$$\Pi = \operatorname{arg\,max} \underset{\tau}{\text{2}} \operatorname{ln} \operatorname{p(yi)} = \operatorname{arg\,max} \underset{\tau}{\text{2}} \operatorname{ln} \left(\operatorname{T}^{\text{Yi}} \left(\left[-\tau \right] \right)^{\left[-h' \right]} \right)$$

$$= \operatorname{arg\,max} \underset{\tau}{\text{2}} \left(\operatorname{yi} \operatorname{ln} \tau + \left[\left[-y_i \right] \right) \operatorname{ln} \left(\left[-\tau \right] \right) \right)$$

$$\operatorname{lik} = \underset{\tau}{\text{2}} \operatorname{yi} \operatorname{ln} \tau + \left(\left[-y_i \right] \right) \operatorname{ln} \left(\left[-\tau \right] \right)$$

$$\frac{2 \operatorname{lik}}{2 \operatorname{T}} = \frac{1}{\operatorname{T}} \underset{\tau}{\text{2}} \operatorname{yi} + \frac{1}{\operatorname{T}} = \frac{2 \operatorname{T} \left[\left[-y_i \right] \right]}{\operatorname{T} \left(\left[\tau - 1 \right] \right)}$$

$$= \frac{n \cdot n - \overline{2} \cdot y_i}{\operatorname{T} \left(\overline{1} - 1 \right)}$$

$$= \frac{n \cdot n - \overline{2} \cdot y_i}{\operatorname{T} \left(\overline{1} - 1 \right)}$$

$$= \frac{2 \operatorname{T} \left(\frac{2}{\operatorname{T}} \right)}{\operatorname{T} \left(\overline{1} - 1 \right)}$$

$$= \frac{2 \operatorname{T} \left(\frac{2}{\operatorname{T}} \right)}{\operatorname{T} \left(\overline{1} - 1 \right)}$$

$$\lambda_{v,d} \stackrel{\text{iid}}{\sim} \text{Canma(2,1)} \qquad \underset{\text{in P(\lambda_{v,d})}}{\text{Xi,d}} \stackrel{\text{Vi}}{\sim} \text{Pois (\lambda_{vi,d})} \qquad \underset{\text{Vi}}{\text{Vi}} \stackrel{\text{iid}}{\sim} \text{Betn(π)}$$

In P(\lambda_{v,d}) = \left| \quad \left\ \lambda_{v,d} = \left\ \l

Cleate an indicator variable 11 (Yi= y) lik = } ((n Ly,d - Ly,a + \$ Xi,d In Ly,a 1) (Vi=4) - hyid 1 (Yi=4) - L(Kid!)

where
$$y = \sum_{i=1}^{n} \widehat{y}(y_{i} = y)$$

Pz a)		y (by model
		0	
v ground	O	2300	487
y ground truth		(II)	1702
so the	accu	cracy is	2300 + 1702 = 87%

P)

(6: free)

Dimit has a smaller & value for nonspan email and a larger 1 value for spam email.

Dim 52 has a larger & value for spam email and a smaller I value for nonspam emonil.

d) L(w) + (w-w+) T/L(w+) + 2 (w-w+) T/2 L(w+) (w-w+)
5++

WHI= atgmax LLW)

L(W)=In P(Y,W[X)

De Clut) =

7 (n β(Y, w_t(x) = -λ[-] (((x. ω_t) (1- (((y, ω_t)) Xixi^T))

e)

WHI=Wt - 9 (TWL) TWL WERE

WL= - = = & ((- 6) (- 6)) X () X () T

$$\frac{1123}{123} = 88.5\%$$

	007 q <u>rr</u> an		-naosook				ono gaaoo		J. p.,	
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
5	1.96628	1.93314	1.92342	1.9222	1.92477	1.92921	1.93463	1.94058	1.94682	1.95321
7	1.92016	1.90488	1.90808	1.9159	1.9248	1.9337	1.94225	1.95038	1.95809	1.96544
9	1.89765	1.90252	1.91765	1.93251	1.9457	1.95723	1.9674	1.97649	1.98474	1.99234
11	1.89051	1.91498	1.93885	1.95794	1.97322	1.98576	1.99638	2.0056	2.01384	2.02134
13	1.89585	1.93559	1.9646	1.9855	2.00131	2.01388	2.02431	2.03331	2.04132	2.04864
15	1.9096	1.95955	1.9908	2.01192	2.02737	2.03947	2.04946	2.0581	2.06585	2.07298

b) b=11 630.1 has the lowest RIUSE=1.89.

It's better than in HWI which the lowest RIWE is 2.2.

Prawback 1: 1 Clausian Process runs too slow. It's in general More computationally expensive

Duausian Process on learn training data really well , but ends up memorizing the data, which produces the public of outpositioning

C)

