

Lecture 15: Learning with Kernels

Prof. Dr. Mario Fritz

2022 06 13

https://fritz.cispa.saarland

Trustworthy AI

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Outline

Bibliography

Learning with kernels

Example

Regularization

Main references

- Learning with Kernels Chapter 2
- Bishop Chapter 6

Outline

Bibliography

Learning with kernels

Example

Regularization

Kernel based learning

Learning with kernels:

- As hypothesis space we use the RKHS \mathcal{H}_k associated to the kernel k,
- As regularization functional we use: $\Omega(f) = \|f\|_{\mathcal{H}_k}^2$ (or more generally a strictly monotonically increasing function of $\|f\|_{\mathcal{H}_k}$)

Regularized empirical risk minimization problem with a RKHS as hypothesis space:

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{H}_k} \frac{1}{n} \sum_{i=1}^n L(y_i, f(\mathsf{x}_i)) + \lambda \Omega\Big(\|f\|_{\mathcal{H}_k}^2 \Big),$$

Important observations

Problems

- The RKHS has often very high dimension or is even infinite dimensional. This means we
 have a very high dimensional hypothesis space.
- Thus, there is a danger of **overfitting!**

Solution:

- Regularization + the representer theorem!
- Effectively we are working in an *n*-dimensional subspace of \mathcal{H}_k !

Representer Theorem

Theorem (Representer Theorem)

Denote by $\Omega:[0,\infty)\to\mathbb{R}$ a strictly monotonically increasing function. Let \mathcal{X} be the input space, $L:\mathbb{R}\times\mathbb{R}\to\mathbb{R}_+$ an arbitrary loss function and \mathcal{H}_k the reproducing kernel Hilbert space associated to the kernel k. Then, each minimizer $f^*\in\mathcal{H}_k$ of the regularized empirical risk

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{H}_k} \frac{1}{n} \sum_{i=1}^n L(y_i, f(\mathsf{x}_i)) + \lambda \Omega\Big(\|f\|_{\mathcal{H}_k}^2 \Big),$$

admits a representation as

$$f^*(x) = \sum_{i=1}^n \alpha_i k(x_i, x)$$

Note also that $\|f^*\|_{\mathcal{H}_k}^2 = \sum_{i,j=1}^n \alpha_i \alpha_j k(x_i, x_j)$.

Proof I

- $\mathcal{G} = \operatorname{Span}\{k(\mathsf{x}_i,\cdot) \mid i=1,\ldots,n\}$ is the finite dimensional subspace of \mathcal{H}_k spanned by the data.
- Decompose any $f \in \mathcal{H}_k$ into $f^{\parallel} \in \mathcal{G}$ and the orthogonal part $f^{\perp} \in \mathcal{G}^{\perp}$. Then,

$$f(x) = f^{\parallel}(x) + f^{\perp}(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x) + f^{\perp}(x).$$

• Note that since $k(x_i, \cdot) \in \mathcal{G}$ and $f^{\perp} \in \mathcal{G}^{\perp}$ we have,

$$f^{\perp}(\mathsf{x}_i) = \langle f^{\perp}, k(\mathsf{x}_i, \cdot) \rangle_{\mathcal{U}_i} = 0,$$

for all i = 1, ..., n. Therefore,

$$f(\mathsf{x}_j) = \sum_{i=1}^n \alpha_i k(\mathsf{x}_i, \mathsf{x}_j) + f^{\perp}(\mathsf{x}_j) = \sum_{i=1}^n \alpha_i k(\mathsf{x}_i, \mathsf{x}_j).$$

Moreover,

$$\Omega\Big(\left\|f\right\|_{\mathcal{H}_{k}}^{2}\Big) = \Omega\Big(\left\|f^{\parallel}\right\|_{\mathcal{H}_{k}}^{2} + \left\|f^{\perp}\right\|_{\mathcal{H}_{k}}^{2}\Big) \geq \Omega\Big(\left\|f^{\parallel}\right\|_{\mathcal{H}_{k}}^{2}\Big)$$

Proof II

In words:

- Any function in the RKHS \mathcal{H}_k decomposes as $f(x) = f^{\parallel}(x) + f^{\perp}(x)$.
- The training emprirical risk of any function f(x) in \mathcal{H}_k depends only on $f^{\parallel}(x)$.
- The regularizatiom term $\Omega\left(\|f\|_{\mathcal{H}_k}^2\right)$ is minimized when the optimal solution $f^*(x)$ can be written in terms of only f^{\parallel} .
- Thus, the solution to the regularized emprirical risk in the RKHS can always be written as:

$$f^*(\mathsf{x}) = \sum_{i=1}^n \alpha_i k(\mathsf{x}_i, \mathsf{x}).$$

Kernelization of algorithms

When? I.e., which learning methods can be used with kernels?

• Any regularized empirical risk minimization problem of the form,

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{H}_k} \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \Omega\Big(\|f\|_{\mathcal{H}_k}^2 \Big).$$

• Any method which can be formulated only using inner products (usually inner product in \mathbb{R}^d)

How? Replace inner product with kernel, or equivalently, use the trepresenter theorem:

- Final function: $f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x)$.
- Regularizer: $\|f\|_{\mathcal{H}_k}^2 = \sum_{i,j=1}^n \alpha_i \alpha_j k(x_i, x_j)$.

Kernelization of algorithms II

• **Optimization point of view:** Transformation of any regularized empirical risk minimization problem of the form,

$$f^* = \underset{f \in \mathcal{H}_k}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^n L(y_i, f(\mathsf{x}_i)) + \lambda \Omega(\|f\|_{\mathcal{H}_k}^2)$$

$$\downarrow \downarrow$$

$$\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^n L(y_i, \sum_{j=1}^n \alpha_j k(\mathsf{x}_j, \mathsf{x}_i)) + \lambda \Omega(\sum_{i,j=1}^n \alpha_i \alpha_j k(\mathsf{x}_i, \mathsf{x}_j))$$

and
$$f^*(x) = \sum_{i=1}^n \alpha_i^* k(x_i, x)$$
.

- Geometric point of view:
 - Map data to high-dimensional feature space: $\phi: \mathcal{X} \to \mathcal{H}_k$
 - \bullet Apply linear algorithm in \mathcal{H}_k . Equivalently, replace inner product with kernel function,

$$\langle \mathsf{x}, \mathsf{x}' \rangle_{\mathbb{R}^d} \implies k(\mathsf{x}, \mathsf{x}') = \langle \Phi_{\mathsf{x}}, \Phi_{\mathsf{x}'} \rangle_{\mathcal{H}_k}.$$

General Scheme

Replace inner products with kernels:

- any linear method can be kernelized,
- often the dual formulation is more easily accessible and better suited for optimization,
- Kernel Logistic Regression, Kernel Fisher Discriminant Analysis, Kernel PCA, Kernel Perceptron, ...

Example: Regularized Least Squares/Ridge regression

$$f^* = \underset{f \in \mathcal{H}_k}{\operatorname{arg\,min}} = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2 + \lambda ||f||_{\mathcal{H}_k}^2$$

using representer theorem:

$$\alpha^* = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n (Y_i - \sum_{j=1}^n \alpha_j k(x_j, x_i))^2 + \lambda \sum_{i,j=1}^n \alpha_i \alpha_j k(x_i, x_j)$$

Kernelized regularized least squares/ridge regression in matrix/vector notation:

$$\underset{\alpha \in \mathbb{R}^n}{\arg\min} \frac{1}{n} \| \mathbf{Y} - \mathbf{K} \alpha \|^2 + \lambda \alpha^T \mathbf{K} \alpha.$$

As stationary equation we get

$$K^T K \alpha + n \lambda K \alpha = K^T Y.$$

Assuming that K is invertible we get

$$\alpha = (n\lambda \mathbb{1} + K)^{-1}Y.$$

Example: Ridge versus Kernel ridge regression

- input: unif. on $\left[-\frac{7}{2}, \frac{7}{2}\right]^2$, output: $Y = \sin(\|X\|^2) + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \frac{4}{100})$
- ullet regularization parameter λ chosen by optimizing on test set,
- MSE for ridge regression was 0.121 and for kernel ridge regression 0.109,
- basis functions: $\phi_i(x) = e^{-\|x x_i\|^2}$ and the Gaussian kernel, \Longrightarrow solutions f^* have the expansion: $f^*(x) = \sum_{i=1}^n \alpha_i e^{-\|x x_i\|^2}$,

14 / 37

Outline

Bibliography

Learning with kernels

Example

Regularization

SVM I

The soft margin SVM is formulated using **slack variables** $\xi_i \geq 0$.

$$\min_{\mathbf{w} \in \mathbb{R}^d, \ b \in \mathbb{R}, \ \boldsymbol{\xi} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{w}\|_2^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
subject to: $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i, \quad \forall i = 1, \dots, n,$

$$\xi_i \ge 0,$$

- the geometric margin is given by $\frac{2}{\|\mathbf{w}\|_2}$,
- maximizing the margin corresponds to minimizing $\|\mathbf{w}\|_2$,
- slack variables allow points to get inside the margin soft margin

SVM II

SVM = **RERM** with Hinge loss and squared regularizer:

$$\min_{\mathsf{w} \in \mathbb{R}^d, \ b \in \mathbb{R}} C \frac{1}{n} \sum_{i=1}^n \max \left(0, 1 - y_i (\langle \mathsf{w}, \mathsf{x}_i \rangle + b) \right) + \|\mathsf{w}\|_2^2,$$

 \bullet error parameter ${\cal C}$ is inverse to the regularization parameter $\lambda=\frac{1}{{\cal C}}.$

Dual problem:

$$\begin{split} \max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \left\langle \mathsf{x}_i, \mathsf{x}_j \right\rangle, \\ \text{subject to: } 0 \leq \alpha_i \leq \frac{C}{n}, \quad i = 1, \dots, n, \quad \sum_{i=1}^n y_i \alpha_i = 0. \end{split}$$

Kernalized SVM

SVM = **RERM** with Hinge loss and squared regularizer:

$$\min_{f \in \mathcal{H}_k, b \in \mathbb{R}} C \frac{1}{n} \sum_{i=1}^n \max \left(0, 1 - y_i(\langle w, \phi(x_i) \rangle + b)\right) + \|w\|_{\mathcal{H}_k}^2,$$

becomes with the representer theorem,

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n, \ b \in \mathbb{R}} C \frac{1}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \left(\sum_{j=1}^n \alpha_j k(\mathsf{x}_j, \mathsf{x}_i) + b \right) \right) + \sum_{i,j=1}^n \alpha_i \alpha_j k(\mathsf{x}_i, \mathsf{x}_j),$$

The dual problem:

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \alpha_i \alpha_i y_i y_i k(\mathsf{x}_i, \mathsf{x}_j),$$

subject to:
$$0 \le \alpha_i \le \frac{C}{n}$$
, $i = 1, ..., n$, $\sum_{i=1}^{n} y_i \alpha_i = 0$.

Example of Kernalized SVM

Left: the result of the linear SVM with error parameter C - clearly no linear hyperplane can solve this problem. **Right:** the result of the SVM with a Gaussian kernel with $\sigma^2 = \frac{1}{2}$ and C = 1. We observe that the Gaussian kernel can nicely identify the class structure. (Image by Prof. Hein)

Outline

Bibliography

Learning with kernels

Example

 ${\sf Regularization}$

Regularization

What is the purpose of regularization?

- penalize functions which are not smooth, i.e., functions where small changes in the data lead to large changes in the prediction.
- regularization functional should measure complexity of the function.

How can we measure smoothness of a function?

- Penalize the derivatives of a function e.g. $\Omega(f) = \int_{\mathbb{R}^d} \|\nabla f\|_2^2 dx$.
- How can we achieve that using a RKHS? Can we see directly from a kernel what kind of regularization functional it induces?

Regularization

Penalization of all derivatives:

The Gaussian kernel

$$k(x-y) = \exp\left(-\frac{(x-y)^2}{2\sigma^2}\right)$$

Thus we can argue (the rigorous mathematics is quite tricky (Bochner Theorem))

$$||f||_{\mathcal{H}_k}^2 = \frac{\sigma}{\sqrt{2\pi}} \int_{\mathbb{R}} \sum_{j=0}^{\infty} \frac{\sigma^{2j}}{j!2^j} \left(\frac{d^j f}{dx^j}\right)^2 dx.$$

Regularization II

Translation invariant kernels in \mathbb{R}^d

$$k(x,y)=k(x-y).$$

What does translation invariant mean?

• What? Translating all feature vectors by a constant vector $c \in \mathbb{R}^d$, $x \mapsto x + c$, does not change the kernel.

$$k(x+c,y+c) = k((x+c)-(y+c)) = k(x+c-y-c) = k(x-y) = k(x,y).$$

• When? Use them if only **relative** properties of the features are important, but not **absolute** ones.

Translation and rotation invariant kernels

A translation and rotation invariant kernel has the form

$$k(x, y) = \phi(||x - y||^2).$$

Such kernels are called radial.

What means rotational invariance?

Let R be an orthogonal matrix, that is $RR^T = R^TR = 1$, then

$$k(Rx, Ry) = \phi(\|Rx - Ry\|^2) = \phi(\langle R(x - y), R(x - y) \rangle)$$

= $\phi(\langle (x - y), R^T R(x - y) \rangle) = \phi(\langle x - y, x - y \rangle) = \phi(\|x - y\|^2)$
= $k(x, y)$.

Applying a rotation on the whole space does not change the kernel.

Translation and rotation invariant kernels II

Standard radial kernels:

Gaussian kernel:
$$k(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$$
,

Laplace kernel:
$$k(x, y) = \exp \left(-\lambda ||x - y||\right)$$
.

Kernels on structured domains

Kernels can be defined on arbitrary sets!

Not any positive definite kernel is useful!

$$k(x, y) = c, \quad c \ge 0, \quad \forall x, y \in \mathcal{X},$$
 $k(x, y) = \begin{cases} 1 & \text{if} \quad x = y \\ 0 & \text{else} \end{cases}.$

 \implies no generalization possible.

Kernels on structured domains II

How we should we construct kernels (on structured domains)?

• the kernel function k(x, y) should be a natural similarity measure. In particular, objects

for all
$$y \sim x$$
 then $k(x, y) \ge k(x, z)$ where $z \nsim x$.

- distance function d(x, y) induced by the kernel should be a natural dissimilarity measure.
- the evaluation of the kernel function should include less computations than an explicit feature mapping.

General scheme: compare objects by comparing substructures!

Kernels on sets

Application scenario:

each object is described by a set of features where the cardinality of the set can differ between objects.

Prominent examples:

- **computer vision:** extract features (image patches, gradients, histograms,...) at interesting points (variation of location and scale). Then the image is summarized by the set of extracted features.
- natural language processing: neglecting semantic information a text document simply consists of a set of words or sentences.

Kernels on sets II

Two approaches:

- directly compare two sets using a kernel defined on the components of the sets,
- count the number of occurrences of elements and compare the counts

bag-of-words representation

Kernels on sets III

Reminder: $2^{\mathcal{X}}$ is the powerset of \mathcal{X} , the set of all finite subsets of \mathcal{X} .

Proposition

Let \mathcal{X} be a set and $k': \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a positive definite kernel on \mathcal{X} , then a kernel on finite subsets of \mathcal{X} , the set kernel, $k: 2^{\mathcal{X}} \times 2^{\mathcal{X}} \to \mathbb{R}$, is given by

$$\forall A, B \in 2^{\mathcal{X}}, \qquad k(A, B) = \sum_{a \in A} \sum_{b \in B} k'(a, b).$$

Proof: Let $\Phi: \mathcal{X} \to \mathcal{H}_{k'}$ be the feature mapping associated to the kernel k'. Then using the linear mapping $\Phi_{2^{\mathcal{X}}}: 2^{\mathcal{X}} \to \mathcal{H}_{k'}$ defined as $A \to \Phi_{2^{\mathcal{X}}}(A) = \sum_{a \in A} k'(a, \cdot)$ we get

$$\begin{split} \langle \Phi_{2^{\mathcal{X}}}(A), \Phi_{2^{\mathcal{X}}}(B) \rangle_{\mathcal{H}_{k'}} &= \left\langle \sum_{a \in A} k'(a, \cdot), \sum_{b \in B} k'(b, \cdot) \right\rangle_{\mathcal{H}_{k'}} \\ &= \sum_{a \in A} \sum_{b \in B} \left\langle k'(a, \cdot), k'(b, \cdot) \right\rangle_{\mathcal{H}_{k'}} = \sum_{a \in A} \sum_{b \in B} k'(a, b) = k(A, B). \end{split}$$

Kernels on sets IV

The set kernel:

- adds up all similarities between elements of the sets.
- problems if cardinality varies very much

 sets with large number of elements will be similar to every other set

 normalization necessary,

$$\tilde{k}(A,B) := \frac{k(A,B)}{\sqrt{k(A,A)k(B,B)}} = \frac{\sum_{a \in A} \sum_{b \in B} k'(a,b)}{\sqrt{\sum_{a,a' \in A} k'(a,a') \sum_{b,b' \in B} k(b,b')}},$$

or

$$\tilde{k}(A,B) := \frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} k'(a,b),$$

- Advantage: two disjoint sets A and B $(A \cap B = \emptyset)$ can have a non-zero similarity value,
- ullet the set kernel can be used for arbitrary sets not only subsets of \mathcal{X} .

Kernels on sets V

Invariances via sets:

- classifier should be invariant under small transformations of the data (small rotations/translations in the case of handwritten digit recognition.
- add to each training object all its small transformations
 new object = old object + all transformations (set of objects)
- apply set kernel to this set.

Kernels on sets VI

A simple set kernel not taking into account any structure of \mathcal{X} :

Proposition

Let \mathcal{X} be some set. Then a kernel on finite subsets of \mathcal{X} , the intersection kernel, $k: 2^{\mathcal{X}} \times 2^{\mathcal{X}} \to \mathbb{R}$, is given by

$$\forall A, B \in 2^{\mathcal{X}}, \qquad k(A, B) = |A \cap B|.$$

Proof: One can show that $\min\{x,y\}$ is a kernel on \mathbb{R}_+ . For a finite set \mathcal{X} one has

$$|A \cap B| = \sum_{x \in \mathcal{X}} \min\{A(x), B(x)\},\,$$

where A(x) denotes the number of elements of type x in the set A. This finishes the proof since we add up valid kernels and the index set of the sum is **fixed**.

Kernels on sets VII

Taking into account both aspects ($M(\mathcal{X})$ denotes arbitrary sets consisting of elements in \mathcal{X}):

Proposition

Let X be a finite set and

- $k': \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a positive definite kernel on \mathcal{X} ,
- $\overline{k}: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ a positive definite kernel on \mathbb{R}_+ .

Then the general set kernel between arbitrary sets consisting of elements in \mathcal{X} , $k: M(\mathcal{X}) \times M(\mathcal{X}) \to \mathbb{R}$, is given by

$$k(A, B) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{X}} k'(x, y) \overline{k}(A(x), B(y)),$$

where A(x) is the number of times the element x is contained in set A.

Kernels on sets VII

Properties of the general set kernel:

- comparison of arbitrary sets (the standard form is a histogram),
- integration of a complex weighting scheme depending on the similarity of the frequency of occurrence via $\overline{k}(A(x), B(y))$,
- integration of a given similarity measure on X. This can be e.g. used to integrate semantic similarity when comparing texts.

Normalization of the kernel or normalization of the counts A(x) might be useful.

Kernels on sets: Example

Problem:

- 14 categories of images (different animals, landscapes, airplanes, mountains),
- image representation: color histogram (set of colors !) (each channel in RGB is quantized into 16 levels yielding a 4096 dimensional histogram).
- bag-of-colors representation.

Kernels on sets: Example II

- good block-diagonal structure of the kernel matrix,
- 10.4% error for a 14-class problem.