

SENTIMENT ANALYSIS OF IMDB REVIEWS

Advanced Text Analytics Project
Merve Pakcan

- **02** DATASET DESCRIPTION
- **03** DATA PREPROCESSING
- **MODEL STRUCTURES &** IMPLEMENTATION

Logistic Regression, Naive Bayes, Neural Network

RESULTS & CONCLUSION

INTRODUCTION

User-generated content is growing. Movie reviews are a great source to understand audience sentiment.

Objective:

To compare the performance of three machine learning models **Naive Bayes**, **Logistic Regression**, and a **Neural Network** for classifying IMDB movie reviews as **positive** or **negative**.

What is Sentiment Analysis?

A subfield of NLP, detects and classifies **emotions or opinions** in text.

DATASET DESCRIPTION

"IMDB Dataset of 50K Movie Reviews", available on Kaggle

50,000 REVIEWS, 2 COLUMNS

80% training, 20% testing

REVIEW

-SENTIMENT

Source of the data:

Name: Large Movie Review Dataset (IMDB)

Source: Stanford Al Lab

Authors: Andrew L. Maas et al., ACL 2011 **Size:** 50,000 reviews (25K train / 25K test)

Balanced dataset (50% positive, 50% negative)

Naive Bayes & Logistic Regression

- Lowercasing
- Remove HTML, URLs, punctuation
- Tokenization (TweetTokenizer)
- Stopword removal
- Stemming (Porter)
- (NB only) Frequency dictionary creation

Neural Network

- Tokenization (Keras Tokenizer, vocab=10,000)
- Convert to sequences
- Padding to fixed length
- No stemming or stopword removal
- Word representation via Embedding Layer

Why Different Preprocessing?

MODEL STRUCTURES & IMPLEMENTATION

1. LOGISTIC REGRESSION

A supervised binary classifier to predict sentiment(positive/negative),

Built with Scikit-learn's LogisticRegression (default parameters)

Input: Preprocessed text converted into numeric features

Output: Probability mapped to sentiment label (0 or 1)

Initial test accuracy: 62.08%

- Model predicted **positive** for mixed/neutral reviews
- I expected a great movie, but it was boring and full of clichés." →
 Positive (0.62)
- Biased toward positive words

• Recall imbalance: Positive = 0.94,

Negative = 0.30

(3488 was negative but model says positive)

*

2. NAIVE BAYES

A probabilistic classifier that applies Bayes' Theorem, assuming word independence. Built with NLTK's NaiveBayesClassifier

Input: Cleaned, stemmed tokens with (word, label) frequency pairsOutput: Class label based on word-level probability estimatesInitial test accuracy: 85.0%

Balanced recall for both classes (≈0.85) Correctly predicted:

• 4,249 negative, 4,217 positive

Strength: Effective on clear sentiment

The movie had some good moments, but overall it felt flat.

Limitation: Tended to label mixed-tone reviews as negative

3. NEURAL NETWORK

A neural model built using embedding and dense layers to classify review sentiment.

Built with: Keras Sequential model **Input:** Padded token sequences

Output: Sentiment label (0 or 1) via sigmoid

Test Accuracy: 88.00%

Balanced precision & recall: both 0.88 Correctly classified neutral/mixed reviews "The movie had good moments, but felt flat." \rightarrow Negative (0.33)

Model learned word patterns through **embedding layer**Used **EarlyStopping** to avoid overfitting and boost
generalization

	р	recision	recall	f1-score	support		
	0	0.87	0.89	0.88	4940		
	1	0.89	0.87	0.88	5060		
	accuracy			0.88	10000		
	cro avg	0.88	0.88	0.88	10000		
weigh	ited avg	0.88	0.88	0.88	10000		
					000		
0 -	4412		528		500		
abel					3000		
True label		2			2500		
				1 1 2	2000		
1-	669		4391	1	500		
				- 1	.000		
Į	1						
0 1 Predicted label							
	Predicted label						

Pipeline completed successfully.

- **Text Parsing**: 64,477 unique terms extracted with word types (noun, verb)
- **Sentiment Analysis**: Automatically labeled 49,999 reviews as *positive*, *negative*, or *neutral*
- Topic Modeling: Clustered reviews into key review topics
- Categories: Organized output into clear, interpretable groups

Hyperparameter Tuning

Logistic Regression

Best Params: {'C': 1, 'penalty': 'l2', 'solver': 'liblinear'} Best CV Accuracy: 0.8862971683960496

Best CV Accura	cy: 0.88629	716839604	96		
	precision		f1-score	support	
0	0.90	0.87	0.88	4983	
1	0.88	0.90	0.89	5017	
accuracy			0.89	10000	
macro avg	0.89	0.88	0.88	10000	
weighted avg	0.89	0.89	0.88	10000	

Method: GridSearchCV (CV=5, scoring='accuracy')

Parameters Tuned: C, penalty, solver

Before tuning: 62% accuracy, low recall on negative class

After tuning:Accuracy: 88.0%,Recall (Neg): ↑ from 0.30 to 0.87,

Recall (Pos): stayed high at 0.90

Model became more balanced and consistent

Already in optimum **Before: 85% After: 85%**

		'alpha': 10} acy: 0.854696	36829603	71	
		precision		f1-score	support
	0	0.84	0.85	0.85	4983
	1	0.85	0.84	0.85	5017
accui	racy			0.85	10000
macro	avg	0.85	0.85	0.85	10000
weighted	avg	0.85	0.85	0.85	10000

Neural Network

88% accuracy

Tuned vocab size((10k), max length(200), and embedding dim(16)

Added **EarlyStopping** to prevent overfitting
Trained with **batch data + validation set**Tested on **ambiguous/neutral reviews**Bidirectional LSTM and lower LR (Adam 0.0005) —
no accuracy gain (still 88%).

- Compared Logistic Regression, Naive Bayes, and Neural Network on IMDB reviews
- Naive Bayes: 85% on clear sentiment, weak on mixed
- Logistic Regression: improved from 62% → 88% after tuning
- Neural Network: highest accuracy (88%), best on ambiguous reviews
- SAS: verified sentiment and topic labeling on full dataset

