Was ist ein Basiswechsel?

Betrachten wir einen Vektor \mathbf{v} im Koordinatenraum \mathbb{R}^2 . Z. B. $\mathbf{v} := \binom{9}{5}$.

Betrachten wir einen Vektor \mathbf{v} im Koordinatenraum \mathbb{R}^2 . Z. B. $\mathbf{v} := \binom{9}{5}$.

Bezüglich einer Basis $B = (\mathbf{b}_1, \mathbf{b}_2)$ besitzt der Vektor eine andere Darstellung.

Bezüglich einer Basis $B = (\mathbf{b}_1, \mathbf{b}_2)$ besitzt der Vektor eine andere Darstellung.

Sei z. B. $\mathbf{b}_1 := \binom{4}{1}$ und $\mathbf{b}_2 := \binom{1}{3}$.

Bezüglich einer Basis $B = (\mathbf{b}_1, \mathbf{b}_2)$ besitzt der Vektor eine andere Darstellung.

Sei z. B. $\mathbf{b}_1 := \binom{4}{1}$ und $\mathbf{b}_2 := \binom{1}{3}$.

$$\mathbf{v} = 2\mathbf{b}_1 + 1\mathbf{b}_2 = x'\mathbf{b}_1 + y'\mathbf{b}_2.$$

$$\mathbf{v} = 2\mathbf{b}_1 + 1\mathbf{b}_2 = x'\mathbf{b}_1 + y'\mathbf{b}_2.$$

Das Tupel $\mathbf{v}_B = (x', y')$ nennen wir *Koordinatenvektor* zum Vektor \mathbf{v} bezüglich Basis B.

$$\mathbf{v} = 2\mathbf{b}_1 + 1\mathbf{b}_2 = x'\mathbf{b}_1 + y'\mathbf{b}_2.$$

Das Tupel $\mathbf{v}_B = (x', y')$ nennen wir *Koordinatenvektor* zum Vektor \mathbf{v} bezüglich Basis B.

Angenommen, es gibt nun noch eine weitere Basis $A = (\mathbf{a}_1, \mathbf{a}_2)$. Z. B. $\mathbf{a}_1 := \binom{7}{1}$ und $\mathbf{a}_2 := \binom{1}{2}$.

$$\mathbf{v} = 2\mathbf{b}_1 + 1\mathbf{b}_2 = x'\mathbf{b}_1 + y'\mathbf{b}_2.$$

Das Tupel $\mathbf{v}_B = (x', y')$ nennen wir *Koordinatenvektor* zum Vektor \mathbf{v} bezüglich Basis B.

Angenommen, es gibt nun noch eine weitere Basis $A = (\mathbf{a}_1, \mathbf{a}_2)$. Z. B. $\mathbf{a}_1 := \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ und $\mathbf{a}_2 := \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Wie findet man dann den Koordinatenvektor $\mathbf{v}_A = (x, y)$ mit

$$\mathbf{v} = x\mathbf{a}_1 + y\mathbf{a}_2$$
?

Trick: Wir ordnen der Basis
$$A = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix}$$
) die Matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

zu.

Trick: Wir ordnen der Basis $A = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix}$) die Matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

zu. Dann gilt nämlich

$$\mathbf{v} = x\mathbf{a}_{1} + y\mathbf{a}_{2} = x \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} + y \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix}$$
$$= \begin{pmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = A\mathbf{v}_{A}.$$

Für die Basis B gilt die gleiche Überlegung. Daher ist

$$\mathbf{v} = A\mathbf{v}_A = B\mathbf{v}_B.$$

Für die Basis B gilt die gleiche Überlegung. Daher ist

$$\mathbf{v} = A\mathbf{v}_A = B\mathbf{v}_B$$
.

Weil A eine Basis ist, ist $det(A) \neq 0$, womit A eine inverse Matrix A^{-1} besitzt. Multiplizieren wir beide Seiten der Gleichung von links mit A^{-1} , bekommen wir

$$\mathbf{v}_A = E\mathbf{v}_A = A^{-1}A\mathbf{v}_A = A^{-1}B\mathbf{v}_B.$$

Das ist der gesuchte Koordinatenvektor.

Anders ausgedrückt ist $A\mathbf{v}_A = B\mathbf{v}_B$ ein lineares Gleichungssystem in $\mathbf{v}_A = (x, y)$.

Anders ausgedrückt ist $A\mathbf{v}_A = B\mathbf{v}_B$ ein lineares Gleichungssystem in $\mathbf{v}_A = (x, y)$. Das ist

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}.$$

Anders ausgedrückt ist $A\mathbf{v}_A = B\mathbf{v}_B$ ein lineares Gleichungssystem in $\mathbf{v}_A = (x, y)$. Das ist

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}.$$

Im Beispiel ist

$$\begin{pmatrix} 7 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \end{pmatrix}.$$

Anders ausgedrückt ist $A\mathbf{v}_A = B\mathbf{v}_B$ ein lineares Gleichungssystem in $\mathbf{v}_A = (x, y)$. Das ist

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}.$$

Im Beispiel ist

$$\begin{pmatrix} 7 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \end{pmatrix}.$$

Das macht x = 1 und y = 2.

Woher ist eigentlich die Darstellung \mathbf{v}_A bekannt?

Woher ist eigentlich die Darstellung \mathbf{v}_A bekannt? Die bekommen wir auf die gleiche Art. Die Gleichung

$$\mathbf{v} = B\mathbf{v}_B$$

müssen wir dazu bloß nach \mathbf{v}_B umformen. D. h. $\mathbf{v}_B = B^{-1}\mathbf{v}$.

Woher ist eigentlich die Darstellung \mathbf{v}_A bekannt? Die bekommen wir auf die gleiche Art. Die Gleichung

$$\mathbf{v} = B\mathbf{v}_B$$

müssen wir dazu bloß nach \mathbf{v}_B umformen. D. h. $\mathbf{v}_B = B^{-1}\mathbf{v}$. Bzw. es liegt ein lineares Gleichungssystem in \mathbf{v}_B vor.

Bemerkung. Man beachte

$$\mathbf{v} = \begin{pmatrix} 9 \\ 5 \end{pmatrix} = 9 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 9\mathbf{e}_1 + 5\mathbf{e}_2.$$

Bemerkung. Man beachte

$$\mathbf{v} = \begin{pmatrix} 9 \\ 5 \end{pmatrix} = 9 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 9\mathbf{e}_1 + 5\mathbf{e}_2.$$

Die Matrix zur Standardbasis (\mathbf{e}_1 , \mathbf{e}_2) ist die Einheitsmatrix

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Bemerkung. Man beachte

$$\mathbf{v} = \begin{pmatrix} 9 \\ 5 \end{pmatrix} = 9 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 9 \mathbf{e}_1 + 5 \mathbf{e}_2.$$

Die Matrix zur Standardbasis (\mathbf{e}_1 , \mathbf{e}_2) ist die Einheitsmatrix

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Daher gilt $\mathbf{v} = E\mathbf{v}_E = \mathbf{v}_E$. D. h. ein Koordinatenvektor ist sein eigener Koordinatenvektor.

Kurze Pause

Nun tauschen wir \mathbb{R}^2 gegen einen abstrakten Vektorraum V aus. Damit ist gemeint, dass nun nicht mehr a priori ein absolutes Koordinatensystem vorliegt.

Nun tauschen wir \mathbb{R}^2 gegen einen abstrakten Vektorraum V aus. Damit ist gemeint, dass nun nicht mehr a priori ein absolutes Koordinatensystem vorliegt.

Dies zieht einige Konsequenzen nach sich. Zum einen existiert für \mathbf{v} keine absolute Darstellung mehr. Zudem sind auch die Basisvektoren davon betroffen.

Nun tauschen wir \mathbb{R}^2 gegen einen abstrakten Vektorraum V aus. Damit ist gemeint, dass nun nicht mehr a priori ein absolutes Koordinatensystem vorliegt.

Dies zieht einige Konsequenzen nach sich. Zum einen existiert für \mathbf{v} keine absolute Darstellung mehr. Zudem sind auch die Basisvektoren davon betroffen.

Da die Matrizen A und B jeweils aus der absoluten Darstellung ihrer Basisvektoren aufgebaut sind, existieren auch diese nicht mehr.

Vektorraum \mathbb{R}^2

Vektorraum V

Was allerdings existiert, ist die Matrix

$$T_A^B := A^{-1}B.$$

Was allerdings existiert, ist die Matrix

$$T_A^B := A^{-1}B.$$

Diese Matrix nennen wir *Transformationsmatrix*. Sie wandelt die Koordinaten von \mathbf{v} bezüglich Basis B in die Koordinaten bezüglich Basis A um.

Was allerdings existiert, ist die Matrix

$$T_A^B := A^{-1}B.$$

Diese Matrix nennen wir *Transformationsmatrix*. Sie wandelt die Koordinaten von \mathbf{v} bezüglich Basis B in die Koordinaten bezüglich Basis A um.

Als Formel:

$$\mathbf{v}_A = T_A^B \mathbf{v}_B.$$

Wie bekommt man nun aber die Transformationsmatrix, wenn nur eine Beziehung zwischen den Basisvektoren vorliegt? Gegeben sei die Beziehung

$$\mathbf{a}_1 = s_{11}\mathbf{b}_1 + s_{21}\mathbf{b}_2,$$

 $\mathbf{a}_2 = s_{12}\mathbf{b}_1 + s_{22}\mathbf{b}_2.$

Wie bekommt man nun aber die Transformationsmatrix, wenn nur eine Beziehung zwischen den Basisvektoren vorliegt? Gegeben sei die Beziehung

$$\mathbf{a}_1 = s_{11}\mathbf{b}_1 + s_{21}\mathbf{b}_2,$$

 $\mathbf{a}_2 = s_{12}\mathbf{b}_1 + s_{22}\mathbf{b}_2.$

Dies lässt sich in Kurzform schreiben als

$$\mathbf{a}_i = \sum_{j=1}^2 s_{ji} \mathbf{b}_j.$$

Betrachten wir zur Hilfe kurz noch einmal den \mathbb{R}^2 . Da muss gelten

$$a_{ki} = \sum_{j=1}^2 s_{ji} b_{kj}.$$

Betrachten wir zur Hilfe kurz noch einmal den \mathbb{R}^2 . Da muss gelten

$$a_{ki} = \sum_{j=1}^{2} s_{ji} b_{kj}.$$

Na das ist doch eine Matrizenmultiplikation. Nämlich

$$A^T = S^T B^T$$

mit

$$S = \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix}.$$

Transposition auf beiden Seiten der Gleichung bringt

$$A = (S^T B^T)^T = BS.$$

Transposition auf beiden Seiten der Gleichung bringt

$$A = (S^T B^T)^T = BS.$$

Infolge gilt $A^{-1} = S^{-1}B^{-1}$, und somit $A^{-1}B = S^{-1}$.

Transposition auf beiden Seiten der Gleichung bringt

$$A = (S^T B^T)^T = BS.$$

Infolge gilt $A^{-1} = S^{-1}B^{-1}$, und somit $A^{-1}B = S^{-1}$.

Schließlich haben wir $T_A^B = S^{-1}$. Und dies ist auch wieder im abstrakten Vektorraum gültig.

Umgekehrt ist mit dieser Einsicht die Beziehung für das betrachtete Beispiel ermittelbar. Es gilt

$$S = (A^{-1}B)^{-1} = B^{-1}A.$$

Umgekehrt ist mit dieser Einsicht die Beziehung für das betrachtete Beispiel ermittelbar. Es gilt

$$S = (A^{-1}B)^{-1} = B^{-1}A.$$

Das macht

$$S = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 7 & 1 \\ 1 & 2 \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 20 & 1 \\ -3 & 7 \end{pmatrix}.$$

Konkret ist

$$\mathbf{a}_1 = \frac{20}{11}\mathbf{b}_1 - \frac{3}{11}\mathbf{b}_2,$$

 $\mathbf{a}_2 = \frac{1}{11}\mathbf{b}_1 + \frac{7}{11}\mathbf{b}_2.$

Bemerkung. Für eine beliebige Matrix

$$B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

mit $0 \neq \det(B) = b_{11}b_{22} - b_{12}b_{21}$ gibt es die Formel

$$B^{-1} = \frac{1}{\det(B)} \begin{pmatrix} b_{22} & -b_{12} \\ -b_{21} & b_{11} \end{pmatrix}.$$

Ende.

Juli 2020 Creative Commons CC0