Нижегородский государственный университет имени Н.И. Лобачевского

Радиофизический факультет

Замедляющие системы типа гребенки

Работу выполнили студенты Есюнин Д.В., Есюнин М.В. 440 группы Цель работы: изучение волн, направляемых замедляющими системами типа гребенки рис.1.

Рис. 1. Замедляющая система типа гребенки

Измерительная установка

Измерительная установка включает генератор с диапазоном изменения частоты 2000-4000 МГц, два вентиля, две измерительные линии с вмонтированными в них гребенками, отличающимися высотой зубьев: $l_1 = 8, l_2 = 22,$ и два амперметра. блок-схема установки представлена на рис. 2. Вентиль пропускает сигнал, идущий от генератора к замедляющей системе, и не пропускает сигнал, отраженный от замедляющей системы, к генератору. Тем самым исключается влияние нагрузки на работу генератора. По скольку линия закорочена на конце, в ней формируется стоячая волна. Регулировочный винт позволяет поднимать или опускать гребенку и тем самым изменяет положение относительно крышки.

Рис. 2. Блок-схема установки:

1 - генератор; 2 - вентиль; 3 - измерительная линия; 4 - амперметр

Практическая часть

Задание 1

Сняли дисперсионные характеристики гребенок 1 и 2; результаты представили в виде графиков.

Таблица 1. гребенка 1, $l_1 = 22$ мм

$ u$, $\Gamma\Gamma$ ц	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3
h, cm^{-1}	0.67	0.70	0.79	0.87	0.98	1.01	1.16	1.37	1.50	1.96	2.86

Таблица 2. гребенка 2, $l_2 = 8$ мм

$ u$, $\Gamma\Gamma$ ц	1.92	2.15	2.23	2.38	2.53	2.73	2.95	3.32	3.64
h, cm^{-1}	0.37	0.84	0.68	0.64	0.70	0.52	0.72	0.79	1.14

Рис. 3. дисперсионная характеристика гребенки 1 $l_1=22$ мм

Рис. 4. дисперсионная характеристика гребенки 2 $l_1=8$ мм

Задание 2

Таблица 3. гребенка 2, $l_2 = 8$ мм, $\nu_1 = 2,179\Gamma\Gamma$ ц

І, мА	27	13	4	15	25	30	$\overrightarrow{20}$	5	10
z, cm									

Таблица 4. гребенка 2, $l_2 = 8$ мм, $\nu_2 = 3,040 \Gamma \Gamma$ ц

	1) - 4) .	_	,	1
І, мА	10	38	6	30	5	15	6	3	9
z, cm	0.8	1.3	1.9	2.3	2.9	3.3	4.6	5.5	6.5

Рис. 5. Распределение поля вдоль системы, $\nu_1=2,179\Gamma\Gamma$ ц

Рис. 6. Распределение поля вдоль системы, $\nu_2=3,040\Gamma\Gamma$ ц

При приближении к частоте запирания системы поверхностная волна, существующая в системе начинает быстро затухать с расстоянием. Таким образом интенсивность волны при удалении от источника начинает уменьшаться.