Prediction and modeling of the protein WoK4U9

EL HARTY Hager & MESSAK Imane

Problematic

A large number of proteins available on Uniprot with an unknown structure and function

Biological function

Implicated in the development of a disease

Predict using different tools the structure of the membrane protein

About our protein

- Transmembrane protein
- Noted as "unreviewed" in Uniprot
- 268 amino acids
- Found in the organism Halobacterium sp. DL1
- Coded by the gene HALDL1_13775
- Belongs to the Heliorhodopsin family
- No known bibliography about this protein (function, expression, pathology..)

Materials & Methods

Pipeline

Results

	Description	Scientific Name	Max Score		Query Cover	E value	Per.	Acc. Len	Accession
\checkmark	Crystal structure of Thermoplasmatales archaeon heliorhodopsin [Thermoplasmatales archaeon SG8-52-1]	Thermoplasmatales arch	258	258	94%	3e-86	51.38%	259	6 S6_A
~	$\underline{\textit{Crystal structure of Thermoplas matales archaeon heliorhodops in E108D\ mutant}\ [\underline{\textit{Thermoplas matales archaeo}}$. Thermoplasmatales arch	257	257	94%	1e-85	50.99%	259	7CLJ_A
V	Crystal structure of bacterial heliorhodopsin 48C12 [Actinobacteria bacterium]	Actinobacteria bacterium	170	170	91%	1e-51	41.70%	252	6UH3_A
V	Crystal structure of the 48C12 heliorhodopsin in the violet form at pH 8.8 [Actinobacteria bacterium]	Actinobacteria bacterium	170	170	91%	2e-51	41.70%	264	6SU3_A

Results of the Blastp against PDB

Some Resulting Models

Model Refinement

	Phyre2	ModWeb	RaptorX	I-Tasser
Number of models	2	3	1	6
Template	6is6 6uh3	6is6 6su3x 6uh3	-	6is6 3abw 6is6*2 7clja*2

Table: Summary of our pre-selection of prediction models.

	Modèle initial	Modèle 1 raffiner
Overall Quality	4.5	5.5
Covalent Bond Quality	6.5	7.5
Non-Covalent/Packing Quality	3.5	4.5
Torsion Angle Quality	5.5	6.5

	Modèle initial	Modèle 1 raffiner
Overall Quality	4.5	5.5
Covalent Bond Quality	6.5	7.5
Non-Covalent/Packing Quality	3.5	4.5
Torsion Angle Quality	5.5	6.5

Table 1: Comparison table of the model 2 (6uh3_A) predicted by Pyre2

Table 2: Comparison table of the model 6is6A predicted by ModWeb

	Modèle initial	Modèle 1 raffiner
Overall Quality	3.5	5.5
Covalent Bond Quality	6.5	7.5
Non-Covalent/Packing Quality	3.5	4.5
Torsion Angle Quality	1.5	6.5

Table 3: Comparison table of the model 6is6_A predicted by I-TASSER

Visualisation of the model chosen by ModWeb

Visualisation of the model chosen by Pyre2

Structure the template 6is6_A done by ModWeb

- ModWeb does a comparative Modeling
- Uses the 6IS6_A template
- 248 residue modeled by ModWeb

Template chosen by ModWEb

SwissModel VS Our model

Predicted with SwissModel using the 7CLJ template

Predicted with ModWeb using the 6IS6 template

RMSD = 0.609 Å

Alignment of the predicted model by SwissModel and our model

Normal modes on the basis of an elastic network

Two different movements of our structure (7,8,9 and 11, 12)

Molecular Dynamics

 Coarse grain simulation with the Martini force field of our protein solved in water during 600 ps

Evolution of the RMSD over time of our model

Structure of our protein with the beta sheet colored yellow

Evolution of the RMSF over time of our model

Different states of our protein by applying molecular dynamics

Different states of our protein by applying molecular dynamics

Conclusion

- We succeeded into Modelling our protein
- Predicting the 3D structure allowed us to observe the folded structure of the 6 alpha helices and the beta sheet of the transmembrane protein
- The study of conformational changes using normal modes, allowed us to identify different movements such as the folding of the beta sheet and its sweeping from left to right.
- The objective now would be to study the movements of the protein in its biological environment,
- In the future we should do the same study to the SwissModel to view the different movements, and compare them to those of our model.

Thank you for your attention

ANNEX: Materials

	Template search	SS prediction	Model evaluation
ModWeb (User -friendly interface Structure modeling by satisfaction of spatial restraints)	Yes	No	Identity score MPQS
RaptorX (User -friendly interface for protein structure and function prediction)	Alignement threading	No	P-value Score uGDT RMSD
I-TASSER (Integrated platform for automated protein structure and function prediction)	LOMETS consists of multiple threading algorithms	Yes	C_score TM_score RMSD Ident/Cover
Phyre2 (User -friendly interface to cutting-edge bioinformatics methods)	HMM-HMM matching	Yes	Identity