Contents

1

Ring														•											
1	Lecture 0904																								1
2	Lecture 0909																								1
3	Lecture 0911																								3

Section 1. Ring

Lecture 0904

1.1 Definition: Ring

A *ring* R is an abelian group $\langle R, + \rangle$ which has another operation \cdot such that

- (a) '.' is associative.
- (b) $(a+b) \cdot c = a \cdot c + b \cdot c$ and $c \cdot (a+b) = c \cdot a + c \cdot b$ for all $a, b, c \in R$.

Example 1.2 $G = \langle \mathbb{Z}, +R = \rangle \rightarrow \langle \mathbb{Z}, +, \cdot \rangle$: a ring

1.3 Definition

R is called a *commutative ring* if for every $a, b \in R$, $a \cdot b = b \cdot a$.

Example 1.4 $R = \langle (M^{\infty}(\mathbb{Z})), +, \cdot \rangle$ is NOT commutative.

1.5 Definition

An element $1_R \in R$ is called a *unity* if for every $a \in R$ $a \cdot a = a \cdot 1 = a$.

1.6 Proposition

 1_R is unique in R.

1.7 Definition

An element $u \in R$ is called a **unit element** if there exists $u' \in R$ such that $u \cdot u' = 1_B$.

1.8 Definition

Suppose R, R' are two rings. $f: R \to R'$ is called a **ring homomorphism** if

- (a) $f(a +_R b) = f(a) +_{R'} f(b)$.
- (b) $f(a \cdot_R b) = f(a) \cdot_{R'} f(b)$.

Remark The ring homomorphism f is injective if $\ker f = \{r \in R | f(r) = 0_{R'}\} = \{0_R\}$.

1.9 Definition

Any subgroup I of R is called *ideal* of R if

(a) $I \subset R$

(b) $R \cdot I = I \cdot R \subset I$

Example 1.10 Suppose f is a ring homomorphism. Then $\forall \alpha \in R, \forall r \in \ker f, \alpha \cdot r \in R$ and $f(\alpha \cdot r) = f(\alpha)f(r) = 0$. That is, ker f is an ideal of R.

1.11 Definition

An nonzero element $\alpha \in R$ is called a **zero divisor** if there exists a nonzero element $\beta \in R$ such that $\alpha \cdot \beta = 0$.

1.12 Definition

R is called an *integral domain* if R is a commutative ring with 1_R and no zero devisors.

1.13 Proposition: Cancellation laws

Suppose R is a integral domain. for all nonzero element $a, b \in R$, $ac = ab \implies$ $a(b-c)=0 \implies b=c$.

Lecture 0909

1.14 Definition

By a *division ring*, we mean a ring R with unity 1 such that $\forall r \in R$, r has multicative inverse r' such that $r \cdot r' = 1$.

1.15 Proposition

If a ring R is a division ring, then r has no zero divisor.

1.16 Definition

By a **field**, we mean a ring R such that R is a integral domain and that every nonzero element $r \in R$ has an inverse in R.

1.17 Proposition

A commutative division ring is a field.

1.18 Theorem

- (a) Every finite integral domain is a feild.
- (b) Every finite division ring is a field.

Proof) (a) Let R be a finite integral domain. We may assume $R=\{a_1,a_2,\ldots,a_n\}$. Given a nonzero element $r\in R$, define $\psi:R\to R$ by $\psi(a_i)=ra_i$. For $\alpha,\beta\in R$, $r\alpha=r\beta\implies r(\alpha-\beta)=0$, which means a=b since R has no zero divisors. Then there exists a $1\le i\le n$ such that $ra_i=1$.

1.19 Definition

 $n \in \mathbb{Z}^+$ is called the *characteristic* of R if there exists a number s.t. $n \cdot r = 0$ for all $r \in R$, n is the smallest such number.

1.20 Corollary

If R is a ring with unity 1, the characteristic of R is the smallest number $n \cdot 1 = 0$.

1.21 Lemma

 \mathbb{Z}^n is an integral domain $\iff n$ is a prime number.

Proof) (\Rightarrow) If n is not prime, then $n = n_1 n_2$ for some $1 < n_1, n_2 < n$. It implies that $n_1 n_2 \equiv 0 \mod n$, i.e., n_1, n_2 are zero divisors.

(\Leftarrow) Suppose, for contradiction, \mathbb{Z}_p is not integral domain. There exists some nonzero elements $n_1, n_2 \in \mathbb{Z}_p$ such that $n_1 n_2 \equiv 0 \mod p$. Then $p|n_1$ or $p|n_2$, which means $n_1 = 0$ or $n_2 = 0$.

1.22 Lemma

Let $\mathcal{R} \subset \mathbb{Z}$ be an nonempty ideal of \mathbb{Z} . Then $\mathcal{R} = n\mathbb{Z} = \{na : a \in \mathbb{Z}\}$ for some $n \in \mathbb{Z}^+$.

Proof) Let r be the smallest number in \mathcal{R} . By the division algorithm, r=nq+s for some n,q,s. since $r,nq\in\mathcal{R},\ s=0$. Thus $r=nq\in n\mathbb{Z}\implies \mathcal{R}\subset n\mathbb{Z}$. The other direction is trivial.

1.23 Theorem

 \mathbb{Z}_n is a field $\iff n$ is a prime number p. In this case,

- (a) \mathbb{Z}_p is called a *finite field*.
- (b) Every finite field F contains \mathbb{Z}_p for some prime p.

Proof) Consider a ring homomorphism: $\psi : \mathbb{Z} \to F$ given by

$$\psi(n) = \begin{cases} n \cdot 1_F = 1_F + \dots + 1_F & \text{for } n > 0 \\ -|n| \cdot 1_F = (-1_f) + \dots + (-1_F) & \text{for } n < 0 \\ 0_F & \text{for } n = 0 \end{cases}$$

Then $n\mathbb{Z} = \ker \psi \subset \mathbb{Z} = R \implies \mathbb{Z}/\ker \psi \simeq \psi(\mathbb{Z}) \subset F$ for some $n \in \mathbb{Z}$. Since the field F has no zero devisor, n must be a prime number.

1.24 Lemma

For all nonzero number $a \in \mathbb{Z}$, $a^{p-1} \equiv 1 \mod p$.

Proof)

 $\mathbb{Z}_n^* = \{\overline{r} \in \mathbb{Z}_n : (r,n) = 1\}. \ |\mathbb{Z}_n^*| = \psi(n) = \text{ the number of } \{r \in \mathbb{N} : (r,n) = 1\}.$

1.25 Theorem

 \mathbb{Z}_n^* forms a group with \cdot .

Proof) since (a, n) = 1, for some $\alpha, \beta \in \mathbb{Z}$, $\alpha a + \beta n = 1 \implies \alpha a \equiv 1 \mod n \implies \overline{a}$ has inverse $\overline{\alpha}$ in \mathbb{Z}_n^* .

1.26 Theorem

If $a \in \mathbb{Z}$, (a, n) = 1, then $a^{\psi(1)} \equiv 1 \mod n$.

Proof) $G=\mathbb{Z}_n^*$ is a group by the pervious thm, of order $|G|=\psi(n)$, by the Lagrange thm, $a^{|G|}=a^{\psi(n)}\equiv 1\mod n$.

1.27 Theorem

If (a, m) = 1, then $ax \equiv b \mod n$ has a unique solution in \mathbb{Z}_m .

Proof) By the previous thm, \mathbb{Z}_m^* is a group. $\overline{a} \in \mathbb{Z}_m^* \implies \exists \overline{a'} \in \mathbb{Z}_m^*$ s.t. $\overline{a} \cdot \overline{a'} = \overline{1} \mod m$. Then, $x \equiv \overline{a'} \cdot \overline{b}$ is the unique solution.

1.28 Theorem

Let $d = \gcd(a, m)$. Then $ax \equiv b \mod m$ has a solutuin $\iff d|b$. In this case, there are d-solutions.

Proof) (\$\Rightarrow\$) Assume $a=da_1, \ m=dm_1. \ ax\equiv b \mod m$ has a solution $x_0\Longrightarrow ax_0\equiv b \mod m \Longrightarrow m|(ax_0-b)\Longrightarrow d|dm_1|da_1x_0-b\Longrightarrow d|b.$ (\$\Rightarrow\$) $d|b\Longrightarrow b=b_1d, \ a=a_1d, \ m=m_1d. \ ax\equiv b \mod m \Longrightarrow a_1dx\equiv bd$ mod $md\Longrightarrow a_1x\equiv b_1 \mod m_1\Longrightarrow$ there exists a unique solution in \$\mathbb{Z}_{m_1}\$. Consider a ring-homo \$\phi: \mathbb{Z}_m \rightarrow \mathbb{Z}_{m_1}\$. Then \$\phi^{-1}(x)=\{x,x+m_1,\ldots,x+(d-1)m_1\}\$.

HW1: p189 #11,13,15,17,19,21,22,27 30

Lecture 0911

1.29 Theorem: Division algorithm

Let $F[x] = \{ \sum_{i=0}^{n} a_i x^i \mid a_i \in F, n \ge 0 \}.$

- (a) For all $f(x), g(x) \in F[x]$, f(x) = q(x)g(x) + r(x) for $\deg(r(x)) < \deg(g(x))$.
- (b) For all $f(x) \in F[x]$, 'a' is a root of f(x), i.e., $f(a) = 0 \iff (x-a) \mid f(x) \iff f(x) = (x-a)f'(x)$.
- (c) Every finite multiplicative group of a field F must be cyclic.
- (d) (Eisenstein crieteria) For all $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\in Q[x]$ is *iwed??* if there exists a prime $p\in\mathbb{Z}$ such that $p\nmid a_n,\,p\mid a_i$ for $0\leq i\leq n-1$, and $p^2\nmid a_0$.

Recall that f(x) is **rdasd??** in F[x] if $f(x) = f_1(x)f_2(x)$ in F[x] and $\deg f_i(x)$ is non-zero or $f_i(x)$ is not constant. Otherwise, f(x) is said to be **????**.

HW2: p207 # 12,14,15,16,17,24,27, p218 # 14,16,34,35,36,37