1 misc

1.1 ASCII table

b ₇					-	0	0	0	0	1	1	1	1
_ b ₆					-	0	0	1	1	0	0	1	1
RI	b ₅	_			-	0	1	0	1	0	1	0	1
BITS	b₄ ↓	b₃ ↓	b₂ ↓	b ₁	1	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р		р
	0	0	0	1	1	SOH	DC1	:	1	А	Q	а	q
	0	0	1	0	2	STX	DC2	и	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	5
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	E	U	е	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	v
	0	1	1	1	7	BEL	ETB	- 1	7	G	W	g	W
	1	0	0		8	BS	CAN		8	Н	X	h	X
	1	0	0	1	9	HT	EM		9		Υ	i	У
	1	0	1	0	10	LF	SUB	*	18	J	Z	i	Z
	1	0	1	1	11	VT	ESC	+	;	K]	k	{
	1	1	0	0	12	FF	FS	,	<	L			
	1	1	0	1	13	CR	GS	-	=	M	1	m	}
	1	1	1	0	14	SO	RS		>	N	^	n	~
	1	1	1	1	15	SI	US	/	?	0		0	DEL

1.2 ARM ISA

1.2.1 ARM Assembler Commands

egister	ADD ADDS	Add			
Register				ANDI	Bitwise AND Immediate
Regist		Add and set flags	ate	ANDIS	Bitwise AND and set flags Immediate
ge G	SUB	Subtract	Logical Immediate	ORRI	Bitwise inclusive OR Immediate
	SUBS	Subtract and set flags	의 Ш	EORI	Bitwise exclusive OR Immediate
etic	СМР	Compare	_	TSTI	Test bits Immediate
thm	CMN	Compare negative	ρ	LSL	Logical shift left Immediate
Arii	NEG	Negate	Shift Register Shift Immed	LSR	Logical shift right Immediate
1	NEGS	Negate and set flags	무	ASR	Arithmetic shift right Immediate
1	ADDI	Add Immediate	Shi	ROR	Rotate right Immediate
ا يو ن	ADDIS	Add and set flags Immediate	ter	LSRV	Logical shift right register
diat	SUBI	Subtract Immediate	egis	LSLV	Logical shift left register
Arithmetic	SUBIS	Subtract and set flags Immediate	# R	ASRV	Arithmetic shift right register
\ \Z \ \ \ (CMPI	Compare Immediate	Shi	RORV	Rotate right register
(CMNI	Compare negative Immediate	te e	MOVZ	Move wide with zero
A	ADD	Add Extended Register	d ia	MOVK	Move wide with keep
0 7	ADDS	Add and set flags Extended	Move Wide Immed iate	MOVN	Move wide with NOT
neti ndec	SUB	Subtract Extended Register	ž <u>E</u>	MOV	Move register
Arithmetic	SUBS	Subtract and set flags Extended		BFM	Bitfield move
A m	СМР	Compare Extended Register	*	SBFM	Signed bitfield move
	CMN	Compare negative Extended	trac	UBFM	Unsigned bitfield move (32-bit)
	ADC	Add with carry	Ω «×	BFI	Bitfield insert
vith /	ADCS	Add with carry and set flags	Bit Field Insert & Extract	BFXIL	Bitfield extract and insert low
Arithmetic with	SBC	Subtract with carry		SBFIZ	Signed bitfield insert in zero
Carry	SBCS	Subtract with carry and set flags		SBFX	Signed bitfield extract
Arit	NGC	Negate with carry	Ξ	UBFIZ	Unsigned bitfield insert in zero
	NGCS	Negate with carry and set flags	B	UBFX	Unsigned bitfield extract
1	AND	Bitwise AND		EXTR	Extract register from pair
1	ANDS	Bitwise AND and set flags	-	SXTB	Sign-extend byte
	ORR	Bitwise inclusive OR	tenc	SXTH	Sign-extend halfword
ste	EOR	Bitwise exclusive OR	Ä	SXTW	Sign-extend word
gegi	BIC	Bitwise bit clear	Sign Extend	UXTB	Unsigned extend byte
l g	BICS	Bitwise bit clear and set flags		UXTH	Unsigned extend halfword
Logical Register	ORN	Bitwise inclusive OR NOT		CLS	Count leading sign bits
[EON	Bitwise exclusive OR NOT	on	CLZ	Count leading zero bits
	MVN	Bitwise NOT	Bit Operation	RBIT	Reverse bit order
	TST	Test bits	Ope	REV	Reverse bytes in register
			Bit	REV16	Reverse bytes in halfwords
				REV32	Reverses bytes in words

Туре	Mnemonic	Instruction		Mnemonic	Instruction
	LDUR	Load register (unscaled offset)		LDXR	Load Exclusive register
	LDURB	Load byte (unscaled offset)		LDXRB	Load Exclusive byte
	LDURSB	Load signed byte (unscaled offset)	o)	LDXRH	Load Exclusive halfword
	LDURH	Load halfword (unscaled offset)	Exclusive	LDXP	Load Exclusive Pair
eq	LDURSH	Load signed halfword (unscaled offset)	xclu	STXR	Store Exclusive register
Unscaled	LDURSW	Load signed word (unscaled offset)	Ш	STXRB	Store Exclusive byte
ä	STUR	Store register (unscaled offset)		STXRH	Store Exclusive halfword
	STURB	Store byte (unscaled offset)		STXP	Store Exclusive Pair
	STURH	Store halfword (unscaled offset)		LDAXR	Load-aquire Exclusive register
	STURW	Store word (unscaled offset)		LDAXRB	Load-aquire Exclusive byte
	LDA	Load address		LDAXRH	Load-aquire Exclusive halfword
Post-	± LDR	Load register	uire.	LDAXP	Load-aquire Exclusive Pair
% P	LDRB	Load byte	Exclusive Aquire/Release	STLXR	Store-release Exclusive register
Pre-&	LDRSB	Load signed byte		STLXRB	Store-release Exclusive byte
	LDRH	Load halfword		STLXRH	Store-release Exclusive halfword
ended, I	LDRSH	Load signed halfword	Ф	STLXP	Store-release Exclusive Pair
rte l	LDRSW	Load signed word		LDP	Load Pair
, E	STR Store register STRB Store byte		Pair	LDPSW	Load Pair signed words
Scaled, Extended, Indexed				STP	Store Pair
S	STRH	Store halfword	PC	ADRP	Compute address of 4KB page at a PC-relative offset
				ADR	Compute address of label at a PC-relative offset

Type	Mnemonic	Instruction	Type	Mnemonic	Instruction
_	B.cond	Branch conditionally		CSEL	Conditional select
ona Sh	CBNZ	Compare and branch if nonzero		CSINC	Conditional select increment
Conditional Branch	CBZ	Compare and branch if zero	Select	CSINV	Conditional select inversion
log la	TBNZ	Test bit and branch if nonzero		CSNEG	Conditional select negation
	TBZ	Test bit and branch if zero	nal	CSET	Conditional set
	В	Branch unconditionally	Conditional	CSETM	Conditional set mask
ان ج	BL	Branch with link	Ouc	CINC	Conditional increment
conditio	BLR	Branch with link to register	0	CINV	Conditional invert
Unconditional Branch	BR	Branch to register		CNEG	Conditional negate
<u>_</u>	RET	Return from subroutine	а 0	CCMP	Conditional compare register
			tion pare	CCMPI	Conditional compare immediate
			Conditional Compare	CCMN	Conditional compare negative register
			္ပ ပ	CCMNI	Conditional compare negative immediate

Туре	Mnemonic	Instruction	Туре	Mnemon	ic Instruction
Non- cache	LDNP	Load Non-temporal Pair		LDTR	Load Unprivileged register
Sac Sc	STNP	Store Non-temporal Pair		LDTRB	Load Unprivileged byte
_	CLREX	Clear exclusive monitor		LDTRSB	Load Unprivileged signed byte
Barrier	DSB	Data synchronization barrier	Unprivileged	LDTRH	Load Unprivileged halfword
Ba	DMB	Data memory barrier	ivile	LDTRSH	Load Unprivileged signed halfword
	ISB	Instruction synchronization barrier		LDTRSW	Load Unprivileged signed word
	CRC32B	CRC-32 sum from byte)	STTR	Store Unprivileged register
	CRC32H	CRC-32 sum from halfword		STTRB	Store Unprivileged byte
	CRC32W	CRC-32 sum from word		STTRH	Store Unprivileged halfword
CRC	CRC32X	CRC-32 sum from doubleword		BRK	Software breakpoint instruction
P	CRC32CB	CRC-32C sum from byte	ت	HLT	Halting software breakpoint instruction
	CRC32CH	CRC-32C sum from halfword	Exception	HVC	Generate exception targeting Exception level 2
	CRC32CW	CRC-32C sum from word		SMC	Generate exception targeting Exception level 3
	CRC32CX	CRC-32C sum from doubleword	ы	SVC	Generate exception targeting Exception level 1
	AESD	AES single round decryption		ERET	Exception return using current ELR and SPSR
	AESE	AES single round encryption		DCPS1	Debug switch to Exception level 1
	AESIMC	AES inverse mix columns		DCPS2	Debug switch to Exception level 2
	AESMC	AES mix columns	Debug	DCPS3	Debug switch to Exception level 3
	PMULL	Polynomial multiply long		DRPS	Debug restore PE state
	SHA1C	SHA1 hash update (choose)		SYS	System instruction
9.	SHA1H	SHA1 fixed rotate	_	SYSL	System instruction with result
Crypto	SHA1M	SHA1 hash update (majority)	System	IC	Instruction cache maintenance
0	SHA1P	SHA1 hash update (parity)	Sys	DC	Data cache maintenance
	SHA1SU0	SHA1 schedule update 0		AT	Address translation
	SHA1SU1	SHA1 schedule update 1		TLBI	TLB Invalidate
	SHA256H	SHA256 hash update (part 1)		NOP	No operation
	SHA256H2	SHA256 hash update (part 2)		YIELD	Yield hint
	SHA256SU0	SHA256 schedule update 0		WFE	Wait for event
	SHA256SU1	SHA256 schedule update 1	Hint	WFI	Wait for interrupt
00	MRS	Move system register to general-purpose register	エ	SEV	Send event
Re				SEVL	Send event local
Sys Reg	MSR	Move general-purpose register or immediate to system register		HINT	Unallocated hint
		5,515 156,515			

1.2.2 Opcode

Anna de la compansión de	A I	Opcode	11-bit opc	ode range	Instruction
Instruction	Opcode	Size	Start	End	Format
В	000101	6	160	191	B - format
STURB 00111000000		11	448		D - format
LDURB	00111000010	11	450		D - format
B.cond	01010100	8	672	679	CB - format
ORRI	1011001000	10	712	713	I - format
EORI	1101001000	10	840	841	I - format
STURH	01111000000	11	960		D - format
LDURH	01111000010	11	962		D - format
AND	10001010000	11	1104		R - format
ADD	10001011000	11	1112		R - format
ADDI	1001000100	10	1160	1161	I - format
ANDI	1001001000	10	1168	1169	I - format
BL	100101	6	1184	1215	B - format
ORR	10101010000	11	1360		R - format
ADDS	10101011000	11	1368		R - format
ADDIS	1011000100	10	1416	1417	I - format
CBZ	10110100	8	1440	1447	CB - format
CBNZ	10110101	8	1448	1455	CB - format
STURW	10111000000	11	1472		D - format
LDURSW	10111000100	11	1476		D - format
STXR	11001000000	11	1600		D - format
LDXR	11001000010	11	1602		D - format
EOR	11101010000	11	1616		R - format
SUB	11001011000	11	1624		R - format
SUBI	1101000100	10	1672	1673	I - format
MOVZ	110100101	9	1684	1687	IM - format
LSR	11010011010	11	1690		R - format
LSL	11010011011	11	1691		R - format
BR	11010110000	11	1712		R - format
ANDS	11101010000	11	1872		R - format
SUBS	11101011000	11	1880		R - format
SUBIS	1111000100	10	1928	1929	I - format
ANDIS	1111001000	10	1936	1937	I - format
MOVK	111100101	9	1940	1943	IM - format
STUR	11111000000	11	1984		D - format
LDUR	11111000010	11	1986		D - format

1.3 ARM buses

1.3.1 AHB/AMBA signals

AHB bus signals

Table 2-1 AMBA AHB signals

Name	Source	Description
HCLK Bus clock	Clock source	This clock times all bus transfers. All signal timings are related to the rising edge of HCLK .
HRESETn Reset	Reset controller	The bus reset signal is active LOW and is used to reset the system and the bus. This is the only active LOW signal.
HADDR[31:0] Address bus	Master	The 32-bit system address bus.
HTRANS[1:0] Transfer type	Master	Indicates the type of the current transfer, which can be NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.
HWRITE Transfer direction	Master	When HIGH this signal indicates a write transfer and when LOW a read transfer.
HSIZE[2:0] Transfer size	Master	Indicates the size of the transfer, which is typically byte (8-bit), halfword (16-bit) or word (32-bit). The protocol allows for larger transfer sizes up to a maximum of 1024 bits.
HBURST[2:0] Burst type	Master	Indicates if the transfer forms part of a burst. Four, eight and sixteen beat bursts are supported and the burst may be either incrementing or wrapping.
HPROT[3:0] Protection control	Master	The protection control signals provide additional information about a bus access and are primarily intended for use by any module that wishes to implement some level of protection. The signals indicate if the transfer is an opcode fetch or data access, as well as if the transfer is a privileged mode access or user mode access. For bus masters with a memory management unit these signals also indicate whether the current access is cacheable or bufferable.

Read/Write bus signals

Name	Source	Description
HWDATA[31:0] Write data bus maste	Master r to slave	The write data bus is used to transfer data from the master to the bus slaves during write operations. A minimum data bus width of 32 bits is recommended. However, this may easily be extended to allow for higher bandwidth operation.
HSELx Slave select	Decoder ip" select	Each AHB slave has its own slave select signal and this signal indicates that the current transfer is intended for the selected slave. This signal is simply a combinatorial decode of the address bus.
HRDATA[31:0] Read data bus	Slave to master	The read data bus is used to transfer data from bus slaves to the bus master during read operations. A minimum data bus width of 32 bits is recommended. However, this may easily be extended to allow for higher bandwidth operation.
HREADY Transfer done	Slave VOT wait	When HIGH the HREADY signal indicates that a transfer has finished on the bus. This signal may be driven LOW to extend a transfer. Note: Slaves on the bus require HREADY as both an input and an output signal.
HRESP[1:0] Transfer response	Slave	The transfer response provides additional information on the status of a transfer. Four different responses are provided, OKAY, ERROR, RETRY and SPLIT.

Arbitration signals

Table 2-2 Arbitration signals

Name	Source	Description	
HBUSREQx Bus request	Master	A signal from bus master x to the bus arbiter which indicates that the bus master requires the bus. There is an HBUSREQx signal for each bus master in the system, up to a maximum of 16 bus masters.	
HLOCKx Locked transfers	Master	When HIGH this signal indicates that the master requires locked access to the bus and no other master should be granted the bus until this signal is LOW.	
HGRANTx Bus grant	Arbiter	This signal indicates that bus master x is currently the highest priority master. Ownership of the address/control signals changes at the end of a transfer when HREADY is HIGH, so a master gets access to the bus when both HREADY and HGRANTx are HIGH.	
HMASTER[3:0] Master number	Arbiter	These signals from the arbiter indicate which bus master is currently performing a transfer and is used by the slaves which support SPLIT transfers to determine which master is attempting an access. The timing of HMASTER is aligned with the timing of the address and control signals.	
HMASTLOCK Locked sequence	Arbiter	Indicates that the current master is performing a locked sequence of transfers. This signal has the same timing as the HMASTER signal.	
HSPLITx[15:0] Slave Split completion request (SPLIT-capable)		This 16-bit split bus is used by a slave to indicate to the arbiter which bus masters should be allowed to re-attempt a split transaction. Each bit of this split bus corresponds to a single bus master.	

APB signals

Table 2-4 AMBA APB signals

Name	Description
PCLK Bus clock	The rising edge of PCLK is used to time all transfers on the APB.
PRESETn APB reset	The APB bus reset signal is active LOW and this signal will normally be connected directly to the system bus reset signal.
PADDR[31:0] APB address bus	This is the APB address bus, which may be up to 32-bits wide and is driven by the peripheral bus bridge unit.
PSELx APB select	A signal from the secondary decoder, within the peripheral bus bridge unit, to each peripheral bus slave x. This signal indicates that the slave device is selected and a data transfer is required. There is a PSELx signal for each bus slave.
PENABLE APB strobe	This strobe signal is used to time all accesses on the peripheral bus. The enable signal is used to indicate the second cycle of an APB transfer. The rising edge of PENABLE occurs in the middle of the APB transfer.
PWRITE APB transfer direction	When HIGH this signal indicates an APB write access and when LOW a read access.
PRDATA APB read data bus	The read data bus is driven by the selected slave during read cycles (when PWRITE is LOW). The read data bus can be up to 32-bits wide.
PWDATA APB write data bus	The write data bus is driven by the peripheral bus bridge unit during write cycles (when PWRITE is HIGH). The write data bus can be up to 32-bits wide.

AHB burst signals

HTRANS[1:0]	Туре	Description
00	IDLE	Indicates that no data transfer is required. The IDLE transfer type is used when a bus master is granted the bus, but does not wish to perform a data transfer. Slaves must always provide a zero wait state OKAY response to IDLE transfers and the transfer should be ignored by the slave.
01	BUSY	The BUSY transfer type allows bus masters to insert IDLE cycles in the middle of bursts of transfers. This transfer type indicates that the bus master is continuing with a burst of transfers, but the next transfer cannot take place immediately. When a master uses the BUSY transfer type the address and control signals must reflect the next transfer in the burst. The transfer should be ignored by the slave. Slaves must always provide a zero wait state OKAY response, in the same way that they respond to IDLE transfers.
10	NONSEQ	Indicates the first transfer of a burst or a single transfer. The address and control signals are unrelated to the previous transfer. Single transfers on the bus are treated as bursts of one and therefore the transfer type is NONSEQUENTIAL.
11	SEQ	The remaining transfers in a burst are SEQUENTIAL and the address is related to the previous transfer. The control information is identical to the previous transfer. The address is equal to the address of the previous transfer plus the size (in bytes). In the case of a wrapping burst the address of the transfer wraps at the address boundary equal to the size (in bytes) multiplied by the number of beats in the transfer (either 4, 8 or 16).

size and beats of burst

HSIZE[2:0] Transfer size	Master	Indicates the size of the transfer, which is typically byte (8-bit), halfword (16-bit) or word (32-bit). The protocol allows for larger transfer sizes up to a maximum of 1024 bits.

HBURST[2:0]	Туре	Description
000	SINGLE	Single transfer
001	INCR	Incrementing burst of unspecified length
010	WRAP4	4-beat wrapping burst
011	INCR4	4-beat incrementing burst
100	WRAP8	8-beat wrapping burst
101	INCR8	8-beat incrementing burst
110	WRAP16	16-beat wrapping burst
111	INCR16	16-beat incrementing burst

Slave response signals

HRESP[1]	HRESP[0]	Response	Description
0	0	OKAY	When HREADY is HIGH this shows the transfer has completed successfully. The OKAY response is also used for any additional cycles that are inserted, with HREADY LOW, prior to giving one of the three other responses.
0	1	ERROR	This response shows an error has occurred. The error condition should be signalled to the bus master so that it is aware the transfer has been unsuccessful. A two-cycle response is required for an error condition.
1	0	RETRY	The RETRY response shows the transfer has not yet completed, so the bus master should retry the transfer. The master should continue to retry the transfer until it completes. A two-cycle RETRY response is required.
1	1	SPLIT	The transfer has not yet completed successfully. The bus master must retry the transfer when it is next granted access to the bus. The slave will request access to the bus on behalf of the master when the transfer can complete. A two-cycle SPLIT response is required.

$1.3.2 \ \, \text{AXI} \\ \text{Read/write adress-channel signals}^1$

Signal description	Write addr. ch.	Read addr. ch.
Address ID	AWID	ARID
Address of the first beat of the burst	AWADDR	ARADDR
Number of beats inside the burst	AWLEN	ARLEN
Size of each beat	AWSIZE	ARSIZE
Type of the burst	AWBURST	ARBURST
Lock type, to provide atomic operations	AWLOCK	ARLOCK
Memory type	AWCACHE	ARCACHE
Protection type	AWPROT	ARPROT
Quality of Service of the transaction	AWQOS	ARQOS

¹Descriptions shorted so table can fit on screen

Region identifier	AWREGION	ARREGION
User-defined data	AWUSER	ARUSER
xVALID handshake signal	AWVALID	ARVALID
xREADY handshake signal	AWREADY	ARREADY

Read/Write data-channel signals

Signal description	Write dat. ch.	Read dat. ch.
Data ID, to identify multiple streams over a single channel	WID	RID
Read/Write data	WDATA	RDATA
Read response, status of the current RDATA signal	-	RRESP
Byte strobe, which bytes of WDATA are valid	WSTRB	-
Last beat identifier	WLAST	RLAST
User-defined data	WUSER	RUSER
xVALID handshake signal	WVALID	RVALID
xREADY handshake signal	WREADY	RREADY

Write response signals

Signal description	Write resp. ch.
Write response ID	BID
Write response, to specify the status of the burst	BRESP
User-defined data	BUSER
xVALID handshake signal	BVALID
xREADY handshake signal	BREADY

Slave response channel (uses write repsonse channel)

OKAY	The answer of the slave if a normal access has been successful.
	The answer of the slave if a normal exclusive access has been successful. An exclusive access is an access where only one master
EXOKAY	is allowed to access this slave. It is not required, that the bus is
	occupied the whole time.
SLVERR	This error will be set, when the transaction has been faulty.
DECERR	This error will be signalled by the interconnect to the master if it
DECERT	couldn't find the slave under the given adress. occupied the whole time.

1.3.3 Burst

ARBURST[1:0], AWBURST[1:0]	Burst Type
00_2	FIXED
012	INCR
10_2	WRAP
112	Reserved
ARSIZE[2:0], AWSIZE[2:0]	Bytes in transfer
3 bits	$1 - 128 (2^{ARSIZE/AWSIZE})$
ARLEN[3:0], AWLEN[3:0]	Number of data transfers
4 bits	$1 - 16 (2^{1-4})$