$\overline{}$

ハッカソン 国際無 W [

2015 08/16 株式会社アールティ 高橋良太

浜河

•23ページの内容が間違ってたので修正しました 8/20

• 修正箇所 上位byte と下位byteが逆

AICHIPのシステム構成

ロボットの各機 能 ス モーター等へのアクセス エル UserInterfaceへのアクセ

デジタル入出力 AD変換 タイマー PWM出 カ

周辺ペリフェラル

マイコン lpc1343 のファームウェ

(回路

モータードライバ(Hブリッジ) モーター単三電池2本

LED x 2 タクトスイッチ x 2 電源電圧監視回路 9軸センサ(ジャイロ, 加速度, 地磁

AICHIPのシステム構成

マイコン lpc1343 のファームウェ

周辺ペリフェラ

LED x 2 タクトスイッチ x 2 電源電圧監視回路 9軸センサ(ジャイロ, 加速度, 地磁 モータードライバ(Hブリッジ)

いード (回路

モーター単三電池2本

◆回作る部分

Bluetooth越しにアクセス可

紹

ロボットの各機能

UserInterfaceへのアクセ

マイコン lpc1343 のファームウェ

ス モーター等へのアクセス エーター等へのアクセス デジタル入出力 AD変換 タイマー PWM出 カ

周辺ペリフェラ

モータードライバ(Hブリッジ)

(回路 がに回襲

モーター 単三電池2本

LED x_2 タクトスイッチ x_2 電源電圧監視回路 9軸センサ(ジャイロ, 加速度, 地磁

3 luetooth 引 うシでなった。

Bluetooth通信でできること!!

・モーターのコントロール

•LEDのコントロール

10msec周期

•9軸センサの出力データの取得

●電池電圧の取得

50msec周期

ミニ4駆の物理層にアクセスする最低限の仕組みを

PC と Bluetooth接続した際のアプリの例

AICHIPへの送信コマンド ンド モーターにかけるdutyの変 更Dx2の点灯,点

滅 車体角度の書き換 Frocessingで作ってみまし た

https://www.youtube.com/watch?t=31&v=rk1TQI3hVoc

PCとBluetooth接続してコマンドを送信している例 | ■ sketch_RT_AICHIP_contro... - □ ■ ×

PC と Bluetooth接続してデータをグラフに表示してい 2例

AICHIPから送られてくるデー多軸センサの出力情報 報車体角度電源電圧の出力

リアルタイムに車体情報を表示する ラデータロガーを作ってみた Processingで作ってみまし た

https://www.youtube.com/watch?v=ixhc6ZnztPQ 動画リン

とりあえず, PCとのBluetooth通信で動くアプリは作ったが...

スマホとの通信で動くアプリはまだ.....

みなさん, 協力してくれませんか かかん

Bluetooth対Androidの通信

- SPP(Serial Port Profile)で通信
- RS232Cと同様な感じ •byte型の配列を送受信
- •BluetoothChatというサンプルソースが下敷き
- BluetoothChat内のUUIDをSPP用に変更

byte列を送る関 数 byte列を受信する関 数

bvte列の送受信関数についてはBluetoothChatで提供されてい

AICHIPへの送信コマンド

10msec毎に受信した文字列を確認

byte列を送る関 数

コマンドのフォーマットは決まっている ット通りのbyte列を送信す

定義なれているコレンドー覧

- id0 モーターのdutyを設定
- 右(緑)**LED**の制御コマンド id1
- 左(赤)TEDの制御コマンド id2
- 右(縁)TEDの点滅制御コマン
- id4 左(赤)LEDの点滅制御コマンド
- id5 車体角度の指定コマンド

送信コマンドのプロトコル

・長さ10byteで以下のフォーマット

9byte		XX	
8byte	datafield	XX	
		eld	XX
6byte 7byte		XX	
5byte		XX	
4byte		XX	
	ji	XX	
2byte 3byte	neadder	100	
1byte 2b		109	
0byte	h	66	

固定

コマンド毎に異な る 意味のある10byteコマンドをAICHIP側が受信すると対応した動作を実行

送信コマンドはid 0,1, ... ,5の5種類

•BluetoothChatのbyte列送信関数をもちいて10byteのコマンドを送

モーターduty設定コマンド

Obyte	1byte	2byte	3byte	4byte	5byte	6byte	7byte	8byte	9byte
headder			id	id datafield					
99	109	100	0	XX	XX	0	0	0	0

モーターduty設定コマンド(コード例)

```
command[4] = byte(duty_L) command[5] = byte(duty_H)
                                                                            command[0] = 99;
command[1] = 109;
command[2] = 100;
                                                                                                                                                                                                                                                                                                            return command;
                                                                                                                                            command[3] =
                                                                           command[0]
command[1]
                                                                                                                                                                                                                           command[6]
command[7]
command[8]
                                                            //ヘッダー
                                                                                                                                                                                                                                                                         command[9]
                                                                                                                                                                                                           //A;::-
                                  duty_L = int_duty & 0x000000ff;
duty_H = (int_duty & 0x0000ff00)>>8;
                                                                                                                                                                                                          int_duty = (int) (duty * 32767.0);
if(int_duty<0)</pre>
                                                                                                     byte[] command0(float duty) {
    byte[] command = new byte[10];
    int int_duty;
    int duty_L;
    int duty_H;
                                                                 * @return 10byteのコマンド配列
* id 0: dutyの変更コマンド
                                                                                                                                                                                                                                                                int_duty += 65535;
```

LEDの点灯制御コマンド

右(緑)LEDの制御コマン

9byte		0
8byte	datafield	0
e 7byte 8byte		0
6byte		0
4byte 5byte 6byte		0
4byte		XX (
/te	id	\leftarrow
2byte 3by		100
1byte 2	headder	109
0byte		66

左(赤)LEDの制御コマン 1:LED点灯 0:LED消 ド

Obyte 1byte 2byte 3byte 4byte 5byte 6byte 7byte 8byte 9byte datafield XX = 099 109 100 2 headder

1:LED点灯 0:LED消

LEDの点滅制御コマンド 右(縁)LEDの制御コマン

9byte		0
8byte	datafield	0
7byte		XX
6byte 7byte		XX
e Sbyte		XX
e 4byte		XX
3byte	id	3
2byte		100
1byte	neadder	109
0byte	h	66

左(赤)TEDの制御コマン IED点灯時 LED消灯時 に

9byte		0
8byte		0
7byte	ield	XX
6byte	datafield	XX
5byte 6byte		XX
4byte		XX
yte	id	4
Ibyte2byte3b		100
1byte	headder	109
0byte	h	66

LED点灯時 LED消灯時 III

LEDの点滅制御コマンド(コード例)

```
l = byte(on_time_L);
l = byte(on_time_H);
l = byte(off_time_L);
l = byte(off_time_H);
                          command[1] = 99;
command[1] = 109;
//id
                                                                                                                                                                                                                                                                                                                                                                                                 return command;
                                                                                                                                     command[3] =
                                                                                                                                                                                                                                                                                                                                        command[9] =
                                                                                                                                                                                       command[4]
                                                                                                                                                                                                              command[5]
//ヘッダー
                                                                                                                                                                                                                                                                                                                    command[8]
                                                                                                                                                                                                                                                                  command[7]
                                                                                                                                                                                                                                                                                        //∯ ≡ -
                                                             * @baram 点滅時のon時間の指定 on_time[msec]
* @baram 点滅時のoff時間の指定 off_time[msec]
* @return 10byteのコマンド配列
                                                                                                                                                                    byte[] command4(int on_time, int off_time) {
    byte[] command = new byte[10];
    int int_duty;
    int on_time_L;
    int on_time_H;
    int off_time_L;
    int off_time_L;
    int off_time_H;
                                                                                                                                                                                                                                                                                                                                                                                on_time_L = on_time & 0x000000ff ;
on_time_H = (on_time & 0x0000ff00)>>8;
           * id 4 左(赤)LEDの点滅制御コマンド
```

角度セットコマンド

右(緑)LEDの制御コマン

L	Obyte	1byte	2byte	3byte	4byte	5byte	6byte	7byte	8byte	9byte
	headder			id			datafi	eld		
	99	109	100	5	XX	XX	0	0	0	0

16bit符号付整数 ← ここをセットしたい角度に応じて 変更 0 32767 -180度 180度 duty

ジャイロセンサにより積算される角度のリセット

AICHIPからのデータ受信

50msec毎に43byteのデータを送

byte列を受信する関 数

送られてくる byte列を意味のあるデータに

変換すればよい

受信データー覧

$$\pm 16g$$

分解能 16bit

±1200µT

•地磁気 x,y,z

●循展

• 車体角度

モーター用電池電圧

・マイコン用電池電圧

•モータのduty比

受信データのプロトコル1

Byte	内容	Byte	内容
0	0xff	11	ACC Y 上位8bit (符号付)
1	0xff	12	ACC Z 下位8bit (符号付)
2	0x52	13	ACC Z 上位8bit (符号付)
3	0x54	14	TEMP下位8bit (符号付)
4	0x34	15	TEMP 上位8bit (符号付)
5	0x57	16	GYRO X 下位8bit (符号付)
6	0x00	17	GYRO X 上位8bit (符号付)
7	タイムスタンプ	18	GYRO Y 下位8bit (符号付)
8	ACC X 下位8bit (符号付)	19	GYRO Y 上位8bit (符号付)
9	ACC X 上位8bit (符号付)	20	GYRO Z 下位8bit (符号付)
10	ACC Y 下位8bit (符号付)	21	GYRO Z 上位8bit (符号付)

受信データのプロトコル2

Byte	内容		Byte	内容	
22	MAG X 下位8bit	(符号付)	33	isCurve (符号なり	」)
23	MAG X 上位8bit	(符号付)	34	isSlope (符号なし	·)
24	MAG Y 下位8bit	(符号付)	35	経過時間 Obyte (符号なし)	
25	MAG Y 上位8bit	(符号付)	36	経過時間 1byte (符号なし)	
26	MAG Z 下位8bit	(符号付)	37	経過時間 2byte (符号なし)	
27	MAG Z 上位8bit	(符号付)	38	経過時間 3byte (符号なし)	
28	角度 下位8bit	(符号付)	39	Lipo電圧下位8bit (符号なし	·)
29	角度 上位8bit	(符号付)	40	Lipo電圧 上位8bit (符号なし	·)
30	duty 下位8bit	(符号付)	41	モーター電圧下位8bit(符号なし	·)
31	duty 上位8bit	(符号付)	42	モーター電圧 上位8bit(符号なし	·)
32	isStop	(符号な			24

受信データのプロトコル3

内容	0xff	0xff	0x52	0x54	0x34	0x57	00x0
Byte							
W.	0	_	7	3	4	W	9

受信データの 上位7byteは常に固定

Dyce 22 MAG X 下位8bit	23 MAG X 上位8bit	2byteにデータが分かれている	データを結合する必要があり

受信したpyte列を常に監視し続け上記の固定

パターンが出てきたらそこから36byte分が

一学学

Byte列の結合

•符号付と符号なしの2パターンで結合する時の例を示す.

```
谷中あり
int concatenate2Byte_int(int H_byte, int L_byte) {
           int con;
con = L_byte + (H_byte<<8);
if (con > 32767) {
con -= 65536;
                                                                                        return con;
```

```
谷
し
し
int concatenate2Byte_uint(int H_byte, int L_byte)
               int con;
con = L_byte + (H_byte << 8);
                                                  return con;
```

各データの物理量への変換式

加速度

加速度センサ値: acc [16bit 符号付整数] 計算式: acc/2048 [g]

ジャイロセンサ

ジャイロセンサ値: omega [16bit符号付整数] ジャイロリファレンス値: omega_ref [16bit符号付整数] 計算式: (omega_ref) / 16.4 [deg/sec]

※ジャイロリファレンス値とはセンサが静止状態のときに出力さ

各データの物理量への変換式 2

地磁気センサ

地磁気センサ値: mag [16bit符号付整数] 計算式: mag *0.3 [μT]

温度カンナ

温度センサ値: temp [16bit符号付整数] 計算式: temp/340+35 [°C]

バッテリー電圧値

電圧値:bat_v [16bit符号なし整数]

計算式:bat_v // 13107 [V]

各データの物理量への変換式3

角度

角度: deg [16bit符号付整数] 計算式: deg * 2* PI / 32767.0 [rad]

duty

duty值: duty [16bit符号付整数] 計算式: duty/32767 * 100 [%(百分率)]

起動モードについて

Bluetooth経由でのデータ送受信のみを用い

操作するモードにするには

