1 Chapter 8: D-Branes

1. First, a simple magnetic monopole for a 1-form gauge field in D spacetime dimensions has a radial magnetic field that $B_r = \frac{\tilde{Q}_1}{\Omega_{D-2}r^{D-2}}$ where $\Omega_{D-2} = 2\pi^{d/2}\Gamma(d/2)$ is the volume of a unit D-2 sphere. This way, the flux of the solution over any D-2 sphere surrounding the (point) monopole will be \tilde{Q}_1 .

Upon taking the Hodge star we get the solution is $F = \tilde{Q}_1 \sin \theta d\theta \wedge d\phi$. We can write this as $A = \tilde{Q}_1(c - \cos \theta)d\phi$. Taking c = 1 we get A vanishes at $\theta = 0$ (which we need since the ϕ coordinate degnerates there) while taking c = -1 we get A vanishes at $\theta = \pi$, which we also need.

We cannot have both solutions, and so we realize we are dealing with two As, corresponding to local sections of a line bundle over S^2 on different hemispheres. Let A^+ be well-defined on all points on S^2 except $\theta = \pi$. Then A^+ is a section of a line bundle on the punctured sphere. The punctured sphere is contractible so any fiber bundle over it is trivial, so A^+ is just a function on the punctured sphere $S^2 \setminus \{\theta = \pi\}$. So let's define $A^+ = \tilde{Q}_1(1 - \cos\theta) d\phi$. Similarly, we define A^- to be the nonsingular A on the sphere with $\theta = 0$ removed, namely $A^- = \tilde{Q}_1(-1 - \cos\theta) d\phi$.

On the overlap, $A^+ - A^-$ differ by an integer, which labels the degree of "twisting" of this line bundle over S^2 .

For a p form, our monopole will now be spatially extended in p-1 directions. Label these (locally), by $x^1 ldots x^{p-1}$. Time is x^0 . Locally transverse to these coordinates will be $r, \varphi^1 ldots, \varphi^{D-1-p}$, where φ^i parameterize a D-1-p sphere enclosing the monopole. The field strength looks like:

$$F = \tilde{Q}_p \, \Omega_{D-p-1}$$

where Ω is the canonical D-p-1-sphere area form:

$$\Omega = \sin^{D-p-2}(\varphi_1)\sin^{D-p-3}(\varphi_2)\dots\sin(\varphi_{D-p-2})\,\mathrm{d}\varphi_1\wedge\dots\mathrm{d}\varphi_{D-p-1}$$

This can be written (unfortunately unavoidably) in terms of a hypergeometric function:

$$A = {}_{2}F_{1}\left(\frac{1}{2}, \frac{D-p-1}{2}, \frac{D-p+1}{2}, \sin^{2}(\varphi_{1})\right) \frac{\sin^{D-p-1}(\varphi_{1})}{D-p-1} d\varphi_{2} \wedge \cdots \wedge d\varphi_{D-p-1}$$

there is no need for an overall constant, as the function above vanishes at both $\varphi_1 = 0$ and π , however this is compensated by the hypergeometric function having a branch cut at $\varphi_1 = \pi/2$. Across this cut, it will have a discontinuity set by an integer depending on the convention of the arcsin function, and again we will have $A^+ - A^-$ differing by an integer. The same quantization condition follows.

Again A^+ will be defined on the S^{D-p-1} sphere minus the south-pole (this is homeomorphic to the D-p-1 ball, and hence contractible, so again the line bundle trivializes and A^+ is a bona-fide function for any D,p) and A^- is similarly defined on the sphere with the excision of the north pole.

2. Our simply charged point particle with a Wilson line $A_9 = \chi/2\pi R$ turned on will have an action

$$S = \int d\tau \left(\underbrace{\frac{1}{2} \dot{x}^M \dot{x}_M - \frac{m^2}{2} + qA_9 \dot{x}^9}_{\mathcal{L}} \right)$$

The canonical momentum will be $p_i = \dot{x}^{\mu}$ for $\mu = 0...8$ and $p_9 = \dot{x}^9 + \frac{q\chi}{2\pi R}$. Consequently, our hamiltonian is

$$H = p_M \dot{x}^M - \mathcal{L} = \frac{1}{2} p_\mu p^\mu + p_9 (p_9 - \frac{q\chi}{2\pi R}) - \left[\frac{1}{2} (p_9 - \frac{q\chi}{2\pi R})^2 - \frac{m^2}{2} + (p_9 - \frac{q\chi}{2\pi R}) \frac{q\chi}{2\pi R} \right]$$

$$= \frac{1}{2} \left(p_\mu p^\mu + (p_9 - \frac{q\chi}{2\pi R})^2 + m^2 \right)$$

$$= \frac{1}{2} \left(p_\mu p^\mu + \left(\frac{2\pi n - q\chi}{2\pi R} \right)^2 + m^2 \right)$$

- 3. For a string satisfying Dirichlet boundary conditions, the total momentum is not conserved (along the directions associated with the D boundary conditions). This is easily interpretable as momentum transfer to the brane that it is attached to.
- 4. For an open string of state $|ij\rangle$, A_9 will act as $\frac{\chi_i \chi_j}{2\pi i}$. Since this is an open string with no winding, we can only have momentum contribution, and so we will get a mass formula

$$m_{ij}^2 = \frac{\hat{N} - \frac{1}{2}}{\ell_s^2} + \left(\frac{n}{R} - \frac{\chi_i - \chi_j}{2\pi R}\right)^2$$

In particular at the lowest (massless) level for a string without momentum we will get the desired spectrum

$$m_{ij}^2 = \left(\frac{\chi_i - \chi_j}{2\pi R}\right)^2$$

5. We will do this for the superstring. The massless vector and scalar modes come from the NS sector, and are associated with the gauge boson vertex operator

$$V_{-1}^{a,\mu} = g_o \lambda^a \psi^{\mu} e^{-\phi} c e^{ipX}, \qquad V_0^{a,\mu} = \frac{g_o}{\sqrt{2}\ell_s} \lambda^a (i\dot{X} + 2p \cdot \psi \,\psi^{\mu}) c e^{ipX}$$

We can explicitly scatter four such gauge bosons - two in the -1 picture and two in the 0 picture.

Recall the four-gaugini amplitude from problem 23 of the last chapter:

$$-8ig_{open}^{2}\ell_{s}^{2}\delta^{10}(\Sigma k)K(u_{1},u_{2},u_{3},u_{4})\left(\frac{\Gamma(-\ell_{s}^{2}s)\Gamma(-\ell_{s}^{2}u)}{\Gamma(1-\ell_{s}^{2}s-\ell_{s}^{2}u)}[1234]+2\,\text{perms.}\right)$$

$$K(u_{1},u_{2},u_{3},u_{4})=\frac{1}{8}(u\,\bar{u}_{1}\Gamma^{\mu}u_{2}\bar{u}_{3}\Gamma_{\mu}u_{4}-s\,\bar{u}_{1}\Gamma^{\mu}u_{4}\bar{u}_{3}\Gamma_{\mu}u_{2})$$

For now I will just quote **Polchinski 12.4.25**. We can get the four-gauge boson amplitude simply by replacing K with

$$K(k_1, k_2, k_3, k_4, e_1, e_2, e_3, e_4) = \frac{1}{8} \Big(4 \operatorname{tr}(M^1 M^2 M^3 M^4) - \operatorname{tr}(M_1 M_2) \operatorname{tr}(M_3 M_4) \Big) + (1234 \to 1342) + (1234 \to 1423) + (1234 \to$$

with $M_{\mu\nu}^i=k_{\mu}^ie_{\nu}^i-k_{\nu}^ie_{\mu}^i$. Now, the 9-p transverse momenta vanish. This gives a V_{9-p} from the δ functions. Altogether we get an amplitude:

$$-8ig_{open}^{2}\ell_{s}^{2}V_{9-p}\delta^{p+1}(\Sigma k)K(k_{i},e_{i})\left(\frac{\Gamma(-\ell_{s}^{2}s)\Gamma(-\ell_{s}^{2}u)}{\Gamma(1-\ell_{s}^{2}s-\ell_{s}^{2}u)}[1234]+2 \text{ perms.}\right)$$

6. I have done the previous problem in full generality, including CP indices.

7.