Supplemental Amendment under 37 C.F.R. § 1.111

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

f. (previously presented): An optically active 4-(tert-butoxycarbonyl)piperazine compound of formula (1'):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group and * designates an asymmetric carbon atom.

2. (previously presented): A composition comprising an optical isomer of formula (1"):

Supplemental Amendment under 37 C.F.R. § 1.111

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group and * designates an asymmetric carbon atom, and an enantiomer thereof, wherein one optical isomer is present in excess to the enantiomer thereof.

(original): A 4-(tert-butoxycarbonyl)piperazine compound of formula (1): 3.

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group.

(previously presented): An optical isomer of formula (1"): 4.

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group and * designates an asymmetric carbon atom, or salts thereof.

(currently amended): An adduct salt of formula (3): 5.

Supplemental Amendment under 37 C.F.R. § 1.111

wherein X denotes a chlorine atom, a C1- C3 alkyl group or a C1-C3 alkoxy group and * designates an asymmetric carbon atom, n represents an integer of 1 or 2, and

Z represents an optically active acid of formula (2):

wherein L represents -COOH or -SO₂H,

R² represents a hydrogen atom or a hydroxyl group,

 \boldsymbol{R}^{1} and \boldsymbol{R}^{3} are the same or different and each independently represent

a hydrogen atom, a halogen atom, an arylcarbonyloxy group,

a linear or branched alkyl group which may be substituted with at least one group selected from the group consisting of a hydroxyl group, a halogen atom, an arylcarbonyloxy group, a carboxy group and an arylaminocarbonyl group;

an aryl group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group and an alkoxy group;

Supplemental Amendment under 37 C.F.R. § 1.111

an aralkyl group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group; an aryloxy group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group;

a cyclic alkyloxy group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group; or

a cyclic alkyl group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group and a phenylcarbonyiamino group; or

R1 and R3 may be bonded together to form

an alkylene group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group, a carboxyl group, an oxo group, a hydroxyl group, and a phenylcarbonylamino group, or

a heterocycle which may be substituted with at least one group selected from the group consisting of an alkyl group, alkoxy or a halogen atom.

- 6. (original): An adduct salt according to claim 5, wherein the acid of formula (2) is optically active O,O'-dibenzoyltartaric acid.
- 7. (currently amended): An adduct salt according to any one of claims 1, 2, 3, 4, 5, or 6 5 or 6, wherein X represents a chlorine atom at 4-position of the phenyl group.

Supplemental Amendment under 37 C.F.R. § 1.111

8. (previously presented): A process for producing a 4-(tert-butoxycarbonyl)piperazine compound of formula (1):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group, which comprises reacting 1-[(substituted phenyl) phenylmethyl]piperazine of formula (4):

wherein X has the same meaning as defined above, with di-tert-butyl dicarbonate of formula (5):

[(CH₃)₃COCO]₂O

(5).

9. (currently amended): A process for producing an optically active adduct salt of formula (3):

Supplemental Amendment under 37 C.F.R. § 1.111

wherein X denotes a chlorine atom, a Cl-C3 alkyl group or a Cl-C3 alkoxy group, * represents an asymmetric carbon atom, and n represents an integer of 1 or 2, and

Z represents an optically active acid of formula (2):

wherein L represents -COOH or -SO₃H,

R² represents a hydrogen atom or a hydroxyl group;

R^t and R³ are the same or different and independently represent

a hydrogen atom, a halogen atom, or an arylearbonyloxy group;

a linear or branched alkyl group which may be substituted with at least one group selected from the group consisting of a hydroxyl group, a halogen atom, an arylcarbonyloxy group, a carboxy group and an arylaminocarbonyl group;

an aryl group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group and an alkoxy group;

Supplemental Amendment under 37 C.F.R. § 1.111

an aralkyl group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group; an aryloxy group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group;

a cyclic alkyloxy group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group; ÜΤ

a cyclic alkyl group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group a hydroxyl group and a phenylcarbonylamino group; or

R1 and R3 may be bonded together to form

an alkylene group which may be substituted with at least one group selected from the group consisting of a halogen atom, an alkyl group, an alkoxy group, a carboxyl group, an oxo group, a hydroxyl group, and a phenylcarbonylamino group, or

a heterocycle which may be substituted with at least one group selected from the group consisting of an alkyl group, an alkoxy group and a halogen atom,

which comprises reacting a composition comprising an optical isomer of 4-(tertbutoxycarbonyl)piperazine compound of formula (1"):

Supplemental Amendment under 37 C.F.R. § 1.111

wherein X and * are as defined above, and an enantiomer thereof,

with an optically active acid of formula (2) as defined above and isolating the resulting adduct salt.

- 10. (original): A process according to claim 9, which further comprises recrystallizing the acid adduct salt of the optically active 4-(text-butoxycarbonyl)piperazine of formula (3).
- 11. (previously presented): A process according to claim 9 or 10, which further comprises reacting an adduct salt of formula (3), with a base to produce an optically active 4-(tert-butoxycarbonyl)piperazine of formula (1'):

Supplemental Amendment under 37 C.F.R. § 1.111

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group and * designates an asymmetric carbon atom.

12. (previously presented): A process for producing an optically active adduct salt of formula (6):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group, * represents an asymmetric carbon atom, and n represents an integer of 1 or 2,

Y represents a halogen atom, -OSO₃H, -OSO₂CH₃, -OCOCF₃, -OCOCH₃ and -OCOH, which comprises reacting an optically active 4-(tert-butoxycarbonyl)piperazine of formula (1'):

wherein X and * are as defined above with an acid of formula: HY, wherein Y represents the same as defined above.

i3. (previously presented): A process for producing an optically active i-[(substituted phenyl)phenylmethyl]piperazine of formula (7):

Supplemental Amendment under 37 C.F.R. § 1.111

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group, and * represents an asymmetric carbon atom, which process comprises reacting an optically active 4-(tert-butoxycarbonyl)piperazine compound of formula (1'):

wherein X denotes a chlorine atom, a Cl-C3 alkyl group or a Cl-C3 alkoxy group, and * represents an asymmetric carbon atom, with an acid and subsequently with a base.

14 (new): A compound as in claim 1, wherein X represents a chlorine atom at 4-position of the phenyl group.

15 (new): A compound as in claim 2, wherein X represents a chlorine atom at 4-position of the phenyl group.

16 (new): A compound as in claim 3, wherein X represents a chlorine atom at 4-position of the phenyl group.

Supplemental Amendment under 37 C.F.R. § 1.111

17 (new): An optical isomer as in claim 4, wherein X represents a chlorine atoms at 4position of the phenyl group.