Lincoln Martins de Oliveira (ES 90693) - Mini-relatório 02 (20 de Abril de 2018)

Mini relatório referente ao exercício 1 das aulas 9 e 10

Este exercício nos apresenta o metodo Newton-Raphson (veja pags 3 a 5 de [1]) que utilizamos para realizar a implementação de um programa que através de um chute inicial do valor de x, isto é, a partir da escolha de um x_0 podemos encontrar as raizes de funções quaisquer, porem deve-se prestar bastante atenção nos valores de x_0 escolhidos pois alguns podem dar algum problema.

01) a e b-

Nesta letra assumimos o que foi proposto por [2] e fizemos um programa que se encontra na pasta ex01aeb que calcula as raizes da função $f(x) = (3+x)^2 - 12$. Tais raizes são respectivamente:

$$R_1 = 0.46410161513775433 \tag{1}$$

$$R_2 = -6.4641016151377544 \tag{2}$$

Observe que dentro do intervalo proposto por [2] não podemos assumir $x_0 = -3$, pois deste modo a derivada seria zero e consequentemente o programa daria erro.

Plotamos o gráfico da f(x) para comparar com as raizes abaixo:

Figura 1: Comportamento de f(x).

Plotamos também o gráfico 2 de n v
s x_n para vermos o que acontecia com os valores de n
e x_n a medida que o programa rodava:

Figura 2: n vs x_n .

01) c-

Usando os valores proposto pelo item c de [2] e a função $g(x) = [1 + (1+x^2)sen(x/5)]/(1+x^2)$ dentro do intervalo proposto em [2], foi feito um programa parecido com o do item a, para encontrar as raizes de g(x). Este programa se encontra na pasta ex01c, e os valores das raizes obtidas estão na tabela 1 abaixo com seu respectivo intervalo de x_0 .

Intervalo	Raiz
$-30 < x_0 < -23$	-31.390086063181769
$-22 < x_0 < -16$	-15.691588937456128
$-6 < x_0 < -1$	-1.5258651659857210
$9 < x_0 < 15$	15.724208335212186
$33 < x_0 < 40$	31.441920337777852

Tabela 1: Raizes de x_0 para o intervalo determinado.

Observe que os intervalos determinados na tabela 1 foram determinados observando o gráfico 3 e vendo onde cada raiz estava aproximadamente.

Figura 3: Gráfico referente ao comportamento de g(x).

01) d-

No item d fizemos um programa considerando a mesma função do item c, e computamos o número de passos n necessários para que a solução convirja assumindo valores iniciais $x_0 = -2$, $x_0 = -3$ e $x_0 = -4$. O programa referente a este item esta na pasta ex01d.

Os três Gráficos de n
 vs x_n estão abaixo e mostram o número de vezes que o programa teve
 que rodar ate encontrar um valor satisfatório para a raiz:

Figura 4: Gráfico representa o número de vezes que o programa rodou ate encontrar a raiz, para $x_0 = -2$.

Figura 5: Gráfico representa o número de vezes que o programa rodou ate encontrar a raiz, para $x_0 = -3$.

Figura 6: Gráfico representa o número de vezes que o programa rodou ate encontrar a raiz, para $x_0 = -4$.

Bibliografia

- $[1]\,$ C. Scherer. Metodos Computacionais da Física (2nd ed.,2010)
- $[2]\;$ AULAS 9 E 10: FIS-271 Física Computacional I