1 先锋顶隧道出口

该段隧道定位在 YK9+900 断面, SLZK4 钻孔。岩层主要为粉质黏土、风化 千枚状砂岩。

(1) 初始模型

图 1 初始模型

图 2 测量点布置

根据工程地质横断面图在 CAD 中等比例绘制隧道断面图,根据断面图等比例生成的先锋顶隧道出口段离散元模型如图 1 所示, 地层从上到下主要为粉质黏土、全风化千枚状砂岩、强风化千枚状砂岩、中风化千枚状砂岩。图 2 给出了相关量测点位置信息, 测量点顺序按照顺时针标记, 从 1~8 依次排布, 后文中的测量点排布顺序大多与此相同。

(2)力链分布及调整

从图 3 可以看出,在上覆岩层风化程度较高的情况下力链分布呈现出明显差异,风化程度较高的上覆岩层力链值较小,且主要呈竖向排列,这意味着上方的应力为自重为主,水平应力的值较小。如图 4 所示,开挖以后隧道周围应力重分布,力链调整过程十分显著。

图 3 初始力链

图 4 力链调整

(3) 开挖过程应力调整及位移场

表 1 初始地应力

量测点	水平应力/MPa	垂直应力/MPa
1	0.55	0.58
2	0.38	0.58
3	0.1	0.44
4	1.36	0.86
5	0.55	0.61
6	0.78	0.83
7	0.064	0.47
8	1.33	0.88

开挖过后应力调整不同于先锋顶入口段,由于该段隧道围岩已经较破碎,节理裂隙发育,应力调整以卸载为主,隧道附近围岩的位移场数值达到了 0.1m 级别,有明显的裂纹扩展和大变形。

图 5 左侧隧道应力分布

图 6 右侧隧道应力分布

图 7 位移