Shortest Path (SP) Algorithms				
	BFS	Dijkstra's	Bellman Ford	Floyd Warshall
Complexity	O(V+E)	O((V+E)logV)	O(VE)	O(V ³)
Recommended graph size	Large	Large/ Medium	Medium/ Small	Small
Good for APSP?	Only works on unweighted graphs	Ok	Bad	Yes
Can detect negative cycles?	No	No	Yes	Yes
SP on graph with weighted edges	Incorrect SP answer	Best algorithm	Works	Bad in general
SP on graph with unweighted edges	Best algorithm	Ok	Bad	Bad in general

DFS 1 1 2 3 4 5 6 0(V + E) O(V + E)

Dijkstra's Algorithm

- visit each node only once
- maintain array for prev of relaxed nodes
- follow min heap for order
- relax all neighbours and add to min heap

Bellman-Ford

- sweep graph V-1 times
- · relax in any order, follow that order
- boolean for "updated?" every sweep
- if updated is true at Vth sweep, negative weight cycle

Floyd-Warshall

- considers all possible intermediate paths to reach node B from A
- If adjacency matrix has cell $\neq \infty$, path exists between nodes

Tarjan's SCC

- Strongly Connected Componer Stack
 every node can be reached from every other node
- Low Link Value of a node the lowest id node reachable from the node

Union Find

- Union Merge two graphs by making one the subtree of another
- Find return the "representative" node (root of the tree) of a union
- Path Compression point all nodes in union to representative

Minimum Spanning Tree

 A subgraph containing the minimum weight connected graph with no cycles

Kruskal's

- Repeatedly find lowest weights in the entire graph and add to MST
- Continue until all vertices are added

Prim's

- create visted = □
- pick any node
- pick the lowest weight that connects to an unvisited node and is reachable from the current visited nodes

Kruskal MST (6(V, E))

let Q be an empty win-heap

let UF be a Union-tind with IVI components

for each edge e E E do

Q. insert (weight(e), e)

Lend for

T= {}

while ITI < |V|-1 do

(u,v) = Q.getwin ()

if u and v are not conceded in UF Then

T. insert ((u,v))

UF. union (u,v)

tend it

end while

return T

end algorithm

Bellman Ford SSSP(G(V, E), SEV) let dist: V→Z let pres: V -> V for each vEV do dist [v] +00 Prev CV74-1 dist [s] + 0 for i from 1 to 1411 do for each e=(u,v) E E do d = dist[v] + weight (u, v) f d L dist [v] then dist [v] +d prev [v] + M end for for each e=(vx,v) ∈ E do rif dist [2] + weigh (N, v) < dist[v] then throw an exception: "Negative Weight Cycle" return dist, pre end algorithm Floyd Warshall (M: Adj. Matrix representing R(-1) + M ne IVI O(1013) for K from 0 to n-1 do for i from a to n-1 do for j from 0 to n-1 do

("")[i][i] = ("")[i][i] or (("")[i] and (("")[i])[i] lend for and for return P(n-1) end algorithm ABCD

Topological Sort (G(V, E), SEV)

let H be a copy of G

N=0

let T: vEV -> Z>0

ruhile H is not empty do

pick veH s.t. indeg(v)=0

T[v] < n

n=n+1

remove v and its incident edges from H

Lend while

return T

end algorithm

B-Trees

insertion

Special, balanced trees. Sorted, searchable (left < right). m children per on some

2-3 Trees

end algorithm

A specific form of B-tree

- 1. each node has either 1 value or 2 values
- 2. 1 value \rightarrow 2 nodes
- 3. 2 values \rightarrow 3 nodes
- 4. all leaf nodes are at the same level of the tree

for deletes, do the insertion in reverse: imagine the node to delete was just inserted.

Red-black Tree

Special type of BST.

- 1. every node be either red or black.
- 2. Root must be black
- 3. Red node → black children
- 4. Null nodes are black.
- 5. Every path from root to null must have exactly the same number of black nodes.

insertion

Null Nodes

Always insert as red, then rotate/colorflip as needed.

> undirected Prim MST (G(V, E), seV) let dist: V→Z let edge: V → E let visited , V→{T, F} let a be a min-hoop (compty) for each vev do dist[v] + 00 edge[v] +-1 end for dist[s] +0 Q. insert (0, s) -While Q is not empty do (L = Q.getninc) visited [u] + T for each edge e=(u,v) E E incident to 14 do -if visited [v] then if weight (e) < dist[v] then edge[v]+e dist[v]+ weight(e) if vea then Q. set (dist[v], v) Q. insert (dist[v], v) return edge, dist