

Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025

Kha Nhat Le

Hoang-Tuan Nguyen

Hung Tien Tran

Thanh Duc Ngo

SYNTHETIC DATA (source domain)

REAL-WORLD DATA * (target domain)

Blur

Curved text

- > STR learning models requires huge amounts of labelled data
- Gathering labeled real data is challenging (high cost and time-intensive nature)
- Many models primarily utilize synthetic data for training

Unsupervised Domain Adaptation (UDA) in STR

Large gap between source and target domains

The efficacy of UDA tends to degrade

[4] Baek, J., Matsui, Y. and Aizawa, K., 2021. What if we only use real datasets for scene text recognition? toward scene text recognition with fewer labels. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 3113-3122).

[28] Kumar, A., Ma, T. and Liang, P., 2020, November. Understanding self-training for gradual domain adaptation. In *International conference on machine learning* (pp. 5468-5479). PMLR.

[68] Zhang, Y., Nie, S., Liang, S. and Liu, W., 2021. Robust text image recognition via adversarial sequence-to-sequence domain adaptation. *IEEE Transactions on Image Processing*, 30, pp.3922-3933.

Algorithm 1 Ensemble Self-training

```
Require: Labeled images \mathcal{X} with labels \mathcal{Y} and unlabeled images \mathcal{U}
1: Train parameters \theta_0 of ABINet with (\mathcal{X}, \mathcal{Y}) using Equation 8.
2: Use \theta_0 to generate soft pseudo labels \mathcal{V} for \mathcal{U}
3: Get (\mathcal{U}', \mathcal{V}') by filtering (\mathcal{U}, \mathcal{V}) with \mathcal{C} < Q (Equation 9)
4: for i = 1, \ldots, N_{max} do
5: if i == N_{upl} then
6: Update \mathcal{V} using \theta_i
7: Get (\mathcal{U}', \mathcal{V}') by filtering (\mathcal{U}, \mathcal{V}) with \mathcal{C} < Q (Equation 9)
8: end if
9: Sample B_l = (\mathcal{X}_b, \mathcal{Y}_b) \subsetneq (\mathcal{X}, \mathcal{Y}), B_u = (\mathcal{U}'_b, \mathcal{V}'_b) \subsetneq (\mathcal{U}', \mathcal{V}')
10: Update \theta_i with B_l, B_u using Equation 8.
11: end for
```

Fang et al. [16]

Patel *et al*. [40]

[16] Fang, S., Xie, H., Wang, Y., Mao, Z. and Zhang, Y., 2021. Read like humans: Autonomous, bidirectional and iterative language modeling for scene text recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 7098-7107).

[40] Patel, G., Allebach, J.P. and Qiu, Q., 2023. Seq-ups: Sequential uncertainty-aware pseudo-label selection for semi-supervised text recognition. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision* (pp. 6180-6190).

WACV 2025 TUCSON, ARIZONA • FEB 28 - MAR 4

Ours: Stratified Domain Adaptation (StrDA)

WACV 2025 TUCSON, ARIZONA • FEB 28 - MAR 4

Stage 1: Domain Stratifying

* Source domain $S = (x_i^S, y_i^S)_{i=1}^{|S|}$ and target domain $T = (x_i^T)_{i=1}^{|T|}$ Partition into a series of equally-sized groups $T_m = (x_i^T)_{i=1}^{|T_m|}$: $\rho(S, T_m) \leq \rho(S, T_{m+1}) \quad \forall m \in (1, n) \quad (1)$

Generators $G_T: S \to T$, $G_S: T \to S$; discriminators D_S, D_T

$$d_{i} = \frac{(1+\beta^{2}).d_{S}(x_{i}^{T}).d_{T}(x_{i}^{T})}{\beta^{2}.d_{S}(x_{i}^{T})+d_{T}(x_{i}^{T})}$$
(2)

Harmonic Domain Gap Estimator (HDGE)

 $d_S(x_i^T)$ and $d_T(x_i^T)$ represent out-of-distribution (OOD) level of x_i^T with respect to source domain and target domain, respectively

Algorithm 1 Progressive Self-Training ST

Require: Labeled images $(X, Y) \in S$ and sequence of unlabeled image subsets $T_1, T_2, T_3, \dots, T_n(T_i \in T)$

- 1: Train STR model $M(\cdot, \theta_0)$ with (X, Y) using CE loss.
- 2: **for** iteration i = 1, 2, ..., n **do**
- 3: $T_i \to M(\cdot, \theta_{i-1}) \to V_i$ (pseudo-labels) and m_i (average confidence-scores)
- 4: Update θ_i with (X, Y), (T_i, V_i) , m_i using Eq. (5)
- 5: end for

Objective:

$$L(\theta) = \frac{1 - m_i}{|S|} \sum_{x^S \in S} L_r(x^S; y^S) + \frac{m_i}{|T_i|} \sum_{x^T \in T_i} L_r(x^{T^i}; y^{T^i})$$
 (5)

where m_i is the mean (average) of confidence scores when generating pseudo-labels for the unlabeled image subset T^i . m_i serves as an adaptive controller.

Experiment

- Datasets: 16 million labeled synthetic data + 2 million unlabeled real data
- > STR models: CRNN [46], TRBA [3], and ABINet [16]
- > Evaluation Metrics: word-accuracy for each dataset

[3] Baek, J., Kim, G., Lee, J., Park, S., Han, D., Yun, S., Oh, S.J. and Lee, H., 2019. What is wrong with scene text recognition model comparisons? dataset and model analysis. In *Proceedings of the IEEE/CVF international conference on computer vision* (pp. 4715-4723).

[16] Fang, S., Xie, H., Wang, Y., Mao, Z. and Zhang, Y., 2021. Read like humans: Autonomous, bidirectional and iterative language modeling for scene text recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 7098-7107).

[46] Shi, B., Bai, X. and Yao, C., 2016. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. *IEEE transactions on pattern analysis and machine intelligence*, 39(11), pp.2298-2304.

Quantitative Result

Туре	Method	Common Benchmarks					Additional Datasets						
		IIIT	SVT	IC13	IC15	SVTP	CUTE	Ανα	COCO	Uber	ArT	ReCTS	Union14M
		3,000	647	857	1,811	645	288	Avg.	9,825	80,418	35,149	2,592	403,379
СТС	CRNN (baseline)	92.5	86.4	92.0	71.3	75.2	83.3	84.4	49.5	34.6	59.5	77.1	43.3
	+ ST	93.7	87.6	92.2	72.9	75.5	84.7	85.5	51.4	35.9	60.7	79.8	46.2
	Δ	+1.2	+1.2	+0.2	+1.6	+0.3	+1.4	+1.1	+1.9	+1.3	+1.2	+2.7	+2.9
	+ StrDA _{HDGE}	93.4	89.0	93.1	74.0	77.1	84.4	86.0	53.0	36.8	60.9	81.0	<u>47.8</u>
	Δ	+0.9	+2.6	+1.1	+2.7	+1.9	+1.1	+1.6	+3.5	+2.2	+1.4	+3.9	+4.5
	TRBA (baseline)	96.2	93.7	95.8	81.9	86.1	91.0	91.0	62.5	39.0	69.0	82.8	56.6
	+ ST	97.1	94.0	96.1	82.5	90.1	92.4	92.0	65.5	40.9	70.9	84.8	60.4
Attention	Δ	+0.9	+0.3	+0.3	+0.6	+4.0	+1.4	+1.0	+3.0	+1.9	+1.9	+2.0	+3.8
	+ StrDA _{HDGE}	97.2	95.2	<u>96.5</u>	<u>84.5</u>	90.7	94.4	92.8	<u>68.6</u>	42.7	72.2	<u>85.8</u>	<u>64.2</u>
	Δ	+1.0	+1.5	+0.7	+2.6	+4.6	+3.4	+1.8	+6.1	+3.7	+3.2	+3.0	+7.6
	ABINet (baseline)	97.0	95.2	95.6	82.3	89.5	90.3	91.8	63.2	39.5	68.9	82.6	55.7
	+ ST	97.4	96.3	<u>96.4</u>	83.9	91.0	92.0	92.8	68.7	42.3	71.2	84.7	61.4
LM	Δ	+0.4	+1.1	+0.8	+1.6	+1.5	+1.7	+1.0	+5.5	+2.8	+2.3	+2.1	+5.7
	+ StrDA _{HDGE}	<u>97.8</u>	96.9	96.0	84.4	91.0	94.4	93.2	<u>69.7</u>	44.2	71.6	<u>85.0</u>	<u>62.9</u>
	Δ	+0.8	+1.7	+0.4	+2.1	+1.5	+4.1	+1.4	+6.5	+4.7	+2.7	+2.4	+7.2

Table 2. Comparison with other domain adaptation methods in the STR task. Our method significantly enhances the performance of the STR models, surpassing other existing approaches. Additionally, it can be integrated with other methods to achieve even greater efficacy.

	Method	Labeled Dataset	Unlabeled Dataset	Regular Text				Irregular Text				
	Method		Omabeled Dataset	IIIT	SVT	IC13		IC15		SVTP	CUTE	
				3000	647	857	1015	1811	2077	645	288	
ılts	TRBA-FEDS [41]	MJ+ST	Amazon_book_cover	92.2	92.1	96.5	95.3	83.8	80.9	84.0	79.0	
Published Results	TRBA-Seq-UPS [40]	MJ+ST	276K RU	92.7	88.6	_	92.2	_	76.9	78.0	84.4	
	TRBA-cr [71]	MJ+ST	10.6M RU	96.5	96.3	98.3	_	89.3	_	93.3	93.4	
	ABINet-st [16]	MJ+ST	Uber-Text	96.8	94.9	97.3	_	87.4	_	90.1	93.4	
	ABINet-est [16]	MJ+ST	Uber-Text	97.2	95.5	97.7	-	86.9	-	89.9	94.1	
lts	TRBA-cr (reproduce)	MJ+ST	2M RU	97.3	95.1	97.2	96.2	88.1	84.0	90.5	93.8	
esu	TRBA-StrDA _{HDGE}	MJ+ST	2M RU	97.2	95.2	97.4	96.5	88.4	84.5	90.7	94.4	
Our Results	TRBA-StrDA _{HDGE} w/ cr	MJ+ST	2M RU	97.3	96.1	97.6	96.7	88.7	84.5	90.9	94.4	
	ABINet-StrDA _{HDGE}	MJ+ST	2M RU	97.8	96.9	97.0	96.0	88.6	84.4	91.0	94.4	

[16] Fang, S., Xie, H., Wang, Y., Mao, Z. and Zhang, Y., 2021. Read like humans: Autonomous, bidirectional and iterative language modeling for scene text recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 7098-7107).

[40] Patel, G., Allebach, J.P. and Qiu, Q., 2023. Seq-ups: Sequential uncertainty-aware pseudo-label selection for semi-supervised text recognition. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision* (pp. 6180-6190).

[41] Patel, Y. and Matas, J., 2021, September. FEDS-filtered edit distance surrogate. In *International Conference on Document Analysis and Recognition* (pp. 171-186). Cham: Springer International Publishing.

[71] Zheng, C., Li, H., Rhee, S.M., Han, S., Han, J.J. and Wang, P., 2022. Pushing the performance limit of scene text recognizer without human annotation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 14116-14125).

Qualitative Result

Ground truth Sportique ST: Scortique

 $StrDA_{HDGE}$ (round 1): Scontique

StrDA_{HDGE} (round 2): Scontique

StrDA_{HDGE} (round 3): Scontique

StrDA_{HDGE} (round 4): Smortique

StrDA_{HDGE} (round 5): Sportique

Ground truth: raffles

ST: are

StrDA_{HDGE} (round 1): capples

StrDA_{HDGE} (round 2): rapples

StrDA_{HDGE} (round 3): carles

StrDA_{HDGE} (round 4): raffles

StrDA_{HDGE} (round 5): raffles

Ground truth: STARBUCKS

ST: Tarbacks

StrDA_{HDGE} (round 1): JARDOCKS

StrDA_{HDGE} (round 2): STARBOCKS

StrDA_{HDGE} (round 3): STARBOCKS

StrDA_{HDGE} (round 4): STARBUCKS

StrDA_{HDGE} (round 5): STARBUCKS

Subset 1

ST: generally StrDA_{HDGE}: generally

ST: studies StrDA_{HDGE}: studies

ST: starbucks StrDA_{HDGE}: starbucks

Subset 2

ST: poblaciones StrDA_{HDGE}: poblaciones

ST: troubles StrDA_{HDGE}: troubles

ST: 34223288 StrDA_{HDGE}: 34223288

Subset 3

ST: nakaloa StrDA_{HDGE}: makaloa

ST: throught StrDA_{HDGE}: brought

ST: flumacraft StrDA_{HDGE}: alumacraft

Subset 4

ST: priatt_ StrDA_{HDGE}: private

ST: creativit_ StrDA_{HDGE}: creativity

ST: lanoleria StrDA_{HDGE}: langileria

Subset 5

ST: soturaa StrDA_{HDGE}: natural

ST: progestenne StrDA_{HDGE}: progesterone

ST: kdfingend StrDA_{HDGE}: kdf-jugend

Conclusion

- ➤ We introduce a progressive self-training domain adaptation approach for scene text recognition, which helps improve the model's performance by utilizing unlabeled data with high-quality pseudo-labels.
- > This paves the way for recognizing text without incurring human annotation costs, particularly in cases where labeled real data is limited.

Future work

- Utilizing vision foundation model (VFMs) could provide more generalized out-ofdistribution (OOD) evaluation
- > Find a general method to determine a reasonable amount of data in each sub-domain group (not equal-size for all sub-groups)
- Apply the approach to other problems with higher complexity and larger domain gaps, such as medical image segmentation

THANK YOU

Code available !!!

https://github.com/KhaLee2307/StrDA

