FJFI ČVUT

METODA MONTE CARLO

SEMINÁRNÍ PRÁCE

Parabolická evoluční úloha ve 2D

Autor Vladislav Belov

1 Úvod

Existuje hodně způsobů řešení diferenciálních rovnic. Tato seminární práce se zabývá hledáním aproximace řešení parabolické evoluční úlohy popisující vedení tepla (resp. difuzi)¹ ve dvou dimenzích pomocí metody Monte Carlo.

Obecně parabolická evoluční úloha ve 2D na oblasti $(0,T) \times \Gamma$, kde $T \in \mathbb{R}_+$ a $\Gamma \subset \mathbb{R}^2$, vypadá následovně:

$$\frac{\partial}{\partial t}u(t,x) - D \cdot \Delta u(t,x) = f(t,x),$$

$$u|_{\partial\Gamma} = g(x),$$

$$u(0,x) = h(x).$$
(1)

V dané notaci funkce u=u(t,x) popisuje rozložení teploty na oblasti Γ (tj. $x\in\Gamma\subset\mathbb{R}^2$) v časech $t\in(0,T)$, D je termální difuzivita $(D>0),\ g=g(x)$ je okrajová podmínka evoluční úlohy $\forall t\in(0,T)$ a h=h(x) je počáteční podmínka. V rámci této seminární práce položíme pravou stranu $f\equiv0$.

2 Diskretizace úlohy

V numerické matematice se podobné úlohy řeší pomocí metody konečných diferencí (metody sítí), která spočívá v diskretizaci oblasti $(0,T) \times \Gamma$ a konstrukci diferenčního schématu (viz [Ben17]). Pro jednoduchost budeme hledat řešení úlohy (1) na čtverci $\Gamma = (-b,b) \times (-b,b)$, b>0, pak na jeho uzávěru $\overline{\Gamma}$ lze definovat čtvercovou síť $\overline{\omega}_h$ s krokem h>0, tj. $\Gamma \leftrightarrow \omega_h$ a $\partial\Gamma \leftrightarrow \overline{\omega}_h \setminus \omega_h$. Potom, rozdělíme-li interval [0,T] na časové hladiny s krokem $\tau = \frac{T}{N_T}$, kde N_T je počet hladin, a označíme-li $u_{i,j}^k$ hodnoty funkce u na časových hladinách $k \in \{0,1,\ldots,N_T\}$ pro všechny (i,j) body sítě $\overline{\omega}_h$, dostaneme podle [Ben17] následující diferenční schéma:

$$\frac{u_{i,j}^{k+1} - u_{i,j}^{k}}{\tau} = D \cdot \left(\frac{u_{i+1,j}^{k} - 2u_{i,j}^{k} + u_{i-1,j}^{k}}{h^{2}} + \frac{u_{i,j+1}^{k} - 2u_{i,j}^{k} + u_{i,j-1}^{k}}{h^{2}}\right), \forall (i,j) \in \omega_{h}, \forall k \in \{0,1,\ldots,N_{T}-1\};$$

$$u_{i,j}^{k} = g_{i,j}, \forall (i,j) \in \overline{\omega}_{h} \setminus \omega_{h}, \forall k \in \{0,1,\ldots,N_{T}\};$$

$$u_{i,j}^{0} = h_{i,j}, \forall (i,j) \in \overline{\omega}_{h}.$$
(2)

Takovému-to diferenčnímu schématu se říká *explicitní* a jeho chyba aproximace je $O(\tau + h^2)$. Budeme-li volit kroky τ a h v poměru $\frac{h^2}{\tau} = 4$ a položíme-li D = 1, pak (2) se přepíše následovně:

$$u_{i,j}^{k+1} = \frac{1}{4} \left(u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k \right), \ \forall (i,j) \in \omega_h, \ \forall k \in \{0,1,\dots,N_T-1\};$$

$$u_{i,j}^k = g_{i,j}, \ \forall (i,j) \in \overline{\omega}_h \setminus \omega_h, \ \forall k \in \{0,1,\dots,N_T\};$$

$$u_{i,j}^0 = h_{i,j}, \ \forall (i,j) \in \overline{\omega}_h.$$

$$(3)$$

Stojí za zmínění, že schéma (3) je stabilní, neboť obecná podmínka stability pro (2) má tvar:

$$\frac{1}{2} \ge D \cdot \frac{\tau}{h^2}$$
.

Získanou soustavu lineárních algebraických rovnic budeme řešit pomocí metody Monte Carlo.

3 Algoritmus výpočtu aproximace

Postup pro řešení soustavy rovnic (3) získané diskretizací úlohy (1) je velmi jednoduchý - použijeme lehce upravenou náhodnou procházku. Aproximaci $u_{ij}^{k_0}$ pro jistou pevnou časovou hladinu $k_0 \in \{0,1,\ldots,N_T\}$ dostaneme jako výběrovou střední hodnotu jisté náhodné veličiny $Y_{W_{ini}}$ definované následujícím způsobem ([Vir10]):

¹Záleží na tom, jakou fyzikální interpretaci parabolické evoluční úlohy zvolíme.

- 1. označíme počáteční bod náhodné procházky $W_{ini} = (i, j) \in \omega_h$, který se nachází na časové hladině k_0 ;
- 2. z bodu W_{ini} přejde náhodná procházka s pravděpodobností $\frac{1}{4}$ do libovolného sousedního bodu, který je na časové hladině $k_0 1$;
- 3. pokud je náhodná procházka stále ve vnitřním bodě sítě $\overline{\omega}_h$ (tj. není na hranici $\overline{\omega}_h \setminus \omega_h$) a není na nulové časové hladině, vrátíme se na krok 2, jinak jdeme na krok 4;
- 4. označíme-li W_{fin} bod sítě, ve kterém se nachází náhodná procházka v daném okamžiku, pak definujeme náhodnou veličinu $Y_{W_{ini}}$ takto:
 - $Y_{W_{ini}} = h(W_{fin})$, pokud $W_{fin} \in \omega_h$, ale $W_{fin} \notin \overline{\omega}_h$;
 - $Y_{W_{ini}} = g(W_{fin})$, pokud $W_{fin} \in \overline{\omega}_h \setminus \omega_h$.

Zopakujeme-li tento postup pro všechny body $(i, j) \in \omega_h$, dostaneme aproximaci² řešení diferenčního schématu (3).

Označíme-li $\hat{\mu}$ výběrovou střední hodnotu náhodné veličiny Y_W pro všechna W a \hat{s}^2 její výběrový rozptyl, potom chybu δ vypočítané aproximace nalezneme pomocí vzorce, který přímo vyplývá z Čebyševovy nerovnosti:

$$\delta = |EY_W - \hat{\mu}| = \sqrt{\frac{\hat{s}^2}{N \cdot \varepsilon}},\tag{4}$$

kde N je počet simulací v rámci metody Monte Carlo (tzn. $N \equiv$ počet náhodných procházek vycházejících z bodu W sítě ω_h) a $0 < \varepsilon < 1$ je hladina významnosti.

4 Implementace

Součástí této seminární práce je také implementace v programovacím jazyce Matlab, která se skládá ze čtyř souborů. Tři z nich obsahují definice funkcí, jež budou popsány podrobněji v následujících podsekcích. V čtvrtém souboru main.m lze nalézt pouze vyvolání řešiče parabolické parciální diferenciální rovnice, který je implementován v parabolicPDESolver.m.

4.1 Funkce parabolicPDESolver

Tato funkce odpovídá za výpočet aproximace řešení diferenčního schématu (3) podle algoritmu popsaného v sekci 3.

- Vstupní parametry:
 - numOfSim počet simulací v rámci metody Monte Carlo;
 - b číslo b > 0 určující oblast $\Gamma = (-b, b) \times (-b, b)$;
 - meshStep krok h sítě $\overline{\omega}_h$;
 - maxTime časová hladina k_0 , pro niž hledáme aproximaci řešení;
 - verbose parametr podrobného výpisu.
- Výstupní parametry:
 - solution hledaná aproximace řešení schématu (3);
 - solutionErr chyba aproximace řešení.

 $^{^{2}}$ Ve zdroji [Vir10] lze nalézt důkaz toho, že střední hodnoty Y_{W} pro všechna W řeší soustavu rovnic (3).

4.2 Funkce meshRandomWalk

Tato funkce odpovídá za simulaci náhodné procházky na síti $\overline{\omega}_h$.

- Vstupní parametry:
 - xStartPos x-ová souřadnice bodu W_{ini} ;
 - yStartPos y-ová souřadnice bodu W_{ini} ;
 - meshStep analogický význam jako v podsekci 4.1;
 - b analogický význam jako v podsekci 4.1;
 - maxTime analogický význam jako v podsekci 4.1;
- Výstupní parametry:
 - xFinPos x-ová souřadnice bodu W_{fin} ;
 - yFinPos y-ová souřadnice bodu W_{fin} .

4.3 Funkce calcStats

Tato funkce odpovídá za výpočet statistických vlastností náhodné veličiny Y_W definované v sekci 3.

- Vstupní parametry:
 - rv vektor hodnot náhodné veličiny Y_W ;
 - signLvl hladina významnosti;
 - verbose parametr podrobného výpisu.
- Výstupní parametry:
 - ex výběrová střední hodnota náhodné veličiny Y_W ;
 - dx výběrový rozptyl náhodné veličiny Y_W ;
 - err chyba aproximace.

5 Simulace a výsledky

Pro demonstraci funkčnosti algoritmu uvedeného v sekci 3 a jeho implementace popsané v sekci 4 byla provedena řada simulací. Okrajová a počáteční podmínky úlohy (1) byly zvoleny v následujícím tvaru³:

$$u|_{\partial\Gamma} = g(x) = 273; \tag{5}$$

$$u(0,x) = h(x) = 10x \cdot \exp(-x^2 - y^2) + 273.$$
 (6)

Počáteční podmínka (6) popisuje chování funkce u=u(t,x) na čtverci $\overline{\Gamma}$ v čase t=0; toto chování je znázorněno na Obr. 1 (zvolíme síť $\overline{\omega}_h$ s krokem $h=0,1)^4$. Očekávali bychom, že časem pozorovaný systém prostřednictvím šíření tepla (resp. procesu difuze) dosáhne nějaké střední teploty na celém čtverci $\overline{\Gamma}$, což můžeme pozorovat na Obr. 2, 4, 6, 8. Na zmíněných diagramech je zobrazen průběh aproximace řešení původní úlohy ve 3D a ve 2D pro časové hladiny $k_0 \in \{50, 250\}$ a různé počty simulací $N \in \{100, 1000, 10000, 100000\}$. Na Obr. 3, 5, 7, 9 lze vidět odpovídající těmto simulacím chyby spočítané pomocí vzorce (4) na hladině významnosti 5 %. Zajímavým pozorováním je to, že chyba je maximální ve středu $\overline{\Gamma}$, tj. v bodech sítě, ze kterých se náhodné procházky nejméně pravděpodobně dostanou do hranice $\partial \Gamma$.

³Kdyby byla potřeba, v implementačním souboru lze tyto podmínky snadno měnit.

 $^{^4}$ Lze volit i menší hodnoty, což ale způsobí podstatné zvýšení času potřebného na výpočet aproximace řešení na celém čtverci $\overline{\Gamma}$.

Obrázek 1: Grafické znázornění počáteční podmínky (6).

Vzhledem k tomu, že na čtverci $\overline{\Gamma}$ pro zvolenou síť bylo spočítáno řadově 10^3 chyb aproximace řešení, uvedeme v Tab. 1 pro různé počty simulací N pouze maximální chyby. Lze spekulovat o závislosti velikosti maximální chyby na zvolené časové hladině: je vidět, že pro vetší hladinu chyba je menší. Tohle může být způsobeno tím, že se systém časem stabilizuje a hodnoty skutečného řešení úlohy se přibližují k jisté střední hodnotě (v našem případě je tato hodnota rovna 273).

Počet simulací, N	Max. chyba, $k_0 = 50$	Max. chyba, $k_0 = 250$
10 ²	1.1434	0.6963
10 ³	0.3433	0.1830
104	0.1061	0.0560
10 ⁵	0.0333	0.0176

Tabulka 1: Maximální chyba aproximace řešení diskretizované parabolické evoluční úlohy pro časové hladiny $k_0 \in \{50, 250\}$.

6 Závěr

V této seminární práci bylo ukázáno, že pomocí Metody Monte Carlo lze aproximovat řešení parabolické evoluční úlohy ve 2D. Uvedený postup lze zobecnit do více dimenzí, čímž ale se o hodně zvětší časová náročnost výpočtů. Nicméně, pro aproximaci řešení v nějakém konkrétním zvoleném bodě tento postup je zcela použitelný i ve více dimenzích.

Obrázek 2: Aproximace řešení úlohy (3) na čtverci $\overline{\Gamma} = [-2,2] \times [-2,2]$, která byla dosažená při počtu simulací N=100 na různých časových hladinách.

Obrázek 3: Grafické znázornění chyby aproximace řešení úlohy (3) pro počet simulací N=100 na čtverci $\overline{\Gamma}=[-2,2]\times[-2,2]$ (5% hladina významnosti).

Obrázek 4: Aproximace řešení úlohy (3) na čtverci $\overline{\Gamma} = [-2,2] \times [-2,2]$, která byla dosažená při počtu simulací N=1000 na různých časových hladinách.

Obrázek 5: Grafické znázornění chyby aproximace řešení úlohy (3) pro počet simulací N=1000 na čtverci $\overline{\Gamma}=[-2,2]\times[-2,2]$ (5% hladina významnosti).

Obrázek 6: Aproximace řešení úlohy (3) na čtverci $\overline{\Gamma} = [-2, 2] \times [-2, 2]$, která byla dosažená při počtu simulací N = 10000 na různých časových hladinách.

Obrázek 7: Grafické znázornění chyby aproximace řešení úlohy (3) pro počet simulací N=10000 na čtverci $\overline{\Gamma}=[-2,2]\times[-2,2]$ (5% hladina významnosti).

Obrázek 8: Aproximace řešení úlohy (3) na čtverci $\overline{\Gamma} = [-2,2] \times [-2,2]$, která byla dosažená při počtu simulací N = 100000 na různých časových hladinách.

Obrázek 9: Grafické znázornění chyby aproximace řešení úlohy (3) pro počet simulací N=100000 na čtverci $\overline{\Gamma}=[-2,2]\times[-2,2]$ (5% hladina významnosti).

Reference

[Ben17] M. Beneš. Numerická matematika 2. Fakulta jaderná a fyzikálně inženýrská Českého vysokého učení technického v Praze (FJFI ČVUT), 2017.

[Vir10] M. Virius. Metoda Monte Carlo. Skripta. České vysoké učení technické, 2010.