Methodological Details for GSTI Dataset Kyaw et al. (2024)

Dataset authors: Thu Ya Kyaw, Michael Alonzo, Joshua Caplan

This document was written by J Caplan in December 2024

Overview

- This dataset includes much of the leaf spectral and leaf morphological data used for our paper published in *Remote Sensing* (Kyaw et al. 2024) but also includes some data that we did not report; gas exchange parameters being the most notable.
- Our study sought to determine how well spectral data (in combination with air temperature measurements) can be used to diagnose heat stress in trees that are abundant in eastern North American cities.
- Our site was the campus of the University of Maryland Baltimore County, which we selected because it provided access to regionally important tree species, with each experiencing a range in the environmental conditions common in cities (e.g., the amount of paved surface, turf, etc. surrounding trees).
- The study included nine tree species, with six individuals for all species but Quercus rubra, for which there were two (Table 1 in Kyaw et al. 2024, n = 51 trees in total).

Field sampling approach

- O Monthly field campaigns took place from July October 2022, each spanning 2-3 days. Almost all trees were visited once per campaign (n = 202 visits in total).
- Tree visits occurred during afternoon hours to maximize the heat stress experienced by trees. Visits entailed cutting a branch segment (usually 40-50 cm long) from the sunexposed side of a tree's crown, submerging the branch's cut end in water, recutting, and swiftly transporting the branch segment to a central location.
- Leaf spectral reflectance and leaf physiological parameters were then measured immediately using leaves that were similar with respect to size, developmental stage, etc.
 Methodological details are below, though they focus on gas exchange measurements.
 Additional details on spectral reflectance measurements can be found in Kyaw et al. (2024).
- Spectral reflectance was typically measured from each of three selected leaves using an SVC HR-1024i with an LC-RP Pro leaf clip (Spectra Vista Corporation, Poughkeepsie, NY, USA). The number of leaves measured sometimes varied and multiple leaves sometimes had to be placed next to each other to cover the field of view. A white reference measurement was made with the LC-RP Pro's spectralon panel prior to measurements from each tree. Averaged spectral reflectance curves were exported from the instrument, and these averages therefore appear in our dataset.

- An additional leaf from the branch segment was weighed fresh then sealed in a plastic bag.
 Leaf area and dry mass were later measured, making it possible to determine leaf water content (LWC) and leaf mass per area (LMA).
- o An LI-6800 (LI-COR Biosciences, Lincoln, NE, USA) was used to measure several gas exchange and fluorescence parameters simultaneous with spectral reflectance. This was done with an additional/analogous leaf that remained attached to the branch segment. Measurements included net carbon assimilation (A_{net}), transpiration (E), and stomatal conductance to water (g_{sw}). Note that all of these are used to calculate the intercellular CO₂ concentration (C_i).

Details of physiological measurements

- We attempted to record A-C_i curves throughout the July campaign and initially during the August campaign. We did this using the dynamic assimilation technique (Saathoff and Welles 2021), but the approach was only intermittently successful (details to follow). We therefore switched to recording a single set of values (i.e., "survey" measurements) using the standard steady-state approach.
- O A multi-phase flash was given to each measured leaf to induce fluorescence (and thereby determine electron transport rate, qP, etc.). Whether the gas exchange procedure entailed recording A-C_i curves or survey measurements, fluorescence pulses were made with reference CO₂ (CO_{2R}) at 400 ppm. This yielded extraneous gas exchange data points in A-C_i curves that were later removed (details below).
- \circ For the sake of consistency and parsimony, we opted to submit single pairs of A_{net} and C_i values from each tree visit to the GSTI database, even when A- C_i curves were successful. This way the single point method could be used to determine V_{cmax} in all cases.
- Key settings on the LI-6800 were as follows:
 - CO_{2R} (for survey measurements): 400 ppm
 - T_{leaf}: 35° C in July and August, 25° C in September, 20° C in October
 - PPFD: 2000 μmol m⁻² s⁻¹
 - Flow: 700 μmol s⁻¹
 - VPD_{leaf}: 1.5 kPa (note that this was often not achieved)
- o Plots of A_{net} vs. C_i were of highly variable quality, with low quality typically manifesting as curves that did not increase monotonically. However, plots of A_{net} vs. CO_{2R} did increase monotonically even in these cases, and otherwise appeared as expected. Given that computations of C_i are strongly influenced by g_{sw} and E (equations provided here), we took the discrepancy to mean that problems measuring water loss (E and g_{sw}) had frequently rendered C_i estimates inaccurate. Later measurements of E and g_{sw} (during survey measurements) confirmed that they were often much less stable than net carbon assimilation (A_{net}) was.

- We attribute the challenges of measuring water loss primarily to the high heat (~35° C) and low humidity (<50%) of the ambient environment; leaf vapor pressure deficits often exceeded 3 kPa. Regardless, recorded values of E and g_{sw} were sometimes negative or, when they were positive but unrealistically small, C_i was unrealistically large (>350 ppm).
- Although we measured dark respiration (R_d) only intermittently during July and August campaigns, we measured it consistently during September and October campaigns. Our GSTI dataset therefore contains many more data points from those later months.
- \circ R_d was measured after turning off the light source and waiting for A_{net} to achieve steady state, which usually took 2-3 min.

Extraction of best-available gas exchange data

- Here we describe the procedures used to identify and extract reliable values of A_{net} and C_i for use in single point estimates of V_{cmax}. They were applied to the raw data using a script in R 4.2.2 (R Project for Statistical Computing, Vienna, Austria) for maximal consistency.
- o In cases where dynamic A- C_i curves had been attempted, we first isolated the data with CO_{2R} near 400 ppm (specifically 350-450 ppm). As a precaution, we further required that records had PPFD (a.k.a. Q_{in}) > 1990, A_{net} > 0, and C_i > 0. In the majority of cases, this left 10-15 records that followed an increasing trend, but with ~4-6 outliers. In a minority of cases, no trend was apparent. Subsequent steps were intended to isolate data that followed the increasing trend (if any) and to remove outliers.
- O Records clearly influenced by fluorescence pulses typically had some A_{net} values far greater or smaller than those measured during the CO_2 ramp of the A-C_i curve process (i.e., gross outliers). Because these outliers occurred when CO_{2R} was very close to 400 ppm, we removed all records with A_{net} below those measured at minimal CO_{2R} (~350 ppm) or greater than those measured at maximal CO_{2R} (~450 ppm).
- \circ We next ran a linear regression (of A_{net} vs. C_i) and identified modest outliers, specifically those with standardized residuals > 2. We then refitted the regression. If the final slope was positive and R^2 > 0.9, we retained data from the curve. Otherwise, data from that tree visit were excluded from the final dataset (this was the majority).
- Means of parameter values from remaining data records were compiled into a single dataset, along with those measured at steady state.
- o Records were filtered such that only those meeting the following criteria were retained:
 - A_{net} > 0 (except for measurements of R_d)
 - E and g_{sw} > 0
 - C_i < 300 and > 100 ppm
 - VPD_{leaf} < 4 kPa

Final notes

- o The final gas exchange dataset contains 94 data rows, 17 of which come from A-C_i curves and 77 of which come from survey measurements. There are also 65 measurements of R_d.
- We conducted additional campaigns in 2023. Although a dataset for 2023 has not yet been compiled for GSTI (as of December 2024), it followed nearly identical methods (though only survey measurements were made for gas exchange) and focused on the same set of trees.

References

Kyaw, T. Y., Alonzo, M., Baker, M. E., Eisenman, S. W., & Caplan, J. S. (2024). Predicting urban trees' functional trait responses to heat using reflectance spectroscopy. *Remote Sensing*, 16(13), 2291. https://doi.org/10.3390/rs16132291

Saathoff, A. J., & Welles, J. (2021). Gas exchange measurements in the unsteady state. *Plant, Cell & Environment*, 44(11), 3509–3523. https://doi.org/10.1111/pce.14178