Introduction to Machine Learning

Advanced Regression Losses

Learning goals

- Know the Huber loss
- Know the log-barrier loss
- Know the ϵ -insensitive loss
- Know the quantile loss
- Know the Cauchy loss
- Know the log-cosh loss

ADVANCED LOSS FUNCTIONS

- Advanced loss functions are designed to achieve special properties (e.g., robustness and smoothness for the Huber or Cauchy loss).
- Furthermore, special loss functions are necessary in certain applications.
- Examples:
 - Quantile loss: Overestimating a clinical parameter might not be as bad as underestimating it.
 - Log-barrier loss: Extremely under- or overestimating demand in production would put company profit at risk.
 - \bullet ϵ -insensitive loss: A certain amount of deviation in production does no harm, larger deviations do.
- Sometimes a custom loss must be designed specifically for the given application.
- Some learning algorithms use specific loss functions, e.g., the hinge loss for SVMs.

HUBER LOSS

$$L(y, f(\mathbf{x})) = \begin{cases} \frac{1}{2}(y - f(\mathbf{x}))^2 & \text{if } |y - f(\mathbf{x})| \le \delta \\ \delta |y - f(\mathbf{x})| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases}, \quad \delta > 0$$

- Piece-wise combination of L1/L2 to have robustness/smoothness
- Analytic properties: convex, differentiable, robust

- Risk minimizer and optimal constant do not have a closed-form solution. To fit a model numerical optimization is necessary.
- The solution is a trimmed mean: a (conditional) mean between two (conditional) quantiles.

LOG-BARRIER LOSS

$$L(y, f(\mathbf{x})) = \begin{cases} -a^2 \cdot \log\left(1 - \left(\frac{|y - f(\mathbf{x})|}{a}\right)^2\right) & \text{if } |y - f(\mathbf{x})| \le a\\ \infty & \text{if } |y - f(\mathbf{x})| > a \end{cases}$$

- Behaves like L2 loss for small residuals.
- We use this if we don't want residuals larger than a at all.
- No guarantee that the risk minimization problem has a solution.
- Plot shows log-barrier loss for a = 2:

LOG-BARRIER: OPTIMAL CONSTANT MODEL

- Similarly to the Huber loss, there is no closed-form solution for the optimal constant model $f(\mathbf{x}) = \theta$ w.r.t. the log-barrier loss. Numerical optimization is necessary.
- Note that the optimization problem has no (finite) solution if there
 is no way to fit a constant where all residuals are smaller than a.

ϵ -INSENSITIVE LOSS

$$L(y, f(\mathbf{x})) = \begin{cases} 0 & \text{if } |y - f(\mathbf{x})| \le \epsilon \\ |y - f(\mathbf{x})| - \epsilon & \text{otherwise} \end{cases}, \quad \epsilon \in \mathbb{R}_+$$

- Modification of L1 loss, errors below ϵ accepted without penalty.
- Properties: convex and not differentiable for $y f(\mathbf{x}) \in \{-\epsilon, \epsilon\}$.

ϵ -INSENSITIVE LOSS: OPTIMAL CONSTANT

What is the optimal constant model $f(\mathbf{x}) = \theta$ w.r.t. the ϵ -insensitive loss $L(y, f(\mathbf{x})) = |y - f(\mathbf{x})| \, \mathbb{1}_{\{|y - f(\mathbf{x})| > \epsilon\}}$?

$$\begin{split} \hat{\theta} &= & \underset{\theta \in \mathbb{R}}{\arg \min} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right) \\ &= & \underset{\theta \in \mathbb{R}}{\arg \min} \sum_{i \in I_{\epsilon}} \left|y^{(i)} - \theta\right| - \epsilon \\ &= & \underset{\theta \in \mathbb{R}}{\arg \min} \sum_{i \in I_{\epsilon}} \left|y^{(i)} - \theta\right| - \sum_{i \in I_{\epsilon}} \epsilon \\ &= & \underset{\theta \in \mathbb{R}}{\operatorname{median}} \left(\left\{y^{(i)} \mid i \in I_{\epsilon}\right\}\right) - |I_{\epsilon}| \cdot \epsilon \end{split}$$

with
$$I_{\epsilon} := \{i : |y^{(i)} - f(\mathbf{x}^{(i)})| \le \epsilon\}.$$

QUANTILE LOSS

$$L(y, f(\mathbf{x})) = \begin{cases} (1 - \alpha)(f(\mathbf{x}) - y) & \text{if } y < f(\mathbf{x}) \\ \alpha(y - f(\mathbf{x})) & \text{if } y \ge f(\mathbf{x}) \end{cases}, \quad \alpha \in (0, 1)$$

- Extension of *L*1 loss (equal to *L*1 for $\alpha = 0.5$).
- Weights either positive or negative residuals more strongly.
- α < 0.5 (α > 0.5) penalty to over-estimation (under-estimation)
- Also known as pinball loss.

QUANTILE LOSS

What is the optimal constant model $f(\mathbf{x}) = \theta$ w.r.t. the quantile loss?

$$\hat{\theta} = \underset{\theta \in \mathbb{R}}{\operatorname{arg\,min}} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)
\Leftrightarrow \hat{\theta} = \underset{\theta \in \mathbb{R}}{\operatorname{arg\,min}} \left\{ (1 - \alpha) \sum_{y^{(i)} < \theta} \left| y^{(i)} - \theta \right| + \alpha \sum_{y^{(i)} \ge \theta} \left| y^{(i)} - \theta \right| \right\}
\Leftrightarrow \hat{\theta} = Q_{\alpha}(\{y^{(i)}\})$$

where $Q_{\alpha}(\cdot)$ computes the empirical α -quantile of $\{y^{(i)}\}, i = 1, ..., n$.

CAUCHY LOSS

$$L(y, f(\mathbf{x})) = \frac{c^2}{2} \log \left(1 + \left(\frac{|y - f(\mathbf{x})|}{c} \right)^2 \right), \quad c \in \mathbb{R}$$

- Particularly robust toward outliers (controllable via c).
- Analytic properties: differentiable, robust, but not convex!

LOG-COSH LOSS

$$L(y, f(\mathbf{x})) = \log\left(\cosh(|y - f(\mathbf{x})|)\right)$$

- Logarithm of the hyperbolic cosine of the residual.
- Approximately equal to $0.5(|y f(\mathbf{x})|)^2$ for small \mathbf{x} and to $|y f(\mathbf{x})| \log 2$ for large \mathbf{x} , meaning it works mostly like L2 loss but is less outlier-sensitive.
- Has all the advantages of Huber loss and is, moreover, twice differentiable everywhere.

