18.445 Introduction to Stochastic Processes

Lecture 7: Summary on mixing times

Hao Wu

MIT

04 March 2015

Hao Wu (MIT) 18.445 04 March 2015 1 / 9

Recall Suppose that *P* is irreducible with stationary measure π .

$$d(n) = \max_{x} ||P^{n}(x, \cdot) - \pi||_{TV}, \quad t_{mix} = \min\{n : d(n) \le 1/4\}.$$

Today's Goal Summary of the results on the mixing times.

- Upper bounds and lower bounds on mixing times
- Gambler's ruin, Coupon collecting
- Random walk on hypercube
- Random walk on N-cycle
- Top-to-random shuffle

2/9

Hao Wu (MIT) 18.445 04 March 2015

Upper bounds

Suppose that *P* is irreducible with stationary distribution π .

Theorem (Coupling of two Markov chains)

Let $(X_n, Y_n)_{n\geq 0}$ be a coupling of Markov chains with transition matrix P for which $X_0 = x$, $Y_0 = y$. Define τ to be their first meet time : $\tau = \min\{n \geq 0 : X_n = Y_n\}$. Then

$$||P^n(x,\cdot)-P^n(y,\cdot)||_{TV}\leq \mathbb{P}_{x,y}[\tau>n];\quad d(n)\leq \max_{x,y}\mathbb{P}_{x,y}[\tau>n].$$

Theorem (Strong stationary time)

Let $(X_n)_{n\geq 0}$ be a Markov chain with transition matrix P. If τ is a strong stationary time for (X_n) , then

$$d(n) := \max_{\mathbf{x}} ||P^n(\mathbf{x}, \cdot) - \pi||_{TV} \le \max_{\mathbf{x}} \mathbb{P}[\tau > n].$$

Hao Wu (MIT) 18.445 04 March 2015 3 / 9

Lower bounds

Suppose that P is irreducible with stationary measure π .

Theorem (Bottleneck ratio)

Define $Q(A, B) = \sum_{x \in A, y \in B} \pi(x) P(x, y), \Phi(S) = Q(S, S^c) / \pi(S)$. The bottleneck ratio of the chain is defined to be

$$\Phi_{\star} = \min\{\Phi(\mathcal{S}) : \pi(\mathcal{S}) \leq 1/2\}.$$

Then

$$t_{mix} \geq rac{1}{4\Phi_{\star}}$$

Theorem (Distinguishing statistic)

Let μ and ν be two probability distributions on Ω . Let f be a real-valued function on Ω . If

$$|\mu f - \nu f| \ge r\sigma$$
, where $\sigma^2 = \frac{1}{2}(var_{\mu}(f) + var_{\nu}(f))$,

then

$$||\mu - \nu||_{TV} \ge \frac{r^2}{4 + r^2}.$$

Gambler's ruin

Consider a gambler betting on the outcome of a sequence of independent fair coin tosses.

If head, he gains one dollar. If tail, he loses one dollar.

If he reaches a fortune of N dollars, he stops. If his purse is ever empty, he stops.

The gambler's situation can be modeled by a Markov chain on the state space $\{0, 1, ..., N\}$:

- X_0 : initial money in purse
- X_n : the gambler's fortune at time n
- τ : the time that the gambler stops.

Theorem

Assume that $X_0 = k$ for some $0 \le k \le N$. Then

$$\mathbb{P}[X_{\tau} = N] = \frac{k}{N}, \quad \mathbb{E}[\tau] = k(N - k).$$

Coupon collecting

A company issues N different types of coupons. A collector desires a complete set. The collector's situation can be modeled by a Markov chain on the state space $\{0, 1, ..., N\}$:

- $X_0 = 0$
- X_n: the number of different types among the collector's first n coupons.
- $\mathbb{P}[X_{n+1} = k+1 \mid X_n = k] = (N-k)/N$,
- $\mathbb{P}[X_{n+1} = k \mid X_n = k] = k/N$.
- τ : the first time that the collector obtains all *N* types.

Theorem

$$\mathbb{E}[\tau] = N \sum_{k=1}^{N} \frac{1}{k} \approx N \log N.$$

For any $\alpha > 0$, we have that

$$\mathbb{P}[\tau > N \log N + \alpha N] \le e^{-\alpha}.$$

Random walk on hypercube

The lazy walk on hypercube can be constructed using the following random mapping representation: Uniformly select an element (j, B) in $\{1, ..., N\} \times \{0, 1\}$, and then update the coordinate j with B.

Let $(Z_n = (j_n, B_n))_{n \ge 1}$ be i.i.d. $\stackrel{d}{\sim} (j, B)$. At each step, the coordinate j_n of X_{n-1} is updated by B_n . Define

$$\tau = \min\{n : \{j_1, ..., j_n\} = \{1, ..., N\}\}.$$

This is the first time that all the coordinates have been selected at least once for updating.

Theorem

There exists constants $c > 0, C < \infty$ such that

$$CN \log N \ge t_{mix} \ge cN \log N$$
.

Proof Upper bound : strong stationary time.

Lower bound : distinguishing statistic.

7/9

Hao Wu (MIT) 18.445 04 March 2015

Random walk on N-cycle

Lazy walk: it remains in current position with probability 1/2, moves left with probability 1/4, right with probability 1/4.

- It is irreducible.
- The stationary measure is the uniform measure.

Theorem

For the lazy walk on N- cycle, there exists some constant $c_0>0$ such that

$$c_0 N^2 \leq t_{mix} \leq N^2$$
.

Proof

Upper bound : Coupling of two Markov chains.

Lower bound.

Hao Wu (MIT) 04 March 2015

Top-to-random shuffle

Consider the following method of shuffling a deck of N cards:

Take the top card and insert it uniformly at random in the deck.

The successive arrangements of the deck are a random walk $(X_n)_{n\geq 0}$ on the group S_N starting from $X_0 = (123 \cdots N)$.

The uniform measure is the stationary measure.

Let τ_{top} be the time one move after the first occasion when the original bottom card has moved to the top of the deck. The arrangements of cards at time τ_{top} is uniform in S_N .

Theorem

There exist constant $c_0 \in (0, \infty)$ such that

$$N \log N - c_0 N \le t_{mix} \le N \log N + c_0 N.$$

Proof

Upper bound : τ_{top} is strong stationary.

Lower bound.