- 1. Demonstrate whether each of these statements is true or false for polynomials over a field.
 - (a) The product of monic polynomials is monic. (5%)
 - (b) The product of polynomials of degrees m and n has degree m + n. (5%)
 - (c) The sum of polynomials of degrees m and n has degree $\max\{m,n\}$. (5%)
- 2. Determine which of the following polynomials are reducible over GF(2).
 - (a) $x^2 + 1$. (5%)
 - (b) $x^2 + x + 1$. (5%)
 - (c) $x^4 + x + 1$. (5%)
- 3. Determine the gcd of the following pairs of polynomials.
 - (a) $(x^3 + x + 1)$ and $(x^2 + 1)$ over GF(3). (5%)
 - (b) $(x^3 2x + 1)$ and $(x^2 x 2)$ over GF(5). (5%)
- 4. Determine the multiplicative inverse of $x^2 + 1$ in $GF(2^3)$ with $m(x) = x^3 + x 1$. (10%)
- 5. Develop a set of tables similar to Table 5.3 for GF(4) with $m(x) = x^2 + x + 1$. (10%)