Part III – Combinatorics (Incomplete)

Based on lectures by Prof Béla Bollobás Notes taken by Yaël Dillies

Michaelmas 2023

Contents

0	Introduction	2
_	Basic Results	3
	1.1 Chains, Antichains and Scattered Sets of Vectors	3

0 Introduction

For a finite set A, we write its cardinality |A|.

For a graph G=(V,E) and $A,B\subseteq V$, we denote $\Gamma(A)=\{b|\exists a\in A,a\sim b\}$ the set of neighbors of A and e(A,B) the number of edges between A and B.

1 Basic Results

1.1 Chains, Antichains and Scattered Sets of Vectors

Lecture 1

During WW2, Littlewood and Offord were interested in roots of polynomials with random coefficients. They came up with the following neat theorem.

Theorem (Littlewood-Offord, 1943). If $z_1, \ldots, z_n \in \mathbb{C}$ with $|z_i| \geq 1$, then, for any disk D of radius r,

$$\#\{\varepsilon \in \{-1,1\}^n | \sum_i \varepsilon_i z_i \in D\} \le c \log n \frac{2^n}{\sqrt{n}}$$

for some constant c depending only on r.

Upon seeing this theorem, Erdős immediately knew he could drastically improve the bound if the z_i were real.

Theorem (Erdős, 1945). If $x_1, \ldots, x_n \in \mathbb{R}$, $|x_i| \geq 1$, then, for any interval I of length 2,

$$\#\{\varepsilon \in \{-1,1\}^n | \sum_i \varepsilon_i z_i \in I\} \le \binom{n}{\frac{n}{2}}$$

This is best possible, as we see by taking $x_1 = \cdots = x_n = 1$.

Let G be a bipartite graph with parts U and W. A **complete matching** from U to W is an injective function $f: U \to W$ such that $\forall u \in U, u \sim f(u)$.

If G has a complete matching, then certainly $|A| \leq |\Gamma(A)|$. Surprisingly, this is enough.

Theorem (Kőnig-Egerváry-Hall Theorem, Hall's Marriage Theorem).

G has a complete matching
$$\iff \forall A \subseteq U, |A| \leq |\Gamma(A)|$$

Proof. Exercise
$$\Box$$

Let $\mathcal{F} = (F_1, \dots, F_m)$ where the F_i are finite sets. We say a_1, \dots, a_m is a **set of distinct representatives**, aka **SDR** if they are distinct and $\forall i, a_i \in F_i$. Certainly, if \mathcal{F} has SDR, then $|I| \leq \bigcup_{i \in I} F_i|$ for all $I \subseteq [m]$.

Theorem.

$$\mathcal{F}$$
 is a SDR $\iff \forall I \subseteq [m], |I| \leq \left| \bigcup_{i \in I} F_i \right|$

Proof. Define a bipartite graph G with parts [m] and $\bigcup_i F_i$ by $i \sim a \iff a \in F_i$. For all $I \subseteq [m]$, $|I| \le \left|\bigcup_{i \in I} F_i\right| = |\Gamma(I)|$, so Theorem 1.1 applies.

Theorem. If G is a bipartite graph with parts U, W such that $\deg(u) \ge \deg(w)$ for all $u \in U, w \in W$, then there is a complete matching from U to W.

Proof. Find d such that $\deg(u) \geq d \geq \deg(w)$ for all $u \in U, w \in W$. For all $A \subseteq U$, we have

$$d|A| \le e(A, \Gamma(A)) \le d|\Gamma(A)|$$

Hence $|A| \leq |\Gamma(A)|$. We're done by Theorem 1.1.

For $A \subseteq U, B \subseteq W$, define $w(A) = \frac{|A|}{|U|}, w(B) = \frac{|B|}{|W|}$.

Say a bipartite graph G with parts U, W is (k, ℓ) -biregular if $\deg(u) = k, \deg(w) = \ell$ for all $u \in U, w \in W$.

Lemma. If G is biregular with parts U, W and $A \subseteq U$, then $w(A) \leq w(\Gamma(A))$.

Proof. First, $k|U| = e(G) = \ell |W|$. Second,

$$k |A| = e(A, \Gamma(A)) \le \ell |\Gamma(A)|$$

Dividing the inequality by the equality gives the result.

Lecture 2

Corollary. Let G be a (k, ℓ) -biregular graph with parts U, W. If $k \geq \ell$ (or equivalently $|U| \leq |W|$), then there is a complete matching from U to W.

Corollary. If $\left|s-\frac{n}{2}\right| \leq \left|r-\frac{n}{2}\right|$, then there exists an injection $f:X^{(r)} \hookrightarrow X^{(s)}$ such that either

- $r \leq s$ and $A \subseteq f(A)$ for all $A \in X^{(r)}$
- $s \le r$ and $f(A) \subseteq A$ for all $A \in X^{(r)}$

Theorem (Sperner, 1928). Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an antichain. Then $|\mathcal{A}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$

Proof. A chain and an antichain can intersect in at most one element. If we manage to partition $\mathcal{P}(X)$ into $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ chains, we win.

But we can repeatedly use Corollary 1.1 to construct matchings $X^{(0)}$ to $X^{(1)}$, $X^{(1)}$ to $X^{(2)}$, ..., $X^{\left(\left\lceil\frac{n}{2}\right\rceil-1\right)}$ to $X^{\left(\left\lceil\frac{n}{2}\right\rceil-1\right)}$ and $X^{(n)}$ to $X^{(n-1)}$, $X^{(n-1)}$ to $X^{(n-2)}$, ..., $X^{\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)}$ to $X^{\left(\left\lfloor\frac{n}{2}\right\rfloor\right)}$, then "stack" the matchings together to make chains (if an element of the middle layer). Each chain goes through $X^{\left(\left\lfloor fracn2\right\rfloor\right)}$, so we made $\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$.

We can now understand the observation of Erdős (1945) about Littlewood-Offord (1943).

Corollary. Let $x_1, \ldots, x_n \in \mathbb{R}$ be such that $|x_i| \geq 1$. Then at most $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ of the sums $\sum_i \varepsilon_i x_i$, $\varepsilon_i = \pm 1$ fall into the interior of an interval I of length 2.

Proof. WLOG
$$\forall i, x_i \geq 1$$
. Set $F_{\varepsilon} = \{i | \varepsilon_i = 1\}$. $\{F_{\varepsilon} | \sum_i \varepsilon_i x_i \in I\}$ is an antichain (if $F_{\varepsilon} \subsetneq F_{\varepsilon'}$, then $\sum_i \varepsilon_i' x_i \geq \sum_i \varepsilon_i x_i + 2$, so both sums can't lie in I).

Definition. A partial order P is **graded** if it has a partition P_i such that

- if $x < y, x \in P_i, y \in P_i$, then i < j (in particular each P_i is an antichain)
- if x < y, $x \in P_i$, $y \in P_j$, $i + 2 \le j$, then there exists z such that x < z < y.

For $a \in P$, we call the unique i for which $a \in P_i$ the **grade** or **rank** of a.

A graded order is **regular** if for every i there exists p_i such that every $x \in P_i$ is less than exactly p_k elements of P_{i+1} .

For
$$A \subseteq P$$
, define $A_i = A \cap P_i$ and $w(A) = \sum_i \frac{|A_i|}{|P_i|}$

TODO: Insert picture

Theorem. Let A be an antichain in a connected regular graded order P. Then $w(A) \leq 1$.

Proof. Homework. Solution is written in white below:

Lecture 3