Preuve du théorème

Théorème 1. Pour la matrice cyclique d'ordre n, le résultat est un carré latin parfait.

 $D\'{e}monstration.$ Pour ceci on se servira de l'exemple suivant.

1	0	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	1	2	3	$4 \$
1	$\overline{4}$	0	1	2	3	4	1	$\overline{2}$	3
	$\overline{3}$	4	0	4	2	$\overline{4}$	3	$\overline{1}$	$\overline{2}$
١	$\overline{2}$	3	4	0	1	$\overline{3}$	$\overline{4}$	2	$\overline{1}$
١	$\overline{1}$	2	3	4	0	$\overline{2}$	$\overline{3}$	$\overline{4}$	1
١	4	$\overline{2}$	2	$\overline{4}$	1	0	1	3	3
ı	3	3	$\overline{4}$	$\overline{2}$	4	1	0	1	2
١	2	1	$\overline{3}$	1	$\overline{2}$	3	4	0	$\overline{4}$
/	1	$\overline{4}$	$\overline{1}$	3	$\overline{3}$	2	$\overline{2}$	4	0 /