Part I: Linear Models

Chapter I.3

Quadratic Forms

Topics

- To be discussed...
 - definition of quadratic forms
 - basic properties
 - Cochran's theorem
 - applications of Cochran's theorem

№ I.3.1 Definition

Let Y be a random vector and $A \in \mathbb{R}^{p \times p}$ be a symmetric matrix. Then Y'AY is called **quadratic** form.

► I.3.2 Remark

Symmetry of A in Definition I.3.1 is not required since, from x'Ax = x'A'x, we have for any $A \in \mathbb{R}^{p \times p}$

$$x'Ax = \frac{1}{2}(x'Ax + x'A'x) = x'A_*x$$

with the symmetric matrix $A_* = \frac{1}{2}(A + A')$. Therefore, without loss of generality, quadratic forms discussed in the following are based on symmetric matrices.

№ 1.3.3 Lemma

Let Y be a random vector with $EY = \mu$ and $Cov(Y) = \Sigma$ and $A \in \mathbb{R}^{p \times p}$. Then,

$$EY'AY = \mathsf{trace}(A\Sigma) + \mu'A\mu.$$

Orthogonal projectors & quadratic forms

№ 1.3.4 Lemma

Let $Q \in \mathbb{R}^{p \times p}$ be an orthogonal projector. Then, an eigenvalue λ of Q satisfies $\lambda \in \{0,1\}$. Furthermore, $\mathsf{rank}(Q) = \mathsf{trace}(Q)$.

№ I.3.5 Theorem

Let $Y \sim N_{\mathfrak{p}}(\mu, I_{\mathfrak{p}})$ be a random vector and Q be an orthogonal projector. Then,

$$Y'QY \sim \chi^2 (rank(Q), \frac{1}{2}\mu'Q\mu).$$

Cochran's theorem

■ I.3.6 Theorem (Cochran)*

Let $X \sim N_p(0, \sigma^2 I_p)$ and $A_1, \ldots, A_n \in \mathbb{R}_{\geq 0}^{p \times p}$ be non-negative definite matrices with $\sum_{j=1}^n A_j = I_p$. Let $r_i = \text{rank}(A_i)$, $1 \leq i \leq n$. Then, the following conditions are equivalent:

- 2 $\frac{1}{\sigma^2}X'A_iX \sim \chi^2(r_i), 1 \leq j \leq n$
- **3** $X'A_iX$, $1 \le i \le n$, are mutually independent.

■ 1.3.7 Remark

Theorem I.3.6 may be extended in various directions. In Rencher & Schaalje (2008), Theorem 5.6c, a non-central version is presented, that is, one assumes $X \sim N_p(\mu, \sigma^2 I_p)$ with $\mu \in \mathbb{R}^p$. Then, the following conditions are equivalent:

- 2 $\frac{1}{\sigma^2}X'A_iX \sim \chi^2(r_i,\mu'A_i\mu/2), 1 \leq j \leq n$
- 3 $X'A_iX$, $1 \le i \le n$, are mutually independent.

^{*}see, e,g., Gut, A. (2009) An Intermediate Course in Probability. 2nd edn., Springer, New York, Section 5.9. (2009) An Intermediate Course in Probability.

Application of Cochran's theorem

№ I.3.8 Corollary (see Theorem I.2.15)

Let $p \geqslant 2$, $Z = (Z_1, \dots, Z_p)' \sim N_p(0, \sigma^2 I_p)$, $\overline{Z} = \frac{1}{p} \sum_{j=1}^p Z_j$, $S_Z = \frac{1}{p-1} \sum_{j=1}^p (Z_j - \overline{Z})^2$, and $E_p = I_p - \frac{1}{p} \mathbb{1}_p \mathbb{1}'_p$. Then:

- $\overline{Z}^2 \sim F(1, p-1)$

Two-sample case and F-distribution

№ 1.3.9 Corollary

Let $X_1,\ldots,X_{n_1}\overset{\text{iid}}{\sim} N(\mu_1,\sigma_1^2),\ Y_1,\ldots,Y_{n_2}\overset{\text{iid}}{\sim} N(\mu_2,\sigma_2^2)$ be independent samples of random variables with $n_1,n_2\geqslant 2$ and

$$\widehat{\sigma}_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2 \quad \text{and} \quad \widehat{\sigma}_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2.$$

Then, we get

- 2 For $\sigma_1 = \sigma_2 = \sigma$:
 - the F-statistic $F = \frac{\widehat{\sigma}_1^2}{\widehat{\sigma}_2^2}$ is F-distributed with $n_1 1$ and $n_2 1$ degrees of freedom.
 - $\frac{(n_1-1)\widehat{\sigma}_1^2+(n_2-1)\widehat{\sigma}_2^2}{\sigma^2} \sim \chi^2(n_1+n_2-2).$

An extension to random vectors

I.3.10 Theorem[†]

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N_n(\mu, \Sigma)$ with $\mu \in \mathbb{R}^p, \Sigma \in \mathbb{R}_{>0}^{p \times p}$ and n > p. Then:

- $\mathbf{1} \ \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N_p(\mu, \frac{1}{n} \Sigma)$
- **3** For the sample covariance matrix $\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})'$, we have
 - $\mathbf{P}\,\hat{\boldsymbol{\Sigma}} = \boldsymbol{\Sigma}$
 - (n-1) $\hat{\Sigma}$ has a so-called Wishart-distribution
 - $\|\mathbf{X} \boldsymbol{\mu}\|_{\hat{\Sigma}}^2$ has an Hotellings-T²-distribution with parameters p and n-1 (for short, $\|\mathbf{X} \boldsymbol{\mu}\|_{\hat{\Sigma}}^2 \sim T_{p,n-1}$).

For m > p: if $Y \sim T_{p,m}$ then $\frac{m-p+1}{mp}Y \sim F_{p,m-p+1}$

[†]cf. T. W. Anderson (2003) Introduction to Multivariate Statistical Analysis, 3rd ed., New York: Wiley, 2003, Chapters 3 & 5.