Original data

- 111778 data points for training, 27945 for validation
- Each point representing 4 variables
- Data was processed so that all variables are approximately with the same ranges
- Goal: use neural networks (autoencoders) to compress the 4 variables into 3 latent ones

Reconstructed data

- Captured well the bimodality of `pt` and the uniformity of `phi`
- Failed to capture the distribution of `eta`
- Not/very slightly overfitting after 10000 epochs
 - Larger network could be used
 - Final training MSE loss: 0.001898
 - Final validation MSE loss: 0.001919

Reconstructed vs original

- The red lines represents a perfect reconstruction
- Most noticeable reconstruction failures are at the extremal values, see `phi` or `eta`

Improvements

- Try out different architectures using Neural Architecture Search, hyperparameter search
- Transfer learning use the network from previous project
- Using our current knowledge of being unable to properly reconstruct variable `eta`, we could:
 Used weighted random sampling to resample points with high reconstruction error
 Switch Mean Squared Error loss function to a weighted equivalent (or use different loss)
 - assign higher weights to badly reconstructed variables
 - Instead of compression $4 \rightarrow 3$, try compressing $3 \rightarrow 2$
 - could be an easier task, especially 3 → 2, excluding `eta`

Other ideas to investigate

- Try out different normalization schemes for the input variables, e.g. z-score
- Try combining Generative Adversarial Networks into the framework (such as energy-based EBGAN)
 - useful for modeling distribution generate more samples
 - adversarial training for robustness
- Investigate different initialization schemes for the network
 - interesting because we can use true gradients (whole dataset fits into the memory), so good initialization is crucial