Mathematics for Computer Science Linear Algebra (Part 2) Eigendecomposition

Karl Southern

Durham University

Febuary 3rd, 2025

Thanks to Andrei Krokhin and William Moses for use of some slides.

Outline

- Recap of Last Week & Plan for Today
- 2 Eigendecomposition Motivation
- Similarity of Matrices
- 4 Diagonalisation of Matrices
- 6 Eigendecomposition
- Wrapping Things Up

- For an $n \times n$ matrix, a non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A if $A\mathbf{x} = \lambda \mathbf{x}$.
- In this case, λ is called an eigenvalue of A, and x is an eigenvector corresponding to λ .

- For an $n \times n$ matrix, a non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A if $A\mathbf{x} = \lambda \mathbf{x}$.
- In this case, λ is called an eigenvalue of A, and \mathbf{x} is an eigenvector corresponding to λ .
- The polynomial $det(\lambda I A)$ is called the characteristic polynomial of A and the equation $det(\lambda I A) = 0$ the characteristic equation of A.
- The eigenvalues of A are the solutions of $det(\lambda I A) = 0$.

- For an $n \times n$ matrix, a non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A if $A\mathbf{x} = \lambda \mathbf{x}$.
- In this case, λ is called an eigenvalue of A, and \mathbf{x} is an eigenvector corresponding to λ .
- The polynomial $det(\lambda I A)$ is called the characteristic polynomial of A and the equation $det(\lambda I A) = 0$ the characteristic equation of A.
- The eigenvalues of A are the solutions of $det(\lambda I A) = 0$.
- For an eigenvalue λ_0 of A, the null space of matrix $\lambda_0 I A$ is the eigenspace of A corresponding to λ_0 . The non-zero vectors in this subspace are the eigenvectors of A corresponding to λ_0 .

- For an $n \times n$ matrix, a non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A if $A\mathbf{x} = \lambda \mathbf{x}$.
- In this case, λ is called an eigenvalue of A, and x is an eigenvector corresponding to λ .
- The polynomial $det(\lambda I A)$ is called the characteristic polynomial of A and the equation $det(\lambda I A) = 0$ the characteristic equation of A.
- The eigenvalues of A are the solutions of $det(\lambda I A) = 0$.
- For an eigenvalue λ_0 of A, the null space of matrix $\lambda_0 I A$ is the eigenspace of A corresponding to λ_0 . The non-zero vectors in this subspace are the eigenvectors of A corresponding to λ_0 .
- Eigenvalues and eigenvectors play a major role in PCA (principal component analysis).

Plan for Today

- Similarity of matrices
- Diagonalisation of a matrix and how to find it
- Eigendecomposition of a matrix

Outline

- Recap of Last Week & Plan for Today
- 2 Eigendecomposition Motivation
- Similarity of Matrices
- 4 Diagonalisation of Matrices
- Eigendecomposition
- Wrapping Things Up

What Is It?

• Decompose matrix A into PDP^{-1} form.

②
$$P$$
 - eigenvectors, D - diagonal matrix eigenvalues, e.g., $D=\begin{pmatrix}\lambda_1&0&0\\0&\lambda_2&0\\0&0&\lambda_3\end{pmatrix}$

What Is It?

- **1** Decompose matrix A into PDP^{-1} form.
- ② P eigenvectors, D diagonal matrix eigenvalues, e.g., $D=\begin{pmatrix}\lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3\end{pmatrix}$

Why Care?

• Faster Self-Matrix Multiplication A^k

What Is It?

- **1** Decompose matrix A into PDP^{-1} form.
- ② P eigenvectors, D diagonal matrix eigenvalues, e.g., $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$

Why Care?

Faster Self-Matrix Multiplication

$$A^{k} = PDP^{-1}PDP^{-1}PDP^{-1}PDP^{-1}... k$$
 times

What Is It?

- **1** Decompose matrix A into PDP^{-1} form.
- ② P eigenvectors, D diagonal matrix eigenvalues, e.g., $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$

Why Care?

- Faster Self-Matrix Multiplication
 - $A^{k} = PDP^{-1}PDP^{-1}PDP^{-1}PDP^{-1}... k$ times
 - $A^k = PDDDD... k \text{ times } P^{-1}$

What Is It?

- **1** Decompose matrix A into PDP^{-1} form.
- ② P eigenvectors, D diagonal matrix eigenvalues, e.g., $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$

Why Care?

Faster Self-Matrix Multiplication

$$A^{k} = PDP^{-1}PDP^{-1}PDP^{-1}PDP^{-1}... k$$
 times

$$A^k = PDDDD... k \text{ times } P^{-1}$$

$$A^k = PD^kP^{-1}$$

What Is It?

- **1** Decompose matrix A into PDP^{-1} form.
- ② P eigenvectors, D diagonal matrix eigenvalues, e.g., $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$

Why Care?

Faster Self-Matrix Multiplication

$$A^{k} = PDP^{-1}PDP^{-1}PDP^{-1}PDP^{-1}... k$$
 times

$$A^k = PDDDD... k \text{ times } P^{-1}$$

$$A^{k} = PD^{k}D^{k}... k \text{ times } Y$$

$$A^{k} = PD^{k}P^{-1} \text{ (e.g., } D^{k} = \begin{pmatrix} \lambda_{1}^{k} & 0 & 0 \\ 0 & \lambda_{2}^{k} & 0 \\ 0 & 0 & \lambda_{3}^{k} \end{pmatrix})$$

What Is It?

- **1** Decompose matrix A into PDP^{-1} form.
- ② P eigenvectors, D diagonal matrix eigenvalues, e.g., $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$

Why Care?

Faster Self-Matrix Multiplication

$$A^{k} = PDP^{-1}PDP^{-1}PDP^{-1}PDP^{-1}... k$$
 times

$$A^k = PDDDD... k \text{ times } P^{-1}$$

$$A^{k} = PD^{k}P^{-1}$$
 (e.g., $D^{k} = \begin{pmatrix} \lambda_{1}^{k} & 0 & 0 \\ 0 & \lambda_{2}^{k} & 0 \\ 0 & 0 & \lambda_{3}^{k} \end{pmatrix}$)

Useful in PCA (covariance matrix)

Plan to Learn About It.

- Learn useful concept 1: Similarity of matrices
- ② Learn useful concept 2: Diagonalisation of a matrix (what & how)
- Finally get to eigendecomposition (what is it & conditions for it to exist)

Outline

- Recap of Last Week & Plan for Today
- 2 Eigendecomposition Motivation
- Similarity of Matrices
- 4 Diagonalisation of Matrices
- Eigendecomposition
- Wrapping Things Up

Similarity of Matrices

Definition

Square matrices A and B are called similar if $A = P^{-1}BP$ for some invertible P.

Note that if $A = P^{-1}BP$ then $B = Q^{-1}AQ$ where $Q = P^{-1}$.

Similarity of Matrices

Definition

Square matrices A and B are called similar if $A = P^{-1}BP$ for some invertible P.

Note that if $A = P^{-1}BP$ then $B = Q^{-1}AQ$ where $Q = P^{-1}$.

Similar matrices have many features in common, including determinant, trace, rank, nullity, characteristic polynomial, eigenvalues, dimensions of corresponding eigenspaces, etc.

Similarity of Matrices

Definition

Square matrices A and B are called similar if $A = P^{-1}BP$ for some invertible P.

Note that if $A = P^{-1}BP$ then $B = Q^{-1}AQ$ where $Q = P^{-1}$.

Similar matrices have many features in common, including determinant, trace, rank, nullity, characteristic polynomial, eigenvalues, dimensions of corresponding eigenspaces, etc.

Lemma

If A and B are similar then det(A) = det(B).

Note: Whilst we have proven that A and B being similar implies that they have the same determinant, the converse is not true.

Properties of Similar Matrices

If A and B are similar then:

- A is invertible iff B is invertible.
- ② A and B have the same rank.
- **3** A and B have the same characteristic polynomial.
- \bullet A and B have the same eigenvalues.

1 Suppose we have a vector $\mathbf{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ in a coordinate system with the standard basis.

- Suppose we have a vector $\mathbf{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ in a coordinate system with the standard basis.
- ② We want to represent it in terms of the basis $S = \{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$.

- Suppose we have a vector $\mathbf{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ in a coordinate system with the standard basis.
- ② We want to represent it in terms of the basis $S = \{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$.
- **3** In other words, what are a, b such that $\mathbf{u} = a\mathbf{v}_1 + b\mathbf{v}_2$.

- **1** Suppose we have a vector $\mathbf{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ in a coordinate system with the standard basis.
- ② We want to represent it in terms of the basis $S = \{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$.
- **3** In other words, what are a, b such that $\mathbf{u} = a\mathbf{v}_1 + b\mathbf{v}_2$.
- **9** Solving, a = 5, b = -2.

- **1** Suppose we have a vector $\mathbf{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ in a coordinate system with the standard basis.
- ② We want to represent it in terms of the basis $S = \{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$.
- **1** In other words, what are a, b such that $\mathbf{u} = a\mathbf{v}_1 + b\mathbf{v}_2$.
- **3** Solving, a = 5, b = -2.
- Here, a, b are the coordinates of \mathbf{u} in basis S and the vector $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$ is the coordinate vector of vector \mathbf{u} in basis S.

Theorem

Theorem

- Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator and $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ a basis in \mathbb{R}^n .
- Let $[T]_S$ be the $n \times n$ matrix $[T]_S = [(T(\mathbf{v}_1))_S | (T(\mathbf{v}_2))_S | \dots | (T(\mathbf{v}_n))_S]$ whose columns are the coordinate vectors of vectors $T(\mathbf{v}_i)$ in basis S.

Theorem

- Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator and $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ a basis in \mathbb{R}^n .
- Let $[T]_S$ be the $n \times n$ matrix $[T]_S = [(T(\mathbf{v}_1))_S | (T(\mathbf{v}_2))_S | \dots | (T(\mathbf{v}_n))_S]$ whose columns are the coordinate vectors of vectors $T(\mathbf{v}_i)$ in basis S. This matrix is called the matrix of T in S.

Theorem

- Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator and $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ a basis in \mathbb{R}^n .
- Let $[T]_S$ be the $n \times n$ matrix $[T]_S = [(T(\mathbf{v}_1))_S | (T(\mathbf{v}_2))_S | \dots | (T(\mathbf{v}_n))_S]$ whose columns are the coordinate vectors of vectors $T(\mathbf{v}_i)$ in basis S. This matrix is called the matrix of T in S.
- We also say that the matrix $[T]_S$ represents T in basis S.

Theorem

- Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator and $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ a basis in \mathbb{R}^n .
- Let $[T]_S$ be the $n \times n$ matrix $[T]_S = [(T(\mathbf{v}_1))_S | (T(\mathbf{v}_2))_S | \dots | (T(\mathbf{v}_n))_S]$ whose columns are the coordinate vectors of vectors $T(\mathbf{v}_i)$ in basis S. This matrix is called the matrix of T in S.
- We also say that the matrix $[T]_S$ represents T in basis S.
- If S is the standard basis of \mathbb{R}^n then $[T]_S$ is the standard matrix of T.

Theorem

Matrices A and B are similar iff they represent the same linear operator $f: \mathbb{R}^n \to \mathbb{R}^n$, possibly in different bases. (Proof omitted.)

- Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator and $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ a basis in \mathbb{R}^n .
- Let $[T]_S$ be the $n \times n$ matrix $[T]_S = [(T(\mathbf{v}_1))_S | (T(\mathbf{v}_2))_S | \dots | (T(\mathbf{v}_n))_S]$ whose columns are the coordinate vectors of vectors $T(\mathbf{v}_i)$ in basis S. This matrix is called the matrix of T in S.
- We also say that the matrix $[T]_S$ represents T in basis S.
- If S is the standard basis of \mathbb{R}^n then $[T]_S$ is the standard matrix of T.

Theorem: Matrices A and B are similar iff there is a linear operator $T: \mathbb{R}^n \to \mathbb{R}^n$ and two bases S, S' of \mathbb{R}^n such that $A = [T]_S$ and $B = [T]_{S'}$.

Outline

- Recap of Last Week & Plan for Today
- 2 Eigendecomposition Motivation
- Similarity of Matrices
- 4 Diagonalisation of Matrices
- Eigendecomposition
- Wrapping Things Up

Diagonalisable Matrices

Definition

A matrix A is called diagonalisable if it is similar to a diagonal matrix – in other words, if there exists an invertible matrix P such that $P^{-1}AP$ is diagonal. Then P is said to diagonalise A.

Diagonalisable Matrices

Definition

A matrix A is called diagonalisable if it is similar to a diagonal matrix - in other words, if there exists an invertible matrix P such that $P^{-1}AP$ is diagonal. Then P is said to diagonalise A.

Note that A is diagonalisable if it decomposes as $A = PDP^{-1}$ where P is invertible and $D = diag(\lambda_1, \ldots, \lambda_n)$ is diagonal.

$$D = diag(\lambda_1, \dots, \lambda_n) \text{ is shorthand for } D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \vdots & \ddots & \lambda_{n-1} & 0 \\ 0 & 0 & \vdots & \ddots & 0 & \lambda_n \end{pmatrix}$$

A Characterisation of Diagonalisable Matrices

Theorem (Thm 14.1)

An $n \times n$ matrix is diagonalisable iff it has n linearly independent eigenvectors.

A Characterisation of Diagonalisable Matrices

Theorem (Thm 14.1)

An $n \times n$ matrix is diagonalisable iff it has n linearly independent eigenvectors.

Proof.

(\Rightarrow). Assume that there is an invertible matrix P and a diagonal matrix $D = diag(\lambda_1, \dots \lambda_n)$ such that $D = P^{-1}AP$, or AP = PD. Denote the column vectors of P by $\mathbf{p}_1, \dots, \mathbf{p}_n$, so $P = [\mathbf{p}_1| \dots |\mathbf{p}_n]$. Then

$$AP = A[\mathbf{p}_1|\dots|\mathbf{p}_n] = [A\mathbf{p}_1|\dots|A\mathbf{p}_n].$$

On the other hand,

$$PD = [\lambda_1 \mathbf{p}_1 | \dots | \lambda_n \mathbf{p}_n].$$

Since AP = PD, we conclude that $A\mathbf{p}_i = \lambda_i \mathbf{p}_i$ for all $1 \le i \le n$.

Since P is invertible, its rank is n and so the vectors $\mathbf{p}_1, \dots, \mathbf{p}_n$ are linearly independent. Then none of $\mathbf{p}_1, \dots, \mathbf{p}_n$ is $\mathbf{0}$, so each of them is an eigenvector.

Proof Cont'd

Theorem (Thm 14.1)

An $n \times n$ matrix is diagonalisable iff it has n linearly independent eigenvectors.

Proof.

(\Leftarrow). Assume that A has n linearly independent eigenvectors $\mathbf{p}_1, \ldots, \mathbf{p}_n$ and let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues (not necessarily distinct). Define

$$P = [\mathbf{p}_1 | \dots | \mathbf{p}_n]$$
 and $D = diag(\lambda_1, \dots, \lambda_n)$.

Then

$$AP = A[\mathbf{p}_1|\ldots|\mathbf{p}_n] = [A\mathbf{p}_1|\ldots|A\mathbf{p}_n] = [\lambda_1\mathbf{p}_1|\ldots|\lambda_n\mathbf{p}_n] = PD.$$

The columns of P are linearly independent, so its rank is n and it is invertible. Finally AP = PD is equivalent to $D = P^{-1}AP$.

- lacktriangle Find the eigenvalues of A (e.g. by solving its characterstic equation).
- \odot Find a basis in each eigenspace of A and merge these bases into one set S.

- lacktriangledown Find the eigenvalues of A (e.g. by solving its characteristic equation).
- ullet Find a basis in each eigenspace of A and merge these bases into one set S.
- \odot If S has fewer than n vectors then A is not diagonalisable.
- Else, form the matrix $P = [\mathbf{p}_1 | \dots | \mathbf{p}_n]$ where $S = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$.

- lacktriangledown Find the eigenvalues of A (e.g. by solving its characteristic equation).
- \odot If S has fewer than n vectors then A is not diagonalisable.
- Else, form the matrix $P = [\mathbf{p}_1 | \dots | \mathbf{p}_n]$ where $S = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$.
 - # The set S contains n vectors and is linearly independent (will prove this),
 - # so S is a basis for \mathbb{R}^n . Hence, P is invertible.

- lacktriangle Find the eigenvalues of A (e.g. by solving its characteristic equation).
- \odot If S has fewer than n vectors then A is not diagonalisable.
- Else, form the matrix P = [p₁|...|p_n] where S = {p₁,...,p_n}.
 # The set S contains n vectors and is linearly independent (will prove this),
 # so S is a basis for Rⁿ. Hence, P is invertible.
- The matrix $D = P^{-1}AP$ is diagonal, $D = diag(\lambda_1, \dots, \lambda_n)$ where, for each i, λ_i is the eigenvalue corresponding to \mathbf{p}_i .

Given a matrix A, this algorithm diagonalises it (or reports that this is impossible):

- lacktriangle Find the eigenvalues of A (e.g. by solving its characteristic equation).

- Else, form the matrix $P = [\mathbf{p}_1 | \dots | \mathbf{p}_n]$ where $S = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$.

 # The set S contains n vectors and is linearly independent (will prove this),

 # so S is a basis for \mathbb{R}^n . Hence, P is invertible.
- The matrix $D = P^{-1}AP$ is diagonal, $D = diag(\lambda_1, \dots, \lambda_n)$ where, for each i, λ_i is the eigenvalue corresponding to \mathbf{p}_i .

Remark:

• If an $n \times n$ matrix has n distinct eigenvalues then it is diagonalisable. Why? We'll see later on.

For $k \neq 0$, is the following matrix (corresponding to shear) diagonalisable?

$$A = \left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right)$$

Diagonalise the following matrix, if possible,

$$A = \left(\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array}\right).$$

Outline

- Recap of Last Week & Plan for Today
- 2 Eigendecomposition Motivation
- Similarity of Matrices
- 4 Diagonalisation of Matrices
- 5 Eigendecomposition
- Wrapping Things Up

• Let A be a diagonalisable matrix.

- Let A be a diagonalisable matrix.
- We have AP = PD,

- Let A be a diagonalisable matrix.
- We have AP = PD,
 where P is invertible and its columns p₁,..., p_n are eigenvectors of A, and
 D = diag(λ₁,...,λ_n) and each λ_i is the eigenvalue of A corresponding to p_i.

- Let A be a diagonalisable matrix.
- We have AP = PD, where P is invertible and its columns $\mathbf{p}_1, \dots, \mathbf{p}_n$ are eigenvectors of A, and $D = diag(\lambda_1, \dots, \lambda_n)$ and each λ_i is the eigenvalue of A corresponding to \mathbf{p}_i .
- Then we have a decomposition $A = PDP^{-1}$. Since the factors in this decomposition are made of eigenvectors and eigenvalues, it is called an eigendecomposition of A.

- Let A be a diagonalisable matrix.
- We have AP = PD, where P is invertible and its columns $\mathbf{p}_1, \dots, \mathbf{p}_n$ are eigenvectors of A, and $D = diag(\lambda_1, \dots, \lambda_n)$ and each λ_i is the eigenvalue of A corresponding to \mathbf{p}_i .
- Then we have a decomposition $A = PDP^{-1}$. Since the factors in this decomposition are made of eigenvectors and eigenvalues, it is called an eigendecomposition of A.

(Can use the diagonalisation algorithm to find it.)

- Let A be a diagonalisable matrix.
- We have AP = PD, where P is invertible and its columns $\mathbf{p}_1, \dots, \mathbf{p}_n$ are eigenvectors of A, and $D = diag(\lambda_1, \dots, \lambda_n)$ and each λ_i is the eigenvalue of A corresponding to \mathbf{p}_i .
- Then we have a decomposition $A = PDP^{-1}$. Since the factors in this decomposition are made of eigenvectors and eigenvalues, it is called an eigendecomposition of A.
 - (Can use the diagonalisation algorithm to find it.)
- Eigendecomposition of matrix A (of size $n \times n$) exists iff A can be diagonalised.

- Let A be a diagonalisable matrix.
- We have AP = PD. where P is invertible and its columns $\mathbf{p}_1, \dots, \mathbf{p}_n$ are eigenvectors of A, and $D = diag(\lambda_1, \dots, \lambda_n)$ and each λ_i is the eigenvalue of A corresponding to \mathbf{p}_i .
- Then we have a decomposition $A = PDP^{-1}$. Since the factors in this decomposition are made of eigenvectors and eigenvalues, it is called an eigendecomposition of A.
 - (Can use the diagonalisation algorithm to find it.)
- Eigendecomposition of matrix A (of size $n \times n$) exists iff A can be diagonalised.
- Eigendecomposition of matrix A iff A has n linearly independent eigenvectors.

Theorem (Thm 14.2)

If vectors $\mathbf{v}_1 \dots, \mathbf{v}_k$ are eigenvectors of a matrix A corresponding to (pairwise) distinct eigenvalues $\lambda_1, \dots, \lambda_k$ then the set $\{\mathbf{v}_1 \dots, \mathbf{v}_k\}$ is linearly independent.

Theorem (Thm 14.2)

If vectors $\mathbf{v}_1 \dots, \mathbf{v}_k$ are eigenvectors of a matrix A corresponding to (pairwise) distinct eigenvalues $\lambda_1, \dots, \lambda_k$ then the set $\{\mathbf{v}_1 \dots, \mathbf{v}_k\}$ is linearly independent.

Proof.

Let $r \leq k$ be the largest number such that $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

Assume for contradiction that r < k, so $\{\mathbf{v}_1 \dots, \mathbf{v}_r, \mathbf{v}_{r+1}\}$ is linearly dependent:

$$c_1\mathbf{v}_1+\ldots+c_r\mathbf{v}_r+c_{r+1}\mathbf{v}_{r+1}=\mathbf{0}$$

where not all $c_1, \ldots, c_r, c_{r+1}$ are 0.

Since $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent, we conclude that $c_{r+1} \neq 0$.

Since \mathbf{v}_{r+1} is an eigenvector, we conclude that $c_i \neq 0$ for some $i \leq r$.

Continued on next slide ...

Proof Continued

Proof.

We assumed that $\{\mathbf{v}_1 \dots, \mathbf{v}_r\}$ is linearly independent, but $\{\mathbf{v}_1 \dots, \mathbf{v}_r, \mathbf{v}_{r+1}\}$ is not:

$$c_1\mathbf{v}_1 + \ldots + c_r\mathbf{v}_r + c_{r+1}\mathbf{v}_{r+1} = \mathbf{0}$$
 (1)

We derived that $c_{r+1} \neq 0$ and $c_i \neq 0$ for some $i \leq r$.

Left multiply both sides of equation (1) by A and use $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$:

$$c_1\lambda_1\mathbf{v}_1+\ldots+c_r\lambda_r\mathbf{v}_r+c_{r+1}\lambda_{r+1}\mathbf{v}_{r+1}=\mathbf{0}.$$
 (2)

Now multiply both sides of (1) by λ_{r+1} and subtract that from (2) to obtain

$$c_1(\lambda_1 - \lambda_{r+1})\mathbf{v}_1 + \ldots + c_r(\lambda_r - \lambda_{r+1})\mathbf{v}_r = \mathbf{0}.$$
(3)

So $c_i(\lambda_i - \lambda_{r+1}) = 0$, and hence $c_i = 0$, for all $i \le r$, a contradiction.

9 From Theorem earlier, we know that $n \times n$ matrix is diagonisable iff it has n linearly independent eigenvectors.

- **1** From Theorem earlier, we know that $n \times n$ matrix is diagonisable iff it has n linearly independent eigenvectors.
- A matrix's eigendecomposition exists iff it is diagonisable.

- **9** From Theorem earlier, we know that $n \times n$ matrix is diagonisable iff it has n linearly independent eigenvectors.
- 2 A matrix's eigendecomposition exists iff it is diagonisable.
- **Implication:** if we have a matrix of size $n \times n$ that has n distinct eigenvalues, then we know that it has an eigendecomposition.
- **Q Recall:** *n* distinct eigenvalues means that algebraic multiplicity of all eigenvalues is 1.

- From Theorem earlier, we know that $n \times n$ matrix is diagonisable iff it has n linearly independent eigenvectors.
- ② A matrix's eigendecomposition exists iff it is diagonisable.
- **Implication:** if we have a matrix of size $n \times n$ that has n distinct eigenvalues, then we know that it has an eigendecomposition.
- Recall: n distinct eigenvalues means that algebraic multiplicity of all eigenvalues is 1.
- **Important Note:** This does not mean that a matrix that doesn't have *n* distinct eigenvalues doesn't have an eigendecomposition.

Give the Eigendecomposition of A if one exists.

$$A = \left(\begin{array}{rrr} -2 & 0 & 3 \\ -8 & 2 & 8 \\ 0 & 0 & 1 \end{array}\right).$$

Outline

- Recap of Last Week & Plan for Today
- 2 Eigendecomposition Motivation
- Similarity of Matrices
- 4 Diagonalisation of Matrices
- Eigendecomposition
- 6 Wrapping Things Up

Example exam question

(d) Consider the matrix
$$A = \begin{pmatrix} -3 & 1 & 2 \\ 1 & -3 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$
.

i. Diagonalise A

[6 Marks]

ii. A matrix B has an eigendecomposition of BP = PD, where , $B = \begin{pmatrix} -2 & 2 & 1 \\ 2 & -2 & 1 \\ 4 & 4 & -2 \end{pmatrix}$, $P = \begin{pmatrix} 0.5 & -1 & -0.5 \\ 0.5 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{pmatrix}$. Are B and A similar, give a justification. [2 Marks]

What We Learnt Today & Next Week's Plan

Today:

- Similarity of matrices
- Diagonalisable matrices (= similar to a diagonal one)
- A characterisation of diagonalisable matrices
- An algorithm for diagonalisation
- Eigendecomposition of matrices

Next Week:

Inner product spaces.

For $k \neq 0$, is the following matrix (corresponding to shear) diagonalisable?

$$A = \left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right)$$

For $k \neq 0$, is the following matrix (corresponding to shear) diagonalisable?

$$A = \left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right)$$

Solution. First compute the characteristic polynomial $det(\lambda I - A)$:

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -k \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2.$$

The characteristic equation is $(\lambda - 1)^2 = 0$, so A has only one eigenvalue $\lambda_1 = 1$.

For $k \neq 0$, is the following matrix (corresponding to shear) diagonalisable?

$$A = \left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right)$$

Solution. First compute the characteristic polynomial $det(\lambda I - A)$:

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -k \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2.$$

The characteristic equation is $(\lambda - 1)^2 = 0$, so A has only one eigenvalue $\lambda_1 = 1$.

The corresponding eigenspace is the nullspace of $\lambda_1 I - A = I - A = \begin{pmatrix} 0 & -k \\ 0 & 0 \end{pmatrix}$.

Does it have two linearly independent vectors? (Is nullity(I - A) = 2?)

For $k \neq 0$, is the following matrix (corresponding to shear) diagonalisable?

$$A = \left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right)$$

Solution. First compute the characteristic polynomial $det(\lambda I - A)$:

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -k \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2.$$

The characteristic equation is $(\lambda - 1)^2 = 0$, so A has only one eigenvalue $\lambda_1 = 1$.

The corresponding eigenspace is the nullspace of $\lambda_1 I - A = I - A = \begin{pmatrix} 0 & -k \\ 0 & 0 \end{pmatrix}$.

Does it have two linearly independent vectors? (Is nullity(I - A) = 2?)

Since rank(I - A) + nullity(I - A) = 2 (by the Dimension Theorem for matrices) and rank(I - A) = 1, we conclude that nullity(I - A) = 1, and therefore A is **not** diagonalisable.

Diagonalise the following matrix, if possible,

$$A = \left(\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array}\right).$$

Diagonalise the following matrix, if possible,

$$A = \left(\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array}\right).$$

Solution. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{vmatrix} = \lambda^3 - 5\lambda^2 + 8\lambda - 4.$$

The characteristic equation is $\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$, can factor it (as in last lecture): $(\lambda - 1)(\lambda - 2)^2 = 0$. The eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$.

Diagonalise the following matrix, if possible,

$$A = \left(\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array}\right).$$

Solution. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{vmatrix} = \lambda^3 - 5\lambda^2 + 8\lambda - 4.$$

The characteristic equation is $\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$, can factor it (as in last lecture): $(\lambda - 1)(\lambda - 2)^2 = 0$. The eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$.

The corresponding eigenspaces are the nullspaces of I - A and 2I - A, resp.

Diagonalise the following matrix, if possible,

$$A = \left(\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array}\right).$$

Solution. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{vmatrix} = \lambda^3 - 5\lambda^2 + 8\lambda - 4.$$

The characteristic equation is $\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$, can factor it (as in last lecture): $(\lambda - 1)(\lambda - 2)^2 = 0$. The eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$.

The corresponding eigenspaces are the nullspaces of I-A and 2I-A, resp.

Using the algorithms for finding a basis in a nullspace, get the following:

$$\lambda_1 = 1 : \mathbf{p}_1 = (-2, 1, 1); \quad \lambda_1 = 2 : \mathbf{p}_2 = (-1, 0, 1) \text{ and } \mathbf{p}_3 = (0, 1, 0).$$

Example 14.2 Cont'd

The eigenvalues of A are $\lambda_1=1$ and $\lambda_2=2$, and the bases of nullspaces are

$$\lambda_1 = 1 : \mathbf{p}_1 = (-2, 1, 1); \quad \lambda_1 = 2 : \mathbf{p}_2 = (-1, 0, 1) \text{ and } \mathbf{p}_3 = (0, 1, 0).$$

Example 14.2 Cont'd

The eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = 2$, and the bases of nullspaces are

$$\lambda_1 = 1 : \mathbf{p}_1 = (-2, 1, 1); \quad \lambda_1 = 2 : \mathbf{p}_2 = (-1, 0, 1) \text{ and } \mathbf{p}_3 = (0, 1, 0).$$

Hence, A is diagonalisable, and one possible matrix that diagonalises it is

$$P = \left(egin{array}{ccc} -2 & -1 & 0 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight).$$

One can check that $P^{-1}AP$ is

$$\left(\begin{array}{ccc} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right)^{-1} \left(\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array} \right) \left(\begin{array}{ccc} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right)$$

Example 14.2 Cont'd

The eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = 2$, and the bases of nullspaces are

$$\lambda_1 = 1 : \mathbf{p}_1 = (-2, 1, 1); \quad \lambda_1 = 2 : \mathbf{p}_2 = (-1, 0, 1) \text{ and } \mathbf{p}_3 = (0, 1, 0).$$

Hence, A is diagonalisable, and one possible matrix that diagonalises it is

$$P = \left(egin{array}{ccc} -2 & -1 & 0 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight).$$

One can check that $P^{-1}AP$ is

$$\left(\begin{array}{ccc} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right)^{-1} \left(\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array} \right) \left(\begin{array}{ccc} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right)$$

Remark: The order of the \mathbf{p}_i 's in P can be changed arbitrarily, this will result in changing the order of the λ_i 's in D accordingly.

Give the Eigendecomposition of A if one exists.

$$A = \left(\begin{array}{rrr} -2 & 0 & 3 \\ -8 & 2 & 8 \\ 0 & 0 & 1 \end{array}\right).$$

Solution:

- 1) Find eigenvalues: $\lambda_1 = -2, \lambda_2 = 2, \lambda_3 = 1$
- 2) Find eigenvectors: $\mathbf{v}_1 = (1, 2, 0), \mathbf{v}_2 = (0, 1, 0), \mathbf{v}_3 = (1, 0, 1)$

3)
$$D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} P = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Example 14.3 cont

4) Invert
$$P$$
, $P^-1 = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$

Giving:

$$\begin{pmatrix} -2 & 0 & 3 \\ -8 & 2 & 8 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

The End