生物医药合作项目开发

研究方向: 再生障碍性贫血

委 托 人:

受托人: 杭州铂赛生物科技有限公司

Contents

1	叶允肖章 1.1 思路	1
	1.1 思路	1
2	可行性	1
	2.1 以 "Aplastic anemia" AND "GWAS" 搜索文献。	1
	2.2 以 "Aplastic anemia" AND "metabolic" 搜索文献。	2
3	创新性	3
	3.1 以 "Aplastic anemia" AND "TWAS" 搜索文献。	3
	3.2 以 "Aplastic anemia" AND "TWAS" AND "metabolic" 搜索文献。	
4	参考文献和数据集	4
	4.1 GWAS 数据	4
	4.2 scRNA-seq	4
	4.3 单细胞数据预测代谢通量的方法	5
\mathbf{R}	ference	5
	───	
\mathbf{L}	st of Figures	
	1 Unnamed chunk 6	2
	2 Unnamed chunk 7	2
	3 Unnamed chunk 8	3
	4 Unnamed chunk 9	4
${f L}$	st of Tables	
	1 Traits in Open GWAS	4
	2 AA GSE279914 metadata	5

1 研究背景

见 Tab. 1

1.1 思路

再生障碍性贫血 (Aplastic anemia, AA) 是指骨髓无法形成血液,这是多种病理生理机制对终末器官的影响) (2018, **IF:96.2**, Q1, The New England journal of medicine)¹。骨髓被脂肪取代的常见病理可能是化学或物理损伤 (医源性;苯);免疫破坏 (主要是 T 细胞);以及维持细胞完整性和免疫调节的重要基因的体质缺陷 (Constitutional Syndromes)。体质性骨髓衰竭的患者中,大多数患者年龄在 18 岁以下,约 50% 在基因组筛查中出现突变。免疫性 AA (Immune aplastic anemia, IAA)中,细胞毒性 T 细胞在功能和表型上处于激活态,通过 Fas/FasL 诱导细胞凋亡,并以寡克隆形式循环 (2018, **IF:96.2**, Q1, The New England journal of medicine)¹。此外,免疫性 AA 会发生干细胞突变导致的免疫逃逸 (丢失了包含 HLA 等位基因的 6 号染色体区域的粒细胞),通过克隆扩增发挥替代造血的功能。全基因组关联研究 (Genome-Wide Association Study, GWAS) 研究显示,HLA-DPB1 种系的 SNP 提高了重症 AA (SAA) 的风险 (2020, **IF:8.1**, Q1, American journal of human genetics)²。

细胞代谢与 AA 的发展有所关联。最近的研究表明,SAA 患者的血浆代谢组和肠道微生物组成均异常 (2021, **IF:4.6**, Q1, Frontiers in cell and developmental biology)³。此外,一项儿童的 scRNA-seq 数据分析表明,T 淋巴细胞的代谢异常主要集中在糖酵解/糖异生上。此外,自然杀伤细胞的代谢异常集中在氧化磷酸化上,治疗免疫细胞的异常代谢途径可能有助于开发治疗 AA 的新策略 (2023, **IF:3.5**, Q2, Frontiers in oncology)⁴。

综上,结合 TWAS 以及 AA 的细胞代谢的分析策略将可能成为发现 AA 疾病机制或治疗的重要方法。通过 TWAS 发现源于遗传突变导致的基因表达改变,随后在 AA 的细胞代写上分析这种影响,从而发现基因突变对于 AA 患者细胞代谢的改变。

2 可行性

2.1 以 "Aplastic anemia" AND "GWAS" 搜索文献。

Figure 1: Unnamed chunk 6

2.2 以 "Aplastic anemia" AND "metabolic" 搜索文献。

≫⋘

3 创新性

 $3.1\,\,$ 以 "Aplastic anemia" AND "TWAS" 搜索文献。

3.2 以 "Aplastic anemia" AND "TWAS" AND "metabolic" 搜索文献。

4 参考文献和数据集

4.1 GWAS 数据

$4.2 ext{ scRNA-seq}$

• GSE279914

Table 2: AA GSE279914 metadata

rownames	title	batch.ch1	cell.l	diseas	diseas	donor.ch1	tissue
GSM858	EG34,	9	none	diagnosis	aplast	D21, D22	bone m
GSM858	EG36,	9	Nalm-6	follow-up	aplast	D21, D	bone m
GSM858	EG38,	10	Nalm-6	diagnosis	refrac	D24, D	bone m
GSM858	EG40,	10	none	diagnosis	refrac	D26, D27	bone m
GSM858	$EG46, \dots$	12	Nalm-6	diagnosis	myelod	D32, D	bone m
GSM858	EG54,	14	none	diagnosis	myelod	D38, D	bone m
GSM858	EG57,	14	none	diagnosis	myelod	D41, D42	bone m
GSM858	EG34,	9	none	diagnosis	aplast	D21, D22	bone m
GSM858	EG36,	9	Nalm-6	follow-up	aplast	D21, D	bone m
GSM858	EG38,	10	Nalm-6	diagnosis	refrac	D24, D	bone m
GSM858	EG40,	10	none	diagnosis	refrac	D26, D27	bone m
GSM858	EG46,	12	Nalm-6	diagnosis	myelod	D32, D	bone m
GSM858	EG54,	14	none	diagnosis	myelod	D38, D	bone m
GSM858	EG57,	14	none	diagnosis	myelod	D41, D42	bone m

4.3 单细胞数据预测代谢通量的方法

- scFEA 通过 scRNA-seq 预测代谢通量 (2021, **IF:6.2**, Q1, Genome research)⁵
- scFEA 的应用实例 (2023, **IF:3.9**, Q2, Frontiers in endocrinology)⁶

Reference

- 1. Young, N. S. Aplastic anemia. The New England journal of medicine 379, 1643–1656 (2018).
- 2. Savage, S. A. *et al.* Genome-wide association study identifies hla-dpb1 as a significant risk factor for severe aplastic anemia. *American journal of human genetics* **106**, 264–271 (2020).
- 3. Shao, Y. et al. Plasma metabolomic and intestinal microbial analyses of patients with severe aplastic anemia. Frontiers in cell and developmental biology 9, (2021).
- 4. Zhou, Q. et al. Single-cell rna sequencing depicts metabolic changes in children with aplastic anemia. Frontiers in oncology 13, (2023).
- 5. Alghamdi, N. et al. A graph neural network model to estimate cell-wise metabolic flux using single-cell rna-seq data. Genome research **31**, 1867–1884 (2021).

6. Agoro, R. et al. Single cell cortical bone transcriptomics define novel osteolineage gene sets altered in chronic kidney disease. Frontiers in endocrinology 14, (2023).	n