

Министерство науки и высшего образования Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Сравнение методов сжатия атрибутов облаков точек

Выполнил студент: **Поздняков Артемий Анатольевич**, гр. 5130904/00104 Научный руководитель: старший преподаватель ВШПИ ИКНК **Фёдоров Станислав Алексеевич** Направление подготовки: 09.03.04, **Программная инженерия**

Санкт-Петербург

Актуальность

Разработка программы для оценки работы РСС-кодеков - актуальная задача.

- Популярность технологий компьютерного зрения и расширенной реальности растёт;
- Появляется большое количество кодеков, предназначенных для сжатия облаков точек и их атрибутов (РСС-кодеков);

Использование

Подобная программа может быть использована исследователями для подсчёта метрик разрабатываемых ими кодеков.

Цели и задачи

Цель работы - разработка подхода к сравнению методов сжатия атрибутов облаков точек.

Задачи:

- Проанализировать системы оценки качества сжатия облаков точек;
- Изучить релевантные метрики, отображающие эффективность и качество сжатия атрибутов облаков точек;
- Разработать программу подсчёта метрик;
- Получить метрики для отобранных РСС-кодеков;
- Проанализировать результаты работы;

Оценка качества сжатия

Определение

Реконструированное облако - облако точек, полученное в результате компрессии и декомпрессии оригинального облака точек.

• Показателем качества сжатия являются значения отобранных метрик для пары оригинальное и реконструированное облако.

Сравнение альтернативных решений

	mpeg_pcc_dmetric	geo_dist
Полнота метрик	±	±
Оценка искажения атрибутов	+	-
Поддерживаемость	+	-
Возможность расширения	-	-
Открытый исх. код	-	-

Таблица 1: Характеристики различных рассмотренных систем

Требования

В результате анализа определены следующие требования к разрабатываемому решению:

- Возможность вычисления стандартных метрик искажения геом. структуры (MSE и PSNR, метрика Хаусдорфа);
- Возможность вычисления проецированных значений отклонения;
- Возможность вычисления искажения цветов в цветовых схемах RGB и Y'CbCr;
- Использование архитектуры, допускающей дальнейшее расширение приложения;
- Наличие тестов;
- Использование лицензии MIT;

Архитектура разрабатываемого решения

Рис. 1: Диаграмма классов разработанного приложения

Алгоритм внедрения зависимостей

```
if metric. key() in self. calculated metrics:
        return self. calculated metrics[metric. key()]
    if isinstance(metric, PrimaryMetric):
        metric = typing.cast(PrimaryMetric, metric)
        metric.calculate(self. cloud pair)
        self. calculated metrics[metric. key()] = metric
        return metric
10
    calculated deps = {}
11
    for dep key, dep metric in metric. get dependencies().items():
        calculated dep metric = self. metric recursive calculate(
12
13
            metric=dep metric.
14
15
        calculated deps[dep kev] = calculated dep metric
16
17
    metric.calculate(**calculated deps)
18
    self. calculated metrics[metric. kev()] = metric
```

Листинг 1: Алгоритм внедрения зависимостей

Консольное приложение

```
• open-pcc-metric-py3.10vscode →/workspaces/open-pcc-metric (main) $ python3 \
 > -m open pcc metric --help
 Usage: python -m open pcc metric [OPTIONS]
 Options:
   --ocloud TEXT Original point cloud. [required]
   --pcloud TEXT Processed point cloud. [required]
   --color [rgb|vcc] Report color distortions as well.
   --hausdorff
                      Report hausdorff metric as well. If --point-to-plane is
                      provided, then hausdorff point-to-plane would be reported
                      too
   --point-to-plane
                     Report point-to-plane distance as well.
                    Print output in csv format.
   --CSV
   --help
                      Show this message and exit.
```

Рис. 2: Help-сообщение программы

Консольное приложение

```
• open-pcc-metric-pv3.10vscode →/workspaces/open-pcc-metric (unittests) $ pvthon3 -m open pcc metric \
 > --ocloud="./files/oskull reduced.plv" \
 > --pcloud="./files/pskull reduced.plv" \
 > --color="vcc"
                     label is left point-to-plane
                                                                                             value
          MinSartDistance
                                                                             0.0005394594300728226
 0
          MaxSartDistance
                                                                                3.3819776943374595
                   GeoMSE
                              True
                                            False
                                                                              0.008200834632373888
  3
                    GeoMSE
                             False
                                            False
                                                                              0.008181548987474831
        GeoMSE(symmetric)
                                                                              0.008200834632373888
 5
                   GeoPSNR
                             True
                                            False
                                                                                  72.4728937253675
 6
                   GeoPSNR
                             False
                                            False
                                                                                 72.48311891997054
       GeoPSNR(symmetric)
                                                                                  72.4728937253675
 8
                 ColorMSE
                             True
                                                   [1.26237366e-05 2.97011418e-07 2.35043354e-07]
 9
                             False
                  ColorMSE
                                                    [1.86551090e-05 4.75979959e-07 3.83567251e-07]
 10
       ColorMSE(symmetric)
                                                    [1.86551090e-05 4.75979959e-07 3.83567251e-07]
 11
                 ColorPSNR
                             True
                                                             [48.98812076 65.27226855 66.28852024]
 12
                 ColorPSNR
                             False
                                                             [47.29202209 63.22411332 64.1615848
     ColorPSNR(symmetric)
                                                             [47,29202209 63,22411332 64,1615848
```

Рис. 3: Пример вывода программы

Метрики разработанного ПО

Тут про объем реализации (1к строк кода), тесты, СІ/СD, много картинок, пару красивых слов.

PCCArena

РССАгепа - система бенчмаркинга РСС-кодеков. Данная система использует mpeg_pcc_dmetric для вычисления стандартных метрик (MSE, PSNR, и т.д.).

Рис. 4: Репозиторий PCCArena на GitHub

Архитектура PCCArena

Рис. 5: Архитектура PCCArena

Описание проведенных экспериментов

С помощью модифицированной системы PCCArena был произведен набор измерений.

- Произведена оценка кодеков ТМС13 и Draco;
- Использовался датасет ShapeNet;
- Для каждой метрики была построена зависимость от битрейта;

Определение

Битрейт - количество бит, затраченных на кодирование одной точки.

Результаты для расстояния Чамфера

Рис. 6: (a) Зависимость расстояния Чамфера от битрейта. (b) Зависимость CD-PSNR от битрейта

Результаты для метрики Хаусдорфа и нормалей

Рис. 7: (a) Зависимость метрики Хаусдорфа от битрейта. (b) Зависимость проецированной метрики Хаусдорфа от битрейта

Результаты для цветов

Рис. 8: Зависимость Y'-PSNR от битрейта

Выводы и дальнейшие шаги

- Проведён анализ существующих систем оценки методов сжатия облаков точек и их атрибутов;
- Разработана программа для оценки качества облака точек при наличии оригинального облака точек;
- Произведён сравнительный анализ кодеков Draco и TMC13;

Разработанное решение упростит оценку методов сжатия атрибутов облаков точек и может быть полезно исследователям, ведущим разработки в данной области.

Дальнейшие шаги:

• Могут быть добавлены метрики, учитывающие более высокоуровневые признаки облаков точек и дающие более подробную оценку качества их сжатия;