Project Design Phase Solution Architecture

Date	28 june 2025
Team ID	LTVIP2025TMID60119
Project Name	Hematovision
Maximum Marks	4 Marks

Solution Architecture:

The HematoVision system is designed using a modular architecture that combines AI model deployment, web-based interfacing, and image preprocessing for efficient blood cell classification.

- 1. User Interface (Frontend)
 - Built with: HTML, CSS, Bootstrap (via Flask templates)
 - Function: Users upload microscope images for classification via a simple web page
- 2. Backend Server (Flask Framework)
 - Handles:
 - Image upload
 - Preprocessing (resizing, normalization)
 - Model loading and prediction
 - Display of results (cell type + confidence score)
- 3. Deep Learning Model (Al Component)
 - Model Type: EfficientNet (or ResNet), fine-tuned via Transfer Learning
 - Input: 224x224 blood smear image
 - Output: Predicted cell type and confidence (e.g., RBC, WBC, Platelet)
- 4. Data Handling
 - Training Data: Preprocessed microscope images of blood cells
 - Live Prediction: Accepts images uploaded by users
 - Model Storage: Trained .h5 model file loaded into Flask app at runtime
- 5. Hosting & Deployment
 - Local: Flask server run on local machine for testing
 - Cloud-ready: Can be deployed to Render, Hugging Face Spaces, or PythonAnywhere
 - Future Scope: Convert to mobile-compatible model via TensorFlow Lite for on-device use

6. Output Display

- Predicted class (e.g., Neutrophil)
- Confidence score (e.g., 94.2%)
- Option to view original image alongside result

Solution Architecture Diagram:

