Ch3. 논비건, 비건 특징 분석-1

4 조

2022 5 13

앞서 논비건과 비건의 나이, 성별 등의 특징을 확인했습니다. 이번에는 **논비건과 비건의** 식습관, 자주 먹는 식품 등에 대해 비교 분석을 진행하였습니다.

- 먼저 고기와 같은 식품군과 비건 식품군을 얼마나 자주 섭취하는지 빈도수를 확인해보았습니다.

라이브러리 로드

```
library(readx1)
library(dplyr)
library(tidyverse)
library(reshape)
library(ggplot2)
```

원본 데이터 파일 불러오기 및 필요 행 추출 - non_vegan

```
vegan_raw <- read_excel("C:/Rstudy/mini_team1/data/vegan_Raw_data_c.xls")
vegan_raw1 <- vegan_raw %>%
  filter(!(eat_beef == "Never" & eat_chicken == "Never" &eat_dairy == "Never"&eat_eggs == "Never" & eat_fish_seafood == "Never"& eat_pork == "Never"))
```

원본데이터 파일 불러오기 및 필요 컬럼 추출 - vegan

```
vegan_raw2 <- read_excel("C:/Rstudy/mini_team1/data/only_vegan.xlsx")
non_eat_food <- vegan_raw2 %>% select(eat_non_dairy, eat_seitan, eat_tempeh, eat_tofu, eat_vegetarian_meats)
```

고기 등의 식품 – 비건은 고기를 섭취하지 않기 때문에 논비건만 분석

필요 컬럼 추출- non-vegan

```
eat_food1 <- vegan_raw1 %>%
  select(eat_beef ,eat_chicken, eat_dairy, eat_eggs, eat_fish_seafood, eat_po
rk)
```

추출한 데이터의 결측치 확인- non-vegan

```
table(is.na(eat_food1))
##
## FALSE
## 10590

table(is.na(eat_food1$eat_beef))
table(is.na(eat_food1$eat_chicken))
table(is.na(eat_food1$eat_dairy))
table(is.na(eat_food1$eat_eggs))
table(is.na(eat_food1$eat_fish_seafood))
table(is.na(eat_food1$eat_pork))
head(table(eat_food1))
```

결측치 대체 및 변수 생성 저장- non-vegan

```
beef2 <-ifelse(is.na(eat_food1$eat_beef), "skip", eat_food1$eat_beef)
beef3 <- table(beef2)

chicken2 <-ifelse(is.na(eat_food1$eat_chicken), "skip", eat_food1$eat_chicken)
chicken3 <- table(chicken2)

dairy2 <-ifelse(is.na(eat_food1$eat_dairy), "skip", eat_food1$eat_dairy)
dairy3 <- table(dairy2)

eggs2 <-ifelse(is.na(eat_food1$eat_eggs), "skip", eat_food1$eat_eggs)
eggs3 <- table(eggs2)

fish_seafood2 <-ifelse(is.na(eat_food1$eat_fish_seafood), "skip", eat_food1$eat_fish_seafood)</pre>
```

```
fish_seafood3 <- table(fish_seafood2)

pork2 <-ifelse(is.na(eat_food1$eat_pork), "skip", eat_food1$eat_pork)
pork3 <- table(pork2)</pre>
```

결측치 대체한 각 변수를 하나의 데이터프레임으로 가공- non-vegan

```
s_eat_food1 <-cbind(beef3, chicken3, dairy3, eggs3, fish_seafood3, pork3)
str(s_eat_food1)
s_eat_food1 <- data.frame(s_eat_food1)</pre>
```

인덱스로 들어간 항목을 꺼내서 answer 컬럼 데이터로 넣어주기- non-vegan

```
s_eat_food_g1 <- dplyr::add_rownames(s_eat_food1, var="answer")
head(s_eat_food_g1)</pre>
```

skip 제거- non-vegan

```
s_eat_food_g1 <- s_eat_food_g1 %>% filter(answer != "skip")
```

컬럼명 및 데이터명 변경- non-vegan

그래프 시각화- non-vegan

```
s_eat_food_g1%>%
pivot_longer(-answer) %>%
ggplot(aes(x = answer, y = value, fill = name)) +
geom_col(position = position_stack(), colour = "black") +
geom_text(aes(label = value), size = 2, position = position_stack(0.5)) +
scale_fill_brewer(name = '식품', palette = 'Paired') +
theme_bw() + xlab("섭취 빈도") + ylab("빈도수") +
ggtitle("식품별 섭취항목 빈도수", subtitle = "non-vegan") +
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 30, colo
r = "darkblue"),
plot.subtitle = element_text(size = 20))
```

식품별 섭취항목 빈도수

위 그래프를 확인해보면 논 비건 사람들이 가장 많이 섭취하지 않은 식품은 돼지고기(1197명)이며, 거의 매일 섭취하는 식품은 유제품(651명)으로 확인할 수 있습니다.

예상외로 논 비건 사람들은 돼지고기나 소고기 섭취를 많이 하지 않는것을 확인할 수 있습니다.

```
그래프에서 x 축
```

- 0: 없음
- 1: 한달에 한번
- 2: 일주일에 한번
- 3: 격일마다
- 4: 거의 매일

비건 식품

필요 컬럼 추출 및 결측치 확인- non-vegan

```
non_eat_food1 <- vegan_raw1 %>%
   select(eat_non_dairy, eat_seitan, eat_tempeh, eat_tofu, eat_vegetarian_meat
s)
table(is.na(non_eat_food1))
```

결측치 대체 및 변수 생성 저장- non-vegan

```
table(is.na(non_eat_food1$eat_non_dairy))
non_dairy2 <-ifelse(is.na(non_eat_food1$eat_non_dairy), "skip", non_eat_food1</pre>
$eat non dairy)
non_dairy3 <- table(non_dairy2)</pre>
table(is.na(non eat food1$eat seitan))
seitan2 <-ifelse(is.na(non_eat_food1$eat_seitan), "skip", non_eat_food1$eat_s</pre>
eitan)
seitan3 <- table(seitan2)</pre>
table(is.na(non eat food1$eat tempeh))
tempeh2 <- ifelse(is.na(non_eat_food1$eat_tempeh), "skip", non_eat_food1$eat_</pre>
tempeh)
tempeh3 <- table(tempeh2)</pre>
table(is.na(non eat food1$eat tofu))
tofu2 <- ifelse(is.na(non_eat_food1$eat_tofu), "skip", non_eat_food1$eat_tof
u)
tofu3 <- table(tofu2)</pre>
table(is.na(non_eat_food1$eat_vegetarian_meats))
```

```
vegetaian_meats2 <- ifelse(is.na(non_eat_food1$eat_vegetarian_meats), "skip",
    non_eat_food1$eat_vegetarian_meats)
vegetaian_meats3 <- table(vegetaian_meats2)</pre>
```

결측치 대체 및 변수 생성 저장- vegan

```
table(is.na(non_eat_food))
non_dairy1 <-ifelse(is.na(non_eat_food$eat_non_dairy), "skip", non_eat_food$e</pre>
at non dairy)
non dairy <- table(non dairy1)</pre>
table(is.na(non eat food$eat non dairy))
table(is.na(non eat food$eat seitan))
seitan1 <-ifelse(is.na(non_eat_food$eat_seitan), "skip", non_eat_food$eat_sei</pre>
tan)
seitan <- table(seitan1)</pre>
table(is.na(non eat food$eat tempeh))
tempeh1 <- ifelse(is.na(non eat food$eat tempeh), "skip", non eat food$eat te
mpeh)
tempeh <- table(tempeh1)</pre>
table(is.na(non eat food$eat tofu))
tofu1 <- ifelse(is.na(non eat food$eat tofu), "skip", non eat food$eat tofu)
tofu <- table(tofu1)</pre>
table(is.na(non eat food$eat vegetarian meats))
vegetaian meats1 <- ifelse(is.na(non eat food$eat vegetarian meats), "skip",</pre>
non_eat_food$eat_vegetarian_meats)
vegetaian_meats <- table(vegetaian_meats1)</pre>
```

결측치 대체한 각 변수를 하나의 데이터프레임으로 가공- non-vegan

```
s_non_eat_food1 <-cbind(non_dairy3, seitan3, tempeh3, tofu3, vegetaian_meats
3)</pre>
```

```
str(s_non_eat_food1)
s_non_eat_food_g1 <- data.frame(s_non_eat_food1)</pre>
```

결측치 대체한 각 변수를 하나의 데이터프레임으로 가공- vegan

```
s_non_eat_food <-cbind(non_dairy, seitan, tempeh, tofu, vegetaian_meats)
str(s_non_eat_food)
s_non_eat_food_g <- data.frame(s_non_eat_food)</pre>
```

인덱스로 들어간 항목을 꺼내서 answer 컬럼 데이터로 넣어주기- non-vegan

```
s_non_eat_food_g1 <- dplyr::add_rownames(s_non_eat_food_g1, var="answer")
head(s_non_eat_food_g1)</pre>
```

인덱스로 들어간 항목을 꺼내서 answer 컬럼 데이터로 넣어주기- vegan

```
s_non_eat_food_g <- dplyr::add_rownames(s_non_eat_food_g, var="answer")
head(s_non_eat_food_g)</pre>
```

skip 제거 및 컬럼명 변경- non-vegan

```
s non eat food g1 <- s non eat food g1 %>% filter(answer != "skip")
s_non_eat_food_g1 <- dplyr::rename(s_non_eat_food_g1, "유제품이 아닌" = "non_d
airy3",
                            "세이탄" = "seitan3", "템페" = "tempeh3", "두부" =
 "tofu3",
                            "대체육" = "vegetaian meats3")
s_non_eat_food_g1$answer <- ifelse(s_non_eat_food_g1$answer =="Never", 0,</pre>
                               ifelse(s non eat food g1$answer =="About 1 day
per month", 1,
                                      ifelse(s_non_eat_food_g1$answer =="Abou
t 1 day per week", 2,
                                             ifelse(s non eat food g1$answer
=="About every other day", 3,
                                                    ifelse(s_non_eat_food_g1
$answer =="Almost every day", 4, s_non_eat_food_g1$answer
                                                    )))))
```

skip 제거 및 컬럼명 변경- vegan

그래프 시각화- non-vegan

그래프 시각화- vegan

```
s_non_eat_food_g %>%
pivot_longer(-answer) %>%
ggplot(aes(x = answer, y = value, fill = name)) +
geom_col(position = position_stack(), colour = "black") +
geom_text(aes(label = value), size = 2, position = position_stack(0.5))+
scale_fill_brewer(name = '식품', palette = 'Paired') +
theme_bw() + xlab("섭취 빈도") + ylab("빈도수") +
ggtitle("식품별 섭취항목 빈도수", subtitle = "vegan") +
```


위 그래프는 각 식품(비건 식품) 항목마다 섭취한 빈도수를 나타낸 것으로 논 비건 사람들과 비건 사람들이 가장 많이 섭취하지 않은 식품은 세이탄(1101 명, 63 명)이며, 거의 매일 섭취하는 식품은 유제품 아닌(663 명, 959 명) 식품으로 보여집니다.

참고사항: 유제품이 아닌 식품은 주로 두유 등이 있습니다.

그래프에서 x 축

0: 없음

1: 한달에 한번

2: 일주일에 한번

- 3: 격일마다
- 4: 거의 매일

다음은 논비건과 비건의 동물성 식품을 **어떤 식품으로 대체하여 섭취**하는지에 대해 분석해보았습니다.

Install. packages:

```
library(readx1)
library(dplyr)
library(ggplot2)
library(tidyverse)
```

Raw Data- Non-Vegan

```
vegan_raw <- read_excel("C:/Rstudy/teamR/rvd.xls")

vegan_raw1 <- vegan_raw %>% filter(!(eat_beef == "Never" & eat_chicken == "Never" &eat_dairy == "Never" & eat_eggs == "Never" & eat_fish_seafood == "Never" & eat_pork == "Never"))
```

Vegan

```
vegan_raw <- read_excel("C:/Rstudy/0506/newProj/rvd.xls") #vegan</pre>
```

Filter Non-Vegan from Columns- Non-Vegan

Unique values from column

```
unique(alf[c("sub_beans_lentils")])

## # A tibble: 6 x 1

## sub_beans_lentils

## <chr>
## 1 To a large extent

## 2 To a moderate extent

## 3 To some extent

## 4 <NA>

## 5 To little extent

## 6 Not at all

unique(alf[c("sub_extra_vegetables")])
```

```
## # A tibble: 6 x 1
## sub_extra_vegetables
## <chr>
## 1 To a large extent
## 2 To a moderate extent
## 3 To some extent
## 4 <NA>
## 5 To little extent
## 6 Not at all
```

Filter Vegan from Columns- Vegan

Sort Unique value from column without NA- Non-Vegan

Select Columns- Vegan

Data.frame-Non-Vegan

```
df_alf <- data.frame(alf)
df_alf
View(df_alf)</pre>
```

Check NA from table- Non-Vegan

```
t alf <- table(is.na(alf))</pre>
t alf
##
## FALSE TRUE
## 8704 5416
Rename NA to "skip" - Non-Vegan
alf_beans <-ifelse(is.na(alf$sub_beans_lentils), "skip", alf$sub_beans_lentil</pre>
s)
alf beans
beans <- table(alf_beans)</pre>
beans
alf_vegetables <-ifelse(is.na(alf$sub_extra_vegetables), "skip", alf$sub_extr</pre>
a_vegetables)
alf vegetables
vegetables <- table(alf_vegetables)</pre>
vegetables
alf_grains <-ifelse(is.na(alf$sub_grains), "skip", alf$sub_grains)</pre>
alf_grains
grains <- table(alf_grains)</pre>
grains
alf_nuts <-ifelse(is.na(alf$sub_nuts), "skip", alf$sub_nuts)</pre>
alf nuts
nuts <- table(alf_nuts)</pre>
nuts
alf_seitan <-ifelse(is.na(alf$sub_seitan), "skip", alf$sub_seitan)</pre>
alf seitan
seitan <- table(alf_seitan)</pre>
seitan
alf_tempeh <-ifelse(is.na(alf$sub_tempeh), "skip", alf$sub_tempeh)</pre>
alf tempeh
tempeh <- table(alf_tempeh)</pre>
tempeh
alf_tofu <-ifelse(is.na(alf$sub_tofu), "skip", alf$sub_tofu)</pre>
alf tofu
```

```
tofu <- table(alf_tofu)</pre>
tofu
alf_meats <-ifelse(is.na(alf$sub_vegetarian_meats), "skip", alf$sub_vegetaria</pre>
n meats)
alf meats
meats<-table(alf_meats)</pre>
meats
Rename NA to "skip" - Vegan
alf_beans <-ifelse(is.na(alf$sub_beans_lentils), "skip", alf$sub_beans_lentil</pre>
s)
alf beans
beans <- table(alf_beans)</pre>
beans
alf_vegetables <-ifelse(is.na(alf$sub_extra_vegetables), "skip", alf$sub_extr</pre>
a vegetables)
alf vegetables
vegetables <- table(alf_vegetables)</pre>
vegetables
alf grains <-ifelse(is.na(alf$sub grains), "skip", alf$sub grains)
alf grains
grains <- table(alf_grains)</pre>
grains
alf_nuts <-ifelse(is.na(alf$sub_nuts), "skip", alf$sub_nuts)</pre>
alf nuts
nuts <- table(alf_nuts)</pre>
nuts
alf_seitan <-ifelse(is.na(alf$sub_seitan), "skip", alf$sub_seitan)</pre>
alf seitan
seitan <- table(alf_seitan)</pre>
seitan
alf_tempeh <-ifelse(is.na(alf$sub_tempeh), "skip", alf$sub_tempeh)</pre>
alf tempeh
tempeh <- table(alf_tempeh)</pre>
tempeh
alf_tofu <-ifelse(is.na(alf$sub_tofu), "skip", alf$sub_tofu)</pre>
alf_tofu
```

alf_meats <-ifelse(is.na(alf\$sub_vegetarian_meats), "skip", alf\$sub_vegetaria</pre>

tofu <- table(alf tofu)

tofu

```
n_meats)
alf_meats
meats<-table(alf_meats)
meats</pre>
```

Group columns- Non-Vegan

```
alf_group <- cbind (beans, vegetables, grains, nuts, seitan, tempeh, tofu,
    meats)
str(alf_group)

## int [1:6, 1:8] 57 677 459 256 113 203 15 677 573 277 ...

## - attr(*, "dimnames")=List of 2

## ..$ : chr [1:6] "Not at all" "skip" "To a large extent" "To a moderate e
xtent" ...

## ..$ : chr [1:8] "beans" "vegetables" "grains" "nuts" ...</pre>
```

Group columns- Vegan

```
alf group <- cbind (beans, vegetables, grains, nuts, seitan, tempeh, tofu,
   meats)
str(alf_group)
## int [1:6, 1:8] 61 216 502 334 132 246 24 216 609 339 ...
## - attr(*, "dimnames")=List of 2
    ..$ : chr [1:6] "Not at all" "skip" "To a large extent" "To a moderate e
xtent" ...
     ..$ : chr [1:8] "beans" "vegetables" "grains" "nuts" ...
alf_group_df <- data.frame(alf_group)</pre>
alf_group_df
##
                        beans vegetables grains nuts seitan tempeh tofu meats
## Not at all
                           61
                                      24
                                             30 103
                                                        507
                                                               467 127
                                                                           145
                          216
                                     216
                                            216 216
                                                        216
                                                               216 216
## skip
                                                                          216
## To a large extent
                                     609
                                            471 179
                                                         73
                                                                71 302
                          502
                                                                          389
## To a moderate extent
                                     339
                                            392 298
                                                        129
                                                               135 342
                          334
                                                                           312
## To little extent
                          132
                                      91
                                             91 305
                                                        356
                                                               372 209
                                                                          189
## To some extent
                          246
                                     212
                                            291 390
                                                        210
                                                               230 295
                                                                          240
```

Add_index row_name- Vegan

```
alf_group_df1 <- dplyr::add_rownames(alf_group_df, var="answers")
head(alf_group_df1)

## # A tibble: 6 x 9

## answers beans vegetables grains nuts seitan tempeh tofu m
eats</pre>
```

##	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int> <</int>
	Not at all	61	24	30	103	507	467	127
	skip	216	216	216	216	216	216	216
216 ## 3 389	To a large extent	502	609	471	179	73	71	302
	To a moderate extent	334	339	392	298	129	135	342
_	To little extent	132	91	91	305	356	372	209
	To some extent	246	212	291	390	210	230	295

Data.frame-Non-Vegan

```
alf_group_df <- data.frame(alf_group)</pre>
alf_group_df
##
                         beans vegetables grains nuts seitan tempeh tofu meats
## Not at all
                            57
                                        15
                                                34 115
                                                           673
                                                                   614
                                                                       241
                                                                              201
## skip
                           677
                                       677
                                               677
                                                    677
                                                           677
                                                                   677
                                                                        677
                                                                              677
                                                            38
## To a large extent
                           459
                                       573
                                               362
                                                    186
                                                                    35
                                                                        203
                                                                              296
## To a moderate extent
                                                    228
                                                                        229
                                       277
                                               345
                                                            52
                                                                    63
                                                                              235
                           256
## To little extent
                           113
                                        59
                                               121
                                                    243
                                                           208
                                                                   240
                                                                        210
                                                                              169
## To some extent
                           203
                                       164
                                               226 316
                                                           117
                                                                   136 205
                                                                              187
```

Add_index row_name- Non-Vegan

```
alf_group_df1 <- dplyr::add_rownames(alf_group_df, var="answers")</pre>
head(alf_group_df1)
## # A tibble: 6 x 9
##
     answers
                            beans vegetables grains nuts seitan tempeh tofu m
eats
##
     <chr>>
                            <int>
                                        <int> <int> <int> <int><</pre>
                                                                     <int> <int> <</pre>
int>
## 1 Not at all
                               57
                                           15
                                                   34
                                                                        614
                                                         115
                                                                673
                                                                              241
 201
## 2 skip
                              677
                                          677
                                                  677
                                                        677
                                                                677
                                                                        677
                                                                              677
 677
## 3 To a large extent
                              459
                                          573
                                                  362
                                                         186
                                                                 38
                                                                              203
                                                                         35
## 4 To a moderate extent
                              256
                                          277
                                                  345
                                                         228
                                                                 52
                                                                         63
                                                                              229
 235
## 5 To little extent
                              113
                                           59
                                                  121
                                                        243
                                                                208
                                                                        240
                                                                              210
```

```
169
## 6 To some extent 203 164 226 316 117 136 205
187
```

Drop NA from column Answers- Non-Vegan

```
alf group df <- alf group df1 %>% filter(answers != "skip")
alf_group_df
## # A tibble: 5 x 9
##
     answers
                           beans vegetables grains nuts seitan tempeh tofu m
eats
##
                                      <int> <int> <int> <int> <int> <</pre>
     <chr>>
                           <int>
int>
## 1 Not at all
                              57
                                         15
                                                 34
                                                      115
                                                             673
                                                                     614
                                                                           241
 201
## 2 To a large extent
                             459
                                        573
                                                362
                                                      186
                                                               38
                                                                      35
                                                                           203
 296
## 3 To a moderate extent
                             256
                                         277
                                                345
                                                      228
                                                               52
                                                                      63
                                                                           229
 235
## 4 To little extent
                                         59
                                                121
                                                      243
                                                              208
                                                                     240
                                                                           210
                             113
 169
## 5 To some extent
                             203
                                         164
                                                226
                                                             117
                                                                     136
                                                                           205
                                                      316
 187
```

Rename Column values- Non-Vegan

```
alf_group_df$answers <- ifelse(alf_group_df$answers =="Not at all", "0",</pre>
                                ifelse(alf group df$answers =="To a large exte
nt", "4",
                                        ifelse(alf group df$answers =="To a mod
erate extent", "3",
                                               ifelse(alf_group_df$answers =="T
o little extent", "2",
                                                      ifelse(alf group df$answe
rs =="To some extent", "1", alf_group_df$answers)))))
alf_group_df
## # A tibble: 5 x 9
     answers beans vegetables grains nuts seitan tempeh tofu meats
##
                         <int> <int> <int>
                                              <int>
                                                     <int> <int> <int>
##
     <chr>>
             <int>
## 1 0
                57
                                                       614
                                                              241
                            15
                                   34
                                         115
                                                673
                                                                    201
## 2 4
               459
                           573
                                  362
                                         186
                                                 38
                                                        35
                                                              203
                                                                    296
## 3 3
                           277
                                  345
                                                 52
                                                              229
               256
                                         228
                                                        63
                                                                    235
## 4 2
               113
                            59
                                  121
                                         243
                                                208
                                                       240
                                                              210
                                                                    169
## 5 1
               203
                           164
                                  226
                                         316
                                                117
                                                       136
                                                              205
                                                                    187
```

Drop NA from column Answers- Vegan

```
alf group df <- alf group df1 %>% filter(answers != "skip")
alf group df
## # A tibble: 5 x 9
##
                           beans vegetables grains nuts seitan tempeh tofu m
     answers
eats
                           <int>
                                      <int> <int> <int> <int> <int> <</pre>
##
     <chr>>
int>
## 1 Not at all
                              61
                                          24
                                                 30
                                                      103
                                                              507
                                                                     467
                                                                           127
 145
## 2 To a large extent
                             502
                                         609
                                                              73
                                                471
                                                      179
                                                                      71
                                                                           302
 389
                                                                           342
## 3 To a moderate extent
                             334
                                         339
                                                392
                                                      298
                                                             129
                                                                     135
 312
## 4 To little extent
                             132
                                         91
                                                 91
                                                      305
                                                             356
                                                                     372
                                                                           209
 189
## 5 To some extent
                             246
                                         212
                                                291
                                                      390
                                                              210
                                                                     230
                                                                           295
 240
alf group df$answers <- ifelse(alf group df$answers =="Not at all", "0",
                                    ifelse(alf group df$answers =="To a large
extent", "4",
                                            ifelse(alf group df$answers =="To a
moderate extent", "3" ,
                                                   ifelse(alf_group_df$answers
=="To little extent", "2",
                                                          ifelse(alf group df$a
nswers =="To some extent", "1", alf_group_df$answers)))))
alf_group_df
## # A tibble: 5 x 9
     answers beans vegetables grains nuts seitan tempeh tofu meats
##
     <chr>
             <int>
                         <int> <int> <int> <int><</pre>
                                                     <int> <int> <int>
## 1 0
                            24
                                                       467
                                                             127
                61
                                   30
                                        103
                                                507
                                                                    145
## 2 4
               502
                           609
                                  471
                                        179
                                                 73
                                                        71
                                                              302
                                                                    389
## 3 3
               334
                           339
                                  392
                                         298
                                                129
                                                       135
                                                              342
                                                                    312
## 4 2
                            91
                                   91
                                                       372
                                                              209
                                                                    189
               132
                                         305
                                                356
## 5 1
                           212
                                  291
                                        390
                                                210
                                                       230
                                                             295
                                                                    240
               246
```

Graphic- Non-Vegan

```
library(reshape)
library(tidyverse)
library(plotly)
```

```
alf_group_df_p <- alf_group_df %>% pivot_longer(-answers)

non_veg_alt<-ggplot(alf_group_df_p, aes(x = answers, y=value, fill = name)) +

geom_col(position = position_stack(), colour = "black") +

geom_text(aes(label=value), size=3, position = position_stack(0.9)) +

scale_y_continuous(limits = c(0, 3000)) +

theme_bw() + xlab("실천정도") + ylab("영향도") +

ggtitle("Non-Vegan: Alternative food", subtitle = "non-vegan") +

theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo

r = "darkblue"),

plot.subtitle = element_text(size = 15))

non_veg_alt
```

Graphic- Vegan

Non-Vegan: Alternative food

non-vegan 3000 2000 2000 1000

Vegan: Alternative food

논 비건 사람들과 비건 사람들은 대체 식품 중 vegetable 을 가장 많이 섭취한 것을 확인할 수 있습니다. 반대로 대체식품 중 세티안을 전혀 실천해 보지 않았음을 확인할 수 있습니다.

위 그래프를 통해 대체적으로 비건 사람들이 논 비건 사람들보다 동물성 제품을 대체하는 식품을 더 많이 선택한 것을 확인할 수 있습니다.

그래프 y 축

Beans: Beans & lentils.

Vegetables: Plant, cabbage, potato, carrot Grains: Grains, rice, pasta, cereal, bread.

Nuts: Almonds, pistachios, walnuts, hazelnuts.

Seitan: High-protein vegetarian food. Tempeh: Fry fermented soybeans. Tofu: Product from soybeans.

Meats: Vegetarian meats, veggie burgers, nuggets.

다음은 논비건과 비건의 **식습관 변화**에 대해 알아보았습니다. 바뀐 식습관은 현재의 식습관이 아니며 **바뀌는 과정을 확인**해보고자 시각화 하였습니다.

라이브러리 로드

library(readxl)
library(dplyr)

```
library(tidyverse)
library(ggplot2)
```

원본 데이터 파일 불러오기 및 필요 행 추출 - non_vegan

```
vegan_raw <- read_excel("C:/Rstudy/mini_team1/data/vegan_Raw_data_c.xls")
vegan_raw1 <- vegan_raw %>% filter(!(eat_beef == "Never" & eat_chicken == "Never" &eat_dairy == "Never" & eat_eggs == "Never" & eat_fish_seafood == "Never" & eat_pork == "Never"))
```

원본 데이터 파일 불러오기 및 필요 행 추출 - vegan

```
vegan_raw <- read_excel("C:/Rstudy/mini_team1/data/only_vegan.xlsx")</pre>
```

원본 데이터 파일 불러오기 및 필요 행 추출 - non-vegan

```
change_routine3 <- vegan_raw1 %>% select(routine)
change_routine4 <- vegan_raw1 %>% select(routine2)
```

원본 데이터 파일 불러오기 및 필요 행 추출 - vegan

```
change_routine1 <- vegan_raw %>% select(routine)
change_routine2 <- vegan_raw %>% select(routine2)
```

결측치 확인 및 대체 - non-vegan

```
table(is.na(change_routine3$routine))
table(is.na(change_routine4$routine2))

change_routine3$routine <- ifelse(is.na(change_routine3$routine), "skip", change_routine3$routine)
change_routine4$routine2 <- ifelse(is.na(change_routine4$routine2), "skip", change_routine4$routine2)</pre>
```

결측치 확인 및 대체 - vegan

```
table(is.na(change_routine1$routine))
table(is.na(change_routine2$routine2))
```

```
change_routine1$routine <- ifelse(is.na(change_routine1$routine), "skip", cha
nge_routine1$routine)
change_routine2$routine2 <- ifelse(is.na(change_routine2$routine2), "skip", c
hange_routine2$routine2)
```

그룹화 및 요약 - non-vegan

```
change_routine_g3 <- change_routine3 %>% filter(routine != "skip") %>% group_
by(routine) %>% summarise(n3=n())

change_routine_g4 <- change_routine4 %>% filter(routine2 != "skip") %>% group_
by(routine2) %>% summarise(n4=n())
```

그룹화 및 요약 - vegan

```
change_routine_g1 <- change_routine1 %>% group_by(routine) %>% summarise(n=n
())
change_routine_g2 <- change_routine2 %>% group_by(routine2) %>% summarise(n2=
n())
```

컬럼명 통일 및 rbind - non-vegan

```
change_routine_g4 <- dplyr::rename(change_routine_g4, routine = routine2)
change_routine_g4 <- dplyr::rename(change_routine_g4, n3 = n4)

change_routine_g0 <- rbind(change_routine_g3, change_routine_g4)
table(change_routine_g4)</pre>
```

컬럼명 통일 및 rbind - vegan

```
change_routine_g2 <- dplyr::rename(change_routine_g2, routine = routine2)
change_routine_g2 <- dplyr::rename(change_routine_g2, n = n2)

change_routine_g <- rbind(change_routine_g1, change_routine_g2)
table(change_routine_g2)</pre>
```

그래프 그룹화를 위한 열 추가 - non-vegan

```
change_routine_g0$group<-c("routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","
```

```
"routine2", "routi
ne2", "routine2")
그래프 그룹화를 위한 열 추가 - vegan
change_routine_g$group<-c("routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","routine1","r
e1", "routine1", "routine1"
                                                                                                                                                                                                                                                                               routine2", "routine2", "routine2", "routine2", "routin
e2","routine2","routine2")
skip 제거 - non-vegan
change routine g0 <- change routine g0 %>% filter(routine != "skip")
skip 제거 - vegan
change routine g <- change routine g %>% filter(routine != "skip")
```

항목명 변경- non-vegan

```
change_routine_g0$routine <- ifelse(change_routine_g0$routine =="Did not eat</pre>
red meat, chicken or fish", "X meat, chicken or fish",
                                                                      ifelse(change_ro
utine_g0$routine =="Did not eat red meat, but ate everything else", "X meat",
                                                                              ifelse(ch
ange_routine_g0$routine =="Did not eat red meat or chicken, but ate fish, egg
s and dairy", "X meat or chicken" , ifelse(change_routine_g0$routine =="Did n
ot eat any animal products", "X" , ifelse(change_routine_g0$routine =="Ate al
1 types of animal products but was now eating less of them", "eating less" ,i
felse(change routine g0$routine =="Ate all types of animal products", "all ty
pes",
                                                                                       C
hange_routine_g0$routine
))))))
```

항목명 변경- vegan

```
change_routine_g$routine <- ifelse(change_routine_g$routine =="Did not eat re")</pre>
d meat, chicken or fish", "X meat, chicken or fish",
                                                               ifelse(change ro
utine_g$routine =="Did not eat red meat, but ate everything else", "X meat",
```

그래프 시각화 - non-vegan

```
ggplot(change_routine_g0, aes(routine, n3, group = group, fill = group)) +
geom_bar(stat = "identity", position = "dodge", colour = "black") +
xlab('대답') + ylab('응답자 수') +
coord_flip() +
geom_text(aes(label=n3), position = position_dodge(width=0.8), hjust=-.25,
size=3.5) +
theme_bw() +
ggtitle("식습관 변화", subtitle = "non-vegan") +
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
r = "darkblue"),
plot.subtitle = element text(size = 15))
```

그래프 시각화 - vegan

```
ggplot(change_routine_g, aes(routine, n, group = group, fill = group)) + geom_bar(stat = "identity", position = "dodge", colour = "black") + xlab('대답') + ylab('응답자 수') + coord_flip() + geom_text(aes(label=n), position = position_dodge(width=0.8), hjust=-.25, size=3.5) + theme_bw() + ggtitle("식습관 변화", subtitle = "vegan") + theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, color = "darkblue")
```


그래프 v 축

X meat, chicken or fish: 고기와 치킨 또는 생선(해산물) 섭취하지 않음

X meat or chicken: 고기 또는 치킨을 섭취하지 않음

X meat: 고기 섭취하지 않음X: 동물성 제품 섭취하지 않음eatingless: 동물성 제품 섭취 줄임all types: 모든 동물성 제품 섭취함

논 비건 사람들은 대체적으로 모든 종류의 식품을 섭취하였지만, 동물성 제품 섭취를 줄이는 식습관 변화를 볼 수 있습니다. 비건 사람들은 대체적으로 모든 종류의 식품을 섭취하였지만, 고기와 치킨 또는 생선(해산물) 섭취를 하지 않는 식습관 변화를 볼 수 있습니다.

다음은 동물 제품 소비를 줄인 적이 있다면 줄이게 된 이유에 대해 분석해 보았습니다.

라이브러리 로드

```
library(readx1)
library(dplyr)
library(tidyverse)
library(ggplot2)
```

원본 데이터 파일 불러오기 및 필요 행 추출 - non_vegan

```
vegan_raw <- read_excel("C:/Rstudy/mini_team1/data/vegan_Raw_data_c.xls")
vegan_raw1 <- vegan_raw %>% filter(!(eat_beef == "Never" & eat_chicken == "Never" &eat_dairy == "Never" & eat_eggs == "Never" & eat_fish_seafood == "Never" & eat_pork == "Never"))
```

원본데이터 파일 불러오기 및 필요 컬럼 추출 - vegan

필요 컬럼 추출- non-vegan

non_inspire_reducing_consumption <- vegan_raw1 %>% select(inspire_ani,inspire
_env, inspire_ff, inspire_ht, inspire_hr,inspire_nt, inspire_rg, inspire_sb,
inspire_wh)

추출한 데이터의 결측치 확인- non-vegan

table(is.na(non_inspire_reducing_consumption))

추출한 데이터의 결측치 확인- vegan

table(is.na(inspire_reducing_consumption))

결측치 대체 및 변수 생성 저장- non-vegan

```
table(is.na(non_inspire_reducing_consumption$inspire_ani))
non_inspire_ani1 <- ifelse(is.na(non_inspire_reducing_consumption$inspire_an
i), "skip", non_inspire_reducing_consumption$inspire_ani)
non_inspire_ani <- table(non_inspire_ani1)</pre>
```

```
table(is.na(non inspire reducing consumption$inspire env))
non inspire env1 <- ifelse(is.na(non inspire reducing consumption$inspire en
v), "skip", non inspire reducing consumption$inspire env)
non_inspire_env <- table(non_inspire_env1)</pre>
table(is.na(non inspire reducing consumption$inspire ff))
non inspire ff1 <- ifelse(is.na(non inspire reducing consumption$inspire ff),</pre>
 "skip", non_inspire_reducing_consumption$inspire_ff)
non inspire ff <- table(non inspire ff1)</pre>
table(is.na(non_inspire_reducing_consumption$inspire_ht))
non_inspire_ht1 <- ifelse(is.na(non_inspire_reducing_consumption$inspire_ht),</pre>
 "skip", non_inspire_reducing_consumption$inspire_ht)
non inspire ht <- table(non inspire ht1)</pre>
table(is.na(non inspire reducing consumption$inspire hr))
non inspire hr1 <- ifelse(is.na(non inspire reducing consumption$inspire hr),
 "skip", non inspire reducing consumption$inspire hr)
non inspire hr <- table(non inspire hr1)</pre>
table(is.na(non_inspire_reducing_consumption$inspire_nt))
non inspire nt1 <- ifelse(is.na(non inspire reducing consumption$inspire nt),</pre>
"skip", non inspire reducing consumption$inspire nt)
non inspire nt <- table(non inspire nt1)</pre>
table(is.na(non inspire reducing consumption$inspire rg))
non_inspire_rg1 <- ifelse(is.na(non_inspire_reducing_consumption$inspire_rg),</pre>
 "skip", non_inspire_reducing_consumption$inspire_rg)
non inspire rg <- table(non inspire rg1)</pre>
table(is.na(non_inspire_reducing_consumption$inspire_sb))
non_inspire_sb1 <- ifelse(is.na(non_inspire_reducing_consumption$inspire_sb),</pre>
 "skip", non_inspire_reducing_consumption$inspire_sb)
non inspire sb <- table(non inspire sb1)</pre>
table(is.na(non inspire reducing consumption$inspire wh))
non_inspire_wh1 <- ifelse(is.na(non_inspire_reducing_consumption$inspire_wh),</pre>
```

```
"skip", non_inspire_reducing_consumption$inspire_wh)
non_inspire_wh <- table(non_inspire_wh1)</pre>
```

결측치 대체 및 변수 생성 저장- vegan

```
inspire_ani1 <- ifelse(is.na(inspire_reducing_consumption$inspire_ani), "skip</pre>
", inspire reducing consumption$inspire ani)
inspire ani <- table(inspire ani1)</pre>
table(is.na(inspire_reducing_consumption$inspire_env))
inspire env1 <- ifelse(is.na(inspire reducing consumption$inspire env), "skip</pre>
", inspire reducing consumption$inspire env)
inspire env <- table(inspire env1)</pre>
table(is.na(inspire reducing consumption$inspire ff))
inspire_ff1 <- ifelse(is.na(inspire_reducing_consumption$inspire_ff), "skip",</pre>
 inspire reducing consumption$inspire ff)
inspire_ff <- table(inspire_ff1)</pre>
table(is.na(inspire_reducing_consumption$inspire_ht))
inspire ht1 <- ifelse(is.na(inspire reducing consumption$inspire ht), "skip",</pre>
 inspire_reducing_consumption$inspire_ht)
inspire_ht <- table(inspire_ht1)</pre>
table(is.na(inspire reducing consumption$inspire hr))
inspire_hr1 <- ifelse(is.na(inspire_reducing_consumption$inspire_hr), "skip",</pre>
 inspire reducing consumption$inspire hr)
inspire hr <- table(inspire hr1)</pre>
table(is.na(inspire_reducing_consumption$inspire_nt))
inspire nt1 <- ifelse(is.na(inspire reducing consumption$inspire nt), "skip",</pre>
 inspire reducing consumption$inspire nt)
inspire_nt <- table(inspire_nt1)</pre>
table(is.na(inspire reducing consumption$inspire rg))
inspire_rg1 <- ifelse(is.na(inspire_reducing_consumption$inspire_rg), "skip",</pre>
 inspire_reducing_consumption$inspire_rg)
inspire_rg <- table(inspire_rg1)</pre>
table(is.na(inspire reducing consumption$inspire sb))
inspire_sb1 <- ifelse(is.na(inspire_reducing_consumption$inspire_sb), "skip",</pre>
 inspire_reducing_consumption$inspire_sb)
```

```
inspire_sb <- table(inspire_sb1)

table(is.na(inspire_reducing_consumption$inspire_wh))
inspire_wh1 <- ifelse(is.na(inspire_reducing_consumption$inspire_wh), "skip",
inspire_reducing_consumption$inspire_wh)
inspire_wh <- table(inspire_wh1)</pre>
```

결측치 대체한 각 변수를 하나의 데이터프레임으로 가공- non-vegan

non_inspire <-cbind(non_inspire_ani, non_inspire_env, non_inspire_ff, non_ins pire_hr, non_inspire_ht, non_inspire_nt, non_inspire_rg, non_inspire_sb, non_ inspire_wh)

non_inspire<- data.frame(non_inspire)</pre>

결측치 대체한 각 변수를 하나의 데이터프레임으로 가공- vegan

inspire <-cbind(inspire_ani, inspire_env, inspire_ff, inspire_hr, inspire_ht,
inspire_nt, inspire_rg, inspire_sb, inspire_wh)</pre>

inspire<- data.frame(inspire)</pre>

인덱스로 들어간 항목을 꺼내서 answer 컬럼 데이터로 넣어주기- non-vegan

```
non_inspire_g <- dplyr::add_rownames(non_inspire, var="answer")
## Warning: `add_rownames()` was deprecated in dplyr 1.0.0.
## Please use `tibble::rownames_to_column()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.</pre>
```

인덱스로 들어간 항목을 꺼내서 answer 컬럼 데이터로 넣어주기- vegan

```
inspire g <- dplyr::add rownames(inspire, var="answer")</pre>
```

컬럼명 및 데이터명 변경- non-vegan

```
tent", 1,
                                         ifelse(non_inspire_g$answer =="To so
me extent", 2,
                                                ifelse(non inspire g$answer =
="To a moderate extent", 3,
                                                       ifelse(non inspire g$a
nswer =="To a large extent", 4,non_inspire_g$answer
                                                       )))))
컬럼명 및 데이터명 변경-vegan
inspire_g <- dplyr::rename(inspire_g, "Animal welfare" = inspire_ani,</pre>
                    "Environment" = inspire env,
                    "Family Friend" = inspire ff,
                    "Health" = inspire_ht,
                    "Human rights" = inspire hr,
                    "Nutrition" = inspire_nt,
                    "Religion" = inspire rg,
                    "Someone" = inspire sb,
                    "World Hunger" = inspire_wh)
inspire g$answer <- ifelse(inspire g$answer =="Not at all", 0,</pre>
                                  ifelse(inspire_g$answer =="To little extent
", 1,
                                         ifelse(inspire_g$answer =="To some e
xtent", 2 ,
                                                ifelse(inspire g$answer =="To
a moderate extent", 3,
                                                       ifelse(inspire_g$answe
r =="To a large extent", 4,inspire g$answer)))))
skip 제거- non-vegan
non inspire g <- non inspire g %>% filter(answer != "skip")
skip 제거- vegan
inspire g <- inspire g %>% filter(answer != "skip")
그래프 시각화- non-vegan
non inspire g %>%
 pivot_longer(-answer) %>%
 ggplot(aes(x = answer, y = value, fill = name)) +
 geom_col(position = position_stack(), colour = "black") +
 geom_text(aes(label = value), size = 2, position = position_stack(0.5))+
 scale fill brewer(name = '이유', palette = 'Paired') +
 theme_bw() + xlab("실천정도") + ylab("영향도") +
 ggtitle("동물제품 소비 줄이게 된 이유", subtitle = "non-vegan") +
 theme(plot.title = element text(face = "bold", hjust = 0.5, size = 20, colo
```

```
r = "darkblue"),
        plot.subtitle = element_text(size = 15))
```

그래프 시각화- vegan

```
inspire_g %>%
 pivot longer(-answer) %>%
 ggplot(aes(x = reorder(answer,-value), y = value, fill = name)) +
geom_col(position = position_stack(), colour = "black") +
 geom_text(aes(label = value), size = 2, position = position_stack(0.5))+
 scale_fill_brewer(name = '이유', palette = 'Paired') +
 theme_bw() + xlab("실천정도") + ylab("영향도") +
 ggtitle("동물제품 소비 줄이게 된 이유", subtitle = "vegan") +
 theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
r = "darkblue"),
       plot.subtitle = element_text(size = 15))
```

동물제품 소비 줄이게 된 이유

동물제품 소비 줄이게 된 이유

χ 축

0: 전혀 실천해보지 않음

1: 실천 거의 없음

2: 실천 조금 있음

3: 실천 보통

4: 실천 매우 많음

y 축

Animal welfare: 동물복지를 위해

Environment: 환경을 위해

Family Friend: 가족이나 친구들에 의해

Health: 건강을 위해

Human rights: 인권을 위해 Nutrition: 영양을 위해 Religion: 종교적인 이유로 Someone: 누군가에 의해 World Hunger: 기아를 위해

논 비건 사람들은 동물 제품 소비 감소 실천을 많이 해본 이유 중 동물복지(735)와 영양(567), 건강(508)이 많은 것으로 확인할 수 있습니다.

종교는 동물제품을 소비를 줄이는 실천에 영향이 거의 없음(957)을 확인할 수 있습니다.

비건 사람들은 동물 제품 소비 감소 실천을 많이 해본 이유 중 동물복지(1099)와 환경(577), 건강(550)이 많은 것으로 확인할 수 있습니다.

또한 종교는 동물제품을 소비를 줄이는 실천에 영향이 거의 없음(1143)을 확인할 수 있습니다.

다음은 동물성 제품 소비를 줄인 가장 큰 이유에 대해 알아보았습니다.

라이브러리 로드

library(readx1)
library(dplyr)
library(tidyverse)
library(ggplot2)

원본 데이터 파일 불러오기 및 필요 행 추출 - non-vegan

```
vegan_raw <- read_excel("C:/Rstudy/mini_team1/data/vegan_Raw_data_c.xls")
vegan_raw1 <- vegan_raw %>%
  filter(!(eat_beef == "Never" & eat_chicken == "Never" &eat_dairy == "Never"&eat_eggs == "Never" & eat_fish_seafood == "Never"& eat_pork == "Never"))
```

원본데이터 파일 불러오기 및 필요 컬럼 추출 - vegan

```
library(readxl)
vegan_raw2 <- read_excel("C:/Rstudy/mini_team1/data/only_vegan.xlsx")</pre>
```

동물성 제품 줄이는 가장 큰 이유

필요 컬럼 추출 - non-vegan

non_reducing_products_one <- vegan_raw1\$reducing_ap</pre>

필요 컬럼 추출 - vegan

reducing_products_one <- vegan_raw2\$reducing_ap</pre>

결측치 대체한 각 변수를 하나의 데이터프레임으로 가공 - non vegan

```
non_reducing_products_one_s <- ifelse(is.na(non_reducing_products_one), "skip
", non_reducing_products_one)
non_reducing_products_one1 <- data.frame(non_reducing_products_one_s)</pre>
```

결측치 대체한 각 변수를 하나의 데이터프레임으로 가공 - vegan

```
reducing_products_one_s <- ifelse(is.na(reducing_products_one), "skip", reducing_products_one)
reducing products one1 <- data.frame(reducing products one s)</pre>
```

skip 제거 및 그룹화 요약- non-vegan

```
non_reducing_products_one2 <-non_reducing_products_one1 %>% filter(non_reduci
ng_products_one_s != "skip") %>% group_by(non_reducing_products_one_s) %>%
   summarise(n=n())
```

skip 제거 및 그룹화 요약- vegan

```
reducing_products_one2 <-reducing_products_one1 %>% filter(reducing_products_
one_s != "skip")%>% group_by(reducing_products_one_s) %>%
   summarise(n=n())
```

항목명 변경- non-vegan

항목명 변경-vegan

그래프 시각화 - non-vegan

그래프 시각화 - vegan

```
ggplot(reducing_products_one2, aes(x=reorder(reducing_products_one_s, n), y= n)) +
    geom_col() + coord_flip() +
    scale_y_continuous(limits = c(0, 1200)) +
    geom_text(aes(label=n), hjust=-.25, size=3.5) +
    theme_bw() + xlab("이유") + ylab("빈도수") +
        ggtitle("동물성 제품 소비를 줄인 이유", subtitle = "vegan") +
    theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
r = "darkblue"),
        plot.subtitle = element_text(size = 15))
```

동물성 제품 소비를 줄인 이유

동물성 제품 소비를 줄인 이유

동물 복지 선택자들의 이유

결측치 확인 - non-vegan

```
non_reducing_aw <- vegan_raw1$aw_reason
table(is.na(non_reducing_aw))</pre>
```

결측치 확인 - vegan

```
reducing_aw <- vegan_raw2$aw_reason
table(is.na(reducing aw))</pre>
```

```
결측치 대체 및 데이터프레임으로 가공 - non-vegan
```

```
non_reducing_aw_s <- ifelse(is.na(non_reducing_aw), "skip", non_reducing_aw)
non_reducing_aw_s <- data.frame(non_reducing_aw_s)

#### 12 cbind 로 합치기 여기서 one1 은 11 번에서 선택한 항목임 ####
non_reducing_pro_aw_inf <- cbind(non_reducing_products_one1, non_reducing_aw_s)
```

결측치 대체 및 데이터프레임으로 가공 - vegan

```
reducing_aw_s <- ifelse(is.na(reducing_aw), "skip", reducing_aw)
reducing_aw_s <- data.frame(reducing_aw_s)</pre>
```

skip 제거 및 동물 복지 선택 안한사람들 제외 - non-vegan

skip 제거 및 동물 복지 선택 안한사람들 제외 - vegan

그룹화 및 요약 - non-vegan

```
non_reducing_pro_aw_inf_f <- non_reducing_pro_aw_inf_f %>% group_by(non_reducing_aw_s) %>%
   summarise(n5=n())
```

그룹화 및 요약 - vegan

```
reducing_pro_aw_inf_f <- reducing_pro_aw_inf_f %>% group_by(reducing_aw_s) %
>%
summarise(n=n())
```

항목명 변경- non-vegan

```
non_reducing_pro_aw_inf_f$non_reducing_aw_s <- ifelse(non_reducing_pro_aw_inf
_f$non_reducing_aw_s =="I learned about how farm animals have intelligence an
d emotions", "animal-friendly",</pre>
```

```
ifelse(non reduc
ing_pro_aw_inf_f$non_reducing_aw_s =="I do not like the fact that farm animal"
s are killed", "don't like kill",
                                                                    ifelse(no
n_reducing_pro_aw_inf_f$non_reducing_aw_s =="I do not like the fact that farm
animals are raised in very cruel conditions", "hate bad environment",
                                                                            n
on_reducing_pro_aw_inf_f$non_reducing_aw_s
)))
항목명 변경-vegan
reducing_pro_aw_inf_f$reducing_aw_s <- ifelse(reducing_pro_aw_inf_f$reducing_</pre>
aw_s =="I learned about how farm animals have intelligence and emotions", "an
imal-friendly",
                                                             ifelse(reducing_
pro aw inf f$reducing aw s =="I do not like the fact that farm animals are ki
lled", "don't like kill",
                                                                    ifelse(re
ducing_pro_aw_inf_f$reducing_aw_s =="I do not like the fact that farm animals"
are raised in very cruel conditions", "hate bad environment",
                                                                            r
educing_pro_aw_inf_f$reducing_aw_s
)))
그래프 시각화 - non-vegan
library(ggplot2)
ggplot(non_reducing_pro_aw_inf_f, aes(x = reorder(non_reducing_aw_s,n5), y = n
5)) +
 geom col() + coord flip() +
 scale y continuous(limits = c(0, 500)) +
 geom_text(aes(label=n5), hjust=-.25, size=3.5) +
 theme bw() + xlab("이유") + ylab("빈도수") +
    ggtitle("동물 복지를 선택한 이유", subtitle = "non-vegan") +
 theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
r = "darkblue"),
        plot.subtitle = element_text(size = 15))
그래프 시각화 - vegan
library(ggplot2)
ggplot(reducing_pro_aw_inf_f, aes(x = reducing_aw_s, y =n)) +
 geom_col() + coord_flip() +
 scale y continuous(limits = c(0, 500)) +
 geom_text(aes(label=n), hjust=-.25, size=3.5) +
 theme_bw() + xlab("이유") + ylab("빈도수") +
```

```
ggtitle("동물 복지를 선택한 이유", subtitle = "vegan") +
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
r = "darkblue"),
    plot.subtitle = element_text(size = 15))
```


건강 영양 선택자들의 이유

필요 컬럼 추출- non-vegan

```
non_reducing_ht <- vegan_raw1 %>%
   select(hn_animal_disease, hn_energy, hn_weight, hn_certain_diseases, hn_oth
er)
```

필요 컬럼 추출- vegan

```
reducing_ht <- vegan_raw2 %>%
  select(hn_animal_disease, hn_energy, hn_weight, hn_certain_diseases, hn_oth
er)
```

데이터 합치기- non-vegan

```
non_reducing_pro_ht <- cbind(non_reducing_products_one1, non_reducing_ht)</pre>
```

데이터 합치기- vegan

reducing_pro_ht <- cbind(reducing_products_one1, reducing_ht)</pre>

```
건강 영양 선택자들만 추출- non-vegan
```

건강 영양 선택자들만 추출-vegan

결측치 대체 및 변수 생성 저장- non-vegan

13 각 컬럼들 빈도수, 4 개의 컬럼 중2 개 선택이므로 결측치 제거하면 안됨-> ex) 1 번 고르고 3 번 고르면 2.4 번은 결측치임

각 컬럼의 항목들은 같은 데이터임-> ex) animal_disease 컬럼의 입력 항목들은 동물 죽는게 싫다임

```
non_animal_disease1 <- table(non_reducing_pro_ht_f$hn_animal_disease)
non_energy1 <- table(non_reducing_pro_ht_f$hn_energy)
non_weight1 <- table(non_reducing_pro_ht_f$hn_certain_diseases)
non_other1 <- table(non_reducing_pro_ht_f$hn_other)</pre>
```

결측치 대체 및 변수 생성 저장- vegan

```
animal_disease1 <- table(reducing_pro_ht_f$hn_animal_disease)
energy1 <- table(reducing_pro_ht_f$hn_energy)
weight1 <- table(reducing_pro_ht_f$hn_certain_diseases)
other1 <- table(reducing_pro_ht_f$hn_other)</pre>
```

데이터프레임으로 가공- non-vegan

```
non_reducing_pro_ht_f1 <- as.data.frame(c(non_animal_disease1, non_energy1, n
on_weight1, non_other1))</pre>
```

데이터프레임으로 가공- vegan

reducing_pro_ht_f1 <- as.data.frame(c(animal_disease1, energy1, weight1, othe
r1))</pre>

인덱스로 들어간 항목을 꺼내서 answer 컬럼 데이터로 넣어주기- non-vegan

```
non_reducing_pro_ht_f1 <- dplyr::add_rownames(non_reducing_pro_ht_f1, var="an
swer")
## Warning: `add_rownames()` was deprecated in dplyr 1.0.0.
## Please use `tibble::rownames_to_column()` instead.</pre>
```

```
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.
인덱스로 들어간 항목을 꺼내서 answer 컬럼 데이터로 넣어주기- vegan
reducing pro ht f1 <- dplyr::add rownames(reducing pro ht f1, var="answer")
컬럼명 및 데이터명 변경- non-vegan
imal_disease1, non_energy1, non_weight1, non_other1)")
컬럼명 및 데이터명 변경- vegan
reducing pro ht f1 <- dplyr::rename(reducing pro ht f1, n = "c(animal disease
1, energy1, weight1, other1)")
항목명 변경- non-vegan
non_reducing_pro_ht_f1$answer <- ifelse(non_reducing_pro_ht_f1$answer =="Othe")</pre>
r (Please Specify)", "Other",
                                                         ifelse(non reduc
ing pro_ht f1$answer =="I wanted more energy/well-being", "energy well-being"
                                                               ifelse(no
n reducing pro ht f1$answer =="I'm concerned about antibiotics/hormones/disea
ses in animal products", "concern diseases from animal", ifelse(non reducing
pro ht f1$answer =="I wanted to reduce my risk of developing certain disease
s", "reduce diseases",
                                                                       n
on reducing_pro_ht_f1$answer
))))
항목명 변경- vegan
reducing pro ht f1$answer <- ifelse(reducing pro ht f1$answer =="Other (Pleas
e Specify)", "Other",
                                                         ifelse(reducing_
pro ht f1$answer =="I wanted more energy/well-being", "energy well-being",
ducing pro ht f1$answer =="I'm concerned about antibiotics/hormones/diseases
in animal products", "concern diseases from animal" , ifelse(reducing_pro_ht_
f1$answer =="I wanted to reduce my risk of developing certain diseases", "red
uce diseases" ,
```

educing pro ht f1\$answer

))))

그래프 시각화- non-vegan

```
library(ggplot2)
ggplot(non_reducing_pro_ht_f1, aes(x = reorder(answer, n), y=n)) + geom_col(c
olour = "black") + coord_flip() +
    scale_y_continuous(limits = c(0, 500)) +
    geom_text(aes(label=n), hjust=-.25, size=3.5) +
        theme_bw() + xlab("이유") + ylab("빈도수") +
    ggtitle("건강 영양을 선택한 이유", subtitle = "non-vegan") +
    theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
r = "darkblue"),
        plot.subtitle = element_text(size = 15))
```

그래프 시각화- vegan

```
library(ggplot2)
ggplot(reducing_pro_ht_f1, aes(x = reorder(answer, n), y=n)) + geom_col() + c
oord_flip() +
    scale_y_continuous(limits = c(0, 500)) +
    geom_text(aes(label=n), hjust=-.25, size=3.5) +
        theme_bw() + xlab("이유") + ylab("빈도수") +
    ggtitle("건강 영양을 선택한 이유", subtitle = "vegan") +
    theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
r = "darkblue"),
        plot.subtitle = element_text(size = 15))
```


건강 영양을 선택한 이유

y 축

Animal welfare: 동물복지를 위해

Environment: 환경을 위해

Family Friend: 가족이나 친구들에 의해

Health: 건강을 위해

Human rights: 인권을 위해 Nutrition: 영양을 위해 Religion: 종교적인 이유로 Someone: 누군가에 의해 World Hunger: 기아를 위해

논비건 사람들과 비건 사람들 모두 동물 복지를 위해 동물성 제품을 줄인 것을 확인할 수 있습니다.

다음은 논비건과 비건의 동물성 제품 소비를 예상한 것을 분석하였습니다.

논비건 사람들의 동물성 제품 소비 예상 Non-Vegan

Install. packages:

```
library(readx1)
library(dplyr)
library(ggplot2)
```

Raw Data

```
#31. "Consumption of animal products"

vegan_raw <- read_excel("C:/Rstudy/0506/newProj/rvd.xls")
```

Filter Non-Vegan from Columns

Select Column from data

```
consumption <- vegan raw1 %>% select(consumption)
consumption
## # A tibble: 1,765 x 1
##
     consumption
##
     <chr>>
## 1 I will eat fewer animal products
## 2 I will eat fewer animal products
## 3 It will stay the same
## 4 It will stay the same
## 5 I will eat fewer animal products
## 6 I will eat fewer animal products
## 7 It will stay the same
## 8 I will eat fewer animal products
## 9 I will eat fewer animal products
## 10 <NA>
## # ... with 1,755 more rows
```

Check NA from Column

```
#how to count the number of non NA values in R
sum(!is.na(vegan_raw1$consumption))
## [1] 1519
#False and True
t_df_c <- table(is.na(vegan_raw1$consumption))
t_df_c
##
## FALSE TRUE
## 1519 246</pre>
```

Rename Column values

```
## [1] "eat fewer" "eat fewer" "eat same" "eat same" "eat fewer" "eat fe
wer"
## [7] "eat same" "eat fewer" "NA "eat fewer" "eat fe
wer"
## [13] "eat fewer" "eat same" "eat fewer" NA NA "eat sa
me"
```

Rename NA to "skip"

```
consump <- ifelse(is.na(vegan_raw1$consumption), "skip", consump)

## [1] "eat fewer" "eat fewer" "eat same" "eat same" "eat fewer"

## [1555] "skip" "skip" "skip" "eat same" "skip" "eat fewer"

## [1717] "skip" "eat same" "eat same" "eat fewer" "eat same"</pre>
```

Data Frame

```
df_c <- data.frame(consump)
df_c

## consump
## 1 eat fewer
## 2 eat fewer
## 3 eat same
## 4 eat same
View(df_c)</pre>
```

Column Unique values

```
unique(df_c[c("consump")])
## consump
## 1 eat fewer
## 3 eat same
## 10 skip
## 28 eat more
```

Add_index row_name

Drop NA="skip" from column Answers

```
df_c <- df_c %>% filter(consump != "skip")
View(df_c)
```

Column Unique values

```
#Finding the unique values in column "consump"
unique(df_c[c("consump")])

## # A tibble: 3 x 1

## consump

## <chr>
## 1 eat fewer

## 2 eat same

## 3 eat more

#Get Maximum value of the column by column position

df_c %>% summarise_if(is.character, max)

## # A tibble: 1 x 2

## Answers consump

## <chr>
## <chr>
## 1 998 eat same
```

Summarise

```
## 2 eat more 10
## 3 eat same 701
```

Install. packages:

```
library(reshape)
library(tidyverse)
library(plotly)

cons_p <- df_c1 %>% pivot_longer(-consump)

cons_graph<-ggplot(cons_p, aes(x = consump,y=value, fill =consump)) +
    geom_col(position = position_stack(), colour = "black") +
    geom_text(aes(label=value), size=3, position = position_stack(0.9)) +
    scale_y_continuous(limits = c(0, 1500)) +
    theme_bw() + xlab("예상") + ylab("응답수") +
    ggtitle("Consumption of the animal products", subtitle = "non-vegan") +
    theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
    r = "darkblue"),
        plot.subtitle = element_text(size = 15))

cons_graph
```

비건 사람들의 동물성 제품 소비 예상 Vegan

Install. packages:

```
library(readxl)
library(dplyr)
library(ggplot2)
```

Raw Data

```
# "Consumption of animal products"
vegan_raw <- read_excel("C:/Rstudy/0506/newProj/rvd.xls")</pre>
```

Select Column from data

```
consumption <- vegan_raw %>% select(consumption)
consumption
```

```
## # A tibble: 3,258 x 1
## consumption
## <chr>
## 1 I will eat fewer animal products
## 2 It will stay the same
## 3 It will stay the same
## 4 It will stay the same
## # ... with 3,248 more rows
```

Check NA from Column

```
#how to count the number of non NA values in R
sum(!is.na(vegan_raw1$consumption))
## [1] 1519
#False and True
t_df_c <- table(is.na(vegan_raw$consumption))
t_df_c
##
## FALSE TRUE
## 2856 402</pre>
```

Rename Column values

```
consump<- ifelse(vegan_raw$consumption =="It will stay the same", "eat same",</pre>
          ifelse(vegan_raw$consumption =="I will eat fewer animal products",
"eat fewer",
          ifelse(vegan raw$consumption =="I will eat more animal products", "
eat more",
                                                             vegan raw$consum
ption)))
consump
     [1] "eat fewer" "eat same" "eat same" "eat same"
                                                          "eat same" "eat sa
##
me"
     [7] "eat same" "eat same"
                                 "eat same" NA
                                                          "eat same"
##
                                                                      "eat sa
me"
     [13] "eat same" "eat fewer" "eat same" "eat same"
##
                                                          "eat same" "eat sa
me"
     [19] "eat fewer" "eat same" "eat same" "eat fewer" "eat same" "eat sa
```

me"

Rename NA to "skip"

```
consump <- ifelse(is.na(vegan_raw$consumption), "skip", consump)

## [1] "eat fewer" "eat same" "eat same" "eat same" "eat same"

## [7] "eat same" "eat same" "eat same" "skip" "eat same" "eat same"

## [13] "eat same" "eat fewer" "eat same" "eat same" "eat same" "eat same"

## [19] "eat fewer" "eat same" "eat same" "eat fewer" "eat same" "eat s
```

Data Frame

Column Unique values

```
unique(df_c[c("consump")])
## consump
## 1 eat fewer
## 2 eat same
## 10 skip
## 33 eat more
```

Add_index row_name

Drop NA="skip" from column consump

```
df_c <- df_c %>% filter(consump != "skip")
View(df_c)

## # A tibble: 3 x 1
## consump
## <chr>
## 1 eat fewer
## 2 eat same
## 3 eat more
```

Summarise

Install. packages:

```
library(reshape)
library(tidyverse)
library(plotly)

cons_p <- df_c1 %>% pivot_longer(-consump)

cons_graph<-ggplot(cons_p, aes(x = consump,y=value, fill =consump)) +
    geom_col(position = position_stack(), colour = "black") +
    geom_text(aes(label=value), size=3, position = position_stack(0.9)) +
    scale_y_continuous(limits = c(0, 1500)) +
    theme_bw() + xlab("예상") + ylab("응답수") +
    ggtitle("Consumption of the animal products", subtitle = "vegan") +
    theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
    r = "darkblue"),
        plot.subtitle = element_text(size = 15))

cons_graph
```


χ 축

eat fewer: 동물성 제품 섭취를 줄일 것임 eat more: 동물성 제품 섭취를 늘릴 것임

eat same: 동물성 제품 섭취를 기존과 같이 유지할 것임

논 비건 사람들은 동물성 제품 섭취를 적게할(808) 예정이 가장 높게 나왔으며 유지할 예정이 그 다음으로 높게 나왔음을 확인할 수 있습니다. 비건 사람들은 동물성 제품 섭취를 기존과 같이 유지할(1282) 예정이 가장 높게 나왔음을 확인할 수 있습니다.