Metric Restrictions on the Number Real Zeros

Joint work with
Elias TSIGARIDAS

Lyria Paris & IMJ-PRG

As some ideas are less technical in the setting of homogeneous polynomials.

I will focus on that setting.

Symmetry makes life easierl

NOTATONS

- · Xo, X,,,, Xn homogeneous variables
- · $\mathcal{H}_{d}[n]:=\prod_{i=1}^{n}\mathbb{R}[X_{o},...,X_{n}]_{d};$
- · For & E Hallwj, and x E 5"
 - $D_{x}^{k} = \left(\frac{\partial^{k} \partial x}{\partial x_{1} \cdots \partial x_{1}}\right)$
 - $D_{x} = D_{x} (I x x^{t}) D_{x} i T_{x} s^{n}$
 - . Weyl norm $\| \S \|_{W^{*}} = \sqrt{\sum_{i=1}^{n} \sum_{|\alpha| = d_{i}} (d_{i})^{-1}} \| \S_{i,\alpha} \|^{2}$
 - $X \in (8):= \{x \in S' \mid 8(x) = 0\}$

DISCRIMINANT CHAMBERS

∑:={g∈Ha[n]| 元s(8) singular} Here is where changes can occur! Prop. Ha[N]/I > & HX5(8) locally constant. Def. A discriminant chamber dis a connected component of Ha[n]/2 Question, Given FEHA[4] KSS*random polynomial system, what is P(&EA)? *Also For dobro

INTERLUDE: RANDOM POLYNOMIAL SYSTEM

Let FE Haling with

$$f:=\sum_{\alpha}\sqrt{\binom{di}{\alpha}}c_{i,\alpha}$$

be random.

ROJUS

- · K55: Ci, X i.i, d, hormal
- · Dobro: Cix independent, anti-conctsubgausian
- · EPR : Findependent, Fi(x) auti-conc. + subgaus. Ergür, Paouris

CONDITION NUMBER

Def. Given & E Hallus, the condition number of & is $\frac{11811}{118(x)} = \frac{11811}{118(x)} = \frac{11811}{11$ where $\Delta:=$ diag(dn,...,dn) THM (Condition Normber Theorem) [Cucker, Krick, Malajovich, Wschebor] Let & E Ha[n], then 光(多) = 11811W $dist_{W}(8, \mathbb{Z})$

K is a metric discriminant!

INRADIUS OF A DISC. CHAMBER

DEF. Let $A \subseteq \mathcal{H}_d[n]/\Sigma$ be a disc. chamber, and consider $\mathcal{H}(A):=\min\{\mathcal{K}(8)/8\in A\}$

OBS. GIVEN & E.A.,

8+11811WYBW = A (=) dist(8, \(\mathbb{Z}\)) > ||8||WY

Prop. 1/\(\chi(A)\) is the invadious of A,

i.e., 1/\(\chi(A)\) = max\{Y | \(\frac{1}{3}\) \(\mathbb{E}(\d)\). Ais conic!

Bw:= {8| ||8||w<13, Bw(3,5):={h||h-g||w55}

BOUNDING PROBABILITIES

Let FE Ha[n] be a random K55 pol. system, then:

 $P(F \in A) \leq P(\chi(F) \geq \chi(A))$

 $\leq 32 D^2 D^{1/2} N^{1/2} \frac{1}{2} \frac{1}{2} \chi(A)$ Cacker, krick

Malajo Vich, Wschebor

Can we lower bound KIAM
Yes!

The above works for very general random assumptions...

AN UNEXPECTED INEQUALITY

THM. Let & E Ha [n]. Then # $\%(8) < C^n D^{n/2} |_{D_3^n \mathcal{K}(8)}$ where C > 1 is universal. COR. Let & E Ha[h]. Then $\frac{\# \mathcal{Z}_{5}(8)^{1/n}}{c D^{1/2}}$

COR, If & E Halling has many real zeros, then & is ill-conditioned!

BOUNDING PROBABILITIES I

THM. Let A = ACINI/ Z be a discriminant chauber and N(A) the number of real zeros of any system in A, then: C = A > C A = A $f(f \in A) \leq 2$

where a, 6>0 are universal.

COR, Disc. chambers with systems with many real Zeros are always small.

BOUNDING PROBABILITIES II

THM. Let f be a K55 randows Polymonial system, then # 25(F)1/4 is subexponential with constant where a > 0 is universal. I.E. for t ≥ 1, (EZS(F)) e an an Dulago En

WHAT'S BEHIND

THE UNEXPECTED INEQUALITY? (MOROZ 2021)

To solve a univariate polynamial uses many extremely low degree approximations based on Taylor expansions.

We generalize this to higher dimensions

THM. Let gE Hd[h], and r < 1/a01/2. Then

For all xES", & | Bs(x,r) can be approximated

by a (O(log x(s)) - degree pol. system with zeros that

approximate à la Smale all those of g in Bs(x,r)

OBS. This many extremely low-degree approx. scheme differs fron the one low-degree of Diatta & Levario.

OTHER CASES...

- Kac random polyhomial systems
- Under determined polynomial systems (only volume for now)
- Sparse Kac random polynomial systems
 (we have to see how strong can our results be)

FUTURE

Can we have algorithms working in time that its bounded by

and ust K(8) 47

This should give very fast algorithms in NRAG Main obstacle: Avaid computing K(8) directly... Muchas gracias por su atención