# 数值解析入門

- 2. 移流方程式(1次元)
- 2. Advection Equation (1-Dimensional)

3

## スケジュール

|            | 題材          | 日時・場所                    | 所要時間                                                          |
|------------|-------------|--------------------------|---------------------------------------------------------------|
| STEP 1     | 常微分方程式の時間積分 | 4/11, 10:30-<br>W2 – 544 | <del>説明15分</del><br><del>演習20~30分</del><br><del>追加説明15分</del> |
| STEP 2     | 1次元移流方程式    | 4/11, 13:00-<br>W2 – 544 | 説明15分<br>演習15分<br>追加説明15分                                     |
| STEP 3     | 1次元拡散方程式    | 4/12, 13:00-<br>W2 – 544 | 説明30分<br>演習30分                                                |
| Extra STEP | 貯留層解析入門     | 4/12, 14:15-<br>W2 – 544 | 説明25分<br>演習10分<br>M2研究紹介?                                     |

## コンテンツ

1 移流方程式 2 空間の離散化

## コンテンツ

1

## 移流方程式

空間の離散化

## 1. 移流方程式

「移流」: 物理量が空間で散らばらずに運ばれること(匂い,

濃度, 熱 etc...)

1次元の場合

$$\frac{\partial \phi}{\partial t} = -c \frac{\partial \phi}{\partial x}$$

以下,  $\phi$  を物質の濃度, c>0 は伝播する速度とする。

## 1. 移流方程式

1次元移流方程式には解析解が存在

$$\phi(t, x) = \phi(x - ct)$$

ただし, *f* は任意の関数

ある関数が平行移動する

## 1. 移流方程式 (解析解)

$$\phi(x) = e^{-x^2}$$
 とすると $\phi(x - ct) = e^{-(x - ct)^2}$  なので、 $c = 0.25$  の時



## コンテンツ

2 移流方程式 空間の離散化 2

## 空間の離散化

時間項の離散化 0 風上差分 CFL条件 補足説明

## 2-0. 時間項の離散化

移流方程式

$$\frac{\partial \phi}{\partial t} = -c \frac{\partial \phi}{\partial x}$$

の左辺について,

時刻 t での分布を  $\phi^n$ ,  $t + \Delta t$  での分布を  $\phi^{n+1}$  として

$$\frac{\partial \phi}{\partial t} = \frac{\phi^{n+1} - \phi^n}{\Delta t}$$

# 2-1. 風上差分

 $\phi(x,t)$ 

風上方向の値を使った近似

$$\left. \frac{\partial \phi}{\partial x} \right|_{x=i} \cong \frac{\phi(x_i) - \phi(x_{i-1})}{x_i - x_{i-1}}$$

$$\frac{\phi(\mathsf{x_i}) - \phi(\mathsf{x_{i-1}})}{\mathsf{x_i} - \mathsf{x_{i-1}}}$$

伝播する方向

## 2-1. 風上差分

時間項の離散化と合わせて、プログラムにする式は

$$\frac{\phi^{n+1}(x_i) - \phi^n(x_i)}{\Delta t} = -c \frac{\phi^n(x_i) - \phi^n(x_{i-1})}{x_i - x_{i-1}}$$

$$\phi^{n+1}(x_i) =$$

自由落下と同様、未来の情報が現在の情報から求まる。

(※ x 方向は等間隔に分割)

## 演習

$$\phi^{n+1}(x_i) = \phi^n(x_i) - c\Delta t \frac{\phi^n(x_i) - \phi^n(x_{i-1})}{x_i - x_{i-1}}$$

#### まずプログラムを実行して、次のような図が出力される事を確認





## 演習 補足説明

$$\phi^{n+1}(x_i) = \phi^n(x_i) - c\Delta t \frac{\phi^n(x_i) - \phi^n(x_{i-1})}{x_i - x_{i-1}}$$



## 解答





## 2-1. 風上差分

c = 0.25,  $\Delta t = 0.2$  として計算する



## 2-2. CFL条件

#### c=2 に増加させると



## 2-2. CFL条件

#### 定義

CFL条件(シーエフエルじょうけん、Courant-Friedrichs-Lewy Condition)またはクーラン条件とは、数値解析によるコンピュータシミュレーションにおいて、「情報が伝播する速さ」は「実際の現象で波や物理量が伝播する速さ」よりも速くなければならないという必要条件のことである。(Wikipedia より)

#### 数式で表すと

$$\frac{\Delta x}{\Delta t} > c$$
 或いは  $1 > \frac{c\Delta t}{\Delta x}$ 

 $% c\Delta t/\Delta x$  をクーラン数という

### 2-2. CFL条件

スライド13, 14の例では [-3,10] を 50 個の要素で離散化

$$\Delta x = \frac{10 - (-3)}{50 - 1} \cong 0.2653$$

 $\Delta t = 0.2$  なのでCFL条件を満たす限界の c は

$$c < \frac{\Delta x}{\Delta t} = \frac{0.2653}{0.2} \cong 1.3265$$

CFL条件を満たさない c,  $\Delta x$ ,  $\Delta t$  を設定すると、振動が発生

## 2-3. 補足説明

 $\Delta x$  の間隔を細かく  $(0.26 \rightarrow 0.00001)$ 

 $\rightarrow$   $\Delta t$  を大きくできないので, 時間がかかる

#### 風上差分以外の方法

- 1. 中心差分, 前進差分, 後退差分
- 2. FTCS 法
- 3. Lax 法
- 4. CIP法 など