# SINGAPORE POLYTECHNIC EST 2021 / 2022 Semester 1

Module Name: Further Mathematics Module Code: EP0604 Page 1 of 7

| No. | SOLUTION                                                                                                                                                                    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Let P <sub>n</sub> be the statement                                                                                                                                         |
|     | $a + ar^{1} + ar^{2} + + ar^{n-1} = \frac{a(1-r^{n})}{1-r}$                                                                                                                 |
|     | Step 1: Prove that $P_1$ is true.<br>When $n = 1$ ,<br>LHS = a<br>RHS = $a(1-r)/(1-r) = a = LHS$<br>Hence, $P_1$ is true.                                                   |
|     | Step 2: Assume that $P_n$ is true for an arbitrary $n \in \mathbb{Z}^+$ . $P_n: a + ar^1 + ar^2 + \ldots + ar^{n-1} = \frac{a(1-r^n)}{1-r}$                                 |
|     | Step 3: Prove that $P_{n+1}$ is true $P_{n+1}: a + ar^1 + ar^2 + + ar^{n-1} + ar^n = \frac{a(1-r^{n+1})}{1-r}$                                                              |
|     | $LHS = a + ar^{1} + ar^{2} + + ar^{n-1} + ar^{n}$ $= \frac{a(1 - r^{n})}{1 - r} + ar^{n}$                                                                                   |
|     | $= \frac{a(1-r^n) + ar^n(1-r)}{1-r}$ $a - ar^n + ar^n - ar^{n+1}$                                                                                                           |
|     | $= \frac{a - ar^{n} + ar^{n} - ar^{n+1}}{1 - r}$ $= \frac{a(1 - r^{n+1})}{1 - r} = RHS$                                                                                     |
|     | Hence $P_n$ is true implies $P_{n+1}$ is true. Since $P_1$ is true, it follows by the principle of mathematical induction that $P_n$ is true for all $n \in \mathbb{Z}^+$ . |

| No.      | SOLUTION                                    |
|----------|---------------------------------------------|
| 2(a) (i) | $u = x^3 + 1$ $u = x^3 + 1$                 |
|          | $\frac{du}{3} = x^2 dx \qquad x = 0, u = 1$ |
|          | x = 1, u = 2 $x = 1, u = 2$                 |
|          |                                             |
|          |                                             |

# SINGAPORE POLYTECHNIC EST 2021 / 2022 Semester 1

**Module Name: Further Mathematics** 

Module Code: EP0604 Page 2 of 7

| No.  | SOLUTION                                                                                                                                                                                                                                                                                  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii) | $A = \int_{1}^{2} (u - 1) \ln(u) \frac{du}{3}$ $= \frac{1}{3} \int_{1}^{2} (u - 1) \ln(u) du$                                                                                                                                                                                             |
|      | $A = \frac{1}{3} \int_{1}^{2} (u - 1) \ln u  du$ $= \frac{1}{3} \left[ \left( \frac{u^{2}}{2} - u \right) \ln u \right]_{1}^{2} - \int_{1}^{2} \left( \frac{u}{2} - 1 \right)  du $ $= \frac{1}{3} \left[ \left( \frac{u^{2}}{2} - u \right) \ln u - \frac{u^{2}}{4} + u \right]_{1}^{2}$ |
| 2(b) | $= \frac{1}{3} \left( 1 - \frac{3}{4} \right) = \frac{1}{12}$ $u = 2^x + 1 \Rightarrow \frac{du}{\ln 2} = 2^x dx$ $\int \frac{2^x}{\left(2^x + 1\right)^2} dx = \frac{1}{\ln 2} \int \frac{1}{u^2} du$                                                                                    |
|      | $= \frac{1}{\ln 2} \frac{u^{-1}}{-1} + C$ $= -\frac{1}{\ln 2(2^{x} + 1)} + C$                                                                                                                                                                                                             |

| No.   | SOLUTION                                                                          |
|-------|-----------------------------------------------------------------------------------|
| 3a(i  | $2 - e^{-x} = x$                                                                  |
| )     |                                                                                   |
| (ii)  | $\int_0^a (2-e^{-x}-x)\ dx$                                                       |
| (iii) | $\int_0^a (2 - e^{-x} - x) dx$ $= \left[ 2x + e^{-x} - \frac{x^2}{2} \right]_0^a$ |
|       | $= \left[2x + e^{-x} - \frac{x^2}{2}\right]_0^a$                                  |
|       | $=2a + \frac{1}{e^a} - \frac{a^2}{2} - 1$                                         |

# SINGAPORE POLYTECHNIC EST 2021 / 2022 Semester 1

Module Name: Further Mathematics Module Code: EP0604 Page 3 of 7

| No.  | SOLUTION                                                                                                                                                                                                 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                          |
| 3(b) | $\int_0^6 \pi \left(\frac{x}{12}\sqrt{36 - x^2}\right)^2 dx$ $= \int_0^6 \pi \frac{x^2}{144} (36 - x^2) dx$                                                                                              |
|      |                                                                                                                                                                                                          |
|      | $= \pi \left[ \frac{36}{144 \times 3} x^3 - \frac{x^5}{144 \times 5} \right]_0^6$ $= \pi \left( \frac{36}{144 \times 3} 6^3 - \frac{6^5}{144 \times 5} \right)$ $= \pi \left( 18 - \frac{54}{5} \right)$ |
|      | $= 7.2\pi = 22.6  unit^3$                                                                                                                                                                                |

| No.       | SOLUTION                                                                                                                                                                                                                         |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4a<br>(i) | $\overrightarrow{PQ} = \underline{i} + 2\underline{j} + 2\underline{k}$ $ \overrightarrow{PQ}  = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3$                                                                                          |
| (ii)      | $\widehat{\overrightarrow{PQ}} = \frac{1}{ \overrightarrow{PQ} } \overrightarrow{PQ} = \frac{1}{3} (\underline{i} + 2\underline{j} + 2\underline{k})$                                                                            |
| (iii)     | $\overrightarrow{F_1} = 9\widehat{PQ} = 9(\frac{1}{3})(\underline{i} + 2\underline{j} + 2\underline{k})$                                                                                                                         |
|           | $= 3(\underline{i} + 2\underline{j} + 2\underline{k}) = (3\underline{i} + 6\underline{j} + 6\underline{k}) N$                                                                                                                    |
|           | Total Work Done $= (\overrightarrow{F_1} + \overrightarrow{F_2}) \cdot \overrightarrow{PQ}$ $= \begin{pmatrix} 3+a \\ 15+6 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = 51$ $3+a+42+12=51$ Hence, $a=-6$ |

# SINGAPORE POLYTECHNIC EST 2021 / 2022 Semester 1

Module Name: Further Mathematics Module Code: EP0604 Page 4 of 7

| SOLUTION                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P(1, -2,4) and $Q(3,2,10)$                                                                                                                                       |
| $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ $= (3i + 2j + 10k) - (i - 2j + 4k)$                                                            |
| $= (3\underline{i} + 2\underline{j} + 10\underline{k}) - (\underline{i} - 2\underline{j} + 4\underline{k})$ $= 2\underline{i} + 4\underline{j} + 6\underline{k}$ |
| $L: r = (i - 2i + 4k) + \lambda(2i + 4i + 6k)$<br>$x = 1 + 2\lambda(1)$                                                                                          |
| $y = -2 + 4\lambda \dots (2)$                                                                                                                                    |
| $z = 4 + 6\lambda \dots (3)$                                                                                                                                     |
| Or $L: r = (3i + 2i + 10k) + \lambda(2i + 4i + 6k)$                                                                                                              |
| $x = 3 + 2\lambda$                                                                                                                                               |
| $y = 2 + 4\lambda$                                                                                                                                               |
| $z = 10 + 6\lambda$                                                                                                                                              |
|                                                                                                                                                                  |
| $4 = 1 + 2\lambda \dots (1)$                                                                                                                                     |
| $4 = -2 + 4\lambda \dots (2)$                                                                                                                                    |
| $13 = 4 + 6\lambda \dots (3)$                                                                                                                                    |
| Subst <i>Q</i> (4,4,13) into (1), (2) and (3) give the same $\lambda = \frac{3}{2}$                                                                              |
| Hence Q lies on the given line.                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |

| No.  | SOLUTION                                                                                                                                                                                                                                                                           |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(a) | $L_1: r = (\underline{i} + 2\underline{i} + 3\underline{k}) + \lambda(\underline{i} + 4\underline{i} - 2\underline{k})$ $\overrightarrow{OP} = 4\underline{i} - 4\underline{j} + 3$                                                                                                |
|      | From the equation of line L1, the point Q(1,2, 3) also lies on the plane. Hence, $\overrightarrow{PQ}$ is a vector which is // to the plane: $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ $= < 1, 2, 3 > - < 4, -4, 3 >$ $= -3\underline{i} + 6\underline{j}$ |

### SINGAPORE POLYTECHNIC EST 2021 / 2022 Semester 1

Module Name: Further Mathematics Module Code: EP0604 Page 5 of 7

To find a normal to the plane:  $\overrightarrow{PQ} \times (\underline{i} + 4\underline{i} - 2\underline{k})$  $= (-3i + 6i) \times (i + 4i - 2k)$  $=(-12-0)\underline{i}-(6-0)\underline{i}+(-12-6)\underline{k}$ =-12i - 6i - 18k= -6(2i + j + 3k)Hence, a normal vector to the plane  $\underline{n} = 2\underline{i} + \underline{j} + 3\underline{k}$ Hence, equation of the plane (b) 2(x-4)+1(y+4)+3(z-3)=02x + y + 3z = 13 $L_2$ :  $r = (i + 4i + 3k) + \mu(i + 3i - 2k)$ (c)  $x = 1 + \mu$  $y = 4 + 3\mu$  $z = 3 - 2\mu$ 2x + y + 3z = 13 $2(1 + \mu) + (4 + 3\mu) + 3(3 - 2\mu) = 13$  $2 + 2\mu + 4 + 3\mu + 9 - 6\mu = 13$  $\mu = 2$ 

x = 1 + 2 = 3 y = 4 + 3(2) = 10z = 3 - 2(2) = -1

Hence, plane  $\pi$  intersects  $L_2$  at (3,10, -1)

## SINGAPORE POLYTECHNIC EST 2021 / 2022 Semester 1

**Module Name: Further Mathematics** 

Module Code: EP0604 Page 6 of 7



$$\therefore -1 \le x \le 3$$

Hence, for 
$$0 < x^2 + 4x$$
 and  $x^2 + 4x \le 6x + 3$   
  $0 < x \le 3$ 



Find coordinate of intersection point:

$$2x-3=-(x-2)$$

$$3x = 5$$

$$x = \frac{5}{3}$$

$$-(2x-3) = -(x-2)$$

$$-2x + 3 = -x + 2$$

$$x = 1$$

From the graph, for the y values of the red line to be >= than the blue line (i.e.  $|x-2| \ge |2x-3|$ ) then

$$1 \le x \le \frac{5}{3}$$

# SINGAPORE POLYTECHNIC EST 2021 / 2022 Semester 1

Module Name: Further Mathematics Module Code: EP0604 Page 7 of 7

| No. | SOLUTION                                                                               |
|-----|----------------------------------------------------------------------------------------|
|     | OR (solve the inequality)                                                              |
|     | $ x-2  \ge  2x-3  \Rightarrow (x-2)^2 \ge (2x-3)^2$                                    |
|     | $x^2 - 4x + 4 - 4x^2 + 12x - 9 \ge 0 \implies 3x^2 - 8x + 5 \le 0$                     |
|     | $\Rightarrow (x-1)(3x-5) \le 0$                                                        |
|     | $\frac{\text{+ve}}{1} \frac{\text{-ve}}{5/3} \text{ when } x = 0, (x - 1)(3x - 5) > 0$ |
|     | $\therefore 1 \le x \le \frac{5}{3}$                                                   |