

Exam File Provided By The VofS IEEE Student Branch

ieee.usask.ca

University of Sask Department of Mathematic

Math 225 Spring 2003

May 30, 2003

Test #1

2 hours George Patrick

The examination consists of two parts, Part A and Part B, each worth 20 points. The points however, will be used in a formula to calculate your test grade.

- Encode your student number correctly on your opscan sheet.
- Print your name and student number on your opscan sheet.
- Answer all questions of Part A in pencil on your opscan sheet. There is no penalty for a wrong answer in Part A.
- Answer all questions in Part B in the answer book provided.
- One formula sheet is permitted. No calculators.

PART A

Fill in the bubbles on your opscan sheet corresponding to the correct answers. Each problem in this section is worth 1 point.

Question 1. The value of $2\vec{a} - 3\vec{b}$ where $\vec{a} = (1, -2, 3)$ and $\vec{b} = (1, 1, -1)$ is

- (0, -2, 1)
- (-1,3,0)
- (D) (1,-1,2)
- (E) (1, -2, 3)

- (F) (2, -4, 6)
- (G) (0,0,0)

Question 2. The value of $\vec{a} \cdot \vec{b}$ where $\vec{a} = (1,0,3)$ and $\vec{b} = (3,1,2)$ is

- (A) (F)₀ 9
- (G) -3
- (H) 6
- (D) $\sqrt{10}$
- (E) 10

The length of the vector (-1,3,1,2) is Question 3.

- (A) $\sqrt{10}$

- (D) 4
- (E) 225

(F) 0

- (H) 1-

Question 4. The value of $\vec{a} \times \vec{b}$ where $\vec{a} = (1, -2, 1)$ and $\vec{b} = (-1, 1, 1)$ is

- (-3, -2, 3)
- (1, -1, 0)
- (D) (1,1,0)
- (E) $\sqrt{3}$

(F) (2, -3, 0)Question 5.

- (G) (-3,0,0)
- (H) (0,1,0)
- The distance between the two points (-2, 1, 2) and (1, 4, 0) is
- (A) 484
- 4
- (C) 6
- (D) 2

- (F) 16
- (G) $\sqrt{8}$
- (H) 22

The value of t such that (t, 1, 2t) and (1, 1, -2) are orthogonal vectors is

- (G)
- 5 (H)
- (D) 0
- (E) 3

0	point $(1,0,2)$ and $(3,0,3)$ meets the plane $2=0$ at the										
		(-3, -2, 3) (2, -3, 0)	(B) (G)			(1,-1,0) (0,1,0)	(D)	(1,1,0)	(E)	0	
	Ques	Question 8. The equation of the plane containing the points $(1,0,2)$, $(2,2,1)$, and $(-1,1,0)$ is									
	(D)	3x - 4y - 5z + 3x + y - 5z - 7 3x - 4y - 2z + 3y - 3z -	7 = 0	(B) 33 (E) - (H) x	3x-4	y - 5z + 7 = 0	(C) $3x - y - 5z$ F) $3x - 4y - 5z$	+1 = 0	: 0	
Question 9. The component of $\vec{b} = (3, -2, 2)$ on $\vec{a} = (2, 0, 1)$, or comp _{\vec{a}} \vec{b} , is											
	(A) (F)	6	(B) (G)	_	(C) (H)		(D)		(E)	0	
Question 10. The projection of $\vec{b} = (3, -2, 2)$ on $\vec{a} = (1, 0, 1)$, or $\operatorname{proj}_{\vec{a}} \vec{b}$, is											
	(A) (F)	(1,0,1) 0	(B) (G)	$(\frac{15}{17}, -\frac{10}{17}, \frac{10}{17})$ (3, -2, 2)	(C) (H)	$\frac{\sqrt{5}}{\sqrt{2}}$ $(\frac{15}{17}, \frac{10}{17}, \frac{10}{17})$	(D)	$(\frac{5}{2},0,\frac{5}{2})$	(E)	$\frac{5}{\sqrt{2}}$	
ı		Question 11. The tangent line to the curve $\vec{r}(t) = (1 + t, \sin t, t^2 - 2)$ at $t = 0$ meets the plane $x = 0$ at									
		(0,2,-2) (0,3,1)			(C) (H)	(0, -2, -1) (1, 0, 1)	(D)	(0, -1, -2)	(E)	(0,1,3)	
Question 12. If $\vec{u}(t)$ and $\vec{v}(t)$ are two curves such that											
	u(0) = (1, -2, 1), v(0) = (0, 1, 1), u'(0) = (1, -2, 0), v'(0) = (-2, 1, 0)										
	then the value of $(u \cdot v)'(0)$ is										
,	(A) (F)	4 >−6	(B) (G)		(C) (H)		(D)	0	(E)	3	
Question 13. With exactly the same information as in the previous question, the value of $(u \times v)'(0)$ is											
	(A) (F)	(0,0,4) (0,0,0)	B	(1,3,-4) (-3,-3,-2)	(C) (H)	(4, 1, -2) (1, 0, 0)	(D)	(1, 1, 1)	(E)	(0,0,-4)	
Question 14. If $\vec{r}(t) = (t, 1, t^2)$ then $\int_0^1 \vec{r}(t) dt$ is											
	(A) (F)	(1,-1,1) $(\frac{1}{2},1,\frac{1}{3})$	(B) (G)	(1,1,1) (1,0,2)	(C) (H)	(0, 0, 1) (1, 1, 0)	(D)	(0,0,0)	(E)	11 6	
Question 15. The velocity of a particle moving by the curve $\vec{r}(t) = (\sin t, \cos t, t^2)$ at $t = \frac{\pi}{4}$ is											
	(A) (F)	$(1,0,0) \ (\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},\frac{\pi}{4})$	(B) (G)	(0,0,0) $(0,0\frac{1}{3})$	(C) (H)	$\begin{pmatrix} (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, \frac{\pi}{2}) \\ (\sqrt{2}, \sqrt{2}, \frac{\pi}{4}) \end{pmatrix}$	(D)	$(\sqrt{2},\sqrt{2},1)$	(E)	$(0,\sqrt{2},rac{\pi}{4})$	
Question 16. The unit tangent vector to the helix $\vec{r}(t) = (\cos t, \sin t, -t)$ at $t = \frac{\pi}{4}$ is											
	(A)	$(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$	(E	$(-\frac{1}{2},\frac{1}{2},\frac{1}{\sqrt{2}})$)	(C) $(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$	$\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}$	$(D) (\frac{1}{\sqrt{3}})$	$\frac{1}{\sqrt{3}}, -$	$-\frac{1}{\sqrt{3}}$) (E)	

(1, 0, 0)

Question 17. If $z = x^2y + 3xy$ then $\frac{\partial z}{\partial x}$ is

(D) 2xy + 3

 (\mathbf{E}) 3xy

(B) $x^2 + 3x$ (C) 2xy(G) 2xy + 3y (H) 2x + 3

Question 18. If $z = \sin(x^2 + xy)$ then $\frac{\partial z}{\partial y}$ is

(A) $y\cos(x^2+xy)$

(B) $\cos(x^2 + xy)$ (C) $(2x + y)\cos(x^2 + xy)$ (D) $3x\cos(x^2 + xy)$ (F) $x\cos(x^2 + xy)$ (G) 2x + y (H) $y\cos(x^2 + xy)$

Question 19. The equation of the tangent plane to the surface z = xy at x = 1 and y = 2 is

 $(A) \quad z = -3 + x + 2y$

(D) z = -4 + 2x + 2y

(B) z = x + 2y (C) z = 2(F) z = -1 + x + y (G) z = y

Question 20. If $z = x^2y^3$ and x = -2, y = -1, dx = .1, dy = -.1, then dz is

(A) 1.6

(B) .016

(C)

(D) .28d

(F) 1.6d

(G) 0

PART B

Show all your work in the booklets provided.

Question 21.

 $2 \times 5 = 10$

- (a) Find the symmetric equations of the line of intersection of the planes x + 2y + z = 1 and 2x - y + z = 2.
- (b) Determine the intersection of the two lines

$$\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{2}, \qquad \frac{x-\frac{1}{4}}{1} = \frac{y+\frac{1}{4}}{3} = z.$$

- (c) Find the distance from the point (1,0,1) to the plane 2x + y z = -2.
- (d) Find the plane perpendicular to the plane x-2y-z=1 and containing the two points (0,1,0)and (1, -2, 1).
- (e) Find the area of the triangle with vertices (1,1,0), (1,1,-2) and (0,2,0).

Question 22. Calculate the curvature, unit tangent, and normal vectors at t=0 for the curve $\vec{r}(t) = (t - \cos t, \sin 2t, t).$

Question 23. Find all (a,b) such that the tangent plane to $z=x^2+2xy+3y^2$ at (a,b) is normal to the unit vector $(-\frac{2}{3}, -\frac{2}{3}, 1/3)$.