Open-Vocabulary Segmentation

Presented by

Saikat Dutta

PhD Scholar

IITB-Monash Research Academy

Outline

- Introduction
- Basics: CLIP
- Language-Driven Semantic Segmentation (LSeg)
- CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation
- \triangleright Q/A

Introduction

- Open-Vocabulary Segmentation (OVS) aims to segment objects from an open-set of categories.
 - Training labels ≠ Test labels
 - Zero-shot transfer!

Alignment between visual and semantic feature space in visual-language models (VLMs) e.g. CLIP is often exploited for OVS.

Introduction

- Types of OVS methods:
 - Two-stage approaches:
 - First predict class-agnostic region proposals then feed them to CLIP for final predictions.
 - One-stage approaches:
 - Embeddings from CLIP are directly used to predict masks.

Basics: CLIP

1. Contrastive pre-training

Basics: CLIP

2. Create dataset classifier from label text

ICLR 2022

- Text Encoder: CLIP Text encoder
- Image Encoder: ViT
- Word-pixel correlation tensor:

$$f_{ijk} = I_{ij} \cdot T_k.$$

$$F_{ij} \in \mathbb{R}^N$$

$$F_{ij} = (f_{ij1}, f_{ij2}, ..., f_{ijk})^T$$

• Spatial Regularization Block:

- Decoding block
- Ensure: all operations need to stay equivariant w.r.t. labels
- Depthwise convolution is used.

• Quantitative Results:

Model	Backbone	Method	mIoU
OSLSM	VGG16	1-shot	70.3
GNet		1-shot	71.9
FSS		1-shot	73.5
DoG-LSTM		1-shot	80.8
DAN	ResNet101	1-shot	85.2
HSNet		1-shot	86.5
LSeg	ResNet101	zero-shot	84.7
LSeg	ViT-L/16	zero-shot	87.8

Table 3: Comparison of mIoU on FSS-1000

• Qualitative Results:

Figure 4: LSeg zero-shot semantic segmentation results on unseen categories of FSS-1000 dataset.

• Qualitative Results:

Figure 5: LSeg examples with related but previously unseen labels, and hierarchical labels. Going from left to right, labels that are removed between runs are <u>underlined</u>, whereas labels that are added are marked in **bold red**.

CVPR 2024

• Cost Computation and Embedding:

Image Embeddings:
$$D^V = \Phi^V(I) \in \mathbb{R}^{(H \times W) \times d}$$

Text Embeddings:
$$D^L = \Phi^L(T) \in \mathbb{R}^{N_{\mathcal{C}} \times d}$$

Cost:
$$C(i,n) = \frac{D^V(i) \cdot D^L(n)}{\|D^V(i)\| \|D^L(n)\|}$$
. $C \in \mathbb{R}^{(H \times W) \times N_C}$

Cost Volume:
$$F \in \mathbb{R}^{(H \times W) \times N_{\mathcal{C}} \times d_F}$$

• Spatial Aggregation:

- Operates on each class slice separately
- Consists of Swin-T blocks
- Embedding guidance is used from CLIP vision embeddings.

$$F'(:,n) = \mathcal{T}^{\mathrm{sa}}([F(:,n);\mathcal{P}^V(D^V)])$$

• Class Aggregation:

- Operates on each spatial location separately
- Consists of Linear Transformer blocks
- Embedding guidance is used from CLIP text embeddings.

$$F''(i,:) = \mathcal{T}^{\operatorname{ca}}([F'(i,:); \mathcal{P}^L(D^L)])$$

Upsampling Decoder:

- Standard decoding block consisting of:
 - Bilinear Upsampling
 - Concatenation with intermediate features from CLIP Vision encoder
 - Conv layer

Quantitative Results:

Model	VLM	Additional Backbone	Training Dataset	Additional Dataset	A-847	PC-459	A-150	PC-59	PAS-20	PAS-20 ^b
SPNet [82]	-	ResNet-101	PASCAL VOC	OC X				24.3	18.3	_
ZS3Net [6]	-	ResNet-101	PASCAL VOC	×	-	-	-	19.4	38.3	=
LSeg [40]	CLIP ViT-B/32	ResNet-101	PASCAL VOC-15	×	-	-0	-		47.4	-
LSeg+ [22]	ALIGN	ResNet-101	COCO-Stuff	×	2.5	5.2	13.0	36.0	=	59.0
ZegFormer [15]	CLIP ViT-B/16	ResNet-101	COCO-Stuff-156	X	4.9	9.1	16.9	42.8	86.2	62.7
ZegFormer† [15]	CLIP ViT-B/16	ResNet-101	COCO-Stuff	X	5.6	10.4	18.0	45.5	89.5	<u>65.5</u>
ZSseg [84]	CLIP ViT-B/16	ResNet-101	COCO-Stuff	×	7.0	-	20.5	47.7	88.4	-
OpenSeg [22]	ALIGN	ResNet-101	COCO Panoptic	✓	4.4	7.9	17.5	40.1	-	63.8
OVSeg [43]	CLIP ViT-B/16	ResNet-101c	COCO-Stuff	✓	7.1	11.0	24.8	53.3	92.6	-
ZegCLIP [100]	CLIP ViT-B/16	-	COCO-Stuff-156	×	-	-	-	41.2	93.6	-
SAN [85]	CLIP ViT-B/16	=1	COCO-Stuff	X	<u>10.1</u>	12.6	27.5	53.8	94.0	-
CAT-Seg (ours)	CLIP ViT-B/16	_	COCO-Stuff	×	12.0	19.0	31.8	57.5	94.6	77.3
erir beg (ours)	CER VII B/10		coco stan	,	(+1.9)	(+6.4)	(+4.3)	(+3.7)	(+0.6)	(+11.8)
LSeg [40]	CLIP ViT-B/32	ViT-L/16	PASCAL VOC-15	Х	-	-	-	-	52.3	-
OpenSeg [22]	ALIGN	Eff-B7	COCO Panoptic	✓	8.1	11.5	26.4	44.8	-	70.2
OVSeg [43]	CLIP ViT-L/14	Swin-B	COCO-Stuff	✓	9.0	12.4	29.6	55.7	94.5	_
SAN [85]	CLIP ViT-L/14	-1	COCO-Stuff	X	12.4	15.7	32.1	57.7	94.6	-
ODISE [83]	CLIP ViT-L/14	Stable Diffusion	COCO-Stuff	×	11.1	14.5	29.9	57.3	-	-
CAT Sag (aura)	CLID VET L/14		COCO-Stuff	v	16.0	23.8	37.9	63.3	97.0	82.5
CAT-Seg (ours)	CLIP ViT-L/14	-	COCO-Stuff	×	(+3.6)	(+8.1)	(+5.8)	(+5.6)	(+2.4)	(+12.3)

• Qualitative Results:

Ablation studies:

	Components	A-847	PC-459	A-150	PC-59	PAS-20	$PAS-20^b$
(I)	Feature Agg.	5.6	12.8	23.6	58.1	96.3	77.7
(II)	Cost Agg.	14.7	23.2	35.3	60.3	<u>96.7</u>	78.9
(III)	(II) + Spatial agg.	14.9	23.1	35.9	60.3	96.7	79.5
(IV)	(II) + Class agg.	14.7	21.5	36.6	60.6	95.5	80.5
(V)	(II) + Spatial and Class agg.	<u>15.5</u>	23.2	<u>37.0</u>	62.3	96.7	81.3
(VI)	(V) + Embedding guidance	16.0	23.8	37.9	63.3	97.0	82.5

Table 4. **Ablation study for CAT-Seg.** We conduct ablation study by gradually adding components to the cost aggregation baseline.

Ablation studies:

	Methods	A-847	PC-459	A-150	PC-59	PAS-20	PAS-20 ^b	#param. (M)	Memory (GiB)
(I)	Freeze	10.4	15.0	31.8	52.5	92.2	71.3	5.8	20.0
(II)	Prompt	8.8	14.3	30.5	55.8	93.2	74.7	7.0	20.9
(III)	Full F.T.	13.6	22.2	34.0	61.1	97.3	79.7	393.2	26.8
(IV)	Attn. F.T.	15.7	<u>23.7</u>	37.1	63.1	<u>97.1</u>	81.5	134.9	20.9
(V)	QK F.T.	15.3	23.0	36.3	62.0	95.9	81.9	70.3	20.9
(VI)	KV F.T.	16.1	23.8	<u>37.6</u>	62.4	96.7	<u>82.0</u>	70.3	20.9
(VII)	QV F.T. (Img.)	13.9	22.8	35.1	62.0	96.3	82.0	56.7	20.9
(VIII)	QV F.T. (Txt.)	14.7	22.2	35.1	60.0	95.8	80.3	19.9	20.0
(IX)	QV F.T. (Both)	<u>16.0</u>	23.8	37.9	63.3	97.0	82.5	70.3	20.9

Table 6. Analysis of fine-tuning methods for CLIP. We additionally note the number of learnable parameters of CLIP and memory consumption during training. Our method not only outperforms full fine-tuning, but also requires smaller computation.

Thank you!

Questions?