Intermolecular Forces (Chapter 10)

Learning Objectives

What will you be learning?

- Identify the different types of intermolecular forces
- Determine what are the different intermolecular forces present
- Determine the strength of intermolecular forces and determine their effect on physical properties
- Compare molecules physical properties based on intermolecular forces
- Understand why water is unique

Intermolecular Forces

Brief Description of Intramolecular Forces (bonding)

In this Chapter (11) we will be discussing – **INTER**molecular forces – the forces between molecules with partial charges or between ions and molecules

Intermolecular forces are weaker than intramolecular forces

McGill

How do molecules approach each other?

For a Cl₂ molecule

Relation between intermolecular forces and physical properties

Increased intermolecular forces – Increased boiling point
More interaction between molecules, more heat needed to change from
liquid to gaseous state

Intermolecular forces affect how soluble a compound will be in a solvent (water, ethanol, etc) – Why does salt dissolve in water?

Intermolecular forces affect viscosity and other physical properties of molecules

But what determines intermolecular forces?

Intermolecular forces <u>between</u> molecules depend upon the interaction <u>between</u> molecules.

These interactions depend upon polarity of a molecule and polarizability

Polarity of Molecules

Based on the difference in χ ($\Delta \chi$) between two atoms a **bond** can be described as polar (unequal sharing of electrons) or non-polar

POLAR MOLECULES: molecules with a net dipole moment (μ) * "add up" the individual bond dipoles *

Polarity of Molecules

Based on the difference in χ ($\Delta \chi$) between two atoms a **bond** can be described as polar (unequal sharing of electrons) or non-polar

NONPOLAR MOLECULES: molecules with **zero** net dipole moment (μ) *Either no individual bond dipoles or the individual bond dipoles cancel out*

IMF 1: Ion-Dipole Force

1. Ion-Dipole Forces

Attractive force between an ion and a polar molecule (dipole) (adding salt to water).

These are between molecules from **two different compounds** (for example: between solute and solvent)

Ionic compound

NaCl, Na⁺, Cl⁻

Water: Polar compound

Ionic Salts dissolve in water due to the attraction between ions and the polar water molecules

IMF 2: Dipole-Dipole Force

2. Dipole-Dipole Forces

In the presence of an external field, positive pole of a polar molecule attracts the negative pole of another (only in polar molecules or between polar molecules)

IMF 2: Dipole-Dipole Force

2. Dipole-Dipole Forces

For compounds of similar molar masses, the greater the molecular dipole moment, the greater the dipole-dipole forces, so the more energy it takes to separate the molecules - higher boiling point

10 McGill

IMF 2: Hydrogen Bonding (type of dipole-dipole force)

2.a Hydrogen Bonding (type of dipole-dipole force)

A special case of dipole force Only when H-atom is bonded to a <u>small highly electronegative</u> <u>atom</u> with lone pairs.

H-atom directly bonded to N, O, and F

Why is H-bonding so special?

- N,O, F most electronegative atoms the covalently bonded H is highly (delta) positive
- 2. This force between delta positive (H) and delta negative(N, O, or F) is quite large (there is no shielding from other electrons as H only has one electron)

Hydrogen Bonding Practice

Importance of Hydrogen Bonding

Importance of Hydrogen Bonding

If water did not have H-bonding its boiling point would have been about -100 °C

Importance of Hydrogen Bonding

Water has a really high boiling point!

Polarizability

How easily can an electron cloud be distorted

Down a group: Polarizability increases

Across a period: Polarizability decreases

Cations: Less polarizable than their atoms

Anions: More polarizable than their atoms

Induced Dipoles in Molecules

Induced Dipole (cause for Dispersion Forces)

A nearby electric field can induce a distortion in the electron cloud

For a polar molecule

The distortion enhances the dipole moment

For a non polar molecule

The distortion induces a dipole moment

Ion – induced dipole
Intermolecular force of interaction between an Ion and neutral molecule

Dipole – induced dipole
Intermolecular force of interaction between a polar molecule and neutral molecule

IMF 3: Dispersion Force (all molecules have these forces)

3. Dispersion Forces or London Dispersion Forces

Forces responsible for the condensed states of nonpolar molecules: What is holding nonpolar molecules together?

Fritz London

IMF 3: Dispersion Force (all molecules have these forces)

- A. If nonpolar molecules far apart no effect on each other.
- B. When they're close together they can induce an instantaneous dipole
- C. At low temperatures molecules are closer together

What causes dispersion forces? Instantaneous induced dipoledipole forces

All molecules have dispersion forces.

Nonpolar molecules **only have** London Dispersion Forces.

Weakest intermolecular forces

Dispersion Forces: Comparing nonpolar molecules

Factors affecting Dispersion Forces

Effect of molecular shape:

When molecules make more contact with each other: Dispersion forces increase

Relative Strength: Depends on the <u>polarizability</u> of the particles. So weak for small particles (like He) but stronger for larger particles

Intermolecular Forces Kakkar Chem 110

Summary of Intermolecular Forces

Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Nonbonding (Inte	ermolecular)			u
Ion-dipole		Ion charge— dipole charge	40-600	Na+O
H bond	8 8 8 5 - -A-H·····:B-	Polar bond to H- dipole charge (high EN of N, O, I	10-40 F)	:ö—нö—н Н Н
Dipole-dipole		Dipole charges	5-25	I-CII-CI
Ion-induced dipole	3	Ion charge— polarizable e ⁻ cloud	3-15	Fe ²⁺ ····O ₂
Dipole-induced dipole		Dipole charge— polarizable e— cloud	2-10	H-CICI-CI
Dispersion (London)	—	Polarizable e clouds	0.05-40	F-F····F-F

Comparing intermolecular forces between molecules

- 1. Determine which intermolecular forces are present
- 2. H-bonding > dipole-dipole > dispersion forces (All molecules have dispersion forces)
- 3. If comparing two non-polar molecules, compare polarizability (size) and shape (surface area).
- 4. Compare properties
 High intermolecular forces High boiling point/high surface tension/high viscosity