QINTRO - TOT

EX.4

 $-\infty$, 4, $2 \in \{0,1\}$, containing an even number of 1. They each output a bit, noted respectively a, b, and C.

\mathcal{X}	y	Z	OR(2,4,2)
٥	0	0	0 -> win # a⊕b⊕c=0
0	1	1	1)
)	0		1 >> Win il a ⊕ b ⊕ C = 1.
)	1	0	1)

(1)
$$f_A \supset L \longrightarrow f_A(x) = \alpha$$

 $f_B \not \to f_B(y) = b$
 $f_C \not \to f_C(z) = c$
 $f_A(0) \oplus f_B(0) \oplus f_C(0) = 0$
 $f_A(0) \oplus f_B(0) \oplus f_C(1) = 1$
 $f_A(1) \oplus f_B(0) \oplus f_C(0) = 1$

Those 4 equations can't be simultaneously satisfied so Summing all of them gives 0=1. Since the strategy is determistic, it means are of the equation will never be satisfied so, will never be satisfied so. A, B, C can only win with prob $\leq 3/4$. It is possible to achieve a probable of 3/4, for instance by taking $f_A(x)=1$, $f_B(x)=f_C(x)=0$ for all $x \in \{0,1\}$. So a determinable clacial strategy success w.p. at most 3/4.

[2]
$$|+\rangle = \frac{1}{2}(1000) - |011\rangle - |101\rangle - |110\rangle$$

In case of $x = 4 = 2 = 0$.

 $|+\rangle = \frac{1}{2}(1000) - |011\rangle - |110\rangle$

In case of $z = 2 = 1$ $y = 0$.

 $|+\rangle = \frac{1}{4}(100) - |+\rangle = 100\rangle$
 $= \frac{1}{4}(100) - |+\rangle = 100\rangle + |+\rangle = 100\rangle = 100\rangle + |+\rangle = 100\rangle = 100\rangle + |+\rangle = 100\rangle + |+\rangle = 100\rangle = 100\rangle + |+\rangle = 100\rangle +$

QINTRO-TD4

In case of 2, 4, 2 = 110.

In case of x, y, z = 0, 1, 1