GUJARAT UNIVERSITY

5 Years Integrated M.Sc. (Computer Science)

Semester: I

Mathematics: Mathematical Foundations

Total Marks:30

Date: 14/10/2022

Q:1 Define the following terms with example: (Any Four)

[4]

- 1) Null Set
- 2) Cartesian Product
- 3) Power Set
- 4) One-One Function
- 5) Constant Function

Q:2 Answer any Two: (Any Five)

[10]

- 1) Let $A = \{1,2,3\}$, $B = \{a,b,c,d\}$ and $f = \{(1,a),(1,b),(2,d),(3,c)\}$. State whether the given function f is One-one, Onto, Bijective.
- 2) Find $\lim_{x \to 0} \frac{x^3 3x^2 + x}{4x^3 5x^2 + 3x}$
- 3) If $f: R \to R$ and $f(x) = x^2 + 2$. Check whether f is continuous at 2.
- 4) Write the relation as a set of ordered pairs from the direct graph as shown in below figure

- 5) If $A = \{1,2\}, B = \{2,3\}, C = \{3,5\}$ then find $(A \times B) \cup (A \times C)$.
- 6) Given $S = \{1,2,3,4,...,10\}$ and a relation R on S where $R = \{x, y; x + y = 10\}$ then draw the diagraph.
- 7) Describe the following sets in set-builder form.

$$A = \{2,4,6,8,10\}$$
 and $B = \{3,5,7,9,...,87,89\}$.

8) Let $A = \{1,2,3,4\}$ and $B = \{a,b,c,d\}$ and let $f = \{(1,a),(2,a),(3,d),(4,c)\}$ then show that f^{-1} is not a function.

- 1) Find $\left[\frac{3}{2}\right]$, $\left[\left(\frac{3}{2}\right)^2\right]$, $\left(\left[\frac{3}{2}\right]\right)^2$ and $\left[\frac{3}{2}\right]$.
- 2) Prove the following statement using Venn diagram.

(a)
$$(A \cup B)' = A' \cap B'$$

(b)
$$A - (B \cup C) = (A - B) \cap (A - C)$$

- 3) Show that the mapping $f: R \to R$ be defined by f(x) = ax + b; where $a, b, x \in R$, $a \ne 0$ is invertible. Define its inverse.
- 4) Consider A = B = C = R and let $f: A \to B$ and $g: B \to C$ be defined by f(x) = x + 9 and $g(y) = y^2 + 1$ then find
 - a) $(f \circ f)(a)$
 - b) $(f \circ g)(-3)$
 - c) (gof)(b)
 - d) (gog)(3).
- 5) If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 3, 5, 7, 9\}$, $B = \{1, 5, 6, 8\}$, $C = \{1, 4, 6, 7\}$ then verify

(a)
$$A - B = A \cap B'$$

(b)
$$A\Delta B = B\Delta A$$

6) Find
$$\lim_{x \to 1} \frac{x^4 - 7x^3 + 8x^2 - 3x + 1}{3x^4 - 5x^3 + 6x^2 - 10x + 6}$$
.

BEST OF LUCK

GUJARAT UNIVERSITY

M.Sc. (Artificial Intelligence & Machine Learning) - Defense Specific

Subject Name: Mathematical Foundation Semester - I Sessional - I

Date: 18-10-22 Time: 1.5 Hours

Total Marks: 40

Q.	Q-7	Q-7	Q-6	Q-5	Q-4	Q-3	ŕ	0-2	Q-2	Q
A set $B = \{b_1, b_2\}$ given by $B = \{(5,-2),(1,4)\}$ forms a basis for \mathbb{R}^2 and a point P under this basis B is given by $P = \{0.5b_1 + 2b_2\}$. What would be the coordinates of this point P under standard basis given by $\{e_1,e_2\} = \{(1,0),(0,1)\}$.	Check whether the following set B is a basis for \mathbb{R}^3 . B= $\{(1,2,1), (-1,1,0), (5,-1,2)\}$	What is the span of vectors: A (2,1,1), B (1,2,1), and C (0,0,5)	Show that the points $A(1, -2, -8)$, $B(5, 0, -2)$ and $C(11, 3, 7)$ are collinear, and find the ratio in which B divides AC .	If $a=2i+2j+3k$, $b=i+2j+k$, and $c=3i+j$ are such that $a+\lambda b$ is perpendicular to c , then find the value of λ .	Find the projection of vector (b+c) on vector a, where a=2i-2j+k, b=i+2j-2k, and c=2i-j+4k	Line through the points $(-2, 6)$ and $(4, 8)$ is perpendicular to the line through the points $(8, 12)$ and $(x, 24)$. Find the value of x.	(ii) Angle which normal makes with positive direction of x-axis.	Find the normal form of equation of line if the following information is since (i) I much of the since (i) in the since is since (i) I much of the since (i) I much of (i) I much of (i) I much of (i) I much of (Given 3 distinct non-collinear points in 2-D cartesian coordinates, find the equation to calculate the area of a triangle.	In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people liked products B and C and 8 liked all the three products. Find how many liked product C only.
CAR beaused		C/R Innered	C/I bosed	S		<u>S</u>			UR lessed	Personal Descend