2. Kernels and Regularization

GI01/M055: Supervised Learning

Mark Herbster and Massimiliano Pontil 10 October 2016

University College London Department of Computer Science

Today's Plan

Feature Maps

- · Ridge Regression
- Basis Functions (Explicit Feature Maps)
- Kernel Functions (Implicit Feature Maps)

bibliography

Chapters 2 and 3 of *Kernel Methods for Pattern Analysis*, Shawe-Taylor.J, and Cristianini N., Cambridge University Press (2004)

Part I

Feature Maps

Overview

- We show how a linear method such as least squares may be lifted to a (potentially) higher dimensional space to provide a nonlinear regression.
- We consider both **explicit** and **implicit** feature maps
- A feature map is simply a function that maps the "inputs" into a new space.
- Thus the original method is now nonlinear in original "inputs" but linear in the "mapped inputs"
- Explicit feature maps are often known as the Method of Basis Functions
- Implicit feature maps are often known as the (reproducing)
 "Kernel Trick"

Linear interpolation

Problem

We wish to find a function $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x}$ which best interpolates a data set $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \subseteq \mathbb{R}^n \times \mathbb{R}$

• If the data have been generated in the form $(\mathbf{x}, f(\mathbf{x}))$, the vectors \mathbf{x}_i are linearly independent and m = n then there is a unique interpolant whose parameter \mathbf{w} solves

$$Xw = y$$

where, recall,
$$\mathbf{y} = (y_1, \dots, y_m)^{\mathsf{T}}$$
 and $X = [\mathbf{x}_1, \dots, \mathbf{x}_m]^{\mathsf{T}}$

· Otherwise, this problem is ill-posed

5

Ill-posed problems

A problem is well-posed – in the sense of Hadamard (1902) – if

- (1) a solution exists
- (2) the solution is unique
- (3) the solution depends continuously on the data

A problem is ill-posed if it is not well-posed

Learning problems are in general ill-posed (usually because of (2))

Regularization theory provides a general framework to solve ill-posed problems

Ridge Regression

Ridge Regression

Motivation:

- 1. Give a set of k hypothesis classes $\{\mathcal{H}_r\}_{r\in\mathbb{N}_k}$ we can choose an appropriate hypothesis class with cross-validation
- An alternative compatible with linear regression is to choose a single "complex" hypothesis class and then modify the error function by adding a "complexity" term which penaltizes complex functions
- 3. This is known as regularization
- 4. Cross-validation may still be needed to set the regularization parameter (see below) and other parameters defining the complexity term

Ridge Regression

We minimize the regularized (penalized) empirical error

$$\mathcal{E}_{\text{emp}_{\lambda}}(\mathbf{w}) := \sum_{i=1}^{m} (y_i - \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)^2 + \lambda \sum_{\ell=1}^{n} w_{\ell}^2 \equiv (\mathbf{y} - X\mathbf{w})^{\mathsf{T}} (\mathbf{y} - X\mathbf{w}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

The positive parameter λ defines a trade-off between the error on the data and the norm of the vector \mathbf{w} (degree of regularization)

Setting $\nabla \mathcal{E}_{emp_{\lambda}}(\mathbf{w}) = 0$, we obtain the modified normal equations

$$-2X^{\mathsf{T}}(\mathbf{y} - X\mathbf{w}) + 2\lambda\mathbf{w} = 0 \tag{1}$$

whose solution (called regularized solution) is

$$\mathbf{w} = (X^{\mathsf{T}}X + \lambda I_n)^{-1}X^{\mathsf{T}}\mathbf{y} \tag{2}$$

g

Dual representation

It can be shown that the regularized solution can be written as

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \quad \Rightarrow \quad f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} \qquad (*)$$

where the vector of parameters $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m)^{\mathsf{T}}$ is given by

$$\alpha = (XX^{T} + \lambda I_{m})^{-1} \mathbf{y} \tag{3}$$

• Function representations: we call the functional form (or representation) $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$ the *primal form* and (*) the *dual form* (or representation)

The dual form is computationally convenient when n > m

Dual representation (continued - 1)

We rewrite eq.(1) as

$$w = \frac{X^{\top}(y - Xw)}{\lambda}$$

Thus we have

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \tag{4}$$

with

$$\alpha_i = \frac{y_i - \mathbf{w}^\top \mathbf{x}_i}{\lambda} \tag{5}$$

Consequently, we have that

$$\mathbf{w}^{\top}\mathbf{x} = \sum_{i=1}^{m} \alpha_{i}\mathbf{x}_{i}^{\top}\mathbf{x}$$

proving eq.(*).

Dual representation (continued - 2)

Plugging eq.(4) in eq.(5) we obtain

$$\alpha_i = \frac{y_i - (\sum_{j=1}^m \alpha_j \mathbf{x}_j)^\top \mathbf{x}_i}{\lambda}$$

Thus (with defining $\delta_{ij} = 1$ if i = j and as 0 otherwise)

$$y_i = \left(\sum_{j=1}^m \alpha_j \mathbf{x}_j\right)^\top \mathbf{x}_i + \lambda \alpha_i$$

$$y_i = \sum_{j=1}^m (\alpha_j \mathbf{x}_j^\top \mathbf{x}_i + \alpha_j \lambda \delta_{ij})$$

$$y_i = \sum_{j=1}^m (\mathbf{x}_j^\top \mathbf{x}_i + \lambda \delta_{ij}) \alpha_j$$

Hence $(XX^T + \lambda I_m)\alpha = y$ from which eq.(3) follows.

Computational Considerations

Training time:

• Solving for **w** in the primal form requires $O(mn^2 + n^3)$ operations while solving for α in the dual form requires $O(nm^2 + m^3)$ (see (*)) operations

If $m \ll n$ it is more efficient to use the dual representation Running

(testing) time:

• Computing $f(\mathbf{x})$ on a test vector \mathbf{x} in the primal form requires O(n) operations while the dual form (see (*)) requires O(mn) operations

Sparse representation

We can benefit even further in the dual representation if the inputs are sparse!

Example

Suppose each input $\mathbf{x} \in \mathbb{R}^n$ has most of its components equal to zero (e.g., consider images where most pixels are 'black' or text documents represented as 'bag of words')

- If k denotes the number of nonzero components of the input then computing $\mathbf{x}^{\mathsf{T}}\mathbf{t}$ requires at most O(k) operations.

 How do we do this?
- If $km \ll n$ (which implies $m,k \ll n$) the dual representation requires $O(km^2+m^3)$ computations for training and O(mk) for testing

Basis Functions

Basis Functions – Explicit Feature Map

The above ideas can naturally be generalized to nonlinear function regression

By a feature map we mean a function $\phi: \mathbb{R}^n \to \mathbb{R}^N$

$$\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x}))^{\top}, \quad \mathbf{x} \in \mathbb{R}^n$$

- The ϕ_1, \ldots, ϕ_N are called called basis functions
- · Vector $\phi(x)$ is called the feature vector and the space

$$\{\phi(\mathsf{x}):\mathsf{x}\in{\rm I\!R}^n\}$$

the feature space

The non-linear regression function has the primal representation

$$f(\mathbf{x}) = \sum_{j=1}^{N} w_j \phi_j(\mathbf{x})$$

Kernels

Computational Considerations Revisited

Again, if $m \ll N$ it is more efficient to work with the dual representation

Key observation: in the dual representation we don't need to know ϕ explicitly; we just need to know the inner product between any pair of feature vectors!

Example: $N = n^2$, $\phi(\mathbf{x}) = (x_i x_j)_{i,j=1}^n$. In this case we have $\langle \phi(\mathbf{x}), \phi(\mathbf{t}) \rangle = (\mathbf{x}^{\mathsf{T}} \mathbf{t})^2$ which requires only O(n) computations whereas $\phi(\mathbf{x})$ requires $O(n^2)$ computations

Kernel Functions – Implicit Feature Map

Given a feature map ϕ we define its associated kernel function $K: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ as

$$K(\mathbf{x}, \mathbf{t}) = \langle \phi(\mathbf{x}), \phi(\mathbf{t}) \rangle, \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^n$$

• Key Point: for some feature map ϕ computing $K(\mathbf{x},\mathbf{t})$ is independent of N (only dependent on n). Where necessarily $\phi(\mathbf{x})$ depends on N.

Example (cont.) If $\phi(\mathbf{x}) = (x_{i_1} x_{i_2} \cdots x_{i_r} : i_1, \dots, i_r \in \{1, \dots, n\})$ then we have that

$$K(\mathbf{x}, \mathbf{t}) = (\mathbf{x}^{\mathsf{T}} \mathbf{t})^r$$

In this case $K(\mathbf{x}, \mathbf{t})$ is computed with O(n) operations, which is essentially independent of r or $N = n^r$. On the other hand, computing $\phi(\mathbf{x})$ requires O(N) operations – Exponential in r!

Redundancy of the feature map

Warning

The feature map is not unique! If ϕ generates K so does $\hat{\phi} = \mathbf{U}\phi$ where \mathbf{U} in an (any!) $N \times N$ orthogonal matrix. Even the dimension of ϕ is not unique!

Example

If
$$n=2$$
, $K(\mathbf{x},\mathbf{t})=(\mathbf{x}^{\top}\mathbf{t})^2$ is generated by both $\phi(\mathbf{x})=(x_1^2,x_2^2,x_1x_2,x_2x_1)$ and $\hat{\phi}(\mathbf{x})=(x_1^2,x_2^2,\sqrt{2}x_1x_2)$.

Regularization-based learning algorithms

Let us open a short parenthesis and show that the dual form of ridge regression holds true for other loss functions as well

$$\mathcal{E}_{\text{emp}_{\lambda}}(\mathbf{w}) = \sum_{i=1}^{m} V(y_i, \langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle) + \lambda \langle \mathbf{w}, \mathbf{w} \rangle, \quad \lambda > 0$$
 (6)

where $V: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a loss function

Theorem

If V is differentiable wrt. its second argument and ${\bf w}$ is a minimizer of E_{λ} then it has the form

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i \phi(\mathbf{x}_i) \implies f(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}_i, \mathbf{x})$$

This result is usually called the Representer Theorem

Representer theorem

Setting the derivative of E_{λ} wrt. **w** to zero we have

$$-\sum_{i=1}^{m} V'(y_i, \langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle) \phi(\mathbf{x}_i) + 2\lambda \mathbf{w} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{m} \alpha_i \phi(\mathbf{x}_i)$$
 (7)

where V' is the partial derivative of V wrt. its second argument and we defined

$$\alpha_i = \frac{1}{2\lambda} V'(y_i, \langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle)$$
 (8)

Thus we conclude that

$$f(\mathbf{x}) = \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle = \sum_{i=1}^{m} \alpha_i \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}) \rangle = \sum_{i=1}^{m} \alpha_i \kappa(\mathbf{x}, \mathbf{x}_i),$$

Some remarks

• Plugging eq.(7) in the rhs. of eq.(8) we obtain a set of equations for the coefficients α_i :

$$\alpha_i = \frac{1}{2\lambda} V' \left(y_i, \sum_{j=1}^m K(\mathbf{x}_i, \mathbf{x}_j) \alpha_j \right) , \quad i = 1, \dots, m$$

When V is the square loss and $\phi(\mathbf{x}) = \mathbf{x}$ we retrieve the linear eq.(3)

• Substituting eq.(7) in eq.(6) we obtain an objective function for the α 's:

$$\sum_{i=1}^{m} V(y_i, (K\alpha)_i) + \lambda \alpha^{\top} K\alpha, \text{ where } : K = (K(x_i, x_j))_{i,j=1}^{m}$$

Remark: the Representer Theorem holds true under more general conditions on *V* (for example *V* can be any continuous function)

What functions are "kernels"?

Question

Given a function $K: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, which properties of K guarantee that there exists a Hilbert space \mathcal{W} and a feature map $\phi: \mathbb{R}^n \to \mathcal{W}$ such that $K(\mathbf{x}, \mathbf{t}) = \langle \phi(\mathbf{x}), \phi(\mathbf{t}) \rangle$?

Note

We've generalized the definition of finite-dimensional feature maps

$$\phi: \mathbb{R}^n \to \mathbb{R}^N$$

to now allow potentially infinite-dimensional feature maps

$$\phi: \mathbb{R}^n \to \mathcal{W}$$

Positive Semidefinite Kernel

Definition

A function $K: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is **positive semidefinite** if it is symmetric and the matrix $(K(\mathbf{x}_i, \mathbf{x}_j): i, j = 1, \dots, k)$ is positive semidefinite for every $k \in \mathbb{N}$ and every $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$

Theorem

K is positive semidefinite if and only if

$$K(\mathbf{x}, \mathbf{t}) = \langle \phi(\mathbf{x}), \phi(\mathbf{t}) \rangle, \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^n$$

for some feature map $oldsymbol{\phi}: \mathbb{R}^n o \mathcal{W}$ and Hilbert space \mathcal{W}

Positive semidefinite kernel (cont.)

If $K(x,t) = \langle \phi(x), \phi(t) \rangle$ then we have that

$$\sum_{i,j=1}^m c_i c_j K(\mathbf{x}_i, \mathbf{x}_j) = \left\langle \sum_{i=1}^m c_i \phi(\mathbf{x}_i), \sum_{j=1}^m c_j \phi(\mathbf{x}_j) \right\rangle = \left\| \sum_{i=1}^m c_i \phi(\mathbf{x}_i) \right\|^2 \ge 0$$

for every choice of $m \in \mathbb{N}$, $x_i \in \mathbb{R}^d$ and $c_i \in R$, i = 1, ..., m

Note

the proof of ' \Rightarrow ' requires the notion of reproducing kernel Hilbert spaces. Informally, one can show that the linear span of the set of functions $\{K(\mathbf{x},\cdot):\mathbf{x}\in\mathbb{R}^n\}$ can be made into a Hilbert space H_K with inner product induced by the definition $\langle K(\mathbf{x},\cdot),K(\mathbf{t},\cdot)\rangle:=K(\mathbf{x},\mathbf{t})$. In particular, the map $\phi:\mathbb{R}^n\to H_K$ defined as $\phi(\mathbf{x})=K(\mathbf{x},\cdot)$ is a feature map associated with K. Observe then with $f(\cdot):=\sum_{i=1}^m \alpha_i K(\mathbf{x}_i,\cdot)$ that $\|f\|^2=\sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j K(\mathbf{x}_i,\mathbf{x}_j)$.

Two Example Kernels

Polynomial Kernel(s)

If $p: \mathbb{R} \to \mathbb{R}$ is a polynomial with nonnegative coefficients then $K(\mathbf{x},\mathbf{t}) = p(\mathbf{x}^{\mathsf{T}}\mathbf{t}), \mathbf{x}, \mathbf{t} \in \mathbb{R}^n$ is a positive semidefinite kernel. For example if $a \geq 0$

- $\cdot K(\mathbf{x}, \mathbf{t}) = (\mathbf{x}^{\mathsf{T}} \mathbf{t})^r$
- $K(\mathbf{x},\mathbf{t}) = (a + \mathbf{x}^{\mathsf{T}}\mathbf{t})^r$
- $K(\mathbf{x}, \mathbf{t}) = \sum_{i=0}^{d} \frac{a^i}{i!} (\mathbf{x}^{\mathsf{T}} \mathbf{t})^i$

are each positive semidefinite kernels.

Gaussian Kernel

An important example of a "radial" kernel is the Gaussian kernel

$$K(\mathbf{x}, \mathbf{t}) = \exp(-\beta \|\mathbf{x} - \mathbf{t}\|^2), \quad \beta > 0, \mathbf{x}, \mathbf{t} \in \mathbb{R}^n$$

note: any corresponding feature map $\phi(\cdot)$ is ∞ -dimensional.

Polynomial and Anova Kernel

Anova Kernel

$$K_a(\mathbf{x},\mathbf{t}) = \prod_{i=1}^n (1 + x_i t_i)$$

Compare to the polynomial kernel $K_p(\mathbf{x}, \mathbf{t}) = (1 + \mathbf{x}^{\mathsf{T}} \mathbf{t})^d$

where $\sum_{j=0}^{n} i_j = d$

Kernel construction

Which operations/combinations (eg, products, sums, composition, etc.) of a given set of kernels is still a kernel?

If we address this question we can build more interesting kernels starting from simple ones

Example

We have already seen that $K(\mathbf{x},\mathbf{t})=(\mathbf{x}^{\top}\mathbf{t})^r$ is a kernel. For which class of functions $p:\mathbb{R}\to\mathbb{R}$ is $p(\mathbf{x}^{\top}\mathbf{t})$ a kernel? More generally, if K is a kernel when is $p(K(\mathbf{x},\mathbf{t}))$ a kernel?

General linear kernel

If **A** is an $n \times n$ psd matrix the function $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$K(\mathbf{x}, \mathbf{t}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{t}$$

is a kernel

Proof

Since **A** is psd we can write it in the form $\mathbf{A} = \mathbf{R}\mathbf{R}^{\top}$ for some $n \times n$ matrix **R**. Thus K is represented by the feature map $\phi(\mathbf{x}) = \mathbf{R}^{\top}\mathbf{x}$ Alternatively, note that:

$$\sum_{i,j} c_i c_j \mathbf{x}_i^{\mathsf{T}} \mathbf{A} \mathbf{x}_j = \sum_{i,j} c_i c_j (\mathbf{R}^{\mathsf{T}} \mathbf{x}_i)^{\mathsf{T}} (\mathbf{R}^{\mathsf{T}} \mathbf{x}_j) = \| \sum_i c_i \mathbf{R}^{\mathsf{T}} \mathbf{x}_i \|^2 \ge 0$$

Kernel composition

More generally, if $K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ is a kernel and $\phi: \mathbb{R}^n \to \mathbb{R}^N$, then

$$\tilde{K}(x,t) = K(\phi(x),\phi(t))$$

is a kernel

Proof

By hypothesis, K is a kernel and so, for every $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ the matrix $(K(\phi(\mathbf{x}_i), \phi(\mathbf{x}_j)) : i, j = 1, \dots, m)$ is psd

In particular, the above example corresponds to $\mathit{K}(x,t) = x^{\scriptscriptstyle op} t$ and $\phi(x) = \mathsf{R}^{\scriptscriptstyle op} x$

Kernel construction (cont.)

Question

If K_1, \ldots, K_q are kernels on \mathbb{R}^n and $F : \mathbb{R}^q \to \mathbb{R}$, when is the function

$$F(K_1(\mathbf{x},\mathbf{t}),\ldots,K_q(\mathbf{x},\mathbf{t})), \quad \mathbf{x},\mathbf{t} \in \mathbb{R}^n$$

a kernel?

Equivalently: when for every choice of $m \in \mathbb{N}$ and $A_1, \ldots, A_q \ m \times m$ psd matrices, is the following matrix psd?

$$(F(A_{1,ij},...,A_{q,ij}):i,j=1,...m)$$

We discuss some examples of functions *F* for which the answer to these question is YES

Nonnegative combination of kernels

If
$$\lambda_j \geq 0$$
, $j=1,\ldots,q$ then $\sum_{j=1}^q \lambda_j K_j$ is a kernel

This fact is immediate (a non-negative combination of psd matrices is still psd)

Example: Let
$$q = n$$
 and $K_i(\mathbf{x}, \mathbf{t}) = x_i t_i$.

In particular, this implies that

- aK_1 is a kernel if $a \ge 0$
- $K_1 + K_2$ is a kernel

Product of kernels

The pointwise product of two kernels K_1 and K_2

$$K(\mathbf{x}, \mathbf{t}) := K_1(\mathbf{x}, \mathbf{t})K_2(\mathbf{x}, \mathbf{t}), \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^d$$

is a kernel

Proof

We need to show that if **A** and **B** are psd matrices, so is $C = (A_{ij}B_{ij}: i, j = 1, \ldots, m)$ (C is also called the Schur product of **A** and **B**). We write **A** and **B** in their singular value form, $A = U\Sigma U^{\top}$, $B = V\Lambda V^{\top}$ where U, V are orthogonal matrices and $\Sigma = diag(\sigma_1, \ldots, \sigma_m)$, $\Lambda = diag(\lambda_1, \ldots, \lambda_m)$, $\sigma_i, \lambda_i \geq 0$. We have

$$\sum_{i,j=1}^{m} a_i a_j C_{ij} = \sum_{ij} a_i a_j \sum_r \sigma_r U_{ir} U_{jr} \sum_s \lambda_s V_{is} V_{js}$$

$$= \sum_{rs} \sigma_r \lambda_s \sum_i a_i U_{ir} V_{is} \sum_j a_j U_{jr} V_{js}$$

$$= \sum_{rs} \sigma_r \lambda_s (\sum_i a_i U_{ir} V_{is})^2 \ge 0$$

Summary of constructions

Theorem

If K_1, K_2 are kernels, $a \geq 0$, A is a symmetric positive semi-definite matrix, K a kernel on \mathbb{R}^N and $\phi: \mathbb{R}^n \to \mathbb{R}^N$ then the following functions are positive semidefinite kernels on \mathbb{R}^n

- 1. $\mathbf{x}^{\mathsf{T}} A \mathbf{t}$
- 2. $K_1(x,t) + K_2(x,t)$
- 3. $aK_1(x,t)$
- 4. $K_1(\mathbf{x}, \mathbf{t})K_2(\mathbf{x}, \mathbf{t})$
- 5. $K(\phi(x), \phi(t))$

Polynomial of kernels

Let F=p where $p:\mathbb{R}^q\to\mathbb{R}$ is a polynomial in q variables with nonnegative coefficients. By properties 1,2 and 3 above we conclude that p is a valid function

In particular if q = 1,

$$\sum_{i=1}^d a_i (K(\mathbf{x},\mathbf{t}))^i$$

is a kernel if $a_1, \ldots, a_d \geq 0$

Polynomial kernels

The above observation implies that if $p: \mathbb{R} \to \mathbb{R}$ is a polynomial with nonnegative coefficients then $p(\mathbf{x}^{\mathsf{T}}\mathbf{t}), \mathbf{x}, \mathbf{t} \in \mathbb{R}^n$ is a kernel on \mathbb{R}^n . In particular if $a \geq 0$ the following are valid polynomial kernels

- (x[⊤]t)^r
- · $(a + \mathbf{x}^{\mathsf{T}}\mathbf{t})^r$
- $\sum_{i=0}^{d} \frac{a^i}{i!} (\mathbf{x}^{\mathsf{T}} \mathbf{t})^i$

'Infinite polynomial' kernel

If in the last equation we set $r = \infty$ the series

$$\sum_{i=0}^{r} \frac{a^{i}}{i!} (\mathbf{x}^{\mathsf{T}} \mathbf{t})^{i}$$

converges everywhere uniformly to $exp(ax^{T}t)$ showing that this function is also a kernel.

Assume for simplicity that n=1. A feature map corresponding to the kernel $\exp(axt)$ is

$$\phi(x) = \left(1, \sqrt{a}x, \sqrt{\frac{a}{2}}x^2, \sqrt{\frac{a^3}{6}}x^3, \dots\right) = \left(\sqrt{\frac{a^i}{i!}}x^i : i \in \mathbb{N}\right)$$

• The feature space has an infinite dimensionality!

Translation invariant and radial kernels

We say that a kernel $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is

· Translation invariant if it has the form

$$K(\mathbf{x},\mathbf{t}) = H(\mathbf{x} - \mathbf{t}), \quad \mathbf{x},\mathbf{t} \in \mathbb{R}^d$$

where $H: \mathbb{R}^d \to \mathbb{R}$ is a differentiable function

· Radial if it has the form

$$K(\mathbf{x}, \mathbf{t}) = h(\|\mathbf{x} - \mathbf{t}\|), \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^d$$

where $h:[0,\infty)\to[0,\infty)$ is a differentiable function

The Gaussian kernel

An important example of a radial kernel is the Gaussian kernel

$$K(\mathbf{x}, \mathbf{t}) = \exp(-\beta \|\mathbf{x} - \mathbf{t}\|^2), \quad \beta > 0, \mathbf{x}, \mathbf{t} \in \mathbb{R}^d$$

It is a kernel because it is the product of two kernels

$$K(\mathbf{x}, \mathbf{t}) = (\exp(-\beta(\mathbf{x}^{\mathsf{T}}\mathbf{x} + \mathbf{t}^{\mathsf{T}}\mathbf{t}))) \exp(2\beta\mathbf{x}^{\mathsf{T}}\mathbf{t})$$

(We saw before that $\exp(2\beta \mathbf{x}^{\mathsf{T}}\mathbf{t})$ is a kernel. Clearly $\exp(-\beta(\mathbf{x}^{\mathsf{T}}\mathbf{x}+\mathbf{t}^{\mathsf{T}}\mathbf{t}))$ is a kernel with one-dimensional feature map $\phi(\mathbf{x})=\exp(-\beta\mathbf{x}^{\mathsf{T}}\mathbf{x})$

Exercise:

Can you find a feature map representation for the Gaussian kernel?

The min kernel

We give another example of a kernel.

$$K_{\min}(x,t) := \min(x,t)$$

with $x,t\in[0,\infty)$. We argue informally that this is the kernel associated with the Hilbert space \mathcal{H}_{min} of all functions with the following four properties.

- 1. $f:[0,\infty)\to\mathbb{R}$
- 2. f(0) = 0
- 3. f is absolutely continuous (hence $f(b) f(a) = \int_a^b f'(x) dx$)

4.
$$||f|| = \sqrt{\int_0^\infty [f'(x)]^2 dx}$$

Proof sketch

Proof sketch

Our argument is simplified as follows,

- 1. We argue only that the induced norms are the same.
- 2. We only consider $f \in \mathcal{H}_{\min}$ s.t. $f(x) = \sum_{i=1}^{m} \alpha_i \min(x_i, x)$.

Define
$$h_c(x) = [x \le c]$$
 i.e., $h_c(x) = [\min(c, x)]'$

$$||f||^2 = \int_0^\infty [f'(x)]^2 dx$$

$$= \int_0^\infty [(\sum_{i=1}^m \alpha_i \min(x_i, x))']^2 dx$$

$$= \int_0^\infty [(\sum_{i=1}^m \alpha_i h_{x_i}(x))]^2 dx$$

$$= \sum_{i,j}^m \alpha_i \alpha_j \int_0^\infty h_{x_i}(x) h_{x_j}(x) dx = \sum_{i,j}^m \alpha_i \alpha_j \min(x_i, x_j)$$

Computational Summary

Summary: Computation with Basis Functions

Data: X, $(m \times n)$; y, $(m \times 1)$

Basis Functions: ϕ_1, \ldots, ϕ_N where $\phi_i : \mathbb{R}^n \to \mathbb{R}$

Feature Map: $\phi : \mathbb{R}^n \to \mathbb{R}^N$

$$\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x})), \quad \mathbf{x} \in \mathbb{R}^n$$

Mapped Data Matrix:

$$\Phi := \begin{pmatrix} \phi(\mathbf{x}_1) \\ \vdots \\ \phi(\mathbf{x}_m) \end{pmatrix} = \begin{pmatrix} \phi_1(\mathbf{x}_1) & \dots & \phi_N(\mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_m) & \dots & \phi_N(\mathbf{x}_m) \end{pmatrix}, \quad (m \times N)$$

Regression Coefficients: $\mathbf{w} = (\Phi^{T} \Phi + \lambda I_{N})^{-1} \Phi^{T} \mathbf{y}$

Regression Function: $\hat{y}(\mathbf{x}) = \sum_{i=1}^{N} w_i \phi_i(\mathbf{x})$

Summary: Computation with Kernels

Data: X, $(m \times n)$; y, $(m \times 1)$ Kernel Function: $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ Kernel Matrix:

$$K := \begin{pmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_m) \\ \vdots & \ddots & \vdots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{pmatrix}, \quad (m \times m)$$

Regression Coefficients: $\alpha = (K + \lambda I_m)^{-1}y$ Regression Function: $\hat{y}(x) = \sum_{i=1}^{m} \alpha_i K(x_i, x)$