CSE303: Theory of Computation, Fall 2021

$\underset{(\text{ Due: Sep 23 })}{Homework} \# 1$

Date: Sep 9

Task 1. [100 Points] Construct DFAs

Construct a DFA to accept each of the following regular languages. Assume that $\Sigma = \{a, b\}$ unless specified otherwise.

(a) [**5 Points**] $L = \{w | |w| \le 3\}$

DFA Diagram:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2, Q_3, Q_4\}$$

Set of symbols is
$$\Sigma = \{a, b\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_0, Q_1, Q_2, Q_3\}$$

Transition function is

$$\delta \colon \begin{array}{c|ccc} & a & b \\ \hline Q_0 & Q_1 & Q_1 \\ Q_1 & Q_2 & Q_2 \\ Q_2 & Q_3 & Q_3 \\ Q_3 & Q_4 & Q_4 \\ Q_4 & Q_4 & Q_4 \end{array}$$

Regular Expression: $\epsilon \cup \Sigma \cup \Sigma^2 \cup \Sigma^3$

(b) [**5 Points**] $L = \{w | |w| \ge 3\}$

Set of states is $Q = \{Q_0, Q_1, Q_2, Q_3\}$

Set of symbols is $\Sigma = \{a, b\}$

Start state is $q_0 = Q_0$

Set of accept states is $F = \{Q_3\}$

Transition function is

$$\begin{array}{c|cccc} & a & b \\ \hline Q_0 & Q_1 & Q_1 \\ \delta : & Q_1 & Q_2 & Q_2 \\ Q_2 & Q_3 & Q_3 \\ Q_3 & Q_3 & Q_3 \end{array}$$

Regular Expression: $\Sigma^3\Sigma^*$

(c) [**5 Points**] $L = \{w | n_a(w) = 2\}$

DFA Diagram:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is $Q = \{Q_0, Q_1, Q_2, Q_3\}$

Set of symbols is $\Sigma = \{a, b\}$

Start state is $q_0 = Q_0$

Set of accept states is $F = \{Q_2\}$

$$\begin{array}{c|ccccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ \delta \colon & Q_1 & Q_2 & Q_1 \\ Q_2 & Q_3 & Q_2 \\ Q_3 & Q_3 & Q_3 \end{array}$$

Regular Expression: $b^*ab^*ab^*$

(d) [5 Points] $L = \{w | n_a(w) \le 2\}$

DFA Diagram:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2, Q_3\}$$

Set of symbols is
$$\Sigma = \{a, b\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_0, Q_1, Q_2\}$$

Transition function is

$$\begin{array}{c|ccccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ \delta \colon & Q_1 & Q_2 & Q_1 \\ Q_2 & Q_3 & Q_2 \\ Q_3 & Q_3 & Q_3 \end{array}$$

Regular Expression: $b^* \cup b^*ab^* \cup b^*ab^*ab^*$

(e) [5 Points] $L = \{w | n_a(w) \ge 2\}$

Set of states is
$$Q = \{Q_0, Q_1, Q_2\}$$

Set of symbols is
$$\Sigma = \{a, b\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_2\}$$

Transition function is δ

$$\delta: \begin{array}{c|ccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ Q_1 & Q_2 & Q_1 \\ Q_2 & Q_2 & Q_2 \end{array}$$

Regular Expression: $b^*ab^*a\Sigma^*$

 $(f) \ [\ \mathbf{5}\ \mathbf{Points}\]\ L = \{w|\ n_a(w) \bmod 3 = 1\}$

DFA Diagram:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2\}$$

Set of symbols is
$$\Sigma = \{a, b\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_1\}$$

Transition function is
$$\delta$$

$$\delta: \begin{array}{c|ccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ Q_1 & Q_2 & Q_1 \\ Q_2 & Q_0 & Q_2 \end{array}$$

Regular Expression: $b^*ab^*(ab^*)^{3*}$

(g) [5 Points] $L=\{w|\ {\bf binary\ number}\ w\ {\rm mod}\ 3=1\}$ for $\Sigma=\{0,1\}$ DFA Diagram:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q=\{Q_0,Q_1,Q_2\}$$

Set of symbols is $\Sigma=\{0,1\}$
Start state is $q_0=Q_0$
Set of accept states is $F=\{Q_1\}$

Transition function is δ

$$\delta \colon \begin{array}{c|cc} & 0 & 1 \\ \hline Q_0 & Q_0 & Q_1 \\ Q_1 & Q_2 & Q_0 \\ Q_2 & Q_1 & Q_2 \end{array}$$

Regular Expression: $0*1(10*1 \cup 01*0)*$

 $(h) \ [\ \mathbf{5}\ \mathbf{Points}\]\ L = \{w|\ w\ \mathbf{starts}\ \mathbf{with}\ ab\}$

Set of states is
$$Q = \{Q_0, Q_1, Q_2, Q_3\}$$

Set of symbols is
$$\Sigma = \{0, 1\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_2\}$$

Transition function is δ

$$\begin{array}{c|cccc} & & 0 & 1 \\ \hline Q_0 & Q_1 & Q_3 \\ \delta \colon & Q_1 & Q_3 & Q_2 \\ Q_2 & Q_2 & Q_2 \\ Q_3 & Q_3 & Q_3 \end{array}$$

Regular Expression: $ab\Sigma^*$

 $(i) \ \ [\ \mathbf{5} \ \mathbf{Points} \] \ L = \{w| \ w \ \mathbf{contains} \ ab\}$

DFA Diagram:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2\}$$

Set of symbols is
$$\Sigma = \{a, b\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_2\}$$

Transition function is

$$\delta \colon \begin{array}{c|ccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ Q_1 & Q_1 & Q_2 \\ Q_2 & Q_2 & Q_2 \end{array}$$

Regular Expression: $\Sigma^* ab \Sigma^*$

 $(j) \ [\ \mathbf{5} \ \mathbf{Points} \] \ L = \{w| \ w \ \mathbf{ends} \ \mathbf{with} \ ab\}$

DFA Diagram:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2\}$$

Set of symbols is
$$\Sigma = \{a, b\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_2\}$$

Transition function is

$$\delta \colon \begin{array}{c|ccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ Q_1 & Q_1 & Q_2 \\ Q_2 & Q_1 & Q_0 \end{array}$$

Regular Expression: Σ^*ab

 $(k) \ [\ \mathbf{5} \ \mathbf{Points} \] \ L = \{w| \ w \ \mathbf{starts} \ \mathbf{with} \ a \ \mathbf{and} \ \mathbf{ends} \ \mathbf{with} \ b \}$

Set of states is
$$Q = \{Q_0, Q_1, Q_2, Q_3\}$$

Set of symbols is
$$\Sigma = \{a, b\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_2\}$$

Transition function is

$$\begin{array}{c|ccccc} & a & b \\ \hline Q_0 & Q_1 & Q_3 \\ \delta : & Q_1 & Q_1 & Q_2 \\ Q_2 & Q_1 & Q_2 \\ Q_3 & Q_3 & Q_3 \end{array}$$

Regular Expression: $a\Sigma^*b$

 $(l) \ [\ {\bf 5\ Points}\] \ L = \{w|\ w\ {\bf starts\ and\ ends\ with\ different\ symbols}\}\ {\rm for}\ \Sigma = \{a,b,c\}$ DFA Diagram:

Set of states is
$$Q = \{Q_0, Q_1, Q_2, Q_3, Q_4, Q_5, Q_6\}$$

Set of symbols is
$$\Sigma = \{a, b, c\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_4, Q_5, Q_6\}$$

Transition function is

		a	b	c
	Q_0	Q_1	Q_2	Q_3
	Q_1	Q_1	Q_4	Q_4
δ :	Q_2	Q_5	Q_2	Q_5
0.	Q_3	Q_6	Q_6	Q_3
	Q_4	Q_1	Q_4	Q_4
	Q_5	Q_5	Q_2	Q_5
	Q_6	Q_6	Q_6	Q_3

Regular Expression: $\{a\Sigma^*\{b,c\}\} \cup \{b\Sigma^*\{a,c\}\} \cup \{c\Sigma^*\{a,b\}\}$

 $(m) \ [\ {\bf 5\ Points}\]\ L = \{w|\ w\ {\bf starts\ and\ ends\ with\ the\ same\ symbol}\}\ {\bf for}\ \Sigma = \{a,b,c\}$ ${\bf DFA\ Diagram:}$

5-Tuple:
$$M = (Q, \Sigma, \delta, q_0, F)$$
, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2, Q_3, Q_4, Q_5, Q_6\}$$

Set of symbols is
$$\Sigma = \{a, b, c\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_1, Q_2, Q_3\}$$

Transition function is

Regular Expression: $a(\Sigma^*a)^* \cup b(\Sigma^*b)^* \cup c(\Sigma^*c)^*$

(n) [5 Points] $L = \{w | \text{ every } a \text{ in } w \text{ is followed by a } b\}$ DFA Diagram:

5-Tuple:
$$M = (Q, \Sigma, \delta, q_0, F)$$
, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2\}$$

Set of symbols is
$$\Sigma = \{a, b\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_0\}$$

$$\delta: \begin{array}{c|ccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ Q_1 & Q_2 & Q_0 \\ Q_2 & Q_2 & Q_2 \end{array}$$

Regular Expression: $(b^*ab^+)^*$

(o) [5 Points] $L = \{w | \text{ no } a \text{ in } w \text{ is followed by a } b\}$

DFA Diagram:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2\}$$

Set of symbols is
$$\Sigma = \{a, b\}$$

Start state is
$$q_0 = Q_0$$

Set of accept states is
$$F = \{Q_0, Q_1\}$$

Transition function is

$$\delta \colon \begin{array}{c|ccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ Q_1 & Q_1 & Q_2 \\ Q_2 & Q_2 & Q_2 \end{array}$$

Regular Expression: b^*a^*

 $(p) \ [\ \mathbf{5} \ \mathbf{Points} \] \ L = \{w| \ w \ \mathbf{contains} \ (a(a \cup b)^*a)^+\}$

5-Tuple:
$$M = (Q, \Sigma, \delta, q_0, F)$$
, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2, Q_3\}$$

Set of symbols is $\Sigma = \{a, b\}$
Start state is $q_0 = Q_0$
Set of accept states is $F = \{Q_2\}$

Transition function is

$$\delta \colon \begin{array}{c|ccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ Q_1 & Q_2 & Q_1 \\ Q_2 & Q_2 & Q_2 \end{array}$$

Regular Expression: $b^*ab^*a\Sigma^*$

(q) [5 Points] $L = \{w | n_a(w) \mod 5 = 3 \text{ and } n_b(w) \mod 2 = 1\}$

DFA Diagram:

5-Tuple:
$$M = (Q, \Sigma, \delta, q_0, F)$$
, where,

$$\begin{array}{ll} \text{Set of states is} & Q = \{Q_{0,0}\,,Q_{1,0}\,,Q_{2,0}\,,Q_{3,0}\,,Q_{4,0}\,,Q_{0,1}\,,Q_{1,1}\,,Q_{2,1}\,,Q_{3,1}\,,Q_{4,1}\,\} \\ \text{Set of symbols is} & \Sigma = \{a,b\} \\ \text{Start state is} & q_0 = Q_{0,0} \\ \text{Set of accept states is} & F = \{Q_{3,1}\,\} \end{array}$$

		a	b
	$Q_{0,0}$	$Q_{1,0}$	$Q_{0,1}$
	$Q_{1,0}$	$Q_{2,0}$	$Q_{1,1}$
	$Q_{2,0}$	$Q_{3,0}$	$Q_{2,1}$
	$Q_{3,0}$	$Q_{4,0}$	$Q_{3,1}$
δ :	$Q_{4,0}$	$Q_{0,0}$	$Q_{4,1}$
	$Q_0,_1$	$Q_{1,1}$	$Q_{0,0}$
	$Q_1,_1$	$Q_{2,1}$	$Q_{1,0}$
	$Q_2,_1$	$Q_3,_1$	$Q_{2,0}$
	$Q_{3,1}$	$Q_{4,1}$	$Q_{3,0}$
	$Q_4,_1$	$Q_{0,1}$	$Q_{4,0}$

Regular Expression:

 $(r) \ [\ \mathbf{5}\ \mathbf{Points}\]\ L = \{w|\ n_a(w) \bmod 3 = 2 \ \mathbf{and}\ w \ \mathbf{contains}\ ab\}$ $\mathbf{DFA}\ \mathbf{Diagram:}$

5-Tuple:
$$M = (Q, \Sigma, \delta, q_0, F)$$
, where,

Set of states is
$$Q = \{Q_{0,0}, Q_{0,1}, Q_{1,1}, Q_{2,1}, Q_{0,2}, Q_{1,2}, Q_{2,2}\}$$
 Set of symbols is
$$\Sigma = \{a, b\}$$
 Start state is
$$q_0 = Q_{0,0}$$
 Set of accept states is
$$F = \{Q_{2,2}\}$$

Transition function is

$$\delta: \begin{array}{c|ccccc} & a & b \\ \hline Q_{0,0} & Q_{1,1} & Q_{0,0} \\ Q_{0,1} & Q_{1,1} & Q_{0,2} \\ Q_{1,1} & Q_{2,1} & Q_{1,2} \\ Q_{2,1} & Q_{0,1} & Q_{2,2} \\ Q_{0,2} & Q_{1,2} & Q_{0,2} \\ Q_{1,2} & Q_{2,2} & Q_{1,2} \\ Q_{2,2} & Q_{0,2} & Q_{2,2} \end{array}$$

Regular Expression:

(s) [5 Points] $L = \{w | n_a(w) \mod 3 = 1 \text{ or } w \text{ contains } ba\}$

$$\begin{array}{ll} \text{Set of states is} & Q = \{Q_{0,0}\,,Q_{1,0}\,,Q_{2,0}\,,Q_{0,1}\,,Q_{1,1}\,,Q_{2,1}\,,Q_{0,2}\,,Q_{1,2}\,,Q_{2,2}\,\} \\ \text{Set of symbols is} & \Sigma = \{a,b\} \end{array}$$

Start state is
$$q_0 = Q_{0,0}$$

Set of accept states is
$$F = \{Q_{1,0}, Q_{1,1}, Q_{0,2}, Q_{1,2}, Q_{2,2}\}$$

Transition function is

		a	b
	$Q_{0,0}$	$Q_{1,0}$	$Q_{0,1}$
	$Q_{1,0}$	$Q_{2,0}$	$Q_{1,1}$
	$Q_{2,0}$	$Q_{0,0}$	$Q_{2,1}$
δ :	$Q_0,_1$	$Q_{1,2}$	$Q_{0,1}$
0.	$Q_1,_1$	$Q_{2,2}$	$Q_{1,1}$
	$Q_2,_1$	$Q_{0,2}$	$Q_2,_1$
	$Q_{0,2}$	$Q_{1,2}$	$Q_{0,2}$
	$Q_{1,2}$	$Q_{2,2}$	$Q_{1,2}$
	$Q_{2,2}$	$Q_{0,2}$	$Q_{2,2}$

Regular Expression: $(b^*ab^*ab^*ab^*ab^*ab^*)^*b^*ab^*(b^*ab^*ab^*ab^*ab^*ab^*)^* \cup \Sigma^*ba\Sigma^*$

(t) [5 Points] $L=\{w|$ binary number w is divisible by 7} for $\Sigma=\{0,1\}$ DFA Diagram:

Set of states is $Q = \{Q_i, Q_0, Q_1, Q_2, Q_3, Q_4, Q_5, Q_6\}$

Set of symbols is $\Sigma = \{0, 1\}$

Start state is $q_0 = Q_i$

Set of accept states is $F = \{Q_0\}$

		0	1
	Q_i	Q_0	Q_1
	Q_0	Q_0	Q_1
	Q_1	Q_2	Q_3
δ :	Q_2	Q_4	Q_5
	Q_3	Q_6	Q_0
	Q_4	Q_1	Q_2
	Q_5	Q_3	Q_4
	Q_6	Q_5	Q_6