Nízkošumový předzesilovač LNA01A

Jakub Kákona, kaklik@mlab.cz 5. května 2018

Abstrakt

Vstupní nízkošumový zesilovač určený k pásmovému zesílení signálu bezprostředně za anténou. Je optimalizovaný na velmi nízký šum, aby umožnil konstrukci přijímacích sestav s malým šumovým číslem.

Obsah

1	Technické parametry
	Popis konstrukce
	2.1 Zapojení
	2.2 Odrušení
	2.3 Mechanická konstrukce
3	Výroba a testování
	3.0.1 Osazení
	3.0.2 Nastavení

1 Technické parametry

Parametr	Hodnota	Poznámka	
Napájecí napětí	do +12V	max 200mA	
Frekvenční rozsah	100 - 200 MHz	Při osazení jinými	
		součástkami i 450MHz	
Maximální RF vstupní výkon	+ 24 dBm	Maximálně 1V na RF in-	
		put	
OIP3	$40 \mathrm{dBm}$		
Šumové číslo	< 0.8 dB		

2 Popis konstrukce

2.1 Zapojení

Zapojení zesilovače je realizováno na plošném spoji materiálu FR4. Plošný spoj je možné osadit přímými SMA konektory, nebo konektory na hranu desky.

Zapojení modulu je následující

2.2 Odrušení

Zesilovač musí být nutně umístěn v plechové stínící krabičce, aby nemohlo dojít k jeho rozkmitání signálem vyzařovaným do antény. Taktéž kovová krabička zabezpečuje vyšší kvalitu signálu na výstupu zesilovače.

2.3 Mechanická konstrukce

U zesilovače se předpokládá jeho umístění do plechové pocínované stínící krabičky ve které je zesilovač zaletován za konektory. Otvory pro konektory se do krabičky vytváří lochovacími kleštěmi s průměrem nástroje 6.35mm.

3 Výroba a testování

Osazování SMD součástek probíhá do tavné pasty, včetně tranzistoru. V případě osazování tranzistoru je potřeba věnovat zvýšenou pozornost antistatické ochraně, kterou je nutné zabezpečit nepoškození tranzistoru. Tranzistor může být letován pouze elektrostaticky bezpečnými nástroji, jako je horkovzduch nebo IR pájka. Vzduchová cívka se neosazuje do doby plného osazení a zaletování SMD součástek.

Po zaletování SMD součástek lze zaletovat vzduchovou cívku, která může být letována i kontaktní pájkou. Je vhodné využít pájku o vyšším výkonu, aby bylo možné cívku kvalitně zaletovat k zemní ploše.

Následně po úplném zaletování cívky je možné odzkratovat, vstup a výstup zesilovače. Ten je zkratovaný od výroby PCB neodleptanou vrstvou mědi na opačné straně, než jsou SMD součástky. Na místě vstupního a výstupního konektoru je proto potřeba odhranit otvor pro střed SMA konektoru. To lze nejlépe provést vrtákem o průměru přibližně 8mm.

3.0.1 Osazení

Vzduchová cívka pro naladění na 143 MHz vychází 7 závitů z měděného drátu průměru 0,5 mm motáno na průměr tyčky 4mm (vrták). Cívka je roztažená tak jak je vidět na fotografii. Kondenzátory C1 a C2 jsou 8,2 pF. Zpětná vazba u LNA není potřeba, pouze zvyšuje šumové číslo a snižuje zisk asi o 1dB. Trim je nahrazen odporem 45 / Omega a celkový proud celým LNA by měl být kolem 153mA, potom je proud Source tranzistoru asi 135mA.

Obrázek 1: Osazovací plán horní a spodní strany plošného spoje

Počet	Označení	Тур	Pouzdro
7	C1,C2,C5,C6,C10,C11,C14	C0805	100nF
2	C3,C4	ELYTC	$47\mathrm{uF}$
1	C7	C0805	68pF
1	C8	C0805	1nF
1	C9	C0805	1uF
2	C12,C13	ELYTB	$10 \mathrm{uF} / 16 \mathrm{V}$
3	D1,D2,D3	SMA	M4
2	D4,D5	SOT23	BAR43SSMD
1	J1	JUMP2X4	JUMP2X4
2	J2,J4	SMA6251A13G50	SMA6251A13G50
1	J3	JUMP2X3	JUMP2X3
1	floor J5	JUMP3	Power Bypass
3	L1,L2,L3	R0805	BLM21PG300SN1D
3	L4,L5,L6	L1812	CC453232-1R2KL
1	R1	R1206	10R/0R
1	U1	TO252	LM78M05CDT
1	U2	SOT89	ADL5536

Tabulka 1: Seznam součástek pro všechny varianty osazení plošného spoje.

3.0.2 Nastavení

Dolaďování předzesilovače se provádí deformací vzduchové cívky. Kmitočtovou charakteristiku zesilovače lze přeměřit přístrojem sestaveným z modulů MLAB. Je k tomu potřeba SDR-widget s přijímačem SDRX01B a šumový generátor.

Protože zmíněný generátor šumu má pro účely měření v podstatě plochou frekvenční charakteristiku, tak můžeme bez kalibrace jeho výstup připojit přímo na LNA.

Součástí PySDR je detekční skript, který umožňuje přijímač přelaďovat přes zvolené frekvenční pásmo a zaznamenávat amplitudu signálu. Tento skript může být spuštěn několika způsoby, které se liší jednak podle toho, jestli chceme spustit měření v PySDR, nebo samostatně.

Reference

[1] Původní konstrukce odkaz na nejakou zajimavou konstrukci