

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

On se donne une suite (P_n) de fonctions polynômiales à coefficients réels. On suppose que la suite (P_n) est uniformément convergente sur un intervalle I non borné de \mathbb{R} .

Montrer que la fonction limite P est un polynôme, et que les différences $P_n - P$ sont des polynômes constants à partir d'un certain entier n.

EXERCICE 2 [Indication] [Correction]

Etudier la convergence (simple, uniforme) de la suite de fonctions (f_n) définie par :

$$\forall n \in \mathbb{N}^* \ \forall x \in \mathbb{R}, \ f_n(x) = x^2 \exp(-\sin\frac{x}{n}).$$

Exercice 3 [Indication] [Correction]

Soient $(f_n)_{n\geq 0}$ et $(g_n)_{n\geq 0}$ deux suites uniformément convergentes d'applications continues sur le segment I=[a,b], à valeurs dans \mathbb{K} . Montrer que la suite (f_ng_n) est CVU sur [a,b].

Donner un contre-exemple montrant que la propriété est fausse si I n'est pas un segment.

EXERCICE 4 [Indication] [Correction]

Etudier la convergence de la suite (f_n) définie par : $\forall n \geq 1, \forall x \geq 0, f_n(x) = \left(1 + \frac{x}{n}\right)^n$.

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

SUITES DE FONCTIONS (III)

Indications, résultats

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Montrer qu'il existe m tel que $P_n - P_m$ soit égal à une constante λ_n pour $n \ge m$.

Montrer que la suite (λ_n) est convergente.

INDICATION POUR L'EXERCICE 2 [Retour à l'énoncé]

La suite $(f_n)_{n\geq 1}$ est simplement convergente sur \mathbb{R} , vers $f:x\to x^2$.

Montrer qu'il y a CVU sur toute partie bornée de R (accroissements finis.)

En choisissant $x = x_n = \frac{n\pi}{2}$, vérifier qu'il n'y a pas convergence uniforme sur \mathbb{R} .

Indication pour l'exercice 3 [Retour à l'énoncé]

- Utiliser $||fg f_n g_n||_{\infty} = \le ||f f_n||_{\infty} ||g||_{\infty} + ||f_n||_{\infty} ||g g_n||_{\infty}.$
- Considérer $f_n(x) = g_n(x) = x + \frac{1}{n}$ sur $I = \mathbb{R}$.

INDICATION POUR L'EXERCICE 4 [Retour à l'énoncé]

- Vérifier que la suite $(f_n)_{n\geq 1}$ est CVS sur \mathbb{R}^+ vers $f:x\to e^x$.
- En utilisant $x_n = n$, montrer qu'il n'y a pas CVU sur \mathbb{R}^+ .

On prouvera en revanche qu'il y a CVU sur [0, a], pour tout a > 0.

Pour cela, on considérera l'application $x \mapsto \varphi_n(x) = f(x) - f_n(x) = e^x - \left(1 + \frac{x}{n}\right)^n$.

On montrera que φ_n , qui est nulle en 0, est croissante sur \mathbb{R}^+ .

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

Soit $P = \lim_{n \to \infty} P_n$. Il existe un entier n_0 tel que : $n \ge m \Rightarrow \forall x \in I, |P_n(x) - P(x)| \le 1$.

On en déduit que pour tout entier $n \ge n_0$, on a : $\forall x \in I, |P_n(x) - P_m(x)| \le 2$.

Le polynôme P_n-P_m , borné sur l'intervalle non borné I, est nécessairement constant.

Autrement dit, il existe une suite (λ_n) de scalaires tels que $n \geq m \Rightarrow P_n = P_m + \lambda_n$.

Soit $x \in I$. Si $n \to +\infty$ dans $\lambda_n = P_n(x) - P_m(x)$, on voit que $\lim_{n \to \infty} \lambda_n = P(x) - P_m(x)$.

La suite (λ_n) est donc convergente. Notons λ sa limite.

La fonction limite de la suite (P_n) est donc le polynôme $P = P_m + \lambda$.

On constate bien que pour tout $n \ge n_0$, $P_n - P$ est le polynôme constant $\lambda_n - \lambda$.

Corrigé de l'exercice 2 [Retour à l'énoncé]

Pour tout x de \mathbb{R} , on a bien sûr $\lim_{n\to\infty} f_n(x) = x^2$.

La suite $(f_n)_{n\geq 1}$ est donc simplement convergente, sur \mathbb{R} , vers l'application $f:x\to x^2$.

Pour tout x de \mathbb{R} et tout n de \mathbb{N}^* : $f(x) - f_n(x) = x^2 \left(1 - \exp(-\sin\frac{x}{n})\right)$.

Pour tout X de [-1,1], l'inégalité des accroissements finis donne $|1-\exp(-X)| \le e|X|$.

On en déduit : $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, |f(x) - f_n(x)| \leq \frac{e|x|^3}{n}$. En particulier : $\forall a > 0$, $\sup_{x \in [-a,a]} |f(x) - f_n(x)| \leq \frac{ea^3}{n}$, qui tend vers 0 quand n tend vers $+\infty$.

La suite (f_n) est donc CVU vers f sur toute partie bornée de \mathbb{R} .

Mais il n'y a pas convergence uniforme sur \mathbb{R} . En effet, pour $x = x_n = \frac{n\pi}{2}$, on a : $f(x) - f_n(x_n) = x_n^2(1 - e^{\pm 1}) \to \infty$ quand $n \to \pm \infty$.

On a représenté $y = f_n(x)$ pour $1 \le n \le 10$, ainsi que $f: x \to x^2$ (tracé en gras).

A gauche, l'intervalle en x est [-2, 2], et à droite il est [-30, 30].

Sur l'image de droite, on voit bien comment les fonctions f_n "oscillent" entre $\frac{1}{2}x^2$ et ex^2 .

©EduKlub S.A. Page 3 Jean-Michel Ferrard www.klubprepa.net

Corrigé de l'exercice 3 [Retour à l'énoncé]

- On sait que les fonctions limites f et g sont continues sur [a, b]. Pour tout n, on a:

$$||fg - f_n g_n||_{\infty} = ||(f - f_n)g + f_n(g - g_n)||_{\infty} \le ||f - f_n||_{\infty} ||g||_{\infty} + ||f_n||_{\infty} ||g - g_n||_{\infty}$$
(1)

Par hypothèse $\lim_{n\to\infty} \|f - f_n\|_{\infty} = 0$ et $\lim_{n\to\infty} \|g - g_n\|_{\infty} = 0$. Donc $\lim_{n\to\infty} \|f_n\|_{\infty} = \|f\|_{\infty}$.

Ces résultats et l'inégalité (1) permettent d'affirmer que $\lim_{n\to\infty} \|fg - f_ng_n\|_{\infty} = 0$.

La suite $(f_ng_n)_{n\geq 0}$ est donc uniformément convergente sur [a,b] vers la fonction fg.

- Contre-exemple: On se place sur $I = \mathbb{R}$ et on pose $f_n(x) = g_n(x) = x + \frac{1}{n}$.

La suite (f_n) est CVU sur \mathbb{R} vers $f: x \to x$, car $||f - f_n||_{\infty} = \frac{1}{n}$ tend vers 0.

Mais (f_n^2) est CVS vers f^2 et non CVU car $f_n^2(x) - f^2(x) = \frac{2x}{n} + \frac{1}{n^2}$ (ex: $f_n^2(n) - f^2(n) > 2$)

Corrigé de l'exercice 4 [Retour à l'énoncé]

- Convergence simple :

Notons tous d'abord que pour tout $n \ge 1$, on a $f_n(0) = 1$.

Pour tout x de \mathbb{R}^{+*} et tout $n \geq 1$, on $a : \ln f_n(x) = n \ln(1 + \frac{x}{n}) \underset{n \to \infty}{\sim} x$.

Donc $\lim_{n\to\infty} f_n(x) = e^x$: la suite $(f_n)_{n\geq 1}$ est simplement convergente sur \mathbb{R}^+ vers $f: x\to e^x$.

- Convergence uniforme:

Il n'y a pas CVU sur \mathbb{R}^+ .

En effet, $f(n) - f_n(n) = e^n - 2^n$ ne tend pas vers 0 quand $n \to \infty$.

Soit a > 0. On va montrer qu'il y a convergence uniforme sur [0, a].

Montrons que $\varphi_n(x) = f(x) - f_n(x) = e^x - \left(1 + \frac{x}{n}\right)^n$ qui est nulle en 0 est croissante sur \mathbb{R}^+ .

$$\varphi'_n(x) = e^x - \left(1 + \frac{x}{n}\right)^{n-1} = \sum_{k=0}^{\infty} \frac{x^k}{k!} - \sum_{k=0}^{n-1} C_{n-1}^k \frac{x^k}{n^k} = \sum_{k=0}^{n-1} \left(\frac{1}{k!} - \frac{1}{n^k} C_{n-1}^k\right) x^k + \sum_{k=n}^{\infty} \frac{x^k}{k!}$$

On a :
$$C_{n-1}^k = \frac{(n-1)!}{k!(n-1-k)!} = \frac{1}{k!}(n-1)(n-2)\cdots(n-k) \le \frac{1}{k!}n^k$$
.

Donc $\frac{1}{k!} - \frac{1}{n^k} C_{n-1}^k \ge 0$. On en déduit : $\varphi'_n(x) \ge 0$.

Ainsi $\varphi_n = f - f_n$ est croissante sur \mathbb{R}^+ donc sur [0, a].

Ainsi : $\forall n \geq 1, \ \forall x \geq 0, \ 0 \leq f(x) - f_n(x) \leq \varphi_n(a)$ qui tend vers 0 quand $n \to \infty$.

On en déduit la convergence uniforme, sur [0, a], de la suite (f_n) vers la fonction $f: x \to e^x$.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Voici le graphe de $f_1, f_2 \dots, f_{10}$ sur [0, 5], ainsi que celui f (ce dernier est en gras).

