linear-regression-1

February 6, 2024

[7]: pip install matplotlib numpy pandas seaborn shap

```
Requirement already satisfied: matplotlib in /opt/conda/lib/python3.11/site-
packages (3.8.2)
Requirement already satisfied: numpy in /opt/conda/lib/python3.11/site-packages
(1.26.2)
Requirement already satisfied: pandas in /opt/conda/lib/python3.11/site-packages
(2.0.3)
Requirement already satisfied: seaborn in /opt/conda/lib/python3.11/site-
packages (0.13.2)
Collecting shap
 Downloading shap-0.44.1-cp311-cp311-manylinux 2_12_x86_64.manylinux2010_x86_64
.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (24 kB)
Requirement already satisfied: contourpy>=1.0.1 in
/opt/conda/lib/python3.11/site-packages (from matplotlib) (1.2.0)
Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.11/site-
packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in
/opt/conda/lib/python3.11/site-packages (from matplotlib) (4.47.2)
Requirement already satisfied: kiwisolver>=1.3.1 in
/opt/conda/lib/python3.11/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in
/opt/conda/lib/python3.11/site-packages (from matplotlib) (23.2)
Requirement already satisfied: pillow>=8 in /opt/conda/lib/python3.11/site-
packages (from matplotlib) (10.2.0)
Requirement already satisfied: pyparsing>=2.3.1 in
/opt/conda/lib/python3.11/site-packages (from matplotlib) (3.1.1)
Requirement already satisfied: python-dateutil>=2.7 in
/opt/conda/lib/python3.11/site-packages (from matplotlib) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.11/site-
packages (from pandas) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.1 in /opt/conda/lib/python3.11/site-
packages (from pandas) (2023.4)
Requirement already satisfied: scipy in /opt/conda/lib/python3.11/site-packages
(from shap) (1.12.0)
Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.11/site-
packages (from shap) (1.4.0)
Requirement already satisfied: tqdm>=4.27.0 in /opt/conda/lib/python3.11/site-
```

```
packages (from shap) (4.66.1)
    Collecting slicer==0.0.7 (from shap)
      Downloading slicer-0.0.7-py3-none-any.whl (14 kB)
    Collecting numba (from shap)
      Downloading
    numba-0.58.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata
    (2.7 kB)
    Collecting cloudpickle (from shap)
      Downloading cloudpickle-3.0.0-py3-none-any.whl.metadata (7.0 kB)
    Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.11/site-
    packages (from python-dateutil>=2.7->matplotlib) (1.16.0)
    Collecting llvmlite<0.42,>=0.41.0dev0 (from numba->shap)
      Downloading llvmlite-0.41.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x8
    6_64.whl.metadata (4.8 kB)
    Requirement already satisfied: joblib>=1.2.0 in /opt/conda/lib/python3.11/site-
    packages (from scikit-learn->shap) (1.3.2)
    Requirement already satisfied: threadpoolctl>=2.0.0 in
    /opt/conda/lib/python3.11/site-packages (from scikit-learn->shap) (3.2.0)
    Downloading shap-0.44.1-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.m
    anylinux 2 17 x86 64.manylinux2014 x86 64.whl (535 kB)
                             535.8/535.8 kB
    42.2 MB/s eta 0:00:00
    Downloading cloudpickle-3.0.0-py3-none-any.whl (20 kB)
    Downloading
    numba-0.58.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.6 MB)
                             3.6/3.6 MB
    84.9 MB/s eta 0:00:00:00:01
    Downloading
    llvmlite-0.41.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.6
                             43.6/43.6 MB
    43.4 MB/s eta 0:00:00:00:0100:01
    Installing collected packages: slicer, llvmlite, cloudpickle, numba, shap
    Successfully installed cloudpickle-3.0.0 llvmlite-0.41.1 numba-0.58.1
    shap-0.44.1 slicer-0.0.7
    Note: you may need to restart the kernel to use updated packages.
[8]: import pandas as pd
     github_url = 'https://raw.githubusercontent.com/aniruddhachoudhury/
      →Red-Wine-Quality/master/winequality-red.csv'
     wine_data = pd.read_csv(github_url)
     print('Wine Quality Dataset:')
     print(wine_data.head())
    Wine Quality Dataset:
       fixed acidity volatile acidity citric acid residual sugar chlorides \
    0
                 7.4
                                  0.70
                                               0.00
                                                                 1.9
                                                                          0.076
```

```
7.8
                                                 0.00
                                                                  2.6
     1
                                    0.88
                                                                           0.098
     2
                  7.8
                                    0.76
                                                 0.04
                                                                  2.3
                                                                           0.092
     3
                                                 0.56
                 11.2
                                    0.28
                                                                  1.9
                                                                           0.075
     4
                  7.4
                                    0.70
                                                 0.00
                                                                  1.9
                                                                           0.076
        free sulfur dioxide total sulfur dioxide density
                                                               pH sulphates \
                                                                        0.56
     0
                       11.0
                                              34.0
                                                     0.9978 3.51
                       25.0
                                              67.0
                                                     0.9968 3.20
                                                                        0.68
     1
     2
                       15.0
                                              54.0
                                                     0.9970 3.26
                                                                        0.65
                                                     0.9980 3.16
     3
                                              60.0
                                                                        0.58
                       17.0
     4
                       11.0
                                              34.0
                                                     0.9978 3.51
                                                                        0.56
        alcohol quality
     0
            9.4
                       5
            9.8
                       5
     1
                       5
     2
            9.8
     3
            9.8
                       6
            9.4
                       5
     4
 [9]: # Assuming 'wine_data' is your DataFrame
      column_name_mapping = {
          'fixed acidity': 'fixed_acidity',
          'volatile acidity': 'volatile_acidity',
          'citric acid': 'citric acid',
          'residual sugar': 'residual_sugar',
          'free sulfur dioxide': 'free_sulfur_dioxide',
          'total sulfur dioxide': 'total_sulfur_dioxide',
          'density': 'density',
          'pH': 'pH',
          'sulphates': 'sulphates',
          'alcohol': 'alcohol',
          'quality': 'quality',
      }
      # Rename the columns
      wine_data = wine_data.rename(columns=column_name_mapping)
[10]: pip install statsmodels
     Collecting statsmodels
       Downloading statsmodels-0.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014
     _x86_64.whl.metadata (9.5 kB)
     Requirement already satisfied: numpy<2,>=1.18 in /opt/conda/lib/python3.11/site-
     packages (from statsmodels) (1.26.2)
     Requirement already satisfied: scipy!=1.9.2,>=1.4 in
     /opt/conda/lib/python3.11/site-packages (from statsmodels) (1.12.0)
     Requirement already satisfied: pandas!=2.1.0,>=1.0 in
     /opt/conda/lib/python3.11/site-packages (from statsmodels) (2.0.3)
```

```
Downloading patsy-0.5.6-py2.py3-none-any.whl.metadata (3.5 kB)
           Requirement already satisfied: packaging>=21.3 in
           /opt/conda/lib/python3.11/site-packages (from statsmodels) (23.2)
           Requirement already satisfied: python-dateutil>=2.8.2 in
           /opt/conda/lib/python3.11/site-packages (from pandas!=2.1.0,>=1.0->statsmodels)
           Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.11/site-
           packages (from pandas!=2.1.0,>=1.0->statsmodels) (2023.3.post1)
           Requirement already satisfied: tzdata>=2022.1 in /opt/conda/lib/python3.11/site-
           packages (from pandas!=2.1.0,>=1.0->statsmodels) (2023.4)
           Requirement already satisfied: six in /opt/conda/lib/python3.11/site-packages
           (from patsy>=0.5.4->statsmodels) (1.16.0)
           Downloading
           statsmodels-0.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
           (10.8 MB)
                                                                 10.8/10.8 MB
           78.8 MB/s eta 0:00:00:00:010:01
           Downloading patsy-0.5.6-py2.py3-none-any.whl (233 kB)
                                                                 233.9/233.9 kB
           43.5 MB/s eta 0:00:00
           Installing collected packages: patsy, statsmodels
           Successfully installed patsy-0.5.6 statsmodels-0.14.1
           Note: you may need to restart the kernel to use updated packages.
[11]: import statsmodels.api as sm
             # Original formula
            original_formula = 'quality ~ fixed_acidity + volatile_acidity + citric_acid +⊔
               oresidual sugar + chlorides + free_sulfur_dioxide + total_sulfur_dioxide + + total_sulfur_dioxi

¬density + pH + sulphates + alcohol'
             # Create the original model
            original model = sm.OLS.from formula(original formula, data=wine data).fit()
             # Print summaries
            original_model.summary()
Γ11]:
                              Dep. Variable:
                                                                                quality
                                                                                                            R-squared:
                                                                                                                                                        0.361
                              Model:
                                                                                   OLS
                                                                                                            Adj. R-squared:
                                                                                                                                                        0.356
                              Method:
                                                                          Least Squares
                                                                                                            F-statistic:
                                                                                                                                                        81.35
                                                                                                            Prob (F-statistic):
                              Date:
                                                                        Tue, 30 Jan 2024
                                                                                                                                                     1.79e-145
                              Time:
                                                                               01:28:08
                                                                                                            Log-Likelihood:
                                                                                                                                                       -1569.1
                              No. Observations:
                                                                                                            AIC:
                                                                                  1599
                                                                                                                                                        3162.
                              Df Residuals:
                                                                                   1587
                                                                                                            BIC:
                                                                                                                                                        3227.
                              Df Model:
                                                                                    11
                              Covariance Type:
                                                                             nonrobust
```

Collecting patsy>=0.5.4 (from statsmodels)

	\mathbf{coef}	std err	\mathbf{t}	P> t	[0.025]	0.975]
Intercept	21.9652	21.195	1.036	0.300	-19.607	63.538
fixed_acidity	0.0250	0.026	0.963	0.336	-0.026	0.076
${f volatile_acidity}$	-1.0836	0.121	-8.948	0.000	-1.321	-0.846
citric_acid	-0.1826	0.147	-1.240	0.215	-0.471	0.106
residual_sugar	0.0163	0.015	1.089	0.276	-0.013	0.046
${f chlorides}$	-1.8742	0.419	-4.470	0.000	-2.697	-1.052
${\it free_sulfur_dioxide}$	0.0044	0.002	2.009	0.045	0.000	0.009
$total_sulfur_dioxide$	-0.0033	0.001	-4.480	0.000	-0.005	-0.002
density	-17.8812	21.633	-0.827	0.409	-60.314	24.551
pH	-0.4137	0.192	-2.159	0.031	-0.789	-0.038
sulphates	0.9163	0.114	8.014	0.000	0.692	1.141
alcohol	0.2762	0.026	10.429	0.000	0.224	0.328
Omnibus:	27.376	Durbi	n-Watso	on:	1.757	
Prob(Omnibus	s): 0.000	: 0.000 Jarque-Bera (JB) :		(JB):	40.965	
Skew:	-0.168	-0.168 Prob(JB) :			1.27e-09	
${f Kurtosis:}$	3.708	Cond.	No.		1.13e + 05	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.13e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
[169]: import statsmodels.api as sm
                        import matplotlib.pyplot as plt
                        import seaborn as sns
                         # Original formula
                        original_formula = 'quality ~ fixed_acidity + volatile_acidity + citric_acid +_\( \)
                            oresidual sugar + chlorides + free sulfur dioxide + total sulfur di

¬density + pH + sulphates + alcohol'
                         # Create the original model
                        original_model = sm.OLS.from_formula(original_formula, data=wine_data).fit()
                        # Residuals vs Fitted Values Plot
                        plt.figure(figsize=(10, 6))
                        sns.scatterplot(x=original_model.fittedvalues, y=original_model.resid,_
                             ⇔color='blue')
                        plt.title('Residuals vs Fitted Values')
                        plt.xlabel('Fitted Values')
                        plt.ylabel('Residuals')
                        plt.axhline(y=0, color='red', linestyle='--')
                        plt.show()
                         # QQ Plot (Normality Check)
                        sm.qqplot(original_model.resid, line='45', fit=True)
```

```
plt.title('QQ Plot of Residuals')
plt.show()
```



```
[14]: import statsmodels.api as sm
     import statsmodels.formula.api as smf
     import matplotlib.pyplot as plt
     import seaborn as sns
     \# Assuming 'wine_data' is a pandas DataFrame with the same structure as in R
     # Correct the variable names by enclosing them in backticks
     red_model1_formula = 'quality ~ free_sulfur_dioxide + pH + total_sulfur_dioxide_\( \)
      red_model1 = smf.ols(red_model1_formula, data=wine_data).fit()
     # Residuals vs Fitted Values Plot
     plt.figure(figsize=(10, 6))
     sns.scatterplot(x=red_model1.fittedvalues, y=red_model1.resid, color='blue')
     plt.title('Residuals vs Fitted Values')
     plt.xlabel('Fitted Values')
     plt.ylabel('Residuals')
     plt.axhline(y=0, color='red', linestyle='--')
     plt.show()
```

```
# QQ Plot (Normality Check)
sm.qqplot(red_model1.resid, line='45', fit=True)
plt.title('QQ Plot of Residuals')
plt.show()
```



```
[13]: import statsmodels.api as sm
import statsmodels.formula.api as smf

# Assuming 'wine_data' is a pandas DataFrame with the same structure as in R
# Check the column names in 'wine_data'
print(wine_data.columns)

# Assuming 'wine_data' is a pandas DataFrame with the same structure as in R
# Correct the variable names by enclosing them in backticks
red_model1_formula = 'quality ~ free_sulfur_dioxide + pH + total_sulfur_dioxide_\_ \cdots + chlorides + sulphates + volatile_acidity + alcohol'
red_model1 = smf.ols(red_model1_formula, data=wine_data).fit()
red_model1.summary()
```

[13]:

	coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975	
Covariance Type:	nonrobust						
Df Model:	7						
Df Residuals:	1591		BIC:		3	200.	
No. Observations:	1599		AIC:		3	157.	
Time:	01:28:09		Log-Likelihood:		-1	-1570.5	
Date:	Tue, 30 Jan 2024		Prob (I	c): 5.35	5.32e-149		
Method:	Least Squares		F-statis	1	27.6		
Model:	OLS		Adj. R	0	.357		
Dep. Variable:	quality		R-squar	0	.359		

	coef	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
Intercept	4.4301	0.403	10.995	0.000	3.640	5.220
${\it free_sulfur_dioxide}$	0.0051	0.002	2.389	0.017	0.001	0.009
pН	-0.4827	0.118	-4.106	0.000	-0.713	-0.252
$total_sulfur_dioxide$	-0.0035	0.001	-5.070	0.000	-0.005	-0.002
${f chlorides}$	-2.0178	0.398	-5.076	0.000	-2.798	-1.238
$\operatorname{sulphates}$	0.8827	0.110	8.031	0.000	0.667	1.098
${f volatile_acidity}$	-1.0128	0.101	-10.043	0.000	-1.211	-0.815
alcohol	0.2893	0.017	17.225	0.000	0.256	0.322

Omnibus:	24.204	Durbin-Watson:	1.750
Prob(Omnibus):	0.000	Jarque-Bera (JB):	35.245
Skew:	-0.156	Prob(JB):	2.22e-08
Kurtosis:	3.657	Cond. No.	1.71e + 03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.71e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- [15]: import statsmodels.api as sm from statsmodels.stats.anova import anova_lm anova_lm(red_model1, original_model)
- [15]: df resid df diff ss diff F Pr(>F) ssr 1591.0 667.537059 0.0 NaN0 NaNNaN 1587.0 666.410700 4.0 1.126359 0.670582 0.612412
- [16]: import numpy as np
 import pandas as pd
 import statsmodels.api as sm
 from scipy.stats import boxcox

 # Assuming redWine is a pandas DataFrame with the necessary columns
 # and 'quality' is a column in redWine DataFrame

 # Apply Box-Cox transformation to multiple columns
 # Since powerTransform is not directly available in Python, we use boxcox from scipy.stats

```
# Note: boxcox requires positive data for all values
# If any of the columns contain non-positive values, a shift may be necessary
# Define the columns to transform
columns_to_transform = ['free_sulfur_dioxide', 'pH', 'total_sulfur_dioxide',
                        'chlorides', 'sulphates', 'volatile_acidity', 'alcohol']
# Apply Box-Cox transformation to each column and store in a new DataFrame
transformed data = pd.DataFrame()
for col in columns to transform:
    transformed_data[col], _ = boxcox(wine_data[col] + 1) # Adding 1 to avoid_
 ⇒zero or negative values
# Linear regression model
# Prepare the independent variables with transformations
wine_data['log_pH'] = np.log(wine_data['pH'])
wine_data['log_total_sulfur_dioxide'] = np.
 →log(wine_data['total_sulfur_dioxide'])
wine_data['inv_sqrt_chlorides'] = 1 / np.sqrt(wine_data['chlorides'])
wine_data['inv_sulphates'] = 1 / wine_data['sulphates']
wine_data['volatile_acidity_cbrt'] = wine_data['volatile_acidity'] ** (1/3)
wine_data['inv_alcohol_cbrt'] = 1 / (wine_data['alcohol'] ** (1/3))
# Define the dependent variable
wine_data['quality_transformed'] = wine_data['quality'] ** 3.62
# Define the independent variables
X = wine_data[['log_pH', 'log_total_sulfur_dioxide', 'inv_sqrt_chlorides',_
 'inv_sulphates', 'volatile_acidity_cbrt', 'inv_alcohol_cbrt']]
X = sm.add_constant(X) # Adds a constant term to the predictor
# Fit the model
model = sm.OLS(wine_data['quality_transformed'], X).fit()
model.summary()
```

[16]:

Dep. Variable:	quality_transformed	R-squared:	0.378
Model:	OLS	Adj. R-squared:	0.376
Method:	Least Squares	F-statistic:	138.4
Date:	Tue, 30 Jan 2024	Prob (F-statistic):	2.35e-159
Time:	01:28:09	Log-Likelihood:	-11036.
No. Observations:	1599	AIC:	2.209e+04
Df Residuals:	1591	BIC:	2.213e+04
Df Model:	7		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025	0.975]
const	6267.1127	326.168	19.214	0.000	5627.348	6906.877
$\log_{f p}H$	-762.6941	146.519	-5.205	0.000	-1050.085	-475.303
$\log_total_sulfur_dioxide$	-36.9420	8.887	-4.157	0.000	-54.374	-19.511
$inv_sqrt_chlorides$	59.1809	12.830	4.613	0.000	34.016	84.345
$\mathbf{sulphates}$	-382.3325	95.231	-4.015	0.000	-569.125	-195.540
$inv_sulphates$	-390.0515	49.183	-7.931	0.000	-486.521	-293.582
${ m volatile_acidity_cbrt}$	-535.2796	74.843	-7.152	0.000	-682.080	-388.479
${ m inv_alcohol_cbrt}$	-7747.3220	463.260	-16.723	0.000	-8655.987	-6838.657
Omnibus:	244.917	Durbi	n-Watso	n:	1.756	
$\mathbf{Prob}(\mathbf{Omnibus}): 0.000$		Jarque-Bera (JB): 547.104				
Skew:	0.876	$\operatorname{Prob}(\cdot$	JB):	1	.58e-119	
Kurtosis:	5.268	Cond.	No.		499.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[22]: # Residuals vs. Fitted Values Plot
plt.scatter(model.fittedvalues, model.resid)
plt.title('Residuals vs. Fitted Values')
plt.xlabel('Fitted Values')
plt.ylabel('Residuals')
plt.show()

# Normal Q-Q Plot
sm.qqplot(model.resid, line = '45', fit = 'true')
plt.title('Normal Q-Q Plot')
plt.show()
```


[]:[