IS422P - DATA MINING CLASSIFICATION (PART I)

AMIRA REZK
INFORMATION SYSTEM DEPARTMENT

AGENDA

Bayes'
Theorem
Naïve
Bayesian
Classification

THE BASICS WHAT IS CLASSIFICATION

- Motivation: Prediction
 - Is a bank loan applicant "safe" or "risky"?
 - Which treatment is better for patient, "treatmentX" or "treatmentY"?
- Classification is a data analysis task where a model is constructed to predict class labels (categories)

THE BASICS GENERAL APPROACH

- A two-step process:
- Learning (training) step → construct classification model
 - Build classifier for a predetermined set of classes
 - Learn from a training dataset (data tuples + their associated classes) → Supervised Learning
- Classification step → model is used to predict class labels for given data (test set)

THE BASICS GENERAL APPROACH

THE BASICS GENERAL APPROACH

Classification rules

IF age = youth THEN loan_decision = risky
IF income = high THEN loan_decision = safe
IF age = middle_aged AND income = low
THEN loan_decision = risky
...

Estimate classifier accuracy (to avoid overfitting)

Test_data

name	age	income	loan_decision
Juan Bello	senior	low	safe
Sylvia Crest	middle_aged	low	risky
Anne Yee	middle_aged	high	safe

% test set tuples correctly classified

Predict classification of new data

(Mohammed, youth, medium)
Loan decision?

Risky

DECISION TREE INDUCTION

- Learning of decision trees from training dataset
- Decision tree → A flowchart-like tree structure
 - Internal node → a test on an attribute
 - Branch → a test outcome
 - Leaf node → a class label
- Constructed tree can be binary or otherwise

DECISION TREE INDUCTION

Benefits

- No domain knowledge required
- No parameter setting
- Can handle multidimensional data
- Easy-to-understand representation
- Simple and fast

Splitting Criterion is a test:

- Which attribute to test at node N → What is the "best" way to partition D into mutually exclusive classes
- which (and how many) branches to grow from node N to represent the test outcomes
- Resulting partitions at each branch should be as "pure" as possible
 - A partition is "pure" if all its tuples belong to the same class
- When attribute is chosen to split training data set, it's removed from attribute list

Terminating conditions

- All the tuples in D (represented at node N) belong to the same class
- There are no remaining attributes on which the tuples may be further partitioned
 - majority voting is employed → convert node into a leaf and label it with the most common class in data partition
- There are no tuples for a given branch
 - a leaf is created with the majority class in data partition

- Attribute selection measure → a heuristic for selecting the splitting criterion that "best" splits a given data partition into smaller mutually exclusive classes
- Attributes are ranked according to a measure
 - attribute having the best score is chosen as the splitting attribute
 - split-point for continuous attributes
 - splitting subset for discrete attributes with binary trees
- Measures: Information Gain, Gain Ratio, Gini Index

Information Gain

- O Based on Shannon's information theory
- O Goal is to minimize the expected number of tests needed to classify a tuple
 - guarantee that a simple tree is found
- O Attribute with the <u>highest information gain</u> is chosen as the splitting attribute
 - minimizes information needed to classify tuples in resulting partitions
 - reflects least "impurity" in resulting partitions

- Given m class labels $(C_i, i = 1 \text{ to m})$
- Expected Information needed to classify a tuple in D
- Info (D)= entropy = $-\sum_{i=1}^{m} p_i \log_2(pi)$
- $\mathbf{p}_{i} \rightarrow \mathbf{p}_{i}$ probability that an arbitrary tuple in D belong to class Ci

$$p_i = \frac{|C_{i|D}|}{|D|}$$

 $\subset C_{i,D} \rightarrow$ set of tuples having class label C_i in partition D

- How much more Information would be needed after Partitioning to arrive at a "pure" classification"
 - Expected information required to classify a tuple from D based on the partitioning by attribute A:
 - $info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{D} \times info(Dj)$
 - The smaller the expected information still required, the greater the purity of the partitions

- **Information gain** is the different between the original information required (based on proportion of classes) and the new requirement (after partitioning on A)
- $Gain(A) = info(D) info_A(D)$
- Gain(A) tells you how much would be gained by branching on A
 - Expected reduction in the information requirement caused by knowing the values of A
 - Attributes A with the highest Gain(A) is chosen as the splitting attribute at node N

department	age	salary	status	count
sales Middle aged		medium	senior	30
sales	youth	low	junior	30
sales	Middle aged	low	junior	40
systems youth		medium	junior	20
systems Middle aged		high	senior	20
systems senior		high	senior	10
marketing	senior	medium	senior	10
marketing	Middle aged	medium	junior	20
secretary	senior	medium	senior	10
secretary	youth	low	junior	10

$$CI$$
 (Senior) = 80, $C2$ (Junior) = 120

info(D) = entropy =
$$-\sum_{i=1}^{m} p_i \log_2 p_i$$

= $-\frac{80}{200} \log_2 \frac{80}{200} - \frac{120}{200} \log_2 \frac{120}{200} = 0.97$
info_A(D) = $-\sum_{j=1}^{n} \frac{D_j}{D}$ info(D_j)

Department: Sales = 100, system= 50, marketing= 30, secretary = 20

$$\frac{100}{200} \left[-\frac{30}{100} \log \frac{30}{100} - \frac{70}{100} \log \frac{70}{100} \right] + \frac{50}{200} \left(-\frac{30}{50} \log \frac{30}{50} - \frac{20}{50} \log \frac{20}{50} \right) \\
+ \frac{30}{200} \left(-\frac{10}{30} \log \frac{10}{30} - \frac{20}{30} \log \frac{20}{30} \right) + \frac{20}{200} \left(-\frac{10}{20} \log \frac{10}{20} - \frac{10}{20} \log \frac{10}{20} \right) \\
= \mathbf{0.92}$$

department	age	salary	status	count
sales	Middle aged	medium	senior	30
sales	youth	low	junior	30
sales	Middle aged	low	junior	40
systems youth		medium	junior	20
systemsMiddle agedsystemssenior		high	senior	20
		high	senior	10
marketing	senior	medium	senior	10
marketing	Middle aged	medium	junior	20
secretary	senior	medium	senior	10
secretary	youth	low	junior	10

$$CI$$
 (Senior) = 80, $C2$ (Junior) = 120

info(D) = entropy =
$$-\sum_{i=1}^{m} p_i \log_2 p_i$$

= $-\frac{80}{200} \log_2 \frac{80}{200} - \frac{120}{200} \log_2 \frac{120}{200} = 0.97$
info_A(D) = $-\sum_{j=1}^{n} \frac{D_j}{D}$ info(D_j)

Department: Sales = 100, system= 50, marketing= 30, secretary = 20

$$\frac{\frac{100}{200}\left(-\frac{30}{100}\log\frac{30}{100} - \frac{70}{100}\log\frac{70}{100}\right) + \frac{50}{200}\left[-\frac{30}{50}\log\frac{30}{50} - \frac{20}{50}\log\frac{20}{50}\right]}{+\frac{30}{200}\left(-\frac{10}{30}\log\frac{10}{30} - \frac{20}{30}\log\frac{20}{30}\right) + \frac{20}{200}\left(-\frac{10}{20}\log\frac{10}{20} - \frac{10}{20}\log\frac{10}{20}\right)}$$

$$= \mathbf{0.92}$$

department	age	salary	status	count
sales	Middle aged	medium	senior	30
sales	youth	low	junior	30
sales	Middle aged	low	junior	40
systems youth		medium	junior	20
systems Middle aged		high	senior	20
systems senior		high	senior	10
marketing	senior	medium	senior	10
marketing Middle age		medium	junior	20
secretary	senior	medium	senior	10
secretary	youth	low	junior	10

$$CI$$
 (Senior) = 80, $C2$ (Junior) = 120

info(D) = entropy =
$$-\sum_{i=1}^{m} p_i \log_2 p_i$$

= $-\frac{80}{200} \log_2 \frac{80}{200} - \frac{120}{200} \log_2 \frac{120}{200} = 0.97$
info_A(D) = $-\sum_{j=1}^{n} \frac{D_j}{D}$ info(D_j)

Department: Sales = 100, system= 50, marketing= 30, secretary = 20

$$\frac{\frac{100}{200}\left(-\frac{30}{100}\log\frac{30}{100} - \frac{70}{100}\log\frac{70}{100}\right) + \frac{50}{200}\left(-\frac{30}{50}\log\frac{30}{50} - \frac{20}{50}\log\frac{20}{50}\right)}{+\frac{30}{200}\left[-\frac{10}{30}\log\frac{10}{30} - \frac{20}{30}\log\frac{20}{30}\right] + \frac{20}{200}\left(-\frac{10}{20}\log\frac{10}{20} - \frac{10}{20}\log\frac{10}{20}\right)}$$

$$= \mathbf{0.92}$$

department	age	salary	status	count
sales	Middle aged	medium	senior	30
sales	youth	low	junior	30
sales	sales Middle aged		junior	40
systems	youth	medium	junior	20
systems	Middle aged	high	senior	20
systems	senior	high	senior	10
marketing	senior	medium	senior	10
marketing	Middle aged	medium	junior	20
secretary	senior	medium	senior	10
secretary	youth	low	junior	10

$$CI$$
 (Senior) = 80, $C2$ (Junior) = 120

info(D) = entropy =
$$-\sum_{i=1}^{m} p_i \log_2 p_i$$

= $-\frac{80}{200} \log_2 \frac{80}{200} - \frac{120}{200} \log_2 \frac{120}{200} = 0.97$
info_A(D) = $-\sum_{j=1}^{n} \frac{D_j}{D} info(D_j)$

Department: Sales = 100, system= 50, marketing= 30, secretary = 20

$$\frac{100}{200} \left(-\frac{30}{100} \log \frac{30}{100} - \frac{70}{100} \log \frac{70}{100} \right) + \frac{50}{200} \left(-\frac{30}{50} \log \frac{30}{50} - \frac{20}{50} \log \frac{20}{50} \right) + \frac{30}{200} \left(-\frac{10}{30} \log \frac{10}{30} - \frac{20}{30} \log \frac{20}{30} \right) + \frac{20}{200} \left[-\frac{10}{20} \log \frac{10}{20} - \frac{10}{20} \log \frac{10}{20} \right] = \mathbf{0.92}$$

Gain
$$_{department} = 0.97 - 0.92 = 0.05$$

department	age	salary	status	count
sales	Middle aged	medium	senior	30
sales	youth	low	junior	30
sales	sales Middle aged		junior	40
systems	youth	medium	junior	20
systems	Middle aged	high	senior	20
systems	senior	high	senior	10
marketing	senior	medium	senior	10
marketing	Middle aged	medium	junior	20
secretary	senior	medium	senior	10
secretary	youth	low	junior	10

$$CI$$
 (Senior) = 80, $C2$ (Junior) = 120

info(D) = entropy =
$$-\sum_{i=1}^{m} p_i \log_2 p_i$$

= $-\frac{80}{200} \log_2 \frac{80}{200} - \frac{120}{200} \log_2 \frac{120}{200} = 0.97$
info_A(D) = $-\sum_{j=1}^{n} \frac{D_j}{D}$ info(D_j)

Department: Sales = 100, system= 50, marketing= 30, secretary = 20

$$\frac{100}{200} \left(-\frac{30}{100} \log \frac{30}{100} - \frac{70}{100} \log \frac{70}{100} \right) + \frac{50}{200} \left(-\frac{30}{50} \log \frac{30}{50} - \frac{20}{50} \log \frac{20}{50} \right) \\
+ \frac{30}{200} \left(-\frac{10}{30} \log \frac{10}{30} - \frac{20}{30} \log \frac{20}{30} \right) + \frac{20}{200} \left(-\frac{10}{20} \log \frac{10}{20} - \frac{10}{20} \log \frac{10}{20} \right) \\
= \mathbf{0.92}$$

Gain
$$_{\text{department}}$$
 = 0.97 - 0.92 = 0.05 bits Gain $_{\text{Age}}$ = 0.97 -0.55 = 0.42 bits

Gain
$$_{Salary} = 0.97 - 0.45 = 0.52$$
 bits

department	age	Status
sales	Middle aged	senior
systems	youth	junior
marketing	senior	senior
marketing	Middle aged	junior
secretary	senior	senior

Information gain for continuous attributes

- 1. Sort values in <u>increasing</u> order
- 2. Each *midpoint* between two adjacent values can serve as *split-point*
- Split-point between two values v_i and $v_{i+1} = \frac{v_i + v_{i+1}}{2}$
- 4. For each split-point, evaluate $info_A(D)$ with the number of partitions = 2 $(A \le split-point \& A > split-point)$

DECISION TREE INDUCTION TREE PRUNING

- O Data may be overfitted to dataset anomalies and outliers
- O Pruning removes the least reliable branches
 - DT becomes less complex
- OPrepruning → statistically assess the goodness of a split before it takes place
 - hard to choose thresholds for statistical significance
- OPostpruning → remove sub-trees from already constructed trees
 - I. remove sub-tree branches and replace with leaf node
 - 2. leaf is labeled with most frequent class in sub-tree

DECISION TREE INDUCTION TREE PRUNING

DECISION TREE INDUCTION RULE EXTRACTION FROM A DECISION TREE – WHAT ARE RULES?

department	age	salary	status	count
sales	Middle aged	medium	senior	30
sales	youth	low	junior	30
sales	Middle aged	low	junior	40
systems	youth	medium	junior	20
systems	Middle aged	high	senior	20
systems	senior	high	senior	10
marketing	senior	medium	senior	10
marketing	Middle aged	medium	junior	20
secretary	senior	medium	senior	10
secretary	youth	low	junior	10

RI: IF salary = medium AND age = youth THEN Status = Junior

$$coverage(R) = \frac{n_{covers}}{|D|}$$
$$accuracy(R) = \frac{n_{covers}}{n_{covers}}.$$

- coverage(R1) = 20/200=10% and
- accuracy(RI) = 20/20 = 100%.

DECISION TREE INDUCTION RULE EXTRACTION FROM A DT – RESOLVING RULES CONFLICTS

Rules conflicts are the result of a tuple firing more than one rule with <u>different class predictions</u>

Two resolution strategies

- O Size Ordering → rule with largest antecedent (toughest) has highest priority fires and returns class prediction
- O Rule Ordering -> rules prioritized apriori according to
 - Class-based ordering → decreasing importance (most frequent are highest order of prevalence)
 - Rule-based ordering → measures of rule quality (e.g. accuracy, size, domain expertise)

Fallback (default) rule when no rules are triggered

DECISION TREE INDUCTION RULE EXTRACTION FROM A DECISION TREE

- Create one rule for each path from root to leaf in the decision tree
 - I. Each <u>splitting criterion</u> is <u>ANDed</u> to form rule antecedent (IF)
 - Leaf node holds class prediction (THEN)
 - RI: IF salary = medium AND age = youth THEN Status = Junior

Can the rules resulting from decision trees have conflicts?

QUESTION?

NEXT

