Proseminar Diskrete Mathematik

1 Der Nullstellensatz in der Diskreten Mathematik

Institut für Mathematik Alpen-Adria Universität Klagenfurt

SS 2016

Inhalt

- 1 Der Nullstellensatz in der Diskreten Mathematik
 - Einleitung
 - Hilberts Nullstellensatz

Einleitung I

Definition 1.1

Die k-Färbung eines Graphen ist eine Abbildung $f: V(G) \to S$ mit $xy \in E(G): f(x) \neq f(y)$, wobei S Menge der Farben und |S| = k.

Abbildung 1.1: 3-Färbung

Einleitung II

Sei G = (V, E) ein Graph

$$\begin{aligned} & x_i^k - 1 = 0 \quad \forall i \in V, \\ & \sum_{s=0}^{k-1} x_i^{k-1-s} x_j^s = 0 \quad \forall (i,j) \in E. \end{aligned}$$

Theorem 1.1

Graph G ist k-färbbar ⇔ System besitzt eine komplexe Lösung

Theorem 1.2

G ist k-färbbar und k ungerade \Leftrightarrow System besitzt gemeinsame Nullstelle über $\overline{\mathbb{F}_2}$, wobei $\overline{\mathbb{F}_2}$ algebraische Abschluss über dem endlichen Körper mit zwei Flementen

Einleitung III

Beweis.

Angenommen die Aussage ist wahr über den komplexen Zahlen \mathbb{C} . " \Rightarrow " Sei G k-färbbar, ordne jeder Farbe die k-te Einheitswurzel zu. Sei die j-te Farbe $\beta_j=e^{2\Pi j/k}$; substituiere alle x_l mit der zugehörigen Einheitswurzel der Farbe des l-ten Knotens. Also haben wir eine Lösung des Systems: Die Gleichungen $x_i^k-1=0$ sind trivialerweise erfüllt. Wir betrachten nun die Kantengleichungen: Wir nehmen eine Kante ij, da x_i und x_j durch Einheitswurzeln substituiert wurden, gilt $x_i^k-x_j^k=0$. Des Weiteren gilt:

$$x_i^k - x_j^k = (x_i - x_j)(x_i^{k-1} + x_i^{k-2}x_j + x_i^{k-3}x_j^2 + \ldots + x_j^{k-1}) = 0;$$

Durch die Substitution mit unterschiedlichen Einheitswurzeln gilt $x_i - x_j \neq 0$, also muss der andere Faktor, der den Kantengleichungen entspricht, 0 sein.

Einleitung IV

Beweis.

" \Leftarrow " Angenommen die Gleichungen seien erfüllt, d.h. der Lösungspunkt muss aus k-ten Einheitswurzeln bestehen. Den benachbarten Knoten müssen verschiedene Einheitswurzeln zugeordnet werden, da: Angenommen einem Paar benachbarter Knoten ij wird die selbe Einheitswurzel zugewiesen. Die Gleichung $x_i^{k-1} + x_i^{k-2}x_j + x_i^{k-3}x_j^2 + \ldots + x_j^{k-1} = 0$ wird dann zu $\beta^{k-1} + \beta^{k-1} + \ldots + \beta^{k-1} = k\beta^{k-1} = 0$, jedoch $\beta \neq 0$

Hilberts Nullstellensatz I

Problemdarstellung

Gegeben: $f_1, \ldots, f_m \in \mathbb{K}[x_1, \ldots, x_n]$

Gesucht: Lösung x für das System $f_1(x) = 0$, $f_2(x) = 0$, ... $f_m(x) = 0$ (wird auch geschrieben als F(x) = 0)

Ziel ist es eine Lösung zu diesem System zu finden beziehungsweise zu zeigen, dass es keine Lösung gibt.

Theorem 1.2 (Fredholm's Alternativtheorem)

Das Lineare Gleichungssystem Ax = b besitzt genau dann eine Lösung, wenn ein Vektor y mit der Eigenschaft $y^TA = 0^T$ und $y^Tb \neq 0^T$ existiert.

Hilberts Nullstellensatz II

Theorem 1.3 (Hilbert's Nullstellensatz)

Sei $F = \{f_1, \ldots, f_m\} \subseteq \mathbb{K}[x_1, \ldots, x_n]$. Die Varietät $\{x \in \overline{\mathbb{K}^n} : f_1(x) = 0, \ldots, f_s(x) = 0\}$ ist genau dann leer, wenn 1 zum Ideal $\langle F \rangle$, das aus F generiert wurde, gehört. Man beachte $1 \in \langle F \rangle$ bedeutet, dass Polynome β_1, \ldots, β_m im Ring $\mathbb{K}[x_1, \ldots, x_n]$ existieren, sodass $1 = \sum_{i=1}^m \beta_i f_i$. Diese polynomielle Identität ist ein Zertifikat für die Unlösbarkeit von F(x) = 0.

Literatur

- [Die06] R. Diestel. *Graphentheorie*.

 Springer, 2006.
- [KM13] C. Karpfinger and K. Meyberg.
 Algebra. Gruppen Ringe Körper.
 Springer, 2013.
- [LLHK13] J. a. Loera, J. Lee, R. Hemmecke, and M. Köppe. Algebraic and Geometric Ideas in the Theory of Discrete Optimization. Society for Industriell and Applied Mathematics, 2013.
- [LLMM11] J. a. Loera, J. Lee, P. N. Malkin, and S. Margulies. Computing infeasibility certificates for combinatorial problems through hilbert's nullstellensatz. *Journal of Symbolic Computation*, 2011.

[LLMO09] J. a. Loera, J. Lee, S. Margulies, and S. Onn: () > () > ()