ANALOG ELECTRONIC CIRCUITS SUMMER-2020 Final NAME:

Number:

Final exam includes 5 problems.

Write your answers on A4-white papers and sign each page.

P1- For the MOSFETs in the figure, k_p '= $\mu_p c_{ox}$ =40 μ A/V², k_n '= $\mu_n c_{ox}$ =100 μ A/V², V_{An} = V_{Ap} =40V, $V_{Th,p}$ = -0.5V, $V_{Th,n}$ = 0.5V are given. Cgs=10pF, Cdg=2pF for the transistors. The input of the next circuit has a parasitic capacitance of 20pF(Co=20pF).

lo=1mA, (W/L)_N=20, β_N = β_P are given.

Find the cut-off frequency of the ac differential gain of the circuit vo/(vi1-vi2). (20P)

P2- For the MOSFET in the figure, $β=100mA/V^2$ and $V_{Th}=2V$ are given. The OPAMP is <u>ideal</u>. The bias point for the input is given as <u>ViDC=0V</u>.

(L and C have very large values.)

Find ac midband gain of the circuit (V_L/Vi) by using the feedback method.(20P)

P3 The circuit in P2 will be used as a class-A power amplifier circuit (in spite of that it is not a convenient circuit for power amplifier applications);

- a) Find the optimum load value for the circuit.(R_{L-OPT}=?)(7P)
- b) Find the maximum efficiency value for the sinusoidal case.(7P)
- c) Find the maximum power value dissipated on the MOS transistor.(7P)

P4- For the MOS transistors in the Figure, β_1 = β_2 = β_3 =0.4mA/V², β_4 = β_5 = β_6 =0.8mA/V², V_{AP} = V_{AN} =50V and V_{TH1} I= V_{TH2} I= V_{TH6} I= V_{TH3} = V_{TH4} = V_{TH5} =0.5V are given. (**Vin**_{DC}=**0** and **Vout**_{DC}=**0**)

(Cgs6=2Cgs4=2Cgs5=2Cgs1=2Cgs2=4Cgs3= 40pF) (Cds=Cgs/4 for all the transistors)

- a) Find the loop-gain of the circuit in the figure (Vin=0 for the loop gain).(10P)
- b) Draw the magnitude and phase characteristics of the loop-gain. Find the Phase Margin (PM).(10P)

P5 The circuit given in the figure will be used as a relaxation oscillator after a modification. In order to obtain the oscillation behavior, a capacitor (C=1µF) will be used in place of RA or RB (which resistor?). Put the capacitor in place of the **right resistor** for the oscillation. Then;

- a) Find the oscillation frequency value. (10P)
- b) Draw the signals at Vout and Vo1. (10P)

