The goal of this part is to classify representations of SU(3).

Note that

- The finite-dimensional representations of **SU**(3) are in 1-1 correspondance with the finite-dimensional representations of **su**(3), since **SU**(3) is simply connected, by the theorem about Lie group and Lie Algebra Homomorphism.
- A representation of **SU**(3) is irreducible iff the associated representation of **su**(3) is irreducible ,since **SU**(3) is connected, by the theorem about irreducible representations.
- The complex representations of $\mathbf{su}(3)$ are in 1-1 correspondance with the complex-linear representation of $\mathbf{su}_{\mathbb{C}}(3) = \mathbf{sl}(3;\mathbb{C})$. Also, a complex representation of $\mathbf{su}(3)$ is irreducible iff it is irreducible as a representation of $\mathbf{su}_{\mathbb{C}}$. These are by the theorem about complexification of Lie algebra.

Proposition 0.1. There is a one to one correspondence between the finite-dimensional complex representation Π of SU(3) and the finite-dimensional complex-linear representation π of $sl(3;\mathbb{C})$.

Also, since SU(3) is compact, so SU(3) is completely reducible by the theorem about complete reducibility. Thus, it is enough to consider only (irreducible representations of) $sl(3;\mathbb{C})$, which has a nicer basis, instead of SU(3).

We will use the following basis for $\mathfrak{sl}(3;\mathbb{C})$;

$$\begin{split} H_1 = & \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right), \quad H_2 = \left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right), \\ X_1 = & \left(\begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right), \quad X_2 = \left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right), \quad X_3 = \left(\begin{array}{cccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right), \\ Y_1 = & \left(\begin{array}{cccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right), \quad Y_2 = \left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right), \quad Y_3 = \left(\begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right) \end{split}$$

0.1 Definitions

Definition 1. Let $\pi : \mathbf{sl}(3; \mathbb{C}) \rightarrow \mathbf{GL}(V)$ be a representation.

- Weight vector : a simultaneous eigenvector of $\pi(H_1)$ and $\pi(H_2)$,
- Weight: an ordered pair of two corresponding eigenvalues,
- Weight space: the space of all weight vectors corresponding to a weight,
- Multiplicity of a weight: the dimension of the corresponding weight space.

Every representation of $\mathbf{sl}(3;\mathbb{C})$ has at least one weight and elements of a weight of it are always integers.

Definition 2.

- Root vector: a simultaneous eigenvector of ad_{H_1} and ad_{H_2} ,
- Root: an ordered pair of two corresponding eigenvalues.

There are six roots for $sl(3; \mathbb{C})$:

roots	the positive simple roots	s root vectors							
(2,-1)	$lpha_1$	X_1	since	$[H_1,X_1]$	=	$2X_1$	$[H_2,X_1]$	=	$-X_1$
(-1, 2)	$lpha_2$	X_2					$[H_2,X_2]$		
(1, 1)	$\alpha_1 + \alpha_2$	X_3		$[H_1,X_3]$	=	X_3	$[H_2,X_2]$	=	X_3
(-2,1)	$-\alpha_1$	Y_1		$[H_1,Y_1]$	=	$-2Y_{1}$	$[H_2, Y_1]$	=	Y_1
(1, -2)	$-lpha_2$	Y_2		$[H_1,Y_2]$	=	Y_2	$[H_2, Y_2]$	=	$-2 Y_2$
(-1, -1)	$-\alpha_1-\alpha_2$	Y_3		$[H_1, Y_3]$	=	$-Y_3$	$[H_2, Y_3]$	=	$-Y_3$
1 / 1	C	11 1 .1	. 1						

and the first two one α_1 , α_2 are called the positive simple roots.

Definition 3. A weight μ_1 is higher than μ_2 (or μ_2 is lower than μ_1), $\mu_1 \succeq \mu_2$, if $\mu_1 - \mu_2$ is a conical combination of the positive simple roots. A weight μ_0 is a highest weight if there is no weight higher than μ_0 .

Definition 4. A representation $\pi : \mathbf{sl}(3;\mathbb{C}) \to \mathbf{GL}(V)$ is a highest weight cyclic representation with weight μ_0 if there exists a cyclic vector v in V. A cyclic vector v is a weight vector of μ_0 in V that satisfies

- 1. $\pi(X_1)v$ and $\pi(X_2)v$ vanish.
- 2. V itself is the smallest invariant subspace of V containing v.

0.2 The Theorem of the Highest Weight

The theorem below can be informally stated as

"Irreducible representations of $\mathbf{sl}(3;\mathbb{C})$ can be classified by their higest weight, which is a pair of two non-negative integers."

Theorem 0.2. Let $\pi : \mathbf{sl}(3;\mathbb{C}) \to \mathbf{GL}(V)$ be an irreducible representation

- (1) V is the direct sum of its weight spaces; $\pi(H_1)$ and $\pi(H_2)$ are simultaneously diagonalizable.
- (2-1) π has a unique highest weight.
- (2-2) Equivalent irreducible representations of $\mathbf{sl}(3;\mathbb{C})$ have the same highest weight.
- (2-3) Irreducible representations of $\mathbf{sl}(3;\mathbb{C})$ with the same highest weight are equivalent.
- (3-1) The highest weight of π is a pair of two non-negative integers.
- (3-2) For a given $\mu_0 = (m_1, m_2)$ where m_1, m_2 are non-negative integers, there exists an irreducible representation of $\mathbf{sl}(3; \mathbb{C})$ with having μ_0 as the highest weight.
- *Proof.* (1) Let W be the direct sum of the weight spaces in V, the linear space spanned by simultaneous eigenvectors of $\pi(H_1)$ and $\pi(H_2)$.
 - $W \neq \{0\}$. Claim π has at least one weight. Let U be the eigenspace of $\pi(H_1)$ and $v \in U$. Since $[H_1, H_2] = 0$, $\pi(H_1)(\pi(H_2)v) = \pi(H_2)(\pi(H_1)v) = m_1(\pi(H_2)v)$ so $\pi(H_2)(U) \subseteq U$ and $\pi(H_2)$ has at least one eigenvector w and eigenvalue in U.
 - W is invariant under $\mathbf{sl}(3;\mathbb{C})$. Let $\mu = (m_1, m_2)$ and v be a weight and the corresponding weight vector in W and let $\alpha = (a_1, a_2)$ and Z_α be a root and the corresponding root vector. Then from $[H_1, Z_\alpha] = a_1 Z_\alpha$, $\pi(H_1)\pi(Z_\alpha)v = (\pi(Z_\alpha)\pi(H_1) + a_1\pi(Z_\alpha))v = (m_1 + a_1)\pi(Z_\alpha)v$, and similarly $\mu + \alpha$ is also weight. Therefore, $\pi(Z_\alpha)(W) \subseteq W$; that is, W is an invariant subspace of V under all bases of $\mathbf{sl}(3;\mathbb{C})$, consequently under $\mathbf{sl}(3;\mathbb{C})$.
 - Since π is irreducible, W = V.
 - (2) We will show (2-1) \sim (2-3) by using the fact that a highest weight cyclic representation of $\mathbf{sl}(3;\mathbb{C})$ is an irreducible representation and vice versa.
 - Every irreducible representation of $\mathbf{sl}(3;\mathbb{C})$ is a highest weight cyclic representation. Since the representation is finite-dimensional, there are finitely many weight; thus, $\exists \mu_0$ with the weight vector v such that there is no weight higher than μ_0 . Then, $\pi(X_1)v = \pi(X_2)v = 0$. (Otherwise, $\pi(H_i)\pi(X_j)v = (\mu_0 + \alpha_j)_i\pi(X_j)v$, which implies $\pi(X_j)v \succeq v$.)
 - A highest weight cyclic representation of $\mathbf{sl}(3;\mathbb{C})$ has a unique highest weight. (Existence) Claim a weight $m\,u_0$ corresponding to the cyclic vector v is the highest weight. The set $W=\{w|w=\pi(Y_{i_1})\dots\pi(Y_{i_n})v,i_1,\dots,i_n=1\,o\,r\,2\,o\,r\,3,\,n\geqslant 1\}$ is invariant and $v\in W$, so W=V. Since $\pi(H_1)w=(\mu_0-n_1\alpha_1-n_2\alpha)w$, for $n_1,n_2\geqslant 0$, μ_0 is the highest weight.

(Uniqueness) By definition of the highest weight.

- Every highest weight cyclic representation of $\mathbf{sl}(3;\mathbb{C})$ is irreducible. According to (1) and complete irreducibility, $V = \bigoplus_i V_i$ where each of V_i 's is the direct sum of its weight spaces. The cyclic vector must be (up to constant) the only vector contained in a weight space in some V_i . Therefore, V_i is invariant so $V_i = V$; V is irreducible.
- Irreducible representations of $\mathbf{sl}(3;\mathbb{C})$ with the same highest weight are equivalent. From previous steps, π is irreducible $\Leftrightarrow \pi$ is highest weight cyclic.