Перестановки, цикловая структура, порядок перестановки

Определение 1. Перестановкой n элементов (или подстановкой из n элементов) называется биекция n-элементного множества на себя. Множество всех перестановок множества $\{1, ..., n\}$ обозначается S_n .

Определение 2. Произведением перестановок называется их композиция как отображений (обозначение: $\alpha\beta$). Перестановка, переводящая каждый элемент в себя, называется тождественной и обозначается е.

Определение 3. Порядком перестановки α называется наименьшее натуральное число n, такое что $\alpha^n = e$ (почему такое n существует?).

Задача 1. а) Вычислите произведение перестановок $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ и $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$.

б) Вычислите
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 2 & 5 & 1 & 4 \end{pmatrix}^2$$
 и $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 2 & 5 & 1 & 4 \end{pmatrix}^4$.
в) Вычислите $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}^{100}$.

в) Вычислите
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}^{100}$$
.

Определение 4. Порядком перестановки α называется наименьшее натуральное число n, такое что $\alpha^n = e$ (почему такое n существует?).

Задача 2. Найдите порядок перестановки $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 2 & 5 & 1 & 4 \end{pmatrix}$.

Определение 5. Графом перестановки α называется ориентированный граф, вершины которого числа от 1 до n, а ребра ведут из i в $\alpha(i)$.

Задача 3. а) Докажите, что любая перестановка разбивается на непересекающиеся циклы (т.е. её граф представляет собой объединение непересекающихся циклов).

- б) Граф перестановки α распадается на циклы длины d_1, d_2, \ldots, d_k . Чему равен порядок α ?
- в) Пусть $\alpha \in S_n$, оцените через n и k порядок α .

Определение 6. Циклом длины l называется перестановка $\alpha \in S_n$ элемантов i_1, \ldots, i_l , такая что $\alpha(i_i) = \alpha(i_{i+1})$ (сложение происходит по модулю l), а на всех остальных элементах тождественна. Для упрощения записи $\alpha = (i_1, \ldots, i_l).$

Определение 7. Циклы называются независимыми, если их элементы не пересекаются. Если цклы α и β независимы, то $\alpha\beta = \beta\alpha$.

Теорема 1. Любую перестановку можно представить в виде произведения независимых циклов.

- **Задача 4.** Существует ли перестановка, дающая при возведении в квадрат транспозицию (перестаноку, которая меняет два элемента местами, а все остальные оставляет неподвижными)?
- **Задача 5.** На полковом плацу нарисован прямоугольник 1×7 , разбитый на 7 квадратов. В квадратах написаны числа от 1 до 7, но не обязательно по порядку. Старшина выстроил семерых солдат в шеренгу так, что каждый стоит в своем квадрате. По команде "Переставься! "каждый солдат переходит из своего квадрата в k-ый слева, где k-число, написанное в квадрате, где стоит солдат. Докажите, что не больше, чем через 12 команд начальное расположение солдат повторится.
- **Задача 6.** В некотором городе разрешаются только парные обмены квартир. Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
- **Задача 7.** В городе Урюпинске разрешены только тройные обмены квартир. Может ли в результате нескольких обменов получиться так, что семья Ивановых поменяется квартирами с семьёй Петровых, а все остальные жители останутся при своих квартирах?