

STM32F205xx STM32F207xx

ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera

Preliminary data

Features

- Core: ARM 32-bit CortexTM-M3 CPU with Adaptive real-time accelerator (ART AcceleratorTM) allowing 0-wait state execution performance from Flash memory, frequency up to 120 MHz, memory protection unit, 150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1)
- Memories
 - Up to 1 Mbyte of Flash memory
 - Up to 128 + 4 Kbytes of SRAM
 - Flexible static memory controller that supports Compact Flash, SRAM, PSRAM, NOR and NAND memories
 - LCD parallel interface, 8080/6800 modes
- Clock, reset and supply management
 - 1.8 to 3.6 V application supply and I/Os
 - POR, PDR, PVD and BOR
 - 4 to 26 MHz crystal oscillator
 - Internal 16 MHz factory-trimmed RC (1% accuracy)
 - 32 kHz oscillator for RTC with calibration
 - Internal 32 kHz RC with calibration
- Low power
 - Sleep, Stop and Standby modes
 - V_{BAT} supply for RTC, 20 × 32 bit backup registers, and optional 4 KB backup SRAM
- 3 × 12-bit, 0.5 µs A/D converters
 - up to 24 channels
 - up to 6 MSPS in triple interleaved mode
- 2 × 12-bit D/A converters
- General-purpose DMA
 - 16-stream DMA controller with centralized FIFOs and burst support
- Up to 17 timers
 - Up to twelve 16-bit and two 32-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
- Debug mode
 - Serial wire debug (SWD) & JTAG interfaces
 - Cortex-M3 Embedded Trace Macrocell™

- 1. Package not in production (for development only).
- Up to 140 I/O ports with interrupt capability:
 - Up to 136 fast I/Os up to 60 MHz
 - Up to 138 5 V-tolerant I/Os
- Up to 15 communication interfaces
 - Up to $3 \times I^2$ C interfaces (SMBus/PMBus)
 - Up to 4 USARTs and 2 UARTs (7.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control)
 - Up to 3 SPIs (30 Mbit/s), 2 with muxed I²S to achieve audio class accuracy via audio PLL or external PLL
 - 2 × CAN interfaces (2.0B Active)
 - SDIO interface
- Advanced connectivity
 - USB 2.0 full-speed device/host/OTG controller with on-chip PHY
 - USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI
 - 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII
- 8- to 14-bit parallel camera interface: up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz
- CRC calculation unit, 96-bit unique ID
- Analog true random number generator

Table 1. Device summary

Reference	Part number
STM32F205xx	STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF, STM32F205RG, STM32F205VB, STM32F205VC, STM32F205VE, STM32F205VF STM32F205VG, STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG
STM32F207xx	STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG, STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG, STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG

Contents

1 lı	ntroductio	n	9
2 [escription	1	10
2	.1 Full co	ompatibility throughout the family	13
2	.2 Device	e overview	15
	2.2.1	ARM [®] Cortex™-M3 core with embedded Flash and SRAM	
	2.2.2	Memory protection unit	16
	2.2.3	Adaptive real-time memory accelerator (ART Accelerator™)	16
	2.2.4	Embedded Flash memory	16
	2.2.5	CRC (cyclic redundancy check) calculation unit	17
	2.2.6	True random number generator (RNG)	17
	2.2.7	Embedded SRAM	17
	2.2.8	Multi-AHB bus matrix	17
	2.2.9	DMA	18
	2.2.10	FSMC (flexible static memory controller)	18
	2.2.11	Nested vectored interrupt controller (NVIC)	19
	2.2.12	External interrupt/event controller (EXTI)	19
	2.2.13	Clocks and startup	19
	2.2.14	Boot modes	20
	2.2.15	Power supply schemes	20
	2.2.16	Power supply supervisor	20
	2.2.17	Voltage regulator	20
	2.2.18	Real-time clock (RTC), backup SRAM and backup registers	23
	2.2.19	Low-power modes	23
	2.2.20	V _{BAT} operation	24
	2.2.21	Timers and watchdogs	24
	2.2.22	Basic timers TIM6 and TIM7	26
	2.2.23	Independent watchdog	26
	2.2.24	Window watchdog	26
	2.2.25	SysTick timer	27
	2.2.26	I ² C bus	27
	2.2.27	Universal synchronous/asynchronous receiver transmitters (UARTs/USARTs)	27
	2.2.28	Serial peripheral interface (SPI)	28

		2.2.29	Inter-integrated sound (I ² S)	. 28
		2.2.30	SDIO	. 28
		2.2.31	Ethernet MAC interface with dedicated DMA and IEEE 1588 support	. 29
		2.2.32	Controller area network (CAN)	. 29
		2.2.33	Universal serial bus on-the-go full-speed (OTG_FS)	. 29
		2.2.34	Universal serial bus on-the-go high-speed (OTG_HS)	. 30
		2.2.35	Audio PLL (PLLI2S)	. 30
		2.2.36	Digital camera interface (DCMI)	. 31
		2.2.37	GPIOs (general-purpose inputs/outputs)	. 31
		2.2.38	ADCs (analog-to-digital converters)	. 31
		2.2.39	DAC (digital-to-analog converter)	. 32
		2.2.40	Temperature sensor	. 32
		2.2.41	Serial wire JTAG debug port (SWJ-DP)	. 32
		2.2.42	Embedded Trace Macrocell™	. 32
3	Pino	uts and	pin description	. 33
4	Mem	ory ma	pping	. 53
5	Elec	trical ch	aracteristics	. 54
	5.1		eter conditions	
	0	5.1.1	Minimum and maximum values	
		5.1.2	Typical values	
		5.1.3	Typical curves	
		5.1.4	Loading capacitor	
		5.1.5	Pin input voltage	
		5.1.6	Power supply scheme	
		5.1.7	Current consumption measurement	
	5.2	Absolu	te maximum ratings	
	5.3	Operat	ing conditions	. 57
		5.3.1	General operating conditions	
		5.3.2	Operating conditions at power-up / power-down (regulator not bypassed)	
		5.3.3	Operating conditions at power-up / power-down in regulator bypass mode	
		5.3.4	Embedded reset and power control block characteristics	
		5.3.5	Supply current characteristics	
		5.5.5		
		5.3.6	External clock source characteristics	. 67

		5.3.7	Internal clock source characteristics	71
		5.3.8	Wakeup time from low-power mode	71
		5.3.9	PLL characteristics	72
		5.3.10	PLL spread spectrum clock generation (SSCG) characteristics	73
		5.3.11	Memory characteristics	75
		5.3.12	EMC characteristics	76
		5.3.13	Absolute maximum ratings (electrical sensitivity)	77
		5.3.14	I/O port characteristics	78
		5.3.15	NRST pin characteristics	82
		5.3.16	TIM timer characteristics	83
		5.3.17	Communications interfaces	85
		5.3.18	12-bit ADC characteristics	98
		5.3.19	DAC electrical specifications	102
		5.3.20	Temperature sensor characteristics	104
		5.3.21	V _{BAT} monitoring characteristics	104
		5.3.22	Embedded reference voltage	104
		5.3.23	FSMC characteristics	
		5.3.24	Camera interface (DCMI) timing specifications	123
		5.3.25	SD/SDIO MMC card host interface (SDIO) characteristics	
		5.3.26	RTC characteristics	125
6	Pack	age cha	aracteristics	. 126
	6.1	Packag	ge mechanical data	126
	6.2	Therma	al characteristics	133
7	Part	number	ing	. 134
Apper	ndix A	Applicati	ion block diagrams	. 135
	A.1	Main a	pplications versus package	135
	A.2	Applica	ation example with regulator off	136
	A.3		TG full speed (FS) interface solutions	
	A.4		TG high speed (HS) interface solutions	
	A.5		ete audio player solutions	
	۸.5	Compi	oto addio playor dolutions	170
Revisi	ion histo	rv		. 143

List of tables

Table 1.	Device summary	1
Table 2.	STM32F205xx and STM32F207xx features and peripheral counts	
Table 3.	Timer feature comparison	
Table 4.	USART feature comparison	
Table 5.	STM32F20x pin and ball definitions	. 38
Table 6.	Alternate function mapping	
Table 7.	Voltage characteristics	
Table 8.	Current characteristics	
Table 9.	Thermal characteristics	. 57
Table 10.	General operating conditions	
Table 11.	Limitations depending on the operating power supply range	
Table 12.	Operating conditions at power-up / power-down (regulator not bypassed)	
Table 13.	Operating conditions at power-up / power-down in regulator	
	bypass mode	60
Table 14.	Embedded reset and power control block characteristics	60
Table 15.	Typical and maximum current consumption in Run mode, code with data processing	
	running from Flash	62
Table 16.	Typical and maximum current consumption in Run mode, code with data processing	
	running from RAM	63
Table 17.	Typical and maximum current consumption in Sleep mode	63
Table 18.	Typical and maximum current consumptions in Stop mode	. 64
Table 19.	Typical and maximum current consumptions in Standby mode	
Table 20.	Typical and maximum current consumptions in VBAT mode	65
Table 21.	Peripheral current consumption	65
Table 22.	High-speed external user clock characteristics	
Table 23.	Low-speed external user clock characteristics	. 67
Table 24.	HSE 4-26 MHz oscillator characteristics	69
Table 25.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	. 70
Table 26.	HSI oscillator characteristics	
Table 27.	LSI oscillator characteristics	. 71
Table 28.	Low-power mode wakeup timings	. 72
Table 29.	Main PLL characteristics	. 72
Table 30.	PLLI2S (audio PLL) characteristics	. 72
Table 31.	SSCG parameters constraint	. 73
Table 32.	Flash memory characteristics	. 75
Table 33.	Flash memory programming	
Table 34.	Flash memory programming with V _{PP}	. 75
Table 35.	Flash memory endurance and data retention	. 76
Table 36.	EMS characteristics	. 76
Table 37.	EMI characteristics	. 77
Table 38.	ESD absolute maximum ratings	. 78
Table 39.	Electrical sensitivities	. 78
Table 40.	I/O static characteristics	. 78
Table 41.	Output voltage characteristics	. 80
Table 42.	I/O AC characteristics	. 80
Table 43.	NRST pin characteristics	
Table 44.	Characteristics of TIMx connected to the APB1 domain	83
Table 45.	Characteristics of TIMx connected to the APB2 domain	. 84

Table 46.	I ² C characteristics	
Table 47.	SCL frequency (f _{PCLK1} = 30 MHz.,V _{DD} = 3.3 V)	. 86
Table 48.	SPI characteristics	. 87
Table 49.	I ² S characteristics	. 90
Table 50.	USB OTG FS startup time	. 92
Table 51.	USB OTG FS DC electrical characteristics	. 92
Table 52.	USB OTG FS electrical characteristics	. 94
Table 53.	Clock timing parameters	. 94
Table 54.	ULPI timing	
Table 55.	Ethernet DC electrical characteristics	
Table 56.	Dynamics characteristics: Ethernet MAC signals for SMI	. 96
Table 57.	Dynamics characteristics: Ethernet MAC signals for RMII	
Table 58.	Dynamics characteristics: Ethernet MAC signals for MII	
Table 59.	ADC characteristics	. 98
Table 60.	ADC accuracy	. 99
Table 61.	DAC characteristics	102
Table 62.	TS characteristics	
Table 63.	V _{BAT} monitoring characteristics	
Table 64.	Embedded internal reference voltage	
Table 65.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	
Table 66.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	
Table 67.	Asynchronous multiplexed PSRAM/NOR read timings	
Table 68.	Asynchronous multiplexed PSRAM/NOR write timings	
Table 69.	Synchronous multiplexed NOR/PSRAM read timings	
Table 70.	Synchronous multiplexed PSRAM write timings	
Table 71.	Synchronous non-multiplexed NOR/PSRAM read timings	
Table 72.	Synchronous non-multiplexed PSRAM write timings	
Table 73.	Switching characteristics for PC Card/CF read and write cycles	
Table 74.	Switching characteristics for NAND Flash read and write cycles	
Table 75.	DCMI characteristics	
Table 76.	SD / MMC characteristics	
Table 77.	RTC characteristics	
Table 78.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data	
Table 79.	WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data	
Table 80.	LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data	
Table 81.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data	
Table 82.	LQFP176 - Low profile quad flat package 24 \times 24 \times 1.4 mm package mechanical data .	
Table 83.	UFBGA176+25 - ultra thin fine pitch ball grid array 10 \times 10 \times 0.6 mm mechanical data .	
Table 84.	Package thermal characteristics	
Table 85.	Ordering information scheme	
Table 86.	Main applications versus package for STM32F207xx microcontrollers	
Table 87.	Document revision history	143

577

List of figures

Figure 1.	Compatible board design: LQFP144	13
Figure 2.	Compatible board design: LQFP100	14
Figure 3.	Compatible board design: LQFP64	14
Figure 4.	STM32F20x block diagram	15
Figure 5.	Multi-AHB matrix	17
Figure 6.	Startup in regulator bypass/regulator off mode: slow V _{DD} slope	
	- power-down reset risen after V _{CAP_1} /V _{CAP_2} stabilization	22
Figure 7.	Startup in regulator bypass/regulator off mode: slow V _{DD} slope	
	- power-down reset risen before V _{CAP_1} /V _{CAP_2} stabilization	22
Figure 8.	Sartup in regulator bypass/regulator off and internal reset off	22
Figure 9.	STM32F20x LQFP64 pinout	33
Figure 10.	STM32F20x WLCSP64+2 ballout	
Figure 11.	STM32F20x LQFP100 pinout	
Figure 12.	STM32F20x LQFP144 pinout	
Figure 13.	STM32F20x LQFP176 pinout	
Figure 14.	STM32F21xxx UFBGA176 ballout	
Figure 15.	Memory map	
Figure 16.	Pin loading conditions	
Figure 17.	Pin input voltage	
Figure 18.	Power supply scheme	
Figure 19.	Current consumption measurement scheme	
Figure 20.	Number of wait states versus f _{CPU} and V _{DD} range	
Figure 21.	High-speed external clock source AC timing diagram	
Figure 22.	Low-speed external clock source AC timing diagram	
Figure 23.	Typical application with an 8 MHz crystal	
Figure 24.	Typical application with a 32.768 kHz crystal	
Figure 25.	PLL output clock waveforms in center spread mode	
Figure 26.	PLL output clock waveforms in down spread mode	
Figure 27.	I/O AC characteristics definition	
Figure 28.	Recommended NRST pin protection	
Figure 29.	I ² C bus AC waveforms and measurement circuit	
Figure 30.	SPI timing diagram - slave mode and CPHA = 0	
Figure 31.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	88
Figure 32.	SPI timing diagram - master mode ⁽¹⁾	89
Figure 33.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	91
Figure 34.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	91
Figure 35.	USB OTG FS timings: definition of data signal rise and fall time	93
Figure 36.	ULPI timing diagram	
Figure 37.	Ethernet SMI timing diagram	
Figure 38.	Ethernet RMII timing diagram	
Figure 39.	Ethernet MII timing diagram	
Figure 40.	ADC accuracy characteristics	
Figure 41.	Typical connection diagram using the ADC	
Figure 42.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	
Figure 43.	Power supply and reference decoupling (V_{REF+} connected to V_{DDA})	
Figure 44.	12-bit buffered /non-buffered DAC	
Figure 45.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	105
Figure 46.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	

Figure 47.	Asynchronous multiplexed PSRAM/NOR read waveforms
Figure 48.	Asynchronous multiplexed PSRAM/NOR write waveforms
Figure 49.	Synchronous multiplexed NOR/PSRAM read timings
Figure 50.	Synchronous multiplexed PSRAM write timings112
Figure 51.	Synchronous non-multiplexed NOR/PSRAM read timings
Figure 52.	Synchronous non-multiplexed PSRAM write timings
Figure 53.	PC Card/CompactFlash controller waveforms for common memory read access 116
Figure 54.	PC Card/CompactFlash controller waveforms for common memory write access 117
Figure 55.	PC Card/CompactFlash controller waveforms for attribute memory read
_	access118
Figure 56.	PC Card/CompactFlash controller waveforms for attribute memory write
_	access119
Figure 57.	PC Card/CompactFlash controller waveforms for I/O space read access
Figure 58.	PC Card/CompactFlash controller waveforms for I/O space write access
Figure 59.	NAND controller waveforms for read access
Figure 60.	NAND controller waveforms for write access
Figure 61.	NAND controller waveforms for common memory read access
Figure 62.	NAND controller waveforms for common memory write access
Figure 63.	SDIO high-speed mode
Figure 64.	SD default mode
Figure 65.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
Figure 66.	Recommended footprint ⁽¹⁾
Figure 67.	WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline
Figure 68.	LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline
Figure 69.	Recommended footprint ⁽¹⁾
Figure 70.	LQFP144, 20 x 20 mm, 144-pin low-profile quad
_	flat package outline
Figure 71.	Recommended footprint ⁽¹⁾
Figure 72.	LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline 131
Figure 73.	UFBGA176+25 - ultra thin fine pitch ball grid array $10 \times 10 \times 0.6$ mm, package outline . 132
Figure 74.	Regulator bypass/regulator off
Figure 75.	Regulator bypass/regulator off and internal reset off
Figure 76.	USB OTG FS peripheral-only connection
Figure 77.	USB OTG FS host-only connection
Figure 78.	OTG FS connection dual-role with internal PHY138
Figure 79.	USB OTG HS peripheral-only connection
Figure 80.	USB OTG HS host-only connection
Figure 81.	OTG HS connection dual-role with external PHY
Figure 82.	Complete audio player solution 1
Figure 83.	Complete audio player solution 2
Figure 84.	Audio player solution using PLL, PLLI2S, USB and 1 crystal141
Figure 85.	Audio PLL (PLLI2S) providing accurate I2S clock
Figure 86.	Master clock (MCK) used to drive the external audio DAC142
Figure 87.	Master clock (MCK) not used to drive the external audio DAC142

577

1 Introduction

This datasheet provides the description of the STM32F205xx and STM32F207xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32[™] family, please refer to *Section 2.1: Full compatibility throughout the family*.

The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the STM32F20x/STM32F21x reference manual.

For information on programming, erasing and protection of the internal Flash memory, please refer to the STM32F20x/STM32F21x Flash programming manual.

The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[™]-M3 core please refer to the Cortex[™]-M3 Technical Reference Manual, available from the *www.arm.com* website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

2 Description

The STM32F205xx and STM32F207xx family is based on the high-performance ARM[®] Cortex[™]-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The devices also feature an adaptive real-time memory accelerator (ART Accelerator™) which allows to achieve a performance equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz. This performance has been validated using the CoreMark benchmark.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true number random generator (RNG). They also feature standard and advanced communication interfaces. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), and a camera interface for CMOS sensors.

- Up to three I²Cs
- Three SPIs, two I²Ss. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external PLL to allow synchronization.
- 4 USARTs and 2 UARTs
- An USB OTG full-speed and a USB OTG full-speed with high-speed capability (with the ULPI),
- Two CANs
- An SDIO interface
- Ethernet and the camera interface available on STM32F207xx devices only.

The STM32F205xx and STM32F207xx family operates in the -40 to +105 °C temperature range from a 1.8 V to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F205xx and STM32F207xx family offers devices in four packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.

These features make the STM32F205xx and STM32F207xx microcontroller family suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

Figure 4 shows the general block diagram of the device family.

Table 2. STM32F205xx and STM32F207xx features and peripheral counts

Perip	Peripherals		STM32F205Rx					STM32F205Vx				STM32F205Zx				STM32F207Vx				STM32F207Zx			STM32F207Ix			
Flash men Kbytes	nory in	128	256	512	768	1024	128	256	512	768	1024	256	512	768	1024	256	51	2 768	8 1024 256 512 768 1024 256 512 768					768 102		
SRAM in Kbytes System 64 (48+16) 896 (128(112+16) 64 (48+16) 80+16) 128 (112+16) 96 (80+16) 128 (112+16) 128 (112+16) 128 (112+16) 128 (112+16)						6)																				
Rbytes	Backup		4					4					4									4				
FSMC me controller	mory		No)												Yes										
Ethernet								No													Υ	es				
	General- purpose	10																								
Timers	Advanced -control												2													
	Basic	2																								
Random n generator	umber												Yes													
	SPI / (I ² S)	3 (2)																								
	I ² C	3																								
Comm.	USART UART	4 2																								
interfaces	USB OTG FS							4110/50												4	FO 4	LIC/E	-0			
	USB OTG HS							1HS/FS												11	F5, I	HS/F	-5			
	CAN	2																								
Camera in	terface							No														Yes				
GPIOs			51					82	2				114					82			1	14			1	40
12-bit ADC													3													
Number of	channels		16	3				16	6				24					16			2	24			2	24
12-bit DAC Number of channels Yes 2																										

Description

Table 2. STM32F205xx and STM32F207xx features and peripheral counts (continued)

Peripherals	STM32F205Rx	STM32F205Vx	STM32F205Zx	STM32F207Vx	STM32F207Zx	STM32F207Ix					
Maximum CPU frequency	120 MHz										
Operating voltage	1.8 V to 3.6 V										
Operating	Ambient temperatures: -40 to +85 °C /-40 to +105 °C										
temperatures		Junction	temperature: -40 to + 12	5 °C							
Package	LQFP64 WLCSP64+2	LQFP100	LQFP144	LQFP100	LQFP144	LQFP176 ⁽¹⁾ UFBGA176					

^{1.} Package not in production and available for development only.

2.1 Full compatibility throughout the family

The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members are fully pin-to-pin, software and feature compatible, allowing the user to try different memory densities and peripherals for a greater degree of freedom during the development cycle.

The STM32F205xx and STM32F207xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F205xx and STM32F207xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x family remains simple as only a few pins are impacted.

Figure 1 compatible board design between the STM32F20x and the STM32F10xxx family.

Figure 2. Compatible board design: LQFP100

2.2 Device overview

Figure 4. STM32F20x block diagram

2.2.1 ARM[®] Cortex[™]-M3 core with embedded Flash and SRAM

The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

With its embedded ARM core, the STM32F205xx and STM32F207xx family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32F20x family.

2.2.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.2.3 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-standard ARM® Cortex™-M3 processors. It balances the inherent performance advantage of the ARM Cortex-M3 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher operating frequencies.

To release the processor full 150 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz.

2.2.4 Embedded Flash memory

The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes, 512 Kbytes, 768 Kbytes or 1 Mbytes available for storing programs and data.

2.2.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.2.6 True random number generator (RNG)

All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers produced by an integrated analog circuit.

2.2.7 **Embedded SRAM**

All STM32F20x products embed up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0 wait states, plus 4 Kbytes of backup SRAM.

2.2.8 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Figure 5.

2.2.9 DMA

The flexible 16-stream general-purpose DMAs (8 streams for DMA1 and 8 streams for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB) and performance.

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART and UART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC.

2.2.10 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F205xx and STM32F207xx family. It has four Chip Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash.

Functionality overview:

- Write FIFO
- Code execution from external memory except for NAND Flash and PC Card
- The targeted frequency, f_{CLK}, is equal to HCLK/2, so external access is at 60 MHz when HCLK is at 120 MHz and external access is at 30 MHz when HCLK is at 60 MHz

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

2.2.11 Nested vectored interrupt controller (NVIC)

The STM32F205xx and STM32F207xx embed a nested vectored interrupt controller able to handle up to 87 maskable interrupt channels (not including the 16 interrupt lines of the Cortex™-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

2.2.12 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines.

2.2.13 Clocks and startup

System clock selection is performed on startup, however, the 16 MHz internal RC oscillator is selected as the default CPU clock on reset. An external 4-26 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range.

The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the system clock.

Several prescalers and PLLs allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 120 MHz and the maximum frequency the high-speed APB domains is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.

In order to achieve audio class performance, a specific crystal can be used. In this case, the I²S master clock can generate all standard sampling frequencies from 8 kHz to 96 kHz.

2.2.14 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB6), USB OTG FS in Device mode (PA9/PA11/PA12) through DFU (device firmware upgrade).

2.2.15 Power supply schemes

- V_{DD} = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins. On WLCSP package, V_{DD} ranges from 1.65 to 3.6 V.
- V_{SSA}, V_{DDA} = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

2.2.16 Power supply supervisor

The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit. On devices in WLCSP package, BOR can be inactivated by setting IRROFF to V_{DD} (see Section 2.2.17: Voltage regulator).

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.2.17 Voltage regulator

The regulator has five operating modes:

- Regulator on
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator off
 - Regulator bypass/regulator off
 - Regulator bypass/regulator off and internal reset off

Regulator on

These modes are activated by default on LQFP packages. On WLCPS66 and UFBGA176, they are activated by setting REGOFF pin to V_{SS} . V_{DD} minimum value is 1.8 V.

There are three regulator on modes:

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop modes7
- Power-down is used in Standby mode:

The regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost).

Regulator off

Regulator bypass/regulator off

This mode is activated by setting REGOFF pin to V_{DD} . It is available only on the UFBGA and WLCSP packages.

The regulator bypass/regulator off mode allows to supply externally a 1.2 V voltage source through $V_{CAP\ 2}$ and $V_{CAP\ 2}$ pins, in addition to V_{DD} .

 V_{DD} minimum value is 1.8 V.

The following conditions must be respected in Regulator bypass mode:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is faster than the time for V_{DD} to reach 1.8 V, then PAO should be connected to the NRST pin (see *Figure 6*).
 Otherwise, PAO should be asserted low externally until V_{DD} reaches 1.8 V (see *Figure 7*).

In regulator bypass only mode, PA0 cannot be used as a GPIO pin.

Regulator bypass/regulator off and internal reset off

This mode is activated by setting IRROFF pin to V_{DD} . IRROFF cannot be activated in conjunction with REGOFF. This mode is available only on the WLCSP package. It allows to supply externally a 1.2 V voltage source through V_{CAP_1} and V_{CAP_2} pins, in addition to V_{DD} .

V_{DD} minimum value is 1.65 V.

The following conditions must be respected in Regulator bypass mode (see Figure 8):

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- External reset should be used to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach 1.08V and until V_{DD} reaches 1.65 V

PA0 can be used as a standard GPIO pin.

Figure 6. Startup in regulator bypass/regulator off mode: slow V_{DD} slope - power-down reset risen after $V_{CAP\ 2}$ stabilization

Figure 7. Startup in regulator bypass/regulator off mode: slow V_{DD} slope - power-down reset risen before $V_{CAP\ 1}/V_{CAP\ 2}$ stabilization

Figure 8. Sartup in regulator bypass/regulator off and internal reset off

2.2.18 Real-time clock (RTC), backup SRAM and backup registers

The backup domain of the STM32F205xx and STM32F207xx includes:

- The real-time clock (RTC)
- 4 Kbytes of backup SRAM
- 20 backup registers

The RTC provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

The RTC features calendar registers with seconds, minutes, hours, week day, date, month, year. Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The backup SRAM size is 4 Kbytes and can be enabled by software. When the backup RAM is enabled the power consumption in Standby or V_{BAT} mode is slightly higher (see *Section 2.2.19: Low-power modes*).

The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see *Section 2.2.19: Low-power modes*).

The RTC, backup RAM and backup registers are supplied through a switch that takes power from either the V_{DD} supply when present or the V_{BAT} pin.

2.2.19 Low-power modes

The STM32F205xx and STM32F207xx support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC

and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

Note: 1 The RTC, the IWDG, and the corresponding clock sources are not stopped when the device enters the Stop or Standby mode.

2.2.20 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery or an external supercapacitor.

V_{BAT} operation is activated when V_{DD} is not present.

Note:

When the microcontroller is supplied from V_{BAT}, external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

2.2.21 Timers and watchdogs

The STM32F205xx and STM32F207xx devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

Table 3 compares the features of the advanced-control, general-purpose and basic timers.

Table 3. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	request compare		Max interface clock	Max timer clock	
Advanced- control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	60 MHz	120 MHz
General	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	30 MHz	60 MHz
purpose	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	30 MHz	60 MHz
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	30 MHz	60 MHz

TIM13,

TIM14

60

MHz

30 MHz

No

DMA Capture/ Max Max Counter Complementary Counter **Prescaler** Timer type **Timer** request compare interface timer resolution factor output type generation channels clock clock Any integer 120 TIM9 16-bit Up between 1 No 2 No 60 MHz MHz and 65536 Any integer TIM10. 120 16-bit Up between 1 No 1 No 60 MHz TIM11 MHz and 65536 General purpose Any integer 60 TIM12 16-bit 2 30 MHz Up between 1 Νo Nο MHz and 65536 Any integer

Table 3. Timer feature comparison (continued)

Advanced-control timers (TIM1, TIM8)

Up

between 1

and 65536

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

No

1

- Input capture
- Output compare

16-bit

- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control timer features are shared with those of the standard TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F20x devices (see *Table 3* for differences).

TIM2, TIM3, TIM4, TIM5

The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 32-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

• TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

They can also be used as simple time bases.

2.2.22 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

2.2.23 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

2.2.24 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.2.25 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

2.2.26 I2C bus

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.2.27 Universal synchronous/asynchronous receiver transmitters (UARTs/USARTs)

The STM32F205xx and STM32F207xx embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 7.5 Mbit/s. The other available interfaces communicate at up to 3.75 Mbit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

Table 4. USART feature comparison

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	Х	Х	Х	Х	3.75	7.5	APB2 (max. 60 MHz)
USART2	х	х	X	Х	х	х	1.87	3.75	APB1 (max. 30 MHz)
USART3	х	Х	х	Х	х	Х	1.87	3.75	APB1 (max. 30 MHz)

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
UART4	х	-	Х	-	х	-	1.87	3.75	APB1 (max. 30 MHz)
UART5	х	-	XD	-	х	-	3.75	3.75	APB1 (max. 30 MHz)
USART6	х	х	Х	Х	х	х	3.75	7.5	APB2 (max. 60 MHz)

Table 4. USART feature comparison (continued)

2.2.28 Serial peripheral interface (SPI)

The STM32F20x feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, SPI2 and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

2.2.29 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 96 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

2.2.30 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

2.2.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

Peripheral available only on the STM32F207xx devices.

The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The STM32F207xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) or 50 MHz (RMII) output from the STM32F207xx.

The STM32F207xx includes the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F20x and STM32F21x reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes, that is 4 Kbytes in total
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

2.2.32 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). The 256 bytes of SRAM which are allocated for each CAN are not shared with any other peripheral.

2.2.33 Universal serial bus on-the-go full-speed (OTG_FS)

The STM32F205xx and STM32F207xx embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller

requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 4 bidirectional endpoints
- 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected
- Internal FS OTG PHY support
- External FS OTG PHY support through an I²C connection

2.2.34 Universal serial bus on-the-go high-speed (OTG_HS)

The STM32F205xx and STM32F207xx devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- Internal FS OTG PHY support
- External FS OTG PHY support through an I²C connection
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.2.35 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S application. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 96 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output).

2.2.36 Digital camera interface (DCMI)

The camera interface is *not* available in STM32F205xx devices.

STM32F207xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

2.2.37 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O alternate function configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to 120 MHz that leads to a maximum I/O toggling speed of 60 MHz.

2.2.38 ADCs (analog-to-digital converters)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.2.39 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

2.2.40 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

2.2.41 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.2.42 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F20x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

3 Pinouts and pin description

Figure 9. STM32F20x LQFP64 pinout

Figure 10. STM32F20x WLCSP64+2 ballout

A PA14 PA15 PC12 PB3 PB5 PB7 PB9 VDD_2 VB B VSS_2 PA13 PC10 PB4 PB6 BOOT0 PB8 PC13 PC C PA12 VCAP_2 PC11 PD PD2 PDROFF PC D PC9 PA11 PA10 PC2 VSS_3 VDE E VDD_4 PA8 PA9 PA0 NRST OSC F VSS_4 PC7 PC8 VREF+ PC1 OSC
C PA12 VCAP_2 PC11 PD2 PDROFF PC D PC9 PA11 PA10 PC2 VSS_3 VDI E VDD_4 PA8 PA9 PA0 NRST PHOSC
D PC9 PA11 PA10 PC2 VSS_3 VDI E VDD_4 PA8 PA9 PA0 NRST PHOSC STATE OF THE PAST PAST PAST PAST PAST PAST PAST PAST
E VDD_4 PA8 PA9 PA0 NRST PHOSC 5 VDD_4 PA8 PA9 PA0 PA0 NRST PHOSC
E VDD_4 PAB PAB PAB PAB PAU NHS1 OSC
G PB15 PC6 PC5 PA3 PC3 PC
H PB14 PB13 PB10 PC4 PA6 PA5 REGOFF PA1 VS
J PB12 PB11 VCAP_1 PB2 PB1 PB0 PA7 PA4 PA

1. Top view.

Figure 11. STM32F20x LQFP100 pinout

1. RFU means "reserved for future use".

Figure 12. STM32F20x LQFP144 pinout

1. RFU means "reserved for future use".

Figure 13. STM32F20x LQFP176 pinout

- 1. Package not in production and available for development only.
- 2. RFU means "reserved for future use".

577

Figure 14. STM32F21xxx UFBGA176 ballout

<u> </u>															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	PE3	PE2	PE1	PE0	PB8	PB5	PG14	PG13	PB4	PB3	PD7	PC12	PA15	PA14	PA13
В	PE4	PE5	PE6	PB9	PB7	PB6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
С	VBAT	PI7	PI6	PI5	VDD_3	RFU	VDD_11	VDD_10	VDD_15	PG9	PD5	PD1	PI3	PI2	PA11
D	PC13- TAMP1	PI8- TAMP2	PI9	PI4	VSS	воото	VSS_11	VSS_10	VSS_15	PD4	PD3	PD2	PH15	PI1	PA10
Е	PC14- OSC32_IN	PF0	PI10	PI11								PH13	PH14	PI0	PA9
F	PC15- osc32_out	VSS_13	VDD_13	PH2		VSS	VSS	vss	VSS	VSS		VSS_2	VCAP2	PC9	PA8
G	PH0- OSC_IN	VSS_5	VDD_5	PH3		VSS	VSS	VSS	VSS	VSS		VSS_9	VDD_2	PC8	PC7
Н	PH1- OSC_OUT	PF2	PF1	PH4		VSS	VSS	vss	VSS	VSS		VSS_14	VDD_9	PG8	PC6
J	NRST	PF3	PF4	PH5		VSS	VSS	VSS	VSS	VSS		VDD_14	VDD_8	PG7	PG6
K	PF7	PF6	PF5	VDD_4		VSS	VSS	VSS	VSS	VSS		PH12	PG5	PG4	PG3
L	PF10	PF9	PF8	REGOFF								PH11	PH10	PD15	PG2
М	VSSA	PC0	PC1	PC2	PC3	PB2	PG1	VSS_6	VSS_7	VCAP1	PH6	PH8	PH9	PD14	PD13
N	VREF-	PA1	PA0- WKUP	PA4	PC4	PF13	PG0	VDD_6	VDD_7	VDD_1	PE13	PH7	PD12	PD11	PD10
Р	VREF+	PA2	PA6	PA5	PC5	PF12	PF15	PE8	PE9	PE11	PE14	PB12	PB13	PD9	PD8
R	VDDA	PA3	PA7	PB1	PB0	PF11	PF14	PE7	PE10	PE12	PE15	PB10	PB11	PB14	PB15

1. RFU means "reserved for future use".

2. Top view.

Table 5. STM32F20x pin and ball definitions

	ie 5.		ns			t pin and ban denin					
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Alternate functions	Other functions
-	-	1	1	1	A2	PE2	I/O	FT	PE2	TRACECLK/ FSMC_A23 / ETH_MII_TXD3	
-	-	2	2	2	A1	PE3	I/O	FT	PE3	TRACED0/FSMC_A19	
-	,	3	3	3	B1	PE4	I/O	FT	PE4	TRACED1/FSMC_A20 / DCMI_D4	
-	-	4	4	4	B2	PE5	I/O	FT	PE5	TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6	
-	-	5	5	5	В3	PE6	I/O	FT	PE6	TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7	
1	A 9	6	6	6	C1	V_{BAT}	S		V_{BAT}		
-	-	-	-	7	D2	PI8 ⁽⁴⁾	I/O	FT	PI8 ⁽⁵⁾		RTC_AF2
2	B8	7	7	8	D1	PC13 ⁽⁴⁾	I/O	FT	PC13 ⁽⁵⁾		RTC_AF1
3	В9	8	8	9	E1	PC14 ⁽⁴⁾ -OSC32_IN ⁽⁶⁾	I/O	FT	PC14 ⁽⁵⁾		OSC32_IN
4	С9	9	9	10	F1	PC15 ⁽⁴⁾ - OSC32_OUT ⁽⁶⁾	I/O	FT	PC15 ⁽⁵⁾		OSC32_OUT
-	-	ı	ı	11	D3	PI9	0	FT	PI9	CAN1_RX	
-	-	ı	•	12	E3	PI10	I/O	FT	PI10	ETH_MII_RX_ER	
-	-	1	-	13	E4	PI11	I/O	FT	Pl11	OTG_HS_ULPI_DIR	
-	-	1	•	14	F2	V _{SS_13}	S		V _{SS_13}		
-	-	1	•	15	F3	V _{DD_13}	S		V_{DD_13}		
-	-		10	16	E2	PF0	I/O	FT	PF0	FSMC_A0 / I2C2_SDA	
-	-		11	17	НЗ	PF1	I/O	FT	PF1	FSMC_A1 / I2C2_SCL	
-	-		12	18	H2	PF2	I/O	FT	PF2	FSMC_A2 / I2C2_SMBA	
-	-	ı	13	19	J2	PF3 ⁽⁶⁾	0	FT	PF3	FSMC_A3	ADC3_IN9
-	-	1	14	20	J3	PF4 ⁽⁶⁾	I/O	FT	PF4	FSMC_A4	ADC3_IN14
-	-		15	21	K3	PF5 ⁽⁶⁾	I/O	FT	PF5	FSMC_A5	ADC3_IN15
-	Н9	10	16	22	G2	V _{SS_5}	S		V_{SS_5}		
-	-	11	17	23	G3	V_{DD_5}	S		V_{DD_5}		
-	-	_ _	18	24	K2	PF6 ⁽⁶⁾	I/O	FT	PF6	TIM10_CH1 / FSMC_NIORD	ADC3_IN4
-	-	1	19	25	K1	PF7 ⁽⁶⁾	I/O	FT	PF7	TIM11_CH1/FSMC_NREG	ADC3_IN5
-	-	•	20	26	L3	PF8 ⁽⁶⁾	I/O	FT	PF8	TIM13_CH1 / FSMC_NIOWR	ADC3_IN6
-	-	-	21	27	L2	PF9 ⁽⁶⁾	I/O	FT	PF9	TIM14_CH1 / FSMC_CD	ADC3_IN7

Table 5. STM32F20x pin and ball definitions (continued)

		Pi	ns			•		(2)	,		
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Alternate functions	Other functions
-	-	-	22	28	L1	PF10 ⁽⁶⁾	I/O	FT	PF10	FSMC_INTR	ADC3_IN8
5	E9	12	23	29	G1	PH0 ⁽⁶⁾ -OSC_IN	I/O	FT	PH0		OSC_IN
6	F9	13	24	30	H1	PH1 ⁽⁶⁾ -OSC_OUT	I/O	FT	PH1		OSC_OUT
7	E8	14	25	31	J1	NRST	I/O		NRST		
8	G9	15	26	32	M2	PC0 ⁽⁶⁾	I/O	FT	PC0	OTG_HS_ULPI_STP	ADC123_ IN10
9	F8	16	27	33	МЗ	PC1 ⁽⁶⁾	I/O	FT	PC1	ETH_MDC	ADC123_ IN11
10	D7	17	28	34	M4	PC2 ⁽⁶⁾	I/O	FT	PC2	SPI2_MISO / OTG_HS_ULPI_DIR / ETH_MII_TXD2	ADC123_ IN12
11	G8	18	29	35	M5	PC3 ⁽⁶⁾	I/O	FT	PC3	SPI2_MOSI / I2S2_SD / OTG_HS_ULPI_NXT / ETH_MII_TX_CLK	ADC123_ IN13
-	-	19	30	36	-	V _{DD_12}	S		V _{DD_12}		
12	-	20	31	37	M1	V _{SSA}	S		V _{SSA}		
-	1	ı	ı	-	N1	V_{REF}	S		V_{REF-}		
-	F7	21	32	38	P1	V_{REF+}	S		V_{REF+}		
13	-	22	33	39	R1	V_{DDA}	S		V_{DDA}		
14	E7	23	34	40	N3	PA0 ⁽⁷⁾ -WKUP ⁽⁶⁾	I/O	FT	PA0-WKUP	USART2_CTS/ UART4_TX/ ETH_MII_CRS / TIM2_CH1_ETR/ TIM5_CH1 / TIM8_ETR	ADC123_CH0 /WKUP
15	Н8	24	35	41	N2	PA1 ⁽⁶⁾		FT	PA1	USART2_RTS / UART4_RX/ ETH_RMII_REF_CLK / ETH_MII_RX_CLK / TIM5_CH2 / TIM2_CH2	ADC123_IN1
16	J9	25	36	42	P2	PA2 ⁽⁶⁾	I/O	FT	PA2	USART2_TX/TIM5_CH3 / TIM9_CH1 / TIM2_CH3 / ETH_MDIO	ADC123_IN2
-	-	1	-	43	F4	PH2	I/O	FT	PH2	ETH_MII_CRS	
-	-	_	-	44	G4	PH3	I/O	FT	PH3	ETH_MII_COL	
-	-	-	-	45	H4	PH4	I/O	FT	PH4	I2C2_SCL / OTG_HS_ULPI_NXT	
L-	-			46	J4	PH5	I/O	FT	PH5	I2C2_SDA	

Table 5. STM32F20x pin and ball definitions (continued)

	ie J.		ns			pin and ban denin		<u> </u>	,		
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Alternate functions	Other functions
17	G7	26	37	47	R2	PA3 ⁽⁶⁾	I/O	FT	PA3	USART2_RX/TIM5_CH4 / TIM9_CH2 / TIM2_CH4 / OTG_HS_ULPI_D0 / ETH_MII_COL	ADC123_IN3
18	F1	27	38	48	-	$V_{\rm SS_4}$	S		V_{SS_4}		
	H7				L4	REGOFF	I/O		REGOFF		
19	E1	28	39	49	K4	V_{DD_4}	S		V _{DD_4}		
20	J8	29	40	50	N4	PA4 ⁽⁶⁾	I/O		PA4	SPI1_NSS / SPI3_NSS / USART2_CK / DCMI_HSYNC / OTG_HS_SOF/ I2S3_WS	ADC12_IN4 /DAC1_OUT
21	H6	30	41	51	P4	PA5 ⁽⁶⁾	I/O		PA5	SPI1_SCK/ OTG_HS_ULPI_CK / / TIM2_CH1_ETR/ TIM8_CHIN	ADC12_IN5 /DAC2_OUT
22	H5	31	42	52	P3	PA6 ⁽⁶⁾	I/O	FT	PA6	SPI1_MISO / TIM8_BKIN/TIM13_CH1 / DCMI_PIXCLK / TIM3_CH1 / TIM1_BKIN	ADC12_IN6
23	J7	32	43	53	R3	PA7 ⁽⁶⁾	I/O	FT	PA7	SPI1_MOSI/TIM8_CH1N / TIM14_CH1 TIM3_CH2/ ETH_MII_RX_DV / TIM1_CH1N / RMII_CRS_DV	ADC12_IN7
24	H4	33	44	54	N5	PC4 ⁽⁶⁾	I/O	FT	PC4	ETH_RMII_RX_D0 / ETH_MII_RX_D0	ADC12_IN14
25	G3	34	45	55	P5	PC5 ⁽⁶⁾	I/O	FT	PC5	ETH_RMII_RX_D1 / ETH_MII_RX_D1	ADC12_IN15
26	J6	35	46	56	R5	PB0 ⁽⁶⁾	I/O	FT	PB0	TIM3_CH3 / TIM8_CH2N/ OTG_HS_ULPI_D1/ ETH_MII_RXD2 / TIM1_CH2N	ADC12_IN8
27	J5	36	47	57	R4	PB1 ⁽⁶⁾	I/O	FT	PB1	TIM3_CH4 / TIM8_CH3N/ OTG_HS_ULPI_D2/ ETH_MII_RXD3 / OTG_HS_INTN / TIM1_CH3N	ADC12_IN9
28	J4	37	48	58	M6	PB2	I/O	FT	PB2-BOOT1		
-	-	ı	49	59	R6	PF11	I/O	FT	PF11	DCMI_12	
-	-	-	50	60	P6	PF12	I/O	FT	PF12	FSMC_A6	

Table 5. STM32F20x pin and ball definitions (continued)

		Pi	ns			•		(a)	,		
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Alternate functions	Other functions
-	1	-	51	61	M8	V_{SS_6}	S		V _{SS_6}		
-	-	-	52	62	N8	V _{DD_6}	S		V _{DD_6}		
-	1	-	53	63	N6	PF13	I/O	FT	PF13	FSMC_A7	
-	-	-	54	64	R7	PF14	I/O	FT	PF14	FSMC_A8	
-	1	-	55	65	P7	PF15	I/O	FT	PF15	FSMC_A9	
-	1	-	56	66	N7	PG0	I/O	FT	PG0	FSMC_A10	
-	1	-	57	67	M7	PG1	I/O	FT	PG1	FSMC_A11	
-	1	38	58	68	R8	PE7	I/O	FT	PE7	FSMC_D4/TIM1_ETR	
-	1	39	59	69	P8	PE8	I/O	FT	PE8	FSMC_D5/TIM1_CH1N	
-	-	40	60	70	P9	PE9	I/O	FT	PE9	FSMC_D6/TIM1_CH1	
-	-	-	61	71	M9	V _{SS_7}	S		V _{SS_7}		
-	-	-	62	72	N9	V _{DD_7}	S		V _{DD_7}		
-	-	41	63	73	R9	PE10	I/O	FT	PE10	FSMC_D7/TIM1_CH2N	
-	-	42	64	74	P10	PE11	I/O	FT	PE11	FSMC_D8/TIM1_CH2	
-	-	43	65	75	R10	PE12	I/O	FT	PE12	FSMC_D9/TIM1_CH3N	
-	-	44	66	76	N11	PE13	I/O	FT	PE13	FSMC_D10/TIM1_CH3	
-	-	45	67	77	P11	PE14	I/O	FT	PE14	FSMC_D11/TIM1_CH4	
-	-	46	68	78	R11	PE15	I/O	FT	PE15	FSMC_D12/TIM1_BKIN	
29	НЗ	47	69	79	R12	PB10	I/O	FT	PB10	SPI2_SCK/ I2S2_CK/ I2C2_SCL / USART3_TX / OTG_HS_ULPI_D3 / ETH_MII_RX_ER / OTG_HS_SCL / TIM2_CH3	
30	J2	48	70	80	R13	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX/ OTG_HS_ULPI_D4 / ETH_RMII_TX_EN/ ETH_MII_TX_EN / OTG_HS_SDA / TIM2_CH4	
31	J3	49	71	81	M10	V _{CAP_1}	S		V _{CAP_1}		
32	-	50	72	82	N10	$V_{DD_{-1}}$	S		V _{DD_1}		
-	-	-	-	83	M11	PH6	I/O	FT	PH6	I2C2_SMBA/TIM12_CH1/ ETH_MII_RXD2	
-	-	-	-	84	N12	PH7	I/O	FT	PH7	I2C3_SCL / ETH_MII_RXD3	
-	-	-	-	85	M12	PH8	I/O	FT	PH8	I2C3_SDA / DCMI_HSYNC	

Table 5. STM32F20x pin and ball definitions (continued)

		Pi	ns			•		(2	,		
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Alternate functions	Other functions
-	1		-	86	M13	PH9	I/O	FT	PH9	I2C3_SMBA / TIM12_CH2/ DCMI_D0	
-	1		-	87	L13	PH10	I/O	FT	PH10	TIM5_CH1_ETR / DCMI_D1	
-	-	1	•	88	L12	PH11	I/O	FT	PH11	TIM5_CH2 / DCMI_D2	
-	-	1	-	89	K12	PH12	I/O	FT	PH12	TIM5_CH3 / DCMI_D3	
-	-	-	•	90	H12	V _{SS_14}	S		V _{SS_14}		
-	-	1	-	91	J12	V _{DD_14}	S		V _{DD_14}		
33	J1	51	73	92	P12	PB12	I/O	FT	PB12	SPI2_NSS/I2S2_WS/ I2C2_SMBA/ USART3_CK/TIM1_BKIN / CAN2_RX / OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/ OTG_HS_ID	
34	H2	52	74	93	P13	PB13	I/O	FT	PB13	SPI2_SCK / I2S2_CK / USART3_CTS/ TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1	OTG_HS_ VBUS
35	H1	53	75	94	R14	PB14	I/O	FT	PB14	SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DM USART3_RTS/ TIM8_CH2N	
36	G1	54	76	95	R15	PB15	I/O	FT	PB15	SPI2_MOSI / I2S2_SD / TIM1_CH3N / TIM8_CH3N	
-	1	55	77	96	P15	PD8	I/O	FT	PD8	FSMC_D13 / USART3_TX	
-	-	56	78	97	P14	PD9	I/O	FT	PD9	FSMC_D14 / USART3_RX	
-	-	57	79	98	N15	PD10	I/O	FT	PD10	FSMC_D15 / USART3_CK	
-	-	58	80	99	N14	PD11	I/O	FT	PD11	FSMC_A16/USART3_CTS	
	-	59	81	100	N13	PD12	I/O	FT	PD12	FSMC_A17/TIM4_CH1 / USART3_RTS	
-	-	60	82	101	M15	PD13	I/O	FT	PD13	FSMC_A18/TIM4_CH2	
-	-	-	83	102	-	V _{SS_8}	S		V _{SS_8}		
-	-	1	84	103	J13	$V_{DD_{-8}}$	S		V_{DD_8}		

Table 5. STM32F20x pin and ball definitions (continued)

	ie J.		ns			pin and ban denin			•		
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Alternate functions	Other functions
-	-	61	85	104	M14	PD14	I/O	FT	PD14	FSMC_D0/TIM4_CH3	
-	-	62	86	105	L14	PD15	I/O	FT	PD15	FSMC_D1/TIM4_CH4	
-	-	1	87	106	L15	PG2	I/O	FT	PG2	FSMC_A12	
-	-	ı	88	107	K15	PG3	I/O	FT	PG3	FSMC_A13	
-	-	-	89	108	K14	PG4	I/O	FT	PG4	FSMC_A14	
-	-	-	90	109	K13	PG5	I/O	FT	PG5	FSMC_A15	
-	-	-	91	110	J15	PG6	I/O	FT	PG6	FSMC_INT2	
-	-	-	92	111	J14	PG7	I/O	FT	PG7	FSMC_INT3 /USART6_CK	
-	-	-	93	112	H14	PG8	I/O	FT	PG8	USART6_RTS / ETH_PPS_OUT	
-	-	-	94	113	G12	V_{SS_9}	S		V_{SS_9}		
-	-	-	95	114	H13	V_{DD_9}	S		V_{DD_9}		
37	G2	63	96	115	H15	PC6	I/O	FT	PC6	SPI2_MCK / TIM8_CH1/SDIO_D6 / USART6_TX / DCMI_D0/TIM3_CH1	
38	F2	64	97	116	G15	PC7	I/O	FT	PC7	SPI3_MCK / TIM8_CH2/SDIO_D7 / USART6_RX / DCMI_D1/TIM3_CH2	
39	F3	65	98	117	G14	PC8	I/O	FT	PC8	TIM8_CH3/SDIO_D0 /TIM3_CH3/ USART6_CK / DCMI_D2	
40	D1	66	99	118	F14	PC9	I/O	FT	PC9	I2S2_CKIN/ I2S3_CKIN/ MCO2 / TIM8_CH4/SDIO_D1 / /I2C3_SDA / DCMI_D3 / TIM3_CH4	
41	E2	67	100	119	F15	PA8	I/O	FT	PA8	MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL/ OTG_FS_SOF	
42	E3	68	101	120	E15	PA9	I/O	FT	PA9	USART1_TX/ TIM1_CH2 / I2C3_SMBA / DCMI_D0	OTG_FS_ VBUS
43	D3	69	102	121	D15	PA10	I/O	FT	PA10	USART1_RX/ TIM1_CH3/ OTG_FS_ID/DCMI_D1	
44	D2	70	103	122	C15	PA11	I/O	FT	PA11	USART1_CTS/CAN1_RX/ TIM1_CH4/OTG_FS_DM	

Table 5. STM32F20x pin and ball definitions (continued)

		Pi	ns			pin and ball defini		<u> </u>	,		
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Alternate functions	Other functions
45	C1	71	104	123	B15	PA12	I/O	FT	PA12	USART1_RTS / CAN1_TX/ TIM1_ETR/ OTG_FS_DP	
46	B2	72	105	124	A15	PA13	I/O	FT	JTMS- SWDIO	JTMS-SWDIO	
47	C2	73	106	125	F13	V _{CAP_2}	S		V _{CAP_2}		
-	В1	74	107	126	F12	V _{SS_2}	S		V _{SS_2}		
48	A8	75	108	127	G13	V _{DD_2}	S		V _{DD_2}		
-	1	-	1	128	E12	PH13	I/O	FT	PH13	TIM8_CH1N / CAN1_TX	
-	-	-	-	129	E13	PH14	I/O	FT	PH14	TIM8_CH2N / DCMI_D4	
-	-	-	-	130	D13	PH15	I/O	FT	PH15	TIM8_CH3N / DCMI_D11	
-	-	-	-	131	E14	PI0	I/O	FT	PI0	TIM5_CH4 / SPI2_NSS / I2S2_WS / DCMI_D13	
-	-	-	-	132	D14	PI1	I/O	FT	PI1	SPI2_SCK / I2S2_CK / DCMI_D8	
-	-	-	-	133	C14	PI2	I/O	FT	Pl2	TIM8_CH4 /SPI2_MISO / DCMI_D9	
-	-	-	-	134	C13	PI3	I/O	FT	PI3	TIM8_ETR / SPI2_MOSI / I2S2_SD / DCMI_D10	
-	-	-	-	135	D9	V _{SS_15}	S		V _{SS_15}		
-	-	-	-	136	C9	V _{DD_15}	S		V _{DD_15}		
49	A1	76	109	137	A14	PA14	I/O	FT	JTCK- SWCLK	JTCK-SWCLK	
50	A2	77	110	138	A13		I/O	FT	JTDI	JTDI/ SPI3_NSS/ I2S3_WS/TIM2_CH1_ETR / SPI1_NSS	
51	ВЗ	78	111	139	B14	PC10	I/O	FT	PC10	SPI3_SCK / I2S3_CK / UART4_TX / SDIO_D2 / DCMI_D8 / USART3_TX	
52	СЗ	79	112	140	B13	PC11	I/O	FT	PC11	UART4_RX/ SPI3_MISO / SDIO_D3 / DCMI_D4/USART3_RX	
53	АЗ	80	113	141	A12	PC12	I/O	FT	PC12	UART5_TX/SDIO_CK / DCMI_D9 / SPI3_MOSI / I2S3_SD / USART3_CK	
-	-	81	114	142	B12	PD0	I/O	FT	PD0	FSMC_D2/CAN1_RX	
-	-	82	115	143	C12	PD1	I/O	FT	PD1	FSMC_D3 / CAN1_TX	

Table 5. STM32F20x pin and ball definitions (continued)

		Pi	ns			pin and ban denin			,		
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name	Type ⁽¹⁾	1/0 Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Alternate functions	Other functions
54	C7	83	116	144	D12	PD2	I/O	FT	PD2	TIM3_ETR/UART5_RX SDIO_CMD / DCMI_D11	
-	-	84	117	145	D11	PD3	I/O	FT	PD3	FSMC_CLK/USART2_CTS	
-	-	85	118	146	D10	PD4	I/O	FT	PD4	FSMC_NOE/USART2_RTS	
-	-	86	119	147	C11	PD5	I/O	FT	PD5	FSMC_NWE/USART2_TX	
-	-	ı	120	148	D8	$V_{SS_{-10}}$	S		V _{SS_10}		
-	-	-	121	149	C8	V_{DD_10}	S		V _{DD_10}		
-	-	87	122	150	B11	PD6	I/O	FT	PD6	FSMC_NWAIT/USART2_R X	
-	-	88	123	151	A11	PD7	I/O	FT	PD7	USART2_CK/FSMC_NE1/F SMC_NCE2	
-	-	-	124	152	C10	PG9	I/O	FT	PG9	USART6_RX / FSMC_NE2/FSMC_NCE3	
-	-	-	125	153	B10	PG10	I/O	FT	PG10	FSMC_NCE4_1/ FSMC_NE3	
-	,	-	126	154	В9	PG11	I/O	FT	PG11	FSMC_NCE4_2 / ETH_MII_TX_EN	
-	,	-	127	155	B8	PG12	I/O	FT	PG12	FSMC_NE4 / USART6_RTS	
-	-	-	128	156	A8	PG13	I/O	FT	PG13	FSMC_A24 / USART6_CTS /ETH_MII_TXD0/ETH_RMII _TXD0	
-	1	1	129	157	A7	PG14	I/O	FT	PG14	FSMC_A25 / USART6_TX /ETH_MII_TXD1/ETH_RMII _TXD1	
-	-	-	130	158	D7	V _{SS_11}	S		V _{SS_11}		
-	-	ı	131	159	C7	V _{DD_11}	S		V _{DD_11}		
-	-	-	132	160	В7	PG15	I/O	FT	PG15	USART6_CTS / DCMI_D13	
55	A4	89	133	161	A10	PB3	I/O	FT	JTDO/ TRACESWO	JTDO/ TRACESWO/ SPI3_SCK / I2S3_CK / TIM2_CH2 / SPI1_SCK	
56	B4	90	134	162	A 9	PB4	I/O	FT	NJTRST	NJTRST/ SPI3_MISO / TIM3_CH1 / SPI1_MISO	

Table 5. STM32F20x pin and ball definitions (continued)

		Pi	ns					(2)			
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Alternate functions	Other functions
57	A 5	91	135	163	A6	PB5	I/O	FT	PB5	I2C1_SMBA/ CAN2_RX / OTG_HS_ULPI_D7 / ETH_PPS_OUT/TIM3_CH2 / SPI1_MOSI/ SPI3_MOSI / DCMI_D10 / I2S3_SD	
58	B5	92	136	164	В6	PB6	I/O	FT	PB6	I2C1_SCL/ TIM4_CH1 / CAN2_TX /OTG_FS_INTN / DCMI_D5/USART1_TX	
59	A6	93	137	165	B5	PB7	I/O	FT	PB7	I2C1_SDA / FSMC_NL ⁽⁸⁾ / DCMI_VSYNC / USART1_RX/ TIM4_CH2	
60	В6	94	138	166	D6	BOOT0	Ι		воото		V_{PP}
61	В7	95	139	167	A 5	PB8	I/O	FT	PB8	TIM4_CH3/SDIO_D4/ TIM10_CH1 / DCMI_D6 / OTG_FS_SCL/ ETH_MII_TXD3 / I2C1_SCL/ CAN1_RX	
62	A7	96	140	168	B4	PB9	I/O	FT	PB9	SPI2_NSS/ I2S2_WS/ TIM4_CH4/ TIM11_CH1/ OTG_FS_SDA/ SDIO_D5 / DCMI_D7 / I2C1_SDA / CAN1_TX	
-	-	97	141	169	A4	PE0	I/O	FT	PE0	TIM4_ETR / FSMC_NBL0 / DCMI_D2	
-	-	98	142	170	А3	PE1	I/O	FT	PE1	FSMC_NBL1 / DCMI_D3	
	-				D5	V _{SS}	S		V _{SS}		
63	D8	-	_	-	-	V _{SS_3}	S		V _{SS_3}		
-	-	99	143	171	C6	RFU ⁽⁹⁾					
64	D9	100	144	172	C5	V_{DD_3}	S		V_{DD_3}		
-	-	-	-	173	D4	PI4	I/O	FT	PI4	TIM8_BKIN / DCMI_D5	
-	-	-	-	174	C4	PI5	I/O	FT	PI5	TIM8_CH1 / DCMI_VSYNC	
-	-	-	-	175	СЗ	PI6	I/O	FT	PI6	TIM8_CH2 / DCMI_D6	
-	-	-	-	176	C2	PI7	I/O	FT	PI7	TIM8_CH3 / DCMI_D7	
	C8	-	-	-	-	IRROFF	I/O		IRROFF		

^{1.} I = input, O = output, S = supply, HiZ = high impedance.

^{2.} FT = 5 V tolerant.

^{3.} Function availability depends on the chosen device.

- 4. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).
- 5. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.
- 6. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
- 7. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to V_{DD} (Regulator in bypass mode), then PA0 is used as an internal Reset (active low).
- 8. FSMC_NL pin is also named FSMC_NADV on memory devices.
- 9. RFU = reserved for future use.

Table 6.	Alte	ernate fu	inction ma	apping
	AF0	AF1	AF2	AF3

	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	I2C1/I2C2/I2C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_FS	DCMI	AF014	AF15
PA0-WKUP		TIM2_CH1 TIM2_ETR	TIM 5_CH1	TIM8_ETR				USART2_CTS	UART4_TX			ETH_MII_CRS				EVENTOUT
PA1		TIM2_CH2	TIM5_CH2					USART2_RTS	UART4_RX			ETH_MII_RX_CLK ETH_RMII_REF_CLK				EVENTOUT
PA2		TIM2_CH3	TIM5_CH3	TIM9_CH1				USART2_TX				ETH_MDIO				EVENTOUT
PA3		TIM2_CH4	TIM5_CH4	TIM9_CH2				USART2_RX			OTG_HS_ULPI_D0	ETH_MII_COL				EVENTOUT
PA4						SPI1_NSS	SPI3_NSS I2S3_WS	USART2_CK					OTG_HS_SOF	DCMI_HSYNC		EVENTOUT
PA5		TIM2_CH1 TIM2_ETR		TIM8_CH1N		SPI1_SCK					OTG_HS_ULPI_CK					EVENTOUT
PA6		TIM1_BKIN	TIM3_CH1	TIM8_BKIN		SPI1_MISO				TIM13_CH1				DCMI_PIXCK		EVENTOUT
PA7		TIM1_CH1N	TIM3_CH2	TIM8_CH1N		SPI1_MOSI				TIM14_CH1		ETH_MII_RX_DV ETH_RMII_CRS_DV				EVENTOUT
PA8	MCO1	TIM1_CH1			I2C3_SCL			USART1_CK			OTG_FS_SOF					EVENTOUT
PA9		TIM1_CH2			I2C3_SMBA			USART1_TX						DCMI_D0		EVENTOUT
PA10		TIM1_CH3						USART1_RX			OTG_FS_ID			DCMI_D1		EVENTOUT
PA11		TIM1_CH4						USART1_CTS		CAN1_RX	OTG_FS_DM					EVENTOUT
PA12		TIM1_ETR						USART1_RTS		CAN1_TX	OTG_FS_DP					EVENTOUT
PA13	JTMS-SWDIO															EVENTOUT
PA14	JTCK-SWCLK															EVENTOUT
PA15	JTDI	TIM 2_CH1 TIM 2_ETR				SPI1_NSS	SPI3_NSS I2S3_WS									EVENTOUT
PB0		TIM1_CH2N	TIM3_CH3	TIM8_CH2N							OTG_HS_ULPI_D1	ETH _MII_RXD2				EVENTOUT
PB1		TIM1_CH3N	TIM3_CH4	TIM8_CH3N							OTG_HS_ULPI_D2	ETH_MII_RXD3	OTG_HS_INTN			EVENTOUT
PB2																EVENTOUT
PB3	JTDO/ TRACESWO	TIM2_CH2				SPI1_SCK	SPI3_SCK I2S3_CK									EVENTOUT
PB4	JTRST		TIM3_CH1			SPI1_MISO	SPI3_MISO									EVENTOUT
PB5			TIM3_CH2		I2C1_SMBA	SPI1_MOSI	SPI3_MOSI I2S3_SD			CAN2_RX	OTG_HS_ULPI_D7	ETH_PPS_OUT		DCMI_D10		EVENTOUT
PB6			TIM4_CH1		I2C1_SCL			USART1_TX		CAN2_TX	OTG_FS_INTN			DCMI_D5		EVENTOUT
PB7			TIM4_CH2		I2C1_SDA			USART1_RX					FSMC_NL	DCMI_VSYNC		EVENTOUT
PB8			TIM4_CH3	TIM10_CH1	I2C1_SCL					CAN1_RX	OTG_FS_SCL	ETH _MII_TXD3	SDIO_D4	DCMI_D6		EVENTOUT
PB9			TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS I2S2_WS				CAN1_TX	OTG_FS_SDA		SDIO_D5	DCMI_D7		EVENTOUT
PB10		TIM2_CH3			I2C2_SCL	SPI2_SCK I2S2_CK		USART3_TX			OTG_HS_ULPI_D3	ETH_MII_RX_ER	OTG_HS_SCL			EVENTOUT
PB11		TIM2_CH4			I2C2_SDA			USART3_RX			OTG_HS_ULPI_D4	ETH_MII_TX_EN ETH_RMII_TX_EN	OTG_HS_SDA			EVENTOUT
PB12		TIM1_BKIN			I2C2_SMBA	SPI2_NSS I2S2_WS		USART3_CK		CAN2_RX	OTG_HS_ULPI_D5	ETH _MII_TXD0 ETH _RMII_TXD0	OTG_HS_ID			EVENTOUT
PB13		TIM1_CH1N				SPI2_SCK I2S2_CK		USART3_CTS		CAN2_TX	OTG_HS_ULPI_D6	ETH _MII_TXD1 ETH _RMII_TXD1				EVENTOUT
PB14		TIM1_CH2N		TIM8_CH2N		SPI2_MISO		USART3_RTS		TIM12_CH1			OTG_HS_DM			EVENTOUT

 Table 6.
 Alternate function mapping (continued)

	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	I2C1/I2C2/I2C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_FS	DCMI	AF014	AF15
PB15	RTC_50Hz	TIM1_CH3N		TIM8_CH3N		SPI2_MOSI I2S2_SD				TIM12_CH2			OTG_HS_DP			EVENTOUT
PC0											OTG_HS_ULPI_STP					EVENTOUT
PC1												ETH_MDC				EVENTOUT
PC2						SPI2_MISO					OTG_HS_ULPI_DIR	ETH _MII_TXD2				EVENTOUT
PC3						SPI2_MOSI					OTG_HS_ULPI_NXT	ETH_MII_TX_CLK ETH_RMII_TX_CLK				EVENTOUT
PC4												ETH_MII_RXD0 ETH_RMII_RXD0				EVENTOUT
PC5												ETH_MII_RXD1 ETH_RMII_RXD1				EVENTOUT
PC6			TIM3_CH1	TIM8_CH1		I2S2_MCK			USART6_TX				SDIO_D6	DCMI_D0		EVENTOUT
PC7			TIM3_CH2	TIM8_CH2			I2S3_SCK		USART6_RX				SDIO_D7	DCMI_D1		EVENTOUT
PC8			TIM3_CH3	TIM8_CH3					USART6_CK				SDIO_D0	DCMI_D2		EVENTOUT
PC9	MCO2		TIM3_CH4	TIM8_CH4	I2C3_SDA	I2S2_CKIN	I2S3_CKIN						SDIO_D1	DCMI_D3		EVENTOUT
PC10							SPI3_SCK I2S3_CK	USART3_TX	UART4_TX				SDIO_D2	DCMI_D8		EVENTOUT
PC11							SPI3_MISO	USART3_RX	UART4_RX				SDIO_D3	DCMI_D4		EVENTOUT
PC12							SPI3_MOSI I2S3_SD	USART3_CK	UART5_TX				SDIO_CK	DCMI_D9		EVENTOUT
PC13																
PC14-OSC32_IN																
PC15-OSC32_OUT																
PD0										CAN1_RX			FSMC_D2			EVENTOUT
PD1										CAN1_TX			FSMC_D3			EVENTOUT
PD2			TIM3_ETR						UART5_RX				SDIO_CMD	DCMI_D11		EVENTOUT
PD3								USART2_CTS					FSMC_CLK			EVENTOUT
PD4								USART2_RTS					FSMC_NOE			EVENTOUT
PD5								USART2_TX					FSMC_NWE			EVENTOUT
PD6								USART2_RX					FSMC_NWAIT			EVENTOUT
PD7								USART2_CK					FSMC_NE1			EVENTOUT
PD8								USART3_TX					FSMC_D13			EVENTOUT
PD9								USART3_RX					FSMC_D14			EVENTOUT
PD10								USART3_CK					FSMC_D15			EVENTOUT
PD11								USART3_CTS					FSMC_A16			EVENTOUT
PD12			TIM4_CH1					USART3_RTS					FSMC_A17			EVENTOUT
PD13			TIM4_CH2										FSMC_A18			EVENTOUT
PD14			TIM4_CH3										FSMC_D0			EVENTOUT

Doc ID 15818 Rev 5

EVENTOUT

FSMC_A9

able 6.	Alte	ernate fu	inction ma	apping ((continue	ed)										
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	I2C1/I2C2/I2C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_FS	DCMI	AF014	AF15
PD15			TIM4_CH4										FSMC_D1			EVENTO
PE0			TIM4_ETR										FSMC_NBL0	DCMI_D2		EVENTO
PE1													FSMC_BLN1	DCMI_D3		EVENTO
PE2	TRACECLK											ETH _MII_TXD3	FSMC_A23			EVENTO
PE3	TRACED0												FSMC_A19			EVENTO
PE4	TRACED1												FSMC_A20	DCMI_D4		EVENTO
PE5	TRACED2			TIM9_CH1									FSMC_A21	DCMI_D6		EVENTO
PE6	TRACED3			TIM9_CH2									FSMC_A22	DCMI_D7		EVENTO
PE7		TIM1_ETR											FSMC_D4			EVENTO
PE8		TIM1_CH1N											FSMC_D5			EVENTO
PE9		TIM1_CH1											FSMC_D6			EVENTO
PE10		TIM1_CH2N											FSMC_D7			EVENTO
PE11		TIM1_CH2											FSMC_D8			EVENTO
PE12		TIM1_CH3N											FSMC_D9			EVENTO
PE13		TIM1_CH3											FSMC_D10			EVENTO
PE14		TIM1_CH4											FSMC_D11			EVENTO
PE15		TIM1_BKIN											FSMC_D12			EVENTO
PF0					I2C2_SDA								FSMC_A0			EVENTO
PF1					I2C2_SCL								FSMC_A1			EVENTO
PF2					I2C2_SMBA								FSMC_A2			EVENTO
PF3													FSMC_A3			EVENTO
PF4													FSMC_A4			EVENTO
PF5													FSMC_A5			EVENTO
PF6				TIM10_CH1									FSMC_NIORD			EVENTO
PF7				TIM11_CH1									FSMC_NREG			EVENTO
PF8										TIM13_CH1			FSMC_NIOWR			EVENTO
PF9										TIM14_CH1			FSMC_CD			EVENTO
PF10				<u> </u>									FSMC_INTR			EVENTO
PF11				1										DCMI_D12		EVENTO
PF12													FSMC_A6			EVENTO
PF13				<u> </u>									FSMC_A7			EVENTO
PF14													FSMC_A8			EVENTO

PF15

 Table 6.
 Alternate function mapping (continued)

iable 6.	Aite	inate it	inction ma	ippiiig (Continu	Juj										
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port	sys	TIM1/2	TIM3/4/5	TIM8/9/10/11	I2C1/I2C2/I2C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_FS	DCMI	AF014	AF15
				-									_			
PG0													FSMC_A10			EVENTOU
PG1													FSMC_A11			EVENTOUT
PG2													FSMC_A12			EVENTOUT
PG3													FSMC_A13			EVENTOUT
PG4													FSMC_A14			EVENTOUT
PG5													FSMC_A15			EVENTOUT
PG6													FSMC_INT2			EVENTOUT
PG7									USART6_CK				FSMC_INT3			EVENTOUT
PG8									USART6_RTS			ETH_PPS_OUT				EVENTOUT
PG9									USART6_RX				FSMC_NE2			EVENTOUT
PG10													FSMC_NCE4_1			EVENTOUT
PG11												ETH_MII_TX_EN ETH_RMII_TX_EN	FSMC_NCE4_2			EVENTOUT
PG12									USART6_RTS				FSMC_NE4			EVENTOU
PG13									UART6_CTS			ETH _MII_TXD0 ETH _RMII_TXD0	FSMC_A24			EVENTOUT
PG14									USART6_TX			ETH _MII_TXD1 ETH _RMII_TXD1	FSMC_A25			EVENTOUT
PG15									USART6_CTS					DCMI_D13		EVENTOU
PH0 - OSC_IN																
PH1 - OSC_OUT																
PH2												ETH_MII_CRS				EVENTOUT
PH3												ETH _MII_COL				EVENTOU
PH4					I2C2_SCL						OTG_HS_ULPI_NXT					EVENTOU
PH5					I2C2_SDA											EVENTOU
PH6					I2C2_SMBA					TIM12_CH1		ETH _MII_RXD2				EVENTOU
PH7					I2C3_SCL							ETH _MII_RXD3				EVENTOUT
PH8					I2C3_SDA									DCMI_HSYNC		EVENTOU
PH9					I2C3_SMBA					TIM12_CH2				DCMI_D0		EVENTOUT
PH10			TIM5_CH1TIM5_ETR											DCMI_D1		EVENTOUT
PH11			TIM5_CH2											DCMI_D2		EVENTOU
PH12			TIM5_CH3											DCMI_D3		EVENTOUT
PH13				TIM8_CH1N						CAN1_TX						EVENTOUT
PH14				TIM8_CH2N										DCMI_D4		EVENTOUT
PH15				TIM8_CH3N										DCMI_D11		EVENTOU

Doc ID 15818 Rev 5

Pinouts and pin description

 Table 6.
 Alternate function mapping (continued)

	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port	sys	TIM1/2	TIM3/4/5	TIM8/9/10/11	I2C1/I2C2/I2C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_FS	DCMI	AF014	AF15
PI0			TIM5_CH4			SPI2_NSS I2S2_WS								DCMI_D13		EVENTOUT
Pl1						SPI2_SCK I2S2_CK								DCMI_D8		EVENTOUT
Pl2				TIM8_CH4		SPI2_MISO								DCMI_D9		EVENTOUT
PI3				TIM8_ETR		SPI2_MOSI I2S2_SD								DCMI_D10		EVENTOUT
PI4				TIM8_BKIN										DCMI_D5		EVENTOUT
PI5				TIM8_CH1										DCMI_VSYNC		EVENTOUT
PI6				TIM8_CH2										DCMI_D6		EVENTOUT
PI7				TIM8_CH3										DCMI_D7		EVENTOUT
PI8																
PI9										CAN1_RX						EVENTOUT
PI10												ETH _MII_RX_ER				EVENTOUT
Pl11											OTG_HS_ULPI_DIR	•				EVENTOUT

4 Memory mapping

The memory map is shown in *Figure 15*.

Figure 15. Memory map

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 1.8 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 16*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 17*.

5.1.6 Power supply scheme

Figure 18. Power supply scheme

1. $4.7\mu F$ capacitor must be connected to one of the V_{DD} pin.

5.1.7 Current consumption measurement

Figure 19. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 7: Voltage characteristics*, *Table 8: Current characteristics*, and *Table 9: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 7. Voltage characteristics

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} , V_{DD}) ⁽¹⁾	TBD	TBD	
V	Input voltage on five-volt tolerant pin ⁽²⁾	V _{SS} -0.3	V _{DD} +4.0	V
V _{IN}	Input voltage on any other pin ⁽³⁾	V _{SS} -0.3	4.0	
I∆V _{DDx} I	Variations between different V _{DD} power pins		TBD	mV
IV _{SSX} - V _{SS} I	Variations between all the different ground pins		TBD	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 5 Absolute max (electrical ser	imum ratings	

All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

Table 8. Current characteristics

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} /V _{DDA} power lines (source) ⁽¹⁾	TBD	
l _{vss}	Total current out of V _{SS} ground lines (sink) ⁽¹⁾	TBD	
1.	Output current sunk by any I/O and control pin	TBD	
I _{IO}	Output current source by any I/Os and control pin	TBD	mA
(2)	Injected current on five-volt tolerant I/O(3)	<i>–</i> 5/+0	
I _{INJ(PIN)} ⁽²⁾	Injected current on any other pin ⁽⁴⁾	±5	
ΣΙ _{ΙΝJ(PIN)} ⁽⁴⁾	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	TBD	

All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

I_{INJ(PIN)} must never be exceeded (see *Table 8: Current characteristics*). This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{IN}max while a negative injection is induced by V_{IN} < V_{SS}.

^{3.} Positive current injection is not possible on these I/Os. VIN maximum must be respected. Negative current injection is possible and must not exceed I_{INJ(PIN)}.

^{2.} Negative injection disturbs the analog performance of the device. See note in Section 5.3.18: 12-bit ADC characteristics.

^{3.} Positive injection is not possible on these I/Os. V_{IN} maximum must always be respected. $I_{INJ(PIN)}$ must never be exceeded. A negative injection is induced by $V_{IN} < V_{SS}$.

^{4.} $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$.

When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on
characterization with ΣI_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Table 9. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-40 to +125	°C
T _J	Maximum junction temperature	125	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 10. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency		0	120	
f _{PCLK1}	Internal APB1 clock frequency		0	30	MHz
f _{PCLK2}	Internal APB2 clock frequency		0	60	
V _{DD}	Standard operating voltage		1.8 ⁽¹⁾	3.6	V
V _{DDA} ⁽²⁾	Analog operating voltage (ADC limited to 1 M samples)	Must be the same potential	1.8 ⁽¹⁾	3.6	V
V DDA` ′	Analog operating voltage (ADC limited to 2 M samples)	as V _{DD} ⁽³⁾	2.4	3.6	V
V _{BAT}	Backup operating voltage		1.65	3.6	V
		LQFP64		444	
		WLCSP66		392	
P _D		LQFP100		434	mW
L LD	suffix $7^{(4)}$	LQFP144		500	IIIVV
		LQFP176		526	
		UFBGA176		513	
	Ambient temperature for 6	Maximum power dissipation	-40	85	°C
TA	suffix version	Low power dissipation ⁽⁵⁾	-40	105	C
IA	Ambient temperature for 7	Maximum power dissipation	-40	105	°C
	suffix version	Low power dissipation ⁽⁵⁾	-40	125	
TJ	Junction temperature range	6 suffix version	-40	105	°C
IJ	Junction temperature range	7 suffix version	-40	125	C

- 1. This value is reduced to 1.65 V for STM32F20x in WLCSP package assuming IRROFF is set to V_{DD}.
- 2. When the ADC is used, refer to Table 59: ADC characteristics.
- 3. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

- 4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max.
- 5. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_J max.

Limitations depending on the operating power supply range Table 11.

Operating power supply range	ADC operation	Maximum Flash memory access frequency (f _{Flashmax})	Number of wait states at maximum CPU frequency (f _{CPUmax} = 120 MHz) ⁽¹⁾	I/O operation	FSMC controller operation	Possible Flash memory operations
V _{DD} =1.8 to 2.1 V ⁽²⁾	Conversion time up to 1 Msps	16 MHz with no Flash memory wait state	7 ⁽³⁾	Degraded speed performanceNo I/O compensation	up to 30 MHz	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1 Msps	18 MHz with no Flash memory wait state	6 ⁽³⁾	Degraded speed performanceNo I/O compensation	up to 30 MHz	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2 Msps	24 MHz with no Flash memory wait state	4 ⁽³⁾	Degraded speed performanceI/O compensation works	up to 48 MHz	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽⁴⁾	Conversion time up to 2 Msps	30 MHz with no Flash memory wait state	3 ⁽³⁾	Full-speed operationI/O compensation works	 up to 60 MHz when V_{DD} = 3.0 to 3.6 V up to 48 MHz when V_{DD} = 2.7 to 3.0 V 	32-bit erase and program operations

^{1.} The number of wait states can be reduced by reducing the CPU frequency (see Figure 20).

^{2.} This voltage range is reduced to 1.65 to 2.1 V for devices in WLCSP package assuming IRROFF is set to V_{DD}.

Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

^{4.} The voltage range for ULPI USB high-speed, Ethernet MII and Ethernet RMII is 3.0 to 3.6 V.

Figure 20. Number of wait states versus f_{CPU} and V_{DD} range

5.3.2 Operating conditions at power-up / power-down (regulator not bypassed)

Subject to general operating conditions for T_A.

Table 12. Operating conditions at power-up / power-down (regulator not bypassed)

Symbol	Parameter	Min	Max	Unit
t	V _{DD} rise time rate	TBD	∞	μs/V
τ _{VDD}	V _{DD} fall time rate	TBD	∞	μο/ ν

5.3.3 Operating conditions at power-up / power-down in regulator bypass mode

Subject to general operating conditions for T_A.

Table 13. Operating conditions at power-up / power-down in regulator bypass mode

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	V _{DD} rise time rate	Power-up	TBD	∞	
	V _{DD} fall time rate	Power-down	TBD	8	
t _{VCAP}	V _{CAP_1} and V _{CAP_2} rise time rate	Power-up	TBD	∞	μs/V
	V _{CAP_1} and V _{CAP_2} fall time rate	Power-down	TBD	8	

5.3.4 Embedded reset and power control block characteristics

The parameters given in *Table 14* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Table 14. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	TBD	TBD	TBD	V
		PLS[2:0]=000 (falling edge)	TBD	2.00	TBD	V
		PLS[2:0]=001 (rising edge)	TBD	TBD	TBD	V
	Programmable voltage detector level selection	PLS[2:0]=001 (falling edge)	TBD	2.20	TBD	V
		PLS[2:0]=010 (rising edge)	TBD	TBD	TBD	V
		PLS[2:0]=010 (falling edge)	TBD	2.30	TBD	V
		PLS[2:0]=011 (rising edge)	TBD	TBD	TBD	V
V		PLS[2:0]=011 (falling edge)	TBD	2.50	TBD	V
V _{PVD}		PLS[2:0]=100 (rising edge)	TBD	TBD	TBD	V
		PLS[2:0]=100 (falling edge)	TBD	2.70	TBD	V
		PLS[2:0]=101 (rising edge)	TBD	TBD	TBD	V
		PLS[2:0]=101 (falling edge)	TBD	2.80	TBD	V
		PLS[2:0]=110 (rising edge)	TBD	TBD	TBD	V
		PLS[2:0]=110 (falling edge)	TBD	2.90	TBD	V
		PLS[2:0]=111 (rising edge)	TBD	TBD	TBD	V
		PLS[2:0]=111 (falling edge)	TBD	3.00	TBD	٧
V _{PVDhyst} ⁽²⁾	PVD hysteresis			100		mV

Symbol Parameter Conditions Min Typ Max Unit Falling edge **TBD**⁽¹⁾ 1.70 TBD V Power-on/power-down $V_{POR/PDR}$ reset threshold Rising edge **TBD** 1.74 TBD V Falling edge **TBD** 2.20 TBD ٧ Brownout level 1 V_{BOR1} threshold **TBD TBD** TBD ٧ Rising edge Falling edge TBD 2.50 TBD ٧ Brownout level 2 V_{BOR2} threshold **TBD** ٧ Rising edge **TBD** TBD Brownout level 3 **TBD** TBD V_{BOR3} Falling edge 2.80 threshold V_{PDRhyst}⁽²⁾ PDR hysteresis 40 mV T_{RSTTEMPO}⁽²⁾ Reset temporization **TBD TBD** TBD ms InRush current on voltage regulator 200 mΑ I_{RUSH} power-on

Table 14. Embedded reset and power control block characteristics (continued)

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 19: Current consumption measurement scheme*.

All run mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

^{1.} The product behavior is guaranteed by design down to the minimum $V_{POR/PDR}$ value.

^{2.} Guaranteed by design, not tested in production.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz and 3 wait states from 90 to 120 MHz).
- Prefetch and Cache ON (Reminder: this bit must be set before clock setting and bus prescaling).
- When the peripherals are enabled $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/4$
- The maximum values are obtained for $V_{DD} = 3.6 \text{ V}$ and maximum ambient temperature (T_A) , and the typical values for $T_A = 25$ °C and $V_{DD} = 3.3 \text{ V}$ unless otherwise specified.

Table 15. Typical and maximum current consumption in Run mode, code with data processing running from Flash

Symbol	Parameter	Conditions	4	Typical	Ma	ax ⁽¹⁾	Unit	
Symbol	Farailletei	Conditions	f _{HCLK}	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Oilit	
		External clock ⁽²⁾ , all peripherals enabled	120 MHz	TBD	TBD	TBD		
			90 MHz	TBD	TBD	TBD		
			60 MHz	TBD	TBD	TBD		
	Supply current in		30 MHz	TBD	TBD	TBD		
			26 MHz TBD TBD	TBD				
			16 MHz	TBD	TBD	TBD	mA	
I _{DD}	Run mode		120 MHz	TBD	TBD	TBD	IIIA	
			90 MHz	TBD	TBD	TBD		
		External clock ⁽²⁾ , all	60 MHz	TBD	TBD	TBD		
		peripherals disabled	30 MHz	TBD	TBD	TBD		
			26 MHz	TBD	TBD	TBD		
			16 MHz	TBD	TBD	TBD		

^{1.} Based on characterization, not tested in production.

2. External clock is 8 MHz and PLL is on when $f_{HCLK} > 8$ MHz.

Table 16. Typical and maximum current consumption in Run mode, code with data processing running from RAM

Symbol	Parameter	Conditions	f .	Тур	Ma	Unit	
Symbol	Farameter	Conditions	f _{HCLK}	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Oilit
		External clock ⁽²⁾ , all peripherals enabled ⁽³⁾	120 MHz	49.5	TBD	TBD	
			90 MHz	38	TBD	TBD	
			60 MHz	26	TBD	TBD	
	Supply		30 MHz	14.5	TBD	TBD	
			26 MHz	TBD TBD TBD	TBD		
		16 MHz TBD TBD	TBD	mA			
I _{DD}	current in Run mode		120 MHz	22	TBD	TBD	IIIA
			90 MHz	17	TBD	TBD	
		External clock ⁽²⁾ , all	60 MHz	12.5	TBD	TBD	
		peripherals disabled	30 MHz	7	TBD	TBD	
			26 MHz	TBD	TBD	TBD	
			16 MHz	TBD	TBD	TBD	

^{1.} Based on characterization, tested in production at V_{DD} max, f_{HCLK} max.

Table 17. Typical and maximum current consumption in Sleep mode

				Тур	Max	₍ (1)		
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
	Supply current in	120 MHz 37.5 TBD						
			90 MHz	29.5	TBD	TBD		
		External clock ⁽²⁾ , all peripherals enabled ⁽³⁾	60 MHz	20.5	TBD	TBD		
			30 MHz	14.5	TBD	TBD		
			26 MHz	26 MHz TBD TBD TBD				
1			16 MHz	TBD	TBD	TBD TBD	mA	
I _{DD}	Sleep mode		120 MHz	8.0	TBD	TBD	ША	
			90 MHz	6.5	TBD	TBD		
		External clock ⁽²⁾ , all	60 MHz	5.0	TBD	TBD		
		peripherals disabled	30 MHz	3.5	TBD	TBD]	
			26 MHz	TBD	TBD	TBD		
			16 MHz	TBD	TBD	TBD		

^{1.} Based on characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

^{2.} External clock is 8 MHz and PLL is on when $\rm f_{HCLK} > 8$ MHz.

^{3.} Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

^{2.} External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

3. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

Table 18. Typical and maximum current consumptions in Stop mode

			Typ ⁽¹⁾			Max		
Symbol	Parameter	Conditions	V _{DD} /V _{BAT} = 1.8 V		V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	350		TBD	TBD		
	with main regulator in Run mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)			TBD	TBD	μΑ	
	Supply current in Stop mode with main regulator in Low Power mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)		200				μΛ
		Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)		150				

^{1.} Typical values are measured at T_A = 25 °C.

Table 19. Typical and maximum current consumptions in Standby mode

Symbol	Parameter		Typ ⁽¹⁾			Max		
		Conditions	V _{DD} /V _{BAT} = 1.8 V	V _{DD} /V _{BAT} = 2.4 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
		Backup SRAM ON, RTC ON	4			TBD ⁽²⁾	TBD ⁽²⁾	
l	Supply current	Backup SRAM OFF, RTC ON	3.3		TBD ⁽²⁾	TBD ⁽²⁾		
	in Standby mode	Backup SRAM ON, RTC OFF	3.2			TBD ⁽²⁾	TBD ⁽²⁾	μA
		Backup SRAM OFF, RTC OFF		2.5		TBD ⁽²⁾	TBD ⁽²⁾	

^{1.} Typical values are measured at T_A = 25 °C.

^{2.} Based on characterization, not tested in production.

			Typ ⁽¹⁾			Max		
Symbol	Parameter	Conditions	V _{DD} /V _{BAT} = 1.8 V	V _{DD} /V _{BAT} = 2.4 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
	Backup	Backup SRAM OFF, low-speed oscillator and RTC ON	0.8		TBD ⁽²⁾	TBD ⁽²⁾		
		'		1.5		TBD ⁽²⁾	TBD ⁽²⁾	μΑ
	current	Backup SRAM OFF, RTC OFF	0				TBD ⁽²⁾	
		Backup SRAM ON, RTC OFF		0.7		TBD ⁽²⁾	TBD ⁽²⁾	

Table 20. Typical and maximum current consumptions in VBAT mode

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 21*. The MCU is placed under the following conditions:

- $\bullet \quad$ all I/O pins are in input mode with a static value at $\rm V_{DD}$ or $\rm V_{SS}$ (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with one peripheral clocked on (with only the clock applied)
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 7.

Table 21. Peripheral current consumption

Per	ipheral ⁽¹⁾	Typical consumption at 25 °C	Unit
	GPIO A	TBD	
	GPIO B	TBD	
	GPIO C	TBD	
	GPIO D	TBD	
	GPIO E	TBD	
AHB1	GPIO F	TBD	
	GPIO G	TBD	mA
	GPIO H	TBD	IIIA
	GPIO I	TBD	
	OTG_HS	TBD	
	ETH_MAC	TBD	
	OTG_FS	TBD	
AHB2	DCMI	TBD	
	RNG	TBD	

^{1.} Typical values are measured at T_A = 25 °C.

^{2.} Based on characterization, not tested in production.

Table 21. Peripheral current consumption (continued)

	Peripheral ⁽¹⁾	Typical consumption at 25 °C	Unit
	TIM2	TBD	
	TIM3	TBD	
	TIM4	TBD	
	TIM5	TBD	
	TIM6	TBD	
	TIM7	TBD	
	TIM12	TBD	
	TIM13	TBD	
	TIM14	TBD	
	USART2	TBD	
APB1	USART3	TBD	mA
	UART4	TBD	
	UART5	TBD	
	I2C1	TBD	
	12C2	TBD	
	I2C3	TBD	
	SPI2	TBD	
	SPI3	TBD	
	CAN1	TBD	
	CAN2	TBD	
	DAC	TBD	
	SDIO	TBD	
	TIM1	TBD	
	TIM8	TBD	
	TIM9	TBD	
	TIM10	TBD	
ADDO	TIM11	TBD	mA
APB2	ADC1 ⁽²⁾	TBD	ША
	ADC2 ⁽²⁾	TBD	
	ADC3	TBD	
	SPI1	TBD	
	USART1	TBD	
	USART6	TBD	

^{1.} $f_{HCLK} = 120 \text{ MHz}$, $f_{APB1} = f_{HCLK}/4$, $f_{APB2} = f_{HCLK}/2$, default prescaler value for each peripheral.

^{2.} Specific conditions for ADC: f_{HCLK} = 120 MHz, f_{APB1} = f_{HCLK}/4, f_{APB2} = f_{HCLK}/2, f_{ADCCLK} = f_{APB2}/2, ADON bit in the ADC_CR2 register is set to 1.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 22* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

Table 22. High-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	8	50	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}		V _{DD}	V
V_{HSEL}	OSC_IN input pin low level voltage		V_{SS}		0.3V _{DD}	V
$t_{w(HSE)} \ t_{w(HSE)}$	OSC_IN high or low time ⁽¹⁾		16			ns
$t_{r(HSE)} \ t_{f(HSE)}$	OSC_IN rise or fall time ⁽¹⁾				20	113
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾			5		pF
DuCy _(HSE)	Duty cycle		45	·	55	%
ΙL	OSC_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$		·	±1	μΑ

^{1.} Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 23* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

Table 23. Low-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾			32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}		V_{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}		0.3V _{DD}	V
$\begin{array}{c} t_{\text{W(LSE)}} \\ t_{\text{W(LSE)}} \end{array}$	OSC32_IN high or low time ⁽¹⁾		450			ns
$t_{r(LSE)} \ t_{f(LSE)}$	OSC32_IN rise or fall time ⁽¹⁾				50	119
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾			5		pF
DuCy _(LSE)	Duty cycle		30		70	%
IL	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$			±1	μΑ

^{1.} Guaranteed by design, not tested in production.

Figure 21. High-speed external clock source AC timing diagram

Figure 22. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 24*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency		4		26	MHz
R_{F}	Feedback resistor			200		kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) ⁽³⁾	R _S = 30 Ω		30		pF
i ₂	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load			1	mA
9 _m	Oscillator transconductance	Startup	25			mA/V
t _{SU(HSE} ⁽⁴⁾	Startup time	V _{DD} is stabilized		2		ms

HSE 4-26 MHz oscillator characteristics^{(1) (2)} Table 24.

- 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 2. Based on characterization, not tested in production.
- The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- $t_{SU(HSE)}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{I,1} and C_{I,2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 23). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Resonator with integrated capacitors OSC IN ^fHSE Bias 8 MHz controlled ≹R₌ resonato gain STM32F OSC OUT R_{EXT}⁽¹⁾

Figure 23. Typical application with an 8 MHz crystal

R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 25. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

ai17530

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor			5		МΩ
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ			15	pF
l ₂	LSE driving current	$V_{DD} = 3.3 \text{ V}, V_{IN} = V_{SS}$			1.4	μΑ
9 _m	Oscillator Transconductance		5			μ A /V
t _{SU(LSE)} ⁽⁴⁾	startup time	V _{DD} is stabilized		3		s

Table 25. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$) (1)

- 1. Based on characterization, not tested in production.
- Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- 3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
- t_{SU/LSE}_j is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note:

For C_{L1} and C_{L2} it is recommended to use high-quality external ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 24). C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . Load capacitance C_{L1} has the following formula: $C_{L1} = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Caution:

To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of $C_L = 6$ pF, and $C_{stray} = 2$ pF, then $C_{L1} = C_{L2} = 8$ pF.

Figure 24. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 26* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

High-speed internal (HSI) RC oscillator

Table 26. HSI oscillator characteristics (1)

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{HSI}	Frequency				16		MHz
ACC _{HSI}	Accuracy of the HSI oscillator	User-trimmed with the RCC_CR register ⁽²⁾				TBD	%
			T _A = -40 to 105 °C	TBD		TBD	%
			$T_A = -10 \text{ to } 85 ^{\circ}\text{C}$	TBD		TBD	%
			T _A = 0 to 70 °C	TBD		TBD	%
			T _A = 25 °C	TBD		TBD	%
t _{su(HSI)}	HSI oscillator startup time			TBD		TBD	μs
I _{DD(HSI)}	HSI oscillator power consumption				80	TBD	μΑ

^{1.} $V_{DD} = 3.3 \text{ V}$, $T_A = -40 \text{ to } 105 \,^{\circ}\text{C}$ unless otherwise specified.

Low-speed internal (LSI) RC oscillator

Table 27. LSI oscillator characteristics (1)

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾	Frequency	30	32	60	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time		85	TBD	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption		0.65	TBD	μΑ

^{1.} $V_{DD} = 3 \text{ V}$, $T_A = -40 \text{ to } 105 \,^{\circ}\text{C}$ unless otherwise specified.

5.3.8 Wakeup time from low-power mode

The wakeup times given in *Table 28* is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

^{2.} Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website www.st.com.

^{2.} Based on characterization, not tested in production.

^{3.} Guaranteed by design, not tested in production.

200

μs

Symbol	Parameter	Тур	Unit
t _{WUSLEEP} (1)	Wakeup from Sleep mode		μs
^t wustop ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	9	
	Wakeup from Stop mode (regulator in low power mode)	15	μs
	Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode)	110	, ,

Table 28. Low-power mode wakeup timings

Wakeup from Standby mode

5.3.9 PLL characteristics

 $t_{\text{WUSTDBY}}^{(1)}$

The parameters given in *Table 29* and *Table 30* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Table 29. Main PLL characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
f _{PLL_IN}	PLL input clock ⁽²⁾		0.95	1	2.00	MHz
f _{PLL_OUT}	PLL multiplier output clock		24		120	MHz
f _{PLL48_OUT}	48 MHz PLL multiplier output clock				48	MHz
f _{VCO_OUT}	PLL VCO output		192		432	MHz
t _{LOCK}	PLL lock time				350	μs
Jitter	Cycle-to-cycle jitter	System clock 120 MHz			300	ps
I _{DD(PLL)}	PLL power consumption on VDD	VCO freq = 192 MHz VCO freq = 432 MHz	твс		TBC	mA
I _{DDA(PLL)}	PLL power consumption on VDDA	VCO freq = 192 MHz VCO freq = 432 MHz	твс		TBC	mA

^{1.} Based on characterization, not tested in production.

Table 30. PLLI2S (audio PLL) characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽²⁾		0.95	1	1.05	MHz
f _{PLLI2S_OUT}	PLLI2S multiplier output clock				216	MHz
f _{VCO_OUT}	PLLI2S VCO output		192		432	MHz
t _{LOCK}	PLLI2S lock time				350	μs
Jitter	Cycle-to-cycle jitter	System clock 120 MHz			300	ps

The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

Table 30. PLLI2S (audio PLL) characteristics (continued)

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
Jitter	Master I2S clock jitter	Cycle to cycle at 12,343 KHz on 48KHz period N=432, P=4, R=5	ТВС		TBC	ps
Jitter	Master I2S clock jitter	Average frequency of 12,343 KHz N=432, P=4, R=5 on 256 samples	твс		TBC	ps
Jitter	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples	ТВС		TBC	ps
Jitter	Main Clock Output for Ethernet	Cycle to cycle at 50 MHz on 1000 samples	ТВС		TBC	ps
Jitter	Bit Time CAN Jitter	Cycle to cycle at 1 MHz on 1000 samples	TBC		TBC	ps
I _{DD(PLLI2S)}	PLLI2S power consumption on V _{DD}	VCO freq = 192 MHz VCO freq = 432 MHz	твс		TBC	mA
I _{DDA(PLLI2S)}	PLLI2S power consumption on V _{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz	твс		TBC	mA

^{1.} Based on characterization, not tested in production.

5.3.10 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature is only available on the main PLL.

Table 31. SSCG parameters constraint

Symbol	Parameter	Min	Тур	Max	Unit
f _{Mod}	Modulation frequency			10	KHz
md	Peak modulation depth	0.5		2	dec
MODEPER * INCSTEP				2 ¹⁵ –1	dec

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

$$MODEPER = round[f_{PLL \ IN}/(4 \times f_{Mod})]$$

Equation 2

^{2.} Take care of using the appropriate division factor M to have the specified PLL input clock values.

Equation 2 allows to calculate the increment step (INCSTEP):

$$INCSTEP = round[((2^{15} - 1) \times md \times f_{VCO\ OUT})/(100 \times 5 \times MODEPER)]$$

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}\% = (MODEPER \times INCSTEP \times 100 \times 5)/((2^{15} - 1) \times f_{VCO\ OUT})$$

Figure 25 and *Figure 26* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL} OUT nominal.

 T_{mode} is the modulation period.

md is the modulation depth.

Figure 25. PLL output clock waveforms in center spread mode

Figure 26. PLL output clock waveforms in down spread mode

5.3.11 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 $^{\circ}\text{C}$ unless otherwise specified.

Table 32. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
I _{DD}	Supply current	Read mode $f_{HCLK} = 120$ MHz with 3 wait states, $V_{DD} = 3.3$ V		TBD	mA
		Write / Erase modes $f_{HCLK} = 120 \text{ MHz}, V_{DD} = 3.3 \text{ V}$		TBD	mA
		Power-down mode / Halt, V _{DD} = 3.0 to 3.6 V		TBD	μΑ

Table 33. Flash memory programming

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time			12	100	μs
t _{ERASE16KB}	Sector (16 KB) erase time			400		ms
t _{ERASE64KB}	Sector (64 KB) erase time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$		700		ms
t _{ERASE128KB}	Sector (128 KB) erase time			1		S
t _{ME}	Mass erase time		TBD		TBD	ms
		32-bit program operation	2.7		3.6	٧
V_{prog}	Programming voltage	16-bit program operation	2.1		3.6	V
		8-bit program operation	1.8		3.6	V

^{1.} Guaranteed by design, not tested in production.

Table 34. Flash memory programming with V_{PP}

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming			7	60	μs
t _{ERASE16KB}	Sector (16 KB) erase time			TBD		
t _{ERASE64KB}	Sector (64 KB) erase time			TBD		
t _{ERASE128KB}	Sector (128 KB) erase time			TBD		
t _{ME}	Mass erase time			TBD		
V _{prog}	Programming voltage	$T_A = 0 \text{ to } +40 ^{\circ}\text{C}$	2.7		3.6	٧
V _{PP}	V _{PP} voltage range		7		9	٧
I _{PP}	Minimum current sunk on the V _{PP} pin		10			mA
t _{VPP} ⁽²⁾	Cumulative time during which V _{PP} is applied				1	hour

- 1. Guaranteed by design, not tested in production.
- 2. V_{PP} should only be connected during programming/erasing.

Table 35. Flash memory endurance and data retention

Symbol	Parameter Conditions	Conditions	Value			Unit
		Conditions	Min ⁽¹⁾	Тур	Max	
N _{END}	Endurance	$T_A = -40 \text{ to } +85 ^{\circ}\text{C} \text{ (6 suffix versions)}$ $T_A = -40 \text{ to } +105 ^{\circ}\text{C} \text{ (7 suffix versions)}$	10			kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30			
t _{RET} Data retention	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10			Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20			

- 1. Based on characterization, not tested in production.
- 2. Cycling performed over the whole temperature range.

5.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 36*. They are based on the EMS levels and classes defined in application note AN1709.

Table 36. EMS characteristics

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T_{A} = +25 °C, f_{HCLK} = 75 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T_{A} = +25 °C, f_{HCLK} = 75 MHz, conforms to IEC 61000-4-2	4A

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Table 37. EMI characteristics

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]		Unit
	Tarameter		frequency band	8/48 MHz	8/72 MHz	Oline
		V _{DD} = 3.3 V, T _A = 25 °C, LQFP100 package compliant with IEC61967-2	0.1 to 30 MHz	9	9	
c	Peak level		30 to 130 MHz	26	13	dΒμV
S _{EMI}	reak level		130 MHz to 1GHz	25	31	
			SAE EMI Level	4	4	-

5.3.13 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 38. ESD absolute maximum ratings

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C conforming to JESD22-C101	II	500	V

^{1.} Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 39. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T _A = +105 °C conforming to JESD78A	II level A

5.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 40* are derived from tests performed under the conditions summarized in *Table 10*. All I/Os are CMOS and TTL compliant.

Table 40. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IL}	Input low level voltage		V _{SS} -0.3		0.8	
V _{IH}	Standard I/O input high level voltage	TTL ports 2.7 V≤V _{DD} ≤3.6 V _	2		V _{DD} +0.3	
	FT ⁽¹⁾ I/O input high level voltage		2		5.5V	
V _{IL}	Input low level voltage	CMOS ports	-0.3		0.3 V _{DD}	
	Standard I/O high level voltage	1.65 V≤V _{DD} ≤3.6 V			V _{DD} +0.3	V
V _{IH}	FT ⁽¹⁾ I/O input high level voltage	CMOS ports 1.65 V≤V _{DD} ≤3.6 V	0.7 V _{DD}		5.25	
		CMOS ports 2.0 V≤V _{DD} ≤3.6 V			5.5	
V _{hys}	Standard IO Schmitt trigger voltage hysteresis ⁽²⁾		200			mV
	IO FT Schmitt trigger voltage hysteresis ⁽²⁾		5% V _{DD} ⁽³⁾			mV

Symbol	Parame	Parameter		Min	Тур	Max	Unit
	Standard I/O input leaka	ge current ⁽⁴⁾	$V_{SS} \le V_{IN} \le V_{DD}$			±1	
I _{lkg}	FT I/O input leakage ⁽⁴⁾		V _{IN} = 5 V			3	μA
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	All pins except for PA10 and PB12	$V_{IN} = V_{SS}$	30	40	50	kΩ
	PA10 and PB12			8	11	15	
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	All pins except for PA10 and PB12	$V_{IN} = V_{DD}$	30	40	50	kΩ
	PA10 and PB12			8	11	15	
C _{IO} ⁽⁶⁾	I/O pin capacitance				5		pF

Table 40. I/O static characteristics (continued)

- 1. FT = Five-volt tolerant.
- 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
- 3. With a minimum of 100 mV.
- 4. Leakage could be higher than max. if negative current is injected on adjacent pins.
- 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).
- 6. Guaranteed by design, not tested in production.

All I/Os are CMOS and TTL compliant (no software configuration required), their characteristics consider the most strict CMOS-technology or TTL parameters:

- For V_{IH}:
 - if V_{DD} is in the [2.00 V 3.08 V] range: CMOS characteristics but TTL included
 - if V_{DD} is in the [3.08 V 3.60 V] range: TTL characteristics but CMOS included
- For V_{IL}:
 - if V_{DD} is in the [2.00 V 2.28 V] range: TTL characteristics but CMOS included
 - if V_{DD} is in the [2.28 V 3.60 V] range: CMOS characteristics but TTL included

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a relaxed V_{OL}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 8*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 8*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL port		0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4		V
V _{OL} (2)	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS port		0.4	>
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	2.4		V
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA		1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3		V
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA		0.4	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4		V

Table 41. Output voltage characteristics⁽¹⁾

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 27* and *Table 42*, respectively.

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Table 42. I/O AC characteristics⁽¹⁾

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 1.8 V to 3.6 V			2	MHz
00	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 1.8 V to			TBD ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	3.6 V			TBD (3)	113

PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed
should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current
source (e.g. to drive an LED).

^{2.} The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 8* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} .

The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

^{4.} Based on characterization data, not tested in production.

Table 42. I/O AC characteristics⁽¹⁾ (continued)

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
	f 4000 -	Maximum frequency ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} < 2.7 \text{ V}$	25		TBD	MHz		
	f _{max(IO)out}	iwaximum requericy	$C_L = 10 \text{ pF}, V_{DD} > 2.7 \text{ V}$	25		50 ⁽⁴⁾	MHz		
01	tuo.	Output high to low level fall	$C_L = 50 \text{ pF}, V_{DD} < 2.7 \text{ V}$			TBD ⁽³⁾			
01	प(IO)out	lf/IO\out I	$C_L = 10 \text{ pF}, V_{DD} > 2.7 \text{ V}$			TBD ⁽³⁾	ns		
	t	Output low to high level rise	$C_L = 50 \text{ pF}, V_{DD} < 2.7 \text{ V}$			TBD ⁽³⁾	115		
	t _{r(IO)out}	time	$C_L = 10 \text{ pF}, V_{DD} > 2.7 \text{ V}$			TBD ⁽³⁾			
		f	Maximum frequency ⁽²⁾	$C_L = 50 \text{ pF}, 2.4 < V_{DD} < 2.7 \text{ V}$	50 ⁽⁴⁾		TBD	MHz	
	f _{max(IO)out}	max(IO)out	iwaximum nequency.	$C_L = 10 \text{ pF}, V_{DD} > 2.7 \text{ V}$	50 ⁽⁴⁾		100 ⁽⁴⁾	MHz	
10	t	Output high to low level fall	$C_L = 50 \text{ pF}, 2.4 < V_{DD} < 2.7 \text{ V}$			TBD ⁽³⁾			
10	t _{f(IO)out} ti	tf(IO)out t	time	time	$C_L = 10 \text{ pF}, V_{DD} > 2.7 \text{ V}$			TBD ⁽³⁾	ns
	+	Output low to high level rise	C _L = 50 pF, 2.4 < V _{DD} < 2.7 V			TBD ⁽³⁾			
	t _{r(IO)out}	time	$C_L = 10 \text{ pF}, V_{DD} > 2.7 \text{ V}$			TBD ⁽³⁾			
	_	Maximum frequency ⁽²⁾	$C_L = 20 \text{ pF}, 2.4 < V_{DD} < 2.7 \text{ V}$	100 ⁽⁴⁾		TBD	MHz		
	rmax(IO)out	iwaximum frequency.	C _L = 10 pF, V _{DD} > 2.7 V	100 ⁽⁴⁾		200 ⁽⁴⁾	MHz		
11	+	Output high to low level fall	C _L = 20 pF, 2.4 < V _{DD} < 2.7 V			TBD ⁽³⁾			
11	t _{f(IO)out}	time	C _L = 10 pF, V _{DD} > 2.7 V			TBD ⁽³⁾	no		
	+	Output low to high level rise	C _L = 20 pF, 2.4 < V _{DD} < 2.7 V			TBD ⁽³⁾	ns		
	t _{r(IO)out}	time	C _L = 10 pF, V _{DD} > 2.7 V			TBD ⁽³⁾			
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10			ns		

The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

^{2.} The maximum frequency is defined in Figure 27.

^{3.} Guaranteed by design, not tested in production.

^{4.} For maximum frequencies above 50 MHz, it is required to use the compensation cell.

EXTERNAL $t_r(IO)$ out $t_r(I$

Figure 27. I/O AC characteristics definition

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 40*).

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Table 43. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.5		0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage		2		V _{DD} +0.5	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis			200		mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse				100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300			ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20			μs

^{1.} Guaranteed by design, not tested in production.

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

External reset circuit(1)

NRST(2)

RPU

Filter

STM32F

ai17532

Figure 28. Recommended NRST pin protection

- 2. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 43. Otherwise the reset is not taken into account by the device.

5.3.16 TIM timer characteristics

The parameters given in *Table 44* and *Table 45* are guaranteed by design.

Refer to *Section 5.3.14: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 44. Characteristics of TIMx connected to the APB1 domain⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t(TIM)	Timer resolution time		1		t _{TIMxCLK}
^t res(TIM)	Timer resolution time		16.7		ns
f _{EXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXI	frequency on CH1 to CH4		0	36	MHz
Res _{TIM}	Timer resolution			16	bit
	16-bit counter clock period when internal clock is selected 32-bit counter clock period when internal clock is selected	f _{TIMxCLK} = 60 MHz APB1= 30 MHz	1	65536	t _{TIMxCLK}
t			0.0167	1092	μs
^t COUNTER			1		t _{TIMxCLK}
			0.0167	71582788	μs
thay count	Maximum possible count			65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT	maximum possible count			71.6	s

1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

Table 45. Characteristics of TIMx connected to the APB2 domain⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t _{res(TIM)}	Timer resolution time		1		t _{TIMxCLK}
res(TIM)	Timer resolution time		8.3		ns
f _{EXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXI	frequency on CH1 to CH4		0	30	MHz
Res _{TIM}	Timer resolution	f _{TIMxCLK} = 120 MHz		16	bit
	16-bit counter clock period	APB2 = 60 MHz	1	65536	t _{TIMxCLK}
t _{COUNTER}	when internal clock is selected		0.0083	546	μs
t	Maximum possible count			65536 × 65536	t _{TIMxCLK}
t _{MAX_COUNT}	maximum possible count			35.79	s

^{1.} TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.

5.3.17 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 10*.

The STM32F20x and STM32F205xx I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 46*. Refer also to *Section 5.3.14: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Table 46. I²C characteristics

Cumbal	Parameter	Standard ı	mode I ² C ⁽¹⁾	Fast mode	e I ² C ⁽¹⁾⁽²⁾	Unit
Symbol	Parameter	Min	Max	Min	Max	Unit
t _{w(SCLL)}	SCL clock low time	4.7		1.3		0
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20 + 0.1C _b	300	ns
t _{f(SDA)}	SDA and SCL fall time		300		300	
t _{h(STA)}	Start condition hold time	4.0		0.6		
t _{su(STA)}	Repeated Start condition setup time	4.7		0.6		μs
t _{su(STO)}	Stop condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7		1.3		μs
C _b	Capacitive load for each bus line		400		400	pF

^{1.} Guaranteed by design, not tested in production.

^{2.} f_{PCLK1} must be higher than 2 MHz to achieve the maximum standard mode I^2C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I^2C frequency.

^{3.} The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal.

^{4.} The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 29. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Table 47. SCL frequency $(f_{PCLK1} = 30 \text{ MHz.}, V_{DD} = 3.3 \text{ V})^{(1)(2)}$

f (cL -\	I2C_CCR value
f _{SCL} (kHz)	$R_P = 4.7 \text{ k}\Omega$
400	0x8019
300	0x8021
200	0x8032
100	0x0096
50	0x012C
20	0x02EE

^{1.} R_P = External pull-up resistance, $f_{SCL} = I^2C$ speed,

^{2.} For speeds around 200 kHz, the tolerance on the achieved speed is of $\pm 5\%$. For other speed ranges, the tolerance on the achieved speed $\pm 2\%$. These variations depend on the accuracy of the external components used to design the application.

I²S - SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 48* for SPI or in *Table 49* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKX} frequency and V_{DD} supply voltage conditions summarized in *Table 10*.

Refer to *Section 5.3.14: I/O port characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Table 48. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SPI clock frequency	Master mode		30	MHz
$1/t_{c(SCK)}$	SFI Clock frequency	Slave mode		30	IVII IZ
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		8	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 t _{PCLK}		
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	2 t _{PCLK}		
$t_{\text{w(SCKL)}}^{(2)}$	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
	Data input setup time	Master mode	5		
$t_{su(MI)}^{(2)}$	Data input setup time	Slave mode	5		
t _{h(MI)} (2) t _{h(SI)} (2)	Data input hold time	Master mode	5		
$t_{h(SI)}^{(2)}$	Data input noid time	Slave mode	4		ns
t _{a(SO)} (2)(3)	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3 t _{PCLK}	
t _{dis(SO)} (2)(4)	Data output disable time	Slave mode	2	10	
t _{v(SO)} (2)(1)	Data output valid time	Slave mode (after enable edge)		25	
t _{v(MO)} ⁽²⁾⁽¹⁾	Data output valid time	Master mode (after enable edge)		5	
t _{h(SO)} (2)	Data output hold time	Slave mode (after enable edge)	15		
t _{h(MO)} ⁽²⁾	Data output nota time	Master mode (after enable edge)	2		

^{1.} Remapped SPI1 characteristics to be determined.

^{2.} Based on characterization, not tested in production.

Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

^{4.} Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

ai14134c

NSS input tc(SCK) th(NSS) ^tSU(NSS) CPHA=0 CPOL=0 tw(SCKH) CPHA=0 CPOL=1 tw(SCKL) tr(SCK) th(SO)ta(SO) tv(SO) tdis(SO) tf(SCK) MISO MSB O UT BIT6 OUT LSB OUT OUTPUT tsu(SI) → MOSI LSB IN MSB IN BIT1 IN INPUT th(SI)

Figure 30. SPI timing diagram - slave mode and CPHA = 0

Figure 31. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Table 49. I²S characteristics ⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CK}	I ² S clock frequency	Master	TBD	TBD	MHz
1/t _{c(CK)}	1 3 clock frequency	Slave	0	TBD	IVITIZ
t _{r(CK)}	I ² S clock rise and fall time	capacitive load C _L = 50 pF		TBD	
t _{v(WS)} (2)	WS valid time	Master	TBD		
t _{h(WS)} (2)	WS hold time	Master	TBD		
t _{su(WS)} (2)	WS setup time	Slave	TBD		
t _{h(WS)} (2)	WS hold time	Slave	TBD		
t _{w(CKH)} (2) t _{w(CKL)} (2)	CK high and low time	Master f _{PCLK} = TBD, presc = TBD	TBD		=
$t_{su(SD_MR)}^{(2)}$ $t_{su(SD_SR)}^{(2)}$	Data input setup time	Master receiver Slave receiver	TBD TBD		
$t_{h(SD_MR)}^{(2)(3)}$ $t_{h(SD_SR)}^{(2)(3)}$	Data input hold time	Master receiver Slave receiver	TBD TBD		ns
$t_{h(SD_MR)}^{(2)}$ $t_{h(SD_SR)}^{(2)}$	Data input hold time	Master f _{PCLK} = TBD Slave f _{PCLK} = TBD	TBD TBD		
t _{v(SD_ST)} (2)(3)	Data output valid time	Slave transmitter (after enable edge)		TBD	
(===-/		f _{PCLK} = TBD		TBD	
t _{h(SD_ST)} (2)	Data output hold time	Slave transmitter (after enable edge)	TBD		
t _{v(SD_MT)} (2)(3)	Data output valid time	Master transmitter (after enable edge)		TBD	
· = ·/		f _{PCLK} = TBD	TBD	TBD	
t _{h(SD_MT)} (2)	Data output hold time	Master transmitter (after enable edge)	TBD		

^{1.} TBD = to be determined.

^{2.} Based on design simulation and/or characterization results, not tested in production.

^{3.} Depends on f_{PCLK}. For example, if f_{PCLK}=8 MHz, then T_{PCLK} = 1/f_{PLCLK} =125 ns.

Figure 33. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first

Figure 34. I²S master timing diagram (Philips protocol)⁽¹⁾

- Based on characterization, not tested in production.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

USB OTG FS characteristics

The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers.

Table 50. USB OTG FS startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} ⁽¹⁾	USB OTG FS transceiver startup time	1	μs

^{1.} Guaranteed by design, not tested in production.

Table 51. USB OTG FS DC electrical characteristics

Symbol		Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
	V_{DD}	USB OTG FS operating voltage		3.0 ⁽²⁾		3.6	٧
Input	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2			
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8		2.5	V
	V _{SE} ⁽³⁾	Single ended receiver threshold		1.3		2.0	
Output	V_{OL}	Static output level low	R_L of 1.5 kΩ to 3.6 $V^{(4)}$ R_L of 15 kΩ to $V_{SS}^{(4)}$			0.3	V
levels	V _{OH}	Static output level high		2.8		3.6	v
D		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	$V_{IN} = V_{DD}$	17	21	24	
R _{PD}	PD	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	NIN = NDD	0.65	1.1	2.0	kΩ
R _{PU}		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1	
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	$V_{IN} = V_{SS}$	0.25	0.37	0.55	

^{1.} All the voltages are measured from the local ground potential.

^{2.} The STM32F20x and STM32F205xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V $\rm V_{DD}$ voltage range.

^{3.} Guaranteed by design, not tested in production.

^{4.} R_L is the load connected on the USB OTG FS drivers

Figure 35. USB OTG FS timings: definition of data signal rise and fall time

Table 52. USB OTG FS electrical characteristics⁽¹⁾

	Driver characteristics								
Symbol	Parameter	Conditions	Min	Max	Unit				
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns				
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns				
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%				
V _{CRS}	Output signal crossover voltage		1.3	2.0	V				

^{1.} Guaranteed by design, not tested in production.

USB HS characteristics

Table 53. Clock timing parameters

Parameter ⁽¹⁾		Symbol	Min	Nominal	Max	Unit
Frequency (first transition)	8-bit ±10%	F _{START_8BIT}	54	60	66	MHz
Frequency (steady state) ±500	ppm	F _{STEADY}	59.97	60	60.03	MHz
Duty cycle (first transition)	8-bit ±10%	D _{START_8BIT}	40	50	60	%
Duty cycle (steady state) ±500	ppm	D _{STEADY}	49.975	50	50.025	%
Time to reach the steady state frequency and duty cycle after the first transition		T _{STEADY}			1.4	ms
Clock startup time after the	Peripheral	T _{START_DEV}			5.6	ms
de-assertion of SuspendM	Host	T _{START_HOST}				1115
PHY preparation time after the first transition of the input clock		T _{PREP}				μs
Jitter		T _{JITTER}				ps
Rise time Fall time		T _{RISE} T _{FALL}				ns

^{1.} Guaranteed by design, not tested in production.

Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

Clock tsc -t_{HC} Control In (stp) + t_{HD} t_{SD} data In (8-bit) t_{DC} Control out (dir, nxt) t_{DD} data out (8-bit) → t_{DDD} t_{DDD} data out (8-bit) ai17361b

Figure 36. ULPI timing diagram

Table 54. ULPI timing

	Parameter	Symbol	Val	ue ⁽¹⁾	Unit
	ratatiletei	Symbol	Min.	Max.	Onit
	Setup time (control in)	t_{SC}, t_{SD}		6.0	ns
Output clock	Hold time (control in)	t _{HC} , t _{HD}	0.0		ns
	Output delay (control out)	t _{DC} , t _{DD}		9.0	ns
	Setup time (control in)	t _{SC} , t _{SD}		3.0	ns
Input clock (optional)	Hold time (control in)	t _{HC} , t _{HD}	1.5		ns
(Output delay (control out)	t _{DC} , t _{DD}		6.0	ns

^{1.} $V_{DD} = 3 \text{ V to } 3.6 \text{ V and } T_A = -40 \text{ to } 85 ^{\circ}\text{C}.$

Ethernet characteristics

Table 55 shows the Ethernet operating voltage.

Table 55. Ethernet DC electrical characteristics

Symb	ol	Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	V_{DD}	Ethernet operating voltage	3.0	3.6	V

 $^{{\}bf 1.} \quad {\bf All \ the \ voltages \ are \ measured \ from \ the \ local \ ground \ potential.}$

Table 56 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 37* shows the corresponding timing diagram.

ETH_MDC

ETH_MDIO(O)

ETH_MDIO(I)

ai15666c

Figure 37. Ethernet SMI timing diagram

Table 56. Dynamics characteristics: Ethernet MAC signals for SMI⁽¹⁾

Symbol	Rating	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time (1.71 MHz, AHB = 72 MHz)	TBD	TBD	TBD	ns
t _{d(MDIO)}	MDIO write data valid time	TBD	TBD	TBD	ns
t _{su(MDIO)}	Read data setup time	TBD	TBD	TBD	ns
t _{h(MDIO)}	Read data hold time	TBD	TBD	TBD	ns

^{1.} TBD stands for to be determined.

Table 57 gives the list of Ethernet MAC signals for the RMII and *Figure 38* shows the corresponding timing diagram.

Figure 38. Ethernet RMII timing diagram

Table 57. Dynamics characteristics: Ethernet MAC signals for RMII⁽¹⁾

Symbol	Rating	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	TBD	TBD	TBD	ns
t _{ih(RXD)}	Receive data hold time	TBD	TBD	TBD	ns
t _{su(CRS)}	Carrier sense set-up time	TBD	TBD	TBD	ns
t _{ih(CRS)}	Carrier sense hold time	TBD	TBD	TBD	ns
t _{d(TXEN)}	Transmit enable valid delay time	0	9.6	21.9	ns
t _{d(TXD)}	Transmit data valid delay time	0	9.9	21	ns

^{1.} TBD stands for to be determined.

Table 58 gives the list of Ethernet MAC signals for MII and *Figure 38* shows the corresponding timing diagram.

Figure 39. Ethernet MII timing diagram

Table 58. Dynamics characteristics: Ethernet MAC signals for MII⁽¹⁾

Symbol	Rating	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	TBD	TBD	TBD	ns
t _{ih(RXD)}	Receive data hold time	TBD	TBD	TBD	ns
t _{su(DV)}	Data valid setup time	TBD	TBD	TBD	ns
t _{ih(DV)}	Data valid hold time	TBD	TBD	TBD	ns
t _{su(ER)}	Error setup time	TBD	TBD	TBD	ns
t _{ih(ER)}	Error hold time	TBD	TBD	TBD	ns
t _{d(TXEN)}	Transmit enable valid delay time	13.4	15.5	17.7	ns
t _{d(TXD)}	Transmit data valid delay time	12.9	16.1	19.4	ns

^{1.} TBD stands for to be determined.

CAN (controller area network) interface

Refer to *Section 5.3.14: I/O port characteristics* for more details on the input/output alternate function characteristics (CANTX and CANRX).

5.3.18 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 10*.

Table 59. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply		1.8		3.6	V
V _{REF+}	Positive reference voltage		1.65		V_{DDA}	V
I _{VREF}	Current on the V _{REF} input pin			160 ⁽¹⁾	220 ⁽¹⁾	μΑ
f	ADC clock frequency	$V_{DDA} = 1.8 \text{ to } 2.4 \text{ V}$	0.6		15	MHz
f _{ADC}	ADC clock frequency	V _{DDA} = 2.4 to 3.6 V	0.6		30	MHz
f _{TRIG} ⁽¹⁾	External trigger frequency	$f_{ADC} = 30 \text{ MHz}$			823	kHz
TRIG	External ingger frequency				17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽²⁾		0 (V _{SSA} or V _{REF-} tied to ground)		V _{REF+}	V
R _{AIN} ⁽¹⁾	External input impedance	See <i>Equation 1</i> for details			50	kΩ
R _{ADC} ⁽¹⁾	Sampling switch resistance				1	kΩ
C _{ADC} ⁽¹⁾	Internal sample and hold capacitor				8	pF
t _{lat} (1)	Injection trigger conversion	f _{ADC} = 30 MHz			0.100	μs
'lat`	latency				3 ⁽³⁾	1/f _{ADC}
t _{latr} (1)	Regular trigger conversion latency	$f_{ADC} = 30 \text{ MHz}$			0.067	μs
Чаtr	Tregular trigger conversion ratericy				2 ⁽³⁾	1/f _{ADC}
t _S ⁽¹⁾	Sampling time	$f_{ADC} = 30 \text{ MHz}$	0.100		16	μs
	oumpling time		3		480	1/f _{ADC}
t _{STAB} ⁽¹⁾	Power-up time		0	0	1	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.5		16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43		16.34	μs
t _{CONV} ⁽¹⁾	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37		16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.3		16.20	μs
		9 to 492 (t _S for sampli approximation)	ng +n-bit resolution	for succ	essive	1/f _{ADC}

Table 59. ADC characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		12-bit resolution Single ADC			2	Msps
f _S ⁽¹⁾	Sampling rate (f _{ADC} = 30 MHz)	12-bit resolution Interleave Dual ADC mode			4	Msps
		12-bit resolution Interleave Triple ADC mode			6	Msps
	ADC V _{REF} DC current	f _{ADC} = 30 MHz 3 sampling time 12-bit resolution			TBD	μА
VREF+	consumption in conversion mode	f _{ADC} = 30 MHz 480 sampling time 12-bit resolution			TBD	μА
	ADC VDDA DC current	f _{ADC} = 30 MHz 3 sampling time 12-bit resolution			TBD	μА
^I DDA	consumption in conversion mode	f _{ADC} = 30 MHz 480 sampling time 12-bit resolution			TBD	μА

- 1. Based on characterization, not tested in production.
- 2. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .
- 3. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 59*.

Equation 1: R_{AIN} max formula

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 60. ADC accuracy (1)

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	f _{PCLK2} = 60 MHz,	±1.5	±2.5	
EG	Gain error	$f_{ADC} = 30 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega,$	±1.5	±3	LSB
ED	Differential linearity error	$V_{DDA} = 1.8 \text{ V to } 3.6 \text{ V}$	±1	±2	
EL	Integral linearity error		±1.5	±3	

- 1. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.
- 2. Based on characterization, not tested in production.

Note:

ADC accuracy vs. negative injection current: Injecting a negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to

add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.14 does not affect the ADC accuracy.

Figure 40. ADC accuracy characteristics

Figure 41. Typical connection diagram using the ADC

- Refer to Table 59 for the values of R_{AIN}, R_{ADC} and C_{ADC}.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.

ai17535

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 42 or Figure 43, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

STM32F V_{REF+} (See note 1) $1 \mu F /\!/ 10 nF$ V_{DDA} 1 μF // 10 nF V_{SSA}/V_{REF}-(See note 1)

Figure 42. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

5.3.19 DAC electrical specifications

Table 61. DAC characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage	1.8		3.6	٧	
V _{REF+}	Reference supply voltage	1.8		3.6	V	$V_{REF+} \le V_{DDA}$
V _{SSA}	Ground	0		0	٧	
R _{LOAD} ⁽¹⁾	Resistive load with buffer ON	5			kΩ	
R _O ⁽¹⁾	Impedance output with buffer OFF			15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load			50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2			٧	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at V _{BFF+} =
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON			V _{DDA} - 0.2	٧	3.6 V and (0x1C7) to (0xE38) at V _{REF+} = 1.8 V
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF		0.5		mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF			V _{REF+} – 1LSB	>	excursion of the DAC.
I _{VREF+}	DAC DC V _{REF} current consumption in quiescent mode (Standby mode)			220	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
	DAC DC VDDA current			380	μΑ	With no load, middle code (0x800) on the inputs
I _{DDA}	consumption in quiescent mode (Standby mode)			480	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽²⁾	Differential non linearity Difference between two			±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)			±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference between			±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽²⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)			±4	LSB	Given for the DAC in 12-bit configuration.

Table 61. DAC characteristics (continued)

Symbol	Parameter	Min	Тур	Max	Unit	Comments
	Offset error			±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽²⁾	(difference between measured value at Code (0x800) and the ideal value =			±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	V _{REF+} /2)	· · · · · · · · · · · · · · · · · · ·	Given for the DAC in 12-bit at V _{REF+} = 3.6 V			
Gain error ⁽²⁾	Gain error			±0.5	%	Given for the DAC in 12bit configuration
t _{SETTLING} (2)	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB		3	4	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
THD ⁽²⁾	Total Harmonic Distortion Buffer ON				dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽¹⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)			1	MS/s	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
t _{WAKEUP} (2)	Wakeup time from off state (Setting the ENx bit in the DAC Control register)		6.5	10	μs	$C_{LOAD} \leq 50$ pF, $R_{LOAD} \geq 5$ k Ω input code between lowest and highest possible ones.
PSRR+ (1)	Power supply rejection ratio (to V _{DDA}) (static DC measurement)		-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

- 1. Guaranteed by design, not tested in production.
- 2. Guaranteed by characterization, not tested in production.

Figure 44. 12-bit buffered /non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

5.3.20 Temperature sensor characteristics

Table 62. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature		±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope		2.5		mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C		0.76		V
t _{START} (2)	Startup time	4		10	μs
T _{S_temp} (3)(2)	ADC sampling time when reading the temperature 1°C accuracy	16			μs

- 1. Based on characterization, not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. Shortest sampling time can be determined in the application by multiple iterations.

5.3.21 V_{BAT} monitoring characteristics

Table 63. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R ⁽¹⁾	Resistor bridge for V _{BAT}		TBD		KOhm
Q ⁽¹⁾	Ratio on V _{BAT} measurement		2		
Er ⁽¹⁾	Error on Q	-1		+1	%
T _{S_vbat} (2)(2)	ADC sampling time when reading the V _{BAT} 1mV accuracy	TBD			μs

- 1. Guaranteed by design, not tested in production.
- 2. Shortest sampling time can be determined in the application by multiple iterations.

5.3.22 Embedded reference voltage

The parameters given in *Table 64* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Table 64. Embedded internal reference voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	-40 °C < T _A < +105 °C	1.16	1.20	1.26	V
		-40 °C < T _A < +85 °C	1.16	1.20	1.24	V
T _{S_vrefint} (1)	ADC sampling time when reading the internal reference voltage			5.1	TBD ⁽²⁾	μs

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV			10	mV
T _{Coeff} ⁽²⁾	Temperature coefficient				100	ppm/°C

Embedded internal reference voltage Table 64.

5.3.23 **FSMC** characteristics

Asynchronous waveforms and timings

Figure 45 through Figure 48 represent asynchronous waveforms and Table 65 through Table 68 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

 $t_{w(NE)}$ FSMC_NE - t_{v(NOE_NE)} tw(NOE) th(NE_NOE) FSMC_NOE FSMC_NWE t_{v(A_NE)} t_{h(A_NOE)} FSMC_A[25:0] Address t_{v(BL_NE)} $t_{h(BL_NOE)}$ FSMC_NBL[1:0] ← t h(Data_NE) t_{su(Data NOE)}. th(Data_NOE) t_{su(Data_NE)} Data FSMC_D[15:0] + t_{v(NADV_NE)} - t_{w(NADV)} - $FSMC_NADV^{(1)}$ ai14991B

Figure 45. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

^{1.} Shortest sampling time can be determined in the application by multiple iterations.

^{2.} Guaranteed by design, not tested in production.

Table 65. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾ (2)

14210 001	Asynomeneus non manapiezeu en any en amings					
Symbol	Parameter	Min	Max	Unit		
t _{w(NE)}	FSMC_NE low time	5T _{HCLK} - 1.5	5T _{HCLK} + 2	ns		
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0.5	1.5	ns		
t _{w(NOE)}	FSMC_NOE low time	5T _{HCLK} - 1.5	5T _{HCLK} + 1.5	ns		
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	-1.5		ns		
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid		7	ns		
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0.1		ns		
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid		0	ns		
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0		ns		
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2T _{HCLK} + 25		ns		
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	2T _{HCLK} + 25		ns		
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0		ns		
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0		ns		
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low		5	ns		
t _{w(NADV)}	FSMC_NADV low time		T _{HCLK} + 1.5	ns		

^{1.} $C_L = 15 pF$.

Figure 46. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

^{2.} Based on characterization, not tested in production.

Table 66. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	3T _{HCLK} – 1	3T _{HCLK} + 2	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	T _{HCLK} - 0.5	T _{HCLK} + 1.5	ns
t _{w(NWE)}	FSMC_NWE low time	T _{HCLK} - 0.5	T _{HCLK} + 1.5	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	T _{HCLK}		ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid		7.5	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	T _{HCLK}		ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid		1.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	T _{HCLK} - 0.5		ns
t _{v(Data_NE)}	FSMC_NEx low to Data valid		T _{HCLK} + 7	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	T _{HCLK}		ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low		5.5	ns
t _{w(NADV)}	FSMC_NADV low time		T _{HCLK} + 1.5	ns

^{1.} $C_L = 15 pF$.

Figure 47. Asynchronous multiplexed PSRAM/NOR read waveforms

^{2.} Based on characterization, not tested in production.

Table 67. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	7T _{HCLK} – 2	7T _{HCLK} + 2	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	3T _{HCLK} - 0.5	3T _{HCLK} + 1.5	ns
t _{w(NOE)}	FSMC_NOE low time	4T _{HCLK} – 1	4T _{HCLK} + 2	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	-1		ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid		0	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	3	5	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} -1.5	T _{HCLK} + 1.5	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	T _{HCLK}		ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	T _{HCLK}		ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0		ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid		0	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2T _{HCLK} + 24		ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	2T _{HCLK} + 25		ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0		ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0		ns

^{1.} $C_L = 15 pF$.

^{2.} Based on characterization, not tested in production.

Figure 48. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 68. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾⁽²⁾

	Adynomenede manipiezed i enzimpieri write immige				
Symbol	Parameter		Max	Unit	
t _{w(NE)}	FSMC_NE low time	5T _{HCLK} – 1	5T _{HCLK} + 2	ns	
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	2T _{HCLK}	2T _{HCLK} + 1	ns	
t _{w(NWE)}	FSMC_NWE low time	2T _{HCLK} – 1	2T _{HCLK} + 2	ns	
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	T _{HCLK} – 1		ns	
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid		7	ns	
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	3	5	ns	
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} – 1	T _{HCLK} + 1	ns	
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	T _{HCLK} – 3		ns	
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	4T _{HCLK}		ns	
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid		1.6	ns	
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	T _{HCLK} - 1.5		ns	
t _{v(Data_NADV)}	FSMC_NADV high to Data valid		T _{HCLK} + 1.5	ns	
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	T _{HCLK} – 5		ns	

^{1.} $C_L = 15 pF$.

^{2.} Based on characterization, not tested in production.

Synchronous waveforms and timings

Figure 49 through Figure 52 represent synchronous waveforms and Table 70 through Table 72 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FSMC_BurstAccessMode_Enable;
- MemoryType = FSMC_MemoryType_CRAM;
- WriteBurst = FSMC WriteBurst Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F20xxx/21xxx reference manual)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

Table 69. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.7		ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)		1.5	ns
t _{d(CLKH-NExH)}	FSMC_CLK high to FSMC_NEx high (x = 02)	T _{HCLK} + 2		ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low		4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5		ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)		0	ns
t _{d(CLKH-AIV)}	FSMC_CLK high to FSMC_Ax invalid (x = 1625)	T _{HCLK} + 2		ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low		T _{HCLK} +1	ns
t _{d(CLKH-NOEH)}	FSMC_CLK high to FSMC_NOE high	T _{HCLK} + 0.5		ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid		12	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0		ns
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	6		ns
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	T _{HCLK} – 10		ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	8		ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2		ns

^{1.} $C_L = 15 \text{ pF}.$

^{2.} Based on characterization, not tested in production.

Figure 50. Synchronous multiplexed PSRAM write timings

Table 70. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.7		ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_Nex low (x = 02)		2	ns
t _{d(CLKH-NExH)}	FSMC_CLK high to FSMC_NEx high (x = 02)	T _{HCLK} + 2		ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low		4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5		ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)		0	ns
t _{d(CLKH-AIV)}	FSMC_CLK high to FSMC_Ax invalid (x = 1625)	T _{CK} + 2		ns
t _{d(CLKL-NWEL)}	FSMC_CLK low to FSMC_NWE low		1	ns
t _{d(CLKH-NWEH)}	FSMC_CLK high to FSMC_NWE high	T _{HCLK} +1		ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid		12	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	3		ns
t _{d(CLKL-Data)}	FSMC_A/D[15:0] valid after FSMC_CLK low		6	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	7		ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2		ns
t _{d(CLKL-NBLH)}	FSMC_CLK low to FSMC_NBL high	1		ns

^{1.} $C_L = 15 pF$.

^{2.} Based on characterization, not tested in production.

Figure 51. Synchronous non-multiplexed NOR/PSRAM read timings

Table 71. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.7		ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)		1.5	ns
t _{d(CLKH-NExH)}	FSMC_CLK high to FSMC_NEx high (x = 02)	T _{HCLK} + 2		ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low		4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5		ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 025)		0	ns
t _{d(CLKH-AIV)}	FSMC_CLK high to FSMC_Ax invalid ($x = 025$)	T _{HCLK} + 4		ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low		T _{HCLK} + 1.5	ns
t _{d(CLKH-NOEH)}	FSMC_CLK high to FSMC_NOE high	T _{HCLK} + 1.5		ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	6.5		ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	7		ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_SMCLK high	7		ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2		ns

^{1.} $C_L = 15 pF$.

^{2.} Based on characterization, not tested in production.

Figure 52. Synchronous non-multiplexed PSRAM write timings

Table 72. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.7		ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)		2	ns
t _{d(CLKH-NExH)}	FSMC_CLK high to FSMC_NEx high (x = 02)	T _{HCLK} + 2		ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low		4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5		ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)		0	ns
t _{d(CLKH-AIV)}	FSMC_CLK high to FSMC_Ax invalid (x = 1625)	T _{CK} + 2		ns
t _{d(CLKL-NWEL)}	FSMC_CLK low to FSMC_NWE low		1	ns
t _{d(CLKH-NWEH)}	FSMC_CLK high to FSMC_NWE high	T _{HCLK} + 1		ns
t _{d(CLKL-Data)}	FSMC_D[15:0] valid data after FSMC_CLK low		6	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	7		ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2		ns
t _{d(CLKL-NBLH)}	FSMC_CLK low to FSMC_NBL high	1		ns

^{1.} $C_L = 15 pF$.

^{2.} Based on characterization, not tested in production.

PC Card/CompactFlash controller waveforms and timings

Figure 53 through *Figure 58* represent synchronous waveforms and *Table 73* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x04;
- COM.FSMC_WaitSetupTime = 0x07;
- COM.FSMC HoldSetupTime = 0x04;
- COM.FSMC_HiZSetupTime = 0x00;
- ATT.FSMC SetupTime = 0x04;
- ATT.FSMC_WaitSetupTime = 0x07;
- ATT.FSMC_HoldSetupTime = 0x04;
- ATT.FSMC HiZSetupTime = 0x00;
- IO.FSMC SetupTime = 0x04;
- IO.FSMC_WaitSetupTime = 0x07;
- IO.FSMC HoldSetupTime = 0x04;
- IO.FSMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

Figure 53. PC Card/CompactFlash controller waveforms for common memory read access

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

Figure 54. PC Card/CompactFlash controller waveforms for common memory write access

Figure 55. PC Card/CompactFlash controller waveforms for attribute memory read access

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

Figure 56. PC Card/CompactFlash controller waveforms for attribute memory write access

1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).

Figure 58. PC Card/CompactFlash controller waveforms for I/O space write access

Table 73. Switching characteristics for PC Card/CF read and write cycles⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{v(NCEx-A)} t _{v(NCE4_1-A)}	FSMC_NCEx low (x = $4_1/4_2$) to FSMC_Ay valid (y = 010) FSMC_NCE4_1 low (x = $4_1/4_2$) to FSMC_Ay valid (y = 010)		0	ns
th(NCEx-AI) th(NCE4_1-AI)	FSMC_NCEx high (x = $4_1/4_2$) to FSMC_Ax invalid (x = 010) FSMC_NCE4_1 high (x = $4_1/4_2$) to FSMC_Ax invalid (x = 010)			ns
$\begin{bmatrix} t_{d(NREG-NCEx)} \\ t_{d(NREG-NCE4_1)} \end{bmatrix}$	FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1 low to FSMC_NREG valid		5	ns
t _{h(NCEx-NREG)} t _{h(NCE4_1-NREG)}	FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1 high to FSMC_NREG invalid	T _{HCLK} + 3		ns
t _{d(NCE4_1-NOE)}	FSMC_NCE4_1 low to FSMC_NOE low		5T _{HCLK} + 2	ns
t _{w(NOE)}	FSMC_NOE low width	8T _{HCLK} -1.5	8T _{HCLK} + 1	ns
t _{d(NOE-NCE4_1}	FSMC_NOE high to FSMC_NCE4_1 high	5T _{HCLK} + 2		ns
t _{su(D-NOE)}	FSMC_D[15:0] valid data before FSMC_NOE high	25		ns
t _{h(NOE-D)}	FSMC_D[15:0] valid data after FSMC_NOE high	15		ns
t _{w(NWE)}	FSMC_NWE low width	8T _{HCLK} – 1	8T _{HCLK} + 2	ns
t _{d(NWE-NCE4_1)}	FSMC_NWE high to FSMC_NCE4_1 high	5T _{HCLK} + 2		ns
t _{d(NCE4_1-NWE)}	FSMC_NCE4_1 low to FSMC_NWE low		5T _{HCLK} + 1.5	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15:0] valid		0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15:0] invalid	11T _{HCLK}		ns
t _{d(D-NWE)}	FSMC_D[15:0] valid before FSMC_NWE high	13T _{HCLK}		ns

Table 73. Switching characteristics for PC Card/CF read and write cycles⁽¹⁾⁽²⁾ (continued)

Symbol	Parameter	Min	Max	Unit
t _{w(NIOWR)}	FSMC_NIOWR low width	8T _{HCLK} + 3		ns
t _{v(NIOWR-D)}	FSMC_NIOWR low to FSMC_D[15:0] valid		5T _{HCLK} +1	ns
t _{h(NIOWR-D)}	FSMC_NIOWR high to FSMC_D[15:0] invalid	11T _{HCLK}		ns
t _{d(NCE4_1-NIOWR)}	FSMC_NCE4_1 low to FSMC_NIOWR valid		5T _{HCLK} +3ns	ns
$\begin{bmatrix} t_{h(NCEx\text{-NIOWR})} \\ t_{h(NCE4_1\text{-NIOWR})} \end{bmatrix}$	FSMC_NCEx high to FSMC_NIOWR invalid FSMC_NCE4_1 high to FSMC_NIOWR invalid	5T _{HCLK} – 5		ns
$\begin{bmatrix} t_{d(NIORD\text{-}NCEx)} \\ t_{d(NIORD\text{-}NCE4_1)} \end{bmatrix}$	FSMC_NCEx low to FSMC_NIORD valid FSMC_NCE4_1 low to FSMC_NIORD valid		5T _{HCLK} + 2.5	ns
t _{h(NCEx-NIORD)} t _{h(NCE4_1-NIORD)}	FSMC_NCEx high to FSMC_NIORD invalid FSMC_NCE4_1 high to FSMC_NIORD invalid	5T _{HCLK} – 5		ns
t _{su(D-NIORD)}	FSMC_D[15:0] valid before FSMC_NIORD high	4.5		ns
t _{d(NIORD-D)}	FSMC_D[15:0] valid after FSMC_NIORD high	9		ns
t _{w(NIORD)}	FSMC_NIORD low width	8T _{HCLK} + 2		ns

^{1.} $C_L = 15 pF$.

NAND controller waveforms and timings

Figure 59 through *Figure 62* represent synchronous waveforms and *Table 74* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x01;
- COM.FSMC_WaitSetupTime = 0x03;
- COM.FSMC_HoldSetupTime = 0x02;
- COM.FSMC_HiZSetupTime = 0x01;
- ATT.FSMC_SetupTime = 0x01;
- ATT.FSMC_WaitSetupTime = 0x03;
- ATT.FSMC_HoldSetupTime = 0x02;
- ATT.FSMC_HiZSetupTime = 0x01;
- Bank = FSMC_Bank_NAND;
- MemoryDataWidth = FSMC_MemoryDataWidth_16b;
- ECC = FSMC_ECC_Enable;
- ECCPageSize = FSMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

^{2.} Based on characterization, not tested in production.

FSMC_NCEX LOW

ALE (FSMC_A17)
CLE (FSMC_A16)

FSMC_NWE

FSMC_NOE (NRE)

Figure 59. NAND controller waveforms for read access

Figure 60. NAND controller waveforms for write access

FSMC_NCEX LOW

ALE (FSMC_A17)
CLE (FSMC_A16)

FSMC_NWE

FSMC_NOE

tw(NOE)

th(NOE-ALE)

th(NOE-D)

FSMC_D[15:0]

477

Figure 62. NAND controller waveforms for common memory write access

Table 74. Switching characteristics for NAND Flash read and write cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{d(D-NWE)} ⁽²⁾	FSMC_D[15:0] valid before FSMC_NWE high	6T _{HCLK} + 12		ns
t _{w(NOE)} ⁽²⁾	FSMC_NOE low width	4T _{HCLK} – 1.5	4T _{HCLK} + 1.5	ns
t _{su(D-NOE)} ⁽²⁾	FSMC_D[15:0] valid data before FSMC_NOE high	25		ns
t _{h(NOE-D)} (2)	FSMC_D[15:0] valid data after FSMC_NOE high	7		ns
t _{w(NWE)} ⁽²⁾	FSMC_NWE low width	4T _{HCLK} – 1	4T _{HCLK} + 2.5	ns
t _{v(NWE-D)} ⁽²⁾	FSMC_NWE low to FSMC_D[15:0] valid		0	ns
t _{h(NWE-D)} ⁽²⁾	FSMC_NWE high to FSMC_D[15:0] invalid	10T _{HCLK} + 4		ns
t _{d(ALE-NWE)} (3)	FSMC_ALE valid before FSMC_NWE low		3T _{HCLK} + 1.5	ns
t _{h(NWE-ALE)} (3)	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} + 4.5		ns
t _{d(ALE-NOE)} (3)	FSMC_ALE valid before FSMC_NOE low	_	3T _{HCLK} + 2	ns
t _{h(NOE-ALE)} (3)	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} + 4.5		ns

^{1.} $C_L = 15 pF$.

- 2. Based on characterization, not tested in production.
- 3. Guaranteed by design, not tested in production.

5.3.24 Camera interface (DCMI) timing specifications

Table 75. DCMI characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
	Frequency ratio DCMI_PIXCLK/f _{HCLK}	DCMI_PIXCLK= 48 MHz		2.5	

5.3.25 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 76* are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 10*.

Refer to *Section 5.3.14: I/O port characteristics* for more details on the input/output alternate function characteristics (D[7:0], CMD, CK).

Figure 63. SDIO high-speed mode

Figure 64. SD default mode

Table 76. SD / MMC characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{PP}	Clock frequency in data transfer mode	C _L ≤ 30 pF	0	48	MHz
-	SDIO_CK/f _{PCLK2} frequency ratio	-	-	8/3	-

Table 76. SD / MMC characteristics (continued)

Symbol	Parameter	Conditions	Min	Max	Unit	
t _{W(CKL)}	Clock low time, f _{PP} = 16 MHz	$C_L \le 30 pF$	32			
t _{W(CKH)}	Clock high time, f _{PP} = 16 MHz	C _L ≤ 30 pF	31		ns	
t _r	Clock rise time	C _L ≤ 30 pF		3.5	115	
t _f	Clock fall time	$C_L \le 30 pF$		5		
CMD, D inp	outs (referenced to CK)	•				
t _{ISU}	Input setup time	$C_L \leq 30 \text{ pF}$	2		ns	
t _{IH}	Input hold time	$C_L \leq 30 \text{ pF}$	0		115	
CMD, D out	tputs (referenced to CK) in MMC and	d SD HS mode				
t _{OV}	Output valid time	$C_L \leq 30 \text{ pF}$		6	ne	
t _{OH}	Output hold time	C _L ≤ 30 pF	0.3		ns	
CMD, D out	CMD, D outputs (referenced to CK) in SD default mode ⁽¹⁾					
t _{OVD}	Output valid default time	C _L ≤ 30 pF		7	ns	
t _{OHD}	Output hold default time	C _L ≤ 30 pF	0.5		118	

^{1.} Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.

5.3.26 RTC characteristics

Table 77. RTC characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-	-

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Figure 65. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline⁽¹⁾

Figure 66. Recommended footprint⁽¹⁾⁽²⁾

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 78. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

Complete		millimeters								
Symbol	Min	Тур	Max	Min	Тур	Max				
Α			1.600			0.0630				
A1	0.050		0.150	0.0020		0.0059				
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571				
b	0.170	0.220	0.270	0.0067	0.0087	0.0106				
С	0.090		0.200	0.0035		0.0079				
D		12.000			0.4724					
D1		10.000			0.3937					
Е		12.000			0.4724					
E1		10.000			0.3937					
е		0.500			0.0197					
θ	0°	3.5°	7°	0°	3.5°	7°				
L	0.450	0.600	0.750	0.0177	0.0236	0.0295				
L1		1.000			0.0394					
N		Number of pins								
IV		64								

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

A1 ball location Detail A e1 Ε 00000000 0000000G Α2 Α Wafer back side Side view Bump side Detail A rotated by 90 °C □ eee Α1 Seating plane A0FX_ME

Figure 67. WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline

1. Drawing is not to scale.

Table 79. WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data

Cumbal		millimeters		inches		
Symbol	Тур	Min	Max	Тур	Min	Max
А	0.570	0.520	0.620	0.0224	0.0205	0.0244
A1	0.190	0.170	0.210	0.0075	0.0067	0.0083
A2	0.380	0.350	0.410	0.0150	0.0138	0.0161
b	0.270	0.240	0.300	0.0106	0.0094	0.0118
D	3.674	3.654	3.694	0.1446	0.1439	0.1454
E	4.006	3.986	4.026	0.1577	0.1569	0.1585
е	0.400			0.0157		
e1	3.200			0.1260		
F	0.237			0.0093		
G	0.403			0.0159		
eee	0.050				0.0020	

Figure 68. LQFP100, 14 x 14 mm 100-pin low-profile Figure 69. Recommended footprint⁽¹⁾⁽²⁾ quad flat package outline⁽¹⁾

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 80. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data

Cumbal		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Тур Мах		Тур	Max	
Α			1.600			0.0630	
A1	0.050		0.150	0.0020		0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090		0.200	0.0035		0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3		12.000			0.4724		
E	15.80v	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3		12.000			0.4724		
е		0.500			0.0197		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1		1.000			0.0394		
k	0°	3.5°	7°	0°	3.5°	7°	
ccc		0.080			0.0031		

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 70. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline⁽¹⁾

Figure 71. Recommended footprint⁽¹⁾⁽²⁾

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data

Compleal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
Α			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090		0.200	0.0035		0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.874
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3		17.500			0.689	
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3		17.500			0.6890	
е		0.500			0.0197	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1		1.000			0.0394	
k	0°	3.5°	7°	0°	3.5°	7°
CCC		0.080			0.0031	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 72. LQFP176 - Low profile quad flat package $24 \times 24 \times 1.4$ mm, package outline

1. Drawing is not to scale.

Table 82. LQFP176 - Low profile quad flat package 24 x 24 x 1.4 mm package mechanical data

Cumbal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350		1.450	0.0531		0.0571
b	0.170		0.270	0.0067		0.0106
С	0.090		0.200	0.0035		0.0079
D	23.900		24.100	0.9409		0.9488
E	23.900		24.100	0.9409		0.9488
е		0.500			0.0197	
HD	25.900		26.100	1.0197		1.0276
HE	25.900		26.100	1.0197		1.0276
L ⁽²⁾	0.450		0.750	0.0177		0.0295
L1		1.000			0.0394	
ZD		1.250			0.0492	
ZE		1.250			0.0492	
k	0°		7°	0°		7°
ccc		0.080			0.0031	•

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

^{2.} L dimension is measured at gauge plane at 0.25 mm above the seating plane.

C Seating plane Ball A1 **++**000000000000 000000000000000 00000000000000 00000000000000 0000 0000 00000 0000 0000 0000 00000 0000 0000 $\circ \circ \oplus \circ \circ$ 0000 0000 00000 0000 $\circ \circ \circ \circ$ 00000 0000 0000 0000 000000000000000 00000000000000 0000000000000000 0000000000000000 (176 balls) Øb Øeee(M) C A B Øfff M C

Figure 73. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline

1. Drawing is not to scale.

Table 83. UFBGA176+25 - ultra thin fine pitch ball grid array $10 \times 10 \times 0.6$ mm mechanical data

Cumbal		millimeters					
Symbol	Min	Тур	Max	Min	Тур	Max	
Α	0.460	0.530	0.610	0.0181	0.0209	0.0240	
A1	0.050	0.080	0.110	0.002	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3		0.130		0.0051			
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.300	0.350	0.400	0.0118	0.0138	0.0157	
D	9.950	10.000	10.050	0.3740	0.3937	0.3957	
Е	9.950	10.000	10.050	0.3740	0.3937	0.3957	
е	0.600	0.650	0.700	0.0236	0.0256	0.0276	
F	0.400	0.450	0.500	0.0157 0.0177		0.0197	
ddd	0.120				0.0047		
eee	0.150			0.0059			
fff		0.080			0.0031		

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

6.2 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J \max = T_A \max + (P_D \max x \Theta_{JA})$$

Where:

- ullet T_A max is the maximum ambient temperature in ${}^{\circ}$ C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{\text{I/O}}$ max represents the maximum power dissipation on output pins where:

$$P_{I/O} \max = \sum (V_{OL} \times I_{OL}) + \sum ((V_{DD} - V_{OH}) \times I_{OH}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 84. Package thermal characteristics

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP 64 - 10 × 10 mm / 0.5 mm pitch	45	
	Thermal resistance junction-ambient WLCSP64+2 - 0.400 mm pitch	51	
0	Thermal resistance junction-ambient LQFP 100 - 14 × 14 mm / 0.5 mm pitch	46	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 144 - 20 × 20 mm / 0.5 mm pitch	40	- C/VV
	Thermal resistance junction-ambient LQFP 176 - 24 × 24 mm / 0.5 mm pitch	38	
	Thermal resistance junction-ambient UFBGA176 - 10x 10 mm / 0.5 mm pitch	39	

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

7 Part numbering

Table 85. Ordering information scheme

xxx = programmed parts

TR = tape and reel

- 1. The 66 pins is available on WLCSP package only.
- 2. The LQFP176 package is not in production. It is available only for development.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Appendix A Application block diagrams

A.1 Main applications versus package

Table 86 gives examples of configurations for each package.

Table 86. Main applications versus package for STM32F207xx microcontrollers⁽¹⁾

			64 pins		100 pins			144 pins				176	pins	
		Config 1	Config 2	Config 3	Config 1	Config 2	Config 3	Config 4	Config 1	Config 2	Config 3	Config 4	Config 1	Config 2
USB 1	OTG FS	Х	Х	Х	Х	Х	Х	1	Х		Х		Х	
	FS	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	HS ULPI	ı	ı	ı	Х	1	1	1	Х	X			Х	Х
USB 2	OTGFS				Χ				Х	Х			Х	Х
	FS	-	ı	ı	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Ethernet	MII	-	-	-	-	-	Х	Х			Х	Х	Х	Х
Luieniet	RMII	-	1	1	•	Х	Х	Х	Х	Х	Х	Х	Х	Х
SPI/I2S2 SPI/I2S3		-	x	-	-	х	х	х	x	х	х	x	x	х
SDIO	SDIO			-				Х		Х		Х	Х	Х
	8bits Data	SDIO	SDIO	ı	SDIO	SDIO	SDIO	Х	SDIO	Х	SDIOo	Х	х	х
рсмі	10bits Data	or DCMI	or DCMI	1	or DCMI	or DCMI	or DCMI	Х	or DCMI	Х	r DCMI	Х	Х	Х
DCMI	12bits Data			1				Х		Х		Х	Х	Х
	14bits Data					-	-	-		Х		Х	Х	Х
	NOR/ RAM Muxed	-	-	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
FSMC	NOR/ RAM	-	-	-					Х	Х	Х	Х	Х	Х
	NAND	-	-	-	Х	Х	X* ²²	X* ¹⁹	Х	X* ¹⁹	X* ²²	X* ¹⁹	X* ²²	X* ²²
	CF	-	-	-	-	-	-	-	Х	Х	Х	Х	Х	Х
CAN		ı	Х	Х	ı	Х	Х	Х	-	ı	Х	Х	-	Х

^{1.} X*y: FSMC address limited to "y".

A.2 Application example with regulator off

Figure 74. Regulator bypass/regulator off

1. This mode is available only on UFBGA176 and WLCSP64+2 packages.

Figure 75. Regulator bypass/regulator off and internal reset off

1. This mode is available only on WLCSP64+2 package.

A.3 USB OTG full speed (FS) interface solutions

Figure 76. USB OTG FS peripheral-only connection

Figure 77. USB OTG FS host-only connection

STMPS2141STR/STULPI01B needed only if the application has to support a V_{BUS} powered device. A
basic power switch can be used if 5 V are available on the application board.

Figure 78. OTG FS connection dual-role with internal PHY

- 1. External voltage regulator only needed when building a $V_{\mbox{\scriptsize BUS}}$ powered device.
- 2. STMPS2141STR/STULPI01B needed only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

A.4 USB OTG high speed (HS) interface solutions

Figure 79. USB OTG HS peripheral-only connection

577

 V_{DD} **GPIO** STMPS2141STR /STULPI01B 5 VPwi Overcurrent current limited now GPIO+IRQ distribution switch⁽¹⁾ STM32F20xx VBUS USB Std-A connector PB13 DM PB14 OSC_IN DP 士 PB15 V_{SS} OSC_OUT ai17298b

Figure 80. USB OTG HS host-only connection

STMPS2141STR/STULPI01B needed only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.

Figure 81. OTG HS connection dual-role with external PHY

It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F20x with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

Complete audio player solutions **A.5**

Two solutions are offered, illustrated in Figure 82 and Figure 83.

Figure 82 shows storage media to audio DAC/amplifier streaming using a software Codec. This solution implements an audio crystal to provide audio class I²S accuracy on the master clock (0.5% error maximum, see the Serial peripheral interface section in the reference manual for details).

Figure 82. Complete audio player solution 1

Figure 83 shows storage media to audio Codec/amplifier streaming with SOF synchronization of input/output audio streaming using a hardware Codec.

Complete audio player solution 2

Doc ID 15818 Rev 5 140/147

STM32F20xx up to 120 MHz XTAL 25 MHz Div Cortex-M3 core Div OSC by P by M up to 120 MHz x N1 by Q OTG 48 MHz PLLI2S Div PHY by R x N2 MCO1PRE MCO1/ MCLK out DAC + Audio ampli MCO2PRE I2S MCO₂ SCLK <0.04% MCLK ai18412b

Figure 84. Audio player solution using PLL, PLLI2S, USB and 1 crystal

I2S controller $\textbf{I2S_MCK} = 256 \times \mathsf{F}_{\mathsf{SAUDIO}}$ I2S_CK /I2SD = 11.2896 MHz for F_{SAUDIO} = 44.1 kHz = 12.2880 MHz for F_{SAUDIO} = 48.0 kHz 2,3,4,..,129 $I2S_SCK^{(1)} = I2S_MCK/8$ for 16-bit stereo = I2S_MCK/4 for 32-bit stereo /8 /(2 x 16) F_{SAUDIO} for 16-bit stereo /(2 x 32) SAUDIO for 32-bit stereo ai16042

Figure 86. Master clock (MCK) used to drive the external audio DAC

1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).

Figure 87. Master clock (MCK) not used to drive the external audio DAC

1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).

Revision history

Table 87. Document revision history

Date	Revision	Changes
05-Jun-2009	1	Initial release.
09-Oct-2009	2	Document status promoted from Target specification to Preliminary data. In Table 5: STM32F20x pin and ball definitions: - Note 4 updated - V _{DD_SA} and V _{DD_3} pins inverted (Figure 11: STM32F20x LQFP100 pinout, Figure 12: STM32F20x LQFP144 pinout and Figure 13: STM32F20x LQFP176 pinout corrected accordingly). Section 6.1: Package mechanical data changed to LQFP with no exposed pad.
01-Feb-2010	3	LFBGA144 package removed. STM32F203xx part numbers removed. Part numbers with 128 and 256 Kbyte Flash densities added. Encryption features removed. PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPER-RTC renamed to PI8-RTC_AF2.

Table 87. Document revision history (continued)

Date Revision	Changes
13-Jul-2010 4	Renamed high-speed SRAM, system SRAM. Removed combination: 128 KBytes Flash memory in LQFP144. Added UFBGA176 package. Added note 1 related to LQFP176 package in Table 2, Figure 13, and Table 85. Added information on ART accelerator and audio PLL (PLLI2S). Added Table 4: USART feature comparison. Several updates on Table 5: STM32F20x pin and ball definitions and Table 6: Alternate function mapping. ADC, DAC, oscillator, RTC_AF, WKUP and VBUS signals removed from alternate functions and moved to the "other functions" column in Table 5: STM32F20x pin and ball definitions. TRACESWO added in Figure 4: STM32F20x block diagram, Table 5: STM32F20x pin and ball definitions, and Table 6: Alternate function mapping. XTAL oscillator frequency updated on cover page, in Figure 4: STM32F20x block diagram and in Section 2.2.12: External interrupt/event controller (EXTI). Updated list of peripherals used for boot mode in Section 2.2.14: Boot modes. Added Regulator bypass mode in Section 2.2.17: Voltage regulator, and Section 5.3.3: Operating conditions at power-up / power-down in regulator bypass mode. Updated Section 2.2.18: Real-time clock (RTC), backup SRAM and backup registers. Added Note Note: in Section 2.2.19: Low-power modes. Added SPI TI protocol in Section 2.2.28: Serial peripheral interface (SPI). Added USB OTG_FS features in Section 2.2.33: Universal serial bus on-the-go full-speed (OTG_FS). Updated V _{CAP_1} and V _{CAP_2} capacitor value to 2.2 µF in Figure 18: Power supply scheme. Removed DAC, modified ADC limitations, and updated I/O compensation for 1.8 to 2.1 V range in Table 11: Limitations depending on the operating power supply range. Added V _{BORL} , V _{BORM} , V _{BORH} and I _{RUSH} in Table 14: Embedded reset and power control block characteristics. Removed table Typical current consumption in Sleep mode with Flash memory in Deep power down mode. Merged typical and maximum current consumption in Flash, Table 16: Typical and maximum current consumption in Sleep mode, Table 19: Typical and maximum curre

Table 87. Document revision history (continued)

Date	Revision	Changes
13-Jul-2010	4 (continued)	Added Note 6 for CIO in Table 40: I/O static characteristics. Updated Section 5.3.16: TIM timer characteristics. Added T _{NRST_OUT} in Table 43: NRST pin characteristics. Updated Table 46: I2C characteristics. Removed 8-bit data in and data out waveforms from Figure 36: ULPI timing diagram. Removed note related to ADC calibration in Table 60. Section 5.3.18: 12-bit ADC characteristics: ADC characteristics tables merged into one single table; tables ADC conversion time and ADC accuracy removed. Updated Table 61: DAC characteristics. Updated Section 5.3.20: Temperature sensor characteristics and Section 5.3.21: VBAT monitoring characteristics. Update Section 5.3.24: Camera interface (DCMI) timing specifications. Added Section 5.3.25: SD/SDIO MMC card host interface (SDIO) characteristics, and Section 5.3.26: RTC characteristics. Added Section 6.2: Thermal characteristics. Updated Table 82: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data and Figure 72: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline. Changed tape and reel code to TX in Table 85: Ordering information scheme. Added Table 86: Main applications versus package for STM32F207xx microcontrollers. Updated figures in Appendix A.3: USB OTG full speed (FS) interface solutions and A.4: USB OTG high speed (HS) interface solutions. Updated Figure 84: Audio player solution using PLL, PLLI2S, USB and 1 crystal and Figure 85: Audio PLL (PLLI2S) providing accurate I2S clock.

577

Table 87. Document revision history (continued)

Date	Revision	Changes
		Update I/Os in Section : Features.
		Added WLCSP66(64+2) package. Added note 1 related to LQFP176 on cover page.
		Added trademark for ART accelerator. Updated Section 2.2.3: Adaptive real-time memory accelerator (ART Accelerator™).
		Updated Figure 5: Multi-AHB matrix.
		Added case of BOR inactivation using IRROFF on WLCSP devices in <i>Section 2.2.16: Power supply supervisor.</i>
		Reworked <i>Section 2.2.17: Voltage regulator</i> to clarify regulator off modes. Renamed PDROFF, IRROFF in the whole document.
		Added Section 2.2.20: VBAT operation.
		Updated LIN and IrDA features for UART4/5 in <i>Table 4: USART feature comparison</i> .
		Table 5: STM32F20x pin and ball definitions: Modified V _{DD_3} pin, and added note related to the FSMC_NL pin; renamed BYPASS-REG REGOFF, and add IRROFF pin; renamed USART4/5 UART4/5. USART4 pins renamed UART4.
		Changed V_{SS_SA} to V_{SS} , and V_{DD_SA} pin reserved for future use.
		Updated maximum HSE crystal frequency to 26 MHz.
		Section 5.2: Absolute maximum ratings: Updated V _{IN} minimum and maximum values and note for non-five-volt tolerant pins in Table 7: Voltage characteristics. Updated I _{INJ(PIN)} maximum values and related notes in Table 8: Current characteristics.
25-Nov-2010	5	Updated V _{DDA} minimum value in <i>Table 10: General operating conditions</i> .
		Added Note 2 Updated Maximum CPU frequency in Table 11:
		Limitations depending on the operating power supply range, and added Figure 20: Number of wait states versus fCPU and VDD range.
		Added brownout level 1, 2, and 3 thresholds in <i>Table 14: Embedded reset and power control block characteristics</i> .
		Changed f _{OSC_IN} maximum value in <i>Table 24: HSE 4-26 MHz oscillator</i> characteristics.
		Changed f _{PLL_IN} maximum value in <i>Table 29: Main PLL characteristics</i> , and updated jitter parameters in <i>Table 30: PLLI2S (audio PLL) characteristics</i> .
		Section 5.3.14: I/O port characteristics: updated V _{IH} and V _{IL} in Table 40: I/O static characteristics.
		Added Note 1 below Table 41: Output voltage characteristics.
		Updated R _{PD} and R _{PU} parameter description in <i>Table 51: USB OTG FS DC electrical characteristics</i> .
		Updated V _{REF+} minimum value in <i>Table 59: ADC characteristics</i> .
		Updated Table 64: Embedded internal reference voltage.
		Removed Ethernet and USB2 for 64-pin devices in <i>Table 86: Main applications versus package for STM32F207xx microcontrollers</i> .
		Added A.2: Application example with regulator off, removed "OTG FS connection with external PHY" figure, updated Figure 77, Figure 78, and Figure 80 to add STULPI01B.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

