Module 1

Data Mining & Wave housing

Nithin Kuması Ant projenosi Dept of CS&E VVCE, Myrusu

* Data Wavehouse g-

Data Warehouring provider Anchitecturer & took Jose buinner Executives to Systematically oreganize, understand & use theire data to make Strategic decision.

- -) A data Waviehouse refere to a data repository Hiat Ri Maintalised Separately from an organization operational data
- -baser.

 Data Wassehouse System alsow for Putgnalfon of Vasility of
 Application Systems.
- Willsam H. Inmon Stater "A data Warehouse is a Subject Oriented, Putegraled, time Variant & non-volatile Collection of data in Supposet of Managements decision making process".
- * Key features of Data Warehouse 6- The key features of Data warehouse are as follows.
- -> "Subject Oriented" Data wavehove le organized around Majore Subject Such as Contomen, Supplien, product & Sales. Hather than Concentrating on day-to-day operation & Transaction procenting of organization.

 Data wavehouse fourse on Modeling & Analysis of Data for Decision Making.
- Tutegrated" A data Userchouse & Usually Constructed by Pritegrating Multiple Heterogenous Sources Such as Relational DB Scanned with CamScanner

Flat ples & ontre Transaction Hecords.

"Data Cleaning" & "Data Putegnation" technique are applied to Encourse Consistency In naming Conventions, Encoding Structure attributes, Measures & so on.

→ "Thre - Variant" & Data are Stoned to provide Suformation.

Jeon an hertoule perepective. Jon Ex 5-10 years.

Eveny key Strencture in data Wavehouse Contains, Eithere Purplicitly on Expiratly a time Element.

Non-volatile" & A data wavehouse le always a physically Separate Stoke of data transformed Juon the Application data found in operational Environment.

Due to the Reparation, A data wavehouse does not neg-- where Thamaction proceeding, Recovery & Concumency Control Median Processing.

The Data Warehouse allows "Knowledge Workers" Such as Manageus, Analysis & Executives to use the Warehouse to gurckly & obtain an overview of the data, & make decise-Pens based on Sufo In Warehouse.

The Contount of Data wave house Hequine "Data cleaning".
"Data Tutegration" & "Data Comolidation".

- Data Warehouring & Very Viejul Joion the point of View of "Heterogenous Database Integración".

In Tradettonal Database Approach to heterogenous Database Integration to build "Wrappers & Putignations" on top of Multiple Heterogenous Databases.

-> When a greeny be posed to a Cfrent Ste, a Metadata dictionary is used to Translate the greeny Puto green ser Appropriate for the Pudividual herenogenous stee Puroled.

- * "greeny-driven Approach" requires complex Information filter
 -ing & Tutegration processes & Competer with Jocal Stree for
 proceeding resources.

 "Treaditional Database" Makes use of Greny-driver Approach.
- 4 "Update-Jouven Approach". In which Information Juon Muttiple heterogenous Sources is Integrated in advance & Stored in a wavehouse Jose direct Querying & Analysis. "Data Warehousting" makes use of update-Dulven Approach.
- * Difference between Openational Dalatase Strong & Data Wavehousen

 The Mojore tack of bulline openational database Strong is to

 perform online Transaction & Green proceeding. There Systems

 are called "online Transaction proceeding Coltp)".

 For Example, Most of day-to-day openations of an organization

 Such as "porediaring", "Manufacturing", "Banking" Etc.
- -) "Duline Analytical processing (OLAP)" Serve men on knowledge Workers in the role of data Analysis & Decision Making. Such Systems Can Oreganize & present the Data in Various form ats in ordere to accountate the disserve needs of different Users.
- The Majore dethiguliling features of OLTP & OLAP are
- * Ureser & System Drientation 6- An OLTP System in "Customers oriented" and is used by cleaks, Clients, & IT projectionals.
- -) An ol Ap Syxtem & "Market-Oresented" and Re used by Knowledge Workern Such as Managera, Executive & Analysts.
- * Data Contents &- OLTP System Manager Curreneut data that, typecally, are too detailed to be used.

- Jacilites Jon Summarization & Aggnegation & Stoke & Manager Gujonnation at different levels of gnanularity.
- * <u>Database</u> <u>Design</u> 6- OLTP Vivally adopte an Entity Pelationship (ER) data model & Apph oreleuted database design.
- -> OLAP System cidopte Ethliere "Stari" on "Snowflake" data Models.
- 4 Veux 8. An OLTP System Focuse Mainly on Current data William an Entemprise on department, Willout referring to historic data on data in different organization.
- → OLAP Systems Spans Multiple Vention of database Schema, du to Evolutionary process of an origanization.

 OLAP SIMM dean with Supe that originates John different origanization, Integrating Supe Juon different Sources.
- Pen so Concurrency Control & Hecovery & Heguliced.
- -) OLAP Systems are Mostly read-only operation fore any complex greeler.

Cotto, in S		
Feature	OLTP	OLAP.
* characteristic	+ openeational preoceeding	* Informational proceeding
4 Orlentation	* Transaction	* Analysis
* UKEHK	* DBA, Clerk, Databace projectional	* knowledge worker
* Function	* Day-to - Day operation	* Joug - team Joan Supposet
* DB-Derign	Difference	* Star/Snow Flake, Subject
* VPew	* Detailed, Flat Relational	+ Summarifed & Multi-démend
* Access	of Head/Writte	* Head
* Focus	* Data - Pu	+ Information -out
* unit of work	* Shout, Simple Tramaction	* Complex greeny

* No of Records	* Tene	* Hundreade					
* No of Uzequ	* Thousands						
* DB She	* CIB to ligh-ouder CIB						
* prilosety	* High performance & Availability	+ fligh flexibelity, End-west Autonomy					
* Metric	* Transaction Throughput	* Bresny flowoughput & Heipone tour					
* Data Wavehousing	: A Multitiered Andrile	tuke "-					
		Data Warrehouser often					
adopte a 3-treve	Andatecture Such as	1					
<i>y</i>	Botton tiege	Vis and					
	* Norddle tiege * Top tiege	8.					
T =							
Query/repor	Analysis Data mining						
		Top tier: Front-end tools					
	Output						
OLAP's	OLAP ser	ver					
		Middle tier: OLAP server					
Monitoring A	administration Data warehouse Data marts						
		Bottom tier:					
Metadata repo	sitory	Data warehouse server					

Fig: Thru - tien Data wavehour Andrecture

Data

Extract Clean Transform Load Refresh

- * Bottom tiere 6- Warehouse Database Server le almost a Helathonal
- database of other External Sources.

Back-End took & utilities are used to perform Extraction, Cleaning & Transformation (Ex:- to Merge Similar data Jerom différent Source Puto a vuijled format).

-) The data are Extraoled using Applu program Puterface known as "gatewaye"

Example of gateways Include ODBC Copen Database Connection) & OLEDB Cobject Puking & Embedding Database) by Microsoft & JDBC.

- The tren also contains a Metadala nepository, which Stokes Sujournation about the Data Wavehouse & Contents.
- * Middle there 6- Comente of OLAP Server that he typically Surplemented Uning
 - -> "Relational OLAP (ROLAP)" & Extended Helational DBMs that. Maps Multidlemensional data to Standard relational-- operation.
 - -> "Multidementional OLAP (MOLAP)": Direct Singlementation of Multidimentional data & operation.
- * Top treat 6- Consists of Front-End Client Jayer, which Contain Query & responsing took, Analysis took & Data rulling took. " Treend Analysis", "prediction" & so on.
- * Data Warehouse Modele 8-There were thrue Data warehouse Models
 - * Entemprise Warehouse
 - & Data Mart
 - 4 Ventual Wanehouse
- * Extemprine Warehouse & Collects all the Pujonmation about Subjects Spanning Euthe organization.

It providu Corponate - Wide data Willi Corponate - Wide data

- Tutegral Pon.

→ Enterprise Warehouse Contains detailed data as well as Summarizes data & Can range in Size from of few Crigatytes to hundre -ad er B, Texabyter on beyond.

→ An Entemprise data Manchouse may le Purplemented on treadit - Ponal Mainframer, Compuler Super Servere on parallel Anchitect - une platformi. It Hequines Extensive Business Modeling & May take years to

Dergn.

* Data Marit :- Contains a Subjet of Corporate-wide data that 92 of Value to Specific Crowp of where. For Ex: A Marketing Data Most May Coupline It Subjects to Customen, Item & Ealer.

-> Data Mariti are Uwally Purplemented on "Jow-Cost Department Serveri" Hat are unex/Linux on Windows based. The Implementation Cycle of a Data made in Mone Skely to be Meagured in Weeke Hathers Hran Months on Years.

-) Data Marti Can be Calegorized as

4 Independent -> Sourced Juons operational Systems on External Pufo providera.

* Dependent -> Sourced Directly Juon Entemprine Data -Wasichouse

* Visitual Wassehouse 6- ha Let of Views over operational database Jon Efficient greny proceeding.

A Visitual Wavichouse & Eary to build but require Excen capace

- Sty on operational dalabare Serveru.

- Fon Ext Ain tickelling System, collects & desplays business data relating to a specific Moment in time, creating a Snapshot Scanned with CamScanner

- of the Condition of business at that Moment.
- * Recommended Approach Jose Wassehous Levelopment 6-

Fig: A Recommended Approach for Wanchovie Development

A Recommended Method for the development of data Marchouse Systems is to implement the warehouse in an incremental E Evolutionary Maurich as Shown in above figure.

- → Firstly, a high-seed componate data Model in defined withing a Shout period of time, that provider a componate-wide View of data among different Subject & potential mager.
- Second, Independent data Maris Can be Pruplemented Propagatel with the Entemprine wavehouse based on the Compagate data Model.
- Mate different data Marty Via hut Serverer.

Finally a "Multien Data Warehouse" in Constructed, where the Entemprise Warehouse is the Sole Custodian of all ware house data, which is then distributed to Various dependent Data Mants.

* Data Cute : A Multidimensional Data Model

data to be Modeled & Viewed In Multiple Dimensions. It Is defined by "Facts" & "Dimensions".

* Dimention - aue the perupectives on Entitle with respect to which an organization wants to keep Records.

For Ex!- "All Electronger" May Create a "Saler" data Warehouse Su ordere to keep recorde of Stoner Saler With nexpect to Drinensione "time", "Item", "branch" & "Jocation".

* Facts - and numeric Measures. Quantities by which we want to analyze relationship between Dimensions.

Fon Ex! Facts jon a Cales data wavehouse Includes "dollars. Sold"
"Unate-Sold", à "Arrivent-budgeled".

→ Consider a 2D Struple data Cube Example John All Electroniu" Sales data Joh Stern Sold per Granter In City Vancouver.

	Local	problem in		
		•		
True (granton)	Home	Computer	Phone	Security
91,	605	263	14	400
	630	952	31	512
q_2	812	1023	30	501. 4
V3 V4	927	1032	38	580

In the 2-D Hepsen, the Sales Jose Vancoures are shown w.s.t.

- Suprove that we would Iske to View the Saler-data with 3-D tepper the data according to time, Item & Joen is a Shown below

Joen = "clarcage"		(040"				locu = newyork.			lock = "Tonicate"				Join = "Vauloum				
			l'teu						l'tem			stell					
time	HE	c	Ph	sec	HE	C	Ph	Sec	HE	c	ph !	Sec	ΗE	С	Ph	Sec	
Q,	854	822	29	623	1037	720	64	620	1023	760	65	610	1000	610	65	60	
9/2	quz	890	64	698	1130	Sui	72	619				619	1001				
•				7.89					1025	823	3 64	320	1002	70	0 65	YO	
9 3									1026	22	4 68	713	100 \$	710	0 50	30	
a	11.29	993	6.	876	1142	5-											

The OD Cubold, which holds the highest level of Summarigat
- for Is called "Apex Cubold"
The our Example, the "total-sales" on "dollars. Sold", Summarigat
- ed over all journ demensions.

* Etan, Enouglake & Fact Courtellations: Echema don Mattidina - Floral Data Model

The Entity-Helationship data Model is Commonly used to design the Helational databases, where database Schema Consults of a Set of Entities & the Helations - hips between them. Such data Model le Appropriate John online Thamaction processing.

-) The Mort popular data Model Jon data Warehouse is a Multidimensional Model which can Exert in the John of

* Star Schema

* Snow flake Schema

* Fact Constablation Schema

* Start Schema 6- In the Most Commonly used Muserdimens - onal data Model, In which the data warehouse Contains

* Alarge Central table (Fact table) Containing the bulk

data with no Hedudancy.

A Set of Smaller Attendant - table (Dimension table) one Jose Each dimension.

The Schema Cruaph Herem Her a Stan burnt, with the Drinewson taken displayed in Hadial pattern around the Central Fact table.

→ A Stan Schema Jon "all Dectroneu" & Shown 321

The Jou Jigure.

Fig: Star Schema of Sales Dota Warehouse

In the above Schuna, Sales & Considered along Jour Dimensions. "Time, Item, branch & Jocathon". The Schuna Contains a Central Fact table for Sales that contains keys to Each 4 Dimensions with two Measures "dollars-Sold" & "Units-Sold".

To MPhilhilze the Size of Jack table, Limenson-Identifren (time-kg stem-key Etc) are System generated Identifiers.

-) In Star Schema, Each démember la represented by ordy one table à Each table Contains a Set of attributes.

Fox Ext, the "Locatron" Drivenson table Contains the attribute Set [locatron_key, Street, City, State, Country]. This Constraint May Putroduce Some Redudancy.

- * Snow flake Schema & In a Vavilant of Stave-Schema Model, Where Some dimension tables are Normalized, there by Spiriting the data Puto additional tables.
- The Major difference between the Star & Snowflake Schema Model Ph that the Dimension takes of the Snowflake Mode May be kept in Normalized John to reduce reduceancies. Such a take is Easy to Maintain & Saver Stonage Space.

 The Snowflake Structure Can reduce the Effectiveness of

Browsing, Since More John will be needed to Execute a group. The System performance May be adversly Surpacted. Hence, although the Snowflake Schema Reducer Reductionary, It is not as popular as Star Schema in Data Warehouse Design.

Fig: Snowplake Schuna of Sala

An Shown Pu abore Snowplake Schuna Jon "All ElectronPu", the Saler Jack take In Identical to the Star Schema.

→ The Main difference between Star & Snowflake Schema P.A. Definition of Dimension table.

of Demension table of "Hern" In Stan Schema & Nonmalizad In Snowflake Schema, Gerulling table John "Hem" and "Suppliere" Demension table.

* Sprishovely Dimension table of "Localfon" Pu Star Schema Is Nonnaised In Snowflake Schema, Hendling table John "Localfon" & "City" Dimension tables.

Fact Constellation 6- For Each Stan Schema on Snowflake Schema, it

Pr possible to Construct "Fact Constellation Schema".

-> The Jack Constellation Anchitecture Contain Multiple Fact tables that Share Many Dimensions.

-> Consider the foll Example of Fact Constellation

Figs Fact Countellation Schuna of Sales

The above Schema Specific two Fact tables "Sale" & "Shipping" -> The Shipping table Combits of 5 Dimensions on keys & Two

Measures

* Demension - Hem-key, Time-key, Slappen-key, to-location

From Location

* Measurer -> Dollares_ Cost, Urufs_ Slupped.

A Fact Counteration Schema allows Dimension tables to be Shared between Fact tables.

→ A "Data wavehave" Collects Sufarmation about Subjects that Span Whole organization Such as Customera, Sales, Shipping Etc. For data wavehouser, the fact constellation Scheina & Cons

-only used to Model Multiple Putermelated Subjects.

on Selected Subjects.

FOR Data Mout, the Stor ON Snowflake Schema In Commo

* Kole of Concept Hierarchier 6-"Concept Heenandry" defener a Segre -nce of Mappinge John a Set of low-level concepts to High-level Morce general Concepts. (A2U Cariada - (THYWOTE)-B. Columbia butarlo (New YORK) (Voncover). Victoria Torcuto) - Ottaun Newyork. Bullalo Chicago - City dig - Concept Hickardy of Jocatron Mapping a Set of low-level concepts (cetter) to high-level Mothe gene -geal Concepts (could rice). -) Many concept hierarchier are Purphet within the database Schema - Due to Space Shuftation, not all of the literarchy noder are Shown we can une sattice Structuren of attributer In wavelouse dement - our. A Year Courtey 2 gravetor of State C Cfty Morale 0 & week Street fig: lattre Etnuctures of Jocation & time -) Concept Hierarchien May also be defined by discreetizing on grouping values jon a given dimension on althibute, neueting Pu a "Set- Crocouping Hermanchy". Fore the dimension "partie" with Interval (\$2 --- \$y) denote the Hange from \$x (Exclusive) to \$y (inclusive) Scanned with CamScanner

There May be Morie than one Concept flenanchy Jose a given attribute on Dimeneron based on different were Vrew--porists.

Concept Herrauchier May be provided Manually by System - Urear, Domain Experts on Knowledge Engliseers on May be Auto-mathically generated based on Statistical Analysis of the Data Distribution.

* Measures & Theen Categorization & computation 5-

Meanurer Can be

Origanized Puto House Categorieu Such as

* Algebreic

* Hollytic

Bared on the kind of Aggregate Functions used.

de Computed que a Destributed Manner.

Suppose the data we paulitioned Puto 'n' Sets, we apply the Function which result. In n Aggnegate Values.

- -) 9) the neult derived by Applying the Function to the 'n' Aggregate values in the Same as that derived by applying the Function to Entire Data Set in Distributed Manney.
- -> Some of good Example of Duthibuthe Aggregate Function one

"Count()", "MBU()", & "Max()".

Algebrie 6- An Aggregale Function & Algebrie, of 9t Can be Computed by an Algebrie Junction with M Anguements, Each of which is obtained by applying a distributive Aggregate Fun

- ctrons.

- A Measure & Algebrie " of 9t is obtained by Applying an

Algebric Aggnate Function.

FOR Ex1- "Avgc)" can be computed by Sumci/counter, where both Sumci & counter are distributive Aggregate Functions.

4- Holsetsc 6- An Aggregate Function in Holsetic, if there is

There does not Exect any Algebraic Junction that Characteric - 3ex the Computation Such Meanner are Called "Holpetic".

- Some of good Example of Holletic Function Include "Mediana"

"Mode ()" & "Hank ()".

Mone large data auto Application requirer Efficient Computation of distributive & Algebraic Meanner. Many Efficient techniques for this Exist.

In Contract, It le différent to Compute Holistic Meanurer Effecte

* Typical OLAP operations :-

applied to Data-Cuber ave

* Roll-up

* Driell - Down

* Stree & Dree

* Prot of Hotale

Consider the Joll Example of "All Electronia" Sales Data cute which

Contains the Dimension [Jocation, Time & Stem].

Figs Typical OLAP openations

* Roll-up 6- 92 18ke "Zoonling-out" on the Data Cube, 9t 92 alequênced when the uses needs justilier Abstraction on Less Detail.

> This operation performs Further Aggregation on the Data.
For Ext Roll-up on Jocation Justin "Cities" to "Countries"

* Deall-Down 6- la 19ke "Zooming-In" on the Data Cube, i.e. Herene of Holl-up.

- It is an Appropriate openation when the Usen needs Junker details on when usen wants to partition More Finely on

Wards to Joen on Some particular Value of Certain Dimenson) For Ex, If the time in data Cube is represented in granter then It can be duffled down on Zoomed-in the time to Month whe.

* Sièce & Dèce &- Sièce & Dèce ave operations jon Browing flie data in the Cute. the terms refer to the ability to look at Pujonnation prom different Viewpoints.

4 A "SPRCE" 92 a Subjet of Cube Consulposedling to a Springle

Value for One on Morie Members of Drinemson.

* A "Dree" operation is Shullon to Stree but deling does not involve reducing the no of dimension. A dree is obtained by performing a selection on two on Mone Dimension.

4 Prot on Rotain &- Prot openation is used when the Usen Wisher to the office the View of Data Cube. It may involve Swapping the How & Columns. Of Moving one of How dimension into Column dimension.