

# Equações diferenciais ordinárias Equações diferenciais de segunda ordem

Prof. Adolfo Herbster 24 de Agosto de 2021 Lição atual: Equações diferenciais de segunda ordem: introdução e resolução de equações lineares homogêneas I

"Lembre-se da Lei da Semeadura e da Colheita."

### Introdução às equações diferenciais de segunda ordem

Capítulo: Boyce 3, Zill 4, Nagle 4

Na unidade anterior, aprendemos métodos de resolução de equações diferenciais de primeira ordem, em especial, os métodos das **equações separáveis** e **equações exatas**. Nesta unidade, buscaremos solucionar as equações diferenciais de segunda ordem, em especial, as EDOs lineares de coeficientes constantes<sup>1</sup>.

Uma equação diferencial ordinária linear de segunda ordem é definida como:

$$P(t)\frac{d^2y}{dt^2} + Q(t)\frac{dy}{dt} + R(t)y = f(t).$$
(1)

A equação é homogênea caso f(t)=0. Caso contrário, a equação diferencial é não homogênea. Em problemas físicos, o termo  $d^2y/dt^2$ , ou seja, a derivada segunda da variável dependente y(t) em relação à t, representa a aceleração: a taxa de variação da velocidade dy/dt.

<sup>&</sup>lt;sup>1</sup>Estas equações serão utilizadas em disciplinas como Circuitos Elétricos II, Ondas e linhas e Eletrônica de Potência.

### Equações lineares homogêneas com coeficientes constantes

Boyce 3.1, Zill 4.3, Nagle 4.2 e 4.3

Problema: Determinar a solução da equação

$$ay'' + by' + cy = 0. (2)$$

Caso a=0, a solução é conhecida e igual a  $y(t)=Ce^{\tau t}$ , em que C é uma constante qualquer e  $\tau=-c/b$ . Portanto, é suposto, inicialmente, que a solução da Eq. 2 seja do tipo  $y(t)=Ce^{rt}$ . Então, ao substituir esta solução na Eq. 2, é obtida a equação característica (ou auxiliar):

$$ar^2 + br + c = 0. ag{3}$$

# Equações lineares homogêneas com coeficientes constantes

Boyce 3.1 e 3.4, Zill 4.3, Nagle 4.2 e 4.3

#### Há três casos possíveis:

1. Raízes reais distintas (como determinar  $C_1$  e  $C_2$ ?):

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} (4)$$

2. Raízes complexas (auxílio da fórmula de Euller<sup>4</sup>):

$$y(t) = e^{\alpha t} \left( C_1 \cos wt + C_2 \sin wt \right) \tag{5}$$

3. Raízes idênticas (redução de ordem):

$$y(t) = C_1 e^{r_1 t} + C_2 t e^{r_1 t}$$
(6)

 $<sup>^{4}</sup>e^{-it} = \cos t - i\sin t$ 

### Exemplos

#### Considere os exemplos:

- Exemplo 1: y'' 4y = 0
- Exemplo 2: y'' + 2y' = 0
- Exemplo 3: y'' + 6y' + 8y = 0
- Exemplo 4: y'' + 2y' + 2y = 0
- Exemplo 5: y'' 4y' + 5y = 0
- Exemplo 6: y'' + 4y = 0

Para todos os exemplos, as condições iniciais são: y(0)=0 e y'(0)=1 (resposta ao impulso).



# Equações lineares homogêneas com coeficientes constantes

Exemplo 7: Determine a solução geral da equação diferencial:

- y'' + 2y' + 2y = 0;
- 4y'' + 9y = 0.

Exemplo 8: Determine e esboce o gráfico da solução da equação diferencial dada. Determine seu comportamento para valores elevados de t.

- y'' + 4y' + 5y = 0, y(0) = 1, y'(0) = 0;
- y'' + 2y' + 2y = 0,  $y(\pi/4) = 2$ ,  $y'(\pi/4) = -2$ ;

# Equações lineares homogêneas com coeficientes constantes

#### Exercícios

Exercício 1: Encontre uma equação diferencial cuja solução geral é  $y(t)=c_1e^{2t}+c_2e^{-3t}$ .

Exercício 2: Encontre uma equação diferencial cuja solução geral é  $y(t) = c_1 e^{-t/2} + c_2 e^{-2t}$ .

Exercício 3: Encontre a solução do problema de valor inicial

$$y'' - y = 0, y(0) = 5/4, y'(0) = -3/4.$$

Faça o gráfico da solução  $0 \le t \le 2$  e determine seu valor mínimo.

Exercício 4: Resolva o problema de valor inicial y'' - y' - 2y = 0,  $y(0) = \alpha$ , y'(0) = 2. Depois, encontre  $\alpha$  de modo que a solução tenda a zero quando  $t \to \infty$ .

Exercício 5: Resolva o problema de valor inicial 4y'' - y = 0, y(0) = 2,  $y'(0) = \beta$ . Depois, encontre  $\beta$  de modo que a solução tenda a zero quando  $t \to \infty$ .

#### Próxima aula ...

Tópicos que serão abordados na próxima aula:

- · método da redução de ordem;
- resolução de equações lineares homogêneas;
- equações de Cauchy-Euller.

Lição atual: Método da redução de ordem, resolução de equações lineares homogêneas II e equações de Cauchy-Euller

"Sem dúvida, se colocares pouco sobre pouco, e o fizeres com frequência, logo o pouco se tornará muito."

### Introdução

Na aula anterior, conhecemos as equações diferenciais de segunda ordem, em especial, com coeficientes constantes:

$$ay'' + by' + cy = 0. (7)$$

Naquela oportunidade, vimos como encontrar a solução desta equação diferencial na forma

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t},$$

em que  $r_1$  e  $r_2$  são raízes do polinômio característico

$$ar^2 + br + c = 0.$$

Naquele momento, então, estudamos o caso em que as raízes deste polinômio são distintas (reais ou complexas). E se as raízes forem idênticas?

## Equações lineares homogêneas com coeficientes constantes

Boyce 3.5, Zill 4.3, Nagle 4.2

Dada uma equação diferencial homogênea de segunda ordem

$$ay'' + by' + cy = 0, (8)$$

a solução é

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}, (9)$$

quando as raízes do polinômio característico são distintas, em que as constantes  $C_1$  e  $C_2$  são determinadas a partir de (mostre)

$$\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \frac{1}{(r_2 - r_1) e^{(r_1 + r_2)t}} \begin{pmatrix} r_2 e^{r_2 t} & -e^{r_2 t} \\ -r_1 e^{r_1 t} & e^{r_1 t} \end{pmatrix} \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix}. \tag{10}$$

## Equações lineares homogêneas com coeficientes constantes

Boyce 3.5, Zill 4.3, Nagle 4.2

Entretanto, quando as raízes do polinômio característico são iguais  $(r_2=r_1)$ , não é possível determinar o valor das constantes  $C_1$  e  $C_2$  de acordo com a Eq. 10, pois  $r_2-r_1=0$  no denominador<sup>2</sup>.

Por outro lado, como  $y_1(t)=Ce^{r_1t}$  é uma solução já conhecida, aplica-se o método da redução de ordem. Desta forma, a solução geral é:

$$y(t) = C_1 e^{r_1 t} + C_2 t e^{r_1 t} (11)$$

<sup>&</sup>lt;sup>2</sup>Maiores detalhes serão apresentados na próxima aula - dependência e independência linear.

### Redução de ordem

Boyce 3.5, Zill 4.2, Nagle 4.7

Para determinar a solução da Eq. 7, utilizamos o método conhecido como **redução de ordem**. Podemos construir uma segunda solução a partir de uma solução conhecida  $y_1(t)$ . Uma forma para determinar a segunda solução consiste em reduzir a ordem da equação diferencial:

$$P(t)y'' + Q(t)y' + R(t)y = 0 \Rightarrow y'' + p(t)y' + q(t)y = 0.$$
(12)

A segunda solução é definida como:

$$y_2(t) = v(t)y_1(t).$$
 (13)

Ao substituir  $y_2(t)$  na equação diferencial (equação diferencial de primeira ordem para a função  $v^\prime$ ) encontramos

$$y_1v'' + (2y_1' + py_1)v' = 0 \Rightarrow v'' + (2\frac{y_1'}{y_1} + p)v' = 0.$$
 (14)

### Redução de ordem

#### Exemplos

Exemplo 9: Use o método de redução de ordem para encontrar uma segunda solução da equação diferencial dada.

• 
$$t^2y'' + 2ty' - 2y = 0$$
,  $t > 0$ ;  $y_1(t) = t$ ;

• 
$$(t-1)y'' - ty' + y = 0$$
,  $t > 1$ ;  $y_1(t) = e^t$ ;

Exemplo 10: A partir do método da redução de ordem e considerando que a solução  $y_1(t) = Ce^{r_1t}$  já é conhecida, encontre a solução da equação

$$ay'' + by' + cy = 0, (15)$$

quando as raízes da equação característica forem idênticas.

### Equações lineares homogêneas com coeficientes constantes

#### Exercício

Exercício 6: Resolva o problema de valor inicial dado. Esboce o gráfico da solução.

- y'' 6y' + 9y = 0, y(0) = 0, y'(0) = 2; Solução:  $y(t) = C_1 e^{3t} + C_2 t e^{3t}$
- y'' + 4y' + 4y = 0, y(-1) = 2, y'(-1) = 1; Solução:  $y(t) = C_1 e^{-2t} + C_2 t e^{-2t}$

Exercício 7: Considere o problema de valor inicial 4y'' + 4y' + y = 0, y(0) = 1, y'(0) = 2.

- Resolva o problema de valor inicial e faça o gráfico da solução;
- Determine as coordenadas  $(t_M, y_M)$  do ponto de máximo.
- Mude a segunda condição inicial para y'(0)-b>0 e encontre a solução em função de b.
- Encontre as coordenadas do ponto de máximo  $(t_M,y_M)$  em função de b. Descreva a dependência em b de  $t_M$  e de  $y_M$  quando b cresce.

### Equações de Cauchy-Euller

Boyce 5.5, Zill 6.1, Nagle 4.7

Uma equação da forma

$$t^2y'' + \alpha ty' + \beta y = 0, \quad t > 0, \tag{16}$$

em que  $\alpha$  e  $\beta$  são constantes reais, é chamada **equação de Cauchy-Euller**. A solução da equação de Cauchy-Euller é suposta  $y(t)=t^m$  e, portanto, a equação auxiliar é

$$m^2 + (\alpha - 1) m + \beta = 0. (17)$$

As soluções gerais da equação de Cauchy-Euller são

$$y(t) = C_1 t_1^m + C_2 t_2^m, \text{ se } m_1 \neq m_2$$
(18)

$$y(t) = t_1^m(C_1 + C_2 \ln t), \text{ se } m_1 = m_2$$
(19)

$$y(t) = t^{\lambda} [C_1 \cos(w \ln t) + C_2 \sin(w \ln t)], \text{ se } m_1 = m_2 = \lambda \pm \imath w \cos w > 0.$$
 (20)

## Equações de Cauchy-Euller

Exemplos

#### Exemplo 11: Determine a solução geral das equações diferenciais abaixo:

- $t^2y'' ty' 8y = 0$  em  $(0, \infty)$ .
- $6t^2y'' + 5ty' y = 0$  em  $(0, \infty)$ .

Exemplo 12: Dado que  $y_1(t) = t^{-1}$  é uma solução de

$$2t^2y'' + 3ty' - y = 0, t > 0,$$

encontre uma segunda solução linearmente independente.

# Equações de Cauchy-Euller

Exercicios

#### Exercício 8: Determine a solução das seguintes equações diferenciais:

• 
$$t^2y'' - 3ty' + 4y = 0, t > 0.$$

• 
$$t^2y'' + 2ty' + 1/4y = 0$$
,  $t > 0$ .

#### Próxima aula ...

Tópicos que serão abordados na próxima aula:

- · dependência e independência linear;
- Wronskiano;
- existência e unicidade de soluções (equações homogêneas).

Lição atual: Dependência e independência linear, Wronskiano e existência e unicidade de soluções (equações homogêneas)

"As pessoas só amam verdadeiramente aquilo que fazem no momento em que lhe prestam importância."

### Introdução

Na aulas anteriores, buscamos determinar a solução da equação diferencial

$$P(t)y'' + Q(t)y' + R(t)y = 0, (21)$$

em que P(t), Q(t) e R(t) são funções definidas em um intervalo I. Neste caso, quando as funções P(t), Q(t) e R(t) são constantes, determinamos a solução da EDO a partir das raízes do polinômio característico. Observamos que, neste caso, a solução é sempre composta por duas funções  $y_1(t)$  e  $y_21(t)$ . Entretanto, quais as condições para a existência da solução da Eq. 21?

Podemos afirmar que são as únicas soluções? Para responder estas duas perguntas, devemos apresentar dois conceitos importantes: (in)dependecia linear de funções e wronskiano.

### Dependência linear - Definição

Zill 4.1.2

Dizemos que um conjunto de funções  $f_1(t), f_2(t), \ldots, f_n(t)$  é linearmente dependente em um intervalo I se existem constantes  $c_1, c_2, \ldots, c_n$  não todas nulas, tais que

$$c_1 f_1(t) + c_2 f_2(t) + \ldots + c_n f_n(t) = 0,$$
 (22)

para todo t no intervalo.

Exemplo 01: Mostre que as funções  $f_1(t) = \sin(2t)$  e  $f_2(t) = \sin(t)\cos(t)$  são linearmente dependentes no intervalo  $(-\infty, \infty)$ .

### Independência linear - Definição

Zill 4.1.2

Dizemos que um conjunto de funções  $f_1(t), f_2(t), \ldots, f_n(t)$  é linearmente independente em um intervalo I se ele não é linearmente dependente no intervalo. Em outras palavras, um conjunto de funções é linearmente independente em um intervalo se as únicas constantes para as quais

$$c_1 f_1(t) + c_2 f_2(t) + \ldots + c_n f_n(t) = 0,$$
 (23)

para todo t no intervalo, são  $c_1 = c_2 = \ldots = c_n = 0$ .

Exemplo 02: Mostre que as funções  $f_1(t) = \sin(2t)$  e  $f_2(t) = \cos(t)$  são linearmente independentes no intervalo  $(-\infty, \infty)$ .

### Wronskiano - Definição

Zill 4.1.2, Nagle 4.2

Suponha que  $f_1(t), f_2(t), \dots, f_n(t)$  sejam diferenciáveis pelo menos n-1 vezes. O determinante

$$W(f_1(t), f_2(t), \dots, f_n(t)) = \begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f'_1 & f'_2 & \dots & f'_n \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)} & f_1^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$
(24)

é chamado de Wronskiano.

Determine o Wronskiano das soluções da equação diferencial ay'' + by' + cy = 0, quando as raízes do polinômio característicos são i) reais e distintas, ii) reais e iguais e iii) complexas.

#### Wronskiano

Zill 4.1.2, Nagle 4.2

#### Teorema 1

Se f e g são funções diferenciáveis em um intervalo aberto I e se  $W(f,g)(t_0) \neq 0$  em algum ponto  $t_0$  em I, então f e g são linearmente independentes em I. Além disso, se f e g são linearmente dependentes em I, então W(f,g)(t)=0 para todo t em I.

#### É importante observar:

- o que o Teorema afirma:
  - se  $W(f,g)(t_0) \neq 0$  então f e g são linearmente independentes (em algum ponto  $t_0$  em I);
  - se f e g são linearmente dependentes em I, então W(f,g)(t)=0 para todo t em I.
- o que o Teorema não afirma:
  - se f e g são linearmente independentes então  $W(f,g)(t_0) \neq 0$  então (em algum ponto  $t_0$  em I);
  - se W(f,g)(t)=0 então f e g são linearmente dependentes em I, então para todo t em I.

#### Wronskiano

#### Exercícios

Exercício 9: Determine se as funções abaixo são linearmente dependentes no intervalo (0,1).

•  $y_1(t) = e^{3t}$ ,  $y_2(t) = e^{-4t}$ ; •  $y_1(t) = te^{2t}$ ,  $y_2(t) = e^{2t}$ ; •  $y_1(t) = t^2 \cos(\ln t)$ ,  $y_2(t) = t^2 \sin(\ln(t))$ ; •  $y_1(t) = 0$ ,  $y_2(t) = e^t$ .

Exercício 10: Para cada um dos seguintes itens, determine se as três funções dadas são linearmente dependentes ou independentes em  $(\infty, -\infty)$ .

- $y_1(t) = 1, y_2(t) = t, y_3(t) = t^2;$
- $y_1(t) = -3, y_2(t) = 5\sin^2(t), y_3(t) = \cos^2(t);$
- $y_1(t) = e^t$ ,  $y_2(t) = te^t$ ,  $y_3(t) = t^2 e^t$ ;
- $y_1(t) = e^t$ ,  $y_2(t) = e^{-t}$ ,  $y_3(t) = \cosh(t)$ .

Zill 4.1

#### Teorema 2 (Critério para independência linear de soluções)

Sejam  $y_1$  e  $y_2$  soluções para a equação diferencial linear de segunda ordem homogênea

$$ay'' + by' + cy = 0,$$

em um intervalo I. Então, o conjunto de soluções é linearmente independente em I se e somente se  $W(y_1, y_2)(t) \neq 0$  para todo t no intervalo.

#### Teorema 3 (Princípio da superposição)

Sejam  $y_1$  e  $y_2$  soluções para a equação diferencial linear de segunda ordem homogênea

$$ay'' + by' + cy = 0,$$

em um intervalo I. Então a combinação linear  $y(t) = C_1 y_1(t) + C_2 y_2(t)$  é também uma solução no intervalo, com  $C_1$  e  $C_2$  constantes arbritárias.

Zill 4.1

Teorema 4 (Existência e unicidade de um conjunto fundamental de soluções)

Existe um conjunto fundamental de soluções<sup>4</sup> para a equação diferencial

$$ay'' + by' + cy = 0$$
, sujeita a  $y(t_0) = y_0$ ,  $y'(t_0) = y'_0$ 

em um intervalo I. Se  $t=t_0$  em algum ponto deste intervalo, então existe uma única solução y(t) para o problema de valor inicial acima neste intervalo.

<sup>&</sup>lt;sup>4</sup>Qualquer conjunto  $y_1$  e  $y_2$  de soluções linearmente independentes em um intervalo I é chamado de conjunto fundamental de soluções no intervalo.

#### Exercícios

Exercício 11: Nos problemas a seguir, verifique que as funções dadas formam um conjunto fundamental de soluções para a equação diferencial no intervalo indicado. Forme a solução geral.

- y'' y' 12y = 0;  $e^{-3t}$ ,  $e^{4t}$ ,  $(-\infty, \infty)$ ; • y'' - 4y = 0;  $\cosh(2t)$ ,  $\sinh(2t)$ ,  $(-\infty, \infty)$ ; • y'' - 2y' + 5y = 0;  $e^t \cos(2t)$ ,  $e^t \sin(2t)$ ,  $(-\infty, \infty)$ ; •  $t^2y'' - 6ty' + 12y = 0$ ;  $t^3$ ,  $t^4$ ,  $(0, \infty)$ ;
- $t^2y'' + ty' + y = 0$ ;  $\cos(\ln t)$ ,  $\sin(\ln t)$ ,  $(0, \infty)$ ;
- $y^{(4)} + y'' = 0$ ; 1, t,  $\cos(t)$ ,  $\sin(t)$ ,  $(-\infty, \infty)$ ;

Zill exercício 47 4.1, Boyce 3.3

#### Teorema 5 (Teorema de Abel)

Se  $y_1$  e  $y_2$  são duas soluções da equação diferencial y''+p(t)y'+q(t)y=0, em que q e q são funções contínuas em um intervalo aberto I, então o wronskiano  $W(y_1,y_2)(t)$  é dado por

$$W(y_1, y_2)(t) = C * \exp\left[-\int p(t)dt\right], \tag{25}$$

em que C é uma constante que depende de  $y_1$  e  $y_2$ , mas não de t. Além disso,  $W(y_1,y_2)(t)$  ou é zero para todo t em I (se C=0) ou nunca se anula em I (se  $C\neq 0$ ).

Consequência do teorema de Abel: é possível determinar o wronskiano de qualquer conjunto fundamental de soluções sem resolver a equação diferencial.

### **Exemplos**

#### Exemplo 13: Determine o wronskiano sem resolver a equação:

- $x^2y'' + xy' + (x^2 v^2)y = 0$ ;
- $(1-x^2)y'' 2xy' + \alpha(\alpha+1)y = 0;$

Exemplo 14: Se  $y_1$  e  $y_2$  são duas soluções linearmente independentes de

$$ty'' + 2y' + te^t y = 0$$

e se  $W(y_1, y_2) = 2$ , encontre o valor de  $W(y_1, y_2)(5)$ .

# Wronskiano e existência e unicidade de soluções *Boyce 3.3*

#### Teorema 6

Seja  $y_1$  e  $y_2$  soluções da equação diferencial y'' + p(t)y' + q(t)y = 0, em que p e q são contínuas em um intervalo aberto I. Então  $y_1$  e  $y_2$  são linearmente dependentes em I se, e somente se,  $W(y_1,y_2)(t)$  é zero para todo t em I. De outro modo,  $y_1$  e  $y_2$  são linearmente independentes em I se, e somente se,  $W(y_1,y_2)(t)$  nunca se anula em I.

#### Exercícios

Exercício 12: Prove que, se  $y_1$  e  $y_2$  se anulam no mesmo ponto em I, então não podem formar um conjunto fundamental de soluções nesse intervalo.

Exercício 13: Se o wronskiano de duas soluções quaisquer de y'' + p(t)y' + q(t)y = 0 é constante, o que isto implica sobre os coeficientes  $p \in q$ ?

Exercício 14: Mostre que t e  $t^2$  são linearmente independentes em -1 < t < 1; de fato, são linearmente independentes em qualquer intervalo. Mostre, também, que  $W(t,t^2)$  é zero em t=0. O que você pode concluir sobre a possibilidade de t e  $t^2$  serem soluções de um equação diferencial da forma y'' + p(t)y' + q(t)y = 0? Verifique que t e  $t^2$  são soluções da equação  $t^2y'' - 2ty' + 2y = 0$ . Isso contradiz sua conclusão ? O comportamento do wronskiano de t e  $t^2$  contradiz o Teorema 5?

#### Próxima aula ...

Na próxima aula iremos aplicar os conceitos aprendidos até aqui para analisar oscilações livre (sistema massa-mola) e circuitos RLC (sem excitação). Iremos verificar que estes sistemas podem ser representados por uma equação diferencial ordinária homogênea de segunda ordem com coeficientes constantes.

### Lição atual: Aplicações I: oscilações livres e circuito RLC I

"Saber aproveitar as ocasiões é um traço de talento raro. Quando estas se apresentam, somente aquele que está preparado sabe tirar-lhes proveito."

### Introdução

Nesta aula aplicaremos os conceitos até aqui aprendidos para descrever:

- o deslocamento vertical x(t) de um bloco de massa m suspenso por uma mola de constante k com posição e velocidade iniciais  $x(0) = x_0$  e  $x'(0) = v_0$ , respectivamente;
- o deslocamento vertical x(t) de um bloco de massa m suspenso por uma mola de constante k com posição e velocidade inicials  $x(0) = x_0$  e  $x'(0) = v_0$ , respectivamente, com amortecimento presente (constante b);
- a tensão (ou corrente) em algum componente de um circuito RLC (em série ou paralelo).

Como será observado, a equação que descreve essas variáveis é do tipo

$$ay'' + by' + cy = 0, y(0) = x_0,$$

cuja solução

$$y(x) = Ae^{-r_1t} + Be^{-r_2t},$$

em que  $r_1$  e  $r_2$  são raízes do polinômio característico  $ar^2 + br + c = 0$ .

# Oscilações livres

Zill 5.1, Nagle 4.9, Boyce 3.8



Equação diferencial (com condição inicial):

$$m\frac{d^2x}{dt^2} + kx = 0, \ x(0) = x_0, \ x'(0) = x'_0,$$
 (26)

em que m é a massa do bloco, k a constante de Hooke. O deslocamento e velocidade inicial são, em ordem,  $x_0$  e  $x_0'$ . Solução:

$$x(t) = C_1 \cos wt + C_2 \sin wt, \tag{27}$$

ou

$$x(t) = A\cos(wt + \phi), \qquad (28)$$

com  $w=\sqrt{^k/m}$  (frequência natural de oscilação),  $A=\sqrt{C_1^2+C_2^2}$  e  $\tan\phi={^C_2/C_1}$ .

# Oscilações livres com amortecimento

Zill 5.2, Nagle 4.9, Boyce 3.8



Equação diferencial:

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0, (29)$$

Podemos reescrever da seguinte forma:

$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + w^2x = 0, (30)$$

Solução da equação auxiliar:

$$m_1 = -\lambda + \sqrt{\lambda^2 - w^2},\tag{31}$$

$$m_2 = -\lambda - \sqrt{\lambda^2 - w^2},\tag{32}$$

em que  $\lambda = b/2a$  (constante de atenuação).

### Oscilações livres com amortecimento

Zill 5.2, Nagle 4.9, Boyce 3.8



### Soluções:

•  $\lambda^2 - w^2 > 0$ : Superamortecido.

$$x(t) = e^{-\lambda t} \left( C_1 e^{\sqrt{\lambda^2 - w^2}t} + C_2 e^{-\sqrt{\lambda^2 - w^2}t} \right)$$
 (33)

•  $\lambda^2 - w^2 = 0$ : Criticamente amortecido.

$$x(t) = e^{-\lambda t} (C_1 + C_2 t)$$
 (34)

•  $\lambda^2 - w^2 < 0$ : Subamortecido.

$$x(t) = e^{-\lambda t} \left( C_1 \cos \sqrt{w^2 - \lambda^2} t + C_2 \sin \sqrt{w^2 - \lambda^2} t \right)$$
 (35)

ou

$$x(t) = Ae^{-\lambda t}\sin\left(\sqrt{w^2 - \lambda^2}t + \phi\right),\tag{36}$$

com 
$$A = \sqrt{C_1^2 + C_2^2}$$
 e  $\tan \phi = C_2/C_1$ .

# Oscilações livres

Exemplo

Exemplo 15: Suponha um movimento de um sistema massa-mola governado por

$$\frac{d^2x}{dt^2} + b\frac{dx}{dt} + 4x = 0, \ x(0) = 0, \ x'(0) = 1.$$
 (37)

Determine a equação do movimento e esboce o gráfico para os casos em que i) b=0, ii) b=0, 5, iii) b=4 e iv) b=5. Soluções:

$$x(t) = \cos t \sin t$$

$$x(t) = 0.5e^{-0.25t} \sin 1.98t$$

$$x(t) = te^{-2t}$$

$$x(t) = \frac{1}{3} \left( e^{-t} - e^{-4t} \right)$$

# Oscilações livres

#### Exemplo



### Soluções:

$$x(t) = \cos t \sin t$$

$$x(t) = 0.5e^{-0.25t} \sin 1.98t$$

$$x(t) = te^{-2t}$$

$$x(t) = 1/3 \left(e^{-t} - e^{-4t}\right)$$

## Circuito RLC em paralelo

Zill 5.4, Nagle 5.7



Figura 1: Circuito RLC em paralelo.

### Equação diferencial:

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{v}{LC} = 0 \tag{38}$$

Como calcular a corrente no indutor do circuito RCL em paralelo?

# Circuito RLC em paralelo

Zill 5.4, Nagle 5.7

Equação característica:

$$r^2 + \frac{1}{RC}r + \frac{1}{LC} = 0 ag{39}$$

Soluções:

$$r = -\frac{1}{2RC} \pm \sqrt{\frac{1}{(2RC)^2} - \frac{1}{LC}}$$

Fazendo:

$$lpha=rac{1}{2RC}$$
 (constante de atenuação),  $\qquad \omega_0=rac{1}{\sqrt{LC}}$  (frequência natural).

Teremos:

$$r_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}, \quad r_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$
 (40)

## Circuito RLC em paralelo

Zill 5.4, Nagle 5.7

• Resposta **superamortecida**: raízes reais e diferentes ( $\alpha > \omega_0$ ).

$$v(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} (41)$$

• Resposta **subamortecida**: raízes complexas ( $\alpha < \omega_0$ ).

$$v(t) = e^{-\alpha t} \left( c_1 \cos \omega_0 t + c_2 \sin \omega_0 t \right) \tag{42}$$

• Resposta criticamente amortecida: raízes idênticas ( $\alpha = \omega_0$ ).

$$v(t) = c_1 e^{-\alpha t} + c_2 t e^{-\alpha t} (43)$$

## Exemplos - resposta superamortecida





Figura 2: Resposta superamortecida - circuito RLC em paralelo.

## Exemplos - resposta subamortecida





Figura 3: Resposta subamortecida - circuito RLC em paralelo.

## Exemplos - criticamente amortecida

 $\begin{aligned} \mathsf{R} &= 4 \ \mathsf{k}\Omega \\ \mathsf{C} &= 0{,}125 \ \mu\mathsf{F} \\ \mathsf{L} &= 8 \ \mathsf{H} \\ v(0) &= 0 \ \mathsf{V} \\ i_C(0) &= 12,25 \ \mathsf{mA} \end{aligned}$ 



Figura 4: Resposta criticamente amortecida - circuito RLC em paralelo.

### Circuito RLC em série

Zill 5.4, Nagle 5.7



Figura 5: Circuito RLC em série.

### Equação diferencial:

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$$

(44)

Como calcular a tensão no capacitor do circuito RLC em série?

### Circuito RLC em série

Zill 5.4, Nagle 5.7

Equação característica:

$$r^2 + \frac{R}{L}r + \frac{1}{LC} = 0 {45}$$

Soluções:

$$r = -\frac{R}{2L} \pm \sqrt{\frac{R}{(2L)^2} - \frac{1}{LC}}$$

Fazendo:

$$\alpha = \frac{R}{2L}, \quad \omega_0 = \frac{1}{\sqrt{LC}},$$

Teremos:

$$r_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}, \quad r_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$
 (46)

### Circuito RLC em série

Zill 5.4, Nagle 5.7

Resposta superamortecida: raízes reais e diferentes.

$$v(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} (47)$$

Resposta subamortecida: raízes complexas.

$$v(t) = e^{\lambda t} \left( c_1 \cos \omega t + c_2 \sin \omega t \right) \tag{48}$$

Resposta criticamente amortecida: raízes idênticas.

$$v(t) = c_1 e^{rt} + c_2 t e^{rt} (49)$$

## Exemplos - resposta superamortecida

 $\begin{aligned} & \mathsf{R} = 2,\! 5 \; \mathsf{k}\Omega \\ & \mathsf{C} = 0,\! 1 \; \mu \mathsf{F} \\ & \mathsf{L} = 100 \; \mathsf{mH} \\ & v_c(0) = 100 \; \mathsf{V} \\ & i_L(0) = 0 \; \mathsf{A} \end{aligned}$ 



Figura 6: Resposta superamortecida - circuito RLC em série.

## Exemplos - resposta subamortecida





Figura 7: Resposta subamortecida - circuito RLC em série.

## Exemplos - resposta criticamente amortecida

 $\begin{aligned} & \mathsf{R} = 2 \; \mathsf{k}\Omega \\ & \mathsf{C} = \mathsf{0,1} \; \mu \mathsf{F} \\ & \mathsf{L} = \mathsf{100} \; \mathsf{mH} \\ & v_C(0) = \mathsf{100} \; \mathsf{V} \\ & i_L(0) = 0 \; \mathsf{A} \end{aligned}$ 



Figura 8: Resposta criticamente amortecida - circuito RLC em série.

### Circuitos RLC

Exercícios

Exercício 15: Como exercício, determine a solução de cada exemplo ilustrado nesta nota de aula (três exemplos de aplicação de um circuito RLC em paralelo e três exemplos de aplicação de um circuito RLC em série).

## Na próxima aula ...

Na próxima aula iremos determinar a solução da equação diferencial não homogênea

$$ay'' + by' + cy = f(t),$$

em que f(t) é uma função polinomial, exponencial,  $\sin \beta t$ ,  $\cos \beta t$ , ou somas e produtos destas funções.

# Lição atual: Equações não homogêneas: Método dos coeficientes a determinar

"Não são as ferramentas que fazem o operário, é a engenhosidade, a habilidade, a perseverança."

## Introdução

Como apresentado na aula anterior, o deslocamento vertical de um bloco de massa m suspenso por uma mola de constante k, e amortecido (constante b), com posição e velocidade iniciais  $x(0)=x_0$  e  $x'(0)=v_0$ , respectivamente, é descrita pela solução da EDO

$$mx'' + bx' + kx = 0. (50)$$

Entretanto, quando há uma força externa  $F(\gamma,t)$ , a equação anterior é reescrita como

$$mx'' + bx' + kx = F(\gamma, t). \tag{51}$$

Neste caso, como determinar a nova solução da EDO?

# Equações diferenciais não homogêneas

Zill 4.1, Nagle 4.4, Boyce 3.6

O problema inicial consiste em determinar a solução a equação diferencial não homogênea:

$$y'' + p(t)y' + q(t)y = f(t)$$
(52)

em que p, q e f são funções contínuas dadas em um intervalo aberto I. Qualquer função  $y_p$ , independente de parâmetros, que satisfaça a Eq. 52 é chamada de **solução particular**. Para determinar a solução geral da equação diferencial anterior, fazemos uso do teorema a seguir.

#### Teorema 7

A solução geral da equação não homogênea (Eq. 52) pode ser escrita na forma:

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + y_p(t) = y_c(t) + y_p(t),$$
(53)

em que  $y_1(t)$  e  $y_2(t)$  formam um conjunto fundamental de soluções da equação homogênea associada,  $C_1$  e  $C_2$  são constantes arbritárias e  $y_p$  é solução particular da equação não homogênea (Eq. 52).

# Equações diferenciais não homogêneas

Zill 4.1, Nagle 4.4, Boyce 3.6

A equação diferencial homogênea associada é expressa como

$$y'' + p(t)y' + q(t)y = 0, (54)$$

cuja solução é  $y_c(t) = C_1y_1(t) + C_2y_2(t)^3$ . Portanto, é necessário que:

$$y_c'' + p(t)y_c' + q(t)y_c = 0.$$

Ao considerar p(t) e q(t) constantes na Eq. 52, então

$$y_c(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t},$$

em que  $r_1$  e  $r_2$  são raízes do polinômio característico

$$r^2 + pr + q = 0.$$

 $<sup>^{3}</sup>$ em  $y_{c}(t)$ , c representa "complementar".

### Método dos coeficientes indeterminados

Zill 4.4 - 4.5, Nagle 4.4 - 4.5, Boyce 3.6

O método requer uma hipótese inicial sobre a forma da solução particular  $y_p(t)$ , mas com os coeficientes não especificados. A expressão hipotética para  $y_p(t)$  é substituída na Eq. 52 e tentamos determinar os coeficientes para satisfazer a solução. Caso não funcione, devemos alterar a forma da solução. Buscaremos soluções do tipo:

- $y_p(t) = a_n t^n + a_{n-1} t^{n-1} \dots + a_1 t + a_0;$
- $y_p(t) = e^{alphat}$ ;
- $y_p(t) = a\cos wt + b\sin wt$ ;
- · somas e produtos dessas funções.

# Exemplo - caso 01

Exemplo 16: Determine a solução do problema de valor inicial abaixo.

- y'' + y = 1, y(0) = 2 e y'(0) = 7; Solução:
- $y'' 2y' + y = t^2 t 3$ , y(0) = -2 e y'(0) = 1; Solução:
- $t^2y'' + ty' 4y = 2t^4$ , em  $(-\infty, 0)$  e  $(0, \infty)$ ; Solução:

# Exemplo - caso 02

Exemplo 17: Determine a solução geral das equação diferenciais abaixo.

- $y'' 7y' + 12y = 4e^{2t}$ ;
- $y'' 7y' + 12y = 5e^{4t}$ ;
- $y'' 8y' + 16y = 2e^{4t}$ ;
- $y'' 3y' + 2y = e^{3t}(t^2 + 2t 1);$
- $y'' 4y' + 3y = e^{3t}(12t^2 + 8t + 6);$
- $4y'' + 4y' + y = e^{-t/2}(144t^2 + 48t 8);$

# Exemplo - caso 03

### Exemplo 18: Determine a solução geral das equações diferenciais abaixo.

• 
$$y'' - 2y' + y = 5\cos 2t + 10\sin 2t$$
;

• 
$$y'' + 4y = 8\cos 2t + 12\sin 2t$$
;

• 
$$y'' + 3y' + 2y = (16 + 20t)\cos t + 10\sin t$$
;

• 
$$y'' + y = (8 - 4t)\cos t - (8 + 8t)\sin t$$
;

• 
$$y'' - 3y' + 2y = e^{-2t} [2\cos 3t - (34 - 105t)\sin 3t];$$

• 
$$y'' + 2y' + 5y = e^{-t} [(6 - 16t)\cos 2t - (8 + 8t)\sin 2t];$$

# Princípio da superposição

### Teorema 8

Seja  $y_1$  uma solução da equação diferencial

$$ay'' + by' + cy = f_1(t),$$

e y2 uma solução de

$$ay'' + by' + cy = f_2(t).$$

Então, para quaisquer constantes  $k_1$  e  $k_2$ , a função  $k_1y_1+k_2y_2$  é uma solução da equação diferencial

$$ay'' + by' + cy = k_1 f_1(t) + k_2 f_2(t).$$

### Exemplo

### Princípio da superposição

Exemplo 19: Se a função  $y_p^1(t)=t^4/{15}$  é uma solução particular de

$$t^2y'' + 4ty' + 2y = 2t^4, (55)$$

em  $(-\infty,\infty)$  e  $y_p^2(t)=t^2/3$  é uma solução particular de

$$t^2y'' + 4ty' + 2y = 4t^2, (56)$$

em  $(-\infty,\infty)$ . Use o princípio da superposição para determinar a solução particular de

$$t^2y'' + 4ty' + 2y = 2t^4 + 4t^2, (57)$$

em  $(-\infty, \infty)$ .

Exemplo 20: Determine a solução particular para

- $y'' + 3y' + 2y = 3t + 10e^{3t}$ ;
- $y'' + 3y' + 2y = -9t + 20e^{3t}$ ;
- $y'' y = 8te^t + 2e^t$ .

### Próxima aula ...

Na próxima aula será apresentado um método mais geral para resolução de equações diferenciais não homogêneas, denominado de método da variação de parâmetros.

# Lição atual: Equações não homogêneas: Método da variação de parâmetros

"O sucesso é feito de muitos fiascos."

## Introdução

Vimos qque o método dos coeficientes indeterminados é um procedimento simples para determinar uma solução particular quando a equação tem coeficientes constantes e o termo não homogêneo é de um tipo especial (função polinomial, exponencial,  $\sin$  e  $\cos$ , e somas e produtos destas). Entretanto, como determinar a solução da EDO

$$y'' + y = \tan(t) ?$$

Nesta seção será apresentado um método mais geral, chamado de variação de parâmetros, para encontrar uma solução particular.

# Método da variação de parâmetros

Zill 4.7, Nagle 4.6, Boyce 3.7

Considerando conhecidas as duas soluções  $[y_1(t),y_2(t)]$  do conjunto fundamental da equação homogênea associada

$$y'' + p(t)y' + q(t)y = 0, (58)$$

então a solução particular  $y_p(t)$  da equação

$$y'' + p(t)y' + q(t)y = f(t)$$
(59)

é definida como

$$y_p(t) = u_1 y_1(t) + u_2 y_2(t) (60)$$

em que  $u_1$  e  $u_2$  são duas funções que devem ser determinadas.

# Método da variação de parâmetros

Boyce 3.7

### Teorema 9

Se as funções p, q e f são contínuas em um intervalo aberto I e se as funções  $y_1(t)$  e  $y_2(t)$  são soluções linearmente independentes da equação homogênea associada (Eq. 58) à equação não homogênea (Eq. 59),

$$y'' + p(t)y' + q(t)y = f(t),$$

então uma solução particular da Eq. 59 é

$$y_p(t) = u_1 y_1(t) + u_2 y_2(t).$$

A solução geral é

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + y_p(t).$$
(61)

Entretanto, com duas funções a determinar e apenas uma equação diferencial, é necessário definir uma outra relação para satisfazer a equação diferencial.

# Método da variação de parâmetros

Zill 4.7, Nagle 4.6, Boyce 3.7

• Deriva-se  $y_p(t)$  (Eq. 60), obtendo-se

$$y_p'(t) = u_1'y_1 + u_1y_1' + u_2'y_2 + u_2y_2'.$$
(62)

Considera-se que (primeira relação)

$$u_1'y_1 + u_2'y_2 = 0. (63)$$

· Deriva-se mais uma vez, obtendo-se

$$y_p''(t) = u_1' y_1' + u_1 y_1'' + u_2' y_2' + u_2 y_2''.$$
(64)

• Ao substituir  $y_p(t)$ ,  $y_p'(t)$  e  $y_p''(t)$  na equação diferencial não homogênea (Eq. 59), é obtida a segunda relação

$$u_1'y_1' + u_2'y_2' = f(t). (65)$$

# Método da variação de parâmetros

Zill 4.7, Nagle 4.6, Boyce 3.7

Portanto, o método consiste em determinar a solução do seguinte sistema:

$$u_1'y_1 + u_2'y_2 = 0 (66)$$

$$u_1'y_1' + u_2'y_2' = f(t) (67)$$

A solução do sistema é

$$u_1' = \frac{y_2}{y_1 y_2' - y_1' y_2} f(t), \qquad u_2' = \frac{y_1}{y_1 y_2' - y_1' y_2} f(t)$$
(68)

Ao integrar essas equações, finalmente obtemos:

$$u_1 = -\int \frac{y_2}{y_1 y_2' - y_1' y_2} f(t) dt + C_1, \quad u_2 = \int \frac{y_1}{y_1 y_2' - y_1' y_2} f(t) dt + C_2$$
 (69)

### Exemplos

Exemplo 21: Determine a solução particular de

$$x^2y'' - 2xy' + 2y = x^{9/2} (70)$$

considerando que  $y_1=x$  e  $y_2=x^2$  são soluções da equação homogênea associada.

Exemplo 22: Determine a solução particular de

$$(x-1)y'' - xy' + y = (x-1)^2$$
(71)

considerando que  $y_1=x$  e  $y_2=e^x$  são soluções da equação homogênea associada.

Exemplo 23: Determine a solução particular de

$$y'' + 3y' + 2y = \frac{1}{1 + e^x}. (72)$$

### Exercício

Exercício 16: Encontre uma solução geral em  $[-\pi/2, \pi/2]$  para

$$y'' + y = \tan(t). \tag{73}$$

Exercício 17: Ache uma solução particular em  $[-\pi/2, \pi/2]$  para

$$y'' + y = \tan(t) + 3t - 1. (74)$$

Exercício 18: Solucione o problema de valor inicial

$$(x^{2}-1)y'' + 4xy' + 2y = \frac{2}{x+1}, \quad y(0) = -1, \quad y'(0) = -5$$
 (75)

considerando que  $y_1=1/\!x-1$  e  $y_2=1/\!x+1$  são soluções da equação homogênea associada.

# Comparação entre os métodos

- **Método dos coeficientes indeterminados**: aplicado para equações diferenciais não homogêneas, cuja equação homogênea associada possui coeficientes constantes, em que a função g(t) é um produto entre uma função polinomial e  $e^{rt}$  ou  $e^{\lambda t}\cos\omega t$  ou  $e^{\lambda t}\sin\omega t$ .
- Método da variação de parâmetros: quando não aplicado o método dos coeficientes indeterminados e são conhecidas duas soluções particulares  $y_1(t)$  e  $y_2(t)$ .

### Exercícios

Exercício 19: Nos problemas a seguir, determine uma solução geral para a equação diferencial.

- $y'' + y = \tan^2(t)$ ;
- $y'' + y = \tan(t) + e^{3t} 1$ ;
- $v'' + 4v = \sec^4(2t)$ ;
- $y'' + y = 3\sec(t) t^2 + 1$ ;
- $y'' + 5y' + 6y = 18t^2$ ;
- $y'' 6y' + 9y = t^{-3}e^{3t}$ .

### Próxima aula ...

Na próxima aula aplicaremos o método dos coeficientes indeterminados para determinar a solução das equações diferenciais não homogêneas que descrevem oscilações forçadas.

# Lição atual: Aplicações II: oscilações forçadas e circuito RLC II

"Perdeu-se, entre o nascer e o pôr-do-sol,

Uma hora de ouro, com sessenta minutos de diamantes.

Não se oferece recompensa, porque está perdida para sempre."

Zill 5.3, Nagle 4.10, Boyce 3.9

Suponha que uma força externa  $F_0\cos\gamma t$  <sup>4</sup> é aplicada em um sistema massa-mola com massa m [kg], constante de amortecimento b [N-s/m] e constante de mola k [N/m]. A equação que descreve o movimento da massa é

$$mx'' + bx' + kx = F_0 \cos \gamma t. \tag{76}$$

A solução dessa equação diferencial é

$$x(t) = x_a(t) + x_p(t),$$
 (77)

em que  $x_a(t)$  é a solução associada à equação diferencial homogênea com coeficientes constantes e  $x_p(t)$  a solução particular.

 $<sup>^4 {\</sup>rm em}$  que  $F_0$  e  $\gamma$  são constantes positivas representando, respectivamente, a amplitude e a frequência da força.

#### Solução associada

Considerando que  $0 < b^2 < 4mk$  (soluções subamortecidas), as raízes da equação auxiliar são:

$$r = -\frac{b}{2m} \pm \frac{\sqrt{b^2 - 4mk}}{2m},$$
  
=  $-\lambda \pm \sqrt{\lambda^2 - w^2},$  (78)

em que  $\lambda=b/2m$  e  $w=\sqrt{k/m}$  é a frequência natural do sistema massa-mola. A solução associada é

$$x_a(t) = e^{-\lambda t} \left( C_1 \cos \sqrt{w^2 - \lambda^2} t + C_2 \sin \sqrt{w^2 - \lambda^2} t \right)$$
$$= C e^{-\lambda t} \sin \left( \sqrt{w^2 - \lambda^2} t + \theta \right), \tag{79}$$

com  $C = \sqrt{C_1 + C_2}$  e  $\tan \theta = \frac{C_1}{C_2}$ .

#### Solução particular

A forma da solução particular (método dos coeficientes indeterminados) é

$$x_p(t) = A\cos\gamma t + B\sin\gamma t = D\sin(\gamma t + \phi), \qquad (80)$$

com  $D = \sqrt{A^2 + B^2}$  e  $\tan \phi = A/B$ . As constantes A e B são

$$A = (k - m\gamma^2) \frac{F_0}{(k - m\gamma^2)^2 + b^2\gamma^2}, \quad B = b\gamma \frac{F_0}{(k - m\gamma^2)^2 + b^2\gamma^2}, \tag{81}$$

e, portanto, a solução particular é escrita como

$$x_p(t) = \frac{F_0}{\sqrt{m^2(w^2 - \gamma^2)^2 + b^2 \gamma^2}} \sin{(\gamma t + \phi)},$$
 (82)

com tan 
$$\phi = \frac{1}{2} \frac{w^2 - \gamma^2}{\lambda \gamma}$$
.

Solução geral

Solução geral:

$$x(t) = Ce^{-\lambda t} \sin\left(\sqrt{w^2 - \lambda^2}t + \theta\right) + \frac{F_0}{\sqrt{m^2(w^2 - \gamma^2)^2 + b^2\gamma^2}} \sin(\gamma t + \phi)$$
 (83)

### É importante observar que:

- A solução apresenta duas partes: transiente (solução associada, pois  $\lim_{t\to\infty}e^{-\lambda t}=0$ ) e em regime permanente (solução particular);
- A amplitude  $[M(\gamma)]$ e a fase  $[\phi(\gamma)]$  da solução em regime permanente dependem da frequência da força externa. Estas funções são definidas por:

$$M(\gamma) = \frac{1}{\sqrt{m^2(w^2 - \gamma^2)^2 + b^2 \gamma^2}}, \quad \phi(\gamma) = \tan^{-1} \left[ \frac{1}{2} \frac{w^2 - \gamma^2}{\lambda \gamma} \right].$$
 (84)

#### Constantes

As constantes  $C_1$  e  $C_2$  (obtenha esta solução!) são determinadas a partir de:

$$\begin{pmatrix} \cos \alpha t_o & \sin \alpha t_o \\ -\sin \alpha t_o & \sin \alpha t_o \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = e^{-\lambda t_o} \begin{pmatrix} K_1 \\ \frac{K_2 - \lambda K_1}{\alpha} \end{pmatrix}, \tag{85}$$

em que  $\alpha = \sqrt{w^2 - \lambda^2}$  e

$$K_1 = x(t_o) - x_p(t_o),$$
 (86)

$$K_2 = x'(t_o) - x_p'(t_o).$$
 (87)

#### Curva de resposta de frequência



Tomando m=1 e w=1, a curva de resposta de frequência é

$$M(\gamma) = \frac{1}{\sqrt{(1 - \gamma^2)^2 + b^2 \gamma^2}}$$
 (88)

Frequência da força externa em que ocorre ressonância:

$$\gamma_r = \sqrt{w^2 - 2\lambda^2},\tag{89}$$

com amplitude máxima

$$M(\gamma_r) = \frac{1/b}{\sqrt{w^2 - \lambda^2}} \tag{90}$$

#### Curva de resposta de fase



### Ângulo de fase:

$$\phi(\gamma) = \tan^{-1}\left[\frac{1}{2}\frac{w^2 - \gamma^2}{\lambda\gamma}\right].$$
 (91)

O que ocorre com a oscilação i)

$$\gamma < w$$
, ii)  $\gamma = w$  e iii)  $\gamma \gg w$ ?

Exemplo

Exemplo 24: Uma força externa de amplitude 3 N e frequência igual a  $\gamma$  rad/s é aplicada em um sistema massa-mola, com massa igual a 1 Kg, constante elástica da mola igual a 1 N/m e fator de amortecimento b N-s/m. A equação que descreve este sistema é

$$x'' + bx' + x = 3\cos t, (92)$$

considerando a condição inicial x(0) = 0 e x'(0) = 0. Para os seguintes valores de b, as soluções são:

- b = 1, 2:  $x(t) = 3,1250e^{-0.6t}\sin(0.8t + \pi) + 0.8333\sin(t)$ ;
- b = 0, 6:  $x(t) = 5,2414e^{-0.3t}\sin(0.9539t + \pi) + 1,6667\sin(t)$ ;
- b = 0, 1:  $x(t) = 30,0376e^{-0.05t}\sin(0.9987t + \pi) + 30\sin(t)$ ;

Solução b=1,2



Figura 9: Resposta no tempo e na frequência da oscilação forçada.

#### Conjunto de soluções



Figura 10: Resposta no tempo e na frequência da oscilação forçada para três coeficientes de amortecimento distintos.

#### Exercícios

Exercício 20: Determine a amplitude da oscilação de um sistema massa-mola sem amortecimento (b=0) em função da frequência da força externa aplicada. Qual a solução particular quando a frequência natural do sistema w é igual à frequência da força externa  $\gamma$ ? Esboce esta solução.

Exercício 21: Esboce a curva de resposta de frequência para o sistema em que m=2, k=3 e b=3.

Exercício 22: Amortecedores em automóveis e aviões podem ser descritos como sistemas massa-mola *superamortecidos*. Derive uma expressão semelhante à Eq. 83 para solução geral da Eq. 76 quando  $b^2 > 4mk$ .

Exercício 23: Mostre que o período do movimento harmônico simples de uma massa pendurada de uma mola é  $2\pi\sqrt{l/g}$ , em que l indica o quanto (além de sua extensão natural) a mola é esticada quando a massa está em equilíbrio.



Figura 11: Circuito RLC em série.

Equação diferencial:

$$LCv_c'' + RCv_c' + v_c = V(t)$$
(93)

Qual a analogia há entre este equação e a equação que descreve a posição em função do tempo de um sistema massa-mola com força externa ?

Solução

A solução é dividida em duas partes: uma parcela associada à equação homogênea  $v_{ca}(t)$  e uma à solução particular  $v_{cp}(t)$ :

$$v_c(t) = v_{ca}(t) + v_{cp}(t).$$
 (94)

Considerando que  $0 < R^2 < {}^{4L}\!/\!{}_{\!C}$  (soluções subamortecidas), as raízes da equação auxiliar são:

$$r = -\frac{R}{2L} \pm \frac{\sqrt{R^2C^2 - 4LC}}{2LC} = -\lambda \pm \sqrt{\lambda^2 - w^2},$$
 (95)

em que  $\lambda = R/2L$  e  $w = \sqrt{1/LC}$  é a frequência natural do circuito.

Solução

A solução  $v_{ca}(t)$  é

$$v_{ca}(t) = e^{-\lambda t} \left( D_1 \cos \sqrt{w^2 - \lambda^2} t + D_2 \sin \sqrt{w^2 - \lambda^2} t \right)$$
$$= De^{-\lambda t} \sin \left( \sqrt{w^2 - \lambda^2} t + \theta \right), \tag{96}$$

com  $D=\sqrt{D_1+D_2}$  e  $\tan\theta=D_1/D_2$ . Ao considerar que a tensão de excitação é  $V_o\cos(\gamma t)$ , a solução particular é:

$$v_{cp}(t) = \frac{V_o}{C\sqrt{L^2(w^2 - \gamma^2)^2 + R^2\gamma^2}} \sin(\gamma t + \phi),$$
 (97)

com  $\tan \phi = \frac{1}{2} \frac{w^2 - \gamma^2}{\lambda \gamma}$ .

#### Solução geral

### Solução geral:

$$v_c(t) = De^{-\lambda t} \sin\left(\sqrt{w^2 - \lambda^2}t + \theta\right) + \frac{V_o}{C\sqrt{L^2(w^2 - \gamma^2)^2 + R^2\gamma^2}} \sin\left(\gamma t + \phi\right)$$
(98)

### É importante observar que:

- A solução apresenta duas partes: transiente (solução associada, pois  $\lim_{t\to\infty}e^{-\lambda t}=0$ ) e em regime permanente (solução particular);
- A amplitude  $[M(\gamma)]$ e a fase  $[\phi(\gamma)]$  da solução em regime permanente depende da frequência da tensão de excitação. Estas funções são definidas por:

$$M(\gamma) = \frac{1}{C\sqrt{L^2(w^2 - \gamma^2)^2 + R^2\gamma^2}}, \quad \phi(\gamma) = \tan^{-1}\left[\frac{1}{2}\frac{w^2 - \gamma^2}{\lambda\gamma}\right].$$
 (99)

Curva de resposta em frequência

### Exemplo 25:

- Circuito RLC em série com
  - R = 560  $\Omega$
  - $C = 0.1 \mu F$
  - L = 100 mH
  - $v_c(0) = 0 \text{ V}$
  - $v_c'(0) = 0 \text{ V}$
  - $V(t) = 2\cos(\gamma t)$
- Amplitude em  $\gamma = 7508$  [rad/s]: 1,642;
- Amplitude em  $\gamma = 9165$  [rad/s]: 1,843; (amplitude máxima)



### Exemplos - resposta subamortecida

 $\gamma = 7500~\text{[rad/s]}$ 

$$\begin{aligned} &\mathsf{R} = 560 \; \Omega \\ &\mathsf{C} = 0,1 \; \mu \mathsf{F} \\ &\mathsf{L} = 100 \; \mathsf{mH} \\ &v_c(0) = 0 \; \mathsf{V} \\ &v_c'(0) = 0 \; \mathsf{V} \\ &V(t) = 2 \cos(7500t) \end{aligned}$$



Figura 12: Resposta subamortecida - circuito RLC em série.

### Exemplos - resposta subamortecida

 $\gamma = 9165 \text{ [rad/s]}$ 





Figura 13: Resposta subamortecida - circuito RLC em série.

### Próxima aula

Na próxima aula, os métodos aplicados às EDOs de segunda ordem serão generalizados para equações diferenciais ordinárias de ordem superior (n > 2).

Lição atual: Equações de ordem superior (n > 2)

# Equações diferenciais lineares de ordem superior

Zill 4.1, Nagle 6.1, Boyce 4.1

Considere uma equação diferencial ordinária linear e não homogênea de ordem n:

$$p_0(t)y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{(n-1)}y' + p_ny = f(t).$$
(100)

com as seguintes condições iniciais:

$$y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{n-1}$$
 (101)

Como determinar a solução dessa equação diferencial ordinária de ordem n?

Felizmente, a estrutura teórica e os métodos de resolução desenvolvidos para equações diferenciais de segunda ordem podem ser aplicados, diretamente, em equações diferenciais de ordem superiores.

### Teorema da existência e unicidade

Boyce 4.1

Primeiramente, é importante verificar as condições de existência e unicidade para as equações diferenciais ordinárias conforme Eq. 100.

#### Teorema 10

Se as funções  $p_0$ ,  $p_1$ , ...,  $p_n$  e f(t) são contínuas em I, então existe exatamente uma solução  $y=\phi(t)$  de Eq. 100 que também satisfaz as condições iniciais (Eq. 101). Esta solução existe em todo o intervalo I.

### Teorema 11 (Equação diferencial homogênea)

Se as funções  $p_0, p_1, \ldots, p_n$  e f(t) são contínuas em um intervalo aberto I, se as funções  $y_1, y_2, \ldots y_n$  são soluções da Eq. 100 com f(t) = 0, e se  $W(y_1, y_2, \ldots y_n)(t) \neq 0$  para, pelo menos, um ponto t em I, então toda solução da Eq. 100 pode ser expressa como uma combinação linear das soluções  $y_1, y_2, \ldots y_n$ .

# Exemplos - equações lineares homogêneas com coeficientes constantes

Zill 4.3, Nagle 6.2, Boyce 4.2

Exemplo 26: Verifique que as funções dadas são soluções da equação diferencial e determine seu wronskiano.

• 
$$y''' + y' = 0$$
,  $y_1(t) = 1$ ,  $y_2(t) = \cos t$ ,  $y_3(t) = \sin t$ .

• 
$$y^{(4)} + 2y''' + y'' = 0$$
,  $y_1(t) = 1$ ,  $y_2(t) = t$ ,  $y_3(t) = e^{-t}$ ,  $y_4(t) = te^{-t}$ .

Exemplo 27: Encontre a solução geral da equação diferencial dada.

• 
$$y''' - 3y'' + 3y' - y = 0$$
.

$$y^{(4)} - 5y'' + 4y = 0.$$

• 
$$y^{(4)} - 8y' = 0$$
.

### Exemplos - método da redução de ordem

Zill 4.4 - 4.5, Nagle 6.3, Boyce 4.3

Nestes exercícios, será abordado o método da redução de ordem. Neste caso, é possível reduzir a ordem da equação diferencial até que a EDO resultante possua uma solução (ou forma) conhecida.

Exercício 24: Mostre que, se  $y_1$  é uma solução de

$$y''' + p_1(t)y'' + p_2(t)y' + p_3(t)y = 0$$
(102)

então a substituição  $y=y_1v(t)$  nos leva à seguinte equação de segunda ordem para  $v^\prime$ 

$$y_1v''' + (3y_1' + p_1y_1)v'' + (3y_1'' + 2p_1y_1' + p_2y_1)v' = 0.$$
(103)

Exercício 25: Determine a solução pelo método da redução de ordem da seguinte equação:

$$(2-t)y''' + (2t-3)y'' - ty' + y = 0, t < 2, y_1(t) = e^t$$
(104)

### Exemplos - método dos coeficientes indeterminados

Zill 4.4 - 4.5, Nagle 6.3, Boyce 4.3

Nestes próximos exercícios, a EDO de ordem superior é não homogênea, cujo termo não homogêneo é uma função polinomial, exponencial,  $\sin$  ou  $\cos$ , soma ou produto destas funções. Nesta situação, a metodologia de resolução é idêntica à apresentada para equações diferenciais de segunda ordem.

Exercício 26: Determine a solução da equação diferencial dada sujeita às condições iniciais indicadas:

• 
$$x'' + w^2x = F_0 \sin wt$$
,  $x(0) = 0$ ,  $x'(0) = 0$ ;

• 
$$y''' + 8y = 2t - 5 + 8e^{-2t}$$
,  $y(0) = -5$ ,  $y'(0) = 3$ ,  $y''(0) = -4$ .

Exercício 27: Determine a solução particular das equações diferenciais:

• 
$$y''' + 3y'' + 2y' - y = e^t(5t^3 + 28t^2 + 24t + 21);$$

• 
$$y''' + y'' - 4y' - 4y = e^t[(5 - 5t)\cos t + (2 + 5t)\sin t].$$

# Método da variação de parâmetros

Zill 4.7, Nagle 6.4, Boyce 4.4

Este método consiste em determinar uma solução particular a partir do conjunto de soluções da equação diferencial associada. A forma geral da solução é

$$y_p = u_1 y_1 + \dots u_n y_n. \tag{105}$$

As condições que devem ser satisfeitas são

$$u_1'y_1^{(n-2)} + u_2'y_2^{(n-2)} + \dots + u_n'y_n^{(n-2)} = 0.$$
(106)

A condição que deve ser satisfeita a partir da equação diferencial não-homogênea é

$$u_1'y_1^{(n-1)} + u_2'y_2^{(n-1)} + \ldots + u_n'y_n^{(n-1)} = f(t).$$
(107)

### Método da variação de parâmetros

Zill 4.7, Nagle 6.4, Boyce 4.4

Portanto, o problema é resumido na seguinte equação matricial:

$$\underbrace{\begin{bmatrix}
y_{1} & y_{2} & \cdots & y_{n} \\
y'_{1} & y'_{2} & \cdots & y'_{n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-2)} & y_{2}^{(n-2)} & \cdots & y_{n}^{(n-2)} \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{bmatrix}}_{\mathbf{W}} \underbrace{\begin{bmatrix}
u'_{1} \\
u'_{2} \\
\vdots \\
u'_{n-1} \\
u'_{n}
\end{bmatrix}}_{\mathbf{U}} = \underbrace{\begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
f(t)
\end{bmatrix}}_{\mathbf{B}} \tag{108}$$

Como o Wronskiano  $W(y_1, y_2, \dots, y_n)$  é sempre diferente de zero, então é possível determinar a solução da equação matricial anterior ( $\mathbf{W} \cdot \mathbf{U} = \mathbf{B}$ ).

# Exemplos - método da variação de parâmetros

Zill 4.7, Nagle 6.4, Boyce 4.4

Exemplo 28: Determine uma solução particular da seguinte forma:

$$y_p = u_1 t + u_2 e^t + u_3 e^{-t}. (109)$$

Exemplo 29: Determine uma solução particular da equação diferencial:

$$t^{4}y^{(4)} + 6t^{3}y''' + 2t^{2}y'' - 4ty' + 4y = 12t^{2}$$
(110)

sabendo que  $y_1=t,\,y_2=t^2,\,y_3=1/t$  e  $y_4=1/t^2$  formam um conjunto de soluções fundamentais da equação associada. Determine a solução geral.