S2525F8-GL-RTK

Industry-Leading Low-Power Small-Size RTK OEM Receiver for Mobile Platforms Requiring Centimeter-Level Accuracy

Features

- Centimeter-level accuracy RTK receiver
- GPS L1/GLONASS L1/QZSS/SBAS C/A code
- 230mW low power consumption
- 25mm x 25mm small size
- Designed for demanding environments
- NMEA-0183 and RTCM 3.x protocol
- Easy to integrate
- Operating temperature -40 ~ +85°C
- RoHS compliant

Applications

- Construction, mining
- Machine control & automation
- Unmanned aerial vehicle
- Precision agriculture
- Aerial photography
- Land survey

The S2525F8-GL-RTK offers centimeter-level accuracy based on carrier phase RTK technique and can be used for a wide range of high-accuracy positioning applications. Its 25mm x 25mm form factor and 300mW power consumption makes it ideal for mobile precision positioning application requiring low power and small size.

The receiver receives RTCM 3.x data from a base station or a base-station-capable SkyTraq carrier phase raw measurement receiver to perform carrier phase RTK processing, achieving centimeter level accurate relative positioning. For challenging environments where RTK positioning is not possible, S2525F8-GL-RTK delivers high accuracy DGNSS and GNSS positioning.

The S2525F8-GL-RTK receiver is based on SkyTraq's very high-performance Venus8 GNSS chipset, featuring fast signal acquisition search engine and high-sensitivity track engine. Search engine performs 16 million time-frequency hypothesis testing per second, offering industry-leading signal acquisition performance.

The receiver is optimized for applications requiring high precision centimeter-level accuracy, high-performance, low power, and lower cost.

TECHNICAL SPECIFICATIONS

Receiver Type GPS L1 + GLONASS L1 + QZSS + SBAS L1 C/A code, 167-channel

Accuracy Position 2.5m CEP autonomous mode

< 1m DGPS mode centimeter-level RTK mode

Velocity 0.1m/sec

Time 10ns

Time to First Fix 1 second hot start under open sky (average)

28 second warm start under open sky (average) 29 second cold start under open sky (average)

90sec to 1st ambiguity fixed solution at 7Km baseline for example*

Reacquisition 1s

Sensitivity -148dBm cold start

-160dBm tracking

Update Rate

	S2525F8-GL-RTK model suffix		-5	-10
Update	RTK cm-level accuracy (Hz)	1	1/2/4/5	1/2/4/5/8/10
	normal meter-level accuracy (Hz)	2/4/5/8/10/20	8/10/20	20

Operational Limits Altitude < 18,000m or velocity < 515m/s

Serial Interface 3.3V LVTTL level

Protocol NMEA-0183 V3.01

GPGGA, GPGLL, GPGSA, GLGSA, GPGSV, GLGSV, GPVTG, GPRMC

115200 baud, 8, N, 1

RTCM 3.0, 3.1 or SkyTraq raw data binary

57600 baud, 8, N, 1

Datum Default WGS-84 and user definable

Input Voltage 3.3V DC +/-5%

Current Consumption 70mA

Dimension 25.4mm L x 25.4mm W

Weight: 3g

Operating Temperature $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$

Storage Temperature -55 °C ~ +100°C

Humidity 5% ~ 95% non-condensing

^{*}Note: This time to first RTK fixed solution is dependent on number of satellites available, usable satellite geometry, signal strength, distance from base-station...etc. May take $1 \sim 10$ minutes under open sky within 10Km baseline.

KEY FUNCTIONAL PARTS

MECHANICAL CHARACTERISTICS

PINOUT DESCRIPTION

Pin No.	Name	Description
1	VCC33	Digital section power supply, 3.3V DC
2	GND	Digital ground
3	BOOT_SEL1	No connection for normal use. Pull-low for loading firmware into empty or corrupted Flash memory from ROM mode for the baseband chip.
4	RX1	UART serial data input, 3.3V LVTTL. One full-duplex asynchronous serial UART port is implemented. This UART input is normally for sending commands or information to the receiver in SkyTraq binary protocol. In the idle condition, this pin should be driven HIGH. If the driving circuitry is powered independently of S2525F8-GL-RTK, ensure that this pin is not driven to HIGH when primary power to S2525F8-GL-RTK is removed, or a 10K-ohm series resistor can be added to minimize leakage current from application to the powered off module.
5	TX1	UART serial data output, 3.3V LVTTL. One full-duplex asynchronous serial UART port is implemented. This UART output is normally used for sending position, time and velocity information from the receiver in NMEA-0183 format. When idle, this pin output HIGH.
6	TX2	UART serial data output, 3.3V LVTTL. Currently not used.
7	RX2	UART serial data input, 3.3V LVTTL. One full-duplex asynchronous serial UART port is implemented. This UART input is normally for sending RTCM-SC104 correction data, or base station SkyTraq raw measurement data to the receiver. In the idle condition, this pin should be driven HIGH. If the driving circuitry is powered independently of S2525F8-GL-RTK, ensure that this pin is not driven to HIGH when primary power to S2525F8-GL-RTK is removed, or a 10K-ohm series resistor can be added to minimize leakage current from application to the powered off module.
8	NC	No connection, empty pin

		CDIO rin 2 20/11/TTI
9	GPIO10	GPIO pin, 3.3V LVTTL. External trigger input for camera shutter synchronization*
10	STS	Position fix status indicator output, active low, 3.3V LVTTL.
		No position solution: output HIGH
		DGPS or 3D solution: output LOW 2sec, HIGH 2sec
		RTK float solution: output INTEGER(ratio / 0.5) + 1 pulses, each pulse LOW for 0.25sec, HIGH for 0.25sec, ending with HIGH for 1sec. When connected to LED + 370-ohm resistor to 3.3V, the pulse count gives an idea of the RTK ratio value without needing a notebook.
		RTK fix solution: output LOW
11,12	RFGND	RF ground
13,14,15	NC	No connection, empty pin
16	RFGND	RF ground
17	RFIN	RF signal input connects to antenna. 3.2V active antenna bias on RFIN.
18	RFGND	RF ground
19,20	RFVCC33	RF section power supply, 3.3V DC
21	VBAT	Backup supply voltage for internal RTC and backup SRAM, 2.5V ~ 3.6V. VBAT must be applied whenever VCC33 is applied. This pin should be powered continuously to minimize the startup time. If VCC33 and VBAT are both removed, the receiver will be in factory default mode upon power up, all user configuration set is lost. For applications the does not care cold starting every time, this pin can be connect to VCC33.
22	RSTN1	External active-low reset input to the baseband. Only needed when power supply rise time is very slow or software controlled reset is desired.
23	TX3	UART serial data output, 3.3V LVTTL. Output carrier phase raw measurement data at 115200
24	NC	No connection, empty pin
25	VCC33	Digital section power supply, 3.3V DC
26	NC	No connection, empty pin
27	RSTN2	External active-low reset input to the RTK processor. Only needed when power supply rise time is very slow or software controlled reset is desired.
28	BOOT_SEL2	No connection for normal use. Pull-low for loading firmware into empty or corrupted Flash memory from ROM mode for the RTK processor.
29	1PPS	One-pulse-per-second (1PPS) time mark output, 3.3V LVTTL. The rising edge synchronized to UTC second when getting 3D position fix. The pulse duration is about 800usec at rate of 1 Hz.
30	GND	Digital ground

^{*} Available only for S2525F8-GL-RTK-5S and -10S, 5Hz and 10Hz RTK version with precision time/position stamp

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Parameter	Minimum	Maximum	Condition
Supply Voltage (VCC33)	-0.5	3.6	Volt
Backup Battery Voltage (VBAT)	-0.5	6.0	Volt
Input Pin Voltage	-0.5	VCC+0.5	Volt
Input Power at RFIN		+5	dBm
Storage Temperature	-55	+100	degC

OPERATING CONDITIONS

Parameter	Min	Тур	Max	Unit
Supply Voltage (VCC33)	3	3.3	3.6	Volt
Acquisition Current (exclude active antenna current)		70		mA
Tracking Current (exclude active antenna current)		50		mA
Backup Voltage (VBAT)	2.5		3.6	Volt
Backup Current (VCC33 voltage applied)			1.5	mA
Backup Current (VCC33 voltage off)			10	uA
Output Low Voltage			0.4	Volt
Output HIGH Voltage	2.4			Volt
Input LOW Voltage			0.8	Volt
Input HIGH Voltage	2			Volt
Input LOW Current	-10		10	uA
Input HIGH Current	-10		10	uA
RF Input Impedance (RFIN)		50		Ohm

APPLICATION CIRCUIT

PRECOMMENDED LAYOUT PAD

RECOMMANDED REFLOW PROFILE

The reflow profile shown above should not be exceeded, since excessive temperatures or transport times during reflow can damage the module. Cooling temperature fall rate: $\max 3^{\circ}C$ / \sec

ANTENNA CONSIDERATIONS

The S2525F8-GL-RTK is designed to be used with GPS/GLONASS active antenna. Antenna with gain up to 30dB and noise figure less than 2dB can be used. It is important to select a high-performance antenna to achieve optimal RTK performance.

POWER SUPPLY REQUIREMENT

S2525F8-GL-RTK requires a stable power supply, avoid ripple on VCC33 pin (<50mVpp). Power supply noise can affect the receiver's sensitivity. Bypass capacitors should be placed close to the module VCC33 pin, with values adjusted depending on the amount and type of noise present on the supply line.

BACKUP SUPPLY

The purpose of backup supply voltage pin (VBAT) is to keep the SRAM memory and the RTC powered when the module is powered down. This enables the module to have a faster time-to-first-fix when the module is powered on again. The backup current drain is less than $10\mu A$. In normal powered on state, the internal processor access the SRAM and current drain is higher in active mode

1PPS OUTPUT

A 1 pulse per second signal (800us HIGH duration) is generated on 1PPS pin when the receiver has 3D position fix using 4 or more satellites. The rising edge of the pulse is aligned with UTC second, with accuracy of about 10nsec. It outputs constant LOW when no position fix is available.

LAYOUT GUIDELINES

Separate RF and digital circuits into different PCB regions.

It is necessary to maintain 50-ohm impedance throughout the entire RF signal path. Try keeping the RF signal path as short as possible.

Do not route the RF signal line near noisy sources such as digital signals, oscillators, switching power supplies, or other RF transmitting circuit. Do not route the RF signal under or over any other components (including S2525F8-GL-RTK), or other signal traces. Do not route the RF signal path on an inner layer of a multi-layer PCB to minimize signal loss.

Avoid sharp bends for RF signal path. Make two 45-deg bends or a circular bend instead of a single 90-degree bend if needed.

Avoid vias with RF signal path whenever possible. Every via adds inductive impedance. Vias are acceptable for connecting the RF grounds between different layers. Each of the module's ground pins should have short trace tying immediately to the ground plane below through a via.

The bypass capacitors should be low ESR ceramic types and located directly adjacent to the pin they are for.

HANDLING GUIDELINE

The S2525F8-GL-RTK modules are rated MSL4, must be used for SMT reflow mounting within 72 hours after taken out from the vacuumed ESD-protective moisture barrier bag in factory condition < 30degC / 60% RH. If this floor life time is exceeded, or if the received ESD-protective moisture barrier bag is not in vacuumed state, then the device need to be pre-baked before SMT reflow process. Baking is to be done at 85degC for 8 to 12 hours. Once baked, floor life counting begins from 0, and has 72 hours of floor life at factory condition < 30degC / 60% RH.

S2525F8-GL-RTK module is ESD sensitive device and should be handled with care.

RTK Usage Guideline

Below conditions are required for getting RTK fix solution. If the conditions are not met, S2525F8-GL-RTK will only have float or DGPS/3D solution and behave like a normal GPS/GLONASS receiver.

- * Base and rover distance under 10Km
- * Open sky environment without interference
- * Signal over 37dB/Hz
- * 7 or more satellites above 15 degree elevation angle with good satellite geometry or low DOP value; generally more satellites will have faster RTK fix

NMEA Output Description

The output protocol supports NMEA-0183 standard. The implemented messages include GGA, GLL, GSA, GSV, VTG, RMC, ZDA and GNS messages. The NMEA message output has the following sentence structure:

\$aaccc,c-c*hh<CR><LF>

The detail of the sentence structure is explained in Table 1.

Table 1: The NMEA sentence structure

character	HEX	Description	
"\$"	24	Start of sentence.	
Aaccc		Address field. "aa" is the talker identifier. "ccc" identifies the sentence type.	
<i>un</i>	2C	Field delimiter.	
C-c		Data sentence block.	
<i>u</i> *"	2A	Checksum delimiter.	
Hh		Checksum field.	
<cr><lf></lf></cr>	0D0A	Ending of sentence. (carriage return, line feed)	

Table 2: Overview of SkyTraq receiver's NMEA messages

2. Overview of sky mad receiver s timessages				
Time, position, and fix related data of the receiver.				
Position, time and fix status.				
Used to represent the ID's of satellites which are used for position fix. When GPS satellites are used for				
position fix, \$GPGSA sentence is output. When GLONASS satellites are used for position fix, \$GLGSA sentence is output.				
Satellite information about elevation, azimuth and CNR, \$GPGSV is used for GPS satellites, while				
\$GLGSV is used for GLONASS satellites				
Time, date, position, course and speed data.				
Course and speed relative to the ground.				
UTC, day, month and year and time zone.				

The formats of the supported NMEA messages are described as follows:

GGA – Global Positioning System Fix Data

Time, position and fix related data for a GPS receiver.

Structure:

 $$\mathsf{GPGGA}, \mathsf{hhmmss.sss}, \mathsf{ddmm.mmmmmm,a}, \mathsf{dddmm.mmmmmmm,a}, \mathsf{x}, \mathsf{xx}, \mathsf{x}, \mathsf{x},$

1 2 3 4 56789 10 11 12

Example:

\$GPGGA,202434.000,2447.0936188,N,12100.5253729,E,4,22,0.6,96.186,M,19.600,M,,0000*65<CR><LF>

Field	Name	Example	Description
1	UTC Time	202434.000	UTC of position in hhmmss.sss format, (000000.000 ~ 235959.999)
2	Latitude	2447.0936188	Latitude in ddmm.mmmmmm format
			Leading zeros transmitted
3	N/S Indicator	N	Latitude hemisphere indicator, 'N' = North, 'S' = South
4	Longitude	12100.5253729	Longitude in dddmm.mmmmmm format
			Leading zeros transmitted
5	E/W Indicator	E	Longitude hemisphere indicator, 'E' = East, 'W' = West
6	GPS quality	4	GPS quality indicator
	indicator		0: position fix unavailable
			1: valid position fix, SPS mode
			2: valid position fix, differential GPS mode
			3: GPS PPS Mode, fix valid
			4: Real Time Kinematic. System used in RTK mode with fixed integers
			5: Float RTK. Satellite system used in RTK mode., floating integers
			6: Estimated (dead reckoning) Mode
7	Satellites Used	22	Number of satellites in use, (00 ~ 28)
8	HDOP	0.6	Horizontal dilution of precision, (0.0 ~ 99.9)
9	Altitude	96.186	mean sea level (geoid), (-9999.9 ~ 17999.9)
10	Geoidal Separation	19.600	Geoidal separation in meters
11	Age pf Differential		Age of Differential GPS data
	GPS data		NULL when DGPS not used
12	DGPS Station ID	0000	Differential reference station ID, 0000 ~ 1023
13	Checksum	65	

GLL – Latitude/Longitude

Latitude and longitude of current position, time, and status.

Structure:

\$GPGLL,ddmm.mmmmmm,a,dddmm.mmmmmmm,a,hhmmss.sss,A,a*hh<CR><LF>

2 3 4 5 678

Example:

\$GPGLL,2447.0877990,N,12100.5225238,E,075310.000,A,F*58<CR><LF>

Field	Name	Example	Description
1	Latitude	2447.0877990	Latitude in ddmm.mmmmmm format
			Leading zeros transmitted
2	N/S Indicator	N	Latitude hemisphere indicator
			'N' = North
			'S' = South
3	Longitude	12100.5225238	Longitude in dddmm.mmmmmmm format
			Leading zeros transmitted
4	E/W Indicator	E	Longitude hemisphere indicator
			'E' = East
			'W' = West
5	UTC Time	075310.000	UTC time in hhmmss.sss format (000000.000 ~ 235959.999)
6	Status	Α	Status, 'A' = Data valid, 'V' = Data not valid
7	Mode Indicator	F	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'F' = Float RTK. Satellite system used in RTK mode, floating
			integers
			'R' = Real Time Kinematic. System used in RTK mode with fixed
			integers
8	Checksum	58	

GSA – GNSS DOP and Active Satellites

GPS receiver operating mode, satellites used in the navigation solution reported by the GGA or GNS sentence and DOP values.

Structure:

Example:

\$GPGSA,A,3,01,07,08,11,19,27,30,32,193,03,16,09,1.0,0.6,0.8*0A<CR><LF>

Field	Name	Example	Description
1	Mode	A	Mode
			'M' = Manual, forced to operate in 2D or 3D mode
			'A' = Automatic, allowed to automatically switch 2D/3D
2	Mode	3	Fix type
			1 = Fix not available
			2 = 2D
			3 = 3D
3	Satellite used 1~12	01,07,08,11,19,2	01 ~ 32 are for GPS; 33 ~ 64 are for WAAS (PRN minus 87); 193
		7,30,32,193,03,1	~ 197 are for QZSS; 65 ~ 96 are for GLONASS (64 plus slot
		6,09	numbers). GPS and GLONASS satellites are differentiated by the
			GP and GL prefix. Maximally 12 satellites are included in each
			GSA sentence.
4	PDOP	1.0	Position dilution of precision (0.0 to 99.9)
5	HDOP	0.6	Horizontal dilution of precision (0.0 to 99.9)
6	VDOP	0.8	Vertical dilution of precision (0.0 to 99.9)
7	Checksum	0A	

GSV - GNSS Satellites in View

Number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value. Four satellites maximum per transmission.

Structure:

\$GPGSV,x,xx,xx,xx,xx,xx,xx,...,xx,xxx,xx *hh<CR><LF>
 1 2 3 4 5 6 7 4 5 6 7 8

Example:

\$GPGSV,3,1,12,05,54,069,45,12,44,061,44,21,07,184,46,22,78,289,47*72<CR><LF>\$GPGSV,3,2,12,30,65,118,45,09,12,047,37,18,62,157,47,06,08,144,45*7C<CR><LF>\$GPGSV,3,3,12,14,39,330,42,01,06,299,38,31,30,256,44,32,36,320,47*7B<CR><LF>

Field	Name	Example	Description
1	Number of message	3	Total number of GSV messages to be transmitted (1-5)
2	Sequence number	1	Sequence number of current GSV message
3	Satellites in view	12	Total number of satellites in view (00 ~ 20)
4	Satellite ID	05	01 $^{\sim}$ 32 are for GPS; 33 $^{\sim}$ 64 are for WAAS (PRN minus 87); 193 $^{\sim}$ 197 are for QZSS; 65 $^{\sim}$ 96 are for GLONASS (64 plus slot numbers). GPS and GLONASS satellites are differentiated by the GP and GL prefix. Maximally 4 satellites are included in each GSV sentence.
5	Elevation	54	Satellite elevation in degrees, (00 ~ 90)
6	Azimuth	069	Satellite azimuth angle in degrees, (000 ~ 359)
7	SNR	45	C/No in dB (00 ~ 99) Null when not tracking
8	Checksum	72	

RMC – Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver.

Structure:

 $$\mathsf{GPRMC}, hhmmss.sss, A, dddmm.mmmmmm, a, x. x, x. x, ddmmyy, ,, a*hh < \mathsf{CR} > < \mathsf{LF} > \mathsf{CR} > \mathsf$

2 3 4 5 678 9 10 11

Example:

\$GPRMC,075400.000,A,2447.0862197,N,12100.5222844,E,000.0,000.0,180915,,,R*74<CR><LF>

Field	Name	Example	Description
1	UTC time	075400.000	UTC time in hhmmss.sss format (000000.00 ~ 235959.999)
2	Status	A	Status
			'V' = Navigation receiver warning
			'A' = Data Valid
3	Latitude	2447.0862197	Latitude in dddmm.mmmmmm format
			Leading zeros transmitted
4	N/S indicator	N	Latitude hemisphere indicator
			'N' = North
			'S' = South
5	Longitude	12100.5222844	Longitude in dddmm.mmmmmmm format
			Leading zeros transmitted
6	E/W Indicator	E	Longitude hemisphere indicator
			'E' = East
			'W' = West
7	Speed over ground	0.000	Speed over ground in knots (000.0 ~ 999.9)
8	Course over ground	0.000	Course over ground in degrees (000.0 ~ 359.9)
9	UTC Date	180915	UTC date of position fix, ddmmyy format
10	Mode indicator	R	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'F' = Float RTK. Satellite system used in RTK mode, floating
			integers
			'R' = Real Time Kinematic. System used in RTK mode with fixed
			integers
11	checksum	74	

VTG - Course Over Ground and Ground Speed

The actual course and speed relative to the ground.

Structure:

Example:

\$GPVTG,000.0,T,,M,000.0,N,000.0,K,R*1E<CR><LF>

Field	Name	Example	Description	
1	Course	0.000	True course over ground in degrees (000.0 ~ 359.9)	
2	Speed	000.0	Speed over ground in knots (000.0 ~ 999.9)	
3	Speed	000.0	Speed over ground in kilometers per hour (000.0 ~ 1800.0)	
4	Mode	R	Mode indicator	
			'N' = Data not valid	
			'A' = Autonomous mode	
			'D' = Differential mode	
			'E' = Estimated (dead reckoning) mode	
			'F' = Float RTK. Satellite system used in RTK mode, floating	
			integers	
			'R' = Real Time Kinematic. System used in RTK mode with fixed	
			integers	
5	Checksum	1E		

ZDA – TIME AND DATE

UTC, day, month, year and local time zone

Structure:

\$GPZDA,hhmmss.sss,xx,xx,xxxx,xxx,xx*hh<CR><LF>

1 234567

Example:

\$GPZDA,202434.000,25,11,2015,00,00*54<CR><LF>

Field	Name	Example	Units	Description
1	UTC time	202434.000		UTC time in hhmmss.ss format (000000.00 ~ 235959.99)
2	UTC Day	25		UTC time: day (01 ~ 31)
3	UTC Month	11		UTC time: month (01 ~ 12)
4	UTC Year	2015		UTC time: year (4 digit format)
5	Local zone hour	00		Local zone hours (00 ~ +/- 13)
6	Local zone minutes	00		Local zone minutes (00 ~59)
7	Checksum	54		Checksum

GST – GNSS Pseudorange Error Statistics

GNSS Pseudorange error statics.

Structure:

 $\verb| \$GPGST|, hhmmss.sss, x.xxx, x.xx, x.xxx, x.xx, x.xxx, x.xx, x.xxx, x.xxx, x.xxx, x.xxx, x.xxx, x.xxx, x.xxx, x.xxx, x.xxx, x.xxx,$

1 2 3 4 5 6 7 8 9

Example:

\$GPGST,080331.600,0.004,0.002,0.002,62.7,0.002,0.002,0.003*5C<CR><LF>

Field	Name	Example	Description
1	UTC time	080311.600	UTC time of the GGA or GNS fix associated with this sentence in hhmmss.sss format (000000.000 ~ 235959.999)
2	RMS value of the standard deviation of the range	0.004	RMS value of the standard deviation of the range inputs to the navigation process. Range inputs include pseudoranges & DGNSS corrections.
3	Standard deviation of semi-major axis	0.002	Standard deviation of semi-major axis of error ellipse in meters
4	Standard deviation of semi-minor axis	0.002	Standard deviation of semi-minor axis of error ellipse in meters
5	Orientation of semi-major axis	62.7	Orientation of semi-major axis of error ellipse in degrees from true north.
6	Standard deviation of latitude error	0.002	Standard deviation of latitude error in meters
7	Standard deviation of longitude error	0.002	Standard deviation of longitude error in meters
8	Standard deviation of altitude error	0.003	Standard deviation of altitude error in meters
9	checksum	5C	

STI,005 - Time & Position Stamp Output *

An output message, ID 0x005, contains GPIO 10 event-triggered time & position stamp. The trigger input should be spaced more than 1.5sec apart. Time error less than 100nsec, maximum position error of 0.278mm per km/hr times the moving speed added on top of RTK positioning error.

Structure:

\$PSTI,005,hhmmss.sssssss,xx,xx,xxxx,ddmm.mmmmmm,a,dddmm.mmmmmm,a,x.x*hh<CR><LF>

1 2 3 4 5 6 7 8 9 10 11

Example:

\$PSTI,005,030718.1408380,27,11,2015,2447.0924110,N,12100.5227860,E,103.323*2C<CR><LF>

Field	Name	Example	Description
1	ID	005	Proprietary NMEA message identifier
2	UTC time	030718.1408380	Time-stamp UTC time in hhmmss.sssssss format
			(000000.0000000 ~ 235959.9999999)
3	UTC Day	27	Time-stamp UTC time: day (01 ~ 31)
4	UTC Month	11	Time-stamp UTC time: month (01 ~ 12)
5	UTC Year	2015	Time-stamp UTC time: year (4 digit format)
6	Latitude	2447.0924110	Latitude in ddmm.mmmmmmm format
			Leading zeros transmitted
7	N/S Indicator	N	Latitude hemisphere indicator, 'N' = North, 'S' = South
8	Longitude	12100.5227860	Longitude in dddmm.mmmmmmm format
			Leading zeros transmitted
9	E/W Indicator	E	Longitude hemisphere indicator, 'E' = East, 'W' = West
10	Altitude	103.323	mean sea level (geoid), (-9999.999 ~ 17999.999)
11	Checksum	29	Checksum

^{*} Available only for S2525F8-GL-RTK-5S and -10S, 5Hz and 10Hz RTK version with precision time/position stamping

STI,030- Recommended Minimum 3D GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver.

Structure:

Example:

\$PSTI,030,044606.000,A,2447.0924110,N,12100.5227860,E,103.323,0.00,0.00,0.00,180915,R,1.2,4.2*02<CR><LF>

Field	Name	Example	Description
1	UTC time	044606.000	UTC time in hhmmss.sss format (000000.00 ~ 235959.999)
2	Status	А	Status
			'V' = Navigation receiver warning
			'A' = Data Valid
3	Latitude	2447.0924110	Latitude in dddmm.mmmmmmm format
			Leading zeros transmitted
4	N/S indicator	N	Latitude hemisphere indicator
			'N' = North
			'S' = South
5	Longitude	12100.5227860	Longitude in dddmm.mmmmmmm format
			Leading zeros transmitted
6	E/W Indicator	E	Longitude hemisphere indicator
			'E' = East
			'W' = West
7	Altitude	103.323	mean sea level (geoid), (-9999.999 ~ 17999.999)
8	East Velocity	0.00	'East' component of ENU velocity (m/s)
9	North Velocity	0.00	'North' component of ENU velocity (m/s)
10	Up Velocity	0.00	'Up' component of ENU velocity (m/s)
11	UTC Date	180915	UTC date of position fix, ddmmyy format
12	Mode indicator	R	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'M' = Manual input mode
			'S' = Simulator mode
			'F' = Float RTK. Satellite system used in RTK mode, floating
			integers
			'R' = Real Time Kinematic. System used in RTK mode with fixed
			integers
13	RTK Age	1.2	Age of differential
14	RTK Ratio	4.2	AR ratio factor for validation
15	Checksum	02	

STI,032- RTK Baseline Data

Time, date, status and baseline related data provided by a GNSS navigation receiver.

Structure:

\$PSTI,032,hhmmss.sss,ddmmyy,A,R,x.xxx,x.xxx,x.xxx,x.xxx,x.xxx,,**hh<CR><LF>

Example:

\$PSTI,032,041457.000,170316,A,R,0.603,-0.837,-0.089,1.036,144.22,,,,,*30

Field	Name	Example	Description
1	UTC time	041457.000	UTC time in hhmmss.sss format (000000.000~235959.999)
2	UTC Date	170316	UTC date of position fix, ddmmyy format
3	Status	A	Status 'V' = Void 'A' = Active
4	Mode indicator	R	Mode indicator 'F' = Float RTK. System used in RTK mode with float ambiguity 'R' = Real Time Kinematic. System used in RTK mode with fixed ambiguity
5	East-projection of baseline	0.603	East-projection of baseline, meters
6	North-projection of baseline	-0.837	North-projection of baseline, meters
7	Up-projection of baseline	-0.089	Up-projection of baseline, meters
8	Baseline length	1.036	Baseline length, meters
9	Baseline course	144.22	Baseline course (angle between baseline vector and north direction), degrees
10	Reserve		Reserve
11	Reserve		Reserve
12	Reserve		Reserve
13	Reserve		Reserve
14	Reserve		Reserve
15	Checksum	30	

ORDERING INFORMATION

Model Name	Description			
S2525F8-GL-RTK	GPS/GLONASS RTK Receiver Module, max 1Hz RTK update rate			
S2525F8-GL-RTK-5	GPS/ GLONASS RTK Receiver Module, max 5Hz RTK update rate			
S2525F8-GL-RTK-5S	GPS/ GLONASS RTK Receiver Module, max 5Hz RTK update rate,			
	with precision time/position stamping function			
S2525F8-GL-RTK-10	GPS/ GLONASS RTK Receiver Module, max 10Hz RTK update rate			
S2525F8-GL-RTK-10S	GPS/ GLONASS RTK Receiver Module, max 10Hz RTK update rate,			
	with precision time/position stamping function			

Revision History

Revision	Date	Description	
1	August 4, 2016	Initial release	
2	October 5, 2016	Updated GGA and GSV message fields related to number of satellites.	

The information provided is believed to be accurate and reliable. These materials are provided to customers and may be used for informational purposes only. No responsibility is assumed for errors or omissions in these materials, or for its use. Changes to specification can occur at any time without notice.

These materials are provides "as is" without warranty of any kind, either expressed or implied, relating to sale and/or use including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. No warrant on the accuracy or completeness of the information, text, graphics or other items contained within these materials. No liability assumed for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

The product is not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.