Datenkommunikation und Informationssysteme, Übung 5

Domenic Quirl 354437

Julian Schakib 353889 Daniel Schleiz 356092

Übungsgruppe 14

Aufgabe 1

- (a)
- (b)
- (c)

A1: / 4

Aufgabe 2

(a) Berechne zunächst die Latenzen (Länge geteilt durch die Ausbreitungsgeschwindigkeit) und die maximalen Datenraten zwischen den Zwischenknoten:

	Latenz	max. Datenrate
$S \to R_1$	$2,5\mu s$	1 Mbit/s
$R_1 \to R_2$	$25\mu s$	1000 Mbit/s
$R_2 \to D$	$5\mu s$	10 Mbit/s

(Bei NRZ wird pro Schritt ein Bit kodiert, also in dem Fall entspricht 1 MBaud gerade 1 Mbit/s. Bei 4B/5B werden 4 Bits in 5 Schritten übertragen, d.h. $1250\cdot0, 8$ Mbit/s. Für den Manchester Leitungscode werden zwei Schritte benötigt, um ein Bit zu übertragen, also $20\cdot0, 5$ Mbit/s.)

(i) Für $P=75\cdot 8=600$ Bit benötigt das Paket (inklusive Header von 160 Bit)

$$\frac{760 Bit}{10^6 Bit/s} + \frac{760 Bit}{1000 \cdot 10^6 Bit/s} + \frac{760 Bit}{10 \cdot 10^6 Bit/s} + \frac{760 Bit}{10 \cdot 10^6 Bit/s} + 32, \\ 5 \cdot 10^{-6} s + 2 \cdot 10^{-6} s = 0, \\ 87126 \cdot 10^{-3} s = 0.$$

(Benötigte Zeit zur Übertragung der jeweiligen Leitungen plus die summierten Latenzen plus die Verarbeitungszeiten der Zwischenstationen R_i .)

(ii) Für $P = 1500 \cdot 8 = 12000$ Bit benötigt das Paket (inklusive Header von 160 Bit)

$$\frac{12160 Bit}{10^6 Bit/s} + \frac{12160 Bit}{1000 \cdot 10^6 Bit/s} + \frac{12160 Bit}{10 \cdot 10^6 Bit/s} + \frac{12160 Bit}{10 \cdot 10^6 Bit/s} + 32, \dots \\ 5 \cdot 10^{-6} s + 2 \cdot 10^{-6} s = 13,42266 \cdot 10^{-3} s = 13,42266 \cdot 10^{-$$

(iii) Für $P = 30000 \cdot 8 = 240000$ Bit benötigt das Paket (inklusive Header von 160 Bit)

$$\frac{240160 Bit}{10^6 Bit/s} + \frac{240160 Bit}{1000 \cdot 10^6 Bit/s} + \frac{240160 Bit}{10 \cdot 10^6 Bit/s} + 32, 5 \cdot 10^{-6} s + 2 \cdot 10^{-6} s = 264,45066 \cdot 10^{-3} s$$

- (b) (i) Die Nachricht wird in $\frac{30000}{75} = 400$ Paketen verschickt und die Versendung benötigt demnach $400 \cdot$
 - (i) Die Nachricht wird in ⁷⁵/₇₅ = 400 Faketen verschickt und die Versendung benötigt denmach 400 0,87126 · 10⁻³s = 348,504ms.
 (ii) Die Nachricht wird in ³⁰⁰⁰⁰/₁₅₀₀ = 20 Paketen verschickt und die Versendung benötigt demnach 20 · 13,42266 · 10⁻³s = 268,4532ms.
 - (iii) Die Nachricht wird in einem Paket verschickt und die Versendung benötigt demnach 264,45066ms.

A2: /5

Aufgabe 3

- (a)
- (b)
- (c)

A3:

Aufgabe 4

(a)	Duot olsoll	lokal		global		Ziel	
	Protokoll	IP-Adresse	Port	IP-Adresse	Port	IP-Adresse	Port
	TCP	10.0.0.1	8051	137.226.12.228	8051	137.226.13.142	443
	UDP	10.0.0.3	4711	137.226.12.228	4711	8.8.8.8	53
	UDP	10.0.0.4	4711	137.226.12.228	4712	8.8.8.8	53

(b) Die Tabelle müsste um einen Eintrag ergänzt werden, welcher eingehende Anfragen auf Port 80 an Port 8888 des Rechners B weiterleitet, also ein Eintrag der Form

Protokoll	lokal		global		Ziel		
	IP-Adresse	Port	IP-Adresse	Port	IP-Adresse	Port	
TCP	10.0.0.2	8888	137.226.12.228	80	-	-	
						۸ 4.	