Incremental Truncation

Linearize vector by double digestion

Salt concentration (Nacl)

Exo III – helps stepwise removal of mononucleotides from 3´-hydroxyl termini of duplex DNA

Time-dependent sampling !!

Ostermeier, Nixon & Benkovic: Proc. Natl Acad. Sci :96, 3562-67, 1999

Pstl

BamHI

Recognition Sequence	Cut Site	Recognition	Cut site		
F. C.	F. GMGGA G 21	5'-GGATTC-3'	5′-G	GAT	TC-3'
5'CTGCAG 3' 3'GACGTC 5'	5'CTGCA G3' 3'G ACGTC5'	3'-CCTAAG-5'	3'-CC	TAA	G-5′

The <u>3' overhangs</u> are <u>resistant</u> to Exo III digestion whereas the <u>5' overhangs</u> are <u>SUSCEPTIBLE</u>.

Diverse Library with every one base deletion

Combining Incremental Truncation Libraries

Incremental Truncation for the Creation of Hybrid enzYmes

ITCHY Hybrid Protein Library

The fusion of two incremental truncation libraries is called an ITCHY library.

An ITCHY library created from a single gene consists of genes with internal deletions and duplications.

An ITCHY library created between two different genes consists of gene fusions created in a DNA-homology independent fashion.

Case study

Non-Associating Heterodimeric DNA Methyltransferases as a Platform for Developing Site-Specific Methyltransferases

Outline

DNA methylation background

Site-biased and site-specific DNA methyltransferases

- Splitting monomeric methyltransferases
- Naturally split methyltransferases

Genome Versus the Epigenome

- Higher eukaryotic cells contain two layers of heritable information
 - Genome: Instructions encoded in DNA for making RNA and proteins
 - Epigenome: Instructions for how to utilize genetic information
 - DNA methylation
 - Histone modification

Nature **441**, 143-145(11 May 2006)

5-Methylcytosine in Mammalian and Plant Cells

In plants, 5methylcytosine occurs at
CpG, CpHpG and
CpHpH sequences
(where H = A, C or T).

 In fungi and animals, 5methylcytosine predominantly occurs at CpG dinucleotides.

Heritable DNA Methylation

 Enzymes recognize and methylate DNA at hemi-methylated sites

Why is DNA Methylation Important?

- Methylation patterns are important in establishing correct gene expression
 - Embryonic development and cell differentiation
 - DNA imprinting
- Epigenetic diseases characterized by abnormal methylation patterns
 - Cancer
 - Diseases caused by deregulation of imprinted genes