

Memory elements and Flip-flops

Exercises Digital Design

Solution vs. Hints:

While not every response provided herein constitutes a comprehensive solution, some serve as helpful hints intended to guide you toward discovering the solution independently. In certain instances, only a portion of the solution is presented.

1 | LAT - Memory elements

1.1 Anti-bounce circuit

Switch on which one side is **Reset** and the other **Set**.

lat/memory-01

1.2 Key selection

lat/memory-02

1.3 Analysis of a memory element

It is a SR latch with inverted inputs

lat/memory-03

1.4 Memory Element

$$\begin{cases} g=0 \Rightarrow s_n=1=r_n \Rightarrow \text{memorization} \\ \\ g=1 \Rightarrow \text{SR latch (set or reset)} \end{cases} \tag{1}$$

lat/memory-04

1.5 Synchronisation

Idea: Update the signal only at
$$\begin{cases} \mathrm{clk}{=}1 & \Rightarrow \mathrm{D\text{-}Latch} \\ \mathrm{rising_edge} & \Rightarrow \mathrm{D\text{-}FF} \end{cases}$$

lat/memory-05

2 | LAT - Flip-flops

2.1 Detection of Transitions

Using a D-FF as delay element and compare the 2 signals together (XOR-2).

lat/flipflop-01

2.2 Shift Register

The output Y is the same as the input X with a delay of 4 clock period since there are 4 D-FF in the circuit.

lat/flipflop-02

2.3 Flipflop, denoted by its characteristic equation

You need a D-FF and a multiplexer

lat/flipflop-03

2.4 Divider by 2

Only the solution for $\frac{clk}{2}$ is shown.

lat/flipflop-04

2.5 Replacement of a Flip-Flop

2.5.0.1 Equation

$$\begin{split} E:Q^+ &= \overline{E}Q + ED \\ T:Q^+ &= T \oplus Q \Rightarrow \overline{T}Q + T\overline{Q} \Rightarrow T\overline{Q} + \overline{T}Q \end{split} \tag{2}$$

2.5.0.2 Table

T	Q	Q^+	E	\underline{D}
0	0	0	0	-
U	0	U	1	0
0	1	1	0	-
			1	1
1	0	1	1	1
1	1	0	1	0

Two variants are possible:

$$\begin{cases} E = 1, D = T \oplus Q \\ E = T, D = \overline{Q} \end{cases}$$
 (3)

lat/flipflop-05

2.6 Shift Register

The real question is build a D-FF with a T-FF (see ex.Section 2.5 for the flipflop and ex.Section 2.2 for the shift register)

lat/flipflop-06

2.7 Asynchronous Zeroing

- RC-Circuit will be powere up with a delay
- Trigger converts the analog signal to a digital signal

Circuit

Schema

lat/flipflop-07

2.8 Asynchronous Circuit

HEI-Vs / ZaS, BiC, CoF / 2025

