Course Code	Course Name	Credit
CSC303	Data Structure	03

Pre-re	Pre-requisite: C Programming				
~					
Cours	se Objectives: The course aims:				
1	To understand the need and significance of Data structures as a computer Professional.				
2	To teach concept and implementation of linear and Nonlinear data structures.				
3	To analyze various data structures and select the appropriate one to solve a specific real-				
	world problem.				
4	To introduce various techniques for representation of the data in the real world.				
5	To teach various searching techniques.				
Cours	se Outcomes:				
1	Students will be able to implement Linear and Non-Linear data structures.				
2	Students will be able to handle various operations like searching, insertion, deletion and				
	traversals on various data structures.				
3	Students will be able to explain various data structures, related terminologies and its types.				
4	Students will be able to choose appropriate data structure and apply it to solve problems in				
	various domains.				
5	5 Students will be able to analyze and Implement appropriate searching techniques for a given				
	problem.				
6	Students will be able to demonstrate the ability to analyze, design, apply and use data				
	structures to solve engineering problems and evaluate their solutions.				

		CV U	
Module		Detailed Content	Hours
1		Introduction to Data Structures	2
	1.1	Introduction to Data Structures, Concept of ADT, Types of Data Structures- Linear and Nonlinear, Operations on Data Structures.	
2		Stack and Queues	8
	2.1	Introduction, ADT of Stack, Operations on Stack, Array Implementation of Stack, Applications of Stack-Well form-ness of Parenthesis, Infix to Postfix Conversion and Postfix Evaluation, Recursion.	
	2.2	Introduction, ADT of Queue, Operations on Queue, Array Implementation of Queue, Types of Queue-Circular Queue, Priority Queue, Introduction of Double Ended Queue, Applications of Queue.	
3		Linked List	10
	3.1	Introduction, Representation of Linked List, Linked List v/s Array, Types of Linked List - Singly Linked List, Circular Linked List, Doubly Linked List, Operations on Singly Linked List and Doubly Linked List, Stack and Queue using Singly Linked List, Singly Linked List Application-Polynomial Representation and Addition.	
4		Trees	11
	4.1	Introduction, Tree Terminologies, Binary Tree, Binary Tree Representation, Types of Binary Tree, Binary Tree Traversals, Binary Search Tree, Operations on Binary Search Tree, Applications of Binary Tree-Expression Tree, Huffman Encoding, Search Trees-AVL, rotations in AVL Tree, operations on AVL Tree, Introduction of B Tree, B+ Tree.	
5		Graphs	4

	Introduction, Graph Terminologies, Representation of Graph, Graph Traversals-Depth First Search (DFS) and Breadth First Search (BFS), Graph Application-Topological Sorting.	
6	Searching Techniques	4
	Linear Search, Binary Search, Hashing-Concept, Hash Functions, Collision resolution Techniques	

Te	extl	bo	ok	S	:
					7

- 1 Aaron M Tenenbaum, Yedidyah Langsam, Moshe J Augenstein, "Data Structures Using C", Pearson Publication.
- 2 Reema Thareja, "Data Structures using C", Oxford Press.
- 3 Richard F. Gilberg and Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", 2ndEdition, CENGAGE Learning.
- 4 Jean Paul Tremblay, P. G. Sorenson, "Introduction to Data Structure and Its Applications", McGraw-Hill Higher Education
- 5 Data Structures Using C, ISRD Group, 2ndEdition, Tata McGraw-Hill.

References:

- 1 Prof. P. S. Deshpande, Prof. O. G. Kakde, "C and Data Structures", DreamTech press.
- 2 E. Balagurusamy, "Data Structure Using C", Tata McGraw-Hill Education India.
- 3 Rajesh K Shukla, "Data Structures using C and C++", Wiley-India
- 4 GAV PAI, "Data Structures", Schaum's Outlines
- 5 Robert Kruse, C. L. Tondo, Bruce Leung, "Data Structures and Program Design in C", Pearson Edition

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will consist of 6 questions, each carrying 20 marks.
- 2 The students need to solve a total of 4 questions.
- 3 Question No.1 will be compulsory and based on the entire syllabus.
- 4 Remaining question (Q.2 to Q.6) will be selected from all the modules.

Use	Useful Links		
1	https://nptel.ac.in/courses/106/102/106102064/		
2	https://www.coursera.org/specializations/data-structures-algorithms		
3	https://www.edx.org/course/data-structures-fundamentals		
4	https://swayam.gov.in/nd1_noc19_cs67/preview		

Lab Code	Lab Name	Credit
CSL301	Data Structures Lab	1

Pr	Prerequisite: C Programming Language.			
La	Lab Objectives:			
1	To implement basic data structures such as arrays, linked lists, stacks and queues			
2	Solve problem involving graphs, and trees			
3	To develop application using data structure algorithms			
4	Compute the complexity of various algorithms.			
La	Lab Outcomes:			
1	Students will be able to implement linear data structures & be able to handle operations like			
	insertion, deletion, searching and traversing on them.			
2	1			
	like insertion, deletion, searching and traversing on them			
3	Students will be able to choose appropriate data structure and apply it in various problems			
4	Students will be able to select appropriate searching techniques for given problems.			

Suggeste	Suggested Experiments: Students are required to complete at least 10 experiments.				
Star (*) n	Star (*) marked experiments are compulsory.				
Sr. No.	o. Name of the Experiment				
1*	Implement Stack ADT using array.				
2*	Convert an Infix expression to Postfix expression using stack ADT.				
3*	Evaluate Postfix Expression using Stack ADT.				
4	Applications of Stack ADT.				
5*	Implement Linear Queue ADT using array.				
6*	Implement Circular Queue ADT using array.				
7	Implement Priority Queue ADT using array.				
8*	Implement Singly Linked List ADT.				
9*	Implement Circular Linked List ADT.				
10	Implement Doubly Linked List ADT.				
11*	Implement Stack / Linear Queue ADT using Linked List.				
12*	Implement Binary Search Tree ADT using Linked List.				
13*	Implement Graph Traversal techniques:) Depth First Search b) Breadth First Search				
14	Applications of Binary Search Technique.				

Use	Useful Links:		
1	www.leetcode.com		
2	www.hackerrank.com		
3	www.cs.usfca.edu/~galles/visualization/Algorithms.html		
4	www.codechef.com		

Te	Term Work:			
1	Term work should consist of 10 experiments.			
2	Journal must include at least 2 assignments.			
3	The final certification and acceptance of term work ensures that satisfactory performance of			
	laboratory work and minimum passing marks in term work.			
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks,			
	Assignments: 05-marks)			
O	Oral & Practical exam			
	Based on the entire syllabus of CSL301and CSC303			

Course Code	Course Name	Credit
CSC402	Analysis of Algorithms	3

Pro	Prerequisite: Data structure concepts, Discrete structures		
Co	Course Objectives:		
1	To provide mathematical approaches for Analysis of Algorithms		
2	To understand and solve problems using various algorithmic approaches		
3	To analyze algorithms using various methods		
Co	Course Outcomes: At the end of the course learner will be able to		
1	Analyze the running time and space complexity of algorithms.		
2	Describe, apply and analyze the complexity of divide and conquer strategy.		
3	Describe, apply and analyze the complexity of greedy strategy.		
4	Describe, apply and analyze the complexity of dynamic programming strategy.		
5	Explain and apply backtracking, branch and bound.		
6	Explain and apply string matching techniques.		

Module		Detailed Contents	Hours
1		Introduction	8
	1.1	Performance analysis, space, and time complexity Growth of function,	
		Big-Oh, Omega Theta notation Mathematical background for algorithm	
		analysis.	
		Complexity class: Definition of P, NP, NP-Hard, NP-Complete	
		Analysis of selection sort, insertion sort.	
	1.2	Recurrences: The substitution method, Recursion tree method, Master	
		method	
2		Divide and Conquer Approach	6
	2.1	General method, Merge sort, Quick sort, Finding minimum and	
		maximum algorithms and their Analysis, Analysis of Binary search.	
3		Greedy Method Approach	6
	3.1	General Method, Single source shortest path: Dijkstra Algorithm	
		Fractional Knapsack problem, Job sequencing with deadlines,	
		Minimum cost spanning trees: Kruskal and Prim's algorithms	
4		Dynamic Programming Approach	9
	4.1	General Method, Multistage graphs, Single source shortest path:	
		Bellman Ford Algorithm	
		All pair shortest path: Floyd Warshall Algorithm, Assembly-line	
		scheduling Problem0/1 knapsack Problem, Travelling Salesperson	
		problem, Longest common subsequence	
5		Backtracking and Branch and bound	6
	5.1	General Method, Backtracking: N-queen problem, Sum of subsets,	
		Graph coloring	
	5.2	Branch and Bound: Travelling Salesperson Problem, 15 Puzzle problem	
6		String Matching Algorithms	4
	6.1	The Naïve string-matching algorithm, The Rabin Karp algorithm, The	
		Knuth-Morris-Pratt algorithm	

Textbooks:		
1	T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms", 2 nd	
	Edition, PHI Publication 2005.	
2	Ellis Horowitz, Sartaj Sahni, S. Rajsekaran. "Fundamentals of computer algorithms"	
	University Press.	

References:

- Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw-Hill Edition
- 2 S. K. Basu, "Design Methods and Analysis of Algorithm", PHI

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise of total six questions.
- 2 All question carries equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4 Only Four question need to be solved.
- In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Useful Links 1 https://nptel.ac.in/courses/106/106/106106131/ 2 https://swayam.gov.in/nd1_noc19_cs47/preview 3 https://www.coursera.org/specializations/algorithms 4 https://www.mooc-list.com/tags/algorithms

Course Name	Lab Name	Credit
CSL401	Analysis of Algorithms Lab	1

Prerequisite: Basic knowledge of programming and data structure			
Lab Objectives:			
1	To introduce the methods of designing and analyzing algorithms		
2	Design and implement efficient algorithms for a specified application		
3	Strengthen the ability to identify and apply the suitable algorithm for the given real-world problem.		
4	Analyze worst-case running time of algorithms and understand fundamental algorithmic problems.		
La	ab Outcomes: At the end of the course, the students will be able to		
1	Implement the algorithms using different approaches.		
2	Analyze the complexities of various algorithms.		
3	Compare the complexity of the algorithms for specific problem.		

Descrip	Description			
	Implementation can be in any language.			
	Suggested Practical List:			
Sr No		Suggested Experiment List		
1		Introduction		
	1.1	Selection sort, Insertion sort		
2		Divide and Conquer Approach		
	2.1	Finding Minimum and Maximum, Merge sort, Quick sort, Binary search		
3		Greedy Method Approach		
	3.1	Single source shortest path- Dijkstra		
		Fractional Knapsack problem		
		Job sequencing with deadlines		
		Minimum cost spanning trees-Kruskal and Prim's algorithm		
4		Dynamic Programming Approach		
	4.1	Single source shortest path- Bellman Ford		
		All pair shortest path- Floyd Warshall		
		0/1 knapsack		
		Travelling salesperson problem		
		Longest common subsequence		
5		Backtracking and Branch and bound		
	5.1	N-queen problem		
		Sum of subsets		
		Graph coloring		
6		String Matching Algorithms		
	6.1	The Naïve string-matching Algorithms		
		The Rabin Karp algorithm		
		The Knuth-Morris-Pratt algorithm		
		ı		

Te	Term Work:		
1	Term work should consist of 10 experiments.		
2	Journal must include at least 2 assignments on content of theory and practical of "Analysis of		
	Algorithms"		
3	The final certification and acceptance of term work ensures that satisfactory performance of		
	laboratory work and minimum passing marks in term work.		
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks,		
	Assignments: 05-marks)		
Oral & Practical exam			
	Based on the entire syllabus of CSC402: Analysis of Algorithms		

