

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

(Mamba Theory)

Mamba is not a Snake 2!

Chapter

- 1. Problems with S4
- 2. Why S4 performs poorly on Language tasks
- 3. Why Mamba: Selective Scan
- 4. Why Mamba: Hardware-aware algorithm
- 5. Mamba Block
- 6. Code (Mamba 2.8b Inference)

Problems with S4

• **Key Problem**: State Space Models, and even the S4 (Structured State Space Model), perform poorly on certain tasks that are vital in language modeling and generation, namely *the ability to focus on or ignore particular inputs*.

• E.g.

Why S4 performs poorly on Language tasks

Matrices A, B, and C are fixed after training; they do not change regardless of the input. This results in an inability to focus on specific parts of the input.

Why Mamba: Selective Scan

Matrix A

How the current state evolves over time

Matrix B

How the input influences the state

Matrix C

How the current state translates to the output

Structured State Space Model (S4)

S4(A, B, C are fixed)

Step size (△)

Resolution of the **input** (discretization parameter)

Matrix B

vector (D)

How the **input** influences the state

Matrix C

How the current state translates to the output

SSM + Selection

Mamba:

(B, C, \triangle comes from the input x)

B = Linear1(x)

C = Linear2(x)

 Δ =Linear3(x)

A is still fixed after training. (See the paper Ablation part for more details

4

Why Mamba: Selective Scan

Interpretation of A. We remark that while the A parameter could also be selective, it ultimately affects the model only through its interaction with Δ via $\overline{A} = \exp(\Delta A)$ (the discretization (4)). Thus selectivity in Δ is enough to ensure selectivity in $(\overline{A}, \overline{B})$, and is the main source of improvement. We hypothesize that making A selective in addition to (or instead of) Δ would have similar performance, and leave it out for simplicity.

Table 8: (**Ablations: Parameterization of** *A*.) The more standard initializations based on S4D-Lin (Gu, Gupta, et al. 2022) perform worse than S4D-Real or a random initialization, when the SSM is selective.

A_n Initialization	Field	Perplexity
$A_n = -\frac{1}{2} + ni$ $A_n = -1/2$	Complex	9.16
$A_n = -1/2$	Real	8.85
$A_n = -(n+1)$	Real	8.71
$A_n \sim \exp(\mathcal{N}(0,1))$	Real	8.71

Selective Δ	Selective $oldsymbol{B}$	Selective C	Perplexity
X	Х	Х	10.93
X	✓	X	10.15
X	X	1	9.98
✓	X	X	9.81
✓	✓	✓	8.71

Why Mamba: Selective Scan

Before: O(n)

Sequential computation O(n)

After: O(n/t)

$$\begin{aligned} \mathbf{H}_{1} &= H_{0} + \bar{B}x_{1} \\ \mathbf{H}_{2} &= H_{1} + \bar{B}x_{2} \\ &= (H_{0} + \bar{B}x_{1}) + \bar{B}x_{2} \end{aligned}$$

Parallel computation O(n/t)

Why Mamba: Hardware-aware algorithm

Data1(CPU) -> HBM(data.to("cuda:0") -> SRAM -> Computation Core

Global Local

Ref: GPU存储的结构

Why Mamba: Hardware-aware algorithm

Ref: GPU存储的结构

Why Mamba: Hardware-aware algorithm

Ref: GPU存储的结构

Mamba Block

Input: Prefill Input: Q: Hello! My name is Tom

(tokenizer) (tokenizer)

Mamba Block (Embedding Layer) vocab_size x hidden_dim(100) (Embedding Layer)

Hello | ! | My | name | is -> (id)

Hello 1 (row 1 -> Hello vector) How LLM

(Transformer Block) | (Mamba Block) Inference? (KV cache) (Mamba cache)

Output:

Sample:

Prefill: Distribution 6 tokens -> ?

(vocab size = 200)[-1] last token distribution -> sample Output: 1x200

a[1, 6, 5120] -> [1, 1, 5120] -> sample

a[:,-1,:]

Decode:

1 token -> 1 distribution -> sample

Sample:

Greedy (argmax)

T, sample

B S... -> (4 max)

(vocab 4: Tom)

(Transformer / Mamba Block)

Decode

Output:

Tom (id)

Distribution

Tom (vector)

Output: 1x200

Sample

(Stop: 1. token=stop(EOS)

Stop: 2. max length)

Embedding Layer

Input: Token id

Output: Embedding states

E.g.

Input sentence: Hello!
Tokenizer results: [1, 2]

Results (shape: [2,3]):

0.1	0.1	0.1
0.2	0.2	0.2

Embedding

Embedding Layer:

nn.Parameters(vocab_size, embed_dim)

Hello	!	Му	name	is	Tom
1	2	3	4	5	6

Vocab

Embedding Layer (weight shape: [6,3]):

0.1	0.1	0.1
0.2	0.2	0.2
0.3	0.3	0.3
0.4	0.4	0.4
0.5	0.5	0.5
0.6	0.6	0.6

Mamba Block

See Codes:

Modeling_mamba.py(HF: mamba 2.8b)

Class:

MambaCache: caches for each Mamba Block

(ssm hidden states & conv states)

MambaMixer: ← (Red Box)

MambaRMSNorm: Normalization(See mamba block figure)

MambaPreTrainedModel: MambaMixer + Residual(Black box)

Mamba Block

Conv1d Layer:

ResNet ResNeXt Repeated n times --->

(take mamba-2.8b for example)

Input: (bs, hidden_dim=5120, seq_len)

Conv: Conv1d(5120, 5120, kernel_size=(4,),

stride=(1,), padding=(3,), groups=5120)

data:

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18

а	b	С	m
d	е	f	n
g	h	i	q

а	b	С	m
а	b	С	m
а	b	С	m

Output shape:

RMS Norm

, projection

Convolution

Selective

projection ,

activation

activation or multiplication

$$W' = floor(\frac{W + padding_w - kernel_w}{stride}) + 1$$

രി Mamba Block

skip connection