ÍNDICE GENERAL

1	INT	RODUCCIÓN 1
	1.1	Trabajo previo 1
2	MO	DELOS DE MÁRKOV 2
	2.1	Cadena de Markov 3
	2.2	Cadena oculta de Márkov 6
3	MÁXIMA VEROSIMILITUD DEL HMM 10	
	3.1	Estimación de parámetros del HMM 10
	3.2	Algoritmo backward-forward 13
		3.2.1 Factor de escala 15
	3.3	Selección de modelo 18
		3.3.1 Selección de modelo usando bootsrap con
		likelihood ratio testing 19
		3.3.2 Selección de modelo usando BIC 19
4	SPE	AKER DIARISATION 21
	4.1	Aplicaciones de speaker diarisation 21
	4.2	Procesamiento de señal 22
		4.2.1 Esquema general del sistema 23
		4.2.2 Pre-procesamiento de señal de audio 23
		4.2.3 Obtención de características acústicas 24
	4.3	Resolver modelo HMM usando EM 27
5	EXP	ERIMENTOS Y RESULTADOS 30
	5.1	Experimentos 31
6	CON	NCLUSIONES 35

INTRODUCCIÓN

En los últimos años la tarea de *Speaker Diarisation* se ha vuelto una parte importante de diferentes procesos que se realizan con las grabaciones de audio, tales como la identificación y navegación de segmentos en específico, así como la búsqueda y recuperación de información en grandes volúmenes de secuencias de audio.

La investigación desarrollada referente *speaker diarisation* se ha guiado principalmente de acuerdo a la financiación existente para proyectos específicos. Hasta principios de la década de 1990, el trabajo de investigación se enfocaba en trabajar con grabaciones telefónicas. Principalmente se usaba para segmentar la conversación, así como etapa de pre-procesamiento para luego realizar reconocimiento y/o transcripción del habla.

Para la década del 2000, las aplicaciones fueron cambiando, así como aumentando la capacidad disponible de almacenamiento; por lo que creció el interés de mantener un registro de forma automática de noticieros televisivos y transmisiones de radio a lo largo de todo el planeta. Entre la información más útil que se registraba de las grabaciones era la transcripción del diálogo, meta-etiquetas referentes al contenido así como la segmentación y le orden de las personas que intervienen en la grabación.

Junto a esto, varios proyectos empezaron a interesarse por mejorar la comunicación a larga distancia,

1.1 TRABAJO PREVIO

George E. P. Box

MODELOS DE MÁRKOV

Como ya se mencionó en la Introducción, se debe proponer un modelo acústico o generativo, que será la forma en que entenderemos y trataremos de abstraer la conversación o diálogo, de acuerdo a las características que nos interesan recuperar.

Puesto que lo que nos interesa principalmente es identificar a las diferentes personas que participan en una conversación, nuestro modelo se deberá parametrizar de forma que logre capturar las características esenciales en la conversación; así como no tomar en cuenta información que no nos sea de utilidad para esta tarea, como por ejemplo, qué es lo que se está diciendo.

En aprendizaje máquina, por modelo generativo se entiende un modelo probabilístico para generar datos aleatoriamente que correspondan a la naturaleza de un cierto conjunto de datos que tengamos.

Al proponer un modelo generativo, se busca representar y de forma concisa poder parametrizar un fenómeno o situación de la que se obtuvieron los datos. Cuando los datos son secuenciales, se suelen agrupar en dos tipos, de acuerdo a las características de la distribución que los generó: distribuciones estacionarias y distribuciones no estacionarias.

En el caso de secuencias de datos estacionarias, se considera que los datos *evolucionan* a través del tiempo, pero la distribución a partir de la cuál fueron generados permanece igual; mientras que para el caso de datos no estacionarios, su distribución generativa varía también según pasa el tiempo.

Para el problema de *speaker diarisation*, consideraremos que los datos son estacionarios; es decir, supondremos que su distribución generativa no cambia. Para resolver nuestro problema entonces trataremos a partir de los datos ajustar una distribución inicial e inferir sus parámetros correspondientes.

Figura 2.1: Observaciones independientes e idénticamente distribuidas.

Este tipo de abstracción, permiten modelar una gran cantidad de situaciones, en las que se tienen observaciones de acuerdo al tiempo y se quiere predecir el siguiente valor en la serie, dadas la observaciones que se tienen hasta el momento.

Comúnmente se suelen considerar únicamente las observaciones más recientes, pues son las que pudiéramos pensar son más informativas para la predicción; además de que al asumir que las predicciones de nuevos datos sólo dependen de las últimas observaciones, nos permite simplificar mucho el modelo de la distribución generativa.

Para trabajar con este tipo de datos, se puede usar entonces un modelo de Márkov que es un proceso aleatorio muy trabajado en la teoría de probabilidad, que incorpora una cantidad mínima de memoria, sin necesariamente llegar a ser un proceso sin memoria.

Se puede pensar como una red bayesiana en la que se asume la independecia de las variables aleatorias que corresponden a las predicciones futuras con todas las observaciones excepto las últimas (i.e. el futuro es independiente del pasado, dado el presente).

2.1 CADENA DE MARKOV

El modelo generativo más sencillo que se podría pensar, es considerar que todas las observaciones son variables aleatorias independientes e idénticas distribuidas (v.a. i.i.d) cuyo modelo gráfico se muestra en la Figura 2.1.

Al asumir que no hay ninguna dependencia entre los datos, sin embargo, se pierde la información relativa al orden en que se fueron dando estas observaciones; situación que en muchos casos nos interesa conservar.

Se entiende por v.a. i.i.d aquellas que son independientes entre sí y que fueron muestreadas de la misma distribución

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow \cdots$$

Figura 2.2: Modelo de Márkov de primer orden.

Si se tiene un conjunto N de observaciones $X = \{x_1, ..., x_n\}$, y se asume que son i.i.d, la distribución conjunta de la secuencia de datos se puede escribir como sigue:

$$p(x_1,...,x_N) = \prod_{n=1}^{N} p(x_n)$$
 (2.1)

En cambio, para expresar la dependencia entre un grupo de observaciones secuenciales, se puede utilizar un modelo probabilístico llamado *modelo o cadena de Markov*. Si por ejemplo, se considera que cada variable depende de todas las observaciones anteriores, entonces usando el teorema de bayes se puede escribir la distribución conjunta de las observaciones de la siguiente manera:

Del teorema de Bayes se tiene la siguiente expresión

$$P(A \,|\, B) = \frac{P(B \,|\, A)P(A)}{P(B)}$$

$$p(x_1,...,x_N) = \prod_{n=1}^{N} p(x_n | x_1,...,x_{n-1}).$$
 (2.2)

Ahora, si se asume que cada x_n es independiente de las observaciones anteriores excepto de la observación anterior x_{n-1} , se tiene que la distribución conjunta se puede escribir de forma más sencilla utilizando el teorema de separación D 1 , puesto que

$$p(x_n | x_1, ..., x_{n-1}) = p(x_n | x_{n-1})$$
 (2.3)

A este modelo probabilístico se le conoce como cadena de Márkov de primer orden y la probabilidad conjunta de las observaciones está dada por:

$$p(x_1,...,x_N) = p(x_1) \prod_{n=2}^{N} p(x_n | x_{n-1}).$$
 (2.4)

mientras que su modelo gráfico corresponde a la Figura 2.2

Aunque el modelo es mucho más general, puede que se necesite representar de forma más fuerte la dependencia con las

¹ Ver anexo

Figura 2.3: Modelo de Márkov de segundo orden.

osbervaciones anteriores, por lo que se pueden usar cadenas de Márkov de órdenes superiores.

Al caso en el que x_n dependa de las dos observaciones previas se le conoce como cadena de Márkov de segundo orden; y siguiendo el mismo proceso, la distribución conjunta de las observaciones se puede escribir como

$$p(x_1,...,x_N) = p(x_1) \cdot p(x_2 | x_1) \prod_{n=3}^{N} p(x_n | x_{n-1}, x_{n-2})$$
 (2.5)

puesto que se tiene que $x_n \perp x_1, ..., x_{n-3} \mid x_{n-1}, x_{n-2}$.

En este caso su modelo gráfico correspondiente es la Figura 2.3, en el que se puede observar la dependencia de una x_n en específico únicamente con sus dos observaciones anteriores.

Se puede generalizar entonces para cualquier M un modelo de Márkov de M-ésimo orden, aunque al considerar demasiados estados previos se puede complicar de más el modelo; pues el número de parámetros implicados aumenta de forma exponencial al orden del modelo de Márkov.

Para evitar que el modelo se vuelva demasiado complejo, así como para no hacer alguna suposición a priori sobre cuál es el orden es del modelo generativo, se puede introducir una variable oculta, que permita cambiar el planteamiento del modelo.

Se considera entonces una variable latente z_n correspondiente a cada observación x_n , y entonces el conjunto de variables latentes forman una cadena de Márkov, como se muestra en la Figura 2.4.

Se asumirá entonces

$$z_{n+1} \perp z_{n-1} \mid z_n \tag{2.6}$$

Y entonces, usando la regla de la cadena, la distribución conjunta para este modelo es la siguiente:

$$p(x_1,...,x_N,z_1,...,z_N) = p(z_1) \left[\prod_{n=2}^N p(z_n | z_{n-1}) \right] \prod_{n=1}^N p(x_n | z_n).$$
(2.7)

Figura 2.4: Modelo oculto de Márkov.

Para éste último modelo gráfico, si las variables latentes son discretas, entonces se le conoce como Modelo oculto de Márkov o HMM (*Hidden Markov Model*), y es justo el modelo que se utilizará para resolver la tarea de *speaker diarisation*.

2.2 CADENA OCULTA DE MÁRKOV

Una cadena oculta de Márkov, sigue siendo entonces un modelo para datos secuenciales, en los que además se introduce el concepto de una variable oculta de la cual dependen las observaciones que se tienen; y de forma más especifica, esta variable oculta es discreta.

Usando un HMM entonces podemos modelar un proceso bivariado discreto en el tiempo, con ciertas propiedades interesantes que se mencionarán más adelante.

Nuestro modelo HMM, se puede pensar como una mezcla de distribuciones en la que la densidad tiene un distribución dada por p(x|z), es decir, la mezcla de los componentes está dada por las observaciones previas.

Se puede considerar entonces, que cada variable latente z_n tendrá una distribución multinomial discreta, que indicará cuál componente de la mezcla de distribuciones es la que ha generado la observación x_n . Para ésto, se usará la notación 1-de-K, que corresponde a un conjunto de variables indicador $z_{nk} \in \{0,1\}$, donde k = 1, ..., K señalando cuál de las K distribuciones generó

a la variable x_n , i. e., si el componente generador de x_n fue la k-ésima mezcla, entonces $z_{nk} = 1$ y $z_{nj} = 0$ para todo $j \neq k$.

Ahora, se tiene que cada variable z_n depende únicamente de z_{n-1} , y puesto que las variables latente son vectores binarios de K dimensiones, entonces se tendría que la probabilidad condicional de $z_n | z_{n-1}$ se puede representar mediante una tabla o matriz, que se denotará como \mathbf{A} , y será referida como *matriz de probabilidades de transición*.

Los componentes de la matriz de transición se definen tal que $A_{jk} \equiv p(z_{nk} = 1 \, | \, z_{n-1,j} = 1)$, y puesto que son probabilidades, se cumple que $0 \leqslant A_{jk} \leqslant 1$ además de que $\sum_k A_{jk} = 1$. Considerando estas restricciones, entonces la matriz \mathbf{A} tiene K(K-1) parámetros independientes.

Se puede escribir entonces la probabilidad condicional de una variable latente z_n dada la anterior variable latente z_{n-1} de la siguiente forma:

$$p(z_n | z_{n-1}, \mathbf{A}) = \prod_{k=1}^K \prod_{j=1}^K A_{jk}^{z_{n-1,j} \cdot z_{nk}}$$
 (2.8)

Además, se tiene que considerar la variable latente inicial z_1 , puesto que ésta no tiene una variable latente anterior, la Ecuación 2.7 no aplica; por lo que entonces la probabilidad marginal de z_1 está representada por un vector de probabilidades π tal que $\pi_k \equiv p(z_{1k})$, por lo que se puede reescribir como sigue:

$$p(z_1 \mid \pi) = \prod_{k=1}^{K} \pi_k^{z_{1k}}$$
 (2.9)

y además se cumple que $\sum_k \pi_k = 1$ por definición.

La matriz de transición también se puede llegar a representar como un grafo dirigido, si se consideran las entradas de la matriz $\bf A$ como los pesos de las aristas, y los nodos son cada uno de los posibles $\bf K$ estados. Por ejemplo, para el caso de una variable latente de $\bf K=3$ estados, se tendría el grafo de la Figura 2.5.

De la misma manera, el grafo correspondiente a la matriz de transición, se puede representar como una rejilla a través del tiempo, en la que se mantienen los vértices y aristas del

Figura 2.5: Modelo oculto de Márkov.

Figura 2.6: Modelo oculto de Márkov.

grafo, pero además se introduce la noción del tiempo. Como se observa en la Figura 2.6

Por último, para completar el modelo se tiene que considerar además la distribución condicional de las variables observadas, es decir $p(x_n | z_n, \phi)$ donde ϕ es un conjunto de parámetros específicos a la distribución de x. Se les conoce como probabilidades de emisión, y puede ser tanto una distribución discreta como una continua. Para el caso en que la probabilidad de emisión esté dada por una distribución discreta, entonces se tendrá una tabla de probabilidades.

Para calcular entonces esta probabilidad de emisión, se tiene tanto z_n como unos parámetros φ dados, por lo que entonces se tienen un vector de K valores para cada uno de los posibles estados del vector indicador z_n .

Se puede escribir entonces la probabilidad de emisión como sigue:

$$p(x_n | z_n, \phi) = \prod_{k=1}^{K} p(x_n | \phi_k)^{z_{nk}}$$
 (2.10)

y entonces la probabilidad conjunta quedaría definida de la siguiente manera:

$$p(\mathbf{X}, \mathbf{Z} | \theta) = p(z_1 | \pi) \left[\prod_{n=2}^{N} p(z_n | z_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(x_n | z_n, \phi)$$
 (2.11)

donde $\mathbf{X} = \{x_1, ..., x_N\}$, $\mathbf{Z} = \{z_1, ..., z_N\}$ y $\theta = \{\pi, \mathbf{A}, \phi\}$ es el conjunto de parámetros requeridos por el modelo.

La intuición del modelo oculto de Márkov se puede entender más fácilmente si se revisa desde el punto de vista generativo. Primero, se muestrea la variable latente inicial z_1 , de acuerdo a las probabilidades π_k , así como su correspondiente x_1 . Luego, se debe escoger un z_2 . Para esto, si se supone que z_1 es igual a algún estado j, entonces usando la matriz de transición se muestrea z_2 con probabilidades A_{jk} para k=1,...,K, y de igual manera, su correspondiente variable observada x_2 . Éste mismo proceso es el que se sigue para cada iteración en el tiempo, hasta que se forma completamente el modelo oculto de Márkov y se le conoce como *muestreo ancestral* y se suele usar para modelos con grafos dirigidos.

Si la matriz de transición es predominantemente diagonal, entonces en la secuencia de datos puede que un mismo estado i sea el que genere muchos puntos x_n , pues con poca probabilidad cambiará de un estado i a j. Este fenómeno es justo el que se espera para el caso de *speaker diarisation*, pues usualmente una persona p_i hablará durante mucho tiempo, y luego cuando otra persona p_j toma la palabra, sucederá lo mismo.

MÁXIMA VEROSIMILITUD DEL HMM

La tarea de aprendizaje de parámetros del HMM es encontrar, dada una secuencia de datos observados, el mejor conjunto de probabilidades de transición y emisión.

Hasta el momento no se conoce algún algoritmo para resolver esta problema de forma exacta, pero sí hay métodos para estimar la máxima verosimilitud del modelo de forma local usando el algoritmo de Baum–Welch, que se explicará con más detalle a continuación.

3.1 ESTIMACIÓN DE PARÁMETROS DEL HMM

Si se tiene un conjunto de datos observados $\mathbf{X} = \{x_1, ..., x_N\}$, se pueden determinar los parámetros del HMM usando máxima verosimilitud. La función de verosimilitud se obtiene de la distribución conjunta (2.11) al marginalizar las variables latentes.

$$p(\mathbf{X}, \theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \theta)$$
 (3.1)

Sin embargo, la función obtenida presenta algunas dificultades, pues no se puede tratar z_n como si fuearn variables independientes y separarlas, puesto que cada variable latente z_n depende del estado anterior. Además, no es factible separar las sumas de estas N variables, pues para cada una se tendría que considerar cada uno de sus K posibles estados, y entonces el número de términos en la suma es del orden K^N , y crece exponencialmente con el largo de la cadena. Por esto y algunas otras razones, es que se descarta el estimar los parámetros del modelo de forma directa por máxima verosimilitud.

Por esto, se usará el algoritmo de *expectation-maximization* para maximizar la verosimilitud. Inicialmente, se hace una selección

inicial de los parámetros que denotaremos como $\theta^{\rm old}$. Luego, en el primer paso del *expectation-maximization-*conocido como *E-step-* se toman estos parámetros para encontrar la probabilidad a posteriori de las variables latentes $p(\mathbf{Z} | \mathbf{X}, \theta^{\rm old})$, las cuales se usarán para evaluar la esperanza de la log-verosimilitud completa; que se puede escribir como una función tanto de la primera estimación de $\theta^{\rm old}$ así como de los nuevos parámetros θ .

La función de verosimilitud completa se define entonces como sigue:

$$Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z} | \mathbf{X}, \theta^{\text{old}}) lnp(\mathbf{X}, \mathbf{Z} | \theta).$$
 (3.2)

Se introduce además cierta notación para simplificar las expresiones que ahora se usarán. Se usará $\gamma(z_n)$ para denotar la distribución marginal posterior de la variable latente z_n , y $\xi(z_{n-1},z_n)$ para denotar la distribución conjunta posterior de dos variables latentes sucesivas, es decir:

$$\gamma(z_n) = p(z_n | \mathbf{X}, \theta^{\text{old}}) \tag{3.3}$$

$$\xi(z_{n-1}, z_n) = p(z_{n-1}, z_n | \mathbf{X}, \theta^{\text{old}})$$
 (3.4)

Considerando entonces que z_n es un vector binario, entonces se puede extender esta notación para cada uno de los componentes de la variable latente z_n , es decir, para denotar la probabilidad condicional $z_{nk}=1$. Se tomará entonces la esperanza de tanto $\gamma(z_{nk})$ como $\xi(z_{n-1,j},z_{nk})$ y entonces

$$\gamma(z_{nk}) = \mathbb{E}[z_{nk}] = \sum_{\mathbf{z}} \gamma(\mathbf{z}) z_{nk}$$
 (3.5)

$$\xi(z_{n-1,j}, z_{nk}) = \mathbb{E}\left[z_{n-1,j} \cdot z_{nk}\right] = \sum_{\mathbf{Z}} \gamma(\mathbf{z}) z_{n-1,j} \cdot z_{nk} \quad (3.6)$$

Si se sustituye $p(X, Z | \theta)$ de (2.11) en (3.2), así como usando las definiciones (3.5) y (3.6), y luego desarrollando el logaritmo, se obtiene:

$$Q(\theta, \theta^{\text{old}}) = \sum_{k=1}^{K} \gamma(z_{1k}) \ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(z_{n-1,j}, z_{nk}) \ln A_{jk} + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \ln p(x_n \mid \phi_k)$$

Por lo que entonces en el *E-step* se debe evaluar tanto $\gamma(z_{nk})$ como $\xi(z_{n-1,j}, z_{nk})$ de forma eficiente para luego continuar con la segunda etapa del algoritmo.

El segundo paso, también conocido como M-step, consiste en maximizar la unción $\mathfrak{Q}(\theta,\theta^{\mathrm{old}})$ con respecto a cada uno de los parámetros $\theta = \{\pi, \mathbf{A}, \phi\}$ mientras que ahora $\gamma(z_{nk})$ y $\xi(z_{n-1,j}, z_{nk})$ se tratan como constantes.

Para maximizar entonces π , se deriva $\mathfrak{Q}(\theta,\theta^{old})$ con respecto a π_k , usando multiplicadores de Lagrange para la restricción de $\sum_k \pi_k = 1$, por lo que entonces se tiene:

$$\frac{\partial Q(\theta, \theta^{\text{old}})}{\partial \pi_k} = \frac{\partial}{\partial \pi_k} \left[\sum_{k=1}^K \gamma(z_{1k}) \ln \pi_k + \lambda(\sum_{k=1}^K \pi_k - 1) \right]$$

y derivando y encontrando el valor de λ , para luego despejar π_k , se obtiene:

$$\pi_{k} = \frac{\gamma(z_{1k})}{\sum_{j=1}^{K} \gamma(z_{1}j)}$$
(3.8)

mientras que para maximizar **A**, se deriva entonces $\mathfrak{Q}(\theta, \theta^{\text{old}})$ con respecto a A_{jk} , considerando también las restricciones, es decir

$$\frac{\partial Q(\theta, \theta^{\text{old}})}{\partial \pi_k} = \frac{\partial}{\partial \pi_k} \left[\sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(z_{n-1,j}, z_{nk}) \ln A_{jk} + \lambda(\sum_{k=1}^{K} A_{jk} - 1) \right]$$

y de la misma manera, resolviendo para A_{jk} se obtiene

$$A_{jk} = \sum_{n=2}^{N} \frac{\xi(z_{n-1,j}, z_{nk})}{\sum_{l=1}^{K} \xi(z_{n-1,j}, z_{nl})}$$
(3.9)

Entonces, el algoritmo EM, debe ser inicializado escogiendo algunos valores para π y \mathbf{A} , considerando las restricciones que implican cada uno, pues representan ciertas probabilidades. Por tanto, se puede inicializar tanto π como \mathbf{A} con valores aleatorios, siempre y cuando cumplan con las restricciones propias de una probabilidad.

Por último, para estimar el parámetro θ , que en realidad corresponde a estimar los parámetros propios de la distribución

de emisión, éstos dependen de la distribución propia de las variables observadas, aunque basta 1 observar que en (3.7) únicamente en el último término aparece θ en forma de una suma ponderada de $lnp(x_n | \varphi_k)$; y en el caso de que los parámetros φ_k sean independientes para los diferentes componentes de la mezcla o suma ponderada, entonces maximizar con respecto a esos parámetros se puede realizar de forma sencilla.

3.2 ALGORITMO backward-forward

Se presenta ahora un algoritmo que nos permite estimar de forma eficiente tanto $\gamma(z_{nk})$ como $\xi(z_{n-1,j},z_{nk})$ que se requieren para el *E-step* del algoritmo de EM.

Para deducir el algoritmo, primero se deben tener en cuenta varias propiedades de una cadena de Márkov, que nos permitirán simplificar varios cálculos (Ver apéndice). Además, se debe tener en cuenta que éste desarrollo es general, puesto que es independiente de las probabilidades de emisión p(x|z), y entonces no importa si las variables observadas son discretas o continuas, pues lo único que se requiere es poder evaluar $p(x_n|z_n)$ para cada z_n , que sabemos que son discretas.

Se puede comenzar por evaluar $\gamma(z_n)$, que es la probabilidad a posteriori $p(z_n | x_1, ..., x_N)$ de z_n dado un conjunto de datos $x_1, ..., x_N$. Entonces, usando el teorema de bayes se tiene que

$$\gamma(z_n) = p(\mathbf{z}_n | \mathbf{X}) = \frac{p(\mathbf{X} | \mathbf{z}_n) p(\mathbf{z}_n)}{p(\mathbf{X})}$$
(3.10)

y usando la regla del producto, tenemos que

$$\gamma(z_n) = \frac{p(x_1, ..., x_n, z_n)p(x_{n+1}, ..., x_N | z_n)}{p(\mathbf{X})} = \frac{\alpha(z_n)\beta(z_n)}{p(\mathbf{X})} (3.11)$$

donde usamos la siguiente notación:

$$\alpha(z_n) \equiv p(x_1, ..., x_n, z_n) \tag{3.12}$$

$$\beta(z_n) \equiv p(x_{n+1}, ..., x_N | z_n)$$
 (3.13)

Se puede pensar $\alpha(z_n)$ como la probabilidad conjunta de observar toda una secuencia de datos hasta el momento n, además de el valor de la variable z_n ; mientras que $\beta(z_n)$ es la probabilidad condicional para una secuencia de datos desde un momento n hasta N, dado que se conoce z_n .

Primero, desarrollamos (3.12) como sigue:

$$\begin{split} &\alpha(z_n) = p(x_1, ..., x_n, z_n) \\ &\alpha(z_n) = p(x_1, ..., x_n | z_n) p(z_n) \\ &\alpha(z_n) = p(x_1, ..., x_{n-1} | z_n) p(x_n | z_n) p(z_n) \\ &\alpha(z_n) = p(x_1, ..., x_{n-1}, z_n) p(x_n | z_n) \end{split}$$

donde se factorizo $p(z_n)$ y luego $p(x_n | z_n)$ del resto, puesto que $x_n \perp x_1, ..., x_{n-1} | z_n$; para luego volver a juntar $p(z_n)$ usando el Teorema de Bayes.

Luego, marginalizando sobre z_{n-1} , podemos escribir

$$\alpha(z_{n}) = p(x_{n} | z_{n}) \sum_{z_{n-1}} p(x_{1}, ..., x_{n-1}, z_{n-1}, z_{n})$$

$$\alpha(z_{n}) = p(x_{n} | z_{n}) \sum_{z_{n-1}} p(x_{1}, ..., x_{n-1}, z_{n} | z_{n-1}) p(z_{n-1})$$

$$\alpha(z_{n}) = p(x_{n} | z_{n}) \sum_{z_{n-1}} p(x_{1}, ..., x_{n-1} | z_{n-1}) p(z_{n} | z_{n-1}) p(z_{n-1})$$

$$\alpha(z_{n}) = p(x_{n} | z_{n}) \sum_{z_{n-1}} p(x_{1}, ..., x_{n-1}, z_{n-1}) p(z_{n} | z_{n-1})$$

$$(3.14)$$

y usando que $z_{n-1} \perp x_1, ..., x_{n-1} \mid z_n$, podemos seguir el mismo procedimiento para llegar a (3.14); y por último, podemos usar la definición de (3.12) para el primer factor de la suma, llegando a que

$$\alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_n | z_{n-1})$$
(3.15)

Con lo que se obtiene una forma recursiva para calcular $\alpha(z_n)$ a partir de $\alpha(z_{n-1})$ para cuaquier n, excepto para n=1; pues no se tiene definido un z_0 . Por esto mismo, podemos definir el caso inicial $\alpha(z_1)$ usando (3.12) y entonces resultaría:

$$\alpha(z_1) = p(x_1, z_1) = p(z_1)p(x_1 | z_1)$$
(3.16)

De la misma manera, para el caso de $\beta(z_n)$ desarrollando a partir de (3.13)

$$\beta(z_n) = p(x_{n+1}, ..., x_N | z_n)$$

$$\beta(z_n) = \sum_{z_{n+1}} p(x_{n+1}, ..., x_N, z_{n+1} | z_n)$$

$$\beta(z_n) = \sum_{z_{n+1}} p(x_{n+1}, ..., x_N | z_n, z_{n+1}) p(z_{n+1} | z_n)$$

$$\beta(z_n) = \sum_{z_{n+1}} p(x_{n+1}, ..., x_N | z_{n+1}) p(z_{n+1} | z_n)$$

donde primero agregamos la variable z_{n+1} y marginalizamos con respecto a ella, para luego factorizar $p(z_{n+1}|z_n)$. Después, considerando que $x_{n+1},...,x_N \perp z_n|z_{n+1}$, podemos simplificar la expresión.

A partir de ahí, podemos factorizar $p(x_{n+1}|z_{n+1})$ con lo que llegamos a

$$\beta(z_n) = \sum_{z_{n+1}} p(x_{n+2}, ..., x_N | z_{n+1}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_n)$$
 (3.17)

donde usando (3.13) obtenemos de nuevo una forma recursiva para $\beta(z_n)$

$$\beta(z_n) = \sum_{z_{n+1}} \beta(z_{n+1}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_n)$$
 (3.18)

que en este caso dependería del valor de $\beta(z_{n+1})$ y aplicaría para cualquier n, excepto cuando n = N.

Para este caso, igual partiríamos de la definición en (3.11)

$$p(z_n | \mathbf{X}) = \frac{\mathbf{p}(\mathbf{X}, \mathbf{z_N})_{c}(\mathbf{z_N})}{\mathbf{p}(\mathbf{X})}$$
(3.19)

de donde se obtiene que

$$\beta(z_{\rm N}) = 1 \tag{3.20}$$

3.2.1 Factor de escala

Para la implementación, se tiene que considerar un problema común del algoritmo de backward-forward: como ya se mencionó, en el proceso recursivo para calcular cada $\alpha(z_n)$ se utilizan

los previamente calculados $\alpha(z_{n-1})$, además de unas multiplicaciones por un par de probabilidades. Puesto que cada probabilidad es por definición menor o igual a 1, y que esta operación se realiza iterativamente para cada estado n, se tiene entonces que los valores de $\alpha(z_n)$ decrecerán rápidamente, y llegará un momento en el que no se puedan representar en una computadora (por los límites tanto de la notación punto flotante como del doble punto flotante).

Comúnmente, cuando se tienen problemas de precisión, se suele tomar el logaritmo, y así se amplia el rango, evitando posibles underflows. Sin embargo, para el caso presentado, no es posible realizar esto, pues tanto para $\alpha(z_n)$ como $\beta(z_n)$ se manejan sumas de números pequeños, y entonces no tiene sentido usar el logaritmo; pues el logaritmo no se aplicaría directamente sobre esos valores que pudieran ser pequeños; sino sobre la suma de ellos.

Se propone entonces manejar las probabilidades de forma reescalada. Originalente, $\alpha(z_n)$ representa la probabilidad conjunta de todas las variables observadas $x_1, ..., x_n$ junto con la variable latente z_n . Se usará entonces $\hat{\alpha}(z_n)$ como la probabilidad condicional de la variable latente z_n dadas todas las observaciones antes mencionadas. Es decir:

$$\hat{\alpha}(z_n) = p(z_n | x_1, ..., x_n) = \frac{\alpha(z_n)}{p(x_1, ..., x_n)}$$
(3.21)

El orden entre las cantidades se mantendrá, puesto que se dividirá entre la probabilidad conjunta de las variables observadas $p(x_1, ..., x_n)$.

Como en algún momento nos será útil regresar del espacio escalado al espacio original de las variables, es importante calcular estos factores de escala para cada una de las $\hat{\alpha}(z_n)$.

$$c_n = p(x_n | x_1, ..., x_{n-1})$$
(3.22)

y entonces podemos calcular el factor de escalamiento usando la regla del producto

$$p(x_1, ..., x_n) = \prod_{i}^{n} c_i$$
 (3.23)

y entonces, para obtener $\alpha(z_n)$ a partir de $\hat{\alpha}(z_n)$ se procede de la siguiente manera:

$$\alpha(z_n) = p(x_1, ..., x_n, z_n) = p(x_1, ..., x_n)p(z_n | x_1, ..., x_n)$$

$$= \left(\prod_{i}^{n} c_i\right) \hat{\alpha}(z_n)$$
(3.24)

De la misma manera, la forma recursiva que se había obtenido en (3.15) se puede reescribir de la siguiente manera:

$$c_n \alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \hat{\alpha}(z_{n-1}) p(z_n | z_{n-1})$$
 (3.25)

por lo que ahora, a cada paso de la recursión al calcular $\hat{\alpha}(z_{n-1})$, se debe calcular también c_n e ir almacenando los coeficientes que normalizan a $\alpha(z_n)$.

Ahora, para reescalar $\beta(z_n)$ usando los coeficientes c_n se tendría que

$$\beta(z_n) = \left(\prod_{i}^{n} c_i\right) \hat{\beta}(z_n) \tag{3.26}$$

donde

$$\hat{\beta}(z_n) = \frac{p(x_{n+1}, ..., x_N | z_n)}{p(x_{n+1}, ..., x_N | x_1, ..., x_n)}$$
(3.27)

y por lo tanto tampoco presentaría problemas numéricos el cálculo de $\hat{\beta}z_n$, puesto que vuelve a ser un cociente de probabilidades. En este caso, de la condicional de las variables observadas desde $x_{n+1},...,x_N$ dada la variable latente z_n sobre la probabilidad condicional de las mismas variables observadas dadas todas las variables anteriores a x_{n+1} .

Entonces, para calcular recursivamente los valores de $\hat{\beta}(z_n)$, se deriva que

$$c_{n+1}\hat{\beta}(z_n) = \sum_{z_{n+1}} \hat{\beta}(z_{n+1}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_n)$$
 (3.28)

donde usamos los coeficientes de reescalaciemtno que ya habíamos calculado (y almacenado) junto con los valores de $\hat{\alpha}(z_n)$.

Con las nuevas variables reescaladas, ya se pueden realizar todos los cálculos necesarios.

Por ejemplo, para calcular la verosimilitud del modelo, usando (3.23) se tiene que

$$p(\mathbf{X}) = \prod_{i}^{N} c_{i} \tag{3.29}$$

Así como para el algoritmo de backward-forward, se pueden reescribir tanto (??) como (??) usando las nuevas variables

$$\gamma(z_n) = \hat{\alpha}(z_n)\hat{\beta}(z_n) \tag{3.30}$$

$$\xi(z_{n-1}, z_n) = c_n \hat{\alpha}(z_{n-1}) p(x_n | z_n) p(z_n | z_{n-1}) \hat{\beta}(z_n)$$
 (3.31)

3.3 SELECCIÓN DE MODELO

Hasta ahora, se tiene la metodología completa para estimar los parámetros del un modelo HMM propuesto; es decir, se considera que se sabe a priori el número de interlocutores que participan en la grabación. A partir de ello, se estimarán los parámetros correspondientes del modelo, además de obtener la segmentación más probable para los datos.

Para la estimación de los parámetros usando EM, se proponen de forma aleatoria las probabilidades iniciales así como las matrices de transición y emisión correspondientes. Como condiciones de paro del método se estable un número fijo de iteraciones que depende del número de la longitud de la secuencia observada, además de usar una tolerancia mínima para la diferencia entre la log-verosimilitud de dos iteraciones contíguas.

Con esto, se obtiene la estimación de parámatros de el modelo así como su verosimilitud, partiendo de una inicialización aleatoria.

Puesto que el problema abarca también el detectar cuántos speakers están involucrados en la grabación, se propondrán modelos para diferentes números de speakers, y a partir de una función de costo se escojerá al que mejor se ajuste.

3.3.1 Selección de modelo usando bootsrap con likelihood ratio testing

Para realizar esto, primero se usará la técnica conocida como bootstrap paramétrico para comparar el modelo correspondiente de d estados contra el de d+1 estados ocultos.

La prueba que se realiza es comparando la máxima verosimilitud estimada (MLE) $\hat{\theta}^{(d)}$ y $\hat{\theta}^{(d+1)}$ de los modelos de d y d + 1 estados respectivamente. Para la comparación se usa la estadística *log likelihood ratio* que corresponde a la diferencia de las log-verosimilitudes mencionadas

$$LR_{obs}^{(d)} = log \frac{L(\hat{\theta}^{(d+1)}; y_{1:n})}{L(\hat{\theta}^{(d)}; y_{1:n})} = log L(\hat{\theta}^{(d+1)}; y_{1:n}) - log L(\hat{\theta}^{(d)}; y_{1:n})$$
(3.32)

Para calcular la MLE de un modelo, se estimó la verosimilitud varias veces con diferentes parámetros iniciales aleatorios. Se iteró el algoritmo EM hasta convergencia, un numero iter_hmm fijo de iteraciones, esto para evitar el estancamiento del algoritmo en un máximo local, y obtener así una buena estimación de la máxima verosimilitud del modelo.

Se usó entonces como MLE del modelo la máxima verosimilitud correspondiente a los mejores parámetros estimados y que se denotó por LLR_0 bs.

Ahora, para hacer la prueba con boostrap, simularemos

3.3.2 Selección de modelo usando BIC

Otra manera de realizar la selección del modelo que mejor se adecua a los datos que se observan, es usar una métrica específica para la selección de modelos.

Entre las más comunes, se encuentran por ejemplo AIC o BIC, que se encargan de selección de modelo a partir de la estimación de máxima verosimilitud de los datos, así como también penalizan el número de parámetros libres que necesita el modelo.

Algoritmo 1 Muestreo ancestral para un HMM

Input:

end for

```
núm. de estados N, núm. de muestras en el tiempo T núm. de posibles valores en el diccionario K, \pi \in \mathcal{R}^N; \ \pi_j = p(z_{1j}) \mathbf{A} \in \mathcal{R}^{N \times N}; \ \mathbf{A}_{jk} = p(z_{nk} | z_{n-1,j}) \mathbf{E} \in \mathcal{R}^{K \times N}; \ \mathbf{E}_{jk} = p(x_{nk} | z_{n,j}) z_1 \sim \text{Multinomial}(\pi) x_1 \sim \text{Multinomial}(\mathbf{E}_{[z_1, :]}) \text{for } i = 1 \rightarrow T \text{ do} z_t \sim \text{Multinomial}(\mathbf{A}_{[z_{t-1}, :]}) x_t \sim \text{Multinomial}(\mathbf{E}_{[z_t, :]})
```

Puesto que consideramos que dentro de nuestro espacio de modelos propuestos se encuentra el modelo solución (esto es, hay un modelo que corresponde con el número de interlocutores que participan en la grabación), resulta más natural usar BIC o Bayesian Information Criterion.

Este criterio se calcula de la siguiente manera:

$$BIC(M) = 2log - likelihood_{max}(M) - (logn)dim(M)$$
 (3.33)

para cada propuesta de modelo M, donde dim(M) es el número estimado de parámetros libres que le corresponden, y n es el tamaño de nuestra muestra de datos.

Para estimar el número de parámetros libres de nuestro modelo, se consideran todas las probabilidades que rigen al HMM, que en este caso son: la matriz a priori o inicial, la matriz de transiciones entre los interlocutores, así como la matriz de emisión de cada persona para todo el diccionario de palabras.

Esta selección se enfoca en escoger el candidato modelo con la mayor probabilidad dados los datos, pero penalizando la complejidad de cada propuesta. Se preferirán entonces los modelos con una mayor verosimilitud que involucren la menor cantidad de parámetros posibles.

•••

SPEAKER DIARISATION

Se conoce como *Speaker Diarisation* al problema de segmentación automática de audio a partir de la identificación de las diferentes personas que participan en una grabación. Esto se realiza generalmente identificando los segmentos que son más *homogéneos* y a partir de estos, identificar el número de personas que hablan en la grabación.

Se considera que cada persona posee ciertas características propias que la diferencian de los demás. Por ejemplo, tanto la tesitura como el timbre son rasgos que varían de persona a persona.

La idea básica cuando se busca abordar este problema es el de poder segmentar la señal de audio de acuerdo a los cambios que ocurren en ésta. Es decir, detectar por ejemplo las variaciones en la voz (que usualmente implican que alguien más está hablando) y luego, con todos los segmentos obtenidos, tratar de agruparlos según características similares; pues una misma persona tiene características propias en su voz.

4.1 APLICACIONES DE speaker diarisation

Por la misma naturaleza del algoritmo, cuando se realiza *speaker diarisation*, lo que se trata de inferir es cuántas personas hablan, y cuándo habla cada una de ellas; es decir, se identifica a un grupo n de personas, pero no se dice nada acerca de ellos o su identidad.

Por el mismo planteamiento del problema, las etiquetas asignadas a cada persona identificada en la grabación puede cambiar, pues no hay nada que nos permita asociar de manera no arbitraria una etiqueta a una persona en especifico. Es decir, el orden en que se asignan las etiquetas puede cambiar, aunque la segmentación obtenida sea en esencia la misma.

La segmentación y agrupación de voz, es una parte importante de la transcripción de voz, así como también del reconocimiento de voz e identificación de personas que hablan.

Es de gran ayuda para la tarea de reconocimiento de voz, puesto que éste se basa en identificar palabras completas; por lo que al lograr segmentar una señal de audio de acuerdo a las personas que hablan, se tendrá entonces muy seguramente una buena segmentación tanto de palabras como oraciones completas.

En cuanto a la identificación de personas y alguna otra modelación acústica que se quiera realizar; es importante que los modelos que se entrenan usen segmentos de audio homogéneos (en este caso, que se tenga la certeza que corresponden a la misma persona), para que en realidad se esté modelando la voz de la persona, y no algo diferente a ella.

Como último ejemplo, la transcripción automática de voz, es el proceso en el que además de lograr identificar cuándo habla cada persona, se identifica de quién se trata realmente esta persona, y qué es lo que está diciendo. Ésto sirve por ejemplo, cuando se tiene una gran cantidad de grabaciones de audio; y se desea etiquetar de qué se habla en cada una de estas grabaciones.

4.2 PROCESAMIENTO DE SEÑAL

Antes de abordar de lleno el problema de *speaker diarisation*, se tiene que realizar cierto tratamiento a la señal de audio con la que se trabajará.

Es decir, a partir de la señal de entrada (que se considerará es digital) se tratarán de obtener vectores de características cada cierto tiempo, que representen de forma adecuada los rasgos que nos interesan distinguir.

Una vez que se tienen estos vectores, se les aplica un algoritmo de aglomeración para entonces obtener un conjunto de etiquetas que se podrían considerar como posibles estados o palabras de diccionario referentes a la señal de audio.

El proceso en detalle se especifica a continuación:

4.2.1 Esquema general del sistema

-Insertar dibujo y explicarlo-.

4.2.2 Pre-procesamiento de señal de audio

Se considera que se tiene una señal digital de voz, y que a partir de ésta se identificarán a las diferentes personas que hablan durante la grabación.

Figura 4.1: Señal original de audio.

El primer paso en el procesamiento de la señal, es tanto la detección como eliminación de silencios; pues éstos realmente no nos interesan para la modelación del sistema.

Para realizar entonces la detección de los silencios, en esta primer etapa y como un primer intento para la eliminación de silencios, se hace una detección básica de qué partes de la señal son mayormente silencios.

Para ésto, se utiliza una ventana móvil que se irá recorriendo a lo largo señal, y que irá calculando el total de energía de la señal dentro de la ventana. Se considerará entonces silencio aquellas partes de la señal cuyo total de energía esté debajo de un umbral específico.

A partir de esta ventana se obtienen entonces las regiones que pertenecen tanto al silencio, como a la señal que realmente se desea modelar. Nota: Tanto en ancho de la ventana, como el umbral para definir si será silencio se pueden ajustar dependiendo del tipo de señal.

(a) Señal original con silencio identificado.

(b) Señal procesada y recortada.

Figura 4.2: *Identificación y eliminación de silencio en señal.*

Como se observa en la Figura 4.2 basta entonces con eliminar los segmentos que con baja energía y reagrupar la señal restante.

Con esto, se obtiene una señal en general más pequeña, y que se podría considerar sólo contiene realmente los datos que se desea modelar.

4.2.3 Obtención de características acústicas

Una vez que se tiene la señal ya sin silencios, se trata de buscar características propias de la señal de audio que nos permitan identificar de buena forma los cambios de voz a través de la señal.

Tanto la extracción como selección de la mejor representación paramétrica de la señal de audio es una importante tarea en el diseño de cualquier sistema relacionado al reconocimiento o procesamiento de señales de audio.

Para la tarea de *speaker diarisation*, se usarán los Coeficientes Cepstrales de Frecuencia Mel (*MFCC*), que son ampliamente utilizados por ejemplo en *speech recognition* entre otros procesos

relacionados al procesamiento de voz; cuyo objetivo es comprimr la señal de audio eliminando la información que no es útil para análisis fonético.

Cabe mencionar, que originalmente los *MFCC* fueron diseñados para la tarea específica de reconocimiento de voz [referencia ICASSP 82], por lo que al momento de diseñarlos se trataba principalmente de que una misma palabra fuera parametrizada de la misma manera sin importar quién fuera quien la pronunciara.

Ésto va en contra del proceso requerido en *speaker diarisation*, puesto que se desea identificar a las diferentes personas que hablan, sin dar tanta importancia a qué es lo que están diciendo; por lo que la tarea de segmentación de señales de audio se vuelve un poco más complicada.

Para calcular los *MFCC*, se usa la Escala de Frecuencia Mel, que está espaciada de forma lineal en frecuencias bajas, mientras que aumenta su separación de forma logarítmica para frecuencias más altas. Este cambio de separación se realiza comúnmente a partir de los 1000Hz.

A partir de esta escala, se diseña un banco de filtros triangulares que después se usará (Ver Figura 4.3); y esto corresponde de forma similar a la que el oído (la cóclea) captura las características importantes del habla.

Figura 4.3: Banco de filtros triangulares en frecuencia Mel.

Puesto que el banco de filtros de Mel trabajan en la frecuencia; a la señal de audio se le aplica la transformada de Fourier, y entonces a ésta es a quien se le aplica el banco de filtros.

Sea pues Figura 4.2 la señal procesada sin los silencios, la respuesta que se obtiene al aplicar la FFT y luego el banco de filtros de Figura 4.3 se puede observar en la figura Figura 4.4.

Figura 4.4: Respuesta al banco de filtros.

La dimensionalidad de la respuesta al banco de filtros dependerá de la misma contrucción del banco de filtros (tanto el número de canales que se usarán, como el tamaño de ventana que se usará para las convoluciones); pero en general se tendrá que es muy alta; por lo que es conveniente tratar de disminuir la dimensionalidad de estos datos.

Para esto, la respuesta obtenida del banco de filtros se le aplicará la DCT (Transformada Discreta del Coseno), para tratar de concentrar la energía en ciertos componentes (los primeros n coeficientes), y descartar los restantes.

Después de este proceso, nuestros datos se podrían representar de la siguiente maneta (Figura 4.5) que son los MFCC que antes habíamos mencionado.

Figura 4.5: *Mel Frequency Cepstrum Coefficients.*

Por útlimo, para los modelos que usaremos, se necesitan que las características estén de cierta forma *discretizadas*, es decir, no nos es útil el tener para cada observación en el tiempo un vector de características; sino que necesitamos una etiqueta o clase para cada observación.

Para esto, podemos utilizar diferentes métodos tanto de reducción de dimensionalidad como de agrupación/clasificación.

Como primer idea, utilizaremos el método de *k-means* para agrupar los vectores de acuerdo a su cercanía en el espacio euclidiano.

Se tendría entonces el siguiente resultado para nuestra matriz de MFCC obtenida: Cabe aclarar que usamos una variante

Figura 4.6: *MFCC agrupados con k-means++.*

del algoritmo original de k-means, que se llama *k-means++* y que propone una mejor inicialización para obtener mejores resultados.

(——Agregar algoritmo de kmeans++ ——)

Ahora sí, con nuestro vector de etiquetas correspondiente a la señal de audio, se podrá aplicar un modelo y tratar de inferir los parámetos que le correspondan.

4.3 RESOLVER MODELO HMM USANDO EM

Para las pruebas que se han realizado hasta ahora, se han usado grabaciones creadas sintéticamente; esto es, usando un sintetizador de voz. El hacer las grabaciones con voces sintéticas nos permite tener un mayor control sobre la calidad de la grabación (no hay ruidos aditivos o interferencias), además de poder generar muchos más casos de prueba sin tantas complicaciones.

Para las primeras pruebas, se utilizó una grabación correspondiente a varios poemas de la autoría de Manuel Acuña, recitados por varios interlocutores.

Mediante bootstrap se busca genera un modelo representativo para cada una de las propuestas, y se hace la elección del número correcto de speakers identificados mediande BIC. Para las pruebas, se analizaron modelos desde 2 hasta 7 personas participantes, mientras que los resultados que se prensentan son las segmentaciones obtenidas usando desde 2 hasta 4 speakers; además de comparar el ground truth.

En la ?? se muestran los parámetros estimadosa a forma de matrices en falso color: la matriz inicial o a priori, la matriz de transiciones entre speakers, la matriz de emisión de cada speaker para todo el diccionario de palabras, así como la secuencia recuperada.

Como ya se había mencionado, hay un problema de identificación con los interlocutores, por lo que en muchos casos las matrices no corresponderán tal cual, sino que puede que haya intercambio entre las personas que se identificaron.

A partir de esto, y dependiendo de que la segmentación sea confiable, se puede usar algún algoritmo para deducir y emparejar a cada uno de los speakers detectados con su correspondiente en el ground truth.

Se muestra esta comparación, en tanto en ?? como en ??. Las secuencias recuperadas se representan como series de tiempo en donde además se marcan en rojo los errores al asignar a una persona equivocada.

Se puede observar como para el caso en que el modelo se ajusta para 3 personas, la secuencia recuperada en escencia es la misma, exceptuando algunos saltos que se presentan a veces; pero en general logra detectar de forma correcta cada que hay un cambio de interlocutor en la grabación original.

Ahora, al usar BIC para la selección del modelo, obtenemos la siguiente gráfica, con la que se observa que el modelo que se ajusta de mejor manera es en efecto el correspondiente a 6 personas, como se puede observar en la gráfica

Para la segunda prueba, se utilizon varias composiciones del escritor Edgar Allan Poe, que fueron generadas de la misma manera sintéticamente, pero ahora utilizando un motor de voz en inglés.

Se muestran a continuación los resultados obtenidos de la misma manera.

En estas gráficas se observa de igual manera cómo se logró estimar de forma correcta el número de interlocutores. Cuando se aplica el modelo para un número menor que el real, se detectan las inconsistencias y aumenta la tasa de error; así como cuando se ajusta el modelo para un número mayor de personas, se sobreajusta el modelo y se marcan como errores.

EXPERIMENTOS Y RESULTADOS

En los capítulos anteriores se ha descrito los diferentes algoritmos que se utilizarán para realizar la tarea de *speaker diarisation*, y que en esta sección se emplearán de acuerdo al marco experimental que se describe a continuación.

Inicialmete, las pruebas consistieron en usar los algoritmos presentados para selección de modelo usando datos que fueron generados aleatoriamiente a partir de los parámetros de un HMM inicial; para tener una idea general de su desempeño individual.

Para estas primeras pruebas, se simuló una cadena de Márkov oculta con en base en parámetros fijos, con lo que se generó tanto una secuencia de datos observados, como los supuestos datos o variables ocultas que forman la cadena de Márkov. Se utilizó muestreo ancestral para la simulación de estos datos.

Para un caso en específico, se tiene lo siguiente. Realizando la inferencia de parámetros del HMM, se obtienen los siguientes resultados:

El primer algoritmo que se prueba, es el de selección de modelo usando un BIC.

Como ya se comentó, se usará una variante de BIC en donde se incorpora un término de regularización λ para que correspondan en órdenes de magnitud tanto la log-verosimilitud del modelo encontrado como su penalización respectiva.

El problema inmediato que se presenta, es cómo realizar la selección del parámetro de regularización λ que penalice de forma correcta la verosimilitud para los diferentes modelos propuestos. Si λ es demasiado pequeño, entonces la penalización realmente no tendrá efecto y dado el sobreajuste que se presenta al usar modelos más complejos, se preferirán siempre los modelos con más parámetros. Por otro lado, si al escoger λ se

da demasiado peso al término de penalización, entonces siempre se preferirán los modelos más sencillos.

Para encontrar el valor de λ adecuado, se puede entonces formar una superficie con las diferentes curvas de selección BIC de acuerdo a cómo varía λ , e inspeccionar esta duperficie para encontrar una región de confianza en la que el valor de λ es el adecuado.

Por otro lado, para la segunda prueba, se procedió a usar bootstrap con la estadística log-likelihood ratio como ya se describió anteriormente en el Capítulo 3, y haciendo la prueba de hipótesis del modelo de n estados contra el de n+1 estados.

5.1 EXPERIMENTOS

Para los experimentos realizados, se generaron mediante un sintetizador de voz (también conocido como Text-To-Speech o TTS por sus siglas en inglés) que nos permitió tener un mayor control sobre el contenido como tal de las grabaciones, así como sobre los posibles ruidos o interferencias en las secuencias de audio.

Si bien, para probar el desepeño contra otras propuestas del estado del arte se suelen usar otro tipo de bases de datos, éstas suelen no estar disponibles de forma libre, por lo que preferimos generar nosotros un pequeño dataset con el sintetizador de voz.

Usando dos motores para el sintetizador de voz, uno con voces en inglés y otro con voces en español, se generaron 6 secuencias de audio (3 en cada idioma) cuya duración así como el número de interlocutores que participan varía.

5.1.0.1 Prueba 1: Calderon de la Barca

En esta primer secuencia, se tomaron fragmentos de la obra 'La vida es sueño', de Calderón de la Barca, y se utilizaron 3 diferentes voces en español. La secuencia de audio original es de 1:07m.

Para la etapa de agrupación de los vectores MFCC con kmeans++ se usaron 160 centros iniciales.

Figura 5.1: Parámetros encontrados para Prueba 1.

En la Figura 5.1 se muestran los parámetros obtenidos para diferentes modelos que se propusieron. Se observa como para el modelo correcto tanto la matriz de emisión así como la secuencia en falso color corresponden con el ground truth.

Más a detalle, en la Figura 5.2 se observa en azul el orden en el que participan los interlocutores de acuerdo a la secuencia recuperada. En rojo se marcan tanto los falsos positivos como los falsos negativos, de acuerdo al ground truth. Hay que notar que cuando el número de estados para un modelo no es el correcto, entonces inminentemente el número de errores en la secuencia obtenida será mayor, pues al menos todas las intervenciones de un hablante no podrán ser emparejadas o serán asignadas a alguien más.

Se observa también que la mayoría de las veces, en la secuencia recuperada se encuentran algunos brincos entre personas, pero en esencia la estructura y el orden en que hablan los interlocutores es el correcto.

Hasta ahora, se han propuesto varios modelos, y si se compara con el ground truth se puede llegar a discriminar cuál es el modelo correcto ya sea por inspección visual o comparando el error absoluto.

Figura 5.2: Secuencias encontradas para Prueba 1.

Figura 5.3: Superficie y curva de nivel BIC para Prueba 1.

Figura 5.4: Curva BIC con lambda seleccionado para Prueba 1.

Figura 5.5: Pruebas de hipótesis con bootstrap para Prueba 1.

CONCLUSIONES

