10/573522 23 MR 2006

SEQUENCE LISTING

	lakamura Katagiri Jakatsur	, Toy	omasa											
<120> M	<120> METHOD OF DIAGNOSING BREAST CANCER													
<130> 0	82368-0	07400	US											
	PCT/JP20		1741											
	IS 60/50 2003-09-													
<160> 3	34													
<170> F	`astSEQ	for W	indo	ws Ve	ersi	on 4	. 0							
<210> 1 <211> 9 <212> E <213> H	28	iens												
<220> <221> C <222> (DS [127)	(720)												
<400> 1														
agtgcat	atg cag Met Gln	cagct aga	ct ta gct t	agtgt ca d	gga gt (g cad	gtgaa aag a	actg aga (Arg (tgto gag o	gtggi	ttc o	cttc:	tta	
agtgcat gggatc gcc aca	ccc agg atg cag Met Gln	agete aga Arg	ct ta gct t Ala S	agtgt ca o Ser A 5	egt (Arg)	g cac ctg a Leu l	gtgaa aag a Lys A	actg aga (Arg (tgtogag of the second s	gtggf ctg d Leu I	ttc deac a	cttc atg f Met]	tacttg tta Leu caa	120
agtgcat gggatc gcc aca Ala Thr	atg cag Met Gln 1 gag cc Glu Pr	aga Arg	ct ta gct ta Ala S cca Pro 20	agtgt cca c Ser A 5 ggc Gly	atc Ile	g cag ctg a Leu l aca Thr	gtgaa aag a Lys A tgt Cys	actg aga (Arg (tgg Trp 25	tgte gag o Glu 1 10 caa Gln	gtggf ctg (Leu I gat Asp	ttc cac a His l aaa Lys	gac Asp	tacttg tta Leu caa Gln 30 tat	120 168
gcc aca Ala Thr 15 atg gat Met Asp	atg cag Met Glm 1 gag cc Glu Pr gac ct Asp Le	a ccc o Pro g cga u Arg 35	ct taget tag	agtgt ca (Ser / 5 ggc Gly caa Gln	atc Ile ata Ile	g cag ctg a Leu l aca Thr tta Leu	tgt tgt Cys ggt Gly 40	tgg Trp 25 gga Gly	tgte gag of Glu I 10 caa Gln gcc Ala	gtggg ctg o Leu I gat Asp aac Asn	aaa Lys aca Thr	gac Asp cct Pro 45	caa Gln 30 tat Tyr	120 168 216
gcc aca Ala Thr 15 atg gat Met Asp gag aaa Glu Lys	atg cag Met Glm 1 gag cc Glu Pr gac ct Asp Le	aga a ccc o Pro g cga u Arg 35 t ttt 1 Phe 0 t cag	ct taget tag	ggc Ser A 5 ggc Gly caa Gln cta Leu	atc Ile ata Ile gaa Glu	aca Thr tta Leu gtt Val 55	tgt Cys ggt Gly 40 atc Ile	tgg Trp 25 gga Gly att Ile	tgtegag of Glu 10 caa Gln gcc Ala cct Pro	gtggg ctg o Leu I gat Asp aac Asn gag Glu	aaa Lys aca Thr agg Arg 60	gac Asp cct Pro 45 tac Tyr cca	caa Gln 30 tat Tyr cca Pro	120 168 216 264
gcc aca Ala Thr 15 atg gat Met Asp gag aaa Glu Lys ttt gaa Phe Glu att gat	atg cag Met Gln 1 a gag co Glu Pr a gac ct Gly Va a cct co Pro Pr 65 a tct gc Ser Al	a ccc o Pro g cga u Arg 35 t ttt 1 Phe 0 t cag o Gln t gga	ct taget tag	ggt gt gt ge	atc Ile ata Ile gaa Glu ttt Phe 70 tgt	aca Thr tta Leu gtt Val 55 ctc Leu ctg	tgtgaag a Lys A tgt Cys ggt 40 atc Ile act Thr	tgg Trp 25 gga Gly att Ile cca Pro	tgtcgag of Glu 10 caa Gln gcc Ala cct Pro att Ile ctc	gtggg ctg of Leu I gat Asp aac Asn gag Glu tat Tyr 75	aaa Lys aca Thr agg Arg 60 cat His	gac Asp cct Pro 45 tac Tyr cca Pro cca	caa Gln 30 tat Tyr cca Pro aac Asn	120 168 216 264 312

Ile Glr	ctg Leu														504
gac ata Asp Ile															552
gcc aga Ala Aro	_				_		_	_	-			_	_	-	600
gag gaa Glu Glu 160	ı Glu			_					_		_		_	-	648
cac aad His Asr 175															696
aag aaa Lys Lys						tag *	ggga	actto	gtc (ctggt	tcat	ic tt	agtt	aatg	750
tgttctt	tgc	caage	gtgat	c ta	agtt	gcct	aco	cttga	aatt	tttt	ttta	aaa t	atat	ttgat	810
gacataa			_				_		_		_				
tgaaaaa	taa	atagt	catt	t aa	atgtt	gaaa	a aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aaaa	aaaa	928
<210> 2 <211> 1															
<212> F <213> F		sapie	ens												
<213> H	lomo	sapie	ens												
	lomo			Arg	Leu	Lys	Arg	Glu 10	Leu	His	Met	Leu	Ala 15	Thr	
<213> F <400> 2 Met Glr	lomo	Ala	Ser 5					10					15		
<213> F <400> 2 Met Glr	lomo : Arg Pro	Ala Pro 20	Ser 5 Gly	Ile	Thr	Cys	Trp 25	10 Gln	Asp	Lys	Asp	Gln 30	15 Met	Asp	
<213> F <400> 2 Met Glr 1 Glu Pro	Arg Pro Arg 35	Ala Pro 20 Ala	Ser 5 Gly Gln	Ile Ile	Thr Leu	Cys Gly 40	Trp 25 Gly	10 Gln Ala	Asp Asn	Lys Thr	Asp Pro 45	Gln 30 Tyr	15 Met Glu	Asp Lys	
<213> F <400> 2 Met Glr 1 Glu Pro Asp Leu	Arg Arg Arg Arg Arg Arg	Ala Pro 20 Ala Lys	Ser 5 Gly Gln Leu	Ile Ile Glu	Thr Leu Val 55	Cys Gly 40 Ile	Trp 25 Gly Ile	10 Gln Ala Pro	Asp Asn Glu	Lys Thr Arg 60	Asp Pro 45 Tyr	Gln 30 Tyr Pro	15 Met Glu Phe	Asp Lys Glu	
<213> F <400> 2 Met Glr 1 Glu Pro Asp Leu Gly Val 50 Pro Pro	Arg Arg Arg Arg State Arg	Ala Pro 20 Ala Lys Ile	Ser 5 Gly Gln Leu Arg	Ile Ile Glu Phe 70	Thr Leu Val 55 Leu	Cys Gly 40 Ile Thr	Trp 25 Gly Ile Pro	10 Gln Ala Pro Ile	Asp Asn Glu Tyr 75	Lys Thr Arg 60 His	Asp Pro 45 Tyr Pro	Gln 30 Tyr Pro Asn	15 Met Glu Phe Ile	Asp Lys Glu Asp 80	
<213> F <400> 2 Met Glr 1 Glu Pro Asp Leu Gly Val 50 Pro Pro 65	Arg Arg Arg Sphe Gln Gly	Ala Pro 20 Ala Lys Ile Arg	Ser 5 Gly Gln Leu Arg Ile 85	Ile Ile Glu Phe 70 Cys	Thr Leu Val 55 Leu Leu	Cys Gly 40 Ile Thr	Trp 25 Gly Ile Pro Val	10 Gln Ala Pro Ile Leu 90	Asp Asn Glu Tyr 75 Lys	Lys Thr Arg 60 His Leu	Asp Pro 45 Tyr Pro	Gln 30 Tyr Pro Asn	15 Met Glu Phe Ile Lys 95	Asp Lys Glu Asp 80 Gly	
<213> F <400> 2 Met Glr 1 Glu Pro Asp Leu Gly Val 50 Pro Pro 65 Ser Ala	Arg Arg 35 Phe Gln Gly Arg	Ala Pro 20 Ala Lys Ile Arg Pro 100	Ser 5 Gly Gln Leu Arg Ile 85 Ser	Ile Ile Glu Phe 70 Cys Leu	Thr Leu Val 55 Leu Leu Asn	Cys Gly 40 Ile Thr Asp	Trp 25 Gly Ile Pro Val Ala 105	10 Gln Ala Pro Ile Leu 90 Thr	Asp Asn Glu Tyr 75 Lys Val	Lys Thr Arg 60 His Leu Leu	Asp Pro 45 Tyr Pro Pro	Gln 30 Tyr Pro Asn Pro Ser 110	15 Met Glu Phe Ile Lys 95 Ile	Asp Lys Glu Asp 80 Gly	
<213> F <400> 2 Met Glr 1 Glu Pro Asp Leu Gly Val 50 Pro Pro 65 Ser Ala Ala Trp	Arg Arg 35 Phe Gln Gly Arg Met 115 Glu	Ala Pro 20 Ala Lys Ile Arg Pro 100 Ser	Ser 5 Gly Gln Leu Arg Ile 85 Ser Glu	Ile Ile Glu Phe 70 Cys Leu Pro	Thr Leu Val 55 Leu Leu Asn Asn	Cys Gly 40 Ile Thr Asp Ile Pro 120	Trp 25 Gly Ile Pro Val Ala 105 Asp	10 Gln Ala Pro Ile Leu 90 Thr	Asp Asn Glu Tyr 75 Lys Val Pro	Lys Thr Arg 60 His Leu Leu Leu	Asp Pro 45 Tyr Pro Pro Thr Met 125	Gln 30 Tyr Pro Asn Pro Ser 110 Ala	15 Met Glu Phe Ile Lys 95 Ile Asp	Asp Lys Glu Asp 80 Gly Gln Ile	
<213> F <400> 2 Met Glr 1 Glu Pro Asp Leu Gly Val 50 Pro Pro 65 Ser Ala Ala Trp Leu Leu Ser Ser	Arg Arg 35 Phe Gln Gly Arg Met 115 Glu	Ala Pro 20 Ala Lys Ile Arg Pro 100 Ser Phe	Ser 5 Gly Gln Leu Arg Ile 85 Ser Glu Lys	Ile Ile Glu Phe 70 Cys Leu Pro	Thr Leu Val 55 Leu Leu Asn Asn Asn	Cys Gly 40 Ile Thr Asp Ile Pro 120 Lys	Trp 25 Gly Ile Pro Val Ala 105 Asp	10 Gln Ala Pro Ile Leu 90 Thr Asp	Asp Asn Glu Tyr 75 Lys Val Pro	Lys Thr Arg 60 His Leu Leu Leu Leu 140	Asp Pro 45 Tyr Pro Pro Thr Met 125 Lys	Gln 30 Tyr Pro Asn Pro Ser 110 Ala	15 Met Glu Phe Ile Lys 95 Ile Asp	Asp Lys Glu Asp 80 Gly Gln Ile Arg	
<213> F <400> 2 Met Glr 1 Glu Pro Asp Leu Gly Val 50 Pro Pro 65 Ser Ala Ala Trp Leu Leu Ser Ser 130 Gln Trp	Arg Arg 35 Phe Gln Gly Arg Met 115 Glu	Ala Pro 20 Ala Lys Ile Arg Pro 100 Ser Phe Glu	Ser 5 Gly Gln Leu Arg Ile 85 Ser Glu Lys Lys Asn	Ile Ile Glu Phe 70 Cys Leu Pro Tyr His 150	Thr Leu Val 55 Leu Leu Asn Asn Asn 135 Ala	Cys Gly 40 Ile Thr Asp Ile Pro 120 Lys Arg	Trp 25 Gly Ile Pro Val Ala 105 Asp Pro Gln	10 Gln Ala Pro Ile Leu 90 Thr Asp Ala Lys Gly	Asp Asn Glu Tyr 75 Lys Val Pro Phe Gln 155	Lys Thr Arg 60 His Leu Leu Leu Leu 140 Lys	Asp Pro 45 Tyr Pro Pro Thr Met 125 Lys Ala	Gln 30 Tyr Pro Asn Pro Ser 110 Ala Asn Asp	15 Met Glu Phe Ile Lys 95 Ile Asp Ala Glu His	Asp Lys Glu Asp 80 Gly Gln Ile Arg Glu 160	
<213> F <400> 2 Met Glr 1 Glu Pro Asp Leu Gly Val 50 Pro Pro 65 Ser Ala Ala Trp Leu Leu Ser Ser 130 Gln Trp 145	Arg Arg Arg Sphe Gln Gly Arg Met 115 Glu Thr	Ala Pro 20 Ala Lys Ile Arg Pro 100 Ser Phe Glu Asp Lys	Ser 5 Gly Gln Leu Arg Ile 85 Ser Glu Lys Lys Asn 165	Ile Ile Glu Phe 70 Cys Leu Pro Tyr His 150 Leu	Thr Leu Val 55 Leu Leu Asn Asn Asn 135 Ala Pro	Cys Gly 40 Ile Thr Asp Ile Pro 120 Lys Arg Glu	Trp 25 Gly Ile Pro Val Ala 105 Asp Pro Gln Ala Gln	10 Gln Ala Pro Ile Leu 90 Thr Asp Ala Lys Gly 170	Asp Asn Glu Tyr 75 Lys Val Pro Phe Gln 155 Asp	Lys Thr Arg 60 His Leu Leu Leu 140 Lys Ser	Asp Pro 45 Tyr Pro Pro Thr Met 125 Lys Ala Arg	Gln 30 Tyr Pro Asn Pro Ser 110 Ala Asn Asp Val Glu	15 Met Glu Phe Ile Lys 95 Ile Asp Ala Glu His 175	Asp Lys Glu Asp 80 Gly Gln Ile Arg Glu 160 Asn	
<213> F <400> 2 Met Glr 1 Glu Pro Asp Leu Gly Val 50 Pro Pro 65 Ser Ala Ala Trp Leu Leu Ser Ser 130 Gln Trp 145 Glu Met	Arg Arg 35 Phe Gln Gly Arg Thr Leu	Ala Pro 20 Ala Lys Ile Arg Pro 100 Ser Phe Glu Asp Lys 180	Ser 5 Gly Gln Leu Arg Ile 85 Ser Glu Lys Lys Asn 165 Arg	Ile Ile Glu Phe 70 Cys Leu Pro Tyr His 150 Leu	Thr Leu Val 55 Leu Leu Asn Asn Asn 135 Ala Pro	Cys Gly 40 Ile Thr Asp Ile Pro 120 Lys Arg Glu	Trp 25 Gly Ile Pro Val Ala 105 Asp Pro Gln Ala	10 Gln Ala Pro Ile Leu 90 Thr Asp Ala Lys Gly 170	Asp Asn Glu Tyr 75 Lys Val Pro Phe Gln 155 Asp	Lys Thr Arg 60 His Leu Leu Leu 140 Lys Ser	Asp Pro 45 Tyr Pro Pro Thr Met 125 Lys Ala Arg	Gln 30 Tyr Pro Asn Pro Ser 110 Ala Asn Asp	15 Met Glu Phe Ile Lys 95 Ile Asp Ala Glu His 175	Asp Lys Glu Asp 80 Gly Gln Ile Arg Glu 160 Asn	

<210> 3 <211> 1472 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (53)...(1189) <400> 3 ggccactgag ccggggtgca gtggcagcgg gagagtacct ggcgatggcg at atg agc 58 Met Ser ggt gcg ggg gtg gcg gct ggg acg cgg ccc ccc agc tcg ccg acc ccq 106 Gly Ala Gly Val Ala Ala Gly Thr Arg Pro Pro Ser Ser Pro Thr Pro 10 ggc tet egg ege egg ege ege eee tet gtg gge gte eag tee ttg Gly Ser Arg Arg Arg Gln Arg Pro Ser Val Gly Val Gln Ser Leu 25 30 agg ccg cag agc ccg cag ctc agg cag agc gac ccg cag aaa cqg aac Arg Pro Gln Ser Pro Gln Leu Arg Gln Ser Asp Pro Gln Lys Arg Asn 40 ctg gac ctg gag aaa agc ctg cag ttc ctg cag cag cac tcg gag 250 Leu Asp Leu Glu Lys Ser Leu Gln Phe Leu Gln Gln Gln His Ser Glu 55 60 atg ctg gcc aag ctc cat gag gag atc gag cat ctg aag cgg gaa aac 298 Met Leu Ala Lys Leu His Glu Glu Ile Glu His Leu Lys Arg Glu Asn aag gat ctc cat tac aag ctc ata atg aat cag aca tca cag aag aaa 346 Lys Asp Leu His Tyr Lys Leu Ile Met Asn Gln Thr Ser Gln Lys Lys 90 gat ggc ccc tca gga aac cac ctt tcc agg gcc tct gct ccc ttg ggc 394 Asp Gly Pro Ser Gly Asn His Leu Ser Arg Ala Ser Ala Pro Leu Gly 100 105 gct cgc tgg gtc tgc atc aac gga gtg tgg gta gag ccg gga gga ccc 442 Ala Arg Trp Val Cys Ile Asn Gly Val Trp Val Glu Pro Gly Gly Pro 120 age eet gee agg etg aag gag gge tee tea egg aca eae agg eea gga 490 Ser Pro Ala Arg Leu Lys Glu Gly Ser Ser Arg Thr His Arg Pro Gly ggc aag cgt ggg cgt ctt gcg ggc ggt agc gcc gac act gtg cgc tct 538 Gly Lys Arg Gly Arg Leu Ala Gly Gly Ser Ala Asp Thr Val Arg Ser 155 cct gca gac agc ctc tcc atg tca agc ttc cag tct gtc aag tcc atc 586 Pro Ala Asp Ser Leu Ser Met Ser Ser Phe Gln Ser Val Lys Ser Ile 170 tct aat tca ggc aag gcc agg ccc cag ccc ggc tcc ttc aac aag caa 634

Ser Asn Ser G 180	Sly Lys Ala	Arg Pro Gln 185	Pro Gly	Ser Phe A	Asn Lys	Gln
gat tca aaa g Asp Ser Lys A 195						
cta ctt cac a Leu Leu His A						
gcc aga aag g Ala Arg Lys G 2		J J J	-	Gly Ala A	, ,	-
ggg aac agc c Gly Asn Ser G 245						
cca atg atc c Pro Met Ile L 260						
tgc gaa gtg c Cys Glu Val L 275					Leu Gln	
caa gag ctg c Gln Glu Leu A						
cag gca gcc c Gln Ala Ala P 3				Asp Gln G		
cat ttc ccc a His Phe Pro L 325				-		-
cca cct gtg g Pro Pro Val A 340		-	_		_	_
aag aac aac t Lys Asn Asn P 355					1et Gln	
cgg cgc ctg c Arg Arg Leu H			gccacccc	caa tctggt	cagt	1209
gccaggccca cc ctacttttag gc atctccaaac tg aaaagcacac ga atttccaaaa aa	ctggctaa at acaaactg tt tgaagcag gt	tccaagac aga tattttct aga atcgcctt aca	ataacact ctgttatt	caagataga ttgctattt	t aaagt g gcatt	acttg 1329 tacat 1389
<210> 4 <211> 378 <212> PRT <213> Homo say	piens					

```
<400> 4
Met Ser Gly Ala Gly Val Ala Ala Gly Thr Arg Pro Pro Ser Ser Pro
                                    10
Thr Pro Gly Ser Arg Arg Arg Gln Arg Pro Ser Val Gly Val Gln
Ser Leu Arg Pro Gln Ser Pro Gln Leu Arg Gln Ser Asp Pro Gln Lys
Arg Asn Leu Asp Leu Glu Lys Ser Leu Gln Phe Leu Gln Gln His
Ser Glu Met Leu Ala Lys Leu His Glu Glu Ile Glu His Leu Lys Arg
Glu Asn Lys Asp Leu His Tyr Lys Leu Ile Met Asn Gln Thr Ser Gln
                                   90
Lys Lys Asp Gly Pro Ser Gly Asn His Leu Ser Arg Ala Ser Ala Pro
                               105
Leu Gly Ala Arg Trp Val Cys Ile Asn Gly Val Trp Val Glu Pro Gly
                           120
                                              125
Gly Pro Ser Pro Ala Arg Leu Lys Glu Gly Ser Ser Arg Thr His Arg
                       135
                                           140
Pro Gly Gly Lys Arg Gly Arg Leu Ala Gly Gly Ser Ala Asp Thr Val
                   150
                                       155
Arg Ser Pro Ala Asp Ser Leu Ser Met Ser Ser Phe Gln Ser Val Lys
               1.65
                                   170
Ser Ile Ser Asn Ser Gly Lys Ala Arg Pro Gln Pro Gly Ser Phe Asn
                               185
Lys Gln Asp Ser Lys Ala Asp Val Ser Gln Lys Ala Asp Leu Glu Glu
                           200
                                               205
Glu Pro Leu His Asn Ser Lys Leu Asp Lys Val Pro Gly Val Gln
                       215
                                           220
Gly Gln Ala Arg Lys Glu Lys Ala Glu Ala Ser Asn Ala Gly Ala Ala
                   230
                                       235
Cys Met Gly Asn Ser Gln His Gln Gly Arg Gln Met Gly Ala Gly Ala
              245
                                   250
His Pro Pro Met Ile Leu Pro Leu Pro Leu Arg Lys Pro Thr Thr Leu
           260
                               265
Arg Gln Cys Glu Val Leu Ile Arg Glu Leu Trp Asn Thr Asn Leu Leu
       275
                          280
Gln Thr Gln Glu Leu Arg His Leu Lys Ser Leu Leu Glu Gly Ser Gln
                       295
Arg Pro Gln Ala Ala Pro Glu Glu Ala Ser Phe Pro Arg Asp Gln Glu
                   310
                                       315
Ala Thr His Phe Pro Lys Val Ser Thr Lys Ser Leu Ser Lys Lys Cys
               325
                                   330
Leu Ser Pro Pro Val Ala Glu Arg Ala Ile Leu Pro Ala Leu Lys Gln
           340
                               345
Thr Pro Lys Asn Asn Phe Ala Glu Arg Gln Lys Arg Leu Gln Ala Met
       355
                           360
Gln Lys Arg Arg Leu His Arg Ser Val Leu
  370
                       375
<210> 5
<211> 1315
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (251)...(1114)
```

aga cag ccc aag	gctc gcct cgcg	tcg ccc ggt	tgcg ctcc gaag atg	agag gcgt cgcg gac	cg ga ga ga ca ga gca a	agtte ctcte gtcge gag	ggac ggga gagt ctg	g tg t gg g ac gca	cagg tccg agct gag	gccg cgcc	ctg ggg tgc cgc	gggt agcg cggc gcc	cac cgc ccg ttg	gcgg gcga gctg caa	agctct ggcttg cggtca gct	180
										gac Asp						337
										caa Gln 40						385
										ctg Leu						433
										acg Thr						481
ata Ile	aga Arg	aat Asn 80	cac His	tcc Ser	aag Lys	cag Gln	aca Thr 85	gaa Glu	gac Asp	cta Leu	aca Thr	agc Ser 90	act Thr	gag Glu	atg Met	529
										aga Arg						577
										ttt Phe 120						625
										act Thr						673
atg Met	gag Glu	ccc Pro	aca Thr 145	gaa Glu	tgc Cys	tca Ser	gaa Glu	tta Leu 150	agt Ser	gaa Glu	ttt Phe	gtg Val	tct Ser 155	aga Arg	gca Ala	721
										cga Arg						769
										ttt Phe						817
aag Lys 190	tac Tyr	cca Pro	gat Asp	gcc Ala	gtg Val 195	tac Tyr	ctc Leu	tcg Ser	gag Glu	ggg Gly 200	ccc Pro	tcc Ser	tcc Ser	tgc Cys	tcc Ser 205	865
atg Met	ggg Gly	atc Ile	cgc Arg	agc Ser 210	gcc Ala	agc Ser	cgg Arg	cca Pro	ggg Gly 215	ttt Phe	gaa Glu	tta Leu	gtc Val	att Ile 220	gtt Val	913

tgg agg ata caa ata gat gaa gat ggg aag gtt ttt cca aag ctg gat Trp Arg Ile Gln Ile Asp Glu Asp Gly Lys Val Phe Pro Lys Leu Asp 225 230 235	
ctt ctc acc aaa gtc cca cag cga gcc ctg gag ctg gac aag aac aga Leu Leu Thr Lys Val Pro Gln Arg Ala Leu Glu Leu Asp Lys Asn Arg 240 245 250	
gcc ata gaa act gct cct ctc agc ttc cga acc ctg gta gga ctg ctt Ala Ile Glu Thr Ala Pro Leu Ser Phe Arg Thr Leu Val Gly Leu Leu 255 260 265	1057
gga atc gaa gct gct ctg gaa agc ctg ata aaa tcg ctt tgt gca gag Gly Ile Glu Ala Ala Leu Glu Ser Leu Ile Lys Ser Leu Cys Ala Glu 270 275 280 285	
gag aac aac tagttccaaa acagtgaacg tggaggatga agatgctgcg Glu Asn Asn	1154
tggaggaaca tgcaatttta ttcaatataa acatttgcta ttttctgctt agaaacca ccctgaagac gtgctgtcta tgcagttatg gcacattata tggaaactct catgacat aaaataaata caactagtta agtataaaat gccaaaaaaa a	
<210> 6 <211> 288 <212> PRT <213> Homo sapiens	
<pre><400> 6 Met Asp Ala Glu Leu Ala Glu Val Arg Ala Leu Gln Ala Glu Ile Ala 1</pre>	
Ala Leu Arg Arg Ala Cys Glu Asp Pro Pro Ala Pro Trp Glu Glu Lys 20 25 30	
Ser Arg Val Gln Lys Ser Phe Gln Ala Ile His Gln Phe Asn Leu Glu	
Gly Trp Lys Ser Ser Lys Asp Leu Lys Asn Gln Leu Gly His Leu Glu 50 55 60	
Ser Glu Leu Ser Phe Leu Ser Thr Leu Thr Gly Ile Asn Ile Arg Asn 65 70 75 80	
His Ser Lys Gln Thr Glu Asp Leu Thr Ser Thr Glu Met Thr Glu Lys 85 90 95	
Ser Ile Arg Lys Val Leu Gln Arg His Arg Leu Ser Gly Asn Cys His	
Met Val Thr Phe Gln Leu Glu Phe Gln Ile Leu Glu Ile Gln Asn Lys 115 120 125	
Glu Arg Leu Ser Ser Ala Val Thr Asp Leu Asn Ile Ile Met Glu Pro 130 135 140	
Thr Glu Cys Ser Glu Leu Ser Glu Phe Val Ser Arg Ala Glu Glu Arg	
Lys Asp Leu Phe Met Phe Phe Arg Ser Leu His Phe Phe Val Glu Trp 165 170 175	
Phe Glu Tyr Arg Lys Arg Thr Phe Lys His Leu Lys Glu Lys Tyr Pro 180 185 190	
Asp Ala Val Tyr Leu Ser Glu Gly Pro Ser Ser Cys Ser Met Gly Ile 195 200 205	
Arg Ser Ala Ser Arg Pro Gly Phe Glu Leu Val Ile Val Trp Arg Ile 210 215 220	
Gln Ile Asp Glu Asp Gly Lys Val Phe Pro Lys Leu Asp Leu Leu Thr 225 230 235 240	
Lys Val Pro Gln Arg Ala Leu Glu Leu Asp Lys Asn Arg Ala Ile Glu	

Thr	Ala	Pro	Leu	245 Ser	Phe	Arg	Thr	Leu	250 Val	Gly	Leu	Leu	Gly	255 Ile	Glu	
Ala	Ala	Leu 275	260 Glu	Ser	Leu	Ile	Lys 280	265 Ser	Leu	Cys	Ala	Glu 285	270 Glu	Asn	Asn	
<212	L> 20 2> Di	N A	icial	l Sec	quenc	ce	200									
<220 <223	3> A1	rtif: C-PCI		lly s	synth	nesia	zed 1	prime	er s	equei	nce :	for				
<400 cgad		tt q	gtca	agcto	ca											20
<212	L> 23 2> Di	ΑI	icia	l Sed	quenc	ce										
<220 <223	3> A1	rtif: C-PCI		lly s	syntl	nesi:	zed j	prime	er s	equei	nce :	for				
<400 ggtt		cac a	aggg	tacti	tt at	t										23
<212	L> 23 2> Di	ΑN	icia	l Sed	quenc	ce										
<220 <223	3> Aı	rtif: C-PC		lly :	syntl	nesi:	zed j	primo	er s	equei	nce	for				
<400 caaa		cag (gtgg	agcca	aa ca	ac										23
<211 <212	0> 10 L> 23 2> Di 3> Ar	3 NA	icia	l Sed	quenc	ce										
<220 <220	3> A:	ctif: [-PC]		lly :	syntl	nesi:	zed j	prim	er s	eque	nce	for				
)> 10 atcad		tggc	aaaga	aa ca	ac										23
<213 <213	0> 1: L> 20 2> Dt 3> A:	O AN	icia.	l Se	quenc	ce										
<220)>															

\ 2237	RT-PCR	brimer	sequence	101	
<400> acctca	11 aagto ootootggaa				20
<210> <211> <212> <213>	23				
<220> <223>	Artificially synthesized RT-PCR	primer	sequence	for	
<400> tcagtt	12 ttcaa caggtaaggc gat				23
<210><211><211><212><213>	23				
<220> <223>	Artificially synthesized pRT-PCR	primer	sequence	for	
<400> agagco	13 catag aaactgctcc tct				23
<210><211><211><212><213>	23				
<220> <223>	Artificially synthesized RT-PCR	primer	sequence	for	
<400> cataa	14 ctgca tagacagcac gtc				23
<210> <211> <212> <213>	20				
<220> <223>	Artificially synthesized RT-PCR	primer	sequence	for	
<400> gggaaq	15 gagaa gtcccgagtc				20
<210> <211> <212> <213>	24				
<220> <223>	Artificially synthesized p	primer	sequence	for	

RT-PCR

<400> 16 tccttattct gaatttccag aatc	24
<210> 17 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Artificially synthesized primer sequence for 5' RACE	
<400> 17 caagcagtcc taccagggtt cggaagctga	30
<210> 18 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Artificially synthesized primer sequence for nested PCR	
<400> 18 ccagggttcg gaagctgaga ggagcagttt	30
<210> 19 <211> 30 <212> DNA <213> Artificial Sequence	30
<220> <223> Artificially synthesized primer sequence for PCR	
<400> 19 ccggaattca tgcagagagc ttcacgtctg	30
<210> 20 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Artificially synthesized primer sequence for PCR	
<400> 20 ccgctcgaga acatcaggat gaaatttctt ttc	33
<210> 21 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Artificially synthesized primer sequence for PCR	
<400> 21 ccggaattca tgagcggtgc gggggtggcg	30

```
<210> 22
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially synthesized primer sequence for PCR
<400> 22
                                                                    30
ccgctcgaga agcactgagc gatgcaggcg
<210> 23
<211> 35
<212> DNA
<213> Artificial Sequence
<223> Artificially synthesized primer sequence for PCR
<400> 23
ccggaattca tggacgcaga gctggcagag gtgcg
                                                                    35
<210> 24
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially synthesized primer sequence for PCR
<400> 24
ccgctcgagg ttgttctcct ctgcacaaag
                                                                    30
<210> 25
<211> 51
<212> DNA
<213> Artificial Sequence
<223> Artificially synthesized oligonucleotide for siRNA
<400> 25
caccgaagca gcacgacttc ttcttcaaga gagaagaagt cgtgctgctt c
                                                                   51
<210> 26
<211> 51
<212> DNA
<213> Artificial Sequence
<223> Artificially synthesized oligonucleotide for siRNA
<400> 26
aaaagaagca gcacgacttc ttctctcttg aagaagaagt cgtgctgctt c
                                                                    51
<210> 27
<211> 18
<212> DNA
<213> Artificial Sequence
```

<220> <223> Target sequence for siRNA	
<400> 27 gaagcagcac gacttctt	18
<210> 28 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Target sequence for siRNA	
<400> 28 . catcgcaact gtgttgacc	19
<210> 29 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Target sequence for siRNA	
<400> 29 tgccagacag tggacagag	19
<210> 30 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Target sequence for siRNA	
<400> 30 gcctgcagtt cctgcagca	19
<210> 31 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Target sequence for siRNA	
<400> 31 gcttccagtc tgtcaagtc	19
<210> 32 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Target sequence for siRNA	
<400> 32	19

<210> 33	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Target sequence for siRNA	
<400> 33	
actgctcctc tcagcttcc	19
<210> 34	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Target sequence for siRNA	
<400> 34	
gtacgettae tggcatcaa	19