

PRODUCT CATALOG

Engineered Solutions...

INFRARED OPTOELECTRONICS MAGNETIC SENSORS FIBER OPTICS HI-REL SERIES

PRODUCT CATALOG

©Optek Technology, Inc. 1993 All rights reserved.

500-0090-088

OPTEK TECHNOLOGY, INC.

1993 Product Catalog

Optek Technology, Inc. is the world's leading manufacturer of standard and custom sensing solutions using infrared and magnetic sensors.

Engineering

For over 25 years, we have built our success upon a customer oriented team committed to technical leadership. Our engineers are the industry's most experienced and innovative. We manufacture three styles of product:

- Standard Components
 - As described in this catalog.
- Special Components
 - Electrical or mechanical variations of our standard components.
- Custom Sensor Systems
 - We are the industry experts, from concept and design to final assembly of fully custom sensors, using infrared or hall effect technologies.

Quality/Reliability

Quality and reliability are designed-in at Optek from the initial product concept. At Optek we are committed and dedicated to being the Quality Leader in the markets we serve. Our internal program is known as **Excellence Through Quality**.

This program includes not only manufacturing but all facets of the Optek organization.

In short, Excellence Through Quality requires the participation of the total company doing its very best to recognize and achieve customer requirements.

Optek is dedicated to delivering defect free, competitive products and services, on-time, to meet the requirements of our customers.

Total Vertical Integration

Optek is a highly vertically integrated sensor and component manufacturer. Vertical integration assures complete control of the total manufacturing cycle. Furthermore, vertical integration allows customization for application specific sensors from concept and design to final assembly and test.

- Concept and Design
- Wafer Fabrication
- Discrete Component Manufacturing
- Tooling and Plastic Manufacturing
- Printed Circuit Board Fabrication
- Wire and Cable Manufacturing
- Final Assembly and Test

The entire product line is designed to provide the product you need to satisfy your most demanding requirements. Optek has the industries' broadest line of standard components plus the capability to customize the components to individual needs.

We invite you to join the growing number of satisfied customers using Optek sensors, Fiber Optic components and Military Processed components.

To find out more about Optek products and solutions, or for technical assistance, call our technical sales department at:

214-323-2200 214-323-2396 (FAX)

TABLE OF CONTENTS

PRODUCT SELECTION GUIDE1-1 INFRARED EMITTING DIODES2-1 FIBER OPTIC COMPONENTS8-1 HYBRID ASSEMBLIES9-1

NG SE

PIS EMITT DIOD

PHOTOSENS

SENSORS

PAIRS

COUPLED

TS PHOTOSENSO CHIPS

LIES COMPON

ASSEMBLIES

Fax (214) 323-2396

Carrollton, Texas 75006

(214) 323-2200

1215 W. Crosby Road

Optek Technology, Inc.

TABLE OF CONTENTS

HI-REL SURFACE MOUNT SEMICONDUCTORS16-1 Optek Technology, Inc. 1215 W. Crosby Road (214) 323-2200 Fax (214) 323-2396 Carrollton, Texas 75006 vii

PRODUCT SELECTION GUIDE

1-1

PRODUCT SELECTION GUIDE

DISCRETE COMPONENTS

PART NUMBER	DESCRIPTION							
OP1XX	GaAs INFRARED LIGHT EMITTING DIODE							
OP2XX	GaAIAs INFRARED LIGHT EMITTING DIODE							
OP3XX	PHOTODARLINGTON							
OP5XX	PHOTOSENSOR							
OPL5XX	PHOTOLOGIC™ SENSOR							
OP6XX	PHOTOTRANSISTOR							
OP8XX	PHOTOSENSOR							
OPL8XX	PHOTOLOGIC™ SENSOR							
OP9XX	PHOTODIODE							
OPSXXX	EMITTER AND SENSOR MATCHED PAIR							
OPXXXX	SPECIAL OR CUSTOM DISCRETE OPTOELECTRONIC COMPONENT							
OHNXXXX	HALL EFFECT SENSOR							
OHSXXXX	HALL EFFECT SENSOR (HIGH TEMPERATURE)							
OHDXXXX	SPECIAL OR CUSTOM HALL EFFECT DISCRETE							
OPCXXXX	CHIPS SUFFIX TP (SAWN ON TAPE)							
	SUFFIX WP (WAFFLE PACK)							
	SUFFIX VP (VIALS)							
ОМН	MILITARY HALL EFFECT							

ASSEMBLIES

ОНВХХХХ	HALL EFFECT ASSEMBLY
OPB6XX	LOW-COST REFLECTIVE, TRANSMISSIVE, AND FLAG SWITCHES
OPB7XX	REFLECTIVE OBJECT SENSOR
OPB8XX	SLOTTED OPTICAL SWITCHES, PHOTOTRANSISTOR OUTPUT
OPB9XX	SLOTTED OPTICAL SWITCHES, PHOTOLOGIC™ OUTPUT
OPBXXXX	OPTICAL SWITCH, SPECIAL OR CUSTOM PACKAGE
ODEANY	FIRED ORTIO TRANSMITTER
OPF1XXX	FIBER OPTIC TRANSMITTER
OPF2XXX	FIBER OPTIC RECEIVER
OPF3XX	FIBER OPTIC LED
OPF4XX	FIBER OPTIC SENSOR
OMFXXX	MILITARY FIBER OPTIC LED OR SENSOR
OPIXXX	OPTICALLY COUPLED ISOLATOR

SURFACE MOUNT

HCCXXX	SURFACE MOUNT OPTOCOUPLER
HCTXXX	SURFACE MOUNT TRANSISTOR
HDCXXX	SURFACE MOUNT LOGIC OPTOCOUPLER
OPRXXXX	HYBRID OPTICAL ASSEMBLY

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Infrared-Light Emitting Diodes (IRED's)

R	OPTEK
	•

Part No.	Case Style	Туре	Output Power E _{e(APT)} (mW/cm ²)		Test Conditions	Beam Angle	Page No.
	-		Min	Max	I _F (mA)	(Deg.)	
OP123	Pill, lensed	GaAs	0.4	_	50	24	2-4
OP124	Pill, lensed	GaAs	1.0		50	24	2-4
OP130 OP130W OP131 OP131W	TO-46, lensed TO-46 TO-46, lensed TO-46	GaAs GaAs GaAs GaAs	1.0* 1.0* 3.0* 3.0*	<u>-</u> -	100 100 100 100	18 50 18 50	2-6 2-8 2-6 2-8
OP132	TO-46, lensed	GaAs	4.0*	_	100	18	2-6
OP132W	TO-46	GaAs	4.0*	_	100	50	2-8
OP133	TO-46, lensed	GaAs	5.0*	_	100	18	2-6
OP133W	TO-46	GaAs	5.0*	_	100	50	2-8
OP140A OP140B OP140C OP140D	Plastic lateral Plastic lateral Plastic lateral Plastic lateral	GaAs GaAs GaAs GaAs	0.4 0.3 0.2 0.1	0.55 0.4 —	20 20 20 20	40 40 40 40	2-10 2-10 2-10 2-10
OP145A	Plastic lateral	GaAs	0.4		20	40	2-12
OP145B	Plastic lateral	GaAs	0.3	0.55	20	40	2-12
OP145C	Plastic lateral	GaAs	0.2	0.4	20	40	2-12
OP145D	Plastic lateral	GaAs	0.1		20	40	2-12
OP163A OP163B OP163C OP163D	Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1	GaAs GaAs GaAs GaAs	1.4 1.4 0.85 0.28	2.20 1.60	20 20 20 20	18 18 18 18	2-14 2-14 2-14 2-14
OP164A OP164B OP164C OP164D	Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1	GaAs GaAs GaAs GaAs	1.4 1.4 0.85 0.28	2.20 1.60	20 20 20 20	18 18 18 18	2-16 2-16 2-16 2-16
OP165A	Plastic T-1	GaAs	1.95	3.70	20	18	2-18
OP165D	Plastic T-1	GaAs	1.40	—	20	18	2-18
OP165W	Plastic T-1	GaAs	0.5*	—	20	90	2-20
OP166A	Plastic T-1	GaAs	1.95	3.70	20	18	2-22
OP166D	Plastic T-1	GaAs	1.40	—	20	18	2-22
OP166W	Plastic T-1	GaAs	0.5*	—	20	90	2-24
OP168FA	Plastic end-looker	GaAs	0.48		20	104	2-26
OP168FB	Plastic end-looker	GaAs	0.43		20	104	2-26
OP168FC	Plastic end-looker	GaAs	0.27		20	104	2-26
OP169A	Plastic end-looker	GaAs	0.180		20	46	2-28
OP169B	Plastic end-looker	GaAs	0.108	0.220	20	46	2-28
OP169C	Plastic end-looker	GaAs	0.027		20	46	2-28
OP223	Pill, lensed	GaAlAs	1.0		50	24	2-30
OP224	Pill, lensed	GaAlAs	3.5		50	24	2-30
OP231 OP231W OP232 OP232W OP233	TO-46, lensed TO-46 TO-46, lensed TO-46 TO-46, lensed	GaAlAs GaAlAs GaAlAs GaAlAs GaAlAs	1.5 1.5 2.0 3.5 3.0	 6.0 7.0	100 100 100 100 100	18 50 18 50 18	2-32 2-34 2-32 2-34 2-32

*mW

Wavelength at peak emission is GaAs = 935nm, GaAlAs = 890nm

Infrared-Light Emitting Diodes (IRED's)(cont)

Part No.	Case Type Style			Output Power E _{e(APT)} (mW/cm ²)		Beam Angle	Page No.
			Min	Max	l _F (mA)	(Deg.)	
OP240A OP240B OP240C OP240D	Plastic lateral Plastic lateral Plastic lateral Plastic lateral	GaAlAs GaAlAs GaAlAs GaAlAs	0.60 0.40 0.20 0.05	1.20 0.86	20 20 20 20	40 40 40 40	2-36 2-36 2-36 2-36
OP245A OP245B OP245C OP245D	Plastic lateral Plastic lateral Plastic lateral Plastic lateral	GaAlAs GaAlAs GaAlAs GaAlAs	0.60 0.40 0.20 0.05	1.20 0.86	20 20 20 20	40 40 40 40	2-38 2-38 2-38 2-38
OP265A OP265B OP265C OP265D OP265W	Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1	GaAlAs GaAlAs GaAlAs GaAlAs GaAlAs	2.70 1.65 0.54 0.54 1.0*	4.70 3.30 —	20 20 20 20 20 20	18 18 18 18 90	2-40 2-40 2-40 2-40 2-42
OP266A OP266B OP266C OP266D OP266W	Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1	GaAlAs GaAlAs GaAlAs GaAlAs GaAlAs	2.70 1.65 0.54 0.54 1.0*	4.70 3.30 —	20 20 20 20 20 20	18 18 18 18 90	2-44 2-44 2-44 2-44 2-46
OP268FA OP268FB OP268FC	Plastic end-looker Plastic end-looker Plastic end-looker	GaAlAs GaAlAs GaAlAs	0.64 0.45 0.36	 0.99 	20 20 20	104 104 104	2-48 2-48 2-48
OP269A OP269B OP269C	Plastic end-looker Plastic end-looker Plastic end-looker	GaAlAs GaAlAs GaAlAs	0.58 0.42 0.34	0.82	20 20 20	46 46 46	2-50 2-50 2-50
OP290A OP290B OP290C	Plastic T- 1 3/4 Plastic T- 1 3/4 Plastic T- 1 3/4	GaAlAs GaAlAs GaAlAs	210 180 150	300	1500 1500 1500	50 50 50	2-52 2-52 2-52
OP291A OP291B OP291C	Plastic T- 1 3/4 Plastic T- 1 3/4 Plastic T- 1 3/4	GaAlAs GaAlAs GaAlAs	16.0 13.0 10.0	 26.0 	100 100 100	50 50 50	2-52 2-52 2-52
OP292A OP292B OP292C	Plastic T- 1 3/4 Plastic T- 1 3/4 Plastic T- 1 3/4	GaAlAs GaAlAs GaAlAs	2.7 2.2 1.7	4.4	20 20 20	50 50 50	2-52 2-52 2-52
OP293A OP293B OP293C	Plastic TO-18 Plastic TO-18 Plastic TO-18	GaAlAs GaAlAs GaAlAs	16.0 13.0 10.0	 26.0 	100 100 100	60 60 60	2-56 2-56 2-56
OP294	Plastic T-1 3/4	GaAlAs	0.5	1.5	5	50	2-60
OP295A OP295B OP295C	Plastic T-1 3/4 Plastic T-1 3/4 Plastic T-1 3/4	GaAlAs GaAlAs GaAlAs	44.0 33.0 22.0	 77.0 	1500 1500 1500	20 20 20	2-62 2-62 2-62
OP296A OP296B OP296C	Plastic T-1 3/4 Plastic T-1 3/4 Plastic T-1 3/4	GaAlAs GaAlAs GaAlAs	3.6 2.6 1.6	6.6 —	100 100 100	20 20 20	2-62 2-62 2-62

*mW Wavelength at peak emission is GaAs = 935nm, GaAlAs = 890nm

Infrared-Light Emitting Diodes (IRED's)(cont)

Part No.	Case Style	2000		Test Conditions	Beam Angle	Page No.	
			Min	Max	I _F (mA)	(Deg.)	
OP297A	Plastic T-1 3/4	GaAlAs	0.7		20	20	2-62
OP297B	Plastic T-1 3/4	GaAlAs	0.5	1.3	20	20	2-62
OP297C	Plastic T-1 3/4	GaAlAs	0.3		20	20	2-62
OP298A	Plastic TO-18	GaAlAs	3.0		100	25	2-56
OP298B	Plastic TO-18	GaAlAs	2.4	4.8	100	25	2-56
OP298C	Plastic TO-18	GaAlAs	1.8		100	25	2-56
OP299	Plastic T-1 3/4	GaAlAs	0.15	0.45	5	20	2-60

Photosensors

Part No.	Case Style		Current) (mA)		Test onditions	Beam Angle	Page No.
		Min	Max	VCE	E _e (mW/cm ²)	(Deg.)	
OP300SL ⁽¹⁾	Pill, lensed	0.8		5.0	1.0	35	3-4
OP301SL ⁽¹⁾	Pill, lensed	0.8	2.4	5.0	1.0	35	3-4
OP302SL ⁽¹⁾	Pill, lensed	1.8	5.4	5.0	1.0	35	3-4
OP303SL ⁽¹⁾	Pill, lensed	3.6	12.0	5.0	1.0	35	3-4
OP304SL ⁽¹⁾	Pill, lensed	7.0	21.0	5.0	1.0	35	3-4
OP305SL ⁽¹⁾	Pill, lensed	14.0	—	5.0	1.0	35	3-4
OP505A OP505B OP505C OP505D OP505W	Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1	4.30 2.15 1.10 0.55 0.10	5.95 3.00 —	5.0 5.0 5.0 5.0 5.0	0.50 0.50 0.50 0.50 0.75	18 18 18 18 90	3-6 3-6 3-6 3-6 3-8
OP506A OP506B OP506C OP506D OP506W	Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1 Plastic T-1	4.30 2.15 1.10 0.55 0.10	5.95 3.00 —	5.0 5.0 5.0 5.0 5.0	0.50 0.50 0.50 0.50 0.75	18 18 18 18 90	3-10 3-10 3-10 3-10 3-12
OP508FA	Plastic end-looker	2.70		5.0	5.0	120	3-14
OP508FB	Plastic end-looker	0.65	5.10	5.0	5.0	120	3-14
OP508FC	Plastic end-looker	0.34		5.0	5.0	120	3-14
OP509A	Plastic end-looker	5.7		5.0	5.0	50	3-16
OP509B	Plastic end-looker	1.4	10.6	5.0	5.0	50	3-16
OP509C	Plastic end-looker	0.7		5.0	5.0	50	3-16
OP535A ⁽¹⁾	Plastic T-1	10.5		5.0	0.13	18	3-18
OP535B	Plastic T-1	3.5	32.0	5.0	0.13	18	3-18
OP535C	Plastic T-1	1.5		5.0	0.13	18	3-18

Wavelength at peak emission is GaAs = 935nm, GaAlAs = 890nm Consult product catalog for full test and electrical specifications

⁽¹⁾ Photodarlington
(2) Photodiode
All others are phototransistors
Part numbers with "SL" suffix are tested using Tungsten light source @ 2870K
All others are tested with an infrared LED light source

Photosensors (cont)

Part No.	Case Style		Current) (mA)		Test nditions	Beam Angle	Page No.
		Min	Max		E _e (mW/cm ²)	(Deg.)	
OP538FA ⁽¹⁾ OP538FB ⁽¹⁾ OP538FC ⁽¹⁾	Plastic end-looker Plastic end-looker Plastic end-looker	6.8 2.3 1.1	 20.5 	5.0 5.0 5.0	0.50 0.50 0.50	120 120 120	3-20 3-20 3-20
OP550A OP550B OP550C OP550D	Plastic lateral Plastic lateral Plastic lateral Plastic lateral	2.55 1.30 0.25 0.25	4.70 2.40	5.0 5.0 5.0 5.0	1.0 1.0 1.0 1.0	60 60 60 60	3-22 3-22 3-22 3-22
OP555A OP555B OP555C OP555D	Plastic lateral Plastic lateral Plastic lateral Plastic lateral	2.55 1.30 0.25 0.25	 4.70 2.40	5.0 5.0 5.0 5.0	1.0 1.0 1.0 1.0	60 60 60	3-24 3-24 3-24 3-24
OP560A ⁽¹⁾ OP560B ⁽¹⁾ OP560C ⁽¹⁾	Plastic lateral Plastic lateral Plastic lateral	6.6 3.3 1.1	9.8 —	2.0 2.0 2.0	0.1 0.1 0.1	60 60 60	3-26 3-26 3-26
OP565A ⁽¹⁾ OP565B ⁽¹⁾ OP565C ⁽¹⁾	Plastic lateral Plastic lateral Plastic lateral	6.6 3.3 1.1	9.8	2.0 2.0 2.0	0.1 0.1 0.1	60 60 60	3-28 3-28 3-28
OP593A OP593B OP593C	Plastic TO-18 Plastic TO-18 Plastic TO-18	3.0 2.0 1.0	<u>4</u> .0	5.0 5.0 5.0	1.7 1.7 1.7	130 130 130	3-30 3-30 3-30
OP598A OP598B OP598C	Plastic TO-18 Plastic TO-18 Plastic TO-18	7.5 5.0 2.5	10.0 —	5.0 5.0 5.0	1.7 1.7 1.7	25 25 25	3-30 3-30 3-30
OP599A OP599B OP599C OP599D	Plastic T 1 3/4 Plastic T 1 3/4 Plastic T 1 3/4 Plastic T 1 3/4	2.35 1.20 0.40 0.20	3.85 1.95	5.0 5.0 5.0 5.0	0.25 0.25 0.25 0.25	20 20 20 20	3-34 3-34 3-34 3-34
OP600A OP600B OP600C	Pill, lensed Pill, lensed Pill, lensed	1.2 0.6 0.3	 1.8 	5.0 5.0 5.0	2.5 2.5 2.5	35 35 35	3-36 3-36 3-36
OP641SL OP642SL OP643SL OP644SL	Pill, lensed Pill, lensed Pill, lensed Pill, lensed	0.5 2.0 4.0 7.0	3.0 5.0 8.0 22.0	5.0 5.0 5.0 5.0	20.0 20.0 20.0 20.0	35 35 35 35	3-38 3-38 3-38 3-38
OP800A OP800B OP800C OP800D OP800SL OP800WSL	TO-18, lensed TO-18, lensed TO-18, lensed TO-18, lensed TO-18, lensed TO-18	3.60 1.80 0.90 0.45 0.5 0.3	5.40 3.60 — —	5.0 5.0 5.0 5.0 5.0 5.0	0.5 0.5 0.5 0.5 5.0 5.0	25 25 25 25 25 25 75	3-40 3-40 3-40 3-40 3-42 3-44
OP801SL OP801WSL OP802SL OP802WSL	TO-18, lensed TO-18 TO-18, lensed TO-18	0.5 0.5 2.0 2.5	3.0 3.0 5.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	25 75 25 75	3-42 3-44 3-42 3-44

⁽¹⁾ Photodarlington
(2) Photodiode
All others are phototransistors
Part numbers with "SL" suffix are tested using Tungsten light source @ 2870K
All others are tested with an infrared LED light source

Photosensors (cont)

Beam	Page		
Angle	No.		
	i		

Part No.	Case Style	_	Light Current Ic(ON) (mA)		Test Conditions		Page No.
		Min	Max	VCE	E _e (mW/cm ²)	(Deg.)	
OP803SL	TO-18, lensed	4.0	8.0	5.0	5.0	25	3-42
OP804SL	TO-18, lensed	7.0	22.0	5.0	5.0	25	3-42
OP805SL	TO-18, lensed	15.0		5.0	5.0	25	3-42
OP830SL ⁽¹⁾	TO-18, lensed	15.0		5.0	0.5	25	3-46
OP830WSL ⁽¹⁾	TO-18	4.0	_	5.0	0.5	75	3-48
OP900SL(2)	Pill, lensed	8.0		10.0	20.0	35	3-50
OP913SL ⁽²⁾	TO-5, lensed	0.12		5.0	5.0	20	3-52
OP913WSL ⁽²⁾	TO-5	0.04		5.0	5.0	60	3-52

Photologic[™] Sensors

Part	Case P	ositive Th	reshold Irradiance*	Output	Page
No.	Style	E _e T(+)	(mW/cm ²)	Circuit	No.
		Min	Max		
OPL550	Plastic lateral	0.25	2.4	Totem-Pole Buffer	4-4
OPL550A	Plastic lateral	0.25	1.4	Totem-Pole Buffer	4-4
OPL550B	Plastic lateral	0.65	1.9	Totem-Pole Buffer	4-4
OPL550-OC	Plastic lateral	0.25	2.4	Open-Collector Buffer	4-4
OPL550-OCA	Plastic lateral	0.25	1.4	Open-Collector Buffer	4-4
OPL550-OCB	Plastic lateral	0.65	1.9	Open-Collector Buffer	4-4
OPL551	Plastic lateral	0.25	2.4	Totem-Pole Inverter	4-4
OPL551A	Plastic lateral	0.25	1.4	Totem-Pole Inverter	4-4
OPL551B	Plastic lateral	0.65	1.9	Totem-Pole Inverter	4-4
OPL551-OC	Plastic lateral	0.25	2.4	Open-Collector Inverter	4-4
OPL551-OCA	Plastic lateral	0.25	1.4	Open-Collector Inverter	4-4
OPL551-OCB	Plastic lateral	0.65	1.9	Open-Collector Inverter	4-4
OPL560	Plastic lateral	0.09	0.55	Totem-Pole Buffer	4-8
OPL560A	Plastic lateral	0.09	0.36	Totem-Pole Buffer	4-8
OPL560B	Plastic lateral	0.18	0.55	Totem-Pole Buffer	4-8
OPL560-OC	Plastic lateral	0.09	0.55	Open-Collector Buffer	4-8
OPL560-OCA	Plastic lateral	0.09	0.36	Open-Collector Buffer	4-8
OPL560-OCB	Plastic lateral	0.18	0.55	Open-Collector Buffer	4-8
OPL561	Plastic lateral	0.09	0.55	Totem-Pole Inverter	4-8
OPL561A	Plastic lateral	0.09	0.36	Totem-Pole Inverter	4-8
OPL561B	Plastic lateral	0.18	0.55	Totem-Pole Inverter	4-8
OPL561-OC	Plastic lateral	0.09	0.55	Open-Collector Inverter	4-8
OPL561-OCA	Plastic lateral	0.09	0.36	Open-Collector Inverter	4-8
OPL561-OCB	Plastic lateral	0.18	0.55	Open-Collector Inverter	4-8
OPL562	Plastic lateral	0.025		Totem-Pole Buffer	4-8
OPL562A	Plastic lateral	0.025		Totem-Pole Buffer	4-8
OPL562B	Plastic lateral	0.070	0.23	Totem-Pole Buffer	4-8

^{*} $\lambda_i = 935 \text{nm}$ Note: The OPL560 & OPL810 series include a voltage regulator allowing operating voltages from 4.5 to 16.0 volts.

⁽¹⁾ Photodarlington
(2) Photodiode
All others are phototransistors
Part numbers with "SL" suffix are tested using Tungsten light source @ 2870K
All others are tested with an infrared LED light source

Part No.	Case P Style	Positive Thresi E _e T(+) (n Min	hold Irradiance* nW/cm ²) Max	Output Circuit	Page No.	
OPL562-OC	Plastic lateral	0.025	0.23	Open-Collector Buffer	4-8	
OPL562-OCA	Plastic lateral	0.025	0.14	Open-Collector Buffer	4-8	
OPL562-OCB	Plastic lateral	0.070	0.23	Open-Collector Buffer	4-8	
OPL563 OPL563A OPL563B	Plastic lateral Plastic lateral Plastic lateral	0.025 0.025 0.070	0.23 0.14 0.23	Totem-Pole Inverter Totem-Pole Inverter Totem-Pole Inverter	4-8 4-8 4-8	
OPL563-OC	Plastic lateral	0.025	0.23	Open-Collector Inverter	4-8	
OPL563-OCA	Plastic lateral	0.025	0.14	Open-Collector Inverter	4-8	
OPL563-OCB	Plastic lateral	0.070	0.23	Open-Collector Inverter	4-8	
OPL583	Plastic lateral	0.050	0.25	Dual Channel	4-12	
OPL800	TO-18, lensed	0.05	0.60	Totem-Pole Buffer	4-16	
OPL800-OC	TO-18, lensed	0.05	0.60	Open-Collector Buffer	4-16	
OPL801	TO-18, lensed	0.05	0.60	Totem-Pole Inverter	4-16	
OPL801-OC	TO-18, lensed	0.05	0.60	Open-Collector Inverter	4-16	
OPL810	TO-18, lensed	0.015	0.20	Totem-Pole Buffer	4-20	
OPL810-OC	TO-18, lensed	0.015	0.20	Open-Collector Buffer	4-20	
OPL811	TO-18, lensed	0.015	0.20	Totem-Pole Inverter	4-20	
OPL811-OC	TO-18, lensed	0.015	0.20	Open-Collector Inverter	4-20	
OPL812	TO-18, lensed	0.005	0.10	Totem-Pole Buffer	4-20	11.5
OPL812-OC	TO-18, lensed	0.005	0.10	Open-Collector Buffer	4-20	
OPL813	TO-18, lensed	0.005	0.10	Totem-Pole Inverter	4-20	
OPL813-OC	TO-18, lensed	0.005	0.10	Open-Collector Inverter	4-20	

^{*} λ_i = 935nm Note: The OPL560 & OPL810 series include a voltage regulator allowing operating voltages from 4.5 to 16.0 volts.

Emitter and Photosensor Matched Pairs

Part	Case	Light (Current		nditions	Page No.	
No.	Style		N) mA	VCE	lF		
		Min	Max		(mA)		
OPS665	Plastic T-1	0.5		5.0	20	5-2	
OPS666	Plastic T-1	1.0	10.0	5.0	20	5-2	
OPS667	Plastic T-1	5.0	**************************************	5.0	20	5-2	
OPS690	Plastic lateral	100*		10.0	20	5-4	
OPS691	Plastic lateral	500*		10.0	20	5-4	
OPS692	Plastic lateral	1.0		10.0	20	5-4	
OPS693	Plastic lateral	2.0		10.0	20	5-4	
OPS695	Plastic lateral	100*		10.0	20	5-6	
OPS696	Plastic lateral	500*		10.0	20	5-6	
OPS697	Plastic lateral	1.0	-	10.0	20	5-6	
OPS698	Plastic lateral	2.0	*****	10.0	20	5-6	

Optically Coupled Isolators

optiouily							
Part No.	Case Style	C	CTR %	VCE	l _F mA	Isolation kVDC	Page No.
	,	Min	Max				
OPI110	Plastic Axial	12.5		5.0	10.0	10.0	6-4
OPI110A	Plastic Axial	25.0		5.0	10.0	10.0	6-4
OPI110B	Plastic Axial	50.0	125	5.0	10.0	10.0	6-4
OPI110C	Plastic Axial	100.0		5.0	10.0	10.0	6-4
OPI113	Plastic Axial	50.0	-	2.0	5.0	10.0	6-4
OPI120	Hermetic Axial	20.0		5.0	10.0	15.0	6-6
OPI123	Hermetic Axial	50.0	_	2.0	10.0	15.0	6-6
OPI125	Hermetic Axial	Buffer, 7	Totem Pole			15.0	6-8
OPI126	Hermetic Axial	Buffer, C	Open-Collector			15.0	6-8
OPI127	Hermetic Axial	Inverter,	Totem-Pole			15.0	6-8
OPI128	Hermetic Axial	Inverter,	Open-Collecto	r		15.0	6-8
OPI1264	Plastic Axial	12.5		5.0	10.0	10.0	6-12
OPI1264A	Plastic Axial	25.0		5.0	10.0	10.0	6-12
OPI1264B	Plastic Axial	50.0	125	5.0	10.0	10.0	6-12
OPI1264C	Plastic Axial	100.0		5.0	10.0	10.0	6-12
OPI1266	Custom Dip	High Sp	eed Photologic			16.0	6-14
OPI150	Hermetic Axial	10.0	-	5.0	10.0	50.0	6-16
OPI153	Hermetic Axial	25.0		5.0	20.0	50.0	6-16
OPI7002	Custom Dip	20.0		5.0	10.0	6.0	6-18
OPI7010	Custom Dip	100.0		5.0	10.0	6.0	6-18
OP17320	Custom Dip	200.0	_	5.0	5.0	6.0	6-20
OPI7340	Custom Dip	400.0		5.0	5.0	6.0	6-20

Fiber Optics PIN Photodiodes & Receivers

Part No.	Case Style	Flux Resp (A/V	•	Output Rise Time (ns)	Page No.
		Min	Тур	Тур	
OPF2404	Plastic Dip	5.1 ⁽¹⁾	7.0	14.0	8-6
OPF2406	Plastic Dip	5.0 ⁽¹⁾	7.0	3.3	8-8
OPF2414	Plastic Dip	5.1 ⁽¹⁾	7.0	14.0	8-6
OPF2416	Plastic Dip	5.0 ⁽¹⁾	7.0	3.3	8-8
OPF420	Hermetic TO-46	0.45	0.55	6.0	8-46
OPF421	SMA	0.45	0.55	6.0	8-48
OPF422	ST ⁽²⁾	0.45	0.55	6.0	8-50
OPF430	Hermetic TO-46	0.45	0.55	1.0	8-52
OPF431	SMA	0.45	0.55	1.0	8-54
OPF432	ST ⁽²⁾	0.45	0.55	1.0	8-56
OPF470	Plastic TO-46	0.45	0.55	6.0	8-58
OPF471	SMA	0.45	0.55	6.0	8-60
OPF472	ST ⁽²⁾	0.45	0.55	6.0	8-62
OPF480	Plastic TO-46	0.45	0.55	1.0	8-64
OPF481	SMA	0.45	0.55	1.0	8-66
OPF482	ST ⁽²⁾	0.45	0.55	1.0	8-68
OPF540	Plastic TO-46	5.1 ⁽¹⁾	7.0	14.0	8-70
OPF541	SMA	5.1 ⁽¹⁾	7.0	14.0	8-72
OPF542	ST ⁽²⁾	5.1 ⁽¹⁾	7.0	14.0	8-74

(1) mV/μW

Fiber Optics (850nm) Light Emitting Diodes

Part No.	Case Style		Output ⁽³⁾ er (μW)	Tes	t Conditions I _F (mA)	Output Rise Time (ns)	Page No.
		Min	Тур		., (,	Тур	
OPF1402	Plastic Dip	-19.0 dBm	-16.0 dBm	60	(62.5μm core)	4.0	8-4
OPF1404	Plastic Dip	-15.0 dBm	-12.0 dBm	60	(62.5μm core)	4.0	8-4
OPF1412	Plastic Dip	-19.0 dBm	-16.0 dBm	60	(62.5μm core)	4.0	8-4
OPF1414	Plastic Dip	-15.0 dBm	-12.0 dBm	60	(62.5μm core)	4.0	8-4
OPF320A	Hermetic TO-46	15.0	19.0	100	(50 μm core)	6.0	8-10
OPF320B	Hermetic TO-46	10.0	12.5	100	(50 μm core)	6.0	8-10
OPF320C	Hermetic TO-46	5.0	7.5	100	(50 μm core)	6.0	8-10
OPF321A	SMA	15.0	19.0	100	(50 μm core)	6.0	8-12
OPF321B	SMA	10.0	12.5	100	(50 μm core)	6.0	8-12
OPF321C	SMA	5.0	7.5	100	(50 μm core)	6.0	8-12
OPF322A	ST ⁽²⁾	15.0	19.0	100	(50 μm core)	6.0	8-14
OPF322B	ST ⁽²⁾	10.0	12.5	100	(50 μm core)	6.0	8-14
OPF322C	ST ⁽²⁾	5.0	7.5	100	(50 μm core)	6.0	8-14
OPF340A	Hermetic TO-46	20.0	25.0	100	(50 μm core)	4.5	8-16
OPF340B	Hermetic TO-46	15.0	18.0	100	(50 μm core)	4.5	8-16
OPF340C	Hermetic TO-46	10.0	12.5	100	(50 μm core)	4.5	8-16
OPF340D	Hermetic TO-46	5.0	7.5	100	(50 μm core)	4.5	8-16
OPF341A	SMA	20.0	25.0	100	(50 μm core)	4.5	8-18
OPF341B	SMA	15.0	18.0	100	(50 μm core)	4.5	8-18
OPF341C	SMA	10.0	12.5	100	(50 μm core)	4.5	8-18
OPF341D	SMA	5.0	7.5	100	(50 μm core)	4.5	8-18
OPF342A	ST ⁽²⁾	20.0	25.0	100	(50 μm core)	4.5	8-20
OPF342B	ST ⁽²⁾	15.0	18.0	100	(50 μm core)	4.5	8-20
OPF342C	ST ⁽²⁾	10.0	12.5	100	(50 μm core)	4.5	8-20
OPF342D	ST ⁽²⁾	5.0	7.5	100	(50 μm core)	4.5	8-20
OPF345A	Hermetic TO-46	20.0	25.0	100	(50 μm core)	3.5	8-22
OPF345B	Hermetic TO-46	15.0	18.0	100	(50 μm core)	3.5	8-22
OPF345C	Hermetic TO-46	10.0	12.5	100	(50 μm core)	3.5	8-22
OPF345D	Hermetic TO-46	5.0	7.5	100	(50 μm core)	3.5	8-22
OPF346A	SMA	20.0	25.0	100	(50 μm core)	3.5	8-24
OPF346B	SMA	15.0	18.0	100	(50 μm core)	3.5	8-24
OPF346C	SMA	10.0	12.5	100	(50 μm core)	3.5	8-24
OPF346D	SMA	5.0	7.5	100	(50 μm core)	3.5	8-24
OPF347A	ST ⁽²⁾	20.0	25.0	100	(50 μm core)	3.5	8-26
OPF347B	ST ⁽²⁾	15.0	18.0	100	(50 μm core)	3.5	8-26
OPF347C	ST ⁽²⁾	10.0	12.5	100	(50 μm core)	3.5	8-26
OPF347D	ST ⁽²⁾	5.0	7.5	100	(50 μm core)	3.5	8-26
OPF370A OPF370B OPF370C OPF370D	Plastic TO-46 Plastic TO-46 Plastic TO-46 Plastic TO-46	25.0 15.0 10.0 5.0	29.0 19.0 12.5 7.5	100 100 100 100	(50 μm core) (50 μm core) (50 μm core) (50 μm core)	6.0 6.0 6.0	8-28 8-28 8-28 8-28

⁽²⁾ ST is a registered trademark of AT&T (3) Fiber Optic components tested with graded index fiber $50\mu M$ core: NA = 0.20

Fiber Optics (850nm) Light Emitting Diodes (cont)

Part	Case		nt Output ⁽³⁾	Test	t Conditions	Output Rise	Page
No.	Style		wer (μW)		IF (mA)	Time (ns)	No.
		Min	Тур			Тур	
OPF371A	SMA	25.0	29.0	100	(50 µm core)	6.0	8-30
OPF371B	SMA	15.0	19.0	100	(50 μm core)	6.0	8-30
OPF371C	SMA	10.0	12.5	100	(50 μm core)	6.0	8-30
OPF371D	SMA	5.0	7.5	100	(50 μm core)	6.0	8-30
OPF372A	ST ⁽²⁾	25.0	29.0	100	(50 µm core)	6.0	8-32
OPF372B	ST ⁽²⁾	15.0	19.0	100	(50 µm core)	6.0	8-32
OPF372C	ST ⁽²⁾	10.0	12.5	100	(50 μm core)	6.0	8-32
OPF372D	ST ⁽²⁾	5.0	7.5	100	(50 µm core)	6.0	8-32
OPF390A	Plastic TO-46	20.0	25.0	100	(50 µm core)	4.5	8-34
OPF390B	Plastic TO-46	15.0	18.0	100	(50 µm core)	4.5	8-34
OPF390C	Plastic TO-46	10.0	12.5	100	(50 μm core)	4.5	8-34
OPF390D	Plastic TO-46	5.0	7.5	100	(50 µm core)	4.5	8-34
OPF391A	SMA	20.0	25.0	100	(50 µm core)	4.5	8-36
OPF391B	SMA	15.0	18.0	100	(50 μm core)	4.5	8-36
OPF391C	SMA	10.0	12.5	100	(50 µm core)	4.5	8-36
OPF391D	SMA	5.0	7.5	100	(50 μm core)	4.5	8-36
OPF392A	ST ⁽²⁾	20.0	25.0	100	(50 µm core)	4.5	8-38
OPF392B	ST ⁽²⁾	15.0	18.0	100	(50 µm core)	4.5	8-38
OPF392C	ST ⁽²⁾	10.0	12.5	100	(50 µm core)	4.5	8-38
OPF392D	ST ⁽²⁾	5.0	7.5	100	(50 µm core)	4.5	8-38
OPF395A	Plastic TO-46	20.0	25.0	100	(50 µm core)	3.5	8-40
OPF395B	Plastic TO-46	15.0	18.0	100	(50 µm core)	3.5	8-40
OPF395C	Plastic TO-46	10.0	12.5	100	(50 µm core)	3.5	8-40
OPF395D	Plastic TO-46	5.0	7.5	100	(50 µm core)	3.5	8-40
OPF396A	SMA	20.0	25.0	100	(50 µm core)	3.5	8-42
OPF396B	SMA	15.0	18.0	100	(50 µm core)	3.5	8-42
OPF396C	SMA	10.0	12.5	100	(50 μm core)	3.5	8-42
OPF396D	SMA	5.0	7.5	100	(50 µm core)	3.5	8-42
OPF397A	ST ⁽²⁾	20.0	25.0	100	(50 µm core)	3.5	8-44
OPF397B	ST ⁽²⁾	15.0	18.0	100	(50 µm core)	3.5	8-44
OPF397C	ST ⁽²⁾	10.0	12.5	100	(50 µm core)	3.5	8-44
	ST ⁽²⁾	5.0	7.5	100	(50 µm core)	3.5	8-44

⁽²⁾ ST is a registered trademark of AT&T (3) Fiber Optic components tested with graded index fiber $50\mu M$ core: NA = 0.20

Hybrid Assemblies Infrared Emitting Diodes

Part No.	Туре	Output Power	Test Conditions I _F (mA)	Case Style	Page No.
OPR5200	GaAlAs	350 μW (min)	20	Surface Mount	9-22

Phototransistor

Part	Light	Test Co	onditions	Case	Page	
No.	Current	V _{CE} (V)	E _e (mW/cm ²)	Style	No.	
OPR5500	36 μA (min)	5	.15	Surface Mount	9-23	

Photodiodes

Part No.	Responsivity (A/W)	Test Conditions ϕ_e (μ W)	Size (mm ²)	Case Style	Page No.
OPR2100	0.45	10	6×2.9	Surface Mount	9-16
OPR5910	0.45	10	0.73	Surface Mount	9-24
OPR5911	0.45	10	1.0	Surface Mount	9-25
OPR5913	0.40	10	25	Surface Mount	9-26
OPR5915	0.45	10	7.3	Surface Mount	9-27
OPR5925	0.45	10	4×0.64	Surface Mount	9-28
OPR5929	0.45	10	6×2.9	Surface Mount	9-29

Optical Comparator Arrays

Part No.	Icc (max) (mA)	Channels	Case Style	Page No.
OPR5001B	7	1	Surface Mount	9-17
OPR5002B	14	2	Surface Mount	9-17
OPR5003B	20	3	Surface Mount	9-17

Reflective Object Sensor

Part	Ic(ON)	Test Conditions		Case	Page
No.	` '	I _F (mA)	V _{CE} (V)	Style	No.
OPR5005	100 μA (min)	20	5	Surface Mount	9-20

Hallogic™ Hall Effect Sensors

Part No.	Op	erate P Gauss		Re	ease Point Hysteresis Gauss Gauss			Case Style	Page No.		
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	-	
OH090U(1)	0	90	180	-100	65	100	10	25	100	Plastic Lateral	10-4
OH180U ⁽¹⁾	70	180	290	0	140	230	20	40	120	Plastic Lateral	10-6
OH360U ⁽¹⁾	235	300	465	120	235	325	30	65	200	Plastic Lateral	10-8
OHN3013U ⁽¹⁾		300	450	25	235		30	65		Plastic Lateral	10-10
OHN3019U(1)		300	500	125	235		50	65		Plastic Lateral	10-12
OHS3019U ⁽¹⁾		300	500	125	235		50	65		Plastic Lateral	10-12
OHN3020U ⁽¹⁾		230	350	50	180		20	50		Plastic Lateral	10-14
OHS3020U ⁽¹⁾		230	350	50	180		20	50		Plastic Lateral	10-14

(1) $T_A = 25^{\circ} C$

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Hallogic™ Hall Effect Sensors (cont)

				(, , , , , , , , , , , , , , , , , , ,	-,						
Part No.	Ор	perate Point Release Point Hysteresis Gauss Gauss Gauss			Case Style	Page No.					
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		
OHN3030U ⁽¹⁾ OHS3030U ⁽¹⁾ OHN3040U ⁽¹⁾ OHS3040U ⁽¹⁾		205 205 150 150	250 250 200 200	0 0 50 50	160 160 115 115		20 20 20 20	45 45 35 35		Plastic Lateral Plastic Lateral Plastic Lateral Plastic Lateral	10-16 10-16 10-18 10-18
OHN3075U ⁽¹⁾ OHS3075U ⁽¹⁾ OHN3113U ⁽²⁾	50 50	100 100	250 250 510	-250 -250 20	-100 -100	-50 -50	100 100 10	200 200	500 500	Plastic Lateral Plastic Lateral Plastic Lateral	10-20 10-20 10-22
OHN3119U ⁽²⁾ OHS3119U ⁽³⁾ OHN3120U ⁽²⁾ OHS3120U ⁽³⁾	100 45 70 35		545 575 425 450	50 25 50 25		495 555 405 430	50 20 20 20			Plastic Lateral Plastic Lateral Plastic Lateral Plastic Lateral	10-24 10-24 10-26 10-26
OHN3130U ⁽²⁾ OHS3130U ⁽³⁾ OHN3131U ⁽²⁾ OHS3131U ⁽³⁾	-75 -115		175 200 95 135	-175 -200 -95 -135		85 125	20 20 10 10			Plastic Lateral Plastic Lateral Plastic Lateral Plastic Lateral	10-28 10-28 10-30 10-30
OHN3140U ⁽²⁾ OHS3140U ⁽³⁾	45 45		260 270	25 25		240 250	20 20			Plastic Lateral Plastic Lateral	10-32 10-32
OHN3175U ⁽²⁾ OHS3175U ⁽³⁾ OHN3177U ⁽²⁾ OHS3177U ⁽³⁾	15 10 25 25		180 260 150 200	-180 -10 -150 -200		-15 -260 -25 -25	80 60 50 50			Plastic Lateral Plastic Lateral Plastic Lateral Plastic Lateral	10-34 10-34 10-36 10-36

Operate Point at Temperature, TA

Note:

- (1) $T_A = 25^{\circ}C$ (2) $T_A = -20^{\circ}C$ to $85^{\circ}C$ (3) $T_A = -40^{\circ}C$ to $125^{\circ}C$

Reflective Object Sensors

Part	Output	Coupled Light	To	est Condition	ons	Page
No.	Туре	Current Ic(ON) Min*	l _F (mA)	VCE (V)	d (inch)	No.
OPB606A	PT	500 μΑ	20	5.0	0.110	11-4
OPB606B	PT	350 μΑ	20	5.0	0.110	11-4
OPB606C	PT	200 μΑ	20	5.0	0.110	11-4
OPB607A	PD	25 mA	20	5.0	0.110	11-6
OPB607B	PD	17 mA	20	5.0	0.110	11-6
OPB607C	PD	10 mA	20	5.0	0.110	11-6
OPB700(AL)	PT	25 μΑ	40	5.0	0.200	11-8
OPB701(AL)	PD	2.0 mA	40	5.0	0.200	11-10
OPB703(W)	PT	200 μΑ	40	5.0	0.150	11-12
OPB704(W)	PT	200 μA	40	5.0	0.150	11-12
OPB705(W)	PT	100 μΑ	40	5.0	0.150	11-12
OPB706A	PT	500 μA	20	5.0	0.050	11-16
OPB706B	PT	350 μA	20	5.0	0.050	11-16
OPB706C	PT	200 μA	20	5.0	0.050	11-16

d = distance from the assembly face to the reflective surface * Test surface is an Eastman Kodak neutral white test card

Optek Technology, Inc.

1215 W. Crosby Road

Reflective Object Sensors (cont)

Part	Output	Coupled Light	Te	est Condition	ons	Page
No. T	Type	Current I _{C(ON)} Min*	l _F (mA)	V _{CE} (V)	d (inch)	No.
OPB707A	PD	25 mA	20	5.0	0.050	11-18
OPB707B	PD	17 mA	20	5.0	0.050	11-18
OPB707C	PD	10 mA	20	5.0	0.050	11-18
OPB708	PT	10 μΑ	40	5.0	0.150	11-20
OPB709	PD	1.0 mA	40	5.0	0.150	11-20
OPB710(F)	PT	150 μΑ	50	5.0	0.250	11-24
OPB711	PT	350 μA	20	5.0	0.080	11-26
OPB712	PD	20 mA	20	5.0	0.080	11-28
OPB730(F)	PD	1.0 mA	50	5.0	0.250	11-30
OPB740(W)	PT	50 μΑ	40	5.0	0.150	11-32
OPB741(W)	PT	50 μ A	40	5.0	0.150	11-32
OPB742(W)	PT	10 μΑ	40	5.0	0.150	11-32
OPB743(W)	PT	200 μΑ	40	5.0	0.150	11-32
OPB744(W)	PT	200 μA	40	5.0	0.150	11-32
OPB745(W)	PD	1.0 mA	40	5.0	0.150	11-36
OPB750N	PT	500 μΑ	30	5.0	0.080	11-40
OPB750T	PT	500 μΑ	30	5.0	0.080	11-42
OPB755N	PT	500 μΑ	30	5.0	0.080	11-44
OPB755T	PT	500 μA	30	5.0	0.080	11-46

Reflective Object Sensors - Photologic™

Part No.	Output Type	Electrical Output	Page No.	
OPB760N Series	logic	See Below	11-48	
OPB760T Series	logic	See Below	11-51	
OPB770N Series	logic	See Below	11-54	
OPB770T Series	logic	See Below	11-57	

Part Number Guide

d = distance from the assembly face to the reflective surface * Test surface is an Eastman Kodak neutral white test card

Slotted Optical Switches - Phototransistor

sioned Optica	ii Swifches -	FIIULULIA	1919101			
Part (No.	Coupled Light Current IC(ON) Min	Test Cod IF (mA)	nditions VCE (V)	Slot Width/ Lead Spacing (Inches)	Page No.	
CNY36	200 μA	20	10.0	0.120/0.220	12-4	
OPB610	1 mA	5	5.0	0.15/0.275	12-10	
OPB620	1 mA	5	5.0	0.19/0.320	12-16	
OPB660N	600 μA	10	5.0	0.125/0.320	12-22	
OPB660T	600 μA	10	5.0	0.125/0.320	12-22	
OPB804	500 μΑ	20	10.0	0.155/0.300	12-54	
OPB806	0.40 mA	20	0.5	0.125/NA	12-56	
OPB818	100 μΑ	20	10.0	0.200/0.400	12-58	
OPB820	500 μΑ	20	5.0	0.080/0.275	12-60	
OPB820S3	60 μΑ	20	5.0	0.080/0.275	12-60	
OPB820S5	300 μΑ	20	5.0	0.080/0.275	12-60	
OPB820S10	400 μΑ	20	5.0	0.080/0.275	12-60	
OPB821	500 μΑ	20	5.0	0.080/Wire	12-62	
OPB821S3	60 μΑ	20	5.0	0.080/Wire	12-62	
OPB821S5	300 μΑ	20	5.0	0.080/Wire	12-62	
OPB821S10	400 μΑ	20	5.0	0.080/Wire	12-62	
OPB822S ⁽²⁾	250 μΑ	20	10.0	0.090/0.300	12-64	
OPB822SD ⁽²⁾	100 μΑ	20	10.0	0.090/0.300	12-64	
OPB825(A)(B)	500 μΑ	20	10.0	0.160/0.300	12-66	
OPB826S ⁽³⁾	250 μΑ	20	10.0	0.100/0.740	12-68	
OPB826SD ⁽³⁾	100 μΑ	20	10.0	0.100/0.740	12-68	
OPB827A(B)(C)(D) OPB828A(B)(C)(D) OPB829A(B)(C)(D) OPB844A(B) OPB845A(B) OPB847 OPB848	1.8 mA	20 20 20 20 20 20 20	0.6 0.6 0.6 0.6 0.6 10.0 10.0	0.125/0.300 0.125/0.220 0.125/Wire 0.125/0.300 0.125/0.300 0.100/0.300 0.100/0.300	12-70 12-72 12-74 12-84 12-86 12-88 12-88	
OPB852A1 OPB852A2 OPB852A3 OPB853A1 ⁽¹⁾ OPB853A2 ⁽¹⁾ OPB853A3 ⁽¹⁾	1.0 mA 2.0 mA 4.0 mA 2.5 mA 5.0 mA 10.0 mA	20 20 20 5 5	5.0 5.0 5.0 1.5 1.5	0.125/0.290 0.125/0.290 0.125/0.290 0.125/0.290 0.125/0.290 0.125/0.290	12-92 12-92 12-92 12-94 12-94 12-94	
OPB854A1	3.0 mA	16	1.0	0.100/0.300	12-96	
OPB854A2	3.0 mA	16	1.0	0.100/0.300	12-98	
OPB854A3	3.0 mA	16	1.0	0.100/0.300	12-100	
OPB854B1	1.0 mA	20	10.0	0.100/0.300	12-96	
OPB854B2	1.0 mA	20	10.0	0.100/0.300	12-98	
OPB854B3	1.0 mA	20	10.0	0.100/0.300	12-100	
OPB855	500 μA	20	5.0	0.205/0.380	12-102	
OPB856	1.8 mA	20	5.0	Variable	12-104	

1.5 mA

250 μΑ

OPB857

OPB859

20

20

0.15/Wire

0.125/0.220

12-106

12-108

10.0

10.0

⁽³⁾ Dual channel vertical

Slotted Optical Switches - Phototransistor

■ The state of th			
Part	Electrical	Slot Width/	Page
No.	Characteristics	Lead Spacing	No.
OPB800L/OPB810L Series	See Below	0.375/0.570	12-46
OPB800W/OPB810W Series	See Below	0.375/ NA	12-50
OPB830L/OPB840L Series	See Below	· 0.125/ *	12-76
OPB830W/OPB840W Series	See Below	0.125/ NA	12-80
OPB860/OPB870 Series	See Below	0.125/ *	12-110
OPB880/OPB890 Series	See Below	0.125/ NA	12-114

	Collector-Emitter Saturation Voltage	Max.	Test Conditions
VCE(SAT)	Parameter A	0.4V	$I_C = 400 \mu\text{A}, I_F = 20\text{mA}$
	Parameter B	0.4V	$I_C = 800 \mu\text{A}, I_F = 10\text{mA}$
	Parameter C	0.6V	$I_C = 1800 \mu\text{A}, I_F = 20\text{m}$
	On-State Collector Current	Min.	Test Conditions
IC(ON)	Parameter A	500μA	$V_{CE} = 10V, I_F = 20mA$
	Parameter B	1000μΑ	$V_{CE} = 5V$, $I_F = 10mA$
	Parameter C	1800μΑ	$V_{CE} = 0.6V$, $I_F = 20mA$

Part Number Guide

lead spacing 0.320" (8.13mm) lead spacing 0.220" (5.59mm)

1 = Electrical parameter B 6 = Electrical parameter B

lead spacing 0.320" (8.13mm) lead spacing 0.220" (5.59mm)

2 = Electrical parameter C 7 = Electrical parameter C lead spacing 0.320" (8.13mm) lead spacing 0.220" (5.59mm)

Wide gap switch: lead spacing is 0.570" (14.48mm) Electrical specifications 0,1&2

Slotted Optical Switches - Photologic™

Sibiled Optical Switches				
Part No.	Electrical Characteristics	Slot Width/ Lead Spacing (Inches)	Page No.	
OPB120A	Buffer Totem-Pole	0.080/0.275	12-6	
OPB120B	Buffer Totem-Pole	0.080/0.275	12-6	
OPB121A	Buffer Open-Collector	0.080/0.275	12-6	
OPB121B	Buffer Open-Collector	0.080/0.275	12-6	
OPB122A	Inverter Totem-Pole	0.080/0.275	12-6	
OPB122B	Inverter Totem-Pole	0.080/0.275	12-6	
OPB123A	Inverter Open-Collector	0.080/0.275	12-6	
OPB123B	Inverter Open-Collector	0.080/0.275	12-6	
OPB615	Buffer, 10K Ω	0.150/0.275	12-12	
OPB616	Buffer, Open-Collector	0.150/0.275	12-12	
OPB617	Inverter, 10K Ω	0.150/0.275	12-12	
OPB618	Inverter, Open-Collector	0.150/0.275	12-12	
OPB625	Buffer, 10K Ω	0.190/0.320	12-18	
OPB626	Buffer, Open-Collector	0.190/0.320	12-18	
OPB627	Inverter, 10K Ω	0.190/0.320	12-18	
OPB628	Inverter, Open-Collector	0.190/0.320	12-18	
OPB665N	Buffer, 10K Ω	0.125/0.320	12-26	
OPB665T	Buffer, 10K Ω	0.125/0.320	12-26	
OPB666N	Buffer, Open-Collector	0.125/0.320	12-26	
OPB666T	Buffer, Open-Collector	0.125/0.320	12-26	
OPB667N	Inverter, 10K Ω Inverter, 10K Ω Inverter, Open-Collector Inverter, Open-Collector	0.125/0.320	12-26	
OPB667T		0.125/0.320	12-26	
OPB668N		0.125/0.320	12-26	
OPB668T		0.125/0.320	12-26	
OPB900L/OPB910L Series	See Next Page	0.375/0.570	12-118	
OPB900W/OPB910W Series	See Next Page	0.375/NA	12-122	
OPB930/OPB940L Series	See Next Page	0.125/0.320	12-126	
OPB930W/OPB940W	See Next Page	0.125/NA	12-130	
OPB960/OPB970	See Next Page	0.125/0.320	12-134	
OPB980/OPB990	See Next Page	0.125/NA	12-140	

Part Number Guide

Optical Flag Switches

Part No.	Coupled Light Current Ic(ON) Min	Test Co IF (mA)	onditions V _{CE} (V)	Lead Spacing (Inches)	Page No.
OPB680	600 μΑ	10	5.0	0.275	12-32
OPB685 OPB686 OPB687 OPB688	logic logic logic logic	10 10 10 10	4.5-16.0 4.5-16.0 4.5-16.0 4.5-16.0	0.275 0.275 0.275 0.275	12-34 12-34 12-34 12-34
OPB690	600 μΑ	10	5.0	Connector	12-38
OPB695A(B)(C) OPB696A(B)(C) OPB697A(B)(C) OPB698A(B)(C)	logic logic logic logic	10 10 10 10	4.5-16.0 4.5-16.0 4.5-16.0 4.5-16.0	Connector Connector Connector Connector	12-40 12-40 12-40 12-40
OPB850	500 μ A	20	10.0	Wire	12-90

Hi-Rel Infrared Emitting Diodes

Part No.	Туре	Output Power	Test Conditions I _F (mA)	Case Style	Page No.	
OP223TX(TXV)	GaAlAs	1.00mW	50	Pill	13-44	
OP224TX(TXV)	GaAlAs	1.50mW	50	Pill	13-44	
OP235TX(TXV)	GaAlAs	1.5mW/cm ²	100	TO-46	13-48	
OP236TX(TXV)	GaAlAs	3.5mW/cm ²	100	TO-46	13-48	

Hi-Rel Photosensors

Part No.	Light Current	Test Conditions	Case Style	Page No.	
OP602TX(TXV)	2.0-5.0mA	$E_e = 20 \text{mW/cm}^2$, $V_{CE} = 5 \text{V}$	Pill	13-52	
OP603TX(TXV)	4.0-8.0mA	$E_e = 20 \text{mW/cm}^2$, $V_{CE} = 5 \text{V}$	Pill	13-52	
OP604TX(TXV)	7.0mA	$E_e = 20 \text{mW/cm}^2$, $V_{CE} = 5 \text{V}$	Pill	13-52	
OP803TX(TXV)	4.0-8.0mA	$E_e = 5 \text{mW/cm}^2$, $V_{CE} = 5 \text{V}$	TO-18	13-56	
OP804TX(TXV)	7.0-22.0mA	$E_e = 5 \text{mW/cm}^2$, $V_{CE} = 5 \text{V}$	TO-18	13-56	
OP805TX(TXV)	15.0mA	$E_e = 5 \text{mW/cm}^2$, $V_{CE} = 5 \text{V}$	TO-18	13-56	
OPL800TXV	Logic	Totem-pole	TO-18	13-80	

Hi-Rel Optical Isolators

Part No.	Isolation	Ic(on)	Test Conditions	Case Style	Page No.
3N243(TX)	1kV	1.5mA min	I _F = 10mA, V _{CE} = 10V	TO-72	13-4
3N244(TX)	1kV	3.0mA min	$I_F = 10mA$, $V_{CE} = 10V$	TO-72	13-4
3N245(TX)	1kV	6.0mA min	$I_F = 10mA$, $V_{CE} = 10V$	TO-72	13-4
3N261(TX)	1kV	0.5mA min	$I_F = 1 \text{mA}$, $V_{CE} = 5 \text{V}$	TO-72	13-10
3N262(TX)	1kV	1.0-5.0mA	$I_F = 1 \text{mA}, V_{CE} = 5 \text{V}$	TO-72	13-10
3N263(TX)	1kV	2.0-10.0mA	$I_F = 1 \text{mA}$, $V_{CE} = 5 \text{V}$	TO-72	13-10
4N22A(JANTX) (JANTXV)	1kV	2.5mA min	$I_F = 10mA$, $V_{CE} = 5V$	TO-78	13-16
4N22AU(JANTX) (JANTXV)	1kV	2.5mA min	$I_F = 10mA$, $V_{CE} = 5V$	SMD	13-22
4N23A(JANTX) (JANTXV)	1kV	6.0mA min	$I_F = 10mA$, $V_{CE} = 5V$	TO-78	13-16
4N23AU(JANTX) (JANTXV)	1kV	6.0mA min	$I_F = 10mA$, $V_{CE} = 5V$	SMD	13-22
4N24A(JANTX) (JANTXV)	1kV	10.0mA min	$I_F = 10mA$, $V_{CE} = 5V$	TO-78	13-16
4N24AU(JANTX) (JANTXV)	1kV	10.0mA min	$I_F = 10mA$, $V_{CE} = 5V$	SMD	13-22
4N47(JANTX)(JANTXV)	1kV	0.5mA min	I _F = 1.0mA, V _{CE} = 5V	TO-78	13-26
4N48(JANTX)(JANTXV)	1kV	1.0-5.0mA	$I_F = 1.0 \text{mA}, V_{CE} = 5 \text{V}$	TO-78	13-26
4N49(JANTX)(JANTXV)	1kV	2.0-10.0mA	$I_F = 1.0 \text{mA}, V_{CE} = 5 \text{V}$	TO-78	13-26
HCC135(TXV)	1kV	logic		SMD	13-30
HCC136(TXV)	1kV	logic		SMD	13-30
HCC240`	1kV	2.5mA min	$I_F = 10mA$, $V_{CE} = 5V$	SMD	13-32
HCC242	1kV	10.0mA min	$I_F = 10mA$, $V_{CE} = 5V$	SMD	13-32
HCC247	1kV	0.5mA min	$I_F = 1.0 \text{mA}, V_{CE} = 5 \text{V}$	SMD	13-34
HCC248	1kV	1.0-5.0mA	$I_F = 1.0 \text{mA}$, $V_{CE} = 5 \text{V}$	SMD	13-34
HCC249	1kV	2.0-10.0mA	$I_F = 1.0 \text{mA}, V_{CE} = 5 \text{V}$	SMD	13-34
HCC340	1.5kV	zero crossing triac		SMD	13-36
HCC640(TXV)	1.5kV	4.8mA min	$I_F = 1.6 \text{mA}, V_O = 0.4 \text{V}, V_{CC} = 4.5 \text{V}$	SMD	13-38
HDA140A	1.5kV	4.8mA min	$I_F = 1.6 \text{mA}, V_O = 0.4 \text{V},$	4 ch.	13-40
			$V_{CC} = 4.5V$	Dip	
HDC135	1kV	logic		Dip	13-42
HDC136	1kV	logic		Dip	13-42

Optek Technology, Inc. 1215 W. Crosby Road Carrollton, Texas 75006 (214) 323-2200 Fax (214) 323-2396

Hi-Rel Optical Isolators (cont)

Part No.	Isolation	IC(ON)	Test Conditions	Case Style	Page No.	
OPI120TX(TXV)	15kV	2.0mA	I _F = 10mA, V _{CE} = 5V	Axial	13-70	
OPI125TXV	15kV	logic	V _{CC} = 5V	Axial	13-72	
OPI150TX(TXV)	50kV	1.0mA	$I_F = 10mA$, $V_{CE} = 5V$	Axial	13-74	
OPI210	1.0kV	5mA min	$I_F = 10mA$, $V_{CE} = 5V$	SMD	13-76	
OPI211	1.0kV	20mA min	$I_F = 10mA$, $V_{CE} = 5V$	SMD	13-76	
OPI340	1.0kV	zero crossing triac	•	TO-78	13-78	

Hi-Rel Optical Assemblies

Part No.	Туре	IC(ON)	Test Conditions	Page No.
OPB700TX(TXV)	reflective	50μA min	$V_{CE} = 5V$, $I_F = 40mA$	13-60
OPB821TX(TXV)	slotted	800µA min	$V_{CE} = 10V$, $I_F = 20mA$	13-62
OPB847TX(TXV)	slotted	4.0mA min	$V_{CE} = 10V$, $I_F = 20mA$	13-64
OPB848TX(TXV)	slotted	1.0mA min	$V_{CE} = 10V$, $I_F = 20mA$	13-64
OPB870X5XTX(TV)	slotted	500μA min	$V_{CE} = 10V$, $I_F = 20mA$	13-66
OPB871X5XTX(TV)	slotted	1.0mA min	$V_{CE} = 5V$, $I_F = 10mA$	13-66
OPB872X5XTX(TV)	slotted	1.8mA min	$V_{CE} = 0.4V$, $I_F = 20mA$	13-66

Hi-Rel Fiber Optics

LEDs

Part No.	Output (μ\		Test Conditions I _F	Rise Time Typ	Case Style	Page No.	
	Min	Тур	(mA)	(ns)			
OMF320TX(TXV)	15.0	19.0	100	6.0	TO-46	14-2	
OMF321TX(TXV)	15.0	19.0	100	6.0	SMA	14-4	
OMF322TX(TXV)	15.0	19.0	100	6.0	ST*	14-6	
OMF340TX(TXV)	20.0	25.0	100	4.5	TO-46	14-8	
OMF341TX(TXV)	20.0	25.0	. 100	4.5	SMA	14-10	
OMF342TX(TXV)	20.0	25.0	100	4.5	ST*	14-12	
OMF345TX(TXV)	20.0	25.0	100	3.5	TO-46	14-14	
OMF346TX(TXV)	20.0	25.0	100	3.5	SMA	14-16	
OMF347TX(TXV)	20.0	25.0	100	3.5	ST*	14-18	

Photodiodes

Part No.		nsivity /W)	Test Conditions	Rise Time Typ	Case Style	Page No.	
	Min	Тур		(ns)			
OMF420TX/(TXV)	0.45	0.55	$V_R = 5V, P_O = 10\mu W$	6.0	TO-46	14-20	
OMF421TX/(TXV)	0.45	0.55	$V_R = 5V, P_O = 10\mu W$	6.0	SMA	14-22	1.0
OMF422TX/(TXV)	0.45	0.55	$V_R = 5V$, $P_O = 10 \mu W$	6.0	ST*	14-24	
OMF430TX/(TXV)	0.45	0.55	$V_R = 5V$, $P_O = 10 \mu W$	2.0	TO-46	14-26	
OMF431TX/(TXV)	0.45	0.55	$V_R = 5V$, $P_O = 10 \mu W$	2.0	SMA	14-28	
OMF432TX/(TXV)	0.45	0.55	$V_R = 5V$, $P_O = 10\mu W$	2.0	ST*	14-30	

^{*}ST is a registered trademark of AT&T

Carrollton, Texas 75006

Hi-Rel Hall Effect

Part	Op	Operate Point		Re	Release Point		Hysteresis			Case Page	Page
No.	Min Typ Max		Min	Min Typ Max		Min Typ Max		Max	Style	No.	
OMH090B(S)	50	90	180	30	60	160	5	30	70	Ceramic	15-2
OMH360B(S)	235	360	465	170	280	360	30	80	150	Ceramic	15-14
OMH3019B(S)	175	420	500	125	220	420	30	100	155	Ceramic	15-4
OMH3020B(S)	70	220	350	50	165	330	20	55	200	Ceramic	15-6
OMH3040B(S)	70	150	200	50	115	180	10	35	60	Ceramic	15-8
OMH3075B(S)	50	150	250	-250	-150	-50	100	300	500	Ceramic	15-10
OMH3131B(S)	20	60	95	10	45	85	5	15	40	Ceramic	15-12

Hi-Rel Surface Mount Semiconductors

Transistors

Part No.	Туре	H _{FE}	Test Conditions	Page No.
2N2907AUA(JANTX) (JANTXV)	PNP	100-300	V _{CE} = 10V, I _C = 150mA	16-2
2N2907AUB(JANTX) (JANTXV)	PNP	100-300	$V_{CE} = 10V, I_{C} = 150mA$	16-4
2N4854U(JANTX) (JANTXV)	NPN/PNP pair	100-300	$V_{CE} = 10V$, $I_{C} = 150mA$	16-6
HCT2222A(TX)	NPN	100-300	$V_{CE} = 10V, I_{C} = 150mA$	16-8
HCT2222M(TX)	NPN	100-300	$V_{CE} = 10V, I_{C} = 150mA$	16-10
HCT700(TX)(TXV)	NPN/PNP pair	100-300	V _{CE} = 10V, I _C = 150mA	16-12
HCT720(TX)(TXV)	dual NPN	100-300	$V_{CE} = 10V, I_{C} = 150mA$	16-14
HCT740(TX)(TXV)	dual PNP	100-300	$V_{CE} = 10V, I_{C} = 150mA$	16-16
HCT780(TX)(TXV)	quad NPN	100-300	$V_{CE} = 10V, I_{C} = 150mA$	16-18
HCT790(TX)(TXV)	quad PNP	100-300	$V_{CE} = 10V$, $I_{C} = 150mA$	16-20

Enhancement MOSFETs

Part No.	Туре	rds _(on)	Test Conditions	Page No.
HCT801(TX)	dual	3.2/8 Ω (max)	$V_{GS} = \pm 10V, I_{D} = \pm 1A$	16-22
HCT802(TX)	dual	5/5 Ω (max)	$V_{GS} = \pm 10V, I_{D} = \pm 1A$	16-24
HCT7000M(TX)(TXV)	n-channel	5 Ω (max)	$V_{GS} = 10V, I_D = 0.5A$	16-26

Optical Isolators

Listed under Hi-Rel Optical Isolators (See SMD case style).

INFRARED EMITTING DIODES

Optek remains unchallenged as the industry's most complete high quality source for infrared emitters. The latest state-of-the-art solution grown epitaxial techniques are used to produce the high quality GaAs and GaAlAs diode material required to make Optek infrared emitting diodes. This precision processing ensures high junction emission efficiency and long operating life with minimal degradation. The added benefit of over 16 years of mounting, bonding, and packaging experience makes Optek the undisputed technological leader in the design and production of infrared emitting diodes.

Leadership in Manufacturing

When engineers are asked which product features they value most in Optek's electronic components, the answers most often given are quality and reliability. Assuring high quality is a philosophy that begins at product conception and is carried through the design phase and heavily emphasized during every step in the manufacture of Optek infrared emitting diodes.

Production begins in Optek's own wafer processing area located in Carrollton, Texas. A GaAlAs or GaAs melt is added to high purity GaAs wafers at precisely controlled temper atures. As cooling takes place, the crystalline structure begins to grow. Partially into the growth, at exactly the right temperature, the material changes from "N"-type to "P"-type and the diode junction is formed. To complete the process, excess starting material is removed and metallization layers are added for electrical contacts. The individual diode chips are then sliced from the wafer. Application Bulletin 205, printed in this data book, discusses these materials in additional detail.

The infrared emitting diode is then carefully mounted in a specially designed reflective "well" as shown in Figure 1. Depending upon the device type, conductive epoxy or soldering is used to attach the chip to the lead frame or header. Gold wire is bonded to the top contact pad ("N" type material) using Optek's specially developed techniques designed to minimize stress or possible damage to the delicate chip material. A refractive index matching silicone overcoat is added to "ruggedize" the entire assembly and improve optical efficiency. Hermetic parts are then weld-sealed. After assembly, 100 percent of the devices are electrically tested and sorted in order to guarantee compliance with the electrical limits specified in Optek data sheets. Prior to final release for shipment, Optek's outgoing quality control department independently retests samples from each lot.

Output Specifications Designed for Engineering Convenience

The outputs of the vast majority of Optek emitters are specified using apertured radiant incidence, $E_{\rm e(APT)}$, expressed in milliwatts per square centimeter. This method, also known as on-axis intensity measurement, provides the best accuracy and convenience for the design engineer. Production testing consists of measuring 100 percent of the energy passing through a specified diameter aperture orthogonal to the optical axis, and a specified distance from the device. For Optek devices, the distance chosen for this measurement is equivalent to the typical operating distance from emitter to sensor. Most specifications for compatible photosensors describe output current at a specified radiant intensity, also expressed in milliwatts per square centimeter. Therefore, the design of close proximity transmissive emitter/sensor assemblies can be done more accurately, and with a minimum of optical calculations and specification conversions.

Infrared emitter manufacturers use three methods of specifying output limits on infrared emitters. These are Radiant Power Output (Po), Radiant Intensity (Ie) and Apertured Radiant Incidence [Ee(APT)]. Radiant Power Output (Po) sometimes called Total Power, is strictly interpreted as a measure of the total energy emitted from the device. Optek has interpreted this to include only the energy useful to most customers. Therefore, side and backward emissions are not measured. As a benchmark for comparison among devices, Optek devices are conservatively rated. For example, the Po reading for the useful portion of the OP295A radiation pattern is 60 percent higher when a parabolic reflector is used to capture normally unused side emissions as opposed to Optek's more conservative rating method. When making Po comparisons among manufacturers, the design engineer should always investigate the methods of measurement.

Radiant Intensity (I_e) is usually expressed in milliwatts per steradian. This method attempts to account for useable energy, where the peak intensity falls within an included angle centered around the optical axis. Through some moderately complex geometrical calculations, the energy falling on the sensor can be roughly estimated if the sensor is on or close to the optical axis and if the distance from emitter to sensor is known. However, most infrared emitters can not accurately be modeled as a point source at the close proximity used in many applications (less than four inches); therefore, this method has the potential to result in serious design errors. Additionally, it is more cumbersome than Optek's direct approach of characterizing emitters in terms of apertured radiant incidence.

Diode Material Selection

Gallium arsenide (GaAs) and gallium aluminum arsenide (GaAlAs) each have specific advantages when used in the manufacture of Optek infrared emitters. GaAs emits energy at 935 ±15 nanometers while GaAlAs emits at 890 ±20 nanometers. As temperature increases, these peaks shift upward by 0.26 and 0.20 nanometers per degree centigrade, respectively. Due to the spectral matching with photosensitive silicon, which exhibits a sensitivity maximum of 850 nanometers, as shown in Figure 2, (the second peak is caused by a fractional wave sensor overcoat), GaAlAs has the advantage of more efficient coupling. The sensor is better able to "see" the energy emitted by GaAlAs. In addition, at equivalent forward currents, GaAlAs is typically a more efficient emitter of infrared energy.

GaAs is considered to be less susceptible to output degradation than GaAlAs. Figure 3 shows typical percentage changes in output versus time for GaAs and GaAlAs operating at the absolute maximum forward current rating of $I_F = 100$ mA, on a TO-46 header. While the effects of degradation on both materials are insignificant at normal operating currents (10-20 mA), GaAs is, nevertheless, the preferable choice of material in applications where high operating currents or temperatures are expected and long-term reliability is critical.

GaAs offers the second advantage of having lower forward voltage characteristics than GaAlAs. If large numbers of devices are to be placed in series or if power supply voltage is limited, the selection of GaAs over GaAlAs devices may be the best design choice.

Package Selection

The two broad classifications of package types are hermetic and plastic . Each offers its own distinct advantages. In many demanding environments, hermetic packaging may be mandatory. It has excellent resistance to water and other solvents, while offering the broadest operating temperature range and resistance to thermal shocks. Plastic packaging, in addition to a cost advantage over hermetic packaging, exhibits excellent optical properties. Overall emission efficiency is also superior because optical interfaces are minimized. Finally, resistance to mechanical shock and vibration is excellent because both chip and bond wire are fully encased in supportive material. Application Bulletin 208 compares these package types.

Special Product Capability

In addition to the standard products shown, Optek leads the industry in custom product capability. Special selections or custom package designs may be the solution to your unique application problem. Call your local Optek office for more information.

Figure 1.
Infrared Emitting Diode Radiation

Figure 2. Photosensor Spectral Response vs. GaAlAs and GaAs

Figure 3.
Percent Change in GaAs and GaAlAs IR
Emitters Mounted in Metal TO-46 Package
vs. Time Under Same Conditions

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

GaAs Hermetic Infrared Emitting Diodes Types OP123, OP124

Features

- Miniature hermetically sealed "Pill" package
- Enhanced temperature range
- Ideal for direct mounting to PC boards⁽¹⁾
- High power output
- Mechanically and spectrally matched to the OP600 phototransistor and the OP300 photodarlington

Description

The OP123 and OP124 series are high intensity gallium arsenide infrared emitting diodes mounted in miniature "Pill" type hermetically sealed packages. This package style is intended for direct mounting into PC boards.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	2.0V
Continuous Forward Current	
Peak Forward Current (2µs pulse width, 0.1% duty cycle)	1.0A
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	-65°C to +125°C
Soldering Temperature (5 sec. with soldering iron)	260°C ⁽¹⁾⁽²⁾
Power Dissipation	150mW ⁽³⁾
Notes:	

- (1) Refer to Application Bulletin 202 which reviews proper soldering techniques for pill-type
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (3) Derate linearly 1.50mW/°C above 25°C.
- (4) E_{e(APT)} is measured using a 0.031" (0.787mm) diameter apertured sensor placed 0.50" (12.7mm) from the measuring surface.

Typical Performance Curves Percent Changes in Radiant Intensity vs Time

Types OP123, OP124

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP12 OP12				mW/cm ²	I _F = 50 mA ⁽⁴⁾
VF	Forward Voltage			1.50	V	I _F = 50 mA
IR	Reverse Current			100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission		935		nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Points		50		nm	I _F = 50 mA
Δλρ/ΔΤ	Spectral shift with Temperature		+0.30		nm/°C	IF = Constant
θнР	Emission Angle at Half Power Points		24		Deg.	I _F = 50 mA
t _r	t _r Output Rise Time		1000		ns	$I_{F(PK)} = 100 \text{ mA}, PW = 10.0 \mu s,$
tf	Output Fall Time		500		ns	D.C. = 10.0%

Typical Performance Curves

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Normalized Power Output vs Ambient Temperature

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

GaAs Hermetic Infrared Emitting Diodes Types OP130, OP131, OP132, OP133

Features

- TO-46 hermetically sealed package
- Mechanically and spectrally matched to the OP800 and OP593 phototransistors or OP830 photodarlingtons
- Variety of power ranges
- Enhanced temperature range

Description

The OP130 series are high intensity gallium arsenide infrared emitting diodes mounted in hermetic TO-46 housings. The narrow beam allows ease of design in beam interrupt applications in conjunction with the OP800 or OP598 series phototransistors. TO-46 housings offer high power dissipation and superior hostile environment operation.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 2.0V
Continuous Forward Current
Peak Forward Current (2 μs pulse width, 0.1% duty cycle) 10.0A
Storage Temperature Range65°C to +150°C
Operating Temperature Range65°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering.
- 2) Derate linearly 2.0 mW/°C above 25°C.
- (3) Measurement made with 100μs pulse measured at the trailing edge of the pulse with a duty cycle of 0.1% and an I_F = 100mA.

Typical Performance Curves

Types OP130, OP131, OP132, OP133

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Po		OP130 OP131 OP132 OP133	1.0 3.0 4.0 5.0			mW mW mW	I _F = 100 mA ⁽³⁾
VF	Forward Voltage				1.75	٧	I _F = 100 mA ⁽³⁾
IR	Reverse Current				100	μА	V _R = 2.0 V
λр	Wavelength at Peak Emission			935		nm	I _F = 10 mA ⁽³⁾
В	Spectral Bandwidth Between Half Pow	ver Points		50		nm	I _F = 10 mA ⁽³⁾
Δλρ/Δτ	Spectral Shift with Temperature			+0.30		nm/ºC	IF = Constant
Өнр	Emission Angle at Half Power Points			18		Deg.	I _F = 100 mA
tr	Output Rise Time			1000		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time			500		ns	PW = 10 μs, D.C. = 10%

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

t -- TIME -- µs

GaAs Hermetic Infrared Emitting Diodes Types OP130W, OP131W, OP132W, OP133W

Features

- Wide irradiance pattern
- Enhanced temperature range
- Mechanically and spectrally matched to the OP800WSL and OP830WSL series devices
- Variety of power ranges
- TO-46 hermetically sealed package

Description

The OP130W series devices are 935nm gallium arsenide infrared emitting diodes mounted in hermetically sealed packages. The broad irradiance pattern provides relatively even illumination over a large area.

Replaces

K6200 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	2.0V
Continuous Forward Current	
Peak Forward Current (2 μs pulse width, 0.1% duty cycle)	
Storage Temperature Range65°	°C to +150°C
Operating Temperature Range65°	°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with	
iron]	260°C ⁽¹⁾
Power Dissipation	. 200mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. Derate linearly 2.0mW/°C above 25°C.
- (3) Measurement made with 100µs pulse measured at the trailing edge of the pulse with a duty cycle of 0.1% and an IF = 100mA.

Typical Performance Curves

Coupling Characteristics of OP130W and OP800W 1.0 I_F = 100mA NORMALIZED COLLECTOR CURRENT 0.8 V_{CE} = 5V TA = 25°C 0.6 0.2 0 0 0.1 0.2 0.3 0.4 DISTANCE BETWEEN LENS TIPS

Types OP130W, OP131W, OP132W, OP133W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Po	C	DP130W DP131W DP132W DP133W	1.0 3.0 4.0 5.0			mW mW	I _F = 100 mA ⁽³⁾ I _F = 100 mA ⁽³⁾ I _F = 100 mA ⁽³⁾ I _F = 100 mA ⁽³⁾
V _F	Forward Voltage				1.75	ν	I _F = 100 mA ⁽³⁾
l _R	Reverse Current				100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission			935		nm	I _F = 10 mA
В	Spectral Bandwidth Half Power Points			50		nm	I _F = 10 mA
Δλρ/Δτ	Spectral Shift with Temperature			+0.30		nm/°C	I _F = Constant
θнр	Emission Angle at Half Power Points			50		Deg.	I _F = 100 mA
t _r	Output Rise Time			1000		ns	I _{F(PK)} = 100 mA,
tr	Output Fall Time			500		ns	PW = 10 μs, D.C. = 10%

Typical Performance Curves

GaAs Plastic Infrared Emitting Diodes Types OP140A, OP140B, OP140C, OP140D

Features

- Wide irradiance pattern
- Selected to specific on-line intensity ranges
- Low cost, miniature plastic side-looking package
- Mechanically and spectrally matched to the OP550 series of phototransistors and the OP560 series of photodarlingtons

Description

The OP140 series devices are 935nm high intensity gallium arsenide infrared emitting diodes molded in IR transmissive plastic side-looking packages. The side looking packages are for use in PC board mounted slotted switches or as an easy mount PC board interrupter.

Replaces

OP140SL series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Peak Forward Current (1 µs pulse width, 300 pps)
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation 100mW ⁽²⁾
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max of 20 grams force may be applied to the leads when soldering. Derate linearly 1.33mW/°C above 25°C.
- E_{e(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.180" (4.57mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 0.653" (16.6mm) from the lens tip. E_{e(APT)} is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Coupling Characteristics of OP140 and OP550 Ir = 20 mA V_{CE} = 5.0 V TA = 25°C

Types OP140A, OP140B, OP140C, OP140D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP140D OP140C OP140B OP140A	0.10 0.20 0.30 0.40		0.40 0.55	mW/cm ² mW/cm ² mW/cm ² mW/cm ²	IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾
VF	Forward Voltage			1.60	٧	I _F = 20 mA
IR	Reverse Current			100	μА	V _R = 2.0 V
λр	Wavelength at Peak Emission		935		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		50		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.30		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		40		Deg.	I _F = 20 mA
t _r	Output Rise Time		1000		ns	I _{F(PK)} =100 mA,
tf	Output Fall Time		500		ns	PW = 10.0μs, D.C.=10.0%

Typical Performance Curves

Forward Voltage vs Forward Current

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Relative Radiant Intensity vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAs Plastic Infrared Emitting Diodes Types OP145A, OP145B, OP145C, OP145D

Features

- · Wide irradiance pattern
- Mechanically and spectrally matched to the OP555 and OP565 series devices
- Variety of power ranges

Description

The OP145 series devices are 935nm high intensity gallium arsenide infrared emitting diodes molded in IR transmissive amber tinted epoxy packages. The side-looking packages are for use in PC board slotted switches or as an easy mounted PC board interrupter.

Replaces

K6550 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation 100mW ⁽²⁾
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 1.33mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.180° (4.57mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.653° (16.6mm) from the lens tip. E_{e(APT)} is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

DISTANCE BETWEEN LENS TIPS - Inches

Coupling Characteristics

Types OP145A, OP145B, OP145C, OP145D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP145D OP145C OP145B OP145A	0.10 0.20 0.30 0.40		0.40 0.55	mW/cm ² mW/cm ² mW/cm ² mW/cm ²	IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾
VF	Forward Voltage	1		1.60	V	I _F = 20 mA
lR	Reverse Current			100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission		935		nm	l _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		50		nm	I _F = 10mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.30		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		40		Deg.	I _F = 20mA
t _r	Output Rise Time		1000		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time		500		ns	PW = 10 μs, D.C. = 10.0%

Forward Voltage vs

Typical Performance Curves

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs **Ambient Temperature**

GaAs Plastic Infrared Emitting Diodes Types OP163A, OP163B, OP163C, OP163D

Features

- · Narrow irradiance pattern
- Mechanically and spectrally matched to the OP505 and OP535 series devices
- Variety of power ranges
- Small package size for limited space applications
- T-1 package style

Description

The OP163 series devices are 935nm gallium arsenide infrared emitting diodes molded in IR transmissive black tinted plastic packages. The narrow irradiance pattern provides high on-axis intensity for excellent coupling efficiency.

Replaces

K6500 series OP165 Series lower ranges.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 2.0V
Continuous Forward Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps) 3.0A
Storage and Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec, with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
- Derate linearly 1.33mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.081 (2.06mm) in diameter, perpendicular to, and centered on, the mechanical axis of the lens and 0.590" (14.99mm) from the measurement surface. Ee(APT) is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Types OP163A, OP163B, OP163C, OP163D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP16 OP16 OP16 OP16	33C 33B	0.28 0.85 1.40 1.40		1.60 2.20	mW/cm ²	I _F = 20 mA ⁽³⁾
VF	Forward Voltage				1.60	V	I _F = 20 mA
IR	Reverse Current				100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission			935		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points			50		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature			+0.30		nm/°C	IF = Constant
θнр	Emission Angle at Half Power Points			18		Deg.	I _F = 20 mA
tr	Output Rise Time			1000		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time			500		ns	PW = 10.0 μs, D.C. = 10.0%

Typical Performance Curves

Forward Voltage and Relative Radiant Incidence vs. Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAs Plastic Infrared Emitting Diodes Types OP164A, OP164B, OP164C, OP164D

Features

- Narrow irradiance pattern
- Mechanically and spectrally matched to the OP506 series devices
- Four power ranges
- Small package size for limited space applications
- T-1 package style

Description

The OP164 series devices are 935nm gallium arsenide infrared emitting diodes molded in IR transmissive black tinted plastic packages. The narrow irradiance pattern provides high on-axis intensity for excellent coupling efficiency. Lead spacing is 0.100" (2.54mm) to facilitate soldering processes.

Replaces

OP166 Series lower ranges.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Peak Forward Current (1 µs pulse width, 300 pps)
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 1.33mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.081* (2.06mm) in diameter, perpendicular to, and centered on, the mechanical axis of the lens and 0.590* (14.99mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Coupling Characteristics OP164 and OP506

Types OP164A, OP164B, OP164C, OP164D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP164D OP164C OP164B OP164A	0.85 1.40		1.60 2.20	mW/cm ²	I _F = 20 mA ⁽³⁾
VF	Forward Voltage			1.60	V	I _F = 20 mA
IR	Reverse Current			100	μА	V _R = 2.0 V
λр	Wavelength at Peak Emission		935		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		50		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.30		nm/°C	IF = Constant
θнР	Emission Angle at Half Power Points		18		Deg.	IF = 20 mA
tr	Output Rise Time		1000		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time		500		ns	PW = 10.0 μs, D.C. = 10.0%

Typical Performance Curves

Forward Voltage vs Forward Current

Forward Voltage and Relative Radiant Incidence vs. Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAs Plastic Infrared Emitting Diodes Types OP165A, OP165D

Features

- Narrow irradiance pattern
- Mechanically and spectrally matched to the OP505 and OP535 series devices
- Two power ranges
- Small package size for space limited applications
- T-1 package style

Description

The OP165 series devices are 935nm gallium arsenide infrared emitting diodes molded in IR transmissive amber tinted plastic packages. The narrow irradiance pattern provides high on-axis intensity for excellent coupling efficiency.

Replaces

K6500 series

Note

OP165B, C are replaced by OP163B, C which are equivalent except for the color of the package.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 2.0V
Continuous Forward Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering. Derate linearly 1.33mW/°C above 25°C.
- (2) Server line an easurement of the average apertured radiant incidence upon a sensing area 0.081" (2.06mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590" (14.99mm) from the measurement surface. Ee(APT) is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Coupling Characteristics OP165 and OP505

Carrollton, Texas 75006

Types OP165A, OP165D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP165D OP165A	1.40 1.95		3.70	mW/cm ² mW/cm ²	I _F = 20 mA ⁽³⁾ I _F = 20 mA ⁽³⁾
VF	Forward Voltage			1.60	V	I _F = 20 mA
IR	Reverse Current			100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission		935		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points	6	50		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.30		nm/ºC	IF = Constant
θнр	Emission Angle at Half Power Points		18		Deg.	I _F = 20 mA
tr	Output Rise Time		1000		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time		500		ns	PW = 10 μs, D.C. = 10%

Typical Performance Curves

Forward Voltage vs Forward Current

Forward Voltage and Relative Radiant Incidence vs. Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAs Plastic Infrared Emitting Diode Type OP165W

Features

- Wide irradiance pattern
- Mechanically and spectrally matched to the OP505W
- Small package size for space limited applications
- T-1 package style

Description

The OP165W is a 935nm high intensity gallium arsenide infrared emitting diode molded in an IR transmissive amber tinted epoxy package. The broad irradiance pattern provides relatively even illumination over a large area. This package is a T-1 style in all respects except for the length of the plastic package.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering. (2) Derate linearly 1.33mW/°C above 25°C.

Typical Performance Curves

Percent Changes in Power Output vs Time

Coupling Characteristics of OP165W and OP505W

Type OP165W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Po	Radiant Power Output	0.50			mW	I _F = 20 mA
VF	Forward Voltage			1.60	V	I _F = 20 mA
IR	Reverse Current			100	μА	V _R = 2.0 V
λр	Wavelength at Peak Emission		935		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		50		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.30		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		90		Deg.	I _F = 20 mA
tr	Output Rise Time		1000		ns	$I_{F(PK)} = 100 \text{ mA},$
tf	Output Fall Time		500		ns	PW = 10 μs, D.C. = 10.0

Typical Performance Curves

Forward Voltage vs Forward Current

Forward Voltage and Power Output vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Normalized Power Output and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAs Plastic Infrared Emitting Diodes Types OP166A, OP166D

Features

- Narrow irradiance pattern
- Mechanically and spectrally matched to the OP506 series phototransistors
- T-1 package style
- Two power ranges

Description

The OP166 series devices are 935nm high intensity gallium arsenide infrared emitting diodes molded in IR transmissive amber tinted epoxy packages. The narrow irradiance pattern provides high on-axis intensity for excellent coupling efficiency. Lead spacing on this series is .100 inch (2.54mm).

Replaces

OP161SL series

Note

The OP166B, C have been replaced by OP164B, C which are equivalent except for the color of the package.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 2.0V
Continuous Forward Current
Peak Forward Current (1 μs pulse width, 300 pps)
Storage and Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
- 2) Derate linearly 1.33mW/°C above 25°C.
- (2) Berate interity 1.55mm of above 22.5.

 (3) Ea/Apr. is a measurement of the average apertured radiant incidence upon a sensing area 0.081" (2.06mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590" (14.99mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Coupling Characteristics OP166 and OP506

Types OP166A, OP166D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP166D OP166A	1.40 1.95		3.70	mW/cm ² mW/cm ²	I _F = 20 mA ⁽³⁾ I _F = 20 mA ⁽³⁾
VF	Forward Voltage			1.60	٧	I _F = 20 mA
I _R	Reverse Current			100	μА	V _R = 2.0 V
λр	Wavelength at Peak Emission		935		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		50		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.30		nm/ºC	I _F = Constant
θнР	Emission Angle at Half Power Points		18		Deg.	I _F = 20 mA
t _r	Output Rise Time		1000		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time		500		ns	PW = 10μs, D.C. = 10.0°

Typical Performance Curves

0.2

1.6 Test Conditions 1.4 IF = D.C. TA = 25 °C 1.0 0.8 0.4 0.4

Forward Voltage vs

Forward Current

Forward Voltage and Relative Radiant Incidence vs. Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

1.0 10 IF - FORWARD CURRENT - mA

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAs Plastic Infrared Emitting Diode Type OP166W

Features

- Wide irradiance pattern
- Mechanically and spectrally matched to the OP506W
- Small package size for space limited applications
- T-1 package style

Description

The OP166W is a 935nm high intensity gallium arsenide infrared emitting diode molded in an IR transmissive amber tinde depoxy package. This package is a T-1 style in all respects except for the length of the plastic package. Lead spacing on this part is .100 inch (2.54mm).

Absolute Maximum Ratings (T_A 25°C unless otherwise noted)

Heverse Voltage
Continuous Forward Current
Peak Forward Current (1 μsec pulse width, 300 pps)
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 Sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 1.33mW/°C.
- (3) For identification purposes, cathode lead is 0.060(1.52) nom shorter than anode lead.

Typical Performance Curves

Percent Changes in Power Output vs Time

Coupling Characteristics

Type OP166W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Po	Radiant Power Output	0.50			mW	I _F = 20 mA
VF	Forward Voltage			1.60	V	I _F = 20 mA
l _R	Reverse Current			100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission		935		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		50		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.30		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		90		Deg.	I _F = 20 mA
tr	Output Rise Time		1000		ns	$I_{F(PK)} = 100 \text{ mA},$
t _f	Output Fall Time		500		ns	PW = 10 μs, D.C. = 10.0

Typical Performance Curves

Forward Voltage vs Forward Current

Forward Voltage and Power Output vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Normalized Power Output and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAs Plastic Infrared Emitting Diodes Types OP168FA, OP168FB, OP168FC

Features

- · Flat lensed for wide radiation angle
- Easily stackable on 0.100 inch (2.54mm) hole centers
- Mechanically and spectrally matched to the OP508F series phototransistor and the OP538F series photodarlingtons

Description

The OP168F series are gallium arsenide infrared emitting diodes molded in "end looking" miniature black plastic packages. This device has a wide radiation angle due to its flat emitting surface. Small size and 0.100 (2.54mm) lead spacing allow considerable design flexibility.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Continuous Forward Current	١
Peak Forward Current (Pulse Width = 1 μsec, 300pps)	١
Reverse Voltage 2.0\	
Storage and Operating Temperature Range40°C to +100°C)
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	
iron))
Power Dissipation 100mW ⁽²⁾	
Natan	

(1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow

- soldering. Maximum 20 grams force may be applied to the leads when soldering. Derate linearly 1.33 mW°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.081" (2.06mm) in diameter perpendicular to and centered on the mechanical axis of the "emitting surface" and 0.400" (10.16mm) from the measurement surface. $E_{e(APT)}$ is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs. Time

Types OP168FA, OP168FB, OP168FC

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS	
E _{e(APT)}	Apertured Radiant Incidence	OP168FC OP168FB OP168FA	0.27 0.43 0.48		0.73	mW/cm ²	I _F = 20 mA ⁽³⁾	
VF	Forward Voltage				1.60	V	IF = 20 mA	
IR	Reverse Current				100	μΑ	V _R = 2.0 V	
λр	Wavelength at Peak Emission			935		nm	I _F = 20 mA	
В	Bandwidth Between Half Powe	r Points		50		nm	I _F = 10 mA	
Δλρ/ΔΤ	Spectral Shift with Temperature)		+0.30		nm/ºC	IF = Constant	
θнр	Emission Angle at Half Power F	Points		104		Deg.	I _F = 20 mA	
tr	Output Rise Time			1000		ns	I _{F(PK)} = 100 mA, PW = 10 μs, D.C. = 10.0%	
tf	Output Fall Time			500		ns		

Typical Performance Curves

GaAs Plastic Infrared Emitting Diodes Types OP169A, OP169B, OP169C

Features

- Integral lens for narrow beam angle
- Easily stackable on 0.100 inch (2.54mm) hole centers
- Mechanically and spectrally matched to the OP509 phototransistor series

Description

The OP169 series are gallium arsenide infrared emitting diodes molded in "end looking" miniature clear packages. The molded lens insures improved uniformity of lens magnification from unit to unit. The OP169 series provides a broad range of on-line and radiant intensities and has considerable design flexibility due to its small size. These devices are mechanically and spectrally matched to the OP509 series phototransistors.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Continuous Forward Current	50mA
Peak Forward Current (Pulse Width = 1 μsec, 300pps)	3.0A
Reverse Voltage	2.0V
Storage and Operating Temperature Range	-40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron)	260°C ⁽¹⁾
Power Dissipation	100mW ⁽²⁾
Notes:	

- RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. Maximum 20 grams force may be applied to the leads when soldering.
 Derate linearly 1.33 mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.180° (4.57mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.653° (16.6mm) from the lens tip. E_{e(APT)} is a measurement of the average radiant intensity within the cone formed by the above conditions. E_{e(APT)} is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Types OP169A, OP169B, OP169C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence	OP169C OP169B OP169A	0.027 0.108 0.180		0.220	mW/cm ²	IF = 20mA ⁽³⁾
VF	Forward Voltage			۰	1.60	V	IF = 20mA
l _R	Reverse Current				100	μΑ	V _R = 2.0V
λр	Wavelength at Peak Emission			935		nm	I _F = 20mA
В	Bandwidth Between Half Power	Points		50		nm	I _F = 10mA
Δλρ/ΔΤ	Spectral Shift with Temperature			+0.30		nm/°C	IF = Constant
θнР	Emission Angle at Half Power P	oints		46		Deg.	I _F = 20mA
tr	Output Rise Time			1000		ns	I _{F(PK)} = 100mA,
tf	Output Fall Time			500		ns	PW = 10 μs, D.C. = 10.0%

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAlAs Hermetic Infrared Emitting Diodes Types OP223, OP224

Features

- Narrow irradiance pattern
- Enhanced temperature range
- Small package size permits high device density mounting
- Mechanically and spectrally matched to the OP640SL and OP300SL series devices
- Significantly higher power output than GaAs at equivalent drive currents
- Wavelength matched to silicon's peak response

Description

The OP223 and OP224 devices are 890nm gallium aluminum arsenide infrared emitting diodes mounted in hermetically sealed "Pill" type packages. The narrow irradiance pattern provides high on-axis intensity for excellent coupling efficiency.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	2.0V
Continuous Forward Current	100mA
Peak Forward Current (2 µs pulse width, 0.1% duty cycle)	1.0A
Storage Temperature Range65°C to +	.150°C
Operating Temperature Range65°C to +	-125°C
Soldering Temperature (5 sec. with soldering iron)	°C(1)(2)
Power Dissipation)mW ⁽³⁾
Notes:	

- Refer to Application Bulletin 202 which discusses proper techniques for soldering Pill type devices into PC boards. RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 1.50mW/°C above 25°C.

Percent Changes in Radiant Intensity

E_{e(APT)} is measured using a 0.031" (0.787mm) diameter apertured sensor placed 0.50" (12.7mm) from the mounting plane. Ee(APT) is not necessarily uniform within the measured

Typical Performance Curves

vs Time CHANGE IN Eg -100

t - TIME - Hours

Types OP223, OP224

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP223 OP224	1.00 3.50			mW/cm ² mW/cm ²	IF = 50mA ⁽⁴⁾ IF = 50mA ⁽⁴⁾
V _F	Forward Voltage			1.80	V	I _F = 50mA
lR	Reverse Current			100	μА	V _R = 2.0V
λр	Wavelength at Peak Emission		890		nm	I _F = 10mA
В	Spectral Bandwidth Between Half Power Points		80		nm	I _F = 10mA
Δ λρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		24		Deg.	I _F = 50mA
t _r	Output Rise Time Output Fall Time		500 250		ns ns	I _{F(PK)} = 100mA, PW = 10μs D.C. = 10.0%

Typical Performance Curves

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Normalized Power Output vs Ambient Temperature

GaAlAs Hermetic Infrared Emitting Diodes Types OP231, OP232, OP233

Features

- Enhanced temperature range
- TO-46 hermetically sealed package
- Mechanically and spectrally matched to OP800, OP593, and OP598 phototransistors
- Specified apertured power in ranges to satisfy most applications
- Variety of power ranges

Description

The OP231 series devices are gallium aluminum arsenide infrared emitting diodes mounted in hermetic TO-46 housings. Gallium aluminum arsenide features higher radiated output than gallium arsenide at the same forward current. The wavelength is centered at 890 nm which closely matches the spectral response of silicon phototransistors. The OP231 series is lensed to provide a narrow beam angle (18° between half power points). The narrow beam angle and the specified radiant intensity of the OP231 series allow ease of design in beam interrupt applications in conjunction with the OP800 or OP598 series photosensor.

Please refer to application bulletins 208 and 210 for additional design information and reliability (degradation) data.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Peak Forward Current (2 μs pulse width, 0.1% duty cycle)
Storage Temperature Range65°C to +150°C
Operating Temperature Range65°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max, when flow soldering.
- (2) Derate linearly 2.0 mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average radiant intensity within the cone formed by the measurement surface, a radius of 1.429" (36.30mm) measured from the lens side of the tab to the sensing surface and a sensing surface of 0.250" (6.35mm) in diameter forming a 10° cone. E_{e(APT)} is not necessarily uniform within the measured area.
- (4) Measurement made with 100µs pulse measured at the trailing edge of the pulse with a duty cycle of 0.10% and an IF = 100mA.

Typical Performance Curves

Forward Voltage and Radiant Incidence vs. Forward Current 5.0 IF = 100 mA to 1.00 A (Pulsed) Pulse Width = 100 µs Duty Cycle = 0.1%

Types OP231, OP232, OP233

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence	OP231 OP232 OP233	1.5 2.0 3.0		6.0	mW/cm ² mW/cm ² mW/cm ²	I _F = 100 mA ⁽³⁾⁽⁴⁾ I _F = 100 mA ⁽³⁾⁽⁴⁾ I _F = 100 mA ⁽³⁾⁽⁴⁾
Po	Radiant Power Output	OP231 OP232 OP233		6.0 8.0 10.0		mW mW mW	IF = 100 mA ⁽³⁾⁽⁴⁾ IF = 100 mA ⁽³⁾⁽⁴⁾ IF = 100 mA ⁽³⁾⁽⁴⁾
V_{F}	Forward Voltage				2.0	٧	l _F = 100 mA ⁽⁴⁾
l _R	Reverse Current				100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission			890		nm	l _F = 10 mA
В	Spectral Bandwidth Half Power	Points		80		nm	l _F = 10 mA
Δλρ/Δτ	Spectral Shift with Temperature			+0.30		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power P	oints		18		Deg.	I _F = 100 mA
tr	Output Rise Time			500		ns	$I_{F(PK)} = 100 \text{ mA},$
t _f	Output Fall Time			250		ns	PW = 10μs, D.C. = 10%

Typical Performance Curves

GaAlAs Hermetic Infrared Emitting Diodes Types OP231W, OP232W, OP233W

Features

- Wide irradiance pattern
- Enhanced temperature range
- Mechanically and spectrally matched to the OP800WSL and OP830SL series devices
- Significantly higher power output than GaAs at equivalent drive currents
- TO-46 hermetically sealed package

Description

The OP231W series devices are 890nm gallium aluminum arsenide infrared emitting diodes mounted in hermetically sealed packages. The broad irradiance pattern provides relatively even illumination over a large area.

Replaces

K6300 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	2 OV
Continuous Forward Current	
Peak Forward Current (2 µs pulse width, 0.1% duty cycle)	
Storage Temperature Range	
Operating Temperature Range	65°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5	sec. with soldering
iron]	260°C ⁽¹⁾
Power Dissipation	200mW ⁽²⁾
Notes	

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max, when flow soldering.

 Derate linearly 2.0 mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average radiant intensity within the cone formed by the measurement surface, a radius of 0.466" (11.84mm) measured from the lens side of the tab to the sensing surface, and a sensing surface of 0.250" (6.35mm) in diameter forming a 30° cone. E_{e(APT)} is not necessarily uniform within the measured area.
- (4) Measurement made with 100µs pulse measured at the trailing edge of the pulse with a duty cycle of 0.1% and an IF = 100mA.

Types OP231W, OP232W, OP233W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence	OP231W OP232W OP233W	1.5 3.5 5.0		7.0	mW/cm ² mW/cm ² mW/cm ²	IF = 100 mA ⁽³⁾⁽⁴⁾ IF = 100 mA ⁽³⁾⁽⁴⁾ IF = 100 mA ⁽³⁾⁽⁴⁾
VF	Forward Voltage				2.0	٧	I _F = 100 mA ⁽⁴⁾
İR	Reverse Current				100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission			890		nm	I _F = 10 mA
В	Spectral Bandwidth Half Power Po	ints		80		nm	I _F = 10 mA
Δλ _Ρ /ΔΤ	Spectral Shift with Temperature			+0.30		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Poir	nts		50		Deg.	I _F = 100 mA
tr	Output Rise Time			500		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time			250		ns	PW = 10 μs, D.C. = 10%

Typical Performance Curves

GaAlAs Plastic Infrared Emitting Diodes Types OP240A, OP240B, OP240C, OP240D

Features

- Wide irradiance pattern
- Mechanically and spectrally matched to the OP550 and OP560 series phototransistors
- Wavelength matched to silicon's peak response
- Significantly higher power output than GaAs at equivalent drive currents
- Side-looking package for space limited applications

Description

The OP240 series devices are 890nm high intensity gallium aluminum arsenide infrared emitting diodes molded in IR transmissive clear epoxy packages. The side-looking packages are for use in PC board mounted slotted switches or as easily mounted interrupt detectors.

Replaces

OP240SL series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	· ον
Continuous Forward Current	
Peak Forward Current (1 μs pulse width, 300 pps)	
Storage and Operating Temperature Range40°C to +100	
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	J
iron]	C ⁽¹⁾
Power Dissipation. 100mV	N ⁽²⁾

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering. (2) Derate linearly 1.33mW/°C above 25°C.
- (3) Se_(ATT) is a measurement of the average apertured radiant incidence upon a sensing area 0.180" (4.57mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 0.653" (16.6mm) from the lens tip. E_{e(APT)} is not necessarily uniform within the measured area.

Typical Performance Curves Percent Changes in Radiant Intensity vs Time

DISTANCE BETWEEN LENS TIPS - Inches

Coupling Characteristics

Types OP240A, OP240B, OP240C, OP240D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _e (APT)	Apertured Radiant Incidence OP240D OP240C OP240B OP240A	0.05 0.20 0.40 0.60		0.86 1.20	mW/cm ² mW/cm ² mW/cm ² mW/cm ²	IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾
VF	Forward Voltage			1.80	V	I _F = 20 mA
I _R	Reverse Current			100	μА	V _R = 2.0 V
λр	Wavelength at Peak Emission		890		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		80		nm	l _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		40		Deg.	I _F = 20 mA
tr	Output Rise Time		500		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time		250		ns	PW = 10 μs, D.C. = 10%

Typical Performance Curves

0.1

Forward Voltage vs

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

IF - FORWARD CURRENT - mA

10

100

Relative Radiant Intensity vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAlAs Plastic Infrared Emitting Diodes Types OP245A, OP245B, OP245C, OP245D

Features

- Mechanically and spectrally matched to the OP555 and OP565 series devices
- Wavelength matched to silicon's peak response
- Significantly higher power output than GaAs at equivalent drive currents
- Side-looking package for space limited applications

Description

The OP245 series devices are 890nm high intensity gallium aluminum arsenide infrared emitting diodes molded in IR transmissive amber tinted epoxy packages. The side-looking packages are for use in PC board mounted slotted switches or as easily mounted interrupt detectors.

Replaces

K6650

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max, when flow soldering. A max. of 20 grams force may be applied to the leads when soldering. Derate linearly 1.33mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.180" (4.57mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.653" (16.6mm) from the lens tip. E_{e(APT)} is not necessarily uniform within the measured area.

Typical Performance Curves Percent Changes in Radiant Intensity vs Time

Coupling Characteristics of OP245 and OP555

Types OP245A, OP245B, OP245C, OP245D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP245D OP245C OP245B OP245A	0.05 0.20 0.40 0.60		0.86 1.20	mW/cm ² mW/cm ² mW/cm ² mW/cm ²	IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾ IF = 20 mA ⁽³⁾
VF	Forward Voltage			1.80	V	I _F = 20 mA
IR	Reverse Current			100	μА	V _R = 2.0 V
λр	Wavelength at Peak Emission		890		nm	l _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		80		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		40		Deg.	l _F = 20 mA
tr	Output Rise Time		500		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time		250		ns	PW = 10 μs, D.C. = 10.0%

Typical Performance Curves

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Relative Radiant Intensity vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAlAs Plastic Infrared Emitting Diodes Types OP265A, OP265B, OP265C, OP265D

Features

- · Narrow irradiance pattern
- Mechanically and spectrally matched to the OP505, OP535 series devices
- Significantly higher power output than GaAs at equivalent drive currents
- Wavelength matched to silicon's peak response
- T-1 package style

Description

The OP265 series devices are 890nm high intensity gallium aluminum arsenide infrared emitting diodes molded in IR transmissive amber tinted epoxy packages. The narrow irradiance pattern provides high on-axis intensity for excellent coupling efficiency.

Replaces

K6600

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	2.0V
Continuous Forward Current	50mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Storage and Operating Temperature Range40°C to +	100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	
iron]	0°C(1)
Power Dissipation	mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
 - (2) Derate linearly 1.33mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.081" (2.06mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590" (14.99mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Types OP265A, OP265B, OP265C, OP265D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP265D OP265C OP265B OP265A	0.54 0.54 1.65 2.70		3.30 4.70	mW/cm ² mW/cm ² mW/cm ² mW/cm ²	IF = 20 mA ⁽³⁾
VF	Forward Voltage			1.80	V	I _F = 20 mA
IR	Reverse Current			100	μА	V _R = 2.0 V
λр	Wavelength at Peak Emission		890		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		80		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant
θнр	Emission Angle at Half Power Points		18		Deg.	I _F = 20mA
t _r	Output Rise Time Output Fall Time		500 250		ns ns	I _{F(PK)} = 100 mA, PW = 10µs, D.C. = 10.0%

Typical Performance Curves

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAlAs Plastic Infrared Emitting Diode Type OP265W

Features

- · Wide irradiance pattern
- Mechanically and spectrally matched to the OP505W
- Small package size for space limited applications
- T-1 package style
- Significantly higher power output than GaAs at equivalent drive currents

Description

The OP265W is an 890nm high intensity gallium aluminum arsenide infrared emitting diode molded in an IR transmissive amber-tinted epoxy package. The broad irradiance pattern provides relatively even illumination over a large area. This package is a T-1 style in all respects except for the length of the plastic package.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	2.0V
Continuous Forward Current	60mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Storage and Operating Temperature Range40°C to +1	00°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	ng .
iron]	OC(1)
Power Dissipation	nW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 1.33mW/°C above 25°C.

Typical Performance Curves

Type OP265W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Po	Radiant Power Output	1.00			mW	I _F = 20 mA
VF	Forward Voltage			1.80	V	I _F = 20 mA
IR	Reverse Current			100	μА	V _R = 2.0 V
λр	Wavelength at Peak Emission		890		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		80		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant
θнр	Emission Angle at Half Power Points		90		Deg.	I _F = 20 mA
tr	Output Rise Time		500		ns	$I_{F(PK)} = 100 \text{ mA},$
t _f	Output Fall Time		250		ns	PW = 10μs, D.C. = 10.09

Typical Performance Curves

Forward Voltage vs Forward Current

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAlAs Plastic Infrared Emitting Diodes Types OP266A, OP266B, OP266C, OP266D

Features

- Narrow irradiance pattern
- Mechanically and spectrally matched to the OP506 series devices
- Significantly higher power output than GaAs at equivalent drive currents
- Wavelength matched to silicon's peak response
- T-1 package style

Description

The OP266 device is an 890nm high intensity gallium aluminum arsenide infrared emitting diode molded in an IR transmissive amber tinted epoxy package. The narrow irradiance pattern provides high on-axis intensity for excellent coupling efficiency. Lead spacing on this device is .100 inch (2.54mm).

Replaces

OP261

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	2.0V
Continuous Forward Current	50mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Storage and Operating Temperature Range40°C to +	100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with solder	ing
iron]	0°C(1)
Power Dissipation	mW ⁽²⁾

(1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.

- A max. of 20 grams force may be applied to the leads when soldering.

 Derate linearly 1.33mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.081" (2.06mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590" (14.99mm) from the measurement surface. Ee(APT) is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Types OP266A, OP266B, OP266C, OP266D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

_								
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS		
E _e (APT)	Apertured Radiant Incidence OP266D OP266C OP266B OP266A	0.54 0.54 1.65 2.70		3.30 4.70	mW/cm ² mW/cm ² mW/cm ² mW/cm ²	IF = 20 mA ⁽³⁾		
VF	Forward Voltage			1.80	٧	I _F = 20 mA		
IR	Reverse Current			100	μА	V _R = 2.0 V		
λр	Wavelength at Peak Emission		890		nm	l _F = 10 mA		
В	Spectral Bandwidth Between Half Power Points		80		nm	l _F = 10 mA		
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant		
θнР	Emission Angle at Half Power Points		18		Deg.	l _F = 20 mA		
tr	Output Rise Time		500		ns	I _{F(PK)} = 100 mA,		
tf	Output Fall Time		250		ns	PW = 10 μs, D.C. = 10.0%		

Typical Performance Curves

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

IF - FORWARD CURRENT - mA

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAlAs Plastic Infrared Emitting Diode Type OP266W

Features

- · Wide irradiance pattern
- Mechanically and spectrally matched to the OP506W
- Small package size for space limited applications
- T-1 package style
- Significantly higher power output than GaAs at equivalent drive currents

Description

The OP266W is an 890nm high intensity gallium aluminum arsenide infrared emitting diode molded in an IR transmissive amber-tinted epoxy package. This package is a T-1 style in all respects except for the length of the plastic package. Lead spacing on this part is .100 inch (2.54mm).

Absolute Maximum Ratings (TA 25°C unless otherwise noted)

Reverse Voltage	٧
Continuous Forward Current	Α
Peak Forward Current (1 μsec pulse width, 300 pps)	
Storage and Operating Temperature Range	Э
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 Sec. with soldering	
iron]	1)
Power Dissipation	2)
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 1.33mW/°C.

Typical Performance Curves

Percent Changes in Radiant Intensity

vs Time

100

t - TIME - Hours

Type OP266W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Po	Radiant Power Output	1.00			mW	I _F = 20 mA
VF	Forward Voltage			1.80	V	I _F = 20 mA
l _R	Reverse Current			100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission		890		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		80		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		90		Deg.	I _F = 20 mA
tr	Output Rise Time	ļ	500		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time		250		ns	PW = 10 μs, D.C. = 10.0%

Typical Performance Curves

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAlAs Plastic Infrared Emitting Diodes Types OP268FA, OP268FB, OP268FC

Features

- Flat lensed for wide radiation angle
- Easily stackable on 0.100 inch (2.54mm) hole centers
- Mechanically and spectrally matched to the OP508F series phototransistor and the OP538F series photodarlingtons

Description

The OP268F series contains a gallium aluminum arsenide infrared emitting diode mounted in an "end-looking" miniature black package. This device has a wide radiation angle due to its flat emitting surface. Small size and 0.100" (2.54) lead spacing allow considerable design flexibility.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Continuous Forward Current	50mA
Peak Forward Current (Pulse Width = 1 μsec, 300pps)	3.0A
Reverse Voltage	
Storage and Operating Temperature Range	-40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec	with soldering
iron)	260°C ⁽¹⁾
Power Dissipation	100mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. Maximum 20 grams force may be applied to the leads when soldering. Derate linearly 1.33 mW°C above 25°C.
- E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.081" (2.06mm) in diameter perpendicular to and centered on the mechanical axis of the "emitting surface" and 0.400" (10.16mm) from the measurement surface. $E_{\text{e}(\text{APT})}$ is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Coupling Characteristics of OP268F and OP508F/OP538F lc = 20 mA

Types OP268FA, OP268FB, OP268FC

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP268FC OP268FB OP268FA	0.36 0.45 0.64		0.99	mW/cm ²	I _F = 20mA ⁽³⁾
VF	Forward Voltage			1.80	V	I _F = 20mA
lR	Reverse Current			100	μΑ	V _R = 2.0V
λр	Wavelength at Peak Emission		890		nm	I _F = 20mA
В	Bandwidth Between Half Power Points		80		nm	IF = 10mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		104		Deg.	I _F = 20mA
tr	Output Rise Time		500		ns	I _{F(PK)} = 100mA, PW = 10.0μs
tf	Output Fall Time		250		ns	D.C. = 10.0%

Typical Performance Curves

Forward Voltage and Radiant Incidence vs Forward Current

Forward Voltage vs Ambient Temperature

Rise Time and Fall Time vs Forward Current

Relative Radiant Intensity and Wavelength at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs Angular Displacement

GaAIAs Plastic Infrared Emitting Diodes Types OP269A, OP269B, OP269C

Features

- Integral lens for narrow beam angle
- Easily stackable on 0.100 inch (2.54mm) hole centers
- Mechanically and spectrally matched to the OP509 phototransistor series

Description

The OP269 series are gallium aluminum arsenide infrared emitting diodes molded in "end looking" miniature clear packages. The molded lens insures improved uniformity of lens magnification from unit to unit. The OP269 series provides a broad range of on-line and radiant intensities and has considerable design flexibility due to its small size. These devices are mechanically and spectrally matched to the OP509 series of phototransistors. The wavelength at peak emission for this series is 890 nm.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Continuous Forward Current
Peak Forward Current (Pulse Width = 1 μsec, 300pps)
Reverse Voltage 2.0V
Storage and Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron)
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. Maximum 20 grams force may be applied to the leads when soldering. Derate linearly 1.33 mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.180" (4.57mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.653" (16.6mm) from the lens tip. E_{e(APT)} is a measurement of the average radiant intensity within the cone formed by the above conditions. Ee(APT) is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs. Time

Carrollton, Texas 75006

Types OP269A, OP269B, OP269C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP269C OP269B OP269A	0.34 0.42 0.58		0.82	mW/cm ²	I _F = 20 mA ⁽³⁾
VF	Forward Voltage			1.80	V	I _F = 20 mA
lR	Reverse Current			100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission		890		nm	I _F = 20 mA
В	Bandwidth Between Half Power Points		80		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant
θнр	Emission Angle at Half Power Points		46		Deg.	I _F = 20 mA
·tr	Output Rise Time		500		ns	$I_{F(PK)} = 100 \text{ mA}, PW = 10 \mu s,$
tf	Output Fall Time		250		ns	D.C. = 10.0%

Typical Performance Curves

Forward Current

Test Conditions:

Duty Cycle = 10%

T_A = 25 °C

200

IF - FORWARD CURRENT - mA

300

1.8

t - TIME - us

0.6

0.2

GaAlAs Plastic Infrared Emitting Diodes Types OP290, OP291, OP292 Series

Features

- Wide irradiance pattern
- Significantly higher power output than GaAs at equivalent drive currents
- T-1 3/4 package style
- UL recognized, File No. S2047

Description

The OP290, OP291, and OP292 are gallium aluminum arsenide infrared emitting diodes molded in IR transmissive plastic packages. The OP290 is specified under pulse conditions to 1.5 amps and can be used up to 5 amps. The OP291 is specified under pulse conditions to 100mA and is intended for use as low cost plastic replacements for TO-46 hermetic units. The OP292 is specified under pulse conditions to 20mA and is intended for use in low current applications. The wavelength is centered at 890 nm and closely matches the spectral response of silicon phototransistors. Each of the these unit types is categorized into three ranges of apertured power output. They are also completely characterized for ease of system design. Silver-copper lead frames offer excellent thermal characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage OP290 5.0V
OP291 2.0V
OP292 5.0V
Continuous Forward Current
Peak Forward Current OP290 (25 μs pulse width) 5.0A
OP291 (100 μs pulse width) 2.0A
OP292 (100 μs pulse width) 1.00A
Maximum Duty Cycle OP290 (25 μs pulse width, @ 5 A) 1.25% (2)
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec with soldering
iron]
Power Dissipation, Free Air
Power Dissipation, Board Mounted
Power Dissipation, Full Heat Sink 1.11W ⁽⁶⁾
Notes:

- (1) Derate linearly 1.67 mA/°C above 25°C (Free-Air). When used with heat sink (See Note 5) derate linearly 2.07 mA/°C above 65°C (Normal use).
- Refer to graph of Maximum Peak Pulse Current vs. Pulse Width.
- (3) RMA flux is recommended. Duration can be extended to 10 sec max. when soldering. Max. 20 grams force may be applied to the leads when flow soldering.
 - (4) Measured in Free-Air. Derate linearly 3.33 mW/°C above 25°C.
- (5) Mounted on 1/16" (1.6mm) thick PC board with each lead soldered through 80 mil square lands 0.250" (6.35mm) below flange of device. Derate linearly 5.33 mW/°C above 62.5°C.
- (6) Immersed in silicone fluid to simulate infinite heat sink. Derate linearly 11.1 mW/°C above 95°C.
- (7) Measurement is taken at the end of a single 100 μs pulse. Heating due to increased pulse rate or pulse width will cause a decrease in reading.
- (8) E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.250" (6.35mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 0.500" (12.7mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.
- (9) Typical total Power Out (Po) @ IF = 20mA pulsed all units is 3.6mW, @ IF = 100mA is 19mW, and @ IF = 1.5 A is 240mW.
- (10) Measured at the end of a 10 msec. voltage soak.
- (11) This dimension is held to within \pm 0.005" on the flange edge and may vary \pm 0.020" in the area of the leads.
- (12) Cathode lead is 0.070" nom shorter than anode lead.

INFRARED EMITTING DIODES

Types OP290, OP291, OP292 Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence*	OP290C	150			mW/cm ²	$I_F = 1.50A^{(7)(8)(9)}$
		OP290B	180		300	mW/cm ²	$I_F = 1.50A^{(7)(8)(9)}$
		OP290A	210			mW/cm ²	$I_F = 1.50A^{(7)(8)(9)}$
	* OP290 series is measured into	OP291C	10.0			mW/cm ²	$I_F = 100 \text{mA}^{(7)(8)(9)}$
	a 30° cone with the aperture 0.5"	OP291B	13.0		26.0	mW/cm ²	$I_F = 100 \text{mA}^{(7)(8)(9)}$
	from the device measurement	OP291A	16.0	ĺ		mW/cm ²	$I_F = 100 \text{mA}^{(7)(8)(9)}$
	surface.	OP292C	1.7			mW/cm ²	$I_F = 20 \text{mA}^{(7)(8)(9)}$
		OP292B	2.2		4.4	mW/cm ²	$I_F = 20 \text{mA}^{(7)(8)(9)}$
		OP292A	2.7			mW/cm ²	$I_F = 20 \text{mA}^{(7)(8)(9)}$
VF	Forward Voltage	OP290			4.00	V	I _F = 1.50A ⁽⁷⁾
		OP291			2.00	V	I _F = 100mA ⁽⁷⁾
		OP292			1.75	V	I _F = 20mA ⁽⁷⁾
IR	Reverse Current	OP290/OP292			10	μА	$V_R = 5.0V^{(10)}$
		OP291			100	μА	$V_R = 2.0V^{(10)}$
λρ	Wavelength at Peak Emission			890		nm	I _F = 10mA
В	Spectral Bandwidth Between Ha	alf Power Points		80		nm	I _F = 10mA
Δλρ/ΔΤ	Spectral Shift with Temperature			+0.18		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power P	oints		50		Deg.	I _F = 20mA
tr	Output Rise Time			500		ns	$I_{F(PK)} = 100mA,$
tf	Output Fall Time			250		ns	PW = 10μs, D.C. = 10.0

Typical Performance Curves

Thermal Parameters

Type Units		RTHJA		CTH	$ au_{TH}$	к		
	Free Air(1)	Normai(2)	Infinite Heat Sink ⁽³⁾	(10 ⁻⁵ Ws/°C)	(10 ⁻² s)			
All	300	188	90	1.42	0.263	0.008		

Refer to Application Bulletin 105 for use of these constants.

Notes to Thermal Parameters

- (1) Heat transfer minimized by holding unit in still air with minimum heat transferred through leads by conduction.
- (2) Unit mounted in double sided printed circuit board ≈ 0.250 inches (6.35 mm) below plastic. The land areas are 0.080 inches square. This simulates normal use.
- (3) Unit immersed in circulating silicone fluid holding T_{CASE} 25 °C. This simulates an infinite heat sink.

Types OP290, OP291, OP292 Series

Typical Performance Curves

INFRARED EMITTING DIODES

Typical Performance Curves

GaAlAs Plastic Infrared Emitting Diodes Types OP293 and OP298 Series

Features

- Wide irradiance pattern (OP293 series)
- Narrow irradiance pattern (OP298 series)
- Mechanically and spectrally matched to the OP593 and OP598 series phototransistors
- Variety of power ranges
- Significantly higher power output than GaAs at equivalent drive currents
- Wavelength matched to silicon's peak response
- Low cost replacement for TO-46 hermetic package

Description

The OP293 and OP298 series devices are 890nm high intensity gallium aluminum arsenide infrared emitting diodes molded in IR transmissive packages. The broad irradiance pattern of the OP293 series provides relatively even illumination over a large area. The OP298 series is focused with an emission angle of 25°.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 2.0V Continuous Forward Current, Free Air 100mA ⁽²⁾ Continuous Forward Current, Board Mounted 133mA ⁽³⁾ Continuous Forward Current, Full Heat Sink. 200mA ⁽⁴⁾ Peak Forward Current (25 μs pulse width) 2.0A Maximum Duty Cycle (250 μs pulse width, @ 2 A) 5.0%
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec with soldering iron]
Power Dissipation, Free Air
Power Dissipation, Board Mounted
Power Dissipation, Full Heat Sink

- (1) RMA flux is recommended. Duration can be extended to 10 sec max. when flow soldering. Max. 20 grams force may be applied to the leads when soldering.
- 2) Measured in Free-Air. Derate power dissipation linearly 1.43 mW/°C above 25°C.
- (3) Mounted on 1/16" (1.6mm) thick PC board with each lead soldered through 80 mil square lands 0.250" (6.35mm) below flange of device. Derate power dissipation linearly 2.00 mW/°C above 25°C. (Normal Use)
- (4) Immersed in silicone fluid to simulate infinite heat sink. Derate power dissipation linearly 2.50 mW/°C above 25°C.
- (5) Measurement is taken at the end of a single 100 µs pulse. Heating due to increased pulse rate or pulse width will cause a decrease in reading.
- (6) E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.250° (6.35mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 0.420° (10.7mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.
- Typical Total Power Out (Po) @ I_F = 100mA pulsed on OP293C = 13 mW;
 OP293B = 18 mW; OP293A = 22 mW.
- (8) E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.250" (6.5mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 1.429" (36.30mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.
- (9) For press fit, drill 0.184 ± 0.001" diameter hole.
- (10) This dimension is held to within ± 0.005" on the flange edge and may vary ± 0.020" in the area of the leads.
- (11) Cathode lead is 0.070" nom shorter than anode lead.

Types OP293 and OP298 Series

Electrical Characteristics (T_A = 25°C unless otherwise noted).

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence*	OP293C	10.0			mW/cm ²	I _F = 100mA ⁽⁵⁾⁽⁶⁾⁽⁷⁾
	*OP293 is measured with a 30°	OP293B	13.0		26.0	mW/cm ²	I _F = 100mA ⁽⁵⁾⁽⁶⁾⁽⁷⁾
	cone angle at 0.420"	OP293A	16.0			mW/cm ²	l _F = 100mA ⁽⁵⁾⁽⁶⁾⁽⁷⁾
	*00000: 1 111 100	OP298C	1.8			mW/cm ²	l _F = 100mA ⁽⁵⁾⁽⁷⁾⁽⁸⁾
	*OP298 is measured with a 10° cone angle at 1.429"	OP298B	2.4		4.8	mW/cm ²	l _F = 100mA ⁽⁵⁾⁽⁷⁾⁽⁸⁾
		OP298A	3.0			mW/cm ²	$l_F = 100 \text{mA}^{(5)(7)(8)}$
VF	Forward Voltage				2.0	V	I _F = 100mA ⁽⁵⁾
I _R	Reverse Current				100	μА	V _R = 2.0V
λр	Wavelength at Peak Emission			890		nm	I _F = 10mA
В	Spectral Bandwidth Between Ha	If Power Points		80		nm	I _F = 10mA
Δλρ/ΔΤ	Spectral Shift with Temperature			+0.18		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Po	oints OP293		60		Deg.	I _F = 20mA
		OP298		25	}	Deg.	I _F = 20mA
tr	Output Rise Time			500		ns	I _{F(PK)} = 100mA,
tf	Output Fall Time			250		ns	PW = 10μs, D.C. = 10.0

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

(C)

1100

Types OP293 and OP298 Series

Typical Performance Curves

Types OP293 and OP298 Series

Typical Performance Curves

Thermal Parameters

Туре		R _{THJA}	°C/W)	CTH	$ au_{TH}$	
Units	Free Air(1)	Normal ⁽²⁾	Infinite Heat Sink ⁽³⁾	(10 ⁻⁵ Ws/°C)	(10 ⁻² s)	`
All	700	500	250	4.0	1.5	800.0

Motes

- Heat transfer minimized by holding unit in still air with minimum heat transferred through leads by conduction.
- (2) Unit mounted in double sided printed circuit board 0.250 inches (6.35 mm) below plastic. The land areas are 0.080 inches square. This simulates normal use.
- (3) Unit immersed in circulating silicone fluid holding TCASE @ 25°C. This simulates an infinite heat sink.

Refer to Application Bulletin 200 for use of these constants.

GaAlAs Plastic Infrared Emitting Diode Types OP294, OP299

Features

- Characterized at 5mA for battery operated systems or other low drive current systems
- Wide irradiance pattern (OP294) or narrow irradiance pattern (OP299)
- Significantly higher power output than GaAs at equivalent drive currents
- Wavelength matched to silicon's peak response
- T-1 3/4 package

Description

The OP294 and OP299 are gallium arsenide infrared emitting diodes designed for low current or power limited applications (such as battery supplies). These LEDs are similar in design to the OP290 and OP295 but use a smaller chip which increases output efficiency at low current levels by increasing current density. Light output can be maximized with continuous (d.c.) forward current up to 100mA or with pulsed forward current operation up to 750mA. The chip is mounted in an IR transmissive plastic package and has been designed and tested for use with OP593/598 phototransistors or similar photodetector.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage		. 5.0V
Continuous Forward Current		100mA
Peak Forward Current		
Storage and Operating Temperature Range	-40°C to	+100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. iron]	with sold	ering
iron]		260°C(1)
Power Dissipation	18	80mW ⁽²⁾
Notes:		

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
 - (2) Derate linearly 1.80mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.250" (6.35 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 1.429" (36.3 mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.
- (4) E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.250" (6.35 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and .500" (12.7 mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.
- (5) Cathode lead is 0.070" nom shorter than anode lead.

Types OP294, OP299

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP294 OP299	0.50 0.15		1.50 0.45	mW/cm ² mW/cm ²	I _F = 5mA ⁽⁴⁾ I _F = 5mA ⁽³⁾
V _F	Forward Voltage			1.50	٧	I _F = 5mA
IR	Reverse Current			10	μА	V _R = 2V
λр	Wavelength at Peak Emission		890		nm	I _F = 10mA
В	Spectral Bandwidth Between Half Power Points		80		nm	l _F = 10mA
Δ λρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points OP294 OP299		50 20		Deg. Deg.	IF = 10mA IF = 10mA
tr	Output Rise Time		500		ns	I _{F(PK)} = 100mA
t _f	Output Fall Time		250		ns	PW = 10μs, D.C. = 10.09

GaAlAs Plastic Infrared Emitting Diodes Types OP295, OP296, OP297 Series

Features

- Narrow irradiance pattern
- Significantly higher power output than GaAs at equivalent drive currents
- Wavelength matched to silicon's peak response
- Excellent heat dissipation
- UL recognized, File No. S2047
- T-1 3/4 package style

Description

The OP295, OP296, and OP297 are gallium aluminum arsenide infrared emitting diodes mounted in IR transmissive plastic packages. The OP295 is specified under pulse conditions to 1.5 amps and can be used up to 5 amps. The OP296 is specified under pulse conditions to 100mA and is intended for use as a low cost plastic replacement for TO-46 hermetic units. The OP297 is specified under pulse conditions to 20mA and is intended for use in low current applications. The wavelength is centered at 890 nm and closely matches the spectral response of silicon phototransistors. Each of these unit types are categorized into three ranges of apertured power output. They are also completely characterized for ease of system design. Silver-copper lead frames offer excellent thermal characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage OP295 5.	0۷
OP296 2.	٥٧
OP297 5.	0٧
Continuous Forward Current	((1)
Peak Forward Current OP295 (25 µs pulse width)	
OP296 (100 μs pulse width) 2.	0А
OP297 (100 μs pulse width)	QA
Maximum Duty Cycle OP295 (25 μs pulse width, @ 5 A) 1.25%	(2)
Storage and Operating Temperature Range	°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec with soldering	
iron])(3)
Power Dissipation, Free Air	/ ⁽⁴⁾
Power Dissipation, Board Mounted	/ ⁽⁵⁾
Power Dissipation, Full Heat Sink 1.11W	/ ⁽⁶⁾
Notes:	

- Derate linearly 1.67 mA^oC above 25^oC (Free-Air). When used with heat sink (See Note 5) derate linearly 2.07 mA^oC above 65^oC (Normal use).
 - (2) Refer to graph of Maximum Peak Pulse Current vs. Pulse Width.
- (3) RMA flux is recommended. Duration can be extended to 10 sec max. when flow soldering. Max. 20 grams force may be applied to the leads when soldering.
- (4) Measured in Free-Air. Derate linearly 3.33 mW/°C above 25°C.
- (5) Mounted on 1/16" (1.6mm) thick PC board with each lead soldered through 80 mil square lands 0.250" (6.35mm) below flange of device. Derate linearly 5.33 mW/°C above 25°C.
- (6) Immersed in silicone fluid to simulate infinite heat sink. Derate linearly 11.1 mW/°C above 25°C.
- (7) Measurement is taken at the end of a single 100 µs pulse. Heating due to increased pulse rate or pulse width will cause a decrease in reading.
- (8) Typical total Power Out (Po) @ IF = 20mA pulsed all units is 3.6mW, @ IF = 100mA is 19mW, and @ IF = 1.5 A is 240mW.
- (9) E_e(APT) is a measurement of the average apertured radiant energy incident upon a sensing area 0.250" (6.35mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 1.429" (36.30mm) from the measurement surface. E_e(APT) is not necessarily uniform within the measured area.
- (10) Measured at the end of a 10 msec. voltage soak.
- (11) This dimension is held to within ± 0.005" on the flange edge and may vary ± 0.020" in the area of the leads.
- (12) Cathode lead is 0.070" nom shorter than anode lead.

Types OP295, OP296, OP297 Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence*	OP295C	22			mW/cm ²	$I_F = 1.5A^{(7)(8)(9)}$
		OP295B	33		77	mW/cm ²	$I_F = 1.5A^{(7)(8)(9)}$
		OP295A	44			mW/cm ²	$I_F = 1.5A^{(7)(8)(9)}$
	*OP295 series is measured into	OP296C	1.6			mW/cm ²	$I_F = 100 \text{mA}^{(7)(8)(9)}$
	a 10° cone with the aperture	OP296B	2.6		6.6	mW/cm ²	$I_F = 100 \text{mA}^{(7)(8)(9)}$
	1.429" from the device	OP296A	3.6			mW/cm ²	$I_F = 100 \text{mA}^{(7)(8)(9)}$
	measurement surface	OP297C	0.30			mW/cm ²	$I_F = 20 \text{mA}^{(7)(8)(9)}$
		OP297B	0.50		1.30	mW/cm ²	$I_F = 20 \text{mA}^{(7)(8)(9)}$
		OP297A	0.70			mW/cm ²	$I_F = 20 \text{mA}^{(7)(8)(9)}$
VF	Forward Voltage	OP295			4.00	V	l _F = 1.50A ⁽⁷⁾
		OP296			2.00	V	I _F = 100mA ⁽⁷⁾
		OP297			1.75	V	l _F = 20mA ⁽⁷⁾
IR	Reverse Current	OP295/297			10	μА	$V_R = 5.0V^{(10)}$
		OP296			100	μА	$V_R = 2.0V^{(10)}$
λр	Wavelength at Peak Emission			890		nm	I _F = 10mA
В	Spectral Bandwidth Between Ha	alf Power Points		80		nm	I _F = 10mA
Δλρ/ΔΤ	Spectral Shift with Temperature			+0.18		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power P	oints		20		Deg.	I _F = 20mA
tr	Output Rise Time			500		ns	$I_{F(PK)} = 100mA,$
tf	Output Fall Time			250		ns	PW = 10μs, D.C. = 10.0

Typical Performance Curves

Thermal Parameters

Туре		RTHJA	(°C/W)	CTH	$ au_{TH}$	К	
Units	Free Air(1)	Normal(2)	Infinite Heat Sink ⁽³⁾	(10 ⁻⁵ Ws/°C)	(10 ⁻² s)		
All	300	188	90	1.42	0.263	0.008	

Refer to Application Bulletin 105 for use of these constants.

Notes to Thermal Parameters

- Heat transfer minimized by holding unit in still air with minimum heat transferred through leads by conduction.
- (2) Unit mounted in double sided printed circuit board ≈ 0.250 inches (6.35 mm) below plastic. The land areas are 0.080 inches square. This simulates normal use.
- (3) Unit immersed in circulating silicone fluid holding T_{CASE} = 25 °C. This simulates an infinite heat sink.

Typical Performance Curves

Typical Performance Curves

PHOTOSENSORS

PHOTODIODES

PHOTOTRANSISTORS

PHOTODARLINGTONS

Photosensors

Selecting the Right Optek Sensor

The Optek line of photosensors includes four basic infrared-sensitive device types: photodiodes, phototransistors, photodarlingtons and Photologic™ sensors. Each basic type is available in a variety of case styles. For every infrared emitter made by Optek, there is a mechanically and spectrally matched sensor. Case styles include several sizes of hermetic devices, and an even wider variety of plastic encapsulated types. Plastic versions of the popular hermetic T0-18 part are also available, offering improved optical design and drop-in replacement at substantial cost savings.

Important factors to consider when selecting the right device for an application are: operating speed required, available infrared energy, and the desired output current. Depending on the required balance of these design factors, Optek offers a choice of several appropriate types of photosensors.

Photodiodes

PN junction silicon photodiodes have the fastest operating speed of all the photosensors in the Optek product family. Rise and fall times of 100 nanoseconds are typical for these devices. However, light current (Ic) for these devices tends to be low; therefore, additional amplification is almost always required. Nevertheless, where speed considerations predominate, photodiodes are the best option. Figure 3 illustrates typical circuit requirements for the photoconductive and photovoltaic modes of operation.

Photologic™ Devices

Photologic™ is a term Optek uses to refer to complex integrated circuitry combined with a high speed, high sensitivity photodiode on a single silicon chip. Photologic™ devices offer the speed advantage of photodiodes along with a Schmitt trigger and amplifier to directly drive up to eight TTL loads. Medium speed data rates to 250 kbaud are possible with typical output rise and fall times of 25 nanoseconds. These devices are excellent choices where speed, accuracy and logic interface are required. Typical examples include high speed motion encoding, modulated (pulsed) long distance beam interrupt applications, such as touch screens, and track ball type devices for video games or "mouse" applications for computer accessories.

Phototransistors and Photodarlingtons

Phototransistors and photodarlingtons are Optek's most widely used photosensor types. For most traditional applications, NPN silicon phototransistors offer the best value in terms of output current, sensitivity, speed, reliability and quality. Devices with minimum on-state collector currents ranging up to 40 mA are available, while output rise and fall times of 60-100 microseconds (R_{L} =5 $K\Omega$) are typical. Optek phototransistors are 100 percent tested and specified at light levels which range upwards from 1.00mW/cm² with collector-to-emitter voltage (VCE) set at 5.0 volts.

Photodarlingtons provide the higher sensitivity and gain needed for many applications; however, rise and fall times are slower. When switching time is not critical, the choice of a photodarlington can offer improved sensing reliability and reduce the need for additional signal amplification.

Optek Leadership in Advanced Photosensor

Optek scientists and engineers continue to advance the state of the art in Photologic™ monolithic optoelectronic IC's, a product originally conceived and developed by Optek. The next generation of Photologic™ devices will include substantially increased sensitivity, making longer beam distances possible and offering even higher reliability at lower irradiance levels. Direct TTL and CMOS compatibility is also featured with increased sink/source capability. Supply voltage requirements are more flexible than before due to an on-chip voltage regulator designed by Optek. And finally, the new Photologic™ devices will offer a choice of two hysteresis ratios [E_{eT}(+)/E_{eT}(-)] of 2 and 1.4. With these new advancements, Optek continues its leadership role in advanced photosensor design.

Spectral Matching for Improved Coupling Efficency

Optek photosensors are spectrally matched to the Optek line of infrared emitting diodes. Figure 1 shows the spectral response curve for Optek phototransistors, photodarlingtons, and junction photodiodes. The output peak wavelengths for both GaAs and GaAlAs lie very close to the silicon sensitivity peak of about 850 nanometers.

Controlling Ambient Light

The spectral response of silicon extends into the visible light range. This makes the sensors vulnerable to ambient light; particularly from tungsten sources (or the sun) where red light is present. In addition, many of Optek's slotted optical switches shield the sensor in an opaque housing designed to control ambient light. External light filters or controlled modulation of the LED and/or sensor may also be used to reduce the noise from ambient light. As another alternative, most photographic shops can supply infrared passing gelatin filters for laboratory experimentation. For production use, several types of plastic are commercially available with varying degrees of infrared and visible transmissivity (e.g., polysulfone and polycarbonate).

Production Specifications Written for Easy Design

The product specifications in this book were written with ease of design in mind. Emitter output and sensor response levels are specified in terms of milliwatts per square centimeter at separation distances typical for most applications. In addition, as shown in Figure 2, phototransistor collector current versus collector-to-emitter voltage curves are provided for stepped levels of photocurrent (measured in mW/cm²). These curves allow the design-in process to be analogous to the design of a simple transistor amplifier or switching circuit. The application notes appearing in the back of this data book also provide additional information.

Custom Design and Selection for Unique Applications

While the Optek line is the industry's broadest, a unique application requirement may result in the need for custom selection or package design. Call your local Optek sales office for more information.

Figure 1. Photosensor Spectral Response

Figure 2. Collector Current vs Collector to Emitter Voltage

Figure 3. Photodiode in Photovoltaic Mode

Photodiode in Photoconductive Mode

NPN Silicon Photodarlingtons Types OP300SL, OP301SL, OP302SL, OP303SL, OP304SL, OP305SL

Features

- Narrow receiving angle
- Variety of sensitivity ranges
- Enhanced temperature range
- High current gain
- · Ideal for direct mounting in PC boards
- Mechanically and spectrally matched to the OP123 and OP223 series emitters

Description

The OP300SL through OP305SL series devices consist of NPN silicon photodarlingtons mounted in hermetically sealed "Pili" type packages. The narrow receiving angle provides excellent on-axis coupling. Photodarlingtons are normally used in applications where light signal levels are low and more current gain is needed

than is possible with phototransistors.

Replaces

OP300 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Emitter-Collector Voltage
Storage Temperature Range65°C to +150°C
Operating Temperature Range -65°C to +125°C
Soldering Temperature (5 sec. with soldering iron)
Power Dissipation
Continuous Collector Current 50mA

- (1) Refer to Application Bulletin 202 which discusses proper techniques for soldering Pill type devices to PC boards.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
 (3) Derate linearly 0.5mW/°C above 25°C.
- (4) Junction temperature maintained at 25°C.
- (5) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared

Typical Performance Curves

Typical Spectral Response

Types OP300SL Thru OP305SL

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON) ⁽⁴⁾	On-State Collector Current	OP300SL OP301SL OP302SL OP303SL OP304SL OP305SL	0.8 0.8 1.8 3.6 7.0 14.0		2.4 5.4 12.0 21.0	mA mA mA mA mA	V _{CE} = 5.0 V, E _e = 1.00 mW/cm ²⁽⁵⁾
ICEO	Collector Dark Current				1.00	μА	V _{CE} = 10.0 V, E _e = 0
V _(BR) CEO	Collector-Emitter Breakdown Ve	oltage	15.0			٧	Ic = 100 μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			٧	I _E = 100 μA
VCE(SAT) ⁽⁴⁾	Collector-Emitter OP300SL, C Saturation Voltage OP302SL to				1.10 1.10	V V	$I_C = 0.4$ mA, $E_e = 1.0$ mW/cm $^{2(5)}$ $I_C = 1.0$ mA, $E_e = 1.0$ mW/cm $^{2(5)}$

Typical Performance Curves

Switching Time

Test Circuit

Infrared Selected NPN Silicon Phototransistors Types OP505A, OP505B, OP505C, OP505D

Features

- Narrow receiving angle
- Variety of sensitivity ranges
- T-1 package style
- Small package size for space limited applications

Description

The OP505 series devices consist of NPN silicon phototransistors molded in blue tinted epoxy packages. The narrow receiving angle provides excellent on-axis coupling. These devices are 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.

Replaces

K5500 Series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	30V
Emitter-Collector Voltage	.0V
Storage and Operating Temperature Range40°C to +100°C	o°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]	J
iron]	C(1)
Power Dissipation	$N^{(2)}$
Notes	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.33 mW/°C above 25°C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.
- To calculate typical collector dark current in μ A, use the formula $I_{CED} = 10^{(0.040 \text{ T}_A-3.4)}$ where TA is ambient temperature in °C.

Typical Performance Curves

Typical Spectral Response

Types OP505A, OP505B, OP505C, OP505D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current	OP505D OP505C OP505B OP505A	0.55 1.10 2.15 4.30		3.00 5.95	mA mA mA mA	$\begin{array}{c} \text{V}_{\text{CE}} = 5\text{V}, \ \text{E}_{\text{e}} = 0.50\text{mW/cm}^{2(3)} \\ \text{V}_{\text{CE}} = 5\text{V}, \ \text{E}_{\text{e}} = 0.50\text{mW/cm}^{2(3)} \\ \text{V}_{\text{CE}} = 5\text{V}, \ \text{E}_{\text{e}} = 0.50\text{mW/cm}^{2(3)} \\ \text{V}_{\text{CE}} = 5\text{V}, \ \text{E}_{\text{e}} = 0.50\text{mW/cm}^{2(3)} \end{array}$
ΔΙς/ΔΤ	Relative I _C Changes with Temperature			1.00		%/°C	$V_{CE} = 5V, E_{\theta} = 1.00 \text{mW/cm}^2$ $\lambda = 935 \text{nm}$
ICEO	Collector Dark Current				100	nA	$V_{CE} = 10.0V, E_{e} = 0^{(4)}$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30			V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			V	l _E = 100μA
VCE(SAT)	Collector-Emitter Saturation V	oltage			0.40	V	$I_C = 250\mu A, E_0 = 0.50 \text{mW/cm}^2$ $\lambda = 935 \text{nm}^{(3)}$

Typical Performance Curves

Normalized Collector Current vs. Collector to Emitter Voltage

Switching Time Test Circuit

NPN Silicon Phototransistor Type OP505W

Features

- Wide receiving angle
- T-1 package style
- Small package size for space limited applications

Description

The OP505W consists of an NPN silicon phototransistor molded in a blue tinted plastic package. The wide receiving angle provides relatively even reception over a large area. This device is 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5.0V
Storage and Operating Temperature Range	-40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	260°C ⁽¹⁾
Power Dissipation	100mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. (2) Derate linearly 1.33 mW/°C above 25°C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire surface of the phototransistor being tested.
- To calculate typical collector dark current in μ A, use the formula $I_{CED} = 10^{(0.04 \text{ T}_A 3.4)}$ where TA is ambient temperature in °C.

Typical Performance Curves

Typical Spectral Response

Coupling Characteristics of OP165W and OP505W

Types OP505W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Ic(ON)	On-State Collector Current	100.0			μА	$V_{CE} = 5V, E_e = 0.75 \text{mW/cm}^{2(3)}$
ICEO	Collector Dark Current			100	nA	V _{CE} = 10.0V E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30			V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			V	I _E = 100μA
V _{CE(SAT)}	Collector-Emitter Saturation Voltage			0.40	V	$I_C = 50\mu A, E_0 = .75 \text{mW/cm}^{2(3)}$

Typical Performance Curves

NPN Silicon Phototransistors Types OP506A, OP506B, OP506C, OP506D

Features

- Narrow receiving angle
- Variety of sensitivity ranges
- T-1 package style
- Small package size for space limited applications

Description

The OP506 series devices consist of NPN silicon phototransistors molded in blue tinted epoxy packages. The narrow receiving angle provides excellent on-axis coupling. These devices are 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters. Lead spacing is .100 inch (2.54mm).

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5.0V
Storage and Operating Temperature Range	-40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	260°C ⁽¹⁾
Power Dissipation	100mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. (2) Derate linearly 1.33 mW/°C above 25°C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.
- (4) To calculate typical collector dark current in μ A, use the formula $I_{CED} = 10^{(0.040 \text{ T}_A^{-3.4})}$ where TA is ambient temperature in °C.

Typical Performance Curves

Typical Spectral Response

Types OP506A, OP506B, OP506C, OP506D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current	OP506D OP506C OP506B OP506A	0.55 1.10 2.15 4.30		3.00 5.95	mA mA mA mA	$\begin{array}{c} \text{VCE} = \text{5V}, \ \text{E}_{\text{e}} = 0.50 \text{mW/cm}^{2(4)} \\ \text{VCE} = \text{5V}, \ \text{E}_{\text{e}} = 0.50 \text{mW/cm}^{2(4)} \\ \text{VCE} = \text{5V}, \ \text{E}_{\text{e}} = 0.50 \text{mW/cm}^{2(4)} \\ \text{VCE} = \text{5V}, \ \text{E}_{\text{e}} = 0.50 \text{mW/cm}^{2(4)} \end{array}$
ΔΙς/ΔΤ	Relative I _C Changes with Temperature			1.00		%/°C	$V_{CE} = 5V, E_{e} = 1.00 \text{mW/cm}^{2}$ $\lambda = 935 \text{nm}$
ICEO	Collector Dark Current				100	nA	$V_{CE} = 10.0V, E_{e} = 0^{(4)}$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30			V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			V	I _E = 100μA
V _{CE(SAT)}	Collector-Emitter Saturation Voltage				0.40	V	$I_C = 250\mu A, E_e = 0.50 \text{mW/cm}^2$ $\lambda = 935 \text{nm}^{(3)}$

Typical Performance Curves

Switching Time

Test Conditions: Light source is pulsed LED with t_f and $t_f \le 500$ ns. IF is adjusted for VQUT = 1 Volt.

NPN Silicon Phototransistor Type OP506W

Features

- · Wide receiving angle
- T-1 package style
- Small package size for space limited applications

Description

The OP506W consists of an NPN silicon phototransistor molded in a blue tinted plastic package. The wide receiving angle provides relatively even reception over a large area. This device is 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters, Lead spacing is .100 inch (2.54mm).

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5.0V
Storage and Operating Temperature Range	
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. w	ith soldering
iron]	260°C ⁽¹⁾
Power Dissipation	100mW ⁽²⁾
Notes	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.33 mW/°C above 25°C.
- Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.
- (4) To calculate typical collector dark current in μA , use the formula $I_{CED} = 10^{(0.04 \text{ T}_A 3.4)}$ where TA is ambient temperature in °C.

Typical Performance Curves

Typical Spectral Response

Coupling Characteristics

Type OP506W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current	100			μА	$V_{CE} = 5V, E_{\theta} = 0.75 \text{mW/cm}^{2(3)}$
ICEO	Collector Dark Current			100	nA	V _{CE} = 10.0V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30			V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			V	I _E = 100μA
V _{CE(SAT)}	Collector-Emitter Saturation Voltage			0.40	V	$I_C = 50\mu A, E_\theta = .75 \text{mW/cm}^{2(3)}$

NPN Silicon Phototransistors Types OP508FA, OP508FB, OP508FC

Features

- Flat lensed for wide acceptance angle
- Easily stackable on 0.100 inch (2.54mm) hole centers
- Low cost plastic package
- Mechanically and spectrally matched to the OP168F and OP268F series of infrared emitting diodes

Description

The OP508F series consist of NPN silicon phototransistors mounted in flat, black plastic, "end looking" packages. The flat sensing surface allows an acceptance half angle of 60° measured from the optical axis to the half power point. The black plastic package significantly reduces ambient light noise. These devices can be mounted on 0.100" (2.54mm) hole centers, making them an ideal low cost alternate to hermetic pill discretes.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	
Emitter-Collector Voltage	
Storage and Operating Temperature Range	
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	
iron] 260°C ⁽¹⁾	
Power Dissipation	
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. Maximum 20 grams force may be applied to the leads when soldering.

 (2) Derate linearly 1.33 mW/°C above 25°C.

 (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a
- radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.
- (4) To calculate typical collector dark current in μ A, use the formula $I_{CEO} = 10^{(0.040T_A^{-3.4})}$ where T_A is ambient temperature in °C.

Typical Performance Curves

Types OP508FA, OP508FB, OP508FC

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current	OP508FC OP508FB OP508FA	0.34 0.65 2.70		5.10	mA	$V_{CE} = 5.0V$, $E_e = 5 \text{mW/cm}^{2(3)}$
Ic/ΔT	Relative I _C Change with Temp	erature		1.00		%/°C	$V_{CE} = 5.0V$, $E_e = 1.0 \text{mW/cm}^{2(3)} \lambda = 890 \text{nm}$
ICEO	Collector-Dark Current				100	nA	$V_{CE} = 10.0V, E_{e} = 0^{(4)}$
V _(BR) CEO	Collector-Emittor Breakdown \	/oltage	30			٧	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown \	/oltage	5.0			٧	I _E = 100μA
VCE(SAT)	Collector-Emitter Saturation Ve	oltage			0.40	V	$I_C = 100\mu A$, $E_e = 5 \text{mW/cm}^{2(3)}$

Typical Performance Curves

Switching Time

Test Circuit

NPN Silicon Phototransistors Types OP509A, OP509B, OP509C

Features

- · Lensed for high sensitivity
- Easily stackable on 0.100 inch (2.54mm) hole centers
- Low cost plastic package
- Mechanically and spectrally matched to the OP169 and OP269 series of infrared emitting diodes

Description

The OP509 series consist of NPN silicon phototransistors mounted in lensed, clear plastic, "end looking" packages. The lensing effect of the package allows an acceptance half angle of 25° measured from the optical axis to the half power point.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Emitter-Collector Voltage
Storage and Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron] 260°C(1)
Power Dissipation 100mW ⁽²⁾
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. Maximum 20 grams force may be applied to the leads when soldering. Derate linearly 1.33 mW/°C above 25°C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.
- (4) To calculate typical collector dark current in μA , use the formula $I_{CEO}=10^{(0.040T} A^{-3.4)}$ where T_A is ambient temperature in $^{\circ}C$.

Typical Performance Curves

Typical Spectral Response

(214) 323-2200

Types OP509A, OP509B, OP509C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current OP509C OP509B OP509A	0.7 1.4 5.7		10.6	mA	$V_{CE} = 5.0V, E_e = 5 \text{mW/cm}^{2(3)}$
Ις/ΔΤ	Relative I _C Change with Temperature		1.00		%/°C	$V_{CE} = 5.0V$, $E_0 = 1.0$ mW/cm ²⁽³⁾ $\lambda = 890$ nm
ICEO	Collector-Dark Current			100	nA	$V_{CE} = 10.0V, E_e = 0^{(4)}$
V _{(BR)CEO}	Collector-Emittor Breakdown Voltage	30			٧	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			٧	I _E = 100μA
VCE(SAT)	Collector-Emitter Saturation Voltage			0.40	V	$I_C = 250\mu A, E_e = 5 \text{mW/cm}^{2(3)}$

NPN Silicon Photodarlington Type OP535A, OP535B, OP535C

Features

- Narrow receiving angle
- T-1 package style
- High current gain
- Small package size for space limited applications

Description

The OP535 consists of an NPN silicon photodarlington molded in a green plastic package. The narrow receiving angle provides excellent on-axis coupling. These devices are 100% production tested using infrared light for close correlation with Optek GaAs and GaAlAs emitters. Photodarlington devices are normally used in applications where light signal levels are low and more current gain is needed than is possible with phototransistors.

Replaces

OP530 and K9000

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Emitter-Collector Voltage
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature (1/16 inch (1 6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Neteo

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.33 mW/°C above 25°C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.

Typical Performance Curves

Typical Spectral Response

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Types OP535A, OP535B, OP535C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON) ⁽³⁾	On-State Collector Current OP5356 OP5351 OP5357	3.5		32.0	mA	V _{CE} = 5.0 V, E _e = 0.13 mW/cm ²
ICEO	Collector Dark Current			100	nA	V _{CE} = 10.0 V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15.0			٧	$I_C = 1.0 \text{ mA}, E_e = 0$
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			٧	$I_E = 100 \mu\text{A}, E_e = 0$
VCE(SAT)(3)	Collector-Emitter Saturation Voltage			1.10	V	$I_C = 0.4 \text{ mA}, E_e = 0.13 \text{ mW/cm}^2$

Typical Performance Curves

Switching Time

NPN Silicon Photodarlingtons Types OP538FA, OP538FB, OP538FC

Features

- Flat lensed for wide acceptance angle
- Easily stackable on 0.100 inch (2.54mm) hole centers
- · Low cost plastic package
- Mechanically and spectrally matched to the OP168F and OP268F series of infrared emitting diodes

Description

The OP538F series consists of NPN silicon photodarlingtons mounted in flat lensed, black plastic, "end looking" packages. The flat sensing surface allows an acceptance half angle of 65° measured from the optical axis to the half power point. The black plastic package significantly reduces ambient light noise. These devices can be mounted on 0.100" (2.54mm) hole centers making them an ideal low cost alternative to hermetic pill discretes.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Emitter-Collector Voltage
Storage and Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
iron] 260°C ⁽¹⁾
Power Dissipation
Notes:

- RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. Maximum 20 grams force may be applied to the leads when soldering.
 Derate linearly 1.33 mW/°C above 25°C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.
- (4) Due to high gain of photodarlington, a load resistor should be used to avoid thermal runaways.

Typical Performance Curves

Typical Spectral Response

(214) 323-2200

Types OP538FA, OP538FB, OP538FC

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON) ⁽⁴⁾	On-State Collector Current	OP538FC OP538FB OP538FA	1.1 2.3 6.8		20.5	mA	$V_{CE} = 5.0V$, $E_e = 0.5 \text{mW/cm}^{2(3)}$
ICEO	Collector-Dark Current				225	nA	V _{CE} = 10.0V, E _e = 0
V _{(BR)CEO}	Collector-Emittor Breakdown Vo	oltage	15.0			V	I _C = 1.00mA, E _e = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Vo	oltage	5.0			٧	$I_E = 100\mu A, E_e = 0$
VCE(SAT)	Collector-Emitter Saturation Vol-	tage			1.00	٧	$I_C = 0.5 \text{mA}, E_e = 0.5 \text{mW/cm}^{2(3)}$

Typical Performance Curves

Switching Time

Test Circuit

NPN Silicon Phototransistors Types OP550A, OP550B, OP550C, OP550D

Features

- Wide receiving angle
- Variety of sensitivity ranges
- Side-looking package for space limited applications

Description

The OP550 series devices consist of NPN silicon phototransistors molded in clear epoxy packages. The wide receiving angle provides relatively even reception over a large area. The side-looking package is designed for easy PC board mounting of slotted optical switches or optical interrupt detectors. This series is mechanically and spectrally matched to the OP140 and OP240 series of infrared emitting diodes.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	٥V
Emitter-Collector Voltage	0V
Storage and Operating Temperature Range40°C to +100°	°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	41
iron]	(1)
Power Dissipation	J ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. (2) Derate linearly 1.33mW/°C above 25°C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.
- (4) To calculate typical collector dark current in μ A, use the formula I_{CED} = $10^{(0.040 \text{ T}_A^{-3.4})}$ where TA is ambient temperature in °C.

Typical Performance Curves

Types OP550A, OP550B, OP550C, OP550D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current OP550I OP5500 OP550I OP550I	0.25		2.40 4.70	mA mA mA	$V_{CE} = 5.0V$, $E_{e} = 1.0$ mW/cm $^{2(3)}$
ΔΙς/ΔΤ	Relative I _C Changes with Temperature		1.00		%/°C	$V_{CE} = 5.0V, E_e = 1.00 \text{mW/cm}^2$ $\lambda = 935 \text{nm}$
ICEO	Collector Dark Current		100		nA	$V_{CE} = 10.0V, E_e = 0^{(4)}$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage				٧	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage				V	I _E = 100μA
VCE(SAT)	Collector-Emitter Saturation Voltage		0.40		V	$I_C = 100\mu A, E_e = 1.0 \text{mW/cm}^{2(3)}$

NPN Silicon Phototransistors Types OP555A, OP555B, OP555C, OP555D

Features

- Wide receiving angle
- Variety of sensitivity ranges
- Side-looking package for space limited applications

Description

The OP555 series devices consist of NPN silicon phototransistors molded in blue tinted epoxy packages. The wide receiving angle provides relatively even reception over a large area. The side-looking package is designed for easy PC board mounting of slotted optical switches or optical interrupt detectors. The lensing effect of the package allows an acceptance half angle of 28°C measured from the optical axis to the half power point. These devices are 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.

Replaces

K5550

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Emitter-Collector Voltage
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.33mW/°C above 25°C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.
- To calculate typical collector dark current in μA , use the formula $I_{CED}=10^{(0.040~T}A^{-3.4)}$ where TA is ambient temperature in °C.

Typical Performance Curves

Typical Spectral Response

Coupling Characteristics of OP145 and OP555

Types OP555A, OP555B, OP555C, OP555D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current	OP555D OP555C OP555B OP555A	0.25 0.25 1.30 2.55		2.40 4.70	mA mA mA mA	$V_{CE} = 5.0V$, $E_e = 1.0 \text{mW/cm}^{2(3)}$
ΔΙς/ΔΤ	Relative I _C Changes with Tem	perature		1.00		%/°C	$V_{CE} = 5.0V$, $E_e = 1.0 \text{mW/cm}^2$ $\lambda = 935 \text{nm}$
ICEO	Collector Dark Current				100	nA	$V_{CE} = 10.0V, E_e = 0^{(4)}$
V _{(BR)CEO}	Collector-Emitter Breakdown \	/oltage	30			٧	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown \	/oltage	5.0			V	I _E = 100μA
VCE(SAT)	Collector-Emitter Saturation Vo	oltage			0.40	V	$I_C = 100\mu A, E_e = 1.0 \text{mW/cm}^{2(3)}$

Typical Performance Curves

Switching Time

NPN Silicon Photodarlington Types OP560A, OP560B, OP560C

Features

- Variety of sensitivity ranges
- High current gain
- Side-looking package for space limited applications

Description

The OP560 series consists of NPN silicon photodarlingtons molded in clear epoxy packages. The lensing effect allows an acceptance half angle of 28° measured from the optical axis to the half power point. Photodarlington devices are normally used in applications where light signal levels are low and more current gain is needed than is possible with phototransistors. The side-looking package is designed for easy PC board mounting of slotted optical switches or optical interrupt detectors. These devices are 100% production tested using infrared light for close correlation with Optek GaAs and GaAlAs emitters.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	15.0V
Emitter-Collector Voltage	5.0V
Storage and Operating Temperature Range40°C	C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with s	soldering
iron]	260°C(1)
Power Dissipation	. 100mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. (2) Derate linearly 1.33 mW/°C above 25°C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.

Typical Performance Curves

100 % 80 Relative Response -60 20 RÓO

Typical Spectral Response

(214) 323-2200

Wavelength - nm

Types OP560A, OP560B, OP560C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Ic(on)	On-State Collector Current	OP560C OP560B OP560A	1.1 3.3 6.6		9.8	mA mA mA	$V_{CE} = 2V, E_{\theta} = .1 \text{mW/cm}^{2(3)}$ $V_{CE} = 2V, E_{\theta} = .1 \text{mW/cm}^{2(3)}$ $V_{CE} = 2V, E_{\theta} = .1 \text{mW/cm}^{2(3)}$
ICEO	Collector Dark Current				100	nA	V _{CE} = 10.0V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage/	15.0			V	I _C = 1.00mA, E _e = 0
V _{(BR)ECO}	Emitter-Collector Breakdown V	/oltage	5.0			V	$I_E = 100 \mu A, E_\theta = 0$
VCE(SAT)	Collector-Emitter Saturation Vo	oltage			1.10	V	$I_C = .4 \text{mA}, E_e = .10 \text{mW/cm}^{2(3)}$

Typical Performance Curves

Switching Time

NPN Silicon Photodarlington Types OP565A, OP565B, OP565C

Features

- Variety of sensitivity ranges
- High current gain
- Side-looking package for space limited applications

Description

The OP565 series consist of NPN silicon photodarlingtons molded in green-tinted epoxy packages. The lensing effect allows an acceptance half angle of 28° measured from the optical axis to the half power point. Photodarlington devices are normally used in applications where light signal levels are low and more current gain is needed than is possible with phototransistors. The side-looking package is designed for easy PC board mounting of slotted optical switches or optical interrupt detectors. These devices are 100% production tested using infrared light for close correlation with Optek GaAs and GaAlAs emitters.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	5.0V
Emitter-Collector Voltage	5.0V
Storage and Operating Temperature Range40°C to +10	00°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	g ,
iron]	³ C(1)
Power Dissipation	W ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.33 mW/°C above 25°C.
- Light source is an unfiltered GaAs LED with a peak emission wavelength of 930nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.

Typical Performance Curves

100

Types OP565A, OP565B, OP565C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current	OP565C OP565B OP565A	1.1 3.3 6.6		9.8	mA mA mA	$\begin{array}{c} V_{CE} = 2V, \; E_{e} = .10 mW/cm^{2(3)} \\ V_{CE} = 2V, \; E_{e} = .10 mW/cm^{2(3)} \\ V_{CE} = 2V, \; E_{e} = .10 mW/cm^{2(3)} \end{array}$
ICEO	Collector Dark Current				100	nA	V _{CE} = 10.0V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage	15.0			V	$I_C = 1.00$ mA, $E_e = 0$
V _{(BR)ECO}	Emitter-Collector Breakdown V	'oltage	5.0			V	$I_E = 100 \mu A, E_e = 0$
V _{CE} (SAT)	Collector-Emitter Saturation Vo	oltage			1.1	V	$I_C = .40$ mA, $E_e = .10$ mW/cm $^{2(3)}$

NPN Plastic Silicon Phototransistors Types OP593, OP598 Series

Features

- Wide receiving angle
- Variety of sensitivity ranges
- TO-18 equivalent package style

Description

The OP593/598 series consist of NPN silicon phototransistors molded in dark blue epoxy packages. The wide receiving angle provides relatively even reception over a large area. These devices are 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Emitter-Collector Voltage
Continuous Collector Current
Storage and Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 3.33 mW/°C above 25°C.
- VCE = 5V. Light source is an unfiltered GaAIAs emitting diode operating at peak emission wavelength of 890nm and E_{e(APT)} of 1.7mW/cm² average within a .250" dia. aperture.
- This dimension is held to within ± 0.005 " on the flange edge and may vary up to ± 0.020 " in the area of the leads.

Typical Performance Curves

Typical Spectral Response

Normalized Collector Current vs. Ambient Temperature Test Conditions: RELATIVE COLLECTOR CURRENT E_e = 1 mW/cm² VcF = 5 Volts Light source is 125 unfiltered tunasten @ CT = 2870°K 125 TA - AMBIENT TEMPERATURE - °C

Types OP593, OP598 Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current	OP593C OP593B OP593A	1.0 2.0 3.0		4.0	mA mA mA	See Note (3) See Note (3) See Note (3)
		OP598C OP598B OP598A	2.5 5.0 7.5		10.0	mA mA mA	See Note (3) See Note (3) See Note (3)
ICEO	Collector Dark Current				100	nA	V _{CE} = 10.0V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown \	/oltage	30			V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown \	/oltage	5.0			V	l _E = 100μA
VCE(SAT)	Collector-Emitter Saturation Vo	oltage			0.40	V	$I_C = 0.40 \text{mA},$ $E_e = 1.7 \text{mW/cm}^{2(3)}$

Types OP593, OP598 Series

NPN Plastic Silicon Phototransistors Type OP599 Series

Features

- Variety of sensitivity ranges
- T-1 3/4 package style

Description

The OP599 series phototransistor consists of an NPN silicon phototransistor mounted in a dark blue plastic injection molded shell package. The narrow receiving angle provides excellent on-axis coupling. The sensors are 100% production tested for close correlation with Optek GaAlAs emitters.

Optek's packaging process provides excellent optical and mechanical axis alignment. The shell also provides excellent optical lens surface, control of chip placement, and consistency of the outside package dimensions.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	30 V
Emitter-Collector Voltage	5.0 V
Continuous Collector Current	
Storage and Operating Temperature Range	-40°C to +100°C
Lead Soldering Temperature (1/16 inch [1.6 mm] from case for 5 sec	. with
soldering iron)	260°C ⁽¹⁾
Power Dissipation	100 mW ⁽²⁾
Alaka a.	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.33 mW/°C above 25°C.
- V_{CE} = 5 V. Light source is an unfiltered GaAlAs emitting diode operating at peak emission wavelength of 890 nm and $E_{e(APT)}$ of .25 mW/cm²
- (4) This dimension is held to within ± 0.005 " on the flange edge and may vary up to ± 0.020 " in the area of the leads.

Typical Performance Curves

Typical Spectral Response

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Types OP599

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
IC(ON)	On-State Collector Current	OP599D OP599C OP599B OP599A	0.20 0.40 1.20 2.35		1.95 3.85		See Note (3) See Note (3) See Note (3) See Note (3)
ICEO	Collector Dark Current				100	nA	$V_{CE} = 10.0 \text{ V}, E_e = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30			٧	I _C = 100 μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			٧	I _E = 100 μA
V _{CE} (SAT)	Collector-Emitter Saturation Voltage				0.40	٧	$I_C = 100 \mu A$ $E_e = 0.25 \text{ mW/cm}^{2(3)}$

NPN Silicon Phototransistors Types OP600A, OP600B, OP600C

Features

- · Narrow receiving angle
- · Variety of sensitivity ranges
- Enhanced temperature range
- Ideal for direct mounting in PC boards
- Mechanically and spectrally matched to the OP123 and OP223 series devices
- TX/TXV processing available (see Hi-Rel section)

Description

The OP600 series device consists of an NPN silicon phototransistor mounted in a hermetically sealed "Pill" type package. The narrow receiving angle provides excellent on-axis coupling. These devices are 100% production tested using infrared light for close correlation with Optek GaAs and GaAlAs emitters.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Emitter-Collector Voltage 5.0V
Storage Temperature Range65°C to +150°C
Operating Temperature Range -65°C to +125°C
Soldering Temperature (5 sec. with soldering iron)
Power Dissipation
Continuous Collector Current
Notes:

- Refer to Application Bulletin 202 which discusses proper techniques for soldering Pill type devices to PC boards.
- 2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 0.5mW/°C above 25°C.
 (4) Junction temperature maintained at 25°C.
- (5) Light source is a GaAlAs LED, peak Wavelength = 890nm, providing an irradiance of 2.5mW/cm². The source irradiance is not necessarily uniform over the entire lens area of the unit under test.

Typical Performance Curves

Types OP600A, OP600B, OP600C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{C(ON)} ⁽⁴⁾	On-State Collector Current OP600C OP600B OP600A	0.30 0.60 1.20		1.8	mA mA mA	$V_{CE} = 5V, E_e = 2.5 \text{mW/cm}^{2(5)}$ $V_{CE} = 5V, E_e = 2.5 \text{mW/cm}^{2(5)}$ $V_{CE} = 5V, E_e = 2.5 \text{mW/cm}^{2(5)}$
ICEO	Collector Dark Current			100	nA	V _{CE} = 10.0V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	25			٧	$I_C = 100 \mu A$
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0	l		V	$I_E = 100 \mu A$
V _{CE(SAT)} ⁽⁴⁾	Collector-Emitter Saturation Voltage			0.40	٧	$I_C = 0.15$ mA, $E_e = 2.5$ mW/cm $^{2(5)}$
t _r t _f	Rise Time Fall Time		15.0 15.0		μs μs	V_{CC} = 5.0V, I_{C} = 0.80mA, R_{L} = 1.0k Ω , See Test Circuit

Typical Performance Curves

Switching Time

Test Circuit

NPN Silicon Phototransistors Types OP641SL, OP642SL, OP643SL, OP644SL

Features

- · Narrow receiving angle
- Variety of sensitivity ranges
- Enhanced temperature range
- Ideal for direct mounting in PC boards
- Mechanically and spectrally matched to the OP123 and OP223 series LED's

Description

The OP641SL series devices consist of NPN silicon phototransistors mounted in hermetically sealed packages. The narrow receiving angle provides excellent on-axis coupling.

Replaces

OP600, OP640 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Storage Temperature Range65°C to +150°C
Operating Temperature Range -65°C to +125°C
Soldering Temperature (5 sec. with soldering iron)
Power Dissipation
Continuous Collector Current
Notes:

- (1) Refer to Application Bulletin 202 which discusses proper techniques for soldering Pill type devices to PC boards.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (3) Derate linearly 0.5mW/°C above 25°C.
- (4) Junction temperature maintained at 25°C
- (5) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.

Typical Performance Curves

Types OP641SL, OP642SL, OP643SL, OP644SL

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{C(ON)} ⁽⁴⁾	On-State Collector Current	OP641SL OP642SL OP643SL OP644SL	0.5 2.0 4.0 7.0		3.0 5.0 8.0 22.0	mA mA mA mA	$\begin{array}{l} V_{CE} = 5V, \ E_{e} = 20mW/cm^{2(5)} \\ \end{array}$
ICEO	Collector Dark Current				100	nA	V _{CE} = 10.0V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown	Voltage	25			٧	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown	Voltage	5.0			٧	I _E = 100μA
VCE(SAT)(4)	Collector-Emitter Saturation \	/oltage			0.40	٧	$I_C = 0.4 \text{mA}, E_e = 20 \text{mW/cm}^{2(5)}$
tr tf	Rise Time Fall Time			15.0 15.0		μs μs	$V_{CC} = 5.0V$, $I_C = 0.80mA$, $R_L = 1.0k\Omega$, (See Test Circuit)

Typical Performance Curves

Switching Time

Test Circuit

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

NPN Silicon Phototransistors Types OP800A, OP800B, OP800C, OP800D

Features

- Narrow receiving angle
- · Variety of sensitivity ranges
- Enhanced temperature range
- TO-18 hermetically sealed package
- Mechanically and spectrally matched to the OP130 and OP230 series LED's
- TX-TXV process available (see Hi-Rel section)

Description

The OP800 series devices consist of NPN silicon phototransistors mounted in hermetically sealed packages. The narrow receiving angle provides excellent on-axis coupling. These devices are 100% tested using infrared light for close correlation with Optek GaAs and GaAlAs emitters. TO-18 packages offer high power dissipation and superior hostile environment operation. The base lead is bonded to enable conventional transistor biasing.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage 5.0V
Emitter-Collector Voltage 5.0V
Continuous Collector Current
Storage Temperature Range65°C to +150°C
Operating Temperature Range65°C to +125°C
Lead Soldering Temperature Range [1/16 inch (1.6mm) 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (2) Derate linearly 2.5mW/°C above 25°C.
- (3) Junction temperature maintained at 25°C.
- (4) Light source is a GaAlAs LED, 890nm peak emission wavelength, providing a 0.5mW/cm² radiant intensity on the unit under test. The intensity level is not necessarily uniform over the lens area of the unit under test.

Typical Performance Curves

Types OP800A, OP800B, OP800C, OP800D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{С(ОN)} ⁽³⁾	(OP800D OP800C OP800B OP800A	0.45 0.90 1.80 3.60		3.60 5.40	mA mA mA mA	$\begin{array}{l} V_{CE} = 5V, \ E_{e} = 0.5 mW/cm^{2(4)} \\ V_{CE} = 5V, \ E_{e} = 0.5 mW/cm^{2(4)} \\ V_{CE} = 5V, \ E_{e} = 0.5 mW/cm^{2(4)} \\ V_{CE} = 5V, \ E_{e} = 0.5 mW/cm^{2(4)} \end{array}$
Iceo	Collector Dark Current				100	nA	V _{CE} = 10.0V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage	30			٧	I _C = 100μA
V _{(BR)CBO}	Collector-Base Breakdown Vol	tage	30			٧	$I_C = 100 \mu A$
V _{(BR)ECO}	Emitter-Collector Breakdown V	oltage	5.0			٧	I _E = 100μA
V _{(BR)EBO}	Emitter-Base Breakdown Volta	ge	5.0			٧	I _E = 100μA
VCE(SAT)(3)	Collector-Emitter Saturation Vo	ltage			0.40	٧	$I_C = 0.15$ mA, $E_e = 0.5$ mW/cm $^{2(4)}$
tr tr	Rise Time Fall Time			7.0 7.0		μs μs	$V_{CC} = 5V$, $I_C = 0.80mA$, $R_L = 100\Omega$, (See Test Circuit)

Typical Performance Curves

Switching Time

NPN Silicon Phototransistors Types OP800SL, OP801SL, OP802SL, OP803SL, OP804SL, OP805SL

Features

- Narrow receiving angle
- Variety of sensitivity ranges
- Enhanced temperature range
- TO-18 hermetically sealed package
- Mechanically and spectrally matched to the OP130 and OP231 series of infrared emitting diodes
- TX/TXV processing available

Description

The OP800SL series device consists of an NPN silicon phototransistor mounted in a hermetically sealed package. The narrow receiving angle provides excellent on-axis coupling. TO-18 packages offer high power dissipation and superior hostile environment operation. The base lead is bonded to enable conventional transistor biasing.

Replaces

OP800 and K5251 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Emitter-Collector Voltage
Continuous Collector Current 50mA
Storage Temperature Range65°C to +150°C
Operating Temperature Range65°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (2) Derate linearly 2.5mW/°C above 25°C.
- (3) Junction temperature maintained at 25°C.
- (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.

Typical Performance Curves

Typical Spectral Response

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Types OP800SL thru OP805SL

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Ic(on)	On-State Collector Current	OP800SL OP801SL OP802SL OP803SL OP804SL OP805SL	0.5 0.5 2.0 4.0 7.0 15.0		3.0 5.0 8.0 22.0	mA mA mA mA mA	$\begin{array}{c} V_{CE} = 5V, \; E_{e} = 5mW/cm^{2(3)(4)} \\ V_{CE} = 5V, \; E_{e} = 5mW/cm^{2(3)(4)} \\ V_{CE} = 5V, \; E_{e} = 5mW/cm^{2(3)(4)} \\ V_{CE} = 5V, \; E_{e} = 5mW/cm^{2((3)4)} \end{array}$
ICEO	Collector Dark Current				100	nA	V _{CE} = 10.0V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30			V	I _C = 100μA
V _{(BR)CBO}	Collector-Base Breakdown Voltage		30			V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			V	I _E = 100μA
V _{(BR)EBO}	Emitter-Base Breakdown Voltage		5.0			V	I _E = 100μA
VCE(SAT)	Collector-Emitter Saturation V	oltage			0.4	V	I _C = 0.40mA, E _θ = 5.0mW/cm ²⁽⁴⁾
t _r	Rise Time Fall Time			7.0 7.0		μs μs	$V_{CC} = 5.0V$, $I_C = 0.80mA$ $R_L = 100\Omega$, See Test Circuit

Typical Performance Curves

Switching Time

Test Circuit

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

NPN Silicon Phototransistors Types OP800WSL, OP801WSL, OP802WSL

Features

- Wide receiving angle
- Variety of sensitivity ranges
- Enhanced temperature range
- TO-18 hermetically sealed package
- Mechanically and spectrally matched to the OP130W and OP231W series emitters

Description

The OP800WSL series device consists of an NPN silicon phototransistor mounted in a hermetically sealed package. The wide receiving angle provides relatively even reception over a large area. TO-18 packages offer high power dissipation and superior hostile environment operation.

Replaces

OP800W and K5201 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Emitter-Collector Voltage
Continuous Collector Current 50mA
Storage Temperature Range65°C to +150°C
Operating Temperature Range65°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
 - (2) Derate linearly 2.5mW/°C above 25°C. Junction temperature maintained at 25°C.
 - (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.

Typical Performance Curves

100 % ₈₀ 60

Types OP800WSL, OP801WSL, OP802WSL

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{C(ON)} ⁽³⁾	On-State Collector Current	OP800WSL OP801WSL OP802WSL	0.3 0.5 2.5		3.0	mA mA mA	$\begin{array}{c} V_{CE} = 5V, \; E_{e} = 5mW/cm^{2(4)} \\ V_{CE} = 5V, \; E_{e} = 5mW/cm^{2(4)} \\ V_{CE} = 5V, \; E_{e} = 5mW/cm^{2(4)} \end{array}$
ICEO	Collector Dark Current				100	nA	$V_{CE} = 10.0V, E_e = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30			V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			V	I _E = 100μA
VCE(SAT) ⁽³⁾	Collector-Emitter Saturation Vo	oltage			0.4	V	$I_C = 0.40 \text{mA},$ $E_\theta = 5.0 \text{mW/cm}^{2(4)}$
t _r t _f	Rise Time Fall Time			7.0 7.0		μs μs	V_{CC} = 5.0V, I_{C} = 0.80mA R_{L} = 100 Ω , See Test Circuit

Typical Performance Curves

Test Circuit

NPN Silicon Photodarlington Type OP830SL

Features

- Narrow receiving angle
- Enhanced temperature range
- Excellent thermal characteristics
- TO-18 hermetically sealed package
- Mechanically and spectrally matched to the OP130 and OP231 series of infrared emitting diodes

Description

The OP830SL consists of an NPN silicon photodarlington mounted in a hermetically sealed package. The narrow receiving angle provides excellent on-axis coupling. Photodarlington devices are normally used in applications where light signal levels are low and more current gain is needed than is possible with phototransistors. TO-18 packages offer high power dissipation and superior hostile environment operation.

Replaces

OP830 and K9020 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	٧
Emitter-Collector Voltage	Ų
Continous Collector Current	
Storage Temperature Range65°C to +150°C	С
Operating Temperature Range65°C to +125°C	С
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	
iron]	1)
Power Dissipation	2)
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 2.5 mW/°C above 25°C. (3) Junction temperature maintained at 25°C.
- (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source

Typical Performance Curves

Type OP830SL

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Ic(ON) ⁽³⁾	On-State Collector Current	15.0			mA	$V_{CE} = 5V, E_e = 0.50 \text{mW/cm}^{2(4)}$
ICEO	Collector Dark Current			1.0	μА	$V_{CE} = 10.0V, E_e = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15.0			V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			V	I _E = 100μA
V _{CE(SAT)} ⁽³⁾	Collector-Emitter Saturation Voltage			1.20	V	I _C = 1.00mA, E _e = 0.50mW/cm ²⁽⁴⁾

Typical Performance Curves

Switching Time

Test Circuit

NPN Silicon Photodarlington Type OP830WSL

Features

- Wide receiving angle
- Enhanced temperature range
- Excellent thermal characteristics
- TO-18 hermetically sealed package
- Mechanically and spectrally matched to the OP130W and OP231W series of infrared emitting diodes

Description

The OP830WSL consists of an NPN silicon photodarlington mounted in a hermetically sealed package. The wide receiving angle provides relatively even reception over a large area. Photodarlington devices are normally used in applications where light signal levels are low and more current gain is needed than is possible with phototransistors. TO-18 packages offer high power dissipation and superior hostile environment operation.

Replaces

OP830W and K9030 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage
Emitter-Collector Voltage
Continous Collector Current 50mA
Storage Temperature Range65°C to +150°C
Operating Temperature Range55°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 2.5 mW/°C above 25°C.
- (3) Junction temperature maintained at 25°C.
- (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.

Typical Performance Curves

Wavelength - nm

Typical Spectral Response

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

OP830WSL

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{C(ON)} (3)	On-State Collector Current	4.0			mA	$V_{CE} = 5V, E_e = 0.50 \text{mW/cm}^{2(4)}$
ICEO	Collector Dark Current			1.0	μА	V _{CE} = 10.0V
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15.0			V	$I_C = 100 \mu A$
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			V	I _E = 100μA
VCE(SAT) ⁽³⁾	Collector-Emitter Saturation Voltage			1.20	V	$I_C = 1.00$ mA, $E_e = 0.50$ mW/cm ²⁽⁴⁾

Typical Performance Curves

Switching Time

PN Junction Silicon Photodiode Type OP900SL

Features

- Narrow receiving angle
- Enhanced temperature range
- ideal for direct mounting in PC boards
- Fast switching speed
- Mechanically and spectrally matched to the OP123 series emitters
- Linear response vs. irradiance

Description

The OP900SL consists of a PN junction silicon photodiode mounted in a miniature, glass lensed, hermetically sealed "Pill" package. The lensing effect allows an acceptance half angle of 18° measured from the optical axis to the half power point.

Replaces

OP900 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Storage Temperature Range65°C to +150°C
Operating Temperature Range65°C to +125°C
Soldering Temperature (5 sec. with soldering iron)
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- Derate linearly 0.5mW/°C above 25°C
- (3) Junction temperature maintained at 25°C.
 - Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.

Typical Performance Curves

Typical Spectral Response

Type OP900SL

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IL.	Light Current	8.0	14.0		μА	$V_R = 10V, E_e = 20 \text{mW/cm}^{2(3)(4)}$
lD	Dark Current			10.0	nA	$V_R = 10.0V, E_e = 0^{(3)}$
V _{(BR)R}	Reverse Voltage Breakdown	100	150		V	I _R = 100μA
tr tr	Rise Time Fall Time		100 100		ns ns	$V_R = 50V$, $I_L = 8.0 \mu A$ $R_L = 1.00 k \Omega$, (See Test Circuit)

Typical Performance Curves

Switching Time

Test Circuit

PIN Silicon Photodiodes Types OP913SL, OP913WSL

Features

- Wide or Narrow receiving angle available
- Large active area (.115" x .115")
- Fast switching time
- Linear response vs irradiance
- Enhanced temperature range

Description

The OP913SL and OP913WSL each consist of a PIN silicon photodiode mounted in a two-leaded, TO-5 hermetically sealed package. The lensing effect of the OP913SL allows an acceptance angle of 10° measured from the optical axis to the half power point. The flat lens of the OP913WSL has an acceptance half angle of 30°. The large active area allows very low light level detection.

Replaces

OP913 and OP913W

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	32V
Storage Temperature Range	
Operating Temperature Range	-65°C to +125°C
Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with iron]	
iron]	260°C ⁽¹⁾
Power Dissipation	150mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
 - (2) Derate linearly 1.5mW/°C above 25°C.
 - (3) Junction temperature maintained at 25°C.
 - (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.
 - (5) At any particular wavelength the flux responsivity, Rθ, is the ratio of the diode photocurrent to the radiant flux producing it. Rθ is related to quantum efficiency by:

$$R_{\Theta} = \eta q \left(\frac{\lambda}{1240} \right)$$

Where ηq is the quantum efficiency in electrons per photon and λ is the wavelength in nanometers. Thus at 900 nm, 0.60 AW corresponds to a quantum efficiency of 83%.

(6) NEP is the radiant flux at a specified wavelength, required for unity signal-to-noise ratio normalized for bandwidth.

NEP =
$$\frac{I_N/\sqrt{\Delta f}}{R_{\Theta}}$$
 where $I_N/\sqrt{\Delta f}$ is the bandwidth normalized shot noise.

NEP calculation is made using responsivity at peak sensitivity wavelength, with spot noise measurement at 1000 Hz in a noise bandwidth of 6Hz. (λ , f, Δ f) = (λ p,1000 Hz, 6 Hz).

Types OP913SL, OP913WSL

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
lL	Reverse Light Current	OP913SL OP913WSL	120 40			μ Α μ Α	$V_R = 5V$, $E_e = 5mW/cm^{2(3)(4)}$ $V_R = 5V$, $E_e = 5mW/cm^{2(3)(4)}$
lD	Reverse Dark Current				25	nA	V _R =10.0V, E _e =0 ⁽³⁾
Voc	Open Circuit Voltage	OP913SL OP913WSL		400 300		mV mV	$E_e = 5.0 \text{mW/cm}^{2(4)}$ $E_e = 5.0 \text{mW/cm}^{2(4)}$
Isc	Short Circuit Current	OP913SL OP913WSL	120 40			μ Α μ Α	$E_{e} = 5.0 \text{mW/cm}^{2(4)}$ $E_{e} = 5.0 \text{mW/cm}^{2(4)}$
V _{(BR)R}	Reverse Breakdown Voltage		32			V	I _R = 100μA
Ст	Total Capacitance	OP913SL OP913WSL			150 150	pF pF	$V_R = 0$, $E_\theta = 0$, $f = 1.00MHz$ $V_R = 0$, $E_\theta = 0$, $f = 1.00MHz$
t _{on} , t _{off}	Turn-On Time, Turn-Off Time	OP913SL OP913WSL		50 50		ns ns	$\begin{aligned} &V_R=10.0V,R_L=1k\Omega\\ &V_R=10.0V,R_L=1k\Omega \end{aligned}$

Typical Performance Curves

PHOTOLOGIC™ SENSORS

PHOTOLOGIC™

Historically optoelectronic components such as phototransistors have been analog output devices. The designer had to design with an output current from the phototransistor generated by a given input bias circuit. The advent of integrated circuits and microprocessors has required the electronics world to turn digital. The sophisticated electronics today communicate by logic levels of 1's or O's. This means that the design engineer must now convert the analog light current of a phototransistor to a voltage level in order to communicate the sensing function to downstream processing electronics. This signal processing represents additional system cost in components and performance specification guardbanding which can be reflected in the unit pricing of the optoelectronic component or assembly.

Photologic™ discrete components utilize the best of the analog characteristics of optoelectronic components and the signal processing capabilities of linear integrated circuits and combines the two on one chip. The stable response and speed of a photodiode is used as an input to trigger the onboard integrated circuitry. The output of the optoelectronic component provides the designer a logic level output, instead of an analog current. This saves the end user processing circuitry system cost and affords performance specifications which are more easily designed and integrated into their application. In other words single switching to an on/off state, or dynamically switched signals, as in encoders, to multiple on/off states. The resulting output will be a high logic level (1), low logic level (0) or corresponding pulse train corresponding to the synamic triggering.

Output Options

The Photologic™ family of photointegrated circuits is available with various output options. The output options for the buffer types (high logic level with light sensed) and inverter types (low logic level with light sensed) are a totem-pole output or open-collector output. These optional output configurations are offered to afford the design engineer the most versatility in addressing their system applications.

Totem-Pole

A totem-pole configuration is very popular because of its inherent low output resistance for both a high and low output level. The low level output resistance will be the resistance at the collector of a saturated output transistor, typically in the order of 10 ohms. The high level output resistance in a totem-pole output is that of an emitter follower configuration. This is typically less than 100 ohms as compared to most collector load resistance values in the 1 kilo ohms range. The low output resistance of the totem pole configuration in both a high and low output level allows a more rapid charge and discharge of any load capacitance at the output. This results in comparable high to low and low to high transition times.

Open-Collector

Even with the numerous advantages of the totem-pole configuration the open-collector output configuration has its place in the design world. With an open-collector output configuration the designer can configure one or more collector outputs into what is referred to as collector logic or wired logic. This is simply the ability to form a logic function using the available collector outputs. In this case the low output resistance for both the high and low output level of a totem-pole configuration is not desirable. The ability to design with wired logic can save on the number of logic gates required in a system design resulting in a cost savings.

HYSTERESIS

The Photologic family incorporates a Schmitt trigger as part of the integrated circuit. The Schmitt trigger is a very useful circuit in steering the leading and trailing edges of a slowly rising or falling pulse. An inherent characteristic of a Schmitt trigger circuit is that a different input threshold level exists for a positive and negative signal. Hysteresis is the difference between the input thresholds of the Schmitt trigger.

The hysteresis, or threshold window, of the Schmitt trigger provides immunity to small input signal variations that are not desired on the output of the Photologic circuit. The larger the difference between the input thresholds the greater the immunity to noise or signal variations. The trade off is unfortunately speed or output response time.

ASSEMBLIES

The combination of Photologic discrete components and the large selection of standard housings, mechanical configurations and apertures provides the designer with literally hundreds of options available to address their application utilizing standard products. Optek offers the designer a value added assembly by adding a wide variety of connectors to the standard assemblies.' Contact an Optek sales office for price and delivery of value added assemblies.

PhotologicTM Plastic Sensors Types OPL550, OPL551 Series

Features

- Four output options
- High noise immunity
- Direct TTL/LSTTL interface
- Low cost plastic side-looking package
- Mechanically and spectrally matched to OP140 and OP240 series LEDs
- Data rates to 250 kBaud

Description

The OPL550, OPL550-OC, OPL551, and OPL551-OC contain a monolithic integrated circuit which incorporates a photodiode, a linear amplifier and a Schmitt trigger on a single silicon chip. The devices feature TTL/LSTTL compatible logic level output which can drive up to 8 TTL loads without additional circuitry. Also featured are medium speed data rates to 250 kBaud with typical rise and fall times of 25 nsec. The Schmitt trigger's hysteresis characteristics provide high immunity to noise on input and Vcc. The Photologic™ chip is encapsulated in a molded plastic package which has an integral lens for enhanced optical coupling. These devices are mechanically and spectrally matched to OP140 and OP240 infrared emitting diodes.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc (not to exceed 3 seconds) +10.0V
Storage Temperature Range
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Duration of Output Short to V _{CC} or Ground (OPL550, OPL551) 1.00 sec.
Duration of Output Short to V _{CC} (OPL550-OC, OPL551-OC) 1.00 sec.
Voltage at Output Lead (OPL550-OC, OPL551-OC)
Low Level Output Current
High Level Output Current (OPL550, OPL551) 1.00mA
Irradiance
** .

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 2.5 mW/°C above 25°C.
- (3) Irradiance measurements are made with $\lambda_i = 935$ nm.

Schematics

OPL550 (Totem-Pole Output) Buffer

OPL550-0C (Open-Collector Output) Buffer

OPL551 (Totem-Pole Output) Inverter

OPL551-0C (Open-Collector Output) Inverter

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Types OPL550, OPL551 Series

Electrical Characteristics (-40°C to +85°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Vcc	Operating Supply Voltage	4.5		5.5	V	
**************************************	Peak-to-Peak V _{CC} Ripple Necessary to Cause False Triggering of Output		2.0		V	V _{CC} = 5.0VDC f = DC to 50 MHz
E _e T(+)	Positive-Going Threshold Irradiance OPL550, OPL550-OC, OPL551, OPL551-OC OPL550A, OPL550-OCA, OPL551A, OPL551-OCA OPL550B, OPL550-OCB, OPL551B, OPL551-OCB	.25 .25 .65		2.40 1.40 1.90	mW/cm ² mW/cm ² mW/cm ²	V _{CC} = 5.0V, T _A = 25°C ⁽³⁾ V _{CC} = 5.0V, T _A = 25°C V _{CC} = 5.0V, T _A = 25°C
E _e T(+)/E _e T(-)	Hysteresis Ratio	1.50	2.0	2.5		
Icc	Supply Current		8.0	15.0	mA	$V_{CC} = 5.5V$, $E_e = 0$ or3mW/cm
OPL550 (Bu	ffer, Totem-Pole)					
VoH	High Level Output Voltage	2.4	3.3		V	V_{CC} = 4.5V, I_{OH} = -800 μ A, E_e = 3.0 mW/cm ²
Vol	Low Level Output Voltage		0.25	0.40	V	V_{CC} = 4.5V, I_{OL} = 12.8mA, E_e = 0
los	Short Circuit Output Current	-20	-55	-100	mA	$V_{CC} = 5.5V$, $E_e = 3.0$ mW/cm ² Output = GND
OPL550-OC	(Buffer, Open-Collector)					
Іон	High Level Output Current		1.00	100	μА	$V_{CC} = 4.5V$, $V_{OH} = 30V$, $E_e = 3.0$ mW/cm ²
Vol	Low Level Output Voltage		0.25	0.40	V	$V_{CC} = 4.5V$, $I_{OL} = 12.8mA$, $E_e = 0$
OPL551 (Inv	verter, Totem-Pole)					
Vон	High Level Output Voltage	2.4	3.3		V	$Vcc = 4.5V$, $I_{OH} = -800\mu A$, $E_{e} = 0$
Vol	Low Level Output Voltage		0.25	0.40	V	$V_{CC} = 4.5V$, $I_{OL} = 12.8mA$, $E_e = 3.0mW/cm^2$
los	Short Circuit Output Current	-20	-55	-100	mA	$V_{CC} = 5.5V$, $E_e = 0$, Output = GND
OPL551-OC	(Inverter, Open-Collector)					
Іон	High Level Output Current		1.00	100	μА	$V_{CC} = 4.5V$, $V_{OH} = 30V$, $E_{e} = 0$
Vol	Low Level Output Voltage		0.25	0.40	V	$V_{CC} = 4.5V$, $I_{OL} = 12.8mA$, $E_e = 3.0mW/cm^2$
OPL550,OP	L551					
t _r , t _f	Output Rise, Time Output Fall Time		25	70	ns	$V_{CC} = 5.0V, T_A = 25^{\circ}C,$ $Ee = 0 \text{ or } 3.0\text{mW/cm}^2$
tpLH, tpHL	Propagation Delay, Low-High, High-Low		2.5	5.0	μѕ	f = 10.0kHz, D.C. = 50%, R _L = 8TTL Loads
OPL550-OC	c, OPL551-OC					
t _r , t _f	Output Rise, Time Output Fall Time		25	70	ns	V _{CC} = 5.0V, T _A = 25°C, Ee = 0 or 3.0mW/cm ²
t _{PLH} , t _{PHL}	Propagation Delay, Low-High, High-Low		2.5	5.0	μs	$f = 10.0 \text{kHz}, \text{ D.C.} = 50\%, \\ R_L = 360 \Omega$

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Types OPL550, OPL551 Series

Typical Performance Curves

OPL550. OPL551

OPL550-OC, OPL551-OC

Types OPL550, OPL551 Series

Switching Test Curve for Inverters

Photologic™ Sensors Types OPL560, OPL561, OPL562, OPL563 Series

Features

- Four output options
- High noise immunity
- Direct TTL/LSTTL interface
- Low cost plastic side-looking package
- Mechanically and spectrally matched to the OP140 and OP240 series LED's
- Data rates to 200 kBaud
- Two sensitivity options

Description

The OPL560, OPL560-OC, OPL561, OPL561-OC, OPL562, OPL562-OC, OPL563, and OPL563-OC contain a monolithic integrated circuit which incorporates a photodiode, a linear amplifier, voltage regulator, and a Schmitt trigger on a single silicon chip. The devices feature TTL/LSTTL compatible logic level output which can drive up to 10 TTL loads over supply voltages ranging from 4.5 V to 16 V. The Photologic™ chip is encapsulated in a molded plastic package which has an integral lens for enhanced optical coupling.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature Range [1/16 inch (1.6mm) from case for 5 sec. with sol-
dering iron]
Power Dissipation
Duration of Output Short to Vcc (OPL560, OPL561, OPL562, OPL563) 1.00sec
Duration of Output Short to VCC (OPL560-OC, OPL561-OC, OPL562-OC, OPL563-OC) . 1.00sec
Voltage at Output Lead (OPL560-OC, OPL561-OC, OPL562-OC, OPL563-OC)
Sinking Current
Sourcing Current (OPL560, OPL561, OPL562, OPL563)
Irradiance (OPL560, OPL560-OC, OPL561, OPL561-OC)
Irradiance (OPL562, OPL562-OC, OPL563, OPL563-OC)
Notes:

(1) Derate linearly 2.50mW/°C above 25°C.

RMA flux is recommended. Duration can be extended to 10 sec. maximum when flow soldering. Max 20 grams force may be applied to the leads when soldering. (3) Irradiance measurements are made with λi = 935nm.

Schematics

OPL560/OPL562

(Totem-Pole Output) Buffer

OPL560-OC, OPL562-OC

(Open-Collector Output) Buffer

OPL561/OPL563

(Totem-Pole Output) Inverter

OPL561-OC, OPL563-OC

(Open-Collector Output) Inverter

Light On - Output Low

Types OPL560, OPL561 Series

Electrical Characteristics (-40°C to +85°C unless otherwise noted) V_{CC} = 4.5 to 16.0 V

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Vcc	Operating Supply Voltage	4.5		16.0	V	
	Peak-to-Peak V _{CC} Ripple Necessary to Cause False Triggering of Output			2	V	f = DC to 50 MHz
E _{eT} (+)	Positive-Going Threshold Irradiance ⁽³⁾ OPL560, OPL560-OC, OPL561, OPL561-OC OPL560A, OPL560-OCA, OPL561A, OPL561-OCA OPL560B, OPL560-OCB, OPL561B, OPL561-OCB	.09 .09 .18		.55 .36 .55	mW/cm ² mW/cm ² mW/cm ²	T _A = 25°C T _A = 25°C T _A = 25°C
E _{eT} (+)/E _{eT} (-)	Hysteresis Ratio	1.20	1.55	2.00		
lcc	Supply Current		8.0	12.0	mA	E _e = 0 or 1 mW/cm ²
OPL560 (Bu	ffer, Totem-Pole)					
Vон	High Level Output Voltage	V _{CC} -2.1			٧	l _{OH} = -1.0μA, E _e = 1 mW/cm ²
V _{OL}	Low Level Output Voltage			0.40	٧	I _{OL} = 16mA, E _e = 0
OPL560-OC	(Buffer, Open-Collector)					
Іон	High Level Output Current			100	μА	V _{OH} = 30V, E _e = 1.0mW/cm ²
V _{OL}	Low Level Output Voltage			0.40	V	I _{OL} = 16mA, E _e = 0
OPL561 (Inv	rerter, Totem-Pole)					
V _{OH}	High Level Output Voltage	Vcc-2.1			V	I _{OH} = -1mA, E _e = 0
V _{OL}	Low Level Output Voltage			0.40	V	I _{OL} = 16mA, E _e = 1.0mW/cm
OPL561-OC	(Inverter, Open-Collector)					
Іон	High Level Output Current			100	μА	V _{OH} = 30V, E _e = 0
VoL	Low Level Output Voltage			0.40	V	I _{OL} = 16mA, E _e = 1.0mW/cm
OPL560, OP	PL561					
t _r , t _f	Output Rise Time, Output Fall Time			70	ns	$T_A = 25^{\circ}C$, $E_e = 0$ or
tplH, tpHL	Propagation Delay, Low-High, High-Low		5.0		μs	1.0mW/cm ² , f = 10.0kHz DC = 50%, R _L = 10TTL Loads
OPL560-OC	, OPL561-OC					
t _r , t _f	Output Rise Time, Output Fall Time			100	ns	$T_A = 25^{\circ}C$, $E_e = 0$ or
tplH, tpHL	Propagation Delay, Low-High, High-Low		5.0		μs	1.0mW/cm ² , f = 10.0kHz, DC = 50%, R _L = 300 Ω

Typical Performance Curves

OPL560, OPL561, OPL562, OPL563 Output Voltage vs. Ambient Temp.

OPL560-OC, OPL561-OC, OPL562-OC, OPL563-OC High Output Current vs. Ambient Temp.

OPL560, OPL560-OC, OPL561, OPL561-OC Normalized Threshold Irradiance vs. TA

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Types OPL562, OPL563 Series

Electrical Characteristics (-40° C to $+85^{\circ}$ C unless otherwise noted) $V_{CC} = 4.5$ to 16.0 V

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Vcc	Operating Supply Voltage	4.5		16.0	V	
	Peak-to-Peak V _{CC} Ripple Necessary to Cause False Triggering of Output			2	V	f = DC to 50 MHz
E _{eT} (+)	Positive-Going Threshold Irradiance ⁽³⁾ OPL562, OPL562-OC, OPL563, OPL563-OC OPL562A, OPL562-OCA, OPL563A, OPL563-OCA OPL562B, OPL562-OCB, OPL563B, OPL563-OCB	.025 .025 .070		.230 .140 .230	mW/cm ² mW/cm ² mW/cm ²	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$
E _{eT} (+)/E _{eT} (-)	Hysteresis Ratio	1.20	1.55	2.00		
lcc	Supply Current		8.0	12.0	mA	$E_e = 0 \text{ or .3mW/cm}^2$
OPL562 (Bu	ffer, Totem-Pole)					
Vон	High Level Output Voltage	V _{CC} -2.1			V	$I_{OH} = -1.0 \mu A,$ $E_e = .3 mW/cm^2$
Vol	Low Level Output Voltage			0.40	V	I _{OL} = 16mA, E _e = 0
OPL562-OC	(Buffer, Open-Collector)					
Іон	High Level Output Current			100	μА	$V_{OH} = 30V$, $E_e = .3mW/cm^2$
Vol	Low Level Output Voltage			0.40	٧	I _{OL} = 16mA, E _e = 0
OPL563 (Inv	verter, Totem-Pole)					
Vон	High Level Output Voltage	Vcc-2.1			V	I _{OH} = -1mA, E _e = 0
Vol	Low Level Output Voltage			0.40	V	$I_{OL} = 16\text{mA}, E_e = .3\text{mW/cm}^2$
OPL563-OC	(Inverter, Open-Collector)					
Іон	High Level Output Current			100	μА	V _{OH} = 30V, E _e = 0
Vol	Low Level Output Voltage			0.40	V	$I_{OL} = 16\text{mA}, E_e = .3\text{mW/cm}^2$
OPL562, OP	PL563					
t _r , t _f	Output Rise Time, Output Fall Time			70	ns	$T_A = 25^{\circ}C$, $E_e = 0$ or
tplH, tpHL	Propagation Delay, Low-High, High-Low		6.0		μs	.3mW/cm 2 , f = 10.0kHz DC = 50%, R _L = 10TTL Load
OPL562-OC	, OPL563-OC					
t _r , t _f	Output Rise Time, Output Fall Time			100	ns	$T_A = 25^{\circ}C$, $E_e = 0$ or
tpLH, tpHL	Propagation Delay, Low-High, High-Low		6.0		μѕ	.3mW/cm ² , f = 10.0kHz, DC = 50%, R _L = 300 Ω

Typical Performance Curves

OPL562, OPL562-OC, OPL563, OPL563-OC Normalized Threshold Irradiance vs. Amb. Temp.

Normalized Spectral Response

Angular Displacement from Package Mechanical Axis

Normalized Supply Current vs. Ambient Temperature 1.15 1.15 1.10 1.0

OPL560, OPL560-OC, OPL561, OPL561-OC Propagation Time vs. Amb. Temp.

OPL562, OPL562-OC, OPL563, OPL563-OC Propagation Time vs. Amb. Temp.

OPL560, OPL561, OPL562, OPL563 Rise Time & Fall Time vs. TA

-35 -15 5 25 45

65 85

TA - AMBIENT TEMPERATURE - °C

OPL560-OC, OPL561-OC, OPL562-OC, OPL563-OC Rise Time & Fall Time vs. TA vs. Output Load

Switching Test Curves

Switching Test Curve for Inverters

Switching Test Curve for Buffers

Dual Channel Photologic[™] Encoder Detector Type OPL583

Features

- Two matched detectors with photolithographic control of relative position
- Dual Photologic™ circuitry in single package provides reduced component count
- Open collector inverter output for flexibility of circuit interface
- Low cost plastic housing

Description

The OPL583 contains a monolithic integrated circuit which incorporates two independent photodiodes, linear amplifiers, Schmitt trigger circuits, and output transistors served by a common voltage regulator. The outputs are TTL/LSTTL compatible and can drive 8 TTL loads over a voltage range from 4.5 to 16 V. Applications include linear and rotary encoders with resolutions determined by external apertures. The fixed relative position of the two photodiodes and the matched characteristics of the two channels allow considerable design flexibility.

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Supply Voltage	18 V ⁽⁵⁾
Storage Temperature	-40° C to +100° C
Operate Temperature	-40° C to +85° C
Lead Solder Temperature [1/16 inch (1.6 mm) from case for 5 sec. v	vith soldering iron]
	260° C ⁽²⁾
Power Dissipation	200 mW ⁽¹⁾
Duration of Output Short to Vcc	
Voltage At Output	18 V
Low Level Output Current (sinking)	40 mA

Notes:

- (1) Derate linearly 2.67 mW/° C above 25° C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. Max 20 grams force may be applied to leads when flow soldering.
- (3) A 0.01 µF capacitor should be used across the V_{CC} and GND leads to stabilize the power supply line.
- (4) Irradiance measurements are made with λ = 940 nm.
- (5) Derate linearly 0.37 V/° C above 58° C.

Schematic

Type OPL583

Electrical Characteristics (T_A = 25°C, V_{CC} = 4.5 V - 16.0 V unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Vcc	Operating Supply Voltage ⁽³⁾	4.5		16	V	
E _{eT(+)}	Positive Going Threshold Irradiance ⁽⁴⁾	.05	.10	.25	mW/cm ²	
Е _е т(+)/Е _е т(-)	Hysteresis Ratio	1.1	1.5	2.0		
MATCH	Channel Match E _e T(+,A)/E _e T(+,B)	0.67	1.00	1.50		
ICCL	Supply Current Both Outputs Low (Both Photodiodes Irradiated)		8.5	12.0	mA	$E_0 = 0.5 \text{ mW/cm}^2$, No Load on Output
Іссн	Supply Current Both Outputs High (Both Photodiodes Shaded)		3.5	6.0	mA	E _e = 0 mW/cm ² , No Load on Output
Іссм	Supply Current Mixed Output States (One High, One Low)		6		mA	E _e = 0 mW/cm ² and 0.5 mW/cm ²
Іон	High Level Output Current		1.0	30.0	μА	$E_e = 0 \text{ mW/cm}^2$, $V_{OH} = 16 \text{ V}$
VoL	Low Level Output Voltage		0.21	0.40	V	$E_e = 0.5 \text{ mW/cm}^2$, $I_{OL} = 12.8 \text{ mA}$
T _{PHL} T _{PLH}	Propagation Delay Output High to Low Output Low to High		2 10		μs μs	Vcc = 5 V, R _L = 360 Ω E _e = 0 or 0.5 mW/cm ² , f = 10 kHz,
t _r t _f	Output Rise Time Output Fall Time		20 15		ns ns	D.C. = 50%

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Typical Performance Curves

Photologic™ Hermetic Sensors Types OPL800, OPL801 Series

Features

- Four output options
- High noise immunity
- Direct TTL/LSTTL interface
- TO-18 hermetic package
- Mechanically and spectrally matched to OP130 and OP231 series LEDs
- Data rates to 250 kBaud
- TX-TXV process available (see Hi-Rel section)

Description

The OPL800, OPL800-OC, OPL801, and OPL801-OC each incorporate a photodiode, a linear amplifier, and a Schmitt trigger on a single silicon chip. The devices feature TTL/LSTTL compatible logic level output which can drive up to 8 TTL loads without additional circuitry. Also featured are medium speed data rates to 250 kBaud with typical rise and fall times of 25 nsec. The Schmitt trigger's hysteresis characteristics provide high immunity to noise on input and V_{CC}. The Photologic™ chip is mounted on a standard TO-18 header which is hermetically sealed in a lensed metal can. These devices are mechanically and spectrally matched to OP130 and OP230 infrared emitting diodes.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

- ·
Supply Voltage, V _{CC} (not to exceed 3 seconds) +10.0V Storage Temperature Range -65°C to +150°C
Operating Temperature Range55°C to +110°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Duration of Output Short to VCC or Ground (OPL800, OPL801) 1.00 sec.
Duration of Output Short to V _{CC} (OPL800-OC, OPL801-OC) 1.00 sec.
Voltage at Output Lead (OPL800-OC, OPL801-OC)
Irradiance
Notes

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 3.4 mW/°C above 90°C.
- (3) Light measurements are made with $\lambda = 935$ nm.

Schematic

OPL801-OC (Open-Collector Output) inverter

(214) 323-2200

Fax (214) 323-2396

Types OPL800, OPL801 Series

Electrical Characteristics (-40°C to +100°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Vcc	Operating Supply Voltage	4.5		5.5	V	
	Peak-to-Peak V _{CC} Ripple Necessary to Cause False Triggering of Output		2.0		V	V _{CC} = 5.0VDC f = DC to 50 MHz
E _e T(+)	Positive-Going Threshold Irradiance	0.05	0.18	0.60	mW/cm ²	$V_{CC} = 5.0V, T_A = 25^{\circ}C^{(3)}$
E _e T(+)/E _e T(-)	Hysteresis Ratio	1.5	2.0	2.5		
lcc	Supply Current			15	mA	$V_{CC} = 5.5V$, $E_e = 0$ or1mW/cn
OPL800 (Bu	iffer, Totem-Pole)					
VoH	High Level Output Voltage	2.4			V	$V_{CC} = 4.5V$, $I_{OH} = -800\mu A$, $E_e = 1.0 \text{ mW/cm}^2$
V _{OL}	Low Level Output Voltage			0.40	V	$V_{CC} = 4.5V$, $I_{OL} = 12.8mA$, $E_e = 0$
los	Short Circuit Output Current	-20		-100	mA	$V_{CC} = 5.5V$, $E_e = 1 \text{mW/cm}^2$, Output = GND
OPL800-OC	(Buffer, Open-Collector)					
Іон	High Level Output Current			100	μА	$V_{CC} = 4.5V, V_{OH} = 30V,$ $E_e = 2.0 \text{mW/cm}^2$
Vol	Low Level Output Voltage			0.40	V	$V_{CC} = 4.5V$, $I_{OL} = 12.8mA$, $E_{\theta} = 0$
OPL801 (Inv	verter, Totem-Pole)					
Voh	High Level Output Voltage	2.4			V	$V_{CC} = 4.5V$, $I_{OH} = -800\mu A$, $E_e = 0$
V _{OL}	Low Level Output Voltage			0.40	V	$V_{CC} = 4.5V$, $I_{OL} = 12.8mA$, $E_{\theta} = 1.0mW/cm^2$
los	Short Circuit Output Current	-20		-100	mA	$V_{CC} = 5.5V$, $E_{e} = 0$, Output = GND
OPL801-OC	(Inverter, Open-Collector)					
Юн	High Level Output Current			100	μА	$V_{CC} = 4.5V$, $V_{OH} = 30V$, $E_{\theta} = 0$
Vol	Low Level Output Voltage			0.40	V	$V_{CC} = 4.5V$, $I_{OL} = 12.8mA$, $E_{e} = 1.0mW/cm^{2}$
OPL800, OF	PL801					
t _r , t _f	Output Rise Time, Output Fall Time		70		ns	$V_{CC} = 5.0V, T_A = 25^{\circ}C,$ $E_{\theta} = 0 \text{ or } 1.00\text{mW/cm}^2$
t _{PLH} , t _{PHL}	Propagation Delay, Low-High, High-Low		5.0		μѕ	f = 10.0kHz, D.C. = 50%, R _L = 8TTL Loads
OPL800-OC	c, OPL801-OC					
t _r , t _f	Output Rise Time, Output Fall Time		70		ns	$V_{CC} = 5.0V, T_A = 25^{\circ}C,$ $E_{\theta} = 0 \text{ or } 1.00\text{mW/cm}^2$
tplH, tpHL	Propagation Delay, Low-High, High-Low		5.0		μs	$f = 10.0$ kHz, D.C. = 50%, $R_L = 360$ Ω

Types OPL800, OPL801 Series

Typical Performance Curves

OPL800. OPL801

OPL800-OC, OPL801-OC

Types OPL800, OPL801 Series

Typical Performance Curves

Photologic™ Hermetic Sensors Types OPL810, OPL811, OPL812, OPL813 Series

Features

- Four output options
- High noise immunity
- Direct TTL/LSTTL interface
- TO-18 hermetic package
- Mechanically and spectrally matched to the OP130 and OP230 series devices
- Two sensitivity options
- Data rate to 200 kBaud

Description

The OPL810, OPL810-OC, OPL811, OPL811-OC, OPL812, OPL812-OC, OPL813, and OPL8130-OC contain a monolithic integrated circuit which incorporates a photodiode, a linear amplifier, a voltage regulator, and a Schmitt trigger on a single silicon chip. The devices feature TTL/LSTTL compatible logic level output which can drive up to 10 TTL loads over supply voltages ranging from 4.5V to 16V. The Schmitt trigger's hysteresis characteristics provide high immunity to noise on input and Vcc. The Photologic™ chip is mounted on a standard TO-18 header which is hermetically sealed in a lensed metal can.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}
Storage Temperature Range65°C to +125°C
Operating Temperature Range55°C to +105°C
Lead Soldering Temperature Range [1/16 inch (1.6mm) from case for 5 sec. with sol-
dering iron]
Power Dissipation
Duration of Output Short to VCC (OPL810, OPL811, OPL812, OPL813) 1sec.
Duration of Output Short to VCC (OPL810-OC, OPL811-OC, OPL812-OC, OPL813-OC) 1sec.
Voltage at Output Lead (OPL810-OC, OPL811-OC, OPL812-OC, OPL813-OC) 35V
Sinking Current
Sourcing Current (OPL810, OPL811, OPL812, OPL813)
Irradiance (OPL810, OPL810-OC, OPL811, OPL811-OC)
Irradiance (OPL812, OPL812-OC, OPL813, OPL813-OC)
Notes

(1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering, Max 20 grams force may be applied to the leads when soldering. Derate linearly 2.5mW/°C above 25°C.

(3) Light measurements are made with λi = 935nm.

Schematics

OPL810, OPL812

(Totem-Pole Output) Buffer

OPL810-OC, OPL812-OC

(Open-Collector Output) Buffer

Light On - Output High

OPL811, OPL813

(Totem-Pole Output) Inverter

OPL811-OC, OPL813-OC

(Open-Collector Output) Inverter

Light On - Output Low

Types OPL810, OPL811 Series

Electrical Characteristics (- 40° C to + 100° C unless otherwise noted) $V_{CC} = 4.5$ to 16.0 V

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Vcc	Operating Supply Voltage	4.5		16.0	V	
	Peak-to-Peak V _{CC} Ripple Necessary to Cause False Triggering of Output			1.0	V	f = DC to 50 MHz
E _{eT} (+)	Positive-Going Threshold Irradiance ⁽³⁾	.015	.06	.20	mW/cm ²	T _A = 25°C
E _e T(+)/E _e T(-)	Hysteresis Ratio	1.20	1.55	2.00		
lcc	Supply Current			15.0	mA	$E_{\theta} = 0$ or 0.4 mW/cm ²

OPL810 (Buffer, Totem-Pole)

Vон	High Level Output Voltage	V _{CC} -2.1		V	$I_{OH} = -1.0 \text{mA},$ $E_e = 0.4 \text{ mW/cm}^2$
Vol	Low Level Output Voltage		0.40	٧	$I_{OL} = 16mA$, $E_{\theta} = 0$

OPL810-OC (Buffer, Open-Collector)

Іон	High Level Output Current		100	μА	$V_{OH} = 30V, E_e = 0.4 \text{mW/cm}^2$
VoL	Low Level Output Voltage		0.40	٧	I _{OL} = 16mA, E _e = 0

OPL811 (Inverter, Totem-Pole)

Vон	High Level Output Voltage	V _{CC} -2.1		٧	$I_{OH} = -1 \text{mA}, E_{e} = 0$
Vol	Low Level Output Voltage		0.40	٧	$I_{OL} = 16\text{mA}, E_{\theta} = 0.4\text{mW/cm}^2$

OPL811-OC (Inverter, Open-Collector)

Іон	High Level Output Current		100	μΑ	$V_{OH} = 30V, E_{\theta} = 0$
Vol	Low Level Output Voltage		0.40	٧	$I_{OL} = 16 \text{mA}, E_e = 0.4 \text{mW/cm}^2$

OPL810, OPL811

t _r , t _f	Output Rise Time, Output Fall Time		70	ns	V _{CC} =5V, T _A = 25°C, E _e = 0 or
t _{PLH} , t _{PHL}	Propagation Delay, Low-High, High-Low	5.0		μs	0.4mW/cm ² , f = 10.0kHz DC = 50%, R _L = 10TTL Loads

OPL810-OC, OPL811-OC

t _r , t _f	Output Rise Time, Output Fall Time		100	ns	$V_{CC}=5V$, $T_A=25^{\circ}C$, $E_e=0$ or
t _{PLH} , t _{PHL}	Propagation Delay, Low-High, High-Low	5.0		μs	0.4mW/cm ² , f = 10.0kHz, DC = 50%, R _L = 300Ω

Typical Performance Curves Output Voltage vs. Ambient Temp.

Normalized Threshold Irradiance vs. TA

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Types OPL812, OPL813 Series

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Vcc	Operating Supply Voltage	4.5		16.0	V	·
	Peak-to-Peak V _{CC} Ripple Necessary to Cause False Triggering of Output			1.0	V	f = DC to 50 MHz
E _{eT} (+)	Positive-Going Threshold Irradiance ⁽³⁾	.005	.025	.10	mW/cm ²	$T_A = 25^{\circ}C$
E _{eT} (+)/E _{eT} (-)	Hysteresis Ratio	1.20	1.55	2.00		·
lcc	Supply Current			15.0	mA	$E_e = 0$ or 0.2 mW/cm ²
OPL812 (Βι	ıffer, Totem-Pole)					
Vон	High Level Output Voltage	V _{CC} -2.1			V	$I_{OH} = -1.0 \text{mA},$ $E_{e} = 0.2 \text{ mW/cm}^{2}$
Vol	Low Level Output Voltage			0.40	V	I _{OL} = 16mA, E _e = 0
OPL812-00	(Buffer, Open-Collector)					
Іон	High Level Output Current			100	μА	$V_{OH} = 30V, E_e = 0.2 \text{mW/cm}^2$
Vol	Low Level Output Voltage			0.40	V	I _{OL} = 16mA, E _e = 0
OPL813 (Inv	verter, Totem-Pole)					
OPL813 (Inv	verter, Totem-Pole) High Level Output Voltage	V _{CC} -2.1			V	I _{OH} = -1mA, E _e = 0
	,	V _{CC} -2.1		0.40	V V	
Voh Vol	High Level Output Voltage	V _{CC} -2.1		0.40		
Voh Vol	High Level Output Voltage Low Level Output Voltage	Vcc-2.1		0.40		$I_{OH} = -1 mA$, $E_e = 0$ $I_{OL} = 16 mA$, $E_e = 0.2 mW/cm$ $V_{OH} = 30V$, $E_e = 0$
V _{OH} V _{OL}	High Level Output Voltage Low Level Output Voltage (Inverter, Open-Collector)	Vcc-2.1		1	V	I _{OL} = 16mA, E _e = 0.2mW/cm
VoH VoL OPL813-OC	High Level Output Voltage Low Level Output Voltage (Inverter, Open-Collector) High Level Output Current Low Level Output Voltage	Vcc-2.1		100	V μA	$I_{OL} = 16$ mA, $E_e = 0.2$ mW/cm $V_{OH} = 30$ V, $E_e = 0$
VOH VOL OPL813-OC IOH VOL	High Level Output Voltage Low Level Output Voltage (Inverter, Open-Collector) High Level Output Current Low Level Output Voltage	Vcc-2.1		100	V μA	$I_{OL} = 16$ mA, $E_e = 0.2$ mW/cm $V_{OH} = 30$ V, $E_e = 0$
VOH VOL OPL813-OC IOH VOL OPL812, OF	High Level Output Voltage Low Level Output Voltage (Inverter, Open-Collector) High Level Output Current Low Level Output Voltage	Vcc-2.1	5.0	100	V μA V	$I_{OL}=16mA$, $E_{e}=0.2mW/cm$ $V_{OH}=30V$, $E_{e}=0$ $I_{OL}=16mA$, $E_{e}=0.2mW/cm$
VOH VOL OPL813-OC IOH VOL OPL812, OF tr, tr tplh, tphl	High Level Output Voltage Low Level Output Voltage (Inverter, Open-Collector) High Level Output Current Low Level Output Voltage PL813 Output Rise Time, Output Fall Time	Vcc-2.1	5.0	100	V μA V	$I_{OL} = 16mA$, $E_e = 0.2mW/cm$ $V_{OH} = 30V$, $E_e = 0$ $I_{OL} = 16mA$, $E_e = 0.2mW/cm$ $V_{CC} = 5V$, $T_{A} = 25^{\circ}C$, $E_e = 0$ o $0.2mW/cm^2$, $f = 10.0kHz$
VOH VOL OPL813-OC IOH VOL OPL812, OF tr, tr tplh, tphl	High Level Output Voltage Low Level Output Voltage (Inverter, Open-Collector) High Level Output Current Low Level Output Voltage PL813 Output Rise Time, Output Fall Time Propagation Delay, Low-High, High-Low	Vcc-2.1	5.0	100	V μA V	$I_{OL} = 16mA$, $E_e = 0.2mW/cm$ $V_{OH} = 30V$, $E_e = 0$ $I_{OL} = 16mA$, $E_e = 0.2mW/cm$ $V_{CC} = 5V$, $T_{A} = 25^{\circ}C$, $E_e = 0$ o $0.2mW/cm^2$, $f = 10.0kHz$

Typical Performance Curves

Normalized Threshold Irradiance vs. Amb. Temp.

Normalized Spectral Response

Angular Displacement from Package Mechanical Axis

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Types OPL812, OPL813 Series

Typical Performance Curves

Switching Test Curves

Switching Test Curve for Buffers

EMITTER AND PHOTOSENSOR MATCHED PAIRS

Matched LED and Photosensor Pair Types OPS665, OPS666, OPS667

Features

- T-1 package style
- High current transfer ratio
- Low cost plastic package
- Three current range selections

Description

The OPS665 through OPS667 each consist of a gallium arsenide infrared emitting diode (OP165) and an NPN silicon phototransistor (OP505) mounted in matched plastic T-1 packages. Matched pairs are desirable where the application is unique and the quantity required does not justify assembly tooling costs. The units are offered in three different sensitivity ranges to give the designer more flexibility. If separation between the LED and sensor is greater than two times the specified IC(ON) distance, proper alignment becomes critical. It should be remembered that the sensor is sensitive to ambient light. Although sold as pairs, emitters are packaged separately from sensors for ease of handling.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Continuous Forward Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse Voltage 2.0V
Power Dissipation
Output Photosensor
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. Max. 20 grams force may be applied to leads when soldering. (2) Derate linearly 1.33mW/°C above 25°C.

Typical Performance Curves

= T_J = 25°C; I_F = 100 mA, DC = 0.1%, PW = 100 μs Peak Wavelength · λp: (A) XSTR - 850 ± 30 nm (B) LED GaAIAs - 890 ± 20 nm (C) LED GaAs - 930 + 15 nm

Types OPS665, OPS666, OPS667

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
VF	Forward Voltage			1.60	V	I _F = 20mA
lR	Reverse Current			100	μА	V _R = 2.0V
Output Pho				1	1	
V _(BR) CEO	Collector-Emitter Breakdown Voltage	30			V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage			Ì	V	$I_E = 100\mu A$
ICEO	Collector Dark Current			100	nA	$V_{CE} = 15.0V, E_{e} = 0$
Ic(on)	OPS	S665 0.5 S666 1.0 S667 5.0		10.0	mA mA mA	V _{CE} = 5.0V, I _F = 20mA d = 0.25" lens tip to lens t

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Matched LED and Photosensor Pair Types OPS690, OPS691, OPS692, OPS693

Features

- Lateral side-looking clear plastic package
- High current transfer ratio
- · Low cost plastic package

Description

The OPS690 through OPS693 each consist of a gallium arsenide infrared emitting diode (OP140) and an NPN silicon phototransistor (OP550) mounted in matched lateral side-looking plastic packages. Matched pairs are desirable where the application is unique and the quantity required does not justify assembly tooling costs. If separation between the LED and the sensor is greater than two times the specified IC(ON) distance, proper alignment becomes critical. It should be remembered that the sensor is sensitive to ambient light. Although sold as pairs, emitters are packaged separately from sensors for ease of handling.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Continuous Forward Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Note:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.33mW/°C above 25°C.
- (3) Distance from lens tip to lens tip is 0.125 inches (3.18mm).

Types OPS690, OPS691, OPS692, OPS693

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
put Diod	le					
VF	Forward Voltage		T	1.60	V	IF = 20mA
lR	Reverse Current			100	μА	V _R = 2.0V

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	$I_C = 100 \mu A, E_e = 0$
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		٧	$I_E = 100 \mu A, E_\theta = 0$
ICEO	Dark Current		100	nA	V _{CE} = 10.0V, E _e = 0

Coupled

VCE(SAT)	Saturation Voltage			0.40	V	$I_F = 20 \text{mA}, I_C = 50 \mu A^{(3)}$
IC(ON)	On-State Collector Current	OPS690 OPS691 OPS692 OPS693	100 500 1.0 2.0		μΑ μΑ mA mA	V _{CE} = 10.0V, I _F = 20mA ⁽³⁾

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Matched LED and Photosensor Pair Types OPS695, OPS696, OPS697, OPS698

Features

- Lateral side-looking plastic package
- High current transfer ratio
- Low cost plastic package

Description

The OPS695 through OPS698 each consist of a gallium arsenide infrared emitting diode (OP145) and an NPN silicon phototransistor (OP555) mounted in matched lateral side-looking plastic packages. Matched pairs are desirable where the application is unique and the quantity required does not justify assembly tooling costs. If separation between the LED and the sensor is greater than two times the specified IC(ON) distance, proper alignment becomes critical. It should be remembered that the sensor is sensitive to ambient light. Although sold as pairs. emitters are packaged separately from sensors for ease of handling.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Continuous Forward Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps) 3.0A
Reverse Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage 5.0V
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.33mW/°C above 25°C.
- (3) Distance from lens tip to lens tip is 0.125 inches (3.18mm).

Types OPS695, OPS696, OPS697, OPS698

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input Diode	•						
V _F	Forward Voltage				1.60	V	I _F = 20mA
lR	Reverse Current				100	μΑ	V _R = 2.0V
Output Pho	totransistor						
V _{(BR)CEO}	Collector-Emitter Breakdown Volt	age	30			V	$I_C = 100 \mu A, E_e = 0$
V _{(BR)ECO}	Emitter-Collector Breakdown Volt	tage	5.0			٧	$I_E = 100 \mu A, E_e = 0$
ICEO	Dark Current				100	nA	$V_{CE} = 10.0V, E_{e} = 0$
Coupled							
V _{CE} (SAT)	Saturation Voltage				0.40	V	$I_F = 20 \text{mA}, I_C = 50 \mu A^{(3)}$
Ic(on)	On-State Collector Current	OPS695 OPS696 OPS697	100 500 1.0			μΑ μΑ mA	V _{CE} = 10.0V, I _F = 20m

2.0

Typical Performance Curves

OPS698

mΑ

OPTICALLY COUPLED ISOLATORS

Optically Coupled Isolators

Optically coupled isolators, also called optocouplers, are used to isolate one electrical system from another in an electronic circuit. They allow direct circuit control with complete electrical isolation of input from output. These isolators are considered the best, most cost effective devices to eliminate associated differential ground, ground loop and EMI/RFI problems.

An optically coupled isolator consists of an IRED (infrared emitting diode) connected to the input circuit, optically coupled to a silicon photosensor at the output circuit. Both IRED and photosensor are housed in a single package with a light-conducting medium between them.

Optically coupled isolators are used in control and computer networks to isolate electrical "spikes" in one part of the circuit from transmission to another part. These isolators are especially useful in appliances and manually controlled electronic equipment to guard the operator against direct electrical contact with the line voltage. They can also serve as replacements for DC transformers or mechanical relays. With twenty years of experience in the design and manufacture of optically coupled isolators, Optek is a market leader in high technology and specialty couplers. Optek led the industry by obtaining the first VDE approved IR optoisolator.

The Optek product line is broad and can meet a wide variety of unique applications. The line consists of:

- Standard couplers are available with (1) either phototransistor or photodarlington output,
 (2) current transfer ratios (CTR) as high as 400 percent, and (3) input current as low as 0.5 mA
- Specialty couplers available in several styles of hermetic packages, with isolation voltages up to 50,000 VDC, with guaranteed CTRs up to 700 percent, and with input currents as low as 5 mA.
- High technology couplers with TTL-compatible Photologic™ output, with isolation voltages up to 15,000 VDC, and with the ultimate in speed up to 5 MHz available.

Standard Optically Coupled Isolators

Optek's standard optocoupler line features optocouplers especially useful in applications requiring high voltage and noise isolation. Among such applications are computer and telephone interconnections, and level shifting and interfacing between logic families and low input current line receivers. When the application is networking among multiple hardware units, optically coupled isolators should be designed in for ground loop elimination and electrical protection.

Optek standard optocouplers contain either a gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) IRED as input, and a silicon (Si) phototransistor sensor (NPN type) as output. The coupling medium between the IRED and sensor is a high dielectric silicone gel. The infrared light emitted from the IRED has a wavelength of 930 nm for the GaAs IRED and 890 for the GaAlAs IRED. Both are spectrally matched with the photosensor peak spectral response, centered at 850 nm, in order to assure optimum DC transfer characteristics.

The key design parameters of an optically coupled isolator are the current transfer ratio (CTR), which is a measure of the output current for a given input current, and the isolation voltage, which is the amount of voltage that can be applied between input and output without causing arcing or breakdown. The CTR for Optek's standard optocouplers range from 2 to 400 percent. The isolation voltages range as high as 15000 VDC. Specialty couplers and custom products have CTRs and isolation voltages that often exceed these ranges.

Optek's leadership in optoisolator technology and manufacture began 20 years ago when engineers developed the company's first infrared optoisolator using hermetic devices. Today, this product, the OPI120, remains one of the more popular of Otpek's line of specialty couplers.

The line also offers a wide selection of case types and electrical variations. Isolation voltages range from 1000 VDC in hermetic TO-5 and TO-72 packages, to 50 KV DC, made possible by Optek's development of an optical waveguide and custom package using hermetic discretes. Some of the line's most cost effective parts are the OPI1264A, B, and C types, which offer 10 KV electrical isolation in a popular axial package design. Choices of CTRs of 25, 50 or 100 percent are available with phototransistor output.

The OPI102, and OPI103 and JEDEC registered 3N and 4N types are hermetically packaged in TO-5 and TO-72 metal cans. CTRs range from 15 to 100 percent, and the parts feature phototransistor output for easy design-in to most circuits. The Hi-Rel and Military parts section of this data book contain descriptions of JAN and JANTX versions of many of these specialty coupler products.

High Technology or Photologic™ Couplers

Optek's development of Photologic™ advanced IC photosensors has also led to the design of high technology couplers with 250 K-Baud TTL capability. They represent four types of output: buffer totem-pole, buffer open-collector, inverter totem-pole, and inverter open-collector. If high voltage electrical isolation is required, the OPI125 through OPI128 are photodarlington optocouplers with 15,000 VDC isolation in a hermetic axial-leaded package.

SURFACE MOUNT

The OPI210, OPI211 optoisolators consist of an LED and a silicon phototransistor mounted and coupled on a thick film ceramic substrate. These solid-state optocouplers are ideal for hybrid applications. Optoisolation is rated at 1000 VDC. Four thick film bonding pads make the electrical connections easy. Device mounting may be achieved using silver or gold filled epoxies.

A full line of hermetic chip carriers is also offered which are surface mountable on ceramic or printed circuit boards. The miniature package saves circuit board area. Many of the popular 4N series optoisolators are available in this HCC series of optocouplers shown in the surface mount area of this data book. High speed (1megabit/second) TTL versions are also available.

High Speed Very High Voltage Isolator

The OPI1266 features isolation to 16KV DC with a transfer rate to 500 kbits as standard. The OPI1266 optoisolator consists of a GaAlAs LED coupled with a unique integrated circuit detector. Photons are collected in the detector by a photodiode and amplified by a high gain linear amplifier that drives a Schottky clamped open collector output transistor. The circuit is temperature, current, and voltage compensated. This design produces maximum DC and AC current isolation between input and output while providing TTL/LSTTL circuit compatibility. Propagation delay times are matched within 500ns over the entire temperature range for timing purposes:

Custom Optoisolator Capability

In some critical applications, standard electrical characteristics or package types simply will not work. Optek has extensive experience in designing and manufacturing custom optoisolators to meet the most demanding application requirements.

Leadership in Advanced Coupler Research

Optek has recently patented surface mount optoisolators, OPI210 and OPI211, symbols of Optek's leadership through optoisolator technology.

Projects currently in progress at Optek include operating speed improvements, increased photosensor functionality, input sensitivity enhancements, and innovations in package designs. Optek continues to lead the industry in state-of-the-art optically coupled isolators.

Applications

AC Voltage Sensing

Computer Peripherals Current Sensing Data Transmission Ground Loop Elimination Home Appliances Industrial Controls Instrument I/O Isolation Level Shifting Line Receivers Line Voltage Status Indicators Logic Interface Microprocessor Interface Motor or Light Controls Network Isolation Polarity Sensing Solid State Relays Switching Power Supply Telephone Ring Detection Telephone Switching

Optically Coupled Isolators Types OPI110, OPI110A, OPI110B, OPI110C, OPI113

Features

- 10kV electrical isolation
- Phototransistor output
- Low cost plastic housing
- UL Recognized File Number E58730⁽⁶⁾

Description

The OPI110 and OPI113 series devices are optically coupled isolators, each containing an infrared emitting diode and an NPN silicon photosensor. The OPI110 uses a phototransistor and the OPI113 uses either a photodarlington or phototransistor sensor. The devices are sealed in a precast opaque housing. This series is designed for applications requiring high voltage isolation between input and output.

Replaces

K8900 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input-to-Output Isolation Voltage	± 10kVDC ⁽¹⁾⁽⁶⁾
Storage Temperature Range	40°C to +100°C
Operating Temperature Range	40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 se	
iron]	260°C ⁽²⁾
Input Diode	
Forward DC Current	40mA ⁽³⁾
Reverse DC Voltage	2.0V
Power Dissipation	50mW ⁽⁴⁾
Output Photosensor	
Collector-Emitter Voltage OPI110	30V
OPI113	15V
Emitter-Collector Voltage	5.0V
Power Dissipation	100mW ⁽⁵⁾
Notes:	

- Measured with input and output leads shorted. Typical input/output capacitance is 0.06pF. RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- Derate linearly 0.83mW/°C above 25°C.
 Derate linearly 1.67mW°C above 25°C.
 Derate linearly 1.67mW°C above 25°C.
- (6) UL recognition is for 3500 VAC, 1 minute only.

Schematics

OPI113

OPTICALLY COUPLED ISOLATORS

Types OPI110, OPI110A, OPI110B, OPI110C, OPI113

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	9						
VF	Forward Voltage				1.60	V	I _F = 20 mA
lR	Reverse Current				100	μА	V _R = 2.0 V
Output Pho	otosensor						
V _(BR) CEO	Collector-Emitter Breakdown Voltage	OPI110 OPI113	30 15			V V	I _C = 100 μA I _C = 100 μA, I _F = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			V	$I_E = 100 \mu\text{A}, I_F = 0$
ICEO	Collector-Emitter Dark Current	OPI110 OPI113			100 100	l .	$V_{CE} = 15 \text{ V}, E_{e} = 0$ $V_{CE} = 10 \text{ V}, E_{e} = 0$
Coupled							
lc/lF	DC Current Transfer Ratio	OPI110 OPI110A OPI110B OPI110C OPI113	12.5 25 50 100 50	400	125	% % % %	$\begin{split} & _{F} = 10.0 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V} \\ & _{F} = 10.0 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V} \\ & _{F} = 10.0 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V} \\ & _{F} = 10.0 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V} \\ & _{F} = 5.0 \text{ mA}, \text{ V}_{CE} = 2.0 \text{ V} \end{split}$
VCE(SAT)	Collector Saturation Voltage	OPI110 OPI113			0.40 1.20	V V	I _F = 10.0 mA, I _C = 1.6 mA I _F = 10.0 mA, I _C = 5.0 mA
ICEO	Collector-Emitter Dark Current	OPI110 OPI113			200 100	nA nA	V _{CE} = 20.0 V, I _F = 0 V _{CE} = 10.0 V, I _F = 0
V _{ISO}	Isolation Voltage		10.0			kVDC	(See Note 1)

Typical Performance Curves (OPI110 Only)

RELATIVE COLLECTOR CURRENT

Switching Time Test Circuit

 t_r and t_f for 0?I110 are typically 4 μs . t_r and t_f for 0PI113 are typically 40 μs . The input waveform is supplied by a generator with the following characteristics: $Z_{OUT}=50\Omega$, $t_r \leq 15$ ns, duty cycle $\cong 1\%$, pulse width = 100 μs .

Optically Coupled Isolators Types OPI120, OPI123

Features

- 15kV electrical isolation
- Phototransistor output (OPI120) or photodarlington output (OPI123)
- Hermetically sealed LED and photosensor
- Base contact lead for conventional transistor biasing
- TX-TXV process available (see Hi-Rel section)

Description

The OPI120 and OPI123 are optically coupled isolators, each containing an infrared emitting diode and an NPN silicon phototransistor (OPI120) or photodarlington (OPI123) sealed in a high dielectric plastic housing. The LED and sensor are in hermetically sealed packages. These series are designed for applications requiring high voltage isolation between input and output over a wide range of temperatures.

Replaces

K8920 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input-to-Output Isolation Voltage
iron]
Input Diode
Forward DC Current
Reverse DC Current
Power Dissipation
Output Photosensor
Collector-Emitter Voltage (OPI120)
(OPI123)
Emitter-Collector Voltage 5.0V
Collector-Base Voltage (OPI120)
Power Dissipation

- (1) Measured with input and output leads shorted in air with a max. relative humidity of 50%. If
- suitably encapsulated or oil immersed, the isolation voltage is increased to 25kV minimum. RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 2.0mA/°C above 25°C. (4) Derate linearly 2.67mW/°C above 25°C.
- (5) Derate linearly 3.33mW/°C above 25°C.

Schematics

Types OPI120, OPI123

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode)						
VF	Forward Voltage	OPI120 OPI123			1.50 1.50	V V	I _F = 30.0mA I _F = 10.0mA
l _R	Reverse Current	OPI120 OPI123			100 100	μ Α μ Α	V _R = 3.0V V _R = 3.0V
Output Pho	tosensor						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	OPI120 OPI123	25 20			V	I _C = 1.00mA I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			٧	I _E = 100μA
V _{(BR)CBO}	Collector-Base Breakdown Voltage	OPI120	25			V	$I_C = 1.00 \mu A$
ICEO	Collector-Emitter Dark Current				100	nA	V _{CE} = 10.0V
Coupled							
lc/l _F	DC Current Transfer Ratio	OPI120 OPI123	20 50	70		%	I _F = 10.0mA, V _{CE} = 5.0V I _F = 10.0mA, V _{CE} = 2.0V
VCE(SAT)	Saturation Voltage	OPI120 OPI123			0.50 1.20	V V	I _F = 30mA, I _C = 1.00mA I _F = 5.0mA, I _C =1.00mA
V _{ISO}	Isolation Voltage		15.0			kV	(See Note 1)
t _r	Output Rise Time	OPI120 OPI123		2.0 40		μs μs	See Test Circuit See Test Circuit
tf	Output Fall Time	OPI120 OPI123		2.0 40		μs μs	See Test Circuit See Test Circuit

Typical Performance Curves (OPI120 Only)

The input waveform is supplied by a generator with the following characteristics: Z_{DUT} = 50Ω , t_f \leq 15 ns. Duty cycle \approx 1%, pulse width \approx 100 μ s.

Photologic[™] Optically Coupled Isolators Types OPI125, OPI126, OPI127, OPI128

Features

- Four output options
- 15kV input-to-output isolation voltage
- Direct TTL/STTL interface
- High noise immunity
- Data rates to 250 kBaud
- Hermetically sealed
- TX-TXV process available (see Hi-Rel section)

Description

The OPI125, OPI126, OPI127, and OPI128 each contain a gallium arsenide infrared emitting diode coupled to a monolithic integrated circuit which incorporates a photodiode, a linear amplifier, and a Schmitt trigger on a single silicon chip. The devices feature TTL/LSTTL compatible logic level output which can drive up to 8 TTL loads directly without additional circuitry. Also featured are medium speed data rates to 250 kBaud with typical rise and fall times of 25 nsec. Both the infrared emitting diode and the Photologic™ sensor are in hermetically sealed packages for maximum long term stability and are mounted in a high dielectric plastic housing.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input-to-Output Isolation Voltage
Supply Voltage, V _{CC} (not to exceed 3 sec.)+10.0V
Storage Temperature Range55°C to +100°C
Operating Temperature Range55°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode Power Dissipation
Output Photologic Power Dissipation
Duration of Output Short to VCC or Ground (OPI125, OPI127) 1.00 sec.
Duration of Output Short to Vcc (OPI126, OPI128)
Voltage at Output Lead (OPI126, OPI128)
Input Diode
Forward D.C. Current
Reverse D.C. Voltage

Notes: (1) Measured with input and output leads shorted.

RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.

(3) Derate linearly 1.33mW/°C above 25

(4) Derate linearly 3.40mW/°C above 90°C.

Schematics

OPI125 (Totem-Pole Output) Buffer

OPI126 (Open-Collector Output) Buffer

Types OPI125, OPI126, OPI127, OPI128

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Diode Input	t.					
VF	Forward Voltage			1.50	V	I _F = 10.0mA, T _A = 25°C
lR	Reverse Current			100	μА	V _R = 2.0V, T _A = 25°C
lF(+)	LED Positive-Going Threshold Current			7.5	mA	$V_{CC} = 5.0V, T_A = 25^{\circ}C$
lF(+)/lF(-)	Hysteresis Ratio		2.0			
Photologic ¹	™Output					
Vcc	Operating Supply Voltage	4.5	T	5.5	V	
Icc	Supply Current			20	mA	V _{CC} = 5.5V, I _F = 0 or 7.5mA
OPI125 (Bu	ffer, Totem-Pole)					
Vol	Low Level Output Voltage			0.40	V	V _{CC} = 4.5V, I _{OL} = 13.0mA, I _F = 0mA
VoH	High Level Output Voltage	2.4			V	V _{CC} = 4.5V, I _{OH} = -800μA, I _F = 7.5mA
los	Short Circuit Output Current	-20		-120	mA	V _{CC} = 5.5V, I _F = 7.5mA, Output = GND
OPI126 (Bu	ffer, Open-Collector)					
V _{OL}	Low Level Output Voltage			0.40	V	V _{CC} = 4.5V, I _{OL} = 13.0mA, I _F = 0mA
Іон	High Level Output Current			100	μА	V _{CC} = 4.5V, V _{OH} = 30V, I _F = 7.5mA
OPI127 (Inv	rerter, Totem-Pole)					
VoL	Low Level Output Voltage			0.40	V	V _{CC} = 4.5V, I _{OL} = 13.0mA, I _F = 7.5mA
	High Level Output Voltage	2.4			٧	V _{CC} = 4.5V, I _{OH} = -800μA, I _F = 0mA
V _{OH}			1	1		
V _{OH}	Short Current Output Current	-20		-120	mA	V _{CC} = 5.5V, I _F = 0mA, Output = GND
los	Short Current Output Current verter, Open-Collector)	-20		-120	mA	
los		-20		-120	mA V	
los OPI128 (Inv	verter, Open-Collector)	-20		<u> </u>		Output = GND Vcc = 4.5V loL = 13.0mA,
OPI128 (Inv Vol Ioh	verter, Open-Collector) Low Level Output Voltage High Level Output Current	-20		0.40	V	Output = GND $ V_{CC} = 4.5 \text{V I}_{OL} = 13.0 \text{mA}, \\ I_F = 7.5 \text{mA} $ $ V_{CC} = 4.5 \text{V, V}_{OH} = 30 \text{V,} $
los OPI128 (Inv	verter, Open-Collector) Low Level Output Voltage High Level Output Current	-20	70	0.40	V	Output = GND $V_{CC} = 4.5V \text{ IoL} = 13.0\text{mA},$ $I_{F} = 7.5\text{mA}$ $V_{CC} = 4.5V, V_{OH} = 30V,$ $I_{F} = 0\text{mA}$ $V_{CC} = 5V, T_{A} = 25^{\circ}\text{C},$
Ios OPI128 (Inv VoL IoH OPI125, OP	rerter, Open-Collector) Low Level Output Voltage High Level Output Current	-20	70 5	0.40	V µA	Output = GND $V_{CC} = 4.5V \mid_{OL} = 13.0 \text{mA}, \\ I_{F} = 7.5 \text{mA}$ $V_{CC} = 4.5V, V_{OH} = 30V, \\ I_{F} = 0 \text{mA}$ $V_{CC} = 5V, T_{A} = 25^{\circ}C, \\ I_{F} = 0 \text{ or } 10 \text{mA}, f = 10 \text{kHz}, $
Ios OPI128 (Inv Vol IoH OPI125, OP tr, tr	PI127 Output Rise Time, Output Fall Time Propagation Delay, Low-High, High-Low	-20		0.40	V μA	Output = GND $V_{CC} = 4.5V \text{ IoL} = 13.0\text{mA},$ $I_{F} = 7.5\text{mA}$ $V_{CC} = 4.5V, V_{OH} = 30V,$ $I_{F} = 0\text{mA}$ $V_{CC} = 5V, T_{A} = 25^{\circ}\text{C},$
Ios OPI128 (Inv VoL IOH OPI125, OP	PI127 Output Rise Time, Output Fall Time Propagation Delay, Low-High, High-Low	-20		0.40	V μA	Output = GND

Types OPI125, OPI126, OPI127, OPI128

Typical Performance Curves

OPI125, OPI127

OPI126, OPI128

Rise Time and Fall time vs Ambient Temperature

Types OPI125, OPI126, OPI127, OPI128

Typical Performance Curves

Switching Test Curve for Inverters

Switching Test Curve for Buffers

Optically Coupled Isolators Types OPI1264, OPI1264A, OPI1264B, OPI1264C

Features

- 10kV electrical rating
- High current transfer ratio
- Low cost plastic module
- UL recognized File NO. E58730⁽⁶⁾

Description

The OPI1264 series are optically coupled isolators, each consisting of an infrared emitting diode coupled to an NPN silicon phototransistor and sealed in a precast opaque housing. The isolators are designed for applications requiring high voltage isolation between input and output.

Replaces

K8900 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input-to-Output Isolation Voltage ± 10.0kVDC ⁽¹⁾⁽⁶⁾ Storage Temperature Range -40°C to +100°C
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current
Reverse DC Voltage 2.0V
Power Dissipation
Output Photosensor
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Notes:

- (1) Measured with input and output leads shorted. Typical input/output capacitance is 0.06pf.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 0.67mA°C above 25°C. (4) Derate linearly 0.83mW/°C above 25°C. (5) Derate linearly 1.66mW/°C above 25°C.
- (6) UL recognition is for 3500 VAC, 1 minute only.

Schematic

Types OPI1264, OPI1264A, OPI1264B, OPI1264C

Electrical C	lectrical Characteristics (T _A = 25°C unless otherwise noted)								
SYMBOL	PARAMETER	-	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS		
Input Diod	P		,		1	·			
VF	Forward Voltage				1.60	V	I _F = 20 mA		
I _R	Reverse Current				100	μА	V _R = 2.0 V		
Output Pho	Output Phototransistor								
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage)	30			V	I _C = 100 μA		
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage)	5			V	I _E = 100 μA		
ICEO	Collector-Emitter Dark Current				100	nA	V _{CE} = 15 V, Ee = 0		
Coupled									
lc/l _F	0	PI1264 PI1264A PI1264B PI1264C	12.5 25 50 100		125	%	$I_F = 10.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$		
Viso	Isolation Voltage		10		!	kVDC	(See Note 1)		
V _{CE} (SAT)	Collector-Saturation Voltage				0.40	V	I _F = 10.0 mA, I _C = 1.6 mA		
ICEO	Collector-Emitter Dark Current				200	nA	I _F = 0, V _{CE} = 20 V		

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

-25

VF - FORWARD VOLTAGE - V

10⁻³

100

following characteristics: ZOUT = 50Ω , $t_r \le 15 \text{ ns}$,

duty cycle \approx 1%, pulse width \approx 100 μ s.

25 0 25 50 75 Ta – ambient temperature – °C

High Speed, Very High Voltage Isolator Type OPI1266

Features:

- TTL compatible output
- 16kV Isolation
- 500 kbits/s transfer rate
- Creepage path: 0.970"
- Air path: 0.970"
- tPHL-tPLH ≤ 500ns
- UL recognized File No. E58730⁽⁴⁾

Description

The OPI1266 consists of a GaAlAs LED coupled with a unique integrated circuit detector. Photons are collected in the detector by a photodiode and amplified by a high gain linear amplifier that drives a Schottky clamped open collector output transistor. The circuit is temperature, current, and voltage compensated. This design produces maximum DC and AC current isolation between input and output while providing TTL/LSTTL circuit compatibility. Propagation delay times are matched within 500ns over the entire temperature range for timing purposes⁽²⁾.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input-to-Output Isolation Voltage 16kVDC	
Operating Temperature Range)
Storage Temperature Range40°C to +85°C	
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	
iron])
Input Diode	
Forward DC Current	١
Reverse Voltage	/
Peak Forward Current (1 μs pulse width, 300 pps)	١
Power Dissipation	/
Output IC	
Maximum Supply Voltage 7.0V	/
Power Dissipation	/
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec max. when flow soldering.
- (2) $\Delta T_P = t_{PHL} t_{PLH}$
- (3) Measured with input and output leads shorted. Typical input/output capacitance is 0.05pF.
- (4) UL recognition is for 5833 VAC, for 1 minute.

4 01 1 10 0 (3)(4)

Type OPI1266

Electrical Characteristics ($T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V _F	Forward Voltage			1.8	V	I _F = 20mA
I _R	Reverse Current			100	μΑ	V _R = 2.0V
Output Ic (\	V _{CC} = 4.75V to 5.25V)					
Іон	High Level Output Current	T		100	μА	I _F = 0, V _{OUT} = 5.5V
Vol	Low Level Output Voltage			0.6	٧	I _F = 13.5mA, I _{OL} = 2.6mA
Іссн	High Level Supply Current			15	mA	IF = 0
Iccl	Low Level Supply Current			18	mA	I _F = 13.5mA
Coupled (V	cc = 5.0V)					
Cio	Coupling Capacitance			2.0	pF	Input & Output Leads Shorted
tplH	Propagation Delay to Low Output Level			800	ns	See Fig. 1&2
tpHL	Propagation Delay to High Output Level			800	ns	See Fig. 1&2
ΔΤΡ ⁽²⁾	Difference in Propagation Delays	-500		500	ns	
l _{ISO}	Isolation Leakage			1.0	μΑ	@ 7kV RMS Input & Output Leads Shorted

TYPICAL PERFORMANCE CURVES

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

20 30 40 50 60

0 10

100

Optically Coupled Isolators Types OPI150, OPI153

Features

- 50kV electrical isolation
- Phototransistor output (OPI150) or photodarlington output (OPI153)
- Hermetically sealed LED and photosensor
- Base contact lead for conventional transistor biasing
- TX-TXV process available (see Hi-Rel section)

Description

The OPI150 and OPI153 each contain an infrared emitting diode and an NPN silicon phototransistor (OPI150) or photodarlington (OPI153) optically coupled by means of a light pipe and mounted in a high dielectric plastic housing. The LED and sensor are in hermetically sealed packages. These series are designed for applications requiring very high isolation between input and output.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input-to-Output Isolation Voltage
Storage Temperature Range40°C to +85°C
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Continuous Forward Current 50mA
Reverse Voltage 3.0V
Power Dissipation
Output Photosensor
Collector-Emitter Voltage OPI150 30V
OPI153
Emitter-Collector Voltage OPI150 5.0V
OPI153 5.0V
Collector-Base Voltage OPI150
OPI153
Power Dissipation OPI150
OPI153

Notes:

- (1) Measured with input and output leads shorted.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 3.33mW/°C above 25°C. (4) Derate linearly 4.17mW/°C above 25°C.

Schematics

Types OPI150, OPI153

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		. MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode							
VF	Forward Voltage	OPI150 OPI153			1.60 1.60	V V	I _F = 50mA I _F = 50mA
IR	Reverse Current				100	μΑ	V _R = 3.0V
Output Pho	tosensor						
V _(BR) CEO	Collector-Emitter Breakdown Voltage	OPI150 OPI153	30 15			V	I _C = 1.00mA I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	OPI150	5			٧	I _F = 100μA
V _{(BR)CBO}	Collector-Base Breakdown Voltage	OPI150 OPI153	30 20			V	I _C = 100μA I _C = 100μA
ICEO	Collector-Emitter Dark Current	OPI150 OPI153			100 500	nA nA	V _{CE} = 10.0V V _{CE} = 10.0V
Ісво	Collector-Base Dark Current	OPI150			50	nA	V _{CB} = 10.0V
Coupled							
Ic/IF	DC Current Transfer Ratio	OPI150 OPI153	10 25			%	I _F = 10mA, V _{CE} = 5.0V I _F = 20mA, V _{CE} = 5.0V
ICB(ON)	On-State Photodiode Current	OPI150	10			μА	I _F = 20mA, V _{CB} = 5.0V
V _{CE} (SAT)	Saturation Voltage	OPI150 OPI153			0.50 1.20	V V	I _F = 16.0mA, I _C = 1.0mA I _F = 30.0mA, I _C = 2.0mA

Typical Performance Curves (OPI150 Only)

The input waveform is supplied by a generator with the following characteristics: Z_{QUT} = 50Ω , $t_r \le 15$ ns. Duty cycle $\approx 1\%$, pulse width $\approx 100~\mu$.

Optically Coupled Isolators Types OPI7002, OPI7010

Features

- 6kV electrical isolation
- Low cost plastic housing
- UL recognized File No. E58730⁽⁴⁾
- Phototransistor output

Description

The OPI7002 and OPI7010 each consist of an infrared emitting diode coupled to an NPN silicon phototransistor. The LED and sensor are encased in a black, low-cost plastic housing. Pin spacing is compatible with standard dual-in-line packages.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

3 - (**,**********************************
Input-to-Output Isolation Voltage \pm 6kVDC $^{(1)(4)}$ Operating and Storage Temperature Range
Input Diode
Forward DC Current
Peak Forward Current (1 µs pulse width, 300 pps)
Reverse Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Notes:

- (1) Measured with input leads and output leads shorted.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 1.66mW/°C above 25°C.
- (4) UL recognition is for 3500 VAC, 1 minute only.

Typical Performance Curves

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Types OPI7002, OPI7010

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
VF	Forward Voltage		}	1.70	V	l _F = 10.0mA
IR	Reverse Current			100	μΑ	V _R = 2.0V
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30.0	}		V	I _C = 100μA, I _F = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			V	I _E = 100μA, I _F = 0
ICEO	Collector Dark Current			100	nA	V _{CE} = 10.0V, I _F = 0
Coupled						
lc/l _F	DC Current Transfer Ratio OPI7002 OPI7010	20 100			%	I _F = 10.0mA, V _{CE} = 5.0V I _F = 10.0mA, V _{CE} = 5.0V
V _{CE}	Collector-Emitter Saturation Voltage			0.40	V	I _F = 10.0mA, I _C = 0.50mA
V _{ISO}	Isolation Voltage	6			kVDC	(See Note 1)
ton	Turn-On Time		4.0		μѕ	$V_{CE} = 10.0V$, $I_{C} = 10.0$ mA $R_{L} = 100\Omega$
t _{off}	Turn-Off Time		3.0		μѕ	$V_{CE} = 10.0V, I_{C} = 10.0mA$ $R_{L} = 100\Omega$
C _{IO}	Capacitance Input-to-Output		0.20		pF	$V_{10} = 0, f = 1MHz^{(1)}$

Typical Performance Curves

TA- AMBIENT TEMPERATURE - °C

Optically Coupled Isolators Types OP17320, OP17340

Features

- 6kV electrical isolation
- Low cost plastic housing
- UL recognized File No. E58730⁽⁴⁾
- Photodarlington output

Description

The OPI7320 and OPI7340 each consist of an infrared emitting diode coupled to an NPN silicon photodarlington in a high dielectric plastic housing. This device is designed for applications requiring a high current transfer ratio. Pin spacing is compatible with standard dual-in-line packages.

Typical Performance Curves

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input-to-Output Isolation Voltage	± 6kVDC ⁽¹⁾⁽⁴⁾
Operating and Storage Temperature Range	40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. wit	h soldering
iron]	260 ^o C ⁽²⁾
Input Diode	
Forward DC Current	50mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Reverse Voltage	2.0V
Power Dissipation	100mW ⁽³⁾
Output Photodarlington	
Collector-Emitter Voltage	15.0V
Emitter-Collector Voltage	5.0V
Power Dissipation	100mW ⁽³⁾
Notes:	
(1) Measured with input and output leads shorted	

- Measured with input and output leads shorted.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.66mW/°C above 25°C.
- (4) UL recognition is for 3500 VAC, 1 minute only.

Types OPI7320, OPI7340

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
VF	Forward Voltage			1.70	V	I _F = 10.0mA
IR	Reverse Current			100	μΑ	V _R = 2.0V
Output Pho	todarlington					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15.0	T		٧	I _C = 1.00mA, I _F = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			٧	$I_E = 100 \mu A$, $I_F = 0$
ICEO	Collector Dark Current			100	nA	V _{CE} = 10.0V, I _F = 0
Coupled						
lc/l _F	DC Current Transfer Ratio OPI7320 OPI7340	200 400			%	I _F = 5.0mA, V _{CE} = 5.0V I _F = 5.0mA, V _{CE} = 5.0V
V _(SAT)	Collector-Emitter Saturation Voltage			1.00	V	I _F = 5.0mA, I _C = 2.0mA
V _{ISO}	Isolation Voltage	6			kVDC	(See Note 1)
ton	Turn-On Time		150		μѕ	$V_{CE} = 10.0V, I_{C} = 10.0mA$ $R_{L} = 100\Omega$
t _{off}	Turn-Off Time		125		μѕ	$V_{CE} = 10.0V, I_{C} = 10.0mA$ $R_{L} = 100\Omega$
C _{IO}	Capacitance Input-to-Output		0.20		pF	$V_{IO} = 0, f = 1MHz^{(1)}$

Typical Performance Curves

EMITTER AND PHOTOSENSOR CHIPS

Emitter and Photosensor Chips

Optek Technology, Inc. is widely recognized as one of the industry's leading suppliers of high quality gallium arsenide (GaAs) and gallium aluminum arsenide (GaAlAs) infrared emitter chips and silicon photosensor chips. In hybrid or other applications, where space forbids use of a discrete optoelectronics component, direct placement of emitter and/or sensor chips may be the best alternative. With over twenty years experience, Optek is the technological leader in the design and fabrication of optoelectronic semiconductor chips.

Emitter and sensor chips are manufactured in the closely controlled clean rooms of our headquarters located in Carrollton, Texas. The building was designed and built specifically for the purpose of being used as a semiconductor fabrication facility.

Emitter Chips Material Fabrication

Two basic types of infrared emitting diode chips are offered by Optek: GaAs or GaAlAs. In the early 1970's, Optron (today known as Optek) pioneered in the development of solution grown epitaxial GaAs IRED's.

Emitter Chip Selection

GaAs is often chosen for its lower rate of output degradation over time. Throughout their operating lives, crystalline degradation occurs in all III-IV compounds (e.g., GaAs) as microflaws propagate due to the combined effects of current and temperature change. Optical efficiency is lowered; hence overall infrared power output drops with time. Heat sinking and careful limiting of operating currents, of course, can have a dramatic effect on the life of the chip. GaAlAs is usually the material of choice when the decision centers upon device efficiency and spectral matching.

The metallization area and chip size are important factors in the IRED output capability. Optek offers smaller chips with smaller metallization areas for low current applications. Typically operated in the range of 10-20 mA, many of these devices may be designed with applications demanding up to 100 mA of forward current. The larger chips with bonding areas designed for high current may be operated at up to five amperes in the pulse mode.

Photosensor Chip Selection

The basic phototransistor consists of three regions (NPN) with the base (P-type material) acting as receiver of the infrared energy (Figure 2). As such, the bulk of the surface area consists of the base diffusion region to optimize optical collection efficiency. In some chips, the base may also be bonded and electrically biased in order to improve device speed and/or sensitivity. In addition, these products may also be used as PN photodiodes by connecting only the base and collector.

Photodarlington chips are, as expected, more complex than the basic phototransistor. Again, the base region for the photosensitive transistor is designed to be as large as possible to maximize the photosensitive area.

A variety of factors must be considered when choosing the correct chip.

- 1) **Responsivity:** Photodiodes, particularly PIN structures, offer the highest levels of responsivity in the near infrared wavelengths due to their thicker depletion regions.
- Sensitivity: The current gain available in photodarlingtons and phototransistors produce a sensitivity advantage over photodiodes. Photologic™ chips are available in two levels of radiant power threshold.
- 3) Speed: Due to a lower capacitance and the ability to eliminate the Miller effect associated with the transistor current gain, photodiodes offer superior frequency response. Photologic™ chips perform to 250 kbps.
- 4) Package Integration/Volume: Photologic™ is the choice where package volume is the key factor, combining the functions of several chips into one.
- 5) Ease of Logic Interfacing: With four options on output logic and levels, a Photologic™ chip is the choice.

Chip Mounting and Bonding Recommendations

Two basic mounting (alloy) methods are recommended for the chip products described herein: eutectic and epoxy. Eutectic scrub mounting is most often used with a metal header type of packaging. Solder preforms are required and are commonly available for this type of work. Conductive epoxy (silver based) is generally used when mounting the chip in a silver plated lead frame. Again, these epoxies are commonly available from a variety of suppliers. Mounting to a hybrid ceramic substrate may be accomplished by either of the above methods.

Thermo-compression bonding (ball bonding) is the recommended method of IRED wire bonding. Caution is urged to avoid damage to the delicate chip structure (particularly with GaAs and GaAlAs). The possibility of chip damage should be carefully considered before using ultrasonic, thermo-sonic or other methods. Optek only recommends the use of carefully monitored thermo-compression bonding for gold wire attachment to the metallization area of its IRED chips.

With standard aluminum metallization or all sensor chips, a variety of bonding techniques may be successfully utilized on sensors.

Chip Packaging

Optek offers three standard methods of packaging chips, in Vials, Tape Pack and Waffle Pack.

Vial - This type of packaging is offered for most chips, (very large chips and Photologic-chips are not available in vial packs due to potential damage in shipping). The slice is tested, sawed, sorted, and weigh counted into

Tape Pack - A tested slice is mounted on Nitto tape and sawed. This is the least expensive of the three methods

Waffle Pack - A slice is tested, sawed on tape and loaded into waffle trays. This is the most expensive of the three methods.

Optek Hybrid Capability

In many cases, an application demands the use of a hybrid circuit, yet in-house engineering resources and equipment may not be available. Having the chips is only a part of the solution. The investment required to develop the complete hybrid in-house may be unrealistic for many customers.

Optek has a state-of-the-art hybrid facility that may be able to meet your specific needs. Specializing in the automated design and fabrication of complex opto custom hybrid circuits, Optek engineers can solve your most demanding application problems. Many satisfied customers have found that the cost of letting Optek do the entire circuit is often less than the "in-house" approach.

Optek, long known as the leader in custom opto assemblies, is now a leader in opto hybrid design and production. For more information, contact your local Optek sales office.

Figure 1. IRED Chip Fabrication

Figure 2. Typical Phototransistor Layout

GaAs Infrared Emitter Chip Type OPC126

Features

- High infrared radiation output
- Low degradation
- Microalloyed gold contacts

Description

Infrared emitting diode chips are fabricated by solution epitaxial techniques which provide high efficiency, long operating life, and minimum degradation. Spectral emission is centered at 935 nanometers.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Packaging Options

OPC126

Vials

OPC126TP OPC126WP Sawn on Tape Waffle Pack

Replaces

OPC125

Absolute Maximum Ratings (1)(T_A = 25°C unless otherwise noted)

Storage and Operating Temperature55°C to +150°C
Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps)
Power Dissipation
Electrical Characteristics (T _A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
VR	Reverse Voltage	2.0			٧	I _R = 10μA
VF	Forward Voltage			1.75	V	l _F = 100mA
Po	Radiant Power Output	2.0	4.5		mW	IF = 100mA

Notes: (1) All maximum ratings are determined with the chip mounted on a dimple TO-46 header using Optek techniques. (2) Maximum operating current is a function of the package in which the chip is housed and the environment in which the assembled package will be used. (3) Typical wavelength at peak emission is 935 nm.

NPN Silicon Phototransistor Chip Type OPC200

Features

- · Active area centered on chip
- Low Cost
- Silicon nitride passivation

Description

Optek Technology photosensor chips are fabricated using the latest silicon planar diffused technology and are silicon nitride passivated for long term stability. All photosensors have an anti-reflective coating over the active area to ensure maximum absorption of irradiated light. Chips can be specially probed for custom requirements.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Package Options

OPC200VP Vials
OPC200TP Sawn on Tape
OPC200WP Waffle Pack
OPC200SP Unsawn Slice

Special packaging and testing available upon request. Special transistor arrays available upon request.

Replaces

OPC600L

Absolute Maximum Ratings $^{(1)}(T_A = 25^{\circ}C)$ unless otherwise noted)

Operating Temperature
Storage Temperature65°C to +150°C
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30	60		V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0	7.5		V	I _E = 100μA
ICEO	Collector Dark Current		<1	100	nA	$V_{CE} = 10.0V, \Phi = 0$
Rλ	Responsivity		0.25		A/W	V _{CE} =5.0V,Φ=10μW ⁽³⁾
h _{FE}	Current Gain	100				V _{CE} = 5.0V,l _C =1.0m/

Notes: (1) All maximum ratings are determined with the chip mounted on a dimpled TO-18 header using Optek techniques. (2) Maximum power dissipation is a function of the package in which the chip is housed and the environment in which the assembled package will be used. (3) Light source is a GaAs LED, $\lambda_P = 935$ nm, typical.

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

EMITTER & ' HOTOSENSOR CHIPS

GaAlAs Infrared Emitter Chip Type OPC216

Features

- High infrared radiation output
- Low degradation
- Microalloyed gold contacts

Description

Infrared emitting diode chips are fabricated by solution epitaxial techniques which provide high efficiency, long operating life, and minimum degradation. Spectral emission is centered at 890 nanometers.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Packaging Options

OPC216 Vials
OPC216TP Sawn on Tape
OPC216WP Waffle Pack

Absolute Maximum Ratings (1)(T_A = 25°C unless otherwise noted)

Storage and Operating Temperature	-55°C to +150°C
Forward DC Current	150mA ⁽²⁾
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Power Dissipation	

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
VR	Reverse Voltage	2.0			V	I _R = 10μA
VF	Forward Voltage			1.95	V	IF = 100mA
Po	Radiant Power Output	4.0	7.5		mW	l _F = 100mA ⁽³⁾

Notes: (1) All maximum ratings are determined with the chip mounted on a dimpled TO-46 header using Optek techniques. (2) Maximum operating current is a function of the package in which the chip is housed and the environment in which the assembled package will be used. (3) Typical wavelength at peak emission is 890 nm.

Typical Performance Curves

Percent Change in Power Output vs Time

GaAlAs Infrared Emitter Chip Type OPC226

Features

- · High infrared radiation output
- Low degradation
- Microalloved gold contacts

Description

Infrared emitting diode chips are fabricated by solution epitaxial techniques which provide high efficiency, long operating life, and minimum degradation. Spectral emission is centered at 890 nanometers.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Packaging Options

OPC226

Vials

OPC226TP OPC226WP

Sawn on Tape Waffle Pack

Replaces

OPC225

Absolute Maximum Ratings (1)(T_A = 25°C unless otherwise noted)

Storage and Operating Temperature	-55°C to +150°C
Forward DC Current	150mA ⁽²⁾
Peak Forward Current (1 μs pulse width, 300 pps)	
Power Dissipation	200mW

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
VR	Reverse Voltage	2.0			٧	I _R = 10μA
VF	Forward Voltage			1.95	٧	I _F = 100mA
Po	Radiant Power Output	4.0	7.5		mW	I _F = 100mA ⁽³⁾

Notes: (1) All maximum ratings are determined with the chip mounted on a dimpled TO-46 header using Optek techniques. (2) Maximum operating current is a function of the package in which the chip is housed and the environment in which the assembled package will be used. (3) Typical wavelength at peak emission is 890 nm.

NPN Silicon Phototransistor Chip Type OPC260

Features

- 2.7 times the active area of OPC200
- · More sensitive at low light levels
- Active area centered on chip

Description

Optek Technology photosensor chips are fabricated using the latest silicon planar diffused technology and are silicon nitride passivated for long term stability. All photosensors have an anti-reflective coating over the active area to ensure maximum absorption of irradiated light. Chips can be specially probed for custom requirements.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Packaging Options

OPC260VP Vials
OPC260TP Sawn on Tape

OPC260WP Waffle Pack OPC260SP Unsawn Slice

Special packaging and testing available upon request. Special transistor arrays available upon request

Replaces

OPC60X

Absolute Maximum Ratings (1)(T_A = 25°C unless otherwise noted)

Operating Temperature	
Storage Temperature65°C to +150°C	
Collector-Emitter Voltage	
Emitter-Collector Voltage 5.0V	
Power Dissipation	

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30	60		V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0	7.5		٧	I _E = 100μA
ICEO	Collector Dark Current		<1	100	nA	$V_{CE} = 10.0V, \Phi = 0\mu W$
Rλ	Responsivity		0.25		A/W	V _{CE} =5.0V, Φ=10μW ⁽³⁾
hFE	Current Gain	50				$V_{CE} = 5.0V$, $I_{C} = 1mA$

Notes: (1) All maximum ratings are determined with the chip mounted on a dimpled TO-18 header using Optek techniques. (2) Maximum power dissipation is a function of the package in which the chip is housed and the environment in which the assembled package will be used. (3) Light source is a GaAs LED, λ_P = 935nm, typical.

Typical Performance Curves

NPN Silicon Photodarlington Chip Type OPC300R

Features

- High Collector Current
- Improved current sinking characteristics
- Silicon nitride passivation
- · Enhanced low current gain

Description

Optek Technology photosensor chips are fabricated using the latest silicon planar diffused technology and are silicon nitride passivated for long term stability. All photosensors have an anti-reflective coating over the active area to ensure maximum absorption of irradiated light. Bond pads are oxide passivated to protect against mechanical damage.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Packaging Options

OPC300RVP Vials
OPC300RTP Sawn on Tape
OPC300RWP Waffle Pack
OPC300RSP Unsawn Slice
Special packaging and testing available
upon request.

Absolute Maximum Ratings (1)(T_A = 25°C unless otherwise noted)

Operating Temperature -40°C to +85°C Storage Temperature -65°C to +150°C	;
Collector-Emitter Voltage	
Emitter-Collector Voltage	
Power Dissipation	

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30	60		V	Ic = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	7.0	12.5		V	I _E = 100μA
ICEO	Collector Dark Current		<10	100	nA	V _{CE} =10.0V, Φ=0μW
Rλ	Responsivity		0.2		A/W	Φ=10μW ⁽³⁾
hFE	Current Gain	зк				V _{CE} =5.0V, lb =1.0μA

Notes: (1) All maximum ratings are determined with the chip mounted on a dimpled TO-18 header using Optek techniques. (2) Maximum power dissipation is a function of the package in which the chip is housed and the environment in which the assembled package will be used. (3) Light source is a GaAs LED, $\lambda_P = 935$ nm, typical.

Typical Performance Curves

Test Conditions (LED): $T_A = T_J = 25\,^{\circ}\text{C}, \; |F = 100 \; \text{mA}, \; DC = 0.1\%, \; PW = 100 \; \mu\text{s}$ Peak Wavelength $-\lambda_p$: (A) XSTR $-850 \pm 30 \; \text{nm}$ (B) LED GaAIAs $-890 \pm 20 \; \text{nm}$ (C) LED GaAs $-935 \pm 15 \; \text{nm}$

Photologic[™] Chips Types OPC8320, OPC8321, OPC8322, OPC8323

Features

- Internal voltage regulator for 4.5V to 18V operation
- Open collector or totem-pole output
- Drive up to 10 TTL loads
- Data rates to 250 kBaud

Description

The OPC8320 family of photologic chips are bipolar monolithic integrated circuits consisting of a photodiode, a voltage regulator, a linear amplifier, and a Schmitt trigger on a single silicon chip. Four output options are available, buffer-totem pole (OPC8320), buffer-open collector (OPC8321), inverter-open collector (OPC8322), and inverter- totem pole (OPC8323). Featured is logic level output and up to 16mA of sink current for direct driving up to 10 TTL loads. The Schmitt trigger provides hysteresis for high noise immunity.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Packaging Options for 8320 Series

OPCXXXXTP Sawn on Tape
OPCXXXXWP Waffle Pack
OPCXXXXSP Unsawn Slice
Special packaging and testing available
upon request. Call Optek for availability
of other logic chips.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Operating Temperature	 	-40°C to +85°C
Storage Temperature	 	-55°C to +125°C
Supply Voltage, Vcc	 	18V
Junction Temperature		

Notes: (1) Light level sufficient to cause high level output (see Φ_{T+}). Light source is a GaAs LED, $\lambda_P = 935$ nm. (2) Light level sufficient to cause low level output (see Φ_{T-}). Light source is a GaAs LED, $\lambda_P = 935$ nm, typical.

Schematics

OPC8320

OPC8321 (Open-Collector Output) Buffer

OPC8323

OPC8322 (Open-Collector Output) Inverter

VOLTAGE REGULATOR LA COUT

EMITTER & PHOTOSENSC CHIPS

Types OPC8320, OPC8321, OPC8322, OPC8323

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
OPC8320 (E	Buffer-Totem Pole)					
Іссн	High Level Supply Current		8.0	10	mA	$V_{CC} = 18V$, $\Phi = 8\mu W$
Voн	High Level Output Voltage	15.5	16.5		V	$V_{CC} = 18V, I_{OH} = -1.0mA$ $\Phi = 8\mu W$
VoL	Low Level Output Voltage		280	400	mV	V_{CC} = 4.5V, I_{OL} = 16mA, Φ = 0 μ W
Фт+	Incident Radiant Power Threshold ⁽¹⁾	0.5	1.5	3	μW	V _{CC} = 5.0V
Фт+/Фт-	Hysteresis	1.1	1.5	2		V _{CC} = 5.0V

OPC8321 (Buffer-Open Collector)

Іссн	High Level Supply Current		8.0	10	mA	$V_{CC} = 18V$, $\Phi = 8\mu W$
Іон	High Level Output Current		<1	100	μА	$V_{CC} = 18V, V_{OH} = 32V, \\ \Phi = 8\mu W$
Vol	Low Level Output Voltage		280	400	mV	V_{CC} = 4.5, I_{OL} = 16mA, Φ = 0 μ W
Фт+	Incident Radiant Power Threshold ⁽¹⁾	0.5	1.5	3	μW	V _{CC} = 5.0V
Фт+/Фт-	Hysteresis	1.1	1.5	2		V _{CC} = 5.0V

OPC8322 (Inverter-Open Collector)

ICCL	Low Level Supply Current		8	10	mA	$V_{CC} = 18V, \Phi = 0\mu W$
Іон	High Level Output Current		<1	15	μА	$V_{CC} = 18V, V_{OH} = 32V, \\ \Phi = 0\mu W$
Vol	Low Level Output Voltage		280	400	mV	$V_{CC} = 4.5$, $I_{OL} = 16$ mA, $\Phi = 8$ μ W
Фт-	Incident Radiant Power Threshold ⁽²⁾	0.5	1.5	3	μW	Vcc = 5.0V
Фт-/Фт+	Hysteresis	1.1	1.5	2		V _{CC} = 5.0V

OPC8323 (Inverter-Totem Pole)

Іссн	High Level Supply Current		8.0	10	mA	$V_{CC} = 18V, \Phi = 0\mu W$
Vон	High Level Output Voltage	15.5	16.5		V	$V_{CC} = 18, I_{OH} = -1.0 \text{mA}$ $\Phi = 0 \mu \text{W}$
Vol	Low Level Output Voltage		280	400	mV	$V_{CC} = 4.5$, $I_{OH} = 16$ mA, $\Phi = 8\mu W$
Фт-	Incident Radiant Power Threshold ⁽²⁾	0.5	1.5	3	μW	V _{CC} = 5.0V
Фт-/Фт+	Hysteresis	1.1	1.5	2		V _{CC} = 5.0V

Photologic[™] Chips Types OPC8324, OPC8325, OPC8326, OPC8327

Features

- Internal voltage regulator for 4.5V to 18V operation
- Open collector or totem-pole output
- Drive up to 10 TTL loads
- Data rates to 250 kBaud
- High sensitivity

Description

The OPC8324 family of photologic chips are bipolar monolithic integrated circuits consisting of a photodiode, a voltage regulator, a linear amplifier, and a Schmitt trigger on a single silicon chip. Four output options are available, buffer-totem pole (OPC8324), buffer-open collector (OPC8325), inverter-open collector (OPC8326), and inverter- totem pole (OPC8327). The OPC8324 family features significantly lower thresholds than the companion OPC8320 family.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Packaging Options for 8324 Series

OPC8XXXTP Sawn on Tape
OPC8XXXWP Waffle Pack
OPC8XXXSP Unsawn Slice
Special packaging and testing available
upon request. Call Optek for availability
of other logic chips.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Operating Temperature40°C to +85°C
Storage Temperature55°C to +125°C
Supply Voltage, V _{CC}
Junction Temperature
Notes: (1) Light level sufficient to cause high level output (see Φ_{T+}). Light source is a
GaAs LED, $\lambda_P = 935$ nm. (2) Light level sufficient to cause low level output (see Φ_T -).
Light source is a GaAs LED, λ _P = 935nm, typical.

Schematics

OPC8324 (Totem-Pole Output) Buffer

VOLTAGE REGULATOR

VOLTAGE REGULATOR OUT

OPC8327

(Totem-Pole Output) Inverter

EMITTER 8 PHOTOSENS CHIPS

Types OPC8324, OPC8325, OPC8326, OPC8327

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
PC8324 (E	Buffer-Totem Pole)					
Іссн	High Level Supply Current		8.0	10	mA	$V_{CC} = 18V, \Phi = 8\mu W$
Voh	High Level Output Voltage	15.5	16.5		V	$V_{CC} = 18V, I_{OH} = -1.0mA, \Phi = 8\mu W$
V_{OL}	Low Level Output Voltage		280	400	mV	V_{CC} = 4.5V, I_{OL} = 16mA, Φ = 0 μ W
Фт+	Incident Radiant Power Threshold ⁽¹⁾	0.1	0.7	1.5	μW	V _{CC} = 5.0V
Фт+/Фт-	Hysteresis	1.1	1.5	2		V _{CC} = 5.0V

OPC8325 (Buffer-Open Collector)

Іссн	High Level Supply Current		8.0	10	mA	$V_{CC} = 18V, \Phi = 8\mu W$
Іон	High Level Output Current		<1	100	μА	$V_{CC} = 18V, V_{OH} = 32V, \\ \Phi = 8\mu W$
V _{OL}	Low Level Output Voltage		280	400	mV	V_{CC} = 4.5, I_{OL} = 16mA, Φ = 0 μ W
Φ _T +	Incident Radiant Power Threshold ⁽¹⁾	0.1	0.7	1.5	μW	V _{CC} = 5.0V
Фт+/Фт-	Hysteresis	1.1	1.5	2		V _{CC} = 5.0V

OPC8326 (Inverter-Open Collector)

ICCL	Low Level Supply Current		8	10	mA	$V_{CC} = 18V, \Phi = 0\mu W$
Іон	High Level Output Current		<1	15	μА	$V_{CC} = 18V, V_{OH} = 32V, \\ \Phi = 0\mu W$
V _{OL}	Low Level Output Voltage		280	400	mV	V_{CC} = 4.5, I_{OL} = 16mA, Φ = 8 μ W
Фт-	Incident Radiant Power Threshold ⁽²⁾	0.1	0.7	1.5	μW	V _{CC} = 5.0V
Фт-/Фт+	Hysteresis	1.1	1.5	2		V _{CC} = 5.0V

OPC8327 (Inverter-Totem Pole)

Іссн	High Level Supply Current	-	8.0	10	mA	$V_{CC} = 18V, \Phi = 0\mu W$
Vон	High Level Output Voltage	15.5	16.5		V	$V_{CC} = 18, I_{OH} = -1.0 \text{mA}$ $\Phi = 0 \mu \text{W}$
VoL	Low Level Output Voltage		280	400	mV	$V_{CC} = 4.5$, $I_{OH} = 16$ mA, $\Phi = 8\mu W$
Φ _T -	Incident Radiant Power Threshold ⁽²⁾	0.1	0.7	1.5	μW	V _{CC} = 5.0V
рт-/Фт+	Hysteresis	1.1	1.5	2		V _{CC} = 5.0V

PN Photodiodes Type OPC9XXX

Features

- PN photodiode elements
- Silicon nitride passivation anti-reflective coating

Description

Multi-element arrays are recommended for a variety of motion sensing and control applications ranging from encoding to quadrant sensing. Optek's photodiodes may be operated from zero bias (photovoltaic) up to the diode's reverse breakdown voltage.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Packaging Options

OPC9XXXTP Sawn on Tape
OPC9XXXWP Waffle Pack
OPC9XXXSP Unsawn Slice
Special packaging and testing available
upon request.

Absolute Maximum Ratings⁽¹⁾ (T_A = 25°C unless otherwise noted)

Operating Temperature
Storage Temperature65°C to +150°C
Reverse Breakdown Voltage
Power Dissipation
Electrical Characteristics Per Element (T _A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V _{(BR)R}	Reverse Breakdown Voltage	30	80		V	I _R = 100μA
lD	Reverse Dark Current		<1	15	nA	V _R = 10V
Rλ	Responsivity	0.45	0.50		A/W	$\Phi = 10 \mu W^{(3)}$
Ст	Capacitance per sq. mil		0.03		РF	$V_R = 1V, \Phi = 0\mu W$

Notes: (1) All maximum ratings are determined with the chip mounted on a TO-15 header using Optek techniques. (2) Maximum power dissipation is a function of the package in which the chip is housed and the environment in which the assembled package will be used. (3) Light source is a GaAs LED, $\lambda_P = 935$ nm, typical.

Photodiodes Available						
Part Number	Sizes					
OPC910	0.050 X 0.050 inches					
OPC911	0.060 X 0.060 inches (2 X 2 Array)					
OPC915	0.120 X 0.120 inches					
OPC925	0.040 X 0.040 inches					
OPC9013	0.210 X 0.210 inches					
Other sizes available						

Dual Element Silicon PN Photodiode Type OPC922

Features

- 25 mil x 50 mil PN photodiode elements
- Silicon nitride passivation
- · Anti-reflective coating

Description

Dual photodiodes are useful in a variety of motion sensing and control applications ranging from encoding to position sensing. Optek's photodiodes may be operated from zero bias (photovoltaic) up to the diode's reverse breakdown voltage.

Optek chip warranty excludes any damage resulting from improper bonding or alloying techniques.

Packaging Options

OPC922TP Sawn on Tape
OPC922WP Waffle Pack
OPC922SP Unsawn Slice
Special packaging and testing available
upon request.

Absolute Maximum Ratings(1) (T_A = 25°C unless otherwise noted)

Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +120°C
Reverse Breakdown Voltage	40V
Power Dissipation	150mW ⁽²⁾

Electrical Characteristics Per Element (T_A = 25°C unless otherwise noted)

Electrical characteristics i of Element (17 - 20 o amose ciric mes netta)							
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
V _{(BR)R}	Reverse Breakdown Voltage	40	70		V	I _R = 100μA	
lD	Reverse Dark Current		<1	10	nA	V _R = 15V	
R_{λ}	Responsivity	0.35	0.5		A/W	$\Phi = 10\mu W, V_R = 0V^{(3)}$	
CT	Capacitance		50		РF	$V_R = 01V, \Phi = 0$	

Notes: (1) All maximum ratings are determined with the chip mounted on a TO-15 header using Optek techniques. (2) Maximum power dissipation is a function of the package in which the chip is housed and the environment in which the assembled package will be used. (3) Light source is a GaAs LED, $\lambda_P = 935$ nm, typical.

FIBER OPTIC COMPONENTS

Fiber Optics

Features

LED coupled power 89 µW into 62.5 micron fiber.

Low capacitance, low leakage PIN photodiodes.

Components available pre-mounted and tested in receptacles.

Packages compatible with standard receptacles, SMA, ST*, and others.

Description

The Optek fiber optic components are optomized for use with multimode fiber optic cable at 850nm. The optical design provides good coupling with 50/125, 62.5/125, 100/140 and larger optical fibers. The mechanical design offers the user a choice between a hermetically sealed device, and a less expensive plastic cap component. LED's and PIN diodes are subjected to testing to eliminate infant mortality failures, and thus improve field reliability. Performances tests are accomplished with as near to actual use conditions as possible. Devices which are mounted in SMA or ST* style receptacles are easily mounted to printed circuit boards or panels.

LED Burn-in

All LED's are subjected to 100% burn-in testing. Test conditions are: 96 hours at 100mA, continuous current in 25° C ambient.

Why Use Fiber Optics

Electrical Isolation

EMI Immunity

Increased Bandwidth

Low Loss

Reduced Size, Weight

Secure Transmission

Lower Material Cost

Applications

System operating in high EMI or RFI ambients.

Explosive environments such as found in the petroleum/chemical processing or mining industries.

Optical coupling where high isolation voltage is required.

Secure communications.

Local area networks.

*ST is a registered trademark of AT&T

Part Number System

	Discrete Component	Mounted in SMA Receptacle	Mounted in ST* Compatible Receptacle
LED			
Metal Package	OPF320X	OPF321X	OPF322X
Plastic Package	OPF370X	OPF371X	OPF372X
PIN PHOTODIODE			
Metal Package	OPF420	OPF421	OPF422
Plastic Package	OPF470	OPF471	OPF472

Metal Package, TO-46 Hermetic Sealed

Plastic Package, TO-18

^{*}ST is a registered trademark of AT&T

High Speed Fiber Optic Transmitter Types OPF1402/1404 Series

Features

- Low Cost
- High Speed
- No Mounting Hardware Required
- Wide Temperature Range
- 100% LED Burn-In (96 hours)
- SMA or ST* Style Ports
- Wave Solderable

Description

The OPF14XX series fiber optic transmitters contain a high speed 840 nm GaAlAs LED. This LED in conjunction with the package lensing is designed to efficiently couple light into optical fibers ranging in size from 50/125 μm up to 200 μm PCS. These devices were designed to work together with the Optek OPF24XX series receivers to make-up a complete high speed fiber optic link.

The high coupling efficiency of the LED and lensing allows the devices to be used at low current drive levels thus decreasing the power consumption and increasing system reliability. The consistency of coupling varies by less than 5 dB from part to part which reduces the dynamic range requirements of the receiver.

The high power (-16.5 dBm into 50/125 $\mu m)$ OPF14X4 was designed for small fiber applications or where there are large fixed losses such as in systems that contain star couplers or in line connectors. The OPF14X2 (-11.5 dBm optical power) is ideal for 100/140 μm fiber applications.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature	-55°C to +85°C
Operating Temperature	-40°C to +85°C
Lead Soldering Temperature	260°C(10 sec)
Forward Input Current	
***************************************	DC 100mA
Reverse Input Voltage	1.8V

PIN	FUNCTION
1	N.C.
2	Anode
3	Cathode
4	N.C.
5	N.C.
6	Anode
7	Anode
8	N.C.

Available in Panel Mount ST package; add "T" suffix to part number.

This component is susceptible to damage from electrostatic discharge (ESD). Normal static precautions should be taken in handling and assembly of this component to prevent ESD damage or degradation.

Types OPF1402/1404 Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITION
VF	Forward Voltage	1.48	1.70	2.09	>	$I_F = 60 \text{ mA}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
V _{BR}	Reverse Input Voltage	1.8	3.8		٧	$I_R = 100 \mu\text{A}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$
λР	Peak Emission Wavelength		840		nm	I _F = 60 mA

Peak Output Optical Power Measured Through 1 m of Cable

SYMBOL	PARAMETER	14	112/14	02	14	114/14	04	UNIT	TEST CONDITION	
STWIDOL	FANAMETEN	MIN	TYP	MAX	MIN	TYP	MAX	ONLI	TEST CONDITION	
P _{T100}	100/140 μm Fiber Cable N.A. = 0.30	-15.0	-12.0	-9.5	-10.0	-6.5	-4.5	dBm	I _F = 60 mA	
P _{T62}	62.5/125 μm Fiber Cable N.A. = 0.27	-19.0	-16.0	-14.0	-15.0	-12.0	-10.0	dBm	I _F = 60 mA	
P _{T50}	50/125 μm Fiber Cable N.A. = 0.18	-21.8	-19.5	-16.8	-18.8	-16.5	-13.8	dBm	I _F = 60 mA	
t _r , t _f	Rise Time, Fall Time (10% to 90%)		4.0	6.5		4.0	6.5	ns	I _F = 60 mA, No pre-bias	

Mechanical Dimensions

25 MHz Fiber Optic Receiver Types OPF2404(SMA), OPF2414(ST*), OPF2414T

Features

- Low Cost
- No Mounting Hardware Required
- Wide Temperature Range
- Link Distances up to 4 KM
- SMA or ST* Style Ports
- Wave Solderable

Description

The OPF2404/2414 is a low cost high speed fiber optic receiver. The OPF2404/2414 is ideal for fibers as small as $50/125 \ \mu m$. The lensed optical system keeps the receiver's response consistent for all fiber sizes.

The output of the receiver is an analog, low impedance, voltage source capable of driving an amplifier or level translating circuitry for use on various data formats and data rates up to 35MBaud.

The receiver is comprised of a high speed, low noise, photodiode coupled to a transimpedance amplifier which produces an output voltage proportional to the input light amplitude. This hybrid approach solves many of the problems of high speed data link designs by placing a pre-amplifier close to the photodiode. The level amplification produced by the transimpedance amplifier makes the output signal much less susceptible to interference which is a problem often found at high data rates and in high EMI environments.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature	-55°C to +85°C
Operating Temperature	-40°C to +85°C
Lead Soldering Temperature (for 10 sec.)	260°C
Supply Voltage	

PIN	FUNCTION
1	N.C.
2	Signal
3	Common
4	N.C.
5	N.C.
6	Vcc
7	Common
8	N.C.

Bottom View

Available in Panel Mount ST package; add "T" suffix to part number.

This component is susceptible to damage from electrostatic discharge (ESD). Normal static precautions should be taken in handling and assembly of this component to prevent ESD damage or degradation.

Types OPF2404(SMA), OPF2414(ST*), OPF2414T

Electrical Characteristics (T_A = 25°C unless otherwise noted)

4.75 \leq V_{CC} \leq 5.25, R_{LOAD} = 511 Ω , Fiber Sizes \leq 100 Microns, N.A. \leq 0.35

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITION
R _P	Responsivity	5.1	7	10.9	mV/μW	at 840 nm
		4.6		12.3	mV/μW	at 840 nm, -40° C $\leq T_{A} \leq +85^{\circ}$ C
V _{NO}	RMS Output Noise Voltage		.30	.36	mV	$P_R = 0 \mu W$
				.43	mV	$P_R = 0 \mu W$, $-40^{\circ} C \le T_A \le +85^{\circ} C$
PN	Equivalent Optical Noise Input Power		-43.7	-40.3	dBm	
			.042	.094	μW	
PR	Peak Input Power			-12.6	dBm	$T_A = 25^{\circ}C$
				55	μW	$T_A = 25^{\circ}C$
				-14	dBm	-40° C \leq T _A \leq $+85^{\circ}$ C
				40	μW	-40° C \leq T _A \leq $+85^{\circ}$ C
lcc	Power Supply Current		3.4	6.0	mA	R _{LOAD} = ∞
t _r , t _f	Rise Time, Fall Time (10% to 90%)		14	19.5	ns	P_R = 10 μW Peak, R_{LOAD} = 511 Ω , C_{LOAD} = 13 pF
PWD	Pulse Width Distortion			2	ns	P_R = 40 μW Peak, R_{LOAD} = 511 Ω , C_{LOAD} = 13 pF

Mechanical Dimensions

125 MHz Fiber Optic Receiver Types OPF2406(SMA), OPF2416(ST*), OPF2416T

Features

- Low Cost
- Data Rates up to 155 MBd
- Wide Temperature Range
- Link Distances up to 4 km
- SMA, ST, or Panel Mount ST Style Ports
- Wave Solderable

Description

The OPF2406/2416 is a low cost solution for high speed fiber optic communication designs. The lensing of the OPF24X6 optimizes response for fiber sizes of 100 µm and smaller.

The output of the receiver is an analog, low impedance, emitter follower voltage source capable of driving an amplifier or level translating circuitry. This allows the subsequent circuitry to use the device in either the analog mode or translated to ECL/TTL levels for use in a digital mode at data rates up to 155MBaud.

The receiver is comprised of a high speed, low noise, photodiode coupled to a transimpedance amplifier which produces an output voltage proportional to the input light amplitude. This hybrid approach solves many of the problems of high speed data link designs by placing a pre-amplifier close to the photodiode. The amplification of the transimpedance amplifier makes the output signal much less susceptible to EMI.

An AC coupled receiver application circuit is shown. Both the 10 ohm resistor and by-pass capacitor are critical.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature	
Operating Temperature	-40°C to +85°C
Lead Soldering Temperature (for 10 sec.)	260°C
Signal Pin Voltage	0.5V _{CC}
Supply Voltage	0.5 to 6.0V
Output Current	25mA

•4 •5 •3 •6 •2 •7 •1 •8					
Bottom View					

FUNCTION PIN 1 N.C. 2 Signal 3 VEE 4 N.C. 5 N.C. 6 Vcc 7 VEE

N.C

Available in Panel Mount ST package; add "T" suffix to part number.

This component is susceptible to damage from electrostatic discharge (ESD). Normal static precautions should be taken in handling and assembly of this component to prevent ESD damage or degradation.

Types OPF2406(SMA), OPF2416(ST), OPF2416T

Electrical Characteristics (T_A = 25° C unless otherwise noted)

-5.45 ≤ Supply Voltage ≤ -4.75, R_{LOAD} = 511 Ω , Fiber Sizes ≤ 100 Microns, N.A. ≤ 0.35

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITION
R _P	Responsivity	5.3	7	9.6	mV/μW	at 840 nm, 50 MHz
				11.5	mV/μW	at 840 nm, 50 MHz -40° C \leq T _A \leq $+85^{\circ}$ C
V _{NO}	RMS Output Noise Voltage		0.40	0.59	mV	Bandwidth Filtered @ 75 MHz, P _R = 0 μW
				0.7	mV	Unfiltered Bandwidth $P_R = 0 \mu W$
PN	Equivalent Optical Noise Input Power		-43.0	-41.4	dBm	Bandwidth Filtered @ 75 MHz
	(RMS)		0.050	0.065	μW	
PR	Peak Input Power			-7.6	dBm	T _A = 25° C
				175	μW	$T_A = 25^{\circ} C$
				-8.2	dBm	$-40^{\circ} \text{ C} \le T_{A} \le +85^{\circ} \text{ C}$
				150	μW	-40° C ≤ T _A ≤ +85° C
V _{odc}	DC Output Voltage	-4.2	-3.1	-2.4	V	P _R = 0 μW
lee	Power Supply Current		9	15	mA	R _{LOAD} = ∞
t _r , t _f	Rise Time, Fall Time		3.3	6.3	ns	$P_R = 100 \mu W$, $R_{LOAD} = 511 \Omega$,
	(10% to 90%)	-				CLOAD = 5 pF
PWD	Pulse Width Distortion		0.4	2.5	ns	P _R = 150 μW Peak, Pwidth = 10 ns, 50% Duty Cycle
BW	Bandwidth		125		MHz	-3 dB Electrical
PSRR	Power Supply Rejection Ratio		20		dB	@ 10 MHz

Mechanical Dimensions

Fiber Optic GaAlAs LED Types OPF320A, OPF320B, OPF320C

Features

- High radiant output for fiber optic applications
- High speed
- Electrically isolated from case

Description

The OPF320 series LED provides fiber optic users with high coupled power and wide bandwidth in an easily mounted hermetic package.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	1.0V
Continuous Forward Current	100mA ⁽⁴⁾
Storage Temperature Range	-55°C to +150°C
Operating Temperature Range	-40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.)	with soldering
iron]	240°C ⁽¹⁾

Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50µm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25° C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power I _F = 100mA @ 25 ⁰ C								
Fiber	Refractive Index	N.A.	OPF320C	OPF320B	OPF320A			
50/125μm	Graded	0.20	7.5μW	12.5μW	19μW			
62.5/125μm	Graded	0.28	16μW	22μW	34μW			
100/140μm	Graded	0.29	38µW	62μW	95μW			
200/300μm*	Step	0.41	140µW	235μW	360μW			

Types OPF320A, OPF320B, OPF320C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output OPF320C	5.0	7.5		1	4-1
	OPF320B	10.0	12.5		μW	$I_F = 100 \text{ mA}^{(2)}$
	OPF320A	15.0	19.0			
VF	Forward Voltage		1.7	2.0	٧	I _F = 100 mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA
tr	Output Rise Time		6.0	8.0	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time		6.0	10.0	ns	IF = 100 mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs LED in SMA Receptacle Types OPF321A, OPF321B, OPF321C

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle

Description

The OPF321 series LED consists of a hermetic LED, pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Storage Temperature Range55°C to +125°C
Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50µm core, N.A. = 0.20.
 (3) To convert radiant power output to dBm, use the following expression: dBm = 10 log (µW/1000).
- Derate linearly @ 1.0mA/°C above 25°C.
- (5) Pre Bias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100 mA continuous current in 25° C ambient.

TYPICAL COUPLED POWER Into OPTICAL FIBER

Typical Coupled Power I _F = 100mA @ 25 ⁰ C										
Fiber Refractive N.A. OPF321C OPF321B OPF321A										
50/125μm	Graded	0.20	7.5µW	12.5μW	19μW					
62.5/125μm	Graded	0.28	16μW	22μW	34μW					
100/140μm	Graded	0.29	38μW	62μW	95μW					
200/300μm*	Step	0.41	140μW	235μW	360μW					

Types OPF321A, OPF321B, OPF321C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	M	lin	Тур	Max	Units	Test Conditions
Po	Radiant Power Output OPF3	321C 5	5.0	7.5			
	OPF	321B 10	0.0	12.5		μW	$I_F = 100 \text{ mA}^{(2)}$
	OPF	321A 15	5.0	19.0			
VF	Forward Voltage			1.7	2.0	٧	I _F = 100 mA
λр	Peak Output Wavelength	8	30	850	870	nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Poi	nts		35		nm	I _F = 50 mA
tr	Output Rise Time			6.0	8.0	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time			6.0	10.0	ns	I _F = 100 mA, 90%-10% ⁽⁵⁾

TYPICAL PERFORMANCE CURVES

FORWARD VOLTAGE

Fiber Optic GaAlAs LED in ST* Receptacle Types OPF322A, OPF322B, OPF322C

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle

Description

The OPF322 series LED consists of a hermetic LED, pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range
Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
Notae:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50µm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power IF = 100mA @ 25 ⁰ C										
Fiber	Refractive Index	N.A.	OPF322C	OPF322B	OPF322A					
50/125μm	Graded	0.20	7.5μW	12.5μW	19μW					
62.5/125μm	Graded	0.28	16μW	22μW	34μW					
100/140μm	Graded	0.29	38μW	62μW	95μW					
200/300μm*	Step	0.41	140μW	235μW	360μW					

Types OPF322A, OPF322B, OPF322C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Symbol Parameter		Тур	Max	Units	Test Conditions	
Po	Radiant Power Output OPF322C	5.0	7.5			(0)	
	OPF322B	10.0	12.5		μW	$I_F = 100 \text{ mA}^{(2)}$	
	OPF322A	15.0	19.0				
VF	Forward Voltage		1.7	2.0	V	I _F = 100 mA	
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50 mA	
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA	
t _r	Output Rise Time		6.0	8.0	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾	
tf	Output Fall Time		6.0	10.0	ns	I _F = 100 mA, 90%-10% ⁽⁵⁾	

Fiber Optic GaAlAs High Speed LED Types OPF340A, OPF340B, OPF340C, OPF340D

Features

- High radiant output for fiber optic applications
- High speed
- · Electrically isolated from case

Description

The OPF340 series LED provides fiber optic users with high coupled power and wide bandwidth in an easily mounted package.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	1.0V
Continuous Forward Current	100mA ⁽⁴⁾
Storage Temperature Range	-55°C to +150°C
Operating Temperature Range	-40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	240°C ⁽¹⁾
Notaci	

- RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 Graded index fiber, 50μm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

	Typical Coupled Power I _F = 100mA @ 25 ⁰ C								
Fiber Refractive N.A. OPF340D OPF340C OPF340B OPF340A									
50/125μm	Graded	0.20	7.5µW	12.5μW	18μW	25μW			
62.5/125μm	Graded	0.28	14μW	22μW	34μW	45μW			
100/140μm	Graded	0.29	38μW	62μW	95μW .	125μW			
200/300μm*	Step	0.41	140μW	235μW	340μW	475μW			

Types OPF340A, OPF340B, OPF340C, OPF340D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output OPF340	5.0	7.5			
	OPF3400	10.0	12.5		\^/	I _F = 100mA ⁽²⁾
	OPF340I	3 15.0	18.0		μW	IF = TOOMA
	OPF340	20.0	25.0	!		
VF	Forward Voltage		1.7	2.0	٧	I _F = 100mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50mA
tr	Output Rise Time		4.5	6.0	ns	I _F = 100mA, 10%-90% ⁽⁵⁾
t _f	Output Fall Time		4.5	6.0	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs High Speed LED in SMA Receptacle Types OPF341A, OPF341B, OPF341C, OPF341D

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle
- High Speed
- · Electrically isolated from case

Description

The OPF341 series LED consists of a hermetic LED, pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 1.0V
Continuous Forward Current
Storage Temperature Range
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50μm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power										
IF = 100mA @ 25°C										
Fiber Refractive N.A. OPF341D OPF341C OPF341B OPF341A										
50/125μm	Graded	0.20	7.5µW	12.5μW	18µW	25μW				
62.5/125μm	Graded	0.28	14μW	22µW	34μW	45μW				
100/140μm	Graded	0.29	38µW	62μW	95μW	125µW				
200/300μm*	Step	0.41	140μW	235μW	340μW	475μW				

Types OPF341A, OPF341B, OPF341C, OPF341D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output OPI	F341D	5.0	7.5			
	OPF	F341C	10.0	12.5		μW	I _F = 100mA ⁽²⁾
	OPI	F341B	15.0	18.0			IF = 100IIIA
	OPI	F341A	20.0	25.0			
VF	Forward Voltage			1.7	2.0	٧	I _F = 100mA
λр	Peak Output Wavelength		830	850	870	nm	I _F = 50mA
В	Spectral Bandwidth Between Half Power Po	oints		35		nm	I _F = 50mA
tr	Output Rise Time			4.5	6.0	ns	I _F = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time			4.5	6.0	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs High Speed LED in ST* Receptacle Types OPF342A, OPF342B, OPF342C, OPF342D

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle
- High Speed
- · Electrically isolated from case

Description

The OPF342 series LED consists of a hermetic LED, pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 - (2) Graded index fiber, 50µm core, N.A. = 0.20.
 - (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
 - (4) Derate linearly @ 1.0mA/°C above 25°C.
 - (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

	Typical Coupled Power									
	I _F = 100mA @ 25°C									
Fiber Refractive N.A. OPF342D OPF342C OPF342B OPF342A										
50/125μm	Graded	0.20	7.5µW	12.5µW	18μW	25μW				
62.5/125μm	Graded	0.28	14μW	22μW	34μW	45μW				
100/140μm	Graded	0.29	38μW	62μW	95μW	125μW				
200/300μm*	Step	0.41	140µW	235μW	340μW	475μW				

Types OPF342A, OPF342B, OPF342C, OPF342D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions	
Po	Radiant Power Output OPF342D	5.0	7.5				
	OPF342C	10.0	12.5		μW	I _F = 100mA ⁽²⁾	
	OPF342B	15.0	18.0		μνν	IF = TOOTIA	
	OPF342A	20.0	25.0				
VF	Forward Voltage		1.7	2.0	٧	I _F = 100mA	
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50mA	
В	Spectral Bandwidth Between Half Power Points		35		nm	IF = 50mA	
tr	Output Rise Time		3.5	4.5	ns	I _F = 100mA, 10%-90% ⁽⁵⁾	
tf	Output Fall Time		3.5	4.5	ns	I _F = 100mA, 90%-10% ⁽⁵⁾	

Fiber Optic GaAlAs High Speed LED Types OPF345A, OPF345B, OPF345C, OPF345D

Features

- High radiant output for fiber optic applications
- · High speed
- · Electrically isolated from case

Description

The OPF345 series LED provides fiber optic users with high coupled power and wide bandwidth in an easily mounted package.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	٧
Continuous Forward Current	4)
Storage Temperature Range55°C to +150°	C
Operating Temperature Range40°C to +125°	С
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	
iron]	1)
Mater.	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50μm core, N.A. = 0.20.
 (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power									
I _F = 100mA @ 25°C									
Fiber Refractive N.A. OPF345D OPF345C OPF345B OPF345.									
50/125μm	Graded	0.20	7.5µW	12.5μW	18μW	25μW			
62.5/125µm	Graded	0.28	14μW	22μW	34μW	45μW			
100/140µm	Graded	0.29	38µW	62μW	95μW	125μW			
200/300μm*	Step	0.41	140μW	235μW	340μW	475μW			

Types OPF345A, OPF345B, OPF345C, OPF345D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	N	lin	Тур	Max	Units	Test Conditions
Ро	Radiant Power Output OPF34	45D 5	.0	7.5			
	OPF34	45C 10	0.0	12.5		иW	I _F = 100mA ⁽²⁾
	OPF34	45B 1	5.0	18.0		μνν	IF = 100MA
	OPF34	45A 20	0.0	25.0			
VF	Forward Voltage			1.7	2.0	٧	I _F = 100mA
λр	Peak Output Wavelength	8	30	850	870	nm	IF = 50mA
В	Spectral Bandwidth Between Half Power Point	s		35		nm	I _F = 50mA
tr	Output Rise Time			3.5	4.5	ns	I _F = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time			3.5	4.5	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs High Speed LED in SMA Receptacle Types OPF346A, OPF346B, OPF346C, OPF346D

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle
- High Speed
- · Electrically isolated from case

Description

The OPF346 series LED consists of a hermetic LED, pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 1.0V
Continuous Forward Current
Storage Temperature Range55°C to +150°C
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50μm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power									
I _F = 100mA @ 25°C									
Fiber Refractive N.A. OPF346D OPF346C OPF346B OPF346A									
50/125μm	Graded	0.20	7.5µW	12.5μW	18μW	25μW			
62.5/125μm	Graded	0.28	14μW	22μW	34μW	45μW			
100/140μm	Graded	0.29	38μW	62μW	95μW	125μW			
200/300μm*	Step	0.41	140μW	235μW	340μW	475μW			

Types OPF346A, OPF346B, OPF346C, OPF346D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output OPF346D	5.0	7.5			
	OPF346C	10.0	12.5		μW	I _F = 100mA ⁽²⁾
	OPF346B	15.0	18.0		μνν	IF = TOOMA
	OPF346A	20.0	25.0			
VF	Forward Voltage		1.7	2.0	٧	I _F = 100mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50mA
tr	Output Rise Time		3.5	4.5	ns	I _F = 100mA, 10%-90% ⁽⁵⁾
t _f	Output Fall Time		3.5	4.5	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs High Speed LED in ST* Receptacle Types OPF347A, OPF347B, OPF347C, OPF347D

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle
- High Speed
- · Electrically isolated from case

Description

The OPF347 series LED consists of a hermetic LED, pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range55°C to +150°C
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50µm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power									
IF = 100mA @ 25°C									
Fiber Refractive N.A. OPF347D OPF347C OPF347B OPF347A									
Index									
50/125μm	Graded	0.20	7.5µW	12.5μW	18μW	25μW			
62.5/125µm	Graded	0.28	14μW	22μW	34μW	45μW			
100/140μm	Graded	0.29	38µW	62μW	95μW	125µW			
200/300μm*	Step	0.41	140µW	235μW	340μW	475μW			

Types OPF347A, OPF347B, OPF347C, OPF347D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output OPF347D	5.0	7.5			
	OPF347C	10.0	12.5		μW	I _F = 100mA ⁽²⁾
	OPF347B	15.0	18.0		μνν	IF = TOOMA
	OPF347A	20.0	25.0		l	
VF	Forward Voltage		1.7	2.0	٧	IF = 100mA
λр	Peak Output Wavelength	830	850	870	nm	IF = 50mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50mA
tr	Output Rise Time		3.5	4.5	ns	I _F = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time		3.5	4.5	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs LED Types OPF370A, OPF370B, OPF370C, OPF370D

Features

- Electrically isolated plastic cap package
- High radiant output for fiber optic applications
- High speed
- Designed to self align in the 0.228 inch diameter bore of standard fiber optic receptacles. Press fit simplifies component installation.

Description

The OPF370 series LED provides fiber optic users with high coupled power and wide bandwidth in a low cost package.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range5°C to +115°C
Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50µm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25 °C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power									
l _F = 100mA @ 25 ⁰ C⊳									
Fiber	Refractive Index	N.A.	OPF370D	OPF370C	OPF370B	OPF370A			
50/125μm	Graded	0.20	7.5µW	12.5μW	19μW	29μW			
62.5/125μm	Graded	0.28	27μW	35μW	51μW	89μW			
100/140μm	Graded	0.29	60μW	87μW	129μW	200μW			
200/300μm*	Step	0.41	320μW	463μW	606μW	750μW			

Types OPF370A, OPF370B, OPF370C, OPF370D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Dot	Min	Тур	Max	Units	Test Conditions	
Po	Radiant Power Output	OPF370D	(No Dot)	5.0	7.5				
		OPF370C	(Blue)	10.0	12.5		μW	IF = 100mA ⁽²⁾	
		OPF370B	(Yellow)	15.0	19.0				
		OPF370A	(Red)	25.0	29.0				
VF	Forward Voltage				1.7	2.0	V	IF = 100mA	
λр	Peak Output Wavelength			830	850	870	nm	I _F = 50mA	
В	Spectral Band Width Between Half Power Points				35		nm	I _F = 50mA	
tr	Output Rise Time				6.0	8.0	ns	I _F = 100mA, 10%-90% ⁽⁵⁾	
tf	Output Fall Time				6.0	10.0	ns	I _F = 100mA, 90%-10% ⁽⁵⁾	

TYPICAL PERFORMANCE CURVES

Fiber Optic GaAlAs LED in SMA Receptacle Types OPF371A, OPF371B, OPF371C, OPF371D

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle

Description

The OPF371 series LED consists of a low cost plastic cap LED, pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with mulitmode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range55°C to +100°C
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (2) Graded index fiber, 50μm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Pre Bias @ 5mA current.

LED Burn-is

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25° C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power									
I _F = 100mA @ 25 ⁰ C									
Fiber	Refractive Index	N.A.	OPF371D	OPF371C	OPF371B	OPF371A			
50/125μm	Graded	0.20	7.5µW	12.5μW	19μW	29μW			
62.5/125μm	Graded	0.28	27μW	35μW	51μW	89µW			
100/140μm	Graded	0.29	60μW	87μW	129µW	200μW			
200/300μm*	Step	0.41	320µW	463μW	606μW	750μW			

Types OPF371A, OPF371B, OPF371C, OPF371D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output OPF371D	5.0	7.5			
	OPF371C	10.0	12.5		μW	IF = 100mA ⁽²⁾
	OPF371B	15.0	19.0		μνν	IF = TOUTIA'
	OPF371A	25.0	29.0			
VF	Forward Voltage		1.7	2.0	V	I _F = 100mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50mA
В	Spectral Band Width Between Half Power Points		35		nm	I _F = 50mA
tr	Output Rise Time		6.0	8.0	ns	$I_F = 100 \text{mA}, 10\% - 90\%^{(5)}$
tf	Output Fall Time		6.0	10.0	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs LED in ST* Receptacle **Types OPF372A, OPF372B, OPF372C, OPF372D**

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle

Description

The OPF372 series LED consists of a low cost plastic cap LED, pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range55°C to +100°C
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature (1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (2) Graded index fiber, 50μm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (µW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

	Typical Coupled Power									
IF = 100mA @ 25 ⁰ C										
Fiber Refractive N.A. OPF372D OPF372C OPF372B OPF372A										
50/125µm	Graded	0.20	7.5µW	12.5μW	19μW	29μW				
62.5/125µm	Graded	0.28	27μW	35μW	51μW	89µW				
100/140μm	Graded	0.29	60μW	87μW	129µW	200μW				
200/300μm*	Step	0.41	320μW	463μW	606μW	750μW				

*PCS - Plastic Clad Silica

Types OPF372A, OPF372B, OPF372C, OPF372D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output OPF372D	5.0	7.5			
	OPF372C	10.0	12.5		μW	I _F = 100mA ⁽²⁾
	OPF372B	15.0	19.0		μνν	IF = TOOTHA
	OPF372A	25.0	29.0			·
VF	Forward Voltage		1.7	2.0	٧	I _F = 100mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50mA
В	Spectral Band Width Between Half Power Points		35		nm	I _F = 50mA
tr	Output Rise Time		6.0	8.0	ns	I _F = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time		6.0	10.0	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs High Speed LED Types OPF390A, OPF390B, OPF390C, OPF390D

Features

- Electrically isolated plastic cap package
- High radiant output for fiber optic applications
- High speed
- Designed to self align in the 0.228 inch diameter bore of standard fiber optic receptacles. Press fit simplifies component installation.

Description

The OPF390 series LED provides fiber optic users with high coupled power and wide bandwidth in a low cost package.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range55°C to +115°C
Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50µm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power										
I _F = 100mA @ 25°C										
Fiber Refractive N.A. OPF390D OPF390C OPF390B OPF390A										
Index										
50/125μm	Graded	0.20	7.5µW	12.5μW	18μW	25μW				
62.5/125µm	Graded	0.28	27μW	35μW	45μW	75μW				
100/140μm	Graded	0.29	58µW	85μW	115μW	170μW				
200/300μm*	Step	0.41	290μW	450μW	545μW	650μW				

*PCS - Plastic Clad Silica

Types OPF390A, OPF390B, OPF390C, OPF390D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Dot	Min	Тур	Max	Units	Test Conditions
Ро		OPF390C	(Silver) (Black) (Green) (Orange)	5.0 10.0 15.0 20.0	7.5 12.5 18.0 25.0		μW	IF = 100mA ⁽²⁾
VF	Forward Voltage				1.7	2.0	٧	IF = 100mA
λр	Peak Output Wavelength	Section 200		830	850	870	nm	IF = 50mA
В	Spectral Bandwidth Between F	Half Power	Points		35		nm	IF = 50mA
tr	Output Rise Time				4.5	6.0	ns	IF = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time				4.5	6.0	ns	IF = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs High Speed LED in SMA Receptacle Types OPF391A, OPF391B, OPF391C, OPF391D

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle
- High Speed
- · Electrically isolated from case

Description

The OPF391 series LED consists of a low cost plastic cap LED, pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with mulitmode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50µm core N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25° C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

	Typical Coupled Power										
IF = 100mA @ 25 ⁰ C											
Fiber Refractive N.A. OPF391D OPF391C OPF391B OPF391A											
50/125μm	Graded	0.20	7.5µW	12.5μW	18μW	25μW					
62.5/125μm	Graded	0.28	27μW	35μW	45μW	75μW					
100/140μm	Graded	0.29	58μW	85μW	115µW	170μW					
200/300μm*	Step	0.41	290μW	450μW	545μW	650μW					

*PCS - Plastic Clad Silica

Types OPF391A, OPF391B, OPF391C, OPF391D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Min	Тур	Max	Units	Test Conditions	
Po	Radiant Power Output	OPF391D	5.0	7.5				
		OPF391C	10.0	12.5		μW	IF = 100mA ⁽²⁾	
		OPF391B	15.0	18.0		μνν	IF = TOOMA	
		OPF391A	20.0	25.0				
VF	Forward Voltage			1.7	2.0	٧	IF = 100mA	
λр	Peak Output Wavelength		830	850	870	nm	IF = 50mA	
В	Spectral Bandwidth Between Half Powe	r Points		35		nm	I _F = 50mA	
tr	Output Rise Time			4.5	6.0	ns	IF = 100mA, 10%-90% ⁽⁵⁾	
t _f	Output Fall Time			4.5	6.0	ns	I _F = 100mA, 90%-10% ⁽⁵⁾	

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

-30

Fiber Optic GaAlAs High Speed LED in ST* Receptacle Types OPF392A, OPF392B, OPF392C, OPF392D

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle
- High Speed
- Electrically isolated from case

Description

The OPF392 series LED consists of a low cost plastic cap LED, pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range55°C to +100°C
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50µm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power IF = 100mA										
50/125μm	Graded	0.20	7.5µW	12.5μW	18μW	25μW				
62.5/125μm	Graded	0.28	27μW	35μW	45μW	75μW				
100/140μm	Graded	0.29	58μW	85μW	115μW	170µW				
200/300μm*	Step	0.41	290μW	450μW	545μW	650μW				

*PCS - Plastic Clad Silica

Types OPF392A, OPF392B, OPF392C, OPF392D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output	OPF392D	5.0	7.5			
		OPF392C	10.0	12.5		μW	I _F = 100mA ⁽²⁾
		OPF392B	15.0	18.0		μνν	IF = TOOMA
		OPF392A	20.0	25.0			
VF	Forward Voltage			1.7	2.0	V	IF = 100mA
λр	Peak Output Wavelength			850	870	nm	IF = 50mA
В	Spectral Bandwidth Between Half Powe	er Points		35		nm	I _F = 50mA
tr	Output Rise Time			4.5	6.0	ns	IF = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time			4.5	6.0	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

-30

Fiber Optic GaAlAs High Speed LED Types OPF395A, OPF395B, OPF395C, OPF395D

Features

- Electrically isolated plastic cap package
- High radiant output for fiber optic applications
- High speed
- Designed to self align in the 0.228 inch diameter bore of standard fiber optic receptacles. Press fit simplifies component installation.

Description

The OPF395 series LED provides fiber optic users with high coupled power and wide bandwidth in a low cost package.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range55°C to +115°C
Operating Temperature Range40°C to +100°C
Lead Soldering Temperature (1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (2) Graded index fiber, 50µm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: dBm = 10 log (μW/1000).
 - (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power								
		lF =	100mA @ 25	s°c				
Fiber Refractive N.A. OPF395D OPF395C OPF395B OPF395A								
50/125µm	Graded	0.20	7.5μW	12.5μW	18μW	25μW		
62.5/125µm	Graded	0.28	27μW	35μW	45μW	75μW		
100/140μm	Graded	0.29	58μW	85μW	115μW	170μW		
200/300μm*	Step	0.41	290μW	450μW	545μW	650μW		

*PCS - Plastic Clad Silica

Types OPF395A, OPF395B, OPF395C, OPF395D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Dot	Min	Тур	Max	Units	Test Conditions
Po	•	OPF395D	` '	5.0	7.5			
	1	OPF395C	` '	10.0	12.5		μW	$I_F = 100 \text{mA}^{(2)}$
		OPF395B	(Green)	15.0	18.0		μ	1 - 10011111
		OPF395A	(Orange)	20.0	25.0			
VF	Forward Voltage				1.7	2.0	V	I _F = 100mA
λр	Peak Output Wavelength			830	850	870	nm	I _F = 50mA
В	Spectral Bandwidth Between F	lalf Power	Points		35		nm	I _F = 50mA
tr	Output Rise Time				3.5	4.5	ns	IF = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time				3.5	4.5	ns	IF = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs High Speed LED in SMA Receptacle Types OPF396A, OPF396B, OPF396C, OPF396D

.375 (9.53) .500 (12.70) 1/4-36 THREADS .155 (3.94) .400 (10.16) MIN. DIMENSIONS ARE IN INCHES (MILLIMETERS)

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle
- High Speed
- Electrically isolated from case

Description

The OPF396 series LED consists of a low cost plastic cap LED, pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with mulitmode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Reverse Voltage
Storage Temperature Range55°C to +100°C
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes

.230 (5.84)

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50µm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25° C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power										
		lF =	100mA @ 2	o°C						
Fiber Refractive N.A. OPF396D OPF396C OPF396B OPF396										
	Index									
50/125μm	Graded	0.20	7.5µW	12.5μW	18μW	25μW				
62.5/125µm	Graded	0.28	27μW	35μW	45μW	75μW				
100/140μm	Graded	0.29	58µW	85μW	115μW	170μW				
200/300μm*	Step	0.41	290μW	450μW	545μW	650μW				

^{*}PCS - Plastic Clad Silica

Types OPF396A, OPF396B, OPF396C, OPF396D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output	OPF396D	5.0	7.5			
		OPF396C	10.0	12.5		μW	I _F = 100mA ⁽²⁾
		OPF396B	15.0	18.0		μνν	IF = 100IIIA
		OPF396A	20.0	25.0			
VF	Forward Voltage			1.7	2.0	٧	I _F = 100mA
λр	Peak Output Wavelength		830	850	870	nm	I _F = 50mA
В	Spectral Bandwidth Between Half Powe	r Points		35		nm	I _F = 50mA
tr	Output Rise Time			3.5	4.5	ns	I _F = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time			3.5	4.5	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic GaAlAs High Speed LED in ST* Receptacle Types OPF397A, OPF397B, OPF397C, OPF397D

.375 (9.53) .375 (

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle
- High Speed
- Electrically isolated from case

Description

The OPF397 series LED consists of a low cost plastic cap LED, pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 Graded index fiber, 50μm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100mA continuous current in 25°C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power								
If = 100mA @ 25°C								
Fiber Refractive N.A. OPF397D OPF397C OPF397B OPF397A								
Index								
Graded	0.20	7.5µW	12.5μW	18μW	25μW			
Graded	0.28	27μW	35μW	45μW	75μW			
Graded	0.29	58μW	85μW	115μW	170μW			
Step	0.41	290μW	450μW	545μW	650μW			
	Index Graded Graded Graded	F = N.A.	F = 100mA @ 25	IF = 100mA @ 25°C Refractive Index N.A. OPF397D OPF397C Graded 0.20 7.5μW 12.5μW Graded 0.28 27μW 35μW Graded 0.29 58μW 85μW Step 0.41 290μW 450μW	IF = 100mA @ 25°C Refractive Index N.A. OPF397D OPF397C OPF397B Index 0.20 7.5μW 12.5μW 18μW Graded 0.28 27μW 35μW 45μW Graded 0.29 58μW 85μW 115μW Step 0.41 290μW 450μW 545μW			

*PCS - Plastic Clad Silica

Types OPF397A, OPF397B, OPF397C, OPF397D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output OPF	397D	5.0	7.5			
	OPF	-397C	10.0	12.5		μW	IF = 100mA ⁽²⁾
	OPF	-397B	15.0	18.0		μνν	IF = TOOTIA
	OPF	397A	20.0	25.0			
VF	Forward Voltage			1.7	2.0	٧	IF = 100mA
λр	Peak Output Wavelength		830	850	870	nm	IF = 50mA
В	Spectral Bandwidth Between Half Power Po	oints		35		nm	IF = 50mA
tr	Output Rise Time			3.5	4.5	ns	IF = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time			3.5	4.5	ns	IF = 100mA, 90%-10% ⁽⁵⁾

Fiber Optic PIN Photodiode Type OPF420

Features

- Electrically isolated TO-46 package
- High speed, low capacitance
- Optimized for fiber optic applications using 50 to 200 micron fiber

Description

The OPF420 is a low noise silicon PIN photodiode mounted in a special TO-46 package for fiber optic applications. It offers fast response at moderate bias and is compatible with LED and laser diode sources in the 800-900 nm wavelength region. Low capacitance improves signal to noise performance in typical short haul LAN applications.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	00VDC 0mW ⁽¹⁾
Storage Temperature Range65°C to +	+150°C
Operating Temperature Range55°C to +	⊦125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with solde	rina
iron]	40°C ⁽²⁾
Note:	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (3) Test @ $V_R = 5V$ with 50/125 micron, 0.20 N.A. fiber, @ 10 μ W optical power @ 850nm. Re-
- sponsivity levels apply to 50 μ m, 62.5 μ m and 100 μ m core optical fibers. (4) R_L = 50 Ω , 10%-90%

Typical Performance Curves

Relative Spectral Response 1.00 0.90 0.80 Normalized Responsivity 0.70 0.60 0.50 0.40 0.30 0.20 1000 600 700 800 900 1100 500 Wavelength (nm)

Type OPF420

Electrical Characteristics (T_A = 25°C unless outherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0V^{(3)}$
lD	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		880		nm	
tr	Output Rise Time		6.0		ns	$V_R = 15.0V^{(4)}$
Ст	Total Capacitance		3.0		pF	V _R = 20.0V
FoV	Field of View		80		Deg.	

TYPICAL PERFORMANCE CURVES

Fiber Optic PIN Photodiode in SMA Receptacle Type OPF421

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle

Description

The OPF421 consists of a hermetic PIN photodiode pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	100V
Storage Temperature Range	-55°C to +125°C
Operating Temperature Range	-40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	240°C ⁽²⁾
Notes:	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850nm. R.
- (3) Lest @ VR = 50 with 50/125 micron, 0.20 N.A. fiber, @ 10 μ W optical power @ 850nm. He sponsivity levels apply to 50 μ m, 62.5 μ m, and 100 μ m core optical fibers. (4) $R_L = 50 \Omega$, 10%-90%.

Typical Performance Curves

Relative Spectral Response 1.00 0.90 0.80 Normalized Responsivity 0.70 0.60 0.50 0.40 0.30 0.20 0.10 500 600 700 800 900 1000 1100 Wavelength (nm)

Type OPF421

Electrical Characteristics (T_A = 25°C unless outherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
R	Flux Responsivity	0.45	0.55		A/W	$V_{R} = 5.0V^{(3)}$
ID	Dark Current		0.1	5.0	nΑ	V _R = 5.0V
λρ	Peak Response Wavelength		880		nm	
t _r	Output Rise Time		6.0		ns	V _R = 15.0V ⁽⁴⁾
Ст	Total Capacitance		3.0		pF	$V_{R} = 20.0V$

TYPICAL PERFORMANCE CURVES

Fiber Optic PIN Photodiode in ST* Receptacle Type OPF422

Features

- Component pre-mounted and ready for use
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle

Description

The OPF422 consists of a hermetic PIN photodiode pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	100VDC
Storage Temperature Range	-55°C to +125°C
Operating Temperature Range	-40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec	. with soldering
iron]	240°C ⁽²⁾
Notes:	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μ W optical power @ 850nm. Responsivity levels apply to 50 μ m, 62.5 μ m, and 100 μ m core optical fibers.
- (4) $R_L = 50 \Omega$, 10%-90%.

Relative Spectral Response 1.00 0.90 0.80 Vormalized Responsivity 0.70 0.60 0.50 0.40 0.30 0.20 0.10 900 1000 500 600 700 800 1100 Wavelength (nm)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
R	Flux Responsivity	0.45	0.55		A/W	$V_{R} = 5.0V^{(3)}$
lD	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		880		nm	
t _r	Output Rise Time		6.0		ns	$V_R = 15.0V^{(4)}$
Ст	Total Capacitance		3.0		pF	V _R = 20.0V

TYPICAL PERFORMANCE CURVES

Fiber Optic High Speed PIN Photodiode Type OPF430

Features

- Electrically isolated TO-46 package
- High speed, low capacitance
- Optimized for fiber optic applications using 50 to 100 micron fiber

Description

The OPF430 is a low noise silicon PIN photodiode mounted in a special TO-46 package for fiber optics applications. It offers fast response at low bias and is compatible with LED and laser diode sources in the 800-900 nm wavelength region. Low capacitance improves signal to noise performance in typical short haul LAN applications.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 100/140 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 100VDC
Continuous Power Dissipation
Storage Temperature Range65°C to +150°C
Operating Temperature Range55°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) Derate linearly @ 2.0 mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850 nm. Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.

Type OPF430

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_{R} = 5.0V^{(3)}$
ID	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		860		nm	
tr	Output Rise Time		0.6		ns	$V_R = 50.0V$, $R_L = 50\Omega$, 10%-90%
tr	Output Rise Time		1.0		ns	$V_R = 15.0V$, $R_L = 50\Omega$, 10% - 90%
tr	Output Rise Time		2.0		ns	$V_R = 5.0V$, $R_L = 50\Omega$, 10% - 90%
Ст	Total Capacitance		1.5	2.0	pF	V _R = 5.0V
F₀V	Field of View		80		Deg.	

Typical Performance Curves

Fiber Optic High Speed PIN Photodiode in SMA Receptacle Type OPF431

Features

- Component pre-mounted and ready to use
- High speed, low capacitance
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle
- · Electrically isolated from case

Description

The OPF431 consists of a hermetic PIN photodiode pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 100/140 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	100V
Continuous Power Dissipation	200mW ⁽¹⁾
Storage Temperature Range	5°C to +125°C
Operating Temperature Range40	0°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with iron].	h soldering
iron]	240°C ⁽²⁾
Notes:	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850 nm. Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0V^{(3)}$
ID	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		860		nm	,
tr	Output Rise Time		0.6		ns	$V_R = 50.0V$, $R_L = 50\Omega$, 10%-90%
tr	Output Rise Time		1.0		ns	$V_R = 15.0V$, $R_L = 50\Omega$, 10%-90%
t _r	Output Rise Time		2.0		ns	$V_R = 5.0V$, $R_L = 50\Omega$, 10%-90%
Ст	Total Capacitance		1.5	2.0	pF	V _R = 5.0V

Typical Performance Curves

Fiber Optic High Speed PIN Photodiode Type OPF432

in ST* Receptacle

Features

- Component pre-mounted and ready for use
- High speed, low capacitance
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle
- · Electrically isolated from case

Description

The OPF432 consists of a hermetic PIN photodiode pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 100/140 microns.

*ST is a registered trademark of AT&T

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	100VDC
Continuous Power Dissipation	200mW ⁽¹⁾
Storage Temperature Range	-55°C to +125°C
Operating Temperature Range	-40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	240°C ⁽²⁾
Notes:	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850 nm. Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_{R} = 5.0V^{(3)}$
ID	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		860		nm	
tr	Output Rise Time		0.6		ns	$V_R = 50.0V$, $R_L = 50\Omega$, 10%-90%
tr	Output Rise Time		1.0		ns	$V_R = 15.0V$, $R_L = 50\Omega$, 10% - 90%
tr	Output Rise Time		2.0		ns	$V_R = 5.0V$, $R_L = 50\Omega$, 10%-90%
Ст	Total Capacitance		1.5	2.0	pF	V _R = 5.0V

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

FIBER OPTIC COMPONENT

Fiber Optic PIN Photodiode Type OPF470

Features

- Electrically isolated plastic cap package
- High speed, low capacitance
- Designed to self align in the 0.228 diameter bore of standard fiber optic receptacles
- Press fit simplifies component installation
- Optimized for fiber optic applications using 50 to 200 micron fiber

Description

The OPF470 is a low noise silicon PIN photodiode mounted in a low cost package for fiber optic applications. It offers fast response at moderate bias and is compatible with LED and laser diode sources in the 800-900 nm wavelength region. Low capacitance improves signal to noise performance in typical short haul LAN applications.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	100VDC
Continuous Power Dissipation	200mW ⁽¹⁾
Storage Temperature Range	55°C to +115°C
Operating Temperature Range	40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. w	vith soldering
iron]	240°C ⁽²⁾
Notes:	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (3) Test @ $V_B = 5V$ with 50/125 micron, 0.20 N.A. fiber, @ 10 μ W optical power @ 850nm.
- Responsivity levels apply to 50 μ m, 62.5 μ m and 100 μ m core optical fibers.
- (4) $R_L = 50 \Omega$, 10%-90%

Typical Performance Curves

Type OPF470

Electrical Characteristics (T_A = 25°C unless outherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0V^{(3)}$
ΙD	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		880		nm	
t _r	Output Rise Time		6.0		ns	$V_R = 15.0V^{(4)}$
Ст	Total Capacitance		3.0		pF	V _R = 20.0V
FoV	Field of View		80		Deg.	

TYPICAL PERFORMANCE CURVES

Fiber Optic PIN Photodiode in SMA Receptacle Type OPF471

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle

Description

The OPF471 consists of a low cost plastic cap PIN photodiode pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	100VDC
Continuous Power Dissipation	200mW ⁽¹⁾
Storage Temperature Range	-55°C to +100°C
Operating Temperature Range	40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	
iron]	240°C ⁽²⁾
Notes:	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850nm. Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.
- (4) $R_L = 50 \Omega$, 10% 90%

Typical Performance Curves

Type OPF471

Electrical Characteristics (T_A = 25°C unless outherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0V^{(3)}$
ID	Dark Current		0.1	5.0	nΑ	V _R = 5.0V
λр	Peak Response Wavelength		880		nm	
tr	Output Rise Time		6.0		ns	$V_R = 15.0V^{(4)}$
Ст	Total Capacitance		3.0		pF	V _R = 20.0V

TYPICAL PERFORMANCE CURVES

Fiber Optic PIN Photodiode in ST* Receptacle Type OPF472

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle

Description

The OPF472 consists of a low cost plastic cap PIN photodiode pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

*ST is a registered tardemark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
iron]

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μm optical power @ 850nm. Řesponsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.
- (4) $R_L = 50 \, \Omega$, 10% 90%.

Typical Performance Curves

Type OPF472

Electrical Characteristics (T_A = 25°C unless outherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0V^{(3)}$
ΙD	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		880		nm	
tr	Output Rise Time		6.0		ns	$V_R = 15.0V^{(4)}$
Ст	Total Capacitance		3.0		pF	V _R = 20.0V

TYPICAL PERFORMANCE CURVES

Fiber Optic High Speed PIN Photodiode Type OPF480

Features

- Electrically isolated plastic cap package
- High speed, low capacitance
- Designed to self align in the 0.228 diameter bore of standard fiber optic receptacles
- Press fit simplifies component installation
- Optimized for fiber optic applications using 50 to 100 micron fiber

Description

The OPF480 is a low noise silicon PIN photodiode mounted in a low cost package for fiber optic applications. It offers fast response at low bias and is compatible with LED and laser diode sources in the 800-900 nm wavelength region. Low capacitance improves signal to noise performance in typical short haul LAN applications.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 100/140 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 1	00VDC
Continuous Power Dissipation)0mW ⁽¹⁾
Storage Temperature Range55°C to	+115°C
Operating Temperature Range40°C to	+100°C
Lead Soldering Temperature (1/16 inch (1.6mm) from case for 5 sec. with solder	erina
iron]	240°C ⁽²⁾
Natao	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (3) Test @ $V_B = 5V$ with 50/125 micron, 0.20 N.A. fiber, @ 10 μ W optical power @ 850 nm.
- Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.

Type OPF480

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_{R} = 5.0V^{(3)}$
ΙD	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		860		nm	
tr	Output Rise Time		0.6		ns	$V_R = 50.0V$, $R_L = 50\Omega$, 10%-90%
tr	Output Rise Time		1.0		ns	$V_R = 15.0V$, $R_L = 50\Omega$, 10% - 90%
tr	Output Rise Time		2.0		ns	$V_R = 5.0V$, $R_L = 50\Omega$, 10%-90%
Ст	Total Capacitance		1.5	2.0	pF	V _R = 5.0V
FoV	Field of View		80		Deg.	

Typical Performance Curves

Fiber Optic High Speed PIN Photodiode in SMA Receptacle Type OPF481

Features

- Component pre-mounted and ready to use
- High speed, low capacitance
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle
- · Electrically isolated from case

Description

The OPF481 consists of a low cost plastic cap PIN photodiode pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 100/140 microns.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Power Dissipation
Storage Temperature Range55°C to +100°C
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Motors

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850 nm. Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0V^{(3)}$
ΙD	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		860		nm	
tr	Output Rise Time		0.6		ns	$V_R = 50.0V$, $R_L = 50\Omega$, 10%-90%
tr	Output Rise Time		1.0		ns	$V_R = 15.0V$, $R_L = 50\Omega$, 10% - 90%
tr	Output Rise Time		2.0		ns	$V_R = 5.0V$, $R_L = 50\Omega$, 10%-90%
Ст	Total Capacitance		1.5	2.0	pF	V _R = 5.0V

Typical Performance Curves

Fiber Optic High Speed PIN Photodiode Type OPF482

in ST* Receptacle

Features

- Component pre-mounted and ready
- High speed, low capacitance
- Pre-tested with fiber to assure performance
- Popular ST* style receptacle
- Electronically isolated from case

Description

The OPF482 consists of a low cost plastic cap PIN photodiode pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 100/140 microns.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Power Dissipation
Storage Temperature Range55°C to +100°C
Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Noton

(1) Derate linearly @ 2.0mW/°C above 25°C.

(2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.

(3) Test @ $V_R = 5V$ with 50/125 micron, 0.20 N.A. fiber, @ 10 μ W optical power @ 850 nm. Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.

(214) 323-2200

Type OPF482

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_{R} = 5.0V^{(3)}$
ID	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		860		nm	
tr	Output Rise Time		0.6		ns	$V_R = 50.0V$, $R_L = 50\Omega$, 10%-90%
tr	Output Rise Time		1.0		ns	$V_R = 15.0V$, $R_L = 50\Omega$, 10% - 90%
tr	Output Rise Time		2.0		ns	V _R = 5.0V, R _L = 50Ω, 10%-90%
Ст	Total Capacitance		1.5	2.0	pF	V _R = 5.0V

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

25 MHz Fiber Optic Receiver Type OPF540

Features

- Electrically isolated plastic cap package
- Designed to self align in the 0.228 diameter bore of standard fiber optic receptacles
- Press fit simplifies component installation
- Optimized for fiber optic applications using 50 to 200 micron fiber

Description

The output of the receiver is an analog, low impedance, voltage source capable of driving an amplifier or level translating circuitry for use on various data formats and data rates up to 35 MBaud.

The receiver is comprised of a high speed, low noise, photodiode coupled to a transimpedance amplifier which produces an output voltage proportional to the input light amplitude. This hybrid approach solves many of the problems of high speed data link designs by placing a pre-amplifier close to the photodiode. The level amplification produced by the transimpedance amplifier makes the output signal much less susceptible to interference which is a problem often found at high data rates and in high EMI environments.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature	
Operating Temperature	-40°C to +85°C
Lead Soldering Temperature (for 10 sec.)	260°C
Supply Voltage	

Type OPF540 Electrical Characteristics

Electrical Characteristics (T_A = 25°C unless otherwise noted)

4.75 \leq V_{CC} \leq 5.25, R_{LOAD} = 511 Ω , Fiber Sizes \leq 100 Microns, N.A. \leq 0.35

SYMBOL	PARAMETERS	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Rp	Responsivity	6.5 5.8	9.3	12.5 14.1		at 840 nm at 840 nm, -40°C ≤ T _A ≤ +85°C
V_{NO}	RMS Output Noise Voltage		0.30	0.36 0.43	mV mV	$P_R = 0 \mu W$ $P_R = 0 \mu W$, $-40^{\circ}C \le T_A \le +85^{\circ}C$
P_N	Equivalent Optical Noise Input Power		-44.9 0.032	-40.9 0.082	dBm μW	
P _R	Peak Input Power			-13.2 48 -14.7 34	dBm μW dBm μW	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$
lcc	Power Supply Current		3.4	6.0	mA	R _{LOAD} = ∞
t _r , t _f	Rise Time, Fall Time (10% to 90%)		14	19.5	ns	P_R = 10 μW Peak, R_{LOAD} = 511 Ω , C_{LOAD} = 13 pF
PWD	Pulse Width Distortion			2	ns	P_R = 40 μW Peak, R_{LOAD} = 511 Ω , C_{LOAD} = 13 pF

25 MHz Fiber Optic Receiver Type OPF541

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle

Description

The output of the receiver is an analog, low impedance, voltage source capable of driving an amplifier or level translating circuitry for use on various data formats and data rates up to 35 MBaud.

The receiver is comprised of a high speed, low noise, photodiode coupled to a transimpedance amplifier which produces an output voltage proportional to the input light amplitude. This hybrid approach solves many of the problems of high speed data link designs by placing a pre-amplifier close to the photodiode. The level amplification produced by the transimpedance amplifier makes the output signal much less susceptible to interference which is a problem often found at high data rates and in high EMI environments.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature	
Operating Temperature	40°C to +85°C
Lead Soldering Temperature (for 10 sec.)	260°C
Supply Voltage	

R _P	Responsivity	6.5 5.8	9.3	12.5 14.1		at 840 nm at 840 nm, -40° C \leq T _A \leq $+85^{\circ}$ C
V _{NO}	RMS Output Noise Voltage		0.30	0.36 0.43		$P_R = 0 \mu W$ $P_R = 0 \mu W$, $-40^{\circ}C \le T_A \le +85^{\circ}C$
PN	Equivalent Optical Noise Input Power		-44.9 0.032	-40.9 0.082	dBm μW	
PR	Peak Input Power			-13.2 48 -14.7 34	dBm μW dBm μW	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$
lcc	Power Supply Current		3.4	6.0	mA	R _{LOAD} = ∞
t _r , t _f	Rise Time, Fall Time (10% to 90%)		14	19.5	ns	P_R = 10 μW Peak, R_{LOAD} = 511 Ω , C_{LOAD} = 13 pF
PWD	Pulse Width Distortion			2	ns	P_R = 40 μW Peak, R_{LOAD} = 511 Ω , C_{LOAD} = 13 pF

MIN TYP MAX UNITS

TEST CONDITIONS

Type OPF541

SYMBOL

Electrical Characteristics (T_A = 25°C unless otherwise noted)

PARAMETERS

4.75 \leq V_{CC} \leq 5.25, R_{LOAD} = 511 Ω , Fiber Sizes \leq 100 Microns, N.A. \leq 0.35

25 MHz Fiber Optic Receiver Type OPF542

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular style receptacle

Description

The output of the receiver is an analog, low impedance, voltage source capable of driving an amplifier or level translating circuitry for use on various data formats and data rates up to 35 MBaud.

The receiver is comprised of a high speed, low noise, photodiode coupled to a transimpedance amplifier which produces an output voltage proportional to the input light amplitude. This hybrid approach solves many of the problems of high speed data link designs by placing a pre-amplifier close to the photodiode. The level amplification produced by the transimpedance amplifier makes the output signal much less susceptible to interference which is a problem often found at high data rates and in high EMI environments.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature	-55°C to +115°C
Operating Temperature	-40°C to +85°C
Lead Soldering Temperature (for 10 sec.)	260°C
Supply Voltage	

(0

Type OPF542

Electrical Characteristics (T_A = 25°C unless otherwise noted)

4.75 \leq VCC \leq 5.25, RLOAD = 511 $\Omega,$ Fiber Sizes \leq 100 Microns, N.A. \leq 0.35

SYMBOL	PARAMETERS	MIN	TYP	MAX	UNITS	TEST CONDITIONS
R _P	Responsivity	6.5 5.8	9.3	12.5 14.1		at 840 nm at 840 nm, -40° C $\leq T_{A} \leq +85^{\circ}$ C
V _{NO}	RMS Output Noise Voltage		0.30	0.36 0.43	mV mV	$P_R = 0 \mu W$ $P_R = 0 \mu W$, $-40^{\circ}C \le T_A \le +85^{\circ}C$
P _N	Equivalent Optical Noise Input Power		-44.9 0.032	-40.9 0.082	dBm μW	
PR	Peak Input Power			-13.2 48 -14.7 34	dBm μW dBm μW	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$
lcc	Power Supply Current		3.4	6.0	mA	R _{LOAD} = ∞
t _r , t _f	Rise Time, Fall Time (10% to 90%)		14	19.5	ns	P_R = 10 μW Peak, R_{LOAD} = 511 Ω , C_{LOAD} = 13 pF
PWD	Pulse Width Distortion			2	ns	P_R = 40 μW Peak, R_{LOAD} = 511 Ω , C_{LOAD} = 13 pF

HYBRID ASSEMBLIES

The Opto Hybrid

Hybrid Assemblies are a strategic product area for Optek Technology. This means Optek is dedicated to be the best at what we do and to service the needs of our customers.

Opto hybrids offer solutions to many applications that cannot be satisfied with standard or conventional components.

Hybrid technology offers significant advantages for many electronic applications. Size constraints and performance targets typically determine the choice of hybrid construction.

Optek's broad capabilities make it possible to address a diverse range of applications. Furthermore, our customers can specify and procure a total functional system package from a single, experienced source.

Our expertise includes:

APPLICATION ENGINEERING
COMPUTER AIDED DESIGN
CUSTOM TEST SYSTEM DESIGN
CUSTOM SENSOR AND IC DEVELOPMENT
ENGINEERED PLASTICS AND INJECTION MOLDS
CHARACTERIZATION OF OPTOELECTRONIC PARTS
VERTICALLY INTEGRATED MANUFACTURING

OPTO HYBRID FEATURES

Chip-on-board design provides several advantages:

SIZE: Used where the function cannot be accomplished with conventional through hole, leaded components. Space savings can be as much as 80% as compared with discrete packaged parts.

PERFORMANCE: Allows the designer to create functions that cannot be fabricated with separately made components. The vast majority of components are available in chip, SMD or thick film form. Laser trimming allows designs that require uniform characteristics over time and temperature and the entire population of assemblies.

PACKAGING: The opto hybrid offers unique shape and mounting configurations and material combinations to suit a special set of environmental conditions. The standard materials and processes result in packages that accommodate extended temperatures beyond the range of many commercial components.

RELIABILITY: Reduced part count, automated processes, and Optek's commitment to quality result in robust, defect free parts.

COST: Chip carriers withstand the challenges of low cost automated handling, placement, and reflow soldering. In comparison to a custom IC solution, the development cost of a typical hybrid circuit is far less and modifications are quicker and easier. Array processing in hybrid fabrication minimizes cost and optimizes quality.

The flexibility to choose and combine the best technologies for your application is the feature that makes hybrid technology so valuable.

CUSTOM CAPABILITIES

Standard PC board fabrication flexibility allows for various component orientations, mounting features, and interconnect schemes.

The starting substrates can be Epoxy-glass, Polyimide, Flex Circuits, or Ceramic. Production tooling is in place for a standard array format of 4" X 4", but custom tooling can be designed to meet the needs of other materials, sizes, and shapes.

Substrates, encapsulants, and plating can be tailored to meet the circuit requirements.

Even with the standard chip carrier materials and processes, imagination is the only limit to the possible configurations.

Design variables include:

- MATERIALS
- OPTICAL PROPERTIES
- LEADS, PINS, OR CABLES
- SPECIAL TESTS AND PROCESSING

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

CUSTOM CAPABILITIES

Optek produces a variety of IC's, Photosensors, and Light Emitting Diodes that can be incorporated in custom designs. Optek is not limited to the sensor applications which use optoelectronics. Starting at the chip level, we design, develop, and manufacture state-of-the-art Hall Effect and Power devices.

When standard devices are not a match, our internal design capability will satisfy the application circuit requirement.

Manufacturing flexibility makes the Hybrid facility effective for serving both the high complexity and high volume assembly needs.

Computer controlled manufacturing operations include:

- CHIP AND SMD PICK AND PLACE
- WIRE BONDING
- ENCAPSULANT DISPENSING
- SINGULATING
- CURE AND REFLOW OVEN CYCLES
- FINAL ELECTRICAL TEST

HYBRID ASSEMBLIES

OPTEK TECHNOLOGY HYBRID CHIP CARRIER DESIGN RULES

The most cost effective chip-on-board products take advantage of standards in design and processing. The following guidelines for substrate layout are intended TO ASSIST the designer in the first stage of product development.

The Chip Carrier

The polyimide chip carrier, an Optek Standard packaging method, has four main parts: substrate, frame, components, and encapsulation. The substrate is fabricated from high temperature copper-clad laminate. Standard pc board processing provides the plated and non-plated holes, circuit patterns, and chip mounting features. The frame layer is made from the same polyimide laminates.

To make the substrate compatible with die attach and wire bonding techniques, the copper surface is plated with a nickel barrier and gold. After the chip components are mounted and bonded, the frame is screen printed with a pattern of non-conductive epoxy, aligned with the matching substrate cells and laminated under elevated temperature and pressure.

A conformal coating is applied to fill the component cavities. After curing, the array is sawed into individual product elements and ready for test.

The Substrate Material

The Optek standard chip carrier substrate and frame material thickness is .030"(0.76 mm). Including the adhesive and metal layers, this two layer, laminated package has a nominal thickness of .063"(1.6 mm).

While thinner substrates can be specified (commercially available materials as thin as .005"), the standard thickness frame layer is ideal for encapsulant containment and insuring complete protection of the chips and bond wires.

Polyimide is an excellent substrate because of its strength, high processing temperature, and close match with the expansion coefficient of silicon devices. Optek uses a special opaque grade of .030" polyimide which can effectively shield sensors from stray light. The specifications and curves shown on the following page illustrate these characteristics.

FR-4 and other high temperature epoxy-glass laminates are also suitable for the chip-on-board processing and may be recommended for certain applications.

Polyimide Substrate Characteristics

Operating Temperature (10K Hours)
Glass Transition Temperature (Tg)
Flammability (UL94)
Coefficient of Thermal Expansion(µin./°C) Z AXIS=55
$(\mu in./in./^{\circ}C) \dots X,Y AXIS=15$
Peel Strength (Pounds/Inch)
Flexural Strength (psi @ 200°C)
Water Absorption (%)
Dielectric Constant (@ 1MHz)
Dissipation Factor (@ 1MHz)
Volume Resistivity (OHM-CM @ 25°C)
Surface Resistivity (OHM-CM @ 25°C)

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

The Substrate Layout

Minimizing the size of the final package maximizes the cost effectiveness of the array process. As shown in the figure below, improved packing density is possible on the 4" X 4" substrate when cells are arranged to share through hole connections. A "half hole" contact remains with each cell when the elements are cut into the individual parts. Individual cells are arranged with separations or borders of .015"(0.38 mm). This is the thickness of the standard saw blade used for separation. Wider blades are available to accommodate special perimeter features.

The Metal Pattern Features

Conductor widths and spaces of .010"(2.5 mm) are preferred where the design allows. Lines and spaces of less than .005"(0.13 mm) should be avoided for optimum pattern uniformity.

Conductor thickness is determined by the specified starting material and secondary plating process. Standard double sided substrates have a minimum of 25 μ in. of gold over 200 μ in. of nickel over copper plating that is .002" to .003" thick.

HYBRID ASSEMBLIES

HYBRID CHIP CARRIER DESIGN RULES

Metal Pattern Features (Continued)

Alignment between the metal pattern and drilled or routed features is held to $\pm .002$ "(0.05 mm). Chip registration may be specified in relation to substrate holes or the sawed perimeter to eliminate the metal to hole pattern tolerance as a consideration.

The wire bonding stitch pads on the metal pattern are nominally .015" x .020" (0.38 mm x 0.5 mm) with the longer dimension aligned with the bond wire. Stitch pads of .007" x .015" (0.18 mm x 0.38 mm) are considered the minimum size.

Stitch pad spacing (pad to pad) can be as close as .012"(0.38 mm). Larger spacing (.020" is ideal) is always preferable for optimizing processing speed and inspection.

Metal Pattern Features (Continued)

Chip mounting pads are often sized to be at least .005" larger than small chips such as LEDs. Even larger pads may be desirable for increased power dissipation or to provide a greater light reflecting surface. The mounting pad can be as small as the die itself for larger components. The pad edges can then be used as chip alignment features. This is particularly useful for designs where the metal pattern establishes a datum.

Drill, Rout, and Saw Features

For standard thickness substrates (.030"), hole diameters should be no smaller than .015"(0.38 mm). Drilled holes of .020" or larger are used for most applications. Holes are guaranteed to be within \pm .002"(0.05 mm) of absolute position.

When specifying .062"(1.57 mm) thickness for the substrate layer, the minimum recommended hole diameter is .030" to minimize cost.

Drill, Rout, and Saw Features (Continued)

To make leaded parts, square pins can be pressed into substrate holes. Standard press fit terminals (.025" square) require enough substrate area for a .031"(0.8 mm) diameter plated through hole with a pad diameter of .062"(1.57 mm). Pin centers should be no closer than .050"(1.27 mm) to the perimeter of the part to avoid fracturing the laminate.

Wrap around edge contacts, formed by saw separation of plated through holes at cell boundaries, must be designed to accommodate the width of the blade. To insure a reliable contact remains after saw, the boundary holes should be no smaller than .025"(0.64 mm). The half hole contacts can be made smaller only if they are offset from the boundary centers so that .005"(0.13 mm) minimum of the hole remains after saw.

The tolerance between drilled features and any of the sawed edges is held to within \pm .0025"(0.06 mm). Standard edge to edge tolerance is \pm .005"(0.13 mm).

When sawed edges are specified in relationship to chip position, a total tolerance of $\pm .005$ "(0.13 mm) is used.

Wherever the design permits, metal patterns are typically recessed a minimum of .005"(0.13 mm) from these sawed edges to minimize metal flash or burrs between conductors.

Frame Size and Shape

The size of the routed frame is often based on the need for including features for mounting or alignment with other components. Minimizing the size of a framed carrier depends on chip placement, the arrangement of wire bond patterns, and strength considerations.

The frame width (distance from the chip cavity to an outside edge) is recommended to be .050"(1.27 mm) when space allows. A wide frame insures maximum adhesion to the substrate and prevents low viscosity encapsulant from escaping the cavity. This is especially important for wall sections adjacent to unfilled cavities where a width of .040"(1.0 mm) should be considered the absolute minimum. Thinner walls are effective encapsulant barriers when adjacent cavities are also filled. Minimum wall width is also affected by the cavity size. Longer sections require wider walls for strength. Frame walls of .025"(0.64 mm) or wider are recommended.

The frame cavities can be a variety of shapes and sizes, but because they are formed by a routing operation, inside features are rounded. Chip placement must accommodate these radii which are nominally .031"(0.8 mm). The smallest radius which can be specified for standard processing is .020"(0.5 mm). Sharp inside corners can be fabricated with laser machining but at a significantly higher processing cost.

Chip Placement and Wire Bonds

Chip position may be specified with relation to drilled holes, routed or sawed edges, or the circuit's metal pattern. Registering the chips (especially sensors and LEDs) to holes is typically done when these holes will be used for aligning the carrier to features of the next level assembly or other optical components such as aperture masks.

Precise alignment marks can also be added to the metal patterns to produce a common datum for the die and carrier placement.

The relationship of the chip to the inside edge of the frame can vary greatly by the components selected (chip size and bond pad arrangement). In general, a chip edge can be as close as .015"(0.38 mm) to the frame where room is not required for bond wires. Spacing of .020"(0.5 mm) is preferred.

To allow room on a wire bonded side, the design rules call for .050" (1.27 mm) between the frame and the chip if possible and .035" (0.9 mm) as an absolute minimum.

The position of the bond pads on the chip is an important factor. A distance of .035"(0.9 mm) from the ball bond to the stitch bond is recommended when calculating the stitch pad position and the spacing to the edge of the frame. This allows for .015"(0.38 mm) nominal distance between the frame and stitch.

Screen Printed Materials

The alignment tolerance between the substrate and a screened image, such as solder mask, thick film resistors, or solder paste, is \pm .005"(0.13 mm). Metal pattern features are made slightly larger than the screened image to include this tolerance.

Special processes can improve this tolerance to $\pm .003$ " (0.08 mm) for some materials and geometries.

Polymer thick film resistor pastes range from 3 ohms per square to one Meg ohm per square with a temperature coefficient of less than 100ppm (parts per million per degree C).

Without laser trimming, the screened resistor typically has a value tolerance of 20%.

The resistor tolerance after trimming varies by the type and rate of the trimming performed and can be limited by the image size. Standard processing produces a trim tolerance of 1%, but wider tolerances enable faster trims and lower processing costs.

Design rules allow for trimmable resistors as small as .040"(1 mm) and untrimmed resistors as small as .020"(0.5 mm).

Discrete components may be placed on the back side of the substrate along with screened materials. Most surface mount parts can be placed automatically. Pad size and spacing for such components should follow manufacturer recommendations.

HYBRID ASSEMBLIES

HYBRID CHIP CARRIER DESIGN RULES

Encapsulation

The standard chip carrier construction is compatible with a wide variety of encapsulation materials, viscosities, and cure cycles because the framed cavities are completely enclosed and deep enough for any chip and bond wire profile.

Silicone is used as the standard encapsulant because of its wide operating temperature range, excellent adhesion, and ease of processing. It is ideal for optoelectronic applications because of its clarity and resistance to abrasion in subsequent cleaning operations.

Other encapsulants may be indicated where specific mechanical or chemical environments are not compatible with silicone. The material or its characteristics may be specified for new products.

The specifications for Optek's standard silicone are shown below.

Silicone Characteristics

Tensile Strength
Elongation
Durometer, Shore A
Operating Temperature Range
Refractive Index @ 25°C
Linear Coefficient of Expansion (in/in/°C)
Dielectric Constant, @1KHz
Dielectric Strength, @1KHz
Sodium ION Content, ppm
Potassium ION Content, ppm

Temperature Limits of The Package

The operating temperature range of any particular design will typically be limited by the performance of the circuit components.

Special encapsulants and other attached components such as molded plastic lenses or housings must also be considered in both the operating and processing temperature of the chip carrier.

The standard silicone encapsulated polyimide package can withstand an environment of -55°C to +150°C indefinitely.

Reflow soldering of the surface mount packages can be performed with infrared, vapor phase, convection, or wave solder methods. The recommended limit for vapor phase reflow (up to 235°C) is 30 seconds.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Six Element SMD Photodiode Array Type OPR2100

Features

- Surface Mountable
- Closely Matched Responsivity
- High Temperature Operation

Description

Enclosed in a compact polyimide chip carrier, this six element photodiode has been specifically designed to meet the needs of motor encoder applications. Six individual chips are mounted on isolated cathode contacts to allow external connection in any desired configuration. The custom opaque package material shields the photodiodes from stray light and can withstand multiple exposures to the most demanding soldering conditions. The wrap around solder pads are gold plated for exceptional storage and wetting characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature	-55°C to +125°C
Reverse Breakdown Voltage	50V MIN.
Solder Temperature (Vanor Phase Reflow for 30 sec.)	235 ⁰ C

PIN OUT:

- PIN #0. GROUND PLANE
 - CATHODE A
 - 2. CATHODE B
 - 3. ANODE B
 - 4. ANODE C
 - CATHODE C 6. CATHODE D

 - 7. ANODE D
 - 8. CATHODE E
 - 9. ANODE E
 - 10. ANODE F
 - 11. CATHODE F
 - 12. ANODE A

SYMBOL	PARAMETERS	MIN	TYP	MAX	UNITS	TEST CONDITIONS
. R _λ	Responsivity	.45			A/W	$\Phi_{\text{e}}{=}$ 10 $\mu\text{W},\lambda$ = 890 nm, V = 0
V _{(BR)R}	Reverse Breakdown Voltage	50			V	I _R = 100 μA
lD	Reverse Dark Current			10	nA	V _R = 10 V
Ст	Capacitance		10		pf	V _R = 10 V
LxW	Active Area (per diode)		2.9		mm ²	(1.1 mm x 2.6 mm)

Optical Comparator Arrays Type OPR5001B, OPR5002B, OPR5003B

Features

- Surface mountable
- · Multiple channels available
- TTL compatible output
- Wide supply voltage range

Description

The OPR5001B, OPR5002B and OPR5003B are hybrid sensor arrays consisting of one, two or three channels of the Optek OPC8032 Differential Optical Comparator, ("DOC") IC. Specifically designed for encoder applications, the open collector output switches based on the comparison of input photodiode's light current levels. Logarithmic amplification of the input signals makes possible operation over a wide range of light levels.

The packages are surface mountable and made from a custom opaque polyimide which shields the active devices from stray light. The high temperature laminate can withstand multiple exposures to the most demanding soldering conditions. Wrap around contacts are gold plated for exceptional storage and wetting characteristics.

Replaces OPR5001A Series.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature55°C to +12	5°C
Operating temperature20°C to +8	0°C
Supply Voltage	
Output Voltage	24V
Output Current	·mΑ
Power Dissipation	mW
Soldering Temperature (Vapor Phase Reflow for 30 sec.)	5°C

OPC8032 Block Diagram

Type OPR5001B, OPR5002B, OPR5003B

Tolerance = \pm .005(\pm .13) unless otherwise noted.

HYBRID

Type OPR5001B, OPR5002B, OPR5003B

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS	NOTES
Icc	Supply Current	5001		3	7	mA	V _{CC} = 24 V	1
		5002		6	14	mA		
		5003		9	20	mA		
V _{OL}	Low Level Output Voltage			0.3	0.4	٧	I _{OL} = 14 mA, V _{CC} = 4.5 V	2
Іон	High Level Output Current			0.1	1.0	μА	V _{CC} = V _O = 20.0 V	3
OPT-HYS	Optical Hysteresis		2.0	15.0	40	%	$V_{CC} = 5.0 \text{ V}, I_{OL} = 1.0 \text{ mA}$	4, 7
OPT-OFF	Optical Offset		-40	10	+40	%	V _{CC} = 5.0 V, I _{OL} = 1.0 mA	4, 7
fmax	Frequency Response			100		kHz	Vcc = 5.0 V,	5
tlh	Output Rise Time			2.0		μs	R1 = 100Ω ,	6
thl	Output Fall Time			500		ns	C1 = 50 pf	

Notes:

- 1. Pin (+) = 1.2 μ W and Pin (-) = 0.8 μ W.
- 2. Pin (+) = 100.0 nW and Pin (-) = 1.0 μ W.
- 3. Pin (+) = $1.0 \mu W$ and Pin (-) 100.0 nW.
- 4. Pin (-) held at 1.0 μ W while Pin (+) is ramped from 0.5 μ W to 1.5 μ W and back to 0.5 μ W.
- 5. Pin (+) modulated from 1.0 μW to 2.0 μW. Pin (-) modulated from 1.0 μW to 2.0 μW with phase shifted 180° with respect to Pin (+).
- 6. Measured between 10% and 90% points.
- 7. Optical Hysteresis and Optical Offset are found by placing 1.0 μW of light on the inverting photodiode and ramping the light intensity of the noninverting input from .5 μW up to 1.5 μW and back down. This will produce two trigger points, an upper trigger point and lower trigger point. These points are used to calculate the optical hysteresis and offset.

These are defined as

Where:

P in (-) = Light level incident upon the "-" photodiode on the I.C. chip (Pin (-) = 1.0 μ W).

P rise = Value of light power level incident upon the "+" photodiode that is required to switch the digital output when the light level is an increasing level (rising edge).

P fall = Value of light power level incident upon the "+" photodiode that is required to switch the digital output when the light level is a decreasing level (falling edge).

P average =
$$(P \text{ rise} + P \text{ fall})$$

Application Circuit

Notes

- A capacitance of a value between .001 to .01 μF connected as close as possible to the trim terminals is recommended if the
 device appears to be susceptable to noise transients. It is left to the user to determine the best value for the application.
- The 74LS04 is recommended as a means of isolating the "DOC" comparator circuitry from transients induced by inductive and capacitive loads.
- 3. It is recommeded that a decoupling capacitor be placed as close as possible to the device.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

SMD Reflective Sensor Type OPR5005

Features

- Surface mountable
- High temperature operation
- Compact size

Description

This miniature sensor combines a silicon phototransistor with a GaAlAs LED in a high temperature opaque polyimide chip carrier. It is designed to sense the motion or proximity of diffuse reflective surfaces in applications where space constraints preclude the use of larger leaded components. The opaque package insures very low cross talk and shields the phototransistor from ambient light sources. Silicone encapsulation allows operation over a wide temperature range, and the wrap around solder pads are gold plated for exceptional storage and wetting characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature55°C to +125°C
Soldering Temperature (Vapor Phase Reflow for 10 sec.)
Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notae

- (1) RMA flux is recommended. Duration can be extended to 30 sec. max when flow soldering.
- (2) Derate linearly 0.75mW/°C above 25°C.
- (3) d is the distance from the assembly face to the reflective surface.

 (4) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (5) Crosstalk (Icx) is the collector current measured with the indicated current in the input diode and with no reflecting surface.

Type OPR5005

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diod	e					August 1 de la company de la c
VF	Forward Voltage			1.7	٧	I _F = 20 mA
I _R	Reverse Current			100	μА	V _R = 2.0 V
Output Ph	ototransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30			٧	I _C = 100 μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			٧	l _E = 100 μA
ICEO	Collector Dark Current			100	nA	$V_{CE} = 5.0 \text{ V}, I_F = 0,$ $E_{\theta} = \le 0.10 \mu\text{W/cm}^2$
Combined						
Ic(on)	On-State Collector Current	100			μА	$V_{CE} = 5.0 \text{ V, I}_{F} = 20 \text{ mA,}$ d = 0.050 in. (1.27 mm) ⁽³⁾⁽⁴⁾
VCE(SAT)	Collector-Emitter Saturation Voltage			0.40	٧	I _F = 20 mA, I _C = 100 μ A, d = 0.050 in. (1.27 mm) ⁽³⁾⁽⁴⁾

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Miniature Surface Mount LED OPR5200

Features

- Stackable on 2 mm centers
- · Vertical or horizontal mounting
- · Automatic pick and place compatible

Description

The OPR5200 is a high efficiency GaAlAs light emitting diode in a high temperature polyimide chip carrier. Its small size is well suited to applications requiring close channel spacing. It can be placed automatically with standard SMD equipment and can be reflow soldered by virtually any conventional means. Wrap around contacts enable the part to be mounted face up or on edge for a beam direction parallel to the seating plane. In combination with the OPR5500, the miniature phototransistor, this lateral mounting option can be used to create a slotted switch configuration.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	/
Continuous Forward Current	١
Peak Forward Current (1 μs pulse width, 300 pps)	١
Storage and Operating Temperature)
Soldering Temperature (Vapor Phase Reflow for 30 sec.))
Power Dissipation (derate @ 1.00mW/°C above 25°C) 100mV	I

Forward Voltage vs

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
Po	Output Power	350			μW	I _F = 20 mA	
V _F	Forward Voltage			1.8	V	I _F = 20 mA	
IR	Reverse Current			100	μА	V _R = 2 V	
λρ	Peak Wavelength		890		nm	I _F = 20 mA	
λвw	Spectral Bandwidth	A CONTRACTOR	80		nm	I _F = 20 mA	
θнР	Emission Angle		± 45°			at half power points	
tr	Output Rise Time		500		ns	I _p = 100 mA	
tf	Output Fall Time		250		ns	Pw = 10.0 μs, D.C. = 10%	

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Surface Mount Phototransistor OPR5500

Features

- · Stackable on 2 mm centers
- · Vertical or horizontal mounting
- · Automatic pick and place compatible

Description

The OPR5500 is an NPN silicon phototransistor in a high temperature polyimide chip carrier. It's small size is well suited to applications requiring close channel spacing. It can be placed with any standard SMD equipment and can be reflow soldered by virtually any conventional means. Wrap around contacts enable the part to be mounted face up or on edge for beam detection parallel to the seating plane. In combination with the OPR5200, the miniature SMD LED, this lateral mounting option can be used to create a slotted switch configuration.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5V
Storage and Operating Temperature55°C to +1:	25°C
Soldering Temperature (Vapor Phase Reflow for 30 sec.)	
Power Dissipation (derate @ 1.00mW/°C above 25°C) 100	ΩmW

Normalized Collector Current vs. Angular Displacement

Normalized Output vs. Frequency 1.0 CKT 2 - R_F - 10K CKT 1 - R_L - 1K CKT 1 - R_L - 10K REQUENCY - KHz

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Ic(ON)	On State Collector Current	36			μА	V_{CE} = 5 V, E_e = 150 μ W/cm ² (890 nm light source)
ICEO	Dark Current			100	nA	V _{CE} = 5 V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30			٧	I _C = 100 μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5			٧	l _e = 100 μA
V _{CE(SAT)}	Saturation Voltage			0.4	٧	I _C = 100 μA, E _e = 5 mW/cm ²
t _r , t _f	Rise Time, Fall Time		2.5		μs	$V_{CC} = 5 \text{ V}, I_{C} = 800 \mu\text{A}, R = 100 \Omega$

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Surface Mount Silicon PIN Photodiode Type OPR5910

Features

- Surface Mountable
- · Circular Active Area
- High Temperature Operation

Description

Enclosed in a compact polyimide chip carrier, this circular PIN photodiode is well suited for open air communications and ambient light detection circuits. Peak responsivity at the wavelength of 880 nm results in maximum coupling efficiency with Optek GaAlAs LEDs. The custom opaque package material shields the photodiode from stray light and can withstand multiple exposures to the most demanding soldering conditions. The wrap around solder pads are gold plated for exceptional storage and wetting characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature -55°C to +125°C
Reverse Breakdown Voltage 35V MIN.
Solder Temperature (Vapor Phase Reflow for 30 sec.) 235°C

PIN OUT:

PIN #1. CATHODE

2. ANODE

3. N/C

4. N/C

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
R_{λ}	Responsivity	.45			A/W	Φ_{e} = 10 $\mu\text{W},\lambda$ = 890 nm, V = 0
V _{(BR)R}	Reverse Breakdown Voltage	35			V	I _R = 100 μA
ID	Reverse Dark Current			30	nA	V _R = 10 V
Ст	Capacitance		25		pf	V _R = 0
LxW	Active Area		.73		mm ²	

Surface Mount Quad Photodiode Type OPR5911

Features

- Surface Mountable
- · Closely Matched Responsivity
- High Temperature Operation

Description

Enclosed in a compact polyimide chip carrier, this four element photodiode is ideal for a variety of encoder and controls applications. The single chip construction insures excellent matching and very tight dimensional tolerances between the active areas. The custom opaque package material shields the photodiodes from stray light and can withstand multiple exposures to the most demanding soldering conditions. The wrap around solder pads are gold plated for exceptional storage and wetting characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

PIN OUT:

PIN # 1. ANODE #1

- 2. COMMON CATHODE
- 3. N/C
- 4. N/C
- COMMON CATHODE
- 6. ANODE #4
- 7. ANODE #3
- 8. COMMON CATHODE
- 9. N/C
- 10. N/C
- 11. COMMON CATHODE
- 12. ANODE #2

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
R_{λ}	Responsivity	.45			A/W	Φ_e = 10 μ W, λ = 890 nm, V = 0
V _{(BR)R}	Reverse Breakdown Voltage	14			V	I _R = 100 μA
ID	Reverse Dark Current			15	nA	V _R = 10 V
Ст	Capacitance		10		pf	V _R = 0
LxW	Active Area (per diode)		1.0		mm ²	(1.0 mm x 1.0 mm)

Large Area SMD Silicon Photodiode Type OPR5913

Features

- Surface Mountable
- Large Active Area
- High Temperature Operation

Description

Enclosed in a compact polyimide chip carrier, this large area photodiode is well suited for open air communication applications and ambient light detection. The custom opaque package material shields the photodiode from stray light and can withstand multiple exposures to the most demanding soldering conditions. The wrap around solder pads are gold plated for exceptional storage and wetting characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Sto	orage and Operating Temperature	-55°C to +125°C.
Re	verse Breakdown Voltage	10V MIN.
So	Idering Temperature (Vapor Phase Reflow for 30 sec.)	235°C

PIN OUT:

PIN #1. ANODE

- 2. COMMON CATHODE
- COMMON CATHODE
- 4. N/C
- 5. N/C
- 6. COMMON CATHODE
- COMMON CATHODE
- 8. N/C

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
R_{λ}	Responsivity	.40			A/W	$\Phi_{e} = 10 \ \mu W, \ \lambda = 890 \ nm, \ V = 0$
V _{(BR)R}	Reverse Breakdown Voltage	10			٧	I _R = 100 μA
ID	Reverse Dark Current			100	nA	V _R = 0.5 V
Ст	Capacitance		1000		pf	V _R = 0 V
	, , , , , , , , , , , , , , , , , , ,		250		pf	V _R = 10 V
LxW	Active Area		25		mm ²	(5.0 mm x 5.0 mm)

Surface Mount Silicon PIN Photodiode Type OPR5915

Features

- Surface Mountable
- Large Active Area
- High Temperature Operation

Description

Enclosed in a compact polyimide chip carrier, this large area photodiode is well suited for open air communication applications and ambient light detection. Peak responsivity at the wavelength of 880 nm results in maximum coupling efficiency with Optek GaAlAs LEDs. The custom opaque package material shields the photodiode from stray light and can withstand multiple exposures to the most demanding soldering conditions. The wrap around solder pads are gold plated for exceptional storage and wetting characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

PIN OUT:

PIN #1. ANODE
2. COMMON CATHODE
3. N/C

4. N/C

5. COMMON CATHODE

6. N/C
 7. N/C

8. COMMON CATHODE

9. N/C

10. N/C

11. COMMON CATHODE

12. N/C

SPECTRAL RESPONSIVITY 100 1 80 1 80 2 0 40 0 .4 .5 .6 .7 .8 .9 1.0 1.

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Rλ	Responsivity	.45			A/W	Φ_{e} = 10 $\mu\text{W},\lambda$ = 890 nm, V = 0
V _{(BR)R}	Reverse Breakdown Voltage	35			٧	I _R = 100 μA
ΙD	Reverse Dark Current			30	nA	V _R = 10 V
CT	Capacitance		125		pf	V _R = 0
LxW	Active Area		7.3		mm ²	(2.7 mm x 2.7 mm)

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Surface Mount Quad Photodiode Type OPR5925

Features

- Surface Mountable
- Separate Cathode Connections
- High Temperature Operation

Description

This compact polyimide chip carrier contains four silicon photodiodes in a quad arrangement with each anode and cathode bonded out separately. The internal isolation enables external connection in any desired configuration to match the sensing circuit requirements. The custom opaque package material shields the photodiodes from stray light and can withstand multiple exposures to the most demanding soldering conditions. The wrap around solder pads are gold plated for exceptional storage and wetting characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

PIN OUT:

PIN #1. ANODE #1 2. CATHODE #1 3. N/C 4. N/C CATHODE #2 5. ANODE #2 6. 7. ANODE #3 CATHODE #3 8. 9. N/C N/C 10. 11. CATHODE #4 ANODE #4 12.

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
R_{λ}	Responsivity	.45			A/W	Φ_{e} = 10 μ W, λ = 890 nm, V_{R} = 0 V
. V _{(BR)R}	Reverse Breakdown Voltage	35			٧	I _R = 100 μA
lD	Reverse Dark Current			30	nA	V _R = 10 V
Ст	Capacitance		10		pf	V _R = 10 V
LxW	Active Area (per diode)		0.64		mm ²	(0.8 mm x 0.8 mm)

Six Element SMD Photodiode Array Type OPR5929

Features

- Surface Mountable
- Closely Matched Responsivity
- High Temperature Operation

Description

Enclosed in a compact polyimide chip carrier, this six element photodiode has been specifically designed to meet the needs of motor encoder applications. Six individual chips are mounted on isolated cathode contacts to allow external connection in any desired configuration. The custom opaque package material shields the photodiodes from stray light and can withstand multiple exposures to the most demanding soldering conditions. The wrap around solder pads are gold plated for exceptional storage and wetting characteristics.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

PIN OUT:

12.

2. ANODE D 3. ANODE C 4. CATHODE C 5. CATHODE B 6. ANODE B 7. CATHODE A 8. ANODE A 9. ANODE F 10. CATHODE F 11. CATHODE E

ANODE E

PIN #1. CATHODE D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETERS	MIN	TYP	MAX	UNITS	TEST CONDITIONS
R_{λ}	Responsivity	.45			A/W	$\Phi_{\theta} = 10 \ \mu W, \ \lambda = 890 \ nm, \ V = 0$
V _{(BR)R}	Reverse Breakdown Voltage	50			٧	I _R = 100 μA
lσ	Reverse Dark Current			10	nA	V _R = 10 V
Ст	Capacitance		10		pf	V _R = 10 V
LxW	Active Area (per diode)		2.9		mm ²	(1.1 mm x 2.6 mm)

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

HALL EFFECT SENSORS

Hallogic™ Hall Effect Sensors

Optek Technology, Inc. produces temperature-compensated Hall effect magnetic sensing devices. The Hallogic™ Hall Effect Sensors are superior products that meet the demands of motion sensing in extremely harsh environments such as under-the-hood automotive and heavy industrial machinery applications, including robotics.

Hallogic™ refers to the combination of a Hall element magnetic field sensor with highly refined integrated circuitry on a single, monolithic bipolar silicon chip. Incorporated on the Hallogic™ sensor chip are:

- · a Hall element
- · a bandgap voltage regulator
- a threshold amplifier including a linear amplifier and a Schmitt trigger
- an open-collector output transistor that can drive ten TTL loads

The Hall Element

The basic Hall element relies on a magnetic field in order to sense motion. The principle is based on the Hall effect, discovered more than 100 years ago by the American physicist, Edwin Herbert Hall. The Hall effect is the small electrical potential created when a stationary magnetic field is placed perpendicular to a current-carrying conductor (see Figure 1).

Most available Hall elements hold current constant and measure voltage, which is then correlated with magnetic field strength. The superior performance of the Optek device is due in part to a fundamental design change which instead provides a constant bias *voltage* and measures the Hall *current*. This method proves more accurate for sensing magnetic field strength when temperature varies. It also provides a better way to interface the Hall element with the complex integrated circuitry of the Hallogic[™] sensor.

The Optek Hall element then is basically a block of semiconductor material with four contact points. Two contacts (or electrodes) are used to supply a constant bias voltage to the element; the other two are used for the varying current output. If voltage is held constant across the device while a perpendicular magnetic field is applied, the Hall current can be sensed across the output connections. The Hall current is proportional to the strength of the applied magnetic field.

Unprecedented Temperature Stability

Temperature coefficients have been optimized to insure stable electrical characteristics over the temperature range of -55°C to +150°C. Other design aspects of the Hallogic™ sensor that enable it to meet Optek's demanding temperature stability objectives are two important circuit areas on the chip, the bandcap regulator and the threshold amplifier:

1. Bandgap Voltage Regulator:

In addition to maintaining a constant output voltage level (no matter what changes occur in input voltage or output current), the Optek Hallogic™ bandgap voltage regulator also serves as an extremely good temperature compensated voltage source to bias the Hall element. This bandgap voltage regulator enables Hallogic™ devices to operate with a supply voltage ranging from 4.5 to 24 volts DC, with virtually no drift in magnetic sensitivity (i.e., in the magnetic trigger point).

2. Threshold Amplifier:

The amplifier/detector circuit is a constant-gain type, designed with temperature-compensated trip points at the input to the voltage comparator. The Schmitt trigger output then drives an open-collector transistor with a 50 mA current sinking capability. This open-collector transistor enables the device output to drive up to ten TTL loads directly.

Low Power Consumption

Yet another advantage is the low power consumption, which results from no bias current being required by the permanent magnet. The sensor itself draws only 5 mA (typical) of supply current (Icc).

Package Design

Optek uses a very high density transfer molded plastic to encapsulate the Hallogic™ lead frame and chip. Both the density and the transfer molding process result in a dirt and moisture barrier effective enough to pass Military Standard 883. The sensor passes "pressure cooker" and similar moisture and temperature testing procedures to insure a reliable product.

In addition, the lead frame is designed with superior thermal characteristics for maximum reliability at the ten TTL load capability of the device.

The dimensional outline of the package and the precise placement of the Hall element are standard. This design allows for the superior, temperature compensated Optek device to be specified for instant replacement. A significant upgrade in performance can be achieved without costly redesign and retooling.

Because the Hallogic™ Hall Effect Sensor is smaller than conventional emitter-detector pairs, it will more easily fit into areas with small size constraints.

Designed for the Toughest Environments

The result is that the Hallogic™ Hall Effect Sensor is virtually immune to environmental contaminants. It is rugged and suitable for use under severe service conditions. Even in the toughest environment, the Hallogic™ sensor will exhibit excellent magnetic sensitivity to provide reliable, repetitive operations in close tolerance applications. These devices are excellent choices for DC motors, automotive applications, robotic and heavy machinery sensing applications, or for any application in a harsh environment where optoelectronic devices are unsuitable.

Custom Sensor Assemblies

Optek offers the customer the same custom assembly capability they have come to expect from the Optoelectronic division. Custom designed sensors with Hall effect devices and magnets, long lead wires, special connectors etc., are available. With Optek's complete plastic tooling and molding operations, Hall Effect sensors are available in a wide variety of hybrid packages.

Figure 1. Basic Hall Element

Optek Technology, Inc.

Typical Applications

Appliances

Automotive OEM & Aftermarket

Business machines

Communications

Computers/peripherals

Controls

DC motors & electrical motor controls

Entertainment products

Industrial and commercial switches

Instrumentation

Machinery

Machine tools

Military systems and equipment

Power supplies

Test equipment

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Hallogic™ Hall Effect Sensors Type OH090U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 10 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OH090U contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and provides up to 30 mA of sink current. This allows direct driving of more than 10 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The OH090U is a high performance device capable of operation from -40°C to +150°C. Stability of the magnetic operate and release points is excellent over this entire temperature range.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	-65°C to +160°C
Operating Temperature Range, TA	-40°C to +150°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec.	with soldering
iron]	260°C ⁽¹⁾
Output ON Current, IsiNK	
Output OFF Voltage, Vout	
Magnetic Flux Density, B	Unlimited
Note:	

(1) Heat sink leads during hand soldering.

Type OH090U

Electrical Characteristics (V_{CC} = 4.5 V to 24 VDC, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point	0	90	180	Gauss	
BRP	Magnetic Release Point	-100	65	100	Gauss	
Вн	Magnetic Hysteresis	10	25	100	Gauss	
Icc	Supply Current		6	9	mA	V _{CC} = 24 V, Output On
Vol	Output Saturation Voltage		100	300	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 30 \text{ mA}$
Іон	Output Leakage Current		0.50	10.0	μА	V _{CC} = 24 V, V _{OUT} = 24 V
tr	Output Rise Time		0.30	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.30	1.00	μs	

Typical Performance Curves

Hallogic™ Hall Effect Sensors Type OH180U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- · Drive capability up to 10 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OH180U contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and provides up to 30 mA of sink current. This allows direct driving of more than 10 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The OH180U is a high performance device capable of operation from -40°C to +150°C. Stability of the magnetic operate and release points is excellent over this entire temperature range.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	-65°C to +160°C
Operating Temperature Range, TA	-40°C to +150°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec.	
iron]	260°C
Output ON Current, IsiNK	50mA
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited
Note:	

(1) Heat sink leads during hand soldering.

Type OH180U

Electrical Characteristics (V_{CC} = 4.5 V to 24 VDC, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point	70	180	290	Gauss	
BRP	Magnetic Release Point	0	140	230	Gauss	
Вн	Magnetic Hysteresis	20	40	120	Gauss	
Icc	Supply Current		6	9	mA	V _{CC} = 24 V, Output On
Vol	Output Saturation Voltage		100	300	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 30 \text{ mA}$
Іон	Output Leakage Current		0.50	10.0	μА	V _{CC} = 24 V, V _{OUT} = 24 V
tr	Output Rise Time		0.30	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.30	1.00	μs	

Typical Performance Curves

Hallogic™ Hall Effect Sensors Type OH360U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 10 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OH360U contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, a threshold amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and provides up to 30 mA of sink current. This allows direct driving of more than 10 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The OH360U is a high performance device capable of operation from -40°C to +150°C. Stability of the magnetic operate and release points is excellent over this entire temperature range.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	-65°C to +160°C
Operating Temperature Range, TA	
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec.	with soldering
iron]	260°C ⁽¹⁾
Output ON Current, Isink	50mA
Output OFF Voltage, VouT	25V
Magnetic Flux Density, B	Unlimited
Note:	
(1) Heat sink leads during hand soldering	

Type OH360U

Electrical Characteristics (V_{CC} = 4.5 V to 24 VDC, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point	235	300	465	Gauss	
B _{RP}	Magnetic Release Point	120	235	325	Gauss	
Вн	Magnetic Hysteresis	30	65	200	Gauss	
lcc	Supply Current		6	9	mA	V _{CC} = 24 V, Output On
VoL	Output Saturation Voltage		100	300	mV	V _{CC} = 4.5 V, I _{OL} = 30 mA
Іон	Output Leakage Current		0.1	10.0	μΑ	V _{CC} = 24 V, V _{OUT} = 24 V
tr	Output Rise Time		0.3	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$,
tf	Output Fall Time		0.3	1.00	μs	Vcc = 14.0 V

Typical Performance Curves

HALL EFFI SENSOR

Hallogic[™] Hall Effect Sensors Type OHN3013U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- · Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3013U contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Stability of the magnetic operate and release points is excellent over this entire temperature range. The release point over the temperature range will always be greater than zero gauss.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}
Storage Temperature Range, Ts65°C to +150°C
Operating Temperature Range, T _A 20°C to +85°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. with soldering
iron]
Output ON Current, Isink. 25mA
Output OFF Voltage, Vout
Magnetic Flux Density, B Unlimited
Note:
(1) Heat sink leads during hand soldering

Type OHN3013U

Electrical Characteristics (V_{CC} = 4.5 V to 24 VDC, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point		300	450	Gauss	
BRP	Magnetic Release Point	25	235		Gauss	
Вн	Magnetic Hysteresis	30	65		Gauss	
Icc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
Vol	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$ B $\geq 450 \text{ Gauss}$
Юн	Output Leakage Current		0.1	10.0	μА	$V_{CC} = 24 \text{ V}, V_{OUT} = 24 \text{ V},$ B \le 25 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.25	1.00	μs	

Typical Performance Curves

Hallogic[™] Hall Effect Sensors Types OHN3019U, OHS3019U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- · Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3019U and OHS3019U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Stability of the magnetic operate and release points is excellent over this entire temperature range.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc	25V
Storage Temperature Range, Ts	-65°C to +150°C
Operating Temperature Range, TA OHN3019U	-20°C to +85°C
OHS3019U	-40°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. v	vith soldering
iron]	260°C (1)
Output ON Current, ISINK	
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited
Note:	

(1) Heat sink leads during hand soldering.

Electrical Characteristics (V_{CC} = 4.5 V to 24 VDC, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point		300	500	Gauss	
B _{RP}	Magnetic Release Point	125	235		Gauss	
Вн	Magnetic Hysteresis	50	65		Gauss	
lcc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
Vol	Output Saturation Voltage		100	400	mV	Vcc = 4.5 V, loL = 20 mA,
						B≥500 Gauss
Іон	Output Leakage Current		0.1	10.0	μА	Vcc = 24 V, Vout = 24 V,
						B ≤ 100 Gauss
tr	Output Rise Time		0.21	1.00	μs	R _L = 820 Ω, C _L = 20 pF
tf	Output Fall Time		0.25	1.00	μs	

Typical Performance Curves

Hallogic™ Hall Effect Sensors Types OHN3020U, OHS3020U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3020U and OHS3020U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Stability of the magnetic operate and release points is excellent over this entire temperature range. The release point over the temperature range will always be greater than zero gauss.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, T _S	-65°C to +150°C
Operating Temperature Range, TA OHN3020U	-20°C to +85°C
OHS3020U	-40°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. w	ith soldering
iron]	260°C (1)
Output ON Current, ISINK	
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited
Note:	
(1) Heat sink leads during hand soldering.	

Types OHN3020U, OHS3020U

Electrical Characteristics ($V_{CC} = 4.5 \text{ V}$ to 24 VDC, $T_A = 25^{\circ}\text{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point		230	350	Gauss	
B _{RP}	Magnetic Release Point	50	180		Gauss	
Вн	Magnetic Hysteresis	20	50		Gauss	
Icc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
VoL	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$ B \geq 350 Gauss
Юн	Output Leakage Current		0.1	10.0	μА	$V_{CC} = 24 \text{ V}, V_{OUT} = 24 \text{ V},$ B \le 50 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.25	1.00	μs	

Typical Performance Curves

Hallogic™ Hall Effect Sensors Types OHN3030U, OHS3030U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- · Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3030U and OHS3030U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The devices feature logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Stability of the magnetic operate and release points is excellent over this entire temperature range.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

<u> </u>	•
Supply Voltage, V _{CC}	
Storage Temperature Range, Ts	65°C to +160°C
Operating Temperature Range, TA OHN3030U	20°C to +85°C
OHS3030U	40°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec.	. with soldering
iron]	260°C ⁽¹⁾
Output ON Current, ISINK	
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited
Note:	
(1) Heat sink leads during hand coldering	

Types OHN3030U, OHS3030U

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point		205	250	Gauss	
B _{RP}	Magnetic Release Point	0	160		Gauss	
Вн	Magnetic Hysteresis	20	45		Gauss	
lcc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
VoL	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$ $B \ge 200 \text{ Gauss}$
Іон	Output Leakage Current		0.1	10.0	μΑ	V _{CC} = 24 V, V _{OUT} =24 V, B ≤ 50 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tr	Output Fall Time		0.25	1.00	μs	

Typical Performance Curves

Rise and Fall Time Test Circuit

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

25V

Hallogic™ Hall Effect Sensors Types OHN3040U, OHS3040U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3040U and OHS3040U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The devices feature logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Stability of the magnetic operate and release points is excellent over this entire temperature range. The release point over the temperature range will always be greater than zero.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Vollage, VCC
Storage Temperature Range, T _S 65°C to +150°C
Operating Temperature Range, T _A OHN3040U20°C to +85°C
OHS3040U40°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. with soldering
iron]
Output ON Current, ISINK
Output OFF Voltage, Vout
Magnetic Flux Density, B Unlimited
Note:

Functional Block Diagram

(1) Heat sink leads during hand soldering.

Supply Voltage Voc

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point		150	200	Gauss	
B _{RP}	Magnetic Release Point	50	115		Gauss	
Вн	Magnetic Hysteresis	20	35		Gauss	
Icc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
VoL	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$
						B ≥ 200 Gauss
Іон	Output Leakage Current		0.1	10.0	μΑ	V _{CC} = 24 V, V _{OUT} = 24 V,
						B ≤ 50 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.25	1.00	μs	

Typical Performance Curves

Hallogic[™] Bipolar Hall Effect Sensors (Latches) Types OHN3075U, OHS3075U

Features

- Designed for use in brushless DC motors
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- · Drive capability up to 7 TTL loads

Description

The OHN3075U and OHS3075U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, a threshold amplifier, and Schmitt trigger on a single Hallogic™ silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The devices feature logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 100 kHz.

These devices turn on (logic level "0") in the presence of a magnetic south pole and turn off (logic level "1") when subjected to a magnetic north pole. Both magnetic poles are necessary for operation so they are referred to as Bipolar or Latching. This feature makes these sensors ideal for applications in brushless DC motors and for use with multiple pole magnets.

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Supply Voltage, V _{CC}
Storage Temperature Range, T _S 65°C to +160°C
Operating Temperature Range, T _A OHN3075U20°C to +85°C
OHS3075U40°C to +150°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. with soldering iron]
Output ON Current, ISINK
Output OFF Voltage, Vout
Magnetic Flux Density, B
Note:
(1) Heat sink leads during hand soldering.

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point	50	100	250	Gauss	
B _{RP}	Magnetic Release Point	-250	-100	-50	Gauss	
Вн	Magnetic Hysteresis	100	200	500	Gauss	
Icc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
						B ≤ -250 Gauss
Vol	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$
						B ≥ 250 Gauss
Іон	Output Leakage Current		0.1	10.0	μА	V _{CC} = 24 V, V _{OUT} =24 V,
						B ≤ -250 Gauss
tr	Output Rise Time		0.05	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$,
tf	Output Fall Time		0.10	1.00	μs	V _{CC} = 12 V

Typical Performance Curves

HALL EFFECT SENSORS

Hallogic[™] Hall Effect Sensors Type OHN3113U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3113U contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. with soldering iron]
Output ON Current, Isink. 25mA
Output OFF Voltage, Vout
Magnetic Flux Density, B

(1) Heat sink leads during hand soldering.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Icc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
VoL	Output Saturation Voltage		100	400	mV	V_{CC} = 4.5 V, I_{OL} = 20 mA, $B \ge 450$ Gauss
Юн	Output Leakage Current		0.1	10.0	μА	$V_{CC} = 4.5 \text{ V}, V_{OUT} = 24 \text{ V},$ B \le 30 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.25	1.00	μs	

Magnetic Characteristics

		T _A =	25°C	$T_A = -20^{\circ}$	C to 85°C	
CHARACTERISTICS	SYMBOL	MIN	MAX	MIN	MAX	UNITS
Operate Point	Вор		450		510	G
Release Point	BRP	30		20		G
Hysteresis	Вн	20		10		G

Typical Performance Curves

Rise and Fall Time vs Ambient Temperature 500

Rise and Fall Time Tests

Rise and Fall Time Test Circuit

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

10-23

Hallogic[™] Hall Effect Sensors Types OHN3119U, OHS3119U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- · Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3119U and OHS3119U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	-65°C to +150°C
Operating Temperature Range, TA OHN3119U	20°C to +85°C
OHS3119U	-40°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. iron]	with soldering
Output ON Current, Isink	
Output OFF Voltage, Vout	
Magnetic Flux Density, B	Unlimited
Note:	
(1) Heat sink leads during hand soldering.	

HALL EFFECT SENSORS

Types OHN3119U, OHS3119U

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
lcc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
Vol	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$
						B≥500 Gauss
Іон	Output Leakage Current		0.1	10.0	μА	$V_{CC} = 4.5 \text{ V}, V_{OUT} = 24 \text{ V},$
						B ≤ 50 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.25	1.00	μs	

Magnetic Characteristics

		$T_A = 25^{\circ} c$ $T_A = -20^{\circ} C$			C to 85°C	o 85° C $T_{A} = -40^{\circ}$ C to 125° C		
CHARACTERISTICS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Operate Point	Вор	175	500	100	545	45	575	G
Release Point	B _{RP}	125	450	50	495	25	555	G
Hysteresis	Вн	50		50		20		G

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

- 40

TA - AMBIENT TEMPERATURE - °C

0.00

₽.GND

20 pF

TA - AMBIENT TEMPERATURE - °C

Hallogic™ Hall Effect Sensors Types OHN3120U, OHS3120U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3120U and OHS3120U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc	25V
Storage Temperature Range, Ts	-65°C to +150°C
Operating Temperature Range, TA OHN3120U	
OHS3120U	
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. iron]	with soldering 260°C (1)
Output ON Current, ISINK	
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited
Note:	
(1) Heat sink leads during hand soldering.	

Types OHN3120U, OHS3120U

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
lcc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
Vol	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$ B $\geq 350 \text{ Gauss}$
Іон	Output Leakage Current		0.1	10.0	μА	$V_{CC} = 4.5 \text{ V}, V_{OUT} = 24 \text{ V},$ B \le 50 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.25	1.00	μs	

Magnetic Characteristics

		T _A = 25°C		$T_A = -20^{\circ}$	C to 85°C	T _A = -40°C		
CHARACTERISTICS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Operate Point	Вор	70	350	70	425	35	450	G
Release Point	BRP	50	330	50	405	25	430	G
Hysteresis	Вн	20		20		20		G

Typical Performance Curves

TA - Ambient Temperature - °C

TA - Ambient Temperature - °C

Output Saturation Voltage vs Ambient Temperature

Rise and Fall Time vs

Rise and Fall Time Tests

Rise and Fall Time Test Circuit

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

10-27

Hallogic[™] Hall Effect Sensors Types OHN3130U, OHS3130U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- · Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3130U and OHS3130U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The devices feature logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc	25V
Storage Temperature Range, Ts	-65°C to +160°C
Operating Temperature Range, TA OHN3130U	20°C to +85°C
OHS3130U	-40°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. iron]	with soldering
Output ON Current, IsiNK	
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited
Note:	
(1) Heat sink leads during hand soldering.	

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	мах	UNITS	TEST CONDITIONS
Icc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
Vol	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$
						B ≥ 200 Gauss
Іон	Output Leakage Current		0.1	10.0	μΑ	V _{CC} = 4.5 V, V _{OUT} =24 V,
						B ≤ -150 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.25	1.00	μs	

Magnetic Characteristics

		T _A = 25°C		$T_A = -20^\circ$	C to 85°C	T _A = -40°C		
CHARACTERISTICS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Operate Point	Вор		150		175		200	G
Release Point	B _{RP}	-150		-175		-200		G
Hysteresis	Вн	20		20		20		G

Typical Performance Curves

T_A - Ambient Temperature - °C

Rise and Fall Time vs

Rise and Fall Time Tests

Rise and Fall Time Test Circuit

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Ultra Sensitive Hallogic™ Hall Effect Sensors Types OHN3131U, OHS3131U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3131U and OHS3131U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The devices feature logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}
Storage Temperature Range, T _S 65°C to +150°C
Operating Temperature Range, T _A OHN3131U20°C to +85°C
OHS3131U40°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. with soldering
iron]
Output ON Current, Isink
Output OFF Voltage, VouT
Magnetic Flux Density, B
Note:
iron]

Types OHN3131U, OHS3131U

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
lcc	Supply Current		4.0	7.0	mA	V _{CC} = 24 V, Output Off
Vol	Output Saturation Voltage		100	400	mV	Vcc = 4.5 V, loL = 20 mA
						B≥95 Gauss
Юн	Output Leakage Current		0.1	10.0	μΑ	V _{CC} = 24 V, V _{OUT} = 24 V
						B ≤ -95 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$,
tf	Output Fall Time		0.25	1.00	μs	V _{CC} = 12.0 V

Magnetic Characteristics

		T _A =	25°C	T _A = -20°	C to 85°C	T _A = -40°(
CHARACTERISTICS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Operate Point	Вор	-75	95	-75	95	-115	135	G
Release Point	B _{RP}	-95	85	-95	85	-135	125	G
Hysteresis	Вн	10		10		10		G

Typical Performance Curves

TA - Ambient Temperature - °C

Rise and Fall Time vs

Rise and Fall Time Tests Magnetic Field vs Output Voltage

Rise and Fall Time Test Circuit

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Hallogic[™] Hall Effect Sensors Types OHN3140U, OHS3140U

Features

- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 7 TTL loads
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip

Description

The OHN3140U and OHS3140U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The devices feature logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

Package size has been kept to minimum, providing an advantage in applications where space is limited.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc	25V
Storage Temperature Range, T _S	-65°C to +160°C
Operating Temperature Range, TA OHN3140U	-20°C to +85°C
OHS3140U	-40°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. w iron]	ith soldering 260°C ⁽¹⁾
Output ON Current, Isink	
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited
Note:	
(1) Heat sink leads during hand soldering	

Types OHN3140U, OHS3140U

Electrical Characteristics (V_{CC} = 4.5V to 24V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
lcc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
Vol	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$
						B ≥ 200 Gauss
Юн	Output Leakage Current		0.1	10.0	μΑ	$V_{CC} = 4.5 \text{ V}, V_{OUT} = 24 \text{ V},$
						B ≤ 50 Gauss
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.25	1.00	μs	

Magnetic Characteristics

	SYMBOL	T _A = 25°C		T _A = -20 ^c	°C to 85°C	$T_A = -40^{\circ}$ C to 125°C		
CHARACTERISTICS		MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Operate Point	Вор	70	200	45	260	45	270	G
Release Point	B _{RP}	50	180	25	240	25	250	G
Hysteresis	Вн	20		20		20		G

Typical Performance Curves

TA - Ambient Temperature - °C

TA - Ambient Temperature - °C

Rise and Fall Time vs Ambient Temperature

Rise and Fall Time Tests

Rise and Fall Time Test Circuit

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Hallogic[™] Bipolar Hall Effect Sensors (Latches) Types OHN3175U, OHS3175U

Features

- Designed for use in brushless DC motors
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 7 TTL loads

Description

The OHN3175U and OHS3175U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, a threshold amplifier, and Schmitt trigger on a single Hallogic™ silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The devices feature logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 100 kHz.

These devices turn on (logic level "0") in the presence of a magnetic south pole and turn off (logic level "1") when subjected to a magnetic north pole. Both magnetic poles are necessary for operation so they are referred to as Bipolar or Latching. This feature makes these sensors ideal for applications in brushless DC motors and for use with multiple pole magnets.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	
Operating Temperature Range, TA OHN3175U	-20°C to +85°C
OHS3175U	
Lead soldering Temperature [1/8 inch (3.2 mm) from case for 5 sec. viron]	with soldering
iron]	260°C ⁽¹⁾
Output ON current, ISINK	25mA
Output OFF Voltage , Vout	25V
Magnetic Flux Density, B	
Note:	

(1) Heat sink leads during hand soldering.

Functional Block Diagram

Types OHN3175U, OHS3175U

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
lcc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
Vol	Output Saturation Voltage		100	400	mV	V _{CC} = 4.5 V, I _{OL} = 20 mA,
						B ≥ 200 Gauss
Іон	Output Leakage Current		0.1	10.0	μΑ	$V_{CC} = 4.5 \text{ V}, V_{OUT} = 24 \text{ V},$
						B ≤ -250 Gauss
tr	Output Rise Time		0.05	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.10	1.00	μs	

Magnetic Characteristics

		T _A = 25°C		$T_A = -20^{\circ}$	C to 85°C	T _A = -40°C		
CHARACTERISTICS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Operate Point	Вор	25	170	15	180	10	260	G
Release Point	B _{RP}	-170	-25	-180	-15	-260	-10	G
Hysteresis	Вн	100		80		60		G

Hallogic[™] Bipolar Hall Effect Sensors (Latches) Types OHN3177U, OHS3177U

Features

- Designed for use in brushless DC motors
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Drive capability up to 7 TTL loads

Description

The OHN3177U and OHS3177U each contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, a threshold amplifier, and Schmitt trigger on a single Hallogic™ silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The devices feature logic level output and provides up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 100 kHz.

These devices turn on (logic level "0") in the presence of a magnetic south pole and turn off (logic level "1") when subjected to a magnetic north pole. Both magnetic poles are necessary for operation so they are referred to as Bipolar or Latching. This feature makes these sensors ideal for applications in brushless DC motors and for use with multiple pole magnets.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc	25V
Storage Temperature Range, Ts	-65°C to +160°C
Operating Temperature Range, TA OHN3177U	-20°C to +85°C
OHS3177U	-40°C to +125°C
Lead soldering Temperature [1/8 inch (3.2 mm) from case for 5 sec. w	vith soldering
iron]	260°C ⁽¹⁾
Output ON current, ISINK	
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited
Note:	

(1) Heat sink leads during hand soldering.

Functional Block Diagram

Types OHN3177U, OHS3177U

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Icc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off
Vol	Output Saturation Voltage		100	400	mV	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$
						B ≥ 200 Gauss
Юн	Output Leakage Current		0.1	10.0	μΑ	$V_{CC} = 4.5 \text{ V}, V_{OUT} = 24 \text{ V},$
						B ≤ -150 Gauss
tr	Output Rise Time		0.05	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$
tf	Output Fall Time		0.10	1.00	μs	

Magnetic Characteristics

	T _A = 25°C		25°C	T _A = -20°	C to 85°C	T _A = -40°C		
CHARACTERISTICS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Operate Point	Вор	50	150	25	150	25	200	G
Release Point	B _{RP}	-150	-50	-150	-25	-200	-25	G
Hysteresis	Вн	100		50		50		G

10-37

REFLECTIVE OBJECT SENSORS

Reflective Assemblies

Reflective assemblies are motion or position sensors that provide non-contact sensing of a reflective surface or a *change* in surface reflectivity. Such an assembly consists of an infrared emitting diode (IRED) and sensor (an NPN silicon phototransistor, photodarlington of Photologic $^{\text{TM}}$) in the same housing. The emitter and sensor are positioned on the same side of the assembly, facing the surface to be sensed, which can be a major mounting advantage in certain applications.

(Application Bulletin 204, printed in this data book, presents an in-depth discussion of reflective assemblies and possible problems involving mounting configurations, reflective surfaces, and sensing circuits. If you have further questions, please contact your local Optek representative, or Optek Technology, Inc. in Carrollton, Texas.)

An important consideration to keep in mind when using reflective assemblies is that the photosensor will not necessarily "see" infrared radiation in the same way that the human eye sees visible light. For example, a black surface and a white surface may, under certain conditions, have similar reflective properties when illuminated with infrared radiation.

Optek makes two types of reflective assemblies; focused and unfocused.

Focused Reflective Assemblies

Focused reflective assemblies are best for sensing specular or polished surfaces. They are made from discrete devices with convex lenses (see Figure 1). In such assemblies, the emitter and sensor are mounted on converging optical axes.

For the standard focused type, the on-state collector current, $I_{C(ON)}$, peaks when a reflective surface is placed between 0.100 and 0.200 inches (2.5 to 50. mm) in front of the reflective assembly. $I_{C(ON)}$ is the collector current created by the infrared radiation emitted by the IRED and detected by the photosensor from the reflective surface.

The IRED emits radiation which follows a diverging pattern, not a straight line, through its centerline. The sensor views a converging pattern rather than a straight line through its center.

Unfocused Reflective Assemblies

Unfocused reflective assemblies are best for sensing diffuse or rough surfaces. They are often manufactured from discrete devices utilizing plano or non-magnifying lenses (see Figure 2). In the standard assembly, the emitter and sensor are usually mounted on parallel optical axes.

For unfocused assemblies, the reflective surface generally must be placed closer to the assembly than when using a focused type. The reason is that $I_{C(ON)}$ peaks when the reflective surface is between 0.040 and 0.080 inches (1.00 to 2.0 mm) from the front of the assembly.

Consideration should be given to possible variations in signal level when designing the use of reflective assemblies. Such variations may occur for a variety of reasons:

- Inconsistency in placement of reflective surfaces, resulting in variation in distance between the surface and the reflective assembly.
- Variations in the reflective surfaces. In some instances, black and white surfaces can
 exhibit similar reflective properties.
- Using transmissive materials between the reflective assembly and the reflective surface.
- Variations from assembly to assembly. (Especially where the devices are tested to a minimum limit only.)

- Variation in size is another potential problem area. An optimum sized reflective surface is one in which no increase in I_{C(ON)} is observed when the surface area is increased.
- Variations in signal level can be observed due to spurious illumination from outside sources.

Optek makes reflective assemblies in a wide variety of sizes and shapes for many different applications. The customer can find suitable reflective assemblies to meet a wide variety of specifications. However, many times designers are faced with conditions that prevent the use of standard reflective assemblies, as specified by the manufacturer. Reflective surfaces may be different than specified and the distance between the reflective surface may be greater or closer than that specified, or cannot be consistently maintained. Various mounting requirements may make tighter control impractical and the contrast ratio may have to be improved. In many of these application-specific situations, Optek can design a custom reflective assembly to meet your needs.

Figure 1. Focused Reflective Assemblies

OPB700, 701

OPB704

OPB708, 709

Figure 2. Unfocused Reflective Assemblies

OPB706, 707

OPB711,712

Applications

Measuring surface roughness.

Sensing the level of liquids.

Detecting variations in surface locations.

Detecting presence or absence of paper in office machines.

Controlling the shutter and/or flash in sophisticated cameras.

Triggering a high speed print cutting mechanism.

Plus many other applications in industrial controls, surveillance mechanisms, and elsewhere.

Reflective Object Sensors Types OPB606A, OPB606B, OPB606C

Features

- Phototransistor output
- Unfocused for sensing diffuse surface
- Low cost plastic housing

Description

The OPB606 consists of an infrared emitting diode and an NPN silicon phototransistor mounted "side-by-side" on parallel axes in a black opaque plastic housing. Both the emitting diode and phototransistor are encapsulated in a filtering epoxy to reduce ambient light noise. The phototransistor responds to radiation from the emitter only when a reflective object passes within its field of view.

Storage and Operating Temperature40°C to +	85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	ng
iron])°C ⁽¹⁾
Input Diode	
Forward DC Current	50mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Reverse DC Voltage	2.0V
Power Dissipation	nW ⁽²⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5.0V
Collector DC Current	
Power Dissipation	nW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (2) Derate linearly 1.25mW°C above 25°C.
- (3) d is the distance from the assembly measurement surface to the reflective surface.
- (4) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- Off state collector current IC(OFF) is measured with no reflective surface in the optical path.
- (6) Lower curve is a calculated worst case and not the conventional 20 limit.
- (7) All parameters tested using pulse techniques.

Types OPB606A, OPB606B, OPB606C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
Input Diode						
VF	Forward Voltage			1.70	V	I _F = 20 mA
IR	Reverse Current			100	μА	V _R = 2.0 V
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30		V	I _C = 100 μA,
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0		V	I _E = 100 μA,
ICEO	Collector Dark Current			100	nA	$V_{CE} = 5.0 \text{ V, I}_{F} = 0,$ $E_{\theta} = \le 0.10 \mu\text{W/cm}^{2}$
Combined						
Ic(on)	On-State Collector Current	OPB606A OPB606B OPB606C	500 350 200		μΑ μΑ μΑ	V _{CE} = 5.0 V, I _F = 20 mA, d = 0.110 in. (2.79 mm) (3)(4)
IC(OFF)	Off-State Collector Current			200	nA	V _{CE} = 5.0 V, I _F = 20 mA, ⁽⁵⁾
V _{CE(SAT)}	Collector-Emitter Saturation Voltage			0.40	V	$I_F = 20$ mA, $I_C = 100 \mu A$, $d = 0.110$ in. $(2.79 \text{ mm})^{(3)(4)}$

Typical Performance Curves

Reflective Object Sensors Types OPB607A, OPB607B, OPB607C

Features

- Photodarlington output
- Unfocused for sensing diffuse surface
- Low cost plastic housing

Description

The OPB607 consists of an infrared emitting diode and an NPN silicon photodarlington mounted "side-by-side" on parallel axes in a gray opaque plastic housing. Both the emitting diode and photodarlington are encapsulated in a filtering epoxy to reduce ambient light noise. The photodarlington responds to radiation from the emitter only when a reflective object passes within its field of view.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature	-40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. w	ith soldering
iron]	240°C ⁽¹⁾
Input Diode	
Forward DC Current	50mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Reverse DC Voltage	
Power Dissipation	75mW ⁽²⁾
Output Photodarlington	
Collector-Emitter Voltage	15V
Emitter-Collector Voltage	
Collector DC Current	
Power Dissipation	75mW ⁽²⁾

Notes

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Derate linearly 1.25mW/°C above 25°C.
- (3) d is the distance from the assembly measurement surface to the reflective surface.
 (4) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (5) Off state collector current IC(OFF) is measured with no reflective surface in the optical path.
- (6) Lower curve is a calculated worst case and not the conventional 2σ limit.
- (7) All parameters measured using pulse techniques.

Types OPB607A, OPB607B, OPB607C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS		
Input Diode	е							
V _F	Forward Voltage			1.70	V	I _F = 20 mA		
I _R	Reverse Current			100	μΑ	V _R = 2.0 V		
Output Pho	otodarlington							
V _{(BR)CEO}	Collector-Emitter Breakdown Volta	ge	15		V	I _C = 100 μA		
$V_{(BR)ECO}$	Emitter-Collector Breakdown Volta	ge	5.0		V	$I_E = 100 \mu\text{A}$		
ICEO	Collector Dark Current		EO Collector Dark Current			250	nA	$V_{CE} = 5.0 \text{ V, I}_{F} = 0,$ $E_{e} = \le 0.10 \mu\text{W/cm}^{2}$
Combined								
Ic(on)	On-State Collector Current	OPB607A OPB607B OPB607C	25 17 10		mA mA mA	$V_{CE} = 5.0 \text{ V}, I_F = 20 \text{ mA}, d = 0.110 \text{ in. } (2.79 \text{ mm})^{(3)(4)}$		
I _{C(OFF)}	C(OFF) Off-State Collector Current			10	μΑ	$V_{CE} = 5.0 \text{ V}, I_F = 20 \text{ mA}^{(5)}$		
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	je	-	1.10	٧	$I_F = 20 \text{ mA}, I_C = 2 \text{ mA},$ d = 0.110 in. (2.79 mm) ⁽³⁾⁽⁴⁾		

Typical Performance Curves

Reflective Object Sensor Types OPB700, OPB700AL

Features

- Phototransistor output
- Low profile to facilitate stacking
- Low cost plastic housing
- 4.0 inch minimum length lead wire (OPB700)
- 18.0 inch minimum length lead wire (OPB700AL)

Description

The OPB700 series sensor consists of an infrared emitting diode and an NPN silicon phototransistor, mounted "side-by-side" on converging optical axes, in a black plastic housing. The phototransistor responds to radiation from the emitter only when a reflective object passes within its field of view.

Leads are #26 AWG, teflon insulation, 4.0" minimum length (OPB700) or 18.0" minimum length (OPB700AL), stripped and tinned.

Replaces

OPB700 OPB700AL OPB253A OPB253AL

Storage TemperatureRangeOperating Temperature Range	-40°C to +125°C -40°C to +100°C
Continuous Forward Current	50mA
Reverse Voltage	
Power Dissipation	80mW ⁽¹⁾
Output Phototransistor	
Collector-Emitter Voltage	25V
Emitter-Collector Voltage	5.0V
Power Dissipation	50mW ⁽²⁾

- (1) Derate linearly 1.07mW/°C above 25°C.
- (2) Derate linearly 0.67mW/°C above 25°C.
- (3) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (4) Crosstalk (I_{CX}) is the collector current measured with the indicated current in the input diode and with no reflecting surface.
- (5) d is the distance from the assembly head to the reflective surface.
- (6) Lower curve is based on a calculated worst case condition rather than the conventional -2σ limit.
- (7) All parameters tested using pulse technique.

Type OPB700, OPB700AL

Electrical C	haracteristics (T _A = 25°C unless otherwise	noted)			
SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
V _F	Forward Voltage		1.70	V	I _F = 50mA
lR	Reverse Current		100	μΑ	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	25		V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	l _E = 100μA
ICEO	Collector Dark Current		100	nA	$V_{CE} = 10.0V, I_F = 0,$ $E_{e} \le 0.10 \mu\text{W/cm}^2$
Combined					
IC(ON)	On-State Collector Current	25		μА	V _{CE} = 5.0V, I _F = 40mA, d = 0.200 in. (5.08mm) ⁽³⁾⁽⁵⁾
lcx	Crosstalk		2.0	μА	VCE = 5.0V, I _F = 40mA, No Reflecting Surface ⁽⁴⁾
V _{CE} (SAT)	Collector-Emitter Saturation Voltage		0.40	V	I _F = 40mA, I _C = 10.0μA, d = 0.200 in. (5.08mm) ⁽³⁾⁽⁵⁾

Typical Performance Curves

Test Condition

Reflective Object Sensor Type OPB701, OPB701AL

- Photodarlington output
- Low profile to facilitate stacking
- Low cost plastic housing
- 4.0 inch minimum length lead wire (OPB701)
- 18.0 inch minimum length lead wire (OPB701AL)

Description

The OPB701 series consists of an infrared emitting diode and an NPN silicon photodarlington mounted "side-by-side" on converging optical axes, in a black plastic housing. The photodarlington responds to radiation from the emitter only when a reflective object passes within its field of view.

Leads are #26 AWG, teflon insulation, 4.0" minimum length (OPB701) or 18.0" minimum length (OPB701AL), stripped and tinned.

Replaces

OPB701 OPB125A OPB701AL OPB125AL

Storage Temperature Range	-40°C to +125°C
Operating Temperature Range	-40°C to +100°C
Input Diode	
Continuous Forward Current	50mA
Reverse Voltage	2.0V
Power Dissipation	80mW ⁽¹⁾
Output Photodarlington	
Collector-Emitter Voltage	15V
Emitter-Collector Voltage	5.0V
Power Dissipation	50mW ⁽²⁾

- Notes:
- (1) Derate linearly 1.07mW/°C above 25°C. (2) Derate linearly 0.67mW/°C above 25°C.
- (3) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (4) Crosstalk (Icx) is the collector current measured with the indicated current in the input diode and with no reflecting surface.
-) d is the distance from the assembly head to the reflective surface.
- (6) Lower curve is based on a calculated worst case condition rather than the conventional -2σ
- (7) All parameters tested using pulse technique.

Type OPB701, OPB701AL

Electrical Characteristics (T _A = 25°C unless otherwise noted)						
SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS	
Input Diode	•					
VF	Forward Voltage		1.70	V	I _F = 50mA	
IR	Reverse Current		100	μА	V _R = 2.0V	
Output Pho	todarlington					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15		٧	l _C = 100μA	
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	l _E = 100μA	
ICEO	Collector Dark Current		1.00	μА	$V_{CE} = 10.0V, I_F = 0,$ $E_{\theta} \le 0.100 \mu W/cm^2$	
Combined						
IC(ON)	On-State Collector Current	2.0		mA	VCE = 5.0V, I _F = 40mA, d = 0.200 in. (5.08mm) ⁽³⁾⁽⁵⁾	
lcx	Crosstalk		20	μА	VCE = 5.0V, I _F = 40mA, No Reflecting Surface ⁽⁴⁾	
VCE(SAT)	Collector-Emitter Saturation Voltage		1.10	V	I _F = 40mA, I _C = 1.0mA, d = 0.200 in. (5.08mm) ⁽³⁾⁽⁵⁾	

Typical Performance Curves

Test Condition

Reflective Object Sensors Types OPB703, OPB704, OPB705

- Phototransistor output
- High sensitivity
- Low cost plastic housing
- Available with lenses for dust protection and ambient light filtration

Description

The OPB703, OPB704 and OPB705 each consist of an infrared emitting diode and an NPN silicon phototransistor mounted side-by-side on converging optical axes in a black plastic housing. The phototransistor responds to radiation from the emitter only when a reflective object passes within its field of view. Various options allow no lens, blue polysulfone lens for dust protection or offset lens for improved resolution.

Replaces

OPB703 = KR8800

OPB704 = KR8801 and OPB703A

OPB705 = KR8802

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature	'C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	
iron]	(1)
Input Diode	
Forward DC Current	۱A
Reverse DC Voltage	V
Power Dissipation	(2)
Output Phototransistor	
Collector-Emitter Voltage	V
Emitter-Collector Voltage	V
Collector DC Current 25m	
Power Dissipation	(2)

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Derate linearly 1.67mW/°C above 25°C.
- (3) d is the distance from the assembly face to the reflective surface.
- (4) Lower curve is based on a calculated worst case condition rather than the conventional -2σ limit.
- (5) All parameters tested using pulse technique.
- (6) Crosstalk is the photocurrent measured with current to the input diode and no reflecting surface.
- (7) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.

DESCRIPTION

OPB703 No Lens OPB704 Blue Polysulfone Lens OPB705 Offset Lens

Types OPB703, OPB704, OPB705

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
Output Dio	de					
V _F	Forward Voltage			1.70	٧	I _F = 40 mA
I _R	Reverse Current			100	μА	V _R = 2.0 V
Output Pho	ototransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30		٧	$I_{CE} = 100 \mu\text{A}$
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0		٧	I _{EC} = 100 μA
I _{CEO}	Collector Dark Current			100	nA	$V_{CE} = 10.0 \text{ V}, I_F = 0, E_e = 0$
Combined						
I _{C(ON)}	On-State Collector Current	OPB703 OPB704 OPB705	200 200 100		μΑ μΑ μΑ	$V_{CE} = 5.0 \text{ V,I}_{F} = 40 \text{ mA,}$ d = 0.15 inch (3.81 mm) ⁽³⁾⁽⁷⁾
lcx	Crosstalk	OPB703 OPB704 OPB705		20 20 10	μΑ μΑ μΑ	$V_{CE} = 5.0 \text{ V, I}_{F} = 40 \text{ mA}^{(6)}$

Typical Performance Curves

Test Condition

Reflective Object Sensors Types OPB703W, OPB704W, OPB705W

Features

- Phototransistor output
- High sensitivity
- Low cost plastic housing
- Available with lenses for dust protection and ambient light filtration

Description

The OPB703W, OPB704W and OPB705W each consist of an infrared emitting diode and an NPN silicon phototransistor mounted side-by-side on converging optical axes in a black plastic housing. The phototransistor responds to radiation from the emitter only when a reflective object passes within its field of view. Various options allow no lens, blue polysulfone lens for dust protection or offset lens for improved resolution.

Leads are 26 AWG, PVC insulation, 4.5" (114.3mm) minimum length, stripped & tinned.

Replaces

OPB703W = KR8803 OPB704W = KR8804 OPB705W = KR8805

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with solderiron]	ng 0°C ⁽¹⁾
Input Diode	
Forward DC Current	40mA
Reverse DC Voltage	2.0V
Power Dissipation	ոW ⁽²⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter-Collector Voltage	

Collector DC Current

- Power Dissipation..... Notes:
- RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 Derate linearly 1.82mW/°C above 25°C.
- (3) d is the distance from the assembly face to the reflective surface.
- Lower curve is based on a calculated worst case condition rather than the conventional -2o limit.
- All parameters tested using pulse technique.
- Crosstalk is the photocurrent measured with current to the input diode and no reflecting
- (7) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.

DESCRIPTION

No Lens Blue Polysulfone Lens Offset Lens OPB703W OPB704W

Types OPB703W, OPB704W, OPB705W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
Input Diode						
VF	Forward Voltage			1.70	V	I _F = 40mA
IR	Reverse Current			100	μА	V _R = 2.0V
Output Phot	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown	Voltage	30		V	I _{CE} = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0		٧	I _{EC} = 100μA
ICEO	Collector Dark Current			100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Combined						
IC(ON)	On-State Collector Current	OPB703W OPB704W OPB705W	200 200 100		μΑ μΑ μΑ	$V_{CE} = 5.0V$, IF = 40mA, d = 0.15 in (3.81mm) ⁽³⁾ (7)
lcx	Crosstalk	OPB703W OPB704W OPB705W		20 20 10	μΑ μΑ μΑ	V _{CE} = 5.0V, I _F = 40mA ⁽⁶⁾

Typical Performance Curves

Test Condition

Reflective Object Sensors Types OPB706A, OPB706B, OPB706C

Features

- Phototransistor output
- Unfocused for sensing diffuse surface
- Low cost plastic housing

Description

The OPB706 consists of an infrared emitting diode and an NPN silicon phototransistor mounted "side-by-side" on parallel axes in a black plastic housing. Both the emitting diode and phototransistor are molded out of black infrared transmissive plastic to reduce ambient light noise. The phototransistor responds to radiation from the emitter only when a reflective object passes within its field of view.

Storage and Operating Temperature	-40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	240°C ⁽¹⁾
Input Diode	
Forward DC Current	50mA
Peak Forward Current (1 µs pulse width, 300 pps)	3.0A
Reverse DC Voltage	
Power Dissipation	75mW ⁽²⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5.0V
Collector DC Current	
Power Dissipation	75mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Derate linearly 1.25mW/°C above 25°C.
- (3) d is the distance from the assembly face to the reflective surface.(4) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a
- reflecting surface.

 (5) Crosstalk (lcx) is the collector current measured with the indicated current in the input diode and with no reflecting surface.
- (6) Lower curve is based on a calculated worst case condition rather than the conventional -2σ limit
- (7) All parameters tested using pulse technique.

Types OPB706A, OPB706B, OPB706C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS	
Input Diode	,					
VF	Forward Voltage			1.70	V	I _F = 20mA
IR	Reverse Current			100	μА	V _R = 2.0V
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage	30		V	I _C = 100μA,
V _{(BR)ECO}	Emitter-Collector Breakdown V	oltage	5.0		V	I _E = 100μA,
ICEO	Collector Dark Current			100	nA	$V_{CE} = 5.0V, I_F = 0,$ $E_e \le 0.1 \mu \text{W/cm}^2$
Combined						
IC(ON)	On-State Collector Current	OPB706A OPB706B OPB706C	500 350 200		μΑ μΑ μΑ	V _{CE} = 5.0V, I _F = 20mA, d = 0.050 in. (1.27mm) ⁽³⁾⁽⁴⁾
lcx	Crosstalk			200	nA	V _{CE} = 5.0V, I _F = 20mA, (5)
VCE(SAT)	Collector-Emitter Saturation Vo	ltage		0.40	V	l _F = 20mA, l _C = 100μA, d = 0.050 in. (1.27mm) ⁽³⁾⁽⁴⁾

Typical Performance Curves

Test Condition

Reflective Object Sensors Types OPB707A, OPB707B, OPB707C

Features

- Photodarlington output
- Unfocused for sensing diffuse surface
- Low cost plastic housing

Description

The OPB707 consists of an infrared emitting diode and an NPN silicon photodarlington mounted "side-by-side" on parallel axes in a black plastic housing. Both the emitting diode and photodarlington are molded out of black infrared transmissive plastic to reduce ambient light noise. The photodarlington responds to radiation from the emitter only when a reflective object passes within its field of view.

Storage and Operating Temperature
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1 µs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Photodarlington
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notae

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (2) Derate linearly 1.25mW/°C above 25°C. (3) Derate linearly 1.67mW/°C above 25°C.

- d is the distance from the assembly face to the reflective surface.
- (5) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (6) Crosstalk (Icx) is the collector current measured with the indicated current in the input diode and with no reflecting surface.
- Lower curve is based on a calculated worst case condition rather than the conventional -2σ
- (8) All parameters tested using pulse technique.

Types OPB707A, OPB707B, OPB707C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
- STAIDOL	TANAMETER		INIT	IVIAA	ONITS	TEST CONDITIONS
Input Diode)					
VF	Forward Voltage			1.70	V	I _F = 20mA
IR	Reverse Current			100	μΑ	V _R = 2.0V
Output Pho	todarlington					
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage	15.0		V	I _C = 100μA,
V _{(BR)ECO}	Emitter-Collector Breakdown V	oltage	5.0		V	I _E = 100μA,
ICEO	Collector Dark Current			250	nA	$V_{CE} = 5.0V, I_F = 0,$ $E_e \le 0.1 \mu \text{W/cm}^2$
Combined						
IC(ON)	On-State Collector Current	OPB707A OPB707B OPB707C	25 17 10		mA mA mA	$V_{CE} = 5.0V$, $I_F = 20mA$, $d = 0.050$ in. $(1.27mm)^{(4)(5)}$
lcx	Crosstalk			10	μΑ	$V_{CE} = 5.0V, I_F = 20mA,^{(6)}$
VCE(SAT)	Collector-Emitter Saturation Vo	ltage		1.10	٧	I _F = 20mA, I _C = 2mA, d = 0.050 in. (1.27mm) ⁽⁴⁾⁽⁵⁾

Typical Performance Curves

10

 R_{L} – LOAD RESISTANCE – Ω

100

Rise and Fall Time vs.

Test Condition

Reflective Object Sensors Types OPB708, OPB709

Features

- · Focused for maximum sensitivity
- Phototransistor (OPB708) or photodarlington (OPB709) output
- Crosstalk does not exceed specified ICEO
- Low cost plastic housing

Description

The OPB708 and OPB709 each consists of an infrared emitting diode and an NPN silicon phototransistor (OPB708) or photodarlington (OPB709), mounted side-by-side on converging optical axes, in a black plastic housing. Maximum sensitivity typically occurs 0.125 inches from the front of the housing.

The photosensor responds to radiation from the LED only when a reflective object passes within its field of view.

Both parts are constructed using either OP165 or OP265 series LEDs. The OPB708 uses an OP505 type phototransistor and the OPB709 uses an OP535 type photodarlington.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature Range
Lead soldering temperature (1/6 inch [1.6 mm] from case for 5 sec. with soldering
iron)
Input Diode
Reverse Voltage
Continuous Forward Current
Power Dissipation
Output Photosensor
Collector-Emitter Voltage - OPB708
OPB709
Emitter-Collector Voltage
Power Dissipation - OPB708
OPB709

Notes

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
 - 2) Derate linearly 1.00 mW/°C above 25°C
- (3) Derate linearly 0.83 mW/°C above 25°C.
- (4) Derate linearly 2.08 mW/°C above 25°C
- (5) d is the distance from the assembly face to the reflective surface.
- (6) Reflective surface is Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (7) Lower curve is based on a calculated worst case condition rather than the conventional -2σ

Types OPB708

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode					
V_{F}	Forward Voltage		1.70	V	I _F = 40 mA
IR	Reverse Current		100	μА	V _R = 2.0 V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		٧	I _C = 100 μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		٧	I _E = 100 μA
ICEO	Collector Dark Current		100	nA	$V_{CE} = 10.0 \text{ V}, I_F = 0, E_e = 0$
Combined					
I _{C(ON)}	On-State Collector Current	10.0		μА	V _{CE} = 5.0 V, I _F = 40 mA, d = 0.150" (3.81 mm) ^{(5)(b)}
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.40	V	$I_F = 40 \text{ mA}, I_C = 3.0 \mu\text{A}, d = 0.150" (3.81 \text{ mm})^{(5)(6)}$

REFLECTIVE OBJECT SENSORS

Typical Performance Curves

Test Condition

Types OPB709

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode					
V_{F}	Forward Voltage		1.70	V	I _F = 40 mA
I _R	Reverse Current		100	μА	V _R = 2.0 V
Output Pho	otodarlington				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15.0		V	I _C = 100 μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		٧	I _E = 100 μA
I _{CEO}	Collector Dark Current		250	nA	$V_{CE} = 10.0 \text{ V}, I_F = 0, E_e = 0$
Combined					
I _{C(ON)}	On-State Collector Current	1.00		mA	V _{CE} = 5.0 V, I _F = 40 mA, d = 0.150" (3.81 mm) ⁽⁵⁾⁽⁶⁾
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		1.10	V	I _F = 40 mA, I _C = 300 μA, d = 0.150" (3.81 mm) ^{(5)(b)}

Typical Performance Curves

Test Condition

Types OPB708, OPB709

Response Time Test Circuit

Switching Time Waveforms

Typical Interfacing Circuit

Recommended for applications requiring adjustments on both sensitivity and hysteresis.

Optek assumes no responsibility for use of any circuits shown and makes no representation that they are free from patent infringement.

-20°C to ±85°C

Reflective Object Sensors Types OPB710, OPB710F

Features

- Phototransistor output
- Unfocused for sensing diffuse surface
- Mounted on standard TO-72 header
- Available in clear encapsulating epoxy (OPB710) or filtered (OPB710F) to reduce the effect of visible or fluorescent light.

Description

The OPB710 and OPB710F each consist of a gallium arsenide infrared emitting diode and an NPN silicon phototransistor. The emitting diode and detector are mounted side by side on parallel axes on a standard TO-72 header. A black plastic sleeve is attached and filled with encapsulating epoxy to cover the emitter and detector. The "F" version has a filtering material added to the epoxy to reduce the effect of ambient light. The package contains an internal barrier which prevents diode emissions from reaching the sensor directly.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage reinperature20 C to +65 C
Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1 μs pulse width, 300pps)
Reverse DC Voltage 3.0V
Power Dissipation
Output Photosensor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.

Storage Temperature

- (2) Derate Linearly 1.67 mW/°C above 25°C. (3) Derate Linearly 3.33 mW/°C above 25°C.
- Measured using an Eastman Kodak neutral white test card having 90% diffuse reflectance located 0.250 inch (6.35mm) from the face of the OPB710.
- (5) Crosstalk (Icx) is the collector current measured with the indicated current on the input diode and with no reflecting surface. Ambient light is excluded with a black box.

Types OPB710, OPB710F

SYMBOL	PARAMETER	MiN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
VF	Forward Voltage			1.50	V	I _F = 50mA
IR	Reverse Current			100	μА	V _R = 3.0V
Output Pho	totransistor					
V _(BR) CEO	Collector-Emitter Breakdown Voltage	30			٧	I _C = 1.00mA,
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			٧	l _E = 100μA,
ICEO	Collector Dark Current			100	nA	$V_{CE} = 5.0V, I_F = 0,$ $E_{\theta} \le 0.1 \mu W/cm^2$
Combined						
IC(ON)	On-State Collector Current	150			μА	V _{CE} = 5.0V, I _F = 50mA d = 0.250 in. (6.35mm
lcx	Crosstalk			100	nA	V _{CE} = 5.0V, I _F = 50mA No Reflecting Surface

Typical Performance Curves

Test Condition

Reflective Object Sensor Type OPB711

Features

- Phototransistor output
- · Unfocused for sensing diffuse surface
- Low cost plastic housing

Description

The OPB711 consists of an infrared emitting diode and an NPN silicon phototransistor mounted "side-by-side" on parallel axes in a infrared transmissive plastic housing. Both the emitting diode and photosensor are molded out of black infrared transmissive plastic to reduce ambient light noise. The photosensor responds to radiation from the emitter only when a reflective object passes within its field of view.

Storage and Operating Temperature	-40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	240°C ⁽¹⁾
Input Diode	
Forward DC Current	50mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Reverse DC Voltage	
Power Dissipation	80mW ⁽²⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5.0V
Collector DC Current	
Power Dissipation	80mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Derate linearly 1.33mW/°C above 25°C.
- (3) d is the distance from the assembly head to the reflective surface.
- (4) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (5) Crosstalk (Icx) is the collector current measured with the indicated current in the input diode and with no reflecting surface.
- (6) Lower curve is based on a calculated worst case condition rather than the conventional -2σ limit.
- (7) Performance curves are those of the OPB706. These curves represent the response of the OPB711 at the same conditions.
- (8) All parameters tested using pulse technique.

Type OPB711

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	·				
VF	Forward Voltage		1.70	V	I _F = 20mA
IR	Reverse Current		100	μΑ	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 100μA,
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA,
ICEO	Collector Dark Current		100	nA	$V_{CE} = 10.0V, I_F = 0,$ $E_0 \le 0.1 \mu W/cm^2$
Combined					
IC(ON)	On-State Collector Current	350		μА	V _{CE} = 5.0V, I _F = 20mA, d = 0.080 in. (2.03mm) ⁽³⁾⁽⁴⁾
lcx	Crosstalk		100	nA	VCE = 5.0V, I _F = 20mA, No Reflecting Surface ⁽⁵⁾
VCE(SAT)	Collector-Emitter Saturation Voltage		0.40	V	$I_F = 20$ mA, $I_C = 50$ μA, d = 0.080 in. (2.03mm) ⁽³⁾⁽⁴⁾

Typical Performance Curves

Test Condition

Reflective Object Sensor Type OPB712

Features

- Photodarlington output
- Unfocused for sensing diffuse surface
- Low cost plastic housing

Description

The OPB712 consists of an infrared emitting diode and an NPN silicon photodarlington mounted "side-by-side" on parallel axes in a infrared transmissive plastic housing. Both the emitting diode and photodarlington are molded out of black infrared transmissive plastic to reduce ambient light noise. The photodarlington responds to radiation from the emitter only when a reflective object passes within its field of view.

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Derate linearly 1.33mW/°C above 25°C.
- (3) d is the distance from the assembly head to the reflective surface.
- (4) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (5) Crosstalk (Icx) is the collector current measured with the indicated current in the input diode and with no reflecting surface.
- (6) Lower curve is based on a calculated worst case condition rather than the conventional -2σ limit.
- (7) Derate linearly 2.08mW/°C above 25°C.
- (8) Performance curves are those of the OPB707. These curves represent the response of the OPB712 at the same conditions.
- (9) All parameters tested using pulse technique.

Type OPB712

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
VF	Forward Voltage		1.70	V	l _F = 20mA
IR	Reverse Current		100	μA	V _R = 2.0V
Output Pho	todarlington				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15		٧	$I_C = 100 \mu A$,
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		٧	l _E = 100μA,
ICEO	Collector Dark Current		250	nA	$V_{CE} = 10.0V, I_F = 0,$ $E_{\theta} \le 0.1 \mu W/cm^2$
Combined					
I _{C(ON)}	On-State Collector Current	20		mA	V _{CE} = 5.0V, I _F = 20mA, d = 0.080 in. (2.03mm) ⁽³⁾⁽⁴⁾
lcx	Crosstalk		25	μА	VCE = 5.0V, I _F = 20mA, No Reflecting Surface ⁽⁵⁾
VCE(SAT)	Collector-Emitter Saturation Voltage		1.10	٧	I _F = 20mA, I _C = 5.0mA, d = 0.080 in. (2.03mm) ⁽³⁾⁽⁴⁾

Typical Performance Curves

Test Condition

Reflective Object Sensors Types OPB730, OPB730F

Features

- Photodarlington output
- Unfocused for sensing diffuse surface
- Mounted on standard TO-72 header
- Available in clear encapsulating epoxy (OPB730) or filtered (OPB730F) to reduce the effect of visible or fluorescent light.

Description

The OPB730 and OPB730F each consist of a gallium arsenide infrared emitting diode and an NPN silicon photodarlington. The emitting diode and detector are mounted side by side on parallel axes on a standard TO-72 header. A black plastic sleeve is attached and filled with encapsulating epoxy to cover the emitter and detector. The "F" version has a filtering material added to the epoxy to reduce the effect of ambient light. An internal barrier prevents light from reaching the detector directly.

Storage Temperature20°C to +85°C Operating Temperature Range 0°C to +70°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with
soldering iron]
Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width, 300pps)
Reverse DC Voltage 3.0V
Power Dissipation
Output Photosensor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate Linearly 1.67 mW/°C above 25°C. (3) Derate Linearly 3.33 mW/°C above 25°C.
- (4) Measured using an Eastman Kodak neutral white test card having 90% diffuse reflectance located 0.250 inch (6.35mm) from the face of the OPB730.
- (5) Crosstalk (Icx) is the collector current measured with the indicated current on the input diode and with no reflecting surface. Ambient light is excluded with a black box.

Types OPB730, OPB730F

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V _F	Forward Voltage			1.50	٧	I _F = 50mA
IR	Reverse Current			100	μА	V _R = 3.0V
Output Pho	todarlington					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15			٧	I _C = 1.00mA,
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			٧	l _E = 100μA,
ICEO	Collector Dark Current			250	nA	$V_{CE} = 5.0V, I_F = 0,$ $E_{e} \le 0.1 \mu W/cm^2$
Combined						
Ic(on)	On-State Collector Current	1.0			mA	$V_{CE} = 5.0V$, $I_F = 50mA$, $d = 0.250$ in. $(6.35mm)^{(4)}$
lcx	Crosstalk			500	nA	V _{CE} = 5.0V, I _F = 50mA, No Reflecting Surface ⁽⁵⁾

Typical Performance Curves

Reflective Object Sensors Types OPB740, OPB741, OPB742, OPB743, OPB744

Features

- · Focused for maximum sensitivity
- Phototransistor output
- PC board mounting

Description

The OPB740 through OPB744 reflective object sensors each consist of an infrared emitting diode and an NPN silicon phototransistor mounted side by side on converging optical axes in a black plastic housing. Various options include choice of no windows, blue polysulfone windows for dust protection or opaque windows with offset openings for improved resolution. Available with wires as OPB740W/OPB744W series.

The phototransistor responds to radiation from the emitter only when a reflective object passes within its field of view.

Replaces

OPB740 = K8700 OPB741 = K8701 OPB742 = K8708 OPB743 = K8710 OPB744 = K8711

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range	-40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. v	vith soldering
iron]	240°C ⁽¹⁾
Input Diode	
Continuous Forward Current	40mA
Reverse Voltage	2.0V
Power Dissipation	100mW ⁽²⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5.0V
Power Dissipation	100mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate Linearly 1.67mW/°C above 25°C.
- (3) d is distance from the assembly face to the reflective surface.
- (4) Reflective surface is Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (5) Lower curve is based on calculated worst case condition rather than the conventional -2o
- (6) Crosstalk is the photocurrent measured with current to the input diode & no reflecting surface.
- (7) All parameters tested using pulse technique.

DESCRIPTION

ı		
	OPB740	No windows
	OPB741	Blue windows
	OPB742	Offset windows
	OPB743	No windows
	OPB744	Blue windows

Types OPB740, OPB741, OPB742, OPB743, OPB744

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Electrical C	haracteristics (TA = 25°C)	unless otherwise note	d)			
SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
VF	Forward Voltage			1.70	V	I _F = 40mA
IR	Reverse Current			100	μА	V _R = 2.0V
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown	Voltage	30		V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown	Voltage	5.0		V	I _E = 100μA
ICEO	Collector Dark Current			100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled						
I _{C(ON)} (3)(4)	On-State Collector Current	OPB740/OPB741 OPB742 OPB743/OPB744	50 10 200		μΑ μΑ μΑ	V _{CE} = 5V, I _F = 40mA, d = 0.15" V _{CE} = 5V, I _F = 40mA, d = 0.15" V _{CE} = 5V, I _F = 40mA, d = 0.15"
Icx ⁽⁶⁾	Crosstalk	OPB740/OPB741 OPB742 OPB743/OPB744		10 100 20	μΑ nA μΑ	V _{CC} = 5V, I _F = 40mA V _{CC} = 5V, I _F = 40mA V _{CC} = 5V, I _F = 40mA

Typical Performance Curves

Reflective Object Sensors Types OPB740W, OPB741W, OPB742W, OPB743W, OPB744W

Features

- · Focused for maximum sensitivity
- Phototransistor output
- · Low cost plastic housing
- 4.0" min 26 AWG wire leads

Description

The OPB740W through OPB744W reflective object sensors each consist of an infrared emitting diode and an NPN silicon phototransistor mounted side by side on converging optical axes in a black plastic housing. Various options include choice of no windows, blue polysulfone windows for dust protection or opaque windows with offset openings for improved resolution. Available with PC board mounting as OPB740/OPB744 series.

The photosensor responds to radiation from the emitter only when a reflective object passes within its field of view.

Replaces

OPB740W = K8702 OPB741W = K8703 OPB743W = K8712 OPB744W = K8713

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Lead Soldering Temperature iron]	[1/16 i	nch (1.	6mm)	from cas	se for 5 se	c. with soldering
Input Diode						
Continuous Forward Current						40mA
Reverse Voltage						
Power Dissipation						100mW ⁽²
Output Photosensor						
Collector-Emitter Voltage						
Emitter-Collector Voltage						5.0\
Power Dissipation		 .				100mW ⁽²
Notes:						

Storage and Operating Temperature Range -40°C to +80°C

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate Linearly 1.82mW/°C above 25°C.
- (3) d is distance from the assembly face to the reflective surface.
- (4) Reflective surface is Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (5) Lower curve is based on calculated worst case condition rather than the conventional -2σ limit.
- (6) Crosstalk is the photocurrent measured with current to the input diode & no reflecting surface.
- (7) All parameters tested using pulse technique.

DESCRIPTION

- 1		
	OPB740W	No windows
	OPB741W	Blue windows
	OPB742W	Offset windows
	OPB743W	No windows
	OPB744 W	Blue windows

Types OPB740W, OPB741W, OPB742W, OPB743W, OPB744W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	₹	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode)					
V _F	Forward Voltage			1.70	V	I _F = 40mA
IR	Reverse Current			100	μА	V _R = 2.0V
Output Pho	ototransistor					
V _{(BR)CEO}	Collector-Emitter Breakdow	n Voltage	30		V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdow	n Voltage	5.0		V	I _E = 100μA
ICEO	Collector Dark Current			100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled						
IC(ON) ⁽³⁾⁽⁴⁾	On-State Collector Current	OPB740W/OPB741W OPB742W OPB743W/OPB744W	50 10 200		μΑ μΑ μΑ	V _{CE} = 5V, I _F = 40mA, d = 0.15" V _{CE} = 5V, I _F = 40mA, d = 0.15" V _{CF} = 5V, I _F = 40mA, d = 0.15"

OPB740W/OPB741W

OPB743W/OPB744W

OPB742W

Typical Performance Curves

Crosstalk

lcx⁽⁶⁾

 $V_{CC} = 5V$, $I_F = 40mA$

 $V_{CC} = 5V$, $I_F = 40mA$

 $V_{CC} = 5V$, $I_F = 40mA$

Test Condition

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

11-35

μĀ

'nΑ

μΑ

10

20

100

Reflective Object Sensor Type OPB745

Features

- Focused for maximum sensitivity
- Photodarlington output
- Crosstalk does not exceed specified ICEO
- PC board mounting

Description

The OPB745 reflective object sensor consists of an infrared emitting diode and an NPN silicon photodarlington mounted side by side on converging optical axes in a black plastic housing.

The photodarlington responds to radiation from the emitter only when a reflective object passes within its field of view.

Replaces

K8709

Storage and Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Continuous Forward Current
Reverse Voltage
Power Dissipation
Output Photodarlington
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation 100mW ⁽²⁾
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate Linearly 1.67mW/°C above 25°C.
- (3) d is distance from the assembly face to the reflective surface.
- (4) Reflective surface is Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (5) Lower curve is based on calculated worst case condition rather than the conventional -2σ limit.
- (6) Crosstalk is the photocurrent measured with current to the input diode & no reflecting surface.
- (7) All parameters tested using pulse technique.

Type OPB745

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNIT	S TEST CONDITIONS
Input Diode	1				
VF	Forward Voltage		1.70	٧	I _F = 40mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Pho	todarlington				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15		V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		٧	I _E = 100μA
ICEO	Collector Dark Current		250	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled					
I _{C(ON)} (3)(4)	On-State Collector Current	1.00		mA	V _{CE} = 5V, I _F = 40mA, d = 0.15
lcx ⁽²⁾	Crosstalk		250	nA	V _{CC} = 5V, I _F = 40mA

Typical Performance Curves

Reflective Object Sensor Type OPB745W

Features

- Focused for maximum sensitivity
- Photodarlington output
- Crosstalk does not exceed specified ICEO
- 4.0" min 26 AWG wire leads

Description

The OPB745W reflective object sensor consists of an infrared emitting diode and an NPN silicon photodarlington mounted side by side on converging optical axes in a black plastic housing. Available with PC board leads as OPB745.

The photodarlington responds to radiation from the emitter only when a reflective object passes within its field of view.

Storage and Operating Temperature Range40°C to +	-80°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering	ng
iron])°C ⁽¹⁾
Input Diode	
Continuous Forward Current	40mA
Reverse Voltage	2.0V
Power Dissipation	nW ⁽²⁾
Output Photodarlington	
Collector-Emitter Voltage	15.0V
Emitter-Collector Voltage	5.0V
Power Dissipation	nW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- Derate Linearly 1.82mW/°C above 25°C
- d is distance from the assembly face to the reflective surface.
- Reflective surface is Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface.
- (5) Lower curve is based on calculated worst case condition rather than the conventional -2σ limit.
 - Crosstalk is the photocurrent measured with current to the input diode & no reflecting surface.
- (7) All parameters tested using pulse technique.

Type OPB745W

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	1				
V _F	Forward Voltage		1.70	V	I _F = 40mA
I _R	Reverse Current		100	μА	V _R = 2.0V
Output Pho	otodarlington				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15.0		V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		٧	I _E = 100μA
ICEO	Collector Dark Current		250	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled					
I _{C(ON)} (3)(4)	On-State Collector Current	1.00		mA	V _{CE} = 5V, I _F = 40mA, d = 0.15
Icx (6)	Crosstalk		250	nA	V _{CC} = 5V, I _F = 40mA

Typical Performance Curves

Reflective Object Sensor Type OPB750N

Features

- High contrast ratio 1000 to 1 minimum
- Printed circuit board mount
- Low cost plastic housing

Description

The OPB750N reflective assemby features a phototransistor output designed to decrease low-level light gain while not affecting the high-level light gain. Available with two mounting tabs as OPB750T.

Available with 12", 26 AWG wire leads as OPB755 series. Photologic™ output sensors available in OPB760/OPB770 series.

Replaces

KR105

Storage and Operating Temperature Range40°C to +85°C Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1 µs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Collector DC Current
Power Dissipation
Notes:
(1) Derate Linearly 1.67mW/°C above 25°C.

- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) All parameters tested using pulse technique.
 (4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (5) Photocurrent is measured using an Eastman Kodak Neutral White test card having a 90% diffuse reflectance as a reflecting surface.
- (6) IC(OFF) is the photocurrent measured with current to the input diode and a 5% reflecting surface.

Type OPB750N

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•			•	
VF	Forward Voltage		1.8	V	I _F = 40mA
l _R	Reverse Current		100	μА	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $H = 0$
Coupled					
V _{CE(SAT)}	Saturation Voltage		0.40	V	I _C =150μA, I _F = 30mA, d=0.22"
IC(ON)	On-State Collector Current	500 375 250		μΑ μΑ μΑ	V _{CE} =5.0V, I _F =30mA, d=0.08" ⁽⁵ V _{CE} =5.0V, I _F =30mA, d=0.15" ⁽⁵ V _{CE} =5.0V, I _F =30mA, d=0.22" ⁽⁵
Ic(OFF)	Off-State Collector Current		250	nA	I _F = 30mA, V _{CE} = 5.0V, ⁽⁶⁾ d = 0.08", 0.15", 0.22"

Typical Performance Curves

Normalized Collector Current vs. Object Distance

Normalized Ouput Current vs. Forward Current

Reflective Object Sensor Type OPB750T

Features

- High contrast ratio, 1000 to 1 minimum
- Printed circuit board mount
- Low cost plastic housing

Description

The OPB750T reflective assemby features a phototransistor output designed to decrease low-level light gain while not affecting the high-level light gain. Available without mounting tabs as OPB750N.

Available with 12", 26 AWG wire leads as OPB750/OPB755 series. Photologic™ output sensors available in OPB760/OPB770 series.

Replaces

KR100

Storage and Operating Temperature Range
iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1µs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Collector DC Current
Power Dissipation
Notes:

- (1) Derate Linearly 1.67mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) All parameters tested using pulse technique.
- (4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (5) Photocurrent is measured using an Eastman Kodak Neutral White test card having a 90% diffuse reflectance as a reflecting surface.
- (6) IC(OFF) is the photocurrent measured with current to the input diode and a 5% reflecting surface.

Type OPB750T

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•	•			
VF	Forward Voltage		1.8	V	I _F = 40mA
lR	Reverse Current		100	μА	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $H = 0$
Coupled					
VCE(SAT)	Saturation Voltage		0.40	V	I _C =150μA, I _F = 30mA, d=0.22"
Ic(on)	On-State Collector Current	500 375 250		μΑ μΑ μΑ	V _{CE} =5.0V, I _F =30mA, d=0.08" ⁽⁵ V _{CE} =5.0V, I _F =30mA, d=0.15" ⁽⁵ V _{CE} =5.0V, I _F =30mA, d=0.22" ⁽⁵
I _{C(OFF)}	Off-State Collector Current		250	nA	I _F = 30mA, V _{CC} = 5.0V, ⁽⁶⁾ d = 0.08", 0.15", 0.22"

Typical Performance Curves

Normalized Collector Current vs. **Object Distance**

Normalized Ouput Current vs. **Forward Current**

Reflective Object Sensor Type OPB755N

Features

- High contrast ratio 1000 to 1 minimum
- 12.0" \pm 0.5" min. UL#1429 26 AWG wire leads terminated into an AMP #640442-5 connector
- · Low cost plastic housing

Description

The OPB755N reflective assemby features a phototransistor output designed to decrease low-level light gain while not affecting the high-level light gain. Available with two mounting tabs as OPB755T.

Available with PC Board mountable leads as OPB750 series. Photologic™ output sensors available in OPB760/OPB770 series.

Replaces

KR105W

Storage and Operating Temperature Range	40°C to +80°C
Input Diode	
Forward DC Current	50mA
Peak Forward Current (1 µs pulse width, 300 pps)	3.0A
Reverse DC Voltage	2.0V
Power Dissipation	
Output Phototransistor	
Collector-Emitter Voltage	30V
Collector DC Current	30mA
Power Dissipation	100mW
Notes:	
(1) Devote Linearly 1 comM/OC shave 05°C	

- Derate Linearly 1.82mW/°C above 25°C.
- (2) All parameters tested using pulse technique.
 (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) Photocurrent is measured using an Eastman Kodak Neutral White test card having a 90% diffuse reflectance as a reflecting surface.
- (5) IC(OFF) is the photocurrent measured with current to the input diode and a 5% reflecting surface.

Type OPB755N

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
V _F	Forward Voltage		1.8	V	I _F = 40mA
lR	Reverse Current		100	μА	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	Ic = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $H = 0$
Coupled					
V _{CE(SAT)}	Saturation Voltage		0.40	٧	I _C =150μA, I _F = 30mA, d=0.22"
Ic(ON)	On-State Collector Current	500 375 250		μΑ μΑ μΑ	V _{CE} =5.0V, I _F =30mA, d=0.08" ⁽⁴ V _{CE} =5.0V, I _F =30mA, d=0.15" ⁽⁴ V _{CE} =5.0V, I _F =30mA, d=0.22" ⁽⁴
Ic(OFF)	Off-State Collector Current		250	nA	I _F = 30mA, V _{CE} = 5.0V, ⁽⁵⁾ d = 0.08", 0.15", 0.22"

Typical Performance Curves

Normalized Collector Current vs. **Object Distance**

Normalized Ouput Current vs. **Forward Current**

Reflective Object Sensor Type OPB755T

Features

- High contrast ratio, 1000 to 1 minimum
- 12.0" \pm .05" min. UL#1429 26 AWG wire leads terminated into an AMP #640442-5 connector
- · Low cost plastic housing

Description

The OPB755T reflective assemby features a phototransistor output designed to decrease low-level light gain while not affecting the high-level light gain. Available without mounting tabs as **OPB755N.**

Available with PC Board mountable leads as OPB750 series. Logic output sensors available in the OPB760/OPB770 series.

Replaces

KR100W

Storage and Operating Temperature Range40°C to +80°C Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps) 3.0A
Reverse DC Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Collector DC Current 30mA
Power Dissipation
Notes:

- (1) Derate Linearly 1.82mW/°C above 25°C.
- (2) All parameters tested using pulse technique.
 (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) Photocurrent is measured using an Eastman Kodak Neutral White test card having a 90% diffuse reflectance as a reflecting surface.
- (5) IC(OFF) is the photocurrent measured with current to the input diode and a 5% reflecting surface.

Type OPB755T

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNIT	S TEST CONDITIONS
Input Diode	·				
VF	Forward Voltage		1.8	V	I _F = 40mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Pho	totransistor				
V _(BR) CEO	Collector-Emitter Breakdown Voltage	30		٧	I _C = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10.0V, I _F = 0, H = 0
Coupled					
VCE(SAT)	Saturation Voltage		0.40	٧	I _C =150μA, I _F = 30mA, d=0.22"
Ic(ON)	On-State Collector Current	500 375 250		μΑ μΑ μΑ	V _{CE} =5.0V, I _F =30mA, d=0.08 ^{*(4)} V _{CE} =5.0V, I _F =30mA, d=0.15 ^{*(4)} V _{CE} =5.0V, I _F =30mA, d=0.22 ^{*(4)}
Ic(off)	Off-State Collector Current		250	nA	I _F = 30mA, V _{CE} = 5.0V, ⁽⁵⁾ d = 0.08", 0.15", 0.22"

Typical Performance Curves

Normalized Collector Current vs. Object Distance

Normalized Ouput Current vs. Forward Current

Photologic™ Reflective Object Sensors Types OPB760N, OPB761N, OPB762N, OPB763N

Features

- Choice of mounting configurations
- Choice of output configurations

Description

The OPB760N series of reflective assemblies feature Photologic™ output. This electrical output can be specified as either TTL Totem Pole or TTL Open Collector. Either may be supplied with inverter or buffer output polarity. All have the added stability of a built-in hysteresis amplifier.

Mounting Options

OPB760N series PC board mount. without mounting tabs OPB760T series PC board mount, with two mounting tabs OPB770N series wire leads with connector, without mounting tabs OPB770T series wire leads with connector, with two mounting tabs

Replaces

OPB760N	KLR305
OPB761N	KLR315
OPB762N	KLR325
OPB763N	KLR335

Supply Voltage, V _{CC} (Not to exceed 3 sec.)	C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with s	
iron]	240°C
Input Diode Power Dissipation	. 100mW ⁽²⁾
Output Photologic™ Power Dissipation	. 200mW ⁽³⁾
Total Device Power Dissipation	. 300mW ⁽⁴⁾
Voltage at Output Lead (Open Collector Output)	
Diode Forward D.C. Current	40mA
Diode Reverse D.C. Voltage	3V
Notes:	

- RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Derate linearly 2.22mW/°C above 25°C.
- Derate linearly 4.44mW/°C above 25°C
- Derate linearly 6.66mW/°C above 25°C.
- The OPB760N thru OPB763N series are terminated with .020" square leads designed for printed circuit board mounting.

 Normal application would be with light source blocked, simulated by IF = 0mA.

- Tested at d = 0.080" from a 90% diffuse white test surface. Tested at d = 0.080", 0.150" and 0.220" from a 90% diffuse white test surface. Tested at d = 0.080", 0.150" and 0.220" from a 5% diffuse black test surface.
- (10) All parameters tested using pulse technique.

Types OPB760N, OPB761N, OPB762N, OPB763N

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
ut Diode	•					
VF	Forward Voltage			1.8	٧	$I_F = 40 \text{mA}, T_A = 25^{\circ}\text{C}$
l _B	Reverse Current			100	μА	$V_R = 2.0V$, $T_A = 25^{\circ}C$

FLECTIVE	OBJECT	ENSORS	
REFL	BO	SEN	

VF	Forward Voltage			1.8	V	$I_F = 40 \text{mA}, T_A = 25^{\circ}\text{C}$
lR	Reverse Current			100	μА	$V_R = 2.0V, T_A = 25^{\circ}C$
utput Pho	otologic™ Sensor					
Vcc	Operating D.C. Supply Voltage	4.75		5.25	V	
ICCL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾⁽⁷⁾ Output Open
	Inverted Totem-Pole Output Inverted Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁷⁾ Output Open
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁷⁾ Output Open
	Inverted Totem-Pole Output Inverted Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾⁽⁷⁾ Output Open
Іон	High Level Output Voltage: Buffered Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V I _F = 25mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V, I _F = 0mA, T _A = 25°C
lF(+)	LED Positive-Going Threshold Current			25	mA	$V_{CC} = 5.0V, T_A = 25^{\circ}C^{(8)}$
l _F (+)/l _F (-)	Hysteresis		1.5			$V_{CC} = 5.0V^{(8)}$
los	Short Circuit Output Current: Buffered Totem-Pole Output	-15		-100	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁷⁾ Output = GND
	Inverted Totem-Pole Output	-15		-100	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁷⁾ Output = GND
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 0mA ⁽⁶⁾⁽⁷⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	V	$V_{CC} = 4.75V$, $I_{OL} = 12.8mA$ $I_F = 25mA^{(6)(7)}$
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 30mA ⁽⁹⁾
Vон	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	V _{CC} = 4.75, I _{OH} = -800μA I _F = 25mA ⁽⁷⁾
	Inverted Totem-Pole Output	2.4			V	$V_{CC} = 4.75, I_{OH} = -800\mu A$ $I_F = 0mA^{(6)(7)}$
V _{OH}	High Level Output Voltage: Inverted Totem-Pole Output Inverted Open-Collector Output	2.4			v	V _{CC} = 4.75, I _{OH} = -800μA I _F = 30mA ⁽⁹⁾

Types OPB760, OPB770 Series

PART NUMBER GUIDE

OPB 7 X X X

Optek Assembly

Mounting Configurations

T - Two Mounting Tabs
N - No Mounting Tabs
N - No Mounting Tabs

OPB 7 X X X

Electrical Specification Variations

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

Photologic[™] Reflective Object Sensors Types OPB760T, OPB761T, OPB762T, OPB763T

Features

- Choice of mounting configurations
- Choice of output configurations

Description

The OPB760T series of reflective assemblies feature Photologic™ output. This electrical output can be specified as either TTL Totem Pole or TTL Open Collector. Either may be supplied with inverter or buffer output polarity. All have the added stability of a built-in hysteresis amplifier.

Mounting Options

OPB760N series PC board mount, without mounting tabs OPB760T series PC board mount, with two mounting tabs

OPB770N series wire leads with connector, without mounting tabs OPB770T series wire leads with connector, with two mounting tabs

Replaces

OPB760T	KLR300
OPB761T	KLR310
OPB762T	KLR320
OPB763T	KI B330

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC} (Not to exceed 3 sec.)
Storage Temperature Roses
Operating Temperature Range40°C to +70°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode Power Dissipation
Output Photologic™ Power Dissipation
Total Device Power Dissipation
Voltage at Output Lead (Open Collector Output)
Diode Forward D.C. Current
Diode Reverse D.C. Voltage
Notes:

- RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.

- Derate linearly 2.22mW/°C above 25°C.
 Derate linearly 4.44mW/°C above 25°C.
 Derate linearly 6.66mW/°C above 25°C.
 The OPB760T thru OPB763T series are terminated with .020" square leads designed for printed circuit board mounting.
 - Normal application would be with light source blocked, simulated by I_F = 0mA.
- Tested at d = 0.080" from a 90% diffuse white test surface. (8)
 - Tested at d = 0.080", 0.150" and 0.220" from a 90% diffuse white test surface.

 Tested at d = 0.080", 0.150" and 0.220" from a 5% diffuse black test surface.
- (10) All parameters tested using pulse technique.

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Types OPB760T, OPB761T, OPB762T, OPB763T

Electrical Characteristics (T_A = -40°C to +70°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
put Diode						
V _F	Forward Voltage	T	Т	1.8	V	I _F = 40mA, T _A = 25°C
IR	Reverse Current			100	μА	$V_R = 2.0V, T_A = 25^{\circ}C$
utput Pho	otologic™ Sensor	······································			-li	
Vcc	Operating D.C. Supply Voltage	4.75	T	5.25	V	
ICCL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾⁽⁷⁾ Output Open
	Inverted Totem-Pole Output Inverted Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁷⁾ Output Open
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁷⁾ Output Open
	Inverted Totem-Pole Output Inverted Open-Collector Output			10	mA	$V_{CC} = 5.25V$, $I_F = 0mA^{(6)(7)}$ Output Open
Іон	High Level Output Voltage: Buffered Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V I _F = 25mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V, I _F = 0mA, T _A = 25°C
lF(+)	LED Positive-Going Threshold Current			25	mA	$V_{CC} = 5.0V, T_A = 25^{\circ}C^{(8)}$
l _F (+)/l _F (-)	Hysteresis		1.5			$V_{CC} = 5.0V^{(8)}$
los	Short Circuit Output Current: Buffered Totem-Pole Output	-15		-100	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁷⁾ Output = GND
VoL	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	V	V _{CC} = 4.75V, I _{OL} = 12.8m/ I _F = 0mA ⁽⁶⁾⁽⁷⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	V	$V_{CC} = 4.75V$, $I_{OL} = 12.8m$ $I_F = 25mA^{(6)(7)}$
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	V	V _{CC} = 4.75V, I _{OL} = 12.8m/ I _F = 30mA ⁽⁹⁾
Vон	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	V _{CC} = 4.75, I _{OH} = -800μA I _F = 25mA ⁽⁷⁾
	Inverted Totem-Pole Output	2.4			V	$V_{CC} = 4.75$, $I_{OH} = -800\mu A$ $I_F = 0mA^{(6)(7)}$
Vон	High Level Output Voltage: Inverted Totem-Pole Output Inverted Open-Collector Output	2.4			v	V _{CC} = 4.75, I _{OH} = -800μA I _F = 30mA ⁽⁹⁾

Types OPB760, OPB770 Series

PART NUMBER GUIDE

Electrical Specification Variations

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

Photologic™ Reflective Object Sensors Types OPB770N, OPB771N, OPB772N, OPB773N

Features

- Choice of mounting configurations
- Choice of output configurations

Description

The OPB770N series of reflective assemblies feature Photologic™ output. This electrical output can be specified as either TTL Totem Pole or TTL Open Collector. Either may be supplied with inverter or buffer output polarity. All have the added stability of a built-in hysteresis amplifier.

Mounting Options

OPB760N series PC board mount, without mounting tabs OPB760T series PC board mount, with two mounting tabs OPB770N series wire leads with connector, without mounting tabs OPB770T series wire leads with connector, with two mounting tabs

Replaces

OPB770N	KLR305W
OPB771N	KLR315W
OPB772N	KLR325W
OPB773N	KLR335W

Supply Voltage, Vcc (Not to exceed 3 sec.)	10V
Storage Temperature Range	-40°C to +85°C
Operating Temperature Range	-40°C to +70°C
Input Diode Power Dissipation	100mW ⁽¹⁾
Output Photologic™ Power Dissipation	
Total Device Power Dissipation	300mW ⁽³⁾
Voltage at Output Lead (Open Collector Output)	35V
Diode Forward D.C. Current	40mA
Diode Reverse D.C. Voltage	3V
Notes:	

- (1) Derate linearly 2.22mW/°C above 25°C.
- (2) Derate linearly 4.44mW/°C above 25°C. (3) Derate linearly 6.66mW/°C above 25°C.
- (4) The OPB770N thru OPB773N series are terminated with 12 inches of 7 strand 26AWG, UL1429 insulated wire on each terminal. A standard AMP No. 640442-5 connector has been attached to the lead wires to ease connection to wire harnesses.
- (5) Normal application would be with light source blocked, simulated by IF = 0mA.
- (6) Normal application would be with night south bristons, with the set surface.

 (7) Tested at d = 0.080", 0.150" and 0.220" from a 90% diffuse white test surface.

 (8) Tested at d = 0.080", 0.150" and 0.220" from a 5% diffuse black test surface.
- (9) All parameters tested using pulse technique.

Types OPB770N, OPB771N, OPB772N, OPB773N

Electrical Characteristics ($T_A = -40^{\circ}\text{C}$ to $+70^{\circ}\text{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	S TEST CONDITIONS
nput Diode	•					
VF	Forward Voltage			1.8	٧	I _F = 40mA, T _A = 25°C
IR	Reverse Current			100	μА	$V_R = 2.0V, T_A = 25^{\circ}C$
Output Pho	otologic™ Sensor					
Vcc	Operating D.C. Supply Voltage	4.75		5.25	V	
lccL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁵⁾⁽⁶⁾ Output Open
	Inverted Totem-Pole Output Inverted Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁶⁾ Output Open
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁶⁾ Output Open
	Inverted Totem-Pole Output Inverted Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁵⁾⁽⁶⁾ Output Open
Іон	High Level Output Voltage: Buffered Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V I _F = 25mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V, I _F = 0mA, T _A = 25°C
l _F (+)	LED Positive-Going Threshold Current			25	mA	$V_{CC} = 5.0V, T_A = 25^{\circ}C^{(7)}$
l _F (+)/l _F (-)	Hysteresis		1.5			$V_{CC} = 5.0V^{(7)}$
los	Short Circuit Output Current: Buffered Totem-Pole Output	-15		-100	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁶⁾ Output = GND
	Inverted Totem-Pole Output	-15		-100	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾ Output = GND
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 0mA ⁽⁵⁾⁽⁶⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	V	$V_{CC} = 4.75V$, $I_{OL} = 12.8mA$ $I_{F} = 25mA^{(5)(6)}$
V _{OL}	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 30mA ⁽⁸⁾
Vон	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	V _{CC} = 4.75, I _{OH} = -800μA I _F = 25mA ⁽⁶⁾
	Inverted Totem-Pole Output	2.4			V	$V_{CC} = 4.75$, $I_{OH} = -800\mu A$ $I_F = 0 m A^{(5)(6)}$
Voh	High Level Output Voltage: Inverted Totem-Pole Output Inverted Open-Collector Output	2.4			v	V _{CC} = 4.75, I _{OH} = -800µA I _F = 30mA ⁽⁸⁾

Types OPB760, OPB770 Series

PART NUMBER GUIDE

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

Photologic™ Reflective Object Sensors Types OPB770T, OPB771T, OPB772T, OPB773T

Features

- Choice of mounting configurations
- · Choice of output configurations

Description

The OPB770T series of reflective assemblies feature Photologic™ output. This electrical output can be specified as either TTL Totem Pole or TTL Open Collector. Either may be supplied with inverter or buffer output polarity. All have the added stability of a built-in hysteresis amplifier.

Mounting Options

OPB760N series PC board mount, without mounting tabs OPB760T series PC board mount, with two mounting tabs OPB770N series wire leads with connector, without mounting tabs OPB770T series wire leads with

connector, with two mounting tabs

Replaces

OPB770T	KLR300W
OPB771T	KLR310W
OPB772T	KLR320W
OPB773T	KLR330W

Supply Voltage, V _{CC} (Not to exceed 3 sec.)	10V
Storage Temperature Range	-40°C to +85°C
Operating Temperature Range	-40°C to +70°C
Input Diode Power Dissipation	100mW ⁽¹⁾
Output Photologic™ Power Dissipation	200mW ⁽²⁾
Total Device Power Dissipation	300mW ⁽³⁾
Voltage at Output Lead (Open Collector Output)	
Diode Forward D.C. Current	40mA
Diode Reverse D.C. Voltage	3V
Notes:	

- (1) Derate linearly 2.22mW/°C above 25°C.
- (2) Derate linearly 4.44mW/°C above 25°C.
- (3) Derate linearly 6.66mW/°C above 25°C.
- (4) The OPB770T thru OPB773T series are terminated with 12 inches of 7 strand 26AWG, UL1429 insulated wire on each terminal. A standard AMP No. 640442-5 connector has been attached to the lead wires to ease connection to wire harnesses.
- (5) Normal application would be with light source blocked, simulated by IF = 0mA.
- (6) Tested at d = 0.080" from a 90% diffuse white test surface.
- (8) Tested at d = 0.080", 0.150" and 0.220" from a 90% diffuse white test surface.
 (8) Tested at d = 0.080", 0.150" and 0.220" from a 5% diffuse black test surface.
- (9) All parameters tested using pulse technique.

Types OPB770T, OPB771T, OPB772T, OPB773T

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
nput Diode						
V _F	Forward Voltage	- 1	1	1.8	V	I _F = 40mA, T _A = 25°C
I _R	Reverse Current			100	μА	V _R = 2.0V, T _A = 25°C
output Pho	tologic™ Sensor		4		-1	
Vcc	Operating D.C. Supply Voltage	4.75	1	5.25	V	
lccL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁵⁾⁽⁶⁾ Output Open
	Inverted Totem-Pole Output Inverted Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁶⁾ Output Open
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁶⁾ Output Open
	Inverted Totem-Pole Output Inverted Open-Collector Output			10	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁵⁾⁽⁶⁾ Output Open
Іон	High Level Output Voltage: Buffered Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V I _F = 25mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V, I _F = 0mA, T _A = 25°C
l _F (+)	LED Positive-Going Threshold Current			25	mA	$V_{CC} = 5.0V, T_A = 25^{\circ}C^{(7)}$
l _F (+)/l _F (-)	Hysteresis		1.5			$V_{CC} = 5.0V^{(7)}$
los	Short Circuit Output Current: Buffered Totem-Pole Output	-15		-100	mA	V _{CC} = 5.25V, I _F = 25mA ⁽⁶⁾ Output = GND
	Inverted Totem-Pole Output	-15		-100	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾ Output = GND
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 0mA ⁽⁵⁾⁽⁶⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	V	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 25mA ⁽⁵⁾⁽⁶⁾
V _{OL}	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	V	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 30mA ⁽⁸⁾
Vон	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	V _{CC} = 4.75, I _{OH} = -800μA I _F = 25mA ⁽⁶⁾
	Inverted Totem-Pole Output	2.4			٧	V _{CC} = 4.75, I _{OH} = -800μA I _F = 0mA ⁽⁵⁾⁽⁶⁾
Voн	High Level Output Voltage: Inverted Totem-Pole Output Inverted Open-Collector Output	2.4			v	V _{CC} = 4.75, I _{OH} = -800μA I _F = 30mA ⁽⁸⁾

Types OPB760, OPB770 Series

PART NUMBER GUIDE

Electrical Specification Variations

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

SLOTTED OPTICAL SWITCHES

Slotted optical switches, also known as transmissive assemblies or gap switches, are motion or position sensors. They operate on the principle that an object opaque to infrared light transmission will block light in the path between an infrared emitting diode (IRED) and a photosensor.

Slotted optical switches provide non-contact sensing of linear or rotary motion as in optical encoders. They find a variety of uses in industrial controls, computer peripherals and other instrumentation. They can signal:

- · conveyor feed rates
- · door positions on disk drives
- · end-of-carriage return on data processing printers
- · seating of tape cartridges

and they have many more applications.

An Optek slotted switch consists of an IRED and a silicon photosensor, each mounted on opposite sides of a slot in a molded plastic housing. When the gap is open or when material transparent to IR transmission passes through the slot, light reaches the photosensor allowing it to conduct current and the switch is "on." When an object opaque to IR transmission passes through the slot, the IR transmission is blocked, the photosensor does not conduct, and the switch is "off."

The speed of the switch is often an important application consideration. The overall switching time depends on the device chosen to serve as the photosensor. For example, a photodar-lington switches in milliseconds; a phototransistor, in microseconds; and an Optek Photologic™ device (which is a photo-integrated circuit) in the low nanosecond range. In many designs, the mechanical turn-off and turn-on times for the equipment being controlled are much longer than the switching times of the photosensor.

Position Sensors

These sensors are electromechanical devices that detect the position or rate of change of position of a mechanism and translate the monitored information into useful output. A good example is the tachometer, which is a rotary encoder sensing slots in a wheel. The switch produces a pulse for every slot on the wheel. The number of pulses versus time provides a readout of the motor speed.

Standard switches can easily read 0.010 inch widths in etched metal or molded plastic disks. Typically, the slots are rectangular in shape. Maximum resolution is achieved by the narrowest of detectable apertures. Designs calling for narrower apertures than 0.010 inches are possible but may require custom designed and higher priced switches.

Application Bulletin 206, printed in this data book, discusses linear and rotary encoders in depth. Application Bulletins 203 and 209 discuss specific Optek interruptive assemblies for encoding and other functions.

Housing Material and Other Considerations

Housings for slotted optical switches do two things: they hold the IRED and photosensor in permanent fixed positions, and they contain mounting holes or other means of attachment to the equipment. The materials most commonly used for Optek slotted optical switch housings are polycarbonate and polysulfone, although other plastics may be used for specific applications. Injection molding techniques are used to form the plastic housing.

For applications that require special materials for the housings, Optek can custom design a housing part to match exact specifications.

Options for Selecting A Slotted Optical Switch

Design considerations of speed, resolution, length of optical path, environment, performance and cost impinge upon the proper selection of interruptive assemblies. Optek offers the engineer a wide selection of assemblies to meet exact design requirements. Optek offers slotted optical switches with the following options:

- 1. Phototransistor, photodarlington or Photologic™ output.
 - a. Phototransistor output in various output ranges.
 - b. Photologic™ output in four different output variations.
- 2. Gallium arsenide or gallium aluminum arsenide IREDs.
- 3. Dual channel devices in side-by-side or over/under configuration for speed, direction of movement and relative position sensing.
- 4. Various slot widths and depths.
- 5. Different sensor and emitter lead spacings.
- 6. Different aperture widths in front of sensor and emitter.
- 7. Different mounting configurations and housing styles.
- 8. Housing materials: opaque or transmissive.
- 9. Lead wires and connectors: standard leads of 24" (minimum length).

Custom Design of Interruptive Assemblies

In cases where unique specifications call for a custom design, Optek can work closely with the customer to produce the optimum interruptive slotted optical switch. Such designs can vary from slight adjustments to standard parts to completely new mechanical configurations.

Typical Applications

Printers

Electric watt-hour meters

Copying machines

Coin changers

Disk drives

Medical equipment

Paper sorting equipment

Typewriters

Amusement games

Liquid level sensing equiment

Touch panel applications

Slotted Optical Switch Type CNY36

Not recommended for new design, See OPB860

Features

- Non-contact switching
- Printed circuit board mounting
- 0.120" wide slot
- 0.220" lead spacing

Description

The CNY36 consists of an infrared emitting diode and an NPN silicon phototransistor mounted in a low cost plastic housing on opposite sides of a 0.120" (3.05mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Derate linearly 1.67mW/°C above 25°C.
- (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) All parameters tested using pulse technique.

Typical Performance Curves Normalized Output Current

Normalized Output Current vs Ambient Temperature

Type CNY36

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode			1		
VF	Forward Voltage		1.50	V	I _F = 20mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		٧	I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		٧	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled					
VCE(SAT)	Collector-Emitter Saturation Voltage		0.40	٧	I _C = 25μA, I _F = 20mA
IC(ON)	Collector Current	200		μА	V _{CE} = 10.0V, I _F = 20mA

Typical Performance Curves

Forward Voltage Input Diode 40 35 ¥ -30 IF - FORWARD CURRENT 25 20 $\sigma = 0.030$ VOLTS BETWEEN IF = 1 mA and 50 mA 0.4 0.6 0.8 1.2 1.0

Forward Current vs

Relative Output Current vs Time

Relative Collector Dark Current vs Ambient Temperature

Reduction in Output Current Due to LED Heating vs Forward Current

VF - FORWARD VOLTAGE - VOLTS

Rise and Fall Time vs vs Load Resistance

Photologic™ Slotted Optical Switches Types OPB120A, OPB121A, OPB122A, OPB123A

Features

- · Choice of output configuration
- · Printed circuit board mounting
- 0.080" wide slot
- 0.275" lead spacing
- Opaque plastic housing
- · Low profile

Description

The OPB120A through OPB123A each consist of an infrared emitting diode and a Photologic™ sensor (a monolithic integrated circuit which incorporates a linear amplifier and a Schmitt Trigger) mounted on opposite sides of a .080" wide gap opaque housing, with molded .040" wide apertures located over both emitter and Photologic™ sensor.

Supply Voltage, V _{CC} (not to exceed 3 sec.)+10.0V
Storage Temperature Range
Operating Temperature Range40°C to +70°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode Power Dissipation
Output Photologic [™] Power Dissipation
Total Device Power Dissipation
Voltage at Output Lead (Open Collector Output)
Forward D.C. Current
Reverse D.C. Voltage
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate Linearly 2.22mW/°C above 25°C.
- (3) Normal application would be with light source blocked, simulated by $I_F = 0$.
- (4) Derate Linearly 4.44mW/°C above 25°C.
- (5) Derate Linearly 6.66mW/°C above 25°C.(6) Applies to Totem Pole configurations only.

SLOTTED OPTICAL SWITCHES

Types OPB120A, OPB121A, OPB122A, OPB123A

Electrical Characteristics (T_A = -40°C to +70°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
nput Diode						
VF	Forward Voltage			1.7	V	I _F = 20mA, T _A = 25°C
IR	Reverse Current		†	100	μА	$V_R = 2.0V, T_A = 25^{\circ}C$
utput Photo	blogic™ Sensor					
Vcc	Operating D.C. Supply Voltage	4.75	T	5.25	V	
ICCL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽³⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	Vcc = 5.25V, I _F = 20mA
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 20mA
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	$V_{CC} = 5.25V$, $I_F = 0mA^{(3)}$
V _{OL}	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 0mA ⁽³⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	٧	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 20mA
Voн	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	Vcc = 4.75, l _{OH} = -800μA l _F = 20mA
	Inverted Totem-Pole Output	2.4			V	$Vcc = 4.75$, $I_{OH} = -800\mu A$ $I_F = 0mA^{(3)}$
Юн	High Level Output Voltage: Buffered Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V I _F = 20mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	$V_{CC} = 4.75V$, $V_{OH} = 30V$, $I_F = 0mA$, $T_A = 25^{\circ}C$
l _F (+)	LED Positive-Going Threshold Current			15	mA	$V_{CC} = 5.0V, T_A = 25^{\circ}C$
l _F (+)/l _F (-)	Hysteresis		2.0			V _{CC} = 5.0V
los	Short Circuit Output Current: Buffered Totem-Pole Output	-20		-100	mA	V _{CC} = 5.25V, I _F = 20mA ⁽⁶⁾ Output = GND
	Inverted Totem-Pole Output	-20		-100	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾ Output = GND
t _r ,t _f	Output Rise Time, Output Fall Time		70		ns	Vcc = 5.0V, T _A = 25°C I _F = 0 or 20mA
tpLH, tpHL	Propagation Delay Low-High & High-Low		5.0		μs	$R_L = 8TTL \text{ Loads (Totem Pole}$ $R_L = 360\Omega \text{ (Open Collector)}$

Types OPB120A, OPB121A, OPB122A, OPB123A

Part Number Guide

	Output	Ape	rture
		Emitter	Sensor
OPB120A	Buffer Totem-pole	0.040"	0.040"
OPB121A	Buffer Open-Collector	0.040"	0.040"
OPB122A	Inverter Totem-Pole	0.040"	0.040"
OPB123A	Inverter Open-Collector	0.040"	0.040"
OPB120B	Buffer Totem-pole	0.040"	0.010"
OPB121B	Buffer Open-Collector	0.040"	0.010"
OPB122B	Inverter Totem-Pole	0.040"	0.010"
OPB123B	Inverter Open-Collector	0.040"	0.010"

Types OPB120A, OPB121A, OPB122A, OPB123A

Output Voltage vs Ambient Temperature

OPB120, OPB122

Short Circuit Output Current vs Ambient Temperature

All Assemblies **Propagation Time**

OPB121, OPB123

Output Current (High) vs Ambient Temperature

Rise Time and Fall Time

All Assemblies Data Rate

OPB120, OPB121

Normalized Supply Current vs Ambient Temperature

OPB122, OPB123

Normalized Supply Current vs Ambient Temperature

All Assemblies

Trigger Current mbient Temperature

Switching Test Curve for Buffers

Switching Test Curve for Inverters

Slotted Optical Switch Type OPB610

Features

- Non-contact switching
- Printed circuit board mounting
- 0.275" Lead centers
- 0.150" Gap
- Enhanced signal to noise ratio

Description

The OPB610 slotted optical switch consists of an infrared emitting diode and an NPN silicon phototransistor with an enhanced low current roll-off to improve contrast ratio and immunity to background irradiance.

Typical Performance Curves

TA - Ambient Temperature - °C

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature -40°	C to +100°C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec with soldering iron]	260°C ⁽¹⁾
Input Diode	200 0
Forward DC Current	50mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Reverse DC Voltage	3.0V
Power Dissipation	. 100mW ⁽²⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter Reverse Current	10mA
Collector DC Current	30mA
Power Dissipation	. 200mW ⁽³⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.33 mW/°C above 25°C.
- (3) Derate linearly 2.0 mW/°C above 25°C.

Forward Current vs Forward Voltage Input Diode

IF = Forward Current - mA

Types OPB610

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diod	e				
VF	Forward Voltage		1.60	V	I _F = 10 mA
IR	Reverse Current		100	μА	V _R = 3.0 V
Output Pho	ototransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 100 μA
IECO	Emitter Reverse Current		100	μА	V _{EC} = 0.4 V
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 5 V
Coupled					
VSAT	Saturation Voltage		0.40	٧	$I_F = 5 \text{ mA}, I_C = 100 \mu\text{A}$
Ic(ON)	On-State Collector Current	1.0		mA	I _F = 5 mA, V _{CE} = 5 V

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Distance - inches

Distance - inches

 R_L - Load Resistance - Ω

PhotologicTM Slotted Optical Switch Types OPB615, OPB616, OPB617, OPB618

Features

- Non-contact switching
- Printed circuit board mounting
- 0.275" Lead centers
- 0.150" Gap
- Enhanced signal to noise ratio
- Four output options

Description

The OPB615 series slotted optical switches consist of an infrared emitting diode and a monolithic integrated circuit which incorporates a photodiode, a linear amplifier and a Schmitt trigger on a single silicon chip.

The sensors feature TTL/LSTTL compatible logic level output. Open collector output versions can drive up to 10 TTL loads over a voltage range from 4.5V to 16V.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Operating Temperature Range40°C to +100°C	
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering	
iron]	
Input Diode	
Forward DC Current 50mA	
Peak Forward Current (1µs pulse width, 300 pps)	
Reverse DC Voltage 3.0V	
Power Dissipation	
Output Photologic™	
Supply Voltage, VCC	
Duration of Output Short To VCC	
Voltage at Output	
Low Level Output Current (sinking)	
Power Dissipation	

- **Notes:**(1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.33 mW/°C above 25°C.
- (3) Derate linearly 2.50 mW/°C above 30°C

Schematics

Types OPB615, OPB616, OPB617, OPB618

Electrical Characteristics (T_A = 25°C, V_{CC} = 4.5V to 16V unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	9						
VF	Forward Voltage				1.6	V	I _F = 10 mA
lR	Reverse Current				100	μА	V _R = 3.0 V
Output Pho	otologic™ Sensor		-				
Vcc	Operating D.C. Supply Voltage	ge	4.5		16.0	V	
l _F (+)	LED Positive-Going Thresho	ld Current	0.1	0.55	3.0	mA	
l _F (+)/l _F (-)	Hysteresis Ratio		1.05	1.20	1.60		
Іссн	High Level Supply Current:						
	Buffer, 10K Pull-up	OPB615		5.0	12.0	mA	I _F = 5 mA, No Load On Output
	Buffer, Open-Collector	OPB616					
	Inverter, 10K Pull-up	OPB617		4.0	12.0	mA	I _F = 0 mA ⁽⁴⁾ , No Load On Output
	Inverter, Open-Collector	OPB618					11 - 5 mm 1 1 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
ICCL.	Low Level Supply Current:						$I_F = 0 \text{ mA}^{(4)}$, No Load On Output
	Buffer, 10K Pull-up	OPB615		5.5	12.0	mA	IF = 0 mA ¹⁷ , No Load On Output
	Buffer, Open-Collector	OPB616	-	4.0	12.0	IIIA	
	Inverter, 10K Pull-up	OPB617		6.5	12.0	mA	I _F = 5 mA, No Load On Output
	Inverter, Open-Collector	OPB618		5.0	12.0	1	
Vон	High Level Output Voltage:	000015	(V== 1 E)			v	I _F = 5 mA, I _{OH} = 100 μA
	Buffer, 10K Pull-up	OPB615	(V _{CC} -1.5)			ļ <u>.</u>	·
	Inverter, 10K Pull-up	OPB617	(V _{CC} -1.5)			V	$I_F = 0 \text{ mA}^{(4)}, I_{OH} = 100 \mu\text{A}$
Юн	High Level Output Current:						5 = 4 V
	Buffer, Open-Collector	OPB616			100	μΑ	I _F = 5 mA, V _{OH} = 30 V
	Inverter, Open-Collector	OPB618			100	μΑ	$I_F = 0 \text{ mA}^{(4)}, V_{OH} = 30 \text{ V}$
Vol	Low Level Output Voltage:						(4)
	Buffer, 10K Pull-up	OPB615			0.4	V	$I_F = 0 \text{ mA}^{(4)}, I_{OL} = 16 \text{ mA}$
	Buffer, Open-Collector	OPB616					
	Inverter, 10K Pull-up	OPB617			0.4	v	I _F = 5 mA, I _{OL} = 16 mA
	Inverter, Open-Collector	OPB618				-	, , , , , , , , , , , , , , , , , , , ,
t _r , t _f	Output Rise Time, Output Fa	II Time		30		ns	
tpLH	Propagation Delay, Low-High	1					
	Buffer, 10K Pull-up	OPB615		0.6		μs	
	Buffer, Open-Collector	OPB616					I _F = 0 or 5 mA, f = 10 KHz,
	Inverter, 10K Pull-up	OPB617		3.0		μs	D.C. = 50%, R _L = 300 Ω
	Inverter, Open-Collector	OPB618				ļ , ,	D.O. = 50 /6, FIL = 500 \$2
t PHL	Propagation Delay, High-Lov	1					
	Buffer, 10K Pull-up	OPB615		3.0		μs	
	Buffer, Open-Collector	OPB616					
	Inverter, 10K Pull-up	OPB617		0.6		μs	
	Inverter, Open-Collector	OPB618				<u> </u>	
Data Rate	Data Rate			100		KHz	$I_F = 0 \text{ or } 5 \text{ mA}, D.C. = 50\%, R_L = 300 \Omega$

⁽⁴⁾ Normal application would be with light source blocked, simulated by I_F = 0mA.

Types OPB615, OPB616, OPB617, OPB618

Typical Performance Curves

OPB616, OPB618 High Level Output

Types OPB615, OPB616, OPB617, OPB618

Typical Performance Curves

Rise Time vs Output Load vs Ambient Temperature

Maximum Data Rate vs Ambient Temperature

Typical Thermal Derating Curve

T_A - Ambient Temperature - °C

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

12-15

Slotted Optical Switch Type OPB620

Features

- Non-contact switching
- Printed circuit board mounting
- 0.320" Lead centers
- 0.190" Gap
- Enhanced signal to noise ratio

Description

The OPB620 slotted optical switch consists of an infrared emitting diode and an NPN silicon phototransistor with an enhanced low current roll-off to improve contrast ratio and immunity to background irradiance.

Typical Performance Curves

T_A - Ambient Temperature - °C

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature -40°C to +100°C Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec with Input Diode Reverse DC Voltage..... **Output Phototransistor** Notes:

- RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering.

 (2) Derate linearly 1.33 mW/°C above 25°C.

 (3) Derate linearly 2.0 mW/°C above 25°C.

Forward Current vs Forward Voltage Input Diode

IF = Forward Current - mA

Types OPB620

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diod	e			1	
VF	Forward Voltage		1.60	V	I _F = 10 mA
lR	Reverse Current		100	μА	V _R = 3.0 V
Output Ph	ototransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 100 μA
IECO	Emitter Reverse Current		100	μА	V _{EC} = 0.4 V
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 5 V
Coupled					
VSAT	Saturation Voltage		0.40	V	$I_F = 5 \text{ mA}, I_C = 100 \mu\text{A}$
IC(ON)	On-State Collector Current	1.0		mA	I _F = 5 mA, V _{CE} = 5 V

Typical Performance Curves

PhotologicTM Slotted Optical Switch Types OPB625, OPB626, OPB627, OPB628

Features

- Non-contact switching
- · Printed circuit board mounting
- 0.320" Lead centers
- 0.190" Gap
- Enhanced signal to noise ratio
- Four output options

Description

The OPB625 series slotted optical switches consist of an infrared emitting diode and a monolithic integrated circuit which incorporates a photodiode, a linear amplifier and a Schmitt trigger on a single silicon chip.

The device features TTL/LSTTL compatible logic level output. Open collector output versions can drive up to 10 TTL loads over a voltage range from 4.5V to 16V.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise noted)

Storage Temperature Range
Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1µs pulse width, 300 pps)
Reverse DC Voltage 3.0V
Power Dissipation
Output Photologic™
Supply Voltage, Vcc
Duration of Output Short To VCC
Voltage at Output
Low Level Output Current (sinking)
Power Dissipation

- Notes:
 (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.33 mW/°C above 25°C
- (3) Derate linearly 2.50 mW/°C above 30°C.

Schematics

Types OPB625, OPB626, OPB627, OPB628

Electrical Characteristics (T_A = 25°C, V_{CC} = 4.5V to 16V unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diod	е						
VF	Forward Voltage				1.6	V	I _F = 10 mA
l _R	Reverse Current				100	μА	V _R = 3.0 V
Output Ph	otologic™ Sensor						<u> </u>
Vcc	Operating D.C. Supply Voltage	e	4.5		16.0	V	
l _F (+)	LED Positive-Going Threshold	d Current	0.1	0.6	3.0	mA	
l _F (+)/l _F (-)	Hysteresis Ratio		1.05	1.20	1.60	1	
Іссн	High Level Supply Current:				<u> </u>		
10011	Buffer, 10K Pull-up	OPB625		5.0	12.0	mA	IF = 5 mA, No Load On Output
	Buffer, Open-Collector	OPB626			1		
	Inverter, 10K Pull-up	OPB627			Ī		
	Inverter, Open-Collector	OPB628		4.0	12.0	mA	I _F = 0 mA ⁽⁴⁾ , No Load On Output
ICCL	Low Level Supply Current:						
	Buffer, 10K Pull-up	OPB625		5.5	12.0	mA	I _F = 0 mA ⁽⁴⁾ , No Load On Output
	Buffer, Open-Collector	OPB626		4.0	12.0		
	Inverter, 10K Pull-up	OPB627		6.5	12.0	mA	I _F = 5 mA, No Load On Output
	Inverter, Open-Collector	OPB628		5.0	12.0		IF = 5 IIIA, NO LOUG ON Gutput
VoH	High Level Output Voltage:)	
	Buffer, 10K Pull-up	OPB625	(V _{CC} -1.5)			V	I _F = 5 mA, I _{OH} = 100 μA
	Inverter, 10K Pull-up	OPB627	(V _{CC} -1.5)			V	$I_F = 0 \text{ mA}^{(4)}, I_{OH} = 100 \mu\text{A}$
Іон	High Level Output Current:						
	Buffer, Open-Collector	OPB626			100	μΑ	I _F = 5 mA, V _{OH} = 30 V
	Inverter, Open-Collector	OPB628			100	μА	I _F = 0 mA ⁽⁴⁾ , V _{OH} = 30 V
Voi	Low Level Output Voltage:				†	<u> </u>	
- 02	Buffer, 10K Pull-up	OPB625			0.4	V	I _F = 0 mA ⁽⁴⁾ , I _{OL} = 16 mA
	Buffer, Open-Collector	OPB626					
	Inverter, 10K Pull-up	OPB627			0.4	v	
	Inverter, Open-Collector	OPB628			0.4	٧	$I_F = 5 \text{ mA}$, $I_{OL} = 16 \text{ mA}$
t _r , t _f	Output Rise Time, Output Fall	Time		30		ns	
tpLH	Propagation Delay, Low-High						
	Buffer, 10K Pull-up	OPB625		0.6		μs	
	Buffer, Open-Collector	OPB626					L 0 0 5 m A f 40 KHm
	Inverter, 10K Pull-up	OPB627		3.0		μs	$I_F = 0$ or 5 mA, $f = 10$ KHz, D.C. = 50%, $R_L = 300 \Omega$
	Inverter, Open-Collector	OPB628				μο	D.C. = 50 %, NL = 500 12
tPHL	Propagation Delay, High-Low						
	Buffer, 10K Pull-up	OPB625		3.0		μs	
	Buffer, Open-Collector	OPB626				ļ	
	Inverter, 10K Pull-up	OPB627		0.6		μs	
	Inverter, Open-Collector	OPB628					
Data Rate	Data Rate			100		KHz	I _F = 0 or 5 mA, D.C. = 50%, R _L = 300

⁽⁴⁾ Normal application would be with light source blocked, simulated by IF = 0mA.

Typical Performance Curves

Types OPB625, OPB626, OPB627, OPB628

Typical Performance Curves

Rise Time vs Output Load vs Ambient Temperature

Typical Thermal Derating Curve

T_A - Ambient Temperature - °C

Slotted Optical Switch Types OPB660N, OPB660T

Features

- Non-contact switching
- 0.125" Wide gap 0.320" Lead spacing
- N or T package
- Printed circuit board mounting
- Enhanced signal to noise ratio

Description

The OPB660 series consists of an NPN phototransistor and an infrared emitting diode mounted on opposite sides of a 0.125" wide slot. The emitter has a 0.050" x 0.060" molded aperture while the phototransistor has a 0.010" x 0.060" molded aperture. The phototransistor has an enhanced low current roll-off which improves contrast ratio and immunity to background irradiance.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec with
soldering iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter Reverse Current
Collector DC Current
Power Dissipation
Made a

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering.

 (2) Derate linearly 1.33 mW/°C above 25°C.

 (3) Derate linearly 2.0 mW/°C above 25°C.

Types OPB660N, OPB660T

Types OPB660N, OPB660T

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diod	9				
V _F	Forward Voltage		1.60	٧	I _F = 10 mA
I _R	Reverse Current		100	μА	V _R = 3.0 V
Output Pho	ototransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		٧	Ic = 100 μA
leco	Emitter Reverse Current		100	μА	V _{EC} = 0.4 V
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 5 V
Coupled					
VSAT	Saturation Voltage		0.40	V	$I_F = 10$ mA, $I_C = 100 \mu$ A, Gap unblocked
Ic(on)	On-State Collector Current	600		μА	I _F = 10 mA, V _{CE} = 5 V

Typical Performance Curves

Typical Performance Curves

PhotologicTM Slotted Optical Switch Types OPB665N/T, OPB666N/T, OPB667N/T, OPB668N/T

Features

- Four Output Options
- 0.125" Wide Gap
- 0.320" Lead Spacing
- N or T Package
- 0.010" Sensor Aperture

Description

The OPB665 series optical switches consist of a monolithic integrated circuit and an infrared emitting diode mounted on opposite sides of a 0.125" wide slot. The emitter has a 0.050" x 0.060" molded-in aperture while the sensor has a 0.010" x 0.060" molded-in aperture.

The device features TTL/LSTTL compatible logic level output, which can drive up to 10 TTL loads over a voltage range from 4.5V to 16V.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature Range	
Operating Temperature Range	-40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec.	. with soldering
iron]	240°C ⁽¹⁾
Input Diode	
Forward DC Current	50mA
Peak Forward Current (1us pulse width, 300 pps)	3 0A

Peak Forward Current (1µs pulse width, 300 pps).....

Output Photologic™

Supply Voltage, Vcc.....

RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (2) Derate linearly 1.33 mW/°C above 25°C. (3) Derate linearly 2.50 mW/°C above 30°C.

Schematics

Notes:

SLOTTED OPTICAL SWITCHES

Types OPB665N/T, OPB666N/T, OPB667N/T, OPB668N/T

Types OPB665N/T, OPB666N/T, OPB667N/T, OPB668N/T

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diod	е						
VF	Forward Voltage				1.6	٧	I _F = 10 mA
IR	Reverse Current				100	μΑ	V _R = 3.0 V
Output Pho	otologic™ Sensor	2007 Tarigania - 1 to 2 d 1 to 1	L.,		1		1
Vcc	Operating D.C. Supply Voltage	•	4.5		16.0	٧	
lF(+)	LED Positive-Going Threshold	Current	0.1	1.6	10	mA	V _{CC} = 5.0 V
l _F (+)/l _F (-)	Hysteresis Ratio	- Currone	1.05	1.20	1.60	.,,,,	V _{CC} = 5.0 V
			1.03	1.20	1.00		VCC = 3.0 V
Іссн	High Level Supply Current:	ODDeer		5.0	12.0	mA	V _{CC} = 16 V, No Load On Output,
	Buffer, 10K Pull-up	OPB665					I _F = 10 mA
	Buffer, Open-Collector	OPB666					
	Inverter, 10K Pull-up	OPB667		4.0	12.0	mA	V _{CC} = 16 V, No Load On Output,
	Inverter, Open-Collector	OPB668					I _F = 0 mA
ICCL	Low Level Supply Current:					_	Vcc = 16 V, No Load On Output,
	Buffer, 10K Pull-up	OPB665		5.5	12.0	mA	IF = 0 mA
	Buffer, Open-Collector	OPB666		4.0	12.0		
	Inverter, 10K Pull-up	OPB667		6.5	12.0		V _{CC} = 16 V, No Load On Output,
	Inverter, Open-Collector	OPB668		5.0	12.0	mA	I _F = 10 mA
Vон	High Level Output Voltage:						·
	Buffer, 10K Pull-up	OPB665	(V _{CC} -1.5) ⁽⁵⁾			V	I _{OH} = 100 μA, I _F = 10 mA
	Inverter, 10K Pull-up	OPB667	(V _{CC} -1.5) ⁽⁵⁾			V	I _{OH} = 100 μA, I _F = 0 mA ⁽⁴⁾
Іон	High Level Output Current:		(100 110)				
iOn	Buffer, Open-Collector	OPB666			100	μА	$V_{CC} = 16 \text{ V}, V_{OH} = 30 \text{ V}, I_F = 10 \text{ mA}$
	Inverter, Open-Collector	OPB668			100	μA	V _{CC} = 16 V, V _{OH} = 30 V, I _F = 0 mA
Vol	Low Level Output Voltage:					Por t	100 10 1, 1011 00 1, 11 0 11
VOL		OPB665			0.4	ΨV.	
	Buffer, 10K Pull-up						$V_{CC} = 4.5 \text{ V}, I_{OL} = 16 \text{ mA}, I_F = 0 \text{ mA}^{(4)}$
	Buffer, Open-Collector	OPB666					7.00
	Inverter, 10K Pull-up	OPB667 OPB668			0.4	V	$V_{CC} = 4.5 \text{ V}, I_{OL} = 16 \text{ mA}, I_F = 10 \text{ mA}$
A A.	Inverter, Open-Collector						
t _r , t _f	Output Rise Time, Output Fall	rime	·	30		ns	
tplh	Propagation Delay, Low-High			1.0		μs	
	Buffer, 10K Pull-up	OPB665		1.0		μο	
	Buffer, Open-Collector	OPB666					V _{CC} = 5 V, I _F = 0 or 10 mA, f = 10 kHz
	Inverter, 10K Pull-up	OPB667		2.0		μs	D.C. = 50%, $R_L = 300 \Omega$
tpHL	Inverter, Open-Collector	OPB668				-	
	Propagation Delay, High-Low			2.0			
	Buffer, 10K Pull-up	OPB665		2.0		μs	
	Buffer, Open-Collector	OPB666					
	Inverter, 10K Pull-up	OPB667	·	1.0		μs	
	Inverter, Open-Collector	OPB668			-		
Data Rate	Data Rate			100		KHz	$V_{CC} = 5 \text{ V}, \text{ I}_F = 0 \text{ or } 10 \text{ mA},$ D.C. = 50%, R _L = 300 Ω

⁽⁴⁾ Normal application would be with light source blocked, simulated by IF = 0mA.

⁽⁵⁾ $V_{OH} = V_{CC}-1.5$ for $V_{CC} = 4.5V$ to 16V.

Types OPB665N/T, OPB666N/T, OPB667N/T, OPB668N/T

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

T_A - Ambient Temperature - °C

T_A - Ambient Temperature - °C

T_A - Ambient Temperature - °C

Types OPB665N/T, OPB666N/T, OPB667N/T, OPB668N/T

Typical Performance Curves

Rise Time vs Output Load vs Ambient Temperature

T_A - Ambient Temperature - °C

TA - Ambient Temperature - °C

Typical Thermal Derating Curve

T_A - Ambient Temperature - °C

Fax (214)323-2396

Slotted Optical Flag Switch Type OPB680

Features

- Phototransistor output
- Mechanical switch replacement
- Printed circuit board mounting
- Enhanced signal to noise ratio

Description

The OPB680 consists of an NPN phototransistor and an infrared emitting diode in a molded plastic housing. The phototransistor has an enhanced low current roll-off which improves contrast ratio and immunity to background irradiance. A lever arm actuated flag interrupts the light beam, switching the transistor output between states that can readily drive logic gates.

Customized lever arms and spring torques can be designed for specific applications.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec with soldering iron]
Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps) 3.0A
Reverse DC Voltage
Power Dissipation 100mW ⁽²⁾
Output Phototransistor
Collector-Emitter Voltage
Emitter Reverse Current
Collector DC Current
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. (2) Derate linearly 1.33 mW/°C above 25°C. (3) Derate linearly 2.0 mW/°C above 25°C.

- "On" condition exists when the lever arm is in the rest position (16° from vertical) as shown in the figure.
- (5) "Off" condition exists when the lever arm is deflected clockwise $8^{\circ} \pm 3^{\circ}$ from the rest position (16° from vertical) as shown in the figure. Maximum allowable deflection is 35° from the rest
- (6) From the rest position to the switch point, lever torque measured at the end of the arm is 1.5 grams max.

Type OPB680

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diod	е				
VF	Forward Voltage		1.60	٧	I _F = 10 mA
IR	Reverse Current		100	μА	V _R = 3.0 V
Output Pho	ototransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 100 μA
IECO	Emitter Reverse Current		100	μА	V _{EC} = 0.4 V
ICEO	Collector-Emitter Dark Current		100	nA	VCE = 5V
Coupled					
VSAT	Saturation Voltage		0.40	V	I _F = 10 mA, I _C = 100 μA, Gap unblocked
Ic(on)	On-State Collector Current	600		μΑ	I _F = 10 mA, V _{CE} = 5 V

PhotologicTM Optical Flag Switch Types OPB685, OPB686, OPB687, OPB688

Features

- Photologic™ output
- Four output options
- Mechanical switch replacement
- Printed circuit board mounting

Description

The OPB685 series flag switches consist of an infrared emitting diode and a monolithic integrated circuit, which incorporates a photodiode, a linear amplifier and a Schmitt trigger. A lever arm actuated flag interrupts the light beam switching the output between states that can readily drive logic gates.

Customized lever arms and spring torques can be designed for specific applications.

The device features TTL/LSTTL compatible logic level output which can drive up to 10 TTL loads over a voltage range from 4.5V to 16V.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature Hange40°C to +100°C
Operating Temperature Range40°C to +100°C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1µs pulse width, 300 pps)
Reverse DC Voltage 3.0V
Power Dissipation
Output Photologic™
Supply Voltage, Vcc
Duration of Output Short To V _{CC} 1.00sec
Voltage at Output
Low Level Output Current (sinking)
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.33 mW/°C above 25°C. (3) Derate linearly 2.50 mW/°C above 30°C.

Ctorogo Tomporetura Dongo

40°C to .400°C

SLOTTED OPTICAL SWITCHES

Types OPB685, OPB686, OPB687, OPB688

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS	
Input Diod	е		L.,					
V _F	Forward Voltage				1.6	V	I _F = 10 mA	
lR	Reverse Current				100	μА	V _R = 3.0 V	
Output Pho	otologic™ Sensor		<u> </u>			<u> </u>		
Vcc	Operating D.C. Supply Voltage)	4.5		16.0	٧		
l _F (+)	LED Positive-Going Threshold	Current	0.1	1.8	10.0	mA	Vcc = 5.0 V	
l _F (+)/l _F (-)	Hysteresis Ratio		1.05	1.20	1.60		Vcc = 5.0 V	
Іссн	High Level Supply Current:						V 40V No. 1 - 10 - 0 - 1	
10011	Buffer, 10K Pull-up	OPB685		5.0	12.0	mA	V _{CC} = 16 V, No Load On Output,	
	Buffer, Open-Collector	OPB686					IF = TO MA	
	Inverter, 10K Pull-up	OPB687					V _{CC} = 16 V, No Load On Output,	
	Inverter, Open-Collector	OPB688		4.0	12.0	mA	I _F = 0 mA	
Iccl	Low Level Supply Current:						V _{CC} = 16 V, No Load On Output,	
	Buffer, 10K Pull-up	OPB685		5.5	12.0	mA	IF = 0 mA	
	Buffer, Open-Collector	OPB686		4.0	12.0		IF - O IIIA	
	Inverter, 10K Pull-up	OPB687		6.5	12.0		V _{CC} = 16 V, No Load On Output,	
	Inverter, Open-Collector	OPB688		5.0	12.0	mA	I _F = 10 mA	
Voh	High Level Output Voltage:							
	Buffer, 10K Pull-up	OPB685	(V _{CC} -1.5) ⁽⁵⁾			V	I _{OH} = 100 μA, I _F = 10 mA	
	Inverter, 10K Pull-up	OPB687	(V _{CC} -1.5) ⁽⁵⁾			٧	I _{OH} = 100 μA, I _F = 0 mA ⁽⁴⁾	
Іон	High Level Output Current:							
	Buffer, Open-Collector	OPB686			100	μΑ	V _{CC} = 16 V, V _{OH} = 30 V, I _F = 10 mA	
	Inverter, Open-Collector	OPB688			100	μΑ	V _{CC} = 16 V, V _{OH} = 30 V, I _F = 0 mA	
Vol	Low Level Output Voltage:							
	Buffer, 10K Pull-up	OPB685			0.4	V	$V_{CC} = 4.5 \text{ V}, I_{OL} = 16 \text{ mA}, I_F = 0 \text{ mA}^{(4)}$	
	Buffer, Open-Collector	OPB686						
	Inverter, 10K Pull-up	OPB687			0.4	v	V _{CC} = 4.5 V, I _{OL} = 16 mA, I _F = 10 mA	
	Inverter, Open-Collector	OPB688			0.7	•	VCC = 1.0 V, IOL = 10 IIIV, IF = 10 IIIV	
t _r , t _f	Output Rise Time, Output Fall	Time		30		ns		
tpLH	Propagation Delay, Low-High					μs		
	Buffer, 10K Pull-up	OPB685		1.0			V_{CC} = 5 V, I _F = 0 or 10 mA, f = 10 kHz, D.C. = 50%, R _L = 300 Ω	
	Buffer, Open-Collector	OPB686						
	Inverter, 10K Pull-up	OPB687		2.0		μs		
	Inverter, Open-Collector	OPB688				p=0	D.O. = 50 /6, 11L = 500 12	
t _{PHL}	Propagation Delay, High-Low							
	Buffer, 10K Pull-up	OPB685		2.0		μs		
	Buffer, Open-Collector	OPB686						
	Inverter, 10K Pull-up	OPB687		1.0		μs		
	Inverter, Open-Collector	OPB688						

⁽⁴⁾ Normal application would be with light source blocked, simulated by IF = 0mA.

⁽⁵⁾ $V_{OH} = V_{CC}-1.5V$ for $V_{CC} = 4.5V$ to 16V.

Typical Performance Curves

TA - Ambient Temperature - °C

T_A - Ambient Temperature - °C

TA - Ambient Temperature - °C

Typical Performance Curves

Rise Time vs Output Load vs Ambient Temperature

T_A - Ambient Temperature - °C

Typical Thermal Derating Curve

T_A - Ambient Temperature - °C

Slotted Optical Flag Switch Type OPB690

Features

- Phototransistor output
- · Mechanical switch replacement
- 3-pin connector (Ho Tien L2561-03), Molex compatible connector 5102 series housing and 5103 series terminal
- · Enhanced signal to noise ratio

Description

The OPB690 consists of an NPN phototransistor and an infrared emitting diode in a molded plastic housing. The phototransistor has an enhanced low current roll-off which improves contrast ratio and immunity to background irradiance. A lever arm actuated flag interrupts the light beam, switching the transistor output between states that can readily drive logic gates.

This switch is designed to easily snap mount into a 0.039" (1 mm) (19 ga) thick material with a rectangular opening of 0.315" x 0.472" (8 mm x 12 mm).

Customized lever arms and spring torques can be designed for specific applications.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature	-40°C to +100°C
Forward DC Current	50mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Reverse DC Voltage	3.0V
Power Dissipation	100mW ⁽¹⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter Reverse Current	10mA
Collector DC Current	
Power Dissipation	200mW ⁽²⁾
Notes:	

- (1) Derate linearly 1.33 mW/°C above 25°C.
- (2) Derate linearly 2.0 mW/°C above 25°C.
- (3) "Off" condition exists when the lever arm is in the rest position (20° from vertical) as shown in the figure
- (4) "On" condition exists when the lever arm is deflected clockwise 18° +/- 3° form the rest position (20° from vertical) as shown in the figure.
- (5) From the rest position to the switch point, lever torque measured at the end of the arm is 1.5 grams max.

Type OPB690

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diod	е				
V _F	Forward Voltage		1.6	V	I _F = 10 mA
IR	Reverse Current		100	μА	V _R = 3.0 V
Output Pho	ototransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	$I_C = 100 \mu A$
IECO	Emitter Reverse Current		100	μΑ	V _{EC} = 0.4 V
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 5 V
Coupled					
VSAT	Saturation Voltage		0.4	V	$I_F = 10$ mA, $I_C = 100$ μ A, Gap unblocked
I _{C(ON)}	On-State Collector Current	600		μΑ	I _F = 10 mA, V _{CE} = 5 V

PhotologicTM Optical Flag Switch Types OPB695, OPB696, OPB697, OPB698 Series

Features

- Photologic[™] output
- Four output options
- · Mechanical switch replacement
- 3-pin connector (Ho Tien L2561-03), Molex compatible connector 5102 series housing and 5103 series terminal

Description

The OPB695 series flag switches consist of an infrared emitting diode and a monolithic integrated circuit, which incorporates a photodiode, a linear amplifier, and a Schmitt trigger. A lever arm actuated flag interrupts the light beam switching the output between states that can readily drive logic gates.

This switch is designed to easily snap mount into a 0.039" (1 mm) (19 ga) thick material with a rectangular opening of 0.315" x 0.472" (8 mm x 12 mm).

Customized lever arms and spring torques can be designed for specific applications.

The device features TTL/LSTTL compatible logic level output which can drive up to 10 TTL loads over a voltage range from 4.5V to 16V.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature Range Operating Temperature Range	-40°C to +100°C -40°C to +100°C
Forward DC Current	50mA
Peak Forward Current (1µs pulse width, 300 pps)	
Reverse DC Voltage	
Power Dissipation	
Output Photologic™	
Supply Voltage, VCC	18V
Duration of Output Short To Vcc	1.00sec
Voltage at Output	30V
Low Level Output Current (sinking)	16mA
Power Dissipation	240mW ⁽²⁾
Notes:	

- (1) Derate linearly 1.33 mW/°C above 25°C.
- (2) Derate linearly 2.50 mW/°C above 30°C.

Types OPB695, OPB696, OPB697, OPB698 Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS		
Input Diode								
VF	Forward Voltage			1.6	V	I _F = 10mA		
l _R	Reverse Current			100	μА	V _R = 3.0V		
Output Ph								
Vcc	Operating D.C. Supply Voltage							
	OPB695A, 696A, 697A, 698A	4.5	5.0	8.0	V			
	OPB695B, 696B, 697B, 698B	8.0	12.0	13.5	V			
	OPB695C, 696C, 697C, 698C	13.5	15.0	16.0	V			
lcc	Operating Supply Current		20.0	30.0	mA			
Voн	High Level Output Voltage:							
	Buffer, 10K Pull-up OPB695A/B/C	Vcc-1.5			V	I _{OH} = 100μA, Unblocked		
	Inverter, 10K Pull-up OPB697A/B/C	Vcc-1.5			V	Іон = 100µA, Blocked ⁽⁴⁾		
Іон	High Level Output Current:							
	Buffer, Open-Collector OPB696A			100	μΑ	$V_{CC} = 4.5$ to 8V, $V_{OH} = 30$ V, Unblocked		
	OPB696B			100	μΑ	$V_{CC} = 8$ to 13.5V, $V_{OH} = 30$ V, Unblocked		
	OPB696C			100	μΑ	V _{CC} = 13.5 to 16V, V _{OH} = 30V, Unblocked		
	Inverter, Open-Collector OPB698A			100	μΑ	V _{CC} = 4.5 to 8V, V _{OH} = 30V, Blocked ⁽⁴⁾		
	OPB698B			100	μA	V _{CC} = 8 to 13.5V, V _{OH} = 30V, Blocked ⁽⁴⁾		
	OPB698C			100	μΑ	V _{CC} = 13.5 to 16V, V _{OH} = 30V, Blocked ⁽⁴⁾		
V_{OL}	Low Level Output Voltage:					V _{CC} = 4.5 to 8V, I _{OL} = 16mA, Blocked ⁽⁴⁾		
	Buffer, 10K Pull-up OPB695A/B/C			0.4	V	$V_{CC} = 8 \text{ to } 13.5 \text{V}, I_{OL} = 16 \text{mA}, Blocked^{(4)}$		
	Buffer, Open-Collector OPB696A/B/C					V _{CC} = 13.5 to 16V, I _{OL} = 16mA, Blocked ⁽⁴⁾		
	Inverter, 10K Pull-up OPB697A/B/C					V _{CC} = 4.5 to 8V, I _{OL} = 16mA, Unblocked		
	Inverter, Open-Collector OPB698A/B/C			0.4	V	$V_{CC} = 8$ to 13.5V, $I_{OL} = 16$ mA, Unblocked		
						$V_{CC} = 13.5$ to 16V, $I_{OL} = 16$ mA, Unblocked		

⁽⁴⁾ Test requires lever arm in "blocked" position .

SWITCHING TEST CURVE FOR BUFFERS

SWITCHING TEST CURVE FOR INVERTERS

LED: f=10 kHz. D.C.=50%

Types OPB695, OPB696, OPB697, OPB698 Series

Typical Performance Curves

SLOTTED OPTICAL SWITCHES

Rise Time vs Output Load vs Ambient Temperature

T_A - Ambient Temperature - °C

Typical Thermal Derating Curve

T_A - Ambient Temperature - °C

PART NUMBER GUIDE

OPB 6 9 X X

Electrical Specification Variations:

- 5 Buffer, 10K Pull-up
- 6 Buffer, Open-Collector
- 7 Inverter, 10K Pull-up
- 8 Inverter, Open-Collector

Wide Gap Slotted Optical Switches Types OPB800L, OPB810L Series

Features

- 0.375" wide gap
- Choice of aperture size
- Choice of minimum photocurrent
- Choice of opaque or IR transmissive shells
- 0.570" lead spacing

Description

The OPB800L/OPB810L series of wide gap slotted switches provides the design engineer with the flexibility of a custom device from a standard product line. Building from a standard housing utilizing a .375" wide slot, the user can specify (1) electrical output parameters, (2) discrete shell material and (3) aperture width. Available with wire leads as OPB800W/OPB810W.

Replaces

KT800L - KT810L series

Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unless otherwise noted)

Storage and Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current 30mA
Power Dissipation
Notes:

- (1) Derate linearly 1.67mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) All parameters tested using pulse technique.
- (4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Types OPB800L, OPB810L Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAME	TER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode						
VF	Forward Voltage			1.7	V	I _F = 20mA
l _R	Reverse Current			100	μА	V _R = 2.0V
Output Photo	otransistor					
V _{(BR)CEO}	Collector-Emitter Break	down Voltage	30		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0		٧	I _E = 100μA
ICEO	Collector-Emitter Dark Current			100	nA	V _{CE} = 10.0V
Coupled						
VCE(SAT)	Collector-Emitter Satura Parameter A Parameter B Parameter C	ation Voltage OPB800L / OPB810L OPB801L / OPB811L OPB802L / OPB812L		0.4 0.4 0.6	V V V	I _C = 250μA, I _F = 20mA I _C = 500μA, I _F = 10mA I _C = 1800μA, I _F = 20mA
IC(ON)	On-State Collector Curr Parameter A Parameter B Parameter C	OPB800L / OPB810L OPB801L / OPB811L OPB802L / OPB812L	500 1000 1800		μΑ μΑ μΑ	V _{CE} = 10.0V, I _F = 20.0mA V _{CE} = 5.0V, I _F = 10.0mA V _{CE} = 0.6V, I _F = 20.0mA

Housing

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed only on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic with aperture openings for maximum protection against ambient light.

Types OPB800L, OPB810L Series

PART NUMBER GUIDE

Mechanical And Electrical Specification Variations

- 0 Electrical Parameter A
- 1 Electrical Parameter B
- 2 Electrical Parameter C

^{*}Assemblies with 0.010" apertures are currently available with electrical parameter "A" only.

Types OPB800L, OPB810L Series

Typical Performance Curves

Forward Current vs Forward Voltage Input Diode

Relative Output Current vs Time

Collector Dark Current

Rise and Fall Time vs Load Resistance

Reduction in Output Current Due to LED Heating vs Forward Current

Normalized Output Current vs Input Current

All Part Numbers Ending in "1"

Wide Gap Slotted Optical Switches Types OPB800W, OPB810W Series

Features

- · Choice of aperture size
- · Choice of minimum photocurrent
- Choice of opaque or IR transmissive shells
- 24" min 26 AWG PVC lead wires

Description

The OPB800W/OPB810W series of wide gap slotted switches provides the design engineer with the flexibility of a custom device from a standard product line. Building from a standard housing utilizing a .375" wide slot, the user can specify (1) electrical output parameters, (2) discrete shell material and (3) aperture width. Available with PC board mountable leads as OPB800L/OPB810L.

Replaces

KT800W - KT810W series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input Diode
Forward DC Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes

Storage and Operating Temperature Range -40°C to +80°C

- (1) Derate linearly 1.82mW/°C above 25°C.
- (2) All parameters tested using pulse technique.
- (3) Wire terminations 24" of 7 strand, 26 AWG, UL 1429 insulated wire on each terminal. The devices incorporate a wire strain relief at the housing surface. The insulation functions and colors are:

RED - IRED Anode BLACK - IRED Cathode WHITE - Phototransistor Collector GREEN - Phototransistor Emitter

Other wire lengths and/or colors differing from the standard series are available.

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

SLOTTED OPTICAL SWITCHES

Types OPB800W, OPB810W Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMET	TER .	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode						
V _F	Forward Voltage			1.7	V	I _F = 20mA
IR	Reverse Current			100	μА	V _R = 2.0V
Output Photo	otransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current			100	nA	V _{CE} = 10.0V
Coupled						
VCE(SAT)	Collector-Emitter Satura			T	7	
, ,	Parameter A	OPB800W / OPB810W		0.4	V	Ic = 250μA, IF = 20mA
	Parameter B	OPB801W / OPB811W	1	0.4	V	Ic = 500μA, I _F = 10mA
	Parameter C	OPB802W / OPB812W		0.6	V	I _C = 1800μA, I _F = 20mA
IC(ON)	On-State Collector Curre	ent		1		
, ,	Parameter A	OPB800W / OPB810W	500	1	μA	V _{CE} = 10.0V, I _F = 20.0mA
	Parameter B	OPB801W / OPB811W	1000		μA	$V_{CE} = 5.0V$, $I_{F} = 10.0mA$
	Parameter C	OPB802W / OPB812W	1800		μA	$V_{CE} = 0.6V$, $I_F = 20.0mA$

Housing

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed only on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic with aperture openings for maximum protection against ambient light.

Types OPB800W, OPB810W Series

PART NUMBER GUIDE

Mechanical And Electrical Specification Variations

- 0 Electrical Parameter A
- 1 Electrical Parameter B
- 2 Electrical Parameter C

^{*}Assemblies with 0.010" apertures are currently available with electrical parameter "A" only.

Types OPB800W, OPB810W Series

Typical Performance Curves

Normalized Output Current vs Ambient Temperature

Forward Current
vs Forward Voltage Input Diode

Relative Output Current vs Time

Collector Dark Current vs Ambient Temperature

Rise and Fall Time vs Load Resistance

Reduction in Output Current Due to LED Heating vs Forward Current

Normalized Output Current vs Input Current

All Part Numbers Ending in "1"

4000 .

--0-

Slotted Optical Switch Type OPB804

Features

- · Non-contact switching
- · Printed circuit board mounting
- 0.155" wide slot
- 0.300" lead spacing

Description

The OPB804 consists of an infrared emitting diode and an NPN silicon phototransistor mounted in a low cost plastic housing on opposite sides of a 0.155" (3.94mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Continuous Forward Current
Peak Forward Current (1 µs pulse width, 300 pps)
Reverse Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Derate linearly 1.67mW/°C above 25°C.
- (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) All parameters tested using pulse technique.

Typical Performance Curves

Type OPB804

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
V _F	Forward Voltage		1.70	٧	l _F = 20mA
lR	Reverse Current		100	μΑ	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		٧	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10.0V, I _F = 0, E _e = 0
Coupled					
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.40	V	$I_C = 250\mu A$, $I_F = 20mA$
Ic(ON)	On-State Collector Current	500		μА	V _{CE} = 10.0V, I _F = 20mA

Typical Performance Curves

Rise and Fall Time

Slotted Optical Switch Type OPB806

Features

- Non-contact switching
- Base or side mounting
- 0.125" wide slot
- Fast switching speed

Description

The OPB806 consists of an infrared emitting diode and an NPN silicon phototransistor mounted in a low cost plastic housing on opposite sides of a 0.125" (3.18mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature
Input Diode
Continuous Forward Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Derate linearly 1.67mW/°C above 25°C.
- (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) All parameters tested using pulse technique.

Typical Performance Curves

Type OPB806

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
VF	Forward Voltage		1.70	V	I _F = 20mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Pho	totransistor			•	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 100μA,
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA,
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10.0V, I _F = 0, E _e = 0
Coupled					
V _{CE} (SAT)	Collector-Emitter Saturation Voltage		0.50	V	I _C = 200μA, I _F = 20mA
Ic(ON)	On-State Collector Current	0.40		mA	V _{CE} = 0.5V, I _F = 20mA

Slotted Optical Switch Type OPB818

Features

- Non-contacting switching
- For direct PC board or dual-in-line socket mounting
- 0.400" lead spacing
- 0.200" wide slot

Description

The OPB818 consists of an infrared emitting diode and an NPN silicon phototransistor mounted in a low cost black plastic housing on opposite sides of a 0.200" (5.08mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot. The OPB818 is designed for direct soldering into PC Boards or mounting in standard dual-in-line sockets.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature
iron]
Input Diode
Continuous Forward Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Nata

Notes:

OP8818

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when wave soldering.
 - 2) Derate linearly 1.67mW/°C above 25°C.
- (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) All parameters tested using pulse technique.

Typical Performance Curves

Type OPB818

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
V _F	Forward Voltage		1.70	٧	I _F = 20mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		٧	I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		٧	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled					
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.40	V	$I_C = 50\mu A$, $I_F = 20mA$
Ic(ON)	On-State Collector Current	100		μА	V _{CE} = 10.0V, I _F = 20mA

Typical Performance Curves

Reduction in Output Current Due to

Slotted Optical Switches Types OPB820, OPB820S10, OPB820S5, OPB820S3

Features

- Non-contact switching
- Three standard aperture sizes for high resolution
- Low profile
- 0.080" wide gap
- 0.275" lead spacing

Description

The OPB820, OPB820S10, OPB820S5, and OPB820S3 each consist of an infrared emitting diode and an NPN silicon phototransistor mounted in a low cost black plastic housing on opposite sides of a 0.080" (2.03mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot. All assemblies have .040" wide apertures located in front of the infrared diode. For phototransistor side aperture size, see chart below. Available with 4.5" min, 26 AWG wires as OPB821 series.

OPB#	Phototransistor Aperture Width
OPB820	.040"
OPB820S10	.010"
OPB820S5	.005"
OPB820S3	.003"

Replaces

OPB820S12, OPB820S7, KT8155

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Continuous Forward Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Notes

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.67mW/°C above 25°C.
- (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) All parameters tested using pulse technique.

Types OPB820, OPB820S10, OPB820S5, OPB820S3

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER			TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	•						
V _F	Forward Voltage				1.70	V	I _F = 20mA
IR	Reverse Current				100	μА	V _R = 2.0V
Output Pho	totransistor						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage			30		V	I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage			5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current				100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_{\theta} = 0$
Coupled							
VCE(SAT)	Collector-Emitter Saturation Voltage	OPB820 OPB820S10 OPB820S5 OPB820S3			0.4 0.4 0.4 0.4	V V V	I _C = 250μA, I _F = 20mA I _C = 250μA, I _F = 20mA I _C = 125μA, I _F = 20mA I _C = 40μA, I _F = 20mA
Ic(on)	On-State Collector Current	OPB820 OPB820S10 OPB820S5 OPB820S3	500 400 300 60			μΑ μΑ μΑ μΑ	V _{CE} = 5.0V, I _F = 20mA V _{CE} = 5.0V, I _F = 20mA V _{CE} = 5.0V, I _F = 20mA V _{CE} = 5.0V, I _F = 20mA

Typical Performance Curves

OPB820S12, OPB820S7, OPB820S5

All Assemblies Forward Current

vs Forward Voltage Input Diode $\begin{array}{c} 40\\ 35\\ 30\\ 25\\ 1\\ 10\\ 5\\ 0\\ \hline \end{array}$

IF - FORWARD CURRENT - mA

Reduction in Output Current Due to

Slotted Optical Switches Types OPB821, OPB821S10, OPB821S5, OPB821S3

Features

- Three standard aperture sizes for high resolution
- Low profile, 0.080" wide slot
- 4.5" min, 26 AWG wire leads
- TX-TXV process available (see Hi-Rel section)

Description

The OPB821series each consist of an infrared emitting diode and an NPN silicon phototransistor mounted in a low cost black plastic housing on opposite sides of a 0.080" (2.03mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot. All assemblies have .040" wide apertures located in front of the infrared diode. For phototransistor side aperture size, see chart below. A minimum of 4.5" (114.3mm) lead wires ease assembly where PC board mounting is not practical. Available with PC board mountable leads as OPB820 cariae

OPB#	Phototransistor Aperture Width
OPB821	.040"
OPB821S10	.010"
OPB821S5	.005"
OPB821S3	.003"

Replaces

OPB821S12, OPB821S7, KT8165

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range	-40°C to +80°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. v	with soldering
iron]	240°C ⁽¹⁾
Input Diode	
Continuous Forward Current	50mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Reverse Voltage	
Power Dissipation	100mW ⁽²⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5.0V
Power Dissipation	100mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (2) Derate linearly 1.82mW/°C above 25°C.
- (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) All parameters tested using pulse technique.

Types OPB821, OPB821S10, OPB821S5, OPB821S3

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS	
Input Diode	•					
VF	Forward Voltage			1.70	V	I _F = 20mA
IR	Reverse Current		100	μΑ	V _R = 2.0V	
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown	/oltage	30		V	I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0		V	l _E = 100μA
ICEO	Collector-Emitter Dark Current			100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled						
V _{CE} (SAT)	Collector-Emitter Saturation Voltage	OPB821 OPB821S10 OPB821S5 OPB821S3		0.4 0.4 0.4 0.4	V V V	I _C = 250μA, I _F = 20mA I _C = 250μA, I _F = 20mA I _C = 125μA, I _F = 20mA I _C = 40μA, I _F = 20mA
Ic(on)	On-State Collector Current	OPB821 OPB821S10 OPB821S5 OPB821S3	500 400 300 60		μΑ μΑ μΑ μΑ	V _{CE} = 5.0V, I _F = 20mA V _{CE} = 5.0V, I _F = 20mA V _{CE} = 5.0V, I _F = 20mA V _{CE} = 5.0V, I _F = 20mA

Typical Performance Curves

OPB821, OPB821S10, OPB821S5, OPB821S3

Normalized Output Current

Rise and Fall Time vs Load Resistance

Normalized Output Current vs Ambient Temperature

All Assemblies

Forward Current vs Forward Voltage Input Diode

Relative Output Current

Reduction in Output Current Due to LED Heating vs Forward Current

Dual Channel Slotted Optical Switches Types OPB822S, OPB822SD

Features

- Dual channels side-by-side
- 0.090" wide slot
- Non-contact switching
- Single or double apertures for high resolution
- OPB822S (apertures on sensors only)
- OPB822SD (apertures on both emitters and sensors)

Description

The OPB822S and OPB822SD each consist of two infrared emitting diodes and two NPN silicon phototransistors mounted in a "side-by-side" configuration on opposite sides of a 0.090" (2.29mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the device slot. The OPB822S has 0.010" (.25mm) by 0.080" (2.03mm) apertures in front of both phototransistors. The OPB822SD has the same sized apertures in front of both phototransistors and both emitters. Dual channels enable direction of travel sensing. The low cost IR transmissive plastic housing reduces possible interference from ambient light and provides dust and dirt protection.

Dual channel (over/under) configuration available as OPB826 series.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature -40°C to $+85^{\circ}\text{C}$ Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]. $240^{\circ}\text{C}^{(1)}$ Input Diode Continuous Forward Current 50mA Peak Forward Current (1 μs pulse width, 300 pps) 3.0A Reverse Voltage 2.0V Power Dissipation 100mW⁽²⁾ Output Phototransistor(s) Collector-Emitter Voltage 30V Emitter-Collector Voltage 5.0V Power Dissipation 100mW⁽²⁾

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Derate linearly 1.67mW/°C above 25°C.

Notes:

- (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) All parameters tested using pulse technique.

Typical Performance Curves Normalized Output Current vs. Forward Current

Types OPB822S, OPB822SD

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER			MAX	UNITS	TEST CONDITIONS
Input Diode	•					
V _F	Forward Voltage			1.70	V	I _F = 20mA
IR	Reverse Current			100	μА	V _R = 2.0V
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	!	30		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0		V	l _E = 100μA
ICEO	Collector-Emitter Dark Current			100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled						
VCE(SAT)	Collector-Emitter Saturation Voltage	OPB822S OPB822SD		0.40 0.40	V V	$I_C = 125\mu A, I_F = 20mA$ $I_C = 50\mu A, I_F = 20mA$
I _{C(ON)}	On-State Collector Current	OPB822S OPB822SD	250 100		μA μA	V _{CE} = 10.0V, I _F = 20mA V _{CE} = 10.0V, I _F = 20mA

Typical Performance Curves (All Assemblies)

Reduction in Output Current Due to

Slotted Optical Switches Types OPB825, OPB825A, OPB825B

Features

- · Non-contact switching
- 0.160" wide slot
- 0.300" lead spacing
- Fast switching speed

Description

The OPB825, OPB825A, and OPB825B each consist of an infrared emitting diode and an NPN silicon phototransistor mounted in a low cost black plastic housing on opposite sides of a 0.160" (4.06mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot. The OPB825 has no mounting tabs and is intended for direct insertion into PC boards or dual-in-line sockets. The OPB825A has a single mounting tab on the phototransistor side. The OPB825B has mounting tabs on both sides.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature -40°C to $+85^{\circ}\text{C}$ Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]. $240^{\circ}\text{C}^{(1)}$ Input Diode Continuous Forward Current 50mA Peak Forward Current (1 μ s pulse width, 300 pps) 3.0A Reverse Voltage 2.0V Power Dissipation. $100\text{mW}^{(2)}$ Output Phototransistor Collector-Emitter Voltage 30V Emitter-Collector Voltage 5.0V Power Dissipation. $100\text{mW}^{(2)}$

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (2) Derate linearly 1.67mW/°C above 25°C.
- (3) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) All parameters tested using pulse technique.

Typical Performance Curves

Notes:

Types OPB825, OPB825A, OPB825B

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
VF	Forward Voltage		1.70	V	I _F = 20mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10.0V, I _F = 0, E _e = 0
Coupled					
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.40	V	I _C = 250μA, I _F = 20mA
Ic(ON)	On-State Collector Current	500		μΑ	V _{CE} = 10.0V, I _F = 20mA

Typical Performance Curves

Dual Channel Slotted Optical Switches Types OPB826S, OPB826SD

- · Dual channels over/under
- Direction of travel sensing
- Single or double apertures for high resolution
- 0.100" wide slot
- OPB826S (apertures on sensors only)
- OPB826SD (apertures on both emitters and sensors)

Description

The OPB826S and OPB826SD each consist of two infrared emitting diodes and two NPN silicon phototransistors mounted in an over/under configuration on opposite sides of a 0.100" (2.54mm) wide slot. Phototransistor switching takes place when an opaque object passes through the slot. The OPB826S has 0.010" (.25mm) by 0.040" (1.02mm) apertures in front of both phototransistors. The OPB826SD has the same sized apertures in front of both phototransistors and both emitters. Dual channels enable direction of travel sensing. The low cost IR transmissive plastic housing reduces possible interference from ambient light and provides dust and dirt protection.

Dual channel (side-by-side) configuration available as OPB822 series.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature
Input Diode
Continuous Forward Current
Peak Forward Current (1 μs pulse width, 300 pps) 3.0A
Reverse Voltage
Power Dissipation
Output Phototransistor (s)
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Notes:
(1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.

- (2) Derate linearly 1.67mW/°C above 25°C.
 - Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (4) All parameters tested using pulse technique.

Typical Performance Curves

Forward Current vs Forward Voltage Input Diode

Types OPB826S, OPB826SD

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
nput Diode	1					
V _F	Forward Voltage			1.70	V	I _F = 20mA
IR	Reverse Current			100	μΑ	V _R = 2.0V
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage	30		V	Ic = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown V	oltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10.0V, I _F = 0, E _e = 0	
Coupled						
VCE(SAT)	Collector-Emitter Saturation Voltage	OPB826S OPB826SD		0.40 0.40	V	I _C = 125μA, I _F = 20mA I _C = 50μA, I _F = 20mA
I _{C(ON)}	On-State Collector Current	OPB826S OPB826SD	250 100		μ Α μ Α	V _{CE} = 10.0V, I _F = 20mA V _{CE} = 10.0V, I _F = 20mA
l _{CX1}	Crosstalk	OPB826S		20	μА	I _{F1} = 0mA, I _{F2} = 20mA, V _{CE} = 10.0V
		OPB826SD		10	μА	I _{F1} = 0mA, I _{F2} = 20mA, V _{CE} = 10.0V
l _{CX2}	Crosstalk	OPB826S		20	μА	I _{F1} = 20mA, I _{F2} = 0mA, V _{CE} = 10.0V
		OPB826SD		10	μΑ	I _{F1} = 20mA, I _{F2} = 0mA, V _{CE} = 10.0V

Typical Performance Curves

Normalized Output Current vs Input Current

Relative Collector Dark Current vs Ambient Temperature

Normalized Output Current vs Ambient Temperature

Reduction in Output Current Due to LED Heating vs Forward Current

Relative Output Current vs Time

Rise and Fall Time vs Load Resistance

Slotted Optical Switches Types OPB827A, OPB827B, OPB827C, OPB827D

Features

- Printed circuit board mounting
- 0.125" wide slot
- 0.300" lead spacing
- · Inexpensive plastic housing

Description

The OPB827 series consists of an infrared emitting diode and an NPN silicon phototransistor mounted on opposite sides of a 0.125" wide slot. The OPB827A has an IR transmissive housing. The OPB827B has an IR transmissive housing with an 0.010' aperture over the phototransistor. The OPB827C has an opaque housing with a molded 0.060" aperture located in front of the phototransistor. The OPB827D has an opaque housing with a molded 0.010" aperture located over the phototransistor. The apertures provide for improved resolution. Phototransistor switching takes place whenever an opaque object passes through the slot.

Other configurations available: OPB828 = 0.220" lead spacing OPB829 = 24", 26 AWG wire leads

Replaces

OPB827A K8100 OPB827B K8110 OPB827C OPB816/817 OPB827D K8140

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range
Input Diode
Forward DC Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes:

(1) Derate Linearly 1.67mW/°C above 25°C.

(2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.

(3) All parameters tested using pulse technique.

(4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Descriptions						
Туре	Housing	Phototransistor Aperture				
OPB827A	IR Transmissive	None				
OPB827B	IR Transmissive	0.010"				
OPB827C	Opaque	0.060"				
OPB827D	Opaque	0.010"				

Carrollton, Texas 75006

Types OPB827A, OPB827B, OPB827C, OPB827D

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
nput Diode					
VF	Forward Voltage		1.7	V	I _F = 20mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Photo	·				
V _(BR) CEO	Collector-Emitter Breakdown Voltage	30		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled					
V _{CE(SAT)}	Saturation Voltage		0.6	V	I _C = 1800μA, I _F = 20mA
Ic(on)	On-State Collector Current	1800		μА	Vce = 0.6V, IF = 20mA

On-State Collector Current 1800 μA $V_{CE} = 0.6V, I_{F} = 20mA$ **Typical Performance Curves** Normalized Cutnut Current Normalized Output Current **Forward Current** vs Forward Voltage Input Diode vs Forward Current vs Ambient Temperature VCE = 10 V **IORMALIZED OUTPUT CURRENT DUTPUT CURRENT** ORMALIZED 2∩ m∆ 15 20 25 30 35 40 n s - 20 IF - FORWARD CURRENT - mA Rise and Fall Time **Relative Output Current Collector Dark Current** vs Load Resistance vs Ambient Temperature vs Time IF = 20 mA (50% Duty Cycl VCC = 5 V CURRENT TA = 25°C DARK tr, tf - RISE AND FALL TIME -**DUTPUT CURRENT** 10 V_{CE} = 10 V COLLECTOR RELATIVE C 1K RL – LOAD RESISTANCE 1,000 t- TIME - HOURS -25 0 25 50 TA - AMBIENT TEMPERATURE -All Part Numbers Ending in "B and "D" Rise and Fall Time **Normalized Output Current Reduction in Output Current Due to** vs Load Resistance vs Input Current **LED Heating vs Forward Current** V_{CE} = 10 V 201 35 10 St Ir = 20 mA REDUCTION IN OUTPUT CURRENT DUE TO LED HEATING - % +2σ tr, tf - RISE AND FALL TIME 80 DUTPUT IORMALIZED IF = 20 mA (50% VCC = 5 V Rise Time Fall Time 15 20 25 30 35 40 - FORWARD CURRENT - mA 1K RL – LOAD RESISTANCE – 20 25 30 5K

Optek reserves the right to make chaiges at any time in order to improve design and to supply the best product possible.

IF - FORWARD CURRENT - mA

4000 .

Slotted Optical Switches Types OPB828A, OPB828B, OPB828C, OPB828D

Features

- Printed circuit board mounting
- 0.125" wide slot
- 0.220" lead spacing
- · Inexpensive plastic housing

Description

The OPB828 series consists of an infrared emitting diode and an NPN silicon phototransistor mounted on opposite sides of a .125" wide slot. The OPB828A has an IR transmissive housing. The OPB828B has an IR transmissive housing with an 0.010" aperture located in front of the phototransistor. The OPB828C has an opaque housing with a molded 0.060" aperture located in front of the phototransistor. The OPB828D has an opaque housing with a molded 0.010" aperture located in front of the phototransistor. Phototransistor switching takes place whenever an opaque object passes through the slot.

Other configurations available: OPB827 = 0.300" lead spacing OPB829 = 24" min. 26 AWG wire leads

Replaces

OPB828A	K8101
OPB828B	K8111
OPB828C	K8181
OPB828D	K8180

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes:

(1) Derate Linearly 1.67mW/°C above 25°C.

(2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.

(3) All parameters tested using pulse technique.

(4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Descriptions						
Туре	Housing	Phototransistor Aperture				
OPB828A	IR Transmissive	None				
OPB828B	IR Transmissive	0.010"				
OPB828C	Opaque	0.060"				
OPB828D	Opaque	0.010"				

Types OPB828A, OPB828B, OPB828C, OPB828D

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode					
VF	Forward Voltage		1.7	V	I _F = 20mA
lR	Reverse Current		100	μА	V _R = 2.0V
Output Phote	otransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled					
VCE(SAT)	Saturation Voltage	1	0.6	V	I _C = 1800μA, I _F = 20mA
Icioni	On-State Collector Current	1800		пА	Vc= = 0.6V l= = 20mA

Slotted Optical Switches Types OPB829A, OPB829B, OPB829C, OPB829D

Features

- 24" min. #26 AWG wire leads
- 0.125" wide slot
- Inexpensive plastic housing

Description

The OPB829 series consists of an infrared emitting diode and an NPN silicon phototransistor mounted on opposite sides of a .125" wide slot. The OPB829A has an IR transmissive housing. The OPB829B has an IR transmissive housing with an 0.010" aperture located in front of the phototransistor. The OPB829C has an opaque housing with a molded 0.060" aperture located in front of the phototransistor. The OPB829D has an opaque housing with a molded 0.010" aperture located in front of the phototransistor. Phototransistor switching takes place whenever an opaque object passes through the slot.

Other configurations available: OPB827 = 0.300 lead spacing OPB828 = 0.220 lead spacing

Replaces

OPB829A K8171 OPB829C OPB823A/OPB824A

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Abbellate maximum right (17 = 20 o dimess sine messa)
Storage and Operating Temperature Range
Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width , 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation 100mW ⁽¹⁾
Notes:

- (1) Derate Linearly 1.82mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max, when flow soldering.
- All parameters tested using pulse technique.
 Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Descriptions						
Туре	Housing	Phototransistor Aperture				
OPB829A	IR Transmissive	None				
OPB829B	IR Transmissive	0.010"				
OPB829C	Opaque	0.060"				
OPB829D	Opaque	0.010"				

Types OPB829A, OPB829B, OPB829C, OPB829D

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
nput Diode					
VF	Forward Voltage		1.7	V	I _F = 20mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Photo V(BR)CEO	Collector-Emitter Breakdown Voltage	30	1	V	I _C = 1.0mA
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled					
VCE(SAT)	Saturation Voltage		0.6	V	I _C = 1800μA, I _F = 20mA

1800

On-State Collector Current

IC(ON)

 $V_{CE} = 0.6V$, $I_F = 20mA$

μΑ

Slotted Optical Switches Types OPB830L, OPB840L Series

Features

- 0.125" wide slot
- Choice of aperture
- Choice of opaque or IR transmissive shell material
- Side mounting configuration
- Choice of lead spacing

Description

This series of slotted switches provides the design engineer with the flexibility of a custom device from a standard product line. Building from a standard housing with a .125" wide slot, the user can specify (1) electrical output parameters, (2) choice of lead spacing, (3) discrete shell material and (4) aperture width.

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed only on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic with aperture openings for maximum protection against ambient light.

Replaces

KT830/KT840 Series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes:
(1) Derate linearly 1.67mW/°C above 25°C.

- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) All parameters tested using pulse technique.
- (4) Lead spacing is .220" or .320". Leads are 0.20" sq and .425" long (min).
- (5) Methyl or isopropyl alcohols are recommended cleaning agents. Plastic housing may be soluble in chlorinated hydrocarbons and ketones.

Types OPB830L, OPB840L Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARA	METER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode						
VF	Forward Voltage			1.7	V	I _F = 20mA
lR	Reverse Current			100	μА	V _R = 2.0V
Output Photo	otransistor					
V _{(BR)CEO}	Collector-Emitter Br	eakdown Voltage	30		٧	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Br	eakdown Voltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Da	rk Current		100	nA	V _{CE} = 10V
Coupled						
VCE(SAT)	Saturation Voltage: Parameter A	OPB830L / OPB840L OPB835L / OPB845L		0.4	v	I _C = 400μA, I _F = 20mA
	Parameter B	OPB831L / OPB841L OPB836L / OPB846L		0.4	V	I _C = 800μA, I _F = 10mA
	Parameter C	OPB832L / OPB842L OPB837L / OPB847L		0.6	V	I _C = 1800μA, I _F = 20mA
IC(ON)	On-State Collector (Parameter A	Ourrent: OPB830L / OPB840L OPB835L / OPB845L	500		μА	V _{CE} = 10V, I _F = 20mA
	Parameter B	OPB831L / OPB841L OPB836L / OPB846L	1000		μΑ	V _{CE} = 5V, I _F = 10mA
	Parameter C	OPB832L / OPB842L OPB837L / OPB847L	1800		μΑ	V _{CE} = 0.6V, I _F = 20mA

Types OPB830L, OPB840L Series

PART NUMBER GUIDE

Electrical Specification Variations

- 0 Electrical Parameter A, 0.320" Lead Spacing
- 1 Electrical Parameter B, 0.320" Lead Spacing
- 2 Electrical Parameter C, 0.320" Lead Spacing
- 5 Electrical Parameter A, 0.220" Lead Spacing
- 6 Electrical Parameter B, 0.220" Lead Spacing
- 7 Electrical Parameter C, 0.220" Lead Spacing

^{*}Assemblies with dual 0.010" apertures are currently available with electrical parameter "A" only.

Types OPB830L, OPB840L Series

Typical Performance Curves

Normalized Output Current vs Forward Current

Forward Current vs Forward Voltage Input Diode

Relative Output Current

Collector Dark Current vs Ambient Temperature

Rise and Fall Time vs Load Resistance

Reduction in Output Current Due to LED Heating vs Forward Current

Normalized Output Current vs Input Current

All Part Numbers Ending in "1"

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

12-79

SLOT OPTIC SWITC

Slotted Optical Switches Types OPB830W, OPB840W Series

Features

- 0.125" wide slot
- Choice of aperture
- Choice of opaque or IR transmissive shell material
- Side mount configuration
- 24", 26AWG wire leads

Description

This series of slotted switches provides the design engineer with the flexibility of a custom device from a standard product line. Building from a standard housing with a .125" wide slot, the user can specify (1) Electrical output parameters, (2) discrete shell material and (3) aperture width.

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed only on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic with aperture openings for maximum protection against ambient light.

Replaces

KT830W/KT840W Series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range40°C to +80°C ⁽¹⁾ Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
Input Diode
Forward DC Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes:

- Derate linearly 1.82mW/°C above 25°C. (Maximum storage and operating temperature, limited by the temperature rating of the lead wires)
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) All parameters tested using pulse technique.
- (4) The OPB830W/OPB840W wire terminations are 24" of 7 strand, 26 AWG, UL 1429 insulated wire on each terminal. The devices incorporate a wire strain relief at the housing surface. The insulation colors and functions are:

Red - RED Anode Black - Ired Cathode White - Phototransistor Collector Green - Phototransistor Emitter

Other wire and/or colors are available. Contact your local representative or call the factory. (5) Methyl or isopropyl alcohols are recommended cleaning agents. Plastic housing may be soluble in chlorinated hydrocarbons and ketones.

SLOTTED OPTICAL SWITCHES

Types OPB830W, OPB840W Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS	
Input Diode	•					
VF	Forward Voltage		1.7	V	I _F = 20mA	
lR	Reverse Current		100	μА	V _R = 2.0V	
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 1.0mA	
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA	
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10V	
Coupled						
VCE(SAT)	Saturation Voltage: Parameter A OPB830W / OPB840W		0.4	v	I _C = 400μA, I _F = 20mA	
	Parameter B OPB831W / OPB841W		0.4	٧	Ic = 800μA, I _F = 10mA	
	Parameter C OPB832W / OPB842W		0.6	V	lc = 1800μA, l _F = 20mA	
IC(ON)	On-State Collector Current: Parameter A OPB830W / OPB840W	500		μА	V _{CE} = 10V, I _F = 20mA	
	Parameter B OPB831W / OPB841W	1000		μА	V _{CE} = 5V, I _F = 10mA	
	Parameter C OPB832W / OPB842W	1800		μА	V _{CE} = 0.6V, I _F = 20mA	

Types OPB830W, OPB840W Series

PART NUMBER GUIDE

- 0 Electrical Parameter A
- 1 Electrical Parameter B
- 2 Electrical Parameter C

^{*}Assemblies with dual 0.010" apertures are currently available with electrical parameter "A" only.

Types OPB830W, OPB840W Series

Typical Performance Curves

Normalized Output Current vs Forward Current

Normalized Output Current vs Ambient Temperature

Forward Current
vs Forward Voltage Input Diode

Relative Output Current

Collector Dark Current vs Ambient Temperature

Rise and Fall Time

Reduction in Output Current Due to LED Heating vs Forward Current

Normalized Output Current vs Input Current

All Part Numbers Ending in "1"

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

SLOTTED OPTICAL SWITCHES

Slotted Optical Switches Types OPB844A, OPB844B

Features

- Non-contact switching
- Printed circuit board mounting
- 0.125" wide slot
- 0.300" lead spacing
- Transmissive plastic housing

Description

The OPB844 series consists of an infrared emitting diode and an NPN silicon phototransistor mounted on opposite sides of a .125" wide slot. The inexpensive plastic housing is transmissive to infrared and provides for environmental protection from dust and contamination. The "A" option is unapertured, while the "B" version offers a .010" wide aperture located over the phototransistor for improved resolution. Phototransistor switching takes place whenever an opaque object passes through the slot.

Phototransisto	٥r
----------------	----

OPB#

Aperture Width

OPB844A

.040"

OPB844B

.010"

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range	
iron]	;(1)
Input Diode	
Forward DC Current 50n	nΑ
Peak Forward Current (1 μs pulse width, 300 pps)	DΑ
Reverse DC Voltage 2.0	
Power Dissipation	_[(2)
Output Phototransistor	
Collector-Emitter Voltage	VO
Emitter-Collector Voltage	ΟV
Collector DC Current	~ ^

- Notes: (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate Linearly 1.67mW/°C above 25°C.

Power Dissipation. .

- (3) All parameters tested using pulse technique.
- (4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Types OPB844A, OPB844B

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
nput Diode					
VF	Forward Voltage		1.7	V	I _F = 20mA
lR	Reverse Current		100	μА	V _R = 2.0V
Output Photo	otransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	l _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled					
VCE(SAT)	Saturation Voltage		0.6	V	I _C = 1800μA, I _F = 20mA
IC(ON)	On-State Collector Current	1800		μА	Vce = 0.6V, In = 20mA

15 20 25 30 IF - FORWARD CURRENT - mA

Slotted Optical Switches Types OPB845A, OPB845B

Features

- · Non-contact switching
- Printed circuit board mounting
- 0.125" wide slot
- 0.300" lead spacing
- Opaque plastic housing

Description

The OPB845 series consists of an infrared emitting diode and an NPN silicon phototransistor encased in an opaque housing on opposite sides of a .125" wide slot. The opaque housing, with molded apertures, provides protection in areas where ambient radiation may be a concern. The "A" option offers a .050" wide aperture molded in front of the phototransistor while the "B" version offers a .010" wide aperture.

Phototransistor
OPB# Aperture Width

OPB845A OPB845B 0.050" 0.010"

Storage and Operating Temperature Range
Input Diode
Forward DC Current
Peak Forward Current (1µs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes:
(4) DMA (1)

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate Linearly 1.67mW/°C above 25°C.
- (3) All parameters tested using pulse technique.
- (4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Types OPB845A, OPB845B

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode					
VF	Forward Voltage		1.7	V	I _F = 20mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Photo	otransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10.0V, I _F = 0, E _e = 0
Coupled					
VCE(SAT)	Saturation Voltage	T	0.6	V	I _C = 1800μA, I _F = 20mA

1800

IC(ON)

On-State Collector Current

Normalized Output Current

μΑ

V_{CE} = 0.6V, I_F = 20mA

12-87

Slotted Optical Switches Types OPB847, OPB848

Features

- Non-contact switching
- Apertured for high resolution
- Fast switching sped
- 0.300" lead spacing
- 0.100" wide slot
- TX-TXV process available (see Hi-Rel section)

Description

The OPB847 and OPB848 each consist of an infrared emitting diode and an NPN silicon phototransistor mounted in a low cost black plastic housing on opposite sides of a 0.100" (2.54mm) wide slot. Both devices have a 0.025" (0.635mm) by 0.06" (1.52mm) aperture in front of the phototransistor for high resolution position sensing.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]240°C ⁽¹⁾
Input Diode
Continuous Forward Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage 5.0V
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when wave soldering. (2) Derate linearly 1.67mW/°C above 25°C.
- (3) Methanol or isopropanol alcohols are recommended as cleaning agents.
- (4) All parameters tested using pulse technique.

Typical Performance Curves

Forward Current vs Forward Voltage Input Diodes

Types OPB847, OPB848

Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
V _F	Forward Voltage			1.70	٧	I _F = 20mA
IR	Reverse Current			100	μΑ	V _R = 2.0V
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30	1	٧	I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0		٧	I _E = 100μA
ICEO	Collector-Emitter Dark Current			100	nA	V _{CE} = 10.0V, I _F = 0, E _e = 0
Coupled						
VCE(SAT)	Collector-Emitter Saturation Voltage	OPB847 OPB848		0.40 0.40	V	I _C = 2.0mA, I _F = 20mA I _C = 0.50mA, I _F = 20mA
I _{C(ON)}	On-State Collector Current	OPB847 OPB848	4.0 1.0		mA mA	V _{CE} = 10.0V, I _F = 20mA V _{CE} = 10.0V, I _F = 20mA

Typical Performance Curves

Relative Output Current

Rise and Fall Time

Optical Flag Switch Type OPB850

Features

- Snap mounting
- Mechanical switch replacement
- · Four wires for electrical connections

Description

The OPB850 consists of an NPN phototransistor coupled with a gallium arsenide or gallium aluminum arsenide infrared emitting diode in a molded plastic housing. A lever arm actuated flag interrupts the light beam switching the transistor output between states that can readily drive logic gates.

The OPB850 is designed to replace conventional mechanical limit switches where long life and reliability are critical. This switch is designed to easily snap mount into a 0.039 inch (1 mm) (19 ga) thick material with a rectangular opening of 0.315 X 0.472 inch (8 X 12 mm).

Customized lever arms and spring torques can be designed for specific applications.

Storage and Operating Temperature Range40°C to	+80°C
Input Diode	
Reverse Voltage	2.0V
Continuous Forward Current	50mA
Peak Forward Current (1 µs pulse width, 300 pps)	3.0A
Power Dissipation	mW ⁽¹⁾
Output Phototransistor	
Collector-Emitter Voltage	. 30V
Emitter-Collector Voltage	
Collector DC Current	30mA
Power Dissipation	mW ⁽¹⁾
Notes:	

- (1) Derate linearly 1.82mW/°C above 25°C.
- (2) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (3) "On" condition or switch point exists when the lever arm is deflected clockwise 18° ± 3° from the rest position (20° from vertical) as shown in the figure.
- (4) "Off" condition exists when the lever arm is in the rest position (20° from vertical) as shown in the figure.
- (5) From the rest position to the switch point, lever torque measured at the end of the arm is 1.5
- grams max.

 (6) Wires are 26AWG, UL1061. The unterminated ends are stripped and tinned .150 inch (3.81 mm) nominally.
- (7) Flag clearance at maximum deflection.
- (8) Spring retention ribs nominally .015 (.38 mm) higher.
- (9) Holes in mounting bracket will accommodate 4/40 R.H.M.S.
- (10) All parameters tested using pulse technique.

Type OPB850

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
V _F	Forward Voltage		1.7	٧	I _F = 20mA
IR	Reverse Current		100	μА	$V_R = 2V$
Output Pho	totransistor				
V _(BR) CEO	Collector-Emitter Breakdown Voltage	30		V	$I_C = 100 \mu A$,
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA,
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10V, I _F = 0, E _e = 0
Coupled					
VCE(SAT)	Collector-Emitter Saturation Voltage		0.4	V	I _C = 500μA, I _F = 20mA
Ic(on)	On-State Collector Current	500		μА	V _{CE} = 10V, I _F = 20mA ⁽³⁾⁽⁵⁾
Ic(off)	Off-State Collector Current		10	μА	V _{CE} = 10V, I _F = 20mA ⁽⁴⁾

Typical Performance Curves

Normalized Output Current vs. Ambient Temperature

Forward Current vs. Forward Voltage

Relative Output Current vs. Time

Relative Collector Dark Current vs. Ambient Temperature

Reduction in Output Current Due to LED Heating vs. Forward Current

Slotted Optical Switches Types OPB852A1, OPB852A2, OPB852A3

Features

- Inexpensive opaque plastic housing
- 0.125" wide slot
- 0.290" lead spacing
- · Apertured for high resolution

Description

The OPB852A series of slotted optical switches consist of an infrared emitting diode and an NPN silicon phototransistor. They are mounted on opposite sides of a .125" wide slot. The emitter has a .050" X .050" molded-in aperture while the phototransistor has a .010" X .050" molded-in aperture.

Replaces

KT852A1, KT852A2, KT852A3

Storage and Operating Temperature Range	-40	၁°င	C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. v	vith	SO	ldering
iron]			240°C ⁽¹⁾
Input Diode			
Forward DC Current			. 40mA
Peak Forward Current (1 µs pulse width, 300 pps)			3.0A
Reverse DC Voltage			
Power Dissipation			100mW ⁽²⁾
Output Phototransistor			
Collector-Emitter Voltage			30V
Emitter-Collector Voltage			5.0V
Power Dissipation			100mW ⁽²⁾
Notes:			

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.67mW/°C above 25°C.
- (3) All parameters tested using pulse technique.
- (4) Methanol and isopropanol alcohols are recommended as cleaning agents. Housings are soluble in chlorinated hydrocarbons and ketones. Highly activated, water soluble fluxes may attack housings in some situations.

Types OPB852A1, OPB852A2, OPB852A3

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
VF	Forward Voltage			1.7	V	I _F = 20mA
IR	Reverse Current			100	μА	V _R = 2.0V
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown	Voltage	30		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown	Voltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Curre	nt		100	nA	V _{CE} = 10V
Coupled						
V _{CE} (SAT)	Saturation Voltage	OPB852A1 OPB852A2 OPB852A3		0.40 0.40 0.40	V V V	I _C = 500μA, I _F = 20mA I _C = 500μA, I _F = 20mA I _C = 1.8mA, I _F = 20mA
I _{C(ON)}	On-State Collector Current	OPB852A1 OPB852A2 OPB852A3	1.0 2.0 4.0		mA mA mA	V _{CE} = 5.0V, I _F = 20mA V _{CE} = 5.0V, I _F = 20mA V _{CE} = 5.0V, I _F = 20mA

Slotted Optical Switches Types OPB853A1, OPB853A2, OPB853A3

Features

- · Inexpensive opaque plastic housing
- 0.125" wide slot
- 0.290" lead spacing
- Apertured for high resolution
- Photodarlington output

Description

The OPB853A series of slotted optical switches consist of an infrared emitting diode and an NPN silicon photodarlington. They are mounted on opposite sides of a .125" wide slot. The emitter has a .050" X .050" molded-in aperture while the photodarlington has a .010" X .050" molded-in aperture.

Replaces

KT853A1, KT853A2, KT853A3

Storage and Operating Temperature Range	-40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	240°C ⁽¹⁾
Input Diode	
Forward DC Current	40mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Reverse DC Voltage	
Power Dissipation	100mW ⁽²⁾
Output Photodarlington	
Collector-Emitter Voltage	15V
Emitter-Collector Voltage	5.0 <u>V</u>
Power Dissipation	100mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.67mW/°C above 25°C.
- (3) All parameters tested using pulse technique.
- (4) Methanol and isopropanol alcohols are recommended as cleaning agents. Housings are soluble in chlorinated hydrocarbons and ketones. Highly activated, water soluble fluxes may attack housings in some situations.

SLOTTED OPTICAL SWITCHES

Types OPB853A1, OPB853A2, OPB853A3

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
VF	Forward Voltage		1.7	V	I _F = 20mA
IR	Reverse Current	1	100	μА	V _R = 2.0V
Output Pho	todarlington				_
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15		V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10V
Coupled					
VCE(SAT)	Saturation Voltage		1.0	٧	I _C = 1.8mA, I _F = 10mA
Ic(ON)	On-State Collector Current OPB853A1	2.5		mA	V _{CE} = 1.5V, I _F = 5mA
	OPB853A2	5.0		mA	V _{CE} = 1.5V, I _F = 5mA
	OPB853A3	10.0		mA	$V_{CE} = 1.5V, I_F = 5mA$

Slotted Optical Switches Types OPB854A1, OPB854B1

Features

- Non-contact switching
- Printed circuit board mounting
- 0.100" wide slot
- 0.300" lead spacing
- Opaque plastic housing

Description

The OPB854A1 and OPB854B1 each consist of an infrared emitting diode and an NPN silicon phototransistor mounted on opposite sides of a .100" wide slot in an inexpensive plastic housing. Switching of the phototransistor occurs whenever an opaque object passes through the slot. Also available with one mounting tab as OPB854A2 and OPB854B2, or with two mounting tabs as OPB854A3 and OPB854B3.

Replaces

KT850A, KT851A

Storage and Operating Temperature Range40°C to +85°C Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
Forward DC Current 50mA
Peak Forward Current (1 μs pulse width, 300 pps) 3.0A
Reverse DC Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.67mW/°C above 25°C.
- (3) All parameters tested using pulse technique.
- (4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Types OPB854A1, OPB854B1

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
Input Diode)					
VF	Forward Voltage			1.7	V	I _F = 20mA
IR	Reverse Current			10	μА	V _R = 2.0V
Output Pho	ototransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Vo	oltage	30		٧	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Vo	oltage	5.0		٧	I _E = 100μA
ICEO	Collector-Emitter Dark Current			100	nA	V _{CE} = 10V, I _F = 0, E _e = 0
Coupled						
V _{CE} (SAT)	Collector-Emitter Saturation Voltage	OPB854A1 OPB854B1		0.6 0.4	V	I _C = 2.0mA, I _F = 16mA I _C = 250μA, I _F = 20mA
I _{C(ON)}	On-State Collector Current	OPB854A1 OPB854B1	3.0 1.0		mA mA	V _{CE} = 1.0V, I _F = 16mA V _{CE} = 10.0V, I _F = 20mA

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

20 25

Slotted Optical Switches Types OPB854A2, OPB854B2

Features

- · Non-contact switching
- Printed circuit board mounting
- 0.100" wide slot
- 0.300" lead spacing
- Opaque plastic housing

Description

The OPB854A2 and OPB854B2 each consist of an infrared emitting diode and an NPN silicon phototransistor mounted on opposite sides of a .100" wide slot in an inexpensive plastic housing. Switching of the phototransistor occurs whenever an opaque object passes through the slot. Also available without mounting tab as OPB854A1 and OPB854B1, or with two mounting tabs as OPB854B3.

Replaces

KT850B, KT851B

Storage and Operating Temperature Range
Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps) 3.0A
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage 5.0V
Collector DC Current
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate Linearly 1.67mW/°C above 25°C.
- (3) All parameters tested using pulse technique.
- (4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Types OPB854A2, OPB854B2

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
Input Diode)					
V _F	Forward Voltage			1.7	٧	I _F = 20mA
IR	Reverse Current			10	μА	V _R = 2.0V
Output Pho	ototransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Vo	oltage	30	T	V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Vo	oltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current			100	nA	$V_{CE} = 10V, I_F = 0, E_e = 0$
Coupled						
VCE(SAT)	Collector-Emitter Saturation Voltage	OPB854A2 OPB854B2		0.6 0.4	V	I _C = 2.0mA, I _F = 16mA I _C = 250μA, I _F = 20mA
IC(ON)	On-State Collector Current	OPB854A2 OPB854B2	3.0 1.0		mA mA	V _{CE} = 1.0V, I _F = 16mA V _{CE} = 10.0V, I _F = 20mA

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

20 25 30 IF - FORWARD CURRENT - mA

Slotted Optical Switches Types OPB854A3, OPB854B3

Features

- Non-contact switching
- Printed circuit board mounting
- 0.100" wide slot
- 0.300" lead spacing
- · Opaque plastic housing

Description

The OPB854A3 and OPB854B3 each consist of an infrared emitting diode and an NPN silicon phototransistor mounted on opposite sides of a .100" wide slot in an inexpensive plastic housing. Switching of the phototransistor occurs whenever an opaque object passes through the slot. Also available without mounting tab as OPB854A1 and OPB854B1, or with one mounting tab as OPB854B2 and OPB854B2.

Replaces

KT850C, KT851C

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate Linearly 1.67mW/°C above 25°C.
- (3) All parameters tested using pulse technique.
- (4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Types OPB854A3, OPB854B3

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	1					
VF	Forward Voltage			1.7	٧	I _F = 20mA
lR	Reverse Current			10	μА	V _R = 2.0V
Output Pho	totransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Vo	ltage	30		٧	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Vo	ltage	5.0		V	I _E = 100μA
ICEO	Collector-Emitter Dark Current			100	nA	$V_{CE} = 10V, I_F = 0, E_e = 0$
Coupled						
VCE(SAT)	Collector-Emitter Saturation Voltage	OPB854A3 OPB854B3		0.6 0.4	V	l _C = 2.0mA, l _F = 16mA l _C = 250μA, l _F = 20mA
Ic(ON)	On-State Collector Current	OPB854A3 OPB854B3	3.0 1.0		mA mA	V _{CE} = 1.0V, I _F = 16mA V _{CE} = 10.0V, I _F = 20mA

Typical Performance Curves Normalized Output Current vs Forward Current NORMALIZED OUTPUT CURRENT 60 15 20 25 30 35 40 IF - FORWARD CURRENT - mA **Relative Output Current** vs Time

Forward Current

Slotted Optical Switch Type OPB855

Features

- · Low profile .270" overall height
- Printed circuit board mounting
- 0.205" wide slot
- 0.380" lead spacing
- Opaque plastic housing

Description

The OPB855 low profile optical switch consists of an infrared emitting diode and an NPN silicon phototransistor mounted on opposite sides of a .200" wide slot in an inexpensive plastic housing. Switching of the phototransistor occurs whenever an opaque object passes through the slot.

Replaces

KT855

Storage and Operating Temperature Hange40°C to +85°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- Derate Linearly 1.67mW/°C above 25°C.
- (3) All parameters tested using pulse technique.
 (4) Methanol or isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Type OPB855

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode	•				
V _F	Forward Voltage		1.5	V	l _F = 40mA
IR	Reverse Current		100	μΑ	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		٧	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5		٧	I _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10V$, $I_F = 0$, $E_e = 0$
Coupled					
VCE(SAT)	Collector-Emitter Saturation Voltage		0.4	٧	$I_C = 400 \mu A$, $I_F = 20 m A$
Ic(ON)	On-State Collector Current	500		μА	V _{CE} = 5.0V, I _F = 20mA

Wide Gap Optical Sensor Type OPB856

Features

- Industrial package
- Threaded housing
- Molded connectors

Description

The OPB856 consists of an LED and a phototransistor each mounted in a threaded (M12x1TH) color coded housing. The LED is white, and the phototransistor is black. Both have a molded Molex connector for ease of installation. For cable and connector operations, contact the factory.

Replaces

K-8050

Storage and Operating Temperature Range	-40°C to +85°C
Input Diode	
Continuous Forward Current	40mA
Reverse Voltage	
Power Dissipation	100mW ⁽¹⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter-Collector Voltage	5.0V
Power Dissipation	100mW ⁽¹⁾
Notes:	

- (1) Derate Linearly 1.67mW/°C above 25°C.
- (2) d is the distance between lenses along the optical axis.
- (3) All parameters tested using pulse technique.

Type OPB856

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
nput Diode	•				
VF	Forward Voltage		1.70	V	I _F = 20mA
lR	Reverse Current		100	μА	V _R = 2.0V
Output Pho	totransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30		V	I _C = 100μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100μA
ICEO	Collector Dark Current		100	nA	$V_{CE} = 10.0V$, $I_F = 0$, $E_e = 0$
Coupled					
Ic(on)	On-State Collector Current ⁽³⁾	1.8		mA ·	V _{CE} = 5V, I _F = 20mA, d = 2

Normalized Output Current vs. Distance

d - Distance Between LED and Sensor Housings - Inches

Slotted Optical Switch Type OPB857

Features

- Non-contact switching
- Three lead wires for electrical connection
- Sealed plastic housing
- Fast switching speed

Description

The OPB857 consists of an infrared emitting diode and an NPN silicon phototransistor mounted on opposite sides of a 0.15" (3.81 mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot. The low cost plastic housing reduces possible interference from ambient light and provides dirt and dust protection. 11.5" (292.1 mm) minimum length lead wires ease assembly where PC board mounting is not practical.

The OPB857 uses an OP140 or OP240 LED and OP550 family sensor.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range	40°C to +80°C ⁽¹⁾
Input Diode Reverse Voltage	201
Continuous Forward Current	
Peak Forward Current (1 us pulse width, 300 pps)	
Power Dissipation	
Phototransistor	
Collector-Emitter Voltage	30 V
Emitter-Collector Voltage	5.0 <u>V</u>
Power Dissipation	100 mW ⁽²⁾
Notes:	

- (1) Maximum storage and operating temperature are limited by the temperature rating of the lead wires.
- (2) Derate linearly 1.82 mW/°C above 25°C.
- (3) Plastic housing is soluble in chlorinated hydrocarbons and ketones. Methanol or isopropanol alcohols are recommended as cleaning agents.

Typical Performance Curves

Forward Current vs Forward Voltage Input Diode

Type OPB857

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS			
Input Diode								
VF	Forward Voltage		1.70	V	I _F = 20 mA			
I _R	Reverse Current		100	μΑ	V _R = 2.0 V			
Output Phot	totransistor							
V _(BR) CEO	Collector-Emitter Breakdown Voltage	30		V	Ic = 1.00 mA			
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	$I_E = 100 \mu A$			
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10.0 \text{ V}, I_F = 0, E_e = 0$			
Coupled								
VCE(SAT)	Collector-Emitter Saturation Voltage		0.40	V	I _C = 1.50 mA, I _F = 20 mA			
Ic(on)	On-State Collector Current	1.50		mA	V _{CE} = 10.0 V, I _F = 20 mA			

Typical Performance Curves

Reduction in Output Current Due to

High Resolution Slotted Optical Switch Type OPB859

Features

- Inexpensive opaque plastic housing
- 0.125" wide slot
- 0.220" lead spacing
- Apertured for high resolution

Description

The OPB859 slotted optical switch consists of an infrared emitting diode and an NPN silicon phototransistor. They are mounted on opposite sides of a .125" wide slot. The emitter has a .050" x .050" aperture while the phototransistor has a .005" x .050" aperture.

Replaces

OPB813S5

Storage and Operating Temperature Range	-40°C to +85°C
Lead Soldering Temperature (1/16 inch [1.6 mm] from case for 5 sec. w	ith soldering
iron)	240°C ⁽¹⁾
Input Diode	
Forward DC Current	
Peak Forward Current (1 μs pulse width, 300 pps)	3.0A
Reverse DC Voltage	
Power Dissipation	100mW ⁽²⁾
Output Phototransistor	
Collector-Emitter Voltage	30V
Emitter-Collector Voltage	
Power Dissipation	100mW ⁽²⁾
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (2) Derate linearly 1.67 mW/°C above 25°C.
- (3) All parameters tested using pulse technique.
- This dimension controlled at housing surface only.
- (5) Methyl or isopropyl alcohols are recommended as cleaning agents. Plastic housings are soluble in chlorinated hydrocarbons and ketones.

Type OPB859

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS		
Input Diode							
VF	Forward Voltage		1.7	V	I _F = 20 mA		
IR	Reverse Current		100	μΑ	V _R = 2.0 V		
Output Pho	ototransistor						
V _{(BR)CEO}	Collector-Emitter Breakjdown Voltage	30		V	Ic = 1.0 mA		
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	I _E = 100 μA		
ICEO	Collector-Emitter Dark Current		100	nA	V _{CE} = 10 V		
Coupled							
VCE(SAT)	Saturation Voltage		0.40	٧	$I_C = 125 \mu\text{A}, I_F = 20 \text{mA}$		
Ic(on)	On-State Collector Current	250		μА	V _{CE} = 10.0 V, I _F = 20 mA		

Typical Performance Curves

Normalized Output Current vs Ambient Temperature

Normalized Output Current vs Forward Current

Rise and Fall Time vs Load Resistance

Collector Dark Current vs Ambient Temperature

Relative Output Current vs Time

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

12-109

Slotted Optical Switches Types OPB860, OPB870 Series

Features

- 0.125" wide gap
- Choice of aperture
- Choice of opaque or IR transmissive shell material
- Choice of mounting configuration
- Choice of lead spacing

Description

The OPB860/870 series of slotted switches provides the design engineer with the flexibility of a custom device from a standard product line. Building from a standard housing with a .125' wide slot, the user can specify (1) electrical output parameters, (2) mounting tab configuration, (3) choice of lead spacing, (4) discrete shell material. and (5) aperture width.

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed only on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic with aperture openings for maximum protection against ambient light.

Storage and Operating Temperature Range40°C to +85°	C
Lead Soldering Temperature Range [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]	•
Input Diode	
Forward DC Current	Α
Peak Forward Current (1 μs pulse width, 300 pps)	Α
Reverse DC Voltage	
Power Dissipation	(1)
Output Phototransistor	
Collector-Emitter Voltage	V
Emitter-Collector Voltage	V
Collector DC Current	
Power Dissipation	(1)
Notes:	

- Derate linearly 1.67mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) All parameters tested using pulse technique.
 (4) Lead spacing of .220" or .320" is available. Leads are 0.20" sq and .425" long (min).
- (5) Methyl and isopropyl alcohols are recommended as cleaning agents. Plastic housings are soluble in chlorinated hydrocarbons and ketones.

Types OPB860, OPB870 Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARA	METER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode							
VF	Forward Voltage			1.7	V	I _F = 20mA	
IR	Reverse Current			100	μΑ	V _R = 2.0V	
Output Photo	otransistor						
V _{(BR)CEO}	Collector-Emitter Br	reakdown Voltage	30			V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Br	reakdown Voltage	5.0			٧	I _E = 100μA
ICEO	Collector-Emitter Da	ark Current			100	nA	$V_{CE} = 10V$, $I_F = 0$, $E_e = 0$
Coupled	-						
V _{CE} (SAT)	Saturation Voltage: Parameter A	OPB860 / OPB870 OPB865 / OPB875			0.4	V	I _C = 400μA, I _F = 20mA
	Parameter B	OPB861 / OPB871 OPB866 / OPB876			0.4	V	I _C = 800μA, I _F = 10mA
	Parameter C	OPB862 / OPB872 OPB867 / OPB877			0.6	V	Ic = 1800μA, I _F = 20mA
Ic(on)	On-State Collector Parameter A	Current: OPB860 / OPB870 OPB865 / OPB875	500			μА	V _{CE} = 10V, I _F = 20mA
	Parameter B	OPB861 / OPB871 OPB866 / OPB876	1000			μА	V _{CE} = 5V, I _F = 10mA
	Parameter C	OPB862 / OPB872 OPB867 / OPB877	1800			μА	V _{CE} = 0.6V, I _F = 20mA

PART NUMBER GUIDE

OPB 8 X X X X X

Electrical Specification Variations

- 0 Electrical Parameter A, Lead Spacing 0.320"
- 1 Electrical Parameter B, Lead Spacing 0.320"
- 2 Electrical Parameter C, Lead Spacing 0.320"
- 5 Electrical Parameter A, Lead Spacing 0.220"
- 6 Electrical Parameter B, Lead Spacing 0.220" 7 - Electrical Parameter C, Lead Spacing 0.220"
- *Assemblies with dual 0.010" apertures are currently

available with electrical parameter "A" only.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TX-TXV Process

Available

See Hi-Rel

Section

Types OPB860, OPB870 Series

MOLDED DOT INDICATES DIN I -NOTE 6 Package Configuration P S OTE 3 .622 (15.80) .612 (15.54) .737 (18.72) .495 (12.57) .240 (6.10) .115 (2.92) .355 (9.01) .335 (8.51) .435 (11.05) .110 (2.79) .415 (10.54) .105 (2.67) 015 (0.38) .425 (10.79) HIN .225 (5.72) .215 (5.46) OR .325 (8.26) .315 (8.00) NOTES 1 AND 5 NOTES 1 AND 4 020 (0.51) SQ NOM .095 (2.41) NOTE 1 DIMENSIONS ARE IN INCHES (MILLIMETERS)

Package Configuration N

.155 (2.67) .155 (2.67) .155 (2.92) .155 (3.92) .355 (6.51) .455 (11.05) .355 (6.51) .455 (11.05) .425 (15.46) .355 (6.51) .455 (10.54) .355 (6.51) .455 (10.54) .355 (6.51) .455 (10.05) .315 (6.00) .315 (6.00) .315 (6.00) .315 (6.00) .315 (6.00) .315 (6.00) .315 (6.00) .315 (6.00)

Notes:

- (1) Dimension controlled at housing surace only.
- (2) Methanol and isopropanol alcohols are recommended as cleaning agents. Housings are soluble in chlorinated hydrocarbons and ketones. Highly activated, water soluble fluxes may attack housings in some situations.
- (3) Molded number to identify aperture size. See part number guide.
 (4) OPB860, OPB861, OPB862, OPB870, OPB871, OPB872.
- (4) OPB860, OPB861, OPB862, OPB870, OPB871, OPB872. (5) OPB865, OPB866, OPB867, OPB875, OPB876, OPB877.
- (6) Dimensions of aperture opening dependent on housing. See part number guide.

Types OPB860, OPB870 Series

Typical Performance Curves

Normalized Output Current vs Ambient Temperature

Forward Current
vs Forward Voltage Input Diode

Relative Output Current vs Time

Collector Dark Current vs Ambient Temperature

Rise and Fall Time

Reduction in Output Current Due to LED Heating vs Forward Current

Normalized Output Current vs Input Current

All Part Numbers Ending in "1"

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

12-113

Slotted Optical Switches Types OPB880, OPB890 Series

Features

- 0.125" wide gap
- 24" minimum, 26 AWG wire leads
- · Choice of aperture
- Choice of opaque or IR transmissive shell material
- · Choice of mounting configuration
- Choice of lead spacing

Description

The OPB880/890 series of slotted switches provides the design engineer with the flexibility of a custom device from a standard product line. Building from a standard housing with a .125" wide slot, the user can specify (1) electrical output parameters, (2) mounting tab configuration, (3) discrete shell material, and (4) aperture width.

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed only on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic with aperture openings for maximum protection against ambient light.

Replaces KT880/KT890 Series Upgrades OPB880/OPB890 Series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage and Operating Temperature Range40°C to +80°C''
Input Diode
Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse DC Voltage 2.0V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector DC Current 30mA
Power Dissipation
Nister.

- (1) Derate linearly 1.82mW/°C above 25°C (Maximum storage and operating temperature is limited by the temperature rating of the lead wires)
- (2) All parameters tested using pulse technique.
- (3) The OPB880/OPB890 wire terminations are 24" of 7 strand, 26 AWG, UL 1429 insulated wire on each terminal. The devices incorporate a wire strain relief at the housing surface. The insulation colors and functions are:

RED - IRED Anode BLACK - IRED Cathode WHITE - Phototransistor Collector GREEN - Phototransistor Emitter

Other wire lengths and/or colors are available. Contact your local representative or call the factory.

Types OPB880, OPB890 Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Input Diode					
V _F	Forward Voltage		1.7	٧	l _F = 20mA
IR	Reverse Current		100	μА	V _R = 2.0V
Output Photo	otransistor				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30	T	V	I _C = 1.0mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0		V	l _E = 100μA
ICEO	Collector-Emitter Dark Current		100	nA	$V_{CE} = 10V$, $I_F = 0$, $E_e = 0$
Coupled					
VCE(SAT)	Saturation Voltage: Parameter A OPB880 / OPB890 Parameter B OPB881 / OPB891 Parameter C OPB882 / OPB892		0.4 0.4 0.6	V V	I _C = 400μA, I _F = 20mA I _C = 800μA, I _F = 10mA I _C = 1800μA, I _F = 20mA
IC(ON)	On-State Collector Current: Parameter A OPB880 / OPB890 Parameter B OPB881 / OPB891 Parameter C OPB882 / OPB892	500 1000 1800		μΑ μΑ μΑ	V _{CE} = 10V, I _F = 20mA V _{CE} = 5V, I _F = 10mA V _{CE} = 0.6V, I _F = 20mA

PART NUMBER GUIDE

2 - Electrical Parameter C

^{*}Assemblies with dual 0.010" apertures are currently available with electrical parameter "A" only.

Package N

Package T

Package L

Package P

Types OPB880, OPB890 Series

Typical Performance Curves

Normalized Output Current vs Ambient Temperature

Forward Current vs Forward Voltage Input Diode

Relative Output Current vs Time

Collector Dark Current vs Ambient Temperature

Rise and Fall Time vs Load Resistance

Reduction in Output Current Due to **LED Heating vs Forward Current**

Normalized Output Current vs Input Current

All Part Numbers Ending in "1" Rise and Fall Time

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

12-117

(214)323-2200

Photologic™ Slotted Optical Switches Types OPB900L, OPB910L "Wide Gap" Series

Features

- 0.375" wide gap
- Choice of output configuration
- Choice of opaque or IR transmissive shell material
- Data rates to 250 kBaud
- 0.570" lead spacing

Description

The OPB900L and OPB910L series of Photologic™ Photo Integrated Circuit Switches provide optimum flexibility for the design engineer. Building from a standard housing with a .375" wide slot, the user can specify (1) type and polarity of TTL output and (2) discrete shell material. Available with wire leads as OPB900W/OPB910W series.

The electrical output can be specified as either TTL totem pole or TTL open collector. Either may be supplied with inverter or buffer output polarity. All have added stability of a built-in hysteresis amplifier.

Replaces

KT900L/KT910L, KLT100L/KLT110L series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc (Not to exceed 3 sec.)	10V
Storage Temperature Range	-40°C to +85°C
Operating Temperature Range	-40°C to +70°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. wi	
iron]	240°C ⁽¹⁾
Input Diode Power Dissipation	100mW ⁽²⁾
Output Photologic™ Power Dissipation	200mW ⁽³⁾
Total Device Power Dissipation	300mW ⁽⁴⁾
Voltage at Output Lead (Open Collector Output)	35V
Diode Forward D.C. Current	40mA
Diode Reverse D.C. Voltage	2V
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (2) Derate linearly 2.22mW/°C above 25°C. (3) Derate linearly 4.44mW/°C above 25°C. (4) Derate linearly 6.66mW/°C above 25°C. (5) The OPB900L/OPB910L series are terminated with .020" square leads designed for printed significations.
 - circuit board mounting.

 Normal application would be with light source blocked, simulated by I_F = 0mA.
 - All parameters tested using pulse technique. Methyl or isopropyl alcohols are recommended as cleaning agents. Plastic housings are soluble in chlorinated hydrocabons and ketones.

Types OPB900L, OPB910L Series

Electrical Characteristics (T_A = -40°C to +70°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
nput Diode						
V _F	Forward Voltage		T	1.7	V	I _F = 20mA, T _A = 25°C
IR	Reverse Current			100	μА	V _R = 2.0V, T _A = 25°C
utput Pho	tologic™ Sensor					
Vcc	Operating D.C. Supply Voltage	4.75		5.25	V	
ICCL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 20mA
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	Vcc = 5.25V, I _F = 20mA
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	V	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 0mA ⁽⁶⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	V	V _{CC} = 4.75V, l _{OL} = 12.8mA l _F = 20mA
Vон	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	V _{CC} = 4.75V, I _{OH} = -800μA I _F = 20mA
	Inverted Totem-Pole Output	2.4			V	V _{CC} = 4.75V, I _{OH} = -800μA I _F = 0mA ⁽⁶⁾
Юн	High Level Output Current: Buffered Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V I _F = 20mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V, I _F = 0mA, T _A = 25°C
IF(+)	LED Positive-Going Threshold Current			20	mA	V _{CC} = 5V, T _A = 25°C
l _F (+)/l _F (-)	Hysteresis		2.0			V _{CC} = 5V
los	Short Circuit Output Current: Buffered Totem-Pole Output	-30		-100	mA	Vcc = 5.25V, I _F = 20mA Output = GND
	Inverted Totem-Pole Output	-30		-100	mA	V _{CC} = 5.25V, I _F = 0mA Output = GND
t _r ,t _f	Output Rise Time, Output Fall Time		70		ns	V _{CC} = 5V, T _A = 25°C I _F = 0 or 20mA
tplH, tpHL	Propagation Delay Low-High & High-Low		5.0		μs	$R_L = 8TTL \text{ Loads (Totem Pol} $ $R_L = 360\Omega \text{ (Open Collector)}$

Housing

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic for maximum protection against ambient light.

Types OPB900L, OPB910L Series

PART NUMBER GUIDE

Electrical Specification Variations

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

Types OPB900L, OPB910L Series

Typical Performance Curves

OPB900L, OPB902L, OPB910L, OPB912L Short Circuit Output Current vs Ambient Temperature

All Assemblies Propagation Time vs Ambient Temperature

OPB901L. OPB903L. OPB911L. OPB913L

Rise Time and Fall Time vs Ambient Temperature

All Assemblies

Data Rate
vs Ambient Temperature

OPB902L, OPB903L, OPB912L, OPB913L

OPB900L, OPB901L, OPB910L, OPB911L

Normalized Supply Current vs Ambient Temperature

All Assemblies

Trigger Current vs Ambient Temperature

Switching Test Curve for Buffers

Switching Test Curve for Inverters

Photologic™ Slotted Optical Switches Types OPB900W, OPB910W "Wide Gap" Series

Features

- 0.375" wide gap
- Choice of aperture
- Choice of output configuration
- Choice of opaque or IR transmissive shell material
- Data rates to 250 kBaud
- 24" min. 26AWG wire leads

Description

The OPB900W and OPB910W series of Photologic™ Photo Integrated Circuit Switches provide optimum flexibility for the design engineer. Building from a standard housing with a .375" wide slot, the user can specify (1) type and polarity of TTL output and (2) discrete shell material.

The electrical output can be specified as either TTL totem pole or TTL open collector. Either may be supplied with inverter or buffer output polarity. All have added stability of a built-in hysteresis amplifier.

Replaces

KT900W/KT910W KLT100W/KLT100W series.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC} (Not to exceed 3 sec.)	10V
Storage Temperature Range	
Operating Temperature Range	-40°C to +70°C
Input Diode Power Dissipation	100mW ⁽¹⁾
Output Photologic™ Power Dissipation	200mW ⁽²⁾
Total Device Power Dissipation	300mW ⁽³⁾
Voltage at Output Lead (Open Collector Output)	35V
Diode Forward D.C. Current	40mA
Diode Reverse D.C. Voltage	2V
Notes:	

- Derate linearly 2.22mW°C above 25°C.
 Derate linearly 4.44mW°C above 25°C.
 Derate linearly 6.66mW°C above 25°C.
 Derate linearly 6.66mW°C above 25°C.
 The OPB900WOPB910W series are terminated with 24 inches of 7 strand 26 AWG, UL 1429 insulated wire on each terminal. Insulation function and colors are:

Red - IRED Anode Black - IRED Cathode

White - Vcc Blue - Output Green - Ground

Other wire lengths and/or colors in addition to customer selected connectors are available. Contact your local representative or call the factory.

- Normal application would be with light source blocked, simulated by I_F = 0mA. All parameters tested using pulse technique.

 Methanol and isopropanol alcohols are recommended as cleaning agents. Housings are
- soluble in chlorinated hydrocarbons and ketones.

SLOTTED OPTICAL SWITCHES

Types OPB900W, OPB910W Series

Electrical Characteristics ($T_A = -40^{\circ}$ C to $+70^{\circ}$ C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
nput Diode						
V _F	Forward Voltage		T	1.7	V	I _F = 20mA, T _A = 25°C
I _R	Reverse Current		 	100	μА	$V_R = 2.0V, T_A = 25^{\circ}C$
Output Pho	tologic™ Sensor					
Vcc	Operating DC Supply Voltage	4.75	T	5.25	V	
ICCL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁵⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 20mA
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 20mA
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁵⁾
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	V	$V_{CC} = 4.75V$, $I_{OL} = 12.8mA$ $I_F = 0mA^{(5)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	V	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 20mA
Vон	High Level Output Voltage: Buffered Totem-Pole Output	2.4			V	V _{CC} = 4.75V, I _{OH} = -800μA I _F = 20mA
	Inverted Totem-Pole Output	2.4			V	$V_{CC} = 4.75V$, $I_{OH} = -800\mu A$ $I_F = 0mA^{(5)}$
Юн	High Level Output Current: Buffered Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V I _F = 20mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V, I _F = 0mA, T _A = 25°C
lF(+)	LED Positive-Going Threshold Current			20	mA	V _{CC} = 5V, T _A = 25°C
I _F (+)/I _F (-)	Hysteresis		2.0			V _{CC} = 5V
los	Short Circuit Output Current: Buffered Totem-Pole Output	-30		-100	mA	V _{CC} = 5.25V, I _F = 20mA Output = GND
	Inverted Totem-Pole Output	-30		-100	mA	V _{CC} = 5.25V, I _F = 0mA Output = GND
t _r ,t _f	Output Rise Time, Output Fall Time		70		ns	V _{CC} = 5V, T _A = 25°C I _F = 0 or 20mA
tplH, tpHL	Propagation Delay Low-High & High-Low		5.0		μs	$R_L = 8TTL \text{ Loads (Totem Pole} $ $R_L = 360\Omega \text{ (Open Collector)}$

Housing

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic for maximum protection against ambient light.

Types OPB900W, OPB910W Series

PART NUMBER GUIDE

Electrical Specification Variations

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

OPB903/OPB913 (Open-Collector Output) Inverter

Types OPB900W, OPB910W Series

Typical Performance Curves

OPB900L, OPB902L, OPB910L, OPB912L

All Assemblies
Propagation Time
vs Ambient Temperature

Output Current (High)

OPB901L, OPB903L, OPB911L, OPB913L

Data Rate

OPB900L, OPB901L, OPB910L, OPB911L

OPB902L, OPB903L, OPB912L, OPB913L

Normalized Supply Current

All Assemblies

Switching Test Curve for Buffers

Switching Test Curve for Inverters

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

12-125

Photologic™ Slotted Optical Switches Types OPB930L, OPB940L Series

Features

- .320" lead space for PC board mount
- · Choice of aperture
- Choice of output configuration
- Choice of opaque or IR transmissive shell material
- Data rates to 250 kBaud
- Side mount configuration

Description

The OPB930L and OPB940L series of Photologic™ Photo Integrated Circuit Switches provide optimum flexibility for the design engineer. Building from a standard housing with a .125" wide slot, the user can specify (1) type and polarity of TTL output, (2) discrete shell material. and (3) aperture width. Available with wire leads as OPB930W/OPB940W series.

The electrical output can be specified as either TTL totem pole or TTL open collector. Either may be supplied with inverter or buffer output polarity. All have added stability of a built-in hysteresis amplifier.

Replaces

KT930L/940L, KLT130L/140L series

Absolute Maximum Ratings (TA = 25°C unless otherwise noted)

Supply Voltage, V _{CC} (Not to exceed 3 sec.)	10V
Storage Temperature Range	
Operating Temperature Range	-40°C to +70°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. wi	
iron]	240°C ⁽¹⁾
Input Diode Power Dissipation	100mW ⁽²⁾
Output Photologic™ Power Dissipation	200mW ⁽³⁾
Total Device Power Dissipation	300mW ⁽⁴⁾
Voltage at Output Lead (Open Collector Output)	35V
Diode Forward D.C. Current	40mA
Diode Reverse D.C. Voltage	2V
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 2.22mW/°C above 25°C. (3) Derate linearly 4.44mW/°C above 25°C.
- (4) Derate linearly 6.66mW/°C above 25°C.
- (5) The OPB930L/OPB940L series are terminated with .020" square leads designed for printed circuit board mounting.
- Methanol and isopropanol alcohols are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
- (7) Normal application would be with light source blocked, simulated by I_F = 0mA.
- (8) All parameters tested using pulse technique.

SLOTTED OPTICAL SWITCHES

Types OPB930L, OPB940L Series

Electrical Characteristics ($T_A = -40^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
nput Diode						
V _F	Forward Voltage		T	1.7	V.	I _F = 20mA, T _A = 25°C
1 _R	Reverse Current			100	μΑ	$V_R = 2.0V, T_A = 25^{\circ}C$
Output Photo	ologic™ Sensor					
Vcc	Operating D.C. Supply Voltage	4.75		5.25	V	
ICCL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	Vcc = 5.25V, I _F = 0mA ⁽⁷⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 15mA
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	Vcc = 5.25V, I _F = 15mA
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁷⁾
V _{OL}	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	$V_{CC} = 4.75V$, $I_{OL} = 12.8$ mA $I_F = 0$ mA ⁽⁷⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	V	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 15mA
Vон	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	V _{CC} = 4.75V, I _{OH} = -800μA I _F = 15mA
	Inverted Totem-Pole Output	2.4			V	$V_{CC} = 4.75V$, $I_{OH} = -800\mu A$ $I_F = 0mA^{(7)}$
Іон	High Level Output Current: Buffered Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V I _F = 15mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V, I _F = 0mA, T _A = 25°C
lF(+)	LED Positive-Going Threshold Current			15	mA	$V_{CC} = 5.0V, T_A = 25^{\circ}C$
l _F (+)/l _F (-)	Hysteresis		2			V _{CC} = 5.0V
los	Short Circuit Output Current: Buffered Totem-Pole Output	-30		-100	mA	V _{CC} = 5.25V, I _F = 15mA Output = GND
	Inverted Totem-Pole Output	-30		-100	mA	V _{CC} = 5.25V, I _F = 0mA Output = GND
t _r ,t _f	Output Rise Time, Output Fall Time		70		ns	V _{CC} = 5.0V, T _A = 25°C I _F = 0 or 15mA
tplH, tpHL	Propagation Delay Low-High & High-Low		5		μs	$R_L = 8TTL \text{ Loads (Totem Pol} $ $R_L = 360\Omega \text{ (Open Collector)}$

Housing

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic for maximum protection against ambient light.

Types OPB930L, OPB940L Series

PART NUMBER GUIDE

Electrical Specification Variations

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

Types OPB930L, OPB940L Series

Typical Performance Curves

Output Voltage vs Ambient Temperature

Short Circuit Output Current vs Ambient Temperature

All Assemblies

Propagation Time vs Ambient Temperature

OPB931, OPB933, OPB941, OPB943

Output Current (High) vs Ambient Temperature

5. 50.., 6. 50.6

Rise Time and Fall Time

vs Ambient Temperature

All Assemblies

Data Rate vs Ambient Temperature

OPB930, OPB931, OPB940, OPB941 Normalized Supply Current

OPB932, OPB933, OPB942, OPB943
Normalized Supply Current

All Assemblies

Trigger Current vs Ambient Temperature

Switching Test Curve for Buffers

Switching Test Curve for Inverters

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

12-129

Photologic™ Slotted Optical Switches Types OPB930W, OPB940W Series

Features

- 24" min 26AWG wire leads
- Choice of aperture
- Choice of output configuration
- Choice of opaque or IR transmissive shell material
- Data rates to 250 kBaud
- Side mount configuration

Description

The OPB930W and OPB940W series of Photologic™ Photo Integrated Circuit Switches provide optimum flexibility for the design engineer. Building from a standard housing with a .125" wide slot, the user can specify (1) type and polarity of TTL output, (2) discrete shell material, and (3) aperture width. Available with PC board mountable leads as OPB930L/OPB940L series.

The electrical output can be specified as either TTL totem pole or TTL open collector. Either may be supplied with inverter or buffer output polarity. All have added stability of a built-in hysteresis amplifier.

Replaces

KT930W/940W, KLT130W/140W series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc (Not to exceed 3 sec.)	10V
Storage Temperature Range	40°C to +80°C
Operating Temperature Range	40°C to +70°C
Input Diode Power Dissipation	100mW ⁽¹⁾
Output Photologic™ Power Dissipation	200mW ⁽²⁾
Total Device Power Dissipation	300mW ⁽³⁾
Voltage at Output Lead (Open Collector Output)	
Diode Forward D.C. Current	40mA
Diode Reverse D.C. Voltage	2V
Notes:	

- (1) Derate linearly 2.22mW/°C above 25°C.
- (2) Derate linearly 4.44mW/°C above 25°C.
- (3) Derate linearly 6.66mW/°C above 25°C.
- The OPB930W/OPB940W series of switches are terminated with 24 inches of 7 strand 26 AWG, UL 1429 insulated wire on each terminal. Insulation colors and functions are:

RED - IRED Anode

WHITE - Vcc

BLACK -IRED Cathode **BLUE - Output** GREEN - Ground

Other wire lengths and/or colors in addition to customer selected connectors are available. Contact your local representative or call the factory.

- (5) Normal application would be with light source blocked, simulated by I_F = 0mA.
- (6) All parameters tested using pulse technique.

SLOTTED OPTICAL SWITCHES

Types OPB930W, OPB940W Series

Electrical Characteristics ($T_A = -40^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
nput Diode						
V _F	Forward Voltage		Т	1.7	V	I _F = 20mA, T _A = 25°C
I _R	Reverse Current			100	μА	$V_R = 2.0V, T_A = 25^{\circ}C$
utput Pho	tologic Sensor					
Vcc	Operating D.C. Supply Voltage	4.75	T	5.25	V	
ICCL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	Vcc = 5.25V, I _F = 0mA ⁽⁵⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 15mA
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	Vcc = 5.25V, I _F = 15mA
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁵⁾
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	$V_{CC} = 4.75V$, $I_{OL} = 12.8mA$ $I_F = 0mA^{(5)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	V	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 15mA
Voн	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	V _{CC} = 4.75V, I _{OH} = -800μA I _F = 15mA
	Inverted Totem-Pole Output	2.4			V	$V_{CC} = 4.75V$, $I_{OH} = -800\mu A$ $I_F = 0mA^{(5)}$
Юн	High Level Output Current: Buffered Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V I _F = 15mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V, I _F = 0mA, T _A = 25°C
l _F (+)	LED Positive-Going Threshold Current			15	mA	V _{CC} = 5.0V, T _A = 25°C
l _F (+)/l _F (-)	Hysteresis		2.0			V _{CC} = 5.0V
los	Short Circuit Output Current: Buffered Totem-Pole Output	-30		-100	mA	V _{CC} = 5.25V, I _F = 15mA Output = GND
	Inverted Totem-Pole Output	-30		-100	mA	V _{CC} = 5.25V, I _F = 0mA Output = GND
t _r ,t _f	Output Rise Time, Output Fall Time		70		ns	V _{CC} = 5V, T _A = 25°C I _F = 0 or 15mA
tpLH, tpHL	Propagation Delay Low-High & High-Low		5.0		μѕ	$R_L = 8TTL \text{ Loads (Totem Pole} $ $R_L = 360\Omega \text{ (Open Collector)}$

Housing

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic for maximum protection against ambient light.

Types OPB930W, OPB940W Series

PART NUMBER GUIDE

Electrical Specification Variations

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

(Open-Collector Output)

Types OPB930W, OPB940W Series

Typical Performance Curves

Switching Test Curve for Buffers

5 25 45 65 85

Switching Test Curve for Inverters

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

12-133

35 15 5 25 45 65 85 105 125

TA - AMBIENT TEMPERATURE - °C

AMBIENT TEMPERATURE - °C

Photologic™ Slotted Optical Switches Types OPB960, OPB970 Series

Features

- Choice of mounting configuration
- Choice of aperture
- Choice of output configuration
- Choice of opaque or IR transmissive shell material
- Data rates to 250 kBaud
- 0.320" lead spacing for PC board mount

Description

The OPB960 and OPB970 series of Photologic™ Photo Integrated Circuit Switches provide optimum flexibility for the design engineer. Building from a standard housing with a .125" wide slot, the user can specify (1) type and polarity of TTL output, (2) discrete shell material, (3) aperture width, and (4) type of mounting configuration. Available with 24". 26AWG wire leads as OPB980/OPB990 series.

The electrical output can be specified as either TTL totem pole or TTL open collector. Either may be supplied with inverter or buffer output polarity. All have added stability of a built-in hysteresis amplifier.

Replaces

KT960/970 series, KLT160/170 series. Upgrades OPB960/970 series.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC} (Not to exceed 3 sec.). 10V Storage Temperature Range -40°C to +85°C Operating Temperature Range -40°C to +70°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
Lead Soldering Temperature [1/16 Inch (1.6him) from case for 5 sec. with soldering
iron]
Input Diode Power Dissipation
Output Photologic [™] Power Dissipation
Total Device Power Dissipation
Voltage at Output Lead (Open Collector Output)
Diode Forward D.C. Current 40mA
Diode Reverse D.C. Voltage 2V
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 2.22mW/°C above 25°C. (3) Derate linearly 4.44mW/°C above 25°C.
- (4) Derate linearly 6.66mW/°C above 25°C.
- (5) The OPB960/OPB970 series are terminated with .020" square leads designed for printed circuit board mounting.
- (6) Normal application would be with light source blocked, simulated by IF = 0mA.
- (7) All parameters tested using pulse technique.

Housing

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic for maximum protection against ambient light.

Types OPB960, OPB970 Series

Package N

Package T

Package L

Package P

Types OPB960, OPB970 Series

Electrical Characteristics (T_A = -40°C to +70°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
put Diode						
VF	Forward Voltage		1	1.7	V	I _F = 20mA, T _A = 25°C
IR	Reverse Current			100	μА	V _R = 2.0V, T _A = 25°C
utput Photo	ologic™ Sensor					
Vcc	Operating D.C. Supply Voltage	4.75	T	5.25	V	
ICCL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	Vcc = 5.25V, I _F = 15mA
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	Vcc = 5.25V, I _F = 15mA
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁶⁾
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 0mA ⁽⁶⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	٧ .	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 15mA ⁽⁶⁾
Voн	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	V _{CC} = 4.75V, I _{OH} = -800μA I _F = 15mA
	Inverted Totem-Pole Output	2.4			V	$V_{CC} = 4.75V$, $I_{OH} = -800\mu A$ $I_F = 0 m A^{(6)}$
Юн	High Level Output Current: Buffered Open-Collector Output			100	μΑ	V _{CC} = 4.75V, V _{OH} = 30V I _F = 15mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	$V_{CC} = 4.75V$, $V_{OH} = 30V$, $I_F = 0$ mA, $T_A = 25$ °C
lF(+)	LED Positive-Going Threshold Current			15	mA	$V_{CC} = 5.0V, T_A = 25^{\circ}C$
lF(+)/lF(-)	Hysteresis		2.0			V _{CC} = 5.0V
los	Short Circuit Output Current: Buffered Totem-Pole Output	-15		-60	mA ·	V _{CC} = 5.25V, I _F = 15mA Output = GND
	Inverted Totem-Pole Output	-15		-60	mA	Vcc = 5.25V, I _F = 0mA Output = GND
tr,tf	Output Rise Time, Output Fall Time		70		ns	V _{CC} = 5.0V, T _A = 25°C I _F = 0 or 15mA
tplH, tpHL	Propagation Delay Low-High & High-Low		5.0		μs	$R_L = 8TTL \text{ Loads (Totem Pole}$ $R_L = 360\Omega \text{ (Open Collector)}$

SLOTTED OPTICAL SWITCHES

PART NUMBER GUIDE

Electrical Specification Variations

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

OPB963/OPB973 (Open-Collector Output) Inverter

Typical Performance Curves

OPB960, OPB962, OPB970, OPB972

Short Circuit Output Current vs Ambient Temperature

OPB961, OPB963, OPB971, OPB973

Output Current (High) vs Ambient Temperature

Rise Time and Fall Time vs Ambient Temperature

OPB960, OPB961, OPB970, OPB971

Normalized Supply Current vs Ambient Temperature

OPB962, OPB963, OPB972, OPB973

Normalized Supply Current vs Ambient Temperature

Types OPB960, OPB970 Series

Typical Performance Curves

All Assemblies

Propagation Time
vs Ambient Temperature

Data Rate vs Ambient Temperature

All Assemblies

Trigger Current vs Ambient Temperature

Switching Test Curve for Buffers

Switching Test Curve for Inverters

Photologic™ Slotted Optical Switches Types OPB980, OPB990 Series

Features

- · Choice of mounting configuration
- · Choice of aperture
- Choice of output configuration
- Choice of opaque or IR transmissive shell material
- Data rates to 250 kBaud
- 24" min 26AWG wire leads

Description

The OPB980 and OPB990 series of Photologic™ Photo Integrated Circuit Switches provide optimum flexibility for the design engineer. Building from a standard housing with a .125" wide slot, the user can specify (1) type and polarity of TTL output, (2) discrete shell material, (3) aperture width, and (4) choice of mounting configuration.

The electrical output can be specified as either TTL totem pole or TTL open collector. Either may be supplied with inverter or buffer output polarity. All have added stability of a built-in hysteresis amplifier.

Replaces

KT980/990, KLT180/190 series. Upgrades OPB980/OPB990 series

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC} (Not to exceed 3 sec.)	10V
Storage Temperature Range	-40°C to +80°C
Operating Temperature Range	-40°C to +70°C
Input Diode Power Dissipation	100mW ⁽¹⁾
Output Photologic™ Power Dissipation	200mW ⁽²⁾
Total Device Power Dissipation	300mW ⁽³⁾
Voltage at Output Lead (Open Collector Output)	
Diode Forward D.C. Current	40mA
Diode Reverse D.C. Voltage	2V
Notes:	

- (1) Derate linearly 2.22mW/°C above 25°C.
- (2) Derate linearly 4.44mW/°C above 25°C.
- (3) Derate linearly 6.66mW/°C above 25°C.
- (4) The OPB980/OPB990 series of switches are terminated with 24 inches of 7 strand 26 AWG, UL 1429 insulated wire on each terminal. Insulation colors and functions are:

RED - IRED Anode BLACK - IRED Cathode WHITE - V_{CC} BLUE - Output

GREEN - Ground

Other wire lengths and/or colors in addition to customer selected connectors are available. Contact your local representative or call the factory.

(5) Normal application would be with light source blocked, simulated by IF = 0mA.

(6) All parameters tested using pulse techniques.

Housing

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic for maximum protection against ambient light.

DIMENSIONS ARE IN INCHES (MILLIMETERS)

Package N

DIMENSIONS ARE IN INCHES (MILLIMETERS)

Package P

Types OPB980, OPB990 Series

Electrical Characteristics ($T_A = -40^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
nput Diode						
VF	Forward Voltage			1.7	V	I _F = 20mA, T _A = 25°C
la	Reverse Current			100	μΑ	$V_R = 2.0V, T_A = 25^{\circ}C$
utput Photo	ologic™ Sensor					
Vcc	Operating D.C. Supply Voltage	4.75		5.25	V	
ICCL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 0mA ⁽⁵⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	$V_{CC} = 5.25V$, $I_F = 15mA$
Іссн	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output			15	mA	V _{CC} = 5.25V, I _F = 15mA
	Inverted Totem-Pole Output Inverted Open-Collector Output			15	mA	$V_{CC} = 5.25V, I_F = 0mA^{(5)}$
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output			0.4	v	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 0mA ⁽⁵⁾
	Inverted Totem-Pole Output Inverted Open-Collector Output			0.4	V	V _{CC} = 4.75V, I _{OL} = 12.8mA I _F = 15mA
Voh	High Level Output Voltage: Buffered Totem-Pole Output	2.4			v	V _{CC} = 4.75V, I _{OH} = -800μA I _F = 15mA
	Inverted Totem-Pole Output	2.4			V	$V_{CC} = 4.75V$, $I_{OH} = -800\mu A$ $I_F = 0mA^{(5)}$
Юн	High Level Output Current: Buffered Open-Collector Output			100	μΑ	V _{CC} = 4.75V, V _{OH} = 30V I _F = 15mA, T _A = 25°C
	Inverted Open-Collector Output			100	μА	V _{CC} = 4.75V, V _{OH} = 30V, I _F = 0mA, T _A = 25°C
lF(+)	LED Positive-Going Threshold Current			15	mA	$V_{CC} = 5.0V, T_A = 25^{\circ}C$
lF(+)/lF(-)	Hysteresis		2.0			V _{CC} = 5.0V
los	Short Circuit Output Current: Buffered Totem-Pole Output	-15		-60	mA	V _{CC} = 5.25V, I _F = 15mA Output = GND
	Inverted Totem-Pole Output	-15		-60	mA	V _{CC} = 5.25V, I _F = 0mA Output = GND
t _r ,t _f	Output Rise Time, Output Fall Time		70		ns	V _{CC} = 5V, T _A = 25°C I _F = 0 or 15mA
tplH, tpHL	Propagation Delay Low-High & High-Low		5.0		μs	$R_L = 8TTL \text{ Loads (Totem Pole)}$ $R_L = 360\Omega \text{ (Open Collector)}$

SLOTTED OPTICAL SWITCHES

PART NUMBER GUIDE

Electrical Specification Variations

- 0 Buffered Totem-Pole Output
- 1 Buffered Open-Collector Output
- 2 Inverted Totem-Pole Output
- 3 Inverted Open-Collector Output

(Open-Collector Output) Buffer VCC

OPB981/OPB991

OPB983/OPB993 (Open-Collector Output) Inverter

Types OPB980, OPB990 Series

Typical Performance Curves

OPB980, OPB982, OPB990, OPB992

Output Voltage vs Ambient Temperature

Short Circuit Output Current vs Ambient Temperature

OPB981, OPB983, OPB991, OPB993

Output Current (High)
vs Ambient Temperature

Rise Time and Fall Time vs Ambient Temperature

OPB980, OPB981, OPB990, OPB991

Normalized Supply Current vs Ambient Temperature

OPB982, OPB983, OPB992, OPB993

Normalized Supply Current vs Ambient Temperature

Types OPB980, OPB990 Series

Typical Performance Curves

Propagation Time

All Assemblies

-35 -15 5 25 45 65 85 10 T_A - AMBIENT TEMPERATURE - °C

SLOTTED OPTICAL SWITCHES

All Assemblies

Trigger Current vs Ambient Temperature

Switching Test Curve for Buffers

Switching Test Curve for Inverters

12-145

HI-REL OPTOELECTRONIC COMPONENTS

High-Reliability Optoelectronic Devices

High-reliability requirements demand that products be able to function under abnormally severe levels of mechanical, environmental, and electrical stress. This challenge has been met by Optek with product designs and process control techniques that ensure high reliability and, thus, long life.

Capabilities

Optek maintains a well equipped high-reliability lab for conducting electrical, mechanical, and environmental tests. All testing is performed in-house, with engineering, manufacturing, and quality control facilities located within the continental United States.

Optek's calibration system complies with the requirements of MIL-45662, which incorporates both MIL-Q-9858 and MIL-1-45208.

High reliability optoelectronic devices from Optek are currently in use in a wide variety of space and defense programs.

Certifications

Optek is an QPL supplier, approved by D.E.S.C. to provide products in accordance with Military Specification MIL-S-19500. Electrical, environmental, and mechanical testing is done by experienced Optek employees based on MIL-STD-750 and MIL-STD-883 test methods and procedures. Military screening to as high as JANTXV is performed.

Optek has certified technicians in many areas such as x-ray and soldering. Any internal soldering, if required, is done in compliance with MIL-S-45743/WS6536.

High-Reliability Couplers

Optek's offering of high-reliability, optically coupled isolators consist of D.E.S.C. qualified devices to MIL-S-19500/486 and components processed to Optek's own military screening program. The 4N22A through 4N24A, and 4N47 through 4N49 series (pending) of D.E.S.C. qualified couplers are processed to JAN, JANTX, and JANTXV reliability levels per MIL-S-19500/486. (See Figure 1 for details.)

Although the 3N243TX through 3N245TX series of optically isolators are not military qualified, they are processed to Optek's own military screening program. Each device in the series receives process conditioning which includes a 160-hour power burn-in.

High-Reliability Sensors and Emitters

A large selection of discrete emitters and sensors are offered that are processed to Optek's own military screening program patterned after MIL-S19500. These devices are identified by "TX" and "TXV" suffixes. Although not military qualified devices, they receive 100% screening that parallels JANTX and JANTXV reliability requirements. (See Figure 2.)

For discrete sensors, the 100% screening includes both a 48-hour, high temperature reverse bias at $T_A = 125^{\circ}C$, and a 160-hour power burn-in at ambient temperature ($T_A = 25^{\circ}C$). For emitters, the 100% screening includes a burn-in in the forward direction for 96 or 160 hours, depending on the series.

One of the key advantages of purchasing part types to an in-house high-reliability screening program is that Group B and C lot charges may be avoided, since the manufacturer frequently spreads these costs over large groups of orders. For high-reliability emitters and sensors with "TX" and "TXV" suffixes, generic Group B and C data can be supplied with each order. Customers requiring Group B and C testing on their individual orders can also be accommodated. but these orders have to be run under special part numbers for control purposes.

High-Reliability Assemblies

In addition to the standard discrete optoelectronic components, Optek manufactures a wide variety of standard (off-the-shelf) and custom (built-to-print) assemblies. Most assemblies can be classified into one of two groups: slotted optical switches or reflective assemblies. Slotted optical switches are designed to provide non-contact sensing of linear or rotary motion. Reflective assemblies, in turn, are designed to provide non-contact sensing of reflective surfaces, or a change in surface reflectivity of an object. Both slotted optical switches and reflective assemblies can be purchased to high-reliability requirements.

High reliability assemblies are generally made with plastic housings and hermetically sealed discrete sensors and emitters. Before being placed in the housing, the discrete components are subjected to high-reliability processing. Frequently, this processing on the discrete devices is similar to what is specified on the individual high-reliability sensor and emitter data sheets.

Custom Prints

Sometimes, it is necessary to have special electrical selections, screening requirements, or package configurations that are different from the standard offerings shown in the data sheets. Optek's custom capability is enormous. Assembly and test areas were designed with a great deal of flexibility, which allows the product to be built and tested on an order-to-order basis. The Quality Control Department's environmental testing areas are set up similarly, allowing many orders to be handled, each requiring different tests, screens, and conditions.

Definitions of Common Reliability Terms

- **Group A:** Consists of electrical tests and external visual inspection done on a sample basis by Q.C. At Optek, prior to submittal to Q.C. for Group A inspection, all devices in the lot are 100% electrically tested in manufacturing.
- **Group B:** Consists of tests conducted on a sample basis to verify production lot conforance to package integrity, environmental extremes, and long-term reliability. The Group B samples are normally selected from lots that are manufactured within a six week time period, based on the date of final package sealing.
- **Group C:** Is further environmental testing-similar to Group B, but sample testing is performed on a periodic basis (typically at six month intervals).
- Hi-Rel Processing, 100% Processing, TX Processing: Same as Processing Conditioning.
- High Temperature Reverse Bias (HTRB): Devices are reverse biased in a non-conduction mode at a high temperature for a period of time in this test. This test is used primarily to screen out those devices with inferior semiconductor die characteristics, such as poor voltage breakdown or leakage current. Ambient temperature is usually specified somewhere between +100°C to +175°C.
- JANTX: All JANTX units receive process conditioning prior to quality conformance inspection. (See Figure 1)
- JANTXV: Same as JANTX, plus 100% internal visual inspection. (See Figure 1)
- **JANS:** An ultra-high-reliability version of JAN devices with very strict quality assurance and manufacturing controls imposed. JANS was designed with space applications in mind, and is the highest product assurance reliability level.
- MIL-S-19500: Military document that establishes the general requirements for semiconductor devices for JAN, JANTX, JANTXV, and JANS reliability levels. Specific part type requirements and characteristics are specified in detail specifications for a particular series (e.g., 4N22A military series is spelled out in MIL-S-19500/486).
- **MIL-STD-750:** Military specification that depicts electrical, mechanical, and environmental test procedures and methods for discrete semiconductors.
- **Operating Life:** Also known as burn-in, life testing, and power age. Operating the device in a conduction mode (turned on) to simulate what the part will encounter in actual service. As a very common test in process conditioning, operating life is used to screen out those parts with potential short service life.
- Process Conditioning: Tests (sometimes referred to as screens) that are performed on 100% of the devices in the lot to assure long-term reliability characteristics. (See Figure 2.)
- Qualification (Qual): All testing performed to qualify a new part, traditionally consisting of Groups A, B, and C. Individual tests or requirements are sometimes added or deleted for qualification.
- Qualified Products List (QPL): Semiconductor device types that are qualified under military specification MIL-S-19500 for JANTX, JANTXV, and JANS procurements.
- Quality Conformance Inspection: Those tests performed to verify a given lot's conformance to a military document or a customer's specification. Quality conformance inspection consists of Group A, but may include Group B or C, depending on the requirements for the formulation of these groups of tests.

Figure 1. Simplified JAN Product Flow

JANTX	
100% Processing Plus Sample Environmental and Life Testing	
Commercial	
Product	
↓	
100%	
Processing	
ļ "	
Group A, B, C	
Sample	
Test	
Ţ	
Ship	

Figure 2. 100% Processing (Typical)

Pre-Cap Visual	
High Temperature	Storage
Temperature Cyc	e
Constant Accelera	ition
Hermetic Seal	Fine: Gross:
High Temperature	Reverse Bias
Power Burn-in	

Optically Coupled Isolators Types 3N243, 3N244, 3N245

Features

- TO-72 hermetically sealed package
- 1 kVDC electrical isolation
- TX-TXV process available (see Hi-Rel section)

Description

The 3N243, 3N244, and 3N245 are JEDEC registered optically coupled isolators each consisting of an infrared emitting diode and an NPN silicon phototransistor mounted in a hermetically sealed TO-72 package.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input-to-Output Isolation Voltage
Storage Temperature Range65°C to +150°C
Operating Temperature Range55°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current
Reverse Voltage 2.0V
Power Dissipation
Output Phototransistor
Continuous Collector Current
Collector-Emitter Voltage
Emitter-Collector Voltage 5.0V
Power Dissipation
Notes:

- (1) Measured with input leads shorted together and output leads shorted together.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
 (3) Derate linearly 0.6mW/°C above 25°C.
 (4) Derate linearly 2.0mW/°C above 25°C.

 - (5) The input waveform is supplied by a generator with the following characteristics: $Z_{OUT} = 50\Omega$, tr \leq 15ns, duty cycle \cong 1%.

Types 3N243, 3N244, 3N245

Electrical Characteristics (T_A = 25°C unless otherwise noted)

		3N243		3N244		3N245							
Symbol	Parameter	Min Typ !		Max	Min Typ		Max	Min	Тур	Max	Unit	Test Conditions	
Input Di	ode					·							
VF	Forward Voltage	0.80		1.30	0.80		1.30	0.80		1.30	٧	I _F = 10.0mA	
		1.00		1.50	1.00		1.50	1.00		1.50	٧	I _F = 10.0mA, T _A = -55°C	
		0.70		1.20	0.70		1.20	0.70		1.20	٧	I _F = 10.0mA, T _A = 100°C	
IR	Reverse Current			100			100			100	μΑ	V _R = 2.0V	
Output F	Phototransistor												
V _(BR) CEO	Collector-Emitter Breakdown Voltage	30			30			30			٧	I _C = 1.00mA	
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			5.0			5.0			٧	ΙΕ = 100μΑ	
ICEO	Collector Dark			100			100			100	nA	V _{CE} = 10.0V	
	Current			100			100			100	μΑ	$V_{CE} = 10.0V, T_A = 100^{\circ}C$	
Coupled	p					,						·	
IC(on)	On-State Collector	1.50			3.0			6.0			mA	I _F = 10.0mA, V _{CE} = 10.0V	
	Current	0.30			0.80			1.50			mΑ	I _F = 3.0mA, V _{CE} = 10.0V	
		0.50			1.00			1.50			mA	$I_F = 10.0$ mA, $V_{CE} = 10.0$ V, $T_A = -55$ °C	
		0.50			1.00			1.50			mA	$I_F = 10.0$ mA, $V_{CE} = 10.0$ V, $T_A = 100$ °C	
VCE(SAT)	Collector-Emitter			0.30							٧	I _F = 20mA, I _C = 1.50mA	
	Saturation Voltage						0.30				٧	I _F = 20mA, I _C = 3.0mA	
										0.30	٧	I _F = 20mA, I _C = 6.0mA	
lio	Leakage Input-to-Output			100			100			100	nA	$V_{IO} = \pm 1.00 \text{kVDC}^{(1)}$	
C _{IO}	Capacitance Input-to-Output			5.0			5.0			5.0	pF	$V_{IO} = 0V, f = 1.00MHz^{(1)}$	
t _r	Output Rise Time			10.0			10.0			10.0	μs	V _{CC} = 10.0V, I _F = 10.0mA,	
tf	Output Fall Time			10.0			10.0			10.0	μs	$R_L = 100\Omega$	

High Reliability Optically Coupled Isolators Types 3N243TX, 3N244TX, 3N245TX

Features

- · High-Reliability processed to Optek's military screening program patterned after MIL-S-19500
- TO-72 hermetically sealed package
- 1 kVDC electrical isolation

Description

Each device in the series is a high reliability optically coupled isolator consisting of an infrared emitting diode and an NPN silicon phototransistor mounted in a hermetically sealed TO-72 package.

This series is identical to the JEDEC registered optically coupled isolators 3N243, 3N244, and 3N245 with additional high-reliability processing. This processing is patterned after MIL-S-19500 as shown in the accompanying table.

Replaces

3N243R, 3N244R, 3N245R

Input-to-Output Isolation Voltage
Storage Temperature Range65°C to +150°C
Operating Temperature Range55°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
input Diode
Forward DC Current 40mA
Reverse Voltage
Power Dissipation
Output Phototransistor
Continuous Collector Current
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Notes:

- (1) Measured with input leads shorted together and output leads shorted together.
- (1) Measured with high reads shorted together and output leads shorted together.
 (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
 (3) Derate linearly 0.60mW°C above 65°C.
 (4) Derate linearly 2.0mW/°C above 25°C.

- (5) The input waveform is supplied by a generator with the following characteristics: $Z_{OUT} = 50\Omega$, tr \leq 15ns, duty cycle \cong 1%, pulse width \cong 100 μ s.

Types 3N243TX, 3N244TX, 3N245TX

Symbol	Parameter	3N243TX			3N244TX			3N245TX				
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Input Di	ode								January 1, 1915			<u> </u>
VF	Forward Voltage	0.80		1.30	0.80		1.30	0.80		1.30	٧	I _F = 10.0mA
		1.00		1.50	1.00		1.50	1.00		1.50	٧	I _F = 10.0mA, T _A = -55°C
		0.70		1.20	0.70		1.20	0.70		1.20	V	I _F = 10.0mA, T _A = 100°C
IR	Reverse Current			100			100			100	μΑ	V _R = 2.0V
Output F	Phototransistor									,		
V _(BR) CEO	Collector-Emitter Breakdown Voltage	30			30			30			٧	I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0			5.0			5.0			٧	I _E = 100μA
ICEO	Collector Dark Current			100 100			100 100			100 100	nΑ μΑ	V _{CE} = 10.0V V _{CE} = 10.0V, T _A = 100°C
Coupled												
IC(on)	On-State Collector	1.50			3.00			6.00			mA	I _F = 10.0mA, V _{CE} = 10.0V
	Current	0.30			0.80			1.50			mA	I _F = 3.0mA, V _{CE} = 10.0V
		0.50			1.00			1.50			mA	I _F = 10.0mA, V _{CE} = 10.0V, T _A = -55°C
		0.50			1.00			1.50			mA	I _F = 10.0mA, V _{CE} = 10.0V, T _A = 100°C
VCE(SAT)	Collector-Emitter			0.30							٧	I _F = 20mA, I _C = 1.50mA
	Saturation Voltage						0.30				٧	I _F = 20mA, I _C = 3.0mA
										0.30	٧	I _F = 20mA, I _C = 6.0mA
lio	Leakage Input-to-Output			100			100			100	nA	$V_{IO} = \pm 1.00 \text{kVDC}^{(1)}$
C _{IO}	Capacitance Input-to-Output			5.0			5.0			5.0	pF	$V_{IO} = 0V, f = 1.00MHz^{(1)}$
t _r	Output Rise Time			10.0			10.0			10.0	μs	$V_{CC} = 10.0V, I_F = 10.0mA,^{(5)}$ $R_L = 100\Omega$
tf	Output Fall Time			10.0			10.0			10.0	μs	IUF = 10077

Types 3N243TX, 3N244TX, 3N245TX

100% Processing

Screen	Mil-STD-750 Method	Conditions	3N243TX 3N244TX 3N245TX
Pre-Cap Visual		Optek's pre-cap visual	100%
High Temperature Storage	1032	T _A = 150°C, t = 24hrs.	100%
Temperature Cycle	1051	Condition C, 20 cycles, 15 min. each extreme	100%
Constant Acceleration	2006	20K G, Y ₁ only	100%
High Temperature Reverse Bias	1039	Condition A, $T_A = 125^{\circ}$ C, $V_{CE} = 24$ Vdc, $I_F = 0$, $t = 96$ hrs. min	100%
Power Burn-In	1039	Condition B, P _{DT} = 175-200mW, T _A = 25°C, I _F = 40mA, t = 160hrs. min	100%
Hermetic Seal	1071	Fine: Condition H, 5 X 10 ⁻⁸ atm cc/sec Gross: Condition C	100%

Group B Inspection (performed on each inspection lot)

Examination		MIL-STD-750								
or Test	Method	Conditions	LTPD							
Subgroup 1			15							
Solderability	2026									
Resistance to Solvents	1022									
Subgroup 2			10							
Thermal Shock (temperature cycling)	1051	Condition C, 15 min at extremes, 20 cycles								
Hermetic Seal Fine Leak Gross Leak	1071	Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition C								
End Points		Group A, Subgroup 2								
Subgroup 3			5							
Steady-State Operation Life	1027	P _{DT} = 175-200mW, I _F = 20mA, T _A = 25°C								
End Points		Group A, Subgroup 2								
Bond Strength	2037	All internal wires of each device shall be pulled separately.	20 (c=0)							
Subgroup 4										
Decap Internal Visual Inspection	2075	Visual criteria in accordance with qualified design.	1 device							
Subgroup 6			7							
High Temperature Life (non-operating)	1032	t = 340hrs., T _A = 150°C								

Types 3N243TX, 3N244TX, 3N245TX

Group C Inspection (performed every six months while in production)

Examination	MIL-STD-750								
or Test	Method Conditions								
Subgroup 1			15						
Physical Dimensions	2066								
Subgroup 2			10						
Thermal Shock (glass strain)	1056	Condition A							
Terminal Strength	2036	Condition E							
Hermetic Seal Fine Leak Gross Leak	1071	Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition C							
Moisture Resistance	1021	Omit initial conditioning							
End Points		Group A, Subgroup 2							
Subgroup 3			10						
Shock	2016	Non-operating 1.5K G's, 0.5ms, 5 blows in each orientation, X ₁ , Y ₁ , Z ₁							
Vibration, Variable Frequency	2056								
Consistant Acceleration	2006	1 min in each orientation, X ₁ , Y ₁ , & Z ₁ at 20K G's min							
End Points		Group A, Subgroup 2							
Subgroup 4			15						
Salt Atmosphere (corrosion)	1041								
Subgroup 5			15						
Not Applicable									
Subgroup 6			10						
Steady-State Operational Life	1026	P _{DT} = 175-200mW, I _F = 20mA, T _A = 25°C, t = 1000hrs.	-						
End Points		Group A, Subgroup 2							

Optically Coupled Isolators Types 3N261, 3N262, 3N263

Features

- TO-72 hermetically sealed package
- 1 kVDC electrical isolation
- High current transfer ratio at low diode current drive
- TX-TXV process available (see Hi-Rel section)

Description

The 3N261, 3N262, and 3N263 are JEDEC registered optically coupled isolators each consisting of an infrared emitting diode and an NPN silicon phototransistor mounted in a hermetically sealed TO-72 package.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Input Diode
Forward DC Current
Reverse Voltage
Power Dissipation
Output Phototransistor
Continuous Collector Current
Collector-Emitter Voltage
Emitter-Collector Voltage 5.0V
Power Dissipation
Notes:
(1) Measured with input leads shorted together and output leads shorted together.

- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
 (3) Derate linearly 0.6mW/°C above 25°C.
 (4) Derate linearly 2.0mW/°C above 25°C.
- (5) The input waveform is supplied by a generator with the following characteristics: $Z_{OUT} = 50\Omega$, tr \leq 15ns, duty cycle \cong 1%.

Types 3N261, 3N262, 3N263

Symbol	Parameter	3N261			3N262			3N263				
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Input Die	ode		h				L					
VF	Forward Voltage	0.80		1.50	0.80		1.50	0.80		1.50	٧	IF = 10.0mA
		1.00		1.70	1.00		1.70	1.00		1.70	٧	I _F = 10.0mA, T _A = -55°C
		0.70		1.30	0.70		1.30	0.70		1.30	٧	I _F = 10.0mA, T _A = 100°C
IR	Reverse Current			100			100			100	μΑ	V _R = 2.0V
Output F	Phototransistor											
V _(BR) CEO	Collector-Emitter Breakdown Voltage	40			40			40			٧	I _C = 1.00mA, I _F = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	7.0			7.0			7.0			٧	I _E = 100μA, I _F = 0
ICEO	Collector Dark Current			100 100			100 100			100 100	nA μA	V _{CE} = 20.0V, I _F = 0 V _{CE} = 20.0V, T _A = 100°C
Coupled												
IC(on)	On-State Collector Current	0.50			1.00		5.00	2.00		10.00	mA	I _F = 1.0mA, V _{CE} = 5.0V
		0.70			1.40			2.80			mA	I _F = 2.0mA, V _{CE} = 5.0V, T _A = -55°C
		0.50			1.00			2.00			mA	$I_F = 2.0$ mA, $V_{CE} = 5.0$ V, $T_A = 100$ °C
V _{CE(SAT)}	Collector-Emitter			0.30							٧	I _F = 2.0mA, I _C = 0.5mA
	Saturation Voltage						0.30				٧	IF = 2.0mA, I _C = 1.0mA
										0.30	٧	IF = 2.0mA, I _C = 2.0mA
lio	Leakage Input-to-Output			100			100			100	nA	$V_{IO} = \pm 1.00 \text{kVDC}^{(1)}$
C _{IO}	Capacitance Input-to-Output			5.0			5.0			5.0	pF	$V_{IO} = 0V, f = 1.00MHz^{(1)}$
tr	Output Rise Time			20.0			20.0			25.0	μs	V _{CC} = 10.0V, I _F = 5.0mA, (5
tf	Output Fall Time			20.0			20.0			25.0	μs	$R_L = 100\Omega$

High Reliability Optically Coupled Isolators Types 3N261TX, 3N262TX, 3N263TX

Features

- Processed to Optek's military screening program patterned after MIL-S-19500
- TO-72 hermetically sealed package
- 1 kVDC electrical isolation
- High current transfer ratio at low diode current drive

Description

Each device in the series is a high reliability optically coupled isolator consisting of an infrared emitting diode and an NPN silicon phototransistor mounted in a hermetically sealed TO-72 package.

This series is identical to the JEDEC registered optically coupled isolators with additional high-reliability processing. This processing is patterned after MIL-S-19500 as shown in the accompanying table.

$\begin{array}{llllllllllllllllllllllllllllllllllll$
Input Diode
Forward DC Current
Reverse Voltage 2.0V
Power Dissipation
Output Phototransistor
Continuous Collector Current
Collector-Emitter Voltage 30V
Emitter-Collector Voltage
Power Dissipation
Notes:

- (1) Measured with input leads shorted together and output leads shorted together.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
 - (3) Derate linearly 0.60mW/°C above 25°C.
- (4) Derate linearly 2.0mW/°C above 25°C.
 (5) The input waveform is supplied by a generator with the following characteristics: Z_{OUT} = 50Ω, tr ≤ 15ns, duty cycle ≅ 1%, pulse width ≅ 100μs.

Types 3N261TX, 3N262TX, 3N263TX

	Parameter	3N261TX			3N262TX			3N263TX				
Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Input Die	ode						L		L	I		
VF	Forward Voltage	0.80		1.50	0.80		1.50	0.80		1.50	٧	I _F = 10.0mA
		1.00		1.70	1.00		1.70	1.00		1.70	٧	I _F = 10.0mA, T _A = -55°C
		0.70		1.30	0.70		1.30	0.70		1.30	٧	I _F = 10.0mA, T _A = 100°C
IR	Reverse Current			100			100			100	μΑ	V _R = 2.0V
Output F	Phototransistor											
V _(BR) CEO	Collector-Emitter Breakdown Voltage	40			40			40			V	I _C = 1.00mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	7.0			7.0			7.0			٧	ΙΕ = 100μΑ
ICEO	Collector Dark Current			100 100			100 100			100 100	nA μA	V _{CE} = 10.0V V _{CE} = 10.0V, T _A = 100°C
Coupled	l											
IC(on)	On-State Collector Current	0.50			1.00		5.0	2.00		10.0	mA	I _F = 1.0mA, V _{CE} = 5.0V
		0.70			1.40			2.80			mA	I _F = 2.0mA, V _{CE} = 5.0V, T _A = -55°C
		0.50			1.00			2.00			mA	I _F = 2.0mA, V _{CE} = 5.0V, T _A = 100°C
V _{CE(SAT)}	Collector-Emitter			0.30							>	I _F = 2.0mA, I _C = 0.50mA
	Saturation Voltage						0.30				٧	I _F = 2.0mA, I _C = 1.0mA
										0.30	٧	I _F = 2.0mA, I _C = 2.0mA
lio	Leakage Input-to-Output			10			10			10	nA	$V_{IO} = \pm 1.00 \text{kVDC}^{(1)}$
C _{IO}	Capacitance Input-to-Output			5.0			5.0			5.0	pF	$V_{IO} = 0V, f = 1.00MHz^{(1)}$
tr	Output Rise Time			20.0			20.0			25.0	μs	V _{CC} = 10.0V, I _F = 5.0mA, (5
tf	Output Fall Time			20.0			20.0			25.0	μs	$R_L = 100\Omega$

Types 3N261TX, 3N262TX, 3N263TX

100% Processing

Screen	Mil-STD-750 Method	Conditions	3N261TX 3N262TX 3N263TX
Pre-Cap Visual		Optek's pre-cap visual ⁽⁶⁾	100%
High Temperature Storage	1032	T _A = 150°C, t = 24hrs.	100%
Temperature Cycle	1051	Condition C, 20 cycles, 15 min each extreme	100%
Constant Acceleration	2006	20K G's, Y ₁ only	100%
High Temperature Reverse Bias	1039	Condition A, $T_A = 125$ °C, $V_{CE} = 24$ Vdc, $I_F = 0$, $t = 96$ hrs. min	100%
Power Burn-In	1039	Condition B, P _{DT} = 175-200mW, T _A = 25°C, I _F = 40mA, t = 160hrs. min	100%
Hermetic Seal	1071	Fine: Condition H, 5 X 10 ⁻⁸ atm cc/sec Gross: Condition C	100%

⁽⁶⁾ Visual inspection based upon Optek's interpretation of the requirements of a JANTX device per MIL-S-19500/548 specification.

Group B Inspection (performed on each inspection lot)

Examination		MIL-STD-750								
or Test	Method	Conditions	LTPD							
Subgroup 1			15							
Solderability	2026									
Resistance to Solvents	1022									
Subgroup 2			10							
Thermal Shock (temperature cycling)	1051	Condition C, 15 min at extremes, 20 cycles								
Hermetic Seal Fine Leak Gross Leak	1071	Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition C								
End Points		Group A, Subgroup 2								
Subgroup 3			5							
Steady-State Operation Life	1027	P _{DT} = 175-200mW, I _F = 20mA, T _A = 25°C								
End Points		Group A, Subgroup 2								
Bond Strength	2037	All internal wires of each device shall be pulled separately.	20 (c=0)							
Subgroup 4										
Decap Internal Visual Inspection	2075	Visual criteria in accordance with qualified design.	1 device							
Subgroup 6			7							
High Temperature Life (non-operating)	1032	t = 340hrs., T _A = 150°C								

Carrollton, Texas 75006

Types 3N261TX, 3N262TX, 3N263TX

Group C Inspection (performed every six months while in production)

Examination	MIL-STD-750								
or Test	Method Conditions								
Subgroup 1			15						
Physical Dimensions	2066								
Subgroup 2			10						
Thermal Shock (glass strain)	1056	Condition A							
Terminal Strength	2036	Condition E							
Hermetic Seal Fine Leak Gross Leak	1071	Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition C							
Moisture Resistance	1021	Omit initial conditioning							
End Points		Group A, Subgroup 2							
Subgroup 3			10						
Shock	2016	Non-operating 1.5K G's, 0.5ms, 5 blows in each orientation, X ₁ , Y ₁ , Z ₁							
Vibration, Variable Frequency	2056								
Constant Acceleration	2006	1 min in each orientation, X ₁ , Y ₁ , & Z ₁ at 20K G's min							
End Points		Group A, Subgroup 2							
Subgroup 4			15						
Salt Atmosphere (corrosion)	1041								
Subgroup 5			15						
Barometric Pressure	1001	Not Applicable							
Subgroup 6			10						
Steady-State Operational Life	1026	P _{DT} = 175-200mW, I _F = 20mA, T _A = 25°C, t = 1000hrs.							
End Points		Group A, Subgroup 2							

Optically Coupled Isolators Types 4N22A, 4N23A, 4N24A

Features

- High current transfer ratio
- TO-78 hermetic package
- · 1.0 kV electrical isolation
- Base lead provided for conventional transistor biasing
- JANTX version available per MIL-S-19500/486
- Higher breakdown voltage devices available as the "HV" series
- Patent number 4124860

Description

The 4N22A, 4N23A, and 4N24A are optically coupled isolators each consisting of a gallium arsenide LED and a silicon phototransistor mounted side by side and coupled on a ceramic substrate in a hermetic TO-78 package. All electrical characteristics for the 4N22A, 4N23A, and 4N24A are per the JEDEC registered test conditions. The 4N22AHV, 4N23AHV, and 4N24AHV series of optoisolators are available when higher breakdown voltages are required.

The TO-78 package offers high power dissipation, ease of heat sinking and superior operation in hostile environments.

Input-to-Output Isolation Voltage
Input Diode
Forward DC Current (65°C or below)
Reverse Voltage
Peak Forward Current (1 µs pulse width, 300 pps) 1.00A
Power Dissipation
Output Sensor
Continuous Collector Current
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage 4.0V
Power Dissipation
Notes:

- (1) Measured with input diode leads shorted together and output leads shorted together.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 1.0mW/°C above 65°C. (4) Derate linearly 3.0mW/°C above 25°C.
- (5) Not 100% tested.

Types 4N22A, 4N23A, 4N24A

Symbol	Parameter	Туре	Min	Тур	Max	Units	Test Conditions		
Input Dic	Input Diode								
VF	Forward Voltage		0.80		1.30	V	I _F = 10.0mA		
			1.00		1.50	V	I _F = 10.0mA, T _A = -55°C ⁽⁵⁾		
			0.70		1.20	V	I _F = 10.0mA, T _A = 100°C ⁽⁵⁾		
IR	Reverse Current				100	μА	V _R = 2.0V		
Output P	hototransistor								
V _{(BR)CBO}	Collector-Base Breakdown		35			V	$I_C = 100\mu A$, $I_E = 0$, $I_F = 0$		
V _{(BR)CEO}	Collector-Emitter Breakdown		35			V	I _C = 1.0mA, I _B = 0, I _F = 0		
V _{(BR)EBO}	Emitter-Base Breakdown		4.0			٧	I _E = 100μA, I _C = 0, I _F = 0		
IC(OFF)	Collector-Emitter Dark Current				100 100	nA μA	V _{CE} = 20V, I _B = 0, I _F = 0 V _{CE} = 20V, I _B = 0, I _F = 0, T _A = 100°C		
Coupled									
IC(ON)	On-State Collector Current	4N22A	0.15 2.50 1.00 1.00			mA mA mA	V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA V _{CE} = 5.0V, I _B = 0, I _F = 10.0mA V _{CE} = 5.0V, I _B = 0, I _F = 10.0mA, T _A = -55°C V _{CE} = 5.0V, I _B = 0, I _F = 10.0mA, T _A = 100°C		
		4N23A	0.20 6.00 2.50 2.50			mA mA mA mA	$\begin{split} &V_{CE} = 5.0V, \ I_{B} = 0, \ I_{F} = 2.0 mA \\ &V_{CE} = 5.0V, \ I_{B} = 0, \ I_{F} = 10.0 mA \\ &V_{CE} = 5.0V, \ I_{B} = 0, \ I_{F} = 10.0 mA, \ T_{A} = -55^{\circ}C \\ &V_{CE} = 5.0V, \ I_{B} = 0, \ I_{F} = 10.0 mA, \ T_{A} = 100^{\circ}C \end{split}$		
		4N24A	0.40 10.0 4.00 4.00			mA mA mA mA	$\begin{split} &V_{CE} = 5.0V, \ I_{B} = 0, \ I_{F} = 2.0 mA \\ &V_{CE} = 5.0V, \ I_{B} = 0, \ I_{F} = 10.0 mA \\ &V_{CE} = 5.0V, \ I_{B} = 0, \ I_{F} = 10.0 mA, \ T_{A} = -55^{\circ}C \\ &V_{CE} = 5.0V, \ I_{B} = 0, \ I_{F} = 10.0 mA, \ T_{A} = 100^{\circ}C \end{split}$		
VCE(SAT)	Collector-Emitter Saturation	4N22A 4N23A 4N24A			0.30 0.30 0.30	V	I _C = 2.5mA, I _B = 0, I _F = 20.0mA I _C = 5.0mA, I _B = 0, I _F = 20.0mA I _C = 10.0mA, I _B = 0, I _F = 20.0mA		
hFE	DC Current Gain	4N22A 4N23A 4N24A	200 300 400				V _{CE} = 5.0V, I _C = 10.0mA, I _F = 0mA		
Rio	Resistance (Input to Output)		10 ¹¹			Ω	$V_{IO} = \pm 1000 V dc^{(1)}$		
Cio	Capacitance (Input to Output)				5.0	pF	V _{IO} = 0.0V, f = 1.0MHz ⁽¹⁾		
tr	Output Rise Time	4N22A 4N23A 4N24A			15.0 15.0 20.0	μs μs μs	V _{CC} = 10.0V, I _F = 10.0mA, R _L = 100Ω		
tf	Output Fall Time	4N22A 4N23A 4N24A			15.0 15.0 20.0	μs μs μs			

Optically Coupled Isolators Types JANTX, JANTXV-4N22A, 4N23A, 4N24A

Features

- High-Reliability processed to MIL-S-19500/486
- 1 kV electrical isolation
- Base contact is provided for conventional transistor biasing
- JANTX, JANTXV qualified
- Patent number 4124860

Description

The JANTX and JANTXV series of the 4N22A, 4N23A and 4N24A are JEDEC registered, DESC qualified, optically coupled isolators. High reliability processing on the devices is performed in accordance with MIL-S-19500/486.

Each device in the series consists of an infrared emitting diode and a NPN silicon phototransistor mounted in a hermetically sealed TO-78 package. The suffix letter "A" denotes the collector is electrically isolated from the case.

Input-to-Output Isolation Voltage	125°C ing
Input Diode	
Forward DC Current (65°C or below)	40mA
Reverse Voltage	2.0V
	1.00A
Power Dissipation	mW ⁽³⁾
Output Sensor	
•	50mA
Collector-Emitter Voltage	35V
Collector-Base Voltage	
Emitter-Base Voltage	4.0V
Power Dissipation	
Notes	11177

- (1) Measured with input diode leads shorted together and output leads shorted together.
 - (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 1.0mW/°C above 65°C
- (4) Derate linearly 3.0mW/°C above 25°C.

Types JANTX, JANTXV - 4N22A, 4N23A, 4N24A

Electrical Characteristics (T_A = 25°C unless otherwise noted)

	Parameter	JANTX, JANTXV							
Symbol		4N22A		4N:	23 A	4N:	24A	Units	Test Conditions
		Min	Max	Min	Max	Min	Max		
Input Dic	ode								
VF	Forward Voltage	0.80 1.00 0.70	1.30 1.50 1.20	0.80 1.00 0.70	1.30 1.50 1.20	0.80 1.00 0.70	1.30 1.50 1.20	V V	I _F = 10.0mA I _F = 10.0mA, T _A = -55°C ⁽⁵⁾ I _F = 10.0mA, T _A = 100°C ⁽⁵⁾
IR	Reverse Current		100		100		100	μА	V _R = 2.0V
Output P	Phototransistor								
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	35		35		35		٧	I _C = 1.0mA, I _B = 0, I _F = 0
V _{(BR)CBO}	Collector-Base Breakdown Voltage	35		35		35		٧	$I_C = 100\mu A$, $I_B = 0$, $I_F = 0$
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	4.0		4.0		4.0		٧	$I_E = 100\mu A$, $I_C = 0$, $I_F = 0$
ICEO	Collector-Emitter Dark Current		100 100		100 100		100 100	nA μA	$V_{CE} = 20V$, $I_{B} = 0$, $I_{F} = 0$ $V_{CE} = 20V$, $I_{B} = 0$, $I_{F} = 0$, $T_{A} = 100^{\circ}C$
Coupled		•							
IC(ON)	On-State Collector Current	0.15 2.50 1.00		0.20 6.00 2.50 2.50		0.40 10.0 4.00 4.00		mA mA mA	$\begin{split} & F = 2.0 \text{mA}, \ V_{CE} = 5 \text{V}, \ _B = 0 \\ & _F = 10.0 \text{mA}, \ V_{CE} = 5 \text{V}, \ _B = 0 \\ & _F = 10.0 \text{mA}, \ V_{CE} = 5 \text{V}, \ _B = 0, \\ & _{T_A} = -55^{\circ}\text{C} \\ & _{F} = 10.0 \text{mA}, \ V_{CE} = 5 \text{V}, \ _B = 0, \\ & _{T_A} = 100^{\circ}\text{C} \end{split}$
VCE(SAT)	Collector-Emitter Saturation Voltage		0.30		0.30		0.30	٧	IF = 20mA, IC = 2.5mA, IB = 0 IF = 20mA, IC = 5.0mA, IB = 0 IF = 20mA, IC = 10.0mA, IB = 0
hFE	DC Current Gain	200		300		400			V _{CE} = 5.0V, I _C = 10.0mA, I _F = 0mA
Rio	Resistance (Input-to-Output)	10 ¹¹		10 ¹¹		10 ¹¹		Ω	V _{IO} = ± 1.0VDC ⁽¹⁾
C _{IO}	Capacitance (Input to Output)		5.0		5.0		5.0	pF	$V_{IO} = 0V, f = 1.0MHz^{(1)}$
t _r t _f	Output Rise Time Output Fall Time		15.0 15.0		15.0 15.0		20.0 20.0	μs μs	V _{CC} = 10.0V, I _F = 10.0mA, R _L = 100Ω

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Types JANTX, JANTXV - 4N22A, 4N23A, 4N24A

Simplified JANTX Product Flow

JANTX	JANTXV
100% Processing Pluse Sample Environmental and Life Testing	Same as JANTX Plus 100% Internal Visual Inspection
Commercial Product ↓ 100% Processing ↓ Group A, B, C Sample Test ↓ Ship	100% Pre-Cap Visual ↓ 100% Processing ↓ Group A, B, C Sample Test ↓ Ship

100% Processing

Screen	MIL-STD- 750 Method	Conditions	JANTX4N22A JANTX4N23A JANTX4N24A	JANTXV4N22A JANTXV4N23A JANTXV4N24A
Pre-Cap Visual		Per Mil-S-19500/486		100%
High Temperature Storage		T _A = 125°C, t = 72hrs.	100%	100%
Temperature Cycle	1051	Condition B, 10 Cycles, 15 min @ extreme	100%	100%
Constant Acceleration	2006	20K G's, Y ₁ only	100%	100%
High Temperature Reverse Bias	1039	Condition A, T _A = 125°C, V _{CB} = 20V, I _F = 0, t = 96hrs. min	100%	100%
Power Burn-In	1039	Condition B, V_{CC} = 20V, V_{CE} = 10 ± 5V, Pt = 275 ± 25mW, T_A = 25°C, I_F = 40mA, t = 168hrs. min	100%	100%
Monitored Temperature Cycle	1051	Condition B, Monitored, 1 Cycle, 15 min @ extreme	100%	100%
Hermetic Seal	1071	Fine: Condition G or H, 1 x 10 ⁻⁷ atm cc/sec Gross: Condition C	100%	100%
External Visual Examination	2071		100%	100%

Types JANTX, JANTXV - 4N22A, 4N23A, 4N24A

Quality and Reliability Lot Acceptance Testing

Subgroup	Examination or Test	Method MIL-STD-750	Sample size or LTPD
Group A MIL-S-	19500/486		
1	Visual & Mechanical	2071	LTPD = 5
2	DC Electrical	Table 1 (/486)	116, C = 0
3	Temperature Tests	Table 1 (/486)	116, C = 0
4	Dynamic Tests	Table 1 (/486)	116, C = 0
5	Not Applicable		
6	Not Applicable		
7	Monitored Temp Cycle (1 Cycle)	1051	116, C = 0
roup B MIL-S-	19500/486		
Subgroup	Examination or Test	Method MIL-STD-750	Sample Size or LTPD
1	Solderability Resistance to Solvents	2026 1022	LTPD = 15 LTPD = 15
2	Thermal Shock Hermetic Seal (Condition H and C) End Points	1051 1071 Table IV (/486)	LTPD = 10
3	Steady State Life End Points	1027 Table IV (/486)	LTPD = 5
4	Decap Internal Visual Bond Strength	2075 2037	1, C = 0 20 Wires
5	Not Applicable		
6	High Temp Life (Non-Operating) End Points	1032 Table IV (/486)	LTPD = 7
iroup C Mil-S-1	9500/486 (Performed Every 6 Months)		
Subgroup	Examination or Test	Method MIL-STD-750	Sample Size or LTPD
1	Physical Dimensions	2066	LTPD = 15
2	Thermal Shock (Glass Strain) Terminal Strength (Not Applicable) Hermetic Seal (Condition H and C) Moisture Resistance External Visual End Points	1056 — 1071 1021 2071 Table IV (/486)	LTPD = 10
3	Shock Vibration, Variable Frequency Constant Acceleration End Points	2016 2056 2006 Table IV (/486)	LTPD = 10
4	Salt Atmosphere	1041	LTPD = 15
5	Not Applicable		
6	Steady State Operation Life (1000 hrs.) End Points	1026 Table IV (/486)	LTPD = 10

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Surface Mount Optically Coupled Isolators Types JANTX, JANTXV - 4NŹ2AU, 4N23AU, 4N24AU

Features

- JANTX, JANTXV qualified per MIL-S-19500/486
- Surface Mountable
- 1 kV Electrical Isolation
- Base contact provided for conventional transistor biasing

Description

The JANTX and JANTXV series 4N22AU, 4N23AU, and 4N24AU are DESC qualified, surface mount optically coupled isolators. High reliability processing on the devices is performed in accordance with MIL-S-19500/486.

Each device in the series consists of an infrared emitting diode and an NPN silicon phototransistor mounted in a hermetically sealed ceramic surface mount package. The suffix letter "A" denotes the collector is electrically isolated from the case and "U" denotes surface mount package.

This data sheet is provided as a summary reference. Refer to MIL-S-19500/486 for complete requirements.

Input-to-Output Isolation Voltage
Storage and Operating Temperature Range65°C to +125°C
Soldering Temperature (vapor phase reflow)
Soldering Temperature (heated collet for 5 sec)
Input Diode
Forward DC Current (65°C or below)
Reverse Voltage
Peak Forward Current (1 μs pulse width, 300 pps) 1.00A
Output Sensor
Continuous Collector Current
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Power Dissipation
Notes:

- (1) Measured with input diode leads shorted together and output leads shorted together.
 (2) Derate linearly 0.67mA°C above 65°C.
 (3) Derate linearly 3.0mW/°C above 25°C.

Types JANTX, JANTXV - 4N22AU, 4N23AU, 4N24AU

Symbol	Parameter	Type	Min	Тур	Max	Units	Test Conditions
Input Dic	ode						
V _F Forward Voltage			0.80		1.30	V	I _F = 10.0mA
_		1.00		1.50	V	I _F = 10.0mA, T _A = -55°C	
			0.70		1.20	V	IF = 10.0mA, T _A = 100°C
IR	Reverse Current				100	μА	V _R = 2.0V
	hototransistor			l			L. Y.
	Collector-Base Breakdown Vol	tage	35			V	I _C = 100μA, I _E = 0, I _F = 0
	Collector-Emitter Breakdown V		35			V	I _C = 1.0mA, I _B = 0, I _F = 0
	Emitter-Base Breakdown Volta		4.0			v	I _E = 100μA, I _C = 0, I _F = 0
IC(OFF)	Collector-Emitter Dark Current	<u> </u>			100	nA	VcF = 20V, IB = 0, IF = 0
IC(OFF)	Concolor Emilion Bank Carroni				100	μA	$V_{CE} = 20V$, $I_{B} = 0$, $I_{F} = 0$, $T_{A} = 100^{\circ}C$
Coupled			L	1		<u> </u>	
Ic(on)	On-State Collector Current	4N22AU	0.15			mA	V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA
.0(0,14)			2.50			mA	V _{CE} = 5.0V, I _B = 0, I _F = 10.0mA
			1.00			mA	$V_{CE} = 5.0V$, $I_{B} = 0$, $I_{F} = 10.0$ mA, $T_{A} = -55$ °C
			1.00			mA	V _{CE} = 5.0V, I _B = 0, I _F = 10.0mA, T _A = 100°C
		4N23AU	0.20			mA	V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA
			6.00			mA	V _{CE} = 5.0V, I _B = 0, I _F = 10.0mA
			2.50			mA	$V_{CE} = 5.0V$, $I_{B} = 0$, $I_{F} = 10.0$ mA, $T_{A} = -55$ °C
			2.50			mA	$V_{CE} = 5.0V$, $I_B = 0$, $I_F = 10.0$ mA, $T_A = 100$ °C
		4N24AU	0.40			mA	V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA
			10.00			mA	V _{CE} = 5.0V, I _B = 0, I _F = 10.0mA
			4.00			mA	$V_{CE} = 5.0V$, $I_{B} = 0$, $I_{F} = 10.0$ mA, $T_{A} = -55$ °C
			4.00			mA	$V_{CE} = 5.0V$, $I_{B} = 0$, $I_{F} = 10.0$ mA, $T_{A} = 100$ °C
VCE(SAT)	Collector-Emitter Saturation	4N22AU			0.30	V	I _C = 2.5mA, I _B = 0, I _F = 20.0mA
	Voltage	4N23AU			0.30		$I_C = 5.0 \text{mA}$, $I_B = 0$, $I_F = 20.0 \text{mA}$
		4N24AU			0.30		I _C = 10.0mA, I _B = 0, I _F = 20.0mA
hfE	DC Current Gain	4N22AU	200				
		4N23AU	300				$V_{CE} = 5.0V$, $I_{C} = 10.0mA$, $I_{F} = 0mA$
		4N24AU	400				
Rio	Resistance (Input to Output)		10 ¹¹			Ω	$V_{IO} = \pm 1000 V dc^{(1)}$
Cio	Capacitance (Input to Output)				5.0	pF	$V_{IO} = 0.0V, f = 1.0MHz^{(1)}$
tr	Output Rise Time	4N22AU			15.0	μs	
		4N23AU			15.0	μs	
		4N24AU			20.0	μs	$V_{CC} = 10.0V$, $I_F = 10.0mA$, $R_L = 100\Omega$
tf	Output Fall Time	4N22AU			15.0	μs	
		4N23AU			15.0	μs	
		4N24AU			20.0	μs	

Types JANTX, JANTXV - 4N22AU, 4N23AU, 4N24AU

Simplified JANTX Product Flow

JANTX	JANTXV
100% Processing, Plus Sample	Same as JANTX Plus 100%
Environmental and Life Testing	Internal Visual Inspection
JAN Qualified Build	100% Pre-Cap Visual
• • ↓	\
100% Processing	100% Processing
↓	↓
Group A, B, C Sample Test	Group A, B, C Sample Test
↓	\
Ship	Ship

100% Processing

Screen	MIL-STD- 750 Method	Conditions	JANTX4N23AU	JANTXV4N22AU JANTXV4N23AU JANTXV4N24AU
Pre-Cap Visual	2072			100%
High Temperature Storage		T _A = 125°C, t = 24hrs.	100%	100%
Temperature Cycle	1051	Condition B, 10 Cycles, 15 min @ -55°C to +125°C	100%	100%
Constant Acceleration	2006	20K G's, Y ₁ only	100%	100%
Hermetic Seal	1071	Fine: Condition H, 5 x 10 ⁻⁸ atm cc/sec Gross: Condition C	100%	100%
High Temperature Reverse Bias	1039	Condition A, $T_A = 125^{\circ}$ C, $V_{CB} = 28$ V, $I_F = 0$, $t = 48$ hrs. min	100%	100%
Interim Electrical			100%	100%
Power Burn-In	1039	Condition B, $V_{CC} = 20V$, $V_{CE} = 10 \pm 5V$, $Pt = 275 \pm 25 \text{mW}$, $T_A = 25^{\circ}\text{C}$, $I_F = 40 \text{mA}$, $t = 168 \text{hrs. min}$	100%	100%
Final Electrical			100%	100%

Types JANTX, JANTXV - 4N22AU, 4N23AU, 4N24AU

Quality and Reliability Lot Acceptance Testing

Subgroup	Examination or Test	Method MIL-STD-750	Sample size or LTPD
Group A MIL-S-	19500/486		A von til gran av still i samme som til still som til s
1	Visual & Mechanical	2071	LTPD = 5
2	DC Electrical	Table 1 (/486)	116, C = 0
3	Temperature Tests	Table 1 (/486)	116, C = 0
4	Dynamic Tests	Table 1 (/486)	116, C = 0
5	Not Applicable		
6	Not Applicable		
7	Monitored Temp Cycle (1 Cycle)	1051	116, C = 0
Group B MIL-S-			
Subgroup	Examination or Test	Method MIL-STD-750	Sample Size or LTPD
1	Solderability	2026	LTPD = 15
	Resistance to Solvents	1022	LTPD = 15
2	Thermal Shock	1051	LTPD = 10
	Hermetic Seal (Condition H and C)	1071	
	End Points	Table IV (/486)	
3	Steady State Life	1027	LTPD = 5
	End Points	Table IV (/486)	
4	Decap Internal Visual	2075	1, C = 0
	Bond Strength	2037	20 Wires
5	Not Applicable		
6	High Temp Life (Non-Operating)	1032	LTPD = 7
	End Points	Table IV (/486)	
Group C Mil-S-1	9500/486 (Performed Every 6 Months)		
Subgroup	Examination or Test	Method MIL-STD-750	Sample Size or LTPD
1	Physical Dimensions	2066	LTPD = 15
2	Thermal Shock (Glass Strain)	1056	LTPD = 10
	Terminal Strength (Not Applicable)	_	
	Hermetic Seal (Condition H and C)	1071	
	Moisture Resistance	1021	
	External Visual	2071	
	End Points	Table IV (/486)	
3	Shock	2016	LTPD = 10
	Vibration, Variable Frequency	2056	
	Constant Acceleration	2006	
	End Points	Table IV (/486)	
4	Salt Atmosphere	1041	LTPD = 15
5	Not Applicable		
6	Steady State Operation Life (1000 hrs.)	1026	LTPD = 10
	End Points	Table IV (/486)	

Optically Coupled Isolators Types 4N47, 4N48, 4N49

Features

- · High current transfer ratio
- TO-78 hermetic package
- 1.0 kV electrical isolation
- Base lead provided for conventional transistor biasing
- JANTX version available per MIL-S-19500/548
- Higher breakdown voltage devices available as the "HV" series
- Patent number 4124860

Description

The 4N47, 4N48, and 4N49 are optically coupled isolators each consisting of an infrared light emitting diode and a silicon phototransistor mounted side by side on a ceramic substrate and coupled in a hermetic TO-78 package. All electrical characteristics are according to the JEDEC registered 4N47, 4N48, and 4N49 test conditions. The 4N47HV, 4N48HV, and 4N49HV series of optoisolators are available when higher breakdown voltages are required.

The TO-78 package offers high power dissipation, ease of heat sinking and superior operation in hostile environments.

$\label{eq:local_control_control} \begin{array}{lllllllllllllllllllllllllllllllllll$
Operating Temperature Range55°C to +125°C
Soldering Temperature [1/16 in. (1.6mm)) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current (65°C or below)
Reverse Voltage
Power Dissipation
Output Phototransistor
Continuous Collector Current
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage 7.0V
Power Dissipation
Notes:
(1) Measured with input leads shorted together and output leads shorted together

- Measured with input leads shorted together and output leads shorted together.
 - (2) Derate linearly 1.00mW/°C above 65°C.
- (3) 4N47HV, 4N48HV, and 4N49HV are available rated at 55V minimum.
- (4) Derate linearly 3.0mW/°C above 25°C.

Types 4N47, 4N48, 4N49

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Туре	Min	Тур	Max	Units	Test Conditions
Input Dic	ode						
VF	Forward Voltage		0.80 1.00 0.70		1.50 1.70 1.30	V V V	I _F = 10.0mA I _F = 10.0mA, T _A = -55°C I _F = 10.0mA, T _A = 100°C
IR	Reverse Current				100	μΑ	V _R = 2.0V
Output F	Phototransistor						
V _{(BR)CBO}	Collector-Base Breakdown Volt	age ⁽³⁾	45			V	$I_C = 100\mu A$, $I_E = 0$, $I_F = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage ⁽³⁾	40			V	I _C = 1.0mA, I _B = 0, I _F = 0
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	ge	7.0			V	$I_E = 100\mu A$, $I_C = 0$, $I_F = 0$
IC(OFF)	Collector-Emitter Dark Current				100 100	nA μA	V _{CE} = 20V, I _B = 0, I _F = 0 V _{CE} = 20V, I _B = 0, I _F = 0, T _A = 100°C
I _{CB(OFF)}	Collector-Base Dark Current				100	nA	V _{CB} = 20V, I _B = 0, I _F = 0
Coupled							
Ic(on)	On-State Collector Current	4N47	0.5 0.7 0.5			mA mA mA	V _{CE} = 5.0V, I _B = 0, I _F = 1.0mA V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = -55°C V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = 100°C
		4N48	1.0 1.4 1.0		5.0	mA mA mA	V _{CE} = 5.0V, I _B = 0, I _F = 1.0mA V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = -55°C V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = 100°C
		4N49	2.0 2.8 2.0		10.0	mA mA mA	V _{CE} = 5.0V, I _B = 0, I _F = 1.0mA V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = -55°C V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = 100°C
ICB(ON)	On-State Collector Base	A second	30			μА	V _{CB} = 5.0V, I _E = 0, I _F = 10mA
VCE(SAT)	Collector-Emitter Saturation Voltage	4N47 4N48 4N49			0.30 0.30 0.30	V V V	I _C = 0.5mA, I _B = 0, I _F = 2.0mA I _C = 1.0mA, I _B = 0, I _F = 2.0mA I _C = 2.0mA, I _B = 0, I _F = 2.0mA
hFE	DC Current Gain	4N47 4N48 4N49	100 100 100				V _{CE} = 5.0V, I _C = 10.0mA, I _F = 0mA
R _{IO}	Resistance (Input to Output)	· · · · · · · · · · · · · · · · · · ·	10 ¹¹			Ω	$V_{IO} = \pm 1000 V dc^{(1)}$
CIO	Capacitance (Input to Output)				5.0	pF	V _{IO} = 0.0V, f = 1.0MHz ⁽¹⁾
tr	Output Rise Time	4N47 4N48 4N49			20.0 20.0 25.0	μs μs μs	Vcc = 10.0V,
tf	Output Fall Time	4N47 4N48 4N49			20.0 20.0 25.0	μs μs μs	$I_F = 5.0 \text{mA},$ $R_L = 100\Omega$

13-27

Optically Coupled Isolators Types JANTX, JANTXV - 4N47, 4N48, 4N49

Features

- High current transfer ratio
- TO-78 hermetic package
- 1.0 kV electrical isolation
- Base lead provided for conventional transistor biasing
- JANTX qualified per MIL-S-19500/548
- Patent number 4124860

Description

The JANTX and JANTXV series of the 4N47, 4N48, and 4N49 are JEDEC registered, DESC qualified, optically coupled isolators. High reliability processing on devices is performed in accordance with MIL-S-19500/548.

Input-to-Output Isolation Voltage
Storage Temperature Range55°C to +150°C
Operating Temperature Range55°C to +125°C
Soldering Temperature [1/16 in. (1.6mm)) from case for 5 sec. with soldering
iron]
Input Diode
Forward DC Current (65°C or below)
Reverse Voltage
Power Dissipation
Output Phototransistor
Continuous Collector Current 50mA
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage 7.0V
Power Dissipation
Notes:

- (1) Measured with input leads shorted together and output leads shorted together.
- (2) Derate linearly 1.0mW/°C above 65°C. (3) Derate linearly 3.0mW/°C above 25°C.

Types JANTX, JANTXV - 4N47, 4N48, 4N49

Symbol	Parameter	Туре	Min	Тур	Max	Units	Test Conditions
Input Dic	ode		-				
VF	Forward Voltage				1.50 1.70 1.30	V V	I _F = 10.0mA I _F = 10.0mA, T _A = -55°C I _F = 10.0mA, T _A = 100°C
IR	Reverse Current				100	μА	V _R = 2.0V
Output P	Phototransistor						
V _{(BR)CBO}	Collector-Base Breakdown Volt	age	45			V	$I_C = 100\mu A$, $I_E = 0$, $I_F = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage	40			V	I _C = 1.0mA, I _B = 0, I _F = 0
V _{(BR)EBO}	Emitter-Base Breakdown Voltag	ge	7.0			V	$I_E = 100\mu A$, $I_C = 0$, $I_F = 0$
Ic(OFF)	Collector-Emitter Dark Current				100 100	nA μA	V _{CE} = 20V, I _B = 0, I _F = 0 V _{CE} = 20V, I _B = 0, I _F = 0, T _A = 100°C
ICB(OFF)	Collector-Base Dark Current				10.0	nA	$V_{CB} = 20V$, $I_E = 0$, $I_F = 0$
Coupled							
I _{C(ON)}	On-State Collector Current	4N47	0.5 0.7 0.5			mA mA mA	V _{CE} = 5.0V, I _B = 0, I _F = 1.0mA V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = -55°C V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = 100°C
		4N48	1.0 1.4 1.0		5.0	mA mA mA	V _{CE} = 5.0V, I _B = 0, I _F = 1.0mA V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = -55°C V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = 100°C
		4N49	2.0 2.8 2.0		10.0	mA mA mA	V _{CE} = 5.0V, I _B = 0, I _F = 1.0mA V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = -55°C V _{CE} = 5.0V, I _B = 0, I _F = 2.0mA, T _A = 100°C
I _{CB(ON)}	On-State Collector Base		30			μА	$V_{CB} = 5.0V$, $I_E = 0$, $I_F = 10mA$
VCE(SAT)	Collector-Emitter Saturation Voltage	4N47 4N48 4N49			0.30 0.30 0.30	V V	$\begin{split} I_C &= 0.5 \text{mA}, \ I_B = 0, \ I_F = 2.0 \text{mA} \\ I_C &= 1.0 \text{mA}, \ I_B = 0, \ I_F = 2.0 \text{mA} \\ I_C &= 2.0 \text{mA}, \ I_B = 0, \ I_F = 2.0 \text{mA} \end{split}$
hFE	DC Current Gain	4N47 4N48 4N49	100 100 100				V _{CE} = 5.0V, I _C = 10.0mA, I _F = 0mA
Rio	Resistance (Input-to-Output)	Resistance (Input-to-Output)				Ω	$V_{I-O} = \pm 1000 V dc^{(1)}$
C _{IO}	Capacitance (Input to Output)				5.0	pF	V _{I-O} = 0V, f = 1.0MHz ⁽¹⁾
tr	Output Rise Time	4N47 4N48 4N49			20.0 20.0 25.0	μs μs μs	Vcc = 10.0V,
t _f	Output Fall Time	4N47 4N48 4N49			20.0 20.0 25.0	μs μs μs	$I_F = 5.0 \text{mA},$ $R_L = 100\Omega$

High Speed Optocouplers Types HCC135, HCC136, HCC135TXV, HCC136TXV

Features

- High speed 1 megabit/second
- TTL compatible
- High common mode transient immunity
- Wide bandwidth
- Open collector output
- · Hermetic surface mount

Description

Optek's HCC135 and HCC136 are high speed optocouplers consisting of IR emitters and integrated photodetectors. Their electrical characteristics are such that they can be substituted for 6N135 and 6N136 in applications where hermetic devices are required and board space is at a premium.

The HCC package is a ceramic surface mount leadless chip carrier which is compatible with epoxy and reflow solder mounting technologies.

The HCC135TXV and HCC136TXV are high reliability optocouplers with 100% processeing and Group Testing patterned after MIL-STD-883 Method 5008.

Absolute Maximum Ratings (No derating required up to 70°C)

Storage Temperature
Output Power Dissipation
Caution: This component is susceptible to damage from electrostatic discharge. Normal static prevention procedures should be used in handling.

- Notes: Derate linearly above 70°C free-air temperature at a rate of 0.45mA/°C.
- Derate linearly above 70°C free-air temperature at a rate of 0.9mA°C. Derate linearly above 70°C free-air temperature at a rate of 0.8mW/°C.
- Derate linearly above 70°C free-air temperature at a rate of 1.8mW/°C.
- CMH is the maximum allowable dV/dt on the leading edge of a common mode pulse to assure that the output will not switch from high to low.
- CML is the maximum negative dV/dt allowable on the trailing edge of a common mode pulse
- to assure that the output will not switch from low to high. Test conditions represents 1 TTL unit load with 5.6 k Ω pull-up resistor.
- Test conditions represents 1 LSTTL unit load with a 6.1 k Ω pull-up resistor.
- Device considered a two-terminal device: pins 1 and 2 shorted together and pins 3, 4, 5 and

6 shorted together.

Types HCC135, HCC136, HCC135TXV, HCC136TXV

Electrical Characteristics (Over recommended temperature T_A = -55°C to 125°C, unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP*	MAX	UNITS	TEST CONDITIONS
CTR	Current Transfer Ratio	HCC135 HCC136	7.0 19.0	19.0 25.0		%	I _F = 16.0mA, V _O = 0.40V, V _{CC} = 4.5V, T _A = 25°C
		HCC135 HCC136	5.0 15.0	15.0 23.0		% %	I _F = 16.0mA, V _O = 0.50V V _{CC} = 4.5V
V _{OL}	Logic Low Output Voltage	HCC135		0.100	0.40	V	$I_F = 16.0$ mA, $I_O = 1.10$ mA, $V_{CC} = 4.5$ V
		HCC136		0.100	0.40	V	$I_F = 16.0 \text{mA}, I_O = 2.4 \text{mA}, V_{CC} = 4.5 \text{V}$
Іон	Logic High Output Current			3.0	500	nA	$I_F = 0mA$, $V_O = V_{CC} = 5.5V$, $T_A = 25^{\circ}C$
				0.010	1.00	μА	$I_F = 0$ mA, $V_O = V_{CC} = 15.0$ V, $T_A = 25$ °C
					50	μА	$I_F = 0mA$, $V_O = V_{CC} = 15.0V$
Iccl	Logic Low Supply Current			40		μА	$I_F = 16.0 \text{mA}, V_O = \text{open}, V_{CC} = 15.0 \text{V}$
ICCH Logic High Supply Curren			0.020	1.00	μА	I _F = 0mA, V _O = open, V _{CC} = 15.0V, T _A = 25°C	
					2.0	μА	$I_F = 0$ mA, $V_O = $ open, $V_{CC} = 15.0$ V
VF	Input Forward Voltage			1.50	1.70	٧	$I_F = 16.0 \text{mA}, T_A = 25^{\circ} \text{C}$
$\frac{\Delta V_F}{\Delta T_A}$	Temperature Coefficient of Forward Voltage			-1.80		mV/°C	I _F = 16.0mA
BVR	Input Reverse Breakdown	Voltage	5.0			٧	$I_R = 10.0 \mu A$, $T_A = 25^{\circ} C$
CiN	Input Capacitance			42		pF	f = 1.00MHz, V _F = 0
lio	Input-Output Insulation Leakage Current				1.00	μА	45% Relative Humidity, t = 5.0 sec, V_{IO} = 1000Vdc, T_A = 25°C (Note 9)
Rio	Input-Output Resistance			10 ¹²		Ω	V _{IO} = 500 Vdc (Note 9)
C _{IO}	Input-Output Capacitance			0.50		pF	f = 1.00MHz (Note 9)
hFE	Transistor DC Current Gair	1		150			Vo = 5.0V, Io = 3.0mA

Switching Specifications ($T_A = 25^{\circ}C$) $V_{CC} = 5.0V$, $I_F = 16.0 \text{mA}$ unless otherwise noted

tphl	Propagation Delay Time to Logic Low at Output	HCC135 HCC136	0.50 0.20	1.50 0.80	μs μs	$R_L = 4.1$ k Ω (Note 8) $R_L = 1.90$ k Ω (Note 7)
tplh	Propagation Delay Time to Logic High at Output	HCC135 HCC156	0.40 0.30	1.50 0.80	μs μs	$R_L = 4.1$ k Ω (Note 8) $R_L = 1.90$ k Ω (Note 7)
СМн	Common Mode Transient Immunity at Logic High Level Output	HCC135 HCC136	1000 1000		V/μs V/μs	$ \begin{aligned} & \text{I}_{\text{F}} = 0 \text{mA, V}_{\text{CM}} = 10.0 \text{Vp-p,} \\ & \text{R}_{\text{L}} = 4.1 \text{k}\Omega \text{ (Notes 6,8)} \\ & \text{I}_{\text{F}} = 0 \text{mA, V}_{\text{CM}} = 10.0 \text{Vp-p,} \\ & \text{R}_{\text{L}} = 1.90 \text{k}\Omega \text{ (Notes 6, 7)} \end{aligned} $
CML	Common Mode Transient Immunity at Logic Low Level Output	HCC135 HCC136	-1000 -1000		V/μs V/μs	V_{CM} =10.0Vp-p, R _L =4.1k Ω , (Notes 5, 8) V_{CM} =10.0Vp-p, R _L =1.90k Ω , (Notes 5, 7)

^{*}All typicals at $T_A = 25^{\circ}C$ and $V_{CC} = 5.0V$, unless otherwise noted.

Surface Mount Optically Coupled Isolator Types HCC240, HCC242

Features

- Surface mountable on ceramic or printed circuit board
- Miniature package saves circuit board area
- Electrical performance similar to 4N22A and 4N24A
- Hermetically sealed
- Screened per MIL-S-19500 TX or TXV equivalent levels on request
- Higher breakdown voltage devices available as the "HV" series

Description

The HCC240 and HCC242 are optically coupled isolators, consisting of a gallium aluminum arsenide LED and a silicon phototransistor mounted and coupled in a miniature surface mount hermetic leadless chip carrier. The HCC240 and HCC242 are identical except for the DC current transfer ratio. All measurable electrical parameters are identical to the JEDEC registered 4N22A and 4N24A. HCC240HV and HCC242HV series optoisolators are available where higher breakdown voltages are required. These solid state couplers are ideal for designs where board space and device weight are important design considerations.

Absolute Maximum Ratings (T _A = 25°C unless otherwi
--

- (1) Measured with inputs shorted together and outputs shorted together.
- (2) Derate linearly 1.0 mW/°C above 65°C.
- (3) HCC240HV and HCC242HV are available rated at 55 V minimum.
- (4) HCC240HV and HCC242HV are available rated at 7.0 V minimum.
- (5) Derate linearly 3.0 mW/°C above 25°C.

Types HCC240, HCC242

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	1						
			0.80		1.30	V	I _F = 10.0 mA
V_{F}	Forward Voltage		1.00		1.50	٧	I _F = 10.0 mA, T _A = -55°C
			0.70		1.20	V	I _F = 10.0 mA, T _A = 100°C
I _R	Reverse Current				100	μΑ	V _R = 2.0 V
Output Pho	ototransistor						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage ⁽³⁾	3)	30			٧	I _C = 1.0 mA, I _F = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage ⁽⁴⁾		5.0			V	I _E = 100 μA, I _F = 0
I _{C(OFF)}	Collector-Emitter Dark Current				100	nA	V _{CE} = 20 V, I _F = 0
, ,					100	μA	$V_{CE} = 20 \text{ V}, I_F = 0, T_A = 100^{\circ}\text{C}$
Coupled							
I _{C(ON)}	On-State Collector Current	HCC240	0.15			mA	V _{CE} = 5.0 V, I _F = 2.0 mA
-(,			2.5	6.0		mA	V _{CE} = 5.0 V, I _F = 10.0 mA
			1.0			mA	$V_{CE} = 5.0 \text{ V}, I_F = 10.0 \text{ mA},$ $T_A = -55^{\circ}\text{C}$
			1.0			mA	$V_{CE} = 5.0 \text{ V}, I_F = 10.0 \text{ mA},$ $T_A = 100^{\circ}\text{C}$
		HCC242	0.40			mA	V _{CE} = 5.0 V, I _F = 2.0 mA
			10.0	15.0		mA	V _{CE} = 5.0 V, I _F = 10.0 mA
			4.0			mA	$V_{CE} = 5.0 \text{ V}, I_F = 10.0 \text{ mA},$ $T_A = -55^{\circ}\text{C}$
			4.0			mA	$V_{CE} = 5.0 \text{ V, I}_{F} = 10.0 \text{ mA,}$ $T_{A} = 100^{\circ}\text{C}$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	HCC240			0.30	V	I _C = 2.5 mA, I _F = 20.0 mA
		HCC242			0.30	V	I _C = 10.0 mA, I _F = 20.0 mA
R _{I-O}	Resistance (Input to Output)		10 ¹¹			Ω	V _{I-O} = ±1000 Vdc ⁽¹⁾
C _{I-O}	Capacitance (Input to Output)				5.0	pF	$V_{I-O} = 0.0 \text{ V, f} = 1.0 \text{ MHz}^{(1)}$
t _r	Output Rise Time	HCC240			15.0	μs	$V_{CC} = 10.0 \text{ V}, I_F = 10.0 \text{ mA},$
		HCC242			20.0	μs	$R_L = 100 \Omega$
t _f	Output Fall Time	HCC240			15.0	μs	$V_{CC} = 10.0 \text{ V}, I_F = 10.0 \text{ mA},$
		HCC242			20.0	μs	$R_L = 100 \Omega$

Surface Mount Optically Coupled Isolator Types HCC247, HCC248, HCC249

Features

- Surface mountable on ceramic or printed circuit board
- Miniature package saves circuit board
- Electrical performance similar to 4N47, 4N48, and 4N49
- Hermetically sealed
- Base pad provided for conventional transistor biasing
- Screened per MIL-S-19500 TX or TXV equivalent levels on request
- Higher breakdown voltage devices available as the "HV" series

Description

The HCC247, HCC248, and HCC249 are optically coupled isolators, consisting of a gallium aluminum arsenide LED and a silicon phototransistor mounted and coupled in a miniature surface mount hermetic leadless chip carrier. All electrical characteristics are identical to the JEDEC registered 4N47, 4N48, and 4N49. HCC247HV, HCC248HV, and HCC249HV series optoisolators are available where higher breakdown voltages are required.

These solid state couplers are ideal for designs where board space and device weight are important design considerations.

Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unless otherwise noted)

Input-to-Output Isolation Voltage
Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Soldering Temperature (vapor phase reflow for 30 sec.)
Soldering Temperature (heated collet for 5 sec.)260°C
Input Diode
Forward DC Current (65°C or below)
Reverse Voltage 3.0 V
Power Dissipation
Output Phototransistor
Continuous Collector Current
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Power Dissipation

- (1) Measured with inputs shorted together and outputs shorted together. (2) Derate linearly 1.0 mW/°C above 65°C.
- (3) HCC247HV, HCC248HV, and HCC249HV are available rated at 55 V minimum.
- (4) Derate linearly 3.0 mW/°C above 25°C.

Types HCC247, HCC248, HCC249

SYMBOL	PARAMETER	MIN	I TYP	MAX	UNITS	TEST CONDITIONS
Innut Died	•					
Input Diode		0.80	,	1.50	V	I _F = 10.0 mA
V _F	Forward Voltage	1.00		1.70	V	I _F = 10.0 mA, T _A = -55°C
• • • • • • • • • • • • • • • • • • • •	- Torrial a Torriago	0.70		1.30	v	I _F = 10.0 mA, T _A = 100°C
I _R	Reverse Current			100	μA	V _R = 3.0 V
	ototransistor			1		
V _{(BR)CBO}	Collector-Base Breakdown Volta	age ⁽³⁾ 45		T	V	I _C = 100 μA, I _E = 0, I _F = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage ⁽³⁾	40			V	$I_C = 1.0 \text{ mA}, I_B = 0, I_F = 0$
V _{(BR)EBO}	Emitter-Base Breakdown Voltag	je 7.0			V	I _E = 100 μA, I _C = 0, I _F = 0
I _{C(OFF)}	Collector-Emitter Dark Current			100	nA	V _{CE} = 20 V, I _B = 0, I _F = 0
				100	μA	V _{CE} = 20 V, I _B = 0, I _F = 0, T _A = 100°C
I _{CB(OFF)}	Collector-Base Dark Current			10.0	nA	V _{CB} = 20 V, I _E = 0, I _F = 0
Coupled						
I _{C(ON)}	On-State Collector Current HC	C247 0.5			mA	V _{CE} = 5.0 V, I _B = 0, I _F = 1.0 mA
		0.7			mA	$V_{CE} = 5.0 \text{ V}, I_B = 0, I_F = 2.0 \text{ mA}, T_A = -55^{\circ}$
	The second of th	0.5			mA	$V_{CE} = 5.0 \text{ V}, I_B = 0, I_F = 2.0 \text{ mA}, T_A = 100^{\circ}$
	HC	C248 1.0		5.0	mA	V _{CE} = 5.0 V, I _B = 0, I _F = 1.0 mA
		1.4			mA	$V_{CE} = 5.0 \text{ V}, I_B = 0, I_F = 2.0 \text{ mA}, T_A = -55^{\circ}\text{C}$
		1.0			mA	$V_{CE} = 5.0 \text{ V}, I_B = 0, I_F = 2.0 \text{ mA}, T_A = 100^{\circ}$
	HC	C249 2.0		10.0	mA	V _{CE} = 5.0 V, I _B = 0, I _F = 1.0 mA
		2.8			mA	$V_{CE} = 5.0 \text{ V}, I_B = 0, I_F = 2.0 \text{ mA}, T_A = -55^{\circ}\text{C}$
		2.0			mA	$V_{CE} = 5.0 \text{ V}, I_B = 0, I_F = 2.0 \text{ mA}, T_A = 100^{\circ}$
I _{CB(ON)}	On-State Collector-Base Curren	nt 30			μA	$V_{CB} = 5.0 \text{ V}, I_{E} = 0, I_{F} = 10 \text{ mA}$
	HC	C247		0.30	V	$I_C = 0.5 \text{ mA}, I_B = 0, I_F = 2.0 \text{ mA}$
V _{CE(SAT)}	Collector-Emitter HC	C248		0.30	V	$I_C = 1.0 \text{ mA}, I_B = 0, I_F = 2.0 \text{ mA}$
	HC	C249		0.30	V	I _C = 2.0 mA, I _B = 0, I _F = 2.0 mA
R _{I-O}	Resistance (Input to Output)	10 ¹			Ω	V _{I-O} = ±1000 Vdc ⁽¹⁾
C _{I-O}	Capacitance (Input to Output)			5.0	pF	V _{I-O} = 0.0 V, f = 1.0 MHz ⁽¹⁾
	HC	C247		20.0	μs	V _{CC} = 10.0 V,
t _r	Output Rise Time HC	C248		20.0	μs	$I_F = 5.0 \text{ mA},$
	HC	C249		25.0	μs	$R_L = 100 \Omega$
	HC	C247		20.0	μs	$V_{CC} = 10.0 V,$
t _f	Output Fall Time HC	C248		20.0	μs	I _F = 5.0 mA,
	HC	C249		25.0	μs	$R_L = 100 \Omega$

Zero Voltage Crossing Optically Coupled Triac Driver Type HCC340

Features

- For 220 VAC operation
- 1500 VDC electrical isolation
- Zero voltage crossing for reduced EMI, line noise, and improved static dV/dt
- Surface mountable on ceramic or printed circuit board
- Miniature package saves circuit board
- Hermetically sealed package

Description

The HCC340 consists of a gallium aluminum arsenide infrared emitting diode and a monolithic integrated circuit containing a photodiode and a zero voltage bidirectional triac driver mounted in a miniature six pin hermetic leadless chip carrier. The device is for low power DC controlling of power triacs which in turn control resistive, inductive, or capacitive loads powered from 220 VAC. Zero voltage crossing ensures that the device will not turn on until the line voltage reduces to 15 volts, typical.

Absolute Maximum Ratings (I _A = 25°C unless otherwise noted)
Input-to-Output Isolation Voltage
Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Soldering Temperature (vapor phase reflow for 30 sec.)

Soldering Temperature (heated collet for 5 sec.)	260°C
Input Diode	
Forward DC Current (65°C or below)	40 mA
Reverse Voltage	3.0 V
Power Dissipation	. 60 mW ⁽²⁾
Output Photosensor	

Total Bioopanon Titti Ti
Output Photosensor
Off-State Terminal Voltage
On-State RMS Current (Full Cycle, 50-60 Hz, T _A = 25°C)
On-State RMS Current (Full Cycle, 50-60 Hz, T _A = 70°C)
Peak Non-Repetitive Surge Current (PW = 10 ms, duty cycle = 10%) 1.20 A
Power Dissipation
Notes:

- (1) Measured with inputs shorted together and outputs shorted together.
- (2) Derate linearly 1.0 mW/°C above 65°C. (3) Derate linearly 3.0 mW/°C above 25°C.

Type HCC340

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	9					
		1.20		1.60	٧	I _F = 10.0 mA
V_{F}	Forward Voltage	1.00		1.80	٧	I _F = 10.0 mA, T _A = -55°C
		0.80		1.40	V	I _F = 10.0 mA, T _A = 125°C
I _R	Reverse Current			100	μΑ	V _R = 3.0 V
Output Pho	ototransistor					
			10.0	100	nA	V _{DRM} = 400 V
I _{DRM}	Peak Blocking Current, Either Direction			6.0	μΑ	V _{DRM} = 400 V, T _A = 85°C
				6.0	μΑ	$V_{DRM} = 300 \text{ V, } T_A = 125^{\circ}\text{C}$
			1.75	3.0	V	I _{TM} = 100 mA, I _F = 10.0 mA
V_{TM}	Peak On-State Voltage, Either Direction			3.0	V	$I_{TM} = 100 \text{ mA}, I_F = 10.0 \text{ mA}, T_A = -55^{\circ}\text{C}$
				5.0	V	$I_{TM} = 100 \text{ mA}, I_F = 10.0 \text{ mA}, T_A = 125^{\circ}\text{C}$
dV/dt	Critical Rate of Rise of Off-State Voltage	100			V/µs	$R_L = 2.5 \text{ k}\Omega$
Coupled						
				10.0	mA	$V_{TM} = 3.0 \text{ V}, R_L = 150 \Omega$
I _{FT}	LED Trigger Current Required to Latch			15.0	mA	$V_{TM} = 5.0 \text{ V}, R_L = 150 \Omega, T_A = -55^{\circ}\text{C}$
				20.0	mA	$V_{TM} = 5.0 \text{ V}, R_L = 150 \Omega, T_A = 125^{\circ}\text{C}$
I _H	Holding Current, Either Direction		200		μΑ	
V _{ISO}	Isolation Voltage	1500			VDC	See Note (1)
				40	V	I _{FT} = 10.0 mA
V _{I(TH)}	Zero Voltage Crossing Inhibit Voltage Threshold			40	V	$I_{FT} = 10.0 \text{ mA}, T_A = -55^{\circ}\text{C}$
	Trinosnoid			40	V	I _{FT} = 10.0 mA, T _A = 125°C
				300	μΑ	I _{FT} = 10.0 mA, V _{MT} = 400 V
$I_{R(I)}$	Leakage Current in Inhibit State			600	μΑ	$I_{FT} = 10.0 \text{ mA}, V_{MT} = 400 \text{ V}, T_{A} = -55^{\circ}\text{C}$
				300	μΑ	$I_{FT} = 10.0 \text{ mA}, V_{MT} = 300 \text{ V}, T_A = 125^{\circ}\text{C}$

Surface Mount Optically Coupled Isolator

Type HCC640

Features

- Surface mountable on ceramic or PC board
- 6N140A operating compatibility
- Key parameters guaranteed over -55°C to 125°C ambient temperature range
- Hermetically sealed
- Low power consumption
- High current transfer ratio
- Low input current requirement
- 1500 VDC isolation voltage

Description

The HCC640 is a hermetically sealed, ceramic surface-mount optocoupler, consisting of a GaAlAs IRED coupled to an integrated high gain photodiode. The HCC640 is electrically equivalent to a single channel of the Optek's HDA140A (6N140A) quad-channel device. The high gain, open-collector output provides both lower output saturation voltage and faster switching speeds than possible with standard photodarlington optocouplers. The high current transfer ratio at very low input currents makes the HCC640 ideal for use in MOS. CMOS and low power logic interfacing. The HCC640 is capable of operation and storage over the full military temperature range and can be supplied with full processing per Optek's Military screening procedure (based on MIL-STD-883) upon request.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise noted)

Operating Temperature	55°C to +125°C
Storage Temperature	65°C to +150°C
Soldering Temperature (vapor phase reflow for 30 sec.)	
Soldering Temperature (heated collet for 5 sec.)	260°C
Input Diode	
Peak Input Current (≤1 ms duration, 500 pps)	
Average Input Current, IF (each channel)	10.0 mA ⁽¹⁾
Reverse Input Voltage, V _R	
Output Photodetector	
Output Current, IO	40 mA
Output Voltage, VO	0.5 to 20 V ⁽²⁾
Supply Voltage, V _{CC}	0.5 to 20 V ⁽²⁾
Output Power Dissipation	75 mW ⁽³⁾

(1) Derate I_F at 0.66 mA/°C above 110°C.

Notes:

- (2) Pin 3 (Ground) should be the most negative voltage at the detector side. Keeping V_{CC} as low as possible, but greater than 2.0 volts, will provide lowest total I_{OH} over temperature.
- (3) Output power is collector output power plus one half of the total supply power. Derate at 5.0 mW/°C above 110°C.

For Hi-Rel order HCC640TXV.

Type HCC640

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	e					
V _F	Forward Voltage			1.70	V	I _F = 1.60 mA, T _A = 25°C
BV _R	Reverse Breakdown Voltage	5.0			٧	I _R = 10.0 μA, T _A = 25°C
$\frac{\Delta V_F}{\Delta T_A}$	Temperature Coefficient of Forward Voltage		-1.80		mV/°C	I _F = 1.60 mA
Coupled						
		300	1500		%	$I_F = 0.5 \text{ mA}, V_O = 0.4 \text{ V}, V_{CC} = 4.5 \text{ V}$
CTR	Current Transfer Ratio	300	1000		%	I _F = 1.60 mA, V _O = 0.4 V, V _{CC} = 4.5 V
		200	500		%	I _F = 5.0 mA, V _O = 0.4 V, V _{CC} = 4.5 V
V _{OL}	Logic Low Output Voltage		0.1	0.4	V	$I_F = 0.5$ mA, $I_{OL} = 1.50$ mA, $V_{CC} = 4.5$ V
V _{OL}	Logic Low Output Voltage		0.2	0.4	V	I _F = 5.0 mA, I _{OL} = 10.0 mA, V _{CC} = 4.5 V
Іон	Logic High Output Current		0.001	250	μA	V _O = V _{CC} = 18 V
I _{CCL}	Logic Low Supply Current		0.40	1.0	mA	I _F = 1.60 mA, V _{CC} = 18 V
Іссн	Logic High Supply Current		0.001	10	μA	I _F = 0, V _{CC} = 18 V
I _{I-O}	Input-Output Insulation Leakage Current			1.0	μА	45% Relative Humidity, T _A = 25°C t = 5 sec, V _{I-O} = 1500 Vdc
R _{I-O}	Resistance (Input-Output)		10 ¹²		Ω	V _{I-O} = 500 Vdc
C _{I-O}	Capacitance (Input-Outout)		1.5		pF	f = 1.0 MHz, T _A = 25°C
C _{I-I}	Capacitance (Input-Input)		1.0		pF	f = 1.0 MHz, T _A = 25°C
C _{IN}	Input Capacitance		60		pF	f = 1.0 MHz, V _F = 0, T _A = 25°C
11-1	Input-Input Insulation Leakage Current		0.5		nA	45% Relative Humidity, $V_{I-I} = 500 \text{ V}$ $T_A = 25^{\circ}\text{C}$, $t = 5 \text{ sec}$
R _{I-I}	Resistance (Input-Input)		10 ¹²		Ω	V _{I-I} = 500 V, T _A = 25°C
Switching :	Specification (T _A = 25°C)			4		
t _{PLH}	Propagation Delay Time		6.0	60	μs	$I_F = 0.5 \text{ mA}, R_L = 4.7 \text{ k}\Omega, V_{CC} = 5.0 \text{ V}$
	To Logic High At Output		4.0	20	μs	$I_F = 5.0 \text{ mA}, R_L = 680 \Omega, V_{CC} = 5.0 \text{ V}$
t _{PHL}	Propagation Delay Time		30	100	μs	$I_F = 0.5 \text{ mA}, R_L = 4.7 \text{ k}\Omega, V_{CC} = 5.0 \text{ V}$
	To Logic Low At Output		2.0	5.0	μs	$I_F = 5.0 \text{ mA}, R_L = 680 \Omega, V_{CC} = 5.0 \text{ V}$
СМН	Common Mode Transient Immunity At Logic High Level Level Output	500	1000		V/µs	$\begin{split} I_F &= 0, R_L = 1.5 k\Omega \\ IV_{CM}I &= 50 V_{p-p'} \\ V_{CC} &= 5.0 V \end{split}$
CML	Common Mode Transient Immunity At Logic Low Level Level Output	-500	-1000		V/µs	I_F = 1.60 mA, R_L = 1.5 kΩ $IV_{CM}I$ = 50 $V_{p-p'}$ V_{CC} = 5.0 V

Four Channel Low Input Current Optocoupler Type HDA140A

Functions

- Key parameters guaranteed over temperature
- Hermetically sealed
- High density packaging
- Low power consumption
- · High current transfer ratio
- Low input current requirement

Description

The HDA140A consists of four ceramic surface mount optocouplers attached to a dual in-line leaded mother board. This package is superior to single cavity construction because it eliminates any possibility of crosstalk between channels while still meeting the 6N140A JEDEC physical and electrical requirements. The photodiode and the first stage transistor of each channel are connected in common, permitting lower output saturation voltage and higher speed operation than possible with conventional photodarlington optocouplers.

Custom tested HDA140A devices for programs requiring special military processing can be supplied in accordance with Optek's own special environmental, electrical screening and quality conformance testing.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Operating Temperature -55°C to +150°C Storage Temperature -65°C to +150°C
Lead Solder Temperature (1.6mm below seating plane for 10 sec.) 260°C
Input Diode
Peak Input Current (each channel, ≤ 1ms duration, 500 pps) 20mA
Average Input Current, IF (each channel)
Reverse Input Voltage, V _R (each channel)
Output Photodetector
Output Current, Io (each channel)
Output Voltage, Vo (each channel)0.5 to 20V(2)
Supply Voltage, V _{CC} 0.5 to 20V ⁽²⁾
Output Power Dissipation (each channel)
Notes:

(1) Derate I_F at 0.25mA/°C above 110°C.

- (2) Pin 10 (Ground) should be most negative voltage at the detector side. Keeping V_{CC} as low as possible, greater than 2.0 volts, will provide the lowest total I_{OH} over temperature.
- (3) Output power is collector output power plus one fourth of the total supply power. Derate at 1.25mW/°C above 110°C.
- (4) IOHX is leakage current resulting from channel to channel optical crosstalk. IF = 2.0µA for channel under test. For all other channels IF = 10.0mA.

Type HDA140A

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Input Dic	ode					
V _F *	Forward Voltage			1.70	V	I _F = 1.60mA, T _A = 25°C
BV _R *	Reverse Breakdown Voltage	5.0			٧	I _R = 10.0μA, T _A = 25°C
ΔVF	Temperature Coefficient of		-1.80		mV/°C	I _F = 1.60mA
ΔT_A	Forward Voltage				1	
Coupled						
CTR*		300	1500		%	$I_F = 0.50$ mA, $V_O = 0.4$ V, $V_{CC} = 4.5$ V
	Current Transfer Ratio	300	1000		%	$I_F = 1.60$ mA, $V_O = 0.4$ V, $V_{CC} = 4.5$ V
		200	500		%	$I_F = 5.0 \text{mA}, V_O = 0.4 \text{V}, V_{CC} = 4.5 \text{V}$
VoL	Logic Low Output Voltage		0.1	0.4	V	I _F = 0.50mA, I _{OL} = 1.50mA, V _{CC} = 4.5V
v_{ol}	Logic Low Output Voltage		0.2	0.4	V	I _{F = 5.0mA} , I _{OL} = 10.0mA, V _{CC} = 4.5V
lohx	Logic High Output Current		.001	250	μΑ	I _F = 2.0mA (channel under test)
Іон*	Logic High Output Current		.001	250	μΑ	V _O = V _{CC} = 18V (see note 4)
lccL*	Logic Low Supply Current		1.70	4.0	mA	I _{F1} = I _{F2} = I _{F3} = I _{F4} =1.60mA, V _{CC} = 18V
Icch*	Logic High Supply Current		.001	40	μΑ	IF1 = IF2 = IF3 = IF4 = 0mA, VCC = 18V
I _{I-O} *	Input-Output Insulation Leakage Current			1.0	μА	45% Relative Humidity, $T_A = 25^{\circ}C$, $t = 5 sec$, $V_{I-O} = 1500 VDC$
R _{I-O}	Resistance (input-output)		10 ¹²		Ω	V _{I-O} = 500VDC
C _{I-O}	Capacitance (input-output)		1.50		pF	f = 1.00MHz, T _A = 25°C
C _{I-I}	Capacitance (input-input)		1.00		pF	f = 1.00MHz, T _A = 25°C
CIN	Input Capacitance		60		pF	$f = 1.00MHz$, $V_F = 0$, $T_A = 25^{\circ}C$
11-1	Input-Input Insulation		0.50		nA	45% Relative Humidity, V _H = 500V,
	Leakage Current					T _A = 25°C, t = 5 sec
R _{I-I}	Resistance (input-input)		10 ¹²		Ω	V _{I-I} = 500V, T _A = 25°C
Switchin	g Specification ($T_A = 25^{\circ}C$)					
t _{PLH} *	Propagation Delay Time to		6.0	60	μs	$I_F = 0.50$ mA, $R_L = 4.7$ k Ω , $V_{CC} = 5.0$ V
	Logic High at Output		4.0	20	μs	$I_F = 5.0 \text{mA}, R_L = 680 \text{k}\Omega, V_{CC} = 5.0 \text{V}$
tpHL*	Propagation Delay Time to		30	100	μs	$I_F = 0.50$ mA, $R_L = 4.7$ k Ω , $V_{CC} = 5.0$ V
	Logic Low at Output		2.0	5.0	μs	$I_F = 5.0 \text{mA}, R_L = 680 \text{k}\Omega, V_{CC} = 5.0 \text{V}$
СМн	Immunity at Logic High Level	500	1000		V/µs	$I_F = 0$, $R_L = 1.5k\Omega$,
						$ V_{CM} = 50V_{p-p},$
	Level Output					V _{CC} = 5.0V
CML	Common Mode Transient Immunity at Logic Low Level	-500	-1000		V/µs	$I_F = 1.60$ mA, $R_L = 1.5$ k Ω , $IV_{CMI} = 50V_{p-p}$,
	Level Output					$V_{CC} = 5.0V$

^{*}JEDEC Registered Data

High Speed Optocouplers Types HDC135, HDC136, HDC135TXV, HDC136TXV

Features

- High speed 1 megabit/second
- TTL compatible
- High common mode transient immunity
- Wide bandwidth
- Open collector output

Description

Optek's HDC135 and HDC136 are high speed optocouplers, consisting of IR emitters and integrated photodetectors in hermetic side brazed dual-in-line 8 pin packages. Electrical characteristics are similar to the 6N135 and 6N136 optocouplers but with full military temperature range operation.

The HDC135TXV and HDC136TXV are high reliability optocouplers with 100% processing and Group Testing patterned after MIL-STD-883 Method 5008.

Absolute Maximum Ratings (No derating required up to 70°C)

Storage Temperature55°C to +150°C
Operating Temperature55°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 10 seconds) 260°C
Average Input Current - IF
Peak Output Current - I _F (50% duty cycle, 1ms pulse width) 50mA ⁽²⁾
Peak Transient Input Current - IF (≤ 1µs pulse width, 300pps) 1.0A
Reverse Input Voltage - V _R 5.0V
Input Power Dissipation
Average Output Current - Io 8.0mA
Peak Output Current
Emitter-Base Reverse Voltage 5.0V
Supply and Output Voltage - VCC, VO0.5V to 15V
Base Current - IB
Output Power Dissipation
Caution: This component is susceptible to damage from electrostatic discharge. Normal static
prevention procedures should be used in handling.
Notes:

- (1) Derate linearly above 70°C free-air temperature at a rate of 0.45mA°C.

 (2) Derate linearly above 70°C free-air temperature at a rate of 0.9mA°C.

 (3) Derate linearly above 70°C free-air temperature at a rate of 0.8mW/°C.

- Derate linearly above 70°C free-air temperature at a rate of 1.8mW/°C. (5) CMH is the maximum allowable dV/dt on the leading edge of a common mode pulse to assure that the output will not switch from high to low.
- CML is the maximum negative dV/dt allowable on the trailing edge of a common mode pulse to assure that the output will not switch from low to high.
- Test conditions represents 1 TTL unit load with 5.6 $k\tilde{\Omega}$ pull-up resistor.
- Test conditions represents 1 LSTTL unit load with a 6.1 k Ω pull-up resistor.
- (9) Device considered a two-terminal device: pins 1, 2, 3 and 4 shorted together and pins 5, 6, 7 and 8 shorted together.

Types HDC135, HDC136, HDC135TXV, HDC136TXV

Electrical Characteristics (Over recommended temperature T_A = -55°C to 125°C, unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP*	MAX	UNITS	TEST CONDITIONS
CTR	Current Transfer Ratio	HDC135 HDC136	7.0 19.0	19.0 25.0		%	I _F = 16.0mA, V _O = 0.40V, V _{CC} = 4.5V, T _A = 25°C
		HDC135 HDC136	5.0 15.0	15.0 23.0		% %	$I_F = 16.0$ mA, $V_O = 0.50$ V $V_{CC} = 4.5$ V
V _{OL}	Logic Low Output Voltage	HDC135		0.100	0.40	V	$I_F = 16.0$ mA, $I_O = 1.10$ mA, $V_{CC} = 4.5$ V
		HDC136		0.100	0.40	V	$I_F = 16.0$ mA, $I_O = 2.4$ mA, $V_{CC} = 4.5$ V
Юн	Logic High Output Current			3.0	500	nA	$I_F = 0mA$, $V_O = V_{CC} = 5.5V$, $T_A = 25^{\circ}C$
				0.010	1.00	μА	$I_F = 0mA$, $V_O = V_{CC} = 15.0V$, $T_A = 25^{\circ}C$
					50	μΑ	$I_F = 0mA$, $V_O = V_{CC} = 15.0V$
ICCL	Logic Low Supply Current			40		μА	$I_F = 16.0$ mA, $V_O = $ Open, $V_{CC} = 15.0$ V
Іссн	Logic High Supply Current			0.020	1.00	μА	$I_F = 0mA$, $V_O = open$, $V_{CC} = 15.0V$, $T_A = 25^{\circ}C$
					2.0	μА	I _F = 0mA, V _O = Open, V _{CC} = 15.0V
VF	Input Forward Voltage			1.50	1.70	٧	I _F = 16.0mA, T _A = 25°C
$\frac{\Delta V_F}{\Delta T_A}$	Temperature Coefficient of Forward Voltage			-1.80		mV/°C	I _F = 16.0mA
BVR	Input Reverse Breakdown	Voltage	5.0			٧	I _R = 10.0μA, T _A = 25°C
CIN	Input Capacitance			42		pF	f = 1.00MHz, V _F = 0
l _{IO}	Input-Output Insulation Leakage Current				1.00	μА	45% Relative Humidity, t = 5.0 sec, V_{IO} = 1000Vdc, T_A = 25°C (Note 9)
Rio	Input-Output Resistance			10 ¹²		Ω	V _{IO} = 500 Vdc (Note 9)
C _{IO}	Input-Output Capacitance			0.50		pF	f = 1.00MHz (Note 9)
hFE	Transistor DC Current Gair	1		150			V _O = 5.0V, I _O = 3.0mA

Switching Specifications ($T_A = 25^{\circ}C$) $V_{CC} = 5.0V$, $I_F = 16.0 mA$ unless otherwise noted

t _{PHL}	Propagation Delay Time to Logic Low at Output	HDC135 HDC136	0.50 0.20	1.50 0.80	μs μs	$R_L = 4.1$ kΩ (Note 8) $R_L = 1.90$ kΩ (Note 7)
t _{PLH}	Propagation Delay Time to Logic High at Output	HDC135 HDC136	0.40 0.30	1.50 0.80	μs μs	$R_L = 4.1$ k Ω (Note 8) $R_L = 1.90$ k Ω (Note 7)
СМн	Common Mode Transient Immunity at Logic High Level Output	HDC135 HDC136	1000		V/μs V/μs	$ \begin{tabular}{ll} I_F = 0mA, \ V_{CM} = 10.0 Vp-p, \\ R_L = 4.1 k\Omega & (Notes 6,8) \\ I_F = 0mA, \ V_{CM} = 10.0 Vp-p, \\ R_L = 1.90 k\Omega & (Notes 6,7) \\ \end{tabular} $
CML	Common Mode Transient Immunity at Logic Low Level Output	HDC135 HDC136	-1000 -1000		V/μs V/μs	V_{CM} =10.0Vp-p, R _L =4.1kΩ, (Notes 5, 8) V _{CM} =10.0Vp-p, R _L =1.90kΩ, (Notes 5, 7)

^{*}All typicals at $T_A = 25^{\circ}C$ and $V_{CC} = 5.0V$, unless otherwise noted.

Hi-Reliability GaAlAs Infrared Emitting Diodes Types OP223TX, OP223TXV, OP224TX, OP224TXV

Features

- Processed to Optek's Military screening program patterned after MIL-S-19500
- Miniature hermetically sealed "pill" package
- Twice the power output of GaAs at the same drive current
- Mechanically and spectrally matched to the OP600 series phototransistor
- S level screening available

Description

The OP223TX,TXV and OP224TX,TXV are high reliability gallium aluminum arsenide infrared emitting diodes mounted in miniature "pill" type hermetically sealed packages. This package style is intended for direct mounting into PC boards.

After electrical testing by manufacturing, all devices are processed to Optek's 100 percent screening program patterned after MIL-S-19500. After completion of Group A, sample tests are performed for Group B & C inspections.

Gallium aluminum arsenide features twice the radiated output of gallium arsenide at the same forward current. With a wavelength centered at 890 nanometers, it closely matches the spectral response of silicon phototransistors.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature Range	-65°C	to +150°C
Operating Temperature Range	-55°C	to +125°C
Soldering Temperature (for 5 sec. with soldering iron)		240°C ⁽¹⁾
Reverse Voltage		
Continuous Foward Current		
Power Dissipation		100mW ⁽²⁾
Notoci		

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering.
- (2) Derate linearly 1.00mW/°C above 25°C.

OMPONENTS

Types OP223TX, OP223TXV, OP224TX, OP224TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Тур	Max	Units	Test Conditions
Po	Radiant Power Output OP223TX,TXV	1.00			mW	I _F = 50mA
	OP224TX,TXV	1.50			mW	I _F = 50mA
VF	Forward Voltage	0.80		1.80	٧	I _F = 50mA
lR	Reverse Current			100	μА	V _R = 2.0V
λр	Wavelength at Peak Emission		890		nm	I _F = 50mA
В	Spectral Bandwidth Between Half Power Points		80		nm	I _F = 50mA
Δλρ/ΔΤ	Spectral Shift with Temperature		0.18		nm/°C	I _F = Constant
θнр	Emission Angle at Half Power Points		18		Deg.	I _F = 50mA

100% Processing

Screen	Mil-STD-750 Method	Conditions	OP223TX OP224TX	OP223TXV OP224TXV
Pre-Cap Visual		Optek's pre-cap visual ⁽³⁾		100%
High Temperature Storage	1032	$T_A = 150^{\circ}$ C, t = 24hrs.	100%	100%
Temperature Cycle	1051	Condition C, 20 cycles, 15 min. each extreme	100%	100%
Constant Acceleration	2006	20K G's, Y ₁ only	100%	100%
Hermetic Seal	1071	Fine: Condition H, 5 X 10 ⁻⁸ atm cc/sec Gross: Condition E	100%	100%
Power Burn-In ⁽⁴⁾	1038	Condition B, T _A = 25°C, I _F = 50mA, t = 168hrs. min	100%	100%

⁽³⁾ Visual inspection based upon Optek's interpretation of pre-cap inspection as specified in MIL-S-19500/548 as applicable for LED's.

^{(4) 100%} electrically tested to the limits in Subgroup 2 of the Group A table before and after burn-in. $\Delta P_0 = \pm 15\%$; $\Delta V_F = \pm 10\%$; PDA = 10%.

Types OP223TX, OP223TXV, OP224TX, OP224TXV

Group A Inspection-Electrical Tests

(Performed on each inspection lot after all devices have been subject to the 100% processing requirements.)

Symbol	Examina	Examination		MIL-STD-750			Limit	
	or Tes	st	Method	Conditions		Min	Max	
Subgroup 1		The second secon				L-wasan samu		
	Visual and Mechanical Examination		2071	LTPD = 5				
Subgroup 2					116/0			
Po	Radiant Power Output	OP223TX,TXV		I _F = 50mADC		1.00		mW
		OP224TX,TXV		I _F = 50mADC		1.50		mW
VF	Forward Voltage		4011	I _F = 50mADC		0.80	1.80	٧
l _R	Reverse Current		4016	V _R = 2.0V			100	μА
Subgroup 3				116/0				
VF	Forward Voltage		4011	$I_F = 50$ mADC, $T_A = -55$ °C		1.00	2.00	V
IR	Reverse Current		4016	$V_R = 2.0V$, $T_A = 100^{\circ}C$			1.00	mA

Group B Inspection

(Performed on each inspection lot)

Examination		MIL-STD-750	LTPD
or Test	Method	Conditions	
Subgroup 1			15
Solderability	2026		
Subgroup 2			10
Thermal Shock (temperature cycling)	1051	Condition C, 15 min at extremes, 20 cycles	
Hermetic Seal Fine Leak Gross Leak	1071	Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition E	
End Points		Group A, Subgroup 2	
Subgroup 3			5
Steady-State Operation Life	1027	I _F = 50mADC, t = 340hrs, T _A = 25°C	
End Points		Group A, Subgroup 2 ⁽⁶⁾	
Subgroup 4			
Internal Visual Inspection	2075	Per pre-seal criteria	1 Device (0 Failure)
Bond Strength	2037	Performed at pre-seal	20 (c=1)
Subgroup 6			7
High Temperature Life (non-operating)	1032	t = 340hrs., T _A = 150°C	
End Points		Group A, Subgroup 2 ⁽⁵⁾	

⁽⁵⁾ Devices electrically tested before and after life tests to the following limits: 340hrs test, $\Delta P_0 = \pm 10\%$; 1000hrs test; $\Delta P_0 = \pm 15\%$.

Types OP223TX, OP223TXV, OP224TX, OP224TXV

Group C Inspection

(Performed every six months while in production)

Examination		MIL-STD-750	LTPD
or Test	Method	Conditions	
Subgroup 1			15
Physical Dimensions	2066		
Subgroup 2			10
Thermal Shock (glass strain)	1056	Condition A	
Hermetic Seal Fine Leak Gross Leak	1071	Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition C	
Moisture Resistance	1021	Omit initial conditioning	
End Points		Group A, Subgroup 2	
Subgroup 3			10
Shock	2016	Non-operating 1.5K G's, 0.5ms, 5 blows in each orientation, X ₁ , Y ₁ , Z ₁	
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	1 minute in each orientation, X ₁ , Y ₁ , & Z ₁ at 20K G's min	
End Points		Group A, Subgroup 2	
Subgroup 4			15
Salt Atmosphere (corrosion)	1041		
Subgroup 5			
Barometric Pressure	1001	Not performed	
Subgroup 6			10
Steady-State Operational Life	1026	I _F = 50mA, t = 1000hrs, T _A = 25°C	
End Points		Group A, Subgroup 2	

Hi-Reliability GaAlAs Infrared Emitting Diodes Types OP235TX, OP235TXV, OP236TX, OP236TXV

Features

- Twice the power output of GaAs at the same drive current
- Characterized to define infrared energy along the mechanical axis of the device
- Mechanically and spectrally matched to the OP804TX/TXV and OP805TX/TXV phototransistors
- Screened per MIL-S-19500 TX or TXV equivalent levels

Description

The OP235TX, TXV and OP236TX, TXV are high reliability gallium aluminum arsenide infrared emitting diodes mounted in hermetic TO-46 packages. The wavelength is centered at 890 nanometers to closely match the spectral response of silicon photoransistors. Devices are processed to Optek's 100% screening and quality conformance program patterned after MIL-S-19500. After 100% screening, Group A and B are performed on every lot, and a Group C test is performed every six months.

The OP235TX, TXV and OP236TX, TXV have lens cans providing a narrow beam angle (18° between half power points). The narrow beam angle and the specified radiant intensity allow ease of design in beam interrupt applications with the OP804TX, TXV and OP805TX, TXV series of high reliability phototransistors.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Forward DC Current
Reverse Voltage
Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron] 240°C ⁽¹⁾
Power Dissipation
N-4

- RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering.
- Derate linearly 2.00mW/°C above 25°C.
- (3) E_{e(APT)} is a measurement of the average radiant intensity within the cone formed by the measurement surface. The cone is outlined by a radius of 1.429 inches (36.30 mm) measured from the lens side of the tab to the sensing surface and a sensing surface of .250 inches (6.35mm) in diameter forming a 10° cone. E_{e(APT)} is not necessarily uniform within the measured area.

Recommended replacements for OP231TX, OP231TXV, OP232TXV

Types OP235TX, OP235TXV, OP236TX, OP236TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions (3)
E _{e(APT)}	Apertured Radiant Incidence(3,4)					
-(,	OP235TX,TXV	1.5			mW/cm ²	I _F = 100mA
	OP236TX,TXV	3.5			mW/cm ²	I _F = 100mA
VF	Forward Voltage ⁽⁶⁾	1.1		2.0	٧	IF = 100mA
		1.3		2.2	V	I _F = 100mA, T _A = -55°C
		0.9		1.8	V	I _F = 100mA, T _A = 100°C
lR	Reverse Current			100	μА	V _R = 2.0V
λр	Wavelength at Peak Emission		890		nm	I _F = 100mA
В	Spectral Bandwidth Between Half Power Points		50		nm	I _F = 100mA
θнр	Emission Angle at Half Power Points		18.0		Deg.	I _F = 100mA

100% Processing

Screen	Mil-STD-750 Method	Conditions	OP235TX OP236TX	OP235TXV OP236TXV
Pre-Cap Visual Inspection		Optek's pre-cap visual inspection ⁽⁷⁾	_	100%
High Temperature Storage	1032	$T_A = 150^{\circ}$ C, t = 24hrs.	100%	100%
Temperature Cycle	1051	Condition C, 20 cycles, -65°C to +150°C, 15 minutes min. each extreme	100%	100%
Constant Acceleration	2006	20K G's, Y ₁ only	100%	100%
Hermetic Seal	1071	Fine: Condition H, 5 X 10 ⁻⁸ atm cc/sec Gross: Condition C	100%	100%
Power Burn-In ⁽⁶⁾	1038	Condition B, T _A = 25°C, I _F = 100mA, t = 96hrs. min	100%	100%

⁽⁴⁾ Measurement is taken during the last 500μs of a single 1.0ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measured results.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

⁽⁵⁾ Visual inspection based on Optek's interpretation of the requirements of pre-cap inspection as specified in MIL-S-19500/548 as applicable for LED's.

^{(6) 100%} electrically tested to the limits in Subgroup 2 of Group A table before and after Power Burn-in. ΔV_F = ± 100mV and Δθ_e = ± 15% of pre power Burn-in reading (drift calculations are based on total radiant flux measurements of the device); PDA 10%.

⁽⁷⁾ Acceptance of the lot is determined by the drift measurement (D%*e) and not the radiant intensity measurement.

Types OP235TX, OP235TXV, OP236TX, OP236TXV

Group A Inspection-Electrical Tests

(Performed on each inspection lot after all devices have been subject to the 100% processing requirements.)

Symbol	Examination or Test		N	IIL-STD-750	LTPD	Limit		Units
			Method	Method Conditions		Min	Max	
Subgroup 1					5			
	Visual and Mechanical Examir	nation	2071					
Subgroup 2					2			
E _{e(APT)}	Apertured Radiant Incidence	OP235TX,TXV OP236TX,TXV		I _F = 100mA ⁽³⁾ I _F = 100mA ⁽³⁾		1.5 3.5		mW/cm ² mW/cm ²
V _F	Forward Voltage		4011	I _F = 100mA		1.00	2.00	V
l _R	Reverse Current		4016	V _R = 5.0Vdc			10	μА
Subgroup 3					2			
VF	Forward Voltage @ T _A = -55°C	>	4011	I _F = 100mA		1.30	2.20	V
VF	Forward Voltage @ TA = 100°	С	4011	I _F = 100mA		0.90	1.80	٧

Group B Inspection

(Performed on each inspection lot)

Examination		MIL-STD-750	LTPD
or Test	Method	Conditions	
Subgroup 1			15
Solderability	2026		
Resistance to Solvents	1022		
Subgroup 2			10
Thermal Shock (temperature cycling)	1051	Condition C, 15 min at extremes, 20 cycles	
Hermetic Seal Fine Leak Gross Leak	1071	Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition C	
End Points		Group A, Subgroup 2	
Subgroup 3			5
Steady-State Operation Life	1027	I _F = 100mA, t = 340hrs, T _A = 25°C	
End Points		Group A, Subgroup $2^{(7)}$, $\Delta\theta_e = \pm 10\%$, $\Delta V_F = \pm 100$ mV	
Bond Strength	2037	All internal wires of each device shall be pulled separately.	20 (c=1)
Subgroup 4			
Internal Visual Inspection	2075	Visual criteria in accordance with qualified design.	1 Device (0 Failure)
Subgroup 6			7
High Temperature Life (non-operating)	1032	t = 340hrs., T _A = 150°C	
End Points		Group A, Subgroup $2^{(7)}$, $\Delta\theta_e = \pm 10\%$, $\Delta V_F = \pm 100$ mV	

Types OP235TX, OP235TXV, OP236TX, OP236TXV

Group C Inspection

(Performed every six months while in production)

Examination		MIL-STD-750	LTPD
or Test	Method	Conditions	
Subgroup 1			15
Physical Dimensions	2066		
Subgroup 2			10
Thermal Shock (glass strain)	1056	Condition A	
Terminal Strength	2036	Condition B	
Hermetic Seal	1071		
Fine Leak		Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec	
Gross Leak		Condition C	
Moisture Resistance	1021	Omit initial conditioning	
End Points		Group A, Subgroup 2	
Subgroup 3			10
Shock	2016	Non-operating 1.5K G's, 0.5ms, 5 blows in each orientation, X ₁ , Y ₁ , Z ₁	
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	1 min in each orientation, X ₁ , Y ₁ , & Z ₁ at 20K G's min	
End Points		Group A, Subgroup 2	
Subgroup 4		·	15
Salt Atmosphere (corrosion)	1041		
Subgroup 6			10
Steady-State Operational Life	1032	I _F = 100mA, t = 1000hrs, T _A = 25°C	
End Points		Group A, Subgroup $2^{(6)}$, $\Delta\theta_e = \pm 15\%$, $\Delta V_F = \pm 100 \text{mV}$	

Hi-Reliability NPN Silicon Phototransistors Types OP602TX/V, OP603TX/V, OP604TX/V

Features

- Processed to Optek's military screening program patterned after MIL-S-19500
- Miniature hermetically sealed package
- Wide range of collector currents
- Ideal for direct mounting in PC boards

Description

Each device in this series consists of a high reliability NPN silicon phototransistor mounted in a miniature glass lensed, hermetically sealed, "Pill" package.

After electrical testing by manufacturing, all devices are processed to Optek's 100% screening program patterned after MIL-S-19500. After completion of Group A, sample tests are performed for Group B & C inspections.

This device type is lensed and has an acceptance half angle of 18° measured from the optical axis to the half power point. The series is also mechanically and spectrally matched to the OP223 and OP224 high reliability series of infrared emitting diodes.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature Range	-65°C	to +150°C
Operating Temperature Range	-55°C	to +125°C
Collector-Emitter Voltage		
Emitter-Collector Voltage		7.0V
Soldering Temperature (for 5 seconds with soldering iron)		240°C ⁽¹⁾
Power Dissipation		50mW ⁽²⁾

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when wave soldering.
- (2) Derate linearly 0.5mW/°C above 25°C.
- (3) Junction temperature maintained at 25°C.
- (4) Light source is an unfiltered tungsten lamp operating at CT = 2870 K or equivalent source.

Types OP602TX/V, OP603TX/V, OP604TX/V

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
IC(on)	On-State Collector Current					
	OP602TX,TXV	2.0		5.0		$V_{CE} = 5.0V, E_e = 20 \text{mW/cm}^{2(3)(4)}$
	OP603TX,TXV	4.0		8.0		$V_{CE} = 5.0V, E_e = 20 \text{mW/cm}^{2(3)(4)}$
	OP604TX,TXV	7.0			mA	$V_{CE} = 5.0V, E_e = 20 \text{mW/cm}^{2(3)(4)}$
ICEO	Collector Dark Current			25	nA	V _{CE} = 10.0V, E _e = 0
,				100	μА	$V_{CE} = 30.0V$, $E_e = 0$, $T_A = 100$ °C
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50			V	$I_C = 100\mu A, E_e = 0$
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	7.0			V	$I_E = 100 \mu A, E_e = 0$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage			0.40	V	I _C = 0.4mA, E _e = 20mW/cm ²⁽³⁾⁽⁴⁾
tr	Rise Time			20.0	μs	V _{CC} = 30V, I _C = 1.00mA,
t _f	Fall Time			20.0	μs	$R_L = 100\Omega$

100% Processing

Screen	Mil-STD-750 Method	Conditions	OP602TX OP603TX OP604TX	OP602TXV OP603TXV OP604TX
Pre-Cap Visual	2072	Optek's pre-cap visual	_	100%
High Temperature Storage	1032	$T_A = 150^{\circ}C$, $t = 24$ hrs.	100%	100%
Temperature Cycle	1051	Condition C, 20 cycles, 15 min. each extreme	100%	100%
Constant Acceleration	2006	20K G's, Y ₁ only	100%	100%
Hermetic Seal	1071	Fine: Condition H, 5 X 10 ⁻⁸ atm cc/sec Gross: Condition E	100%	100%
High Temperature Reverse Bias ⁽⁵⁾	1039	Condition A, $T_A = 125^{\circ}C$, $V_{CE} = 30Vdc$, $E_e = 0$, $t = 48hrs$ min.	100%	100%
Power Burn-In ⁽⁶⁾	1039	Condition B, PT = 50mW min., T _A = 25°C, t = 168hrs. min	100%	100%

^{(5) 100%} electrically tested to the limits in Subgroup 2 of the Group A table before and after HTRB.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Carrollton, Texas 75006

^{(6) 100%} electrically tested to the limits in Subgroup 2 of the Group A table before and after burn-in. ΔICEO = ± 100% of initial reading or ± 15nA, whichever is greater; ΔIC_(on) = ± 20%, PDA = 10%.

Types OP602TX/V, OP603TX/V, OP604TX/V

Group A Inspection-Electrical Tests

(Performed on each inspection lot after all devices have been subject to the 100% processing requirements.)

Symbol	Examination		MIL-STD-750	n/c	Limit		Units
	or Test	Method	Conditions		Min	Max	
Subgroup 1	bgroup 1 Visual and Mechanical Examination 2071 LTPD = 5 bgroup 2 LCEO Dark Current 3041 VCE = 10.0Vdc V(BR)CEO Collector-Emitter Breakdown Voltage 3011 Ic = 100μAdc, Ee = 0 V(BR)ECO Emitter-Collector Breakdown Voltage 3001 IE = 100μAdc, Ee = 0 VCE(SAT) Collector-Emitter Saturation Voltage ⁽⁴⁾ Ic = 0.40mAdc, Ee = 20mW/cm² IC(on) ON-State Collector Current ⁽⁴⁾ VCE = 5.0Vdc, Ee = 20mW/cm² OP602TX,TXV OP603TX,TXV OP604TX,TXV OP604TX,TXV OP604TX,TXV VCE = 30Vdc, Ee = 0, TA = 100°C						
	Visual and Mechanical Examination	2071	LTPD = 5				
Subgroup 2				116/0			
ICEO	Dark Current	3041	V _{CE} = 10.0Vdc			25	nA
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	3011	I _C = 100μAdc, E _e = 0		50		V
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	3001	I _E = 100μAdc, E _e = 0		7.0		٧
VCE(SAT)	Collector-Emitter Saturation Voltage ⁽⁴⁾		I _C = 0.40mAdc, E _e = 20mW/cm ²			0.40	V
I _{C(on)}	ON-State Collector Current ⁽⁴⁾		V _{CE} = 5.0Vdc, E _e = 20mW/cm ²			1	
	OP602TX,TXV				2.0	5.0	mA
	OP603TX,TXV				4.0	8.0	mA
	OP604TX,TXV				7.0		mA
Subgroup 3				116/0			
ICEO	Dark Current	3041	$V_{CE} = 30Vdc, E_e = 0, T_A = 100^{\circ}C$			100	μА
Subgroup 4				116/0			
tr, tf	Rise and Fall Time		$V_{CC} = 30Vdc$, $R_L = 100\Omega$,			20.0	μs
			I _C = 1.0mA				

Group B Inspection

(Performed on each inspection lot)

Examination		MIL-STD-750	LTPD
or Test	Method	Conditions	
Subgroup 1			15
Solderability	2026		
Subgroup 2			10
Thermal Shock (temperature cycling)	1051	Condition C, 15 min at extremes, 20 cycles	
Hermetic Seal Fine Leak Gross Leak	1071	Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition E	
End Points		Group A, Subgroup 2	
Subgroup 3			5
Steady-State Operation Life	1027	$P_D = 50$ mW, $t = 340$ hrs, $T_A = 25$ °C	
End Points		Group A, Subgroup 2	
Subgroup 4			
Internal Visual Inspection	2075	Per design criteria	1 Device (0 Failure)
Subgroup 6			5
High Temperature Life (non-operating)	1032	t = 340hrs., T _A = 150°C	
End Points		Group A, Subgroup 2	

⁽⁶⁾ Devices electrically tested before and after life tests to the following limits: 340hrs test, ΔPO = ± 10%; 1000hrs test; ΔPO = ± 15%.

Types OP602TX/V, OP603TX/V, OP604TX/V

Group C Inspection

(Performed every six months while in production)

Examination		MIL-STD-750	LTPD
or Test	Method	Conditions	
Subgroup 1			15
Physical Dimensions	2066		
Subgroup 2			10
Thermal Shock (glass strain)	1056	Condition A	
Hermetic Seal Fine Leak Gross Leak	1071	Condition H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition E	
Moisture Resistance	1021	Omit initial conditioning	
End Points		Group A, Subgroup 2	
Subgroup 3			10
Shock	2016	Non-operating 1.5K G's, 0.5ms, 5 blows in each orientation, X ₁ , Y ₁ , Z ₁	
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	1 min in each orientation, X ₁ , Y ₁ , & Z ₁ at 20K G's min	
End Points		Group A, Subgroup 2	
Subgroup 4			15
Salt Atmosphere (corrosion)	1041	,	
Subgroup 6			10
Steady-State Operational Life	1026	Power Dissipation = 50mW, t = 1000hrs, T _A = 25°C	
End Points		Group A, Subgroup 2	

Hi-Reliability NPN Silicon Phototransistor Types OP803TX/TXV, OP804TX/TXV, OP805TX/TXV

Features

- High reliability screening patterned after MIL-S-19500
- Each lot subjected to Group A & B Lot Acceptance
- · Lensed for high sensitivity
- Mechanically and spectrally matched to the OP235TX/TXV and OP236TX/TXV series IREDs

Description

Each device in the OP803, OP804 and OP805TX/TXV series consists of a high reliability NPN phototransistor mounted in a lensed, hermetically sealed, TO-18 package. The TXV devices are subject to a visual inspection per Method 2072 of MIL-STD-750 prior to seal. All devices (both TX and TXV) are 100% screened per Table II of MIL-STD-19500. After completion of the screening, every lot has Group A and B lot acceptance performed. Group C requirements are performed on a lot every six months.

The OP803, OP804 and OP805 TX/TXV series lensing creates an acceptance half angle of 12° measured from the optical axis to the half power point. The series can be matched with either a solid state infrared source, such as the OP235 and OP236 TX/TXV series IREDs, or can be used to sense infrared content in a visible light source, such as a tungsten bulb or sunlight for automatic brightness control.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature Range65°C to +150°C Operating Temperature Range55°C to +125°C Lead Soldaring Temperature [1/46] inch (1.6mm) from soon for 5 and with coldaring
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage 5.0V
Emitter-Collector Voltage
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 2.5mW/°C above 25°C.

Types OP803TX/TXV, OP804TX/TXV, OP805TX/TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	P	arameter	Min	Тур	Max	Units	Test Conditions
IC(on)	On-State Collect	or Current					
		OP803TX,TXV	4.0		8.0	mA	$V_{CE} = 5.0V, E_{\theta} = 5.0 \text{mW/cm}^{2(3)}$
		OP804TX,TXV	7.0		22.0	mA	$V_{CE} = 5.0V, E_{e} = 5.0 \text{mW/cm}^{2(3)}$
		OP805TX,TXV	15.0	ļ		mA	$V_{CE} = 5.0V, E_e = 20 \text{mW/cm}^{2(3)}$
ICEO	Collector-Emitter	Dark Current		ı	100	nA	V _{CE} = 10.0V, E _e = 0
	Į.			ļ	100	μΑ	$V_{CE} = 10.0V$, $E_e = 0$, $T_A = 100^{\circ}C$
V _{(BR)CBO}	Collector-Base Breakdown Voltage		30			٧	$I_C = 100\mu A$, $I_E = 0$, $E_e = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30			٧	$I_C = 100\mu A$, $I_B = 0$, $E_e = 0$
V _{(BR)EBO}	Emitter-Base Bre	eakdown Voltage	5.0			V	$I_E = 100\mu A$, $I_C = 0$, $E_e = 0$
VCE(SAT)	Collector-Emitte	Saturation Voltage			0.40	٧	$I_C = 0.4 \text{mA}, E_e = 5.0 \text{mW/cm}^{2(3)}$
t _r	Rise Time	OP804TX,TXV			10.0	μs	V _{CC} = 30V, I _C = 1.00mA,
		OP805TX,TXV			15.0		$R_L = 100\Omega$
tf	Fall Time	OP804TX,TXV			10.0	μs	
		OP805TX,TXV			15.0		

⁽³⁾ Light source is an unfiltered tungsten lamp operated at a temperature of 2870 K.

100% Processing

Screen	Mil-STD-750 Method	Conditions	OP803TX OP804TX OP805TX	OP803TXV OP804TXV OP805TXV	
Pre-Cap Visual	2072	Optek's pre-cap visual		100%	
High Temperature Storage	1032	$T_A = 150^{\circ}C$, $t = 24$ hrs.	100%	100%	
Temperature Cycle	1051	Condition C, 20 cycles, -65°C to +150°C, 15 min. each extreme	100%	100%	
Constant Acceleration	2006	20K G's, Y ₁ only	100%	100%	
Hermetic Seal	1071	Fine: Condition G or H, 5 X 10 ⁻⁸ atm cc/sec Gross: Condition C	100%	100%	
High Temperature Reverse Bias ⁽⁴⁾	1039	Condition A, $T_A = 125^{\circ}$ C, $V_{CB} = 24$ Vdc, $E_e = 0$, $t = 48$ hrs min.	100%	100%	
Power Burn-In ⁽⁵⁾	1039	Condition B, PT = 275 mW ± 25 mW, T _A = 25 °C, t = 168 hrs. min	100%	100%	

^{(4) 100%} electrically tested to the limits in Subgroup 2 of the Group A table before and after HTRB.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214)323-2200

Fax (214)323-2396

^{(5) 100%} electrically tested to the limits in Subgroup 2 of the Group A table before and after burn-in. ΔICEO = ± 100% of initial reading or ± 20nA, whichever is greater; ΔIC(on) = ± 20%, PDA = 10%.

Types OP803TX/TXV, OP804TX/TXV, OP805TX/TXV

Group A Inspection-Electrical Tests

(Performed on each inspection lot after all devices have been subject to the 100% processing requirements.)

Symbol	Examination		MIL-STD-750	n/c	Limit		Units
	or Test	Method	Conditions		Min	Max	
Subgroup 1							
	Visual and Mechanical Examination	2071	LTPD = 5				
Subgroup 2				116/0			
ICEO	Collector-Emitter Dark Current	3041	V _{CE} = 10.0Vdc, E _e = 0			100	nA
V _{(BR)CBO}	Collector-Base Breakdown Voltage	3001	$I_C = 100\mu A$, $I_E = 0$, $E_e = 0$		30		
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	3011	I _C = 1.00mA, I _B = 0, E _e = 0		30		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	3026	$I_E = 100 \mu A$, $I_C = 0$, $E_\theta = 0$		5.0		٧
VCE(SAT)	Collector-Emitter Saturation Voltage		I _C = 0.40mA, E _e = 5.0mW/cm ²			0.40	٧
IC(on)	On-State Collector Current		$V_{CE} = 5.0 \text{Vdc}, E_e = 5.0 \text{mW/cm}^2$			i	
	OP803TX,TXV				4.0	8.0	mA
	OP804TX,TXV				7.0	22.0	mA
	OP805TX,TXV				15.0		mA
Subgroup 3				116/0			
ICEO	Collector Emitter Dark Current	3041	V _{CE} = 10.0Vdc, E _e = 0, T _A = 100°C			100	μА
Subgroup 4				116/0			
t _r , t _f	Rise and Fall Time OP803TX,TXV		V _{CC} = 5.0Vdc, I _C = 1.00mAdc			10.0	μs
	OP804TX,TXV		$R_L = 100\Omega$			10.0	
	OP805TX,TXV					15.0	

Group B Inspection

(Performed on each inspection lot)

Examination		LTPD		
or Test	Method	Conditions		
Subgroup 1			15	
Solderability	2026			
Resistance To Solvents	1022			
Subgroup 2			10	
Thermal Shock (temperature cycling)	1051	Condition C, 20 cycles, 15 minutes at extremes		
Hermetic Seal Fine Leak Gross Leak	1071	Condition G or H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition C		
End Points		Group A, Subgroup 2		
Subgroup 3			5	
Steady-State Operation Life	1027	P _D = 250mW, t = 340hrs, T _A = 25°C		
End Points		Group A, Subgroup 2		
Subgroup 4				
Internal Visual Inspection	2075	Per design criteria	1 device (0 failure)	
Bond Strength	2037	All internal wires of each device shall be pulled separately	20	

Types OP803TX/TXV, OP804TX/TXV, OP805TX/TXV

Group B Inspection

(Performed on each inspection lot)

Examination		LTPD	
or Test	Method		
Subgroup 5			15
Thermal Resistance			
Subgroup 6			7
High Temperature Life (non-operating)	1032	t = 340hrs., T _A = 150°C	
End Points		Group A, Subgroup 2	

Group C Inspection

(Performed every six months while in production)

Examination	MIL-STD-750					
or Test	Method Conditions					
Subgroup 1			15			
Physical Dimensions	2066					
Subgroup 2			10			
Thermal Shock (glass strain)	1056	Condition A				
Hermetic Seal Fine Leak Gross Leak	1071	Condition G or H, max leak rate = 5 x 10 ⁻⁸ atm cc/sec Condition C				
Moisture Resistance	1021	Omit initial conditioning				
End Points		Group A, Subgroup 2				
Subgroup 3			10			
Shock	2016	Non-operating 1.5K G's 0.5ms, 5 blows in each orientation, X ₁ , Y ₁ , Z ₁				
Vibration, Variable Frequency	2056					
Constant Acceleration	2006	1 minute in each orientation, X ₁ , Y ₁ , & Z ₁ at 20K G's min				
End Points		Group A, Subgroup 2				
Subgroup 4			15			
Salt Atmosphere (corrosion)	1041					
Subgroup 5						
Barometric Pressure	1001	Not performed				
Subgroup 6			10			
Steady-State Operational Life	1026	P _D = 250mW, t = 1000hrs, T _A = 25°C				
End Points		Group A, Subgroup 2				

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Hi-Reliability Reflective Object Sensor Types OPB700TX, OPB700TXV

Features

- · Non-contact switching
- · Low profile to facilitate stacking
- Hermetically sealed components
- Components processed to Optek's screening program patterned after MIL-S-19500 for TX and TXV devices
- 24.0 inches (457.2mm) minimum length lead wires conforming to MIL-W-16878

Description

The OPB700TX and OPB700TXV consist of gallium aluminum arsenide LED's and silicon phototransistors mounted side-by side on converging optical axes in a high temperature black plastic housing. The phototransistor responds to the radiation from the LED only when a reflective object passes within its field of view. Lead wires are #26 AWG polytetraflouroethylene (PTEF) insulated conforming to MIL-W-16878.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Operating Temperature Storage Temperature Stor	-65°C to +125°C -65°C to +150°C
Input Diode	-,
Forward DC Current	50mA
Reverse Voltage	2.0V
Power Dissipation	100mW ⁽¹⁾
Output Phototransistor	
Collector-Emitter Voltage	50V
Emitter-Collector Voltage	7.0V
Power Dissipation	100mW ⁽¹⁾
Materia	

Notes:

- (1) Derate linearly 1.00mW/°C above 25°C.
- (2) Measured using an Eastman Kodak neutral white test card having 90% diffuse reflectance as a reflective surface.
- (3) Crosstalk (Icx) is the collector current measured with the indicated current in the input diode and no reflecting surface.
- (4) "d" is the distance from the assembly head to the reflective surface.
- (5) Methanol or isopropyl alcohols are recommended as cleaning agents.

Types OPB700TX, OPB700TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Input Diode	•					
VF	Forward Voltage ⁽⁶⁾	1.10	1.60	1.80	٧	I _F = 50.0mA
		1.30	1.80	2.00	٧	I _F = 50.0mA, T _A = -55°C
		0.90	1.40	1.70	٧	I _F = 50.0mA, T _A = 100°C
l _R	Reverse Current		0.1	100	μА	V _R = 2.0V
Output Pho	ototransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50	110		V	I _C = 1.0mA, I _F = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	7.0	10.0		V	$I_E = 100\mu A$, $I_F = 0$
IC(off)	Collector-Emitter Dark Current			100	nA	V _{CE} = 10.0V, I _F = 0
			10	100	μА	$V_{CE} = 10.0V$, $I_F = 0$, $T_A = 100$ °C
Combined						
IC(on)	On-State Collector Current	50	200		μΑ	V _{CE} = 5.0V, I _F = 40.0mA
	$d = 0.20 \text{ in. } (5.08 \text{mm})^{(2,3,6)}$	25			μА	V _{CE} = 5.0V, I _F = 40.0mA, T _A = -55°C
		25			μА	$V_{CE} = 5.0V$, $I_F = 40.0mA$, $T_A = 100^{\circ}C$
lcx	Crosstalk (No Reflective Surface ⁽³⁾		2.0		μА	V _{CE} = 5.0V, I _F = 40.0mA
VCE(SAT)	Collector-Emitter Saturation Voltage d = 0.20 in. (5.08mm) ^(2,3)			0.40	٧	$I_C = 10.0 \mu A$, $I_F = 40.0 mA$
tr	Output Rise Time		12.0	20.0	μs	V _{CC} = 10.0V, I _F = 20.0mA,
tf	Output Fall Time		12.0	20.0	μs	R _L = 1,000Ω

⁽⁶⁾ Measurement is taken during the last 500μs of a single 1.0ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Hi-Rel Slotted Optical Switches Types OPB821TX, OPB821TXV

Features

- Non-contact switching
- Hermetically sealed components
- Components processed to Optek's screening program patterned after MIL-S-19500 for TX and TXV devices

Description

The OPB821TX or OPB821TXV consists of a gallium aluminum arsenide LED and a silicon phototransistor soldered into a printed circuit board, then mounted in a high temperature plastic housing on opposite sides of a 0.080 inch (2.03 mm) wide slot. Lead wires are #24 AWG polytetraflouroethylene (PTFE) insulated conforming to MIL-W-16878. Phototransistor switching takes place whenever an opaque object passes through the slot. For maximum output signal. neither the LED or the phototransistor in the OPB821TX or the OPB821TXV is apertured.

The OPB821TX and OPB821TXV use optoelectronic components that have been processed and tested as either TX or TXV components per MIL-S-19500.

Optek Technology, Inc.

Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unless otherwise noted)
Operating Temperature65°C to +125°C
Storage Temperature
Input Diode
Forward DC Current
Reverse Voltage 2.0 V
Power Dissipation
Output Phototransistor
Collector-Emitter Voltage
Emitter-Collector Voltage 7.0 V
Power Dissipation

- (1) Derate linearly 1.00 mW/°C above 25°C.
- (2) Methanol or isopropyl alcohols are recommended as cleaning agents.

Carrollton, Texas 75006

Types OPB821TX, OPB821TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
		1.00	1.35	1.70	V	I _F = 20.0 mA
V_{F}	Forward Voltage ⁽³⁾	1.20	1.55	1.90	V	I _F = 20.0 mA, T _A = -55°C
		0.80	1.20	1.60	V	$I_F = 20.0 \text{ mA}, T_A = 100^{\circ}\text{C}$
I _R	Reverse Current		0.1	100	μA	V _R = 2.0 V
Output Pho	ototransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50	110		V	I _C = 1.0 mA, I _F = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	7.0	10.0		V	I _E = 100 μA, I _F = 0
I _{C(OFF)}	Collector-Emitter Dark Current		0.2	100	nA	V _{CE} = 10 V, I _F = 0
			10	100	μA	$V_{CE} = 10 \text{ V}, I_F = 0, T_A = 100^{\circ}\text{C}$
Coupled						
		800			μA	V _{CE} = 10.0 V, I _F = 20.0 mA
I _{C(ON)}	On-State Collector Current ⁽³⁾	500			μA	$V_{CE} = 10.0 \text{ V}, I_F = 20.0 \text{ mA}, T_A = -55^{\circ}\text{C}$
		500			μA	$V_{CE} = 10.0 \text{ V}, I_F = 20.0 \text{ mA}, T_A = 100^{\circ}\text{C}$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.20	0.30	V	I _C = 250 μA, I _F = 20.0 mA
t _r	Output Rise Time		12.0	20.0	μs	V _{CC} = 10.0 V, I _F = 20.0 mA,
t _f	Output Fall Time		12.0	20.0	μs	$R_L = 1,000 \Omega$

⁽³⁾ Measurement is taken during the last 500µs of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

1,000

15 20 25 30 IF - FORWARD CURRENT - mA

Hi-Rel Slotted Optical Switches Types OPB847TX, OPB847TXV, OPB848TX, OPB848TXV

Features

- Non-contact switching
- Apertured for high resolution
- Hermetically sealed components
- Components processed to Optek's screening program patterned after MIL-S-19500 for TX and TXV devices

Description

The OPB847TX, OPB847TXV, OPB848TX and OPB848TXV each consist of a gallium aluminum arsenide LED and a silicon phototransistor soldered into a printed circuit board then mounted in a high temperature plastic housing on opposite sides of a 0.100 inch (2.54 mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot. Both device types have a 0.025 inch (0.635 mm) by 0.06 inch (1.52 mm) aperture in front of the phototransistor for high resolution positioning sensing.

The OPB847TX, OPB847TXV, OPB848TX and OPB848TXV use optoelectronic components that have been processed and tested as either TX or TXV components per MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Operating Temperature
Storage Temperature65°C to +150°C
Lord Caldada a Tanana antina (4/40 hash /4/0 mm) from acco F con
with soldering iron]240°C ⁽¹⁾
Input Diode
Forward DC Current
Reverse Voltage 2.0 V

Power Dissipation	O IIIVV
Output Phototransistor	
Collector-Emitter Voltage	50 V
Emitter-Collector Voltage	7.0 V
Power Dissipation	0 mW ⁽²⁾

Notes:

- (1) Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.00 mW/°C above 25°C.
- (3) Methanol or isopropyl alcohols are recommended as cleaning agents.

Typical Performance Curves

Normalized Output Current vs Forward Current

Normalized Output Current vs Ambient Temperature

Types OPB847TX, OPB847TXV, OPB848TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	9						
			1.00	1.35	1.70	٧	I _F = 20.0 mA
V_{F}	Forward Voltage ⁽⁴⁾		1.20	1.55	1.90	V	I _F = 20.0 mA, T _A = -55°C
			0.80	1.20	1.60	٧	I _F = 20.0 mA, T _A = 100°C
I _R	Reverse Current			0.1	100	μΑ	V _R = 2.0 V
Output Pho	ototransistor						
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage	50	110		٧	I _C = 1.0 mA, I _F = 0
V _{(BR)ECO}	Emitter-Collector Breakdown V	oltage	7.0	10.0		٧	I _E = 100 μA, I _F = 0
I _{C(OFF)}	Collector-Emitter Dark Current			0.2	100	nA	V _{CE} = 10 V, I _F = 0
				10	100	μΑ	$V_{CE} = 10 \text{ V}, I_F = 0, T_A = 100^{\circ}\text{C}$
Coupled							
I _{C(ON)}	On-State Collector Current ⁽⁴⁾	OPB847	4.0			mA	V _{CE} = 10.0 V, I _F = 20.0 mA
		OPB847	2.5			mA	$V_{CE} = 10.0 \text{ V}, I_F = 20.0 \text{ mA}, T_A = -55^{\circ}$
		OPB847	2.5			mA	$V_{CE} = 10.0 \text{ V}, I_F = 20.0 \text{ mA}, T_A = 100^{\circ}$
		OPB848	1.0			mA	$V_{CE} = 10.0 \text{ V}, I_F = 20.0 \text{ mA}$
		OPB848	0.6			mA	$V_{CE} = 10.0 \text{ V}, I_F = 20.0 \text{ mA}, T_A = -55^{\circ} \text{ C}$
		OPB848	0.6			mA	$V_{CE} = 10.0 \text{ V, I}_F = 20.0 \text{ mA, T}_A = 100^{\circ}$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	OPB847		0.20	0.30	V	$I_C = 2.0 \text{ mA}, I_F = 20.0 \text{ mA}$
		OPB848		0.20	0.30	٧	$I_C = 500 \mu A$, $I_F = 20.0 \text{ mA}$
t _r	Output Rise Time	OPB847		12.0	20.0	μs	$V_{CC} = 10.0 \text{ V}, I_F = 20.0 \text{ mA},$
		OPB848		8.0	15.0	μs	$R_L = 1,000 \Omega$
t _f	Output Fall Time	OPB847		12.0	20.0	μs	$V_{CC} = 10.0 \text{ V}, I_F = 20.0 \text{ mA},$
		OPB848		8.0	15.0	μs	$R_L = 1,000 \Omega$

⁽⁴⁾ Measurement is taken during the last 500µs of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Optek Technology, Inc. 1215 W. Crosby Road Carrollton, Texas 75006 (214) 323-2200 Fax (214) 323-2396

Hi-Rel Slotted Optical Switches Types OPB870N, OPB870L, OPB870P, OPB870T Series

Features

- Non-contact switching
- Choice of apertures
- Choice of minimum IC(ON)
- Hermetically sealed components
- Components processed to Optek's screening program patterned after MIL-S-19500 for TX and TXV devices
- S level processing available
- Plastic meets NASA publication 1124

Description

The OPB870 series slotted optical switch consists of a gallium aluminum arsenide LED and a silicon phototransistor soldered into a printed circuit board then mounted in a high temperature plastic housing on opposite sides of a 0.125 inch (3.18 mm) wide slot. Phototransistor switching takes place whenever an opaque object passes through the slot. Options include phototransistor aperture widths of 0.050 inches (1.27 mm) or 0.010 inches (0.25 mm) for high resolution positioning sensing.

The OPB870 hi-rel series uses optoelectronic components that have been processed and tested as either TX or TXV components per MIL-S-19500.

Operating Temperature	65°C to +125°C
Storage Temperature	65°C to +150°C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case 5 se	C.
with soldering iron]	240°C ⁽¹⁾
Input Diode	
Forward DC Current	50 mA
Reverse Voltage	2.0 V

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise noted)

Output Phototran																											
Power Dissipation		 				 																	. 1	00) m	W ⁽²	2)
Reverse Voltage		 				 																			. 2	ر0.	V
i diwala Do Cullelli	٠.	 ٠.	٠.	•	٠.	 ٠.	٠.	•	٠.	•	٠.	• •	• •	٠.	•	٠.	•	٠.	٠.	•	٠.	•	• • •	• •	50	111/	•

Emitter-Collector Voltage 7.0 V

- Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.00 mW/°C above 25°C.
- (3) Methanol or isopropyl alcohols are recommended as cleaning agents.

Part Numbering Guide

*Parameter "A" only

Type OPB870 Series

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
nput Diode	•						
			1.00	1.35	1.70	٧	I _F = 20.0 mA
V_{F}	Forward Voltage ⁽⁴⁾		1.20	1.55	1.90	٧	$I_F = 20.0 \text{ mA}, T_A = -55^{\circ}\text{C}$
		0.80	1.20	1.60	V	$I_F = 20.0 \text{ mA}, T_A = 100^{\circ}\text{C}$	
I _R	Reverse Current			0.1	10	μA	V _R = 2.0 V
output Pho	ototransistor						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		50	110		V	$I_C = 1.0 \text{ mA}, I_F = 0$
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		7.0	10.0		٧	I _E = 100 μA, I _F = 0
I _{C(OFF)}	Collector-Emitter Dark Current			0.2	100	nA	V _{CE} = 10 V, I _F = 0
				10	100	μA	$V_{CE} = 10 \text{ V}, I_F = 0,$ $T_A = 100^{\circ}\text{C}$
oupled							
I _{C(ON)}	On-State Collector Current ⁽⁴⁾						
	Parameter A	OPB870	500			μA	V _{CE} = 10.0 V, I _F = 20.0 mA
		OPB870	200			μA	$V_{CE} = 10.0 \text{ V}, I_F = 20.0 \text{ mA}$ $T_A = -55^{\circ}\text{C}$
		OPB870	200			μА	$V_{CE} = 10.0 \text{ V}, I_F = 20.0 \text{ mA}$ $T_A = 100^{\circ}\text{C}$
	Parameter B	OPB871	1000			μA	$V_{CE} = 5.0 \text{ V}, I_F = 10.0 \text{ mA}$
		OPB871	400			μA	$V_{CE} = 5.0 \text{ V}, I_F = 10.0 \text{ mA},$ $T_A = -55^{\circ}\text{C}$
		OPB871	400			μA	$V_{CE} = 5.0 \text{ V}, I_F = 10.0 \text{ mA},$ $T_A = 100^{\circ}\text{C}$
	Parameter C	OPB872	1800			μA	V _{CE} = 0.4 V, I _F = 20.0 mA
		OPB872	800			μА	$V_{CE} = 0.4 \text{ V}, I_F = 20.0 \text{ mA},$ $T_A = -55^{\circ}\text{C}$
		OPB872	800			μА	$V_{CE} = 0.4 \text{ V}, I_F = 20.0 \text{ mA},$ $T_A = 100^{\circ}\text{C}$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	OPB870		0.20	0.30	٧	$I_C = 400 \mu A$, $I_F = 20.0 mA$
•		OPB871		0.20	0.30	٧	$I_C = 800 \mu A, I_F = 10.0 \text{ mA}$
		OPB872		0.20	0.30	٧	$I_C = 1,800 \mu A, I_F = 20.0 \text{ mA}$
t _r	Output Rise Time	OPB870		8.0	15.0	μs	V _{CC} = 10.0 V,
		OPB871		12.0	20.0	μs	I _F = 20.0 mA,
		OPB872		12.0	20.0	μs	R _L = 1,000 Ω
t _f	Output Fall Time	OPB870		8.0	15.0	μs	V _{CC} = 10.0 V,
		OPB871		12.0	20.0	μs	I _F = 20.0 mA,
		OPB872		12.0	20.0	μs	$R_L = 1,000 \Omega$

⁽⁴⁾ Measurement is taken during the last 500µs of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Type OPB870 Series

Package Configuration N

Package Configuration P

Package Configuration L

Type OPB870 Series

Typical Performance Curves

Relative Output Current vs Time

Normalized Output Current vs Ambient Temperature

Reduction in Output Current Due to LED Heating vs Forward Current

Normalized Output Current vs Input Current

Rise and Fall Time vs Load Resistance

Hi-Rel Optically Coupled Isolator Types OPI120TX, OPI120TXV

Features

- High current transfer ratio
- 15 kV electrical isolation
- Base lead provided for conventional transistor biasing
- Components processed to Optek's screening program patterned after MIL-S-19500 for TX and TXV devices

Description

The OPI120TX and OPI120TXV are optically coupled isolators, consisting of a gallium aluminum arsenide infrared light emitting diode (OP235TX or OP235TXV) and an NPN silicon phototransistor (OP804TX or OP804TXV) sealed in a high dielectric plastic housing. This series is designed for applications requiring high voltage isolation between input and output.

High reliability processing is performed in accordance with MIL-S-19500 for both the infrared light emitting diode and the NPN silicon phototransistor at the component level.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

About the maximum runingo (1A - 20 0 annote of notice)
Input-to-Output Isolation Voltage±15 kVDC ⁽¹⁾
Operating Temperature65°C to +125°C
Storage Temperature65°C to +150°C
Soldering Temperature [1/16 in. (1.6 mm) from case for 5 sec.
with soldering iron]240°C
Input Diode
Forward DC Current
Reverse Voltage 2.0 V
Power Dissipation
Output Phototransistor
Continuous Collector Current
Collector-Base Voltage
Collector-Emitter Voltage 50 V

Emitter-Base Voltage 7.0 V

- (1) Measured with input leads shorted together and output leads shorted together in air with a maximum relative humidity of 50%. If suitably encapsulated or oil immersed, the isolation voltage is increased to at least 25 kV.
- (2) Derate linearly 2.0 mW/°C above 25°C. (3) Derate linearly 2.5 mW/°C above 25°C.

Power Dissipation

(4) Methanol or isopropyl alcohols are recommended as cleaning agents.

Types OPI120TX, OPI120TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

	` ` ` `					
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
		1.00	1.40	1.70	V	I _F = 30.0 mA
V_{F}	Forward Voltage ⁽⁵⁾	1.20	1.60	1.90	V	I _F = 30.0 mA, T _A = -55°C
		0.90	1.15	1.50	V	I _F = 30.0 mA, T _A = 100°C
I _R	Reverse Current		0.1	10	μΑ	V _R = 2.0 V
Output Pho	ototransistor					
V _{(BR)CBO}	Collector-Base Breakdown Voltage	50	80		V	$I_C = 100 \mu\text{A}, \ I_E = 0, I_F = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50	110		٧	$I_C = 1.0 \text{ mA}, I_B = 0, I_F = 0$
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	7.0	10.0		V	I _E = 100 μA, I _C = 0, I _F = 0
I _{C(OFF)}	Collector-Emitter Dark Current		0.2	100	nA	V _{CE} = 10 V, I _B = 0, I _F = 0
			10	100	μΑ	$V_{CE} = 10 \text{ V}, I_{B} = 0, I_{F} = 0, T_{A} = 100^{\circ}\text{C}$
I _{CB(OFF)}	Collector-Base Dark Current		0.1	10.0	nA	V _{CB} = 10 V, I _E = 0, I _F = 0
Coupled						
I _{C(ON)}	On-State Collector Current ⁽⁵⁾	2.0			mA	V _{CE} = 5.0 V, I _B = 0, I _F = 10.0 mA
		1.2			mA	$V_{CE} = 5.0 \text{ V}, I_B = 0, I_F = 10.0 \text{ mA}, T_A = -55^{\circ}\text{C}$
		1.2			mA	$V_{CE} = 5.0 \text{ V}, I_B = 0, I_F = 10.0 \text{ mA}, T_A = 100^{\circ}\text{C}$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.25	0.30	٧	$I_C = 2.0 \text{ mA}, I_B = 0, I_F = 20.0 \text{ mA}$
V _{ISO}	Isolation Voltage (Input to Output)	15.0	30.0		kV	See Note 1
t _r	Output Rise Time		8.0	15.0	μs	V_{CC} = 10.0 V, I_C = 2.0 mA, R_L = 100 Ω
t _f	Output Fall Time		8.0	15.0	μs	$V_{CC} = 10.0 \text{ V}, I_{C} = 2.0 \text{ mA}, R_{L} = 100 \Omega$

⁽⁵⁾ Measurement is taken during the last 500µs of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

Hi-Rel Photologic™ Optically Coupled Isolator Type OPI125TXV

Features

- · High current transfer ratio
- 15 kV electrical isolation
- Direct TTL/LSTTL interface
- High noise immunity
- Data rates to 250 KBaud
- Components processed to Optek's Hi-Rel screening program

Description

The OPI125TXV is an optically coupled isolator consisting of a gallium aluminum arsenide infrared light emitting diode (OP235TXV) and a monolithic integrated circuit which incorporates a photodiode, a linear amplifier and a Schmitt trigger on a single die (OPL800TXV) sealed in a high dielectric plastic housing. The device features TTL/LSTTL compatible logic level output which can drive up to 8 TTL loads directly without additional circuitry. Also featured are medium speed data rates to 250 KBaud with typical rise and fall times of 70 nsec. This device is designed for applications requiring high voltage isolation between input and output. High reliability processing is performed in accordance with MIL-S-19500 and MIL-S-883.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise noted) Input-to-Output Isolation Voltage±15 kVDC⁽¹⁾

Operating Temperature65°C to +125°C	Э
Storage Temperature65°C to +150°C	Э
Soldering Temperature [1/16 in. (1.6 mm) from case for 5 sec.	
with soldering iron]	2
Input Diode	
Forward DC Current	A
Reverse Voltage	
Power Dissipation	2)
Output Photologic™	
Supply Voltage, VCC (not to exceed 3 seconds)+10.0 \	٧
Duration of Output Short to V _{CC} or Ground 1.00 seg	:

- (1) Measured with input leads shorted together and output leads shorted together in air with a maximum relative humidity of 50%. If suitably encapsulated or oil immersed, the isolation
- voltage is increased to at least 25 kV. (2) Derate linearly 2.00 mW/°C above 25°C.
- (3) Derate linearly 2.0 mW/°C above 25°C.

Power Dissipation

Type OPI125TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

	· · · · · · · · · · · · · · · · · · ·					
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
		0.90	1.25	1.50	٧	I _F = 10.0 mA
V_{F}	Forward Voltage ⁽⁵⁾	1.00	1.45	1.70	V	I _F = 10.0 mA, T _A = -55°C
		0.70	1.10	1.30	V	I _F = 10.0 mA, T _A = 100°C
I _R	Reverse Current		0.1	10	μA	V _R = 2.0 V
Photologic	тм					
V _{CC}	Operating Supply Voltage	4.8		5.2	٧	
lcc	Supply Current		7.0	15.0	mA	V _{CC} = 5.2 V, I _F = 0 or 7.5 mA
Coupled		4	•	•		
I _{F(+)}	LED Positive-Going Threshold			7.5	mA	V _{CC} = 5.0 V
	Current ⁽⁵⁾			7.5	mA	V _{CC} = 5.0 V, T _A = -55°C
				7.5	mA	V _{CC} = 5.0 V, T _A = 100°C
I _{F(+)} /I _{F(-)}	Hysteresis Ratio		2.0			
V _{OL}	Low Level Output Voltage			0.40	V	V _{CC} = 4.8 V, I _{OL} = 13.0 mA, I _F = 0
V _{OH}	High Level Output Voltage	2.4			V	$V_{CC} = 4.8 \text{ V}, I_{OH} = -800 \mu\text{A}, I_{F} = 7.5 \text{ mA}$
los	Short Circuit Output Current	-30.0		-120	mA	V _{CC} = 5.2 V, I _F = 7.5 mA, Output = GND
V _{ISO}	Isolation Voltage (Input to Output)	15.0			kV	See Note 1
t _{r,} t _f	Output Rise Time and Fall Time		70.0	100	ns	$V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C}, I_F = 0 \text{ or } 10.0 \text{ mA}$
t _{PLH} , t _{PHL}	Propagation Delay and Low to High & High to Low		5.0	10.0	μs	f = 10.0 kHz, D.C. = 50%, R _L = 8 TTL Loads

⁽⁴⁾ Methanol or isopropyl alcohols are recommended as cleaning agents.

⁽⁵⁾ Measurement is taken during the last 500µs of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

Optically Coupled Isolators Types OPI150TX, OPI150TXV

Features

- High current transfer ratio
- 50kV electrical isolation
- Base contact lead for conventional transistor biasing
- Components processed to Optek's screening program patterned after MIL-S-19500 for TX and TXV devices.

Description

The OPI150TX and OPI150TXV are optically coupled isolators, consisting of a gallium aluminum arsenide infrared light emitting diode component (OP235TX or OP235TXV) and optically coupled to an NPN silicon phototransistor component (OP804TX or OP804TXV) by means of a light pipe and sealed in a high dielectric plastic housing. This series is designed for applications requiring very high voltage isolation between input and output.

High reliability processing is performed in accordance with MIL-S-19500 for both the infrared light emitting diode and the NPN silicon phototransistor at the component level.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

$\begin{array}{llllllllllllllllllllllllllllllllllll$
Input Diode
Continuous Forward Current
Reverse Voltage 2.0V
Power Dissipation
Output Photosensor
Continuous Collector Current
Collector-Emitter Voltage
Emitter-Base Voltage
Collector-Base Voltage
Power Dissipation
Notes

Note

- (1) Measured with input and output leads shored together in air with maximum relative humidity of 50%.
- (2) Derate linearly 2.00mW/°C above 25°C
- (3) Derate linearly 2.50mW/°C above 25°C.
- (4) Methanol or isopropanol are recommended as cleaning agents.

Schematic

Types OPI150TX, OPI150TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diod	e				1	<u></u>
VF	Forward Voltage ⁽⁵⁾	1.0	1.4	1.7	٧	IF = 30 mA
		1.2 0.9	1.6 1.15	1.9 1.5	V	$I_F = 30 \text{ mA}, T_A = -55^{\circ}\text{C}$ $I_F = 30 \text{ mA}, T_A = 100^{\circ}\text{C}$
lR	Reverse Current		0.1	10	μА	V _R = 2.0 V
Output Pho	otosensor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50	80		V	$I_C = 1.0 \text{ mA}, I_B = 0, I_F = 0$
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	7.0	110		V	$I_E = 100 \mu\text{A}, I_C = 0, I_F = 0$
V _{(BR)CBO}	Collector-Base Breakdown Voltage	50	10.0		٧	$I_C = 100 \mu A$, $I_E = 0$, $I_F = 0$
ICEO	Collector-Emitter Dark Current		0.2 10	100 100	nA μA	V _{CE} = 10.0 V, I _B = 0, I _F = 0 V _{CE} = 10.0 V, I _B = 0, I _F = 0, T _A = 100°C
Ісво	Collector-Base Dark Current		0.1	10	nA	V _{CB} = 10.0 V, I _E = 0, I _F = 0
Coupled						
I _{C(ON)}	On-State Collector Current ⁽⁵⁾	1.0 0.6 0.6			mA mA mA	V _{CE} = 5 V,I _B = 0, I _F = 10 mA V _{CE} = 5 V,I _B = 0, I _F = 10 mA, T _A = -55°C V _{CE} = 5 V,I _B = 0, I _F = 10 mA, T _A = 100°C
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.20	0.30	٧	I _C = 1.0 mA, I _B = 0, I _F = 16.0 mA
Viso	Isolation Voltage (Input-to-Output)	50.0			kV	See Note 1
tr	Output Rise Time		8.0	15.0	μs	V_{CC} = 10.0 V, I_C = 2.0 mA, R_L = 100 Ω
tr	Output Fall time		8.0	15.0	μs	V_{CC} = 10.0 V, I_C = 2.0 mA, R_L = 100 Ω

⁽⁵⁾ Measurement is taken during last 500μs of a single ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

Surface Mount Optically Coupled Isolators Types OPI210, OPI211

Features

- Micro-miniature package ideal for hybrid applications
- TTL, DTL compatible
- High DC current transfer ratio
- Four bonding pads for attaching to hybrid substrates
- 1kV electrical isolation
- High efficiency gallium aluminum arsenide emitter

Description

The OPI210 and OPI211 are optically coupled isolators each consisting of a gallium aluminum arsenide LED and a silicon phototransistor mounted and coupled on a thick film ceramic substrate. These solid-state optocouplers are ideal for hybrid applications. Four thick film bonding pads make electrical connections easy.

The OPI210 and OPI211 are identical except for the DC current transfer ratio. Both were designed with high reliability in mind and are ideally suited for use in MIL-STD-883 hybrid applications.

Device mounting may be achieved using silver or gold filled epoxies. The OPI210 and OPI211 are sensitive to some hybrid cleaning processes. Consult factory for details.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Input-to-Output Isolation Voltage
Continuous Forward DC Current
Peak Forward Current (1 μs pulse width, 300 pps)
Reverse Voltage
Power Dissipation
Output Sensor
Continuous Collector Current
Collector-Emitter Voltage
Emitter-Collector Voltage
Power Dissipation
Notes:
AND A STATE OF THE

- Measured with input diode bond pads shorted together and output bond pads shorted together.
- (2) Derate linearly above 65°C free air temperature at the rate 1.0mW/°C.
 (3) Derate linearly above 25°C free air temperature at the rate of 1.0mW/°C.

Types OPI210, OPI211

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	•						
VF	Forward Voltage			1.15	1.50	٧	I _F = 10.0mA
IR	Reverse Current			0.1	100	μА	V _R = 2.0V
Output Sen	sor						
V _{(BR)CEO}	Collector-Emitter Breakdown V	oltage	35	80		V	$I_C = 100 \mu A$, $I_F = 0$
V _{(BR)ECO}	Emitter-Collector Breakdown V	7.0	10.0		٧	I _E = 100μA, I _F = 0	
ICEO	Collector-Emitter Dark Current		20	100	nA	V _{CE} = 20V, I _F = 0	
Coupled		,					
lc/l _F	DC Current Transfer Ratio	OPI210 OPI211	50 200	200 350		% %	V _{CE} = 5.0V, I _F = 10.0mA V _{CE} = 5.0V, I _F = 10.0mA
VCE(SAT)	Collector-Emitter Saturation Vo	oltage		0.2	0.30	٧	I _C = 2.0mA, I _F = 20mA
t _r t _f	Output Rise Time Output Fall Time			3.0 3.0	10.0 10.0	μs μs	V_{CC} = 10.0V, R_L = 100 Ω Pulse width = 100ms, duty cycle = 1%

Zero Voltage Crossing Optically Coupled Triac Driver Type OPI340

Features

- For 220 VAC operation
- 1000 VDC electrical isolation
- Zero voltage crossing for reduced EMI, line noise, and improved static
- TO-78 hermetically sealed package
- Optek's Military screened version available on request -55°C to +125°C operating range

Description

The OPI340 consists of a gallium aluminum arsenide infrared emitting diode and a monolithic integrated circuit containing a photodiode and a zero voltage bidirectional triac driver, mounted in a six pin TO-78 hermetic package. The device is intended to be used for low power DC controlling of power triacs which in turn control resistive, inductive, or capacitive loads powered from 220 VAC. Zero voltage crossing ensures that the device will not turn on until the line voltage reduces to 15 volts, typical.

Absolute Maximum Patings	$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
Absolute Waximum Hatings	That = 25 Cuniess otherwise noted)

Input-to-Output Isolation Voltage	. ±1.0 kVDC ⁽¹⁾
Operating Temperature5	5°C to +125°C
Storage Temperature6	5°C to +150°C
Soldering Temperature (1/16 inch from case for 5 sec.	
w/soldering iron)	240°C
Input Diode	
Forward DC Current (65°C or below)	40 mA
Reverse Voltage	3.0 V
Power Dissipation	60 mW ⁽²⁾
Output Photosensor	
Off-State Terminal Voltage	
On-State RMS Current (Full Cycle, 50-60 Hz, T _A = 25°C)	100 mA
On-State RMS Current (Full Cycle, 50-60 Hz, T _A = 70°C)	
Peak Non-Repetitive Surge Current (PW = 10 ms, duty cycle = 10%)	1.20 A
Power Dissipation	300 mW ⁽³⁾

- (1) Measured with inputs shorted together and outputs shorted together.
- (2) Derate linearly 1.0 mW/°C above 65°C. (3) Derate linearly 3.0 mW/°C above 25°C.

Notes:

Type OPI340

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode	•					
		1.20		1.80	V	I _F = 40.0 mA
V _F	Forward Voltage	1.00		2.20	V	I _F = 40.0 mA, T _A = -55°C
		0.80		1.50	V	I _F = 40.0 mA, T _A = 125°C
I _R	Reverse Current			100	μA	V _R = 3.0 V
Output Pho	ototransistor					
			10.0	100	nA	V _{DRM} = 400 V
I _{DRM}	Peak Blocking Current, Either Direction			6.0	μA	V _{DRM} = 400 V, T _A = 85°C
				6.0	μA	V _{DRM} = 300 V, T _A = 125°C
			1.75	3.0	V	I _{TM} = 100 mA, I _F = 15.0 mA
V _{TM}	Peak On-State Voltage, Either Direction			3.0	V	$I_{TM} = 100 \text{ mA}, I_F = 15.0 \text{ mA}, T_A = -55^{\circ}\text{C}$
		İ		5.0	V	I _{TM} = 100 mA, I _F = 15.0 mA, T _A = 125°C
dV/dt	Critical Rate of Rise of Off-State Voltage	100			V/µs	$R_L = 2.5 \text{ k}\Omega$
Coupled						
				15.0	mA	$V_{TM} = 3.0 \text{ V}, R_L = 150 \Omega$
I _{FT}	LED Trigger Current Required to Latch			20.0	mA	$V_{TM} = 5.0 \text{ V}, R_L = 150 \Omega, T_A = -55^{\circ}\text{C}$
				22.0	mA	$V_{TM} = 5.0 \text{ V}, R_L = 150 \Omega, T_A = 125^{\circ}\text{C}$
lH	Holding Current, Either Direction		200		μA	
V _{ISO}	Isolation Voltage	1000			VDC	See Note (1)
				40	V	I _{FT} = 15.0 mA
$V_{I(TH)}$	Zero Voltage Crossing Inhibit Voltage Threshold			40	V	I _{FT} = 15.0 mA, T _A = -55°C
	THESHOLD			40	V	I _{FT} = 15.0 mA, T _A = 125°C
				300	μA	I _{FT} = 15.0 mA, V _{MT} = 400 V
$I_{R(I)}$	Leakage Current in Inhibit State			600	μA	$I_{FT} = 20.0 \text{ mA}, V_{MT} = 400 \text{ V}, T_{A} = -55^{\circ}\text{C}$
• •				300	μA	I _{FT} = 22.0 mA, V _{MT} = 300 V, T _A = 125°C

Hi-Reliability Photologic™ Hermetic Sensors Type OPL800TXV

Features

- 100% screened and quality conformance tested to Optek's Hi-Rel program
- Direct TTL/STTL interface
- · Hermetic, lensed TO-18 package
- Mechanically and spectrally matched OP235/OP236TX/TXV LEDs

Description

The OPL800TXV is a high reliability optoelectronic microcircuit that incorporates a photodiode, linear amplifier, and Schmitt trigger on a single silicon chip. The device features TTL/STTL compatible logic level output which can drive up to 8 TTL loads without additional interface circuitry. The Photologic™ chip is mounted on a standard TO-18 header which is hermetically sealed in a lensed metal can. These devices are mechanically and spectrally matched to the OP235TX/ TXV and 236TX/TXV infrared emitting diodes. All parts are processed to Optek's 100 percent screening program patterned after Method 5004 of MIL-STD-883 and the quality conformance testing in Method 5005 for Class B devices. Complete details of the Hi-Rel program are given on the following pages.

Typical characteristic curves are shown on the commercial OPL800 data sheet.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC} (not to exceed 3 sec.)+10.0V
Storage Temperature Range65°C to +150°C
Operating Temperature Range55°C to +125°C
Lead Soldering Temperature (1/16 (1.6mm) inch from case for 5 sec. with soldering
iron]
Power Dissipation
Duration of Output Short to V _{CC} or Ground
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when wave soldering.
- (2) Derate linearly 2.5mW/°C above 25°C.
 (3) Light measurements are made with λ = 935nm.

Schematics

OPL800TXV (Totem-Pole Output Buffer)

Type OPL800TXV

100% Processing

Screen	Mil-STD-883 Method	Conditions	OPL800TXV
Internal Visual	2010	Condition B	100%
High Temperature Storage	1008	Condition C, T _A = 150°C, t = 24hrs.	100%
Temperature Cycle	1010	Condition C, 10 Cycles, -65°C to 150°C, 15 min. each extreme	100%
Constant Acceleration	2001	Condition E, Y ₁ orientation, 5K G's for 1 min.	100%
Hermetic Seal	1014	Fine: Condition A or B, 5 X 10 ⁻⁸ atm cc/sec Gross: Condition C, D, or E	100%
Power Burn-In ⁽⁴⁾	1015	Condition B, T _A = 25°C, V _{CC} = 5.25V, t = 168hrs. min	100%
Seal	1014	Fine leak, Gross leak	100%
External Visual Examination	2009		100%

^{(4) 100%} electrically tested to the limits in Subgroups 1 and 9 of the Group A table before and after burn-in.

Group A Inspection-Electrical Tests

(Performed on each inspection lot after all devices have been subject to the 100% processing requirements.)

Symbol	Examination	MIL-STD-883			Limit		Units
	or Test	Method	Method Conditions		Min	Max	
Subgroup 1 ⁽⁵⁾				2			
Іссн	Supply Current, High	3005	V _{CC} = 5.25V, E _e = 2.0mW/cm ²			15.0	mA
Iccl	Supply Current, Low	3005	V _{CC} = 5.25V, E _e = 0			15.0	mA
Vol	Low Level Output Voltage	3007	$V_{CC} = 4.75$, $I_{OL} = 12.8$ mA, $E_e = 0$			0.40	٧
Vон	High Level Output Voltage	3006	$V_{CC} = 4.75$, $I_{OH} = -800$ μA, $E_e = 2.0$ mW/cm ²		2.4		٧
los	Short Circuit Output Voltage	3011	$V_{CC} = 4.75$, $E_{e} = 2.0$ mW/cm ² , Output = GND		-30	-120	mA
Subgroup 2 ⁽⁵⁾			T _A = +125°C	2			
Іссн	Supply Current, High	3005	V _{CC} = 5.25V, E _e = 2.0mW/cm ²			15.0	mA
Iccl	Supply Current, Low	3005	V _{CC} = 5.25V, E _e = 0			15.0	mA
Vol	Low Level Output Voltage	3007	$V_{CC} = 4.75V$, $I_{OL} = 12.8mA$, $E_e = 0$			0.40	٧
Vон	High Level Output Voltage	3006	$V_{CC} = 4.75V$, $I_{OH} = -800\mu A$, $E_{e} = 2.0 \text{mW/cm}^{2}$		2.4		٧
Subgroup 3 ⁽⁵⁾			T _A = -55°C	2			
Іссн	Supply Current, High	3005	V _{CC} = 5.25V, E _e = 2.0mW/cm ²			15.0	mA
Iccl	Supply Current, Low	3005	V _{CC} = 5.25V, E _e = 0			15.0	mA
Vol	Low Level Output Voltage	3007	V _{CC} = 4.75V, I _{OL} = 12.8mA, E _e = 0			0.40	٧
Voн	High Level Output Voltage	3006	V_{CC} = 4.75V, I_{OH} = -800μA, E_{θ} = 2.0mW/cm ²		2.4		٧
Subgroup 4 ⁽⁵⁾				2			
t _r , t _f	Rise and Fall Time	3004	V _{CC} = 5.0V, R _L = 8TTL loads			70.0	ns
tpHL	Propagation Delay, Low-High	3003	V _{CC} = 5.0V, R _L = 8TTL loads			10.0	μs
tpHL	Propagation Delay, High-Low	3003	V _{CC} = 5.0V, R _L = 8TTL loads			10.0	μs

⁽⁵⁾ Light Source is a gallium arsenide light emitting diode with a typical rise time of 500 nanoseconds.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214) 323-2200

Fax (214) 323-2396

Type OPL800TXV

Group B Inspection

(Performed on each inspection lot)

Examination		MIL-STD-883		
or Test	Method	Conditions		
Subgroup 1			2 devices	
			0 failures	
Physical Dimensions	2016			
Subgroup 2			4 devices	
			0 failures	
Resistance To Solvents	2015			
Subgroup 3			1 device	
			0 failures	
Solderability	2003	Soldering Temperature = 260°C ± 10°C		
Subgroup 5			2 devices	
			0 failures	
Bond Strength	2011	Condition C or D		
Subgroup 7			5	

Group C Inspection Die Related Tests

(Performed every 3 months)

Examination		MIL-STD-883			
or Test	Method				
Subgroup 1			15		
Temperature Cycling	1010	Condition C, 10 cycles, -65°C to +150°C, 10 minutes max @ extremes, 5 minutes max transfer time			
Constant Acceleration	2001	Condition E, 30K G's, Y ₁ only for 1 minute			
Hermetic Seal Fine Leak Gross Leak	1014	Condition A or B, 5 x 10 ⁻⁸ atm cc/sec Condition C, D or E			
End Points		Group A, Subgroup 1			
Subgroup 2			5		
Steady State Life	1005	V _{CC} = 5.0V, T _A = 150°C, t = 1000hrs			
End Points		Group A, Subgroup 1			

Type OPL800TXV

Group D Package Related Tests (performed every 6 months while in production)

Examination or Test		MIL-STD-883				
	Method	Method Conditions				
Subgroup 1			15			
Physical Dimensions	2016					
Subgroup 2			15			
Lead Integrity	2004	Condition B2 (Lead Fatique)				
Hermetic Seal Fine Leak	1014	Condition A or B, 5 X 10 ⁻⁸ atm cc/sec				
Gross Leak		Condition C, D, or E				
Subgroup 3			15			
Thermal Shock	1011	Condition B, 15 cycles, 125°C to -55°C, 5 minutes minimum @ extremes, 10 sec maximum transfer time				
Temperature Cycling	1010	Condition C, 100 cycles, -65°C to +150°C, 10 minutes minimum @ extremes, 5 minimum transfer time				
Moisture Resistance	1004					
Hermetic Seal	1014	_				
Fine Leak		Condition A or B, 5 X 10 ⁻⁷ atm cc/sec				
Gross Leak		Condition C, D, or E				
End Points		Group A, Subgroup 1				
Subgroup 4			15			
Mechanical Shock	2002	Condition B				
Vibration, Variable Frequency	2007	Condition A				
Constant Acceleration	2001	Condition E, 30K G's, Y1 only for 1 minute				
Hermetic Seal Fine Leak Gross Leak	1014	Condition A or B, 5 X 10 ⁻⁸ atm cc/sec Condition C, D, or E				
End Points		Group A, Subgroup 1				
Subgroup 5			15			
Salt Atmosphere	1009	Condition A				
Hermetic Seal	1014					
Fine Leak Gross Leak		Condition A or B, 5 X 10 ⁻⁸ atm cc/sec Condition C, D, or E				

HI-REL FIBER OPTIC COMPONENTS

High Reliability Fiber Optic GaAIAs LED Types OMF320TX, OMF320TXV

Features

- High radiant output for fiber optic applications
- High speed
- Electrically isolated from case
- Processing patterned after JANTX or JANTXV of MIL-S-19500

Description

The OMF320 LED provides fiber optic users with high coupled power and wide bandwidth in an easily mounted hermetic package.

The LEDs are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	1.0 <u>V</u>
Continuous Forward Current	100mA ⁽⁴⁾
Storage Temperature Range	5°C to +150°C
Operating Temperature Range	0°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. wit	th soldering
iron]	240°C ⁽¹⁾
Alakaa.	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber 50μm core: N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power I _F = 100 mA @ 25°C						
Fiber	Refractive Indexs	N.A.	OMF320TX/TXV			
50/125μm	Graded	0.20	19μW			
62.5/125μm	Graded	0.28	34μW			
100/140μm	Graded	0.29	96μW			
200/300μm*	Step	0.41	360μW			

*PCS - Plastic Clad Silica

Types OMF32OTX, OMF320TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Po	Radiant Power Output	15.0	19.0		μW	$I_F = 100 \text{ mA}^{(2)}$
V _F	Forward Voltage		1.7	2.0	٧	I _F = 100 mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA
t _r	Output Rise Time		6.0	8.0	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾
t _f	Output Fall Time		6.0	10.0	ns	I _F = 100 mA, 90%-10% ⁽⁵⁾

TYPICAL PERFORMANCE CURVES

High ReliabilityFiber Optic GaAlAs LED in SMA Receptacle Types OMF321TX, OMF321TXV

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle
- Processing patterned after JANTX or JANTXV of MIL-S-19500

Description

The OMF321 consists of a hermetic LED pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LEDs are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 1.0½
Continuous Forward Current
Storage Temperature Range
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 - (2) Graded index fiber 50μm core: N.A. = 0.20.
 - (3) To convert radiant power output to dBm, use the following expression: -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Pre Bias @ 5mA current.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power I _F = 100 mA @ 25°C								
Fiber Refractive N.A. OMF321TX/TXV								
50/125μm	Graded	0.20	19μW					
62.5/125μm	Graded	0.28	34μW					
100/140μm	Graded	0.29	96μW					
200/300μm*	Step	0.41	360μW					

*PCS - Plastic Clad Silica

Types OMF321TX, OMF321TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Po	Radiant Power Output	15.0	19.0		μW	$I_F = 100 \text{ mA}^{(2)}$
V_{F}	Forward Voltage		1.7	2.0	٧	I _F = 100 mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA
tr	Output Rise Time		6.0	8.0	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾
t _f	Output Fall Time		6.0	10.0	ns	$I_F = 100 \text{ mA}, 90\%-10\%^{(5)}$

High ReliabilityFiber Optic GaAlAs LED in ST* Compatible Receptacle Types OMF322TX, OMF322TXV

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular style receptacle
- Processing patterned after JANTX or JANTXV of MIL-S-19500

Description

The OMF322 consists of a hermetic LED pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LEDs are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S 19500.

*ST is a registered trademark of AT&T

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range55°C to +150°C
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
No. a.

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 - (2) Graded index fiber 50µm core: N.A. = 0.20.
 - 3) To convert radiant power output to dBm, use the following expression: -dBm = 10 log (μW/1000).
 - (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power IF = 100 mA @ 25oC							
Fiber	Refractive Index	N.A.	OMF322TX/TXV				
50/125μm	Graded	0.20	19μW				
62.5/125μm	Graded	0.28	34μW				
100/140μm	Graded	0.29	95μW				
200/300μm*	Step	0.41	360μW				

^{*}PCS - Plastic Clad Silica

Types OMF322TX, OMF322TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Po	Radiant Power Output	15.0	19.0		μW	$I_F = 100 \text{ mA}^{(2)}$
V _F	Forward Voltage		1.7	2.0	٧	I _F = 100 mA
λр	Peak Output Wavelength	830	850	870	nm	$I_F = 50 \text{ mA}$
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA
t _r	Output Rise Time		6.0	8.0	ns	$I_F = 100 \text{ mA}, 10\%-90\%^{(5)}$
tf	Output Fall Time		6.0	10.0	ns	$I_F = 100 \text{ mA}, 90\%-10\%^{(5)}$

TYPICAL PERFORMANCE CURVES

High ReliabilityFiber Optic GaAlAs High Speed LED Types OMF340TX, OMF340TXV

Features

- High radiant output for fiber optic applications
- High speed
- Electrically isolated from case
- Processing patterned after JANTX and JANTXV of MIL-S-19500

Description

The OMF340 LED provides fiber optic users high coupled power and wide bandwidth in an easily mounted package.

The LEDs are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	1.0V
Continuous Forward Current	100mA ⁽⁴⁾
Storage Temperature Range	-55°C to +150°C
Operating Temperature Range	-40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. iron]	with soldering
iron]	240°C ⁽¹⁾

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber 50μm core: N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power I _F = 100 mA @ 25°C							
Fiber Refractive N.A. OMF340TX/T							
50/125μm	Graded	0.20	25μW				
62.5/125μm	Graded	0.28	45μW				
100/140μm	Graded	0.29	125μW				
200/300μm*	Step	0.41	475μW				

*PCS - Plastic Clad Silica

Types OMF340TX, OMF340TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output	20.0	25.0		μW	I _F = 100mA ⁽²⁾
VF	Forward Voltage		1.7	2.0	V	I _F = 100mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50mA
t _r	Output Rise Time		4.5	6.0	ns	I _F = 100mA, 10%-90% ⁽⁵⁾
tf	Output Fall Time		4.5	6.0	ns	I _F = 100mA, 90%-10% ⁽⁵⁾

TYPICAL PERFORMANCE CURVES

High Reliability Fiber Optic GaAlAs High Speed LED in SMA Receptacle Types OMF341TX, OMF341TXV

.375 (9.53) .375

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular SMA style receptacle
- High Speed
- Electrically isolated from case
- Processing patterned after JANTX and JANTXV of MIL-S-19500

Description

The OMF341 consists of a hermetic LED pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LEDs are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	1.0V
Continuous Forward Current	0mA ⁽⁴⁾
Storage Temperature Range55°C to +	150°C
Operating Temperature Range40°C to +	125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with solder	ing
iron]	10°C(1)
Notes:	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 - (2) Graded index fiber 50µm core: N.A. = 0.20.
 - (3) To convert radiant power output to dBm, use the following expression: -dBm = 10 log (μW/1000).
 - (4) Derate linearly @ 1.0mA/°C above 25°C.
 - (5) Prebias @ 5mA current.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power I _F = 100 mA @ 25°C							
Fiber	Refractive Index	N.A.	OMF341TX/TXV				
50/125μm	Graded	0.20	25μW				
62.5/125μm	Graded	0.28	45μW				
100/140μm	Graded	0.29	125μW				
200/300μm*	Step	0.41	475μW				

^{*}PCS - Plastic Clad Silica

Types OMF341TX, OMF341TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output	20.0	25.0		μW	I _F = 100 mA ⁽²⁾
V_{F}	Forward Voltage		1.7	2.0	٧	I _F = 100 mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA
t _r	Output Rise Time		4.5	6.0	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾
t _f	Output Fall Time		4.5	6.0	ns	I _F = 100 mA, 90%-10% ⁽⁵⁾

TYPICAL PERFORMANCE CURVES

vs. WAVELENGTH

I_F = 50mA

1000

900

WAVELENGTH Nanometers

1.1

1.0

0.9

0.7 0.6

0.5

0.4

0.3

0.2

0.1

600

RELATIVE RADIANT INTENSITY

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

700

800

1100

High Reliability Fiber Optic GaAlAs High Speed LED Types OMF342TX, OMF342TXV

in ST* Compatible Receptacle

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular style receptacle
- High Speed
- · Electrically isolated from case
- Processing patterned after JANTX and JANTXV of MIL-S-19500

Description

The OMF342 consists of a hermetic LED pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LEDs are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

*ST is a registered trademark of AT&T

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 1.0V
Continuous Forward Current
Storage Temperature Range55°C to +150°C
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 - (2) Graded index fiber 50µm core: N.A. = 0.20.
 - (3) To convert radiant power output to dBm, use the following expression: -dBm = 10 log (μW/1000).
 - (4) Derate linearly @ 1.0mA/°C above 25°C.
 - (5) Prebias @ 5mA current.

TYPICAL COUPLED POWER into OPTICAL FIBER

	Typical Coupled Power I _F = 100 mA @ 25 ^o C							
Fiber	Fiber Refractive N.A. OMF342TX/TX							
50/125μm	Graded	0.20	25μW					
62.5/125μm	Graded	0.28	45μW					
100/140μm	Graded	0.29	125μW					
200/300μm*	Step	0.41	475μW					

*PCS - Plastic Clad Silica

Types OMF342TX, OMF342TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output	20.0	25.0		μW	$I_F = 100 \text{ mA}^{(2)}$
V _F	Forward Voltage		1.7	2.0	V	I _F = 100 mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA
t _r	Output Rise Time		4.5	6.0	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾
t _f	Output Fall Time		4.5	6.0	ns	I _F = 100 mA, 90%-10% ⁽⁵⁾

TYPICAL PERFORMANCE CURVES

High ReliabilityFiber Optic GaAlAs High Speed LED Types OMF345TX, OMF345TXV

Features

- High radiant output for fiber optic applications
- High speed
- Electrically isolated from case
- Processing patterned after JANTX and JANTXV of MIL-S-19500

Description

The OMF345 LED provides fiber optic users with high coupled power and wide bandwidth in an easily mounted hermetic package.

The LEDs are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	1.0V
Continuous Forward Current	100mA ⁽⁴⁾
Storage Temperature Range	
Operating Temperature Range	-40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. iron]	with soldering

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber 50μm core: N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power I _F = 100 mA						
Fiber Refractive N.A. OMF345TX/TX						
50/125μm	Graded	0.20	25μW			
62.5/125μm	Graded	0.28	45μW			
100/140μm	Graded	0.29	125μW			
200/300μm*	Step	0.41	475μW			

*PCS - Plastic Clad Silica

Types OMF345TX, OMF345TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output	20.0	25.0		μW	$I_F = 100 \text{ mA}^{(2)}$
V_{F}	Forward Voltage		1.7	2.0	V	I _F = 100 mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA
t _r	Output Rise Time		3.5	4.5	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾
t _f	Output Fall Time		3.5	4.5	ns	I _F = 100 mA, 90%-10% ⁽⁵⁾

TYPICAL PERFORMANCE CURVES

High Reliability Fiber Optic GaAlAs High Speed LED in SMA Receptacle Types OMF346TX, OMF346TXV

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular style receptacle
- High Speed
- Electrically isolated from case
- Processing patterned after JANTX and JANTXV of MIL-S-19500

Description

The OMF346 consists of a hermetic LED pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LEDs are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 1.0V
Continuous Forward Current
Storage Temperature Range55°Cto +150°C
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
iron]
Notes

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber 50μm core: N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power I _F = 100 mA					
Fiber	Refractive Index	N.A.	OMF346TX/TXV		
50/125μm	Graded	0.20	25μW		
62.5/125μm	Graded	0.28	45μW		
100/140μm	Graded	0.29	125μW		
200/300μm*	Step	0.41	475μW		

^{*}PCS - Plastic Clad Silica

Types OMF346TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output	20.0	25.0		μW	I _F = 100 mA ⁽²⁾
V_{F}	Forward Voltage		1.7	2.0	٧	I _F = 100 mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA
t _r	Output Rise Time		3.5	4.5	ns	$I_F = 100 \text{ mA}, 10\%-90\%^{(5)}$
tf	Output Fall Time		3.5	4.5	ns	$I_F = 100 \text{ mA}, 90\%-10\%^{(5)}$

TYPICAL PERFORMANCE CURVES

High Reliability Fiber Optic GaAlAs High Speed LED in ST* Compatible Types OMF347TX, OMF347TXV Receptacle

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular style receptacle
- High Speed
- · Electrically isolated from case
- Processing patterned after JANTX and JANTXV of MIL-S-19500

Description

The OMF347 consists of a hermetic LED pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LEDs are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

*ST is a registered trademark of AT&T

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 1.0V
Reverse Voltage
Storage Temperature Range55°C to +150°C
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering iron]
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber 50μm core: N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression: -dBm = 10 log (μW/1000).
- (4) Derate linearly @ 1.0mA/°C above 25°C.
- (5) Prebias @ 5mA current .

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power I _F = 100 mA @ 25°C						
Fiber Refractive N.A. OMF347TX/TX						
50/125μm	Graded	0.20	25μW			
62.5/125μm	Graded	0.28	45μW			
100/140μm	Graded	0.29	125μW			
200/300μm*	Step	0.41	475μW			

*PCS - Plastic Clad Silica

Types OMF347TX, OMF347TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
Po	Radiant Power Output	20.0	25.0		μW	I _F = 100 mA ⁽²⁾
V _F	Forward Voltage		1.7	2.0	V	I _F = 100 mA
λр	Peak Output Wavelength	830	850	870	nm	I _F = 50 mA
В	Spectral Bandwidth Between Half Power Points		35		nm	I _F = 50 mA
t _r	Output Rise Time		3.5	4.5	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾
t _f	Output Fall Time		3.5	4.5	ns	I _F = 100 mA, 90%-10% ⁽⁵⁾

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

WAVELENGTH Nanometers

TA-AMBIENT TEMPERATURE - °C

High Reliability Fiber Optic High Speed PIN Photodiode Type OMF420TX, OMF420TXV

Features

- Electrically isolated TO-46 Package
- High speed, low capacitance
- Optimized for fiber optic applications using 50 to 200 micron fiber
- Processing patterned after JANTX or JANTXV of MIL-S-19500

Description

The OMF420 is a low noise silicon PIN photodiode mounted in a special TO-46 package for fiber optics applications. It offers fast response at moderate bias and is compatible with LED and laser diode sources in the 800-900 nm wavelength region. Low capacitance improves signal to noise performance in typical short haul LAN applications.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage 100VDC
Continuous Power Dissipation
Storage Temperature Range65°C to +150°C
Operating Temperature Range55°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850 nm. Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.
- (4) $R_L = 50 \Omega 10\%-90\%$.

Typical Performance Curves

Type OMF420TX, OMF420TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0 V^{(3)}$
l _D	Dark Current		0.1	5.0	nA	V _R = 5.0 V
λр	Peak Response Wavelength		880		nm	
t _r	Output Rise Time		6.0		ns	V _R = 15.0 V ⁽⁴⁾
Ст	Total Capacitance		3.0		pF	V _R = 20.0 V
FoV	Field of View		80		Deg.	

Typical Performance Curves

High Reliability Fiber Optic High Speed PIN Photodiode in SMA Receptacle Type OMF421TX, OMF421TXV

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular style receptacle
- Processing patterned after JANTX and JANTXV of MIL-S-19500

Description

The OMF421 consists of a hermetic PIN photodiode pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage
Continuous Power Dissipation
Storage Temperature Range
Operating Temperature Range40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with soldering
iron]
Notes

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
 (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850 nm.
 Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.
- (4) $R_L = 50 \Omega 10\%-90\%$.

Typical Performance Curves

Type OMF421TX, OMF421TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0 V^{(3)}$
ID	Dark Current		0.1	5.0	nA	V _R = 5.0 V
λр	Peak Response Wavelength		880		nm	
tr	Output Rise Time		6.0		ns	V _R = 15.0 V ⁽⁴⁾
Ст	Total Capacitance		3.0		pF	V _R = 20.0 V

Typical Performance Curves

High Reliability Fiber Optic High Speed PIN Photodiode in ST* Compatible Type OMF422TXV

Features

- Component pre-mounted and ready for use
- Pre-tested with fiber to assure performance
- Popular style receptacle
- Processing patterned after JANTX and JANTXV of MIL-S-19500

Description

The OMF422 consists of a hermetic PIN photodiode pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 200/230 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

*ST is a registered trademark of AT&T

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	100VDC
Continuous Power Dissipation	200mW ⁽¹⁾
Storage Temperature Range	-55°C to +150°C
Operating Temperature Range	-40°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	240°C ⁽²⁾
•• •	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_B = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850 nm. Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.
 (4) R_L = 50 Ω 10%-90%.

Typical Performance Curves

Type OMF422TX, OMF422TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0 V^{(3)}$
ΙD	Dark Current		0.1	5.0	nA	V _R = 5.0 V
λр	Peak Response Wavelength		880		nm	
t _r	Output Rise Time		6.0		ns	V _R = 15.0 V ⁽⁴⁾
Ст	Total Capacitance		3.0		pF	V _R = 20.0 V

Typical Performance Curves

High Reliability Fiber Optic High Speed PIN Photodiode Type OMF430TX, OMF430TXV

Features

- Electrically isolated TO-46 Package
- · High speed, low capacitance
- Optimized for fiber optic applications using 50 to 100 micron fiber
- Processing patterned after JANTX or JANTXV of MIL-S-19500

Description

The OMF430 is a low noise silicon PIN photodiode mounted in a special TO-46 package for fiber optics applications. It offers fast response at low bias and is compatible with LED and laser diode sources in the 800-900 nm wavelength region. Low capacitance improves signal to noise performance in typical short haul LAN applications.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 100/140 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	100VDC
Continuous Power Dissipation	200mW ⁽¹⁾
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	-55°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec.	with soldering
iron]	240°C ⁽²⁾

- (1) Derate linearly @ 2.0 mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (3) Test @ V_R = 5V with 50/125 micron, 0.20 N.A. fiber, @ 10 μW optical power @ 850 nm. Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.

Type OMF430TX, OMF430TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0V^{(3)}$
lD	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		860		nm	
tr	Output Rise Time		0.6		ns	$V_R = 50.0V$, $R_L = 50\Omega$, 10% - 90%
tr	Output Rise Time		1.0		ns	$V_R = 15.0V, R_L = 50\Omega, 10\%-90\%$
t _r	Output Rise Time		2.0		ns	$V_R = 5.0V$, $R_L = 50\Omega$, 10% - 90%
Ст	Total Capacitance		1.5	2.0	pF	V _R = 5.0V
FoV	Field of View		80		Deg.	

Typical Performance Curves

High Reliability Fiber Optic High Speed PIN Photodiode in SMA Receptacle Type OMF431TX, OMF431TXV

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular style receptacle
- · Electrically isolated from case
- Processing patterned after JANTX or JANTXV of MIL-S-19500

Description

The OMF431 consists of a hermetic PIN photodiode pre-mounted and aligned in an SMA receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 100/140 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	00VDC
Continuous Power Dissipation)mW''
Storage Temperature Range55°C to +	.150°C
Operating Temperature Range40°C to +	·125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. with solder	ring 🥋
iron] 24	10°C(2)
Notes	

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (3) Test @ $V_B = 5V$ with 50/125 micron, 0.20 N.A. fiber, @ 10 μ W optical power @ 850 nm.

Type OMF431TX, OMF431TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0V^{(3)}$
l _D	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		860		nm	
tr	Output Rise Time		0.6		ns	$V_R = 50.0V, R_L = 50\Omega, 10\%-90\%$
tr	Output Rise Time		1.0		ns	$V_R = 15.0V, R_L = 50\Omega, 10\%-90\%$
t _r	Output Rise Time		2.0		ns	$V_R = 5.0V$, $R_L = 50\Omega$, 10%-90%
Ст	Total Capacitance		1.5	2.0	pF	V _R = 5.0V

Typical Performance Curves

High Reliability Fiber Optic High Speed PIN Photodiode in ST* Compatible Receptacle Type OMF432TX, OMF432TXV

Features

- Component pre-mounted and ready for use
- Pre-tested with fiber to assure performance
- Popular style receptacle
- Electrically isolated from case
- Processing patterned after JANTX and JANTXV of MIL-S-19500

Description

The OMF432 consists of a hermetic PIN photodiode pre-mounted and aligned in an ST* receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and dust cap.

The PIN Photodiodes are designed to interface with multimode optical fibers from 50/125 to 100/140 microns.

The TX and TXV suffix indicates that the device is processed to Optek's screening and conformance test plan patterned after MIL-S-19500.

*ST is a registered trademark of AT&T

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Reverse Voltage	100VDC
Storage Temperature Range	5°C to +150°C
Operating Temperature Range4	0°C to +125°C
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 sec. will	th soldering
iron]	240°C ⁽²⁾

- (1) Derate linearly @ 2.0mW/°C above 25°C.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering. (3) Test @ $V_B = 5V$ with 50/125 micron, 0.20 N.A. fiber, @ 10 μ W optical power @ 850 nm.
- Responsivity levels apply to 50 μm, 62.5 μm and 100 μm core optical fibers.

Type OMF432TX, OMF432TXV

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
R	Flux Responsivity	0.45	0.55		A/W	$V_R = 5.0V^{(3)}$
ΙD	Dark Current		0.1	5.0	nA	V _R = 5.0V
λр	Peak Response Wavelength		860		nm	
t _r	Output Rise Time		0.6		ns	$V_R = 50.0V$, $R_L = 50\Omega$, 10%-90%
tr	Output Rise Time		1.0		ns	$V_R = 15.0V$, $R_L = 50\Omega$, 10% - 90%
t _r	Output Rise Time		2.0		ns	$V_R = 5.0V$, $R_L = 50\Omega$, 10%-90%
Ст	Total Capacitance		1.5	2.0	pF	V _R = 5.0V

Typical Performance Curves

HI-REL HALL EFFECT SENSORS

High Reliability Hallogic™ Hall Effect Sensor Types OMH090B, OMH090S

Features

- Lead finish is hot solder dip
- Hermetic ceramic package
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip
- Processing patterned after class B or class S of MIL-STD-883
- Suitable for military and space applications

Description

The chip contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and is capable of 25 mA of sink current. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The OMH090B is processed to Optek's own screening procedures patterned after class B of MIL-STD-883. OMH090S is patterned after class S.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	-65°C to +150°C
Operating Temperature Range, TA	-55°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec.	with soldering
iron]	260°C
Output ON Current, ISINK	25mA
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited

Functional Block Diagram

Types OMH090B, OMH090S

Electrical Characteristics (T_A = 25°C, V_{CC} = 4.5V to 24V unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
BOP	Magnetic Operate Point	50	90	180	Gauss	
B _{RP}	Magnetic Release Point	30	60	160	Gauss	
Вн	Magnetic Hysteresis	5	30	70	Gauss	
lcc	Supply Current		5.0	9.0	mA	V _{CC} = 24V, Output On
V _{OL}	Output Saturation Voltage		125	300	mV	V _{CC} = 4.5V, I _{OL} = 15mA
Юн	Output Leakage Current		0.50	10.0	μА	V _{CC} = 24V, V _{OUT} = 24V
tr	Output Rise Time		0.13	1.00	μs	R _L = 820Ω, C _L = 20pF
tf	Output Fall Time		0.19	1.00	μs	R _L = 820Ω, C _L = 20pF

Typical Performance Curves

High Reliability Hallogic™ Hall Effect Sensor Types OMH3019B, OMH3019S

Features

- Lead finish is hot solder dip
- Hermetic ceramic package
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip
- Processing patterned after class B or class S of MIL-STD-883
- Suitable for military and space applications

Description

The chip contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and is capable of 25 mA of sink current. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The OMH3019B is processed to Optek's own screening procedures patterned after class B of MIL-STD-883.

OMH3019S is patterned after class S.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	-65°C to +150°C
Operating Temperature Range, TA	-55°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec.	with soldering
iron]	260°C
Output ON Current, Isink	25mA
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited

Functional Block Diagram

(214) 323-2200

Types OMH3019B, OMH3019S

Electrical Characteristics (T_A = 25°C, V_{CC} = 4.5V to 24VDC unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point	175	420	500	Gauss	
B _{RP}	Magnetic Release Point	125	220	420	Gauss	
Вн	Magnetic Hysteresis	30	100	155	Gauss	
lcc	Supply Current		5.0	9.0	mA	V _{CC} = 24V, Output On
VoL	Output Saturation Voltage		125	300	mV	V _{CC} = 4.5V, I _{OL} = 15mA
Юн	Output Leakage Current		0.1	10.0	μА	V _{CC} = 24V, V _{OUT} = 24V
tr	Output Rise Time		0.13	1.00	μs	$R_L = 820\Omega$, $C_L = 20pF$
tr	Output Fall Time		0.19	1.00	μs	R _L = 820Ω, C _L = 20pF

Typical Performance Curves

High Reliability Hallogic™ Hall Effect Sensor Types OMH3020B, OMH3020S

Features

- Lead finish is hot solder dip
- Hermetic ceramic package
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip
- Processing patterned after class B or class S of MIL-STD-883
- Suitable for military and space applications

Description

The chip contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and is capable of 25 mA of sink current. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The OMH3020B is processed to Optek's own screening procedures patterned after class B of MIL-STD-883. OMH3020S is patterned after class S.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, Vcc	
Storage Temperature Range, T _S	-65°C to +150°C
Operating Temperature Range, T _A	-55°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec.	
iron]	260°C
Output ON Current, Isink	25mA
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited

Functional Block Diagram

Types OMH3020B, OMH3020S

Electrical Characteristics (V_{CC} = 4.5V to 24VDC, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
BOP	Magnetic Operate Point	70	220	350	Gauss	
B _{RP}	Magnetic Release Point	50	165	330	Gauss	
Вн	Magnetic Hysteresis	15	55	200	Gauss	
lcc	Supply Current		5.0	9.0	mA	V _{CC} = 24V, Output On
Vol	Output Saturation Voltage		125	300	mV	V _{CC} = 4.5V, I _{OL} = 15mA
Юн	Output Leakage Current		0.1	10.0	μА	V _{CC} = 24V, V _{OUT} = 24V
tr	Output Rise Time		0.13	1.00	μs	R _L = 820Ω, C _L = 20pF
tf	Output Fall Time		0.19	1.00	μs	R _L = 820Ω, C _L = 20pF

Typical Performance Curves

High Reliability Hallogic™ Hall Effect Sensor Types OMH3040B, OMH3040S

Features

- Lead finish is hot solder dip
- · Hermetic ceramic package
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip
- Processing patterned after class B or class S of MIL-STD-883
- Suitable for military and space applications

Description

The chip contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and is capable of 25 mA of sink current. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The OMH3040B is processed to Optek's own screening procedures patterned after class B of MIL-STD-883.

OMH3040S is patterned after class S.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	-65°C to +150°C
Operating Temperature Range, TA	-55°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec.	
iron]	260°C
Output ON Current, ISINK	
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited

Functional Block Diagram

Types OMH3040B, OMH3040S

Electrical Characteristics (V_{CC} = 4.5V to 24V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point	70	150	200	Gauss	
B _{RP}	Magnetic Release Point	50	115	180	Gauss	
Вн	Magnetic Hysteresis	10	35	60	Gauss	
lcc	Supply Current		5.0	9.0	mA	V _{CC} = 24V, Output On
Vol	Output Saturation Voltage		125	300	mV	V _{CC} = 4.5V, I _{OL} = 15mA
Іон	Output Leakage Current		0.1	10.0	μА	V _{CC} = 24V, V _{OUT} = 24V
t _r	Output Rise Time		0.13	1.00	μs	$R_L = 820\Omega$, $C_L = 20pF$
tf	Output Fall Time		0.19	1.00	μs	$R_L = 820\Omega$, $C_L = 20pF$

Typical Performance Curves

Rise and Fall Time Tests

Magnetic Field vs Output Voltage

High Reliability Hallogic™ Hall Effect Sensor Types OMH3075B, OMH3075S (Bi-Polar Latching)

Features

- Lead finish is hot solder dip
- Hermetic ceramic package
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip
- Processing patterned after class B or class S of MIL-STD-883
- Suitable for military and space applications

Description

The chip contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and is capable of 25 mA of sink current. Output amplitude is constant at switching frequencies from DC to over 100 kHz.

The OMH3075B is processed to Optek's own screening procedures patterned after class B of MIL-STD-883.
OMH3075S is patterned after class S.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	-65°C to +150°C
Operating Temperature Range, TA	-55°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. v	
iron]	260°C
Output ON Current, ISINK	25mA
Output OFF Voltage, VouT	25V
Magnetic Flux Density, B	Unlimited

Functional Block Diagram

These devices turn on (logic level "0") in the presence of a magnetic south pole and turn off (logic level "1") when subjected to a magnetic north pole. Both magnetic poles are necessary for operation so they are referred to as Bipolar or Latching. This feature makes these sensors ideal for application in brushless DC motors and for use with multiple pole magnets.

Types OMH3075B, OMH3075S

Electrical Characteristics ($V_{CC} = 4.5V$ to 24V, $T_A = 25^{\circ}C$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Bop	Magnetic Operate Point	50	150	250	Gauss	
B _{RP}	Magnetic Release Point	-250	-150	-50	Gauss	
Вн	Magnetic Hysteresis	100	300	500	Gauss	
lcc	Supply Current		5.0	9.0	mA	V _{CC} = 24V, Output On
Vol	Output Saturation Voltage		190	400	mV	V _{CC} = 4.5V, I _{OL} = 15mA
Юн	Output Leakage Current		0.1	10.0	μА	V _{CC} = 24V, V _{OUT} = 24V
tr	Output Rise Time		0.13	1.00	με	$R_L = 820\Omega$, $C_L = 20pF$
tf	Output Fall Time		0.19	1.00	μs	$R_L = 820\Omega$, $C_L = 20pF$

Typical Performance Curves

High Reliability Ultra Sensitive Hallogic™ Sensor Types OMH3131B, OMH3131S

Features

- Lead finish is hot solder dip
- Hermetic ceramic package
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip
- Processing patterned after class B or class S of MIL-STD-883
- Suitable for military and space applications

Description

The chip contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and is capable of 25 mA of sink current. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The OMH3131B is processed to Optek's own screening procedures patterned after class B of MIL-STD-883.

OMH3131S is patterned after class S.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, Ts	-65°C to +150°C
Operating Temperature Range, TA	-55°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec.	with soldering
iron]	260°C
Output ON Current, ISINK	25mA
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited

Functional Block Diagram

Types OMH3131B, OMH3131S

Electrical Characteristics (V_{CC} = 4.5V to 24V, T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point	20	60	95	Gauss	
BRP	Magnetic Release Point	10	45	85	Gauss	
BH	Magnetic Hysteresis	5	15	40	Gauss	
lcc	Supply Current		5.0	9.0	mA	V _{CC} = 24V, Output On
VoL	Output Saturation Voltage		125	300	mV	V _{CC} = 4.5V, i _{OL} = 15mA
Іон	Output Leakage Current		0.1	10.0	μА	V _{CC} = 24V, V _{OUT} = 24V
tr	Output Rise Time		0.13	1.00	μs	$R_L = 820\Omega$, $C_L = 20pF$
tr	Output Fall Time		0.19	1.00	μs	$R_L = 820\Omega$, $C_L = 20pF$

Typical Performance Curves

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

20 pF

High Reliability Hallogic™ Hall Effect Sensor Types OMH360B, OMH360S

Features

- Lead finish is hot solder dip
- Hermetic ceramic package
- Operates over a broad range of supply voltages
- Excellent temperature stability to operate in harsh environments
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic™ silicon chip
- Processing patterned after class B or class S of MIL-STD-883
- Suitable for military and space applications

Description

The chip contains a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, and Schmitt trigger on a single silicon chip. Included on-chip is a bandgap voltage regulator to allow operation with a wide range of supply voltages. The device features logic level output and is capable of 25 mA of sink current. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The OMH360B is processed to Optek's own screening procedures patterned after class B of MIL-STD-883. OMH360S is patterned after class S.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Supply Voltage, V _{CC}	25V
Storage Temperature Range, T _S	-65°C to +150°C
Operating Temperature Range, TA	-55°C to +125°C
Lead Soldering Temperature [1/8 inch (3.2mm) from case for 5 sec. v	
iron]	260°C
Output ON Current, ISINK	25mA
Output OFF Voltage, Vout	25V
Magnetic Flux Density, B	Unlimited

Functional Block Diagram

Types OMH360B, OMH360S

Electrical Characteristics (T_A = 25°C, V_{CC} = 4.5V to 24V unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
BOP	Magnetic Operate Point	235	360	465	Gauss	
B _{RP}	Magnetic Release Point	170	280	360	Gauss	
Вн	Magnetic Hysteresis	30	80	150	Gauss	
lcc	Supply Current		5.0	9.0	mA	V _{CC} = 24V, Output On
Vol	Output Saturation Voltage		125	300	mV	V _{CC} = 4.5V, I _{OL} = 15mA
Іон	Output Leakage Current		0.1	10.0	μА	V _{CC} = 24V, V _{OUT} = 24V
t _r	Output Rise Time		0.13	1.00	μs	$R_L = 820\Omega$, $C_L = 20pF$
tf	Output Fall Time		0.19	1.00	μs	R _L = 820Ω, C _L = 20pF

Typical Performance Curves

HI-REL SURFACE MOUNT SEMICONDUCTORS

Surface Mount PNP General Purpose Transistor Type JANTX, JANTXV-2N2907AUA

Features

- Ceramic surface mount package
- Miniature package to minimize circuit board area
- Hermetically sealed
- Qualification per MIL-S-19500/291

Description

The JANTX/TXV2N2907AUA is a hermetically sealed ceramic surface mount general purpose switching transistor. The miniature four pin ceramic package is ideal for designs where board space and device weight are important design considerations. The "UA" suffix denotes the 4 terminal leadless chip carrier package, type "A" per MIL-S-19500/291.

This data sheet is provided as a summary reference. Refer to MIL-S-19500/291 for complete requirements.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Base voltage
Collector-Emitter Voltage 60V
Emitter-Base Voltage
Collector Current-Continuous
Operating Junction Temperature (T _J)65°C to +200°C
Storage Junction Temperature (T _{stg})65°C to +200°C
Power Dissipation @ T _A = 25°C
Power Dissipation @ $T_C = 25^{\circ}C$
Soldering Temperature (vapor phase reflow for 30 sec.)
Soldering Temperature (heated collet for 5 sec.)
Notes:

(1) Derate linearly 6.6mW/°C above 25°C.

Types JANTX, JANTXV-2N2907AUA

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Off Charac	teristics				
V _{(BR)CBO}	Collector-Base Breakdown Voltage	60		٧	$I_C = 10 \mu A, I_E = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	60		٧	$I_C = 10 \text{ mA}, I_B = 0^{(2)}$
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	5.0		٧	$I_E = 10 \mu A, I_C = 0$
Ісво	Collector-Base Cutoff Current		10	nA	V _{CB} = 50 V, I _E = 0
			10	μА	V _{CB} = 50 V, I _E = 0, T _A = 150°C
Ices	Collector-Emitter Cutoff Current		50	nA	V _{CE} = 30 V
I _{EBO}	Emitter-Base Cutoff Current		50	nA	V _{EB} = 3.5 V, I _C = 0
On Charac	teristics				
hFE	Forward-Current Transfer Ratio	75		-	V _{CE} = 10 V, I _C = 0.1 mA
		100	450	-	V _{CE} = 10 V, I _C = 1.0 mA
		100			V _{CE} = 10 V, I _C = 10 mA
		100	300	-	V _{CE} = 10 V, I _C = 150 mA ⁽²⁾
		50		-	V _{CE} = 10 V, I _C = 500 mA ⁽²⁾
		50		•	V _{CE} = 10 V, I _C = 1.0 mA, T _A = -55°C
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.40	· V	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}^{(2)}$
			1.60	٧	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}^{(2)}$
V _{BE(SAT)}	Base-Emitter Saturation Voltage		1.30	٧	I _C = 150 mA, I _B = 15 mA ⁽²⁾
			2.60	٧	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}^{(2)}$
Small-Sign	al Characteristics				
h _{fe}	Small Signal Forward Current Transfer Ratio	100		•	V _{CE} = 10 V, I _C = 1.0 mA, f = 1.0 kHz
Ih _{fe} l	Small Signal Forward Current Transfer Ratio	2.0		-	V _{CE} = 20 V, I _C = 50 mA, f = 100 MHz
Cobo	Open Circuit Output Capacitance		8.0	pF	V _{CB} = 10 V, 100 kHz ≤ f ≤ 1.0 MHz
Cibo	Input Capacitance (Output Open Capacitance)		30	pF	$V_{EB} = 2.0 \text{ V}, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$
Switching	Characteristics				
ton	Turn-On Time		45	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = 15 mA
t _{off}	Turn-Off Time		300	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = I _{B2} = 15 mA

⁽²⁾ Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

Surface Mount PNP General Purpose Transistor Type JANTX, JANTXV-2N2907AUB

Features

- · Ceramic surface mount package
- Miniature package to minimize circuit board area
- Hermetically sealed
- Footprint and pin-out matches SOT-23 packaged transistors
- Qualification per MIL-S-19500/291

Description

The JANTX/TXV2N2907AUB is a miniature, hermetically sealed, ceramic surface mount general purpose switching transistor. The miniature three pin ceramic package is ideal for upgrading commercial grade circuits to military reliability levels where plastic SOT-23 devices have been used. The "UB" suffix denotes the 3 terminal chip carrier package, type "B" per MIL-S-19500/291.

This data sheet is provided as a summary reference. Refer to MIL-S-19500/291 for complete requirements.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage 5.0V
Collector Current-Continuous
Operating Junction Temperature (T _J)65°C to +200°C
Storage Junction Temperature (T _{stg})65°C to +200°C
Power Dissipation @ $T_A = 25^{\circ}C$
Power Dissipation @ $T_C = 25^{\circ}C$
Soldering Temperature (vapor phase reflow for 30 sec.)
Soldering Temperature (heated collet for 5 sec.)
Notes:
(4) D

(1) Derate linearly 6.6mW/°C above 25°C.

Types JANTX, JANTXV-2N2907AUB

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITION
Off Charac	teristics		I		
V _{(BR)CBO}	Collector-Base Breakdown Voltage	60		٧	I _C = 10 μA, I _E = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	60		٧	I _C = 10 mA, I _B = 0 ⁽²⁾
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	5.0		٧	I _E = 10 μA, I _C = 0
Ісво	Collector-Base Cutoff Current		10	nA	V _{CB} = 50 V, I _E = 0
			10	μА	V _{CB} = 50 V, I _E = 0, T _A = 150°C
Ices	Collector-Emitter Cutoff Current		50	nA	V _{CE} = 30 V
IEBO	Emitter-Base Cutoff Current		50	nA	V _{EB} = 3.5 V, I _C = 0
On Charac	teristics				
hFE	Forward-Current transfer Ratio	75		-	V _{CE} = 10 V, I _C = 0.1 mA
		100	450	-	V _{CE} = 10 V, I _C = 1.0 mA
		100		-	V _{CE} = 10 V, I _C = 10 mA
		100	300	-	V _{CE} = 10 V, I _C = 150 mA ⁽²⁾
		50		-	V _{CE} = 10 V, I _C = 500 mA ⁽²⁾
		50		-	V _{CE} = 10 V, I _C = 1.0 mA, T _A = -55°C
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.40	V	I _C = 150 mA, I _B = 15 mA ⁽²⁾
			1.60	٧	I _C = 500 mA, I _B = 50 mA ⁽²⁾
V _{BE(SAT)}	Base-Emitter Saturation Voltage		1.30	٧	I _C = 150 mA, I _B = 15 mA ⁽²⁾
			2.60	٧	I _C = 500 mA, I _B = 50 mA ⁽²⁾
Small-Sign	nal Characteristics				
h _{fe}	Forward-Current Transfer Ratio	100		-	V _{CE} = 10 V, I _C = 1.0 mA, f = 1.0 kHz
Ih _{fe} l	Forward-Current Transfer Ratio	2.0		-	V _{CE} = 20 V, I _C = 50 mA, f = 100 MHz
Cobo	Open Circuit Output Capacitance		8.0	pF	V _{CB} = 10 V, 100 kHz ≤ f ≤ 1.0 MHz
Cibo	Input Capacitance (Output Open)		30	pF	V _{EB} = 2.0 V, 100 kHz ≤ f ≤ 1.0 MHz
Switching	Characteristics				
ton	Turn-On Time		45	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = 15 mA
t _{off}	Turn-Off Time		300	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = I _{B2} = 15 mA

⁽²⁾ Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

Surface Mount NPN/PNP Complementary Transistors Type JANTX, JANTXV-2N4854U

Features

- Ceramic surface mount package
- Miniature package to minimize circuit board area required
- Hermetically sealed
- Per MIL-S-19500/421

Description

The JANTX2N4854U is a hermetically sealed, ceramic surface mount, complementary transistor pair. The JANTX2N4854U consists of an NPN transistor die and PNP transistor die. This surface mount package is the most recent addition to MIL-S-19500/421. The "U" designator denotes the 6 terminal (C-6) leadless chip carrier package option. The miniature six pin ceramic package is ideal for designs where board space and device weight are important design considerations. For non JAN versions, the Optek HCT700 can be used as a similar replacement.

This data sheet is provided as a summary reference. Refer to MIL-S-19500/421 for complete requirements.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

NPN to PNP Isolation Voltage
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current-Continuous 600mA
Operating Junction Temperature (T _J)65°C to +200°C
Storage Junction Temperature (T _{stg})65°C to +200°C
Power Dissipation @ $T_A = 25^{\circ}C$ (both transistors driven equally) 0.6W
Power Dissipation @ $T_C = 25^{\circ}C$ (both transistors driven equally) 2.0W ⁽¹⁾
Soldering Temperature (vapor phase reflow for 30 sec.)
Soldering Temperature (heated Collet for 5 sec.)
Notes:

(1) Derate linearly 11.4mW/°C above 25°C.

HI REL SURFACE MOUNT

Types JANTX, JANTXV-2N4854U

Electrical Characteristics (T_A = 25°C unless otherwise noted) See Note 3

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Off Charac	eteristics				
V _{(BR)CBO}	Collector-Base Breakdown Voltage	60		٧	$I_C = 10.0 \mu\text{A}, I_E = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	40		٧	I _C = 10.0 mA, I _B = 0
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	5.0		٧	$I_E = 10.0 \mu\text{A}, I_C = 0$
I _{CBO}	Collector-Base Cutoff Current		10.0	nA	V _{CB} = 50 V, I _E = 0
			10.0	μА	V _{CB} = 50 V, I _E = 0, T _A = 150°C
I _{EBO}	Emitter-Base Cutoff Current		10.0	nA	V _{EB} = 3.0 V, I _C = 0
On Charac	teristics				
hFE	DC Current Transfer Ratio	50		-	V _{CE} = 1 V, I _C = 150 mA ⁽²⁾
		35		-	V _{CE} = 10.0 V, I _C = 0.1 mA
		50		-	V _{CE} = 10.0 V, I _C = 1.0 mA
		75		-	V _{CE} = 10.0 V, I _C = 10 mA ⁽²⁾
		100	300	-	V _{CE} = 10.0 V, I _C = 150 mA ⁽²⁾
		35		-	V _{CE} = 10.0 V, I _C = 300 mA ⁽²⁾
		12		-	V _{CE} = 10.0 V, I _C = 10 mA, T _A = -55°C ⁽²⁾
V _{CE} (SAT)	Collector-Emitter Saturation Voltage		0.40	٧	I _C = 150 mA, I _B = 15 mA ⁽²⁾
V _{BE(SAT)}	Base-Emitter Saturation Voltage	0.8		٧	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}^{(2)}$
Small-Sigr	nal Characteristics				
h _{ie}	Small Signal Common Emitter Input Impedance	1.5	9	kΩ	
h _{oe}	Small Signal Common Emitter Output Admittance		50	μmho	$V_{CE} = 10 \text{ V}, I_{C} = 1.0 \text{ mA}, f = 1.0 \text{ kHz}$
h _{fe}	Small Signal Current Transfer Ratio	60	300	-	
NF	Noise Figure		8	db	$f = 1.0 \text{ kHz}, R_G = 1.0 \text{ k}\Omega, I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$
Ih _{fe} I	Small Signal Current Transfer Ratio	2.0	8.0	-	V _{CE} = 20 V, I _C = 20 mA, f = 100 MHz
C _{obo}	Output Capacitance		8.0	pF	V _{CB} = 10 V, 100 kHz ≤ f ≤ 1.0 MHz
Switching	Characteristics				
ton	Turn-On Time		45	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = 15 mA
t _{off}	Turn-Off Time		300	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = I _{B2} = 15 mA

⁽²⁾ Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

⁽³⁾ Polarities given are for the NPN device. Reverse polarity on limits and conditions as applicable for the PNP side.

Surface Mount NPN General Purpose Transistor Type HCT2222A

Features

- Ceramic surface mount package
- Miniature package to minimize circuit board area
- Electrical performance similar to 2N2222A
- Hermetically sealed package
- Screened per MII-S-19500 TX or TXV equivalent levels on request

Description

The HCT2222A is a hermetically sealed ceramic surface-mount general purpose switching transistor, consisting of a 2N2222A silicon NPN transistor die. The HCT2222A electrical characteristics are similar to the MIL-S-19500/255 specification for the JAN2N2222A. The miniature four pin ceramic package is ideal for designs where board space and device weight are important design considerations.

High reliability processing per MIL-S-19500 TX or TXV equivalent levels on request.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Base Voltage. 75V Collector-Emitter Voltage 50V
Emitter-Base Voltage
Collector Current-Continuous 800mA
Operating Junction Temperature (T _J)65°C to +200°C
Storage Junction Temperature (T _{stg})65°C to +200°C
Power Dissipation @ T _A = 25°C
Power Dissipation @ $T_S^{(1)} = 25^{\circ}C$
Soldering Temperature (vapor phase reflow for 30 sec.)
Soldering Temperature (heated Collet for 5 sec.)
Notes:

- (1) Ts = Substrate temperature that the chip carrier is mounted on.
- (2) Derate linearly 5.7mW/°C above 25°C.

H SE

Type HCT2222A

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Off Chara	cteristics					
V _{(BR)CBO}	Collector-Base Breakdown Voltage	75			V	$I_C = 10.0 \mu\text{A}, I_E = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50			V	I _C = 10.0 mA, I _B = 0
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	6.0			٧	$I_E = 10.0 \mu\text{A}, I_C = 0$
Ісво	Collector-Base Cuttoff Current			10.0	nA	V _{CB} = 60 V, I _E = 0
				10.0	μА	V _{CB} = 60 V, I _E = 0, T _A = 150°C
IEBO	Emitter-Base Cutoff Current			10.0	nA	V _{EB} = 4.0 V, I _C = 0
ICES	Collector-Emitter Cutoff Current			1.0	μА	V _{CE} = 50 V
On Chara	cteristics					
hFE	Forward Current Transfer Ratio	50			-	$V_{CE} = 10.0 \text{ V}, I_{C} = 0.1 \text{ mA}$
		75		325	-	$V_{CE} = 10.0 \text{ V, } I_{C} = 1.0 \text{ mA}$
		100			-	V _{CE} = 10.0 V, I _C = 10.0 mA
		100		300	-	V _{CE} = 10.0 V, I _C = 150 mA ⁽³⁾
		30			-	V _{CE} = 10.0 V, I _C = 500 mA ⁽³⁾
		35			-	V _{CE} = 10.0 V, I _C = 10.0 mA, T _A = -55°C
VCE(SAT)	Collector-Emitter Saturation Voltage			0.30	V	I _C = 150 mA, I _B = 15 mA ⁽³⁾
				1.0	V	I _C = 500 mA, I _B = 50 mA ⁽³⁾
VBE(SAT)	Base-Emitter Saturation Voltage	0.60		1.20	V	I _C = 150 mA, I _B = 15 mA ⁽³⁾
				2.0	V	I _C = 500 mA, I _B = 50 mA ⁽³⁾
Small-Sig	nal Characteristics					
h _{fe}	Small-Signal Forward Current Transfer Ratio	50			-	V _{CE} = 10.0 V, I _C = 1.0 mA, f = 1.0 kHz
Ih _{fe} ľ	Small-Signal Forward Current Transfer Ratio	2.5			-	V _{CE} = 20 V, I _C = 20 mA, f = 100 MHz
Cobo	Open Circuit Output Capacitance			8.0	pF	$V_{CB} = 10.0 \text{ V}, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$
C _{ibo}	Input Capacitance (Output Open Capacitance)			33	pF	$V_{EB} = 0.5 \text{ V}, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$
Switching	Characteristics		,	,		P
ton	Turn-On Time			35	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = 15 mA
t _{off}	Turn-Off Time			300	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = I _{B2} = 15 m/

⁽³⁾ Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

Surface Mount NPN General Purpose Transistor Type HCT2222M

Feature

- Ceramic surface mount package
- Miniature package to minimize circuit board area
- Electrical performance similar to a JAN2N2222A
- Hermetically sealed package
- Screened per MIL-S-19500 TX or TXV equivalent levels on request
- Same footprint and pin-out as many SOT-23 package transistors

Description

The HCT2222M is a miniature hermetically sealed ceramic surface-mount general purpose switching transistor, consisting of a 2N2222A silicon NPN transistor die. The HCT2222M electrical characteristics are similar to the MIL-S-19500/255 specification for the JANTX2N2222A. The miniature three pin ceramic package is ideal for upgrading commercial grade circuits to military reliability levels where plastic SOT-23 devices have been used.

High reliability processing available per MIL-S-19500 TX or TXV equivalent levels on request.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Base Voltage 75V
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current-Continuous 800mA
Operating Junction Temperature(T _J)65°C to +200°C
Storage Junction Temperature (T _{stg})65°C to +200°C
Power Dissipation @ T _A = 25°C
Power Dissipation @ $T_S^{(1)} = 25^{\circ}C$
Soldering Temperature (vapor phase reflow for 30 sec.)
Soldering Temperature (heated collet for 5 sec.)
Notes

- (1) Ts = Substrate temperature that the chip carrier is mounted on.
 (2) Derate linearly 4.2mW/°C above 25°C. This rating is provided as an aid to designers. It is dependent upon mounting material and methods, and is not measureable as an outgoing

Type HCT2222M

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
Off Charac	teristics				
V _{(BR)CBO}	Collector-Base Breakdown Voltage	75		V	I _C = 10.0μA, I _E = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50		V	I _C = 10.0mA, I _B = 0
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	6.0		V	$I_E = 10.0 \mu A, I_C = 0$
Ісво	Collector-Base Cutoff Current		10.0	nA	V _{CB} = 60V, I _E = 0
			10.0	μА	$V_{CB} = 60V$, $I_E = 0$, $T_A = 150^{\circ}C$
IEBO	Emitter-Base Cutoff Current		10.0	nA	V _{EB} = 4.0V, I _C = 0
ICES	Collector-Emitter Cutoff Current		1.00	μА	V _{CE} = 50V
On Charac	teristics				
hFE	Forward-Current Transfer Ratio	50		-	V _{CE} = 10.0V, I _C = 0.1mA
		75	325	-	VCE = 10.0V, IC = 1.0mA
		100		-	V _{CE} = 10.0V, I _C = 10mA
		100	300	-	$V_{CE} = 10.0V, I_{C} = 150 \text{mA}^{(3)}$
		30		-	$V_{CE} = 10.0V, I_{C} = 500 \text{mA}^{(3)}$
		35		-	$V_{CE} = 10.0V, I_{C} = 10mA,$ $T_{A} = -55^{\circ}C$
VCE(SAT)	Collector-Emitter Saturation Voltage		0.30	V	I _C = 150mA, I _B = 15mA ⁽³⁾
			1.00	V	$I_C = 500$ mA, $I_B = 50$ mA ⁽³⁾
V _{BE(SAT)}	Base-Emitter Saturation Voltage	0.60	1.20	V	$I_C = 150 \text{mA}, I_B = 15 \text{mA}^{(3)}$
			2.00	V	$I_C = 500$ mA, $I_B = 50$ mA ⁽³⁾
Small-Sign	al Characteristics				
h _{fe}	Small-Signal Forward Current Transfer Ratio	50		-	V _{CE} = 10.0V, I _C = 1.0mA, f = 1.0kHz
lh _{fe} l	Small-Signal Forward Current Transfer Ratio	2.5		-	V _{CE} = 20V, I _C = 20mA, f = 100MHz
Cobo	Open Circuit Output Capacitance		8.0	pF	V _{CB} = 10.0V, 100kHz ≤ f≤ 1.0MHz
Cibo	Input Capacitance (Output Open)		33	pF	V _{EB} = 0.5V, 100kHz ≤ f≤ 1.0MHz
Switching (Characteristics				
ton	Turn-On Time		35	ns	V _{CC} = 30V, I _C = 150mA, I _{B1} = 15mA
toff	Turn-Off Time		300	ns	Vcc = 30V, lc = 150mA, l _{B1} = l _{B2} = 15mA

⁽³⁾ Pulse Test: Pulse width ≤ 300μs, Duty Cycle ≤ 2.0%

Surface Mount NPN/PNP Complementary Transistors Type HCT700

Features

- · Ceramic surface mount package
- Miniature package to minimize circuit board area
- Electrical performance similar to 2N2222A and 2N2907A
- · Hermetically sealed
- Screened per MIL-S-19500 TX or TXV (See JANTX2N4854U)

Description

The HCT700 is a hermetically sealed, ceramic surface-mount, complementary transistor pair. The HCT700 consists of an NPN transistor die and PNP transisitor die. The HCT700 electrical characteristics for the NPN side are similar to the MIL-S-19500/255 specification for JAN2N2222A and on the PNP side are similar to the MIL-S-10500/291 specification for the JAN2N2907A. The miniature six pin ceramic package is ideal for designs where board space and device weight are important design considerations.

Order HCT700TX or HCT700TXV for TX or TXV processing per MII-S-19500.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

NPN to PNP Isolation Voltage	00VDC
Collector-Base Voltage (NPN)	
Collector-Base Voltage (PNP)	. 60V
Collector-Emitter Voltage (NPN)	
Collector-Emitter Voltage (PNP)	
Emitter-Base Voltage (NPN)	
Emitter-Base Voltage (PNP)	
Collector Current-Continuous (NPN)	
Collector Current-Continuous (PNP)	
Operating Junction Temperature (T _J)65°C to -	
Storage Junction Temperature (T _{stg})65°C to -	+200°C
Power Dissipation @ T _A = 25°C	
Power Dissipation @ Ts ⁽¹⁾ = 25°C	2.0W ⁽²⁾
Soldering Temperature (vapor phase reflow for 30 sec.)	
Soldering Temperature (heated Collet for 5 sec.)	
Notes:	

- (1) T_S = Substrate temperature that the chip carrier is mounted on.
- (2) Derate linearly 11.4mW/°C above 25°C.

Type HCT700

Electrical Characteristics (T_A = 25°C unless otherwise noted)

CVMDC:	DADA	NPN		P	NP	LINUTO	
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
Off Charac	cteristics		1				
V _{(BR)CBO}	Collector-Base Breakdown Voltage	75		60		V	$I_C = 10.0 \mu\text{A}, I_E = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50		60		٧	Ic = 10.0 mA, I _B = 0
V _{(BR)EBO}	Emitter-Base Beakdown Voltage	6.0		5.0		٧	I _E = 10.0 μA, I _C = 0
Ісво	Collector-Base Cutoff Current		10.0			nA	V _{CB} = 60 V, I _E = 0
					10.0	nA	V _{CB} = 50 V, I _E = 0
			10.0			μА	V _{CB} = 60 V, I _E = 0, T _A = 150°C
					10.0	μA	V _{CB} = 50 V, I _E = 0, T _A = 150°C
IEBO	Emitter-Base Cutoff Current		10.0			nA	V _{EB} = 4.0 V, I _C = 0
					50.0	nA	V _{EB} = 3.5 V, I _C = 0
ICES	Collector-Emitter Cutoff Current		1.00			μА	V _{CE} = 50 V
On Charac	cteristics	L		L	L	L	
hFE	DC Current Transfer Ratio	50		75		-	V _{CE} = 10.0 V, I _C = 0.1 mA
		75	325	100	450	-	V _{CE} = 10.0 V, I _C = 1.0 mA
		100		100		-	V _{CE} = 10.0 V, I _C = 10.0 mA
		100	300	100	300	-	V _{CE} = 10.0 V, I _C = 150.0 mA ⁽³⁾
		30		50		-	V _{CE} = 10.0 V, I _C = 500.0 mA ⁽³⁾
		35				-	V _{CE} = 10.0 V, I _C = 10.0 mA, T _A = -55°C
				50		-	V _{CE} = 10.0 V, I _C = 1.0 mA, T _A = -55°C
V _{CE} (SAT)	Collector-Emitter Saturation Voltage		0.30		0.40	V	I _C = 150 mA, I _B = 15 mA ⁽³⁾
			1.00		1.60	V	I _C = 500 mA, I _B = 50 mA ⁽³⁾
V _{BE(SAT)}	Base-Emitter Saturation Voltage	0.60	1.20		1.30	٧	I _C = 150 mA, I _B = 15 mA ⁽³⁾
			2.00		2.60	٧	I _C = 500 mA, I _B = 50 mA ⁽³⁾
Small-Sig	nal Characteristics	1	L		L		
h _{fe}	Small-Signal Current Transfer Ratio	50		100		-	$V_{CE} = 10.0 \text{ V}, I_{C} = 1.0 \text{ mA}, f = 1.0 \text{ kHz}$
lh _{fe} l	Small-Signal Current Transfer Ratio	2.5				-	V _{CE} = 20 V, I _C = 20 mA, f = 100 MHz
				2.0		-	V _{CE} = 20 V, I _C = 50 mA, f = 100 MHz
Cobo	Output Capacitance		8.0		8.0	pF	V _{CE} = 10.0 V, 100 kHz ≤ f ≤ 1.0 MHz
Cibo	Input Capacitance		25			pF	V _{EB} = 2.0 V, 100 kHz ≤ f ≤ 1.0 MHz
					30	pF	V _{EB} = 0.5 V, 100 kHz ≤ f ≤ 1.0 MHz
Switching	Characteristics	,	***************************************				
ton	Turn-On Time		35		45	ns	$V_{CC} = 30 \text{ V}, I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}$
toff	Turn-Off Time		300		300	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = I _{B2} = 15 mA

⁽³⁾ Pulse Test: Pulse Width ≤ 300 ms, duty cycle ≤ 2.0%

Surface Mount Dual NPN Transistor Type HCT720

Features

- Surface mountable on ceramic or printed circuit board
- Miniature package to minimize circuit board area required
- Electrical performance similar to 2N2222A
- Hermetically sealed
- Screened per MIL-S-19500 TX or TXV equivalent levels on request

Description

The HCT720 is a hermetically sealed, ceramic surface-mount device, consisting of two 2N2222A silicon NPN transistor die. The HCT720 electrical characteristics for each transistor are similar to MIL-S-19500/255 specification for the 2N222A. The miniature six pin ceramic package is ideal for designs where board space and device weight are important design considerations.

TX and TXV screening, if requested, will be performed similar to MIL-S-19500/495 per 2N5794 conditions. Order HCT720TX or HCT720TXV.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Isolation Voltage 500VDC
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous 800mA
Operating Junction Temperature (T _J)65°C to +200°C
Storage Junction Temperature (T _{stg})65°C to +200°C
Power Dissipation @ $T_A = 25^{\circ}C$ (both sides driven equally) 0.65W
Power Dissipation @ $Ts^{(1)} = 25^{\circ}C$ (both sides driven equally) 1.25W ⁽²⁾
Soldering Temperature (vapor phase reflow for 30 sec.)
Soldering Temperature (heated collet for 5 sec.)
Notes

(1) Ts = Substrate temperature that the chip carrier is mounted on.

(2) Derate linearly 7.1mW/°C above 25°C. This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measureable as and outgoing test.

Type HCT720

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
Off Chara	cteristics				
V _(BR) CBO	Collector-Base Breakdown Voltage	75		V	Ic = 10.0μA, I _E = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50		V	I _C = 10.0mA, I _B = 0
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	6.0		V	I _E = 10.0μA, I _C = 0
Ісво	Collector-Base Cutoff Current		10.0	nA	V _{CB} = 60V, I _E = 0
			10.0	μΑ	V _{CB} = 60V, I _E = 0, T _A = 150°C
IEBO	Emitter-Base Cutoff Current		10.0	nA	V _{EB} = 4.0V, I _C = 0
ICES	Collector-Emitter Cutoff Current		1.00	μΑ	V _{CE} = 50V
On Chara	cteristics		-1		
hFE	Forward-Current Transfer Ratio	50			V _{CE} = 10.0V, I _C = 0.1mA
		75	325	_	V _{CE} = 10.0V, I _C = 1.0mA
		100		_	V _{CE} = 10.0V, I _C = 10.0mA
		100	300		V _{CE} = 10.0V, I _C = 150mA ⁽³⁾
		30		_	V _{CE} = 10.0V, I _C = 500mA ⁽³⁾
		35		_	V _{CE} = 10.0V, I _C = 10.0mA, T _A = -55°C
VCE(SAT)	Collector-Emitter Saturation Voltage		0.30	V	I _C = 150mA, I _B = 15mA ⁽³⁾
			1.00	V	I _C = 500mA, I _B = 50mA ⁽³⁾
V _{BE(SAT)}	Base-Emitter Saturation Voltage	0.6	1.20	٧	I _C = 150mA, I _B = 15mA ⁽³⁾
			2.00	٧	I _C = 500mA, I _B = 50mA ⁽³⁾
Small-Sig	nal Characteristics				
hfe	Forward Current Transfer Ratio	50			V _{CE} = 10.0V, I _C = 1.00mA, f = 1.0kHz
Ihfel	Forward Current Transfer Ratio	2.5			V _{CE} = 20V, I _C = 20mA, f = 100MHz
Cobo	Open Circuit Output Capacitance		8.0	pF	V _{CB} = 10.0V, 100kHz ≤ f≤ 1.0MHz
Cibo	Input Capacitance (Output Open)		33	pF	V _{EB} = 0.5V, 100kHz ≤ f≤ 1.0MHz
Switching	Characteristics				
ton	Turn-On Time		35	ns	V _{CC} = 30V, I _C = 150mA, I _{B1} = 15mA
t _{off}	Turn-Off Time		300	ns	V _{CC} = 30V, I _C = 150mA, I _{B1} = I _{B2} = 15mA

(3) Pulse Test: Pulse Width $\leq 300 \mu s$. Duty Cycle $\leq 2.0\%$

Surface Mount Dual PNP Transistor Type HCT740

Features

- Surface mountable on ceramic or printed circuit board
- Miniature package to minimize circuit board area required
- Electrical performance similar to 2N2907A
- Hermetically sealed
- Screened per MIL-S-19500 TX or TXV equivalent levels on request

Description

The HCT740 is a hermetically sealed, ceramic surface-mount device, consisting of two 2N2907A silicon PNP transistor die. The HCT740 electrical characteristics are similar to the MIL-S-19500/291 specification for the 2N2907A. The miniature six pin ceramic package is ideal for designs where board space and device weight are important design considerations.

TX and TXV screening, if requested, will be performed similar to MIL-S-19500/496 per 2N5796 conditions. Order HCT740TX or HCT740TXV.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Isolation Voltage 500VDC
Collector-Base Voltage 60V
Collector-Emitter Voltage 60V
Emitter-Base Voltage 5.0V
Collector Current - Continuous 600mA
Operating Junction Temperature (T _J)65°C to +200°C
Storage Junction Temperature (T _{stg})65°C to +200°C
Power Dissipation @ $T_A = 25^{\circ}C$ (Both sides driven equally) 0.65W
Power Dissipation @ $T_S^{(1)} = 25^{\circ}C$ (Both sides driven equally) 1.25W ⁽²⁾
Soldering Temperature (vapor phase reflow for 30 sec.)
Soldering Temperature (heated collet for 5 sec.)
Notes

- (1) Ts = Substrate temperature that the chip carrier is mounted on.
- (2) Derate linearly 7.1mW/°C above 25°C. This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measureable as an outgoing test.

Type HCT740

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
Off Charac	cteristics				
V _(BR) CBO	Collector-Base Breakdown Voltage	60		٧	I _C = 10.0μA, I _E = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	60		٧	I _C = 10.0mA, I _B = 0
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	5.0		٧	$I_E = 10.0 \mu A, I_C = 0$
Ісво	Collector-Base Cutoff Current		10.0	nA	V _{CB} = 50V, I _E = 0
			10.0	μΑ	V _{CB} = 50V, I _E = 0, T _A = 150°C
IEBO	Emitter-Base Cutoff Current		50.0	nA	V _{EB} = 3.5V, I _C = 0
On Charac	cteristics				
h _{FE}	Forward-Current Transfer Ratio	75			V _{CE} = 10.0V, I _C = 0.1mA
		100	450	_	V _{CE} = 10.0V, I _C = 1.0mA
		100			V _{CE} = 10.0V, I _C = 10.0mA
		100	300	_	V _{CE} = 10.0V, I _C = 150mA ⁽³⁾
		50			V _{CE} = 10.0V, I _C = 500mA ⁽³⁾
		50		_	V _{CE} = 10.0V, I _C = 1.00mA, T _A = -55°C
VCE(SAT)	Collector-Emitter Saturation Voltage		0.40	V	I _C = 150mA, I _B = 15mA ⁽³⁾
			1.60	V	I _C = 500mA, I _B = 50mA ⁽³⁾
VBE(SAT)	Base-Emitter Saturation Voltage		1.30	V	I _C = 150mA, I _B = 15mA ⁽³⁾
			2.60	٧	I _C = 500mA, I _B = 50mA ⁽³⁾
Small-Sig	nal Characteristics				
hfe	Forward Current Transfer Ratio	100		_	V _{CE} = 10.0V, I _C = 1.00mA, f = 1.0kHz
Ihfel	Forward Current Transfer Ratio	2.0		_	V _{CE} = 20V, I _C = 50mA, f = 100MHz
C _{obo}	Open Circuit Output Capacitance		8.0	pF	V _{CB} = 10.0V, 100kHz ≤ f≤ 1.0MHz
Cibo	Input Capacitance (Output Open)		30	pF	V _{EB} = 2.0V, 100kHz ≤ f≤ 1.0MHz
Switching	Characteristics				
ton	Turn-On Time		45	ns	V _{CC} = 30V, I _C = 150mA, I _{B1} = 15mA
t _{off}	Turn-Off Time		300	ns	V _{CC} = 30V, I _C = 150mA, I _{B1} = I _{B2} = 15mA

(3) Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 2.0%

Surface Mount Quad NPN Transistor Type HCT780

Feature

- Four independent transistors in a 0.35 inch, square ceramic package
- Surface mountable on ceramic or printed circuit board
- Electrical performance similar to a 2N2222A
- Hermetically sealed package
- Screened per MIL-S-19500 TX or TXV equivalent levels on request

Description

The HCT780 is a 20 pad, hermetically sealed, ceramic surface-mount transistor array, consisting of four 2N2222A silicon NPN transistor die. The HCT780 electrical characteristics are similar to the MIL-S-19500/255 specification for the 2N2222A.

TX and TXV screening, if requested, will be performed similar to MIL-S-19500/559 per 2N6989 conditions. Order HCT780TX or HCT780TXV.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage 6.0V
Collector Current-Continuous 800mA
Isolation Voltage 500V _{dc}
Operating Junction Temperature(T _J)65°C to +200°C
Storage Junction Temperature (T _{stg})65°C to +200°C
Power Dissipation @ T _A = 25°C (four devices driven equally) 1.0W
Power Dissipation @ $T_S^{(1)} = 25^{\circ}C$ (four devices driven equally) 2.0W ⁽²⁾
Soldering Temperature (vapor phase reflow for 30 sec.) 215°C
Soldering Temperature (heated collet for 5 sec.)
Notes

(1) Ts = Substrate temperature that the chip carrier is mounted on.
(2) Derate linearly 11.4mW/°C above 25°C. This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measureable as an outgoing test.

(214) 323-2200

Type HCT780

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
Off Charac	teristics				
V _{(BR)CBO}	Collector-Base Breakdown Voltage	75		V	I _C = 10.0μA, I _E = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50		٧	I _C = 10.0mA, I _B = 0
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	6.0		V	I _E = 10.0μA, I _C = 0
Ісво	Collector-Base Cutoff Current		10.0	nA	V _{CB} = 60V, I _E = 0
			10.0	μА	V _{CB} = 60V, I _E = 0, T _A = 150°C
I _{EBO}	Emitter-Base Cutoff Current		10.0	nA	V _{EB} = 4.0V, I _C = 0
ICES	Collector-Emitter Cutoff Current		1.00	μА	V _{CE} = 50V
On Charac	teristics				
h _{FE}	Forward-Current Transfer Ratio	50		_	V _{CE} = 10.0V, I _C = 0.1mA
		75	325	_	V _{CE} = 10.0V, I _C = 1.0mA
		100		_	V _{CE} = 10.0V, I _C = 10mA
		100	300	-	V _{CE} = 10.0V, I _C = 150mA ⁽³⁾
		30		_	V _{CE} = 10.0V, I _C = 500mA ⁽³⁾
		35		_	$V_{CE} = 10.0V$, $I_{C} = 10$ mA, $T_{A} = -55$ °C
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.30	V	I _C = 150mA, I _B = 15mA ⁽³⁾
			1.00	V	I _C = 500mA, I _B = 50mA ⁽³⁾
V _{BE(SAT)}	Base-Emitter Saturation Voltage	0.60	1.20	V	I _C = 150mA, I _B = 15mA ⁽³⁾
			2.00	V	I _C = 500mA, I _B = 50mA ⁽³⁾
Small-Sign	al Characteristics				
hfe	Forward Current Transfer Ratio	50			V _{CE} = 10.0V, I _C = 1.0mA, f = 1.0kHz
Ihfel	Forward Current Transfer Ratio	2.5		_	V _{CE} = 20V, I _C = 20mA, f = 100MHz
Cobo	Open Circuit Output Capacitance		8.0	pF	V _{CB} = 10.0V, 100kHz ≤ f≤ 1.0MHz
Cibo	Input Capacitance (Output Open)		25	pF	V _{EB} = 0.5V, 100kHz ≤ f≤ 1.0MHz
Switching (Characteristics				
ton	Turn-On Time		35	ns	V _{CC} = 30V, I _C = 150mA, I _{B1} = 15mA
t _{off}	Turn-Off Time		300	ns	V _{CC} = 30V, I _C = 150mA, I _{B1} = I _{B2} = 15mA

(3) Pulse Test: Pulse width ≤ 300μs, Duty Cycle ≤ 2.0%

Surface Mount Quad PNP Transistor Type HCT790

Feature

- Four independent transistors in a 0.35 inch, square ceramic package
- Surface mountable on ceramic or printed circuit board
- Electrical performance similar to a 2N2907A
- · Hermetically sealed package
- Screened per MIL-S-19500 TX or TXV equivalent levels on request

Description

The HCT790 is a 20 pad, hermetically sealed, ceramic surface-mount transistor array, consisting of a 2N2907A silicon PNP transistor die. The HCT790 electrical characteristics are similar to the MIL-S-19500/291 specification for the 2N2907A.

TX and TXV screening, if requested, will be performed similar to MIL-S-19500/558 per 2N6987 conditions. Order HCT790TX or HCT790TXV.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Collector-Base Voltage 60V
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current-Continuous
Isolation Voltage 500V _{DC}
Operating Junction Temperature(T _J)65°C to +200°C
Storage Junction Temperature (T _{stg})65°C to +200°C
Power Dissipation @ T _A = 25°C (four devices driven equally) 1.0W
Power Dissipation @ $T_S^{(1)} = 25^{\circ}C$ (four devices driven equally) 2.0W ⁽²⁾
Soldering Temperature (vapor phase reflow for 30 sec.) 215°C
Soldering Temperature (heated collet for 5 sec.)
Notes

- (1) T_S = Substrate temperature that the chip carrier is mounted on.
- (2) Derate linearly 11.4mW/°C above 25°C. This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measureable as an outgoing test.

Type HCT790

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
Off Charae	cteristics		A		
V _{(BR)CBO}	Collector-Base Breakdown Voltage	60		V	$I_C = 10.0 \mu A$, $I_E = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	60		V	I _C = 10.0mA, I _B = 0
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	5.0		V	I _E = 10.0μA, I _C = 0
Ісво	Collector-Base Cutoff Current		10.0	nA	V _{CB} = 50V, I _E = 0
			10.0	μΑ	$V_{CB} = 50V$, $I_E = 0$, $T_A = 150^{\circ}C$
I _{EBO}	Emitter-Base Cutoff Current		50	nA	V _{EB} = 3.5V, I _C = 0
On Charac	cteristics				
hFE	Forward-Current Transfer Ratio	75			V _{CE} = 10.0V, I _C = 0.1mA
		100	450	_	V _{CE} = 10.0V, I _C = 1.0mA
		100			V _{CE} = 10.0V, I _C = 10.0mA
		100	300		V _{CE} = 10.0V, I _C = 150mA ⁽³⁾
		50			V _{CE} = 10.0V, I _C = 500mA ⁽³⁾
		50			$V_{CE} = 10.0V, I_{C} = 1.0mA, T_{A} = -55^{\circ}C$
VCE(SAT)	Collector-Emitter Saturation Voltage		0.40	V	I _C = 150mA, I _B = 15mA ⁽³⁾
			1.60	V	IC = 500mA, IB = 50mA ⁽³⁾
VBE(SAT)	Base-Emitter Saturation Voltage		1.30	V	IC = 150mA, IB = 15mA ⁽³⁾
			2.60	V	IC = 500mA, IB = 50mA ⁽³⁾
Small-Sig	nal Characteristics				
hfe	Forward Current Transfer Ratio	100			V _{CE} = 10.0V, I _C = 1.0mA, f = 1.0kHz
Ihfel	Forward Current Transfer Ratio	2.0			V _{CE} = 20V, I _C = 50mA, f = 100MHz
Cobo	Open Circuit Output Capacitance		8.0	pF	V _{CB} = 10.0V, 100kHz ≤ f≤ 1.0MHz
Cibo	Input Capacitance (Output Open)		30	pF	V _{EB} = 2.0V, 100kHz ≤ f≤ 1.0MHz
Switching	Characteristics				
ton	Turn-On Time		45	ns	V _{CC} = 30V, I _C = 150mA, I _{B1} = 15mA
t _{off}	Turn-Off Time		300	ns	V _{CC} = 30V, I _C = 150mA, I _{B1} = I _{B2} = 15mA

(3) Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%

Dual Enhancement Mode MOSFET Type HCT801

Features

- · 6 pad surface mount package
- V_{DS} = 90V
- I_{D(on)} N-Channel = 1.9A P-Channel = 0.5A
- Two devices selected for V_{DS}, switching time, and capacitance similarity
- Full TX processing available
- · Gold plated contacts

Description

The HCT801 offers an N-Channel and P-Channel MOS transistor packaged in a hermetic ceramic surface mount package. The two devices are similar in performance to the popular VN0109 N-Channel device and VP0109 P-Channel device. These two transistors are particularly well matched for VDs, switch time, and capacitance. For closer matching of ID(on), RDS(on) and Gfs, see the HCT802 data sheet.

Order HCT801TX for processing per MIL-S-19500.

Absolute Maximum Ratings

Drain Course Voltage
Drain-Source Voltage
Gate-Source Voltage±20V
Drain Current (Limited by Tj max) N-Channel
P-Channel
Operating and Storage Temperature55 to 150°C
Power Dissipation
T _A =25°C(Both devices equally driven)
Ts=25°C (Both devices equally driven) 1.25W Total ⁽¹⁾
(Ts=Substrate temperature that the package is soldered to)
Notes

(1) This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measureable as an outgoing test.

Carrollton, Texas 75006

Type HCT801

Electrical Characteristics (T_A = 25°C unless specified otherwise)

Symbol	Parameters	Device	Min	Max	Units	Test Condition
		B=BOTH				
Bydss	Drain-Source Breakdown	В	90		V	$I_D = 1 \text{mA*}, V_{GS} = 0$
VTH	Gate Threshold Voltage	N	0.75	2.5	V	$V_{GS} = V_{DS}$, $I_D = 1mA$
		P	-1.4	-3.7	V	$I_D = -1mA$
IGSS	Gate-body Leakage	В		±100	nA	$V_{GS} = \pm 20V, V_{DS} = 0$
IDSS	Zero Gate Voltage Drain Current	В		10*	μΑ	$V_{GS} = 0V, V_{DS} = 90V^*$
$I_{D(on)}$	ON-state Drain Current	N	0.5		Α	$V_{GS} = 5V^*, V_{DS} = 25V^*$
		Р	-0.15		Α	
		N	1.9		Α	V _{GS} = 10V*, V _{DS} = 25V*
		Р	-0.5		Α	
R _{DS(on)}	Drain-Source On-Resistance	N		5.2	Ω	$V_{GS} = 5V, I_D = 250mA$
		N		3.2	Ω	$V_{GS} = 10V, I_D = 1A$
		Р		15	Ω	$V_{GS} = -5V$, $I_{D} = -0.1A$
		Р		8	Ω	$V_{GS} = -10V, I_D = -0.5A$
	High Temperature Drain-Source	N		0.9	Ω	$V_{GS} = 10V, I_D = 1A, T_A = 125^{\circ}C$
	On Resistance	Р		14	Ω	$V_{GS} = -10V$, $I_D = -0.5A$, $T_A = 125^{\circ}C$
Gfs	Forward Transconductance	N	250		mmho	$V_{DS} = 25V^*, I_D = 0.5A^*$
		Р	150		mmho	
Ciss	Input Capacitance	В		70	pf	$V_{GS} = 0V, V_{DS} = 25V^*, f = 1MHz$
Coss	Common Source Output	В		35	pf	
	Capacitance					
CRSS	Reverse Transfer Capacitance	В		10	pf	
t _(on)	Turn-on-time	В		16	ns	$V_{DD} = 25V^*$, $I_D = 1A^*$, $R_S = R_L = 50\Omega$
t(off)	Turn-off-time	В		17	ns	

^{*} Reverse polarity for the P-Channel device.

Dual Enhancement Mode MOSFET Type HCT802

Features

- 6 pad surface mount package
- V_{DS} = 90V
- R_{DS(on)} <5Ω
- I_{D(on)} N-Channel = 1.5A
 P-Channel = 1.1A
- Two devices selected for V_{DS}, I_{D(on)} and R_{DS(on)} similarity
- Full TX Processing Available
- · Gold plated contacts

Description

HCT802 offers an N-Channel and P-Channel MOS transistor in a hermetic ceramic surface mount package. The devices used are similar to industry standards VN0109 N-Channel device and VP1008 P-Channel device. These two enhancement mode MOSFETS are particularly well matched for Vps, Ips(on), Rps(on) and Gfs. For closer matching of switching speed and capacitance see the HCT801 data sheet.

Order HCT802TX for processing per MII-S-19500.

Absolute Maximum Ratings

Drain-Source Voltage
Gate-Source Voltage ±20V
Drain Current (Limited by Tj max) N-Channel
P-Channel
Operating and Storage Temperature55 to 150°C
Power Dissipation
T _A = 25°C (Both devices equally driven) 0.5W Total
T _S = 25°C (Both devices equally driven) 1.5W Total ⁽¹⁾
(Ts = Substrate that the package is soldered to)
Notes

(1) This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measureable as an outgoing test.

Type HCT802

Electrical Characteristics (T_A = 25°C unless specified otherwise)

Symbol	Parameters	Device B=Both	Min	Max	Units	Test Conditions
BV _{DSS}	Drain-Source Breakdown	B	90*		v	I _D = 1mA*, V _{GS} = 0
V _{TH}	Gate Threshold Voltage	N	0.75	2.5	V	V _{GS} = V _{DS} , I _D = 1mA
		Р	-2.0	-4.5	٧	I _D = -1mA
lass	Gate-Body Leakage	В		±100	nA	$V_{GS} = \pm 20V, V_{DS} = 0$
loss	Zero Gate Voltage Drain Current	В		10*	μΑ	V _{DS} = 90V*, V _{GS} = 0V
		В		500*	μΑ	$Tj = 150^{\circ}C$
I _{D(on)}	On-State Drain Current	N	1.5		Α	V _{DS} = 25V, V _{GS} = 10V
<u></u>		Р	-1.1		Α	V _{DS} = -15V, V _{GS} = -10V
RDS(on)	Drain-Source on Resistance	В		5	Ω	$V_{GS} = 10V^*$, $I_D = 1A^*$
Gfs	Forward Transconductance	N	250		mmho	$V_{DS} = 25V, I_{D} = 0.5A$
		Р	200		mmho	$V_{DS} = -10V, I_{D} = -0.5A$
Ciss	Input Capacitance	N		70	pf	$V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$
		Р		150	pf	$V_{DS} = -25V$, $V_{GS} = 0V$, $f = 1MHz$
Coss	Common Source Output	N		35	pf	$V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$
	Capacitance	Р		60	pf	V _{DS} = -25V, V _{GS} = 0V, f = 1MHz
CRSS	Reverse Transfer Capacitance	N		10	pf	V _{DS} = 25V, V _{GS} = 0A, f = 1MHz
		Р		25	pf	$V_{DS} = -25V$, $V_{GS} = 0A$, $f = 1MHz$
t(on)	Turn-on-time	N		15	ns	$V_{DD} = 25V$, $I_D = 1A$, $R_L = 50\Omega$
		Р		50	ns	$V_{DD} = -25V$, $I_D = -0.5A$, $R_L = 50\Omega$
t(off)	Turn-off-time	N		17	ns	$V_{DD} = 25V$, $I_D = 1A$, $R_L = 50\Omega$
		Р		50	ns	$V_{DD} = -25V$, $I_D = -0.5A$, $R_L = 50\Omega$

^{*} Reverse polarity for P-Channel device

N-Channel Enhancement Mode MOS Transistor Type HCT7000M

Features

- 200mA lp
- Ultra small surface mount package
- RDS(ON) < 5Ω
- Pin-out compatible with most SOT23 MOSFETS

Description

The HCT7000M is a high performance enhancement mode N-channel MOS transistor chip packaged in the ultra small 3 pin ceramic LCC package. Electrical characteristics are similar to those of the JEDEC 2N7000. The pin-out and footprint matches that of most enhancement mode MOS transistors built in SOT23 plastic packages.

The HCT7000M is available processed to TX and TXV levels per MIL-S-19500. Order HCT7000MTX or HCT7000MTXV.

Absolute Maximum Ratings

Drain-Source Voltage	60V
Gate-Source Voltage	±40V
Drain Current	
Power Dissipation ($T_A = 25^{\circ}C$). 30 Power Dissipation ($T_S^{(1)} = 25^{\circ}C$). 600	00mW
Power Dissipation ($T_S^{(1)} = 25^{\circ}C$)	mW ⁽²⁾
Operating and Storage Temperature55°C to +	150°C
Thermal Resistance Rouc. 100	
Thermal Resistance Røja 58	3°C/W

Notes:

- (1) T_S = Substrate temperature that the chip carrier is mounted on.
- (2) This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measurable as an outgoing test.

Types HCT7000M

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITION
V _{DSS}	Drain-Source Voltage	60		٧	$V_{GS} = 0 \text{ V, } I_D = 10 \mu\text{A}$
V _{GS(TH)}	Gate Threshold Voltage	.8	3.0	٧	$V_{DS} = V_{GS}$, $I_D = 1$ mA
Igss	Gate Leakage		±10	nA	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$
IDSS	Zero Gate Voltage Drain Current		1	μΑ	V _{GS} = 0 V, V _{DS} = 48 V
ID(ON)	On-State Drain Current	75		mA	V _{DS} = 10 V, V _{GS} = 4.5 V
RDS(ON)	Drain-Source on-Resistance		5	Ω	V _{GS} = 10 V, I _D = .5 A
V _{DS(ON)}	Drain-Source on-Voltage		2.5	٧	V _{GS} = 10 V, I _D = .5 A
Gfs	Forward Transconductance	100		mS	V _{DS} = 10 V, I _D = .2 A
C _{iss}	Input Capacitance		60	pF	V _{DS} = 25 V, V _{GS} = 0 V, f = 1MHz
Coss	Output Capacitance		25	pF	
Crss	Reverse Transfer Capacitance		5	pF	
t _(on)	Turn-on Time		10	ns	V_{DD} = 15 V, I_D = .5 A, V_{gen} = 10 V, R_g = 25 Ω
t _(off)	Turn-off Time		10	ns	

GLOSSARY

Term Acceptance Angle	Symbol +	Description The maximum angle which a ray may traverse and still be detected by a photosensor, usually measured from the optical axis.
Acceptance Cone	_	A cone with an included angle such that any ray within the cone will be detected by the sensor and any ray outside will not.
Ambient Temperature	TA	Temperature of air or liquid surrounding any electrical part or device.
Angstrom	Å	10 ⁻¹⁰ meter; a unit of length sometimes used to describe wavelength of optical radiation.
Anode	Α	The positive terminal of a diode, i.e., the terminal which must have a positive voltage relative to the other terminal (cathode) before the device will conduct.
Aperture		A hole or window in an opaque material, used to control the transmission of light.
Aperture Angle	θ	For radiation sources, the angle between the half power points. See Beam Angle.
Axis of Measurement		The direction from the source of radiant energy, relative to the optical axis, in which the measurement of radiometric and/or spectroradiometric characteristics is preferred.
Base	В	The control terminal of a transistor. In a phototransistor, control is provided by light or infrared energy which falls on the transistor and generates a current in the base.
Beam Angle	θ	A measure of the angular displacement of emitted energy, usually measured as the included angle from one half power point to the other.
Beam Half Angle	-	A measure of the angular displacement of emitted energy, generally measured from the optical axis to the half power point. See Emission Angle.
Blackbody	-	Ideally, a body that would absorb all and reflect none of the radiant energy falling upon it; its reflectivity would be zero and its absorbency (and consequently its emissivity) would be 100%. In practice, a radiator of uniform temperature whose radiant emittance in all parts of the spectrum is the maximum obtainable from any temperature radiation at the same temperature, or a radiator whose spectral radiant emittance conforms with Planck's law of radiation.
Buffer Amp Linearity, Low Voltage	V_{LL}	Output voltage from the buffer of the ABC sensor with a specified input voltage applied to the buffer.
Cathode	K	The negative terminal of a diode, i.e., the terminal which must have a negative voltage relative to the other terminal (anode) before the device will conduct.
Collector	C	The positive current carrying terminal of an NPN transistor.
Collector-Base Breakdown Voltage	V _{(BR)CBO}	The reverse bias voltage at which the collector-base junction of a transistor will conduct a specified (non-destructive) current much higher than the normal leakage currents that occur at lower voltages. In an NPN transistor, it is measured with the collector positive, the base negative, and the emitter open.
Collector Current	Ic	The amount of current flowing into the collector terminal of a transistor.
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	The voltage at which a transistor, biased in the normal direction with no optical or electrical input to the base, will conduct a specified (non-destructive) current much higher than the normal leakage currents which occur at lower voltages.
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	The collector-emitter voltage of a transistor which is turned "on" by an optical or electrical input to the base, measured under specified conditions of input level and output current load.
Color Temperature	_	The temperature of a blackbody having the same visible color as that of a given non-blackbody radiator.

Term Common Emitter	Symbol —	Description A circuit configuration in which the emitter terminal is common to both input and output
		current loops; also called grounded emitter.
Commutating dV/dt		A changing voltage. In a triac the ability to block this rapidly changing voltage.
Conversion Efficiency, Photovoltaic Diode	_	The ratio of maximum available power output resulting from photovoltaic operation to total incident radiant flux.
Critical Angle	$ heta_{ t C}$	The maximum angle of incidence for which light will be transmitted from one medium to another. Light approaching at a greater angle of incidence will be reflected.
Current Transfer Ratio	CTR	In an optically coupled isolator, the ratio of output (transistor) current to input (LED) current under specified conditions.
Dark Condition	-	The condition attained when the electrical parameter under consideration approaches a value which cannot be altered by further irradiation shielding.
Dark Current	lD	The current that flows through a photodetector when there is no optical input; usually used in reference to photodiodes.
DC Current Gain	H _{FE}	The ratio of collector current to base current in a transistor biased in the common emitter configuration.
DC or AC Input-to-Output Current; Isolation Voltage	110	The current between all input terminals shorted together and all output terminals shorted together at a specified voltage.
DC or AC Input-to-Output Voltage; Isolation Voltage	v_{10}	The voltage applied between all input terminals shorted together and all output terminals shorted together.
Delay Time	t _d	The time elapsed between a step increase in the input and a change in the output equal to 10% of its maximum change.
Detector Noise Current	In	The broadband output noise current.
Diode	_	A two terminal device (usually semiconductor) which freely conducts current in one direction and blocks it in the other. $ A(+) = \begin{pmatrix} A(+) & A(+) \\ A(-) & A(-) \end{pmatrix} $
Duty Cycle	dc	In a signal composed of regularly recurring pulses, the product of the pulse width and the repetition frequency multiplied by 100 to give a percentage.
Duty Factor	-	In a signal composed of regularly recurring pulses, the product of the pulse width and the repetition frequency. Same as duty cycle except that it is expressed as a ratio rather than a percentage.
Emission Angle	-	For radiation sources, the angle with respect to the optical axis at which the radiant power is half the maximum.
Emitter	E	The negative current carrying terminal of an NPN transistor.
Emitter (Radiometric)	_	In radiometrics, a source of radiation.
Emitter-Collector Breakdown Voltage	V _{(BR)ECO}	The voltage at which a transistor, biased opposite its normal direction with no optical or electrical input to the base, will conduct a specified (non-destructive) current much higher than the normal leakage currents which occur at lower voltages.
Emitter Current	lE	The value of current flowing in the emitter terminal of a transistor.
Fall Time	tf	The time that elapses while a pulse waveform decreases from 90% to 10% of its maximum value.

Term Fiber Optics	Symbol —	Description Generally, the technology of using transparent glass or plastic fibers which carry light. Signals can be sent over large distances at high speed by coupling optoelectronic devices via fiber optics.		
Flux Density, Luminous or Radiant Intensity	-	The quotient of (1) the respective luminous or radiant flux at a surface divided by (2) the area of the surface.		
Forward Bias Voltage	V _F	An external voltage applied in the conducting direction of a PN junction. The positive terminal is connected to the P-type region, and the negative terminal to the N-type region.		
Forward Current	ÎF	The current which flows across a semiconductor junction when a forward-bias voltage is applied.		
Forward Voltage	V_{F}	The voltage across a diode when it is forward biased at a specified current.		
Frequency	f	The number of recurrences of a periodic phenomenon in a unit of time. Usually expressed in hertz (Hz), which is the number of recurrences per second.		
Gallium Aluminum Arsenide	GaAlAs	A crystalline compound used to make IREDs. Note: the addition of aluminum to the GaAs roughly doubles the power output of the device at the same input current.		
Gallium Arsenide	GaAs	A crystalline compound used to make IREDs.		
Half-Density Beam Angle	θ	The full-cone angle within which the radiant intensity is not less than half of the maximum intensity. See also Beam Angle.		
Half Power Point	НР	For radiation sources, the point in the radiation pattern at which the radiant intensity is half the maximum.		
High Level Output Voltage	v_{0H}	The voltage on the output terminal of a logic circuit with input level and output load applied that, according to the product specification, will establish a high level at the output.		
High Level Supply Current	Іссн	In a logic circuit, the supply current required to operate the circuit when input conditions are such that the output is in the high logic state.		
Holding Current	Ін	In a triac, the minimum current through the main terminals which will maintain the device in the on-state in the absence of an input to the gate.		
Illuminance (Illumination); Irradiance	E	The respective luminous or radiant flux density incidence on a surface; quotient of the flux divided by the area of illuminated or irradiated surface.		
Infrared	IR	Optical radiation that is characterized by wavelength longer than normally pereceived by the eye, but shorter than radio waves. Optek emitters radiate in the infrared range.		
Infrared Emitting Diode	IRED	A diode which emits infrared radiation when forward biased.		
Input-to-Output Capacitance	c_{10}	The capacitance between the output of the photosensitive element and the input of the photoemitter element, called coupling capacitance.		
Input-to-Output Resistance	R _{IO}	The resistance between the input and output of an optoisolator when the input leads are shorted together and the output leads are shorted together.		
Interrupter Assembly	-	Same as Transmissive Assembly.		
Irradiance	E _e	The radiant flux density incident on a surface; the quotient of the flux divided by the area of the irradiated surface. Units: watts/square meter, milliwatts/square cm.		
Isolation Leakage Current	liso	The current produced in an optoisolator when the input leads are shorted together, the output leads are shorted together, and a specified voltage is applied between the input and output.		

Term Isolation Voltage	Symbol V _{ISO}	Description The input-to-output voltage withstanding capability of an optically coupled isolator.	
Junction Temperature	Тj	The temperature at the PN junction within a semiconductor device.	
Light	_	Optical radiation in the range of wavelengths which can be perceived by the human eye.	
Light Current	lι	Current flow through a photosensitive device when exposed to radiant energy.	
Light-Emitting Diode (LED)	-	A device capable of emitting luminous energy resulting from the recombination of electrons and holes $ \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(1$	
Low Level Output Voltage	v_{0L}	The voltage on the output terminal of a logic circuit with input level and output loading applied such that, according to the product specification, a low level at the output will be established.	
Low Level Supply Current	ICCL	In a logic circuit, the supply current required to operate the circuit when the input conditions are such that the output is in the low logic state.	
Lower Ramp Threshold Voltage	V _{RL}	The lower threshold voltage of the RC pin on the ABC sensor. The circuit discharges a capacitor connected to this pin until the voltage on the capacitor reaches the lower threshold voltage.	
Luminous Energy	Q , (Q_V)	Energy traveling in the form of visible radiation.	
Luminous Flux, Radiant Flux	-	The respective time rate of flow of luminous or radiant energy.	
Maximum Power Dissipation	P _{D(MAX)}	Maximum power that a device can safely dissipate under specified conditions which include ambient temperature, heat sinking, and air circulation.	
Micron	_	10 ⁻⁶ meter.	
Nanometer	nm	10^{-9} meter; equal to 10 angstroms or 10^{-3} micron.	
Noise Equivalent Bandwidth	Bn	The equivalent bandwidth of a flat (or white) noise spectrum with sharp cutoff and the maximum value that contains the same noise power as the actual broadband output noise power of the device or current.	
Noise Equivalent Power	NEP	The radiant flux at a specific wavelength incident on a detector which gives a signal-to-nois ratio of unity. Unit: watts.	
Off-State Collector Current	ICEO	The collector current in a transistor with no optical or electrical input to the base.	
Off Time	t _{off}	Storage time plus fall time.	
On-State Collector Current	(CON)	The output (collector) current of a transistor when there is a specified optical or electrical input to the base.	
On Time	t _{on}	Delay time plus rise time.	
Operating Temperature	T ₀	The temperature or range of temperatures over which a device is expected to operate within specified performance limits.	
Optical Axis	_	A line about which the radiant energy pattern is centered; usually perpendicular to the active area.	
Optical Radiation	_	Electromagnetic radiation in the range of wavelengths from 10 nanometers (extreme ultraviolet) to 1 millimeter (extreme infrared).	
Optically Coupled Isolator	_	A device that is designed for transferring electrical signals by utilizing optical energy to provide coupling, with electrical isolation between input and output. Optically coupled isolators usually consist of an IRED coupled to one of a variety of sensor types, shielded from ambient light.	

Term	Symbol	Description		
Optically Coupled Triac Driver	·-	An optically coupled isolator whose output is designed to control the gate of a power triac.		
Optocoupler	_	See Optically Coupled Isolator.		
Optoelectronic Device	_	A device which responds to, emits, or modifies electromagnetic radiation in the visible, infrared, and/or ultraviolet spectral regions, or a device that utilizes such radiation for its internal operation.		
Optoisolator	-	See Optically Coupled Isolator.		
Peak On-State Surge Current	I _{TM} (SURGE)	An on-state current of short duration and specified waveshape which represents the maximum current surge capacity of a triac.		
Peak Wavelength	λр	The wavelength at which the power output of an emitter is maximum.		
Photoconductive Diode	_	A photodiode that is intended to be used as a photoconductive transducer.		
Photoconductive Transducer	-	A device that is intended to change its conductance as a function of incident light or radiation.		
Photocoupler	_	See Optically Coupled Isolator.		
Photocurrent	_	The difference between light current and dark current in a photodetector.		
Photodarlington	-	A photosensor consisting of two transistors on a single chip, configured such that the current from the first (photosensitive) transistor is amplified by the gain of the second transistor. Note: photodarlingtons have very high current output compared to phototransistors but speed and linearity are relatively poor.		
Photodarlington Coupler	-	An optocoupler in which the photosensitive element is a darlington-connected phototransistor. ANODE CATHODE CATHODE COLLECTOR EMITTER		
Photodiode, Avalanche	_	A photodiode that is intended to take advantage of avalanche multiplication of photocurrent.		
Photodiode Coupler	_	An optocoupler in which the photosensitive element is a photodiode. CATHODE 2 CATHODE 1 ANODE 1		
Photodetector	_	A device that responds electrically when exposed to radiant energy.		
Photodiode	_	A diode which is sensitive to incident radiation. Incident photons cause the diode to conduct (if reverse biased) or to generate a current. Note: photodiodes typically have much less output current than phototransistors but are faster and more linear.		

Phototransistor, Darlington — A phototransistor, the collector and emitter of Connected Connecte	rated circuit. a quantity of energy
Photosensitive Device — A device that is responsible unit) of radiant energy; a photon carries a equal to Planck's constant times the frequency. Photosensor — A device that is responsible to electro-magnetic radiation in the visible, infra ultraviolet spectral regions. Photosensor — A device which controls or generates an electric current when irradiated by Phototransistor — A transistor which is sensitive to incident radiation. The incident photons result in a base current which is then amplified by the gain of the transistor. Phototransistor Coupler — An optocoupler in which the photosensitive element is a phototransistor. A phototransistor, Darlington — A phototransistor, the collector and emitter of which are connected to the collector and base,	quantity of energy
equal to Planck's constant times the frequency. Photosensitive Device — A device that is responsible to electro-magnetic radiation in the visible, infra ultraviolet spectral regions. Photosensor — A device which controls or generates an electric current when irradiated by Phototransistor — A transistor which is sensitive to incident radiation. The incident photons result in a base current which is then amplified by the gain of the transistor. Phototransistor Coupler — An optocoupler in which the photosensitive element is a phototransistor. Phototransistor, Darlington — A phototransistor, the collector and emitter of which are connected to the collector and base,	. , .
Photosensor — A device which controls or generates an electric current when irradiated by Phototransistor — A transistor which is sensitive to incident radiation. The incident photons result in a base current which is then amplified by the gain of the transistor. Phototransistor Coupler — An optocoupler in which the photosensitive element is a phototransistor. Phototransistor, Darlington — A phototransistor, the collector and emitter of which are connected to the collector and base,	ared and/or
Phototransistor — A transistor which is sensitive to incident radiation. The incident photons result in a base current which is then amplified by the gain of the transistor. Phototransistor Coupler — An optocoupler in which the photosensitive element is a phototransistor. A phototransistor, the collector and emitter of which are connected to the collector and base,	areu, anufui
tion. The incident photons result in a base current which is then amplified by the gain of the transistor. Phototransistor Coupler — An optocoupler in which the photosensitive element is a phototransistor. An optocoupler in which the photosensitive element is a phototransistor. CATHODE Note: The base region may or me be brought out as an electrical terms. Phototransistor, Darlington — A phototransistor, the collector and emitter of which are connected to the collector and base,	light.
Phototransistor, Darlington — A phototransistor, the collector and emitter of Connected Connecte	
Connected which are connected to the collector and base,	OLLECTOR MITTER nay not erminal.
respectively, of a second transistor.	NAL may not
Phototriac Driver Coupler — An optocoupler in which the photosensitive element is either a zero current or a zero voltage crossing driver.	
Point Source — A radiation source with a maximum diameter less than $\frac{1}{10}$ the distance between detector.	ween source and
Propagation Delay t _{PLH} , t _{PHL} In a logic circuit, the time delay between a specified change in input and a change in the output logic state. t _{PLH} is measured with the output changing and t _{PHL} with the output changing from high to low.	, ,
Radiance N, L _e The radiant intensity of the energy leaving or passing through a surface, div	vided by its area.
Radiant Efficiency — The ratio of the total radiant flux emitted to the total input power.	
Radiant Flux $\Phi_{ extsf{e}}$ Rate of flow of radiant energy, expressed in watts.	
Radiant Intensity I _e The radiant flux generated per unit solid angle in a given direction, expresses steradian (mW/sr).	ed in milliwatts per
Radiation Pattern — The representation of the intensity of emission as a function of direction, in	
Radiometric — Of or pertaining to radiation in all wavelengths.	a given plane.

Term Ramp Leakage Current	Symbol I _{RL}	Description In the ABC sensor, the current that flows through the RC pin (pins) when the device is operated under specified conditions.
Reflective Assembly	-	A device in which an IRED and a photosensor are mounted side by side, such that the photosensor is only irradiated when a reflective object passes in front of the device. Reflective assemblies are used to sense the presence of reflective objects.
Repetitive Peak Off-State Current	^I DRM	In a triac, the maximum instantaneous value of the off-state current that results from the application of repetitive peak off-state voltage.
Responsivity	R	A description of the optical sensitivity of a photosensor. It is the ratio of the output current or voltage to the input radiant flux, typically expressed as amps per watt or volts per watt.
Reverse Breakdown Voltage	V _{(BR)R}	The reverse bias voltage at which a diode will conduct a specified (non-destructive) current much higher than the normal leakage currents which occur at lower voltages.
Reverse Current	ΙR	The current that flows when a reverse bias voltage is applied to a semiconductor junction.
Rise Time	t _r	The time that elapses while a pulse waveform increases from 10% to 90% of its maximum value.
RMS On-State Current	I _{T(RMS)}	In a triac, the principal current when the device is in the on-state.
Silicon	Si	An element, abundant in the earth's crust, which is used in highly purified form to make most of the semiconductors used in the modern electronics industry (including all Optek photodetectors). Pure crystalline silicon is carefully "doped" with very small amounts of impurities to control its electrical characteristics.
Snell's Law	_	The law of refraction which predicts the behavior of electromagnetic radiation as it passes from one homogeneous isotropic media to another; expressed as $n1\sin\Theta1 = n2\sin\Theta2$ where $n1$ and $n2$ are refractive indices and $\Theta1$, $\Theta2$, refer to the angles between the rays and the normal to the interface.
Spectral Bandwidth	BW	The wavelength interval in which a photometric or radiometric spectral quantity is not less than half of its maximum value.
Spectral Response	_	A description of the electrical output characteristic versus wavelength of radiation incident upon a device, usually expressed by a curve.
Static dV/dt	dV/dt	The measure of the ability of a triac or SCR to block a rapidly rising voltage. Static dV/dt is usually measured with application of full rated voltage to the device in a very short but controlled time period. It is expressed in volts/microsecond.
Static Gate Trigger Current	IGT	In a triac, the minimum gate current required to switch the device from the off-state to the on-state.
Steradian	sr	The solid angle subtending an area on the surface of a sphere equal to the square of the sphere's radius. There are 4π steradians in a sphere.
Storage Temperature	T_{STG}	The maximum temperature at which a device may be stored with no power applied.
Storage Time	. t _S	The time elapsed between a step decrease in the input and a change in the output equal to 10% of its maximum change.
Supply Voltage	V_{CC}	The power supply voltage required to operate a circuit.
Total Power Output	P ₀	The total power that is radiated by a device, expressed in watts or milliwatts.

Term Transistor	Symbol —	Description A three terminal active semiconductor device which is capable of providing power amplification.
Transmissive Assembly	-	A device in which an IRED and a photosensor are mounted facing each other on either side of a slot, such that an opaque object passing through the slot will interrupt the I_R radiation path and be detected by the photosensor.
Triac	-	A five layer semiconductor device which provides switching action for either polarity of applied voltage and can be controlled in either polarity by a single gate electrode. Triacs are usually used in power control applications.
Trigger Leakage	I _{T1} , I _{T2}	The current that flows in the trigger terminal of the ABC sensor. I_{T1} is measured with the trigger pin at ground potential and I_{T2} with the trigger pin at VCC potential.
Trigger Voltage	VŢ	The minimum voltage which, when applied to the trigger pin of the ABC sensor, will force the RC pin to sink current. Once triggered by a rising edge of this minimum amplitude, the RC pin sinks current until the voltage on the capacitor reaches the lower ramp threshold voltage.
Upper Ramp Threshold Voltage	V _{RU}	The upper threshold voltage of the RC pin on the ABC sensor. The circuit charges a capacitor connected to this pin until the voltage on the capacitor reaches the upper threshold voltage.
Visible-Light-Emitting Diode	VLED	Synonym for light-emitting diode.
Wavelength	λ	The velocity of a wave divided by its frequency. The wavelength of infrared radiation is usually expressed in nanometers.

APPLICATION BULLETINS

Thermal behavior of GaAs LEDs

Table of Contents	
	Page
1. Introduction	1
2. Thermal Parameters	1
3. Temperature Response to a Thermal Power Step	2
4. Temperature Response to a Thermal Power Pulse	3
5. Temperature Response to Recurrent Thermal Pulses	4
6. Power Droop	
7. Conclusion	
8. Formulae Summary	
,	

Introduction

The output power (P_0) of a GaAs LED is a function of forward current (I_F). As this forward current increases, the output power will also increase. This forward current flowing through the LED generates heat (P_0) which causes the junction temperature (θ_i) of the diode to increase. As the junction temperature increases, the output power decreases.

To obtain optimum operating conditions for a GaAs LED, the knowledge of the different thermal parameters and their influence on the major electro-optical parameters must be known. The purpose of this bulletin is to introduce these thermal parameters to the reader and provide a way to use them. Data will be presented and formulae will be given that will allow readers to determine if their system meets manufacturer's guidelines in both a DC mode and a pulsed mode.

Mathematical assumptions have been made to simplify derivations and provide useful formulae in simple terms; empirical data has verified that the resulting error is less than 5%.

Care should be taken in making use of the information presented. For example:

A current pulse could be short enough to cause no apparent problem within the presented material. However, it could be of sufficient magnitude and duration to exceed the allowable current density of the bond wire interconnect causing it to fail.

Thermal Parameters

The thermal behavior of a GaAs LED can be considered in a simple way by using the analogy of an electrical circuit. In this circuit, the heat power generator, the temperature differences, the thermal capacitors, and thermal resistors replace the conventional current or voltage generators, voltage differences, capacitors, and resistors respectively. Figure 1 shows this equivalent thermal circuit.

Figure 1-Equivalent Thermal Circuit

Table 1 defines the various thermal parameters we will be exploring in this bulletin.

Table 1

Table 1 Thermal Parameters

Symbol	Parameter	Units	
P_0	Output Power	w	
P_D	Dissipated power	l w	
$oldsymbol{ heta}_{ m j}$	Junction Temperature	°C	
$ heta_{A}$	Ambient Temperature	°C	
C _{TH}	Thermal Capacitor	Ws °C −1	
R _{THJC}	Junction to Case Thermal Resistance	°CW-1	
R _{THCA}	Case to Ambient Air Thermal Resistance	<i>°</i> CW−1	
R _{THJA}	Junction to Ambient Air Thermal Resistance	°CW-1	
$ au_{TH}$	Thermal Time Constant (R _{THJA} × C _{TH})	s	
K	Thermal Rating Factor	None	
K _{eff}	Effective Duty cycle	None	

When forward current (I_F) flows through the GaAs LED, heat or power (P_D) is generated. Most of this heat is generated within:

- (a) The upper section of the chip away from the mount area; the "N" area; the cathode.
- (b) The mid section of the chip; the junction between the "N" and "P" regions.
- (c) The lower section of the chip, the "P" area, the anode

Heat is also generated in the contact interfaces and the conductors but this is considered negligible. This heat propagates through the chip and the mount surface primarily by thermal conduction. It is then transferred to the ambient air by thermal convection. All of the measurements and data presented in this bulletin were made with the air temperature in the room fairly constant throughout the test period and zero air velocity in the volume surrounding the device except for convection currents. Further, there were no extraneous thermal paths. Normal mounting of the devices in PC boards or adding heat sinks will improve the heat path. This is not considered in this bulletin with the exception of the last four (4) line items in Table 2. R_{THJA} should be considered as R_{THJX} in these cases. Table 2 lists several thermal parameters.

Table 2 - Thermal Parameters of Optek GaAs LEDs

GaAs LED Type	R _{THJA} (°CW -1)	C _{TH} (10 -5Ws ⁰ C -1)	τ _{τΗ} (10 ⁻² s)	K
OP123/124, OP223/224 OP131-133(W).	980	1.6	1.5	0.008
OP231-233(W) OP140/240	490 740	3.0 4.3	1.5 2.0	0.008 0.008
OP160/260 OP290/295 C, B, A OP291/296 C. B. A	740 188 188	5.3 1.4 1.4	3.9 0.3 0.3	0.008 0.008 800.0
OP292/297 C, B, A OP293/298 C, B, A	188 500	1.4 1.4 4.0	0.3 1.5	0.008 0.008
OPB706 (LED) OP123/124, OP223/224 ⁽¹⁾	700	5.2 4.6	3.6	0.008
OP123/124, OP223/224 ⁽²⁾	400	4.5	1.8	0.008

(1) OP123/124 mounted on 0.062" double-sided PC board.

(2) OP123/124 mounted in OPB125/253 housing.

The first four (OP123 through OP136) GaAs LED's are all hermetic packages. The maximum allowable junction temperature is 125°C. See the example below for one use of Table 2.

(1) OP123/124 has
$$R_{THJA} = 980^{\circ}CW^{-1}$$

With $\Delta T_i = (125^{\circ}C - 25^{\circ}C) = 100^{\circ}C$.

The maximum power that can be dissipated is:

$$P_{D(max)} = \frac{\Delta T_j}{R_{TH,IA}} = \frac{100^{\circ}C}{980^{\circ}CW^{-1}} = 102 \text{ mW}$$

The next three of the units listed are plastic packages. The maximum allowable junction temperature is 85° C.

OP140 has
$$R_{THJA} = 740^{\circ} CW^{-1}$$

With
$$\Delta T_i = (85^{\circ}C - 25^{\circ}C) = 60^{\circ}C$$

The maximum power that can be dissipated is:

$$P_{D(max)} = \frac{\Delta T_j}{R_{TH,IA}} = \frac{60^{\circ}C}{740^{\circ}CW^{-1}} = 81 \text{ mW}$$

The derating factor above $25\,^{\circ}\!\!\mathrm{C}$ can be readily calculated from this information.

(2) OP123/124 Derating Factor =
$$\frac{\Delta P_D}{\Delta T_j} = \frac{102 \text{ mW}}{100^{\circ}\text{C}} = 1.02 \text{ mW}^{\circ}\text{C}^{-1}$$
OP140 Derating Factor = $\frac{81 \text{ mW}}{60^{\circ}\text{C}} = 1.35 \text{ mW}^{\circ}\text{C}^{-1}$

Most manufacturers will give more conservative deratings than these numbers. This is normally due to the devices being used in a quasi heat sink. For example, the OP123/124 is normally mounted in a double sided PC board. The OP140 is normally soldered into a PC board. This would improve the R_{THJA} numbers. This becomes readily apparent by referring to the R_{THJA} number of $980^{\circ}\text{CW}^{-1}$ for the OP123/124 in free air and the R_{THJX} number of $240^{\circ}\text{CW}^{-1}$ when the units are mounted in a double sided PC board as shown in Table 2 or the $400^{\circ}\text{CW}^{-1}$ when they are mounted in the OPB700 or OPB701 housing. There is also a variation in R_{THJA} brought about by a variation in the integrity of the thermal bond between the GaAs LED and the mount surface. This is not easy to measure and is not adaptable to 100% production testing.

Temperature Response to a Thermal Power Step

A forward current step is introduced into a GaAs LED causing heat to be generated in the unit and causing the junction temperature to rise. The rise in junction temperature follows the formula shown below:

(3)
$$\theta_{j}(t) = \theta_{A} + P_{D} \times R_{THJA} \left(1 - e^{-\frac{t}{\tau_{TH}}}\right)$$

Where t is time in seconds

 P_D is dissipated power au_{TH} is thermal time constant

R_{THJA} is junction to ambient air thermal resistance

 θ_{A} is ambient temperature.

The junction temperature will approach its maximum value after t = 5 τ_{TH} or 5 thermal time constants which approximates 50 to 200 milliseconds. Figure 2 shows the forward current step, the resulting power generated within the chip itself, and the rise in junction temperature versus time.

Figure 2-I_F, P_D, and Junction Temperature Versus Time

Practically, P₀ will decrease slightly as soon as the junction temperature of the chip starts to rise and will stabilize 50 to 200 milliseconds after the power is applied. This is discussed in more detail in the section on power droop.

At temperature equilibrium, the maximum junction temperature (θ_{IMX}) is:

(4)
$$\theta_{jMX} = \theta_A + P_D^* \times R_{THJA}$$

Where $P_D^* = V_F \times I_F$
 $V_F = Forward Voltage @ \theta_{jMX}$
 $\theta_A = Ambient Temperature.$

*For purpose of calculation, $P_D=P$ @ 25° C. The resulting error will have minor impact on the answer. Since V_F decreases with increasing temperature, the resulting answers will be conservative.

Example: Using an OP133 which has a measured output of 5.3 mW @ $\theta_A = 25^{\circ}\text{C}$, calculated the output in a system where $I_F = 40$ mA and $\theta_A = 50^{\circ}\text{C}$. The I_F versus P_0 without heating is relatively linear above 5 mA.

$$P_0$$
 (40 mA @ 25°C) = P_0 (100 mA) × 40/100 = 5.3 mW × 0.4 = 2.12 mW

The power generated within the LED causing the junction temperature to rise is:

$$P_D = V_F \times I_F$$

= 1.5 volts × 0.04A
= 0.06 watts

The final junction temperature is:

$$\theta_{j} = \theta_{A} + P_{D}R_{THJA}$$

= 50°C + (0.06 × 490)
= 79.4°C

The output power of the OP133 is:

(5)
$$P_0(\theta_j) = P_0(25^{\circ}C) \times e^{-K(\theta_j - 25^{\circ}C)}$$

 $P_0(79.4^{\circ}C) = 2.12 \times e^{-0.008(79.4 - 25)}$
= 1.38 mW

This constitutes a 35% decrease in output power from the 25°C level. The value of K was taken from Table 2.

Temperature Response to a Thermal Power Pulse

A forward current pulse is introduced imo a GaAs LED. This pulse is shorter than the 50 to 200 milliseconds required for the junction temperature to approach its highest value.

Figure 3 shows the relationship of the current pulse to the power pulse to the junction temperature versus time.

Figure 3—Current Pulse, Power Pulse, and $\theta_{i(T_0)}$ Versus Time

When I_F begins to flow, the power generated within the LED causes $\theta_{i(t)}$ to follow the relationship:

(6)
$$\theta_{j(t)} = \theta_A + P_D R_{THJA} \left(1 - e^{-\frac{t}{\tau_{TH}}}\right)$$
 $t_1 \le t \le t_2$

When I_F stops @ time t_2 , the P_D will stop and the junction temperature θ_j will start to decrease. This will follow the relationship:

(7)
$$\theta_{j(t)} = \theta_A + \left[P_D R_{THJA} \left(1 - e^{-\frac{T_P}{\tau_{TH}}} \right) \right] \left(e^{-\frac{t}{\tau_{TH}}} \right) \quad t > t_2$$

Example: A single 1A pulse 100 sec wide is applied to an OP136. What will the junction temperature be at the end of the 100 μ sec pulse?

$$\theta_{\text{jMX}}(100 \ \mu \text{sec}) = \theta_{\text{A}} + P_{\text{D}}R_{\text{THJA}} \left(1 - e^{-\frac{1}{\tau_{\text{TH}}}}\right)$$

$$\theta_{\text{jMX}}(100 \ \mu \text{sec}) = 25^{\circ}\text{C} + (2\text{V} \times 1\text{A}) \times 470 \left(1 - e^{-\frac{10^{-4}}{2 \times 10^{-2}}}\right)$$

$$= 25^{\circ}\text{C} + 4.6^{\circ}\text{C} = 29.6^{\circ}\text{C}$$

Same as above except t = 1 msec

as above except t = 1 msec
$$\theta_{\text{JMX}}(1 \text{ msec}) = 25^{\circ}\text{C} + 2 \times 470 \left(1 - e^{-\frac{10^{-3}}{2 \times 10^{-2}}}\right)$$

$$= 25^{\circ}\text{C} + 45.5^{\circ}\text{C} = 70.5^{\circ}\text{C}$$

Temperature Response to Recurrent Thermal Pulses

A forward current pulse is introduced into a GaAs LED. At some later time, the pulse is repeated. Figure 4 shows the relationship of I_F to P_D to θ_i .

Figure 4— I_F , P_D , and θ_i Versus Time

The junction temperature θ_j rises during the first power pulse from θ_A to θ_{j1MX} .

Refer to Equation (3).

$$\theta_{\text{J1MX}} = \theta_{\text{A}} + P_{\text{D}}R_{\text{THJA}} \left(1 - e^{-\frac{T_{\text{P}}}{\tau_{\text{TH}}}}\right)$$

The junction temperature θ_j decreases during the off time of the power pulse from θ_{i1MX} to θ_{i2} .

Refer to Equation (7).

$$\theta_{j2} = \theta_{A} + \left[P_{D}R_{THJA} \left(1 - e^{-\frac{T_{p}}{\tau_{TH}}} \right) \right] \left(e^{-\frac{(T - T_{p})}{\tau_{TH}}} \right)$$

During the second pulse, the junction temperature will rise from θ_{j2} to θ_{j2MX} .

Refer to Equation (3), (6).
$$\theta_{\rm j2MX} = \theta_{\rm j2} + P_{\rm D}R_{\rm THJA} \left(1 - e^{-\frac{T_{\rm P}}{\tau_{\rm TH}}}\right)$$

After the second pulse is removed, the junction temperature will decrease to a new minimum temperature $heta_{i3}$.

Refer to Equation (7).

$$\theta_{j3} = \left[\theta_{j2} + P_D R_{THJA} \left(1 - e^{-\frac{T_p}{\tau_{TH}}}\right)\right] \left(e^{-\frac{(T - T_p)}{\tau_{TH}}}\right)$$

This swinging movement of $\theta_{\rm j}$ goes on and on with $\theta_{\rm jMX(n)}$ and $\theta_{\rm jln}$ gradually rising to a stabilized value. At the end of the nth pulse, the junction temperature is $\theta_{\rm in}$ MX.

(8)
$$\theta_{\text{jnMX}} = \theta_{\text{A}} + \left[P_{\text{D}} R_{\text{THJA}} \left(1 - e^{-\frac{T_{\text{P}}}{\tau_{\text{TH}}}} \right) \right] \times \left[\sum_{i=0}^{i=n-1} \left(e^{-\frac{(T-T_{\text{P}})}{\tau_{\text{TH}}}} \right) \right]$$

When the temperature stabilization point is finally reached, the $heta_{
m jMX}$ becomes:

(9)
$$\theta_{\text{jMX}} = \theta_{\text{A}} + P_{\text{D}}R_{\text{THJA}} \left(\frac{1 - e^{-\frac{T_{\text{P}}}{\tau_{\text{TH}}}}}{1 - e^{-\frac{T_{\text{P}}}{\tau_{\text{TH}}}} \left(\frac{n}{1 - n} \right)} \right)$$
Where $n = \frac{T_{\text{P}}}{T_{\text{P}}}$ or duty cycle

For small values of (n), the equation simplifies to:

(10)
$$\theta_{\text{JMX}} = \theta_{\text{A}} + P_{\text{D}}R_{\text{THJA}}K_{\text{eff}}$$

Where $K_{\text{eff}} = \frac{1 - e^{-\frac{T_{\text{P}}}{\tau_{\text{TH}}}}}{-\frac{T_{\text{P}}}{\tau_{\text{TH}}}} = \text{effective duty cycle}$

The minimum junction temperature becomes:

(11)
$$\theta_{\text{jMIN}} = \theta_{\text{A}} + P_{\text{D}}R_{\text{THJA}}K_{\text{eff}}\left(e^{-\frac{l_{\text{P}}}{n\tau_{\text{TH}}}}\right)$$

The delta temperature or the difference between $heta_{
m jMX}$ and $heta_{
m jMIN}$ becomes:

(12)
$$\Delta \theta_{j} = \theta_{jMX} - \theta_{jMIN}$$

$$\Delta \theta_{j} = P_{D}R_{THJA}K_{eff} \left(1 - e^{-\frac{T_{p}}{n\tau_{TH}}}\right)$$

$$= P_{D}R_{THJA} \left(1 - e^{-\frac{T_{p}}{\tau_{TH}}}\right)$$

APF BU

18-5

Example: An OP136 is operated at $I_F = 1A$, n = 1%, $T_P = 100$ μ sec. What is θ_{iMX} ? θ_{iMIN} ? $\Delta\theta_i$?

$$OP136 R_{TH,IA} = 470^{\circ} CW^{-1}$$

$$P_D = 1A \times 2V = 2W$$

$$K_{\text{eff}} = \frac{1 - e^{-\frac{10^{-4}}{2 \times 10^{-2}}}}{1 - e^{-\frac{10^{-4}}{2 \times 10^{-4}}}} = 1.26 \times 10^{-2}$$

Refer to Equation (10).

$$\theta_{\text{iMX}} = 25^{\circ}\text{C} + (2 \times 470 \times 1.26 \times 10^{-2}) = 36.7^{\circ}\text{C}$$

Refer to Equation (11).

$$\theta_{\text{JMIN}} = 25^{\circ}\text{C} + (2 \times 470 \times 1.26 \times 10^{-2}) \left(e^{-\frac{10^{-4}}{2 \times 10^{-4}}} \right)$$

= 32.1°C

Refer to Equation (12).

$$\Delta\theta_{\rm j} = 36.7^{\circ} - 32.1 = 4.6^{\circ}{\rm C}$$

Verifying, refer to Equation (12).

$$\Delta\theta_{\rm j} = 2 \times 470 \left(1 - e^{-\frac{10^{-4}}{2 \times 10^{-2}}} \right)$$

= 4.6°C

Power Droop

The junction temperature of an LED will oscillate between $\theta_{\rm jMX}$ and $\theta_{\rm jMIN}$ under recurrent pulses after the pulses have been on for a period of time. The radiant power output (P₀) will decrease during the "ON" time as the junction temperature rises from $\theta_{\rm jMIN}$ to $\theta_{\rm jMX}$. This is shown in Figure 5 and is called power droop.

Figure 5— I_F , P_D , and θ_i , and P_0 Versus Time

This decrease in power out or power droop during the "ON" cycle is dependent on $\theta_{\rm iMX}$ and $\theta_{\rm iMIN}$. Most systems desire this droop to be

kept below 5-10% in order to limit the influence on system operation. The major factors that control this are the forward current (I_F), forward voltage drop (V_F), pulse duration (T_P), duty cycle (n), and thermal resistance ($R_{TH \mid \Delta}$).

$$P_0(\theta_{\text{jMIN}}) = P_0(25^{\circ}\text{C}) \times e^{-K(\theta_{\text{jMIN}} - 25^{\circ}\text{C})}$$

$$P_0(\theta_{iMX}) = P_0(25^{\circ}C) \times e^{-K(\theta_{jMX} - 25^{\circ}C)}$$

By definition, the power droop is:

$$\mathsf{P}_{\mathsf{Droop}} = \frac{\mathsf{P}_{\mathsf{0}}(\boldsymbol{\theta}_{\mathsf{jMIN}}) - \mathsf{P}_{\mathsf{0}}(\boldsymbol{\theta}_{\mathsf{jMX}})}{\mathsf{P}_{\mathsf{0}}(\boldsymbol{\theta}_{\mathsf{iMIN}})}$$

(13)
$$P_{Droop} = 1 - e^{-K(\theta_{jMX} - \theta_{jMIN})}$$

Example: An OP136 is being operated at $I_F = 1A$ and n = 1%. What is the maximum pulse width for a droop of 5%?

$$P_{Droop} = 1 - e^{-K(\theta_{jMX} - \theta_{jMIN})}$$

$$0.05 = 1 - e^{-0.008(\theta_{\text{iMX}} - \theta_{\text{iMIN}})}$$

$$\theta_{\text{iMX}} - \theta_{\text{iMIN}} = 6.41^{\circ}\text{C}$$

Refer to Equation (12) for $\Delta\theta_i$.

$$\Delta\theta_{j} = P_{D}R_{THJA} \left(1 - e^{-\frac{T_{p}}{\tau_{TH}}}\right)$$

$$6.41 - 2 \times 470 \left(1 - e^{-\frac{T_{p}}{\tau_{TH}}}\right)$$

6.41 = 2 × 470
$$\left(1 - e^{-\frac{T_p}{2 \times 10^{-2}}}\right)$$

T_p = 138 µsec

Example: What is the power droop if T_P is changed to 100 usec?

$$\Delta\theta_{j} = P_{D}R_{THJA} \left(1 - e^{-\frac{T_{p}}{T_{TH}}}\right)$$

$$= 2 \times 470 \left(1 - e^{-\frac{10^{-4}}{2 \times 10^{-2}}}\right)$$

$$= 4.6^{\circ}C$$

$$P_{Droop} = 1 - e^{-0.008(4.6^{\circ}C)}$$

= 3.6%

Example: What is the power droop on the OP133 under the same conditions as the OP136?

$$I_F = 1A$$
, $n = 1\%$, $T_P = 100 \mu sec$

$$\Delta\theta_{j} = P_{D}R_{THJA} \left(1 - e^{-\frac{T_{P}}{\tau_{TH}}}\right)$$

$$= (1A \times 2.5 \text{ V}) \times 490 \left(1 - e^{-\frac{10^{-4}}{1.5 \times 10^{-2}}}\right)$$

$$= 8.07$$

$$P_{Droon} = 1 - e^{-0.008(8.07)}$$

$$P_{Droon} = 0.0625 = 6.25\%$$

Example: What is the maximum power that can be dissipated in the OPB950 when T_P is 20 μ sec, duty cycle is 1%, and droop is restricted to 5% maximum?

$$\begin{split} &P_{Droop} = 1 - e^{-K(\theta_{jMX} - \theta_{jMIN})} \\ &0.05 = 1 - e^{-0.008(\theta_{jMX} - \theta_{jMIN})} \\ &(\theta_{jMX} - \theta_{jMIN}) = 6.41 ^{o}C \\ &\Delta\theta_{j} = P_{D}R_{THJA} \left(1 - e^{-\frac{T_{p}}{\tau_{TH}}}\right) \\ &6.41 = P_{D} \times 250 \left(1 - e^{-\frac{20 \times 10^{-6}}{3.24 \times 10^{-3}}}\right) \\ &P_{D} = 4.23 \end{split}$$

With a V_F of approximately 2.5 volts, the maximum I_F under the above conditions would be 1.7 amps.

7. Conclusion

The data presented will allow calculations that effect various power levels, pulse widths, and duty cycles on Optek GaAs LEDs. All standard products are covered. The pertinent thermal formulae are included as a separate section for easy reference. These formulae coupled with the information given in Table 2 will allow designers to optimize their design utilizing Optek LEDs in the pulse mode.

Daniel Cognard

William Nunley

8. Thermal Formulae

1. Maximum Power Dissipation

$$P_{D(MAX)} = \frac{T_j}{R_{TH,JA}}$$

2. Derating Factor

$$\frac{\Delta P_D}{\Delta T_i}$$

3. Effective Duty Cycle (Square current pulses)

$$K_{eff} = \frac{1 - e^{-\frac{T_p}{\tau_{TH}}}}{1 - e^{-\frac{T_p}{n\tau_{TH}}}}$$

4. Maximum Junction Temperature (Repetitive Pulses)

$$\theta_{\text{jMX}} = \theta_{\text{A}} + P_{\text{D}}R_{\text{THJA}}K_{\text{eff}}$$

5. Minimum Junction Temperature (Repetitive Pulses)

$$\theta_{\text{JMIN}} = \theta_{\text{A}} + P_{\text{D}}R_{\text{THJA}}K_{\text{eff}} \left(e^{-\frac{T_{\text{P}}}{n\tau_{\text{TH}}}}\right)$$

6. Junction Temperature Swing

$$\Delta\theta_{\rm j} = P_{\rm D}R_{\rm THJA} \left(1 - e^{-\frac{T_{\rm p}}{\tau_{\rm TH}}}\right)$$

. Power Droop

$$P_{Droop} = 1 - e^{-0.008(\Delta \theta_j)}$$

Motion sensing with optical interrupters—selecting the proper sensor for optimum system design.

This application bulletin will discuss many of the variables associated with single channel encoding. This will include design considerations for using both non-apertured and apertured transistors or Photologic™ output devices. Refer to application bulletins 203 and 206 for additional information

General Discussion

The most common application of optoelectronics is the sensing of motion with an optical interrupter. The normal single channel optical interrupter module consists of an emitter or energy source and a receiver or energy sensor separated by a slot or air gap. The interruption of this beam causes an on/off signal from the sensor. When the energy path is blocked, the sensor will be "off" allowing only leakage current to flow. When the energy path is open, the sensor will be "on," causing significantly higher currents to flow. This is often accomplished by placing a rotating plate (or encoder disc) in the slot between the LED and energy sensor as shown in Figure 1.

Figure 1 - Tachometer or Motor Speed Monitor

There is usually an opening or slot in the encoder disc that allows the photosensor to be exposed to energy from the LED once each revolution. The energy through the slot will cause the sensor to turn "on" when the slot is present and turn "off" after the slot goes by. This energy pulse will relate the mechanical motion of the encoder disc to the electrical signal by giving one pulse per revolution. By counting these pulses for a given time interval, the speed of rotation may be determined. This gives rise to the "Tachometer" or motor speed monitor.

This encoder disc may be replaced with a fence or comb that passes through the same slot. The same logic presented for the encoder disc will hold true. One electrical pulse is formed for each opening in the fence or comb that passes the LED/sensor pair. Thus the linear motion of the fence or comb can be related to an electrical series of pulses. Figure 2 shows this mechanical system pictorially.

Figure 2 - Linear Encoder Relating Distance Versus Pulses

Analysis of the use of an optical interrupter module for a specific application requires several considerations to be analyzed. Most design engineers consider cost, functionality, and reliability as goals in their design. Most important, however, is total application performance. The part must be designed so that minimum support is required in a production type environment. This production environment begins with the fabrication of the basic design and continues through the design performance in subsequent sub-assemblies until the final product is complete. The design is considered successful if, once implementation is complete, the system runs so smoothly, the designer receives no negative feedback. This requires "luck" or a systematic approach to understanding and consideration of all major variables. This application bulletin will use a tachometer design as the mechanism to apply the philosophy of "the successful designer approach."

Non-apertured Encoding

Most tachometer applications require a digital signal which can be easily processed to determine the speed at which a mechanical motion is taking place. There are several variables that need to be discussed that control this digital signal. Figure 3 pictorially represents the general wave shape that will appear across the load resistor as the slot goes by the sensor.

Figure 3 - Pictorial Representation of Signal Pulse

As the slot starts to open up the energy path between the sensor and the LED, the sensor will start to turn "on." If the system has adequate gain, the sensor will saturate prior to the trailing edge of the slot reaching the leading edge of the sensor. The signal level will diminish as the slot goes by reducing the energy level to the sensor.

This time interval from 1 through 7 will remain fairly consistent for a given setup. As different units from various production runs are substituted, the main variations that will be viewed are:

- a. Variations in slope between 2 and 3
- b. Variations in slope between 5 and 7

As the system gain increases, the turn on time will decrease and the flat portion between 3 and 5 will get wider. In other words, 3 will move to the left and 5 will move to the right. The turn on delay will decrease slightly, moving 2 to the left. The point labeled 7 will move to the right showing the sensor turn off time has increased. This will cause the voltage reading at point 6 to increase. As the system gain decreases, the inverse will happen. Points 3, 4, and 5 will become one point and start to decrease. Points 1 and 6 never move. If the circuit is desired to turn on or off at level "X," the "X" will move as these slopes change.

The OPB860T55 is a commercially available optical interrupter from Optek Technology. It has no built-in aperture. It will be used as an example for the discussion of the choice of a specified load resistor. Figure 4 shows a typical circuit where V out will drive the input of a TTL gate such as the SN7414 Schmitt trigger.

Figure 4 - Optical Beam Interrupter

The choice of this load resistor is usually the first parameter the design engineer must consider. The end result is a TTL compatible analog voltage generated across this load resistor. The minimum allowed on-state current and the maximum allowed off-state current of the OPB860T55 become the first two restrictions on the choice of this load resistor. In order to be able to generate a reliable digital output, the system must guarantee the analog voltage will swing above and below the positive and negative going thresholds, respectively, of the TTL gate. Figure 5 shows the output of the OPB860T55 with the resistive load of 1000 ohms, and 10,000 ohms.

Figure 5 - OPB860T55 Output Versus R_I

A study of these photographs will quickly show a positive and a negative aspect. As you increase the value of the load resistor, the analog voltage swing across it quickly increases. The standard product quarantees 500 microamperes of output with a 20-milliampere input. This corresponds to 500 millivolts across 1000 ohms and 5 volts across 10,000 ohms. The maximum turn on voltage required to trip the SN7414 is 2.0 volts. It also becomes apparent that as you increase the value of the load resistance, the rise and fall time is adversely affected. The rise time (10% to 90%) is 160 microseconds with the 1000-ohm load increasing to 180 microseconds with the 10,000-ohm load. The fall time (90% to 10%) is 170 microseconds with the 1000-ohm load increasing to 200 microseconds with the 10,000-ohm load. The frequency response is significantly decreased with increased load resistance. Keep in mind that the measured rise times and fall times are a combination of the electrical rise and fall time of the sensor as well as the mechanical rise and fall time of the system. The sensor gradually is exposed to the light as it is uncovered and the light is gradually removed as it is covered. This increase in load resistance may lead to a secondary problem.

As the magnitude of the load resistor is increased, greater care must be taken in the mechanical design to prevent off-state problems. This means guarding against spurious light signals that may create noise or unwanted signal levels adequate to give a signal pulse when none is there.

Two other options become potential problem solvers. Increasing the LED drive current will increase the output current. Care must be taken as increasing the drive current will also decrease reliability. The supplier may be asked to select units that will give a higher output. This will increase the cost in inverse proportion to the amount of units meeting the new requirements that lie within the production distribution.

Apertured Encoding

The OPB860 series are available with sensor apertures of .010 $^{\prime\prime}$ and .050 $^{\prime\prime}$. The OPB860T51 which has a .010 $^{\prime\prime}$ \times .040 $^{\prime\prime}$ sensor aperture will be discussed. It offers a good alternative to the OPB860T55 when resolution becomes more critical. Figure 6 shows the comparison of the wave shapes across the 1000-ohm R_L of the OPB860T55 and OPB860T51.

The waveforms shown in Figure 6 are made with an apertured disc that had .025" openings and .038" opaque areas for its total periphery. This causes the OPB860T55 (top trace) not to go completely to ground potential which is the cross hatched "x" line on the scope faceplate. This is due to the "light bleed" around the .038" opaque area causing the sensor to continue conduction. This would not be present in single pulses per revolution. Minimization of the "light bleeding" can be obtained by making the encoder disc (50% opaque-50% open) 25% larger than the width of the sensor aperture. The turn on and turn off times are about 60 microseconds for the OPB860T51 and 80 microseconds for the OPB860T55. This is due to the mechanical turn on and turn off

Figure 6 - OPB860T55 (upper) Versus OPB860T51 (lower)

times being limited to .010" in the OPB860T51 while going as long as .060" on the OPB860T55.

In addition, it is important to keep the encoder disc as close to the sensor as possible to further decrease "light bleeding." Note that the output level of the sensor in an individual unit will decrease as the encoder wheel moves laterally from the LED or emitter side toward the sensor side of the unit. This is shown in Figure 7.

Figure 7 - Normalized Sensor Output Versus Lateral Slot Opening

This is brought about because the energy from the LED is not collimated and does not have a point source radiation pattern. In addition to the encoder position relative to the sensor, the effect can be minimized by minimizing wobble of the encoder wheel within the interrupter slot. In more complex applications where much greater resolution is needed, i.e., the width of the LED and sensor apertures are decreased to the point that energy from the LED cannot be detected by the sensor, the use of a multi-slotted aperture called a reticle with a pattern identical to the encoder disk is used. (See Application Bulletin 206 for more information.) The effect is a shuttering of light. It allows more energy to be sensed by the sensor while maintaining high resolution.

Another solution to the higher resolution requirements is to use Photologic™. This improves timing accuracy when it is not convenient to have amplification circuitry in close physical proximity

to the optical interrupter module. This amplification guards against noise causing spurious signals which could upset system performance.

Apertured Function Encoding

The solution to the problems presented before is a sensor function. The OPB960T51 is similar in appearance to the OPB860T51. It requires three leads for the sensor rather than two leads. The sensor function is a Photologic chip consisting of a photo sensitive element and a Schmitt trigger buffer integrated on a common chip. The housing contains a .010 aperture in front of the Photologic sensor to allow for high resolution encoding. The frequency response of the OPB960T51 is improved over the OPB860T51 to 250 kHz with typical rise and fall times of 70 nanoseconds. The output is capable of driving 8 TTL loads over the temperature range of $-40\,^{\circ}\text{C}$ to $+70\,^{\circ}\text{C}$. Figure 8 clearly shows the suitability of the OPB960T51 when compared to the OPB860T51.

Figure 8

OPB960T51 @ 200 kHz Sinking 8 TTL Loads

As long as the required frequency response is slow enough and the output is adequate, the OPB860T51 is the best choice from a system cost. This is further supported if unused logic gates exist for the designer to process the opto signal into a digital output. As the applications become more sophisticated and importance is shifted to improved performance and simplification of complex processing circuits, the OPB960T51 becomes the best choice for the designer. A major advantage to the designer is the guaranteed performance from $-40\,^{\circ}\mathrm{C}$ to $+70\,^{\circ}\mathrm{C}$. The result is a much more reliable design in terms of degradation and system performance.

Conclusion

The OPB860T55 (non-apertured optical interrupter) will perform quite reliably in low speed, low resolution encoding. The OPB860 family offers an improvement in resolution. The narrow aperture offers superior resolution in linear encoders. The OPB960T51 is the choice where higher output levels, speed, and precise resolution are required.

Refer to Application Bulletins 203 and 206 for additional information.

THOMAS W. SWARD

WILLIAM NUNLEY

APPLICATION BULLETINS

Soldering to semiconductor leads — a supplement to manufacturer's specifications.

Normal lead soldering information furnished on semiconductor product data sheets is limited to the maximum temperature, the maximum time at this temperature and the minimum distance from the temperature to the case of the unit. This bulletin discusses some of the aspects of soldering using an iron, a pot, or a flow bath. This will involve discussions of both hermetic or metal packaged parts and plastic encapsulated parts.

GENERAL DISCUSSION

A variety of different methods are used to make a solder joint between a semiconductor product and the circuit to which it is wired. Care and expertise are required to minimize unit loss and maximize unit yield. A few technique improvements, and suggestions as to proper solder and flux selections are discussed. Familiarization with the points brought out in this bulletin will assist the user to minimize solder problems.

PERFORMANCE CHARACTERISTICS

A typical data sheet will have the following information in the absolute maximum ratings:

These conditions except for "time" are readily controlled in flow soldering and solder pot applications. It becomes difficult to control the maximum temperature in solder iron applications. The normal solder used is 60/40 lead tin which softens at 180°C and flows at 220°C. If the temperature of the iron or the time it is in contact with the solder lead interface is not controlled, the 240°C can be significantly exceeded. Several techniques or controls are helpful in preventing this overheating.

- Limiting the maximum temperature of the iron by controlling the power to the iron. The slower the operator is, the cooler the iron should be.
- Careful selection of proper solder, flux, iron, tip and surface preparation can minimize problems.
- 3. Verbal explanation, knowledgeable tutoring and assistance, and pictorial examples can also be helpful.
- Proper design of the work station to minimize fatigue and encourage repeatable operator steps such that the solder operation is done in the same sequence by the same motions.
- Once the technique is learned, it is very important to encourage speed. Normally, the higher the output, the higher the quality level once the basic technique has been mastered.
- Design of the PC board land patterns with the unit and method of soldering of uppermost importance can be of significant help. The subsequent discussion on soldering of the pill package will illustrate this.

Table 1 lists the solder, flux, dwell times and distances recommended by Optek on their hermetic and plastic encapsulated components.

TABLE I - Soldering Components Listing

PACKAGE	TYPE OF SOLDER	TYPE OF FLUX	MAX DWELL TIME	DISTANCE FROM CASE	COMMENTS
Flow Soldering					
Hermetic	63/37 Tin Lead Bar	Active Rosin foaming flux (Kester 197 is	10 Sec	1/16"	Except for "pill" packages
Plastic	63/37 Tin Lead Bar	suitable)	10 Sec	1/16"	
Solder Pot					v' .
Hermetic	63/37 Tin Lead Bar	Kester 1544 is	10 Sec	1/16"	Use water white rosin flux on pills (Alpha 100
Plastic	63/37 Tin Lead Bar	suitable	10 Sec	1/16"	is suitable)
Solder Iron					
Hermetic	60/40 Tin Lead Wire Rosin Core, as small a		3 Sec	1/16"	If fluxing is required, use mildly activated rosin flux
Plastic	diameter as possible		3 Sec	1/16"	dispensed from hypodermic needle. Kester 1544 is suitable

The pill package (OP 600–OP 123 types) requires more care than any other package. The unit is designed for solder contact on either side of a PC board by any of the three techniques. It is not normally flow soldered since two passes must be made through the machine, and tooling can be complicated. Care must be taken in the PC board design to prevent subsequent problems. The mounting hole should be drilled to 0.0625" ±0.001". The following should be considered when designing the land area for the lens side of the device:

FIGURE I

- If space permits, allow a minimum of 0.010" on either side of mounting holes.
- Design with cutaways when lands are narrow or consistent orientation of tabs is desired.
- Hole off center with narrow lands will create fingers of land pattern due to "undercut" that may short the unit as the package is inserted into the hole.

The two desirable factors are: To have as much surface area of land pattern adjacent to the unit as possible to ensure support of both lens mounting tabs to prevent tilting, and to provide mechanical strength of land pattern when unit is being reworked or removed.

HAND SOLDERING

Once the packages are inserted into the PC board, the board should be turned so lens side is down and resting on a hard rubber or similar surface that will prevent damage to the glass lens but firmly support it. The operator will then press firmly down on the board with one hand. The iron is held in the other hand with the tip resting on the land pattern

approximately 1/4" from the unit. The tip is slowly moved toward the unit; while watching the land pattern melt ahead of the tip. The speed of travel is as fast as the operator can handle the movement comfortably ensuring the land pattern melts. At the time the tip reaches the unit, solder is fed by the hand resting on the board without removing the downward pressure. The iron is wiped around the unit at the same rate of travel as was used on the land pattern. Once the 360° circle is complete, the solder wire is removed. The operator may make another 360° turn with the iron. Experience will show the best way. After all the plug sides are soldered, the board will be inverted and the lens tabs will be soldered to the two land patterns. The same technique is used except omit the 360° circle. The tabs are soldered in two operations.

SOLDER POT or DIP SOLDERING

A popular method of soldering pills in PC boards, when the design permits, is dip soldering or immersing the pill in the PC board in molten solder. The following conditions called out in Table II should be used.

TABLE II - Dip Soldering

All solder joints on all other packages in 0.062" PC boards should be soldered on the side away from the component. This guarantees the minimum distance of 1/16" from device to heat source. On open air solder joints, a pair of long nose pliers or some other heat sink gripping the lead between the joint and the unit can prevent problems. By following the information given above and exercising good judgement and common sense, the user will encounter very few problems related to solder joints on Optek components.

WILLIAM NUNLEY

HOWARD BROWN

TWO CHANNEL OPTICAL INTERRUPTERS MAY BE USED FOR DETERMINING DIRECTION OF ROTATION, SPEED, AND THE RELATIVE LOCATION OF A ROTATING SHAFT

Optek has two types of dual channel optical interrupters available. The OPB 822 family has two side-by-side channels on 0.212" centers and the OPB 826 family has two vertical channels on 0.150" centers. These standard parts may be used for determining direction of rotation, speed, and relative location of a rotating shaft. This bulletin will discuss some of the design aspects of two channel encoding along with circuit concepts and unit performance.

GENERAL DISCUSSION

Rotational direction of a shaft can be readily determined by utilizing the two channels of an optical interrupter, an encoder disc with a number of openings around the circumference, and some simple electronics. The speed and relative shaft location information is available as a by-product and requires some additional electronics.

Figure 1 is a pictorial definition of terms used in this bulletin and should be referred to for clarification. A period is defined as 360 electrical degrees or the mechanical width of one opening plus one closure at the central point of the slot near the circumference of the encoder disc. When using a vertical, dual-channel unit, the outer row of periods are normally offset by 90 electrical degrees, or 1/4 period, from the inner row of periods. This will cause one channel to turn on approximately 90 electrical degrees ahead of the other as a function of rotation. In shaft encoding terminology, quadrature is the term defining determination of rotational direction by the phase relationship between the outputs of the two channels. System design normally uses 90° for this phase shift. Speed can be determined by accumulating the number of signal pulses for a fixed period of time, dividing by the number of periods per revolution thus obtaining the revolutions for this time period. Relative location is determined by dividing 360 by the number of periods around the circumference. A pulse is generated for each of these rotational segments. Counters may be used to relate a certain number of pulses to a desired action. This bulletin will describe the method of obtaining the three pieces of information (rotation direction, speed, and relative location) rather than what is done with the information.

PERFORMANCE CHARACTERISTICS

The OPB 822SD is used as the demonstration interrupter to describe method and operation. Apertures (0.010" \times 0.080") are mounted in front of both sensors and LED's. The 0.010" dimension is perpendicular to the rotational vector of the encoder disc at the slot between the sensor and LED. A system is desired with 2° mechanical resolution of rotational movement, thus $360^{\rm o}/2$ or 180 cycles or periods around the circumference. Each cycle or period corresponds to an opening and a closure in the encoder disc passing a sensor and LED combination.

FIGURE 1
Pictorial Definition of Terms

* The sides of the slots lie on the extension of the two radii that are 1.432" long and 0.020" apart at the chord that defines the width of the center of the slot. The contained \angle at that point is 0.8°.

An off-multiple of periods between the center line of the sensor apertures (0.212") is required for the 90° phase shift. This off-multiple can be 1/4, 3/4, 1-1/4, 1-3/4, 2-1/4, 2-3/4 etc. periods. For example, a period of 0.050" will yield 4-1/4 cycles or periods in the 0.212" distance between these aperturers.* The radius of the encoder disc is determined to be 1.432". (0.050" period x 180 periods per revolution x 1/2 π = radius). The opening in the disc should not be less than 0.010" as this would decrease the guaranteed output signal. A good rule for designing encoders is to keep the ratio of the opening to the closure at 2/3's. The disc can now be specified as:

Pitch radius — 1.432" (From center of wheel to @ of slots and apertures)

Slot length - 0.100 $^{\prime\prime}$ (0.020 $^{\prime\prime}$ tolerance above 0.080 $^{\prime\prime}$ aperture)

Disc radius -1.562" (0.025" tolerance between disc and bottom of slot)

Openings - 0.020" on chord @ 1.432" radius (180 required)

Closure -0.030" on chord @ 1.432" radius (180 required) Disc material and thickness - Polycarbonate plastic, 0.060" thick

Crosstalk will not occur due to the narrow apertures (0.010") on both sensor and LED. This disc was then paired with the circuit shown in Figure 2.

* $\frac{0.212}{\text{off-multiple}}$ x mechanical resolution (pulses/revolution) x 1/2 π = pitch radius.

As shown in Figure 2, channel "B" provides the "D" input and channel "A" provides the "clock" input to the SN7414. (The SN7414 converts the relatively slow transitions from the mechanical motion to TTL compatible rise and fall times.) Since channel "A" clocks the latch at its positive transition, the state of channel "B" at "D" determines the state of the latch. If the "Q" output of the latch is high (1 state) then the "D" input was high when channel "A" turned "ON". Thus channel "B" turned "ON" prior to channel "A". This implies counterclockwise direction of

FIGURE 2 - Schematic for Determination of Rotation Direction, Relative Position and Speed

rotation. For clockwise rotation, channel "A" turns on prior to channel "B" and the "Q" output of the latch will be low (0 state). The pulses at A out or B out may be used for speed and/or relative location. Speed may be determined by counting the output pulses for a given time period and dividing the total count by 180 (pulses per revolution). Relative event location may be controlled within approximate $2^{\rm o}$ accuracy $\left(\frac{360^{\rm o}}{180}\right)$ by specifying the number of pulses between related events. For example, 45 pulses would correspond to 1/4 rotation or 90 mechanical rotational degrees.

The photographs shown in Figure 3 demonstrate the "0" and "1" level for clockwise and counterclockwise rotation.

The left photograph shows a "0" level denoting clockwise rotation. The right photograph shows the opposite. Addi-

tional circuitry may be added using the time base pulses already present. If a third interrupter channel were added that could relate back to a fixed location of the shaft, then the relative location could be changed to true location. This might become the left margin control, right margin control and/or index for next line control. All of these functions could be performed quite easily. The same technique may be used in linear motion where the encoder disc is replaced by a comb with a series of openings and closures. The direction of movement, speed, and the relative location of the comb could be used as discussed before by molding the comb with the openings 0.020" wide by 0.100" high every 0.050" length along the comb.

, , ,

CONCLUSION

In summary, this is a very versatile technique for relating electrical signals to linear or rotational motion, speed and either relative or true location of that motion.

RICHARD DAHLBERG

WILLIAM NUNLEY

Reflective Assemblies — **Design considerations for single-sided sensing applications.**

General Discussion

A reflective assembly generally consists of a single emitter and sensor in the same housing. This provides a major mounting advantage because optical access to the surface to be sensed is required from only one side. However, this can lead to a wide variety of design variables involving mounting configurations, reflective surfaces, and sensing circuits.

Designers are often faced with conditions that prevent reflective assemblies from being used as specified by the manufacturer. Reflective surfaces may be different than specified, or the gap between the assembly and the reflective surface may be greater or less than specified and/or cannot be consistently maintained. The mounting requirements may make tight control impractical and/or the "contrast ratio" (1) may have to be improved.

Optek offers several reflective assemblies providing the designer with alternative solutions to these problems.

Performance Characteristics

Optek makes two types of reflective assemblies; focused and unfocused.

A. Focused Reflective Assemblies

The focused version is made from discrete devices with convex lenses. Figure 1 shows three versions of this configuration. (Discrete devices are internal to the housing and are not shown.)

Figure 1 - Focused Reflective Assemblies

OPB700.701

OPB704

OPB742.745

In this device type, the on-state collector current, I_{ClONI} , peaks when a reflective surface is placed $0.100^{\prime\prime}$ to $0.200^{\prime\prime}$ (2.5 to 5.0 mm) in front of the assembly.

 l_{CION} is the collector current created from the reflected infrared radiation emitted from the LED and detected by the sensor from a reflective surface. l_{CION} maximum is 75% of the distance to the intersection of the optical axes of the LED and photosensor. In other words, discretes focused to a reflective surface at a distance from

(1) The ratio between the minimum and the maximum amount of reflected infrared radiation seen by the sensor.

the housing of .200'' would have an approximate peak $I_{C(ON)}$ at .150''. This is due to the emitted radiation following a diverging pattern rather than a straight line through its center line and the sensor viewing a converging pattern rather than a straight line through its center line. The angular mountings of the discretes are ideal for detecting the presence of a polished or specular surface.

B. Unfocused Reflective Assemblies

The unfocused version is made from discrete devices with plano or non-magnifying lenses. Figure 2 shows two versions of this configuration.

Figure 2

OPB706, 707

OPB711, 712

In this type of device the I_{ClON} peaks when a reflective surface is placed 0.050" to 0.080" (1.25 to 2.0 mm) in front of the assembly. The units are designed for mounting in sockets or printed circuit boards. Plano lenses make unfocused assemblies ideal for detecting the presence of diffuse surfaces.

Figure 3 shows variation in output versus distance from a given reflective surface for both focused and unfocused devices.

Figure 3 - Normalized Collector Current vs. Distance to Reflective Surface

OPB704 Focused

C. Variations in Signal Level

The signal level from the reflective assembly can vary for a variety of other reasons. An understanding of these variables is necessary for successful design:

1. Variations in Distance (or inconsistency in placement of reflective surfaces). Since the output from the sensor will decrease (see Figure 3)

as the distance between the reflective surface and the assembly increases, the designer must either minimize the physical variation or compensate for it in the electrical design. Table 1 shows the magnitude of signal changes at various distances.

Table 1 – Typical Variation in Signal Level with Distance Changes (Data Sheet Conditions for I_{C(ON)})

D (a) (b)	OPB700	OPB704	OPB706	OPB742	OPB711
.025	12 µA	35 μA	1270 μΑ	34 μΑ	855 µA
.050	89 µ A	89 μA	1111 μΑ	175 μΑ	726 µA
.100	345 µA	233 µA	552 μA	537 μA	523 µA
.200	254 μΑ	277 μΑ	202 μΑ	359 μA	185 μA
.300	135 μA	159 μA	81 μA	100 μΑ	83 µA
.450	63 µA	59 μA	34 <i>μ</i> A	23 μΑ	34 μΑ
.500	54 μA	44 μA	26 μA	17 μΑ	26 μA

Notes:

(a) D is distance from assembly face to reflective surface.

(b) Reflective surface is 90% diffuse reflectance Kodak neutral white test card.

This phenomenon can be used to an advantage in certain reflective applications. Figure 4 shows an OPB704 sensing gear teeth. Good contrast ratios are obtained since the distance to the reflective surface significantly varies. Figure 4 also shows an OPB706 used as a tachometer. The cutout in the encoder wheel allows one pulse per revolution. The OPB704 uses sensitivity vs. distance while the OPB706 uses sensitivity vs. reflective surface at a given distance.

Figure 4 - Applications vs. Contrast Ratios

2. Variation in Reflectivity of Surfaces—Many designers make the initial mistake of assuming that a photosensor will see infrared radiation the same way the human eye sees visible light. This frequently is not the case. In fact, a black surface and a white surface can have similar reflective properties when illuminated with infrared radiation. Tables 2 and 3 show the variation in signal level with different reflective surfaces.

Table 2 - Focused Reflective Assemblies

Typical Icinni (Signal) vs. Reflective Surfaces

(Standard Data Sheet Conditions used for distance, LED forward current and sensor supply voltage)

Focused Reflective Assemblies

Confess	OPB700	OPB701	OPB742	OPB704	OPB745
Surface	D(a)=.20"	D=.20"	D=.150"	D=.20"	D=.150"
1	689 µA	33390 µA	6160 µA	6260 µA	41180 µA
2	680 µA	33850 µA	5890 µA	6340 µA	39120 µA
3	1.59 µA	34.55 µA	6.39 µA	13.23 µA	22940 µA
4	115 µA	5420 µA	420 µA	750 µA	3720 μA
5	85 µA	4330 µA	320 µA	580 µA	2920 µA
6	51 μA	2250 µA	230 µA	400 µA	1810 µA
7	42 µA	1660 µA	410 µA	460 µA	3010 μA
8	123 µA	7920 μA	728 µA	1090 μA	5040 µA
9	90 μA	4850 μA	351 µA	688 µA	2750 µA
10	118 µA	7330 µA	648 µA	1020 μA	4850 µA
11	100 μA	5760 µA	439 µA	799 µA	3290 µA
12	116 µA	7010 µA	614 µA	984 µA	4620 µA
13	106 μA	6080 µA	471 μA	845 μA	3600 µA
14	67 μA	3490 µA	430 µA	605 µA	2690 µA
15	1.39 µA	36.07 µA	6.76 µA	13.50 µA	24.76 µA
16	0.24 µA	9.17 μA	1.55 µA	3.87 µA	1.08 µA

Notes:

- (a) D is distance from assembly face to reflective surface.
- 1. Aluminum foil tape (shiny, efficient reflective surface).
- 2. Alzak (similar to 1).
- 3. Alzak painted with Flat Black Velvet (3M #101-C10 Black). Painted surface destroys shiny reflective surface and gives velvety matte finish.
- 4. Kodak 90% diffuse reflectance neutral white paper.
- 5. White bond paper.
- No. 3 graphite pencil on white bond with entire viewing of sensor shaded by graphite mark.
- 7. Mylar magnetic tape.
- 8. Clear, smooth plastic tape finish.
- 9. Same as (8) except matte finish.
- 10. Same as (8) except blue color.
- 11. Same as (10) except matte finish.
- 12. Same as (8) except red color.
- 13. Same as (12) except matte finish.
- 14. Same as (8) except gray color. 15.3M Tape No. 476 (a dull black surface).
- 16. No reflective surface.

Several interesting observations can be made.

- I. The shiny metallic surfaces of (1) and (2) give the best reflectance.
- II. The black velvet paint gives excellent contrast between (2) and (3).
- III. The signal level drops when using diffuse reflectance, (4) neutral white paper, bond paper (5), or mylar magnetic tape (7).
- IV. The graphite pencil mark gives relatively small change since it both improves the reflectivity (smeared shiny graphite) and disrupts

the pore fibers of the paper.

- V. Plastic surfaces do not reflect as well as polished surfaces. Examples: (8), (10), (12), (13)
- VI. Plastic matte reflects almost as well as plastic smooth surfaces. Examples: (8) versus (9): (10) versus (11): (12) versus (13).
- VII. Color makes very little difference. Examples: (8), (10), (12), and (14), or (9), (11), and (13).
- VIII. The 3M tape #476 is an excellent non-reflecting surface (15).
- IX. The best non-reflecting surface is no surface (16).

Table 3 - Unfocused Reflective Assemblies

Typical $I_{C(ON)}$ (Signal) vs. Reflective Surfaces

(Standard data sheet conditions used for distance, LED forward current and sensor supply voltage)

Unfocused Reflective Assemblies

Surface D(a)=.05" D=.05" D=.08" 1 1950 μA 53990 μA 1430 μA 2 1000 μA 54250 μA 1220 μA 3 960 μA 52350 μA 1220 μA 4 21 μA 3400 μA 31 μA 5 860 μA 52330 μA 1050 μA 6 390 μA 41920 μA 520 μA 7 95 μA 17260 μA 130 μA 8 964 μA 52990 μA 1360 μA 9 913 μA 47570 μA 1230 μA 10 985 μA 52260 μA 1300 μA 11 961 μA 52270 μA 1280 μA	D=.08"
2 1000 μA 54250 μA 1220 μA 3 960 μA 52350 μA 1220 μA 4 21 μA 3400 μA 31 μA 5 860 μA 52330 μA 1050 μA 6 390 μA 41920 μA 520 μA 7 95 μA 17260 μA 130 μA 8 964 μA 52990 μA 1360 μA 9 913 μA 47570 μA 1230 μA 10 985 μA 52260 μA 1300 μA	21020 4
3 960 μA 52350 μA 1220 μA 4 21 μA 3400 μA 31 μA 5 860 μA 52330 μA 1050 μA 6 390 μA 41920 μA 520 μA 7 95 μA 17260 μA 130 μA 8 964 μA 52990 μA 1360 μA 9 913 μA 47570 μA 1230 μA 10 985 μA 52260 μA 1300 μA 11 961 μA 52270 μA 1280 μA	31630 µA
4 21 μA 3400 μA 31 μA 5 860 μA 52330 μA 1050 μA 6 390 μA 41920 μA 520 μA 7 95 μA 17260 μA 130 μA 8 964 μA 52990 μA 1360 μA 9 913 μA 47570 μA 1230 μA 10 985 μA 52260 μA 1300 μA 11 961 μA 52270 μA 1280 μA	29930 μA
5 860 μA 52330 μA 1050 μA 6 390 μA 41920 μA 520 μA 7 95 μA 17260 μA 130 μA 8 964 μA 52990 μA 1360 μA 9 913 μA 47570 μA 1230 μA 10 985 μA 52260 μA 1300 μA 11 961 μA 52270 μA 1280 μA	29160 μA
6 390 μA 41920 μA 520 μA 7 95 μA 17260 μA 130 μA 8 964 μA 52990 μA 1360 μA 9 913 μA 47570 μA 1230 μA 10 985 μA 52260 μA 1300 μA 11 961 μA 52270 μA 1280 μA	1160 µA
7 95 μA 17260 μA 130 μA 8 964 μA 52990 μA 1360 μA 9 913 μA 47570 μA 1230 μA 10 985 μA 52260 μA 1300 μA 11 961 μA 52270 μA 1280 μA	28700 µA
8 964 μA 52990 μA 1360 μA 9 913 μA 47570 μA 1230 μA 10 985 μA 52260 μA 1300 μA 11 961 μA 52270 μA 1280 μA	21900 µA
9 913 μA 47570 μA 1230 μA 10 985 μA 52260 μA 1300 μA 11 961 μA 52270 μA 1280 μA	5670 μA
10 985 μA 52260 μA 1300 μA 11 961 μA 52270 μA 1280 μA	31330 µA
11 961 μΑ 52270 μΑ 1280 μΑ	31400 µA
	31100 µA
40 000 4 50040 4 4040 4	30800 µA
12 996 μΑ 52810 μΑ 1310 μΑ	31500 µA
13 972 μA 52520 μA 1380 μA	31200 µA
14 4740 μΑ 39340 μΑ 650 μΑ	24260 μA
15 .02 μA 4250 μA 34 μA	1400 μΑ
16 .751 μA .51 μA 4.32 μA	.2 μΑ

Notes:

- (a) D is distance from assembly face to reflective surface.
- 1. Kodak 90% diffuse reflectance neutral white paper.
- 2. Aluminum foil tape (shiny reflective surface).
- 3. Alzak tape (similar to 2).
- 4. Alzak painted with Flat Black Velvet (3M #101-C10 Black) paint.
- 5. White bond paper.
- No. 3 graphite pencil on white bond with entire viewing area of sensor shaded by graphite mark.
- 7. Mylar magnetic tape.
- 8. Clear, smooth plastic tape finish.
- 9. Same as (8) except matte finish.
- 10. Same as (8) except blue color.
- 11. Same as (10) except matte finish.
- 12. Same as (8) except red color.
- 13. Same as (12) except matte finish.
- 14. Same as (8) except gray color.
- 15.3M Tape #476 (a dull black surface).
- 16. No reflective surface.

APPLICAT BULLETII

The same type of observation can be made about unfocused assemblies as were made on focused assemblies with one exception:

The Kodak 90% diffused reflectance neutral white paper offers the best reflective surface.

The information in Table 2 and Table 3 can be used to design the surface in your system.

- 3. Variations in Reflective Surface Size–Another problem may arise as a result of the size of the reflective area. An optimum sized reflective surface would be one which will yield no increase in $I_{C(DN)}$ when its size is increased. Then as the size of the reflective surface shrinks from the optimum size the signal level will decrease. As a result, these units are better used as surface detectors than as mark or line detectors.
- 4. Variations in I_{CIONI} from Assembly to Assembly-There is a wide I_{CIONI} variation from assembly to assembly. Table 4 shows this variation.

Table 4 - Minimum, Typical, and Maximum I_{CIONI}(1) (Data Sheet Conditions for I_{CIONI})

Sensor	Ic(ON) Min.	Ic(ON) Typ.	Ic(on) Max. (2)
OPB701	2000 μA	8400 μA	14500 μA
OPB700	25 μ Α	125 μΑ	168 μA
OPB704	200 μ Α	500 μA	1100 µA
OPB742	10 µA	25 μΑ	1100 μA
OPB745	1000 μ Α	8000 μA	12000 μΑ
OPB706A	500 μA	1000 μΑ	2500 μA
OPB706B	350 μA	700 μA	1920 µA
OPB706C	200 μA	400 μA	1820 μA
OPB707A	25000 μA	50000 μA	59400 μA
OPB707B	17000 μA	34000 μΑ	43500 μΑ
OPB707C	10000 μA	20000 μΑ	39300 μΑ
OPB711	350 μA	700 μA	1950 μA
OPB712	20000 μΑ	40000 μΑ	60000 μA

Notes: (1) Measurements taken using an Eastman Kodak neutral white test card having 90% diffuse reflectance as a reflective surface placed at the optimum distance from the assembly head.

- (2) The maximums are not a guaranteed specification as they are calculated from the two sigma points based on the distribution.
- 5. Variations in Signal Levels Due to Sporadic Problems-Spurious reflections due to illumination from outside sources may cause false triggering. Also foreign material can decrease the desired "on" signal, depending on what it is and where it is located. Consideration must be given to these sources.

D. Applications

A variety of applications are well suited to reflective assemblies.

- a) The variability in output versus distance can be used to detect variations in surface location.
- b) The variability in reflectivity can be used to measure surface roughness.

c) Liquid level sensors are easily fabricated as shown by the illustration in Figure 5. The radiation normally would be reflected from surface "A" to surface "B". When liquid covers surfaces A and B, the change in the index of refraction causes the radiation to continue through surface "A", and not to be reflected back to the receiving sensor.

Figure 5 - Liquid Level Sensor

- d) Reflective assemblies have wide applications in industrial controls and surveillance applications where a retro-reflective surface sends the light back to the sensor. This normally requires a custom assembly as the distances covered may span up to 50 feet.
- e) Reflective assemblies have wide applications in office machines for detecting the presence or absence of paper as it moves through the machine. A variety of special techniques are used to improve the contrast ratio. Many of these designs use custom packages. Figure 6 shows some of these special techniques.

Figure 6 - Special Techniques for Improving Contrast Ratios

Non-Linear Transfer Function Improves Contrast Ratio

• Customer requirements for electrical performance and mechanical configuration are met exactly.

Optical Techniques Used to Reject Reflections from Close Objects

Development costs vary depending on complexity.

Figure 6 - Special Techniques for Improving Contrast Ratios (continued)

· Paper interruptive is less reflective than the mirror background

• Paper interruptive is more reflective than non-reflective background.

f) A sophisticated camera application is shown in Figure 7. The system can work as either a flash control or a shutter control. When used as a shutter control the photosensor receives outside light when the shutter is open. When the amount of outside light reaches a predetermined level (adequate for film exposure), the shutter is closed. The flash control is similar except the photosensor shuts off the flash when a predetermined amount of light is reflected from the subject to the sensor.

Figure 7 - Automatic Shutter or Flash Control

g) Reflective sensors can also be used in high speed print cutting. Figure 8 shows this application. The machine processor prints a thin black line on the white border between each print. The black line causes a small decrease in the amount of light reflected back into the photosensor which causes the print cutter mechanism to trigger.

Figure 8 - OPB701 - High Speed Print Cutting

Conclusion

The information presented should allow the designer to understand the basic variables that exist in reflective assemblies. An understanding of these variables will allow the designer to decide on the best reflective assembly for his application and how to choose other system piece parts for a successful design and implementation.

Tom Sward

Gallium aluminum arsenide — a new generation of infrared LEDs superior to gallium arsenide.

The first light source for actuating an optoelectronic photosensor was the tungsten filament or incandescent lamp. It was eventually replaced by the GaAs infrared emitting diode which offered longer life, smaller size, less power to operate and less heat generated. The GaAs LED is still the workhorse of the industry and will continue to be used in steadily decreasing numbers for the next few years. It will eventually be replaced by GaAlAs as the industry standard for two major reasons: GaAlAs offers at least twice the power output at the same input current (I_F) level and significantly improved coupling efficiency.

GENERAL DESCRIPTION

Typically, a GaAs LED mounted on a TO-46 header with a flat window can will emit 5 milliwatts total radiant flux at an $I_F = 100$ mA. At the same I_F , a GaAlAs LED will typically emit 10 milliwatts total radiant flux. Similar increases are possible in other packages. This allows the designer some options which have not been available before.

In addition, silicon doped GaAs has a spectral emission centered at approximately 935 nanometers. GaAlAs has a spectral emission at approximately 890 nanometers which is very close to the peak response of silicon phototransistors. This improves coupling efficiency by approximately 30%.

FIGURE 1
Photodiode Collector Current Versus LED Forward
Current With Both GaAIAs and GaAs

Figure 1 graphically illustrates the improvement in photodiode collector current as a result of both the higher radiant flux and the optimized spectral emission.

The only negatives to GaAlAs are a slightly higher forward voltage (VF) (see Figure 2) and a slightly higher initial cost. With process improvements and higher volumes, this cost difference whould eventually disappear.

FIGURE 2
Forward Voltage Versus LED Forward Current

CHIP FABRICATION

All Optek GaAlAs LED's are made by means of a straightforward single step solution grown liquid phase epitaxial (LPE) preparation technique. Initially it is much the same process as making GaAs LED's. N type GaAs substrates approximately 16 mils thick are placed in a furnace and heated to around 920° C. A melted mixture of gallium, gallium arsenide and silicon (called the "melt") is then placed on top of the substrates. In the case of GaAlAs, aluminum (Al) is added to the melt. The furnace then starts cooling, and an epitaxial N type layer begins to grow on top of the substrates. As the cooling continues, the silicon in the melt which is amphoteric changes polarity or "flips" to P type material at approximately 900° C, forming the PN junction. The growth process continues until the epi layer reaches a thickness of 7-8 mils. (See Figure 3.)

FIGURE 3

Typical Epitaxial Layer Growth

The nature of the AI in the melt is such that it is depleted or used up rapidly in the early stages of the epi growth. Concentration is virtually zero at the top of the P layer.

The substrate is then etched away with an etchant that readily dissolves GaAs. As the etchant contacts the N layer, the aluminum causes the etch rate to be slowed to 1/100th of the initial rate. This is convenient because it helps to ensure that the N layer is not materially etched.

After etching, appropriate ohmic contacts are added by evaporation techniques. A gold contact completely covers the P layer or backside, and a dot matrix contact is put on the N layer or topside. The chips are then sawed into their final size. A final etching is done to remove saw damage and to roughen the surface of the N layer which enhances light output. (See Figure 4.)

FIGURE 4
Typical Chip Cross Section

WHAT MAKES GaAIAs SUPERIOR?

The wavelength of the emitted light of an LED is related to the energy in the photons of light it emits. Also the higher the band gap energy of the semiconductor material, the higher the photon energy. Al atoms increase the band gap energy in proportion to the concentration which allows adjustment of the photon wavelength. By controlling this concentration, the wavelength can be varied to approximate the peak spectral response of a silicon phototransistor or 890 nanometers.

GaAlAs also has an improved radiation window. In order for an LED to emit more light, absorption of photons traveling through the material must be as low as possible. In other words, there must be a high probability that the photons generated at the junction will reach a surface and escape. For this to happen effectively, the photon energy must be less than the band gap energy of the material. In previous discussions, it was mentioned that AI atoms increase the band gap energy. The heaviest concentration of Al atoms is at the N layer surface with rapidly decreasing concentration toward the PN junction. Photons generated at the junction then travel a path through steadily increasing band gap energy levels until they reach the surface. This property ensures a much reduced chance of re-absorption of photons than does a material in which the band gap energy is constant from junction to surface such as GaAs.

One final plus, GaAIAs has an index of refraction which is slightly lower than GaAs. This affects the critical angle which defines the angle at which there is total internal reflection. (See Figure 5.)

FIGURE 5
Definition of Critical Angle

The critical angle is determined by the formula:

SIN $\theta_C = \frac{n_1}{n_2}$ Where n_1 is the index of refraction of air, or 1, and n_2 is the index of refraction of the chip material.

At angles less than the critical angle, there is partial reflection. (See angle θ_B in Figure 5.) At angles greater than the critical angle, there is total internal reflection. (See angle θ_A in Figure 5.)

There are ways of improving surface emission. One, mentioned earlier, is the post-dicing etch cleanup which roughens the chip surface. This increases the likelihood of photons striking the surface at less than the critical angle. Another improvement is the addition of a clear epoxy, anti-reflective, domed lens placed over the chip which actually enlarges the critical angle to approximately 24°.

RELIABILITY

Since GaAlAs and GaAs junctions are formed in the same manner, the chips should have the same reliability. Life tests to date indicate that this is true. Data shows that both GaAlAs and GaAs have from 5 to 8% degradation after 1,000 hours of maximum rated operation.

DRAWBACKS

GaAlAs has inherently high V_E . The higher the band gap energy, the higher the V_F must be to impart adequate energy to the electrons. Typical V_F for Optek's GaAs LED's at 100 mA is 1.5V vs. 1.75V for GaAlAs. This difference increases slightly at higher current levels.

CONCLUSION

Many power-starved optical assembly packages will be helped immediately by using GaAlAs. Special optosensor assemblies such as card readers, paper tape readers, paper sensors and precision shaft encoders will become easier to design.

Electronic assemblies which operated with an LED/sensor pair will benefit immediately.

- With optocouplers, higher current transfer ratios will be available, and the LED and sensor will not need to be mounted as close to each other which will allow higher isolation voltages.
- With reflective assemblies, reflective objects will be able to be sensed at greater distances than before.

- With interrupter assemblies, precise alignment and gap width will not be as critical. Since there is more light available, aperturing can be reduced for higher resolution or photosensor gain can be reduced for better signal-to-noise ratio and improved gain-bandwidth product.
- In battery-operated applications, a GaAIAs LED can replace a GaAs LED and provide the same light output at 1/2 the current drive.
- Since the same light output can be produced at ½ the current drive, GaAIAs LED's will have much longer operating life.

GaAlAs, with its superior performance, will give the designer more options and design flexibilities than were previously available.

Linear and rotary encoders are evolving to meet the demands of new system requirements, higher performance requirements, harsh environmental conditions and lower cost.

T	able of Contents	Pag
1.	Introduction	. 1
2.	General Discussion	. 1
3.	Encoder Components	. 1
a.	The "Moving Unit"	
b.	The "Stationary Unit"	. 2
4.	Operating Principles	
a.	Modulating the Light Source	
b.	The Light Shutter	
C.	Quadrature	
5.	Sensing Circuit Techniques	
a. h.	Single-Ended Encoders	
U.	Automatic Gain Control	. 4
d.	Differential Circuitry	
e.	Zero Referencing	
6.	Mechanical Interfacing	. 5
a.	Mounting the Moving Unit	. 5
b.	Mounting the Stationary Unit	. 5
C.	Maintaining the Gap	
d.	Error Related to the Gap	
e.		
7	Canalusian	C

Introduction

Linear and rotary encoders have come in a wide variety of design styles over the years, the most common being rotary switches, potentiometers, capacitive, magnetic, and optical types. The optical encoder has become the most popular of these encoding methods due to its long life, simplicity of construction, versatility, high accuracy and high resolution. This application bulletin will briefly define an optical encoder, and bring the designer up to date on encoder terminology, design techniques and limitations. Refer to Application Bulletins 201 and 203 for additional information.

General Discussion

An encoder is an electromechanical device used to monitor the motion or position of an operating mechanism, and to translate that information into a useful output. We define an optical encoder as an optoelectronic device which translates rotational or linear movement into some usable electronic waveform. Encoders generally consist of two parts; a "moving unit" which is attached to and moves with the device being monitored. The moving unit contains information to be

sensed by the "stationary unit." The stationary unit consists of an LED and a photosensor (or a combination of LEDs and photosensors) mounted on opposite sides of a slot through which the moving unit passes, thereby modulating the light path(s).

The types of output information available are speed, velocity (speed with direction) and relative or absolute positioning. The output can be either analog or digital depending on the type of photosensor used. For a more thorough description of encoding techniques, refer to Optek Bulletin 201.

Encoder Components

a. The Moving Unit

The modulation of the light path(s) in the optical encoder is accomplished by the moving unit which is a "scale" (linear encoder) or a "disc" (rotational encoder). The scale or disc is attached to the operating mechanism and contains alternating areas of transparency and opacity to the light path. The size, shape, and frequency of these areas is the basis of the output information supplied by the encoder.

A number of materials are currently being used in the fabrication of scale and disc components. A few examples are given below and on page 2 with the advantages and disadvantages of each.

Molded Plastic

Advantages	Disadvantages
Low cost	Resolution of < 50 lines per inch
Durable	Relative mechanical and thermal instability

Etched Metal

Advantages	Disadvantages
Reasonable cost	Resolution of < 150 lines per inch
Resistant to shock and vibration	
Good thermal stability	

Mylar Film

Advantages	Disadvantages	
Reasonable cost	Mechanical, thermal, and humidity instability	
Resolution of < 1000 lines per inch	Can be damaged in handling	

Chrome on Glass

Advantages	Disadvantages
Resolution of > 2500 lines per inch	High cost
Excellent optical quality	Can be damaged in handling
Excellent mechanical, thermal and humidity stability	

b. The Stationary Unit

The stationary unit contains all the components necessary to generate the light source and sense its intensity as it is being modulated by the scale or disc. It sometimes contains the signal conditioning electronics required to amplify and/or digitize the output of the encoder. The light source consists of one or more incandescent lamps or light emitting diodes and may include lensing to improve the collimation of the light source. Most recent optical encoders use LEDs because of their lower cost, longer life, better shock resistance, and lower power consumption.

(1) Sensing Elements

Solar cells, photodiodes, phototransistors, and photosensitive integrated circuits are all used in optical encoders. The Optek Photologic™ series of photosensors was developed to enable the stationary unit to provide a digital output which can be directly interfaced with TTL, LSTTL, CMOS, and other standard logic families.

(2) Apertures and Reticles

One method of improving encoder resolution is the "sizing down" of the photosensitive area. This is done by placing a reticle with

a certain aperture size in front of the photosensor. The reticle contains a pattern of transparent and opaque areas which are optically mated to the scale or disc being "read." The transparent areas are referred to as apertures, and one or more apertures may be placed in the reticle over the photosensor in high resolution

Figure 1 - Examples of Reticles

Molded Plastic

Etched Metal

(3) Signal Conditioning Electronics

Resistors, capacitors, integrated circuits, input/output connectors, and additional components are often contained on a printed circuit board in the stationary unit. These components are used to amplify the photosensor output and interface the encoder to the system in which it is used.

(4) Housing

The components used in the construction of the stationary unit are usually held in position by mounting them into a metal or plastic housing. The housing is then mounted to the operating mechanism (motor, etc.) to optimize the interface between the moving and stationary units. In some cases, the moving and stationary units are packaged together and external linkages are provided for coupling the packaged encoder to the operating mechanism.

Operating Principles

a. Modulating the Light Source

The movement of the scale or disc in the light path is the source of modulation of the light in an optical encoder. A simple example of modulation would be the interruption of the light beam in a burglar alarm. The momentary interruption or reduction of light is easily detected. As resolution requirements increase, apertures become smaller and detection becomes more difficult. An improvement over standard aperturing is the light shutter.

b. The Light Shutter

The reticles used in optical encoders may contain 20 or more alternating transparent/opaque areas in front of each sensor. If the moving unit and the reticle have identically matched patterns of 50% duty cycle (transparent and opaque areas are the same width) then the emitted light received by the sensor will be at a maximum when all the transparent areas of the reticle are exactly superimposed

designs. Some examples of reticles made of the same materials, and intended to be used with the scale and disc samples discussed earlier, are shown in figure 1. The same advantages and disadvantages apply. In the case of molded plastic, apertures are molded right into the housing.

Mylar Film

Chrome on Glass

with those of the moving unit, as illustrated in figure 2.

When the moving unit moves one area width, the emitted light received by the sensor will be at a minimum, but not zero since in this type of light modulation there is some slight light leakage around the opaque areas in the moving unit. This sequence repeats for each cycle of movement, and is referred to as the "light-shutter" because of the similarity of operation to a camera shutter.

Figure 2 - Light Shutter

c. Quadrature

Determination of direction of movement of the moving unit is also possible by locating two photosensors in the encoder and mechanically shifting the aperture pattern in the reticle over one photosensor, ¼ cycle from the aperture pattern in the reticle over

the other photosensor as shown below. This causes a "phase shift" in the output of one photosensor relative to the other and indicates direction of motion. This phase relationship is called "Quadrature," and is illustrated in figure 3.

Figure 3 - Quadrature

The output from photosensor "A" rises 90° ahead of the output from photosensor "B" indicating that the moving unit is moving to the right. If the moving unit were moving to the left, the output from "B" would be 90° ahead of "A." For more information on dual channel encoding refer to Application Bulletin 203.

Sensing Circuit Techniques

The use of the light shutter permits the design of an optical encoder capable of very high resolution. However, electrical and mechanical errors must be considered and compensated for in the design to allow full use of this capability.

a. Single-Ended Encoders

The use of a single photosensor to generate each output in an optical encoder is inherently limited. LEDs will degrade with time and temperature resulting in changes in the output signal shape and level. However, if performance requirements are not severe, the single ended approach offers the simplest design approach and lowest cost.

b. Convoluted Duty Cycle Encoders

The use of 50% duty cycle components in a single-ended encoder does

not necessarily guarantee the optimum in performance. A reduction in the duty cycle of the reticle (making the opaque area wider than the transparent area) and an increase in LED drive current will improve the output performance of an encoder that is being digitized by a comparator. Operating a phototransistor at very high light conditions will tend to reduce its frequency response. The use of convoluted duty cycle usually requires the use of a photodiode type of photosensor. Opteks Photologic $^{\mathsf{TM}}$ series of photosensors are ideally suited for this type of application.

c. Automatic Gain Control

An unmodulated photosensor channel can be incorporated exclusively to monitor the intensity of the emitted light from the LED. Feedback is then provided to a drive circuit powering the LED. This compensates for degradation from all causes and will enhance the long term performance of the encoder. The trade-off is in increased cost and circuit complexity.

d. Differential Circuitry

By generating quadrature in "complementary format" (i.e., $0^{\circ}/180^{\circ}$, $90^{\circ}/270^{\circ}$), the complementary phases may be differentially amplified or compared to generate the required quadrature output

(generally 0° and 90°). This approach allows noise reduction and drift compensation. An additional advantage is the ability to operate high gain phototransistors in the nonsaturated mode, thereby improving frequency response. The negatives are increased cost and circuit complexity.

e. Zero Referencina

Many encoders provide speed, velocity, and relative position data, but a starting position must be known to derive true position. An extra photosensor is sometimes provided to look for a single point of transparency or opacity at a specific place on the scale or disc. The sensing of this point is used to zero the counting circuitry driven by the encoder during power-up, or any time an error in count is detected.

Mechanical Interfacing

The best possible performance from an optical encoder is dependent on the proper selection of materials, circuit design and the integrity

Figure 4 - Encoder Mounting

with which the encoder is attached to the operating mechanism. The space between the scale or disc and the reticle must be as narrow as possible and consistently maintained throughout the travel of the moving unit. Variations will result in degraded performance.

a. Mounting The Moving Unit

A properly designed housing provides for flatness across the surface of the reticle at some absolute height from the mounting surface of the stationary unit. This allows the positioning of the moving unit to be performed as a separate operation. Disc mounting requires two steps: (1) affixing the disc to a hub using adhesive and/or a clamp ring; (2) mounting the hub/disc to the device being monitored using adhesives and/or set screws located 90° apart on the hub. Linear scales are mounted to a bracket on the operating mechanism at one or both ends. The entire scale must travel evenly and precisely through both end extremes. A typical encoder mounting application is illustrated in figure 4.

b. Mounting the Stationary Unit

The stationary unit should be designed to allow rotational or displacement adjustments. These adjustments compensate for mechanical tolerances in fabrication of the stationary and moving units that could prohibit the final fine tuning needed by the light shutter.

c. Maintaining the Gap

The distance between the scale or disc, and the reticle is referred to as the "gap." In photo-emulsion type light shutter components, the emulsion sides should be facing each other and a minimum space maintained to prevent abrasive damage. If the properties of the

operating mechanism and the housing are known (thermal expansion, end play, eccentricity, etc.) the moving unit can be mounted using a spacer. Then the fixed unit is simply inserted, adjusted and locked in place. Another solution is a sliding bearing inserted between the shutter components to prevent wear damage.

d. Error Related to the Gap

A gap of zero width allows for complete modulation of the emitted light shutter. Any increase in gap width will result in reduced modulation where:

$$\text{\% Modulation} = \frac{\text{Signal Output (ACVpp)}}{\text{Max. Achievable Undistorted Signal Output}} \times 100$$

The reduced modulation is caused by non-collimated light from the LED (i.e., leakage around the shutter components) and becomes substantial as the gap width approaches the aperture width in size.

Variations in the gap during the travel of the moving unit result in amplitude modulation. These variations affect the interface circuitry driven by the encoder during signal conditioning or digitizing and can

J. W. Davidson, III

Lowell Johnson

cause clipping, positive pulse width modulation or variation in time between output pulses (in a pulse output encoder).

The quadrature relationship between the output channels will vary as the sum of the error on each individual channel.

e. Performance Limits

The optical encoder provides direction information only as long as the quadrature related signals occur in proper sequence. Any phase, duty cycle, or modulation error that interrupts or reverses this sequence defines the ultimate limit of an incremental encoder.

Conclusion

Optical sensing is currently the most versatile method of motion sensing in rotary and linear applications. LED and photosensitive integrated circuit technology, along with innovative sensing techniques are keeping pace with today's sensing requirements so that the advantages of long life, high resolution, reliable operation in harsh environments, and low cost are available in almost any motion sensing application.

Understanding infrared diode power ratings.

Introduction

Infrared emitting diode power measurement is dependent upon a number of variables which must be precisely defined in order for design engineers to utilize data sheet information. Manufacturers differ not only in the techniques used in measuring power, but also in their interpretations of the definitions of the parameters which are measured. This application bulletin is intended to clarify this misunderstanding, especially for GaAs and GaAlAs solution grown epitaxial devices.

General Discussion

Power is measured in units of energy per unit of time, and the conventional MKS unit is the Watt. Some factors which must be controlled to make accurate power measurements are discussed below.

The energy an LED emits is in the form of photons, and a photon's energy is inversely proportional to its wavelength. To measure the power emitted, the technique must take into account both the rate of photon emission and the average wavelength of the photons. Both the rate emission of the LED chip and the average wavelength of the emitted photons change as functions of chip temperature. See Figures 1 and 2 for examples of this change.

Figure 1. Output Power vs. Ambient Temperature for both GaAs and GaAIAs IR LEDs

Figure 2. Peak Wavelength vs. Ambient Temperature for both GaAs and GaAlAs IR LEDs

Stress on the chip will cause any defects in the chip to expand along the planes of the crystalline structure in a process called dark line defect formation. This degrades the chip, and power output decreases as a function of time. Measurements made after the chip has been stressed mechanically, thermally, or electrically will be lower than initial readings. Figures 3, 4, and 5 illustrate the magnitude of this change due to applied DC current for variations of ambient temperature, current level, and different materials used as emitters.

Figure 3. Percent Change in GaAs IR LED Mounted in Metal TO-46 Package vs. Time at 25°C and 55°C

Figure 4. Percent Change in GaAIAs IR LED Mounted in Plastic TO-46 Package vs. Time at Various Current Levels

Figure 5. Percent Change in GaAs and GaAlAs IR LED Mounted in Metal TO-46 Package vs. Time under Same Conditions

The response of most detectors is also wavelength and temperature dependent. The surface of the detector can reflect photons depending upon the wavelength, the angle of incidence, and the type of protective coating on the detector surface. The range of linearity in power detection can be exceeded by some emitting devices. Also, there are other minor characteristics of detectors which must be considered. Obviously, the accuracy of the detection system is critically important.

Any measurement of directed output is dependent upon complex optics which include chip centering in the reflective cup, reflector design, chip to lens centering, bubbles or contaminants in the packaging, and the fact that approximately half of the emitted photons exit the chip from the side walls rather than the top surface.

Many devices have radiation patterns which change as the distance from the device to the detector is varied, so this distance can be important in directed output measurement. See Figure 6:

Figure 6. OP295/OP296/OP297 Relative Radiant Intensity vs. Angular Displacement

It is essential that these variables be exactly specified in order for users to extract necessary information from data sheets. Separate application bulletins address the thermal behavior of LEDs (Bulletins 105 and 121) and the characteristics of GaAs and GaAlAs LEDs (Bulletin 114). Power measurement is integrally tied to the information contained in these bulletins, and even a basic understanding is difficult without under standing the information they contain.

Parameter Definitions and Measurement Techniques

There have traditionally been two methods of defining power measurement, but there have been different interpretations for each.

The first method is radiant power output $(P_0 \text{ or } E_e)$, sometimes called total power. A strict interpretation of P_0 is that the total amount of radiation exiting the package in any direction should be measured. Optek has interpreted radiant power output to be only that radiation which exits the package in a direction useful to most customers. The measurement includes only that radiation collected by a flat surface detector near the lens tip and orthogonal to the lens axis. Radiation emitted from the sides or back of the package and surface reflections from the detector are not collected. Therefore, Optek devices are conservatively rated (sometimes by a factor of 2 depending on the device type) when compared to devices which are measured differently by other manufacturers. For instance, P_0 readings for the narrow (15° between half power points) radiation pattern OP295 are typically 60% higher when using a parabolic reflector than when using the standard Optek P_0 test fixture.

Po measurements are normally useful only for devices which have wide radiation patterns because the primary application is in providing a relatively even intensity over a large area. Radiation which

exits the side or back of the package is not useful without external reflectors; and if external reflectors are added, there are intensity peaks in the radiation pattern which are detrimental in most applications.

The second major way to measure power is on-axis intensity. This is done by measuring the power incident upon a specified area. The most common method is to provide a fixture which has a fixed distance from the device to an aperture of precisely known area which is placed in front of a detector. This measured power can then be specified as average power per unit area (both $E_e(APT)$ and P_A are equivalent and the unit of measure is normally mW/cm^2) or as average power per unit cone angle (I_e ; where the unit of measure is mW/sr).

Most LEDs cannot be modeled as a point or discrete source except at distances which are very large compared to the package dimensions and/or optical dimensions. Thus, the foundation assumption in spherical calcaulations (using mW/sr) is invalid and attempts to use this model can lead to errors. Therefore, the calculated value of l_e is dependent upon distance for most applications, and a design engineer can be misled by the mathematical model into assuming that l_e is a constant regardless of distance. Note in Figure 7 how the mW/sr becomes consistent at approximately 6 inch separation.

Figure 7. Output Intensity in mW/sr vs. Distance from Lens Side of Mount Flange on T-1 3/4 Package

Optek has chosen to use $E_{e(APT)}$ or P_A rather than I_e for devices which don't have a virtual'source that is distance independent. This is the preferred parameter because a simple performance graph can then show how $E_{e(APT)}$ varies with distance as shown in Figure 8.

Figure 8. Output Intensity in mW/cm² vs. Distance from Lens Tip on T-1 3/4 Package

 $E_{e(APT)}$ measurements have historically been made only for narrow radiation pattern devices because their major application is to have a high on-axis intensity for good coupling efficiency with a small sensing area photodetector (see Figure 9).

Figure 9. Coupling Characteristics of Plastic TO-46 Phototransistor and GaAIAs IR LED vs. Separation Between Lens Tips

However, Optek is now using the measurement parameter with wide radiation pattern devices also. $E_{e(APT)}$ is a key design parameter when the distance and aperture are chosen to give maximum useful information. The distance is chosen so two criteria are met: first, all intensity peaks should fall within the aperture opening for devices with normal optics; and second, the distance should be at a maximum with the constraint that the intensity does not vary more than 10% from point to point within the aperture

opening for normal devices. Aperture size is typically chosen so that it is slightly larger than the lens diameter of a detector which is mechanically matched to the dimensions of the LED. This provides the user with a mechanical alignment tolerance as well as the average power intensity within the aperture. Figures 10A,10B, and 10C show information from the T–1 3/4 data sheet.

Figure 10A. Outline Drawing from OP293/298 GaAlAs Data Sheet

DIMENSIONS ARE IN INCHES (MILLIMETERS)

Figure 10B. Beam Pattern of OP293

Kirk Bailey

Figure 10C. Beam Pattern of OP298

Notes to Figures 10A, 10B, and 10C:

- (11) E_e(APT) is a measurement of the average apertured radiant energy incident upon a sensing area 0.250" (6.35 mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 0.500" (1.27 mm) from the measurement surface. E_e(APT) is not necessarily uniform within the measured area.
- (2) E_e(APT) is a measurement of the average apertured radiant energy incident upon a sensing area 0.250" (6.35 mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 1.429" (36.30 mm) from the measurement surface. E_e(APT) is not necessarily uniform within the measured area.

Conclusion

Power measurement of LEDs varies more than any other parameter between different manufacturers. Part of the difference is in interpretation of the definitions of the parameters measured and part is the technique used. Users should be able to predict how devices will work in their application by using data sheet information, and this bulletin should be useful to that end.

A comparison of plastic versus metal packaging for infrared sensors and emitters.

Introduction

Recent advances in optoelectronic packaging technology have resulted in the development of plastic infrared sensors and emitters which are in many ways superior to their metal counterparts. While the metal package is still the right choice for some applications, plastic devices offer decided advantages in cost, output power, reliability, power dissipation, and optical quality. This application bulletin will compare the two packages and show how the better performance of the plastic part is obtained.

Cost

The lower cost of the plastic package is a result of reduced labor costs (due mainly to automation of the assembly process) and reduced materials cost. Plastic device construction lends itself to automation, and the expensively tooled piece parts characteristic of metal devices are simply not required.

Mounting the chip and attaching the bond wire are two of the most labor intensive phases in the manual assembly of optoelectronic semiconductors. The problem is especially acute for LEDs as the chips are small and relatively delicate, and they must be mounted in a reflective well to utilize their lateral emission. Automation of these processes requires extremely precise mechanical placement, which is difficult with the individual headers used in metal devices. In contrast, the "strip" lead frame (Figure 1) used in making plastic devices can be stepped through automatic chip mount and wire bond machines so that precision locating of the mounting surface is readily performed.

Figure 1A. IR LED 20 Unit Lead Frame

Figure 1B. Detail Enlargement of LED Chip Mounting Area

Figure 2A shows the detail of an IR LED that has been mounted, bonded and coated with the silicone gel that enhances the energy emitted. Figures 2B, 2C, and 2D show examples of the production machines used for hand mounting, semiautomatic mounting, and fully automated mounting of the IR LED chips on different headers or lead frames.

Figure 2A. Detail of Mounted and Bonded Chip

Figure 2B. Hand Mount Station ≈ 100 units/hour

Figure 2C. Semi-automated Mount Station ≈ 500 units/hour

Figure 2D. Fully Automated Mount Station ≈ 5000 units/hour

The initial cost of an automatic chip mount machine (Figure 2) or automatic bonder is high but the dramatic increase in throughput results in an overall cost reduction for the finished part. For example, manually dispensing conductive epoxy onto the lead frame and mounting the chip with tweezers produces typically 100 units per hour. Partial automation, by mechanically indexing the lead frame into position for a manual mount operation, increases this to about 500 units per hour. Fully automating the process results in 5000 to 6000 units per hour.

Output Power

A typical plastic LED has approximately 40% more output power than its metal equivalent (see Table I). There are two reasons for this. One is that metal LED headers allow some of the chip's output power to be radiated into the opaque wall of the package. Perfect reflectivity at these surfaces is not attainable and much of this radiation is absorbed before it can escape through the lens. The other problem with the metal package is that the lens has two surfaces.

Some of the optical radiation which does reach the lens is reflected back into the package and absorbed. Figure 3 shows a comparison of the optical properties of the two package types.

Figure 3. Optical Interfaces in Metal and Plastic Packages for IR LED

The following table shows a comparison of total output power on the metal package and the mechanically equivalent plastic package.

Table 1. Output Power (P_0) in Metal and Plastic Packages @ IF = 100 mA

Device Type		PO
Metal TO-46	Low Range Mid Range High Range	8.0 mW 10.0 mW 12.0 mW
Plastic TO-46	Low Range Mid Range High Range	12.0 mW 15.0 mW 18.0 mW

Power Dissipation

The power dissipation rating for a device is a function of its thermal impedance, which is the ability of the package to get rid of heat generated by the chip. This varies from a maximum with an infinite heat sink to a minimum with no heat sink. (Applications Bulletin 121 covers in detail the techniques used to measure these quantities.) In practice, TO-46 LEDs, TO-18 sensors, and their plastic equivalents are used in a socket or soldered in a PC board; this results in a thermal impedance somewhere between the two extremes. The primary heat flow path for a device under these conditions is via the leads, and some heat sinking is provided by the socket or PC board.

Since the leads of plastic devices have a larger cross-sectional area $(.020" \times .020" vs. .017"$ dia.) and are made from a more thermally conductive material (copper-silver vs. nickel-iron alloy), the thermal path of the plastic part is normally about 40% better than that of its metal equivalent. This results in significantly improved power dissipation ratings for the plastic part. Infinite heat sink ratings will show the metal part to be equal or superior since these ratings take advantage of the better thermal conductivity of the metal package body; however, since a heat sink is rarely used, the plastic part usually offers better thermal performance.

Reliability

In optoelectronic technology the two main reliability considerations are long term LED degradation and catastrophic failure of LEDs or sensors due to thermal and mechanical stress. In the case of long term LED degradation, the plastic device has a definite advantage due to its improved power dissipation characteristics and the lower junction temperatures which result. Figure 4 shows life test data for the metal OP231 and the plastic equivalent OP298 operated at 100 mA.

Figure 4. Operating Life Test Data on Metal and Plastic TO-46 Packages

Catastrophic failure due to thermal or mechanical stress, which usually occurs early in the operating life of a device, results from forces on the chip or bond wire which can dismount or delaminate that chip, disconnect the wire bond, or break the bond wire. The design of the metal part gives it the advantage here as there are no such forces on the chip or bond wire. However, the machine fabrication of the plastic part is very repeatable and mechanically accurate so that there are fewer failures due to assembly variables. In the end, neither part has a clear cut advantage with respect to catastrophic failures.

Optical Quality

Lens performance is especially important for LEDs and in this respect the plastic part is distinctly superior. The automated chip placement is a contributing factor since inaccurate placement of the LED chip in its reflective well can cause power loss and a deviation between the optical and mechanical axes of the finished part. However, the most significant factor is the lens itself. In the plastic lens there is only one surface, which is controlled by the precisely machined and polished surface in which it is cast or molded. The glass lens used in metal packages is flame polished from a molded glass pellet, and the resulting lens exhibits variations in focal length and surface curvature so that the radiation pattern of the finished part is difficult to control. Figure 5 shows typical radiation patterns for OP131/OP231 metal parts and OP293 plastic parts. This illustrates the improved consistency of the plastic lens.

Figure 5. Radiation Patterns on Metal and Plastic TO-46 Packages

OP131/OP231 Metal TO-46

OP298 Plastic TO-46

Hermeticity

The metal packages of the TO-18 or TO-46 type can be leak tested utilizing the helium or radioactive systems and show a decided advantage in that they are hermetic. The seal or leak rate on the plastic parts is primarily a function of leak path. The moisture or harmful material must traverse along the lead/plastic interface from the outside world to the junction of the chip. Normally moisture is considered the culprit since increased leakage is the problem. The problem is much more severe on a phototransistor since it is operated with a reverse bias on the collector-base junction; increased leakage will result in a higher "off" level, with a decrease in gain in the "on" level. The small leakage due to non-hermeticity is not as big a problem on LEDs since they operate in the forward mode and

increased leakage will appear as a very slight reduction in energy transmitted. Metal units offer an advantage in hermeticity. This primarily pertains to the receiver or sensor and is not a major factor in the LED.

Temperature Range

The normal temperature range for metal can type parts has been set from -55°C to $+150^{\circ}\text{C}$. These limits are somewhat arbitrary but will satisfy what is required. They primarily come from limitations in a silicon transistor in that hFE decreases with decreasing temperature and ICEO increases with increasing temperature. The same temperature characteristics were utilized on metal can LEDs.

The primary stress mechanism with plastic parts is the result of "glass transition". This is the temperature at which plastic starts a recure cycle. The stresses that result are thermal expansion mismatches which can shear the chip from mount or shear the bond wire. In early plastics utilized in opto components, this "glass transition" occurred in the 100–110°C range. The maximum temperature was specified at 85°C, and sometimes to 100°C range. Improvement in plastics has now raised this to the 125-130°C range. Recent ratings reflect this in allowing a maximum package temperature of 100°C while allowing the chip to attain a 125°C temperature. The poor thermal conductivity of the plastic keeps it well below 125°C. In the future, this trend should continue, eventually allowing metal and plastic parts to carry the same ratings. At the present time, however, the advantage on temperature range remains with the metal can.

Solvents Affecting Plastic

Methanol and isopropanol alcohols are recommended cleaning agents. Plastic discrete components and assembly housings are soluble in chlorinated hydrocarbons and keynotes. Highly activated water soluble fluxes can attack discrete components and housings in some situations.

For purposes of cleaning or similar short term exposures, the plastic devices may be considered tolerant of standard chemicals that do not show obvious attack on a test sample. For long term exposures, such as immersed applications, or specific chemicals, contact the factory for more information.

Conclusion

A thorough analysis of the evidence shows that improved materials, processes, and automation give plastic housings a decided advantage over their metal counterparts for opto sensors and LEDs in most applications. Their use can reduce costs, provide improved reliability through longer life, and offer increased infrared power output. In summary, the plastic packages represent a significant technological advantage over their metal can predecessors.

Martin McCrorey

Designing a "Wide-Gap Optical Switch" using an OP293/OP298 (plastic TO-46 equivalent) LED and OP593/OP598 (plastic TO-18 equivalent) phototransistor.

Introduction

The application described here is commonly referred to as "object presence" sensing. It is the use of a single pair of active components, (LED and sensor) to sense the interruption of an optical path by an "opaque" object. This type of beam interrupt switch is applied in industrial controls and computer peripherals to signal:

- seating of tape cartridge
- · door position on disk drives
- · obstructions of document paths
- conveyor feed rates

Compared to many encoder type switches this application is simpler from the standpoint of speed and resolution requirements. It can, however, have its own set of challenging design considerations depending on the length of the optical path and the constraints of performance, environment, and cost. This example is intended to illustrate the major design variables of a relatively long optical path switch and how the information of the component data sheet can be used to choose and apply the parts.

"The Gap"

Many off-the-shelf optical components are easily applied in short-gap switches because their inherent coupling characteristics produce a useable signal over a wide range of drive and mounting conditions. As the gap widens, the coupling of light between the emitter and sensor drops off rapidly and an appreciation of techniques for optimizing performance is critical. The coupling curve from the OP293/OP298 data sheet illustrates the relationship between signal strength and gap width.

Figure 1 – Coupling Characteristics of OP293/OP298 and OP593/OP598 vs. Lens Tip Separation

The more rapid decrease in coupling vs. distance of the OP293/0P593 pair is due to the differences in package lenses which produce a wider beam angle.

Other package types have similar coupling curves, most decreasing with distance more rapidly than this family of parts. The OP298/0P598 pair will be used for the example because of the superior coupling at longer distances.

All the performance optimizing techniques are tied to the clear definition of system constraints and minimizing both electrical and mechanical tolerances.

"Black Box"

The "system" level of the application should be as clearly defined as possible to enable definition of mechanical tolerances, ambient conditions, and output limits.

The "Black Box" is defined by a package outline, an electrical schematic and some environmental conditions.

Figures 2, 3 and 4 completely define the requirements of the system.

Figure 2 - Package Outline

Figure 3 - Schematic/Drive

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214)323-2200

Fax (214)323-2396

Figure 4 - Operating Conditions

Operating Temperature Range	(0°C to 55°C)
Voltage Supply Tolerance	(± 10%)
Required Operating Life	50K Hours

Other ambient conditions: To simplify the example, assume a relatively clean environment and one in which ambient light conditions will not produce errors in the output signal. Both of these conditions can be addressed with filters over the devices and additional performance tolerances.

Basic Guidelines

To ensure that the system will work over the full range of operating conditions and will also be manufacturable, some trade-offs and tolerances must be introduced. As with every other circuit, the performance variations versus temperature, life, and supply voltage are considered. The optically coupled circuit has the additional tolerance associated with the beam alignment of the LED and sensor.

Oftentimes the single largest tolerance of the optical (infrared) switch design is associated with the degradation of LED power output over time. By nature, the efficiency of either GaAs or GaAlAs LEDs decreases with use and is directly proportional to both drive current and operating temperature. Since the "Black Box" definition fixed the temperature range, the degradation tolerance can be minimized only by minimizing the drive level. The other system components can be considered to have virtually no performance change with time in a clean environment.

The Coupled Pair

The basic tasks of the switch design are selection of a component pair which will meet the black box conditions and encasing the pair in a manner which will optimize long-term performance. The packaging scheme will define the exact lens-to-lens spacing, the beam alignment accuracy, and the components' heat sinking conditions that dictate power dissipation.

Figure 5 shows a section view of the switch with the components mounted on a printed circuit board and held in alignment by cylindrical plastic cavities. The lenses of the parts are recessed in the cavities. This increase in the lens-to-lens spacing will decrease the coupling slightly; but, the aperturing effect of the cylinders will limit the beam angle of the parts and help reduce reflections or the sensing of light from other sources which could give erroneous signals. Additional stray light protection could be provided if required by making changes in interfering surfaces or by aperturing.

Figure 5 - Mechanical Design

The mechanical alignment of the components will depend primarily on three tolerances, (1) the diameter of the LED and sensor package, (2) the diameter of the cylindrical cavities, and (3) the straightness or flatness of the housing which maintains the beam axis.

Figure 6 - Package Tolerance

DIMENSIONS ARE IN INCHES (MILLIMETERS)

From the data sheet of the OP298 and OP598 (figure 6), the discrete package tolerance is $\pm .006$ inches for both LED and sensor. Figure 7 shows the possible beam misalignment attributable to the worst case dimensions of the component and housing if the cavity is made to fit the largest possible package. It is assumed the cylindrical cavity can be molded to a tolerance of $\pm .0005$ inches.

Figure 7 - Package Misalignment

In practice, an improvement can be made on the fit of the components by introducing details in the cavities which make use of the plastic's flexibility. Even with glass filled material, the addition of small ribs along the cavity walls will hold the smaller diameter components in better alignment and can compress to allow a press fit of the larger parts.

Figure 8 - Tightening Ribs

The tightening ribs shown in figure 8, reduce the diameter mismatch to (.184-.178) = .006 max. reducing the optical axis displacement to:

$$\tan^{-1} \frac{.006}{.128} \approx 2.9^{\circ}$$

The misalignment associated with curvature of the housing will depend on the method of construction; however, for a molded plastic housing of this size it would be fair to assume a flatness of .005 inch. Over the optical path of (2.50 inches) this warp should not contribute more than $\approx \tan^{-1} \frac{.005}{2.50} \approx .11^{\circ}$ shift off axis. With this addition to the shift from the cavity tolerance, it can be assumed the LED or sensor could be misaligned as much as four degrees (3°).

Power Requirements

The ratings of the OP598 are given in terms of milliamps (mA) of collector current when irradiated by a tungsten source of 5 mW/cm² and supply voltage of 5 volts. The data sheet characteristics, together with the "black box" constraints, enable calculation of the power required from the LED.

The tolerances to be considered for the transistor's power requirements are associated with collector current changes with temperature and optical axis alignment.

The shift in spectral response of the transistor and spectral emission of the LED over temperature are relatively minor tolerances here but may need to be considered in designs with broader temperature ranges.

The data sheet curve for normalized collector current vs. temperature (figure 9), indicates an increase of one percent per degree Celsius, in a pulsed mode. The low current requirements of this design will not contribute enough heating to warrant adjustments to this curve. However, in a conservative design, this temperature characteristic should not be used as a factor that completely

compensates for the opposite temperature effect of the LED. The temperature sensitivity is dependent on the transistor's electrical gain and can vary significantly. The curve can be used as a worst-case tolerance, (25%) at the low temperature of this design.

Figure 9 - Normalized Collector Current vs. Ambient Temperature

The worst-case optical axis misalignment has already been calculated to be four degrees (3°). Its effect can be estimated from the curve of normalized collector current vs. angular displacement, figure 10. The narrow beam of the 0P598 makes the part more sensitive than the 0P593 to misalignment (dropping \approx 15%) but this does not outweigh the rated performance advantage of more than two to one.

In contrast to many hermetic devices, the molded optics of the OP598 is very consistent. The beam pattern graph, therefore, accurately represents performance and requires no additional tolerancing.

Figure 10 - Normalized Collector Current vs. Angular Displacement

To find the basic radiant power requirement, the data sheet's tungsten test rating must be converted to one which reflects the transistor's sensitivity to the GaAlAs emission of the OP298. Figure 11 shows how the collector current varies with power intensity and the type of source used.

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(214)323-2200

Fax (214)323-2396

Figure 11 - OP593/OP598 IC vs. Irradiance

Curves A, B and D represent the typical response of the OP598 to GaAlAs. GaAs and tungsten sources respectively.

Curves C. D and E show the OP593 collector current variation vs. power for each source.

The tungsten response curve of the OP598 (curve D), intersects the irradiance level of 5 mW/cm² at a current level of between seven and eight milliamps. This curve, therefore, reflects the minimum response of the highest range part (OP598A), or the middle of the rated response range for the OP598B. Direct calculation from the data of the curve, therefore, will insure performance estimates that are representative of a relatively wide distribution of the available components.

The parallel relationship of these curves can be translated into a convenient conversion ratio between each source. To determine the required power from each source for a given current level, the following conversions apply:

- tungsten to GaAs divide by 1.50,
- tungsten to GaAlAs divide by 2.55,
- GaAs to GaAlAs divide by 1.70.

The power required to drive the transistor at the system's minimum limit of 200 uA can now be calculated.

Applying the initial tolerances to the minimum limit

- 25% for temperature effects,
- 15% for axis misalignment,
- 10% power supply and measurement accuracies. establishes a new limit of (200 μ A) (1.75) = 350 μ A.

The curve of figure 11 for tungsten intersects 350 µA at a radiant power level of about 250 μ W/cm².

Applying the conversion factor for GaAlAs, the power requirement is reduced to approximately 100 µW/cm², which corresponds closely to the top curve of figure 11.

LED Drive

The ratings for the OP298 LED, like that of the OP598, establish nerformance limits at one set of conditions. The calculated power requirement of the transistor, together with the data sheet information, will be used to determine the minimum drive current for the OP298.

Tolerances we can apply to the LED without knowing how it will be operated, include:

- · coupling vs. gap width,
- If vs. supply tolerance.
- axis misalignment.
- effects of ambient temperature.

The effects of power degradation with life and device heating require some knowledge of the operating current level.

Figure 12. Normalized Power vs. Distance, provides a conversion factor from the data sheet test distance to the applications gap distance. Since the curves reflect the spacing from the sensor to the LED flange, add the package length of .22 inches to the optical path length of 2.50 inches for conversion.

At the distance of 2.72 inches, the OP298 retains about 30% of its rated power intensity. The similarity in size between the data sheet aperture (.25") and the applications sensor diameter should make this conversion very accurate.

It is obvious from this figure why the narrow beam OP298 was chosen over the wider beam OP293. With the gap separation of this system, the OP293 retains only 2.5% of its rated power.

Figure 12 - Normalized Power vs. Distance

Assuming the LED current will be controlled by the five (5) volt supply and a limiting resistor, a notable tolerance results. Even with a quality resistor, the variation of the LED's forward voltage vs. current can produce a 15% drive current tolerance for a 10% voltage supply tolerance.

The axis misalignment from the mechanical design has been calculated to be 3° worst case. As with OP598, the effect on coupling will be in the range of 15%.

(214) 323-2200

The system's ambient temperature range contributes a power tolerance of 25% at the upper limit of 55°C, as shown in figure 13.

Figure 13 - Normalized Po and Ee(APT) vs. Ambient Temperature

With these tolerance factors (15% axis misalignment; 15% power supply tolerance; and, 25% ambient temperature limit) and the power requirement of $100 \ \mu\text{W}/\text{cm}^2$, the data sheet ratings can now be used.

Taking the initial estimate of power required by the sensor (100 μ W/cm²), we can apply these first tolerances.

100 μ W/cm² × (85% × 85% × 75%)⁻¹ = 100 μ W/cm² × (1.85) = 185 μ W/cm²

This is the amount of power intensity which would be required at the data sheet's test distance of 1.425 inches. As was shown on figure 12, an IRLED at the designed gap would have only 30% of power measured at 1.425 inches. To convert for this 70% drop with distance, divide by 0.3. Thus

P min @ $(2.75'') = 617 \mu W/cm^2$

Referring to figure 14, it is evident from the curves of "Apertured Power Output vs. Time" that regardless of drive level, some decrease in available power must be accommodated as the unit is operated. To minimize this degradation effect, it will be important to select the lowest useable drive.

Figure 14 - Percent Change in Apertured Power Output vs. Time

In another application with more demanding temperature requirements or less available heat sinking capacity, the upper limit of the LED drive may be dictated by the power dissipation rating. Note 1 of the data sheet shows, however, that the maximum continuous current can be applied up to 62.5°C with PC board heat sinking.

To get a rough idea of the design tolerance for degradation, follow the curve labeled 50 mA DC to the intersection at 50,000 hours (or approximately six years) of operation. The average unit will show a decrease in power of roughly 14% if operated at 25°C. The sigma (σ) table at the side of the curve indicates an additional 1.8% degradation for each standard deviation of distribution from this average. Each curve will run approximately parallel to the average curve through the 50,000 hour point.

Add three standard deviation percentages (3σ) to the 14% to estimate the degradation of the full distribution of components. $14\% + (3) \times (1.8) = 19.4\%$

To again take a conservative approach, assume the average temperature is $40\,^{\circ}\text{C}$ rather than the $25\,^{\circ}\text{C}$ illustrated by the curves of figure 14.

Characteristic data has shown that less degradation will occur from conditions of low current/high temperature than from high current/low temperature. Therefore, use the later condition as a model for the former and build in some safety factor. It should be kept in mind, however, that making degradation calculations with a higher current model is a very conservative approach, especially when working from the minimum ratings of the device.

From the thermal parameters of the OP298 data sheet, find the "normal" heat sinked thermal resistance of

RTH.IA = 188°C/Watt.

With an average ambient temperature of 40° C, it is necessary to reflect a temperature rise of 40° C -25° C = 15° C

To raise the junction temperature by 15°C it is necessary to have a power dissipation increase of

 $15^{\circ}\text{C}/188^{\circ}\text{C/watt} \approx .080 \text{ watts.}$

With an LED forward voltage of 1.6 volts, the increase in forward current associated with this power would be $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty$

80 mW/1.6 volts = 50 mA.

Therefore, use the 100 mA degradation curve to simulate the system if the average ambient temperature is $40\,^{\circ}\text{C}$ and the drive current is 50 mA.

At the 50,000 hour point, the 100 mA curve shows an average degradation of 20% and each standard deviation produces an additional 2.4%.

For the full distribution of components, therefore, the maximum degradation should be 20% + (3) (2.4%) = 27.2%.

An additional temperature related power tolerance needs to be included in the calculation which will enable the conversion from the pulsed power rating at $25\,^{\circ}\text{C}$ to a direct continuous current rating at the upper operating limit of $55\,^{\circ}\text{C}$.

Refer to the curve of figure 13, "Normalized Apertured Power vs. Temperature," and the thermal resistance rating to make this conversion.

Choosing again an operating point of 50~mA and noting that the worst-case forward voltage is 2.0~volts, the maximum power dissipation would be

 $P_d = (.050) (2.0) = .100$ watts.

Using the thermal resistance of $\,$ 188°C/watt, the temperature rise of the junction would be

 $T_{JA} = (.100) (188^{\circ}C) = 18.8^{\circ}C.$

It can be assumed that this junction temperature rise at an ambient temperature of 25°C and 100 mA DC would have essentially the same effect as an ambient rise of 18.8°C in the pulsed condition.

From the curve of figure 13, we can see the effect is to reduce the available power by approximately 18%.

Combination of all these tolerances allows calculation of a drive level which accommodates six years of continuous operation over the full temperature range. Adding these tolerances, 27.2 percent for degradation, and 18 percent for junction temperature rise indicates that at least 60 percent of the initial power will be available at "end of life."

The baseline power must first be calculated at the selected drive level of 50 mA using the minimum ratings of the data sheet.

IRLED is rated at 3.6 mW/cm² with a drive of 100 mA. Since the relationship between current and power is relatively linear in this range of operation, the power at 50 mA drive will be about one-half that at 100 mA, or 1.8 mW/cm².

Then applying the tolerances from heat and degradation (1.8 mW/cm²) × (60%) = 1080 μ W/cm²

This is the minimum power the LED will provide over its full life and under worst-case conditions.

We can compare this figure with the power we calculated as the minimum required by the sensor, 617 μ W/cm². Even with all the conservative design assumptions, the 50 mA drive level provides more than the necessary power.

The designer can, at this point, choose to further reduce the drive of the LED to enhance the operating life or maintain the margin for the sake of broadening the distribution of useable components. This can oftentimes be a cost consideration since price is usually directly proportional to power rating.

Conclusions

It should be kept in mind that throughout these calculations, most worst-case conditions were applied simultaneously, resulting in a very conservative design. The example shows that under certain conditions these components can be easily applied in switches which span several inches without straining the limits of performance.

The narrow beam components OP598/OP298 in particular are applicable in a wide range of configurations.

T. E. Eichenberger

The successful design engineer has a clear understanding of the thermal impedance of the optical semiconductor. This understanding allows reliable system design that encompasses the dissipation rating of the optical semiconductor.

Introduction

The maximum power dissipation rating for a semiconductor device is usually defined as the largest amount of power which can be dissipated by the device without exceeding safe operating conditions. This quantity of power is a function of:

- 1. Ambient temperature
- 2. The maximum junction temperature considered safe for the particular device
- The increase in junction temperature above ambient temperature per unit of power dissipation for the device package in a given mounting configuration

Item 3 is called thermal impedance and is determined in the lab with techniques such as those described in this bulletin. Item 2 is determined from reliability experiments and is usually considered to be 150°C, although it may be lower due to temperature limits imposed by the package material. Item 1 results in lower power dissipation ratings at higher ambient temperatures as described by derating curves, also described in this bulletin.

Thermal Impedance Calculations

The formula for calculating thermal impedance is

$$R_{THJA} = \frac{T_J - T_A}{P_D}$$

where: RTHJA = thermal impedance, junction to ambient (also

called
$$\theta_{JA}$$
); units are $\frac{\circ C}{Watt}$

 T_J = junction temperature of the device under test

TA = ambient air temperature

Pn = device power dissipation

RTHJA refers to the thermal impedance of a device with no heat sink, suspended in still air on thermally non-conductive leads. This is the worst case (highest value) for thermal impedance.

To calculate the maximum allowable power dissipation, we substitute numbers for R_{THJA} (measured in the lab) and T_J (using the maximum value determined from reliability experiments) then rearrange terms to get

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A}}{R_{THJA}}$$

This results in a linear power dissipation rating curve which intercepts zero power dissipation at $T_A = T_J(MAX)$, and with a slope which is

-1/RTHJA as shown in Figure 1A:

Figure 1A. Initial Thermal Derating Curve

The usual (and conservative) method of rating power dissipation is to limit the curve to the safe value for normal room temperature, which is 25°C. The result is a curve shaped like Figure 1B:

Figure 1B. Thermal Operating Curve from 25°C

Since there are voltage, current, and ambient temperature limitations which are not related to chip temperature, the final power dissipation rating curve (often called a "derating" curve) for a given device might look like the curve shown in Figure 1C:

Figure 1C. Final Thermal Derating Curve

Since thermal impedance is very nearly constant for different levels of power dissipation, we merely have to measure the junction temperature at a known quantity of power dissipation, then substitute into the right side of the formula:

$$R_{THJA} = \frac{T_J - T_A}{P_D}$$

to find the thermal impedance of the device.

It is important to define the ambient conditions since air movement, lead length, and contact with thermal conductors all affect the measured Tj. The best case (lowest value) of thermal impedance is obtained with an infinite heat sink, i.e. by keeping the entire outside of the device at ambient temperature. Since case temperature equals ambient temperature under these conditions, infinite heat sink thermal impedance is called RTHJC. defined as:

$$R_{THJC} = \frac{T_J - T_C}{P_D}$$

where T_C = case temperature. The worst case encountered in real applications involves a device with full-length leads, mounted in a socket with no air movement. Thermal impedance under these conditions is called R_{THJX} and is calculated using the same formula as R_{THJA} . R_{THJX} is used to calculate actual worst case derating curves.

Junction Temperature Measurement

All these calculations depend on having a way to measure junction temperature in a chip while the device is dissipating power. This is done by using the chip as its own thermometer. Forward biased PN junctions have a voltage drop which decreases with temperature; by using a forward current small enough that no significant chip heating occurs, we can measure this voltage drop at known chip temperature simply by varying the ambient temperature of the package. Under these conditions, TJ approximately equals TA, and we can control and measure TA. See Table 1 for the junctions used for this measurement.

Table 1. Junctions Used for Measuring Temperature - TJ

Device Type	Junction Biased
LEDs, Diodes	Anode to Cathode
Transistors	Base-emitter or base-collector. If the device normally has no base lead as in phototran- sistors, special samples must be made with the base bonded out instead of the emitter.
ICs	Reverse bias the substrate (negative to VCC lead, positive to ground).

As a result of these measurements, we have a graphic representation of voltage drop versus junction temperature at a known low current. Figure 2A might be typical for an LED:

Figure 2A. Voltage Drop vs. Junction Temperature for IR LED

Now to find R_{THJA}, R_{THJX}, or R_{THJC} we place the device in the desired mounting configuration and apply a specific amount of power dissipation to the device, sufficient to provide significant chip heating. The junction temperature is monitored by interrupting the power and substituting the low forward bias current (our "thermometer"), $100~\mu\text{A}$ for the LED described in Figure 2A. The voltage drop must be measured before the junction has time to cool significantly. We use a $100~\mu\text{s}$ interruption which is consistent with the thermal time constant of the devices being measured; a sample and hold circuit maintains the reading so it can be recorded with a voltmeter. The applied waveform for the above LED would appear as shown in Figure 2B:

Figure 2B. Timing Cycle for Device Heating and Monitoring of Junction Temperature

Because of the sample and hold circuit, the voltmeter reading reflects the junction temperature of the chip as shown graphically in Figure 2A. For a typical plastic LED, the temperature rises after application of DC power for several minutes as shown in Figure 2C.

Figure 2C. Equilibrium of Junction Temperature

When the voltmeter reading has stopped changing, we (1) substitute the reading back into the graph to get the actual T_{J_2} ; (2) multiply the large forward current, in this case 100 mA, by the voltage drop on the diode with 100 mA applied, to get the power dissipation; (3) measure the actual T_{A_2} ; and (4) substitute into the R_{THJA} formula to get a value for thermal impedance.

Example

A typical OP290 infrared emitting diode is found to have VF characteristics as shown at an IF 0f 100 μ A:

T _A (°C)	V _F (Volts)
25	1.080
50	1.030
75	0.980
100	0.930

It is then connected to a test circuit and immersed in agitated silicone dielectric fluid at a temperature of 25°C ; this is a good approximation of an infinite heat sink for a low power device. An IF of 100 mA is applied. Every 100 ms the IF is reduced to $100~\mu\text{A}$ for a period of $100~\mu\text{A}$, after which the IF returns to 100~mA. Using a sample and hold circuit we observe that the VF of the device during the low current intervals starts out at 1.080 Volts but rapidly decreases, eventually stabilizing at 1.050 Volts. Interpolating between 1.080 Volts (25°C) and 1.030 Volts (50°C) we find that junction temperature is now 40°C.

The VF is measured during the 100 mA IF period and found to be 1.50 Volts. Thus, the power dissipation is 150 mW (99.9 percent of the time). Substituting into the formula,

$$R_{THJA}$$
 (infinite heat sink) = $R_{THJC} = \frac{40-25}{150} = 100^{\circ}$ C/W

When the same test is conducted with the device in still air, mounted in a PC board socket, the final values of V $_F$ are 1.024 at 100 μA and 1.40 at 100 mA. Thus T $_J$ = $53^{\circ}C$ and

$$R_{THJX} = \frac{53-25}{.140} = 200^{\circ}C/W$$

The power derating curves are:

$$P_D = \frac{T_J(MAX) - T_X}{R_{THJA}} = \frac{125 - T_A}{100} \ \ \text{with infinite heat sink , and}$$

$$P_D = \frac{125 - T_A}{200}$$
 with no heat sink.

Martin McCrorey

Graphing the derating curve gives two lines as shown in Figure 3A:

Figure 3A. Thermal Derating for "Infinite" and "No" Heat Sink

But the device is limited to 250 mW for reliability reasons, and the plastic package can withstand only 100°C due to the glass transistion temperature of the plastic. Thus, the final power derating curve is shown in Figure 3B:

Figure 3B. Final Thermal Derating

The entire shaded area can be used with an infinite heat sink; the crosshatched area is forbidden for a device with no heat sink.

Conclusions

Power dissipation ratings for DC operating conditions are calculated with the techniques just described. For a device operated under steady state conditions, these procedures provide a method of establishing operating limits which are consistent with good device reliability. However, under pulsed conditions, the thermal time constants of the device must be considered. For information on the subject of junction heating under pulsed conditions, refer to Optek Application Bulletin 200, "Thermal Behavior of GaAs LEDs".

Recommendations for Soldering T-1 3/4 Plastic Encapsulated Discrete Components

Plastic encapsulated components such as T-1 3/4 LEDs and phototransistors are very sensitive to soldering techniques. The body is molded around a copper lead frame using an optical grade epoxy. Because of the need for optical transmissivity, the epoxy cannot be manufactured using the fillers and additives that allow epoxies to withstand the high temperatures found in IC packages.

The copper lead frame is an excellent material for both heat and electrical conductivity. This property provides benefits such as higher allowable forward currents (therefore higher output power), which are more easily formed and bent. There is also a major disadvantage in that the heat from soldering operations is conducted inside the plastic body.

This combination of the relatively low temperature softening point of the plastic and the high temperatures required for successful solder joints makes the leads susceptible to movement inside the encapsulant. If the cathode lead is moved at the gold bond wire (.001" dia.)/cathode lead interconnect point, then there can be an open caused by a wire bond break. This can be detected in some cases immediately; in other cases the device will open intermittently or fail in operation.

The precautions that substantially reduce this failure mechanism, in their order of importance, are:

- Solder Iron
- 1. The overwhelming cause of failure is lead movement inside the encapsulating epoxy at the gold bond wire/cathode lead interconnect. The force exerted by the iron while the epoxy is plasticized is the critical control parameter. The smaller the force, the less likely a solder-induced open will occur. In no case should the iron exert more than 20 grams weight on the leads.
- 2. Keep soldering temperature as low as possible; 260°C is the maximum allowable.
- 3. Keep soldering time as low as possible; 5 seconds is the maximum allowable.

- 4. Solder as far from the package as possible. In no case should the solder joint be closer than 1/16" to the epoxy.
- Keep leads at full length when possible and trim after soldering.
- 6. There are several recommended procedures or tools that can aid in the precautions listed above.
- a) Use a heat sink between the plastic body and the solder iron.
- **b)** Clamp the device leads next to the plastic body to prevent lead movement.
- c) Load the solder onto the iron prior to making contact in order to reduce contact time.
- d) Insure devices have not been stored for a long time in an oxidizing environment. Oxidized leads are not a severe problem, but can occur. If leads show signs of oxidation, they can be cleaned without damage to the plastic. Please call for directions.
- e) If devices are to be inserted into PCB holes, insure the holes are at the nominal device lead spacing so there is no stress or spring tension on the leads during solder.

Flow Soldering

- As long as leads are not under any stress or spring tension, 260°C for ten seconds maximum will not induce failures.
- 2. If units need to have formed leads prior to soldering, insure forming forces the lead spacing to match the PCB hole spacing.
- 3. If possible, leave leads intact until after flow solder, then clip them.

Danny Johnson Kirk Bailey

Hall Effect Liquid Level Sensing

Have you ever had a customer that wanted to sense a liquid level? One method would be to take advantage of Snell's Law and use an optical reflective device (see Application Bulletin 204). The IR light from the LED is reflected by a conical plastic or glass surface. However, when this reflecting surface is immersed in a liquid who's index of refraction matches the plastic or glass, it will not act as a good reflector. In some cases the liquid characteristics or the operating environment will not permit the use of optical sensing. An alternative is the Hall Effect sensor. Assuming the liquid is in a non ferrous container, a small float and magnet would be placed in the liquid container as shown in Figure 1. The float must be constructed or constrained so the magnet path will be known. An OH090U, OH180U or OH360U Hall Effect sensor would then be placed on the wall just outside the container. When the float with the magnet is close enough to the Hall Effect sensor, its output will change state.

The particular sensor used will be determined by several factors. Both the strength of the magnet and the distance from the Hall Effect sensor to the magnet are critical. The designer is faced with selecting a magnet which is not affected by the liquid and sizing the magnet to produce the needed flux density cost effectively. A common magnetic material to use is Alenco 8. A magnet of this material which is .250 inch in diameter and 0.5 inches long will produce a magnetic field of 500 gauss at a distance of about 0.1 inches. An OH360U will work in this field. The exact location at which the digital sensor will activate will vary with sensor sensitivity and will change along with the magnet characteristics over temperature. The designer may want to include a means of adjusting the sensor position to move the trip point locations.

Hall Effect sensors are well suited for high temperature applications because they operate up to 150 degrees centigrade. They are also immune to dirt and other contamination if the electrical connections are protected. Also, ambient light will not be a factor as it is with optical sensors.

Liquid level sensors are used in dishwashers, washing machines, the oil and gas industry, vending machines, medical equipment, and many other places.

Bob Stricklin
Technical Marketing Specialist

Figure 1

Basic Design Ideas for Emitters and Sensors

There are some basic steps required to design-in a simple optoelectronics sensor. The first step is to get the LED to produce light. This is done by connecting the LED to a power supply using a resistor to establish the current flow. Figure 1 illustrates this schematically.

Figure 1

The LED V_F can be predicted by reviewing the forward voltage versus forward current curve in this catalog. Let's say we want to set the LED current for an OP165 at 20 mA. The V_F at this level, from the curve, will be about 1.2 V. Therefore, we must drop 3.8 V across the resistor Rf if the supply voltage is 5.0 V. From Ohm's law this calculates to be a 190 Ohm resistor. The power to the resistor will be 76 mW, so a 1/8 watt or larger resistor will work in this application. To be sure everything is connected properly, measure the voltage at TP with power applied. The V_F should be, as predicted, about 1.2 V. If it is 5 V, the LED is open or connected backwards, or there is a wiring error. If the voltage is 0 V, the LED is shorted, or a wiring problem may exist. At these currents, the LED output will be linear. Increase the current by 20%, the light output will increase by 20%. Ideally, the LED should be operated at a low drive current to conserve power and to minimize the effects of LED degradation. A good operating current for most applications is 20 mA.

Now that the LED is generating light, a phototransistor is used to sense it. A phototransistor functions just like a transistor except the base current is produced by an integral photodiode. Therefore, we only have to connect the collector and the emitter of the transistor. The current conducted by the transistor will be proportional to the incident light. If an OP505 phototransistor is coupled with an OP165 LED and the spacing between the lens tips is 0.2", the photo current will be greater than 1 mA. This current can be detected by using the circuit shown in Figure 2.

Figure 2

Assuming the phototransistor is operating in a saturated condition, the voltage drop across the phototransistor will be less than 0.4 V. Therefore, we must drop 4.6 V across R_{C} when the LED is on. From Ohm's law, the resistor R_{C} must be greater than 4600 Ohms. Therefore, a 10K Ohm resistor would be a conservative choice. This combination results in a voltage swing from less than 0.4 V to over 4.9 V when the LED is turned on and off at the test point. This is a suitable interface for a CMOS input or a voltage comparator.

There are other factors to be considered including aperture size or resolution of the sensor, effects of ambient light, switching speed and more. However, this application note is designed to assist someone who has little experience with optoelectronics.

Interfacing Sensors with a Microprocessor

This application note addresses a method for monitoring multiple sensor channels with a single analog-to-digital channel. The application might be an eight-channel reflective or a transmissive bar code reader. By using an A/D converter an analog level of the sensor can be measured. This analog voltage can provide more information than a digital sensor.

This system would be controlled by one of the single chip microprocessors like the Motorola 68HC11. Referring to Figure 1 on the next page, let's review the details of operation. The sensors will be configured to operate one channel at a time. This is accomplished by illuminating the LEDs with a microprocessor and connecting the sensors in parallel. The LEDs will be illuminated one by one, and the resulting phototransistor current will be measured by the microprocessor analog-to-digital converter.

This type of operation consumes very little current. Each LED is only on long enough to collect a sensor reading. The microprocessor can also be programmed to have sleep periods and operate only long enough to check all the sensors. The net average current consumption would be less than 25 mA without modulating the CPU on time. This approach is ideal for applications requiring battery operation or those trying to minimize power supply requirements.

When connecting several sensors in parallel as shown, the leakage current of each sensor and its associated solder connections must be very low (200 nA). The ambient light incident on all the sensors must also be low. If these conditions are not met, the leakage currents or off currents (noise) may exceed the on current (signal). Minimizing the off state currents will also produce the greatest dynamic range for the sensing system.

The OPAMP shown is one of a CMOS series produced by National Semiconductor. It is a single supply device with an output that can be driven rail-to-rail. Any OPAMP with equivalent characteristics is acceptable. You may even find it desirable to use one with a balance adjustment which can be used to adjust OPAMP offset and any quiescent noise or leakage out of the sensing system.

Another consideration is the analog-to-digital range and resolution. If the sensor conditions vary, attempt to balance them by adjusting each LED current-limiting resistor. Keep in mind that if you have an eight-bit A/D you will have 256 different possible sensor levels. Make sure the sensor off state falls at the low end of the A/D and the on state falls near the upper end by picking good A/D reference voltages and carefully selecting the proper gain of the final amplifier or buffer. This will probably require prototyping and testing of your circuit to select the proper values.

With regard to LED current, the 7445 shown in Figure 1 is rated for operation with 80 mA of sink current. However, try to limit the LED current to about 40 mA. Normally a lower

LED drive current is recommended but this system will be pulsing the LEDs at a low duty cycle, so heating and LED degradation will not be a long term factor in most applications. If you have problems with ambient light, operate the LEDs at a higher current level. Also, if you find you can work with 10 mA or less and you have the extra CPU outputs, you may want to drive the LEDs directly from the CPU and save a chip. Check the specification of your CPU. Most CPUs have a particular eight-bit port which is rated to sink more current.

Timing is another consideration. If the 68HC11 is clocked at 8 MHz, the A/D will complete a single conversion in 32 clock cycles or 16 μs . A few more instructions will be needed to turn on the LED and to allow the signal to stabilize so a channel read time of about 30 μs will be needed. All of these factors can be adjusted and fine tuned for a particular design.

The 68HC11 includes a serial port option. This port can be used to communicate with another computer or CPU for sensor status and control.

Figure 2

Another application might be to have eight different sensor locations operate as digital inputs. This can be accomplished by using phototransistors and a pull-up resistor or a Photologic sensor as shown in Figure 2. These devices would be connected directly to a CPU input. This approach would be much faster but it will not provide as much information about the state of the sensor channel.

Once you have introduced an CPU into your sensing application, the door is open for all sorts of possibilities. For instance, you may want to dynamically adjust the LED drive current for sensing conditions. Another possibility would be to monitor the signals while watching for a particular sensor signature which signals the occurrence of an event. Finally, you may want to add a temperature sensor to the system and use this data to factor out the temperature effects on the sensor.

Bob Stricklin Technical Marketing Specialist

Figure 1

Maximizing Power Output Using the OP232W

What can Optek offer the customer that was using the OP233W in high power output applications? There are too many possible variations of design for there to be a simple answer. Following are a few suggestions:

The simplest option may be to increase the forward current to obtain the same output from the OP232W. Although the data sheet ratings have not been modified over the years, current production is significantly more reliable at higher drive currents than when the OP230W series was first produced in 1980. Provided the customer's circuitry can support the higher power supply loading, this may only require changing the value of a single resistor.

As another option, many customers will find that the OP293 series plastic components are easily substituted for the OP233W. Both are wide angle radiators (50 degree ½ angle for the OP293W, 60 degrees for the OP293), and in many applications the OP293 can fit into the same boards and sockets with no modifications. For those who can use this substitution, the higher on axis intensity available in the plastic component may actually offer improved performance. The main differences to be considered are the plastic versus hermetic construction and the overall package height of the OP293 product series.

Depending on the application it may be reasonable to adopt a pulsed mode operation utilizing the fact that the instantaneous power output can be very high while the average power is low. The circuitry involved is more complex than for a DC operating condition but need not be prohibitively complex or expensive. If the detector can be operated synchronously with the LED drive pulse there need be no loss of speed or sensitivity. Should synchronous operation not be practical but system response speed not be an issue, the detector can be used in an integrating mode with no loss in signal levels. See the following example.

Example: Replacing a DC circuit with a pulsed circuit

Assumptions:

Application is an interrupter sensing whether an object is present in the optical path.

Response speed is not a critical issue.

Required output is $V_O > 1 V$ unblocked, $V_O < .1 V$ blocked

The optical path is such that an OP233W with $E_e(APT) = 6 \text{ mW/cm}^2$ is adequate but an OP232W with $E_e(APT) = 4 \text{ mW/cm}^2$ is not.

Original circuit with DC current drive to LED:

Replacement pulsed drive current circuit:

For the example, the value of $V_{\rm O}$ would be approximately the same for both circuits in either the blocked or open optical path condition. However, the response time is approximately 10 microseconds for the DC circuit and 10 milliseconds for the pulsed circuit. The speed of the pulsed circuit could be increased by raising the input frequency and reducing the RC product at the output. To maintain a low ripple on the output the RC product should be at least 2x the period of the input pulse waveform.

Jim Woods

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

PART NUMBER INDEX

INDEX

PART NUMBER	PAGE NO.	PART NUMBER	PAGE NO.
3N243, 3N244, 3N245	13-4	OMF322TX, OMF322TXV	14-6
3N243TX, 3N244TX, 3N245TX		OMF340TX, OMF340TXV	
3N261, 3N262, 3N263		OMF341TX, OMF341TXV	
3N261TX, 3N262TX, 3N263TX		OMF342TX. OMF342TXV	
4N22A, 4N23A, 4N24A		OMF345TX, OMF345TXV	
4N47, 4N48, 4N49		OMF346TX, OMF346TXV	
CNY36		OMF347TX, OMF347TXV	
HCC135, HCC136, HCC135TXV, HCC136TXV		OMF420TX, OMF420TXV	
HCC240, HCC242		OMF421TX, OMF421TXV	
HCC247, HCC248, HCC249		OMF422TX, OMF422TXV	
HCC340		OMF430TX, OMF430TXV	
HCC640(TXV)		OMF431TX, OMF431TXV	
HCT2222A/TX		OMF432TX, OMF432TXV	
HCT2222M/TX		OMH090B, OMH090S	
HCT700		OMH3019B, OMH3019S	
HCT7000M		OMH3020B, OMH3020S	
HCT720		OMH3040B, OMH3040S	
HCT740		OMH3075B, OMH3075S (Bi-Polar Latching)	
HCT780		OMH3131B, OMH3131S	
HCT790		OMH360B, OMH360S	
HCT801		OP123, OP124	
HCT802		OP130, OP131, OP132, OP133	
HDA140A		OP130W, OP131W, OP132W, OP133W	
HDC135, HDC136, HDC135TXV, HDC136TXV		OP140A, OP140B, OP140C, OP140D	
JANTX - 2N2907AUA/TXV		OP145A, OP145B, OP145C, OP145D	
JANTX - 2N2907AUB/TXV		OP163A, OP163B, OP163C, OP163D	
JANTX, JANTXV - 4N22A, 4N23A, 4N24A		OP164A, OP164B, OP164C, OP164D	
JANTX, JANTXV - 4N22AU, 4N23AU, 4N24AU		OP165A, OP165D	
JANTX, JANTXV - 4N47, 4N48, 4N49		OP165W	
JANTX/TXV - 2N4854U		OP166A, OP166B, OP166C, OP166D	
OH090U		OP166W	
OH180U		OP168FA, OP168FB, OP168FC	
OH360U		OP169A, OP169B, OP169C	
OHN3013U		OP223, OP224	
OHN3019U, OHS3019U		OP223TX, OP223TXV, OP224TX, OP224TXV .	
OHN3020U, OHS3020U		OP231, OP232, OP233	
OHN3030U, OHS3030U		OP231W, OP232W	
OHN3040U, OHS3040U		OP235TX, OP235TXV, OP236TX, OP236TXV .	
OHN3075U, OHS3075U		OP240A, OP240B, OP240C, OP240D	
OHN3113U, OHS3113U		OP245A, OP245B, OP245C, OP245D	
OHN3119U, OHS3119U		OP265A, OP265B, OP265C, OP265D	
OHN3120U, OHS3120U		OP265W	
OHN3130U, OHS3130U		OP266A, OP266B, OP266C, OP266D	
OHN3131U, OHS3131U		OP266W	
OHN3140U, OHS3140U		OP268FA, OP268FB, OP268FC	
OHN3175U, OHS3175U		OP269A,B,C	
OHN3177U, OHS3177U		OP290, OP291, OP292 Series	
OMF320TX, OMF320TXV		OP293 and OP298 Series	
OMF321TX, OMF321TXV		OP294, OP299	
		3. 23., 3. 200 · · · · · · · · · · · · · · · · · ·	

PART NUMBER	PAGE NO.	PART NUMBER PAG	GE NO
OP295, OP296, OP297 Series	2-62	OPB707A, OPB707B, OPB707C	1-18
OP300SL, OP301SL, OP302SL, OP303S	SL,	OPB708, OPB709	1-20
OP304SL, OP305SL	3-4	OPB710, OPB710F	1-24
OP505A, OP505B, OP505C, OP505D .	3-6	OPB711	1-26
DP505W	3-8	OPB712	1-28
OP506A, OP506B, OP506C, OP506D .	3-10	OPB730, OPB730F	1-30
DP506W	3-12	OPB740, OPB741, OPB742, OPB743, OPB744 1	1-32
OP508FA, OP508FB, OP508FC	3-14	OPB740W, OPB741W, OPB742W, OPB743W,	
OP509A,B,C	3-16	OPB744W 1	1-34
OP535A, OP535B, OP535C		OPB745	1-36
OP538FA, OP538FB, OP538FC		OPB745W 1	
OP550A, OP550B, OP550C, OP550D .		OPB750N	
OP555A, OP555B, OP555C, OP555D .		OPB750T	
OP560A, OP560B, OP560C		OPB755N	
OP565A, OP565B, OP565C		OPB755T	
OP593, OP598 Series		OPB760N, OPB761N, OPB762N, OPB763N 1	
OP599A, OP599B, OP599C, OP599D		OPB760T, OPB761T, OPB762T, OPB763T 1	
DP600A, OP600B, OP600C		OPB770N, OPB771N, OPB772N, OPB773N 1	
DP602TX/V, OP603TX/V, OP604TX/V .		OPB770T, OPB771T, OPB772T, OPB773T 1	
OP641SL, OP642SL, OP643SL, OP644S		OPB800L/OPB810L Series	
OP800A, OP800B, OP800C, OP800D .		OPB800W/OPB810W Series	
DP800SL, OP801SL, OP802SL, OP803S		OPB804	
OP804SL, OP805SL		OPB806 12	
OP800WSL, OP801WSL, OP802WSL .		OPB818	
OP803TX/TXV, OP804TX/TXV, OP805TX	K/TXV 13-56	OPB820, OPB820S10, OPB820S5, OPB820S3 12	2-60
OP830SL	3-46	OPB821, OPB821S10, OPB821S5, OPB821S3 12	2-62
DP830WSL	3-48	OPB821TX, OPB821TXV	3-62
OP900SL	3-50	OPB822S, OPB821SD	2-64
OP913SL, OP913WSL	3-52	OPB825, OPB825A, OPB825B	2-66
OPB120A, OPB120B Series	12-6	OPB826S, OPB826SD	2-68
OPB606A, OPB606B, OPB606C	11-4	OPB827A, OPB827B, OPB827C, OPB827D 12	2-70
OPB607A, OPB607B, OPB607C	11-6	OPB828A, OPB828B, OPB828C, OPB828D 12	2-72
OPB610	12-10	OPB829A, OPB829B, OPB829C, OPB829D 12	2-74
OPB615, OPB616, OPB617, OPB618	12-12	OPB830L, OPB840L Series	
DPB620	12-16	OPB830W, OPB840W Series	2-80
OPB625, OPB626, OPB627, OPB628	12-18	OPB844A, OPB844B 12	2-84
DPB660	12-22	OPB845A. OPB845B	
OPB665N/T, OPB666N/T, OPB667N/T,		OPB847, OPB848	2-88
OPB668N/T	12-26	OPB847TX, OPB847TXV, OPB848TX,	
DPB680		OPB848TXV	3-64
DPB685, OPB686, OPB687, OPB688		OPB850	
DPB690		OPB852A1, OPB852A2, OPB852A3	
DPB695, OPB696, OPB697, OPB698		OPB853A1, OPB853A2, OPB853A3	
DPB700, OPB700AL		OPB854A1, OPB854B1	
•		OPB854A2, OPB854B2	
OPB700TX, OPB700TXV			
OPB701, OPB701AL		OPB854A3, OPB854B3	
OPB703, OPB704, OPB705		OPB855	
OPB703W, OPB704W, OPB705W		OPB856	
OPB706A, OPB706B, OPB706C	11-16	OPB857 12	2-106

PART NUMBER	PAGE NO.	PART NUMBER	PAGE NO
OPB859	12-108	OPF470	8-58
OPB860, OPB870 Series	12-110	OPF471	8-60
OPB870L, OPB870N, OPB870P,		OPF472	8-62
OPB870T Series	13-66	OPF480	8-64
OPB880, OPB890 Series	12-114	OPF481	8-66
OPB900L/OPB910L Wide Gap Series	12-118	OPF482	8-68
OPB900W/OPB910W Wide Gap Series	12-122	OPF540	8-70
OPB930L/OPB940L Series	12-126	OPF541	8-72
OPB930W/OPB940W Series	12-130	OPF542	8-74
OPB960/OPB970 Series	12-134	OPI110, OPI110A, OPI110B, OPI110C, OPI113	6-4
OPB980/OPB990 Series	12-140	OPI120, OPI123	6-6
OPC126	7-4	OPI120TX, OPI120TXV	. 13-70
OPC200	7-5	OPI125, OPI126, OPI127, OPI128	6-8
OPC216	7-6	OPI125TXV	. 13-72
OPC226	7-7	OPI1264, OPI1264A, OPI1264B, OPI1264C	6-12
OPC260	7-8	OPI1266	6-14
OPC300R	7-9	OPI150, OPI153	6-16
OPC8320, OPC8321, OPC8322, OPC8323	7-10	OPI150TX, OPI150TXV	. 13-74
OPC8324, OPC8325, OPC8326, OPC8327		OPI210, OPI211	. 13-76
OPC922	7-15	OPI340	. 13-78
OPC9XXX	7-14	OPI7002, OPI7010	6-18
OPF1402, OPF1402(SMA),		OPI7320, OPI7340	6-20
OPF1412, OPF1414(ST)	8-4	OPL550, OPL551 Series	4-4
OPF2404(SMA), OPF2414(ST)		OPL560, OPL561, OPL562, OPL563 Series	
OPF2406(SMA), OPF2416(ST)		OPL583	4-12
OPF320A, OPF320B, OPF320C	8-10	OPL800, OPL801 Series	4-16
OPF321A, OPF321B, OPF321C	8-12	OPL800TXV	. 13-80
OPF322A, OPF322B, OPF322C		OPL810, OPL811, OPL812, OPL813 Series	4-20
OPF340A, OPF340B, OPF340C, OPF340D	8-16	OPR2100	9-16
OPF341A, OPF341B, OPF341C, OPF341D		OPR5001B, OPR5002B, OPR5003B	
OPF342A, OPF342B, OPF342C, OPF342D	8-20	OPR5005	9-20
OPF345A, OPF345B, OPF345C, OPF345D		OPR5200	9-22
OPF346A, OPF346B, OPF346C, OPF346D		OPR5500	9-23
OPF347A, OPF347B, OPF347C, OPF347D		OPR5910	9-24
	8-28	OPR5911	9-25
OPF371A, OPF371B, OPF371C, OPF371D	8-30	OPR5913	9-26
OPF372A, OPF372B, OPF372C, OPF372D	8-32	OPR5915	9-27
OPF390A, OPF390B, OPF390C, OPF390D	8-34	OPR5925	9-28
OPF391A, OPF391B, OPF391C, OPF391D	8-36	OPR5929	9-29
OPF392A, OPF392B, OPF392C, OPF392D	8-38	OPS665, OPS666, OPS667	5-2
OPF395A, OPF395B, OPF395C, OPF395D	8-40	OPS690, OPS691, OPS692, OPS693	5-4
OPF396A, OPF396B, OPF396C, OPF396D	8-42	OPS695, OPS696, OPS697, OPS698	
OPF397A, OPF397B, OPF397C, OPF397D			
OPF420	8-46		
OPF421			
OPF422	8-50		
OPF430	8-52		
OPF431	8-54		
OPF432	8-56		

AUTHORIZED DISTRIBUTORS AND SALES OFFICES

AUTHORIZED DISTRIBUTORS	Colorado Added Value (303)422-1701
Alabama	Arrow Electronics (303)375-1300
Arrow Electronics (205)837-6955	Bell Industries (303)424-1985
Future Electronics (205)830-2322	Future Electronics (303)421-0123
Pioneer Technologies (205)837-9300	Newark Electronics (303)373-4540
	Pioneer Technologies (303)773-8090
Arizona	
Arrow Electronics (602)431-0030	Connecticut
A.V.E.D (602)951-9788	Arrow Electronics (203)265-7741
Bell Industries (602)966-3600	Bell Industries (203)269-6801
Future Electronics (602)968-7140	C & D Electronics (203)459-2647
Pioneer Standard (602)350-9335	Future Electronics (203)743-9594
	Pioneer Standard (203)929-5600
California	
Added-Value (619)558-8890	Florida
(714)573-5000	Arrow Electronics (305)429-8200
(209)734-8861	(407)333-9300
Arrow Electronics (818)880-9686	Chip Supply Co (407)298-7100
(818)701-7500	Future Electronics (407)767-8414
(510)490-9477	(813)530-1222
(510)487-8416	Pioneer Technologies (407)834-9090
(619)565-4800	(305)428-8877
(408)453-1620	
(714)544-0200	
Bell Industries (714)895-7801	Georgia
(310)826-2355	Arrow Electronics (404)497-1300
(408)734-8570	Bell Industries (800)525-6666
(818)340-1940	Future Electronics (404)441-7676
(619)268-1277	Pioneer Technologies (404)623-1003
Future Electronics (818)772-6240	
(714)250-4141	Illinois
(619)625-2800	Arrow Electronics (708)250-0500
(408)434-1122	Bell Industries
J.I.T. Supply (714)256-9100	Future Electronics (708)882-1255
(805)237-2220	Pioneer Standard (708)495-9680
(209)784-2770	Florieer Startdard (706)495-9060
Newark Electronics (310)672-8548	
Pioneer Standard (714)753-5090	Indiana
(619)546-4906	Arrow Electronics (317)299-2071
(818)865-5800	Bell Industries (317)875-8200
Pioneer Technologies (408)954-9100	Pioneer Standard (219)489-0283
Time (619)578-2500	(317)573-0880
(408)734-9888	(, , , , , , , , , , , , , , , , , , ,
(818)593-8400	
	lowa
	Arrow Electronics (319)395-7230
	Kansas
	Arrow Electronics (913)541-9542
	(= -,,

Maryland	New York
Arrow Electronics (301)596-7800	Arrow Electronics (516)231-1000
(301)670-1600	(212)643-1280
Bell Industries (410)290-5100	(716)427-0300
Future Electronics (410)290-0600	Future Electronics (516)234-4000
Pioneer Technologies (301)921-3822	(716)272-1120
(301)921-0660	(315)451-2371
	Pioneer Standard (607)722-9300
<u> </u>	(716)381-7070
Massachusetts	(516)921-8700
Arrow Electronics (508)658-0900	
Bell Industries (508)474-8880	Novede
C & D Electronics (413)781-1776	Nevada
Gerber Electronics (617)769-6000	Arrow Electronics (702)331-5000
Future Electronics (508)779-3000	
Pioneer Standard (617)861-9200	North Carolina
	Arrow Electronics (919)876-3132
Michigan	Future Electronics (704)455-9030
Arrow Electronics (313)455-0850	(919)790-7111
(616)243-0912	Pioneer Technologies (919)460-1530
Bell Industries (810)347-6633	• • • • • • • • • • • • • • • • • • • •
Future Electronics (313)261-5270	
Pioneer Standard (616)698-1800	Ohio
(313)416-2157	Arrow Electronics (216)464-6688
(2.27,000	(513)435-5563
	(614)889-9347
Minnesota	(216)248-3990
Arrow Electronics (612)941-5280	Bell Industries (513)434-8231
Future Electronics (612)944-2200	(513)435-8660
Newark Electronics (612)331-6350	Future Electronics (216)449-6996
Pioneer Standard (612)944-3355	Pioneer Standard (216)587-3600
	(513)236-9900
Missouri	(614)848-4854
Arrow Electronics (314)567-6888	
Future Electronics (314)469-6805	Oklahoma
Pioneer Standard (314)542-3077	Arrow Electronics (918)252-7537
Tibricer Standard (617)612 5077	Pioneer Standard (918)665-7840
	rionoci ciandala i i i i i i i i i i i i i i i i i i
New Jersey	
Arrow Electronics (609)596-8000	Oregon
Bell Industries (201)227-6060	Arrow Electronics (503)629-8090
Future Electronics (201)299-0400	Bell Industries (503)644-1500
(609)596-4080	Future Electronics (503)645-9454
Pioneer Standard (201)575-3510	Pioneer Technologies (503)626-7300
Now Movico	Pennsylvania
New Mexico Arrow Electronics (505)662-0745	Arrow Electronics (412)963-6807
Bell Industries	Bell Industries (215)953-2800
Deli Industries (303)232-2100	Pioneer Technologies (215)674-4000
	Pioneer Standard (213)074-4000
	1 1011661 Gtatidatu (412)/02-2000

South Carolina		Canada
Newark Electronics	(803)487-1982	Arrow Electronics (514)421-7411
		(416)670-7769
· · · · · · · · · · · · · · · · · · ·	j.	(418)871-7500
Tennessee	(004)007.0540	(613)226-6903
Arrow Electronics	(901)367-0540	(604)421-2333
		Future Electronics (403)250-5550
Texas		(403)438-2858
Arrow Electronics	(512)835-4180	(416)612-9200
	(214)380-6464	(613)820-8313
	(713)530-4700	(514)694-7710
Future Electronics	(713)556-8696	(418)877-6666
	(214)437-2437	(604)294-1166
Newark Electronics	(214)494-5911	(204)786-7711
Pioneer Standard	(512)835-4000	Pioneer-Standard Zentronics (403)291-1988
	(214)386-7300	(403)482-3038
	(713)495-4700	(519)672-4666
	(210)377-3440	(514)737-9700
Time	(214)621-0500	(613)226-8840
		(418)654-1077 (604)273-5575
Utah		(204)989-1757
Arrow Electronics	(801)973-6913	(905)405-8300
A.V.E.D.	, ,	(903)+03-0000
Bell Industries	· ·	
Future Electronics	•	
r diaro Electrorines	(001)012 0100	
Washington		
Almac/Arrow Electronics	• •	
Bell Industries	,	
Future Electronics		Newark Electronics (800) 367-3573
Pioneer Technologies	(206)644-7500	
Wisconsin		
Arrow Electronics	(414)792-0150	
Bell Industries	, , ,	
Future Electronics	• •	
Pioneer Standard	, ,	
	, ,	

Austin, TX 78752

AUTHORIZED REPRESENTATIVES

AOTHORIZED REFILECENTATIVE	5	
Alabama South Atlantic Component Sales 1100 Jordan Lane, Ste D Huntsville, AL 35816 Tel: 205-533-4229 Fax: 205-533-5008	Connecticut VISTAssociates, Inc. 2505 Main St. Stratford, CT 06497 Tel: 203-375-5456 Fax: 203-375-6907	Illinois (Northern) KMA Sales Company 1040 S. Arlington Heights Rd. Arlington Heights, IL 60005 Tel: 708-398-5300 Fax: 708-398-5708
Arizona Pinnacle Component Sales, Inc. 6728 E. Avalon Drive, Ste B Scottsdale, AZ 85251 Tel: 602-994-0441 Fax: 602-994-3638	Delaware L.D. Lowery, Inc. 2801 W. Chester Pike Broomall, PA 19008 Tel: 610-356-5300 Fax: 610-356-8710	Illinois (Southern) John G. Macke Co. 11710 Administration Dr., Ste 31 St. Louis, MO 63146 Tel:
Pinnacle Component Sales, Inc. 10200 E. Placita Cresta Verde Tucson, AZ 85749 Tel: 602-886-1726 Fax: 602-749-5539 Arkansas	Florida South Atlantic Component Sales 6220 S. Orange Blossom Tr., Ste 151 Orlando, FL 32809 Tel:	Indiana Electronic Sales & Engineering, Inc. P.O. Box 50009 7739 East 88th Street Indianapolis, IN 46250 Tel:
Technology Representatives, Inc. 17311 Dallas Parkway, Ste 140 Dallas, TX 75248 Tel: 214-713-9027 Fax: 214-931-6159	South Atlantic Component Sales 1499 SW 5th Ave. Boca Raton, FL 33432 Tel:	Iowa C.H. Horn & Associates 4403 First Ave., Ste 411 Cedar Rapids, IA 52402 Tol: 319-393-8703
California Westrep 3350 Scott Blvd., Bldg. 41 Santa Clara, CA 95054 7 Tel:	South Atlantic Component Sales 14240 Passage Way Seminole, FL 34646 Tel: 813-595-6397 Fax: 813-595-6397 Georgia	Tel:
Westrep 2557 West-Woodland Dr. Anaheim, CA 92801 Tel: 714-527-2822 Fax:	South Atlantic Component Sales 3300 Holcomb Bridge Rd., Ste 210 Norcross, GA 30092 Tel:	Fax 913-898-6081 Kentucky Midwest Marketing Associates 30 Marco Lane
Westrep 16885 W. Bernardo Dr., Ste #285 San Diego, CA 92127 Tel: 619-674-1880 Fax: 619-674-1878	Idaho (Northern) Electra Technical Sales 11411 N.E. 124th St. Kirkland, WA 98034 Tel:	Dayton, OH 45458 Tel: 513-433-2511 Fax: 513-433-6853 Louisiana (Northern) Technology Representatives, Inc.
Colorado Waugaman Associates 4800 Van Gordon Wheat Ridge, CO 80033 Tel: 303-423-1020 Fax: 303-467-3095	Fax:	17311 Dallas Parkway, Ste 140 Dallas, TX 75248 Tel: 214-713-9027 Fax: 214-931-6159 Louisiana (Southern) Technology Representatives, Inc.
	Fax: 801-261-0830	7801 N. Lamar, Ste D-96

Maine	Nebraska (Western)	New York
VISTAssociates, Inc.	Waugaman Associates	KLM Garner
•	4800 Van Gordon	
237 Cedar Hill St.		P.O. Box "C"
Marlborough, MA 01752	Wheat Ridge, CO 80033	46 Clinton St.
Tel: 508-481-9277	Tel: 303-423-1020	Clark Mills, NY 13321
Fax: 508-460-1869	Fax: 303-467-3095	Tel: 315-853-6126
		Fax: 315-853-3011
Maryland	Nebraska (Eastern)	
L.D. Lowery, Inc.	S.W. Associates, Inc	KLM Garner
2801 W. Chester Pike	RR1, Box 66A	111 Marsh Rd.
Broomall, PA 19008	Parker, KS 66072-9732	Pittsford, NY 14534
· ·		Tel: 716-381-8350
Tel: 610-356-5300	Tel:	Fax: 716-381-6703
Fax: 610-356-8710	Fax: 913-898-6081	Tax
		Now York (NIVC & Long Joland)
Massachusetts	Nevada (Northern)	New York (NYC & Long Island)
VISTAssociates, Inc.	Westrep	Technical Marketing Group
237 Cedar Hill St.	3350 Scott Blvd., Bldg. #41	20 Broad Hollow Rd.
Marlborough, MA 01752	Santa Clara, CA 95054	Melville, NY 11747
Tel: 508-481-9277	Tel: 408-988-8833	Tel: 516-351-8833
Fax: 508-460-1869	Fax: 408-988-3186	Fax: 516-351-8667
1 43	1 4	
Michigan	Nevada (Southern)	North Carolina
AP Associates, Inc.	•	South Atlantic Component Sales
•	West Rep	5200 Park Rd., Ste 103
P.O. Box 777	2557 West-Woodland Dr.	Charlotte, NC 28209
810 E. Grand River Ave.	Anaheim, CA 92801	
Brighton, MI 48116	Tel: 714-527-2822	Tel:
Tel: 810-229-6550	Fax: 714-527-3868	Fax: 704-525-9714
Fax: 810-229-9356		On the Atlantia Organization Calan
	New Hampshire	South Atlantic Component Sales
Minnesota	VISTAssociates, Inc.	4904 Waters Edge Drive, Ste 268
TECTEAM Sales, Inc.	237 Cedar Hill St.	Raleigh, NC 27606
1621 E. 79th St., Ste 133	Marlborough, MA 01752	Tel: 919-859-9970
Minneapolis, MN 55425	Tel: 508-481-9277	Fax: 919-859-9974
Tel: 612-854-6616	Fax: 508-460-1869	
	rax	North Dakota
Fax: 612-854-8031		TECTEAM Sales, Inc.
	New Jersey (Southern)	1621 E. 79th Street
Mississippi	L.D. Lowery, Inc.	Suite 133
South Atlantic Component Sales	2801 W. Chester Pike	
1100 Jordan Lane, Ste D	Broomall, PA 19008	Minneapolis, MN 55425
Huntsville, AL 35816	Tel: 610-356-5300	Tel: 612-854-6616
Tel: 205-533-4229	Fax: 610-356-8710	Fax: 612-854-8031
Fax: 205-533-5008		
	New Jersey (Northern)	Ohio
Missouri		Midwest Marketing Associates
	Technical Marketing Group	30 Marco Lane
John G. Macke Co.	175-3C Fairfield Ave.	Dayton, OH 45458
11710 Administration Dr., Ste 31	West Caldwell, NJ 07006	Tel: 513-433-2511
St. Louis, MO 63146	Tel: 201-226-3300	Fax: 513-433-6853
Tel: 314-432-2830	Fax: 201-226-9518	
Fax: 314-432-1456		Midwest Marketing Associates
	New Mexico	5001 Mayfield Rd., Ste 212
Montana	S. W. Sales, Inc.	Lyndhurst, OH 44124
Waugaman Associates	7137 Settlement Way, NW	Tel: 216-381-8575
4800 Van Gordon	Albuquerque, NM 87120	Fax: 216-381-8857
Wheat Ridge, CO 80033		rax ∠10-301-085/
	Tel: 505-899-9005	
Tel: 303-423-1020	Tel: 505-899-9005 Fax: 505-899-8903	

Tel: 303-423-1020 Fax: 303-467-3095

Tel: 214-713-9027 Fax: 214-931-6159

Oregon

Electra Technical Sales 6700 S.W. 105th Ave., Ste 300 Beaverton, OR 97005

Tel: 503-643-5074 Fax: 503-526-2055

Pennsylvania (Eastern)

L.D. Lowery, Inc. 2801 W. Chester Pike Broomall, PA 19008

Tel: 610-356-5300 Fax: 610-356-8710

Pennsylvania (Western)

Midwest Marketing Associates 5001 Mayfield Rd., Ste 217 Lyndhurst, OH 44124

Tel: 216-381-8575 Fax: 216-381-8857

Rhode Island

VISTAssociates, Inc. 237 Cedar Hill St. Marlborough, MA 01752

Tel: 508-481-9277 Fax: 508-460-1869

South Carolina

South Atlantic Component Sales 5200 Park Rd., Ste 103 Charlotte, NC 28209

Tel: 704-525-0510 Fax: 704-525-9714

South Dakota

TECTEAM Sales, Inc. 1621 E. 79th St., Ste 133 Minneapolis, MN 55425

Tel: 612-854-6616 Fax: 612-854-8031

Tennessee

South Atlantic Component Sales 1100 Jordan Lane, Ste D Huntsville, AL 35816

Tel: 205-533-4229 Fax: 205-533-5008 **Texas**

Technology Representatives, Inc. 17311 Dallas Parkway, Ste 140 Dallas, TX 75248

Tel: 214-713-9027 Fax: 214-931-6159

Technology Representatives, Inc. 7801 N. Lamar, Ste D-96

Austin, TX 78752

Tel: 512-452-2110 Fax: 512-452-9184

S. W. Sales

1930 So. Alma School Rd., #C205 Mesa. AZ 85210

Tel: 915-594-8259

Tel: 915-594-8259 Fax: 602-345-7874

Utah

Waugaman Assoc. Utah, Inc.

876 East Vine St. Murray, UT 84107

Vermont

VISTAssociates, Inc. 237 Cedar Hill St.

Marlborough, MA 01752

Tel: 508-481-9277 Fax: 508-460-1869

Virginia

L. D. Lowery, Inc. 2801 W. Chester Pike Broomall. PA 19008

Tel: 610-356-5300 Fax: 610-356-8710

Washington

Electra Technical Sales 11411 N.E. 124th St. Kirkland, WA 98034

Tel: 206-821-7442 Fax: 206-821-7289

West Virginia

Midwest Marketing Associates 30 Marco Lane

30 Marco Lane Dayton, OH 45458

Tel: 513-433-2511 Fax: 513-433-6853 **Wisconsin (Northern)**

TECTEAM Sales, Inc. 1621 E. 79th St., Ste 133 Minneapolis, MN 55425

Tel: 612-854-6616 Fax: 612-854-8031

Wisconsin (Southern)

KMA Sales Company 2433 North Mayfair Rd., Ste 202 Milwaukee, WI 53226-1406

Tel: 414-259-1771 Fax: 414-259-0246

Wyoming

Waugaman Associates 4800 Van Gordon

Wheat Ridge, CO 80033

Tel: 303-423-1020 Fax: 303-467-3095

Canada

Electronics Sales Professionals (ESP) Inc.

104-215 Stafford Rd. Nepean, Ontario K2H 9C1

Canada

Tel: 613-828-6881 Fax: 613-828-5725

Puerto Rico

Pedro E. Conesa Nazario PECN

P.O. Box 235, Station 6 Ponce, Puerto Rico 00732

Tel: 809-841-6394 Fax: 809-259-1272

January 1995

INTERNATIONAL SALES OFFICE LOCATIONS

AR	G	Ε	N	TI	NA	L
`	_	_				

YEL S.R.L. Virrey Cevallos 143 1077 Buenos Aires Argentina

TEL:.....54 1 40 1025 54 1 45 7140

FAX:54 1 45 2551

AUSTRALIA

Reserve Electronics Ptv. Ltd. 24 Brisbane Street Perth, Western Australia 6000 TEL:.....61 9 3289755 FAX:61 9 3288791

Reserve Electronics Ptv. Ltd. 133-135 Alexander Street. Crows Nest, New South Wales 2065 Australia

TEL:.....02 9068486

Reserve Electronics Ptv. Ltd. 21 Drummond Place, Carlton, Melbourne, Victoria 3053 Australia

TEL:.....03 6652536 FAX:03 6634077

AUSTRIA

Eurodis Electronics GmbH Lamezanstrasse 10 A - 1232 Vienna Austria TEL:.....43 161 062 0 FAX:43 161 062 151

BELGIUM

DECATEL N.V./B.V. Rue de la Technologiestraat, 31 B-1080 Brussel Belgium TEL:.....32 2 469 0336 FAX:32 2 469 0607

DENMARK

DKI Dansk Komponent Import A/S Kongeveien 83 DK-2840 Holte Denmark TEL:.....45 45 41 0500 FAX:45 45 41 0512

FINLAND

OY BEXAB FINLAND AB P.O. Box 51 SF - 02631 Espoo Finland TEL: 358 0 502 3200 FAX:......358 0 502 3294

FRANCE

Avnet EMG S.A. 79/81, rue Pierre Semard 92320 Chatillon Cedex France TEL: 33 1 49 65 26 56/57

FAX:......33 1 49 65 2678

Isotope Electronics Z.A. De Courtaboeuf Bat B11, Rue d'Islande 91946 Les Ulis France

TEL: 33 1 69 86 97 97 FAX:......33 1 69 28 93 92

GERMANY

Fietie Sensorund Optoelektronik GmbH Augustenstr. 48 a 18055 Rostock Germany

TEL: 49 381 49 09 18 1 FAX:..... 49 381 49 09 18 2

Getronic GmbH Warnstedtstrasse 57 22504 Hamburg Germany TEL: 49 40 540 4046

FAX:..... 49 40 540 6733

IGS Schweinfurter Str. 7 90427 Nuremberg Germany

TEL: 49 911 30 71 29 7 FAX:..... 49 911 30 71 29 0

IGS TB Mannheim Westring 3 68305 Mannheim Germany

TEL: 49 621 74 67 33 FAX:..... 49 621 74 67 33 Neumueller-Fenner GmbH Mehlbeerenstr. 2 82024 Taufkirchen Germany TEL:49 89 61 44990 FAX:.....49 89 61 449980

HONG KONG

Tektron Electronics (HK) Ltd. 1702 Bank Centre 636 Nathan Road Kowloon Hong Kong TEL:852 388 0629 FAX: 852 780 5871

INDIA

Victory Electronics 138, Lower Palace Orchards Bangalore-560, 003 India TEL:91 80 369 353 FAX:.....91 80 559 1056

IRELAND

Amtech Industries LTD Cargo Terminal Ballymun Industrial Estate Dublin II Fire TEL:353 1 842 6514 FAX:.....353 1 842 6867

ISRAEL

Building 101 P.O.B. 50 Tirat-Yehuda 73175 Israel TEL:972 3 971 2056

El-Gev Electronics Ltd.

ITALY

Avnet EMG S.R.L. Divisione della Avnet De Mico Viale Vittorio Veneto, 8 20060 Cassina De' Pecchi (MI) Milano Italy TEĹ:39 2 95 34 3600 FAX:39 2 95 34 4390/437

JAPAN

Teksel Co. Ltd. TBC, Higashi 2-27-10 Shibuya-ku, Tokyo 150 Japan

TEL:.....03-5467-9000 FAX:.....03-5467-0777

KOREA

MS International Corp. C.P.O. Box 6780 Rm. No. 1205 Haechun Bldg. #831, Yucksam-Dong Kangnam-Ku, Seoul, Korea

TEL: 82 2 553 0901 FAX: 82 2 553 0046 82 2 555 5584

THE NETHERLANDS

Koning En Hartman Elektronics B.V. Energieweg, 1 2627 AP Delft Holland

TEL:.....31 15 60 9906 FAX:.....31 15 61 9194

NEW ZEALAND

D. Graham Reid Trading As Professional Electronics 22B Milford Road P.O. Box 31127 Auckland 9 New Zealand TEL:......64 9 410 9690

FAX:64 9 410 2971

NORWAY

Berendsen Electronics A/S. P.O. Box 9376 - Gronland 0135 Oslo

Norway

TEL:.....47 22 67 6800 FAX:.....47 22 67 7380

SINGAPORE

Seamax Engineering Pte. Ltd. Blk 6001 Bedok Ind. Park C #02-2280/2282

Singapore 1647

TEL:.....65 445 1828 FAX:.....65 445 6388 65 241 9422

SOUTH AFRICA

Communica (Pty) LTD. 364 Pretorius Street Pretoria, 0001 South Africa

TEL: 27 12 322 3721 FAX: 27 12 322 7613/21

SPAIN

FAX:..... 34 1 304 3040

SWEDEN Martinsson Elektronik AB

SWITZERLAND

TAIWAN

Sea Union Engineering Ent. Ltd. P.O. Box 45-95 3rd Fl., 162, Chang an East Road Sec. 2

Taipei 10406 Taiwan R.O.C.

THAILAND

Thai Seamax Electronics Co. Ltd. 93/2 Ekamai Soi 3, Sukhumvit 63 Bangkok 10110 Thailand

TEL: 66 2 391 7020 FAX: 66 2 381 2970

TURKEY

AZtech Elektronik Ltd.
Kaptanpasa Sokak No. 25/2
Gaziosmanpasa 06700
TR - Ankara
Turkey
TEL:90 312 44 70 38 4

FAX:.....90 312 44 70 38 7

UNITED KINGDOM

Highland Electronics Limited Albert Drive Burgess Hill West Sussex RH15 9TN TEL:44 444 245 021 44 444 236 000 FAX:44 444 236 641

OPTEK

REGIONAL OFFICES

CENTRAL EUROPE

Reiner Dollwetzel Optek Technology, Inc. Flemingstrasse 27 91154 Roth Germany

TEL:...... 49 91 718 7061 FAX:..... 49 91 716 3410

WESTERN EUROPE

January 1995

