.065	0.055	0.065	0.055	0.065	0.055	0.065
G	0.09	0.11	0.09	0.11	0.09	0.11	0.09	0.11
Н	0.012	0.060	0.012	0.060	0.040	0.098	0.040	0.098
J	0.008	0.012	0.008	0.012	0.008	0.012	0.008	0.012
К	0.125	0.20	0.125	0.20	0.125	0.20	0.125	0.20
L	0.29	0.32	0.29	0.32	0.590	0.620	0.590	0.620
М	0′	10'	0'	10'	0'	10'	0′	10'
N	0.02	0.06	0.02	0.07	0.02	0.07	0.02	0.07

PACKAGE DIMENSION

SOP

(UNIT : INCHES)

CODE NO.	20	F	24	F	24	FW	
PIN	20 PIN		24 PIN		24	PIN	
SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	- 1
Α	0.496	0.510	0.602	0.614	0.622	0.638	
В	0.292	0.299	0.292	0.299	TYP.	0.331	
С	0.097	0.104	0.097	0.104	_	0.098	
D	0.014	0.019	0.014	0.019	0.012	0.018	
F	0.018	0.035	0.018	0.035	TYP	0.039	
G	0.050	0.050 BSC		BSC	0.05	0 BSC	
J	0.010	BSC	0.010	BSC	0.01	O BSC .	
K	0.004	0.008	0.0055	0.0115	0.004		
P	0.400	0.410	0.400	0.410	0.453	0.477	
М	0'	8'	0,	8′			

CODE NO.	28 F 28 PIN		28	FW		- · · · · · · · · · · · · · · · · · · ·
PIN			28	PIN	<u> </u>	 -
SYMBOL	MIN	MAX	MIN	MAX		
Α	0.703	0.712	0.720	0.750		
В	0.292	0.289	TYP. 0.331			
С	0.097	0.104		0.098		
D -	0.014	0.019	0.012	0.018		· · · · · · · · · · · · · · · · · · ·
F	0.018	0.035	TYP.	0.039		
G	0.050	BSC	0.05	0 BSC		
j	0.010	BSC	0.01	0 BSC		
К	0.0055	0.0115	0.004	_		
Р	0.400	0.410	0.453	0.477		
M	0'	8'	_	_		

PACKAGE DIMENSION

SIDE BRAZED

T-90-20

(UNIT: INCHES)

SYMBOL	22	PIN
J WINDOL	MIN	MAX
A	1.088	1.112
В	0.281	0.298
С	_	0.160
D	0.016	0.020
E	0.004	_
F	TYP.	0.050
G	0.09	0.105
Н	0.035	0.065
J	0.009	0.011

SYMBOL	22 PIN	
	MIN	MAX
K	0.14	0.170
L	0.290	0.310
M	0.265	0.275
N	0.020	0.050
0	0.555	0.565
Р	TYP. 0.050	
Q	0.092	0.122
R	0.005	
· s	0.08	