

Chapter

CNN 개요

- 1. CNN 소개
- 2. CNN 기본

학습 목표

- ✓ CNN이 기본적으로 어떤 곳에 쓰일 수 있는지 이해한다.
- ✔ Convolution 을 이해하고 레이어를 설계에 익숙해진다

주요 내용

- ✓ CNN의 정의와 필요성
- ✓ Convolution, Pooling Layer 설계 방법
- ✔ Binary, Multinomial Logistic Regression 을 통한 Cross Entropy 설명

강의에 앞서서..

❖ 본 문서는 아래의 자료들을 활용하여 만들어 졌음을 알립니다

- * 모두를 위한 딥러닝 강좌
 - 네이버 Search & Clova AI 부분 리더 김성훈 교수님
 - https://www.youtube.com/playlist?list=PLIMkM4tgfjnLSOjrEJN31gZATbcj_MpUm
 - https://www.edwith.org/boostcourse-dl-tensorflow/lecture/43739/
- ❖ 스탠포드 대학 CNN 강좌
 - Fei-Fei Li & Andrej Karpathy & Justin Johnson
 - http://cs231n.stanford.edu/slides/2020/

CS231n: Convolutional Neural Networks for Visual Recognition

- This course, Prof. Fei-Fei Li & Justin Johnson & Serena Yeung
- Focusing on applications of deep learning to computer vision

1. CNN 소개

Image Classification

This image by Nikita is licensed under CC-BY 2.0

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

MNIST with Neural Network

MNIST with Neural Network

❖ Neural network은 매우 강력하지만 전체 데이터로는 feature selection이 어렵다

Deep Neural Network

- 데이터의 크기가 클수록, 형태가 복잡할수록 학습이 어려워짐
 - 학습시간(training time), 네트워크 크기(network size), 매개변수의 개수(parameter)

Deep Neural Network & Convolutional Neural Network

PASCAL Visual Object Challenge (20 object categories)

[Everingham et al. 2006-2012]

Image is CCO 1.0 public domain

Image is CCO 1.0 public domain

Image is CCO 1.0 public domain

IMAGENET

- Visual object recognition 연구를 위한 매우 큰 데이터베이스
- 22000 카테고리에 140만개의 이미지

- **❖** ImageNet Large Scale Visual Recognition Competition(ILSVRC)
 - 1000개의 카테고리, 140만개의 이미지로 이미지 인식 대회 개최

- 2012년 갑자기 16.4%로 오답률이 낮아짐 -> CNN
- 사람의 오답률이 5.1%인데 2015년에 사람을 뛰어넘음

This image is licensed under CC BY-NC-SA 2.0; changes made

- Object detection
- Action classification
- Image captioning
- •

Person Hammer

This image is licensed under CC BY-SA 3.0; changes made

• ILSVRC에서 우승한 VGG, ResNet 등의 모델이 Keras에 공개

IMAGENET Large Scale Visual Recognition Challenge

Convolutional Neural Networks (CNN) have become an important tool for object recognition

1998 LeCun et al.

LeNet-5

"Gradient-based learning applied to document recognition"논문에서 CNN을 이용하여 필기체를 성공적으로 인식

2012

Krizhevsky et al.

AlexNet

"ImageNet Classification with Deep Convolutional Neural Networks"논문

of transistors

GPUs

of pixels used in training

(me) 10⁹

1014 IMAGENET

Our Goal

Deep Learning 기술 중 이미지 인식에 많이 활용되는 CNN에 대한 이해와 활용능력 습득

❖ 이미지의 부분 부분을 샘플링 하여 특징을 추출

[LeNet-5, LeCun]

간단한 자극 특징으로부터 시각 정보의 복잡한 표현을 설명

데이터들을 배열로 만든다 각 데이터의 크기에 따른 hidden layer 들을 생성... 분류

Deep neural network

Convolutional neural network

2. CNN 기본

- ❖ Input 에서 feature(activation) map을 만드는 과정
- ❖ Convolution(합성곱) 연산으로 처리

❖ Convolution(합성곱) 연산

- 필터(filter, kernel)의 윈도우를 일정 간격(stride) 이동시키면서 입력에 weighted sum을 적용
- weighted sum : 각 요소의 값을 곱 하여 더함

입력 이미지에 필터를 적용하여 작은 영역을 한 점으로 표현

activation map

❖ 이미지를 Filter의 크기만큼 조각 내어 weighted sum을 한다

❖ 연습 문제

1	5	4	3
8	4	1	4
1	2	3	3
6	5	3	1

Sample(1x4x4x1)

Weighted Sum

1	1	1	1	
-1	-1	-1	-1	
2	2	2	2	
3	3	3	3	

Filter(1x4x4x1)

❖ Sample의 깊이에 대한 차원과 필터의 깊이에 대한 차원이 동일

각 깊이마다 합성곱연산을 수행하여

이미지에서 하나의 셀 값이 세 개인 경우 색을 나타내는 값이 세 개이고, 이는 보통 R,G,B 이기 때문에 컬러 사진일 가능성이 높다

❖ 3차원 데이터의 합성곱

 입력 데이터와 필터의 합성곱 연 산을 깊이마다 수행하고 그 결과 를 더해서 출력

❖ Many filters, multi Channel

https://predictiveprogrammer.com/famous-convolutional-neural-network-architectures-1

❖ Many filters, multi Channel

Many filters, multi Channel

- Many input(batch size), Many filters, multi Channel
 - Input(inN, H, W, C), filter(R,S,C,outN), Output(N,E,F,M)

❖ Activation map 이 28 x 28 이 되려면 어떻게 해야 할까?

activation map

❖ 쉬운 예

■ 7x7 이미지에 3x3 필터를 적용하여 나올 수 있는 Activation map은?

다음 떼이지에서 예상해보세요

1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7

0	0	0
1	1	1
2	2	2

3 x 3 x 1 filter

7 x 7 x 1 image

1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7
7 x 7 x 1 image						

0	0	0
1	1	1
2	2	2

3 x 3 x 1 filter

5 x 5 x 1 activation map

or

3 x 3 x 1 activation map

Stride

■ step당 건너뛰는 크기

1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7

Stride

■ step당 건너뛰는 크기

1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7

Stride

■ step당 건너뛰는 크기

1		1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7

Stride = 1

Stride

■ step당 건너뛰는 크기

1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7

Stride

■ step당 건너뛰는 크기

2		X				
1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7

Stride

■ step당 건너뛰는 크기

1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	-5	5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7

Stride = 2

_					
***********	0	0	0		0 + 0 + 0 +
	1	1	1		4 + 4 + 4 + 10 + 10 + 10
	2	2	2		10 + 10 + 10
		Filter		/	
		24	24	24	
		42			

Activation map

1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7

7 x 7 x 1 image

0	0	0
1	1	1
2	2	2

3 x 3 x 1 filter

24	24	24	24	24
33	33	33	33	33
42	42	42	42	42
51	51	51	51	51
60	60	60	60	60

5 x 5 x 1 activation map

or

24	24	24
42	42	42
60	60	60

3 x 3 x 1 activation map

Exercise

Q. 11 x 11 x 1 Sample, 3 x 3 x 1 Filter

- Stride = 1 일 때 activation map의 크기?
- Stride = 2 일 때 activation map의 크기?

Q. 7 x 7 x 3 Sample 에서 5 x 5 x 1 의 activation map 생성

- Filter 의 크기는?
- Stride 의 크기는?

Activation function

ReLU

tf.keras.layers.Conv2D

```
tf.keras.layers.Conv2D(
   filters, kernel_size, strides=(1, 1), padding='valid',
    data_format=None, dilation_rate=(1, 1), activation=None,
    use_bias=True, kernel_initializer='glorot_uniform',
    bias_initializer='zeros', kernel_regularizer=None,
    bias_regularizer=None, activity_regularizer=None,
    kernel constraint=None, bias constraint=None, **kwarqs
 filters : 필터개수
 kernel size : 커널 크기
 strides=(1, 1): 폭, 높이로 컨볼루션 보폭 지정
 padding='valid' (패딩 안함), 'same' (stride 가 1일 때, 입력과 출력 크기가 같아지도록)
 data_format : 입력 데이터 구조의 순서 (batch_size, height, width, channels)
 activation: 확성화학수 지정
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
```

tf.keras.layers.Conv2D

(출력 channel 개수 == 필터 개수)

kernel dimension : {height, width, in_channel, out_channel}

Ex) {5, 5, 3, 2}

Input

```
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt

print(tf.__version__)
print(keras.__version__)
```


https://github.com/deeplearningzerotoall/TensorFlow/blob/master/tf_2.x/lab-11-0-cnn-basics-keras-eager.ipynb

Weight(filter)

```
print("image.shape", image.shape)
weight = np.array([[[[1.]],[[1.]]],
                    [[[1.]],[[1.]]])
print("weight.shape", weight.shape)
weight_init = tf.constant_initializer(weight)
conv2d = keras.layers.Conv2D(filters=1, kernel_size=2, padding='VALID',
                              kernel_initializer=weight_init)(image)
print("conv2d.shape", conv2d.shape)
print(conv2d.numpy().reshape(2,2))
plt.imshow(conv2d.numpy().reshape(2,2), cmap='gray')
plt.show()
image.shape (1, 3, 3, 1)
weight.shape (2, 2, 1, 1)
conv2d.shape (1, 2, 2, 1)
[[12, 16.]
[24. 28.]]
 -0.50
 -0.25
  0.00
  0.25
  0.50
  0.75
  1.00
  1.25
  1.50 -
```

1.5 KSA 한국표준협회

-0.5

0.0

0.5

1.0

conv2d

```
print("image.shape", image.shape)
weight = np.array([[[[1.]],[[1.]]],
                   [[[1,]],[[1,]]])
print("weight.shape", weight.shape)
weight_init = tf.constant_initializer(weight)
conv2d = keras.layers.Conv2D(filters=1, kernel_size=2, padding='SAME',
                             kernel_initializer=weight_init)(image)
print("conv2d.shape", conv2d.shape)
print(conv2d.numpy().reshape(3,3))
plt.imshow(conv2d.numpy().reshape(3,3), cmap='gray')
plt.show()
image.shape (1, 3, 3, 1)
weight.shape (2, 2, 1, 1)
conv2d.shape (1, 3, 3, 1)
[[12, 16, 9,]
[24. 28. 15.]
[15, 17, 9,]]
 -0.5
  0.0
  0.5
  1.0
  1.5
  2.0
  2.5
```

-0.5

0.0

0.5 1.0 1.5 2.0 2.5

3 filters (2,2,1,3)

```
# print("imag:\footnote\n", image)
print("image.shape", image.shape)
weight = np.array([[[[1.,10.,-1.]],[[1.,10.,-1.]]],
                   [[[1.,10.,-1.]],[[1.,10.,-1.]]]])
print("weight.shape", weight.shape)
weight_init = tf.constant_initializer(weight)
conv2d = keras.layers.Conv2D(filters=3, kernel_size=2, padding='SAME',
                             kernel_initializer=weight_init)(image)
print("conv2d.shape", conv2d.shape)
feature_maps = np.swapaxes(conv2d, 0, 3)
for i, feature_map in enumerate(feature_maps):
    print(feature_map.reshape(3,3))
    plt.subplot(1.3.i+1), plt.imshow(feature map.reshape(3.3), cmap='grav')
plt.show()
image.shape (1, 3, 3, 1)
weight.shape (2, 2, 1, 3)
conv2d.shape (1, 3, 3, 3)
[[12, 16, 9,]
[24. 28. 15.]
 [15, 17, 9,]]
[[120, 160, 90,]
[240. 280. 150.]
 [150, 170, 90,]]
[[-12. -16. -9.]
 [-24. -28. -15.]
 [-15. -17. -9.]]
 1
 2 -
```

Padding

■ 이미지의 외각에 지정된 값만큼 특정 값으로 채워 넣는 작업

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

원본 5 x 5 x 1

Padding

■ 만일 외각 두께 1만큼 0으로 모두 채운다면 아래와 같은 형태가 된다

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	0	0	0	0	0	0

Padding 후 7 x 7 x 1

Padding

■ filter = 3x3x1, stride = 1 을 진행하면 padding 을 하기 전과 크기가 같다

0	0	0	0	0	0	0										
0	1	1	1	1	1	0						4	6	6	6	4
0	1	1	1	1	1	0		1	1	1		6	9	9	9	6
0	1	1	1	1	1	0	_	1	1	1	→	6	9	9	9	6
0	1	1	1	1	1	0		1	1	1		6	9	9	9	6
0	1	1	1	1	1	0		3 x 3	8 x 1	filter		4	6	6	6	4
0	0	0	0	0	0	0	Activation map							 ງ		
	Pac	lding	후 7	7 x 7	x 1		•	Str	ide =	= 1		-		x 5 x	_	-

Padding

- Weighted sum 을 데이터의 drop 없이 모두 수행
- Sample 의 크기가 너무 빨리 줄어드는 것을 방지
- 경계면의 정보를 유지
- 출력크기를 조정할 때 사용

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	0	0	0	0	0	0

❖ 입력 크기 (H,W), 필터 크기 (FH, FW), 출력 크기를 (OG, OW), 패딩 P, 스트라이드 S일 때 출력의 크기는 ?

$$OH=(H+2P-FH)/S+1$$

$$OW = (W + 2P - FW)/S + 1$$

예>(1)입력 (4,4) 필터(3,3) 패딩 1, 스트라이드 1

$$OH = (4 + 2*1 - 3) / 1 + 1 = 4$$

$$OW = (4 + 2*1 - 3) / 1 + 1 = 4$$

(2)입력 (28,32) 필터(5,5) 패딩 2, 스트라이드 2 ??

❖ Padding 고급

원본 11 x 11 x 1

❖ Padding 고급

■ padding = 'SAME' -> stride = 4, filter = 6 x 6 을 완수하려면 3칸이 더 필요

			\	_			\							
0	0	0	0	0	0	0	0	0	• • ©• •	0.	0	0	0	
0	1	1	1	1	1	1	1	1	1	1	1	0	0	The state of the s
0	1	1	1	1	1	1	1	1	1	1	1	0	0	
0	1	1	1	1	1	1	1	1	1	1	1	0	0	
0	1	1	1	1	1	1	1	1	1	1	1	0	0	1 1 1 1 1 1 25 30 20
0	1	1	1	1	1	1	1	1	1	1	1	0	0	
0	1.	.1.	1	1	1	1	1	1	1	1	1	0	0	
0	1	1	1	1	1.	1	1	1	1	1	1	0	0	1 1 1 1 1 1 20 24 16
0	1	1	1	1	1	1	1	1.	.1.	1	1	0	0	
0	1	1	1	1	1	1	1	1	1	1	1	· O.	0	Activation ma
0	1	1	1	1	1	1	1	1	1	1	1	0	0	†**••• (3, 3, 1)
0	1	1	1	1	1	1	1	1	1	1	1	0	0	6 x 6 x 1 filter
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Stride = 4

원본 11 x 11 x 1 -> 14 x 14 x 1