



## High Energy Density, Asymmetric Supercapacitors

Priyanka Pande, Paul Rasmussen and Levi Thompson

University of Michigan

Saemin Choi and Stefan Heinemann

Inmatech

Yi Ding

**TARDEC** 

ltt@umich.edu

www.engin.umich.edu/dept/cheme/people/thompson/ltt.html

www.hydrogen.umich.edu



| maintaining the data needed, and including suggestions for reducin                                                                                | completing and reviewing the colle<br>g this burden, to Washington Head<br>ould be aware that notwithstanding | ection of information. Send commer<br>quarters Services, Directorate for Ir | nts regarding this burden estin<br>aformation Operations and Re | nate or any other aspect<br>ports, 1215 Jefferson D | g existing data sources, gathering and<br>t of this collection of information,<br>bavis Highway, Suite 1204, Arlington<br>with a collection of information if it |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1. REPORT DATE                                                                                                                                    | REPORT DATE 2. REPORT TYPE                                                                                    |                                                                             |                                                                 | 3. DATES COVERED                                    |                                                                                                                                                                  |  |
| 10 APR 2012                                                                                                                                       |                                                                                                               | <b>Briefing Charts</b>                                                      |                                                                 | 01-01-2012                                          | 2 to 01-03-2012                                                                                                                                                  |  |
| 4. TITLE AND SUBTITLE                                                                                                                             |                                                                                                               |                                                                             |                                                                 | 5a. CONTRACT                                        | NUMBER                                                                                                                                                           |  |
| <b>High Energy Dens</b>                                                                                                                           | ity Asymmetric Su                                                                                             | percapacitors                                                               |                                                                 | W56HZV-0                                            | 04-2-0001                                                                                                                                                        |  |
|                                                                                                                                                   |                                                                                                               |                                                                             |                                                                 | 5b. GRANT NUMBER                                    |                                                                                                                                                                  |  |
|                                                                                                                                                   |                                                                                                               |                                                                             | 5c. PROGRAM ELEMENT NUMBER                                      |                                                     |                                                                                                                                                                  |  |
| 6. AUTHOR(S)                                                                                                                                      |                                                                                                               |                                                                             |                                                                 | 5d. PROJECT NUMBER                                  |                                                                                                                                                                  |  |
|                                                                                                                                                   | Pande; Paul Rasm                                                                                              | nussen; Levi Thomp                                                          | son; Saemin                                                     | 5e. TASK NUMBER                                     |                                                                                                                                                                  |  |
| Choi                                                                                                                                              |                                                                                                               |                                                                             |                                                                 | 5f. WORK UNIT NUMBER                                |                                                                                                                                                                  |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  University of Michigan, Engineering Department, 500 South State  Street, Ann Arbor, MI, 48109 |                                                                                                               |                                                                             |                                                                 | 8. PERFORMING ORGANIZATION REPORT NUMBER ; #22799   |                                                                                                                                                                  |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi,                                   |                                                                                                               |                                                                             | n, Mi,                                                          | 10. SPONSOR/MONITOR'S ACRONYM(S) <b>TARDEC</b>      |                                                                                                                                                                  |  |
| 48397-5000                                                                                                                                        |                                                                                                               |                                                                             |                                                                 | 11. SPONSOR/MONITOR'S REPORT NUMBER(S) #22799       |                                                                                                                                                                  |  |
| 12. DISTRIBUTION/AVAI<br>Approved for pub                                                                                                         | LABILITY STATEMENT<br>lic release; distribu                                                                   | tion unlimited                                                              |                                                                 |                                                     |                                                                                                                                                                  |  |
| 13. SUPPLEMENTARY N                                                                                                                               | OTES                                                                                                          |                                                                             |                                                                 |                                                     |                                                                                                                                                                  |  |
| For 45th Power Co                                                                                                                                 | onference                                                                                                     |                                                                             |                                                                 |                                                     |                                                                                                                                                                  |  |
| fabrication of cath                                                                                                                               | odes containing hi                                                                                            |                                                                             | ides or carbides                                                | , and anodes                                        | -Develop methods for<br>containing Mn or Ni<br>es -Evaluate the                                                                                                  |  |
| performance of pr                                                                                                                                 | ototype for technol                                                                                           | ogically relevant lo                                                        | ad profiles.                                                    |                                                     |                                                                                                                                                                  |  |
| 15. SUBJECT TERMS                                                                                                                                 |                                                                                                               |                                                                             |                                                                 |                                                     |                                                                                                                                                                  |  |
| 16. SECURITY CLASSIFICATION OF: 17. LIMITATION                                                                                                    |                                                                                                               |                                                                             |                                                                 | 18. NUMBER                                          | 19a. NAME OF                                                                                                                                                     |  |
| a. REPORT                                                                                                                                         | OF ABSTRACT EPORT b. ABSTRACT c. THIS PAGE Public                                                             |                                                                             | OF ABSTRACT  Public                                             | OF PAGES 20                                         | RESPONSIBLE PERSON                                                                                                                                               |  |

unclassified

Release

**Report Documentation Page** 

unclassified

unclassified

Form Approved OMB No. 0704-0188



## **Objectives and Tasks**

#### **Objectives for the project:**

- Explore methods to maximize properties of nitride or carbide based active materials;
- Develop methods for fabrication of cathodes containing high surface area nitrides or carbides, and anodes containing Mn or Ni oxides;
- Design and assemble asymmetric prototype cells using appropriate electrolytes;
- Evaluate the performance of prototype for technologically relevant load profiles.

#### Tasks for funding cycle:

- Fabricate prototype cells incorporating nitride and oxide electrode materials;
- Characterize prototype functional properties including capacitance, energy density and coulombic efficiency;
- Characterize prototype functional properties including cycle-life and low temperature tolerance



## Asymmetric Capacitor Design

• High Surface Area Electrodes → Enhanced Capacitance

$$E = \frac{CV^2}{2}$$





•US 5,680,292 High Surface Area Nitride Carbide and Boride Electrodes and Methods of Fabrication Thereof •US 5,837,630 High Surface Area Mesoporous Desigel materials and Methods for Their Fabrication

• Asymmetric Design → Widened Potential Window

$$E = \frac{CV^2}{2}$$



E vs. RHE (V)

•US Patent Pending High Performance Transition Metal Carbides/Nitrides based Asymmetric Capacitors

• Aqueous Electrolytes → Cheap, Non-flammable and high ionic conductivity



## **Asymmetric Capacitors**



| Cell#      | NiOOH<br>(mg) | VN<br>(mg) | Mass<br>Ratio | A/g | Potential (V) | Wh/kg*<br>@1000<br>cycle |
|------------|---------------|------------|---------------|-----|---------------|--------------------------|
| 111411-7-1 | 2.6           | 2.6        | 1.0           | 1.0 | 1.6 - 0.5     | 23.4                     |

- \* Based on active material using button cell.
- 1. PVDF as binder
- 2. Ni current collector



| Cell#      | NiOOH<br>(mg) | VN<br>(mg) | Mass<br>Ratio | Potential (V) | Wh/kg*<br>@ 1 kW/kg* &<br>1000 cycle |
|------------|---------------|------------|---------------|---------------|--------------------------------------|
| 020212-1-2 | 69.1          | 65.0       | 1.1           | 0.5-1.6V      | 14.1                                 |

- \* Based on active material using button cell.
- 1. PTFE (Teflon) as binder
- 2. Ni foam current collector

Optimize components (e.g. binder, foam) and processes (e.g. mass ratio)



## **Asymmetric Capacitors**





### **Anticipated Performance**

| 5.1 cm x 7.6 cm x 2.1 mm |
|--------------------------|
| 22.9 g                   |
| 7.8 ml                   |
| 7.9 g                    |
| 3                        |
| 0.1 Wh                   |
| 4.8 Wh/kg                |
| 14.2 Wh/L                |
| 35%                      |
| 1728 W/kg                |
|                          |

<sup>\*</sup> Power density of 1 kW/kg (per active material)

Optimize components (e.g. binder, foam) and processes (e.g. mass ratio)



### **Asymmetric Capacitors**







Optimize components (e.g. binder, foam) and processes (e.g. mass ratio)



## VN Synthesis

- High surface area nitrides and carbides
  - Pseudomorphic reactions

Volpe and Boudart, 1985

Oxide  $<2 \text{ m}^2/\text{g}$ 

 $>100 \text{ m}^2/\text{g}$ 

 $\rho_{MoO3} = 4.7 \text{ g/cm}^3$   $\rho_{Mo2N} = 9.4 \text{ g/cm}^3$ 

- Solution Chemical Methods
  - Sol-gel synthesis

Thompson et al, 1998

Urea method



- Ethanol, vanadium oxy-trichloride (VOCl<sub>3</sub>) and urea
- Age for 12-18 hr
- Heat to 800 °C @ 3 C/min for 3 hours under flowing N<sub>2</sub>



## Synthesis of VN

• Surface area: 222 m<sup>2</sup>/g

• Capacitance: 239 F/g



1M potassium hydroxide Hg/HgO reference electrode Platinum counter electrode 50 mV/s



## **Charge Storage Mechanism**

| Material          | Stability<br>Window (V)               | Capacitance<br>(F/g) | Surface Area<br>(m²/g) |
|-------------------|---------------------------------------|----------------------|------------------------|
| VN                | 1.1 (KOH)                             | 210                  | 38                     |
| VC                | 0.8 (KOH)                             | 2.6                  | 6                      |
| Mo <sub>2</sub> N | 0.8 (H <sub>2</sub> SO <sub>4</sub> ) | 346                  | 152                    |
| W <sub>2</sub> C  | 0.7 (H <sub>2</sub> SO <sub>4</sub> ) | 79                   | 16                     |
| $W_2N$            | 0.8 (KOH)                             | 25                   | 42                     |

• Double-layer capacitance typically ~25  $\mu$ F/cm<sup>2</sup> (0.25 F/m<sup>2</sup>)



# **Storage Mechanism: Ion Isolation**

Tetraethylammonium<sup>+</sup>

### $Mo_2N$

| ANION<br>CATION                                 | (SO <sub>4</sub> ) <sup>2-</sup>                      | (BF <sub>4</sub> )-                    |
|-------------------------------------------------|-------------------------------------------------------|----------------------------------------|
| <b>H</b> +                                      | H <sub>2</sub> SO <sub>4</sub><br>pH: 1.3<br>0.1M     | HBF <sub>4</sub><br>pH: 1.3<br>0.1M    |
| (C <sub>2</sub> H <sub>5</sub> ) <sub>4</sub> N | (TEA) <sub>2</sub> SO <sub>4</sub><br>pH: 4.9<br>0.1M | TEA-BF <sub>4</sub><br>pH: 4.2<br>0.3M |

Constant ionic strength/ pH

Scan rate: 2 mV/s

-HBF4 — H2SO4 — (TEA)2SO4 — TEABF4 0.8 0.6 Current/ mass (A/g) 0.4 0.2 -0.2-0.4-0.6 -0.8 0.75 -0.3-0.150.15 0.3 0.45 0.6

E v/s SHE (V)



# **Storage Mechanism: Ion Isolation**

### $Mo_2N$

| ANION<br>CATION                                 | (SO <sub>4</sub> ) <sup>2-</sup>                      | (BF <sub>4</sub> )-                    |
|-------------------------------------------------|-------------------------------------------------------|----------------------------------------|
| <b>H</b> +                                      | H <sub>2</sub> SO <sub>4</sub><br>pH: 1.3<br>0.1M     | HBF <sub>4</sub><br>pH: 1.3<br>0.1M    |
| (C <sub>2</sub> H <sub>5</sub> ) <sub>4</sub> N | (TEA) <sub>2</sub> SO <sub>4</sub><br>pH: 4.9<br>0.1M | TEA-BF <sub>4</sub><br>pH: 4.2<br>0.3M |

Constant ionic strength/ pH

Scan rate: 2 mV/s

Tetraethylammonium<sup>+</sup>





# **Storage Mechanism: Ion Isolation**

### VN

| ANION                 | (OH)-                             | (CF <sub>3</sub> SO <sub>3</sub> ) <sup>-</sup> |
|-----------------------|-----------------------------------|-------------------------------------------------|
| <b>K</b> <sup>+</sup> | <b>KOH</b><br>pH: 12.8<br>0.1M    | K-Tfl<br>pH: 9.3<br>0.1M                        |
| $(C_2H_5)_4N^+$       | TEA <b>OH</b><br>pH: 12.9<br>0.1M | TEA-Tfl<br>pH: 8.1<br>0.1M                      |

Constant ionic strength/ pH Scan rate: 2 mV/s

Triflate  $F \rightarrow F$  0 = S = 0 0





# **Storage Mechanism: Ion Isolation**

### VN

| ANION                 | (OH)-                             | (CF <sub>3</sub> SO <sub>3</sub> )- |
|-----------------------|-----------------------------------|-------------------------------------|
| <b>K</b> <sup>+</sup> | <b>KOH</b><br>pH: 12.8<br>0.1M    | K-Tfl<br>pH: 9.3<br>0.1M            |
| $(C_2H_5)_4N^+$       | TEA <b>OH</b><br>pH: 12.9<br>0.1M | TEA-Tfl<br>pH: 8.1<br>0.1M          |

Constant ionic strength/ pH Scan rate: 2 mV/s

Triflate F F F O S S O O O





## Storage Mechanism: Charge Transfer





## Storage Mechanism: Charge Transfer

















0.1M H<sub>2</sub>SO<sub>4</sub> Voltage *vs* Pt reference









0.1M H<sub>2</sub>SO<sub>4</sub> Voltage *vs* Pt reference



## Summary

### Tasks for funding cycle:

- Fabricate prototype cells incorporating nitride and oxide electrode materials
  - Synthesized VN and oxides for use in supercapacitors
  - Assembled cells using Ni foil with >23 Wh/kg
  - Assembled cells using Ni foams with >14 Wh/kg
  - Demonstrated solution chemical method for production of high surface area VN
- Characterize prototype functional properties including capacitance, energy density and coulombic efficiency;
- Characterize prototype functional properties including cycle-life and low temperature tolerance
- Characterize charge storage mechanisms for VN and Mo<sub>2</sub>N
  - Determined active species
  - Observed redox of metals in VN and Mo<sub>2</sub>N