Macaron/Tonus retreat presentation

Mesh-based methods and physically informed learning

Authors: LECOURTIER Frédérique

Supervisors: DUPREZ Michel FRANCK Emmanuel LLERAS Vanessa

February 6-7, 2024

Introduction

Scientific context

Context: Create real-time digital twins of an organ (such as the liver).

 ϕ -**FEM Method**: New fictitious domain finite element method.

- → domain given by a level-set function ⇒ don't require a mesh fitting the boundary
- → allow to work on complex geometries
- → ensure geometric quality

Practical case: Real-time simulation, shape optimization...

Objective

Current Objective : Develop hybrid finite element / neural network methods.

Evolution:

- Geometry : 2D, simple, fixed (as circle, ellipse..) ightarrow 3D / complex / variable
- PDE : simple, static (Poisson problem) $\, o \,$ complex / dynamic (elasticity, hyper-elasticity)
- Neural Network : simple and defined everywhere (PINNs) $\,
 ightarrow\,$ Neural Operator

Problem considered

Elliptic problem with Dirichlet conditions:

Find $u: \Omega \to \mathbb{R}^d (d=1,2,3)$ such that

$$\begin{cases} L(u) = -\nabla \cdot (A(x)\nabla u(x)) + c(x)u(x) = f(x) & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \partial \Omega \end{cases} \tag{1}$$

with A a definite positive coercivity condition and c a scalar. We consider Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

Weak formulation:

Find
$$u \in V$$
 such that $a(u, v) = I(v) \forall v \in V$

with

$$a(u,v) = \int_{\Omega} (A(x)\nabla u(x)) \cdot \nabla v(x) + c(x)u(x)v(x) dx$$

$$I(v) = \int_{\Omega} f(x)v(x) dx$$

Remark: For simplicity, we will not consider 1st order terms.

Numerical methods

Objective: Show that the philosophy behind most ofd the methods are the same.

Mesh-based methods // Physically informed learning

Numerical methods: Discrete an infinite-dimensional problem (unknown = function) and solve it in a finite-dimensional space (unknown = vector).

- Encoding: we encode the problem in a finite-dimensional space
- Approximation: solve the problem in finite-dimensional space
- Decoding: bring the solution back into infinite dimensional space

Encoding	Approximation	Decoding
$f o heta_f$	$\theta_f \to \theta_u$	$\theta_u \rightarrow u_\theta$

Mesh-based methods

Encoding/Decoding Approximation

Mesh-based methods

Encoding/Decoding

Encoding/Decoding-FEMs

• **Decoding :** Linear combination of piecewise polynomial function φ_i .

$$\mathcal{D}_{\theta_u}(x) = \sum_{i=1}^{N} (\theta_u)_i \varphi_i$$

- \Rightarrow linear decoding \Rightarrow approximation space V_N = vectorial space
- \Rightarrow existence and uniqueness of the orthogonal projector
- **Encoding**: Orthogonal projection on vector space $V_N = \textit{Vect}\{\varphi_1, \dots, \varphi_N\}$.

$$\theta_f = E(f) = M^{-1}b(f)$$

with
$$M_{ij} = \int_{\Omega} \varphi_i(x) \varphi_i(x)$$
 and $b_i(f) = \int_{\Omega} \varphi_i(x) f(x)$. Appendix 1

Mesh-based methods

Encoding/Decoding Approximation

Idea: Project a certain form of the equation onto the vector space V_N . We introduce the residual of the equation defined by

$$R(v) = R_{in}(v) \mathbb{1}_{\Omega} + R_{bc}(v) \mathbb{1}_{\partial \Omega}$$

with

$$R_{in}(v) = L(v) - f$$
 and $R_{bc}(v) = v - g$

which respectively define the residues inside Ω and on the boundary $\partial\Omega$.

Discretization: Degrees of freedom problem (which also has a unique solution)

$$u = \arg\min_{v \in V_N} J(v) \longrightarrow \theta_u = \arg\min_{\theta \in \mathbb{R}^N} J(\theta)$$

with / a functional to minimize.

Variants: Depends on the problem form used for projection.

Problem - Energetic form | Problem - Least-square form Galerkin projection Galerkin Least-square projection

Energetic form

Minimization Problem:

$$u_{\theta}(x) = \arg\min_{v \in V_N} J(v), \qquad J(v) = J_{in}(v) + J_{bc}(v)$$
 (2)

with

$$J_{in}(v) = rac{1}{2} \int_{\Omega} L(v) v - \int_{\Omega} f v$$
 et $J_{bc}(v) = rac{1}{2} \int_{\Omega} R_{bc}(v)^2$

Remark: This form of the problem is due to the Lax-Milgram theorem as a is symmetrical.

Minimization Problem (2)
$$\Leftrightarrow$$
 PDE (1): $\nabla_{v} J(v) = R(v)$ Appendix 2

$$\begin{array}{ll} u_{\theta} \operatorname{sol} & \Leftrightarrow \nabla_{u_{\theta}} J(u_{\theta}) = 0 \Leftrightarrow \begin{cases} R_{ln}(u_{\theta}) = 0 \text{ in } \Omega \\ u_{\theta} = g \text{ on } \partial \Omega \end{cases} \Leftrightarrow \begin{array}{ll} u_{\theta} \operatorname{sol} \\ \text{of (1)} \end{cases}$$

Min pb

PDE

Galerkin Projection

Discrete minimization Problem:

$$\theta_{u} = \arg\min_{\theta \in \mathbb{R}^{N}} J(\theta), \quad J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} L(u_{\theta}) v_{\theta} - \int_{\Omega} f v_{\theta}$$
 (3)

Remark : In practice, boundary conditions can be imposed in different ways. We are therefore only interested in the minimization problem in Ω .

Galerkin projection: Consists in resolving

Galerkin Projection (4) \Leftrightarrow PDE (1):

$$\langle R_{in}(u_{\theta}(x)), \varphi_i \rangle_{L^2} = 0, \quad \forall i \in \{1, \dots, N\}$$
 (4)

$$\nabla_{\theta} J(\theta) = \left(\int_{\Omega} R_{in}(v_{\theta}) \varphi_{i} \right)_{i=1,...,N} \qquad \text{Appendix 3}$$

$$\begin{matrix} u_{\theta} \text{ sol} \\ \text{of (1)} \end{matrix} \Leftrightarrow \begin{matrix} u_{\theta} \text{ sol} \\ \text{of (2)} \end{matrix} \Leftrightarrow \begin{matrix} u_{\theta} \text{ sol} \\ \text{of (3)} \end{matrix} \Leftrightarrow \nabla_{\theta} J(\theta) = 0 \Leftrightarrow \begin{matrix} u_{\theta} \text{ sol} \\ \text{of (4)} \end{matrix}$$

$$\begin{matrix} \text{PDE} \end{matrix} \qquad \begin{matrix} \text{Min pb} \end{matrix} \qquad \begin{matrix} \text{Discrete} \\ \text{min pb} \end{matrix} \qquad \begin{matrix} \text{Galerkin} \\ \text{projection} \end{matrix}$$

Least-Square form

Minimization Problem:

$$u_{\theta}(x) = \arg\min_{v \in V_N} J(v), \qquad J(v) = J_{in}(v) + J_{bc}(v)$$
 (5)

with

$$J_{in}(v) = rac{1}{2} \int_{\Omega} R_{in}(v)^2$$
 and $J_{bc}(v) = rac{1}{2} \int_{\Omega} R_{bc}(v)^2$

Remark: This form of the problem is due to the Lax-Milgram theorem as a is symmetrical.

$$\begin{array}{ll} \text{Minimization Problem (5)} \Leftrightarrow \text{PDE (1):} \\ \nabla_{v} J(v) = L(R(v)) \mathbb{1}_{\Omega} + (v-g) \mathbb{1}_{\partial \Omega} & \text{Appendix 4} \\ \\ u_{\theta} \text{ sol} \\ \text{of (5)} & \Leftrightarrow \nabla_{u_{\theta}} J(u_{\theta}) = 0 \ \Leftrightarrow \begin{cases} L(R(u_{\theta})) = 0 \text{ in } \Omega \\ R(u_{\theta}) = 0 \text{ on } \partial \Omega \end{cases} \Leftrightarrow R(u_{\theta}) = 0 \ \Leftrightarrow \begin{cases} u_{\theta} \text{ sol of (1)} \\ R(u_{\theta}) = 0 \text{ on } \partial \Omega \end{cases} \\ \\ \text{PDE} \end{array}$$

A modifier!

Least-Square Galerkin Projection

Discrete minimization Problem:

$$\theta_{u} = \arg\min_{\theta \in \mathbb{R}^{N}} J(\theta), \qquad J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} (L(u_{\theta}) - f)^{2}$$
 (6)

Remark : In practice, boundary conditions can be imposed in different ways. We are therefore only interested in the minimization problem in Ω .

Galerkin projection: Consists in resolving

Least-Square Galerkin Projection (7) \Leftrightarrow PDE (1):

$$\langle R_{in}(u_{\theta}(x)), (\nabla_{\theta}R_{in}(u_{\theta}(x)))_i \rangle_{L^2} = 0, \quad \forall i \in \{1, \dots, N\}$$
 (7)

$$\nabla_{\theta} J(\theta) = \left(\int_{\Omega} L(R_{in}(v_{\theta})) \varphi_{i}\right)_{i=1,...,N} \qquad \text{Appendix 5}$$

$$\begin{matrix} u_{\theta} \text{ sol} \\ \text{of (1)} \end{matrix} \Leftrightarrow \begin{matrix} u_{\theta} \text{ sol} \\ \text{of (5)} \end{matrix} \Leftrightarrow \begin{matrix} u_{\theta} \text{ sol} \\ \text{of (6)} \end{matrix} \Leftrightarrow \nabla_{\theta} J(\theta) = 0 \Leftrightarrow \begin{matrix} u_{\theta} \text{ sol} \\ \text{of (7)} \end{matrix}$$

$$\begin{matrix} \text{PDE} \qquad \qquad \text{Min pb} \qquad \qquad \begin{matrix} \text{Discrete} \\ \text{min pb} \end{matrix} \qquad \qquad \begin{matrix} \text{LS Galerkin} \\ \text{projection} \end{matrix}$$

Steps Decomposition - FEMs

Encoding	Арр	Decoding	
$f ightarrow heta_f$		$ heta_u ightarrow u_ heta$	
0 6(4)	Galerkin	LS Galerkin	$u_{\theta}(x) = \mathcal{D}_{\theta}(x)$
$\theta_f = \mathcal{E}(f)$ $= M^{-1}b(f)$	$\langle R(u_{\theta}), \varphi_i \rangle_{L^2} = 0$	$\langle R(u_{\theta}), (\nabla_{\theta}R(u_{\theta}))_i \rangle_{L^2} = 0$	$=\sum_{i=1}^{N}(heta_{u})_{i}arphi_{i}$
	$A\theta_u = B$		i=1

Example: Galerkin projection.

For
$$i \in \{1, \ldots, N\}$$
,

$$\langle R(u_{\theta}), \varphi_{i} \rangle_{L^{2}} = 0$$

$$\iff \int_{\Omega} L(u_{\theta}) \varphi_{i} = \int_{\Omega} f \varphi_{i}$$

$$\iff \sum_{i=1}^{N} (\theta_{u})_{j} \int_{\Omega} \varphi_{i} L(\varphi_{j}) = \int_{\Omega} f \varphi_{i}$$

$$A heta_u=B$$
 with $A_{i,j}=\int_\Omega arphi_i L(arphi_j)$, $B_i=\int_\Omega farphi_i$

Physically Informed Learning

Encoding/Decoding Approximation

Physically Informed Learning

Encoding/Decoding

Approximation

Encoding/Decoding - NNs

Non-Linear Decoder - Advantages

Physically Informed Learning

Encoding/Decoding
Approximation

Approximation

Deep-Ritz

Standard PINNs

In practice...

A compléter!

Bibliography

Steps Decomposition - NNs

Encoding	Арр	Decoding	
$f o heta_f$	$ heta_f o heta_u$		$ heta_u ightarrow u_ heta$
0 (6)	Galerkin	LS Galerkin	$u_{\theta}(x) = \mathcal{D}_{\theta}(x)$
$\theta_f = \mathcal{E}(f)$ $= M^{-1}b(f)$	$\langle R(u_{\theta}), \varphi_i \rangle_{L^2} = 0$	$\langle R(u_{\theta}), (\nabla_{\theta}R(u_{\theta}))_i \rangle_{L^2} = 0$	$= \sum^{N} (\theta_u)_i \varphi_i$
20)	${\it A} heta_u = {\it B}$		i=1

Hybrid method

ϕ -FEM Method

Impose exact boundary conditions in PINNs

Correct PINNs prediction with ϕ FEM

Conclusion

Conclusion

Bibliography

Bibliography

Appendix 1: Encoding - FEMs

Appendix 2: Energetic form

Appendix 3: Galerkin Projection

Appendix 4: Least-Square form

Appendix 5: LS Galerkin Projection

