

Vector Spaces of finite dimension

Monjid Younes

French-AZerbaijani University (UFAZ)

Generated Vector Subspace (review)

Theorem

Let $\{v_1,\ldots,v_n\}$ a finite set of vectors of a Vector Space E over $\mathbb K.$ Then :

- The set of linear combinations of the vectors $\{v_1,\ldots,v_n\}$ is a Vector Subspace of E, and
- It is the smallest Vector Subspace of E (in the sense of inclusion) containing v₁,..., v_n.

This Vector Subspace is called **generated Subspace by** v_1, \ldots, v_n and is denoted Vect (v_1, \ldots, v_n) . We thus have

$$\textit{u} \in \textit{Vect}(\textit{v}_1, \ldots, \textit{v}_\textit{n}) \Longleftrightarrow \exists (\lambda_1, \ldots, \lambda_\textit{n}) \in \mathbb{K}^\textit{n}, \; \textit{u} = \lambda_1 \textit{v}_1 + \ldots + \lambda_\textit{n} \textit{v}_\textit{n}$$

Definition

The generated vector spaces by a finite number of vectors (called a **set of vectors**) are said to be **vector spaces of finite dimension**.

Reminder

Let $n \in \mathbb{N}$, $n \ge 1$ and v_1, v_2, \ldots, v_n n vectors in a Vector Space E over \mathbb{K} . Then every vector $u \in E$ of the form

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n,$$

with $\lambda_1, \lambda_2, \ldots, \lambda_n$ scalars in \mathbb{K} , is called a **linear combination** of the vectors v_1, v_2, \ldots, v_n , and the scalars $\lambda_1, \lambda_2, \ldots, \lambda_n$ are called **coefficients** of the linear combination.

Definitions

• A set of vectors $\{v_1, v_2, \dots, v_n\}$ of a vector space E over \mathbb{K} is said to be **linearly independent** if and only if

$$\boxed{\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0_E} \quad \Rightarrow \quad \boxed{\lambda_1 = 0, \ \lambda_2 = 0, \ \ldots, \ \mathsf{and} \ \lambda_n = 0}$$

- By contra-position, if $\exists i \in \{1,...,n\}$ such that $\lambda_i \neq 0$ and $\lambda_1 v_1 + ... + \lambda_i v_i + ... + \lambda_n v_n = 0_E$ then we say that the set $\{v_1, v_2, ..., v_n\}$ is **linearly dependent**.
- If a set of vectors is linearly dependent, we call dependence relation the expression of one vector as function of the others.
- In order to determine if a set of vectors $\{v_1, v_2, \dots, v_n\}$ in the vector space \mathbb{R}^n is linearly dependent or independent, we need to solve a linear system.

Examples:

1) Determine whether the set of vectors $\{v_1,v_2,v_3\}$ is linearly dependent or independent in \mathbb{R}^3 :

a)
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$,

b)
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

2) Determine whether the set of polynomials $\{P_1, P_2, P_3\}$ is linearly dependent or independent in $\mathbb{R}_2[x]$, with $P_1(x) = 2 - x$, $P_2(x) = 1 - 2x + x^2$ and $P_3(x) = 3 + 2x - x^2$.

Proposition

Let E be a vector space over \mathbb{K} , then

- a set of one vector $v \in E$ is linearly independent if $v \neq 0_E$,
- a set $\{v_1, v_2\}$ is linearly dependent if and only if v_1 is a multiple of v_2 or v_2 is a multiple of v_1 .

Theorem

Let E be a vector space over \mathbb{K} . A set $S=\{v_1,v_2,\ldots,v_n\}$ $(n\geq 2)$ is linearly dependent if and only if

$$\exists i \in \{1,\ldots,n\}, \ v_i = \sum_{j=1,i\neq j}^n \lambda_j v_j,$$

i.e., at least one vector of S is a linear combination of the others.

Interpretations:

- \bullet In $\mathbb{R}^2,$ two vectors are linearly dependent if they are colinear and form a vectorial line,
- In \mathbb{R}^3 , three vectors are linearly dependent if they are coplanar and form a vectorial plane.

Proposition

Let $S = \{v_1, v_2, \dots, v_p\}$ be a set of vectors in \mathbb{R}^n . If p > n, then the set S is linearly dependent.

Exercise:

For which values of $t \in \mathbb{R}$ the set \mathcal{S} is linearly independent?

a)
$$\mathcal{S} = \left\{ \binom{\mathtt{-1}}{t}, \binom{t^2}{-t} \right\}$$
 in \mathbb{R}^2 ?

b)
$$S = \left\{ \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}, \begin{pmatrix} t^2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ t \\ 1 \end{pmatrix} \right\}$$
 in \mathbb{R}^3 ?

Definition

Let E be a Vector Space over \mathbb{K} and v_1, v_2, \ldots, v_n vectors in E. We say that $S = \{v_1, v_2, \ldots, v_n\}$ is a **generating set** (spanning set) of the Vector Space E if $\forall v \in E, \exists \lambda_1, \ldots, \lambda_n \in \mathbb{K}, \ v = \lambda_1 v_1 + \ldots + \lambda_n v_n$

- ullet We say that the set ${\cal S}$ generates (spans) the Vector Space ${\cal E}$.
- Remark : if a set $S = \{v_1, v_2, \dots, v_p\}$ generates a Vector Space E, then we get back the previous concept of a generated Vector Space by the vectors v_1, v_2, \dots, v_p :

$$E = Vect(v_1, v_2, \dots, v_p)$$

Examples:

1) Which Vector Space generates the set S?

$$a) \ \mathcal{S} = \bigg\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \bigg\}.$$

b) $S = \{1, X, X^2, \dots, X^n\}$ the set of polynomials of degree $n \ge 1$.

$$c) \,\, \mathcal{S} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

2) Is $S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ a generating set of \mathbb{R}^2 ?

Proposition

Let $S = \{v_1, \dots, v_n\}$ a generating set of E. Then $S' = \{v'_1, \dots, v'_n\}$ is also a generating set of E if and only if every vector in S' is a linear combination of the vectors of S and vice-versa.

Exercise:

For which values of $t \in \mathbb{R}$ the set $\mathcal{S} = \left\{ \begin{pmatrix} \mathbf{0} \\ t - \mathbf{1} \end{pmatrix}, \begin{pmatrix} t \\ -t \end{pmatrix} \right\}$ is a generating set of \mathbb{R}^2 ?

Definition

Let E be a Vector Space over \mathbb{K} . A set $\mathcal{F} = \{v_1, v_2, \dots, v_n\}$ of vectors in E is said to be a **basis** of E if it is:

- a generating set of E, and
- linearly independent.

Theorem

Let $\mathcal{F} = \{v_1, v_2, \dots, v_n\}$ be a basis of a Vector Space E. Then, every vector $v \in E$ is expressed in a unique way as a linear combination of elements of \mathcal{F} . I.e.,

 $\forall v \in E, \exists \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}, v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n.$ $\Rightarrow (\lambda_1, \lambda_2, \dots, \lambda_n)$ are called the **coordinates** of the vector v in the basis \mathcal{F} .

Examples:

- Let $e_1 = \binom{1}{0}$ and $e_2 = \binom{0}{1}$. Then (e_1, e_2) is the so-called **canonical basis** of \mathbb{R}^2 .
- Let $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Then (e_1, e_2, e_3) is the so-called canonical basis of \mathbb{R}^3 .
- Let $e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, ..., $e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$. Then (e_1, e_2, \dots, e_n) is the so-called **canonical basis** of \mathbb{R}^n .
- The canonical basis of $\mathbb{R}_n[X]$ is the set $\mathcal{F} = \{1, X, X^2, \dots, X^n\}$.
- The canonical basis of $M_2(\mathbb{R})$ is the set $\mathcal{F} = \{A, B, C, D\}$ where $A = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$, $B = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$, $C = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$ and $D = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$.

Exercise:

Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}$. Show that the set $\mathcal{F} = \{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 .

Remarks:

- To show that a set of n vectors $\mathcal{F} = \{v_1, v_2, \dots, v_n\}$ is a basis of \mathbb{R}^n , we simply need to determine whether the matrix whose columns are the vectors v_1, v_2, \dots, v_n is invertible or not.
- The basis of a Vector Space is not unique.

Theorem 1: Existence of a basis

Every Vector Space with a generating set has a basis.

Theorem 2

Let E be a Vector Space over \mathbb{K} with a finite generating set.

Theorem 1 : Existence of a basis

linearly independent set.

Every Vector Space with a generating set has a basis.

Theorem 2

Let E be a Vector Space over \mathbb{K} with a finite generating set.

- Incomplete basis theorem : Every linearly independent set $\mathcal I$ in E can be completed to a basis. I.e., there exists a set of elements $\mathcal S$ in E such that $\mathcal I \cup \mathcal S$ is a generating and
- Extracted basis theorem : From every generating set $\mathcal G$ of E we can extract a basis of E. I.e., there exists a set of elements $\mathcal B\subset \mathcal G$ such that $\mathcal B$ is a generating and linearly independent set of E.

Theorem 3

Let $\mathcal G$ a finite generating set and $\mathcal I$ a linearly independent set of E. Then, there exists a set $\mathcal S\subset \mathcal G$ such that $\mathcal I\cup \mathcal S$ is a basis of E.

Exercise:

1) Let E be the Vector Subspace of the \mathbb{R} -Vector Space $\mathbb{R}[X]$ generated by the set $\mathcal{G} = \{P_1, P_2, P_3, P_4, P_5\}$ defined as :

$$P_1(X) = 1$$
, $P_2(X) = X$, $P_3(X) = X + 1$, $P_4(X) = 1 + X^3$, $P_5(X) = X - X^3$

Find a basis \mathcal{B} of E.

2) Show that the set $S = \{v_1, v_2, v_3\}$, with $v_1 = (1, 0, 2, 3)$, $v_2 = (0, 1, 2, 3)$ and $v_3 = (1, 2, 0, 3)$, can be completed to a basis.

Definition

A Vector Space E over $\mathbb K$ with a basis of finite elements is said to be of **finite** dimension.

Theorem

All the bases of a Vector Space E of finite dimension have the same number of elements.

Definition

The dimension of a Vector Space of finite dimension, denoted $\dim(E)$, corresponds to the number of elements of a basis of E.

Remarks:

- 1) In order to determine the dimension of a Vector Space of finite dimension,
 - Find a basis of E (generating and linearly independent set),
 - determine the cardinal (number of elements) of this basis.
- 2) The dimension of the Vector Space $\{0_E\}$ is 0.

Examples:

- 1) Determine the dimension of \mathbb{R}^2 , \mathbb{R}^n and $\mathbb{R}_n[X]$,
- 2) The Vector Spaces $\mathbb{R}[X]$ and $\mathcal{F}(\mathbb{R}, \mathbb{R})$ are not of finite dimension.

Exercise:

Let (S) be the following linear system :

$$\begin{cases} 2x_1 & +2x_2 & -x_3 & +x_5 & =0 \\ -x_1 & -x_2 & +2x_3 & -3x_4 & +x_5 & =0 \\ x_1 & +x_2 & -2x_3 & -x_5 & =0 \\ & & x_3 & +x_4 & +x_5 & =0 \end{cases}$$

- 1) Is the solution set of *S* a Vector Space?
- 2) Determine the solution set of S,
- 3) Determine the dimension of this Vector Space.

Proposition 1

Let E be a Vector Space, \mathcal{I} a linearly independent set and \mathcal{G} a generating set of E. Then $card(\mathcal{I}) \leq card(\mathcal{G})$.

 \rightarrow We admit this result.

Proposition 2

Let E be a Vector Space with a basis of n elements. Then,

- Every linearly independent set of E has at most n elements,
- Every generating set of *E* has at least *n* elements.

Proposition 3

If E is a Vector Space with a basis of n elements, then every basis of E is composed of n elements.

Theorem.

Let E be a Vector Space over \mathbb{K} of dimension n, and $S = (v_1, \dots, v_n)$ a set of n elements of E. Then, the following statements :

- O S is a basis of E.
- \circ S is a linearly independent set of E,
- \circ S is a generating set of E,

are equivalent. I.e.,

$$(1) \Leftrightarrow (2) \Leftrightarrow (3)$$

Exercise:

For which values of $t \in \mathbb{R}$ the set $S = (v_1, v_2, v_3)$ is a basis of \mathbb{R}^3 ?

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 3 \\ t \end{pmatrix} \text{ and } v_3 = \begin{pmatrix} 1 \\ 1 \\ t \end{pmatrix}$$

Theorem

Let E be a K-Vector Space of finite dimension. Then

- Every Vector Subspace F of E is of finite dimension,
- $dim(F) \leq dim(E)$,
- $F = E \Leftrightarrow dim(F) = dim(E)$

Example:

Find the Vector Subspaces of the \mathbb{K} -Vector Space E of dimension 2, and determine their dimensions.

Definition

Let E be a \mathbb{K} -Vector Space of dimension n. We call a **hyperplane** every Vector Subspace of E of dimension n-1.

Proposition

Let E be a \mathbb{K} -Vector Space of finite dimension and F,G Vector Subspaces of E. If $G\subset F$, then

$$F = G \Leftrightarrow \dim(F) = \dim(G)$$

Example:

Show that the following Vector Subspace of \mathbb{R}^3 :

$$F = \{(x, y, z) \in \mathbb{R}^3 | 2x - 3y + z = 0\}$$

$$G = \text{Vect}(u, v), \text{ where } u = (1, 1, 1) \text{ and } v = (2, 1, -1)$$

are equal.

Theorem

Let E be a Vector Space of finite dimension and F, G Vector Subspaces of E. Then

$$dim(F + G) = dim(F) + dim(G) - dim(F \cap G)$$

Proposition

If $E = F \oplus G$, then $\dim(E) = \dim(F) + \dim(G)$.

Proposition

Every Vector Subspace of a Vector Space E of finite dimension has a supplementary in E.

Exercise: Let $v_1 = (1, t, -1)$, $v_2 = (t, 1, 1)$ and $v_3 = (1, 1, 1)$, with $t \in \mathbb{R}$.

Consider the following Vector Subspaces of \mathbb{R}^3 :

$$F = Vect(v_1, v_2)$$
 and $G = Vect(v_3)$

Determine the dimensions of $F, G, F \cap G$ and F + G as function of t.

END

References:

- -Sophie Chemla. Université Pierre et Marie Curie.
- -Eva Bayer-Fluckiger, Philippe Chabloz and Lara Thomas. Ecole Polytechnique Fédérale de Lausanne.
- -Alain Soyeur and Emmanuel Vieillard-Baron. Cours de Mathématiques, Sup MPSI PCSI PSI TSI — Spé MP PC PSI TSI.