Química orgánica

♦ CUESTIÓNS

• Formulación/Nomenclatura

1. a) Nomea os seguintes compostos e identifica e nomea os grupos funcionais presentes en cada un deles:

a.1) CH₃-COO-CH₂-CH₃ a.2) CH₃-NH₂ a.3) CH₃-CH₂-CHOH-CH₃ a.4) CH₃-CH₂-COOH
(A.B.A.U. ord. 19)

Solución:

	Fórmula	Nome	Tipo	Grupo	funcional
a.1)	CH ₃ -COO-CH ₂ -CH ₃	etanoato de etilo	éster	-COO-	acilo
a.2)	CH ₃ -NH ₂	metilamina	amina	-NH ₂	amino
a.3)	CH ₃ -CH ₂ -CHOH-CH ₃	butan-2-ol	alcohol	-OH	hidroxilo
a.4)	CH ₃ -CH ₂ -COOH	ácido propanoico	ácido carboxílico	-COOH	carboxilo

2. a) Escribe a fórmula semidesenvolvida de:

a.1) dimetilamina

a.2) etanal

a.3) ácido 2-metilbutanoico

Nomea:

a.4) CH₃-CH₂-O-CH₂-CH₃

a.5) CH₃-CH(CH₃)-CO-CH₂-CH(CH₃)-CH₃

a.6) CH₃Cl

(A.B.A.U. extr. 18)

Solución:

a.1) Dimetilamina: CH_3 -NH-CH $_3$ a.2) Etanal: CH_3 -C $_H^O$

a.3) Ácido 2-metilbutanoico: $CH_3-CH_2-CH-C \bigcirc OH_3$

a.4) CH_3 - CH_2 -O- CH_2 - CH_3 : etoxietano o dietiléter a.5) CH_3 - $CH(CH_3)$ -CO- CH_2 - $CH(CH_3)$ - CH_3 : 2,5-dimetilhexan-3-ona

a.6) CH₃Cl: clorometano

• Isomería

1. Escribe as fórmulas semidesenvolvidas dos seguintes compostos, nomee o seu grupo funcional, e xustifique se algún deles presenta isomería óptica:

a) ácido 3-pentenoico, b) 2-hidroxipropanal, c) etanoato de metilo

d) propino.

(A.B.A.U. extr. 23)

Solución:

a) Ácido 3-pentenoico: $CH_3-CH=CH-CH_2-C \bigcirc O$ grupo carboxilo (-COOH)

b) 2-Hidroxipropanal: CH₃-CH-C OH grupo hidroxilo (-OH) e

grupo carbonilo (-CHO)

 CH_3-C $O-CH_3$ grupo acilo (-COO-) c) Etanoato de metilo:

grupo etinilo (-C = CH) d) Propino:

O 2-hidroxipropanal presenta isomería óptica porque o carbono 2 é un carbono asimétrico (quiral). Está unido a catro substituíntes diferentes: metilo (-CH₃), hidróxeno (-H), hidroxilo (-OH) e carbonilo (-CHO). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

a) Xustifica se a seguinte afirmación é verdadeira ou falsa:

O CH₃-CH=CH-CH₃ reacciona con HCl para dar un composto que non presenta isomería óptica.

b) Escribe as fórmulas semidesenvolvidas e nomea os isómeros xeométricos do 2,3-dibromobut-2-eno.

(A.B.A.U. ord. 23)

Solución:

a) Falsa.

O composto CH₃-CH=CH-CH₃ é o 2-buteno, que pode reaccionar con HCl para dar 2-clorobutano (CH₃-CHCl-CH₂-CH₃) seguindo a regra de Markovnikov. Trátase dunha reacción de adición.

$$CH_3\text{-}CH=CH\text{-}CH_3 + HCI \longrightarrow CH_3\text{-}C\text{-}CH_2\text{-}CH_3$$

O 2-clorobutano presenta isomería óptica porque o carbono 2 é un carbono asimétrico (quiral). Está unido a catro substituíntes diferentes: metilo (CH₃-), hidróxeno (H-), cloro (Cl-) e etilo (CH₃-CH₂-). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

b) O 2,3-dibromobut-2-eno ten isomería xeométrica porque cada un dos carbonos do dobre enlace están unidos a grupos diferentes (bromo e metilo). Os seus isómeros poden chamarse cis e trans ou Z e E.

Br Br Br
$$CH_3$$
 $C = C$ CH_3 CH_3 Br CH_3 Br Cis -2,3-dibromobut-2-eno (Z) -2,3-dibromobut-2-eno (E) -2,3-dibromobut-2-eno

Nomea os seguintes compostos, razoa cales presentan algún tipo de isomería e noméaa:

CH₂=CH-CH₃ CH₃-CH₂-CHOH-CH₃ CH₃-CH=CH-COOH CH₃-CHCl-CH₃ (A.B.A.U. extr. 20)

Solución:

CH₂=CH-CH₃: prop-1-eno CH3-CH2-CHOH-CH3: butan-2-ol

CH₃-CH=CH-COOH: ácido but-2-enoico CH₃-CHCl-CH₃: 2-cloropropano

O

O butan-2-ol, CH_3 – $\overset{\circ}{C}$ – CH_2 – CH_3 , ten isomería óptica porque o carbono 2 é asimétrico. Está unido a catro

grupos distintos: hidróxeno (-H), etilo (-CH₂-CH₃), hidroxilo (-OH) e metilo (-CH₃). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

Do ácido but-2-enoico existen dous isómeros xeométricos, que se poden chamar cis e trans ou Z e E .

$$CH_3$$
 H $C=C$ CH_3 $COOH$ $Acido (E)-but-2-enoico$ $Acido (E)-but-2-enoico$ $Acido (E)-but-2-enoico$ $Acido (E)-but-2-enoico$

4. a) Nomea os seguintes compostos e xustifica se presentan algún tipo de isomería e de que tipo: CH₃-CHOH-COH CH₂-CH₂-CH₂-CH₃

(A.B.A.U. ord. 20)

Solución:

CH₃-CHOH-COH: 2-hidroxipropanal. O carbono 2 é asimétrico (está unido a catro grupos distintos: hidróxeno (-H), hidroxilo (-OH), metilo (-CH₃) e carbonilo (-CHO), polo que presenta isomería óptica.

Ademais pode ter isómeros de función como CH₃-CH₂-COOH: ácido propanoico CH₃-COO-CH₃: etanoato de metilo CH₂OH-CH=CHOH: propeno-1,3-diol.

CH₃-CH₂-CH=CH-CH₂-CH₃: hex-3-eno, ten un dobre enlace entre os carbonos 3 e 4, e cada un deles está unido a dous grupos distintos: hidróxeno (-H) e etilo (-CH₂-CH₃). Existen dous isómeros xeométricos, que se poden chamar *cis* e *trans* ou *Z* e *E*.

$$CH_3-CH_2$$
 H $C=C$ $C=C$ CH_2-CH_3 CH_3-CH_2 CH_2-CH_3 (E) -Hex-3-eno (Z) -Hex-3-eno (Z) -Hex-3-eno (Z) -Hex-3-eno

Ademais pode ter isómeros de cadea como:

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 H_2C
 CH_2
 CH_2
 CH_2 :
 CH_2
 CH_2

Tamén presenta isómeros de posición: CH₂=CH-CH₂-CH₂-CH₃ hex-1-eno

- 5. b) Para os compostos:
 - b.1.1) 2-pentanol
- b.1.2) dietiléter
- b.1.3) ácido 3-metilbutanoico
 - b.1.4) propanamida:

- b.1) Escribe as súas fórmulas semidesenvolvidas.
- b.2) Razoa se algún pode presentar isomería óptica.

(A.B.A.U. ord. 18)

Solución:

b.1.1) 2-Pentanol (pentan-2-ol):

 $CH_3 - \overset{1}{C} - CH_2 - CH_2 - CH_3$ OH

b.1.2) Dietiléter:

CH₃-CH₂-O-CH₂-CH₃

b.1.3) Ácido 3-metilbutanoico:

 $CH_3-CH-CH_2-C$ CH_3 CH_3-CH_2-C OH CH_3-CH_2-C OH

b.1.4) Propanamida:

b.2) Presenta isomería óptica o pentan-2-ol porque ten un carbono asimétrico. O carbono 2 está unido a catro grupos distintos: metilo (-CH₃), hidróxeno (-H), hidroxilo (-OH) e propilo (-CH₂-CH₂-CH₃).

- a) Escribe a formula semidesenvolvida dos seguintes compostos:
 - a.1) 3-metil-2,3-butanodiol
- a.2) 5-hepten-2-ona
- a.3) etilmetiléter
- a.4) etanamida
- b) Indica se o ácido 2-hidroxipropanoico presenta carbono asimétrico e representa os posibles isómeros ópticos.

(A.B.A.U. extr. 17)

Solución:

a.1) 3-Metil-2,3-butanodiol (2-metilbutano-2,3-diol):

 $\begin{array}{c} CH_3 \\ CH_3-CH-C-CH_3 \\ OH \end{array}$

a.2) 5-Hepten-2-ona (hept-5-en-2-ona):

CH₃-CH=CH-CH₂-CH₂-CO-CH₃

a.3) Etilmetiléter:

CH₃-O-CH₂-CH₃

a.4) Etanamida:

CH₃-CO-NH₂

b) O ácido 2-hidroxipropanoico, $CH_3 - \overset{\bar{\Gamma}}{C} - COOH$, ten un carbono asimétrico. O carbono 2 está unido a ca-

tro grupos distintos: metilo (-CH₃), hidróxeno (-H), hidroxilo (-OH) e carboxilo (-COOH).

Os isómeros ópticos son:

b) Xustifica cal dos seguintes compostos presenta isomería óptica: 7.

CH₃CH₂CH₂CH₃

CH₃CH(OH)CH₂CH₃

BrCH=CHBr

BrCH=CHCl

CH₃CH(NH₂)COOH

H₃CH(OH)CH₂CH₂CH₃

(A.B.A.U. ord. 17)

Solución:

b) A isomería óptica preséntana os compostos que teñen algún carbono asimétrico.

OH O butan-2-ol, $CH_3-C-CH_2-CH_3$, ten isomería óptica porque o carbono 2 é asimétrico. Está unido a catro

grupos distintos: hidróxeno (-H), etilo (-CH₂-CH₃), hidroxilo (-OH) e metilo (-CH₃). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

 $${\rm NH_2}$$ O ácido 2-aminopropanoico, ${\rm CH_3-\overset{1}{C}-COOH},$ ten isomería óptica porque o carbono 2 é asimétrico. Está

unido a catro grupos distintos: hidróxeno (-H), amino (-NH₂), metilo (-CH₃) e carboxilo (-COOH). Ten dous isómeros ópticos.

COOH COOH
$$COOH$$
 $COOH$ $COOH$

O pentan-2-ol, $CH_3 - \overset{\frown}{C} - CH_2 - CH_2 - CH_3$, ten isomería óptica porque o carbono 2 é asimétrico. Está unido a

catro grupos distintos: hidróxeno(-H), hidroxilo (-OH), propilo (-CH₂-CH₂-CH₃) e metilo (-CH₃). Ten dous isómeros ópticos.

- b) Escribe a fórmula semidesenvolvida e xustifica se algún dos seguintes compostos presenta isomería cis-trans:
 - b.1) 1,1-dicloroetano b.2) 1,1-dicloroeteno b.3) 1,2-dicloroetano b.4) 1,2-dicloroeteno (A.B.A.U. extr. 19)

Solución:

b.1) 1,1-Dicloroetano: CHCl₂-CH₃ b.2) 1,1-Dicloroeteno: CCl₂=CH₂ b.3) 1,2-Dicloroetano; CH₂Cl-CH₂Cl b.4) 1,2-Dicloroeteno: CHCl=CHCl

Un composto terá isomería xeométrica (cis-trans), se ten polo menos un dobre enlace no que os grupos unidos a cada carbono do dobre enlace sexan distintos.

O único composto que ten isomería xeométrica é o 1,2-dicloroeteno:

H H CI
$$C = C$$
 $C = C$
 $C = C$

Reaccións

1. Complete as seguintes reaccións nomeando todos os produtos orgánicos presentes nelas, tanto reactivos como produtos, e indique a que tipo de reacción se corresponden:

$$CH_3$$
- CH_2 - CH_2 - CH_2 OH $\xrightarrow{K_2Cr_2O_7. H^+}$

(A.B.A.U. extr. 22)

Solución:

 $\text{CH}_3\text{-CH}_2\text{-COO} + \text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{-CH}_2\text{-COO} + \text{CH}_3 + \text{H}_2\text{O}$

ácido butanoico metanol butanoato de metilo agua

É unha reacción de esterificación, que é un dos casos das reaccións de condensación.

$$\begin{array}{cccc} CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{OH} & \xrightarrow{K_2Cr_2O_7. \ H^+} & CH_3\text{-}CH_2\text{-}CH_2\text{-}CHO \xrightarrow{K_2Cr_2O_7. \ H^+} & CH_3\text{-}CH_2\text{-}CH_2\text{-}COOH \\ & \text{butan-1-ol} & \text{butanal} & \text{ácido butanoico} \end{array}$$

É unha reacción de oxidación. Os alcohois primarios oxídanse primeiro a aldehidos e despois a ácidos carboxílicos.

2. Escribe a reacción que sucede cando o 2-metil-1-buteno reacciona con HCl, dando lugar a dous haloxenuros de alquilo. Nomea os compostos obtidos e indica razoadamente se algún deles presenta isomería óptica.

(A.B.A.U. ord. 22)

Solución:

Son reaccións de adición

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \\ CH_3 \end{array} + HCl \longrightarrow CH_3 - C - CH_2 - CH_3 \\ Cl \end{array} \tag{2-cloro-2-metilbutano}.$$

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \end{array} + HCl \longrightarrow \begin{array}{c} CH_2CI - CH - CH_2 - CH_3 \\ CH_3 \end{array} \quad \text{(1-cloro-2-metilbutano)}.$$

O 1-cloro–2-metilbutano-2 ten isomería óptica porque o carbono 2 é asimétrico. Está unido a catro grupos distintos: hidróxeno (-H), etilo (-CH₂-CH₃), clorometilo (-CH₂Cl) e metilo (-CH₃). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

$$\begin{array}{cccc} CH_2CH_3 & CH_2CH_3 \\ & & \\ & & \\ CICH_2 & CH_3 & CH_3 \\ & & \\$$

3. Completa as seguintes reaccións químicas orgánicas empregando as fórmulas semidesenvolvidas e indique o tipo de reacción ao que pertencen:

$$CH_3$$
- $CH_2OH + HBr \rightarrow ____ + H_2O$
 CH_2 = $CH_2 + H_2O \rightarrow ____ + H_2O$
 CH_3 - $COOH + CH_3NH_2 \rightarrow ___ + H_2O$

(A.B.A.U. extr. 21)

Solución:

$$CH_3$$
- $CH_2OH + HBr$ \longrightarrow CH_3 - $CH_2Br + H_2O$ etanol bromuro de hidróxeno 2-bromoetano auga Reacción de substitución.

$$CH_2=CH_2 + H_2O \rightarrow CH_3-CH_2OH$$

etanol eteno auga

Reacción de adición.

 CH_3 -COOH + $CH_3NH_2 \rightarrow$ CH₃-CONH-CH₃ + H_2O ácido etanoico metilamina N-metiletanamida auga

Reacción de condensación.

4. Completa as seguintes reaccións indicando o tipo de reacción e nomeando os produtos que se for-

 CH_3 - $CH=CH_2 + Br_2 \rightarrow \underline{\qquad}$ (A.B.A.U. ord. 21) Propan-2-ol —KMnO₄, H⁺→

Solución:

a) CH_3 -CHOH- $CH_3 \xrightarrow{KMnO_4, H^+} CH_3$ -CO- CH_3

É unha reacción de oxidación. Os alcohois secundarios oxídanse a cetonas. Prodúcese propanona.

b) CH_3 - $CH=CH_2 + Br_2 \rightarrow CH_3$ -CHBr- CH_2Br

É unha reacción de adición. O produto é o 1,2-dibromopropano.

Completa as seguintes reaccións, identificando o tipo de reacción e nomeando os compostos orgánicos que se forman: $CH_{3}-CH_{2}-COOH + CH_{3}-CH_{2}OH \to ____+ ____ + ____ (A.B.A.U. \ ord. \ 20)$ cos que se forman:

Solución:

 $CH_3-CH_2-COOH + CH_3-CH_2OH \rightarrow CH_3-CH_2-COO-CH_2-CH_3 + H_2O$

Propanoato de etilo Ácido propanoico Etanol

Reacción de esterificación.

CH₃Cl + HCl $CH_4 + Cl_2$ Metano Clorometano $CH_3CI + CI_2$ CH₂Cl₂ + HCl Clorometano Diclorometano CHCl₃ + HCl CH₂Cl₂+ Cl₂ Diclorometano Triclorometano $CHCl_3 + Cl_2$ CCl₄ + HCl

Triclorometano Tetracloruro de carbono

Reaccións de substitución.

6. b) Completa a seguinte reacción: CH₃-CH₂-CH₂-CH₂-CH₂+Cl₂ → Identifica o tipo de reacción e nomea os compostos orgánicos que participan nela.

(A.B.A.U. ord. 19)

Solución:

b) CH_3 - CH_2 - CH_2 - CH_2 + Cl_2 $\rightarrow CH_3$ - CH_2 - CH_2 -CHCl- CH_2 Cl

Pent-1-eno 1,2-Dicloropentano

É unha reacción de adición.

b) O 2-metil-1-buteno reacciona co ácido bromhídrico (HBr) para dar dous haloxenuros de alquilo. 7. Escribe a reacción que ten lugar indicando que tipo de reacción orgánica é, e nomeando os compostos que se producen.

(A.B.A.U. extr. 17)

Solución:

b) Son reaccións de adición

$$\begin{array}{c} CH_{2} = C - CH_{2} - CH_{3} \\ CH_{3} \\ CH_{3} \end{array} + HBr \longrightarrow CH_{3} - C - CH_{2} - CH_{3} \\ Br \end{array} \tag{2-bromo-2-metilbutano}.$$

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \end{array} + HBr \longrightarrow \begin{array}{c} CH_2Br - CH - CH_2 - CH_3 \\ CH_3 \end{array} \quad \text{(1-bromo-2-metilbutano)}.$$

b) Dada a reacción: 2-propanol → propeno + auga, escribe as fórmulas semidesenvolvidas dos compostos orgánicos e identifica o tipo de reacción.

(A.B.A.U. ord. 18)

Solución:

b) Reacción de eliminación: propan-2-ol
$$\to$$
 propeno + auga $\overset{C}{\overset{H_2-CH-CH_3}{\vdash}} \to CH_z = CH-CH_3 + H-O-H$ H OH

a) Completa e indica o tipo de reacción que ten lugar, nomeando os compostos orgánicos que participan nelas:

a.1)
$$CH_3$$
- CH = CH - CH_3 + HCI \longrightarrow a.2) CH_3 - $COOCH_2$ - CH_3 + H_2O

(A.B.A.U. extr. 18)

Solución:

a.1)
$$CH_3$$
- CH = CH - CH_3 + HCI \rightarrow CH_3 - CH - CH - CH_3
 H
 CI

but-2-eno

Reacción de adición.

a.2)
$$CH_3$$
- $COOH + CH_3$ - $CH_2OH \rightarrow CH_3$ - COO - CH_2 - $CH_3 + H_2O$
ácido etanoico etanol etanoato de etilo

Reacción de condensación.

Polímeros

b) Nomea cada monómero, emparéllao co polímero ao que dá lugar e cita un exemplo dun uso doméstico e/ou industrial de cada un deles.

CH₂=CH₂ CH₂=CHCl policloruro de vinilo poliestireno polietileno

(A.B.A.U. extr. 19)

Solución:

b) Monómeros

 $CH_2=CH_2$: (monómero do polietileno) eteno

(monómero do policloruro de vinilo) CH₂=CHCl: cloroeteno

Exemplos de uso de polímeros:

Policloruro de vinilo: illante cables eléctricos.

Poliestireno: illante térmico.

Polietileno: fabricación de envases.

2. b) Identifica o polímero que ten a seguinte estrutura: ... CH_2 - $(CH_2)_n$ - CH_2 ..., indicando ademais o nome e a fórmula do monómero de partida.

(A.B.A.U. ord. 17)

Solución:

b) O polímero é o polietileno.

O monómero de partida é o eteno CH₂=CH₂ tamén chamado etileno.

Actualizado: 15/03/24

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de tradución de Óscar Hermida López.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Sumario

QUÍMICA ORGÁNICA					
CUESTIÓNS	1				
 Formulación/Nomenclatura	1				
	5				
	8				
Índice de probas A.B.A.U.					
	4, 8				
` '	3, 7				
	3, 7				
` '					
	, , , , , , , , , , , , , , , , , , ,				
	5, 8				
` '	-, -				
	2, 6				
	2, 0				
	6				