MAT2120 Number Theory Problems IV

Suhyun Park (20181634)

Department of Computer Science and Engineering, Sogang University

1. Let d be a positive integer. Show that the simple continued fraction of $\sqrt{d^2+1}$ is $\left[d;\overline{2d}\right]$, and find the simple continued fraction of $\sqrt{101}$.

Solution. Since $\left| \sqrt{d^2 + 1} \right| = d$, the first term is given by d.

Subtracting d from $\sqrt{d^2+1}$ gives

$$\sqrt{d^2 + 1} - d = \frac{\left(\sqrt{d^2 + 1}\right)^2 - d^2}{\sqrt{d^2 + 1} + d}$$
$$= \frac{1}{\sqrt{d^2 + 1} + d},$$

hence the second term is given by 2d.

Repeating this process by subtracting 2d from $\sqrt{d^2+1}+d$ gives $\sqrt{d^2+1}-d$, which is same with above result; thus $\sqrt{d^2+1}=\left[d;\overline{2d}\right]$, and therefore $\sqrt{101}=\left[10;\overline{20}\right]$.

2. Show that the simple continued fraction of \sqrt{d} , where d is a positive integer, has period length 1 if and only if $d = a^2 + 1$, where a is a nonnegative integer.

Proof. (\Rightarrow)

 (\Leftarrow) Proved in Problem 1.

3. Find the least positive solutions in integers of $x^2 - 29y^2 = -1$.

2 Suhyun Park (20181634)

Solution. Note that $\sqrt{29} = [5; \overline{2, 1, 1, 2, 10}]$. The convergents h_n and k_n are

n	-2	-1	0	1	2	3	4	5	
a_n	_	_	5	2	1	1	2	10	•••
h_n									
k_n	1	0	1	2	3	5	13	135	
$h_n^2 - 29k_n^2$	-1	1	-4	5	-5	4	-1	4	

Thus the minimal solution is given by (x, y) = (70, 13).

4.

5. Determine all right triangles with sides of integral length whose areas equal their perimeters.

Solution. Let a and b be the lengths of the sides. We have the relation of

$$\frac{ab}{2} = a + b + \sqrt{a^2 + b^2},$$

hence

$$ab = 2a + 2b + 2\sqrt{a^2 + b^2}$$

$$\Rightarrow (ab - 2a - 2b)^2 = 4a^2 + 4b^2$$

$$\Rightarrow a^2b^2 - 4a^2b - 4ab^2 + 8ab = 0$$

$$\Rightarrow ab - 4a - 4b + 8 = 0 \qquad \therefore ab \neq 0$$

$$\Rightarrow a = 4 \cdot \frac{b - 2}{b - 4}.$$

If c := b - 4, then

$$a = 4 + \frac{8}{c}$$

thus if a is an integer, then $c = \pm 1, \pm 2, \pm 4$ or ± 8 ; hence b = 2, 3, 5, 6, 8 or 12. Calculating for each b gives

hence there exists only two triangles, (3, 4, 5) and (5, 12, 13), which its areas equal their perimeters.

6. Use the fact that 2 is not a congruent number to show that $\sqrt{2}$ is irrational.

Proof. Suppose $\sqrt{2} = \frac{a}{b}$ for $a, b \in \mathbb{Z}^+$ and (a, b) = 1. Then $2b^2 = a^2$. Let p be an odd prime that is not congruent to ± 1 modulo 8. Then,

$$\left(\frac{2b^2}{p}\right) = \left(\frac{2}{p}\right) = -1 \neq \left(\frac{a^2}{p}\right) = 1,$$

hence leads to contradiction. Therefore $\sqrt{2}$ is irrational.

7. Show that if (x, y, z) is a Pythagorean triple, then xyz is divisible by 60.

Proof. Since (x, y, z) is a Pythagorean triple, for $r, s \in \mathbb{Z}^+$ and $r + s \equiv 1 \pmod{2}$, let

$$x = r^2 - s^2$$
 $y = 2rs$ $z = r^2 + s^2$,

which gives

$$xyz = 2rs\left(r^2 - s^2\right)\left(r^2 + s^2\right).$$

To prove that $60 \mid xyz$, it suffices to prove that $3 \mid xyz$, $4 \mid xyz$ and $5 \mid xyz$.

- $(4 \mid xyz)$ Since $r + s \equiv 1 \pmod{2}$, r or s is even; therefore $4 \mid 2rs \Rightarrow 4 \mid xyz$.
- (3 | xyz) If 3 | r, it is trivial. Otherwise if 3 | r and 3 | s, by Euler, $r^{\phi(3)} \equiv 1 \pmod{3} \Rightarrow r^2 1 \equiv 0 \pmod{3}$ and $s^2 1 \equiv 0 \pmod{3}$; hence 3 | $[(r^2 1) (s^2 1)] = (r^2 s^2)$.

(5 | xyz) Similarity, if 5 | r, it is trivial. Otherwise if 5 | r, by Euler, 5 |
$$(r^4 - s^4)$$
.