ANATOLIY MARTYNYUK

Custom SEE Tolerant Aurora Gearbox

Overview

- The YARR rx from the RD53B receives serial data across multiple lanes with a 2 bit "delimiter" to identify individual data blocks.
- SEEs can corrupt the data on the output of the RD53B so that bits are dropped, added or flipped within the data stream, resulting in a loss of synchronization between the RD53B and YARR.
- THE YARR rx has a sync loss detection and recovery scheme... however, it suffers from inefficiencies which result in an unnecessary number of lost data and can be improved.
- The new recovery scheme aims to remove redundancy and complexity as well add parallelism to improve sync recovery performance.
- The new recovery scheme can provide moderate improvements at no cost in resources, upwards to drastic improvements with an investment in device resources.

64b/66b Communication

- The RD53B and YARR DAQ communicate via the 64b/66b Aurora encoding. Up to four channels transmit data simultaneously.
- Aurora encoding packs together 64 "scrambled" bits of scrambled data with 2 header bits, which can be either a "01" or a "10".
- The header bits are used to determine alignment and are expected to be seen every 66 bits.

Modeling SEEs

Single Event Effects are radiation inflicted damage that can result in bit flips or glitches.

- SEUs (Single Event Upsets): A bit flip of a memory register, modeled as a bit flip in one or more bits transmitted.
- SETs (Single Event Transients): A voltage glitch on a line, results in a glitch being captured (bit flip) or bits being added or dropped from transmission.

SEEs Consequences to the YARR

- Once a data block is corrupted through an SEE it is lost and can't be recovered.
- Bit adds, bit drops, and certain bit flips result in header misalignment.
- An effective solution minimizes the downtime and blocks lost during alignment resynchronization.

rx expectation	h	h	64 bits scrambled data	h	h		64 bits scrambled data
rx w/ header bit flip	h	h	64 bits scrambled data	\ ~h	h	X	64 bits scrambled data
rx w/ drop	h	h	63 bits scrambled data	h			64 bits scrambled data
rx w/ add	h	h	65 bits scrambled data		h	(h)	64 bits scrambled data

Original Resync Scheme

- Utilizes two bit slipping mechanisms simultaneously to shift headers back into correct position.
- Slips in only a single direction.
- Checks a single bit pair at a time for the header bits during recovery.
- Offers no tolerance for header bit flips and would immediately start slipping even if there is no issue to resolve.

Blocks Lost During Resync

New and Improved Resync Scheme

- Reduced to a single effective bit slip mechanism.
- Offered limited tolerance to allow single bit flips but fail fast otherwise.

Blocks Lost During Resync

Fully Parallel Search Resync Scheme

- No bit slipping mechanism whatsoever.
- Checks 67 bits for 66 possible header locations simultaneously.
- Reduced tolerance but increased consecutive valid block count synchronization requirement.
- At most 34 blocks can be lost regardless of bits dropped or added.

Blocks Lost During Resync

Resource Utilization of Schemes

ABSOLUTE RESOURCE UTILIZATION OF RESYNC SCHEMES

% RESOURCE UTILIZATION WITH KINTEX 7 T160 TARGET FPGA

Further Development

Parameterizable Partially Parallel Search:

- A tradeoff can be made between the amount of parallel search occurring to maximize common case recovery while minimizing the additional resource required to support the search.
- In this variation bit slips and parallel search are used together where the number of bits searched in parallel is equal to the number of bits slipped per bit slip.

Fail Fast Header Seekers:

• Rather than search a consecutive block of bits, have seekers assigned to evenly spaced bit positions to which they rotate whenever their current position results in an invalid header.

Error Tolerance Algorithms:

- At a relatively cheap cost in resources, various error tolerance schemes can strike a balance to avoid pointless and costly searches as a result of a bit flip, while remaining vigilant to bit adds and bit drops.
- The resources used to track tolerance and evaluate whether sync is achieved can be merged with the parallel header checking to reduce resources.