1 Rieman Shock Tube Problem

1.	$P_{\scriptscriptstyle D} =$	100kPa.	P_r	= 10kPa

2.
$$\rho_R = 1.0, \rho_L = 0.125$$

3.
$$u_R = 0.0, u_L = 0.0$$

4. CFL = 0.9, based on
$$|\vec{U}|_{max} + c$$

5.
$$t_{max} = 0.0045 \text{ sec}$$

2 Inviscid Burgers Equation: Expansion fan

See page 202 of Numerical Computation of Internal and External Flow vol 2, C. Hirsch for details on the problem setup

1.
$$P_R = 100kPa, P_L = 100kPa$$

2.
$$\rho_R = 1.0, \rho_L = 1.0$$

3.
$$u_R = 0.0, u_L = 0.0$$

4. CFL = 0.9, based on
$$|\vec{U}|_{max} + c$$

5.
$$t_{max} = 0.175 \text{ sec}$$

3 Inviscid Bur

4 Inviscid Burgers Equation: Initial shock discontinuity

See page 200 of Numerical Computation of Internal and External Flow vol 2, C. Hirsch for details on the problem setup

- 1. P = 1Pa
- 2. $\rho = 1.0$
- 3. $u_L = 100.0, u_R = 50m/s$
- 4. CFL = 0.9, based on $|\vec{U}|_{max} + c$
- 5. t_{max}

