AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

In the Claims:

Claim 1 (currently amended)

1. A method for dispersing at least one pigment and optionally a filler in an aqueous pigment paste, ink or paint formulation, which comprises at least one pigment and optionally a filler, said process comprises mixing in a dispensing dispersing medium the pigment and optionally the filler with at least one organofunctional modified polysiloxane of the general formula

$$\begin{array}{c|cccc} CH_3 & CH_3 & CH_3 & CH_3 \\ R-Si-O & Si-O & Si-O & Si-R \\ CH_3 & CH_3 & R^1 & CH_3 \end{array}$$
 (I)

in which

R is in each case identical or different and is R¹ or -CH₃,

R¹ is -(CH₂)_c-O -(CH₂-CH(Ph)-O)_c -(C_nH_{2n-x}R²_x-O)_d - R³ and/or R⁴ - CH₂-CHR*-Ph; wherein e is ≥ 1 , or

R¹ is at least one -(CH₂)_c-O -(CH₂-CH(Ph)-O)_e -(C_nH_{2n-x}R²_x-O)_d - R³ and is at least one -CH₂-CHR*-Ph wherein e is 0 or \geq 1, with the proviso that if e is 0 the value of b is \geq 1;

R* is H or -CH₃,

R² is an alkyl residue having 1 to 5 carbon atoms,

Ph is a phenyl derivative having the general formula

$$-(C_6H_{5-y}R_y^4)$$
-

in which

 R^4 is a hydroxyl residue, an alkyl residue or an alkoxy residue, and y is from 0 to 5,

- R³ is hydrogen, an alkyl chain, a benzyl residue, an alkyl-substituted benzyl residue, a group COR⁵ with a residue R⁵ which has an alkyl chain, a group CONHR⁶ with a residue R⁶ which comprises a hydrogen atom or an alkyl chain, or CO₂R⁷, wherein R⁷ is alkyl chain,
- c is from 2 to 6.
- d is from 3 to 70.
- e is 0, ≥ 1, with the provise that if e is 0 the value of b is > 1 and the residue Rth is present at least once in the molecule.
- n is from 2 to 4,
- x is 0 or 1,

a is from 0 to 100,

b is from 1 to 100,

with the proviso that a + b = 1 to 100.

Claim 2 (currently amended)

 The method according to claim 1 wherein the organofunctional modified polysiloxane is a compound of the formula

$$\begin{array}{c|cccc} CH_3 & CH_3 & CH_3 & CH_3 \\ R-Si-O-Si-O-Si-O-Si-R & (I) \\ CH_4 & CH_4 & R^1 & h CH_3 \end{array}$$

in which

R is in each case identical or different and is R¹ or -CH₃,

R¹ is (CH₂), O (CH₂-CH(Ph)-O), (C₀H_{2n x}R² x O), -R³ and/or R¹ -- CH₂-CHR* Ph,

 R^1 is $-(CH_2)_c - O - (CH_2 - CH(Ph) - O)_c - (C_1H_{2n-x}R^2_{x-O})_d - R^3$ wherein e is ≥ 1 , or

is at least one -(CH₂)_c-O -(CH₂-CH(Ph)-O)₅ -(C_nH_{2n-x}R²_x-O)_d - R³ and is at least one -CH₂-CHR*-Ph wherein e is 0 or \geq 1, with the proviso that if e is 0 the value of b is \geq 1;

R* is H or -CH₃,

R² is an alkyl residue having 1 to 5 carbon atoms,

Ph is a phenyl derivative having the general formula

$$-(C_6H_{5-y}R_y^4)$$

in which

- R⁴ is a hydroxyl residue, an alkyl residue having 1 to 6 carbon atoms or an alkoxy residue having 1 to 6 carbon atoms, and
- y is from 0 to 5,
- R³ is hydrogen, an alkyl chain having 1 and up to 18 carbon atoms, a benzyl residue, an alkyl-substituted benzyl residue having up to four carbon atoms in the alkyl residue, a group COR⁵ with a residue R⁵ which has an alkyl chain having 1 to 18 carbon atoms, a group CONHR⁶ with a residue R⁶ which comprises a hydrogen atom or an alkyl chain having 1 to 18 carbon atoms, or CO₂R⁷, which has an alkyl chain R⁷ having 1 to 18 carbon atoms,
- c is from 2 to 6.
- d is from 3 to 70,
- e---- is $0, \ge 1$, with the provisó that if e is 0 the value of b is > 1 and the residue \mathbb{R}^4 is present at least once in the molecule,
- n is from 2 to 4,
- x is 0 or 1,
- a is from 0 to 100,
- b is from 1 to 100,

with the proviso that a + b = 1 to 100.

Claim 3 (previously presented)

3. The method according to claim 1, wherein R^1 in formula (I) is the residue -(CH₂)₂₋₃-O -(CH₂-CH(Ph)-O)₁₋₄ -(C₂H₄-O)₃₋₅₀-H.

Claim 4 (previously presented)

4. The method according to claim 1 where the aqueous pigment paste, ink or paint comprises a filler.

4- 00274870

Claim 5 (currently amended)

5. An aqueous pigment formulation which comprises a pigment, water and at least one organofunctional modified polysiloxane of the general formula

$$\begin{array}{c|c} CH_3 & CH_3 \\ R-Si-O + Si-O \\ CH_3 & CH_3 \\ CH_4 & CH_5 \\ \end{array} \begin{array}{c|c} CH_3 & CH_3 \\ Si-O + Si-R \\ CH_3 & CH_3 \\ \end{array} \begin{array}{c|c} CH_3 & CH_3 \\ Si-CH_3 & CH_3 \\ CH_3 & CH_3 \\ \end{array} \begin{array}{c|c} CH_3 & CH_3 \\ CH_$$

in which

R is in each case identical or different and is R¹ or -CH₃,

R⁺-- is -(CH₂)_e-O -(CH₂-CH(Ph)-O)_e-(C_bH_{2n-x}R²_x-O)_d-R²-and/or R⁴----CH₂-CHR*-Ph,

R¹ is -(CH₂)_c-O -(CH₂-CH(Ph)-O)_c -(C_nH_{2n-x}R²_x-O)_d - R³ wherein e is ≥ 1 , or

is at least one -(CH₂)_c-O -(CH₂-CH(Ph)-O)_e -(C_DH_{2n-x}R²_x-O)_d - R³ and is at least one
-CH₂-CHR*-Ph wherein e is 0 or \geq 1, with the proviso that if e is 0 the value of b is
> 1;

R* is H or -CH₃,

R² is an alkyl residue having 1 to 5 carbon atoms,

Ph is a phenyl derivative having the general formula

$$-(C_6H_{5-y}R_y^4)$$

in which

R4 is a hydroxyl residue, an alkyl residue or an alkoxy residue, and

y is from 0 to 5.

- R³ is hydrogen, an alkyl chain, a benzyl residue, an alkyl-substituted benzyl residue, a group COR⁵ with a residue R⁵ which has an alkyl chain, a group CONHR⁶ with a residue R⁶ which comprises a hydrogen atom or an alkyl chain, or CO₂R⁷, wherein R⁷ is alkyl chain,
- c is from 2 to 6.
- d is from 3 to 70,
- e—is $0, \ge 1$, with the provise that if e is 0 the value of b is > 1 and the residue R^{μ} is present at least once in the molecule.
- n is from 2 to 4,
- x is 0 or 1,

-5- 00274870

a is from 0 to 100, b is from 1 to 100, with the proviso that a + b = 1 to 100.

Claim 6 (previously presented)

The aqueous pigment formulation according to claim 5, which comprises:

about 3 to about 50 parts by weight of at least one of the compound

of the general formula (I),

0 to about 20 parts by weight

of dispersing resin,

about 5 to about 80 parts by weight of pigment,

about 0.1 to about 5 parts by weight of at least one auxiliary and/or

additive,

0 to 20 parts by weight

of solvent, and

remainder

water.

Claim 7 (previously presented)

7. The aqueous pigment formulation according to claim 6, wherein the pigment is an organic pigment.

Claim 8 (previously presented)

The aqueous pigment formulation according to claim 7, wherein the organic pigment is an 8. azo pigment, a polycyclic pigment, a diketopyrrolopyrrole or a quinophthalone.

Claim 9 (previously presented)

9. The aqueous pigment formulation according to claim 6 wherein the pigment is an inorganic pigment.

Claim 10 (currently amended)

The aqueous pigment formulation according to claim 9 wherein the inorganic pigment is an iron oxide, a spiral spinel pigment, an ultramarine pigment titanium dioxide, or carbon black.

Claim 11 (currently amended)

11. The aqueous pigment formulation according to claim 1 wherein the filler is chalk, talc, koline kaolin or silicate.

Claim 12 (currently amended)

12. The aqueous pigment formulation according to claim 1, wherein which further comprises the auxiliary and/or additive is a defoamer, biocide, antisettling agent, neutralizing agent, thickeners, humectant, stabilizing agent, siccative, light stabilizer.

Claim 13 (currently amended)

13. A coating or coating material which comprises at least one organofunctional modified polysiloxane of the general formula

$$\begin{array}{c|c}
CH_3 & CH_3 \\
R-Si-O & Si-O \\
CH_3 & CH_3
\end{array}$$

$$\begin{array}{c}
CH_3 & CH_3 \\
Si-O & Si-R \\
CH_3 & CH_3
\end{array}$$

$$\begin{array}{c}
CH_3 \\
CH_3
\end{array}$$

in which

R is in each case identical or different and is R¹ or -CH₃,

 R^{4} - is (CH₂)₆ O (CH₂-CH(Ph)-O)_c - (C_nH_{2n-n}R²_n-O)₆ - R^{3} and/or R^{4} = -CH₂-CHR*-Ph,

R¹ is $-(CH_2)_c - O - (CH_2 - CH(Ph) - O)_c - (C_0H_{2n-x}R^2_x - O)_d - R^3$ wherein e is ≥ 1 , or

is at least one -(CH₂)_G-O -(CH₂-CH(Ph)-O)_E -(C_BH_{2n-x}R²_x-O)_d - R³ and is at least one -CH₂-CHR*-Ph wherein e is 0 or \geq 1, with the proviso that if e is 0 the value of b is \geq 1;

R* is H or -CH₃,

R² is an alkyl residue having 1 to 5 carbon atoms,

Ph is a phenyl derivative having the general formula

$$-(C_6H_{5-y}R_y^4)$$

in which

R⁴ is a hydroxyl residue, an alkyl residue or an alkoxy residue, and y is from 0 to 5,

- R³ is hydrogen, an alkyl chain, a benzyl residue, an alkyl-substituted benzyl residue, a group COR⁵ with a residue R⁵ which has an alkyl chain, a group CONHR⁶ with a residue R⁶ which comprises a hydrogen atom or an alkyl chain, or CO₂R⁷, wherein R⁷ is alkyl chain,
- c is from 2 to 6,
- d is from 3 to 70,
- is 0, ≥ 1, with the provise that if e is 0 the value of b is > 1 and the residue R¹ is present at least once in the molecule.
- n is from 2 to 4,
- x is 0 or 1,

a is from 0 to 100,

bis from 1 to 100,

with the proviso that a + b = 1 to 100, and at least one filler or binder.

Claim 14 (currently amended)

14. An aqueous pigment paste, ink or paint formulation which comprises a pigment, optionally a filler, and at least one organofunctional modified polysiloxane of the general formula

$$\begin{array}{c|cccc} CH_3 & CH_3 & CH_3 & CH_3 \\ R-Si-O & Si-O & Si-O & Si-R \\ CH_3 & CH_3 & R^1 & CH_3 & CH_3 \end{array} \tag{I}$$

in which

- R is in each case identical or different and is R¹ or -CH₃,
- R^{+} is $(CH_{2})_{e}$ O $(CH_{2}$ CH(Ph) O)_e $(C_{n}H_{2n-n}R^{2}_{n}$ O)_e R^{3} and/or R^{1} CH_{2} CHR* Ph,
- R^1 is -(CH₂)_c-O -(CH₂-CH(Ph)-O)_e -(C₀H_{2n-x} R^2 _x-O)_d R^3 wherein e is ≥ 1 , or
- is at least one -(CH₂)_c-O -(CH₂-CH(Ph)-O)_e -(C_DH_{2n-x}R²_x-O)_d- R³ and is at least one -CH₂-CHR*-Ph wherein e is 0 or \geq 1, with the proviso that if e is 0 the value of b is \geq 1;
- R* is H or -CH₁.
- R² is an alkyl residue having 1 to 5 carbon atoms, preferably -CH₃,
- Ph is a phenyl derivative having the general formula

$$-(C_6H_{5-y}R_y^4)$$

in which

- R⁴ is a hydroxyl residue, an alkyl residue or an alkoxy residue, and
- y is from 0 to 5,
- is hydrogen, an alkyl chain, a benzyl residue, an alkyl-substituted benzyl residue, a group COR⁵ with a residue R⁵ which has an alkyl chain, a group CONHR⁶ with a residue R⁶ which comprises a hydrogen atom or an alkyl chain, or CO₂R⁷, wherein R⁷ is alkyl chain,
- c is from 2 to 6,
- d is from 3 to 70,
- e—is $0, \ge 1$, with the provise that if e is 0 the value of b is > 1 and the residue R^{1} is present at least once in the molecule.
- n is from 2 to 4, preferably 2 or 3,
- x is 0 or 1,

a is from 0 to 100.

b is from 1 to 100,

with the proviso that a + b = 1 to 100.