

Escuela Rafael Díaz Serdán

Matemáticas 3

JC Melchor Pinto

Última revisión del documento: 26 de abril de 2023

3° de Secundaria

Unidad 3 2022-2023

Utiliza el teorema de Pitágoras para obtener los lados de un trángulo rectángulo

Nombre del alumno: Aprendizajes: ______

Formula, justifica y usa el teorema de Pitágoras.

Fecha:

	Puntuación:											
a	1	2	3	4	5	6	7	8	9	10		

Pregunta	1	2	3	4	5	6	7	8	9	10	Total
Puntos	10	10	10	10	10	10	10	10	10	10	100
Obtenidos											

Teorema de Pitágoras

El teorema de Pitágoras es una relación en geometría euclidiana entre los tres lados de un triángulo rectángulo. Afirma que el área del cuadrado cuyo lado es la hipotenusa c (el lado opuesto al ángulo recto) es igual a la suma de las áreas de los cuadrados cuyos lados son los catetos a y b (los otros dos lados que no son la hipotenusa), como se muestra a continuación:

$$a^2 + b^2 = c^2$$

Vocabulario

 $\mathbf{Cateto} \to \mathsf{lado}$ que junto con otro forma el ángulo recto de un triángulo rectángulo.

Triángulo rectángulo → triángulo que tiene un ángulo recto.

 $\mathbf{Hipotenusa} \to \text{lado opuesto al ángulo recto en un}$ triángulo rectángulo.

La Hipotenusa

La **hipotenusa** es el lado más largo y está enfrente del ángulo recto (ver Figura 2). Los dos catetos son los lados más cortos que forman el ángulo recto:

Figura 2

Ejemplo 1

Encuentra el valor de x en el triángulo de la figura 29.

Figura 3

Solución:

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 4). Observa que a y b pueden intercambiarse, pues son catetos.

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $x^2 + 9^2 = 15^2$ Sustituye las longitudes

 $x^2 + 81 = 225$ Evalua los cuadrados conocidos

 $x^2 = 225 - 81$ Despejando x

 $x^2 = 144$ Restando

x=12 Calculando la raíz en ambos lados de la ecuación

Ejercicio 1 10 puntos

2 de 10

Encuentra el valor de x en el triángulo de la figura 5.

Figura 5

Ejercicio 2 10 puntos

Encuentra el valor de x en el triángulo de la figura 7.

Figura 7

Ejemplo 2

Encuentra el valor de x en el triángulo de la figura 9.

Figura 9

Solución:

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

= 8 donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 10). Observa que a y b pueden intercambiarse, pues son catetos.

Figura 10

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $6^2 + 8^2 = x^2$ Sustituye las longitudes

 $36 + 64 = x^2$ Evalua los cuadrados conocidos

 $100 = x^2$ Sumando

10=x Calculando la raíz en ambos lados de la ecuación

Ejercicio 4 10 puntos Encuentra el valor de x en el triángulo de la figura 13. 5 12Figura 13

Ejemplo 3

Encuentra el valor de x en el triángulo de la figura 15.

Figura 15

Solución:

Figura 16

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 16). Observa que a y b pueden intercambiarse, pues son catetos.

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $7^2 + 9^2 = x^2$ Sustituye las longitudes

 $49 + 81 = x^2$ Evalua los cuadrados conocidos

 $130 = x^2$ Sumando

 $\sqrt{130} = x$ Calculando la raíz en ambos lados de la ecuación

Ejercicio 5 10 puntos

Encuentra el valor de x en el triángulo de la figura 17.

Figura 17

Ejercicio 6 Encuentra el valor de x en el triángulo de la figura 19. 4 Figura 19

Ejemplo 4

Encuentra el valor de x en el triángulo de la figura 23.

Figura 23

Solución:

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 24). Observa que a y b pueden intercambiarse, pues son catetos.

Figura 24

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $4^2 + 1^2 = x^2$ Sustituye las longitudes

 $16 + 1 = x^2$ Evalua los cuadrados conocidos

 $17 = x^2$ Sumando

 $\sqrt{17} = x$ Calculando la raíz en ambos lados de la ecuación

Ejercicio 8 10 puntos

Encuentra el valor de x en el triángulo de la figura 25.

Figura 25

1 18414 2

Ejemplo 5

Encuentra el valor de x en el triángulo de la figura 27.

Figura 27

Solución:

Figura 28

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 28). Observa que a y b pueden intercambiarse, pues son catetos.

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $5^2 + x^2 = 6^2$ Sustituye las longitudes

 $25 + x^2 = 36$ Evalua los cuadrados conocidos

 $x^2 = 36 - 25$ Despejando x

 $x^2 = 11$ Restando

 $x = \sqrt{11}$ Calculando la raíz en ambos lados de la ecuación

Ejercicio 9 10 puntos

Encuentra el valor de x en el triángulo de la figura 29.

Figura 29

Ejemplo 6

Encuentra el valor de x en el triángulo de la figura 31.

Figura 31

Solución:

Figura 32

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 32). Observa que a y b pueden intercambiarse, pues son catetos.

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $7^2 + 4^2 = x^2$ Sustituye las longitudes

 $49 + 16 = x^2$ Evalua los cuadrados conocidos

 $65 = x^2$ Sumando

 $\sqrt{65} = x$ Calculando la raíz en ambos lados de la ecuación

Ejercicio 10 Encuentra el valor de x en el triángulo de la figura 33.