Problems

Course Title: Introduction to Robotics Course Code: IE410 Semester: Winter, 2021

- 1. Find out 3×3 matrices which describe the following motion of robot in 2D
 - (a) A $\pi/2$ rotation about the origin
 - (b) A translation of one unit in the x-direction followed by a $\pi/2$ rotation about the origin
- 2. A robot is rotated by $\pi/3$ radians about x-axis, and then $\pi/3$ radians about y-axis. Find the axis of resulting composite rotation.
- 3. Find the 4×4 matrices for a robot corresponding to the following 3-D rigid transformation:
 - (a) A rotation of $\pi/3$ radians about x-axis, followed by a translation of 3 units in the z-direction.
 - (b) A translation of 3 units in the z-direction, followed by a rotation of $\pi/3$ radians about x-axis.
- 4. Consider a three joint planar manipulator with $l_1 = 2$, $l_2 = 3$ and $l_3 = 1$ in some units. Find the x, y coordinates of the point with home position, and the angle the last link makes with the x-axis when the joint angle are:
 - (a) $\theta_1 = \pi/6$, $\theta_2 = \pi/6$, $\theta_3 = \pi/6$
 - (b) $\theta_1 = \pi/2$, $\theta_2 = 4\pi/3$, $\theta_3 = \pi/3$
 - (c) $\theta_1 = -\pi/6$, $\theta_2 = 2\pi/3$, $\theta_3 = -\pi/3$
- 5. A planar robot has link lengths $l_1 = 2$ and $l_2 = 1$ in some unit. Use the inverse kinematics equations to find the joint angles which will place the end effector at $x = \sqrt{3} + \frac{1}{2}$ and $y = 1 + \frac{\sqrt{3}}{2}$
- 6. A robot manipulator has the kinematic structure illustrated in the following Figure

- (a) By setting up a suitable co-ordinate system and reference position, find the kinematics equation for the co-ordinates of the end effector
- (b) Calculate the Jacobian of this manipulator.