CMSC 141 AUTOMATA AND LANGUAGE THEORY CONTEXT-FREE LANGUAGES

Mark Froilan B. Tandoc

October 3, 2014

$\overline{\mathrm{PDA}}$ FOR $\{a^n\overline{b^n}: n>0\}$

aabb

aabb b, a; ε a, a; aa a, Z; aZb, a; ε $\langle \varepsilon, Z; Z \rangle$ q_2 **q**0 start

aabb b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $_{\scriptscriptstyle \backslash} arepsilon, \pmb{Z}; \pmb{Z}$ q_0 q_2 start

aabb b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $\langle arepsilon, \pmb{Z}; \pmb{Z}_{\!\scriptscriptstyle R}$ q_0 q_2 start

$\overline{\mathrm{PDA}}$ FOR $\{a^n\overline{b^n}: n>0\}$

aabb

aabb b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $\langle arepsilon, \pmb{Z}; \pmb{Z}_{\!\scriptscriptstyle R}$ q_0 q_2 start a

aabb

aabb

aabb b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $_{\scriptscriptstyle \backslash} arepsilon, oldsymbol{Z}; oldsymbol{Z}_{\scriptscriptstyle A}$ q_0 q_2 q_1 start

aabb b, a; ε a, a; aa b, a; ε $\langle a, Z; aZ \rangle$ $\varepsilon, Z; Z$ q_0 start

aabb b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $\langle arepsilon, \pmb{Z}; \pmb{Z}_{/\!\!/}$ q_0 q_2 q_1 start

$\overline{\mathrm{PDA}}$ FOR $\{a^n\overline{b^n}: n>0\}$

aabb

$\overline{\mathrm{PDA}} \ \mathrm{FOR} \ \left\{ a^n b^n : n > 0 \right\}$

aab b, a; ε a, a; aa b, a; ε $\langle a, Z; aZ \rangle$ $\langle \varepsilon, Z; Z \rangle$ q_0 q_2 q_1 start

aab b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $\langle arepsilon, \pmb{Z}; \pmb{Z}_{\!\scriptscriptstyle R}$ q_0 q_2 q_1 start a

aab

$\overline{\mathrm{PDA}} \ \mathrm{FOR} \ \left\{ a^n b^n : n > 0 \right\}$

aab b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $\varepsilon, Z; Z$ q_0 **q**₂ q_1 start

Context-Free Grammars (CFG)

Context-Free Grammars (CFG)

■ A grammar is a set of *string substitution rules* for producing a set of strings.

CONTEXT-FREE GRAMMARS (CFG)

- A grammar is a set of *string substitution rules* for producing a set of strings.
- Example: The context-free grammar that generates the language $\{a^nb^n: n>0\} = \{ab, aabb, aaabbb, ...\}$ is shown below:

Context-Free Grammars (CFG)

- A grammar is a set of *string substitution rules* for producing a set of strings.
- Example: The context-free grammar that generates the language $\{a^nb^n: n>0\} = \{ab, aabb, aaabbb, ...\}$ is shown below:

$$S \rightarrow ab$$
 (base case) $S \rightarrow aSb$ (recursive rule)

Context-Free Grammars (CFG)

- A grammar is a set of *string substitution rules* for producing a set of strings.
- Example: The context-free grammar that generates the language $\{a^nb^n: n>0\} = \{ab, aabb, aaabbb, ...\}$ is shown below:

$$S \rightarrow ab$$
 (base case) $S \rightarrow aSb$ (recursive rule)

■ The grammar can also be shorten by combining rules with the same left-hand side and using " \mid " $S \rightarrow ab \mid aSb$

A string x can be derived from a grammar if x can be generated by successive applications of the production rules starting from the start symbol.

EXAMPLE

A string x can be derived from a grammar if x can be generated by successive applications of the production rules starting from the start symbol.

EXAMPLE

```
Grammar:
```

```
S \rightarrow ab (base case)
```

$$S \rightarrow aSb$$
 (recursive rule)

A string x can be derived from a grammar if x can be generated by successive applications of the production rules starting from the start symbol.

EXAMPLE

```
Grammar:
```

 $S \rightarrow ab$ (base case)

 $S \rightarrow aSb$ (recursive rule)

Derive: aaabbb

A string x can be derived from a grammar if x can be generated by successive applications of the production rules starting from the start symbol.

EXAMPLE

```
Grammar:
```

 $S \rightarrow ab$ (base case)

 $S \rightarrow aSb$ (recursive rule)

Derive: aaabbb

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$

A parse tree is a tree with the *start symbol as the* root, and the *target string forming the leaves* of the tree

A parse tree is a tree with the *start symbol as the root*, and the *target string forming the leaves* of the tree

Grammar: $S \rightarrow ab \mid aSb$

A parse tree is a tree with the *start symbol as the* root, and the *target string forming the leaves* of the tree

Grammar: $S \rightarrow ab \mid aSb$

Derive: aaabbb

A parse tree is a tree with the *start symbol as the* root, and the *target string forming the leaves* of the tree

Grammar: $S \rightarrow ab \mid aSb$

Derive: aaabbb

CONTEXT-FREE LANGUAGES

Context-Free Languages

■ All strings that can be generated constitute the language of the grammar

Context-Free Languages

- All strings that can be generated constitute the language of the grammar
- We write L(G) for the language of grammar G

Context-Free Languages

- All strings that can be generated constitute the language of the grammar
- We write L(G) for the language of grammar G
- Any language that can be generated by some context-free grammar is called a *context-free* language

```
SENTENCE → NOUN-PHRASE VERB-PHRASE
NOUN-PHRASE → CMPLX-NOUN
               → CMPLX-NOUN PREP-PHRASE
              → CMPLX-VERB
VERB-PHRASE
               → CMPLX-VERB PREP-PHRASE
PREP-PHRASE → PREP CMPLX-NOUN
CMPLX-NOUN → ARTICLE NOUN
 CMPLX-VERB
               → VERB | VERB NOUN PHRASE
     ARTICLE \rightarrow a | the
       NOUN \rightarrow boy | girl | flower
        VERB
               \rightarrow touches | likes | sees
        PREP \rightarrow with
```

Sample strings we can derive from the grammar are:

- a boy sees
- the boy sees a flower
- a girl with a flower likes the boy

Sample strings we can derive from the grammar are:

- a boy sees
- the boy sees a flower
- a girl with a flower likes the boy

Try deriving them using the grammar

Derive: a boy sees

Derive: a boy sees
SENTENCE ⇒ NOUN-PHRASE VERB-PHRASE

Derive: a boy sees

SENTENCE ⇒ NOUN-PHRASE VERB-PHRASE

⇒ CMPLX-NOUN VERB-PHRASE

Derive: a boy sees SENTENCE ⇒ NOUN-PHRASE VERB-PHRASE

⇒ CMPLX-NOUN VERB-PHRASE

 \Rightarrow ARTICLE NOUN VERB-PHRASE

Derive: a boy sees

SENTENCE ⇒ NOUN-PHRASE VERB-PHRASE

⇒ CMPLX-NOUN VERB-PHRASE

⇒ ARTICLE NOUN VERB-PHRASE

⇒ a NOUN VERB-PHRASE

Derive: a boy sees

SENTENCE ⇒ NOUN-PHRASE VERB-PHRASE

⇒ CMPLX-NOUN VERB-PHRASE

⇒ ARTICLE NOUN VERB-PHRASE

 \Rightarrow a NOUN VERB-PHRASE

 \Rightarrow a boy VERB-PHRASE

Derive: a boy sees

SENTENCE ⇒ NOUN-PHRASE VERB-PHRASE

⇒ CMPLX-NOUN VERB-PHRASE

⇒ ARTICLE NOUN VERB-PHRASE

⇒ a NOUN VERB-PHRASE

 \Rightarrow a boy VERB-PHRASE

 \Rightarrow a boy CMPLX-VERB

Derive: a boy sees

SENTENCE ⇒ NOUN-PHRASE VERB-PHRASE

⇒ CMPLX-NOUN VERB-PHRASE

⇒ ARTICLE NOUN VERB-PHRASE

⇒ a NOUN VERB-PHRASE

 \Rightarrow a boy VERB-PHRASE

 \Rightarrow a boy CMPLX-VERB

 \Rightarrow a boy VERB

```
Derive: a boy sees SENTENCE \Rightarrow NOUN-PHRASE VERB-PHRASE \Rightarrow CMPLX-NOUN VERB-PHRASE \Rightarrow ARTICLE NOUN VERB-PHRASE \Rightarrow a NOUN VERB-PHRASE
```

⇒ a boy VERB-PHRASE

⇒ a boy CMPLX-VERB⇒ a boy VERB⇒ a boy sees

- A context-free grammar is a 4-tuple (V, Σ, R, S) , where
 - V is a finite set of variables (or non-terminals)
 - lacksquare Σ is a finite set of *terminals*
 - R is a finite set of rules
 - $S \in V$ is the start variable.

- A context-free grammar is a 4-tuple (V, Σ, R, S) , where
 - V is a finite set of variables (or non-terminals)
 - lacksquare Σ is a finite set of *terminals*
 - \blacksquare R is a finite set of *rules*
 - $S \in V$ is the start variable.
- The rule for the *rules* is $V \rightarrow (V + T)^*$

- A context-free grammar is a 4-tuple (V, Σ, R, S) , where
 - V is a finite set of variables (or non-terminals)
 - lacksquare Σ is a finite set of *terminals*
 - \blacksquare R is a finite set of *rules*
 - $S \in V$ is the start variable.
- The rule for the *rules* is $V \rightarrow (V + T)^*$
- Previous grammar is more formally defined as $G = (\{S\}, \{a, b\}), \{S \rightarrow ab, S \rightarrow aSb\}, S$

by Noam Chomsky

- Regular grammars (simplest, weakest)
 - $V \to T^*(V + \varepsilon)$

- Regular grammars (simplest, weakest)
 - $V \rightarrow T^*(V + \varepsilon)$
- Context-free grammars
 - $V \rightarrow (V + T)^*$

- Regular grammars (simplest, weakest)
 - $V \rightarrow T^*(V + \varepsilon)$
- Context-free grammars
 - $V \rightarrow (V + T)^*$
- Context-sensitive grammars

- Regular grammars (simplest, weakest)
 - $V \rightarrow T^*(V + \varepsilon)$
- Context-free grammars
 - $V \rightarrow (V + T)^*$
- Context-sensitive grammars
- Unrestricted grammars/Recursively enumerable grammars (most expressive)

REFERENCES

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org
- Various online LATEX and Beamer tutorials