Tarea No. 4

ING. MARIO LÓPEZ

TEMA 1

Haciendo uso de tablas de verdad demostrar las diez leyes de la lógica.

1.] Leyes de absorción:

$$p \Leftrightarrow \mathbf{p} \lor (\mathbf{p} \land \mathbf{q})$$
$$p \Leftrightarrow \mathbf{p} \land (\mathbf{p} \lor \mathbf{q})$$

2.] Leyes de DeMorgan:

$$\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$$
$$\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$$

3.] Leyes Distributivas:

$$\begin{array}{l} \boldsymbol{p} \vee (\boldsymbol{q} \wedge \boldsymbol{r}) \Leftrightarrow (\boldsymbol{p} \vee \boldsymbol{q}) \wedge (\boldsymbol{p} \vee \boldsymbol{r}) \\ \boldsymbol{p} \wedge (\boldsymbol{q} \vee \boldsymbol{r}) \Leftrightarrow (\boldsymbol{p} \wedge \boldsymbol{q}) \vee (\boldsymbol{p} \wedge \boldsymbol{r}) \end{array}$$

4.] Ley de la doble negación:

$$\sim \sim p \Leftrightarrow p$$

5.] Leyes conmutativas:

$$p \lor q \Leftrightarrow q \lor p$$
$$p \land q \Leftrightarrow q \land p$$

6.] Leyes asociativas:

$$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$$

$$p \land (q \land r) \Leftrightarrow (p \land q) \land r$$

continuación...

7.] Leyes idempotentes:

$$p \lor \mathbf{p} \Leftrightarrow \mathbf{p}$$
$$p \land p \Leftrightarrow \mathbf{p}$$

8.] Leyes del neutro:

$$\begin{array}{c} \boldsymbol{p} \lor F_o \Leftrightarrow \boldsymbol{p} \\ \boldsymbol{p} \land T_o \Leftrightarrow \boldsymbol{p} \end{array}$$

9.] Leyes inversas:

$$p \lor \sim \mathbf{p} \Leftrightarrow T_o$$
$$p \land \sim p \Leftrightarrow F_o$$

10.] Leyes de dominación:

$$p \lor T_o \Leftrightarrow T_o$$

 $p \land F_o \Leftrightarrow F_o$

Nota:

$$T_o = Tautología$$

 $F_o = Contrdicción$

Actividad	Correlativo	Fecha
Tarea No.4	4	

Ejercicios (80)	
TOTAL (100)	

Leyes de absorción:

 $p \Leftrightarrow p V (p \wedge q)$

		3	4
р	q	pΛq	PV3
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

 $p \Leftrightarrow p \land (p \lor q)$

		3	4
р	q	pVq	р л 3
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Leyes de DeMorgan:

 $\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$

		3	4	5	6	7
р	q	~ p	~ q	pVq	~ 5	3 ^ 4
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

$$\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$$

		3	4	5	6	7
р	q	~ p	~ q	PAq	~ 5	3 V 4
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Leyes conmutativas: $\mathbf{p} \lor (\mathbf{q} \land \mathbf{r}) \Leftrightarrow (\mathbf{p} \lor \mathbf{q}) \land (\mathbf{p} \lor \mathbf{r})$

			4	5	6	7	8
р	q	r	qAr	pVq	pVr	pV4	5 16
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

			4	5	6	7	8
Р	q	r	qAr	pVq	pVr	pV4	5 16
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Ley de la doble negación:

 $\sim \sim p \Leftrightarrow p$

	2	3
p	~p	~ 2
0	1	0
1	0	1

Leyes conmutativas:

 $p \lor q \Leftrightarrow q \lor p$

		2	3
р	q	$p \vee q$	$q \vee p$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

 $p \land q \Leftrightarrow q \land p$

		2	2
р	q	$p \wedge q$	q∧p
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Leyes asociativas:

 $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$

			4	5	6	7
р	q	r	$q \vee r$	$p \vee q$	$p \lor 4$	5 V r
0	0	0	0	0	0	0
0	0	1	1	0	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

 $p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$

			4	5	6	7
р	q	r	$q \wedge r$	$p \wedge q$	p ∧ 4	5 ^ r
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	0
1	1	1	1	1	1	1

Leyes idempotentes:

 $p \lor p \Leftrightarrow p$

р	$p \wedge p$	
0	0	
1	1	

 $p \wedge p \Leftrightarrow p$

р	$p \wedge p$
0	0
1	1

Leyes del neutro:

$$p \lor F_o \Leftrightarrow p$$

р	Fo	$p \vee F_o$
0	0	0
1	0	1

$\boldsymbol{p} \wedge T_o \Leftrightarrow \boldsymbol{p}$

р	T_o	$p \wedge T_o$
0	1	0
1	1	1

Leyes inversas:

$$p \lor \sim \boldsymbol{p} \Leftrightarrow T_o$$

0	1	1	1
1	0	1	1

$p \wedge \sim p \Leftrightarrow F_o$

		3	4
р	р	Fo	p ∧~ p
0	1	0	0
1	0	0	0

Leyes de dominación:

$$\boldsymbol{p} \vee T_o \Leftrightarrow T_o$$

р	T_o	$p \vee T_o$
0	1	1
1	1	1

 $\boldsymbol{p} \wedge F_o \Leftrightarrow F_o$

p	F_o	$p \wedge F_o$
0	0	0