AD-751 750

PERFORMANCE OF SOILS UNDER TIRE LOADS.
REPORT 8. APPLICATION OF TEST RESULTS TO
TIRE SELECTION FOR OFF-ROAD VEHICLES

G. W. Turnage

Army Engineer Waterways Experiment Station Vicksburg, Mississippi

September 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

TECHNICAL REPORT NO. 3-665

PERFORMANCE OF SOILS UNDER TIRE LOADS

Report 8

APPLICATION OF TEST RESULTS TO TIRE SELECTION FOR OFF-ROAD VEHICLES

Ьу

G. W. Turnage

BEST AVAILABLE COPY

September 1972

Sponsored by Research, Development and Engineering Directorate
U. S. Army Materiel Command
Project No. 1T062112A046, Task 03

Conducted by U. S. Army Engineer Waterways Experiment Station
Mobility and Environmental Systems Laboratory
Vicksburg, Mississippi

ARMY MIRC VICESTANIA MISS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Destroy this report when no longer needed. Do not return it to the originator.

RTIS	White Serion	
Dog Dog	To Salla	
azorborraku		
NOTIFICATION.		
AA Vuoltnisisision/	AVA:LABILITY COO	ES
Dist Vi	IL. BIN/A SPECI	AL"
Al		
1 1	į.	- 1

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Unclassified

Security Classification				
DOCUMENT CONTROL DATA - R & D				
	annetation must be entered when the everall report is classified)			
1 ORIGINATING ACTIVITY (Corporate author)	24. REPORT SECURITY CLASSIFICATION			
U. S. Army Engineer Waterways Experiment Station	Unclassified			
Vicksburg, Mississippi	28. GROUP			
3 PEPORT TITLE				
PERFORMANCE OF SOILS UNDER TIRE LOADS; Report 8, APP	LICATION OF TEST RESULTS TO TIRE SELECTION FOR			
OFF-ROAD VEHICLES				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
Report 8 of a series				
S- AUTHORIS) (First rame, middle initiel, last nesse)				
a 11 m				
Gerald W., Turnage				
	1			
S REPORT DATE	76. TOTAL NO. OF PAGES 75. NO. OF HEFS			
September 1972	20 20			
SE. CONTRACT OR GRANT NO.	M. ORIGINATOR'S REPORT NUMBER(S)			
& PROJECT NO. 1T062112A046	Technical Report No. 3-666, Report 8			
	ì			
- Task 03	Sb. OTHER REPORT NO(S) (Any other numbers that may be selliged			
	this report)			
4				
10 DISTRIBUTION STATEMENT	<u> </u>			
to martings for element.	1			
Approved for public release; distribution unlimited				
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
11 SUPPLEMENTARY NOTES	12 SPONSORING MILITARY ACTIVITY			
II SOPPLEMENTARY NOTES	1			
	Research, Development and Engineering Directorate, U. S. Army Materiel Command			
	Washington, D. C.			
1). ABSTRACT	<u> </u>			
Data from a very large block of previously collected	e whether the dimensionless prediction terms for sand			
$\frac{G(bd)^{3/2}}{V} \otimes \frac{\delta}{b}$ and for clay $\frac{Cbd}{V} \otimes \left(\frac{\delta}{b}\right)^{1/2}$ recould be in	myroved, and (b) extrapolate laboratory relations to			
· · · · · · · · · · · · · · · · · · ·	erms C and G are penetration resistance and pene-			
	and sand; b is tire width; d is tire diameter; h			
is section height; 5 is tire deflection; and W is	s wheel load.) The term for sand and an improved term			
$Chd / \delta \lambda^{1/2} $ 1				
for clay $\frac{\sqrt{a}}{h}$ $\frac{\sqrt{a}}{h}$ $\frac{\sqrt{a}}{1+(b/2d)}$ were designated	the basic prediction terms. These basic terms predict			
dimensionless tire performance coefficients pull/load	d (P/W), sinkage/diameter (z/d), torque/!oad - active			
radius (M/Wr _a), all at 20 percent slip (near maximum	pull), and towed force/load (P _T /W) quite wel' for many			
sizes and shapes of pneumatic tires in the laborator;	y sands and clay, Other alternative terms examined for			
both sand and clay predict the performance of tires	or wheels of very small 5/h values more accurately			
than the basic terms, but predict performance of conventional pneumatic tires less accurately. When dimen-				
sionless terms $(150V_y/V_{ah})^{1/2}$ and $[0.1(V_y/b)/(V_s/d_s)]^{0.092}$ are attached to the basic prediction terms				
for sand and clay, respectively, the P/W versus prediction term relations are effectively collapsed to				
single lines for wheel translational velocities (V) in the <1 to 18 ft/sec range. (V is shear wave				
velocity, V is standard penetration velocity, and d is diameter of a standard cone. > The basic pre-				
diction terms can serve as the base for predicting wheeled vehicle performance in the field if RCI (rating cone index) is substituted for C in the term for clay. Equations that describe the pertinent relations				
are examined in detail, and examples illustrate several of their many possible applications.				
/ / / / / / / / / / / / / / / / / / /				
Ín				
$\mathcal{J}a$				
CONTRACTOR AND	THICK IS			
DD FORM 1473 REPLACES DO FORM 1473. 1 JAN 64.	Unclessified			
- - ···••••	Unclassified Security Classification			

A CONTRACTOR OF THE CONTRACTOR

. . . .

Unclassified

Unclassified Security Classification						
14.		K A	L.104	7.00	L 190	
KEY WORDS	ROLE		RO'LE	WY	ROLE	#1
					<u> </u>	
Pield tests		Ì))		•	
Laboratory tests		1	(j			
Off-road vehicles			1 1		ļ	
Soil-wheel interaction	1	Ì]]			
Tire loads	ì					
		ł				
		}	1 1			
		i				
		ł				
	i	}	1		1	
		į				
]	!]			
	İ	1	1		1	
	l	[{ [
]	i] l			
	}	1	[i	
			l 1			
		l				
		ĺ	1 1			
		}	1 1		[}
		[
		l				
		l	i			
		Į				
		1]	
	Į	l	į l			
		1			1	
		1	[]		l i	,
		l	į į			
		l	i i			
		l] ([{	
]]			
	1	1]]			
	1	į	į į		ļļ	
	1	1] /			
	1	1]]		1	
	[į	1 1		,	
	}	1	Į /		l 1	
	}	1	1 1		}	
		l	Į Į			
	1	l			[
	1	1	1		f	
		Į .	. !			
		l	į i			
	İ	1	} }			
•		ļ .	[[}	
ŹĠ	ļ	1] :	
$\mathcal{L}v$		L	I I		i	

Unclassified
Security Classification

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

FOREWORD

This report comprises a study of results from laboratory tests previously conducted at the U. S. Army Engineer Waterways Experiment Station (WES) and from field tests from locations in various parts of the United States and the world, as part of the vehicle mobility research program under Department of the Army Project Nc. 1T062112A046, "Trafficability and Mobility Research," Task 03, "Mobility Fundamentals and Model Studies," under the sponsorship and guidance of the Research, Development and Engineering Directorate, U. S. Army Materiel Command.

The laboratory tests were performed by personnel of the Mobility Research Branch (MRB), Mobility and Environmental (M&E) Systems Laboratory, WES, during the period November 1963 to May 1969 under the general supervision of Messrs. W. G. Shockley and S. J. Knight, Chief and Assistant Chief, respectively, of the M&E Systems Laboratory, and under the direct supervision of Messrs. A. J. Green and J. L. Smith of the Research Projects Group of the MRB. Field data examined herein were obtained from published and unpublished reports of the Vehicle Studies Branch of the M&E Systems Laboratory. Miss M. E. Smith and Mr. Green participated in the data analysis, and Miss Smith and Mr. J. L. McRae assisted in the preparation of many of the plates, figures, and tables. Mr. G. W. Turnage directed the study and prepared this report.

COL Ernest D. Peixotto, CE, was Director of the WES during the course of this study and preparation of this report. Mr. F. R. Brown was Technical Director.

Preceding page blank

CONTENTS

	Page
FOREWORD	v
NOTATION	ix
CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASURZMENT	xi
SUMMARY	xiii
PART I: INTRODUCTION	1
Background	1
Purpose and Scope	1 2
PART II: PREDICTING IN-SCIL, SINGLE-WHEEL PERFORMANCE	5
Parameters Considered	5
Laboratory Single-Wheel Test Program	6
Tires and Wheels in Sand	13
Tires and Wheels in Clay	24
PART III: VEHICLE VERSUS SINGLE-WHEEL PERFORMANCE	35
Limitations	35
Tests in Sand	38
Tests in Clay	40
PART IV: DESIGN CRITERIA	49
Tires for Vehicles Operating in Sand	49
Tires for Vehicles Operating in Clay	52
Summation	55
PART V: CONCLUSIONS AND RECOMMENDATIONS	57
<u>, </u>	
Conclusions	57
Recommendations	60
LITERATURE CITED	62
TABLES 1-15	
DI AMBO 1 20	

CONTENTS

				Page
APPENDIX A: MEAS	UREMENTS OF	SAND STRENGTH,	WHEEL PULL,	AND TIRE
SINK	AGE			A1
Sand Streng	th			
Wheel Pull				A4
Tire Sinkag	e			Al0
APPENDIX B: TIRE	SELECTION	AND PREDICTION	OF PERFORMANCE	E B1
Example 1:	Computation	on of Maximum Pu	ul Coefficient	t and
Slope Neg	otiable .			B2
Example 2:	Selection	of Tire Sizes 1	or Given Cond	itions . B3
Example 3:	Computation	on of Maximum Lo	ed and Maximu	m Weight
Pullable.				B4
Example 4:	Determinat	ion of Mobility	of a Vehicle	-Trailer
Combinati	on			в6
Example 5:	Selection	of Vehicle Driv	re Mode Jased	on
Performan	ce Paramete	ers		в8

NOTATION

- A Tire contact area on a flat, rigid surface
 - b Tire section width
 - c Soil cohesion
 - C Soil penetration resistance; cone index
- C_s,C_x
 Cone index obtained with a 0.5-sq-in.-base-area, right circular, 30-deg-apex-angle cone at 72 in./min, and cone index obtained at any particular velocity with a cone of any particular base area, respectively
 - d Tire diameter
- d_s,d_x
 Diameter of a standard 30-deg-apex-angle, right circular, 0.5-sq-in.-base-area cone, and diameter of any particular cone, respectively
 - D Relative density
 - f Soil-tire coefficient of friction
 - g Acceleration due to gravity
 - G Soil penetration resistance gradient
 - h Tire section height
 - L Characteristic linear dimension of tire
 - M Torque
- $P_{p}P_{opt}$, P_{m} Pull, optimum pull, and towed force, respectively
 - r Average active radius of tire
 - s Soil shear strength
 - V,V. Velocity and wheel translational velocity, respectively
 - V_s,V_v Standard and particular penetration velocity, respectively
 - V_{sh} Soil shear wave velocity
- W, W, Wont Load, immobilization load, and optimum load, respectively
 - z Tire sinkage
 - γ Soil density
 - δ Tire deflection
 - Ø Joil friction angle

CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to metric units as follows:

The state of the s

Multiply	By	To Obtain
inches	2.54	centimeters
square inches	6.4516	square centimeters
feet	0.3048	meters
cubic inches	16.3871	cubic centimeters
pounds (force)	4.4482	newtons
pounds per square inch	6.8948	kilonewtons per square meter
pounds per square inch		
per inch	0.2714	meganewtons per cubic meter
feet per second	0.3048	meters per second

SUMMARY

This study examined the effects of tire deflection, tire geometry, wheel load, and soil strength on the performance of various single pneumatic tires tested in the laboratory in air-dry sand and near-saturated clay, and on the performance of a solid rubber tire and three rigid metal wheels tested in near-saturated clay and air-dry sand, respectively. Mathematical expressions were developed that combine the independent soil and tire parameters into dimensionless forms that correlate closely with dimensionless tire performance coefficients: pull/load (P/W), sinkage/diameter (z/d), torque/load times active radius (M/Wr_a) , all at 20 percent slip or near the maximum pull point, and towed force/load (P_m/W) .

One basic prediction term $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$ was shown to predict the in-sand performance of pneumatic tires (of both circular and rectangular cross sections) with useful accuracy for a broad range of values of soil strength (penetration resistance gradient G), tire section width and diameter (b and d, respectively), wheel load (W), and tire deflection

(δ/h). A basic prediction term $\frac{\text{Cbd}}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1 + (b/2d)}$ (where C = soil peretration resistance, an indicator of soil strength) accomplished a similar objective for pneumatic tires in clay.

Alternative prediction terms $\frac{G(bd)^{3/2}}{W} \cdot \left(1 - \frac{\delta}{h}\right)^{-1}$ for sand and $\frac{Cbd}{W} \cdot \left(1 - \frac{\delta}{h}\right)^{-2} \cdot \frac{1}{1 + (b/2d)}$ for clay predicted P/W performance (at 20 percent slip) for pneumatic tires with only slightly less accuracy than the basic prediction terms; these alternative terms predicted the P/W performance of tires of very small deflection values (δ/h) less than 0.03) more accurately than the basic prediction terms. Other alternative prediction terms $\frac{Gbd^2}{W} \cdot \left(1 - \frac{2\delta}{d}\right)^{-8}$ and $\frac{Cb^{1/2}d^{3/2}}{W} \cdot \left(1 + \frac{4\delta}{d}\right)^{4}$ eliminate one tire dimension (section height h) included in the prediction terms above. They predict P/W performance for pneumatic tires almost as well as the basic and alternative prediction terms mentioned above, and they predict P/W performance for essentially nondeflected

tires better than any other prediction terms examined herein.

Hard-surface contact area A_c can be incorporated into a useful dimensionless prediction term for pneumatic tires operating in sand $\left[G(A_c)^{3/2}/W\right]$. A_c appears considerably less effective in delineating the effects of tire geometry on pneumatic tire performance in clay.

Increasing wheel translational velocity V_W (in the <1 to 18 ft/sec range) significantly increases the P/W performance of pneumatic tires both in sand and in clay. The effect appears independent of tire size in sand and is size dependent (inversely related) in clay. Empirically developed dimensionless terms $(150V_W/V_{s!i})^{1/2}$ and $[0.1(V_W/b)/(V_S/d_S)]^{0.092}$ attached as multiplicative factors to $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$ and $\frac{Cbd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1+(b/2d)}$, respectively, effectively collapse the P/W versus prediction term relations to single central lines. (In the terms above V_{sh} is soil shear wave velocity, V_{sh} is standard penetration velocity, and V_{sh} is diameter of a standard cone.)

Slight differences between the P/W versus $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$ relations for two air-dry, coarse-grained soils (Yuma and mortar sand) indicate that sand-tire interactions are influenced somewhat by sand properties not measured by penetration resistance gradient G . Adjusting values of G for mortar sand to G values for Yuma sand on the basis of relative density effectively eliminated differences between the central relations.

Flooding the surface of a near-saturated, fine-grained soil reduces the P/W performance of pneumatic tires with tread or traction aid (attached steel or rubber cleats) considerably, and that of smooth tires by an even larger amount. Type of tread had more influence on P/W for the unflooded than the flooded condition, but only the tire with traction aid significantly outperformed the smooth tire in the unflooded environment.

An analysis of multiple-pass tests illustrates that single-wheel pneumatic tire performance in sand on the second and third passes is related to $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$, although the relation is not the same as that for the first pass. It is shown that the performance of wheeled vehicles on coarse-grained soils can be predicted using a relation based on the single-wheel, multiple-pass relations. Multiple-pass, single-wheel laboratory tests in a near-saturated fine-grained soil indicate that traffic negligibly influences pneumatic tire performance.

Field tests of wheeled vehicles produced pull performance significantly worse than that obtained in the laboratory, largely because of the negative influence of several largely uninvestigated factors-primarily irregular soil profiles, slipperiness (for fine-grained soils),

operating chara teristics peculiar to a wheeled vehicle (as opposed to a single wheel), and several others discussed in the text.

Basic prediction terms $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$ and $\frac{Cbd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2}$. $\frac{1}{1+(b/2d)}$ adequately collapse large blocks of field pull-performance data for wheeled vehicles in sand and clay, respectively, to central relations. These relations are sufficiently well defined and broadly based to provide the basis for a tentative wheeled vehicle performance prediction system (e.g. immobilization load, load required to produce maximum pull, maximum slope climbable, etc., can be predicted) and a method of designing tires to satisfy particular off-road situations. Parts III and IV of the report develop and describe these relations, and Appendix B illustrates several applications.

Appendix A describes the techniques used in this report to compute sand strength, wheel load, and pneumatic tire sinkage. These and every other parameter discussed herein were each measured by a consistent method to allow data from a variety of sources to be described on a common basis.

PERFORMANCE OF SOILS UNDER TIRE LOADS

APPLICATION OF TEST RESULTS TO TIRE SELECTION FOR OFF-ROAD VEHICLES

PART I: INTRODUCTION

Background

1. Until the early 1960's, research in the United States in vehicle mobility was confined largely to experimental testing of full-sized vehicles on natural terrain surfaces to develop approximate relations between vehicle performance and terrain conditions for use by military commanders in the field. In 1960, following a study of the status of mobility research in the United States by an ad hoc committee appointed by the Chief of Research and Development, U. S. Army, authority was granted the U. S. Army Engineer Waterways Experiment Station (WES) to equip a modern laboratory and initiate a long-term program in vehicle mobility research. Since then, many systematic tests have been performed with single pneumatic tires in controlled-soil conditions, and certain peripheral studies have been conducted that were designed to further a basic understanding of tire-soil interactions. Additionally, a limited number of vehicle tests have been conducted in the laboratory, and results of a large number of field vehicle tests have been analyzed on the basis of relations developed from the laboratory test data.

Purpose and Scope

2. The basic purpose of the study reported herein is to provide a rational means for selecting tires for off-road vehicle use. Two types of soils were considered: those that derive essentially all their strength from cohesion and those that gain nearly all their strength from friction. (These soil types generally cause more severe mobility problems for wheeled vehicles than do soils whose strength results from a combination of cohesion and friction.) For each of the two types of soil, one basic dimensionless term has been developed that can be used

to quantitatively describe the effects on wheeled vehicle tractive performance of wheel load, soil strength, tire size, tire shape, and tire deflection (in lieu of inflation pressure) for a very broad range of soil-tire conditions commonly encountered in the field. Additionally, for each soil type, at least two dimensionless terms are presented that have some advantage over the basic terms in predicting the performance of tires and wheels of particular, unusual configurations (e.g. very small tire deflections, tires or wheels with no measurable section heights, etc.).

- 3. The prediction terms were developed primarily from a distillation of data obtained in single-wheel tests under the program "Performance of Soils Under Tire Loads," sponsored by the U. S. Army Materiel Command. However, to the extent possible, the results of tests in natural soils with actual vehicles have also been analyzed, and the prediction techniques for laboratory data have been altered as necessary to satisfy the field-prototype vehicle situation.
- 4. Tire performance was measured in terms of four dependent parameters: (a) pull, (b) sinkage, and (c) torque--all at near the maximum-pull point; and (d) the force required to tow the unpowered wheel.

Definitions

5. Certain terms that facilitate analysis of data and communication of test results are rigorously defined in Report 1 of this series. Only those additional terms that are considered essential to this report are defined below.

A CONTRACTOR OF THE ACCUSATION AND A CONTRACTOR OF THE STATE OF THE ST

a. Active radius (r_a) ,* in.**: The undeflected tire radius r minus half the deflection δ of the tire loaded on a

^{*} Since reference 1 was published, it has been determined that relations between dimensionless prediction terms (composed of functions of the independent tire, soil, and system parameters) and the torque coefficient are improved if active radius r_a is used in place of diameter in the torque coefficient, i.e. $\frac{M}{Wr_a}$ is preferred to $\frac{M}{Wd}$.

^{**} A table of factors for converting British units of measurement to metric units is given on page xi.

- hard, rigid surface, i.e. half the diameter minus deflection $\left(\frac{d-\delta}{2}\right)$. Empirically obtained, r_a is a significant measurement since tire rolling circumference measured on a hard surface is very closely approximated by the quantity $2\pi \cdot \frac{d-\delta}{2}$.
- b. Penetration resistance gradient (G), psi/in.: For coarse-grained soils (sands), the slope of the curve of penetration resistance (for a 0.5-sq-in.-base-area, 30-deg-apex angle, right circular cone at 72-in./min penetration speed) versus depth, averaged over that depth within which changes in soil strength significantly affect tire performance (usually taken as 6 in.).
- c. Towing force (maximum drawbar pull), lb: The maximum sustained towing force a self-propelled vehicle can produce at its drawbar under given test conditions. (Note: Towing force-load ratio approximates maximum slope negotiable.)
- d. Nominal dimensions from tire size designation:
 - (1) Conventional, circular-cross-section pneumatic tires:
 - (a) Section width (b), in. Maximum outside width of the cross section of the inflated, but unloaded, tire. Nominally specified by the first number in the tire size designation, e.g. 9.00 in the 9.00-14 tire.
 - (b) Nominal rim diameter, in. Diameter measured from shoulder to shoulder of the rim. Given as the second number in the tire size designation, e.g. 14 in the 9.00-14 tire.
 - (c) <u>Diameter (d)</u>, in. Outside diameter of the inflated, but unloaded, tire. For circular-cross-section tires, nominal rim diameter plus twice the section width usually overestimates diameter d of a buffed-smooth tire somewhat (usually by some 5 to 20 percent).

(2) Rectangular-cross-section pneumatic tires:

- (a) <u>Diameter (d)</u>, in. An approximation of tire diameter d (defined above) that is specified by the first number in the size designation, e.g. 16 in the 16x15.00-6 tire.
- (b) Section width (b), in. An approximation of tire section width b (defined above) that is given by the second number in the tire size designation, e.g. 15.00 in the 16x15.00-6 tire.
- (c) <u>Nominal rim diameter</u>, in. An approximation of rim diameter (defined above) that is listed as the third number in the tire size designation, e.g. 6 in the 16x15.00-6 tire.
- e. <u>Immobilization point:</u> That point at which wheel load becomes too large and/or soil strength too weak to allow a tire of given size and deflection to develop positive pull.

PART II: PREDICTING IN-SOIL, SINGLE-WHEEL PERFORMANCE

6. To measure the effectiveness of the wheel as a traction and/or transport element and to determine quantitatively the effects on tire performance of the parameters that describe the soil-tire system, the wheel was isolated and tested as a separate entity. Several dynamometer carriages were constructed to accommodate a large variety of tire sizes and wheel loads, and laboratory tests were conducted in which a broad range of values of soil strength, tire size, tire shape, wheel load, and speed were systematically varied.

Parameters Considered

- 7. A dimensional analysis² of the performance of single, pneumatic tires in soft soils determined that the four dependent tire performance parameters of primary interest (paragraph 4) are related to independent tire, soil, and system parameters in dimensionless form as follows:*
 - a. For the pull coefficient:

$$\frac{P}{W} = f'\left(\frac{\delta}{h}, \frac{b}{d}, \frac{h}{d}, \emptyset, s, f, \frac{c\ell^2}{W}, \frac{\gamma\ell^3}{W}, \frac{v^2}{g\ell}, \frac{W}{b\ell V}\right)$$

b. For the sinkage coefficient:

$$\frac{z}{d} = f''\left(\frac{\delta}{h}, \frac{b}{d}, \frac{h}{d}, \emptyset, s, f, \frac{c\ell^2}{V}, \frac{\gamma\ell^3}{W}, \frac{V^2}{g\ell}, \frac{W}{b\ell V}\right)$$

c. For the torque coefficient:

$$\frac{M}{Wr_0} = f''' \left(\frac{\delta}{h}, \frac{b}{d}, \frac{h}{d}, \emptyset, s, f, \frac{c\ell^2}{W}, \frac{\gamma \ell^3}{W}, \frac{V^2}{g\ell}, \frac{W}{b\ell V} \right)$$

d. For the towed force coefficient:

^{*} For definition of terms see Notation, page ix.

$$\frac{P_{T}}{W} = f^{HH} \left(\frac{\delta}{h}, \frac{b}{d}, \frac{h}{d}, \frac{h}{d}, \emptyset, s, f, \frac{ct^{2}}{W}, \frac{\gamma t^{3}}{W}, \frac{\gamma^{2}}{gt}, \frac{W}{btV} \right)$$

- 8. The 10 dimensionless pi terms in parentheses in each of the relations above are considered sufficient to describe practically any tire-soil-system arrangement if these independent pi terms are properly combined. Test controls and simplifying assumptions can be used to reduce to a much smaller value the number of independent pi terms that must be considered for a particular situation. In published reports to date, the four dependent pi terms have been related to the independent pi terms in two environments, in each of which only three independent pi terms had to be considered:
 - a. For saturated, highly plastic, essentially purely cohesive clay:

(1)
$$\frac{P}{W} = f'\left(\frac{c\ell^2}{W}, \frac{b}{d}, \frac{\delta}{h}\right)$$

(2)
$$\frac{z}{d} = f'' \left(\frac{c\ell^2}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

(3)
$$\frac{M}{Wr_a} = f''' \left(\frac{c \ell^2}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

(4)
$$\frac{P_T}{W} = f'''' \left(\frac{c \ell^2}{W}, \frac{b}{c!}, \frac{\delta}{h} \right)$$

b. For air-dry, essentially purely frictional sand:

(1)
$$\frac{P}{W} = f' \left(\frac{G \ell^3}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

(2)
$$\frac{z}{d} = f'' \left(\frac{G \ell^3}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

(3)
$$\frac{M}{Wr_{a}} = r^{m} \left(\frac{G\ell^{3}}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

(4)
$$\frac{P_T}{W} = f'''' \left(\frac{G \ell^3}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

Laboratory Single-Wheel Test Program

Laboratory test soils and their characteristics

9. The principal soils used in this laboratory program were a

fine, air-dry, essentially frictional desert sand (Yuma sand) and a saturated, highly plastic, essentially purely cohesive fat clay. A second coarser-grained, air-dry, frictional riverbed sand (mortar sand) was used for a limited number of tests. Grain-size distribution curves for these three soils are presented in fig. 1.

MORTAR SAND YUMA SAND CLAY

Fig. 1. Grain-size distributions of the laboratory test soils

10. Strength of each of the three test soils was characterized in the relations reported herein from data obtained in standard 72-in./min penetration tests with the WES 0.5-sq-in. circular-base-area, 30-deg-apex-angle cone. Test beds of both Yuma and mortar sands were constructed such that values of cone index (i.e. penetration resistance in pounds divided by cone base area) increased linearly with depth, as illustrated by fig. 2a for Yuma sand. Penetration resistance gradient G (i.e. the slope of the linear portion of the penetration resistance versus depth curve) characterized the strength of sand. Test beds of clay were constructed such that values of cone index remained essentially constant as depth of penetration increased (fig. 2b). Average

Fig. 2. Sample recordings of cone penetration tests

cone index C in the top 0- to 5-in. layer was used to describe clay soil strength.

- 11. Several experimenters have shown that for cohesionless, dry sand friction angle \emptyset is proportional to density γ . 4,5 Thus, \emptyset was eliminated as a separate parameter in paragraph δ . Also, it has been determined that penetration resistance gradient G is directly related to and is a sensitive indicator of density γ of a frictional soil. Parameter G, then, was indicated sufficient to describe frictional soil characteristics attributable to both \emptyset and γ , and G has been used to describe the effects of \emptyset and γ in earlier reports. 2,3 For purely cohesive soils, cone index C is considered to represent soil cohesion c. Detailed laboratory tests have demonstrated that for saturated, weak, essentially frictionless soils (values of C up to about δ 0) a well-defined linear relation exists between cone index and cohesion.
- 12. For the laboratory frictional sand soils, the value of penetration resistance gradient G changed under the influence of tire traffic. In every case, however, the before-traffic measure of G was used to describe the strength of a sand test section. For the laboratory clay soil, it was determined that the cone index value is virtually unaffected either by changes in wheel slip or by tire traffic (for at least five passes, as were routinely made in the laboratory tests). For the laboratory tests, cone index measurements were usually taken at three locations for each of passes O (i.e. before traffic), 1, 2, and 5. The cone index value reported herein is the average of values measured for all of these locations and passes (usually a total of 12 measurements). This value is considered to be a reasonable characterization of soil strength within the overall length of the test lane and may be related to either a single pass or multiple passes of a wheel.

Test techniques

13. Most WES laboratory tests of pneumatic tires in sand and in clay have been conducted as programmed-increasing-slip tests. This technique produces a wealth of information per test. Furthermore, the results obtained at any particular value of slip in a programmed-slip test

in either sand or clay are essentially the same as those that would be developed in a corresponding constant-slip test, if the value of wheel pull is corrected to account for the effect of the inertial force (F = ma) caused by the constant deceleration of the dynamometer carriage during the test run. A detailed description of the programmedincreasing-slip test technique and the correction that is now made for this inertial effect is given in Appendix A. Unfortunately, the need for an ma correction was not recognized early in the test program, and a number of tests were conducted in which no instrumentation was present to measure ma. Examination of ma values from later tests (fig. A6 of Appendix A) shows that in rat clay, ma values are quite small (none greater than 8 lb for even the largest tire tested) and are relatively independent of both tire size and wheel load. In sand, only one ma value greater than 7 percent of wheel load was obtained; and in clay, no ma value greater than 4 percent of wheel load was obtained. Patterns of ma versus load are not sufficiently well defined, however, to establish a reliable a posteriori ma correction for those early tests in which ma was not measured. Throughout this report, wheel pull obtained in a constant-slip or constant-pull test (no ma correction is needed) or in a programmed-increasing-slip test with the proper ma correction is denoted as P (and P_{ϕ} for a towed test); wheel pull that includes $\,$ ma $\,$ as part of its value is designated $\,$ P' (and $\,$ P' $\,$ for the towed point). The values of P' and P' are algebraically equal to or greater than P and P_{m} , respectively.

14. The programmed-increasing-slip technique produces pull-slip and torque-slip curves that have characteristically different shapes for sand and clay (figs. 3a and 3b). In particular, the influence of the shapes of the pull-slip curves on the selection of where the near-maximum pull condition should be sampled is quite important. For cohesionless sand, the value of pull usually peaks at about 20 percent slip, then decreases gradually as values of slip increase over a broad range, and finally increases again at very large values of slip. For friction-less clay, the value of pull increases rapidly to a value of slip slightly less than 20 percent, and then increases very slowly as values

The same of the sa

Fig. 3. Sample pull-slip and torque-slip curves

of slip continue to increase. For single-wheel laboratory tests in both sand and clay, the near-maximum-pull condition is characterized in this report by data leasured at 20 percent slip.

Test tires and test results

- 15. Characteristics of the pneumatic tires used in this report to study single-wheel laboratory performance in sand and in clay are presented in table 1. A few laboratory tests were made with rigid wheels in sand and with a solid rubber tire in clay; descriptions of these wheels also are given in table 1.
- 16. Results of the single-wheel laboratory tests in sand that are examined herein are summarized in tables 2-5, 9, and 10; those of singlewheel tests in clay are found in tables 6-8. Data from wheeled vehicle tests conducted in the laboratory (in sand) are presented in table 11; data from vehicle tests made in the field are listed in tables 12 and 13 for sand and 14 and 15 for clay. Except for the results listed in tables 4 and 8, all of the data examined herein were extracted from earlier WES reports of these tests. The same degree of precision was not used in all of the source reports in measuring all of the parameters examined herein. This report attempts to present values of each parameter (from laboratory tests) measured in a uniform way that is similar to that possible in the field. In particular, tire deflection measurements reported herein are those measured on an unyielding, flat surface prior to testing; reported soil strength measurements describe the beforetraffic condition (and the during-traffic condition for clay - see paragraph 12); and wheel load values are those measured in the soil at the same instant that the dependent parameters were measured. (Wheel load was applied pneumatically for most of the laboratory tests, and its value varied slightly during each test run.) A single technique was used to obtain penetration resistance gradient G for coarse-grained soils, as opposed to several types of measurements used in the source reports. Appendix A describes the several approximations of G , and the means used to transform them to the true gradient (or slope) of the cone index versus penetration depth curve. Appendix A also describes

the consistent method by which values of tire sinkage were obtained for this report.

Tires and Wheels in Sand

Basic prediction term

The state of the s

- 17. The dimensional analysis in references 2 and 3 combined three independent pi terms--Gl³/W, b/d, and δ/h --on the basis of their relation to four dependent pi terms--P'/W , z/d , M/Wr $_{a}$, and P $_{T}^{\prime}/W{--}\text{to}$ $\frac{G(bd)^{3/2}}{U} \cdot \frac{\delta}{h}$, referred develop a single dimensionless prediction term, to in those reports as the sand mobility number and hereafter in this report as the basic prediction term for sand. The basic prediction term was developed using data from single-wheel laboratory tests conducted in one soil (air-dry Yuma sand) at a single + anslational velocity (approximately 5 ft/sec) with four tires of one general shape (conventional, circular-cross-section tires with d/b ratios in the 3 to 8 re ge). These four basic test tires were the 4.00-7, 2-PR; 4.00-20, 2-PR; 6.00-16, 2-PR; and 9.00-14, 2-PR (fig. 4a). Test data for two 1idation test tires, a 1.75-26 bicycle tire and an 11.00-20, 12-PR tire (fig. 4b), confirmed that relations developed for the basic test tires could also be used for conventional tires with very large values of d/b and large values of d and b, respectively. A later study examined the ability of the basic prediction term to predict the performance of five tires whose cross-sectional shape was roughly rectangular (as opposed to the circular cross sections of the conventional tires) and whose d/b values ranged from 1 to 2.5.7 The effectiveness of the basic prediction term in predicting P'/W , z/d , M/Wr $_{\mathbf{a}}$, and P $_{\mathrm{T}}^{*}$ for the basic test tires, the validation test tires, and the tires in reference 7 is illustrated in plate 1.
- 18. In addition to b and d, each of the other parameters included in the basic prediction term was tested over a broad range of conditions. Values of G ranged from 2.3 to 27.7 psi/in., virtually the entire range of interest in wheeled vehicle mobility problems. Most

a. Basic test tires

b. Validation test tires

Fig. 4. Basic and validation test tires

of the data were obtained from tests in which penetration resistance increased linearly to the 11- to 12-in. depth; for the 11.00-20, 12-PR tire tests, penetration resistance increased linearly to only the 8-in. depth. Also, test data not included herein, but reported in reference 3, demonstrated that the basic prediction term predicted pneumatic tire performance quite well for tests in which penetration resistance increased linearly to even lesser depths (6 in. for the 9.00-14, 2-PR tire and 7 in. for the 16x15.00-6, 2-PR tire). Values of load in plate 1 ranged from 100 to 1350 lb and values of δ/h from 0.15 to 0.35.

19. For three of the four relations presented in plate 1, all of the data points intermingle within a narrow scatter band, strongly indicating that the basic prediction term can be used to predict in-sand pneumatic tire performance for a very broad range of tire, soil, and load conditions. The basic prediction term versus torque coefficient relation appears to separate as a function of tire shape, with the circuar-cross-section tires (open symbols) requiring a slightly smaller value of torque coefficient than the rectangular-cross-section tires (closed symbols) at corresponding values of the basic prediction term. For most applications, this deficiency is considered minor, since the separation by tire shape is slight, and torque coefficient is less sensitive to changes in the basic prediction term than any of the other three performance coefficients. (Depending on the accuracy required, the user could characterize the relation by a single central line (i.e. a line of best fit) or by the two lines in plate lc.) As shown in plate 2, the relations between the basic prediction term and P/W and P_m/W (pull and towed force coefficients whose values have been corrected to take into account the influence of inertial effects; see Appendix A) are described by data that lie within narrow scatter bands, i.e. the basic prediction term is closely related to P/W and P_m/W . Taken together, the relations in plates 1 and 2 demonstrate that the basic prediction term is sufficiently closely related to the four performance coefficients to allow useful predictions of tire performance. Alternative prediction terms

20. The basic prediction term $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$ is considered to

provide more accurate predictions of in-sand pneumatic tire performance for tire-soil conditions routinely encountered in the field than are provided by any other available term. Alternative terms have been developed, however, that are more useful for particular, special situations. The effectiveness of these terms is examined herein only on the basis of their ability to predict near-maximum pull coefficient; conclusions made on this basis also generally apply to the effectiveness of the alternative terms in predicting the other three performance coefficients—sinkage, torque, and towed force.

21. $\frac{G(\text{bd})^{3/2}}{W} \cdot \left(1 - \frac{\delta}{h}\right)^{-l_1}.$ This term was developed in the same way as the basic prediction term, except that $1 - \frac{\delta}{h}$ was used in place of δ/h . This was done primarily to obtain a term that could predict the in-sand performance of tires or wheels with deflection values near or equal to zero. The need for an alternative prediction term for this situation is demonstrated in plate la; for $\delta/h \approx 0$ the value of the basic prediction term is approximately zero, and the relation in plate la predicts a negative value of P'/W . Analysis in paragraph 22 shows this prediction to be in error, since relatively large positive values of P'/W were obtained in several tests of rigid metal wheels $\left(\frac{\delta}{h} \approx 0\right)$.

22. Data from tests of rigid wheels were used in the development of $\frac{G(\mathrm{bd})^{3/2}}{W} \cdot \left(1 - \frac{\delta}{h}\right)^{-1}$ because no single-wheel tests have been conducted in sand at the WES with pneumatic tires at values of δ/h less than 0.15. Because the rigid wheels experienced essentially zero deflection under the test loads used, it was possible to assign to each of them a value of $1 - \frac{\delta}{h} = 1.0$. If the performance of tires (or wheels) with zero deflection and with $\delta/h = 0.15$ can be predicted by a given prediction term, it is reasonable to expect that this term can also be used to predict the performance of tires with values of δ/h in the 0 to 0.15 range. Plate 3a shows data from the same tests represented in plate 1, together with test data for the three rigid wheels, to illustrate the effectiveness of this modified prediction term in predicting

near-maximum pull. The pneumatic tire test data were obtained at 20 percent slip, aid those for the rigid wheels at 25 percent slip; the influence of this slight deviation on the relation is considered negligible. The penetration resistance gradient G for each pneumatic tire test is characterized by the average of several pretest measurements for that particular test; only one value of G was reported $^{\delta}$ to describe the strength of the several sand sections in which the rigid wheels were tested. This undoubtedly contributed to the scatter of the rigid-wheel data, but did not obscure the trends in plate 3a. This alternative prediction term collapses all the pneumatic tire data to a single relation almost as well as the basic prediction term did in plate 1. However, using the modified term to collapse the rigid-wheel data to the same relation as the pneumatic tire data was only partially successful. Data for the 6- by 28-in. and 12- by 28-in. wheels fall generally within the scatter band of the pneumatic tire data, but appear to develop values of P'/W slightly on the low side for large values of the alternative prediction term. The alternative term predicts values of P'/W for the 3- by 28-in. wheel significantly larger than those of the remaining tires and wheels. Plate 3b shows the same relation as plate 3a, using only wheel pull data either unaffected by or corrected for inertial ef-

fects. Thus, $\frac{G(bd)^{3/2}}{W} \cdot \left(1 - \frac{\delta}{h}\right)^{-4}$ can be considered a useful term for predicting the in-sand, near-maximum pull performance of pneumatic tires with a very broad range of values of b , d , and $1 - (\delta/h)$; however, care must be exercised in using this term to predict the performance of tires and wheels having very small values of both δ/h and b/d. Generally speaking, this combination of characteristics should be avoided in the design of a tire or wheel for mobility purposes, so this restriction in the use of this alternative prediction term is not severe.

23. $\frac{\text{Gbd}^2}{\text{W}} \cdot \left(1 - \frac{2\delta}{\text{d}}\right)^{-8}$. This term was developed in a performance evaluation of wheels for lunar vehicles, wherein a prediction term was sought that would relate data for preumatic wheels, rigid wheels, and metal-elastic wheels equally well. A desirable feature of this

prediction term was the elimination of the term h (paragraph 21), thereby (a) permitting the tire or wheel to be described by one less term, and (b) allowing the prediction of performance for tires or wheels that do not have section heights. Five basic wheels (fig. 5) were tested under very light loads (15 to 150 lb) in air-dry and in moist Yuma sand. Several prediction terms were tried and tested (by plotting them versus performance coefficients from all the lunar study tests), the visual lines of best fit were drawn, and the scatter of the data was

observed. $\frac{\text{Gbd}^2}{\text{W}} \cdot \left(1 - \frac{2\delta}{d}\right)^{-8}$ was selected as the most effective prediction term for the conditions of the study. Practically all of the tests in the lunar study were described by values of this prediction term larger than 1000 (and up to 23,000), primarily because of the very light wheel loads. Normal earthbound loading of wheels produces much smaller values of this prediction term, as demonstrated in plate 4a, where the data for pneumatic tires intermingle and lie within a scatter band only slightly larger than that in plate 1a. Taken together, the rigid-wheel data lie somewhat higher than the pneumatic tire data at values of the prediction term less than about 150 and slightly lower than the pneumatic tire data at higher values of the prediction term. However, data for the 3- by 28-in, wheel lie much more nearly within the scatter band in plate 4a than they do in plate 3a; and, taken as a whole, the P'/W values of the rigid wheels appear to more nearly fit the cen-

tral relation for pneumatic tires when predicted by $\frac{Gbd^2}{W} \cdot \left(1 - \frac{2\delta}{d}\right)^{-8}$ than when predicted by $\frac{G(bd)^{3/2}}{W} \cdot \left(1 - \frac{\delta}{h}\right)^{-4}$. Plate 4b demonstrates

that the former prediction term is closely related to P/W; comparison of plates 4a and 4b shows that slightly smaller algebraic values of P/W than of P'/W are obtained for corresponding values of this prediction term.

24. In summary, $\frac{\text{God}^2}{\text{W}} \cdot \left(1 - \frac{2\delta}{\text{d}}\right)^{-8}$ predicts in-sand pneumatic tire performance for a wide range of tire shapes, sizes, and deflections with reasonable accuracy and predicts rigid-wheel performance with

Fig. 5. Basic wheels tested in study of wheels for lunar vehicles

better accuracy than any other term examined. Also, a tire or wheel described within this prediction term need not have a section height. Data from tests of times with small values of δ/h (i.e. in the 0.01 to 0.10 range) are needed to determine this term's effectiveness for the small-deflection condition.

- 25. $\frac{G}{W} \cdot A_c^{3/2}$. Because the sponsor of the lunar studies expressed an interest in evaluating the effects of tire or wheel contact pressure on performance, a functional relation was developed that incorporated the parameter $\frac{P}{W} = f\left(\frac{G}{W} \cdot A_c^{3/2}\right)$, where A_c is hard-surface contact area. Since the hard-surface print of a rigid wheel is a line and does not exhibit a measurable contact area, data for only the pneumatic tires are used in plate 5. The P/W versus $\frac{G}{W} \cdot A_c^{3/2}$ relation appears better defined by the test data than corresponding relations of either of the two alternative prediction terms considered earlier (compare plate 5 with plates 3b and 4b). Thus, the effectiveness of $\frac{G}{W} \cdot A_c^{3/2}$ in predicting pull/load is considered at least on a par with the two other alternative prediction terms for sand.
 - 26. Prediction term $\frac{G}{W} \cdot A_c^{3/2}$ possesses several disadvantages:
 - a. Its form does not permit evaluation of the effects caused by changes in tire deflection, tire width, or tire diameter.
 - <u>b</u>. Rigid-wheel performance cannot be described by this term, and data are not available to determine its effectiveness in the $\delta/h = 0.01$ to 0.14 range.
 - <u>c</u>. Measurement A_c varies as a function of a number of parameters--b , d , W , δ/h (in lieu of inflation pressure), carcass stiffness, etc.--and extensive listings of A_c for various tire loading conditions are not routinely supplied by tire manufacturers.

On the other hand, this prediction term can be profitably used if the user has available to him an accurate measurement of $A_{\rm c}$ (this can be obtained easily by coating the tire with a marking liquid and measuring

the print area produced on a flat, unyielding surface by the loaded, inflated tire).

27. Summation. Each alternative prediction term— $\frac{G(bd)^{3/2}}{W}$. $\left(1-\frac{\delta}{h}\right)^{-1}$, $\frac{Gbd^2}{W}$. $\left(1-\frac{2\delta}{d}\right)^{-8}$, and $\frac{G}{W}$. $A_c^{3/2}$ —predicts pneumatic tire performance in coarse-grained soils with useful accuracy; and the second term, in particular, predicts rigid—wheel performance quite well.

The basic prediction term $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$ predicts the performance of pneumatic tires with circular and rectangular cross sections and δ/h values in the range normally used (and recommended) with better accuracy than any other prediction term examined; thus, this term is used in all remaining considerations of in-sand tire performance in this report. Effects of velocity

- 28. The tests used to develop the foregoing relations were all conducted at speeds of 5 to 6 ft/sec. To determine whether wheel translational velocity $V_{\overline{W}}$ affects pneumativitire performance in alr-dry sand, constant 20 percent slip tests were conducted with two tires whose major dimensions scaled almost exactly 2:1--the 9.00-14, 2-PR and 4.00-7, 2-PR tires. Tests were made at one deflection condition ($\delta/h = 0.25$) over a very broad range of wheel loads (44 to 1432 lb) and at design values of V, from 0.8 to 18 ft/sec. A few programmed-increasing-slip tests also were conducted with the 9.00-14, 2-PR tire at $V_{tr} = 5$ ft/sec. The basic prediction term was used to consolidate the data. The value of pull coefficient P/W increased progressively as V, increased, and the same central line could be used to describe the relation of P/W to the basic prediction term for both tires at three widely different values of V_{u} , i.e. 1.25, 5, and 13 ft/sec (plate 6). That P/W data for tires of considerably different linear measurements collapse to one central relation for three markedly different values of $V_{_{\mathbf{t}\mathbf{t}}}$ suggests that the effects of velocity on tire performance do not scale according to tire size.
- 29. One means whereby the basic prediction term might be adjusted to account for the effects of wheel velocity while retaining the term's

dimensionless character is to relate wheel translational velocity V. to some characteristic velocity associated with the test material (i.e. air-dry Yuma sand). A literature search revealed that shear wave velocof an air-dry sand is logarithmically related to the vertical stress beneath the periphery of a rigid footing (termed confining pressure) when the footing is loaded transiently. 10 For the investigated cases in reference 10, confining pressure was calculated at a specified depth beneath the surface of the rigid footing throug' use of a Newmark chart. The conditions of the transient-load tests of a footing are approximated by loading the soil with a moving wheel; thus, estimates of shear wave velocities generated by wheels can be obtained by procedures similar to those in reference 10. Confining pressures were computed for the 4.00-7 and 9.00-14 tires for all test loads at a depth equal to their respective tire widths, by using known properties of the Yuma sand (dry density and void ratio were the principal soil properties), a rectangular approximation of tire contact area, and the procedures in reference 10. Corresponding values of shear wave velocity $V_{\rm sh}$ were computed, and the relation in fig. 6 was produced. This procedure was rather long and tedious; a very close approximation of confining

Fig. 6. Approximate relation of shear wave velocity to confining pressure for Yuma sand

pressure at a depth equal to the tire width was also obtained simply by dividing hard-surface contact pressure by 3.4 (note similarity of values of confining pressure by the two methods in table 4). A study of the relation between shear wave velocity $V_{\rm sh}$ and wheel translation velocity $V_{\rm w}$ relative to their influence on the pull coefficients of the

tires produced the dimensionless prediction term $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$

$$\left(\frac{150V_{\rm w}}{V_{\rm sh}}\right)^{1/2}$$
 . The ability of this term to delineate the effects of

wheel velocity is illustrated in plate 7, where the same central line shown in plate 2a describes the relation.

30. In summary, an estimate of shear wave velocity $V_{\rm sh}$ for airdry Yuma sand was computed by the relation in fig. 6, where confining pressure at a depth equal to the tire width was estimated as hard-

surface contact pressure/3.4; and the prediction term $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$

 $\cdot \left(\frac{150V_{\rm w}}{V_{\rm sh}}\right)^{1/2}$ was shown to account quite effectively for the influence of

wheel translational velocity $V_{_{\mathbf{W}}}$ on tire performance. This procedure lacks thorough grounding with respect to a detailed consideration of the types of forces that are introduced by changes in wheel velocity and that influence the tire performance results obtained. The prediction term in plate 7 shows promise of wide applicability; however, caution is advised in its use until a more rigorous evaluation of the effects of wheel velocity is made.

Effects of soil type

31. Fewer single-wheel tests have been conducted in air-dry mortar sand than in Yuma sand. Data taken from table 5 and presented in plate 8a are sufficient, however, to demonstrate that consistently smaller values of pull coefficient are developed by tires at 20 percent slip in mortar sand than in Yuma sand for corresponding values of the basic prediction term. Thus, parameter G apparently is not sufficient to account for the effect of both friction angle \emptyset and density γ (paragraph 11).

32. The relation between penetration resistance gradient G and relative density D_r for three air-dry, coarse-grained, essentially cohesionless soils (including the Yuma and mortar sands) has been studied at the WES. The a given value of D_r, mortar and Yuma sands exhibit different values of G, as shown in fig. 7, developed from reference 11. Mortar sand G values were converted to corresponding Yuma sand G values by means of their relative density values, and then the new G values were used to plot the mortar sand test results (plate 8b). The central line of this plot is the same as that in plate 2a, indicating that the Yuma sand and mortar sand test results can be described by the same relation if relative density is used as a base. Use of the above-described technique to account for differences in soil type for air-dry, coarse-grained soils appears promising; however, caution is advised in applying it until further validation can be made.

Tires and Wheels in Clay

33. Single-wheel, multipass tests in laboratory near-saturated clay produced values of soil strength that remained essentially constant under tire traffic (paragraph 12). Accordingly, pull, torque, and towed force also remained near constant from pass to pass; whereas, sinkage increased after the first pass by an ever-decreasing amount, with second-pass sinkage usually only slightly larger than that on the first pass. Values of pull, torque, and towed force reported for each single-wheel test in clay are values averaged from all passes; sinkage values reported are those obtained on the first pass.

Basic prediction term

and the second of the second o

34. In a manner similar to that used for pneumatic tires in sand, dimensional analysis combined three independent pi terms--Cl²/W , b/d , and δ/h --on the basis of their relation to four dependent pi terms--P'/W , z/d , M/Wra , and P'/W--to develop a single dimensionless term, $\frac{\text{Cbd}}{\text{W}} \cdot \left(\frac{\delta}{\text{h}}\right)^{1/2}$, referred to in reference 2 as the clay mobility number. The relations between this term and P'/W , z/d , M/Wra ,

Fig. 7. Relation between relative density and penetration resistance gradient

- and P_n^*/V , respectively, are illustrated in plate 9. The data are from the same single-wheel laboratory tests that were examined in reference 2 for five of the six circular-cross-section tires; the two tests with the 1.75-26 bicycle tire were conducted after reference 2 was written. The clay mobility number is closely related to the four dimensionless performance terms. Note that scatter of the data increases for the relations of the clay mobility number to the pull, torque, and towed force coefficients as the values of the mobility number increase (and as value of wheel load decreases for a given combination of tire size and soil strength). The influence of the inertial force included as part of the P^{\bullet} and P^{\bullet}_{T} measurements on the overall values of P^{\bullet}/W and P^{\bullet}_{T}/W generally is most pronounced for light loads for tests conducted in clay (see Appendix A). Design load W is specified beside some of the outlying points in plate 9, demonstrating that a large part of the data scatter could be associated with very small wheel loads (the smallest tested for most of the tire size-deflection combinations included among those singled out in plate 9).
- 35. Results of single-wheel laboratory tests in saturated, fat clay were obtained for 12 tires, the same 11 pneumatic tires used herein in the study of tires and wheels in sand, plus a 6.00-16 solid rubber tire. The relations in plate 9 are repeated in plate 10 for data for six of the seven tires not included in plate 9. (Data from only towed tests of the 11.00-20, 12-PR tire are available; the relation of P_T/W to the basic prediction term for clay is shown in a subsequent plate.) The same central line used in plate 9 to characterize the relation of the clay mobility number to the torque coefficient can also be used in plate 10. (Torque coefficient generally is less sensitive than the pull, sinkage, and towed force coefficients.) The rectangular-cross-section tires develop significantly smaller values of pull coefficient and generally slightly larger values of sinkage and towed force coefficients than the circular-cross-section tires. Data for the 6.00-16 solid rubber tire follow a third central tendency in all four relations.
- 36. The relations in plate 9 (for tires of diameter/width ratios in the 3 to 8 range) will coincide with those in plate 10 (for tires of

diameter/width ratios in the 1 to 2.5 range) if a properly formulated factor that reflects the influence of tire aspect ratio d/b is used in the clay mobility number. Multiplying $\frac{\text{Cbd}}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2}$ by $\frac{1}{1 + (h/2d)}$ causes data for 10 of the 11 test tires to cluster about a single central line for each performance coefficient versus prediction term relation (plate 11). (The departure of data for the 6.00-16 solid rubber tire from each central relation is considered a minor deficiency.) For those tires for which P and P_{ϕ} data are available (as opposed to Pand P_{m}^{\bullet} data for the 11 tires considered to this point), the prediction term $\frac{\text{Cbd}}{\text{W}} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1 + (b/2d)}$ is very closely related to the pull and towed force coefficients (plate 12). The central lines in plate 12 indicate slightly smaller values of P/W and slightly larger values of P_m/W than those obtained in plate 11 for P^*/W and P_m^*/W , respectively, with these differences decreasing in magnitude as values of the prediction term decrease. This result agrees with findings in Appen-

dix A and paragraph 13. 37. In summary, the term $\frac{\text{Cbd}}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1 + (b/2d)}$ predicts the four tire performance coefficients with useful accuracy for practically all pneumatic tire shape; now normally encountered. The form of this prediction term is simple and similar to that of the basic prediction term for sand, $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$. Thus, $\frac{Cbd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{J + (b/2d)}$ is referred to herein as the basic prediction term for clay.

Alternative prediction terms

38. $\frac{\text{Cld}}{W} \cdot \left(1 - \frac{\delta}{h}\right)^{-2} \cdot \frac{1}{1 + (b/2d)}$. A procedure similar to that used in the development of the basic prediction term was used to relate functions of C , b , d , W , and $\left(1-\frac{\delta}{h}\right)$ to the dimensionless performance terms. $\left(1-\frac{\delta}{h}\right)$ was chosen as the deflection term so that the performance of tires and wheels of a very broad range of deflection conditions could be predicted. As illustrated in plate 13a, this alternative prediction term correlates with pneumatic tire pull coefficient data

almost as well as the basic prediction term (plate 11), and collapses pull coefficient data for the 6.00-15 solid rubber tire to the central relation of the pneumatic tires much more effectively than does the basic prediction term. The one outlying data point for the solid rubber tire suggests that too large values of the pull coefficient may be predicted for tires with small deflection values as values of the alternative prediction term become large. (A similar trend was noted for the corresponding prediction term for sand in plate 3a and paragraph 21.) Plate 13b shows that very slightly smaller values of P/W than of P'/W (plate 13a) are obtained at corresponding values of the alternative prediction term.

39. $\frac{\text{Cb}^{1/2}\text{d}^{3/2}}{\text{W}} \cdot \left(1 + \frac{4\delta}{d}\right)^{4}$. This term was developed to allow the performance of tires and wheels in fine-grained soils to be predicted on the basis of C , W , δ , and only two tire size measures, width by and diameter d . Comments made in paragraph 38 relative to the positioning of data in plate 13a apply almost directly to plate 14a, except the latter shows slightly more data scatter. This alternative term predicts the performance of pneumatic tires quite well, and predicts the performance of solid rubber tires (δ /h values as small as C.COl) reasonably well for values of pull coefficient up to about 0.4. Again, slightly smaller values are obtained for P/W than for P'/W, all conditions being equal (plate 14b).

40. CA_c/W . The success achieved in incorporating hard-surface contact area A_c in a prediction term for sand (paragraphs 25 and 26) suggested a similar application for clay. A general relation exists between CA_c/W and pull coefficient, measured either as P/W or P'/W (plate 15), but the data scatter is excessive. Thus, use of CA_c/W to predict tire performance in fine-grained soils does not appear justified.

41. It is of interest to note that CA_c/W is the ratio of cone index to hard-surface contact pressure W/A_c . If the shear strength s of soil is taken as the dominant soil parameter that contributes to a tire's performance, and s is approximated from Coulomb by $s = c + p \tan \emptyset$ (c = cohesion, p = contact pressure, and $\emptyset = angle$ of

internal friction of the soil), then for purely cohesive soils, tire performance is independent of p (or W/A_C for tires), and for purely frictional soils, tire performance changes directly with p. Tire performance in cohesive soils is affected by tire size and shape; however, plate 15 illustrates that these effects are not delineated through use of simple contact area (and contact pressure). This plate, together with plate 5, generally support the hypothesis with regard to soil shear strength.

42. Summation. Both alternative prediction terms $\frac{Cbd}{W}$ $\cdot \left(1-\frac{\delta}{h}\right)^{-2} \cdot \frac{1}{1+(b/2d)}$ and $\frac{cb^{1/2}d^{3/2}}{W} \cdot \left(1+\frac{4\delta}{d}\right)^4$ predict pneumatic tire performance in clay with useful accuracy and predict solid tire performance with reasonably good accuracy; the scatter of the data increased as values of the prediction terms increased. Hard-surface contact area $\frac{A}{c}$ appears not to delineate effectively the influence of tire geometry on performance. The basic prediction term $\frac{Cbd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1+(b/2d)}$ is more closely related to the tire performance coefficients than any other prediction term examined herein for pneumatic tires with δ/h values generally used (and recommended) in off-road operations.

Effects of velocity

43. All of the foregoing relations for three operating in clay were developed with data obtained in tests at values of wheel translational velocity $V_{\rm w}$ of 5 to 6 ft/sec. To determine whether $V_{\rm w}$ affects three performance in saturated clay, tests were made with two essentially 2:1 scale-model three (the 9.00-14, 2-PR and the 4.00-7, 2-PR) at one deflection condition (δ/h = 0.25), a wide range of wheel loads, and velocities that ranged from 0.5 to 18 ft/sec. The basic prediction term for clay was used to consolidate the data. Close examination of the data in plate 16a reveals that, for a given value of pull coefficient, the value of the basic prediction term generally decreased slightly with increasing values of $V_{\rm w}$ for each tire size. Also, values of the basic prediction term for the 9.00-14, 2-PR tire were

generally larger than those for the 4.00-7, 2-PR tire at corresponding values of pull coefficient.

44. One means whereby these trends can be diminished or removed is to increase the value of cone index as translational velocity increases, and to scale the size of this increase in inverse proportion to tire size. In a study at the WES of the effects of velocity on the penetration resistance of rigid comes of one shape (right circular, 30-deg apex angle) and a large range of sizes in three saturated, fine-grained

soils, the relation $\frac{C_x}{C_s} = \left(\frac{V_x/d_x}{V_s/d_s}\right)^{0.092}$ was developed to describe the effects of viscosity on the penetration resistance of fat clay. (Here, C_x is cone index obtained at any particular velocity V_x with a cone of diameter d_x ; C_s is synonymous with C and is cone index obtained at velocity $V_s = 72$ in./min with a cone of diameter $d_s = 0.798$ in.) If width $C_x = 72$ in./min with a cone of diameter $C_x = 0.798$ in.) If width $C_x = 0.798$ for a cone, and wheel translational velocity $C_x = 0.798$ stituted for cone penetration velocity $C_x = 0.000$

 $= \left(\frac{V_{\rm w}/b}{V_{\rm s}/d_{\rm s}}\right)^{0.092}$ is obtained. Multiplying the basic prediction term

by $\left(\frac{v_{\rm w}/b}{v_{\rm s}/d_{\rm s}}\right)^{0.092}$ improves the relation in plate 16a considerably, but

produces prediction term values smaller than those in plate 12 by ε^1 out 25 percent. This difference can be eliminated either by multiplying by 0.80 or using 0.1V, in the velocity term $\left[\left(0.1\right)^{0.092}=0.809\right]$. The same central relation as that in plate 12 is produced when the basic

prediction term is multiplied by $\left(\frac{0.1V_w/b}{V_s/d_s}\right)^{0.092}$ (plate 16b).

45. The collapse of the test data to

45. The collapse of the test data to a central relation indicates that use of $\left(\frac{0.1 V_w/b}{V_s/d_s}\right)^{0.092}$ to account for velocity effects is basically correct. Two very broad assumptions were made in applying this term--(a) tire width b is the characteristic linear dimension of the tire (likely this is nearly correct, at least for cases of tire sinkages

that are small relative to b, as would be expected for tires operating at high speed), and (b) soil penetration resistance changes with the translational velocity of a tire at 20 percent slip in a manner similar to its change with penetration velocity of a cone. Although plate 16b

indicates general success in the use of $\left(\frac{0.1 V_w/b}{V_s/d_s}\right)^{0.092}$, continuously needs refinement.

Effects of soil type

46. WES single-wheel laboratory tire tests have been made in only one saturated, fine-grained clay. Very likely, tire performance is influenced by differences among values of several parameters for a variety of fine-grained soils; these effects will be studied in future tests.

Effects of tire surface and soil surface conditions

47. Four 6.00-16, 4-PR tires, each with a different type of outer surface (nondirectional tread, aggressive chevron tread, smooth with traction aid, and buffed smooth (i.e. no tread)) (fig. 8) were tested at a deflection of 0.35 (in most tests) in saturated, fat clay with three types of surface conditions (unflooded, flooded and undrained, and flooded and drained). 13 Since preparation of these types of soil surfaces often produced nonuniform soil strength profiles with depth, and since the soil layer very near the surface influenced tire performance most, cone index in the 0- to 1-in. layer was used to characterize soil strength. Pull remained unchanged through five passes in the unrlooded soil, increased with each pass in the flooded and drained soil, and decreased with traffic in the flooded and undrained soil. First-pass pull performance for the flooded and drained and the flooded and undrained conditions were essentially the same. The magnitude of pull depended to some extent on the duration of the flooding; lowest pulls due to slipperiness were attained when the flooding period was brief and the soil strength high.

48. For a given wheel load, the value of loss of pull due to flooding, expressed as a percentage of the pull in the unflooded

a. 6.00-16, h-PR tire with nondirectional military tread

b. 6.00-16, 1-PR tire with aggressive chevron tread

c. 6.00-16, 4-PR smooth tire with traction aid

d. 6.00-16, 4-PR smooth tire

Fig. 8. Test tires used in study of effects of wet-surface conditions on tire performance

condition, was essentially a constant for each tread pattern, and took values of approximately 49, 50, 60, and 90 percent for the nondirectional, aggressive chevron, smooth with traction aid, and buffed smooth tires, respectively. In the unflooded soil, the tread pattern made a noticeable difference in performance (plate 17a). The tire equipped with tract: on aid developed the largest values of pull coefficient, the values developed by the smooth tire and the tire with aggressive chevron tread were about 15 percent smaller, and those produced by the tire with nondirectional tread were smaller by about 30 percent. The central relation of pull coefficient to the basic prediction term for the smooth 6.00-16, 4-PR tire tested in unflooded sections (plate 17a) was somewhat different from the central line in plate 11 for 11 smooth pneumatic tires (solid line in plates 17a and 17b). This difference resulted, at least in part, because an indicator of soil strength over the 0- to 6-in. layer was used for the relation in plate 11. Obviously, too, the difference between shapes of the two curves is an indication of the precision with which the relations in plate 11 can be applied to a particular tiresoil situation. Relative to the curve transferred from plate 11, only the smooth tire with traction aid developed significantly larger values of pull coefficient over an extended rang; of values of the basic prediction term.

- 49. In flooded soil, the treaded tires and the smooth tire with traction aid performed about equally well and considerably better than the smooth tire (plate 17b); however, all the tires performed far worse in the flooded conditions than the buffed-smooth tires tested routinely in unflooded test sections.
- 50. In summary, flooding a near-saturated fine-grained soil greatly reduces the pull performance of tires with four very different surfaces (plates 17a and 17b). Protrusions from a tire surface (whether integral tire tread or attached traction aid) appear to improve tire performance sign ficantly in flooded soil test sections, largely because they "bite" through the weak soil surface to gain traction in stronger, underlying soil layers. For this environment, the type or shape of the protrusion used appears to influence performance only slightly. For the

unflooded soil surface condition, a smooth tire performed generally as well as or better than the two treaded tires, and the tire with traction aid performed better than the smooth tire only after values of the basic prediction term exceeded about 7. For this condition, soil strength and slipperiness were essentially constant with depth, so that penetrating the soil surface with tire protrusions did not influence pull performance as much as it did in the flooded test sections.

PART III: VEHICLE VERSUS SINGLE-WHEEL PERFORMANCE

Limitations

51. Only the basic prediction terms for sand and for clay are considered in the remaining analyses in this report. Before any of the relations presented herein for tires tested singly in the laboratory are extrapolated to the prototype vehicle-field situation, cognizance must be taken of several major, largely uninvestigated factors that influence this operation.

Soil classes

- 52. The single-wheel tests were conducted on only two broad soil classes: (a) air-dry, almost purely frictional sand a 1 (b) near-saturated, almost purely obesive clay. Prediction terms that were developed differed basically according to these two soil classes. Thus, to this extent, soil class fication is a needed independent parameter, and extrapolation of relations developed from the test data will be valid for any given soil only insofar as that soil's properties approximate those of one of the two soil classes tested.
- 53. The restriction above is not too severe, since the two tested soil classes represent a very broad spectrum of field environments that pose significant problems for wheeled vehicle mobility. The prediction term developed for sand can be used for soils that occur on sand beaches and in dune areas, and for predominantly sandy soils that are dry and loose, especially near the surface. The prediction term developed for clay can be used for wet, soft, fine-grainel and clayey soils, e.g. rice paddies, marshes, tilled fields during the wet season, low-lying bottom-lands, etc. Neither prediction term developed from tests in the laboratory will provide a good estimate of performance on fine-grained or clayey soils that are dry or only moist; however, vehicles generally perform much better in dry-to-moist soils than in those used in the laboratory test program. Thus, for design considerations, relations developed from laboratory tests in the two broad soil classes generally provide for the worst probable soil conditions.

Soil strength profiles

54. Prediction of field results by laboratory-developed relations is limited seriously by the fact that the laboratory relations are strictly valid only for soil strength profiles that are uniform with depth (near constant penetration resistance for clays, linearly increasing for sands). Layered or nonuniform soils have not yet been studied enough to understand and correlate the influences of soil strength discontinuities. Without doubt, layered or nonuniform soil strengths can markedly affect wheel performance, and some of the differences between laboratory and field test results stem from differences in soil profiles obtained in the two environments.

Tread pattern

55. The effect of tread pattern is a largely unevaluated tire parameter closely related to the problem of layered soil. Tire tread is known to be important when it allows the tire to obtain contact with a stronger soil layer. In all routine tests to date, tread was removed from the test tires to prevent tread effects being confounded with other, more basic tire parameters (size, shape, etc.). A very limited amount of test data was obtained in the study of pneumatic tire performance on clay with a slippery surface (paragraphs 47-50); sufficient data are not available, however, to evaluate tread pattern in a design analysis, even in a relative sense.

Translational velocity

56. Relations have been developed that appear to account for the influence on tire performance at 20 percent slip of wheel translational velocity over a relatively wide range of values (about 1 to 18 ft/sec) in sand and in clay (paragraphs 28-30 and 43-45, respectively). Further study is needed to develop accurate, quantitative descriptions of soil—wheel interactions in terms of effects classically used to describe the influence of velocity (i.e. in terms of viscous effects, inertial effects, etc.).

Wheel slip

57. For the single-wheel test data examined herein, three of the four perfermance parameters--pull, torque, and sinkage--were evaluated

at one slip level, 20 percent. For most of the test data, this resulted in sampling the performance parameters at 90 percent or more of their maximum values. The 20 percent slip level is considered a reasonable design basis because (a) slightly conservative predictions of attainable performance usually are desirable, and (b) for many situations, particularly in clay, the slight increase in pull obtained by operating at slip values larger than 20 percent is more than offset by associated penalties of excessive sinkage and reduced forward movement. An ability to predict tire performance at any of a wide range of slip values would improve the description of the towed condition, in particular, since this performance level occurs over a fairly wide range of negative slip values (about -1 to -15 percent), and different test techniques have been found to produce different values of towed force, all conditions being equal. 14

Vehicle operating characteristics

58. Conventional, full-scale, wheeled vehicles possess several operating characteristics that usually cause their average wheel performance to be worse than that obtained for any one of their wheels tested singly. Among these characteristics are differential wheel slip (front to rear, or side to side, or both), change in wheel load due to dynamic weight transfer, steering forces, and differences in motion resistance caused by imperfectly tracking rear wheels. A detailed description of the mechanism of wheeled vehicle dynamic weight transfer has been formulated. Test-proven, quantitative descriptions of the effects produced by each of the above-listed vehicle operating characteristics are largely lacking.

Summation

59. Relations have been developed from the single-wheel laboratory tests to predict tire performance for a very broad range of values of wheel load, soil strength, and tire size, shape, and deflection.

Scant knowledge of the effects of several important soil and tire parameters (paragraphs 52-57) and of several vehicle operating characteristics (paragraph 58) causes problems in extrapolating the single-wheel laboratory relations to predict prototype wheeled vehicle performance in the field.

Tests in Sand

Extrapolating single-wheel, multipass relations to predict vehicle performance

- 60. Prediction of the performance of a pneumatic-tired vehicle with two or more wheels traveling in the same path imposes a requirement similar to the prediction of the performance of a single wheel on each of multiple passes in a single path. In either case, the performance of each wheel is influenced by the soil condition created by the preceding wheel or wheels. For air-dry Yuma sand, the value of G may either increase or decrease under the action of tire traffic, depending on several factors (initial soil strength, wheel load, tire size, etc.). Thus, use of the before-traffic measurement of G causes more scatter in relations involving multipass, single-wheel data than use of values of G measured just prior to each pass. This increase in scatter must be accepted as a necessary crudity, however, since it is not practical to measure soil strength just prior to the passage of each individual wheel of a vehicle.
- sic prediction term $\frac{G(\text{bd})^{3/2}}{W} \cdot \frac{\delta}{h}$ are demonstrated in plate 18 for all second-pass and third-pass conditions of single-wheel tests in which pull values were corrected for the effects of inertia. Scatter of the test data is relatively constant between passes, with the central lines indicating that values of P/W and of P_T/W are smaller for the third pass by a very small amount for all values of the basic prediction term. A comparison of results of pass one and pass two (plates 2 and 18) shows that values of P/W decreased considerably with traffic, whereas values of P_T/W showed very little change.
- 62. To simulate the performance of two- and three-axle wheeled vehicles, data from the multiple-pass tests in table 9 were combined as follows: (a) The pull (or towed force) coefficient for two- and three-axle vehicles was taken as the average of the corresponding coefficient for passes one and two, and for passes one, two, and three, respectively,

of the single wheel. (b) Values of W in the basic prediction term were taken as the average of wheel loads either for passes one and two, or for passes one, two, and three, respectively. (All other factors in the basic prediction term were constants, with G the before-traffic measurement.) Plate 19 demonstrates that this procedure produced very well-defined relations of the pull and towed force coefficients to the basic prediction term, and that each of these relations is effectively delineated by a single central curve. The curves in plate 19 are intended to simulate both two-axle and three-axle vehicle performance in the laboratory.

Laboratory tests of 4x4 vehicles

- 63. Three standard military vehicles equipped with treaded tires were tested at constant 20 percent slip in Yuma sand test sections that were prepared in the same manner as those for the single-wheel tests. The test vehicles were carefully steered in a straight line at low forward speed. Results of the tests are shown as discrete data points in plate 20. The smooth curve in plate 20 is the same as the curves in plates 19a and 19b, and represents very well the central tendency of the relation produced from the performance data of the three test vehicles. Field tests of wheeled vehicles
- 64. Field tests have been conducted on coarse-grained soils in various parts of the world with a variety of military vehicles. 16 In nearly every case, most, if not all, of the factors discussed in paragraphs 52-58 were acting. Sand at the test sites usually was moist or even wet; drawbar-pull tests usually were not run at a controlled slip, but were made at several levels of pull with only the data relevant to the maximum attained pull recorded for each test; and no special provisions were node to control differential wheel slip, dynamic weight transfer, or steering forces. To effect even a first-order evaluation of the basic prediction term for sand, the following assumptions were made:
 - a. The cohesive forces were negligible.
 - <u>b</u>. An equivalent G can be computed from the 0- to 6-in. penetration resistance data recorded in the reference

- (see Appendix A). This implies that the rate of increase of strength with depth (G) was nearly constant for a given field test to at least the 6-in. depth.
- c. The vehicles were loaded so that each tire carried an equal share of the load.
- and 6x6 wheeled vehicles are recorded in table 12, and towed-test data in table 13. The tests were conducted on dry-to-moist sands on various ocean and river beaches and dunes in the United States, and on beaches in the South Pacific and in France. The basic prediction term for sand consolidates all the maximum-drawbar-pull data to one relation and the towed data to another, so that a single central curve can be used to delineate each (plate 21). This is encouraging, since a wide variety of tire sizes, shapes, deflection conditions, tread patterns, loads, and coarse-grained soil conditions are represented. It indicates, also, that the assumptions listed in paragraph 64 provide a valid basis for grouping vehicle performance data.
- 66. In plate 22, the central curves from plates 19 and 21 are compared. For each relation, the field and laboratory curves have the same general shape, and consistently poorer performance was obtained in the vehicle field tests than in the single-wheel laboratory tests. The central lines established for vehicle performance in the field offer the basis for a tentative performance prediction system, and for design criteria for vehicles operating in dry-to-moist sands (plate 23). These curves can be used to forecast the mobility of existing vehicles or to select tires that will provide the desired degree of sand mobility for existing or proposed vehicles. Examples for applying these curves are presented in Appendix B.

Tests in Clay

Extrapolating single-wheel multipass relations to predict vehicle performance

67. No vehicle tests have been conducted in the laboratory in clay because multipass, single-wheel tests showed that cone index, tire

pull, and torque remain essentially constant under tire traffic in the laboratory (paragraphs 12 and 33). If the strength characteristics of fine-grained soils encountered in the field are approximated by those of the laboratory clay, and if none of the factors discussed in paragraphs 52-58 degrade field vehicle performance, then the average tire performance of a vehicle should equal that obtained in single-wheel, multipass tests in the laboratory. Unfortunately, neither of these hypotheses is even roughly satisfied in typical vehicle operations in the field. All of the factors i paragraphs 52-58 do affect wheeled vehicle performance in fine-grained soils, so that poorer performance in the field is expected. Also, soil conditions encountered in the field are often anything but homogeneous, and the soil may either gain or lose strength under wheeled traffic. At least two options for characterizing in-the-field, fine-grained soil strength present themselves. First, the before-traffic soil condition described by the average value of cone index within a specified soil layer can be employed; i.e., identically the same technique that has been used in the laboratory can be applied to the field situation. A second technique that has been used for a number of years at the WES to describe the state of the soil for trafficability purposes (i.e. for repeated traffic, usually 50 passes, of vehicles in the field) involves an attempt to convert the before-traffic average cone index value to the value that predominates during the trafficability test. This is done by multiplying before-traffic average cone index by the dimensionless remolding index RI* for the particular soil layer of interest to obtain the rating cone index RCI . Cone index measurements are made at the surface and at 1-in.-vertical increments to a depth of 4 in. before and after compaction. The ratio of the sum of cone index values obtained after compaction to the sum of those obtained

^{*} RI is obtained by placing an undisturbed sample of the test soil, approximately 7 in. long and 1.9 in. in diameter, in a cylinder of approximately the same dimensions attached to a base plate, and subjecting the soil to 100 blows with a 2-1/2-1b hammer falling 12 in. (fig. 9). For very weak soils (cone index values of about 10 and under) the sample is enclosed, and the entire test instrument is dropped 25 times onto a rigid surface from a height of 6 in.

Obtaining remolding index for fine-grained soils Fig. 9. before compaction, expressed as a decimal, is the remolding index. No claim is made that this mechanical technique* duplicates the action of a wheel in soil; it is emphasized, however, that RCI correlates more closely with parameters that describe trafficability test results than does any of a number of other soil parameters that have been investigated in the trafficability studies. In particular, RCI has been found very effective in collapsing to a single relation trafficability test results obtained in a wide variety of fine-grained soil types and strengths. Both average cone index and RCI, each measured in the 0- to 6-in. layer, are examined herein for their utility in describing soil strength for the one-pass, in-the-field, wheeled vehicle situation. Field tests of wheeled vehicles

68. Unlike the laboratory tests, field tests usually were not run at a controlled slip, but were made at several levels of pull. Since the pull-slip curve for clay does not peak at 20 percent slip (fig. 3b), as it does for sand (fig. 3a), the influence of differential wheel slip should influence vehicle performance in clay less than it does in sand. The fact that wheel pull usually increases monotonically with slip (albeit the rate of increase in the range of positive slip values larger than about 15 percent is small) causes maximum pull to be attained when the wheel is making very little forward movement. Under these conditions, the wheel is performing near-zero useful work. Thus, a performance parameter that describes the work performed by the wheel is needed to select the slip level at which pull should be sampled. Work output index is a dimensionless number that indicates the vehicle's towing ability and is defined as follows:

Work output index =
$$\frac{P}{W} \times \frac{\text{distance vehicle traveled}}{\text{distance wheels traveled}} = \frac{P}{W} (1 - \text{slip})$$

Wheel slip at which the maximum work output index occurs is termed optimum slip.

69. Data from field tests of five wheeled vehicles are presented

^{*} See footnote on page 41.

in tables 14 and 15. These data were obtained from only two 17,18 of the many sources examined because only in these two references were sufficient pull and slip data reported to define with some assurance the value of maximum work output index, and hence optimum slip. Reference 17 and this report use values of P/W obtained at the slip value where a plot of work output index versus slip indicates maximum work output. Corresponding plots were made for those tests in reference 18 for which sufficient pull and slip data were available to define the maximum work output condition (fig. 10). Values of optimum slip from these two references fall in the 15 to 30 percent slip range (table 14),

Fig. 10. Relations of $\frac{P}{W}$ and $\frac{P}{W} \cdot$ (1 - slip) to slip

but average 20.5 percent and cluster closely about this value (standard deviation of 3.6 percent slip). Thus, data sampled at the 20 percent slip point in the laboratory single-wheel tests in clay can justifiably be compared with wheeled vehicle performance data sampled at the optimum slip level in field tests.

- 70. Values of towed force coefficient and pull coefficient at maximum work output obtained in the field tests of five wheeled vehicles correlate quite well with values of the basic prediction term for clay when either cone index or RCI in the 0- to 6-in. layer is used to characterize soil strength (plates 24 and 25, respectively). This is encouraging not only because a variety of vehicle configurations, wheel loads, and tire sizes, shapes, and deflection values are included among these data, but also because soil strength conditions from the field appear to have been adequately described in terms of either cone index or RCI. Before-traffic values of cone index at 1-in. vertical increments in the 0- to 6-in. layer often differed by at least a factor of 2 for a given cone index profile, as shown in tables 14 and 15.
- 71. Central lines used to describe the laboratory and field test results are compared in plate 26 for soil strength described by cone index. Values of pull coefficient increase much more rapidly for the field than for the laboratory data for values of the basic prediction term up to about 6.5, and much more slowly thereafter. The Y-axis asymptote of the equation used to describe the field data agrees with WES experience that wheeled vehicles in the field rarely attain P/W values larger than 0.8 at optimum slip in wet, fine-grained soils. The central lines of the towed force coefficient versus basic prediction term relation for field and laboratory have the same shapes, but the curve for the field data is located above and to the right of the laboratory curve.
- 72. Average wheel performance of vehicles in the field was expected to be different (and generally poorer) than single-wheel performance in the laboratory because of the factors presented in paragraphs 46-50 and 52-58. Probably most influential of these in-the-field factors were differences in soil types, irregularity of soil strength profiles (extremely so in some cases), slippery soil surfaces, and

changes in soil strength caused by wheeled traffic. Also, large values of the basic prediction term were usually produced in the laboratory with moderate values of C (none larger than 68) and very small values of W (as small as 100 lb). Corresponding values in the field were obtained with very large values of C (over 100 in some cases) and moderate values of W (none smaller than about 1800 lb). The laboratory condition—moderate C, very small W—appears either to produce better tire flotation or to utilize soil strength better than the field condition.

73. The comparison of central relations from laboratory and field is not as straightforward for soil strength measured by RCI as it is for soil strength measured by cone index. This occurs, first, because RCI measurements were not routinely taken in the laboratory single-wheel program. To get an indication of the values that would have been obtained, cone index and RI were measured in the 0- to 6-in. layer at three locations in each of three representative test sections of the laboratory clay (a low-, an intermediate-, and a high-strength section), and RCI values were computed. The following values were obtained:

	Low-Strength Test Section			Intermediate-Strength Test Section			High-Strength Test Section		
Location No.	1	_2	3	1	2	3	1	2	3
Cone index	22.7	22.1	17.9	33.9	32.6	32.9	67.9	76.9	71.1
RI	0.83	0.95	0.86	0.93	0.92	0.98	0.93	0.87	0.84
RCI	18.8	21.0	15.4	31.5	30.0	32.2	63.1	66.9	59.8

The average of the nine RI values is 0.90, and there appears no rational correlation between RI and cone index. It was reasonable, then, to multiply the abscissa term of the central lines for the laboratory data in plate 12 by 0.90 to approximate the relations expected if RCI measurements had been available. These adjusted central lines are shown in plate 27, together with the central lines obtained for the field data (from plate 25). The relative shapes of laboratory and field curves for the I/W versus basic prediction term relation in plate 27 are similar to those obtained when soil strength is described by cone index

(plate 26); in plate 27, however, the field curve lies above the laboratory curve for X-axis values from about 3.1 to 6.3. Vehicle operating characteristics are thought to cause worse overall vehicle performance than that expected of each of its wheels tested singly (paragraph 58), which implies that RI for the field tests reduced the soil strength mea-

surement (RCI) too much for values of $\frac{(\text{RCI})\text{bd}}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1+b/2d}$ less than about 6.3. (Values of RI in this range of prediction term values averaged 0.69.) The central lines of the towed force coefficient versus basic prediction term relation for the field and laboratory data in plate 27 are aligned in a fashion similar to corresponding curves based on cone index in plate 26.

74. On the basis of field and field-versus-laboratory data presented herein, no clear-cut decision can be made regarding which of the soil strength descriptors -- average cone index or RCI -- should be used in predicting one-pass wheeled vehicle performance. Slightly less data scatter was achieved using RCI (see pl.tes 24 and 25), but the central lines of the laboratory and field data for the pull coefficient versus basic prediction term relation indicate that RI affected RCI values obtained for the laboratory and field test soils differently (plate 27). A reasonable test of the adequacy of RI to indicate change in strength for one pass of a wheeled vehicle would involve comparing RI values with after-one-vehicle-pass average 0- to 6-in. cone index before-traffic 0- to 6-in. cone index number of combinations of soil type, soil strength, wheel load, vehicle configuration, tire size, tire shape, and tire deflection. Very likely, a 1-tc-1 correlation between these two terms would be obtained only after some modification is applied to the process for obtaining RI. was developed for the multipass situation; see paragraph 67.) Since no after-first-pass cone index measurements were taken for any of the field tests reported herein, comparison of RCI with after-first-pass average cone index must await further testing.

75. At this point, then, the "problem" of choosing between cone index and RCI is somewhat moot, since each of these measurements was shown to correlate quite well with major parameters that describe

one-pass wheeled vehicle performance. Because WES experience has shown that RCI effectively describes soil strength on a common basis for a wide variety of types and consistencies of fine-grained soils, relations developed in the remainder of this report for vehicles operating in fine-grained soils use RCI for the soil strength measurement. The central relations established for field vehicle performance in wet, fine-grained soils are presented in plate 28. These curves are suggested for use in a tentative performance prediction and/or vehicle design system; examples for applying them are presented in Appendix B.

PART IV: DESIGN CRITERIA

76. The following relations were determined by using the basic prediction terms for sand and clay $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$ and $\frac{Cbd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1+(b/2d)}$, respectively, and the equations used to characterize near-maximum-pull data obtained for vehicles in the field in sand and clay (plates 23 and 28, respectively). Similar relations would be obtained if the alternate prediction terms were used.

Tires for Vehicles Operating in Sand

Optimum load

77. Consider the relation for near-maximum pull/load from plate 23, i.e.

$$\frac{P}{W} = \frac{\alpha - 5.50}{1.92\alpha + 37.20} \text{, where } \alpha = \frac{7(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$$
 (1)

or

$$\frac{P}{W} = \frac{\frac{k_1}{W} - 5.50}{\frac{k_1}{W} + 37.20}, \text{ where } k_1 = G(bd)^{3/2} \cdot \frac{\delta}{h} = \alpha W$$

$$\frac{P}{W} = \frac{k_1 - 5.50W}{1.92k_1 + 37.20W}$$

So

$$P = \frac{k_1 W - 5.50W^2}{1.92k_1 + 37.20W}$$
 (2)

If there is an optimum load, then a plot of pull versus load will exnibit a peak and dP/dW at that point will equal 0.

$$\frac{dP}{dW} = \frac{(1.92k_1 + 37.20W)(k_1 - 11.00W) - (k_1W - 5.50W^2)(37.20)}{(1.92k_1 + 37.20W)^2} = 0$$

OI,

$$1.92k_1^2 - 21.12k_1W + 37.20k_1W - 409.20W^2 - 37.20k_1W + 204.60W^2 = 0$$

Then

$$-204.60W^2 - 21.12k_1W + 1.92k_1^2 = 0$$

and.

$$W_{\text{opt}} = \frac{21.12k_1 \pm \sqrt{(21.12k_1)^2 - 4(-204.60)(1.92k_1^2)}}{2(-204.60)}$$

$$= \frac{21.12k_1 - 44.92k_1}{-409.20} = \frac{-23.80k_1}{-409.20} = 0.0582k_1$$
 (3)

From equation 2:

$$P_{\text{opt}} = \frac{k_1(0.0582k_1) - 5.50(0.0582k_1)}{1.92k_1 + 37.20(0.0582k_1)}$$
$$= \frac{0.0582k_1^2 - 0.0186k_1^2}{1.92k_1 + 2.165k_1} = 0.00969k_1 \tag{4}$$

and

$$\frac{P_{\text{opt}}}{W_{\text{opt}}} = \frac{0.00969 k_1}{0.0582 k_1} = 0.166$$
 (5)

- 78. Thus, there are unique values of optimum load, optimum pull, and optimum pull/optimum load (equations 3, 4, and 5, respectively) for each particular sand-pneumatic tire situation. The ratio $P_{\text{opt}}/W_{\text{opt}}$ should not be confused with pull coefficient P/W used to characterize near-maximum wheel pull performance in all considerations prior to paragraph 77. A particular value of P/W is obtained at each particular value of the basic prediction term, and values larger than 0.166 obviously are possible (plate 23). However, an optimum (or absolute maximum) pull is obtained for one particular value of load (W_{opt}) at one level of pull/load (i.e. $P_{\text{opt}}/W_{\text{opt}} = 0.166$, equation 5) for all tires in sand (plate 29).
- 79. The relations developed in paragraph 77 are illustrated in plate 29 for one particular combination of tire size and deflection and

several values of penetration resistance gradient G . It will be noted that the shape of each curve is parabolic, and that a line drawn through the origin at a slope P/W = 0.166 passes through the maximum value of P for each curve. Also, the values of $P_{\rm cpt}$ increase directly with increasing values of G , and the absolute value of P decreases as the value of P/W either increases or decreases from 0.166. Thus, the values of P/W larger than 0.166 in plate 23 are necessarily associated with smaller loads than those required to produce optimum pull (P/W's > 0.166 fall to the left of P/W = 0.166 in plate 29). Equation 1 indicates that increasing the value of α to a very large number (as occurs when the value of W becomes smaller, G becomes larger, etc.) causes the P/W value to approach a limit of 1/1.92, or 0.521. It is of interest to note that 0.521 is the tangent of 27.5 deg, a value which is fairly representative of the angle of internal friction of many natural dry-to-moist sands.

Immobilization load

80. For most practical situations, the extreme load of interest is not a very light load, but the maximum load that a particular tire can transport. Immobilization load $W_{\overline{1}}$, or the minimum load needed to cause zero pull, is computed from equation 1 by determining the load

that causes α - 5.50 to equal zero. Then, with $k_1 = \frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$, $W_1 = k_1/5.50$ (from the relation P/W = $\frac{k_1 - 5.50W_1}{1.92k_1 + 37.20W_1} = 0$ for the

immobilization condition). Since $W_{\rm opt}=0.0582k_1$ (from equation 3), the ratio $W_{\rm opt}/W_{\rm I}=0.0582k_1/(k_1 \div 5.50)=0.32$, a constant. Thus for any particular tire-sand situation, immobilization occurs at a load approximately 1/0.32 or 3.1 times larger than the optimum load. The immobilization condition is an extremely important consideration in the design of tires for off-road use. In fact, running gear configurations for wheeled vehicles designed to operate off-road should be chosen primarily on the basis of an acceptable minimum soil strength G and the requirements imposed on b , d , and δ/h by the immobilization condition for that value of G .

Effect of tire size and deflection on wheel pull

- 81. Effect of tire width and diameter. Values of pull coefficient (plate 23) and optimum pull, optimum load, and immobilization load (plate 29) all increase directly with increasing values of the basic prediction term. In this term, tire width b and diameter d each are raised to the same power, indicating that width and diameter affect tire performance equally. Whether to increase width or to increase diameter to improve tire performance must be decided from considerations relevant to each particular vehicle running gear design, e.g. horizontal and vertical space limitations, tire stability requirements, etc.
- 82. Effect of tire deflection. In the basic prediction term, deflection δ/h has an exponent of 1, indicating that the same relative increase in the value of deflection (say doubling its values) will increase the value of the prediction term by a substantially smaller amount than a corresponding relative increase in either width or diameter ($2^{3/2} = 2.83$, for instance). Physically increasing either tire width or tire diameter costs money, while increasing tire deflection (by decreasing inflation pressure) costs nothing, at least within that range of values of deflection where a particular tire can operate effectively. Thus, it is clear that for very soft soil conditions, a tire should be designed for and operated at the largest values of deflection practicable.

Tires for Vehicles Operating in Clay

Optimum load

83. Consider the relation for near-maximum pull/load from plate 28.

$$\frac{P}{W} = \frac{\beta_2 - 2.59}{1.25\beta_2 - 1.19} , \text{ where } \beta_2 = \frac{(RCI)bd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1 + (b/2d)}$$
 (6)

or

$$\frac{P}{W} = \frac{k_2/W - 2.59}{(1.25k_2/W) - 1.19} \text{, where } k_2 = (RCI)bd \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1 + (b/2d)} = \beta_2 W$$

So

$$P = \frac{k_2 W - 2.59 W^2}{1.25 k_2 - 1.19 W} \tag{7}$$

Solving for dP/dW = 0 in terms of k_2 and W yields

$$3.08W^2 - 6.48k_2W + 1.25k_2^2 = 0$$

and

$$W_{\text{opt}} = 0.211k_2 \tag{8}$$

From equation 7:

$$P_{\text{opt}} = 0.096k_2 \tag{9}$$

and

$$\frac{P_{\text{opt}}}{W_{\text{opt}}} = 0.455 \tag{10}$$

The relations developed above are illustrated in plate 30 for one particular tire size-deflection combination and a range of values of RCI. Maximum absolute values of pull are attained at P/W = 0.455; these values increase directly with increasing values of RCI. Larger values of P/W are obtained in the relation in plate 28, but the decreasing values of load associated with values of P/W larger than 0.455 cause values of absolute pull to decrease from the maximum at P/W = 0.455. Equation 6 indicates that very large values of β_2 (as would be produced by very small values of load) cause the value of P/W to approach a limit of 1/1.25 = 0.80. It is interesting to note that the upper limits of wheel pull performance in clay are much larger than those in sand in terms of both $P_{\rm opt}/W_{\rm opt}$ and of maximum P/W (0.455 versus 0.166, and 0.300 versus 0.521, respectively).

Immobilization load

84. From
$$\frac{P}{W} = \frac{(k_2/W_I) - 2.59}{(1.25k_2/W_I) - 1.19} = 0$$
, $W_I = k_2/2.59$, where k_2 = (RCI)bd $\cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1 + (b/2d)}$. The ratio $\frac{W_{\text{opt}}}{W_I} = \frac{0.211k_2}{k_2/2.59} = 0.55$, a

constant. Thus, for any particular tire-clay situation, immobilization occurs at a load approximately 1/0.55 = 1.8 times larger than the optimum load.

Effect of tire size and deflection on wheel pull

- 95. Effect of tire width and diameter. Wheel pull performance increases directly with increasing values of the basic prediction term in terms of P/W (plate 28) and in terms of P $_{\rm opt}$, W $_{\rm opt}$, and W $_{\rm I}$ (plate 30). Values of this term are influenced more by changes in the value of diameter than by changes in the value of width because of the factor $\frac{1}{1+(b/2d)}$. For example, doubling the value of d increases the value of the basic prediction term by a factor of 2.4, whereas doubling the value of b increases the value by a factor of 1.5. Halving the value of d reduces the prediction term by 62 percent, whereas halving b reduces it by 40 percent. The greater influence of d results, of course, because $\frac{Cbd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1 + (b/2d)} = \frac{C}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2}$ $\frac{2bd}{2d+1}$. How changes in the values of b and d influence the value of $2bd^2/(2d + b)$ is shown in fig. 11, where $2bd^2/(2d + b) = k$ for initial values of d = 1.0 and b = 1.0. Doubling and halving the tire diameter and width are rather drastic alterations, of course; but even relatively small changes in the value of diameter influence the value of 2bd2/(2d + b) (and the basic prediction term) significantly more than corresponding changes in width, as shown in fig. 11.
- 86. Effect of tire deflection. The basic prediction term for clay is influenced by changes in deflection in a manner similar to, but less pronounced than, that caused by changes in the value of width b (e.g. halving deflection reduces the term by 30 percent; doubling deflection multiplies it by 1.4). Halving b reduces the term's value by 40 to 50 percent; doubling b multiplies it by 1.5 to 1.9, for b/d values initially in the 1/1 to 1/10 range. Changes in deflection influence the value of the prediction term significantly less than corresponding relative changes in the value of diameter d. Again, increasing the value of either width or Jiameter costs money; increasing the value

Fig. 1. Effects on $\frac{2bd^2}{2d+b}$ caused by changing the values of b and d

of deflection costs nothing (within the range of deflection values where a tire can operate effectively). Noteworthy, too, is the fact that changes in values of deflection influence tire performance in clay significantly less than corresponding changes in sand.

Summation

87. The relations discussed in paragraphs 76-86 are based on laboratory-established single-wheel prediction terms extrapolated to describe in-the-field, full-scale wheeled vehicle performance. The accuracy expected in applications of these relations to field situations is of the order indicated by the scatter bands in plates 21 and 24 for carefully conducted field tests. Considerably more testing and analysis are needed to describe the effects on tire performance of the many

factors not adequately quantified (primarily those in paragraphs 52-58). Nevertheless, the relations in plates 23, 28, 29, and 30 and in paragraphs 76-86 provide a reasonable base for predicting the performance of wheeled vehicles in the field and for selecting tire sizes, shares, and deflections to satisfy particular wheeled vehicle-soil condition requirements in the field. Several examples of this type of application are presented in Appendix B.

PART V: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 58. The foregoing analysis is considered adequate basis for the following conclusions:
 - a. The performance of single pneumatic tires of either circular or rectangular cross sections operating either in air-dry to moist sand or in near-saturated clay at the towed and near-maximum-pull conditions (taken as the 20 percent slip point in all laboratory tests) depends primarily on soil strength, wheel load, and tire size, shape, and deflection (with wheel translational velocity held constant) (paragraphs 5 and 7).
 - b. One basic dimensionless prediction term for pneumatic tires operating in sand, $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$, and another for pneumatic tires in clay, $\frac{Cbd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1 + (b/2d)}$, are demonstrated to predict in-soil, single-wheel, pneumatic tire performance (for tires at 0.15 to 0.35 deflection in sand and 0.08 to 0.45 deflection in clav) with better accuracy than any other prediction terms examined herein (paragraphs 17-27 and 34-42, and plates 1-2 and 11-12, respectively).
 - c. Alternative prediction terms $\frac{G(bd)^{3/2}}{W} \cdot \left(1 \frac{\delta}{h}\right)^{-1}$ for tires in sand and $\frac{Cbd}{W} \cdot \left(1 \frac{\delta}{h}\right)^{-2} \cdot \frac{1}{1 + (b/2d)}$ for tires in clay predict single-wheel pneumatic tire pull performance with only slightly less precision than the basic prediction terms (compare plate 3 with plates la and 2a, and plate 13 with plates 1la and 12a, respectively). Also, these two alternative terms predict the pull performance of tires of very small deflection (δ/h)

values of, say, 0.03 and smaller) much more accurately than do the basic prediction terms (paragraphs 21 and 38, respectively).

- d. Alternative prediction terms $\frac{\text{Gbd}^2}{\text{W}} \cdot \left(1 \frac{2\delta}{d}\right)^{-8}$ for tires in sand and $\frac{\text{Cb}^{1/2}\text{d}^{3/2}}{\text{W}} \cdot \left(1 + \frac{4\delta}{d}\right)^4$ for tires in clay eliminate one tire dimension (section height h) included in the terms in b and c above. They predict tire pull performance for pneumatic tires of conventional tire deflection values almost as well as their corresponding alternative prediction terms in c above, and predict the pull performance of tires of very small deflection approximately on a par with the alternative terms in c (paragraphs 23-24 and 39, and plates 4 and 14, respectively).
- e. Hard-surface contact area A_c can be incorporated in a dimensionless term $\frac{G}{W} \cdot A_c^{3/2}$ useful for predicting tire performance in sand with slightly better accuracy than the alternative prediction terms for sand in \underline{c} and \underline{d} above (paragraphs 25-26 and plate 5). A_c appears to delineate the effects of tire geometry on pneumatic tire pull performance in clay less effectively than in sand (paragraphs 40-41 and plate 15).
- f. Increasing wheel translational velocity $V_{\rm w}$ (in the <1 to 18 ft/sec range) increases the pull coefficients in both sand and clay. In sand, this effect appears to be independent of tire size; in clay, the effect decreases as tire size increases. Multiplying the basic prediction terms by the empirically developed dimensionless terms $\left(\frac{150V_{\rm w}}{V_{\rm sh}} \right)^{1/2} \quad \text{and} \quad \left(\frac{0.1V_{\rm w}/b}{V_{\rm s}/d_{\rm s}} \right)^{0.092}$ for sand and clay, respectively, effectively collapses pull coefficient data to one central line for a broad range of values of $V_{\rm w}$ (paragraphs 28-30 and 43-45, and plates 6-7 and 16, respectively).

- g. The central relation of the basic prediction term for pneumatic tires in air-dry mortar sand can be adjusted to the same relation obtained for tires in air-dry Yuma cand by adjusting mortar sand values of penetration resistance G to Yuma sand G values on the basis of relative density (paragraphs 31-32, plate 8). No analysis was made relative to the effects of soil type on tire performance in fine-grained soils.
- h. Flooding the surface of a near-saturated, fine-grained soil test section reduces the pull coefficient drastically. Smooth tire performance is degraded most by flooding; whereas tires with tread or traction aid (rubber or steel cleats) perform about equally well at a level well above that of the smooth tire. Type of tread has more influence on the pull coefficient for the unflooded than for the flooded condition, but only a tire with traction aid performs significantly better than a smooth tire in an unflooded environment (paragraphs 47-50, and plate 17).
- i. Single-wheel penumatic tire performance on second and third passes in sand is related to $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$, although the relation is not the same as that for the first pass. Laboratory tests demonstrated that in-sand, one-pass 4x4 vehicle pull performance can be predicted on the basis of the single-wheel, multipass relations (paragraphs 60-63 and plates 18-20). Soil strength and tire performance (except for sinkage) are essentially unaffected by traffic in the near-saturated laboratory clay; therefore, for this type of soil, nondimensional single-wheel performance can be equated directly to vehicle performance (paragraph 67).
- i. The basic prediction terms adequately collapse wheeledvehicle field performance data for sand and clay to

- relations similar to those obtained for single wheels in the laboratory (paragraphs 64-66 and 67-75, and plates 21-23 and 24-28, respectively). Where direct comparisons could be made, it was found that wheeled vehicles performed consistently worse in the field than single wheels performed in the laboratory, primarily because of the factors discussed in paragraphs 52-58.
- Major wheeled vehicle performance parameters correlate with the basic prediction term for clay (i.e. for fine-grained soils) about equally well when either cone index C or rating cone index RCI is used for the soil strength parameter (paragraphs 67-75 and plates 24 and 25). RCI is chosen as the parameter presently recommended for field applications because WES experience is that RCI effectively describes soil strength on a common basis for a wide variety of fine-grained soil types and consistencies.
- 1. Optimum pull (i.e. absolute maximum pull), optimum load, and immobilization load can be computed on the basis of equations relating pull/load to the basic prediction terms for sand and for clay (paragraphs 77-80 and 83-84, and plates 29 and 30, respectively).
- m. Tire width and diameter influence tire performance in sand equally, but diameter has somewhat greater influence than width for tires in clay. Tire deflection δ/h has less influence than either width or diameter on tire performance in either sand or clay. However, increases in deflection value can improve tire performance significantly, and this increase costs far less than corresponding relative increases in either width or diameter (paragraphs 81-82 and 85-86).

Recommendations

89. It is recommended that:

- a. Each of the factors that presently limit extrapolation of single-wheel laboratory tire performance relations to wheeled vehicle field performance situations be studied in detail, i.e. the influence on tire performance of soil classes (different types of essentially purely cohesive and purely frictional soils, as well as soils possessing both cohesive and frictional strength components), irregular soil strength profiles, and operating characteristics peculiar to a wheeled vehicle (as opposed to a single wheel), and to a somewhat lesser degree (because more is known of their effects), the influence of wheel translational velocity, wheel slip, and tire tread pattern or traction aid.
- <u>b</u>. The effects of all of the factors in <u>a</u> above be evaluated and quantified on the basis of data from carefully controlled laboratory tests; then application of these relations to wheeled vehicle field situations be validated.

LITERATURE CITED

- 1. McRae, J. L., Powell, C. J., and Wismer, R. D., "Performance of Soils Under Tire Loads; Test Facilities and Techniques," Technical Report No. 3-666, Report 1, Jan 1965, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- Freitag, D. R., "A Dimensional Analysis of the Performance of Pneumatic Tires on Soft Soils," Technical Report No. 3-688, Aug 1965,
 U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg,
 Miss.

ter bestelenis enterestelenestelenestelsten eine eneretensisten en petitionen en et den entere bestelt bestelen bestelen bestelen en testelen spece

- 3. Green, A. J., Jr., "Performance of Soils Under Tire Loads; Development and Evaluation of Mobility Numbers for Coarse-Grained Soils," Technical Report No. 3-666, Report 5, Jul 1967, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 4. Green, A. J., Jr., Smith, J. L., and Murphy, N. R., Jr., "Measuring Soil Properties in Vehicle Mobility Research; Strength-Density Relations of an Air-Dry Sand," Technical Report No. 3-652, Report 1, Aug 1964, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 5. Kerisel, J., "Deep Foundations in Sands: Variation of Ultimate Bearing Capacity with Soil Density, Depth, Diameter, and Speed," Proceedings, Fifth International Conference on Soil Mechanics and Foundation Engineering, Paris, Vol II, 17-22 Jul 1961, pp 73-83.
- 6. Smith, J. L., "Strength-Moisture-Density Relations of Fine-Grained Foils in Vehicle Mobility Research," Technical Report No. 3-639, Jan 1964, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 7. Patin, T. R., "Performance of Soils Under Tire Loads; Extension of Mobility Prediction Procedures to Rectangular-Cross-Section Tires in Coarse-Grained Soil," Technical Report No. 3-666, Report 7, Apr 1972, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 8. Leflaive, E. M., "Mechanics of Wheels on Soft Soils; Effect of Width on Rigid Wheel Performance," Technical Report No. 3-729, Report 2, Nov 1967, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 9. Freitag, D. R., Green, A. J., Jr., and Melzer, K. J., "Performance Evaluation of Wheels for Lunar Vehicles," Technical Report M-70-2, Mar 1970, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 10. Drnevich, V. P., Hall, J. R., Jr., and Richart, F. E., Jr., "Transient Loading Tests on a Rigid Circular Footing," Contract Report No. 3-146, Feb 1966, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; prepared by University of Michigan under Contract No. DA-22-079-eng-340.

- 11. Melzer, K. J., "Measuring Soil Properties in Vehicle Mobility Research; Relative Density and Cone Penetration Resistance," Technical Report No. 3-652, Report 4, Jul 1971, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 12. Turnage, G. W., "Measuring Soil Properties in Vehicle Mobility Research; Effects of Velocity, Size, and Shape of Probes on Penetration Resistance of Fine-Grained Soils," Technical Report No. 3-652, Report 3, Nov 1970, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 13. Smith, J. L., "A Study of the Effects of Wet Surface Soil Conditions on the Performance of a Single Pneumatic-Tired Wheel," Technical Report No. 3-703, Nov 1965, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 14. Murphy, N. R., Jr., "Performance of Soils Under Tire Loads; Effects of Test Techniques on Wheel Performance," Technical Report No. 3-666, Report 6, Oct 1967, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 15. Turnage, G. W. and Green, A. J., dr., "Performance of Soils Under Tire Loads; Analysis of Tests in Sand from September 1962 Through November 1963," Technical Report No. 3-666, Report 4, Feb 1966, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 16. Rush, E. S., "Trafficability of Soils; Tests on Coarse-Grained Soils with Self-Propelled and Towed Vehicles, 1958-1961," Technical Memorandum No. 3-240, Seventeenth Supplement, May 1963, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 17. Schreiner, B. G., "Mobility Exercise A (MEXA) Field Test Program; Performance of MEXA and Three Military Vehicles in Soft Soil," Technical Report M-70-11, Report 2, Vol 1, Mar 1971, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 18. Robinson, J. H., Smith, R. P., and Richardson, B. Y., "Trafficability Tests with a Rubber-Tired Log Skidder," Miscellaneous Paper M-69-1, Jan 1969, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 19. Powell, C. J. and Green, A. J., Jr., "Performance of Soils Under Tire Loads; Analysis of Tests in Yuma Sand Through August 1962," Technical Report No. 3-666, Report 2, Aug 1965, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 20. U. S. Army Engineer Waterways Experiment Station, CE, "Trafficability of Soils; Slope Studies," Technical Memorandum No. 3-240, Eighth Supplement, May 1951, Vicksburg, Miss.

Table 1 Characteristics of Laboratory Test Tires

Bed 1	ection	Lond	Pres	ation Here		ius Sec- Seight in,	Section	n Width	Tire	Ressured Rolling Circum-	Contact	-Surface Cortact	Hogourou Contact	ets Contact
	Ciclent 28/4	W 1b	No lond	Londed	No Load	Londed	No Look		Disseter d, in.	ference	Area in. ²	Longth in.	Width in.	Prengure pei
42.								00-7, 2-						
						- (-			_				. ~	
).15	0.0652	100 225	16.00 33.00	16.20 33,20	3.09	2.63 2.64	4.18 4.22	4.40 4.42	14.10 14.16	3.57 3.56	4. 89 6.31	3.71 4.20	1.78 1.97	20.45 35.66
	0.0062	340	51.40	51.80	3.14	2.67	4.26	4.50	14.20	3-59	6.18	4.26	2,00	55.02
	0.0672	455	63.20	63.50	3.18	2.70	4.31	4.50	14.26	3.61	7.29	4.50	2.10	62.41
1.25	0.1063	43	2.05	2.20	3.06	2.30	4.15	4.49	14.04	3.41	11.24	5.10	2.84	3.83
	0.1083	50 63	2.30 3.30	2.50 3.50	3.06 3.07	2,30 2,30	4.15 4.16	4.46 64,4	14.04 14.06	3.41 3.42	11.00 11.81	5.00 5.20	2.80 2.90	4.55 5.33
	0.1094	80	5.20	5.50	3.08	2.31	4.16	4.50	14.68	3.42	10.92	5.05	2.77	7.32
	0.209	100	6.00	6.20	3.06	2.31	4.17	4.50	14.08	3.43	10.87	5.31	2.65	9.20
	0.1094	114 134	7.45 9.70	7.60 9.80	3.08 3.08	2.31 2.31	4.17 4.17	4.50	14.08 14.08	3.42 3.42	11,62 10,92	5.18 4.97	2.60 2.60	9.81 12.27
	0.1094	143	10.10	10.20	3.08	2.31	4.17	4.49	14.08	3.42	11.60	5.20	2.77	12.33
	0,1098	155	10.35	10.50	3.09	2.32	4.18	4.50	14.10	3.43	11.62	5.20	2.78	13.34
	0.1092	171	12.80	12.95	3.09	2.32	4.18	4.50	14.10	3.43	12.20	5.21	2.90	14.02
	0.1092	204 225	14.00 16.80	14.20 !7.00	3.09 3.09	2.32 2.32	4.18 4.18	4.50 4.50	14.10 14.10	3.43 3,44	12.32 11.53	5.30 5.21	2.89 2.66	16.56 19.51
	0.1105	233	17.30	17.50	3.10	2.32	4.18	4.50	14.12	3.44	11.81	5.24	2.78	19.73
	0.1105	247	18.20	18.40	3.10	2.32	4.18	4.53	14.12	3.44	11.52	5.17	2.76	21.44
	0.1103 0.1103	340 359	25.80 26.60	26.00 26.80	3.11 3.11	2.33 2.33	4.20 4.20	4.57 4.53	14.14 14.14	3.46 3.45	11.58 12.12	5.30 5.30	2.73 2 80	29.36 29. 62
	0.1102	455	34.70	35.00	3.12	2.34	4.22	4.58	14,16	3.47	11.70	5.40	2.72	38,89
	0.1102	480	36.10	36.40	3.12	2.34	4.22	4.58	14.16	3.47	12.11	5.40	5.81	39.64
	0.1102	513 541	40.00 45.00	40.20 45.00	3.12 3.12	2,34 2,34	4.2 <u>2</u> 4.22	4.59 4.59	14,16 14,16	3.47 3.49	12,24 11,90	5.37 5.32	2.76 2.76	41.91 45.46
	0.1102	570	47.00	47.00	3.12	2.34	4.22	4.60	14.16	3.48	12.11	5.40	2.78	47.07
.35	0.1524	100	2.50	2,30	3.06	1.99	4.15	4.61	14.04	3.35	15.76	6.20	3.40	6.35
	0.1534 0.1534	150* 225	5.50 10.10	5.80 10.40	3.08 3.09	2.00 2.01	4.16 4.17	4.64 4.68	14.08 14.03	3.35	15.67 15.55	6 .0 9	3.26	9.89 14.46
	0.1532	340	16.70	17.00	3.09	2.01	4.18	4.71	14.10	3.36	15.97	6.16	3.31	21.29
	0.1530	455	21.40	21.90	3.10	2.02	4.20	4.76	14.12	3.36	17.44	6 .39	3.43	26.09
							4.	00-20, 2	-PR					
80.0	0.0190	315	82.00	82,00	3,38	3.11	4.36	4.40	26,43	7.35	4.87	4.50	1.40	64.68
.15	0.0336	225	24.50	24.70	3.16	2.69	4.18	4.53	27.99	7.11	9.21	6.00	2.00	24,23
	0.0342	455 670	48.00 60.70	48.20 61.00	3.22	2.74 2.75	4.22	4.44 4.50	28.11 28.13	7 .1 6 7 .18	9.78 1.92	6.34 6.70	2.00	46,52 61,35
.05	0.0559	225	11.20	11.40	3.12	2.34	4.11	4.53	27.91	6 .98	16.31	7.36	2.75	13.80
,	0.0558	340	18.00	18.20	3.14	2.36	4.15	4.56	27.95	7.00	16.32	7.57	2.75	20.83
	0.0564	455 670	24.40 37.20	24.70 37.50	3.16 3.20	2.37 2.40	4.18 4.20	4.56 4.61	27.99 28.07	7.00 7.03	16.47 16.33	7.55 7.75	2.72 2.63	27.63 41.03
			•		_								-	
. 35	0.0782 0.0781	225 340	6.30 10.80	6.70 11.00	3.11 3.12	2.02	4.05 4.11	4.75 4.82	27.8) 27.91	6 .8 7 6 .88	22.67 24.60	8.65 9.00	3.34 3.42	9.93 13.82
	0.0788	455	14.70	15.00	3.13	2.03	4.14	4.82	27.93	6 .88	24.90	9.06	3.38	18.27
	0.0800	670 7 20	22.70 24.50	23.00 24.70	3.16 3.16	2.05 2.05	4.17 4.18	4.83 4.82	27.9°	6,89 6 .90	25.52 25.26	9.14 9.25	3.42 3.35	26.25 28.50
.45	0.1009	670		16.10	3.14	1.73	4.14	5.12	27.95	6.83	33.75	10.55	3.82	19.85
•••		~ i •	-,,-,		J, 27	13	_	00- <u>16, 2</u>		,	20.17		J	-7107
. 1=	0.0559	225	8.30	8.50	5.27	4.48	<u>ت</u> 6.60	6.১৭	28.26	7.05	20.42	7.20	3 .30	11.02
•+7	0.0559	300*		11.40	5.28	4.40	6,60	6.92	28.28		21.54			13.93
	0.0565	455	17.00	17.20	5.30	h .50	6.61	6.95	28,32	7.04	25.58	7.73	3.34	20.43
	0.0564 0.0564	67 0 8 30		29.00 38.00	5.32 5.33	4.52 4.53	6.62 6.63	7.00 7.00	28.36 28.38	7.10 7.10	20.52 21.34	7.57 7.65	3.23 3.30	32.65 41.71
.25	0.0928	225	4.20	4.50	5.25	3.94	6.60	7.28	28,22	6.90	31.59	8,90	4.3C	7.12
,	0.0934	455	10.00	10.30	5.27	3.95	6.60	7.22	28.26	6.89	33.95	9.40	4.25	13.40
	0.0933	670 720	15.00	15.30	5.29	3 .9 7	6.60	7.30	28.30	6.89	35.65	9.61	4.39	18.79
		·/*#1	15.05	16.20	5.30	3.98	6,60	7.28	28.32	6 .89	36,08	9,80	4.38	19.96

Note: Many of the values given in British units of measure in this report were obtained by converting metric values given in other reports. Differences in number of significant figures used in this and some of the source reports, rounding of numbers in the conversion process, and the use of values for two or more listed terms to compute and her term (in subsequent tables) sometimes caused very slight differences between value of corresponding terms in this and the source reports.

* Interpolated values.

(1 of 3 sheets)

والمناجين والمناج

		T-0-5	Prou	etion Ture	tion	ies Sec- Height		m Width	Tire	Measured Rolling Circum-	Contect	-Surface Contact	Measureme Contact	nts Contact
Section	ection icient	Ioed V	10		The state of	<u> 1p</u>	No.	_ <u>in.</u>	Diameter	ference	Area 2	Length	Width	Pressure
3/4	W	-	Lord.	LogAnd	Lord	Lorded	Lond	<u>roaded</u>	4 , in.	<u>_r</u>	<u>in.</u>	<u>in.</u>		_pei
						5	.00-16,	-PR (C	continued)					
0.35	0.1299	225 455	2.00 6.50	2.50 7.00	5.23 5.27	3.40 3.43	6.60 6.60	7.72 7.70	26.16 26.26	6. <i>1</i> 5 6.77	56.35 50.25	11.10 11.20	6.10 5.48	3.99 9.05
	0,1302	670	10.00	10.30	5.27	3.43	6.60	7.72	28.26	6.78	52.69	11.50 11.86	5.57	12.72
	0.1307	890	12.50	13.00	5.29	3.44	6.60	7.72 	26.30	6.78	56.76	11.00	5.73	15.68
0.010	0.0036	225	-4	••	5.17	5.12	7.00	7.01	27,84	7.29	1.81	2,12	1.08	120.32
	0.0093	455			5.17	ر. Ok	7.00	7.01	27.84	7.27	3.05	2.75	1.40	149.18
···-/	0.0093	7//	•••	-	J.=1	,,,,,,		.00-14. 2			3.47	2117		,
0.015	0.0674	225	7.30	7.50	6.31	5 26	8.25	8.50	28.20	6 .98	26.60	8,00	4.15	8.46
J.04)	0.0678	455	16,20	16,40	6.31	5.36 5.41	8,28	8.52	28.32	7.07	26.80	8.20	4.00	16.98
	0.0676 0.0686	670 890	25.20 36.70	25.40 37.00	6.12 6.50	5.46 5. 52	8.30 8.34	8,61 8,61	28,42 28,58	7.16 7. 2 6	26.30 23.90	8,11 7.97	4.00 3.75	25.48 37.24
0.25	0.1113	117	1.30	1.50	6.23	4.67	8.13	8.84	28.04	6.83	51.54	10.50	6.10	2.27
	0.1119	135 155	1.65	1.90 2.40	6.24 6.24	4.68 4.68	8.15 8.15	8.82 8.81	28.06 28.06	6.83 6.82	52.22 52.31	10.60 10.59	6.12 6.30	وو. ہے 2.96
	0.1112	164	2.40	2.70	6.24	4.68	8.15	8.83	28,06	6,82	52.07	10.50	6.01	3.15
	0.1111	172 191	2.60 2.90	2,80 3,05	6.25 6.28	4.69 4.71	8.17 8.19	8.82 8.80	28.08 28.14	6.83 6.83	53.38 53.10	10.70 10.60	6 .20 6 .1 4	3,22 3,60
	0.1116	570	3.00	3.25	6.28	4.71	8.20	8.80	28.14	6.83	53.10	10.74	5.95	3.95
	0.1116	225	3.00	3,25	6.28	4.71	8,20	8.76	28.14	••	53.40	10.96	6.06	14.21
	0.1115	241 279	3.50 4.30	3.70 4.50	6.29 6. 3	4.72 4.73	8.24 8.24	8.82 8.82	28.16 28.18	6.84 6.83	53.84 52.72	10.60 10.58	6.10 6.00	4.48 5.29
	0.1121	291 324	4,45 4.90	4.65 5.10	6.30	4.73	8.24	8.82 8.78	28.18 28.18	6.83 6.82	50.80 52.88	10.43 .10.65	6.00 5.90	5.73 6.13
	0.1121	340	5.10	5.35	6.30	4.72	8.24	8.79	28.18	6.82	52.58	10.55	6.00	6.47
	0.1121	365 455	5.50 7.20	5.80 7.50	6.30 6.31	4.72	8.24	8.79 8.80	28.18 28.20	6. 82 6.78	52.45 52.40	10.60	5.91 5.80	6.96 8.68
	0.1121	488	8.35	8.55	6.31	4.73	8.25	8.81	28.20	6.84	51.26	10.57	5.74	9.52
	0.1121	519	9.00 9.85	9.20 10.20	6.31 6.31	4.73	8.25	8.83 8.78	28.20 28.20	6.83	51.80	10.52 10.25	5.85	10.02
	0.1121	550 610	10.80	11.00	6.36	4.73 4.77	8.25 8.26	8.82	28.30	6 .83 6.83	49.51 51.32	10.60	5.70 5.90	11.89
	0.1124	640	11.20	11.40	6.36	4.77	8.26	8.82	28.30	6.83	51.34	10.60	5.93	12.25
	0.1124	670 8 24	11.60 15.40	11.80 15.60	6.36 6.36	4.77 4.77	8.2 6 8 .2 6	8.82 8.82	28.30 28.30	6,82	50.70 50.84	10.64 10.50	5.75 5.80	13.21 16.21
	0.1123	870 890	15.90 16.20	16.10 16.40	6.37	4.78 4.78	8.27 8.28	8.87 8.87	28.32 28.32	6.83 6.84	50.34 50.20	10.50 10.63	5.72 5.75	17 .2 8 17.73
	0.1123	965	18.20		6.37	4.78	8.26	8.86	28.32	6 .93	51.80	10.68	5.80	18.63
	0.1128	1000 1151	18.1 ₀	18.70 22.30	6.40 6.40	4.80 4.80	8.30 8.30	8.88 8.88	28.38 28.38	6.87 6.92	52.32 50.75	10.76 10.70	5.85 5.66	19.11 22.68
	0.1135	1465 1840	29.50 38.70	30.20 39.00	6.48	4.86 4.88	8.31 8.34	8.84 8.94	28.54 28.58	0.98 7.03	49.41 50.00	10.72	5.60 5.53	29.65 30.80
0.35	0.1554	225	1.50	2.00	6.24	4.06	8,15	9,22	28,06	6.68	78.70	13.00	7.48	2.86
0.37	0.1561	455	4.00	4.40	6.30	4.10	8.24	9.36	28.18	€.64	82.60	13.18	7.60	5.51 8.85
	0.1567 0.1576	67 0 8 90	7.30 10.20	7.50 10.60	6.31 6.36	4.10 4.13	8.25 8.25	9.37 9.36	28.30 28.30	6.57 6.6 9	75.70 70.10	12.78 12.60	7.14 7.07	12.70
								1.75-26	<u> </u>					
0.15	0.0149	100 225		42.10 93.20	1.40	1.19 1.19	1.72 1.77	1.84 1.89	28.17 28.17	6.52 6.52	2.20 2.45	3.91 4.14	0.79 0.80	45.45 91.84
0.35	0.0348	100	-	13.30	1.40	0.91	1.69	2,02	28.17	6.44	6.14	6.10	1.27	16,29
•••	0.0348	225		34.80	1.40	0.91	1.72	2.01	28.17	€.44	5.92	5.92	1.28	38.01
								.00-20, 1						
0.15	0.0654 0.0654	3000 4500		45.20 63.00	9.03 9.03	7.68 7.68		11.97 12.11	41.31 41.31	10.41 10.38	59.10 63.45	13.44 11.43	6.05 6.70	53.76 70.92
0.23	0,1094	3000		19.00	9.03	6.77	11.31	12.50	41.31	9.98	104.52	15.38	8.04	28.70
0.35	0.1530	3000	 .	11.37	9.03	5.87		13.03	41.31	9.72	136.01	17.86	8.50	22.9€
	0.1530	4500	 '	21.00	9.03	5.87	11.41	13.03	41.31	9.72	141.45	17.88	8.69	31.61

(Continued)

				etion sure		ss Sec- Beight	Sect.1	n Width		Measured Rolling		-Surface	Mea.surem	nte
	ection	Load		mi .	h,	in.	ъ,		Tire	Circum-	Contact	Contact	Contact	Contact
Mar.	Tictort 3/4	1b	No Loga	Louded	Load	Loaded	No Load	Loaded	Diemeter d , in.	ference	in.2	Length in.	Width in.	Pressure psi
							16x	.50-8, 2	-PR					
0.15	0.0633 0.0651	225 350	18.90 30.70	19.00 30.80	3.43 3.52	2.99 2.99	6.41 6.45	6. 48 6.54	16.11 16.29	4.15 4.15	10.82 11.41	3.70 4.00	3.54 3.60	20.79 30.65
0.25	0.1046 0.1068 0.1060 0.1094	225 455 670 890	7.80 18.70 30.60 45.80	8.00 19.00 30.80 46.00	3.31 3.43 3.52 3.60	2.48 2.57 2.64 2.70	ፉ ዜነ 6.41 6.45 6.50	6.65 6.63 6.64 6.77	15.87 16.11 16.29 16.45	3.96 5.99 4.15	21.80 20.22 20.08 20.01	5.50 5.29 5.38 5.45	4.62 4.47 4.48 4.36	10.32 22.50 33.37 44.48
0.35	0.1431 0.1476	225 455	3.75 11.65	4.20 12.00	3.20 3.37	2.08 2.19	6.41 6.41	7.00 6.86	15.65 15.99	3.93 3.95	32.30 30.28	6.95 6.70	5.56 5.37	6.97 15.03
							16x1	1.50-6,	2-PR					
0.15	0.0915 0.0924 0.0942 0.0948	225 455 600 890	8.05 17.70 30.50 45.00	8.10 17.80 31.10 45.00	5.26 5.50 5.65 5.80	4.47 4.68 4.80 4.93	11.12 11.12 11.14 11.15	11.17 11.19 11.26 11.30	17.27 17.75 18.05 18.35	4.47 4.53 4.67	25.51 23.36 20.04 20.70	4.71 4.68 4.50 4.55	6.48 6.20 5.82 5.53	8.82 19.48 29.94 43.00
0.25	0.1505 0.1527	225 455	3.25 8.75	3.50 9.00	5.13 5.27	3.85 3.95	11.12 11.12	11.22 11.25	17.01 17.29	4.39 4.43	49.58 46.50	6.80 6.49	8.18 8.09	4.54 9.78
0.35	0.2101 0.2114 0.2154 0.2170	225 455 890 1290	1,30 4,50 12,80 19,00	1.70 4.70 13.20 19.80	5.05 5.14 5.40 5.52	3.28 3.34 3.51 3.59	11.12 11.15 11.17 11.11	11.70 11.68 11.65 11.60	16.85 17.03 17.55 17.79	4.26 4.35 4.42 4.46	82.07 73.90 57.19 58.50	9.30 8.50 7.54 7.88	10.18 9.89 8.23 8.34	2.74 6.16 15.58 21.98
							16x1	5.00-6,	2-PR					
0.08	0.0486	225	15.00	15.00	5.34	4.91	15.20	15.20	17.68	4.50	12.40	1.84	7.42	18.14
0.15	0.0898 0.0897 0.0906	225 273 455	5.60 6.65 13.90	5.60 6.80 14.00	5.19 5.20 5.33	4.41 4.42 4.53	15.20 15.20 15.20	15.20 15.20 15.20	17.38 17.40 17.66	4.32 4.45	22.22 32.32 31.10	2.42 3.50 4.06	9.70 9.75 9.23	10.12 8.45 14.62
0.25	0.1464 0.1496 0.1516	225 455 890	1.80 6.00 15.30	2.50 6.40 15.50	4.97 5.19 5.34	3.73 3.89 4.00	15.20 15.20 15.20	15.21 15.23 15.22	16.94 17.38 17.68	4.21 4.33 4.41	74.49 56.67 47.56	6.36 5.40 5.00	12.85 10.95 10.25	3.02 8.03 18.71
0.35	0.2038 0.2070	225 455	0.65 3.50	1.00 3.90	4.89 5.10	3.18 3.32	15.20 15.20	15.23 15.23	16.78 17.20	4.35 4.24	100.67 67.16	7.70 5.76	14.00 12.20	2.11 6.76
							26x1	6.00-10,	4-PR					
0.15	0.0744 0.0749 0.0751	315 455 890	3.45 6.00 13.90	3.50 6.10 14.00	6.00 6.05 6.15	5.10 5.14 5.23	16.12 16.14 16.15	16.16 16.15 16.13	24.20 24.30 24.50	6.23 6.26 6.31	60.00 67.15 55.33	5.60 6.33 5.70	11.40 11.60 10.95	5.25 6.77 16.09
0.25	0.1240 0.1251	455 1290	2.00 12.00	2.20 12.25	6.00 6 13	4.50 4.60	16.12 16.15	16.32 16.22	24.20 24.46	6.17 6.23	118.27 97.69	9.70 8.20	13.80 13.02	3.85 13.16
0.35	0.1736 0.1736	890 1020	2.20 3.10	2.80 3.90	6.00 6.00	3.90 3.90	16.12 16.12	16.43 16.50	24.20 24.20	6.12 6.17	156,22 157,23	12.30 12.00	15.22 15.08	5.70 6.49
							31×1	5.50-13,	4-PR					
0.08	0.0416	225	7.40	7.50	7.70	7.08	15.00	15.03	29.80	7.56	23.18	4.63	6.00	9.61
0.15	0.0769 0.0776	455 1000	5.45 15.90	5.60 16.10	7.63 7.75	6 .49 6 .59	15.00 15.02	15.10 15.13	29.66 29.90	7.49 7.58	62.88 56.88	8.25 7.95	9.11 8.75	7.24 17.29
	0.1288 0.1298	890 1200	5.65 9.35	6.00 9.70	7.63 7.75	5.72 5.81	15.00 15.00	15.28 15.29	29.66 29.90	7.36 7.42	105.72 100.35	11.40 11.00	10.97 10.63	8.41 11.95
0.35	0.1797 0.1812	890 1350	3.55 6.85	4.00 7.25	7.60 7.70	4.94 5.00	15.00 15.00	15.57 15.52	29.60 29.80	7. 32 7. 3 6	160.39 149.48	14.72 14.21	12.75 12.35	5.55 9.03
								gid Whee						
	0.0000	loads	0.00	0.00		**	12.00	12.00	27.90	87.65	line.	rface cont		
		loads	0.00	0.00	••	••	6.00	6.00	27.80	87.34	line.	rface cont	_	
0.00	0.000^	All loads	0.00	0.00		**	3.00	3.00	27.90	87.65	Hard-su	rfare cont	act shape	is a

Table 2

Single-Wheel Tests in Yuma Sand, 20 Percent Slip, First Pass (Pasuantle Tires and Migid Wheels)

978 GA 3/8		:	: :	: :	:	: ;	:	: :	:	: :	: :	:	: :	:	: :	8. G		10.68	2. 2. 2.			: :	:	: :	:	::	:	:
Ope - (1-8g)		8	S. 4	13	8	ខ្ទីដ	778	18	ð	og F	12	3.5	7.00 7.31	8	85	151	20	13.	2 to	చళ		101	336	8 3	ខ្ព	3 3	8	2
1 G(bd) 3/2 · (1 - 4)-4		igi S	3 5	ಿದ	%		413	8	্ব	æ <u>č</u>	8	011	000	925	2,13	103	220	372	8	£%:		,	189 189	ይተ	is	56 25	<u>`</u>	O#62
4 - A 2/E (PA)0		14.15	, e	5.51	in a	* m	36.98	8.51 8.51	8.	6.94 7.03	90:	24.55 54.55		14.09	й. Ж.	8.17	17.10	5.	5.0 181.0	4 w 80 %		4.43 5.73	14.82	n, u Qʻq	4	8.7. 8.1.5	33	18.98
forque Coef- firient M/Wr		38		38	SE CO	38,	0.416	0.6	0.32	0.333	0.276	9	9	0.10	0.367	0.398	0.169	9	0.00	4 6 6 6 6 7 7 8 7 8		0. 200 300 300	986	0 0 0 0 0 0 0	0.387	0.388 378	0.438	0.421
Sinkage Coef- ficient s/d		0.047	200	8.9	90.0	0.112	0.065	0.0	0.080	6 6 6 6 6	0.105	9.016	0.0	0.08	0.030	0.00	0.0	0.018	1000	0.083		0.0 80.0	0.031	0.00	0.0	0.059	0.016	20.0
i ient		;	: :	:	:	: :	i	: :	;	1 :	;		; ;	:	: :	0.192	9	1	0.115	0.087		::	:	: :	:	: :	:	:
Pull Coefficient P'/W P/W	2-PR	0.217		6.0.0	450.0	99	0.427	0.513	0.100	0.19	0.0	0.443	37.	0.333	0.255	: :	:	:	1 1	::	.00-20, 2-PR	0.137	0.257	0.116	0.077	0.134	0.352	(Continued)
Torque M	4.00-7, 2-PR					R¥									•	ĽX	38	8	67	48	4.00-2	83					107	(Cont
Sinkage 5 , in.		86	, , , ,	1.15	85	32	0.91	0.67 6.67	1.13	0.67	1.48	8,5	10	0.37		0.73	₽ 0	0.25	8.6	1.17		2.57	8.0	N 4 N 0	8.6	1.67 1.51	3.6	, o
취임		1 1		:	1	1	ŀ	: :	ł	: :	;	1 1	:	;	1 1	12	9	es:	19	73		: :	:	: ;	;	: :	ł	:
Pull,		87	9 4	12	σ,	ĵν	ያ/	38	ଅ.	3 £	ጸ	1,47 2,7	32	123	##	1 8	1	;	1 1	1 1		% %	.	g-#	ĸ	82	88	8
Dead		88	8.5	हि	Š	83	711	38	231	מקצ	333	85	17	8	£\$	2,4 10,4	'n	&3	£	ă£		197 211	570	1 3 2 3	415	និនិ	216	ŝ
Wheel Load W. 1b Design Test		88	3 5	8	K K	8	100	88	85	หีหี	₹	86	22	8	£22	225	Ŕ	63	33.	54.4 84.4		88	58.	₹ ₹ ₹2	152	455 455	88	(33
Design Deflection Coefficient 5/h 24/d		0.15 0.0652	2000	1990.0	1990-0	0.0664	0.25 0.1094		0.1092	0.1092		0.35 0.1524			0.1530		0.100	0.1095	0.1103	0.1102		0.15 0.0336	0.0336	2,000	0.03.2	0.0342	0.25 0.0559	
			٥	.4.	0,0	- 89			4	0.9						_		7.1	iα	16.9 16.2		0 9.4. 0 7.5	4.6	າ ເ ປ່າເ			27.7	1
Penetration Resistance Gradient,* psi/in.																				18.9 u 19.2 u		8.7					20.00	
Penetration Resistance dient,* psi																												
		67	2 :	8	IJ,	9 24	22.	₹ Ç	13.	24	ā	23.	27.	83	, K	88	22.	9,5	; œ	19.5 19.0		6.5	8	Ţ.;	22	3,61	28.0	77
Test No.		164 798A	10 8 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	7662 1 91	164 800A	164 821A	164 827A	164 828A	164 820A	164 822A	164 826A	164 833A		164 830A		1-66-30	1-66-32	1-66-33	1-66-35	1-66-36 1-66-37		164 790A 164 791A			-		165 144	i

* G; , G', and G are each defined in Appendix A. Measurement G is the only term used to describe penstration resistance gradient in relations described in the body of this report. Only one nominal soil strength value is listed in reference 7 for all the tests with rigid wheels.
** P' is actual pull plus as (mass times acceleration) measured in a progressing-slip test. See Appendix A for a more detailed explanation.

(1 of 6 chaets)

ì

Single-Wheel Tests in Yuma Sand, 20 Percent Slip, First Pass (Pasawatic Tires and Migid Wheels)

O 1 1																			m) er	\@D	-4 -	-	1 20									
78		i	:	:	:	: :	:	;	:	: 1	:	1	:	:	:	: :	:	:	6. 6. 6.	na.	20.0	15.6	7.4	i ri		:	:	::	:	: :	: :	:	:
g(Fa-1).		_	_		_			_	_			_																	_			•	_
		8	Ž,	3	7 6	χğ	2	37,6	Į,	8 6	Ä	17	צ	3	F. 3	, X	₩.	2	151	9	i¥.	3	56	8		ğ	153	77	&	55	18	8	4
-k																																	
1																																	
1		ĘŢ	3	ic (Z.Y	₽₹	£,	413	É	ğd	8	121	X	3	χ <u>ς</u>	38	83	117	S F	280	375	В,		ŧ		2	8	ş e	禹	42	8.	100	}
G(P4)3/2																																	
a.p.																																	
G(P4)3/2		14.15	5 .01	r, Big	٠. د	78 7-7	36,	26.92	18.53	15.10 8.10	9	8	8 .	2.18	3 8 8 6 8	18.	e R	8	8.17	14.6	3.63	90.9	4. 4.	8		4.43	o i iC 8	i Q	5,62	4 K	7.13	39.39	R
			_					١.	_		_			_	•				-	4 44.	_	٠.				_	•••		•			•	
Coef-		9	8	F. 6			93	0.416	0.47	9.6	33	8	0.276	0.489	9	0	¥.0	0.361	8	0	0.50	0.5	100	S.		0.129	0,0	0	9		98	0.438	3
Sinkage Coef- ficient z/d		740.	g	8	3 8	100	3	.065	9		9	545	.105	910	8 4	18	.215	ę.	0, 0 0, 0	900	86	10.0	18	27		8,	8 8	, 6	.143	g, ç, G, g,	₹0.0 ₹	0.016	3
		٥	0	0 (> C	0	0	٥	0	o c	0	٥	0	0	0 0	0	0									٥	00	00	0	00	ø		
Pull Coefficient P'W P/W	<u>e4</u> i	-	<u>.</u>	i i		1 1	1		ا س	 -	1	6	;	1	 -	 m	!		84	9.0	0	9,0	0	9	£ 1	-	ر ا	- 60	5	: : -=		91	
	4.00-7, 2-PF	0.21	9	7.6	5 6	0.015	8	0.427		9.3	0.19	0.22	9	4	# F	0.333	0.0	0.255	1 1	1	i	1	1	:	4.00-20, 2-PR	0.13	0.185	9.5	0.0	0.0	0.15	0.352	5
Torque	8	83	9	7 5	ጻዩ	ት የ	Ţ,	23	Ħ.	33	8	ŧ	ß	8	E Y	R 23	φ,	87	なな	ጸዶ	18	13	3 6	8.	2	6	£	1 <u>1</u> 2	377	5 5 5 5	2	107	1
Sinkage z , in.		8	&, &,	9 4	į.	, F	8	0.91	ê.	13	9.	65	84	8	۲,q	3 5	60.	7.	٠. د	귟	.25	<mark>ર</mark> ્જ ક	7.77	8		-57	g P	3 84	<u>ن</u>	8.6	<u> </u>	3.€	į
		•	:	- 	1 :	1 1		1	o . !		. 0	•	٦ :	1		11	m ·	o ¦ .				27				۱ ا	c			∾ - ! !		11	,
Full 1		18	8	919	30	νď	'n	S.	5	8 %	2	53	ይ	7,4	22	32	-16	Ħ	: :	1	:	: 1	.	:		27	ದಿಕ	2 ,	7.	% E	:8	۶4	}
اندا		83	8	E 1	ŧ X	3	8	117	61	2 2 2 2 3 2 4	217	231	339	106	ξ. Σ.	219	₹ 8	430	23. 15.	11	£.	بار 10 م	E3	53,		197	2112	914	ğ	131) Si	216	3
Wheel Load W, 1b Design Tes		2	8:	Q y	U X	0 X 0	, XC	001	2 :	Sλ	, K	ř.	ð	8	0.0	s Ku	ĸ.	ť.	e ce	1.7.	წ.	đ 9	10	4		ž,	υñ	. ič	ıΣi	ັດເ	122	222	•
IAI		•••	•			• ••		•	•								•••					•		•							_		•
Deflection Coefficient 5/h 24/d		0.0652	0.0652	2690		1990	0.0664	0.1094	100	2001.0	2001	0.1092	0.1103	0.1524	0.1534	0.1532	0.1532	0.1530	901.0	100	0.1095	0.1083	1100	0.1102		0.0336	0.0336	0.0342	2,0342	0.0342	0.0342	0.0559	777
A C C		0.15						0.25										-						-		0.15					_	0.25	
				o, i	40.5	14.7		17.6		25.1									_	18.1	17.1	17. 4. 2.	6.91	16.2		_	ار ارم	12	i V	ر در در در در	16.1	7.73	
Resistance dient,* psi								20.3																		5.3	. 0	0	6.3	2.7	18.7	0,4	
Resistance Gradient,* psi/in.								22.0 2																							19.0	28.0 3	•
1				-																		-				9	۰, ۶	11	,- ;	4 5	(()	7 7	Ť
Test No.		798A	1 824A	825A	# 6 6 6 6 7	800	1 821A	164 827A	\$284	831A	822A	1 829A	, 826A	+ 833A	+ 834A	830F	5 SA	832A	86-39 13-39	, 84 184 184 184 184 184 184 184 184 184 1	6-33	- 5 - 3 - 4 - 5 - 5	3,6	26-37		-					4 795A	5 14A	
Te		191	707	3	3	4 4	4	164	4	20.4	7 7	12	701	16	, <u>6</u>	, Q	165	100	ή <u>τ</u>	44	7-6	, i	1-1	7		3	<u> </u>	į į	Ž,	44	4	165	•

^{*} G, . G', and G are each defined in Appendix A. Meanurment G is the only term used to describe penetration resistance gradient in relations described in the body of this report. Only one nominal soil strength value is listed in reference 7 for all the tests with rigid wheels.
** P' is actual pull plus ma (mass times acceleration) measured in a programmed-increasing-slip test. See Appendix A for a more detailed explanation.

(1 of 6 sheets)

	Ş	H		:::	::::	:	::::	:::	:::	::::	:::::	}	::::::	
	•			23°	Redd:	Z	e e	76 5	5 23	-223	3 8 31	Ē	9256224	<u> </u>
	l	_		248	in its	.		222	92 2	X5&R	26 551	<u>.</u>		\$25252£
	i	:1		50 m	å vide grade	A	224	823 823	855	2 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0	egus.	ļ Ž	2272725 2272725	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		\$		FR	282	Pi S	0000 3233 3483	2000	000 200 200 200 200 200 200 200 200 200	iden ioco	20000	}		2228845 2228845
	E SE			86£	0000 0100 0000	Ç.	0000	923	180.0	2000 2000 2000	#88#3 #666#3		90000000000000000000000000000000000000	000000 000000 000000 000000
	=	村		:::	::::	:	::::	:::	:::	::::	:::::			::::::
	2	H		0000 2500 2500	00000	**************************************	10000	9000	444 444 6000	0000 9449 9449	00000	1	9000000	Trooper of the contract of the
Partition Part	1	- 2	4	181	3536		2878	7 222	532	erei	2228 2288	8	200 H H H H H H H H H H H H H H H H H H	Sapanae)
			3	017 583	5,644	200	7000 7000	528	8,43 000	****	524S:	•	8484834	2020000 2020000
		#1		:::	::::	:	::::	.::	:::	::::	::::		::::::	::::::
		취		بر سي	2223	ç	3284	13°\$	365	2533	2525	}	\$58383 3	£218720
	3	耳		122	eria E	Š	* 4 8 8 1998	328	401	3329	283.25 283.25	}	בברלי הה	50000000 131000000 21000000
	į	損		æ	2525	Ē.	1888	268	2 2 2 2 3 3	2888 2888	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	を対する (2 mg) (2	\$288822 \$288822
	ALET 10 LI ON	H		8.00.0 8.00.0 8.00.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	S	0.000	000 000 000 000 000 000	0.0988	90000 90000	0.1199		000000 9000000 44446	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000
	80			÷-	£	-	2		- 43 - 43		33		25	-
1						•	0.4.8.4 6.4.8.4	304						
1	Stration of the state of the st	a		5.05.	5.55	.	0 1 2 4 4 0 0 4	3000	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	wa za	, 000 c.	<u>}</u>	4448673	2040420 000000
3 200 mman manana manana manan manana	21.0	H		18.5 15.0 1.9	8-53. 2-30.	,	. 47.7 	40.0	57.55 7.7.5	15.01	e 6 3 2 2 7		29237 02 00002000	လူလို့ စုပိုင်းရှိ လုပ်သည်လိုင်းရှိ
3 200 mman manana manana manan manana		- 18 Mar												
	ŀ	4		žžį.	2323	2	3723				22220	•		ZZZZZZ

3	1	::	::	: :	;	f:	::	: 1	::	:	جار بر	in.	18 22	đ.	X	5 F	21 4:	18	4 S	88	38	36	2	ea Ta	o. Siñ	-	i.		:: eheeks
8-(1-1)· 2040.		656 656 656		3 8	K#1	88	48	2111	e c	ě	200	NO.	# FO FO	063C	1000	27 EG		H		000	2	Ä	8		#16 10	181	ತ		170 121 (3 of 6
17- (\$ · 1) · 2/E (\$4)0		989 967	1194 184	6.	.	* 6	900 800 800 800 800 800 800 800 800 800	2650	756	396	818		999 7997	78	33		613 3015	100	0.00 0.00 0.00	96.6	12		9	27.9	£ 5	32	S		5 2
4 · 2/5 (\$4)0		65.61 44.81	27. 27. 27. 27. 27.	30	i i	2.3	16.03	103.11	, a. c.	17.8%	8:	12:	45 28	3	26.25	2 2 0 3 0 3	al Sign	17.97	17.56 66.66	5,	14. C	18.03	S.	86		5 A	4.36		5.60
Lotent XVII	ļ	0.578	0.00 20.00	4	96	00.00	00.4.00 5.5.5.00 5.00 5.00	60.60	800	3	£5.0	0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	7.65.0	0.588	0.0 2.0 2.0 2.0	0.01	14. 14. 14.	0 0 0 0 0 0 0 0 0	0.538	200	0 0 0 0 0 0 0 0	0.517	00 00 00 00 00 00	000	, de	0.410		0.341 0.341
dinkage Coef- flotent		0.016	0.00 0.00 0.00	900	9	0.15	0.088	88	88	6.0.0	88	38	800	88	88	000	300	0.0	8 8	0.0	3 d 3 d 3 d	200	900	68	0.016	600	0.13		0.044
Ι.	. ~	::	::	: :	::	::	::	::	:::	:	0.463	1	00	0.468	0 O	00.43	90,100	0.03	0.0 U.3.0	7.0	0 0 0 0 0 0 0 0	000	30	0 0 0 0 0 0 0		0.0	0.036		::
Took-127685	R-TR (Continued	0.982	0 0 0 0 0 0 0 0	200	000	86 00	00	9000	0 0 0 0	0.337	: :	::	::	: 1	::	::	: :	::	8	0.479	100		0.416	0.548	0.105	::	:	3.73-26	39 0.152 35 0.145 Continued)
and and and and and and and and and and	-8 -W-90.8	83	83	(A)) # 6	8 8 9 7	23	23	(% £	2	7.	199	1 1 1 1 1	8	18	127	33	2 W	88	(8) (8)	22	į	161	33	6.4 6.4 6.4	7.0	ğ	77	88 () ()
sintege .	a	93	3.E	0.		4.3 6.0 8.0	0.69	80.0	1	0.88	88	38	88	8	8	n n n	0.5	1 50	0 0 0 0	4.0	33.0	٠. ت	0.16	38	0 0 0 0 0	~ e	2.2		1.93
4		::	::	:	::	::	::	::	:::	:	::	33	86	6.6	3 6	88	2:	18	<u> </u>	8	22	8.8	3	35	33	18	ş		::
#		ž	e e	2	20	4 <u>S</u>	žž.	138	2	ž	: ;	::	::	:	: :	::	: :	::	2	8	12	8 2 5 5	3	n a	 	::	:		22
I .		141 219	4 16 15 15	Į.	2.6	6 6 6 7 6 7 6	2 G	20 6 20 6 20 6	133	130	176	367	¥¥	136	£.	₹2 ~ #	3	ia.	797	3		3 8 3 8	4	83	0. vi 2. 2. 2. 3.	957	100		28
Wheel Lat.		150	రు కో టి చ టి చ	100	2 2	££	& & & &	200	122	8	572	£	181	Z.	19		4:	350	Ş	3	35	\$ 0 0 0	9		ស្ត ស្ត្រ 13 13	8	1142		88
Design Defineration Coefficient		0.1112	0.1116	0.1121	0.1134	20.12	0.1121	0.1454	0.1567	0.1976	\$11.0	0.1181	0.1116	0.1112	6111.0	0.1116	0.112		0.1124	0.1112	0,1115	0.1100 cert	0.11	0.1112	0.1121	0.1123	0.1128		0.0149
a constant	1				·						6.83															-	-		0.15
1	_		a. 66	6.1	 	eg er	13.0		9			13.6	8.50 6.00	0.0	5.5	e	3:	. 0.	به ک نه در			13.43 6.43	12.	200	0.2	-1	7		4. Q.
Punstration Presectance Orndlent, Rel/in.							17.0 0.2																						
File	1	4. e.	8. A	6.5	r. 6.	ری در نه	£ 17																						22
	1				_		169 14 169 344			160 161	1-69-90	1.64.31	1-69-31	1-69-43	1.00.1	100000		1-69-1	1-54-5	1-649-01	1-03-57	2 - C - C - C - C - C - C - C - C - C -	K - 5 - 5	1-68-11	1-69-71	1000	1-00-1		161 699A 161 50 6A
															. 4														

₹.
•
-
-
-
•
-
-
366
-
-
_
_
_
~
~
~
ر ھ
2 2
~
) a ere
) a ere
) a +14%

30	H	::	:	:	:	į	:	: ;		:	:	:		2.76	84.8	8	2	į.	5	8	ž	3	 8	2.	Š	9 .	K.	58	3	4	9.46	F. 57	2.	Š	ė.			0	3	
900 - 189 ° 5	(P	ž,	3	25	Si.	204	5 2 2		9.5	n g	ije	; S.		503	183	3	977	P	200		2	188	3	đ	%	\$	9	3.5	3	58	064	*		3	173	3.2		12	871	
0(bd)3/8 / 8/m	(H - 1)	139	:::	er:		718	=======================================		5.5	19	.	. 01.		119	107	, 60.	₹:	3	8 .		;	ģ			en en	171	3		:	ક	2	301	en en	ខ្លី		Ç	100		3	
0(84)3/2	*	8,0	19:1	1:1	4.51	13.38	\$. 6.	M. S	7. r	đ	đ	3.83		9.3344	90	6.50	3	m i	200		86.9	જ	8.	8.	9 .61	13.86	11.61	10.6		1	\$0.76	19.78	1:1	5.2		2.0		100 100 200	5.73	
Torque Coef- fictent	Š	9.30				0.38					2			:	:	:	:	:	: :	: :	:	:	:	:	:	:	:	:	: :	:	:	:	:	ì	:	: ;	: :	: :	:	H
Sinkage Coef-	8/8	0.0	0.158	0.1%	0.0%	0.03	8	0,0	1000	9	80.0	0.138		9.00	0.00	0.103	0.111	100	88	35	2	0.122	0.123	0.146-	0,153	0.067	30.0	6.6		8	0.00	100	0.055	0.00	88		96	300	0.133	
Full Coefficient	Z (2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	::	:	:	:	;	:	:	: ;	:	:	:	:	9.00	0.035	0.037	0.0	o o	5	3	900	8	9	10.0	9,076	9,8	0.158		26	90	0.330	0								
1	_ ey	0.231	0	0.0	0.119	0.850	0.120		88	3 6	0.031	800	20, 12.	:	ei •	:	:	:	:	: :	:	ę	:	:	:	:	:	:		:	:	:	;	:	:	:	: :	: :	:	t inved
Torque		æž	38	8.	ž	2	A	<u>ښ</u>	2	- «	ş	Š	C'11	:	:	:	:	:	:	: :	:	:	:	;	ľ	:	:	:	: :	:	:	:	:	:	:	:	: :	: :	:	9
Hinkage	İ	2.7	3	4.33	1.58	6.6	5	Ĉ.) et	, es	3.89		-:	:	:	:	:	:	: :	· :	:	:	:	:.	:	:	:	: :	:	:	:	:	:	:	:	: ;	:	:	
a	-1	: :	:	:	:	:	:	:	:	: :	:	:		:	:	:	:	:	;	: :	:	:	;	:	:	:	:	:	: :	:	:	:	:	;		•	: :	: :	:	
į	H	តី ទ	ا ا	7	6	92	ទ	<u> </u>	e c	<u>م</u> د		0		:	:	:	:	:	;	: :	:	÷	:	:	:	:	:	:	: :	: :	:	:	:	:	:	:	:	: :	:	
200	E	ಸ್ಥ	200	, ca	či	ğ	ē	8 }	£		32	2		0001	8	8	8	8	နွ ဇွ	3 5	200	200	8	£88	8	30	8	8	38	8	000	8	8	8	8			500	ğ	
Me.	Person	88	1 6. 2 6.	1 60 E	u. Eu	8	8	3	6	6 20	, ec	500		1000	0	8	8	8	8	3 5	9	200	<u>§</u>	8	2 2 2	8	<u>§</u>	8	38	88	2	8	8	8	8	9 9	96	300	, , ,	
Design Deflection	37.4	0,0149	. 400	0.0144	0.0144	0.034	4.0.0 P. 0.0	0.03	, c		600	0.0349		20.0	76.0	36.00	7.00	0.0			6	46.0	360	0.00%	0.0	0,100;	2,1007	000		8	0.1410	0.1310	0.1330	0.1930	c.1530	0.53	25	70	22.0	
25	4				_	0.3	_					-		ž.	<u>;</u>		_		_							0.23		_		-	2	<u>}</u>					:		-	.
		2.5	3	, t	19.)			- ,	٠. د .	,		č				12.7	10.4	6,3	o .		0	2	1	11.4	7.5		19.0	~	2 C					11:0		<u>.</u>) 4 7 9		
Penetration Resistance ions, pal/1	0.0	75.	. ·		38.3	6.41	Ţ.	~	-	- + r, 1	11				0.01	-	C 81	~ ;- ;	0.5		9.0	9	-	0.0		20.7	1	- ·	c •		2		-	12.7		G:	<u>.</u>	5 5 5 6	a G	
A SEC	وم	Z.	٤.	:2	7	į,	7	2	<u>.</u>		: :	٤		*	*	2	2.01	C.	9	ر بر د :			-3	:.		Ŧ,	•	7	= :	ورد	4	 	· -	11.5	e .			N 4		
	1 30,	YCT	<	₹ ₹	411v	Ď	4084	4051	× .	5;	50	YOU'S		136	, e	<u> </u>	¥	You	<u> </u>	4 % A	5 5	487	r v	474	4 4 4 -	A.4 -	ž	á.	<u> </u>	i 3			*	Y-1	¥27.	* ;	٠ د د د د د د	¥ 5		
1	1	= :	: :			<u>۔</u>	ž	=	Ξ.			. <u></u>		2		*	ě	ź	ä	i.	à			å	Ä	Ã	Ä	-	Ė	i å		Ä	, Ž	į,	Ä.	ė (. 4	: :	*	1

ŧ

:

	ءُ أ	oneterat	uo;	1	Do step						ı		ı	Sinkage	Torque					 	
	OLIG!	ent. Pr	19,7	- 8 - 8		Wheel Load		191.			Tordas	Pull		3000	ficient	2/5/2/2	1/8/17/2	-1	C.	80	4/5 VO
700; No.	ie j	9 12	0	Ŕ	8 W	De la constante		H		4		N	_	N.	Z X	200		(g - 1)	ğ.	(F-1)	- 2
					i					A	6x6.50-8, 2-F	B. 2-74			:				i		3
A -4-00-1-1	:	:				333							0.0	0.148	25.0	200	e da		•	•	
AKA-00+ 6-1 Ard-00+1-1	: :	: ;		9.15	25 0 0 0 0	88 5 5 5 5	226	53		6. C	5	0.835	818	5	8	13.			2	201	200
			:			2			•				ŝ	6	\$66.0	6.79	16				*
A-44-002 7-1	: :	: :	4 6			S (0)							984.0	8	101.0	18.52	ž		&	œ	7.35
And-00-4-1	:	:	2	0	1001	2 0	•						9 9			Q 8	er e		2	<u>r</u> -c	3,5
14.6 m. V. 8.1	;	;				į							3	6.633	***	, ·	9,		•		8
And Charles	: :	: :	. ~			C S							S. 6	66	8	9.63	<u> </u>		굷.		o,
And Orman	:	:	20.8	i c	0.1470	120					•	8	9	0.0	200	5.63 6.63 6.63 6.63 6.63 6.63 6.63 6.63	960		3 %	o •	
																			i	•	
										9	16x11.50-0	0-0-1-FB									
Ar-4-00-7-1	:	:	Ġ	0.15	0,0419					.83			0.239	0.0	0.4.0	11.70	15.		ā		1.80
A. M. (31)75-1	à	:	¥.	51.5	18000	455				£.			6,00	0.15%	0.0	2	25			10	1.17
4 4-3040-1	•	:	3		0.0			•		7			027.0	0.13 ₀	0.40	3.86	C. 1		•	. cu	0
AM-0091-1	:	:	10.1	ě,	0.1505	200				7.		0.473	0.471	ە. ق	0.969	36.58	346		g	•	15.51
A64-077: -1	:	:		, i	0.1587					E.			80.0	0.146	0.397	6.28	62		=	· 60	8
1-c/m-www	:	:	•		0.1527					چ پې			0.218	690.0	0,1,36	9.31	101		2	a	1,67
Ara-2011-1	: :	;			0.2101					8:			0.483	000	609	50.19	803		116	•	41.62
Act Control	: :	::		, p	0.170	1286	1253	200 200 E		3 A		0.00	96	0.0	, Ty	15.13 21.23	e .		55	o.v	8,
•			:								•		27.5	200	9	,	3		-	o	e.
										នា	16x15.00-6	-6. 2-PB									
A+4-0007-1	:	:	15.9		9.0309								0,430	0.014	0.524	44.92	47.6		5		
Ar 4-2002-1	:	:	¢ .		0.090								0.261	0.033	30	16.37	8		8 8		8
A-3-00-1-1	::	::	. F.	0	500	1. t 70 %	2 2 2 3	3.00 2.00 2.00 2.00		83	32	7 8 6 6	88	68	0 0 0 0	8:	ē.		Z.		₫.
As 4-(A)CO.	1	;			3 1464										100	44.5			- 1		.
And -0 304	: :	: :		. 0	0	1 -1 2 2 4 2 4 4								86	200	W 6	33		e s		٠. د د د
A1 4-0001-1	;	:	7.1	8	0.150								2,00	8	98	3	118		* =		3,6
A 3-0300-1	:	:	۲.٦	0.25	0.150							_	5.073	0.158	0.383	8.0°	た		, 0		7
A-4-0000-1	;	;	0.0	0.35	0.2070	1,95							0.240	630.0	544.0	16,19	850		33		6.01
4. ************	:	;	11.3	o K	0.2010								0.44B	0.00	0.538	8,08	577		8		13.40
										2	26x16.00-1	-10, h-PR									
1-1010-1.4	:	:		. 7.0	0.0749					₹			0.278	0.096	0.4.0	16.63	ē		ă		ä
An '-: 15/21-1	:	:	ě.	0.15	0.0781	ş				12			0.080	0.089	0.36	6.93	88		22		. C.
4.4-0103-1	:	:	11.9	0.23	0.1340	45.5				8			991.0	80.0	0.558	40.19	669		3		S. G.
A. A-0104-1	:	:	a,	0.83	0.1291					82			0.100	0.061	0.393	9.13	115				5
A64-1101-1	: ;	: :	24-4 4-4		0.1736	36	8	374 336		72.0	1,35	48	37.	86	0.585	36.33	188		3		26.99
	;	;		5	× 7 1 2					3			3.	Š	0.430	10.7	169		17		7.7
											(Continued)	(panu:								9	1
																			_	(5 of 6 sheets)	ets)

÷

THE CONTROL OF THE WAY OF THE WAY THE TOTAL STATE TO THE STATE OF THE

GA3.2	-	19 85 85	20.28 20.28	29.93 4.39			:	4	1.1	ij		::	;		÷	:		:	:		i" i	:	: :
(1- 28) ⁸	: -	971 170	147. 330	951 159			923	12.	, c.	152		25 25 25 25 25 25 25 25 25 25 25 25 25 2	294·		336	237	112	5	2		115	2	25
e Page				•				•									`	•	,				
4 (45	, to													-									
0(bd)3/2 (1 -	2	121	110	772			637	233	152	18	•	970 971	19th		185	Š	ģ	7	jot.	* .	Š	25.5	191
(bd)3/2 A		54.62 9.50	8.70 19.31	1,8.25 7.95	-		;	: :	: :	:	:	::	:		:	: :	:	;	!	;	::	: ;	: :
Torque Coef- ficient M/Wr		0.573	0.407	0.601			0.458	0.451	8	0.414	:	0.1173	0.417		087	9	0.333	66.	v •	280	968.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.430
Sinkage Coef- ficient		0 0 0 0 0 0 0 0 0 0	0.030	0.005			0.011	1 0 0 0	1 1 2 3	0.029	:	0.00	0.016		0.017	0.027	0.0	120.0	9000	910	9.0	66.0	0.079
iont in the same	άl	0.155	0.176	0.441			:	: :	: :	:	: 4	: :	:		;	: ;	:	:	;	:	:	: :	:
Pull Coofficient	31x15.50-13, 4-1'R	0.523	0.206	0.198	Wienlat		0.372	0.32	0.229	0.150	;	0.303	0.541		0.278	0.22	0.114	900	9,60	96	0.170	0.126	0.079
Torque M ft-1b	31×15.50	200	85	88	Rigid		S	బ్	175	275	: 3	18	143		83	ខ្លួន	12	270	y,	Ç.	87	135	265
Sinkago : . in.		0.28	2.18 0.91	0.16 2.35			0.32	9 9	1.23	0.82	: 3	00 00	97.0		0.47	200	1.25	88	ŭ	277	1:1	1.7	. « . «
위키		382 382	383 383	835 835 835 835 835 835 835 835 835 835		2	:	: :	:	;	:	::	;	비	:	: :	:	:	: ئ	;	:	: :	:
		236 191	179 413	150 250		1625	33	% :	ည္ထ	8	: 5	S. E.	2	1583 Ct	<u>۾</u>	2 9	`∄	7,0	1625	۲	, p.,	85	38
Wheel load W. 1b Dealgn Teat		121 977	863 1205	1331		diua = 1	76	25	375	572	: :	38	8	fun . 1.	5	3 8	385	ရှိ ရှိ	tus : 2.	ē		285 270	88
Wheel W Dealgn		1000	88 88	890 1350		ctive m	:	::	:	:	:	: :	:	in.; netive radius	:	: :	:	: 1	in. i active radius	:	:	::	:
Dosign Defluction Coefficient		0.0769 0.0776	0.1298	0.1804 0.1512		le in.i n	:	: :	:	:	:	::	:	fn.i ne	:	: :	:	;		:	:	: :	:
200 H		0.15	9230	500		£ .	:	: :	:	;	;	: :	:	# # # # # # # # # # # # # # # # # # #	:	: :	;	:	£] ;	:	::	:
		17.5	we siai	13.1 3.5		nel vid	c.						-	in.: whool width . 6	6.3	_			net vid	6	<u>:</u> —	_	-
otrnti Lathn		::	::	::		h. 1	6.01		_	_			-	In . : vh	6.			-		8.07	<u> </u>		-
Penetration Resistance Gradient, psi/in.		::	::	::		37.8	:	: :	;	:	:	::	:	- 27.80	;	::	:	: :	* 27.00 in. 1 wheel width *	 :	:	::	:
The Bo.		ACH-0106-1	A69-0100-1 A69-0107-1	A69-0110-1 A64-0109-1		thost dive a 27.40 in , wheel width a 12 in , active radius	¥-£.	¥ • •	¥-4	Y-7	<u>.</u>	7		shoot din .	10-A	4.41 4.41	Y-11	14.4	t din		17.A	1.9-4 1.0-4	20-A

a Tests conducted we RSK slip.
is For the rigid wheels, artive radius " one-half the wheel diameter, expressed in feet.

Table 3 Single-Wheel Tests in Yura Sand, Towed Point, First Pass (Pneumatic Tires)

		etratio													
	Gradie	sistano nt,• ps	i/in.	Cceff	effection Neient	Wheel W	1ь	Force,	•• 3h	Sinkaget	Slip s	Tored Coeffi Pl/s	cient	Sinkage Coefficient	<u>c(ba)^{3/2} . ૄ</u>
Test No.	<u> </u>	<u>c.</u>	<u> </u>	5/h	20/0	Design	Test	77	<u> </u>	<u> 2 . in.</u>		<u>'7'-</u>	PTA	<u>=/a</u>	
								0-7, 2-	<u>58</u>						4-
164 798A 164 824A 164 825A 164 825A	19.5 20.0 11.5 15.5	20.0 18.3 11.3 15.0	17.3 15.8 9.8 13.0	0.15	0.06% 0.06% 0.06%	102 100 100 225	85 106 123 210	22 12 21 64		0.38 0.70 0.99 0.74	-7.5 -3.1 -7.0 -22.4	0.259 0.113 0.171 0.305	==	0.027 0.050 6.070 0.052	13.81 10.12 5.41 4.29
164 827A 165 828A 164 831A 164 822A 164 829A 164 826A	22.0 24.0 30.5 16.0 24.5 14.5	20.3 22.7 29.0 15.0 22.7 14.0	17.6 19.6 25.1 13.0 19.6 12.1	0.25	0.107. 0.109. 0.1092 0.1092 0.1092 0.1103	100 100 200 225 225 350	121 122 185 216 234 349	3 24 30 25 73	=======================================	2.64 0.92 0,33 0.35 0.20 1.17	-2.5 -1.2 -5.7 -4.2 -2.9 -7.0	0.025 0.033 0.130 0.139 0.107 0.210		0.045 0.037 0.027 0.025 0.014 0.083	16.36 18.07 15.35 6.81 9.47 3.98
164 8334 164 8344 165 1A 164 830A 164 832A	23.0 21.0 27.5 23.5 25.0	21.7 21.0 26.3 22.7 23.0	18.7- 18.2 22.8 19.6 19.9	0.35	0.1524 0.1534 0.1534 0.1532 0.1539	100 150 150 224 455	109 152 145 224 440	13 13 15 17 55	=======================================	0.00 0.05 0.30 0.60 0.37	-4.4 -3.8 -3.9 -3.8 -3.0	0.119 0.086 0.103 0.076 0.125	=======================================	0.000 0.003 0.021 0.004 0.025	26.71 18.79 24.57 13.78 7.23
								0-20, 2	-PR						_
164 791A 164 793A 164 788A 164 794A 164 795A	9.5 20.5 15.5 15.0 19.0	8.7 19.0 14.0 14.7 18.7	7.5 16.4 12.1 12.7 16.1	0.15	0.0336 0.0336 0.0312 0.0312 0.0312	225 225 455 455 455	218 221 126 110 116	26 26 105 100 87		1.30 0.59 1.77 1.18 1.34	-11.3 -1.9 -10.9 -9.2 -7.6	0.211 0.118 0.216 0.227 0.195		0.073 0.073 0.081 0.076	6.53 14.09 5.50 5.59 7.00
165 144 165 15A 165 19A 165 16A	28.0 17.5 18.5 15.0	32.0 16.7 18.7 15.0	27.7 14.4 16.1 13.0	0.25	0.0559 0.0559 0.0558 0.0564	225 225 310 155	227 238 335 450	18 11 21 70	 	0.00 0.29 0.25 0.76	-2.6 -2.0 -1.9 -2.0	0.079 0.05 0.05 0.156		0.000 0.010 0.009 0.027	37.48 18.58 14.68 9.14
165 21A 165 22A 165 20A	29.5 29.5 19.5	23.7 29.7 19.0	25.6 25.6 16.4	0.35	0.0782 0.0781 0.0788	225 310 1,55	\$33 350 \$12	15 10 21		0.39 0.24 0.26	-2.7 -1.8 -0.9	0.054 0.029 0.053	==	0.014 0.009 0.009	15.16 31.45 15.15
							6.0	0-16, 2	<u>-12</u>						•
164 802A 164 805A 164 808A 164 808A 164 807A 165 35A	6.3 14.0 17.7 14.3 11.4 4.6	6.7 14.0 18.0 14.3 12.0 4.7	5.8 12.1 15.6 12.4 10.4 4.0	0.15	0.0559 0.0559 0.0559 0.0559 0.0565 0.0564	225 225 225 300 455 670	213 215 222 293 458 650	33 15 13 19 60 292		1.03 0.00 0.20 0.20 0.94 3.50	-8.8 -2.8 -2.6 -3.3 -37.6	0.155 0.070 0.059 0.065 0.131 0.449	=======================================	0.036 0.000 0.007 0.007 0.033 0.124	10.40 21.50 26.85 16.19 8.77: 2.37
164 816A 165 37A 164 818A 165 33A 164 812A 164 317A	15.1 17.1 18.3 2.5 15.7 10.6	15.7 17.3 18.0 2.7 16.0 11.0	13.5 15.0 15.6 2.3 13.8 9.5	0.25	0.0928 0.0928 0.0934 0.0932 0.0932	225 225 455 455 890 890	210 223 155 129 865 863	10 14 18 182 76 173		0.28 0.04 0.30 3.58 0.71 1.53	-1.3 -1.3 -3.3 -3.3 -3.3 -9.2 -8.1	0.012 0.063 0.010 0.121 0.068 0.200	 	0.010 0.001 0.011 0.127 0.025 0.054	35.74 42.74 21.83 3.41 10.24 7.06
164 803A 164 813A 164 8144 165 34A 161 811A	6.3 19.4 19.4 3.7 16.0	6.7 19.0 20.0 2.0 17.3	5.8 16.4 17.3 3.5 15.0	0.35	0.1299 0.1299 0.1302 0.1302 0.1307	225 225 455 670 890	225 239 116 671 870	13 21 8 11 56		0.51 0.16 0.04 3.60 0.34	-4.5 -1.1 -1.3 -30.9 -2.3	0.116 0.016 0.018 0.365 0.055	=======================================	0.018 0.006 0.001 0.127 0.012	22.58 60.92 34.58 4.63 15.40
							9.0	x-14, 2	PR						
164 7774 164 7794 164 7604 164 7864 164 7874 164 7834 164 7834 164 7834 164 7814	9.0 6.5 15.0 19.5 9.5 13.0 5.5 20.0 12.8	9.3 7.3 16.0 20.7 10.3 1k.3 6.0 20.3 1k.0	8.1 6.3 13.8 17.9 9.9 12.4 5.2 17.6 12.1	0.15	0.06714 0.06714 0.06714 0.06718 0.0678 0.0578 0.0578 0.0578 0.0686	225 225 225 225 455 455 455 455 455 890 890	530 530 530 530 530 530 530 530 530 530	22 21 17 6 21 91 21 152 7		0.24 0.58 0.42 0.42 1.03 6.72 1.81 0.46 1.61 6.88	2.7 4.7 4.2 2.2 4.7 2.5 11.9 2.0 4.2	0.0% 0.073 0.0% 0.0% 0.113 0.0% 0.0% 0.016 0.066		0.009 0.021 0.015 0.015 0.036 0.025 0.064 0.016 0.056 0.031	18.75 14.90 31.95 41.07 10.42 14.38 6.52 20.61 7.67 13.86
165 SA 165 UA 165 7/ 165 6A 165 27/A 165 28A 165 3A 165 2UA	11.8 12.8 24.5 14.5 13.9 3.7 15.5	12.3 13.9 25.0 14.3 13.7 4.0 16.0 17.3	10.7 11.2 22.5 12.4 11.8 3.5 13.8 15.0	0.25	0.1112 0.1116 0.1121 0.1121 0.1121 0.1122 0.1123	150 22* 225 355 355 670 890 890	184 225 216 80 656 850 862	7 6 28 15 253 30 35		0.00 0.18 0.18 0.13 0.10 3.06 0.02 0.18	0.5 -0.8 -2.4 -3.4 -29.7 -1.7 -2.9	0.049 0.031 0.028 0.063 0.032 0.356 0.035	=======================================	0.000 0.006 0.006 0.015 0.014 0.108 0.001 0.006	C4.24 43.62 91.28 24.67 22.51 4.77 14.57
165 04 165 17A 165 12A 165 13A 165 10A	22.5 15.0 27.5 1.0 13.8	24.0 15.0 28.0 4.3 14.3	20.7 13.0 24.2 3.7 12.4	0.35	0.1554 0.1554 0.1567 0.1567 0.1576	225 225 670 670 890	243 226 668 653 892	18 13 22 129 39	ed)	0.00 7.00 6.00 2.04 6.00	0.4 0.5 -0.5 -12.8 -0.9	0.074 0.058 0.033 0.138 0.044		0.000 0.001 0.000 0.972 0.000	103.11 69.63 44.99 7.04 17.35

SG, SG, and SG releast defined in Appendix A. Measurement SG is the only term used to describe penetration resistance gradient in relations described in the body of this report.

Fig. 15 towed for. The majority acceleration measured in a programmed-increasing-slip test. See Appendix A for a sore detailed explanation.

Fig. 15 Sistance 2 at the towed point.

Table 3 (Concluded)

	Pa Gradie	etrati sistan nt, ps	ce		Defléction ficient	Wheel		For	oved ce, 1b	Sinkage	Slip S	Toved :		Sinkage Coefficient	G(bd) ^{3/2} . 8
Test No.	ď,	c.	G	6/h	28/d	Design		PT	P ₇	z , in.	211b 2	F _T /a	P_/a	z/d	G(bd) 3/2 8
						9.0	<u>0-14, 2</u>	-PR (Continue	<u>3)</u>					
1-65-64 1-65-65 1-65-66 1-65-67 1-65-68 1-65-70 1-65-71 1-65-72	14.5 13.0 14.0 13.5 14.2 11.8 14.2 11.5 12.0 12.2	15.1 13.4 14.1 14.2 14.7 12.2 14.6 12.0 12.7	13.3 11.8 12.7 11.6 13.2 10.3 13.2 9.7 10.3 11.0	0.25		152 141 239 237 648 839 360 291 160 455	156 144 243 237 650 821 318 286 163 458		2 5 6 19 57 6 7 0 13	0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00	1.2 1.0 2.5 1.4 2.0 -7.2 0.8 1.0 2.0 6.6		0.013 0.035 0.021 0.025 0.029 0.069 0.017 0.024 0.000 0.028	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	73.71 70.85 16.18 13.25 18.11 11.21 33.55 30.00 54.63 21.31
							1.75	26 Bi	cycle						
161 504A 161 510A 161 499A 161 503A 161 508A 161 511A 161 497A	10 24 20 13 10 27 16	8.0 22.7 14.3 7.0 8.3 22.3 12.3	6.9 19.6 12.4 6.1 7.2 19.3 10.6	0.15	0.0149	100 100 100 225 225 225 225	528 516 517 517 518 518 518 518 518 518 518 518 518 518	25 13 27 78 95 61 79		1.89 0.64 1.15 3.52 3.99 1.17 2.21	-9.9 -1.0 -7.5 -15.8 -18.6 -8.1 -12.4	0.215 0.114 0.193 0.368 0.440 0.238 0.306		0.067 0.023 0.041 0.125 0.141 0.052 0.080	3.42 8.70 4.18 1.52 1.76 3.98 2.17
161 505A 161 502A 161 500A 161 509A 161 498A 161 507A	10 8 20 10 17 14	7.3 6.3 14.0 7.3 12.3 11.3	6.3 5.4 12.1 6.3 10.6 9.8	0.35	o. 35 rg	100 100 100 225 225 225	91 93 201 253 261	18 21 7 75 82 73		1.63 1.85 0.63 3.46 2.12 2.10	-6.4 -8.1 -0.5 -17.4 -11.5 -10.3	0.198 0.226 0.053 0.373 0.324 0.280	=======================================	0.058 0.066 0.022 0.123 0.075 0.075	7.96 6.68 10.46 3.70 4.95 4.43
							16x6.	50-8,	2-FR						
A68-0066-1 A68-0069-111 A68-0072-111	==	==	13.7 1.2 10.0	0.15 0.15 0.15	0.0633 0.0633 0.0651	225 225 350	231 214 216	23 	26 14 83			0.098	0.111 0.533 0.240	 	9.22 3.09 4.67
A68-0067-1 A68-0073-1++			16.1 10.7	0.25 0.25	0.1046 0.1080	225 670	224 665	6	7 308			0.027	0.031		18.44 4.33
A68-0062-1 A68-0068-1 A68-0071-1++	==		6,2 20.2 4.6	0.35 0.35 0.35	0.1431 0.1476 0.1476	225 455 455	230 152 130	30 18 	30 18 308		:-	0.130 0.040		 	9.48 16.23 3.89
							<u>16x11.</u>	50-6,	2-FR						
A58-0077-1 A58-0084-111 A58-0087-111			6.2 4.8 6.9	0.15 0.15 0.15	0.0915 0.0924 0.0948	225 455 890	216 453 863	24 	27 190 192	==		0.111 	0.125 0.419 0.570		11.15 4.11 3.51
A68-0081-1 A68-0078-1 A68-0085-111	 	==	10.1 6.7 4.8	0.25 0.25 0.25	0.1505 0.1527 0.1527	225 455 455	225 456 460	19	11 67 105	<i>=</i>		0.031 0.107	0.049 0.147 0.228		29.06 9.79 6.95
A68-0083-1 A68-0082-1			13.1 13.9	0.35 0.35	0.2101 0.2154	225 6)0	234 981	8 73	16 73			0.034	0.068		50.19 13.04
							16x15.	<u>00-6,</u>	2-FR						
a68-0097-1 a68-0092-1			15.9 6.9	0.15 0.15	0.0898 0.0897	225 273	230 279	26 26	14 29		:-	0.004 0.093	0.017 0.104	 	44.52 15.96
A68-0096-1 A68-0095-1			11.6 8.7	0.25 0.25	0.11 <i>6).</i> 0.14/6	225 455	F19 559	32 32	7 32			0.017 0.071	0.031 0.071		52.32 20.85
A68-0094-1 A68-0089-1			11.2 5.0	0.35	0.2070 0.2070	455 455	159 167	9 17	19 55			0.020	0.041	==	36.10 15.84
							26x16.	00-10	k-PR						
A58-0101-1 A68-0100-1		••	6.4 5.0	0.15 0.15	0.07 <i>1</i> 9 0.0751	455 890	159 865	34 174	36 176				0.078 0.203		16.25 6.82
A58-0102-1 A58-0105-1			11.9 5.9	0.25 0.25	0.1240 0.1251	1286 1286	167 1283	13 162	13 162				0.028 0.126		19.08 9.03
a58-0103-1 a68-0104-1			12.1 4.9	0.35 0.35	0.1735 0.1736	830 1020	896 1036	98 161	98 191	 			0.109 0.155		36.42 10.41
							31z15.	50-13,	L-FR						
A58-0111-1 . A58-0107-1 A58-0110-1	·	 	17.5 9.8 13.1	0.15 0.25 0.35	0.07F) 0.1291 0.1804	455 1200 890	451 1205 £87	14 71 39	1 71 39	••	 	0.009 0.059 0.044	0.059	 	54.62 19.31 48.36

Single-Wheel Tests in Yumm Sand, 20 Percent Slip, First-Pass, Design Translational Valocities from 0.8 to 18 Pt/8eg

		•					
44 84 9-		19.57 19.67 19.83	. 2388 	884 54 54 54 54 54 55 55 54 55 55 55 55 55 55 55 55 55 55 55 55 5	382834 882868 8888888	\$24558 84588 84688 8468 8468 8468 8468 846	131.18 131.18 18.18 18.18 18.18 18.18
2/c (A)0			~~~ # ***	33		V ************************************	
2/1 (1/20 x) 1/2 x (1/20 x)		00000 60000 40000			1.188 1.197 1.198 1.469 1.469	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	444469 444469 544664
Shear Mave Velocity vsh . ft/sec		፠፟ ኇ፟ኇ፟ኇ፟	8 883 8 883 8 883 8 883 8 883 8 883 8 883 8 883 8 883 8 883 8 8 8 8	28 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2222 2222 2222 2222 2222 2222 2222 2222 2222	624466 624466	<u>ૹૢૹૢૹૢૹ</u>
Soil Confining Pressure** Beneath Tire CP, psi From From Tire Newmark Contact Chart Pressure	8:53	::::::::::::::::::::::::::::::::::::::	6 3858; iv 4444.		444400 482386	44.63.44 6.65.69	382225 500000
Boil C Pressure From Newmark Chart	nt Pic	11148 2888	. 88 E. 83	ii ooooii 44 84 88 94	444466 884366	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	044004 85568
Transla- Velocity ft/sec	Coeffici	4444	14 44.4.4. 14 44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	8588 <i>88</i> 88	******** ********	208899 208899	248545
Wheel Transla- tional Velocity V, th/sec	flection	- 52					
7 - PA (PQ) 3/5 - 9	9.00-14, 2-PR Tire; Design Deflection Coefficient	144 2 Kg	7 8864 8 888 9	55.00.00 5.00 5.00.00 5.00.00 5.00.00 5.00.00 5.00.00	8877755 882888	331118 33118 3317 3317 3317 3417 3417 3417 3417 3417	53.65 681.73 681.73 681.75 681.75
Sinkage Coeffi- cient a/d	1, 2-PR T	0.017 0.017 0.017	000000 000000 000000000000000000000000	99 000000 98 000000 1000000000000000000000000000000	0.00 0.00 0.00 0.00 0.01 0.01	00.000 00.000 00.000 00.000 00.000 00.000	000000000000000000000000000000000000000
Pull Coeffi-	9.00-1	00.378 0.378	0.00 4.5.00 4.5.00 1.04.00	00 00 00 00 14 44444 17 74444 18 88 88 88 88 88 88 88 88 88 88 88 88 8	0.506 0.115 0.337 0.453 0.453	0.000 24.000 24.000 34.000 39.000 39.000 39.000	00.00 37.7 47.5 60.00 47.5 47.5
Terone X		113 133 133 133 133 133 133 133 133 133	Se Series	565 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	¥ 3 8888	16444 1644 1644 1644 1644 1644 1644 164	22222
Sinkage E in.		00004 20004	8 8888	88 88828	000000	900000 90000 9000 9000	000000 84400000000000000000000000000000
14. T		888200	. 12	883885 8 <u>8</u>	148 188 188 188 188 188 188 188 188 188	500 65 E	1-888 85. 4
F Toest		38 25 25 25 25 25 25 25 25 25 25 25 25 25	18 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	782288 782288	497594	997848 848755	५५० कुरुवा १५०० १५०० १५०० १५००
iton mae nt					2.00. TR		
Penetration Resistance Gradient Pal/in,		ricalor Sauda Ligar				384678 44444 4444 4444 4444 4444 4444 444	32'4'0'4'0' #EEE'TEE *KOHER
, k.		Series Caracter Series Series	_ '-	>	64444 851444 861444	Singuaga Singuaga Singuaga	State:
100t No.				115			

* Sold values of Vy were used in computations involving this variable.
** Sold confluing pressure beneath the tire at depth who estimated (a) by use of a rectangular approximation of tire contact shape, measured properties of Yumm sand, a Mermark hart, and the procedures in reference 10, and (b) by dividing measured hard-surface tire contact pressure (table 1) by 3.4. Values of Veh were obtained from fig. 6 using values of CP estimated by method (b).

$\left(\frac{150V_w}{V_{gh}}\right)^{1/2}$									
150v h		88.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35	8		18.54 1.77 18.54 18.54 18.54	25.52 21.52 23.53 26.53 26.63 26.63	633.30 63.30 63.30 63.30 64.90	25.50.51.92 5.44.45.92 9.60.71.92	3.52 4.52 5.53 4.52 5.53 4.53 5.53 4.53 4.53 5.53 4.53 4.53 5.53 4.53 4.53 5.53 4.53 4.53 5.53 4.53 4.53 4.53 5.53 4.53 4.53 4.53 4.53 4.53 4.53 4.53
G(bd) ^{3/2} .		962.4	-		4	« 44mm	പരതാ	400	4040A
$\left(\frac{150V}{V_{ah}}\right)^{1/2}$		2.069 2.069 2.068 2.068 2.068 3.068 3.068	1.099 1.066 1.107 2.133		0.458 0.456 0.552 0.568 0.601	0.000 0.994 1.0089 1.105	1.316	11.000.01 11.000.01 11.000.01 11.000.01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Shear Wave Velocity Vah , ft/sec		445 346 366 366 33	607 632 1598 865 66		668 614 524 524 614 614 614 614 614 614 614 614 614 61	653 525 525 525 527	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	255 7 7 7 3 2 2 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	786 777 777 777 777 777
Soil Confining Pressure Beneath Tire CP, pai From From Tire ewmark Contact Chart Pressure	(Continued)	44.50 44.50 5.50 5.40 5.40 5.40 5.40 5.4	5.59 6.79 6.43 1.53 1.53		2.2.2.4.6.4.6.4.6.4.6.4.6.4.6.4.6.4.6.4.	456644 488444	64 64 66 66 66 66 66 66 66 66 66 66 66 6	11.00.00 12.00.00 12.00.00 13.00.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	50 46 46 46 66 66 66 66 66 66 66 66 66 66
Soil C Pressur Tire From Hewmark Chart	- 0.25 (12.50 0.68 0.68 1.52 1.52	2.5.5.83 2.5.5.83 2.5.5.83	-	0 2 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	426498 828488	3.4.4.6.8 3.4.8.88 9.38.99	34.02.45 84.03.45 33.03.45 33.03.45	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
canala- clocity t/sec	itent 5	12.70 13.01 12.65 12.75 12.15	1.89 1.80 5.16 13.03 12.92		૦ ૦ ન ન ન ન શું જું જું જું જું જું	4.300.00 584588	4.00.00 00.00.00 01.00 01.00 01.00	133 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.52.73 13.04 17.77 17.77
Wheel Transla- tional Velocity V, ff,sec	ton Coeffic	£1——	7,83 5 6,89 5,34 7 8,89 1,36 7 8,16 3,88 13 12,03 8,88 13 12,92 Dorlgn Deflettion Coefficien.		0 0 0 . 8. 8. 8.	<u>~</u> →	σ	—————————————————————————————————————	——————————————————————————————————————
G(bd)3/2	9.00-14, 2-PR Tire; Design Deflection Coefficient	30.17 18.61 66.26 67.18 4.53	7.83 5.34 3.88 8.88 11rd; Dealgn D	,	8.82 8.71 12.53 15.87 27.88	88923 88923 88923 88923 8893 8893 8893 8	8 12 22 27 27 26 26 26 26 26 26 26 26 26 26 26 26 26	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Sinkage Coeffi- cient z/d	Tire; De	00000 00000 00000 00000 00000	0.0050 0.0050 0.0050 87-78		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.032	0.052 0.028 0.018 0.014 0.054	0.083 0.112 0.0013 0.033 0.013	0.0073 0.0033 0.0033 0.0020 0.0020 0.0020
Pull Coeffi- clent PA	-14, 2-PF	0.30 0.30 0.416 0.03 0.05 0.05 0.05	0.146 0.094 0.036 0.002 0.190		0.055 0.104 0.150 0.242 0.319	0.348 0.256 0.288 0.369	00.2866 00.354 00.05 01.05	0.0000 0.0000 0.00	0.000 0.463 0.334 0.505
Torque M ft-1b	8	328.88.83	377 262 265 138 138		7,89,5 kg	11835 1478 1478 1478 1478 1478 1478 1478 1478	สพพลนะ	ħ £234888	2822288
Sinkage z , in.		949999 848888	1.68 2.55 2.53 3.55 5.55 5.55 5.55 5.55 5.55		4 00000 8 8 4 4 5 5	0.57 0.67 0.65 0.33	555.55 500000 5000000000000000000000000	11.15.10.00 22.00.00 22.00.00	1.00.00.00 1.00.00.00 1.00.00
Pull P. 1b		228855 258	100 100 100 100 100 100 100 100 100 100		222222	8 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	21337E	82029	82286F2
Wheel Test Load		322 130 157 612	957 1155 1098 180 269		22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	*88888*	447.83.28 84.08.28	250 250 250 250 250 250 250 250 250 250	2525523
اع يدوي		11.00 0.01 6.00 4.61 1.00 4.61	34444		17:50 17:50 17:50 17:50	27.77.74 27.65.74 27.66.74	25.22 1.71 1.71 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.8	7,150,000 7,150,000 7,150,000	15.0 15.0 11.0 11.0 11.0 11.0
Peretration Resistance Gradient psi/in.		ಬದ್ದಚನನ್ನ ಬದಂತ್ರ ಕ್ಷಮ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.81 0.62 0.63 0.63 0.63 0.63	04044444 640444444444444444444444444444	2015 2015 1016 1016 1016 1016 1016 1016 1016 1	8121215558 94458780	84.84 6.84 6.45 6.45 6.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7
2		33434 888808	04000		3 3 3 5 5 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	445440 445440	888888 66666	8,500,000,000,000,000,000,000,000,000,00	8 23 23 34 2 2 2 2 2 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4
Test Ho.		1-65-78 79 80 81 82 83	1-65-lt7 lt8 lt9 lt9 lt9 lt9 lt8		144-14 158 158 158 158	383583 38368	B #####	£E&&\$43	377 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Contract of the contract of th

Single-Wheel Tests in Mortar Sand, 20 Percent Silp, First Page (Pheuratic Tires) Table 5

G _Y (bd)3/2	•	7 W.O.Y G.G.D.D	ڛٷۄػٳۺٵ ۺؙۺۺۺڟ		6.7 13.0 13.3		16.6 16.6 17.9 1.9		. 26.9 7.89 2.99		4.8 8.1 25.3		38.8 14.0 5.3;	
Yuma Sand Penetration Resistance Gradient,* Gy	•	8 2 11 1 2 4 4 4 5 5	25.4114.5 5.00.5.10		9.2 10.8 16.6		0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0,000 0		ง พพัช พพัช		85.5 61.4		4.00 4.00	
Relative Density Dr		0000 \$88.50	000000 8648828		0.00 0.89 0.887		0000 2000 2000 2000		84% 9.00		.000 48F		0.89 0.71 0.35	
0 _H (bd)3/2		స్తావు అత్త లిడ్లాస్త్రా	ะร่า ((.๓.๙ ะะงัดว่า		9.5 18.2		14.6 23.1 15.2 15.8		26.0 10.6 6		7.0 35.6 35.6		53.1 19.6 8.1	
Torque Coefficient M/Wr _a			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.260 0.390 0.399		0.310 0.416 0.371 0.431		0.387 0.316 0.425		0.350 0.368 0.509		0.493 0.426 0.405	
Sinkage Coefficient z/d	ţ	0.098 0.135 0.135	0.065 0.058 0.016 0.06	Tirett	0.029	reft	0.025 0.014 0.023	rett	0.018 0.078 0.081	Tiret	000 000 000 000 000	1rett	0.026	
P/W	2-PR Tiret	::::	:::::	2-PR T	0.226 0.254 0.263	2-PR Tireft	0.160 0.280 0.174 0.258	2-FR Tirett	0.240 0.062 0.176	14-PR	0.066 0.165 0.362	4-PR Tirett	0.415 0.274 0.186	
Pull Coefficient	9.00-14,	0.000 148 148 148	0000000 000000 000000 0000000000000000	16x6.50-8,	0.187 0.326 0.308	16x11.50-6,	0.231 0.382 0.210 0.288	16x15.00-6,	0.290 0.087 0.217	26x16.00-10,	0.092 0.196 0.408	31x15.50-13,	0.468 0.303 0.223	
Torque M ft-1b		######################################	8888888 888888	41	38 25	भ	250 250 250 250 250	71	257 121	%I	302	띪	325 236 386 386	
Sinkage z , in.		96.49.	1		0.00 80.00 0.00		0.43 0.24 0.75 0.47		9.1.1 48.88		2.17 0.08 0.08		0.00 0.79 2.17	
41, 13 41		::::	:::::		17.23		3,378		372		జ్ఞక్టిక్ల		187 321 243	
		46848 46848	32 55 4 55 54 54 55 65 65 65 65 65 65 65 65 65 65 65 65		134 134		28838		252		362 366 366		211 355 292	
Load 1b Test		878 878 878 876	888844 8883449		217 217 717 717		82232		217 870 448		8 27 8 23 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24		451 1338	
Wheel Load W, 1b Design Test		88888	&&&&&&&&&&		225 125 125 125 125		8553		222 455 455		జ్ఞిజ్లోజ్ఞి క్లొబ్లొజ్జ		1550 1350	
Dealgr Jeflection Coef- ficient		0.15	0.35		0.15 0.25 0.35		0.15 0.15 0.35		0.15 0.25 0.35		0.15 0.25 0.35		0.15 0.25 0.35	
Mortar Sand Penetration Gradient psi/in. Gradient		9,54 64,44	51 60 60 60 60 60 60 60 60 60 60 60 60 60		22.58 24.9 24.9		7.7 2.7.7 2.5.5 6.65		9.49		5.2 2.3 3.3		9.7 3.2	
Mortal Gradi		11.0	21.43.53 50.50.55		14.8 17.3 25.8		8.3 16.0 16.8		30.6 3.6		8.00.E		19.6 3.8 3.8	
Teat No.		255 255 255 255 255 255 255 255 255 255	823888 838888		A-69-0022-2 23 24		A-69-0019-2 33 20 20 21		A-69-0037-2 31		A-69-025-2 26 27		A-69-0028-2 30 29	

Penetration resistance gradient G_M measured in mortar sand was converted to the corresponding measurement in Yuma sand Gy by the method described in paragraph 32.1 Is actual pull (P) plus ma (mass times acceleration) from a programmed-increasing-slip test. See Appendix A for a more detailed explanation.

Data taken from table 7 of reference 15.

The many of the contraction of t

• : - :

See Appendix A for a more detailed explanation: (mass times acceleration) measured in a programmed-increasing-slip test. S P' is actual pull plus First-pass data.

Literation of the second of th

(Continued)

Compared to the control of the contr

ક		\$25835338 46000000000000000000000000000000000000	ઌઌૡઌ૽ૡ૽ૡૡઌ ૱ૹૡૢૹૢઌૢઌ૽ૡૹઌૡ	1,20		920699000 920699000	%,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\frac{\operatorname{Ct.} 1/2 \operatorname{d} 3/2}{(1+\frac{\operatorname{ld}}{\operatorname{d}})^{ll}}$		23.65.00 200,16 23.65.38 34.59 39.15 39.73	8488888888 8488888888 84888888888 84888888	45.82 22.22		888 888 884 884 884 884 884 884 884 884	&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
$\frac{\frac{CDd}{W}}{1+\frac{D}{2d}} \cdot \frac{\left(1-\frac{8}{h}\right)^{-2}}{1+\frac{D}{2d}}$		6.5.2.2.2.4.1.1.1.2.5.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	2011 2011 2011 2011 2011 2011 2011 2011	26.02 12.62		86.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28	<u>ૡૡ૱ઌ૱ૡૡૡ</u> ૡૡૡૡઌઌઌઌૡઌ ઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌ
$\frac{Cbd}{N} \cdot \left(\frac{b}{h}\right)^{1/2} \subseteq \frac{1}{2}$		edeeseses 25288886444	14. 25.25.23.33.25.33.25.33.25.33.25.33.25.33.35.25.33.35.25.33.35.25.35.35.35.35.35.35.35.35.35.35.35.35.35	25.28 55.55		24.07.9.04.9.4 8.888.8.89.98	ç.й
$\frac{\mathrm{Cbd}}{\mathrm{W}} \cdot \left(\frac{\delta}{\mathrm{h}}\right)^{1/2}$		ი მდ ღი <u>უ უ ღუ</u> გმდგაი უ <u>უ ღუ</u> გმდგან შენა	2.8 2.8 2.8 2.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3	5.67 2.75		, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	5,5,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
Torque Soefficient MAra		0.475 0.766 0.453 0.372 0.372 0.358 0.358	0.565 0.565 0.385 0.385 0.386 0.316 0.111	0.160		0.463 0.718 0.536 0.536 0.218 0.310 0.335 0.335	0.588 0.1388 0.1388 0.1388 0.1396 0.1289 0.1283
Sinkage Coefficient z/d		0.022 0.004 0.012 0.017 0.017 0.017 0.057	0.000 0.030 0.034 0.034 0.055 0.055 0.015 0.015	0.029		0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.002 0.002 0.002 0.003
in in in in in in in in in in in in in i	R (Cont	1111111111	11111111111	::	, 2-PR		1111111111111
Full Coefficient Pl./P	0-20, 2-PR (Continued)		1.176 0.597 0.597 0.680 0.314 0.219 0.294 0.394 0.335	0.153 0.008	6.00-16	0.338 0.715 0.0189 0.010 0.027 0.203 0.318	0.000000000000000000000000000000000000
Average Torque M ft-1b	٠,١ ٥	\$	258 1113 113 113 113 113 113 113 113 113 1	334		117 193 165 224 326 332 120	136 173 173 173 173 173 174 175 177 177 177 173 173 173 173 173 173 173
Sinkage 2, in.		658633466 688633466	00000010163 88888888 74688888888	0.80 2.85		000100100010001000000000000000000000000	00000000000000000000000000000000000000
enge 11, 1b				::			
Aver Pull		85.83 48.85888 84.85888	247 139 139 139 143 143 143 143 143 143 143 143 143 143	263		8888 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	35.25.25.25.25.25.25.25.25.25.25.25.25.25
Avg Teat		652 652 653 653 653 653 653 653 653 653 653 653	822625 82265 82625 82265 8265 8	657 621		88388614 1833 8838888888888888888888888888888888	33865 3386 3386
Kheel Load K 1b Ave		225 225 225 225 155 155 670 670 670	222 222 222 223 225 455 455 670 670 670	670 670		225 225 225 670 670 670 890 890 890	225 225 1455 1455 1455 1750 1750 1750 1750 1750 1750 1750 17
l		0.0559 0.0559 0.0564 0.0564 0.0564 0.0570 0.0570	0.0982 0.0788 0.0788 0.0788 0.0788 0.0880 0.0880 0.0880	0.1009		0.0559	
Design Deflection Coefficient 5/h 28/d		0.25		0.45		£10	55.0
Average Penetration Resistance		**************************************	8888888888888	38			፠ጟጜጜ፠፠፠፠ጜጜጜ፠
Phases Com- pleted		nannannan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r a		******	$\kappa \kappa $
Test Fo.		2700 2800 2800 2720 2810 2810 2910 2910	2776 2833 2833 2833 2856 2956 2956 2956 2656	1030		3210 3250 3210 3210 3310 3310 3310 350	3222 3222 3222 3222 3222 3222 3322 332

A Secretary of the secr

<u> </u>	503	•	~\$°	, g	ξ. α	10	1	, v 2, 4	, i	0 m			0.19	;	0.28 0.16	0.35		2.07	ლ. ლ.გ	88	86	89	2,33	1.0	7, 67	ji.		0 0 0 0 0 0	11:76	19.07	2.5		55.0	
Į.	$\cdot \left(1 + \frac{46}{d}\right)^k$	•	84.53	25.03	14.38 80.16	114.48	38.27	7.5	24.63	3 & 8 8	,		#.9		38.25 27.56	1,8; 1,3		55.62	88.8	28.45	83.03 51.10	18.61	63.61 63.35	26.88 43.70	36,36	75.84	19.19	8.8	188.74	306.14	115.22	65.51	្លែន វិតិ	χ.,
$\frac{Gbd}{V} \cdot \left(1 - \frac{\delta}{h}\right)^{-2}$	1 + 1	ŧ	34.15) & & 4	18.03 33.65	16.45	13.00 0.00	29.68	96.	17.31 23.86	-		18.24	;	16.63 9.38	21.07		21.91	99	11.17	32.50 20.18	7.32	24.91	10.49	13,58	28.33 16.61	21	20.91	70.60	8:33 3:33	13.20	24:58	16.31	
$\frac{cod}{v} \cdot \left(\frac{c}{h}\right)^{1/2}$	24 + 1	,	8.60	55:00	3,4	11:61	3.27		6.				1.79	ï	ŽĘ.	3.17		6.13	11.33	E	7.7. 65.1.	2.05	6.97	2.93	8	2.51 13.15	8.	58.	17.65	8.5 8.85	8. 8. 8. 8. 8.	6.14	8 57	
	$\frac{chd}{W} \cdot \left(\frac{b}{h}\right)^{1/2}$		9.61	25.25	5.5 11.3	12.97	9.65	8,28	25.73	6.66			2.01	ć	1.59	3.57		7.03	80.39 10.39	8	6.17	25.35	7.99	3.36 5.47	4.38	9.13 15.04	2.30	6.74	20.21	32.78	12.38	7.04	10.81	!
To.que	Coefficient M/Wr		0.791	1.56	0.736	1.001	0.332	0.678	0.362	0.5%			0.397 0.573	<u> </u>	0.225	°.×		0.131	1.107	0.344	0.387	0.30%	0.643	0.0 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	0.395	0.610 0.963	0.287	0.517	1.190	1.450	126.0	1.104	0.432 0.918	•
Sinkage	Coefficient z/d	~ i	0.000	850	0.007	9.00	0.012	0.016	90.0	0.014		,	0.038 0.018	0 033	200	620.0		0.016	88	0.053	0.010	0.09v	0.023	9.037 9.037	0.044	88. 88.	0.144	0.014	0.011	2700 000 000 000	0.001	6 8 8 8 8 8	170.0 0.0	
	P/W	2-PR (Continued	::	:	: :	;	: :	ţ	: ;	:	Solid		: :		:	;	, 2-PR	:	: :	: :	:	: :	;	1 1	ŀ	::	: :	:	:	: :	:	: :	: :	11-21
Patt	Coefficient	6.00-16, 2-	0.747	1.519	0.723	582	0.215	0.626	0.035	8	6.00-16.		0.295	6	96.	O. III.	9.00-11	0.454	1.178	0.197	363	0.027	0.613	0.362	0.259	0.984	.087 387	55.455	1.216	1.435 3.936	88	6% 1.0%7	0.344 0.884	(Continue!
Average	7t-10	9.9	9.65 69.65	38	363	167	<u>2</u>	161	883	33,		ę	ሄظ	233	383	ê							8			£433							ద్దజ్ఞ	
	Sinkage z in.		0.58 0.00	85	0.50	0.16	0.50 5.75	77.0	2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	0.10		;	0.49 0.49	1.0%	88	8		36	88	સ ક ક	88.0	7.7	6	1.05	1.23	30	- - - - - - - - - - - - - - - - - - -	0.41	8.6	0.24	0.0	0.54	0.69 0.30	
stage			::	; ;	:	;	: :	;	: :	:			::	:	1 1	:		1	: :	1 8	ŀ	: :	;	: :	;	: :	: :	:	ł	; ;	;	: :	::	
			330	K 8	i R	, E3	3 5 5 5 5 5	417	నిజ్ఞ	439		3	150	120	3 5	2		83	287	ઝુલ	<u>.</u>	193	8	318	97	รู้ซึ่	Ļ %	70 <u>1</u>	293	žä	3 5	88	88	
Wheel Load	Avg		533	i i i i i i i	3	4	800	8	# 88 88 88	83		į	38	1,38	20.2	3		228	241	E E	38	9.5 9.5	ξ, g	878	527	34	85	887	227	38	444	£	3%	
Wheel W	Desten		225	£ 3	122	25.	99	26	88	8		Š	555	1,55	155	}		888	552	452	52	20	29	88	455	522	88	8	225	8	455	122	670 670	
Design Deflection	Crotent 25 'd		0.1299 6841.0	0.1309	0.1302	0.138 8.138	95.5	0.1332	0.1307	0.1307			0.0036		0.003	2000		0.0674	0.0674	0,0678	2,0678	2676	9.0676	0.0584	1211.0	121.0	0.1123	0.1123	0.1562	128	0.1538	0.1569	0.1567	
			0.35	_	_					-		2	0.010	0.325		-		0.15	-		-				0.25			-	0.35					
Average Fenetration	Resistance C , psi		825	ጽጸ	32	ጉ	3%	88	3 8	æ		8	3 23	C ₁	ខេត	2		7.5	12,	ដដ	బ్ల	38	۲.	ક્ષ	23 7	ረድን	4 K	ĸ	9,5	\ S:	9 6	೧೮	યુદ્ધ	
	Con- pleted		6. • t	Λ W	· v .	- \ U	· ~	د -	3 ~	S		U	'n	v	r r			r.v	ı,	'nw	۰, ۰,	ı ıv	v, v	Ś	v, u	۱ در ۱	าเก	S	v. v	'n	-4 V	, rv :	ハコ	
	20.0		3310	335	343	200	340	226	320	3610		200	3950	3910	3980 3910	ţ		2977 30%	306	300	3050	300	3130	4183	2990	in in	3110	419C	33 33	F170	နွဲ့နွဲ့ ရ	100	111	

Table 6 (Continued)

(Continued)

	S. 3	-	*** # 6.4 # 8.2	1.87	waddig Www.).	88.0 14.0		9 4 4 9 6 9 4 9 6	1.82	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		444404440 8624684488	54.4 1.15
Cb 1/2 3/2	1 (st 1.)		76.78 83.68 86.88	34.58		;	82.11 58.11		22:18 51:29 49:30 23:27 15:92	28.66 27.87 85.75	76.tr 76.tr 77.199 77.199 76.tr 76.t	£.	25.28.28.28.28.28.28.28.28.28.28.28.28.28.	93.78
Chd (1 - 5) 2	1 + 20	,	28.73 21.28	12.87	8.20 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9		24.33 12.51		10.03 83.18 10.58 7.10	23.25 25 25 25 25 25 25 25 25 25 25 25 25 2	35.10 35.10 18.29 18.29 18.29	•	2,52,50,50,50,50,50,50,50,50,50,50,50,50,50,	35.16
$\frac{cbd}{W} \cdot \left(\frac{5}{h}\right)^{1/2}$	1 + 24		7.18 5.32 80.7	3.22	ઌ૽૽૽ઌઌઌ ૹૺૺૹૹ૽૱		6.81 3.50			45.60 45.60 45.60 45.60	8.77 8.17 1.57 1.72		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.97 6.39
	$\frac{\operatorname{Cbd}}{N}: \left(\frac{8}{h}\right)^{1/2}$		8 9 8 8 9 8	3.67	7.00 00 14.0	•	7.02		23.7.238 33.3.53.838	4.26 7.86 4.05	10.55 9.857 5.65 64.55		8,7,44,0,4 8,6,6,4,4,6,6,6,4,6,6,6,6,6,6,6,6,6,6,6,	13.23 8.18
, inches	Coefficient	٠		0.307	0.000.337 0.000.338 0.000.338		0.433		0.324 0.477 0.467 0.294 0.244	0.370 0.548 0.326	0.686 0.747 0.397 0.448		0.653 0.377 0.815 0.731 0.326 0.378 0.477	0.992
	Sinkage Coefficient z/d	(penut	0.010 0.011	0.02	0.017 0.031 0.053 0.053 0.052 0.052		0.016	œ۱	0.054 0.011 0.002 0.071	0.057 0.008 0.039	0.000 0.003 0.037 0.010	œ۱	0.054 0.054 0.056 0.102 0.049 0.049	0.000
	ti etent	PR (Cont	:::	;	0.059	36-31 I		-8, 2-PR	0.126 0.375 0.364 0.064 0.085	0.118 0.386 0.159	0.518 0.289 0.334 0.334	16x11.50-6, 2-FR	0.195 0.638 0.037 0.037 0.037 0.037	0.757
	Pull Coefficient P'/W P/W	9.33-14, 2-PR (Continued)	0.558	0.143	111111		0.439	16x6.50-8,	0.150 0.394 0.093 0.093	0.143 0.399 0.163	8.	16x11.5	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	0.782 0.444
Average	Torque M ft-1b	8	414 448 723	287	388888		325		53 33 23 23 23	56 86 87	ដូច្ច នេះ		25.25.25.25.25.25.25.25.25.25.25.25.25.2	8 28
	Sinkage z , in.		0.28	1.20	20.44.90 38.68.885	!	0.46		0.08 0.08 1.15 83 83	0.91 0.12 0.63	0.000.0 848884		0.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.00
	Average Pull, 1b		111	;	105	Ì	11		29823	385	224 24 24 24 24 24 24 24 24 24 24 24 24		និងមិដ្ឋមន្ទម	78 ¹ 88
			2 364 4 371 6 639		111111		252		462334 653334	933 7336	132 KK		4 2 8 2 4 0 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88 88
Wheel Load	Ave Test		8888		1095 1778 1778 1778 1778 1788 1788 1788 178		107		256 216 216 226 326	233 233 74 72 73	E2333		2555 2555 2555 2555 2555 2555 2555 255	223 223
1			888		679 1134 1840 1940		225		38888	225 225 455	225 225 225 455 455		655555 655555 655555 655555 655555 65555 6555	88
55	iction lefent 26/d		0.1567 0.1576 0.1576	0.1576	421.000.000 421.000.000		0.0149		0.0633 0.0633 0.0633 0.0633 0.0633	0.10% 0.10% 0.1068	0.1431 0.1431 0.1436 0.1476		0.0915 0.0915 0.0915 0.0918 0.0918 0.0918	0.1505
ž	Coefficient 5/h 25/d		0.35	-	0.25		0.15		0.15	0.25	0.35		0.15	0.25
Average	Penetration Resistance C , psi		ቋቋሄ	ະເ	282E25	ì	33		ដូវាខិដូដ	3827	88643		នេងដក្នុង៥%	3 7 8 3
	Pastes Con- pleted		NNN	ı۸	これなららら		ww		กรรรม	พพพ	<i>~~~~~</i>		ოოლცოო	44
	Test No.		123 123 123 123 123 123 123 123 123 123	1160	28888888888888888888888888888888888888	}	26 27 27 27 27		6050 6080 6190 6280	650c 651c 651c	2609 2609 2609 2609 2609		6170 6190 6190 6590 6600 6600 6600	6446 6470

	•									-			´ -	
	5		******** #\$##	8889440 888944		800		9,4,0,0 9,48,9,6	1.59	៷ ៷៷៷ ៷៷៙៹៙		- 4 4 4 0 4 4 0	6.94	seets):
	$\frac{cb^{1/2}a^{3/2}}{\left(1+\frac{bb^2}{a}\right)^4}.$		75. 25. 26. 26. 26. 26. 26. 26. 26. 26. 26. 26	18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		82.14 41.82		22.18 51.29 49.30 23.27 15.92	28.66 52.87 27.85	76.41 76.41 72.19 72.19 72.23	,	4,88,89,89,89,89,89,89,89,89,89,89,89,89,	93.78	(4 or 9 sheets)
	$\frac{\frac{chd}{W} \cdot \left(1 + \frac{5}{h}\right)^{-2}}{1 + \frac{b}{2d}}$	•	28.73 31.128 31.13 12.87	23.75 56.68 7.79 29.24 24.24 24.24		24.33		10.03 23.18 22.28 10.52 7.10	12.63 23.25 10.51	35.10 35.10 18.29 90.39		ૡ૿ૢ૽ૺઌ૿ઌ૿ઌ ૱ઌઌઌઌ૱ ૱ઌઌઌઌઌ	35.16 22:73	_**
•	$\frac{\frac{cod}{N}}{1+\frac{1}{2d}} \cdot \left(\frac{e}{h}\right)^{1/2}$		7.18 7.38 3.22	ૡઌઌઌ ઌઌઌઌ ઌઌઌઌઌ		6.81 3.50		994499 99499	44.85 44.85	8.77 8.77 8.17 4.57			9.97 6.39	
	$\frac{Cbd}{N}: \left(\frac{b}{h}\right)^{1/2}$		8 6 6 6 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.67 2.59 2.59 2.18 2.18 2.18 2.18		3.61		25.5.2.0 25.5.2.0 25.5.2.0 25.5.0 25.0 2	4.26 7.86 4.05	10.57 9.85 5.65 5.65		ૹઌૡૺઌૼ ૹૡ૽ૹૢૢૢૢૹ૽૱ઌ૱ ૹ૽૽ૹૢૹૢૹૹ૽ૹ૽૽	13.23 8.18	
	Torque Coefficient M/Mr		0.586 0.167 0.769 0.307	0.537 0.388 0.388 0.245 1.140		0.433 0.389		0.324 0.167 0.294 0.294	0.370 0.548 0.326	0.686 0.747 0.397 0.448		0.653 0.377 0.373 0.326 0.358 0.269	0.992	
	Sinkage Coefficient z/d		0.010 0.011 0.019	0.017 0.031 0.092 0.092 0.094		0.016	αl	0.054 0.002 0.007 0.097	0.057 0.008 0.039	0.000	æl	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00	
		PR (Continued)	1111	0.180 0.195 0.195 0.001 0.930	1.75-26	::	50-8, 2-PR	00.0375	0.118 0.386 0.159	0.518 0.288 0.288 0.334 0.334	0-6, 2-PR	0.638	0.757	(pent
	Pull Coefficient P'/W P/W	9.00-14, 2-PR	0.558 0.120 0.738 0.143	111111	긺	0.439	16x6.5	0.150 0.39k 0.093 0.093	0.143 0.399 0.163	3%;	16x11.50-6,	00.00 00	0.782	(Continued)
	Average Torque M ft-1b	ଧ	124 128 183 183 183 183 183 183 183 183 183 18	1638833 E		37.5		83 <i>824</i> 2	2885	ដ្ឋង្គ		ន្តដ្ឋដ្ឋដ្ឋនិន	828	
	Sinkage z , in.		0.28 0.30 1.20	ૢૢઌૡઌૢ ૱ૹૡ૽ૹૹ૽૽ૹ૽		0.46		0.87 0.18 0.04 1.15	.0.0.9 53.63	00000 82884 82884		0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	0.00	
	8 A		1111	238 238 1159 105 119		::		29634	385	85558		8 8 8 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	18 18 18	
I	Aver.		72.55 73.25	11111		SE.		88883a	333	ង្គង្គង្គង្គ		ಶಜಪಾಶಕ್ಷಣ	88	
	141		8888 8888	686 1095 1778 1804 128		107		256 256 256 256 256 256 256 256 256 256	នួនូន្ធ	213 213 213 213 213		205 205 235 235 246 258 275 275	243	
	Wheel Load W , lb Ave Design Tes		8888	670 1134 795 1860 1860 117		225		288888 288888	225 225 455	225 225 455 455		65555555 65555555555555555555555555555	88	
	lgn etfon lelent 28/d		0.1567 0.1576 0.1576 0.1576	0.1124 0.1127 0.1123 0.1141 0.1106		0.0149		0.0633 0.0633 0.0633 0.0633	0.1016 0.1016 0.1068	0.1431 0.1431 0.1431 0.1476		0.0915 0.0915 0.0915 0.0918 0.0918 0.0918	0.1505	
	Design Deflection Coefficient 5/h 25/d		0.35	o 0		0.15		0.15	0.25	0.35		0.15	0.25	
	Average Penetration Resistanne C , psi		ይይሄደ	£5388£		99		ងភិទិនិ	384	88233		341143866	* สี่มี	
	Pastes Com- pleted		NNWN	ひたたなひひ		ww		พพพพพ	พทท	משמשמ		いいいいいいいい	. .	
	Test No.		1120 1130 1150 1160	38884 38884 445 445 445 445 445 445 445 445 445	,	26 27 27 27 28		6055 6055 6055 6055 6055 6055	64.85 6500 6510	9000 9000 9000 9000 9000		665 665 665 665 665 665 665 665 665 665	641c	

The state of the s

			٠.		ŧ				•	٠.			•;		•							
	5°		7.25	W.W.		1.3	88	2:	12.85	ម្ភា :	5.73	****	38	11.38	3.10	4.0 E. 7.		8. E.	M .	ម្ពុជ្ញ	2.3.4 69.37	1.94
\$18837 B	S	:	86.86 18.86 18.86	3 % R	•	88	2.00 2.00 3.00 5.00 5.00 5.00 5.00 5.00 5.00 5	88	3.5.5 5.5 5.5	30.39	55.61	186	87	15.2 38.2 38.2	8	23.23 28.23		107.17 90.87		- 3886 382	8.8 8.8	.73 22
4	<u>.</u>		j		;		į		• •		,		1	a	•	308 67	•	:50	ש צ	; 3466	. . 34	ξ.
ols.	, 일이,		2.0 2.0	388		22.50	88 25 25	l ∄s	, 22.27.K I	Q :	00 IV.	1 m O	0-#	- m-	•	1						
· 部	1.		`&'#	13.95 17.78	į	# K	7.88 7.88 8.88	S S	, (9,7,0, (9,3,8)	6	18.38		8 2 3 3	15.33		10 15.05		8 5 8 8 8 8 8	6 %	22.4	20.13	16.51
ę.	1_1-1-1			:					. !			1						:			•	
(E)	1:12		8.17	3 6.3 5 5.3 5 5.3	i,	%. %%	4 kg	8.6		2.63	11.65	3.5	3.83 8.83	3.83	}	5.5 5.5	;	25.25 25.25 25.25	74.8	9.85 7.885	2.4. 28.6	2
	(§) 1/2									:	٠,		1	ı					,			
	() ()	1	9.79	, 4 v 8 û E		10.86 11.26		12.31 14.39	8 6 6 2 8 6	3.76	3.58 8.88	α.ν. α.ν.	2. 3.83 3.83	7.28		3.85 5.98	•	15.66	10.61	۲.8.3 ۲.8.5	6.69	?
									i			•	3	•				ı	1	;		ږ
Torone	Coefficient M/Wr		0.08th	188		0.683	36.5 38.6 5	0.676	0.2% 0.2% 0.2%	0.287	0.579	9,363	0.00	1.602 0.451 0.669		0.394	;	0.859 0.913	0.361	0.576 0.6643 0.800	00.00 1884 1888	
			W O (;		0.00		!	!	_	,			1						,	,	
1	Coefficient 2/d	(Continued)	888	800		9.00	0.00	0.00	28.00 20 20 20 20 20 20 20 20 20 20 20 20 2	0.0	0.00 0.00 0.00 0.00 0.00 0.00	800	300	00.00		0.058			0.0	0.003	0.013	;
	+ 1		0.535	386	6, 2-PR	. 554 0.554 0.446	0.164	.613 .613	0 0 333	.057	शुत्रहें भ	385	6	1.174 0.246 0.459	0, 4-PR	0.185	3. 4-PR	0.708 0.672 0.763	523		0.441 0.318	
,	Coefficient P'A PA	50-6, 2-PR	0.739		16x15.00-		0.183		0.034		1.063 0.149 0.159		e P	1.209_ 1 0.254_ 0 0.470 0	P6x16.00-10,	0.197 0 0.373 0	31x15.50-13	0.730		0 0 0 8 8 8 9 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9		- 1
Average		16x1T. 50							,						ğ	00	X.	000	0		0.440	
Ave		al	165	95		· 38%	3 8.85	4 H	នមិនន	6	ਲ੍ਹੇ ਸ਼ ੋੜ	8 5 E	<u> </u>	: 58,53 78,53		व्या व्या	;	236	317	8¥3	12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	
	Sinkage z , in.	Ŧ	6.00	6.53		0.17	0.30	4.0°	38.7.5	Ç	88.4	9.79	0.93	0 0 0 0 0 0 0 0 0 0		1:40		0.00 0.34 0.34	8.0	\$88 600	0.01 884 844	
. 278.	4		335	ЖĀ		¥8,6	₹8	386	57 E 8	Ç.	23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	58 25 26 26 26 26 br>26 26 26 br>26 26 26 br>26 26 26 br>26 26 26 26 26 26 26 26 26 26 26 26 26 26 2	37	2 9 6		35 SE		25. 17.	1		553 563 563 563 563 563 563 563 563 563	
Aver			123 333 155	£		78E	ន្តជ	823	\$ 4 7 * 8	3	888	। तुः ३६ श्लु	%	8 7 7 7 8		& &		, 251 181 181		388	1 20 28 28 30 38	
	Avg Test	:	215 159 153	£ 53		555 501 501 501	200	222	e e 2 2		1889 1889			23 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	,	31. 82.		28 28 28 28 28 28		26 26 26 26	978 977 1139 2	
Wheel i	Design -		52 72 72 72	455 455		888	88		5255 2		2553 1256	122 123 123	455	. 155 1555		315 ·		888	1,55 1,65	152	1 288 1800 1800	
ton		:	0.2101 0.2114 0.2114	7117		0.0486 0.0486 0.0486	984 0486	. 6790 6790	0.0906	15	0.1474	7.7.1	1474	0.2056 0.2056 0.2056		0.0751	,	0.0416	692			
Design Deflection	2 T		0.35	ი ი 		8 —	00	0.15	000			000				r					5- 0.1288 0.1288 0.1291	
5. T. 50 T.	5 m			1		o	Ţ	o		Ċ	· -		-	35		0.15		8	0.15	- -	0.25	
Average Penetestion	Resistance C. psi	;	238.	75 77 78	i	සඹස	ដ ដ	2 12 12	124	۱۵	837	32 E	9 Y	, 824 9		3, 3,		% & & !	ଝଝ		୫ _୯ ୯	
Passes	pleted	,		-		v v ∾.	∨	w'a w	~ ~~~	u.	, rv w r	ma	m (n = v		w Iv		ev ev ev	v. -	rv rv	hvam	
		50	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2000	·	630c 630c 631c	655c	6180 6890 6380 6380	634c 638c 638c		8838 553 573 573 573 573 573 573 573 573 573	9839 9330	6350	6540	٠	7050 7010		668c 670c 673c	66kc 665c		647c 647c 663c	
									80	1										•		

ic Tires and One Solis-Robber Tire) Single-Atheel Tests in Pat Clay, Towed Point, Pirst Pass (Eleven Phene

														CM /41/2
Test No.	Passes Completed	Average Penetration Desistance C , psi	Defl	sign ection lcient 25/4	Wheel W, Design	Loud lb Average Test	orce.	<u>F</u>	Sickage** 2, in.		Force icient	Sinkage Coeffi- cient z/d	$\frac{\frac{Cbd}{W} \cdot \left(\frac{S}{E}\right)^{1/2}}{W}$	$\frac{\frac{c_{\text{bd}}}{W} \cdot \left(\frac{b}{h}\right)^{1/2}}{\frac{1}{1 + \frac{b}{2d}}}$
3630 3680 3710 3690 3830 3730 3800 3750 3890	553453533	56 45 26 46 66 41 66 42	0.15	0.0552 0.0652 0.0655 0.0665 0.0662 0.0662 0.0672	100 100 100 225 225 340 340 455 455	113 111 97 226 226 228 335 340 439 451	3 12 9 31 19 63 37 104 66	, 2-F	0.18 0.1- 0 3 0.40 0.15 0.88 0.55 1.01 0.72	0.027 0.117 0.093 0.137 0.063 0.188 0.109 0.257 0.146		0.013 0.010 0.021 0.028 0.011 0.062 0.039 0.071	11.31 9.25 0.12 4.71 6.70 2.87 4.55 2.28 3.49	9.85 8.06 5.33 4.10 5.83 2.49 3.95 1.98 3.03
364c 372c 367c 370c 374c 384c 376c 386c	5	46 26 62 44 42 66 37 65	0.25	0.10 A 0.1094 0.1092 0.1103 0.1103 0.1102 0.1102	100 100 225 225 340 340 455 455	117 103 217 229 330 340 436 446	3 7 29 17 49 33 125 48		0.00 0.00 0.00 0.25 0.42 0.22 1.16 0.44	0.026 0.068 0.134 0.074 0.148 0.097 0.287 0.108		0.000 0.000 0.000 0.018 3.030 0.016 0.082 0.031	11.54 7.41 8.43 5.67 5.78 5.76 2.54 4.35	10.05 6.45 7.34 4.94 3.29 5.02 2.21 3.79
378c 367c 379c 388c 377c 389c	5 5 3 5 1 5	34 66 36 66 38 68	0.35	0.1532 0.1532 0.1532 0.1532 0.1544 0.1544	225 225 340 340 455 455	221 222 322 336 446 448	23 16 +7 14 88 37		0.30 0.00 0.71 0.00 0.78 0.22	0.104 0.072 0.208 0.042 0.197 0.083		0.021 0.000 0.050 0.000 0.055 0.016	5.35 10.34 3.90 6.85 2.99 5.33	4.66 9.03 3.40 5.96 2.60 4.64
							4.00-2	0, 2-	FR					
402C	ĺ	48 22	0.08 0.08	0.0190 0.0190	315 315	3 0 5 307	17 48		0.57 1.30	0.0% 0 156		0.020 0.020	5.52 2.51	5.12 2.33
2690 2750 2790 2710 2730 2870 2860		20 48 32 18 46 32 48	0.15	0.03% 0.03% 0.03% 0.0342 0.0342 0.0342	225 225 225 455 455 455 455	204 221 228 388 456 448 629	12 5 11 99 32 57 61		0.78 0.16 0.37 1.82 0.55 1.05 0.87	0.059 0.023 0.048 0.255 0.070 0.127 0.097		0.028 0.006 0.013 0.065 0.020 0.037 0.031	4.44 9.84 6.36 2.13 4.63 3.28 3.53	4.13 9.16 5.92 1.98 4.31 3.05 3.29
2700 2760 2800 2720 2740 2880 2810 2910 2930		22 52 33 19 48 33 47 40 54	0.25	0.0559 0.0559 0.0559 0.0564 0.0564 0.0570 0.0570	225 225 225 455 455 455 670 670	204 228 225 377 450 447 445 664 7 37	9 5 10 78 17 46 (1 8)		0.16 0.00 0.18 1.69 0.08 0.83 0.72 1.20 0.42	0.044 0.022 0.044 0.207 0.038 0.103 0.095 0.130 0.055		0.006 0.000 0.006 0.060 0.003 0.030 0.024 0.043 0.015	1.19 13.08 8.41 2.95 6.24 4.32 4.33 3.55 5.00	5.76 12.18 7.84 2.74 5.81 4.02 4.00 3.30
2770 2830 2890 2780 2840 2950 2820 2940 2850	14 5	50 29 19 50 30 19 4 35 52 52	0.35	0.0782 0.0782 0.0783 0.0788 0.0788 0.0800 0.0900 0.0800	225 225 225 455 455 455 670 170 670	211 23r 23 433 454 421 (51 64 428	8 5 5 15 35 59 39 •1 21		0.00 0.04 0.35 0.10 0.63 1.25 0.41 0.81 0.20 0.47	0.038 0.021 0.021 0.035 0.077 0.140 0.92 0.092 0.033 0.052		0.000 0.001 0.013 0.004 0.023 0.045 0.015 0.029 0.007	15.84 8.21 5.38 7.90 4.52 4.67 3.64 5.72 5.17	14 .76 7.66 5.09 7.35 4.21 2.87 4.44 3.39 9.32 4.81
4000 4030	į,	4A 22	0.45	0.100%	5/0° 6/70	660 £35	36 145		0.32	0.055		0.011	5 65 2. t/4	5.2(2.50
•			ŕ			**	.00-1	. 2-					•	
3210 3230 3290 3250 3510 3270 3390 3440 3590	5 5 3 5 3 5 3	63 40 20 55 20 40 37	0.15	0.0559 0.0559 0.0559 0.0565 0.0564 0.0564 0.0564	225 225 225 455 470 770 890 890	238 237 238 430 443 631 688 877 875	14 3 5 (2 16 160 75 136 100		0.46 0.08 1.44 0.18 2.10 0.89 1.25 0.89	0.059 0.013 0.021 0.144 0.033 0.254 0.112 0.155 0.114		0.01r 0.003 0.051 0.006 0.074 0.031 0.044 0.031	(07 19.20 12.14 3.3. 8.5 2.30 4.35 3.7 4.50	5.44 17:19 10:8 3.02 7.75 2.05 3.30 2.75 4.03
3220 3240 3300 3300 3500 3540 3540 490		20 61 40 19 51 50 22 50	0.25	0.0928 0.0923 0.0923 0.0934 0.0933 0.0932	225 225 225 455 455 670 720 720	243 234 237 444 460 668 716	9 1 5 53 10 33 153 37		0.18 0.10 0.08 0.90 0.12 0.12 0.12	0.037 0.004 0.021 0.119 0.022 0.050 0.222 0.052		0.006 0.004 0.004 0.004 0.004 0.000 0.050	7.66 24.28 1c.50 3.39 10.34 7.05 2.99	1.86 11.74 14.73 2.57 9.26 5.32 2.68 5.85
							(Cont	inued)					

^{*} PA is towed force plus ma (mass times acceleration) measured is programmed-increasing-slip test. See Appendix A for a more details explanation.

** Sinkage at the towed point. Fi.st-pass data.

Test No.	Passes Completed	Average Penetration Resistance C , psi	Defl	sign ection licient 24/4	Wheel V, Design		force,	4	Sinkage z , in.	Towed Coeffi P ¹ /4		Sinkage Coeffi- clent z/d	$\frac{\frac{Cod}{W} \cdot {6 \choose E}^{1/2}}{}$	면 · (호) ^{1/2}
						6.00-1	6, 2-PR	(Cont	imed)					
3370 7450 3600	3 5 5	21. 37 52	0.25	0.0932 0.0932 0.0932	890 890 890	548 893 669	248 113 59	-	2.36 0.90 0.30	0.292 0.127 0.066		0.063 0.032 0.011	2.32 3.88 5.48	2.08 3.48 4.91
331c 35c 35c 33c 35c 35c 36c 36c 36c 36c	5 5 5 5 5 5 5 5 5	20 37 53 20 27 53 36 50 59	0.35	0.1299 0.1299 0.1302 0.1302 0.1302 0.1302 0.1302 0.1307 0.1307	225 225 225 455 455 455 670 670 890 890	240 226 223 457 448 447 672 673 878 873	9 6 10 34 15 15 28 15 62 40		0.14 0.00 0.00 0.38 0.00 0.00 0.30 0.14 0.36 0.06	6.039 0.027 0.045 0.074 0.033 0.034 0.042 0.022 0.071 0.046		0.005 9:900 0.000 0.013 0.000 0.011 0.005 0.013 0.002	9.17 19.01 26.15 4.83 9.11 13.08 5.91 8.20 4.91 6.58	8.21 16.13 23.41 4.32 8.16 11.72 5.29 7.34 4.50 5.89
393c	5	22	0.010	0.0036	225	214			0.87	0.136		0.031	2.00	1.78
3950 3950	3	53 40	0.025	0.0036	225 225 455	229 3442	29 14 56		0.50	0.136 0.061 0.127		0.018	4.51	1.75 4.01 2.48
392C 394C	5	22 53		0.0093 G.0093	455 455	129 156	102 51	=	1.58	0.238		0.057	2.79 1.58 3.58	1.40 3.18
							9.00-1	4, 2-1	<u> </u>					
2970 3080 2980 3050 3050 3050 3060 3130 4180	5	17 32 54 17 51 32 16 30 57 31	0.15	0,0674 0,0674 0,0678 0,0678 0,0678 0,0676 0,0676 0,0676 0,0684 0,0684	225 225 225 455 455 455 670 670 670 890 890	227 231 238 434 444 479 621 653 652 866 882	9 4 3 70 12 15 191 72 41 118 78		0.10 0.00 0.00 1.10 0.00 0.04 7.53 1.05 0.43 1.29 0.70	0.040 0.017 0.013 0.161 0.027 0.033 0.308 0.110 0.063 0.136 0.088		0.004 0.000 0.000 0.039 0.000 0.001 0.089 0.037 0.015 0.045	6.75 12.48 20.54 10.43 6.33 2.35 4.20 7.99 3.30 5.44	5.89 10.89 17.6% 3.10 9.10 5.52 2.05 3.67 6.98 2.88 4.75
2990 3100 3120 3000 3110 4190	3	16 34 57 16 35 51	0.25	0.1121 0.1121 0.1121 0.1123 0.1123 0.1123	455 455 455 890 890	431 436 441 817 867 886	55 11 15 310 80 42		0.75 0.00 0.00 3.10 0.49 0.00	0.128 0.025 0.034 0.379 0.032 0.047		0.027 0.000 0.000 0.109 0.017 0.000	4.32 9.07 15.04 2.30 4.73 6.75	3.77 7.91 13.12 2.00 4.13 5.89
314c 414c 417c 390c 408c 410c 419c 411c 412c 413c 415c 416c	1555455555	36 55 25 40 23 51 22 39 30 50 23	0.35	0.1562 0.1562 0.1568 0.1568 0.1568 0.1567 0.1567 0.1567 0.1576 0.1576	225 225 225 455 455 455 670 670 670 890 890	243 225 233 451 449 442 64,6 658 658 883 864 880	6 14 11 19 19 10 53 14 20 36 28 112	5-26	0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00	0.025 0.062 0.047 0.042 0.082 0.023 0.082 0.021 0.036 0.041 0.032 0.127		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007	20.04 33.07 14.52 12.18 7.04 15.65 4.69 10.86 6.16 6.10 8.95 3.61	17.50 28.88 12.68 10.63 6.14 13.93 4.09 9.49 7.12 5.32 7.81 3.15
429C	5	40	0.15	0.0149	100	108	6		0 46	0.056		0.010	6.95	1.74
430C	5	40	0.15	0.0149	225	213	9		0.9	0.1%		0.034	3.63	3.52
1 1A 2 2A 3 3 4 4B 5 5 7 8 8 9 10 11	11	57 44 93 50 45 45 45 48 42 43 43 44 43	0.172 0.245 0.245 0.554 0.554 0.444 0.125 0.125 0.191 0.304 0.235 0.235 0.055	0.2422	4500 4500 4500 4500 4500 4500 4500 3000 30	4500 4500 4500 4500 4500 4500 4500 4500	11.00-2	0, 12-			0.233 0.257 0.245 0.223 0.132 0.132 0.104 0.201 0.216 0.217 0.132 0.166 0.136 0.136 0.136 0.136		2.5 2.9 2.2 3.9 3.4 3.3 2.9 2.5 2.7 2.9 3.5 3.5 4.9	2.2 1.7 2.0 3.4 3.0 2.7 2.9 2.5 2.2 2.4 3.0 2.8 3.0 2.8

84

(2 of 3 sheets)

⁽Continue

f Only first pass data are available for the 11.00-20, 12-PR tire.
The 11.00-20, 12-PR tire was losted by deadweight, so that test load very nearly equaled design load.

Zest.	Tesses	Average Penetration Posistense	Befl	sign ection Nictest	Wheel		Aver Tou Force	14	Sinkage	Towes Coeffs		Sinkage Coeffi- cient	14.1/2	Ch4 · (8) 1/2
No.	Completed	C pei	V.	21/4	<u>Besign</u>	Test	7	8, 2-M	z in.	FIA	7	1/4	~ (E)	1+2
601C	5	18 42	0.15	0.0633	225	212 212	29	34	- 0.67	0.137	0.160	0.042	3.40 7.57	2.83
6050 6080 6490	5 5 3	40 18		0.0633 0.0633 0.0633	225 225 225	219 212	35 20 2	10 12 38	0.06 0.00 0.88	0.041 0.646 0.151	0.045 0.055 0.179	0.004 0.000 9.055	7.30 3.40	6.32 6.69 2.83
602C 6A8C	3 3	19 17	0.25	0.0651	350 225	329 208	65 19	65 28	0.39	0.198	0.198 0.135	0.07 (2.35 4.16	1.96 3.46
6500 6510	5 2	36 36	1	0.1946 0.1068	225 455	235 462	10	12 46	0.02	0.043	0.051	0.00	7.79 4.02	6.48 3.36
60%c 607c	5	39 39	0.35	0.1431 0.1431	225 225	220 218	6 8	8 9	0.00	0.027 0.03	0.036 0.041	6 ao. 1.000	10.52 10.62	8.73 8.81
6520 6060 6090	1	37 41 42		0.1431 0.1476 0.1476	225 455 455	225 457 446	13 25 20	15 28 21	0.00 0.20 0.16	0.058 0.055 0.045	0.067 0.061 0.047	0.7X0 0.413 0.7X0	9.76 5. 44 5.71	8.10 4.53 4.76
,-		-	•		.,,		(11.50-			••••	-10-1		,,,,	
6170 6390	5 5	25 16	0.15	0.0915 0.0915	225 725	206 211	9 24	10 29	0.00 0.56	0.043 0.117	0.141	0.000 0.032	8.81 5.78	6.67 4.37
6400 6450 6590	5 5 2	38 34 17	ľ	0.0915 0.0915 0.0918	225 225 455	220 240 446	9 7 100	10 10 105	0.05 0.00 1.50	0.041 0.029 0.224	0.045 0.042 0.235	0.005 0.000 0.085	12.85 10.54 2.91	9.72 7.97 2.22
660: 6620	k 5	21 27		0.0918	455 455	440 455	61 42	63 44	1.31	0.139 0.092	0.1 [[] 3 0.097	0.074 0.036	3.65 4.54	2.78 3.45
694C 635C	24 24	23 34	0.25	0.0942	600 225	575 243	76 10	90 14	0.85 0.00	9.132 0.041	0.157	0.000	3.12 13.23	2.36 9.97
6470 6430	3	20 19	0.25	0.1505	225 225	226 218	8 20	12 21	0.24	0.035	0.053	0.014	8.37 9.65	6.31 7.26
610C 611C	5	46 22	Ĩ	0.2114	455 455	462 453	22 25	25 27 44	0.04	0.018	0.05k	0.002	11.16 5.44	8.41 4.10
6420 6610	1	18 24	ŧ	0.2114	455 455	444 455	40 26	30	0.00	0. 090 0.057	0.099 0.066	0.000	4.54 5.91	3,42 4,46
6220	5	32	0.08	0.0486	225	222	5 .15.0 0	-6, 2- 9	0.12	0.041	0.041	0.007	10.96	7,66
6300 6310 6530	5 3 4	32 16 21		0.0486 0.0486 0.0486	225 225 225	219 205 207	9 20 12	11 19 14	0.16 0.99 0.14	0.041 0.098 0.058	0.050 0.093 0.068	0.009 0.056 0.008	11.11 5.93 7.71	7.77 4.15
655C	i,	21	•	0.0486	225	210	12	14	0.30	0.057	0.067	0.017	7.60	5.39 5.32
6180 6290 6320	3 2 5	27 31 17	0.15	0.0879 0.0879 0.0879	225 225 225	219 220 218	5 12 14	5 12 15	0.00 0.12 0.16	0.023 0.055 0.064	0.023 0.055 0.069	0.000 0.007 0.009	12.61 14.22 7.98	8.78 10.03 5.55
634C 636C 638C	5 2 3	32 17 16		0.0906 0.0906 0.0906	455 455 455	476 457 441	26 78 78	29 86 82	0.31 0.99 0.86	0.055 0.171 0.177	0.061 0.188 0.185	0.018 0.056 0.049	6.99 3.87 3.77	4,89 2.70 2.64
621C	5	29	0.25	0.1439	225	215	,	6	0,00	0.023	0.028	0.000	17.37	11.99
6230 6240 6270	5 3 5	27 28 30		0.1474 0.1474 0.1474	455 455 455	461 447 459	14 13 12	16 14 15	0.04 0.08 0.00	0.030 0.029 0.026	0.035 0.031 0.033	0.002 0.005 0.000	7.74 8.27 8.63	5.38 5.76 6.01
62 8 0 6330	3 5	18 31		0 1474 C.1474	455 455	446 481	36 20	38 21	0.24	0.081 0.042	0.085	0.014	5.33 8.51	3.71 5.92
6200	3 2	16 20	0.35	0.1474	455 225	467 221	66 12	68 12	0.54	0.141	0.146	0.031	4.53 17.75	3.15 12.22
637C 654C	4 5	16 21	↓	0 .20 56 0.2056	455 455	452 456	36 23	3A 24	0,16 0, 0 6	0.080 0.050	0.084 0.053	0.009	5.48 7.12	3.80 4.94
705C	3	8	0.15	0.0744	315	<u>26:</u> 302	<u> 16.00-</u> 30	10, 4- 39	0.93	0.000	0.129	0.038	4.00	3,00
701C	3 5	34	J.15	0.0751	890	667	ĻA.	54	0.55		0.062	0.055	6.01	4.52
66 8 C	5	28	0 04	0.3416	225	<u>31:</u> 225	£15.50- 6	. <u>13, 4-</u> 8	0.16	0.027	0.036	0,005	15.73	12.57
6730	ų, r	22 32	1	0. 041 6 0. 041 6	225 225	206 230	5	8	0.27	0.019	0.039	0.009	13.44 17.59	10.74 14.05
664C 665C	5 4	29 20	0.15	0.0769	455 455	469 445	19 25	20 30	0.00	0.056	0.043 0.067	0.000 0.007	10.65 7.74	8.50 6.18
671¢	5 5	22 33	•	0.0769 0.0769	455 455	462 462	10 16	16 20	0.15 0.08		0.036 0.043	0.005 0.003	8.60 12.31	6.86 9.82
667C 674C	5	28 24	0 25	1 1288 3 1288	890 890	971 872	48 23	53 31	0.38	0.026	0.061	0.003	7.15 6.12	5.71 4.89
663C	ز	22	•	0.1291	1200	11%	138	150	0.53	0.119	0.130	0.018	4.2/	3.41

Table 8

Single-Wheel Tests in Nat Clay, 20 Percent Slip, Design Translational Velocities from 0.5 to 18 Ft/Sec

$\frac{Cbd}{W} \cdot {\binom{4}{h}}^{1/2} \cdot \frac{1}{1 + \frac{b}{2d}}$	0.1V _w 0.092		4.93 5.93	, w.w.	78.5 98.4	18.8 	2.37	8.6		5.50 5.20 5.20 5.20 5.20 5.20 5.20 5.20	13.48	: :09:	4.56 2.73	3.27	0 6 m - m	7.8¢ 7.8¢	2.0 4.5	8.8	9.48 7.73	858	(B)	1.75	
OI*	CD4 (\$)1/2 1 + 24 1 + 24		∄5. °'	જ જે જે જે જે જે	69.9 69.9	6. 5. 5. 1.3.	2.53	2.16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	25.30	3.82 3.35	13.71	13:21 24:21	e E	88	4.57	6.8 88	5.14	2.76	2.44 4.59	9, č 8, 5,		8.53 1.63	
	0.1V		0.766	0.984 0.857	0.933	0.854	0.935	0.938	(8) (8)	0.747	0.983	0.936	0.858 0.857	86°0	, , , , ,	 1.014	1.015	1.02	1.016 0.822	0.820 820	0.819	0.817 0.819	
	% > ² a ₂ ² v ²	6.23	0.947	1.216 1.255 1.059	1.153	 869 869	1.156	1.152	98	, K K K K K K K K K K K K K K K K K K K	1.215	1.157	1.060	1.216	1.217	1.288 1.274	1.254	1.253	1.256	1.014	1.03	1.010	
	Wheel Transla- tional Velocity V _W , ft/sec Average Design Test**	olc.	2.5	8.54.4 8.84.4	4.87	1.68	8.3	4.88 8.89	85 H	## 600	8.55	;÷	4.4 8.8	8.67	8.7	5 5 5 6 6 6	12.15 8.55	15.53 5.03	5.3 5.3 7.3 8.3	1.20	1.19	1.80	
	Wheel T tional V V V	Coefficie	?. %8	۶۶۶ 888	88	8,8	2.8	8.8	88	. o S &	88	38	88	88	38	88 88	13.8 8.8	88	13.00	1.25	1.83	 	•
	CM (a) 1/2	n Deflection	7.38 8.53	3.78 3.70 71.7	7.67	e. 9	8.30	99 a	17.41	8.a.	15.72	14.25 24.25	9.6 9.8	3.8 18:	2.5		*, °	3.16	2.8° 2.8° 3.8°	9.5 8.8	8.	2.10 2.43	(Continued)
	Sinkage Coefficient 3/d	9.00-14, 2-FR Tire; Design Deflection Coefficient	0.019 0.030	0.005 0.062 0.35	0.017	0.00 200.00	0.057	0.108	0.00		0.00	3000	0.015 0.079	0.057	0.031	ं. इ.स. इ.स.	0.018	0.030	0.0 0.08 0.08	80 60 60 60 60 60 60 60 60 60 60 60 60 60	0.02	0.138	
	Pull Coefficient P/W	9.00-14, 2-F	0.219	0.024 0.024 0.256	r.480	0.019	0.195	-0.059		0.037	20.0	0.933	0.185 0.073	0.217	3.5°	0.0 82.0 82.0 82.0	0.365	0.070	-0.020 0.217	-0.016	\$ 6 6 6 6	9 9 8 8	
	Average forque		26 26 26 26 26 26 26 26 26 26 26 26 26 2	5 % 8	410	욻	330	8	189	2 88 88	8	ইব	1,35 2,45 3,45 3,45 3,45 3,45 3,45 3,45 4,45 4	277	8 7	% % %	240	257	55 26 26 26 26 26 26 26 26 26 26 26 26 26	233	X &.	2 6 2 8	
	Sinkage* z , in.		0.55	0.43 1.76 1.00	64.0	3.0	1.6	8.6	8.5	გ.ყ გ.ც	8.0	કું કું કું કું	0.43 2.23	3:0	 88.0	ь. ц.	0.51		0.5 80.80	8.6	0.59	; đ	
	Average Pull P. 1b		149	15 18 18 19 19	350	ያ፟ ዹ ፟፟፟ጜ	149	5,	218	မ် ရှိ အ	293	žã	%&∺	133	83	<u> </u>	153	3	**	£4.	272	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	,
	Average Wheel Test Load		681 1019	25.55 200 200 200 200 200 200 200 200 200 2	88 2	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8	765	1778	336	1227	385	<u> </u>	¥3	70	£23	95 og 85 og	415	F	£3	86	55.	1160	.
:	Average Penetration Registance C , psi		13 16	またま	\$ °	? @ %	161	37	₽ # !	3 3	∄:	1 9	17 16	50	02 16 16	ድ ጸ	ដូ	967	548	88	¥8.	.t. 6	,
	Test. No.		44	9 C 4	15-0	, y y 2, y y 3, y y	27-C	5 85 85 85 85 85 85 85 85 85 85 85 85 85	3 5 6 5 F		ب الم	ပ္ ပု ကို ဇ္ဂ	34 74	υ - 64	÷ ₹ ₹	1 1 1 1 1 1 1 1 1	မှ မှ မရှိ	4 6 4 6 4 6	51-c 52-c	23.5	, 4 , 4 , 4 , 4	2,44 2,44 3,44	

* First-pass data. ** Test values of $V_{\mathbf{y}}$ were used in computations involving this variable.

	00.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	93486 83486	9.9.9.5. 5.45.89.6.	3,0,9,7.2, 11,28,28	ઇલ વૃત્યું છે. ઇલ વૃત્યું હું ઇલ વૃત્યું હું		9 49 54 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.01 4.29
•	Cod . (A) 1/2		વૃત્યુલ જેલ્ધ્યુજે	2.5.5 2.5.5 2.75 3.76 4.	યું જું જું જું જું જું જું જું જું	4.0 4.0 6.6.0 6.0	યાં જું હું જું હું સ્વરું શું કું કું કું કું કું કું કું	9.9.4.9.9.9.7.6.9.9.9.7.0.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	ያ የተረጓታ የ የጀት አ	3. w 3.8
	0.1V 0.098		1.086 0.986 0.996	0.808 1.0883 1.0483 1.049	0.873 0.993 0.981 0.915 0.915	0.995 0.994 0.873 478 478	0.876 0.911 0.914 0.875 0.994	कुक ५५ १५० १५ १५ १५ १५ १५ १५ १५ १५	200 A 100 A	1.086
	800 21 2 1 2 2 2 2 2 2 2	81	1.242 1.234 1.234 1.33 1.33	0.992 1.342 1.338 1.296	1.227	1.229 1.229 1.082 1.079	1.082 1.130 1.082 1.233	1.296 1.296 1.296 1.375	1.376 1.336 1.336 1.379	1.343
٠	Wheel Transla- tional Velocity V , it/sec Average Design Test	काय अप	44.8.4.9 57.8.84	0.51.51.88 84.57.58.86	28838 23121	***********	48888	4.98 8.83 7.7.8 7.7.8 8.3.7	11.88.88 11.88.88 11.88.88 11.88.88	122 122 128 128 128 128 128 128 128 128
		ocfficte	3.5.0.0 88888	。 	4.7.9.9.9 8.8889	11.38	1.888.83 5.888.83	ઌઌઌઌ૽ૻ 88888	88888 88888	33.33 888
	CD4 (\$)1/2	4.00-7. 2-PA Tire; Design Deflection Coofficient	2.5.2.4.4.2.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	2.89 15.28 3.12 3.17 15.39	9.9.5.3.3 8.8.8.4.4	4.7. 3.7.29 3.75 4.78	13.2 2.3.2 3.13.		2.54 2.54 5.19 5.19	5.30 4.53
	Sinkage Coefficient 2/d	Tire; Design	0.019 0.009 0.009 0.006	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.098 0.098 0.073 0.035	0.028 0.019 0.017 0.065	0.084 0.097 0.051 0.051	0.088 0.000 0.000 0.000 0.000 0.000	4.00.00 0.0037 0.0000 0.031	0.00
	Pull Coefficient P/W		0.7% -0.036 0.226 0.882 0.412	0.293 1.033 0.144 1.038	0.030 0.103 0.132 0.258 0.968	0.346 0.465 0.133 0.426 0.054	0.554 0.125 0.051 0.160	0.149 0.037 0.348 0.171 0.140	0.178 0.302 0.534 0.338	0.338 0.338
	Average Torque		\$66 % %	£ \$322	£8233	£7.28 8	£8 €8°3	\$8 3 82	£ #8# #	1 3 3
	Sinkage z . in.		0.38	48888	666833	0.00.00	0.33 0.72 0.76 1.07	0.00 9.14 9.14 9.14	20.00 20.00 30.00	0.56
	Average Puli P. 1b		19 19 19 19	ጜ፞፞፞፞፞፞ጜ፞ዹጟቜ	48883	£838°°	48 0 EX	6,6431	2 EEM88	£27.5
	Average Wheel Test Load		ឧដ្ឌឧន	% % <u>4</u> % %	3 34740	205 153 168 148	13 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25.55.88 88.88.88	\$ 55 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	133 133 133
	Average Penetration Resistance C. osi		\$44 % 8	122231 122231	ያያቋቋ	ድ፠፠ኇኇ	\$\$\$\$\$	7 8 7 8 7 7 8 7 8 7 7 8 7 8 7 8 7 8 7 8	8 83 B F 8	X ₹ 5
	Test		8 y 2 4 4 5 5 5 5 5	388 488 49 49 49 49 49	\$\$ \$ \$\$	28 886	88-0 69-0 73-0 73-0 73-0 73-0 73-0 73-0 73-0 73	73.45 75.45 76.6 76.6	78 70 70 70 70 70 70 70 70 70 70 70 70 70	24.89 14.6

Table 9

Single-Wheel Tests in Yuma Sand, 20 Percent Slip, Multipass Data

Basic Frediction Term ((bd) 3/2	1 Pass Pass Passes*	8.28 8.42 8.29 12.27 12.59 12.27 15.19 15.19 16.30 29.42 29.88 29.42 20.42 29.88 29.42 5.42 5.50 14.06 5.43 5.50 14.00 1.45 1.55 1.50 14.00 3.60 3.64 3.55		63865833883888 63866388388888 64866	2.77.73.88.73.88.73.88.73.88.73.88.73.88.73.88.73.89.7	7.95 8.08 7.92 6.43 6.43 6.38 4.37 4.40 4.36	3.16 3.19 3.24 9.63 9.89 9.56 4.75 4.72 4.77
Average Pull Coefficient	Passes Passes 1 and 2 1, 2, and	0.129 0.106 0.265 0.183 0.247 0.264 0.363 0.345 0.063 0.039 0.036 0.010			9.000000000000000000000000000000000000	0.129 0.082 0.083 0.052 0.052	-0.030 -0.013 0.155 0.131 0.033 0.022
Pull Coeificient P/W	Pass Pass	0.065 0.062 0.143 0.140 0.032 0.173 0.032 0.286 0.032 0.304 0.012 -0.003 0.002 -0.003 0.002 -0.003		1 0,400 0,386 0,386 0,094 0,386 0,38	0.397 0.377 0.378 0.374 0.314 0.315 0.423 0.280		0.000 0.019 0.098 0.083 0.000 0.000
Pull Pull		22 21 0.366 23 22 0.366 25 34 0.378 19 17 0.378 15 14 0.407 -7 -18 0.015 -7 -16 0.003	9.00-14, 2-FR	24 28 28 28 28 28 28 28 28 28 28 28 28 28	3xxxxxxxxxxxxx	112 98 91 91 91 92	22 18 0.212 0 0 0.066 (Continued)
Load	Pass Pass Pass	231 227 45 154 150 41 134 139 36 65 64 23 85 65 17 15 13 36 13 15 13 13 15 br>15 15 15 15 15 15 15 15 15 15 15 1		240 238 1113 2857 2808 123 2809 134 153 2809 134 153 153 154 155 156 156 156 156 156 156 156 156 156	£253488837168	933 1089	214 212 -12 224 216 48 337 339 22
5	Pass	225 152 124 124 124 135 145 155 155 155 155 155 155 155 155 15		233 235 236 237 237 237 237 237 237 237 237 237 237	eerskabeer Eerskabeer	~~	225 226 225 226 350 334
Design	Sofficient 3/h	65-		0.25			0.15
Penetration	G + Ps1/ln.	16.9 18.1 17.1 15.8 16.9		\$22511138,8811 &&&********************************	1121411312929114 124411312929914	8.8. 4.8.7. 3.3.	13.7 9.9
	Test No.	1-66-0030-1 32 33 33 34 35 37		88 27 27 27 27 27 27 27 27 27 27 27 27 27	G4%%2&&&\\	1-66- 00 47-1 48 49	A68-0061-1 66 63

g - 2/5(pq)0	Passes 1, 2, and 3		18.58 2.83	9.47 18.84	i	14 mg/v o g;	15.8 2.96		36.25.35 3.35 3.35 3.35 3.35 3.35 3.35 3.3	26.98 8.99 8.99		Å. Å. Å. Å. Å. Å. Å. Å. Å. Å. Å. Å. Å. Å		ష్యం ఫిడ్లే ల బైవేతి కృష్ణల్ల
	2 2		18.48	બ ભળતી જુમ્જુ		યુ મહાજી શ્રુજ જ જ જ	 8.8		ૢૢ૽ઌઌઌ૿ૢઌ૿૽૱ ૢઌઌ૽૽૱૱ૹ	36.17 36.17 38.17		34.04.05.05 48.54.68.5 5.54.68.5		4.69.69.4. 8.48.82.2
Prediction			18.60 4.25	10.01 16.97 16.34		ૻ૽૱ઌ૿ઌઌૻૻૺૺૺ ઌ૽ૺૺૺૺૺૹ૽૽ૹ૽૽ઌ૽ઌ૽ૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺ	 		16.25 53.44 81.18 81.18	*,7 <u>1</u> ,% 8,8,8		84.94.85.01 84.94.85.01		53.67 1.88.98.57 1.88.88
Bes 50	Page		18.44			L. 4 6 6 9 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 8.€		4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3,15,75 8,19,83		51 6.09 10.09 10.00 10.00 10.00 10.00		53.59 - 159.55 - 159.
erage	12 1, 2, and 3		0.285 -0.064	0.223 0.064 0.255		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.013		00.048 00.048 00.048 00.048 00.048	0.217 0.340		0.201 0.057 0.400 0.141 0.326 0.23		0.415 0.150 0.159 0.249 0.374 0.212
Į ž	Pagges 1 and 2		0.389	2000 2000 2000 2000 2000 2000 2000 200		00000000000000000000000000000000000000	-0.036		00000000000000000000000000000000000000	0.00 0.23 0.380 0.380		0.222 0.061 0.158 0.342 0.342 0.362		0.138 0.159 0.191 0.198
ent	Pass		0.198	0.163		20.00.00 20.00.00 20.00.00 20.00.00 20.00.00 20.00.00 20.00.00 20.00.00 20.00.00 20.00.00 20.00.00 20.00.00 20.00.00 20			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.214		0.158 0.050 0.351 0.294 0.230		0.236 0.236 0.236 0.239
Coeffici	Pass Pa		0.232	0.03 0.03 0.198 0.198		60.00 60.00	1.057		0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	00.153		0.166 0.042 0.384 0.127 0.310		0.420 0.134 0.205 0.358 0.221
Tipe.	P.5.8	ntinued)	0.0.0.0 040.0	0.265 0.168 0.405	Æ.	0.000000 884.000000 884.0000000000000000	97.79	Æ	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 7 0 0 8 0 8	#-H	0.278 0.030 0.166 0.190 0.194	點	0.155 0.176 0.176 0.176 0.176
	P. 2.	2-PR (Co	39	Zot.	50.5.	24&3 <i>x</i> x8	34	.00-6, 2-	¤°3 €64		4 ,01-00	628 25 4 8 8 8 8 8 8 8	4 . 51-0	524.98.48 28.38.48 18.69.48
IF.	20	8-02	ន្តនុស	348	16211	និងមនុងមន	r	16x15.	¥504844	£87	26x16.0	5% 5 458	31x15.5	193 150 261 261 297
	7	1500	885	848		36524828	197		588538 4	38		13 % F 13 88 89 88 88 88 88 88 88 88 88 88 88 88		2388 2488 3488 3488 3488 3488 3488 3488
Lond	- E		88	£88		302E08E	1243		23243888	\$\$£		25.58 1268 139 139 139		888 H 84
t Wheel	2 ~		\$ 5 8	£ £ 8		234884488	252		33282E	153		10.58 10.59 10.59 10.59 10.59		32233 323
Tes	P8.58		65 kg	28 B B		9858 8558 8558 8558 8558 8558 8558 8558	1253		2333388 6333368	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		888888 88888		47.88.88 28.88.88 28.88.88 28.88.88
(g)			879 829 839	155 155 155 155 155		9855558 855558	1296		88558553	155 155 155		455 990 1286 990 1080		1000 1000 1220 1350 1350
Design Deflection	Coerricient &/h		0.025	0.35		0.000000000000000000000000000000000000	0.35		0000000 244888899999999999999999999999999999999	0.35		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.15 0.025 0.35 0.35 0.35
Defore-fraffic Penetration Resistance	Gradient G , psi/in.		16.1 10.2 9.4	20 y 6. 8 2 6		66.5.5.6.1 13.5.4.1.1.5.1.13.90	3.8		**************************************	5.0	·	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		۲۲ خ څ د و و د د خ څ ه د د ه
	Test No.		364 -0067-1 64 65	388		A ⁶⁸ -007-1-1 73	e 9		A68-0098-1 8 9 9 % & 88 3 -1 8 9 9 % % & 8	ይ ቄ	Ş	A68-0101-1 100 102 105 104		A68-0111-1 106 109 107 107 106

	اعا •	2, end 3		. 4	53	ደደ	2	2	<u>දු ල</u>	7	9	<u>0</u> .9	S .0	ψ,		٠.	Gi t	\ y 0	≽ κυν	,	64		73 AV	.			en e		۰			_		1
9(pq)3/g	样	12.15		Ę	9	بر س	ä	ន	\$ 5;	i	6.0	m.4 •	8.89 8.89	16.1		ä	≠ v ∴ aa	3		}	16.15		200	36.95	7	16.17		13	8.99 8.99 8.99		:	10.30		
1.		2 and 2	1	10.10	16.17	18.26	3	33.46	ia;	6.19	9.18	 66	8 8 8 8	16.18 88.18		11.23	3. 5. 3. 5.	6	. 5 . 8 8 8	}	16.20	;	, 8 , 8 , 8	\$.7 8.7		16.12	9.5 6.5 6.5	3	% S % 3		:	10.3	48.34 -	
Basic Basisters B.	PASS .	4		2.5	8	18.18	: 12	8.8	3.55	}	#. o.	 	;; %£	16.09		10.95	51 (3 . .	 	32.5		15.36		12	36.36		16.25	8 9 9 9	9	19.18 19.18	· ·	6.39	20°5	5.5	
l see	Per	~	1	, F	5.3	18.07	11.22	8.8 8.8	38.8	199	47.6	6.6	18.29 9.65	35. 25. 25.	,	8:18	28. 1.4.	6.5 15.5	. 4. 5. 5. 6. 6.		16.43	o i	20.17	35.79		36.30	6.8 6.8	8	8.5 8.3		9.38	19.31	.37 78.37	
Average Towed	Coefficient	1, 2, and 3		0.016	0.00	8 8 8 8	0.038	88	8.6	}	0.09	0.28 8.59 8.69	0.00 1000 1000	약. ·		0.099	0 0 0 0 0 0 0 0	0.119	0.057		90.0	0.034	0.067	0.0 0.0 0.0 0.0 0.0		0.053	0.162 0.030	6	0.08 11.88		:	0.0 640.0	o.94	
Avez	Passes	1 600 2	7 0	9.0	0.03	9 6	0.061	888	188		30.0	0.267	0.10	0.037 0.675		H.0	0.0 84.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83	0.135	0.058		0.093	0.033	0.0	0 0 0 0 0		0.563	0.031 0.031	0.107	0.099 0.133		:		o.045	
Molent	Wis	1	1	0.00	88	9.6	0.051	8 6	88		0.106	30	0.067	₹ :		0.075	0.035	0.087	0.0 0.0 0.0 0.0 0.0 0.0		0.061	0.0	0.050	0.0 0.0 0.0 0.0 0.0		0.033	0.088	990.0	0.03		898	0.0	0.03 0.069	
P./4	Past Part Part		8	0.0	9.0	0.012	0.052	0.00	86		0.076	56.0	0.088	0.633		860.0	0.027	27.0	0 0 0 0 0 0		0.081	0.035	0.0	₹& •		0.247	0.03 0.03	886	94		0.093	0.051	0.046 0.091	
Towed	Pass	-	, i	0.035	8 8	8	80.0	0.0	000	er.	0.111	9	0.0	0.75	æ	0.125	6.0	0.228	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Æ	0.104	당	6.0	0.118	Æ	0.078	0.0 88 88 88	97.0	0.155	Æ	: :	0.059	₹: •	
20 CC	į.	1	:	0		. ,			• O (4	ò	ત્રે હ	.,	ານຄ	•	.50-6, 2	μį	ţœ.	3 K	ងខ	.00-6, 2	77	şo	*	\$ 6	.01.0	á;	32	చి.	8	50-13, 4	5.S		#ಕ	Scated.
Towed Force	100	4 0	.J ~	CV.	3 C	່ໝໍ		0	010	16m6	23	SS-	* & ?	3 E	1623	ងខ្ម	7.4	88	14	16x15	81	<u>_</u>	8	ጽያ	26x16	815	Ž'A	H.	34	3121	8 ;	8	育	the passes indicated
	į.	1	N	•	N	19	22	۸ ۵	១ដ	1	*#	133	- <u>R</u> g	38		<u>د</u> ک	ដូដ	105	äቴ		ଝ	۲-	R,	312		ЖĀ	3 m	8	४व		: :	Ę,	£ :	the pa
Z de	Z.		;	138	2,2	18		, ag	£5.		หัส	38	2 2 2	3 :		£ 18	183.	£24	88 8		8.3	137	3 E	£.29		ČŽ,	36	22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	1037	;	8 8 8	161	£%	Į.
t Wheel		1	158	173	9 6	140	8 8	38	2 3		8 4	₹6	8 4	Į,		ž ģ	ដូរូ	50 50 50	88		۲2 تا تا	8	<u></u>	£1		*	38 g	5 6 5 6 5 6	1031	,	£ :	1205	1388 1388	Tue of
į.	Pares	1	156	∄; 7	237	88	3 2	i S	163 458		75 dd	\$ 2	8	i g		53. F2.	8.	£3.	స్టేజ్లే		52 E	8	B 9	167		5,5 8,5 8,5	194	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1036		: ;	1205	8 1	average val
E.	Pag A		3,5	됥	33	3	2 5	8	95. 55.		หีหี	ጅጀ	183	455		8 2	8 3	455	88		273 253	8	ት የኢት	122		8 8 8 8	553	88	1020		88	288	1350	used is the av
Deflection	Coefficient		0.25			- Year old r			-		0.15	0.15	0.35	6.35	,	0.15	5,6	0.25	0.35 55.0		0.15	52.0	0.35	0.35		0.15 0.15	0.03	0.35	0.35	;	0.25	0.25	c.35	the "W"
Before-Iraffic Penetration Resistance	Gradient G , pei/in.		13.3	11.8	11.6	13.2	13.2	2.6	10.3 11.0		13.7	10.0 16.1	, o, o,	9.4	•	0 - 1	10.1	8 .	13.9	,	o, o,	9.1.	 1.2	5.0		6.4 5.0	6.u	, :: :::	0.4	7	, ei	9.8	3.2	In the basic prediction term,
	Test Mo.		1-65-0064-1	\$¥	24	æ 4	88	1,1	42	;	A68-0066-1 69	የ የ	88	ĸ	. 2000 074	1-11-00v	9 8	<i>€</i> 6	88		Acc	% 8	ъя	æ	;	^><-0501-1 100	108 105	123	70.	468-0106-3	100	110	108	* In the basic

Table 11 Laboratory Tests with and Vehicles in Yuma Sand, Standard Four-Wheel-Drive Vehicles, 20 Percent Slip, First Pass

st No.	Gradi	Penetratio lesistanco lent, ps	.	Design Deflection Coefficient	Desi	gn Icad , lb	Total Pull	Pull Coefficient	Pasic Prediction Ter G(bd) ^{3/2} 8		
267-	G.	G'	G	8/p	Total	Per Wheel	P , 1b	.P/W	M		
			M1.51	l, 1/4-Ton; 7.00	-16, 6-PR 1	fires (b = 7.5	in., d = 27.7	<u>in.)</u>			
233A	5.3	5.3	4.6	0.15	3560	890	-65	-0.018	2.3		
234A	8.3	9.0	7.8	1		İ	115	0.032	3.9		
235A	12.6	13.3	11.5	1	1		240	0.067	5.8		
236A	16.0	17.0	14.6	1	- 1	İ	385	0.108	7.4		
237A 238A	19.4 16.0	20.3 16.7	17.5 14.4	•			585 420	0.164 0.118	8.8 7.3		
239A	5.7	6.0	5.2	0.25			55	0.015	4.4		
240A	8.6	9.0	7.8	ł	ĺ	i	245	0.069	6.5		
241A	13.1	13.7	11.8	l l	Į.	1	585	0.164	9.9		
242A	15.4	16.3	14.1	ļ	•	i i	710	0.199	11.9		
243A 244A	16.0 19.1	16.7 20.0	14.4 17.3	ı		1	795 980	0.223 0.275	12.2 14.6		
245A	18.5	20.0	17.3	†		1	770	0.216	14.6		
246A	6.0	6.5	5.6	0,35		İ	470	0.132	6.6		
247A	9.1	9.5	8.2	į.	,	l l	680	0.191	9.6		
248a	13.4	13.7	11.8	- (ł	Į	840	0.236	13.9		
249A	18.6	20.0	17.3	1	ı	1	970 1 12 5	0.272 0.316	20.4 20.2		
250a 251a	19.6 20.0	19.8 20.7	17.1 17.9	\$	- 1	1	1165	0.327	21.1		
252A	15.4	16.7	14.4	Ì	- 1		915	0.257	16.9		
255A	17.4	16.7	14.4	1	1	į	1065	0.299	17.0		
256A	20.6	20.3	17.5	1	1	1	1230	0.346	20.6		
257A	24.3	23.7	20.5	•	*	7	1300	0.365	24.1		
			10.51	1/4-Ton; 26x16.	.00-10, 4-P	R Tires (b = 1	16.1 in., d = 2	4.3 in.)			
280A 281A	8.2	10.3	8.9	0.15	3560	890	445	0.125	11.6 11.6		
585V 50TV	8.7 14.4	10.3 13.3	8.9 11.5		- 1	ı	700 1010	0.197 0.284	15.0		
284A	13.1	13.7	11.8	1	1	1	860	0.242	15.4		
285A	27.3	28.3	24.5	ì	1	ì	1160	0.326	31.9		
286A	21.5	21.3	18.4	1	Į	- 1	1000	0.281	24.0		
288A	1.7	3.0	2.6	¥	- 1	į į	-75	-0.021	3.4		
287a 289a	28.8 32.1	22.2 23.2	19.2 20.1	0.25	- 1		1290 1255	0.362 0.353	41.7 43.7		
291A	22.1	17.7	15.3	S	- 1	ŀ	1360	0.382	33.3		
292A	18.6	15.8	13.7	3	i	j	1190	0.334	29.8		
293A	11.5	10.7	9.3	i	i	- 1	1080	0.303	20.2		
294A	1.7	3.3	2.9	•	į	- 1	120	0.034	6.3		
295A	1.8	3.3	2.9	0.35		j	640	0.180	8.9		
296A	9.5 14.4	8.7	7.5	1	1	- 1	1250	0.351 0.427	22.8		
297A 298a	20.3	13.3 17.5	11.5 15.1		1	ı	1520 1495	0.427	35.0 46.0		
299A	24.	23.0	19.9	j	1	j	1570	0.441	60.5		
300A	37.1	23.8	20.6	1	1	*	1550	0.435	62.7		
			M37.	3/4-Ton; 9.00-	6, 8-FR TI	res (b = 10.2	in., d = 32.8	in.)			
259A	24.5	23.3	20.1	0,15	7240	1810	970	0.134	10.2		
260A	17.0	16.7	14.4	1	- 1	1	705 1120	0.097 0.155	7.3 11.4		
262A 262A	27.3 21.3	20.0 20.0	22.5 17.3	}	1	1	865	0.119	8.8		
263A	15.6	14.3	12.4	1	i	1	715	0.099	6.3		
264A	7.4	9.0	7.8	1		j	125	0.001	4.0		
265A	4.1	5.7	4.9	j	}	Ĭ	-2 65	-0.037	2.5		
266A	17.1	17.0	14.7	1	[ļ	890	0.123	7.5		
267A	23.5	26.7	23.1	0,25		-	2005	0.277	19.5		
268A 260A	25.1	24.0	20.7	ı	1	1	1840 205	0.254 0.028	17.5 4.1		
269A 270A	4.3 10.3	5.7 12.3	10.6	1	1	1	890	0.123	9.6		
271A	20.5	21.0	18.2	1	i	ſ	1680	0.232	15.4		
272A	17.6	17.7	15.3	•			1500	0.207	13.0		
273A	6,5	8.3	7.2	0,35		1	1175	0.162	€.5		
2744	9.8	12.0	10.4	1	1	1	1515	0.209	12.3		
275A	16.4	16.0	13.8	1	ł	1	2130	0.294	16.3		
277A	24.8	28.7	24.8	1	I	1	2330	0.322	29.3		
278A 279A	28.2 20.3	28.7 20.3	24.8 17.5	1	1	Í	2540 2245	0.351 0.310	29.4 20.7		
		~U+3	41.7	•			- T	V.JIV	EU+1		

^{*} G', G', and G are each defined in Appendix A. Measurement G is the only term used to describe penetration resistance gradient in relations described in the body of this report.

** Load per wheel:

Table 12

Field Tests with Vehicles in Coarse-Grained Soils,

Maximum Drawbar Pull, First Pass

Test No.*	Penetration Re Cradient,** p		Wheel Load W, 1b	Inflation Pressure, psi	Deflection Coef- ficient 5/h	P/W†	Basic Prediction Term G(bd)3/2 W
		M38	MA1, 4x4 (Jee	p); Padre Islan	d, Tex.		
2	125.7	108.7	672	30	9.086	0.243	42.7
5	121.7	105.2	1	20	0.113	0.320	53.2
Ŕ	123.3	106.6	j	. 15	0.134	0.355	63.1
11	104.7	90.5	- 7	10	0.173	0.416	70.0
15	119.0	102.9	- 740	30	0.100	0.219	41.7
18	127.3	110.1	ı	20	0.120	0.295	53.4
21	117.3	101.4	1	15	0.156	0.361	64.a
24	111.7	96.6	1	10	0.200	0.445	78.5
29	96.7	83.6	800	30	0.100	0.223	31.5
33	95.0	82.1	1	20	0.130	0.242	40.0
37	110.0	95.1		15	0.160	0.348	57.1
42	113.7	98.3	7	10	0.210	0.387	77.6
		м37. 1	x4 Truck, 3/	4-Ton; Padre I:	sland, Tex.		
44	122.3	105.7	1422	30	0.114	0.181	46.8
47	115.7	100.0	1	20	0.144	0.255	56 .2
50	103.3	89.3	1	15	0.168	0.297	58.3
53	95•7	82.7	V	10	0.198	0.369	64.6
58	104.0	89.9	1602	30	0.120	0.172	37.3
6 2	112.3	97.1	- 1	20	0.156	0.227	52 .2
66	110.0	95.1]	15	0.192	0.283	63.1
70	113.3	97.9	•	10	0.240	0.384	93.1
73	90.7	78.4	1797	30	0.132	0.174	32.0
74	120.0	103.7	Ī		ĺ	0.199	42.2
75	120.0	103.7))	1	0.187	42.2
79	28.7	24.8	Ì		1	0.125	10.2
80	32.0	27.7	1	•	Ť	0.113	11.3
82	112.3	97.1	l	zo	0.180	0.253	53.7
86	20.7	17.9	1	1	1	0.143	10.0
87	40.7	35.2	- 1	₹	V ,	0.179	19.6
, 89	100.0	86.4	l	1.5	0.216	0.291	57.5
93	23.0	19.9	l	į	Ţ	0.171	13.2
94	36. 7	31.7	- (₹	V	0.240	21.2
97	110.0	95:1	1	10	0.276	0.361	80.8
101	32.7	28.3	į.	į.	i	0.269	24.3
102	33.7	29.1	7	Ŧ	Ŧ	0.285	2 5.0
			•	(Continued)	•		

^{* &}quot;Test No." is "Item No." in reference 16.

for side slopes. (These equations are developed and explained in reference 16.)

^{***} G' and G are each defined in Appendix A. Measurement G is the only term used to describe penetration resistance gradient in relations described in the body of this report.

total pull or pull per wheel . s indicates that pull (P') was measured when the vehicle was operating upslope or downslope, where the slope angle (0) varied between 2.9° and 8.5°. ss indicates that pull (P") was measured when the vehicle was operating on a side slope, where the slope angle varied between 3.4° and 6.3°. The absence of s or ss indicates that the pull (P') was measured when the vehicle was operating upslope or downslope where the slope angle varied between -2° and 1.7°. Values of P for all tests were obtained by correcting pull measured on a slope to pull (P) on a level surface by the equation

 $P = \frac{(P' + W \sin \theta)}{\cos \theta}$ for upslopes or downslopes, and by the equation $P = \frac{\sqrt{(P'')^2 + (W \sin \theta)^2}}{\cos \theta}$

Table 12 (Continued)

Test No.	Penetration Gradient,		Wheel Load W , lb	Inflation Pressure, psi	Deflection Coef- ficient 5/h	P/W	Basic Prediction Term $\frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$
	,	M37,	4x4 Truck, 3	/4-Ton; Cape Co	d, Mass.	•	
103 104 105 106 107 108 109 110 111 112	42.7 42.7 34.7 45.3 46.3 46.0 43.7 43.7 43.0 41.7 34.3	36.9 36.9 39.2 40.0 39.8 37.8 34.6 36.0 29.7	1422	30 30 20 15 10	0.114 0.114 0.144 0.168 0.168	0.161 0.157 0.177 0.212 0.200 0.250 0.259 0.250 0.306 0.288 0.299	14.9 14.9 15.3 19.6 20.0 23.4 22.4 24.0 25.2 20.4
	_			/2-Ton; Padre I		•	
147 148 150 153 156	108.3 35.0 117.3 117.3	93.6 30.3 101.4 101.4 91.4	2908	30 30 20 15 10	0.126 0.126 0.195 0.220 0.270	0.284 0.133 0.342 0.372 0.419	40.4 13.2 67.8 76.4 85.1
	M135	6x6 Truck,	2-1/2-Ton; V	icksburg Miss.	Miss. Rive	r Sandbar	
159 160 163 164 165 166 167 168 169 170 171 172 173 174 175 170	48.0 47.6 53.3 52.0 46.7 47.3 47.3 45.7 44.7 44.7 44.7	41.5 32.9 46.1 45.0 37.2 40.0 43.0 40.9 38.9 44.7 37.4 38.6 40.6 38.0	3125	60 60 30 20 15 10 10	0.090 0.090 0.160 0.210 0.265 0.360 0.360	0.072 0.061 0.180 0.200 0.192 0.147 0.220 0.228 0.207 0.216 0.255 0.275 0.261 0.252 0.265 0.317 0.318	12.1 9.6 23.8 23.4 19.3 27.1 30.1 24.7 27.7 33.5 38.6 32.0 33.4 40.7
		M34, 6	ox6 Truck, 2-	-1/2-Ton; Suscin	nio, France		
178 179 180 181 182 183 184 185	26.0 30.7 17.0 23.3 30.7 31.3 21.3	22.5 26.5 14.7 20.1 26.5 27.1 18.4 15.8	1962	20 20 15	0.132 0.132 0.147 0.176	C.159ss O.154ss O.157ss O.151ss O.144ss O.22Css O.219ss O.197ss	15.1 18.0 11.1 14.8 20.1 24.2 16.3 14.0

Table 12 (Continued)

Test No.		n Resistance , psi/in.	Wheel Load W , 1b	Inflation Pressure, psi	Deflection Coef- ficient 8/h	P/W	Basic Prediction Term G(bd)3/2 . 8
rest no.		<u>G</u>	-				
		M34, 6x6 Truc	k, 2-1/2-Ton	; La Turballe,	France	ē	
186	22.0	19.0	2796	10	0.250	0.2558	16.9
187	41.7	36.0	2796	10	0.250	0.283s	32.4
		DUKW 353,	6x6 Truck, 2	-1/2-Ton; La Tu	rballe, Fra	nce	
188	34.3	29.7	2445	15	0.203	0.2498	23.2
189	47.6	40.6	1	15	0.203	0.2938	32.0
190	28.7	24.8	V	10	0.252	0.316s	24.5
203	26.7	23.1	3278	20	0.225	0.212s	15.2
204	47.7	41.2		20	0.225	0.1958	27.0
209	31.7	27.4	l	15	0.277	0.289s 0.261s	22.2 22.2
210 211	32.0 28.7	27.7 24.8	1	.	•	0.2628	20.0
515	26.0	22.5		10	0.348	0.305s	18.0
213	39.0	33.7	1	ī	1	0.328s	27.0
214	28.7	24.8	7	•	Y	0.322s	20.0
		DUKW 353.	6x6 Truck,	2-)/2-Ton; Susc	inio, Franc	<u>e</u>	
191	47.7	41.2	3278	30	0.171	0.21588	20.6
192	44.3	38.3		1		0.15988	18.8
193	35.0	30.3				0.190ss	15.0
194	35.3	30.5	ļ		1	0.194ss 0.194ss	15.0 18.8
195 196	44.3 46.7	38.3 40.4	Ì	ļ		0.20288	20.1
197	35.7	30.9	1	20	0.225	0.26388	20.3
198	22.3	19.3		Ĩ	1	0.19388	12.4
199	31.7	27.4		}	- 1	0.216ss	აპ.1
200	22.3	19.3			ł	0.238ss	12.4
201	30.7	25.5	1		1	0.188ss	17.9
202 205	34.7 22.7	80.0 19.6	į	15	c .2 77	0.191ss 0.193ss	19.7 13.6
205	20.3	17.5	ļ	اً	0.2//	0.20068	13.8
207	22.7	19.6	- 1			0.23Css	15.9
208	23.0	19.9	*	Ķ	*	0.234ss	15.9
		DUKW 353	, 6x6 Truck	2-1/2-Ton; Cap	e Cod, Mass	<u>.</u>	
221	61.7	53.3	2548	20	0.176	0.244	34.8
222	53.0	45.8		1	ł	0.227	30.0
553	57.3	49.5		l	Ī	0.262	32.2
224	16.7 16.3	14.4	ł			0.079 0.093	9.6 9.5
225 226	20.0	14.1 17.3	1	•	•	0.090	11.6
227	57.3	49.5	ł	15	0.216	0.317	38.9
228	60.7	52.5]	1	1	0.277	42.2
229	47.3	40.9	1		1	0.293	32.9
230	15.3	13.2	1			0.118	10.4
231	14.3	12.4		1	1	0.105	9.8
232	13.3	11.5	ł	10	0.262	0.108	9 .2 45 . 7
233	54.0 53.2	46.7 46.1		10	0.202	0.370 0.337	45.1
234 235	53.3 43.0	40.1 37.2			1	0.340	36.3
235 236	13.3	11.5			1	0.214	11.6
		11.2			ł	0.213	11.2
237	13.0	TT 0 C		l l	,	0.213	***

(Continued)

(3 of 5 sheets)

Table 12 (Continued)

	Penetration	n Kesistance			Deflection Coef-		Basic Prediction Term
	Gradient		Wheel Load	Inflation	ficient		G(bd)3/2.
Test No.	G'	G	W , 1b	Pressure, psi	8/h	P/W	Wh
		14):1	harh Tamok 5	-Ton; Padre [sl	and Tay		
-1 -							
240	32.3	27.9	3845	30	0.172	0.169	24.6
241	25.3	21.9	1	•	ŧ	0.165	19.3
243 248	1,3,3	97.9	į	50	0.102	0.327	86.4
	101.7	37.9	ı	15	0.183	0.397	83.4
251	33.0	28.5	1	15	0.258	0.283	38.1
253	120.0	103.7	ı. I	10	0.258	0.441	139.1
258	120.0	103.7	V		0.3.6	0.479	170.2
	Buck	et Loader, 4x	4 Tractor; V	icksburg, Miss.	, Miss. Riv	er Sandba	<u>r</u>
285	40.7	35.2	55 66	30	0.104	0.201	22.3
286	42.7	36.9	[l	0.203	23.4
287	42.0	36.3	- 1	1	1	0.202	23.0
288	37.3	35.5	l l	V	Ÿ.	0.192	20.5
2 89	41.7	36.0	į.	20	3.141	0.252	31.1
290	40.0	34.6		20	0.141	0.238	29.7
291	41.3	35.7	ļ	15	0.173	0.300	37. 0
292	40.3	34.8		1	1	0.303	36.2
293	39.0	33.7	1	7	V	0.289	35.4
294	36.3	31.4	1	10	0.233	0.340	44.1
29 5	41.0	35.4	•	10	0.233	0.355	50.3
	Tou	rnadozer, 4x4	Tractor; Vi	cksburg, Miss.,	Miss. Rive	r Sandbar	
29 6	34.3	29.7	7768	30	0.178	0.216	36. 6
297	43.3	37.4		1	ĺ	0.213	46.1
298	38.3	33.1]	ì	1	0.215	41.1
299	49.0	42.4	1	l	ľ	0.235	52.5
300	47.0	40.6	i	į.	ŧ	0.216	50.1
301	45.3	39.2	i	20	0.208	0.283	57.1
302	46.0	39.8	1	Ĩ	1	0.272	57.7
303	45.3	39.2	1	1		0.302	57.1
304	45.3	39.2	ł	1		0.281	57.1
305	40.7	35.2	i	i i	1	0.287	50.5
306	45.3	39.2	1		i	0.281	57.1
307	46.0	39.8]	į.	Ì	0.272	57.7
308	41.7	36.0	1	15	0.250	0.325	63.7
309	41.3	35.7	i	Ĩ	1	0.327	63.1
310	46.3	40.0	1	ĺ	1	0.339	70.4
311	45.0	38.9	i	j	i	0.327	68.6
312	43.3	37.4			- 1	0.316	65.6
313	41.3	35.7	1		1	0.338	63.1
314	44.7	38.6	1		1	0.332	74.3
315	44.3	38.3	l	•	i	0.338	7 3. 5
316	38.7	33.5	ì	10	0.272	0.397	64 . 5
317	45.7	39.5	i	ĭ	0.2/2	0.402	75.6
318	38.7	33.5	1			0.389	64.5
319	46.0	39.8	1			0.412	76.6
320	44.3	38.3	*	•	•	0.399	75.6
	GOER, 4x4		. 5-Ton (18-	-26); Vicksburg,	Miss. Mis	s. River	
321	47.7	41.2	6668	30	0.17	0.278	42.2
322	37.7	32. 6	1	ĭĭ	'اِ	0.254	33.6
323	39.7	34.3	ı	<u> </u>	1	0.241	35.1
324	44.0	38.0	1	j	1	0.274	39.0
325	46.7	40.4	İ	1	}	0.261	41.4
	47.7	41.2		!	1	0.267	42.2
326 327			l	į.	į.		
327 328	42.0 50.3	3€.3 43.5	♦	20	0.215	0.268 0.335	37. 5 56.4
JE0	,~·,	73•7	•		01617	V.JJ/	2744
			(0	Continuad)			//
				95			(4 of 5 sheets)

Test No.	Penetratio Gradient	t, psi/in.		Wheel I	l වන් .b	Inflati		Deflecti Coef- ficient		Basic Prediction G(bd) ^{3/2}	Term
GOER	4x4 Cargo	Carrier,	5-Ton	(18-2	5);.¥	icksburg,	Miss.	, Miss. F	iver Sandbar	(Continued))
329	50.3 .	3	3.5	6668	1	20		0.215	0.345	56.4	•
330	45.3	3	9.2	U	,	4		جنع.0	0.305	51.1	:
331	42.0	-	6.3	1		1		1	0.320	46.8	
332	44.6	1 3	8.6	1		i	•	1	0.327	50.1	
333	45.0		8.9	- 1		•		Ż	0.325	50.6	
334	52.3		5.2	1		15	1	0.247	0.380	'66.7	
335	48.7		2.1	1	;	ĩ	•	1	0.388	62.2	•
33 6	: 45.3		9.2	1	١.	į.		1	0.400	57.9	
337	47.3		0.9	i		, ,		1 1	0.374	60.3	•
338	49.0		2.4	, 1				1	0.366	62.2	
339	48.0		1.5	'		. •		•	o.366	1 61.0	
340	42.0		6.3	- 1	•	1 10		0.294	0.431	64.1	
341	48.3		1,8	1		1		1	0.447	74.2	,
342	47.0	i	0.6	.		. 1			0.444	71.9	•
343	49.7		3.0	•	•	· •		. 1	1 0.428s	75.6	
*	GOER, 4x4	•	-,			34); Vicks	burg,		iss. River Se	*	
344	45.Ò		1819	6668	}	30		0.217	, 0.240	52.0	1
3 45 °	44.0	3	8.0	ŧ					0.250	51.0	
346	44.7	3	8.6			1		ľ	0.2418	51.5	
347	48.0 5	, 4	11.4	- 1		į	•		0.248	55.0	
348	47.3	i,	10.9	- 1	,,	Ι,			0.235	54:1	
349	48.0 :	14	1.5	- 1		1 '		. 7	0.259	55.2	
350- *	43.3	3	37.4	ì		, 20		, 0.5/15	0.313	54.7	
351	45.3	3	39.2	- 1		· 1		I	0.309	57.0	
352	43.3	1 3	37.4			l			0.311	54.7	**
353	41 0	3	35.4	1		1 [] 1	0.308	51.9	
354	43.3	. 1 3	37.4	- ,		1		- 1 '	0.306	54.7	•
355	43.3	·	37.4	'		1	. 1	i	0.300	54.7	
356	43.0	3	37.2			7		•	0.303	54.2	
357	48.3	Ł	1.8	- 1		15		0.296	0.356	75.4	
3 58	47.6		a.2 .					1	0.356	74.7	
359	44.7	1	38.6	1			1.	i	0.354	70.1	
360 °	49.3	, 1	12.6	1	1	ł		. 1	0 .3 59	77.6	1
36i	47.0	į	17.6			į		' [0.350	73.9	
362	47.0		40.6	l		11		- 1	0.352	73.9	1
363	45.3		39.2	l		1		1	0.349	71.0	
3 64	46.3		40.0	1		y.		- 1-0	0.348	72.3	4
365	50.3		43.5	-		10		0.428	0.427	114.5	-
366	48.3		41.7	1	1 1	' I	1	1	0.425	109.9	
367	146.3		40.0	ļ				- 1	0.409	, 104.8	
368	45.0		37.2	1				1	0.411	97.3	
369	42.0	•.	36 ,3	,₹	,	· 4		; •	0.390s	9t·7	
	3		•	•							

Table 13 Field Tests with Vehicles in Coarse-Grained Soils, Towed, First Pass

Test	Penetr Resis Gradi psi/	tanc.: ent**	Wheel Ioad W , 1b	Inflation Pressure psi	Deflection Coef- ficient 6/h	P _T /W†	Basic Prediction Term $\frac{G(bd)^{3/2}}{V}$. $\frac{\delta}{h}$
		M37, L	x4 Truck	, 3/4-Ton; Pa	dre Island,	ľex.	
1 2 3 4 5 6 7 8	110.0 119.7 124.0 103.0 47.0 56.7 58.0 54.7	95.1 103.5 107.2 89.0 40.6 49.0 50.1 47.3	1797	30 20 15 10 30 20 15	0.132 0.180 0.216 0.275 0.132 0.180 0.216 0.275	0.020 0.001 0.023 0.065 0.125 0.076 0.043 0.051	38.3 57.7 71.4 24.5 16.6 27.3 33.3 40.4
		M135, 6	x6 Truck	, 2-1/2-Ton;	Padre Island	, Tex.	
9 10 11 12	27.3 42.7 36.3 26.0	23.6 36.9 31.4 22.5	2458	30 20 15 10	0.120 0.166 0.185 0.250	0.164 0.036 0.131 0.061	11.4 25.1 32.9 22.8
13 14 15 16	41.3 10.7 11.0 10.3	35•7 9•3 9•5 8•9	2908	30 20 15 10	0.130 0.200 0.260 0.360	0.142 0.161 0.138 0.148	15.4 6.2 8.2 12.0
	м135, бж	6 Truck,	2 - 1/2-To	n; Vicksburg,	Miss., Miss	. River	Sandbar
17 18	40.3 42.3	34.8 36. 6	3053 3053	3 0 10	0.130 0.360	0.090 0.091	14 .9 50 .3
	M135,			icksburg, Mis PR Tires, Std		ver Sand	bar
19 20 21	42.3 33.3 37.3	36.6 28.8 32.2	4402	30 20 15 (Continued)	0.232 0.295 0.348	0.093 0.091 0.082	19.1 19.1 25.2

[&]quot;Test No." is "Item No." in reference 16.
G' and G are each defined in Appendix A. Measurement G is the only term used to describe penetration resistance gradient in relations described in the body of this report.

 $P_T/W = \frac{\text{total towed force}}{\text{total vehicle weight}} = \frac{\text{towed force per wheel}}{\text{wheel load}}$ Towed force (P_T') was measured on slopes where the slope angle (0) varied between 1.4° and -1.2°. Corresponding values of $P_{\overline{T}}$ on a level surface were obtained by correcting the measured P_{τ}^{\bullet} values by the equation (This equation is developed and explained in cos 0 reference 16.)

Table 13 (Concluded)

Test	Penetra Resist Gradio psi/	tance ent in.	Wheel Load	Inflation Pressure	Deflection Coef- ficient	P_/N	Prediction Term G(bd)3/2 . 6
No.	G*	G	<u>W , 1b</u>	<u>psi</u>	8/h	T	W h
	M135,	Tested a	s 4x4; V	icksburg, Mi	ss., Miss. Riv	ver Sand	bar
		(1)	.00-2C,	2-PR Tires,	Tread Removed	Σ	
22	28.3	24.5	4402	30	J.226	0.073	12.5
23	34.3	29.7	1	20	0.295	0.068	19.7
24	34.0	29.4	•	15	0.348	0.059	23.2
		DUKW 353	, 6x6 Tr	uck, 2-1/2-T	on; Cape Cod,	Mass.	
2 5	45.7	39.5	2548	30	0.125	0.132	18.5
2 6	37.3	32.2	1	20	0.176	0.096	20.9
27	38.0	32.9		15	0.216	0.083	26.4
28	29.3	25.3	1	10	0.262	0.147	24.4
		M41, 61	6 Truck,	2-1/2-Ton;	Padre Island,	Tex.	
29	13.7	11.8	3845	30	0.144	0.203	7.2
30	3.3	7.2	1	20	0.194	0.160	7.2
31	7.7	6.7	1	15	0.234	0.119	8.1
32	10.0	8.6	¥	10	0.316	0.125	14.1
33	23.3	20.1	4695	30	0.172	0.145	14.2
34	62.0	53.6		20	0.210	0.060	47.1
35	100.7	87.1	1	15	0.300	0.025	109.7
36	55 .3	47.8	Y	10	0.375	0.044	69.0
	Bucket L	oader, 4x	4 Tracto	r; Vicksburg	, Miss., Miss	. River	Sandbar
48	45.0	38.9	3399	30	0.104	0.059	24.5
49	39.0	33.7	ĺ	20	0.141	0.061	21.3
50	39.0	33.7	1	15	0.173	0.060	26.2
51	37.0	32.0	V	10	0.283	0.078	45.1
	Tournade	ozer, 4xl	Tractor	; Vicksburg,	Miss., Miss.	River S	andbar
52	42.7	36.9	7768	30	0.178	0.085	46.1
53	43.3	37.4		20	0.208	0.069	53.9
54	44.7	38.6	1	15	0.250	0.072	67.9
55	42.0	36.3	V	10	0.272	0.055	69.0
GOER.	4x4 Cargo	o Carrier	, 5-Ton	(18-26); Vic	ksburg, Miss.	, Miss.	River Sandbar
5ń	42.0	36.3	5668	30	0.172	ر0.06	37.3
57	45.0	38.9	1	20	0.215	0.056	49.9
58	48.0	41.5	7	15	0.247	0.052	61.1
GOER,	4x4 Cargo	Carrier	5-Ton	(15-34); Vic	ksburg, Miss.	, Miss.	River Sandbar
60	48.0	41.5	6668	30	0.217	0.056	54.8
61	43.0	37.2	ĺ	20	0.242	0.059	54.8
62	46.3	45.5	*	15	0.296	0.055	71.5
				98			

Taule 14

Field Tests with Vehicles in Fine-Grained Solis, Optimum Slip Point, Tirst Ples

ANTING Come Indea	&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&	288883223	225maa	72 272	2852£84
	0000004400000000 8%%%\$\$\$\$\$\$\$\$	444554444	\$\$££££	FF4 i.o.o.	40000400 40000400
Average Cone Index	8338222 ⁴ 48252822	### 33 0448	**************************************	8 9 5	8218822
	4334446 653864878	BSSSEERRE	882288	242	623E 26 35
At Depries in	84482244344444446	322728882	れなななおお	\$2 8	11111111
불기	82267788888883738	86687:3668	284422	बबन	:::::::
🚜	5%62459594548435	rrrange Rrange	22 x x 22	<i>እ</i> ጾ ጾ	<i>ጜ</i> ፞፞፞፞፞፞ቖ፞ዿ፞፞፞፞ቔዿጜጜቜ፟ቈ
1	527288586858888888888	*********	55 3 388	225	:::::::
Cone Index	energe and them suppe	38888888	Rakka2	**3	::::::::
1 %	***************************************	324888444	8883833 8	226	£8882888
15 A 25 A 25 A 25 A 25 A 25 A 25 A 25 A	ૻૢૢૢૢઌૢૻઌૢઌૢૢઌૢૻૺઌ૿૽ઌ૱ૡ૿ૺ૱૱ૡૡૡ ૽ૺૺૺૺૺૺૺૺૺઌઌઌઌ૽ૺઌ૽૽૱ૡ૿ૺ૱૱ૡૡૡ ૽ૺૺૺૺૺૺૺૺઌઌઌઌ૽ઌ૽૽ઌ૽૽ૹ૽૽ૹ૽ઌ૽ઌઌ	นี้	സുവുടു വി ഗ യയ സംസായയ	9.8.1 2.5.8	စုချ သို့ ရာလှုပ္တေတွ တွင်းဝိလိုရ်ဆည်အ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.44440440 V.P.P.O.O.Z.444	41 55.00 55.00 55.00 56.	7.6	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Pull Coefficient* P/w		88 88 88 88 88 88 88 88 88 88 88 88 88	0.52 0.45 0.45 0.35 0.20 0.20	00.00 00.85 00.55	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Coef- ficient	0	05.00	\$2.0	0.25	81 02 81 02
Inflation Pressure Pai		°	25.22	7. 	3
44	38. 2.	30.9	7	o. H	23.5
Overall Muneter W	Ž.	0	39.1	5.5	§
Optimum Sip S	\$ 668 683 4 668 8 6 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	344 34 8888	# % #8%\$	ន ខ ខ	288838 88
Per Wheel		2377	33	3038	7278
Lond W	080		705,51	16,225	20,870
dating Cone index PT: O- to 6-in Layer.	្តកម្មជន្លឺកំនុងកក្នុងប្រជាព	ተጠዋይ የወደረት የመጠተ	\$\$### ? \$	75 72 72	284 2 5483
3011	3	ನ ಕ- - -	55	ಕಕಕ	ž
100	10 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	23999355 99	ઌ૽ૢૢ૽ૠૹૢૼૹૺૹૢૺ	3,1%	24484784

Table 15

Field Tests with Vehicles in Fine-Grained Soils, Towed, First Page

	_												
	Cone	13dex		#888844		803ma		52.48		37.2		22822	22325
	Tage of	Index		000400 888884		00000 66693		1.000.7		100. 17.75		40000 88989	00.40000 46888689
	or to	Index C 1 264		₹ ∂ឌជី៩៦		23248 248		104 103 103 103 103 103 103 103 103 103 103		67 48 112		45284	0444 0444 0444 0444
	, <	, a		3.683% P.E.		888 6E3		25 K K K		845		45234	<i>ଷ</i> ଞ୍ଚଳଅଷ୍ଟର
100		4		48%848		283428		ተ የ የ የ የ		883		:::::	
Ш	υ _.	#1		%&%%&%		32822		8488		នឧដ			::::::
۱۱	Index			೫೭೭೪೪೪		83888		ಜಿಸಕ್ಕಳ		388		% ፰፞፠ጟ፠	5855382
	one 1			138888E		28833		5 ሕቘቘ		552		:::::	111111
Ш	Č			***********		22222		882		ደኞቹ		1111	
		0		ស្តម្ភង		ដួនសង្គ		88248		828		£8838	2000 00 00 00 00 00 00 00 00 00 00 00 00
	(RCI)bd	1 + 20		01.00 01.00 0.00 0.00 0.00 0.00		8.00 0 8.00 E. 0.00 E. 0.00 E. 0.00 E. 0.00 E. 0.00 E. 0.00 E. 0.00 E. 0.00 E. 0.00 E. 0.00 E. 0.00 E. 0.00 E.		တွင်း လူ လုံးအတွ		3.8 11.6	12	8344 H 0	, , , , , , , , , , , , , , , , , , ,
	CDd (B)	1 + 24	MEXA 10x10	6.6.4 4.4.4 6.8.3 6.3.3 6.4.4	MEXA Br.B	7,49,44 7,49,46	XX410ED	7.7. 3.5.5. 1.99	A2 (Modified)	4 W.F.	diar. Model S-1	8.9 7.7 4.11 7.7	6.6.5.4.4.0.0 6.6.6.6.6.0.0.0.0.0.0.0.0.0.0.0.0.0
1	9 4 6	4.				000		ጽግឧሄ	Š	400		~00 <u>~</u> 0	10 mm at attack
é	Force Coef-	1		538383		0.00 0.00 0.00 0.00		0.00 0.13 0.00 0.00		158	Š	0.00 0.00 0.00 0.00	0.0830.0000.000000000000000000000000000
	6 a 4	'. .		0.00000		0.20		0.25		5.25 0.1 • 0.0	LOR	0.165	
	6 a 4	e ficient						.0			I OR		
Characteristics	Perlec- Infla- tion Width tion Coef-	b Pressu e ficient in. psi 5/h						0.25		0.25	Tok	0.165	
	Infla- tion tion Coef-	b Pressu e ficient in. psi 5/h		7.3 0.20		0.50		12.2 0.25		20.1 0.25	Log	16.0 0.165	
Characteristics	Overall Infla- tion Diam- Width tion Coef-	eter b Pressue ficient		38.7 7.3 0.20		¹⁴⁶ .0 30.9 9.0 0.20		39.1 14.4 12.2 0.25		25.2 11.0 20.1 5.25	Tot	62.5 23.2 16.0 0.165	0.200
Nowinal Tire Characteristics	Load Overall Infla- tion W. 1b Diam- Width tion Coef-	Total Wheel d, in. in. psi 5/h		43.9 38.7 7.3 0.20		30.9		14.4 12.2 0.25		11.0 20.1 3.25	LOK	23.2 16.0 0.165	
Nowinal Tire Characteristics	Load Overall Infla- tion W. 1b Diam- Width tion Coef-	Total Wheel d, in. in. psi 5/h		533 43.9 38.7 7.3 0.20		2377 445.0 30.9 9.0 0.20		2063 39.1 14.4 12.2 0.25		3938 42.2 11.0 20.1 5.25	, वंजा	4124 62.5 23.2 16.0 0.165	5218 0.200
Nowinal Tire Characteristics	Rating Cone Index Load (Verall Infla- tion RCI W. 1b Diam- Width tion Coef-	Total Wheel d, in. in. psi 5/h		18,030 -503 43,9 38.7 7.3 0.20		19,013 2377 46,0 30,9 9,0 0,20		15,504 2063 39.1 14.4 12.2 0.25		18,225 3038 42.2 11.0 20.1 5.25	108	16,495 4124 62.5 23.2 16.0 0.165	20,870 5218

* Fr W represents the ratio of total towed force to total load.

PLATE 4

PLATE 5

PLATE 6

PLATE 8

PLATE 9

PLATE 10

PLATE 14

PLATE 16

b. THIRD PASS

LEGEND

- N 400-7,2-PR
 0 400-7,2-PR
 0 900-14,2-PR
 16X15 50-8,2-PR
 16X15 50-6,2-PR
 26X16 00-10,2-PR
 26X16 00-10,2-PR

NOTE PENETRATION RESISTANCE GRADIENT G MEASURED BEFORE TRAFFIC

RELATIONS OF PULL AND TOWED FORCE COEFFICIENTS TO BASIC PREDICTION TERM FOR SECOND AND THIRD PASSES

VALUES OF 6/h FROM 0.15 TC 0.35; 44-TO 1350-LB DESIGN WHEEL LOADS; G=3.2 TO 20.2 PSI/IN.

YUMA SAND

PLATE 26

NOTE.
$$A_2 = \frac{(RCI)bd}{W} \cdot \left(\frac{6}{h}\right)^{1/2} \frac{1}{1 + \frac{b}{2d}}$$

PERFORMANCE PREDICTION CURVES FOR WHEELED VEHICLES

WET, FINE-GRAINEL SOILS OPTIMUM SLIP AND TOWED CONDITIONS

BART TARREST AND THE PROPERTY OF THE PROPERTY

PLATE 30

APPENDIX A: MEASUREMENTS OF SAND STRENGTH, WHEEL PULL, AND TIRE SINKAGE

Sand Strength

- 1. Penetration resistance gradient G is used in this report to characterize the strength of send test beds, both in the laboratory and in the field. This term is defined as the gradient (or slope) of the penetration resistance (cone index) versus depth curve. For each WES laboratory wheel test in sand, the soil bed was constructed such that values of cone index increased linearly with depth, usually to about 11 or 12 in. (fig. 2a of main text); the value of G was then computed from cone index readings taken within this upper layer. Some evidence has been reported to indicate that the in-sand performance of a pneumatic tire is influenced by soil strength to a depth equal to the width of the tire; 3^* no definite conclusion could be drawn from this brief study, however, because of the very limited range of values of the test parameters considered (only one tire size and one wheel load, for instance). This more recent idea regarding the sand depth of importance was preceded by a long history of measuring sand strength only in the upper 6-in. layer, both in the laboratory and in the field. (This statement needs clarification on two points: (a) Though G was computed and reported for many early laboratory tests only for the top 6-in. layer, the profile usually was constructed linearly to about 11 or 12 in., as in fig. 2a. (b) For many field tests, descriptions of the sand strength profile (either in terms of an average value of cone index, or individual cone index readings at prescribed increments of uepth) are reported for other than the 0- to 6-in. layer; the 0- to 6-in. Layer is by far the most common one reported, however.)
- 2. To allow sand strength data from a number of sources to be described on a common basis in this report, sand penetration resistance gradient G measured in the top 6-in. layer was chosen as the most

^{*} Superior numbers refer to similarly numbered items in Literature Cited at the end of the main text.

suitable parameter. Use of measurements from this layer is <u>not</u> intended to indicate that the 0- to 6-in. layer is the critical one for all sand-pneumatic tire situations. Furthermore, it is recommended that all laboratory sand test beds be constructed to provide linear strength profiles to the maximum depth practical, at least until the relation between critical depth and tire size, load, and deflection is definitely determined.

3. The next consideration after a common depth was a common means of defining penetration resistance gradient. In a number of early tests, the gradient was computed as

$$G' = \frac{0- \text{ to } 6-\text{in. avg cone index}}{3 \text{ in.}}$$
 (A1)

For a linear profile, the numerator of this term is the value of cone index at a depth of 3 in., and the value of the overall term equals the slope of a line drawn from the origin through the cone index reading at the 3-in. depth (fig. Al). Penetration resistance gradient defined in

Fig. Al. Graphic illustration of G'

this way is not the gradient of the cone index versus depth profile, and is characterized in this report as G'.

4. Values of penetration resistance gradient have also been reported based on the equation

For a tire of approximately 6-in. width, this equation matches equation Al; for a given single soil strength profile, however, gradient defined by this equation scales the value of sand strength in inverse proportion to tire width (fig. A2). For no tire size does this equation measure the actual penetration resistance versus depth gradient; values obtained by its use are denoted in this report as G_b^{\bullet} .

5. The actual penetration resistance versus depth gradient can be

Fig. A2. Graphic illustration of G_b^{\prime}

adequately described for near-linear profiles by the relation

$$G = \frac{\begin{pmatrix} \text{avg cone index over} \\ \text{depth of interest} \end{pmatrix} - \begin{pmatrix} \text{surface} \\ \text{cone index} \end{pmatrix}}{1/2 \text{ depth of interest}}$$
(A3)

Equation A3 matches equation A1, except that here the value of surface cone index is subtracted in the numerator to shift the lower end of the line defining G from the origin to the surface reading. Values of G were computed for the 0- to 6-in. layer in this report, either by direct application of equation A3 or by use of the relations of the following paragraph.

Since equations Al and A3 differed only in that surface cone index was subtracted in the numerator of equation A3, the well-defined linear relation that exists between G' and G (fig. A3) was not unexpected. The linearity of the relation indicates that the value of surface cone index increases proportionately with an increase in the average value of cone index for the specified depth. The nearly identical slopes of the lines for the two sands (which have considerably different physical properties) indicate that this comparison between two techniques for quantifying sand strength was relatively unaffected by sand type. Values of 0- to 6-in. average cone index were available both for the field tests examined herein and for those tests whose san's strength was characterized by G_h^{\bullet} (G_h^{\bullet} values appear only in reference 2). These values were divided by 3 in. to obtain values of G', and then multiplied by 0.8645 to obtain values of G. Values of G for all other sand tests reported herein vere computed by equation A3, using individual soil strength profile values. For each test where G' (or 0- to 6-in. average cone index) or G_{h}^{1} has been used in a previous report to describe soil strength, that value is listed in the appropriate table of this report, along with the value of G for the O- to 6-in. layer. All terms that involve a measurement of sand strength in the main text of this report use only the value of G .

Wheel Pull

7. Wheel pull P is defined in reference 1 as "The component,

Fig. A3. Relations between G' and G for two sands

acting parallel to the direction of travel, of the resultant of all soil forces acting on the tire. It is considered to be positive when the tire is performing useful work, and to be negative when an external force must be applied to maintain motion...." In constant or near-constant slip tests, this parameter can be measured directly by a horizontally aligned force-measuring unit (a load cell, for example).

8. In programmed-increasing-slip tests of the type conducted at the WES, wheel slip is made to increase linearly during the test by maintaining wheel rotational velocity constant and decreasing the dynamometer carriage translational velocity linearly from some maximum value to zero (fig. A4). Within the dynamometer carriage, the test wheel is mounted in a lower frame assembly (like that shown in fig. A5), which consists of an inner and an outer frame. The relative longitudinal movement between the inner and outer frames is opposed by a force cell

Fig. A4. Speed and slip diagrams for a programmed-increasing-slip test

mounted horizontally between the two frames, so that the reading from this cell is a measure of pull; a positive pull is indicated when the inner frame moves forward relative to the outer frame, and a negative pull for the opposite situation. The mass located within the inner frame (test wheel, axle, transmission, etc.) also contributes to relative movement between the inner and outer frames if this mass is either accelerated or decelerated. For the programmed-increasingslip test, the carriage is uniformly decelerated, thereby contributing to the inner frame's being moved forward relative to the outer frame and producing a

Fig. A5. Left side view of test carriage with wheel resting on 'aunching platform

force of magnitude ma (mass times (negative) acceleration), which is: recorded by the force cell as a positive pull. Thus, values of pull that are too large will be recorded in a programmed-increasing-slip test unless a correction is made to account for ma.

- 9. To obtain this correction, the dynamometer carriage is snatched in air prior to testing, and measurements are taken of (a) the value of acceleration (an accelerometer measures snatch-off acceleration, which value generally is taken several times larger than that encountered during the test), (b) the value of uncorrected wheel pull, and (c) the sum of (a) and (b). Each of quantities (a), (b), and (c) is recorded electrically; signals (a) and (b) are direct measurements, and signal (c) is an electrical sum of (a) and (b). The value of (c) changes in phase with quantity (a), carriage acceleration. The value of the effective mass contributing to 'ma is electrically solved for by changing potentiometer settings that control signal (c) until the value of signal (c) remains constant at the same value achieved before and after snatch-off, even under the action of peak acceleration. During testing, each signal (a), (b), and (c) is recorded. Signal (b), pull uncorrected for ma, is referred to in this report as P'; and signal (c), pull corrected for ma, as P. (Pulls from constant or nearconstant slip tests and from constant pull tests need no ma correction and are also referred to as P .)
- 10. The absolute magnitude of the ma force appears to be relatively small and fairly stable at about 0 to 8 lb for the 20 percent slip point in programmed-increasing-slip tests in the laboratory clay (fig. A6b). ma values of much larger average value and much greater dispersion were obtained at the 20 percent slip point in sand (fig. A6a). Unfortunately, the influence of ma on the pull signal in a programmed-increasing-slip test was not recognized in the early stages of testing, and WES reports prior to reference 6 reported values of P', pull uncorrected for ma. The ma correction is influenced by changes in the value of m (differences in tire size, transmission used, etc.) and in the value of a (slight changes in carriage deceleration rate between tests). Even if these quantities were known precisely for tests not

Fig. A6. Relation of ma to wheel load for pneumatic tires in sand and clay; 20 percent slip point; wheel speed = 5 ft/sec

instrumented to measure ma, no well-defined correction could be made based on experience from tests in which both P' and P were recorded. Particularly for tires in sand, the ma correction varied significantly between tests (fig. A6a) even though essentially the same values of a and pretest-measured m were acting. Fortunately, enough tests have been conducted in which corrected pull P was measured to develop the relations involving wheel pull in the main text of the report. Relations that use uncorrected pull P' (i.e. P + ma) are also reported herein, with the warning that relations based on P' predict algebraically larger-than-actual pull by a relatively small amount (estimated as 0 to 10 percent of wheel load for tires in sand, and 0 to 5 percent for tires in clay).

Tire Sinkage

11. It was demonstrated conclusively in Appendix A, "Sinkage Study," of reference 19 that the sinkage of a pneumatic tire can be accurately computed by the equation

$$z = \frac{2H(\delta_{HS} + H)^2}{H^2 + (\delta_{HS} + H)^2}$$
 (A4)

where

z = pneumatic tire sinkage

H = vertical hub movement

 $\delta_{\rm HS}$ = deflection of a pneumatic tire loaded on a hard surface Except for tests whose data were taken from reference 2, all sinkage values reported herein were computed by the above equation. Sinkage values in reference 2 were computed by the equation

$$z = H + (\delta_{HS} - \delta_{TS})$$
 (A5)

where

z , $\mbox{ H}$, and $\mbox{ } \delta_{\mbox{HS}}$ are defined above

 δ_{TS} = in-soil deflection

Both $\delta_{\rm HS}$ and $\delta_{\rm IS}$ are measured directly beneath the wheel axle.

Equations A½ and A5 produce almost identical results for sinkages of important size (say, 1 in. and larger). Equation A½ is preferred, since it defines z accurately in terms of only two easily measured tire parameters, H and δ_{HS} . Equation A5 requires these two parameters plus δ_{IS} , a parameter far more difficult to measure and one much more susceptible to instrumentation error.

APPENDIX B: TIRE SELECTION AND PREDICTION OF PERFORMANCE

- 1. The relations of the pull and towed force coefficients for wheeled vehicles to the basic prediction terms for sand and for clay (plates 23 and 28, respectively) offer the basis for a tentative performance prediction system and for design criteria for wheeled vehicles operating in dry-to-moist, coarse-grained soils and wet, soft, fine-grained soils. The curves in plates 23 and 28 can be used to forecast the mobility of existing vehicles or to select tires that will provide the desired degree of mobility for existing or proposed vehicles. These curves should be used with caution because (a) research effort to date has not quantified the effects of a number of factors that influence wheel performance significantly (principally those in paragraphs 52-58 of the main text), and (b) the precision of applicability of the relations in plates 23 and 28 is of the order indicated by the data scatter in plates 21 and 25, respectively, for vehicles operating under carefully controlled conditions in the field.
- 2. Quantitative relations like those in plates 23 and 28 are necessary for rational selection of tires; however, this choice must remain something of an art, since the tire designer must consider tradeoffs among a number of considerations (tire flexibility, durability, and stability; ground clearance; height of cargo bed; etc.) that apply to the particular problem at hand. One important consideration that applies to practically all off-road operations is that tire deflection should be maintained at as large a value as practicable (paragraphs 82 and 86 of the main text). This implies that tires should be as flexible relative to the loads they will be required to carry as safe operating conditions will allow.
- 3. The following examples illustrate a few of the many possible practical uses of the relations in plates 23 and 28. In each example, each tire is assumed to carry an equal share of the vehicle load. Also, the tangent of the maximum slope climbable is assumed to be practically equivalent numerically to maximum pull coefficient. The basis for this assumption is given in reference 20; field tests conducted since that

time have generally verified this assumption.

Example 1: Computation of Maximum Pull Coefficient and Slope Negotiable

- 4. If soil type and strength, wheel load, and tire dimensions are given, maximum drawbar pull or slope-climbing ability can be computed as shown in the calculations that follow.
 - a. Given.

Soil type, dry-to-moist sand

Soil strength G = 20 psi in.

M135, 6x6, 2-1/2-ton truck

Gross vehicle weight nW = 18,000 lb

Number of wheels n = 6

Wheel load W = 3000 lb

11.00-20 single tires,

b = 11.0 in.,
$$= 42.0$$
 in., $(bd)^{3/2} = 9800$ in.³, $\delta/h = 0.35$

b. Find.

Maximum pull coefficient and slope negotiable.

c. Solution.

$$\alpha = \frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h} = \frac{20(9800)}{3000} \cdot 0 \ 35 = 22.9$$

From plate 23, find P/W between 0.21 and 0.22, or use the equation for powered wheels in plate 23:

$$\frac{P}{W} = \frac{\alpha - 5.50}{1.92\alpha + 37.20}$$
 (equation 1; main text)
$$\frac{P}{W} = \frac{22.9 - 5.50}{1.92(22.9) + 37.20} = 0.214$$

d. Conclusion.

If a safety factor of 1.0 is assumed, this vehicle, under the conditions specified, can climb a 21.4 percent slope; or on level ground, it can tow an object whose resistance does not exceed 21.4 percent of the weight of the prime mover. Also, slope and maximum drawbar pull can be considered as additive; e.g. on a 10 percent slope, the vehicle can pull a trailer whose rolling resistance does not exceed 11.4 percent of the vehicle's weight.

Example 2: Selection of Tire Sizes for Given Conditions

- 5. For a particular vehicle, equation 6 in the main text and plate 28 can be manipulated to solve for tire size required when the soil type and minimum soil strength, allowable tire deflection, design wheel load, and required slope-climbing ability or drawbar pull are known.
 - a. Give ...

Soil type: soft, homogeneous, fat class

Soil strength RCI (minimum) = 40

Slope = 20 percent

6x6 vehicle, single tandem tires

Gross vehicle weight nW = 25,200 lb

Number of wheels n = 6

Wheel load W = 4200 lb

Maximum allowable tire deflection $\delta/h = 0.35$

b. Find.

Tire sizes compatible with the given conditions.

c. Solution.

$$\beta_2 = \frac{(\text{RCI})bd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{1}{1 + (b/2d)} = \frac{(\text{RCI})}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2} \cdot \frac{2bd^2}{2d + b} \quad \text{(equation 6; main text)}$$

$$\frac{2bd^{2}}{2d + b} = \beta_{2} \cdot \frac{W}{(RCI)} \cdot \frac{1}{(\ddot{o}/h)^{1/2}}$$

$$\beta_{2} = \frac{2.59 - (1.19P/W)}{1 - (1.25P/W)}$$

$$\frac{2bd^{2}}{2d + b} = \frac{2.59 - 1.19(0.20)}{1 - 1.25(0.20)} \cdot \frac{4200}{40} \cdot \frac{1}{0.592} = 556 \text{ in.}^{2}$$

d. Tire selection.

Try 11.00-20, 2-1'R, nondirectional, cross-country: $b = 11.0 \text{ in.}, d = \frac{1}{4}2.0 \text{ in.}, \text{ and } 2bd^2/(2d + b) = \frac{1}{4}09 \text{ .}$ 409 < 556; tire is inadequate.

Try 14.00-20, 12-PR, nondirectional, cross-country: b = 14.0 in., d = 48.0 in., and $2bd^2/(2d + b) = 586$. 586 > 556; tire is adequate.

Try 46x18-20, 8-PR: b = 19.5 in., d = 45.5 in., and $2bd^2/(2d+b) = 731$. 731 > 556; tire is adequate.

e. Conclusion.

In the foregoing example, only two tires, the 14.00-20 and the 46x18-20 tires, were demonstrated to be adequate; obviously, there are many tires that fulfill the requirements from a mobility standpoint. The designer should consider, too, that changes in tire diameter d affect values of $2bd^2/(2d+b)$ more than corresponding relative changes in width t (fig. 11, main text). From a practical point of view, however, proportionate increases can be achieved far more readily for tire width than for diameter, e.g. it was reasonable to consider increasing width from 11.0 to 19.5 in. in the example above (a 77 percent increase) while changing diameter only nominally; it would be impractical for most vehicle configurations to hold width at approximately 11.0 in. and increase diameter from 42 to 74 in. (a 77 percent increase).

Example 3: Computation of Maximum (Immobilization) Load and Maximum Weight Pullable

6. If soil type and strength, wheel load, and tire dimensions are known, the maximum load that a given vehicle can carry without immobilization and the maximum trailer weight that it can pull on level ground can be determined in calculations like those below.

a. Given.

Soil type: soft, wet, homogeneous, fat clay
Soil strength RCI = 30
M135, 6x6, 2-1/2-ton truck
Gross vehicle weight nW = 18,000 lb

Number of wheels n = 6

Wheel load W = 3000 lb 11.00-20 single tires:

$$b = 11.0 \text{ in.}, d = 42.0 \text{ in.}, bd = 462 \text{ in.}^2,$$

 $\delta/h = 0.35$

b. Find.

Maximum allowable wheel load and wheel load to develop maximum rulling ability.

c. Solution.

$$\frac{P}{W} = \frac{\beta_2 - 2.59}{1.25\beta_2 - 1.19} \text{, where } \beta_2 = \frac{(RCI)bd}{W} \cdot \left(\frac{\delta}{h}\right)^{1/2}$$

 $\cdot \frac{1}{1 + (b/2d)}$ (from plate 28 and equation 6 in main

text). For P/W = 0, $\beta_2 = 2.59$ and immobilization load

$$W_{I} = \left[(RCI) \cdot bd \cdot \left(\frac{\delta}{h} \right)^{1/2} \cdot \frac{1}{1 + (b/2d)} \right] \div 2.59$$

$$W_{I} = \left[(30 \cdot 11.0 \cdot 42.0) \cdot \sqrt{0.35} \cdot \frac{1}{1 + (11.0/84.0)} \right]$$

$$\div 2.59 = 2800 \text{ Jb (per wheel)}$$

From plate 30,

$$W_{\text{opt}} = 0.211 \left[\text{bd} \cdot \left(\frac{\delta}{h} \right)^{1/2} \cdot \frac{1}{1 + (b/2d)} \right] \cdot (\text{RCI})$$

$$W_{\text{opt}} = \left[0.211 \cdot 11.0 \cdot 42.0 \cdot \sqrt{0.35} \cdot \frac{1}{1 + (11.0/84.0)} \right]$$

$$\cdot 30 = 1530 \text{ lb (per wheel)}$$

From equation 9 in the main text,

$$P_{\text{opt}} = 0.096 \left[bd \cdot \left(\frac{\delta}{h} \right)^{1/2} \cdot \frac{1}{1 + (b/2d)} \right] \cdot (RCI) = 696 \text{ lb}$$

(per wheel) = maximum weight pullable by each wheel on level ground.

d. Conclusion.

The range of values of load between zero pull and optimum pull (in terms of its absolute value) for the conditions specified is 2800 to 1530 lb per wheel. Values of

pull/load (but not absolute pull) are increased by reducing wheel load below optimum load; thus, the value of slope negotiable ($\approx P/W$) would be improved by reducing wheel load as much as possible.

Example 4: Determination of Mobility of a Vehicle-Trailer Combination

- 7. If the minimum soil strength, maximum slope, and required vehicle and trailer data are known, the mobility of the vehicle-trailer combination can be estimated by the relations in plate 23. The procedure to be followed is illustrated below.
 - a. Given.

Soil type: air-dry sand

Soil strength G (minimum) = 20

Slope (maximum) = 10 percent

M37, 4x4, 3/4-ton truck

Gross vehicle weight nW = 6000 lb

Number of wheels n = 4

Wheel load W = 1500 lb

9.00-16 tires:

b = 9.2 in.,
$$a = 34.0$$
 in., $(bd)^{3/2} = 5530$ in.³, $\delta/h = 0.35$

M101, 2-wheel trailer

Gross trailer weight nW = 2000 lb

Number of wheels n = 2

Wheel load W = 1000 lb

9.00-16 tires:

$$b = 9.2 \text{ in., } d = 34.0 \text{ in., } (bd)^{3/2} = 5530 \text{ in.}^3,$$

 $\delta/h = 0.35$

b. Find.

Is the vehicle-trailer combination mobile under the conditions specified?

- c. Solution.
 - (1) For pull of prime mover:

$$\alpha = \frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h} = \frac{20(5530)}{1500} \cdot 0.35$$

 $\alpha = 25.8$

From plate 23, find P/W = 0.24. Use the equation for powered wheels in plate 23:

$$\frac{P}{W} = \frac{\alpha - 5.50}{1.92\alpha + 37.20}$$
 (equation 1; main text)

$$\frac{P}{W} = \frac{25.8 - 5.50}{1.92(25.8) + 37.20} = 0.234$$

Maximum drawbar pull on level ground = $\frac{P}{W}$ · (nW) = 0.234(6000 lb) = 1400 lb

(2) Maximum drawbar pull of prime mover on 10 percent slope:

Maximum pull of M37 on 10 percent slope =
$$\left(\frac{P}{W} - \text{slope}\right)(nW) = (0.234 - 0.100)(6000 \text{ lb})$$
 = 800 lb

(3) Trailer rolling resistance (level surface);

$$c_1 = \frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h} = \frac{20(5530)}{1000} \text{ 0.35} = 38.7$$

From plate 23, $P_T/W = 0.06$; or from the equation for towed wheels in plate 23:

$$P_{T}/W = \frac{0.010\alpha + 0.81}{\alpha - 2.0} + 0.035$$
$$= \frac{0.010(38.7) + 0.81}{38.7 - 2.0} + 0.035$$
$$= 0.033 + 0.035 = 0.068$$

Rolling resistance on level ground (M101):

$$P_{T} = P_{T}/W(nW) = 0.068(2000 lb) = 136 lb$$

- (4) Rolling resistance on 10 percent ~lope:
 Rolling resistance on 10 percent slope
 = P_T/W(nW) + slope(nW)
 = 136 lb + 0.10(2000 lb) = 336 lb
- (5) Is maximum drawbar pull of an M37 on 10 percent slope greater than the rolling resistance of an M101 trailer on a 10 percent slope under the conditions

specified? Maximum drawbar pull of an M27 on a 10 percent slope = 800 %. Rolling resistance of M101 on a 10 percent slope = 336 lb. The M37's drawbar pull is greater.

d. Conclusion.

The vehicle's drawbar pull exceeds the trailer's rolling resistance, so the vehicle-trailer combination will be mobile under the conditions specified. If the calculations are carried further, it can be seen that the vehicle-trailer combination would be immobilized on a slope of 15 to 16 percent, i.e. let (M37 weight)(slope)

- + (M101 weight)(slope) + rolling resistance of M101
- = maximum drawbar pull. (6000 lb)(slope)
- + (2000 lb)(slope) + 136 lb = 1400 lb (8000 lb)(slope) = 1264 lb Slope = 0.158

Example 5: Selection of Vehicle Drive Mode Based on Performance Parameters

8. An all-wheel-drive vehicle has definite advantages over vehicles with similar nonpowered elements. The relations of the pull and towed coefficients to the basic prediction term for sand can be used to show the advantages gained by powering all the wheels. The M37 of example 4 is appropriate for this demonstration, since it can be used either as a 4x4 or as a 4x2 vehicle (i.e. the front axle can be engaged manually).

a. Given.

Soil type: air-dry desert sand
Soil strength G (minimum) = 20
M37, 4x4, 3/4-ton truck
Gross vehicle weight nW = 6000 lb
Number of wheels n = 4
Wheel load W = 1500 lb
9.00-16 tires:

b = 9.2 in., d = 34.0 in., $(bd)^{3/2}$ = 5530 in.³, δ/h = 0.35

b. Find.

Maximum pull coefficient of and/or slope negotiable by M37: (1) as a 4x4 vehicle and (2) as a 4x2 vehicle.

- (1) $\frac{4x4 \text{ configuration}}{\text{From example 4, } \alpha = 25.8}$ P/W = 0.234
- (2) 4x2 configuration

P/W = (maximum drawbar pull of rear wheels minus rolling resistance of front wheels) ÷ gross vehicle weight

- (a) Maximum drawbar pull of rear wheels:
 From example 4, P/W = 0.234
 Total weight of rear axle = 3000 lb
 Maximum drawbar pull = 0.234(3000 lb) = 700 lb
- (b) Rolling resistance of front wheels: From example 4, α = 25.8 From plate 23, P_T/W = 0.080; or from the equation for towed wheels in plate 23:

$$P_{T}/W = \frac{0.010\alpha + 0.81}{\alpha - 2.0} + 0.035$$

$$P_{T}/W = \frac{0.010(25.8) + 0.81}{25.8 - 2.0} + 0.035$$

$$P_T/W = 0.045 + 0.035 = 0.080$$

Total weight on front axle = 3000 lb
Total rolling resistance on front wheels
= $(0.080)(3000 \text{ lb}) = 240 \text{ lb}$

- c. Conclusion.

The 4x4 will greatly outperform the 4x2. The former

could negotiate slopes as steep as 23 percent, whereas the 4x2 would be immobilized on slopes greater than 7 percent.

Average a supplied to the same of	William Man San Street	3000 100
Report 18.	Time	Duté
SICE W	De lection for Moving Tires. , port 1, A Pilot Study on a 18 X 22.5	July 1959
	Aubal .ss /lire	
# 1-516	Deriod ion of Moving Fires, Report 2, Tests with a 12.00-22.5 Abe-	Aug 1961
	less Tile on Asphaltic Concrete, Sand, and 8°t, 1959-1960	1: 1: 1:
m ale	Deflection of Noving Tirels, Report 1, Centerne Deflection Studdes Taroligh July 1963	Ney 1365
	the second secon	: 사 사 , 결호
11/3/45	Stresses Under Moving Vehiclas, Report 2, Wheeled Veracles (18135),	May 1900
	British Britis	tak was self-
m 3-345	Streetes Under Moving Vehi Las, Report 3, Tracked Vehicles (M2+C, D4, and M7) on tet Clay (1956)	Jacy Life
		er inte
12 3-56	Jes's with Rigio Wiecls, Report 1, Tests in Fet Clay, 1958	Bay 1950,
m 3-639	Strength-Roisture-De Sity Kelations of Fine-Grainer Soils in Whi-	Jan 1964 .
說例如為為特	de Mobility Research	
ra 3-666	Performance of Soils Under Tire Lads, Report 1, Just Fa ilities	Jan 1965
	and Techniques	•
73-666	Performance of Soils Under Tire Loads, Report 2, Analysis of Tests	Aug 1965
	in Your Jand Through August 1982	
TR 3-666	Performance of Soils Under Tire Loads, Report 3, Test's is Clay	Feb 1966
	Through November 1962	•
TR 3-666	Perfermance of Soils Under Tire Loads, Report 1, Analysis of Tesus	Feb 1966
	in Sand from September 1962 Through November 1963	
TR 3-666	Performance of Soils Under fire Loads, Report 5, Development and Evaluation of Mobility Aughers for Coarse-Grained Soils	July 1967
, 1	EVALUACION OF MODILICA MATRICIS 101 CONTRE-01-2110-0 20112	
TR 3-666	Terformance of Soils Under Tire Loads, Report 6, Effects of Test Techniques on Sneel Performance	Jet 1967
Th 3-0f6	Performance of Soils Under Tire Loads, Report 7, Katension of Arbility Prediction Procedures to Rectangul ex-cross-Cartion Tires in Course-Grained Soil	Apr 1972
in anili	You de Wality on our wife	72 23 6
40 1425.49	CERCENT COLOR COLO	Falg Let