Trabalho Teórico 7

Unidade IV: Ordenação Interna - Shellsort

Slide G.

1)Em nosso exemplo, o algoritmo terminou sua execução?

Não, pois é necessário atualizar os elementos do array de contagem

2)Seja o array de entrada abaixo, quais serão os valores contidos no array de contagem antes e depois de copiarmos os elementos da entrada para a saída?

3) O Counting Sort pode ser aplicado adequadamente na ordenação de strings e números reais?

Resp: Não, no caso dos números reais temos infinitos números no intervalo 0-1 e como ele é indicado para manipulação de Inteiros não funcionaria em Reais. Porém é possível usar em uma string usando os valores da tabela Ascii como referência mas não seria funcional.

4) Nosso dinheiro é um número real. Conseguimos utilizar adequadamente o Counting Sort para ordenar valores financeiros?

Resp: Sim, pois apesar de Dinheiro estar dentro dos conjuntos reais sabemos que os centavos são finitos de até 100 unidades então basta multiplicar por 100 os valores, logo o 00,01 ocuparia a 1 posição, 00,10 a 10 posição 1,00 a 100 posição:

1)Mostre todas as comparações e movimentações do algoritmo anterior para o array abaixo:

	_	_	_			_				_			_			_	_
12	1	Q	7	14	17	6	18	10	16	5	15	12	ı a	1	11	17	2
12	-	O	_	7-7	1/	U	10	TO	10)	T)	13)			,	3

Passos Básicos

Before Shell Sort Vector {12,4,8,2,14,17,6,18,10,16,15,5,13,9,1,11,7,3} Number case Vector {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} After Shell Sort Vector {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}

Todos os passos

```
Before Shell Sort
Vector {12,4,8,2,14,17,6,18,10,16,15,5,13,9,1,11,7,3}
Ordenado-->Vector {1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,0,0,0,0,0,0,0,0,0,0}
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,10,0,0,0,0,0,0,0,0,0}
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,10,11,0,0,0,0,0,0,0}
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,10,11,12,0,0,0,0,0,0} *
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,10,11,12,13,0,0,0,0,0}
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,0,0,0}
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,0,0}
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,0,0}
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,0}
Ordenado-->Vector {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}
After Shell Sort
Vector {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}
```