Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 80%. We keep your highest score.

Next item \rightarrow

1/1 point

1. Which approach can find an optimal deterministic policy? (Select all that apply)

 \bigcap ϵ -greedy exploration

lacktriangle Off-policy learning with an ϵ -soft behavior policy and a deterministic target policy

✓ Correct

Correct! In this case, the behavior policy can maintain exploration while the target policy is deterministic.

Exploring Starts

⊘ Correct

Correct! Exploring starts ensure that every state-action pair is visited even if the policy is deterministic

2. When can Monte Carlo methods, as defined in the course, be applied? (Select all that apply)

1/1 point

- ☐ When the problem is **continuing** and given a batch of data containing sequences of states, actions, and rewards
- When the problem is **continuing** and there is a model that produces samples of the next state and reward
- When the problem is episodic and given a batch of data containing sample episodes (sequences of states, actions, and rewards)

⊘ Correct

Correct! Well-defined returns are available in episodic tasks.

When the problem is **episodic** and there is a model that produces samples of the next state and reward

3. Which of the following learning settings are examples of off-policy learning? (Select all that apply)

⊘ Correct

Correct! Well-defined returns are available in episodic tasks.

1/1 point

✓ Learning the optimal policy while continuing to explore

✓ Correct

 ${\it Correct!} \ An off-policy \ method \ with \ an \ exploratory \ behavior \ policy \ can \ assure \ continual \ exploration.$

✓ Learning from data generated by a human expert

Correct
 Correct

Correct! Applications of off-policy learning include learning from data generated by a non-learning agent or human expert. The policy that is being learned (the target policy) can be different from the human expert's policy (the behavior policy).

4. If a trajectory starts at time t and ends at time T, what is its relative probability under the target policy π and the behavior policy b?

1/1 point

Hint: pay attention to the time subscripts of \boldsymbol{A} and \boldsymbol{S} in the answers below.

Hint: Sums and products are not the same things!

$$\bigcirc \ \sum_{k=t}^{T-1} \frac{\pi(A_k \mid S_k)}{b(A_k \mid S_k)}$$

$$\bigcirc \ \frac{\pi(A_{T-1} \mid S_{T-1})}{b(A_{T-1} \mid S_{T-1})}$$

$$\bigcirc \ \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$$

⊘ Correct

Correct! This is the importance sampling ratio and is used to weight returns in off-policy Monte-Carlo Policy Evaluation.

5.	When is it possible to determine a policy that is greedy with respect to the value functions v_π, q_π for the policy π ? (Select all that apply)	1/1 point
	$lacksquare$ When state values v_π and a model are available	
	Correct Correct! With state values and a model, one can look ahead one step and see which action leads to the best combination of reward and next state.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$lacksquare$ When action values q_π and a model are available	
	 Correct Correct! Action values are sufficient for choosing the best action in each state. 	
	$lacksquare$ When action values q_π are available but no model is available.	
	 Correct Correct! Action values are sufficient for choosing the best action in each state. 	
6.	Monte Carlo methods in Reinforcement Learning work by	1/1 point
	Hint: recall we used the term <i>sweep</i> in dynamic programming to discuss updating all the states systematically. This is not the same as visiting a state.	
	Averaging sample returns	
	Averaging sample rewards	
	Planning with a model of the environment	
	Performing sweeps through the state set	
	 Correct Correct! Monte Carlo methods in Reinforcement Learning sample and average returns much like bandit methods sample and average rewards. 	
7.	Suppose the state s has been visited three times, with corresponding returns $8,4$, and 3 . What is the current Monte Carlo estimate for the value of s ?	1/1 point
	○ 3	
	O 15	
	● 5	
	○ 3.5	
	 Correct Correct! The Monte Carlo estimate for the state value is the average of sample returns observed from that state. 	
8.	When does Monte Carlo prediction perform its first update?	1/1 point
٥.	After the first time step	1/10000
	After every state is visited at least once	
	At the end of the first episode	
	 Correct Correct! Monte Carlo Prediction updates value estimates at the end of an episode. 	
9.	For Monte Carlo Prediction of state-values, the number of updates at the end of an episode depends on	1/1 point
	Hint: look at the innermost loop of the algorithm	
	The length of the episode	
	The number of possible actions in each state	
	○ The number of states	
	Correct Correct! Monte Carlo Prediction updates the estimated value of each state visited during the episode.	
10.	In an ϵ -greedy policy over ${\cal A}$ actions, what is the probability of the highest valued action if there are no other	1/1 point

actions with the same value?

 $\bigcirc 1 - \epsilon$

 \bigcirc ϵ

 \bigcirc $1 - \epsilon + \frac{\epsilon}{A}$

 $\bigcirc \frac{\epsilon}{A}$

⊘ Correct
 Correct! The highest valued action still has a chance of being selected as an exploratory action.