Double Integrals

Let f(x, y) is a function of two variable then double integral of f(x, y) is denoted by $\iint f(x, y) dx dy$ or $\iint f(x, y) dy dx$.

Note:

- (1) For $\iint f(x,y) dxdy$, f(x,y) is first integrated w.r.t. x and then it is integrated w.r.t. y.
- (2) For $\iint f(x, y) dy dx$, f(x, y) is first integrated w.r.t. y and then it is integrated w.r.t. x.

Find limit by a given curve:

(a) If the region A is bounded by the curves $y = f_1(x)$ & = $f_2(x)$ and the coordinate x = a and x = b.

Then strip is parallel to y-axis

Then
$$\iint_A f(x, y) dA = \int_{x=a}^b \int_{y=f_1(x)}^{y=f_2(x)} f(x, y) dy dx$$

(b) If the region A is the area bounded by the curve $x = \phi_1(y) & x = \phi_2(y)$ and coordinate y = a and y = b.

Then strip is parallel to x-axis

So,
$$\iint_A f(x, y) dA = \int_{y=a}^{y=b} \int_{x=\phi_1(y)}^{x=\phi_2(y)} f(x, y) dx dy$$

Dr.Gajendra Purohit (PhD,NET)
Referral Code GPSIR

Q.1. The value of $\iint xe^{y^2} dxdy$, where R is the region bounded by the line x = 0, y = 1 and the parabola $y = x^2$. IIT JAM-2006

(a)
$$-\frac{1}{4}[e-1]$$

(b)
$$\frac{1}{4}[e-1]$$

(c)
$$\frac{1}{4}[e+1]$$

(d) None

Q.2. The value of $\iint xy(x+y)dxdy$ over the area between $y^2 = x$ and y = x

(a)
$$\frac{1}{56}$$

(b)
$$\frac{3}{56}$$

(c)
$$\frac{5}{56}$$

(d)
$$\frac{3}{55}$$

The value of $\iint_R xy dx dy$, where R is the quadrant of the circle $x^2 + y^2 = a^2$ Q.3.

- (a) $a^4/8$ (b) $a^2/8$

- (c) a/8 (d) 3a/2

Q.4. The value of $\iint_A xydydx$ where A is domain bounded

by x-axis ordinate x = 2a and the curve $x^2 = 4ay$.

(a) a/7

(b) $a^4/3$

(c) $a^4/5$

(d) a/5

Q.5 The value of integral $\int_{0}^{3} \int_{0}^{\sqrt{3}x} \frac{dydx}{\sqrt{x^2 + y^2}}$. JAM-2008

(a)
$$3\log(\sqrt{3}-2)$$
 (b) $\log(\sqrt{3}+2)$

(c)
$$3\log(\sqrt{3}+2)$$
 (d) $-3\log(\sqrt{3}+2)$

Q.6. The value of the integral $\iint_D \frac{\sin(2x)}{x} dxdy$ where D denotes the region bounded by the x – axis and the lines y = x and x = 1.IIT JAM 2007

(a)
$$-\frac{\cos 2}{2} + \frac{1}{2}$$

(b)
$$\frac{\cos 2}{2}$$