

Chemical Vapor Deposition

Lecturer: Mengyuan Hua

IV. Non-traditional methods

New methods

- Atomic Layer Deposition (ALD)
- Magnetron sputtering
- PLD
- MBE
- Biotemplating thin film deposition
- Supercritical fluid deposition technology
- Electrochemical deposition and self-limiting growth
- Liquid deposition and interface engineering
- Gas-liquid interface deposition technology
- Laser induced thin film deposition
- 3D printing

Application area:

- Two-dimensional materials
- Topological insulators
- Nanoelectronics
- Quantum computing

V. Beyond CMOS

- Self-Assembly Techniques for Nanofabrication
- Fabrication of 2D material electronic devices
- Advanced packaging techniques
- Roadmap of photonic Integrated circuits
- Roadmap of memory devices
- Roadmap of carbon-based Electronics and ICs
- Roadmap of CMOS Logic ICs
- Roadmap of quantum devices
- ICs in electric vehicle
- ICs in 5G/6G communication
- SOI epi-wafer
- 3D integration

Outline

- Applications
- Materials
 - Semiconductors
 - Insulators
 - Conductors
- Methods
 - CVD Chemical Vapour Deposition
 - APCVD, LPCVD, PECVD, HDPCVD, VPE
 - PVD Physical Vapour Deposition
 - Evaporation, Sputtering
 - Spin-on
 - Electrochemical Deposition

Applications

- Epitaxial layers
 - Buried doped layers
 - Heterostructures
- Poly-silicon Gates
- Interlayer Dielectrics
- Interconnects Metals
- Contacts
- Masking materials
- Structural materials
- Sacrificial layers

Thin Film Deposition Methods

Chemical Vapour Deposition - CVD

- Vapour phase epitaxy VPE
- Atmospheric pressure APCVD
- Low pressure CVD LPCVD
- Plasma enhanced CVD PECVD
- High density plasma CVD HDPCVD
- Semiconductors
- Dielectrics
- Metals

Liquid Phase Epitaxy – LPE

Semiconductors III-V

Physical Vapour deposition - PVD

- Vacuum Evaporation
- Molecular Beam Epitaxy MBE
- Sputtering Reactive sputtering
- Semiconductors III-V
- Metals

Electrochemical deposition

- Electroplating, Electroless plating
- Metals

Spin-on deposition

• Dielectrics (Doped glasses)

Important Issues

Step Coverage

Trench Filling

<u>Additionally:</u> Growth temperature. Uniformity < 5%. Adhesion. Morphology, stoichiometry & density. Pinhole density < 1/cm². Stress – built-in and thermal mismatch.

Chemical Vapor Deposition process

- 1. Transport of reactants to the deposition region.
- 2. Transport of reactants from the main gas stream through the boundary layer to the wafer surface.
- 3. Adsorption of reactants on the wafer surface.
- 4. Surface reactions.
- 5. Desorption of byproducts.
- 6. Transport of byproducts through boundary layer.
- 7. Transport of byproducts away from the deposition region.

CVD Kinetics

N: Incorporated molecules per volume

Mass Transfer Flux:
$$F_1 = h_g (C_g - C_s)$$

1. Order Chemical Reaction Flux: $F_2 = k_s C_s$

Steady State Flux:
$$F_1 = F_2 = F = C_g \frac{h_g k_s}{h_g + k_s}$$

Surface Concentration:
$$C_s = \frac{C_g}{1 + k_s / h_g}$$

Growth Rate:
$$R = \frac{F}{N} = \frac{h_g k_s}{h_g + k_s} \frac{C_g}{N} = \frac{h_g k_s}{h_g + k_s} \frac{C_T}{N} Y$$

Source Gas Mole Fraction :
$$Y = \frac{C_g}{C_T}$$

Mass Transfer Control
$$(h_g << k_s): R \cong h_g \frac{C_T}{N} Y$$

Surface Reaction Control
$$(h_g >> k_s): R \cong k_s \frac{C_T}{N} Y$$

Growth Rate: Temperature Dependence

Surface reaction constant: strong temperature dependence

Mass transfer coefficient: strong geometry & pressure dependence

APCVD - Vapour Phase Epitaxy (VPE)

Other Si-Sources:

Silane: SiH₄

Chlorosilane: SiH_xCl_v

 H_2

- •Growth Temperature: 1000-1300°C
- Pressure ~1Bar or less
- Very high gasflow rates
- Low Si-compound Molar Fraction
- Quite Low Wafer Throughput
- HCI used for pre-epi etch/clean

Chemical reactions

Gas Depletion Compensation

The growth consumes source gas molecules ⇒
Concentration & rate drops with increasing x
Tilting the susceptor decreases boundary layer thickness with x⇒
Rate increases with x
A specific tilt just balances the gas depletion

VPE Auto-doping

APCVD - Limitation

• Atmospheric pressure systems have major drawbacks:

• At high T, a horizontal configuration must be used (few wafers at a time).

• At low T, the deposition rate goes down and throughput

is again low.

LPCVD - Low Pressure CVD

SiH₄

Exhaust scrubber

• The solution is to operate at low pressure. In the mass transfer limited regime,

$$h_G = \frac{D_G}{\delta_S}$$
 But $D_G \propto \frac{1}{P_{total}}$

VaccumPump

Hot wall reactor
High productivity
P~0.01-1Torr
T~400-900°C

Gas control

and sequencer

Source Gases

- D_G will go up 760 times at 1 torr, while increases δs by about 7 times. Thus h_G will increase by about 100 times.
- Transport of reactants from gas phase to surface through boundary layer is no longer rate limiting.
- Process is more T sensitive, but can use resistance heated, hot-walled system for good control of temperature

and can stack wafers.

 O_2

LPCVD – Chemical reaction

$$SiH_4 \rightarrow Si(amorphous) + 2H_2$$
 (600-650 °C)

Pressure: 1 torr;

T<575 °C, amorphous Si;

T>600 °C, column structure;

Amorphous Si starts to crystallize above 600 °C;

Column structure grain grows with thermal annealing;

Advantages:

- √100~200 wafers; high throughput;
- √Good thickness uniformity;
- ✓ Well controlled composition;
- ✓ Good step coverage;
- ✓ Relatively low temperature;
- √ High deposition rate

Temperature compensation of Gas-depletion

Growth consumes source material ⇒
Growth rate drops with distance from inlet
Compensate by increasing T with distance.

TEM image of LPCVD PolySi at 625 °C

LPCVD TEOS Oxide Si(OC₂H₅)₄

Good Step Coverage & Trench Filling – Almost Conformal Due to high mobility of TEOS on the surface

Stress in Boron Doped LPCVD Polysilicon

LPCVD Polysilicon

LPCVD TEOS Oxide

Silicon substrate

Net reaction $SiH_4 + xB_2H_6 \Rightarrow$ $Si(2xB) + (2+3x)H_2$

Problems in APCVD - LPCVD @ low T

Low temperature deposition impractical:

- Very low rates at low temperature
 - $\sim \exp(-E_a/kT)$
- Low film quality
 - Porous due to low surface diffusivity
 - Poor step coverage/ trench filling
 - High sticking coefficient
 - Low surface diffusivity
- Solution: PECVD Plasma Enhanced CVD

Plasma Enhanced CVD – PECVD

The gas discharge creates:

Reactive, Energetic Molecular Fragments – Increases surface reaction constant k_s Energetic Ions – Ion bombardment densify the film

Result: High deposition rates & dense films at low temperatures.

PECVD Oxide Film SiH₄+N₂O at 300°C

Poor trench filling, voids & cracks due to low surface mobility Step coverage and trench filling is a general PECVD problem.

PSG/BPSG reflow for Oxide

Annealed PECVD BPSG

SEM cross-section of PECVD BPSG Oxide on structured silicon.

Planarized surface after anneal due to viscous flow and surface tension. BPSG: Boron Phosphorous Silica Glass

High Density Plasma CVD

Remote high density plasma source

- High deposition rate possible
 Independent substrate bias
- Controlled simultaneous deposition& sputter-etching
 - Planarization
 - Controlled ionflux-induced densification & stress control

