RIEMANN-STIELTJES INTEGRATION. BOUNDED VARIATION

- **Problem 1.** Assume $\{f_n\}$ is a sequence of real-valued nondecreasing functions defined on I = [a, b], and suppose $f(x) = \lim_n f_n(x)$ exists for all $x \in I$. Is f necessarily nondecreasing?
- **Problem 2.** Assume f is a bounded real-valued function defined on I = [a, b] and let $\mathcal{F} = \{g : g \text{ defined on } I, g \text{ non-increasing and } g(x) \ge f(x) \text{ for } x \in I\}$. Show that $f^*(x) = \sup\{f(y) : x \le y \le b\}$, for $x \in I$, belongs to \mathcal{F} , and in fact it is the smallest element there. Moreover, if f is continuous at x, so is f^* .
- **Problem 3.** Show that a monotone function $f:[a,b] \to \mathbb{R}$ has, at most, countably many discontinuities, and that all are of the first kind. Conversely, if D is an at most countable subset of [a,b], construct a monotone function $f:[a,b] \to \mathbb{R}$ such that $D = \{x \in [a,b] : f \text{ is discontinuous at } x\}$.
- **Problem 4.** A real-valued function f defined on I = [a, b] is said to be Lipschitz there if there is a constant c such that $|f(x) f(y)| \le c|x y|$ for all $x, y \in I$. Show that if f is Lipschitz on I, it is BV there.
- **Problem 5.** Let f, g be BV on I = [a, b]. Show that f, g are bounded on I, and that for any real number η , $f + \eta g$ is BV on I and $V(f + \eta g; a, b) \leq V(f; a, b) + |\eta|V(g; a, b)$.
- **Problem 6** (Fall'01). Let $f, g \in BV$ on I = [a, b]. Show that $fg \in BV(I)$, and that if $|g(x)| \ge \varepsilon > 0$ for $x \in I$, then also $f/g \in BV(I)$. Estimate V(fg; a, b) and V(f/g; a, b) in terms of V(f; a, b), V(g; a, b) and ε .
- **Problem 7.** Let f, g be real-valued functions defined on I = [a, b], and suppose that f and g differ at finitely many values. show that $f \in BV(I)$ if and only if $g \in BV(I)$, and that V(f; a, b) = V(g; a, b).
- **Problem 8.** Characterize those real numbers α, β for which $f(x) = x^{\alpha} \sin(x^{-\beta})$, $x \neq 0$, f(0) = 0 is BV on [0,1]. Verify that the choice $\alpha = 2$, $\beta = 3/2$ gives an example of a function which is BV on I, differentiable there, and yet f' is unbounded.

Problem 9 (Fall'03). Let $\{q_1, q_2, \dots\}$ be an enumeration of the set of rational numbers q with 0 < q < 1. Define $f: [0, 1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 2^{-n} & \text{if } x = q_n, \\ 0 & \text{otherwise.} \end{cases}$$

Show that f has bounded variation.

Problem 10 (Fall'03). Give an example of a function $f: [0,1] \to \mathbb{R}$ such that f=0 almost everywhere and f does not have bounded variation, and justify your answer.

Problem 11 (Spring'04). Find all the functions $f: [0,1] \to \mathbb{R}$ with bounded variation satisfying

$$f(x) + (T_0^x f)^{1/2} = 1$$
, for all $x \in [0, 1]$,

and

$$\int_0^1 f(x) \, dx = 1/3.$$

Problem 12 (Fall'05). Suppose f is of bounded variation on [0,1]. Prove that so is e^f .