

Introdução ao Geoprocessamento com TerraView 5

Parte 1 - Introdução a SIG e TerraView, Modelagem Cartografia, Integração de Dados e BDG

Aula 1b – Introdução a SIG – Dados e Representações

Resp: Eymar Lopes – pesquisador

O que é um mapa?

- Modelo simplificado da realidade.
- Uma representação, normalmente em escala, de uma seleção de entidades abstratas relacionadas com a superfície da Terra.
- Modelo de dados que se interpõe entre a realidade e a base de dados de um SIG.

Universo do Mundo Real

- Geoprocessamento manipula dados de diversas naturezas e obtidos de diferentes fontes.
- São organizados na forma de camadas (planos de informações, nível, *layer* ou mapas.

divisão

elevação

- Podem ser categorizados em:
 - Dados temáticos
 - Dados cadastrais
 - Dados de redes
 - Imagens de sensores remotos

Tipos de dados

- Temáticos: informações qualitativas sobre o espaço. Ex:
 Mapa de uso do solo ou Mapa de vegetação.
- Numéricos: informações quantitativas sobre o espaço.
 Ex: Grade com valores de altimetria.
- **Imagens**: informações numéricas obtidas por sensores remotos. Ex: <u>Fotografias áereas</u>, <u>imagens de satélites e radares</u>.
- Cadastrais: informações sobre objetos discretos do mundo. Ex: <u>Lotes urbanos</u> com sua localização e seus atributos.

 Redes: informações sobre objetos discretos que forma redes. Ex. Rede elétrica (postes e linhas de transmissão).

Dados cadastrais

- Contém informações sobre objetos discretos do mundo.
- Referência geográfica é dada por uma geometria associada a cada objeto. Geometrias podem ser pontos, linhas ou polígonos.
- Exemplos: cadastros de países, lotes, propriedades rurais, etc.

Dados temáticos

- Distribuição espacial qualitativa da grandeza ou atributo em estudo.
- Os valores da grandeza podem ser :
 - nominal: lista de valores. Ex. possíveis classes de vegetação em um mapa de vegetação (floresta, cerrado, desmatamento).
 - <u>ordinal</u>: escala de medida. Ex. fatias de declividade {0-5%, 5-10%, 10-15%, 15-30%, >30%}.

Dados Numéricos (MNT)

- Distribuição espacial quantitativa da grandeza em estudo.
- Os valores da grandeza podem ser :
 - intervalo dentro de uma referência arbitrária. Ex.
 Altimetria, batimetria, temperatura em graus Celsius.
 - <u>razão</u>: referência natural. Ex. Peso.
- Localização espacial pode ser representada por grades regulares ou triangulares.

Dados de rede

 Contêm objetos cuja referência geográfica está associada a nós ou arcos que formam uma topologia de rede.

Imagens

- Informações numéricas obtidas por sensores remotos.
 - Ex. imagens de satélites e fotografias aéreas.
- Elemento de imagem é chamado pixel. O valor numérico atribuído a cada pixel é proporcional à energia eletromagnética refletida ou emitida pela área da superfície terrestre correspondente.

CARACTERÍSTICAS IMPORTANTES:

- → Resolução espacial (km, m, cm);
- → Resolução espectral (num. bandas);
- → Resolução temporal (dias);
- → Resolução radiométrica (2ⁿ).

Dados não-espaciais

- Um dado não-espacial não possui localizações espaciais associadas.
- Pode ser agregado a um SIG para estender os recursos de análise.

Universo Conceitual

Universo de Representação

 As representações geométricas associadas aos diferentes dados do mundo real podem ser de dois tipos:

Vetoriais

Matriciais

Representação Vetorial

- A localização e a aparência gráfica dos objetos são representadas por um ou mais pares de coordenadas.
- Coordenadas e atributos descrevem o elemento.

 Elementos da representação vetorial podem ser compostos.

Topologia – Estrutura de Dados

Arco-Nó

- Representa uma rede linear conectada.
- Nó: representa a intersecção entre linhas, são os pontos iniciais e finais.
- Todas linhas conectadas.

Arco-Nó-Polígono

Representa elementos gráficos do tipo área.

Topologia

Estrutura topológica **explícita** do tipo Arco-Nó-Polígono

Topologia dos nós		Topologia das linhas					Topologia dos polígonos	
Nó	Linhas	Linhas	Nó inicial	Nó final	Polígono esquerdo	Polígono direito	Linhas	Polígono
nó 1	L1, L7, L6	L1	nó 1	nó 2	Α	E	L1, L7	Α
nó 2	L1, L2, L7	L2	nó 2	nó 3	В	E	L2, L4 ,L6, L7	В
nó 3	L2, L3, L4	L3	nó 3	nó 4	С	E	L4, L3	С
nó 4	L3, L4, L6	L4	nó 3	nó 4	В	С	L5	D
nó 5	L5	L5	nó 5	nó 5	В	D		
		L6	nó 4	nó 1	В	Е		
		L7	nó 1	nó 2	В	A		

Representação Matricial

- Espaço é representado por uma superfície plana, decomposto em porções do terreno chamadas de células.
 - Matriz P(m,n): m colunas e n linhas, definindo m x n células, onde cada célula possui o valor ou tipo do atributo.
 - Dimensão de cada célula é chamada de resolução.
 - Objetos menores que a resolução podem não ser representados.

Comparação entre representações

Vetorial

- preserva relacionamentos topológicos.
- associa atributos a elementos gráficos.
- melhor exatidão e eficiência de armazenamento.

Matricial

- fenômenos variantes no espaço.
- adequado para simulação e modelagem.
- processamento mais rápido e simples.
- maior gasto em armazenamento.

Representações para MNT

- Grade regular (matriz de reais)
 - elemento com espaçamento fixo.
 - valor estimado da grandeza.

Representações para MNT

- Grade triangular (TIN)
 - conexão entre amostras.
 - estrutura topológica arco-nó-polígono.

Ex: TIN criado a partir de isolinhas e pontos cotados.

Representações para MNT

	Grade triangular	Grade regular
	Melhor representação de re-	1. Facilita manuseio e
Vantagens	levo complexo. 2. Incorporação de restrições como linhas de crista.	conversão. 2. Adequada para geo- física e visualização 3D.
Limitações	 Complexidade de manuseio Inadequada para visualiza- ção 3D. 	 Representação de relevo complexo. Cálculo de declividade.

Resumo das representações

	Vetorial	Matricial
Mapas temáticos	Arco-nó-polígono	Matriz de índices
Mapas Cadastrais	Arco-nó-polígono	
Mapas de Rede	Arco-nó	
Modelos numéricos de terreno	Grades triangulares ou isolinhas	Matriz de reais
Imagens		Matriz de bytes ou inteiros

