基于 STM32 的温室大棚控制系统设计 *

潘 澳, 周丽丽, 何源长, 谢欣秀

(南通理工学院, 江苏 南通 226002)

摘 要:文章研究设计了一种基于 STM32 的温室大棚控制系统,该温室大棚控制系统由 STM32F103 单片机、上位机、DS18B20 温度传感器等构成,传感器实时检测大棚内部环境,STM32F103 单片机作为系统的核心控制单元,可对采集到的数据与设定值进行处理分析,控制自动开关设备并将数据发送到串口屏显示。该系统不仅能够自动控制、稳定运行,还能通过电脑上位机远程监控大棚内部状况以及电磁阀、水泵、百叶窗的开关。

关键词: STM32: 温室大棚控制系统: 环境检测: 远程监控

中图分类号: S625; TP273

文献标志码: A

文章编号: 1672-3872 (2020) 24-0096-02

随着社会的发展,温室大棚在农业种植中的地位愈发重要。温室大棚能够更好地防寒抗涝,增加农作物的产量,但温室大棚对土壤湿度、空气中二氧化碳的含量、光照强度等环境因素要求较高,增加了后期管理与维护的难度。基于 STM32 的温室大棚控制系统能够实时监测大棚内的各项指标,实现自动控制设备,进行滴灌操作,既节能又减少了对劳动力的浪费。同时,该系统具有上位机监控的功能,用户能借此远程监控大棚环境,控制设备的开关。

1 硬件电路的设计

控制系统硬件电路设计是大棚温室控制系统的重要组成部分,主要包括主电路设计、传感器电路设计、电源设计等。该控制系统是以 STM32 为主控制中心,外围电路由 DS18B20 温度传感器、YL-69 湿度传感器、SPG30 等模块组成,控制系统框图如图 1 所示。

图 1 控制系统框图

1.1 温室大棚控制系统主电路

该系统采用的是意法(ST)公司出品,内核为 Cortex—M3 的 32 位 ARM 微控制 STM32F103ZET6, 其最高工作频率可达 72MHz。该芯片具有 64KB SRAM、512KB FLASH、2 个基本定时器、4 个通用定时器、2 个高级定时器、2 个 DMA 控制器、3 个 SPI、2 个 IIC、5 个串口、1 个 USB 等丰富的接口。主控芯片需要进行数据处理与运算、模数转换、串口发送等功能,相比其他单片机,其具有高性能、低成本、低功耗等优势,能满足该系统所有性能要求 $^{[1]}$ 。

1.2 气体传感器电路

SPG30 多像素气体传感器是 Sensirion 的一款非常精细的空气质量传感器,具有 IIC 接口和完全校准的输出信号。该传感器需 $3.3V\sim5V$ 供电,可检测各种挥发性有机化合物(VOC)和 H_0 ,常被用于室内气体的检测。SPG 在 1 个芯片上结合了多

基金项目: 江苏省大学生创新创业训练计划项目"节能型大棚滴灌系统" (202012056024Y)

作者简介:潘澳 (1999—), 男, 江苏南京人, 本科, 研究方向: 电子信息技术。

通信作者:周丽丽(1989—),女,江苏南通人,硕士,助教,研究方向: 电子信息工程。 个金属氧化物传感元件,以提供更详细的空气质量信号^[2]。该系统中 STM32 主控芯片通过 IIC 接口与 SPG30 连接,从中读取二氧化碳含量,实时监控大棚内的环境。

1.3 温度传感器电路

DS18B20 是常用的数字温度传感器,具有体积小、硬件开销低、抗干扰能力强、精度高的特点。DS18B20 为单线数字温度传感器,即"一线一器",测量范围为-55° \sim 125°,精度为 \pm 0.5°。其内部结构主要由四部分组成:64 位 ROM、温度传感器、非挥发的温度报警触发 TH 和 TL、配置寄存器,可达到 1 根总线挂接多个 DS18B20 的目的。

1.4 无线传输 ESP8266 Wi-Fi 模块

Wi-Fi 全称为 Wireless Fidelity, 其最大优点是传输速度较高,可达到 11Mbps,有效距离也很长。ESP8266 则是一款超低功耗的 Wi-Fi 透传模块,因其工作温度范围大,性能稳定,适应性强,广受移动设备和物联网应用设计行业的欢迎。它同时支持 SoftAP、Station、SofaAP+Station 共存的三种模式,可将用户的物联设备连接至 Wi-Fi 网络中,进行网络间的通信 [3]。

该系统中,ESP8266采用了Station模式,即无线终端模式,与路由器相连接,犹如桥梁般将STM32主控芯片与路由器紧密相连,通过串口不断向STM32发送与接收有效数据,进行下位机与服务器间的数据透传。

1.5 土壤湿度传感器电路

YL-69 是一款土壤含水量传感器,3.3V~5V 供电。根据事先测量,一般湿润的土壤在固定的探针间的电阻在几百欧姆。传感器电路的 AC 口用于采集电压值,当土壤湿度减少时,探针间的电阻接近无穷大;当土壤湿度增大时,电阻会减少到几千欧姆甚至更小,AC 电压发生变化。STM32 主控芯片通过 AO 口获得模拟信号后,进行模数转换,将获得的值发送到显示屏与上位机。YL-69 传感器原理图如图 2 所示。

图 2 YL-69 传感器原理图

软件设计

软件设计对温室大棚控制系统功能的实现至关重要, 主要 包括上位机设计、串口屏显示设计、STM32 主控程序设计。其 中,主控程序又包括读取模数转换信号、串口收发、IIC协议、 单总线通信等。

2.1 上位机设计

上位机 PC 与下位机间通过路由器、Wi-Fi 模块相连接,通 信协议采用 TCP 协议,确保了数据的准确可靠性。在系统运行时, 可以通过上位机远程监测、远程控制,并生成相应的数据库文件, 便于数据记录与对比。该系统上位机采用的是易语言开发环境, 相对于传统的C#, C++ 开发的语言更加简洁, 界面更加鲜明。 STM32 主控制器将采集到的 4 路温度、土壤湿度、二氧化碳含 量及光照强度通过 ESP8266 经过路由器发送至服务器,即上位 机端。上位机再对数据流进行处理、分析、记录与图形上的显示。

2.2 串口屏显示设计

串口屏也称智能 TFT 液晶模块,是专为工业显示应用而 设计的 TFT 液晶显示模块。相比传统并口屏,该模块自带主控 IC、Flash 存储器、实时嵌入式操作系统,客户主机可把要存 储的数据(如背景图、图标等)存储到串口屏的 Flash 中,串 口屏可直接调用显示, 无需主机干预, 使数据通信量大大减少, 从而提高了抗干扰性,且节省了客户主机的硬件资源。使用串 口屏可极大简化界面设计,通过配套提供的 PC 端组态软件,可 简单、快速设计出液晶屏上的操作界面[4]。串口屏主要承担显 示与人机交互的作用,设备打开后需与主控芯片实时通信。开 机后显示输入页面,用户可以通过触碰屏幕输入温度、湿度等 设定参数, 串口屏将参数发送给 STM32 控制器并进入环境参数 监控页面, 然后将收到的数据实时显示至页面, 并将用户设置 的电器开关状态返回给控制器,实现双向控制。用户触碰屏幕 中的开关按键,可开关系统中的所有电器。

2.3 STM32 主控程序设计

该温室大棚控制系统的核心是 STM32 控制器, 需编写程序 对外围模块进行操控, 进而实现温度、湿度、二氧化碳采集等 功能。通过编写与调试,最终可实现对4路温度与湿度采集、 二氧化碳采集等功能。

结束语

随着物联网技术的飞速发展, 温室大棚控制系统在未来将 得到广泛的使用。该温室控制系统选用 STM32 控制器,利用路 由器建立局域网进行通信,用上位机进行实时监控,同时具有 自动滴灌功能。与当前农业模式相比, 温室大棚控制系统既可 以节省劳动力,又能够节约水资源,符合可持续发展战略要求, 系统稳定性高,可扩展性强,能对农作物的生长环境进行实时 记录与监测,有利于提高农作物的产量,具有良好的市场价值。

参考文献:

- [1] 郑蕊, 基于 STM32F4 大气监测系统微站的软硬件设计 [J]. 仪表技 术于传感器,2020(9):98-100.
- [2] 胡俊贤. 基于单片机的空气质量检测与报警系统设计 [J]. 电子测 试,2020(19):34-36.
- [3] 代国勇. 基于 STM32 单片机温室大棚环境的智能控制系统设计及 实现 [D]. 石家庄: 石家庄铁道大学, 2017.
- [4] 陈启军. 嵌入式系统及其应用:基于 Cortex-M3 内核和 STM32F103 系列微控制器的系统设计与开发[M].上海:同济大学出版社,2011.

(收稿日期: 2020-11-13)

(上接第92页)决于所采取的锉削方法以及锉削工具。

4.1 锉削方法

只有对任何工件的特征和加工工艺了如指掌, 才能准确选 择合适的锉削方法。如果遇到加工工件的表面平整度非常高, 但是其表面面积非常小, 加工余量非常有限的情况, 就必须采 用推锉的加工方法,以提高锉削的质量。由此可知,针对不同 的工件特征选取不同的锉削方法是成功加工的关键因素之一, 每种锉削方法都有其独有的特点, 正确选用锉削方法, 很大程 度上能提高锉削效率和加工质量[3-5]。

4.2 锉削的工具

只有熟练选择锉削工具,才能高效完成加工任务。在加工 实践过程中,根据不同的加工工件情况选择不同的锉刀加工, 锉削效果完全不同[6-7]。锉削工具的选择要考虑被加工工件表 面的大小、表面平整度、加工余量及形状等, 具体的锉削工具 如图 2 所示。例如,一个工件加工平面为 100mm×10mm,假如 对其选择粗加工,就需选取 40cm 以上的粗平锉刀;假如对其选 择精加工,就需选取 26.67cm 左右的中齿平锉,后续可以选用 20cm 的细齿平锉。总之,面对不同的加工情况和要求,选择的 锉削工具大不一样, 所达到的效果也截然不同。

图 2 锉削工具

结束语 5

钳工工种是独特的工业技术工种,具有不可代替性。在对 钳工工种的工作水平进行分析时,需要了解他们的操作技能和 操作技巧,正确掌握加工技术、锯削技术和锉削技术,加强测 量技术的应用, 合理选择锉削方法与锉削工具。在确保工件质 量的前提下,可以不断提高钳工加工效率,推动钳工加工技术 的进步与发展,结合企业的发展管理需求以及工业的未来生产 走向,对工作细节进行掌控。为了提升企业的生产效率,促进 我国工业的发展进步,更好地提高钳工加工工件的效率,需要 给予钳工技术上的培养和物质上的鼓励,让他们不断提高自身 加工技术, 顺利完成加工生产任务。

参考文献:

- [1] 帅红. 提高钳工加工工件效率的措施探讨 [J]. 南方农机, 2019, 50(11):119.
- [2] 李明. 提高钳工加工工件效率的方法分析 [J]. 内燃机与配件, 2020 (5): 174-175.
- [3] 李文彬. 提高钳工工件加工效率的路径[J]. 现代制造技术与装备, 2020(2):211-212.
- [4] 洪超, 刘宏铸, 吴萍. 数字时代的钳工测量加工方法 [J]. 金属加 工(冷加工),2015(3):33-34.
- [5] 虞建华. 钳工高级技能题三角燕尾配合件的加工工艺分析 [J]. 南 方农机, 2020, 51(2): 250-251.
- [6] 王国海,提高钳工平面锉削技能的方法[J],河北能源职业技术学 院学报,2019,19(2):73-74.
- [7] 朱宇亮, 石善政. 在钳工实习中如何提高孔距加工精度 [J]. 职业, 2014(3):146-147.

(收稿日期: 2020-11-18)