

(11)Publication number:

04-083300

(43)Date of publication of application: 17.03.1992

(51)Int.CI.

G10L 9/00 3/00 G10L HO3G 3/32 H04B 1/40

H04B

(21)Application number: 02-198669

(71)Applicant:

KOKUSAI ELECTRIC CO LTD

(22)Date of filing:

26.07.1990

(72)Inventor:

WATANABE OSAMU

(54) NOISE SUPPRESSION TYPE VOICE DETECTOR

PURPOSE: To prevent malfunction in a voice detector due to the continuous execution of reverse filter processing by unappropriate coefficients even when misdecision is generated at the time of executing frequency area processing by forming plural reverse filters and successively using these filters.

CONSTITUTION: A filter coefficient updating part 16 updates a reverse filter coefficient 3F to an updating reverse filter coefficient 3D by a label 3G obtained by a frequency area processing part 14 only in the case of a noise frame, inputs the updated coefficient 3D to the 1st reverse filtering processing part 11, updates a reverse filter coefficient 3F preceding only by one frame to an updating reverse filter coefficient 3E, inputs the updated coefficient 3E to the 2nd reverse filtering processing part 12, and then outputs information 3L indicating the execution of updating or abort. When the reverse filter coefficient is not updated, the outputs of the two reverse filtering processing parts 11, 12 are alternately used. Thereby, even when misdecision is generated in frequency area processing, the suppression of voice power due to the continuous execution of unappropriate reverse filtering processing can be prevented.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision

of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

19日本国特許庁(JP)

① 特許出願公開

四公開特許公報(A)

平4-83300

®lnt.Cl.⁵
G 10 L 9/00
3/00
H 03 G 3/32
H 04 B 1/40
7/26

識別記号

庁内整理番号

❸公開 平成4年(1992)3月17日

D 8622-5H 3 0 1 A 8842-5H 7239-5 J 7189-5K X 8523-5K

審査請求 未請求 請求項の数 1 (全7頁)

60発明の名称 雑音抑圧型音声検出器

②特 類 平2-198669

20出 願 平2(1990)7月26日

加発明者 波辺

東京都西多摩郡羽村町神明台2-1-1 国際電気株式会

社羽村工場内

⑦出 願 人 国際電気株式会社

東京都港区虎ノ門2丁目3番13号

四代理人 弁理士大塚 学 外1名

明 細 曹

1. 発明の名称

鞋音和压型音声検出器

2. 特許請求の範囲

入力信号が音声信号か否かを検知するために、 該入力信号をブロック単位に周波数領域に変換し で雑音フレームを検出し、該雑音フレームから導 かれる線形予測係数を逆フィルタ係数とし該雑音 フレームが検出される度にフィルタ係数更新部で 更新して逆フィルタ処理部により前配入力信号エ ネルギーから雑音エネルギーを抑圧する逆フィル タ処理を行った後にフレーム単位に音声フレーム か否かを検知する雑音抑圧型音声検出器において、

前記逆フィルタ処理部が複数個設けられ、

前記フィルタ係数更新部は、周波数領域処理に 変換して難音フレームを検出したとき該雑音フレ ームから導かれる線形予測係数を逆フィルタ係数 として該雑音フレームが検出される度に更新して 前記複数の逆フィルタ処理部のIつに与え、順次 1つ前のフレームの逆フィルタ係数を他の逆フィルタ処理部にそれぞれ与えるとともに、フレーム 単位に更新の有無を示す更新情報を出力するよう に構成され、

前記フィルタ係数更新部からの更新情報に従って、更新があったときは前記複数の逆フィルタ処理部の1つの出力を取り込んで出力し、更新がないときは順次前のフレームの逆フィルタ処理が行われた逆フィルタ処理部の出力と前記逆フィルタ処理部の1つの出力とをフレーム単位に順次に取り込んで出力する逆フィルタ出力選択部を備えたことを特徴とする報音抑圧型音声検出器。

3. 発明の詳細な説明

(発明の属する技術分野)

携帯用無線通信機等において、音声入力のある ときのみ送信部を動作させ音声入力のないときは 雑音を検知して送信部への電力の供給を停止して 消費電力を低減する方法が採用されている。本発

特閒平4-83300 (2)

明は、このような装置に用いられ入力信号から音 声信号の有無を検知する音声検出器に関するもの である。

(従来技術とその問題点)

携帯型の小型無線機等では、消費電力を低減するために、音声入力がある時のみ送信し音声がないときには送信を断にするいわゆるVOX(Voice Operate Switch Exchenge) 制御が行われており、これによると送信時の平均消費電力を約50%低減することができる。

このようなVOX機能を実現するためには、送信側において、入力信号から音声信号の有無を検知する必要があり、このような機能をもつ回路を音声検出器という。このような音声検出器には、入力信号が雑音か音声信号のいずれかを正確に判断する機能が求められる。

雑音と音声信号の差異は、これらの信号の周波数領域で特徴づけられるスペクトラムの差として現れる。即ち、雑音のスペクトラムは時間的な変動が比較的緩やかであり安定した周期性(ピッチ

域処理部2は、連続するでで、1 A) で 20msが選ばれる)に区切られた入力に日号(1 A)を受けとり、こので、20msが選ばれる)に区切られたフレーススクレーススクリームの関係を受けるので、20mので、20mがで、20m

逆フィルタ係数算出部1では、入力信号(1A)・の各フレームに対して線形予測(LPC:Linear Predictive Coding)分析を行ってLPC係数を算出し逆フィルタ係数(1B)として出力する。

フィルタ係数更新部4は、前記で得たラベル(IC)により雑音フレームのときにのみ逆フィルタ

成分)をもたない。これに対し、音声信号のスペクトラムは時間的な変動が比較的速く、又、時間的な変動が経やかであっても安定した周期性(ピッチ成分)をもっている。従って、これらの差異に着目して雑音と音声信号を識別するために周波数領域における処理が行われる。

一方、信号電子では、 では、 では、 を音ときるは、 を音ときるできるないできる。 になり、 なるから重した。 を音をした。 を変した。 を変した。 を変した。 を変した。 を変した。 を変した。 を変した。 を変した。 を変した。 をのして。 をのなる。 でのなる。 でのなる。 でのなる。 でのなる。 でのなる。 でのなる。 でのなる。 でのなる。 でのなる。 を音にいる。 をはいる。 をはいる。 をはいる。 を音にいる。 をはいる。 を音にいる。 をはいる。 をはいる。 をはいる。 をはいる。 をもないる。 をもない。 をもないる。 をもな。 をもな。

第1図は従来の雑音抑圧型音声検出器の構成例 を示すブロック図である。図において、周波数領

係数(1B)を更新用逆フィルタ係数(1D)に 更新して出力し逆フィルタ処理部3に入力する。

逆フィルタ処理部 3 では、逆フィルタ係数 (1D) を取り入れて入力信号 (1A) を逆フィルタ に入力し逆フィルタが有するスペクトラム包絡情報を除去する逆フィルタ処理を施し、各フレームのパワー (1E) を計算して出力する。

電力関値適応部 6 では、前配ラベル(1 C)により雑音フレーム時の逆フィルタ出力パワー(1 E)を参考にして適応させた関値(1 F)を出力する。

電力判定部5は、先に算出した逆フィルタ出力パワー(1E)と関値(1F)とを比較し、音声信号の有無情報(1G)を出力する。更に、ハングオーバ処理部7によって音声フレーズ中のクリップを防止するためハングオーバー処理を施し、音声検出器の出力(1H)を得る。

しかし、前配従来の方法では、その中で使用される周波数領域処理の精度に限界があり、たびたび音声か雑音かを判定したラベル(1 C)に誤り

特開平4-83300 (3)

が生じることは避けられない。

第2図は第1図の回路の各部の信号波形を示す タイムチャートである。図において、フレームM 6の入力信号に対し、周波数領域処理において料 定されたラベル(IC)に誤りが生じている。し かし、実際にフレームMa6の逆フィルタ処理部3 の入力に対する逆フィルタ係数として、フィルタ 係數更新部 4 によって前回係数更新されたフィル 夕保数即ちフレーム No. 2 の係数 (B₂)が使用され るため逆フィルタ処理後の出力波形(IE)は雑 音のみを抑圧した波形となっている。ところか、 逆フィルタ処理部3で計算された当該フレームの パワーが直前の音声フレームと比較してかなり小 さいため電力判定結果(1G)は無声であると誤 利定を行っている。しかし、ハングオーバー処理 により音声検出器出力(1H)は正確な判断結果 となる。

・次に、フレーム版 9 の関波数領域処理に誤りが 生じ音声有のラベルを出力すべきところ雑音ラベ ルが出力されたときを考える。この場合、次フレ 一ムの№10から№13まで逆フィルタ処理部3で参照する係数(1 D)として音声フレーム№3の逆フィルタ係数(B」)が使用されることになり、音韻が変化するか若しくは新しい係数が更新されない限りその間違フィルタ処理部3において音声信号のエネルギーが抑圧されることになり、(1 E)は音声信号の線形予測改差波形となる。従って、電力判定部5の出力(1 G)はフレーム№10~13において音声信号のパワーが抑圧され無声であるとの誤判定が起こる。このとき、最終的な音声検出器の出力(1 H)も第2図に示すように無声と判断された出力となってしまう。

以上のように、従来の方法では、音声フレームを誤って雑音と誤判定されたとき、逆フィルタ処理部3に対して音声フレームのフィルタ係数がある期間に亘り遠続して与えられるため、雑音エネルギーが抑圧されて音声検出器の出力(1 H)が無声となる誤判断が発生するという欠点があり、そのため

有声のときに送信が断になってしまうという問題 を生じていた。

(発明の目的)

本発明は、前記従来の方法において生ずる音声 検出器の誤動作を防止し、送信すべき音声信号の 欠落を軽減するとともに、より正確な信頼性の高 い雑音抑圧型音声検出器を提供することが目的で ある。

(発明の構成及び作用)

前記目的を達成するために、本発明の雑音抑圧型音声検出器は、複数個の逆フィルタ(線形予測分析フィルタ)を設けて順次使用することにより、周波数領域処理の際に誤判定が生じてもそのために連続して不適当な係数による逆フィルタ処理が行われることによる音声検出器の誤動作を訪止するようにしたことを特徴とするものである。

第3図は、本発明の雑音抑圧型音声検出器の一 構成例を示すブロック図である。この構成例では 2個の逆フィルタ処理部を設けた場合の実施例で ある。図において、周波数領域処理部14は、従来 技術同様に連続するある一定のブロックに区切られた入力信号(3A)を受けとり、ブロック(以下フレームと言い換える)毎に音声信号か雑音かのラベル(3G)をつけて出力する。逆フィルタ係数算出部13も、従来技術同様入力信号(3A)の各フレームに対するLPC係数を算出し、これを逆フィルタ係数(3F)として出力する。

フィルタ係数更新部16は、前記で得たラベル(3G)により雑音フレームのときにのみ逆フィルタ係数(3F)を更新用逆フィルタ係数(3D)に更新して第1の逆フィルタ処理部11に入力し、又、1フレーム前の逆フィルタ係数(1フレーム前の3F)を更新用逆フィルタ係数(3E)に更新して第2の逆フィルタ処理部12にそれぞれ入力するとともに、更新を行っているか停止しているかの情報(3L)を出力する。

第1の逆フィルタ処理部11と第2の逆フィルタ 処理部12では、逆フィルタ係数更新部16からの更 新用逆フィルタ係数 (3D) と (3E) をそれぞ れ取り入れて入力信号 (3A) を逆フィルタ処理

特開平4-83300 (4)

して雑音を抑圧し各フレームの電力(3B)と (3C)をそれぞれ計算して出力する。

逆フィルタ出力選択部15は、フィルタ係数の更新情報(3 L)に従って、更新があった場合には第1の逆フィルタ処理部11の出力(3 B)を取り込み、更新がない場合には第1の逆フィルタ処理部11の出力(3 B)と第2の逆フィルタ処理部12の出力(3 C)とを交互に取り込む、さらに、更新があった場合から更新がない場合に変化したときは、第2の逆フィルタ処理部12の出力(3 C)を取り込む。第5 図は、逆フィルタ出力選択部15の上述の動作フローを示すフローチャートである。

電力関値適応部18では、従来技術同様、前記ラベル(3G)により雑音フレーム時の選択後の逆フィルタ出力パワー(3H)を参考にして適応させた関値(3I)を出力する。

電力料定部17は、先に得た選択後の逆フィルタ 出力パワー(3H)と関値(31)とを比較し音 声の有無情報(3J)を出力する。ハングオーパ 処理部19は、この音声の有無情報(3J)に対し、

以上は逆フィルタ部11、12の2個の場合について説明したが、3個以上の場合も同様に構成することができる。

(発明の効果)

以上詳細に説明したように、本発明によれば、

音声フレーズ中のクリップを防止することと不適当なフィルタ保数による電力判定部17の誤判定をおきなうために、本発明によって設けられた複数個の逆フィルタ処理部の数をN(第3図の実施例ではN=2)とすれば、【N-1】以上のフレームに直ってハングオーバー処理を実施し、最終的な音声検出器の出力(3K)を得る。

次に、第4図は第3図に示した本発明の実施例の動作例を示すタイムチャートである。第4図によって、フレームMu 9の出力ラベル(3G)に誤りが生じたときにその誤りを補正する動作に着目して説明する。

第2図によって説明した従来方法では、フレーム No.10~13まで音声フレームの逆フィルタ係数(F。)が使用されるが、本発明では、逆フィルタ係数の更新が停止した場合、フレーム No.11に対しては第1の逆フィルタ処理部11の出力(3B)(すなわちF。)から第2の逆フィルタ処理部12の出力(3C)(すなわちF。)に切替えて電力判定が行われ、次のフレーム No.12に対しては、第1の逆フィ

入力信号の雑音エネルギーを抑圧するための逆フィルタを複数個設けて順次用いることにより、 眉 被数領域処理において誤判定が生じても、連続して不適当な逆フィルタ処理がなされて音声パワーを抑圧してしまうことによる誤動作を防止し、 送信すべき音声信号の欠落を軽減することができるという大きい効果が得られる。

4. 図面の簡単な説明

第1図は従来の構成を示すブロック図、第2図は第1図の構成による動作例を示すタイムチャート、第3図は本発明の実施例を示すブロック図、第4図は本発明の実施例の動作を示すタイムチャート、第5図は本発明の一部の回路の動作フローチャートである。

1,13…逆フィルタ係数算出部、2,14…関放 数領域処理部、3,11,12…逆フィルタ処理部、 4,16…フィルタ係数更新部、5,17…電力判 定部、6,18…電力関値適応部、7,19…ハン グオーバー処理部、15…逆フィルタ出力選択部。

第1図

第2図

第3図

第4回

特別平4-83300 (7)

