筛选研究对象 AA 菌-BB 代谢产 物-XX 基因

2024-06-24

LiChuang Huang

@ 立效研究院

Contents

· · · · · · · · · · · · · · · · · · ·	1 1 1 1
	1 1 1
	1
LLSTONE)	2 2 3 5 5 8
→∘	9
e vs Control	4
A 关	关联数据

List of Tables

1	GALLSTONE GSE66430 metadata	3
2	GALLSTONE data Disease vs Control	5
3	Liver data	6
4	Ileum data	7
5	Res liver	8
6	Res ileum	9

1 摘要

1.1 要求

肠道菌-代谢物-基因关联数据为此前分析数据。选择差异最大的基因前5,寻找关联代谢物和菌。

1.2 结果

主要思路,结合此前分析得到的数据,再以RNA-seq(胆结石)差异分析,根据显著性排序基因。

- 肝脏见 Tab. 5。
- 回肠见 Tab. 6。

2 前言

3 材料和方法

3.1 材料

All used GEO expression data and their design:

• **GSE66430**: RNA-seq of four female human gallbladders (3 healthy controls and 1 case with chronic gallstones) and one liver sample from the gallstone case.

3.2 方法

Mainly used method:

- R package biomaRt used for gene annotation¹.
- GEO https://www.ncbi.nlm.nih.gov/geo/ used for expression dataset aquisition.
- R package Limma and edgeR used for differential expression analysis 2,3 .
- R version 4.4.0 (2024-04-24); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

5 结论

6 附:分析流程

6.1 GEO 数据获取 (GALLSTONE)

我们首先从 GEO 数据库中获取了与胆结石相关的数据。通过查询并筛选相关的实验,我们下载了数据集并进行了预处理。预处理步骤包括数据标准化和质量控制,以确保后续分析的准确性。

Data Source ID: GSE66430 data_processing: Sequencing data were demultiplexed and converted to FASTQ format. data_processing.1: Paired-end reads were aligned to RefSeq (hg19) using TopHat (v2.0.9) with the parameter setting: -g 1 -N 2 -r 200. data_processing.2: RNA reads-per-kilobase-per million mapped (RPKM) was calculated with RSeQC v2.3.6. data_processing.3: Genome_build: GRCh37 (hg19) (Others): ...

(上述信息框内容已保存至 Figure+Table/GALLSTONE-GSE66430-content)

Table 1 (下方表格) 为表格 GALLSTONE GSE66430 metadata 概览。

(对应文件为 Figure+Table/GALLSTONE-GSE66430-metadata.csv)

注: 表格共有 5 行 6 列,以下预览的表格可能省略部分数据;含有 5 个唯一 'rownames'。

Table 1: GALLSTONE GSE66430 metadata

rownames	title	ageyears	disease.st	gender.ch1	tissue.ch1
GSM1622382	Non-diseas	34	healthy	female	gall bladder
$\operatorname{GSM}1622383$	Non-diseas	46	healthy	female	gall bladder
$\operatorname{GSM1622384}$	Non-diseas	64	healthy	female	gall bladder
$\operatorname{GSM1622385}$	Diseased G	71	chronic ga	female	gall bladder
GSM1622386	Diseased L	71	chronic ga	female	liver

6.2 Biomart 基因注释 (REFSEQ)

接下来,我们使用 Biomart 工具对基因进行了注释。通过链接 REFSEQ 数据库,我们将基因表达数据与基因注释信息进行匹配。

6.3 Limma 差异分析 (GALLSTONE)

使用 Limma 软件包,我们进行了胆结石相关样本的差异表达分析。通过对比正常和疾病状态下的基因表达数据,我们识别出显著差异表达的基因。

Figure 1 (下方图) 为图 GALLSTONE Disease vs Control 概览。

(对应文件为 Figure+Table/GALLSTONE-Disease-vs-Control.pdf)

Figure 1: GALLSTONE Disease vs Control

adj.P.Val cut-off :		
0.05		
Log2(FC) cut-off:		
0.5		

(上述信息框内容已保存至 Figure+Table/GALLSTONE-Disease-vs-Control-content)

Table 2 (下方表格) 为表格 GALLSTONE data Disease vs Control 概览。

(对应文件为 Figure+Table/GALLSTONE-data-Disease-vs-Control.csv)

注: 表格共有 101 行 11 列,以下预览的表格可能省略部分数据;含有 101 个唯一 'rownames;含有 37 个唯一 'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 3. AveExpr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'MarrayLM' object
- 4. t: moderated t-statistic (omitted for 'topTableF')
- 5. P.Value: raw p-value
- 6. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

Table 2: GALLSTONE data Disease vs Control

rownames	gene	accession	hgnc_s	isIntron	logFC	AveExpr	t	P.Value	adj.P.Val
294507	294507	NM_001	HP	TRUE	6.3561	0.1962	12.777	5.9012	0.0098
298099	298099	NM_001	NA	TRUE	6.8136	-0.777	12.589	6.8856	0.0098
112356	112356	NM_002	HMGCS1	TRUE	3.6763	3.5944	9.6243	1.0579	0.0224
292286	292286	NM_001	ACSM2B	TRUE	6.9353	-1.200	11.603	1.5969	0.0133
292299	292299	NM_182	ACSM2B	TRUE	6.9494	-1.287	11.283	2.1265	0.0133
101714	101714	NM_000	FGA	TRUE	6.9766	-1.416	11.176	2.3443	0.0133
150259	150259	NM_017	CYP3A4	TRUE	4.9985	-0.306	9.9083	7.9150	0.0224
150294	150294	NM_001	CYP3A4	TRUE	4.9985	-0.306	9.9083	7.9150	0.0224
124063	124063	NR_033	NA	TRUE	3.1808	3.9078	8.9243	2.2292	0.0302
112365	112365	NM_001	HMGCS1	TRUE	3.6700	3.3268	8.9506	2.1659	0.0302
150260	150260	NM_017	CYP3A4	TRUE	5.4308	-0.822	9.5937	1.0919	0.0224
150295	150295	NM_001	CYP3A4	TRUE	5.4308	-0.822	9.5937	1.0919	0.0224
318508	318508	NM_002	KRT19	TRUE	3.8891	2.2275	8.5802	3.2703	0.0304
233713	233713	NM_005	FGF19	TRUE	3.6670	1.7986	8.5826	3.2617	0.0304
85809	85809	NM_001	TF	TRUE	5.5575	-0.804	9.2766	1.5233	0.0228

6.4 肠道菌-代谢物-基因关联数据

6.4.1 前一次的分析数据

在这部分中,我们引用了之前的分析数据。

Table 3 (下方表格) 为表格 liver data 概览。

(对应文件为 Figure+Table/liver-data.xlsx)

注:表格共有 10454 行 10 列,以下预览的表格可能省略部分数据;含有 22 个唯一'id'。

- 1. META_Rho: 关联分析结果的关联系数,绝对值越大,说明关联性越强(源自文献的分析)
- 2. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)
- 3. META_P: 关联分析结果 P 的值 (源自文献的分析)

Table 3: Liver data

.id	.id_from Substrate	Metabo4	Gut.Mi	Target	Metabo7	META_I	RM6ETA_(QMETA_I	·
588	Metabo	2-Imin	Clostr	CD59	creati	0.4459	6.9021	1.8504	
750	Substrate Glycine	Acetyl	${\bf Clostr}$	GHR	glycine	-0.425	4.5068	2.4165	
750	Metabo	Glycine	Blautia	GHR	glycine	-0.425	4.5068	2.4165	
750	Metabo	Glycine	Lactob	GHR	glycine	-0.425	4.5068	2.4165	
5793	Substrate D-	Acetate	${\bf Christ}$	$\operatorname{PLXNB2}$	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	Butyrate	${\bf Christ}$	$\operatorname{PLXNB2}$	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	2,3-Bu	${\bf Escher}$	$\operatorname{PLXNB2}$	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	Acetoin	${\bf Escher}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	2,3-Bu	${\bf Escher}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	2,3-Bu	${\bf Escher}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	Acetoin	${\bf Escher}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	2,3-Bu	${\bf Escher}$	$\operatorname{PLXNB2}$	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	Ethanol	Lactob	PLXNB2	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	Acetate	${\rm Clostr}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
	Glucose								
5793	Substrate D-	Butyrate	${\rm Clostr}$	$\operatorname{PLXNB2}$	glucose	0.3849	1.3255	3.5538	
	Glucose								

.id	.id_from	Substrate	e Metabo4	4 Gut.Mi	Target	Metabo7	META_	_RM6ETA_	QMETA_	Ρ
	•••	•••			•••		•••	•••		

Table 4 (下方表格) 为表格 ileum data 概览。

(对应文件为 Figure+Table/ileum-data.xlsx)

注:表格共有 9208 行 10 列,以下预览的表格可能省略部分数据;含有 22 个唯一'id'。

- 1. META_Rho: 关联分析结果的关联系数,绝对值越大,说明关联性越强(源自文献的分析)
- 2. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)
- 3. META_P: 关联分析结果 P 的值 (源自文献的分析)

Table 4: Ileum data

.id	.id_from Substrate	Metabo4	Gut.Mi	Target	Metabo7	META_I	RM6ETA_C	QMETA_I	Ρ
588	Metabo	2-Imin	Clostr	B2M	creati	0.5130	0	0	
588	Metabo	2-Imin	${\rm Clostr}$	DSC2	creati	0.5128	0	0	
588	Metabo	2-Imin	${\rm Clostr}$	RGMB	creati	0.4166	5.3138	1.4246	
750	Substrate Glycine	Acetyl	${\rm Clostr}$	RET	glycine	-0.407	9.5712	5.1320	
750	Metabo	Glycine	Blautia	RET	glycine	-0.407	9.5712	5.1320	
750	Metabo	Glycine	Lactob	RET	glycine	-0.407	9.5712	5.1320	
588	Metabo	2-Imin	${\rm Clostr}$	JAM2	creati	0.4070	2.8618	7.6726	
588	Metabo	2-Imin	${\rm Clostr}$	CST6	creati	0.3307	2.1455	5.7522	
588	Metabo	2-Imin	Clostr	SPOCK2	creati	-0.321	1.3977	1.1241	
588	Metabo	2-Imin	${\rm Clostr}$	LCN2	creati	0.3110	2.0900	1.1206	
588	Metabo	2-Imin	${\rm Clostr}$	TNFRSF	2dreati	0.3098	7.2094	7.7313	
588	Metabo	2-Imin	Clostr	SMOC1	creati	0.3071	2.8839	7.7317	
588	Metabo	2-Imin	${\rm Clostr}$	TNFRSF	l 0 reati	0.2890	4.7330	1.2689	
588	Metabo	2-Imin	Clostr	COL18A1	creati	0.2883	3.0855	3.3089	
750	Substrate Glycine	Acetyl	Clostr	SLITRK5	glycine	0.2801	1.7545	4.7038	

6.4.2 结合 GALLSTONE RNA-seq 差异分析筛选

我们将胆结石 RNA-seq 差异分析的结果与肠道菌-代谢物-基因关联数据相结合。

Table 5 (下方表格) 为表格 Res liver 概览。

(对应文件为 Figure+Table/Res-liver.csv)

注: 表格共有 25 行 6 列, 以下预览的表格可能省略部分数据; 含有 5 个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 3. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)

Table 5: Res liver

hgnc_symbol	$\log FC$	adj.P.Val	${\rm related_me}$	${\rm related_mi}$	META_Q
ALB	7.09094053	0.03042149	Acetyl pho	Clostridium	2.41950093
ALB	7.09094053	0.03042149	Glycine	Blautia	2.41950093
ALB	7.09094053	0.03042149	Glycine	Lactobacil	2.41950093
ALB	7.09094053	0.03042149	Serine	Blautia	3.22595060
ALB	7.09094053	0.03042149	$3\text{-}\mathbf{Indolepr}$	Lachnospir	7.78730300
CYP3A4	4.99857331	0.02242949	2-Imino-1	Clostridium	1.75386285
CYP3A4	4.99857331	0.02242949	Leucine	Blautia	4.16629071
CYP3A4	4.99857331	0.02242949	Creatine	Akkermansia	1.00303219
CYP3A4	4.99857331	0.02242949	Creatine	Lactobacillus	1.00303219
CYP3A4	4.99857331	0.02242949	Creatine	Lactobacil	1.00303219
HP	6.35613254	0.00982207	Indoxyl su	Lachnospir	0.00525339
HP	6.35613254	0.00982207	Indoxyl su	Escherichia	0.00525339
HP	6.35613254	0.00982207	Indoxyl su	Oscillibacter	0.00525339
HP	6.35613254	0.00982207	$10\text{-}\mathrm{Keto}\text{-}12$	Lactobacil	0.01756457
HP	6.35613254	0.00982207	10-Oxo-11	Lactobacil	0.01756457

Table 6 (下方表格) 为表格 Res ileum 概览。

(对应文件为 Figure+Table/Res-ileum.csv)

注: 表格共有 10 行 6 列, 以下预览的表格可能省略部分数据; 含有 2 个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 3. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)

Table 6: Res ileum

hgnc_symbol	logFC	adj.P.Val	${\rm related_me}$	related_mi	META_Q
FGF19	3.66703440	0.03042149	Glycocholi	Escherichia	7.27153355
FGF19	3.66703440	0.03042149	Glycocholi	Akkermansia	7.27153355
FGF19	3.66703440	0.03042149	3-Phenylpr	Clostridiu	1.32242917
FGF19	3.66703440	0.03042149	Deoxycholi	Clostridiu	8.88195779
FGF19	3.66703440	0.03042149	Deoxycholi	Clostridiu	8.88195779
TF	5.55755215	0.02287326	Serine	Blautia	1.40340968
TF	5.55755215	0.02287326	Indole-3-l	Clostridiu	1.49009106
TF	5.55755215	0.02287326	2-Imino-1	Clostridium	6.10598737
TF	5.55755215	0.02287326	Leucine	Blautia	1.08359110
TF	5.55755215	0.02287326	Acetyl pho	Clostridium	1.72172512

Reference

1. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).

- 2. Ritchie, M. E. et al. Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Research 43, e47 (2015).
- 3. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence read count data user's guide. 119.