Unified Devanagari Rendering **Engine for Nepali Language**

Team Members

Amar Dura Harish Joshi Sugam Pokharel

[THA077BCT007] Ayush Bhandari [THA077BCT014] [THA077BCT018] [THA077BCT044] **Supervised By** Er. Praches Acharya

Co-supervised By Er. Santa B. Basnet

Department of Electronics and Computer Engineering Institute of Engineering Thapathali Campus Kathmandu, Nepal

PRESENTATION OUTLINE

- Motivation
- Objectives
- Scope of Project
- Project Applications
- Methodology

- Results
- Analysis of Results
- List of Remaining
 Tasks
- References

MOTIVATION

- Lack of open source tools for pdf rendering for Nepali language
- Inconsistency in composite character representation in different Devanagari fonts

[अङ्क or अङ्क]

OBJECTIVE

- To implement glyph ordering mechanism and standardize composite character representation
- To develop an open source unified Devanagari
 rendering engine for JVM using Apache PDFBox

SCOPE OF PROJECT

- Ensures the correct ordering of glyphs for Nepali text
- Focus on rendering on PDF file
- Only implemented for multi-byte Unicode fonts
- Apache PDFBox works on JVM only

PROJECT APPLICATIONS

- News compilation
- Financial reporting
- Educational materials
- Governmental documentation

22/07/2024 6

System Block Diagram

METHODOLOGY - [2]

Input Devanagari Text

- from text document, database or text repository.
- contains the unicode devanagari text

Example:

"भानुभक्तका हजुरबुवा श्रीकृष्ण आचार्य जुम्ला जिल्लाको सिन्जा उपत्यकाबाट तनहुँ जिल्लामा बसाइँ सरेका थिए।"

METHODOLOGY - [3]

Character tokenization and labeling

- Each character is a token
- A character fall into a category/label
- Based on Unicode Standards

भानुभक्तका: भ ा न ु भ क ्त क ा

Character	भ	ा	न	ુ	भ	क	Q	त	क	ा
Category	WC	DV	WC	DV	WC	WC	HALA NTA	WC	WC	DV

METHODOLOGY - [4]

Fig: Finite State Diagram for Tokenizer

METHODOLOGY - [5]

Font Management

- Provides different unicode devanagari fonts.
- OpenType font file provides the required glyphs, GSUB, GPOS table.
- e.g. Tiro Devanagari Sanskrit font, Mangal font

METHODOLOGY - [6]

- All the glyphs are tagged with the intended location in the syllable.
- Tagged glyphs are sorted in the stable order.
- The ordered glyphs will have glyphs of same category on the same relative order.

METHODOLOGY - [7]

- Basic substitution is applied from GSUB table.
- The order of substitution is already defined.
- Substitutions include akhanda ligatures, reph with single half-consonants, etc.

METHODOLOGY - [8]

GSUB table structure

Name	Example	Substituted glyphs
Akhanda	ज + স	ज
Reph	र + ् + क (consonant)	र्क
Rakaar	भ (consonant) + ् + र	भ
Half form	क (consonant) + ् + ख	क्ख

GPOS Application

METHODOLOGY - [9]

- Manage the positions of glyphs correctly using GPOS table of the font.
- Mainly glyphs below and above the base.
- Dist and kern are used.

METHODOLOGY - [10]

Word List Preparation

- JSON format of Nepali Brihat Shabdakosh was taken.
- A word list of 1,23,371 words was collected.

16

METHODOLOGY - [11]

Testing and Validation

- Sequences with different length (uni, bi, tri, etc) will be generated from corpus.
- The generated sequences will be manually labelled.
- The output of the generated sequences against the label.
- Accuracy will be calculated for different length sequences.

Correctness measure

Average accuracy =
$$\frac{\sum_{i=1}^{k} Accuracy (Category)_i}{k}$$

where, k = Number of categories Categories by length of sequence: Uni, Bi, Tri, Quad etc.

RESULT

Tokenization

Tokens for शिक्षा: [श, ि, क,्, ष, ा]

Labeling: [WC, DV, WC, HALANTA, WC, DV]

ANALYSIS OF RESULT

Analysis of tokenizer

- Characters are tokenized and labelled based on predefined labels
- Syllable tokenizer groups the labelled characters using the finite state automata

Extraction of word list

 1,23,371 words should be enough to prepare the required test sequences.

LIST OF REMAINING TASK

Test data preparation and labeling

Manually reorder the characters of test sequences

Implementation of algorithm

Actual coding in the Apache PDFBox codebase

System evaluation

Different sub-groups will be made for groupwise test

22/07/2024 21

REFERENCES - [1]

- Microsoft, "Microsoft Typography Documentation,"
 Accessed: Jul. 19, 2024. [Online]. Available:
 https://learn.microsoft.com/en-us/typography/script-devel
 opment/devanagari
- U. Consortium et al., "The unicode standard, version 14.0. 0-core specification," 2021.
- S. B. Basnet and S. Trishna, "Unification of fonts encoding system of devanagari writing in nepali," Nepalese Linguistics, vol. 32, no. 2, pp. 130–136, 2017.

REFERENCES - [2]

- M. Boualem, M. Leisher, and B. Ogden, "Encoding script-specific writing rules based on the unicode character set."
- S. P. Mudur, N. Nayak, S. Shanbhag, and R. Joshi, "An architecture for the shaping of indic texts," Computers & Graphics, vol. 23, no. 1, pp. 7–24, 1999.
- K. Nepal, "Nepali Font Standards," Kathmandu, Nepal.

22/07/2024 23