OPTIMIZACIÓN

Tema 4. Análisis de Sensitividad

Cambio en costos y recursos

Adición de variables

Adición de restricciones

Modificación de coeficientes tecnológicos

Aplicaciones

Análisis de sensitividad

Después de determinar una solución óptima, interesa estudiar la influencia que pueden tener algunos cambios en los elementos definidores del problema. Por ejemplo, ver si la adición de restricciones o de variables, los cambios en los costos, en los recursos o en los coeficientes tecnológicos imponen variaciones en la optimalidad previamente detectada. El estudio correspondiente se denomina Análisis de Sensitividad.

Supongamos que se ha resuelto el problema

min
$$c^t x$$

s. $a: Ax = b$
 $x \ge 0$

para el que \bar{x} es una solución óptima a la que corresponde la descomposición de A=(B,N) .

Haremos modificaciones del problema anterior que afectarán a costos, recursos, coeficientes tecnológicos, variables y/o restricciones. Aunque podrían introducirse simultáneamente, nuestro estudio se realizará contemplándolas de forma separada.

Cambios en costos

Se modifica el costo asociado a una variable x_j . Distinguiremos dos subcasos:

- i) x_j es una variable no básica y, por tanto, el único costo relativo que se modifica es el correspondiente a dicha variable.
- Calculamos entonces $\bar{c_j}' = c_j c_B{}^t B^{-1} a^j$. Si $\bar{c_j}' \geq 0$, se tiene que \bar{x} es solución óptima del problema modificado. Si $\bar{c_j}' < 0$, debemos aplicar el Método Simplex Primal.
- ii) x_j es una variable básica, lo cual hace que se modifique el vector de costos básicos. Con el nuevo vector, $c_B{}'$ se calculan todos los costos relativos asociados a las distintas variables y se aplica, si corresponde, el Método Simplex Primal.

Ejemplo. Usaremos el siguiente problema:

max
$$x_1 + 2x_2 - 5x_3$$

s. a: $x_1 - 2x_2 + x_3 = 12$
 $2x_1 + 2x_2 - x_3 = 10$
 $x_j \ge 0, j = 1, 2, 3$ (1)

Cambios en costos

cuya solución óptima se escribe en la siguiente tabla:

V. Básicas	x_1	x_2	x_3	-Z	Constantes
x_3	0	-2	1	0	14/3
x_1	1	0	0	0	22/3
-Z	0	-8	0	1	16

i) Supongamos que el beneficio por unidad asociado a la segunda variable

cambia a 11. El problema modificado es:

max
$$x_1 + 11x_2 - 5x_3$$

s. a: $x_1 - 2x_2 + x_3 = 12$
 $2x_1 + 2x_2 - x_3 = 10$
 $x_j \ge 0, j = 1,2,3$

Calculamos los nuevos costos relativos

V. Básicas	x_1	x_2	x_3	-Z	Constantes
x_3	0	-2	1	0	14/3
x_1	1	0	0	0	22/3
\ -Z	1	11	-5	1	0
√ -z	0	1	0	1	16

Por tanto, la variable x_2 debe entrar en la base. Pero como la columna de no tiene elemento positivo, el problema modificado es no acotado:

Cambios en costos

ii) Supongamos que el beneficio por unidad asociado a la primera variable cambia a 4. El problema modificado es:

max
$$4x_1 + 2x_2 - 5x_3$$

s. a: $x_1 - 2x_2 + x_3 = 12$
 $2x_1 + 2x_2 - x_3 = 10$
 $x_j \ge 0, j = 1, 2, 3$

Calculamos los nuevos costos relativos

V. Básicas	x_1	x_2	x_3	-Z	Constantes
χ_3	0	-2	1	0	14/3
x_1	1	0	0	0	22/3
\ -Z	4	2	-5	1	0
√ -z	0	-8	0	1	6

Por tanto, la solución óptima del problema modificado es la óptima del problema inicial.

Cambios en recursos

Supongamos que se sustituye b_i por b_i' para algún $i \in \{1, ..., m\}$. Esto podrá afectar, solamente, a la factibilidad primal de la base B. En caso de que, para el problema modificado, dicha base sea no factible primal, se aplicará el Método Simplex Dual.

Ejemplo. Supongamos que en el problema (1) el segundo recurso aumenta hasta 25. El nuevo problema es:

max
$$x_1 + 2x_2 - 5x_3$$

s. a: $x_1 - 2x_2 + x_3 = 12$
 $2x_1 + 2x_2 - x_3 = 25$
 $x_j \ge 0, j = 1, 2, 3$

La tabla óptima de (1) se transforma en:

V. Básicas	x_1	x_2	x_3	-Z	Constantes
χ_3	0	-2	1	0	-1/3
x_1	1	0	0	0	37/3
-Z	0	-8	0	1	-14

Dado que
$$B^{-1}b = \begin{pmatrix} 2/3 & -1/3 \\ 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} 12 \\ 25 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 37/3 \end{pmatrix}$$
 y que $-c_B^t B^{-1}b = -14$

Cambios en recursos

Es necesario aplicar el Método Simplex Dual sobre x_3 . Desde que la fila asociada a x_3 sólo contiene un valor negativo, la variable entrante es x_2 . Es decir, x_2 sustituye a x_3 en la base. La nueva tabla es:

V. Básicas	x_1	x_2	x_3	-Z	Constantes
x_2	0	1	-1/2	0	1/6
x_1	1	0	0	0	37/3
-Z	0	0	-4	1	-38/3

Esta tabla es óptima para el problema modificado.

i) De la forma

$$\sum_{j=1}^n a_{m+1j} X_j \leq b_{m+1}$$

El problema anterior se modifica obteniéndose:

min
$$c^t x$$

s. a : $Ax = b$

$$\sum_{j=1}^{n} a_{m+1j} x_j \le b_{m+1}$$

$$x \ge 0$$

Resulta obvio que si

$$\sum_{j=1}^n a_{m+1j} \overline{X}_j \leq b_{m+1}$$

entonces \bar{x} es también solución óptima del problema ampliado

En otro caso, es decir si

$$\sum_{j=1}^n a_{m+1j} \overline{X}_j > b_{m+1}$$

debemos convertir la inecuación añadida en ecuación, introduciendo la variable de holgura correspondiente :

$$\sum_{j=1}^{n} a_{m+1j} \overline{X}_{j} + X_{m+1} = b_{m+1}$$

Añadimos dicha ecuación a la tabla óptima del problema original, además de una columna asociada a la variable de holgura de la expresión anterior.

Note que una vez restituido en la tabla ampliada el carácter de las variables básicas, incluida la nueva, obtenemos un valor negativo en el vector de columnas, y por tanto procedemos con el simplex Dual.

ii) De la forma
$$\sum_{j=1}^{n} a_{m+1j} X_j \ge b_{m+1}$$

El razonamiento es similar al efectuado para el caso anterior pero con la modificación que se refiere a añadir la siguiente ecuación:

$$\sum_{j=1}^{n} a_{m+1j} \overline{X}_{j} - X_{m+1} = b_{m+1}$$

Ejemplo. i) Supongamos que al problema (1) se añade la restricción:

$$-3x_1 + 6x_3 \le 5$$

El problema modificado es:

max
$$x_1 + 2x_2 - 5x_3$$

s. a: $x_1 - 2x_2 + x_3 = 12$
 $2x_1 + 2x_2 - x_3 = 10$
 $-3x_1 + 6x_3 \le 5$
 $x_j \ge 0, j = 1, 2, 3$

La restricción añadida no es verificada por la solución óptima de (1). Por tanto, debemos actuar sobre la tabla:

V. Básicas	x_1	x_2	x_3	x_4	-Z	Constantes
x_3	0	-2	1	0	0	14/3
x_1	1	0	0	0	0	22/3
x_4	-3	0	6	1	0	5
-Z	0	-8	0	0	1	16

Restituyendo el carácter básico de las variables básicas, obtenemos

V. Básicas	x_1	x_2	x_3	x_4	-Z	Constantes
x_3	0	-2	1	0	0	14/3
x_1	1	0	0	0	0	22/3
x_4	0	12	0	1	0	-1
-Z	0	-8	0	0	1	16

Al aplicar el Método Simplex Dual, tratando de sacar de la base la variable x_4 , la correspondiente fila actualizada es no negativa: Es decir, el problema modificado es no factible.

ii) Supongamos que al problema (1) se añade la restricción : $3x_1 - 3x_3 \ge 9$ El problema modificado es:

max
$$x_1 + 2x_2 - 5x_3$$

s. a: $x_1 - 2x_2 + x_3 = 12$
 $2x_1 + 2x_2 - x_3 = 10$
 $3x_1 - 3x_3 \ge 9$
 $x_j \ge 0, j = 1, 2, 3$

La restricción añadida no es verificada por la solución óptima de (1). Si x_4 es la variable de holgura asociada a restricción añadida, la tabla correspondiente es:

V. Básicas	x_1	x_2	x_3	χ_4	- <i>Z</i>	Constantes
x_3	0	-2	1	0	0	14/3
x_1	1	0	0	0	0	22/3
x_4	3	0	-3	-1	0	9
-Z	0	-8	0	0	1	16

Restituyendo el carácter básico de las variables básicas, obtenemos

V. Básicas	x_1	x_2	x_3	x_4	- <i>Z</i>	Constantes
x_3	0	-2	1	0	0	14/3
x_1	1	0	0	0	0	22/3
x_4	0	6	0	1	0	-1
-Z	0	-8	0	0	1	16

Al aplicar el Método Simplex Dual, tratando de sacar de la base la variable x_4 , la correspondiente fila actualizada es no negativa: Es decir, el problema modificado es de nuevo no factible.

Ejercicio. Si al problema se añade la restricción $x_3 \ge 7$, el problema modificado es:

max
$$x_1 + 2x_2 - 5x_3$$

s. a: $x_1 - 2x_2 + x_3 = 12$
 $2x_1 + 2x_2 - x_3 = 10$
 $x_3 \ge 7$
 $x_j \ge 0, j = 1,2,3$

Solución:
$$x_1=22/3$$
, $x_2=7/6$, $x_3=7$, y $x_4=0$.

Se añade una ecuación en la forma $\sum_{j=1}^{n} a_{m+1j} X_j = b_{m+1}$

$$\sum_{j=1}^{n} a_{m+1j} X_{j} = b_{m+1}$$

El problema ampliado tendrá ahora la forma:

min
$$c^t x$$

s. a : $Ax = b$

$$\sum_{j=1}^{n} a_{m+1j} x_j = b_{m+1}$$

$$x \ge 0$$

Resulta obvio que si
$$\sum_{j=1}^{n} a_{m+1j} \overline{X}_{j} = b_{m+1}$$

entonces \bar{x} es también solución óptima del problema modificado. En otro caso, procedemos de la siguiente manera:

$$\operatorname{Si} \quad \sum_{j=1}^{n} a_{m+1j} \overline{X}_{j} < b_{m+1}$$

podemos hacer que se verifique la ecuación añadida si usamos una variable artificial que, si el problema modificado tiene solución, se podrá eliminar convenientemente. Por tanto, el problema ampliado se ha de transformar, en:

min
$$c^{t}x + Mx_{n+1}$$

s. $a: Ax = b$

$$\sum_{j=1}^{n} a_{m+1j}x_{j} + x_{n+1} = b_{m+1}$$

$$x \ge 0, x_{n+1} \ge 0$$

Las variables básicas iniciales serán ahora

$$\left(X_{B}^{t}, X_{n+1}\right)$$

 $\sum_{j=1}^{n} a_{m+1j} X_j + X_{n+1} = b_{m+1}$ $X \ge 0, X_{n+1} \ge 0$ Y, a continuación, aplicamos el Método de Penalización.

$$\operatorname{Si} \sum_{j=1}^{n} a_{m+1j} \overline{X}_{j} > b_{m+1}$$

Si $\sum_{j=1}^{n} a_{m+1j} \bar{X}_j > b_{m+1}$ se realizará un análisis similar pero sobre el problema:

min
$$c^{t}x + Mx_{n+1}$$

s. $a: Ax = b$

$$\sum_{j=1}^{n} a_{m+1j}x_{j} - x_{n+1} = b_{m+1}$$

$$x \ge 0, x_{n+1} \ge 0$$

Ejemplo

Si al problema (1) se añade la $\frac{3}{2}x_1 = 10$ el problema modificado es: restricción

max
$$x_1 + 2x_2 - 5x_3$$

s. a: $x_1 - 2x_2 + x_3 = 12$
 $2x_1 + 2x_2 - x_3 = 10$
 $\frac{3}{2}x_1 = 10$
 $x_j \ge 0, \ j = 1, 2, 3$

La solución óptima de (1) no verifica la nueva ecuación. Si x_4 es la variable artificial asociada a restricción añadida, debemos resolver:

max
$$x_1 + 2x_2 - 5x_3 - Mx_4$$

s. a: $x_1 - 2x_2 + x_3 = 12$
 $2x_1 + 2x_2 - x_3 = 10$
 $\frac{3}{2}x_1 - x_4 = 10$
 $x_j \ge 0, j = 1, 2, 3, 4$

V. Básicas	x_1	x_2	x_3	x_4	-Z	Constantes
x_3	0	-2	1	0	0	14/3
x_1	1	0	0	0	0	22/3
x_4	3/2	0	0	-1	0	10
-Z	1	2	-5	-M	1	0

Restituyendo el carácter básico de las variables básicas, obtenemos

V. Básicas	x_1	x_2	x_3	x_4	- <i>Z</i>	Constantes
χ_3	0	-2	1	0	0	14/3
x_1	1	0	0	0	0	22/3
x_4	0	0	0	1	0	1
-Z	0	-8	0	0	1	16+M

Por tanto, la tabla actual es óptima para el problema modificado. Como la variable artificial es básica y toma un valor positivo, el problema modificado es no factible.

Adición de una variable

Supongamos que se añade una nueva variable x_{n+1} con costo igual a c_{n+1} y vector coeficientes tecnológicos igual a a^{n+1} . Entonces, el problema ampliado será:

min
$$c^{t}x + c_{n+1}x_{n+1}$$

s. $a: Ax + a^{n+1}x_{n+1} = b$
 $x \ge 0, x_{n+1} \ge 0$

Sucederá que si $\bar{c}_{n+1} = c_{n+1} - c_B^t B^{-1} a^{n+1} \ge 0$

entonces \bar{x} es también solución óptima del problema modificado. En otro caso, debemos aplicar el Método Simplex Primal para resolver el nuevo problema.

Ejemplo

Si, al problema (1), se añade una variable cuyo beneficio por unidad es igual a 1 y sus coeficientes tecnológicos son (2,1), el problema modificado es:

max
$$x_1 + 2x_2 - 5x_3 + x_4$$

s. a: $x_1 - 2x_2 + x_3 + 2x_4 = 12$
 $2x_1 + 2x_2 - x_3 + x_4 = 10$
 $x_j \ge 0, j = 1, 2, 3, 4$

El correspondiente costo relativo es:

Adición de una variable

V. Básicas	x_1	x_2	x_3	χ_4	-Z	Constantes
x_3	1	-2	1	2	0	12
x_1	2	2	-1	1	0	10
-Z	1	2	-5	1	1	0

Restituyendo el carácter básico de las variables básicas, obtenemos

V. Básicas	x_1	x_2	x_3	x_4	-Z	Constantes
x_3	0	-2	1	1	0	14/3
x_1	1	0	0	1	0	22/3
-Z	0	-8	0	5	1	16

El costo relativo de x_4 es positivo y debe entrar en la base. La variable x_3 debe salir de la base. La nueva tabla es:

V. Básicas	x_1	x_2	x_3	x_4	-Z	Constantes
x_4	0	-2	1	1	0	14/3
x_1	1	2	-1	0	0	8/3
- <i>Z</i>	0	2	-5	0	1	22/3

Adición de una variable

Ahora, La variable x_2 debe sustituir en la base a x_1 . La nueva tabla es:

V. Básicas	x_1	x_2	x_3	χ_4	-Z	Constantes
x_4	1	0	0	1	0	22/3
x_2	1/2	1	-1/2	0	0	4/3
-Z	-1	0	-4	0	1	18/3

La tabla anterior es óptima para el nuevo problema.

El problema modificado será

min
$$c^t x$$

s. $a: A'x = b$
 $x \ge 0$

donde
$$A' = (a^1, ..., a^{j-1}, a'^j, a^{j+1}, ..., a^n)$$

es decir, igual a A salvo la columna j-ésima para algún $j \in \{1, ..., n\}$.

Distinguiremos de nuevo dos subcasos:

i) La variable x_i es no básica en la solución óptima \bar{x} .

En este caso, coincide con la adición de una nueva variable.

donde se aplica el Método Simplex Primal.

ii) La variable x_j es básica y, por tanto, la nueva situación afecta tanto a los costos relativos como al valor de la variables básicas.

En este caso se modifica el estatus de la variable x_j . Por ello, para aprovechar la situación de optimalidad asociada al problema inicial, se la hace desempeñar el papel de variable artificial que se ha de sacar de base. Además, x_{n+1} desempeñará el papel de la nueva x_j con costo igual a c_j y vector de coeficientes tecnológicos igual a a'^j .

Consideramos entonces, para resolver el problema ampliado, el problema auxiliar:

min
$$\sum_{\substack{l=1\\l\neq j}}^{n} c_{l} x_{l} + M x_{j} + c_{j} x_{n+1}$$

s. a: $A'x + a^{j} x_{n+1} = b$
 $x \ge 0, x_{n+1} \ge 0$

y aplicamos el Método de Penalización arrancando con lasolución óptima del problema original como base inicial.

Ejemplo. Si en el problema (1) los coeficientes tecnológicos de la primera variable (básica en la solución óptima) se cambian por $\binom{-2}{1}$, el nuevo problema es:

max
$$x_1 + 2x_2 - 5x_3$$

s. $a: -2x_1 - 2x_2 + x_3 = 12$
 $x_1 + 2x_2 - x_3 = 10$
 $x_j \ge 0, j = 1, 2, 3$

Planteamos entonces el problema:

max
$$-Mx_1 + 2x_2 - 5x_3 + x_4$$

s. a: $x_1 - 2x_2 + x_3 - 2x_4 = 12$
 $2x_1 + 2x_2 - x_3 + x_4 = 10$
 $x_j \ge 0, j = 1, 2, 3, 4$

e iniciamos su resolución con la tabla:

V. Básicas	x_1	x_2	x_3	x_4	-Z	Constantes
x_3	1	-2	1	-2	0	12
x_1	2	2	-1	1	0	10
-Z	-M	2	-5	1	1	0

Restituyendo el carácter básico de las variables básicas, obtenemos

V. Básicas	x_1	x_2	χ_3	x_4	- <i>Z</i>	Constantes
x_3	0	-2	1	-5/3	0	14/3
x_1	1	0	0	-1/3	0	22/3
-Z	0	-8	0	-22/3-M/3	1	22/3M+70/3

Ahora, la variable x_2 debe entrar en la base, pero como la columna asociada es negativa, el problema penalizado es no acotado. Como en la base permanece la variable artificial x_1 con valor mayor que cero, el problema modificado es no factible.