Experiment - 1

Objective : Study of Geiger-Muller Counter and counting statistics by γ -ray source.

Sources : γ -ray source

Scope of Expt: (i) Draw the operational characteristics curve of the counter, showing threshold, operating voltage and the onset of break-down. There should be at least 10 points on the curve.

(ii) Study the distribution curve of the counts from radioactive decay. Find mean value and standard deviation (σ). Take at least 200 $^{\sim}$ 250 points.

Theory: Write theory for GM counter in details.

Operational characteristics curve of GM Tube.

- (i) Set counting time for 30 sec or more. Set no. of run as 1.
- (ii) Set your source in slot 4.
- (iii) Set your HV to 0 by turning the HV Pot and then RUN. Note your counts. This is RUN-1
- (iv) Repeat the same for RUN-2 and note down your counts.
- (v) Increase your HV in a step of 50 and take RUN-1 and RUN-2. Note it down.
- (vi) Repeat (v) in a step of 50 [from 0 to 250], step of 20 [from 250 to 350], step of 50 [from 350 t 950], and step of 20 [from 950 to 1100 or 1120].
- (vii) Make proper table and draw the graph.

HV	No of Counts		Average	HV	No of Counts		Average
	Run-1	Run-2	Counts		Run-1	Run-2	Counts
0				650			
50				700			
100				750			
150				800			
200				850			
250				900			
270				950			
290				970			
310				990			
330				1010			
350				1030			
400				1050			
450				1070			
500				1090			
550				1110			
600				1120			

Characteristic Graph:

Study of distribution curve of the counts:

- (i) Set operating voltage as HV = 650 V (middle of the flat portion of graph)
- (ii) Set counting time for 10 sec or more. Set no. of run as 1.
- (iii) Keep the source at 3rd slot
- (iv) Start counting and note down the counts.
- (v) Repeat (iv) atleast 100 or 200 times.
- (vi) Make a table: No of counts vs Frequency of counts.
- (vii) Plot No of counts vs Frequency of counts and fit it with a Gaussian distribution

$$F(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

No of	Frequency	No of	Frequency	
Counts	Of counts	Counts	Of counts	
39	11	46	17	
40	9	47	9	
41	13	48	11	
42	4	49	12	
43	13	50	7	
44	7	51	6	
45	14	52	4	

