Mark Scheme Electric Fields Past Paper Questions Jan 2002—Jan 2010 (old spec)

4(a)(i) (force) to the right \checkmark

(ii) electrons accelerate or speed increases ✓ (2)

Q4 Jan 2002

- sketch to show path curving upwards in the field (b)(i)(must not become vertical) ✓
 - (ii) horizontal component of velocity is unchanged ✓ vertical or upwards acceleration (or force) ✓ parabolic path described (or named) ✓

 $\max(3)$

(5)

3(a)(i) $E = \frac{Q}{4\pi\varepsilon_0 r^2} = \frac{29 \times 1.6 \times 10^{-19}}{4\pi \times 8.85 \times 10^{-12} \times (1..15 \times 10^{-10})^2} \checkmark$ Q3 Jan 2003 $= 3.15 \times 10^{12} \text{ V m}^{-1} \text{ (or N C}^{-1}) \checkmark$

(a)(ii)
$$V(=-\frac{GM}{r}) = (-) \frac{6.67 \times 10^{-11} \times 63 \times 1.66 \times 10^{-27}}{1.15 \times 10^{-10}} \checkmark$$

= $(-) 6.07 \times 10^{-26} \checkmark - \text{sign and J kg}^{-1} \checkmark$ (5)

(b) arrow pointing to the right \checkmark (1)(6)

Q2 Jan 2004 (a)

quantity	SI unit	
(gravitational potential)	$J kg^{-1}$ or $N m kg^{-1}$	scalar
(electric field strength)	$N C^{-1}$ or $V m^{-1}$	vector
(magnetic flux density	T or $Wb m^{-2}$ or $N A^{-1} m^{-1}$	vector

6 entries correct
$$\checkmark\checkmark\checkmark$$
4 or 5 entries correct $\checkmark\checkmark$
2 or 3 entries correct \checkmark
(3)

(b)(i)
$$mg = EQ \checkmark$$

$$E\left(=\frac{mg}{Q} = \frac{4.3 \times 10^{-9} \times 9.81}{3.2 \times 10^{-12}}\right) = 1.32 \times 10^{4} (\text{V m}^{-1}) \checkmark$$

(ii) positive ✓ (3)

(6)

Ques	tion 5		
(a)	(i)	$E\left(=\frac{V}{d}\right) = \frac{1400}{15 \times 10^{-3}} \checkmark (= 9.3 \times 10^4 \text{ V m}^{-1})$ Q5 Jan 2006	
	(ii)	$t\left(=\frac{l}{v}\right) = \frac{30 \times 10^{-3}}{3.2 \times 10^{7}} = 9.38 \times 10^{-10} \text{ s} \checkmark$	5
	(iii)	$ma_y = Ee \checkmark$ $a_y = \frac{9.3 \times 10^4 \times 1.60 \times 10^{-19}}{9.11 \times 10^{-31}} \checkmark (= 1.64 \times 10^{16} \text{ m s}^{-2})$ acceleration is upwards [or towards + plate] \checkmark	
(b)		$v_y (= a_y t) = 1.64 \times 10^{16} \times 9.38 \times 10^{-10} \checkmark (= 1.54 \times 10^7 \text{ m s}^{-1})$ $v = \sqrt{(1.54 \times 10^7)^2 + (3.2 \times 10^7)^2} = 3.55 \times 10^7 \text{ m s}^{-1} \checkmark$ at $\tan^{-1} \left(\frac{1.54}{3.2}\right) = 26^\circ$ above the horizontal \checkmark	3
		Total	8

Question 3		
(a) (i)	force per unit charge ✓ Q3 Jun 2006 acting on a positive charge ✓	3
(ii)	vector ✓	
(b) (i)	$F\left(=\frac{Q_1Q_2}{4\pi\varepsilon_0 r^2}\right) = \frac{4.0 \times 10^{-9} \times 8.0 \times 10^{-9}}{4\pi \times 8.85 \times 10^{-12} \times (80 \times 10^{-3})^2} $ $= 4.5(0) \times 10^{-5} \text{ N} \checkmark$	
(ii)	(use of $V = \frac{Q}{4\pi\varepsilon_0 r}$ gives) $0 = \left(\frac{4.0 \times 10^{-9}}{4\pi\varepsilon_0 x}\right) - \left(\frac{8.0 \times 10^{-9}}{4\pi\varepsilon_0 (80 \times 10^{-3} - x)}\right)$	4
	or $\frac{4}{x} = \frac{8}{80 - x}$ x = 26.7 mm	
(c)	E_8 Correct directions for E_4 and $E_8 \checkmark$ E_8 approx twice as long as $E_4 \checkmark$ correct direction of resultant R shown \checkmark	3
	Total	10

Questio	n 4				
(a) (i	i)	$E\left(=\frac{Q}{4\pi\varepsilon_0 r^2}\right) = \frac{79 \times 1.6 \times 10^{-19}}{4\pi \times 8.85 \times 10^{12} \times \left(3.0 \times 10^{-14}\right)^2} \checkmark \text{ Q4 Jun 2007}$,		
		(gives $E = 1.3 \times 10^{20} \text{ V m}^{-1} (1.26 \times 10^{20})$)			
(i	ii)	$F (= EQ') = 1.26 \times 10^{20} \times 2 \times 1.60 \times 10^{-19} \checkmark$		5	
		= 40 N (40.3) ✓			
(ii	iii)	$V\left(=\frac{Q}{4\pi\varepsilon_0 r}\right) = \frac{79 \times 1.6 \times 10^{-19}}{4\pi \times 8.85 \times 10^{-12} \times 3.0 \times 10^{-14}} \checkmark$ gives $V = 3.8 \times 10^6 \text{ V (or J C}^{-1}) (3.79 \times 10^6) \checkmark$			
(b) (i	i)	$kinetic\;energy\toelectric\;potential\;energy\tokinetic\;energy\;\checkmark$			
(ii	ii)	initial kinetic energy = potential energy at point P ✓		4	
		= $(2e)V\checkmark$ = $2 \times 1.60 \times 10^{-19} \times 3.79 \times 10^{6} = 1.21 \times 10^{-12}(J)\checkmark$			
		То	tal	9	
Ouestion	n 3		· ·		

Question 3			
(a)	(i)	force is perpendicular to initial velocity or acts in opposite direction to direction of electric field ✓	
		initial velocity component is maintained ✓ Q3 Jan 2008	
		electron is accelerated in perpendicular direction ✓	
		parabolic path ✓	max 5
	(ii)	force is in opposite direction to initial velocity ✓	
		electron decelerated ✓	
		direction of motion may eventually be reversed ✓	

(b) (i)
$$E\left(\frac{V}{d}\right) = \frac{110}{44 \times 10^{-3}} = 2500 \,\mathrm{V} \,\mathrm{m}^{-1} \,(\mathrm{or} \,\mathrm{N} \,\mathrm{C}^{-1}) \,\checkmark$$
(ii)
$$F\left(=EQ\right) \,2500 \times 1.6 \times 10^{-19} = 4.0 \times 10^{-16} \,\mathrm{N} \,\checkmark$$
(iii)
$$E_{\mathrm{k}} \,\mathrm{gained} \,(=E_{\mathrm{p}} \,\mathrm{lost}) = eV \,\checkmark$$

$$= 1.6 \times 10^{-19} \times 110 = 1.7(6) \times 10^{-17} \,(\mathrm{J}) \,\checkmark$$

$$[\mathbf{or} \, E_{\mathrm{k}} \,\mathrm{gained} = Fd \,\checkmark$$

$$= 4.0 \times 10^{-16} \times 44 \times 10^{-3} = 1.7(6) \times 10^{-17} \,(\mathrm{J}) \,\checkmark]$$

$$[\mathbf{or} \,\mathrm{use} \,\mathrm{of} \, F = ma \,\mathrm{and} \,v^2 = u^2 + 2as \,\mathrm{gives}$$

$$a = 4.39 \times 10^{14} \,(\mathrm{m} \,\mathrm{s}^{-2}) \,\mathrm{and} \,v^2 = 3.86 \times 10^{13} \,(\mathrm{m}^2 \,\mathrm{s}^{-2}) \,\checkmark$$

$$E_{\mathrm{k}} \,\mathrm{gained} = \frac{1}{2} \,mv^2 = \frac{1}{2} \times 9.11 \times 10^{-31} \times 3.86 \times 10^{13}$$

$$= 1.7(6) \times 10^{-13} \,\mathrm{J} \,\checkmark]$$

$$\mathsf{Total} \,\,\mathbf{9}$$

Que	stion 4		
(a)	(i)	$V = \frac{Q}{4\pi\varepsilon_0 r}$ and $E_p = eV \checkmark$ Q4 Jan 2008	
		gives $E_p\left(\frac{e^2}{4\pi\varepsilon_0 r}\right) = \frac{(1.6 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times 2.0 \times 10^{-15}} \checkmark$	_
		(= 1.15 × 10 ⁻¹³ J)	5
	(ii)	$2 \times \frac{1}{2} mv^2 = 1.15 \times 10^{-13} \checkmark$	
		gives $v^2 = \frac{1.15 \times 10^{-13}}{2 \times 1.67 \times 10^{-27}} \checkmark \therefore v = 5.8(7) \times 10^6 \mathrm{m s^{-1}} \checkmark$	
(b)	(i)	$\Delta m = 2 \times (2.01355) - (3.01550 + 1.00728) \checkmark (= 4.32 \times 10^{-3} \text{u})$	
		$E = 4.32 \times 10^{-3} \times 931.3 = 4.02 \text{ (MeV) } \checkmark$	
		$= 4.02 \times 10^{6} \times 1.6 \times 10^{-19} = 6.4(4) \times 10^{-13} \text{J} \checkmark$	
	(ii)	energy per unit mass = $\frac{6.44 \times 10^{-13}}{4 \times 1.67 \times 10^{-27}}$	4
		$= 9.6(4) \times 10^{13} (J \text{kg}^{-1}) \checkmark$	
		[denominator may be $2 \times 2.014 \times 1.66 \times 10^{-27}$]	
(c)		supply of fuel is almost unlimited (deuterium from sea water) ✓	
		fewer waste or radioactivity or environmental problems ✓	max 2
		energy released per unit mass is (generally) greater ✓	
		Total	11

Ques	stion 4		
(a)	(i)	radial straight lines ✓ Q4 Jun 2009	
		symmetrical in all directions ✓	
		directed inwards towards charge ✓	4
		(marks could be taken from diagram)	
	(ii)	line, labelled L , which is a circular arc (or a complete circle) centred on charge ✓	
(b)	(i)	$E\left(=\frac{Q}{4\pi\varepsilon_0 r^2}\right) = \frac{0.80 \times 10^{-9}}{4\pi \times 8.85 \times 10^{-12} \times \left(40 \times 10^{-3}\right)^2} \checkmark$	
		$= 4.50 \times 10^3 (\text{V m}^{-1}) \checkmark$	5
	(ii)	point marked at (40, 4.5) ✓	3
		curve of decreasing gradient ✓	
		correct $E \propto (1/r^2)$ relationship shown by line drawn \checkmark	
		Total	9

Question 2		
(a)	graph B ✓	1
(b)	for graph A, $V \propto \frac{1}{r} \checkmark$ Q2 Jan 2010	
	for graph B, $E \propto \frac{1}{r^2} \checkmark$	
	[if candidate correctly quotes equations for V and E only, with no further explanation in words, allow ✓ only]	2
	[alternatively allow a fully correct reference to the – and + gradients of graphs A and B respectively in regions R for ✓✓]	
(c)	$E = \frac{Q}{4\pi\varepsilon_0 r^2}$ and $V = \frac{Q}{4\pi\varepsilon_0 r}$ give $E = \frac{V}{r}$	
	[no credit for using just $E = \frac{V}{d}$]	2
	∴ potential of the point $V = E r = 3.6 \times 10^4 \times 40 \times 10^{-3} = 1.4 \times 10^3 \text{ V} \checkmark (1440) \text{ (allow J C}^{-1}\text{)}$	
	Total	5