

SIDDAGANGA INSTITUTE OF TECHNOLOGY, TUMKUR-572103

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CRYPTOGRAPHY AND NETWORK SECURITY LAB (7CSL02)

Student Name:	USN:		Date:	Batch No:
Evaluation:				
Write Up (10	Clarity in concepts (10	Implementation and	Viva	Total
marks)	marks)	execution of the algorithms	(05 marl	(35 marks)
		(10 marks)		
Sl.No	Name of the Faculty In-Charge			Signature
1.				
2.				

Question No: 12

Implement RSA algorithm using client-server concept. Using this illustrate secret key distribution scenario with confidentiality and authentication. The program should support the following:

- i. Both client and server generate {PU, PR} and distribute PU to each other.
- ii. Establish a secret key K between client and server by exchanging the messages as shown in below figure.

[CO4,PO1 to PO4,PO9]

Algorithm:

i. Both client and server generate {PU, PR} and distribute PU to each other.

Select p,q p and q both prime, $p \neq q$ $Calculate <math>n = p \times q$ $Calculate <math>\phi(n) = (p-1)(q-1)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ $\gcd(\phi(n), e) = 1; 1 < e <$

- ii. Establish a secret key K between client and server by exchanging the messages as shown in below figure.
 - **1.** A uses B's public key to encrypt a message to B containing an identifier of $A(ID_A)$ and a nonce (N_1) , which is used to identify this transaction uniquely.
 - 2. B sends a message to A encrypted with PU_a and containing A's nonce (N_1) as well as a new nonce generated by B (N_2) . Because only B could have decrypted message (1), the presence of N_1 in message (2) assures A that the correspondent is B.
 - 3. A returns N_2 , encrypted using B's public key, to assure B that its correspondent is A.
 - 4. A selects a secret key K_s and sends $M = E(PU_b, E(PR_a, K_s))$ to B. Encryption of this message with B's public key ensures that only B can read it; encryption with A's private key ensures that only A could have sent it.
 - 5. B computes $D(PU_a, D(PR_b, M))$ to recover the secret key.