EM0005 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (30m de tolerância).

- * Não são consideradas as folhas sem identificação. Justifique convenientemente todos os cálculos que efetuar;
- * A desistência só é possível após 1 hora do início da prova;
- * Não é possível a utilização de máquinas de calcular gráficas nem de microcomputadores;
- * Resolva cada um dos grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [8,0] Seja $S = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\}$, em que $\vec{a} = (-2,1,2,1)$, $\vec{b} = (1,1,-1,1)$, $\vec{c} = (0,-2,2,0)$ e $\vec{d} = (1,1,1,3)$, um conjunto de vetores do espaço vetorial \mathbb{R}^4 .
 - a) Calcule o subespaço, L(S), gerado por S; obtenha uma base, U, para o subespaço e conclua em relação à dimensão.
 - b) Verifique se é possível exprimir os vetores $\vec{r} = (3,1,-2,2)$ e $\vec{s} = (0,0,1,-1)$ como combinação linear dos elementos da base U; em caso afirmativo, obtenha a respetiva combinação linear.
 - c) Será o conjunto $S_1 = \{(1,0,1,2), (1,1,1,3), (0,2,0,2)\}$ uma base para o subespaço L(S)? Justifique a sua resposta.
 - d) Obtenha uma base ortogonal, V, para o espaço vetorial \mathbb{R}^4 , que contenha um número máximo de elementos de L(S), sendo um destes elementos o vetor $\vec{v}_1 = (1, -1, 0, 0)$.
- **2.** [2,5] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vetores não nulos do espaço vetorial \mathbb{R}^3 , tais que $\{\vec{a} \times \vec{b}, \vec{c}\}$ é um conjunto ortogonal, $\|\vec{a}\| = \|\vec{b}\|$, $\|\vec{a} \times \vec{b}\| = 2$, $\vec{a} \cdot \vec{b} = 2\sqrt{3}$, $\|\vec{a} \vec{c}\| = 2$, $\angle(\vec{c}, \vec{a}) = 60^\circ$ e $\vec{c} + \vec{d} = \vec{b} \times \vec{a}$. Determine:
 - a) As normas dos vetores \vec{a} e \vec{d} .
 - b) O ângulo formado pelos vetores $\vec{a} + \vec{d}$ e $\vec{a} \times \vec{b}$ (se não resolveu a alínea anterior considere $\|\vec{d}\| = 2\sqrt{2}$).

.....(continua no verso)

EM0005 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (30m de tolerância).

GRUPO II

- **3.** [2,5] Seja a reta s do espaço vetorial \mathbb{R}^3 , que passa em O (origem do referencial) e possui \vec{a} como vetor direção, e o ponto P que não pertence a s.
 - a) Mostre que o vetor projeção de \overrightarrow{OP} sobre \vec{a} é:

$$\overrightarrow{proj}_{\vec{a}}\overrightarrow{OP} = \frac{\overrightarrow{OP} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

 b) Tendo em atenção as propriedades do produto vetorial, mostre que a distância de P à reta s é:

$$d_{P,s} = \frac{\|P \times \vec{a}\|}{\|\vec{a}\|} = \left[\|P\|^2 - \frac{(P \cdot \vec{a})^2}{\|\vec{a}\|^2} \right]^{1/2}$$

- **4.** [7,0] Considere o plano M: 2x + y + z = 4, a reta $r: X(t) = P + t\vec{a}$, $t \in \mathbb{R}$, em que P = (2,1,2) e $\vec{a} = (1,2,-1)$, e o ponto Q = (2,-1,4). Determine:
 - a) A distância do ponto Q ao plano M e o ponto, I, de interseção da reta r com o plano M.
 - b) Um ponto, R, da reta r, tal que o triângulo [OIR] tenha $\sqrt{50}$ unidades de área, sendo O a origem do referencial.
 - c) A equação vetorial de uma reta, h, que passa no ponto Q, é complanar com a reta r e faz, com esta reta, um ângulo de 30° .