

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Tarea 1

Teoría de Autómatas y Lenguajes Formales — IIC2223 Fecha de Entrega: 2020-08-27

Problema 2:

- (a) Demuestre que para todo lenguaje regular L con $\varepsilon \notin L$, existe un autómata finito no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ tal que $L = \mathcal{L}(\mathcal{A}), |I| = 1$ y |F| = 1.
- (b) Demuestre que existe un lenguaje regular L con $\varepsilon \notin L$, tal que para todo autómata finito determinista $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ con $L = \mathcal{L}(\mathcal{A})$ se cumple que $|F| \geq 2$.

Solución problema 2:

- (a) Dado un lenguaje regular L tal que $\varepsilon \notin L$. Por definición se tiene que existe un DFA \mathcal{A} tal que $\mathcal{L}(\mathcal{A}) = L$, como todo DFA es un NFA, se tiene que existe un NFA \mathcal{A} tal que $\mathcal{L}(\mathcal{A}) = L$. Ahora, como $\varepsilon \notin L$ se sabe que $F \cap I = \emptyset$. Dado eso, se construye \mathcal{A}' de la siguiente forma, usando \mathcal{A} como base se agregan dos estados, $q_{\alpha}, q_{\Omega},$ el único estado inicial y el estado final respectivamente. Ahora, para cada estado inicial de \mathcal{A} se ven las transiciones que salen de ellos y se agregan a las transiciones de q_{α} , i.e. para cada $q_i \in I_A$, $q_j \in Q_A$ y $a_k \in \Sigma$ tal que $\Delta_A(q_i, a_k, q_j)$ se tiene que $\Delta_{A'}(q_\alpha, a_k, q_j)$, pero con el $q_j \in Q_{\mathcal{A}'}$ correspondiente. Similarmente, se construye lo mismo para los $q_i \in F_A$, $q_j \in Q_A$ y $a_k \in \Sigma$, i.e. en \mathcal{A}' se tiene $\Delta_{\mathcal{A}'}(q_j, a_k, q_\Omega)$. Ahora, para demostrar que $\mathcal{L}(\mathcal{A}') = L$ se hace la doble contención con $\mathcal{L}(\mathcal{A})$. Entonces, dado $w \in \mathcal{L}(\mathcal{A})$ se tiene que existe una ejecución ρ por \mathcal{A} tal que w es aceptada, ρ se ve la de siguiente manera $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} p_{n-1} \xrightarrow{a_n} p_n$, donde $p_0 \in I_A$ y $p_n \in F_A$, entonces se tiene que $\rho': q_{\alpha} \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} p_{n-1} \xrightarrow{a_n} q_{\Omega}$ es una ejecución de \mathcal{A}' sobre w, ya que $\Delta_{\mathcal{A}}(p_0, a_1, p_1)$ se tiene si y solo si $\Delta_{\mathcal{A}'}(q_\alpha, a_1, p_1)$, similarmente $\Delta_{\mathcal{A}}(p_{n-1}, a_n, p_n)$ se tiene si y solo si $\Delta_{\mathcal{A}'}(p_{n-1}, a_n, q_{\Omega})$. Como $q_{\Omega} \in F$, se tiene que $w \in \mathcal{L}(\mathcal{A}')$, por lo que $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')^1$. Pero el argumento se puede hacer al revés, o sea, dado una ejecución ρ' de \mathcal{A}' que acepta $w \in \mathcal{L}(\mathcal{A}')$ se tiene que $\rho': q_{\alpha} \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} p_{n-1} \xrightarrow{a_n} q_{\Omega}$, ahora por construcción existe $p_0 \in I_A$ tal que $\Delta_A(p_0, a_1, p_1)$, y se tiene que existe $p_n \in F_A$ tal que $\Delta_{\mathcal{A}}(p_{n-1}, a_n, p_n)$, por lo que $\rho: p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} p_{n-1} \xrightarrow{a_n} p_n$ es una ejecución de \mathcal{A} que acepta w. Por lo que se tiene que $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}) = L$. Más aún se tiene que $|I_{\mathcal{A}'}| = |F_{\mathcal{A}'}| = 1.$
- (b) Sea $\Sigma = \{a\}$ y $L = \{a, aa\}$, sea \mathcal{A} un DFA tal que $\mathcal{L}(\mathcal{A}) = L$. Luego, existe una ejecución ρ_a de \mathcal{A} sobre a que la acepta. Como |a| = 1 entonces $\rho_a : q_0 \xrightarrow{a} p_1$ donde q_0 es el estado inicial y $p_1 \in F$. Similarmente, existe una ejecución ρ_{aa} que acepta aa,

¹Como F_A ∩ $I_A = \emptyset$ todo ejecución de A es de largo al menos uno y pasa por al menos dos estados, por lo que ρ' siempre está bien definida.

vemos que $rho_{aa}: q_0 \xrightarrow{a} p_1 \xrightarrow{a} p_2$, donde el p_1 es el mismo estado que en la ejecución ρ_a^2 y $p_2 \in F$. Luego, se tienen dos opciones $p_1 \neq p_2$ y $p_1 = p_2$ con la primera se tiene que $|F| \geq 2$, consiguiendo lo pedido. Por lo tanto se observará el segundo caso, se nota que $\delta(p_1, a) = p_1$, ahora sea ρ_{aaa} la ejecución de \mathcal{A} sobre la palabra aaa, se tiene que $\rho_{aaa}: q_0 \xrightarrow{a} p_1 \xrightarrow{a} p_1 \xrightarrow{a} p_1$, y como $p_1 \in F$ se tiene que aaa es aceptada por \mathcal{A} , pero se recuerda que $aaa \notin L$ y $\mathcal{L}(\mathcal{A}) = L$, lo que es una contradicción. Se tiene entonces que L cumple lo pedido.

 $^{^2 \}mathrm{Si}$ fuera distinto, δ no sería función, y por ende $\mathcal A$ no sería DFA.