PRIMENA PROJEKTIVNE GEOMETRIJE U RACUNARSTVU

Podsetnik za usmeni

(bez dokaza)

profesor: Srdjan Vukmirovic

2018/2019

Zorana Gajic, mi16400

1. deo

1.1 Homogene koordinate u afinoj ravni

Homogene koordinate take M(x, y) afine ravni \mathbb{R}^2 su ma koja trojka $(x_1 : x_2 : x_3)$ takva da vazi:

$$x = \frac{x_1}{x_3}$$
, $y = \frac{x_2}{x_3}$, $x_3 \neq 0$.s

Vektor $\overrightarrow{M} = (x_1, x_2, x_3) \in \mathbb{R}^3$ je **vektor predstavnik** tacke M.

Prava p: ax + by + c = 0 u homogenim koordinatama postaje $p: ax_1 + bx_2 + cx_3 = 0$ Trojka $[x_1: x_2: x_3]$ predstavlja **homogene koordinate prave** p.

Prava p_{∞} : $x_3 = 0$ naziva se **beskonacno daleka prava**, a svaka tacka $B_{\infty}(x_1 : x_2 : 0)$, koja joj pripada, **beskonacno daleka tacka.**

Afina ravan dopunjena tackama beskonacno daleke tacke prave $x_3 = 0$ naziva se **dopunjena** ili prosirena afina ravan i oznacava se sa $\overline{\mathbb{R}}^2$.

Paralelne prave afine ravni se seku u beskonacno dalekoj tacki dopunjene afino ravni. Svaka prava dopunjene afine ravni ima jedinstvenu beskonacno daleku tacku i to je njen presek sa pravom $x_3 = 0$.

1.2 Realna projektivna ravan

Realna projektivna ravan je skup tacaka $\mathbb{R}P^2 := \{(x_1 : x_2 : x_3)\}$, pri cemu ne mogu sve tri homogene koordinate biti jednake nuli.

Mozemo identifikovati $\mathbb{R}P^2$ sa prosirenom afinom ravni $\overline{\mathbb{R}}^2$.

Geometrijski mozemo videti realnu projektivnu ravan kao skup pravih koje sadrze koordinatni pocetak u \mathbb{R}^3 . Svaka takva prava predstavlja jednu tacku projektivne ravni. Vektor pravca te prave je vektor predstavnik homogenih koordinata.

Sve prave realne projektivne ravni takodje cine projektivnu ravan $\{[x_1 : x_2 : x_3]\}$ koja se zove **dualna projektivna ravan pravih**.

Geometrijski mozemo videti kao skup svih ravni u prostoru \mathbb{R}^3 kroz koordinatni pocetak.

Homogene koordinate prave p = AB se dobija vektorskim proizvodom $\overrightarrow{p} = \overrightarrow{a} \times \overrightarrow{b}$. U projektivnoj ravni se svake dve prave seku!

Homogene koordinate presecne tacke $P = a \cap b$ se dobijaju vektorskim proizvodom $\overrightarrow{p} = \overrightarrow{a} \times \overrightarrow{b}$.

1.3 Princip dualnosti u projektivnoj ravni

Neka je iskaz *I* iskaz geometrije projektivne ravni. Njemu **dualan iskaz** *I'* je iskaz koji se dobija zamenom reci tacka i prava, pripada i sadrzi, kolinearno i konkuretno.

1.4 Realna projektivna prava

Posto je prava p u prostoru predstavljena sa ravni, tacke $A, B, C \in p$ su predstavljene pravama koje pripadaju toj ravni.

Tacka C pripada pravoj p = AB ako i samo ako za njihove vektore predstavnike vazi $\overrightarrow{C} = \alpha \overrightarrow{A} + \beta \overrightarrow{B}$, za neke $\alpha, \beta \in \mathbb{R}$ koji nisu istovremeno nula.

Primetimo da $\lambda \overrightarrow{C} = \lambda \alpha \overrightarrow{A} + \lambda \beta \overrightarrow{B}, \lambda \neq 0$ predstavlja istu tacku.

Zato su $(\alpha : \beta)$ homogene koordinate na pravoj p.

Svaka prava realne projektivne ravni je tzv. **realna projektivna prava** $\mathbb{R}P^1$ koju dobijamo dodavanjem beskonacno daleke tacke P_{∞} afinoj pravoj \mathbb{R} .

Model projektivne prave je KRUG.

Dakle, raspored tacaka na projektivnoj pravoj je kao na krugu, pa ne postoji relacija «izmedju», vec **relacija razdvojenosti parova tacaka**.

Kazemo da par tacaka A, B razdvaja par tacaka C, D u oznaci $(A, B \div C, D)$.

Dve tacke A, B razbijaju pravu p = AB na dve **projektivne duzi** - onu koja sadrzi tacku C i onu koja sadrzi tacku D.

1.5 Trotemenik i cetvorotemenik

Trotemenik ABC je figura projektivne ravni koja se sastoji od 3 nekolinearne tacke A, B, C i tri prave AB, BC, CA njima odredjene.

Tri prave koje nisu konkurentne razbijaju projektivnu ravan na 4 oblasti.

Za n tacaka u ravni od kojih nikoje tri nisu kolinearne kazemo da su **u opstem polozaju**.

Cetvorotemenik ABCD je figura projektivne ravni koja se sastoji od 4 tacke u opstem polozaju i sest pravih odredjenih tim tackama.

1.6 Dvorazmera

Neka su tacke A, B, C, D kolinearne i vazi $\overrightarrow{C} = \alpha \overrightarrow{A} + \beta \overrightarrow{B},$ $\overrightarrow{D} = \gamma \overrightarrow{A} + \delta \overrightarrow{B}.$

Dvorazmera tacaka A, B, C, D je broj $(A, B, C, D) := \frac{\beta}{\alpha} \div \frac{\delta}{\gamma}$.

Definicija ne zavisi od izbora vektora predstavnika.

Osobine:

- 1. $(A, B, C, D) = (B, A, C, D)^{-1}$
- 2. (A, B, C, D) = (C, D, A, B)
- 3. $(A, B, C, D) \neq 0,1$
- 4. Ako su date tacke A, B, C i broj $\mu \neq 0,1$ tada postoji jedinstvena tacka D takva da vazi $(A, B, C, D) = \mu$.

Parovi tacaka A, B i C, D su **harmonijski konjugovani** ako je (A, B, C, D) = -1.

Teorema: Ako su a,b,c,d konkuretne prave i $A \in a$, $B \in b$, $C \in c$, $D \in d$ kolinearne tacke. Tada vazi (a, b, c, d) = (A, B, C, D).

Posledica: dvorazmera je invarijanta centralnog projektovanja.

Afino posmatrano, dvorazmera je odnos dve razmere: $(A, B, C, D) = \frac{\overrightarrow{AC}}{\overrightarrow{CB}} \div \frac{\overrightarrow{AD}}{\overrightarrow{DB}}$

Srediste duzi je konjugovano sa beskonacno dalekom tackom.

Neka je S - srediste duzi AB i P_{∞} beskonacno daleka tacka prave AB. $\Longrightarrow (A, B, S, P_{\infty}) = -1$.

Razdvojenost parova tacaka mozemo uvesti preko dvorazmere.

$$(A,B \div C,D) \iff (A,B,C,D) < 0.$$

1.7 Projektivna preslikavanja ravni $\mathbb{R}P^2$

Projektivno preslikavanje je ono koje preslikava tacku $M(x_1:x_2:x_3)$ u tacku

 $M'(x'_1 : x'_2 : x'_3)$ formulama

$$\lambda \begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, det(p_{ij}) \neq 0.$$
 (1)

Broj $\lambda \neq 0$ sugerise da su u pitanju homogene koordinate.

Projektivno preslikavanje je indukovano linearnim preslikavanjem vektorskog prostora \mathbb{R}^3 .

Krace $\lambda X' = PX$.

Inverzno preslikavanje $\lambda X = P^{-1}X'$.

Matrice P, λP predstavljaju isto preslikavanje.

Kompoziciji preslikavanja odgovara mnozenje matrica, a inverznom preslikavanju inverzna matrica.

Projektivna preslikavanja cine **projektivnu grupu** $PGI_3(\mathbb{R})$, opisana sa 8 parametara.

Projektivna preslikavanja **cuvaju** kolinearnost i konkuretnost, dvorazmeru. Projektivna preslikavanja **ne cuvaju** ni razmeru ni paralelnost.

1.8 Osnovna teorema Projektivne geometrije

Teorema: Postoji jedinstveno preslikavanje ravni $\mathbb{R}P^2$ koje cetiri tacke A, B, C, D u opstem polozaju slika redom u tacke A', B', C', D', u opstem polozaju.

Projektivno preslikavanje ravni sa 4 fiksne tacke u opstem polozaju je **identitet**.

Pravougaonik I trapez su projektivno ekvivalentni u \mathbb{R}^2 .

Dijagonalne tacke cetvorotemenika su medjusobno projektivno ekvivalentne.

Teorema: Pri projektivnom preslikavanju f zadatom sa (1) prava $u: p_{31}x_1 + p_{32}x_2 + p_{33}x_3 = 0$, odredjena zadnjom vrstom matrice P se slika u beskonacno daleku pravu p_{∞} .

1.9 Afina preslikavanja

Afino preslikavanje tacku M(x, y) preslikava u tacku M'(x', y')

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, det(a_{ij}) \neq 0$$
 (2)

Kolone matrica $A = (a_{ij})$ su koordinate slika baznih vektora, a $O'(b_1, b_2)$ slika koordinatnog pocetka.

Afina preslikavanja su bijekcije.

Afina preslikavanja **cuvaju** kolinearnost, konkuretnost, razmeru i paralelnost.

Mogu preslikati trougao u proizvoljan trougao.

Afino preslikavanje nakon prelaska u homogene koordinate

$$\lambda \begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Vidimo da je afino preslikavanje je specijalan slucaj projektivnog preslivanja prosirene afine ravni $\overline{\mathbb{R}}^2$.

Vidimo da je projektivno preslikavanje afino ako preslikava beskonacno daleku tacku u sebe i obrnuto.

Posledica: Grupa afinih preslikavanja je izomorfna podgrupi projektivnih preslikavanja ravni \mathbb{R}^2 koje cuvaju beskonacnu daleku pravu p_{∞} .

1.10 Algoritmi za odredjivanje projektivnog preslikavanja Naivni algoritam

Ulaz: Homogene koordinate 4 originalne tacke A, B, C, D i njihove slike A', B', C', D' (obe cetvorke u opstem polozaju)

Izlaz: 3x3 matrica P projektivnog preslikavanja ravni koja slika A, B, C, D redom u A', B', C', D'

Algoritam:

1. Odredi $\alpha, \beta, \gamma \neq 0$ tako da $D = \alpha A + \beta B + \gamma C$.

 P_1 je matrica sa kolonama $\alpha A, \beta B, \gamma C$

2. Odredi $\alpha', \beta', \gamma' \neq 0$ tako da $D' = \alpha'A' + \beta'B' + \gamma'C'$.

 P_2 je matrica sa kolonama $\alpha' A', \beta' B', \gamma' C'$

3. $P = P_2 P_1^{-1}$ je trazena matrica preslikavanja

Prednosti: Geometrijski jasan I jednostavan za implementaciju.

Mane: Radi samo za 4 para odgovarajucih tacaka.

DLT algoritam

Ulaz: Homogene koordinate $n, n \ge 4$, originalnih tacaka M_i i n njihovih slika M_i' **Izlaz**: 3x3 matrica P projektivnog preslikavanja, takvog da je $\lambda M_i' = PM_i, i = 1..n$

Algoritam:

- 1. Za svaku korespodenciju $M_i \longleftrightarrow M_i'$ odrediti 2x9 matricu
- 2. Spojiti te matrice u jednu matricu A formata 2nx9
- 3. Odrediti SVD dekompoziciju matrice $A, A = UDV^{T}$.

P je poslednja kolona matrice V(D ima opadajuce dijagonalne vrednosti.)

2x9 matrica za $M(x_1:x_2:x_3)$ i $M'(x_1':x_2':x_3')$ kada je $x_3\neq 0$

$$\begin{bmatrix} 0 & 0 & 0 & -x_3'x_1 & -x_3'x_2 & -x_3'x_3 & x_2'x_1 & x_2'x_2 & x_2'x_3 \\ x_3'x_1 & x_3'x_2 & x_3'x_3 & 0 & 0 & 0 & -x_1'x_1 & -x_1'x_2 & -x_1'x_3 \end{bmatrix}$$

Mana: DLT je algebarske, a ne geometrijske prirode. DLT nije invarijantan u odnosu na promenu koordinata.

Normalizovani DLT algoritam

Ulaz: Homogene koordinate $n, n \ge 4$, originalnih tacaka M_i i n njihovih slika M'_i **Izlaz**: 3x3 matrica P projektivnog preslikavanja, takvog da je $\lambda M'_i = PM_i$, i = 1..n

Algoritam:

- 1. Normalizovati originalne tacke $\overline{M}_i = TM_i$
- 2. Normalizovati slike tacaka $\overline{M}'_i = T'M'_i$
- 3. Odrediti DLT algoritmom matricu transformacije \overline{P} iz korespodencija $\overline{M}_i \longleftrightarrow \overline{M}_i'$
- 4. Trazena matrica je $P = T^{'-1}\overline{P}T$

Algoritam normalizacije tacaka

Algoritam:

- 1. Izracunaj teziste sistema tacaka
- 2. Translirati teziste u koordinatni pocetak (matrica *G*)
- 3. Skalirati tacke tako da prosecna udaljenost tacke od koordinatnog pocetka bude $\sqrt{2}$ (matrica homotetije S)
- 4. Matrica normalizacije T = SG

2. deo

2.1 Izometrije

Izometrije su preslikavanja koja **cuvaju** duzine, uglove, povrsine, razmeru, paralelnost... Izometrije su afino preslikavanja.

Izometrije koje cuvaju orijentaciju nazivaju se kretanja ili direktne izometrije.

Teorema: Svaka izometrija (ravni, prostora) je afino preslikavanje ciji je linearni deo predstavljen ortogonalnom matricom $A, A^T A = E$.

Dakle, sve izometrije ravni su kompozicija translacije i rotacije ili kompozicija translacije i osne refleksije.

2.2 Rotacije oko prave u prostoru

Primer kretanja je rotacija $\Re_p(\phi)$ oko orijentisane prave p za ugao $\phi \in [0,\pi].$

$$\Re_p(\phi) = \Re_{-p}(2\pi - \phi)$$
 I tada se radi o **refleksiji u odnosu**

Matrice rotacija oko koordinatnih osa fiksirane ortonormirane baze *e* zovemo **svetske rotacije.**

Matrice tih rotacija:

$$\left[\mathbf{\mathfrak{R}}_{x}(\phi) \right]_{e} = R_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

$$\left[\mathbf{\mathfrak{R}}_{y}(\theta) \right]_{e} = R_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$[\mathfrak{R}_z(\psi)]_e = R_z(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi & 0\\ \sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

2.3 Formula Rodrigeza

Matrice rotacije $\Re_p(\phi)$, za ugao ϕ oko orijentisane prave p koja sadrzi koordinatni pocetak je

$$\Re_p(\phi) = pp^T + \cos\phi(E - pp^T) + \sin\phi p_x,$$

gde je p_x matrica vektorskog mnozenja jedinicnim vektorom prave $p=(p_1,p_2,p_3)$:

$$p_x := \begin{bmatrix} 0 & -p_3 & p_2 \\ p_3 & 0 & -p_1 \\ -p_2 & p_1 & 0 \end{bmatrix}$$

2.4 Ojlerovi uglovi i teoreme

I Ojlerova teorema: Svako kretanje f prosotra koje ima fiksnu tacku O je rotacija oko neke orijentisane prave p koja sadrzi O, za ugao $\phi \in [0,\pi]$.

Sopstvene rotacije su rotacije u odnosu na ose pokretnog koordinatnog sistema koji je vezan za telo. Uglovi za koje rotiramo se zovu **Ojlerovi uglovi:** $\psi, \phi \in [0,2\pi), \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

Teorema: Ako je kretanje f predstavljeno **sopstvenim** rotacijama za Ojlerove uglove $f = \Re_{x_2}(\phi) \circ \Re_{y_1}(\theta) \circ \Re_z(\psi)$ tada njegova matrica $A = [f]_e = R_z(\psi)R_y(\theta)R_x(\phi)$.

Ako je svetskim ne menjamo redosled.

II Ojlerova teorema: Svako kretanje f prostora koje ima fiksnu tacku O moze se predstaviti kao kompozicija tri sopstvene rotacije.

2.5 Razno

Telo u neki polozaj mozemo dovesti na 3 nacina:

- 1. Jednom rotacijom $\Re_p(\phi)$ oko pogodno odabrane prave
- 2. Trima sopstvenim rotacijama za Ojlerove uglove
- 3. Trima svetskim rotacijama za Ojlerove uglove

Zavojno kretanje je kompozicija translacije i rotacije, korisceno u robotici. $\mathfrak{Z}_{\lambda\overrightarrow{p}}(\phi):=\mathfrak{R}_{\overrightarrow{p}}(\phi)\circ\mathfrak{T}_{\lambda\overrightarrow{p}}=\mathfrak{T}_{\lambda\overrightarrow{p}}\circ\mathfrak{R}_{\overrightarrow{p}}(\phi).$

Teorema: Svako kretanje prostora je zavojno kretanje (ne zahtevamo da neka tacka bude fiksna)

2.6 Kvaternioni

Kvaternioni su brojevi oblika: $\mathbb{H} = \{xi + yj + zk + w \mid x, y, z, w \in \mathbb{R}\}$, gde su i, j, k imaginarne jedinice.

Vazi $\mathbb{H} \cong \mathbb{R}^4$.

Realni i kompleksni brojevi su takodje kvaternioni, tj $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$.

Mnozenje je definisano relacijama:

$$i^{2} = j^{2} = k^{2} = -1$$

 $i * j = k, j * k = i, k * i = j$
 $i * k = -i, k * j = -i, j * i = -k$

Mnozenje kvaterniona jeste asocijativno, ali nije komutativno.

Realni i imaginarni deo kvaterniona *q* su redom:

$$Re(q) := w, Im(q) := xi + yj + zk = \overrightarrow{v}$$

$$q = xi + yj + zk + w = [(x, y, z), w] = [\overrightarrow{v}, w]$$

Konjugovani kvaternion kvaterniona $q = [\overrightarrow{v}, w]$ je: $\overline{q} = [-\overrightarrow{v}, w]$

Norma kvaterniona
$$|q| = \sqrt{x^2 + y^2 + z^2 + w^2}$$

Inverzni kvaternion
$$q^{-1} = \frac{\overline{q}}{|q|^2}$$

Bitne osobine:

1.
$$\overline{q}\overline{q_1} = \overline{q_1}\overline{q}$$

$$\overline{q+q_1} = \overline{q} + \overline{q_1}$$

$$\overline{\overline{q}} = q$$

$$q = q$$
2. $Re(q) = \frac{q + \overline{q}}{2}$ $Im(q) = \frac{q - \overline{q}}{2}$

3.
$$|qq_1| = |q||q_1|$$

4.
$$(qq_1)^{-1} = q_1^{-1}q^{-1}$$

Konjugacija kvaternionom $q \neq 0$ je preslikavanje $C_q: \mathbb{H} \rightarrow \mathbb{H}$

$$C_q(p) := q p q^{-1}$$

Lema:

1.
$$C_q \equiv C_h, q, h \neq 0$$
 ako i samo ako vazi $h = \lambda q, \lambda \in \mathbb{R}/\{0\}$

$$2. \; C_{q2} \circ C_{q1} = C_{q2q1}$$

3.
$$C_q$$
 je kretanje prostora $Im \mathbb{H} \cong \mathbb{R}^3$

4. Ako vazi
$$q=[\overrightarrow{v}\sin\alpha,\cos\alpha]$$
 i $|\overrightarrow{v}|=1$, preslikavanje C_q je rotacija za ugao 2α oko vektora \overrightarrow{v} u pozitivnom smeru.

10

2.7 Interpolacije izmedju polozaja objekta

Cesto se javlja potreba da objekat iz jednog polozaja dovedemo u drugi.

Ako je centar bio u poziciji $C_1(x_1,y_1,z_1)$, a treba ga dovesti u $C_2(x_2,y_2,z_2)$ najprirodnija je

linearna interpolacija:

$$C(t) = (1 - \frac{t}{t_u})C_1 + \frac{t}{t_u}C_2, t \in [0, t_u]$$

Radi se o pravolinijskom kretanju konstantnom brzinom.

Promena «orijentacije» objekta resavamo kvaternionima.

Neka su «orijentacije» objekta zadate kvaternionima $q_1,q_2\in\mathbb{H}_1$ koji pripadaju jedinicnoj trodimenzionoj sferi.

Lerp interpolacija je kada se uzme kvaternion na duzi q_1q_2 , a zatim se normira i time vrati na jedinicnu sferu.

$$\begin{split} \overline{q}(t) &= (1 - \frac{t}{t_m})q_1 + \frac{t}{t_m}q_2 \;, \\ q_L(t) &= \frac{\overline{q}(t)}{|\overline{q}(t)|} = normalize(\overline{q}(t)), t \in [0, t_m] \end{split}$$

Slika: Interpolacija izmedju dva kvaterniona

Slerp interpolacija je parametrizacija kruznog luka q_1q_2 , gde je parametar odgovarajuci centralni ugao. Objekat cije je kretanje parametrizovano Slerp interpolacijom ima konstantnu ugaonu brzinu i minimalno uvrtanje.

Interpolacija osom i uglom.

Date su dve orijentacije $R_{p_0}(\phi_0)$ i $R_{p_1}(\phi_1)$.

Interpolacija orijentacije je zadata sa $R_{p_t}(\phi_t)$, gde je

$$p_t = R_n(t\theta)(p_0)$$
, $n = p_o \times p_1$ i $\theta = \angle(p_0, p_1)$

$$\phi_t=(1-t)\phi_0+t\phi_1, t\in[0,1]$$

2.8 Poredjenje razlicitih predstavljanja «orijentacija»

- 1. **Matrice** «sustinski nacin», jednostavna kompozicija, 4x4 matrice, losa interpolacija.
- 2. **Ojlerovi uglovi** najociglednije predstavljanje, «gimbal lock» problem, losa interpolacija, teska kompozicija.
- 3. **Osa i ugao** nema «gimbal lock» problema, dobra interpolacija, losa kompozicija.
- 4. **Kvaternioni** nema «gimbal lock» problema, dobra interpolacija, laka kompozicija, teski za razumevanje i implementaciju

2.9 Senzori u mobilnim uredjajima

Senzore mozemo grubo podeliti u sledece grupe:

- 1. Kamere (kolor, crno-bele, 3D...)
- 2. Senzori pokreta (akcelerometar, ziroskop, pedometar)
- 3. Senzori pozicije (magnetometar, GPS, barometar)
- 4. Senzori svetla i zvuka (mikrofon, senzor blizine, senzor ambijentnog svetla)
- 5. Ostalo: senzor temperature, vlaznosti, otiska prsta, pulsmetar...

2.9.1 Senzori pokreta

Rade se MEMS(MicroElectroMechanicalSystem) tehnologijom i sadrze mikroskopske pokretne delove.

Akcelerometar - meri linearno ubrzanje po principu: ubrzanje je proporcijalno sili, a sila je proporcionalna istezanju opruge. Rezultat je 3-vektor linearnog ubrzanja. Gravitacija ide u pravcu negativne y-ose.

Ziroskop - meri ugaono ubrzanje, na osnovu Koriolisove sile, takodje u tri pravca, tako da je rezultat orijentacija uredjaja, tj kvaternion.

Magnetometar - tzv. elektronski kompas, koristan je za odredjivanje pravca severa, a moze se koristiti i za detekciju metalnih predmeta. Radi po principu Halovog efekta, a kao rezultat daje 3-vektor magentnog polja.

3. deo

3.1 Stereoskopsko gledanje

Anaglif 3D - najjednostavniji nacin za 3D gledanje.

Lentikularna 3D tehnologija - mozemo gledati 3D ekrane bez 3D naocara, koriste tzv. lentikularna sociva.

Slika: Projekcija iz levog i desnog oka (kamere)

Rastojanje izmedju tacaka M'_1 i M'_2 naziva se **paralaksa**. Paralaksa je u ovom slucaju paralelna X osi i jednaka:

$$M_1'M_2' = e(1 - \frac{d}{Z})$$

Paralaksa je rastojanje dveju centralnih projekcija jedne te iste tacke.

Ako je d > Z imamo ukrsten pogled, d < Z imamo paralelan pogled, d = Z tacka je u projekcijskoj ravni.

Paralaksa je proporcionalna rastojanju e izmedju kamera.

3.2 Geometrija (jedne) kamere

Matrica projektovanja *T* je 3x4.

Normalna projekcija kamere C na ravan naziva se **glavna tacka**.

3x4 matrica $T = KA[I_3| - C]$ koja je ranga 3 se zove **matrica kamere**.

3x3 matrica K se zove **matrica kalibracije**, a njen najopstiji oblik je

$$K = \begin{bmatrix} d_x & s & x_0 \\ 0 & d_y & y_0 \\ 0 & 0 & 1 \end{bmatrix}, s \text{ je parametar smicanja.}$$

Svaka 3x4 matrica

$$T = \begin{bmatrix} t_{11} & t_{12} & t_{13} & t_{14} \\ t_{21} & t_{22} & t_{23} & t_{24} \\ t_{31} & t_{32} & t_{33} & t_{34} \end{bmatrix}$$
ranga 3 predstavlja matricu centralne projekcije prostora

na neku ravan iz centra C.

Afina ravan $t_{31}X + t_{32}Y + t_{33}Z + t_{34} = 0$ odredjena poslednjom vrstom matrice T je **ravan** iscezavanja, tj. ravan koja sadrzi C i paralelna je toj ravni.

QR dekompozicija je zapravo Gram-Smitov postupak ortogonalizacije.

QR dekompozicija je razlaganje matrice A = QR, gde je

Q - ortogonalna, R - gornje trougaona.

3.3 Geometrija dve kamere

Tacke x_1, x_2, X i tacke C_1, C_2 kamera pripadaju ravni π koja se naziva **epipolarna ravan tacke** X.

Epipolovi e_1 i e_2 su tacke u kojima linija kamera C_1C_2 sece ravni projektovanja.

Fundamentalna matrica kamera T_1 i T_2 (tim redom) je 3x3.

$$F = E_2 H_{\pi}$$

Osobine fundamentalne matrice:

- 1. rangF = 2, detF = 0.
- 2. Ima 7 stepeni slobode, pa je odredjena sa 7 ili vise odgovarajucih tacaka.
- 3. Ako je F fundamentalna matrica za T_1 i T_2 , tada je F^T fundamentalna matrica za T_2 i T_1 .
- 4. Epipol e_1 je resenje $Fe_1 = 0$.
- 5. Epipol e_2 je resenje $F^T e_2 = 0$.
- 6. Iz F dobijamo kanonske kamere: $T_1 = [E \mid 0], T_2 = [M \mid e_2]$

3.4 3D rekonstrukcija iz dve projekcije

Triangulacija

Ako znamo matrice kamera T_1 i T_2 i odgovarajuce projekcije x_1, x_2 treba odrediti tacku X prostora tako da vazi:

$$x_1 = T_1 X, \quad x_2 = T_2 X$$

Problem triangulacije: zbog suma ne moze da odrediti tacno resenje, vec se pribegava raznim minimizacijama greske.

Projektivna rekonstrukcija - ocuvane kolinearnost, konkurentnost, dvorazmera.

Afina rekonstrukcija - ocuvane kolinearnost, paralelnost, razmera.

Metricka rekonstrukcija - nakon ovakve rekonstrukcije geometrija objekta nam je u potpunosti poznata (uglovi, duzine...).

Metrica rekonstrukcija je moguca ako znamo: 3 para normalnih linija, prostorne koordinate 5 tacaka, matrice K_1 , K_2 kalibracija kamera.