CYBER 503x Cybersecurity Risk Management

Unit 8: Special Topics

The Era of Internet:

Internet of Contents (WWW)

Internet of Services (Web2.0)

Internet of People (Social & Mobile)

Forecasts show an expected IoT universe with between 20 and 30 billion connected devices by 2020.

Case Study: WiFi Camera Vulnerabilities

IoT Ecosystem Model

IoT Security Guidelines Overview Document

The IoT Security Pandemic

- What:
 - Millions of devices that have been or will soon be discovered, hacked, modified or hijacked
- Who is affected:
 - Enterprise, industrial, government, consumers
- Where:
 - Worldwide
- How:
 - Poor crypto practices
 - weak or non-existent firmware update practices
 - manufacturers in denial
 - limited regulatory oversight

IoT Security! = Device Security

- Risks:
 - Disabled or hijacked world objects like Mirai
 - Modified endpoint data
 - Ransomware attacks
 - Spying
 - Homeland security
 - Personal safety

Research Findings by HP Internet of Things State of Union Study

Mirai Botnet: DDoS-for-hire Service

- Internet of Botnet malware: reminiscent of viruses, worms, and intense email spam that plagued early internet uses
- One important distinction: less user interactions with IoT devices, not easy to detect, hard to kill
- Mirai isn't the only IoT botnet, but very accessible and adjustable
- It is certainly not going away any time soon

Case Study: DDoS (Distributed Denial of Service) attack on Dyn Servers

Key Findings

- The Dyn servers' attack has been analyzed as a complex & sophisticated attack, using maliciously targeted, masked TCP and UDP traffic over port 53.
- Dyn confirms Mirai botnet as primary source of malicious attack traffic.
- Attack generated compounding recursive DNS retry traffic, further exacerbating its impact.
- Attacker is likely tied to an amateur Hacking Forum Community, which is neither state-sponsored, nor financially motivated.

Six Principles of IoT Security Across the Stack

Hurdles Securing the IoT

- There is no consistent or official software update process or mechanism
- There is little or no understanding of the cyber threats embedded in their systems
- There is lack of accountability for device security
- Improper configuration or purpose-built features that equate to security flaws
- Data privacy

Practical IoT Security Assessment

- Define system scope for assessment
- Understand designs and technical capabilities
 - Device component, communication protocols, the end-to-end system
- Model threats & resilience expectations
 - Device level (data storage, firmware), connection levels and system level
- Model traffic flow and trust boundaries
 - On device, Device to System traffic, System data and functionality
- Assess:
 - Review configuration, standard app/product assessment, debug and vulnerability test tools, code review

Securing the IoT

- Keep your software/firmware updated
- Ensure that connectivity is secure (e.g. Two factor authentication)
- Secure the location of data being reported by IoT-linked devices
- Ensure supply chain security
- Support IoT Security
- Use out of band (OOB) systems closed systems (intranets) that are not open to the public
- Stay Informed

Securing the IoT: support standardization & Best Practices (e.g. OWASP – Open Web Application Security Project)

IoT Surface Area: Ecosystem Access Control

- Authentication
- Session management
- Implicity trust between components
- Enrollment security
- Decommissioning syste,
- Lost access procedures

IoT Surface Area: Device Memory

- Cleartext usernames
- Cleartext passwords
- 3rd-party credentials
- Encryption keys

IoT Surface Area: Device Firmware

- Hardcoded passwords
- Sensitive URL disclosure
- Encryption keys

IoT Surface Area: Web Cloud Interface

- SQL injection
- Cross-site scripting
- Username enumeration
- Weak passwords
- Account lockout
- Known credentials

IoT Surface Area: Device Network Services

- Information disclosure
- User Command Line Interface (CLI)
- Administrative CLI
- Injection
- Denial of Service

IoT Surface Area: Local Data Storage

- Unencrypted data
- Data encrypted with discovered keys
- Lack of data integrity checks

IoT Surface Area: Vendor Backend APIs

- Unencrypted Personal Identifiable Information (PII)
- Encrypted PII sent
- Device information leaked
- Location leaked
- Inherent trust of cloud or mobile application
- Weak authentication & access control

IoT Surface Area: Update Mechanism

- Update sent without encryption
- Updates not signed
- Update location writable

IoT Surface Area: Network Traffic

- LAN (Local Area Network)
- LAN to Internet
- Short range
- Non-standard

Examples: Mapping Attack Surfaces to Vulnerabilities and to Data Asset

Attack Surface Areas	Vulnerability	Data Asset
Administrative interface	Weak password policyLack of account lockout	• credentials
Local data storage	 Data stored without encryption 	• PII
Web cloud interface	SQL Injection	PIIAccount data
Device Firmware	Sent over HTTPHardcoded passwordsHardcoded encryption keys	 Credentials Application data
Vendor backend APIs	 Permissive API Data Extraction 	PIIAccount data

What is Ransomware?

- The term comes from "ransom" and "software".
- A type of computer virus that attacks the "Availability" aspect of InfoSec C.I.A model.
- Often through email phishing scheme.
- Average ransom demand for consumers and small business owners is \$300 to \$500.

"Locky" Ranswomware – How does it work?

- The common way that Locky arrives as following:
 - You receive an email containing an attached document (Troj/DocDI-BCF)
 - The document advises you to enable macros "if the data encoding is incorrect"
 - If you enable macros, you don't actually correct the text encoding; instead you run code inside the document that saves a file to disk and runs it.
 - The saved file (Troj/Ransom-CGX) serves as a downloader, which fetches the final malware payload from the attackers.
 - The final payload could be anything, but in this case is usually the Locky Ransomware.

"Locky" Ransomware variation— yet another new attack scenario (reported in June 2016)

- The steps of a "Locky" Ransomware attack:
 - · Spam email & zip archive attachment.
 - The Javascript file

- The Locky Binary the distinct behavior syscall patterns
 - Delete shadow copies
 - Drive enumerations
 - Files enumeration
 - Encryption routine

Why are Ransomware surging?

- Phishing emails the human factor
 - Blanket phishing
 - Spear phishing
 - Whaling
- Access to the digital currency Bitcoin

Healthcare – Especially Vulnerable to Ransomware Attacks

- Health information is intensely personal and universal
- Health IT- legacy systems, outdated protective measures
- Near exclusive focus on safeguarding data only; but the reality tells – it should be more than that
- "Health systems have the money and they are willing to pay ...", one CSO of Health System said.

Ransomware Case 1: Hollywood Presbyterian Medical Center

- Hit by the "Locky" ransomware in Feb 2016
- Likely the attack occurred because an employee mistakenly clicked on an email attachment that was actually a phishing scam
- Soon the hospital was crippled by unable to access the network; doctors unable to access patient's medical histories etc..
- Response actions:
 - Internal emergency was declared and the computer system taken offline
 - Some patient diverted to nearby hospital
 - Resort to doing patient admissions and other record-keeping by pen & paper
- Eventually paid \$17,000 (about 40 BCT then) to get their records back

Ransomware Case 2: WannaCry

- In May 2017, a worldwide cyber attack named "Wannacry" – the worst ransomware
- Affected victims:
 - More than 230,000 users in some 150 counties
 - NHS in UK, Telephonica, FedEx operations, etc.
- Ransom demanded:
 - \$300 in BCT for each affected user

Ransomware Case 2: WannaCry

- Vulnerability it exploited:
 - Microsoft Windows XP
- Other Risks revealed:
 - A leaked NSA hacking tool, that had been obtained and posted online last year by Shadow Brokers, is at the base of WannaCry
- Likely attacker profile:
 - NSA has linked the WannaCry computer worm to North Korea but not conclusive yet

What to do to ensure the readiness for Ransomware?

- Train your users
- Anti-spam tools (but less effective against spear phsihing)
- Conventional security measures
 - Backup regularly and keep a recent backup copy off-site
 - Business continuity procedures in place
 - Patch early, patch often
 - Segment the network
 - Principle of least privilege
 - Application whitelistings

Building Risk Resilience: Beyond protection, detection, and prevention

Every control will fail Cyber attacks: it's not a question of if, but when?

- Incident Response Planning (IRP)
- Disaster Recovery Planning (DRP)
- Business Continuity Planning (BCP)

Incident Response & Disaster Recovery

- Incident response plan a plan to follow during the incident to mitigate, reduce and contain the damage
 - It ties strongly with monitoring and detection
- Disaster recovery plan a plan that hopefully allows the business to recover from damages after the incident has occurred
 - It is designed to reduce decision-making activities during a disaster mode.

Business Continuity & Disaster Recovery

- BCP planning to continue your key business operations to minimize risks
 - It does NOT seek to detect or prevent every possible disaster
 - Business-focused
- DRP planning to recover from disaster situations
 - When in the disaster mode, it guides the actions of emergencyresponse team until the end goal is reached (i.e. the business restored to full operating capacity in its primary facilities)
 - IT-focused

Example: Locky Ransomware Case – How to plan ahead?

