§3. Constructing Topologies

Math 4341 (Topology)

▶ **Definition**. Let (X, \mathcal{T}) be a topological space, and let $Y \subset X$ be any subset of X. Then the collection

$$\mathcal{T}_{Y} = \{Y \cap U \mid U \in \mathcal{T}\}$$

is called the subspace topology.

▶ **Definition**. Let (X, \mathcal{T}) be a topological space, and let $Y \subset X$ be any subset of X. Then the collection

$$\mathcal{T}_{Y} = \{Y \cap U \mid U \in \mathcal{T}\}$$

is called the subspace topology.

Lemma 3.1. The collection \mathcal{T}_Y defines a topology on Y.

▶ **Definition**. Let (X, \mathcal{T}) be a topological space, and let $Y \subset X$ be any subset of X. Then the collection

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

is called the subspace topology.

- **Lemma 3.1**. The collection \mathcal{T}_Y defines a topology on Y.
- Proof. (T1) is obvious. (T2) and (T3) follow from De Morgan's Laws:

$$\bigcup_{i\in I}(Y\cap U_i)=Y\cap\bigcup_{i\in I}U_i,\qquad\bigcap_{i\in I}(Y\cap U_i)=Y\cap\bigcap_{i\in I}U_i.$$

▶ Equipping Y with the subspace topology, we will call Y a subspace of X. If a set U belongs to \mathcal{T}_Y we will often say that U is open in Y.

- ▶ Equipping Y with the subspace topology, we will call Y a subspace of X. If a set U belongs to \mathcal{T}_Y we will often say that U is open in Y.
- ▶ **Remark**. A subspace might have open sets that are not open in the full topological space. For instance, let $X = \mathbb{R}$ and $Y = [0, \infty)$. Then the half-open interval [0, 1) is open in Y since $[0, 1) = Y \cap (-1, 1)$, but [0, 1) is not open in X.

- ▶ Equipping Y with the subspace topology, we will call Y a subspace of X. If a set U belongs to \mathcal{T}_Y we will often say that U is open in Y.
- ▶ **Remark**. A subspace might have open sets that are not open in the full topological space. For instance, let $X = \mathbb{R}$ and $Y = [0, \infty)$. Then the half-open interval [0, 1) is open in Y since $[0, 1) = Y \cap (-1, 1)$, but [0, 1) is not open in X.
 - ▶ However, if $Y \subset X$ is open in X and $U \subset Y$ is open in Y, then U is open in X.

- ▶ Equipping Y with the subspace topology, we will call Y a subspace of X. If a set U belongs to \mathcal{T}_Y we will often say that U is open in Y.
- ▶ **Remark**. A subspace might have open sets that are not open in the full topological space. For instance, let $X = \mathbb{R}$ and $Y = [0, \infty)$. Then the half-open interval [0, 1) is open in Y since $[0, 1) = Y \cap (-1, 1)$, but [0, 1) is not open in X.
 - ▶ However, if $Y \subset X$ is open in X and $U \subset Y$ is open in Y, then U is open in X.
- ▶ **Example**. The subspace topology on $\mathbb{Z} \subset \mathbb{R}$ is the discrete topology on \mathbb{Z} : the set $\{n\}$ is open in \mathbb{Z} for any integer n.

- ▶ Equipping Y with the subspace topology, we will call Y a subspace of X. If a set U belongs to \mathcal{T}_Y we will often say that U is open in Y.
- ▶ **Remark**. A subspace might have open sets that are not open in the full topological space. For instance, let $X = \mathbb{R}$ and $Y = [0, \infty)$. Then the half-open interval [0, 1) is open in Y since $[0, 1) = Y \cap (-1, 1)$, but [0, 1) is not open in X.
 - ▶ However, if $Y \subset X$ is open in X and $U \subset Y$ is open in Y, then U is open in X.
- **Example**. The subspace topology on \mathbb{Z} ⊂ \mathbb{R} is the discrete topology on \mathbb{Z} : the set $\{n\}$ is open in \mathbb{Z} for any integer n.
 - ▶ On the other hand, the subspace topology on $\mathbb{Q} \subset \mathbb{R}$ is *not* the discrete topology, essentially because any non-empty open interval in \mathbb{R} contains infinitely many rational numbers.

Proposition 3.2. Let (X, \mathcal{T}) be a topological space, and let (Y, \mathcal{T}_Y) be a subspace. Then

- **Proposition 3.2**. Let (X, \mathcal{T}) be a topological space, and let (Y, \mathcal{T}_Y) be a subspace. Then
 - ▶ (i) the inclusion map $\iota: Y \to X$ given by $\iota(y) = y$ is cont.,

- **Proposition 3.2**. Let (X, \mathcal{T}) be a topological space, and let (Y, \mathcal{T}_Y) be a subspace. Then
 - ▶ (i) the inclusion map $\iota: Y \to X$ given by $\iota(y) = y$ is cont.,
 - (ii) if Z is a topological space and $f: X \to Z$ is a continuous map, then the restriction $f|_Y: Y \to Z$ is also continuous,

- **Proposition 3.2**. Let (X, \mathcal{T}) be a topological space, and let (Y, \mathcal{T}_Y) be a subspace. Then
 - ▶ (i) the inclusion map $\iota: Y \to X$ given by $\iota(y) = y$ is cont.,
 - (ii) if Z is a topological space and $f: X \to Z$ is a continuous map, then the restriction $f|_Y: Y \to Z$ is also continuous,
 - ▶ (iii) a set $F \subset Y$ is closed in Y if and only if there is a set $G \subset X$ which is closed in X so that $F = Y \cap G$.

- **Proposition 3.2**. Let (X, \mathcal{T}) be a topological space, and let (Y, \mathcal{T}_Y) be a subspace. Then
 - ▶ (i) the inclusion map $\iota: Y \to X$ given by $\iota(y) = y$ is cont.,
 - (ii) if Z is a topological space and $f: X \to Z$ is a continuous map, then the restriction $f|_Y: Y \to Z$ is also continuous,
 - (iii) a set $F \subset Y$ is closed in Y if and only if there is a set $G \subset X$ which is closed in X so that $F = Y \cap G$.
- ▶ *Proof.* (i) follows from $\iota^{-1}(U) = U \cap Y$.

- **Proposition 3.2**. Let (X, \mathcal{T}) be a topological space, and let (Y, \mathcal{T}_Y) be a subspace. Then
 - ▶ (i) the inclusion map $\iota: Y \to X$ given by $\iota(y) = y$ is cont.,
 - (ii) if Z is a topological space and $f: X \to Z$ is a continuous map, then the restriction $f|_Y: Y \to Z$ is also continuous,
 - ▶ (iii) a set $F \subset Y$ is closed in Y if and only if there is a set $G \subset X$ which is closed in X so that $F = Y \cap G$.
- ▶ *Proof.* (i) follows from $\iota^{-1}(U) = U \cap Y$.
 - (ii) follows from $f|_{Y}^{-1}(U) = f^{-1}(U) \cap Y$.

- **Proposition 3.2**. Let (X, \mathcal{T}) be a topological space, and let (Y, \mathcal{T}_Y) be a subspace. Then
 - ▶ (i) the inclusion map $\iota: Y \to X$ given by $\iota(y) = y$ is cont.,
 - (ii) if Z is a topological space and $f: X \to Z$ is a continuous map, then the restriction $f|_Y: Y \to Z$ is also continuous,
 - ▶ (iii) a set $F \subset Y$ is closed in Y if and only if there is a set $G \subset X$ which is closed in X so that $F = Y \cap G$.
- ▶ *Proof.* (i) follows from $\iota^{-1}(U) = U \cap Y$.
 - (ii) follows from $f|_{Y}^{-1}(U) = f^{-1}(U) \cap Y$.
 - ▶ (iii): Suppose $F \subset Y$ is closed in Y. Then there is an open set U in X so that $Y \setminus F = Y \cap U$. Note that

$$F = Y \setminus (Y \setminus F) = Y \setminus (Y \cap U) = Y \setminus U = Y \cap (X \setminus U).$$

Suppose $F = Y \cap G$ for some closed set $G \subset X$. Then

$$Y \setminus F = Y \setminus (Y \cap G) = Y \cap (X \setminus G),$$

which is open in Y.

▶ **Lemma 3.5**. Let X be a topological space, and let $U, V \subset X$ be two open subsets such that $X = U \cup V$. Let $f : U \to Y$ and $g : V \to Y$ be two functions so that $f|_{U \cap V} = g|_{U \cap V}$. Then f and g are continuous w.r.t. the subspace topologies on U and V if and only if the function $h : X \to Y$ given by

$$h(x) = \begin{cases} f(x) & \text{if } x \in U, \\ g(x) & \text{if } x \in V, \end{cases}$$

is continuous.

▶ **Lemma 3.5**. Let X be a topological space, and let $U, V \subset X$ be two open subsets such that $X = U \cup V$. Let $f : U \to Y$ and $g : V \to Y$ be two functions so that $f|_{U \cap V} = g|_{U \cap V}$. Then f and g are continuous w.r.t. the subspace topologies on U and V if and only if the function $h : X \to Y$ given by

$$h(x) = \begin{cases} f(x) & \text{if } x \in U, \\ g(x) & \text{if } x \in V, \end{cases}$$

is continuous.

▶ *Proof.* (\Rightarrow) follows from

$$h^{-1}(W) = \{x \in X \mid h(x) \in W\}$$

$$= \{x \in U \mid h(x) \in W\} \cup \{x \in V \mid h(x) \in W\}$$

$$= \{x \in U \mid f(x) \in W\} \cup \{x \in V \mid g(x) \in W\}$$

$$= f^{-1}(W) \cup g^{-1}(W).$$

▶ **Remark**. The exact same result would hold if we replaced "open" with "closed" everywhere in the statement of the pasting lemma.

- Remark. The exact same result would hold if we replaced "open" with "closed" everywhere in the statement of the pasting lemma.
- The result would also be true if we replaced U and V with an infinite collection of open (or closed) sets {U_i}_{i∈I} so that X = ⋃_{i∈I} U_i.

- ▶ Remark. The exact same result would hold if we replaced "open" with "closed" everywhere in the statement of the pasting lemma.
- ▶ The result would also be true if we replaced U and V with an infinite collection of open (or closed) sets $\{U_i\}_{i\in I}$ so that $X = \bigcup_{i\in I} U_i$.
- Note that if $Y \subset X$ is open (resp. closed) in X and $U \subset Y$ is open (resp. closed) in Y, then U is open (resp. closed) in X.

Definition. Let *I* be an index set. Given a set *X*, we define an *I*-tuple of elements of *X* to be a function $x : I \to X$.

- **Definition**. Let *I* be an index set. Given a set *X*, we define an *I*-tuple of elements of *X* to be a function $x: I \to X$.
 - If *i* is an element of *I*, we often denote the value of *x* at *i* by x_i ; we call it the *i*th *coordinate* of *x*.

- **Definition**. Let *I* be an index set. Given a set *X*, we define an *I*-tuple of elements of *X* to be a function $x : I \to X$.
 - If i is an element of I, we often denote the value of x at i by x_i; we call it the ith coordinate of x.
 - And we often denote the function x itself by the symbol $(x_i)_{i \in I}$.

- **Definition**. Let *I* be an index set. Given a set *X*, we define an *I*-tuple of elements of *X* to be a function $x: I \to X$.
 - ▶ If i is an element of I, we often denote the value of x at i by x_i; we call it the ith coordinate of x.
 - And we often denote the function x itself by the symbol $(x_i)_{i \in I}$.
- ▶ **Definition**. Let $\{X_i\}_{i \in I}$ be an indexed family of sets; let $X = \bigcup_{i \in I} X_i$. The *Cartesian product* of this indexed family, denoted by

$$\prod_{i\in I}X_i,$$

is defined to be the set of all *I*-tuples $(x_i)_{i \in I}$ of elements of X such that $x_i \in X_i$ for each $i \in I$.

- **Definition**. Let *I* be an index set. Given a set *X*, we define an *I*-tuple of elements of *X* to be a function $x: I \to X$.
 - ▶ If i is an element of I, we often denote the value of x at i by x_i; we call it the ith coordinate of x.
 - And we often denote the function x itself by the symbol $(x_i)_{i \in I}$.
- ▶ **Definition**. Let $\{X_i\}_{i \in I}$ be an indexed family of sets; let $X = \bigcup_{i \in I} X_i$. The *Cartesian product* of this indexed family, denoted by

$$\prod_{i\in I}X_i,$$

is defined to be the set of all *I*-tuples $(x_i)_{i \in I}$ of elements of X such that $x_i \in X_i$ for each $i \in I$.

► That is, it is the set of all functions

$$x: I \to \bigcup_{i \in I} X_i$$

such that $x(i) \in X_i$ for each $i \in I$.

▶ **Definition**. Let $\{X_i\}_{i \in I}$ be an indexed family of topological spaces. Let us take as a basis for a topology on the product space

$$\prod_{i\in I}X_i$$

the collection of all sets of the form

$$\prod_{i\in I}U_i,$$

where U_i is open in X_i , for each $i \in I$. (Exercise: check that this is indeed a basis.)

▶ **Definition**. Let $\{X_i\}_{i\in I}$ be an indexed family of topological spaces. Let us take as a basis for a topology on the product space

$$\prod_{i\in I}X_i$$

the collection of all sets of the form

$$\prod_{i\in I}U_i,$$

where U_i is open in X_i , for each $i \in I$. (Exercise: check that this is indeed a basis.)

The topology generated by this basis is called the box topology.

Definition. Let *X* be a set.

- **Definition**. Let X be a set.
 - A subbasis C for a topology on X is a collection of subsets that cover X, meaning that their union is all of X.

- **Definition**. Let X be a set.
 - A subbasis C for a topology on X is a collection of subsets that cover X, meaning that their union is all of X.
 - ▶ The topology $\mathcal{T}_{\mathcal{C}}$ generated by \mathcal{C} consists of all unions of all finite intersections of elements in \mathcal{C} .

- **Definition**. Let X be a set.
 - A subbasis C for a topology on X is a collection of subsets that cover X, meaning that their union is all of X.
 - ▶ The topology $\mathcal{T}_{\mathcal{C}}$ generated by \mathcal{C} consists of all unions of all finite intersections of elements in \mathcal{C} .
- ▶ Remark. $\mathcal{T}_{\mathcal{C}}$ is the coarsest topology containing \mathcal{C} , meaning that it has as few open sets as possible while still including the elements in \mathcal{C} as open sets.

▶ **Definition**. Let $\{X_i\}_{i \in I}$ be a family of topological spaces, and let $X = \prod_{i \in I} X_i$.

- ▶ **Definition**. Let $\{X_i\}_{i \in I}$ be a family of topological spaces, and let $X = \prod_{i \in I} X_i$.
 - For every $i \in I$, there is a natural map $\pi_i : X \to X_i$, called the projection onto X_i , which maps $\pi_i(x) = x(i)$, where we think of $x \in X$ as a map $I \to \bigcup_{i \in I} X_i$.

- ▶ **Definition**. Let $\{X_i\}_{i \in I}$ be a family of topological spaces, and let $X = \prod_{i \in I} X_i$.
 - For every $i \in I$, there is a natural map $\pi_i : X \to X_i$, called the projection onto X_i , which maps $\pi_i(x) = x(i)$, where we think of $x \in X$ as a map $I \to \bigcup_{i \in I} X_i$.
 - We define a topology on X, called the *product topology*, to be the coarsest topology such that π_i is continuous for every i.

- ▶ **Definition**. Let $\{X_i\}_{i \in I}$ be a family of topological spaces, and let $X = \prod_{i \in I} X_i$.
 - For every $i \in I$, there is a natural map $\pi_i : X \to X_i$, called the projection onto X_i , which maps $\pi_i(x) = x(i)$, where we think of $x \in X$ as a map $I \to \bigcup_{i \in I} X_i$.
 - We define a topology on X, called the *product topology*, to be the coarsest topology such that π_i is continuous for every i.
- ▶ **Remark**. The product topology on $X = \prod_{i \in I} X_i$ is generated by the subbasis \mathcal{C} which consists of all sets of the form $\pi_i^{-1}(U)$, where U is an open set in X_i .

Consider the case of a product of just two topological spaces (X_1, \mathcal{T}_{X_1}) and (X_2, \mathcal{T}_{X_2}) .

- Consider the case of a product of just two topological spaces (X_1, \mathcal{T}_{X_1}) and (X_2, \mathcal{T}_{X_2}) .
 - Let U and V be open sets in X_1 and X_2 respectively. Then $\pi_1^{-1}(U) = U \times X_2$ and $\pi_2^{-1}(V) = X_1 \times V$ are examples of open sets in $X_1 \times X_2$. Their intersection is the set $\pi_1^{-1}(U) \cap \pi_2^{-1}(V) = U \times V$, and the topology on $X_1 \times X_2$ consists of all unions of this form.

- Consider the case of a product of just two topological spaces (X_1, \mathcal{T}_{X_1}) and (X_2, \mathcal{T}_{X_2}) .
 - Let U and V be open sets in X_1 and X_2 respectively. Then $\pi_1^{-1}(U) = U \times X_2$ and $\pi_2^{-1}(V) = X_1 \times V$ are examples of open sets in $X_1 \times X_2$. Their intersection is the set $\pi_1^{-1}(U) \cap \pi_2^{-1}(V) = U \times V$, and the topology on $X_1 \times X_2$ consists of all unions of this form.
 - In symbols, if we let

$$\mathcal{B} = \{ U \times V \mid U \in \mathcal{T}_{X_1}, V \in \mathcal{T}_{X_2} \},\$$

then $\mathcal B$ is a basis for the product topology on $X_1 \times X_2$.

- Consider the case of a product of just two topological spaces (X_1, \mathcal{T}_{X_1}) and (X_2, \mathcal{T}_{X_2}) .
 - Let U and V be open sets in X_1 and X_2 respectively. Then $\pi_1^{-1}(U) = U \times X_2$ and $\pi_2^{-1}(V) = X_1 \times V$ are examples of open sets in $X_1 \times X_2$. Their intersection is the set $\pi_1^{-1}(U) \cap \pi_2^{-1}(V) = U \times V$, and the topology on $X_1 \times X_2$ consists of all unions of this form.
 - In symbols, if we let

$$\mathcal{B} = \{ U \times V \mid U \in \mathcal{T}_{X_1}, V \in \mathcal{T}_{X_2} \},\$$

then $\mathcal B$ is a basis for the product topology on $X_1 \times X_2$.

▶ Similarly, open sets in $X = \prod_{i \in I} X_i$ are unions of sets of the form $\prod_{i \in I} U_i$, where U_i is open in X_i for each $i \in I$, and $U_i = X_i$ for all but finitely many i.

▶ **Theorem 3.8**. The box topology on $\prod X_i$ has as basis all sets of the form $\prod U_i$, where U_i is open in X_i for each i. The product topology on $\prod X_i$ has as basis all sets of the form $\prod U_i$, where U_i is open in X_i for each i and U_i equals X_i except for finitely many values of i.

- ▶ **Theorem 3.8**. The box topology on $\prod X_i$ has as basis all sets of the form $\prod U_i$, where U_i is open in X_i for each i. The product topology on $\prod X_i$ has as basis all sets of the form $\prod U_i$, where U_i is open in X_i for each i and U_i equals X_i except for finitely many values of i.
- ▶ **Remark**. Two things are clear. First, for finite products $\prod_{i=1}^{n} X_i$ the two topologies are precisely the same. Second, the box topology is in general finer than the product topology.

- ▶ **Theorem 3.8**. The box topology on $\prod X_i$ has as basis all sets of the form $\prod U_i$, where U_i is open in X_i for each i. The product topology on $\prod X_i$ has as basis all sets of the form $\prod U_i$, where U_i is open in X_i for each i and U_i equals X_i except for finitely many values of i.
- ▶ **Remark**. Two things are clear. First, for finite products $\prod_{i=1}^{n} X_i$ the two topologies are precisely the same. Second, the box topology is in general finer than the product topology.
- ▶ What is not so clear is why we prefer the product topology to the box topology. We will find that a number of important theorems about finite prducts will also hold for arbitrary products if we use the product topology, but not if we use the box topology.

▶ **Theorem 3.9**. Let X be a topological space, and let $\{Y_i\}_{i \in I}$ be a family of topological spaces. A function $f: X \to \prod_{i \in I} Y_i$ consists of a family of functions $\{f_i\}_{i \in I}$ where $f_i: X \to Y_i$ for all $i \in I$. Then f is continuous iff f_i is continuous for every i.

- ▶ **Theorem 3.9**. Let X be a topological space, and let $\{Y_i\}_{i \in I}$ be a family of topological spaces. A function $f: X \to \prod_{i \in I} Y_i$ consists of a family of functions $\{f_i\}_{i \in I}$ where $f_i: X \to Y_i$ for all $i \in I$. Then f is continuous iff f_i is continuous for every i.
- Proof. There are two things to prove.

- ▶ **Theorem 3.9**. Let X be a topological space, and let $\{Y_i\}_{i \in I}$ be a family of topological spaces. A function $f: X \to \prod_{i \in I} Y_i$ consists of a family of functions $\{f_i\}_{i \in I}$ where $f_i: X \to Y_i$ for all $i \in I$. Then f is continuous iff f_i is continuous for every i.
- Proof. There are two things to prove.
 - Suppose f is continuous. Since each π_i is continuous, so is every $f_i = \pi_i \circ f$.

- ▶ **Theorem 3.9**. Let X be a topological space, and let $\{Y_i\}_{i \in I}$ be a family of topological spaces. A function $f: X \to \prod_{i \in I} Y_i$ consists of a family of functions $\{f_i\}_{i \in I}$ where $f_i: X \to Y_i$ for all $i \in I$. Then f is continuous iff f_i is continuous for every i.
- Proof. There are two things to prove.
 - Suppose f is continuous. Since each π_i is continuous, so is every $f_i = \pi_i \circ f$.
 - Suppose all the f_i are continuous. We will show that the preimages of elements of the subbasis are open. That is, let U be an open set in $\prod_{i \in I} Y_i$ of the form $U = \pi_j^{-1}(V)$ where V is open in Y_j . Then $f^{-1}(U) = f^{-1}(\pi_i^{-1}(V)) = f_i^{-1}(V)$, which is open by assumption.

Example. Consider \mathbb{R}^{ω} , the countably infinite product of \mathbb{R} with itself. That is

$$\mathbb{R}^{\omega} = \prod_{i=1}^{\infty} X_i$$

where $X_i = \mathbb{R}$ for each i. Let us define a function $f : \mathbb{R} \to \mathbb{R}^{\omega}$ by the equation

$$f(t)=(t,t,t,\cdots);$$

the *i*th coordinate function of f is the function $f_i(t) = t$.

Example. Consider \mathbb{R}^{ω} , the countably infinite product of \mathbb{R} with itself. That is

$$\mathbb{R}^{\omega} = \prod_{i=1}^{\infty} X_i$$

where $X_i = \mathbb{R}$ for each i. Let us define a function $f : \mathbb{R} \to \mathbb{R}^{\omega}$ by the equation

$$f(t)=(t,t,t,\cdots);$$

the *i*th coordinate function of f is the function $f_i(t) = t$.

Each of the coordinate functions $f_i : \mathbb{R} \to \mathbb{R}$ is continuous; therefore, the function f is continuous if \mathbb{R}^{ω} is given the product topology.

▶ But f is not continuous if \mathbb{R}^{ω} is given the box topology. Consider, for example, the basis element

$$B = (-1,1) \times (-1/2,1/2) \times (-1/3,1/3) \times \cdots$$

for the box topology. We assert that $f^{-1}(B)$ is not open in \mathbb{R} . If $f^{-1}(B)$ were open in \mathbb{R} , it would contain some interval $(-\delta, \delta)$ about the point 0. This would mean that $f((-\delta, \delta)) \subset B$. Applying π_i to both sides of the inclusion we obtain

$$f_i((-\delta,\delta)) = (-\delta,\delta) \subset (-1/i,1/i)$$

fo all i, a contradiction.

