Stredná priemyselná škola elektrotechnická Komenského 44, 040 01 Košice

Forenzná analýza operačnej pamäte Windows

Autor: Marek Horňak

Trieda: 4.B

Školský rok: 2023/2024

Odbor: 2561M – Informačné a sieťové technológie

Obsah

Jvod	3
.ab1 – Windows	
.ab2 – Windows	
ab3 – Windows	
Referencia a syntax príkazov	

0. Úvod

Tento učebný materiál opisuje analýzu obrazu operačnej pamäte počítača s Windowsom. V prvých dvoch úlohách (laboch) budete podľa návodu analyzovať obrazy operačnej pamäte a hľadať v nich flagy. V každej úlohe je potrebné nájsť 3 flagy. Tretiu úlohu už budete analyzovať svojpomocne za použitia skúseností nadobudnutých v prvých dvoch úlohách.

Pomôcky:

- Virtuálny počítač s Ubuntu alebo iným Linuxom
- Volatility3

1. Lab1 – Windows

Do virtuálneho počítača s Ubuntu si z Github stránky stiahnite súbor **lab1_win.raw** a premiestnite ho do priečinka s Volatility3. Nebudete tak musieť špecifikovať celú cestu k súboru. Presuňte sa do priečinka s Volatility3, aby bol vašim pracovným priečinkom. Začneme tým, že si vypíšeme zoznam bežiacich procesov, aby sme našli podozrivú aktivitu. Použijeme plugin *windows.pslist*:

python3 vol.py -f lab1_win.raw windows.pslist

2380	796	taskhostw.exe	0xe000d006e780	10	-	1	False	2023-11-28 18:45:15.000000
2488	472	userinit.exe	0xe000d009f780	0		1	False	2023-11-28 18:45:15.000000
2504	2488	explorer.exe	0xe000d00cd780	51		1	False	2023-11-28 18:45:15.000000
2608	592	RuntimeBroker.	0xe000d0115440	11		1	False	2023-11-28 18:45:15.000000
2676	496	SearchIndexer.	0xe000ce11d440	17		0	False	2023-11-28 18:45:15.000000
3032	592	ShellExperienc	0xe000cffd5780	51		1	False	2023-11-28 18:45:16.000000
2288	592	SearchUI.exe	0xe000cffe4780	36		1	False	2023-11-28 18:45:16.000000
3652	2504	VBoxTray.exe	0xe000ce12c780	11		1	False	2023-11-28 18:45:26.000000
3716	2504	OneDrive.exe	0xe000d0061780	17		1	True	2023-11-28 18:45:27.000000
3516	2504	WinRAR.exe	0xe000d0040680	2		1	False	2023-11-28 18:46:13.000000
4060	2504	chrome.exe	0xe000cfa46200	39		1	False	2023-11-28 18:46:36.000000
3432	4060	chrome.exe	0xe000cd244780	8		1	False	2023-11-28 18:46:36.000000
2216	4060	chrome.exe	0xe000cd25a780	13		1	False	2023-11-28 18:46:36.000000
2224	4060	chrome.exe	0xe000cd30a780	15		1	False	2023-11-28 18:46:36.000000
2220	4060	chrome.exe	0xe000cd30c780	9		1	False	2023-11-28 18:46:36.000000
2348	4060	chrome.exe	0xe000ccf13080	8		1	False	2023-11-28 18:46:39.000000
2400	4060	chrome.exe	0xe000cceff080	18		1	False	2023-11-28 18:46:39.000000
1552	496	svchost.exe	0xe000cdcfb080	2		0	False	2023-11-28 18:47:08.000000
4304	496	svchost.exe	0xe000cd0d3780	1		1	False	2023-11-28 18:47:10.000000
4652	2504	mspaint.exe	0xe000cfba6780	6		1	False	2023-11-28 18:47:47.000000
4680	496	svchost.exe	0xe000cd38e080	7		0	False	2023-11-28 18:47:47.000000
5024	592	WmiPrvSE.exe	0xe000ccec5780	9		0	False	2023-11-28 18:48:36.000000
4216	592	WmiPrvSE.exe	0xe000cfc53600	8		0	False	2023-11-28 18:49:08.000000
892	844	audiodg.exe	0xe000cce13080	8		0	False	2023-11-28 18:49:25.000000
2900	2504	FTK Imager.exe	0xe000d014d780	24		1	False	2023-11-28 18:49:27.000000
marek@marek-ubuntu:~/volatility3\$								
					· · · · · · · · · · · · · · · · · · ·			

Obrázok 1: bežiace procesy

Na obrázku 1 je vidieť výstup s bežiacimi procesmi. Väčšina procesov ako napr. svchost.exe sú klasické windowsové procesy, ktoré bežia na pozadí. Červenou farbou sú vyznačené procesy, ktoré spustil používateľ. Sú to *WinRAR.exe, chrome.exe a mspaint.exe*. Tieto procesy musíme vyšetriť, pretože môžu ukrývať nejakú podozrivú aktivitu. Začnime programom mspaint.exe. Z toho vieme usúdiť, že používateľ niečo kreslil a mohlo by to byť dôležité. Všimnite si číslo procesu: 4652. Volatility3 nám umožňuje stiahnuť si všetky dáta patriace danému procesu. Použijeme plugin *windows.memmap*:

python3 vol.py -f lab1_win.raw -o output/ windows.memmap --dump --pid 4652

Prepínačom -o sme špecifikovali výstupný priečinok, kam sa má výstup uložiť. --dump znamená, že chceme vytvoriť pamäťový dump (extrakt) a --pid špecifikuje konkrétny proces.

0xfa8000000000	0x7fc00000	0x200000	0xf9f2000	pid.4652.dmp			
0xfa8000200000	0x7fa00000	0x200000	0xfbf2000	pid.4652.dmp			
0xfa8000400000	0x7f800000	0x200000	0xfdf2000	pid.4652.dmp			
0xfa8000600000	0x7f600000	0x200000	0xfff2000	pid.4652.dmp			
0xfa8000800000	0x7f400000	0x200000	0x101f2000	pid.4652.dmp			
0xfa8000a00000	0x7f200000	0x200000	0x103f2000	pid.4652.dmp			
0xfa8000c00000	0x7f000000	0x200000	0x105f2000	pid.4652.dmp			
0xfa8000e00000	0x7ee00000	0x200000	0x107f2000	pid.4652.dmp			
0xfa8001000000	0x7ec00000	0x200000	0x109f2000	pid.4652.dmp			
0xfa8001200000	0x7ea00000	0x200000	0x10bf2000	pid.4652.dmp			
0xfa8001400000	0x7e800000	0x200000	0x10df2000	pid.4652.dmp			
0xfa8001600000	0x7e600000	0x200000	0x10ff2000	pid.4652.dmp			
0xfa8001800000	0x7e400000	0x200000	0x111f2000	pid.4652.dmp			
0xffffffd00000	0x1000 0x1000	0x113f2000	pid.4652.dmp				
0xffffffd01000	0x3000 0x1000	0x113f3000	pid.4652.dmp				
0xffffffd02000	0x2000 0x1000	0x113f4000	pid.4652.dmp				
0xffffffd03000	0x4000 0x8000	0x113f5000	pid.4652.dmp				
0xffffffd0b000	0xe000 0x1000	0x113fd000	pid.4652.dmp				
0xffffffd0c000	0xc000 0x2000	0x113fe000	pid.4652.dmp				
0xffffffd0e000	0xf000 0x1000	0x11400000	pid.4652.dmp				
0xffffffd10000	0x60000 0x1000	0x11401000	pid.4652.dmp				
0xffffffd12000	0x61000 0x1000	0x <u>1</u> 1402000	pid.4652.dmp				
<pre>marek@marek-ubuntu:~/volatility3\$</pre>							

Obrázok 2: vytvorenie pamäťového extraktu

Na obrázku vidíme, že každý úsek (offset) pamäti, ktorý je pridelený procesu 4652 bol uložený do súboru *pid.4652.dmp*. Aby sme si súbor vedeli prezerať, je potrebné ho premenovať na súbor s príponou .data. Takto ho vieme otvoriť v programe Gimp. Keď to urobíme, uvidíme niečo takéto:

Obrázok 3: otvorenie súboru v Gimpe

Tento súbor sú zatiaľ len nespracované dáta, takže ho musíme trochu upraviť. Dobrá stratégia na to ako to urobiť je natiahnuť si okno s obrázkom cez celú obrazovku, tak ako to vidíte na obrázku 3 a upraviť šírku tak, aby obrázok pokrýval celú šírku okna. Potom sa trochu pohrajte s posunom až kým neuvidíte niečo takéto:

Obrázok 4: hľadanie súvislého obrazu

Teraz potrebujeme trochu posúvať šírku obrazu, až kým neuvidíme súvislý text.

Obrázok 5: prvý flag

Našli sme prvý flag. Kliknutím na *Nástroje>Transformačné nástroje>Otočiť* obrázok otočíme a kliknutím na *Nástroje>Transformačné nástroje>Preklopiť* obrázok preklopíme do čitateľnej polohy. Prvý flag je teda: flag{Th1S_15_Th3_f1R5t_Fl4G} Presunieme sa na druhý podozrivý proces a tým je chrome.exe. Na získanie histórie navštívených stránok sa používa plugin *windows.vadyarascan*:

python3 vol.py -f lab1_win.raw windows.vadyarascan --pid 4060 --yara-rules "/http. $\{100\}$?/" | awk ' /^0x/ $\{$ S="" for(i=5; i<NF; i++) $\{$ S=S sprintf("%s", \$i) $\}$ print "PID:" \$2 "\tRule:" \$3 "\tComponent:" \$4 system("echo " S " | xxd -r -ps | xxd -o " \$1 " | sed \"s/^/0x/\"") print "" next $\}$

```
/^Offset/{next} {print}
```

Keďže Chrome má spustených viacero procesov, použijeme číslo rodičovského procesu (Parental PID), teda 4060. Samotný plugin neposkytuje dostatočný výstup na zistenie odkazu, použijeme k nemu doplnkový program, ktorý trochu upraví jeho výstup. Plugin hľadá v procese 4060 reťazec http, aby našiel všetky hypertextové prepojenia aj tie šifrované a vypisuje sto nasledujúcich znakov. Predvolene plugin vypíše len daný reťazec ak ho našiel a vypisuje ho len v hexadecimálnom formáte:

Obrázok 6: link na online cloud mega.nz

Po chvíli scrollovania nájdeme link na stránku Mega. Je to online cloud, čiže predpokladáme, že tam nájdeme nejaký užitočný súbor. Skopírujeme si link a otvoríme ho v prehliadači:

Obrázok 7: súbor v cloude

Dostali sme sa k WinRAR archívu. Pravdepodobne je v ňom niečo ukryté. Stiahneme si ho a skúsime ho otvoriť. Archív je však chránený heslom:

Obrázok 8: extrahovanie archívu

Dostali sme nápovedu, že heslo, ktorým odomkneme archív je SHA1 hash prvého flagu. Nájdeme si na internete nejaký online hash generátor a vygenerujeme si hash prvého flagu:

Home Page | SHA1 in JAVA | Secure password generator | Linux | Privacy Policy

SHA1 and other hash functions online generator

flag{Th1S_15_Th3_f1R5t_Fl4G}	hash
sha-1	

Result for sha1: da6f7b3a8b389073d4916b2b5edb133e07bcda85

Obrázok 9: SHA1 hash flagu 1

Získaný hash použijeme na odheslovanie archívu a dostaneme obrázok s druhým flagom:

Obrázok 10: druhý flag

Tretím podozrivým procesom je WinRAR.exe. Potrebujeme zistiť, či otvoril nejaký súbor a ak áno, aký. Na to nám poslúži plugin *windows.cmdline*:

python3 vol.py -f lab1 win.raw windows.cmdline | grep WinRAR

Obrázok 11: hľadanie .rar archívov

Príkazom grep sme si vyfiltrovali výstup len na program WinRAR. Ostatné procesy nás momentálne nezaujímajú. Vidíme, že winrar.exe otvoril archív s názvom *Important.rar*. To znie dôležito. Teraz potrebujeme nájsť jeho adresu v pamäti. To docielime pluginom *windows.filescan*. Na uloženie súboru z pamäte použijeme plugin *windows.files*:

python3 vol.py -f lab1_win.raw windows.filescan | grep Important.rar python3 vol.py -f lab1_win.raw -o output/ windows.dumpfiles --virtaddr 0xe000cdd5a800

Obrázok 12: nájdenie a extrakcia archívu

Prvý plugin vypíše všetky súbory, ktoré sa nachádzali v počítači. Nie všetky sa však dajú extrahovať, pretože neotvorené súbory neboli nahrané do operačnej pamäte a tým pádom ich nebude možné získať. Tento archív bol počas behu počítača otvorený a nachádzal sa v operačnej pamäti, takže sme sa k nemu dostali. Súbor si premenujeme na Important.rar a otvoríme ho. Opäť je chránený heslom:

Obrázok 12: rozbalenie archívu

Pomôcka nám hovorí, že heslo sa skrýva medzi premennými prostredia tzv. environment variables. Sú to premenné, s ktorými operačný systém pracuje. Sú to nastavenia, ktorými sa dá ovplyvňovať fungovanie programov. Na zobrazenie premenných prostredia slúži plugin *windows.envars*:

python3 vol.py -f lab1 win.raw windows.envars | grep WinRAR

```
0xa0143025b0scan
                                                 password Flag3Pa$$w0rd
344gresscsrss.exe
                         0xed32f0d90
                                                          Flag3Pa$$w0rd
        wininit.exe
                                                 password
                         0xd1c47025b0
        csrss.exe
                                                 password
                                                          Flag3Pa$$w0rd
                         0x8dac980d90
        winlogon.exe
                                                 password
                                                           Flag3Pa$$w0rd
                         0x3533802900
        services.exe
                                                 password
                         0xd07f502900
        lsass.exe
                                                 password
                         0xd07f502900
        lsass.exe
                                                 password
                         0x8814e02a50
        svchost.exe
                                                 password
        svchost.exe
                         0x24f702ad0
                                                 password
```

Obrázok 13: premenné prostredia vo Windowse

Z výstupu je zjavné, že sme našli premennú s názvom WinRAR password s hodnotou Flag3Pa\$\$w0rd, teda heslo. Použijeme ho na odomknutie archívu a dostaneme tretí a posledný flag tejto úlohy:

Obrázok 14: tretí flag

Úspešne sme zozbierali všetky flagy. Môžeme sa presunúť na ďalšiu úlohu.

2. Lab2 – Windows

Do virtuálneho počítača s Ubuntu si z Github stránky stiahnite súbor lab2_win.raw a premiestnite ho do priečinka s Volatility3. Presuňte sa do priečinka s Volatility3, aby bol vašim pracovným priečinkom. Na začiatok si tak ako v predošlej úlohe vypíšeme zoznam bežiacich procesov, aby sme našli podozrivú aktivitu. Použijeme plugin *windows.pslist*:

1312	508	svchost.exe	0xe0011e4bb780	11	-	0	False	2023-11-30 17:52:40.000000
1504	508	svchost.exe	0xe0011e5a6780	4		0	False	2023-11-30 17:52:41.000000
1640	508	MsMpEng.exe	0xe0011e643780	24		0	False	2023-11-30 17:52:41.000000
2032	908	dasHost.exe	0xe0011e857580	3		0	False	2023-11-30 17:52:44.000000
1808	508	NisSrv.exe	0xe0011e81a780	7		0	False	2023-11-30 17:52:44.000000
2400	828	taskhostw.exe	0xe0011e9b1080	9		1	False	2023-11-30 17:52:56.000000
2456	828	sihost.exe	0xe0011e4ef780	7		1	False	2023-11-30 17:52:56.000000
2604	484	userinit.exe	0xe0011ea08780	0		1	False	2023-11-30 17:52:57.000000
2676	2604	explorer.exe	0xe0011ea24780	40		1	False	2023-11-30 17:52:57.000000
2888	600	RuntimeBroker.	0xe0011eab2640	10		1	False	2023-11-30 17:52:58.000000
2992	508	SearchIndexer.	0xe0011eb09780	15		0	False	2023-11-30 17:52:58.000000
2376	600	ShellExperienc	0xe0011eb7a780	36		1	False	2023-11-30 17:52:59.000000
3144	600	SearchUI.exe	0xe0011ec40780	29		1	False	2023-11-30 17:53:00.000000
3844	2676	VBoxTray.exe	0xe0011ee49080	11		1	False	2023-11-30 17:53:12.000000
3908	2676	OneDrive.exe	0xe0011ee4b780	16		1	True	2023-11-30 17:53:13.000000
3692	2676	WinRAR.exe	0xe0011eeba780	4		1	False	2023-11-30 17:53:33.000000
228	600	WmiPrvSE.exe	0xe0011bb1a780	10		0	False	2023-11-30 17:53:42.000000
3644	2676	cmd.exe 0xe0011	bb4e300 1		1	False	2023-11	-30 17:53:56.000000 N/A
1912	3644	conhost.exe	0xe0011dd6f300	2		1	False	2023-11-30 17:53:56.000000
1404	3644	cmd.exe 0xe0011	ba2e080 1		1	False	2023-11	-30 17:54:03.000000 N/A
2168	2676	chrome.exe	0xe0011ee7b080	40		1	False	2023-11-30 17:54:30.000000
3672	2168	chrome.exe	0xe0011ec77080	8		1	False	2023-11-30 17:54:30.000000
3960	2168	chrome.exe	0xe0011baaf780	13		1	False	2023-11-30 17:54:31.000000
3984	2168	chrome.exe	0xe0011badb780	15		1	False	2023-11-30 17:54:31.000000
3668	2168	chrome.exe	0xe0011ba0f780	9		1	False	2023-11-30 17:54:31.000000
3656	2168	chrome.exe	0xe0011bd7a080	16		1	False	2023-11-30 17:54:33.000000
4652	508	svchost.exe	0xe0011c9d5780	3		1	False	2023-11-30 17:54:50.000000
5092	508	TrustedInstall	0xe0011c269780	7		0	False	2023-11-30 17:55:40.000000
4108	600	TiWorker.exe	0xe0011c284780	4		0	False	2023-11-30 17:55:40.000000
4280	796	audiodg.exe	0xe0011c732780	7		0	False	2023-11-30 17:56:18.000000
4404	2676	FTK Imager.exe	0xe0011c740780	25		1	False	2023-11-30 17:56:23.000000
1884	828	WMIADAP.exe	0xe0011c6f2780	6		0	False	2023-11-30 17:56:48.000000
420	600	WmiPrvSE.exe	0xe0011c758640	9		0	False	2023-11-30 17:56:48.000000
marek@	marek@marek-ubuntu:~/volatility3\$							

Obrázok 15: bežiace procesy

Na obrázku 16 sú červenou farbou zvýraznené procesy, ktoré treba vyšetriť. Vidíme tu: *WinRAR.exe, cmd.exe* a *chrome.exe*. Začnime s *WinRAR.exe*. Aby sme zistili, aký súbor otvoril, použijeme plugin *windows.cmdline*:

python3 vol.py -f lab2 win.raw windows.cmdline | grep WinRAR

Obrázok 16: archív Secret.rar

Na obrázku vidíme, že WinRAR otvoril archív Secret.rar. Stiahneme si ho a pozrieme sa čo je vnútri. Použijeme plugin *windows.filescan a windows.dumpfiles*:

python3 vol.py -f lab2_win.raw windows.filescan | grep Secret.rar python3 vol.py -f lab2_win.raw -o output/ windows.dumpfiles -virtaddr 0xe0011ef4bb60

Obrázok 18: extrakcia archívu

Vo výstupe síce vypísalo chybovú hlášku "Error dumping file", no operácia prebehla úspešne a môžeme sa pozrieť na obsah súboru. Extrahujeme súbor.

Obrázok 17: extrahovanie archívu

Súbor je však zaheslovaný. V komentári k súboru máme pomôcku, že heslo je NTLM hash Marekovho používateľského hesla. Windows uchováva dva hashe pre každé používateľské heslo. Prvý hash je extrémne nezabezpečený a zastaraný hash používajúci LANMAN algoritmus. Operačné systémy Windows od verzie Vista už nepoužívajú tieto hashe, takže ich miesto je vyplnené fiktívnou hodnotou začínajúcou písmenami "aad". Druhý hash je NTLM hash, lepší ako LANMAN, ale stále pomerne nebezpečný, pretože sa dá oveľa ľahšie prelomiť ako napríklad hashe v Linuxe alebo Mac OS. Na extrakciu hashov používateľských hesiel slúži plugin *windows.hashdump*:

python3 vol.py -f lab2 win.raw windows.hashdump

```
rek@marek-ubuntu:~/volatility3$ python3 vol.py -f /media/sf_VMshare/lab2_win.raw windows.hashdump
Volatility 3 Framework 2.5.2
Progress: 100.00
                               PDB scanning finished
       rid
               lmhash nthash
Administrator
               500
                       aad3b435b51404eeaad3b435b51404ee
                                                              31d6cfe0d16ae931b73c59d7e0c089c0
               aad3b435b51404eeaad3b435b51404ee 31d6cfe0d16ae931b73c59d7e0c089c0
Guest 501
DefaultAccount 503
                       aad3b435b51404eeaad3b435b51404ee
                                                             31d6cfe0d16ae931b73c59d7e0c089c0
Marek
      1001
               aad3b435b51404eeaad3b435b51404ee
                                                      d22ad6191e55b434c2aaf7b9029d5193
marek@marek-ubuntu:~/volatility3$
```

Obrázok 18: hashe používateľských hesiel

Použijeme NTLM hash Marekovho hesla na odomknutie archívu a dostaneme obrázok s flagom:

Obrázok 19: prvý flag

Presunieme sa na proces *cmd.exe*. Cez CMD sa v operačnom systéme Windows dá robiť množstvo úkonov a v reálnej analýze by sme museli vyskúšať jednu možnosť za druhou. Teraz sa budeme sústrediť len na jeden úkon. Cez CMD sa dajú nastavovať premenné prostredia t.j. environment variables. Pozrieme sa teda či nenájdeme nejakú podozrivú premennú. Použijeme plugin *windows.envars*:

python3 vol.py -f lab2 win.raw windows.envars

```
PROCESSOR_IDENTIFIER
                                                          AMD64 Family 25 Model 80 Stepping 0, AuthenticAMD
           .exe 0x251e401400
                                 PROCESSOR_LEVEL 25
PROCESSOR_REVISION
3644
           .exe 0x251e401400
           .exe 0x251e401400
3644
                                                          5000
3644
           .exe 0x251e401400
                                 ProgramData
                                                 C:\ProgramData
           .exe 0x251e401400
                                 ProgramFiles
                                                 C:\Program Files
                                 ProgramFiles(x86)
3644
           .exe 0x251e401400
                                                         C:\Program Files (x86)
           .exe 0x251e401400
                                 ProgramW6432
                                                 C:\Program Files
3644
           .exe 0x251e401400
3644
                                 PROMPT $P$G
                                                 C:\Windows\system32\WindowsPowerShell\v1.0\Modules\
3644
           .exe 0x251e401400
                                 PSModulePath
           .exe 0x251e401400
                                 PUBLIC C:\Users\Public
3644
                                 RANDOM ZmxhZ3tXM2xjMG0zX1QwXyRUNGczXzJfT2ZfTDRCXzJ9Cq==
3644
           .exe 0x251e401400
                                 SESSIONNAME
3644
           .exe 0x251e401400
                                                 Console
3644
           .exe 0x251e401400
                                 SystemDrive
3644
           .exe 0x251e401400
                                 SystemRoot
                                                 C:\Windows
           .exe 0x251e401400
                                         C:\Users\Marek\AppData\Local\Temp
3644
                                 TEMP
                                         C:\Users\Marek\AppData\Local\Temp
3644
           .exe 0x251e401400
                                 TMP
                                 USERDOMAIN
                                                 DESKTOP-A5BSAIF
3644
           .exe 0x251e401400
           .exe 0x251e401400
                                 USERDOMAIN_ROAMINGPROFILE
                                                                  DESKTOP-A5BSAIF
3644
           .exe 0x251e401400
                                 USERNAME
                                                  Marek
```

Obrázok 20: premenné prostredia

Vo výstupe si všimnite premennú s názvom RANDOM a jej hodnotu. Vyzerá ako base64 text. Skúsime ho dekódovať. V Linuxe sa to dá urobiť takto:

```
marek@marek-ubuntu:~$ echo ZmxhZ3tXM2xjMG0zX1QwXyRUNGczXzJfT2ZfTDRCXzJ9Cg== | base64 --decode
flag{W3lc0m3_T0_$T4g3_2_0f_L4B_2}
marek@marek-ubuntu:~$
```

Obrázok 21: dekódovanie hodnoty premennej – druhý flag

A máme druhý flag. Už chýba len posledný. Ten sa skrýva niekde v procese *chrome.exe*. Použijeme plugin *windows.vadyarascan* spolu so skriptom na editovanie výstupu, aby bol prehľadnejší:

```
python3 vol.py -f lab2_win.raw windows.vadyarascan --pid 2168 --yara-rules "/http.\{100\}?/" | awk ' /^0x/{ S="" for(i=5; i<NF; i++) { S=S sprintf("%s", $i) } print "PID:" $2 "\tRule:" $3 "\tComponent:" $4 system("echo " S " | xxd -r -ps | xxd -o " $1 " | sed \"s/^/0x/\"") print "" next } /^Offset/\{next\} \{print\}
```

```
PID:2168
              Rule:r1 Component:$a
0x7ffc91a83b40: 6874 7470 733a 2f2f 6769 7468 7562 2e63
                                                    https://github.c
                                                     om/maromanparkou
0x7ffc91a83b50: 6f6d 2f6d 6172 6f6d 616e
                                     7061
                                          726b
                                               6f75
0x7ffc91a83b60: 722f 6669
                       6c65 2f62 6c6f
                                      622f
                                               696e
                                                    r/file/blob/main
0x7ffc91a83b70: 2f5a 6d78 685a 3374
                                 5464 4452
                                          485a
                                               5638
                                                     /ZmxhZ3tTdDRHZV8
                                 4d4e 474a 664d 6c39
0x7ffc91a83b80: 7a58 7942 505a 6c39
                                                     zXyBPZl9MNGJfMl9
0x7ffc91a83b90: 454d 4535 6c49
                            5345 6866 513d
                                               7478
                                          3d2e
                                                     EME5lISEhfQ==.tx
0x7ffc91a83ba0: 7400 0000 0000 0000 0000 0000 0000
                                              0000
0x7ffc91a83bc0: 0000 0000 0000 0000 0000 0000 0000
```

Obrázok 22: chrome história

Našli sme link na Github stránku. Link sa odkazuje na nejaký textový súbor. Skopírujeme si link a pozrieme sa, čo tam je:

Obrázok 23: súbor na Git hube

Vyzerá to, že sme sa dostali do slepej uličky ale nie je to celkom tak. Súbor síce obsahuje len Lorem ipsum text, ale všimnite si jeho názov. Vo forenznej analýze je potrebné si všímať detaily a ja keď to vyzerá, že táto cesta nikam nevedie, v skutočnosti to môže byť celkom inak. Vyzerá ako base64 text. Skopírujeme si ho a dekódujeme ho:

```
\label{local_marek_qmarek_ubuntu:} $$ echo ZmxhZ3tTdDRHZV8zXyBPZl9MNGJfMl9EME5lISEhfQ== | base64 --decode flag{St4Ge_3_ Of_L4b_2_D0Ne!!!} $$ arek@marek-ubuntu:~$
```

Obrázok 23: dekódovanie názvu súboru – tretí flag

3. Lab3 – Windows

Tretiu a poslednú úlohu tohto materiálu už budete riešiť každý sám. Do virtuálneho počítača s Ubuntu si z Github stránky stiahnite súbor **lab3_win.raw** a premiestnite ho do priečinka s Volatility3. Presuňte sa do priečinka s Volatility3, aby bol vašim pracovným priečinkom.

Znenie úlohy:

Bežnému používateľovi Windowsu z neznámych dôvodov zlyhal počítač. Bol však nastavený tak, aby pri neočakávanej poruche automaticky vytvoril obraz operačnej pamäte. Používateľ oznámil, že na počítači mal správcu hesiel k jeho súkromným účtom a potrebuje sa k nim dostať. Taktiež povedal, že posielal nejaké e-maily. Vašou úlohou bude pracovať ako forenzný analytik a analyzovať obraz jeho operačnej pamäte.

4. Referencia a syntax príkazov

Tu nájdete krátky popis a syntax každého pluginu, ktorý budete potrebovať pri analýze jednotlivých obrazov operačnej pamäte:

- python3 vol.py -f memory dump.raw windows.pslist
 - vypíše zoznam bežiacich procesov a ich PID a PPID
- python3 vol.py -f memory dump.raw windows.cmdline
 - vypíše postupne aktiváciu procesov a ich manipuláciu so súbormi
- python3 vol.py -f memory dump.raw windows.envars
 - vypíše zoznam premenných prostredia
- python3 vol.py -f memory dump.raw windows.hashdump
 - vypíše zoznam používateľov a ich hash hodnoty
- python3 vol.py -f memory dump.raw windows.filescan
 - vypíše zoznam všetkých súborov v systéme
- python3 vol.py -f memory_dump.raw windows.vadyarascan --pid 0000 --yara-rules ,,string"
 - vyhľadá zadaný reťazec v yara-rules v pamäti daného procesu
- python3 vol.py -f memory dump.raw -o out dir/ windows.memmap --dump --pid 0000
 - extrahuje celý pamäťový úsek patriaci danému procesu do súboru
- python3 vol.py -f memory_dump.raw -o out_dir/ windows.dumpfiles --virtaddr 0xe00000000000
 - extrahuje celý pamäťový úsek patriaci virtuálnej pamäťovej adrese do súboru