Place Zoom Headshot Here

Brian Plancher¹, Sabrina M. Neuman¹, Thomas Bourgeat², Scott Kuindersma^{1,3}, Srini Devadas², Vijay Janapa Reddi¹

1: Harvard University John A. Paulson School of Engineering and Applied Sciences,

2: MIT Computer Science and Artificial Intelligence Laboratory, 3: Boston Dynamics

Place Zoom Headshot Here

Refactoring and partitioning the gradient of rigid body dynamics to expose different hardware-compatible features for GPUs and FPGAs provides as much as a 3.0x end-to-end speedup

Place Zoom Headshot Here

Refactoring and partitioning the gradient of rigid body dynamics to expose different hardware-compatible features for GPUs and FPGAs provides as much as a 3.0x end-to-end speedup

Hardware-Software
Co-Design for
Parallelism

Place Zoom Headshot Here

1. Motivation

- 2. CPUs, GPUs, and FPGAs
- 3. The Gradient of Rigid Body Dynamics
- 4. Accelerated Design
- 5. Results

Rigid Body Dynamics Gradients are a bottleneck for planning and control (e.g., nonlinear MPC)

[2] M. Neunert, et al., "Fast nonlinear Model Predictive Control for unified trajectory optimization and tracking," ICRA 2016

[1] J. Carpentier and N. Mansrud, "Analytical Derivatives of Rigid Body Dynamics Algorithms," RSS 2018

[3] Best end-to-end [C]PU and [G]PU option from B. Plancher and S. Kuindersma, "A Performance Analysis of Parallel Differential Dynamic Programming," WAFR 2018

Rigid Body Dynamics Gradients are a bottleneck for planning and control (e.g., nonlinear MPC)

Place Zoom Headshot Here

- Frequency scaling is ending (CPUs aren't getting faster)
- Massive parallelism on GPUs and FPGAs may be a solution for hardware acceleration

[Shao and Brooks "Synthesis Lectures on Computer Architecture" 2015]

Place Zoom Headshot Here

1. Motivation

2. CPUs, GPUs, and FPGAs

- 3. The Gradient of Rigid Body Dynamics
- 4. Accelerated Design
- 5. Results

Place Zoom Headshot Here

[NVIDIA]

Place Zoom Headshot Here

[NVIDIA]

Place Zoom Headshot Here

Hardware-Software Co-Design

High performance code needs to be **refactored** to take advantage of **different hardware** computational strengths and weaknesses

- 1. Motivation
- 2. CPUs, GPUs, and FPGAs
- 3. The Gradient of Rigid Body Dynamics
- 4. Accelerated Design
- 5. Results

Place Zoom Headshot Here

Algorithm 3 $\nabla \text{Dynamics}(q, \dot{q}, \ddot{q}, f^{ext}) \rightarrow \partial \ddot{q}/\partial u$

1: $v', a', f', X, S, I \leftarrow \text{RNEA}(q, \dot{q}, \ddot{q}, f_{ext})$

2:
$$\partial c'/\partial u = \nabla RNEA(\dot{q}, v', a', f', X, S, I)$$

3: $\partial \ddot{q}/\partial u = -M^{-1}\partial c'/\partial u$

Place Zoom **Headshot Here**

Algorithm 2 $\nabla RNEA(\dot{q}, v, a, f, X, S, I) \rightarrow \partial c/\partial u$

1: **for** link i = 1 : N **do**

2:
$$\frac{\partial v_i}{\partial u} = {}^{i}X_{\lambda_i} \frac{\partial v_{\lambda_i}}{\partial u} + \begin{cases} ({}^{i}X_{\lambda_i}v_{\lambda_i}) \times S_i & u \equiv q \\ S_i & u \equiv \dot{q} \end{cases}$$

3:
$$\frac{\partial a_{i}}{\partial u} = {}^{i}X_{\lambda_{i}} \frac{\partial a_{\lambda_{i}}}{\partial u} + \frac{\partial v_{\lambda_{i}}}{\partial u} \times S_{i} \dot{q}_{i} + \begin{cases} ({}^{i}X_{\lambda_{i}} a_{\lambda_{i}}) \times S_{i} \\ v_{i} \times S_{i} \end{cases}$$
4:
$$\frac{\partial f_{i}}{\partial u} = I_{i} \frac{\partial a_{i}}{\partial u} + \frac{\partial v_{i}}{\partial u} \times^{*} I_{i} v_{i} + v_{i} \times^{*} I_{i} \frac{\partial v_{i}}{\partial u}$$

4:
$$\frac{\partial f_i}{\partial u} = I_i \frac{\partial a_i}{\partial u} + \frac{\partial v_i}{\partial u} \times^* I_i v_i + v_i \times^* I_i \frac{\partial v_i}{\partial u}$$

5: **for** link i = N : 1 **do**

6:
$$\frac{\partial c_i}{\partial u} = S_i^T \frac{\partial f_i}{\partial u}$$

7:
$$\frac{\partial f_{\lambda_i}}{\partial u} + = {}^{i}X_{\lambda_i}^T \frac{\partial f_i}{\partial u} + {}^{i}X_{\lambda_i}^T \left(S_i \times^* f_i\right)$$

Algorithmic Features

Place Zoom **Headshot Here**

Algorithm 2 $\nabla RNEA(\dot{q}, v, a, f, X, S, I) \rightarrow \partial c/\partial u$

1: **for** link i = 1 : N **do**

2:
$$\frac{\partial v_i}{\partial u} = i X_{\lambda_i} \frac{\partial v_{\lambda_i}}{\partial u} + \begin{cases} (i X_{\lambda_i} v_{\lambda_i}) \times S_i & u \equiv q \\ S_i & u \equiv \dot{q} \end{cases}$$

1: **for** link
$$i = 1 : N$$
 do

2:
$$\frac{\partial v_{i}}{\partial u} = {}^{i}X_{\lambda_{i}}\frac{\partial v_{\lambda_{i}}}{\partial u} + \begin{cases} ({}^{i}X_{\lambda_{i}}v_{\lambda_{i}}) \times S_{i} & u \equiv q \\ S_{i} & u \equiv \dot{q} \end{cases}$$

3:
$$\frac{\partial a_{i}}{\partial u} = {}^{i}X_{\lambda_{i}}\frac{\partial a_{\lambda_{i}}}{\partial u} + \frac{\partial v_{\lambda_{i}}}{\partial u} \times S_{i}\dot{q}_{i} + \begin{cases} ({}^{i}X_{\lambda_{i}}a_{\lambda_{i}}) \times S_{i} \\ v_{i} \times S_{i} \end{cases}$$

4:
$$\frac{\partial f_{i}}{\partial u} = I_{i}\frac{\partial a_{i}}{\partial u} + \frac{\partial v_{i}}{\partial u} \times I_{i}v_{i} + v_{i} \times I_{i}\frac{\partial v_{i}}{\partial u}$$

Fine-Grained Parallelism

4:
$$\frac{\partial f_i}{\partial u} = I_i \frac{\partial a_i}{\partial u} + \frac{\partial v_i}{\partial u} \times^* I_i v_i + v_i \times^* I_i \frac{\partial v_i}{\partial u}$$

5: **for** link i = N : 1 **do**

6:
$$\frac{\partial c_i}{\partial u} = S_i^T \frac{\partial f_i}{\partial u}$$

7:
$$\frac{\partial u}{\partial f_{\lambda_i}} - \sum_{i} \frac{\partial u}{\partial u}$$

$$+ = {}^{i}X_{\lambda_i}^T \frac{\partial f_i}{\partial u} + {}^{i}X_{\lambda_i}^T \left(S_i \times^* f_i \right)$$

Algorithmic Features

Small Working Set Size

Place Zoom **Headshot Here**

Algorithm 2 $\nabla \text{RNEA}(\dot{q}, v, a, f, X, S, I) \rightarrow \partial c/\partial u$

1: **for** link
$$i = 1 : N$$
 do

1: **for** link
$$i = 1 : N$$
 do
2:
$$\frac{\partial v_i}{\partial u} = {}^{i}X_{\lambda_i} \frac{\partial v_{\lambda_i}}{\partial u} + \begin{cases} ({}^{i}X_{\lambda_i}v_{\lambda_i}) \times S_i & u \equiv q \\ S_i & u \equiv \dot{q} \end{cases}$$
Fine-Grained Parallelism
3:
$$\frac{\partial a_i}{\partial u} = {}^{i}X_{\lambda_i} \frac{\partial a_{\lambda_i}}{\partial u} + \frac{\partial v_{\lambda_i}}{\partial u} \times S_i \dot{q}_i + \begin{cases} ({}^{i}X_{\lambda_i}a_{\lambda_i}) \times S_i \\ v_i \times S_i \end{cases}$$
Structured Sparsity
4:
$$\frac{\partial f_i}{\partial u} = I_i \frac{\partial a_i}{\partial u} + \frac{\partial v_i}{\partial u} \times I_i v_i + v_i \times I_i \frac{\partial v_i}{\partial u}$$

3:
$$\frac{\partial a_i}{\partial u} = {}^{i}X_{\lambda_i} \frac{\partial a_{\lambda_i}}{\partial u} + \frac{\partial v_{\lambda_i}}{\partial u} \times S_i \dot{q}_i + \begin{cases} ({}^{i}X_{\lambda_i} a_{\lambda_i}) \times S_i \\ v_i \times S_i \end{cases}$$

4:
$$\frac{\partial f_i}{\partial u} = I_i \frac{\partial a_i}{\partial u} + \frac{\partial v_i}{\partial u} \times^* I_i v_i + v_i \times^* I_i \frac{\partial v_i}{\partial u}$$

5: **for** link i = N : 1 **do**

6:
$$\frac{\partial c_i}{\partial u} = S_i^T \frac{\partial f_i}{\partial u}$$

7:
$$\frac{\partial u}{\partial f_{\lambda_i}} - S_i \frac{\partial u}{\partial u}$$

$$+ = {}^{i}X_{\lambda_i}^T \frac{\partial f_i}{\partial u} + {}^{i}X_{\lambda_i}^T \left(S_i \times^* f_i\right)$$

Algorithmic Features

Small Working Set Size

Place Zoom **Headshot Here**

Algorithm 2 $\nabla RNEA(\dot{q}, v, a, f, X, S, I) \rightarrow \partial c/\partial u$

1: **for** link
$$i = 1 : N$$
 do

2:
$$\frac{\partial v_{i}}{\partial u} = {}^{i}X_{\lambda_{i}} \frac{\partial v_{\lambda_{i}}}{\partial u} + \begin{cases} ({}^{i}X_{\lambda_{i}}v_{\lambda_{i}}) \times S_{i} & u \equiv q \\ S_{i} & u \equiv \dot{q} \end{cases}$$
3:
$$\frac{\partial a_{i}}{\partial u} = {}^{i}X_{\lambda_{i}} \frac{\partial a_{\lambda_{i}}}{\partial u} + \frac{\partial v_{\lambda_{i}}}{\partial u} \times S_{i}\dot{q}_{i} + \begin{cases} ({}^{i}X_{\lambda_{i}}a_{\lambda_{i}}) \times S_{i} \\ v_{i} \times S_{i} \end{cases}$$
Structured Sparsity
4:
$$\frac{\partial f_{i}}{\partial u} = I_{i} \frac{\partial a_{i}}{\partial u} + \frac{\partial v_{i}}{\partial u} \times I_{i}v_{i} + v_{i} \times I_{i}\frac{\partial v_{i}}{\partial u}$$
Irregular Data Patte

3:
$$\frac{\partial a_i}{\partial u} = {}^{i}X_{\lambda_i} \frac{\partial a_{\lambda_i}}{\partial u} + \frac{\partial v_{\lambda_i}}{\partial u} \times S_i \dot{q}_i + \begin{cases} ({}^{i}X_{\lambda_i} a_{\lambda_i}) \times S_i \\ v_i \times S_i \end{cases}$$

4:
$$\frac{\partial f_i}{\partial u} = I_i \frac{\partial a_i}{\partial u} + \frac{\partial v_i}{\partial u} \times^* I_i v_i + v_i \times^* I_i \frac{\partial v_i}{\partial u}$$

5: **for** link i = N : 1 **do**

6:
$$\frac{\partial c_i}{\partial u} = S_i^T \frac{\partial f_i}{\partial u}$$

7:
$$\frac{\partial^{u}}{\partial f_{\lambda_{i}}} + = {}^{i}X_{\lambda_{i}}^{T} \frac{\partial f_{i}}{\partial u} + {}^{i}X_{\lambda_{i}}^{T} \left(S_{i} \times^{*} f_{i}\right)$$

Algorithmic Features

Fine-Grained Parallelism

Irregular Data Patterns

Sequential Dependencies

Small Working Set Size

The Gradient of Rigid Body Dynamics as a step of an MPC algorithm

- 1. Motivation
- 2. CPUs, GPUs, and FPGAs
- 3. The Gradient of Rigid Body Dynamics
- 4. Accelerated Design
- 5. Results

The Gradient of Rigid Body Dynamics as a step of an MPC algorithm

Algorithmic Features	CPU	
Coarse-Grained Parallelism	moderate	
Fine-Grained Parallelism	poor	
Structured Sparsity	good	
Irregular Data Patterns	moderate	
Sequential Dependencies	good	
Small Working Set Size	good	
I/O Overhead	excellent	

The Gradient of Rigid Body Dynamics as a step of an MPC algorithm

Algorithmic Features	CPU	GPU
Coarse-Grained Parallelism	moderate	excellent
Fine-Grained Parallelism	poor	moderate
Structured Sparsity	good	moderate
Irregular Data Patterns	moderate	poor
Sequential Dependencies	good	poor
Small Working Set Size	good	moderate
I/O Overhead	excellent	poor

Algorithmic Refactoring is needed to effective target GPUs and FPGAs

Place Zoom **Headshot Here**

Algorithm 2 $\nabla RNEA(\dot{q}, v, a, f, X, S, I) \rightarrow \partial c/\partial u$

1: **for** link
$$i = 1 : N$$
 do

$$\frac{\partial v_i}{\partial u} = {}^{i}X_{\lambda_i} \frac{\partial v_{\lambda_i}}{\partial u} + \begin{cases} ({}^{i}X_{\lambda_i}v_{\lambda_i}) \times S_i & u \equiv q \\ S_i & u \equiv \dot{q} \end{cases}$$

3:
$$\frac{\partial a_i}{\partial u} = {}^{i}X_{\lambda_i} \frac{\partial a_{\lambda_i}}{\partial u} + \frac{\partial v_{\lambda_i}}{\partial u} \times S_i \dot{q}_i + \begin{cases} ({}^{i}X_{\lambda_i} a_{\lambda_i}) \times S_i \\ v_i \times S_i \end{cases}$$

4:
$$\frac{\partial f_i}{\partial u} = I_i \frac{\partial a_i}{\partial u} + \frac{\partial v_i}{\partial u} \times^* I_i v_i + v_i \times^* I_i \frac{\partial v_i}{\partial u}$$

5: **for** link
$$i = N : 1$$
 do

6:
$$\frac{\partial c_i}{\partial u} = S_i^T \frac{\partial f_i}{\partial u}$$

6:
$$\frac{\partial c_i}{\partial u} = S_i^T \frac{\partial f_i}{\partial u}$$
7:
$$\frac{\partial f_{\lambda_i}}{\partial u} += {}^i X_{\lambda_i}^T \frac{\partial f_i}{\partial u} + {}^i X_{\lambda_i}^T \left(S_i \times^* f_i \right)$$

Algorithm 4 $\nabla RNEA$ -GPU $(\dot{q}, v, a, f, X, S, I) \rightarrow \partial c/\partial u$

1: for link
$$i = 1 : n$$
 in parallel do

2:
$$\alpha_i = {}^i X_{\lambda_i} v_{\lambda_i}$$
 $\beta_i = {}^i X_{\lambda_i} a_{\lambda_i}$ $\gamma_i = I_i v_i$

3:
$$\alpha_i = \alpha_i \times S_i$$
 $\beta_i = \beta_i \times S_i$ $\delta_i = v_i \times S_i$
 $\zeta_i = f_i \times S_i$ $\eta_i = v_i \times^*$

4:
$$\zeta_i = -i X_{\lambda_i}^T \zeta_i \quad \eta_i = \eta_i I_i$$

5: **for** link
$$i = 1 : n$$
 do

6:
$$\frac{\partial v_i}{\partial u} = {}^{i}X_{\lambda_i} \frac{\partial v_{\lambda_i}}{\partial u} + \begin{cases} \alpha_i & u \equiv q \\ S_i & u \equiv \dot{q} \end{cases}$$

7: for link
$$i = 1 : r$$
 in parallel do

7: **for** link
$$i=1:r$$
 in parallel do
8: $\mu_i = \frac{\partial v_i}{\partial u} \times^*$ $\rho_i = \frac{\partial v_{\lambda_i}}{\partial u} \times S_i \dot{q}_i + \begin{cases} \beta_i \\ \delta_i \end{cases}$

9: **for** link
$$i = 1 : n$$
 do

10:
$$\frac{\partial a_i}{\partial u} = {}^{i}X_{\lambda_i} \frac{\partial a_{\lambda_i}}{\partial u} + \rho_i$$

11: for link
$$i = 1 : r$$
 in parallel do

12:
$$\frac{\partial f_i}{\partial u} = I_i \frac{\partial a_i}{\partial u} + \mu_i \gamma_i + \eta_i \frac{\partial v_i}{\partial u}$$

13: **for** link
$$i = n : 1$$
 do

14:
$$\frac{\partial f_{\lambda_i}}{\partial u} += {}^{i}X_{\lambda_i}^T \frac{\partial f_i}{\partial u} + \zeta_i$$

15: for link
$$i = n : 1$$
 in parallel do

16:
$$\frac{\partial c_i}{\partial u} = S_i^T \frac{\partial f_i}{\partial u}$$

The Gradient of Rigid Body Dynamics as a step of an MPC algorithm

Algorithmic Features	CPU	GPU	FPGA
Coarse-Grained Parallelism	moderate	excellent	moderate
Fine-Grained Parallelism	poor	moderate	excellent
Structured Sparsity	good	moderate	excellent
Irregular Data Patterns	moderate	poor	excellent
Sequential Dependencies	good	poor	good
Small Working Set Size	good	moderate	excellent
I/O Overhead	excellent	poor	poor

Place Zoom Headshot Here

- 1. Motivation
- 2. CPUs, GPUs, and FPGAs
- 3. The Gradient of Rigid Body Dynamics
- 4. Accelerated Design

5. Results

These code optimizations and refactoring greatly improved single computation latency

Place Zoom Headshot Here

Hardware optimizations even improve CPU performance

These code optimizations and refactoring greatly improved single computation latency

Place Zoom Headshot Here

The GPU is built for large scale parallelism

These code optimizations and refactoring greatly improved single computation latency

Place Zoom Headshot Here

Custom circuits are incredibly fast!

The GPU scales best and the FPGA is the fastest at low numbers of computations

The GPU scales best and the FPGA is the fastest at low numbers of computations

Place Zoom Headshot Here

Move everything onto the accelerator (if possible)!

What's next?

What's next?

Place Zoom Headshot Here

1. ASIC acceleration to improve both latency and coarse-grained parallelism

[S.M. Neuman et al. "Robomorphic Computing: A Design Methodology for Domain-Specific Accelerators Parameterized by Robot Morphology," ASPLOS 2021]

What's next?

Place Zoom Headshot Here

- ASIC acceleration to improve both latency and coarse-grained parallelism
- 2. Code generation from URDFs

Actively in progress but/and our current code can be found at:

http://bit.ly/fast-rbd-grad

Place Zoom Headshot Here

http://bit.ly/fast-rbd-grad br

brian_plancher@g.harvard.edu

Refactoring and partitioning the gradient of rigid body dynamics to expose different hardware-compatible features for GPUs and FPGAs provides as much as a 3.0x end-to-end speedup

Hardware-Software Co-Design for Parallelism

Harvard John A. Paulson School of Engineering and Applied Sciences

This material is based upon work supported by the National Science Foundation (under Grant DGE1745303 and Grant 2030859 to the Computing Research Association for the CIFellows Project), and the Defense Advanced Research Projects Agency (under Grant HR001118C0018). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the funding organizations

