Paper No: 20PESGM0226

Line Outage Identification Based on AC Power Flow and Synchronized Measurements

Zhen Dai, Joseph Euzebe Tate

Department of Electrical and Computer Engineering

University of Toronto

zhen.dai@mail.utoronto.ca

Discovery Grant NSERC RGPIN-2016-06674

Background

- Problems: inaccurate dc model, unrealistic assumptions, and misidentification
- Proposed method: Identification + Rejection Filter

Stage 1: *Identification*

Compare expected voltage changes (via ac power flow) to observations

Stage 2: *Rejection filter*

Examine the distance between the best candidate to the second best

Tested on various systems using random PMU placements and noisy measurements

Fig. 1

Results

Comparison of the dc and ac approaches

- AC > DC
- Rejection filter
 Misidentified Filtered
 Misidentified
 Correct Filtered
 Correct
- More PMUs

Fig. 3 (a) correctly identified, no filter

Power & Energy Society

The 30-bus system

(b) ac, ΔE

Results

Identification results versus the filter threshold

- Threshold 1
 Misidentified 11
 Correct 1
- More PMUs
 Correct
 Correct Filtered
 I

Fig. 5 (a) 26 PMUs

(c) 868 PMUs (220 kV+)

The Ontario system (3488 buses)

Conclusions/Recommendations

- Ac model necessary for higher accuracy
- Rejection filter to overcome misidentification due to measurement uncertainties
- Significant benefits of having a higher PMU coverage

