Solutions to Part A of Problem Sheet 7

Solution (7.1) First of all, note that the function is only defined for x such that $Ax \le b$. We introduce new variables y and derive the dual to the problem

minimize
$$-\sum_{i=1}^{m} \log(y_i)$$

subject to $y = b - Ax$.

The Lagrangian to this problem is

$$\mathcal{L}(oldsymbol{x},oldsymbol{y},oldsymbol{\mu}) = -\sum_{i=1}^m \log(y_i) + oldsymbol{\mu}^ op (oldsymbol{y} - oldsymbol{b} + oldsymbol{A}oldsymbol{x}).$$

The dual function is

$$g(\boldsymbol{\mu}) = \inf_{\boldsymbol{x}, \boldsymbol{y}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\mu}).$$

The infimum is $-\infty$ if $\mu^{\top} A \neq 0$. If μ has negative terms, then the infimum is also $-\infty$ (we could then choose an arbitrary large value for the corresponding y variable). If $\mu > 0$, then we get a minimum by setting $y_i = \frac{1}{\mu_i}$. It follows that the dual function is

$$g(\boldsymbol{\mu}) = \begin{cases} -\sum_{i=1}^m \log(\mu_i) + m - \boldsymbol{b}^\top \boldsymbol{\mu} & \boldsymbol{A}^\top \boldsymbol{\mu} = \boldsymbol{0}, \ \boldsymbol{\mu} > 0, \\ -\infty & \text{else.} \end{cases}$$

Solution (7.2) The problem is not convex since the equality constraint is not linear. We can formulate an equivalent convex optimization problem as

minimize
$$x_1^2 + x_2^2$$
 subject to $x_1 \le 0$, $x_1 + x_2 = 0$.

Solution (7.3) Write

$$P(\lambda) = P + \sum_{i=1}^{m} \lambda_i P_i, \ q(\lambda) = q + \sum_{i=1}^{m} \lambda_i q_i, \ r(\lambda) = r + \sum_{i=1}^{m} \lambda_i r_i.$$

With this notation, we can express the Lagrangian as

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{P}(\lambda) \boldsymbol{x} + \boldsymbol{q}(\lambda)^{\top} \boldsymbol{x} + \boldsymbol{r}(\lambda).$$

For $\lambda \geq 0$ we have $P(\lambda) > 0$, and

$$g(\lambda) = \inf_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \lambda) = -\frac{1}{2} q(\lambda)^{\top} P(\lambda)^{-1} q(\lambda) + r(\lambda).$$

The Lagrange dual is then given by

maximize
$$-\frac{1}{2}q(\lambda)^{\top}P(\lambda)^{-1}q(\lambda) + r(\lambda)$$

subject to $\lambda \geq 0$.