

Universidad Nacional de Ingeniería Facultad de Ciencias

Ciclo: 2016-II

[Cod: CM 141 Curso: Cálculo Vectorial I]

[Tema:Espacios vectorial, producto interno, rectas, planos y cónicas.]

Examen Sustitutorio de Cálculo Vectorial I

(0,0,0) (3,2,1)

- 1. Determine el valor de verdad de las siguientes proposiciones, justificando su respuesta en cada caso:
 - a) Sea $S = \{(x,y) \in \mathbb{R} : x-2y=0\}$ un subespacio vectorial, entonces la dimensión de S
 - b) Considere la siguiente función $\langle (x_1,y_1),(x_2,y_2)\rangle = x_1x_2 2x_1y_2 2y_1x_2 + 3y_1y_2$, entonces \langle , \rangle es un producto interno en \mathbb{R}^2 .
 - c) Considere A=(3,-2), B=(8,1) y C=(5,-4), entonces la longitud de la altura del triángulo ABC trazada desde el vértice A es $\frac{8\sqrt{34}}{17}$.
- 2. Una circunferencia $C(P_0,r)$ con centro en P_0 y radio r(r>0) es el conjunto de todos los puntos P cuya distancia a P_0 es r, es decir:

$$C(P_0, r) = \{ P \in \mathbb{R}^2 : |P - P_0| = r \}$$

Demuestre que si un par de circunferencias se intersecta en dos puntos, entonces la recta η que une los centros de las circunferencias es ortogonal a la recta que pasa por los puntos de intersección de las circunferencias.

Los planos $P_1: 8x + 4y + 3z = 24$ y P_2 se intersecan, el plano P_3 contiene al eje X y, al eje Y. Además la recta $L_1 = \{(0,6,0) + t(22,11,25)\}$ está contenido en el plano P_2 , P_2 y P_3 forman un ángulo cuya medida en θ tal que $tan(\theta) = \frac{5\sqrt{5}}{11}$. Determine la recta contenida en $P_1 \cap P_2$ en su forma simétrica.

($\sqrt{q_1}$, $\sqrt{n_3}$) = $\sqrt{(\sqrt{q_1})}$ $\sqrt{q_2}$, $\sqrt{n_3}$) = $\sqrt{(\sqrt{q_2})}$ $\sqrt{q_2}$ $\sqrt{q_3}$ $\sqrt{q_4}$ $\sqrt{q_5}$ \sqrt

- \mathbb{Z} Sean $u, v \in \mathbb{R}^3$ no nulos. Sabiendo que $Proy_v u = (7, 3, 5)$ y $Proy_u v = (-8, 4, 2)$. Calcule
- 5. Sean $M_1=(3,5)$ y $M_2=(1,1)$ los puntos de tangencia de las rectas tangentes trazadas a la cónica $C: y = x^2 - 2x + 2$ desde un punto P. $C: x^{2}-2x-y+2=0$ $\frac{\chi_{1}^{2}-2\chi_{1}-\chi_{2}}{\chi_{3}^{2}-\chi_{3}}+2=0$
 - (a) Determine la recta polar $L de^{\prime} P$ respecto a la cónica C. $b\hspace{-0.1cm}/\hspace{-0.1cm}/\hspace{-0.1cm}/$ Calcule el polo de L respecto a la cónica C.

11/21/ 11/2/1

UN1, 14 de diciembre del 2016