Computer-Assisted Problem-Solving / Numerical Methods

Root-Finding Methods

version: February 12th, 2020

Legend: Method, Theory, Example, Advanced, Appendix

Method

Bisection Method

Algorithm to solve f(x) = 0

- 1. Calculate $m = \frac{a+b}{2}$ and f(m)
- 2. If f(m) = 0 we have found a zero. Done.
- 3. If f(a) * f(m) < 0 move right border: b = mIf f(a) * f(m) > 0 move left border: a = m
- 4. If $|a-b| < \epsilon$ accuracy is sufficient. Take $m = \frac{a+b}{2}$ (\Longrightarrow maximum error $\epsilon/2$). Done.
- 5. Go to step (1).

Increase of accuracy after n iterations:

Interval length =
$$(\frac{1}{2})^n(b-a)$$

For $n=10: (\frac{1}{2})^{10} \approx 10^{-3}$ \implies 3 extra significant digits

"linear convergence with factor 1/2"

Convergence Order and Factor

Let x = p is true solution of f(x) = 0

Convergence: iterations $x_n \to p$

Error at iteration $n : \epsilon_n = |x_n - p|$

Error behaviour: $\epsilon_{n+1} = K \epsilon_n^{\alpha}$

Method converges with Order α and Factor K

Example

Example Bisection Method

Calculate $\sqrt{2} = 1.4142135623...$ via $f(x) = x^2 - 2 = 0$ Start interval [1, 2]

n	a_n	b_n	$x_n = m$
0	1	2	1.5
1	1	1.5	1.25
2	1.25	1.5	1.375
3	1.375	1.5	1.4375
4	1.375	1.4375	1.40625
5	1.40625	1.4375	1.421875
6	1.40625	1.421875	1.414063
7	1.414063	1.421875	1.417969
8	1.414063	1.417969	1.416016
9	1.414063	1.416016	$\boxed{1.415040}$
10	1.414063	1.415040	1.414552

3 extra significant digits at n = 10

Method

Successive Substitution Method

Re-formulate problem: $f(x) = 0 \Longrightarrow x = g(x)$

Iterative method: $x_n = g(x_{n-1})$

Example

Example Successive Substitution

Calculate zero(s) of $f(x) = x^2 - 3x + 1$

Answer: $x = \frac{3}{2} \pm \frac{1}{2}\sqrt{5} \approx 2.618034$ or $x \approx 0.381966$

Options: $g_1(x) = \frac{1}{3}(x^2 + 1)$, $g_2(x) = 3 - 1/x$, etc.

Starting values: $x_0 = 1$ or $x_0 = 3$

	$g_1(x) = \frac{1}{3}(x^2 + 1)$		$g_2(x) = 3 - \frac{1}{x}$	
n	$x_0 = 1$	$x_0 = 3$	$x_0 = 1$	$x_0 = 3$
0	1	3	1	3
1	0.666667	3.333333	2.000000	2.666667
2	0.481481	4.037037	2.500000	$\boldsymbol{2.625000}$
3	0.410608	5.765889	2.600000	2.619048
4	0.389533	11.415160	2.615385	$\boldsymbol{2.618182}$
5	0.383912	43.768626	2.617647	2.618056
6	0.382463	•••	2.617978	2.618037
7	0.382093	•••	2.618026	2.618034
8	0.381998	•••	2.618033	2.618034
9	0.381974	• • •	2.618034	2.618034

Convergence Theorem

Convergence Theorem Successive Substitution

If:

- 1) x = p is a solution of x = g(x)
- 2) g(x) has continuous derivative in interval I around p
- 3) $|g'(x)| \le K < 1$ in I

Then:

Successive substitution converges for arbitrary starting values in I with convergence rate K

Proof:

Mean Value Theorem (See Appendix) \Longrightarrow

 $\exists t \in [x, p] \text{ such that:}$

$$g(x) - g(p) = g'(t)(x - p).$$

Furthermore g(p) = p and $x_n = g(x_{n-1})$

Using $|g'(x)| \le K < 1$ it follows that

$$|x_n - p| = |g(x_{n-1}) - g(p)| = |g'(t)||x_{n-1} - p| \le K|x_{n-1} - p|$$

So that
$$\epsilon_n \leq K\epsilon_{n-1}$$

with $\epsilon_n = |x_n - p|$ the error at iteration step n

Order of Convergence

Taylor-expansion around x = p:

$$x_{n+1} = g(x_n) = g(p) + g'(p)(x_n - p) + \frac{1}{2}g''(p)(x_n - p)^2 + \dots$$

Error in iteration n: $\epsilon_n = x_n - p$

By definition: g(p) = p

Therefore:

$$\epsilon_{n+1} = g'(p)\epsilon_n + \frac{1}{2}g''(p)\epsilon_n^2 + \dots$$

If $g'(p) \neq 0$:

 \implies linear convergence: $\epsilon_{n+1} \sim \beta_1 \epsilon_n$, with $\beta_1 = g'(p)$

If g'(p) = 0 and $g''(p) \neq 0$:

 \implies quadratic conv.: $\epsilon_{n+1} \sim \beta_2 \, \epsilon_n^2$, with $\beta_2 = \frac{1}{2} g''(p)$

Example Successive Substitution

Find the zero of $f(x) = x^3 + 2x^2 + 10x - 20$

Redefine problem: x = g(x) with

$$g(x) = \frac{20}{x^2 + 2x + 10}$$
$$g'(x) = -40 \frac{x+1}{(x^2 + 2x + 10)^2}$$

It follows that:

$$g'(x) = 0 \text{ if } x = -1$$

$$g'(x) > 0 \text{ if } x < -1$$

$$g'(x) < 0 \text{ if } x > -1$$

$$\Rightarrow g'(x) = 0 \text{ only in } x = -1$$

x = -1 is not a fixed point of $g(x) \Longrightarrow$

linear convergence? (no quadratic convergence)

Initial value $x_0 = 1 \Longrightarrow$

 $|g'(x_0)| = |g'(1)| \approx |-0.47| < 1 \Longrightarrow$ convergence! (if one starts close enough to the zero point)

n	x_n	$x_n - x_{n-1}$	$\frac{x_n - x_{n-1}}{x_{n-1} - x_{n-2}}$
0	1		
1	1.53846	+ 0.53846	
2	1.29502	- 0.24344	- 0.45
3	1.40183	+ 0.10681	- 0.44
4	1.35421	- 0.04762	- 0.45
5	1.37530	+ 0.02109	- 0.44
6	1.36593	- 0.00937	- 0.44
7	1.37009	+ 0.00416	- 0.44
8	1.36824	- 0.00185	- 0.44
9	1.36906	+ 0.00082	- 0.44
10	1.36870	- 0.00036	- 0.44
11	1.36886	+ 0.00016	- 0.44

Solution: $p \approx 1.3688$.

Leonardo of Pisa (Fibonacci; 1225 A.D.):

$$p = 1.368808107$$

Convergence rate: $\tilde{K} \approx -0.44$

This equals: $g'(p) \approx g'(1.4) \approx -0.44$, since

$$\epsilon_{n+1} = g'(p)\epsilon_n + \dots$$

Error Estimates

Convergence rate $\tilde{K} = \frac{x_n - x_{n-1}}{x_{n-1} - x_{n-2}}$:

$$\epsilon_{n} = \tilde{K}\epsilon_{n-1} = (1 + \tilde{K})\epsilon_{n-1} - \tilde{K}\frac{\epsilon_{n-1}}{\tilde{K}} \Longrightarrow$$

$$\epsilon_{n} = (1 + \tilde{K})\epsilon_{n-1} - \tilde{K}\epsilon_{n-2} \Longrightarrow$$

$$\epsilon_{n} - \epsilon_{n-1} = \tilde{K}(\epsilon_{n-1} - \epsilon_{n-2}) \Longrightarrow$$

$$(x_{n} - p) - (x_{n-1} - p) = \tilde{K}[(x_{n-1} - p) - (x_{n-2} - p)] \Longrightarrow$$

$$\tilde{K} = \frac{x_{n} - x_{n-1}}{x_{n-1} - x_{n-2}}$$

Error estimate 1:

$$|(x_n - p)| = |(x_{n+1} - p) + (x_n - x_{n+1})| \le$$

$$|(x_{n+1} - p)| + |(x_n - x_{n+1})| \le K|(x_n - p)| + |(x_n - x_{n+1})| \Longrightarrow$$

$$|(x_n - p)| \le \frac{1}{1 - K}|(x_n - x_{n+1})|$$

Use this to estimate the error:

$$\epsilon_n \le \frac{1}{1 - K} |(x_n - x_{n+1})|$$

$$\Longrightarrow \epsilon_{n+1} \le K \epsilon_n \le \frac{K}{1 - K} |(x_n - x_{n+1})|$$

Error estimate 2 (use K repeatedly):

$$|(x_{n+1} - x_n)| = |g(x_n) - g(x_{n-1})| \le K|x_n - x_{n-1}| = \dots$$

$$\le K^n|x_1 - x_0| \Longrightarrow \epsilon_n \le \frac{K^n}{1 - K}|(x_1 - x_0)|$$

Method

Newton's Method

Taylor expansion around $x = x_n$:

$$f(x_{n+1}) = f(x_n) + (x_{n+1} - x_n)f'(x_n) + \frac{(x_{n+1} - x_n)^2}{2}f''(x_n) + \dots$$

Goal:

new value x_{n+1} is a good approximation of the zero: $f(x_{n+1})\approx 0$

If $x_{n+1} - x_n$ small \Longrightarrow neglect 2nd and higher order

$$f(x_{n+1}) = f(x_n) + (x_{n+1} - x_n)f'(x_n) \approx 0$$

Newton's Method:

$$\implies x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Conditions: f'(x) exists and is continuous $f'(x) \neq 0$ for $x \approx x_n$

Example Newton's Method

Find
$$\sqrt{2}$$
 via $f(x) = x^2 - 2 = 0$

Initial value $x_0 = 1$

$$f'(x) = 2x \Longrightarrow$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{(x_n)^2 - 2}{2x_n} = \frac{1}{2}(x_n + \frac{2}{x_n})$$

n	x_n
0	1
1	1.500000
2	1.416667
3	1.414216
4	1.414214

Correct value: $\sqrt{2} = 1.41421356237...$

After 4 iterations already 6 correct digits!

Heron's rule (Heron of Alexandria; 10-70 A.D.)

Convergence Newton's Method

Method satisfies $x_{n+1} = g(x_n)$, with

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

First derivative:

$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}$$

At the zero x = p: $f(p) = 0 \Longrightarrow g'(p) = 0$

Second derivative: $g''(p) = f''(p)/f'(p) \neq 0$ (check yourself)

Consequence:

if convergence, then quadratic convergence

For convergence still $|g'(x)| \le 1$ required near zero x = p

Problems with Newton

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Possible Problems:

1: f'(x) computationally expensive

2: $f'(x) \approx 0 \Longrightarrow \text{number loss}$

may hamper convergence

3:
$$f'(x) = 0$$

Multiple roots:

$$f(x) = (x - p)^n h(x) \quad (n > 1) \Longrightarrow$$

$$f'(x) = n (x - p)^{(n-1)} h(x) + (x - p)^n h'(x) \Longrightarrow$$

$$f'(p) = 0$$

First derivative of g(x) function:

$$g(x) = x - \frac{f(x)}{f'(x)} \Longrightarrow g'(x) = \frac{f(x)f''(x)}{(f'(x))^2} \Longrightarrow$$
$$g'(p) = \dots = \frac{(n-1)}{n}$$

For n > 1 no 2nd order convergence: $g'(p) \neq 0$

Example Fixed Point methods

Solve: $\sin(x) + x^2 = 2$ **for** x > 0

A plot shows $x \approx 1$

Find zero: $f(x) = \sin(x) + x^2 - 2 = 0$

1) Successive Substitution:

$$g(x) = \alpha(\sin(x) + x^2 - 2) + x$$

Conditions for α :

$$g'(x) = \alpha \left(\cos(x) + 2x\right) + 1 \Longrightarrow |g'(1)| \approx |2.5 \alpha + 1|$$

 $|g'(1)| < 1 \Longleftrightarrow -0.8 < \alpha < 0$
 $|g'(1)|$ minimum if $\alpha = -0.4$ (\Rightarrow fast method)

Iteration rule:

$$x_{n+1} = g(x_n) = \alpha \left(\sin(x_n) + x_n^2 - 2 \right) + x_n$$

2) Newton's Method:

Iteration rule:

$$f'(x) = \cos(x) + 2x \Longrightarrow$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\sin(x_n) + x_n^2 - 2}{\cos(x_n) + 2x_n}$$

Solution of $\sin(x) + x^2 = 2$ for x > 0

n	$\alpha = -7/10$	$\alpha = -4/10$	Newton
0	1.0	1.0	1.0
1	1.11097031	1.06341161	1.06240557
2	1.01970098	1.06146661	1.06154993
3	1.09548188	1.06155345	1.06154977
4	1.03302129	1.06154961	1.06154977
5	1.08483286	1.06154978	1.06154977
6	1.04207148	1.06154977	1.06154977
7	1.07751670	1.06154977	1.06154977
8	1.04823788	1.06154977	1.06154977
9	1.07249445	1.06154977	1.06154977
10	1.05244661	1.06154977	1.06154977
11	1.06904931	1.06154977	1.06154977
12	1.05532225	1.06154977	1.06154977
13	1.06668732	1.06154977	1.06154977
14	1.05728839	1.06154977	1.06154977

Newton: vary fast (quadratic convergence)

Successive Substitution:

- 1) fast convergence for $\alpha = -0.4 \ (K \approx 0)$
- 2) 100 iterations needed if $\alpha = -0.7 (K \approx 0.75 < 1)$

Method

Secant Method

Alternative for Newton

Approximation of derivative

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

Newton:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Longrightarrow$$

Secant:
$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Be efficient: store x_{n-1} and $f(x_{n-1})$

Only one function call needed: $f(x_n)$

Advantage: $f'(x_n)$ not needed

Disadvantage: not 2nd order anymore

Convergence order:

$$\alpha = \frac{1}{2}(1+\sqrt{5}) \approx 1.618$$
 (golden ratio)

(so better than 1st order!)

Example: Secant vs. Newton

Example: $f(x) = x^6 - x - 1$ and $x_0 = 2$

Solution: 1.134724138401519

Secant

\overline{n}	x_n	ϵ_n	$x_n - x_{n-1}$	
1	1.00000000	$1.347\mathrm{E}{-01}$	$-1.000 \mathrm{E}{+00}$	
2	1.01612903	$1.186\mathrm{E}{-01}$	$1.613\mathrm{E}{-02}$	
3	1.19057777	$-5.585\mathrm{E}{-02}$	$1.744\mathrm{E}{-01}$	
4	1.11765583	$1.707\mathrm{E}{-02}$	$-7.292 \mathrm{E}{-02}$	
5	1.13253155	$2.193\mathrm{E}{-03}$	$1.488\mathrm{E}{-02}$	
6	1.13481681	$-9.267 \mathrm{E}{-05}$	$2.285\mathrm{E}{-03}$	
7	1.13472365	$4.925\mathrm{E}{-07}$	$-9.316\mathrm{E}{-05}$	
8	1.13472414	$1.103\mathrm{E}{-10}$	$4.923\mathrm{E}{-07}$	
9	1.13472414	-1.319E-16	$1.103\mathrm{E}{-10}$	

Newton

\overline{n}	x_n	ϵ_n	$x_n - x_{n-1}$	$(\epsilon_n)/(\epsilon_{n-1})^2$
1	1.68062827	$-5.459\mathrm{E}{-01}$	$-3.194\mathrm{E}{-01}$	$-7.291\mathrm{E}{-01}$
2	1.43073899	$-2.960 \mathrm{E}{-01}$	$-2.499 \mathrm{E}{-01}$	$-9.933 \mathrm{E}{-01}$
3	1.25497096	$-1.202 \mathrm{E}{-01}$	$-1.758\mathrm{E}{-01}$	$-1.372\mathrm{E}{+00}$
4	1.16153843	$-2.681\mathrm{E}{-02}$	$-9.343 \mathrm{E}{-02}$	$-1.854\mathrm{E}{+00}$
5	1.13635327	$-1.629\mathrm{E}{-03}$	$-2.519\mathrm{E}{-02}$	$-2.266\mathrm{E}{+00}$
6	1.13473053	$-6.390 \mathrm{E}{-06}$	$-1.623 \mathrm{E}{-03}$	$-2.408\mathrm{E}{+00}$
7	1.13472414	$-9.870 \mathrm{E}{-11}$	$-6.390 \mathrm{E}{-06}$	$-2.417\mathrm{E}{+00}$
8	1.13472414	$2.220\mathrm{E}{-16}$	$-9.870 \mathrm{E}{-11}$	2.279E + 04
9	1.13472414	$2.220\mathrm{E}{-16}$	$0.000\mathrm{E}{+00}$	$4.504\mathrm{E}{+15}$

Advanced

Aitken/Steffensen Acceleration

Make use of linear convergence:

$$\frac{\epsilon_n}{\epsilon_{n-1}} \approx \frac{\epsilon_{n-1}}{\epsilon_{n-2}} \Longrightarrow \frac{p - x_n}{p - x_{n-1}} \approx \frac{p - x_{n-1}}{p - x_{n-2}}$$

⇒Approximation for solution

$$p \approx x_{n-2} - \frac{(x_{n-1} - x_{n-2})^2}{x_n - 2x_{n-1} + x_{n-2}}$$

Aitken extrapolation (improved solution)

$$\hat{x}_{n-2} = x_{n-2} - \frac{(x_{n-1} - x_{n-2})^2}{x_n - 2x_{n-1} + x_{n-2}}$$

Aitken error estimation (backward)

$$\epsilon_{n-2} = |p - x_{n-2}| \approx \frac{(x_{n-1} - x_{n-2})^2}{x_n - 2x_{n-1} + x_{n-2}}$$

Alternative by Steffensen (forward)

$$\frac{\epsilon_{n-1}}{\epsilon_n} \approx \frac{\epsilon_{n-2}}{\epsilon_{n-1}} \Longrightarrow \frac{p - x_{n-1}}{p - x_n} \approx \frac{p - x_{n-2}}{p - x_{n-1}} \Longrightarrow$$

Extrapolation
$$p \approx \hat{x}_n = x_n - \frac{(x_{n-1} - x_n)^2}{x_{n-2} - 2x_{n-1} + x_n}$$

Error Estimation
$$\epsilon_n = |p - x_n| \approx \frac{(x_{n-1} - x_n)^2}{x_{n-2} - 2x_{n-1} + x_n}$$

Comparable to estimate:
$$\epsilon_{n+1} \leq \frac{K}{1-K} |(x_n - x_{n+1})|$$

Example Steffensen

 $6.28 + \sin(x) - x = 0$, solution: p = 6.0155030729454921...

Method: $x_{n+1} = 6.28 + \sin(x_n)$, with $x_0 = 6$

Steffensen Error Estimation

\overline{n}	x_n	$x_n - x_{n-1}$	$ ilde{K}_n$	$p-x_n$	err.est.
0	6.00000000			1.550 L-02	
1	6.00058450	5.845L-04		1.492 L-02	
2	6.00114577	5.613L-04	0.9603	1.436 L-02	1.356 L-02
3	6.00168482	5.390L-04	0.9604	1.382 L-02	1.308 L-02
4	6.00220261	5.178L-04	0.9606	1.330 L-02	1.261 L-02
5	6.00270006	4.974L-04	0.9607	1.280 L-02	1.216L-02
6	6.00317803	4.780L-04	0.9609	1.233 L-02	1.173 L-02
7	6.00363736	4.593L-04	0.9610	1.187 L-02	1.131L-02
8	6.00407883	4.415L-04	0.9611	1.142 L-02	1.091L-02
9	6.00450319	4.244L-04	0.9612	1.100 L-02	1.052 L-02

Steffensen Extrapolation

\overline{n}	x_n	$x_n - x_{n-1}$	$ ilde{K}_n$	$p-x_n$	
0	6.00000000			$1.550\mathrm{L}{-}02$	
1	6.00058450	5.845L-04		$1.492\mathrm{L}{-}02$	
2	6.00114577	5.613L-04	0.9603	$1.436\mathrm{L}{-}02$	
* 3	6.01470515	1.356L-02		7.979 L-04	*accel
4	6.01473365	2.850L-05		7.694 L-04	
5	6.01476113	2.748L-05	0.9642	7.419L-04	
* 6	6.01550080	7.397L-04		$2.271\mathrm{L}{-}06$	*accel
7	6.01550088	8.088L-08		2.190 L-06	
8	6.01550096	7.800L-08	0.9644	2.112L-06	
* 9	6.01550307	2.112L-06		-5.409 L-12	*accel

Acceptable error estimation Weak linear convergence $\tilde{K}_n \approx 0.96$ Extrapolation at * really helps! Extrapolation \Rightarrow almost 2nd order convergence

Appendix

Mean Value Theorem

Rolle's Theorem:

Suppose h(x) on [a,b] is continuous, with end points h(a) = h(b)

There must be a c in [a,b] such that: h'(c)=0

Define
$$h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

Then: h(a) = h(b) = 0

Rolle $\implies h'(c) = 0$ somewhere in [a, b]

Differentiation

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

At location x = c

$$h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$

Then $h'(c) = 0 \Longrightarrow$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

And finally f(b) - f(a) = f'(c)(b - a)