CS 6041 Theory of Computation

Turing machine

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Outline

- Turing-recognizable and Turing-decidable
- Example of Turing machines
 - $\circ \{0^{2^n}\}$
 - {w#w}
- Variants of TMs
 - Multi-tape TM
 - Nondeterministic TM

Revisit: Input on the tape of TM

•
$$\Sigma = \{a, b, 0, 1, ...\}$$

• ⊔ ∉ Σ

 The blank symbol is just used to fill the infinite tape of TM

Revisit: Initial state and operations of TM

Operations:

- Read symbol below the head
- Write symbol below the head
- Move head one step left
- Move head one step right

Revisit: The output of Turing Machine

- AcceptReject
- Loop = Never Halt

For finite automata and pushdown automata, they will halt

Turing-recognizable and Turing-decidable

- Turing-recognizable: A=L(M)
 - x∈A, M accept x
 - x∉A, M reject x or loop

- Turing-decidable: A=L(M)
 - x∈A, M accept x
 - x∉A, M reject x

Halt no matter what is the input

Turing-recognizable ≠ Turing-decidable

Revisit: The output of Turing Machine

Accept
 Reject
 Halt -> Decidable
 Recognizable

= Never Halt

Loop

regular context-free Turingdecidable recognizable

Language in Turing machine

Prove: A is not regular.

Suppose A is regular language and p is its pumping length

$$S = 0^{2^p} \in A$$
, $|S| = 2^p > p$, so $S = xyz$
 $|y| > 0$
 $|xy| \le p$
 $\forall i \ge 0, xy^i z \in A$

Suppose $|xy| = k \le p < 2^p$, then $|z| = 2^p - k > 0$ For string xyyz, the length $2^p < |xyyz| \le 2^p + k < 2^p + 2^p = 2^{p+1}$ So |xyyz| is not in A, contradiction!

Prove A is not context-free.

Suppose A is CFL and p is its pumping length

```
S = 0^{2^p} \in A, |S| = 2^p > p, so S = uvxyz

\forall i \ge 0, uv^i x y^i z \in A;

|vy| > 0;

|vxy| \le p.
```

Suppose $|vxy|=k \le p < 2^p$, then $|uz|=2^p-k>0$ For string uv^2xy^2z , the length $2^p<|uv^2xy^2z|\le 2k+2^p-k< k+2^p<2^p+2^p=2^{p+1}$

So |uv²xy²z| is not in A, contradiction!

• M2 = "On input string w:

Not regular language or context free language

- Sweep left to right across the tape, crossing off every other 0.

 e.g., 00000000
- If in stage 1 the tape contained a single 0, accept N=0
- If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject.
- 4) Return the head to the left-hand end of the tape.
- 5) Go to stage 1."

- <u>0</u>0000000
- ⇒<u>0</u>0<u>0</u>0
- ⇒<u>0</u>0
- \Rightarrow 0, accept

- <u>0</u>000000000
- <u>>00000</u>,
- ⇒odd length, reject

- M2 = "On input string w:
 - Sweep left to right across the tape, crossing off every other 0.
 - 2) If in stage 1 the tape contained a single 0, accept .
 - If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject.
 - 4) Return the head to the left-hand end of the tape.
 - 5) Go to stage 1."

Create a TM for A

- $M_2=(Q,\Sigma,\Gamma,\delta,q_1,q_{acc},q_{rej})$
 - $Q=\{q_1, q_2, q_3, q_4, q_5, q_{acc}, q_{rej}, \}$
 - $\Sigma = \{0\}$
 - \circ Γ ={0,X,B}, B denotes space
 - δ is shown in next page

M₂:computation on 0000

```
q<sub>1</sub>0000, Bq<sub>2</sub>000, BXq<sub>3</sub>00, BX0q<sub>4</sub>0, BX0Xq<sub>3</sub>B,
BX0q<sub>5</sub>XB, BXq<sub>5</sub>0XB, Bq<sub>5</sub>X0XB, q<sub>5</sub>BX0XB,
Bq<sub>2</sub>X0XB, BXq<sub>2</sub>0XB, BXXq<sub>3</sub>XB, BXXXq<sub>3</sub>B,
BXXq<sub>5</sub>XB, BXq<sub>5</sub>XXB, Bq<sub>5</sub>XXXB, q<sub>5</sub>BXXXB,
Bq<sub>2</sub>XXXB, BXq<sub>2</sub>XXB, BXXq<sub>2</sub>XB, BXXXq<sub>2</sub>B, BXXXBq<sub>acc</sub>
```


CS 6041

M₂:computation on 0000

```
q<sub>1</sub>0000, Bq<sub>2</sub>000, BXq<sub>3</sub>00, BX0q<sub>4</sub>0, BX0Xq<sub>3</sub>B,
BX0q<sub>5</sub>XB, BXq<sub>5</sub>0XB, Bq<sub>5</sub>X0XB, q<sub>5</sub>BX0XB,
Bq<sub>2</sub>X0XB, BXq<sub>2</sub>0XB, BXXq<sub>3</sub>XB, BXXXq<sub>3</sub>B,
BXXq<sub>5</sub>XB, BXq<sub>5</sub>XXB, Bq<sub>5</sub>XXXB, q<sub>5</sub>BXXXB,
Bq<sub>2</sub>XXXB, BXq<sub>2</sub>XXB, BXXq<sub>2</sub>XB, BXXXq<sub>2</sub>B, BXXXBq<sub>acc</sub>
```


M₂:computation on 0000

```
q<sub>1</sub>0000, Bq<sub>2</sub>000, BXq<sub>3</sub>00, BX0q<sub>4</sub>0, BX0Xq<sub>3</sub>B,
BX0q<sub>5</sub>XB, BXq<sub>5</sub>0XB, Bq<sub>5</sub>X0XB, q<sub>5</sub>BX0XB,
Bq<sub>2</sub>X0XB, BXq<sub>2</sub>0XB, BXXq<sub>3</sub>XB, BXXXq<sub>3</sub>B,
BXXq<sub>5</sub>XB, BXq<sub>5</sub>XXB, Bq<sub>5</sub>XXXB, q<sub>5</sub>BXXXB,
Bq<sub>2</sub>XXXB, BXq<sub>2</sub>XXB, BXXq<sub>2</sub>XB, BXXXq<sub>2</sub>B, BXXXBq<sub>acc</sub>
```


M₂:computation on 0000

```
q<sub>1</sub>0000, Bq<sub>2</sub>000, BXq<sub>3</sub>00, BX0q<sub>4</sub>0, BX0Xq<sub>3</sub>B,
BX0q<sub>5</sub>XB, BXq<sub>5</sub>0XB, Bq<sub>5</sub>X0XB, q<sub>5</sub>BX0XB,
Bq<sub>2</sub>X0XB, BXq<sub>2</sub>0XB, BXXq<sub>3</sub>XB, BXXXq<sub>3</sub>B,
BXXq<sub>5</sub>XB, BXq<sub>5</sub>XXB, Bq<sub>5</sub>XXXB, q<sub>5</sub>BXXXB,
Bq<sub>2</sub>XXXB, BXq<sub>2</sub>XXB, BXXq<sub>2</sub>XB, BXXXq<sub>2</sub>B, BXXXBq<sub>acc</sub>
```


M₂:computation on 0000

```
q<sub>1</sub>0000, Bq<sub>2</sub>000, BXq<sub>3</sub>00, BX0q<sub>4</sub>0, BX0Xq<sub>3</sub>B, BX0q<sub>5</sub>XB, BXq<sub>5</sub>0XB, Bq<sub>5</sub>X0XB, q<sub>5</sub>BX0XB,
```

Bq₂XOXB, BXq₂OXB, BXXq₃XB, BXXXq₃B,

BXXq₅XB, BXq₅XXB, Bq₅XXXB, q₅BXXXB,

Bq₂XXXB, BXq₂XXB, BXXq₂XB, BXXXq₂B, BXXXBq_{acc}

M₂:computation on 0000

```
q<sub>1</sub>0000, Bq<sub>2</sub>000, BXq<sub>3</sub>00, BX0q<sub>4</sub>0, BX0Xq<sub>3</sub>B, BX0q<sub>5</sub>XB, BXq<sub>5</sub>0XB, Bq<sub>5</sub>X0XB, q<sub>5</sub>BX0XB, Bq<sub>2</sub>X0XB, BXq<sub>2</sub>0XB, BXXq<sub>3</sub>XB, BXXXq<sub>3</sub>B, BXXXq<sub>5</sub>XB, BXq<sub>5</sub>XXB, Bq<sub>5</sub>XXXB, q<sub>5</sub>BXXXB, Bq<sub>2</sub>XXXB, BXq<sub>2</sub>XXB, BXXq<sub>2</sub>XB, BXXXq<sub>2</sub>B, BXXXBq<sub>acc</sub>
```

M₂:computation on 0000

0000

 q_10000 , Bq_2000 , BXq_300 , $BX0q_40$, $BX0Xq_3B$,

BXOX

BXOq₅XB, BXq₅OXB, Bq₅XOXB, q₅BXOXB,

Bq₂XOXB, BXq₂OXB, BXXq₃XB, BXXXq₃B,

BXXX

BXXq₅XB, BXq₅XXB, Bq₅XXXB, q₅BXXXB,

Bq₂XXXB, BXq₂XXB, BXXq₂XB, BXXXq₂B, BXXXBq_{acc}

BXXX

On q2. if input is blank, accepts/

- M_1 = "for input string x":
 - Scan the input to make sure there exists only one "#", otherwise reject;
 - 2. Move to the same positions on both sides between "#", check whether there exist same symbols. If not, reject; otherwise, cross off the checked symbols;
 - If all symbols on the left of "#" are crossed off, check whether there exists other remaining symbols on the right. If yes, reject; otherwise, accept.

- $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{acc}, q_{rej})$
 - $Q = \{q_1, q_2,, q_8, q_{acc}, q_{rej}, \}$
 - $\Sigma = \{0, 1, \#\}$
 - $\Gamma=\{0,1,\#,X,B\}$, B denotes space, X denotes crossed off
 - $_{\circ}$ δ is shown as below: (ignore reject state)

- Bidirectional infinite tape Turing machine
- Multidimensional tape Turing machine
- Multitape Turing machine
- Multihead Turing machine
- Nondeterministic Turing machine

•

We can change the forms of TM but its functionality does not change

TM has robust definition

Bidirectional infinite tape Turing machine

Multidimensional tape Turing machine

Multi-head Turing machine

Multitape Turing machine

Transition function of multitape TM:

$$\delta: Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k$$

k tapes

$$\delta(q_i, a_1, ..., a_k) = (q_i, b_1, ..., b_k, L, R, ..., L)$$

Change from a_k to b_k and move L/R

Theorem: every multitape TM has an equivalent single-tape TM

 How to use single-tape TM to simulate multitape TM?

(Prove by construction)

- How to store multi-tape on a single tape
- How to simulate multi-head on a single tape
- How to simulate one move on multi-tape on a single tape

- How to store multi-tape on a single tape
- How to simulate multi-head on a single tape
- How to simulate one move on multi-tape on a single tape

- How to store multi-tape on a single tape
- How to simulate multi-head on a single tape
- How to simulate one move on multi-tape on a single tape

Simulate multitape TM by single-tape TM

Design single-tape TM S to simulate multitape TM M:

S="for input w= w_1 ... w_n :

- 1) S puts its tape in format $\#w_1w_2...w_n\#B\#B\#...\#$.
- 2) To simulate a single move, S scans its tape from the first # to the (k + 1) # in order to determine the symbols under the virtual heads. Then S makes a second pass to update the tapes according to the way that M's transition function dictates.

3) If at any point S moves one of the virtual heads to the right onto a #, S writes a blank symbol on this tape cell and shifts the tape contents, from this cell until the rightmost #, one unit to the right. Then it continues the simulation as before.

Revisit Definition of Turing Machine

- TM M=(Q, Σ , Γ , δ ,q₀,q_{acc},q_{rej})
 - 1) Q is the set of states
 - 2) Σ is the input alphabet, not containing blank symbol $\mathbf{B} \notin \Sigma$
 - 3) Γ is the tape alphabet, $\Sigma \cup \{B\} \subseteq \Gamma$,
 - 4) δ : Q× Γ \rightarrow Q× Γ ×{L,R} is the transition function
 - 5) $q_0 \in Q$ is the start state

Destination is only one!

Deterministic

- 6) $q_{acc} \in Q$ is the accept state
- 7) $q_{rej} \in Q$ is the reject state, $q_{acc} \neq q_{rej}$

Nondeterministic Turing machine

Nondeterministic Turing machine (NTM):

∘
$$\delta$$
: Q×Γ→P(Q×Γ×{L,R})

A set of {state, input, head move}

- Configuration on DTM:
 - $\delta(q_i,b)=(q_j,c,L)$
 - o uaq_ibv → uq_jacv

Nondeterministic Turing machine

- Configuration on NTM:
 - $\delta(q_i,b)=(q_i,c,L)$ or (q_k,d,R)
 - o uaq_ibv → uq_jacv

 $uaq_ibv \rightarrow uadq_kv$

Nondeterministic Turing machine

Computation tree:

Nondeterministic tree

Output:

- Accept, if one branch accepts
- Reject, if all branched reject
- Loop, computation continues but accept/reject never happened

Nondeterministic TM = Deterministic TM

Theorem: Every NTM
 has an equivalent DTM.

 Proof: use DTM D to simulate NTM N

Idea: Search the tree looking for ACCEPT

Nondeterministic TM = Deterministic TM

Proof: use DTM D to simulate NTM N

Question

- A language is Turing-recognizable iff some NTM recognizes it
 - True

- A language is decidable iff some NTM decides it.
 - True

What tasks TM can do?

Turing machine and algorithms are equivalent in power

Conclusion

- Turing-recognizable and Turing-decidable
- Example of Turing machines
 - $\circ \{0^{2^n}\}$
 - {w#w}
- Variants of TMs
 - Multi-tape TM
 - Nondeterministic TM