

FACULTAD DE INGENIERÍA

SEPTIEMBRE 2020-FEBRERO 2021

NOMBRE DE LA ASIGNATURA			CÓDIGO:	10289
OPTATIVA 3 (SISTEMAS MALLA 2013) GRUPO: REPRESENTACIÓN DEL CONOCIMIENTO - GRUPO: 1				
CARRERA	INGENIERIA DE SISTEMAS			
CICLO O SEMESTRE	SEPTIMO NIVEL EJE DE FORMACIÓN OPTATIVAS			
CRÉDITOS DE LA ASIGNATURA	4	MODALIDAD:	PRESENCIAL	

CARGA HORARIA

COMPONENTES DEL APRENDIZAJE	Horas / Semana	Horas / Periodo Académico	
CREDITOS	4.0	64.0	
Total Horas:	4.0	64.0	

PROFESOR(ES) RESPONSABLE(S):

ESPINOZA MEJIA JORGE MAURICIO - (J.E.)	(mauricio.espinoza@ucuenca.edu.ec)	PRINCIPAL
--	--------------------------------------	-----------

DESCRIPCIÓN DE LA ASIGNATURA:

Resumen descriptivo en torno al propósito, la estrategia metodológica y el contenido fundamental de la asignatura.

El curso comenzará con una revisión de conceptos básicos sobre el modelado del conocimiento, la sintaxis y semántica de los lenguages lógicos proposicionales y las lógicas de primer orden de donde se desprenden las lógicas descriptivas. Entonces se analizará el uso de la logica descriptiva como lenguaje formal para expresar conocimientos terminológicos y ontologías. Se describirán los lenguajes que fundamental la Web Semántica como mecanismo formal de representación del conocimiento. Finalmente, se abordará el uso de razonadores, lenguajes de consulta basado en grafos y reglas semánticas para inferir nuevo conocimiento en un sistema inteligente.

Para realizar las implementaciones de las distintas prácticas se hará uso de diferentes herramientas y lenguages como Jena, OWL, Pellet y Protege. El proceso de aprendizaje será inductivo y deductivo, empleando formas activas y dinámicas de participación individual y grupal bajos los esquemas de una educación constructivista.

REQUISITOS DE LA ASIGNATURA

Esta asignatura no tiene co-requisitos

PRE-REQUISITOS				
Asignatura	Código			
COMUNICACION CIENTIFICA	14499			
BASE DE DATOS I (SISTEMAS MALLA 2013)	10164			
REDES DE COMPUTADORES (SISTEMAS MALLA 2013)	10165			
DESARROLLO DE SISTEMAS DISTRIBUIDOS (SISTEMAS MALLA 2013)	11175			
SISTEMAS OPERATIVOS I (SISTEMAS MALLA 2013)	10911			
OPTATIVA 1 (SISTEMAS MALLA 2013)	10186			

OBJETIVO(S) DE LA ASIGNATURA:

Objetivos general y específicos de la asignatura en relación al Perfil de salida de la carrera.

Objetivo general: El objetivo del curso es introducir los conceptos de representación del conocimiento y su papel en la inteligencia

artificial, capacitar a los estudiantes en el diseño y elaboración de sistemas basados en el conocimiento y comprender las limitaciones y complejidad de los lenguajes basados en la lógica para representar el conocimiento.

Objetivos especificos:

- 1. Conocer los fundamentos teoricos del modelado del conocimiento usando una representación formal
- 2. Identificar las potencialidades y limitaciones de los lenguajes basados en logica para representar el conocimiento
- 3. Conocer la sintaxis y semántica de la lógica descriptiva como lenguaje de representación del conocimiento
- 4. Modelar el conocimiento de diversos dominios usando un lenguaje basado en lógica descriptiva
- 5. Comprender las limitaciones y la complejidad de los algoritmos de razonamiento aplicados en los sistemas basados en el conocimiento.
- 6. Diseñar, implementar y aplicar un sistema basado en el conocimiento

LOGRO DE LOS RESULTADOS DE APRENDIZAJE, INDICADOR(ES) Y ESTRATEGIA(S) DE EVALUACIÓN

Resultados o Logros de Aprendizaje (RdA's) de la Unidad de Organización Curricular (UOC) correspondiente, Indicadores y Estrategias de Evaluación de la Asignatura, tomando como referencia el Perfil de salida (PdS) y la Organización Curricular (OC) del Proyecto de Carrera (PdC).

RESULTADOS O LOGROS DE	INDICADORES	ESTRATEGIAS DE EVALUACIÓN
APRENDIZAJE	INDICADORES	ESTRATEGIAS DE EVALUACION
RdA1. Comprende los principios fundamentales de la representación del conocimiento basada en	Identifica los componentes del modelado del conocimiento usando lenguajes formales y no	• PARTICIPACIÓN EN CLASE
la lógica	formales	• PRUEBA 1
	 Reconoce los diferentes niveles de formalización de los lenguajes de representación del conocimiento 	• EXAMEN INTERCICLO
RdA2. Reconoce la importancia de los lenguajes baSados en lógica para la representación del	Reconoce los diferentes tipos de lenguajes basados en lógica para la representación del	• PARTICIPACIÓN EN CLASE
conocimiento	conocimiento	• PRUEBA 1
	 Reconoce las limitaciones de la lógica proposicional para la representación del 	EXAMEN INTERCICLO
	conocimiento	• TALLERES EJECUTADOS POR EL ALUMNO
	 Aplica correctamente la sintaxis de los lenguajes lógicos de primer orden para modelar el conocimiento 	
RdA3. Es capaz de modelar dominios de aplicaciones simples usando lógica descriptiva;	Conoce y aplica corectamente la sintaxis y semántica del lenguaje basado en lógica	• PARTICIPACIÓN EN CLASE
aplicaciones simples usando logica descriptiva,	descriptiva	• PRUEBA 1
	Comprende los algoritmos de razonamiento que usa la lógica descriptiva	• EXAMEN INTERCICLO
		• TALLERES EJECUTADOS POR EL ALUMNO
RdA4. Comprende el equilibrio fundamental entre el poder de representación y las	Entiende la relación entre la lógica descriptiva y los lenguajes ontológicos	• PARTICIPACIÓN EN CLASE
propiedades computacionales de un lenguaje de representación basado en la lógica	Conoce los elementos que caracterizan un	• PRUEBA 1
representación basado en la lógica	lenguaje ontológico	EXAMEN INTERCICLO
	 Reconoce la diferencia de la representación del conocimiento usando lenguajes ontologicos vs otros formalismos 	TALLERES EJECUTADOS POR EL ALUMNO
RdA5. Esta familiarizado con varios lenguajes de representación del conocimiento ampliamente	Utiliza correctamente los diferentes axiomas de los lenguajes RDF, RDFS y OWL	PARTICIPACIÓN EN CLASE
utilizados	Usa diferentes herramientas para modelar el	• PRUEBA 2
	conocimiento usando tipos de clases, propiedades y relaciones	• EXAMEN FINAL
	·	TALLERES EJECUTADOS POR EL ALUMNO

RESULTADOS O LOGROS DE APRENDIZAJE	INDICADORES	ESTRATEGIAS DE EVALUACIÓN
RdA6. Comprende cómo se está aplicando actualmente en la práctica el material teórico cubierto en el curso.	 Modela el conocimiento de diversos dominios usando ontologias Usa diferentes herramientas para el desarrollo 	• PARTICIPACIÓN EN CLASE • PRUEBA3
	de sistemas basados en el conocimiento. Aplica diferentes técnicas para inferir nuevo conocimiento: razonadores, reglas o consultas	EXAMEN FINAL TRABAJO PRACTICO

CONTENIDOS, SESIONES Y ACTIVIDADES DE APRENDIZAJE

Título de la Unidad, sub -unidades, nro. de sesión y actividades para los componentes de aprendizaje.

SUB-UNIDADES	Nro. SESIÓN	COMPONENTE DE APRENDIZAJE	ACTIVIDADES DE APREND	OIZAJE
1. INTRODUCCIÓN A LA REPRESENTACIÓN DEL CONOCIMIENTO				
Porqué estudiar representación del conocimiento	-		INTRODUCCIÓN A LA ASIGNATURA Y EXPLICACIÓN DEL SÍLABO	1 horas
Base y grafo de conocimiento		CREDITOS	EXPLICACIÓN DEL DOCENTE SOBRE REPRESENTACIÓN DEL	1 horas
Breve historia bases de conocimiento			CONOCIMIENTO	
4. Hacia los grafos de conocimiento				
Necesidad de razonamiento en los grafos de conocimiento				
2	. MODELADO	DEL CONOCIMIENT	0	
Modelado no formal y modelado lógico Tinos de la gravajos.	-	CREDITOS	EXPLICACIÓN DEL DOCENTE SOBRE LOS COMPONENTES DEL MODELADO DEL CONOCIMIENTO	2 horas
2. Tipos de languajes				
3. Lógica: lenguajes formales				
3. LENGUAJES DE REPRI	ESENTACION	I DEL CONOCIMIENT	T	
1. Lógica para Representación Conocimiento: Porqué? 2. Tipos de lógica: Lógica Proposicional	-		EXPLICACIÓN DEL DOCENTE SOBRE LOS LENGUAJES BASADOS EN LOGICA PARA REPRESENTAR CONOCIMIENTO	0.25 horas
Tipos de lógica: Lógica de Primer Orden			EXPLICACIÓN DE LA SINTAXIS Y SEMANTICA DE LA LOGICA PROPOSICIONAL	0.75 horas
4. Tipos de Lógicas: Qué son las Lógicas Descriptivas Hoy?			TALLER EJERCICIOS DE MODELADO USANDO LOGICA	1 horas
Componentes de la Lógica Descriptiva Sintaxis y Semántica Lógica Descriptiva			EXPLICACIÓN DE LA SINTAXIS Y SEMANTICA DE LA LOGICA DE PREDICADOS (LOGICA DE PRIMER ORDEN)	1 horas
		CREDITOS	TALLER DE EJERCICIOS DE MODELADO USANDO LOGICA DE PREDICADOS	2 horas
			EXPLICACIÓN DE LOS COMPONENTES DE LA LOGICA DESCRIPTIVA Y SU USO ACTUAL	0.5 horas
			EXPLICACIÓN DE LA SINTAXIS Y SEMANTICA DE LA LOGICA DESCRIPTIVA	1.5 horas
			TALLER DE EJERCICIOS DE MODELADO USANDO LOGICA DESCRIPTIVA	3 horas
			PRUEBA 1 (INCLUYE UNIDADES 1, 2, 3)	2 horas

SUB-UNIDADES	Nro. SESIÓN	COMPONENTE DE APRENDIZAJE	ACTIVIDADES DE APRENDIZAJE	
4. RDF Y RDFS: REPRESENTACIÓN DEL CONOCIMIENTO BASADO EN GRAFOS				
Modelado del Conocimiento usando ontologías	-		EXPLICACION DEL DOCENTE SOBRE MODELADO CONOCIMIENTO USANDO	0.5 horas
2. El modelo de datos RDF			EXPLICACION DEL DOCENTE	2.5 horas
3. Vocabularios en RDF		CREDITOS	SOBRE LENGUAJE RDF TALLER SOBRE MODELADO	3 horas
4. Serializaciones en RDF			USANDO RDF	3 110143
5. Clases con RDFs			EXPLICACION DEL DOCENTE SOBRE EL LENGUAJE RDFS	2 horas
6. Propiedades con RDFs			TALLER SOBRE MODELADO USANDO RDFS	3 horas
7. Vocabulario de RDFs				
5. OWL: LENGUAJ	E ONTOLOG	ICO BASADO EN LÓG	GICA DESCRIPTIVA	
1. Suposición del mundo abierto	-		EXPLICACION DEL DOCENTE SOBRE EL LENGUAJE OWL	4 horas
2. Axiomas de propiedades3. Axiomas de equivalencia			TALLER SOBRE MODELADO USANDO LENGUAJE OWL	5 horas
Axiomas de clases		CREDITOS	TALLER SOBRE INFERENCIA BASADA EN AXIOMAS DESCRITOS USANDO LENGUAJE OWL	4 horas
5. Razonadores para inferir conocimiento sobre ontologias			PRUEBA 2 (INCLUYE UNIDADES 4 Y 5)	2 horas
6. SPARQL: A	CCEDIENDO	A LAS BASES DE CO	DNOCIMIENTO	
Idea general de consultas en SPARQL Componentes SPARQL	-	CREDITOS	EXPLICACION DEL DOCENTE SOBRE EL LENGUAJE DE CONSULTA SPARQL PARA ACCEDER A LA BASE DE	4 horas
3. Patrones de grafos en SPARQL	CREDITOS	TALLER ACCESO A BASES DE CONOCIMIENTO USANDO LENGUAJE DE CONSULTA	3 horas	
7. SWRL, SHACL: LENGUAJES F	PARA INCOR	PORAR REGLAS EN	LAS BASES DE CONOCIMIENTO	
sintaxis y semántica de los lenguajes ejemplos de inferencia de nuevo conocimiento	-		EXPLICACION DEL DOCENTE SOBRE LA INCORPORACION DE REGLAS EN LAS BASES DE	4 horas
	C	CREDITOS	TALLER INCORPORACION DE REGLAS EN UNA BASE DE CONOCIMIENTO	3 horas
			PRUEBA 3 (INCLUYE UNIDADES 6 Y 7)	2 horas
8. APLICACIÓN: SISTEMAS BASADOS EN CONOCIMIENTO				
API's para la creación, manipulación y serialización de ontologías Herramientas para inferir conocimiento sobre	-	CREDITOS	EXPLICACION DEL DOCENTE SOBRE LOS MECANISMOS DE ACCESO POR SOFTWARE A BASES DE CONOCIMIENTO	3 horas
ontologias			TALLER PARA USO DE APIS PARA MANIPULACION DE ONTOLOGIAS	3 horas
		CREDITOS	64 horas	
		Total:	64 horas	

RECURSOS O MEDIOS PARA EL APRENDIZAJE

Equipos, materiales, instrumentos tecnológicos, reactivos, entre otros, que serán utilizados durante el desarrollo de la asignatura.

- Plataforma virtual Moodle como repositorio de presentaciones, ejemplos desarrollados, envío y recepción de trabajos
- Instaladores de Protege, JENA, OWL-API y Pellet

CRITERIOS PARA LA ACREDITACIÓN DE LA ASIGNATURA

Parámetros de acreditación, tomando como referencia los Resultados de Aprendizaje (RdA's), indicadores y criterios de evaluación planteados y en base a la normativa de evaluación y calificaciones vigente en la Universidad de Cuenca y Consejo de Educación Superior (CES).

CRITERIO GENERAL DE ACREDITACIÓN	PUNTAJE
TRABAJOS	20
EXAMENES	30
TALLERES	10
PRUEBAS	35
TAREAS EN CLASE	5
TOTAL:	100

	DETALLE DE CRITERIOS DE ACREDITACIÓN	PUNTAJE / CRITERIO GENERAL				
	APROVECHAMIENTO I					
	Prueba 1 incluye las unidades 1, 2 y 3	10	PRUEBAS			
C94	trabajos desarrollados de manera individual o grupo de los temas tratados en el curso	5	TALLERES			
	ejercicios sobre los diferentes temas tratados en el curso	5	TAREAS EN CLASE			
		INTERCICLO				
C95	examen interciclo cubre las unidades 1, 2, 3 y 4	20	EXAMENES			
	APROVECHAMIENTO II					
	prueba 3 incluye las unidades 6 y 7	13	PRUEBAS			
C96	trabajos desarrollados de manera individual o grupo de los temas tratados en el curso	5	TALLERES			
	prueba 2 incluye las unidades 4 y 5	12	PRUEBAS			
	FINAL					
C97	trabajo final sobre sistema basados en conocimiento	20	TRABAJOS			
	examen final cubre todas las unidades	10	EXAMENES			
000	SUSPENSIÓN					
C98						
	Total:	100				

TEXTOS U OTRAS REFERENCIAS REQUERIDAS PARA EL APRENDIZAJE DE LA ASIGNATURA

Libros, revistas, bases digitales, periódicos, direcciones de Internet y demás fuentes de información, pertinentes y actuales.

BÁSICA

- 1. Ronald Brachman and Hector Levesque. 2004. Knowledge Representation and Reasoning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- 2. Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. 2017. An Introduction to Description Logic (1st. ed.). Cambridge University Press, USA.
- 3. Dean Allemang and James Hendler. 2011. Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL (2nd. ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

COMPLEMENTARIA

Esta asignatura no tiene bibliografía complementaria

Docente: ESPINOZA MEJIA JORGE MAURICIO Director: VEINTIMILLA REYES JAIME EDUARDO

Finalizado: 11/10/2020 **Publicado:** 14/10/2020