LISTA OPCIONAL

Exercício 1. Seja R(x) uma função racional sem polos em $[0, \infty)$ e tal que $\lim_{x \to \infty} x R(x) = 0$. Considere a integral imprópria

$$I = \int_0^\infty R(x) \ln x \, dx \, .$$

- (a) Prove que I converge.
- (b) Prove que

$$I = -\frac{1}{2} \Re \left(\sum_{a \in S} \operatorname{Res} \left(R(z) \log^2 z, \ a \right) \right) ,$$

onde S é o conjunto de pontos de singularidades de R(z) no plano complexo \mathbb{C} , e log z se refere a algum ramo (bem escolhido) do logaritmo complexo.

(c) Aplique o resultado acima à integral imprópria

$$\int_0^\infty \frac{\ln x}{1+x^3} \, dx \, .$$

Exercício 2. Sejam $\Omega \subset \mathbb{C}$ um conjunto aberto e $\{f_n\}_{n\geq 1} \subset \mathcal{H}(\Omega)$ uma sequência de funções holomorfas em Ω . Suponha que $f_n \to f$ uniformemente sobre compactos, onde a função f, que necessariamente é holomorfa, satisfaz $f \not\equiv 0$.

Seja w um zero qualquer de f. Prove que existe uma sequência $\{z_n\}_{n\geq 1}\subset \Omega$ tal que $z_n\to w$ e z_n é um zero de f_n para todo $n\geq n_0$.

Exercício 3. Prove a fórmula e o teorema de Cauchy na versão global mais geral, para ciclos homólogos a zero.