# On the properties $\alpha - z$ Rényi divergences on general von Neumann algebras

Fumio Hiai and Anna Jenčová

February 20, 2024

### 1 Introduction

### 2 Preliminaries

#### 2.1 Basic definitions

Let  $\mathcal{M}$  be a von Neumann algebra and let  $\mathcal{M}^+$  be the cone of positive elements in  $\mathcal{M}$ . We denote the predual by  $\mathcal{M}_*$ , its positive part by  $\mathcal{M}_*^+$  and the set of normal states by  $\mathfrak{S}_*(\mathcal{M})$ . For  $\psi \in \mathcal{M}_*^+$ , we will denote by  $s(\psi)$  the support projection of  $\psi$ .

For  $0 , let <math>L_p(\mathcal{M})$  be the Haagerup  $L_p$ -space over  $\mathcal{M}$  and let  $L_p(\mathcal{M})$  its positive cone, [?]. We will use the identifications  $\mathcal{M} \simeq L_\infty(\mathcal{M})$ ,  $\mathcal{M}_* \ni \psi \leftrightarrow h_\psi \in L_1(\mathcal{M})$  and the notation  $\operatorname{Tr} h_\psi = \psi(1)$  for the trace in  $L_1(\mathcal{M})$ . It this way,  $\mathcal{M}_*^+$  is identified with the positive cone  $L_1(\mathcal{M})^+$  and  $\mathfrak{S}_*(\mathcal{M})$  with subset of elements in  $L_1(\mathcal{M})^+$  with unit trace. Precise definitions and further details on the spaces  $L_p(\mathcal{M})$  can be found in the notes [?].

## 2.2 The $\alpha - z$ -Rényi divergences

In [? ?], the  $\alpha - z$ -Rényi divergence for  $\psi, \varphi \in \mathcal{M}_*^+$  was defined as follows:

**Definition 1.** Let  $\psi, \varphi \in \mathcal{M}_*^+$ ,  $\psi \neq 0$  and let  $\alpha, z > 0$ ,  $\alpha \neq 1$ . The  $\alpha - z$ -Rényi divergence is defined as

$$D_{\alpha,z}(\psi||\varphi) := \frac{1}{\alpha - 1} \log \frac{Q_{\alpha,z}(\psi||\varphi)}{\psi(1)},$$

where

$$Q_{\alpha,z} = \begin{cases} \operatorname{Tr} \left( h_{\varphi}^{(1-\alpha)/2z} h_{\psi}^{\alpha/z} h_{\varphi}^{(1-\alpha)/2z} \right)^{z}, & \text{if } 0 < \alpha < 1 \\ \|x\|_{z}^{z}, & \text{if } \alpha > 1 \text{ and} \\ h_{\psi}^{\alpha/z} = h_{\varphi}^{(\alpha-1)/2z} x h_{\varphi}^{(\alpha-1)/2z}, & \text{with } x \in s(\varphi) L_{z}(\mathcal{M}) s(\varphi) \\ \infty & \text{otherwise.} \end{cases}$$

In the case  $\alpha > 1$ , the following alternative form will be useful.

**Lemma 1.** [?] Let  $\alpha > 1$  and  $\psi, \varphi \in \mathcal{M}_*^+$ . Then  $Q_{\alpha,z}(\psi \| \varphi) < \infty$  if and only if there is some  $y \in L_{2z}(\mathcal{M})s(\varphi)$  such that

$$h_{\psi}^{\alpha/2z} = y h_{\varphi}^{(\alpha-1)/2z}.$$

Moreover, in this case, such y is unique and we have  $Q_{\alpha,z}(\psi \| \varphi) = \|y\|_{2z}^{2z}$ .

The standard Rényi divergence [???] is contained in this range as  $D_{\alpha}(\psi \| \varphi) = D_{\alpha,1}(\psi \| \varphi)$ . The sandwiched Rényi divergence is obtained as  $\tilde{D}_{\alpha}(\psi \| \varphi) = D_{\alpha,\alpha}(\psi \| \varphi)$ , see [????] for some alternative definitions and properties of  $\tilde{D}_{\alpha}$ . The definition in [?] and [?] is based on the Kosaki interpolation spaces  $L_p(\mathcal{M}, \varphi)$  with respect to a state [?]. These spaces and complex interpolation method will be used frequently also in the present work.

Many of the properties of  $D_{\alpha,z}(\psi \| \varphi)$  were extended from the finite dimensional case in [?]. In particular, the following variational expressions will be an important tool for our work.

Theorem 1. Let  $\psi, \varphi \in \mathcal{M}_*^+, \psi \neq 0$ .

(i) Let  $0 < \alpha < 1$  and  $\max{\{\alpha, 1 - \alpha\}} \le z$ . Then

$$Q_{\alpha,z}(\psi \| \varphi) = \inf_{a \in \mathcal{M}^{++}} \left\{ \alpha \operatorname{Tr} \left( (a^{1/2} h_{\psi}^{\alpha/z} a^{1/2})^{z/\alpha} \right) + (1 - \alpha) \operatorname{Tr} \left( (a^{-1/2} h \varphi^{(1-\alpha)/z} a^{-1/2})^{z/(1-\alpha)} \right) \right\}.$$

Moreover, if  $\lambda^{-1}\varphi \leq \psi \leq \lambda \varphi$  for some  $\lambda > 0$ , then the infimum is attained and...

(ii)  $\alpha > 1$ 

*Proof.* [?] for (i).

3 Data processing inequality and reversibility of quantum channels