2-9 Sorting and Selection

Hengfeng Wei

hfwei@nju.edu.cn

May 28, 2018

How to Argue?

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

8 / 11

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

$$T(n) = \Omega(n \log n)$$

8 / 11

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

$$T(n) = \Omega(n \log n)$$

By substitution.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$
$$T(n) = \Omega(n \log n)$$

10 / 11

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn