Computability, Complexity, and Languages

By Martin D. Davis et al

First Edition

CONTENTS

	omer	its	U	
1	Pre	liminaries	1	
	1	Sets and <i>n</i> -tuples	1	
	2	Functions	2	
	3	Alphabets and Strings	2	
	4	Predicates	2	
	5	Quantifiers	3	
	6	Proof by Contradiction	3	
	7	Mathematical Induction	3	
2	Programs and Computable Functions			
	1	A Programming Language	5	
	2	Some Examples of Programs	6	
	3	Syntax	7	
	4	Computable Functions	8	
	5	More about Macros	9	
3	Primitive Recursive Functions 10			
	1	Composition	10	
	2	Recursion	10	
	3	PRC Classes	11	
	4	Some Primitive Recursive Functions	12	
	5	Primitive Recursive Predicates	12	
	6	Iterated Operations and Bounded Quantifiers	13	
	7	Minimalization	14	
	8	Pairing Functions and Gödel Numbers	15	

CHAPTER 1

PRELIMINARIES

1 Sets and *n*-tuples

We shall often be dealing with sets of objects of some definite kind. Thinking of a collection iof entities as a set simply amounts to a decision to regard the whole collection as a single object. We shall use the word class as synonymous with set. In particular we write N for the set of $natural\ numbers\ 0, 1, 2, 3 \cdots$.

It is useful to speak of the *empty set*, written \varnothing , which has no members. The equation R=S, where R and S are sets, means that R and S are identical as sets, that is, that they have exactly the same members. We write $R\subseteq S$ and speak of R as a subset of S to mean that every element of R is also an element of S. We write $R\subset S$ to indicate that $R\subseteq S$ but $R\neq S$. In this case R is called a proper subset of S. If R and S are set, we write $R\cup S$ for the union of R and S, which is the collection of all objects which are members of either R or S or both. $R\cap S$, the intersection of R and S, is the set of all objects that belong to both R and S. R-S, the set of all objects that belong to R and do not belong to R, is the difference between R and R. Often we will be working in contexts where all sets being considered are subsets of some fixed set R (sometimes called a domain or a universe). In such a case we write R for R and call R the complement of R. We write

$$\{a_1, a_2, \cdots, a_n\}$$

for the set consisting of the n objects a_1, a_2, \dots, a_n . Sets that can be written in this form as well as the empty set are called *finite*. Sets that are not finite are called *infinite*. Since two sets are equal if and only if they have the same members. That is, the order in which we may choose to write the members of a set is irrelevant. Where order is important, we speak instead of an n-tuple or a list. A 2-tuple is called an ordered pair, and a 3-tuple is called an ordered triple. Unlike the case for sets of one object, we do not distinguish between the object a and the 1-tuple a. The crucial property of a-tuples is

$$(a_1, a_2, \cdots, a_n) = (b_1, b_2, \cdots, b_n)$$

if and only if

$$a_1 = b_1$$
, $a_2 = b_2$, ..., and $a_n = b_n$.

If S_1, S_2, \dots, S_n are given sets, then we write $S_1 \times S_2 \times \dots \times S_n$ for the set of all n-tuples such that $a_1 \in S_1, a_2 \in S_2, \dots, a_n \in S_n$. $S_1 \times S_2 \times \dots \times S_n$ is sometimes called the Cartesian product of S_1, S_2, \dots, S_n .

Preliminaries Preliminaries

2 Functions

For f a function, one writes f(a) = b to mean that $(a, b) \in f$; the definition of function ensures that for each a there can be at most one such b. The set of all a such that $(a, b) \in f$ for some b is called the *domain* of f. The set of all f(a) for a in the domain of f is called the *range* of f.

Functions f are often specified by algorithms that provide procedures for obtaining f(a) from a. However, it is quite possible to possess an algorithm that specifies a function without being able to tell which elements belong to its domain. This makes the notion of a so-called partial function play a central role in computability theory. A partial function on a set S is simply a function whose domain is a subset of S. If f is a partial function on S and $a \in S$, then we write $f(a) \downarrow$ and say that f(a) is defined to indicate that a is in the domain of f; if a is not in the domain of f, we write $f(a) \uparrow$ and say that f(a) is undefined. If a partial function on S has the domain S, then it is called total. Finally, we should mention that the empty set \varnothing is itself a function. Considered as a partial function on some set S, it is nowhere defined.

A partial function f on a set S^n is called an n-ary partial function on S, or a function of n variables on S. We use unary and binary for 1-ary and 2-ary, respectively.

A function f is one-one if, for all x, y in the doamin of f, f(x) = f(y) implies x = y. If the range of f is the set S, then we say that f is an onto function with respect to S, or simply that f is onto S.

We will sometimes refer to the idea of *closure*. If S is a set and f is a partial function on S, then S is *closed under* f if the range of f is a subset of S.

3 Alphabets and Strings

An alphabet is simply some finite nonempty set A of objects called symbols. An n-tuple of symbols of A is called a word or a string on A. The set of all words on the alphabet A is written A^* . Any subset of A^* is called a language on A or a language with alphabet A. We do not distinguish between a symbol $a \in A$ and the word of length 1 consisting of that symbol.

4 Predicates

By a predicate or a Boolean-valued function on a set S we mean a total function P on S such that for each $a \in S$, either

$$P(a) = \text{TRUE}$$
 or $P(a) = \text{FALSE}$,

where TRUE and FALSE are a pair of distinct objects called *truth values*. We often say P(a) is true for P(a) =TRUE, and P(a) is false for P(a) =FALSE. Given a predicate P on a set S, there is a corresponding subset R of S, namely, the set of all elements $a \in S$ for which P(a) = 1. The predicate P is called the *characteristic function* of the set R.

5 Quantifiers

In this section we will be concerned exclusively with predicates on N^m (or what is the same thing, m-ary predicates on N) for different values of m. Thus, let $P(t, x_1, \dots, x_n)$ be an (n+1)-ary predicate. Consider the predicate $Q(y, x_1, \dots, x_n)$ defined by

$$Q(y, x_1, \dots, x_n) \Leftrightarrow P(0, x_1, \dots, x_n) \lor P(1, x_1, \dots, x_n)$$
$$\lor \dots \lor P(y, x_1, \dots, x_n).$$

Thus the predicate $Q(y, x_1, \dots, x_n)$ is true just in case there is value of $t \leq y$ such that $P(t, x_1, \dots, x_n)$ is true. We write this predicate Q as

$$(\exists t)_{\leq y} P(t, x_1, \dots, x_n).$$

The expression " $(\exists t)_{\leq y}$ " is called a bounded existential quantifier. Similarly, we write $(\forall t)_{\leq y} P(t, x_1, \dots, x_n)$ for the predicate

$$P(0, x_1, \ldots, x_n) \& P(1, x_1, \ldots, x_n) \& \cdots \& P(y, x_1, \ldots, x_n).$$

The predicate is true just in case $P(t, x_1, \dots, x_n)$ is true for all $t \leq y$. The expression " $(\forall t)_{\leq y}$ " is called a bounded universal quantifier.

6 Proof by Contradiction

Recall that a number is called a *prime* if it has *exactly two distinct divisors*, itself and 1. Consider the following assertion:

$$n^2 - n + 41$$
 is prime for all $n \in \mathbb{N}$.

This assertion is in fact false.

In a proof by contradiction, one begins by supposing that the assertion we wish to prove is false. In a proof by contradiction we look for a pair of statements developed in the course of the proof which *contradict* one another.

Theorem 6.1

Let $x \in \{a, b\}^*$ such that xa = ax. Then $x = a^{[n]}$ for some $n \in N$.

7 Mathematical Induction

Mathematical induction furnishes an important technique for proving statements of the form $(\forall n)P(n)$, where P is a predicate on N. One proceeds by proving a pair of auxiliary statements, namely, P(0) and

$$(\forall n)(if P(n) then P(n+1)). \tag{1.1}$$

Why is this helpful? Because sometimes it is much easier to prove (1.1) than to prove $(\forall n)P(n)$ in some other way. In proving this second auxiliary proposition one typically

Preliminaries

considers some fixed but arbitrary value k of n and shows that if we assume P(k) we can prove P(k+1). P(k) is then called the *induction hypothesis*.

There are some paradoxical things about proofs by mathematical induction. One is assuming P(k) for some particular k in order to show that P(k+1) follows.

It is also paradoxical that in using induction (we shall often omit the word mathematical), it is sometimes easier to prove statements by first making them "stronger." We wish to prove $(\forall n)P(n)$. Instead we decide to prove the stronger assertion $(\forall n)(P(n)\&Q(n))$ (which of course implies the original statement). The technique of deliberately strengthening what is to be proved for the purpose of making proofs by induction easier is called induction loading.

Theorem 7.1

For all $n \in N$ we have $\sum_{i=0}^{n} (2i+1) = (n+1)^2$.

Another form of mathematical induction that is often very useful is called *course-of-values induction* or sometimes *complete induction*.

Theorem 7.2

There is no string $x \in \{a, b\}^*$ such that ax = xb.

CHAPTER 2

PROGRAMS AND COMPUTABLE FUNCTIONS

1 A Programming Language

In particular, the letters

$$X_1 X_2 X_3 \cdots$$

will be called the *input variables* of \mathcal{L} , the letter Y will be called the *output variable* of \mathcal{L} , and the letters

$$Z_1 Z_2 Z_3 \cdots$$

will be called the *local variables* of \mathcal{L} .

In \mathscr{L} we will be able to write "instructions" of various sorts; a "program" of \mathscr{L} will then consist of a *list* (i.e., a finite sequence) of instructions.

Table 2.1

Insturction	Interpretation
$V \leftarrow V + 1$	Increase by 1 the value of the variable V .
$V \leftarrow V - 1$	If the value of V is 0, leave it unchanged; otherwise decrease by 1 the value of V .
$ IF V \neq 0 GOTO $ $ L $	If the value of V is nonzero, perform the instruction with label L next; otherwise proceed to the next instruction in the list

We give in Table 2.1 a complete list of our instructions. In this list V stands for any variable and L stands for any label.

These instructions will be called the *increment*, decrement, and conditional branch instructions, respectively.

We will use the special convention that the output variable Y and the local variables Z_i initially have the value 0.

2 Some Examples of Programs

Our first example is the program

$$[A] \qquad X \leftarrow X - 1 \\ Y \leftarrow Y + 1 \\ \text{IF } X \neq 0 \text{ GOTO } A$$

If the initial value x of X is not 0, the effect of this program is to copy x into Y and to decrement the value of X down to 0. We will say that this program *computes* the function

$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ x & \text{otherwise.} \end{cases}$$

Although the preceding program is a perfectly well-defined program of our language \mathcal{L} , we may think of it as having arisen in an attempt to write a program that copies the value of X into Y, and therefore containing a "bug" because it does not handle 0 correctly. The following slightly more complicated example remedies this situation.

[A] IF
$$X \neq 0$$
 GOTO B

$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO E
[B] $X \leftarrow X - 1$

$$Y \leftarrow Y + 1$$

$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO A

At first glance Z's role in the computation may not be obvious. It is used simply to allow us to code an *unconditional branch*. That is, the program segment

$$\begin{split} Z \leftarrow Z + 1 \\ \text{IF } Z \neq 0 \text{ GOTO } L \end{split} \tag{2.1}$$

has the effect (ignoring the effect on the value of Z) of an instruction

GOTO
$$L$$

such as is available in most programming languages. Now GOTO L is not an instruction in our language \mathcal{L} , but since we will frequently have use for such an instruction, we can use it as an abbreviation for the program segment (3.1). Such an abbreviating pseudoinstruction will be called a macro and the program or program segment which it abbreviates will be called it macro expansion.

For our final example, we take the program

$$Y \leftarrow X_1$$

$$Z \leftarrow X_2$$
[C] IF $Z \neq 0$ GOTO A
GOTO E

[A] IF $Y \neq 0$ GOTO B
GOTO A

[B] $Y \leftarrow Y - 1$

$$Z \leftarrow Z - 1$$
GOTO C

What happens if we begin with a value of X_1 less than the value of X_2 ? At this point the computation enters the "loop":

[A] IF
$$Y \neq 0$$
 GOTO B
GOTO A

Since y = 0, there is no way out of this loop and the computation will continue "forever." Thus, if we begin with $X_1 = m$, $X_2 = n$, where m < n, the computation will never terminate. In this case (and in similar cases) we will say that the program computes the partial function

$$g(x_1, x_2) = \begin{cases} x_1 - x_2 & \text{if } x_1 \ge x_2 \\ \uparrow & \text{if } x_1 < x_2. \end{cases}$$

3 Syntax

The symbols

$$X_1 X_2 X_3 \cdots$$

are called *input variables*,

$$Z_1 Z_2 Z_3 \cdots$$

are called *local variables*, and Y is called the *output variable* of \mathcal{L} . The symbols

$$A_1, B_1 C_1 D_1 E_1 A_2 B_2 \cdots$$

are called *labels* of \mathcal{L} . A *statement* is one of the following:

$$\begin{aligned} V &\leftarrow V + 1 \\ V &\leftarrow V - 1 \\ V &\leftarrow V \end{aligned}$$
 IF $V \neq 0$ GOTO L

where V may be any variable and L may be any label.

Next, an *instruction* is either a statement (in which case it is also called an *unlabeled* instruction) or [L] followed by a statement (in which case the instruction is said to have L as its label or to be labeled L). A *program* is a list (i.e., a finite sequence) of instructions. The length of this list is called the *Length* of the progra. It is useful to include the *empty* program of length 0, which of course contains no instructions.

A state of a program \mathscr{P} is a list of equations of the form V=m, where V is a variable and m is a number, including an equation for each variable that occurs in \mathscr{P} and including no two equations with the same variable. As an example, let \mathscr{P} be the program which contains the variables X Y Z. (The definition of state does not require that the state can actually be "attained" from some initial state.) The list

$$X = 3, \quad Z = 3$$

is not a state of \mathscr{P} since no equation in Y occurs. Likewise, the list

$$X = 3, \quad X = 4, \quad Y = 2, \quad Z = 2$$

is not a state of \mathscr{P} : there are two equations in X.

Let σ be a state of \mathscr{P} and let V be a variable that occurs in σ . The value of V at σ is then the (unique) number q such that the equation V = q is one of the equations making up σ .

Suppose we have a program \mathscr{P} and a state σ of \mathscr{P} . In order to say what happens "next," we also need to know which instruction of \mathscr{P} is about to be executed. We therefore define a *snapshot* or *instantaneous description* of a program \mathscr{P} of length n to be a pair (i,σ) where $1 \leq i \leq n+1$, and σ is a state of \mathscr{P} .

If $s = (i, \sigma)$ is a snapshot of \mathscr{P} and V is a variable of \mathscr{P} , then the value of V at s just means the value of V at σ .

A snapshot (i, σ) of a program \mathscr{P} of length n is called *terminal* if i = n + 1. If (i, σ) is a nonterminal snapshot of \mathscr{P} , we define the *successor* of (i, σ) to be the snapshot (j, τ) defined as follows:

- Case 1. The *i*th instruction of \mathscr{P} is $V \leftarrow V + 1$ and σ contains the equation V = m. Then j = i + 1 and τ is obtained from σ by replacing the equation V = m by V = m + 1 (i.e., the value of V at τ is m + 1).
- Case 2. The *i*th instruction of \mathscr{P} is $V \leftarrow V 1$ and σ contains the equation V = m. Then j = i + 1 and τ is obtained from σ by replacing the equation V = m by V = m 1 if $m \neq 0$; if m = 0, $\tau = \sigma$.
- Case 3. The *i*th instruction of \mathscr{P} is $V \leftarrow V$. Then $\tau = \sigma$ and j = i + 1.
- Case 4. The *i*th instruction of \mathscr{P} is IF $V \neq 0$ GOTO L. Then $\tau = \sigma$, and there are two subcases:
- Case 4a. σ contains the equation V=0. Then j=i+1.
- Case 4b. σ contains the equation V=m where $m\neq 0$. Then, if there is an instruction of \mathscr{P} labeled L, j is the least number such that the jth instruction of \mathscr{P} is labeled L. Otherwise, j=n+1.

A computation of a program \mathscr{P} is defined to be a sequence (i.e., a list) s_1, s_2, \ldots, s_k of snapshots of \mathscr{P} such that s_{i+1} is the successor of s_i for $i = 1, 2, \cdots, k-1$ and s_k is terminal.

Note that we have not forbidden a program to contain more than one instruction having the same label. However, our definition of successor of a snapshot, in effect, interprets a branch instruction as always referring to the *first* statement in the program having the label in question.

4 Computable Functions

One would expect a program that computes a function of m variables to contain the input variables X_1, X_2, \ldots, X_m , and the output variable Y, and to have all other variables (if any) in the program to be local.

Thus, let \mathscr{P} be any program in the language \mathscr{L} and let r_1, \ldots, r_m be m given numbers. We form the state σ of \mathscr{P} which consists of the equations

$$X_1 = r_1, \quad X_2 = r_2, \quad \dots, \quad X_m = r_m, \quad Y = 0$$

together with the equations V = 0 for each variable V in \mathscr{P} other than X_1, \ldots, X_m, Y . We will call this the *initial state*, and the snapshot $(1, \sigma)$, the *initial snapshot*.

- Case 1. There is a computation s_1, s_2, \ldots, s_k of \mathscr{P} beginning with the initial snapshot. Then we write $\psi_{\mathscr{P}}^{(m)}(r_1, \ldots, r_m)$ for the value of the variable Y at the (terminal) snapshot s_k .
- Case 2. There is no such computation; i.e., there is an infinite sequence s_1, s_2, s_3, \ldots beginning with the initial snapshot where each s_{i+1} is the successor of s_i . In this case $\psi_{\mathscr{P}}^{(m)}(r_1, \ldots, r_m)$ is undefined.

For any program \mathscr{P} and any positive integer m, the function $\psi_{\mathscr{P}}^{(m)}(r_1,\ldots,r_m)$ is said to be *computed* by \mathscr{P} . A given partial function g (of one or more variables) is said to be partially computable if it is computed by some program.

A given function g of m variables is called total if $g(r_1, \ldots, r_m)$ is defined for all r_1, \ldots, r_m . A function is said to be *computable* of it is both partially computable and total.

Partially computable functions are also called *partial recursive*, and computable functions, i.e., functions that are both total and partial recursive, are called *recursive*.

5 More about Macros

We now see how to augment our language to include macros of the form

IF
$$P(V_1, \ldots, V_n)$$
 GOTO L

where $P(x_1, \ldots, x_n)$ is a computable predicate. Here we are making use of the convention that

$$TRUE = 1$$
, $FALSE = 0$.

Hence predicates are just total functions whose values are always either 0 or 1. And therefore, it makes perfect sense to say that some given *predicate* is or is not computable.

CHAPTER 3

PRIMITIVE RECURSIVE FUNCTIONS

1 Composition

We want to combine computable functions in such a way that the output of one becomes an input to another. In the simplest case we combine functions f and g to obtain the function

$$h(x) = f(q(x)).$$

More generally, for functions of several variables:

Definition 1.1

Let f be a function of k variables and let g_1, \ldots, g_k be functions of n variables. Let

$$h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n)).$$

Then h is said to be obtained from f and g_1, \ldots, g_k by composition.

Theorem 1.2

If h is obtained from the (partially) computable functions f, g_1, \ldots, g_k by composition, then h is (partially) computable.

The word *partially* is placed in parentheses in order to assert the correctness of the statement with the word included or omitted in both places.

2 Recursion

Suppose k is some fixed number and

$$h(0) = k, h(t+1) = g(t, h(t)),$$
(3.1)

where g is some given total function of two variables. Then h is said to be obtained from g by $primitive\ recursion$, or simply recursion.

Theorem 2.1

Let h be obtained from g as in (3.1), and let g be computable. Then h is also computable.

A slightly more complicated kind of recursion is involved when we have

$$h(x_1, \dots, x_n, 0) = f(x_1, \dots, x_n),$$

$$h(x_1, \dots, x_n, t+1) = g(t, h(x_1, \dots, x_n, t), x_1, \dots, x_n).$$
(3.2)

Here the function h of n+1 variables is said to be obtained by *primitive recursion*, or simply *recursion*, from the total functions f (of n variables) and g (of n+2 variables). Again we have

Theorem 2.2

Let h be obtained from f and g as in (3.2) and let f, g be computable. Then h is also computable.

3 PRC Classes

Now we need some functions on which to get started. These will be

$$s(x) = x + 1,$$

$$n(x) = 0,$$

and the projection functions

$$u_i^n(x_1,\ldots,x_n)=x_i, \quad 1\leq i\leq n.$$

The functions s, n, and u_i^n are called the *initial functions*.

Definition 3.1

A class of total functions \mathscr{C} is called a PRC class if

- 1. the initial functions belong to \mathscr{C} .
- 2. a function obtained from functions belonging to $\mathscr C$ by either composition or recursion also belongs to $\mathscr C$.

Then we have

Theorem 3.2

The class of computable functions is a PRC class.

Definition 3.3

A function is called *primitive recursive* if it can be obtained from the initial functions by a finite number of applications of composition and recursion.

It is obvious from this definition that

Corollary 3.4

The class of primitive recursive functions is a PRC class.

Actually we can say more:

Theorem 3.5

A function is primitive recursive if and only if it belongs to every PRC class.

Corollary 3.6

Every primitive recursive function is computable.

4 Some Primitive Recursive Functions

The predecessor function p(x) is defined as follows:

$$p(x) = \begin{cases} x - 1 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

5 Primitive Recursive Predicates

Theorem 5.1

Let $\mathscr C$ be a PRC class. If P, Q are predicates that belong to $\mathscr C$, then so are $\sim P, P \vee Q$, and P & Q.

A result which refers to PRC classes can be applied to the two classes we have shown to be PRC. That is, taking \mathscr{C} to be the class of all primitive recursive functions, we have

Corollary 5.2

If P, Q are primitive recursive predicates, then so are $\sim P$, $P \vee Q$, and P & Q.

Similarly taking \mathscr{C} to be the class of all computable functions, we have

Corollary 5.3

If P, Q are computable predicates, then so are $\sim P$, $P \vee Q$, and P & Q.

Theorem 5.4: Definition by Cases

Let \mathscr{C} be a PRC class. Let the function g, h and the predicate P belong to \mathscr{C} . Let

$$f(x_1, \dots, x_n) = \begin{cases} g(x_1, \dots, x_n) & \text{if } P(x_1, \dots, x_n) \\ h(x_1, \dots, x_n) & \text{otherwise.} \end{cases}$$

Then f belongs to \mathscr{C} .

This will be recognized as a version of the familiar "if...then..., else..." statement.

Corollary 5.5

Let \mathscr{C} be a PRC class, let *n*-ary functions g_1, \ldots, g_m, h and predicates P_1, \ldots, P_m belong to \mathscr{C} , and let

$$P_i(x_1,\ldots,x_n)\&P_j(x_1,\ldots,x_n)=0$$

for all $1 \le i < j \le m$ and all x_1, \ldots, x_n . If

$$f(x_1,...,x_n) = \begin{cases} g_1(x_1,...,x_n) & \text{if } P_1(x_1,...,x_n) \\ \vdots & \vdots \\ g_m(x_1,...,x_n) & \text{if } P_m(x_1,...,x_n) \\ h(x_1,...,x_n) & \text{otherwise,} \end{cases}$$

then f also belongs to \mathscr{C} .

6 Iterated Operations and Bounded Quantifiers

Theorem 6.1

Let \mathscr{C} be a PRC class. If $f(t, x_1, \ldots, x_n)$ belongs to \mathscr{C} , then so do the functions

$$g(y, x_1, \dots, x_n) = \sum_{t=0}^{y} f(t, x_1, \dots, x_n)$$

and

$$h(y, x_1, \dots, x_n) = \prod_{t=0}^{y} f(t, x_1, \dots, x_n).$$

A common error is to attempt to prove this by using mathematical induction on y. A little reflection reveals that such an argument by induction shows that

$$g(0,x_1,\ldots,x_n),g(1,x_1,\ldots,x_n),\ldots$$

all belong to \mathscr{C} , but not that the function $g(y, x_1, \ldots, x_n)$, one of whose arguments is y, belongs to \mathscr{C} .

Sometimes we will want to begin the summation (or product) at 1 instead of 0. Then

the initial recursion equations can be taken to be

$$g(0,x_1,\ldots,x_n)=0,$$

$$h(0,x_1,\ldots,x_n)=1,$$

with the equations for $g(t+1,x_1,\ldots,x_n)$ and $h(t+1,x_1,\ldots,x_n)$. Note that we are implicitly defining a vacuous sum to be 0 and a vacuous product to be 1. With this understanding we have proved

Corollary 6.2

If $f(t, x_1, \ldots, x_n)$ belongs to the PRC class \mathscr{C} , then so do the functions

$$g(y, x_1, \dots, x_n) = \sum_{t=1}^{y} f(t, x_1, \dots, x_n)$$

and

$$h(y, x, ..., x_n) = \prod_{t=1}^{y} f(t, x_1, ..., x_n).$$

We have

Theorem 6.3

If the predicate $P(t, x_1, ..., x_n)$ belongs to some PRC class \mathscr{C} , then so do the predicates

$$(\forall t)_{\leq y} P(t, x_1, \dots, x_n)$$
 and $(\exists t)_{\leq y} P(t, x_1, \dots, x_n)$.

The predicate "x is a prime" is primitive recursive since

$$Prime(x) \Leftrightarrow x > 1\&(\forall t)_{\leq x}\{t = 1 \lor t = x \lor \sim (t|x)\}\$$

(A number is a *prime* if it is greater than 1 and it has no divisors other than 1 and itself.)

7 Minimalization

Let $P(t, x_1, \ldots, x_n)$ belong to some given PRC class \mathscr{C} . Then by Theorem 6.1, the function

$$g(y, x_1, \dots, x_n) = \sum_{u=0}^{y} \prod_{t=0}^{u} \alpha(P(t, x_1, \dots, x_n))$$

also belongs to \mathscr{C} . Suppose for definiteness that for some value of $t_0 \leq y$,

$$P(t, x_1, \dots, x_n) = 0$$
 for $t < t_0$

but

$$P(t_0, x_1, \dots, x_n) = 1,$$

i.e., that t_0 is the least value of $t \leq y$ for which $P(t, x_1, \ldots, x_n)$ is true. Then

$$\prod_{t=0}^{u} \alpha(P(t, x_1, \dots, x_n)) = \begin{cases} 1 & \text{if } u < t_0 \\ 0 & \text{if } u \ge t_0. \end{cases}$$

Hence,

$$g(y, x_1, \dots, x_n) = \sum_{u < t_0} 1 = t_0,$$

so that $g(y, x_1, \ldots, x_n)$ is the least value of t for which $P(t, x, \ldots, x_n)$ is true. Now, we define

$$\min_{t \le y} P(t, x_1, \dots, x_n) = \begin{cases} g(y, x_1, \dots, x_n) & \text{if } (\exists t) \le y P(t, x_1, \dots, x_n) \\ 0 & \text{otherwise.} \end{cases}$$

Thus, $\min_{t \leq y} P(t, x_1, \dots, x_n)$ is the least value of $t \leq y$ for which $P(t, x_1, \dots, x_n)$ is true, if such exists; otherwise it assumes the (default) value 0. Using Theorems 5.4 and 6.3, we have

Theorem 7.1

If $P(t, x_1, ..., x_n)$ belongs to some PRC class \mathscr{C} and $f(y, x_1, ..., x_n) = \min_{t \le y} P(t, x_1, ..., x_n)$, then f also belongs to \mathscr{C} .

The operation " $\min_{t \leq y}$ " is called bounded minimalization.

R(x,y) is the remainder when x is divided by y.

Here, for n > 0, p_n is the *n*th prime number (in order of size). So that p_n be a total function, we set $p_0 = 0$.

Consider the recursion equations

$$p_0 = 0,$$

 $p_{n+1} = \min_{t < p_n! + 1} [\text{Prime}(t) \& t > p_n].$

To see that these equations are correct we must verify the inequality

$$p_{n+1} \le (p_n)! + 1. \tag{3.3}$$

We write

$$\min_{y} P(x_1, \dots, x_n, y)$$

for the least value of y for which the predicate P is true if there is one. If there is no value of y for which $P(x_1, \ldots, x_n, y)$ is true, then $\min_y P(x_1, \ldots, x_n, y)$ is undefined. Now, there are primitive recursive predicates P(x, y) such that $\min_y P(x, y)$ is a total function which is not primitive recursive. However, we can prove

Theorem 7.2

If $P(x_1, \ldots, x_n, y)$ is a computable predicate and if

$$g(x_1,\ldots,x_n)=\min_{y}P(x_1,\ldots,x_n,y),$$

then g is a partially computable function.

8 Pairing Functions and Gödel Numbers

If z is any given number, there is a unique solution x, y to the equation

$$\langle x, y \rangle = z, \tag{3.4}$$

namely, x is the largest number such that $2^{x}|(z+1)$, and y is then the solution of the equation

$$2y + 1 = (z+1)/2^x$$

this last equation has a (unique) solution because $(z+1)/2^x$ must be odd.

We summarize the properties of the functions $\langle x, y \rangle$, l(z), and r(z) in

Theorem 8.1: Pairing Function Theorem

The functions $\langle x, y \rangle$, l(z), and r(z) have the following properties:

- 1. they are primitive recursive;
- 2. $l(\langle x, y \rangle) = x, r(\langle x, y \rangle) = y;$
- 3. $\langle l(z), r(z) \rangle = z;$
- 4. $l(z), r(z) \le z$.

We define the Gödel number of the sequence (a_1, \ldots, a_n) to be the number

$$[a_1, \dots, a_n] = \prod_{i=1}^n p_i^{a_i}.$$

Gödel numbering satisfying the following uniqueness property:

Theorem 8.2

If $[a_1, ..., a_n] = [b_1, ..., b_n]$, then

$$a_i = b_i, \quad i = 1, \dots, n.$$

This result is an intermediate consequence of the uniqueness of the factorization of integers into primes, sometimes referred to as the *unique factorization theorem* or the fundamental theorem of arithmetic.

However, note that

$$[a_1, \dots, a_n] = [a_1, \dots, a_n, 0]$$
 (3.5)

because $p_{n+1}^0 = 1$.

We will now define a primitive recursive function $(x)_i$ so that if

$$x = [a_1, \ldots, a_n],$$

then $(x)_i = a_i$.

We shall also use the primitive recursive function

$$\operatorname{Lt}(x) = \min_{i \le x} ((x)_i \ne 0 \& (\forall j)_{\le x} (j \le i \lor (x)_j = 0)).$$

We summarize the key properties of these primitive recursive functions.

Theorem 8.3: Sequence Number Theorem

a.
$$([a_1, \dots, a_n])_i = \begin{cases} a_i & \text{if } 1 \le i \le n \\ 0 & \text{otherwise.} \end{cases}$$

b.
$$[(x)_1, ..., (x)_n] = x$$
 if $n \ge Lt(x)$.