Relations

- •If we want to describe a relationship between elements of two sets A and B, we can use **ordered pairs** with their first element taken from A and their second element taken from B.
- •Since this is a relation between two sets, it is called a binary relation.
- •Definition: Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

•In other words, for a binary relation R we have $R \subseteq A \times B$. We use the notation aRb to denote that $(a,b) \in R$ (a is said to be **related to** b by R) and $a \not R b$ to denote that $(a,b) \notin R$.

Let A be the set of students in your school, and let B be the set of courses. Let R be the relation that consists of those pairs (a, b), where a is a student enrolled in course b. For instance, if Jason and Sherman are enrolled in CS518, the pairs (Jason, CS518) and (Sherman, CS518) belong to R. If Jason is also enrolled in CS510, then the pair (Jason, CS510) is also in R.

However, if Sherman is not enrolled in CS510, then the pair (Deborah Sherman, CS510) is not in R.

Let A be the set of cities in the U.S.A., and let B be the set of the 50 states in the U.S.A. Define the relation R by specifying that (a, b) belongs to R if a city with name a is in the state b. For instance, (Boulder, Colorado), (Bangor, Maine), (Ann Arbor, Michigan), (Middletown, New Jersey), (Middletown, New York), (Cupertino, California), and (Red Bank, New Jersey) are in R.

Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B.

This means, for instance, that 0 R a, but that 1 R b. Relations can be represented graphically, as shown in Figure 1, using arrows to represent ordered pairs.

Another way to represent this relation is to use a table, which is also done in Figure 1. We will discuss representations of relations in more detail in Section 9.3.

		ı	
	R	а	b
	0	×	×
1•	1	×	
<i>b</i>	2		×
2 •			

FIGURE 1 Displaying the Ordered Pairs in the Relation R from Example 3.

Functions as Relations

Recall that a function f from a set A to a set B (as defined in Section 2.3) assigns exactly one element of B to each element of A. The graph of f is the set of ordered pairs (a, b) such that b = f(a). Because the graph of f is a subset of $A \times B$, it is a relation from A to B.

Moreover, the graph of a function has the property that every element of A is the first element of exactly one ordered pair of the graph.

Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph. This can be done by assigning to an element a of A the unique element $b \in B$ such that $(a, b) \in R$.

Note: that the relation R in Example 2 is not the graph of a function because Middletown occurs more than once as the first element of an ordered pair in R.

Relations on a Set

DEFINITION 2 A relation on a set A is a relation from A to A.

In other words, a relation on a set A is a subset of $A \times A$.

EXAMPLE 4

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

Solution:

Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b, we see that

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

The pairs in this relation are displayed both graphically and in tabular form in Figure 2.

FIGURE 2 Displaying the Ordered Pairs in the Relation R from Example 4.

Consider these relations on the set of integers:

$$R_1 = \{(a, b) \mid a \le b\},\$$
 $R_2 = \{(a, b) \mid a > b\},\$
 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$
 $R_4 = \{(a, b) \mid a = b\},\$
 $R_5 = \{(a, b) \mid a = b + 1\},\$
 $R_6 = \{(a, b) \mid a + b \le 3\}.$

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1, -1), and (2, 2)?

Remark: Unlike the relations in Examples 1–4, these are relations on an infinite set.

Solution: The pair (1, 1) is in R_1 , R_3 , R_4 , and R_6 ; (1, 2) is in R_1 and R_6 ; (2, 1) is in R_2 , R_5 , and R_6 ; (1, -1) is in R_2 , R_3 , and R_6 ; and finally, (2, 2) is in R_1 , R_3 , and R_4 .

It is not hard to determine the number of relations on a finite set, because a relation on a 29 set of $A \times A^{AT1003}$ Discrete mathematical Structures 8

How many relations are there on a set with *n* elements?

Solution: A relation on a set A is a subset of $A \times A$. Because $A \times A$ has n^2 elements when A has n elements, and a set with m elements has 2^m subsets, there are 2^{n^2} subsets of $A \times A$. Thus, there are 2^{n^2} relations on a set with n elements. For example, there are $2^{3^2} = 2^9 = 512$ relations on the set $\{a, b, c\}$.

Properties of Relations

In some relations an element is always related to itself. For instance, let R be the relation on the set of all people consisting of pairs (x, y) where x and y have the same mother and the same father. Then xRx for every person x.

DEFINITION 3

A relation R on a set A is called *reflexive* if $(a,a) \in R$ for every element $a \in A$

Remark: Using quantifiers we see that the relation R on the set A is reflexive if $\forall a ((a, a) \in R)$, where the universe of discourse is the set of all elements in A.

Consider the following relations on {1, 2, 3, 4}:

$$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\},\$$

$$R_2 = \{(1,1), (1,2), (2,1)\},\$$

$$R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\},\$$

$$R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\},\$$

$$R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\},\$$

$$R_6 = \{(3,4)\}.$$

Which of these relations are reflexive?

Solution: The relations R_3 and R_5 are reflexive because they both contain all pairs of the form (a, a), namely, (1, 1), (2, 2), (3, 3), and (4, 4). The other relations are not reflexive because they do not contain all of these ordered pairs. In particular, R_1 , R_2 , R_4 , and R_6 are not reflexive because (3, 3) is not in any of these relations.

Which of the relations from Example 5 are reflexive?

Solution: The reflexive relations from Example 5 are R_1 (because $a \le a$ for every integer a), R_3 , and R_4 . For each of the other relations in this example it is easy to find a pair of the form (a, a) that is not in the relation. (This is left as an exercise for the reader.)

EXAMPLE 9

Is the "divides" relation on the set of positive integers reflexive?

Solution: Because $a \mid a$ whenever a is a positive integer, the "divides" relation is reflexive. (Note that if we replace the set of positive integers with the set of all integers the relation is not reflexive because by definition 0 does not divide 0.)

DEFINITION 4

- \triangleright A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.
- \triangleright A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called *antisymmetric*.

Remark: Using quantifiers, we see that the relation R on the set A is symmetric if $\forall a \ \forall b \ ((a,b) \in R \rightarrow (b,a) \in R)$. Similarly, the relation R on the set A is antisymmetric if $\forall a \ \forall b \ (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b))$.

- That is, a relation is symmetric if and only if a is related to b implies that b is related to a.
- A relation is antisymmetric if and only if there are no pairs of distinct elements *a* and *b* with *a* related to *b* and *b* related to *a*. That is, the only way to have *a* related to *b* and *b* related to *a* is for *a* and *b* to be the same element.

The terms *symmetric* and *antisymmetric* are not opposites, because a relation can have both of these properties or may lack both of them (see Exercise 10). A relation cannot be both symmetric and antisymmetric if it contains some pair of the form (a, b), where $a \neq b$.

Which of the relations from Example 7 are symmetric and which are antisymmetric?

Solution: The relations R_2 and R_3 are *symmetric*, because in each case (b, a) belongs to the relation whenever (a, b) does. For R_2 , the only thing to check is that both (2, 1) and (1, 2) are in the relation. For R_3 , it is necessary to check that both (1, 2) and (2, 1) belong to the relation, and (1, 4) and (4, 1) belong to the relation. The reader should verify that none of the other relations is symmetric. This is done by finding a pair (a, b) such that it is in the relation but (b, a) is not.

 R_4 , R_5 , and R_6 are all *antisymmetric*. For each of these relations there is no pair of elements a and b with $a \neq b$ such that both (a, b) and (b, a) belong to the relation. The reader should verify that none of the other relations is antisymmetric. This is done by finding a pair (a, b) with $a \neq b$ such that (a, b) and (b, a) are both in the relation.

Which of the relations from Example 5 are symmetric and which are antisymmetric?

Solution: Refer Textbook.

EXAMPLE 12

Is the "divides" relation on the set of positive integers symmetric? Is it antisymmetric?

Solution: This relation is not symmetric because 1|2, but $2 \nmid 1$.

It is antisymmetric, for if a and b are positive integers with a|b and b|a, then a = b (the verification of this is left as an exercise for the reader).

Let R be the relation consisting of all pairs (x, y) of students at your school, where x has taken more credits than y. Suppose that x is related to y and y is related to z. This means that x has taken more credits than y and y has taken more credits than z.

We can conclude that x has taken more credits than z, so that x is related to z. What we have shown is that R has the transitive property, which is defined as follows.

DEFINITION 5

A relation R on a set A is called *transitive* if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

Remark: Using quantifiers we see that the relation R on a set A is transitive if we have $\forall a \ \forall b \ \forall c \ ((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R)$.

Which of the relations in Example 7 are transitive?

Solution: Refer textbook

EXAMPLE 14

Which of the relations in Example 5 are transitive?

Solution: Refer textbook

EXAMPLE 15

Is the "divides" relation on the set of positive integers transitive? Solution: Suppose that a divides b and b divides c. Then there are positive integers k and l such that b = ak and c = bl.

Hence, c = a(kl), so a divides c. It follows that this relation is transitive.

How many reflexive relations are there on a set with *n* elements? Solution:

A relation R on a set A is a subset of $A \times A$. Consequently, a relation is determined by specifying whether each of the n^2 ordered pairs in $A \times A$ is in R. However, if R is reflexive, each of the n ordered pairs (a,a) for $a \in A$ must be in R. Each of the other n(n-1) ordered pairs of the form (a,b), where $a \neq b$, may or may not be in R. Hence, by the product rule for counting, there are $2^{n(n-1)}$ reflexive relations

[this is the number of ways to choose whether each element (a, b), with $a \neq b$, belongs to R].

Combining Relations

Combining Relations

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined. Consider Examples 17–19.

EXAMPLE 17

Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$. The relations $R_1 = \{(1, 1), (2, 2), (3, 3)\}$ and $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$ can be combined to obtain

$$R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\},\$$

 $R_1 \cap R_2 = \{(1, 1)\},\$
 $R_1 - R_2 = \{(2, 2), (3, 3)\},\$
 $R_2 - R_1 = \{(1, 2), (1, 3), (1, 4)\}.$

Let A and B be the set of all students and the set of all courses at a school, respectively. Suppose that R_1 consists of all ordered pairs (a, b), where a is a student who has taken course b, and R_2 consists of all ordered pairs (a, b), where a is a student who requires course b to graduate. What are the relations $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \oplus R_2$, $R_1 - R_2$, and $R_2 - R_1$?

Solution: The relation $R_1 \cup R_2$ consists of all ordered pairs (a, b), where a is a student who either has taken course b or needs course b to graduate, and $R_1 \cap R_2$ is the set of all ordered pairs (a, b), where a is a student who has taken course b and needs this course to graduate. Also, $R_1 \oplus R_2$ consists of all ordered pairs (a, b), where student a has taken course b but does not need it to graduate or needs course b to graduate but has not taken it. $R_1 - R_2$ is the set of ordered pairs (a, b), where a has taken course b but does not need it to graduate; that is, b is an elective course that a has taken. $R_2 - R_1$ is the set of all ordered pairs (a, b), where b is a course that a needs to graduate but has not taken.

Let R_1 be the "less than" relation on the set of real numbers and let R_2 be the "greater than" relation on the set of real numbers, that is, $R_1 = \{(x, y) \mid x < y\}$ and $R_2 = \{(x, y) \mid x > y\}$. What are $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$, and $R_1 \oplus R_2$?

Solution: We note that $(x, y) \in R_1 \cup R_2$ if and only if $(x, y) \in R_1$ or $(x, y) \in R_2$. Hence, $(x, y) \in R_1 \cup R_2$ if and only if x < y or x > y. Because the condition x < y or x > y is the same as the condition $x \ne y$, it follows that $R_1 \cup R_2 = \{(x, y) \mid x \ne y\}$. In other words, the union of the "less than" relation and the "greater than" relation is the "not equals" relation.

Next, note that it is impossible for a pair (x, y) to belong to both R_1 and R_2 because it is impossible that x < y and x > y. It follows that $R_1 \cap R_2 = \emptyset$. We also see that $R_1 - R_2 = R_1$, $R_2 - R_1 = R_2$, and $R_1 \oplus R_2 = R_1 \cup R_2 - R_1 \cap R_2 = \{(x, y) \mid x \neq y\}$.

DEFINITION 6

Let R be a relation from a set A to a set B and S a relation from B to a set C. The *composite* of R and S is the relation consisting of ordered pairs (a,c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by $S \circ R$.

What is the composite of the relations R and S, where R is the relation from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$ with $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ and S is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$?

Solution: $S \circ R$ is constructed using all ordered pairs in R and ordered pairs in S, where the second element of the ordered pair in R agrees with the first element of the ordered pair in S. For example, the ordered pairs (2, 3) in R and (3, 1) in S produce the ordered pair (2, 1) in $S \circ R$. Computing all the ordered pairs in the composite, we find

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}.$$

Composing the Parent Relation with Itself Let R be the relation on the set of all people such that $(a, b) \in R$ if person a is a parent of person b. Then $(a, c) \in R \circ R$ if and only if there is a person b such that $(a, b) \in R$ and $(b, c) \in R$, that is, if and only if there is a person b such that a is a parent of b and b is a parent of b. In other words, $(a, c) \in R \circ R$ if and only if a is a grandparent of b.

The powers of a relation R can be recursively defined from the definition of a composite of two relations.

DEFINITION 7

Let R be a relation on the set A. The powers R^n , n = 1, 2, 3, ..., are defined recursively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$.

Let $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$. Find the powers R^n , n = 2, 3, 4, ...

Solution: Because $R^2 = R \circ R$, we find that $R^2 = \{(1, 1), (2, 1), (3, 1), (4, 2)\}$. Furthermore, because $R^3 = R^2 \circ R$, $R^3 = \{(1, 1), (2, 1), (3, 1), (4, 1)\}$. Additional computation shows that R^4 is the same as R^3 , so $R^4 = \{(1, 1), (2, 1), (3, 1), (4, 1)\}$. It also follows that $R^n = R^3$ for $n = 5, 6, 7, \ldots$ The reader should verify this.

THEOREM 1

The relation R on a set A is transitive if and only if $R^n \subseteq R$ for $n = 1, 2, 3, \ldots$