## **PURPOSE**

This report provides a detailed explanation of Categorical Data Analysis of YouTube data collected from a Youtuber's Account. This report is intended for:

- Exploring the Datasets.
- Understanding the data.
- Screening/Cleaning the data
- Binning the Numerical Data to Create Categorical Variables
- Determining relationships between categorical variables
- Comparing Relationships of Numerical and Corresponding Categorical Variables
- Selection of Predictors and Response Variable for Prediction Model
- Linear Regression Modelling
- Interpretations and Recommendations to Administrator

# **Data Description**

- The dataset contains records of metrics related to videos uploaded on a Youtuber's Account.
- Most common and influential metrics are present in dataset such as number of Likes, Shares, Comments etc. on the video along with the Publish date.
- The data has numerical values for each metric.

### Overview

The analysis starts with exploring the datasets. The number and the type of variables along with the number of observations are explored to get an overview of the dataset. Since the dataset is clean, no steps are preformed for pre-processing the data. Next, all numerical variables of the dataset are converted into Categorical variables by defining 3 ordered levels 'Low', 'Medium' and 'High' and categorizing data using Fixed-Frequency Binning.

After obtaining the Categorical variables, Two-Way Tables are constructed, and Chi-Square test is performed to determine the existence of relationships between different variables. Stacked bar graphs are plotted to show equivalence of distributions and describe independence.

A comparison is then performed between correlation obtained from Numerical data with the results of Chi-Square tests to determine any change in relationships based on tests. Lastly, Linear regression is performed by first selecting predictors and a response variable. Based on results, recommendations are provided to the administrator to improve performance of account.

# **Analyzing Dataset:**

## Table Attributes and Data:

| Data Set Name                                                               |    | A3.YOUTUBE                                          |         |   |                      | Observations         |          | 218 |
|-----------------------------------------------------------------------------|----|-----------------------------------------------------|---------|---|----------------------|----------------------|----------|-----|
| Member Type                                                                 |    | DATA                                                |         |   |                      | Variables            |          | 13  |
| Engine                                                                      |    | V9                                                  |         |   |                      | Indexes              |          | 0   |
| Created                                                                     |    | 27/02/2021 19:51:27                                 |         |   |                      | Observation          | Length   | 104 |
| Last Modified                                                               |    | 27/02/2021 19:51:27                                 |         |   |                      | Deleted Obse         | rvations | 0   |
| Protection                                                                  |    |                                                     |         |   |                      | Compressed           |          | NO  |
| Data Set Type                                                               |    |                                                     |         |   |                      | Sorted               |          | NO  |
| Label                                                                       |    |                                                     |         |   |                      |                      |          |     |
| Data Representation   SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64 |    |                                                     |         |   |                      |                      |          |     |
| Encoding                                                                    |    | utf-8 Unicode (UTF-8)                               | (UTF-8) |   |                      |                      |          |     |
|                                                                             | 2  | Video_publish_time Clicks_per_end_screen_element_sh | Num     | 8 | DDMMYY10.<br>BEST12. | DDMMYY10.<br>BEST32. |          |     |
|                                                                             | 2  | Clicks_per_end_screen_element_sh                    | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             | 3  | Comments_added                                      | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             | 4  | Shares                                              | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             | 5  | Dislikes                                            | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             | 6  | Likes                                               | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             | 7  | Average_percentage_viewed                           | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             | 8  | Average_view_duration                               | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             | 9  | Views                                               | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             | 10 | Watch_timehours_                                    | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             | 11 | Subscribers                                         | Num     | 8 | BEST12.              | BEST32.              |          |     |
|                                                                             |    |                                                     |         | _ | DECTAC               | DECTOR               |          |     |
|                                                                             | 12 | Impressions                                         | Num     | 8 | BEST12.              | BEST32.              |          |     |

#### YouTube Data First 10 Observations

| S.No. | Video_publish_time | Clicks_per_end_screen_element_sh | Comments_added | Shares | Dislikes | Likes | Average_percentage_viewed |
|-------|--------------------|----------------------------------|----------------|--------|----------|-------|---------------------------|
| 1     | 25/04/2020         | 2.68                             | 14392          | 1476   | 3502     | 30097 | 21.34                     |
| 2     | 26/04/2020         | 11.27                            | 9640           | 1544   | 4731     | 28341 | 29.33                     |
| 3     | 06/04/2020         | 7.12                             | 8524           | 196    | 505      | 5353  | 28.03                     |
| 4     | 22/04/2020         | 4.75                             | 8357           | 321    | 884      | 9474  | 32.1                      |
| 5     | 15/04/2020         | 8.14                             | 8190           | 781    | 2185     | 14919 | 33.99                     |
| 6     | 03/04/2020         | 8.94                             | 8095           | 1034   | 3233     | 31784 | 41.64                     |
| 7     | 23/04/2020         | 11.94                            | 7260           | 2053   | 5731     | 43733 | 33.59                     |
| 8     | 09/04/2020         | 13.08                            | 7222           | 1161   | 3577     | 23979 | 31.25                     |
| 9     | 27/03/2020         | 8.87                             | 5857           | 1305   | 3435     | 20409 | 25.5                      |
| 10    | 30/03/2020         | 7.07                             | 5064           | 611    | 1630     | 15064 | 31.12                     |

| Average_view_duration | Vlews   | Watch_timehours_ | Subscribers | Impressions | Impressions_click_through_rate |
|-----------------------|---------|------------------|-------------|-------------|--------------------------------|
| 0.110833333           | 2556273 | 283662.3563      | 7938        | 13405459    | 10.92                          |
| 0.062777778           | 3425226 | 215723.1428      | 9410        | 17022958    | 14.36                          |
| 0.051666667           | 375546  | 19504.5802       | 885         | 2523477     | 8.48                           |
| 0.0625                | 603314  | 37711.324        | 1705        | 3862723     | 9.12                           |
| 0.071111111           | 1758474 | 125359.3992      | 3307        | 8278024     | 14.42                          |
| 0.047222222           | 2618929 | 124216.5309      | 10333       | 13918672    | 12.86                          |
| 0.078055556           | 4663177 | 364179.2895      | 11691       | 29094097    | 11.19                          |
| 0.075833333           | 2806856 | 212984.1362      | 6334        | 15758684    | 12.42                          |
| 0.043888889           | 2898397 | 127720.0356      | 6088        | 11742075    | 16.99                          |
| 0.065                 | 1179001 | 76846.7102       | 4407        | 6792147     | 11.68                          |

From the above tables about data structure, it can be observed that:

• Number of Variables: 13

• Number of Observations: 218

• Numerical Variables: 13 {All}

• Continuous Numerical Variables:

o Clicks\_per\_end\_screen\_element\_shown(%)

Average\_percentage\_viewed\_(%)

o Average\_View\_Duration

o Watch\_time\_hours

o Impressions\_click\_through\_rate(%)

• Discreate Numerical Variable:

- o Comments\_Added
- o Shares
- Dislikes
- o Likes
- o Views
- Subscribers
- o Impressions

This provides an overview of data and its structure. To dive deeper into the data and issues related, further analysis is done for numerical variables.

## Analyzing Numerical Variables

| Variable                         | N   | N Miss | Minimum   | Mean        | Median      | Maximum     | Std Dev     | Skewness   | Kurtosis   |
|----------------------------------|-----|--------|-----------|-------------|-------------|-------------|-------------|------------|------------|
|                                  |     |        |           |             |             |             |             |            |            |
| Clicks_per_end_screen_element_sh | 218 | 0      | 0         | 7.5115596   | 7.3450000   | 15.7500000  | 3.0807766   | 0.1749968  | -0.4250303 |
| Comments_added                   | 218 | 0      | 0         | 1378.70     | 792.0000000 | 14392.00    | 1894.48     | 3.2896969  | 14.0689167 |
| Shares                           | 218 | 0      | 0         | 466.4082569 | 266.0000000 | 4116.00     | 587.1371481 | 3.0656921  | 12.9744966 |
| Dislikes                         | 218 | 0      | 0         | 1528.95     | 964.0000000 | 9415.00     | 1676.90     | 2.1780995  | 5.5461545  |
| Likes                            | 218 | 0      | 0         | 8209.25     | 6400.00     | 43733.00    | 7381.84     | 1.7710307  | 3.8527839  |
| Average_percentage_viewed        | 218 | 0      | 8.8800000 | 30.5333486  | 31.0000000  | 57.0700000  | 6.1302160   | -0.2288100 | 3.0348628  |
| Average_view_duration            | 218 | 0      | 0.0080556 | 0.0670935   | 0.0683333   | 0.1388889   | 0.0210418   | -0.0541054 | 0.7732265  |
| Views                            | 218 | 0      | 2.0000000 | 1126416.48  | 723098.50   | 8217897.00  | 1256118.22  | 2.5031632  | 8.7745029  |
| Watch_timehours_                 | 218 | 0      | 0.1604000 | 83066.33    | 49911.58    | 565615.18   | 94304.08    | 2.2214771  | 6.5875655  |
| Subscribers                      | 218 | 0      | 0         | 2093.01     | 1090.50     | 16518.00    | 2871.01     | 2.5588884  | 7.5185246  |
| Impressions                      | 218 | 0      | 1438.00   | 5963884.63  | 3706482.50  | 46923937.00 | 7521461.77  | 3.1337611  | 12.6773045 |
| Impressions click through rate   | 218 | 0      | 0.1400000 | 11.7989450  | 12.0500000  | 20.2100000  | 3.3670977   | -1.0354543 | 1.9493008  |

| Minimum and Maximum Dates |              |              |  |  |  |  |  |
|---------------------------|--------------|--------------|--|--|--|--|--|
| Date variable             | Minimum date | Maximum date |  |  |  |  |  |
| Video_publish_time        | 17/12/2018   | 19/08/2020   |  |  |  |  |  |

The descriptive statistics of the Numerical Variables has been calculated using the 'proc means' command in SAS. The above table provides the following information:

- There is no missing data in the dataset. Also, there is no invalid data like -999 etc. which needs to be addressed.
- Majority of the variables are positively skewed (67%). Three variables
   Clicks\_per\_end\_Screen\_element\_Sh, Average\_Percentage\_Viewed\_\_ and
   Average\_View\_Duration are approximately normally distributed. On the other hand, the
   Impressions\_click\_through\_rate\_ is negatively skewed.
- Nine of the variables are oridinal with discreate values describing counts while rest three
  i.e., Clicks\_per\_end\_Screen\_element\_Sh, Average\_Percentage\_Viewed\_\_ and
  Impressions\_click\_through\_Rate\_\_ are percentages with continuous values.

# Binning:

**Discretization or Binning** is used for transforming numerical variables into categorical features. These features can be thought of as bins into which the raw numeric values are binned or grouped into. Each bin represents a specific degree of intensity and hence a specific range of continuous numeric values fall into it. The problem of working with numeric features is that the distribution of values in these features might be skewed along with varying range of values in these features. For instance, view counts of specific music videos could be abnormally large, and some could be really small. Directly using these features can cause a lot of issues and adversely affect the model.

There are two types of binning:

- Fixed-Width Binning: The width of bins is fixed irrespective of number of values in the bin.
- Adaptive Binning: Bin width depends on the data and its variations.

Quantile or Rank based binning is a good strategy which is used for adaptive binning in this analysis. Quantiles are specific values or cut-points which help in partitioning the continuous valued distribution of a specific numeric field into discrete contiguous bins or intervals. Thus, q-Quantiles help in partitioning a numeric attribute into q equal partitions.

Here, 3-Quantile binning is being used to divide range of values for different values into 3 categories by applying 2 cut points. These categories are:

- Low: Consisting of lower values below first tertile
- Medium: Consisting of moderate values between first and second tertile.
- High: Consisting of higher values beyond second tertile

The binning is achieved by using PROC RANK procedure in SAS. A new dataset is thus, created from original dataset by binning 12 of the 13 variables (leaving Publish Time since its date). Since, Rank procedure gives numeric values opposed to what is required in this report, a custom Format is used using Proc Format to map these numeric values of 0,1 and 2 to Low, Medium and High respectively.

|       |                    |                           |                       | Binned Youtube Da               | ta First 10 Obser | vations  |             |                 |       |        |             |       |                  |
|-------|--------------------|---------------------------|-----------------------|---------------------------------|-------------------|----------|-------------|-----------------|-------|--------|-------------|-------|------------------|
| S.No. | Video_publish_time | Average Percentage Viewed | Average View Duration | Clicks/End Screen Element Shown | Comments Added    | Dislikes | Impressions | Impressions CTR | Likes | Shares | Subscribers | Views | Watch Time Hours |
| 1     | 25/04/2020         | Low                       | High                  | Low                             | High              | High     | High        | Low             | High  | High   | High        | High  | High             |
| 2     | 26/04/2020         | Med                       | Med                   | High                            | High              | High     | High        | High            | High  | High   | High        | High  | High             |
| 3     | 06/04/2020         | Low                       | Low                   | Med                             | High              | Low      | Med         | Low             | Med   | Med    | Med         | Low   | Low              |
| 4     | 22/04/2020         | Med                       | Med                   | Low                             | High              | Med      | Med         | Low             | High  | Med    | Med         | Med   | Med              |
| 5     | 15/04/2020         | High                      | Med                   | Med                             | High              | High     | High        | High            | High  | High   | High        | High  | High             |
| 6     | 03/04/2020         | High                      | Low                   | High                            | High              | High     | High        | Med             | High  | High   | High        | High  | High             |
| 7     | 23/04/2020         | High                      | High                  | High                            | High              | High     | High        | Med             | High  | High   | High        | High  | High             |
| 8     | 09/04/2020         | Med                       | High                  | High                            | High              | High     | High        | Med             | High  | High   | High        | High  | High             |
| 9     | 27/03/2020         | Low                       | Low                   | Med                             | High              | High     | High        | High            | High  | High   | High        | High  | High             |
| 10    | 30/03/2020         | Med                       | Med                   | Med                             | High              | High     | High        | Med             | High  | High   | High        | Med   | Med              |
|       |                    | N = 10                    |                       |                                 |                   |          |             |                 |       |        |             |       |                  |

# Frequency of Binned Variables

| Rank for Variable Average_percentage_viewed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |       |     |        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-----|--------|--|--|--|--|
| Average_percentage_viewed Frequency Percent Frequency Percent Cumulative Percent Pe |    |       |     |        |  |  |  |  |
| Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72 | 33.03 | 72  | 33.03  |  |  |  |  |
| Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73 | 33.49 | 145 | 66.51  |  |  |  |  |
| High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73 | 33.49 | 218 | 100.00 |  |  |  |  |

| Rank for Variable Average_view_duration |    |       |     |        |  |  |  |  |
|-----------------------------------------|----|-------|-----|--------|--|--|--|--|
| Average_view_duration                   |    |       |     |        |  |  |  |  |
| Low                                     | 72 | 33.03 | 72  | 33.03  |  |  |  |  |
| Med                                     | 74 | 33.94 | 146 | 66.97  |  |  |  |  |
| High                                    | 72 | 33.03 | 218 | 100.00 |  |  |  |  |

| Rank for Variable Clicks_per_end_screen_element_sh |    |       |     |        |  |  |  |  |
|----------------------------------------------------|----|-------|-----|--------|--|--|--|--|
| Clicks_per_end_screen_element_sh                   |    |       |     |        |  |  |  |  |
| Low                                                | 72 | 33.03 | 72  | 33.03  |  |  |  |  |
| Med                                                | 73 | 33.49 | 145 | 66.51  |  |  |  |  |
| High                                               | 73 | 33.49 | 218 | 100.00 |  |  |  |  |

| Rank for Variable Comments_added |           |         |                         |                       |  |  |  |  |  |
|----------------------------------|-----------|---------|-------------------------|-----------------------|--|--|--|--|--|
| Comments_added                   | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |  |  |  |  |  |
| Low                              | 72        | 33.03   | 72                      | 33.03                 |  |  |  |  |  |
| Med                              | 73        | 33.49   | 145                     | 66.51                 |  |  |  |  |  |
| High                             | 73        | 33.49   | 218                     | 100.00                |  |  |  |  |  |

|          | Rank for Variable Dislikes |         |                         |                       |  |  |  |  |  |  |
|----------|----------------------------|---------|-------------------------|-----------------------|--|--|--|--|--|--|
| Dislikes | Frequency                  | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |  |  |  |  |  |  |
| Low      | 72                         | 33.03   | 72                      | 33.03                 |  |  |  |  |  |  |
| Med      | 73                         | 33.49   | 145                     | 66.51                 |  |  |  |  |  |  |
| High     | 73                         | 33.49   | 218                     | 100.00                |  |  |  |  |  |  |

| Rank for Variable Impressions |           |         |                         |                       |  |  |  |  |  |
|-------------------------------|-----------|---------|-------------------------|-----------------------|--|--|--|--|--|
| Impressions                   | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |  |  |  |  |  |
| Low                           | 72        | 33.03   | 72                      | 33.03                 |  |  |  |  |  |
| Med                           | 73        | 33.49   | 145                     | 66.51                 |  |  |  |  |  |
| High                          | 73        | 33.49   | 218                     | 100.00                |  |  |  |  |  |

| Rank for Variable Impressions_click_through_rate |           |         |                         |                       |  |  |  |  |
|--------------------------------------------------|-----------|---------|-------------------------|-----------------------|--|--|--|--|
| Impressions_click_through_rate                   | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |  |  |  |  |
| Low                                              | 73        | 33.49   | 73                      | 33.49                 |  |  |  |  |
| Med                                              | 72        | 33.03   | 145                     | 66.51                 |  |  |  |  |
| High                                             | 73        | 33.49   | 218                     | 100.00                |  |  |  |  |

|       | Rank for Variable Likes |         |                         |                       |  |  |  |  |  |
|-------|-------------------------|---------|-------------------------|-----------------------|--|--|--|--|--|
| Likes | Frequency               | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |  |  |  |  |  |
| Low   | 72                      | 33.03   | 72                      | 33.03                 |  |  |  |  |  |
| Med   | 73                      | 33.49   | 145                     | 66.51                 |  |  |  |  |  |
| High  | 73                      | 33.49   | 218                     | 100.00                |  |  |  |  |  |

| Rank for Variable Shares |           |         |                         |                       |  |  |  |  |
|--------------------------|-----------|---------|-------------------------|-----------------------|--|--|--|--|
| Shares                   | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |  |  |  |  |
| Low                      | 72        | 33.03   | 72                      | 33.03                 |  |  |  |  |
| Med                      | 73        | 33.49   | 145                     | 66.51                 |  |  |  |  |
| High                     | 73        | 33.49   | 218                     | 100.00                |  |  |  |  |

| Rank for Variable Subscribers |                         |                       |     |        |  |  |  |  |  |
|-------------------------------|-------------------------|-----------------------|-----|--------|--|--|--|--|--|
| Subscribers                   | Cumulative<br>Frequency | Cumulative<br>Percent |     |        |  |  |  |  |  |
| Low                           | 72                      | 33.03                 | 72  | 33.03  |  |  |  |  |  |
| Med                           | 73                      | 33.49                 | 145 | 66.51  |  |  |  |  |  |
| High                          | 73                      | 33.49                 | 218 | 100.00 |  |  |  |  |  |

|       | Rank for Variable Views |         |                         |                       |  |  |  |  |
|-------|-------------------------|---------|-------------------------|-----------------------|--|--|--|--|
| Views | Frequency               | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |  |  |  |  |
| Low   | 72                      | 33.03   | 72                      | 33.03                 |  |  |  |  |
| Med   | 73                      | 33.49   | 145                     | 66.51                 |  |  |  |  |
| High  | 73                      | 33.49   | 218                     | 100.00                |  |  |  |  |

| Rank for Variable Watch_timehours_ |           |         |                         |                       |  |  |  |  |
|------------------------------------|-----------|---------|-------------------------|-----------------------|--|--|--|--|
| Watch_timehours_                   | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |  |  |  |  |
| Low                                | 72        | 33.03   | 72                      | 33.03                 |  |  |  |  |
| Med                                | 73        | 33.49   | 145                     | 66.51                 |  |  |  |  |
| High                               | 73        | 33.49   | 218                     | 100.00                |  |  |  |  |

The above tables describe the structure of dataset after binning. The following can be observed:

- The dataset now consists of 11 Categorical variables with categories as 'LOW', 'MED' and 'HIGH'. The data is a time series data which each observation corresponding to a date called Publish Date.
- Since, the binning is performed using Adaptive/Quantile Binning, each category is equally likely in the variables. As evident from Cumulative Frequency and Percent, the data is divided into tertiles with first cut at 33.3 percent approx. and the second cut at 66.6 percent approx.
- The Categories are displayed as characters due to custom format being used that denies mapping between 0,1,2 ranks and 'Low', 'Med', 'High categories as:

0 -> Low

1 -> Med

2 -> High

• The variables have numeric values while the format defines the printing of these variables as character values for easy interpretation.

# Relationship Between Derived Categorical Variables:

The relationship between the categorical variables is based on frequency rather than values. Thus, methods used for Numerical Correlations can not be used directly for describing the associations in categorical variables.

In this analysis, the following methods are used for examining the relationships between the variables:

- Graphical: Stacked bar chart
- Descriptive statistics: Cross Tables or 2x2 Contingency Tables
- Hypotheses testing: Chi-square tests to test if two categorical variables are independent
- Metric to measure the strength of the relation:
  - Cramer's V

- Kendall's Tau
- Spherman's Rho

## Contingency Table

A contingency table displays how two categorical variables are related in a table with how many values fall in each combination of categories. The categories of one variable define the rows and categories of the other variable define the columns of the table.

## Chi-Square Tests

The statistical significance of associations obtained using contingency tables is obtained using Chi-Square Tests of Independence. The strength of the relationship between variables can also be obtained from the statistics obtained from Chi-Square Tests. Independence of two categorical variables means that knowing the outcome of one variable does not give you more information about the outcome of the other variable, and vice versa.

In this analysis, the chi-square test to determine the association between the categorical variables is used. For this analysis the degree of freedom (DF) is 4 since there are 3 rows and 3 columns in the contingency tables above and as per formula (r-1)\*(c-1), the DF turns out to be 4. As can be seen from Decision Point Table, the DF of 4 has a decision point or critical value of 9.49. The first step is to define the Null and Alternative Hypothesis.

**Null Hypothesis H0**: The two variables are independent of each other among all subjects in population.

**Alternate Hypothesis H1**: The two variables are related to each other. **Interpretation:** 

If p-value is less than 0.05, we reject the null hypothesis otherwise we accept the null hypothesis. Also, if Chi-Squared Value is strictly larger than DP, then we have enough statistical evidence to reject the H0; and conclude that the two variables are not significantly independent to each other among all subjects in the population. Otherwise, we do not have enough statistical evidence to reject the H0; and conclude that X and Y are significantly independent to each other among all subjects in the population.

#### Chi-square Decision Points for Various Degrees of Freedom

| df | dec.pt. | df | dec. pt. | df  | dec. pt. |
|----|---------|----|----------|-----|----------|
| 1  | 3.84    | 14 | 23.68    | 26  | 38.89    |
| 2  | 5.99    | 15 | 25.00    | 27  | 40.11    |
| 3  | 7.81    | 16 | 26.30    | 28  | 41.34    |
| 4  | 9.49    | 17 | 27.59    | 29  | 42.56    |
| 5  | 11.07   | 18 | 28.87    | 30  | 43.77    |
| 6  | 12.59   | 19 | 30.14    | 40  | 55.80    |
| 7  | 14.07   | 20 | 31.41    | 50  | 67.50    |
| 8  | 15.51   | 21 | 32.67    | 60  | 79.10    |
| 9  | 16.92   | 22 | 33.92    | 70  | 90.50    |
| 10 | 18.30   | 23 | 35.17    | 80  | 102.00   |
| 11 | 19.68   | 24 | 36.42    | 90  | 113.00   |
| 12 | 21.03   | 25 | 37.65    | 100 | 124.30   |
| 13 | 22.36   |    |          |     |          |

#### Views

The Views on a YouTube video are an important parameter to describe the performance of video as well as the channel. The relationship of views with other prominent variables is analysed and described below:

### Contingency Table Analysis:

| Frequency             | Tab          | Table of Views by Average_view_duration |                       |                       |       |  |  |  |  |  |  |
|-----------------------|--------------|-----------------------------------------|-----------------------|-----------------------|-------|--|--|--|--|--|--|
| Expected<br>Deviation |              | erage View D                            | ge View Duration)     |                       |       |  |  |  |  |  |  |
|                       | Views(Views) | Low                                     | Med                   | High                  | Total |  |  |  |  |  |  |
|                       | Low          | 45<br>23.78<br>21.22                    | 15<br>24.44<br>-9.44  | 12<br>23.78<br>-11.78 | 72    |  |  |  |  |  |  |
|                       | Med          | 21<br>24.11<br>-3.11                    | 26<br>24.78<br>1.2202 | 26<br>24.11<br>1.8899 | 73    |  |  |  |  |  |  |
|                       | High         | 6<br>24.11<br>-18.11                    | 33<br>24.78<br>8.2202 | 34<br>24.11<br>9.8899 | 73    |  |  |  |  |  |  |
|                       | Total        | 72                                      | 74                    | 72                    | 218   |  |  |  |  |  |  |

| Table        | of Views b            | y Commen               | ts_added              |        |
|--------------|-----------------------|------------------------|-----------------------|--------|
|              | Commen                | ts_added(0             | Comments              | Added) |
| Views(Views) | Low                   | Med                    | High                  | Total  |
| Low          | 37<br>23.78<br>13.22  | 20<br>24.11<br>-4.11   | 15<br>24.11<br>-9.11  | 72     |
| Med          | 28<br>24.11<br>3.8899 | 17<br>24.445<br>-7.445 | 28<br>24.445<br>3.555 | 73     |
| High         | 7<br>24.11<br>-17.11  | 36<br>24.445<br>11.555 | 30<br>24.445<br>5.555 | 73     |
| Total        | 72                    | 73                     | 73                    | 218    |

| Tab          | le of Viev           | ws by Dis              | likes                  |       |
|--------------|----------------------|------------------------|------------------------|-------|
|              |                      | Dislikes(              | Dislikes)              |       |
| Views(Views) | Low                  | Med                    | High                   | Total |
| Low          | 66<br>23.78<br>42.22 | 4<br>24.11<br>-20.11   | 2<br>24.11<br>-22.11   | 72    |
| Med          | 6<br>24.11<br>-18.11 | 62<br>24.445<br>37.555 | 5<br>24.445<br>-19.44  | 73    |
| High         | 0<br>24.11<br>-24.11 | 7<br>24.445<br>-17.44  | 66<br>24.445<br>41.555 | 73    |
| Total        | 72                   | 73                     | 73                     | 218   |

| Table of Views by Impressions |                      |                        |                        |       | Table of Views by Likes |                       |                        |                        |       |
|-------------------------------|----------------------|------------------------|------------------------|-------|-------------------------|-----------------------|------------------------|------------------------|-------|
|                               | Impr                 | essions(               | Impressio              | ns)   |                         |                       | Likes(                 | Likes)                 |       |
| Views(Views)                  | Low                  | Med                    | High                   | Total | Views(Views)            | Low                   | Med                    | High                   | Total |
| Low                           | 68<br>23.78<br>44.22 | 4<br>24.11<br>-20.11   | 0<br>24.11<br>-24.11   | 72    | Low                     | 61<br>23.78<br>37.22  | 10<br>24.11<br>-14.11  | 1<br>24.11<br>-23.11   | 72    |
| Med                           | 4<br>24.11<br>-20.11 | 66<br>24.445<br>41.555 | 3<br>24.445<br>-21.44  | 73    | Med                     | 11<br>24.11<br>-13.11 | 51<br>24.445<br>26.555 | 11<br>24.445<br>-13.44 | 73    |
| High                          | 0<br>24.11<br>-24.11 | 3<br>24.445<br>-21.44  | 70<br>24.445<br>45.555 | 73    | High                    | 0<br>24.11<br>-24.11  | 12<br>24.445<br>-12.44 | 61<br>24.445<br>36.555 | 73    |
| Total                         | 72                   | 73                     | 73                     | 218   | Total                   | 72                    | 73                     | 73                     | 218   |

| Table of Views by Shares |                      |                        |                        |       |  |  |  |  |
|--------------------------|----------------------|------------------------|------------------------|-------|--|--|--|--|
|                          | Shares(Shares)       |                        |                        |       |  |  |  |  |
| Views(Views)             | Low                  | Med                    | High                   | Total |  |  |  |  |
| Low                      | 65<br>23.78<br>41.22 | 7<br>24.11<br>-17.11   | 0<br>24.11<br>-24.11   | 72    |  |  |  |  |
| Med                      | 7<br>24.11<br>-17.11 | 60<br>24.445<br>35.555 | 6<br>24.445<br>-18.44  | 73    |  |  |  |  |
| High                     | 0<br>24.11<br>-24.11 | 6<br>24.445<br>-18.44  | 67<br>24.445<br>42.555 | 73    |  |  |  |  |
| Total                    | 72                   | 73                     | 73                     | 218   |  |  |  |  |

| Table of Views by Subscribers |                          |                        |                        |     |  |  |
|-------------------------------|--------------------------|------------------------|------------------------|-----|--|--|
|                               | Subscribers(Subscribers) |                        |                        |     |  |  |
| Views(Views)                  | Low                      | Low Med High To        |                        |     |  |  |
| Low                           | 64<br>23.78<br>40.22     | 8<br>24.11<br>-16.11   | 0<br>24.11<br>-24.11   | 72  |  |  |
| Med                           | 8<br>24.11<br>-16.11     | 56<br>24.445<br>31.555 | 9<br>24.445<br>-15.44  | 73  |  |  |
| High                          | 0<br>24.11<br>-24.11     | 9<br>24.445<br>-15.44  | 64<br>24.445<br>39.555 | 73  |  |  |
| Total                         | 72                       | 73                     | 73                     | 218 |  |  |

| Table of Views by Watch_timehours_ |                      |                                    |                        |       |  |
|------------------------------------|----------------------|------------------------------------|------------------------|-------|--|
|                                    | Watch_tim            | Watch_timehours_(Watch Time Hours) |                        |       |  |
| Views(Views)                       | Low                  | Med                                | High                   | Total |  |
| Low                                | 67<br>23.78<br>43.22 | 5<br>24.11<br>-19.11               | 0<br>24.11<br>-24.11   | 72    |  |
| Med                                | 5<br>24.11<br>-19.11 | 62<br>24.445<br>37.555             | 6<br>24.445<br>-18.44  | 73    |  |
| High                               | 0<br>24.11<br>-24.11 | 6<br>24.445<br>-18.44              | 67<br>24.445<br>42.555 | 73    |  |
| Total                              | 72                   | 73                                 | 73                     | 218   |  |

The Contingency Tables above describe relations of Views with other variables. The following observations can be made:

- For Low and High values of Views, a relationship exists with Average View duration,
   Comments Added since the deviations from expected value are quite high while for
   Medium range of Views, the distribution is almost similar.
- The relationship of Views with all other variables i.e, Dislikes, Impressions, Likes, Shares, Subscribers and Watch Time (in Hours) is prominently visible since the values in tables differs largely from the expected values.

# Chi Square Tests and Other Analysis:

#### Statistics for Table of Views by Average\_view\_duration

| Statistic                   | DF | Value   | Prob   |
|-----------------------------|----|---------|--------|
| Chi-Square                  | 4  | 49.4142 | <.0001 |
| Likelihood Ratio Chi-Square | 4  | 52.5583 | <.0001 |
| Mantel-Haenszel Chi-Square  | 1  | 38.6725 | <.0001 |
| Phi Coefficient             |    | 0.4761  |        |
| Contingency Coefficient     |    | 0.4299  |        |
| Cramer's V                  |    | 0.3367  |        |

| Statistic            | Value  | ASE    |
|----------------------|--------|--------|
| Gamma                | 0.5325 | 0.0682 |
| Kendall's Tau-b      | 0.3749 | 0.0524 |
| Stuart's Tau-c       | 0.3749 | 0.0524 |
| Somers' D C R        | 0.3749 | 0.0524 |
| Somers' D R C        | 0.3749 | 0.0524 |
| Pearson Correlation  | 0.4222 | 0.0567 |
| Spearman Correlation | 0.4220 | 0.0579 |

#### Statistics for Table of Views by Comments\_added

| Statistic                   | DF | Value   | Prob   |
|-----------------------------|----|---------|--------|
| Chi-Square                  | 4  | 33.7715 | <.0001 |
| Likelihood Ratio Chi-Square | 4  | 37.4745 | <.0001 |
| Mantel-Haenszel Chi-Square  | 1  | 20.8972 | <.0001 |
| Phi Coefficient             |    | 0.3936  |        |
| Contingency Coefficient     |    | 0.3662  |        |
| Cramer's V                  |    | 0.2783  |        |

| Statistic            | Value  | ASE    |
|----------------------|--------|--------|
| Gamma                | 0.3904 | 0.0727 |
| Kendall's Tau-b      | 0.2703 | 0.0523 |
| Stuart's Tau-c       | 0.2703 | 0.0523 |
| Somers' D C R        | 0.2703 | 0.0523 |
| Somers' D R C        | 0.2703 | 0.0523 |
| Pearson Correlation  | 0.3103 | 0.0587 |
| Spearman Correlation | 0.3100 | 0.0596 |

#### Statistics for Table of Views by Dislikes

| Statistic                   | DF | Value    | Prob   |
|-----------------------------|----|----------|--------|
| Chi-Square                  | 4  | 305.9780 | <.0001 |
| Likelihood Ratio Chi-Square | 4  | 306.8664 | <.0001 |
| Mantel-Haenszel Chi-Square  | 1  | 174.4244 | <.0001 |
| Phi Coefficient             |    | 1.1847   |        |
| Contingency Coefficient     |    | 0.7642   |        |
| Cramer's V                  |    | 0.8377   |        |

| Statistic            | Value  | ASE    |
|----------------------|--------|--------|
| Gamma                | 0.9707 | 0.0154 |
| Kendall's Tau-b      | 0.8740 | 0.0272 |
| Stuart's Tau-c       | 0.8740 | 0.0272 |
| Somers' D C R        | 0.8740 | 0.0272 |
| Somers' D R C        | 0.8740 | 0.0271 |
| Pearson Correlation  | 0.8965 | 0.0249 |
| Spearman Correlation | 0.8965 | 0.0250 |
|                      |        |        |

### Statistics for Table of Views by Impressions

| Statistic                   | DF | Value    | Prob   |
|-----------------------------|----|----------|--------|
| Chi-Square                  | 4  | 357.1609 | <.0001 |
| Likelihood Ratio Chi-Square | 4  | 367.3726 | <.0001 |
| Mantel-Haenszel Chi-Square  | 1  | 196.5534 | <.0001 |
| Phi Coefficient             |    | 1.2800   |        |
| Contingency Coefficient     |    | 0.7880   |        |
| Cramer's V                  |    | 0.9051   |        |

| Statistic            | Value  | ASE    |
|----------------------|--------|--------|
| Gamma                | 0.9966 | 0.0018 |
| Kendall's Tau-b      | 0.9365 | 0.0164 |
| Stuart's Tau-c       | 0.9365 | 0.0165 |
| Somers' D C R        | 0.9365 | 0.0164 |
| Somers' D R C        | 0.9365 | 0.0164 |
| Pearson Correlation  | 0.9517 | 0.0129 |
| Spearman Correlation | 0.9518 | 0.0129 |
|                      |        |        |

#### Statistics for Table of Views by Likes

| Statistic                   | DF | Value    | Prob   |
|-----------------------------|----|----------|--------|
| Chi-Square                  | 4  | 217.1476 | <.0001 |
| Likelihood Ratio Chi-Square | 4  | 225.6280 | <.0001 |
| Mantel-Haenszel Chi-Square  | 1  | 151.1085 | <.0001 |
| Phi Coefficient             |    | 0.9980   |        |
| Contingency Coefficient     |    | 0.7064   |        |
| Cramer's V                  |    | 0.7057   |        |

| Statistic            | Value  | ASE    |
|----------------------|--------|--------|
| Gamma                | 0.9521 | 0.0157 |
| Kendall's Tau-b      | 0.7924 | 0.0290 |
| Stuart's Tau-c       | 0.7924 | 0.0291 |
| Somers' D C R        | 0.7924 | 0.0291 |
| Somers' D R C        | 0.7924 | 0.0290 |
| Pearson Correlation  | 0.8345 | 0.0261 |
| Spearman Correlation | 0.8344 | 0.0262 |

#### Statistics for Table of Views by Shares

| Statistic                   | DF | Value    | Prob   |
|-----------------------------|----|----------|--------|
| Chi-Square                  | 4  | 297.5885 | <.0001 |
| Likelihood Ratio Chi-Square | 4  | 305.2399 | <.0001 |
| Mantel-Haenszel Chi-Square  | 1  | 179.8328 | <.0001 |
| Phi Coefficient             |    | 1.1684   |        |
| Contingency Coefficient     |    | 0.7597   |        |
| Cramer's V                  |    | 0.8262   |        |

| Statistic            | Value  | ASE    |
|----------------------|--------|--------|
| Gamma                | 0.9880 | 0.0047 |
| Kendall's Tau-b      | 0.8833 | 0.0215 |
| Stuart's Tau-c       | 0.8833 | 0.0216 |
| Somers' D C R        | 0.8833 | 0.0215 |
| Somers' D R C        | 0.8833 | 0.0215 |
| Pearson Correlation  | 0.9103 | 0.0175 |
| Spearman Correlation | 0.9104 | 0.0175 |

#### Statistics for Table of Views by Subscribers

| Statistic                   | DF | Value    | Prob   |
|-----------------------------|----|----------|--------|
| Chi-Square                  | 4  | 262.0314 | <.0001 |
| Likelihood Ratio Chi-Square | 4  | 271.4874 | <.0001 |
| Mantel-Haenszel Chi-Square  | 1  | 169.0986 | <.0001 |
| Phi Coefficient             |    | 1.0963   |        |
| Contingency Coefficient     |    | 0.7388   |        |
| Cramer's V                  |    | 0.7752   |        |

| Statistic            | Value  | ASE    |
|----------------------|--------|--------|
| Gamma                | 0.9789 | 0.0071 |
| Kendall's Tau-b      | 0.8484 | 0.0240 |
| Stuart's Tau-c       | 0.8484 | 0.0241 |
| Somers' D C R        | 0.8484 | 0.0240 |
| Somers' D R C        | 0.8484 | 0.0240 |
| Pearson Correlation  | 0.8828 | 0.0200 |
| Spearman Correlation | 0.8827 | 0.0200 |

#### Statistics for Table of Views by Watch\_time\_\_hours\_

| Statistic                   | DF | Value    | Prob   |
|-----------------------------|----|----------|--------|
| Chi-Square                  | 4  | 316.6811 | <.0001 |
| Likelihood Ratio Chi-Square | 4  | 324.1450 | <.0001 |
| Mantel-Haenszel Chi-Square  | 1  | 185.3237 | <.0001 |
| Phi Coefficient             |    | 1.2053   |        |
| Contingency Coefficient     |    | 0.7696   |        |
| Cramer's V                  |    | 0.8523   |        |

| Value  | ASE                                                      |
|--------|----------------------------------------------------------|
| 0.9915 | 0.0036                                                   |
| 0.9008 | 0.0201                                                   |
| 0.9008 | 0.0202                                                   |
| 0.9008 | 0.0201                                                   |
| 0.9008 | 0.0201                                                   |
| 0.9241 | 0.0161                                                   |
| 0.9241 | 0.0162                                                   |
|        | 0.9915<br>0.9008<br>0.9008<br>0.9008<br>0.9008<br>0.9241 |

The above statistical tables describe various measures of Chi-Sqaure and other statistics for correlation between the variables. The following observations are made:

- The Chi-Square values are significanlty higher than the decision point/ critical value (for DF of 4 from descision point table) for majority of variables except Average\_View\_Duration and Comments\_Added which are quite low in comparion to other variables. Also, the p-value for all these Chi-Square values is much less than 0.05. Thus, it can be inferenced that based on Chi-Square Test, the relationship between Views and Dislikes, Impressions, Likes, Shares, Subscribers and Watch Time Hours is statistically Significant.
- Similar interpetation can be made from Crammer's V value as it is close to zero for Average View Duration and Comments Added but close to one for other variables.
- The Kendall's Tau-b and Spearman Correlation coeffecient also results in similar interpretation. While the values are less tha 0.43 for Average\_View\_Duration and Comments\_Added describing weak relationships, the values are between 0.8 and 1 for other variables signifying very strong relationship with Views.

## Average Percentage Viewed

The Average Percentage Viewed on a YouTube video is an important parameter to describe the interest of the user in the content. Lower interest results in early closure of video resulting in less amount of video viewed. The relationship of Average Percentage Viewed with other prominent variables is analysed and described below

## Contingency Table Analysis:

| Frequency             | Table of Average_percentage_viewed by Clicks_per_end_screen_element_sh |                      |                        |                       |             |
|-----------------------|------------------------------------------------------------------------|----------------------|------------------------|-----------------------|-------------|
| Expected<br>Deviation |                                                                        | Clicks_per_end_      | screen_element_sh(     | Clicks/End Screen Ele | ment Shown) |
|                       | Average_percentage_viewed(Average Percentage Viewed)                   | Low                  | Med                    | High                  | Total       |
|                       | Low                                                                    | 34<br>23.78<br>10.22 | 24<br>24.11<br>-0.11   | 14<br>24.11<br>-10.11 | 72          |
|                       | Med                                                                    | 21<br>24.11<br>-3.11 | 25<br>24.445<br>0.555  | 27<br>24.445<br>2.555 | 73          |
|                       | High                                                                   | 17<br>24.11<br>-7.11 | 24<br>24.445<br>-0.445 | 32<br>24.445<br>7.555 | 73          |
|                       | Total                                                                  | 72                   | 73                     | 73                    | 218         |

| Table of Average_percentage_viewed by Impressions_click_through_rate |                                               |                       |                        |          |
|----------------------------------------------------------------------|-----------------------------------------------|-----------------------|------------------------|----------|
|                                                                      | Impressions_click_through_rate(Impressions CT |                       |                        | ons CTR) |
| Average_percentage_viewed(Average Percentage Viewed)                 | Low                                           | Med                   | High                   | Total    |
| Low                                                                  | 34<br>24.11<br>9.8899                         | 14<br>23.78<br>-9.78  | 24<br>24.11<br>-0.11   | 72       |
| Med                                                                  | 15<br>24.445<br>-9.445                        | 30<br>24.11<br>5.8899 | 28<br>24.445<br>3.555  | 73       |
| High                                                                 | 24<br>24.445<br>-0.445                        | 28<br>24.11<br>3.8899 | 21<br>24.445<br>-3.445 | 73       |
| Total                                                                | 73                                            | 72                    | 73                     | 218      |

The Contingency Tables above describe relations of Average Percentage Viewed with variables Clicks\_Per\_End\_Screen\_Element\_Shown\_ and Impressions\_click\_through\_rate. The following observations can be made:

- For Low and High values of Average\_Percentage\_Viewed and corresponding Low and High values Clicks\_Per\_End\_Screen\_Element, the deviations from expected value are a little higher than other cases that signify that these categories might be related.
- For Low and Med values of Average\_Percentage\_Viewed and corresponding Low and Med values Clicks\_Per\_End\_Screen\_Element, the deviations from expected value are a little higher than other cases that signify that these categories might be related.

## Chi Square Tests and Other Analysis:

Statistics for Table of Average\_percentage\_viewed\_\_\_\_ by Clicks\_per\_end\_screen\_element\_sh

| Statistic                   | DF | Value   | Prob   |
|-----------------------------|----|---------|--------|
| Chi-Square                  | 4  | 13.7532 | 0.0081 |
| Likelihood Ratio Chi-Square | 4  | 14.0363 | 0.0072 |
| Mantel-Haenszel Chi-Square  | 1  | 12.6408 | 0.0004 |
| Phi Coefficient             |    | 0.2512  |        |
| Contingency Coefficient     |    | 0.2436  |        |
| Cramer's V                  |    | 0.1776  |        |

| Statistic            | Value  | ASE    |
|----------------------|--------|--------|
| Gamma                | 0.3172 | 0.0827 |
| Kendall's Tau-b      | 0.2148 | 0.0577 |
| Stuart's Tau-c       | 0.2148 | 0.0577 |
| Somers' D C R        | 0.2148 | 0.0577 |
| Somers' D R C        | 0.2148 | 0.0577 |
| Pearson Correlation  | 0.2414 | 0.0644 |
| Spearman Correlation | 0.2412 | 0.0645 |
|                      |        |        |

Statistics for Table of Average\_percentage\_viewed\_\_\_\_ by Impressions\_click\_through\_rate\_\_

| Statistic                   | DF | Value   | Prob   |
|-----------------------------|----|---------|--------|
| Chi-Square                  | 4  | 14.8058 | 0.0051 |
| Likelihood Ratio Chi-Square | 4  | 15.5012 | 0.0038 |
| Mantel-Haenszel Chi-Square  | 1  | 0.5023  | 0.4785 |
| Phi Coefficient             |    | 0.2606  |        |
| Contingency Coefficient     |    | 0.2522  |        |
| Cramer's V                  |    | 0.1843  |        |

| Statistic            | Value  | ASE    |
|----------------------|--------|--------|
| Gamma                | 0.0595 | 0.0937 |
| Kendall's Tau-b      | 0.0403 | 0.0636 |
| Stuart's Tau-c       | 0.0403 | 0.0636 |
| Somers' D C R        | 0.0403 | 0.0636 |
| Somers' D R C        | 0.0403 | 0.0636 |
| Pearson Correlation  | 0.0481 | 0.0697 |
| Spearman Correlation | 0.0478 | 0.0707 |
|                      |        |        |

The above statistical tables describe various measures of Chi-Sqaure and other statistics for correlation between the variables. The following observations are made:

- The Chi-Square values are quite low and near to the decision point value of 9.49. Also, the p-value for all these Chi-Square values is less than 0.05. Thus, it can be inferenced that based on Chi-Square Test, the relationship between Average\_Percentage\_Viewed and Clicks\_per\_end\_Screen\_element\_shown, Impressions\_CTR is slightly statistically significant.
- Similar interpetation can be made from Crammer's V value as it is close to zero signifying very weak relationship.
- The Kendall's Tau-b and Spearman Correlation coeffecient also results in similar interpretation. The values are very close to zero for both relations signifying very low or no corelation.

#### Clicks Per End Screen Element Shown

The Clicks per end screen elements on a YouTube video is an the number of clicks after a video has ended. These clicks can lead user to become subscriber or watch some other content of the same channel. The relationship of Clicks per end screen element shown with Impressions CTR is described below

### Contingency Table Analysis:

| Frequency             | Table of Clicks_per_end_screen_element_sh by Im                   | pressions_clic         | k_through_rate        | -                      |           |
|-----------------------|-------------------------------------------------------------------|------------------------|-----------------------|------------------------|-----------|
| Expected<br>Deviation |                                                                   | Impressions_           | _click_through        | _rate(Impressi         | ions CTR) |
|                       | Clicks_per_end_screen_element_sh(Clicks/End Screen Element Shown) | Low                    | Med                   | High                   | Total     |
|                       | Low                                                               | 34<br>24.11<br>9.8899  | 13<br>23.78<br>-10.78 | 25<br>24.11<br>0.8899  | 72        |
|                       | Med                                                               | 23<br>24.445<br>-1.445 | 27<br>24.11<br>2.8899 | 23<br>24.445<br>-1.445 | 73        |
|                       | High                                                              | 16<br>24.445<br>-8.445 | 32<br>24.11<br>7.8899 | 25<br>24.445<br>0.555  | 73        |
|                       | Total                                                             | 73                     | 72                    | 73                     | 218       |

The Contingency Tables above describe relations of Clicks\_Per\_End\_Screen\_Element\_Shown\_ with Impressions\_click\_through\_rate. The following observations can be made:

 For Low and High values of Clicks\_Per\_End\_Screen\_Element\_Shown\_ and corresponding Low and Med values Impressions\_click\_through\_rate, the deviations from expected value are a little higher than other cases that signify that these categories might be related.

## Chi Square Tests and Other Analysis:

Statistics for Table of Clicks per\_end\_screen\_element\_sh by Impressions\_click\_through\_rate\_

|    |          |                                                        | Statistic                                                                   | Value                                                                                                                         | ASE                                                                                                                                    |
|----|----------|--------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| DE | Value    | Prob                                                   | Gamma                                                                       | 0.1634                                                                                                                        | 0.0902                                                                                                                                 |
|    |          |                                                        | Kendall's Tau-b                                                             | 0.1108                                                                                                                        | 0.0616                                                                                                                                 |
| 4  | 15.6711  | 0.0035                                                 | Stuart's Tau-c                                                              | 0.1108                                                                                                                        | 0.0616                                                                                                                                 |
| 1  | 3.3212   | 0.0684                                                 | Somers' D C R                                                               | 0.1108                                                                                                                        | 0.0616                                                                                                                                 |
|    | 0.2624   |                                                        | Somers' D R C                                                               | 0.1108                                                                                                                        | 0.0616                                                                                                                                 |
|    | 0.2538   |                                                        | Pearson Correlation                                                         | 0.1237                                                                                                                        | 0.0679                                                                                                                                 |
|    | 0.1855   |                                                        | Spearman Correlation                                                        | 0.1237                                                                                                                        | 0.0689                                                                                                                                 |
|    | DF 4 4 1 | 4 15.0056<br>4 15.6711<br>1 3.3212<br>0.2624<br>0.2538 | 4 15.0056 0.0047<br>4 15.6711 0.0035<br>1 3.3212 0.0684<br>0.2624<br>0.2538 | DF   Value   Prob   4   15.0056   0.0047   4   15.6711   0.0035   1   3.3212   0.0684   0.2624   0.2538   Pearson Correlation | DF   Value   Prob   4   15.0056   0.0047   4   15.6711   0.0035   1   3.3212   0.0684   0.2624   0.2538   Pearson Correlation   0.1634 |

The above statistical tables describe various measures of Chi-Sqaure and other statistics for correlation between the variables. The following observations are made:

- The Chi-Square values are quite low and near to the decision point value of 9.49. Also, the p-value for all these Chi-Square values is less than 0.05. Thus, it can be inferenced that based on Chi-Square Test, the relationship between Clicks\_per\_end\_Screen\_element\_shown and Impressions\_CTR is slightly statistically significant.
- Similar interpetation can be made from Crammer's V value as it is close to zero signifying very weak relationship.
- The Kendall's Tau-b and Spearman Correlation coeffecient also results in similar interpretation. The values are very close to zero for both relations signifying very low or no corelation.

# Comparing Relationship between Numerical and Categorical

## Variables:

In this section, a comparison has been made between the correlation statistics obtained from numerical dataset and the correlation obtained above using various test on categorical dataset. This comparison is intended to affirm that these results are similar and verify that no information loss has occurred due to conversion to categorical variables.

Similar to previous analysis, Views variable is correlated with other variables.





The following observations can be made from below tables and above correlation matrix:

- There is monotonous relationship between Views and other variables Comments\_Added, Shares, Dislikes, Likes, Average\_View\_Duration, Watch\_time\_hours\_, Subscribers and Impressions.
- The relationship is relatively stronger for lower values of variables as compared to higher ones. Also, the relation is positive i.e, increase in one variable results in increase in another.
- The tables below quantify the relationships. The p-value is very less than 0.05 for all variables showing that the results obtained are statistically significant. This is inline with the results obtained from Chi-Sqaure statistics for categorical variables.
- The Person's Coeffecint is close to zero for relation between Views and Comments\_Added,
   Average\_View\_Duration while is it very close to one for others signifying a weak relationship
   of Comments\_Added, Average\_View\_Duration with Views and a very strong relationship
   with other variables.
- The Spearman and Kandall Tau coeffecients obtained using the numerical data also show similar values when compared to one obtained from categorical Data.
- Thus, it can be inferred that the relationships and their sterngth remained same even after binning the numerical data to categorical data.

| Pearson Correlation Coeffici<br>Prob >  r  under H0: F |                   |
|--------------------------------------------------------|-------------------|
|                                                        | Views             |
| Comments_added                                         | 0.23699<br>0.0004 |
| Shares                                                 | 0.98193<br><.0001 |
| Dislikes                                               | 0.90270<br><.0001 |
| Likes                                                  | 0.88450<br><.0001 |
| Average_view_duration                                  | 0.27876<br><.0001 |
| Watch_timehours_                                       | 0.97017<br><.0001 |
| Subscribers                                            | 0.94093<br><.0001 |
| Impressions                                            | 0.98155<br><.0001 |

| Spearman Correlation Coefficients, N = 218<br>Prob >  r  under H0: Rho=0 |                   |  |  |
|--------------------------------------------------------------------------|-------------------|--|--|
|                                                                          | Views             |  |  |
| Comments_added                                                           | 0.42566<br><.0001 |  |  |
| Shares                                                                   | 0.98279<br><.0001 |  |  |
| Dislikes                                                                 | 0.94090<br><.0001 |  |  |
| Likes                                                                    | 0.94696<br><.0001 |  |  |
| Average_view_duration                                                    | 0.46285<br><.0001 |  |  |
| Watch_timehours_                                                         | 0.97839<br><.0001 |  |  |
| Subscribers                                                              | 0.98515<br><.0001 |  |  |
| Impressions                                                              | 0.99092<br><.0001 |  |  |

| Kendall Tau b Correlation Coeff<br>Prob >  tau  under H0: |                   |
|-----------------------------------------------------------|-------------------|
|                                                           | Views             |
| Comments_added                                            | 0.30864<br><.0001 |
| Shares                                                    | 0.89037<br><.0001 |
| Dislikes                                                  | 0.86633<br><.0001 |
| Likes                                                     | 0.81422<br><.0001 |
| Average_view_duration                                     | 0.32774<br><.0001 |
| Watch_timehours_                                          | 0.88534<br><.0001 |
| Subscribers                                               | 0.84981<br><.0001 |
| Impressions                                               | 0.92305<br><.0001 |

# Determining Predictors and Response Variable:

Based on the analysis and interpretation developed, the following variables are selected:

Response Variable: Views

The Views is the most important metric for videos published on YouTube. It is dependent on a lot factors that maintain the quality of channel and keep the users attracted.

#### Predictors:

As seen in the categorical data analysis as well as comparison with the Numerical data, the following variables exhibit strong correlations with the views. Thus, these variables can be select as the predictors of the response variable Views:

- Shares
- Likes
- Watch\_Time\_Hours\_
- Subscribers
- Impressions

These variables are further analysed by creating Linear Regression Models to decide predictors based on the statistics obtained.

# Model: MODEL1 Dependent Variable: Views

Number of Observations Read 218 Number of Observations Used 218

|                 |     | Analysis of       | Variance       |         |        |
|-----------------|-----|-------------------|----------------|---------|--------|
| Source          | DF  | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |
| Model           | 1   | 3.301266E14       | 3.301266E14    | 5814.76 | <.0001 |
| Error           | 216 | 1.226317E13       | 56773923333    |         |        |
| Corrected Total | 217 | 3.423898E14       |                |         |        |

| Root MSE       | 238273   | R-Square | 0.9642 |
|----------------|----------|----------|--------|
| Dependent Mean | 1126416  | Adj R-Sq | 0.9640 |
| Coeff Var      | 21.15317 |          |        |

|           | Parameter Estimates |                       |                   |         |         |                          |
|-----------|---------------------|-----------------------|-------------------|---------|---------|--------------------------|
| Variable  | DF                  | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t | Standardized<br>Estimate |
| Intercept | 1                   | 146617                | 20628             | 7.11    | <.0001  | 0                        |
| Shares    | - 1                 | 2100.73285            | 27.54895          | 76.25   | <.0001  | 0.98193                  |

#### Model: MODEL1 Dependent Variable: Views

Number of Observations Read 218 Number of Observations Used 218

| Analysis of Variance |     |                   |                |         |        |  |
|----------------------|-----|-------------------|----------------|---------|--------|--|
| Source               | DF  | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |
| Model                | 1   | 2.678652E14       | 2.678652E14    | 776.37  | <.0001 |  |
| Error                | 216 | 7.452452E13       | 3.450209E11    |         |        |  |
| Corrected Total      | 217 | 3.423898E14       |                |         |        |  |

| Root MSE       | 587385   | R-Square | 0.7823 |
|----------------|----------|----------|--------|
| Dependent Mean | 1126416  | Adj R-Sq | 0.7813 |
| Coeff Var      | 52.14633 |          |        |

| Parameter Estimates |     |                       |                   |         |         |                          |
|---------------------|-----|-----------------------|-------------------|---------|---------|--------------------------|
| Variable            | DF  | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t | Standardized<br>Estimate |
| Intercept           | 1   | -109153               | 59574             | -1.83   | 0.0683  | 0                        |
| Likes               | - 1 | 150.50941             | 5.40167           | 27.86   | <.0001  | 0.88450                  |

#### Model: MODEL1 Dependent Variable: Views

Number of Observations Read 218 Number of Observations Used 218

| Analysis of Variance |     |                   |                |         |        |  |
|----------------------|-----|-------------------|----------------|---------|--------|--|
| Source               | DF  | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |
| Model                | 1   | 3.222671E14       | 3.222671E14    | 3459.27 | <.0001 |  |
| Error                | 216 | 2.012265E13       | 93160410476    |         |        |  |
| Corrected Total      | 217 | 3.423898E14       |                |         |        |  |

| Root MSE       | 305222   | R-Square | 0.9412 |
|----------------|----------|----------|--------|
| Dependent Mean | 1126416  | Adj R-Sq | 0.9410 |
| Coeff Var      | 27.09672 |          |        |

| Parameter Estimates |     |                       |                   |         |         |                          |   |
|---------------------|-----|-----------------------|-------------------|---------|---------|--------------------------|---|
| Variable            | DF  | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t | Standardized<br>Estimate | ١ |
| Intercept           | - 1 | 52989                 | 27576             | 1.92    | 0.0560  | 0                        | I |
| Watch_timehours_    | - 1 | 12.92253              | 0.21971           | 58.82   | <.0001  | 0.97017                  | 5 |

#### Model: MODEL1 Dependent Variable: Views

Number of Observations Read 218 Number of Observations Used 218

| Analysis of Variance |     |                   |                |         |        |  |  |
|----------------------|-----|-------------------|----------------|---------|--------|--|--|
| Source               | DF  | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |  |
| Model                | - 1 | 3.03133E14        | 3.03133E14     | 1667.91 | <.0001 |  |  |
| Error                | 216 | 3.925678E13       | 1.817444E11    |         |        |  |  |
| Corrected Total      | 217 | 3.423898E14       |                |         |        |  |  |

| Root MSE       | 426315   | R-Square | 0.8853 |
|----------------|----------|----------|--------|
| Dependent Mean | 1126416  | Adj R-Sq | 0.8848 |
| Coeff Var      | 37.84700 |          |        |

|        | Parameter Estimates |                        |           |          |       |         |                          |  |  |
|--------|---------------------|------------------------|-----------|----------|-------|---------|--------------------------|--|--|
| d<br>e | Variable            | /ariable DF Estimate E |           |          |       | Pr >  t | Standardized<br>Estimate |  |  |
| )      | Intercept           | 1                      | 264780    | 35760    | 7.40  | <.0001  | 0                        |  |  |
| 7      | Subscribers         | 1                      | 411.67242 | 10.08012 | 40.84 | <.0001  | 0.94093                  |  |  |

#### Model: MODEL1 Dependent Variable: Views

Number of Observations Read 218

Number of Observations Used 218

| Analysis of Variance |     |                   |                |         |        |  |  |
|----------------------|-----|-------------------|----------------|---------|--------|--|--|
| Source               | DF  | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |  |
| Model                | 1   | 3.298712E14       | 3.298712E14    | 5691.73 | <.0001 |  |  |
| Error                | 216 | 1.251855E13       | 57956271833    |         |        |  |  |
| Corrected Total      | 217 | 3.423898E14       |                |         |        |  |  |

| Root MSE       | 240741   | R-Square | 0.9634 |
|----------------|----------|----------|--------|
| Dependent Mean | 1126416  | Adj R-Sq | 0.9633 |
| Coeff Var      | 21.37230 |          |        |

| Parameter Estimates |     |                       |                   |         |         |                          |  |
|---------------------|-----|-----------------------|-------------------|---------|---------|--------------------------|--|
| Variable            | DF  | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t | Standardized<br>Estimate |  |
| Intercept           | 1   | 148798                | 20827             | 7.14    | <.0001  | 0                        |  |
| Impressions         | - 1 | 0.16392               | 0.00217           | 75.44   | <.0001  | 0.98155                  |  |

The following observations can be made from these statistics:

- All the predictors are statistically significant based on p-value. Also, the models are also significant based on p-value of F-statistics.
- The most dominant predictors based on Parameter estimates on slopes are Shares, Subscribers and Likes.
- The other variables have low slope estimates signifying that these variables have lower effect on the response variable as compared to the above mentioned three variables.

Thus, on the basis of the estimated values in the analysis above, it can be decided that:

Dependent Variable: Views

Predictors: Shares, Likes and Subscribers

# Linear Regression and Prediction:

The analysis done in previous section provided three most significant predictors of response variable Views. These are Subscribers, Likes and Shares. In this section, a Linear Regression Model is developed using these predictors to predict the values of Views.

The following steps are taken to perform Predication of Views from Likes, Shares and Subscribers:

- A Linear Model is constructed using Views as dependent variable and Likes as independent variable. Further, a plot between these variables along with the regression line is drawn to display the linear relationship. Finally, the value of Views is predicted from model using predict() method in R.
- The process is repeated for Shares and Subscribers to predict Views based on these variables.

#### Likes

The following linear model is constructed:

Regression Equation: Views = -109153 + 150.5\*Likes

Scatter Plot with Regression Line:

### Scatterplot



#### Prediction:

The following values are predicted using the model:

| Likes | Views   |
|-------|---------|
| 25000 | 3653582 |
| 26000 | 3804091 |

As evident from the predictions as well as scatterplot, the number Views of the video increase with increase in Likes. An increase of 1000 likes resulted in almost 150000 more views on video.

### **Shares**

The following linear model is constructed:

Regression Equation: Views = 146617 + 2100.73\*Shares

Scatter Plot with Regression Line:



#### Prediction:

The following values are predicted using the model:

| Shares | Views   |
|--------|---------|
| 2200   | 4768230 |
| 2800   | 6028669 |

As evident from the predictions as well as scatterplot, the number Views of the video increase with increase in Shares. An increase of 400 likes resulted in almost 1200000 more

views on video. This is a significant increase in the views with relatively lower increase in shares.

### Subscribers

The following linear model is constructed:

Regression Equation: Views = 264780.44 + 411.67\*Subscribers

Scatter Plot with Regression Line:



#### Prediction:

The following values are predicted using the model:

| Subscribers | Views   |
|-------------|---------|
| 7500        | 3352324 |
| 8500        | 3763996 |

As evident from the predictions as well as scatterplot, the number Views of the video increase with increase in number of Subscribers added. An increase of 1000 subscribers resulted in almost 400000 more views on video.

# Recommendations:

Based on the analysis, tests an interpretation obtained above, the following recommendations are suggested to the Administrator of the YouTube channel:

- The most prominent factor of increasing Views on the video is the number of times it is shared on the platform. Thus, an effort must be made to share the video extensively. Also, a healthy practice is to request your viewers to share your content across.
- The number of Subscribers added per video is the next parameter that enhances views on the video. In order to achieve more subscribers per video, it is recommended to create more engaging content that is liked by the audience. A viewer turns into a subscribers if the video manages to keep the interest till the end and excites viewer to watch more related content. Thus, it is recommended to craft the content targeted towards the interests of audience in order to achieve more subscribers and views. The same concept goes for number of likes on the video.

# Summary:

In this report, analysis of YouTube Video data is performed. The report is summarized below

- The Numerical data present in dataset is first Categorized into 3 categories namely 'Low', 'Med' and 'High' based on the value using Adaptive Quantile-Based binning technique.
- The relationship between the categorical variables of derived dataset is analyzed by performing various tests as mentioned below
  - Contingency Tables: to determine independence using frequency distributions between pair of variables
  - Chi-Square Tests statistics: To obtain the statistical significance of relationships
  - o Kendall's Tau-b and Spearman's Correlation Tests: to obtain strength of correlations.
- A comparison between the relationships obtained from derived categorical dataset and numerical data set is performed by evaluating Pearson's Correlation between numerical variables. Similar results were observed for numerical and categorical datasets.
- Based on results of correlation tests and strength of correlation, 'Views' is selected as
  dependent variable and Shares, Likes and Subscribers as Predictors for performing Linear
  Regression.
- Linear Regression is performed to predict values of Views based on selected predictors.
- The YouTube Administrator is suggested with useful recommendations increasing the number of Views on the Videos.