Teoria da Computação Algoritmo CYK

Prof. Jefferson Magalhães de Morais

- Foi desenvolvido independentemente por J. Cocke, D. H. Younger e T. Kasami, em 1965
- É um dispositivo reconhecedor de sentenças pertencentes a LLC
- Trabalha sobre uma GLC na Forma Normal de Chomsky
- O algoritmo constrói uma tabela triangular de derivação, onde cada célula contém um conjunto de símbolos não-terminais

 Construção da tabela triangular para uma palavra $w = a_1 \, a_2 \, a_3 \, a_4 \, a_5$

V _{1,6}				
V _{1,5}	V _{2,5}			
V _{1,4}	V _{2,4}	V _{3,4}		
V _{1,3}	V _{2,3}	V _{3,3}	V _{4,3}	
V _{1,2}	V _{2,2}	V _{3,2}	V _{4,2}	V _{5,2}
V _{1,1} = a ₁	$V_{2,1} = a_2$	$V_{3,1} = a_3$	V _{4,1} = a ₄	$V_{5,1} = a_5$

- Algoritmo informal: reconhecimento de uma palavra
 - 1 Variáveis que geram diretamente terminais
 - 2 Produções que geram duas variáveis
 - 3 Condição de aceitação da entrada. Se a raiz da GLC pertencente à célula no topo da tabela triangular, então a entrada é aceita

- Algoritmo informal: reconhecimento de uma palavra
 - Variáveis que geram diretamente terminais (regressão)

- Algoritmo informal: reconhecimento de uma palavra
 - Produções que geram duas variáveis (método da roldana)

- Algoritmo informal: reconhecimento de uma palavra
 - 3 Condição de aceitação da entrada. Se a raiz da GLC pertencente à célula no topo da tabela triangular, então a entrada é aceita

V _{1,6}	Se a raiz estiver nesta célula, a cadeia pertence a linguagem				
V _{1,5}	V _{2,5}				
V _{1,4}	V _{2,4}	V _{3,4}			
V _{1,3}	V _{2,3}	V _{3,3}	V _{4,3}		
V _{1,2}	V _{2,2}	V _{3,2}	V _{4,2}	V _{5,2}	
a ₁	a ₂	a ₃	a ₄	a ₅	

Exemplo

Considere a GLC na Forma Normal de Chomsky

$$G = (\{S,A\},\{a,b\},P,S), \text{ no qual:}$$

$$P = \{S \rightarrow AA \mid AS \mid b$$

$$A \rightarrow SA \mid AS \mid a\}$$

• A tabela de derivação para a palavra de entrada abaab é da forma

S, A —	Como S é raiz da árvore de derivação a entrada é aceita			
S, A	S, A			
S, A	S	S, A		
S, A	А	S	S, A	
А	S	Α	Α	S
a	b	а	а	b

Algoritmo: reconhecimento de uma palavra

Entrada: uma palavra $w = a_1 a_2 \dots a_n$ Saída: reconheceu ou não a palavra wMétodo:

- $Para \ c \leftarrow 1 \dots n$ $V_{1c} \leftarrow \{A \mid A \rightarrow a_c \in P\}$
- 2 Para $l \leftarrow 2 \dots n$

Para
$$c \leftarrow 1 \dots n - l + 1$$

$$V_{lc} \leftarrow \emptyset$$

$$Para \ k \leftarrow 1 \dots l-1$$

$$V_{lc} \leftarrow V_{lc} \cup \{A \mid A \to BC \in P, \\ B \in V_{kc} \ \mathbf{e}$$

