Administrivia

Homework 5 is due on Thursday by 11:59PM.

There will be no homework assigned over the break, but there will be a written project "proposal" due after the break.

The Simply Typed Lambda Calculus: The Curry-Howard Isomorphism

Type Theory and Mechanized Reasoning Lecture 12

Objectives

Finish our discussion of strong normalization.

Look at data types in STLC.

Get a peek into the Curry-Howard Isomorphism.

Strong Normalization of STLC

$$f: \bot \to \bot \vdash \lambda x . fx : \bot \to \bot$$

$$f: \bot \to \bot \vdash \lambda x . fx : \bot \to \bot$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \lambda x . fx : \bot \to \bot$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \lambda x.fx: \bot \to \bot$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \lambda x.fx: \bot \to \bot$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \underset{\lambda}{\lambda x.fx}: \bot \underset{\text{simple type typing statement}}{\lambda x.fx}$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \underset{\text{context}}{\lambda x.fx}: \underset{\text{simple type typing statement}}{\bot}$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \lambda x.fx: \bot \to \bot$$
context

co

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

Simply Typed Lambda Calculus (Types)

$$\varnothing \vdash A : \mathsf{Type} \qquad \varnothing \vdash B : \mathsf{Type}$$
 $\varnothing \vdash A \to B : \mathsf{Type}$

Type formation rules are used to build types within and for judgments.

(These are the same as our inductive rules, but written as typing judgments)

Simply Typed Lambda Calculus (Terms)

$$\frac{\Gamma \vdash A : \mathsf{Type}}{\Gamma, x : A \vdash x : A} \ (x \not\in \Gamma)$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \rightarrow B}$$

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathsf{Type}}{\Gamma, x : B \vdash M : A} \quad (x \notin \Gamma) \qquad \frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash MN : B}$$

<u>Term formation rules</u> are used to generate typeable terms in the simply typed lambda calculus.

Simply Typed Lambda Calculus (Terms)

start

$$\frac{\Gamma \vdash A : \mathsf{Type}}{\Gamma, x : A \vdash x : A} \ (x \not\in \Gamma)$$

abstraction

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \rightarrow B}$$

weakening

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathsf{Type}}{\Gamma, x : B \vdash M : A} \quad (x \notin \Gamma)$$

application

$$\frac{\Gamma \vdash M : A \to B}{\Gamma \vdash MN : B}$$

<u>Term formation rules</u> are used to generate typeable terms in the simply typed lambda calculus.

Theorem. Every lambda term which is typeable in STLC is strongly normalizing.

Theorem. Every lambda term which is typeable in STLC is strongly normalizing.

» All programs we can write in STLC terminate.

Theorem. Every lambda term which is typeable in STLC is strongly normalizing.

- » All programs we can write in STLC terminate.
- » In STLC, we can use any reduction strategy.

Induction on Derivations

 \vdots $\Gamma \vdash M : A$

If we want to prove that P holds of all typeable terms, we have to show that it holds of all terms M for any choice of the last inference rule in a derivation of M.

The Application Case

$$\frac{\Gamma \vdash M : A \to B}{\Gamma \vdash MN : B}$$

We need to show that if P holds of M and it holds of N then it also holds of MN.

The Application Case (Stronger)

$$\frac{\Gamma \vdash M : A \to B}{\Gamma \vdash MN : B}$$

We need to show that if $P_{A \to B}$ holds of M and P_A holds of N then P_B also holds of MN.

Fact. If $\Gamma \vdash M : A$ then all free variables of M appear in Γ .

Fact. If $\Gamma \vdash M : A$ then all free variables of M appear in Γ .

We can't derive a term in a context Γ which uses a variable not appearing in Γ , e.g.,

 $x:A,y:B \not\vdash \lambda x.w:C \to D$

Fact. If $\Gamma \vdash M : A$ then all free variables of M appear in Γ .

We can't derive a term in a context Γ which uses a variable not appearing in Γ , e.g.,

 $x:A,y:B \nvdash \lambda x.w:C \rightarrow D$

Let's prove this...

Normalization Theorem: Attempt One

Theorem. Every typeable term in STLC is SN.

Let's try to prove this...

 $\frac{\Gamma \vdash \lambda x . M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : M)N : B}$

$$\frac{\Gamma \vdash \lambda x . M : A \rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : M)N : B}$$

How do we know M[N/x] is strongly normalizing?

$$\frac{\Gamma \vdash \lambda x . M : A \rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : M)N : B}$$

How do we know M[N/x] is strongly normalizing?

The issue. Substitution can create redexes.

$$\frac{\Gamma \vdash \lambda x . M : A \rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : M)N : B}$$

How do we know M[N/x] is strongly normalizing?

The issue. Substitution can create redexes.

$$(\dots(xQ)\dots)[(\lambda y . N)/x] = (\dots((\lambda y . N)Q)\dots)$$

Understanding Check

Find an expression of the form $(\lambda x.M)N$ such that M[N/x] has more redexes than $(\lambda x.M)N$.

We will prove something different depending on the type of the typeable term.

We will prove something different depending on the type of the typeable term.

$$P_{\Gamma,\perp}(M) = M \text{ is SN}$$

$$P_{\Gamma,A\to B}(M) = N \text{ is SN implies } MN \text{ is SN}$$
 for any $N \text{ s.t. } \Gamma \vdash N : A$

We will prove something different depending on the type of the typeable term.

$$P_{\Gamma,\perp}(M) = M \text{ is SN}$$

$$P_{\Gamma,A\to B}(M) = N \text{ is SN implies } MN \text{ is SN}$$
 for any $N \text{ s.t. } \Gamma \vdash N : A$

Lemma. $P_{\Gamma,A \to B}(M)$ implies M is SN.

Attempt Two

Theorem. For any context Γ , term M and type A, if $\Gamma \vdash M : A$ then $P_A(M)$ holds.

Let's try to prove this...

The Problem Case

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \rightarrow B}$$

How do we know that $(\lambda x.M)N$ is SN if $\Gamma \vdash N:A$ and N is SN?

We run into a similar issue as before...

Simultaneous Substitution

Theorem. If $y_1:A_1 \ldots y_k:A_k \vdash M:B$ an

 $\Gamma \vdash N_1 : A_1$ and ... and $\Gamma \vdash N_k : A_k$

then $\Gamma \vdash M[N_1/y_1][N_2/y_2]...[N_k/y_k]: B$.

We will often write $M[\overrightarrow{N}/\overrightarrow{y}]$ when we want to substitute multiple values at once.

The Final Trick

Prove something stronger for a stronger inductive hypothesis.

$$P_{\Gamma}(M) =$$

- \rightarrow $\Gamma \vdash M : B$ for some B
- \rightarrow $\Gamma \vdash N_1 : A_1$ and ... and $\Gamma \vdash N_k : A_k$
- \gg each $N_1,...,N_k$ are SN

then so is $M[\overrightarrow{N}/\overrightarrow{y}]$.

Normalization Theorem

$$P_{\Gamma,\perp}(M)=P_{\Gamma}(M)$$

$$P_{\Gamma,A\to B}(M)=P_{\Gamma}(MN) \text{ for any } N \text{ s.t.}$$

$$N \text{ is SN and } \Gamma\vdash N:A$$

Theorem. For any context Γ , term M, and type A, if $\Gamma \vdash M : A$ then $P_{\Gamma A}(M)$.

Let's try one more time...

Data Types

Encoding Data

In the lambda calculus, we encoded data as lambda terms:

pair =
$$\lambda x . \lambda y . \lambda f . f x y$$

fst = $\lambda p . p(\lambda x . \lambda y . x)$
snd = $\lambda p . p(\lambda x . \lambda y . y)$

Exercise. Reduce fst (pair IK) to normal form.

$$\vdash \lambda x . \lambda y . \lambda f . f x y : A \rightarrow B \rightarrow (A \rightarrow B \rightarrow C) \rightarrow C$$

$$\vdash \lambda x . \lambda y . \lambda f . f x y : A \rightarrow B \rightarrow (A \rightarrow B \rightarrow C) \rightarrow C$$

We can derive pair in STLC, but there can be no notion of the $type\ A \times B$, only

$$\vdash \lambda x . \lambda y . \lambda f . f x y : A \rightarrow B \rightarrow (A \rightarrow B \rightarrow C) \rightarrow C$$

We can derive pair in STLC, but there can be no notion of the $type\ A\times B$, only

$$A \times_C B = (A \rightarrow B \rightarrow C) \rightarrow C$$

$$\vdash \lambda x . \lambda y . \lambda f . f x y : A \rightarrow B \rightarrow (A \rightarrow B \rightarrow C) \rightarrow C$$

We can derive pair in STLC, but there can be no notion of the $type\ A \times B$, only

$$A \times_C B = (A \rightarrow B \rightarrow C) \rightarrow C$$

The type depends on the output of the "recursor".

Adding Data Types

Instead, it is more natural to add data types by augmenting the type system.

This means adding three things:

- » type formation rules
- » term formation rules
- » computation rules (extensions of \rightarrow_{β})

Unit

unit has no computation rules

The <u>unit type</u> is a type with a single element.

It is a convenience, we could "encode" it with the type $\bot \to \bot$.

Product

$$\frac{\varnothing \vdash A : \mathsf{Type} \quad \varnothing \vdash B : \mathsf{Type}}{\varnothing \vdash A \times B : \mathsf{Type}} \quad \mathsf{type} \quad \mathsf{formation}$$

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash N : B}{\Gamma \vdash \langle M, N \rangle : A \times B} \qquad \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{fst } M : A} \qquad \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{snd } M : B} \text{ term formation}$$

$$\mathrm{fst}\langle M,N\rangle \to_{\beta} M \\ \mathrm{snd}\langle M,N\rangle \to_{\beta} N$$
 computation rules

$$\vdash \lambda p . \langle \operatorname{snd} p, \operatorname{fst} p \rangle : (A \times B) \rightarrow (B \times A)$$

Let's derive this...

Union

$$\frac{\varnothing \vdash A : \mathsf{Type} \quad \varnothing \vdash B : \mathsf{Type}}{\varnothing \vdash A + B : \mathsf{Type}} \quad \mathsf{type} \quad \mathsf{formation}$$

$$\frac{\Gamma \vdash M : A + B \quad \Gamma \vdash f : A \to C \quad \Gamma \vdash g : B \to C}{\Gamma \vdash \mathsf{case} \ M \ f \ g : C} \quad \mathsf{term \ formation}$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \mathsf{inl} M : A + B} \quad \frac{\Gamma \vdash M : B}{\Gamma \vdash \mathsf{inr} M : A + B}$$

case
$$(inl M) f g \rightarrow_{\beta} f M$$
 case $(inr M) f g \rightarrow_{\beta} g M$ computation rules

$$x:A,y:B \vdash \lambda z$$
. case $z(\lambda f.fx)(\lambda g.gy):((A \rightarrow C) + (B \rightarrow C)) \rightarrow C$

Let's derive this...

Encoding with Unions and Products

Once we have unions and products, we can start encoding more data types, e.g.,

```
Bool \equiv T + T

true \equiv inl unit

false \equiv inr unit

ife \equiv \lambda b . \lambda x . \lambda y . \text{case } b (\lambda b . x) (\lambda b . y)
```

But we can't define *inductive* structures (yet).

Natural Numbers

 $\frac{\Gamma \vdash M : \mathsf{Nat}}{\varnothing \vdash \mathsf{zero} : \mathsf{Nat}} \quad \frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{suc} \; M : \mathsf{Nat}} \quad \mathsf{term} \; \mathsf{formation}$

 $\frac{\Gamma \vdash M : \mathsf{Nat} \quad \Gamma \vdash N : A \quad \Gamma \vdash f : \mathsf{Nat} \to A}{\Gamma \vdash \mathsf{recNat} \; M \; N \, f}$

recNat zero $Nf \to_{\beta} N$ computation rules recNat (suc M) $Nf \to_{\beta} f$ (recNat M Nf)

 $m: Nat, n: Nat \vdash recNat m n (\lambda x. suc x)$

Let's derive this...

Warm Up

$$\vdash \lambda f. \lambda g. \lambda x. g(fx): (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$$

Let's derive this...

$$\vdash \lambda f. \lambda g. \lambda x. fx : (A \to B) \to (B \to C) \to (A \to C)$$

$$x : A, y : B \vdash \lambda z. \mathsf{case} \ z \ (\lambda f. fx) \ (\lambda g. gy) : ((A \to C) + (B \to C)) \to C$$

$$\vdash \lambda p. \langle \mathsf{snd} \ p, \mathsf{fst} \ p \rangle : (A \times B) \to (B \times A)$$

$$\vdash (A \to B) \to (B \to C) \to (A \to C)$$

$$A, B \vdash ((A \to C) + (B \to C)) \to C$$

$$\vdash (A \times B) \to (B \times A)$$

If we ignore all the lambda terms and variables...

$$\vdash (A \to B) \to (B \to C) \to (A \to C)$$

$$A, B \vdash ((A \to C) \lor (B \to C)) \to C$$

$$\vdash (A \land B) \to (B \land A)$$

And read x as \wedge and + as \vee ...

$$\vdash (A \to B) \to (B \to C) \to (A \to C)$$

$$A, B \vdash ((A \to C) \lor (B \to C)) \to C$$

$$\vdash (A \land B) \to (B \land A)$$

And read x as \wedge and + as \vee ...

We've defined a proof system for propositional logic.

Modus Ponens

$$\frac{\Gamma \vdash M : A \to B}{\Gamma \vdash MN : B}$$

If we block out the lambda terms and read \rightarrow as "implies", then the application rule is just modus ponens.

Modus Ponens

If we block out the lambda terms and read \rightarrow as "implies", then the application rule is just modus ponens.

Deduction Theorem

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \rightarrow B}$$

If we block out the lambda terms and variables, this is a <u>deduction theorem</u> for proofs.

Deduction Theorem

$$\Gamma, \square A \vdash \square B$$

$$\Gamma \vdash \square A \rightarrow B$$

If we block out the lambda terms and variables, this is a <u>deduction theorem</u> for proofs.

$$\neg P \equiv P \rightarrow (x \land \neg x)$$

$$\neg P \equiv P \rightarrow (x \land \neg x)$$

In classical propositional logic, we could prove the following logical equivalence.

$$\neg P \equiv P \rightarrow (x \land \neg x)$$

In classical propositional logic, we could prove the following logical equivalence.

In this proof system we're defining, we'll take $\neg P$ to be $P \to \bot$.

$$\neg P \equiv P \rightarrow (x \land \neg x)$$

In classical propositional logic, we could prove the following logical equivalence.

In this proof system we're defining, we'll take $\neg P$ to be $P \to \bot$.

Remember. Like in Agda, $P \to \bot$ may be read as "P is empty".

DeMorgan's Law

$$x:A,y:B\vdash \lambda z$$
. case $z(\lambda f.fx)(\lambda g.gy):((A\rightarrow\bot)+(B\rightarrow\bot))\rightarrow\bot$

We can read this as:

$$A, B \vdash (\neg A \lor \neg B)$$

Which is one of De Morgan's laws.

Empty

$$\Gamma \vdash M : \bot \quad \Gamma \vdash A : \mathsf{Type}$$

$$\Gamma \vdash \mathsf{explode} \; M : A$$

We will add one additional rule for \(\text{representing the principle of explosion.} \)

If we can derive a term of type \bot , then we can derive a term of any type.

The Curry-Howard Isomorphism is a recognition of the following paradigms of type theory:

The Curry-Howard Isomorphism is a recognition of the following paradigms of type theory:

- » Propositions as types
- » Proofs as terms
- » Proof simplification as program evaluation

The Curry-Howard Isomorphism is a recognition of the following paradigms of type theory:

- » Propositions as types
- » Proofs as terms
- » Proof simplification as program evaluation

What exactly the isomorphism *is* depends on your philosophical inclinations:

The Curry-Howard Isomorphism is a recognition of the following paradigms of type theory:

- » Propositions as types
- » Proofs as terms
- » Proof simplification as program evaluation

What exactly the isomorphism *is* depends on your philosophical inclinations:

- » It is a literal isomorphism
- » It is an analogy
- » It is a sleight of hand

The Curry-Howard Isomorphism is a recognition of the following paradigms of type theory:

- » Propositions as types
- » Proofs as terms
- » Proof simplification as program evaluation

What exactly the isomorphism *is* depends on your philosophical inclinations:

- » It is a literal isomorphism
- » It is an analogy
- » It is a sleight of hand

I prefer: type theory is logic.