Name:	

CHEMISTRY 333

Kinetics Practice Problems

1. Consider the following set of data and answer the following questions:

[S] (M)	V (umol/min)	V (+ inhibitor) (umol/min)	
6 x 10 ⁻⁶	20.8	12	
1 x 10 ⁻⁵	29	15	
2 x 10 ⁻⁵	45	20	
6 x 10 ⁻⁵	67.6	24	
1.8 x 10 ⁻⁴	87	28	

- a. Plot the data on a Lineweaver-Burk plot (be sure to label axes)
- b. Determine the K_m
- c. Determine the V_{max}
- d. The second set of velocities represents the rate of the reaction when an inhibitor is added. Plot these data on the same graph as above and determine the new K_m and V_{max} and the type of inhibitor (competitive, uncompetitive, non-competitive).
- e. Can the effects of the inhibitor be over-ridden by adding more substrate? Why?
- 2. The kinetics of an enzyme were analyzed in the absence of inhibitors, as well as in the presence of Inhibitor A and Inhibitor B. Using the given data below, construct or calculate the following (Make sure to label graphs with appropriate axes and equations, and circle final answers):

	No Inhibitor	Inhibitor A	Inhibitor B
[S] mM	V ₀ (mmol/min)	V ₁ (mmol/min)	V ₂ (mmol/min)
3	3.90	2.40	1.29
6	6.00	3.60	2.40
12	8.40	5.10	3.90
24	10.8	6.60	6.30
36	12.0	7.20	8.55

- a. Write out the Michaelis-Menten and Lineweaver-Burke equations
- b. Plot all of the data on one plot as Michaelis-Menten saturation curves
- c. Plot all of the data on one plot in the Lineweaver-Burk format
- d. Define K_m and V_{max}
- e. Mathematically determine the K_m and V_{max} in the absence and in the presence of inhibitors
- f. Determine what **type** of inhibitors **A** and **B** are