Einleitung Grundlagen Methoden Abschluss

Optical Flow Estimation

Andreas Töscher Christian Reinbacher

2. Mai 2007

Was ist Bewegung?

- Bewegung auf 3D-Pfad
- Projektion auf zwei Dimensionen
- Optical Flow Estimation = 2D-Bewegungsschätzung

Methoden der Bewegungsschätung

- Feature Tracking
- Block Matching
- gradientenbasierte Verfahren

Grundlagen der gradientenbasierten Verfahren

$$I(x,t) = I(x+u,t+1)$$

Annahmen:

- Helligkeiten sind konstant
- nicht reflektierende Oberflächen
- punktförmige Lichtquelle
- keine Rotationen oder Schatten

Schätzer für 1D-Bewegungen

- $f_2(x) = f_1(x-d)$
- Taylorreihenentwicklung von $f_1(x-d)$: $f_1(x-d) = f_1(x) - df'_1(x) + O(d^2f''_1)$
- Terme höherer Ordnung verwerfen, einsetzen, umformen: $\hat{d} = \frac{f_1(x) f_2(x)}{f_1'(x)}$

Schätzer für 2D-Bewegungen

Analog zum 1D-Fall:

Taylorreihenentwicklung:

$$I(x+u,t+1) \approx I(x,t) + u \cdot \nabla I(x,t) + I_t(x,t)$$

- Terme höherer Ordnung verwerfen, einsetzen, umformen: $\nabla I(x,t) \cdot u + I_t(x,t) = 0$
- Problem: eine Gleichung in 2 Unbekannten u_1 und u_2
- ullet Lösung: lokale Umgebung betrachten o LS-Estimator

LS-Estimator

$$E(u) = \sum_{X} g(x) [u \cdot \nabla I(x,t) + I_t(x,t)]^2$$

- \bullet E(u)...Fehlermaß auf lokaler Umgebung
- g(x)...2D-Gauss-Kern
- Minimum finden: ableiten nach u_1 und u_2 und Nullsetzen
- in Matrixform: Mu = b wobei

$$M = \begin{bmatrix} \sum gI_x^2 & \sum gI_xI_y \\ \sum gI_xI_y & \sum gI_y^2 \end{bmatrix}, b = -\begin{pmatrix} \sum gI_xI_t \\ \sum gI_yI_t \end{pmatrix}$$

• Lösung: $\hat{u} = M^{-1}b$

Iterative Methode (I)

- die vorherige Lösung ist optimal, aber nicht für das ursprüngliche Problem
- es treten höhere Ableitungen von f(x) auf, die nicht verschwinden
- ullet Lösung: suche lokales Minimum der Errorfunktion E(u)

Iterative Methode (II)

•
$$u^{(0)} = 0$$

•
$$u^{(n)} = u^{(n-1)} + M^{-1}b$$
 für $n \ge 1$

Iterative Methode (III)

Vorteil:

höhere Ableitungen dürfen ungleich 0 sein

Nachteil:

• für jede Iteration muss die M Matrix invertiert werden

Temporal Aliasing

- die zeitliche Auflösung ist begrenzt
- ullet durch eine zu schnelle Bewegung wird $u^{(0)}$ im falschen lokalen Minimum der Errorfunktion gewählt

Lösung: Coarse-To-Fine Refinement

Algorithmus:

- Bild mit breitem Gauss glätten
- Bewegung berechnen
- Bewegung aus dem Bild herausrechnen
- beginne bei (1) mit schmälerem Gauss (bis die gewünschte Genauigkeit erreicht ist)

Probleme:

- wird ein Fehler gemacht pflanzt sich dieser fort
- mit vielen kleinen Verfeinerungen ist es sehr Rechenaufwendig

Robust Motion Estimation (I)

- LS-Estimation hat Probleme mit Outlier
- Gründe für Outlier:
 - Helligkeit nicht konstant
 - Schatten
 - Reflexionen
 - mehrere Lichtquellen
 - ...

Robust Motion Estimation (II)

Lösung: Verwendung eines Robusten Gewichts

$$e(x,u) = u \cdot \nabla I(x,t) + I_t(x,t)$$

$$\rho(e,\sigma) = e^2/(e^2 + \sigma^2)$$

$$E(u) = \sum_{X} g(x) \rho(e(x, u), \sigma)$$

Layered Motion

- Probleme an den Grenzen der Objekte im Bild
- teilen des Bildes in Layer
- jeder Layer kann mit den besprochenen Methoden behandelt werden

Global Smoothing

- Annahme: Bewegung im Bild gleichmäßig, gleichförmig
- Horn-Schunck-Methode:

$$E(u) = \int (\nabla I \cdot u + I_t)^2 + \lambda(||\nabla u_1||^2 + ||\nabla u_2||^2) dx dy$$

- ullet λ ...Parameter für Bewegungsgeschwindigkeit
- $\hbox{ Ableitungen diskret approximieren} \to \hbox{großes lineares} \\ \hbox{ Gleichungssystem}$
- Lösen mit iterativen Verfahren zB Gauss-Seidel

Wahrscheinlichkeiten

- Problem aller Verfahren: Keine Aussage über Güte der Bewegungsschätzung
- benötigt für Fusion von verschiedenen Verfahren
- Lösung: Einführung von Wahrscheinlichkeitsrechnung: $I(x,t) = I(x+u,t+1) + \eta$
 - ullet $\eta...$ weisses Rauschen mit Mittelwert σ , unkorreliert
- damit ergibt sich: $p(I|u) \propto e^{\frac{1}{2\sigma^2}E(u)}$
 - \bullet E(u)...Fehlermaß der iterativen Methode
 - Mittelwert $M^{-1}b$
 - ullet Kovarianz M^{-1} definiert Ellipse um jede Schätzung
- Keine Lösung für korreliertes Rauschen

Abschluss

Beispielprogramme zu Global Smoothing und Feature-Based-Tracker (KLT):

- OpenCV
- C

Danke für die Aufmerksamkeit