Financial Costs of Children, Education Subsidies, and Parental Choices in Equilibrium

Kanato Nakakuni

University of Tokyo

November 2023

1. Introduction

- 2. Model
- 3. Calibration
- 4. Numerical Analysis
- 5. Literature
- 6. Conclusion
- 7. Appendix

Low Fertility and Pro-natal Policies

- Low fertility and demographic aging have driven pro-natal policies in many countries.
- Education subsidies for college students have garnered attention in Japan, a leading country in this demographic change.
 - Income-tested grants introduced in 2020 (no grants until then).
 - Their eligibility expansion being actively discussed.

Background

- College enrollment poses significant costs to their parents.
 - Until high school completion: $\simeq 7$ M yen for education. ($\simeq 4.5\%$ of Avg. individual lifetime earnings)
 - Another 5 M yen for college completion. ▶ Fig ⇒ More than 60% jump in total education costs.
- Low subsidization rate for households in tertiary education. Fig.
 - One of the lowest among OECD countries, less than half of the OECD Avg.
 - \Rightarrow Plenty of room to expand, expected to increase fertility.
- Expected to increase the workers' productivity (in the long run) as well.
 - ⇒ "Two birds with one stone" against demographic aging.

Questions

- Does it work as expected to increase fertility, skill level, and output?
- What are the macroeconomic implications of the expansion?
- Need a macro model with **fertility**, **college enrollment**, and **IVT** choices.
 - Education (Macro) literature abstracts fertility choices.
 e.g., Krueger and Ludwig (2016, JME), Abbott et al. (2019, JPE), Matsuda and Mazur (2022, JME).
 - Macro models with fertility choices abstract college enrollment and IVT.
 e.g., De la Croix and Doepke (2003, AER), Sommer (2016, JME), Zhou (2022), Kim et al. (2023).

This Paper

- Constructs an incomplete market GE-OLG model incorporating:
 - College enrollment choices,
 - Inter-vivo transfers (IVT),
 - Fertility choices.
- Calibrates the model to the Japanese economy using panel data.
- Validates if the model implies reasonable fertility behavior.
 - The benefit elasticity of fertility (comparison with empirical estimates).
 - Fertility differential across education groups.
- Examines the macroeconomic effects of education subsidies for college students.

- 2. Model
- 3. Calibration
- 4. Numerical Analysis
- 5. Literature
- 6. Conclusion
- 7. Appendix

Model

Model with fertility choices otherwise standard in (Macro) education literature. Krueger and Ludwig (2016, JME), Abbott et al. (2019, JPE), Matsuda and Mazur (2022, JME), etc.

- Incomplete market GE-OLG framework.
- Production: allows for the imperfect substitutability b/w skilled and unskilled.
- Government subsidizes CL enrollment according to a grant function g(h, I).
- Standard lifecycle + Education + IVT + Fertility

 Literature standard

Lifecycle

Lifecycle

Lifecycle

Grad.HS Born j = 0 j = 18Fertility IVT Retirement j = 30 j = 48 j = 66Death Enroll i = 104Grad.CL j = 22

Three factors (IG linkages) influence their college enrollment decisions:

- 1. IVTs made by their parents (a_{CL}) .
- 2. Psychic costs of education $(\phi \sim g_{h.e.}^{\phi})$.
- 3. Their human capital $(h \sim g_{h_n}^h)$.

Budget constraints: college students

Expenditures:

- Tuition fees p_{CL} (exogenous)
- Living expenses c (endogenous/choice)

Revenue:

- Transfers from their parents a_{CL} (parent's choice).
- Labor earnings by themselves (endogenous/choice).
- Loans/Grants provided by the government, depending on h and I.

Education choices

$$V_{g0}(a_{IVT}, \phi, h, I) = \max_{e \in \{0,1\}} \left\{ (1 - e) \cdot \mathbb{E}_{z_0} \left[\underbrace{V^w(a_{IVT}, j = 18, z_0; e = 0, h)}_{\text{Value for high school graduates}} + e \cdot \left[\underbrace{V_{g1}(a_{IVT}; h, I) - \phi}_{\text{Net value for college graduates}} \right] \right\}, \tag{1}$$

where e = 1 represents enrolling in college.

➤ Value functions

Fertility and IVT choices

Inter-vivo transfers

$$V^{IVT}(a, z; \phi_k, h_k, e, h, n) = \max_{c, l, a', a_{IVT}} \left\{ V^w(a - \tilde{a}_{IVT}, j = J_{IVT}, z; e, h) + b(n) \cdot \lambda_a \cdot V_{g0}(a_{IVT}, \phi_k, h_k, I) \right\}$$
s.t.
$$(1 + \tau_c)c + a' + n \cdot a_{IVT} = Y_{IVT},$$

$$a' \ge -\underline{A},$$

where $\tilde{a}_{CL} = \frac{n \cdot a_{CL}}{1 + (1 - \tau_a)r}$, $I = I(J_{IVT}, z, e, h)$, and Y_{IVT} is the disposable income.

▶ Budget constraint details

Fertility choices and working stage with children I

The value function at age $j = J_f$:

$$V^{f}(a, z, e, h) = \max_{n \in \{0, 1, \dots, N\}} \left\{ V^{wf}(a, j = J_F, z; e, h, n) \right\}$$

where, for $j = J_F, ..., J_{IVT} - 1$,

$$\begin{split} V^{fw}(a,j,z;e,h,n) &= \max_{c,l,q,a'} \{ u(c/\Lambda(n),l) + b(n) \cdot v(q) \\ &+ \left\{ \begin{array}{ll} \beta \mathbb{E}_{z'}[V^{wf}(a',j+1,z';e,h,n)] & \text{if } j < J_{IVT} - 1 \\ \beta \mathbb{E}_{z',\phi_k,h_k}[V^{IVT}(a',z';\phi_k,h_k,e,h,n)] & \text{if } j = J_{IVT} - 1 \end{array} \right\} \end{split}$$
 s.t.

$$(1 + \tau_c)(c + n \cdot q) + a' = Y_{fw},$$

$$a' > -A.$$

Fertility choices and working stage with children II

where

$$Y_{wf} \equiv (1 - \tau_w) w_e \eta_{j,z,e,h} (1 - l - \kappa \cdot n)$$

$$+ n \cdot B + \psi + \begin{cases} (1 + (1 - \tau_a)r)a & \text{if } a \ge 0, \\ (1 + r^-)a & \text{otherwise.} \end{cases}$$

- 1. Introduction
- 2. Model
- 3. Calibration
- 4. Numerical Analysis
- 5. Literature
- 6. Conclusion
- 7. Appendix

Data

The Japanese Panel Survey of Consumers (JPSC)

- Panel survey of women and their household members.
- Starts in 1993 with 1,500 women aged 24-34.

Sample selection:

- Birth cohort: 1959-69
- Married (1993-2020)

Grants for college students

- As before 2020, I set g(h, I) = 0 for any (h, I) in the benchmark,
- and examine the effects of the introduction using the calibrated model.

Internally determined

Parameter	Value	Moment	Data	Model
μ	0.23	Work hours	0.33	0.30
$rac{\mu}{ar{t}}$	0.8	Income share of labor earnings	0.20	0.17
ι_s	0.055	Share of students using loans	0.44	0.34
ι	0.054	Household share with negative net worth	0.54	0.45
ω_h	0.52	CL-HS wage ratio	1.36	1.48
ψ	0.01	Var(log disposable income)/Var(log gross income)	0.60	0.68
λ_q	0.62	Average transfer / Average income at age 28	0.07	0.07
λ_a	1.03	Average transfer / Average income at age 28	0.27	0.27
ω	1.71	Intergenerational mobility of education	See Ta	able 1
σ_h	0.65	Variance of log(income) at age 28	0.27	0.24
ψ_{CL}	20.8	College enrollment rate	0.377	0.376
α_{CL}	0.1	Log wage ratio (CL-HS) at age 28	0.34	0.38
β_{CL}	0.1	Var log wage for CL at age 28	0.14	0.24
b_1	0.49	Share of one child	0.16	0.15
b_2	0.53	Share of two children	0.55	0.61
b_3	0.55	Share of three children	0.22	0.24
b_4	0.56	Share of four or more children	0.02	0.00
Z	1.99	Low skill wage	1.0	1.0

 \bullet Avg. expenditure before HS grad. ($\simeq 7$ M yen) and after CL enrollment ($\simeq 5$ M yen).

Education Mobility

Education status is persistent between parents and children.

Parents/Children	HS	CL
HS	0.725 (0.798)	0.275 (0.202)
CL	0.412 (0.423)	0.588(0.577)

Table: Intergenerational transition matrix of education in the benchmark. Note: (i, j)—th entry of the matrix indicates the probability that children acquire skill j given that their parent's skill is i. Values in parentheses represent the data counterparts (JPSC).

Validation and Non-targeted Moments

- The benefit elasticity of fertility.
 - 1% increase in cash benefits increases fertility rates by 0.1 0.2%. e.g.) Milligan (2005), Cohen et al. (2013), etc.
 - The benchmark model implies the elasticity of 0.13. Detail
- Fertility differential across education. Table
- Composition of students' revenue.

(IVT:Labor:Loan $\simeq 0.6:0.2:0.2$)

- 1. Introduction
- 2. Model
- 3. Calibration
- 4. Numerical Analysis
- 5. Literature
- 6. Conclusion
- 7. Appendix

Road Map

- Examining the effects of introducing grants.
- Setting the higher income threshold for eligibility.
- Inspecting the mechanism:
 - Behavioral and distributional effects
 - Roles of endogenous fertility

Introducing Subsidies: What I Do

Consider a grant scheme g(h, I) and solve the equilibrium:

$$g(h, I) = \begin{cases} g & \text{if } I \leq \bar{I} \\ 0 & \text{otherwise} \end{cases}$$

- Threshold $\bar{I} \simeq$ the 15 percentile of income dist.
- Amount $q \simeq 2/3$ of the students' average expenses in the benchmark.
- Government budget balanced by adjusting the labor income tax rate.

Results: Education and Fertility

Education:

- College enrollment rate: 4 p.p. ↑
 - Skill premium (w_{CL}/w_{HS}) : 0.02 points \downarrow
- Educational mobility (HS→CL): 2.5 p.p. ↑

Fertility:

- TFR: 3% ↑
- Largely driven by fertility increases among college graduates.

Inspecting the mechanism

Changes in the TFR and college enrollment can be driven by changes in:

- 1. Grant function g(h, I) "Direct effects" (short-run effects)
- 2. Prices (w_{CL}, w_{HS}, r) "GE (Price) effects"
- 3. Tax rate τ_l "Taxation effects"
- 4. Distributions (e.g., college graduates share) "Distributional effects"

Decomposition: Fertility

Direct effects explain half of the long-run increase in the TFR. • Table • Education

- Note: HHs do not know whether eligible when making fertility choices.
 - A key source of uncertainty: income shocks (z).
- Some skilled parents, whose children are ex-post ineligible, increase fertility.
 - \Rightarrow The grants provide insurance against the risks of having a child.

Grants As Insurance For Parents

- Children as "consumption commitments": Santos and Weiss (2016), Sommer (2016).
 - Irreversible and force parents to spend required amounts of resources.
 - \Rightarrow Income volatility makes parents tend to have fewer children.
- Children of skilled parents are more likely to (be willing to) attend college.
 - Expected costs of children are higher for skilled parents.
 - \Rightarrow They benefit more from the insurance, and their fertility responds strongly.

Expansion: What I Do

Raise the threshold for the grant eligibility to cover students in middle-income HHs.

• Threshold \simeq the x(>15) percentile of income dist.

Expansion: Results

		Threshold				
	Bench.	15%	40%	50%	60%	
CL share	37.6	41.5	42.3	43.2	43.8	
TFR	2.096	2.160	2.158	2.151	2.157	
Output $(\Delta\%)$ Tax	35.00		+0.15 35.17		+1.53 35.30	

Table: Main results of higher income thresholds.

• TFR would stagnate.

Expansion: Fertility

Fertility Decomposition: Case of Threshold = 60%

College-graduate parents: Direct effects play primary roles.

• Broader coverage \Rightarrow greater insurance (or income) effects \Rightarrow Fertility \uparrow

High-school-graduate parents: Direct and GE effects explain the fertility decline.

- Higher education mobility \Rightarrow Higher expected costs of children \Rightarrow Fertility \downarrow
- CL share $\uparrow \Rightarrow w_{HS} \uparrow \Rightarrow$ Opportunity costs $\uparrow \Rightarrow$ Fertility \downarrow

Roles of endogenous fertility

So far, we have focused on the policy effects on fertility.

• What are the implications of the fertility responses for other macro variables?

Procedure:

- Solve the equilibrium with each program under exogenous fertility.
- Policy functions for fertility are fixed as in the benchmark.

Exogenous fertility

Considering fertility responses implies:

- Higher college enrollment rates (via hetero. effects on fertility + IG linkages)
- Greater output (via greater share of working-age and skilled pop.)
 - \Rightarrow Fertility margins amplify the effects in the long run.
- Lower tax rate (via greater tax base)

Moments/Threshold	15%	40%	50%	60%
CL share	41.0 (41.5)	41.5 (42.3)	42.3 (43.2)	42.8 (43.8)
Output $(\Delta\%)$	0.65 (0.70)	0.55 (0.15)	0.85(1.07)	1.23(1.53)
Tax	35.14 (35.04)	35.36 (35.17)	35.37 (35.23)	35.40 (35.30)

Table: Values in parentheses in each cell represent the results under endogenous fertility.

- 1. Introduction
- 2. Model
- 3. Calibration
- 4. Numerical Analysis
- 5. Literature
- 6. Conclusion
- 7. Appendix

Literature

(1) Fertility choices in incomplete market models:

Schoonbroodt and Tertilt (2014, JET), Santos and Weiss (2016, IER), Sommer (2016, JME), etc.

- This paper: Income volatility + Uncertainty about children's characteristics.
- The education subsidies would provide insurance against those multiple sources of uncertainty and increase fertility.

(2) Education subsidies for college students in macro models:

Benabou (2002, Ecta), Krueger and Ludwig (2016, JME), Abbott et al. (2019, JPE), Matsuda and Mazur (2022, JME).

- This paper: + Fertility choices
- Fertility margins amplify the effects on other macro variables.

Literature

(3) Macro effects of pro-natal policies:

Erosa et al. (2010, RED), Hagiwara (2021), Zhou (2022), Kim et al. (2023), Nakakuni (2023), etc.

- This paper: + Education choice (its discreteness matters to fertility choices),
- and investigates the effects of grants for college students on fertility.

(4) Macro models with fertility choices:

De la Croix and Doepke (2003, AER), De la Croix and Doepke (2004, JPubE), Daruich and Kozlowski (2020, RED), etc.

- This paper: + Full lifecycle + GE + uninsurable shocks + IG linkages,
- all crucial to studying the effects of grants for college students.

- 1. Introduction
- 2. Model
- 3. Calibration
- 4. Numerical Analysis
- 5. Literature
- 6. Conclusion
- 7. Appendix

Conclusion

- 1. The existing grants \Rightarrow CL share 4 p.p. \uparrow , TFR 3% \uparrow , output 0.7% \uparrow .
 - Fertility of skilled parents \(\ \) due to **insurance effects**.
- 2. Limited effects of its eligibility expansion on the TFR:
 - Expected costs of children \(\ \) due to a greater mobility of education.
 - \Rightarrow downward pressure on the unskilled parents' fertility.
- 3. Fertility margins amplify the effects on other macro variables.

- 2. Model
- 3. Calibration
- 4. Numerical Analysis
- 5. Literature
- 6. Conclusion
- 7. Appendix

Costs of Children and Fertility Choices in Japan

- 1. Couples are most likely to abandon having an ideal number of children because of financial costs.
- 2. A significant financial cost gap exists between those who have children enrolled in college and those who do not.
- 3. A substantial fraction of parents desire a college education for their children.
- 4. Japan is one of the least in subsidizing tertiary education.

Data

The National Fertility Survey:

- Conducted almost every five years by the IPSS.
- Survey questions regarding marriage, childbirth, and child-raising.
- married couples and singles.

Sample selection:

- Year: 2015 (latest among available)
- Married couples.
- Age (wife): 25 39.

Ideal and planned number of children

Figure: Distribution of ideal and planned number of children.

Reasons for the gap b/w ideal and plan

"Financial" \(\Rightarrow\$ "Child-raising and education are too expensive."

Figure: Reasons for the gap between the ideal and planned number of children.

A significant financial cost gap

Figure: Cumulative education-expenditures. Sources: the SCLE (2021) and the SLS (2018) by the MEXT.

Desired education for children

More than 75% of parents desire a college education for their children.

Figure: Wives' intention for children's education attainment.

Japan's fewer subsidization in tertiary education

Figure: Subsidization rate for each education category (OECD, 2018).

Preliminaries

- Technology
- Demographics
- Preferences
- Labor income
- Financial markets
- Government

Production Technology

A representative firm operates with the Cobb-Douglus production technology:

$$Y = ZK^{\alpha}L^{1-\alpha},$$

where

$$L = \left[\omega_{HS} \cdot (L_{HS})^{\chi} + \omega_{CL} \cdot (L_{CL})^{\chi}\right]^{1/\chi}.$$

• L_e : total efficiency labor with skill $e \in \{HS, CL\}$.

The skill premium is endogenously determined as:

$$\frac{w_{CL}}{w_{HS}} = \frac{\omega_{CL}}{\omega_{HS}} \cdot \left(\frac{L_{HS}}{L_{CL}}\right)^{1-\chi}$$

Demographics

- The size of new cohort grows at rate g_n .
 - g_n is determined enodgenously.
- Mortality risks after retirement.
 - $\zeta_{j,j+1}$: Survival probability at age j+1 conditional on surviving until age j.
- g_n and $\{\zeta_{j,j+1}\}_{j\geq J_R}$ pin down the age distribution μ_j .

Preferences

- Households draw utility from consumption c and leisure l according to u(c, l).
- If they have children under 18 (before completing HS), they further draw utility from the "quantity and quality" of children according to $b(n) \cdot v(q)$:
 - n: the number of children.
 - b(n): increasing in $n \in \{0, 1, ..., N\}$ and concave. i.e., marginal utility gains from having additional child diminishes as n increases.
 - q: spending on children's quality.
 - Caveat: the spending does not affect children's human capital.

Preference: IVT

Utility from the IVT for households with n children is given as follows:

$$\underbrace{b(n) \cdot \lambda_a}_{\text{Discounting}} \cdot \underbrace{V_{g0}(a_{CL}, \phi_k, h_k, I)}_{\text{Value function for children}}.$$

Labor income

- Gross labor income is determined by:
 - 1. equilibrium wage rates w_e varying with skill (education levels) e,
 - 2. productivity $\eta_{j,z,e,h}$,
 - 3. hours worked.
- The productivity $\eta_{j,z,e,h}$ depends on:
 - 1. age j,
 - 2. skill e,
 - 3. human capital h,
 - 4. a stochastic component $z \sim \pi(z' \mid z)$.

Financial Markets

- Incomplete market: households can trade only claims for risk-free bonds.
- Households face debt limits that vary over the life-cycle:
 - (1) eligible college students and (2) households aged $j < (J_R 1)$ can borrow.
 - $r^s = r + \iota_s \text{ for } (1).$
 - $r^- = r + \iota \text{ for } (2).$
 - Retired households cannot.

Government: revenue

- Consumption tax: τ_c
- Capital income tax: τ_a
- Labor income tax: τ_w
- Accidental bequests: Q

Government: expenditures

- Public pension: p per household
- Cash benefits for households with children under 17: B per child
- Lump-sum transfers ψ to generate the progressivity for τ_w .
- Education subsidies/loans for college students.
- The other expenditures: S

Financial aid for college students

Grants g(h, I):

- Eligibility and payments can depend on:
 - 1. student' human capital (a proxy of "ability"),
 - 2. household income (I).
- No grants in the benchmark.

Loans:

- Eligible students can access to the subsidized loans with interest rate $r^s \leq r^-$.
- Eligibility is determined by (h, I).
- Government incurs the costs implied by the wedge $b/w r^-$ and r^s .

Government Budget Constraint

$$\tau_c \cdot C + \tau_w \cdot (L_{HS} + L_{CL}) + \tau_a \cdot K + Q = p \cdot \mu_{old} + (\iota - \iota_s) \cdot K_s + G + \psi + B \cdot \mu_{j \le 17} + S, \quad (2)$$

- C: total consumption,
- Q: total accidental bequests,
- μ_{old} : population mass of retired households,
- $\mu_{j \le 17}$: population mass of children under age 17,
- K_s : total amount of borrowing by college students,
- μ_{es} : mass of students eligible for the grants.

Budget constraint for IVT choices

$$(1 + \tau_c)c + a' + na_{IVT} = Y_{IVT},$$

$$a' \ge -\underline{A},$$

where

$$Y_{IVT} \equiv (1 - \tau_w) w_e \eta_{j,z,e,h} (1 - l) + \psi + \begin{cases} (1 + (1 - \tau_a)r)a & \text{if } a \ge 0, \\ (1 + r^-)a & \text{otherwise.} \end{cases}$$

$$V_{g1}(a_{IVT}; h, I) = \max_{c,l,a'} \{ u(c, l) + \beta V_{g2}(a'; h, I) \},$$

$$V_{g2}(a; h, I) = \max_{c,l,a'} \{ u(c, l) + \beta \mathbb{E}_{z_0} [V^w(a^s(a'), j = 22, z_0; e = 1, h)] \}.$$

Budget constraints for college students

$$a^{s}(a') = a' \times \frac{r^{s}}{1 - (1 + r^{s})^{-10}} \times \frac{1 - (1 + r^{-})^{-10}}{r^{-}}.$$

Eligible to loans:

$$(1+\tau_c)c + p_{CL} + a' \tag{3}$$

$$-(1-\tau_w)w_{HS}(1-\bar{t}-l)-\psi-g(h,I) = \begin{cases} (1+(1-\tau_a)r)a & \text{if } a \ge 0, \\ (1+r^s)a & \text{otherwise.} \end{cases}$$
(4)

$$a' \ge -\underline{A}_s$$
.

The rest:

$$(1 + \tau_c)c + p_{CL} + a' = (1 + (1 - \tau_a)r)a + (1 - \tau_w)w_{HS}(1 - \bar{t} - l) + \psi + g(h, I),$$

 $a' > 0.$

Working stage without children

$$V^{w}(a, j, z; e, h) = \max_{c,l,a'} \{u(c, l) \\ + \begin{cases} \beta \mathbb{E}_{z'}[V^{f}(a', z', e, h)] & \text{if } j = J_{F} - 1 \\ \beta[V^{r}(a', j + 1)] & \text{if } j = J_{R} - 1 \end{cases}$$
s.t.
$$(1 + \tau_{c})c + a' = (1 - \tau_{w})w_{e}\eta_{j,z,e,h}(1 - l) + \psi + (1 + (1 - \tau_{a})r)a,$$

$$z' \sim \pi(z', z),$$

$$a' \geq \begin{cases} 0 & \text{if } j = J_{R} - 1, \\ -\underline{A} & \text{otherwise.} \end{cases}$$

(5)

Retirement stage

$$V^{r}(a, j; e) = \max_{c, a'} u(c, 1) + \beta \xi_{j, j+1} V^{r}(a', j+1; e)$$
s.t.
$$(1 + \tau_{c})c + a' = p + (1 + (1 - \tau_{a})r)a + \psi,$$

$$a' \ge 0 \ (a' = 0 \text{ when } j = J).$$

Preferences

Instantaneous utility for students and adults:

$$u(c,l) = \frac{(c^{\mu}l^{1-\mu})^{1-\gamma}}{1-\gamma}$$

Instantaneous utility from quantity and quality of children:

$$v(q) = \lambda_q \frac{q^{1-\gamma_q}}{1-\gamma_q}$$

The discount function takes a non-parametric form (i.e., $b(n) = b_n$ and b(0) = 0).

Financial markets

Targets for

- ι : share of negative net worth,
- ι_s : share of students borrowing

Borrowing limits are set outside the model:

- \underline{A}_s : 2.88 million yen.
 - \underline{A} : 20 million yen.

School taste

- Psychic costs ϕ are given as $\phi = \psi_{CL} \cdot \exp(-h) \cdot \tilde{\phi}$.
 - ψ_{CL} governs the college enrollment rate at the initial steady state.
 - $\tilde{\phi}$ is distributed on [0,1].
- As in Daruich and Kozlowski (2020), the CDF for $\tilde{\phi}$ is given as

$$G_{e^p}^{\tilde{\phi}} = \begin{cases} \tilde{\phi}^{\omega} & \text{if } e^p = 0\\ 1 - (1 - \tilde{\phi})^{\omega} & \text{if } e^p = 1 \end{cases}$$

- Target for ψ_{CL} : the college enrollment rate (37.7%).
- Target for ω : intergenerational transition matrix of education.

Intergenerational transmission of human capital

• The initial draw of human capital:

$$\log(h) = \rho_h \log(h_p) + \varepsilon_h,$$

$$\varepsilon_h \sim N(0, \sigma_h).$$

- $\rho_h = 0.19$ following Daruich and Kozlowski (2020).
- Target for σ_h : Variance of log(income) at age 28-29.

• Labor productivity $\eta_{i,z,e,h}$:

$$\log \eta_{j,z,e,h} = \log f^{e}(h) + \gamma_{j,e} + z$$
$$z' = \rho_{z}z + \zeta, \quad \zeta \sim N(0, \sigma_{z}).$$

• $\gamma_{i,e}$: estimate the second-order polynomial of hourly wages on age.

Education returns

• Consider the following human-capital production function of the non-linear form:

$$f^e(h) = h + e \cdot (\alpha_{CL} h^{\beta_{CL}})$$

- Target for α_{CL} : Log(wage) ratio (CL $-\leq$ CL) at age 28-29 (0.34).
- Target for β_{CL} : Variance of log(wage) for college grad. workers (0.14).

Production

- $\chi = 0.39$ following Matsuda and Mazur (2022).
- $\omega_h = 0.52$: to replicate the wage ratio between CL and the rest.
- Z = 1.99: s.t. low skill wage = 1.
- $\alpha = 0.33$.
- $\delta = 0.07$ (annual).

Externally determined

Parameter	Value	Description
$\underline{\underline{A}}_s$	2.88 million yen	Borrowing limit for students
<u>A</u>	20 million yen	Borrowing limit
p_{CL}	1.05 million yen/year	Tuition fees
κ	0.044	Time costs
$\xi_{j,j+1}$	=	survival prob.
$ au_c$	0.10	Consumption tax
$ au_a$	0.35	Capital income tax
$ au_w$	0.35	Labor income tax
p	$\pm 160,000/\text{month}$	Pension benefits
b	$\pm 10,000/\text{month}$	Cash transfers
α	0.33	Capital share
δ	0.07	Depreciation rate
χ	0.39	Elasticity of substitution
$ ho_z$	0.95	Persistence
σ_z	0.02	Transitory
ν	1	Education sorting by ability
γ	0.5	Curvature
β	0.98	Discount factor
ρ_h	0.19	Transmission of h

Wage age-profile

	College graduates	The rest
Age	0.048	0.041
$Age^2 \times 10,000$	-5.364	-4.551

Table: Wage age-profile

Fertility differential across education

More (less) educated parents have fewer (more) children.

	Data	Model
HS	2.12	2.28
CL	1.92	1.79

Table: Fertility differential across education in the benchmark.

Validation: Fertility elasticity

- Set the per-child payment $B = B_0 \cdot X$ where $X \in \{1.1, 1.2, ..., 3.0\}$.
- Solve the household decisions with particular X and compute the TFR.
- Compute the implied elasticity for each X, denoted by ξ_X .
- After having $\{\xi_X\}_X$, compute the average elasticity $\bar{\xi}_X$.

▶ Return

Introducing Subsidies: Aggregate Quantity

- Efficiency labor (per-capita): 1.3% ↑
 - Higher CL share \Rightarrow Larger share of skilled workers.
 - Higher TFR \Rightarrow Larger working-age population share.
- Capital (per-capita): 1.8% ↓
 - Reduce saving incentives/Crowd out IVTs.
 - Higher TFR \Rightarrow Larger share of younger generations, who hold fewer assets.
- Output (per-capita): 0.7% ↑

Decomposition: Fertility

	Bench.	Direct	Prices	Tax	Dist.	All
TFR	2.096	2.128	2.113	2.096	2.088	2.160
HS	2.282	2.304	2.283	2.283	2.280	2.290
CL	1.786	1.867	1.830	1.787	1.794	1.978

Table: Decomposing the effects on fertility.

• Prices: CL share $\uparrow \Rightarrow w_{CL} \downarrow \Rightarrow$ Opportunity costs $\downarrow \Rightarrow$ Fertility \uparrow

Decomposition: Education

	Bench.	Direct	Prices	Tax	Dist.	All
CL share	37.6	40.2	37.6	37.6	39.5	41.5

Table: Decomposing the effects on education.

- Direct \Rightarrow The subsidy relaxes the financial constraint (short/long run).
- Dist. ⇒ The effects are amplified in the long run via IG linkages.
 CL share among parents ↑ ⇒ share of children favoring college ↑ ⇒ CL share ↑
- Fertility margins also play roles: College graduates have more children, who are likely to be college graduates.

Fertility Decomposition: Case of Threshold = 60%

	Bench.	Direct	Prices	Tax	Dist.	All
HS	2.282	2.265	2.250	2.283	2.279	2.263
CL	1.786	1.948	1.863	1.829	1.797	2.021

Table: Decomposing the effects on fertility when income threshold = 60%.

Expansion: Fertility

		Threshold					
	Bench.	15%	40%	50%	60%		
TFR	2.096	2.160	2.158	2.151	2.157		
HS	2.282	2.290	2.277	2.267	2.263		
CL	1.786	1.978	1.996	1.998	2.021		

Table: Fertility by different educational background.

- College graduates' fertility rates continue to increase.
- High school graduates' fertility rates rather decrease.

