List of Claims:

 (Currently Amended) A copolymer comprising an isoolefin and an alkylstyrene, the copolymer having a copolymer sequence distribution defined by the following equation:

$F = 1 - \{m A / (1 + mA)\}$

wherein m is the copolymer sequence distribution parameter; A is the molar ratio of alkylstyrene to isoolefin in the copolymer;

F is the <u>isoalefin-</u>alkylstyrene-isoolefin-alkylstyrene triad fraction in the copolymer; wherein m is from less than 38; and

wherein m is determined by solving said equation.

- (Original) The copolymer of claim 1, wherein m is from less than 35.
- (Original) The copolymer of claim 1, wherein m is from less than 30.
- 4. (Original) The copolymer of claim 1, wherein m is from 1-38.
- 5. (Original) The copolymer of claim 1, wherein m is from 1-35.
- 6. (Original) The copolymer of claim 1, wherein m is from 1-30.
- (Previously presented) The copolymer of claim 1, wherein the isoolefin is isobutylene and the alkylstyrene is methylstyrene.
- 8. (Previously presented) The copolymer of claim 1, wherein the alkylstyrene content is from greater than 0.5 mol%.
- 9. (Previously presented) The copolymer of claim 1, wherein the alkylstyrene content is from greater than 1.5 mol%.
- 10. (Previously presented) The copolymer of claim 1, wherein the alkylstyrene content is from greater than 6.0 mol%.
- 11. (Previously presented) The copolymer of claim 1, wherein the alkylstyrene content is from greater than 12.5 mol%.
- (Currently Amended) A copolymer produced by the process comprising contacting an isoolefin, preferably isobutylene, an alkylstyrene, one or more Lewis acid(s), one or more

initiator(s), and a diluent comprising one or more hydrofluorocarbon(s) (HFC's); the copolymer having a copolymer sequence distribution defined by the following equation:

$$F = 1 - \{m A / (1 + mA)\}$$

wherein m is the copolymer sequence distribution parameter; A is the molar ratio of alkylstyrene to isoolefin in the copolymer;

F is the isoolefin_alkylstyrene-isoolefin-alkylstyrene triad fraction in the copolymer;

wherein m is from less than 38; and

wherein in is determined by solving said equation.

- 13. (Original) The copolymer of claim 12, wherein m is from less than 35.
- (Original) The copolymer of claim 12, wherein m is from less than 30.
- 15. (Original) The copolymer of claim 12, wherein m is from 1-38.
- 16. (Original) The copolymer of claim 12, wherein m is from 1-35.
- 17. (Original) The copolymer of claim 12, wherein m is from 1-30.
- 18. (Previously presented) The copolymer of claim 12, wherein the alkylstyrene is methylstyrene.
- 19. (Previously presented) The copolymer of claim 12, wherein the alkylstyrene content is from greater than 0.5 mol%.
- 20. (Previously presented) The copolymer of claim 12, wherein the alkylstyrene content is from greater than 1.5 mol%.
- 21. (Previously presented) The copolymer of claim 12, wherein the alkylstyrene content is from greater than 6.0 mol%.
- 22. (Previously presented) The copolymer of claim 12, wherein the alkylstyrene content is from greater than 12.5 mol%.
- 23. (Previously presented) The copolymer of claim 12, wherein one or more hydrofluorocarbon(s) is represented by the formula: $C_xH_yF_z$ wherein x is an integer from 1 to 40 and y and z are integers of one or more.
- 24. (Original) The copolymer of claim 23, wherein x is from 1 to 10.
- 25. (Original) The copolymer of claim 23, wherein x is from 1 to 6.

- 26. (Original) The copolymer of claim 23, wherein x is from 1 to 3.
- (Original) The copolymer of claim 23, wherein the one or more hydrofluorocarbon(s) is 27. independently selected from the group consisting of fluoromethane; difluoromethane; 1,1-difluoroethane; 1,2-difluoroethane; 1,1,1fluoroethane; trifluoromethane; trifluoroethane; 1,1,2-trifluoroethane; 1,1,1,2-tetrafluoroethane; 1,1,2,2-tetrafluoroethane; 1,1,1,2,2-pentafluoroethane; 1-fluoropropane; 2-fluoropropane; 1,1-difluoropropane; 1,2difluoropropane; 1,3-difluoropropane; 2,2-difluoropropane; 1,1,1-trifluoropropane; 1,1,2trifluoropropane; 1,1,3-trifluoropropane; 1,2,2-trifluoropropane; 1,1,2,2-tetrafluoropropane; 1,1,1,3-tetrafluoropropane; 1,1,1,2-tetrafluoropropane; 1,2,2,3-tetrafluoropropane; 1,1,3,3-tetrafluoropropane; 1,1,2,3-tetrafluoropropane; 1,1,1,3,3-1,1,1,2,3-pentafluoropropane; 1,1,1,2,2-pentafluoropropane; 1,1,2,3,3-pentafluoropropane; 1,1,2,2,3-pentafluoropropane; pentafluoropropane; 1,1,1,3,3,3-1,1,1,2,3,3-hexafluoropropane; 1,1,1,2,2,3-hexafluoropropane; hexafluoropropane; 1,1,1,2,2,3,3-heptafluoropropane; 1,1,1,2,3,3,3-heptafluoropropane; 1,3-1,2-difluorobutane; 1,1-difluorobutane; 1-fluorobutane; 2-fluorobutane; 2,2-difluorobutane; 2,3-difluorobutane; 1,1,1-1,4-difluorobutane; difluorobutane: trifluorobutane; 1,1,2-trifluorobutane; 1,1,3-trifluorobutane; 1,1,4-trifluorobutane; 1,2,2-2,2,3-trifluorobutane; 1,3,3-trifluorobutane; 1,2,3-trifluorobutane; trifluorobutane; 1,1,1,2-tetrafluorobutane; 1,1,1,3-tetrafluorobutane; 1,1,1,4-tetrafluorobutane; 1,1,2,2-1,1,2,4-tetrafluorobutane; 1,1,3,3-1,1,2,3-tetrafluorobutane; tetrafluorobutane; 1,1,4,4-tetrafluorobutane; 1,2,2,3-1,1,3,4-tetrafluorobutane; tetrafluorobutane; 1,2,3,3-tetrafluorobutane; 1,2,3,4-1,2,2,4-tetrafluorobutane; tetrafluorobutane; 2,2,3,3-tetrafluorobutane; 1,1,1,2,2-pentafluorobutane; 1,1,1,2,3tetrafluorobutane: pentafluorobutane; 1,1,1,2,4-pentafluorobutane; 1,1,1,3,3-pentafluorobutane; 1,1,1,3,4pentafluorobutane; 1,1,1,4,4-pentafluorobutane; 1,1,2,2,3-pentafluorobutane; 1,1,2,2,4pentafluorobutane; 1,1,2,3,3-pentafluorobutane; 1,1,2,4,4-pentafluorobutane; 1,1,3,3,4pentafluorobutane; 1,2,2,3,3-pentafluorobutane; 1,2,2,3,4-pentafluorobutane; 1,1,1,2,2,3-1,1,1,2,3,3-hexafluorobutane, 1,1,1,2,2,4-hexafluorobutane; hexafluorobutane; 1,1,1,2,3,4-hexafluorobutane; 1,1,1,2,4,4-hexafluorobutane; 1,1,1,3,3,4-hexafluorobutane; 1,1,1,3,4,4-hexafluorobutane; 1,1,1,4,4,4-hexafluorobutane; 1,1,2,2,3,3-hexafluorobutane; 1,1,2,2,3,4-hexafluorobutane; 1,1,2,2,4,4-hexafluorobutane; 1,1,2,3,3,4-hexafluorobutane; 1,1,1,2,2,3,3-1,2,2,3,3,4-hexafluorobutane; 1,1,2,3,4,4-hexafluorobutane; 1,1,1,2,2,3,4-heptafluorobutane; 1,1,1,2,2,4,4-heptafluorobutane; heptafluorobutane;

> 1,1,1,2,4,4,4-1,1,1,2,3,4,4-heptafluorobutane; 1,1,1,2,3,3,4-heptafluorobutane; 1,1,1,2,2,3,3,4-octafluorobutane; 1,1,1,3,3,4,4-heptafluorobutane; heutafluorobutane; 1,1,1,2,2,4,4,4-1,1,1,2,3,3,4,4-octafluorobutane; 1,1,1,2,2,3,4,4-octafluorobutane; octafluorobutane; 1,1,1,2,3,4,4,4-octafluorobutane; 1,1,1,2,2,3,3,4,4-nonafluorobutane; 1-fluoro-2-methylpropane; 1.1-difluoro-2-1,1,1,2,2,3,4,4,4-nonafluorobutane; methylpropane; 1,3-difluoro-2-methylpropane; 1,1,1-trifluoro-2-methylpropane; 1,1,3trifluoro-2-methylpropane; 1,3-difluoro-2-(fluoromethyl)propane; 1,1,1,3-tetrafluoro-2-1,1,3-trifluoro-2-1,1,3,3-tetrafluoro-2-methylpropane; methylpropane; 1,1,3,3-tetrafluoro-2-1,1,1,3,3-pentafluoro-2-methylpropane; (fluoromethyl)propane; (fluoromethyl)propane; 1,1,1,3-tetrafluoro-2-(fluoromethyl)propane; fluorocyclobutane; 1,3-difluorocyclobutane; 1,2-difluorocyclobutane; 1.1-difluorocyclobutane; trifluorocyclobutane; 1,1,3-trifluorocyclobutane; 1,2,3-trifluorocyclobutane; 1,1,2,2tetrafluorocyclobutane; 1,1,3,3-tetrafluorocyclobutane; 1,1,2,2,3-pentafluorocyclobutane; 1,1,2,2,3,3-hexafluorocyclobutane; 1,1,2,2,3,4-1,1,2,3,3-pentafluorocyclobutane; 1,1,2,2,3,3,4-1,1,2,3,3,4-hexafluorocyclobutane; hexafluorocyclobutane; heptafluorocyclobutane; vinyl fluoride; 1,1-difluoroethene; 1,2-difluoroethene; 1,1,2-1,1-difluoropropene; 1,2-difluoropropene; l-fluoropropene, difluoropropene; 2,3-difluoropropene; 3,3-difluoropropene; 1,1,2-trifluoropropene; 1,1,3trifluoropropene; 1,2,3-trifluoropropene; 1,3,3-trifluoropropene; 2,3,3-trifluoropropene; 3,3,3-trifluoropropene; 1-fluoro-1-butene; 2-fluoro-1-butene; 3-fluoro-1-butene; 4-fluoro-1-butene; 1,1-difluoro-1-butene; 1,2-difluoro-1-butene; 1,3-difluoropropene; 1,4-difluoro-1-butene; 2,3-difluoro-1-butene; 2,4-difluoro-1-butene; 3,3-difluoro-1-butene; 3,4difluoro-1-butene; 4,4-difluoro-1-butene; 1,1,2-trifluoro-1-butene; 1,1,3-trifluoro-1butene; 1,1,4-trifluoro-1-butene; 1,2,3-trifluoro-1-butene; 1,2,4-trifluoro-1-butene; 1,3,3trifluoro-1-butene; 1,3,4-trifluoro-1-butene; 1,4,4-trifluoro-1-butene; 2,3,3-trifluoro-1butene; 2,3,4-trifluoro-1-butene; 2,4,4-trifluoro-1-butene; 3,3,4-trifluoro-1-butene; 3,4,4-1.1.2.4-1,1,2,3-tetrafluoro-1-butene; 4,4,4-trifluoro-1-butene; trifluoro-1-butene; tetrafluoro-1-butene; 1,1,3,3-tetrafluoro-1-butene; 1,1,3,4-tetrafluoro-1-butene; 1,1,4,4tetrafluoro-1-butene; 1,2,3,3-tetrafluoro-1-butene; 1,2,3,4-tetrafluoro-1-butene; 1,2,4,4tetrafluoro-1-butene; 1,3,3,4-tetrafluoro-1-butene; 1,3,4,4-tetrafluoro-1-butene; 1,4,4,4tetrafluoro-1-butene; 2,3,3,4-tetrafluoro-1-butene; 2,3,4,4-tetrafluoro-1-butene; 2,4,4,4tetrafluoro-1-butene; 3,3,4,4-tetrafluoro-1-butene; 3,4,4,4-tetrafluoro-1-butene; 1,1,2,3,3pentafluoro-1-butene; 1,1,2,3,4-pentafluoro-1-butene; 1,1,2,4,4-pentafluoro-1-butene;

> 1,1,3,3,4-pentafluoro-1-butene; 1,1,3,4,4-pentafluoro-1-butene; 1,1,4,4,4-pentafluoro-1-1,2,4,4,4-1,2,3,4,4-pentafluoro-1-butene; 1,2,3,3,4-pentafluoro-1-butene; pentafluoro-1-butene; 2,3,3,4,4-pentafluoro-1-butene; 2,3,4,4,4-pentafluoro-1-butene; 3,3,4,4,4-pentafluoro-1-butene; 1,1,2,3,3,4-hexafluoro-1-butene; 1,1,2,3,4,4-hexafluoro-1-butene; 1,1,2,4,4,4-hexafluoro-1-butene; 1,2,3,3,4,4-hexafluoro-1-butene; 1,2,3,4,4,4hexafluoro-1-butene; 2,3,3,4,4,4-hexafluoro-1-butene; 1,1,2,3,3,4,4-heptafluoro-1-butene; 1,1,2,3,4,4,4-heptafluoro-1-butene; 1,1,3,3,4,4,4-heptafluoro-1-butene; heptafluoro-1-butene; 1-fluoro-2-butene; 2-fluoro-2-butene; 1,1-difluoro-2-butene; 1,2difluoro-2-butene; 1,3-difluoro-2-butene; 1,4-difluoro-2-butene; 2,3-difluro-2-butene; 1,1,1-trifluoro-2-butene; 1,1,2-trifluoro-2-butene; 1,1,3-trifluoro-2-butene; 1,1,4-trifluoro-2-butene; 1,2,3-trifluoro-2-butene; 1,2,4-trifluoro-2-butene; 1,1,1,2-tetrafluoro-2-butene; 1,1,1,3-tetrafluoro-2-butene; 1,1,1,4-tetrafluoro-2-butene; 1,1,2,3-tetrafluoro-2-butene; 1,1,2,4-tetrafluoro-2-butene; 1,2,3,4-tetrafluoro-2-butene; 1,1,1,2,3-pentafluoro-2-butene; 1,1,1,2,4-pentafluoro-2-butene; 1,1,1,3,4-pentafluoro-2-butene; 1,1,1,4,4-pentafluoro-2-1,1,2,3,4-pentafluoro-2-butene; 1,1,2,4,4-pentafluoro-2-butene; 1,1,1,2,3,4hexafluoro-2-butene; 1,1,1,2,4,4-hexafluoro-2-butene; 1,1,1,3,4,4-hexafluoro-2-butene; 1,1,2,3,4,4-hexafluoro-2-butene; 1.1.1.2.3,4,4-1,1,1,4,4,4-hexafluoro-2-butene; heptafluoro-2-butene; 1,1,1,2,4,4,4-heptafluoro-2-butene; and mixtures thereof.

- 28. (Original) The copolymer of claim 23, wherein the one or more hydrofluorocarbon(s) is independently selected from the group consisting of fluoromethane, difluoromethane, trifluoromethane, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,2-tetrafluoroethane, and mixtures thereof.
- 29. (Original) The copolymer of claim 23, wherein the diluent comprises from 15 to 100 volume % HFC based upon the total volume of the diluent.
- 30. (Original) The copolymer of claim 23, wherein the diluent comprises from 20 to 100 volume % HFC based upon the total volume of the diluent.
- 31. (Original) The copolymer of claim 23, wherein the diluent comprises from 25 to 100 volume % HFC based upon the total volume of the diluent.
- 32. (Original) The copolymer of claim 23, wherein the diluent further comprises a hydrocarbon, a non-reactive olefin, and/or an inert gas.
- 33. (Original) The copolymer of claim 32, wherein the hydrocarbon is a halogenated hydrocarbon other than an HFC.

- 34. (Original) The copolymer of claim 33, wherein the halogenated hydrocarbon is methyl chloride.
- 35. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula MX₄;

wherein M is a Group 4, 5, or 14 metal; and

each X is a halogen.

36. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula MR_nX_{4-n} :

wherein M is Group 4, 5, or 14 metal;

each R is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4; and

each X is a halogen.

37. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula M(RO)_nR'_mX_{4-(m+n)}:

wherein M is Group 4, 5, or 14 metal;

each RO is a monovalent C_1 to C_{30} hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

m is an integer from 0 to 4, wherein the sum of n and m is not more than 4; and each X is a halogen.

38. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula M(RC=OO)_nR'_mX_{4-(m+n)};

wherein M is Group 4, 5, or 14 metal;

each RC=OO is a monovalent C_2 to C_{30} hydrocarbacyl radical independently selected from the group consisting of an alkacyloxy, arylacyloxy, arylacyloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

m is an integer from 0 to 4, wherein the sum of n and m is not more than 4; and each X is a halogen.

39. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula MOX₃;

wherein M is a Group 5 metal; and

each X is a halogen.

40. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula MX₃;

wherein M is a Group 13 metal; and

each X is a halogen.

41. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula MR_nX_{3-n};

wherein M is a Group 13 metal;

each R is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 1 to 3; and

each X is a halogen.

42. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula M(RO)_nR'_mX_{3-(m+n)};

wherein M is a Group 13 metal;

each RO is a monovalent C_1 to C_{30} hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 3;

m is an integer from 0 to 3, wherein the sum of n and m is from 1 to 3; and each X is a halogen.

43. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula M(RC=OO)_nR'_mX_{3-(m+n)};

wherein M is a Group 13 metal;

each RC=OO is a monovalent hydrocarbacyl radical independently selected from the group independently selected from the C_2 to C_{30} group consisting of an alkacyloxy, arylacyloxy, arylacyloxy, alkylarylacyloxy radicals;

each R' is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 3;

m is a integer from 0 to 3, wherein the sum of n and m is from 1 to 3; and each X is a halogen.

44. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula MX_y;

wherein M is a Group 15 metal;

each X is a halogen; and

y is 3, 4 or 5.

45. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula MR_nX_{y-ni}

wherein M is a Group 15 metal;

each R is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

y is 3, 4 or 5, wherein n is less than y; and

Page 11 of 24

each X is a halogen.

46. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula M(RO)_nR'_mX_y-(m+n);

wherein M is a Group 15 metal,

each RO is a monovalent C_1 to C_{30} hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals;

each R' is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

m is an integer from 0 to 4;

y is 3, 4 or 5, wherein the sum of n and m is less than y; and

each X is a halogen.

47. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is represented by the formula M(RC=OO)_nR'_mX_{y-(mrn)};

wherein M is a Group 15 metal;

each RC=OO is a monovalent C_2 to C_{30} hydrocarbacyloxy radical independently selected from the group consisting of an alkacyloxy, arylacyloxy, arylacyloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

m is an integer from 0 to 4;

y is 3, 4 or 5, wherein the sum of n and m is less than y; and

each X is a halogen.

48. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is independently selected from the group consisting of titanium tetrachloride, titanium tetrachloride, vanadium tetrachloride, tin tetrachloride, zirconium tetrachloride, titanium bromide trichloride, titanium dibromide dichloride, vanadium bromide trichloride, tin

> dibenzyltitanium dichloride, trichloride, benzyltitanium trifluoride, chloride benzylzirconium trichloride, dibenzylzirconium dibromide, methyltitanium trichloride, dimethyltitanium difluoride, dimethyltin dichloride, phenylvanadium trichloride, methoxytitanium trichloride, n-butoxytitanium trichloride, di(isopropoxy)titanium dichloride, phenoxytitanium tribromide, phenylmethoxyzirconium trifluoride, methyl methoxytitanium dichloride, methyl methoxytin dichloride, benzyl isopropoxyvanadium dichloride, acetoxytitanium trichloride, benzoylzirconium tribromide, benzoyloxytitanium trifluoride, isopropoyloxytin trichloride, methyl acetoxytitanium dichloride, benzyl benzoyloxyvanadium chloride, vanadium oxytrichloride, aluminum trichloride, boron ethylaluminum dichloride, trichloride, indium trifluoride, trifluoride, gallium methylaluminum dichloride, benzylaluminum dichloride, isobutylgallium dichloride, diethylaluminum chloride, dimethylaluminum chloride, ethylaluminum sesquichloride, triethylaluminum, trimethylaluminum, sesquichloride methylaluminum 2,6-di-tertethoxyaluminum dichloride, dichloride, methoxyaluminum butylphenoxyaluminum dichloride, methoxy methylaluminum chloride, 2,6-di-tertbutylphenoxy methylaluminum chloride, isopropoxygallium dichloride, phenoxy methylindium fluoride, acetoxyaluminum dichloride, benzoyloxyaluminum dibromide, benzoyloxygallium difluoride, methyl acetoxyaluminum chloride, isopropoyloxyindium trichloride, antimony hexachloride, antimony hexafluoride, arsenic pentafluoride, antimony chloride pentafluoride, arsenic trifluoride, bismuth trichloride arsenic fluoride dichloride. triphenylantimony chloride, tetraphenylantimony tetrachloride, dichloromethoxyarsine, dimethoxytrichloroantimony, tetrachloromethoxyantimony, chlorodimethoxyarsine, difluoromethoxyarsine, acetatotetrachloroantimony, (benzoato) tetrachloroantimony, and bismuth acetate chloride.

- 49. (Original) The copolymer of claim 23, wherein the one or more Lewis acid(s) is independently selected from the group consisting of aluminum trichloride, aluminum tribromide, ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum chloride, methylaluminum dichloride, methylaluminum sesquichloride, dimethylaluminum chloride, boron trifluoride, and titanium tetrachloride.
- 50. (Original) The copolymer of claim 23, wherein the Lewis acid is not a compound represented by formula MX₃, where M is a group 13 metal, X is a halogen.

- 51. (Original) The copolymer of claim 23, wherein the one or more initiator(s) comprise a hydrogen halide, a carboxylic acid, a carboxylic acid halide, a sulfonic acid, an alcohol, a phenol, a polymeric halide, a tertiary alkyl halide, a tertiary aralkyl halide, a tertiary alkyl ester, a tertiary aralkyl ester, a tertiary alkyl ether, a tertiary aralkyl ether, an alkyl halide, an aryl halide, an alkylaryl halide or an arylalkylacid halide.
- 52. (Original) The copolymer of claim 23, wherein the one or more initiator(s) is independently selected from the group consisting of HCl, H₂O, methanol, (CH₃)₃CCl, C₆H₅C(CH₃)₂Cl, (2-Chloro-2,4,4-trimethylpentane) and 2-chloro-2-methylpropane.
- (Original) The copolymer of claim 23, wherein the one or more initiator(s) is 53. independently selected from the group consisting of hydrogen chloride, hydrogen bromide, hydrogen iodide, acetic acid, propanoic acid, butanoic acid; cinnamic acid, benzoic acid, 1-chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, p-chlorobenzoic acid, p-fluorobenzoic acid, acetyl chloride, acetyl bromide, cinnamyl chloride, benzoyl chloride, benzoyl bromide, trichloroacetylchloride, methanesulfonic acid, p-fluorobenzoylchloride, trifluoroacetylchloride, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, p-toluenesulfonic acid, methanesulfonyl chloride, methanesulfonyl bromide, trichloromethanesulfonyl chloride, trifluoromethanesulfonyl chloride, p-toluenesulfonyl chloride, methanol, ethanol, propanol, 2-propanol, 2-methylpropan-2-ol, cyclohexanol, benzyl alcohol, phenol, 2p-fluorophenol, 2,3,4,5,6p-chlorophenol, 2,6-dimethylphenol, methylphenol, pentafluorophenol, and 2-hydroxynaphthalene.
- (Original) The copolymer of claim 23, wherein the one or more initiator(s) is 54. independently selected from the group consisting of 2-chloro-2,4,4-trimethylpentane; 2bromo-2,4,4-trimethylpentane; 2-chloro-2-methylpropane; 2-bromo-2-methylpropane; 2chloro-2,4,4,6,6-pentamethylheptane; 2-bromo-2,4,4,6,6-pentamethylheptane; 1-chloro-1methylethylbenzene; 1-chloroadamantane; 1-chloroethylbenzene; 1, 4-bis(1-chloro-1methylethyl) benzene; 5-tert-butyl-1,3-bis(1-chloro-1-methylethyl) benzene; 2-acetoxy-2-acetoxy-2-2-benzoyloxy-2,4,4-trimethylpentane; 2,4,4-trimethylpentane; 2-acetoxy-2,4,4,6,6-2-benzoyloxy-2-methylpropane; methylpropane; 2-benzoyl-2,4,4,6,6-pentamethylheptane; 1-acetoxy-1pentamethylheptane; 1-benzoyloxyethylbenzene; 1.4-bis(1-1-aceotxyadamantane; methylethylbenzene; acetoxy-1-methylethyl) benzene; 5-tert-butyl-1,3-bis(1-acetoxy-1-methylethyl) benzene;

2-methoxy-2,4,4-trimethylpentane; 2-isopropoxy-2,4,4-trimethylpentane; 2-methoxy-2-methylpropane; 2-methoxy-2,4,4,6,6-pentamethylheptane; 2-isopropoxy-2,4,4,6,6-pentamethylheptane; 1-methoxy-1-methylethylbenzene; 1-methoxyadamantane; 1-methoxyethylbenzene; 1,4-bis(1-methoxy-1-methylethyl) benzene; 5-tert-butyl-1,3-bis(1-methoxy-1-methylethyl) benzene, and 1,3,5-tris(1-chloro-1-methylethyl) benzene.

- 55. (Original) The copolymer of claim 23, wherein the one or more initiator(s) further comprise a weakly-coordinating anion.
- 56. (Original) The copolymer of claim 23, wherein the one or more initiator(s) comprise greater than 30 ppm water (based upon weight).
- 57. (Original) The copolymer of claim 23, wherein the contacting further comprises contacting one or more monomer(s) independently selected from the group consisting of olefins, alpha-olefins, disubstituted olefins, isoolefins, conjugated dienes, non-conjugated dienes, styrenics, substituted styrenics, and vinyl ethers.
- 58. (Original) The copolymer of claim 23, wherein the contacting further comprises contacting one or more monomer(s) independently selected from the group consisting of styrene, para-alkylstyrene, para-methylstyrene, alpha-methyl styrene, divinylbenzene, diisopropenylbenzene, isobutylene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-pentene, isoprene, butadiene, 2,3-dimethyl-1,3-butadiene, \$\beta\$-pinene, myrcene, 6,6-dimethyl-fulvene, hexadiene, cyclopentadiene, methyl cyclopentadiene, piperylene, methyl vinyl ether, ethyl vinyl ether, and isobutyl vinyl ether.
- 69. (Previously presented) The copolymer of claim 1 or claim 12, wherein the copolymer is halogenated to form a halogenated copolymer.
- 60. (Original) The copolymer of claim 59, wherein the halogenated copolymer is halogenated with chlorine or bromine.
- 61. (Previously presented) The copolymer of claim 59, wherein the halogen content is greater than 0.2 mol%.
- 62. (Previously presented) The copolymer of claim 59, wherein the halogen content is from 0.2 mol% to 5.0 mol.
- 63. (Previously presented) The copolymer of claim 1 or claim 12, wherein the copolymer has a Mw of from greater than 50,000.

- 64. (Previously presented) The copolymer of claim 1 or claim 12, wherein the copolymer has a Mw of from greater than 100,000.
- 65. (Previously presented) The copolymer of claim 1 or claim 12, wherein the copolymer has a Mw of from greater than 500,000.
- 66. (Previously presented) The copolymer of claim 1 or claim 12, wherein the copolymer has a Mw of from greater than 1,000,000.
- 67. (Previously presented) The copolymer of claim 1 or claim 12, wherein the copolymer has a MWD of from less than 3.
- 68. (Previously presented) The copolymer of claim 1 or claim 12, wherein the copolymer has a MWD of from 2 to 5.
- 69. (Previously presented) The copolymer of claim 1 or claim 12, wherein the copolymer has a Mooney viscosity of at least 20 ± 5 (ML 1 + 8 at 125°C, ASTM D 1646).
- 70. (Previously presented) The copolymer of claim 1 or claim 12, wherein the copolymer has a Mooney viscosity of from 20 ± 5 to 60 ± 5 (ML 1 + 8 at 125°C, ASTM D 1646).
- 71. (Currently Amended) A functionalized or halogenated copolymer, the functionalized or halogenated copolymer derived from a copolymer comprising a C₄-C₇ isoolefin and an alkylstyrene, the copolymer being represented by the formula:

wherein each R¹ and R² are independently selected from the group consisting of hydrogen, an alkyl, a primary haloalkyl, and a secondary haloalkyl; the copolymer having a copolymer sequence distribution defined by the following equation:

$$F = 1 - \{m A / (1 + mA)\}$$

wherein m is the copolymer sequence distribution parameter; A is the molar ratio of alkylstyrene to isoolefin in the copolymer;

F is the <u>isooletin-alkylstyrene-isooletin-alkylstyrene</u> triad fraction in the copolymer; wherein m is from less than 38; and wherein m is determined by solving said equation.

- 72. (Original) The functionalized or halogenated copolymer of claim 71, wherein m is from less than 35.
- 73. (Original) The functionalized or halogenated copolymer of claim 71, wherein m is from less than 30.
- 74. (Original) The functionalized or halogenated copolymer of claim 71, wherein m is from 1-38.
- 75. (Original) The functionalized or halogenated copolymer of claim 71, wherein m is from 1-35.
- 76. (Original) The functionalized or halogenated copolymer of claim 71, wherein m is from 1-30.
- 77. (Previously presented) The copolymer of claim 71, wherein the alkylstyrene content is from greater than 0.5 mol%.
- 78. (Previously presented) The copolymer of claim 71, wherein the alkylstyrene content is from greater than 1.5 mol%.
- 79. (Previously presented) The copolymer of claim 71, wherein the alkylstyrene content is from greater than 6.0 mol%.
- 80. (Previously presented) The copolymer of claim 71, wherein the alkylstyrene content is from greater than 12.5 mol%.
- 81. (Previously presented) The copolymer of claim 71, wherein the isoolefin and the alkylstyrene are present in the copolymer in amounts such that the isoolefin is from about 75.0 wt% to 99.5 wt% of the copolymer and the alkylstyrene is from about 25.0 wt% to 0.5 wt% of the copolymer (based upon the weight of the copolymer).
- 82. (Previously presented) The functionalized or halogenated copolymer of claim 71, wherein the isoolefin and the alkylstyrene are present in the copolymer in amounts such that the

isoolefin is from about 10.0 wt% to 99.5 wt% of the copolymer and the alkylstyrene is from about 90.0 wt% to 0.5 wt% of the copolymer (based upon the weight of the copolymer).

- (Previously presented) A blend comprising the copolymer or functionalized or 83. halogenated copolymer of any one of claims 1, 12, or 71 and a secondary rubber independently selected from the group consisting of at least one of natural rubber, polyisoprene rubber, poly(styrene-co-butadiene) rubber (SBR), polybutadiene rubber (BR), poly(isoprene-co-butadiene) rubber (IBR), styrene-isoprene-butadiene rubber (SIBR), ethylene-propylene rubber (EPR), ethylene-propylene-diene rubber (EPDM), isobutylene/methyl rubber, copolymer isobutylene/cyclopentadiene polysulfide, cyclopentadiene copolymer rubber, nitrile rubber, propylene oxide polymers, starbranched butyl rubber and halogenated star-branched butyl rubber, brominated butyl rubber, chlorinated butyl rubber, star-branched polyisobutylene rubber, star-branched brominated butyl (polyisobutylene/isoprene copolymer) rubber; poly(isobutylene-co-pmethylstyrene) and halogenated poly(isobutylene-co-p-methylstyrene), halogenated poly(isobutylene-co-isoprene-copoly(isobutylene-co-isoprene-co-p-methylstyrene), styrene), halogenated poly(isobutylene-co-isoprene-co-styrene), poly(isobutylene-copoly(isobutylene-co-isoprene-co-ahalogenated isoprene-co-a-methylstyrene) methylstyrene), and mixtures thereof.
 - 84. (Previously presented) The copolymer of claim 7 or 18 wherein the methylstyrene is para-methylstyrene.
 - 85. (Previously presented) The functionalized or halogenated copolymer of claim 71, wherein the C_4 - C_7 isoolefin is isobutylene and the alkylstyrene is para-methylstyrene.
 - 86. (New) The copolymer of claim 1, wherein the alkylstyrene content is between 0.5 and 20 wt % of the copolymer.
 - 87. (New) The copolymer of claim 12, wherein the alkylstyrene content is between 0.5 and 20 wt % of the copolymer.
 - 88. (New) The functionalized or halogenated copolymer of claim 71, wherein the alkylstyrene content is between 0.5 and 20 wt % of the copolymer.