Dynamic Programming and Greedy Algorithm

For a value V in Australian Dollars, find the minimum number of notes and coins required to get V.

Denominations: {5c, 10c, 20c, 50c, \$1, \$2, \$5, \$10, \$20, \$50, \$100}

- (1) V = \$188.35
- (2) V = \$351.30
- (3) V = \$8749.95
- (4) V = \$11

For a value V in Australian Dollars, find the minimum number of notes and coins required to get V.

Denominations: {5c, 10c, 20c, 50c, \$1, \$2, \$5, \$10, \$20, \$50, \$100}

- (1) $V = $188.35 = \{100, 50, 20, 10, 5, 2, 1, 20c, 10c, 5c\}$
- (2) $V = \$351.30 = \{100, 100, 100, 50, 1, 20c, 10c\}$
- (3) $V = \$8749.95 = \{100 \times 87, 20, 20, 10, 5, 2, 2, 50c, 20c, 20c, 5c\}$
- (4) V = \$11 = {10, 1}

For a value V, find the minimum number of coins required to get V.

Denominations: {\$9, \$6, \$5, \$1}

- (1) V = \$10
- (2) V = \$15
- (3) V = \$11

For a value V, find the minimum number of coins required to get V.

Denominations: {\$9, \$6, \$5, \$1}

- (1) V = \$10 = \$9 + \$1
- (2) V = \$15 = \$9 + \$6
- (3) V = \$11 = \$9 + \$1 + \$1

For a value V, find the minimum number of coins required to get V.

Denominations: {\$9, \$6, \$5, \$1}

- (1) V = \$10 = \$9 + \$1
- (2) V = \$15 = \$9 + \$6
- (3) V = \$11 = \$9 + \$1 + \$1 = \$6 + \$5

Example — Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

Example — Travelling Salesman Problem

Nearest Neighbour Algorithm

- Initialize all vertices as unvisited.
- 2. Start with vertex **u**. Mark **u** as visited.
- 3. Find out the shortest edge connecting the current vertex **u** and an unvisited vertex **v**.
- 4. Set **v** as the current vertex **u**. Mark **v** as visited.
- 5. If all the vertices in the domain are visited, then terminate. Else, go to step 3.

Example — Travelling Salesman Problem

Nearest Neighbour Algorithm

- Almost never optimal
- But it's fast Worst case O(n)
- Optimal
 - NP-hard
 - Brute-force -O(n!)
 - Dynamic Programming $-O(n^22^n)$

When is greedy a good idea?

Submodular

Discrete Optimization

- If we have a continuous function
 - Just take derivative = 0
- Not so obvious for a discrete analogy
- Let X be a finite set, function f is submodular if $\forall S \subset T \subset X$ and all $x \in X \backslash T$, we have:

$$f(S \cup \{x\}) - f(S) \ge f(T \cup \{x\}) - f(T)$$

Submodular

In human language

- Diminishing Returns
 - A doughnuts worth less to me when I have 100 doughnuts than when I have 0 doughnut
- f need to be monotonic
 - Giving me more doughnuts —> total worth of my doughnut increase/stay the same

Submodular

Where do submodular function appear?

- Economics
- Graph theory vertex covering
- Maximizing influence in a social network (Kempe et.al. 2015)
- Machine Learning objective functions of machine learning tasks such as sensor placement (Guestrin, Krause, Gupta, Golovin, Bilmes,... 2005-now)

Theorem — Nemhauser, Wolsey, Fisher 1978

If f is monotone submodular, Greedy finds a solution of value at least $(1-1/e) \times$ optimum for the problem

Greedy Algorithm

When is it used

- Dijkstra algorithm Finding shortest path in positively weight graph
- Graph Coloring
- Job Sequencing
- Huffman Encoding
- Fining eigenvalues (Hernandez et.al. 2021)
- Solving PDEs (Schaback 2019)

Feel like more greedy?

- Competitive Programmer's Handbook, Antti Laaksonen, Chapter 6
- **LeetCode** Greedy Algorithm
- General questions: https://brilliant.org/practice/greedy-algorithm/
- Scheduling (Job sequencing with deadlines, Maximum number of events attendable)
 Discussed today
- Data Compression (Huffman Coding): https://www.hackerrank.com/challenges/tree-huffman-decoding/problem
- Single-Source Shortest Path (Dijkstra's Algorithm): https://www.hackerrank.com/challenges/dijkstrashortreach/problem
- Minimum Spanning Tree (Kruskal's / Prim's): https://www.hackerrank.com/challenges/ kruskalmstrsub/problem

Dynamic Programming

"Simplify a complicated problem, by breaking it down into simpler, overlapping problems in a recursive manner." - Wikipedia

Dynamic Programming - Requirements

1. Optimal Substructure

- An optimal solution for a problem can be constructed by optimal solutions of its subproblems.

2. Overlapping Subproblems

Problem can be broken down into subproblems, which are reused several times

No overlapping subproblems? Use greedy.

Dynamic Programming - Uses

Problems to solve:

- 1. Find an optimal solution
 - One that's as large (max) or as small (min) as possible.

- 2. Count the number of solutions
 - Calculate the total number of possible solutions

Problems where we use DP

- Longest increasing subsequence
- Paths on a grid
- Knapsack
- Edit distance
- Counting tilings
- TSP
- Interval scheduling
- Subset Sum (psuedo-polynomial time)
- Bellman-Ford O(|V||E|) find shortest distance in a graph,
 - Slower than Dijkstra (greedy), but works for negative weights.
- Floyd-Warshall O(|V|^3) All-pairs shortest path, compute transitive closure
- Kadane's algorithm O(n) optimal maximum subarray S1W1: Complexity)

Dynamic Programming - Steps

1. Optimal Substructure

- a) Formulate a recursive definition of the problem
- b) Find optimal solutions to subproblems.

2. Overlapping Subproblems

- a) **Top-down** (Memoization)
- b) **Bottom-up** (Tabulation)

Fibonacci

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$

- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
- We wish to write a function to calculate the nth fibonacci value.

Fibonacci

```
F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}

def fib(n):

if n <= 1:

return n

return fib(n-1) + fib(n-2)
```

Algorithmic complexity?

Fibonacci

$$F_0 = 0, \quad F_1 = 1, \quad F_n = F_{n-1} + F_{n-2}$$

$$def \; fib(n): \quad f(3) \qquad f(4) \qquad f(3) \qquad f(4) \qquad f(5) \qquad f(5)$$

$$if \; n <= 1: \qquad f(0) \qquad f(1) \qquad f(1) \qquad f(2) \qquad f(1) \qquad f(2) \qquad f(1) \qquad f(2) \qquad f(1) \qquad f(2) \qquad f(2) \qquad f(3) \qquad f(3) \qquad f(4) \qquad f(4)$$

Algorithmic complexity?

Time: $O(2^n)$ Space: O(n)

24

Fibonacci - DP?

Could we use DP? It needs to have ...

1. Optimal Substructure

2. Overlapping Subproblems

Fibonacci - DP?

Could we use DP?

1. Optimal Substructure

- fib(n) is constructed by fib(n-1) and fib(n-2)
- To calculate the solution to the problem, we need to calculate the solution to its subproblems.

2. Overlapping Subproblems

see the tree

DP Top-down: Memoisation

- Identify overlapping subproblems
- Save the solutions to these subproblems
- When we come across these subproblems again, no need to

recalculate!

Fibonacci DP Top-Down

```
def fib(n): # assume n \ge 0
   if n \leq 1: return n
   M = [-1] * (n+1) # Memoisation array
   M[0], M[1] = 0, 1 # base case fib(0) = 0, fib(1) = 1
   def fib mem(n):
       # look up the value; calculate it if we haven't already
       if M[n] = -1:
           M[n] = fib mem(n-1) + fib mem(n-2)
       return M[n]
   return fib mem(n)
```

Algorithmic complexity? Time: O(n) Space: O(n), uses recursion

$$fib(n) = fib(n-1) + fib(n-2)$$

Start with base cases: fib(0) and fib(1)

0	1		

$$fib(n) = fib(n-1) + fib(n-2)$$

Calculate and store fib(2) = fib(1) + fib(0)

0	1	1		

$$fib(n) = fib(n-1) + fib(n-2)$$

Calculate and store fib(3) = fib(2) + fib(1)

	0	1	1	2	

$$fib(n) = fib(n-1) + fib(n-2)$$

Calculate and store fib(4) = fib(3) + fib(2)

0	1	1	2	3	

$$fib(n) = fib(n-1) + fib(n-2)$$

Calculate and store fib(5) = fib(4) + fib(3)

- Only need to store fib(n-1) and fib(n-2) -- we never use the earlier calculated subproblems.
- Let f1 = fib(n-1), f2 = fib(n-2)

Fibonacci DP Bottom-up

```
def fib(n):
    if n \leq 1: return n
        f2, f1 = 0, 1
        for i in range(2, n+1):
        temp = f1 + f2
        f2 = f1
        f1 = temp
    return f1
# base case: f(0)=0 and f(1)=1
# buffers for f(n-2), f(n-1)
# loop over [2,n]
# loop over [2,n]
```

Complexity? Time: O(n) Space: O(1)

Fibonacci Bonus

A closed form solution. Time: O(1) Space: O(1)

$$F(n)=rac{\phi^n-(1-\phi)^n}{\sqrt{5}}$$

Dynamic Programming Methods

- **Top Down**: Memoization
 - Start at topmost state: solve(n)
 - Cache any calculated values [solve(i)] in an array.

- **Bottom Up**: Tabulation
 - Start at bottommost state: solve(0) {or 1}
 - Iterate over all states in order*, putting the result of solve(i) in a table. (* hard part: find the order)

Coin Problem 2, DP Top down, Py

```
INF = float('inf')
def solve(n, denominations=[1,5,6,9]):
  M = [INF]*(n+1) # 'Memoisation' array
  M \lceil 0 \rceil = 0
                      # base case
  def dp(x):
    if x < 0: return INF # invalid n
    if M[x] = INF: # not in Mem array? \Rightarrow calc subproblem
      M[x] = \min(dp(x-c) + 1 \text{ for } c \text{ in denominations})
    return M[x]
  return dp(n)
                                       O(nk)
solve(23)
26.3 \mus \pm 221 ns per loop (mean \pm std. dev. of 7 runs, 10000
loops each)
```

DP perf

```
solve(23) Naive 5.29 ms \pm 75.9 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each) DP 26.3 \mus \pm 221 ns per loop (mean \pm std. dev. of 7 runs, 10000 loops each)
```

```
solve(230) Naive good luck. DP 332 \mu s ± 5.09 \mu s per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

Coin Problem 2, DP Bottom up, Py

```
# Python
def solve(n, denominations=[1,5,6,9]):
 M = [0]*(n+1) # Tabulation array
 for x in range(1, n+1): # [1,n]
   M[x] = float('INF')
    for c in denominations:
     if x - c \geqslant 0:
       M[x] = \min(M[x], M[x-c]+1)
 return M[n]
```

Time: **O**(nk) Space: **O**(n)

Coin Problem 2, DP Bottom up, C++

```
// C++
int solve(int x) {
    int value[N]; value[0] = 0;
    for (int x = 1; x \le n; x ++ ) {
        value[x] = INF;
        for (auto c : coins) {
            if (x-c \ge 0) value[x] = min(value[x], value[x-c]+1);
    return x;
```

Time: O(nk) Space: O(n)

- Many variants!
- Generally:
 - Given a set of objects, need to find subset with some properties.
- Brute force is exponential
- DP solution can give answer in psuedo-polynomial time.
- Used for many optimisation problems

- Got a knapsack to fill with valuable items.
- Only holds a certain amount of weight.
- Need to carry the most valuable items, each with their own weights.

- Got a knapsack to fill with valuable items.
- Only holds a certain amount of weight.
- Need to carry the most valuable items, each with their own weights.

- A set of items, with values v_i and weights w_i (value, weight)
 - $i_1 = (42, 7)$, $i_2 = (12, 3)$, $i_3 = (40, 4)$, $i_4 = (25, 5)$
- Capacity of knapsack = 8

- A set of items, with values v_i and weights w_i (value, weight)
 - $i_1 = (42, 7)$, $i_2 = (12, 3)$, $i_3 = (40, 4)$, $i_4 = (25, 5)$
- Capacity of knapsack = 8
 - best(i, w) = v

the value of the best choice of items out of the first i items, using capacity w.

- 2 choices for a given item i:
 - 1. Select it
 - best(i, w) = best(i 1, W w_i) + v_i
 - 2. Don't select it
 - best(i, w) = best(i 1, W)

- Why?

- 2 choices for a given item i:
 - 1. Select it
 - best(i, w) = best(i 1, w w_i) + v_i
 - 2. Don't select it
 - best(i, w) = best(i 1, w)
- Base case: K(i, w) = 0 if i=0 or w = 0
- Why?

 $K(i, w) = \begin{cases} max(K(i-1, w), K(i-1, w-w_i) + v_i) & \text{if } w \geq w_i \\ K(i-1, w) & \text{if } w < w_i \end{cases}$

Knapsack solution

```
int K[N][W]; // n items, w weights
for (int i = 1; i <= N; i++) {
   for (int w = 1; w \le W; w++) {
      if (w < item_weight[i]){</pre>
          K[i][w] = K[i-1][w]
       } else{
          K[i][w] = max(K[i-1][w], K[i-1][w-item_weight[i]]
                    + item_value[i])
      sum[i][w] = max(sum[y][x-1], sum[y-1][x])
                    + value[y][x];
     // result: K[n, W]
```

Knapsack solution

	$i\setminus$	j 0	1	2	3	4	5	6	7	8
	0	0	0	0	0	0	0	0	0	0
$v_1 = 42, w_1 = 7$									42	
$v_2 = 12, w_2 = 3$	2	0	0	0	12	12	12	12	42	42
$v_3 = 40, w_3 = 4$	3	0	0	0	12	40	40	40	52	52
$v_4=25, w_4=5$	4	0	0	0	12	40	40	40	52	52

Knapsack solution

Time complexity: **O**(nW)

Space complexity: **O**(nW)

Where W = the maximum weight allowance of the knapsack

Travelling Salesman Problem (TSP)

Given a list of cities and distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?

Brute Force:

DP:

Travelling Salesman Problem (TSP)

Given a list of cities and distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?

Brute Force: **O**(n!)

DP: $O(n^2 2^n)$

Held-Karp algorithm. (NP-Complete)

Divide and Conquer

- Recursively break down problem into independent subproblems of the same type (divide)
- Solve the simpler subproblems directly (conquer)
- Combine the solutions of the subproblems to form a solution for the original problem

Dynamic Programming or Divide and Conquer?

DP: Overlapping subproblems.

