Complexo, Difícil e Complicado

Por Ginés García Mateos, UM 🚾 Espanha

Timelimit: 1

Números complexos não são apenas complexos, mas também complicados. Então é melhor tentar resolver outro problema...

Nós temos um números complexo, **a+b*i**, onde **i** é a raiz quadrada de -1. Nós queremos torná-lo simples (isto é, real), elevando-o a uma potência natural. Por exemplo, o número complexo 2+2***i**, pode ser simplificado elevando-o a 4:

$$(2+2*i)^4 = -64$$

Você tem que computar o menor número natural, \mathbf{N} , (zero não está incluso) tal que $(\mathbf{a}+\mathbf{b}^*\mathbf{i})^{\mathbf{N}}$ é um número real. Além disso, pedimos que o valor absoluto de $(\mathbf{a}+\mathbf{b}^*\mathbf{i})^{\mathbf{N}}$ não seja maior que 2^{30} .

Entrada

A primeira linha da entrada contém um inteiro **M**, indicando o número de casos de teste.

Para cada caso de teste, há uma linha com dois inteiros **A** e **B**. **A** é a parte real do número complexo, e **B** a parte imaginária.

Você pode assumir que -10000 ≤ **A** ≤ 10000, e -10000 ≤ **B** ≤ 10000.

Saída

Para cada caso de teste, a saída deve consistir de um único número natural **N** em uma linha, indicando a potência tal que (**A**+**B***i)**N** é real e seu valor absoluto não é maior que 2³⁰. Se não houver solução imprima "TOO COMPLICATED".

Exemplo de Entrada	Exemplo de Saída
5	1
817 0	4
2 2	2
0 -1	TOO COMPLICATED
18 92	4
-7 7	

Olimpiadas Murcianas de Programación 2009.