

Aufgaben zu Riemannsche Flächen - WS 2025/26

10. Blatt

Aufgabe 31: Sei \mathscr{U} eine offene Überdeckung von X und \mathcal{F} eine Garbe abelscher Gruppen auf X. Zeigen Sie exemplarisch, dass

$$\delta \circ \delta : \check{C}^0(\mathscr{U}, \mathcal{F}) \longrightarrow \check{C}^1(\mathscr{U}, \mathcal{F}) \longrightarrow \check{C}^2(\mathscr{U}, \mathcal{F})$$

der Null-Morphismus ist.

Aufgabe 32: Seien $\mathscr{W} \leq \mathscr{V} \leq \mathscr{U}$ jeweils Verfeinerungen offener Überdeckungen. Zeigen Sie, dass die Verfeinerungsabbildungen in Čech-Kohomologie wie erwartet kommutieren, das heißt, dass das folgende Dreieck kommutiert:

Aufgabe 33: Zeigen Sie, dass die Verfeinerungsabbildung auf Čech-Kohomologie

$$\check{H}^r(\mathscr{U},\mathcal{F}) \longrightarrow \check{H}^r(\mathscr{V},\mathcal{F})$$

für eine Verfeinerung $\mathscr{V} \leq \mathscr{U}$ immer injektiv ist.

Aufgabe 34: Betrachten Sie die Garben $\mathcal{O}(m)$ auf \mathbb{CP}^1 aus Aufgabe 10, Blatt 3. Sei $\mathscr{U}=(U_0,U_1)$ die dort betrachtete offene Überdeckung (die Standard-Kartengebiete auf \mathbb{CP}^1). Zeigen Sie, dass¹

$$\dim_{\mathbb{C}} \check{H}^1(\mathcal{U}, \mathcal{O}(m)) \ = \ \begin{cases} -m-1 & \text{für } m \leq -2, \\ 0 & \text{für } m \geq -1. \end{cases}$$

¹Beachten Sie, dass diese Kohomologiegruppen in natürlicher Weise $\mathbb C$ -Vektorräume sind, weil die lokalen Schnitte $\mathcal O(m)(U)$ dies sind und die Korand-Operatoren δ offenbar $\mathbb C$ -linear.