Ejercicios repaso. Sacados de exámenes anteriores

Ejercicio 1. Sea $g: \mathbb{R}^2 \to \mathbb{R}^2$ una aplicación Lipschitz. Si $K \subset \mathbb{R}^2$ tiene medida cero, probar que g(K) también tiene medida cero.

Ejercicio 2. Sea $g:\mathbb{R}^2\to\mathbb{R}^3$ una aplicación Lipschitz. Si $K\subset\mathbb{R}^2$ es acotado, probar que g(K) tiene volumen cero.

Ejercicio 3. La función Γ de Euler se define por

$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$$

- 1. Demostrar que está bien definida (es decir que la integral impropia es convergente) para todo t>0.
- 2. Demostrar que $\Gamma(t+1) = t\Gamma(t)$ para todo t > 0.
- 3. Calcular $\Gamma(1)$ y deducir el valor de $\Gamma(n)$ para $n \in \mathbb{N}$.

 $\bf Ejercicio~4.~$ Demostrar que el siguiente conjunto tiene volumen bien definido y calcularlo:

$$A = \{(x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0, \sqrt{x} + \sqrt{y} \le 1\}$$

 $\bf Ejercicio~\bf 5.~$ Demostrar que el siguiente conjunto tiene volumen bien definido y calcularlo:

$$A = \{(x, y, z) \in \mathbb{R}^3 | x \ge 0, y \ge 0, z \ge 0, \sqrt{x} + \sqrt{y} + \sqrt{z} \le 1\}$$

Ejercicio 6.

(a) Calcular la integral

$$\int_0^1 \int_{\sqrt{x}}^1 e^{-y^3} \, dy \, dx.$$

(b) Calcular $\int_D f$, con

$$f(x,y) = \frac{y^2 e^{x^2 + y^2}}{x^2 + y^2},$$

$$D = \{(x,y) \in ^2 : 1 \le x^2 + y^2 \le 4, x \le y, x \ge 0\}.$$