示波器的使用实验报告

姓名 张奥喆 **学号** 2313447 **专业** 工科试验班 **座号** 19

一. 仪器及用具

1.1 仪器品牌与型号

示波器: 普源 DS1102E 示波器 信号发生器: MFG-2130M 函数发生器

1.2 电阻阻值: 1000 Ω 电容值: 0.1 μ F

二. 基本使用

将信号源(1kHz, 3Vp-p)和变压器电压同时输出到示波器,分别稳定并显示适当的波形。 重点熟悉触发对波形的作用。

三、实验数据

1、将信号源和变压器的测量结果填入下表

信号源	自动测量	光标测量	读格测量	
电压(峰峰值)/V	6. 16	6. 24	6. 20	
周期/ms	1.04	1.04	1.00	
频率(计算)/Hz	961.5	961.5	1000	

变压器	自动测量	光标测量	读格测量	
电压(峰峰值)/v	6.08	6.08	6.10	
周期/ms	20.00	20.00	20.00	
频率(计算)/Hz	50	50	50	

2 将利田李萨加图测量市由频率的结果值入下表:

2. 竹竹用于原始国州里市屯州平时纪木模八十亿.								
$\frac{n_x}{n_y}$	1:1	2:1	2:3	1:2	1:3			
函数发生器频率 $f_{\overrightarrow{B}}(Hz)$	50	25	75	100	150			
算出的市电频率 $f_{\chi}(Hz)$	50	50	50	50	50			
李萨如图	0	\bigcirc						

计算平均市电频率: 50Hz

3. 测量 RC 电路的相位差:

连接电路。将信号发生器频率设定为f = 1.59kHz

(1) 椭圆法:

$$2y_m = 4.40$$

 $2y_0 = 2.88$

$$|\Phi| = \arcsin \frac{y_0}{y_m}$$

计算可得:

$$\phi = 40.89^{\circ}$$

位移法:

$$l_0 = 632$$

 $l = 72$
 $\Phi = \frac{l}{l_0} \times 360^\circ = 41.01^\circ$

五、思考题

在频域中, 电阻 R 的阻抗是 R, 而电容 C 的阻抗是:

$$Z_C = \frac{1}{i\omega C}$$

思考题: 求一下RC串联电路分压比

因此,整个串联电路的总阻抗 Z_{total} 为:

$$Z_{total} = R + Z_C = R + \frac{1}{j\omega C}$$

电压 U 在电阻 R 上的分压公式是:

$$U_R = U \cdot \frac{R}{Z_{total}}$$

代入总阻抗 Z_{total} :

$$U_R = U \cdot \frac{R}{R + \frac{1}{i\omega C}}$$

将分母进行有理化 (乘以共轭):

$$U_R = U \cdot \frac{R}{R + \frac{1}{j\omega C}} \cdot \frac{j\omega C}{j\omega C} = U \cdot \frac{Rj\omega C}{Rj\omega C + 1}$$