1 List Of Models

1.1 Infinite Words

- DBA
- NBA
- GBA
- Rabin automaton
- Muller automaton
- Parity automaton
- $\bullet\,$ det. E automaton
- det. A automaton
- det. coBA
- weak BA
- Staiger-Wagner automaton
- ABA
- \bullet LTL
- S1S
- $\exists S1S$
- $S1S_0$

1.2 Finite Trees

- DTA
- NTA
- ↓DTA
- ↓NTA
- DUTA
- NUTA
- deterministic DTD
- DTD
- ullet deterministic EDTD

- single-type EDTD
- EDTD
- Relax NG
- FO
- \bullet MSO
- $\bullet \;$ Regular expressions
- DTWA
- TWA

1.3 Infinite Trees

- BTA
- Muller TA
- Parity TA
- DMTA
- S2S (MSO / WMSO)
- $S2S_0$ (MSO / WMSO)

2 List Of Games

- Büchi
- $\bullet \;$ Staiger-Wagner
- weak Parity
- Reachability
- Safety
- Muller
- Parity
- Rabin
- Streett
- Gale-Stewart
- \bullet Wadge

3 Infinite Word Models

3.1 Class Inclusions

- E aut. \subseteq Staiger-Wagner **Proof**: SWA with $\mathcal{F} = \{Q' \subseteq Q \mid F \cap Q' \neq \emptyset\}$.
- A. aut. ⊆ Staiger-Wagner **Proof**: SW closed under complement,
- Staiger-Wagner \subseteq DBA / coBA **Proof**: \mathcal{A} SWA $\Rightarrow \mathcal{A}' = (Q \times 2^Q, \Sigma, (q_0, \emptyset), \delta', F')$ Collect all visited states and accept if that set stays in \mathcal{F} .

- DBA \subseteq NBA trivial
- $coBA \subseteq NBA$

Proof: NBA closed under complement.

• LTL ⊆ GBA (exponential size transformation)

Proof: Theorem 2

• LTL ⊆ ABA (linear size transformation)

Proof: Similar to theorem ??. $\mathcal{A}_{\varphi} = (\operatorname{cl}(\varphi), \mathbb{B}^n, \varphi, \delta, F)$ with $F = \{\psi \in \operatorname{cl}(\varphi) \mid \psi = G\vartheta\}$ and δ is defined as follows:

- $-\delta(p_i,a)$ and $\delta(\neg p_i,a)$ are tt or ff depending on the *i*-th component of a.
- $\delta(\psi_1 \oplus \psi_2, a) = \delta(\psi_1, a) \oplus \delta(\psi_2, a) \text{ for } \emptyset \in \{\land, \lor\}.$
- $-\delta(X\psi,a)=\psi.$
- $\delta(G\psi, a) = \delta(\psi, a) \wedge G\psi.$
- $\delta(\psi_1 U \psi_2, a) = (\delta(\psi_1, a) \wedge \psi_1 U \psi_2) \vee \delta(\psi_2, a).$

3.2 Class Exclusions

• E aut. $\not\subseteq$ A aut.

Example: $b^*a(a+b)^{\omega}$

Proof: Assume the A automaton $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ recognizes L, so for every $b^n a b^{\omega}$, the run ρ_n is accepting. Let $\rho^*(n) = \rho_{n+1}(n)$. This is an accepting run on b^{ω} , which is a contradiction.

• A aut. $\not\subseteq$ E aut.

Example: $\{a^{\omega}\}$

Proof: Assume the E automaton $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ recognizes L, so the run ρ of \mathcal{A} on a^{ω} is accepting. That means there is an n s.t. $\rho(n) \in F$. Therefore, \mathcal{A} accepts the word $a^n b^{\omega}$, which is a contradiction.

• DBA ⊄ coBA

Example: $(a^*b)^{\omega}$

Proof: Assume $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ is a coBA recognizing L. Let n = |Q|, $w = (a^n b)^{\omega}$, and ρ the run of \mathcal{A} on w. From some m on, ρ only visits states in F. Consider $(a^n b)^m a^n$. By choice of n, there must be i < j such that after $(a^n b)^m a^i$ and $(a^n b)^m a^j$, the automaton is in the same state $q \in F$. Therefore, the run on $(a^n b)^m a^{\omega}$ is accepting, which is a contradiction.

• coBA ⊈ DBA

Example: $(a+b)^*a^{\omega}$

Proof: Assume $A = (Q, \Sigma, q_0, \delta, F)$ is a DBA recognizing L. We inductively define words w_n with runs ρ_n s.t. $w_n \sqsubseteq w_{n+1}$ and ρ_n visits F at least n times and $|w_n|_b = n$. Then the "limit" of those words contains infinitely many b but is accepted by A, which is a contradiction. Let $w_0 = \varepsilon$ and $\rho_0 = q_0$. For n+1, consider $w_n a^\omega$ with the run $\rho_n \pi$. Since $w_n a^\omega \in L$, there is a k s.t. $\pi(k) \in F$. Let $w_{n+1} = w_n a^k b$ and ρ_{n+1} accordingly.

• LTL $\not\subseteq$ NBA

Example: $((a+b)a)^{\omega}$

Proof: Show that L is counting. Then it follows that it is not LTL-definable. Assume that L is non-counting, so there is an n_0 according to the definition. Let $n = n_0 + 1$, $u = \varepsilon$, v = a, and $\beta = ba^{\omega}$. Due to symmetry, we can assume that n_0 is even, so $uv^n\beta \notin L$ but $uv^{n+1}\beta \in L$.

3.3 Class Equalities

3.3.1 NBA

• NBA $\Leftrightarrow \omega$ -regular

Proof: \Leftarrow All three operations used in regular expressions $(\cup,\cdot,^{\omega})$ correspond to easy NBA constructions.

 \Rightarrow Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ be an NBA. For every final state $q \in F$, we consider the finite words U_q which lead from q_0 to q, and the finite words V_q which lead from q back to q itself. Then $L(\mathcal{A})$ is the union of $U_q \cdot V_q^{\omega}$ for all final states q.

• $GBA \Rightarrow NBA$

Proof: Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, (F_1, \dots, F_k))$ be a GBA. An equivalent NBA is $\mathcal{A}' = (Q \times \{1, \dots, k\}, \Sigma, (q_0, 1), \Delta', F_k \times \{k\})$. The transitions Δ' contain all those from Δ and allow to switch from (q, i) to (q, i + 1) if $q \in F_i$.

• NBA \Leftrightarrow S1S

Proof: Theorem 4.

• Det. Muller \Leftrightarrow NBA

Proof: Theorem 5.

• (det.) Muller \Rightarrow (det.) Parity

Proof: Theorem 6.

• $ABA \Rightarrow NBA$

Proof: Theorem 7.

3.3.2 LTL

 $LTL \Leftrightarrow Non-counting$

No proof. Remarks in F8.

A language L is called **non-counting** if there is an n_0 such that for all $n > n_0$, all $u, v \in \Sigma^*$, and all $\beta \in \Sigma^{\omega}$: $uv^n \beta \in L \leftrightarrow uv^{n+1}\beta \in L$.

3.3.3 SW

Staiger-Wagner \Leftrightarrow det. weak BA

Proof: ⇒ Every SWA-recognizable language is also DBA- and coBA-recognizable (see above) and therefore DWBA-recognizable (see below).

 \Leftarrow Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ be a DWBA. We define $\preceq \subseteq Q \times Q$ with $p \preceq q$ iff q is reachable from p. Let $\mathcal{F} = \{P \subseteq Q \mid \max_{\preceq} P \subseteq F\}$. Then the SWA $\mathcal{A}' = (Q, \Sigma, q_0, \delta, \mathcal{F})$ recognizes $L(\mathcal{A})$.

3.4 Closures

3.4.1 NBA

• Closed under union

Proof: Product automaton with $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$.

• Closed under intersection

Proof: GBA $\mathcal{A} = (Q_1 \times Q_2, \Sigma, (q_0^1, q_0^2), \Delta, (F_1 \times Q_2, Q_1 \times F_2))$ where $\Delta = \{((p_1, p_2), a, (q_1, q_2)) \mid (p_1, a, q_1) \in \Delta_1, (p_2, a, q_2) \in \Delta_2\}.$

• Closed under complement

Proof: Theorem 1.

3.4.2 DBA

• Closed under union and intersection

Proof: Same construction as for NBA.

• Not closed under complement (inf. many $a \leftrightarrow \text{fin. many } a$)

3.4.3 SW

• Closed under union and intersection

Proof: Product automaton with $\mathcal{F}_{\cap} = \{ F \subseteq Q_1 \times Q_2 \mid \pi_1(F) \in \mathcal{F}_1, \pi_2(F) \in \mathcal{F}_2 \}$ where $\pi_i((x_1, x_2)) = x_1$.

• Closed under complement

Proof: $\overline{\mathcal{F}} = 2^Q \setminus \mathcal{F}$.

3.5 Characterizations

- Parity conditions are directly convertible to Rabin chain conditions and vice-versa.
 - **Proof**: Assign priorities in ascending order; $E_k \to 0$, $F_k \setminus E_k \to 1$, $E_{k-1} \setminus F_k \to 2$...

Proof: ← NBAs are closed under Boolean operations.

• U is ω -regular iff U is a Boolean combination of DBA-languages

 \Rightarrow Let \mathcal{A} be a DRA for U. It suffices to consider $\Omega = \{(E, F)\}$ as any other language is a finite union of these conditions. Let \mathcal{A}_E and \mathcal{A}_F be the modifications of \mathcal{A} with conditions $\{(E, Q)\}$ and $\{\emptyset, F\}$ respectively. Then $L(\mathcal{A}_E)^{\complement}$ and $L(\mathcal{A}_F)$ are DBA-recognizable.

• U is DBA-recog. iff $U = \lim(L)$ for some regular $L \subseteq \Sigma^*$.

Proof: Use the DBA as a DFA or vice-versa.

• U is E-recog. iff $U = L \cdot \Sigma^*$ for some regular $L \subseteq \Sigma^*$.

Proof: \Rightarrow Let \mathcal{A} be an E-automaton for U. For every $q \in F, a \in \Sigma$, add a transition (q, a, q). The resulting automaton as an NFA accepts L with $U = L \cdot \Sigma^*$.

 \Leftarrow Let \mathcal{A} be a DFA for L. The same automaton as an E-automaton recognizes $L \cdot \Sigma^*$.

• Landweber's theorem

Proof: Theorem 3

• DBA \cap coBA \Rightarrow DBWA

Proof: Let U be DBA-recognizable and coBA-recognizable and let $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ be a DMA for U. Then \mathcal{F} must be closed under super loops and under sub loops by Landweber's theorem. Therefore, \mathcal{A} can also be considered as a DBWA with $F = \bigcup \mathcal{F}$.

• SW \Leftrightarrow Boolean combination of E-recognizable languages.

Proof: \Leftarrow SWAs are closed under Boolean operations.

 \Rightarrow Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ be the SWA and let $\mathcal{A}_q = (Q, \Sigma, q_0, \delta, \{q\})$. For every $q \in Q$, the language $L(\mathcal{A}_q)$ is E-recognizable. For every $F \subseteq Q$, let $L_F = \bigcap_{q \in F} L(A_q) \cap \bigcap_{q \notin F} L(A_q)^{\complement}$, which is a Boolean combination of E-recognizable languages. Then $L(\mathcal{A}) = \bigcup \{L_F \mid F \in \mathcal{F}\}$.

3.6 Duality

• U is A-recog. iff $\Sigma^{\omega} \setminus U$ is E-recog. **Proof**: same automaton, $\overline{F} = Q \setminus F$

• U is coBA-recog. iff $\Sigma^{\omega} \setminus U$ is DBA-recog. **Proof**: same automaton, $\overline{F} = Q \setminus F$

3.7 Problems / Complexity

 $\bullet\,$ Emptiness problem for NBAs is decidable in poly. time.

Algorithm:

- 1. Compute all states that are reachable from q_0 . $(\mathcal{O}(|Q| + |\Delta|))$.
- 2. For each of these reachable states that is also accepting, check if there is a path to itself. $(\mathcal{O}(|F| \cdot (|Q| + |\Delta|)))$.
- 3. If any state like that was found, the language is not empty.
- Emptiness problem for ABAs is PSPACE-complete.
- Membership problem for ABAs is decidable in poly. time.

Proof: Model the problem as a Büchi game. In each turn, starting at a node $v \in Q$, player 1 chooses an $a \in \Sigma$. Then, according to the Boolean operators of $\delta(v, a)$, the players choose a next state. If player 0 wins, the choices of player 1 model an element of the ABA language.

4 Finite Tree Models

4.1 Class Inclusions

• Regular Ranked \subseteq Regular Unranked **FCNS**: Let Σ be an unranked alphabet. We define $\Gamma_0 = \{\#\}$ and $\Gamma_2 = \Sigma$. Let $\bar{t} = t_1 \dots t_n \in T_{\Sigma}^*$ with $t_1 = a(t_1' \dots t_m')$. We define

$$fcns(\bar{t}) = \begin{cases} # & \text{if } n = 0\\ a(fcns(t'_1, \dots, t'_m), fcns(t_2 \dots t_n)) & \text{else} \end{cases}$$

See Theorem 12.

- det. DTD \subseteq DTD \subseteq det. EDTD \subseteq single-type EDTD \subseteq EDTD trivial

• EDTD \subseteq Regular tree grammar

Proof: $N = \Sigma'$, $P_{\text{gram}} = P \cup \{a^{(n)} \rightarrow a \mid a, n\}$

• TWA \subseteq NTA

Proof: Theorem 8

4.2 Class Exclusions

• \downarrow DTA $\not\subseteq$ NTA

Example: $T = \{f(a, b), f(b, a)\}$

Proof: Assume the \downarrow DTA $\mathcal{A} = (Q, \Sigma, q_0, \Delta)$ accepts T. Let $(q_0, f, (q_1, q_2)) \in \Delta$, so also $(q_1, a), (q_1, b), (q_2, a), (q_2, b) \in \Delta$. However, that means the tree f(a, a) is accepted by the run $q_0(q_1, q_2)$ which is a contradiction. On the other hand, NTAs can clearly recognize this property.

• DTD \nsubseteq single-type EDTD

Example: $T = \{t \in T_{\{a,b\}} \mid \text{there is a path in } t \text{ on which } a \text{ occurs exactly twice } t \in T_{\{a,b\}} \mid t \in T_{\{a$

• NUTA w/ unique root ⊈ NUTA

Example: $T = \{a, b\}$

• FO \nsubseteq MSO

Example: T = positive boolean terms that evaluate to true

• DTWA $\not\subseteq$ TWA

Example: $T_{N \setminus D}$

 $\Sigma_0 = \{a, b\}, \ \Sigma_2 = \{f\}$

 $t \in T_{N \setminus D}$ iff $|t|_a = 3 \land lca(u, v) \sqsubseteq lca(v, w)$ **Proof**: DTWAs cannot recognize this tree language (no proof). TWAs can:

- Check whether there are exactly three a and move to the right-most one (DFS).
- While going up, guess a node and go the the left-most ancestor.
- The tree is in $T_{N\setminus D}$ iff there are exactly two leafs labeled a right of that node. (DFS)

• TWA ⊈ NTA

Example: all paths in the skeleton have even length

Proof: $\Sigma_0 = \{a, c\}, \Sigma_2 = \{b\}$

Skeleton of a tree t: replace all subtrees that contain exactly one a.

TWAs cannot recognize this tree language (no proof). NTAs can (find "merge" points and count the parity)

4.3 Class Equalities

4.3.1 Regular Ranked

• NTA \Rightarrow DTA

Proof: Subset construction.

NTA ⇔ ↓NTA

Proof: Reverse the transitions and initial states \leftrightarrow final states.

• \downarrow NTA \Leftrightarrow Regular Tree Grammar

Proof: Non-terminals correspond to states and transitions (q, a, q_1, \ldots, q_n) correspond to rules $A_q \to a(A_{q_1}, \dots, A_{q_n})$

• MSO \Leftrightarrow NTA

Proof: same as S2S

• Reg. exp. \Leftrightarrow NTA

Proof: Theorem 9

4.3.2 Regular Unranked

• NUTA \Rightarrow DUTA

Proof: Specialized subset construction.

$$\mathcal{A} = (Q, \Sigma, \Delta, F) \Rightarrow \mathcal{A}' = (2^Q, \Sigma, \Delta', \{P \subseteq Q \mid P \cap F \neq \emptyset\})$$

$$\Delta' = \{(L_{a,P}, a, P) \mid a \in \Sigma, P \subseteq Q\} \text{ with } L_{a,P} = \bigcap_{p \in P} K_{a,p} \cap \bigcap_{p \notin P} K_{a,p}^{\complement}$$

$$K_{a,p} = \{P_1 \dots P_n \in (2^Q)^* \mid \exists p_1 \in P_1, \dots, p_n \in P_n : p_1 \dots p_n \in L_{a,p}\}.$$

$$K_{a,p} = \{P_1 \dots P_n \in (2^Q)^* \mid \exists p_1 \in P_1, \dots, p_n \in P_n : p_1 \dots p_n \in L_{a,p}\}$$

• MSO ⇔ NUTA

4.3.3 EDTD

• NUTA with unique root ⇔ EDTD (in poly. time)

Proof: \Rightarrow Let q_0, \ldots, q_n be an enumeration of Q. We then set $D = \{\{a^{(i)} \mid a \in \Sigma, 0 \leq i \leq 1\}\}$ n, P, a^{q_0}) where a is the unique root symbol of the automaton. Rules in P guess arbitrary symbols for fitting states.

 \Leftarrow Analogously, we use $Q = \Sigma \times \{1, \dots, n\}$ where n is the maximal type in Σ' and rules mimic the transitions.

4.4 Closures

4.4.1 Regular Ranked

• Regular (ranked) trees are closed under complement.

Proof: Make Δ total (add sink state) and set $F' := Q \setminus F$.

• Regular (ranked) trees are closed under union and intersection.

Proof: Product construction $(F_{\cap} = F_1 \times F_2, F_{\cup} = (Q_1 \times F_2) \cup (F_1 \times Q_2))$

4.4.2 Regular Unranked

• Regular unranked trees are closed under complement, union, and intersection.

Proof: via FCNS, because ranked trees are closed under these operations

4.4.3 TWA

• TWAs are closed under union.

Proof: Non-deterministically choose at the start whether to execute A_1 or A_2 .

• TWAs and DTWAs are closed under intersection.

Proof: Execute A_1 . If it accepts, move to the root and execute A_2 .

- Open Problem: Are TWAs closed under complement?
- DTWAs are closed under complement.

Proof: Theorem 11

4.5 Problems / Complexity

4.5.1 Regular Ranked

- Membership problem for NTAs is decidable.
- Reachable states of NTAs can be computed in linear time in $|\mathcal{A}|$. Algorithm:
 - 1. Initial reachable states $R = \{q \in Q \mid \exists a \in \Sigma_0 : (a,q) \in \Delta\}$
 - 2. For each transition $\tau = {\overline{q}, a, p} \in \Delta$, count $\operatorname{in}(\tau) = |\overline{q}|$ and remember $\forall q \in \overline{q} : \tau \in \operatorname{tr}(q)$.
 - 3. Grow R by processing each reachable state once: Decrement in(τ) by 1; if that value reaches 0, every ingoing state of τ is reachable and therefore, the outgoing state is.
- Emptiness of an NTA can be decided in linear time in $|\mathcal{A}|$.

Algorithm: $T(A) = \emptyset$ iff Reachable $(A) \cap F = \emptyset$

• Given a DTA \mathcal{A} , $\sim_{T(\mathcal{A})}$ can be computed in time poly($|Q^m \times \Sigma \times Q|$) where m is the maximal arity in Σ .

Algorithm:

- 1. Mark all (q, q') with $(q, q') \in (F \times Q \setminus F) \cup (Q \setminus F \times F)$.
- 2. As long as there is still change in the marks, execute step 3:
- 3. If (p, p') is already marked and there are $q_1, \ldots, q_{i-1}, q, q', q_{i+1}, \ldots, q_n \in Q$ and $a \in \Sigma_n$ such that $p = \delta(q_1, \ldots, q, \ldots, q_n, a)$ and $p' = \delta(q_1, \ldots, q', \ldots, q_n, a)$, then mark the pair (q, q').
- 4. $p \sim_{T(A)} q$ iff (p,q) is not marked.

4.5.2 Regular Unranked

• Emptiness / membership / inclusion for NUTAs is decidable in polynomial / polynomial / exponential time.

Algorithm (Emptiness): Use FCNS transformation.

Algorithm (Membership): Construct A_t with $T(A_t) = \{t\}$ and check $A \cap A_t \stackrel{?}{=} \emptyset$.

Algorithm (Inclusion): Check $T(A_1) \cap T(A_2)^{\complement} \stackrel{?}{=} \emptyset$. Complementation is exponential.

• Inclusion for complete DUTAs is decidable in polynomial time.

Algorithm: Same algorithm as for general NUTAs but complementation can be done in polynomial time.

4.5.3 Grammars

- Emptiness / membership for EDTDs is decidable in polynomial time. **Proof**: EDTD can be converted to NUTA in polynomial time.
- Inclusion for deterministic EDTDs is decidable in polynomial time. **Proof**: Let D_1, D_2 be deterministic EDTDs. Using the previous results and theorem 10, we can construct NUTAs \mathcal{A}, \mathcal{B} with $T(\mathcal{A}) = T(D_1)$ and $T(\mathcal{B}) = T(D_2)^{\complement}$ in polynomial time. Then $T(D_1) \subseteq T(D_2)$ iff $T(\mathcal{A}) \cap T(\mathcal{B}) = \emptyset$.

Infinite Tree Models 5

Class Exclusions 5.1

 \bullet BTA $\not\subseteq$ Regular tree

Example: $T_{\text{fin}} = \{t \in T_{\{a,b\}} \mid \text{ every infinite path has only fin. many } b\}$ Proof: Assume \mathcal{A} is a BTA that recognizes T_{fin} . Let $t(u) = \begin{cases} b & \text{if } u \in (1^*0)^{\leq n} \\ a & \text{else} \end{cases}$ and let ρ be

an accepting run of \mathcal{A} on t. We can find nodes u_0, \ldots, u_n s.t. $u_{i+1} \in u_i 01^*$ and $\rho(u_i) \in F$. There must be l < k with $\rho(u_l) = \rho(u_k)$. For $x = u_l$ and $xy = u_k$, we have $t^*_{[x,y]} \in T_{\text{fin}}$ by BTA pumping. However, $t^*_{[x,y]}|_{xy^{\omega}}$ contains infinitely many b.

• DMTA $\not\subseteq$ BTA

Example: $T_{\text{fin}}^{\complement} = \{t \in T_{\{a,b\}} \mid \text{there is a path with inf. many } b\}$

Proof: BTA-recognizable (see below) but not a path tree language.

• WMSO $\not\subseteq$ BTA

Example: $T_{\text{fin}}^{\complement}$ **Proof**: T_{fin} is not BTA-recognizable so it is not WMSO-definable by the characterization

Class Equalities 5.2

5.2.1 Regular Trees

• PTA, MTA \Rightarrow TA with regular acceptance

Proof: By definition and PA/MA regularity.

• TA with reg. acc. \Rightarrow PTA

Proof: TA \mathcal{A} , DPA \mathcal{A}' over alphabet Q that defines Acc. Define PTA with state space $Q \times P$. $(q, a, q_1, q_2) \in \Delta \Rightarrow ((q, p), a, (q_1, \delta(p, q)), (q_2, \delta(p, q))) \in \Delta'$

- PTA \Leftrightarrow MSO (S2S) **Proof**:
 - \Rightarrow Encoding of an accepting run via MSO. The acceptance clause is $\forall Z(\operatorname{Path}(Z) \to \bigvee \{\psi_m(Z) \mid m \text{ is an even color}\}\$ where $\psi_m(Z)$ encodes that $m = \max c(Z)$.
 - \Leftarrow Via S2S₀ with atomic formulas $X \subseteq Y$, Sing(X), Succ₀(X,Y), and Succ₁(X,Y).

5.3 Closures

5.3.1 Regular Trees

• The class of regular tree languages is closed under intersection.

Proof: Use MTAs with $Q_{\cap} = Q_1 \times Q_2$ and $\{(p_1, q_1), \dots, (p_k, q_k)\} \in \mathcal{F}_{\cap}$ iff $\{p_1, \dots, p_n\} \in \mathcal{F}_1$ and $\{q_1, \dots, q_n\} \in \mathcal{F}_2$.

• The class of regular tree languages is closed under union.

Proof: Guess which automaton to execute at the start.

• The class of regular tree languages is closed under projection.

Proof: Replace $\tau = (q_1, q_2, a, q)$ by $(q_1, q_2, h(a), q)$.

• PTAs are closed under complement $(2^{\mathcal{O}(kn \cdot \log(kn))})$ states for |Q| = n, $|\operatorname{img}(c)| = k$) **Proof**: Theorem ??.

5.3.2 BTA

• BTAs are not closed under complement.

Proof: $T_{\text{fin}}^{\complement} = \{t \in T_{\{a,b\}} \mid \text{there is a path with inf. many } b\}$

 $T_{\rm fin}^{\complement}$ is BTA-recognizable but its complement is not. See above for proof that $T_{\rm fin}$ is not BTA-recognizable. An automaton for the complement guesses a path at each intersection and verifies that that path has infinitely many b.

5.3.3 DMTA

- DMTAs are not closed under union or complement.
- DMTAs are closed under intersection.

Proof: product automaton

5.4 Characterizations

• $T \subseteq T_{\Sigma}$ is DMTA-recognizable iff T is a path tree language. $T: 2^{(\{0,1\} \times \Sigma)^{\omega}} \to 2^{T_{\Sigma}}, L \mapsto \{t \in T_{\Sigma} \mid \forall \pi \in \{0,1\}^{\omega} : \pi^{\smallfrown}(t|_{\pi}) \in L\}$

Proof:

• $T \subseteq T_{\Sigma}$ is WMSO-definable iff T and T^{\complement} are BTA-recognizable.

5.5 Problems

5.5.1 Regular Trees

- The membership problem for regular tree languages is decidable. **Proof**: via membership game as in complementation
- The emptiness problem for regular tree languages is decidable.

Proof: Let \mathcal{A} be a tree automaton. We define the emptiness game $\mathcal{G}_{\mathcal{A}}$ for \mathcal{A} : From a position $q \in Q$, player Automaton picks a transition $(q, a, q_1, q_2) \in \Delta$. From a position $(q, a, q_1, q_2) \in \Delta$, player Pathfinder picks either q_1 or q_2 . Player Automaton wins the game iff the state sequence is in $\mathrm{Acc}_{\mathcal{A}}$.

If player Automaton wins with strategy σ , then one can define $\delta: \mathbb{B}^* \to \Delta$ as the tree of transitions that they would take at each position. From these transitions, a Σ -tree and an accepting run of \mathcal{A} can be generated.

If \mathcal{A} is not empty, an example tree and an accepting run can be used to define a winning strategy for player Automaton.