TRIGONOMETRY Chapter 05

Ecuación general de la recta

¿QUÉ ENTENDEMOS POR PENDIENTE?

En matemáticas y en ciencias se denomina pendiente a la inclinación de un elemento lineal, natural o constructivo respecto de la horizontal.

ÁNGULO DE INCLINACIÓN DE UNA RECTA

OBSERVACIÓN:

a) Recta horizontal

$$\alpha = 0^{\circ}$$

b) Recta vertical

$$\alpha = 90^{\circ}$$

PENDIENTE DE UNA RECTA (m)

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

OBSERVACIÓN:

Las coordenadas de los puntos, se reemplazan con sus respectivos signos.

FORMAS DE LA ECUACIÓN DE UNA RECTA

a) Ecuación punto pendiente !

$$y - y_1 = m(x - x_1)$$

b) Ecuación general de una recta

Casos especiales:

1. Si los puntos (8; p) y (q; – 3) pertenecen a la recta \mathcal{L} : 2x - y - 13 = 0, calcule p + q.

Resolución:

Como: (8; p) y (q; -3) $\in \mathcal{L}$, entonces tienen que cumplir con la ecuación: 2x - y - 13 = 0

$$2(8) - p - 13 = 0$$
 $p = 3$

$$2q - (-3) - 13 = 0$$
 $q = 5$

••
$$p + q = 8$$

2. Si los puntos A(a; 4), B(3; 2) y C(6; 1) se encuentran sobre una misma recta, halle el valor de a.

Como los puntos A, B y C pertenecen a una misma recta:

$$m_{\overline{AB}} = m_{\overline{BC}} \Rightarrow m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{4 - 2}{a - 3} = \frac{2 - 1}{3 - 6} \Rightarrow \frac{2}{a - 3} = \frac{1}{-3}$$

3. Halle la ecuación de la recta \mathcal{L} que pasa por el punto P(-2; 1) y tiene ángulo de inclinación de 37°.

Resolución:

Calculando pendiente de la recta \mathscr{L} :

$$m = \tan 37^\circ \qquad \qquad m = \frac{3}{4}$$

Calculando la ecuación de la recta \mathscr{L} :

Como:
$$m = \frac{3}{4}$$
 y $P(-2;1) \in \mathcal{L}$ $y - y_1 = m(x - x_1)$

$$\mathscr{L}: y - 1 = \frac{3}{4}(x - (-2)) \quad : \quad \mathscr{L}: 3x - 4y + 10 = 0$$

Cuando el precio de un producto es 80 soles se llegan a vender 10 unidades, pero cuando el precio baja a 60 soles llegan a vender 20 unidades del mismo producto. Halle la ecuación de la demanda si se sabe que esta es lineal.

Resolución:

Calculando pendiente de la recta \mathscr{L}

$$m = \frac{20 - 10}{60 - 80} \implies m = -\frac{1}{2}$$

Calculando la ecuación de la recta \mathscr{L} :

m =
$$-\frac{1}{2}$$
 y A (60; 20) ∈ \mathcal{L}
 \mathcal{L} : y - 20 = $-\frac{1}{2}$ (x - 60)

$$\mathscr{L}$$
: $x + 2y - 100 = 0$

HELICO | PRACTICE

5. Se tiene los puntos P(-4; 5) y Q(6; 3). Halle la ecuación de la recta que pasa por el punto medio de \overline{PQ} y el origen de coordenadas.

Resolución:

Como M es punto medio de \overline{PQ}

$$x = \frac{-4+6}{2} \implies x = 1$$

$$y = \frac{5+3}{2}$$
 $y = 4$

Calculando la ecuación de \mathscr{L}

$$y - y_1 = m(x - x_1)$$

$$y-0=4(x-0)$$

$$4x - y = 0$$

HELICO | PRACTICE

6. Halle la ecuación de la recta que pasa por el punto A(2;5) y es paralela a la recta \mathcal{L} : 2x + y + 3 = 0.

Como
$$\mathcal{L}_1 /\!/ \mathcal{L} \implies m_{\mathcal{L}_1} = m_{\mathcal{L}}$$

$$\implies m_{\mathcal{L}_1} = -2$$

Calculando la ecuación de \mathscr{L}_1

$$y-y_1=m_{\mathcal{L}_1}(x-x_1)$$

$$y-5=-2(x-2)$$

$$2x + y - 9 = 0$$

7. Del gráfico, determine la ecuación de la recta \mathscr{L} .

Resolución: $m_1 = \frac{4-0}{0-6} = -\frac{2}{3}$ (3;2)

Como: $\mathcal{L} \perp \mathcal{L}_1$

$$m_1.m_{\mathscr{L}} = -1$$

$$m_{\mathscr{L}} = \frac{3}{2}$$

Calculando la ecuación de \mathscr{L}

$$y - y_1 = m_{\mathscr{L}}(x - x_1)$$

$$y - 2 = \frac{3}{2}(x - 3)$$

$$3x - 2y - 5 = 0$$

HELICO I PRACTICE

8. Dadas las rectas: \mathcal{L}_1 : ax + 3y + 2 = 0; \mathcal{L}_2 : 2x + 5y + 3 = 0;

 $\mathcal{L}_3: 5y - bx - 8 = 0$ donde \mathcal{L}_1 y \mathcal{L}_2 son paralelas y \mathcal{L}_3 es

perpendicular a \mathcal{L}_{z} . Calcule ab.

Resolución:

$$\mathcal{L}_1$$
: $ax + 3y + 2 = 0$

$$\mathcal{L}_2: 2x + 5y + 3 = 0$$

$$\mathcal{L}_1 // \mathcal{L}_2$$

Las pendientes cumplen:

$$\frac{-a}{3} = \frac{-2}{5} \Rightarrow a = \frac{6}{5}$$

$$\mathcal{L}_1: ax + 3y + 2 = 0$$
 $\mathcal{L}_2: 2x + 5y + 3 = 0$

$$\mathcal{L}_2$$
: $2x + 5y + 3 = 0$ \mathcal{L}_3 : $5y - bx - 8 = 0$ $\mathcal{L}_1 //\mathcal{L}_2$ $\mathcal{L}_2 \perp \mathcal{L}_3$

Las pendientes cumplen:

$$\frac{-2}{5} \cdot \frac{-5}{-b} = -1$$

$$\frac{b}{b} = 2$$

