Adopted Levels, Gammas

	Histo	ory		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen [#] and Balraj Singh	NDS 135, 1 (2016)	31-May-2016	

 $Q(\beta^-)$ =599 6; S(n)=9426 6; S(p)=14400 70; $Q(\alpha)$ =-9986 9 2012Wa38 S(2n)=15525 6, S(2p)=26163 7 (2012Wa38).

⁴²Ar Levels

Cross Reference (XREF) Flags

		A B C	$^{42}\text{Cl }\beta^{-}$ $^{40}\text{Ar}(t,p)$ $^{40}\text{Ar}(t,p)$	decay (6.8 s) D 42 Ar(p,p')) E 208 Pb(40 Ar,X γ) γ) F Pb(43 Ar,n γ)		
E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{@}$	XREF	Comments		
0.0	0+	32.9 y <i>11</i>	ABCDEF	$\%\beta^-=100$ J^{π} : L(t,p)=0.		
0.				The rms charge radius $(\langle r^2 \rangle)^{1/2} = 3.4354$ fm 39 (2013An02 evaluation. $d\langle r^2 \rangle (^{38}Ar,^{42}Ar) = +0.2623$ fm ² 12(stat) 62(syst) (2008Bl01, also 2005Bl33, laser spectroscopy). $T_{1/2}$: from 1965St09 (β -counting). Others: 1964Ho31, 1952Ka44.		
1208.22 ^{&} 13	2+	2.6 ps +7-6	ABCDEF	$\beta_2 = 0.32 \ 5 \ (2001 \text{Sc}01)$ J^{π} : L(t,p)=2.		
				In a review article by 2008BeZH, Fig. 4 seems to give g factor for the first 2 ⁺ states in ^{38,40,42} Ar, but from Fig. 3 in 2006Sp01 (reference 18 in 2008BeZH), the isotopes should be ^{36,38,40} Ar, instead. It would seem that the x-axis in 2008BeZH is erroneously marked in neutron number.		
2413.8 & 6	(4^{+})		ABC EF	J^{π} : L(t,p)=3,4; γ from (6 ⁺) supports 4 ⁺ .		
2485.9 <i>3</i>	2+	0.28 ps 11	ACE	Measured upper limit of branching is <10 for transition to g.s. J^{π} : E2 γ to 0 ⁺ .		
2512.5 4	$(0^+ \text{ to } 4^+)$	2.8 ps + 21 - 8	ABC	J^{π} : γ to 2^{+} and RUL.		
3013.7 <i>3</i>	$(1,2^+)$	<83 fs	A C	Measured upper limit of branching is <10 for transition to g.s. J^{π} : γ to 0^{+} .		
3096.1 5	4+	>3.5 ps	ABC E	J^{π} : $\Delta J = 2$, E2(+M3) γ to 2 ⁺ ; L(t,p)=3,4.		
3557.9 <i>4</i>	2+	<62 fs	ABC	Measured upper limit of branching is <5 for transition to g.s. (1973Pr10). J^{π} : γ to 0^{+} , ΔJ =0, dipole γ to 2^{+} .		
3564.3 <mark>&</mark> 6	(6^+)	VOZ 18	E E	J^{π} : proposed by 2011Sz02 as the members of the 2 ⁺ , 4 ⁺ and 6 ⁺ yrast		
	, ,			sequence and from comparison with shell model calculations as well.		
3705 <i>10</i> 3820 <i>20</i>	(2^{+})		B AB	J^{π} : L(t,p)=(2). XREF: A(3846).		
3620 20			ИD	E(level): possible γ to g.s. and 1208 level from a 3846 level in 42 Cl β^- .		
4005.3 4	2+	0.23 ps 6	ВС	J^{π} ,E(level): L=2 for 4012 level in (t,p) which is considered as associated with 4005.3 level in (t,p γ). It is possible part of this level may also correspond to 4013.6 level populated in β^- decay.		
4013.6 8			A	See comment for 4005.3 level for possible population in (t,p).		
4045.8 <i>4</i> 4127.5 <i>5</i>	$(0^+,1,2)$	0.97 ps <i>21</i>	A ABC	J^{π} : $\gamma(\theta)$ of γ to 2^+ .		
7121.3 3	(0 ,1,2)	0.97 ps 21	ADC	Measured upper limit of branching is <5% for transition to g.s.		
4287.1 5	(1,2,3)	<35 fs	BC	J^{π} : γ to 2^+ ; $\gamma(\theta)$.		
4405 <i>5</i> 4417.3 <i>3</i>	3-,4+		B A	J^{π} : L(t,p)=3,4.		
TT11.J J			11			

⁴²Ar identified and produced by 1952Ka44 in successive thermal neutron capture in ⁴⁰Ar, estimated half-life from its decay to ⁴²K. Mass measurements: mass excess=-34422.7 58 (2001He29).

Adopted Levels, Gammas (continued)

⁴²Ar Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \#}$	$T_{1/2}^{@}$	XREF	Comments
4633.9 6	(3-)	<35 fs	ABC	J^{π} : L(t,p)=(3,4); $\Delta J=1 \ \gamma \text{ to } 2^{+}$.
4887 10	$(3^-,4^+)$		В	J^{π} : L(t,p)=(3,4).
4896 <i>10</i>	$(3^-,4^+)$		AB	J^{π} : L(t,p)=(3,4).
				E(level): possible 4902 γ to g.s. from a tentative 4902 level in 42 Cl β^- may correspond to this level, but γ to 0^+ is inconsistent with $J^{\pi} = (3^-, 4^+)$.
5000 15			AB	E(level): possible γ to g.s. from a 5015 level in 42 Cl β^- .
5230 15			В	Z(tover)) possible y to give from a porte tover in the pro-
5292 15			AB	E(level): possible 1284 γ to 4013 level from a 5297 level in 42 Cl β^- .
5553 15	2+		В	J^{π} : L(t,p)=2.
5763 <i>15</i>			В	• •
5945 20			В	
6090 20			В	
6170 15			В	
6357 15			В	
6490 <i>20</i> 6614 <i>20</i>			B B	
6742 15			В	
6880 30			В	
7060 <i>20</i>			В	
7140 20			В	
7275 15			В	
7355 <i>15</i>			В	
7540 <i>30</i>			В	
7630 [‡] <i>30</i>			AB	
7793 <i>15</i>			В	
7987 <i>15</i> 8080 <i>30</i>			В	
8080 <i>30</i> 8230 <i>30</i>			B B	
8380 20			В	
8520 <i>20</i>			В	
8690 20			В	
8790 20			В	
8940 <i>30</i>			В	
9020 30			В	
9130 30			В	
9210 <i>20</i> 9320 <i>30</i>			B B	
9320 30			В	
9535 <i>25</i>			В	
9640 <i>30</i>			В	
9820 20			В	
9905 20			В	
10015 20			В	
10060 30			В	
10140 30			В	
10300 <i>30</i> 10540 <i>30</i>			B B	
10540 30			В	
10670 30			В	
10850 30			В	

 $^{^{\}dagger}$ From adopted E γ data when measured γ -ray energies are available. In other cases weighted averages are taken of values available from different reactions.

Adopted Levels, Gammas (continued)

⁴²Ar Levels (continued)

γ (⁴²Ar)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	$E_f \qquad J_f^\pi$	Mult.@	$\delta^{@}$	Comments
1208.22	2+	1208.17 <i>13</i>	100	0.0 0+	E2		B(E2)(W.u.)=9.8 +29-21
2413.8	(4^{+})	1205.6 5	100	1208.22 2+			
2485.9	2+	1277.7 3	100 [#] 4	1208.22 2+			
		2486.1 8	15.5 [#] 25	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.33 14
2512.5	$(0^+ \text{ to } 4^+)$	1304.3 <i>3</i>	100	1208.22 2+			
3013.7	$(1,2^+)$	1806.2 <i>4</i>	100 7	1208.22 2+			
		3014.6 8	61 7	$0.0 0^{+}$			
3096.1	4+	1887.8 <i>4</i>	100	1208.22 2+	E2(+M3)	+0.07 8	B(E2)(W.u.)<0.76
3557.9	2+	2349.6 3	100 2	1208.22 2+	D(+Q)	0.00 7	D/F2\/W_\ \ 0.10
2564.2	(6 ⁺)	3557.7	11 2	$0.0 0^+ $ $2413.8 (4^+)$	[E2]		B(E2)(W.u.)>0.18
3564.3 4005.3	(0) 2 ⁺	1150.4 <i>3</i> 991.6		$2413.8 (4^+)$ $3013.7 (1,2^+)$			
4005.5	2	1519.40 22		2485.9 2 ⁺			
		2797.0		1208.22 2+			
4013.6		1527.7		2485.9 2 ⁺			
		1598.5 <mark>&</mark> 8	25 4	2413.8 (4+)			
		2805.3 7	100 8	1208.22 2+			
		4013.4		$0.0 0^{+}$			
4045.8		1560.1 5	32.6 <i>21</i>	$2485.9 2^{+}$			
		2837.3 5	100 4	1208.22 2+			
	(0± 4.5)	4045.6		$0.0 0^{+}$			
4127.5	$(0^+,1,2)$	1641.6	100	2485.9 2 ⁺			
4287.1	(1.2.2)	2919.2 <i>4</i> 3078.8 <i>4</i>	100	1208.22 2 ⁺ 1208.22 2 ⁺			
	(1,2,3)	403.9 6	0.4.10				
4417.3		403.9 6 1404.7 4	8.4 <i>19</i> 15 <i>3</i>	4013.6			
		1931.7 6	41 <i>4</i>	3013.7 (1,2 ⁺) 2485.9 2 ⁺			
		2003.4 & 3	21 4	2413.8 (4 ⁺)			
		3208.3 3	100 4	1208.22 2 ⁺			
4633.9	(3^{-})	3425.5 5	100 4	1208.22 2 ⁺	D		
.000.	(5)	2 123.3 3	100	1200.22 2	_		

 $^{^{\}dagger}$ Values with uncertainties from (t,p γ), β^- decay or (40 Ar,X γ). Weighted averages are taken when available. Others are from level energy differences.

 $^{^{\}ddagger}$ Possible γ to g.s. from a 7648 level in 42 Cl β^- .

[#] In (t,p) transfer reaction, target ⁴⁰Ar J^{π} =0⁺. [@] From DSAM in (t,p γ), unless otherwise noted.

[&]amp; Band(A): Yrast sequence (2011Sz02).

[‡] From $(t,p\gamma)$, when a level is populated in β^- decay and in $(t,p\gamma)$ and others from β^- decay, unless otherwise noted.

[#] From β^- decay.

[@] From (t,pγ).

[&]amp; Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Adopted Levels, Gammas

Band(A): Yrast sequence (2011Sz02)

