ROB-GY 6003 Foundations of robotics

Ludovic Righetti

Lecture III

Homogeneous transforms II - velocities

Course website(s)

Organization

All necessary material will be posted on Brightspace Code will be posted on the Github site of the class

Discussions/Forum with Campuswire

Book

Modern Robotics by K. Lynch and F. Park http://hades.mech.northwestern.edu/index.php/Modern_Robotics

Contact

ludovic.righetti@nyu.edu
Zoom office hours
Tuesdays 4 to 5pm

Course Assistant

Huaijiang Zhu hzhu@nyu.edu

Zoom office hours

Wednesday 1:30 to 2:30pm

any other time by appointment

Planned class schedule (subject to changes)

Lecture I - 09/13	Introduction, sensors/actuators, configuration space			
Lecture 2 - 09/20	Rotations and homogeneous transforms	HWI		
Lecture 3 - 09/27	Homegenous transforms II / Velocities	HW2		
Lecture 4 - 10/04	Velocities II	HW3		
Lecture 5 - 10/11	Forward kinematics	HW4		
Lecture 6 - 10/12	Geometric Jacobian - Inverse Kinematics	ПУУЧ		
Lecture 7 - 10/18	Inverse Kinematics II	HW5		
Midterm - 10/25	Midterm			
Lecture 8 - 11/01	ecture 8 - 11/01 Control I (trajectory generation and resolved rate		Project I	
Lecture 9 - 11/08	Forces, duality kineto-statics	HW6		
Lecture 10 - 11/15	Dynamics			
Lecture II - II/22	······································		Project 2	
Lecture 12 - 11/29	Introduction to object manipulation			
Lecture 13 - 12/06	Introduction to legged robots		Project 3	
Lecture 14 - 12/13	ture 14 - 12/13 Going beyond the class, advanced topics			
Finals week	<u>-</u>			

Homework II

Go to https://prairielearn.engr.illinois.edu/pl/

Open now

Due in I week to get 100% (10/04)

10% bonus if you do it by Thursday (09/30)

One week late (10/11) you get 80% Two weeks late (10/18) you get 50% More than two weeks late you get 0%

Questions?

Homogeneous transform to describe rigid bodies + describe the angular velocity of a rigid body

Homogeneous transform to describe rigid bodies + describe the angular velocity of a rigid body

You will learn:

Homogeneous transform to describe rigid bodies + describe the angular velocity of a rigid body

You will learn:

 How to represent the pose of an object, move it and change coordinates using homogeneous transforms

Homogeneous transform to describe rigid bodies + describe the angular velocity of a rigid body

You will learn:

- How to represent the pose of an object, move it and change coordinates using homogeneous transforms
- How to compute the Euler angles that describe the orientation of an object

Homogeneous transform to describe rigid bodies + describe the angular velocity of a rigid body

You will learn:

- How to represent the pose of an object, move it and change coordinates using homogeneous transforms
- How to compute the Euler angles that describe the orientation of an object
- How to compute the angular velocity of a rigid body in terms of its rotation matrix and its time derivative

Homogeneous transform to describe rigid bodies + describe the angular velocity of a rigid body

You will learn:

- How to represent the pose of an object, move it and change coordinates using homogeneous transforms
- How to compute the Euler angles that describe the orientation of an object
- How to compute the angular velocity of a rigid body in terms of its rotation matrix and its time derivative

Recommended reading: Chapter 3 of Modern Robotics

Some notations

Recap from last week

Possible rigid body motions

Possible rigid body motions

Possible rigid body motions

Rotations

The rotation matrix R_{01} which describes the orientation of frame 1 with respect to frame 0 has the form

$$R_{01} = \begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix}$$

The columns correspond to the coordinates of the basis vectors of frame 1 in the coordinate frame 0 (i.e. x_1 is a column vector containing the coordinates of the x axis of frame 1 expressed in the coordinates of frame 0)

Properties of rotation matrices

Properties of rotation matrices:

- A rotation matrix is orthogonal, it means that its columns (and rows) are orthogonal with each other
- $RR^T = R^TR = I$ ($R^T = R^{-1}$ is also a rotation matrix)
- $\bullet \ \det(R) = 1$
- the composition of two rotation matrices R_1R_2 is also a rotation matrix
- the identity matrix I is also a rotation matrix
- rotations preserve distances

Properties of rotation matrices

Properties of rotation matrices:

- A rotation matrix is orthogonal, it means that its columns (and rows) are orthogonal with each other
- $RR^T = R^TR = I$ ($R^T = R^{-1}$ is also a rotation matrix)
- $\bullet \ \det(R) = 1$
- the composition of two rotation matrices R_1R_2 is also a rotation matrix
- the identity matrix I is also a rotation matrix
- rotations preserve distances

$$R$$
 is a rotation matrix \Leftrightarrow $\begin{array}{c} 1) \ RR^T = R^TR = I \\ 2) \ \det(R) = 1 \end{array}$

Rotations

Rigid body transforms

Any rigid body transformation can be described by a translation p and a rotation R. The position and orientation of frame B (the car) with respect to frame S (the spatial frame) is described by:

- p_{01} the position of the origin of B in the coordinates of S
- R_{01} the orientation of B with respect to S

As for pure rotations, we can

- I) describe the position of an object
- 2) do a coordinate transform
- 3) move an object in space

Example

Homogeneous transforms

Rigid body transformations can be conveniently described by homogeneous matrices, which summarizes the position p_{01} and orientation R_{01}

$$T_{01} = \begin{bmatrix} R_{01} & p_{01} \\ 0 & 1 \end{bmatrix}$$

A point p with 3D (or 2D) coordinates p is then described with 4D (or 3D) coordinates as

$$\bar{p} = \begin{pmatrix} p \\ 1 \end{pmatrix}$$

A vector v with 3D (or 2D) coordinates v is then described as a 4D (or 3D) coordinates as

$$\bar{p} = \begin{pmatrix} p \\ 0 \end{pmatrix}$$

Transformations of points and vectors

Inverse of an homogenous transform

Composition of homogeneous transform

Pose of an object

Coordinate transform

Move an object

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

4 matrix entries but only I free parameter

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

4 matrix entries but only I free parameter

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Why matrices to represent rotations?

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

4 matrix entries but only I free parameter

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

9 matrix entries but only 3 free parameter

Why matrices to represent rotations?

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

4 matrix entries but only I free parameter

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

9 matrix entries but only 3 free parameter

Why not use a 3 parameter representation in 3D?

Every rotation matrix R can be written as a composition of rotations along Z_B , Y_B and X_B

$$R = R_1(z_B, \alpha)R_2(y_B, \beta)R_3(x_B, \gamma)$$

Every rotation matrix R can be written as a composition of rotations along Z_B , Y_B and X_B

$$R = R_1(z_B, \alpha)R_2(y_B, \beta)R_3(x_B, \gamma)$$

$$\operatorname{Rot}(\hat{\mathbf{z}},\alpha) = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \operatorname{Rot}(\hat{\mathbf{y}},\beta) = \begin{bmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{bmatrix}, \qquad \operatorname{Rot}(\hat{\mathbf{x}},\gamma) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\gamma & -\sin\gamma \\ 0 & \sin\gamma & \cos\gamma \end{bmatrix}.$$

$$R(\alpha, \beta, \gamma) = \begin{bmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma \\ -\sin \beta & \cos \beta \sin \gamma & \cos \beta \cos \gamma \end{bmatrix}$$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$R(\alpha, \beta, \gamma) = \begin{bmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma \\ -\sin \beta & \cos \beta \sin \gamma & \cos \beta \cos \gamma \end{bmatrix}$$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

if
$$\beta \neq \pm \frac{\pi}{2}$$
 $\beta = \operatorname{atan2}\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$ with $-\frac{\pi}{2} < \beta < \frac{\pi}{2}$ $\alpha = \operatorname{atan2}(r_{21}, r_{11})$ $\gamma = \operatorname{atan2}(r_{32}, r_{33})$

$$R(\alpha, \beta, \gamma) = \begin{bmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma \\ -\sin \beta & \cos \beta \sin \gamma & \cos \beta \cos \gamma \end{bmatrix}$$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

if
$$\beta \neq \pm \frac{\pi}{2}$$
 $\beta = \operatorname{atan2}\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$ with $-\frac{\pi}{2} < \beta < \frac{\pi}{2}$ $\alpha = \operatorname{atan2}(r_{21}, r_{11})$ $\gamma = \operatorname{atan2}(r_{32}, r_{33})$

if
$$\beta = \pm \frac{\pi}{2}$$
 There is an infinite number of solutions for α and γ

$$R(\alpha_1, \frac{\pi}{2}, \gamma_1) = R(\alpha_2, \frac{\pi}{2}, \gamma_2) \text{ whenever } \alpha_1 - \gamma_1 = \alpha_2 - \gamma_2$$

$$R(\alpha, \beta, \gamma) = \begin{bmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma \\ -\sin \beta & \cos \beta \sin \gamma & \cos \beta \cos \gamma \end{bmatrix}$$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

if
$$\beta \neq \pm \frac{\pi}{2}$$
 $\beta = \operatorname{atan2}\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$ with $-\frac{\pi}{2} < \beta < \frac{\pi}{2}$ $\alpha = \operatorname{atan2}(r_{21}, r_{11})$ $\gamma = \operatorname{atan2}(r_{32}, r_{33})$

if
$$\beta = \pm \frac{\pi}{2}$$
 There is an infinite number of solutions for α and γ

$$R(\alpha_1, \frac{\pi}{2}, \gamma_1) = R(\alpha_2, \frac{\pi}{2}, \gamma_2) \text{ whenever } \alpha_1 - \gamma_1 = \alpha_2 - \gamma_2$$

This is called a "singularity" of the Euler angle representation, this is an issue when trying to compute the velocity of a rigid body as a function of the Euler angles

Other Euler angle representations

ZYZ Euler angles are define as $R(\alpha, \beta, \gamma) = Rot(\hat{z}, \alpha)Rot(\hat{y}, \beta)Rot(\hat{z}, \gamma)$

Any parametrization of this form will have similar singularity issues:

- Convenient to "visualize" a rotation
- Always a singularity => it is impossible to represent uniquely orientations with only 3 parameters!
- Problematic for computations (velocities or trajectories computations will be sensitive to singularity)

Roll-Pitch-Yaw

In ZYX Euler is thought as a body rotation around z_B , then y_B then x_B

$$R = Rot(\hat{z}, \alpha) \cdot Rot(\hat{y}, \beta) \cdot Rot(\hat{x}, \gamma)$$

This is the same as a spatial rotation around x_S , then y_S and then z_S , interpreted this way γ , β and α are called the roll-pitch-yaw angles.

Another popular representation is using unit quaternions

Another popular representation is using unit quaternions

A quaternion is a 4D generalization of complex numbers

$$q = q_0 + iq_1 + jq_2 + kq_3$$

with $i^2 = j^2 = k^2 = ijk = -1$ and $||q|| = 1$
 $ij = k, jk = i, ki = j$
 $ji = -j, kj = -i, ik = -j$

Another popular representation is using unit quaternions

A quaternion is a 4D generalization of complex numbers

$$q = q_0 + iq_1 + jq_2 + kq_3$$

with $i^2 = j^2 = k^2 = ijk = -1$ and $||q|| = 1$
 $ij = k, jk = i, ki = j$
 $ji = -j, kj = -i, ik = -j$

It can be thought as a 4D representation of the axis/angle representation

$$q = \left[egin{array}{c} q_0 \ q_1 \ q_2 \ q_3 \end{array}
ight] = \left[egin{array}{c} \cos(heta/2) \ \hat{\omega}\sin(heta/2) \end{array}
ight] \in \mathbb{R}^4$$

Another popular representation is using unit quaternions

A quaternion is a 4D generalization of complex numbers

$$q = q_0 + iq_1 + jq_2 + kq_3$$

with $i^2 = j^2 = k^2 = ijk = -1$ and $||q|| = 1$
 $ij = k, jk = i, ki = j$
 $ji = -j, kj = -i, ik = -j$

It can be thought as a 4D representation of the axis/angle representation

$$q = \left[egin{array}{c} q_0 \ q_1 \ q_2 \ q_3 \end{array}
ight] = \left[egin{array}{c} \cos(heta/2) \ \hat{\omega}\sin(heta/2) \end{array}
ight] \in \mathbb{R}^4$$

Quaternions do not have the issue of Euler angles => no singularity

From quaternions to rotation matrices and back

$$q=\left[egin{array}{c} q_0\ q_1\ q_2\ q_3 \end{array}
ight]$$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

From quaternions to rotation matrices and back

$$q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} \qquad R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$q_0 = rac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}},$$
 $\left[egin{array}{c} q_1 \ q_2 \ q_3 \end{array}
ight] = rac{1}{4q_0} \left[egin{array}{c} r_{32} - r_{23} \ r_{13} - r_{31} \ r_{21} - 2_{12} \end{array}
ight].$

From quaternions to rotation matrices and back

$$q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} \qquad R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$q_0 = \frac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}},$$

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \frac{1}{4q_0} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - 2_{12} \end{bmatrix}.$$

$$R = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_0q_2 + q_1q_3) \\ 2(q_0q_3 + q_1q_2) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_0q_1 + q_2q_3) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

Multiplication of quaternions (non-trivial!)

Multiplication of quaternions (non-trivial!)

$$q \cdot p = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} \cdot \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} q_0 p_0 - q_1 p_1 - q_2 p_2 - q_3 p_3 \\ q_0 p_1 + p_0 q_1 + q_2 p_3 - q_3 p_2 \\ q_0 p_2 + p_0 q_2 - q_1 p_3 + q_3 p_1 \\ q_0 p_3 + p_0 q_3 + q_1 p_2 - q_2 p_1 \end{bmatrix}$$

Axis-angle

Every rotation can be defined by a (unitary) axis of rotation ω and an angle of rotation θ (instead of a composition of 3 rotations)

Axis-angle

Every rotation can be defined by a (unitary) axis of rotation ω and an angle of rotation θ (instead of a composition of 3 rotations)

How do we find the associated rotation matrix?

Axis-angle

Every rotation can be defined by a (unitary) axis of rotation ω and an angle of rotation θ (instead of a composition of 3 rotations)

How do we find the associated rotation matrix?

Singularity at 0 (for 0 angle, any axis of rotation can be chosen) But velocities are well-defined (no loss of degrees of freedom)

Cross products

$$a \times b = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

$$a \times b = ||a|| \cdot ||b|| \cdot \hat{n} \cdot \sin \theta$$

Notation:
$$[a] = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix}$$

$$a \times b = [a]b$$

Cross products: properties

$$a \times a = 0$$
 $a \times b = -b \times a$
 $a \times (b+c) = (a \times b) + (a \times c)$
 $(ra) \times b = r(a \times b)$ where r is a scalar $a \times (b \times c) + b \times (c \times a) + c \times (a \times b) = 0$ Jacobi identity

Angular velocities

Angular velocities

Angular velocities

Angular velocity of a rigid body

Recap: linear differential equations

$$\dot{x} = ax$$

Recap: linear differential equations

$$\dot{x} = ax$$
 has for solution $x(t) = e^{at}x_0$

Recap: linear differential equations

$$\dot{x} = ax$$
 has for solution $x(t) = e^{at}x_0$

We have the same for systems of linear equations with matrices:

$$\dot{x} = Ax$$
 with $x(t=0) = x_0$

has for solution

$$x(t) = e^{At} x_0$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^0 = I$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^0 = I$$
$$e^{aX}e^{bX} = e^{(a+b)X}$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^{0} = I$$

$$e^{aX}e^{bX} = e^{(a+b)X}$$

$$e^{X}e^{-X} = I$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^0 = I$$

 $e^{aX}e^{bX} = e^{(a+b)X}$
 $e^X e^{-X} = I$
If $XY = YX$ then $e^X e^Y = e^Y e^X = e^{X+Y}$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^{0} = I$$

$$e^{aX}e^{bX} = e^{(a+b)X}$$

$$e^{X}e^{-X} = I$$
If $XY = YX$ then $e^{X}e^{Y} = e^{Y}e^{X} = e^{X+Y}$
If Y is invertible then $e^{YXY^{-1}} = Ye^{X}Y^{-1}$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^{0} = I$$

$$e^{aX}e^{bX} = e^{(a+b)X}$$

$$e^{X}e^{-X} = I$$
If $XY = YX$ then $e^{X}e^{Y} = e^{Y}e^{X} = e^{X+Y}$
If Y is invertible then $e^{YXY^{-1}} = Ye^{X}Y^{-1}$

$$e^{X} = (e^{X})^{T}$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

$$e^{0} = I$$

 $e^{aX}e^{bX} = e^{(a+b)X}$
 $e^{X}e^{-X} = I$
If $XY = YX$ then $e^{X}e^{Y} = e^{Y}e^{X} = e^{X+Y}$
If Y is invertible then $e^{YXY^{-1}} = Ye^{X}Y^{-1}$
 $e^{X} = (e^{X})^{T}$
 $e^{\operatorname{diag}(a_{i})} = \operatorname{diag}(e^{a_{i}})$