Soós Tamás Szakdolgozat

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Műszaki Mechanikai Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Műszaki Mechanikai Tanszék Szakdolgozat

DIGITÁLIS ADMITTANCIA SZABÁLYOZÓ STABILITÁSÁNAK VIZSGÁLAT

Soós Tamás

Konzulens: Vizi Máté Benjámin Témavezető:

Tóth András

Budapest, 2023.12.13.

Nyilatkozatok

$Beadhat \'os \'agi\ nyilatkozat$

A jelen <u>szakdolgozat</u>/diplomaterv az üzem/<u>intézmény</u> által elvárt szakmai színvonalnak mind tartalmilag, mind formailag megfelel, beadható.

szigorló hallgató

Köszönetnyilvánítás

Kivonat

Tartalomjegyzék

1.	Modell	3
	1.1. Egyenáramú motor dinamikája	3
	1.2. Állapotmegfigyelő	5
	1.3. Impedancia szabályozó	6
2.	Összegzés	9
3.	Következtetések	11
\mathbf{F}^{\dagger}	ÜGGELÉK	13
Α.	Measurement dataset	15
В.	Poster	17
Ire	odalomjegyzék	21

Ábrák jegyzéke

1.1.	Egyenáramú motor áramkör és szabadtest ábra	3
1.2.	Impedancia szabályozó közvetlen nyomaték méréssel	6
1.3.	Impedancia szabályozó szöggyorsulás méréssel	7

Táblázatok jegyzéke

A.1. Dataset for the equilibrium position measurement.	set for the equilibrium position r	surement	J
--	------------------------------------	----------	---

Bevezetés

1. Modell

1.1. Egyenáramú motor dinamikája

1.1. ábra. Egyenáramú motor áramkör és szabadtest ábra

A felhasznált motor feltételezetten állandó gerjesztésű. A kifejtett nyomaték a Biot-Savart-törvény szerint arányos a forgórészen átfolyó árammal. A forgórészben indukált feszültség pedig arányos a szögsebességével a Lenz-törvény alapján

$$\tau_m = K_\tau i,\tag{1.1}$$

$$V_b = K_e \dot{\theta},\tag{1.2}$$

ahol K_{τ} a nyomatékállandó, K_e a sebesség-feszültség állandó, τ_m a kifejtett nyomaték, i a rotor árama, V_b az rotorban indukált feszültség és $\dot{\theta}$ a rotor szögsebessége. Az energia

megmaradás törvénye alapján a két konstans értéke megegyezik

$$K_m = K_\tau = K_e, \tag{1.3}$$

így a következőkben K_m paraméterként jelennek meg. A forgórész áramkörére Kirchhoff I. törvénye alapján felírható

$$V - Ri - L\frac{di}{dt} - K_m \dot{\theta} = 0, \tag{1.4}$$

ahol R a forgórész tekercsének ellenállása, L a tekercs induktivitása, K_m a motorállandó, V a motor feszültsége, i a motoráram és θ a szögelfordulás. A forgórészt mechanikailag egy merev testként tekintve Newton II. törvénye alapján

$$J\ddot{\theta} = -B_m \dot{\theta} + K_m i + \tau, \tag{1.5}$$

ahol J a forgórész tehetetlensége, B_m a viszkózus csillapítási együttható, K_m a motorállandó, θ a szögelfordulás, i a motoráram és τ a forgórészre ható külső nyomaték. Ez a két lineáris differenciálegyenlet egyértelműen leírja a rendszer időtartománybeli viselkedését.

A további vizsgálathoz kedvezőbb a differenciálegyenleteket állapottér modellként felírni. Egy állapot térmodell általánosan

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u} \tag{1.6}$$

$$y = Cx + Du \tag{1.7}$$

alakban írható fel. A két bemenet a külső nyomaték és a motorra adott feszültség. A kimenet a forgórész szöge. A paramétereket kifejtve (1.4) és (1.5) alapján a modell

$$\frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{B_m}{J} & \frac{K_m}{J} \\ 0 & -\frac{K_m}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{1}{J} & 0 \\ 0 & \frac{1}{L} \end{bmatrix} \begin{bmatrix} \tau \\ V \end{bmatrix}$$
(1.8)

$$\theta = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} \tau \\ V \end{bmatrix}$$
 (1.9)

alakba írható át. A frekvenciatartománybeli vizsgálatokhoz felírható a rendszer szög-

nyomaték és szög-feszültség átviteli függvénye. Az állapottér modellt felhasználva

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D \tag{1.10}$$

általános formában, ahol I az identitás mátrix. Behelyettesítve (1.8) és (1.9) paramétereit (1.10) felírható

$$\begin{bmatrix} \frac{\theta(s)}{\tau(s)} \\ \frac{\theta(s)}{V(s)} \end{bmatrix} = \frac{1}{s \left(JLs^2 + \left(B_mL + JR \right)s + K_m^2 + B_mR \right)} \begin{bmatrix} Ls + R \\ K_m \end{bmatrix} \tag{1.11}$$

alakban.

1.2. Állapotmegfigyelő

Az állapotvisszacsatoláshoz szükséges belső állapotok közül csak a szögelfordulás áll rendelkezésre közvetlen mérésből. A többi állapotra egy megfigyelő ad becslést. Elkülönítve a mért és becsült állapotokat (1.6) és (1.7) felírható

$$\begin{bmatrix} \dot{\theta} \\ \dot{\boldsymbol{x}}_b \end{bmatrix} = \begin{bmatrix} A_{\theta\theta} & \boldsymbol{A}_{\theta b} \\ \boldsymbol{A}_{b\theta} & \boldsymbol{A}_{bb} \end{bmatrix} \begin{bmatrix} \theta \\ \boldsymbol{x}_b \end{bmatrix} + \begin{bmatrix} B_{\theta} \\ \boldsymbol{B}_b \end{bmatrix} \begin{bmatrix} \tau \\ V \end{bmatrix}$$
(1.12)

$$\theta = \begin{bmatrix} 1 & \mathbf{0} \end{bmatrix} \begin{bmatrix} \theta \\ \mathbf{x}_b \end{bmatrix} \tag{1.13}$$

alakban, ahol x_b jelöli a becsült állapotokat. Továbbá jelölje $\tilde{*}$ a becsült paramétereket. Ezután legyen

$$\hat{A} = A_{bb} - K_e A_{\theta b}$$

$$\hat{B} = \hat{A} K_e + A_{b\theta} - K_e A_{\theta \theta}$$

$$\hat{F} = B_b - K_e B_{\theta},$$
(1.14)

ahol \hat{A} a megfigyelő belső állapotának (továbbiakban $\tilde{\eta}$) dinamikáját adja meg, és \hat{B} és \hat{F} a mért illetve a becsült állapotok bemeneti mátrixai. A becsült állapotok és az állapotváltozók közötti összefüggés ekkor

$$\eta = \mathbf{x}_b - \mathbf{K}_e \theta
\tilde{\mathbf{\eta}} = \tilde{\mathbf{x}}_b - \mathbf{K}_e \theta$$
(1.15)

alakban adható meg. A belső állapot dinamikája

$$\dot{\tilde{\eta}} = \hat{A}\tilde{\eta} + \hat{B}\theta + \hat{F}u. \tag{1.16}$$

Végül (1.13) átalakításával a rendszer becsült állapotvektora

$$\tilde{\boldsymbol{x}} = \hat{\boldsymbol{C}}\tilde{\boldsymbol{\eta}} + \hat{\boldsymbol{D}}\boldsymbol{\theta},\tag{1.17}$$

ahol

$$\hat{\boldsymbol{C}} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{I}_{n-1} \end{bmatrix}, \quad \hat{\boldsymbol{D}} = \begin{bmatrix} 1 \\ \boldsymbol{K}_e \end{bmatrix}, \tag{1.18}$$

mely tartalmazza a mért állapotot is.

1.3. Impedancia szabályozó

1.2. ábra. Impedancia szabályozó közvetlen nyomaték méréssel

1.3. ábra. Impedancia szabályozó szöggyorsulás méréssel

A rúd differenciálegyenlete

$$\ddot{\phi}(t) - \frac{6g}{l}\phi(t) + \frac{6D}{ml}\dot{\phi}(t-\tau) + \frac{6P}{ml}\phi(t-\tau) = 0$$
(1.19)

A differenciálegyenlet Laplace transzformáltja

$$s^{2}\phi(s) - s\phi_{0} - \dot{\phi}_{0} - \frac{6g}{l}\phi(s) + \frac{6D}{ml}\left(se^{-s\tau}\phi(s) - \phi_{-\tau}\right) + \frac{6P}{ml}e^{-s\tau}\phi(s) = 0$$
 (1.20)

Kifejezve $\phi(s)$ -t

$$\phi(s) = \frac{s\phi_0 + \dot{\phi}_0 + \frac{6D}{ml}\phi_{-\tau}}{s^2 + \frac{6D}{ml}se^{-s\tau} + \frac{6P}{ml}e^{-s\tau} - \frac{6g}{l}}$$
(1.21)

A végérték frekvenciatartománybeli reprezentációban

$$\lim_{t \to \infty} \phi(t) = \lim_{s \to 0} \phi(s) = \frac{\dot{\phi}_0 + \frac{6D}{ml}\phi_{-\tau}}{\frac{6P}{ml} - \frac{6g}{l}}$$
(1.22)

Az időkésést Taylor-sorral közelítve

$$\phi(t-\tau) = \phi(t-) - \frac{1}{1!}\dot{\phi}(t)\tau + \frac{1}{2!}\ddot{\phi}(t)\tau^2 - \frac{1}{3!}\ddot{\phi}(t)\tau^3 + \dots$$
 (1.23)

különböző rendű közelítéssekkel

2. Összegzés

3. Következtetések

FÜGGELÉK

A. Measurement dataset

 ${\rm A.1.}$ táblázat. Dataset for the equilibrium position measurement.

$\overline{U_{\mathrm{in}}}$	\dot{arphi}	θ	$U_{\rm in}$	\dot{arphi}	θ
1.3	0	3.1415926536	1.3	0	3.1415926536
1.4	4.3	3.1415926536	1.4	-4.3	3.1415926536
1.5	4.7	3.1415926536	1.5	-4.7	3.1415926536
1.6	5.2	3.1415926536	1.6	-5.2	3.1415926536
1.7	5.67	3.1415926536	1.7	-5.67	3.1415926536
1.8	6.34	3.1415926536	1.8	-6.34	3.1415926536
1.9	6.61	3.1415926536	1.9	-6.61	3.1415926536
2	7.22	3.1415926536	2	-7.22	3.1415926536
$\frac{-}{2.1}$	7.72	3.1415926536	2.1	-7.72	3.1415926536
2.2	8.02	3.1415926536	2.2	-8.02	3.1415926536
2.3	8.5	3.8746309394	2.3	-8.3366666667	3.1415926536
2.4	9.0033333333	3.9677151662	2.4	-8.78	2.3561944902
2.5	9.5366666667	4.0666171571	2.5	-9.26	2.2514747351
2.6	9.9666666667	4.1306125631	2.6	-9.7	2.1758438008
2.7	10.4366666667	4.2120612615	2.7	-10.2	2.1060306307
2.8	10.7833333333	4.264421139	2.8	-10.63	2.0594885174
2.9	11.3933333333	4.3284165449	2.9	-11.1333333333	1.9605865264
3	11.84	4.3516876016	3	-11.55	1.9198621772
2.9	11.41	4.3225987808	2.9	-11.1033333333	1.9722220548
2.8	11.0133333333	4.2818744316	2.8	-10.6433333333	2.0653062815
2.7	10.5233333333	4.2353323182	2.7	-10.2633333333	2.1060306307
2.6	10.0566666667	4.1655191481	2.6	-9.7733333333	2.1700260366
2.5	9.5933333333	4.1015237422	2.5	-9.31	2.21656815
2.4	9.1266666667	4.0666171571	2.4	-8.8633333333	2.2514747351
2.3	8.55	3.9735329304	2.3	-8.456666667	2.3329234335
2.2	8.2	3.8571776469	2.2	-7.9366666667	2.4609142453
2.1	7.71	3.7466401276	2.1	-7.5366666667	2.5539984721

B. Poster

Abstract

Irodalomjegyzék