Sprawozdanie Lista1

Paweł Solecki

24 października 2024

1 Zadanie 1: Insertion Sort

Insertion sort to algorytm sortowania, który działa poprzez iteracyjne wstawianie kolejnych elementów w odpowiednie miejsce w już posortowanej części tablicy.

Listing 1: Implementacja Insertion Sort
void insertion Sort (int A[], int n) {
 for (int i = 1; i < n; i++) {
 int x = A[i];
 assign_counter++;
 int j = i - 1;
 while (j >= 0 && A[j] > x) {
 assign_counter++;
 compare_counter++;
 A[j + 1] = A[j];
 assign_counter;
 j--;
 }
 A[j + 1] = x;

Modyfikacja Insertion Sort polega na wstawianiu "na raz"dwóch kolejnych elementów tablicy (uprzednio je porównawszy), a jej implementacja wygląda nastepująco:

}

assign counter++;

```
Listing 2: Implementacja Insertion Sort2
```

```
void insertionSort2(int A[], int n){
        for (int i=1; i < n - 1; i += 2){
                 int a = A[i];
                 assign\_counter++;
                 int b = A[i + 1];
                 assign counter++;
                 if (a > b) {
                         swap(a, b);
                         assign counter++;
                         compare counter++;
                 int j = i - 1;
                 while (j >= 0 \&\& A[j] > a) {
                         compare\_counter++;
                         A[j + 1] = A[j];
                         assign counter++;
                A[j + 1] = a;
                 assign counter++;
                 j = i;
                 while (j >= 0 \&\& A[j] > b) {
                         compare\_counter++;
```

```
A[j + 1] = A[j];
                                assign_counter++;
                     A[j + 1] = b;
                     assign\_counter++;
          if (n \% 2 = 0) {
                     int c = A[n-1];
                     assign counter++;
                     int j = n - 2;
                     while (j >= 0 \&\& A[j] > c) {
                               \begin{array}{l} compare\_counter++; \\ A[\;j\;+\;1] \;=\; A[\;j\;]\;; \end{array}
                               j ---;
                                assign_counter++;
                     A[j + 1] = c;
                     assign_counter++;
          }
}
```

2 Zadanie 2: Merge Sort

Merge sort działa poprzez rekurencyjne dzielenie tablicy na dwie połowy, aż do osiągnięcia pojedynczych elementów, a następnie scala te elementy w uporządkowane pary, tworząc w ten sposób posortowaną tablicę.

Listing 3: Implementacja Merge Sort

```
void merge_sort(int A[], int left, int right) {
    if (left < right) {
        compare_counter++;
        int mid = left + (right - left) / 2;

        merge_sort(A, left, mid);
        merge_sort(A, mid + 1, right);

        merge(A, left, mid, right);
}</pre>
```

Możemy zmodyfikować ten algorytm dzieląc tablicę na trzy części zamiast na dwie.

Listing 4: Implementacja Merge Sort

```
void merge_sort_three(int A[], int left, int right) {
    if (left < right) {
        compare_counter++;
        int mid1 = left + (right - left) / 3;
        int mid2 = left + 2 * (right - left) / 3;

        merge_sort_three(A, left, mid1);
        merge_sort_three(A, mid1 + 1, mid2);
        merge_sort_three(A, mid2 + 1, right);

        merge_three(A, left, mid1, mid2, right);
}
</pre>
```

3 Zadanie 3: Heap Sort

Heap Sort zamienia dane w kopiec, a następnie iteracyjnie wybiera największy (lub najmniejszy) element, aby uzyskać posortowaną listę.

```
Listing 5: Heap Sort

void HEAP_SORT(int A[], int n) {
    BUILD_HEAP(A, n);

    for (int i = n - 1; i > 0; i---) {
        assign_counter++;
        swap(A[0], A[i]);
        HEAPIFY(A, 0, i);
    }
}
```

Modyfikacja Heap Sort Ternary polega na użyciu zamiast kopców binarnych kopców ternarnych.

```
Listing 6: Heap Sort Ternary
void HEAPIFY TERNARY(int A[], int i, int n) {
        int largest = i;
        int l = LEFT2(i);
        int m = MIDDLE2(i);
        int r = RIGHT2(i);
        compare counter++;
        if (1 < n \&\& A[1] > A[largest]) {
                 assign\_counter++;
                 largest = 1;
        }
        compare counter++;
        if \ (m < n \ \&\& \ A[m] \ > A[\, largest \, ]\,) \ \{
                 assign\_counter++;
                 largest = m;
        }
        compare_counter++;
        if (r < n \&\& A[r] > A[largest])  {
                 assign counter++;
                 largest = r;
        }
        compare counter++;
        if (largest != i) {
                 assign\_counter++;
                 swap(A[i], A[largest]);
                 HEAPIFY TERNARY(A, largest, n);
        }
}
void BUILD HEAP TERNARY(int A[], int n) {
        for (int i = n / 3 - 1; i >= 0; i ---) {
                 HEAPIFY TERNARY(A, i, n);
void HEAP SORT TERNARY(int A[], int n) {
        BUILD_HEAP_TERNARY(A, n);
        for (int i = n - 1; i > 0; i--) {
```

assign counter++;

```
\begin{array}{c} swap\left(A\left[\left.0\right\right],\;\;A\left[\left.i\right.\right]\right);\\ HEAPIFY\_TERNARY\left(A,\;\;0\,,\;\;i\right.\right);\\ \end{array}\}
```

4 Zadanie 4: Porównania i Przypisania

W celu porównania algorytmów i ich modyfikacji przeprowadzono sześć testów na różnych rozmiarach tabeli. Podczas każdego wykonania algorytmu zliczane były porównania i przypisania. Wyniki testów są przedstawione w formie tabel.

Porównania	insertion_sort	insertion_sort2	merge_sort	merge_sort_three	heap_sort	heap_sort_ternary
Tablica1 (60 elementów)	967	985	279	196	993	984
Tablica2 (80 elementów)	1455	1470	400	278	1440	1412
Tablica3 (100 elementów)	2181	2204	511	356	1794	1724
Tablica4 (120 elementów)	3340	3368	635	438	2184	2100
Tablica5 (140 elementów)	4270	4299	757	520	2613	2460
Tablica6 (160 elementów)	5703	5742	897	609	3018	2884

Tabela 1: Zestawienie ilości porównań w róznych algorytmach sortowania.

Przypisania	insertion_sort	insertion_sort2	merge_sort	merge_sort_three	heap_sort	heap_sort_ternary
Tablica1 (60 elementów)	1085	1085	712	480	642	494
Tablica2 (80 elementów)	1613	1613	1024	640	946	711
Tablica3 (100 elementów)	2371	2371	1280	828	1196	878
Tablica4 (120 elementów)	3566	3566	1568	1044	1443	1089
Tablica5 (140 elementów)	4528	4528	1828	1236	1742	1284
Tablica6 (160 elementów)	5997	5997	2152	1452	2025	1520

Tabela 2: Porównanie ilości przypisań dla różnych algorytmów sortowania.

5 Zadanie 5: Porównanie i Wnioski

Na podstawie wyników testów można zauważyć różnice w efektywności różnych algorytmów sortowania, szczególnie pod kątem liczby porównań i przypisań. Algorytmy sortowania przez wstawianie (insertion sort) w obu wersjach, czyli insertion_sort i insertion_sort2, charakteryzują się zbliżoną liczbą porównań i przypisań, co wskazuje na brak istotnych różnic między nimi. W obu przypadkach liczba operacji

rośnie proporcjonalnie do rozmiaru tablicy, co jest typowe dla algorytmów o złożoności $O(n^2)$. Z tego powodu algorytmy te stają się znacznie mniej wydajne przy większych zbiorach danych, o czym świadczy gwałtowny wzrost liczby porównań i przypisań dla tablic o większej liczbie elementów. Przykładowo, dla tablicy zawierającej 160 elementów liczba porównań sięga ponad 5700, a liczba przypisań prawie 6000.

W przypadku algorytmu sortowania przez scalanie (merge sort), zarówno klasyczna wersja, jak i modyfikacja $merge_sort_three$, działają zdecydowanie efektywniej. Złożoność tych algorytmów wynosi $O(n \log n)$, co przekłada się na znacznie mniejszą liczbę porównań i przypisań w porównaniu do sortowania przez wstawianie. Szczególnie widoczna jest różnica między klasycznym merge sortem a jego wersją trójdzielną. Algorytm $merge_sort_three$ wymaga mniej operacji zarówno porównań, jak i przypisań, co czyni go bardziej wydajnym, zwłaszcza w przypadku większych tablic. Na przykład, dla tablicy z 160 elementami liczba porównań w przypadku $merge_sort_three$ wynosi zaledwie 609, podczas gdy klasyczny merge sort potrzebuje 897 porównań. Różnica w liczbie przypisań jest również znacząca: 1452 dla wersji trójdzielnej w porównaniu do 2152 w klasycznym merge sorcie.

Algorytm sortowania przez kopcowanie (heap sort) również ma złożoność $O(n \log n)$, ale w porównaniu do merge sort wypada nieco gorzej pod względem liczby operacji. Wersja trójdzielna heap sort (heap_sort_ternary) okazuje się jednak bardziej efektywna niż klasyczny heap sort. Zarówno liczba porównań, jak i przypisań jest mniejsza w tej modyfikacji, co widać szczególnie przy większych rozmiarach tablic. Dla tablicy o 160 elementach, heap_sort_ternary wymaga 2884 porównań i 1520 przypisań, podczas gdy klasyczna wersja heap sort wykonuje odpowiednio 3018 porównań i 2025 przypisań.

Podsumowując, algorytmy o złożoności $O(n^2)$ (insertion_sort) są znacznie mniej efektywne przy większych tablicach, co potwierdza ich wysoki koszt obliczeniowy. Z kolei algorytmy o złożoności $O(n \log n)$, takie jak merge sort i heap sort, wypadają znacznie lepiej. Szczególnie korzystne są modyfikacje trójdzielne tych algorytmów (merge_sort_three i heap_sort_ternary), które wymagają mniejszej liczby operacji, co czyni je bardziej wydajnymi, zwłaszcza w przypadku większych zbiorów danych.